Transistor MOS

 $Laborat\'orio\ de\ Eletr\^onica\ B\'asica\ IV\ -\ Segundo\ Semestre\ de\ 2010$

Professor: José Cândido Silveira Santos Filho

DANIEL LINS MATTOS RA: 059915 RAQUEL MAYUMI KAWAMOTO RA: 086003 TIAGO CHEDRAOUI SILVA RA: 082941

 $1\ de\ outubro\ de\ 2010$

Este experimento visa o estudo do transistor MOSFET (transistor de efeito de campo metal-óxido-semicondutor) ou simplesmente MOS, na qual é um dispositivo de três terminais empregado no projeto de circuitos integrados (CIs), que são circuitos fabricados sobre uma pastilha (chip) simples de silício. Um MOSFET é composto de um canal de material semicondutor (geralmente o silício) de tipo N ou de tipo P e é chamado, respectivamente, de NMOS ou PMOS. Para o presente experimento, serão determinadas, experimentalmente, as curvas características de um transistor MOS e, também, este será empregado como amplificador e como inversor lógico. Assim como nos demais experimentos anteriores, foi utilizado o protoboard para a montagem dos circuitos. E os principais componentes utilizados foram um CI 4007 (três pares CMOS) e um resistor de 100Ω e outro de $10k\Omega$.

Parte Experimental

Curvas Características de um Transistor MOS

Para esta parte inicial do experimento, é feita uma análise das curvas, de corrente versus tensão, geradas pelos dados obtidos pelos dois circuitos – compostos por um resistor de 100Ω e um transistor NMOS – a serem montados. Para o primeiro circuito é traçada a curva I_DxV_{DS} e, para o segundo circuito, a curva I_DxV_{GS} .

Primeiramente, foi feita a montagem do circuito da figura 1 – composto por um resistor de 100Ω e um transistor NMOS. Foi utilizada a fonte de tensão DC, no modo independente, para gerar as tensões V_{DS} e V_{DD} . E utilizando-se dois multímetros, um deles servindo como amperímetro para medir I_D e o outro como voltímetro para medir V_{DS} , foi preenchida a tabela 1 com os dados obtidos pelas medições feitas.

Figura 1: Circuito $I_D x V_{DS}$

Tabela 1: Medidas de $V_{DS}(V)$ e $I_D(mA)$, parametrizadas por V_{GS}

$V_{GS}=1$ V		$V_{GS}=2V$		$V_{GS}=4V$		$V_{GS}=8V$	
$V_{DS}(V)$	$I_D(\mu A)$	$V_{DS}(V)$	$I_D(mA)$	$V_{DS}(V)$	$I_D(mA)$	$V_{DS}(V)$	$I_D(mA)$
0,1	0,00	0,3	0,15	0,6	1,50	1,5	7,00
0,2	0,00	0,6	0,19	1,2	2,50	3,0	10,90
0,3	0,00	0,9	0,19	1,8	2,60	4,5	11,90
0,4	0,00	1,2	0,19	2,4	2,65	6,0	12,00
0,5	0,00	1,5	0,19	3,0	2,70	7,5	12,10
1,0	0,00	2,0	0,19	3,6	2,70	8,0	12,15
2,0	0,00	3,0	0,22	4,0	2,70	9,0	12,15
3,0	0,00	4,0	0,22	5,0	2,73	10,0	12,15
4,0	0,00	5,0	0,22	6,0	2,73		
5,0	0,10	6,0	0,23	7,0	2,74		
6,0	0,10	7,0	0,23	8,0	2,74		
7,0	0,10	8,0	0,23	9,0	2,74		
8,0	0,10	9,0	0,23	10,0	2,74		
9,0	0,10	10,0	0,23				
10,0	0,10						

Em seguida, com os dados da tabela, foi traçado o gráfico, da figura 2, das curvas $v_{DS}(V)xI_D(mA)$ do transistor NMOS, parametrizadas por V_{GS} , e, no próprio gráfico, foram indicadas as regiões de operação – triodo e saturação – do transistor. As características de cada região de operação de um transistor de enriquecimento do tipo n são apresentadas abaixo:

• Operação na região de corte:

Condições:

$$\sqrt{V_{GS}} \le V_t$$

• Operação na região de triodo:

 ${\bf Condiç\~oes:}$

$$\sqrt{V_{GS}} \ge V_t$$

$$\sqrt{V_{GD}} \ge V_t \Leftrightarrow V_{DS} \le V_{GS} - V_t$$

Características i - v:

$$\sqrt{i_D} = k_n \frac{W}{L} \left[(V_{GS} - V_t) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

• Operação na região de saturação:

Condições:

$$\sqrt{V_{GS}} \ge V_t$$

$$\sqrt{V_{GD}} \le V_t \Leftrightarrow V_{DS} \ge V_{GS} - V_t$$

Características i-v:

$$\sqrt{i_D} = k_n \frac{W}{L} \left[(V_{GS} - V_t)^2 \right]$$

Figura 2: Curva característica de $I_D \, x \, V_{DS}$ para o circuito da figura 1

Inicialmente, observa-se que na reta horizontal coincidente com o eixo das abscissas (correspondente a $V_{GS}=V_t$) o transistor está em corte, não havendo um canal induzido e contínuo. As regiões de triodo ($V_{DS} \leq V_{GS}-V_t$) e de saturação ($V_{DS} \geq V_{GS}-V_t$) da figura 2 podem ser definidas segundo o gráfico teórico da figura 3. Para encontrar o limite entre as duas regiões (triodo e saturação), iguala-se $V_{DS}=V_{GS}-V_t$.

A figura 3 mostra um gráfico teórico com as regiões de um transistor MOSFET tipo n.

Figura 3: Características $i_D - v_{DS}$ para um NMOS com o parâmretro $\mu_n C_{ox} \frac{W}{L} = 1,0 mA/V^2$

Analisado o circuito da figura 1, faz-se a montagem do segundo circuito, conforme a figura 4. Como feito no circuito anterior, foi utilizado um multímetro como um amperímetro para medir a corrente I_D e variou-se V_{DD} até encontrar a medida de V_{GS} , medida por outro multímetro usado como voltímetro, estabelecida na tabela 2. As medidas de I_D foram anotadas na tabela 2.

Tabela 2: Medidas de $I_D(mA)$, parametrizadas por V_{GS}

D (// 1
Vds(V)	Id(mA)
1,0	0,0
2,0	0,2
3,0	0,97
4,0	2,2
5,0	3,7
6,0	5,33
7,0	7,45
8,0	9,8
9,0	11,9
10,0	14,0

Figura 4: $I_D x V_{GS}$

Com os dados da tabela 2, foi traçado a curva $I_D(mA)xV_{GS}(V)$.

Figura 5: Curva característica de $I_D(mA)xV_{GS}(V)$ para o circuito da figura ${\bf 4}$

Pela análise do gráfico, pode-se concluir que o transistor encontra-se na região de saturação, ou seja, para o MOSFET operar na região de saturação, um canal tem de ser induzido – $v_{GS} \geq V_t$ (canal induzido) – e estrangulado no final do dreno pelo aumento em v_{DS} até um valor que resulte na queda da tensão porta-dreno abaixo de V_t - $v_{GD} \leq V_t$ (estrangulamento do canal). Essa condição pode ser expressa explicitamente em termos de v_{DS} como: $v_{DS} \ge v_{GS} - V_t$ (canal estrangulado).

Portanto, o MOSFET tipo enriquecimento canal n opera na região de saturação quando v_{GS} for maior que V_t e a tensão de dreno não cair abaixo da tensão na porta por mais de V_t volts.

A figura abaixo mostra o gráfico teórico para um transistor que se encontra no modo de saturação.

Figura 6: Curva característica $i_D - v_{GS}$ para transistor NMOS na saturação ($V_t = 1 \text{ V}, \mu_n C_{ox} \frac{W}{L}$ $= 1,0mA/V^2$

Para determinar os valores dos parâmetros $\mu_n C_{ox} \frac{W}{L}$ e V_t do transistor MOSFET, foi feito um ajuste da reta $V_{GS} x \sqrt{I_D}$ – pelo método dos mínimos quadrados – usando-se os dados da tabela 2 e sabendo-se que, na saturação, $\sqrt{I_D} = \sqrt{\frac{1}{2}\mu_n C_{ox} \frac{W}{L}(V_{GS} - V_t)}$. O resultado pra este ajuste encontra-se no gráfico a seguir.

Figura 7: Curva característica $V_{GS}x\sqrt{I_D}$ para o circuito da figura 4

Sabendo-se que a equação de $\sqrt{I_D}$ é da forma de uma equação de reta y=ax+b , podese ver que o termo $\sqrt{\frac{1}{2}\mu_n C_{ox} \frac{W}{L}}$ na fórmula corresponde ao coeficiente angular da reta e que $-\sqrt{\frac{1}{2}\mu_n C_{ox} \frac{W}{L} V_t}$ corresponde ao coeficiente linear. Portanto, tais coeficientes foram calculados para que seja possível descobrir os parâmetros $\mu_n C_{ox} \frac{W}{L}$ e V_t . Os valores dos coeficientes angular e linear são, respectivamente, 0,01333 e 0,00943.

$$\begin{split} & \text{Logo:} \\ & \sqrt{\frac{1}{2}\mu_n C_{ox}\frac{W}{L}} = 0,01333 \Rightarrow \mu_n C_{ox}\frac{W}{L} = 0,01333^2*2 \Rightarrow \mu_n C_{ox}\frac{W}{L} = 3,553778*10^{-4} \\ & -\sqrt{\frac{1}{2}\mu_n C_{ox}\frac{W}{L}}V_t = -0,00943 \Rightarrow V_t = \frac{0,00943}{0,01333} \Rightarrow V_t = 0,704268 \\ & \text{Conclui-se que os valores de } \mu_n C_{ox}\frac{W}{L} \left[\text{A}/V^2 \right] \text{ e de } V_t \left[\text{V} \right] \text{ são, respectivamente } 3,6*10^{-4}, \text{ e} \\ & \text{Conclui-se que os valores de } \mu_n C_{ox}\frac{W}{L} \left[\text{A}/V^2 \right] \text{ e de } V_t \left[\text{V} \right] \text{ são, respectivamente } 3,6*10^{-4}, \text{ e} \\ & \text{Conclui-se que os valores de } \mu_n C_{ox}\frac{W}{L} \left[\text{A}/V^2 \right] \text{ e de } V_t \left[\text{V} \right] \text{ são, respectivamente } 3,6*10^{-4}, \text{ e} \\ & \text{Conclui-se que os valores de } \mu_n C_{ox}\frac{W}{L} \left[\text{A}/V^2 \right] \text{ e de } V_t \left[\text{V} \right] \text{ são, respectivamente } 3,6*10^{-4}, \text{ e} \\ & \text{Conclui-se que os valores de } \mu_n C_{ox}\frac{W}{L} \left[\text{A}/V^2 \right] \text{ e de } V_t \left[\text{V} \right] \text{ são, respectivamente } 3,6*10^{-4}, \text{ e} \\ & \text{Conclui-se que os valores de } \mu_n C_{ox}\frac{W}{L} \left[\text{A}/V^2 \right] \text{ e de } V_t \left[\text{V} \right] \text{ são, respectivamente } 3,6*10^{-4}, \text{ e} \\ & \text{Conclui-se que os valores de } \mu_n C_{ox}\frac{W}{L} \left[\text{A}/V^2 \right] \text{ e de } V_t \left[\text{V} \right] \text{ são, respectivamente } 3,6*10^{-4}, \text{ e} \\ & \text{Conclui-se que os valores de } \mu_n C_{ox}\frac{W}{L} \left[\text{A}/V^2 \right] \text{ e de } V_t \left[\text{V} \right] \text{ são, respectivamente } 3,6*10^{-4}, \text{ e} \\ & \text{Conclui-se que os valores de } \mu_n C_{ox}\frac{W}{L} \left[\text{A}/V^2 \right] \text{ e de } V_t \left[\text{A}/V^$$

Com base nos parâmetros determinados acima e nas curvas experimentais e teóricas do circuito da figura 1, pode-se concluir que há diferenças entre o transistor teórico e o transistor utilizado no experimento. Uma diferença da curva teórica para a experimental é que as escalas dos gráficos não são iguais devido a diferença no parametro $\mu_n C_{ox} \frac{W}{L}$, porém há uma semelhança quanto ao comportamento das curvas. Continuando a análise das curvas juntamente com os valores dos parâmetros encontrados, vê-se que o valor de V_t é o mesmo para ambos os graficos (teorico e experimental) mas o valor de $\mu_n C_{ox} \frac{W}{L}$ é maior no transistor utilizado no experimento.

Além disso, de acordo com as figuras 5 e 6, esperava-se obter-se um valor de V_t próximo a 1V, e ao obter o valor de $V_t = 0.71V$ foi encontrado um valor cujo erro é de 29%. Para $\mu_n C_{ox} \frac{W}{L}$, de acordo com os gráficos 5 e 6, como a ordem de grandeza da corrente é em miliampères e dado que $V_{GS}-V_t$ apresenta uma ordem de grandeza em volts, esparasse que $\mu_n C_{ox} \frac{W}{L}$ possuisse valor muito pequeno sendo ele entre as ordems de $10^{-3}A/V^2$ e $10^{-4}A/V^2$.

Portanto, os valores obtidos são aceitáveis e comparáveis ao valores teóricos e práticos obtidos.

Aplicações Analógicas

Para esta parte do experimento, foi montado o circuito amplificador da figura 8. Foi aplicado um sinal de entrada senoidal de 60 m Vpp e freqüência de 1kHz e foi monitorada as tensões v_{in} e v_{out} no osciloscópio, variando o offset V_{IN} da entrada, até que fosse observado um ganho de -10 para o amplificador. A curva encontrada para o amplificador encontra-se ilustrada abaixo e ela foi obtida quando o valor V_{in} foi de 2.87 V. Este valor foi comparado com o valor teórico para o mesmo ganho de -10.

Muitos projetos de circuitos analógicos envolvem amplificadores de um ou múltiplos estágios. Entre os amplificadores de um único estágio, um dos mais simples é o Fonte Comum, ilustrado na Figura 8. O mesmo apresenta um ganho inversor, ou seja, a tensão de saída possui sinal oposto à tensão de entrada. Isso pôde ser comprovado no osciloscópio, tal como mostra a imagem obtida dos sinais de entrada e saída mais abaixo. Essa montagem também sofre efeito Miller, ou seja, a capacitância de entrada pode ser elevada, levando o circuito a ter um pólo dominante em baixa freqüência. Essa última característica pode se tornar um problema se o circuito operar em altas freqüências, pois o ganho diminuirá a partir dessa freqüência de corte vista da entrada.

Nessa montagem (Amplificador Fonte Comum), que foi realizada em aula, é possível deduzir facilmente, a partir do modelo de pequenos sinais, que o ganho de malha é :

whether, a partit do inode to the pequenos smalls, que o gambo
$$A_v = -\frac{Rr_0gm}{R+r_0}$$

Como geralmente $r_0 \gg R$, é possível aproximar o gambo $A_v: A_v = -Rg_m$
 $A_v = -10 = -10^4g_m$
 $g_m = \mu_n C_{ox} \frac{W}{L} V_{ov} = 10^{-3}$
 $V_{ov} = V_{IN} - V_t = \frac{10^{-3}}{\mu_n C_{ox} \frac{W}{L}} = \frac{10^{-3}}{3,6*10^{-4}} = 2,78V$
 $V_{IN} = V_{ov} + V_t = 2.78 + 0.71 = 3.49V$

Comparando-se o valor teórico calculado e o valor experimental obtido de V_{in} , pode-se ver que tais valores são próximos, com um erro de 17.8%. Tal erro pode ter sido acarretado pelas aproximações do ro tendendo a infinito e dos parametros $\mu_n C_{ox} \frac{W}{L}$ e V_t calculados.

Figura 8: Amplificador

Figura 9: Curvas v_{in} e v_{out}

Aplicações Digitais

Inicialmente, foi montado o circuito inversor lógico, como esquematizado na figura 10.

Figura 10: Circuito inversor lógico

Um inversor CMOS básico utiliza dois transistores MOSFETs do tipo enriquecimento casados: um Q_N , com um canal n e outro Q_P , com um canal p. O corpo de cada dispositivo está conectado à sua fonte e, portanto, nenhum efeito de corpo deve ser considerado.

Um inversor lógico funciona da seguinte maneira: quando a entrada está em nível alto $(V_I = V_{DD})$, a tensão de saída será de zero volts $(V_I = 0 \text{ V})$; quando a entrada estiver em nível baixo (0V), a saída terá uma tensão igual a V_{DD} .

Na entrada do circuito foi aplicado um sinal senoidal com as seguintes características: $V_{pp}=5V$, $V_{offset}=2,5V$ e frequencia = 100 Hz.

A imagem ilustrada abaixo (figura 11), da curva característica de transferência deste inversor, foi obtida utilizando-se o modo de operação XY do osciloscópio.

Figura 11: Característica de transferência de tensão do inversor CMOS

Observa-se que inicialmente, quando V_{in} está em nível baixo, o transistor canal n está em corte e a tensão de saída é aproximadamente $V_{DD}=5\mathrm{V}$. Já no outro extremo, com V_{in} em nível alto (próximo de VDD), o transistor canal p está em corte e a tensão de saída está em nível baixo, $0\mathrm{V}$. Percebe-se ainda, que quando V_{in} encontra-se muito próximo de $\frac{V_{DD}}{2}$, ambos os transistores estão na saturação e é nessa região (linear) que operam os amplificadores. Antes desse trecho, o transistor NMOS encontra-se em saturação e o PMOS na região de triodo, e depois desse trecho os papéis se invertem, com o NMOS em triodo e o PMOS em saturação. A figura 13, na qual esboça uma curva característica teórica de um inversor, mostra as regiões de operação dos transistores NMOS e PMOS casados.

Figura 12: Característica de transferência de tensão do inversor CMOS (curva teórica)

Em seguida, foi aplicada na entrada uma forma de onda quadrada com as mesmas características anteriores ($V_{pp}=5V,\,V_{offset}=2,5V$ e frequencia = 100 Hz) e o osciloscópio foi retirado do modo XY e visualizou-se a entrada e a saída em função do tempo. Foram medidos os tempos de subida, de descida e de atraso da saída, todos ilustrados a seguir.

Figura 13: Tempo de subida

Figura 14: Tempo de descida

Figura 15: Tempo de atraso de low pra high

Figura 16: Tempo de atraso de high pra low

Foi obtido um valor de tempo de subida (tempo para o sinal mudar de um nível baixo de tensão $(V_{out}=0~\rm V)$ para um alto $(V_{out}=\rm VDD)$) de 37,0 ns e um tempo de descida (tempo para o sinal mudar de um nível alto (Vout = VDD) de tensão para um nível baixo de tensão (V=0 V)) de 26,8 ns. Caso a entrada fosse ideal e os dois transistores MOSFETs possuíssem exatamente as mesmas características, o tempo de subida e descida deveriam ser iguais devido à simetria do circuito.

Posteriormente, mediu-se o atraso de propagação que determina a velocidade de operação de um circuito digital e é influenciado pelo tempo de subida e descida, já que utiliza a diferença de tempo entre o momento em que a onda de entrada está no meio da transição entre o valor máximo e mínimo ou o contrário, e o momento em que a onda de saída também estiver no meio da transição. Assim, se o tempo de subida e descida da saída for alto, maior será o atraso de propagação.

A mudança de uma voltagem alta para uma baixa do sinal de entrada possui como atraso o tempo $\det_{phl}=26,4\,ns$ enquanto que a mudança de um sinal baixo para um alto possui como atraso $t_{plh}=17,0\,ns$. Logo, o tempo de propagação vale a média entre ambos os atrasos, ou seja, $t_p=21,7\,ns$, implicando em uma freqüência máxima de operação de $f_{max}=46,08\,MHz$.