Digital Multimeters 34460A, 34461A, 34465A (6½ digit), 34470A (7½ digit)

True volt DMMs for your next generation of insights

Table of Contents

Overview of Keysight True volt Digital Multimeters	3
Measure with Unquestioned Truevolt Confidence	4
BenchVue Software	5
Measure with Unquestioned True volt Confidence	7
Move to The Next-Generation 34401A DMM with 100% Assurance	
Specifications 34460A	11
Specifications 34461A	13
Specifications 34465A	15
Specifications 34470A	18
Measurement Characteristics	21
Operating Characteristics	23
System Speeds (Nom)	
General Characteristics	25
Options, Upgrades and Accessories	
Accessories	27
Definitions	28

Keysight's NEW True*volt* Digital Multimeters (DMMs) offer a full range of measurement capabilities and price points with higher levels of accuracy, speed, and resolution.

Get more insight quickly

True volt DMM's graphical capabilities such as trend and histogram charts offer more insights quickly. Both models also provide a data logging mode for easier trend analysis and a digitizing mode for capturing transients.

Measure low-power devices

The ability to measure very low current, 1 μ A range with pA resolution, allows you to make measurements on very low power devices.

Maintain calibrated measurements

Auto calibration allows you to compensate for temperature drift so you can maintain measurement accuracy throughout your workday.

The bright, 4.3" high-resolution monitor is a prominent feature of Keysight's True*volt* DMM family.

Overview of Keysight Truevolt Digital Multimeters

Key specifications	34460A	34461A	34465A	34470A				
Digits of resolution	6½	6½	6½	7½				
Basic DCV accuracy	75 ppm	35 ppm	30 ppm	16 ppm				
Max reading rate	300 rdgs/s	1,000 rdgs/s	50,000 rdgs/s	50,000 rdgs/s				
Memory	1,000 rdgs	10,000 rdgs	50,000 rdgs std	50,000 rdgs std				
			2 million rdgs opt	2 million rdgs opt				
		Measurements						
DCV	100 mV to 1,000 V	100 mV to 1,000 V	100 mV to 1,000 V	100 mV to 1,000 V				
ACV (RMS)	100 mV to 750 V	100 mV to 750 V	100 mV to 750 V	100 mV to 750 V				
DCI	100 μA to 3 A	100 μA to 10 A	1 μA to 10 A	1 μA to 10 A				
ACI	100 μA to 3 A	100 μA to 10 A	100 μA to 10 A	100 μA to 10 A				
2- and 4-wire resistance	100 Ω to 100 MΩ	100 Ω to 100 MΩ	100 Ω to 1,000 MΩ	100 Ω to 1,000 MΩ				
Continuity, diode	Y, 5 V	Y, 5 V	Y, 5 V	Y, 5 V				
Frequency, period	3 Hz to 300 kHz	3 Hz to 300 kHz	3 Hz to 300 kHz	3 Hz to 300 kHz				
	RTD/PT100.	RTD/PT100.	RTD/PT100,	RTD/PT100,				
Temperature	thermistor	thermistor	thermistor,	thermistor,				
	tricimistor		thermocouples	thermocouples				
Capacitance	1.0 nF to 100.0 μF	1.0 nF to 100.0 μF	1.0 nF to 100.0 μF	1.0 nF to 100.0 μF				
Dual line display	Yes	Yes	Yes	Yes				
Display	Color, graphical	Color, graphical	Color, graphical	Color, graphical				
Statistical graphics	Histogram, bar chart	Histogram, bar	Histogram, bar	Histogram, bar				
	, , , , , , , , , , , , , , , , , , ,	chart, trend chart	chart, trend chart	chart, trend chart				
Rear input terminals	No	Yes	Yes	Yes				
	IO interface							
USB	Yes	Yes	Yes	Yes				
LAN/LXI Core	Optional	Yes	Yes	Yes				
GPIB	Optional	Optional	Optional	Optional				

Bar meter mode provides the number display along with an analog meter to provide a visual view of your measurements.

Number mode provides the traditional "digits" view of measurements.

DC Voltage

Auto 10 VOC

Auto 10 POC VOLTAGE

Billing

Bil

Measure with Unquestioned Truevolt Confidence

Worry about the quality of your design, not the quality of your measurements

In a rack or on a bench real-world signals are never flat. They have some level of AC signal riding on top from power line noise, other environmental noise, or injected current from the meter itself. How well your meter deals with these extraneous factors and eliminates them from the true measurement makes a big difference to your accuracy. Behind the scenes, Keysight's True volt technology accounts for measurement errors created by these real-world factors so you can be confident in your measurements and it is only available on Keysight DMMs.

True *volt* technology starts with an analog-to-digital converter that enables a patented metrology-grade architecture. Using this architecture, Keysight delivers a good balance of measurement resolution, linearity, accuracy, and speed at a value price, all derived and guaranteed per ISO/IEC 17025 industry standards.

BenchVue Software

Data capture simplified. Click. Capture. Done.

BenchVue software for the PC makes it simple to connect, control, capture and view Keysight's DMMs simultaneously with other Keysight bench instruments with no additional programming.

- Visualize multiple measurements simultaneously
- · Easily log data, screen shots and system state
- Rapidly prototype custom test sequences
- Recall past state of your bench to replicate results
- · Export measurement data in desired format fast
- Quickly access manuals, drivers, FAQs and videos
- Monitor and control bench from mobile devices

The Digital Multimeter App within BenchVue enables control of digital multimeters to visualize measurements, perform unrestricted data logging and statistical analysis.

Benefit from a new perspective by visualizing multiple DMM's at the same time

Display single measurements, charts, tables, or histograms from a single instrument or multiple DMMs simultaneously to correlate trends you might otherwise miss.

Record measurements and export results in a few clicks

Log and export data quickly to popular tools such as Microsoft Excel, Microsoft Word and MATLAB for documentation or further analysis.

Access and control tests on your DMM remotely

With the companion BenchVue Mobile app, monitor and respond to long-running tests from anywhere.

Download BenchVue software at no cost today www.keysight.com/find/benchvue

1. One hour limit in no-cost version.

Figure 1. See your measurements across instruments in one place to quickly correlate measurement activities and obtain actionable insights.

Figure 2. BenchVue enables control of your DMM to data log and visualize measurements in a wide array of display options.

Measure with Unquestioned Truevolt Confidence

What Truevolt technology means to you:

You can measure your real-world signals, not instrument error

Noise and injected current: Keysight True *volt* DMMs contribute less than 30% of the injected current than alternatives. Compared to some lower cost alternatives, True *volt* DMMs offer almost 100% less noise.

Input bias current: Ideally, no current flows into the measurement terminals of your DMM. In real measurement situations, there are always input currents creating additional measurement errors. True *volt* DMMs take care of input bias current. Some alternative DMMs offer 20% to infinitely poorer performance (some are too noisy to measure).

Digital AC rms measurements: For meters in this class, only Keysight uses digital direct sampling techniques to make AC rms measurements. This results in a true rms calculation technique that avoids the slower response of analog RMS converters used in all other vendor's 6½ digit DMMs. This allows for crest factors up to 10 without additional error terms. This is a unique, patented technique – only used by Keysight.

You can measure your real-world signals with confidence

All True *volt* DMM specifications are tested and guaranteed for compliance with ISO/IEC 17025 standards so you can prove the effectiveness of your lab or production line's quality management system. Many lower-cost DMMs in this class do not carry a guarantee of their measurement specifications.

You can take advantage of expanded measurement functionality

Compared to the 34401A DMM, True *volt* DMMs offer expanded current ranges from 100 μ A to 10 A. We have also added a temperature measurement function (RTD/PT100, 5 K Ω thermistor). Additionally, diode measurement capability has been expanded to allow a larger full-scale voltage to be measured (5 V) to enable the measurement of more diode types such as LEDs.

Move to The Next-Generation 34401A DMM with 100% ¹ Assurance

Migrate with confidence: Everything you depend on with the 34401A and more

Like most 34401A DMM owners, you rely on your DMM and you trust the answers it gives you. Now, with the Keysight True *volt* 34461A DMM, you can get all of the advantages of the 34401A and more. Now you can get faster answers and have even more confidence in your results. The best news of all? You can migrate from the 34401A to the 34461A without a hassle. No need to rewrite your software programs or spend hours learning a brand-new, complicated interface.

Use your existing programs: The 34461A DMM is the industry's only 100% drop-in, SCPI-compatible replacement for the 34401A DMM. Other DMMs may claim 34401A SCPI compatibility, but only a subset of SCPI commands are implemented.

No long learning curve: The True*volt* DMMs were designed by the same team that created the 34401A. The team kept 34401A measurements, reliability and familiarity in mind as they created the True*volt* family of DMMs. So you can use it without spending hours learning how.

The 34461A represents everything you have known and trusted with your Keysight DMM measurements for decades – it just keeps getting stronger.

Migration Q&A	Question	Answer
Program compatibility	Will my existing programs still work if I switch to the 34461A?	YES ¹
Measurements	Will I have the same performance so it doesn't affect the results on my line?	YES
Cost	Will it cost the same to buy, use, maintain, and repair?	YES
Reliability	My 34401A never breaks. Are the True volt DMMs going to be as good?	YES
Use	Will we be able to use it easily? Quickly?	YES

For more information visit: www.keysight.com/find/34401Amigration

^{1.} Refer to migration guide 5991-2367EN for compatibility and key programming differences between 34461A and 34401A.

34461A: The industry's only 100% drop-in, SCPI-compatible replacement for the 34401A DMM.

Specifications 34460A

- 34460A accuracy specifications: ± (% of reading + % of range) ¹.
- These specifications are compliant to ISO/IEC 17025 for K = 2.

Range ²	/frequency	24 hours ³ T _{CAL} ± 1 °C	90 days T _{CAL} ± 5 °C	1 year T _{CAL} ± 5 °C	2 years T _{CAL} ± 5 °C	Temperature coefficient/°C ⁴			
	DC voltage								
100 mV		0.0040 + 0.0060	0.0070 + 0.0065	0.0090 + 0.0065	0.0115 + 0.0065	0.0005 + 0.0005			
1 V		0.0030 + 0.0009	0.0060 + 0.0010	0.0080 + 0.0010	0.0105 + 0.0010	0.0005 + 0.0001			
10 V		0.0025 + 0.0004	0.0050 + 0.0005	0.0075 + 0.0005	0.0100 + 0.0005	0.0005 + 0.0001			
100 V		0.0030 + 0.0006	0.0065 + 0.0006	0.0085 + 0.0006	0.0110 + 0.0006	0.0005 + 0.0001			
1000 V		0.0030 + 0.0006	0.0065 + 0.0010	0.0085 + 0.0010	0.0110 + 0.0010	0.0005 + 0.0001			
		0.0000	True RMS AC vo		0.0.1.0 1 0.0010	0.0000			
		10	00 mV, 1 V, 10 V, 100 V						
3 Hz to 5	Hz	1.00 + 0.02	1.00 + 0.03	1.00 + 0.03	1.00 + 0.03	0.100 + 0.003			
5 Hz to 10		0.38 + 0.02	0.38 + 0.03	0.38 + 0.03	0.38 + 0.03	0.035 + 0.003			
10 Hz to 2		0.07 + 0.02	0.08 + 0.03	0.09 + 0.03	0.10 + 0.03	0.005 + 0.003			
20 kHz to		0.13 + 0.04	0.14 + 0.05	0.15 + 0.05	0.16 + 0.05	0.011 + 0.005			
50 kHz to		0.58 + 0.08	0.63 + 0.08	0.63 + 0.08	0.63 + 0.08	0.060 + 0.008			
	o 300 kHz	4.00 + 0.50	4.00 + 0.50	4.00 + 0.50	4.00 + 0.50	0.200 + 0.020			
	stance ⁷			Test current					
100 Ω	1 mA	0.0040 + 0.0060	0.011 + 0.007	0.014 + 0.007	0.017 + 0.007	0.0006 + 0.0005			
1 kΩ	1 mA	0.0030 + 0.0008	0.011 + 0.001	0.014 + 0.001	0.017 + 0.001	0.0006 + 0.0001			
10 kΩ	100 μΑ	0.0030 + 0.0005	0.011 + 0.001	0.014 + 0.001	0.017 + 0.001	0.0006 + 0.0001			
100 kΩ	10 μA	0.0030 + 0.0005	0.011 + 0.001	0.014 + 0.001	0.017 + 0.001	0.0006 + 0.0001			
1 ΜΩ	5 μA	0.0030 + 0.0010	0.011 + 0.001	0.014 + 0.001	0.017 + 0.001	0.0010 + 0.0002			
10 MΩ	500 nA	0.015 + 0.001	0.020 + 0.001	0.040 + 0.001	0.060 + 0.001	0.0030 + 0.0004			
100 ΜΩ	500 nA	0.300 + 0.010	0.800 + 0.010	0.800 + 0.010	0.800 + 0.010	0.1500 + 0.0002			
DC	10 MΩ current			Durden veltere					
		0.040 + 0.000	0.040 . 0.005	Burden voltage	0.000 . 0.005	0.0000 . 0.0000			
100 μA 1 mA	< 0.011 V < 0.11 V	0.010 + 0.020 0.007 + 0.006	0.040 + 0.025 0.030 + 0.006	0.050 + 0.025 0.050 + 0.006	0.060 + 0.025 0.060 + 0.006	0.0020 + 0.0030 0.0020 + 0.0005			
10 mA	< 0.11 V	0.007 + 0.008	0.030 + 0.006	0.050 + 0.006	0.060 + 0.006	0.0020 + 0.0005			
100 mA	< 0.05 V	0.007 + 0.020	0.030 + 0.020	0.050 + 0.020	0.060 + 0.020	0.0020 + 0.0020			
1 A	< 0.5 V	0.010 ± 0.004 0.050 ± 0.006	0.080 + 0.010	0.100 + 0.010	0.120 + 0.010	0.0050 + 0.0010			
3 A	< 2.0 V	0.180 + 0.020	0.200 + 0.020	0.200 + 0.020	0.230 + 0.020	0.0050 + 0.0010 0.0050 + 0.0020			
JA	< 2.0 V	0.100 + 0.020	Capacitan		0.230 + 0.020	0.0030 + 0.0020			
1.0000 nF	=	0.50 + 0.50	0.50 + 0.50	0.50 + 0.50	0.50 + 0.50	0.05 + 0.05			
10.000 nF		0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.05 + 0.01			
100.00 nF		0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.05 + 0.01			
1.0000 µF		0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.05 + 0.01			
10.000 µF		0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.05 + 0.01			
100.00 µF		0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.05 + 0.01			

Range ² /frequency	24 hours ³ T _{CAL} ± 1 °C	90 days T _{CAL} ± 5 °C	1 year T _{CAL} ± 5 °C	2 years T _{CAL} ± 5 °C	Temperature coefficient/°C ⁴	
True RMS AC current 2, 6, 8			Burden voltage			
100 μA, 1 mA, 10 mA, and 100 mA ranges	< 0.011, < 0.11, <	< 0.05, < 0.5 V				
3 Hz to 5 kHz	0.10 + 0.04	0.10 + 0.04	0.10 + 0.04	0.10 + 0.04	0.015 + 0.006	
5 to 10 kHz (typ)	0.10 + 0.04	0.10 + 0.04	0.10 + 0.04	0.10 + 0.04	0.030 + 0.006	
1 A range			< 0.7 V			
3 Hz to 5 kHz	0.10 + 0.04	0.10 + 0.04	0.10 + 0.04	0.10 + 0.04	0.015 + 0.006	
5 to 10 kHz (typ)	0.10 + 0.04	0.10 + 0.04	0.10 + 0.04	0.10 + 0.04	0.030 + 0.006	
3 A range			< 2.0 V			
3 Hz to 5 kHz	0.23 + 0.04	0.23 + 0.04	0.23 + 0.04	0.23 + 0.04	0.015 + 0.006	
5 to 10 kHz (typ)	0.23 + 0.04	0.23 + 0.04	0.23 + 0.04	0.23 + 0.04	0.030 + 0.006	
		Continui	tv			
1 kΩ	0.002 + 0.030	0.008 + 0.030	0.010 + 0.030	0.012 + 0.030	0.0010 + 0.0020	
		Diode tes	† 9			
5 V	0.002 + 0.030	0.008 + 0.030	0.010 + 0.030	0.012 + 0.030	0.0010 + 0.0020	
	0.002 1 0.000	DC ratio (t		0.012 1 0.000	0.0010 1 0.0020	
	(normalized input	,	אנאן nalized reference a	ccuracy)		
	(normalized input	Temperatu		ocuracy)		
PT100 (DIN/IEC 751)	Probe accuracy -		ie '*			
5 kΩ thermistor	Probe accuracy -					
O K22 themistor			(0/ -f 11 12			
		ency: specification ±	,			
		mV, 1 V, 10 V, 100 V, a		0.400	0.0000	
3 Hz to 10 Hz	0.100	0.100	0.100	0.100	0.0002	
10 Hz to 100 Hz	0.030	0.030	0.030	0.035	0.0002	
100 Hz to 1 kHz	0.030	0.010	0.012	0.017	0.0002	
1 Hz to 300 kHz	0.002	0.008	0.012	0.017	0.0002	
Square wave 14	0.001			0.017	0.0002	
Additional gate time errors ± (% of reading) 12, 10						
Frequency	1 second	0.1 second		0.01 second		
3 Hz to 40 Hz	0	0.200	0.200			
40 Hz to 100 Hz	0	0.060	0.200			
100 Hz to 1 kHz	0	0.020	0.200			
1 Hz to 300 kHz	0	0.004	0.030			
Square wave 14	0	0	0			

- 1. For DC: Specifications are for 60-minute warm-up, aperture of 10 or 100 NPLC, and auto zero on. For AC: Specifications are for 60-minute warm-up, slow AC filter, sine wave.
- 2. 20% overrange on all ranges, except 1,000 V DCV, 750 ACV, 3 A AC, and diode test.
- 3. Relative to calibration standards.
- 4. Add this for each °C outside TCAL ± 5 °C.
- 5. Specifications are for sine wave input > 0.3% of range and > 1 mVrms. 750 ACV range limited to 8 x 107 Volt-Hz.
- 6. Low-frequency performance: three filter settings are available: 3 Hz, 20 Hz, 200 Hz. Frequencies greater than these filter settings are specified with no additional errors.
- 7. Specifications are for 4-wire ohms function or 2-wire ohms using math null for offset. Without math null, add 0.2Ω additional error in 2-wire ohms function.
- 8. Specifications are for sinewave input > 1% of range and > 10 μA AC.
- Specifications are for the voltage measured at the input terminals. The 1 mA test current is typical. Variation in the current source will create some variation in the voltage drop across a diode junction.
- 10. Actual measurement range and probe errors will be limited by the selected probe. Probe accuracy adder includes all measurement and ITS-90 temperature conversion errors PT100 Ro settable to $100\Omega \pm 5\Omega$ to remove the initial probe error.
- 11. Specifications are for 60-minute warm-up and sine wave input unless stated otherwise. Specifications are for 1-second gate time (7 digits).
- 12. Applies to sine and square inputs ≥ 100 mV. For 10 mV to < 100 mV inputs, multiply % of reading error x10.
- 13. Amplitude 10% to 120% of range and less than 750 ACV.
- 14. Square wave input specified for 10 to 300 kHz.
- 15. Specifications are for using Math Null zeroing. High dissapation factor capacitors may show different results than a single frequency measurement. Film capacitors usually have lower dissapation factors than other dielectrics.

Specifications 34461A

- 34461A accuracy specifications:
 ± (% of reading + % of range) ¹.
- These specifications are compliant to ISO/IEC 17025 for K = 2.

Range ² /fr	oguopev	24 hours ³		90 days		1 year	2 years	Temperature
Range /ii	equency	T _{CAL} ±1°C		T _{CAL} ± 5 °C		T _{CAL} ± 5 ℃	T _{CAL} ± 5 °C	coefficient/°C 4
	DC voltage							
100 mV		0.0030 + 0.0030	0.0	040 + 0.0035	_	0050 + 0.0035	0.0065 + 0.0035	0.0005 + 0.0005
1 V		0.0020 + 0.0006		030 + 0.0007	_	0040 + 0.0007	0.0055 + 0.0007	0.0005 + 0.0001
10 V		0.0015 + 0.0004		020 + 0.0005	_	0035 + 0.0005	0.0050 + 0.0005	0.0005 + 0.0001
100 V		0.0020 + 0.0006		035 + 0.0006		0045 + 0.0006	0.0060 + 0.0006	0.0005 + 0.0001
1000 V		0.0020 + 0.0006	_	035 + 0.0010		0045 + 0.0010	0.0060 + 0.0010	0.0005 + 0.0001
				True RMS AC vo				
		100		1 V, 10 V, 100 V,				
3 Hz to 5 Hz		1.00 + 0.02	ĺ	1.00 + 0.03		1.00 + 0.03	1.00 + 0.03	0.100 + 0.003
5 Hz to 10 H	Z	0.35 + 0.02		0.35 + 0.03		0.35 + 0.03	0.35 + 0.03	0.035 + 0.003
10 Hz to 20 I		0.04 + 0.02		0.05 + 0.03		0.06 + 0.03	0.07 + 0.03	0.005 + 0.003
20 kHz to 50		0.10 + 0.04		0.11 + 0.05		0.12 + 0.05	0.13 + 0.05	0.011 + 0.005
50 kHz to 10		0.55 + 0.08		0.60 + 0.08		0.60 + 0.08	0.60 + 0.08	0.060 + 0.008
100 kHz to 3		4.00 + 0.50		4.00 + 0.50		4.00 + 0.50	4.00 + 0.50	0.200 + 0.020
Resistance ⁷					est (current		
100 Ω	1 mA	0.0030 + 0.0030		0.008 + 0.004		0.010 + 0.004	0.012 + 0.004	0.0006 + 0.0005
1 kΩ	1 mA	0.0020 + 0.0005		0.008 + 0.001		0.010 + 0.001	0.012 + 0.001	0.0006 + 0.0001
10 kΩ	100 μΑ	0.0020 + 0.0005		0.008 + 0.001		0.010 + 0.001	0.012 + 0.001	0.0006 + 0.0001
100 kΩ	10 μΑ	0.0020 + 0.0005		0.008 + 0.001		0.010 + 0.001	0.012 + 0.001	0.0006 + 0.0001
1 ΜΩ	5 µA	0.002 + 0.001		0.008 + 0.001		0.010 + 0.001	0.012 + 0.001	0.0010 + 0.0002
10 ΜΩ	500 nA	0.015 + 0.001		0.020 + 0.001		0.040 + 0.001	0.060 + 0.001	0.0030 + 0.0004
100 ΜΩ	500 nA 10 MΩ	0.300 + 0.010		0.800 + 0.010		0.800 + 0.010	0.800 + 0.010	0.1500 + 0.0002
DC current				Bui	rder	n voltage		
100 μΑ	< 0.011 V	0.010 + 0.020		0.040 + 0.025		0.050 + 0.025	0.060 + 0.025	0.0020 + 0.0030
1 mA	< 0.11 V	0.007 + 0.006		0.030 + 0.006	;	0.050 + 0.006	0.060 + 0.006	0.0020 + 0.0005
10 mA	< 0.05 V	0.007 + 0.020		0.030 + 0.020		0.050 + 0.020	0.060 + 0.020	0.0020 + 0.0020
100 mA	< 0.5 V	0.010 + 0.004		0.030 + 0.005		0.050 + 0.005	0.060 + 0.005	0.0020 + 0.0005
1 A	< 0.7 V	0.050 + 0.006		0.080 + 0.010		0.100 + 0.010	0.120 + 0.010	0.0050 + 0.0010
3 A	< 2.0 V	0.180 + 0.020		0.200 + 0.020		0.200 + 0.020	0.230 + 0.020	0.0050 + 0.0020
10 A ⁸	< 0.5 V	0.050 + 0.010		0.120 + 0.010		0.120 + 0.010	0.150 + 0.010	0.0050 + 0.0010
				Capacitano	ce 15	5		
1.0000 nF		0.50 + 0.50		0.50 + 0.50		0.50 + 0.50	0.50 + 0.50	0.05 + 0.05
10.000 nF		0.40 + 0.10		0.40 + 0.10		0.40 + 0.10	0.40 + 0.10	0.05 + 0.01
100.00 nF		0.40 + 0.10		0.40 + 0.10		0.40 + 0.10	0.40 + 0.10	0.05 + 0.01
1.0000 µF		0.40 + 0.10		0.40 + 0.10		0.40 + 0.10	0.40 + 0.10	0.05 + 0.01
10.000 µF		0.40 + 0.10		0.40 + 0.10		0.40 + 0.10	0.40 + 0.10	0.05 + 0.01
100.00 μF		0.40 + 0.10		0.40 + 0.10		0.40 + 0.10	0.40 + 0.10	0.05 + 0.01
True RMS AC	current ^{2, 6, 9}					Burden voltage		
100 μA, 1 mA 100 mA	, 10 mA, and			< 0		I, < 0.11, < 0.05, <	0.5 V	
3 Hz to 5 kH	_	0.10 + 0.04	0.1	0 + 0.04	0.	.10 + 0.04	0.10 + 0.04	0.015 + 0.006
5 to 10 kHz (0.10 + 0.04		0 + 0.04		.10 + 0.04	0.10 + 0.04	0.030 + 0.006
2 13 .0 11112 (-7 17 /	2	J. 1		0.		21.0 . 310 !	2.000 . 0.000

Range ² /frequency	24 hours ³ T _{CAL} ± 1 °C	90 days T _{CAL} ± 5 °C	1 year T _{CAL} ± 5 ℃	2 years T _{CAL} ± 5 °C	Temperature coefficient/°C ⁴				
1 A range			< 0.7 V						
3 Hz to 5 kHz	0.10 + 0.04	0.10 + 0.04	0.10 + 0.04	0.10 + 0.04	0.015 + 0.006				
5 to 10 kHz (typ)	0.10 + 0.04	0.10 + 0.04	0.10 + 0.04	0.10 + 0.04	0.030 + 0.006				
3 A range			< 2.0 V						
3 Hz to 5 kHz	0.23 + 0.04	0.23 + 0.04	0.23 + 0.04	0.23 + 0.04	0.015 + 0.006				
5 to 10 kHz (typ)	0.23 + 0.04	0.23 + 0.04	0.23 + 0.04	0.23 + 0.04	0.030 + 0.006				
10 A range ⁸			< 0.5 V						
3 Hz to 5 kHz	0.15 + 0.04	0.15 + 0.04	0.15 + 0.04	0.15 + 0.04	0.015 + 0.006				
5 to 10 kHz (typ)	0.15 + 0.04	0.15 + 0.04	0.15 + 0.04	0.15 + 0.04	0.030 + 0.006				
		Continu	itv						
1 kΩ	0.002 + 0.030	0.008 + 0.030	0.010 + 0.030	0.012 + 0.030	0.0010 + 0.0020				
		Diode tes							
5 V	0.000 + 0.000			0.040 + 0.000	0.0040 + 0.0000				
5 V	0.002 + 0.030	0.008 + 0.030	0.010 + 0.030	0.012 + 0.030	0.0010 + 0.0020				
		DC ratio (,					
	(normalized input	• , ,	llized reference acc	uracy)					
		Temperatu	ire ¹¹						
PT100 (DIN/IEC 751)	Probe accuracy +								
5 kΩ thermistor	Probe accuracy +								
	Free	quency: specification :	± (% of reading) ^{12, 13}						
	100) mV, 1 V, 10 V, 100 V,	and 750 V ranges ¹⁴						
3 Hz to 10 Hz	0.100	0.100	0.100	0.100	0.100				
10 Hz to 100 Hz	0.030	0.030	0.030	0.030	0.035				
100 Hz to 1 kHz	0.003	0.008	0.010	0.010	0.015				
1 Hz to 300 kHz	0.002	0.006	0.010	0.010	0.015				
Square wave 15	0.001	0.006	0.010	0.010	0.015				
	Additional gate time errors ± (% of reading) 13								
Frequency	1 second	0.1 second	0.01 second						
3 Hz to 40 Hz	0	0.200	0.200						
40 Hz to 100 Hz	0	0.060	0.200						
100 Hz to 1 kHz	0	0.020	0.200						
1 kHz to 300 kHz	0	0.004	0.030						
Square wave 15	0	0	0						

- 1. For DC: Specifications are for 60-minute warm-up, aperture of 10 or 100 NPLC, and auto zero on. For AC: Specifications are for 60-minute warm-up, slow AC filter, sine wave.
- 2. 20% over range on all ranges, except 1,000 V DCV, 750 ACV, 10 A DC, 3 A AC, 10 A AC, and diode test.
- 3. Relative to calibration standards.
- 4. Add this for each °C outside TCAL ±5°C.
- 5. Specifications are for sinewave input > 0.3% of range and > 1 mVrms. 750 ACV range limited to 8 x 10 7 Volt-Hz.
- 6. Low-frequency performance: three filter settings are available: 3 Hz, 20 Hz, 200 Hz. Frequencies greater than these filter settings are specified with no additional errors.
- 7. Specifications are for 4-wire ohms function or 2-wire ohms using math null for offset. Without math null, add 0.2Ω additional error in 2-wire ohms function.
- 8. The 10 A range is only available on a separate front-panel connector. Add 2 mA base per amp or inputs > 5 A rms.
- 9. Specifications are for sinewave input > 1% of range and > 10 μA AC.
- 10. Specifications are for the voltage measured at the input terminals. The 1 mA test current is typical. Variation in the current source will create some variation in the voltage drop across a diode junction.
- Actual measurement range and probe errors will be limited by the selected probe. Probe accuracy adder includes all
 measurement and ITS-90 temperature conversion errors. PT100 Ro settable to 100Ω ± 5Ω to remove the initial probe error.
- 12. Specifications are for 60-minute warm-up and sine wave input unless stated otherwise. Specifications are for 1-second gate time (7-digits).
- 13. Applies to sine and square inputs ≥ 100 mV. For 10 mV to < 100 mV inputs, multiply % of reading error x10.
- 14. Amplitude 10% to 120% of range and less than 750 ACV.
- 15. Square wave input specified for 10 to 300 kHz.

Specifications 34465A

- 34461A accuracy specifications: ± (% of reading + % of range) ¹.
- DC voltage and resistance. Automatic calibration (ACAL) capable.
- These specifications are compliant to ISO/IEC 17025 for K = 2

					Non ACAL ⁶	With ACAL ⁷			
Range ²	24 hours ³	90 days	1 year	2 years	Temperature	Temperature			
ixaliye	T _{ACAL} ± 1 °C	T _{ACAL} ± 2 °C	T _{ACAL} ± 2 °C	T _{ACAL} ± 2 °C	coefficient/°C	coefficient/°C			
	DC voltage								
100 mV	0.0030 + 0.0030	0.0040 + 0.0035	0.0050 + 0.0035	0.0065 + 0.0035	0.0005 + 0.0005	0.0002 + 0.0005			
1 V			0.0035 + 0.0003						
10 V			0.0030 + 0.0004						
100 V			0.0040 + 0.0006						
1000 V ⁹			0.0040 + 0.0006						
	0.0020	0.0000 1 0.0000	Resistance 8	0.0000	0.0000	0.0002 1 0.0001			
100 Ω	0.0030 + 0.0030	0.0050 ± 0.0040	0.0060 + 0.0040	0.0070 ± 0.0040	0.0006 + 0.0005	0.0002 ± 0.0005			
1 ΚΩ			0.0040 + 0.0005						
10 ΚΩ			0.0040 + 0.0005						
100 ΚΩ			0.0040 + 0.0005						
1 ΜΩ			0.0070 + 0.0005						
10 ΜΩ	0.010 + 0.001	0.020 + 0.001	0.025 + 0.001	0.030 + 0.001		0.0030 + 0.0004			
100 MΩ	0.100 + 0.001	0.200 + 0.001	0.300 + 0.001	0.400 + 0.001	0.1000 + 0.0001	0.0100 + 0.0001			
1000 MΩ	2.000 + 0.001	2.000 + 0.001	3.000 + 0.001	4.000 + 0.001	1.0000 + 0.0001	0.1000 + 0.0001			
	24 hours ³	00 days	1 2200	2	Non ACAL ⁶	With ACAL ⁷			
Range ²		90 days	1 year	2 years	Temperature	Temperature			
	T _{ACAL} ±1°C	T _{ACAL} ± 2 °C	T _{ACAL} ± 2 °C	T _{ACAL} ± 2 °C	coefficient/°C	coefficient/°C			
			DC current						
1 μA (typ)		0.007 + 0.005	0.030 + 0.005	0.050 + 0.005	0.060 + 0.005	0.0020 + 0.0010			
10 μA (typ)		0.007 + 0.002	0.030 + 0.002	0.050 + 0.002	0.060 + 0.002	0.0015 + 0.0006			
100 μA (typ)	0.007 + 0.001	0.030 + 0.001	0.050 + 0.001	0.060 + 0.001	0.0015 + 0.0004			
1 mA		0.007 + 0.003	0.030 + 0.005 $0.050 + 0.005$ 0.06		0.060 + 0.005	0.0015 + 0.0005			
10 mA		0.007 + 0.020	0.030 + 0.020	0.050 + 0.020	0.060 + 0.020	0.0020 + 0.0020			
100 mA		0.010 + 0.004	0.030 + 0.005	0.050 + 0.005	0.060 + 0.005	0.0020 + 0.0005			
1 A		0.050 + 0.006	0.070 + 0.010	0.080 + 0.010	0.100 + 0.010	0.0050 + 0.0010			
3 A		0.180 + 0.020	0.200 + 0.020	0.200 + 0.020	0.230 + 0.020	0.0050 + 0.0020			
10 A ⁴		0.050 + 0.010	0.120 + 0.010	0.120 + 0.010	0.150 + 0.010	0.0050 + 0.0010			
			Continuity						
1 ΚΩ		0.002 + 0.010	0.008 + 0.020	0.010 + 0.020	0.012 + 0.020	0.0010 + 0.0020			
			Diode test 10						
5 V		0.002 + 0.010	0.008 + 0.010	0.010 + 0.010	0.012 + 0.020	0.0010 + 0.0010			
			DC:DC ratio (typ						
		(normalized inpu	it accuracy) + (nor	malized reference	accuracy)				
			Temperature						
PT100 (DIN	/ IEC 751) ¹³	Probe	accuracy + 0.05 °	C					
5 kΩ thermi	stor	Probe	accuracy + 0.1 °C						
K, J, T, E, N	I thermocouples	Probe	accuracy + refere	nce junction accur	acy + 0.3 °C				
R thermoco	uples 14 (250 to 17	760 °C) Probe	accuracy + refere	nce junction accur	acy + 0.5 °C				

						Temperature		
T _{CAL} ± 1 °C	T _{CA}	⊥±5°C	T _{CAL} ± 5	o °C	T _{CAL} ± 5 °C	coefficient/°C ⁵		
· · · · · · · · · · · · · · · · · · ·								
0.50 + 0.02	0.50) + 0.02	0.50 + 0	.02	0.50 + 0.02	0.010 + 0.003		
0.10 + 0.02	0.10) + 0.02	0.10 + 0	.02	0.11 + 0.02	0.008 + 0.003		
0.02 + 0.02	0.04	1 + 0.02	0.05 + 0	.02	0.06 + 0.02	0.007 + 0.003		
0.05 + 0.03	0.06	6 + 0.03	0.07 + 0	.03	0.08+ 0.03	0.010 + 0.005		
0.15 + 0.05	0.15	5 + 0.05	0.15 + 0	.05	0.15 + 0.05	0.060 + 0.008		
1.00 + 0.1	1.00) + 0.1	1.00 + 0	.1	1.00 + 0.1	0.200 + 0.020		
		True RMS AC	current 16, 17					
	100 μΑ	, 1 mA, 10 mA,	100 mA, 1 A	ranges				
0.07 + 0.04	0.09 +	0.04	0.10 + 0.04	4	0.10 + 0.04	0.015 + 0.006		
0.10 + 0.04	0.10 +	0.04	0.10 + 0.04	4	0.10 + 0.04	0.030 + 0.006		
		3 A ra	ınge					
0.23 + 0.04	0.23 +		•	4	0.23 + 0.04	0.015 + 0.006		
						0.030 + 0.006		
3.0								
0.10 ± 0.04	0.15		•	1	0.15 ± 0.04	0.015 + 0.006		
						0.030 + 0.006		
J. 15 + 0.04	0.15 +			+	0.15 + 0.04	0.030 + 0.000		
0.50	0.50			50	0.50 0.50	0.05		
						0.05 + 0.05		
						0.05 + 0.01		
						0.05 + 0.01		
						0.05 + 0.01		
						0.05 + 0.01		
J.40 + 0.10	0.40				0.40 + 0.10	0.05 + 0.01		
		•	-					
•	100 mV,	1 V, 10 V, 100 \	/, and 750 V	ranges 20				
0.070	0.07	70			1	0.0002		
						0.0002		
		0.006 0.007				0.0002		
						0.0002		
0.001	0.00)4	0.006		0.008	0.0002		
А	dditiona	I frequency err	rors ± (% of	reading) 18				
1 second (0.1	ppm)	0.1 second	d (1 ppm)	0.0	1 second	0.001 second		
					10 ppm)	(100 ppm)		
)		0.100		0.160		0.160		
)		0.030		0.160		0.160		
)		0.020		0.200		0.200		
)		0.004		0.030		0.240		
)		0.000		0.000		0.003		
D	C and A	C current burd	en voltage a	t full scale				
DC current range				den voltag	е			
1 μA < 0.0011 V								
·								
< 0.011 V								
< 0.011 V								
< 0.11 V								
	0.10 + 0.02 0.02 + 0.02 0.05 + 0.03 0.15 + 0.05 1.00 + 0.1 0.07 + 0.04 0.10 + 0.04 0.23 + 0.04 0.23 + 0.04 0.23 + 0.04 0.15 + 0.04 0.40 + 0.10 0.40 + 0.10 0.003 0.003 0.002 0.001	100 mV, 0.50 + 0.02	100 mV, 1 V, 10 V, 100	100 mV, 1 V, 10 V, 100 V, and 750 V 0.50 + 0.02	100 mV, 1 V, 10 V, 100 V, and 750 V ranges 0.50 + 0.02 0.50 + 0.02 0.10 + 0.02 0.02 + 0.02 0.04 + 0.02 0.05 + 0.03 0.05 + 0.03 0.15 + 0.05 0.15 + 0.05 0.15 + 0.05 0.15 + 0.05 0.15 + 0.05 0.15 + 0.05 0.15 + 0.05 0.15 + 0.05 0.15 + 0.05 0.15 + 0.05 0.15 + 0.05 0.15 + 0.05 0.15 + 0.05 0.15 + 0.06 0.15 + 0.07 0.07 + 0.04 0.10 + 0.14 0.10 + 0.14 0.10 + 0.04 0.10 + 0.04 0.10 + 0.04 0.10 + 0.04 0.10 + 0.04 0.15 + 0.04 0.15 + 0.04 0.15 + 0.04 0.15 + 0.04 0.15 + 0.04 0.16 + 0.04 0.17 + 0.04 0.18 + 0.04 0.19 + 0.04 0.19 + 0.04 0.19 + 0.04 0.10 + 0.04 0.15 + 0.04 0.15 + 0.04 0.15 + 0.04 0.15 + 0.04 0.15 + 0.04 0.16 + 0.04 0.17 + 0.04 0.18 + 0.04 0.19 + 0.04 0.000 0.000 + 0.000	T _{CAL} ± 1 °C T _{CAL} ± 5 °C T _{CA} ± 7 °C T _{CA}		

1 A	< 0.7 V/0.05 V ²¹
3 A	< 2.0 V/0.15 V ²¹
10 A	< 0.5 V

Digitizing 22

Typical performance for these conditions: Sample rate: 50 kHz (Aperture = 20 µS); Sine wave input: Vpeak = Full scale of range; Input frequency: 1 kHz/10 kHz

Function: Range	Spur-free range SFDR	THD + noise SNDR	BW (—3 db)
DCV: 0.1, 1 V	79/60	75/57	15 kHz
DCV: 10 V	86/59	82/58	15 kHz
DCV: 100, 1000 V	64/42	60/42	15 kHz
DCI: 0.1, 1 mA	78/62	75/60	10 kHz
DCI: 10, 100 mA	78/62	67/60	10 kHz
DCI: 1 to 10 A	65/49	63/48	10 kHz

- Specifications are for 60-minute warm-up, integration setting of 10 or 100 NPLC, auto-zero on, AC slow filter. ACAL run within the last 2 days.
- 20% over range on all ranges, except 1000 DCV, 750 ACV, 10 DCA, 3 DCA, 10 ACA, 3 ACA, and diode test have 0%.
- Relative to calibration standards.
- The 10 A range is only available on a separate front panel connector. Add 2 mA per amp for inputs greater than 5 Arms.
- Add this for each °C outside TCAL ± 5 °C
- Add this for each °C outside the last TCAL \pm 2 °C. Add this for each °C outside TCAL \pm 2 °C.
- Specifications are for 4-wire ohms function or 2-wire ohms using math null for offset. Without math null, add 0.2Ω additional error in 2-wire ohms function. The 100 M and 1 G ohm ranges are 2-wire only. See the manual for low power ohms specification and measurement currents
- For each additional volt over ±500 V add 0.02 mV of error.
- 10. Specifications are for the voltage measured at the input terminals. The 1 mA test current is typical. Variation in the current source will create some variation in the voltage drop across a diode junction.
- See user manual for details.
- Actual measurement range and probe errors will be limited by the selected probe. Probe accuracy adder includes all measurement and ITS-90 temperature conversion errors. PT100 Ro settable to 100 Ω ± 5 Ω to remove the initial probe error.
- The internal reference junction uses the U1180A or equivalent adapter. This has a typical performance of ± 1.0 °C. This internal reference junction can be adjusted for better accuracy. An external reference junction can also be used
- Specifications are for sinewave input > 0.3% of range and > 1 mVrms. 750 ACV range limited to 8 x 107 Volt-Hz.For each additional volt over 300 Vrms add 1 mVrms of error.
- Low-frequency performance: three filter settings are available: 3 Hz, 20 Hz, 200 Hz. Frequencies greater than these filter settings are specified with no additional errors.
- Specifications are for sinewave input > 1% of range and > 10 µArms.
- Specifications are for sine wave input unless stated otherwise.
- Square wave input specified for 10 Hz- 300 kHz for 1 second aperature. For shorter aperatures the minimun frequency
- requires > 2 cycles.
 Input > 100 mV. For 10 mV to 100 mV inputs, multiply % of reading error x10. Amplitude 10 120% of range except 14 100% for the 750 ACV range. Specifications are for 1-second gate time (7-digits).
- Specifications are for using Math Null zeroing. High dissapation factor capacitors may show different results than a single frequency measurement. Film capacitors usually have lower dissapation factors than other dielectrics.
- The second burden voltage can be obtained by using the 10 A input range.
- Sample rate (actual): 50.118 kHz (Aperture = 19.953 µs).

Specifications 34470A

- 34470A accuracy specifications: ± (% of reading + % of range) ¹.
- DC voltage and resistance. Automatic calibration (ACAL) capable.
- These specifications are compliant to ISO/IEC 17025 for K = 2

S

S						
Range ²	24 hours ³ T _{ACAL} ±1°C	90 days T _{ACAL} ±5°C	1 year T _{ACAL} ±5°C	2 years T _{ACAL} ±5°C	Non ACAL ⁶ Temperature coefficient/°C	With ACAL ⁷ Temperature coefficient/°C
			DC voltage			
100 mV	0.0030 + 0.0030	0.0040 + 0.0035		0.0045 + 0.0035	0.0005 + 0.0005	0.0001 + 0.0005
1 V	0.0010 + 0.0004			0.0025 + 0.0004		0.0001 + 0.0001
10 V	0.0008 + 0.0002			0.0020 + 0.0002		0.0001 + 0.0001
100 V	0.0020 + 0.0006			0.0040 + 0.0006		0.0001 + 0.0001
1000 V ⁹	0.0020 + 0.0006	0.0032 + 0.0006	0.0038 + 0.0006	0.0040 + 0.0006	0.0005 + 0.0001	0.0001 + 0.0001
Resistance 8						
100 Ω	0.0030 + 0.0030	0.0050 + 0.0040	0.0060 + 0.0040	0.0070 + 0.0040	0.0006 + 0.0005	0.0002 + 0.0005
1 ΚΩ	0.0020 + 0.0005	0.0030 + 0.0005	0.0040 + 0.0005	0.0050 + 0.0005	0.0006 + 0.0001	0.0002 + 0.0001
10 ΚΩ	0.0020 + 0.0005	0.0030 + 0.0005	0.0040 + 0.0005	0.0050 + 0.0005	0.0006 + 0.0001	0.0002 + 0.0001
100 ΚΩ	0.0020 + 0.0005	0.0030 + 0.0005	0.0040 + 0.0005	0.0050 + 0.0005	0.0006 + 0.0001	0.0002 + 0.0001
1 ΜΩ	0.0020 + 0.0005	0.0060 + 0.0005	0.0070 + 0.0005	0.0080 + 0.0005	0.0010 + 0.0002	0.0002 + 0.0002
10 ΜΩ	0.010 + 0.001	0.020 + 0.001	0.025 + 0.001	0.030 + 0.001	0.0030 + 0.0004	0.0030 + 0.0004
100 MΩ	0.100 + 0.001	0.200 + 0.001	0.300 + 0.001	0.400 + 0.001	0.1000 + 0.0001	0.0100 + 0.0001
1000 MΩ	2.000 + 0.001	2.000 + 0.001	3.000 + 0.001	4.000 + 0.001	1.0000 + 0.0001	0.1000 + 0.0001
	2	24 hours ³	90 days	1 year	2 years	Temperature
R	Range ²	T _{CAL} ± 1 °C	T _{CAI} ± 5 °C	T _{CAL} ± 5 ℃	T _{CAL} ± 5 °C	coefficient/°C 5
		, <u> </u>	DC current	J. 1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1 μA (typ)		0.007 + 0.005	0.030 + 0.005	0.050 + 0.005	0.060 + 0.005	0.0020 + 0.0010
10 μA (typ)		0.007 + 0.002	0.030 + 0.002	0.050 + 0.002	0.060 + 0.002	0.0015 + 0.0006
100 μA (typ)		0.007 + 0.001	0.030 + 0.001	0.050 + 0.001	0.060 + 0.001	0.0015 + 0.0004
1 mA		0.007 + 0.003	0.030 + 0.005	0.050 + 0.005	0.060 + 0.005	0.0015 + 0.0005
10 mA		0.007 + 0.020	0.030 + 0.020	0.050 + 0.020	0.060 + 0.020	0.0020 + 0.0020
100 mA		0.010 + 0.004	0.030 + 0.005	0.050 + 0.005	0.060 + 0.005	0.0020 + 0.0005
1 A		0.050 + 0.006	0.070 + 0.010	0.080 + 0.010	0.100 + 0.010	0.0050 + 0.0010
3 A		0.180 + 0.020	0.200 + 0.020	0.200 + 0.020	0.230 + 0.020	0.0050 + 0.0020
10 A ⁴		0.050 + 0.010	0.120 + 0.010	0.120 + 0.010	0.150 + 0.010	0.0050 + 0.0010
			Continuity			
1 ΚΩ		0.002 + 0.010	0.008 + 0.020	0.010 + 0.020	0.012 + 0.020	0.0010 + 0.0020
			Diode test 10			
5 V		0.002 + 0.010	0.008 + 0.010	0.010 + 0.010	0.012 + 0.020	0.0010 + 0.0010
		DC:DC ratio (type		0.010 1 0.010	0.012 1 0.020	0.0010
			,	malizad rafaranaa	accuracy)	
		(normalized inpu		malized reference	accuracy)	
DT400 (DIN)	EO 754) 12	Б	Temperature			
PT100 (DIN/ I		Probe accuracy				
5 kΩ thermisto		Probe accuracy -			_	
K, J, T, E, N tl		Probe accuracy -	reference junction	n accuracy + 0.3	°C	
R thermocoup		Probe accuracy -	reference iunctio	n accuracy + 0.5	°C	
(250 to 1760°	C)					

True RMS AC voltage ^{14, 15}	24 hours ³	90 days		rear ear	2 years	Temperature	
	T _{CAL} ±1°C	T _{CAL} ± 5 °C	T _{CAL} :	± 5 °C	T _{CAL} ± 5 °C	coefficient/°C	
	100 m\	/, 1 V, 10 V, 100 V, a	and 750 V r	anges			
3 Hz to 5 Hz	0.50 + 0.02	0.50 + 0.02	0.50 + 0	0.02	0.50 + 0.02	0.010 + 0.003	
5 Hz to 10 Hz	0.10 + 0.02	0.10 + 0.02	0.10 + 0	0.02	0.11 + 0.02	0.008 + 0.003	
10 Hz to 20 kHz	0.02 + 0.02	0.04 + 0.02	0.05 + 0	0.02	0.06 + 0.02	0.007 + 0.003	
20 kHz to 50 kHz	0.05 + 0.03	0.06 + 0.03	0.07 + 0	0.03	0.08+ 0.03	0.010 + 0.005	
50 kHz to 100 kHz	0.15 + 0.05	0.15 + 0.05	0.15 + 0	0.05	0.15 + 0.05	0.060 + 0.008	
100 kHz to 300 kHz	1.00 + 0.1	1.00 + 0.1	1.00 + 0).1	1.00 + 0.1	0.200 + 0.020	
		True RMS AC cur	rent ^{16, 17}				
	100 μ/	A, 1 mA, 10 mA, 100	mA, 1 A r	anges			
3 Hz to 5 kHz	0.07 + 0.04	0.09 + 0.04	0.10 + 0	0.04	0.10 + 0.04	0.015 + 0.006	
5 to 10 kHz (typ)	0.10 + 0.04	0.10 + 0.04	0.10 + 0	0.04	0.10 + 0.04	0.030 + 0.006	
		3 A range					
3 Hz to 5 kHz	0.23 + 0.04	0.23 + 0.04	0.23 + 0	0.04	0.23 + 0.04	0.015 + 0.006	
5 to 10 kHz (typ)		0.23 + 0.04	0.23 + 0	0.04	0.23 + 0.04	0.030 + 0.006	
(717		10 A range					
3 Hz to 5 kHz	0.10 + 0.04	0.15 + 0.04	0.15 + 0	0.04	0.15 + 0.04	0.015 + 0.006	
5 to 10 kHz (typ)		0.15 + 0.04	0.15 + 0		0.15 + 0.04	0.030 + 0.006	
(1) (1)	01.0 1 010 1	Capacitance			0.10 1 0.01	0.000 1 0.000	
1.0000 nF	0.50 + 0.50 $0.50 + 0.50$ $0.50 + 0.50$) 50	0.50 + 0.50	0.05 + 0.05		
10.000 nF		0.40 + 0.10	0.40 + 0		0.40 + 0.10	0.05 + 0.01	
100.00 nF		0.40 + 0.10	0.40 + 0		0.40 + 0.10	0.05 + 0.01	
1.0000 µF		0.40 + 0.10	0.40 + 0		0.40 + 0.10	0.05 + 0.01	
10.000 μF		0.40 + 0.10	0.40 + 0		0.40 + 0.10	0.05 + 0.01	
100.00 μF		0.40 + 0.10	0.40 + 0	0.10	0.40 + 0.10	0.05 + 0.01	
·		Frequency 1	8, 20				
	100 mV.	1 V, 10 V, 100 V, ar		inges ²⁰			
3 Hz to 10 Hz		0.070	0.070	900	0.070	0.0002	
10 Hz to 100 Hz		0.030	0.030		0.030	0.0002	
100 Hz to 1 kHz		0.006	0.007		0.010	0.0002	
1 kHz to 300 kHz		0.005	0.007		0.009	0.0002	
Square wave ¹⁸		0.004	0.006		0.008	0.0002	
	Addition	al frequency errors	± (% of re	ading) ¹⁸			
	1 second	0.1 seco			1 second	0.001 second	
Aperture (resolution/range)	(0.1 ppm)	(1 ppn			0 ppm)	(100 ppm)	
3 Hz to 40 Hz	0	0.100	,	0.160	о рр,	0.160	
40 Hz to 100 Hz	0	0.030		0.160		0.160	
100 Hz to 1 kHz	0	0.020		0.200		0.200	
1 kHz to 300 kHz	0	0.004		0.030		0.240	
Square wave ¹⁸	0	0.000		0.000		0.003	
DC and AC current burden voltage at full scale							
DC current range			_	voltage			
1 μA	< 0.0011 V						
10 μΑ	< 0.011 V						
100 μΑ	< 0.11 V						
1 mA	< 0.11 V						
10 mA	< 0.027 V						
	1						

100 mA	< 0.27 V	
1 A	< 0.7 V/0.05 V ²¹	
3 A	< 2.0 V/0.15 V ²¹	
10 A	< 0.5 V	

Digitizing ²²

Typical performance for these conditions: Sample rate: 50 kHz (Aperture = $20 \mu S$); Sine wave input: Vpeak = Full scale of range; Input frequency: 1 kHz/10 kHz

Function: Range	Spur-free range SFDR	THD + noise SNDR	BW (—3 db)
DCV: 0.1, 1 V	79/60	75/57	15 kHz
DCV: 10 V	86/59	82/58	15 kHz
DCV: 100, 1000 V	64/42	60/42	15 kHz
DCI: 0.1, 1 mA	78/62	75/60	10 kHz
DCI: 10, 100 mA	78/62	67/60	10 kHz
DCI: 1-10 A	65/49	63/48	10 kHz

- 1. Specifications are for 60-minute warm-up, integration setting of 10 or 100 NPLC, auto-zero on, AC slow filter. ACAL run within the last 2 days.
- 2. 20% over range on all ranges, except 1000 DCV, 750 ACV, 10 DCA, 3 DCA, 10 ACA, 3 ACA, and diode test have 0%.
- 3. Relative to calibration standards.
- 4. The 10 A range is only available on a separate front panel connector. Add 2 mA per amp for inputs greater than 5 Arms.
- 5. Add this for each °C outside TCAL ±5°C
- 6. Add this for each °C outside the last ACAL ±2°C.
- 7. Add this for each °C outside ACAL ±2°C.
- 8. Specifications are for 4-wire ohms function or 2-wire ohms using math null for offset. Without math null, add 0.2Ω additional error in 2-wire ohms function. The 100 M and 1 G ohm ranges are 2-wire only. See the manual for low power ohms specification and measurement currents.
- 9. For each additional volt over ±500 V add 0.02 mV of error.
- 10. Specifications are for the voltage measured at the input terminals. The 1 mA test current is typical. Variation in the current source will create some variation in the voltage drop across a diode junction.
- 11. See user manual for details.
- 12. Actual measurement range and probe errors will be limited by the selected probe. Probe accuracy adder includes all measurement and ITS-90 temperature conversion errors. PT100 Ro settable to 100Ω ±5Ω to remove the initial probe error.
- 13. The internal reference junction uses the U1180A or equivalent adapter. This has a typical performance of ±1.0°C. This internal reference junction can be adjusted for better accuracy. An external reference junction can also be used.
- 14. Specifications are for sinewave input > 0.3% of range and > 1 mVrms. 750 ACV range limited to 8 x 107 Volt-Hz. For each additional volt over 300 Vrms add 1 mVrms of error.
- 15. Low-frequency performance: three filter settings are available: 3 Hz, 20 Hz, 200 Hz. Frequencies greater than these filter settings are specified with no additional errors.
- 16. Specifications are for sinewave input > 1% of range and > 10μ Arms.
- 17. Specifications are for sine wave input unless stated otherwise.
- 18. Square wave input specified for 10 Hz to 300 kHz for 1 second aperature. For shorter aperatures the minimun frequency requires > 2 cycles.
- Input > 100 mV. For 10 mV to 100 mV inputs, multiply % of reading error x10. Amplitude 10 to 120% of range except 14 to 100% for the 750 ACV range. Specifications are for 1-second gate time (7-digits).
- 20. Specifications are for using Math Null zeroing. High dissapation factor capacitors may show different results than a single frequency measurement. Film capacitors usually have lower dissapation factors than other dielectrics.
- 21. The second burden voltage can be obtained by using the 10 A input range
- 22. Sample rate (actual): 50.118 kHz (Aperture = 19.953 μs).

Measurement Characteristics (for all models except where noted)

BC voltage Keysight patented continuously integrating multi-slope IV A/D converter A/D Linearity 34460/61A 0.0002% of reading + 0.0001% of range 34470A 0.00005% of reading + 0.0001% of range Input resistance Selectable 10 MΩ or >10 GΩ 10 MΩ ±1% Input bias current (A) DA at 25°C Input terminals Copper alloy Input protection True RMS AC voltage Measurement type Measurement method Digital sampling with anti-alias filter Maximum input 400 DCV, 1,100 Vpeak Input protection 750 Vrms all ranges DC and True RMS AC current AC measurement type AC measurement method Dijetal sampling with anti-alias filter Externally accessible 3.15 A, 500 V fuse (Replacement part number 2110-1547 3.15 A external fuse) Input protection 3 A Internal 11 A, 1,000 V fuse (Replacement part				
34460/61A 0.0002% of reading + 0.0001% of range 34465A 0.0001% of reading + 0.0001% of range 34470A 0.0005% of range or maximum to part of range 34470A 0.0005% of range or maximum to part of part of range 34470A 0.0005% of range or maximum to part of part				
34465A 34470A 0.00005% of reading + 0.0001% of range 34470A 0.00005% of reading + 0.0001% of range Input resistance Selectable 10 MΩ or >10 GΩ 10 MΩ ±1% Input terminals Input terminals Input protection 1,000 V on all ranges True RMS AC voltage Measurement type AC—coupled True RMS. Measures the AC component of the input. Measurement method Digital sampling with anti-alias filter Maximum input Input protection 1,000 V on all ranges True RMS AC voltage Measurement method Digital sampling with anti-alias filter Maximum input Input impedance Input protection 750 Vrms all ranges DC and True RMS AC current Directly coupled to the fuse and shunt. AC True RMS measurement (measures the AC component only). AC measurement method Digital sampling with anti-alias filter Externally accessible 3.15 A, 500 V fuse (Replacement part number 2110-1547 3.15 A external fuse) Input protection 10 A (34461/65/70A only) Internal 11 A, 1,000 V fuse (Replacement part number 2110-1402 11 A external fuse) Internal 11 A, 1,000 V fuse (Replacement part number 2110-1402 11 A external fuse) Internal 11 A, 1000 V fuse (Replacement part number 2110-1402 11 A external fuse) AC crest factor and peak input Crest factor 10.1 maximum crest factor, (3:1 at full-scale). Measurement bandwidth limited to 300 kHz for signal plus harmonics. Peak input				
Selectable 10 MΩ or >10 GΩ				
Input bias current Copper alloy				
Input terminals Input protection Input Input protection Input Inpu				
True RMS AC voltage				
True RMS AC voltage Measurement type AC—coupled True RMS. Measures the AC component of the input. Measurement method Digital sampling with anti-alias filter Maximum input 400 DCV, 1,100 Vpeak Input impedance 1 MΩ ±1%, in parallel with < 100 pF				
Measurement type AC—coupled True RMS. Measures the AC component of the input. Measurement method Digital sampling with anti-alias filter Maximum input 400 DCV, 1,100 Vpeak Input impedance 1 MΩ ±1%, in parallel with < 100 pF				
Measurement method Digital sampling with anti-alias filter Maximum input 400 DCV, 1,100 Vpeak Input impedance 1 MΩ ±1%, in parallel with < 100 pF				
Measurement method Digital sampling with anti-alias filter Maximum input 400 DCV, 1,100 Vpeak Input impedance 1 MΩ ±1%, in parallel with < 100 pF				
Maximum input 400 DCV, 1,100 Vpeak Input impedance 1 MΩ ±1%, in parallel with < 100 pF				
Input impedance 1 MΩ ±1%, in parallel with < 100 pF				
Input protection To Vrms all ranges DC and True RMS AC current Directly coupled to the fuse and shunt. AC True RMS measurement (measures the AC component only). AC measurement method Digital sampling with anti-alias filter Externally accessible 3.15 A, 500 V fuse (Replacement part number 2110-1547 3.15 A external fuse) Internal 11 A, 1,000 V fuse (Replacement part number 2110-1402 11 A external fuse) Internal 11 A, 1000 V fuse (Replacement part number 2110-1402 11 A external fuse) AC crest factor and peak input Crest factor Directly coupled to the fuse and shunt. AC True RMS measurement fuse and shunt. AC True RMS measurement part number 2110-1547 3.15 A external fuse) Input protection 3 A Internal 11 A, 1,000 V fuse (Replacement part number 2110-1402 11 A external fuse) AC crest factor and peak input 10:1 maximum crest factor, (3:1 at full-scale). Measurement bandwidth limited to 300 kHz for signal plus harmonics. Peak input Will select higher range if peak input overland is detected during autition and the first part of peak input overland is detected during autition and the first part overland is detected during autition and the first part overland is detected during autition.				
DC and True RMS AC current Directly coupled to the fuse and shunt. AC True RMS measurement (measures the AC component only). AC measurement method Digital sampling with anti-alias filter Externally accessible 3.15 A, 500 V fuse (Replacement part number 2110-1547 3.15 A external fuse) Internal 11 A, 1,000 V fuse (Replacement part number 2110-1402 11 A external fuse) Internal 11 A, 1000 V fuse (Replacement part number 2110-1402 11 A external fuse) Internal 11 A, 1000 V fuse (Replacement part number 2110-1402 11 A external fuse) AC crest factor and peak input Crest factor 10:1 maximum crest factor, (3:1 at full-scale). Measurement bandwidth limited to 300 kHz for signal plus harmonics. Peak input Will select higher range if peak input overload is detected during auti-				
AC measurement type (measures the AC component only). Digital sampling with anti-alias filter Externally accessible 3.15 A, 500 V fuse (Replacement part number 2110-1547 3.15 A external fuse) Input protection 3 A Input protection 10 A (34461/65/70A only) Internal 11 A, 1,000 V fuse (Replacement part number 2110-1402 11 A external fuse) Internal 11 A, 1000 V fuse (Replacement part number 2110-1402 11 A external fuse) AC crest factor and peak input 10:1 maximum crest factor, (3:1 at full-scale). Measurement bandwidth limited to 300 kHz for signal plus harmonics. Peak input Will select higher range if peak input overload is detected during auti-				
AC measurement method Digital sampling with anti-alias filter Externally accessible 3.15 A, 500 V fuse (Replacement part number 2110-1547 3.15 A external fuse) Internal 11 A, 1,000 V fuse (Replacement part number 2110-1402 11 A external fuse) Internal 11 A, 1000 V fuse (Replacement part number 2110-1402 11 A external fuse) Internal 11 A, 1000 V fuse (Replacement part number 2110-1402 11 A external fuse) AC crest factor and peak input 10:1 maximum crest factor, (3:1 at full-scale). Measurement bandwidth limited to 300 kHz for signal plus harmonics. Peak input Will select higher range if peak input overload is detected during auti-				
Input protection 3 A Externally accessible 3.15 A, 500 V fuse (Replacement part number 2110-1547 3.15 A external fuse) Internal 11 A, 1,000 V fuse (Replacement part number 2110-1402 11 A external fuse) Internal 11 A, 1000 V fuse (Replacement part number 2110-1402 11 A external fuse) Internal 11 A, 1000 V fuse (Replacement part number 2110-1402 11 A external fuse) AC crest factor and peak input 10:1 maximum crest factor, (3:1 at full-scale). Measurement bandwidth limited to 300 kHz for signal plus harmonics. Peak input Will select higher range if peak input overload is detected during autonomical.				
Input protection 3 A (Replacement part number 2110-1547 3.15 A external fuse) Internal 11 A, 1,000 V fuse (Replacement part number 2110-1402 11 A external fuse) Input protection 10 A (34461/65/70A only) Internal 11 A, 1000 V fuse (Replacement part number 2110-1402 11 A external fuse) AC crest factor and peak input 10:1 maximum crest factor, (3:1 at full-scale). Measurement bandwidth limited to 300 kHz for signal plus harmonics. Peak input Will select higher range if peak input overload is detected during autonomical points.				
Internal 11 A, 1,000 V fuse (Replacement part number 2110-1402 11 A external fuse) Input protection 10 A (34461/65/70A only) Internal 11 A, 1000 V fuse (Replacement part number 2110-1402 11 A external fuse) AC crest factor and peak input 10:1 maximum crest factor, (3:1 at full-scale). Measurement bandwidth limited to 300 kHz for signal plus harmonics. Peak input Will select higher range if peak input overload is detected during autonomic autonomic selected during autonomic selected selected during autonomic selected selected during autonomic selected selected during autonomic selected				
Internal 11 A, 1,000 V fuse (Replacement part number 2110-1402 11 A external fuse) Input protection 10 A (34461/65/70A only) Internal 11 A, 1000 V fuse (Replacement part number 2110-1402 11 A external fuse) AC crest factor and peak input 10:1 maximum crest factor, (3:1 at full-scale). Measurement bandwidth limited to 300 kHz for signal plus harmonics. Peak input Will select higher range if peak input overload is detected during autonomic autonomic signal plus is detected during autonomic signal plus input overload is detected during signal plus input overload signal plus inpu				
Input protection 10 A (34461/65/70A only) Internal 11 A, 1000 V fuse (Replacement part number 2110-1402 11 A external fuse) AC crest factor and peak input 10:1 maximum crest factor, (3:1 at full-scale). Measurement bandwidth limited to 300 kHz for signal plus harmonics. Peak input Will select higher range if peak input overload is detected during autonomics.				
(Replacement part number 2110-1402 11 A external fuse) AC crest factor and peak input 10:1 maximum crest factor, (3:1 at full-scale). Measurement bandwidth limited to 300 kHz for signal plus harmonics. Peak input Will select higher range if peak input overload is detected during autonomics.				
AC crest factor and peak input 10:1 maximum crest factor, (3:1 at full-scale). Measurement bandwidth limited to 300 kHz for signal plus harmonics. Peak input Will select higher range if peak input overload is detected during auto				
Crest factor 10:1 maximum crest factor, (3:1 at full-scale). Measurement bandwidth limited to 300 kHz for signal plus harmonics. Peak input 300% of range or maximum input Will select higher range if peak input overload is detected during auto				
bandwidth limited to 300 kHz for signal plus harmonics. Peak input Will select higher range if peak input overload is detected during auto				
Will select higher range if neak input overload is detected during auto				
Will select higher range if peak input overload is detected during auto				
Overload ranging range. Overload is reported in manual ranging.				
Resistance				
Measurement method Selectable 4-wire or 2-wire ohms. Current source referenced to LO input.				
Maximum lead resistance (4-wire ohms) 10% of range per lead for 100Ω , $1 \text{ k}\Omega$ ranges. $1 \text{ k}\Omega$ per lead on all other ranges.				
Input protection 1,000 V on all ranges				
Continuity/diode test				
Response time 300 samples/s with audible tone				
Continuity threshold Fixed at 10Ω				

	DC ratio		
Measurement method	Input HI-LO/reference (sense) HI-LO		
Input HI-LO	100 mV to 1000 V ranges		
Reference (sense)	HI-Input LO: 100 mV to 10 V ranges (auto ranged)		
Input to reference Temperature (sense)	HI and LO reference (sense) terminals reference to LO input < 12 V		
	Temperature		
PT100 platinum RTD sensor, $\alpha = 0.00385\Omega/\Omega$	/°C; DIN/IEC 751. Measurement conversions limited to –200 to 600 °C.		
5 kΩ thermistor $β$ = 3891; YSI 44007 or equiva	alent. Measurement conversions limited to -80 to 150 °C.		
	Measurement noise rejection		
60 Hz (50 Hz) for 1 kΩ LO lead unbalance (± 5	500 V peak maximum)		
DCV CMRR: 140 dB			
ACV CMRR: 70 dB			
Integration time	Normal mode rejection ¹		
≥ to 1 PLC	60 dB ²		
< 1 PLC	0 dB		
	Frequency and period		
Manager and mathed	Reciprocal-counting technique. Measurement is AC-coupled using AC		
Measurement method	measurement functions.		
Voltage ranges	100 mVrms full scale to 750 Vrms. Auto or manual ranging.		
Gate time	1 ms (34465/70A), 10 ms, 100 ms, or 1 s		
Measurement considerations	All frequency counters are susceptible to error when measuring low-voltage, low-frequency signals. Shielding inputs from external noise pickup is critical for minimizing measurement errors.		
	Autozero OFF operation		
Following instrument warm-up at a stable amb	pient temperature ± 1 °C and < 10 minutes.		
Add 0.0002% of range + 5 µV for DCV or + 5 ı			
Mea	surement settling considerations		
High-power settling.	Applying high-power signals (more than 300 Vrms, 500 VDC, 1 A DC or 1 Arms) can cause self-heating in the signal-conditioning components. These errors are included in the instrument specifications. Internal temperature changes due to self-heating may cause additional error on other functions or ranges. The additional error will generally dissipate within a few minutes.		
DC blocking capacitor	Errors will occur in ACV and Frequency functions when attempting to measure an input following a DC offset voltage change. The input blocking RC time constant must be allowed to fully settle (up to 1 second) before the most accurate measurements are possible.		
External connections	Reading settling times are affected by source impedance, cable dielectric characteristics, and thermal EMF of connections. Keysight recommends the use of PTFE or other high-impedance, low-dielectric absorption wire insulation for these measurements. To maintain low thermal EMF, connectors and wires made of copper are		

recommended.

^{1.} For power-line frequency $\pm 0.1\%$ 2. For power-line frequency $\pm 1\%$, the NMR is 40 dB. For $\pm 3\%$, use 30 dB.

Operating Characteristics (for all models except where noted)

Performance versus measurement speed

For DC voltage, DC current, and resistance1 (34460A and 34461A)

	34460A		34461A		
Integration time	Digits	Readings/s	Digits	Readings/s	Additional noise error
100 PLC/1.67 s (2 s)	61/2	0.6 (0.5)	6½	0.6 (0.5)	0% of range
10 PLC/167 ms (200 ms)	61/2	6 (5)	6½	6 (5)	0% of range
1 PLC/16.7 ms (20 ms)	51/2	60 (50)	5½	60 (50)	0.001% of range ²
0.2 PLC/3 ms (3 ms)	51/2	100	5½	300	0.001% of range ³
0.02 PLC/300 μs (300 μs)	31/2	300	41/2	1000	0.01% of range ³
AC voltage, AC current 4, 5	Digits	ACV	ACI	AC filter	
	61/2	0.4/s	0.6/s	Slow	
34460A, 34461A, 34465A,	61/2	1.6/s	4/s	Medium	
34470A	61/2	40/s	40/s	Fast	
	61/2	50/s ⁶	50/s ⁶	Fast	
Frequency, period	Aperture	Digits	Readings		
244004 24404	1 second	7	1		
34460A, 34461A, 34465A, 34470A	0.1 second	6	10		
0147 OA	0.01 second	5	80		
	1 second	8	1		
34465A, 34470A	0.1 second	7	10		
34403A, 34470A	0.01 second	6	100		
	0.001 second	5	1000		

- Reading speeds for 60 Hz (and 50 Hz) operation, autozero off, fixed range.
- Add 5 nA for the 100 μ A range, add 0.2 μ A for the 10 mA range. Add 20 μ V for DCV and 20 m Ω for resistance. Add 0.2 μ A for DC current + 10x the above range error for the 10 mA range. For 0.2 PLC multiply the above range error by 5x on the 1 A and 10 A ranges, and by 10x for the 10 mA range. Maximum reading rates for 0.01% of AC step additional error. Additional settling delay required when input DC level varies. For external trigger or remote operation using default settling delay (Delay Auto).

- 6. Maximum useful limit with default settling delays defeated.

Noise performance for DC voltage, DC current, and resistance (34465A and 34470A)

Integration time	Digits ¹	Readings/s	RMS noise adder (% of range + fixed base) ²		
	34465/34470		DC volts	Ohms	DC current ³
100 PLC/1.67 s (2 s)	6½ / 7½	0.06 (0.5)	0	0	0
10 PLC/167 ms (200 ms)	6½ / 7½	6 (5)	0	0	0
1 PLC/16.7 ms (20 ms)	6½ / 7½	60/50	0.0001 + 0.5 μV	$0.0001 + 0.5 \text{ m}\Omega$	0.0006 + 0 .01 nA
0.2 PLC/3 ms (3 ms)	6½ / 6½	333	0.0005 + 3 µV	0.0010 + 10 mΩ	0.0050 + 5 nA
0.06 PLC/1 ms (1 ms)	6/6	1,000	$0.0020 + 3 \mu V$	$0.0020 + 10 \text{ m}\Omega$	0.0070 + 10 nA
0.02 PLC/300 μs (300 μs)	6/6	3,333	0.0020 + 3 µV	0.0020 + 10 mΩ	0.0070 + 10 nA
0.006 PLC/100 μs (100 μs)	5/5	10,000	0.0050 + 4 µV	$0.0050 + 10 \text{ m}\Omega$	0.0100 + 15 nA
0.002 PLC/40 μs (40 μs)	5/5	25,000	0.0050 + 4 µV	$0.0050 + 10 \text{ m}\Omega$	0.0100 + 15 nA
0.0001 PLC/20 us (20 μs) ⁴	41/2 / 41/2	50,000	0.0100 + 4 µV	$0.0150 + 10 \text{ m}\Omega$	0.0150 + 30 nA

- For DCV on the 10 V range with zero volts input and auto zero on.
- RMS noise adder for both the 34465 and the 34470. Measured with zero volts input and auto zero on.
- The following DCI ranges have these additional multipliers: The 10 mA by 5x, the 100 mA by 2x, and the 10 A by 1.6x.
- 4. Actual integration time is $19.953 \mu s$.

System Speeds (Nom)

DC voltage, DC current, resistance 1, 2	34460A	34461A	34465A/34470A
Autorange time ³	< 30 ms	< 30 ms	< 5 ms
Maximum internal trigger rate	300/s	1000/s	50,000/s
Maximum external trigger rate	300/s	1000/s	5,000/s
ASCII readings to bus	300/s	1000/s	40,000/s (GPIB 8,000/s)
Single reading transaction rate ⁴	50/s	150/s	250/s
	AC voltage, AC cur	rent ⁵	
Autorange time ³	10/s	10/s	< 5 ms
Maximum internal trigger rate	50/s	50/s	250/s
Maximum external trigger rate	50/s	50/s	250/s
ASCII readings to bus	50/s	50/s	250/s
Single reading transaction rate ⁴	50/s	50/s ⁵	200/s
	Frequency, perio	d ⁶	
Autorange time ³	10/s	10/s	< 5 ms
Maximum internal trigger rate	80/s	80/s	800/s
Maximum external trigger rate	80/s	80/s	800/s
ASCII readings to bus	80/s	80/s	900/s
Single reading transaction rate ⁴	50/s	50/s	200/s

- 1. 0.02 NPLC, delay 0, autozero off, math off, and display off. 2. These rates apply to all I/O interfaces.

- Time to automatically change one range and be ready for new measurement, ≤ 10 V, ≤ 10 MΩ.
 Includes measurement and IO time (assumes connection via SOCKETS. VXI-11 connections may be slower).
 Fast AC filter, delay 0, math off, and display off.
 10 ms aperture, fast AC filter, delay 0, math off, and display off.

34460A DMM rear panel with GPIB option installed.

34461/65/70A DMM rear panel with GPIB option installed.

General Characteristics (for all models except where noted)

	Line power			
Power supply	100/120 (127)/220 (230)/240 ACV ± 10%, CAT II			
Power line frequency	50/60/400 Hz ± 10%			
Power consumption	25 VA			
1 ower consumption				
	Environment			
	Full accuracy for 0 °C to 55 °C			
Operating environment	Full accuracy to 80% RH at 40 °C (non-condensing)			
0	Full accuracy to 40% RH for 41 °C to 55 °C (non-condensing)			
Operating altitude	Up to 3,000 m			
Storage temperature	–40 to 70 °C			
	Mechanical			
Rack dimensions	(W x H x D): 212.8 mm x 88.3 mm x 272.3 mm			
Bench dimensions	(W x H x D): 261.2 mm x 103.8 mm x 303.2 mm			
Weight	34460A: 3.68 kg (8.1 lb)			
vvoigiti	34461/65/70A: 3.76 kg (8.3 lb)			
	Regulatory			
Safety	EN 61010-1:2010 (3rd Edition)			
	ANSI/ISA-61010-1 (82.02.01) Third Edition			
$C \in$	ANSI/UL 61010-1 Third Edition			
C € ISM 1-A	CAN/CSA-C22.2 No. 61010-1 Third Edition			
ISM 1-A	EN 61010-2-030:2010 (1st Edition)			
	ANSI/ISA-61010-2-030 (82.02.03) First Edition			
(2B®	ANSI/UL 61010-2-030 First Edition			
CUS	CAN/CSA-C22.2 No. 61010-2-030 First Edition			
	Refer to Declaration of Conformity for current revisions			
	Measurement Category II to 300 V			
	Other non-MAINS circuits to 1,000 Vpk			
	Pollution Degree 2			
	IEC 61326			
	EN 61326			
5140	CISPR			
EMC	ICES-001			
	AS/NZS 2064.1			
	Refer to Declaration of Conformity for current revisions			
Acoustic noise (nominal)	35 dBA			
	Triggering conditions			
External input	Low–power TTL compatible input programmable edge triggered			
Delay	< 1 μs			
• Jitter	< 1 μs			
	•			
Minimum pulse width	1 µs			
Maximum rate	Up to 1 kHz (34461A), up to 300 Hz (34460A)			
Voltmeter complete output	3.3 V logic output			
 Polarity 	Programmable edge pulse			
Pulse width	Approximately 2 µs			
	I			

Computer interfaces			
LXI (rev 1.4)	10/100Base-T Ethernet (Sockets, VXI-11 protocol, Web user interface) (Optional on 34460A)		
USB	USB 2.0 (USB-TMC488 & MTP protocol)		
GPIB	Optional GPIB IEEE-488		
Language	SCPI-1999, IEEE-488.2, 34401A compatible		

Front-panel USB host port (FAT32)

Supports USB 2.0 high-speed mass storage (MSC) class devices

Capability: Import/export instrument configuration files, save volatile readings and screen captures

-87	retom	Chood	c (nom)
(O)	/Stelli	Speed	s (nom)

Benchmark	GPIB	USB 2.0	VXI-11	Sockets
Function change ¹	50/s	50/s	50/s	50/s
Range change ²	100/s	100/s	100/s	100/s
Bench dimensions	GPIB	USB 2.0	VXI-11	Sockets

Triggering and memory

Samples per trigger	1 to 1,000,000
Trigger delay	0 to 3600 sec (~1 µs step size)
External trigger delay	< 10 µs
External trigger jitter	< 1 µs (DC fixed range)
Volatile reading memory	10,000 (34461A), 1,000 (34460A)

Probe hold

Capture and navigate stable list of readings

Internal flash file system

80 MB total capacity

Save reading memory to non-volatile memory in CSV format

Store and recall user-defined states, power-off state,3 and preference files

Save screen captures in BMP or PNG formats

Math functions

Per function null, min/max/avg/Sdev, dB, dBm, span, count, limit test, histogram

Display

4.3" color TFT WQVGA (480 x 272) with LED backlight

Supports: Basic number, bar meter, trend chart (34461A only), histogram views. User-defined power-on message, display label, and selectable screen colors Integrated, context-sensitive system helps through press-and-hold buttons

Real-time clock/calendar

Set and read, year, month, day, hour, minute, seconds (Note: Seconds not settable). Battery CR-2032 coin-type, replaceable, > 10-year life (typ)

Software available IO Libraries: www.keysight.com/find/IOLibraries BenchVue: www.keysight.com/find/benchvue

- 1. Rate to change from 2-wire resistance to any other function.
- 2. Rate to change from one range to the next higher range, \leq 10 V, \leq 10 M Ω .
- 3. Power-off state only when power-down is initiated via front-panel power switch.

Options, Upgrades and Accessories

Options and upgrades

Option (at purchase)	Upgrades (post purchase)	Applicable models	Description	Upgrade process
GPB	3446GPBU	All	Add GPIB interface, user-installable	Customer installable hardware
SEC	3446SECU	All	Enable NISPOM and file security	Software license
LAN	3446LANU	34460A	Enable LAN interface and external triggering	Software license
ACC	3446ACCU	34460A	Add 34138A accessory kit, includes test leads, USB cable	Accessory kit
MEM	3446MEMU	34465/70A	Enable 2 million readings memory	Software license
Z54	N/A	All	Certificate of calibration: ANSI/NCSL Z540.3-2006	Calibration certificate

Note: High speed digitizing and advanced triggering (DIG) now included with latest firmware update.

Accessories

Accessories included				
244604	Power cord			
34460A	Calibration certificate			
	34138A test lead set with probes, fine tip probes			
	SMT grabbers and mini grabber attachments			
34461A, 34465A, 34470A	Power cord			
	USB cable			
	Calibration certificate			
Accessories available				
11059A	Kelvin probe set			
11060A	Surface-mount device probe			
11062A	Kelvin clip set			
34131A	Transit case			
34133A	Precision electronic test leads			
34134A	DC-coupled current probe			
34138A	Test lead set			
34151A	Three signal wedge probe kit			
34152A	PT100/RTD 4-wire class A sensor kit			
34153A	PT100/RTD 4-wire class sensor elements			
34162A	Accessory pouch			
34171B	Input terminal block			
34172B	Calibration short			
34330A	30-A current shunt			
E2308A	Thermistor temperature probe			
Y1133A	Low-thermal external digital multimeter scanning kit			
34190A	Rackmount Kit			
34191A	2U Dual Flange Kit			
34194A	Dual Lock Link Kit			

Definitions

Specification (spec)

The warranted performance of a calibrated instrument that has been stored for a minimum of 2 hours within the operating temperature range of 0 to 55 °C and after a 60-minute warm up period. All specifications include measurement uncertainty and were created in compliance with ISO-17025 methods. Data published in this document are specifications (spec) only where specifically indicated.

Typical (typ)

The characteristic performance, which 80% or more of manufactured instruments will meet. This data is not warranted, does not include measurement uncertainty, and is valid only at room temperature (approximately 23 °C).

Nominal (nom)

The mean or average characteristic performance, or the value of an attribute that is determined by design such as a connector type, physical dimension, or operating speed. This data is not warranted and is measured at room temperature (approximately 23 °C).

Measured (meas)

An attribute measured during development for purposes of communicating the expected performance. This data is not warranted and is measured at room temperature (approximately 23 °C).

TCAL

The temperature at which the instrument was calibrated.

Learn more at: www.keysight.com

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

