

Machine Learning

Multiple features

Multiple features (variables).

Size (feet ²)	Price (\$1000)		
$\rightarrow x$	y ~		
2104	460		
1416	232		
1534	315		
852	178		
•••	•••		

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••				

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
× 1	×	×3	<u>(years)</u>	Ч	
<u> </u>	7.6	~7	~ 7	<u> </u>	
2104	5	1	45	460 7	
> 1416	3	2	40	232 - M= 47	
1534	3	2	30	315	
852	2	1	36	178	
			•••		
R	★	1	1	· V 114167	
Notation: $(2) = (2)$					
Notation: $n = n$ = number of features $n = 4$					
$\rightarrow x^{(i)}$ = input (features) of i^{th} training example.					
$\rightarrow x_j^{(i)}$ = value of feature j in i^{th} training example. \checkmark 3 = 2					

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

For convenience of notation, define
$$x_0 = 1$$
. $(x_0) = 1$. $(x_0) =$

Multivariate linear regression.

Machine Learning

Gradient descent for multiple variables

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

function:
$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$
 $\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ \Im (e) $\}$ (simultaneously update for every $j=0,\dots,n$)

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - o \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$rac{\partial}{\partial heta_0} J(heta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \underline{x}^{(i)}$$

(simultaneously update $\hat{ heta}_0, heta_1$)

New algorithm $(n \ge 1)$: Repeat { (simultaneously update $\overline{ heta_j}$ for $j=0,\ldots,n$) $\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$

Machine Learning

Gradient descent in practice I: Feature Scaling

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g. x_1 = size (0-2000 feet²) \leftarrow x_2 = number of bedrooms (1-5) \leftarrow

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

 $\rightarrow x_2 = \frac{\text{number of bedrooms}}{5}$

Feature Scaling

Get every feature into approximately a

Mean normalization

Replace \underline{x}_i with $\underline{x}_i - \mu_i$ to make features have approximately zero mean (Do not apply to $\underline{x}_0 = 1$).

Machine Learning

Gradient descent in practice II: Learning rate

Gradient descent

$$\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Making sure gradient descent is working correctly.

- For sufficiently small α , $J(\theta)$ should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too small. slow convergence.

 If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge. (Slow convergence)

To choose α , try

$$\dots, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, \dots$$

Machine Learning

Features and polynomial regression

Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

Area

 $\times = frontage \times depth$

Polynomial regression

Choice of features

Machine Learning

Normal equation

Gradient Descent

Normal equation: Method to solve for θ analytically.

Intuition: If 1D $(\theta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \cdots \qquad \text{Set o}$$
Solve for ϕ

$$\underline{\theta \in \mathbb{R}^{n+1}} \qquad \underline{J(\theta_0, \theta_1, \dots, \theta_m)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underline{\frac{\partial}{\partial \theta_j} J(\theta)} = \cdots \stackrel{\boldsymbol{\leq}}{=} 0 \qquad \text{(for every } j\text{)}$$

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Examples: m=4.

	J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000))
<u> </u>	$\rightarrow x_0$	x_1	x_2	x_3	x_4	y	
	1	2104	5	1	45	460	7
	1	1416	3	2	40	232	
	1	1534	3	2	30	315	
	1	852	2	_1	J 36	178	7
		$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $416 3 2$ $1534 3 2$ $852 2 1$ $\mathbf{m} \times (\mathbf{n} + \mathbf{n})$ $(\mathbf{n} + \mathbf{n})$	2 40 2 30 36	$y = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	460 232 315 178	1est v∕

Examples: m = 5.

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178
1	3000	4	1	38	540

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \\ 1 & 3000 & 4 & 1 & 38 \end{bmatrix}$$

$$\Theta = (X^T X)^{-1} X^T y$$

$$y = \begin{vmatrix} 460 \\ 232 \\ 315 \\ 178 \\ 540 \end{vmatrix}$$

\underline{m} examples $(x^{(1)}, y^{(1)}), \ldots, (\underline{x^{(m)}, y^{(m)}})$; \underline{n} features.

$$\underline{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$(\text{design} \\ \text{Mothy})$$

$$(\text{Mesign} \\ \text{Mothy})$$

E.g. If
$$\underline{x^{(i)}} = \begin{pmatrix} 1 \\ x^{(i)} \\ x^{(i)} \\ y^{(i)} \\ y^{(i)}$$

$$\frac{\theta = (X^T X)^{-1} X^T y}{(X^T X)^{-1}} \le \text{ is inverse of matrix } \underline{X^T X}.$$

$$Set \quad A: \quad X^T X.$$

$$(X^T X)^{-1} = A^{-1}$$

$$\text{Octave: } \underline{\text{pinv}}(X' * X) * X' * Y$$

$$pinv(X^T * X) * X^T * Y$$

$$O \le \times_1 \le 1$$

$$O \le \times_2 \le 1000$$

$$O \in \times_1 \le 10^{-5}$$

\underline{m} training examples, \underline{n} features.

Gradient Descent

- \rightarrow Need to choose α .
- → Needs many iterations.
 - Works well even when \underline{n} is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute
- $(X^TX)^{-1}$

 $\frac{kn}{n}$ $O(n^3)$

• Slow if \overline{n} is very large.

Machine Learning

Normal equation and non-invertibility (optional)

Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

- What if X^TX is non-invertible? (singular/degenerate)
- Octave: pinv(X'*X)*X'*y

What if X^TX s non-invertible?

Redundant features (linearly dependent).

E.g.
$$x_1$$
 = size in feet²
 x_2 = size in m²
 x_1 = (3.18)² x_2 = x_1 = 10

- Too many features (e.g. $m \le n$).
 - Delete some features, or use regularization.