

# CS1259B 用户手册

具有 5 通道带高性能 24bits ADC REV 1.2

#### 芯海科技 (深圳)股份有限公司

地 址:深圳市南山区蛇口南海大道1079号花园城数码大厦A座9楼 电 话: +(86 755)86169257 传 真: +(86 755)86169057

网站: www.chipsea.com 邮编: 518067

微信号: 芯海科技





# 版本历史

| 历史版本    | 修改记录                                              | 日期         |
|---------|---------------------------------------------------|------------|
| REV 1.0 | 初始版本;                                             | 2018-6-01  |
| REV 1.1 | 1、删除寄存器 ADC3 中 IDASL、IDACP,寄存器 ADC5 中 REG_NC,15页; | 2018-6-26  |
|         | 2、删除 PGA 正负端选择关于 TS 的选项,16页;                      |            |
| REV 1.2 | 1、修正时钟频率,更改 VREF 电压,page 9;                       | 2018-10-16 |



# 目 录

| 版 | i本历史       | t                                 | 2    |
|---|------------|-----------------------------------|------|
| 目 | 录          |                                   | 3    |
| 图 | ]目录        |                                   | 5    |
|   |            |                                   |      |
|   |            |                                   |      |
| 1 |            | <b>}</b>                          |      |
|   | 1.1        | 主要特性                              |      |
|   | 1.2        | 应用场合                              |      |
|   | 1.3<br>1.4 | 切能说明<br>极限值                       |      |
|   | 1.5        | 电气特性                              |      |
|   | 1.6        | 可靠性指标                             |      |
|   | 1.7        | 产品型号及引脚                           |      |
|   | 1.8        | 典型应用电路                            | . 11 |
| 2 | 功能         | <b>b寄存器说明</b>                     | . 13 |
|   | 2.1        | 功能寄存器列表                           | 13   |
|   | 2.2        | 功能寄存器说明                           |      |
|   | 2.2.1      | 1 SYS —系统配置寄存器(地址 00H)            | . 13 |
|   | 2.2.2      | 0 0 HOTE 1 11 HI ( G - HI 0 )     |      |
|   | 2.2.3      | - 11-22 + 14 1111 ( - 2 - 2 - 7 ) |      |
|   | 2.2.4      | - 1,-22 + 1,+ 1,11 ( = 2 )        |      |
|   | 2.2.5      | - 11 <del>-22</del>               |      |
|   | 2.2.0      |                                   |      |
|   | 2.2.8      |                                   |      |
|   | 2.2.9      |                                   |      |
| 3 | 功能         | b描述                               |      |
| J |            |                                   |      |
|   | 3.1<br>3.2 | 输入选择<br>输入电平移位器                   |      |
|   | 3.3        | 一個人电「移位备<br>PGA 和 ADC             |      |
|   | 3.4        | 数字滤波器                             |      |
|   | 3.4.1      |                                   |      |
|   | 3.4.2      | 2 建立时间                            | . 21 |
|   | 3.5        | 参考电压源                             |      |
|   | 3.6        | 内部时钟源                             |      |
|   | 3.7        | 测量模式及其切换                          |      |
|   | 3.8<br>3.9 | 多种工作模式复位和断电(POR&power down)       |      |
|   |            |                                   |      |
| 4 |            | 英有效位                              |      |
| 5 | 典型         | 일特性                               | . 24 |
|   | 5.1        | LDO 典型特性                          | . 24 |
|   | 5.2        | 内部时钟典型特性                          | . 24 |
| 6 | 三绀         | 战串行通讯接口                           | . 25 |
|   | 6.1        | 读时序                               |      |
|   | 3/27       | 文件编号: CS-QR-YF-054A02             | . 20 |



| 6.2 | 2  | 写时序      |       |       | <br>      |       |      |       |       | 26 |
|-----|----|----------|-------|-------|-----------|-------|------|-------|-------|----|
| 7   | 封装 | <u> </u> | ••••• | ••••• | <br>••••• | ••••• | •••• | ••••• | ••••• | 27 |



# 图目录

| 图 1-1 CS1259B 原理框图                                |    |
|---------------------------------------------------|----|
| 图 1-3 CS1259B SOP16 封装引脚图                         | 11 |
| 图 1-5 CS1259B 典型应用电路                              | 12 |
| 图 3-1 模拟输入结构图                                     | 18 |
| 图 3-2 电平移位模块                                      | 18 |
| 图 3-3 PGA 和 ADC 结构图                               | 19 |
| 图 3-4 COMB 滤波器的频率响应特性(Fs=331Hz,DR=10Hz,3 阶 COMB ) | 20 |
| 图 3-5 COMB 建立过程                                   | 21 |
| 图 3-6 CS1259B 低功耗工作示意图                            | 22 |
| 图 5-1 LDO 全电压全温度范围的典型特性(LDOS[1:0]=00,负载 1mA)      | 24 |
| 图 5-2 内部时钟全电压全温度范围的典型特性                           | 24 |
| 图 6-1 读操作时序 1(读 AD 值)                             | 25 |
| 图 6-2 读操作时序 2(除 AD 值之外的寄存器)                       | 26 |
| 图 6-3 写操作时序                                       | 26 |
| 图 7-1 芯片 SOP16 封装尺寸信息                             | 27 |
|                                                   |    |



# 表目录

| 表 1-1 CS1259B 极限值                                  | 8  |
|----------------------------------------------------|----|
| 表 1-2 CS1259B 电气特性                                 | 9  |
| 表 1-3 CS1259B SOP16 封装引脚说明                         |    |
| 表 2-1 功能寄存器列表                                      |    |
| 表 2-2 SYS 寄存器说明                                    |    |
| 表 2-3 ADC0 寄存器说明                                   |    |
| 表 2-4 ADC1 寄存器说明                                   |    |
| 表 2-5 ADC2 寄存器说明                                   |    |
| 表 2-6 ADC3 寄存器说明                                   |    |
| 表 2-7 ADC4 寄存器说明                                   |    |
| 表 2-8 ADC5 寄存器说明                                   |    |
| 表 2-9 ADO 寄存器说明                                    |    |
| 表 2-10 ADO 寄存器说明                                   |    |
| 表 3-1 PGA 和 ADGN 与 Gain 及输入信号的关系                   |    |
| 表 4-1 ADC 信号链不同 GAIN 及 DR 下的有效位(ENOB) <sup>1</sup> | 23 |
| 表 6-1 串口通讯命令列表                                     |    |
| 表 6-2 三线串行通讯接口时序表                                  |    |



## 1 简介

#### 1.1 主要特性

- ◆输入
  - ●支持单端输入;
  - ●支持多达5路输入、可组成多个差分输入对;
  - ●支持输入电平移位功能。
- **♦**PGA
  - ●1/2/4/8/16/32/64/128 倍可选增益;
  - ●高达 100Mohm 的等效输入阻抗。
- **♦**ADC
  - ●24 bit 分辨率;
  - ●输出速率 10~1280Hz 8 档可选。
- ◆有效位
  - ●2.35V 参考、40Hz 速率、128 倍增益下 19.5bits 有效位。
- ◆LDO 及内部参考电压(TBD)
  - ●自带 LDO,输出 2.35/2.45/2.8/3.0V 可选,30ppm/℃,精度±1%;
  - ●自带低漂移基准,内部参考电压 1.225V 可选,30ppm/℃,精度±1%;
- ◆支持性能、普通、低功耗、休眠模式
- ◆支持电压测量、手动测量模式,单命令切换
- ◆低漂移片上时钟
- ◆三线串行通讯

#### 1.2 应用场合

7/27

- ◆热电堆红外检测
- ◆桥式传感器



#### 1.3 功能说明

CS1259B 原理框图如图 1-1 所示。



图 1-1 CS1259B 原理框图

CS1259B 是一个包括一个 ADC 信号链,其中 ADC 信号链包括有输入 MUXP/MUXN,可编程低噪声增益放大器(PGA),以及一个 Sigma-delta ADC 及数字滤波器 Digital Filter; 其中 MUXP/MUXN 分别具有 8 输入通道,包括 5 个外部模拟输入通道和 3 个内部输入通道; MUXP/MUXN 之后有电平移位模块 LVSHIFT,可以对地轨附近的输入信号移位后送入 PGA; PGA 和 ADC 具有多种增益选择,数字滤波器可配置为多种输出速率。

CS1259B 内置有低漂移 LDO 和电压基准 VREF, 高精度振荡器 OSC 等。

CS1259B 可以通过 3 线串行接口进行多种功能模式的配置,例如用作桥式传感器应用、温度检测、单端输入应用等等。

#### 1.4 极限值

表 1-1 示出了 CS1259B 的极限值。

表 1-1 CS1259B 极限值

| 名称     | 符号  | 最小   | 最大  | 单位 | 说明                       |
|--------|-----|------|-----|----|--------------------------|
| 模拟电源电压 | VDD | -0.3 | 6   | V  | VDD to GND               |
| 电源瞬间电流 |     |      | 100 | mA | Input Current momentary  |
| 电源恒定电流 |     |      | 10  | mA | Input Current continuous |



| 数字管脚输入电压 | -0.3 | VDD+0.3 | V             | Digital Output Voltage            |
|----------|------|---------|---------------|-----------------------------------|
| 数字管脚输出电压 | -0.3 | VDD+0.3 | V             | to GND                            |
| 结温       |      | 150     | $^{\circ}$ C  | Max. Junction<br>Temperature      |
| 工作温度     | -40  | 85      | $^{\circ}$    | Operating<br>Temperature          |
| 储存温度     | -60  | 150     | ${\mathbb C}$ | Storage Temperature               |
| 芯片管脚焊接温度 |      | 300     | ${\mathbb C}$ | Lead Temperature (Soldering, 10s) |

#### 1.5 电气特性

整个芯片供电电压为 2.4V-3.6V, 工作温度为-40℃-85℃, 设计指标如下所示:

表 1-2 CS1259B 电气特性

(Test Condition: VDD=3.0V,25°C,VS=2.35V)

|                        |                  | 条件                               | 最小值     | 典型值         | 最大值     | 单位       |
|------------------------|------------------|----------------------------------|---------|-------------|---------|----------|
|                        | 满幅输入电压           |                                  |         | ±VREF/Gain  |         | V        |
| 模拟输入                   | 共模输入电压           | PGA Buffer<br>关闭                 | GND-0.1 |             | VS+0.1  | V        |
|                        | 八次個八七匹           | PGA Buffer<br>打开                 | 参       | 见"PGA&AD"一  | 节       |          |
|                        | 差分输入阻抗           | PGA Buffer<br>关闭                 | 参       | 见"PGA&ADC"- | 一节      |          |
|                        | 左刀 棚八阻玑          | PGA Buffer<br>打开                 |         | 100         |         | ΜΩ       |
|                        | 分辨率              | 无失码                              |         | 24          |         | Bits     |
| -                      | Data Rate        |                                  | 10      | 40          | 1280    | SPS      |
|                        | 建立时间             |                                  |         | 4           |         | 转换周<br>期 |
|                        | 噪声性能             | Gain=32×2<br>160Hz <sup>1)</sup> |         | 95          |         | nV       |
|                        |                  | Gain=1×1,<br>160Hz <sup>2)</sup> |         | 2.3         |         | uV       |
| PGA                    | 积分线性度            | Gain=128                         |         | 0.0015      |         | % of FS  |
| &<br>ADC               | 失调误差             | Gain=128                         |         | ±8          |         | uV       |
| ADC                    |                  | Gain=1                           |         | ±100        |         | uV       |
|                        | 失调误差漂移           | Gain=128                         |         | ±0.5        |         | nv/℃     |
|                        | 八朔庆左宗彻           | Gain=1                           |         | 0.4         |         | uv/°C    |
|                        | <br>  増益误差       | Gain=128                         |         | ±5          |         | %        |
|                        | 坦皿伏左             | Gain=1                           |         | ±1          |         | %        |
|                        | 増益误差漂移<br>増益误差漂移 | Gain=128                         |         | 8           |         | ppm/℃    |
|                        |                  | Gain=1                           |         | TBD         |         | ppm/°C   |
|                        | 输入REFP           |                                  | VS/2    |             | VDD+0.1 |          |
|                        | 输入REFN           |                                  | GND-0.1 | GND         | VS/2    |          |
| IDO                    | VS电压             | LDOS[1:0]=00                     | 2.32    | 2.35        | 2.38    | V        |
| LDO -<br>& -<br>VREF - | VS温漂             |                                  |         | 30          |         | ppm/℃    |
|                        | VREF电压           |                                  | 1.212   | 1.225       | 1.238   | V        |
| , 1.21                 | VREF温漂           |                                  |         | 30          |         | ppm/°C   |

9/27



|     | 频率         |                   |         | 5.898             | ·       | MHz |
|-----|------------|-------------------|---------|-------------------|---------|-----|
| 时钟  | trim精度     |                   |         | 1                 |         | %   |
| 削钾  | 频率全温度变化    |                   |         | 2                 |         | %   |
|     | 频率全电压变化    |                   |         | 1                 |         | %   |
|     | VIH        |                   | 0.7×VDD |                   | VDD+0.1 | V   |
|     | VIL        |                   | GND     |                   | 0.2×VDD | V   |
|     | VOH        | Ioh=1mA           | VDD-0.4 |                   | VDD     | V   |
| 数字  | VOL        | IoL=1mA           | GND     |                   | 0.2+GND | V   |
|     | IIH        | VI=VDD            |         |                   | 1       | uA  |
|     | IIL        | VI=GND            | -1      |                   |         | uA  |
|     | Fsclk      |                   |         |                   | Fosc/4  | MHz |
|     | 电源电压       | VDD               | 2.4     | 3                 | 3.6     | V   |
|     |            | 普通模式              |         | 0.6               |         | mA  |
|     | ADC工作电流    | 性能模式              |         | 1.1               |         | mA  |
|     |            | Power down        |         | 0.1               | 1       | uA  |
| 电源及 | LDO工作电流    |                   |         | 160 <sup>3)</sup> |         | uA  |
| 模块功 |            | 启动温度补偿            |         | 280 4)            |         |     |
| 耗   | VREF工作电流   | 不启动温度补<br>偿       |         | 210 5)            |         | uA  |
|     | OSC工作电流    | Freq=5.898MH<br>z |         | 78                |         | uA  |
|     | 数字工作电流     | 正常工作              |         | 230               |         | uA  |
|     | 数子工作电弧<br> | Power down        |         | 0.2               | 1.3     | uA  |
|     | ADC+LDO+数字 | ADC普通模式           |         | 1                 |         | mA  |
| 整体功 | ADC+LDO+数字 | ADC性能模式           |         | 1.5               |         | mA  |
| 耗   | ADC+LDO+数字 | ADC占空比模<br>式      |         | 0.4               |         | mA  |

1),2): 以上噪声特性是指 PMODE[1:0]=01、BUFBP=0,且 CHOPM[1:0]、LVSHIFT、FIL\_EN 为默认配置时的噪声特性;使用以上选项的一项或多项时的噪声特性请参考 第四章"噪声和有效位"的相关描述:

3),4),5):LDO 和 VREF工作电流均包括了内部 Bandgap 模块的工作电流;因此两个模块同时打开时,电流不是简单相加;LDO+VREF(不启动温度补偿)电流为 260uA。

#### 1.6 可靠性指标

- (1) ESD > = +/-4KV(成品接触放电+/-4KV; 空气放电+/-8KV), 芯片不损坏;
- (4) 80M~2G 射频干扰, 18 位 ADC 跳动小于 30 个码。

#### 1.7 产品型号及引脚

而 CS1259B 具有 5 个模拟输入通道,采用 SOP16 封装。





图 1-2 CS1259B SOP16 封装引脚图

表 1-3 CS1259B SOP16 封装引脚说明

| 引脚序号 | 引脚名称                   | 输入/输出 | 说明         |
|------|------------------------|-------|------------|
| 1    | REFN                   | Ι     | 负端参考电压输入   |
| 2    | AIN0                   | Ι     | 模拟信号输入通道 0 |
| 3    | AIN1                   | Ι     | 模拟信号输入通道 1 |
| 4    | CIP                    | I/O   | 模拟信号滤波端口正端 |
| 5    | CIN                    | I/O   | 模拟信号滤波端口负端 |
| 6    | AIN4                   | Ι     | 模拟信号输入通道 4 |
| 7    | AIN3                   | Ι     | 模拟信号输入通道 3 |
| 8    | AIN2                   | Ι     | 模拟信号输入通道 2 |
| 9    | $\overline{\text{CS}}$ | Ι     | 片选信号端口     |
| 10   | SCLK                   | Ι     | 串行通讯时钟端口   |
| 11   | SDA                    | I/O   | 串行通讯数据端口   |
| 12   | GND                    | P     | 地          |
| 13   | VDD                    | P     | 电源         |
| 14   | GND                    | P     | 地          |
| 15   | VS                     | 0     | LDO 输出端口   |
| 16   | REFP                   | I     | 正端参考电压输入端口 |

#### 1.8 典型应用电路

ADC 系列 CS1259B 典型应用包括桥式传感器的测量,如图。

11/27



图 1-3 CS1259B 典型应用电路



# 2 功能寄存器说明

## 2.1 功能寄存器列表

表 2-1 功能寄存器列表

| 名   | 存器   | 比特位       |            |                 |              |          |               | 默认值          |              |             |
|-----|------|-----------|------------|-----------------|--------------|----------|---------------|--------------|--------------|-------------|
| 地址  | 名称   | BIT7      | BIT 6      | BIT 5           | BIT 4        | BIT 3    | BIT 2         | BIT 1        | BIT 0        | <b>秋</b> 八但 |
| 00H | SYS  | TMOE      | DE[1:0]    | PMOD            | DE[1:0]      | ENREF    | ENADC         | ENLD<br>O    |              | 00Н         |
| 01H | ADC0 | IMOD      | FS_<br>SEL |                 |              | )]       | I             | INPS[2:0]    |              | 00Н         |
| 02H | ADC1 |           | DR[2:0]    |                 | BUFB<br>P    | PGA      | <b>[</b> 1:0] | ADGN[1:0]    |              | 00H         |
| 03H | ADC2 |           |            |                 |              |          |               |              |              | 00H         |
| 04H | ADC3 | GTCS<br>L |            | GTC[2:0]        |              | LVSCP    | LVSHIF<br>T   |              |              | 00H         |
| 05H | ADC4 | СНОР      | M[1:0]     | ACCU_1<br>[1:0] | NUM          | ADRE     | FS[1:0]       | LDO          | S[1:0]       | 40H         |
| 06H | ADC5 |           |            |                 | EXFIL<br>_EN |          | FIL_EN        | FIL_<br>CON1 | FIL_<br>CON0 | 00Н         |
|     | ADOH |           | ADO[23:16] |                 |              |          | 00H           |              |              |             |
| 09H | ADOM |           |            |                 | AD           | O[15:8]  | 3]            |              |              |             |
|     | ADOL |           |            |                 | AD           | .DO[7:0] |               |              |              | 00H         |
| 0AH | ADS  | ADS       | RST        |                 |              |          |               |              |              | 00H         |

# 2.2 功能寄存器说明

#### 2.2.1 SYS —系统配置寄存器(地址 00H)

表 2-2 SYS 寄存器说明

| Bits  | 描述         |                                                                                             | 权限  | 默认值  |
|-------|------------|---------------------------------------------------------------------------------------------|-----|------|
| [7:6] | TMODE[7:6] | 测量模式控制位                                                                                     | r/w | 00'b |
|       |            | 11:NA                                                                                       |     |      |
|       |            | 10:电源电压测量模式                                                                                 |     |      |
|       |            | (置 ENREF=1,INPS[2:0]=100, INNS[2:0]=100, LVSHIFT=0,                                         |     |      |
|       |            | PGA[1:0]=00, BUFBP=0, ADGN[1:0]=00,ADREFS[1:0]=10,<br>  FS_SEL=0,IMOD=0,相应寄存器配置无效;其他由寄存器决定) |     |      |
|       |            | 01:NA                                                                                       |     |      |
|       |            | 00:手动测量模式                                                                                   |     |      |
|       |            | (自由配置)                                                                                      |     |      |
| [5:4] | PMODE[1:0] | 工作模式控制位(仅在 TMODE=00 时)                                                                      | r/w | 00'b |
|       |            | 11:自由模式                                                                                     |     |      |
|       |            | (ADC 自由配置)                                                                                  |     |      |
|       |            | 10:占空比模式,DR=640Hz                                                                           |     |      |
|       |            | (FS_SEL=0, BUFBP=0, IMOD=0, ENADC 和 ENLDO 受控制)                                              |     |      |
|       |            | 01:性能模式                                                                                     |     |      |
|       |            | (FS_SEL=1, BUFBP=0, IMOD=1, 相应寄存器配置无效;其他配置由相应寄存器决定)                                         |     |      |
|       |            | 00:普通模式(当前不可用)                                                                              |     |      |
|       |            | (FS_SEL=0,BUFBP=1,IMOD=0,相应寄存器配置无效;其他配置由相应寄存器决定)                                            |     |      |
| [3]   | ENREF      | VREF 模块使能信号                                                                                 | r/w | 0'b  |
|       |            | 1:VREF 使能                                                                                   |     |      |
|       |            | 0:VREF 关闭                                                                                   |     |      |



| [2] | ENADC | ADC 模块使能位<br>1:ADC 使能<br>0:ADC 关闭 | r/w | 0'b |
|-----|-------|-----------------------------------|-----|-----|
| [1] | ENLDO | LDO 模块使能位<br>1:LDO 使能<br>0:LDO 关闭 | r/w | 0'b |
| [0] | NA    |                                   | r/w | 0'b |

#### 2.2.2 ADC0—ADC 配置寄存器(地址 01H)

表 2-3 ADC0 寄存器说明

| Bits  | 描述        | 描述                           |     |       |  |
|-------|-----------|------------------------------|-----|-------|--|
| [7]   | IMOD      | 调制器 MOD 电流控制位                |     | 0'b   |  |
|       |           | 1:性能模式电流=普通模式电流×2            |     |       |  |
|       |           | 0:普通模式电流                     |     |       |  |
| [6]   | FS_SEL    | 采样频率选择位                      | r/w | 0'b   |  |
|       |           | 1:662.22KHz                  |     |       |  |
|       |           | 0:331.11KHz                  |     |       |  |
| [5:3] | INNS[2:0] | PGA 负端输入信号选择位                | r/w | 000'b |  |
|       |           | 111: NA                      |     |       |  |
|       |           | 110:NA                       |     |       |  |
|       |           | 101:1/2 VS(共模电压)             |     |       |  |
|       |           | 100:GND (仅在 TMODE=10 有效)     |     |       |  |
|       |           | 011~000:AIN4~AIN1            |     |       |  |
| [2:0] | INPS[2:0] | PGA 正端输入信号选择位                | r/w | 000'b |  |
|       |           | 111: NA                      |     |       |  |
|       |           | 110: NA                      |     |       |  |
|       |           | 101: 1/2 VS(共模电压)            |     |       |  |
|       |           | 100: 1/8 VDD(仅在 TMODE=10 有效) |     |       |  |
|       |           | 011~000:AIN3~AIN0            |     |       |  |

#### 2.2.3 ADC1—ADC 配置寄存器 1(地址 02H)

表 2-4 ADC1 寄存器说明

| Bits  | 描述       | 权限          | 默认值 |       |
|-------|----------|-------------|-----|-------|
| [7:5] | DR[2:0]  | ADC 输出速率选择位 |     | 000'b |
|       |          | 111:1280Hz  |     |       |
|       |          | 110:640Hz   |     |       |
|       |          | 101:320Hz   |     |       |
|       |          | 100:160Hz   |     |       |
|       |          | 011:80Hz    |     |       |
|       |          | 010:40Hz    |     |       |
|       |          | 001:20Hz    |     |       |
|       |          | 000:10Hz    |     |       |
| [4]   | BUFBP    | Buffer 控制位  | r/w | 0'b   |
|       |          | 1:Buffer 关闭 |     |       |
|       |          | 0:Buffer 开启 |     |       |
| [3:2] | PGA[1:0] | PGA 增益选择位   | r/w | 00'b  |
|       |          | 11:Gain =32 |     |       |
|       |          | 10:Gain=16  |     |       |
|       |          | 01:Gain=1   |     |       |
|       |          | 00:Gain=1   |     |       |

14/27



| [1:0] | ADGN[1:0] | 调制器增益选择位              | r/w | 00'b |  |
|-------|-----------|-----------------------|-----|------|--|
|       |           | 11:Gain=8(DR 下降为 1/4) |     |      |  |
|       |           | 10:Gain=4(DR 下降为 1/2) |     |      |  |
|       |           | 01:Gain=2             |     |      |  |
|       |           | 00:Gain=1             |     |      |  |

#### 2.2.4 ADC2—ADC 配置寄存器 2(地址 03H)

表 2-5 ADC2 寄存器说明

| Bits  | 描述  |  | 权限  | 默认值 |
|-------|-----|--|-----|-----|
| [7:0] | N/A |  | r/w | 00H |

#### 2.2.5 ADC3—ADC 配置寄存器 3(地址 04H)

表 2-6 ADC3 寄存器说明

| Bits  | 描述       |                          | 权限  | 默认值   |
|-------|----------|--------------------------|-----|-------|
| [7]   | GTCSL    | 增益温漂补偿粗细选择位:             |     | 0'b   |
|       |          | 1:粗调=精调×6,用于补偿传感器温漂      |     |       |
|       |          | 0:精调,用于调整芯片自身温漂          |     |       |
| [6:4] | GTC[2:0] | 增益温漂补偿选择位(CTCSL=0):      | r/w | 000'b |
|       |          | 111:15 ppm/℃             |     |       |
|       |          | 110:10 ppm/℃             |     |       |
|       |          | 101:5 ppm/℃              |     |       |
|       |          | 100:0                    |     |       |
|       |          | 000:0                    |     |       |
|       |          | 001:-5 ppm/°C            |     |       |
|       |          | 010:-10 ppm/℃            |     |       |
|       |          | 011:-15ppm/℃             |     |       |
| [3]   | LVSCP    | 电平移位模块斩波使能位(LVSHIFT=1 时有 | r/w | 0'b   |
|       |          | 效):                      |     |       |
|       |          | 1:斩波使能,斩波频率=Fs/128       |     |       |
|       |          | 0:斩波不使能                  |     |       |
| [2]   | LVSHIFT  | 电平移位模块使能位:               | r/w | 0'b   |
|       |          | 1:电平移位使能                 |     |       |
|       |          | 0:电平移位不使能                |     |       |
| [1:0] | N/A      |                          | r/w | 00'b  |

#### 2.2.6 ADC4—ADC配置寄存器 4(地址 05H)

表 2-7 ADC4 寄存器说明

| Bits  | 描述         |                                                                 | 权限  | 默认值  |
|-------|------------|-----------------------------------------------------------------|-----|------|
| [7:6] | CHOPM[1:0] | 仪放(IA)及调制器(MOD)斩波频率控制位<br>11: 仪放斩波频率为 fs_clk/64,调制器斩波           | r/w | 01'b |
|       |            | 频率为 fs_clk/128<br>10: 仪放斩波频率为 fs_clk/32,调制器斩波<br>频率为 fs_clk/128 |     |      |
|       |            | 01:仪放斩波频率为 fs_clk/32,调制器斩波频率为 fs_clk/256<br>00:不开斩波             |     |      |



|       |                |                    |             |          |           | <u>.</u> |      |
|-------|----------------|--------------------|-------------|----------|-----------|----------|------|
|       |                | fs_clk             | 为 MOD 采样频率  | 3        |           |          |      |
|       |                | 注意:                | 默认斩波打开,     |          |           |          |      |
| [5:4] | ACCU_NUM [1:0] | 占空出                | 上模式下 COMB 数 | 女据累加个数:  | <b>选择</b> | r/w      | 00'b |
|       |                |                    | ACCU_NUM    | 累加个数     |           |          |      |
|       |                |                    | 00          | 8        |           |          |      |
|       |                |                    | 01          | 16       |           |          |      |
|       |                |                    | 10          | 32       |           |          |      |
|       |                |                    | 11          | 64       |           |          |      |
|       |                |                    | (Comb 数据累加  |          | 输出        |          |      |
|       |                | 速率不                | 「能大于 Comb 速 | 率 640Hz。 |           |          |      |
| [3:2] | ADREFS[1:0]    | 1                  | 参考电压选择位     |          |           | r/w      | 00'b |
|       |                | 11:正刻              | 参考=内部 VREF, | 负参考=GND  |           |          |      |
|       |                | 10: 正              | 参考=内部 VREF, | 负参考=GND  |           |          |      |
|       |                | 01:正刻              | 参考=VREF外接 I |          |           |          |      |
|       |                | 负氢                 | 参考=外部 REFN  |          |           |          |      |
|       |                | 00:正刻              | 参考=外部 REFP, |          |           |          |      |
| [1:0] | LDOS [1:0]     | 内部 LDO 输出 VS 电压选择位 |             |          |           | r/w      | 00'b |
|       |                | 11:3.0V            |             |          |           |          |      |
|       |                | 10:2.8             |             |          |           |          |      |
|       |                | 01:2.4             |             |          |           |          |      |
|       |                | 00:2.3             | 5V          |          |           |          |      |

#### 2.2.7 ADC5—ADC 配置寄存器 5(地址 06H)

表 2-8 ADC5 寄存器说明

| Bits  | 描述       |                            | 权限  | 默认值 |
|-------|----------|----------------------------|-----|-----|
| [7:5] | NA       | NA                         |     |     |
| [4]   | EXFIL_EN | PGA 输入信号接外部滤波器使能位          | r/w | 0'b |
|       |          | 1:使用外部 RC 滤波器              |     |     |
|       |          | 0:不使用外部 RC 滤波器             |     |     |
| [3]   | REG_NC   | 保留位                        |     |     |
| [2]   | FIL_EN   | Comb 之后的低通滤波器使能控制信号        | r/w | 0'b |
|       |          | 1:滤波器打开                    |     |     |
|       |          | 0:滤波器关闭                    |     |     |
|       |          | 注:在占空比模式下不可以使用;速率为         |     |     |
|       |          | 10Hz、20Hz、40Hz、80Hz 不可以使用。 |     |     |
| [1]   | FIL_CON1 | 滤波器级联控制                    | r/w | 0'b |
|       |          | 0:滤波器使用级联结构                |     |     |
|       |          | 1:滤波器不使用级联结构               |     |     |
| [0]   | FIL_CON2 | 滤波器系数控制                    | r/w | 0'b |
|       |          | 0:使用系数 1                   |     |     |
|       |          | 1:使用系数 2                   |     |     |

#### 2.2.8 ADO—ADC 转换数据寄存器(地址 09H)

表 2-9 ADO 寄存器说明

| Bits      | 描述         | 权限               | 默认值 |     |
|-----------|------------|------------------|-----|-----|
| ADOH[7:0] | ADO[23:16] | ADC 转换值的[23:16]位 | r   | 00H |
| ADOM[7:0] | ADO[15:8]  | ADC 转换值的[15:8]位  | r   | 00H |
| ADOL[7:0] | ADO[7:0]   | ADC 转换值的[7:0]位   | r   | 00H |



#### 2.2.9 ADS—ADC 转换数据读取标准寄存器(地址 0AH)

#### 表 2-10 ADO 寄存器说明

| Bits  | 描述  |                | 权限 | 默认值      |
|-------|-----|----------------|----|----------|
| [7]   | ADS | ADO 中数据读取标志 r  |    |          |
|       |     | 1:数据已经被读取      |    |          |
|       |     | 0:数据尚未被读取      |    |          |
| [6]   | RST | 芯片上电复位标志位      | r  | 0'b      |
|       |     | 1:芯片上电复位完成     |    |          |
|       |     | 0:用户查询该标志后自动清零 |    |          |
| [5:0] | NA  |                |    | 000000'b |



## 3 功能描述

#### 3.1 输入选择

CS1259B 中模拟输入通道及内部若干信号分别通过 MUXP 和 MUXN 后,再经过输入电平移位模块 LVSHIFT 接到 PGA 正端和负端,如图 3-1 所示。



图 3-1 模拟输入结构图

输入信号中 AINx(x=0~4)来自相应的模拟输入引脚,可以任意组合成差分对; REFN 用来和 AINx 配对组成单端测量,此时 REFN 的引脚应该接 GND(在某些封装下没有独立的 REFN,但器件内部已经将 REFN 接至 GND);1/8 VDD 和 REFN 配对进行电源电压测量;1/2 VS 用于内短进行失调校正。

#### 3.2 输入电平移位器

在某些应用场合,输入信号的共模电压接近地轨、或者输入为一端接地的单端信号,此时 PGA 将不能将信号进行正常放大。输入电平移位模块可以将上述接近地轨的信号的共模电压抬高约 0.9V 使其可以被 PGA 正常放大。

如图 3-2 所示,当 LVSHIFT=1 时,INP 和 INN 经过电平移位器之后输出给 PGAP 和 PGAN;反之则 INP 和 INN 直通 PGAP 和 PGAN; LVSCP 控制是斩波控制位,开启后可以减小由于电平移位器自身引入的失调和低频噪声。



图 3-2 电平移位模块



#### 3.3 PGA 和 ADC

CS1259B 通过一个低噪声,低漂移的 PGA 放大器将输入信号放大后送入一个 2 阶的 Sigma-Delta ADC 进行模数转换。 如图 3-3 所示为 PGA 和 ADC 的结构图,其中 PGA 的增益由 PGA[1:0]选择,具有 1\8\16\32 四档可选; ADC 的增益由 ADGN[1:0]所选择、具有 1\2\4\8 四档可选; 另外 ADC 参考电压来自输入的 REFP-REFN。



图 3-3 PGA 和 ADC 结构图

输入信号的增益 Gain 由 PGA 和 ADC 各自增益的乘积决定。

$$Gain = PGA \times ADGN$$
 (式 3-1)

为了提高信号的建立表现,PGA 输出到 ADC 调制器输入还有 Buffer 作为缓冲;但同时提供 Buffer 旁路功能,将 BUFBP 置'1',则 Buffer 被旁路,PGA 输出信号直接接入 ADC 的调制器。CS1259B 的差分满幅输入范围 FS 由 Gain 决定,

$$FS = (REFP - REFN)/Gain$$
 (式 3-2)

若差分输入通道 AINp-AINn=VIN,则为保证不溢出,VIN 的范围必须小于 FS。

在 PGA 开启的情况(包括 PGA $\neq$ 1 和 PGA=1&BUFBP=0 的情况)下,输入通道的输入信号范围需要保证 PGA 能够正常工作,一般

$$VDD - 1.0V > AINx > GND + 0.2V$$
 (式 3-3)

输入信号的共模电压为 VCM, VCM=(AINp+AINn)/2,则 VCM 的范围也受 PGA 决定,

$$VDD-1.0V-VIN \times PGA/2 > VCM > GND+0.2V+VIN \times PGA/2$$
 (式 3-4)

当 PGA=1 且 BUFBP=1 时,PGA 被旁路,此时输入信号直接进入 ADC,则输入信号的范围由 ADC 决定,一般

$$VDD + 0.1V > AINx > GND - 0.1V$$
 (式 3-5)

VCM 的范围也受 ADC 决定,

$$VDD + 0.1V - VIN \times ADGN/2 > VCM > GND - 0.1V + VIN \times ADGN/2$$
 (  $\stackrel{\rightarrow}{\times}$  3-6)

以上各种情况还会影响输入通道的等效输入阻抗,详细请参考表 3-1。

表 3-1 PGA 和 ADGN 与 Gain 及输入信号的关系

| Gain = | PGA × | ADGN | BUFBP | 输入阻抗     | 输入信号范围  | 共模输入范围  |
|--------|-------|------|-------|----------|---------|---------|
| 1      | 1     | 1    | 0     | >100Mohm | (式 3-3) | (式 3-4) |
| 2      | 1     | 2    | 0     |          |         |         |
| 4      | 1     | 4    | 0     |          |         |         |

19/27



| 8   | 1  | 8 | 0 |          |         | •       |
|-----|----|---|---|----------|---------|---------|
| 16  | 16 | 1 | 0 |          |         |         |
| 32  | 32 | 1 | 0 |          |         |         |
| 64  | 32 | 2 | 0 |          |         |         |
| 128 | 32 | 4 | 0 |          |         |         |
| 1   | 1  | 1 | 1 | ~800Kohm | (式 3-5) | (式 3-6) |
| 2   | 1  | 2 | 1 | ~400Kohm |         |         |
| 4   | 1  | 4 | 1 | ~200Kohm |         |         |
| 8   | 1  | 8 | 1 | ~100Kohm |         |         |
| 16  | 16 | 1 | 1 | >100Mohm | (式 3-3) | (式 3-4) |
| 32  | 32 | 1 | 1 |          |         |         |
| 64  | 32 | 2 | 1 |          |         |         |
| 128 | 32 | 4 | 1 |          |         |         |

当输入信号接近地轨,例如单端信号,同时又希望开启 PGA 以获得大的 Gain 和输入阻抗时,可以开启 LVSHIFT 功能,可以将输入信号上移约 0.9V 后送入 PGA 中,这也等效于开启 LVSHIFT 功能后,开启 PGA 情况下的输入信号下限下移约 0.9V。

CS1259B 的 ADC 采用 2 阶 sigma-delta 调制器实现,内部采样频率为 331.11KHz (普通模式)或 662.22KHz(性能模式)。

CS1259B 的 ADC 带有内部增益温漂补偿功能,通过 GTCSL 以及 GTC[2:0]可以配置。当 GTCSL=1 时为粗调档,此时对应 GTC[2:0]增益温漂补偿的一个步长为  $30ppm/^{\circ}$ 、可用于补偿外部传感器的温漂;而当 GTCSL=0 时,相应步长为  $5ppm/^{\circ}$ 、可用于调整芯片内部的增益温漂。

#### 3.4 数字滤波器

从 Sigma-delta ADC 出来的数据是 1 位的高速比特流数据,并且包含了大量的高频噪声,因此需要数字滤波器对该比特流数据进行滤波和比特率转换,将高频噪声滤除、同时完成降采样,将 1 位高速比特流数据变成 24-bit 的二进制码数据。这个工作通过多阶的 COMB 滤波器完成。COMB 滤波器之后可以选择是否使用滤波器进一步进行滤波。

#### 3.4.1 频率响应



图 3-4 COMB 滤波器的频率响应特性(Fs=331Hz, DR=10Hz, 3 阶 COMB)



#### 3.4.2 建立时间

正常模式下数字 COMB 在低速是 3 阶(10Hz、20Hz、40Hz、80Hz), 高速时是 4 阶或 5 阶(160Hz、320Hz、640Hz、1280Hz); 占空比模式下,数字 COMB 是 4 阶或 5 阶。数据建立时间跟 COMB 的阶数有关,3 阶 COMB 的数据在第三个能够建立好; 4 阶 COMB 的数据在第四个能够建立好; 5 阶 COMB 的数据在第五个能够建立好。



图 3-5 COMB 建立过程

如果 FIL\_EN 设置为 1,数据建立时间更长,所需时间如下表所示(数据误差收敛到在万分之一以内的时间)。

| FILCON1 | FILCON0 | 建立时间              |
|---------|---------|-------------------|
| 0       | 0       | COMB 数据建立时间+300ms |
| 0       | 1       | COMB 数据建立时间+590ms |
| 1       | 0       | COMB 数据建立时间+230ms |
| 1       | 1       | COMB 数据建立时间+460ms |

#### 3.5 参考电压源

CS1259B 内部集成一个低漂移的 LDO,可以输出电压给 VS 和/或 REFP,具有 4档可选,其中 2.4 V/2.6 V/2.8 V/3.0 V 主要提供给 VS 使用,用于给外部桥式传感器供电、以及内部 ADC 部分供电,负载 电流最大 10 mA。还包括一个内部参考电压源 VREF,输出为 1.225 V,主要用于做测量的参考电压提供给 REFP(外接电容提高精度)或者作为内部参考电压 VREF。参考电压源的输出电压初始精度为±1%,典型的温漂系数为 30 ppm/ $\mathbb{C}(-40$ ~85  $\mathbb{C})$ 。

#### 3.6 内部时钟源

CS1259B 内部提供一个低漂移的 RC 时钟,时钟频率为 5.898MHz,在-40~85℃变化范围内漂移小于 2%,在 2.4~3.6V 的 VDD 电压范围内,变化小于 1%。

文件编号: CS-QR-YF-054A02

21/27



#### 3.7 测量模式及其切换

CS1259B 除了 5 个外部模拟信号输入通道,内部也具有电源电压信号。通过配置 TMODE[1:0]寄存器在电源电压测量以及手动模式之间切换。每种模式下,通道选择、增益配置及输出速率三个参数都是内部固定配置好,不需要用户干预,手动模式下用户可以随意配置相关参数;手动模式下切换至其余任意模式再切换回手动模式时,用户的设置保持不变。

#### 3.8 多种工作模式

CS1259B 提供了多种工作模式可以选择,包括性能模式、正常模式、低功耗模式。

性能模式下,PGA 中 Buffer 打开,ADC 调制器的采样频率为 662.22KHz,此时 ADC 信号链精度最高,增益温漂、线性表现最好,同时 ADC 信号链功耗达到 1.5mA,可应用于需要 10Hz SPS,10000 点以上分度的测量场合。正常模式对性能和功耗进行了平衡,Buffer 旁路,采样频率降低为 331.11KHz,可应用于 10000 分度以下测量场合(例如人体称重),ADC 信号链功耗为 1.2mA。低功耗模式是采用占空比的方式来达到节省功耗的目的。在一个 10Hz 数据更新频率的周期内,数字滤波器以 640Hz 的输出速率工作,开启 ADC 后丢弃前 5 个数据,然后累加相应个数进行平均。

占空比模式下 VREF 输出和数字电路间歇性工作,以降低芯片功耗。

在占空比模式下, COMB 是 4 阶的,工作在高速,SPI 数据输出速率只有 10Hz, COMB 数据输出速率为 640Hz,64 个 COMB 周期 SPI 才输出一个数据,我们可以使 COMB 只输出前 21 个数据(COMB 前 5 个数据丢失,累加 16 个数据平均输出(第 6 个到第 21 个)),后面 43 个数据周期关闭 COMB 和 VREF 输出,示意图如下。



图 3-6 CS1259B 低功耗工作示意图

注: COMB 数据输出速率和累加数据个数可以配置。

#### 3.9 复位和断电(POR&power down)

当芯片上电时,内置上电复位电路会产生复位信号,使芯片自动复位。

当 SCLK 从低电平变高电平并保持在高电平超过 172 μs, CS1259B 即进入 PowerDwon 模式。当 SCLK 重新回到低电平时,芯片会重新进入正常工作状态。

当系统由 Power down 重新进入正常工作模式时,此时所有功能配置为 PowerDown 之前的状态,不需要进行功能配置。



# 4 转换有效位

#### 表 4-1 ADC 信号链不同 GAIN 及 DR 下的有效位(ENOB)1)

VDD=3V, VS=2.35V, VIN=±VS/Gain, Tc=25°C, TT

| Gain = PGA×ADGN |    | BUFBP | DR   |      |       |        |      |
|-----------------|----|-------|------|------|-------|--------|------|
|                 |    | BUFBP | 10Hz | 40Hz | 160Hz | 1280Hz |      |
| 1               | 1  | 1     | 0    | 22.3 | 21.2  | 20.9   | 18.8 |
| 2               | 1  | 2     | 0    | 21.6 | 20.6  | 19.7   | 18.2 |
| 4               | 1  | 4     | 0    | 21.2 | 20.3  | 19.3   | 17.7 |
| 8               | 1  | 8     | 0    | 20.3 | 19.7  | 18.8   | 17.2 |
| 16              | 16 | 1     | 0    | 22   | 21.2  | 20.3   | 18.7 |
| 32              | 32 | 1     | 0    | 21.4 | 20.8  | 19.7   | 18.3 |
| 64              | 32 | 2     | 0    | 20.8 | 20    | 19     | 17.5 |
| 128             | 32 | 4     | 0    | 20   | 19.5  | 18.6   | 16.9 |
| 1               | 1  | 1     | 1    | TBD  | TBD   | TBD    | TBD  |
| 2               | 1  | 2     | 1    | TBD  | TBD   | TBD    | TBD  |
| 4               | 1  | 4     | 1    | TBD  | TBD   | TBD    | TBD  |
| 8               | 1  | 8     | 1    | TBD  | TBD   | TBD    | TBD  |
| 8               | 8  | 1     | 1    | TBD  | TBD   | TBD    | TBD  |
| 16              | 16 | 1     | 1    | TBD  | TBD   | TBD    | TBD  |
| 32              | 32 | 1     | 1    | TBD  | TBD   | TBD    | TBD  |
| 64              | 32 | 2     | 1    | TBD  | TBD   | TBD    | TBD  |
| 128             | 32 | 4     | 1    | TBD  | TBD   | TBD    | TBD  |

1): 以上噪声特性是指没有使用 PMODE[1:0]=01, LVSHIFT 关闭,FIL\_EN=0 时的噪声特性; 信号源为桥式电阻,输入共模电压 VS/2,内阻为 2Kohm,共模电容 100pF,差模滤波电容为 0.1uF;



# 5 典型特性

# 5.1 LDO 典型特性



图 5-1 LDO 全电压全温度范围的典型特性(LDOS[1:0]=00,负载 1mA)

#### 5.2 内部时钟典型特性



图 5-2 内部时钟全电压全温度范围的典型特性

24/27



## 6 三线串行通讯接口

CS1259B 中,采用 3 线串行通信,其中 $\overline{CS}$ 为片选/复位信号,SCLK 为通讯时钟、SDA 是双向数据线及数据转换完成标志。

 $\overline{CS}$ : 串行接口片选信号,低电平有效,输入信号,内部悬空,建议外接上拉电阻; $\overline{CS}$ 由高电平变为低电平时,表示当前芯片被选中,处于通讯状态; $\overline{CS}$ 由低变电平变为高电平,表示通讯结束,通讯口复位处于空闲状态。

SCLK: 串行时钟输入脚,决定数据移出或移入 SPI 口的传输速率。所有的数据传输操作均与 SCLK 同步,在上升沿将数据从 SDA 引脚输出:在下降沿读取 SDA 上的数据。

SDA: 串行数据输入/输出脚。 $\overline{\text{CS}}$ =1,SDA 输出 DRDY,表示 ADC 转换数据已准备好; $\overline{\text{CS}}$ =0,SDA 串行通讯数据端口。

串行通讯的命令寄存器是一个8bit宽的寄存器。对于读写操作,命令寄存器的bit7用来确定本次数据传输操作的类型是读操作还是写操作,命令寄存器的bit6-0是读写的寄存器的地址。对于特殊命令操作,命令寄存器的bit7-0固定为0xEA。

注: 当 SCLK 保持低电平 687us 左右进入通讯复位模式(只复位串行通讯接口,防止串行通讯接口进入异常无法通讯,不复位芯片)。

| 命令名称 | 命令寄存器            | 数据         | 描述                                             |
|------|------------------|------------|------------------------------------------------|
| 读命令  | {0,REG_ADR[6:0]} | Read_Data  | 从地址为 REG_ADR[6:0]的寄存器中读数据。<br>注:读无效地址,返回值为 00h |
| 写命令  | {1,REG_ADR[6:0]} | Write_Data | 向地址为 REG_ADR[6:0]的寄存器中写数据。                     |
| 复位指令 | 0xEA             | 0x96       | 复位指令,接收到指令之后,芯片复位。                             |

表 6-1 串口通讯命令列表

#### 6.1 读时序

工作过程:

外部设备在 $\overline{\text{CS}}$ 有效后,先通过 SDA 写入读命令字节,CS1259B 接收到读命令后,在 SCLK 的上升 沿将数据按位从 SDA 引脚输出。注意:

- 1).以字节为单位传输,高比特位在前,低比特位在后;
- 2).多字节寄存器, 先输出高字节内容, 再传输低字节内容;
- 3).外部设备在 SCLK 上升沿写命令字节, CS1259B 在 SCLK 上升沿将数据从 SDA 输出;
- 4).数据字节之间的时间 t1 要大于等于 2 个系统时钟周期;
- 5).最后一个字节的 LSB 传送完毕, $\overline{\text{CS}}$ 由低变高结束数据传输。SCLK 下降沿和 $\overline{\text{CS}}$ 上升沿之间的时间 t2 要大于等于 2 个系统时钟周期:



图 6-1 读操作时序 1(读 AD 值)

文件编号: CS-QR-YF-054A02

25/27





图 6-2 读操作时序 2(除 AD 值之外的寄存器)

#### 6.2 写时序

工作过程:

外部设备在 $\overline{CS}$ 有效后,先通过 SDA 写入命令字节,再写入数据字节。注意:

- 1).以字节为单位传输,高比特位在前,低比特位在后;
- 2).多字节寄存器, 先传输高字节内容, 再传输低字节内容;
- 3).外部设备在 SCLK 上升沿写数据, CS1259B 在 SCLK 下降沿沿读取数据;
- 4).数据字节之间的时间 t1 要大于等于 2 个系统时钟周期;
- 5).最后一个字节的 LSB 传送完毕, $\overline{\text{CS}}$ 由低变高结束数据传输。SCLK 下降沿和 $\overline{\text{CS}}$ 上升沿之间的时间 12 要大于等于 2 个系统时钟周期。

注意: 有写保护功能的寄存器在写操作之前要先写入写使能命令。



图 6-3 写操作时序

表 6-2 三线串行通讯接口时序表

(VDD=3V, GND=0V, Fosc=5.898MHz,常温)

| 名称 | 解释                           | Min      | Тур | Max | Unit |
|----|------------------------------|----------|-----|-----|------|
| t1 | 数据字节之间 SCLK 维持低电平的时间         | 2*sysclk | _   | _   | ns   |
| t2 | 最后一个 SCLK 下降沿与 CS 上升沿之间的时间间隔 | 2*sysclk | _   | _   | ns   |
| t3 | CS 下降沿之前 SCLK 保持为低的时间        | 5        | _   | _   | ns   |
| t4 | CS 上升沿之后 SCLK 保持为低的时间        | 5        | _   | _   | ns   |
| t5 | 在 SCLK 上升沿之前, SDA 上有效数据的建立时间 | 5        | _   | _   | ns   |
| t6 | 在 SCLK 下降沿之后, SDA 上有效数据的保持时间 | sysclk   | _   | _   | ns   |
| t7 | 在 SCLk 上升沿之后,SDO 能稳定输出所需要的时间 | 50       | _   | _   | ns   |
| t8 | SCLK 的高电平宽度                  | 2*sysclk | _   | 170 | us   |
| t9 | SCLK 的低电平宽度                  | 2*sysclk | _   | 680 | us   |



# 7 封装

#### CS1259B 采用 SOP16 封装。









SECTION B-B

SOP16L产品外形图

| SYMBOL | MILLIMETER |       |        |
|--------|------------|-------|--------|
| SOP16L | MIN        | NOM   | MAX    |
| A      | _          |       | 1. 75  |
| A1     | 0.05       |       | 0. 225 |
| A2     | 1.30       | 1.40  | 1. 50  |
| A3     | 0. 60      | 0.65  | 0.70   |
| b      | 0.39       |       | 0. 48  |
| b1     | 0. 38      | 0.41  | 0. 43  |
| С      | 0. 21      |       | 0. 26  |
| c1     | 0. 19      | 0. 20 | 0. 21  |
| D      | 9. 70      | 9. 90 | 10. 10 |
| Е      | 5. 80      | 6. 00 | 6. 20  |
| E1     | 3. 70      | 3. 90 | 4. 10  |
| е      | 1.27BSC    |       |        |
| h      | 0. 25      |       | 0. 50  |
| L      | 0. 50      | _     | 0.80   |
| L1     | 1. 05BSC   |       |        |
| θ      | 0          | _     | 8°     |

图 7-1 芯片 SOP16 封装尺寸信息