Couples:

Due deficients constant: Coc+ + Cic+ + C

```
BINOMIAL: SUM OF SERIES: Prop. - "Cr = " "-Cr - - "Cr = n-6-1) "Cr-1

DENTIST Pap- - degradation
     (1+x)" " " +" (x'+...+" Cxx" + ...+ "Cnx" (x+1) = m+1 Cx+1 upgradation
I E " = 2" (=(1+1)")
           Σ γ "Cr = 2 7. 7. " - 1 = n 2 h-Cr-1 = n.2"
             Similarly Er (1-1) M(1 = M(M-1)2M-2 OR E 72 MCr = M(M-1)2M-2 + ErMcr = M(M+1)2M-2
 (I) = (1+(1))n = 0; n=1
     => m(1+x)n-1 = m(+2m2x+000+ xm2xx-1+0...+ mmn-1
                 E (1) 7. 7. 7 = n(1+(1)) = 0; n72
                 Similarly, Er2(1) Tr = 0; n73
    (III) Co+3C1+5C2+000+(2n+1) Cn = = (2x+1) 2r = 2·n2n-1+2n = (n+1)2n
          => S (1+x) mdx = mc x + mc x2 + mc x3 + ... + mc xx+1 + ... + max x+1
                   \sum_{r=0}^{n} \frac{n_{rr}}{r+1} = \frac{2^{\frac{n+1}{2}}}{n+1} OR 2C_0 + 2^2 \frac{C_1}{2} + 2^3 \frac{C_2}{3} + \cdots + 2^{\frac{n+1}{2}} \frac{C_n}{n+1} = \frac{3^{\frac{n+1}{2}}}{n+1}
            \Rightarrow \frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \cdots + \frac{C_{2r-1}}{2r} + \cdots + \frac{C_{2n-1}}{2n} = \sum_{r=1}^{n} \frac{r_{2r-1}}{2r} = \sum_{r=1}^{n} \frac{r_{1}}{r_{1}} = \frac{1}{n+1} \sum_{r=1}^{n} \frac{r_{1}}{r_{2r}} = \frac{1}{n+1} \left( 2^{n+1} - 1 \right)
       TV = Ck + Ck + Ck + Ck + KCk +
                                     = k(k+1+k(k+ = k+)(k+1 + k+)(k+ k+2(k+ ...+ )(k = n+)(k+1
```

DEPENDENT & INDEPENDENT SUMMATIONS; TOO, TOTO, TOTO, TOTO, TOTO, TOTO, $\sum_{i=0}^{n-1} \sum_{j=0}^{n} u_{i}^{c} \int_{0}^{\infty} \int_{0}^{\infty$ neito .. neine ... neine ... neine Also, $\sum_{i=0}^{n}\sum_{j=0}^{n}C_{i}^{n}C_{j}^{n}=\frac{1}{2}\sum_{0\leq i\leq j\leq n}^{n}C_{i}^{n}C_{j}^{n}+\sum_{i=0}^{n}(^{n}C_{i})^{2}$ $\Rightarrow 2^{n}=2\sum_{0\leq i\leq j\leq n}^{n}C_{i}^{n}C_{j}^{n}+\sum_{i=0}^{n}C_{i}^{n}C_{i}^{n}C_{i}^{n}+\sum_{i=0}^{n}C_{i}^{n}+\sum_{i=0}^{n}C_{i}^{n}C_{i}^{n}+\sum_{i=0}^{n}C_{i}^{$ Lyng ... Ling ... Lyng ... Lyng Similarly, $\sum_{0 \le i \le j \le n} (C_i - G_j)^2 = \sum_{i=0}^{n} \sum_{j=0}^{n} (C_i - G_j)^2 - 0 = \sum_{i=0}^{n} \sum_{i=0}^{n} (C_i^2 - 2C_iG_j + C_j^2) = \sum_{i=0}^{n} (C_i + C_i)^2 - 2C_iG_j + C_i^2$ = $(n+1)^{2n}(n-2^{2n+1}+(n+1)^{2n}C_n = (n+1)^{2n}C_n-2^{2n}$ =) S= n == ((2+(+(i))- = (2(i+(i)) = n ((n+1)(i+2n+2n(i)) - (2n+1,2n(i))) = $\frac{M}{2}$ ((n+1)2ⁿ + (n+1)2ⁿ + 2²ⁿ - 2ⁿ⁺¹ - 2ⁿ(n) = $\frac{M}{2}$ (n)2ⁿ⁺¹ + 2²ⁿ - 2ⁿ(n) $\sum_{0 \le i \le j \le n} (i \cdot j) (i \cdot j) = \sum_{0 \le i \le j \le n} (n^2 - (i + j)n + i \cdot j) (i \cdot j)$ upper trangle is zero ZI mcscr = Formson - Incscs ostessn = \(\sum_{8=0}^{2} 2^{8} \). \(\chi_{8} - 2^{n} \) ng sto ng sci ... ng scr ... ng sch white whit ... while ... Link

$$e^{i\theta} = \cos \theta + esin \theta \Rightarrow (e^{i\theta})^{n} = (\cos \theta + esin \theta)^{n} = e^{\theta n\theta}$$

$$\Rightarrow {^{n}C_{0}}\cos^{n}\theta + {^{n}C_{1}}e\sin\theta\cos^{n}\theta + {^{n}C_{2}}e^{2}\sin^{2}\theta\cos^{n-2}\theta + \cdots + {^{n}C_{n}}e^{n}s_{n}^{n}\theta = (\cos n\theta + sin n\theta)$$

Expansions of cos no a sin no expansion in the expansion of the expansion in the expansion i

$$\int \frac{dn}{n^2 + a^2} = \int \frac{a \sec^2 \theta \, d\theta}{a^2 + a \sin^2 \theta + a^2} = \frac{1}{a} \int \frac{\sec^2 \theta \, d\theta}{\sec^2 \theta} = \frac{1}{a} \cdot \theta + C$$

$$\int \frac{dn}{n^2 + a^2} = \int \frac{a \cos \theta \, d\theta}{a^2 \sin^2 \theta - a^2} = -\frac{1}{a} \int \frac{d\theta}{\cos \theta} = -\frac{1}{a} \ln \left| \sec \theta + \tan \theta \right| + C$$

$$\int \frac{dn}{n^2 + a^2} = \int \frac{a \cos \theta \, d\theta}{a^2 \sin^2 \theta - a^2} = -\frac{1}{a} \ln \left| \frac{1 + \frac{n}{a}}{\sqrt{1 - \frac{n}{a^2}}} \right| = -\frac{1}{2a} \left| \frac{(1 + \frac{n}{a})^2}{(1 - \frac{n}{a})(1 + \frac{n}{a})} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| + C = -\frac{1}{a} \ln \left| \frac{1 + \frac{n}{a}}{\sqrt{1 - \frac{n}{a^2}}} \right| = -\frac{1}{2a} \left| \frac{(1 + \frac{n}{a})^2}{(1 - \frac{n}{a})(1 + \frac{n}{a})} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| + C = -\frac{1}{a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{1 + \sin \theta}{\cos \theta} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C = \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| - \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C = \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C = \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C = \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C = \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C = \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C = \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C = \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right| + C$$

$$= \frac{1}{2a} \ln \left| \frac{n}{\sqrt{1 - \frac{n}{a^2}}} \right$$

Classical theory of Probability: All outcomes are assumed to be equally. Probability of an event = Total no. of outcomes favourable to the event aka Empirical Probability / Statistical Approach of Probability:
When the prob. of the occurrence of event A can't be worked out exactly (due to practical limitations & single vio. of trials), an empirarical value is worked out. Probability of occurrence of event A, $P(A) = \lim_{n \to \infty} \left(\frac{x}{n}\right)$ where $\gamma =$ "number of successes", n = "no. of trials" e.e. (successes + failures) Axiomatic Approach to Probability: Let S be the sample space of a random experiment The probability P is a real valued function whose domain is the power set of S and name to the interval [0, 1] satisfying the following arrows: (1) For any event P(E), P(E) = 0 (3) If E and F are mutually exclusive events, then P(EUF) = P(E) + P(F)*Let S be a sample space containing outcomes $\omega_1, \omega_2, ..., \omega_n, i.e. S = \{\omega_1, \omega_2, ..., \omega_n\}$ It follows that: (1) $0 \le P(\omega_1) \le 1$ for each $\omega_1 \in S$ (2) P(w1)+P(w2)+...+P(wn)=1 (3) For any event A, P(A) = \(\Sigma\) (\(\omega\), \(\omega\) \(\epsi\)

no. of such decto. at annangements IV, VIZ VIZ, VIII prohabelety destribution
RANDOM VARIABLE. A random variable is a neal X: x, z2 xn valued sunction whose domain is the sample space of a nandom experiment. P(X): P. P2 Pn Pe > 0. i=1,2,,n, 5 po = 1
is the sample space of a nandom experiment. MEAN of X/expected value of X denoted by E(X) P(X): P_1 P_2 Pn P(x): P_3 Pn P(x):
Total Marian Mar
$= \mu = E(x) = \sum_{i=1}^{\infty} x_i p_i$
Variance, $\sigma^2 = \sum_{\ell=1}^{n} (x_{\ell}^2 - \mu)^2 p_{\ell} = \sum_{\ell=1}^{n} x_{\ell}^2 p_{\ell}^2 - \mu_{\ell}^2 = E(X - \mu)^2$
Standard deveation, $\sigma = \int_{i=1}^{\infty} (x_i - u)^2 p_i$
Conditional probability: P(EIF) = P(ENF) provided P(F) #0
For random variable o mean (y) = np; n-1 no. of trials in boundulli
January 1 - 11 1 7 7 11 100 of January
Fhiripedia: If the random variable X follows the binomial distribution with parameters
FWikipedia: If the random variable X follows the binomial distribution with parameters if N and $p \in [0, 1]$, we write $X \sim B(n, p)$. The probability of getting exactly K successes in n independent Bernoulli trials is given by the probability mass function: $f(k, n, p) = Pr(k, n, p) = Pr(X = K) = \binom{n}{k} p^{k} (1-p)^{n-k}$
sidependent benown mais is given by the probability mass Jundeon:
[[[]] - 12 [] = [] - 12 [X - X] = (K) p ([p)
he 'Expected value', $E[X] = E[X_1 + X_2 + \cdots + X_m] = E[X_1] + KE[X_2] + E[X_3] + \cdots + E[X_m] = p + p + \cdots + p = n + p$ X is sum of n identical Bernoulle random various les, each with expected value p, Elylis landom

Also,
$$E[X] = \sum_{r=0}^{\infty} Y(\frac{n}{r}) p^{r} (1-p)^{n-r} = \sum_{r=0}^{\infty} n \binom{n-1}{r-1} p^{r-1} (1-p)^{n-r+1} p = Np \sum_{r=0}^{\infty} \binom{n-1}{r-1} p^{r-1} (1-p)^{n-r+1} p^{r-1} (1-p)^{n-r+1} p^{r-1} p^{r-1}$$

Delet
$$n_1 < n_2 < n_3 < n_4 < n_5$$
 be the int. Such that $n_1 + n_2 + n_3 + n_4 + n_5 = 20$. Then the no. of such distinct arrangements $(n_1, n_2, n_3, n_4, n_5)$ is

Let $n_2 = N_1 + \alpha_1$, $N_3 = n_2 + b = N_1 + \alpha + b_1$, $n_4 = n_3 + c = n_1 + \alpha + b + c_1$, $n_5 = n_4 + d = n_1 + \alpha + b_2 + d_1$

where $n_1, \alpha_1, b_1, c_1, d_1 > 0$

of $n_1 + n_2 + n_3 + n_4 + n_5 = 20$

No. of ways coeff. of $n_1 > n_2 > n_3 > n_4 > n$

= "
$$\frac{1}{(1-n^{5})} \frac{1}{(1-n^{3})} \frac{1}{(1-n^{2})} \frac{1}{(1-$$

a. Two friends visit a restaurant randomly during 5pm to 6pm. Amy Among the two, whoever comes first wasts for 15 min & then lowers. The probability that they meet is? # M-1° If first comes on (0-45)man, Second must come within next & 15 min Prob. = $\left(\frac{3}{4}\right) \times \left(\frac{1}{4}\right)$ ise, (15) (m+15-n) If first comes in (45-60)min, whener next comes, they'll meet $|800| = 2 \left(\frac{60-45}{60}\right) = \frac{1}{4}$ = . Req. prob = 3 x 4 + 1 = \$ 7 16 M-2: $60 - \frac{111}{160,45}$ A agrices at 5pm t, man 8 arrives at 5pm tzmanThey meet if $|t_1-t_2| \le 15$ (Shaded neggon) $|t_1| = \frac{15}{60} \cdot t_1$ when they meet $|t_1| = \frac{3600 - 2 \times 1 \times 45^2 - 7}{3600}$

$$\frac{\sum_{k=2}^{\infty} \frac{k^{3}+3k^{2}+lok+lo}{2^{k}(k^{4}+4)}}{2^{k}(k^{4}+4)} = \frac{\sum_{k=2}^{\infty} \left(\frac{1}{2^{k}} + \frac{3k^{2}+lok+lo}{2^{k}(k^{4}+4)k^{2}+4-4k^{2})}\right)}{2^{k}(k^{4}+4)} = \frac{1}{2^{k}} + \sum_{k=2}^{\infty} \frac{3k^{2}+lok+lo}{2^{k}(k^{4}+4)k^{2}+4-4k^{2})} + \sum_{k=2}^{\infty} \frac{3k^{2}+lok+lo}{2^{k}(k^{4}+2)^{2}-(2k)^{2}} + \sum_{k=2}^{\infty} \frac{3k^{2}+lok+lo}{2^{k}(k^{4}+2k+2)} + \sum_{k=2}^{\infty} \frac{3k^{2}+lok+lo}{2^{k}(k^{4}+2k+lok+lo}) + \sum_{k=2}^{\infty} \frac{3k^{2}+lok+lo}{2^{k}(k^{4}+2k+lok+lo}) + \sum_{k=2}^{\infty} \frac{3k^{2}+lok+l$$

Q. The value of 5 exsecr-tarm (xtanx - sinzx) dx is $\frac{d}{dx}\left(e^{nsec^2n-tanx}f(n)\right) = e^{nsec^2n-tann}\left(f'(n) + \left(seyn + n\cdot 2sec^2ntann - sey(n)\right)f(n)\right)$ I = 5 " e xsec2n-tann (ntann. 2 sec2n. 2 coo2n & + coon (-81917))dn = $\int_0^{\pi/4} (e^{x \sec^2 n - \tan n} \cdot \frac{1}{2} \cos^2 n) dx = \left[e^{x \sec^2 n - \tan n} \cdot \frac{1}{2} \cos^2 n \right]_0^{\pi/4}$ $= \frac{1}{2} \left[e^{\frac{\pi}{4} \times 2} - \frac{1}{2} - \frac{1}{2} \right] = \frac{1}{4} e^{\frac{\pi}{2} - 1} - \frac{1}{2}$

Q. If n any y are non-zero numbers satisfying x²+y²=xy (x²-y²). Then the min. value of x²+y² is

B. 5 gists and 10 boys sit at random in a row having 15 chairs numbered 1 to 15. Tohat is the probability that the end seats are occupied by girls and blue any two girls an odd no. of boys take their seats? (a) a ab ac ad a a+b+c+d=10=) (Allodd)=) 200+260+2do=6 + a0+b0+c0+d0=1377 no. of non-negative extegral soly = answer Q. Let ar denotes the number of destributing r objects into 4 district boxes such that boxes land 2 must hold an even no. of object and box 3 must hold an odd no. of objects, then ar=? No- of ways = 51.101. 603 Set Suppose a case, [2] [3] [2] - no. of ways = $\frac{11!}{2! \times 13! \times 12!}$. Total no. of ways = coeff of x^{γ} in $\frac{1}{1!} \left(1 + \frac{x^2}{2!} + \frac{x^2}{4!} + \cdots \right)^2 \left(\frac{x}{1!} + \frac{x^3}{3!} + \cdots \right) \left(1 + \frac{x^2}{1!} + \frac{x^3}{3!} + \cdots \right) \left(1 + \frac{x^2}{1!} + \frac{x^3}{3!} + \cdots \right)$ = coeff of x^{γ} in $\frac{1}{1!} \left(\frac{e^{x} + e^{-x}}{2}\right)^2 \left(\frac{e^{x} - e^{-x}}{2}\right)^2 e^{x}$ " $\frac{\gamma_0^1}{8} \left(e^{2x} + e^{-2x} + 2 \right) \left(e^{2x} - 1 \right) = \left(\text{oeff of } x^r \text{ in } \frac{\gamma_0^1}{8} \left(e^{4x} + 1 + 2e^{2x} - e^{2x} - e^{2x} - 2 \right) \right)$ $\frac{\gamma_{0}^{1}}{8}\left(e^{hx}+e^{2x}-e^{-2x}-1\right)=\frac{\sigma_{0}^{1}}{8}\left(\frac{4^{T}}{\sigma l}+\frac{2^{T}}{\gamma l}-\frac{(-2)^{T}}{\gamma l}\right)=\left[\frac{1}{8}\left(4^{T}+2^{T}-(-2)^{T}\right)\right]$

Q. The no. of ways in which the letters of the word RAMESH can be placed in the squares of the given figure so that no row remains empty, is

(1) 17280 (3) 15840 Sdittotal - cases when atleast a 910w empty

(2) 18720 (4) 14400 = ${}^{8}C_{6} \times 6! - {}^{6}C_{6} \times 6! \times 2 = 18720$

PROBABILITY: A, B and C throso a doce one by one. Whomesoever throws a six wins the game. If it starts with A, then B and then C, sind the nespective chances of their winning. P(A) = A + A'B'C'A + A'B'C'A'B'C'A + ... 00 $=\frac{1}{6}+\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)+\cdots$ $P(B) = A'B + A'B'C'A'B + --\infty = \frac{\frac{1}{6} \times \frac{1}{6}}{1 - (\frac{5}{6})^3} = \frac{30}{91}$ $P(c) = A'B'C + A'B'C'A'B'C + ... \infty = \frac{5}{1 - (5)^3} = \frac{25}{91}$ 2 A newly opened fast Good nestawrant, has 5 menu plems. If the first 4 customers choose one menu item at random and the what is the probability that the 9th automer orders a previously unordered stem? Sol": Total no. of ways to order = 5x5x5x6=54 4th one orders previously undordered flem, choose one & reserve for him no. of ways = 5C, ×4×4×1 = 5×43 a. Three critics neview a book. Odds in favour of the book are 5:2,4:3 & 3:4

nexp for the three critics. The probability that majority are in favour of the book a? a. If sour squares are chosen at random on a chesboard and the probability that they lie on a diagonal line is $\frac{\lambda}{64}$, then sum of digits of $\lambda=?$ 7= ((4C4+5C4+64+7C4)×2+8C4)×2= (8C5×2+8C4)×2=364 this is also a diagonal

#DEFINITIONS: - An experiment is called random experiment of (i) It has more than one possible outcome and (ii) It is not possible to preded the outcome in advance -) The set of all possible outcomes of a random experiment is called its outcome. associated with the experiment. - Each element of the sample space is called a sample point. -> Any subset E of a sample space S is called an evento -) The exent E & of a sample space S is said to have occurred if the such that w \$E, we say that the event E has not occurred. → p→ impossible event 4 8 → swe event → Semple (or elementary) event: exent E has only one sample point

→ Compound event: event E has more than one sample point

→ In general, two exents A and B are called mutually exclusive events if the occurrence of any one of them excludes the occurrence of the other event, i.e., if they can not occur spinultaneously. Generally ANB=\$.

If E., Ez,..., En oure n events of a sample space S and Pf

E.UEZUEZU..., UEn = UEr = S then E, Ez,..., En are called exhaustive events.