1 10.4 - Optimal Control of Pitch/Travel and Elevation with Feedback

We have to add the equation for elevation

$$\ddot{e} + K_3 K_{ed} \dot{e} + K_3 K_{ep} e = K_3 K_{ep} e_c$$

to the system defined in ??

$$\begin{bmatrix}
\dot{\lambda} \\
\dot{r} \\
\dot{p} \\
\dot{e} \\
\dot{e}
\end{bmatrix} = \underbrace{\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -K_2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -K_1 K_{pp} & -K_1 K_{pd} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -K_3 K_{ep} & -K_3 K_{ed}
\end{bmatrix}}_{A_c} \begin{bmatrix}
\lambda \\ r \\ p \\ \dot{p} \\ \dot{e} \\ \dot{e}
\end{bmatrix} + \underbrace{\begin{bmatrix}
0 & 0 \\ 0 & 0 \\ 0 & 0 \\ K_1 K_{pp} & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\
0 & 0 & K_3 K_{ep}
\end{bmatrix}}_{B_c} \underbrace{\begin{bmatrix} p_c \\ e_c \end{bmatrix}}_{u} \tag{1}$$

1.1 The continuous model

Answer 10.4.1.1

1.2 The discretized model

Answer 10.4.1.2

1.3 Experimental results

Printouts of data from relevant experiments (plots). Discussion and analysis of the results. Answer 10.4.2.6 here.

1.4 Decoupled model

Answer 10.4.2.7

1.5 MATLAB and Simulink

Code and diagrams go here

1.6 Optional exercise

Which constraints did you add? What was the results? Plots? Discussion?