The Last-Iterate Convergence Rate of Optimistic Mirror Descent in Stochastic Variational Inequalities

Waïss Azizian, Franck lutzeler, Jérôme Malick, Panayotis Mertikopoulos

COLT 2021

Variational Inequality

For
$$\mathcal{K} \subset \mathbb{R}^d$$
, $v : \mathcal{K} \to \mathbb{R}^d$,

Find
$$x^* \in \mathcal{K}$$
 such that $\langle v(x^*), x - x^* \rangle \ge 0$ for all $x \in \mathcal{K}$.

Example (Minimization)

Karush–Kuhn–Tucker (KKT) points of
$$\min_{x \in \mathcal{K}} f(x) \iff$$
 (VI) with $v = \nabla f$.

Example (Saddle-point)

Stationary points of
$$\min_{x_1 \in \mathcal{K}_1} \max_{x_2 \in \mathcal{K}_2} \Phi(x_1, x_2) \iff \text{(VI) with } v = \begin{pmatrix} \nabla_{x_1} \Phi \\ -\nabla_{x_2} \Phi \end{pmatrix}$$

(VI)

Optimistic methods (unconstrained case)

Gradient method:

$$X_{t+1} = X_t - \gamma_t V_t$$
 $V_t = v(X_t)$

Extragradient (Korpelevich, 1976):

$$X_{t+1/2} = X_t - \gamma_t V_t$$
 $V_t = v(X_t)$,
 $X_{t+1} = X_t - \gamma_t V_{t+1/2}$ $V_{t+1/2} = v(X_{t+1/2})$

Optimistic Gradient Method (Popov, 1980):

$$X_{t+1/2} = X_t - \gamma_t V_{t-1/2}$$
 $V_{t-1/2} = v(X_{t-1/2})$
 $X_{t+1} = X_t - \gamma_t V_{t+1/2}$ $V_{t+1/2} = v(X_{t+1/2})$

Optimistic methods (unconstrained case)

Gradient method:

$$X_{t+1} = X_t - \gamma_t V_t$$
 $V_t = v(X_t) + \text{err.}$

Extragradient (Korpelevich, 1976):

$$X_{t+1/2} = X_t - \gamma_t V_t$$
 $V_t = v(X_t) + \text{err.},$ $X_{t+1} = X_t - \gamma_t V_{t+1/2}$ $V_{t+1/2} = v(X_{t+1/2}) + \text{err.}$

Optimistic Gradient Method (Popov, 1980):

$$X_{t+1/2} = X_t - \gamma_t V_{t-1/2}$$
 $V_{t-1/2} = v(X_{t-1/2}) + \text{err.}$
 $X_{t+1} = X_t - \gamma_t V_{t+1/2}$ $V_{t+1/2} = v(X_{t+1/2}) + \text{err.}$

Bregman divergences

Bregman divergence: For $h: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ 1-strongly convex with dom $h = \mathcal{K}$

$$D(p, x) = h(p) - h(x) - \langle \nabla h(x), p - x \rangle$$
, for all $p \in \mathcal{K}, x \in \mathcal{K}$.

Prox-mapping: $P: \mathcal{K} \times \mathbb{R}^d \to \mathcal{K}$

$$P_x(y) = \operatorname*{arg\,min}_{x' \in \mathcal{K}} \{ \langle y, x - x' \rangle + D(x', x) \} \qquad \text{for all } x \in \mathcal{K}, y \in \mathcal{Y}.$$

Example: on $\mathcal{K} = [0, +\infty)$,

	h(x)	D(p,x)	$P_{\times}(y)$
Euclidean	$\frac{x^2}{2}$	$\frac{(p-x)^2}{2}$	$(x + y)_{+}$
Entropy	$x \log x$	$p\log\frac{p}{x}+p-x$	xe ^y
Tsallis entropy, $q > 0$	$\frac{-x^q}{q(1-q)}$	$\frac{(1-q)x^q - p(x^{q-1} - p^{q-1})}{q(1-q)}$	

Optimistic Mirror Descent:

$$X_{t+1/2} = P_{X_t}(-\gamma_t V_{t-1/2})$$
 $V_{t-1/2} = v(X_{t-1/2}) + \text{err.}$
 $X_{t+1} = P_{X_t}(-\gamma_t V_{t+1/2})$ $V_{t+1/2} = v(X_{t+1/2}) + \text{err.}$

What happens across divergences?

Example

$$v(x) = x$$
 on $\mathcal{K} = [0, +\infty)$.

Convergence of Optimistic Mirror Descent/Mirror-Prox

Question: ______ How can we explain those differences in last-iterate convergence between divergences?

Existing results:

(VI)	Convergence	Setting	Deterministic	Stochastic
Monotone	Ergodic	Bregman	O(1/t)	$O(1/\sqrt{t})$ with $\gamma_t \propto 1/\sqrt{t}$
Strongly Monotone	Last-iterate	Only Euclidean	Linear	$\mathcal{O}(1/t)$ with $\gamma_t \propto 1/t$

(Nemirovski, 2004), (Juditsky et al., 2011, Gidel et al., 2019), (Hsieh et al., 2019)

The Bregman topology

▶ By the strong convexity of *h*,

$$D(p,x) = h(p) - h(x) - \langle \nabla h(x), p - x \rangle \ge \frac{1}{2} ||p - x||^2$$
 for all $p \in \mathcal{K}, x \in \mathcal{K}$.

Consequence: $D(p, x_t) \rightarrow 0 \implies ||x_t - p|| \rightarrow 0$.

Conversely consider,

$$\mathcal{K} = \{x \in \mathbb{R}^2 : \|x\|_2 \le 1\}, \quad h(x) = -\sqrt{1 - \|x\|_2^2}.$$

There exists $(x_t)_t$ s.t. $||x_t - p|| \to 0$ but $D(p, x_t) \nrightarrow 0$

D(p, x) for fixed p s.t. ||p|| = 1

The topology of several standard divergences

Example

On
$$\mathcal{K} = [0, +\infty)$$
.

Our proposal: quantify the deficit of regularity w.r.t. ambient norm

Definition

The Legendre exponent of h at $p \in \mathcal{K}$ is the smallest $\beta \in [0, 1)$ such, for some $\kappa \geq 0$ and for all x close enough to p,

$$\frac{1}{2}||p-x||^2 \le D(p,x) \le \frac{1}{2} \kappa ||p-x||^{2(1-\beta)}$$

Example

On
$$\mathcal{K} = [0, +\infty)$$
.

	p>0 (interior)	p=0 (boundary)
Euclidean reg.	0	0
Entropy	0	1/2
Tsallis entropy $q \le 2$	0	1 - q/2

Legendre exponent \(\beta \)

Assumptions and Iterate stability

Oracle signal: $(U_t)_t$ zero-mean and with finite-variance,

$$V_t = v(X_t) + U_t$$

Lipschitz continuity:

$$||v(x') - v(x)||_* \le L||x' - x||$$
 for all $x, x' \in \mathcal{K}$.

Second-order sufficiency: there exists $\mu > 0$ s.t.,

$$\langle v(x), x - x^* \rangle \ge \mu \|x - x^*\|^2$$
 for all x close to x^* .

Proposition

Take a step-size of the form $\gamma_t = \gamma/(t+t_0)^{\eta}$ with $\eta \in (1/2,1]$ and $\gamma, t_0 > 0$ and fix any confidence level $\delta > 0$,

For every neighborhood \mathcal{U} of x^* , if γ/t_0 is small enough and X_1 is close enough to x^* , then

$$\mathcal{E}_{\mathcal{U}} = \{X_t \in \mathcal{U} \text{ for all } t = 1, 2, \dots\}$$

happens with probability at least $1 - \delta$.

Proof: using tools from Hsieh et al. (2019)

Last-iterate convergence

Legendre exponent: For all x close to x^* ,

$$D(x^*, x) \le \frac{1}{2}\kappa ||x^* - x||^{2(1-\beta)}$$

Theorem

If \mathcal{U} is small enough, with step-sizes of the form, $\gamma_t = \gamma/(t+t_0)^{\eta}$, $\mathbb{E}[D(x^*, X_t) \mid \mathcal{E}_{\mathcal{U}}]$ is bounded according to the following table and conditions:

Legendre exponent	Rate ($\eta=1$)	Rate $(rac{1}{2} < \eta < 1)$	Examples	
$\beta = 0$	$\mathcal{O}(1/t)$	$\mathcal{O}(1/t^\eta)$	Euclidean, Interior	
Conditions:	γ large enough	_	Edendedii, interior	
$oldsymbol{eta} \in (0,1)$	$\mathcal{O}\left(\left(\log t\right)^{-\frac{1-\beta}{\beta}}\right)$	$\mathcal{O}\left(t^{-\frac{(1-\eta)(1-eta)}{eta}}+t^{-\eta} ight)$	Entropy, Tsallis	
Conditions:	γ small enough			

Step-size tuning

Two regimes:

Legendre exponent	$oldsymbol{\eta}^*$	Rate
$eta \in [0,1/2)$	1-eta	$\mathcal{O}ig(t^{-(1-eta)}ig)$
$oldsymbol{eta} \in [1/2,1]$	$\approx 1/2$	$\mathcal{O}\!\left(t^{-rac{1-eta}{2eta}} ight)$

Rate exponent (ν)

Predicted rate $\mathcal{O}(1/t^{\nu})$ vs. β

Predicted rates vs. observed rates on the simple example

Example

$$v(x) = x$$
 on $\mathcal{K} = [0, +\infty)$.

 $D(x^*, X_t) \times t^{\nu}$ with ν predicted

Conclusion

Contributions: Interplay between geometry, algorithm and convergence

- ► Introduce the Legendre exponent
- ► Characterize the convergence of the last-iterate near the solution
- Derive consequence for the tuning of the step-size

Perspectives: Can we refine the analysis of this interplay?

- Using the structures of the constraints?
- Deterministic setting?
- Other algorithms?

• • •

Bibliography I

- G. Gidel, R. A. Hemmat, M. Pezehski, R. L. Priol, G. Huang, S. Lacoste-Julien, and I. Mitliagkas. Negative momentum for improved game dynamics. In AISTATS '19: Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, 2019.
- Y.-G. Hsieh, F. lutzeler, J. Malick, and P. Mertikopoulos. On the convergence of single-call stochastic extra-gradient methods. In NeurIPS '19: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pages 6936–6946, 2019.
- A. Juditsky, A. S. Nemirovski, and C. Tauvel. Solving variational inequalities with stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17–58, 2011.
- G. M. Korpelevich. The extragradient method for finding saddle points and other problems. *Èkonom. i Mat. Metody*, 12:747–756, 1976.
- A. S. Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15(1):229–251, 2004.
- L. D. Popov. A modification of the Arrow–Hurwicz method for search of saddle points. *Mathematical Notes of the Academy of Sciences of the USSR*, 28(5):845–848, 1980.