MATH 104: WORKSHEET 1

1. Concepts

- (1) Surfaces
- (2) Vectors

2. Discussions

Definition 2.1 (Line in 2D). And equation with two variables f(x, y) = 0 represents a line in \mathbb{R}^2 .

Definition 2.2 (Surface in 3D). And equation with three variables f(x, y, z) = 0 represents a surface in \mathbb{R}^3 .

Definition 2.3 (Hypersurface). And equation with n variables $f(x_1, \ldots, x_n) = 0$ represents a hypersurface in \mathbb{R}^n .

Question 1. What are the surfaces that the following equations represent in \mathbb{R}^3 ?

$$(1) (x-1)^2 + (y-1)^2 + (z-2)^2 = 9$$

(2)
$$(x-1)^2 + \frac{1}{4}(y-3)^2 = 4$$
, $1 \le z \le 2$

Date: January 8, 2025.

2

$$(3) \ 3x + 3y - 5z = 0$$

Definition 2.4. A point $x \in \mathbb{R}^3$ is a tuple

$$x = (x_1, x_2, x_3).$$

A vector $\vec{x} \in \mathbb{R}^3$ is a tuple

$$\vec{v} = \langle v_1, v_2, v_3 \rangle .$$

A vector represents a quantity that has a length and a direction (starting and ending points are not important).

 $Question\ 2.$ What is the length of

$$(1) \langle 1, 2, 3 \rangle$$
?

(2)
$$\vec{v} + \vec{w}$$
 where $\vec{v} = \langle 1, 2, 3 \rangle$ and $\vec{w} = \langle 2, 3, 1 \rangle$?

(3) $\vec{w} = 10\vec{v}$ where $\vec{v} = \langle 1, 2, 3 \rangle$?