

BUNDESREPUBLIK DEUTSCHLAND

PCT/EP2004 / 003809

REC'D 11 MAY 2004	
WIPO	PCT

Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung

Aktenzeichen: 103 16 566.5

Anmeldetag: 10. April 2003

Anmelder/Inhaber: HAEMATO-science GmbH, 14943 Luckenwalde/DE

Erstanmelder: HAEMATO-basics GmbH,
14943 Luckenwalde/DE

Bezeichnung: Mittel für die photodynamische Diagnostik
und Therapie von bösartigen Tumoren

IPC: A 61 K, A 61 P

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-
sprünglichen Unterlagen dieser Patentanmeldung.

München, den 25. März 2004
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1 (a) OR (b)

Ebert

WEICKMANN & WEICKMANN

Patentanwälte
European Patent Attorneys · European Trademark Attorneys

DIPL.-ING. H. WEICKMANN (bis 31.1.01)
DIPL.-ING. F. A. WEICKMANN
DIPL.-CHEM. B. HUBER
DR.-ING. H. LISKA
DIPL.-PHYS. DR. J. PRECHTEL
DIPL.-CHEM. DR. B. BOHM
DIPL.-CHEM. DR. W. WEISS
DIPL.-PHYS. DR. J. TIESMEYER
DIPL.-PHYS. DR. M. HERZOG
DIPL.-PHYS. DR. B. RUTTENSPERGER
DIPL.-PHYS. DR.-ING. V. JORDAN
DIPL.-CHEM. DR. M. DEY
DIPL.-FORSTW. DR. J. LACHNIT

Unser Zeichen:

27649P DE/HBwr

Anmelder:
HAEMATO-basics GmbH
Biotechnologiepark, TGZ II

14943 Luckenwalde
DEUTSCHLAND

Mittel für die photodynamische Diagnostik und Therapie von
bösertigen Tumoren

**Mittel für die photodynamische Diagnostik und Therapie von
bösertigen Tumoren**

5

Beschreibung

Die Erfindung betrifft ein Mittel für die photodynamische Diagnostik und Therapie von onkologischen Krankheiten auf Basis von Chlorin E₆-Verbindungen.

10

Im russischen Patent Nr. 2152790 wird ein Mittel für die photodynamische Diagnostik und Therapie von onkologischen Krankheiten offenbart, welches aus 40 bis 90 Gew.-% Chlorin E₆ und 60 bis 10 Gew.-% Polyvinylpyrolidon besteht.

15

Für die photodynamische Krebstherapie sind Photosensibilisatoren erforderlich. Dabei werden diese Sensibilatoren injiziert und reichern sich vorwiegend in den vom Krebs befallenen Zellen an. Durch gezielte Lasereinwirkung mit bestimmter Wellenlänge wird die Produktion von cytostatischen Stoffen in den Krebszellen, welche den Photosensibilisator enthalten, induziert. Dies führt zu einer Tumornekrose.

20

Bekannte Sensibilatoren für diesen Zweck sind Hämatoporphorine, Phthalozyanine und Naphthalozyanine. In der Praxis haben sich dabei die Sensibilatoren auf Porphyrinbasis aufgrund geringer Phototoxizität und geeigneter Empfindlichkeit für die zur Anwendung in Betracht kommenden Laser bewährt.

30 Besonders geeignet erwies sich das oben definierte Kombinationspräparat aus dem Komplex von Chlorin E₆ und Polyvinylpyrolidon. Das Chlorin E₆ besitzt intensive Adsorptionsbanden im Spektralbereich 630 ± 10 nm, der für die photodynamische Therapie von besonderer Bedeutung ist. Jedoch

ist der Extinktionskoeffizient relativ gering. Für eine erfolgreiche photodynamische Therapie muss daher eine höhere Konzentration dieses Sensibilisators in die Krebszelle gebracht werden. Da die Porphorine zum Teil Phototoxizität aufweisen, besteht der Vorteil von Chlorin E₆ in einer raschen Ausscheidung nach Verabreichung. 24 Stunden nach der Verabreichung sind nur noch 4 bis 6 % der verabreichten Menge im menschlichen Organismus nachzuweisen.

Chlorin E₆ und seine Salze sind jedoch relativ unstabil und zwar sowohl in Lösung als auch in lyophilisiertem Zustand bei Zimmertemperatur.

Der oben beschriebene Komplex von Chlorin E₆ mit Polyvinylpyrrolidon in der angegebenen Zusammensetzung weist eine deutlich verbesserte Stabilität auf und ermöglicht daher eine wesentlich bessere Anwendung in der Praxis. Die Anreicherung in Krebsgewebe im Vergleich zum gesunden Gewebe ist jedoch immer noch nicht ganz zufriedenstellend.

Der Erfindung liegt daher die Aufgabe zugrunde, den obigen Nachteil zu beseitigen und ein Mittel auf Basis von Chlorin E₆ für die photodynamische Therapie bereitzustellen, welches nicht nur eine für die Handhabung gut geeignete Stabilität auch in Lösung aufweist, sondern einen wesentlich verbesserten Anreicherungsfaktor im Krebsgewebe im Vergleich zum gesunden Gewebe besitzt.

Gelöst wird diese Aufgabe erfindungsgemäß durch ein Mittel für die photodynamische Therapie auf Basis von Chlorin E₆ und seinen Derivaten und Polyvinylpyrrolidon, welches dadurch gekennzeichnet ist, dass es einen Komplex von Chlorin E₆ und Polyvinylpyrrolidon im Gewichtsverhältnis 1:15 bis 1:25 enthält oder daraus besteht.

Überraschenderweise wird bei einem Komplex der vorstehend angegebenen Zusammensetzung eine um ein mehrfaches bessere Selektivität für die

Anreicherung des Chlorin E₆ im Krebsgewebe gegenüber dem gesunden Gewebe erzielt. Diese wesentlich erhöhte Anreicherung gestattet nicht nur die Verwendung einer geringeren Dosis des Mittels, sondern ermöglicht auch eine vertiefte Wirksamkeit der Laserbehandlung, die von bisher etwa 5 1 cm Eindringtiefe durch die Haut bis zum Doppelten gesteigert werden kann.

Zur Herstellung des erfindungsgemäßen Mittels wird zweckmäßig 10 Polyvinylpyrolidon in einer für die Injektion geeigneten wässrigen Basis gelöst und dann unter ständigem Umrühren Chlorin E₆ in der zur Erzielung der angestrebten Zusammensetzung 15 bis 25 Gew.-Teile PVP auf 1 Gew.- Teil Chlorin E₆ erforderlichen Menge zugesetzt und gerührt, bis eine völlig 15 homogene Mischung entstanden ist. Die erhaltene Lösung kann steril filtriert werden und lässt sich gefriertrocknen und in dieser Form bei Normaltemperatur aufbewahren.

Die erzielte überlegene Wirksamkeit des erfindungsgemäßen Mittels ist überraschend, da im oben erwähnten russischen Patent ausdrücklich vor 20 der Verwendung von mehr als 60 Gew.-% Polyvinylpyrolidon gewarnt wird, da überschüssige Mengen nicht mehr mit Chlorin E₆ reagieren und unnötigen Ballast darstellen. Dieses Vorurteil wird durch die Erfindung überwunden und eine um ein mehrfaches höhere Anreicherung erzielt, ohne die Beständigkeit des Komplexes hierbei zu verringern.

25 Als Polyvinylpyrolidon wird ein Präparat mit 6 bis 12 kDa bevorzugt.

Im Tierversuch wurde bei einer Dosierung des erfindungsgemäßen Mittels 30 von 1 bis 5 mg/kg und Laserbestrahlung mit einer Wellenlänge von 666 nm, von Energieexposition 50 J/cm² eine vollständige Tumornekrose bis zu einer Tiefe von 20 mm beobachtet. Mit dem bekannten Komplex werden bei sonst gleichen Bedingungen Nekrosen nur bis zu einer Tiefe von 16 mm beobachtet, mit der entsprechenden Dosis von Chlorin E₆ allein ergab sich

nur eine partielle Tumornekrose bis 7 mm Tiefe. Die Toxizität wurde als LD50 mit weniger als 140 mg/kg bestimmt. Das Chlorin E₆ wird zweckmäßig in Form eines Alkalosalzes eingesetzt. Auch die Derivate des Chlorin E₆ (13-Carboxy-17-[2-carboxyethyl]-15-carboxymethyl-17,18-transdihydro-3-vinyl-8-ethyl-2,7,12,18-tetramethylporphin) und seinen 5 Derivaten, wie z.B. den entsprechenden 15-Carboxyethoxymethyl oder 15-Formylverbindungen, die alle natürlich als Begleitstoffe des Chlorin E₆ vorkommen, sind in gleicher Weise geeignet. Insbesondere können auch 10 Mischungen des Chlorins E₆ mit seinen Derivaten im erfindungsgemäßen Komplex enthalten sein.

Das erfindungsgemäße Mittel wird normalerweise in Form einer injizierbaren Lösung verabreicht. Es ist jedoch auch eine Einarbeitung in Salben oder Liniments zur direkten Aufbringung auf die Haut möglich. Als Dosierung 15 wird eine Menge von 0,5 bis 10 mg/kg, vorzugsweise 1 bis 7 mg/kg empfohlen.

Das nachstehende Beispiel erläutert die Wirksamkeit des erfindungsgemäßen Mittels im Vergleich mit einem bekannten Mittel gemäß 20 russischem Patent Nr. 2152790.

Es wurde untersucht ein als Fotolon bezeichnetes Mittel gemäß russischem Patent Nr. 2152790 mit der Zusammensetzung Chlorin E₆ : Polyvinylpyrrolidon im Gewichtsverhältnis 1:1 und ein erfindungsgemäßes 25 Mittel in der Zusammensetzung Chlorin E₆ : Polyvinylpyrrolidon im Gewichtsverhältnis 1:15.

Die Untersuchungen wurden an 12 weißen rassellosen Ratten mit einem Gewicht von 150 bis 180 g mit intraabdominal transplantierten 30 Lymphosarkom Pliss durchgeführt. Am 5. Tag nach der Tumortransplantation wurden allen 4 Tiergruppen (3 Ratten in jeder Gruppe

pro Präparat) intravenös Fotolon bzw. das erfindungsgemäße Mittel in einer Dosierung von 5,0 mg/kg Körpergewicht verabreicht.

5 Die Anreicherungsdynamik des Fotolons bzw. des erfundungsgemäßen
Mittels, wurde in den Tumorgeweben der Ratten (Lymphosarkom Pliss) und
den gesunden Geweben (in der gegenüberliegenden Haut des
Oberschenkels) mit Hilfe computergesteuerter
Fluoreszenzspektrophotometrie mit dem Analysator "LESA-6"
(diagnostischer Laser "LGH 633-25" (Figur 1) beobachtet.

10 Die Messungen wurden jede Stunde im Laufe von 8 Stunden nach der Verabreichung der Präparate und nach 24 Stunden durchgeführt.

In den Tabellen 1 bis 4 sind die individuellen und mittleren Anreicherungsdaten des Präparates bei den 12 Ratten dargestellt.

Tabelle 1: Anreicherungsdynamik des Fotolon in den gesunden Geweben bei Ratten mit Lymphosarkom Pliss

Zelt	1 h	2 h	3 h	4 h	5 h	6 h	7 h	8 h	24 h
Nr. 1	372	913	1067	996	889	823	829	760	495
	423	839	929	992	880	817	858	758	473
	380	806	852	939	907	835	855	766	511
	391	902	936	1004	898	829	832	773	507
	536	897	934	965	876	836	806	797	489
Nr. 2	411	526	699	662	663	616	637	563	512
	380	588	712	628	685	683	631	608	587
	372	620	734	770	714	658	659	671	560
	498	576	714	691	699	689	661	594	545
	546	639	687	743	684	611	621	562	590
Nr. 3	506	782	811	843	775	755	709	712	534
	428	689	756	767	680	631	642	584	525
	398	652	721	735	669	667	653	611	536
	411	793	811	892	721	688	696	646	587
	402	746	809	857	704	691	678	623	544
X±	430,3	731,2	811,5	832,3	762,9	721,9	717,8	668,5	533,1
Sx	15,6	33,03	28,9	33,2	24,9	30,0	23,3	21,8	9,5

Tabelle 2: Anreicherungsdynamik des Fotolon in dem Tumorgewebe bei den Ratten mit Lymphosarkom Pliss.

Zeit	1 h	2 h	3 h	4 h	5 h	6 h	7 h	8 h	24 h
Nr. 1	1428	2422	3690	4030	3646	3178	2470	2255	1465
	1318	2359	3448	4209	3212	3017	2375	2214	1403
	1351	2218	3528	4028	3106	2990	2242	2205	1492
	1557	2330	3466	4250	3624	3105	2386	2101	1468
	1458	2221	3322	4194	3514	2998	2237	2138	1489
	1066	1561	2533	2895	3324	2810	2213	2111	1564
Nr. 2	1077	1694	2538	2951	3291	2888	2115	2016	1684
	1044	1850	2771	3083	3278	2967	2253	2117	1614
	1121	1993	2649	2825	3127	2930	2178	2005	1588
	1096	1843	2651	3136	3184	2803	2169	2104	1560
	1223	2113	3246	3784	3113	2835	2340	2111	1623
Nr. 3	1325	2235	3126	3630	3087	2769	2254	2147	1648
	1267	2156	3090	3475	2970	2834	2365	2138	1705
	1284	2173	3117	3657	2785	2812	2411	2119	1655
	1311	2328	3215	3712	3116	2809	2389	2108	1589
	X±	1261,7	2099,7	3092,7	3590,8	3225,1	2916,3	2293,1	2125,9
Sx	40,2	66,4	98,1	130,6	60,3	31,7	26,9	16,9	23,1

15

Tabelle 3: Anreicherungsdynamik des Mittels gemäß der Erfindung im gesunden Gewebe der Ratten mit Lymphosarkom Pliss

Zeit	1 h	2 h	3 h	4 h	5 h	6 h	7 h	8 h	24 h
Nr. 1	666	744	988	1105	1120	1141	1045	911	712
	673	735	963	1138	1163	1108	997	932	795
	636	721	1012	1120	1102	1128	1102	914	773
	612	691	996	1163	1109	1120	1008	930	689
	644	696	925	1132	1195	1137	989	911	704
	788	813	1131	1231	1247	1174	1115	1076	811
Nr. 2	749	829	1115	1215	1275	1182	1095	938	773
	805	825	1109	1209	1252	1246	1117	990	735
	731	818	1098	1298	1307	1214	1003	895	791
	707	793	1150	1250	1258	1185	990	978	806
	698	788	946	1121	1137	1210	1118	1026	921
Nr. 3	712	813	938	1132	1182	1289	1045	966	885
	722	768	980	1098	1148	1303	1132	992	830
	741	824	1034	1117	1163	1241	1067	969	813
	708	775	1057	1134	1190	1266	1054	973	867
	X±	706,1	775,5	1029,5	1164,2	1189,9	1196,3	1058,5	960,1
Sx	13,9	12,3	19,5	15,7	16,6	16,3	13,5	12,7	17,2

20

Tabelle 4: Anreicherungsdynamik des Mittels gemäß der Erfindung im
Tumorgewebe der Ratten mit Lymphosarkom Pliss

Zeit	1 h	2 h	3 h	4 h	5 h	6 h	7 h	8 h	24 h
Nr.1	2453	3776	6898	7683	8934	9115	7770	6235	3501
	2378	3930	6979	7326	8930	9087	6823	5167	3639
	2346	3979	6815	7435	8805	8992	7590	5208	3603
	2482	3831	6723	7762	8980	9046	6805	5330	3654
	2398	3678	6516	7996	8902	9087	7672	4289	3625
	2662	3890	6930	8096	9112	9207	7012	5654	3701
	2698	4012	6914	8135	9289	9246	7046	5720	3790
	2524	3965	6918	8248	9293	9301	7994	5612	3794
	2483	3894	6896	8113	9307	9412	7023	5750	3845
	2708	3979	6727	8260	9315	9385	7110	5711	3810
Nr.3	2776	4112	7313	9080	9224	9305	7087	4693	4025
	2730	4102	7222	9217	9336	9378	7116	5166	3986
	2560	4137	7290	9112	9217	9402	7023	5668	3912
	2684	3980	7572	9304	9341	9235	7114	5713	4048
	2712	4047	7284	9132	9304	9198	7200	4890	4115
X±	2572,8	3954,1	6999,8	8326,6	9151,9	9228,4	7225,7	5373,7	3802,5
Sx	37,3	32,8	72,4	174,1	49,1	35,6	91,9	132,3	47,8

15

10

16

20

Die Analyse der erhaltenen Ergebnisse bestätigt, dass eine wesentlich verbesserte selektive Speicherung im Tumorgewebe der Ratten beim Mittel gemäß Erfindung zu beobachten ist - siehe Figur 1 und 2 der Zeichnungen.

Tabelle 5: Koeffizient der Anreicherungsselektivität des Fotolon

Zeit	1 h	2 h	3 h	4 h	5 h	6 h	7 h	8 h	24 h
Tumor	1261,7	2099,7	3092,7	3590,6	3225,1	2916,3	2293,1	2125,9	1569,8
Oberschenkelhaut	430,3	731,2	811,5	832,3	762,9	721,9	717,8	668,5	533,1
Koeffizient	2,93	2,87	3,81	4,31	4,23	4,04	3,19	3,18	2,94

30

Tabelle 6: Koeffizient der Anreicherungsselektivität des Mittels gemäß
Erfindung

Zeit	1 h	2 h	3 h	4 h	5 h	6 h	7 h	8 h	24h
Tumor	2572,8	3954,1	6999,8	8326,6	9151,9	9226,4	7225,7	5373,7	3802,5
Oberschenkelhaut	706,1	775,5	1029,5	1164,2	1189,9	1196,3	1058,5	960,1	793,7
Koeffizient	3,64	5,23	6,80	7,15	7,69	7,71	6,83	5,60	4,79

Ansprüche

1. Mittel für die photodynamische Diagnostik und Therapie von
5 Tumoren auf Basis von Porphorinverbindungen und Polyvinylpyrolidon,

dadurch gekennzeichnet,
dass das Mittel Chlorin E₆ oder ein Derivat desselben und Polyvinylpyrolidon im Gewichtsverhältnis 1:15-25 enthält.

- 10 2. Mittel nach Anspruch 1,

dadurch gekennzeichnet;
dass das Polyvinylpyrolidon 6 bis 12 kDa aufweist.

Figur 1: Anreicherung des Fotolon im Lymphosarkom Pliss und gesunden Gewebe

Figur 2: Anreicherung des Mittels gemäß Erfindung im Lymphosarkom Pliss und gesunden Gewebe

