

Szyfr

Zadanie: SZY0
Limit pamięci: 32 MB
Limit czasu: 1.5 s

Jedną z potencjalnych metod złamania protokół bezpiecznej wymiany klucza Diffiego-Hellmana jest rozwiązanie problemu logarytmu dyskretnego. Dla danych liczb $a,\,b,\,p$ (p jest pierwsze), należy wyznaczyć wykładnik x, że:

$$a^x \equiv b \pmod{p}$$

Celem tego zadania nie jest rozwiązanie tego problemu wydajnie (na tyle by zagrozić bezpieczeństwu protokołu Diffiego-Hellmana), ale wystarczająco wydajnie, żeby dostać OK na wszystkich testach.

Napisz program, który: wczyta liczby a, b, p, wyznaczy najmniejsze x, że a^x daje resztę b przy dzieleniu przez p.

WEJŚCIE

W pierwszym (i jedynym) wierszu wejścia znajdują się trzy liczby całkowite: a, b, p, pooddzielane pojedynczymi odstępami.

WYJŚCIE

Wyjściem powinna być jedna liczba całkowita — najmniejsze nieujemne rozwiązanie podanego na wejściu problemu logarytmu dyskretnego.

Jeśli zadany problem nie ma rozwiązania — należy wypisać jedno słowo NIE.

OGRANICZENIA

 $1 \leqslant a \leqslant 10^9$, $0 \leqslant b \leqslant p \leqslant 10^9$, p jest liczbą pierwszą.

W testach wartych łącznie 25% maksymalnej punktacji $p \leq 10^6$.

Przykład

Wejście	Wyjście
4 10 13	5
Wejście	Wyjście