Almost-Linear Time Algorithms for Decremental Graphs: Min-Cost Flow and More via Duality

Li Chen

Stanford 05/17/24

Joint work with

Jan van den Brand Georgia Tech

Rasmus Kyng ETH

Yang P. Liu IAS

Simon Meierhans ETH

Maximilian Probst Gutenberg Sachdeva **ETH**

Sushant U. Toronto

Directed graph G = (V, E). m edges, n vertices, source s, sink t edge costs c_e , integer in [-C, C], where $C = m^{O(1)}$

Directed graph G = (V, E). m edges, n vertices, source s, sink t edge costs c_e , integer in [-C, C], where $C = m^{O(1)}$

Goal: Route 1 unit of flow from $s \rightarrow t$, minimize cost

Directed graph G = (V, E). m edges, n vertices, source s, sink t edge costs c_e , integer in [-C, C], where $C = m^{O(1)}$

Goal: Route 1 unit of flow from $s \rightarrow t$, minimize cost

Real-weighted shortest st-path

Directed graph G = (V, E). m edges, n vertices, source s, sink t edge costs c_e , integer in [-C, C], where $C = m^{O(1)}$

Goal: Route 1 unit of flow from $s \rightarrow t$, minimize cost

Real-weighted shortest st-path

Cost = -2

Directed graph G = (V, E). m edges, n vertices, source s, sink t edge costs c_e , integer in [-C, C], where $C = m^{O(1)}$

Goal: Route 1 unit of flow from $s \rightarrow t$, minimize cost

Real-weighted shortest st-path

Cost = -3

Directed graph G = (V, E). m edges, n vertices, source s, sink t edge costs c_e , integer in [-C, C], where $C = m^{O(1)}$

Goal: Route 1 unit of flow from $s \rightarrow t$, minimize cost

Real-weighted shortest st-path

Cost = -4

Linear Algebraic View

• $f \in \mathbb{R}^E$, i.e. a real vector on the edges

Goal: minimize $c^T f$

Flow routes the demand:

Net flow on s is +1

Net flow on t is -1

Flow conservation:
all other vertices have
incoming flow=outgoing flow

Linear Program

$$\min_{f} c^T f = \sum_{e} c_e f_e$$

Min Cost

For all edges *e*

$$f_e \ge 0$$

Direction constraints

For all vertices x

$$B^T f = \chi_{s,t}$$

Unit flow from s to t

Transshipment Primal LP

$$\min_{f} c^T f = \sum_{e} c_e f_e$$

Min Cost

For all edges *e*

$$f_e \ge 0$$

Direction constraints

For all vertices x

$$B^T f = d$$

Route the demand

Transshipment Primal LP

$$\min_{f} c^T f = \sum_{e} c_e f_e$$

Min Cost

For all edges *e*

$$f_e \ge 0$$

Direction constraints

For all vertices x

$$B^T f = d$$

Route the demand

Generalize weighted bipartite matching, capacitated min-cost flow, shortest path, max flow, ...

Edge insertions: Flow stays feasible

- Add an edge, put 0 flow on it
- Flow stays feasible

Edge insertions: Flow stays feasible

- Add an edge, put 0 flow on it
- Flow stays feasible
- Then move towards smaller cost
- Incremental min-cost flow in almost-linear time
 - [C-Kyng-Liu-Meierhans-Probst Gutenberg '24]
 - Maintain a primal solution under relaxing updates

Edge deletions: Flow no longer feasible

- Not an *st*-path anymore
- Edge deletion does not relax
 the primal problem
- How about the dual?

Transshipment Dual LP

$$\max_{y \in R^V} d^T y$$

For any edge
$$e = (u, v)$$

$$c_e \ge y_u - y_v$$

Triangle Inequality
Non-negative Slack

Transshipment Dual LP

$$\max_{y \in R^V} d^T y$$

For any edge e = (u, v)

$$c - By \ge 0$$

- Remove an edge -> remove one constraint
- Current dual solution y stays feasible
- Move towards larger d^Ty

Triangle Inequality
Non-negative Slack

Decremental Thresholded Transshipment

Theorem [Brand-C-Kyng-Liu-Meierhans-Probst Gutenberg-Sachdeva]

Given a decremental graph G, threshold D^*

After each edge deletion, either

- Certify that $\max_{c-By\geq 0} d^Ty < D^*$, or
- Output a feasible dual potential y s.t. $d^T y \ge D^*$

in $m^{1+o(1)}$ total time deterministically

Decremental Thresholded Transshipment

Theorem [Brand-C-Kyng-Liu-Meierhans-Probst Gutenberg-Sachdeva]

Given a decremental graph G, threshold D^*

After each edge deletion, either

- Certify that $\max_{c-By\geq 0} d^Ty < D^*$, or
- Output a feasible dual potential y s.t. $d^Ty \ge D^*$

in $m^{1+o(1)}$ total time deterministically

Application: Decremental...

- 1. max flow
- 2. min-cost flow
- 3. st-shortest path
- 4. single-source reachability
- 5. SCC maintenance
- 6. ...

Dual L1 IPM

[Karmarkar '84]

- If $\Phi(y) \le -1000m \log m$, $d^T y \ge D^* m^{-10}$
- Start at $y^{(0)}$ with $\Phi(y^{(0)}) = O(m \log m)$
- Iteratively, $\Phi(y^{(t+1)}) \le \Phi(y^{(t)}) m^{-o(1)}$
 - After $T = m^{1+o(1)}$ iterations, $\Phi(y^{(T)}) \le -1000m \log m$

Dual L1 IPM

[Karmarkar '84]

Maximize d^Ty

Enforce
$$c - By \ge 0$$

$$\min_{y \in R^V} \Phi(y) = 100m \log(D^* - d^T y) + \sum_{e} -\log(c_e - (y_u - y_v))$$

•
$$\Phi(y + \Delta) \approx \Phi(y) + \langle \nabla \Phi, \Delta \rangle + \|UB\Delta\|_1^2$$
, $U = \text{diag}(c - By)^{-1} = \sqrt{\nabla^2 \Phi}$

• If
$$\max_{c-By\geq 0} d^Ty \geq D^*$$
, $\min_{\Delta \in R^V} \frac{\langle \nabla \Phi, \Delta \rangle}{\|UB\Delta\|_1} \leq -0.1$

Min-Ratio Cut

• If
$$\frac{\langle \nabla \Phi, \Delta \rangle}{\|UB\Delta\|_1} \le -\kappa$$
, $\Phi(y + \eta \Delta) \le \Phi(y) - \kappa^2$

$$\langle 1, \nabla \Phi \rangle = 0$$

Decremental Transshipment Algorithm

• Start at $y^{(0)}$ with $\Phi(y^{(0)}) = O(m \log m)$

can view it as a L1 trust region Newton method

- For $t = 0, 1, ..., T = m^{1+o(1)}$, do
 - $m^{o(1)}$ -approximately minimize $\min_{\Delta \in R^V} \frac{\langle \nabla \Phi, \Delta \rangle}{\|UB\Delta\|_1}$
 - If the ratio is larger than $-1/m^{o(1)}$, **certify** $\max \langle d, y \rangle < D^*$
 - Otherwise, update $y^{(t+1)} = y^{(t)} + \eta \Delta$
- Output $y^{(T)}$

Min-Ratio Cut

$$\langle 1, g \rangle = 0$$

$$\min_{\Delta \in R^V} \frac{\langle g, \Delta \rangle}{\|UB\Delta\|_1}$$

Min-Ratio Cut

$$\langle 1, g \rangle = 0$$

$$\min_{\Delta \in R^V} \frac{\langle g, \Delta \rangle}{\|UB\Delta\|_1}$$

Min-Ratio Cut

$$\langle 1, g \rangle = 0$$

$$\min_{\Delta \in R^V} \frac{\langle g, \Delta \rangle}{\|UB\Delta\|_1}$$

Optimal solution is a cut, i.e.,

$$\Delta \in \{0,1\}^V$$

$$\langle g, \Delta \rangle = -3$$
$$||UB\Delta||_1 = 3 + 8 = 11$$

Fully-Dynamic Min-Ratio Cut

Theorem [Brand-C-Kyng-Liu-Meierhans-Probst Gutenberg-Sachdeva]

Given fully dynamic graph G, there's a **deterministic** data structure that

- $m^{o(1)}$ -approximately minimize $\min_{\Delta \in R^V} \frac{\langle \nabla \Phi, \Delta \rangle}{\|UB\Delta\|_1}$, and
- Update $y := y + \Delta$, gradients $\nabla \Phi$ and weights $U = \text{diag}(c By)^{-1}$

In $m^{o(1)}$ time per operation

Approx Min-Ratio Cuts via Tree Cut Sparsifiers

- Approximate the cut structure of G by a tree T
 - [Räcke '08, Mądry '10, Räcke-Shah-Täubig '14, Goranci-Räcke-Saranurak-Tan '21]
- Solve Min-Ratio Cut on T
 - Claim: it cuts one tree edge

$$||UB\Delta^*||_1 = \sum_{tree\ cuts\ C} ||UBC||_1$$

$$||UB\Delta^*||_1 = \sum_{tree\ cuts\ C} ||UBC||_1$$

$$||UB\Delta^*||_1 = \sum_{tree\ cuts\ C} ||UBC||_1$$

$$||UB\Delta^*||_1 = \sum_{tree\ cuts\ C} ||UBC||_1$$

One of \bigcap is as good as Δ^*

G is not always a tree

• G is a (weighted) ϕ -expander if

$$\frac{U(S, V \setminus S)}{vol_G(S)} \ge \phi, \forall S \subseteq V$$

• One of the singleton cut is $(1/\phi)$ -approx.

$$\phi \sum_{u \in S} \deg(u) \le U(S, V \setminus S) \le \sum_{u \in S} \deg(u)$$

- Weighted Expander Decomposition
 - Decompose G into $m^{o(1)}$ -expanders $G[V_1], G[V_2], \dots$ such that Inter-expander edge total weight $\leq \phi \cdot m^{o(1)} \cdot total \ edge \ weight$

- Weighted Expander Decomposition
- Approx each expander by a star

- Weighted Expander Decomposition
- Approx each expander by a star
- Contract

Issue

Weighted Expander Decomposition

- Previous approach is hard to dynamize [Li-Saranurak '21]
- Reduce it to unweighted case via rounding

Weighted Expander Decomposition

- Initialize $G' = (V, \emptyset)$
- Let U^{total} be the total edge weight.
- For any edge e with $u(e) \ge \frac{\phi U^{total}}{m}$, add $\left[\frac{u(e) \cdot m}{\phi U^{total}}\right]$ parallel edges to G'
- For each vertex u, add $\left\lceil \frac{\deg(u) \cdot m}{\phi U^{total}} \right\rceil$ self-loops to G'
- Run unweighted expander decomposition on G' and output the partition

Weighted Expander Decomposition

• Initialize $G' = (V, \emptyset)$

Can be made dynamic

- Let U^{total} be the total edge weight.
- For any edge e with $u(e) \ge \frac{\phi U^{total}}{m}$, add $\left[\frac{u(e) \cdot m}{\phi U^{total}}\right]$ parallel edges to G'
- For each vertex u, add $\left\lceil \frac{\deg(u) \cdot m}{\phi U^{total}} \right\rceil$ self-loops to G'
- Run unweighted expander decomposition on G' and output the partition

Fully-Dynamic Weighted Expander Hierarchy

Theorem [Brand-C-Kyng-Liu-Meierhans-Probst Gutenberg-Sachdeva]

Given fully dynamic weighted graph G, there is a deterministic algorithm that maintains an expander hierarchy with $m^{o(1)}$ update time.

Fully-dynamic $m^{o(1)}$ -approx

- 1. All-pair maxflow/mincut
- 2. Sparsest cuts
- 3. K-comm flows
- 4. Vertex cut sparsifier
- 5. ...

Summary

- Decremental Min-cost flow via maintaining dual solution
- Use L1 IPM to gradually improve/certify the current solution
- Per step, solve a min-ratio cut problem
- Weighted expander hierarchy: tree approximation of graphs w.r.t. cuts

Future direction

- $T_{maxflow}/m$: $\exp(log^{7/8}m) \rightarrow \exp(log^{3/4}m) \rightarrow polylog$?
 - Deterministic: $\exp(\log^{17/18} m) \rightarrow \exp(\log^{5/6} m) \rightarrow ??$
- Decremental $(1 + \varepsilon)$ -approx. directed SSSP?
- Implication on general graph matching?

- $T_{maxflow}/m$: $\exp(log^{7/8}m) \rightarrow \exp(log^{3/4}m) \rightarrow polylog$?
 - Deterministic: $\exp(\log^{17/18} m) \to \exp(\log^{5/6} m) \to ??$
- Decremental $(1 + \varepsilon)$ -approx. directed SSSP?
- Implication on general graph matching?

Jan van den Brand Georgia Tech

Rasmus Kyng ETH

Yang P. Liu IAS

Simon Meierhans ETH

Maximilian Probst Gutenberg Sachdeva ETH

Thanks!!

Sushant U. Toronto