8.2 Sector calculations

- 1. Do Now: Convert each set of units. One inch $=\frac{1}{12}$ foot or one foot =12 inches.
 - (a) How many feet are 30 inches?
 - (b) How many inches are 8.25 feet?

- 2. Do Now: The shaded sector of the unit circle is *one tenth* of the whole circle, as shown.
 - (a) Write down the circumference in terms of π . $(C = 2\pi r)$

(c) Find $m \angle AOB$ in radians.

3. Convert equivalent angle measures between radians and degrees ($2\pi=360^{\circ}, \pi=180^{\circ}$). Apply the appropriate formula.

$$r = d \times \frac{\pi}{180}$$

(a) $72^{\circ} = ?$ radians Express in terms of π

$$d=r\times\frac{180}{\pi}$$

(b)
$$\frac{\pi}{9} = ?$$
 degrees

- 4. Groupwork: Each member picks a different color and Greek letter to write on other members' slides.
 - (a) Hand write yours in the upper left quadrant first.
 - (b) In the breakout room, student with the shortest first name "raises his/her hand" and other members come to "help" him/her.
 - (c) Each student writes his/her name and letter into a different quadrant. (better: copy/paste screenshot)
 - (d) Repeat with each team member.

Your name & letter:	Member name & letter:
Member name & letter:	Member name & letter:

Example Greek letters are π , θ , α , Δ , β , σ , Σ , ϵ

5. Lesson: Pie charts represent proportions using sector areas and central angles.

Population of NY City is 8,340,000 Population of NY State is 19,500,000

- (a) Find the fraction of New Yorkers, x, who reside in NYC as a percentage.
- (b) Find the central angle of the shaded area, $\theta = x \times 360^{\circ}$

6. Practice: Convert between radians to degrees knowing $2\pi = 360^{\circ}$ or $\pi = 180^{\circ}$. Apply the appropriate formula. Leave radians in terms of π .

$$r = d \times \frac{\pi}{180}$$

(a) $36^{\circ} = ?$ radians

(b) $72^{\circ} = ?$ radians

$$d = r \times \frac{180}{\pi}$$

(c) $\frac{\pi}{7} = ?$ degrees

(d) $\frac{3\pi}{4} = ?$ degrees

- 7. Right $\triangle ABC$ is drawn in *standard position* with vertex A on the origin and right $\angle C$ on the x-axis, as shown.
 - (a) Find the length of the hypotenuse AB using the Pythagorean Theorem $a^2 + b^2 = c^2$. (leave as a radical)
- (b) Find the slope of the line segment \overline{AB} as a decimal.