Computer Graphics

Computer Science & Information Technology Yung-Yu Chuang

Introduction

• Instructor: Yung-Yu Chuang (莊永裕)

• E-mail: cyy@csie.ntu.edu.tw

• Office: CSIE 527

• Grading: a MatchMove project

What is computer graphics?

- Definition
 - the pictorial *synthesis* of real or imaginary objects from their computer-based models

OUTPUT

		descriptions	images
5	descriptions		Computer Graphics
INPL	images	Computer Vision	Image Processing

Computer graphics

• Create a 2D image/animation of a 3D world

Applications

A STATE OF THE PROPERTY OF THE

- Movies
- Interactive entertainment
- Industrial design
- Architecture
- Culture heritage

Computer graphics

Modeling

A simple example

The power of triangles

• Every thing can be represented by triangles to a degree of precision.

More complex examples

a real buddha

4K mesh

rendered 2.4M mesh

Modeling

- The position of the model can be acquired by 3D scanner or made by artists using modeling tools.
- There are other ways for representing geometric objects, but triangles have many advantages.

Triangle meshes

connectivity

geometry

 $\{f_1\}: \{v_1, v_2, v_3\}$

 $\{f_2\}$: $\{v_3, v_2, v_4\}$

 $\{v_1\}$: (x,y,z) $\{v_2\}$: (x,y,z)

{f₁}: "skin material"

face attributes {f₂}: "brown hair"

 $\{v_2,f_1\}: (n_x,n_v,n_z) (u,v)$ $\{v_2,f_2\}: (n_x,n_y,n_z) (u,v)$

corner attributes

Composition of a scene

Graphics pipeline

Representation

We can represent a **point**, $\mathbf{p} = (x,y)$ in the plane

- as a column vector $\begin{bmatrix} x \\ y \end{bmatrix}$
- as a row vector $\begin{bmatrix} x & y \end{bmatrix}$

Transformations

Representation

We can represent a **2-D transformation** *M* by a matrix

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

If **p** is a column vector, *M* goes on the left:

$$p' = Mp$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D transformations

Here's all you get with a 2 x 2 transformation matrix *M*:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

So:

$$x' = ax + by$$

$$y' = cx + dy$$

We will develop some intimacy with the elements a, b, c, d...

Identity

Suppose we choose a=d=1, b=c=0:

• Gives the identity matrix:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Doesn't move the points at all

Scaling

Suppose we set b=c=0, but let a and d take on any positive value:

• Gives a scaling matrix:

• Provides **differential scaling** in *x* and *y*:

$$x' = ax$$

$$y' = dy$$

Scaling

1

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Examples:

Reflection

Shearing

The matrix
$$\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$

$$x' = x + by$$

Rotation

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

$$\begin{bmatrix} -\sin(\theta) \end{bmatrix} \quad M = R(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Limitations of a 2X2 matrix

- Scaling
- Rotation
- Reflection
- Shearing
- What do we miss?

Homogeneous coordinate

Idea is to loft the problem up into 3-space, adding a third component to every point:

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

And then transform with a 3 x 3 matrix:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = T(\mathbf{t}) \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translation

3D scaling

Some of the 3-D transformations are just like the 2-D ones.

For example, scaling:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3D translation

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3D rotation

Rotation now has more possibilities in 3D:

$$R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y}(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{z}(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Use right hand rule

3D shearing

Shearing is also more complicated. Here is one example:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & b & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Graphics pipeline

Projections

Imaging with the synthetic camera

The image is rendered onto an **image plane** or **projection plane** (usually in front of the camera).

Projectors emanate from the **center of projection** (COP) at the center of the lens (or pinhole).

The image of an object point P is at the intersection of the projector through P and the image plane.

Specifying a viewer

Camera specification requires four kinds of parameters:

- Position: the COP.
- Orientation: rotations about axes with origin at the COP.
- Focal length: determines the size of the image on the film plane, or the field of view.
- Film plane: its width and height, and possibly orientation.

Projections

Projections transform points in *n*-space to *m*-space, where m < n.

In 3D, we map points from 3-space to the **projection plane (PP)** along **projectors** emanating from the **center of projection (COP)**.

There are two basic types of projections:

- Perspective distance from COP to PP finite
- Parallel distance from COP to PP infinite

Parallel and perspective projections

Orthographic transformation

For parallel projections, we specify a **direction of projection** (DOP) instead of a COP.

We can write orthographic projection onto the z=0 plane with a simple matrix.

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Normally, we do not drop the z value right away. Why not?

Perspective projection

Q: How do we perform the perspective projection from eye space into screen space?

Using similar triangles gives:

Perspective transform

We can write this transformation in matrix form:

$$\begin{bmatrix} X \\ Y \\ Z \\ W \end{bmatrix} = MP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

Perspective divide:

$$\begin{bmatrix} X/W \\ Y/W \\ Z/W \\ W/W \end{bmatrix} = \begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ d \\ 1 \end{bmatrix}$$

Triangle meshes

Review of graphics pipeline

Projection & clipping

Copyright©1998, Microsoft

Review of graphics pipeline

- Rasterization
- Visibility

Visibility (Hidden surface removal)

Hidden surface removal

- Determining what to render at each pixel.
- A point is visible if there exists a direct line-ofsight to it, unobstructed by another other objects (visible surface determination).
- Moreover, some objects may be invisible because there are behind the camera, outside of the field-of-view, too far away (clipping) or back faced (backface culling).

 p_{i}

- Occlusion: Closer (opaque) objects along same viewing ray obscure more distant ones
- Reasons for removal
 - Efficiency: As with clipping, avoid wasting work on invisible objects
 - Correctness: The image will look wrong if we don't model occlusion properly

Hidden surface removal algorithms

- Painter's algorithm
- Binary space partitioning
- Z-buffer
- Ray casting
- · And many others

Painter's algorithm

Painter's algorithm

- Idea: Sort primitives by minimum depth, then rasterize from furthest to nearest
- When there are depth overlaps, do more tests of bounding areas, etc. to see one actually occludes the other

Z-buffer algorithm

- Resolve depths at the pixel level
- Idea: add Z to frame buffer, when a pixel is drawn, check whether it is closer than what's already in the framebuffer
- Proposed by Ed Catmull in 1975, widely used today, especially in hardware.
- Z-buffer, texture, subdivision surface, RenderMan
- · Co-founder of Pixar
- 3 Oscars (1993, 1996, 2001), SIGGRAPH Steven Coons Award (1993)

Z-buffer algorithm


```
for each pixel p;
{
    Z-buffer[p;] = FAR
    Fb[p;] = BACKGROUND_COLOR
}

for each polygon P
{
    Compute depth z and shade s of P at p;
        if z < Z-buffer[p;]
        {
        Z-buffer[p;] = z
        Fb[p;] = s
    }
}</pre>
```

Z-buffer algorithm

The z-Buffer Algorithm

Z-buffer: example

color buffer

depth buffer

Z-Buffer

- Benefits
 - Easy to implement
 - Works for any geometric primitive
 - Parallel operation in hardware (independent of order of polygon drawn)
- Limitations
 - Memory required for depth buffer
 - Quantization and aliasing artifacts
 - Overfill
 - Transparency does not work well

Clipping (view frustum culling)

Review of graphics pipeline

- Rasterization
- Visibility

Review of graphics pipeline

Shading

Z-buffer algorithm

Shading

What is normal?

Normal for a triangle

plane
$$\mathbf{n} \cdot (\mathbf{p} - \mathbf{v}_0) = 0$$

 $\mathbf{n} = (\mathbf{v}_2 - \mathbf{v}_0) \times (\mathbf{v}_1 - \mathbf{v}_0)$
normalize $\mathbf{n} \leftarrow \mathbf{n}/|\mathbf{n}|$

Using average normals

Using average normals

$$N_{\upsilon} = \frac{\left(N_{1} + N_{2} + N_{3} + N_{4}\right)}{\left\|N_{1} + N_{2} + N_{3} + N_{4}\right\|}$$

More generally,

$$N_{\upsilon} = \frac{\sum_{i=1}^{n} N_{i}}{\left|\sum_{i=1}^{n} N_{i}\right|}$$

It can also be area-weighted.

Triangle meshes

 $\{f_1\}$: $\{v_1, v_2, v_3\}$ connectivity $\{f_2\}$: $\{v_3, v_2, v_4\}$

 $\{v_1\}$: (x,y,z) $\{v_2\}$: (x,y,z) geometry

 $\{f_1\}$: "skin material" face attributes $\{f_2\}$: "brown hair"

...

...

Illumination (shading) models

- Interaction between light sources and objects in scene that results in perception of intensity and color at eye
- Local vs. global models
 - Local: perception of a particular primitive only depends on light sources directly affecting that one primitive
 - Geometry
 - · Material properties
 - Shadows cast (global?)
 - Global: also take into account indirect effects on light of other objects in the scene
 - Light reflected/refracted
 - Indirect lighting

Local vs. global models

Indirect lighting

Setup

- Point **P** on a surface through a pixel **p**
- Normal N at P
- Lighting direction \mathbf{v}_L
- Viewing direction \mathbf{v}_E
- Compute color **L** for pixel **p**

Surface types

- A STATE OF THE PARTY OF THE PAR
- The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror would reflected the light
- A very rough surface scatters light in all directions

rough surface

Basics of local shading

- Diffuse reflection
 - light goes everywhere; colored by object color
- Specular reflection
 - happens only near mirror configuration; usually white
- Ambient reflection
 - constant accounted for other source of illumination

color and ambient

diffuse

specularity

Ambient shading

• add constant color to account for disregarded illumination and fill in black shadows; a cheap hack.

Diffuse shading

- Assume light reflects equally in all directions
 - Therefore surface looks same color from all views; "view independent"

Picture a rough surface with lots of tiny microfacets:

Diffuse shading

• Illumination on an oblique surface is less than on a normal one (Lambertian cosine law)

- Generally, illumination falls off as $\mbox{cos}\theta$

Diffuse shading (Gouraud 1971)

• Applies to *diffuse*, *Lambertian* or *matte* surfaces

Diffuse shading

diffuse-reflection model with different $\,k_{_{
m d}}$

ambient and diffuse-reflection model with different $k_{\rm a}$ and $I_{\rm a}=I_{\rm p}=1.0, k_{\rm d}=0.4$

Diffuse shading

For color objects, apply the formula for each color channel separately

Specular shading

 Some surfaces have highlights, mirror like reflection; view direction dependent; especially for smooth shinny surfaces

Specular shading (Phong 1975)

• Also known as *glossy*, *rough specular* and *directional diffuse* reflection

$$\mathbf{v}_R = \mathbf{v}_L + 2((\mathbf{n} \cdot \mathbf{v}_L)\mathbf{n} - \mathbf{v}_L)$$
$$= 2(\mathbf{n} \cdot \mathbf{v}_L)\mathbf{n} - \mathbf{v}_L$$

Specular shading

Fall off gradually from the perfect reflection direction

Specular shading

• Increasing n narrows the lobe

Specular shading

Specular shading

diffuse

diffuse + specular

Put it all together

• Include ambient, diffuse and specular

$$L = L_a + L_d + L_s$$

= $k_a I_a + I \left(k_d \max(0, \mathbf{n} \cdot \mathbf{v}_L) + k_s \max(0, \mathbf{n} \cdot \mathbf{v}_H)^n \right)$

• Sum over many lights

$$L = L_a + \sum_{i} (L_d)_i + (L_s)_i$$

= $k_a I_a + \sum_{i} I_i (k_d \max(0, \mathbf{n} \cdot (\mathbf{v}_L)_i) + k_s \max(0, \mathbf{n} \cdot (\mathbf{v}_H)_i)^n)$

Choosing the parameters

 n_s in the range [0,100]

Try
$$k_a + k_d + k_s \le 1$$

Use a small k_a (~0.1)

	n_s	k_d	k_s
Metal	Large	Small, color of metal	Large, color of metal
Plastic	Medium	Medium, color of plastic	Medium, white
Planet	0	Varying	0

Computing lighting at each pixel

- Most accurate approach: Compute component illumination at each pixel with individual positions, light directions, and viewing directions
- But this could be expensive...

Shading models for polygons

- Flat Shading
 - Faceted Shading
 - Constant Shading
- Gouraud Shading
 - Intensity Interpolation Shading
 - Color Interpolation Shading
- Phong Shading
 - Normal-Vector Interpolation Shading

Flat Shading

- Compute constant shading function, over each polygon
- Same normal and light vector across whole polygon
- Constant shading for polygon

$$I_p = I$$

Intensity Interpolation (Gouraud)

$$I_a = I_1 \frac{y_s - y_2}{y_1 - y_2} + I_2 \frac{y_1 - y_s}{y_1 - y_2}$$

$$I_b = I_1 \frac{y_s - y_3}{y_1 - y_3} + I_3 \frac{y_1 - y_s}{y_1 - y_3}$$

$$I_{p} = I_{a} \frac{x_{b} - x_{p}}{x_{b} - x_{a}} + I_{b} \frac{x_{p} - x_{a}}{x_{b} - x_{a}}$$

Normal Interpolation (Phong)

Normal Interpolation (Phong)

$$N_{a} = N_{1} \frac{y_{s} - y_{2}}{y_{1} - y_{2}} + N_{2} \frac{y_{1} - y_{s}}{y_{1} - y_{2}}$$

$$N_{a}$$

$$N_{b} = N_{1} \frac{y_{s} - y_{3}}{y_{1} - y_{3}} + N_{3} \frac{y_{1} - y_{s}}{y_{1} - y_{3}}$$

$$N_{b} = N_{1} \frac{y_{s} - y_{3}}{y_{1} - y_{3}} + N_{3} \frac{y_{1} - y_{s}}{y_{1} - y_{3}}$$

$\tilde{N}_{p} = \frac{N_{a}}{\|N_{a}\|} \left[\frac{x_{b} - x_{p}}{x_{b} - x_{a}} \right] + \frac{N_{b}}{\|N_{b}\|} \left[\frac{x_{p} - x_{a}}{x_{b} - x_{a}} \right]$

$$N_{p} = \frac{\tilde{N}_{p}}{\left\|\tilde{N}_{p}\right\|}$$
 Normalizing makes this a unit vector

Gouraud v.s. Phong Shading

Flat shading

Gouraud shading

Phong shading

Graphics Pipeline

Triangle meshes

 $\{f_1\}$: $\{v_1, v_2, v_3\}$ $\{f_2\}$: $\{v_3, v_2, v_4\}$ connectivity

 $\{v_1\}$: (x,y,z)geometry $\{v_2\}$: (x,y,z)

{f₁}: "skin material" face attributes {f₂}: "brown hair"

 $\begin{aligned} \{v_2,f_1\} &: (n_x,n_y,n_z) \; (u,v) \\ \{v_2,f_2\} &: (n_x,n_y,n_z) \; (u,v) \end{aligned}$ corner attributes

Review of graphics pipeline

	/			<u> </u>		,	-
Γ1	0	0	t_x	$\cos \theta$	0	$\sin\theta$	0
0	1	0	t_y	0	1	0	0
0	0	1	t_z	$-\sin\theta$	0	$\cos\theta$	0
0	0	0	1	0	0	0	1
	1 0 0 0	1 0 0 1 0 0 0 0	1 0 0 0 1 0 0 0 1 0 0 0	$\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta \\ 0 \\ -\sin \theta \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & 0 \\ 0 & 1 \\ -\sin \theta & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \\ 0 & 0 & 0 \end{bmatrix}$

Review of graphics pipeline

Projection & clipping

Review of graphics pipeline

- Rasterization
- Visibility

Review of graphics pipeline

• Shading

$$I = k_e + k_a I_a + \sum_i f(d_i) I_{li} \left[k_d (\mathbf{N} \cdot \mathbf{L}_i)_+ + k_s (\mathbf{V} \cdot \mathbf{R})_+^{n_s} \right]$$

Consider this robot arm with 3 degrees of freedom:

- Base rotates about its vertical axis by θ
- Lower arm rotates in its *xy*-plane by φ
- Upper arm rotates in its xy-plane by ψ

Animation

Hierarchical modeling

Hierarchical models can be composed of instances using trees or DAGs:

Animator demos

Videos

- TigerWang
- Racing

Advanced topics

Global illumination

$$L_o(\mathbf{x},\omega,\lambda,t) = L_e(\mathbf{x},\omega,\lambda,t) + \int_{\Omega} f_r(\mathbf{x},\omega',\omega,\lambda,t) L_i(\mathbf{x},\omega',\lambda,t) (-\omega' \cdot \mathbf{n}) d\omega'$$

Complex materials

Realistic motion

Graphics hardware 300 200 100 2002 2004 2006 Nvidia GT200

WVIDIA.

200 cores

Animation production

Animation production pipeline

modeling/articulation

layout

animation

shading/lighting

rendering

final touch

What's next?

Related courses

Related courses

		影像式型模與描繪	△△□	數位影像生成		視訊壓縮技術・標準與實利	5 . 🕒 🖊 📕
1	多媒	遊戲設計	△■	幾何模型	•	電腦視覺 (二)	•
		機器學習和電腦視覺專題	•	高等多媒體資訊分析與檢算	k: ● ▲ □	視訊壓縮技術與研發專題	•
	雅	資訊與歷史資料分析	△■	醫學影像處理	•	機器學習於多媒體之應用	•
100	- 0	數位圖書館與博物館研讨	△■	多媒體安全	•A	統計人工智慧	A
		高等人機互動介面	•				
0.2		網路資訊安全(二)	OAU	行動通訊服務系統效能評估	\$OA[網路與多媒體之技術與產	E O A
	柳	高等資訊網技術	OAU	網路模擬與測試	OAD	软體產業之經營策略	• A II
	路	賽局理論	OA	智慧型代理程式設計	OA =	電子商務系統	• A
		網路藝術	•	無線感測網路與實作	OAD		
		分散式代理人系統	OAB	嵌入式處理器設計	ΟΔ	生物資訊演算法	0Δ
		计算生物基礎數學	0Δ	生醫資料採勘演算法	00	平行計算多處理機系統品)	OAB
	乘	計算機效能最佳化	OΔ =	低功率系統設計	04	輸出裝置與驅動程式設計	OΔ =
	統康	嵌入式系統機論	0Δ	低功率嵌入式系統設計	04	嵌入式多核心系統與軟體	OA
	與應	生物資訊之統計與計算方:	■ △○ 	软硬體共同設計	00	電腦對局理論	04
ı.	用	國外專業實習	OΔ =	科技英文寫作與研究方法	OΔ =	提樹系統與應用	0Δ
		人工智慧	•	機器人知覺與學習	△■	高等行動機器人學	• A
		高等人工智慧	• A =	多媒體品片系統設計	•△■	即時系統開發	OAB
		普及計算	• A II	软體專利實務基礎	• A.	多核處理器及編譯	0Δ
009/3/12		嵌入式中介软體設計	OA				