Fundamentos de Programación

Expresiones Aritméticas y Lógicas

Oscar Hernando Arenas Arenas

Contenido

- Tipos de datos
- Variables
- Constantes
- Operadores (Aritméticos, relacionales y lógicos)
- Precedencia de operadores, asociación
- Expresiones (Aritméticas y lógicas)
- Operador de asignación

Tipos de Datos

 Dato: Es la expresión general que describe los objetos con los cuales operan los computadores.

 Tipo de dato: Conjunto especifico de valores de los datos y un conjunto de operaciones que actúan sobre esos datos.

Tipos de Datos

Tipos de Datos Simples

- Numérico: Conjunto de los valores numéricos. Se dividen en enteros y reales.
 - -Entero: Subconjunto finito de los números enteros. Los enteros son números completos, no tienen parte decimal, y pueden ser negativos o positivos.
 - -Real: Subconjunto de los números reales. Los reales siempre tienen un punto decimal y pueden ser negativos o positivos.
- Lógico: También denominado booleano, es aquel dato que sólo puede tomar uno de dos valores, verdadero o falso.
- Carácter: Conjunto finito de los símbolos que una computadora reconoce.
 Un dato de tipo carácter tiene un solo carácter. Los caracteres que reconocen las diferentes computadoras no son estándar; sin embargo, la mayoría reconoce los siguientes
 - -Caracteres alfabéticos: a, b, c, ..., z, A, B, C, ..., Z
 - -Caracteres numéricos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - -Caracteres especiales: #, \$, ´, %, &, /, +, -, !, ?, \, *, ;, {, |, (,), <, >, ~, ...

Tipos de Datos Compuestos Estáticos

- Cadena: Sucesión de caracteres delimitados por comillas simples. Pueden considerarse como un arreglo de tipo carácter.
- Arreglo: Colección finita y ordenada de elementos del mismo tipo.
- No estudiaremos los tipos de datos compuestos dinámicos.

Variable

Espacio de memoria donde se almacena valores de algún tipo de dato. Durante el desarrollo de un algoritmo o la ejecución de un programa el contenido de la variable puede cambiar.

- entero: edad = 23
- real: temperatura = 34.7193
- logico: respuesta = verdadero
- caracter: letra = 's'
- cadena: nombre = 'Juan Perez',direccion = 'Calle 50 #80-23'

Nombres de Variables

- El nombre de una variable o identificador debe ser una cadena de caracteres alfanuméricos, sin espacios.
- El primer carácter de la variable debe ser una letra.
- El nombre de la variable no admite caracteres especiales excepto el guion bajo (_).
- No se debe utilizar la letra ñ en el nombre de una variable ni palabras tildadas.
- El nombre de las variables deben de ser significativos, deben de hacer referencia clara al valor que almacenan.

Constante

Espacio de memoria donde se almacena valores de algún tipo de dato. Una vez se asigna el primer valor a la constante, en un algoritmo o programa, el contenido de la constante no se puede cambiar.

- Para dar nombre a una constante se deben seguir las mismas reglas que para nombrar variables.
- Por convención, los nombres de constantes se escriben en mayúscula sostenida.

Operadores

- Símbolos que indican operaciones ha realizar.
- Se clasifican como unarios y binarios.
- Los operadores unarios actúan sobre un operando.
- Los operadores binarios actúan sobre dos operandos.

Operadores Aritméticos

Seudocódigo	Significado	Tipos de operandos	Tipo de resultado
+	Suma	Entero o real	Entero o real
-	Resta	Entero o real	Entero o real
*	Multiplicación	Entero o real	Entero o real
/	División	Entero o real	Entero o real
^	Exponenciación	Entero o real	Entero o real
div	División entera	Entero	Entero
mod	Módulo (Residuo)	Entero	Entero

Operador módulo y división entera

 Módulo: Residuo de dividir dos números enteros. Se define:

$$a \bmod b = a - b \left\lfloor \frac{a}{b} \right\rfloor; a, b \in \mathbb{Z}, b \neq 0$$

- Donde $\left\lfloor \frac{a}{b} \right\rfloor$ es la notación para la función piso (Redondea al entero menor mas cercano).
- División entera: Se define,

$$a \ div \ b = \left\lfloor \frac{a}{b} \right\rfloor$$

Ejemplo 1: operador módulo (mod) y operador división entera (div)

• 15 mod 6 = 15 - 6
$$\left[\frac{15}{6}\right]$$
 = 15 - 6 $\left[2.5\right]$ = 15 - 6 $\left(2\right)$ = 3

• 15 div 6 =
$$\left[\frac{15}{6}\right]$$
 = $[2.5]$ = 2

Ejemplo 2: operador módulo (mod) y operador división entera (div)

• 23 mod -4 = 23 - (-4)
$$\left[-\frac{23}{4} \right]$$
 = 23 - (-4) $\left[-5.75 \right]$ = 23 - (-4) (-6) = 23 - 24 = -1

• 23 div -4 =
$$\left[-\frac{23}{4}\right]$$
 = $\left[-5.75\right]$ = -6

Operadores Relacionales

Seudocódigo	MATLAB	Significado	Operandos
<	<	Menor que	Entero o real
>	>	Mayor que	Entero o real
==	==	Igual que	Entero, real, lógico, carácter, cadena
≤, <=	<=	Menor o igual que	Entero o real
≥, >=	>=	Mayor o igual que	Entero o real
<>	~=	Diferente de	Entero, real, lógico, carácter, cadena

Operadores Lógicos

Operador	Seudocódigo	Expresión lógica	MATLAB	Significado
NO (NOT)	no	no p	~	Negación de p
Y (AND)	У	рур	&&	Conjunción de p y q
O (OR)	0	poq	П	Disyunción de p y q

p y **q** son proposiciones lógicas.

Una proposición lógica es un enunciado del cual se puede afirmar si es verdadero o falso.

~: Tilde de la letra eñe (Virgulilla)

&: Ampersand en inglés o et en español

|: Barra vertical o pleca

Tabla de Verdad

Es una tabla que muestra el valor de verdad de una proposición compuesta, para cada combinación de valores de verdad que se pueda asignar a sus componentes.

Tablas de verdad para los operadores lógicos Y, O y NO

Si una proposición es falsa el valor de verdad de la proposición compuesta con la Y es falso.

Si una proposición es verdadera el valor de verdad de la proposición compuesta con la O es verdadero.

Operador lógico Y

р	q	руд
V	V	V
V	F	F
F	V	F
F	F	F

Operador lógico O

р	q	poq
V	V	V
V	F	V
F	V	V
F	F	F

Operador lógico NO

р	no p
V	F
F	V

Precedencia de Operadores

Indica el orden en que se deben efectuar las operaciones en un expresión aritmética o lógica.

Operador	Precedencia
()	Más alta
^	
-, no (unario)	
*, /, div, mod	
+, -	
<, ≤, >, ≥	
==, <>	
y (&, &&)	
o (,)	
= (Asignación)	Más baja

Asociación

Cuando en una expresión existen operadores con igual precedencia, se evalúan de izquierda a derecha.

Expresión

- Combinación válida de valores, variables, constantes, operadores, paréntesis y funciones.
- Se divide en aritméticas y lógicas.
- Las expresiones aritméticas evalúan a valores numéricos.
- Las expresiones lógicas evalúan a valores lógicos.

Ejemplo 3: Evaluar la expresión aritmética $2 + 3 * 9 + 4 ^ 2 - 7 * 4 / 2$

Ejemplo 4: Evaluar la expresión lógica 4 + 2 < 7 y 5 == 10 / 2

$$4 + 2 < 7 y 5 == 10 / 2$$
 $4 + 2 < 7 y 5 == 5$
 $6 < 7 y 5 == 5$
 $V = verdadero$
 $V = V$
 V

Ejemplo 5: Evalúe la expresión b + (a div b div c) * (a mod c) – c, si a = 8, b = 5 y c = 2

```
b + (a div b div c) * (a mod c) - c

5 + (8 div 5 div 2) * (8 mod 2) - 2

5 + (1 div 2) * (8 mod 2) - 2

5 + 0 * (8 mod 2) - 2

5 + 0 * 0 - 2

5 - 2

3
```

Ejemplo 6: Escriba la expresión algebraica $\frac{-b+\sqrt{b^2-4ac}}{2a}$ en forma de expresión aritmética en seudocódigo.

Expresión algebraica:

$$\frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

 Expresiones aritméticas equivalentes en seudocódigo:

$$(-b + (b ^2 - 4 * a * c) ^ (1 / 2)) / (2 * a)$$

 $(-b + raiz2(b ^2 - 4 * a * c)) / (2 * a)$

Operador de Asignación

- La operación de asignación es el modo de almacenar valores en una variable o constante.
- Es representado con el símbolo =.
- Forma de uso:

<nombreVariable> = <expresión>

El resultado de evaluar la expresión de la derecha se guarda en la variable de la izquierda.

Ejemplo 7: Indique el valor asignado a la variable a

$$a = 1 - 10 ^ 2 + 3 * (20 \text{ div } 3) + 7 \text{ mod } 4$$

$$a = 1 - 10 ^ 2 + 3 * 6 + 7 \text{ mod } 4$$

$$a = 1 - 100 + 3 * 6 + 7 \text{ mod } 4$$

$$a = 1 - 100 + 18 + 7 \text{ mod } 4$$

$$a = 1 - 100 + 18 + 3$$

$$a = -99 + 18 + 3$$

$$a = -81 + 3$$

$$a = -78$$

Precedencia de operadores en MATLAB

Precedencia
Mas alta
Mas baja

Ejemplo 8

Diseñe un algoritmo que lea las notas de un estudiante correspondientes a los dos seguimientos y al parcial del curso de Fundamentos de Programación y muestre la nota acumulada actual y la nota mínima que debe obtener en el examen final para aprobar el curso.

Algoritmo para el Ejemplo 8

```
algoritmo NotaEstudianteExamenFinal
variables
    real: seguimiento1, seguimiento2, parcial, examenFinal, notaAcumulada
inicio
    muestre('CALCULAR NOTA PARA EL EXAMEN FINAL')
    muestre('Ingrese la nota del primer seguimiento: ')
    lea(seguimiento1)
    muestre('Ingrese la nota del parcial: ')
    lea(parcial)
    muestre('Ingrese la nota del segundo seguimiento: ')
    lea(seguimiento2)
    notaAcumulada = (seguimiento1 + parcial + seguimiento2) / 4
    examenFinal = 4 * (3.0 - notaAcumulada)
    muestre('La nota acumulada es:', notaAcumulada)
    muestre('En el final debe obtener una nota de', examenFinal, 'para aprobar el curso.')
fin
```

Ejercicios

- Solucionar nuevamente los ejemplos propuestos.
- Escribir el programa en MATLAB para el ejemplo
 8.
- En el ejemplo 8 no se indica explícitamente sí, con las tres notas registradas (75%), el estudiante ya aprobó el curso o es eximido del examen final. ¿Qué elementos del seudocódigo necesitamos para contemplar esas dos situaciones?
- Solucionar el taller 2.

Referencias

 Joyanes Aguilar, Luis. Fundamentos de Programación: Algoritmos, estructura de datos y objetos. 4ª edición. Madrid: McGraw-Hill. 2008.