AEG-TELEFUNKEN

Data Book 1981/82

Optoelectronic Devices

This data book gives no information regarding delivery conditions.

Part of the publication may be reproduced without written permission but the pre-requisite is the publication of author's name, source of article and to place at our disposal two authors copies after publication.

Written permission is necessary from the publisher for reprint or translation.

We reserve the right to amend any of the information without prior notice including issue of letters patent.

General	Page A1
Detectors	Page 1
IR-Emitters	Page 94
Photo coupling devices	Page 158
Photo pulse amplifier	Page 220
Light emitting diodes	Page 227
Digits and Displays	Page 399
Subject index	Page 421
Addresses	Page 425

AEG-TELEFUNKEN

Data Book 1981/82

Optoelectronic Devices

Contents

		Page			Pag
A. Su	mmary of the types		3. Mea	asurement technique	
a. b.	Alpa-numeric Classified applications	VI	3.1. 3.2. 3.2.1.	Introduction Dark and light measurement Emitter devices	A2 A2 A2
1. Exp	lanation of technical data		3.2.1.2	I. IR-diodes (GaAs) 2. Light emitting diodes (GaAsP, GaP)	A2 A2
1.1.	General information	A1	3.2.2.	Detector devices	Α2
1.1.1.	Type designation code for semiconductor devices	A1	3.2.2.2	Photovoltaic cells, photodiodes Phototransistors, photo darlington	A2
1.2.	According to Pro Electron symbols and terminology – alphabetically	A2	3.2.3. 3.3. 3.3.1.	Coupling devices Switching characteristics Definition	A2 A2 A2
1.3.	Data sheet construction	A11	3.3.2.	Notes concerning the test set-up	A2
1.3.1.	Device description	A11	3.3.3.	Switching characteristic	A 28
1.3.2.	Dimensions (mechanical data)	A11		improvements on phototransistors	
1.3.3.	Absolute maximum ratings	A11		and photo darlington transistors	
1.3.4.	Thermal data – thermal resistances	A 11	4. Qua	lity data	
1.3.5.	Optical and electrical characteristics	A11	4.1.	Delivery quality	A 29
1.3.6.	switching characteristics Additional information		4.2.	Classification of defects	A 29
1.0.0.	Additional information	A11	4.3.	AQL-values	A 29
2. Phys	sical theory of optoelectronic		4.4.	Sampling inspection plans	A30
devi	ces		5 Acce	mala la company and a second	
2.1.	Introduction	1.40		embly instructions	
2.2.	Operating principle of	A 12	5.1.	General	A31
	optoelctronics devices	A 12	5.2.	Soldering instructions	A 31
2.2.1.	Light emitting diodes	A 12	5.3.	Heat removal	A31
2.2.2.	Laserdiode	A 13	0.1		
2.2.3.	Detector devices	A 13	ь. ітро	rtant notes on device selection	
2.3.	Technology and characteristics of optoelectronic devices	A14	6.1. 6.1.1.	Optical characteristics Devices with flat window	A33
2.3.1.	Emitter devices	A 14	6.1.2.	Devices with lenses	A33
2.3.1.1.	GaAs diodes	A 14	6.1.2.1.	Devices with medium-focus lenses	A34
	Laser diode	A 14	6.1.2.2.	Devices with sharp-focus lenses	A34
2.3.1.3.	Light emitting diodes	A 15	6.2.	Environmetal conditions	A34
2.3.2.	Detector devices	A 15			
	Photovoltaic cells	A 16	7. Acces	ssories	A35
	Photo diodes	A 16			
	Photo avalanche diodes	A 16	8. Techr	nical data	
	Phototransistors	A 17	8.1.	Emitters	4
2.3.3.	Coupling devices	A 17	8.2.	Detectors	1 94
2.3.4.	Glass fiber transmission	A 18	8.3.	Photo coupling devices	158
	Introduction Glass fiber	A 18	8.4.	Photo pulse amplifier	220
2.3.4.2.		A 18		Light emitting diodes	227
2.4.	Conversion tables	A 20		Digits and displays	399
			9. Subje	ct index	421
			10. Addr	resses	425

A. Summary of the types - alpha-numeric

A. Summary of the types – dipi	iu manio		
Туре	Page	Туре	Page
BP 104 ▼	1	CQX 37	267
DI 104 ¥	•	CQX 38	289
BPW 13	5	CQX 39	267
BPW 14	5	CQX 40	227
BPW 16 N	13	CQX 41 N	309
BPW 17 N	13	CQX 42	243
BPW 20	21	CQX 42 N	245
BPW 21 ● ●	27	CQX 43 N	299
BPW 24	33	CQX 46	109
BPW 28	37	CQX 47 ▼	113
BPW 34	41	CQX 86 A	399
BPW 35	45	CQX 86 K	399
BPW 39	49	CQX 87 A	407
BPW 40	55	CQX 87 K	407
BPW 41	61	CQX 88 A	399
BPW 42	65	CQX 88 K	399
BPW 43	69	CQX 89 A	407
BPX 99	73	CQX 89 K	407 399
		CQX 90 A	399
CNY 18 ● ● _	159	CQX 90 K	399 407
CNY 21 ■ 縫	165	CQX 91 A	407 407
CNY 36	171	CQX 91 K	399
CNY 37	171	CQX 92 A	399
CNY 64 ● ● 🏡	177	CQX 92 K	407
CNY 65 ● ● 🕸	183	CQX 93 A	407
CNY 66 ● ●	189	CQX 93 K	277
CNY 70	195	CQX 95 ▼ CQX 96 ▼	283
CNY 75 ● ●	199	CQX 96 ¥	
CQW 13 ▼	135	CQY31	117
CQW 14 ▼	141	CQY 32	117
CQX 10	227	CQY 33 N	123
CQX 11	227	CQY 34 N	123
CQX 12	227	CQY 35 N	123
CQX 18	95	CQY 36 N	129
CQX 19	101	CQY 37 N	129
CQX 20	107	CQY 40	289 297
CQX 21 ▼	235	CQY 41 ■	297 299
CQX 22 ▼	239	CQY 41 N	289
CQX 25	243	CQY 72	297
CQX 25 N	245	CQY 73	299
CQX 26	243	CQY 73 N	289
CQX 26 N	245	CQY 74	297
CQX 27	243	CQY 75 ■ CQY 75 N	299
CQX 27 N	245 253	CQY 80 N • • 🏝	205
CQX 28	253	CQY 85 N	309
CQX 29	253	CQY 86 N	309
CQX 30 CQX 31	259	CQY 87 N	309
CQX 31 CQX 32	259	CQY 98	135
CQX 35	267	CQY 99	141
CQX 36	267		

[■] Not for new developments

Available as qualified semiconductor device

Pag		Туре	Page			Туре
35	▼	V 510 P	77	▼		S 153 F
35	▼	V 511 P	81	▼		S 168 F
35	▼	V 512 P	83	▼		S 171 F
35	·	V 513 P	87	▼		S 181 F
35	*	V 518 P	89	▼	P	S 191 F
36	▼	V 520 P				
36	▼	V 521 P	221		3 P	U 123 F
36	▼	V 522 P				
36	▼	V 523 P	289			V 168 P
37	▼	V 530 P	289			V 169 P
37	▼	V 531 P	289			V 170 P
37	▼	V 532 P	147			V 194 P
37:	▼	V 533 P	153	▼		V 213 P
38	▼	V 540 P	415	▼		V 227 P
38	₩	V 541 P	141	▼		V 290 P
38	▼	V 542 P	155	▼	P	V 292 P
38	▼	V 543 P				_
389	▼	V 550 P	319	▼		/ 310 P
389	▼	V 551 P	319	▼		311 P
389	▼	V 552 P	319	▼		312 P
389	▼	V 553 P	319	▼		313 P
235	▼	V 621 P	327	▼		320 P
235	▼	V 622 P	327	▼		/ 321 P
235	▼	V 623 P	327	▼		/ 322 P
			327	▼		/ 323 P
211	▼	4 N 25	335	▼		/ 330 P
211	▼	4 N 26	335	▼		/ 331 P
211	▼	4 N 27	335	₹		/ 332 P
215	▼	4 N 35	335	7		/ 333 P
215	▼	4 N 36	343	7		/ 340 P
215	▼	4 N 37	343	7		/ 341 P
2.0			343	7		/ 342 P
			343	7		/ 343 P
			135	7	Р١	/ 390 P

Detector devices · Phototransistors

	Angle of ha	If sensitivity	α		Page
Case	25°	40°	80°	130°	raye
≈ JEDEC TO 18	BPW 14				5
≈ JEDEC TO 18			BPW 13		5
Special, plastic Ø 1.8			BPW 16 N		13
Special, plastic Ø 1.8	BPW 17 N				13
≈ JEDEC TO 92				BPW 39	49
Plastic, Ø 5		BPW 40			55
Plastic, Ø 3			BPW 42		65
≈ JEDEC TO 52	BPX 99				73

Detector devices · Photo diodes and voltaic cells

Case				lf sensiti	ivity $lpha$			
		40°				100°	≥120°	Pag
Plastic, Ø 5			BPV 43	v				69
						BPW 20		21
	••					BPW 21		27
≈ JEDEC TO 56						S 153 P		77
	•				S 171 P			83
Microwave case	▼				S 181 P			87
							BPW 35	45
Plastic							BPW 41	61
JEDEC TO 18		BPW 24						33
JEDEC TO 18	•			S 191 P				89
	•						BP 104	1
astic							BPW 34	41
			BPW 28					37
JEDEC TO 18	▼			S 168 P				81

[▼] New Type

^{● ●} Can be delivered as "Qualified semiconductor device"

Radiation sources in infrared range

	Angle	of half in	tensity o					Page
Case	10°	25°	35°	50°	55°	80°	100°	
	CQY 32							117
≈ JEDEC TO 18	CQY 35 N							123
		CQY 34 N						123
≈ JEDEC TO 18								
			CQY 98 V 390 P CQW 13					135
Plastic case Ø 5 mm ▼				CQY 99 V 290 P CQW 14				141
				CQX 46				109
Plastic case Ø 3 mm	_							-
Plastic case			CQX 47 (a ₁)		CQX 47 (a ₂)			113
Fiasiic cuse						CQY		129
Plastic case Ø 1.8 mm						36 N		
≈ JEDEC TO 18							V 292 F	155
Plastic case Ø 1.8 mm		CQY 37 N						129
							CQX 18	95

		_
▼	New	Type

Radiation sources in infrared range

Case	Angle of	half sensitiv	vity α		
	10°	40°	50°	80°	Page
weedshipped that				CQY 31	117
≈ JEDEC TO 18				CQY 33 N	123
	+			V 213 P	153
Metal base with clear plastic lens covering		CQX 19			101
Metal base with clear plastic lens covering				V 194 P	147
Special case	CQX 20 (α ₂)		CQX 20 (α ₁)		107

Devices to couple with glasfiber

Emitters

Case	Operating	Operating frequencies							
	600 kHz	3 MHz	10 MHz	300 MHz	Page				
		CQY 32			117				
≈ JEDEC TO 18	CQY 35 N				123				
≈ JEDEC TO 18 ▼			V 213 P		153				
≈ JEDEC TO 18 ▼			V 292 P		155				
Special case (Figure see above)				CQX 20	107				

Detectors

Case	Operating freq	Operating frequencies						
	200 kHz	300 MHz	> 1 GHz	Page				
≈ JEDEC TO 18	BPW 14			5				
		BPW 28		37				
≈ JEDEC TO 18	▼	S 168 P		81				
≈ JEDEC TO 18	£0 .	S 191 P		89				
Microwave case			S 171 P	83				
evices with fiber pigtails are available			S 181 P	87				

with fiber pigtails are available on special request.

Photo coupling devices

			Isola	tion v	oltage	•						İ	D
Case			0,5 kV	1,5 kV	2,5 kV	3,5 kV	4,4 kV	5,3 kV	8,2 kV	10 kV	11,6 kV	15 kV	Page
JEDEC TO 72		••	CNY 18				_						159
	ÔÝE)									CNY 21			165
	_							CNY 75					199
W. W.	<u>A</u>	••					CQY 80 N						205
	*			4N26 4N27									211
	* *			4N37	4N36	4N35							215
A. C.	▼	••							CNY 64				177
CUN SE	© ^v E	••									CNY 65		183
CHY EE) _	• •										CNY 66	189

Figures approx 1:1

[▼] New Type

^{● ●} Can be delivered as "Qualified semiconductor device"

Reflective and interrupter optocoupler

Case	Reflective coupler	Interrupter coupler	Page
•	CNY 70		195
3.5 A		CNY 36	171
		CNY 37	171

Monolithic integrated pulse amplifier

Case		Page
Special	U 123 P	221

Figures approx 1:1

 [●] Can be delivered as "Qualified semiconductor device"

One colour light emitting diodes

Version	Red	Red		Orange-red Green			Yellow		Page
Case	diffuse	white/ clear	diffuse	white/ clear	diffuse	white/ clear	diffuse	white/ clear	
Plastic ⊘ 1.8 mm	CQY 41				CQY 73		CQY 75		297
Plastic ⊘ 1.8 mm	CQY 41 N		CQX 43 N		CQY 73 N		CQY 75 N		299
Plastic Ø 3 mm	CQY 85 N		CQX 41 N		CQY 86 N		CQY 87 N		309
		CQX 25 N		CQX 42 N		CQX 26 N		CQX 27 N	245
		CQX 25		CQX 42		CQX 26		CQX 27	243
•	CQY 40		CQX 38		CQY 72		CQY 74		289
	V 168 P				V 169 P		V 170 P		289
		CQX 35		CQX 39		CQX 36		CQX 37	267
		V 310 P		V 311 P		V 312 P		V 313 P	319
Plastic Ø 5 mm ▼						CQX 96			283
Plastic 5.08×2.54	CQX 10		CQX 40		CQX 11		CQX 12		227

[▼] New Type

One colour light Symbol-LED's

Case	Version	Red diffuse	Orange-red	Green diffuse	Yellow diffuse	Page
	0	V 320 P	V 321 P	V 322 P	V 323 P	327
		V 330 P	V 331 P	V 332 P	V 333 P	335
Plastic, 3 mm	Δ	V 340 P	V 341 P	V 342 P	V 343 P	343
		V 510 P	V 511 P	V 512 P	V 513 P	351
	0	V 520 P	V 521 P	V 522 P	V 523 P	365
		V 530 P	V 531 P	V 532 P	V 533 P	373
	Δ	V 540 P	V 541 P	V 542 P	V 543 P	381
Plastic, 5 mm	Δ	V 550 P	V 551 P	V 552 P	V 553 P	389

Blinking light emitting diodes

Version	Red	Orange- red	Green	Yellow	Page
	CQX 21	V 621 P	V 622 P	V 623 P	235
Plastic white, diffuse	CQX 22			1-2-1	239

Figures approx 1:1

▼ New Type

One colour light emitting diodes in hermetically sealed case

	Red	Green	Yellow	Page
≈ JEDEC TO 52 Hermetically sealed case with glass lens white diffuse	CQX 28	CQX 29	CQX 30	253

Bi-colour light emitting diodes

Version	Orange-red/ Green	Red/ Green	Red/ Yellow	Page
Plactic // 5 mm	CQX 95			277
Plastic, Ø 5 mm ▼ Plastic, 5 mm	V 518 P			359
≈ JEDEC TO 52 Hermetically sealed case with glass lens white diffuse		CQX 31	CQX 32	259

Universal LED-bar displays

Туре	Version		possibilities	Remark	Page
V 227 P i.e. version C	А	3	5	Different	415
LED Ø 3 mm	В	10	19	combination possibilities are available.	
Arren	С	6	11		
A A CONTRACTOR OF THE PARTY OF	D	13	25		
	Е	19	37		
LED	F	9	17		
Ø 1,8 mm	G	8	15		
	Н	16	31		
	J	2	3		
774 374 344	к	10	20		

11/2 digit seven segment displays

Case	Version	Red	Orange- red	Green	Yellow	Page
	Common anode terminals	CQX 86 A	CQX 88 A	CQX 90 A	CQX 92 A	399
11111111	Common cathode terminals	CQX 86 K	CQX 88 K	CQX 90 K	CQX 92 K	399

Figures approx 1:1

▼ New Type

2 digits seven segment displays

Case	Version	Red	Orange- red	Green	Yellow	Page
	Common anode terminals	CQX 87 A	CQX 89 A	CQX 91 A	CQX 93 A	407
11111111	Common cathode terminals	CQX 87 K	CQX 89 K	CQX 91 K	CQX 93 K	407

Figure approx 1:1

Notice

General

1. Explanation of technical data

1.1. General information

1.1.1. Type designation code for semiconductor devices according to Pro Electron

The type number of semiconductor devices consists of:

Two letters followed by a serial number

The **first letter** gives information about the material used for the active part of the devices.

- A GERMANIUM (Materials with a band gap 0.6-1.0 eV) 1)
- B SILICON (Materials with a band gap 1.0-1.3 eV) 1)
- C GALLIUM-ARSENIDE (Materials with a band gap > 1.3 eV)¹)
- R COMPOUND MATERIALS (For instance Cadmium-Sulphide)

The **secound letter** indicates the circuit function:

- A DIODE: Detection, switching, mixer
- B DIODE: Variable capacitance
- C TRANSISTOR: Low power, audio frequency
- D TRANSISTOR: Power, audio frequency
- E DIODE: Tunnel
 F TRANSISTOR: Low power,
- high frequency
- G DIODE: Oscillator, Miscellaneous H DIODE: Magnetic sensitive
- K HALL EFFECT DEVICE: in an open magnetic circuit
- L TRANSISTOR: Power, high frequency
- M HALL EFFECT DEVICE: in a closed magnetic circuit

- N PHOTO COUPLER
 - P DIODE: Radiation sensitive
- Q DIODE: Radiation generating
- R THYRISTOR: Low power
- S TRANSISTOR: Low power, switching
- T THYRISTOR: Power
- U TRANSISTOR: Power, switching
- X DIODE: Multiplier, e.g. varactor, step recovery
- Y DIODE: Rectifying, booster
- Z DIODE: Voltage reference or voltage regulator. Transient suppressor diode

The serial number consists of:

- Three figures, running from 100 to 999, for devices primarily intended for consumer equipment.
- One letter (Z, Y, X, etc.) and two figures running from 10 to 99, for devices primarily intended for professional equipment.

A version letter can be used to indicate a deviation of a single characteristic, either electrically or mechanically.

The letter never has a fixed meaning, the only exception being the letter R, indicating reversed voltage, i.e. collector to case.

The materials mentioned are examples.

1.2. Symbols and terminology - alphabetically

Anode, anode terminal

Radiant sensitive area That area which is radiant sensitive for a specified range.

 A_{v}, G_{v}

Voltage amplification, voltage gain

Open loop voltage amplification

Distance between the emitter (source) and the detector

Actinity of a radiation Z: $\alpha(Z)$

The ratio of sensitivity s(Z) of a given radiation to the sensitivity s(N) of a reference radiation N.

$$\alpha(Z) = \frac{s(Z)}{s(N)}$$

Note:

Actinity is always related to a device with a defined spectral sensitivity distribution. In the case of the BPW 21 a radiation with a colour temperature of 4700 K (average daylight) referred to standard illuminant A (2855.6K) is assumed.

 $\alpha_{\text{EV amb}}$

Suppression of primary (background) illumination comparing signal

AQL

Acceptable Quality Level, see section 4

Base, base terminal

Capacitance

Collector, collector terminal

°C

Centigrade

Unit of the centigrade scale; can also be used (beside K) to express temperature changes.

Symbols: T, ∆t

 $t = (T-273) ^{\circ}C$

 C_{CEO}

Collector-emitter capacitance

Capacitance between the collector and the emitter with open base.

Measurement is made by applying reverse voltage between collector and emitter terminals.

cd

Candela

SI unit of luminous intensity Iv

 C_{D}

Diode capacitance Total capacitance effective between the diode terminals due to case, junction and parasitic

capacitances.

 C_{i}

Junction capacitance

Capacitance due to a PN-junction of a diode. It decreases with increasing reverse voltage.

 C_k

Coupling capacitance

Capacitance between the emitter and the detector of an opto-isolator.

CTR

Current transfer ratio

Ratio between output and input current in photoelectric (optoelectronic) coupler devices.

i.e.: $k = \frac{I_{c}}{I_{r}}$

Ε

Emitter, emitter terminal

 E_A

Illumination at standard illuminant A According to DIN 5033 and IEC 306-1, illu-

mination emitted from a tungsten filament lamp with a colour temperature $T_f = 2855.6 \,\mathrm{K}$ which is equivalent to standard illuminant A.

Unit: Ix (Lux) or klx.

 $E_{A \text{ amb}}$ Primary (background) illumination at standard illuminant A

E_{A(TO)}
Switch-on illuminance (standard illuminant A) of a photo threshold switch

E_{A(TU)} Switch-off illuminance

△E_A
Difference between switch-on and switch-off illuminance (Hysteresis)

E_e Irradiance, irradiation (at a point of a surface) Quotient of the radiant power incident on an element of the surface containing the point, by the area of that element.

$$E_{\rm e} = \frac{\mathrm{d}\,\Phi_{\rm e}}{\mathrm{d}A}$$

Unit: W/m²

 E_{v}

Illuminance, illumination
(at a point of a surface)
Quotient of the luminous flux incident on an element of the surface containing the point

element of the luminous flux incident on an element of the surface containing the point, by the area of that element.

$$E_{\rm v} = \frac{{\rm d}\,\Phi_{\rm v}}{{\rm d}A}$$

Unit: Ix (Lux)

, Frequency Unit: Hz (Hertz)

 $f_{\rm g}$ Cut-off frequency — detector devices The frequency at which the incident radiation generates a photocurrent or a photovoltage of the 0.707 times the value of radiation with $f=1\,{\rm kHz}$.

G_B
Gain bandwidth product
Gain bandwidth product is defined as the product of *M* times the frequency of measurement, when the diode is biased for maximum obtainable gain.

G_v Voltage gain

Light current
General: Current which flows through a device due to irradiation/illumination.

/_B Base current

/_{BM} Base peak current

I_C Collector current

 I_{ca} Collector light current Collector current which flows for a specified illumination/irradiation.

 I_{CEO} Collector dark current, with open base By radiant sensitive devices with open base and without illumination/radiation (E=0).

Repetitive peak collector current I_{CX}

Cross talk current
For reflex coupled isolators, collector-emitter
cut-off current with the IR-emitter activated,
but without reflecting medium.

Radiant intensity (of a source in a given direction)
Quotient of the radiant power leaving the source propagated in an element of solid angle containing the given direction, by the element of solid angle.

 $I_{\rm e} = \frac{d \Phi_{\rm e}}{d \Omega}$

Unit: W/sr.

 I_{CM}

Forward continuous current
The current flowing through the diode in the direction of lower resistance.

I_{FAV}

Average (mean) forward current

 I_{FM} Peak forward current

 I_{FSM}

Surge forward current

Short circuit current

That value of the current which flows when a photovoltaic cell is short circuited ($R_L \ll R_i$) at its terminals.

 $I_{\rm ph}$ Photocurrent (photoelectric current)

That part of the electric current in a photoelectric detector which is produced by the photoelectric effect.

DC output current

Reverse current, leakage current

Current which flows when reverse bias is applied to a semiconductor junction.

 I_{ra} Reverse light current

Reverse light current which flows due to a specified irradiation/illumination in a photoelectric device.

 $I_{\rm ra} = I_{\rm ro} + I_{\rm ph}$

Reverse dark current

Reverse dark current which flows through a photoelectric device without radiation/illumination.

 I_{SB} Quiescent current

Threshold current (Laser diode)

 I_{v}

Luminous intensity

(of a source in a given direction) Quotient of the luminous flux leaving the source propagated in an element of solid angle containing the given direction by the element of solid angle.

 $I_{\rm v} = \frac{d \Phi_{\rm v}}{d Q}$

Unit: cd (candela), lm/sr

l_{v av} Luminous intensity, average

K

Cathode, cathode terminal

Kelvin

The unit of absolute temperature T (also called the Kelvin temperature); can also be used for temperature changes (formerly °K).

Current transfer ratio (CTR; coupling factor)

i.e.: $k = \frac{I_C}{I_r}$

Radiance (in a given direction, at a point on the surface of a source or a detector, or at a point on the part of a beam)

Quotient of the radiant flux leaving, arriving at, or passing through an element of surface at this point and propagated in directions defined by an elementary cone containing the given direction, by the product of the solid angle of the cone and the area of the orthogonal projection of the element of surface on a plane perpendicular to the given direction.

$$L_{e} = \frac{d^{2} \Phi_{e}}{d\Omega \cdot dA \cdot \cos \Theta}$$
Unit:
$$\frac{W}{sr \cdot m^{2}} \text{ or } \frac{kW}{sr \cdot cm^{2}}$$

lm Lumen

SI-unit of luminous flux, $\Phi_{\rm v}$

Luminance (in a given direction, at a point on the surface of a source or a receptor, or at a point on the path of a beam)

Quotient of the luminous flux leaving, arriving at, or passing through an element of surface at this point and propagated in directions defined by an elementary cone containing

the given direction, by the product of the solid angle of the cone and the area of the orthogonal projection of the element of source on a plane perpendicular to the given direction.

$$L_{v} = \frac{d^{2} \Phi_{v}}{d\Omega \cdot dA \cdot \cos \Theta}$$

Unit: cd/m2

lχ

Lux SI-unit of illumination, Ev.

М

The voltage dependent photocurrent gain M is defined as the ratio of photocurrent $I_{\rm ph}$ at a certain reverse voltage to the photocurrent at a bias of 10 V

m

Matching factor Emitter arrays:

The ratio of the minimum to the maximum

radiant flux value measured on the devices constituting an array.

Detector arrays:

The ratio of the minimum to the maximum light current of the devices constituting an array.

M_e

Radiant exitance (at a point of a surface) Quotient of the radiant power leaving an element of the surface containing the point, by the area of that element.

$$M_{\rm e} = \frac{{\rm d} \Phi_{\rm e}}{{\rm d} A}$$

Unit: W/m2

 M_{v}

Luminance exitance (at a point of a surface) Quotient of the luminous flux leaving an element of the surface containing the point, by

the area of that element.

$$M_{\rm v} = \frac{d \Phi_{\rm v}}{d A}$$

Unit: Im/m² Numerical Aperture, see page A 18

Noise Equivalent Power (NEP)

 P_{tot} Total power dissipation

 P_{V}

Power dissipation, general

 $Q_{\rm e}$

Radiant energy Energy emitted, transferred or received in the

form of radiation $Q_{\rm e} = \int \Phi_{\rm e} \cdot {\rm d}t$

Unit: J (Joule), Ws

 Q_{v} Quantity of light Product of luminous flux and its duration.

 $Q_{v} = \int \Phi_{v} \cdot dt$

Unit: Im s (lumen-second)

 $R_{\rm F}$ Feedback resistor

Differential forward resistance Resistance measured for small signal a.c. voltages or currents at a point, under specified conditions, on forward direction U-I curve.

 R_{H}

Resistor for programming the hysteresis of a photo threshold switch

Internal resistance

Isolation resistance

 R_{i}

Load resistance

 $R_{(TO)}$

Resistor for programming the threshold of a photo threshold switch

Thermal resistance, junction-ambient

Thermal resistance, junction case

Sensitivity, absolute

Quotient between the output value Y of a radiant sensitive device to the input value X

of a physical quantity:

$$s = \frac{Y}{X}$$

Unit: A/Ix.

_

So

Hysteresis of sensitivity

Sk
Sensitivity, short circuit
Light sensitivity by which the output value of
short circuit current, *l*_k, of a photovoltaic cell
has been used.

 $s_{(TO)}$ Threshold sensitivity

Sensitivity, open circuit Light sensitivity at which the output value of open circuit voltage of a photovoltaic cell has been used.

 $s(\lambda)$ Absolute spectral sensitivity, at a wavelength λ The ratio of the output quantity to the radiant input quantity in the range of wavelengths λ to $(\lambda + d\lambda)$:

$$s(\lambda) = \frac{dY(\lambda)}{dX(\lambda)}$$

e.g. the radiation power $\Phi_{e(\lambda)}$ at a specified wavelength λ is falling on the radiation sensitive area of a detector, which generates a photo current I_{ph} . $s(\lambda)$ is the ratio between the generated photocurrent I_{ph} and the radiation power $\Phi_{e(\lambda)}$ falling on the detector.

$$s(\lambda) = \frac{I_{ph}}{\Phi_{e(\lambda)}}$$

Unit: $\frac{A}{W}$ or $\frac{mA}{mW}$

Spectral sensitivity, relative Ratio of the radiant sensitivity at any considered wavelengths $s(\lambda)$ to the radiant sensitivity

sitivity $s(\lambda_0)$ at a certain wavelength λ_0 taken as a reference.

$$s(\lambda)_{\text{rel}} = \frac{s(\lambda)}{s(\lambda_0)}$$

 $s(\lambda_0)$ Spectral sensitivity at a wavelength λ_0

 $s(\lambda_p)$ Spectral sensitivity at a wavelength λ_p

sr Steradian. SI-unit of a solid angle $\boldsymbol{\Omega}$

T Period (duration)

Unit: K (Kelvin)

TAbsolute Temperature, Kelvin temperature $0 \text{ K} = -273.16^{\circ}\text{C}$

t Time

T_{amb}
Ambient temperature
If self-heating is significant:

Temperature of the surrounding air below the device, under conditions of thermal equilibrium.

If self heating is insignificant: Air temperature in the immediate surroundings of the device.

T_{amb}
 Ambient temperature range
 As an absolute maximum rating:
 The maximum permissible ambient temperature range.

T_{case} Case temperature

The temperature measured at a specified point on the case of a semiconductor device. Unless otherwise stated, this temperature is given as the temperature of the mounting

base for transistors with metal can.

t_d Delay time, see section 3.3

 $s(\lambda)_{rel}$

T_f
 Colour temperature
 Temperature of the full radiator which emits radiation of the same chromaticity as the radiation considered.
 Unit: K (Kelvin).

 t_t Fall time, see section 3.3

T_j
Junction temperature
It is the spatial mean value of temperature which the junction has acquired during operation. In case of phototransistors, it is mainly the temperature of collector junction because its inherent temperature is maximum.

ΤK

Temperature coefficient
The ratio of the relative change of an electrical quantity to the change in temperature (Δt) which causes it, under otherwise constant operating conditions.

 TK_{lk} Temperature coefficient of short circuit current I_k

 TK_{V_0} Temperature coefficient of open circuit voltage V_0

 $TK\Phi_{
m e}$ Temperature coefficient of radiant power $\Phi_{
m e}$

 $t_{
m off}$ Turn-off time, see section 3.3

 $t_{\rm on}$ Turn-on time, see section 3.3

 $t_{\rm p}$ Pulse duration

 $t_{\rm r}$ Rise time, see section 3.3

 $t_{\rm s}$ Storage time, see section 3.3

 $T_{\rm sd}$ Soldering temperature Maximum allowable temperature for soldering with specified distance from case and its duration. Refer to section 5.2.

T_{stg}
Storage temperature range
The temperature range at which the device may be stored or transported without any applied voltage.

V_{BEO} Base-emitter voltage, open collector

 $V_{({\rm BR})}$ Breakdown voltage Reverse voltage at which a small increase in voltage results in a sharp rise of reverse current. It is given in technical data sheet for a specified current.

 $V_{(BR)CEO}$ Collector-emitter breakdown voltage, open base

 $V_{\rm (BR)EBO}$ Emitter-base breakdown voltage, open collector

 $V_{(\mathrm{BR})\mathrm{ECO}}$ Emitter-collector breakdown voltage, open base

 V_{CBO} Collector-base voltage, open emitter Generally reverse biasing is the voltage applied to any of two terminals of a transistor in such a way that one of the junction operates in reverse direction, whereas the third terminal (second junction) is specified separately.

 V_{CE} Collector-emitter voltage

 V_{CEO} Collector-emitter voltage, open base ($I_{\text{B}}=0$) $V_{\rm CEsat}$ Collector-emitter saturation voltage Saturation voltage is the d. c. voltage between collector and emitter for specified (saturation) conditions i. e. $I_{\rm C}$ and $E_{\rm V}$ ($E_{\rm e}$ or $I_{\rm B}$) whereas the operating point is within the saturation region.

Fig. 1.2.

V_{EBO} Emitter-base voltage, open collector

V_{ECO} Emitter-collector voltage, open base

V_F

The voltage across the diode terminals which results from the flow of current in the forward direction.

V_{is}
 Isolation voltage – opto isolator
 Maximum allowable operating voltage between input and output.

V₀
Open circuit voltage
Voltage measured between the photovoltaic
cell terminals by radiation/illumination, if the
circuit is open.

 $V_{\rm ph}$ Photo voltage Voltage measured between the photovoltaic cell terminals due to radiation/illumination.

V_O DC output voltage

V_{no} Signal to noise ratio $V_{\rm R}$ Reverse voltage Voltage drop which results from the flow of reverse current.

V_S Supply voltage

Angle of half sensitivity
The sum of the plane angles through which a detector, illuminated by a point source, can be rotated in both directions away from the optical axis before the electrical output of the device falls to half the maximum value.

Angle of half intensity
The sum of the plane angles through which
an emitter can be rotated in both directions
away from the optical axis before the electrical
output of a linear detector facing the emitter
falls to half the maximum value.

λ Wavelength, general The wavelength of an electromagnetic radiation.

 $\lambda_{0.5}$ Range of spectral bandwidth (50%) The range of wavelengths within which the spectral sensitivity or spectral emission remains within 50% of the maximum value.

 λ_{D} Dominant wavelength

 λ_{p} Peak wavelength sensitivity or emission

△V₀ Output voltage change (differential output voltage)

 $\Delta\lambda$

Spectral half bandwidth
The wavelength interval within which the
spectral sensitivity or spectral emission falls
to half peak value.

 Φ_e Radiant flux, radiant power Power emitted, transferred, or received in form of radiation.

$$\Phi_{\mathrm{e}} = \frac{\mathrm{d}\,Q_{\mathrm{e}}}{\mathrm{d}\,t}$$

Unit: W (Watt)

 $\Phi_{
m e\,nutz}$ Effective radiant power

That portion of the radiant power available for practical utilization. If IR-emitters are encapsulated, or combined to form an array (types CQY 36/9 and CQY 37/9, for example), then in practice part of the radiation produced by the semiconductor crystal cannot be utilized because of total reflexion and absorption. The data for IR emitters in "Miniplast" encapsulations or for Miniplast emitter arrays therefore contain a $\Phi_{\rm e \ nutz}$ -parameter which gives the radiant power that emanates from the lens or the flat window of the case.

Fig. 1.3.

Luminous flux

Quantity derived from radiant power by evaluating the radiation according to its effect upon a selective receptor, the spectral sensitivity of which is defined by the standard spectral luminous efficiencies.

$$\Phi_{\rm v} = \frac{{\sf d}_{\it Qv}}{{\sf d}t}$$

Unit: Im (lumen)

 Ω

Solid angle

It is the space enclosed by rays which emerge from a single point and lead to all the points of a closed curve. If it is assumed that the apex of the cone formed in this way is the centre of a sphere with radius r and that the cone intersects with the surface of the sphere, then the size of the surface area (A) of the sphere subtending the cone is a measure of the solid angle

$$\Omega = \frac{A}{r^2}$$

There are 4π sr in a complete sphere. A cone with an angle of half sensitivity $\frac{\alpha}{2}$, forms a solid angle of

$$\Omega = 2\pi \left(1 - \cos \frac{\alpha}{2}\right) = 4\pi \sin^2 \frac{\alpha}{4}$$

Unit: sr (Steradian)

Fig. 1.4.

Examples of the application of the symbols

according to 41785 and IEC 148

a) Transistor

Fig. 1.5.

I_C D. C. value, no signal
 I_{CAV} Average total value
 I_{CM}; Î_C Maximum total value
 I_{CEFF} RMS total value
 I_c; I_{ceff} RMS varying component
 I_{cm}; Î_c Maximum varying component value
 I_C Instantaneous total value instantaneous varying component value

It is valid:

 V_{F}

$$I_{\text{CM}} = I_{\text{CAV}} + I_{\text{cm}}$$

$$I_{\text{CEFF}} = \sqrt{I_{\text{CAV}}^2 + I_{\text{ceff}}^2}$$

$$I_{\text{C}} = I_{\text{CAV}} + I_{\text{c}}$$

b) Diode

V_R Reverse voltage
V_{FSM} Surge forward voltage (non-repetitive)
V_{RSM} Surge reverse voltage (non repetitive)
V_{FRM} Repetitive peak forward voltage
V_{RRM} Repetitive peak reverse voltage
V_{FWM} Crest working forward voltage
V_{RWM} Crest working

reverse voltage

Forward voltage

Fig. 1.6.

c) Designation and syymbols of Optoelectronic devices are given so far as possible, according to DIN 44020 sheet 1 and IEC publication 50 (45).

1.3. Data sheet construction

Data sheet information is generally presented in the following sequence:

- Device description
- Dimensions (Mechanical data)
- Absolute maximum ratings
- Thermal data Thermal resistances
- Optical and electrical characteristics Additional information on device performance is provided if necessary.

1.3.1. Device description

The following information is provided: Type number, semiconductor materials used, sequence of zones, technology used, device type and, if necessary construction. Also, short-form information on the typical applications and special features is given.

1.3.2. Dimensions (Mechanical data)

If contains important dimensions, sequence of connection supplemented by a circuit diagram. Case outline drawings carry DIN-, JEDEC or commercial designations. Information on angle of sensitivity or intensity and weight completes the list of mechanical data.

Note especially:

If the dimensional information does not include any tolerances, then the following applies:

Lead length and mounting hole dimensions are minimum values. Radiant sensitive or emitting area respectively being typical, all other dimensions are maximum.

Any device accessories must be ordered separately, quoting the order number.

1.3.3. Absolute maximum ratings

These define maximum permissible operational and environmental conditions. If any one of these conditions is exceeded, then this could result in the destruction of the device. Unless otherwise specified, an ambient temperature of 25 ± 3 °C is assumed for all absolute maximum ratings. Most absolute ratings are static characteristics; if they are measured by a pulse method, then the associated measurement conditions are stated. Maximum ratings are absolute (i.e. not interdependent).

Any equipment incorporating semiconductor devices must be designed so that even under the most unfavourable operating conditions the specified maximum ratings of the devices used are never exceeded. These ratings could be exceeded because of changes in supply voltage, the properties of other components used in the

equipment,. control settings. load conditions, drive level.

tings".

(i.e. ageing),

environmental conditions and the properties of the devices themselves

1.3.4. Thermal data - thermal resistances Some thermal data (e.g. junction temperature, storage temperature range, total power dissipation), because they impose a limit on the application range of the device, are given

under the heading "Absolute maximum ra-

A special section is provided for thermal resistances. The thermal resistance junction ambient (RthJA) quoted is that which would be measured without artifical cooling, i.e. under the worst conditions.

Temperature coefficients, on the other hand, are listed together with the associated parameters under "Optical and electrical characteristics".

1.3.5. Optical and electrical characteristics, switching characteristics

Under this heading are grouped the most important operational, optical and electrical characteristics (minimum, typical and maximum values) together with associated test conditions supplemented with curves, an AQL-value being quoted for particularly important parameters (refer to section 4.2.).

1.3.6. Additional information

Preliminary specifications

This heading indicates that some information on the device concerned may be subject to slight changes.

Not for new developments

This heading indicates that the device concerned should not be used in equipment under development, it is, however, available for present production.

2. Physical Theory of Optoelectronic Devices

2.1. Introduction

Optoelectronic devices are capable of electromagnetic radiation when a current is passed through them, or alternatively, of absorbing radiation and converting it into a measurable electrical quantity (*V*, *I* or *R* changes).

By electromagnetic radiation is meant here the energy radiated in the visible as well as the adjacent ultraviolet and infrared spectral region $(0.3...15~\mu\text{m})$. Optoelectronic devices can be divided into two groups. The devices of the first group utilize the external photoelectric effect, and those of the second group the internal photoelectric effect. This publication is concerned only with devices belonging to the second group, such as emitters, detectors and optically coupled isolators (couplers) covering a spectral range extending from visible to near infrared radiation (approx. $0.4...1.2~\mu\text{m}$).

2.2. Operating principle of optoelectronic devices

2.2.1. Light emitting diodes (LED)

If a forward current is passed through a semiconductor diode, then electrons and holes are injected into the P and N region respectively. Depending on the magnitude of the current, a recombination of charge carriers (electrons and holes) takes place. According to the energy band concept, so-called radiant recombination requires that electrons jump from the high-energy conduction band to the lowerenergy valence band, the surplus energy being converted into electromagnetic radiation

The ratio of the number of "radiant recombinations" to the total number of recombinations depends on the semiconductor material used. In the III-V-semiconductor compounds GaAs, GaAsP and GaP, the portion of radiant recombinations is several orders of magnitude higher than that occurring in silicon, for example.

Radiation ist produced by direct recombination transitions between the conduction and valence band or by charge carrier transitions between the energy and forbidden band (see Fig. 2.1.). In the first case the energy, and hence the wavelength, of the emitted radiation depends on the energy gap between bands, whilst in the second case the difference in energy level between the forbidden band and the energy bands is the important factor.

Direct band-to-band transition in GaAs, for example, would produce a wavelength of

$$\lambda = \frac{h \cdot c}{\Delta W} = 900 \text{ nm};$$

where $h = \text{Planck's constant} = 4.16 \cdot 10^{-15} \text{eVs}$ (eV = electron volt), $c = \text{velocity of light} = 3 \cdot 10^8 \text{ m/s},$

△W = energy difference = 1.38 eV for GaAs.

Fig. 2.1.

2.2.2. Laser diode

The semiconductor material that is most frequently employed for use as injection lasers is gallium arsenide. These lasers mostly involve a PN-diode made up of several layers (GaAs, GaAlAs) which, when forward biased at low current densities, act as an LED. To obtain laser action the following prerequisites are to be observed:

- A sufficiently high number of injected electrons(Inversion) are required to cover the losses and stimulate emission whereby a minimum current (the threshold current I_(TO)) is neccessary to support the laser action.
- Further to this an optical resonator is necessary to achieve positive feedback and internal amplification.
 This is made possible in GaAs injection

Perot-Resonator) with which a part of the radiation is transmitted and the rest is reflected back into the laser cavity.

Because the efficiency under laser operation is higher than under LED operation, a typical characteristics is obtained as shown in Fig. 2.2.

Fig. 2.2.

The substantial differences of a laser to an LED are the directed radiation, the high luminance, the coherence of the radiation and the narrow width of the spectral emission. Further, as a consequence of the stimulated emission, the switching times are very much shorter than LED's.

2.2.3. Detector devices

The operation of the detector devices described in this book is based on the junction photo effect. The main features of this effect are a generation of charge carrier pairs as a result of light absorption by the semiconductor material, and the accumulation of light-generated minority charge carriers at the PN junction, all this producing a photoelectric current in the external circuit (see Fig. 2.3.).

Fig. 2.3.

2.3. Technology and characteristics of optoelectronic devices

The usual division of optoelectronic devices into emitters, detectors and couplers also provides the headings under which the manufacturing processes for these devices can be described. Emitters, in the context of this article, are devices which consist exclusively of III-V-compounds, such as GaAs, GaAsP and GaP, whereas detectors, sensitive to visible light and short-wave IR radiation, employ silicon, and consequently are manufactured using silicon device techniques. Coupler technology is, primarily, encapsulation and assembly technology, to produce, by skilful emitter-detector matching via a suitable coupling medium, as compact a device as possible.

2.3.1. Emitters

The wavelength of the radiation produced by luminescence diodes is governed not only by the semiconductor material used, but also to a certain extent by the way it is doped (Fig. 2.4.).

Materials for light emitters

Materials for fight entities						
Material	Wavelength range					
GaAs : Zn	Infrared 900 nm					
GaAs : Si	Infrared 930 nm					
GaAsP	red 660 nm					
GaAsP : N	orange 630 nm					
GaAsP : N	yellow 590 nm					
GaP : N	green 560 nm					

Fig. 2.4.

2.3.1.1. GaAs diodes

GaAs diodes emit light in the infrared region at wavelengths between 800 and 1000 nm. There are basically two processes used in the manufacture of IR diodes, the main difference between them being in the production of the PN junction.

- a) The PN junction is formed by diffusing zinc into monocrystalline N-doped GaAs wafers. Diffusion is effected either over the whole wafer area so that the PN junction of the devices subsequently produced by wafer division extends right up to the open edge (mesa technique), or it is carried out through windows, formed by a photo-lithographic process in a suitable masking coating (such as Si₃N₄ + SiO₂) located on the surface of the GaAs. In the latter case the devices are divided along the "window frames", and the edge of the PN junction does not extend to the edge of the device (planar technique).
- b) A liquid phase epitaxy process is used to precipitate from a silicon-doped melt a thin monocrystalline GaAs layer on an Ndoped GaAs wafer; because of the different deposition of silicon in the GaAs crystal lattice at the beginning and at the end of the process, a PN junction is formed.

end of the process, a PN junction is formed. Zn-diffused IR diodes have a short response time (1–100 ns), but produce a relatively low radiant power level (0.5–2 mW); Si-doped IR diodes, on the other hand, have response times of several hundred ns, but can produces radiant power levels up to 20 mW (Fig. 2.5.).

Characteristics of IR diodes $I_F = 100 \text{ mA}$

Material	GaAlAs : Zn	GaAs : Zn	GaAs : Si
Wavelength range	800900 nm	ca. 910 nm	ca. 950 nm
Power range	ca. 2 mW	ca. 2 mW	1020 mW
Switching time range	570 ns	5100 ns	300500 ns

Fig. 2.5.

2.3.1.2. Laser diode

The GaAlAs – GaAs double heterostructure laser is composed of various layers epitaxially deposited via the liquid phase. The continuous wave (CW) laser consists of, in most cases, 4 to 5 successive layers grown on a GaAs substrate e.g.

N-GaAl_xAs_{1-x}, P-GaAs, P-GaAl_xAs_{1-x}, P-GaAs. The central P-GaAs region is responsible for the emission. It is in this layer that the properties and thickness ($<1\,\mu\text{m}$) must therefore be very accurately controlled.

However it is normal practice to apply the strip-laser structure. Various techniques are incorporated to limit the borders of the few hundred μm long active region e.g. via mesaetching or proton implantation. The width of the active zone is itself smaller than 20 μm . The laser-chip is mounted on a good heatsink e.g. diamond and because the emitting surface has the dimensions 1 μm x 20 μm . It is possible to obtain very large radiant values. Typical luminescence values are > 200 kW/sr cm².

2.3.1.3. Light emitting diodes (LED's)

Light emitting diodes for the visible spectrum range are manufactured from GaAsP and GaP.

Different colours (Fig. 2.4.) are produced in the advanced planar technology with protected PN junctions, and yields long life time. The material processing knows two different technologies:

a) Red (GaAs_{.6}P_{.4})

Red-emitting GaAsP consists of N-doped vapour epitaxial layer on a monochrystal GaAs substrate. The Phosphorous content of the layer is gradually increased up to 40%.

b) Green, Yellow and Orange

These layers are manufactured in the same manner but on a monochrystal GaP substrate. This substrate is transparent for the generated light. The efficiency is doubled due to reflecting backside metallisation, because there is no absorption of the generated light in the substrate.

Three different materials are available for the three colours. All are Nitrogen doped, which enhances the light efficiencies of these materials.

 Green:
 GaP: N
 on GaP

 Yellow:
 GaAs₁₅P₈₅: N
 on GaP

 Orange:
 GaAs₃₅P₆₅: N
 on GaP

Red emitting diodes have been manufactured formerly with Zn:0 doped GaP. They have lost industrial importance because the efficiency drops down with higher currents and the spectral range of the generated light is unfavourable to the spectral response of the human eye. (Fig. 2.6.)

Fig. 2.6.

Luminuous power versus current of different red LED's. GaP (Zn : 0) shows saturation for current greater than 5 mA. The other two materials $GaAs_6P_4$ and $GaAs_3P_{65}$ have a superlinear power-current characteristic.

2.3.2. Detectors

Detectors, such as photodiodes, photovoltaic cells and phototransistors, are primarily manufactured by well-tried silicon semiconductor techniques, augmented by only relatively few processes specific to optoelectronics (Fig. 2.7.).

The PN junctions of Si-detectors are produced in a similar way to those of the emitters by either the mesa or planar process, which in this case, however, affects device performance to a considerably larger extent.

Fig. 2.7.

2.3.2.1. Photovoltaic cells

Because of the open PN junction, photoelectric devices manufactured by the mesa process have relatively high leakage currents, i.e. their internal resistance is low at low illumination levels. Because of their low reverse voltages, they are particularly suitable for photovoltaic applications. High light sensitivity and the facility with which large area structures (> 1 cm²) can be manufactured are special advantages.

2.3.2.2. Photo diodes

Photo-diodes are manufactured by the planar process. The edges of the PN junctions are protected by and located underneath an Si 0_2 diffusion mask produced by oxidation of the silicon surface. Photodiodes are, therefore, by their very nature, ideal for the detection of weak light signals and capable of operation with high reverse voltage.

A special type of photo-diode is the PIN diode which has an intrinsic low-conductance zone between the P- and N-zones. The main advantages of photo PIN diodes are extremely short switching times, associated with high IR sensitivity. Special technological processes make it possible to keep the reverse voltage, at which this performance can be achieved relatively low.

Diodes with a great width of the depletion layer are called PIN-diodes, irrespective of the initial intrinsic (/) crystal which has been doped on its opposite P- and N-surface or by using a very high-ohmic substrate crystal into which a dopant is introduced having a wide space-charge. The generated charge carriers are collected in the drift field of the space charge region very fast (ns-range). Photo PINdiodes can be used also with advantage in AF-range i.e. infra-red sound carrier, infrared remote control also where low capacity and high radiation sensitive area is the requirement that means where a low bias voltage and high load resistance (i. e. 100 k Ω) leads to a high output signal voltage.

2.3.2.3. Photo avalanche diodes

Photo avalanche diodes are suitable in optical receivers for modulated radiation at low signal levels, high bandwidth and small radiation sensitive areas. The high internal signal current gain is caused by the multiplication process in the space charge region of a reversebiased PN junction, being below breakdown voltage. The internal multiplication factor M1) is determined by the reverse voltage and can be regulated for this type up to values of more than 200. Avalanche diodes can be used for frequencies up to 50 MHz with amplifiers in the current-mode. At micro wave frequencies in the GHz-range photo avalanche detectors are used with low load impedances (50 or 100 Ω) together with voltage amplifiers.

Photo avalanche diodes are given preference mostly as compared to photo-PIN-diodes at frequencies greater than 1 MHz whereas consideration should be given to the complexity of the pre-amplifier, arrangement of optical and mechanical adjustment.

At higher frequencies, the thermal noise of the load resistance or the detection efficiency in pre amplifier limits the use of the photo-PIN-diodes. But in the photo avalanche diodes where there is a possibility of internal amplification, photo signal can be raised above the thermal noise of the load resistance and hence superior to photo PIN-diodes at higher frequencies.

Avalanche photo diodes are, therefore, mostly suitable as a detector for optical communication e.g. glass fiber transmission system and as a detector in range meter equipment.

¹⁾ The voltage dependent photo current gain M is defined as the ratio of photo current I_{ph} at a certain reverse voltage to the photo current at a lower reverse voltage i. e. 5 V.

2.3.2.4. Phototransistors

In phototransistors, a photoelectric current is generated in the collector-base diode and amplified by the same device. Typical gain values attainable with phototransistors are approximately 100-700, obviating the need for an additional amplifier in many applications. Important phototransistor performance characteristics can be derived from an equivalent circuit showing a large-area collector-base diode which acts as the photodiode, connected to the input of a common emitter transistor stage.

If an output signal of particularly high amplitude is required, then use of a Darlington phototransistor is recommended; this is a device with two internal Darlington amplifier stages. Optimization of standard processes and the introduction of new ones has resulted in the following photo detector improvements:

- a) Improved light sensitivity in defined spectral ranges for photodiodes and phototransistors.
- b) Highly linear photocurrent (or log. photo voltage) versus illumination characteristics for photo sensors.
- Extremely short response times of the order of nanoseconds for photodiodes and microseconds for phototransistors, together with high light sensitivity.
- d) Improved stability for phototransistors and photodiodes.

2.3.3. Coupling devices

The aim of the techniques employed in the manufacture of optoelectronic couplers is to produce a device with a

- high coupling factor (CTR)
- high cut off-frequency (i. e. short response time)
- high isolation voltage
- production-orientated design.

Depending on application, additional requirements concerning, for example, linearity, transmission range or stability, may also have to be met. As mentioned previously, coupler technology is, in the main, concerned with design and encapsulation problems. Couplers can be enclosed in either hermatically sealed metal or plastic cases, depending on application requirements. Pin connections, too, are more or less governed by application, the only restriction being that a certain minimum spacing between pins must be maintained to eliminate breakdown when voltages of the order of kilovolt are applied.

A pre-requisite for a high coupling factor is the use of high-power IR emitters and phototransistors of high infrared sensitivity. Furthermore, steps must be taken to ensure that all the light radiated by the emitter is concentrated on the photo transistor. This is achieved by employing light conduction and beam focussing techniques involving lens-shaped encapsulations. In this way it is possible to concentrate almost all the light on the detector even if this is located some distance from the emitter, and thus achieve a high coupling factor combined with high isolation voltage (Fig. 2.8.).

Fig. 2.8.

2.3.4. Glass fiber transmission.

2.3.4.1. Introduction

application area is, in fact, signal transmission where broad band transmission over large distances can be realized. This type of line cannot be affected by electromagnetic interference and is safe against interception. With the application of low loss fibers, sensitive receivers and powerful emitters, signals can be transmitted over several kilometers. For the complete characterisation of a transmission line the emitting power of the source, the sensitivity of the receiver, the insertion loss

Glass fiber transmission lines can be used like

couplers for potential isolation. The main

2.3.4.2. Glass fiber

components have to be known.

The following parameters are sufficient for the characterisation of the glass fiber:

of the glass fiber i.e., coupling and fiber

attenuation losses and the bandwidth of all

refractive index profile, core diameter, attenuation per unit length and material dispersion.

For light propagation by total reflection there needs to be a refractive index difference inside the glass fiber, i.e. between the high refractive core and the less refractive cladding layer. The interface between the cladding layer and the core can be either stepwise such as in the "step index fiber" or graded giving the "graded index fiber". The difference between the refractive indices determines the angular aperture $\frac{a}{2}$ of the fiber which, for the step profile fiber, can be calculated from N. A. = $\sin \frac{\alpha}{2} (n_1^2 - n_2^2)^{1/2}$.

Using this value one can calculate the amount

P_E of the emitted power P_E of a point source that can be coupled into the associated fiber:

 $P_F = P_E \cdot \frac{a+1}{2} (N.A.)^2$ a is a parameter for the angular distribution of the emitter, given by $I_e = I_{eo} \cos^a \alpha_{/2}$.

In Fig. (2.9.), the coupling losses of a Lambert type and a typical edge emitter (laser) are

given.

It is assumed that the point light source is situated at the end of the fiber. Additional losses must be taken into account if the light source is not a point source or if there is a distance between the source and the fiber. The diameter of the radiation source should be as small as possible or equal to the diameter of the core of the fiber. Typical fiber core

Fig. 2.9.

diameters are 50-60 um for graded index fibers and 100 or 200 μm for step-index-fibers. The outer diameters are about 125 μ m or between 230 μ m and 300 μ m for the 200 μ m step-profile fiber respectively.

The attenuation losses are at present typically 5-10 dB/kilometer. The bandwidth of the fibers is (except for the monomode fibers, which are limited by material dispersion) limited by group delay spreading. For this case a δ -impulse has a time dispersion under

$$T_S = \frac{n_1 \cdot L}{c} \cdot (n_1 - n_2)$$
 (step profile) or

$$T_{P} = \frac{\mathsf{n_0} \cdot \mathsf{L}}{\mathsf{c}} \cdot \frac{(\mathsf{n_0} - \mathsf{n_2})^2}{2}$$

certain assumption.

graded index to fiber, parabolic profile no = refractive index in the center of the fiber), where L is the transmission length.

N.A. = Numerical Aperture

N.A. = $n \cdot \sin \frac{\alpha}{2}$, $\alpha = \text{angluar aperture}$, n-refractive index of the surrounding medium. $I_{eo} = \text{radiation}$ intensity in the optical axis.

 $I_{\Theta} = I_{\Theta O} \cdot f(\Theta)$

for example

 $I_e = I_{eo} \cos^a(\Theta)$, a = o: isotropic distribution

a=1: Lambert type radiation, $a\geq 2=$ radiative source with a small angular aperture, such as for example a laser.

Emitters for glass fiber transmission

The same principles as for the components described in section 2.3.1. can be applied to the function and construction of these emitters. Small area emitters, with which high radiation densities can be achieved, are used to give efficient coupling to glass fibers. Radiation densities of more than 0.5 W/sr cm² over an area with diameter 50-100 μm can be achieved using zinc diffused GaAs diodes. With these diodes a transmission bandwidth of about 10 MHz can be realized. With a coupled power of about 100 μ W into a stepprofile fiber (N.A. = 0.3) lines of much more than a kilometer can be covered. Using lasers. because of the extremly high radiation density of 200 kW/sr cm², higher coupling efficiencies can be achieved. Typical values are for example 1 mW coupled power into a fiber with an aperture of N.A. = 0.2. Lasers are also preferable to IR-Diodes because of their large bandwidth of more than 1 GHz.

Detectors for glass fiber transmission

The technology and function of silicon detectors has been described in section 2.3.1. For glass fiber applications, the active surface

of the chips is matched to the core of the applied glass fiber. The light sensitive surface of a detector should be slightly larger than the fiber core, so that harmful capacitances as well as wasteful adjustements can be minimised.

With hermetically sealed housings the fiber cannot be placed directly onto the chip because of the housing window. Here, the optimum chip size must be derived from the numerical aperture and the distance between the chip and the end of the fiber.

Remarks regarding fiber coupling

Fibers are usually fixed directly onto the receiver and the source. With lasers, the coupled glass fiber is not glued onto the mirror surface but is fixed to the housing. Whenever epoxies are used, it must be ensured that the applied epoxies do not have adverse effects on the lifetime of the components.

2.4. Conversion tables

Corresponding radio metric and photometric definitions, symbols and units

	Radiom	netry		Photon	netry	
Definition		Symbol	Unit		Symbol	Unit
Power	Radiant flux (Radiant power)	$\Phi_{ m e}$	Watt, W	Luminous flux (Luminous power)	Φ_{v}	Lumen, Im
Output power per unit area	Radiant emittance/ exitance	M _e	W m²	Luminous exitance	M _v	lm m²
Output power per unit solid angle	Radiant intensity	I _e	W sr	Luminous intensity	l _v	candela, cd
Output power per unit solid angle and unit emitting area	Radiance	L _e	W m²⋅sr	Luminance	L _v	_cd _m²
Input power per unit area	Irradiance	E _e	W m²	Illuminance, illumination	E _v	Lux, Ix $Ix = \frac{Im}{m^2}$
Spectral concen- tration of radiant energy	Radiant energy	Q _e	Ws	Luminous energy (Quantity of light)	Q _v	lm·s
Energy per unit area	Radiant exposure (irradiation)	H _e	W·s m²	Light exposure (illumination)	H _v	Im·s m²

Tab. 2.9.

Luminance conversion units

Unit	cd	l⋅m ⁻²	asb	sb	L	cd · ft ⁻²	fL	cd · in⁻²	Notes
1 cd · m ⁻² =	=	1	π	10 ⁻⁴	π·10 ⁻⁴	9.29 · 10 ⁻²	0.2919	6.45 · 10 ⁻⁴	instead of cd·m ⁻²
1 asb (Apostilb) =	-	$\frac{1}{\pi}$	1	$\frac{1}{\pi} \cdot 10^{-4}$	10-4	2.957 · 10 ⁻²	0.0929	2.054 · 10⁴	sometimes Nit
1 sb =	=	10⁴	π · 10 ⁴	1	π	929	2919	6.452	
1 L (Lambert) =	$= \frac{1}{\pi}$	10⁴	10⁴	$\frac{1}{\pi}$	1	2.957 · 10 ²	929	2.054	
1 cd · ft ⁻² =	= 10	0.764	33.82	1.076 · 10 ⁻³	3.382 · 10 ⁻³	1	π	6.94 · 10 ⁻³	ft = foot
1 fL (Footlambert)	= 3	3.426	10.764	3.426 · 10 ⁻⁴	1.0764 · 10 ⁻³	$\frac{1}{\pi}$	1	2.211 · 10 ⁻³	
1 cd · in ⁻²	= 1	1550	4869	0.155	0.4869	144	452.4	1	in = inch

Tab. 2.10.

Illumination conversion units

Unit	İx	lm · cm ⁻²	fc	Notes
1 lx =	1	10 ⁻⁴	0.0929	
1 lm · cm ⁻² =	10 ⁻⁴	1	0.0929 · 10 ⁴	instead of Im cm ⁻² formerly Phot (ph)
1 fc (Footcandle) =	10.764	10.764 · 10 ⁻⁴	1	

Tab. 2.11.

Special notes:

- a) At standard illuminant A: $1 \text{ klx} \approx 4.75 \text{ mW/cm}^2$ or $1 \text{ mW/cm}^2 \approx 210 \text{ lx}$
- b) At 550 nm it is valid: 680 lm ≈ 1 W
- c) 1 lumen/ft² = 1 footcandle 632 im/ft² = 1 mW/cm² at 550 nm 4π candlepower = 1 lumen (lm)

Fig. 2.12

Fig. 2.14.

Fig. 2.15.

3. Measurement Technique

3.1. Introduction

The characteristics given in the data sheets for optoelectronic devices are verified either by 100 % production tests followed by statistic evaluation or by sample tests on typical specimens. These tests can be divided into the following categories:

- a) Dark measurements
- b) Light measurements
- c) Measurement of switching characteristics, cut-off frequency and capacitance
- d) Angular light distribution measurements
- e) Spectral distribution measurements
- f) Thermal measurements.

The dark and light measurements are 100% measurements and are guarantied with AQLvalues (see section 4) in data sheets. All other values are typical. The basic circuits used for these measurement are shown in the following sections, although these circuits may be modified slightly to cater for special measurement requirements.

3.2. Dark and light measurements

3.2.1. Emitter devices

3.2.1.1. IR diodes (GaAs)

The forward voltage, V_F, is measured either on a curve tracer or statically using the circuit shown in Fig. 3.1. A specified forward current (from a constant current source) is passed through the device and the voltage developed across it is measured on a high-impedance voltmeter.

To measure the reverse voltage, V_R , a 100 μA reverse current from a constant current source is impressed through the diode (Fig. 3.2.) and the voltage developed across it is measured on a voltmeter of extremely high input impedance (\geq 10 M Ω).

Radiant flux (radiant power), Φ_e : In case of IR GaAs diodes it is usual to measure the total radiant output power, $\Phi_{
m e}$, i. e. with a calibrated solar cell BPY 70 fitted in a conical reflector with a bore which accepts the test item see fig. 3.3. A constant DC or pulsating forward current of specified magnitude is passed through the IR diode. The advantage of pulse current measurements at room temperature (25°C) is that the results can be reproduced exactly. If, for reasons of measurement economy, only DC measurements (Fig. 3.4.) are to be made, then the energizing time should be kept short (ca. 1 s) and of uniform duration, to minimize any fall-off in light output due to internal heating.

To ensure that the relationship between irradiance and photocurrent is linear, the solar cell should operate near short-circuit configuration. This can be achieved by using a low resistance load (\leq 10 Ω) of such a value that the voltage dropped across it is very much lower than the open circuit voltage produced under identical illumination conditions (R_{meß} $\ll R_i$). The voltage across the load should be measured with a sensitive DVM.

Radiant intensity, Ie: Knowledge of the radiant intensity produced by an IR emitter enables customers to asses the range of IR light barriers. The measurement procedure for this is more or less the same as that used for measuring the radiant power. The only difference ist that in this case the solar cell is

Fig. 3.1.

Fig. 3.2.

Fig. 3.3

Fig. 3.4.

Fig. 3.5.

81 3283 e

Fig. 3.6.

used without a reflector and is mounted at a specified distance from, and on the optical axis of, the GaAs diode (Fig. 3.5.) so that only radiant power of a narrow axial beam is considered. The radiant power within a solid angle of $\Omega=0.01$ sr is measured at a distance of 190 mm. The radiant intensity is then obtained by using this measured value for calculating the radiant intensity for a solid angle of $\Omega=1$ sr.

3.2.1.2. Light emitting diodes (GaAsP and GaP) For forward and reverse voltage measurements (V_F and V_R respectively) refer to the section "IR Diodes", 3.2.1.1.

The luminous intensity, I_{ν} , of a light emitting diode can be calculated by multiplying the radiant intensity, I_e , (see fig. 3.5.) by the absolute eye sensitivity, $K_{\rm m} \cdot V_{\lambda}$ (DIN 5031). This assumes, however, that the wavelength of the radiation emitted by the test item is known exactly. In production measurements a calibrated silicon photovoltaic cell is used instead, in conjunction with a special colour filter (e.g. Schott BG 38) which simulates the red-slope of the eye sensitivity curve. BPW 20 is used as a photovoltaic cell, because the short circuit output current characteristics of this cell is strictly linear even when the irradiation is very low. This is because the radiant output power of LEDs is low in comparsion with that of IR diodes, and the colour filter has

an attenuating effect causing the cell to produce, at the most, only a few nanoamperes. The cell must operate into an operational amplifier with a high-impedance FET input stage (Fig. 3.6.).

3.2.2. Detector devices

3.2.2.1. Photovoltaic cells, photodiodes a) Dark measurements

a) Dark measurements
The reverse voltage characteristic $V_{\rm R}$ is meas-

ured either on a curve tracer or statically using the circuit shown in fig. 3.7. A high-impedance voltmeter, which draws only an insignificant fraction of the device reverse current, must be used.

Dark reverse current measurements, $I_{\rm ro}$, must be carried out in complete darkness; the reverse currents of silicon photo diodes are of the order of nanoamperes only, and an illumination of a few lux is quite sufficient to falsify the test result. If a highsensitive DVM is to be used, then a current sampling resistor of such a value that the voltage dropped across it is small in comparison with the supply voltage must be connected in series with the test item (Fig. 3.8.). Under these conditions any reverse voltage variations of the test samples can be ignored.

Fig. 3.7.

Fig. 3.8.

Fig. 3.9.

Fig. 3.10.

b) Light measurements

The same as the dark measurement circuit can be used to carry out light reverse current, $I_{\rm ra}$, measurements on photodiodes, the only difference being that the diode is now irradiated and a current sampling resistor of lower value must be used (Fig. 3.9.), because of the higher currents involved.

The open circuit voltage, Vo, and short circuit current, Ik, of photovoltaic cells and photodiodes are measured by means of the test circuit shown in fig. 3.10. The value of the load resistor used for the I_k measurement should be chosen so that the voltage dropped across it is low in comparison with the open circuit voltage produced under conditions of

identical irradiation. The light source used for light measurements is a calibrated incandescent tungsten lamp without filter. The filament current is adjusted for a colour temperature of 2855.6 K (standard illuminant A to DIN 5033 sheet 7), and the specified illumination, E_{v} , (usually 100 or 1000 lux) is produced by adjusting the distance, α , between the lamp and the detector on an optical bench. E_v can be measured on a $V(\lambda)$ – corrected lux meter, or, if the luminous intensity, I_{v} , of the lamp is known, can be calculated

using the formula. It should be noted that this inverse square law is only strictly accurate for point light sources, i.e. for sources where the dimensions of the source (the filament) are small (≤ 10%) in comparison with α , the spacing between source and detector.

IR-Diode is used as a radiation source, instead of tungsten incandescent lamp, to measure detector devices being used mainly in IR-transmission system together with IRemitters e.g. IR-remote control, IR-headphone. Operation is possible both with d.c. or pulsed current.

The adjustment of the irradiance, $E_{\rm e}$, is similar to the above mentioned adjustment of the illuminance, E_v. To achieve a high stability similar to the (tungsten incandescent) filament lamps consideration should be given to the following two points:

- The IR-diode should be connected on a good heat sink to provide a sufficient temperature stability.
- The radiant intensity, I_e, of the device is controlled by a calibrated detector.

3.2.2.2. Phototransistors, Photo Darlington

The collector-emitter voltage, V_{CEO}, is measured either on a transistor curve tracer or statically using the circuit shown in fig. 3.11. Normal bench illumination does not change the measuring results.

In contrast, however, the collector dark current, I_{CEO} or I_{∞} , must be measured in complete darkness (Fig. 3.12.). Even ordinary daylight illumination of the wire feed-through glass seals would falsify the measurement result.

The same circuit is used for collector light current, Ica, measurements (Fig. 3.13.), the device being positioned so that its optical axis points towards an incandescent tungsten lamp without filter, $T_f = 2855.6$ K, providing an illumination of 100 or 1000 lux or an IR irradiation of a GaAs diode (refer to the photovoltaic cells and photodiodes section). Note that a lower-value sampling resistor is used, in keeping with the higher current involved.

To measure the collector-emitter saturation voltage, V_{CEsat}, the device is illuminated and a constant collector current passed through it. The magnitude of this current is adjusted so that it is less than the minimum light current, $I_{ca min}$, for the same illumination intensity, the value being rounded off to the next lower power of ten (Fig. 3.14.). The saturation

Fig. 3.11.

Fig. 3.12.

Fig. 3.13.

Fig. 3.14.

voltage of the phototransistor or Darlington stage (approx. 100 mV or 600 mV respectively) is then measured on a high-impedance voltmeter.

3.2.3. Coupling devices

a) Dark measurements

Emitters: For forward- and reverse voltage measurements refer to section 3.2.1.1. (JR diodes).

Detectors: For V_{CEO} and I_{∞} measurements refer to 3.2.2.2. (Phototransistors)

b) Light measurements

To measure the collector current, $I_{\rm C}$ (Fig. 3.15.), a specified forward current, $I_{\rm F}$, is impressed in the IR diode. Voltage difference is then measured across a low emitter resistance. In case of collector-emitter saturation voltage, $V_{\rm CEsat}$ (Fig. 3.16.), forward current, $I_{\rm F}$, in IR

diode and a low collector current, $I_{\rm C}$, in a phototransistor is impressed. $V_{\rm CEsat}$ is then measured (across collector and emitter terminals) as shown in diagram.

3.3. Switching characteristics

3.3.1. Definition

Every electronic device introduces a certain delay between input and output signals as well as a certain amount of amplitude distortion. The simplified circuit shown in fig. 3.17. shows how the input and output signals of optoelectronic devices can be displayed on a dual-trace oscilloscope.

Fig. 3.15.

Fig. 3.16.

Fig. 3.17.

Fig. 3.18.

The switching characteristics can be determined by comparing the timing of the output current waveform with that of the input current waveform (Fig. 3.18.).

These time parameters also include the delay that exists in a luminescence diode between the forward current (I_F) and the radiant power Φ_e . Excepting extremely fast detector devices (photo PIN diodes), this delay can, however, be ignored.

3.3.2. Notes concerning the test set-up The circuits used for testing light-emitting, light sensitive and optically coupled isolator devices are basically the same (Fig. 3.17.), the only difference being the way in which the test item is connected in circuit.

It is assumed that the rise and fall times associated with the signal source (pulse generator) and the dual trace oscilloscope are insignificant, and that the switching characteristics of any light sensitive device used in the set-up are considerably shorter than those of the test item. The switching characteristics of light and IR emitters, for example, ($t_r \approx 10...1000$ ns) are measured with the aid of a photo PIN diode as a detector ($t_r \approx 1$ ns). Photo and Darlington transistors and photo and solar cells ($t_r \approx 0.5...50\,\mu$ s) are, as a rule, measured by use of GaAs: Zn-based fast IR diodes ($t_r \approx 100$ ns) as emitters.

 $t_{\rm d}$: delay time

t_r : rise time

 $t_{on} (= t_{d} + t_{r})$: turn-on time

 $t_{\rm s}$: storage time

 $t_{\rm f}$: fall time

 $t_{\text{off}} (= t_{\text{s}} + t_{\text{f}})$: turn-off time

GaAsP red light emitting diodes are used as light sources only for devices which, because of their spectral sensitivity (e.g. BPW 21), cannot be measured with IR diodes. This is because these diodes emit only 1/10 of the radiant power of IR diodes and consequently produce only very low signal levels.

No fast sensors are required for switching speed measurements on optically coupled isolators (couplers) since these incorporate an emitter as well as a detector, and only the overall switching characteristics is of interest.

3.3.3. Switching characteristics improvements on phototransistors and Darlington phototransistors

As in any ordinary transistor, switching characteristics are reduced if the drive signal level and hence the collector current is increased. Another time reduction (especially in fall time t_1) can be achieved by use of a suitable base resistor, assuming there is an external base connection, although this can only be done at the expense of sensitivity.

4. Quality Data

4.1. Delivery quality

To designate the delivery quality, the following specifications are given:

- Maximum and minimum values of the characteristics
- AQL-values (Acceptable Quality Level)
 Shipment lots whose defect percentage is equal to or less than the percentage given in AQL-value shall be accepted with greater probability (L ≥ 90%) due to sampling tests (see the single sampling plan in section 4.4.).

4.2. Classification of defects

The possible defects with which a semiconductor device could be subjected are classified according to the probable influence of existing circuits:

Total (critical) defect

When this defect exists, the functional use of the device is impossible.

Examples are: open contacts, inter-electrode shortcircuits, breakdown in reverse characteristics, wrong type designation, broken leads, critical case defects.

Major defect

A defect which is usually responsible for the failure of a device to function in its intended purpose.

In technical data sheets certain characteristics are given with foot note*). If the specified limits are exceeded, it is then considered as a major defect. This normally applies to the following characteristics.

Emitters: $\Phi_{\rm e}$, $I_{\rm v}$, $V_{\rm (BR)}$, $V_{\rm F}$ and mDetectors: $I_{\rm ca}$, $I_{\rm co}$, $V_{\rm CEO}$, $V_{\rm CEsat}$ and mCouplers: $V_{\rm (BR)}$, $V_{\rm F}$, $V_{\rm CEO}$, $V_{\rm CEsat}$ and $I_{\rm C}$

Minor defect

A defect which is responsible for the functioning of a device with no or only a slight reduction in its effectiveness.

Failure to meet the specified performance requirements for characteristics not specially marked in the data sheet is considered a minor defect.

Normally these are dynamic characteristics with ambient temperature, $T_{amb} = 25^{\circ} \text{C}$, provided there is no special meaning for main application. Further, there are static characteristics ($T_{amb} = 25^{\circ} \text{C}$) whose significance for the main application is restricted.

4.3. AQL-values

According to the classification of defects mentioned in 4.2., the following AQL-values, unless otherwise specified, are valid for technical datas of industrial types. Under it, the inspection follows the single sampling plan for attribute testing AEG 1415 (see 4.4.), which corresponds largely to the ASQ/AWF 1 or ABC-STD 105 D, inspection level II.

Classification of defects	Single- AQL	Cumulative- AQL
Total defect	_	0.25%
Major defect	0.65%	_
Minor defect	_	2.50%

A cumulative-AQL equal to 2.5 % applies to all defective devices considered.

There are additional characteristics given in the data sheets whose measurements are only possible through elaborate and costly tests. These characteristics are given with foot note**) provided they are not of special use for the main application. To check the given limits of these characteristics, a sampling inspection is performed according to single sampling plan AEG 1416 (see 4.4.) which corresponds largely to ABC-STD 105 D, inspection level S 4. In this case an AQL-value of 2.5% is valid.

4.4. Sampling inspection plans

List of symbols: AQL Acceptable Quality Level

N Lot size n Sample size

c Acceptance number

D_{max} Average outgoing quality level

Single sampling plan for attribute testing (AEG 1415)

norm inspec			AQL										reduced inspection											
		0.06	0.10	0.15	0.25	0.40	0.65	1.0	1.5	2.5	4.0	6.5												
N			n - c (D _{max} in %)									N	l											
2-	15								8-0	5-0	3-0 (9.6)	2-0 (15.6)	2-	15										
16-	50									20-0	13-0 (2.6)	(3.9)	(6.7)	13-1 <i>(4.8)</i>	8-1 (9.2)	16-	150							
51-	150				50-0															(1.7)		32-1	20-1 (3.6)	20-2 (6.0)
151-	280		125-0	80-0 (0.45)	(0.71)	(0.71)	(0.71)	(0.71)	(0.71)	(0.71)	(0.71)			50-1	(2.3)	32-2 (3.8)	32-3 (5.4)	32-5 (8.8)	281-	500				
281-	500		(0.29)				80-1	(1.5)	50-2 (2.4)	50-3 (3.5)	50-5 (5.7)	50-7 (8.1)	501-	1200										
501-	1 200	200-0 (0.18)				125-1	(1.0)	80-2 (1.6)	80-3 (2.2)	80-5 (3.7)	80-7 (5.2)	80-10 <i>(7.7)</i>	1 201-	3200										
1201-	3200	(5.76)			200-1	(0.64)	125-2 (1.1)	125-3 (1.5)	125-5 (2.4)	125-7 (3.5)	125-10 <i>(</i> 5. <i>0)</i>	125-14 <i>(7.2)</i>	3201-1	10000										
3 201-1	0 000			315-1	(0.41)	200-2 (0.68)	200-3 (0.95)	200-5 (1.6)	200-7 (2.2)	200-10 (3.2)	200-14 (4.6)	200-21	10001-	35 000 ¹⁾										
10 001-3	5000 ¹⁾		500-1 (0.17)	(0.27)	315-2 (0.44)	315-3 (0.61)	315-5 (0.99)	315-7 (1.4)	315-10 (2.1)	315-14 (3.0)	315-21 <i>(4.7)</i>	(7.3)												

Single sampling plan for destructive or very costly test procedurs (AEG 1416, Z-plans).

Z nor inspe		AQL 0.06 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5							6.5	reduc	Z 2 reduced inspection											
1	١		n - c (D _{max} in %)							N												
2-	25										3-0	2-0 (16.6)	2-	50								
26-	90														8-0		8-0	5-0 (7.2)	(11.6)		51-	150
91-	150						20-0	13-0 (2.8)	(4.5)		13-1	8-1 <i>(10.8)</i>	151-	500								
151-	500	200-0 (0.18)	125-0 (0.29)	80-0 (0.46)	50-0 (0.74)	32-0 (1.2)	(1.8)						20-1	20-1	(6.3)		501-	3200				
501-	1200		1											32-1	(4.1)	20-2 (6.8)	20.3 (9.5)	3 201-3	5 000 ¹⁾			
1201-1	0000																(2.66)	32-2 (4.3)	32-3 (6.1)	32-5 (9.9)	-	
10001-3	5000 ¹⁾						80-1 (1.1)	(1.7)	50-2 (2.7)	50-3 (3.9)	50-5 (6.3)	50-7 (9.0)	_									

¹⁾ Lot size above 35 000 must be divided.

5. Assembly Instructions

5.1. General

Optoelectronic semiconductor devices can be mounted in any position.

Connection wires of less than 0.5 mm diameter may be bent, provided the bend is not less than 1.5 mm from the bottom of the case and no mechanical force has an affect on it. Connection wires of larger diameter should not be bent.

If the device is to be mounted near heat generating components, then consideration must be given to the resultant increase in ambient temperature.

5.2. Soldering instructions

Protection against overheating is essential when a device is being soldered. It is recommended, therefore, that connection wires are left as long as possible and are soldered at the tip only, and that any heat generated is quickly conducted away. The time during which the specified maximum permissible device junction temperature is exceeded during the soldering operation should be as short as possible (one minute max.). In the case of plastic encapsulated devices, the maximum permissible soldering temperature is governed by the maximum permissible heat that may be applied to the encapsulant rather than by the maximum permissible junction temperature.

The following maximum soldering iron (or solder bath) temperatures as given in Fig. 5.1. are permissible:

5.3. Heat removal

To keep the thermal equilibrium, the heat generated in the semiconductor junction(s) must be removed to the ambient.

In the case of low-power devices the natural heatconductive path between case and surrounding air is usually adequate for this purpose.

However, in the case of medium-power devices heat radiation may have to be improved by the use of star- or flag-shaped heat dissipators, which increase the heat radiating surface.

Finally, in the case of high-power devices special heat sinks must be provided, the cooling effect of which can be increased further by the use of special coolants or air blowers.

The heat generated in the junction is conveyed to the case or header by conduction rather than convection; a measure of the effectiveness of heat conduction is the inner thermal resistance or thermal resistance junction case, $R_{\rm th, LC}$, the value of which is governed by the construction of the device.

		Iron soldering		Dip or flow soldering				
·····	Iron temperature	Soldering distance from touching border with intermediate PC-board	Max. allowable soldering time	Soldering temperature	Soldering distance from touching border with intermediate PC-board	Max. allowable soldering time		
Metal case	≤ 245°C ≤ 245°C	1.55 mm > 5 mm	5 s 10 s	≤ 245°C	> 1.5 mm	5 s		
	245350°C	> 5 mm	5 s	245300°C	> 5 mm	3 s		
Plastic case	≤ 245°C ≤ 245°C	> 1.5 mm > 5 mm	3 s 5 s	≤ 245°C 245300°C	> 1.5 mm	3 s 2 s		

Fig. 5.1.

Any heat transfer from the case to the surrounding air involves radiation convection and conduction, the effectiveness of transfer being expressed in terms of an $R_{\rm thCA}$ value, i.e. the external or case-ambient thermal resistance. The total thermal resistance, junction-ambient is consequently:

$$R_{\rm thJA} = R_{\rm thJC} + R_{\rm thCA}$$

The total maximum power dissipation, $P_{\text{tot max}}$, of a semiconductor device can be expressed as follows:

$$P_{\text{tot max}} = \frac{T_{\text{jmax}} - T_{\text{amb}}}{R_{\text{thJA}}} = \frac{T_{\text{jmax}} - T_{\text{amb}}}{R_{\text{thJC}} + R_{\text{thCA}}}$$

whereas:

 T_{jmax} is the maximum allowable junction temperature

T_{amb} the highest ambient temperature likely to be reached under the most unfavourable conditions

 $R_{\rm thJA}$ the thermal resistance, junction-case $R_{\rm thJA}$ the thermal resistance, junction-ambient

R_{thCA} the thermal resistance, case-ambient, the value of which depends on cooling conditions. If a heat dissipator or sink is used, then R_{thCA} depends on the thermal contact between case and heat sink, heat propagation conditions in the sink and the rate at which heat is transferred to the surrounding air.

Therefore, the maximum allowable total power dissipation for a given semiconductor device can be influenced only by changing $T_{\rm amb}$ and $R_{\rm thCA}$. The value of $R_{\rm thCA}$ could be obtained either from the data of heat sink suppliers or through direct measurements.

In case of cooling plates as heat sink without optimum performance, the following approach holds good.

The curves shown in both figures are given for thermal resistance R_{thCA} by using square plates of aluminium with edge length, α , but with different thicknesses. Thereby, the device case should be mounted direct on the cooling plate.

Fig. 5.2.

Fig. 5.3.

The edge length, a, derived from Fig. 5.2. and 5.3. for a given R_{thCA} value must be multiplied with a and β :

$$\alpha' = \alpha \cdot \beta \cdot \alpha$$

where $\alpha = 1.00$ for vertical arrangement

 $\alpha = 1.15$ for horizontal arrangement

 $\beta = 1.00$ for bright surface

 $\beta = 0.85$ for dull black surface

Example:

 $= 200 \, \text{mW}.$

For a GaAs diode with $T_{\rm i \ max}=100~{\rm ^{\circ}C}$ and $R_{\rm thJC}=100~{\rm KW}$, calculate the edge length for a 2 mm thick aluminium square sheet having dull black surface ($\beta=0.85$) and vertical arrangement ($\alpha=1$), $T_{\rm amb}=70~{\rm ^{\circ}C}$ and $P_{\rm tot\ max}$

$$P_{\text{tot max}} = \frac{T_{\text{jmax}} - T_{\text{amb}}}{R_{\text{thJC}} + R_{\text{thCA}}}$$

$$R_{\text{thCA}} = \frac{T_{\text{jmax}} - T_{\text{amb}}}{P_{\text{tot max}}} - R_{\text{thJC}}$$

$$R_{\text{thCA}} = \frac{100^{\circ}\text{C} - 70^{\circ}\text{C}}{0.2 \text{ W}} - 100 \text{ K/W}$$

$$R_{\text{thCA}} = \left(\frac{30}{0.2} - 100\right) \text{ K/W}$$

$$R_{\text{thCA}} = 50 \text{ K/W}$$

 $\Delta t = T_{\text{case}} - T_{\text{amb}}$ can be calculated from the relationship:

$$P_{\text{tot max}} = \frac{T_{\text{jmax}} - T_{\text{amb}}}{R_{\text{thJC}} + R_{\text{thCA}}} = \frac{T_{\text{case}} - T_{\text{amb}}}{R_{\text{thCA}}}$$

$$\Delta t = T_{\text{case}} - T_{\text{amb}} = \frac{R_{\text{thCA}} \cdot (T_{\text{jmax}} - T_{\text{amb}})}{R_{\text{thJC}} + R_{\text{thCA}}}$$

$$\Delta t = \frac{50 \text{ K/W} \cdot (100^{\circ}\text{C} - 70^{\circ}\text{C})}{100 \text{ K/W} + 50 \text{ K/W}}$$

$$\Delta t = \frac{50 \text{ K/W} \cdot 30^{\circ}\text{C}}{150 \text{ K/W}}$$

$$\Delta t = 10^{\circ}\text{C} = 10 \text{ K}$$

With $R_{\text{thCA}} = 50$ K/W and $\Delta t = 10$ °C a plate having 2 mm thickness has an edge length $\alpha = 28$ mm (see fig. 5.3.).

This multiplied by the factors α and β gives: $\alpha' = \alpha \cdot \beta \cdot \alpha$

 $\alpha' = 1 \cdot 0.85 \cdot 28 \text{ mm}$

 α ' = 23.8 mm

This would be the minimum permissible side length of the heat sink, but for the sake of equipment life and reliability one would normally use a larger sink to avoid operating the devices continuously at their maximum permissible junction temperature.

6. Important Notes on Device Selection

Optoelectronic devices are available in a variety of encapsulations enabling the user to select the device best suited to the operational conditions and application envisaged.

6.1. Optical characteristics

Many devices differ only in the magnitude of the angle of half sensitivity/intensity; these differences are explained briefly below.

6.1.1. Devices with flat windows These exhibit the lowest sensitivity or radiant intensity, but have a large radiation angle $(\alpha > 70^{\circ})$.

There are no positioning problems and fine adjustment is not necessary to receive an accurate image of the object to be measured, or obtain an accurate projection of the emitting area. When used in conjunction with additional optical systems these devices are ideal for long range light barriers.

6.1.2. Devices with lenses

There are two types of lenses used in optoelectronic devices – medium and sharp focus.

6.1.2.1. Devices with medium focus lenses These have or produce ten times the sensitivity or radiant intensity respectively of devices with flat windows; they have angles of half sensitivity or intensity between 25 and 40°. More accurate alignment is necessary, although deviations up to approximately $\pm\,5\%$ have hardly any effect. In these devices the best compromise between focussing and sensitivity/radiant inten-

sity has been achieved; they are therefore

the devices best suited for most applications.

6.1.2.2. Devices with sharp focus (high profile) lenses

considerable.

Because the angle of half sensitivity or intensity of these devices is very narrow ($\alpha \approx 10^{\circ}$), their sensitivity or radiant intensity is 25 times greater than of flat window devices. However, accurate alignment is essential, since the effect of even the slightest misalignment is

They are ideal for luminance measurements on large surface (in furnace protection systems, for example) or in simple short-distance light barrier systems designed to operate over short distances only (a few cm). The lenses used in optoelectronic devices are, as a rule, not true lenses in the geometric-optical sense, but simple encapsulated glass drops. Their mechanical axis; therefore, sometimes deviates from the optical axis (squint effect).

This is particularly pronounced on sharpfocus lenses, and, because of this effect elaborate alignment procedures with the necessary equipment are required. Additional optical systems are only of limited use in conjunction with devices incorporating medium-focus lenses and of no use at all with those embodying sharp-focus lenses. An unsuitable arrangement could even diffuse rather than focus the emitted or received radiation (see figs. 6.1. and 6.2.).

6.2. Environmental conditions

Devices in plastic as well as hermetically sealed glass-metal cases are available. For commercial and special applications where arduous environmental conditions are likely to be encountered, the use of devices in hermetically sealed glassmetal cases is recommended. In an air conditioned environment (class 'F' humidity, for example) devices in either plastic or hermetically sealed glassmetal encapsulations can be employed.

Lens focusses incident collimated light on radiant sensitive area.

Fig. 6.1.

Incorrect positioning of external lens causes collimated light to be dispersed.

Fig. 6.2.

7. Accessoires

Mounting clip Order No. 562136

Detectors

Silicon Photo PIN Diode

Application: High speed photo detector

Features:

- Fast response times
- Small junction capacitance
- High photo sensitivity

- Large radiant sensitive area
 A = 7.5 mm²
- Angle of half sensitivity $\alpha = 120^{\circ}$
- Plastic case with IR-filter

Preliminary specifications

Dimensions in mm

Radiant sensitive area $A=7.5~\mathrm{mm^2}$ Angle of half intensity $\alpha=120^\circ$ Plastic case Weight max. 0.4 g

Absolute maximum ratings

Reverse voltage	V_{B}	32	
Power dissipation	· n	32	V
$T_{amb} \leq 25^{\circ}C$	P_{V}	150	mW
Junction temperature	T _i	80	°C
Storage temperature range	τ _{stq}	-30+80	°C
Soldering temperature, maximal	5. 9	30, 60	C
<i>t</i> ≤ 3 s	$T_{\rm sd}^{-1}$)	245	°C

¹) Distance from the touching border ≥ 2 mm

S 1.2.116/0781 E

BP 104

$R_{ m thJA}$	Min.	Тур.	Max. 350	K/W
Vo		350		mV
l_{k}		38		μΑ
C_{j}		75		pF
/ _{ro} *)		2	30	nA
/ _{ra} *)	25	40		μΑ
$V_{(BR)}{}^\star)$	32			V
C_{j}		25	40	pF
P_{n}		10 ⁻¹⁴		WHz ^{-1/2}
t_{on}		50		ns
t_{off}		50		ns
ation				
λ_{p}		925		nm
$\lambda_{0.5}$		80010	000	nm
	$V_{ m o}$ $I_{ m k}$ $C_{ m j}$ $I_{ m ro}^*)$ $V_{ m (BR)}^*)$ $C_{ m j}$ $P_{ m n}$ $t_{ m on}$ $t_{ m off}$ ation $\lambda_{ m p}$	$R_{ m thJA}$ $V_{ m o}$ $I_{ m k}$ $C_{ m j}$ $I_{ m ro}^{\star}$) 25 $V_{ m (BR)}^{\star}$) 32 $C_{ m j}$ $P_{ m n}$ $t_{ m on}$ $t_{ m off}$ ation	$R_{\rm thJA}$ $V_{\rm o}$ 350 $I_{\rm k}$ 38 $C_{\rm j}$ 75 $I_{\rm ro}^{\star}$) 2 $I_{\rm ra}^{\star}$) 25 40 $V_{\rm (BR)}^{\star}$) 32 $C_{\rm j}$ 25 $P_{\rm n}$ 10 ⁻¹⁴ $t_{\rm on}$ 50 $t_{\rm off}$ 50 ation $\lambda_{\rm p}$ 925	$V_{\rm o}$ 350 $V_{\rm o}$ 350 $V_{\rm o}$ 350 $V_{\rm k}$ 38 $V_{\rm o}$ 75 $V_{\rm o}$ 2 30 $V_{\rm ra}^*$ 25 40 $V_{\rm (BR)}^*$ 32 $V_{\rm o}$ 25 40 $V_{\rm o}$ 30 $V_{\rm o}$ 40 $V_{\rm o}$

AQL = 0.65 %

Silicon NPN Epitaxial Planar Phototransistors

Application: Detector in electronic control and drive circuits

Features:

- Hermetically sealed case
- BPW 13 flat window, BPW 14 lens
- Suitable for visible and near infrared radiation
- BPW 13 Long range light barrier with an additional optics
- Base terminal is available
- Selected in groups
- BPW 14-Suitable to couple with glass fibre

Dimensions in mm

BPW 13

BPW 14

Angle of half sensitivity **BPW 13** $\alpha = 80^{\circ}$ **BPW 14** $\alpha = 25^{\circ}$ Collector connected with case \approx JEDEC TO 18

≈ 18 A 3 DIN 41 876 ≈ JEDEC TO 18 Weight max. 0.5 g

Ab a state an automorphism and the sec		,	
Absolute maximum ratings		00	V
Collector-base voltage	V_{CBO}	32	V
Collector-emitter voltage	$V_{\sf CEO}$	32	٧
Emitter-base voltage	V_{EBO}	5	٧
Collector current	I _C	50	mA
Peak collector current			
$\frac{t_{\rm p}}{T}=0.5,t_{\rm p}\leq 10\;{\rm ms}$	I _{CM}	100	mA
Total power dissipation			
7 _{amb} ≤ 25°C	P_{tot}	375	mW
Junction temperature	$ au_{ m j}$	175	°C
Storage temperature range	T_{stg}	-55+1 7 5	°C

Thermal resistances		Min.	Тур.	Max.	
Junction ambient	R_{thJA}			400	K/W
Junction case	R_{thJC}			150	K/W

Optical and electrical characteristics

 $T_{\rm amb} = 25^{\circ} \rm C$

Collector dark current

$$V_{CE} = 20 \text{ V}, E = 0$$

ICEO

10 100

nΔ

Туре	Group	Colle	Collector light current				
		$V_{CE} = 5 \text{ V}, E_{A} = 1 \text{ k/x}^{1}$ $I_{ca} \text{ (mA)}$	$V_{CE} = 5 \text{ V}, E_{e} = 1 \text{ mW/cm}^{2}, \lambda_{p} = I_{ca}^{*}) \text{ (mA)}$				
		Тур.	Min.	Тур.	Max.		
BPW 13	A B C	0.30 0.45 1.00	0.07 0.10 0.17	0.10 0.15 0.30	0.14 0.20		
BPW 14	A B C	3.0 4.5 10.0	0.7 1.0 1.7	1.0 1.5 3.0	1.4 2.0		

			Min.	Тур.	Max.	
Peak wavelength sensitivity		λ_{p}		780		nm
Range of spectral bandwidth (50 %)		λ _{0.5}		52095	i0	nm
Collector-emitter breakdown voltage $I_{\rm C}=1~{\rm mA}$		V _{(BR)CEO} *)	32			 V
Collector-emitter saturation voltage $I_{\rm C}=0.1{\rm mA}, I_{\rm B}=10\mu{\rm A}$ $I_{\rm C}=1.0{\rm mA}, I_{\rm B}=100\mu{\rm A}$	BPW 13 BPW 14	V _{CEsat} *) V _{CEsat} *)			0.3 0.3	V V
Cut-off frequency $I_{\rm C}=5$ mA, $V_{\rm S}=5$ V, $R_{\rm L}=100~\Omega$		f_{g}		170		kHz
Capacitance, collector-emitter $V_{CE} = 5 \text{ V}, f = 1 \text{ MHz}, E = 0$		C_{CEO}		4.5		pF

^{*)} AQL = 0.65 %

¹⁾ Standard illuminant A (DIN 5033/IEC 306-1)

Switching characteristics $V_{\rm S}=5~{\rm V},~I_{\rm C}=5~{\rm mA},~R_{\rm L}=100~\Omega,$ see test circuit		Min.	Тур.	Max.	
Delay time	$t_{\sf d}$		1.8		μ S
Rise time	t _r		1.6		μS
Turn-on time	t_{on}		3.4		μ S
Storage time	t_{s}		0.3		μS
Fall time	t _f		1.7		μS
Turn-off time	$t_{ m off}$		2.0		μ S

Test circuit

BPW 13 · BPW 14

BPW 13 · BPW 14

Silicon NPN Epitaxial Planar Phototransistors

Application: Detector in electronic control and drive circuits

Features:

- Miniature plastic case white clear
- Wide radiation angle (80°) BPW 16 N
- Insensitive against background light due to narrow aperture (25°) – BPW 17 N
- Suitable for visible and near infrared radiation
- Suitable for 0.1" (2.54 mm) center-tocenter spacing

Preliminary specifications

Dimensions in mm

BPW 16 N

Angle of half sensitivity BPW 16 N $\alpha=80^{\circ}$ BPW 17 N $\alpha=25^{\circ}$

Special case Weight max. 0.04 g

BPW 17 N

Absolute maximum ratings 32 V_{CEO} Collector-emitter voltage 5 V_{ECO} Emitter-collector voltage 50 mA I_{C} Collector current Peak collector current $\frac{t_{\rm p}}{\tau}$ = 0.5, $t_{\rm p} \le$ 10 ms 100 mA I_{CM} Total power dissipation 100 mW P_{tot} $T_{\rm amb} \le 55^{\circ} \, \rm C$ °C 100 T_{i} Junction temperature °C -25 ... +100 $T_{\rm sta}$ Storage temperature range Soldering temperature, maximal °C T_{sd}^{1}) 245 $t \le 3 s$ 80 2903 81 3 2 31 6 R_{thJA} 460 K/W Fig.2 Fig.3 440 0.14 mm Fig. 1 Cu isolated Fig.2 Fig.1 420 400 380 360 | 30 mm 10 20 Fig.3 Min. Тур. Max. Thermal resistance 450 K/W RIBIA Junction ambient

¹⁾ Distance from the touching border ≥ 2 mm

Optical and electrical characteristics T _{amb} = 25°C			Min.	Тур.	Max.	
Collector dark current $V_{CE} = 20 \text{ V, } E = 0$						
Collector light current		I _{CEO} *)		10	200	n/
$V_{\rm CE}=5~{\rm V},E_{\rm A}=1~{\rm kix^1})$	BPW 16 N BPW 17 N	I _{ca} I _{ca}		0.4 3		mA mA
$V_{CE} = 5 \text{ V}, E_{e} = 1 \text{ mW/cm}^{2}, \lambda_{p} = 950 \text{ nm}$	8PW 16 N BPW 17 N	/ _{ca} *) / _{ca} *)	0.07 0.5	0.14 1.0		mA mA
Peak wavelength sensitivity		λ_{D}	0.0	780		nm
Range of spectral bandwidth (50 $\%$)		$\lambda_{0.5}$		52095	า	nm
Collector-emitter breakdown voltage $I_C = 1 \text{ mA}$		V _{(BR) CEO} *)	32	- Z - III - O -	•	
Collector-emitter saturation voltage $I_C = 0.1 \text{ mA}, E_e = 1 \text{ mW/cm}^2, \lambda_p = 950 \text{ n}$	ım	V _{CEsat} *)	02			٧
Cut-off frequency $I_{\rm C}=5$ mA, $V_{\rm S}=5$ V, $R_{\rm L}=100~\Omega$	••••	,			0.3	V
Capacitance, collector-emitter		f _g		170		kHz
$V_{CE} = 5 \text{ V}, f = 1 \text{ MHz}, E = 0$		$C_{\sf CEO}$		4.5		pF
Switching characteristics						
$V_{\rm S}=5$ V, $I_{\rm C}=5$ mA, $R_{\rm L}=100~\Omega$, see test Delay time	st circuit					
Rise time		t _d		1.8		μs
Turn-on time		t _r		1.6		μ s
Storage time		t _{on}		3.4		μ s
Fall time		t _s		0.3		μs
		t _f		1.7		μs
Turn-off time		t _{off}		2.0		μs
0 +5v						
G = 50 Ω /C = 5	mA; adjuste: distanc	through				
Ga As - Diode 👤 🚞						
, = 20 μs						
<u> </u>		ciiloscope				
Channe	01	cilioscope				
Channe Channe	01	L≥1MIΩ				

1) Standard illuminant A (DIN 5033/IEC 306-1)

*) AQL = 0.65 %

¹⁵

Silicon PN Planar Photovoltaic Cell/Photodiode

Application: Sensor for light measuring purposes

Features:

- For photodiode and photovoltaic cell operation
- Hermetically sealed case
- Flat window
- Suitable for visible and near infrared radiation
- High blue sensitivity

- Log. correlation between open circuit voltage and illuminance from 10⁻² till 10⁵ lx in photovoltaic cell operation
- Linear correlation between short circuit current and illuminance from 10⁻² till 10⁵ lx in photovoltaic cell operation
- No light memory effect
- No pre-exposure ratio

Dimensions in mm

Radiant sensitive area $A = 7.5 \text{ mm}^2$

Angle of half sensitivity $\alpha = 100^{\circ}$

Negative terminal/cathode connected with case

≈ JEDEC TO 56 Weight max. 1.0 g

Absolute maximum ratings

Reverse voltage

Ambient temperature range

V_{R}	10	V
T_{amb}	-25+100	°C

Thermal resistance
Junction ambient

	Min.	Тур.	Max.	
R_{thJA}			250	K/W

Optical and electrical characteristics

 $T_{amb} = 25^{\circ}C$

Photovoltaic cell operation

Open circuit voltage $E_A = 1 \text{ klx}^1$)	V _o *)	330	430	mV
Temperature coefficient of V_o $E_A = 1 \text{ klx}^1$)	<i>TK</i> _{Vo}		-2	mV/K
Short circuit current $E_A = 1 \text{ klx}^1$), $R_L = 100 \Omega$	/ _k *)	20	33	μΑ
Sensitivity, short circuit $E_{A} = 10^{-2} \dots 10^{5} \text{lx}^{1})$	s_{k}		33	nA/lx
Temperature coefficient of I_k $E_A = 1 \text{ klx}^1$), $R_L = 100 \Omega$	TK_{lk}		0.1	%/K
Junction capacitance $V_0 = 0$ $f = 1$ MHz. $E = 0$	C _i		1.2	nF

Switching characteristics

$$I_{\rm ph}=100~\mu{\rm A},\,R_{\rm L}=1~{\rm k}\Omega,\,{
m see}$$
 test circuit
$$t_{\rm r} \qquad 3.5 \qquad \mu{
m s}$$
 Fall time $t_{\rm f} \qquad 3.5 \qquad \mu{
m s}$

Test circuit

^{*)} AQL = 0.65 % 1) Standard illuminant A (DIN 5033/IEC 306-1)

Photodiode operation		Min.	Тур.	Max.	
Breakdown voltage $I_{ro} = 100 \mu\text{A}, E = 0$	$V_{(BR)}$	10			V
Reverse continuous dark current $V_R = 5 \text{ V}, E = 0$	I _{ro} *)		2	30	nA
Light reverse current $V_R = 5 \text{ V}, E_A = 1 \text{ klx}^1$)	I _{ra}	20	33		μΑ
Sensitivity $V_{\text{R}} = 5 \text{ V}, E_{\text{A}} = 10^{-2}10^{5} \text{ kx}^{1}$	s		33		nA/lx
Junction capacitance $V_{R} = 5 \text{ V}, f = 1 \text{ MHz}$	C_{i}		400		рF
Photovoltaic cell and photodiode operation					
Peak wavelength sensitivity	λ_{p}		700		nm
Range of spectral bandwidth (50 %)	$\lambda_{0.5}$	4	0095	0	nm

^{*)} AQL = 0.65 % 1) Standard illuminant A (DIN 5033/IEC 306-1)

25

Silicon PN Planar Photovoltaic Cell/Photodiode

Application: Sensor in exposure and colour measuring purposes

Features:

- Hermetically sealed case
- Flat window with built-in colour correction filter (visible radiation)
- Log. correlation between open circuit voltage and illuminance from 10⁻² till 10⁵ lx in photovoltaic cell operation
- For photodiode and photovoltaic cell operation Linear correlation between short circuit current and illuminance from 10-2 till 105 lx in photovoltaic cell operation
 - Actinity 0.85...1.15
 - No light memory effect
 - No pre-exposure ratio
 - Also available as "Qualified semiconductor device" BPW 21 M according to VG 95288

Dimensions in mm

Radiant sensitive area $A = 7.5 \text{ mm}^2$

Angle of half sensitivity $\alpha = 100^{\circ}$

Negative terminal/cathode connected with case

≈ JEDEC TO 56 Weight max. 1.0 g

Absolute maximum ratings

Reverse voltage		V_{R}	10	V
Ambient temperature range	BPW 21 BPW 21 M	T _{amb} T _{amb}	-25+100 -65+100	°C °C
Storage temperature range	BPW 21 M	$T_{\rm stg}$	-65 +100	°C

 R_{thJA}

Thermal resistance

Junction ambient

Min.	Тур.	Max.	
		250	K/

K/W

Optical and electrical characteristics

 $T_{\text{amb}} = 25^{\circ}\text{C}$

Photovoltaic cell operation

Open circuit voltage $E_A = 1 \text{ klx}^1$)		V_{o}^{\star})	280	380		mV
Temperature coefficient of V_0 $E_A = 1 \text{ klx}^1$)		ΤΚ _{νο}		-2		mV/K
Short circuit current $E_A = 1 \text{ kix}^1$), $R_L = 100 \Omega$	BPW 21 BPW 21 M	/ _k *) / _k *)	4.5 5.0	7.0 7.0	10	μ Α μ Α
Sensitivity, short circuit $E_A = 10^{-2} 10^5 lx^1)$	BPW 21 BPW 21 M	S _k S _k		7.0 7.0		nA/lx nA/lx
Temperature coefficient of I_k $E_A = 1 \text{ kIx}^1$), $R_L = 100 \Omega$		TK _{lk}		-0.05		%/K
Junction capacitance $V_R = 0, f = 1 \text{ MHz}, E = 0$		C_{i}		1.2		nF

Switching characteristics

t_r	3.5	μ S
t_{f}	3.5	μ s
	t _r	4

Test circuit

^{*)} AQL = 0.65 % 1) Standard illuminant A (DIN 5033/IEC 306-1)

Photodiode operation		Min.	Тур.	Max.	
Breakdown voltage $I_{ro} = 100 \mu\text{A}, E = 0$	V _(BR) *)	10	,,,		V
Reverse continuous dark current $V_R = 5 \text{ V}, E = 0$	/ _{ro} *)		2	30	nA
Light reverse current $V_R = 5 \text{ V}, E_A = 1 \text{ klx}^1$	/ _{ra} *)	4.5	7.0		иА
Sensitivity $V_{R} = 5 \text{ V}, E_{A} = 10^{-2}10^{5} \text{ kx}^{1}$	s		7.0		,
Junction capacitance $V_R = 5 \text{ V}, f = 1 \text{ MHz}$	C _i		400		nA/lx
Photovoltaic cell and photodiode operation	O _I		400		pF
Peak wavelength sensitivity	λ_{p}		565		nm
Range of spectral bandwidth (50 %)	λ _{0.5}	4	20 675	;	nm

^{*)} AQL = 0.65 % 1) Standard illuminant A (DIN 5033/IEC 306-1)

31

Silicon Photo PIN Diode

Application: Ultra high-speed photo-detector

Features:

- Fast response times at low operating voltages
- High photo sensitivity
- For photodiode and photovoltaic cell operation
- Hermetically sealed case
- With lens, $\alpha = 40^{\circ}$
- Suitable for visible and near infrared radiation
- Suitable to couple with glass fiber

Preliminary specifications

Dimensions in mm

Radiant sensitive area $A=0.64~\mathrm{mm^2}$ Angle of half sensitivity $\alpha=40^\circ$ Negative terminal/cathode connected with case

> ≈ 18 A 2 DIN 41 876 ≈ JEDEC TO 18 Weight max. 0.5 g

Absolute maximum ratings

Reverse voltage	V_{R}	50	V
Power dissipation			•
$T_{\rm amb} \le 25^{\circ} { m C}$	P_{V}	180	mW
Junction temperature	\mathcal{T}_{j}	100	°C
Ambient temperature range	\mathcal{T}_{amb}	-25+100	°C

Thermal resistance		Min.	Тур.	Max.	
Junction ambient	R_{thJA}			400	K/W

Optical and electrical characteristics T _{amb} = 25°C		Min.	Тур.	Max.	
Photovoltaic cell operation $(V_R = 0)$					
Open circuit voltage $E_A = 1 \text{ k/x}^1$)	V _o		380		mV
Temperature coefficient of V_o $E_A = 1 \text{ klx}^1$)	TK _{√o}		-2		mV/K
Short circuit current $E_{\rm A}=1{\rm klx^1}),R_{\rm L}=100\Omega$ $E_{\rm e}=1{\rm mW/cm^2},\lambda_{\rm p}=950{\rm nm},R_{\rm L}=100\Omega$	I _k I _k		70 40		μ Α μ Α
Temperature coefficient of $I_{\rm k}$ $E_{\rm A}=1~{\rm klx^1}),~R_{\rm L}=100~\Omega$	TK _{lk}		0.1		%/K
Junction capacitance $V_{\rm R}=0, f=1$ MHz, $E=0$	C _j		10		pF
Photodiode operation					
Breakdown voltage $I_{ro} = 100 \mu\text{A}, E = 0$	V _(BR) *)	50	80		V
Reverse continuous dark current $V_R = 20 \text{ V}, E = 0$	/ _{ro} *)		1	5	nA
Light reverse current $\begin{split} V_{\rm R} &= 20 \text{ V, } E_{\rm A} = 1 \text{ kix}^1\text{), } R_{\rm L} = 100 \ \Omega \\ V_{\rm R} &= 20 \text{ V, } E_{\rm e} = 1 \text{ mW/cm}^2\text{, } \lambda_{\rm p} = 950 \text{ nm, } R_{\rm L} = 100 \ \Omega \end{split}$	I _{ra} I _{ra} *)	25	75 42		μ Α μ Α
Spectral sensitivity $V_{\rm R} = 20 \text{ V}, \lambda = 900 \text{ nm}$	$s(\lambda)$		0.5		A/W
Junction capacitance $f = 1 \text{ MHz}, V_{\text{R}} = 5 \text{ V}$ $V_{\text{R}} = 20 \text{ V}$	C _j C _j		6 4		pF pF
Switching characteristics					
$V_{\rm R}=$ 20 V, $R_{\rm L}=$ 50 Ω , see test circuit					
Rise time	t _r		7		ns
Fall time	t_{f}		7		ns
Photovoltaic cell and photodiode operation					
Peak wavelength sensitivity	λ_{p}		900		nm
Range of spectral bandwidth (50 %)	λ _{0.5}		550100	0	nm

^{*)} AQL = 0.65% 1) Standard illuminant A (DIN 5033/IEC 306-1)

Test circuit

Silicon Avalanche Photodiode

Application: Wide band detector for demodulation of fast signals, e.g. of lasers and GaAs-LED's. Detector for optical communication, e.g. for optical-fiber transmission systems.

Features:

- High sensitive, low-noise photo-detector for demodulation of radiation
- Photocurrent gain higher than 200

 Gain bandwidth product higher than 200 GHz

Preliminary specifications

Dimensions in mm

Diameter of the radiant sensitive area $\emptyset = 0.2 \text{ mm}$

Angle of half intensity $\,\alpha=70^{\,\circ}\,$

≈ 18 A 2 DIN 41876 ≈ JEDEC TO 18 Weight max. 0.5 g

Absolute maximum ratings

Power dissipation			
$T_{amb} = 25^{\circ}C$	P_{V}	100	mW
Junction temperature	$\mathcal{T}_{\mathfrak{f}}$	125	°C
Ambient temperature range	\mathcal{T}_{amb}	−65 +125	°C

ntical and electrical characteristics		Min.	Тур.	Max.	
T _{amb} = 25°C Range of spectral bandwidth (50%)	λ _{0.5}		45095	50	nm
Reverse dark current M^1) = 100, $E = 0$	I _{ro}		1	5	nA
Breakdown voltage $I_R = 10 \mu A, E = 0$	$V_{(BR)}$	140	170	200	V
Temperature coefficient of $V_{(BR)}$	TK_{VBR}		0.35		V/K
Efficiency $\lambda = 910 \text{ nm}$	η	20			%
Gain bandwidth product	G_B^2)	200			GHz
Capacitance $V_{\rm R} = 100 \text{ V}, f = 1 \text{ MHz}$	C_{D}		1	1.2	pF
Series resistance f = 1 MHz	$r_{ m s}$			50	Ω

¹) The voltage dependent photocurrent gain M is defined as the ratio of photocurrent I_{ph} at applied reverse voltage V_R to the photocurrent at a bias of 10 V.

 $^{^{2}}$) Gain bandwidth product is defined as the product of M times the frequency of measurement, when the diode is biased for maximum obtainable gain.

Silicon Photo PIN Diode

Application: High speed photo detector

Features:

- Fast response times
- Small junction capacitance
- High photo sensitivity
- Large radiant sensitive area
 A = 7.5 mm²

- Angle of half sensitivity $\alpha = 120^{\circ}$
- Suitable for visible and near infrared radiation

Preliminary specifications

Dimensions in mm

Radiant sensitive area $A = 7.5 \text{ mm}^2$

Angle of half sensitivity $\alpha = 120^{\circ}$

Plastic case Weight max 0.4 g

Absolute maximum ratings

Reverse voltage	V_{R}	32	V
Power dissipation		02	V
$T_{amb} \leq 25^{\circ}C$	P_{V}	150	mW
Junction temperature	$ au_{i}$	80	°C
Storage temperature range	\mathcal{T}_{stq}	-30+80	°C
Soldering temperature, maximal	ŭ		J
<i>t</i> ≤ 3 s	$T_{\rm sd}^{-1}$)	245	°C

¹) Distance from the touching border \geq 2 mm

S 1.2. 122/0781 E

Thermal resistance Junction ambient	R_{thJA}	Min.	Тур.	Max. 350	K/W
Optical and electrical characteristics $T_{amb} = 25 ^{\circ} ^{\circ} ^{\circ} ^{\circ}$					
Photovoltaic cell operation					
Open circuit voltage $E_A = 1 \text{ kIx}^1$)	V _o		400		mV
Temperature coefficient von V_o $E_A = 1 \text{ klx}^1$)	ΤΚ _{νο}		-2.6		mV/K
Short circuit current $E_{\rm e}=1~{\rm mW/cm^2},~\lambda_{\rm p}=950~{\rm nm},~R_{\rm L}=100~\Omega$ $E_{\rm A}=1~{\rm klx^1}),~R_{\rm L}=100~\Omega$	I _k I _k		47 80		μ Α μ Α
Temperature coefficient of I_k $E_A = 1 \text{ kIx}^1$), $R_L = 100 \Omega$	TK _{lk}		0.18		%/ K
Junction capacitance $V_{\rm R}=0, f=1{\rm MHz}, E=0$	C _j		75		pF
Photodiode operation					
Breakdown voltage $I_{\rm R}=100~\mu{\rm A}, E=0$	V _(BR) *)	32			V
Reverse dark current $V_{\rm R} = 10 \text{ V}, E = 0$	/ _{ro} *)		2	30	n/
Light reverse current $V_{\rm R}=5$ V, $E_{\rm A}=1$ klx ¹) $V_{\rm R}=5$ V, $E_{\rm e}=1$ mW/cm ² , $\lambda_{\rm p}=950$ nm	I _{ra} I _{ra} *)	30	85 50		μ <i>Α</i> μ <i>Α</i>
Junction capacitance $V_R = 3 \text{ V}, f = 1 \text{ MHz}, E = 0$	C_{j}		25	40	pF
Noise equivalent power (NEP)	P_{n}		10 ⁻¹⁴		WHZ ^{-1/}
Switching characteristics $V_{\rm R} = 10 \text{ V}, R_{\rm L} = 1 \text{ k}\Omega$					
Turn-on time	t_{on}		50		n
Turn-off time	$t_{ m off}$		50		n
Photovoltaic cell and photodiode operation	on				
Peak wavelength sensitivity	$\lambda_{\mathbf{p}}$		900		nr
Range of spectral bandwidth (50%)	λ _{0.5}		50010	00	nr

⁴²

100

200

0.01

300 mV

Silicon Planar PN Photovoltaic Cell

Application: Sensor for light measuring purposes

Features:

- Large radiant sensitive area
- High blue sensitivity up to the UV-range
- Suitable for visible and near infrared radiation
- No light memory effect
- Low temperature coefficient
- High stability and high reliability
- No change by irradiation even in UV-range

Preliminary specifications

Dimensions in mm

Radiant sensitive area $A = 94 \text{ mm}^2$

Angle of half sensitivity $\alpha = 120^{\circ}$

Without case Weight max. 0.2 g

Absolute maximum ratings

Reverse voltage	V_{R}	1	V
Ambient temperature range	$T_{ m amb}$	~40+100	°C
Storage temperature range	$T_{ m stg}$	-40+100	°C

Optical and electrical characteristics $T_{amb} = 25^{\circ} C$		Min.	Тур.	Max.	
Open circuit voltage $E_A = 1 \text{ klx}^1$)	V _o *)	300	380		mV
Temperature coefficient of V _o	TK_{Vo}		-2		mV/K
Short circuit current $E_{A}=1 \text{ klx}^{1}), R_{L}=100 \ \Omega$ $E_{C}=1 \text{ klx}^{2}), R_{L}=100 \ \Omega$ $E_{A}=1 \text{ klx}^{1})^{3}), R_{L}=10 \text{ k}\Omega, \lambda_{p}=425 \text{ nm}$	I _k I _k *) I _k	240 200 0.8	300 220 1.6		μΑ μΑ μΑ
Sensitivity, short circuit $E_A = 1 \text{ klx}^1$)	Sk	240	300		nA/lx
Temperature coefficient of $I_{\mathbf{k}}$	TK_{lk}		0.1		%/K
Peak wavelength sensitivity	λ_{p}		750		nm
Range of spectral bandwidth (50 %)	$\lambda_{0.5}$		450 9	50	nm
Reverse dark current $V_R = 50 \text{ mV}, E = 0$ $V_R = 1 \text{ V}, E = 0$	I _{ro} I _{ro}		10 250	100	nA nA
Internal resistance $V_R = 50 \text{ mV}, E = 0$	r _i	0.5	5		$M\Omega$
Junction capacitance $V_R = 1 \text{ V}, f = 100 \text{ kHz}, E = 0$	C _j		10		nF

^{*)} AQL = 0.65 % 1) Standard illuminant A (DIN 5033/IEC 306-1, $T_f = 2855.6 \text{ K}$)

 $^{^{2}}$) Standard illuminant C $(T_{\rm f} = 4700 \text{ K})$

³) with blue filter combination: Schott BG 32 (2 mm) + Kodak Wratten No. 47 B

Silicon NPN Epitaxial Planar Phototransistor

Application: Detector in electronic control and drive circuits

Features:

- Plastic case withe clear
- Suitable for visible and near infrared radiation
- High sensitivity
- Wide angle of half sensitivity

- Flat window
- Irradiation direction vertical to mounting direction
- Compatible with CQX 18
- Selected in groups

Preliminary specifications

Dimensions in mm

Angle of half sensitivity $\alpha = 130^{\circ}$

Plastic case ≈ 10 B 3 DIN 41 868 ≈ JEDEC TO 92 Weight max. 0.4 g

Collector-emitter voltage	V_{CEO}	32	17
Emitter-collector voltage	V _{ECO}	5	V
Collector current	I _C	_	V
Peak collector current	•	100	mA
$\frac{t_{\rm p}}{T}=0.5,t_{\rm p}\le 10\;{\rm ms}$	/ _{CM}	200	mA
Total power dissipation $T_{amb} \le 25 ^{\circ} \text{C}$	$P_{ m tot}$	150	
Junction temperature	T _i	85	mW
Storage temperature range	T _{stq}	67	°C
Soldering temperature, maximal	'stg	−25+85	°C
t≤3s	$T_{\rm sd}^{-1}$)	245	°C

¹⁾ Distance from the touching border ≥ 2 mm

S 1.2. 124/0781 E

	Min.	Тур.	Max.	K/W
R_{thJA}			400	K/W
I _{CEO} *)		10	100	nA
I _{ca} I _{ca}		1 2		mA mA
/ _{ca} *) / _{ca} *)	0.15 0.4	0.3 0.6	0.5	mA mA
$\lambda_{ m p}$		780		nm
$\lambda_{0.5}$		520 9	50	nm
V _{(BR) CEO} *)	32			٧
$V_{CEsat}^{\star})$			0.3	٧
f_{g}		170		kHz
$t_{\sf d}$		1.8		μS
$t_{\rm r}$		1.6		μs
$t_{\sf on}$		3.4		μs
ts		0.3		μs
t_{f}		1.7		μs
$t_{\rm off}$		2.0		μs
	$I_{ m ca}$ $I_{ m ca}$ $I_{ m ca}^{*}$) $I_{ m ca}^{*}$) $\lambda_{ m p}$ $\lambda_{0.5}$ $V_{ m (BR)CEO}^{*}$) $V_{ m CEsat}^{*}$) $f_{ m g}$ $t_{ m d}$ $t_{ m r}$ $t_{ m on}$ $t_{ m s}$	$R_{\rm thJA}$ $I_{\rm CEO}^*)$ $I_{\rm ca}$ $I_{\rm ca}^*)$ $I_{\rm ca}^*)$ $I_{\rm ca}^*$	R_{thJA} I_{CEO}^{\star}) 10 I_{ca} 1 I_{ca} 2 I_{ca}^{\star} 0.15 0.3 I_{ca}^{\star} 0.4 0.6 λ_{p} 780 $\lambda_{0.5}$ 5209 $V_{(\text{BR})\text{CEO}}^{\star}$) 32 V_{CEsat}^{\star}) t_{d} 1.8 t_{r} 1.6 t_{on} 3.4 t_{s} 0.3 t_{l} 1.7	I_{CEO}^*) 10 100 I_{Ca} 1 1 I_{Ca} 2 1 I_{Ca}^*) 0.15 0.3 0.5 I_{Ca}^*) 0.4 0.6 0.5 λ_p 780 520950 $V_{(BR)CEO}^*$) 32 32 V_{CEsat}^*) 0.3 0.3 f_g 170 170 t_d 1.8 1.6 t_{on} 3.4 1.5 t_s 0.3 1.7 t_s 0.3 1.7 t_s 0.3 1.7 t_s 0.3 0.3 t_s 0.3 0.3 t_s 0.3 0.3

^{*)} AQL = 0.65 % 1) Standard illuminant A (DIN 5033/IEC 306-1)

Test circuit

Silicon NPN Epitaxial Planar Phototransistor

Application: Detector in electronic control and drive circuits

Features:

- Plastic case Ø 5 mm
- Suitable for visible and near infrared radiation
- High sensitivity
- Wide angle of half sensitivity
- Axial terminals

Preliminary specifications

Dimensions in mm

Angle of half sensitivity $\alpha = 40^{\circ}$

Special case Clear plastic Weight max. 0.4 g

Accessories

Mounting clip

Best. Nr. 562136

Retainer ring Best. Nr. 562135

Collector-emitter voltage	$V_{\sf CEO}$	32	٧
Emitter-collector voltage	$V_{\sf ECO}$	5	V
Collector current	/c	100	mA
Peak collector current			
$\frac{t_{\rm p}}{T}=0.5,t_{\rm p}\leq 10\;{\rm ms}$	I _{CM}	200	mA
Total power dissipation $T_{amb} \le 45^{\circ} C$	P_{tot}	100	mW
Junction temperature	T_{j}	100	°C
Storage temperature range	\mathcal{T}_{stg}	-25+100	°C
Soldering temperature, maximal $t \le 3 \text{ s}$	$T_{\rm ed}^{-1}$)	245	°C

 $^{^{1}}$) Distance from the touching border \geq 1.5 mm with intermediate PC-board

^{*)} AQL = 0.65 % 1) Standard illuminant A (DIN 5033/IEC 306-1)

μs μs

μs μs μs

Switching characteristics $V_{\rm S}=5$ V, $I_{\rm C}=5$ mA, $R_{\rm L}=100~\Omega$, see test cir.	l cuit	Min.	Тур.	Max.
Delay time	t_{d}		1.8	
Rise time	t _r			
Turn-on time	t _{on}		1.6	
Storage time	t _s		3.4	
Fall time	t _f		0.3	
Turn-off time	t _{off}		1.7	
$R_G = 50 \Omega$ $I_C = 5 \text{ mA}$; $I_C = 5 \text{ mA}$; $I_C = 5 \text{ mA}$; $I_C = 5 \text{ mA}$; $I_C = 5 \text{ mA}$; $I_C = 5 \text{ mA}$; $I_C = 5 \text{ mA}$; $I_C = 5 \text{ mA}$; $I_C = 5 \text{ mA}$; $I_C = 5 \text{ mA}$; $I_C = 5 \text{ mA}$; $I_C = 5 \text{ mA}$; $I_C = 5 \text{ mA}$; $I_C = 5 \text{ mA}$;	adjusted through distance "#" $ Cacilloscope \\ R_{L} \ge 1 \ M\Omega \\ C_{L} \le 20 \ pF $		2.0	

Test circuit

59

Silicon Photo PIN Diode

Application: High speed photo detector

Features:

- Fast response times
- Small junction capacitance
- High photo sensitivity
- Large radiant sensitive area
 A = 7.5 mm²

- Angle of half sensitivity $\alpha = 130^{\circ}$
- Suitable for near infrared radiation
- Plastic case with IR filter

Preliminary specifications

Dimensions in mm

Radiant sensitive area $A = 7.5 \text{ mm}^2$

Angle of half sensitivity $\alpha = 130^{\circ}$

Plastic case Weight max 0.4 g

Reverse voltage	V_{R}	32	V
Power dissipation			
7 _{amb} ≤ 25°C	P_{V}	150	mW
Junction temperature	T_{j}	80	°C
Storage temperature range	\mathcal{T}_{stg}	-30+80	°C
Soldering temperature, maximal			
<i>t</i> ≤ 3 s	T_{sd}^{-1})	245	°C

¹) Distance from the touching border \geq 1.5 mm with intermediate PC-board S 1.2. 126/0781 E

				_	
Thermal resistance	D	Min.	Тур.	Max. 350	K/W
Junction ambient	R_{thJA}			330	10 **
Optical and electrical characteristics $T_{\rm amb} = 25^{\circ}{\rm C}$					
Photovoltaic cell operation					
Open circuit voltage $E_{\rm e}=1~{\rm mW/cm^2}, \lambda_{\rm p}=950~{\rm nm}$	V _o		350		mV
Short circuit current $E_{\rm e} =$ 1 mW/cm ² , $\lambda_{\rm p} =$ 950 nm, $R_{\rm L} =$ 100 Ω	I _k		38		μΑ
Junction capacitance $V_R = 0, f = 1 \text{ MHz}, E = 0$	C _j		75		pF
Photodiode operation					
Breakdown voltage $I_{\rm R}=100~\mu{\rm A}, E=0$	$V_{(BR)}^{\star})$	32			٧
Reverse dark current $V_R = 10 \text{ V}, E = 0$	/ _{ro} *)		2	30	nA
Light reverse current $V_{\rm R} = 5$ V, $E_{\rm e} = 1$ mW/cm ² , $\lambda_{\rm p} = 950$ nm	/ _{ra} *)	25	40		μΑ
Junction capacitance $V_R = 3 \text{ V}, f = 1 \text{ MHz}, E = 0$	C _j		25	40	pF
Noise equivalent power (NEP)	P_{n}		10 ⁻¹⁴		WHZ ^{-1/2}
Switching characteristics $V_R = 10 \text{ V}, R_L = 1 \text{ k}\Omega$					
Turn-on time	$t_{\sf on}$		50		ns
Turn-off time	t _{off}		50		ns
Photovoltaic cell and photodiode operation					
Peak wavelength sensitivity	λ_{p}		925		nm
Range of spectral bandwidth (50 %)	$\lambda_{0.5}$		73010	40	nm

^{*)} AQL = 0.65 % (DIN 5033/IEC 306-1)

64

Silicon NPN Epitaxial Planar Phototransistor

Application: Detector in electronic control and drive circuits

Features:

- Plastic case Ø 3 mm
- Suitable for visible and near infrared radiation
- High sensitivity
- Wide angle of half sensitivity
- Axial terminals

Preliminary specifications

Dimensions in mm

Angle of half sensitivity $\alpha = 180^{\circ}$

Special case Clear plastic Weight max. 0.35 g

Collector-emitter voltage	$V_{\sf CEO}$	32	٧
Emitter-collector voltage	$V_{\sf ECO}$	5	V
Collector current	I _C	50	mA
Peak collector current			
$\frac{t_{\rm p}}{7}=0.5,t_{\rm p}\leq 10{\rm ms}$	I _{CM}	100	mA
Total power dissipation			
$T_{amb} \leq 55^{\circ}C$	P_{tot}	100	mW
Junction temperature	$ au_{j}$	100	°C
Storage temperature range	$T_{ m stg}$	-25+100	°C
Soldering temperature, maximal			
<i>t</i> ≤ 3 s	T1)	245	°C

^{&#}x27;) Distance from the touching border \geq 1.5 mm with intermediate PC-board S 1.2. 127/0781 E

Thermal resistance Junction ambient	R _{thJA}	Min.	Тур.	Max. 450	K/W
Optical and electrical characteristics $T_{\rm amb} = 25^{\circ}{\rm C}$					
Collector dark current $V_{CE} = 20 \text{ V}, E = 0$	I _{CEO} *)		10	200	nA
Collector light current $V_{CE} = 5 \text{ V}, E_A = 1 \text{ klx}^1)$ $V_{CE} = 5 \text{ V}, E_e = 1 \text{ mW/cm}^2, \lambda_p = 950 \text{ nm}$	/ _{ca} _{ca} *)	0.5	3 1.0		mA mA
Peak wavelength sensitivity	λ_{p}		830		nm
Range of spectral bandwidth (50 %)	$\lambda_{0.5}$		560 98	30	nm
Collector-emitter breakdown voltage $I_C = 1 \text{ mA}$	V _{(BR) CEO} *)	32			v
Collector-emitter saturation voltage $I_C = 0.1 \text{mA}, E_e = 1 \text{mW/cm}^2, \lambda_p = 950 \text{nm}$	V _{CEsat} *)			0.3	٧

^{*)} AQL = 0.65% 1) Standard illuminant A (DIN 5033/IEC 306-1)

Silicon Photo PIN Diode

Application: High speed photo detector

Features:

- Plastic case Ø 5 mm white clear
- Fast response times
- Small junction capacitance

- High photo sensitivity
- Angle of half sensitivity $\alpha = 50^{\circ}$
- Suitable for near infrared radiation

Preliminary specifications

Dimensions in mm

Radiant sensitive area $A = 0.25 \text{ mm}^2$

Angle of half sensitivity $\alpha = 50^{\circ}$

Plastic case Weight max 0.4 g

Accessories

Mounting clip Best.-Nr. 562136

Retainer ring Best.-Nr. 562135

Reverse voltage	ν_{R}	32	V
Power dissipation			
$T_{\rm amb} \le 25^{\circ}{\rm C}$	Fv	150	mW
Junction temperature	7 ,	100	°C
Storage temperature range	7 _{stg}	-25+100	°C
Soldering temperature, maximal			
t≤3s	$T_{\rm sd}^{-1}$)	245	°C

¹) Distance from the touching border ≥ 1.5 mm with intermediate PC-board

Therm	ıai	resi	ista	nce

Junction ambient

Min.	Тур.	Max

 R_{thJA}

350

K/W

Optical and electrical characteristics

$$T_{amb} = 25^{\circ}C$$

Photovoltaic cell operation

Open circuit voltage $E_A = 1 \text{ klx}^1$)	V _o	320	mV
Short circuit current	,	6	μΑ
$E_{\rm e} = 1 \mathrm{mW/cm^2}$, $\lambda_{\rm p} = 950 \mathrm{nm}$, $R_{\rm L} = 1 \mathrm{k}\Omega$	/ _k		
$E_{A} = 1 \text{ klx}^{1}$), $R_{L} = 1 \text{ k}\Omega$	/ _k	12	μ A
Sensitivity, short circuit ¹)	Sk	12	nA/lx
Junction capacitance $V_0 = 0, f = 1 \text{ MHz } F = 0$	C i	5	pF

¹⁾ Standard illuminant A (DIN 5033/IEC 306-1)

Photodiode operation		Min.	Тур.	Max.	
Reverse dark current $V_R = 10 \text{ V}, E = 0$	I. _o *)		1	10	nA
Light reverse current $V_R = 5 \text{ V}, E_A = 1 \text{ kix}^1$) $E_e = 1 \text{ mW/cm}^2, \lambda_p = 950 \text{ nm}$	J. _а I. _а *)	4	15 8		μ Α μ Α
Sensitivity $V_R = 5 \text{ V}, E_A = 1 \text{ klx}^1$)	S :		15		nA/lx
Breakdown voltage $I_{\rm R}=100\mu{\rm A},E=0$	V _(BR) *)	32			V
Junction capacitance $f = MHz$, $E = 0$, $V_R = 5 V$ $V_R = 10 V$	C _i C _i		2.5 2		pF pF
Switching characteristics					
$V_{R}=$ 10 V, $R_{L}=$ 50 Ω					
Rise time	t.		4		ns
Fall time	t _i		4		ns
Photovoltaic cell and photodiode operation					
Peak wavelength sensitivity	<i>).</i> p		900		nm
Range of spectral bandwidth (50 %)	7.0.5	50	00100)	nm

Monolithic Silicon NPN Epitaxial Photo Darlington Transistor

Applications: Direct driving of relays, magnetic valves, small motors etc.

Features:

- Hermetically sealed case
- Suitable for visible and near infrared radiation
- Collector current 0.5 A
- High sensitivity
- Base terminal is available

Preliminary specifications

Dimensions in mm

Collector connected with case

Angle of half sensitivity $\alpha = 25^{\circ}$

≈ 18 A 3 DIN 41876 ~ JEDEC TO 52 Weight max. 0.5 g

Collector-emitter voltage	$V_{\sf CEO}$	32	V
Emitter-base voltage	V_{EBO}	10	٧
Collector current	I _C	0.5	Α
Peak collector current			
$\frac{t_p}{T} = 0.05, t_p \le 10 \text{ ms}$	I _{CM}	1	Α
Total power dissipation			
$T_{amb} \leq 25^{\circ}C$	P_{tot}	0.33	w
$T_{\text{case}} \le 45^{\circ}\text{C}$	P_{tot}	1.6	W
Ambient temperature range	\mathcal{T}_{amb}	-55+125	°C
Case temperature	\mathcal{T}_{case}	125	°C

Thermai resistances		Min.	Тур.	Max.	
Junction ambient	R_{thJA}			300	K/W
Junction case	R_{thJC}			50	K/W
Optical and electrical characteristics $T_{\rm amb} = 25^{\circ}{\rm C}$					
Collector dark current $V_{CE} = 20 \text{ V}, E = 0$	I _{CEO} *)		10	200	nA
Collector light current $V_{CE} = 5 \text{ V}, E_A = 100 \text{ lx}^1$)	/ _{ca} *)	3	30		mA
Sensitivity $V_{CE} = 5 \text{ V}, E_{A} = 100 \text{ lx}^{1}$	s	30	300		μ Α/l x
Peak wavelength sensitivity	λ_{p}		800		nm
Range of spectral bandwidth (50 %)	$\lambda_{0.5}$		600 90	00	nm
Collector-emitter breakdown voltage $I_{\rm C}=1$ mA	V _{(BR) CEO} *)	32			٧
Collector-emitter saturation voltage $I_C = 0.1 \text{ mA}, E_A = 1 \text{ klx}^1$	V _{CEsat} *)		0.75	1	٧

^{*)} AQL = 0.65 % 1) Standard illuminant A (DIN 5033/IEC 306-1)

μs μs μs μs μs

Switching	characteristics

$v_S = 5 \text{ v, } i_C = 10 \text{ mA, } H_L = 100 \Omega, \text{ see test circu}$	it		
Delay time	$t_{\sf d}$	10	
Rise time	t _r	80	
Turn-on time	t_{on}	90	
Storage time	t_{s}	5	
Fall time	t_{f}	60	
Turn-off time **	$t_{ m off}$	65	

Min.

Тур.

Max.

BPX 99

Silicon Photo PIN Diode

Application: Ultra high-speed photo-detector

Features:

- Fast response times
- Small junction capacitance
- High photo sensitivity
- For photodiode and photovoltaic cell operation
- Hermetically sealed case
- Wide angle of half sensitivity
- Suitable for visible and near infrared radiation
- Suitable to couple with glass fiber

Preliminary specifications

Dimensions in mm

Radiant sensitive area $A=7.5~\mathrm{mm^2}$ Angle of half sensitivity $a=100^\circ$ Negative terminal/cathode connected with case

> ≈ JEDEC TO 56 Weight max. 1.0 g

Reverse voltage	V_{R}	50	V
Power dissipation			
T _{amb} ≦ 25°C	P_{V}	300	mW
Junction temperature	$T_{\rm j}$	100	°C
Ambient temperature range	$T_{ m amb}$	-25+100	°C

S 153 P

Thermal resistance		Min.	Тур.	Max.	
Junction ambient	R_{thJA}			250	K/W
Optical and electrical characteristics $T_{amb} = 25 ^{\circ} \text{C}$					
Photovoltaic cell operation (V _F	$_{\rm R}=0$)				
Open circuit voltage $E_A = 1 \text{ kix}^1$)	V _o *)		350		mV
Temperature coefficient of V_0 $E_A = 1 \text{ kix}^1$)	TK _{Vo}		-2.6		mV/K
Short circuit current $E_A = 1 \text{ klx}^1$, $R_L = 100 \Omega$	$l_{\mathbf{k}}$		70		μΑ
Sensitivity, short circuit	s_{k}		70		nA/lx
Temperature coefficient of I_k $E_A = 1 \text{ kix}^1$), $R_L = 100 \Omega$	TK _{ik}		0.18		%/K
Junction capacitance $V_R = 0$, $f = 1$ MHz, $E = 0$	C_{j}		75		pF
Photodiode operation					
Breakdown voltage $I_{ro} = 100 \mu\text{A}, E = 0$	<i>V</i> _(BR) *)	50			V
Reverse continuous dark current $V_{\rm R} = 10 \text{ V}, E = 0$	l _{ro} *)		2	30	nA
Light reverse current $V_R = 5 \text{ V}, E_A = 1 \text{ klx}^1$)	I _{ra} *)	50	70		μΑ
Sensitivity $V_{\rm R} = 5 \text{ V}$	s		70		nA/lx
Spectral sensitivity $V_{R} = 5 \text{ V}, \lambda = 900 \text{ nm}$	$s(\lambda)$		0.6		A/W
Junction capacitance $V_{\rm H}=3$ V, f = 1 MHz, $E=0$	C_{j}		25	40	рF
Noise equivalent power (NEP)	P_{n}		10 ⁻¹⁴		WHz ^{-1/2}

 $^{^{1})}$ Standard illuminant A $\,$ (DIN 5033/IEC 306-1) $\,$ $^{*})$ AQL = 0.65 %

nm

nm

Switching characteristic	ıcs
--------------------------	-----

Range of spectral bandwidth (50%)

$V_{\rm R}$ = 10 V, $R_{\rm L}$ = 1 k Ω			
Turn-on time	t _{on}	50	ns
Turn-off time	t_{off}	50	ns
Photovoltaic cell and photodiode operation			
Peak wavelength sensitivity	λ_{p}	900	nm

 $\hat{\lambda}_{p}$

 $\lambda_{0.5}$

900

550...1000

Silicon Photo PIN Diode

Application: High speed photo detector

Features:

- Fast response times
- Small junction capacitance

- High photo sensitivity
- Suitable for visible and near infrared radiation

Preliminary specifications

Dimensions in mm

Radiant sensitive area $A=0.25\,\mathrm{mm^2}$ Angle of half sensitivity $\alpha=70^\circ$ Negative terminal/cathode connected with case

> ≈ 18 A 2 DIN 41876 ≈ JEDEC TO 18 Weight max. 0.5 g

Absolute maximum ratings

Reverse voltage	
Power dissipation $T_{amb} \leq 25 ^{\circ} C$	
Junction temperature	
Storage temperature range	
Soldering temperature, maximal $t \le 3 \text{ s}$	

V_{R}	32	٧
P _V	150	mW
$T_{\rm j}$	100	°C
\mathcal{T}_{stg}	-25+100	°C
$T_{\rm sd}^{-1}$)	245	°C

Therma	

Junction ambient

	Min.	Тур.	Max.	
R_{thJA}			350	K/W

 $^{^{1}}$) Distance from the touching border \geqq 2 mm

S 168 P

Optical and electrical characteristics		Min.	Тур.	Max.	
$T_{\rm amb} = 25^{\circ} \text{C}$					
Photodiode operation					
Breakdown voltage $I_R = 100 \ \mu A, E = 0$	$V_{(BR)}$	32			V
Reverse dark current $V_R = 5 \text{ V}, E = 0$	I _{ro}			1	nA
Light reverse current $V_R = 5 \text{ V}, E_A = 1 \text{ klx}^1$)	I _{ra}	2.0			μΑ
Spectral sensitivity $V_R = 5 \text{ V}, \ \lambda = 850 \text{ nm}$	$s(\lambda)$	0.5			A/W
Junction capacitance $V_R = 0 \text{ V}, f = 1 \text{ MHz}$	C _i			5	pF
Peak wavelength sensitivity	$\lambda_{\mathbf{p}}$		900		nm
Range of spectral bandwidth (50%)	$\lambda_{0.5}$	5	600100	00	nm
Switching characteristics $V_R = 5 \text{ V}, R_L = 1 \text{ k}\Omega$					
Rise time	t_{r}			10	ns
Fall time	t_{f}			10	ns

¹⁾ Standard illuminant A (DIN 5033/IEC 306-1)

Silicon Avalanche Photodiode

Application: Wide band detector for demodulation of fast signals, e.g. of lasers and GaAs-LED's. Detector for optical communication, e.g. for optical-fiber transmission systems.

Features:

- High sensitive, low-noise photo detector for demodulation of radiation
- Photocurrent gain higher than 200
- Gain bandwidth product higher than 200 GHz
- Microwave case

Preiiminary specifications

Dimensions in mm

Diameter of the radiant sensitive area $\emptyset = 0.2 \text{ mm}$

Angle of half intensity $\alpha = 90^{\circ}$

Power dissipation			
$T_{\rm amb} = 25 ^{\circ} ^{\circ} ^{\circ}$	P_{V}	100	mW
Junction temperature	T_{j}	125	°C
Ambient temperature range	T_{amb}	-65+100	°C

S 171 P

tical and electrical characteristics		Min.	Тур.	Max.	
T _{amb} = 25°C Range of spectral bandwidth (50%)	λ _{0.5}		45095	50	nm
Reverse dark current M^1) = 100, $E = 0$	I _{ro}		1	5	nA
Breakdown voltage $I_R = 10 \mu A, E = 0$	$V_{(BR)}$	140	170	200	٧
Temperature coefficient of $V_{(BR)}$	TK_{VBR}		0.20		%/°C
Efficiency $\lambda = 910 \text{ nm}$	η	20			%
Gain bandwidth product	G_B^2)	200			GHz
Capacitance $V_R = 100 \text{ V}, f = 1 \text{ MHz}$	$C_{\mathcal{D}}$		0.85	1.0	рF
Series resistance f = 1 MHz	r _s			50	Ω
Rise time $R_{\rm L} = 50~\Omega$	t _r		200		ps

¹) The voltage dependent photocurrent gain M is defined as the ratio of photocurrent l_{ph} at applied reverse voltage V_R to the photocurrent at a bias of 10 V.

²) Gain bandwidth product is defined as the product of *M* times the frequency of measurement, when the diode is biased for maximum obtainable gain.

S 171 P

Silicon PIN Photodiode

Application: Wide band detector for demodulation of fast signals, e.g. of lasers and GaAs-LED's. Detector for optical communication, e.g. for optical-fiber transmission systems.

Features:

- Low-noise photo-detector for demodulation of radiation
- Microwave case

- Rise time 200 ps
- Suitable for laser diode control

Preliminary specifications

Dimensions in mm

Diameter of the radiant sensitive area $\emptyset = 0.2 \text{ mm}$

Angle of half intensity $\alpha = 90^{\circ}$

Reverse voltage	V_{R}	110	V
Power dissipation			
$T_{\rm amb} = 25^{\circ}{\rm C}$	P_{V}	100	mW
Junction temperature	$T_{\rm j}$	125	°C
Ambient temperature range	Tomb	-65+100	°C

S 181 P

ptical and electrical characteristics $T_{amb} = 25 ^{\circ}\text{C}$		Min.	Тур.	Max.	
Breakdown voltage $I_{\rm R}=10~\mu{\rm A},E=0$	V _(BR)	110			٧
Reverse dark current $E = 0$, $V_{\rm R} = 100$ V	I _{ro}		1	5	nA
Sensitivity $\lambda = 800 \text{ nm}$	s(λ)		0.36		mA/mW
Peak wavenlength sensitivity	λ_{p}		730		nm
Range of spectral bandwidth (50%)	λ _{0.5}		550910		nm
Capacitance $V_R = 100 \text{ V}, f = 1 \text{ MHz}$	C_{j}		0.85	1.0	pF
Rise time $R_{\rm L} = 50 \ \Omega$	t _r		200		ps

Silicon Photo PIN Diode

Application: High-speed photo-detector

Features:

- Fast response times at low operating voltages
- High photo sensitivity
- For photodiode and photovoltaic cell operation
- Hermetically sealed package with flat window
- Suitable for visible and near infrared radiation

Preliminary specifications

Abmessungen in mm

Radiant sensitive area A=0.64 mm² Angle of half sensitivity $\alpha=70^{\circ}$ Negative terminal/cathode connected with case

≈ 18 A 2 DIN 41876 ≈ JEDEC TO 18 Weight max. 0.5 g

Reverse voltage
Power dissipation $T_{amb} \le 25^{\circ}C$
Junction temperature
Ambient temperature range

V_{R}	50	٧
P_{V}	180	mW
\mathcal{T}_{j}	100	°C
$T_{\rm amb}$	-25+100	°C

Thermai r	esistance
-----------	-----------

Junction ambient	
------------------	--

	Min.	Тур.	Max.	
R _{thJA}			400	K/W

S 191 P

Optical and electrical characteristics $T_{\rm amb} = 25^{\circ}{\rm C}$		Min.	Тур.	Max.	
Photovoltaic cell operation $(V_R = 0)$					
Open circuit voltage $E_A = 1 \text{ klx}^1$)	V _o *)		380		mV
Temperature coefficient of V_o $E_A = 1 \text{ klx}^1$)	TK _{Vo}		-2		mV/K
Short circuit current $E_A = 1 \text{ klx}^1$), $R_L = 100 \Omega$	/ _k *)	45	70		μ A
Sensitivity, short circuit	s_{k}	45	70		nA/lx
Temperature coefficient of I_k $E_A = 1 \text{ klx}^1$), $R_L = 100 \Omega$	<i>TK</i> _{Ik}		0.1		%/K
Junction capacitance $V_{R} = 0, f = 1 \text{ MHz}, E = 0$	C _i		10		pF
Photodiode operation					
Breakdown voltage $I_{ro} = 100 \mu A, E = 0$	V _(BR) *)	50	80		٧
Reverse continuous dark current $V_R = 20 \text{ V}, E = 0$	I _{ro} *)		1	5	nA
Light reverse current $V_{\rm R}=5$ V, $E_{\rm e}=1$ mW/cm ² $R_{\rm L}=100~\Omega$	/ _{ra} *)	3	6		μΑ
Spectral sensitivity $V_{\rm R} = 20 \text{ V}, \ \lambda = 900 \text{ nm}$	$s(\lambda)$		0.5		A/W
Junction capacitance $f = 1 \text{ MHz}, V_R = 5 \text{ V}$ $V_R = 20 \text{ V}$	C _i C _i		6 4		pF pF
Switching characteristics $V_{\rm R} = 20 \text{ V}, R_{\rm L} = 50 \Omega, \text{see test circuit}$					
Rise time	t _r		7		ns
Fall time	t_{f}		7		ns

^{*)} AQL = 0.65% 1) Standard illuminant A (DIN 5033/IEC 306-1)

Photovoltaic cell and photodiode operation		Min.	Тур.	Max.	
Peak wavelength sensitivity	λ_{p}		900		nm
Range of spectral bandwidth (50%)	$\lambda_{0.5}$	5	501000)	nm

Test circuit

^{*)} AQL = 0.65%

¹⁾ Standard illuminant A (DIN 5033/IEC 306-1)

GaAs Infrared Diode in Plastic Case

Application: Radiation source in near infrared range

Features:

- Flat window
- Wide radiation angle $\alpha = 150^{\circ}$
- Radiation direction vertical to mounting direction

- Compatible with BPW 39
- Selected in groups

Preliminary specifications

Dimensions in mm

Angle of half intensity α = 150°

Plastic case ≈ 10 B 3 DIN 41 868 ≈ JEDEC TO 92 Weight max. 0.4 g

Reverse voltage	V_{R}	5	٧
Forward current	l _F	60	mA
Forward surge current $t_p \le 10 \mu\text{s}$	/ _{FM}	1	Α
Power dissipation $T_{\text{amb}} \leq 45 ^{\circ}\text{C}$	P_{V}	100	mW
Junction temperature	T_{j}	85	°C
Storage temperature range	\mathcal{T}_{stg}	-25+ 8 5	°C
Soldering temperature, maximal $t \le 3 s$	$T_{\rm sd}^{-1}$)	245	°C

¹⁾ Distance from the touching border ≥ 2 mm

S 1.2. 144/0781 E

Thermal resistance

Junction ambient

	Min.	Тур. Мах.		
R_{thJA}			400	K/W

otical and electrical cha $T_{amb} = 25^{\circ}C$	racteristics		Min.	Тур.	Max.	
Radiant power $I_F = 20 \text{ mA}$		Φ_{e}		1		mW
Temperature coefficier $I_F = 20 \text{ mA}$	at of Φ_{e}	$\mathit{TK}_{\Phi E}$		-1.0		%/K
Radiant intensity $I_F = 20 \text{mA}$	Group A Group B	/ _e *) / _e *)	0.15 0.25		0.3	mW/sr mW/sr
Peak wavelength emission $I_F = 50 \text{ mA}$	sion	$\lambda_{\mathtt{p}}$		950		nm
Spectral half bandwidth $I_F = 50 \text{ mA}$	1	Δλ		50		nm
Forward voltage $I_F = 20 \text{ mA}$		V _F *)		1.2	1.5	v
Breakdown voltage $I_{R} = 100 \mu\text{A}$		$V_{(BR)}$	5			V
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$		C _j		50		pF
itching characteristics						
$I_{FM} = 1 \text{ A}, \frac{t_p}{T} = 0.01, t$	$t_{\rm p}=10\mu{\rm s}$, see test circu	it				
Rise time		$t_{\rm r}$		400		ns
Fall time		t _f		450		ns

Specimen 🛨 💳 🛊 PIN-Photodiode

Channel I

150 Ω

Oscilloscope

Test circuit

 $R_{G} = 50 \Omega$

 $t_{\mathbf{p}} = 10 \ \mu \mathbf{s}$

80 1465 8

^{*)} AQL = 0.65 %

GaAs Infrared Diode

Application: Radiation source in near infrared range, i. e. remote control, light barrier and telecommunication

Features:

- Metal base with plastic lens white clear
- Extremely high radiation power
- Suitable for pulse operation till 10 A
- High loading capability in pulse operation

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 40^{\circ}$ Cathode connected with case

> ≈ 5 C 2 DIN 41 873 15 ≈ JEDEC TO 39 Weight max. 1.0 q

Reverse voltage	V_{R}	5	٧
Forward current $T_{amb} \le 25 \degree C$	I _F	250	mA
Forward peak current			
$\frac{t_{\rm p}}{T}$ = 0.001, $t_{\rm p}$ \leq 20 μ s	I _{FM}	10	Α
Power dissipation			
T _{amb} ≤ 25°C	P_{V}	300	mW
Junction temperature	T_{j}	100	°C
Storage temperature range	$ au_{ ext{stg}}$	-25+85	°C

Thermal resistances		Min.	Тур.	Max.	
Junction ambient	R_{thJA}			250	K/W
Junction case	R_{thJC}			25	K/W
Optical and electrical characteristics $T_{amb} = 25 ^{\circ} \mathrm{C}$					
Radiant power $I_F = 250 \text{ mA}$	Φ_{e}		20		mW
Radiant power at pulse operation I _{FM} = 10 A	$arPhi_{em}^{-1})$		0.5		W
Temperature coefficient of $\Phi_{ m e}$	$TK_{\Phi \mathrm{e}}$		-1		%/K
Radiant intensity $I_F = 250 \text{ mA}$	l _e		40	n	nW/sr
Radiant intensity at pulse operation I _{FM} = 10 A	/ _{em} *) ¹)	0.65	1		W/sr
Peak wavelength emission $I_F = 100 \text{ mA}$	$\lambda_{ m p}$		950		nm

 $\Delta \lambda$

Spectral half bandwidth $I_{\rm F} = 100 \, {\rm mA}$

50

nm

		Min.	Тур.	Max.	
Forward voltage $I_F = 250 \text{ mA}$	V_{F}		1.2		٧
Forward voltage at pulse operation $I_{FM} = 10 \text{ A}$	$V_{FM}^{-1})$		3.3	4.2	V
Breakdown voltage $I_{\rm R} = 100 \mu{\rm A}$	$V_{(BR)}{}^\star)$	5			V
Junction capacitance $V_{R} = 0, f = 1 \text{ MHz}$	C _i		600		pF

Switching characteristics

$$I_{\rm FM}=1$$
 A, $\frac{t_{\rm p}}{T}=0.01$, $t_{\rm p}\leq 100~\mu{\rm s}$, see test circuit

Rise time Fall time

830

 $t_{\rm r}$

700

ns

ns

Test circuit

*) AQL = 0.65 % 1)
$$t_{\rm p} = 20 \,\mu{\rm s}, \frac{t_{\rm p}}{T} = 0.0003$$

GaAlAs CW Laserdiode

Application: Monochromatic radiation source in near infrared range,

opto-telecommunication, telemeter.

Features:

- Radiant power \(\Phi_e = 10 \text{ mW} \)
- Small radiation angle
- Good spectral matching with silicon photo-PIN- and avalanche photo diode detectors
- Small spectral half width
- Diamond heat sink
- Each laser is tested for 300 h at $\Phi_{\rm e} = 5 \, {\rm mW}$

Preiiminary specifications

Dimensions in mm

Anode connected with stud

Emitting surface $A = 20 \times 0.3 \mu \text{m}^2$

Top view: The drawn angles α_1 and α_2 are the projections of the angles of half intensity into the plane of the emitting area.

Total power dissipation	P _{tot} 1) see diag	gram	
Case temperature	T _{case}	1540	°C
Junction temperature	$T_{\rm j}$	70	°C
Storage temperature range	$T_{ m stg}$	070	°C
Soldering temperature, maximal $t \le 5 \text{ s}$, $t_{\text{heat sink}} = 20 ^{\circ} \text{C}$	$T_{ m sd}$	245	°C

¹⁾ See diagram, which is supplied with each laser as test certificate. The radiant power should not exceed $\Phi_{\bullet}=10$ mW. Absolute maximum ratings of forward current $I_{\rm F}$ and power dissipation $P_{\rm tot}$ are given by this value.

Current surges lead to high radiant power peaks resulting in mirror damage and premature failure. Such current surges can be generated by switching on or off the power supply or by line disturbances. A suitable power supply should be selected with these limits in mind.

Ontice and electrical characteristics		Min.	Тур.	Max.	
Optical and electrical characteristics $T_{\rm amb} = 25^{\circ}{\rm C}$		141111.	1,72.	max.	
Radiant power $I_F \leq 400 \text{ mA}$	Φ_{e}	5			mW
Radiance $\phi_{\rm e}=5{ m mW}$	L _e	200			$\frac{\text{kW}}{\text{cm}^2 \cdot \text{sr}}$
Threshold current	$I_{(TO)}$		200	300	mA
Forward voltage $I_F = 200 \text{ mA}$ $I_F = 250 \text{ mA}$	V _F V _F	1.8 1.9	2.0 2.1	2.3 2.4	V V
Peak wavelength emission	λ_{p}	790	820	840	nm
Spectral half bandwidth	Δλ		2.5		nm
Switching characteristics $I_F \ge I_{(TO)}, \ \Phi_e \ge 2 \text{ mW}$					
Rise time	t _r		1		ns

Operating precautions

- 1. Current surges (only for a few nanoseconds) can drastically decrease the lifetime of the laser.
- 2. Laser goggles are recommended.

GaAs Infrared Diode in 3 mm Plastic Case

Application: Radiation source in near infrared range

Features:

- High radiant intensity
- High radiant power

- Suitable for pulse operation
- Good spectral matching for silicon photo detectors

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 50^{\circ}$

Plastic case Weight max. 0.4 g

Reverse voltage	V_{R}	5	٧
Forward current	I _F	100	mA
Forward peak current			
$\frac{t_{\rm p}}{T}$ = 0.5, $t_{\rm p}$ \leq 10 ms	I _{FM}	200	mA
Forward surge current			
$t_{p} \leq 10 \ \mu s$	/ _{FSM}	2.5	Α
Power dissipation			
$T_{amb} \leq 25^{\circ}C$	P_{v}	170	mW
Junction temperature	$T_{\rm j}$	100	°C
Storage temperature range	T_{stg}	-25+100	°C
Soldering temperature, maximal			
$t \leq 3 \text{ s}, l \geq 2 \text{ mm}$	$T_{\rm sd}^{-1}$)	245	°C

 $^{^{1}}$) Distance from the touching border \geq 2 mm

S 1.2. 146/0781 E

Thermai resistance Junction ambient Optical and electrical characteristics $T_{\rm amb} = 25^{\circ}$	R _{thJA}	Min.	Тур.	Max. 450	K/W
Radiant power $I_F = 100 \text{ mA}$	$arPhi_{ m e}$		10		mW
Temperature coefficient of $\Phi_{\rm e}$ $I_{\rm F}=100$ mA	$\mathit{TK}_{oldsymbol{\Phi}\mathbf{e}}$		-0.8		%/K
Radiant intensity $I_F = 100 \text{ mA}$	/ _e *)	5	10		mW/sr
Peak wavelength emission $I_F = 100 \text{ mA}$	$\lambda_{_{D}}$		950		nm
Spectral half bandwidth $I_F = 100 \text{ mA}$	Δλ		50		nm
Forward voltage $I_F = 100 \text{ mA}$	V _F *)		1.4	1.7	v
Breakdown voltage $I_{\rm R} = 100 \mu {\rm A}$	V _(BR) *)	5			v
Junction capacitance $V_R = 0$, $f = 1$ MHz	C _i		50		pF

Switching characteristics

$$I_{\rm FM}=1$$
 A, $\frac{t_{\rm p}}{T}=0.01, t_{\rm p}\leq 10~\mu{\rm s}$, see test circuit

Rise time $t_{\rm r}$ 400 ns Fall time $t_{\rm f}$ 450 ns

Test circuit

^{*)} AQL = 0.65 %

λ —

GaAs Infrared Diode in Plastic Case

Application: Radiation source in near infrared range, especially for remote control

Features:

- High radiant intensity
- High radiant power
- Suitable for pulse operation
- Good spectral matching for silicon photo detectors
- Radiation direction vertical to mounting direction
- Serial connection of two pellets

Preliminary specifications

Dimension in mm

Plastic case Weight max. 0.5 q

Angle of half intensity

 $\alpha_1 = 35^{\circ}$ $\alpha_2 = 55^{\circ}$

solute maximum ratings					
Reverse voltage	V_{R}		10		,
Forward current	I _F		100		m
Forward peak current					
$\frac{t_{\rm p}}{T} = 0.5, t_{\rm p} \le 10 \text{ ms}$	I _{FM}		200		m
Forward surge current $t_p \le 10 \ \mu s$	I _{FSM}		2.5		
Power dissipation T _{amb} ≤ 25 ° C	P_{V}		280		m۷
Junction temperature	T_{i}		100		٥(
Storage temperature range	T_{stg}	-2	25+10	0	۰(
Soldering temperature, maximal $t \le 3 \text{ s}$	$T_{\rm sd}^{-1}$)		245		٥
ermal resistance		Min.	Тур.	Max.	
Junction ambient	R_{thJA}			270	K/\
clcal and electrical characteristics T _{amb} = 25 ° C					
Radiant power $I_F = 100 \text{ mA}$	Φ_{e}		25		m\
Temperature coefficient of $\Phi_{\rm e}$ $I_{\rm F}=$ 100 mA	$\mathit{TK}_{\Phi e}$		-0.8		%/
Radiant intensity $I_F = 100 \text{ mA}$ $I_F = 1.5 \text{ A}$	l _e / l _{e²})*)	200	33 300		mW/s
Peak wavelength emission $I_F = 100 \text{ mA}$	λ_{p}		950		n
Spectral half bandwidth $I_F = 100 \text{ mA}$	Δλ		50		nı
Forward voltage $I_F = 100 \text{ mA}$ $I_F = 1.5 \text{ A}$	V _F V _F ²)*)		2.8 5.0	6.0	
Breakdown voltage $I_{\rm R} = 100 \mu{\rm A}$	V _(BR) *)	10			
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$	C_{j}		25		р

^{*)} AQL = 0.65 %

¹⁾ Distance from the touching border \geq 1.5 mm with intermediate PC-board 2) $\frac{t_p}{T} = 0.001$, $t_p = 0.1$ ms

Switching characteristics

$$I_{\rm FM}=$$
 1 A, $\frac{t_{\rm p}}{T}=$ 0.01, $t_{\rm p}\leq$ 10 $\mu{\rm s}$, see test circuit

Rise time $t_{\rm r}$ 400 ns Fall time $t_{\rm t}$ 450 ns

Test circuit

^{*)} AQL = 0.65 %

GaAs Infrared Diodes in Hermetically Sealed Cases

Application: Radiation source in near infrared range

Features:

- Flat window CQY 31, with lens – CQY 32
- High modulation frequencies
- High switching speed

- Suitable for pluse operation
- Good spectral matching for silicon photo detectors
- CQY 32 Suitable to couple with for glass fiber

Preliminary specifications

Dimensions in mm

CQY 31

CQY 32

Angle of half intensity CQY 31 $\alpha = 80^{\circ}$ CQY 32 $\alpha = 10^{\circ}$

Cathode connected with case

≈ 18 A 2 DIN 41867 ≈ JEDEC TO 18 Weight max. 0.5 g

CQY 31 · CQY 32

Absolute maximum ratings			
Reverse voltage	V_{R}	5	٧
Forward current	I _F	100	mA
Forward peak current			
$\frac{t_{\rm p}}{T} = 0.5, t_{\rm p} \le 10 {\rm ms}$	/ _{FM}	200	mA
Forward surge current			
$t_{\rm p} \le 10 \ \mu {\rm s}$	/ _{FSM}	2.5	Α
Power dissipation			
$T_{\text{amb}} \leq 25^{\circ}\text{C}$	P_{V}	165	mW
Junction temperature	\mathcal{T}_{j}	100	°C
Storage temperature range	\mathcal{T}_{stg}	-25+100	°C

hermal resistances			Mín.	Тур.	Max.	
Junction ambient		R_{thJA}			450	K/W
Junction case		R_{thJC}			150	K/W
ptical and electrical characteristi $T_{amb} = 25 ^{\circ} ^{\circ} ^{\circ}$	cs					
Radiant power $I_F = 100 \text{ mA}$		Φ_{e}		1.5		mW
Temperature coefficient of Φ_e $I_F = 100 \text{ mA}$		$\mathit{TK\Phi}_{e}$		-1.0		%/K
Radiant intensity $I_F = 100 \text{ mA}$	CQY 31 CQY 32	/ _e *) / _e *)	0.5 3	1.0 10		mW/sr mW/sr
Peak wavelength emission $I_F = 50 \text{ mA}$		λ_{p}		900		nm
Spectral half bandwidth $I_F = 50 \text{ mA}$		Δλ		35		nm
Forward voltage I _F = 100 mA		V _F *)		1.25	1.5	٧
Differential forward resistance $I_F = 100 \text{ mA}$		r _t		2		Ω
Breakdown voltage $I_{\rm R} = 100 \mu{\rm A}$		V _(BR) *)	5			v
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$		C_{j}		130		рF
witching characteristics						
$I_{FM} = 1 \text{ A}, \frac{t_p}{T} = 0.01, t_p \le 1 \mu\text{s}, s$	see test circuit					
Rise time		t_{r}		150		ns
Fall time		t _f		120		ns
1A /-	0 + 45 V					
	/ph					
a=50 Ω Specimen 🛨 💳	PIN-Photo	odlode				
= 0.01	Channel I	Oscilloscope				
p = 1 μs	Channel II	R _L ≥1MΩ				
Test circuit	1]50 Ω	^C L [≤] 20 pF				
*) AQL = 0.65 %		80 1464 🗣				

CQY 31 · CQY 32

CQY 31 · CQY 32

GaAs Infrared Diodes in Hermetically Sealed Cases

Application: Radiation source in near infrared range

Features:

- \bullet CQY 33 N Flat window $a = 80^{\circ}$
- CQY 34 N Lens,
- $\alpha = 30^{\circ}$
- CQY 35 N Lens,
- α = 10 $^{\circ}$
- High radiant intensity CQY 35 N
- High radiant power
- Suitable for pulse operation
- Good spectral matching for silicon photo detectors
- CQY 35 N Suitable to couple for glass fiber

Preliminary specifications

Dimensions in mm

Angle of half intensity CQY 33 N $\alpha = 80^{\circ}$

CQY 34 N $\alpha = 30^{\circ}$

CQY 35 N $\alpha = 10^{\circ}$

Cathode connected with case

≈ 18 A 2 DIN 41 876 ≈ JEDEC TO 18 Weight max. 0.5 g

Absolute maximum ratings			
Reverse voltage	V_{R}	5	V
Forward current	I _F	250	mA
Forward peak current			
$\frac{t_{\rm p}}{T}=0.5,t_{\rm p}\leq 10\;{\rm ms}$	I _{FM}	500	mA
Forward surge current $t_p \le 10 \mu s$	/ _{FSM}	2.5	Α
Power dissipation	_		14/
$T_{\rm case} \le 25^{\circ}{\rm C}$	P_{V}	450	mW
Junction temperature	$ au_{i}$	100	°C
Storage temperature range	\mathcal{T}_{stg}	-55+100	°C

hermal resistances				Min.	Тур.	Max.	
Junction ambient			R_{thJA}			450	K/W
Junction case			R_{thJC}			150	K/W
ptical and electrical cl $T_{amb} = 25 ^{\circ}\text{C}$	haracteristic	:s					
Radiant power $I_F = 100 \text{ mA}$			Φ_{e}		8		mW
Temperature coefficient $I_F = 100 \text{ mA}$	ent of $\Phi_{ m e}$		$\mathit{TK}_{\Phi_{\mathbf{e}}}$		-0.8		%/K
Radiant intensity I _F = 100 mA	Group E	CQY 33 N CQY 34 N CQY 35 N	/ _e *) / _e *) / _e *)	3 8 16	4.5 12 24	6 16 32	mW/sr mW/sr mW/sr
	Group F		/e*) /e*) /e*)	4.5 12 24	7 18 36	32	mW/sr mW/sr mW/sr
Peak wavelength emind $I_F = 100 \text{ mA}$	ission		λ_{p}		950		nm
Spectral half bandwich $I_F = 100 \text{ mA}$	lth		$\Delta \lambda$		50		nm
Forward voltage $I_F = 100 \text{ mA}$			V _F *)		1.4	1.7	٧
Breakdown voltage $I_{R} = 100 \mu\text{A}$			V _(BR) *)	5			٧
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$			C _j		50		pF

^{*)} AQL = 0.65%

Switching characteristic			Min.	Тур.	Max.	
$I_{\text{FM}} = 1 \text{ A}, \frac{5}{T} = 0.01$, $t_{\rm p} \le 10~\mu{\rm s}$, see test circuit					
Rise time		t _r		400		ns
Fall time		t_{f}		450		ns
$R_G = 50 \Omega$ Spe $\frac{t_p}{T} = 0.01$ $t_p = 10 \mu s$	Channel II 50 Ω 50 Ω	dlode Oscilloscope $R_{L^{\geq 1} M\Omega}$ $C_{L^{\leq 20} pF}$				
80 1465 ●	I I					

Test circuit

GaAs Infrared Diodes in Miniature Plastic Cases

Application: Radiation source in near infrared range

Features:

- High package capacity
- High radiant power

- Suitable for pulse operation
- Good spectral matching for silicon photo detectors

Preliminary specifications

Dimensions in mm

CQY 36N

Angle of half intensity

CQY 36 N $\alpha = 80^{\circ}$ CQY 37 N $\alpha = 25^{\circ}$

Special case Weight max. 0.04 q

CQY 37 N

t ≤ 3 s

Absolute maximum ratings			
Reverse voltage	V_{R}	5	V
Forward current	I _F	100	mA
Forward surge current $t_{\rm p} \leq 10 \ \mu{\rm s}$	/ _{FSM}	2.5	Α
Power dissipation $T_{amb} \le 25^{\circ} C$	P_{V}	170	mW
Junction temperature	\mathcal{T}_{j}	100	°C
Storage temperature range	\mathcal{T}_{stg}	-25+100	°C
Soldering temperature, maximal			

 $T_{\rm sd}^{-1}$)

245

°C

 $^{^{1}}$) Distance from the touching border \geq 2 mm

Thermal resistance			Min.	Тур.	Max.	
Junction ambient		R_{thJA}			450	K/W
Optical and electrical characteristics ${\cal T}_{\text{amb}} = 25^{\circ}\text{C}$						
Radiant power $I_F = 50 \text{ mA}$		Φ_{e}		5.0		mW
Temperature coefficient of $\Phi_{\rm e}$ $I_{\rm F}=50~{ m mA}$		$\mathit{TK}_{\Phi_{B}}$		-0.8		%/K
Radiant intensity $I_F = 50 \text{ mA}$	CQY36N CQY37N	Ι _e *) Ι _e *)	0.7 2.2	1.5 4.5		mW/sr mW/sr
Peak wavelength emission $I_F = 50 \text{ mA}$		λ_{p}		950		nm
Spectral half bandwidth $I_F = 50 \text{ mA}$		Δλ		50		nm
Forward voltage $I_F = 50 \text{ mA}$		<i>V</i> _F *)		1.3	1.6	v

		Min.	Typ.	Max.	
Breakdown voltage $I_{\rm R}=100\mu{\rm A}$	$V_{(BR)}{}^{\star})$	5	•••		٧
Junction capacitance $V_{\rm R}=0, f=1{\rm MHz}$	$C_{ m j}$		50		pF

Switching characteristics

Test circuit

^{*)} AQL = 0.65 %

GaAs Infrared Diodes in 5 mm Cases

Application: Radiation source in near infrared range

Features:

- Plastic case
- High radiant intensity
- High radiant power

- Suitable for pulse operation
- Angle of half intensity 35°

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 35^{\circ}$

Plastic case Weight max. 0.4 g

Accessoires

Mounting clip Order-Nr. 562136

Retainer ring Order-Nr. 562135

Absolute maximum ratings

Reverse voltage	V_{R}	5	٧
Forward current	I _F	150	mA
Forward peak current			
$\frac{t_{\rm p}}{T}$ = 0.5, $t_{\rm p}$ \leq 10 ms	I _{FM}	300	mA
Forward surge current			
$t_{\rm p} \leq 10 \mu{\rm s}$	/ _{FSM}	2.5	Α
Power dissipation			
$T_{amb} \leq {^{\circ}C}$	P_{V}	210	mW
Junction temperature	t_{j}	100	°C
Storage temperature range	$t_{ m stg}$	-25+100	°C
Soldering temperature, maximal			
<i>t</i> ≤ 3 s	t_{sd}^{1})	245	°C

 $^{^{1})}$ Distance from the touching border \geq 1.5 mm with intermediate PC-board

Thermal resistance		Min.	Тур.	Max.	
Junction ambient	R_{thJA}			350	K/W

Optical and electrical characteristics

$$T_{\rm amb} = 25^{\circ} \rm C$$

Radiant power

 $I_{\rm F} = 100 \, {\rm mA}$

Temperature coefficient of $\Phi_{\rm e}$

 $\Phi_{\rm e}$

15

mW

%/K $I_{\rm F} = 100 \, {\rm mA}$ $TK_{\Phi e}$ -0.8

Type	Radiant intensity /e (mW/sr)					vard voltage ' _F (V)	
	$I_{\rm F} = 100 {\rm mA}$	$I_{\rm F} = 1.5 {\rm A}, t_{\rm p} = 100 \mu {\rm s}^*)$		$I_{\rm F} = 100 {\rm mA}$		$I_{\rm F} = 1.5 {\rm A},$	$t_{\rm p} = 100 \mu {\rm s}^*)$
	Тур.	Min.	Тур.	Тур.	Max.	Тур.	Max.
CQY 98	20	85	170	1.4	1.7	2.7	
V 390 P	21	120	180	1.4	1.7	2.7	_
CQW 13	27	170	250	1.3		2.4	2.7

^{*)} AQL = 0.65 %

400

450

Peak wavelength emission			Min.	Тур.	Max.	
$I_{\rm F} = 100 \text{mA}$		λ_{p}		950		nm
Spectral half bandwidth $I_F = 100 \text{ mA}$		Δλ		50		nm
Forward voltage						
$I_{\rm F} = 1.5 \text{ A}, t_{\rm p} = 100 \ \mu \text{s}$	CQY 98, V 390 P	$V_{F}^{\star})$		2.7	2.9	V
	CQW 13	$V_{F}^{\star})$		2.4	2.6	V
Breakdown voltage $I_{R} = 100 \mu\text{A}$		V _(BR) *)	5			٧
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$		C _j		50		pF

Switching characteristics

$$I_{\rm FM}=$$
 1 A, $\frac{t_{\rm p}}{T}$ =0.01, $t_{\rm p}$ \leq 10 μ s, see test circuit

Rise time t_r

Test circuit

ns

ns

^{*)} AQL = 0.65 %

GaAs Infrared Diodes in 5 mm Cases

Application: Radiation source in near infrared range

Features:

- Plastic case
- High radiant intensity
- High radiant power

- Suitable for pulse operation
- Angle of half intensity, 50°

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 50^{\circ}$

Plastic case Weight max. 0.4 g

Accessoires

Mounting clip Order-Nr. 562136

Retainer ring Order-Nr. 562135

Absolute maximum ratings

Reverse voltage	V_{R}	5	V
Forward current	I _F	150	mA
Forward peak current			
$\frac{t_{\rm p}}{7}$ = 0.5, $t_{\rm p}$ \leq 10 ms	I _{FM}	300	mA
Forward surge current			
$t_{p} \leq$ 10 μ s	/ _{FSM}	2.5	Α
Power dissipation			
$T_{amb} \leq 25^{\circ} C$	P_{V}	210	mW
Junction temperature	$T_{\rm j}$	100	°C
Storage temperature range	$T_{ m stg}$	-25+100	°C
Soldering temperature, maximal			
t≤3s	$T_{\rm sd}^{-1}$)	245	°C

¹) Distance from the touching border ≥ 1.5 mm with intermediate PC-board

Thermal resistance			Min.	Тур.	Max.	
Junction ambient		$R_{\rm thJA}$			350	K/W
Optical and electrical char $T_{amb} = 25^{\circ}C$	racteristics					
Radiant power	CQY 99, V 290 P	Φ_{e}		11		mW
I _F = 100 mA	CQW 14	Φ_{e}		15		mW
Temperature coefficient $I_F = 100 \text{ mA}$	of Φ_{e}	$\mathcal{T}\mathcal{K}_{arPhi}$ e		-0.8		%/K

Тур	Radiant intensity I _e (mW/sr)			Forward voltage V_{F}^*) (V)			
	I _F = 100 mA	$I_{\rm F} = 1.5 \rm A, t_{\rm p} = 100 \mu s^*)$		$I_{\rm F} = 100 \; {\rm mA}$		$I_{\rm F} = 1.5 {\rm A}, t_{\rm p} = 100 \mu {\rm s}$	
	Тур.	Min.	Тур.	Тур.	Max.*)	Тур.	Max.
CQY 99	14	60	120	1.4	1.7	2.7	
V 290 P	15	85	125	1.4	1.7	2.7	
CQW 14	19	120	180	1.3		2.4	2.7

^{*)} AQL = 0.65 %

		Min.	Тур.	Max.
Peak wavelength emission $I_F = 100 \text{ mA}$	λ_{p}		950	nm
Spectral half bandwidth $I_F = 100 \text{ mA}$	Δλ		50	nm
Breakdown voltage $I_{\rm R} = 100 \mu{\rm A}$	$V_{(BR)}{}^\star)$	5		V
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$	C_{j}		50	pF

Switching characteristics

$$I_{\rm FM}=$$
 1 A, $\frac{t_{\rm p}}{T}=$ 0.01, $t_{\rm p}\leq$ 10 $\mu{\rm s}$, see test circuit

Rise time $t_{\rm r}$ Fall time $t_{\rm f}$

Test circuit

^{*)} AQL = 0.65 %

GaAs Infrared Diode with Metal Base

Application: Radiation source in near infrared range

Features:

- Metal base with plastic lens clear
- Wide radiation angle $a = 80^{\circ}$

- High radiation power
- Good spectral matching for silicon photo detectors

Dimension in mm

Angle of half intensity $\alpha = 80^{\circ}$

Cathode connected with case

≈ 18 A 2 DIN 41 876 ≈ JEDEC TO 18 Weight max. 0.5 g

Absolute maximum ratings

Reverse voltage	V_{R}	5	V
Forward current	I _F	250	mA
Forward peak current			
$\frac{t_{\rm p}}{7}=0.5,t_{\rm p}\leq 10\;{\rm ms}$	I _{FM}	500	mA
Forward surge current $t_p \le 10 \ \mu s$	/ _{FSM}	2.5	А
Power dissipation			
7 _{case} ≤ 55°C	P_{V}	450	mW
Junction temperature	\mathcal{T}_{j}	100	°C
Storage temperature range	\mathcal{T}_{stg}	−25 +100	°C

V 194 P

Thermal resistances		Min.	Тур.	Max.	
Junction ambient	R_{thJA}			450	K/W
Junction case	R_{thJC}			100	K/W
Optical and electrical characteristics $T_{amb} = 25^{\circ}\text{C}$					
Radiant power $I_F = 100 \text{ mA}$	$\Phi_{ m e}$		10		mW
Temperature coeffizient of $\Phi_{\rm e}$ $I_{\rm F}=$ 100 mA	$TK_{\Phi \mathrm{e}}$		-0.8		%/K
Radiant intensity $I_F = 100 \text{ mA}$	$I_e^{\star})$	1.5	3.0		mW/sr
Peak wavelength emission $I_F = 100 \text{ mA}$	λ_{p}		950		nm
Spectral half bandwidth $I_F = 100 \text{ mA}$	Δλ		50		nm
Forward voltage $I_{\rm F} = 100 {\rm mA}$	<i>V</i> _F *)		1.4	1.7	٧

		Min.	Тур.	Max.
Breakdown voltage $I_{\rm R} = 100 \mu \rm A$	$V_{(BR)}{}^\star)$	5		V
Junction capacitance				
$V_{R} = 0, f = 1 \; MHz$	C_{j}		50	pF
Switching characteristics $I_{\rm FM}=1~{\rm A}, \frac{t_{\rm p}}{T}=0.01, t_{\rm p}\leq 10~\mu{\rm s}, {\rm see~test~circuit}$				
Rise time	t_r		400	ns
Fall time	t_{f}		450	ns
t _p =10 μs	de icilloscope ≥ 1 MΩ ≤ 20 pF			

Test circuit

80 1465 0

^{*)} AQL = 0.65 %

V 194 P

V 194 P

GaAs Infrared Emitting Diode

Application: Radiation source in near infrared range for coupling with glass fiber

Features:

- Hermetically sealed case
- High modulation frequencies

- High switching speed
- Good spectral matching for silicon photo detectors

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha=80^{\circ}$ Diameter of the emitting area $\varnothing=0.1$ mm Cathode connected with case

> ≈ 18 A 2 DIN 41 876 ≈ JEDEC TO 18 Weight max. 0.5 g

Absolute maximum ratings

Reverse voltage	V_{R}	5	V
Forward current	I _F	100	mA
Forward peak current			
$\frac{t_{\rm p}}{7}$ = 0.5, $t_{\rm p} \le 10 {\rm ms}$	/ _{FM}	200	mA
Forward surge current $T_p \leqq 100 \text{ ns}$	/ _{FSM}	0.5	А
Power dissipation			
T _{amb} ≦ 25°C	P_{V}	300	mW
Junction temperature	$T_{\mathbf{j}}$	100	°C
Storage temperature range	$T_{ m stg}$	-25+100	°C

^{*)} For effective coupling to graded index fibers with small core diameters (50 µm), the devices V 296 P, V 297 P, V 298 P are available on request. They differ from V 213 P with respect to radiation emitting areas.

V 213 P

	Min.	TVp.	Max.	
R_{thJA}	••••	.,,,	600	K/W
R_{thJC}			250	K/W
$\Phi_{ extsf{e}}$		1.0		mW
$\mathit{TK}\Phi_{e}$		-1.0		%/K
l _e	0.3	0.4		mW/sr
λ_p	900	910	920	nm
Δλ			40	nm
V _F		1.5	1.8	v
C_{i}		16	20	pF
t _r			60	ns
t _f			60	ns
	AthJC Φe TKΦe Ie λp Δλ VF C;	$R_{ m th}$ $R_{ $	R_{thJA} R_{thJC} Φ_e 1.0 $TK\Phi_e$ -1.0 l_e 0.3 0.4 λ_p 900 910 $\Delta\lambda$ V _F 1.5 C_l 16	R_{thJA} 600 R_{thJC} 250 Φ_e 1.0 $TK\Phi_e$ -1.0 l_e 0.3 0.4 λ_p 900 910 920 $\Delta\lambda$ 40 V_F 1.5 1.8 C_l 16 20

GaAs Infrared Emitting Diode with Metal Base

Application: Radiation source in near infrared range for coupling with glass fiber

Features:

- Flat element covering
- High modulation frequencies

- High switching speed
- Good spectral matching for silicon photo detectors

Preiiminary specifications

Dimensions in mm

Angle of half intensity $\alpha=$ 140° Diameter of the emitting area $\varnothing=$ 0.1 mm Cathode connected with case

≈ 18 A 2 DIN 41876 ≈ JEDEC TO 18 Weight max. 0.5 g

Absolute maximum ratings

Reverse voltage	V_{R}	5	٧
Forward current	l _F	100	mA
Forward peak current			
$\frac{t_{\rm p}}{7} = 0.5, t_{\rm p} \le 10 \text{ ms}$	I _{FM}	200	mA
Forward surge current $t_p \le 100 \text{ ns}$	/ _{FSM}	0.5	А
Power dissipation			
T _{amb} ≦ 25 ° C	P_{V}	300	mW
Junction temperature	$ au_{ m j}$	100	°C
Storage temperature range	T _{sta}	-25+100	°C

V 292 P

Thermal resistances		Min.	Тур.	Max.	
Junction ambient	R_{thJA}			600	K/W
Junction case	R_{thJC}			250	K/W
Optical and electrical characteristics					
$T_{\text{amb}} = 25 ^{\circ}\text{C}$					
Radiant power $I_F = 100 \text{ mA}$	$\Phi_{ m e}$		2.0		mW
Temperature coefficient of Φ_e $I_F = 100 \text{ mA}$	$\mathit{TK}\Phi_{e}$		-1.0		%/K
Radiant intensity $I_F = 100 \text{ mA}$	l _e	0.4	0.5		mW/sr
Peak wavelength emission $T_{\rm j} = 50^{\circ}$	λ_{p}	900	910	920	nm
Spectral half bandwidth $T_{\rm j} = 50^{\circ}$	$\Delta\lambda$			40	nm
Forward voltage $I_F = 100 \text{ mA}$	V _F		1.5	1.8	V
Junction capacitance $V_{R} = 0, f = 1 \text{ MHz}$	C_{j}		16	20	pF
Switching characteristics					
$I_{\rm F} = 100 {\rm mA}$					
Rise time	t _r			60	ns
Fall time	t_{f}			60	ns

Photo coupling devices

Optically Coupled Isolator

Construction Emitter:

GaAs-IR-Lumineszenzdiode

Detector: Silizium-NPN-Epitaxial-Planar-Phototransistor

Applications: Galvanically separated circuits, non-interacting switches

Features:

- Hermetically sealed case
- DC isolation voltage 500 V−
- Low coupling capacity
- Current transfer ratio (CTR) typ. 0.5
- Low temperature coefficient of the

 ◆ Also available as "Qualified semiconductor device" according to: SCC 5000 as COQ Nr. 50, and also according to

GfW H 0000 as HIREL-device TB 101

Dimensions in mm

Collector connected with case

DIN 18 A 4 JEDEC TO 72 Weight max. 0.5 g

Absolute maximum ratings			
Emitter			
Reverse voltage	V_{Pl}	3	V
Forward current	I F	60	mA
Forward surge current $t_p \le 10 \mu\text{s}$	I _{FSM}	1.5	Α
Power dissipation $T_{amb} \le 25 ^{\circ} \text{C}$	P_{V}	100	mW
Junction temperature	T_{i}	100	°C
Detector			
Collector-emitter voltage	$V_{\sf CEO}$	32	V
Emitter-collector voltage	V_{ECO}	5	V
Collector current	I _C	100	mA
Power dissipation 7 _{amb} ≦ 25 ° C	P_{V}	150	mW
Junction temperature	T_{i}	125	°C
Coupled device			
DC isolation voltage $t = 1 \text{ min}$	$V_{\rm is}^{-1})$	500	٧
Total power dissipation $T_{amb} \le 25^{\circ} C$	P_{tot}	250	mW
Storage temperature range	\mathcal{T}_{stg}	−55 + 100	°C

¹⁾ related to standard climate 23/50 DIN 50 014

Electrical characteristics $T_{\text{amb}} = 25 ^{\circ}\text{C}$		Min.	Тур.	Max.	
Emitter					
Forward voltage $I_{\rm F}=60~{\rm mA}$	$V_{F}^{\star})$		1.25	1.7	٧
Reverse current $V_R = 3 \text{ V}$	/ _R *)		0.35	10	μΑ
Detector					
Collector-emitter breakdown voltage $I_C = 1 \text{ mA}$	V _{(BR) CEO} *)	32			٧
Collector dark current $V_{CE} = 10 \text{ V}, I_F = 0, E = 0$	I _{CEO} *)		2	100	nA
Collector emitter capacitance $V_{CE} = 0$, $f = 1 \text{ MHz}$ $V_{CE} = 10 \text{ V}$, $f = 1 \text{ MHz}$	$C_{ extsf{CEO}}$		7 3.5		pF pF
$V_{CE} = 30 \text{ V}, f = 1 \text{ MHz}$	$C_{\sf CEO}$		2.5		pF

Coupled device

Group	Collector current $I_{\rm C}$ $V_{\rm CE}=5$ V, $I_{\rm F}=10$ mA	Current transfer ratio CTR $V_{CE} = 5 \text{ V, } I_F = 10 \text{ mA}$
III	min. 2.5 max. 5.0	min. 0.25 max. 0.5
IV	min. 4.0 max. 8.0	min. 0.4 max. 0.8
V	min. 6.0 max. 12.0	min. 0.6 max. 1.2
VI	min. 10.0 max. 20.0	min. 1.0 max. 2.0

					_	
			Min.	Тур.	Max.	
Isolation resistance $V_{is} = 500 \text{ V}, 40\% \text{ relative}$	e humidity	$R_{is}^{\star\star})^{1}$	10 ¹⁰			Ω
Collector-emitter saturation $I_{\rm C}=1$ mA, $I_{\rm F}=10$ mA	on voltage	V _{CEsat} *)			0.2	ν
Cut-off frequency $V_{CE} = 5 \text{ V}, I_F = 10 \text{ mA}, I_F$	$R_{L} = 100 \Omega$	f _c		170		kHz
Coupling cpacitances $f = 1 \text{ MHz}$						
A & K short-cctd. → E & C	Short-cctd.	C_{k}		1.4		pF
A & K short-cctd. → C (E		C_{k}		1.1		pF
A & K short-cctd. → E (C		C_{k}		0.1		pF
Switching characteristics $V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L$ Delay time	$_{\rm L}$ = 100 Ω , see test ci	rcuit $t_{\sf d}$		1.8		μs
Rise time		t _r		1.6		μ S
Turn-on time		t _{on}		3.4		μS
Storage time		ts		0.3		μS
Fall time		t_{f}		1.7		μS
Turn-off time		$t_{ m off}$		2.0		μ S
$R_{G} = 50 \Omega$ $t_{p} = 0.01$ $t_{p} = 50 \mu s$	Channel	Oscilloscope				

Test circuit

^{*)} AQL = 0.65 %,

^{**)} AQL = 2.5 %,

¹⁾ related to standard climate 23/50 DIN 50 014

UL Recognised VDE tested device¹)

Optically Coupled Isolator in TO 116 Case

Construction Emitter: GaAs Infrared Emitting Diode

Detector: Silicon NPN Epitaxial Planar Phototransistor

Applications: Galvanically separated circuits, Non-interacting switches

Features:

DC isolation voltage 10 kV-

Nominal isolation operating voltage¹)
 1500 V or 1800 V— for isolation group B according to VDE 0110/11.72

● Test class 25/100/21 DIN 40 045

- Low coupling capacity typ. 0.3 pF
- Current transfer ratio typ. 0.6
- Suitable in circuits with intrinsic safety (Ex) i G5²)

Dimensions in mm

Creeping distance \geq 12 mm³) Air path \geq 9 mm³)

> Plastic case ≈ JEDEC TO 116 Weight max. 1.5 g

¹⁾ UL Recognised, File No. E-76 222 dated 28. 4. 81, according to VDE test certificate dated 9. 8. 1976 / 2. 7. 1979

²) According to test certificate Nr. III B/E-26 507 U of PTB

³) Creeping current resistance: Group I according to VDE 0110 § 6 table 3 and DIN 53 480 / VDE 0303 part 1 S 1.2. 131/0781 E

Absolute maximum ratings					
Emitter					
Reverse voltage	V_{R}		5		V
Forward current	I _F		50		mA
Forward surge current $t_p \le 10 \ \mu s$	I _{FSM}		1.5		Α
Power dissipation $T_{\text{amb}} \leq 25 ^{\circ}\text{C}$	P_{V}		120		mW
Junction temperature	T_{j}		100		°C
Detector					
Collector-emitter voltage	V_{CEO}		32		٧
Emitter-collector voltage	$V_{\sf ECO}$		5		٧
Collector current	Ic		50		mA
Peak collector current					
$\frac{t_{p}}{T} = 0.5, t_{p} \leqq 10 \; ms$	I _{CM}		100		mA
Power dissipation $T_{amb} \le 25^{\circ}C$	P_{V}		130		mW
Junction temperature	$ au_{i}$		100		°C
Coupled device					
DC isolation voltage $t = 1 \text{ min}$	V_{is}^{1})		10		kV
Total power dissipation $T_{amb} \le 25^{\circ} C$	P_{tot}		250		mW
Storage temperature range	$ au_{ ext{stg}}$	-6	55+10	0	°C
Electrical characteristics $T_{\rm amb} = 25^{\circ}{\rm C}$		Min.	Тур.	Max.	,
Emitter					
Forward voltage I _F = 50 mA	V _F *)		1.25	1.6	٧
Breakdown voltage $I_{\rm R}=100\mu{\rm A}$	$V_{(BR)}^{\star})$	5			٧
Junction capacitance $V_{R} = 0, f = 1 \text{ MHz}$	C_{i}		50		рF

[·]

1) related to standard climate 23/50 DIN 50 014

*) AQL = 0.65 %

		Min.	Тур.	Max.	
Detector					
Collector-emitter breakdown voltage $I_C = 1 \text{ mA}$	V _{(BR) CEO} *)	32			٧
Collector dark current $V_{CE} = 20 \text{ V}, I_F = 0, E = 0$	I _{CEO} *)		10	200	nA
Coupled device					
DC isolation voltage $t = 1 \text{ min}$	$V_{is}^{\star})^{1})$	10			kV
Isolation resistance $V_{is} = 1000 \text{ V}, 40 \% \text{ rel. humidity}$	R _{is} ¹)		10 ¹⁴		Ω
Collector current $I_F = 10 \text{ mA}, V_{CE} = 5 \text{ V}$ $I_F = 20 \text{ mA}, V_{CE} = 5 \text{ V}$	/ _C *) / _C	2.5 5	5 10		mA mA
Current transfer ratio $I_F = 10 \text{ mA}, V_{CE} = 5 \text{ V}$	CTR	0.25	0.6		
Collector-emitter saturation voltage $I_F = 10 \text{ mA}$, $I_C = 1 \text{ mA}$	V _{CEsat} *)			0.3	V
Cut-off frequency $I_{\rm F}=5$ mA, $V_{\rm CE}=5$ V, $R_{\rm L}=100~\Omega$	f _c		170		kHz
Coupling capacitance f = 1 MHz	C _k		0.3		pF
Switching characteristics $V_{\rm S} = 5$ V, $I_{\rm C} = 5$ mA, $R_{\rm L} = 100~\Omega$, see test circuit					
Delay time	$t_{\sf d}$		1.8		μs
Rise time	t _r		1.6		μ S
Turn-on time	t _{on}		3.4		μs
Storage time	ts		0.3		μs
Fall time	t_{f}		1.7		μ S
Turn-off time	$t_{\rm off}$		2.0		μ S

^{*)} AQL = 0.65 %

¹⁾ related to standard climate 23/50 DIN 50 014

Test circuit

Photon coupled interrupter modules

Construction Emitter: GaAs-IR Infrared Emitting Diode

Detector: Silicon NPN Epitaxial Planar Phototransistor

Applications: Opto-electronic scanning and switching devices i. e., index sensing, coded

disk scanning etc. (opto-electronic enconder assemblies for transmissive sensing)

Features:

Compact construction

CNY 36 for printed circuit board

CNY 37 with mounting flange

No setting efforts

- Contact free switching, therefore, high reliability
- Plastic case

Dimensions in mm

Redient eeneitive zone [] 1.0 at the crossover. | 12.55 sees | 12.55 sees | 10.1 to |

CNY 36

CNY 37

Plastic case

Absolute maximum ratings			
Emitter			
Reverse voltage	V_{R}	5	V
Forward current	I _F	60	mA
Forward surge current			
$\frac{t_{\rm p}}{T}$ = 0.01, $t_{\rm p}$ \leq 0.1 ms	I _{FSM}	1	Α
Power dissipation			
$T_{amb} \leq 25^{\circ}C$	P_{\vee}	100	mW
Junction temperature	$T_{\rm j}$	85	°C
Detector			
Collector-emitter voltage	$V_{\sf CEO}$	32	V
Emitter-collector voltage	$V_{\sf ECO}$	5	V
Collector current	Ic	100	mA
Power dissipation			
$T_{amb} \leq 25^{\circ}C$	P_{V}	150	mW
Junction temperature	$T_{\mathbf{j}}$	85	°C
Coupled device			
Total power dissipation			
$T_{amb} \leq 25^{\circ} C$	P_{tot}	250	mW
Storage temperature range	\mathcal{T}_{stg}	-25+85	°C
Soldering temperature, maximal $t \le 3$ s	$T_{\rm sd}^{-1}$)	245	°C

^{*)} AQL = 0.65 %

¹) Distance from the touching border ≥ 2 mm

Eiectricai	charac	teristics
------------	--------	-----------

$$T_{\rm amb} = 25^{\circ} \rm C$$

Emitter

Forward voltage

 $I_F = 20 \text{ mA}$

Breakdown voltage

 $I_{\rm R} = 100 \, \mu {\rm A}$

Junction capacitance

 $V_{\rm R} = 0, f = 1 \, \rm MHz$

Detector

Collector-emitter breakdown voltage

 $I_{\rm C} = 1 \, {\rm mA}$

Collector dark current

 $V_{CE} = 10 \text{ V}, I_F = 0, E = 0$

Min. Max. Тур.

 V_F^*)

1.2 1.5

 $V_{(BR)}^{*}$

 C_{j}

50

pF

 $V_{(BR) CEO}^{\star})$

32

 I_{CEO}^*)

100

nΑ

^{*)} AQL = 0.65 %

		Min.	Тур.	Max.	
Coupled device					
Collector current $V_{CE} = 10 \text{ V}, I_F = 20 \text{ mA}$	I _C	0.2	0.8		mA
Current transfer ratio $V_{CE} = 10 \text{ V}, I_F = 20 \text{ mA}$	CTR	0.01	0.04		
Collector dark current $V_{CE} = 10 \text{ V}, I_F = 20 \text{ mA}, E = 0,$, 1		0.1		μΑ
closed aperture	I _{CEO} 1)		0.1		μ
Collector-emitter saturation voltage $I_{\rm C}=25~\mu{\rm A}, I_{\rm F}=20~{\rm mA}$	V _{CEsat} *)			0.4	V
Switching characteristics $V_{\rm S}=$ 10 V, $I_{\rm C}=$ 2 mA, $R_{\rm L}=$ 100 Ω , see test circuit					
Delay time	$t_{\sf d}$		1.8		μ S
Rise time	t _r		2.5		μs
Turn-on time	ton		4.3		μ s
Storage time	ts		0.3		μ S
Fall time	t _f		3.3		μ s
Turn-off time	$t_{ m off}$		3.6		μ s
$R_{\rm G}=50~\Omega$ $l_{\rm F}$ $l_{\rm C}=2~{\rm mA}$; adjust input $l_{\rm C}=50~{\rm mA}$; adjust input $l_{\rm p}=50~{\rm ma}$; and $l_$	ted through amplitude Oscilloscope $R_L \ge 1 \text{ M}\Omega$ $C_L \le 20 \text{ pF}$				

Test circuit

^{*)} AQL = 0.65 % 1) Scattering limits: $0.03 ... 1 \mu A$

Optically Coupled Isolator

Construction Emitter:

GaAs Infrared Emitting Diode

Detector:

Silicon NPN Epitaxial Planar Phototransistor

Applications:

Galvanically separated circuits.

Non-interacting switches

Features:

● DC isolation voltage 8.2 kV-

- Nominal isolation operating voltage¹) 1000 V~ or 1200 V− for isolation group B according to VDE 0110 b/2.79
- Test class 25/100/21 DIN 40 045

- Low coupling capacity typ. 0.3 pF
- Current transfer ratio typ. 1
- Also available as a device for intrinsically safe circuits: CNY 64 Exi2)

Preliminary specifications

Dimensions in mm

Creeping distance ≥ 9.5 mm³) Air path $\geq 9.5 \text{ mm}^3$) Plastic case Weight max. 1.5 g

¹⁾ Certificate according to VDE 0883/6.80 in applied

²⁾ According to EN 50 020 or VDE 0170/0171 from 5. 78. PTB certificate is applied.

 $^{^3}$) Creeping current resistance: Group III (KB > 600 - KC > 600) according to VDE 0110 b/2.79 \S 6 table 3 and DIN 53 480 / VDE 0303 part 1/10.76

Absolute maximum ratings

Emitter			
Reverse voltage	V_{R}	5	V
Forward current	l _F	75	mA
Forward surge current $t_p \le 10 \ \mu s$	I _{FSM}	1.5	Α
Power dissipation $T_{amb} \le 25 ^{\circ}\text{C}$	P _V	120	mW
Junction temperature	$T_{\mathbf{i}}$	100	°C
Detector			
Collector-emitter voltage	$V_{\sf CEO}$	32	V
Emitter-collector voltage	$V_{\sf ECO}$	7	V
Collector current	I _C	50	mA

 I_{CM}

 P_V

 T_{i}

 P_{tot}

 $T_{amb} \le 25^{\circ} C$ Junction temperature

Power dissipation

Peak collector current $\frac{t_{\rm p}}{T} = 0.5, t_{\rm p} \le 10 \; {\rm ms}$

Coupled device

DC isolation voltage t = 1 min

Total power dissipation $T_{amb} \le 25 \,^{\circ}\text{C}$

Storage temperature range

V_{is}^{1})	8.2	kV
V 15 /	0.2	

100

130

100

250

mΑ

mW

°C

mW

°C

 $T_{\rm stg} = -55... + 100$

¹⁾ related to standard climate 23/50 DIN 50 014

Electrical characteristics $T_{amb} = 25^{\circ}C$		Min.	Тур.	Max.	
Emitter					
Forward voltage I _F = 50 mA	V _F *)		1.25	1.6	v
Breakdown voltage $I_{\rm R} = 100 \mu {\rm A}$	V _(BR) *)	5			v
Junction capacitance $V_{R} = 0, f = 1 \text{ MHz}$	C _i		50		pF
Detector					
Collector-emitter breakdown voltage $I_C = 1 \text{ mA}$	V _{(BR) CEO} *)	32			V
Emitter-collector breakdown voltage $I_{\rm E} = 100 \mu {\rm A}$	V _{(BR) ECO} *)	7			٧
Collector cut-off current $V_{CE} = 20 \text{ V}, I_F = 0, E = 0$	/ _{CEO} *)		10	200	nA
Coupled device					
DC isolation voltage t = 1 min	$V_{is}^{\star})^{\mathtt{1}})$	8.2			kV
Isolation resistance $V_{\rm is} = 1000 \text{ V}$, 40 % rel. humidity	R _{is} 1)		10 ¹²		Ω
Collector current $I_F = 10 \text{ mA}, V_{CE} = 5 \text{ V}$ $I_F = 20 \text{ mA}, V_{CE} = 5 \text{ V}$	/c*) /c*)	5 12	10	30	mA mA
Current transfer ratio $I_F = 10 \text{ mA}, V_{CE} = 5 \text{ V}$	CTR	0.5	1.0	3.0	
Collector-emitter saturation voltage $I_F = 10 \text{ mA}, I_C = 1 \text{ mA}$	V _{CEsat} *)			0.3	٧
Cut-off frequency $I_{\rm F}=$ 10 mA, $V_{\rm CE}=$ 5 V, $R_{\rm L}=$ 100 Ω	f _c		110		kHz
Coupling capacitance f = 1 MHz	C _k		0.3		p F

^{*)} AQL = 0.65 % 1) related to standard climate 23/50 DIN 50 014

		Min.	Тур.	Max.	
Switching characteristics $V_{\rm S}=5~{\rm V,}~I_{\rm C}=5~{\rm mA,}~R_{\rm L}=100~\Omega, {\rm see}$	test circuit				
Delay time	$t_{\sf d}$		2.5		μ S
Rise time	$t_{\rm r}$		4.5		μ S
Turn-on time	ton		7.0		μ S
Storage time	t _s		0.3		μ S
Fall time	$t_{\rm f}$		3.7		μS
Turn-off time	t _{off}		4.0		μS

Test circuit

Optically Coupled Isolator

Construction Emitter: GaAs Infrared Emitting Diode

Detector: Silicon NPN Epitaxial Planar Phototransistor

Applications: Galvanically separated circuits,

Non-interacting switches

Features:

- DC isolation voltage 11.6 kV-
- Nominal isolation operating voltage¹)
 1500 V~ or 1800 V– for isolation group B according to VDE 0110 b/2.79
- Test class 25/100/21 DIN 40 045

- Low coupling capacity typ. 0.3 pF
- Current transfer ratio typ. 1
- Also available as a device for intrinsically safe circuits: CNY 65 Exi²)

Preliminary specifications

Dimensions in mm

Creeping distance ≥ 14.5 mm³)
Air path ≥ 14.5 mm³)
Plastic case
Weight max. 1.5 g

¹⁾ UL Recognised, File No. E-76 222, dated 28. 4. 81; Certificate according to VDE 0883/6.80 is applied

²) According to EN 50 020 or VDE 0170/0171 from 5. 78. PTB certificate is applied.

³) Creeping current resistance: Group III (KB > 600– KC > 600) according to VDE 0110 b/2.79 § 6 table 3 and DIN 53 480 / VDE 0303 part 1/10.76

Absolute maximum ratings			
Emitter			
Reverse voltage	V_{R}	5	٧
Forward current	I _F	75	mA
Forward surge current $t_p \le 10 \ \mu s$	I _{FSM}	1.5	Α
Power dissipation $T_{amb} \le 25^{\circ} C$	P_{V}	120	mW
Junction temperature	\mathcal{T}_{j}	100	°C
Detector			
Collector-emitter voltage	$V_{\sf CEO}$	32	V
Emitter-collector voltage	$V_{\sf ECO}$	7	٧
Collector current	I _C	50	mA
Peak collector current			
$\frac{t_{\rm p}}{T} = 0.5, t_{\rm p} \le 10 \text{ ms}$	I _{CM}	100	mA
Power dissipation $T_{amb} \le 25^{\circ} C$	P_{V}	130	mW
Junction temperature	T_{j}	100	°C
Coupled device			
DC isolation voltage	$V_{is}^{-1})$	11.6	kV
Total power dissipation $T_{amb} \le 25^{\circ} C$	$P_{ m tot}$	250	mW
Storage temperature range	\mathcal{T}_{stg}	-55+100	°C

¹⁾ related to standard climate 23/50 DIN 50 014

Electrical characteristics $T_{amb} = 25^{\circ} C$		Min.	Тур.	Max.	
Emitter					
Forward voltage $I_{\rm F} = 50 \text{ mA}$	V _F *)		1.25	1.6	٧
Breakdown voltage $I_{\rm R}=100~\mu{\rm A}$	V _(BR) *)	5			٧
Junction capacitance $V_{\rm R}=0, f=1{\rm MHz}$	C _j		50		pF
Detector					
Collector-emitter breakdown voltage $I_{\rm C}=1~{\rm mA}$	V _{(BR) CEO} *)	32			V
Emitter-collector breakdown voltage $I_{\rm E}=100~\mu{\rm A}$	V _{(BR) ECO} *)	7			V
Collector cut-off current $V_{CE} = 20 \text{ V}, I_F = 0, E = 0$	/ _{CEO} *)		10	200	nA
Coupled device					
DC isolation voltage $t = 1 \text{ min}$	V _{is} *) ¹)	11.6			kV
Isolation resistance $V_{is} = 1000 \text{ V}$, 40 % rel. humidity	R _{is} 1)		10 ¹²		Ω
Collector current $I_F = 10 \text{ mA}, V_{CE} = 5 \text{ V}$ $I_F = 20 \text{ mA}, V_{CE} = 5 \text{ V}$	/ _C *) / _C *)	5 12	10	30	mA mA
Current transfer ratio $I_F = 10 \text{ mA}, V_{CE} = 5 \text{ V}$	CTR	0.5	1.0	3.0	
Collector-emitter saturation voltage $I_F = 10 \text{ mA}$, $I_C = 1 \text{ mA}$	V _{CEsat} *)			0.3	٧
Cut-off frequency $I_{\rm F}=10$ mA, $V_{\rm CE}=5$ V, $R_{\rm L}=100~\Omega$	f _c		110		kHz
Coupling capacitance f = 1 MHz	C _k		0.3		pF

^{*)} AQL = 0.65 %

¹⁾ related to standard climate 23/50 DIN 50 014

Switching characteristics $V_{S} = 5 \text{ V, } I_{C} = 5 \text{ mA, } R_{L} = 100 \ \Omega, \text{ so}$	ee test circuit	Min.	Тур.	Max.	
Delay time	$t_{\sf d}$		2.5		μ S
Rise time	t_{r}		4.5		μ S
Turn-on time	$t_{\sf on}$		7.0		μ S
Storage time	t_{s}		0.3		μs
Fall time	t_{f}		3.7		μS
Turn-off time	t _{off}		4.0		μS

Test circuit

Optically Coupled Isolator

Construction Emitter: GaAs Infrared Emitting Diode

Detector: Silicon NPN Epitaxial Planar Phototransistor

Applications: Galvanically separated circuits,

Non-interacting switches

Features:

- DC isolation voltage 15 kV-
- Nominal isolation operating voltage¹)
 2000 V~ or 2400 V– for isolation group B
 according to VDE 0110 b/2.79
- Test class 25/100/21 DIN 40 045

- Low coupling capacity typ. 0.3 pF
- Current transfer ratio typ. 1
- Also available as a device for intrinsically safe circuits: CNY 66 Exi²)

Preliminary specifications

Dimensions in mm

Creeping distance \geq 17 mm³)
Air path \geq 17 mm³)
Plastic case
Weight max. 1.5 g

¹⁾ Certificate according to VDE 0883/6.80 is applied.

²) According to EN 50 020 or VDE 0170/0171 from 5. 78. PTB certificate is applied.

³) Creeping current resistance: Group III (KB > 600– KC > 600) according to VDE 0110 b/2.79 § 6 table 3 and DIN 53 480 / VDE 0303 part 1/10.76

Absolute maximum ratings			
Emitter			
Reverse voltage	V_{R}	5	V
Forward current	l _F	75	mA
Forward surge current $t_{\rm p} \leq$ 10 $\mu{\rm s}$	/ _{FSM}	1.5	Α
Power dissipation $T_{amb} \le 25 \degree C$	P _V .	120	mW
Junction temperature	$T_{\mathbf{j}}$	100	°C
Detector			
Collector-emitter voltage	$V_{\sf CEO}$	32	V
Emitter-collector voltage	$V_{\sf ECO}$	7	V
Collector current	Ic	50	mA
Peak collector current			
$\frac{t_{\rm p}}{T}=0.5, t_{\rm p}\leq 10~{\rm ms}$	I _{CM}	100	mA
Power dissipation $T_{amb} \le 25$ ° C	P_{V}	130	mW
Junction temperature	$T_{\mathbf{j}}$	100	°C
Coupled device			
DC isolation voltage	V_{is}^{1})	15	kV
Total power dissipation $T_{amb} \le 25 ^{\circ}\text{C}$	P_{tot}	250	mW
Storage temperature range	$ au_{stg}$	−55 + 100	°C

¹⁾ related to standard climate 23/50 DIN 50 014

Electrical characteristics $T_{amb} = 25 ^{\circ} C$		Min.	Тур.	Max.	
Emitter					
Forward voltage $I_{\rm F} = 50 \text{ mA}$	<i>V</i> _F *)		1.25	1.6	v
Breakdown voltage $I_{\rm R} = 100 \mu {\rm A}$	V _(BR) *)	5			v
Junction capacitance $V_{\rm H}=0, f=1{\rm MHz}$	C _i		50		pF
Detector					
Collector-emitter breakdown voltage $I_{\rm C}=1{\rm mA}$	V _{(BR) CEO} *)	32			v
Emitter-collector breakdown voltage $I_{\rm E}=100~\mu{\rm A}$	$V_{(BR)ECO}^{\star})$	7			V
Collector cut-off current $V_{CE} = 20 \text{ V}, I_F = 0, E = 0$	I _{CEO} *)		10	200	nA
Coupled device					
DC isolation voltage $t = 1$ min	V _{is} *) ¹)	15			kV
Isolation resistance $V_{\rm is} = 1000 \text{ V}$, 40 % rel. humidity	R _{is} ¹)		10 ¹²		Ω
Collector current $I_F = 10 \text{ mA}, V_{CE} = 5 \text{ V}$ $I_F = 20 \text{ mA}, V_{CE} = 5 \text{ V}$	/ _C *) / _C *)	5 12	10	30	mA mA
Current transfer ratio $I_F = 10 \text{ mA}, V_{CE} = 5 \text{ V}$	CTR	0.5	1.0	3.0	
Collector-emitter saturation voltage $I_F = 10 \text{ mA}, I_C = 1 \text{ mA}$	V _{CEsat} *)			0.3	v
Cut-off frequency $I_{\rm F}=10~{\rm mA},~V_{\rm CE}=5~{\rm V},~R_{\rm L}=100~\Omega$	f _c		110		kHz
Coupling capacitance f = 1 MHz	C_{k}		0.3		рF

^{*)} AQL = 0.65 %

¹⁾ related to standard climate 23/50 DIN 50 014

		Min.	Тур.	Max.	
Switching characteristics					
$V_{\rm S}=5$ V, $I_{\rm C}=5$ mA, $R_{\rm L}=100~\Omega$, se	ee test circuit				
Delay time	$t_{\sf d}$		2.5		μ S
Rise time	t _r		4.5		μ S
Turn-on time	ton		7.0		μ S
Storage time	t_{s}		0.3		μ S
Fall time	t_{f}		3.7		μ S
Turn-off time	$t_{ m off}$		4.0		μ s

Test circuit

Reflective Optocoupler

Construction Emitter: GaAs-IR Infrared Emitting Diode

Detector: Silicon NPN Epitaxial Planar Phototransistor

Applications: Opto-electronic scanning and switching devices i. e., index sensing, coded

disk scanning etc. (opto-electronic encoder assemblies for transmissive sensing)

Features:

 Compact construction in centre-to-centre spacing of 0.1"

- No setting efforts
- High signal output

- Low temperature coefficient
- Low ambient light sensitivity due to IR-filter

Preliminary specifications

Dimensions in mm

Plastic case Weight ca. 0.7 g

Absolute maximum ratings			
Emitter			
Reverse voltage	V_{R}	5	V
Forward current	I _F	50	mA
Forward surge current $t_p \le 10 \ \mu s$	/ _{FSM}	3	Α
Power dissipation $T_{amb} \le 25^{\circ} C$	P_{V}	100	mW
Junction temperature	T_{i}	100	°C
Detector			
Collector-emitter voltage	$V_{\sf CEO}$	32	V
Emitter-collector voltage	$V_{\sf ECO}$	5	V
Collector current	I _C	50	mA
Power dissipation $T_{amb} \le 25^{\circ} C$	Pv	100	mW
Junction temperature	$T_{\mathbf{i}}$	100	°C
Coupled device			
Total power dissipation $T_{amb} \le 25^{\circ} C$	P_{tot}	200	mW
Storage temperature range	\mathcal{T}_{stg}	-55+100	°C
Soldering temperature, maximal $t \le 3$ s	T_{sd}^{-1})	245	°C

 $^{^{1}}$) Distance from the touching border \geq 2 mm

Electrical characteristics $T_{\rm amb} = 25{\rm ^{\circ}C}$		Min.	Тур.	Max.	
Emitter					
Forward voltage $I_{\rm F} = 50 \text{ mA}$	V _F *)		1.25	1.6	٧
Breakdown voltage $I_{\rm R} = 100 \mu{\rm A}$	V _(BR) *)	5			v
Detector					
Collector-emitter breakdown voltage $I_{\rm C}=1~{\rm mA}$	V _{(BR) CEO} *)	32			v
Emitter-collector breakdown voltage $I_{\rm E}=100~\mu{\rm A}$	V _{(BR) ECO} *)	5			٧
Collector cut-off current $V_{CE} = 20 \text{ V}, I_F = 0, E = 0$	I _{CEO} *)		10	200	nA
Coupled device					
Collector current $I_F = 20 \text{ mA}, V_{CE} = 5 \text{ V}, \alpha = 0.3 \text{ mm}$ Fig. 1	/ _C *) ²)	0.3	0.5		mA
Cross talk current $I_F = 20 \text{ mA}, V_{CE} = 5 \text{ V}$	I _{CX} ³			200	nA
Collector-emitter saturation voltage $I_{\rm F} = 20{\rm mA}, I_{\rm C} = 0.1{\rm mA}, \alpha = 0.3{\rm mm}$ Fig. 1	V _{CEsat} *) ²)			0.3	V
Reflectin (Kodek ne	utrel test cerd)				

81 2821 0

Fig. 1 Test circuit

^{*)} AQL = 0.65 %

 $^{^{\}rm 2})$ Measured with the "Kodak neutral test card", white side with 90 % diffuse reflectance

³⁾ Measured without reflecting medium

Optically Coupled Isolator

Construction Emitter: GaAs-IR Infrared Emitting Diode

Detector: Silicon NPN Epitaxial Planar Phototransistor

Applications: Galvanically separated circuits non-interacting switches

Features:

- DC isolation voltage 5.3 kV-1)
- Nominal isolation operating voltage¹)
 500 V~ or 600 V- for isolation group C according to VDE 0110 b/2.79
- Test class 25/100/21 DIN 40 045

- Current transfer ratio CTR = 0.63...3.2
- Current transfer ratio selected in groups
- Low temperature coefficient of the CTR

Preliminary specifications

Dimensions in mm

Creeping distance ≥ 8.6 mm²)

Air path ≥ 7.4 mm²)

Plastic case

Weight ca. 0.7 g

¹⁾ According to VDE 0883/6.80. VDE-certificate is applied.

 $^{^2}$) Creeping current resistance: Group I according to VDE 0110 § 6 table 3 and DIN 53 480/VDE 0303 part 1 S 1.2. 137/0781 E

Absolute maximum ratings			
Emitter			
Reverse voltage	V_{R}	5	V
Forward current	I _F	60	mA
Forward surge current $t_p \le 10 \mu s$	I _{FSM}	3	Α
Power dissipation $T_{amb} \le 25^{\circ} C$	P_{V}	100	mW
Junction temperature	$T_{\rm j}$	100	°C
Detector			
Collector-base voltage	V_{CBO}	80	٧
Collector-emitter voltage	$V_{\sf CEO}$	70	٧
Emitter-collector voltage	$V_{\sf ECO}$	7	٧
Collector current	I _C	50	mA
Collector peak current			
$\frac{t_{\rm p}}{T}=0.5, t_{\rm p}\leq 10~{\rm ms}$	I _{CM}	100	mA
Power dissipation	_		
$T_{amb} \leq 25^{\circ}C$	P_{V}	150	mW
Junction temperature	T_{j}	100	°C
Coupled device			
DC isolation voltage	V_{is}^{-1})	5.3	kV
Total power dissipation $T_{amb} \le 25^{\circ} C$	P_{tot}	250	mW
Storage temperature range	\mathcal{T}_{stg}	-55+100	°C
Soldering temperature, maximal $t \le 10 \text{ s}$	$T_{\rm sd}^2$)	260	°C

¹⁾ related to standard climate 23/50 DIN 50 014

 $^{^{2})}$ Distance from the touching border $\geq 2~\text{mm}$

Electrical characteristics $\mathcal{T}_{amb} = 25 ^{\circ} \text{C}$			Min.	Тур.	Max.	
Emitter						
Forward voltage I _F = 50 mA		V _F *)		1.25	1.6	V
Breakdown voltage $I_{\rm R} = 100 \ \mu {\rm A}$		V _(BR) *)	5			v
Junction capacitance $V_{\rm R}=0, f=1$ MHz		$C_{\rm j}$		50		рF
Detector						
Collector-emitter breakdown voltage $I_{\rm C}=100\mu{\rm A}$		V _{(BR)CBO} *)	80			V
Collector-emitter breakdown voltage $I_{\rm C}=1~{\rm mA}$		V _{(BR) CEO} *)	70			٧
Emitter-collector breakdown voltage $I_{\rm E}=$ 100 $\mu{\rm A}$		V _{(BR) ECO} *)	7			٧
Collector cut-off current $V_{CE} = 30 \text{ V}, I_F = 0, E = 0$		I _{CEO} *)		30	150	nA
Coupled device						
DC isolation voltage $t = 1 \text{ min}$		V _{is} **) 1)	5.3			kV
Isolation resistance $V_{is} = 1 \text{ kV}, 40 \% \text{ relative humidity}$		R _{is} 1)		10 ¹²		Ω
Collector current						
$V_{\rm CE} = 5 \text{V}, I_{\rm F} = 10 \text{mA},$	Group: A	/ _C *)	6.3		12.5	mA
	B C	/ _C *) / _C *)	10 16		20 32	mA mA
Current transfer ratio	•	,	10		02	IIIA
$V_{\text{CE}} = 5 \text{ V}, I_{\text{F}} = 10 \text{ mA},$	Group: A	CTR	0.63		1.2	
	В	CTR	1.0		2.0	
	С	CTR	1.6		3.2	
Collector-emitter saturation voltage $I_F = 10 \text{ mA}$, $I_C = 1 \text{ mA}$		V _{CEsat} *)			0.3	٧
Cut-off frequency $V_{\rm CE} = 5$ V, $I_{\rm F} = 10$ mA, $R_{\rm L} = 100~\Omega$		f _c		110		kHz
Coupling capacitance f = 1 MHz		C_{k}		0.3		рF

^{*)} AQL = 0.65 % **) AQL = 2.5 %

¹⁾ related to standard climate 23/50 DIN 50 014

Switching characteristics $\label{eq:VS} \textit{V}_{\text{S}} = 5 \text{ V, } \textit{I}_{\text{C}} = \text{10 mA, } \textit{R}_{\text{L}} = \text{100 } \Omega \text{, see test circuit}$		Min.	Тур.	Max.	
Delay time	$t_{\sf d}$		2.5		μ S
Rise time	t_{r}		3.5		μ S
Turn-on time	$t_{\sf on}$		6.0		μ S
Storage time	ts		0.3		μs
Fall time	t_{f}		3.2		μ S
Turn-off time	t_{off}		3.5		μS

Test circuit

Optically Coupled Isolator

Construction Emitter: GaAs Infrared Emitting Diode

Detector: Silicon NPN Epitaxial Planar Phototransistor

Applications: Galvanically separated circuits, non-interacting switches

Features:

- Isolation voltage 4.4 kV-
- Nominal isolation operating voltage¹)
 500 V~ or 600 V- for isolation group C according to VDE 0110/11.72
- Test class 25/100/21 DIN 40 045

- Low coupling capacity typ. 0.3 pF
- Current transfer ratio typ. 0.6
- Low temperature coefficient of the CTR

Preliminary specifications

Dimensions in mm

Creeping distance ≥ 8.6 mm²)

Air path ≥ 7.4 mm²)

Plastic case

Weight ca. 0.7 g

¹⁾ According to VDE test certificate dated 16. 6. 1977/27. 2. 1980. Certificate according to VDE 0883/6.80 is applied.

²) Creeping current resistance: Group I according to VDE 0110 § 6 table 3 and DIN 53 480/VDE 0303 part 1 S 1.2. 138/0781 E

CQY 80 N

Absolute maximum ratings			
Emitter			
Reverse voltage	V_{R}	5	V
Forward current	I _F	60	mA
Forward surge current $t_{\rm p} \leq$ 10 $\mu{\rm s}$	I _{FSM}	3	Α
Power dissipation $T_{amb} \le 25 \degree C$	P_{V}	100	mW
Junction temperature	$ au_{ m j}$	100	°C
Detector			
Collector-emitter voltage	$V_{\sf CEO}$	32	V
Emitter-collector voltage	$V_{\sf ECO}$	7	V
Collector current	I _C	50	mA
Collector peak current			
$\frac{t_{\rm p}}{T}=0.5,t_{\rm p}\le 10\;{\rm ms}$	I _{CM}	100	mA
Power dissipation		150	mW
$T_{amb} \leq 25^{\circ}C$	P_{V}		°C
Junction temperature	$T_{\rm j}$	100	30
Coupled device			
DC isolation voltage	V_{is}^{1})	4.4	kV
Total power dissipation $T_{amb} \le 25^{\circ} C$	P_{tot}	250	mW
Storage temperature range	\mathcal{T}_{stg}	−55 +100	°C
Soldering temperature, maximal $t \le 10 \text{ s}$	$T_{\rm sd}^2$)	260	°C

¹⁾ related to standard climate 23/50 DIN 50 014

 $^{^{2})}$ Distance from the touching border $\geq 2~\text{mm}$

Electrical characteristics T _{amb} = 25°C		Min.	Тур.	Max.	
Emitter					
Forward voltage $I_F = 50 \text{ mA}$	V _F *)		1.25	1.6	v
Breakdown voltage $I_{R} = 100 \mu\text{A}$	V _(BR) *)	5			V
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$	C _j		50		pF
Detector					
Collector-emitter breakdown voltage $I_{\rm C}=1~{\rm mA}$	$V_{(BR)CEO^{\star})}$	32			v
Emitter-collector breakdown voltage $I_{\rm E}=100~\mu{\rm A}$	V _{(BR) ECO} *)	7			٧
Collector cut-off current $V_{CE} = 20 \text{ V}, I_F = 0, E = 0$	/ _{CEO} *)		10	200	nA
Coupled device					
DC isolation voltage t = 1 min	$V_{is}^{-1})$	4.4			kV
Isolation resistance $V_{is} = 1 \text{ kV}$, 40 % relative humidity	R _{is} ¹)		10 ¹²		Ω
Collector current $V_{CE} = 5 \text{ V}, I_F = 10 \text{ mA}$ $I_F = 20 \text{ mA}$	/c*) /c*)	5.0 12	9.0		mA mA
Current transfer ratio $V_{CE} = 5 \text{ V}, I_F = 10 \text{ mA}$	CTR	0.5	0.9		
Collector-emitter saturation voltage $I_F = 10 \text{ mA}$, $I_C = 1 \text{ mA}$	V _{CEsat} *)			0.3	V
Cut-off frequency $V_{\rm CE} = 5 \text{ V}, I_{\rm F} = 10 \text{ mA}, R_{\rm L} = 100 \Omega$	f _c		110		kHz
Coupling capacitance f = 1 MHz	C _k		0.3		рF

^{*)} AQL = 0.65 %

¹⁾ related to standard climate 23/50 DIN 50 014

CQY 80 N

Switching characteristics $V_{\rm S}=5$ V, $I_{\rm C}=5$ mA, $R_{\rm L}=100$ Ω , see test circuit		Min.	Тур.	Max.	
Delay time	t_{d}		2.5		μ S
Rise time	t_{r}		4.5		μ S
Turn-on time	t_{on}		7.0		μ S
Storage time	ts		0.3		μ S
Fall time	t_{f}		3.7		μS
Turn-off time	$t_{ m off}$		4.0		μs

Test circuit

CQY 80 N

Optically Coupled Isolators

Construction Emitter: GaAs Infrared Emitting Diode

Detector: Silicon NPN Epitaxial Planar Phototransistor

Applications: Galvanically separated circuits, non-interacting switches

Features:

Isolation voltage

 $4 N 25 - V_{is} = 2.5 kV$

 $4 N 26 - V_{is} = 1.5 kV$

 $4 N 27 - V_{is} = 1.5 kV$

- Low coupling capacity typ. 1 pF
- Current transfer ratio typ. 0.3/0.5
- Low temperature coefficient of the CTR

Preliminary specifications

Dimensions in mm

Plastic case Weight ca. 0.7 g

4 N 25 · 4 N 26 · 4 N 27

Absolute maximum ratings				
Emitter				
Reverse voltage		V_{R}	5	V
Forward current		I _F	60	mA
Forward surge current $t_p \le 10 \mu\text{s}$		I _{FSM}	3	Α
Power dissipation $T_{amb} \le 25 \degree C$		P _V	100	mW
Junction temperature		$T_{\mathbf{j}}$	100	°C
Detector				
Collector-base voltage		V_{CBO}	70	V
Collector-emitter voltage		$V_{\sf CEO}$	30	V
Emitter-collector voltage		$V_{\sf ECO}$	7	V
Collector current		Ic	50	mA
Peak collector current				
$\frac{t_{\rm p}}{T} = 0.5, t_{\rm p} \le 10 \text{ ms}$		I _{CM}	100	mA
Power dissipation $T_{amb} \le 25^{\circ}C$		P _V	150	mW
Junction temperature		$T_{\rm j}$	100	°C
Coupled device				
DC isolation voltage	4 N 25 4 N 26, 4 N 27	V_{is}^{1}) V_{is}^{1})	2.5 1.5	kV kV
Total power dissipation $T_{amb} \le 25^{\circ}C$		P_{tot}	250	mW
Storage temperature range		$T_{ m stg}$	−55 +100	°C
Soldering temperature, maximal $t \le 10 \text{ s}$		$T_{\rm sd}^2$)	260	°C

¹⁾ related to standard climate 23/50 DIN 50 014

 $^{^{2}}$) Distance from the touching border \geq 2 mm

4 N 25 · 4 N 26 · 4 N 27

Electrical characteristics		Min.	Тур.	Max.	
Emitter					
Forward voltage $I_{\rm F} = 50 \text{ mA}$	V _F *)		1.25	1.5	V
Breakdown voltage $I_R = 100 \mu\text{A}$	V _(BR) *)	5			V
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$	C _j		50		ρF
Detector					
Collector-base breakdown voltage $I_C = 100 \mu A$	V _{(BR) CBO} *)	70			V
Collector-emitter breakdown voltage $I_C = 1 \text{ mA}$	V _{(BR) CEO} *)	30			v
Emitter-collector breakdown voltage $I_{\rm E} = 100 \mu {\rm A}$	V _{(BR) ECO} *)	7			V
Collector cut-off current $V_{CB} = 10 \text{ V}, I_F = 0, E = 0$ $V_{CE} = 10 \text{ V}, I_E = 0, E = 0$	I _{CBO} *) I _{CEO} *)		0.1 3.5	20 50	nA nA
Coupled device					
Isolation voltage $t = 1 \text{ min}$ 4 N 25 4 N 26, 4 N 27	V _{is} ¹) V _{is} ¹)	2.5 1.5			kV kV
Isolation resistance $V_{is} = 1 \text{ kV}$, 40 % relative humidity	R _{is} ¹)		10 ¹²		Ω
Collector current $I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V},$ 4 N 25, 4 N 26 4 N 27	/c*) /c*)	2 1	5 3		mA mA
Current transfer ratio $I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V}$ 4 N 25, 4 N 26 4 N 27	CTR CTR	0.2 0.1	0.5 0.3		
Collector-emitter saturation voltage $I_F = 50 \text{ mA}$, $I_C = 2 \text{ mA}$	V _{CEsat} *)			0.5	٧
Cut-off frequency $I_{\rm F}=$ 10 mA, $V_{\rm CE}=$ 5 V, $R_{\rm L}=$ 100 Ω	f _c		110		kHz
Coupling capacitance $f = 1 \text{ MHz}$	C_{k}		1		рF

^{*)} AQL = 0.65 % 1) related to standard climate 23/50 DIN 50 014

4 N 25 · 4 N 26 · 4 N 27

Switching characteristics $V_{\rm S} = 10 \ \text{V}, I_{\rm C} = 10 \ \text{mA}, R_{\rm L} = 10$	0 Ω , see test circuit	Min.	Тур.	Max.
Turn-on time	t_{on}		6	μs
Turn-off time	$t_{ m off}$		4	μs
R _Q = 50 Ω (p) = 0.01 (p) = 50 μs 81 2830 6	$I_{\rm C}=10~{\rm mA}$; adjuated through input amplitude Channel I Oacilloscope Channel II $R_{\rm L} \ge 1~{\rm M}\Omega$ $I_{\rm C} \le 20~{\rm pF}$			

Test circuit

Optically Coupied Isolators

Detector: Silicon NPN Epitaxial Planar Phototransistor

Applications: Galvanically separated circuits, non-interacting switches

Features:

Isolation voltage

 $4 N 35 - V_{is} = 3.55 kV$

 $4 N 36 - V_{is} = 2.5 kV$

 $4 N 37 - V_{is} = 1.5 kV$

● Low coupling capacity typ. 0.3 pF

● Current transfer ratio > 1

Low temperature coefficient of the CTR

Preliminary specifications

Dimensions in mm

Plastic case Weight ca. 0.7 g

4 N 35 · 4 N 36 · 4 N 37

Absolute maximum ratings				
Emitter				
Reverse voltage		V_{R}	6	٧
Forward current		I _F	60	mA
Forward surge current $t_p \le 10 \mu s$		I _{FSM}	3	. A
Power dissipation $T_{amb} \le 25^{\circ} C$		P _V	100	mW
Junction temperature		T_{j}	100	°C
Detector				
Collector-base voltage		V_{CBO}	70	٧
Collector-emitter voltage		$V_{\sf CEO}$	30	٧
Emitter-collector voltage		V _{ECO}	7	٧
Collector current		/c	50	m A
Peak collector current				
$\frac{t_{\rm p}}{T}$ = 0.5, $t_{\rm p}$ \leq 10 ms		/ _{CM}	100	mA
Power dissipation $T_{amb} \le 25^{\circ} C$		P _V	150	mW
Junction temperature		$T_{\rm j}$	100	°C
Coupled device				
Isolation voltage	4 N 35 4 N 36 4 N 37	V_{is}^{1}) V_{is}^{1}) V_{is}^{1})	3.55 2.5 1.5	kV kV kV
Total power dissipation $T_{amb} \le 25 ^{\circ}\text{C}$		P _{tot}	250	mW
Storage temperature range		$T_{ m stg}$	-55+1 00	°C
Soldering temperature, maximal $t \le 10 \text{ s}$		$T_{\rm sd}^2$)	260	°C

¹⁾ related to standard climate 23/50 DIN 50 014

²) Distance from the touching border ≥ 2 mm

Electrical characteristics			Min.	Тур.	Max.	
Emitter						
Forward voltage $I_F = 10 \text{ mA}$ $I_F = 10 \text{ mA}$, $T_{amb} = 100 ^{\circ}\text{C}$		V _F *) V _F		1.2	1.5 1.4	V V
Breakdown voltage $I_{\rm R}=10\mu{\rm A}$		$V_{(BR)}{}^\star)$	6			٧
Junction capacitance $V_{R} = 0, f = 1 \text{ MHz}$		C _j		50		рF
Detector						
Collector-base breakdown voltage $I_C = 100 \mu A$		V _{(BR) CBO} *)	70			v
Collector-emitter breakdown voltage $I_C = 1 \text{ mA}$		V _{(BR) CEO} *)	30			v
Emitter-collector breakdown voltage $I_{\rm E} = 100 \mu {\rm A}$		V _{(BR) ECO} *)	7			V
Collector cut-off current $V_{\text{CE}} = 10 \text{ V}, I_{\text{F}} = 0, E = 0$ $V_{\text{CE}} = 30 \text{ V}, I_{\text{F}} = 0, E = 0, T_{\text{amb}} = 100^{\circ}$	С	/ _{CEO} *) / _{CEO} *)		5	50 500	nΑ μΑ
Coupled device						
Isolation voltage						
$I_{\rm is} = 100 \mu\text{A}, t_{\rm p} = 8 \text{ms}$	4 N 35 4 N 36 4 N 37	V _{is} ¹) V _{is} ¹) V _{is} ¹)	3.55 2.5 1.5			kV kV kV
Isolation resistance $V_{is} = 1 \text{ kV}$, 40 % relative humidity		R_{is}^{-1})		10 ¹²		Ω
Collector current $I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V}, T_{amb} = 100 ^{\circ}\text{C}$		/c*) /c	10 4			mA mA
Current transfer ratio $I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V}, T_{amb} = 100 ^{\circ}\text{C}$		CTR CTR	1 0.4			
Collector-emitter saturation voltage $I_F = 10 \text{ mA}$, $I_C = 0.5 \text{ mA}$		V _{CEsat} *)			0.3	V
Cut-off frequency $I_{\rm F} = 10 {\rm mA}, V_{\rm CE} = 5 {\rm V}, R_{\rm L} = 100 \Omega$		f _c		110	-	kHz
Coupling capacitance f = 1 MHz		C _k		0.3		pF
*) AOI = 0.65 % 1) releted to etended a	l' 00 (50	DALES O				

^{*)} AQL = 0.65 % 1) related to standard climate 23/50 DIN 50 014

4 N 35 · 4 N 36 · 4 N 37

Switching characterist $V_S = 10 \text{ V}, I_C = 2 \text{ mA},$	cs $ ho_L=$ 100 Ω , see test circuit	Min.	Тур.	Max.	
Turn-on time	$t_{\sf on}$		10		μ S
Turn-off time	$t_{ m off}$		10		μS
$R_{G} = 50 \Omega$ $\frac{l_{p}}{T} = 0.01$ $l_{p} = 50 \mu s$	$I_C=2$ mA; adjusted through input amplitude Channel I Oscilloscope Channel II $R_L \ge 1$ M Ω $I_C \le 20$ pF				

Monolithic Integrated Photo Pulse Amplifier

Applications: Pulse light barrier, photo pulse amplifier

Features:

- Integrated operational amplifier and photo detector on one chip
- External controlled photo sensitivity through R₂₋₃
- Quiescent current I_{SB} = 11 mA

- For $R_{2-3} \ge 50 \text{ k}\Omega$ internal frequency compensation
- No influence on primary illumination up to E = 15 klx, f = 100 Hz (fluorescent lamps)

Preliminary specifications

Dimensions in mm

Radiant sensitive area $A = 1 \text{ mm}^2$

Special case clear plastic DIP 6-lead Weight max. 0.8 g

U 123 P

Fig. 1 Diagram and pin connections

Absolute	maximum	ratings
----------	---------	---------

Supply voltage	Pin 6	Vs	15	٧
Output current	Pin 3	I _Q	10	mA
Total power dissipation $T_{amb} \le 25 ^{\circ} C$		P_{tot}	210	mW
Junction temperature		$T_{\rm j}$	100	°C
Ambient temperature range		T_{amb}	-20+80	°C
Storage temperature range		$T_{\rm stg}$	-20+100	°C

Thermal resistance		Min.	Тур.	Max.	
Junction ambient	R_{thJA}			350	K/W

cal and electrical characte					Гур. Мах.	
$V_{\rm S}$ = 10 V, reference point	Pin 1, $T_{amb} =$: 25°C, ur	nless otherwise	specified		
Supply voltage range		Pin 6	V s	4	12	
Quiescent current		Pin 6	I _{SB}		11	m
Output current, operational a	mplifier	Pin 3	la		5	m
Open loop voltage gain, operational amplifier						
$f \le 1 \mathrm{kHz}, \mathrm{R}_{2-3} = \infty$	Fig. 3	Pin3	$G_{\text{v (open)}}$		94	d
Output voltage change $T_{amb} = -20 + 60 ^{\circ}C$		Pin 3	△V₀		15	,
Signal to noise ratio $\Phi_{ m e}=$ 150 nW		Pin 3	$\frac{V_o}{V_{no}}$		15	c
Peak wavelength sensitivity	Fig. 6		λ_{p}	8	340	n
Range of spectral pandwidth (50 %)	Fig. 6		λ _{0.5}	620.	970 ्	n
Rise time $\Phi_{ m e}=$ 150 nW, R _{2–3} $=$ 1 M Ω	2, C _K = 10 nF		t _r		4	μ
6 5 CK		R ₂₋₃				

Fig. 2 Test circuit

U 123 P

Light Emitting Diodes

CQX 10 · CQX 40 · CQX 11 · CQX 12

LED in 2.5 x 5 mm Case

Colour	Colour Type Technology		Angle of half intensity α
Red	CQX 10	GaAsP on GaAs	50°
Orange-red	CQX 40	GaAsP on GaP	50°
Green	CQX 11	GaP on GaP	50°
Yellow	CQX 12	GaAsP on GaP	50°

Application: Scales and general indicating purposes

Features:

- Plastic case, diffuse
- End-to-end stackable in centre-to-centre spacing of 0.1" and 0.2" respectively
- Wide viewing angle

- Axial terminals
- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 50^{\circ}$

100

Special case Weight max. 0.35 g

Absolute maximum ratings Reverse voltage

Reverse voltage	V_{R}	5	٧
Forward current			
CQX 10	I _F	50	mA
CQX 40, CQX 11, CQX 12	I _F	30	mA
Forward surge current			
$t_{\rm p} \leq 10 \mu{\rm s}$	/ _{FSM}	1	Α
Power dissipation			

 P_{V}

 $T_{\rm amb} \le 70^{\circ}$

mW

Junction temperature	$ au_{ m j}$		100		°C
Storage temperature range	$T_{ m stg}$	-5	55 + 10	0	°C
Soldering temperature, maximal $t \le 5 \text{ s}$	$T_{\rm sd}^{-1}$)		260		°C
Thermal resistances		Min.	Тур.	Max.	
Junction ambient for a single diode	R_{thJA}			300	K/W
Junction ambient for diodes mounted in groups	R_{thJA}			350	K/W

Optical and electrical characteristics

 $T_{amb} = 25^{\circ}C$

ranib =0				
Туре	Luminous intensity $I_{V}^{*})^{2}$)	Peak wavelength emission $\lambda_{\rm p}$ (nm)	Spectral half bandwidth ⊿λ (nm)	Forward voltage V _F *)
	(mcd)	Typ.	Тур.	(V)
	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA
CQX 10	min. 0.8 typ. 2.0	660	20	typ. 1.6 max. 2.0
CQX 40	min. 2.0 typ. 5.0	630	40	typ. 2.2 max. 3.0
CQX 11	min. 0.8 typ. 2.6	560	40	typ. 2.7 max. 3.2
CQX 12	min. 0.8 typ. 4.2	590	40	typ. 2.4 max. 3.2

		Min.	Тур.	Max.	
Breakdown voltage $I_R = 100 \mu\text{A}$	$V_{(BR)}{}^\star)$	5			٧
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$	C_{j}		50		рF

^{*)} AQL = 0.65 % 1) Distance from the touching border \geq 1.5 mm with intermediate PC-board

 $^{^{2}}$) Luminous intensity in packing unit m = 0.5...1

I_{vav}

10 mcd 5

1

0.5

0.2-

20

50

0.2 0.1 0.05

CQX 21 · V 621 P · V 622 P · V 623 P

Blinking LED in 5 mm Case

Colour	Туре	Technology	Angle of half intensity α
Red	CQX 21	GaAsP on GaAs	80°
Orange-red	V 621 P	GaAsP on GaP	80°
Green	V 622 P	GaP on GaP	80°
Yellow	V 623 P	GaAsP on GaP	80°

Application: Blink function display

Features:

- Plastic case, diffuse
- Wide viewing angle
- Axial terminals
- Long life compared with filament lamps
- Vibration resistant
- Built-in blinkfunction ICf = 3 Hz
- Supply voltage V_S = 5 V
- Cycle start in lighted phase

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 80^{\circ}$

Special case Weight max. 0.4 g

Accessoires

Mounting clip Best.-Nr. 562 136 Retainer ring Best.-Nr. 562 135

Absolute maximum ratings

Reverse voltage	V_{R}	0.4	V
Supply voltage	V_{S}	7	V
Total power dissipation $T_{amb} \le 65^{\circ} C$	$P_{ m tot}$	200	mW
Junction temperature	$ au_{i}$	100	°C

CQX 21 · V 621 P · V 622 P · V 623 P

Ambient temperature range	\mathcal{T}_{amb}	-40+ 7 0	°C
Storage temperature range	$T_{ m stg}$	−55+100	°C
Soldering temperature, maximal t ≤ 5 s	$T_{\rm sd}^{-1}$)	260	°C

Optical and electrical characteristics

 $V_{\rm S} = 5 \text{ V}, T_{\rm amb} = 25 \,^{\circ}\text{C}, \text{ unless otherwise specified}$

Туре	Luminous intensity	Peak wavelength emission	Spectral half bandwidth 4\(\lambda\) in nm
	I _V in mcd	λ_{p} in nm Typ.	Typ.
CQX 21	min. 0.5 typ. 1.6	660	20
V 621 P	min. 2.0 typ. 5.0	630	40
V 622 P	min. 0.8 typ. 2.0	560	40
V 623 P	min. 0.8 typ. 3.0	590	40

		Min.	Тур. Мах.	
Supply voltage range	V s	4.75	7.0	V
Supply current	/ _{Son} / _{Soff}	10	35 2	mA mA
Blink frequency $T_{amb} = 25^{\circ}C$ $T_{amb} = -40 + 70^{\circ}C$	f f	1.3 1.1	5.2 7.2	Hz Hz
ON/OFF ratio	$\frac{t_{ m on}}{t_{ m off}}$		33 67	%

^{*)} AQL = 0.65 % 1) Distance from the touching border \ge 1.5 mm with intermediate PC-board

CQX 21 \cdot V 621 P \cdot V 622 P \cdot V 623 P

Blinking LED in 5 mm Case

Red light - GaAsP on GaAs

Application: Blink function display

Features:

- Wide viewing angle
- Axial terminals
- Long life compared with filament lamps
- Vibration resistant

- Built-in blinkfunction IC, f = 3 Hz
- Supply voltage V_S = 5 V
- Cycle start in lighted phase
- Blink function can be switched-off

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 80^{\circ}$

Special case Weight max. 0.42 g

Accessoires

Mounting clip Best.-Nr. 562136

Retainer ring Best.-Nr. 562135

Block diagram and pin connections

Absolute maximum ratings

Reverse voltage	Pin 1	V_{R}	0.4	V
Supply voltage	Pin 1	Vs	7	V
Total power dissipation $T_{amb} \le 70 ^{\circ}\text{C}$		P_{tot}	200	mW
Junction temperature		$T_{\rm j}$	100	°C
Ambient temperature range		T_{amb}	-40+ 70	°C
Storage temperature range		\mathcal{T}_{stg}	-55+100	°C
Soldering temperature, maximal $t \le 5 \text{ s}$		$T_{\rm sd}^{-1}$)	260	°C

Thermal resistance		Min.	Тур.	Max.	
Junction ambient	R_{thJA}			200	K/W

^{*)} AQL = 0.65 %

 $^{^{1}}$) Distance from the touching border \geq 1.5 with intermediate PC-board

Optical and electrical characteristics $V_{\rm S}=5$ V, $T_{\rm amb}=25^{\circ}$ C, unless other	erwise specifie	ed	Min.	Тур.	Max.	
Luminous intensity		I _v	0.5	1.6		mcd
Peak wavelength emission		λ_{p}		660		nm
Spectral half bandwidth		Δλ		20		nm
Supply voltage range	Pin 1	V _s	4.75		7.0	V
Supply current	Pin 1	I _{Son} I _{Soff}	10		35	mA
Blink frequency		Soft			2	mA
$T_{\text{amb}} = 25^{\circ}\text{C}$		f	1.3		5.2	Hz
$T_{amb} = -40 \ldots + 70^{\circ} C$		f	1.1		7.2	Hz
ON/OFF ratio		$\frac{t_{ m on}}{t_{ m off}}$		3367		%
Control current						
$V_{\rm SW} = 5 m V$	Pin 3	I _{SW}	10	25	50	μΑ

CQX 25 · CQX 42 · CQX 26 · CQX 27

LED in 3 mm Case

Colour	Туре	Technology	Angle of half intensity α
Red	CQX 25	GaAsP on GaAs	25°
Orange-red	CQX 42	GaAsP on GaP	25°
Green	CQX 26	GaP on GaP	25°
Yellow	CQX 27	GaAsP on GaP	25°

Application: General indicating and illumination purposes

Features:

Plastic case, white clear

Long life compared with filament lamps

Axial terminals

Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 25^{\circ}$

Special case Weight max. 0.3 g

Absolute maximum ratings

Reverse voltage	V_{R}	5	V
Forward current CQX 25	l _F	50	mA
CQX 42, CQX 26, CQX 27	/ _F	30	mA
Forward surge current $t_p \le 10 \ \mu s$	/ _{FSM}	1	А
Power dissipation $T_{amb} \le 60^{\circ}$	P _V	100	mW

CQX 25 · CQX 42 · CQX 26 · CQX 27

Junction temperature	$T_{\mathbf{j}}$		100		°C
Storage temperature range	T_{stg}	-55.	+100	כ	°C
Soldering temperature, maximal $t \le 3$ s	$T_{\rm sd}^{-1}$)	:	245		°C
Thermal resistance		Min.	Тур.	Max.	
Junction ambient	R_{thJA}			400	K/W

Optical and electrical characteristics

 $T_{\text{amb}} = 25^{\circ}\text{C}$

Туре	Group	Luminous intensity / _V *) ²) (mcd)	Peak wavelength emission $\lambda_{\rm p}$ (nm) Typ.	Spectral half bandwidth ⊿λ (nm) Typ.	Forward voltage V _F *) (V)
		I _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA
CQX 25		min. 1.3 typ. 2.6	660	20	typ. 1.6 max. 2.0
CQX 42	A B	min. 3.2 typ. 7.0 min. 8.0 typ. 15.0	630	40	typ. 2.2 max. 3.0
CQX 26		min. 1.3 typ. 4.0	560	40	typ. 2.7 max. 3.2
CQX 27		min. 1.3 typ. 5.0	590	40	typ. 2.4 max. 3.2

		Min.	Тур.	Max.	
Breakdown voltage $I_R = 100 \mu\text{A}$	$V_{(BR)}{}^\star)$	5			V
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$	$C_{ m j}$		50		pF

^{*)} AQL = 0.65 % 1) Distance from the touching border \geq 1.5 mm with intermediate PC-board

 $^{^{2})}$ supplied selected in groups, luminous intensity in packing unit $m=0.5 \ldots 1\,$

LED in 3 mm Case

Colour	Туре	Technology	Angle of half intensity α
Red	CQX 25 N	GaAsP on GaAs	25°
Orange-red	CQX 42 N	GaAsP on GaP	25°
Green	CQX 26 N	GaP on GaP	25°
Yellow	CQX 27 N	GaAsP on GaP	25°

Application: General indicating and illumination purposes

Features:

- Plastic case, white clear
- Axial terminals

- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 25^{\circ}$

Special case Weight max. 0.35 g

Absolute maximum ratings

Heverse voltage	v_{R}	5	V
Forward current			
CQX 25 N	I _F	50	mA
CQX 42 N, CQX 26 N, CQX 27 N	I _F	30	mA
Forward surge current			
$t_{\rm p} \leq 10 \mu{\rm s}$	I _{FSM}	1	Α
Power dissipation			
$T_{\rm amb} \le 60^{\circ}$	P _V	100	mW

Junction temperature	T _i	100	°C
Storage temperature range	, T _{stg}	-55+100	°C
Soldering temperature, maximal $t \le 5 \text{ s}$	$T_{\sf sd}^{-1})$	260	°C
Thermal resistance		Min. Typ. Max.	
Junction ambient	$R_{\mathrm{th,IA}}$	400	K/W

Optical and electrical characteristics

 $T_{amb} = 25^{\circ}C$

Туре	Group	Luminous intensity $I_{\vee}^{\star})^2)$	Peak wavelength emission λ_p (nm)	Spectral half bandwidth ⊿λ (nm)	Forward voltage V _F *)
		(mcd)	Тур.	Тур.	(V)
		I _F = 20 mA	I _F = 20 mA	/ _F = 20 mA	I _F = 20 mA
CQX 25 N		min. 1.3 typ. 2.6	660	20	typ. 1.6 max. 2.0
CQX 42 N	A B	min. 3.2 typ. 7.0 min. 8.0 typ. 15.0	630	40	typ. 2.2 max. 3.0
CQX 26 N		min. 1.3 typ. 4.0	560	40	typ. 2.7 max.3.2
CQX 27 N		min. 1.3 typ. 5.0	590	40	typ. 2.4 max. 3.2

		Min.	Тур.	Max.	
Breakdown voltage $I_{R} = 100 \mu\text{A}$	V _(BR) *)	5			٧
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$	C _j		50		pF

^{*)} AQL = $0.65\,\%$ 1) Distance from the touching border \geq 1.5 mm with intermediate PC-board

 $^{^{2}}$) supplied selected in groups, luminous intensity in packing unit m = $0.5 \dots 1$

0.2 0.1 0.05

0.02

LED in TO 18 Case

Colour	Туре	Technology	Angle of half intensity α
Red	CQX 28	GaAsP on GaAs	50°
Green	CQX 29	GaP on GaP	50°
Yellow	CQX 30	GaAsP on GaP	50°

Application: Indications in high commercial equipments

Features:

- Hermetically sealed case with glass lens white diffuse
- Wide viewing angle
- Axial terminals

- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Cathode connected with case

Angle of half intensity $a = 50^{\circ}$

Special case ≈ 18 A 2 DIN 41876 ≈ JEDEC TO 52 Weight max. 0.5 g

Absolute maximum ratings

Reverse voltage	V_{R}	5	V
Forward current	I _F	50	mA
Forward surge current $t_p \le 10 \mu s$	/ _{FSM}	1	Α
Power dissipation $T_{amb} \le 25^{\circ}$	P _V	150	mW
Junction temperature	$ au_{ m j}$	100	°C
Storage temperature range	Teta	-55+100	°C

Thermal resistance

Junction ambient

Min.

 $R_{\rm thJA}$

Тур. Мах.

500

K/W

Optical and electrical characteristics

$$T_{\rm amb} = 25^{\circ} \rm C$$

Туре	Luminous intensity / _V *)	Peak wavelength emission λ_{p} (nm)	Spectral half bandwidth ⊿λ (nm)	Forward voltage V _F *)
	(mcd)	Тур.	Тур.	(V)
	I _F = 20 mA	<i>I</i> _F = 20 mA	I _F = 20 mA	I _F = 20 mA
CQX 28	min. 0.8 typ. 2.0	660	20	typ. 1.6 max. 2.0
CQX 29	min. 1.0 typ. 2.6	560	40	typ. 2.7 max. 3.2
CQX 30	min. 1.0 typ. 4.2	590	40	typ. 2.4 max. 3.2

Breakdown voltage $I_{\rm R} = 100 \mu {\rm A}$	V _(BR) *)	Min. 5	Тур.	Max.	v
Junction capacitance $V_{\rm R} = 0, f = 1 \rm MHz$	C _i		50		pF

^{*)} AQL = 0.65 %

Bicolour LED in TO 18 Case

Colours	Туре	Technology	Angle of half intensity α
Red + Green	CQX 31	GaAsP on GaAs GaP on GaP	50°
Red + Yellow	CQX 32	GaAsP on GaAs GaAsP on GaP	50°

Application: Bicolour indication in high commercial equipments

Features:

- Hermetically sealed case with glass lens white diffuse
- Wide viewing angle
- Axial terminals

- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Cathodes connected with case

Angle of half intensity $\alpha = 50^{\circ}$

Special case ≈ 18 A 3 DIN 41876 ≈ JEDEC TO 52 Weight max. 0.5 g

CQX 31 · CQX 32

Absolute maximum ratings			
Reverse voltage	V_{R}	5	V
Forward current	I _F	50	mA
Forward surge current $t_p \le 10 \mu \mathrm{s}$	I _{FSM}	1	Α
Power dissipation, with a single diode in operation $T_{\rm amb} \leq 25^{\circ}{\rm C}$	P _V	150	mW
Total power dissipation $T_{amb} \le 25 ^{\circ}$ C	P_{tot}	200	mW
Junction temperature	$T_{\rm j}$	100	°C
Storage temperature range	$T_{ m stg}$	−55 + 100	°C

Thermal resistances		Min.	Тур.	Max.	
Junction ambient for a single diode	R_{thJA}			500	K/W
Junction ambient, total	$R_{thJAtot}$			375	K/W

Optical and electrical characteristics

 $T_{amb} = 25^{\circ} C$

Туре	Colour	Luminous intensity / _V *)	Peak wavelength emission λ_p (nm)	Spectral half bandwidth	Forward voltage V_F^*)
		(mcd)	Тур.	Тур.	(V)
		I _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA
	red	min. 0.8 typ. 2.0	660	20	typ. 1.6 max. 2.0
CQX 31	green min. 1.0 typ. 2.6 560		40	typ. 2.7 max. 3.2	
CQX 32	red	min. 0.8 typ. 2.0	660	20	typ. 1.6 max. 2.0
	yellow	min. 1.0 typ. 4.2	590	40	typ. 2.4 max. 3.2

		Min.	Тур.	Max.	
Breakdown voltage $I_{\rm R}=100~\mu{\rm A}$	V _(BR) *)	5			٧
Junction capacitance $V_{\rm B} = 0, f = 1 \text{MHz}$	C i		50		pF

^{*)} AQL = 0.65%

CQX 31 · CQX 32

CQX 31 · CQX 32

CQX 31 · CQX 32

CQX 31 · CQX 32

LED in 5 mm Case

Colour	Туре	Technology	Angle of half intensity α
Red	CQX 35	GaAsP on GaAs	25°
Orange-red	CQX 39	GaAsP on GaP	25°
Green	CQX 36	GaP on GaP	25°
Yellow	CQX 37	GaAsP on GaP	25°

Applications: General indicating and illumination purposes

Features:

- Plastic case, white clear
- High illumination through concentrated radiation
- Axial terminals
- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 25^{\circ}$ Special case Weight max. 0.4 g

Accessories

Mounting clip Best. Nr. 562 136 Retainer ring Best. Nr. 562 135

Absolute maximum ratings

Reverse voltage		V_{R}	5	V
Forward current	CQX 35	I_{F}	50	mA
	CQX 39, CQX 36, CQX 37	I _F	30	mA

Forward surge current

 $t_{\rm p} \le 10 \,\mu{\rm s}$ 1 A

Power dissipation $T_{amb} \le 70^{\circ} C$	P_{V}	100	mW
Junction temperature	$T_{\rm i}$	100	°C
Storage temperature range	T_{stg}	-55 + 100	°C
Soldering temperature, maximal $t \le 5 \text{ s}$	<i>T</i> _{sd} ¹)	260	°C

Thermal resistance

Junction ambient

 R_{thJA}

300

K/W

Optical and electrical characteristics

 $T_{amb} = 25^{\circ}$

Туре	Group	Luminous intensity / _V *) ²)	Peak wavelength emission λ_p (nm)	Spectral half bandwidth ∆λ (nm)	Forward voltage V _F *)
		(mcd)	Тур.	Тур.	(V)
		I _F = 20 mA	/ _F = 20 mA	/ _F = 20 mA	/ _F = 20 mA
CQX 35	Α	min. 3.2 typ. 5.0	660	20	typ. 1.6
CGASS	В	min. 5.0 typ. 8.0			max. 2.0
227.22	Α	min. 8.0 typ. 15.0	630	40	typ. 2.2
CQX 39	В	min. 20.0 typ. 40.0	030		max. 3.0
	Α	min. 3.2 typ. 5.0	500	40	typ. 2.7
CQX 36	В	min. 5.0 typ. 10.0	560		max. 3.2
207.25	А	min. 3.2 typ. 5.0	590	40	typ. 2.4
CQX 37	В	min. 5.0 typ. 12.0	590	40	max. 3.2

		Min.	Тур.	Max.	
Breakdown voltage $I_{\rm B}=100\mu{\rm A}$	V _(BR) *)	5			V
Junction capacitance $V_{\rm R} = 0, f = 1 \text{MHz}$	$C_{ m i}$		50		pF

^{*)} AQL = 0.65%

¹) Distance from the touching border ≥ 1.5 mm with intermediate PC-board

 $^{^{2}}$) supplied selected in groups, luminous intensity in packing unit m = 0.5...1

CQX 38

see page 289

CQX 39

see page 267

CQX 40

see page 227

CQX 41 N

see page 309

CQX 42

see page 243

CQX 42 N

see page 245

CQX 43 N

see page 299

Bicolour LED in 5 mm Case

Orange-red - GaAsP on GaP Green - GaP on GaP

Application: General indicating purposes

Features:

- Plastic case, white diffuse
- Wide viewing angle
- Axial terminals
- Long life compared with filament lamps
- Vibration resistant
- TTL-compatible
- Colour mixing possible due to separate anode terminals

Preliminary specifications

Dimensions in mm

Angle of half intensity $a = 60^{\circ}$

Weight max. 0.42 g

Accessories

Mounting clip Best. Nr. 562 136 Retainer ring Best. Nr. 562 135

S 1.2.109/0781 E

CQX 95

Absolute maximum ratings			
Reverse voltage	V_{R}	5	V
Forward current	$I_{\rm F1},I_{\rm F2}$	30	mA
Forward surge current $t_p \le 10 \mu s$	/ _{FSM}	1	Α
Power dissipation, with a single diode in operation $T_{amb} \leqq 55 ^{\circ} C$	P _V	100	mW
Total power dissipation $T_{amb} \leq 55 \degree C$	P_{tot}	150	mW
Junction temperature	$T_{\rm j}$	100	°C
Storage temperature range	$T_{ m stg}$	−55 + 100	°C
Soldering temperature, maximal $t \le 5 \text{ s}$	$T_{\rm sd}^{-1}$)	260	°C

 $^{^{1}}$) Distance from the touching border \geq 1.5 mm with intermediate PC-board

Min.

2

Thermal	resistance

Junction ambient

_		
п	th.IA	

Тур.

Max. 300

K/W

Optical and electrical characteristics

$$T_{amb} = 25^{\circ}C$$

Luminous intensity

$$I_F = 20 \text{ mA}$$
Matching factor
 $I_F = 20 \text{ mA}$

$$_{2} = \frac{I_{\text{v min}}}{I_{\text{v min}}}$$

mcd

Peak wavelength	emission
$I_{\rm c} = 20 {\rm mA}$	

orange-red	
green	

I,*)

nm

Spect	ral ha	alf band	dwidth

nm

 $I_F = 20 \text{ mA}$ Forward voltage

orward voltage
$$I_{\rm F} = 20 \,\mathrm{mA}$$
 orange-red

 V_F^*)

 λ_{D}

Breakdown voltage

$$I_{\rm B} = 100 \, \mu \text{A}$$

 $V_{(BR)}^{\star}$

green

$$I_{\mathsf{R}} = 100 \,\mu\mathsf{A}$$

Junction capacitance
$$V_R = 0, f = 1 \text{ MHz}$$

50

 C_{i}

^{*)} AQL = 0.65%

LED in 5 mm Case

Green - GaP on GaP

Application: General indicating purposes

Features:

- High illumination
- Axial terminals

- Long life compared with filament lamps
- Vibration resistant
- TTL-compatible

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 24^{\circ}$

Weight max. 0.42 g

Accessories

Mounting clip Best. Nr. 562 136 Retainer ring Best. Nr. 562 135

CQX 96

Absolute maximum ratings			
Reverse voltage	V_{R}	5	V
Forward current	I _F	30	mA
Forward surge current $t_p \le 10 \mu s$	I _{FSM}	1	Α
Power dissipation, with a single diode in operation $T_{amb} \le 70 ^{\circ}\text{C}$	P_{V}	100	mW
Junction temperature	$T_{\rm j}$	100	°C
Storage temperature range	$T_{ m stg}$	−55 + 100	°C
Soldering temperature, maximal $t \le 5 \text{ s}$	7 _{sd} 1)	260	°C

 $^{^{\}rm 1})$ Distance from the touching border \geq 1.5 mm with intermediate PC-board

Thermal resistance Junction ambient		$R_{ m thJA}$	Min.	Тур.	Max. 300	K/W
Optical and electrical characteristics $T_{\text{amb}} = 25^{\circ}\text{C}$						
Luminous intensity $I_F = 20 \text{ mA}$	Group A B	/ _v *) ²) / _v *)	20 32	40 70		mcd mcd
Peak wavelength emission I _F = 20 mA		λ_{p}		560		nm
Spectral half bandwidth Forward voltage I _F = 20 mA		⊿λ V _F *)		40 2.4	3.0	nm V
Breakdown voltage $I_{\rm B}=100~\mu{\rm A}$		V _(BR) *)	5			v
Junction capacitance $V_{\rm R}=0, f=1{\rm MHz}$		C _j		50		рF

^{*)} AQL = 0.65% 2) supplied in groups selected, luminous intensity in packing unit m = 0.5...1

CQX 96

CQY 40 · CQX 38 · CQY 72 · CQY 74 V 168 P V 169 P · V 170 P

LED in 5 mm Case

Colour	Туре	Technology	Angle of half intensity α
Red	CQY 40 · V 168 P	GaAsP on GaAs	60°
Orange-red	CQX 38	GaAsP on GaP	60°
Green	CQY 72 · V 169 P	GaP on GaP	60°
Yellow	CQY 74 · V 170 P	GaAsP on GaP	60°

Application: General indicating purposes

Features:

- Plastic case, diffuse colour
- Wide viewing angle
- Axial terminals

- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 60^{\circ}$

> Special case Weight max. 0.4 g

Accessories

Mounting clip Best. Nr. 562 136 Retainer ring Best. Nr. 562 135

Absolute maximum ratings

Reverse voltage		V_{R}	5	V
Forward current	CQY 40, V 168 P	/ _F	50	mA
CQX 38, CQY 72, V	/ 169 P, CQY 74, V 170 P	I _F	30	mA
Forward surge current				

 $t_{\rm D} \leq 10 \ \mu \rm s$ I_{FSM} Α

CQY 40 · CQX 38 · CQY 72 · CQY 74 V 168 P V 169 P · V 170 P

Power dissipation $T_{amb} \le 70^{\circ}C$	P _V	100	mW
Junction temperature	$T_{\rm j}$	100	°C
Storage temperature range	$T_{ m stg}$	−55 + 100	°C
Soldering temperature, maximal $t \le 5 \text{ s}$	$T_{\rm sd}^{-1}$)	260	°C

Thermal resistance

 $R_{\rm thJA}$

Typ. Max.

300

Min.

K/W

Optical and electrical characteristics

 $T_{amb} = 25$ ° C

Junction ambient

Туре	Group	Luminous intensity $I_V^*)^2$	Peak wavelength emission λ_p (nm)	Spectral half bandwidth ⊿λ (nm)	Forward voltage V _F *)
		(mcd)	Тур.	Тур.	(V)
		I _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA
CQY 40		min. 0.8 typ. 1.6	660	20	typ. 1.6 max. 2.0
CQX 38	A B	min. 2.0 typ. 6.0 min. 5.0 typ.12.0	630	40	typ. 2.2 max. 3.0
CQY 72		min. 0.8 typ. 2.0	560	40	typ. 2.7 max. 3.2
CQY 74		min. 0.8 typ. 3.0	590	40	typ. 2.4 max. 3.2
V 168 P		min. 2.0 typ. 3.0	660	20	typ. 1.6 max. 2.0
V 169 P		min. 2.0 typ. 4.0	560	40	typ. 2.7 max. 3.2
V 170 P		min. 2.0 typ. 5.0	590	40	typ. 2.4 max. 3.2

		Min.	Тур.	Max.	
Breakdown voltage $I_{\rm R} = 100 \mu{\rm A}$	V _(BR) *)	5			٧
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$	C_{j}		50		pF

^{*)} AQL = 0.65%

 $^{^{1}}$) Distance from the touching border \geq 1.5 mm with intermediate PC-board

 $^{^{2}}$) supplied selected in group, luminous intensity in packing unit m = $0.5 \dots 1$

CQY 40 · CQX 38 · CQY 73 · CQY 74 V 168 P V 169 P · V 170 P

CQY 40 · CQX 38 · CQY 73 · CQY 74 V 168 P V 169 P · V 170 P

CQY 40 · CQX 38 · CQY 73 · CQY 74 V 168 P V 169 P · V 170 P

CQY 40 · CQX 38 · CQY 73 · CQY 74 V 168 P V 169 P · V 170 P

CQY 40 · CQX 38 · CQY 73 · CQY 74 V 169 P · V 170 P

CQY 41 · CQY 73 · CQY 75

LED in 1.8 mm Case

Colour	Туре	Technology	Angle of half intensity α
Red	CQY 41	GaAsP on GaAs	40°
Green	CQY 73	GaP on GaP	40°
Yellow	CQY 75	GaAsP on GaP	40°

Application: General indicating purposes

Features:

- Plastic case diffuse
- End-to-end stackable in centre to centre spacing of 0.1" (2.54 mm)
- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 40^{\circ}$

Special case Weight max. 0.04 g

CQY 41 · CQY 73 · CQY 75

Absolute maximum ratings				
Reverse voltage		V_{R}	5	V
Forward current	CQY 41	I _F	50	mA
	CQY 73, CQY 75	I _F	30	mA
Forward surge current $t_p \le 10 \mu s$		/ _{FSM}	1.0	Α
Power dissipation $T_{amb} \le 25^{\circ} C$		P _V	100	mW
Junction temperature		$T_{\rm j}$	100	°C
Storage temperature range		$T_{ m stg}$	-25+ 100	°C
Soldering temperature $t \le 3$ s		7 _{sd} ¹)	245	°C

Optical and electrical characteristics

 $T_{amb} = 25^{\circ}C$

Min. Typ. Max.

Туре	Luminous intensity / _V *) ²) (mcd)	Peak wavelength emission λ_p (nm) Typ.	Spectral half bandwidth ⊿λ (nm) Typ.	Forward voltage V _F *) (V)
	/ _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA
CQY 41	min. 0.8 typ. 1.6	660	20	typ. 1.6 max. 2.0
CQY 73	min. 0.8 typ. 2.0	560	40	typ. 2.7 max. 3.2
CQY 75	min. 0.8 typ. 3.0	590	40	typ. 2.4 max. 3.2

		Min.	Тур.	Max.	
Breakdown voltage $I_R = 100 \mu$ A	V _(BR) *)	5			V
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$	C_{i}		50		рF

^{*)} AQL = 0.65% 1) Distance from the touching border ≥ 1.5 mm with intermediate PC-board

CQY 41 N · CQX 43 N · CQY 73 N · CQY 75 N

LED in 1.8 mm Case

Colour	Туре	Technology	Angle of half intensity α
Red	CQY 41 N	GaAsP on GaAs	40°
Orange-red	CQX 43 N	GaAsP on GaP	40°
Green	CQY 73 N	GaP on GaP	40°
Yellow	CQY 75 N	GaAsP on GaP	40°

Application: General indicating purposes

Features:

- Plastic case, diffuse colour
- End-to-end stackable in centre-to-centre spacing of 0.1" (2.54 mm)
- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 40^{\circ}$

Special case Weight max. 0.35 q

Absolute maximum ratings

Reverse voltage	V_{R}	5	٧
Forward current CQY 41 N	/ _F	50	mA
CQX 43 N, CQY 73 N, CQY 75 N	/ _F	30	mA
Forward surge current $t_p \le 10 \mu s$	/ _{FSM}	1	А
Power dissipation $T_{amb} \le 55^{\circ} C$	P_{V}	100	mW

Junction temperature	T_{j}		100		°C
Storage temperature range	\mathcal{T}_{stg}	-5	55 + 10	00	°C
Soldering temperature, maximal $t \le 3 \text{ s}$	T _{sd} 1)		245		°C
Thermal resistance		Min.	Тур.	Max.	
Junction ambient	R_{thJA}			450	K/W

Optical and electrical characteristics

$$T_{\rm amb} = 25^{\circ} \rm C$$

Туре	Luminous intensity $I_V^*)^2$ (mcd)	Peak wavelength emission $\lambda_{\rm p}$ (nm) Typ.	Spectral half bandwidth $\Delta\lambda$ (nm)	Forward voltage V _F *) (V)
	I _F = 20 mA	/ _F = 20 mA	I _F = 20 mA	I _F = 20 mA
CQY 41 N	min. 0.8 typ. 1.6	660	20	typ. 1.6 max. 2.0
CQX 43 N	min. 2.0 typ. 5.0	630	40	typ. 2.2 max. 3.0
CQY 73 N	min. 0.8 typ. 2.0	560	40	typ. 2.7 max. 3.2
CQY 75N	min. 0.8 typ. 3.0	590	40	typ. 2.4 max. 3.2

		Min.	Тур.	Max.	
Breakdown voltage $I_{\rm R} = 100 \mu{\rm A}$	V _(BR) *)	5			٧
Junction capacitance $V_R = 0$, $f = 1$ MHz	C_{j}		50		pF

^{*)} AQL = 0.65%

 $^{^{1})}$ Distance from the touching border \geq 1.5 mm; with intermediate PC-board

 $^{^{2}}$) supplied selected in groups, luminous intensity in packing unit m = $0.5 \dots 1$

CQY 41 · CQY 73 · CQY 75

500mA

0.04

100 200

0.2 0.1

0.2

20

50

0.4

CQY 72

see page 289

CQY 73

see page 297

CQY 73 N

see page 299

CQY 74

see page 289

CQY 75

see page 297

CQY 75 N

see page 299

LED in 3 mm Case

Colour	Туре	Technology	Angle of half intensity α
Red	CQY 85 N	GaAsP on GaAs	60°
Orange-red	CQX 41 N	GaAsP on GaP	60°
Green	CQY 86 N	GaP on GaP	60°
Yellow	CQY 87 N	GaAsP on GaP	60°

Application: General indicating purposes

Features:

- Plastic case, diffuse colour
- Wide viewing angle
- Axial terminals

- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $a = 60^{\circ}$

Special case Weight max. 0.35 g

Absolute maximum ratings

Reverse voltage		V_{R}	5	V
Forward current	CQY 85 N	I _F	50	mA
CQX 41 N, C	QY 86 N, CQY 87 N	I _F	30	mA
Forward surge current $t_p \le 10 \mu s$		I _{FSM}	1	Α
Power dissipation $T_{amb} \le 60^{\circ} C$		P _V	100	mW

Junction temperature	$T_{\rm j}$	100	°C
Storage temperature range	$T_{ m stg}$	−55+100	°C
Soldering temperature, maximal			
t≤5s	$T_{\rm sd}^{-1}$)	260	°C

Thermal resistance Min. Typ. Max.

Junction ambient $R_{\rm thJA}$ 400 K/W

Optical and electrical characteristics

$$T_{amb} = 25^{\circ} C$$

Туре	Group	Luminous intensity $I_V^*)^2)$ (mcd)	Peak wavelength emission $\lambda_{\rm p}$ (nm)	Spectral half bandwidth ⊿λ (nm) Typ.	Forward voltage V_F^*) (V)
		I _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA
CQY 85 N	A B	min. 0.8 typ. 1.6 min. 2.0 typ. 3.0	660	20	typ. 1.6 max. 2.0
CQX 41 N	A B	min. 2.0 typ. 6.0 min. 5.0 typ. 12.0	630	40	typ. 2.2 max. 3.0
CQY 86 N	A B	min. 0.8 typ. 2.0 min. 2.0 typ. 4.0	560	40	typ. 2.7 max. 3.2
CQY 87N	A B	min. 0.8 typ. 3.0 min. 2.0 typ. 5.0	590	40	typ. 2.4 max. 3.2

_		Min.	Тур.	Max.	
Breakdown voltage $I_{\rm R} = 100 \mu{\rm A}$	V _(BR) *)	5			٧
Junction capacitance $V_R = 0$, $f = 1$ MHz	C_{i}		50		рF

^{*)} AQL = 0.65%

¹) Distance from the touching border ≥ 1.5 mm; with intermediate PC-board

 $^{^{2}}$) supplied selected in groups, luminous intensity in packing unit m = 0.5...1

V 168 P V 169 P V 170 P

see page 289

LED in 5 mm Case

Colour	Туре	Technology	Angle of half intensity α
Red	V 310 P	GaAsP on GaAs	12°
Orange-red	V 311 P	GaAsP on GaP	12°
Green	V 312 P	GaP on GaP	12°
Yellow	V 313 P	GaAsP on GaP	12°

Applications: General indicating and illumination purposes

Features:

- Plastic case white clear
- High illumination through concentrated radiation
- Axial terminals

- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 12^{\circ}$

Special case Weight max. 0.4 g

Accessories

Mounting clip Best. Nr. 562 136 Retainer ring Best. Nr. 562 135

Absolute maximum ratings

Reverse voltage		V_{R}	5	V
Forward current	V 310 P	IF	50	mA
	V 311 P, V 312 P, V 313 P	I _F	30	mA

Forward surge current $t_p \le 10 \mu s$	I _{FSM}	1	А
Power dissipation $T_{amb} \le 70^{\circ} C$	P_{V}	100	mW
Junction temperature	$T_{\rm j}$	100	°C
Storage temperature range	\mathcal{T}_{stg}	-55+100	°C
Soldering temperature, maximal $t \le 5 \text{ s}$	<i>T</i> _{sd} ¹)	260	°C
Thermal resistance		Min. Typ.	Max.
Junction ambient	R_{thJA}		300 K/W

Optical and electrical characteristics

 $T_{amb} = 25$ °C

Туре	Luminous intensity $I_V^*)^2$) (mcd)	Peak wavelength emission λ _p (nm) Typ.	Spectral half bandwidth ⊿λ (nm) Typ.	Dominant wave length λ_{D} (nm)	Forward voltage V _F *) (V)
	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA
V 310 P	min. 20 typ. 25	660	20	662	typ. 1.6 max. 2.0
V 311 P	min. 32 typ. 70	630	40	625	typ. 2.2 max. 3.0
V 312 P	min. 20 typ. 40	560	40	568	typ. 2.7 max. 3.2
V 313 P	min. 20 typ. 40	590	40	588	typ. 2.4 max. 3.2

		Min.	Тур.	Max.	
Breakdown voltage $I_{R} = 100 \mu\text{A}$	<i>V</i> _(BR) *)	5			V
Junction capacitance $V_{\rm R} = 0$, $f = 1$ MHz	C i		50		pF

^{*)} AQL = 0.65%

 $^{^{1}}$) Distance from the touching border \geq 1.5 mm with intermediate PC-board

²) supplied selected in group, luminous intensity in packing unit m = 0.5...1

Symbol LED - 3 mm O

Colour	Туре	Technology	Angle of half intensity α
Red	V 320 P	GaAsP on GaAs	80°
Orange-red	V 321 P	GaAsP on GaP	80°
Green	V 322 P	GaP on GaP	80°
Yellow	V 323 P	GaAsP on GaP	80°

Applications: General indicating and illumination purposes

Features:

- Even luminance of the emitting surface
- Wide viewing angle
- High illuminance through reflector

- Ideal as flush mounted panel indicators
- Axial terminals
- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 80^{\circ}$

Special case Weight max. 0.2 g

Absolute maximum ratings

Reverse voltage		V_{R}	5	V
Forward current	V 320 P	I _F	50	mA
V 321 F	P, V 322 P, V 323 P	I _F	30	mA
Forward surge current				
$t_{\rm o} \leq 10 \mu{\rm s}$		I _{FSM}	1	Α

Power dissipation $T_{amb} \leq 60 ^{\circ} \text{C}$	P_{V}	100	mW
Junction temperature	•	100	°C
·	$T_{\mathbf{i}}$		_
Storage temperature range	\mathcal{T}_{stg}	–55 + 100	°C
Soldering temperature, maximal $t \le 5 s$	$T_{\rm sd}^{-1}$)	260	°C
Thermal resistance		Min. Typ. Max.	
Junction ambient	R_{thJA}	400	K/W

Optical and electrical characteristics

 $T_{amb} = 25$ ° C

Туре	Group	Luminous intensity /v*)²) (mcd)	Peak wavelength emission λ _p (nm) Typ.	Spectral half bandwidth ⊿λ (nm) Typ.	Dominant wave length λ_D (nm)	Forward voltage V_F^*) (V)
		I _F = 20 mA	/ _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA
V 320 P	A B	min. 0.5 typ. 0.7 min. 0.7 typ. 1.0	660	20	662	typ. 1.6 max. 2.0
V 321 P	A B	min. 1.3 typ. 2.0 min. 3.2 typ. 4.0	630	40	625	typ. 2.2 max. 3.0
V 322 P	A B	min. 0.8 typ. 1.0 min. 2.0 typ. 3.0	560	40	568	typ. 2.4 max. 3.0
V 323 P	A B	min. 0.8 typ. 1.0 min. 2.0 typ. 3.0	590	40	588	typ. 2.4 max. 3.0

		Min.	Тур.	Max.	
Breakdown voltage $I_{R} = 100 \mu\text{A}$	V _(BR) *)	5			V
Junction capacitance $V_{\rm B} = 0, f = 1 \text{MHz}$	$oldsymbol{C_{\mathrm{i}}}$		50		pF

^{*)} AQL = 0.65%

¹) Distance from the touching border ≥ 1.5 mm, with intermediate PC-board

²) supplied selected in groups, luminous intensity in packing unit m = 0.5...1

V 330 P · V 331 P · V 332 P · V 333 P

Symbol LED — 3 mm □

Colour	Туре	Technology	Angle of half intensity α	
Red	V 330 P	GaAsP on GaAs	80°	
Orange-red	V 331 P	GaAsP on GaP	80°	
Green	V 332 P	GaP on GaP	80°	
Yellow	V 333 P	GaAsP on GaP	80°	

Applications: General indicating and illumination purposes

Features:

- Even luminance of the emitting surface
- Wide viewing angle
- High illuminance through reflector

- Ideal as flush mounted panel indicators
- Axial terminals
- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $a = 80^{\circ}$

Special case Weight max. 0.2 g

Absolute maximum ratings

Reverse voltage		V_{R}	5	V
Forward current	V 330 P	I _F	50	mA
V 331 P	V 332 P, V 333 P	I _F	30	mA
Forward surge current				
			and the second s	_

 $t_{\rm p} \leq 10 \,\mu{\rm s}$ 1 I_{FSM}

Power dissipation $T_{amb} \le 60 ^{\circ}\text{C}$	P_{V}	100	mW
Junction temperature	$ au_{ m i}$	100	°C
Storage temperature range	$ au_{stg}$	-55 + 100	°C
Soldering temperature, maximal $t \le 5$ s	$T_{sd}^{-1})$	260	°C
Thermal resistance		Min. Typ. Max.	
Junction ambient	R_{thJA}	400	K/W

Optical and electrical characteristics

 $T_{amb} = 25^{\circ}C$

Туре	Group	Luminous intensity / _V *) ²) (mcd)	Peak wavelength emission $\lambda_{\rm p}$ (nm) Typ.	Spectral half bandwidth ⊿λ (nm) Typ.	Dominant wave length λ_{D} (nm)	Forward voltage V _F *) (V)
		I _F = 20 mA	I _F = 20 mA	/ _F = 20 mA	I _F = 20 mA	I _F = 20 mA
V 330 P	A B	min. 0.5 typ. 0.7 min. 0.7 typ. 1.0	660	20	662	typ. 1.6 max. 2.0
V 331 P	A B	min. 1.3 typ. 2.0 min. 3.2 typ. 4.0	630	40	625	typ. 2.2 max. 3.0
V 332 P	В	min. 0.8 typ. 1.0 min. 2.0 typ. 3.0	560	40	568	typ. 2.4 max. 3.0
V 333 P	A B	min. 0.8 typ. 1.0 min. 2.0 typ. 3.0	590	40	588	typ. 2.4 max. 3.0

		Min.	Тур.	Max.	
Breakdown voltage $I_{R} = 100 \mu\text{A}$	V _(BR) *)	5			٧
Junction capacitance $V_{\rm R} = 0, f = 1 \text{MHz}$	$oldsymbol{C_{\mathrm{j}}}$		50		pF

^{*)} AQL = 0.65% 1) Distance from the touching border ≥ 1.5 mm, with intermediate PC-board

 $^{^{2}}$) supplied selected in groups, luminous intensity in packing unit m = 0.5...1

Fig. 3

Symbol LED - 3 mm \triangle

Colour	Туре	Technology	Angle of half intensity α
Red	V 340 P	GaAsP on GaAs	80°
Orange-red	V 341 P	GaAsP on GaP	80°
Green	V 342 P	GaP on GaP	80°
Yellow	V 343 P	GaAsP on GaP	80°

Applications: General indicating and illumination purposes

Features:

- Even luminance of the emitting surface
- Wide viewing angle
- High illuminance through reflector
- Very low cross talk in uninterrupted areas
- Ideal as flush mounted panel indicators
- Axial terminals
- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $a = 80^{\circ}$

Special case Weight max. 0.2 g

Absolute maximum ratings

Reverse voltage		V_{R}	5	V
Forward current	V 340 P	I _F	50	mA
	V 341 P, V 342 P, V 343 P	I _F	30	mA

Forward surge current

 $t_{\rm p} \le 10 \,\mu{\rm s}$ 1 A

S 1.2. 155/0781 E

Power dissipation			
$T_{\text{amb}} \leq 60^{\circ}\text{C}$	P_{V}	100	mW
Junction temperature	$ au_{ m j}$	100	°C
Storage temperature range	\mathcal{T}_{stg}	-55 + 100	°C
Soldering temperature, maximal $t \le 5 s$	T_{sd}^{-1})	260	°C
Thermal resistance		Min. Typ. Max.	
Junction ambient	R_{thJA}	400	K/W

Optical and electrical characteristics

 $T_{amb} = 25$ ° C

Туре	Group	Luminous intensity / _V *) ²)	Peak wavelength emission λ _p (nm)	Spectral half bandwidth $\Delta\lambda$ (nm)	Dominant wave length λ_{D} (nm)	Forward voltage $V_{\text{F}}^{\star})$
		(mcd)	Тур.	Тур.	Тур.	(V)
		I _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA
	Α	min. 0.5 typ. 0.7			200	typ. 1.6
V 340 P	В	min. 0.7 typ. 1.0	660	20	662	max. 2.0
	Α	min. 1.3 typ. 2.0			-05	typ. 2.2
V 341 P	В	min. 3.2 typ. 4.0	630	40	625	max. 3.0
	Α	min. 0.8 typ. 1.0				typ. 2.7
V 342 P	В	min. 2.0 typ. 3.0	560	40	568	max. 3.2
	Α	min. 0.8 typ. 1.0	500	40	500	typ. 2.4
V 343 P	В	min. 2.0 typ. 3.0	590	40	588	max. 3.2

		Min.	Тур.	Max.	
Breakdown voltage $I_{\rm R} = 100 \mu{\rm A}$	V _(BR) *)	5			٧
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$	C _j		50		pF

^{*)} AQL = 0.65%

¹) Distance from the touching border ≥ 1.5 mm with intermediate PC-board

 $^{^2)}$ supplied selected in groups, luminous intensity in packing unit m = $0.5\,...1$

Symbol LED − 2.5 x 5 mm

Colour	Туре	Technology	Angle of half intensity α
Red	V 510 P	GaAsP on GaAs	80°
Orange-red	V 511 P	GaAsP on GaP	80°
Green	V 512 P	GaP on GaP	80°
Yellow	V 513 P	GaAsP on GaP	80°

Applications: General indicating and illumination purposes

Features:

- Even luminance of the emitting surface
- Wide viewing angle
- High illuminance through reflector
- Very low cross talk in uninterrupted areas
- Ideal as flush mounted panel indicators
- Axial terminals
- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 80^{\circ}$

Special case Weight max. 0.4 g

Absolute maximum ratings

Reverse voltage		V_{R}	5	V
Forward current	V 510 P	I _F	50	mA
	V 511 P, V 512 P, V 513 P	I_{F}	30	mA
Forward ourge our	nmt.			

Forward surge current

 $t_{\rm p} \le 10 \,\mu{\rm s}$ 1 A

S1.2.156/0781E

Power dissipation $T_{amb} \le 70^{\circ} C$	Pv	100	mW
Junction temperature	$T_{\rm j}$	100	°C
Storage temperature range	\mathcal{T}_{stg}	−55 + 100	°C
Soldering temperature, maximal $t \le 5 \text{ s}$	T_{sd}^{-1})	260	°C
Thermal resistance		Min. Typ. Max.	
Junction ambient	R_{thJA}	300	K/W

Optical and electrical characteristics

$$T_{amb} = 25^{\circ} C$$

Туре	Group	Luminous intensity I _V *) ²) (mcd)	Peak wavelength emission $\lambda_{\rm p}$ (nm)	Spectral half bandwidth ⊿λ (nm) Typ.	Dominant wave length $\lambda_{\rm D}$ (nm)	Forward voltage V _F *) (V)
		I _F = 20 mA	I _F = 20 mA	$I_{\rm F}=20~{\rm mA}$	I _F = 20 mA	I _F = 20 mA
V 510 P	A B	min. 0.5 typ. 0.7 min. 0.7 typ. 1.0	660	20	662	typ. 1.6 max. 2.0
V 511 P	A B	min. 1.3 typ. 2.0 min. 3.2 typ. 4.0	630	40	625	typ. 2.2 max. 3.0
V 512 P	A B	min. 0.8 typ. 1.0 min. 2.0 typ. 3.0	560	40	568	typ. 2.7 max. 3.2
V 513 P	A B	min. 0.8 typ. 1.0 min. 2.0 typ. 3.0	590	40	588	typ. 2.4 max. 3.2

		Min.	Тур.	Max.	
Breakdown voltage $I_{\rm R}=100~\mu{\rm A}$	$V_{(BR)}{}^\star)$	5			٧
Junction capacitance $V_{\rm R}=0, f=1$ MHz	C_{j}		50		pF

^{*)} AQL = 0.65%

 $^{^{1}}$) Distance from the touching border \geq 1.5 mm with intermediate PC-board

 $^{^{2}}$) supplied selected in groups, luminous intensity in packing unit m = $0.5 \dots 1$

Bicolour symbol LED − 2.5 x 5 mm

Orange-red – GaAsP on GaP Green – GaP on GaP

Application: General indicating purposes

Features:

- Even luminance of the emitting surface
- Wide viewing angle
- High illuminance through reflector
- Very low cross talk in uninterrupted areas
- Ideal as flush mounted panel indicators

- Axial terminals
- Long life compared with filament lamps
- Vibration resistant
- Colour mixing possible due to separate anode terminals

Preliminary specifications

Dimensions in mm

A₁ orange-red A₂ green

Angle of half intensity $\alpha = 80^{\circ}$ Special case Weight max. 0.42 g

Absolute maximum ratings

Reverse voltage	V_{R}	5	V
Forward current	$I_{\text{F1}}, I_{\text{F2}}$	30	mA
Forward surge current $t_p \le 10 \ \mu s$	I _{FSM}	1	Α
Power dissipation, with a single diode in operation $T_{\rm amb} \leqq 55^{\circ}{\rm C}$	P _V	100	mW
Total power dissipation $T_{amb} \le 55 ^{\circ} C$	P_{tot}	150	mW
Junction temperature	$T_{\rm j}$	100	°C
Storage temperature range	$T_{ m stg}$	−55+100	°C
Soldering temperature, maximal $t \le 5 \text{ s}$	$T_{\rm sd}^{-1}$)	260	°C

¹) Distance from the touching border ≥ 1.5 mm with intermediate PC-board

V 518 P

Thermal resistance			Min.	Тур.	Max.	
Junction ambient		R_{thJA}		.,,,,	300	K/W
Optical and electrical characteristic $T_{\rm amb} = 25^{\circ}{\rm C}$	s					
Luminous intensity $I_F = 20 \text{ mA}$		/ _v *)	0.8	2		mcd
Matching factor $I_F = 20 \text{ mA}$		$m = \frac{I_{\text{vmin}}}{I_{\text{vmax}}}$		0.75		
Peak wavelength emission	orange-red green	$rac{\lambda_{\mathbf{p}}}{\lambda_{\mathbf{p}}}$		630 560		nm nm
Spectral half bandwidth $I_F = 20 \text{ mA}$		Δλ		40		nm
Forward voltage $I_F = 20 \text{ mA}$	orange-red green	V _F *) V _F *)		2.2 2.4	3.0 3.0	V V
Breakdown voltage $I_{\rm R}=100~\mu{\rm A}$		$V_{(BR)}{}^\star)$	5			٧
Junction capacitance $V_R = 0$, $f = 1$ MHz		C _j		50		pF

^{*)} AQL = 0.65%

V 518 P

V 518 P

Symbol LED - 5 mm

Colour	Туре	Technology	Angle of half intensity α
Red	V 520 P	GaAsP on GaAs	80°
Orange-red	V 521 P	GaAsP on GaP	80°
Green	V 522 P	GaP on GaP	80°
Yellow	V 523 P	GaAsP on GaP	80°

Applications: General indicating and illumination purposes

Features:

- Even luminance of the emitting surface
- Wide viewing angle
- High illuminance through reflector
- Very low cross talk in uninterrupted areas
- Ideal as flush mounted panel indicators
- Axial terminals
- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 80^{\circ}$

Special case Weight max. 0.5 g

Absolute maximum ratings

Reverse voltage		V_{R}	5	V
Forward current	V 520 P	I _F	50	mA
	V 521 P, V 522 P, V 523 P	I_{F}	30	mA
Forward surge cur	rent			
$t_{ m p} \leq$ 10 μ s		I _{FSM}	1	Α

S1.2.157/0781 E

Power dissipation $T_{amb} \le 70^{\circ} C$	P_{V}		100		mW
Junction temperature	$ au_{ m i}$	100			°C
Storage temperature range	\mathcal{T}_{stg}	−55 + 100			°C
Soldering temperature, maximal $t \le 5 \text{ s}$	$T_{\rm sd}^{-1}$)		260		°C
Thermal resistance		Min.	Тур.	Max.	
Junction ambient	R_{thJA}			300	K/W

Optical and electrical characteristics

 $T_{amb} = 25^{\circ}C$

Туре	Group	Luminous intensity	Peak wavelength emission	Spectral half bandwidth	Dominant wave length	Forward voltage
		/ _V *) ²)	λ_{p} (nm)	⊿λ (nm)	λ_{D} (nm)	V _F *)
		(mcd)	Тур.	Тур.	Тур.	(V)
		I _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA
	Α	min. 0.5 typ. 0.7				typ. 1.6
V 520 P	В	min. 0.7 typ. 1.0	660	20	662	max. 2.0
	Α	min. 1.3 typ. 2.0				h 0.0
V 521 P	В	min. 3.2 typ. 4.0	630	40	625	typ. 2.2 max. 3.0
	Α	min. 0.8				
V 522 P	В	typ. 1.0 min. 2.0 typ. 3.0	560	40	568	typ. 2.7 max. 3.2
	Α	min. 0.8 typ. 1.0				typ. 2.4
V 523 P	В	min. 2.0 typ. 3.0	590	40	588	max. 3.2

		Min.	Тур.	Max.	
Breakdown voltage $I_{R} = 100 \mu\text{A}$	$V_{(BR)}{}^\star)$	5			٧
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$	C_{j}		50		pF

^{*)} AQL = 0.65% 1) Distance from the touching border ≥ 1.5 mm with intermediate PC-board

 $^{^{2}}$) supplied selected in groups, luminous intensity in packing unit m = 0.5...1

20

100 200

0.4 0.2 0.1

500mA

0.04

V 520 P · V 521 P · V 522 P · V 523 P

Symbol LED - 5 mm

Colour	Туре	Technology	Angle of half intensity α
Red	V 530 P	GaAsP on GaAs	80°
Orange-red	V 531 P	GaAsP on GaP	80°
Green	V 532 P	GaP on GaP	80°
Yellow	V 533 P	GaAsP on GaP	80°

Applications: General indicating and illumination purposes

Features:

- Even luminance of the emitting surface
- Wide viewing angle
- High illuminance through reflector
- Very low cross talk in uninterrupted areas
- Ideal as flush mounted panel indicators
- Axial terminals
- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $\alpha = 80^{\circ}$

Special case Weight max. 0.6 g

Absolute maximum ratings

Reverse voltage		V_{R}	5	٧
Forward current	V 530 P	I _F	50	mA
	V 531 P, V 532 P, V 533 P	I _F	30	mA
Forward surge curre	nt			
$t_{\rm p} \leq 10 \mu \rm s$		I _{FSM}	1	Α

Power dissipation	0		100		14/
$T_{amb} \leq 70^{\circ}C$	P_{V}		100		mW
Junction temperature	$ au_{ m j}$		100		°C
Storage temperature range	T_{stg}	-5	55 + 10	00	°C
Soldering temperature, maximal $t \le 5 s$	$T_{\rm sd}^{-1}$)		260		°C
Thermal resistance		Mìn.	Тур.	Max.	
Junction ambient	R_{thJA}			300	K/W

Optical and electrical characteristics

 $T_{amb} = 25^{\circ} C$

Туре	Group	Luminous intensity / _V *) ²) (mcd)	Peak wavelength emission λ _p (nm) Typ.	Spectral half bandwidth ⊿λ (nm) Typ.	Dominant wave length $\lambda_{\rm D}$ (nm)	Forward voltage V_F^*) (V)
		I _F = 20 mA	/ _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA
V 530 P	A B	min. 0.5 typ. 0.7 min. 0.7 typ. 1.0	660	20	662	typ. 1.6 max. 2.0
V 531 P	A B	min. 1.3 typ. 2.0 min. 3.2 typ. 4.0	630	40	625	typ. 2.2 max. 3.0
V 532 P	A B	min. 0.8 typ. 1.0 min. 2.0 typ. 3.0	560	40	568	typ. 2.7 max. 3.2
V 533 P	A B	min. 0.8 typ. 1.0 min. 2.0 typ. 3.0	590	40	588	typ. 2.4 max. 3.2

		Min.	Тур.	Max.	
Breakdown voltage $I_{R} = 100 \mu\text{A}$	V _(BR) *)	5			V
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$	C _j		50		pF

^{*)} AQL = 0.65%

¹) Distance from the touching border ≥ 1.5 mm with intermediate PC-board

 $^{^{2}}$) supplied selected in groups, luminous intensity in packing unit m = 0.5...1

Symbol LED − 5 mm △

Colour	Туре	Technology	Angle of half intensity
Red	V 540 P	GaAsP on GaAs	80°
Orange-red	V 541 P	GaAsP on GaP	80°
Green	V 542 P	GaP on GaP	80°
Yellow	V 543 P	GaAsP on GaP	80°

Applications: General indicating and illumination purposes

Features:

- Even luminance of the emitting surface
- Wide viewing angle
- High illuminance through reflector
- Very low cross talk in uninterrupted areas
- Ideal as flush mounted panel indicators
- Axial terminals
- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $a = 80^{\circ}$

Special case Weight max. 0.5 g

Absolute maximum ratings

Reverse voltage		V_{R}	5	. V
Forward current	V 540 P	I _F	50	mA
	V 541 P, V 542 P, V 543 P	I _F	30	mA
Forward surge curr	ent			

 $t_{\rm D} \leq 10 \,\mu{\rm s}$

I_{ESM}

Power dissipation	n		100		mW
$T_{amb} \leq 70^{\circ}C$	P_{V}		100		11144
Junction temperature	T_{j}	100			°C
Storage temperature range	\mathcal{T}_{stg}	-5	5 + 10	00	°C
Soldering temperature, maximal $t \le 5 s$	$T_{\rm sd}^{-1}$)		260		°C
Thermal resistance		Min.	Тур.	Max.	
Junction ambient	Pith IA			300	K/W

Optical and electrical characteristics

 $T_{amb} = 25^{\circ} C$

Туре	Group	Luminous intensity $I_V^*)^2$ (mcd)	Peak wavelength emission $\lambda_{\rm p}$ (nm)	Spectral half bandwidth ⊿λ (nm) Typ.	Dominant wave length $\lambda_{\rm D}$ (nm)	Forward voltage V _F *) (V)
		/ _F = 20 mA	I _F = 20 mA	$I_{\rm F} = 20 {\rm mA}$	I _F = 20 mA	I _F = 20 mA
V 540 P	A B	min. 0.5 typ. 0.7 min. 0.7 typ. 1.0	660	20	662	typ. 1.6 max. 2.0
V 541 P	A B	min. 1.3 typ. 2.0 min. 3.2 typ. 4.0	630	40	625	typ. 2.2 max. 3.0
V 542 P	A B	min. 0.8 typ. 1.0 min. 2.0 typ. 3.0	560	40	568	typ. 2.7 max. 3.2
V 543 P	В	min. 0.8 typ. 1.0 min. 2.0 typ. 3.0	590	40	588	typ. 2.4 max. 3.2

		Min.	Тур.	Max.	
Breakdown voltage $I_{\rm R}=100\mu{\rm A}$	V _(BR) *)	5			V
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$	$C_{\rm j}$		50		pF

^{*)} AQL = 0.65%

 $^{^{1}}$) Distance from the touching border \geq 1.5 mm with intermediate PC-board

 $^{^{2})}$ supplied selected in groups, luminous intensity in packing unit m = $0.5\,...1$

Symbol LED $-5 \, \text{mm} \, \Delta$

Colour	Туре	Technology	Angle of half intensity α
Red	V 550 P	GaAsP on GaAs	80°
Orange-red	V 551 P	GaAsP on GaP	80°
Green	V 552 P	GaP on GaP	80°
Yellow	V 553 P	GaAsP on GaP	80°

Applications: General indicating and illumination purposes

Features:

- Even luminance of the emitting surface
- Wide viewing angle
- High illuminance through reflector
- Very low cross talk in uninterrupted areas
- Ideal as flush mounted panel indicators
- Axial terminals
- Long life compared with filament lamps
- Vibration resistant

Preliminary specifications

Dimensions in mm

Angle of half intensity $a = 80^{\circ}$

Special case Weight max. 0.4 g

Absolute maximum ratings

Reverse voltage		V_{R}	5	v
Forward current	V 550 P	I_{F}	50	mA
	V 551 P, V 552 P, V 553 P	I _F	30	mA

Forward surge current

 $t_{\rm p} \leq 10 \,\mu{\rm s}$ 1 A

Power dissipation T _{amb} ≤ 70° C	P_{V}		100		mW
Junction temperature	$ au_{ m j}$		100		°C
Storage temperature range	\mathcal{T}_{stg}	-5	55 + 10	00	°C
Soldering temperature, maximal $t \le 5 \text{ s}$	T_{sd}^{-1})		260		°C
Thermal resistance		Min.	Тур.	Max.	
Junction ambient	R_{thJA}			300	K/W

Optical and electrical characteristics

$$T_{amb} = 25 ^{\circ} C$$

Туре	Group	Luminous intensity	Peak wavelength emission	Spectral half bandwidth	Dominant wave length	Forward voltage
		/ _V *) ²)	λ_{p} (nm)	⊿λ (nm)	λ _D (nm)	V _F *)
		(mcd)	Тур.	Тур.	Тур.	(V)
		I _F = 20 mA	/ _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA
V 550 P	A B	min. 0.5 typ. 0.7 min. 0.7 typ. 1.0	660	20	662	typ. 1.6 max. 2.0
V 551 P	A B	min. 1.3 typ. 2.0 min. 3.2 typ. 4.0	630	40	625	typ. 2.2 max. 3.0
V 552 P	A B	min. 0.8 typ. 1.0 min. 2.0 typ. 3.0	560	40	568	typ. 2.7 max. 3.2
V 553 P	A B	min. 0.8 typ. 1.0 min. 2.0 typ. 3.0	590	40	588	typ. 2.4 max. 3.2

		Min.	Typ.	Max.	
Breakdown voltage $I_{\rm R}=100~\mu{\rm A}$	V _(BR) *)	5			v
Junction capacitance $V_R = 0, f = 1 \text{ MHz}$	C_{j}		50		pF

^{*)} AQL = 0.65% 1) Distance from the touching border ≥ 1.5 mm with intermediate PC-board

 $^{^{2}}$) supplied selected in groups, luminous intensity in packing unit m = $0.5 \dots 1$

13 mm - Seven Segment Displays

11/2 Digit with + and - sign

Colour	Туре	Туре	Technology	Angle of half intensity α
Red	CQX 86 A	CQX 86 K	GaAsP on GaAs	50°
Orange-red	CQX 88 A	CQX 88 K	GaAsP on GaP	50°
Green	CQX 90 A	CQX 90 K	. GaP on GaP	50°
Yellow	CQX 92 A	CQX 92 K	GaAsP on GaP	50°

A: common Anode K: common Cathode

Application: General indicating purposes

Features:

- Decimal point at the right side
- Suitable for d. c. and multiplex operation
- End-to-end stackable
- Wide viewing angle
- Legible with primary illumination

Preliminary specifications

Dimensions in mm

Pin connections:

Angle of half intensity $a = 50^{\circ}$

Absolute maximum ratings			
Reverse voltage	V_{R}	5	V
Forward current	I_{F}	25	mA
Forward surge current $t_{\rm p} \leq 100~\mu{\rm s}$	/ _{FSM}	200	mA
Power dissipation, with a single element in operation $\textit{T}_{\text{amb}} \leq 25^{\circ}\text{C}$	P_{V}	80	mW
Total power dissipation $T_{amb} \le 25 ^{\circ}$ C	P_{tot}	750	mW
Junction temperature	$T_{\rm j}$	85	°C
Storage temperature range	\mathcal{T}_{stg}	-25+85	°C
Soldering temperature, maximal $t \le 3$ s	$T_{\rm sd}^{-1}$)	245	°C

Optical and electrical characteristics

$$T_{amb} = 25 \,^{\circ} \,^{\circ} C$$

Туре	Luminous intensity per segment $I_V^*)^2$ (mcd)	Peak wavelength emission $\lambda_{ ho}$ (nm) Typ.	Spectral half bandwidth ⊿λ (nm) Typ.	Forward voltage V _F *) (V)
	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA	I _F = 20 mA
CQX 86 A CQX 86 K	min. 0.3 typ. 0.7	660	20	typ. 1.65 max. 2.00
CQX 88 A CQX 88 K	min. 0.6 typ. 1.5	630	40	typ. 2.2 max. 3.0
CQX 90 A CQX 90 K	min. 0.3 typ. 0.7	560	40	typ. 2.7 max. 3.2
CQX 92 A CQX 92 K	min. 0.4 typ. 1.0	590	40	typ. 2.4 max. 3.2

		Min.	Тур.	Max.	
Breakdown voltage $I_{\rm R} = 100 \mu{\rm A}$	V _(BR) *)	5			٧

^{*)} AQL = 0.65% 1) Distance from the touching border ≥ 1.5 mm with intermediate PC-board

 $^{^{2}}$) supplied selected in groups, luminous intensity in packing unit m = $0.5 \dots 1$

13 mm – Seven Segment Displays 2 Digits

Colour	Туре	Туре	Technology	Angle of half intensity α
Red	CQX 87 A	CQX 87 K	GaAsP on GaAs	50°
Orange-red	CQX 89 A	CQX 89 K	GaAsP on GaP	50°
Green	CQX 91 A	CQX 91 K	GaP on GaP	50°
Yellow	CQX 93 A	CQX 93 K	GaAsP on GaP	50°

A: common Anode K: common Cathode

Application: General indicating purposes

Features:

- Decimal point at the right side
- Suitable for d. c. and multiplex operation
- End-to-end stackable
- Wide viewing angle
- Legible with primary illumination

Preliminary specifications

Dimensions in mm

Pin connections:

Angle of half intensity $\alpha = 50^{\circ}$

Absolute max	ximum ratings			
Reverse v	voltage	V_{R}	5	V
Forward o	current	I _F	25	mA
Forward s $t_{p} \leq 100$	surge current D µs	/ _{FSM}	200	mA
Power dis $T_{amb} \le 2$	ssipation, with a single element in operation 25°C	P_{V}	80	mW
Total pow $T_{amb} \le 2$	er dissipation 25°C	P_{tot}	900	m W
Junction t	emperature	T_{j}	85	°C
Storage to	emperature range	\mathcal{T}_{stg}	-25+8	5 °C
Soldering t≤3s	temperature, maximal	$T_{\rm sd}^{-1}$)	245	°C

Optical and electrical characteristics

 $T_{amb} = 25^{\circ}C$

Туре	Luminous intensity per segment $I_{ m V}^{\star})^2)$	Peak wavelength emission λ_p (nm)	Spectral half bandwidth ⊿λ (nm)	Forward voltage V _F *)	
	(mcd)	Тур.	Тур.	(V)	
	I _F = 20 mA	$I_{\rm F}=20~{\rm mA}$	I _F = 20 mA	/ _F = 20 mA	
CQX 87 A CQX 87 K	min. 0.3 typ. 0.7	660	. 20	typ. 1.65 max. 2.00	
CQX 89 A CQX 89 K	min. 0.6 typ. 1.5	630	40	typ. 2.2 max. 3.0	
CQX 91 A CQX 91 K	min. 0.3 typ. 0.7	560	40	typ. 2.7 max. 3.2	
CQX 93 A CQX 93 K	min. 0.4 typ. 1.0	590	40 typ. 2.4 max. 3.2		

		Min.	Тур.	Max.	
Breakdown voltage $I_{\rm R}=100\mu{\rm A}$	<i>V</i> _(BR) *)	5			V

^{*)} AQL = 0.65%

¹) Distance from the touching border ≥ 1.5 mm with intermediate PC-board

²) supplied selected in groups, luminous intensity in packing unit m = 0.5 ... 1

Universal LED-Bar Display

Application: Bar displays with different carrier possibilities

Features:

- Longitudinal and transverse plug-in possible
- Spacing between adjacent Ø 3 mm LED's = 5 mm
- Spacing between adjacent Ø 1.8 mm LED's = 2.5 mm

- Different luminous colour combinations possible
- Simple application in p. c. board
- Optimum pins length for soldering

Preliminary specifications

Dimensions in mm

LED carrier: Polystyrol black

V 227 P

		truction sibilities
Left fitting edge Right fitting edg	Je Ø 3 mm	LED Ø 1.8 mm
Version A, Length 15 mm – 0.1	3	5
Version B, Length 50 mm – 0.1	10	19
Version C, Length 30 mm – 0.1	6	11
Version D, Length 65 mm – 0.1	13	25
Version E, Length 95 mm ± 0.2	19	37
Version F, Length 45 mm – 0.1	9	17
Version G, Length 40 mm – 0.1	8	15
Version H, Length 80 mm – 0.1	16	31
Version J, Length 10 mm – 0.1	2	3
Version K, Length 52.2 mm – 0.1	10	20

Different combination possibilities are available

solute maximum ratings					
For single diode					
Reverse voltage	V_{R}		5		,
Forward current red	I _F		50		m
orange-red, green, yellow	I _F		30		m
Forward surge current $t_0 \le 10 \mu s$	/ _{FM}		1		
Power dissipation of a single diode	'FM		•		
$T_{\text{amb}} = 25^{\circ}\text{C}$	P_{V}		100		m۱
Junction temperature	$T_{\rm j}$		100		٥
Storage temperature range	$T_{ m stg}$	-:	20+85	5	٥
Soldering temperature, maximal					
t = 3 s	$T_{\rm sd}^{-1}$)		245		٥
ical and electrical characteristics					
Luminous intensity		Min.	Тур.	Max.	
$I_{\rm F}=20{\rm mA}$ red	/ _v ²)	0.8			mo
orange-red	I_v^2)	2.0			mo
green	I_{v}^{2})	1.0			mo
yellow	I_{v}^{2})	1.0			mo
Peak wavelength emission					
$I_{\rm F} = 20{\rm mA}$ red	λ_{p}		660		n
orange-red	λ_{p}		630		n
green	λ_{p}		560		n
yellow	λ_{p}		590		n
Spectral half bandwidth					
$I_{F} = 20mA$ red	$\Delta\lambda$		20		n
orange-red, green, yellow	$\Delta\lambda$		40		n
Forward voltage					
$I_{\rm F} = 20{\rm mA}$ red	V_{F}		1.6	2.0	
orange-red	V_{F}		2.2	3.0	
green	V_{F}		2.7	3.2	
yellow	V_{F}		2.7	3.2	
Breakdown voltage					
$I_{B} = 100 \muA$		5			

 $^{^{\}rm 1})$ Distance from the touching border \geq 1.5 mm with intermediate PC-board

 $^{^2)}$ Luminous intensity for every luminous colour and line m = 0.5 ... 1.0 $\,$

10. Subject Index

Α

Absolute maximum ratings A 11
Absolute temperature A 6
Accessories A 35
Actinity A 2
Ambient temperature A 6
Ambient temperature range A 6
Angle of half intensity A 8
Angle of half sensitivity A 8
AQL A 29
Assembly instructions A 31

В

Breakdown voltage A 7

C

Candela A 2 Case temperature A 6 Characteristics (optical and electrical) A 11 Collector current, measurement of A 26 Collector dark current A3 Collector dark current, measurement of A 25 Collector-emitter capacitance A 2 Collector-emitter saturation voltage A 8 Collector-emitter saturation voltage. measurement of A 26 Collector light current A3 Collector light current, measurement of A 26 Colour temperature A7 Cooling plates, calculation of A 32 Couplers, technology A 17 Coupling capacity A 2 Cross talk current A3 CTR (k) A 4 Current transfer ratio A 4 Cut-off frequency A3

D

Delay time A 27, 28
Detector devices, operation principle A 12
Detector devices, technology A 15
Differential forward resistance A 5
Diode capacitance A 2

E

Effective radiant power A 9
Emitter devices, operation principle A 12
Emitter devices, technology A 15
Environmental conditions A 34

F

Fall time A 27, 28
Flat window A 33
Forward current A 3
Forward voltage A 8
Forward voltage, measurement of A 25

Н

Heat removal A 31

ı

Illuminance, illumination A 2 Irradiance, irradiation A 2 Isolation voltage A 8

J

Junction capacitance A 2 Junction temperature A 7

L

Laserdiode A 14, 15
Lenses A 33
Light current A 9
Light emitting diodes, physical theory A 12
Light emitting diode, technology A 14
Light reverse current A 4
Light reverse current, measurement of A 25
Luminance A 4
Luminance exitance A 5
Luminescence diodes, physical theory A 12
Luminescence diodes, technology A 14
Luminous flux A 9
Luminous intensity A 4
Luminous intensity, measurement of A 25

М

Matching factor A 5
Measurement techniques A 24

N

Numerical Aperture (N. A.) A 17, 19

0

Open circuit voltage, measurement of A 25 Optical characteristics A 33

P

Photo current A 4
Photo Darlington transistor, technology A 17
Photodiodes, technology A 16
Photo PIN diode, technology A 16
Phototransistor, technology A 17
Photovoltaic cells, technology A 16

Q

Quantity of light A 5

Radiance A4

R

Radiant energy A 5
Radiant exitance A 5
Radiant flux (see Radiant power) A 9
Radiant intensity A 3
Radiant power A 9
Radiant power, measurement of A 24
Radiant sensitive area A 2
Range of spectral bandwidth A 8
Reverse continuous dark current, measurement of A 25
Reverse current A 3
Reverse voltage A 7
Reverse voltage, measurement of A 25

S

Rise time A 27, 28

Sensitivity A 6

Sensitivity, open circuit A 6
Sensitivity, short circuit A 6
Short circuit current A 4
Short circuit current, measurement of A 25
Soldering instructions A 7, 31
Soldering temperature A 31
Solid angle A 9
Spectral half bandwidth A 9
Spectral sensitivity A 6
Storage temperature range A 7
Storage time A 28
Switching characteristics A 28

T

Temperature coefficient A 7 Thermal resistances A 11 Turn-off time A 28 Turn-on time A 28 Type designation A 1

Addresses

AEG-TELEFUNKEN Serienprodukte

Geschäftsbereich Elektronische Bauelemente

Export P.O.B. 1109

D-7100 Heilbronn Tel.: 88 21 · Telex: 07-28 746

Europa

Belgien

Société Anonyme belge AEG-TELEFUNKEN Rue Souveraine 40 **B-1050 Bruxelles**

Tel.: 5127940 5133970 Telex: 21359

Bulgarien

E, van Hazebrouck KG Savigny-Str. 37 6000 Frankfurt/Main 1 Tel.: 0611/749041 Telex: 04-11071

Dänemark

AEG-TELEFUNKEN Dansk Electricitets Aktieselskab Roskildevej 8–10 **DK-2620 Albertslund** (**København**) Tel.: 648522 Telex: 33122

Finnland

Sähköliikkeiden OY P.O.B. 88 SF-01301 Vantaa 30 Tel.: 83 81 Telex: 12 431

Frankreich

AEG-TELEFUNKEN FRANCE SA Department Composants Electroniques 6, Blvd. du Général Leclerc Bureau 612 F-92115 Clichy Tel. 73933 10 Telex: 620827

Griechenland

TELEFEX S.A. Thessalonikis Street 101 **Athens Moschaton (58)** Tel.: 4819346

4817946...48 Telex: 213487

Großbritannien

AEG-TELEFUNKEN (UK) Ltd. 217 Bath Road **Slough SL 1 4AW**

Berkshire Tel.: 87 21 01, 87 21 76 Telex: 847 541

Italien

AEG-TELEFUNKEN Societa Italiana per Azioni Viale Brianza, 20 Casella Postale 47 I-20092 Cinisello Balsamo/ Milano

Tel.: 61798 Telex: 333117

Jugoslawien

INTEREXPORT Abteilung 4/15-3-27 P. P. 789 **YU-11001 Beograd** Tel.: 62 00 65 Telex: 11 240

Luxemburg

AEG-TELEFUNKEN Luxembourg S.A.R.L. 2, Rue Albert Borschette **Luxembourg-Kirchberg** Tel. 43 30 51 Telex: 2513

Niederlande

AEG-TELEFUNKEN Nederland N.V. Postbus 1816 Aletta Jacobslaan 1–7 Amsterdam C NL-1000 BV Amsterdam

Tel.: 5116333 Telex: 11234

Norwegen

AEG-TELEFUNKEN Norge A-S Dag Hammerskjølds vei 47 Postboks 187 Økern. N-Oslo 5

Tel.: 156590 Telex: 19961

Österreich

Österreichische AEG-TELEFUNKEN G.m.b. H. Brünner Str. 52

A-1210 Wien Tel.: 3 80 10 Telex: 135 589

Polen

THM EXIMPOL S.A. ul. Stawki 2/Etage 28 P.O.B. 810 **PL-00-950 Warszawa** Tel.: 39 86 54, 39 90 89

Telex: 814 640

Portugal

AEG-TELEFUNKEN Portuguesa S.A.R.L. Rua Joao Saraiva, 4–6 Apartado 5149 P-1799 Lisboa CODEX

Tel.: 891171 Telex: 12173

AEG-TELEFUNKEN Serienprodukte

Geschäftsbereich Elektronische Bauelemente

Export P.O.B. 1109

D-7100 Heilbronn Tel.: 8821 · Telex: 07-28746

Schweden

SATTCO AB Dalvägen 10 S-17136 Solna Tel.: 83 02 80 Telex: 11 588

Schweiz

Elektron AG Riedhofstrasse 11 CH-8804 Au ZH Tel.: 783 0111 Telex: 875 755

Spanien

AEG Ibérica de Electricidad, S.A. General Mola 112–114 Apartado 235 Madrid 2 Tel.: 2 627600 Telex: 27 635

Ungarn

MERCATOR S.A.R.L. Thököly ut 156 P.O.B. 77 H-1441 Budapest XIV Tel.: 833177, 833163 Telex: 225046

Afrika

Angola

SOCIEDADE LUSO-ALEMA Lda. Caixa Postal 1222 Luanda

Tel.: 73960...62 Telex: 3137

Marokko

ElectRa S.A. 4, Rue Canizares Casabianca Tel.: 26 28 61/62

Telex: 22933

Südafrika

International Components (Pty) Ltd. P.O. Box 32 423 Braamfontein, 2017 Tel.: 725 4621 Telex: 424159 S.A.

Mittel- u. Südamerika

Brasilien

Industria Electronica STEVENSON S.A. Caxia Postal 4061 Rua Dom Constantino Baradas 88 CEP 04 134 **ZP 1-Sao Paulo SP** Tel.: 2 75 1322 Telex: 1125651

Mexiko

AEG Mexicana S.A. de C.V. Poniente 146, No. 730 Aptdto. Postal 60-504 Mexico 18, D.F. Tel.: 2 77 88 33 Telex: 1777284

Venezueia

AEG-TELEFUNKEN VENEZOLANA S.A. Boleita Norte Calle Vargas Apartado de Altamira 68912 Caracas 106

Tel.: 36 14 11 Telex: 25342

Nordamerika

Kanada

Bayly Engineering Ltd. 167, Hunt Street **Ajax Ontarlo**, L1 S1 P6 Tel.: 6838200 Telex: 6981293

USA

AEG-TELEFUNKEN Corporation Route 22-Orr drive Sommerville, New Jersey 08876 Tel.: (201) 722-9800 Telex: 833409

Asien

Hongkong

AUDIO MECHNICAL CORP. LTD. 1104 Hang Seng Bank Building 18 Carnavon Road Tsimshatsui Kowloon, Hong Kong Tel.: 3-68 84 13

indien

Telex: 84524

NGEF Ltd. Bank of Baroda Building 16, Parliament Street P.O.Box 633 **New Delhi 110001** Tel.: 310893

Telex: 2577

AFG-TELEFUNKEN Serienprodukte Geschäftsbereich Elektronische Bauelemente Export

P.O.B. 1109 D-7100 Heilbronn Tel.: 8821 · Telex: 07-28746

Iran

Sherkate Sahami Khass AEG-TELEFUNKEN IRAN Ave. Karim-Khan Zand AEG-Building Teheran

Tel.: 827143-7/830341-5

Telex: 212679

Israel

ELOTAS Electro-Vista Industries Ltd. P.O.Box 7039 10. Shefa Tal Street Montefiore Quarter **Tel Aviv**

Tel.: 269 930 Telex: 32387

Japan

AEG-TELEFUNKEN Liaison Office Room 608, Sanno Grand Bldg. 14-2, Nagata-cho, 2-chome Chiyoda-ku Tokio 100 Tel.: (03) 5817774/5

Telex: 26181

HAKUTO Co., Ltd. C.P.O. Box 25 Tokio

Tel.: 03 503 3711 + 3721

Telex: J 22 912

Rep. of Korea

AEG-TELEFUNKEN Liaison Office P.O.B. 140 130 Seoul

Tel.: 7920221 Telex: k 25617

Singapur

Dynamar International Ltd. Suite 526, Cuppage Center 55 Cuppage Road

Singapore 0922 Tel.: 235 11 39, 235 16 23

Telex: RS 26283

Talwan

Chung Teh Co., Ltd. 65-67, Chung Hsioa Rd., West,

Sec. I Taipei

Tel.: 3715241, 3711231-5

Ext. 270

Telex: 113 16, 22659

Türkei

Server Ataman Istiklal Caddesi 378/4 P.K. Bevoglu 366 Istanbul-Bevoqlu Tel.: 44 21 68

Telex: 24102

Australien und Ozeanien

Australien

Amalgamated Wireless (Australasia) Ltd. G.P.O.Box 2516 47. York Street AUS-2001 Sydney/N.S.W.

Tel.: 20233 Telex: 21515

Neuseeland

AWA New Zealand Ltd. P.O.B. 830 Wineera Drive Porlrura, Wellington

Tel.: 75 069 Telex: 31001 Notice

Notice

Notice

AEG-Telefunken (U.K.) Ltd., Electronic Component Division, 217, Bath Road, Slough, Berkshire, SL1 4AW. Tel: Slough 872101

AEG-TELEFUNKEN Serienprodukte Geschäftsbereich Elektronische Bauelemente Postfach 1109 D-7100 Heilbronn