确定汽车装配顺序问题的算法

摘要

汽车是当前运用最为广泛的交通工具。为了减少汽车的生产成本以及能方便得出汽车生产线上的装配顺序,需对原有的汽车生产线进行优化。本文针对工艺要求、质量控制的需要和成本,关于调整生产线上的汽车品牌、颜色等顺序,设计了确定汽车装配顺序问题的算法。

针对问题一,需要一个能得出生产成本较低的汽车装配顺序的算法。因为属性和工艺要求的多样性,难以找到使所有目标达到最佳的方案,于是采用多目标规划,用了序贯算法的思想,根据品牌、配置、动力、驱动、颜色这 5 个属性的优先级,将目标规划问题分解成一系列的单目标规划问题,然后根据优先级依次求解。

对于品牌 A1 和 A2,两班分别装配当天两种品牌各一半数量的汽车(总数 460 辆)。用 Excel 软件根据附件所给数据制作 A1 和 A2 每天汽车总量表(见附录 1.1),可知 7 天内每天生产 A1 的数量均超过 350 辆, A2 的数量均少于 105 辆。

对于汽车颜色属性如何确定装配顺序的问题,分析各颜色之间的间隔关系与数量,结合换色成本的考虑,采用分类思想先分为黑车和其他颜色的车,建立求黑车最小组数的最优化模型,并且根据最优化模型得出各天黑车组数最小值均为4组,并且求出黑色车各组的具体数量。再将其他颜色的车进行分类,设计五步确色法来确定颜色装配顺序。结合了颜色装配流程图(见图3),建立了各颜色装配顺序的模型。

对于动力属性如何确定装配顺序的问题,尽量使柴油车在白班内完成装配,通过求基本最优解的方法,计算式(7),若计算得到的结果大于或等于5,则直接得到两批柴油汽车之间的汽油汽车数量。若计算得到的结果小于5,则柴油汽车不能在白班完成装配,需要分配一部分到夜班,用式(8)计算出两批柴油汽车之间的汽油汽车数量,得到每个班次的柴油车组数和每组需要用来间隔的汽油车数量。

对于驱动属性如何确定装配顺序问题,考虑情况与动力属性相似,尽量使四驱汽车 在白班内完成装配,通过求基本最优解的方法,计算得到每个班次的组数、每组需要装 配四驱车与两驱车的数量,由此得出两批四驱车之间数量的公式见式(5)。

对于配置属性与其他属性之间的关系,将配置与品牌、动力、驱动、颜色等属性结合分析。将配置与动力共同分析得表 3,可知 7 天内每天生产各类汽车的数量分布较均匀。将配置与颜色共同分析得表 5,得到黑色 B1 配置的汽车总量为 33 辆。将配置与驱动共同分析得到表 6,可知 7 天内生产的 B1 配置两驱汽车和四驱汽车的数量相似,两驱车在 270 辆到 240 辆之间,四驱车在 30 辆到 10 辆之间。得到 7 天内 B1 配置四驱车数量变化小。

将配置与品牌共同分析得表 7,可知 B1 配置的汽车数量最多,品牌 A1 的汽车每天产量可超过 220 辆, A2 的汽车每天产量在 60 辆以内。

计算方案中所产生代价,利用层次分析法思想,确定各品牌、配置、动力、驱动、颜色这 5 个属性对代码权重,建立权重计算模型,根据文献所查到非黑色换色成本,得出第 20 日颜色切换、驱动切换、配置切换、动力切换的代价约为 4550 元。

结合五个模型,编写 C 语言代码 (见附录 2.1),来实现解决确定汽车总装线配置问题的算法,运行并调整得到 17 日至 23 日汽车配置安排表 (见支撑材料)。

关键词:整数规划;多目标决策;序贯算法;最优化模型

一、 问题重述

某汽车公司生产多种型号的汽车。每种型号由品牌、颜色、动力、配置、驱动 5 种属性确定。品牌有 A1 和 A2;有黑、白、红、黄、蓝、金、银、棕、灰 9 种颜色;动力有汽油和柴油;有 B1、B2、B3、B4、B5 和 B6,6 种配置;有两驱和四驱 2 种驱动。

公司每天可装配各种型号的汽车 460 辆,其中白班、晚班(每班 12 小时)各一半。每天生产各种型号车辆的具体数量由市场需求和销售情况决定。附件给出了该企业 2018年 9月 17日至 9月 23日一周的生产计划。

车辆装配流程为待装配车辆按一定顺序排成一列,首先通过总装线依次进行总装作业,之后按序分为 C1、C2 线进行喷涂作业。

装配要求:

- (1)每天两班都是按照先 A1 后 A2 的顺序,两班分别装配当天两种品牌各一半数量的汽车。
- (2) 四驱汽车连续装配数量不得超过 2 辆,两批四驱汽车之间间隔的两驱汽车的数量至少要 10 辆,柴油汽车与四驱汽车要求相同。若间隔数量无法满足要求,仍希望间隔尽量多。间隔数量在 5-9 辆是可以接受的,但成本很高。
 - (3) 同品牌的相同配置车辆尽量连续,减少不同配置车辆之间的切换次数。
 - (4) 对于颜色的要求如下:
- 1) 红、黄、蓝三种颜色汽车的喷涂只能在 C1 线上进行,金色汽车的喷涂只能在 C2 线上进行,其他颜色汽车的喷涂可以任意在 C1 和 C2 的喷涂线上进行。
- 2)除黑、白两种颜色以外,可在同一条喷涂线上,同种颜色的汽车应尽量连续喷涂作业。喷涂线上不同颜色之间的切换次数尽量减少,尤其是黑色与其它颜色之间的切换成本很高。
 - 3) 不同颜色汽车在总装线上排列时的具体要求如下:
- (a) 黑色汽车连续排列的数量要在 50 到 70 辆之间,两批黑色汽车在总装线上需要间隔至少 20 辆;白色汽车可以连续排列,也可以和蓝或棕色的汽车间隔排列。
- (b)蓝色汽车必须与白色汽车间隔排列;颜色为黄或红的汽车必须与颜色为银、灰、棕、金中的一种颜色的汽车间隔排列。
- (c) 灰色或银色的汽车可以连续排列,或与颜色为黄、红、金中的一种颜色的汽车间隔排列;金色汽车要求与黄色或红色的汽车间隔排列;若无法满足要求,亦可以与颜色为灰、棕、银中的一种颜色的汽车间隔排列。
 - (d) 棕色汽车可连续排列,或与黄、红、金、白中的一种颜色的汽车间隔排列。
 - (e) 关于其他颜色的搭配, 遵循"没有允许即为禁止"的原则。

由于该公司的生产线 24 小时不间断作业,以上总装线和喷涂线的各项要求对相邻班次(包括当日晚班与次日白班)的车辆同样适用。

问题:

- (1)根据问题的背景和装配要求结合附件中的数据,建立数学模型或者设计算法,使结果能符合要求、并且生产成本较低的装配顺序。
 - (2) 根据(1) 中建立的数学模型或算法,分析附件中所给的数据,给出计算结果:
 - (a) 以 9 月 20 日为例制作一张装配顺序表。
 - (b) 根据(a) 中制作的表在制作9月17日至9月23日每日的装配顺序表。

二、问题分析

汽车生产线优化有一系列不同要求,分析附件,得知要解决的问题为最优化问题及数据排序。建立汽车装配模型,并根据不同的要求进行修改,使汽车装配模型符合题目要求。

因为属性和工艺要求的多样性,难以找到使所有目标达到最佳的方案,于是采用多目标规划。而序贯式算法是求解目标规划的一种早期算法,其核心是根据优先级的先后次序,将目标规划问题分解成一系列的单目标规划问题,然后再依次求解,所以可以使用序贯算法的思想。

使用然后使用序贯算法的思想,根据品牌、配置、动力、驱动、颜色这 5 个属性的 优先级,将目标规划问题分解成一系列的单目标规划问题,然后根据优先级依次求解。

针对问题一,考虑到符合要求且有较低生产成本的装配顺序。这是最优化求解问题。 根据装配要求可知,汽车生产线有白班和晚班两个班次,总装线和喷涂线的各项要求对 相邻班次的车辆同样适用。所以模型只考虑白班计划。

使用序贯算法将品牌、驱动、动力、颜色、配置属性逐一分析。

针对品牌属性,计划将汽车总数一分为二减少计算量,先加工 A1 型号后加工 A2 型号。配置方面利用 Excel 软件制作配置与各个属性结合的表格,并依次对表格进行具体数据分析。

针对配置属性,考虑到同一品牌的相同配置车辆尽量连续,减少切换次数这一要求。 针对颜色属性,用 Excel 软件统计出各种颜色的汽车数量。以减少成本为前提,将 数量最多的颜色与其它颜色在进行衔接考虑;根据题目所给要求,考虑将蓝色车辆与白 色车辆分开,将金色车与红色车或黄色车分开,由于银色、灰色和棕色都可以用于相互 间隔,但是棕色车与白车间隔可降低成本。所以在减少相应代价降低生产线成本的基础 上安排合适的装配顺序。

针对驱动属性,根据问题要求,考虑将四驱车在白班内全部完成,同时计算其所需要装配的组数和两驱车需要装配的数量,最后得到两批四驱车之间间隔的两驱车数量,若四驱车不能在白班内全部完成,就将四驱车平均分配在两个班次内,再计算其结果。

针对动力属性,根据问题要求,同样考虑将柴油车在白班内完成,计算出各个量后, 计算出其结果,若符合问题要求则得出结果,若不符合,则将柴油车平均分配在两个班 次内,再计算其结果。

将分析后得出的品牌、配置、颜色、驱动、动力等的 5 种属性数据进行归类,在考虑生产成本的基础上安排合适的装配顺序,设计出算法,并写出代码。

针对问题二,在使用 C-Free 软件上运行代码,用 Excel 软件对表格进行归类排序。制作 17 日到 23 日的装配顺序表。

三、 模型假设

- 1、假设各色车辆的数量不会发生很大的变化。
- 2、假设黑车数量大于200辆并且少于280辆。
- 3、假设没有新的型号、品牌出现。
- 4、假设红色、黄色车为同一类车,定义为R型车。
- 5、假设银色、灰色车为同一类车,定义为S型车。

四、 定义与符号说明

符号	定义
R	红色和黄色车
S	银色和灰色车
L	蓝色车数量
W	用于间隔蓝色车的白色车数量
$B_i, i=1,2$	B_i 分别对应 A_i , $i=1,2$,型号黑车的数量
В	某日黑车的总需装配数。
n	黑车的总组数(50到70辆一组)
$\gamma_j, j = 1, 2, 3, 4$	j 值为1到4,表示第几组; γ 表示应有的黑车数量
χ	总黑车数减去 70 辆车的满编组后剩下的黑车数
$M_k, k = 1, 2, \dots, 7$	第 k 天生产的汽车总数
$C_k, k = 1, 2, \ldots, 7$	第 k 天产生柴油的车辆
$P_i, i=1,2$	分别对应 A_i , $i=1,2$,两驱车、四驱车的数量
D	用于间隔两批四驱车的两驱车数量
Y	用于间隔两批柴油车的汽油车数量
$W_k, k = 1, 2, 7$	第 k 天生产汽油的数量
g	装配的组数

五、 数据处理

- 1、根据题目所给要求,只考虑一班的生产的 230 辆汽车,即一天当中车辆总数的一半,总数为 460 辆。这样可以使数据处理更简易、快捷。
- 2、由表 1 可知,黑色车数量是在所有颜色车数量中最多的,每天分布都在 260 辆到 280 辆之间,所以优先考虑黑色车的排序;由于蓝色车数量较少每天生产都在 10 辆以下,但又必须与白色车间隔排序。所以蓝色车要优先于白色车考虑。
- 3、银色车与灰色车间隔可降低成本,每天数量都在20辆以内,所以将它们放在同一级。最后白色与棕色放在最后以及考虑。

农 1 合件颜色的干心效众	表	1	各种颜色的车总数表
---------------	---	---	-----------

_								
	日期	17 日	18 日	19 日	20 日	21 日	22 日	23 日
	黄	5	4	4	5	4	4	4
	蓝	5	4	4	6	6	4	4
	黑	261	263	277	254	270	264	263
	白	150	154	142	155	123	119	120
	灰	11	14	13	12	15	15	14
	金	2	1	0	3	8	8	8
	棕	6	5	5	6	11	22	25
	银	11	9	9	9	14	15	13
	红	9	6	6	10	9	9	9

- 2、由表 1 可知, 黑色车数量是在所有颜色车数量中最多的, 每天分布都在 260 辆 到 280 辆之间,所以优先考虑黑色车的排序;由于蓝色车数量较少每天生产都在 10 辆 以下,但又必须与白色车间隔排序。所以蓝色车要优先于白色车考虑。
- 3、银色车与灰色车间隔可降低成本,每天数量都在20辆以内,所以将它们放在同 一级。最后白色与棕色放在最后以及考虑。

模型的建立与求解 六、

6.1 问题一设计确定汽车装配顺序问题的算法

汽车总装线的配置问题中由品牌、配置、动力、驱动、颜色 5 种属性确定, 先将五 种属性各自做出处理方案,再将各属性结合分析,确立最终汽车装配顺序。

因为属性(品牌、配置、动力、驱动、颜色这5个属性)的多样性和工艺要求繁琐, 难以找到使所有目标达到最佳的方案,于是采用多目标规划□。将目标规划问题分解成 一系列的单目标规划问题,然后根据优先级依次求解。

而序贯算法[2]是求解目标规划的一种早期算法,其核心是根据优先级的先后次序, 将目标规划问题分解成一系列的单目标规划问题,然后再依次求解,序贯算法符合我们 的解题思路。

6.1.1 品牌属性的装配算法设计

每天的一班时间内只能分别做完一半的品牌数量, 所以以一班要做的品牌数量为约 束条件,先进行分析。

为了清楚的了解汽车各品牌的分布状况,针对品牌 A1 和 A2 进行分析,由装配要 求可知 7 天内每天的白班和晚班都是先加工品牌为 A1 的汽车, 等品牌为 A1 的汽车加 工完了后再加工品牌为 A2 的汽车。

因为一天分为两班白班和晚班,总装线上和喷涂线上的各项要求对相邻的两个班次 的车辆同样适用。先考虑将品牌 A1 和 A2 分别各自分为两批数量第一批尽量能多放属 性为四驱的车就多安排四驱的车,若不行则将四驱车的数量平均排在两个班。

早班将安排的品牌为 A1 的四驱车和品牌为 A2 的两驱车的数量加工完后,紧接加 工安排好的品牌为 A2 的四驱车和两驱车。

6.1.2 颜色属性的装配算法设计

经过对五种属性的分析,颜色属性的要求复杂且重要,将颜色属性作为主要分析属

性。由表1可知黑车总数最多,且黑车要求的连续喷涂量最多,所以先将颜色分为黑色与其它颜色考虑。

对其他颜色进行分类,在黑色、蓝色以外颜色车的排列中,因为红色车与黄色车的 工艺流程要求相同,将红色、黄色车分为一类,定义为 *R* 型车。

银色、灰色车可以连续排列所以银色与灰色可以分为一类,都是用来当做间隔红色、 黄色、金色车的,定义为 *S* 型车。

经过归类以及分析后,设计出五步确色法:

步骤 1: 由数据处理可知黑车总数最多,且黑车要求的连续喷涂量最多,所以先将 颜色分为黑色与其它颜色考虑。

步骤 2: 由数据处理可知,蓝车的总量都小于 6辆,且蓝车只有于白车间隔的要求, 所以先考虑蓝车。

步骤 3: 金色车和 R 类车(红色、黄色车)尽量相互间隔,所以将金色车与 R 类车同时考虑。

步骤 4: 银色灰色棕色车虽然都可以用于间隔,但棕色车可以与白车间隔,使成本降低,所以考虑银色车与灰色车的装配顺序。

步骤 5: 将剩下的棕色车和白色车的装配顺序确定。

将颜色属性分为五个步骤来做,步骤一做出黑车各组配置,步骤二将蓝车的装配顺序确定,步骤三将R类车以及金色车的装配顺序确定,步骤四将S类车的装配顺序确定,步骤五将白色车和棕色车的装配顺序确定。

五步确色法具体操作情况分析:

步骤 1: 黑车各组配置

针对颜色属性进行分析,因为黑车需要连续 50 到 70 辆车喷涂,中间需要间隔其他颜色的车至少 20 辆,且根据数据处理可知黑车的总数量最多。所以需要将黑车分为两班做,两班的考虑情况相同,白班的情况见图 1 白班黑车与其它颜色车的顺序图。

因为黑车与其他颜色车切换的代价很大,并且 A2 型号的黑车普遍小于 70 辆,所以使 A1 最后一组为黑车 A2 第一组为黑车可以降低成本(即两种型号黑车合为一组),并且黑车组数越小越好。

以 17 日的数据为例。9 月 17 日一班能做 182 辆 A1 型号车,48 辆 A2 车,A1 型号 黑车与 A2 型号黑车相加得到 9 月 17 号黑车数量为 261 辆。

使一班 A1 型号装配顺序最后部分为黑车, A2 型号的装配顺序前列为黑车, 因为所以可以将两种型号的黑车一起连续排列为第二组黑车。

图 1 白班黑车与其它颜色车的顺序图

晚班的考虑情况与白班相同,第三组同第一组,第四组同第二组(若 A2 型号黑车在白班喷涂完则第四组黑车全为 A1 型号)。

因为黑车必须连续 50 到 70 辆,所以得出可用于调动的数量为 20 辆。根据可调动数量与组数的关系,可以分为两种情况。

情况 1: x 小于可调动的黑车数 (每组有 20 辆) 时,将满编组的黑车调动到第二组

中使其达到 50 辆(如第 20 天,第二组根据计算只有 44 辆,将第一组的 70 辆分出 17 辆给第二组,则第二组车数 50 辆,第一组车数 64 辆,若第一组不够调动数量,则从第三组调动到第二组,第三组不够调动数量则从第四组调动到第二组)。

情况 2: 若 x 大于可调动的黑车数时,不满足黑车连续排列数量 50 到 70 辆的规律,则说明数据有误(比如黑车只有 49 辆),分析表 1 可知没有数据异常值。

根据表 1 黑车的数量,可知各天黑车数量均符合情况 1。

当x的值小于n组可调配的数量(20 辆黑车)时,满足情况 1,给x调配到 50 辆黑车,并且组数增加一个,得到式(1),n为黑车的组数,满编组为 70 辆,x为剩余的黑车数量。

$$\min n = \frac{B_{\varnothing} - x}{70} + 1,$$

$$s.t. \begin{cases} 50 - x \le 20n \\ x \le 50 \end{cases}$$
(1)

将黑车数量 261 辆代入公式(1)得到黑车组数为 4 组,分为白天和晚上两班,每班两组,白班第二组为连续 51 辆车,其他组黑车均为连续 70 辆。

刚开始装配时开始装配黑车,将一组黑车装配完后进行其他颜色车的装配,根据第二组的黑车应有数量以及 A2 型号的黑车数量考虑:。

情况 1: A2 型号的黑车数量 B_2 小于第二组应有黑车数量 γ_2 。将所有 A2 型号的黑车都放在 A2 型号装配顺序的前列,得到式(2): B_1 为第二组 A1 型号的黑车数量, B_2 为第二组 A2 型号的黑车数量, γ_2 为第二组应有的黑车数量。

$$B_1 = \gamma_2 - B_2. \tag{2}$$

情况 2: A2 型号的黑车数量 B_2 大于第二组应有黑车数量 γ_2 。那么在夜班的时候,喷涂全部 A2 型号的黑车,并能得到 A1 型号应在第二组中的数量 B_1 得到式(3):

$$B_2 = \gamma_2. \tag{3}$$

结合式 1、式 2、式 3,可以在 C-Free 软件中用 C 语言编程来求解公式,编出的代码见附录二的 2.1。根据附录二的 2.1 代码,可知第二组黑车应有数量为 51 辆,满足情况 2,用式 2 可, A2 型号装配 48 辆,计算出 A1 型号最后应喷涂的黑车数量 B_1 为 20 辆,A2 型号刚开始应喷涂的黑车数量 B_2 为 31 辆。

晚班时, 第四组黑车应有数量为 70 辆,A2 型号的黑车有 40 辆,满足情况 1,根据式 3 算出,第四组的 A1 型号最后应该喷涂的黑车数量 B_1 为 30 辆与 A2 型号刚开始应喷涂的黑车数量 B_2 为 40 辆。

根据表 1 给出的黑车数量,结合式 1、2、3 分析,每天都只有 4 个组,所以每个班

次只有 2 组黑车,分别为,第一组: A1 型号第一个装配顺序开始直到已喷涂黑车数量达到 γ 。(第一组黑车数量); 第二组: A1 型号最后装配数量 B_1 开始到 A2 型号的 B_2 。

步骤 2: 蓝车装配顺序

蓝车要求必须与白车间隔排序,且由图 2 可知蓝车只能在 C1 喷涂线上喷涂,单数装配顺序的车才进入 C1 喷涂线,所以当第一组黑车为单数时,下一辆车为白车,再后一辆是蓝车……且由表 1 可知白色车的数量远远大于蓝色车,所以可以得到应用于间隔蓝车的白车数量W 与的式 4。 L 为蓝车的数量。

图 2 喷涂线介绍图

步骤 3: 金色、R 类车装配顺序

将蓝车装配完成后考虑剩下颜色的车。

红车或黄车只能与银色、灰色、棕色、金色车间隔排序,金色车在有红色或黄车的情况下先与红车或黄车间隔,若无红车与黄车,则与银色、灰色、棕色间隔排序。

棕色车虽然可以连续排列,但可以与白色、红色、黄色、金色车间隔,并且除黑白 两色车外,同种颜色的车连续喷涂会减少成本,那么棕色与其它颜色车间隔排列会使成 本进一步降低。

所以 *S* 类车 (银色、灰色) 作为间隔其他红色、黄色、金色车的优先级比棕色车高。因为黄色、红色车只能在 C1 喷涂线上喷涂,金色车只能在 C2 喷涂线上喷涂,所以有两种情况:

情况 1: 在喷涂完蓝色车后(无蓝色车则在黑车喷涂完后),若下一辆车去的喷涂线是 C1,则先喷涂 R 类车(红色、黄色车),再将金色车与 R 类车互相间隔,若无金色车则使用 S 类车间隔,若无 S 类车则使用棕色车间隔。

情况 2: 喷涂完蓝色车后(无蓝色车则在黑车喷涂完后)的下一辆车去的喷涂线是 C2,那么先喷涂金色车,再用 R 类车间隔金色车,若无 R 类车则使用用 S 类车间隔,若 无 S 类车则使用棕色车间隔。

步骤 4: S 类车装配顺序

若金色车装配完成,但R类车(红色、黄色车)未装配完成,则使用S类车(银色、灰色车)进行间隔,先装配银色车来间隔R类车,当银色车全部装配完后,再装配灰色车,若灰色车全部装配完后还有剩余的R类车,那么装配棕色车来与R类车间隔。

对于S类车(银色、灰色车),在满足驱动、动力的情况下尽可能将银色、灰色间隔排序,能使每条喷涂线的汽车颜色连续,符合同色车尽量连续喷涂作业的要求,能减少成本。若与驱动、动力、配置冲突,则服从下方的准则5。

步骤 5: 棕色、白色车的装配顺序

根据表 1 分析,白色车总比棕色车多,所以只考虑棕色车的情况。若有剩余的棕色车,将剩余的棕色车与白色车间隔排序,棕色车排完后,将剩下的白色车连续排列进行

装配。

最终得到流程图图 3, 且有以下准则:

准则1:第一(早班)、三组(夜班)黑车在早(夜)班的 A1 型号装配顺序最前列。第二(早班)、四组(夜班)黑车在 A1 型号的装配循序最后部分为黑车, A2 型号的装配顺序前列为黑车。有 A1 型号与 A2 型号连续排列。

准则 2: 调动黑车数量时,按一、三、四组的顺序调动。

准则 3: 若有蓝色车, 先将蓝色车排完。

准则 4: 满足准则 3 的情况下若有金色车和 R 类车 (红色、黄色车),先排完金色车和 R 类车, R 类车红色车和黄色车的装配顺序可以互换。

准则 5: 蓝色车、金色车、R类车、黑色车的优先级高于其他属性为第一优先级,其他属性的调动顺从金色车、R类车、黑色车。

动力、驱动属性优先级高于S类车、白色车、棕色车优先级为第二优先级,当S类车的间隔排序与驱动、动力冲突时,考虑到驱动、动力装配顺序出现异常比S类车的非间隔排序成本更大,所以S类车的排序服从驱动、动力的要求。

图 3 颜色装配问题流程图

6.1.3 驱动属性的装配算法设计

针对驱动属性,因为四驱汽车连续装配数量不能超过2辆,同时两批四驱汽车之间间隔的两驱汽车的装配数量至少是10辆,并且在间隔数量无法满足要求的情况下间隔5到9辆仍可以接受,但代价很高,所以需要尽可能的增加两批四驱汽车之间的两驱汽车的装配数量,并考虑在白班就将四驱汽车完成装配。

情况 1: D大于或等于 5 时,D为两批四驱汽车之间间隔的两驱车,首先计算白班需要装配的组数 g,然后计算两驱汽车需要装配的数量 p_1 ,以 20 日的数据为例,9 月 20 日 A1 品牌一班能做 181 辆车,A2 品牌能做 49 辆车,其中 A1 品牌需要装配 18 辆四驱车,344 辆两驱车,需要装配 9 组,A2 品牌需要装配 12 辆四驱车,86 辆两驱车,需要装配 6 组。

由此得到式(5)并计算得到两批四驱汽车之间的两驱汽车的数量D。

$$\max D = \frac{p_1}{g},$$

$$s.t. = \begin{cases} g = \frac{p_2}{2} \\ p_1 = \frac{M_k}{2} - p_2 \end{cases}$$
 (5)

情况 2: 当 *D* 小于 5 时,则在白班内无法将四驱汽车装配完成,需要将四驱汽车分配在两个班次内完成,在式(5)的基础上进行改变,对四驱汽车的数量进行平均分配,使两个班次的两驱汽车装配数量能过充分的利用,使两批四驱汽车之间的两驱汽车装配数量相等,由此得到式(6)。

当装配总数 D 除以四驱汽车要装配的数量再减去 2 得到的结果小于 5 时,则在白班内无法将四驱汽车装配完成,需要将四驱汽车分配在两个班次内完成,在上述公式的基础上进行改变,对四驱汽车的数量进行平均分配,使两个班次的两驱汽车装配数量能过充分的利用,使两批四驱汽车之间的两驱汽车装配数量相等,也就是将两个班次的装配数量 $\frac{M}{2}$ 减去二分之一的四驱汽车的数量 $\frac{p_1}{2}$ 得到两驱汽车装配数量 p_2 ,再除以每个班次

需要的装配的组数 g ,即二分之一的四驱汽车的数量再除以 2 得到装配的组数 $\frac{p_1}{4}$,就能得到所求两批四驱汽车之间的两驱汽车装配数量 D 公式如下。

$$\max D = \frac{p_2}{g},$$

$$s.t. = \begin{cases} g = \frac{p_1}{4} \\ p_2 = \frac{M_k}{2} - \frac{p_1}{2} \end{cases}.$$
(6)

图 4驱动装配问题流程图

6.1.4 动力属性的装配算法设计

针对动力属性,因为动力属性的要求与驱动属性相同,所以同样需要将两批柴油汽车之间的汽油汽车数量增加,减少装配的组数。

根据问题要求,

情况 1: 当两批柴油车数量之间间隔 5 辆以上时。每个班次的装配总数 $\frac{M}{2}$,减去需要装配的柴油汽车的数量 C_k ,得到需要装配的汽油汽车的数量 W_k ,再计算需要装配的组数 g ,将需要装配的柴油数量 C_k 除以 2 得到需要装配的组数 g ,将需要装配的汽油汽车的数量 W_k 除以需要装配的组数 g ,得到两批柴油汽车之间的汽油汽车的数量 Y_g ,得到公式 (5) 。

$$\max Y = \frac{W_k}{g},$$

$$s.t. \begin{cases} W_k = \frac{M}{2} - C_k \\ g = \frac{C_k}{2} \end{cases}$$
(7)

情况 2: 若求得的两批柴油汽车之间的汽油汽车数量小于 5 时,则柴油汽车不能在白班内完成装配,需要将柴油汽车分配在两个班次内完成,对柴油汽车需要装配的数量进行平均分配,先求出每个班次需要装配的组数 g,即柴油汽车需要装配的数量除以 4,用每个班次需要装配汽车的数量 $\frac{M}{2}$ 减去每个班次柴油汽车需要装配的数量 $\frac{C_k}{2}$ 得到每个班次需要装配的汽油汽车数量 W_k ,最后除以需要装配的组数 g,两批柴油汽车之间的汽油汽车数量 Y_k ,得到式 6。

$$\max Y = \frac{W_k}{g},$$

$$S.t. \begin{cases} W_k = \frac{M}{2} - \frac{C_k}{2} \\ g = \frac{C_k}{4} \end{cases}.$$
(8)

6.1.5 配置属性的装配算法设计

针对配置属性进行分析,因为使用柴油的汽车的配置只有 B1,而使用汽油的汽车的配置却有6种,分别为B1、B2、B3、B4、B5和B6。

为了了解每日生产使用柴油汽车配置情况,用 Excel 软件以每天柴油和汽油为变量制作每日生产使用柴油汽车配置为 B1 表,如表 2 所示。

	每日生产使用柴油汽车配置为 B1 表									
_	日期	17 日	18 日	19 日	20 日	21 日	22 日	23 日		
	柴油	4	14	16	4	2	12	12		
	汽油	456	446	444	456	458	448	448		

表 2 每日生产使用柴油汽车配置为 B1 表

由表 2 可知,考虑到使用柴油的汽车的配置数量较少受约束的条件就较少,7 天内生产使用柴油的汽车数量最多的一天是 19 日,数量达到 16 辆;7 天内生产使用柴油的汽车数量最少的一天是 21 日,数量达到 2 辆。

考虑到使用汽油的汽车的配置数量较多所受约束的条件就较多,7天内生产使用汽油的汽车配置为 B1 数量比使用汽油的汽车配置为其它的汽车数量多,最多的一天是 17日,数量达到 290辆;7天内生产使用汽油的汽车配置为 B1的数量最少的一天是 21日,数量达到 248辆。7天内生产使用汽油的汽车配置为 B5和 B6的数量比使用汽油的汽车配置为其它的汽车数量少,生产 B5和 B6最多的一天,分别是 17日和 20日数量分别为 8辆和 7辆。

为了了解每日汽车配置情况,用 Excel 软件以每天黑色车辆、白色车辆、银色车辆 为变量制作汽车配置表,如表3所示。

表 3 汽车配置表

日期	17 日	18 日	19 日	20 日	21 日	22 日	23 日	合计
黑车 B1	4	8	4	3	2	5	7	33
白车 B1	0	5	11	1	0	4	5	26
银车 B1	0	0	0	2	0	2	0	4

由表 3 可知,在考虑柴油的情况下结合对颜色属性的分析,发现黑色的汽车和白色 的汽车配置为 B1 的较多 7 天内分别累计有 33 辆和 26 辆,银色有 4 辆配置为 B1,灰色 汽车有1辆配置为B1。

为了了解黑色与金色车配置情况,用 Excel 软件以每天黑色汽车数量和金色汽车数 量为变量制作黑色车与金色车数量表,如表4所示。

表 4 黑色车与金色车数量表

日期	17 日	18 日	19 日	20 日	21 日	22 日	23 日
黑	257	257	269	251	268	259	256
金	2	1	0	3	8	8	8

由表 4 可知,结合对颜色属性的分析,发现黑色的汽车的各个配置比其它颜色的汽 车的各个配置都多,7天内黑色汽车最多一天累计生产269辆,最少一天累计生产251 辆; 金色的汽车的各个配置比其它颜色的汽车的各个配置都少, 7 天内金色汽车最多一 天累计生产8辆,最少一天累计生产0辆。

为了了解汽车驱动配置情况,用 Excel 软件以每天生产的配置为 B1 驱动为两驱的 汽车数量和配置为 B1 驱动为四驱的汽车数量为变量制作汽车驱动配置表,如表 5 所示。

表 5 汽车驱动配置表

日期	17 日	18日	19 日	20 日	21 日	22 日	23 日
两驱 B1	272	266	267	267	243	245	245
四驱 B1	18	25	30	22	5	10	9

由表 5 可知,结合对驱动属性的分析,发现两驱的汽车配置为 B1 的数量最多,7 天内两驱的汽车配置为 B1 最多一天是 17 日累计生产数量为 272 辆,驱动为两驱的汽车 最少一天是 21 日累计生产数量为 243 辆;发现四驱的汽配置为 B1 的车数量最多,7 天 内生产四驱的汽车配置为 B1 的数量最多一天是 19 日累计生产数量为 30 辆, 生产两驱 的汽车配置为B1数量最少一天是21日累计生产数量为5辆。

为了解各品牌配置为 B1 和 B5 汽车生产最多的一天和最少的一天的情况,用 Excel 软件以每天生产的品牌为 A1 配置为 B1 的汽车数量和品牌为 A1 配置为 B5 的汽车数量 及品牌为 A2 配置为 B1 的汽车数量和品牌为 A2 配置为 B5 的汽车数量为变量制作汽车 驱动配置表,如表6所示。

由表 6 可知,结合对品牌属性的分析发现品牌为 A1 的汽车配置为 B1 的数量最多, 7 天之内品牌为 A1 且配置为 B1 的汽车累计数量最多的一天是 17 日, 生产品牌为 A1 且配置为 B1 的汽车数量达到 238 辆;品牌为 A1 且配置为 B1 的汽车累计数量最少的一 天是 21 日, 生产品牌为 A1 且配置为 B1 的汽车数量达到 225 辆;品牌为 A1 的汽车配 置为 B6 的数量最少, 7 天之内生产 0 辆。

品牌为 A1 的汽车配置为 B5 的数量其次,7 天之内品牌为 A1 且配置为 B5 的汽车

13

累计数量最多的三天是前三天,数量为 6 辆,生产品牌为 A1 且配置为 B5 的汽车数量最少的三天为,品牌为后三天数量为 2 辆。

日期 17日 18日 19日 20日 21日 22 日 23 日 A1B1 238 233 227 236 225 232 232 A1B5 2 2 6 6 6 5 3 A2B1 52 23 23 22 56 58 53 A2B5 0 2 4 1 1 1

表 6 各品牌的配置生产最多的一天和最少的一天表

分析发现品牌为 A2 的汽车配置为 B1 的数量最多,7 天之内品牌为 A2 且配置为 B1 的汽车累计数量最多的一天是 19 日,生产品牌为 A2 且配置为 B1 的汽车数量达到 58 辆;品牌为 A2 且配置为 B1 的汽车累计数量最少的一天是 23 日,生产品牌为 A2 且配置为 B1 的汽车数量达到 22 辆。

品牌为 A2 的汽车配置为 B5 的数量最少,7 天之内生产最多的一天是 18 日当天生产数量为 4 辆;7 天之内生产最少的一天是 19 日,每天生产数量为 0 辆。

6.1.6 五种元素共同分析与成本计算

将 5 个模型的约束条件、准则、各颜色、配置、型号、动力、驱动的车数量合并考虑,写出 C 语言代码^[6],见附录二的 2.1。

层次分析法是将与决策有关的要素进行分类并分出 3 个或 3 个以上的层次或级别,在此基础之上进行分析的决策方法。运用层次分析法的思想将决策或问题中的各个要素进行量化。考虑将各成本量化。量化方法同层次分析法的比例标度表。

因素 i 比因素 j	同等重要	稍微重要	较强重要	强烈重要	极端重要	相邻判断中间值
量化值	1	3	5	7	9	2,4,6,8

将五个属性共同分析时,发现各属性之间有冲突,根据准则 6, 会有银色和灰色或棕色的车不连续在同一条喷涂线喷涂等,造成成本增加。

定义描述为成本很高的,量化为7。描述为尽量连续的,量化为1。

以 20 日的数据为例。不同配置的车之间切换了 7 次。黑车与其他车切换了 10 次(每条喷涂线切换一次)。其它颜色之间不连续在同一喷涂线的次数有 14 次,四驱和两驱中间间隔 5-9 辆车的次数为 0 次。所以损失的成本的量化为 91。

结合文献^[1]可知一般常规换色一次,消耗涂料 0.5 kg,稀料 2 kg 左右。如果涂料以 45 元/kg 计算,稀料以 14 元/kg 计算,那么每次非黑色之间的换色消耗材料的成本约 50 元左右,结合损失的成本量化值,20 日的成本大致为 4550 元。

6.2 利用确定汽车装配顺序问题解决问题二

根据问题一的模型与算法,对附件中的数据分类归类为支撑文件中的代码输入数据文件,使用 C-Free 软件运行代码,在 D 盘中得能到新的 Excel 文件 schedule.xls。

将运行代码后出现的表调整格式以及,放入支撑材料。并将 9 月 20 日的装配顺序 表放在附录 1.1,将 9 月 17 到 9 月 23 日的装配顺序表放在附件中。

七、 模型的灵敏度分析

数据是统计观察得到的,因此我们需要考虑数据不准确的可能性,如某日黑车生产过多,导致第二天黑车生产辆减少,或者由于某型号黑车销量问题,减少或增加此型号的黑车生产数。为了研究改变黑车数量对模型的影响,改变一天中黑车的数量,分析改变前后的数据,来检验算法的灵敏度,由于改变黑车的数量且需要保持车的总数不变,则同时改变对其他因素较小的白车数量。以此为例对 9 月 20 日的各个属性数据进行处理,得到表 820 日各属性总计表。

A1 品牌黑色增加 11 辆使黑色数量达到 200 辆,同时减少白色 11 辆使装配总量不变, A2 品牌黑色减少 15 辆车,使黑色减少到 50 辆,并增加白色车 15 辆,最后对数据进行处理得到表 920 日以改各属性总计表。

用 C-Free 软件运行附录 2.1 代码将所得表 8 和表 9 的数据按顺序输入,并将所得运行结果运用 SPSS 软件进行处理得到图 6 改变黑车数量后的对比分析图。

图 5 改变黑车数量后的对比分析图

通过图 6 可只有第一组黑色车、车第三组黑色车和白色车的数量有所变化,并且第一组的黑色车数量改变最大,改变后的黑车数较未改变的黑车数减少了 8 辆,并通过计算可知第一组的黑色车改变后的数量比改变前降低了 13.8%,第二组黑色车未发生改变,第三组黑色车改变后的数量比改变前只增加了 5.3%,白色车改变后的数量比改变前的数量增加了 2.6%,而其他颜色均未发生变化,有此可知改变黑色车和白色车的数量对其他颜色并没有影响。

由图 6 可知图中各颜色的趋势并未发生太大变化,改变后的大体趋势与改变前的数据趋势相同,综上可知灵敏度为优。

八、 模型的评价与推广

8.1 模型的评价

1、优点:

- (1) 对数据进行了优化处理,如:将每班的生产汽车数量取每天生产总量的一半;将范围在 50 辆到 70 辆的黑车取 70 辆整。使数据处理更简易,具有实际意义。
- (2)针对如何安排装配顺序表编译了代码,可以能更快高效地进行求解,提高了工作效率。
- (3)运行 C-Free 软件放入编译的代码按顺序输入数据后可直接得出一张表,操作简单方便。
 - 2、缺点:
- (1)针对文中编译的代码,没有实现从给的文档中读取信息的代码,需手动输入数据。
 - (2) 由于时间关系,写出题目给出最优算法的代码没有完善,会有一定的误差。

8.2 模型的改进

- 1、可以将代码改进实现从文档中读取文档内的信息,又能更改后自动保存到文件夹内。
- 2、将车辆的数据可调控范围考虑进去,使代码运行后得到的数据更加完善误差更小。

8.3 模型的推广

可以将本算法稍作改进推广到其它生产线问题上去应用,如飞机、动车等生产线上的问题。

参考文献

- [1] 卢丹丹. 房地产多目标决策模糊综合优选模型的研究[D].西南交通大学,2017
- [2] 快速序贯算法[J]. 周世健,夏尚坤. 解放军测绘学院学报. 1994(01)
- [3] 成亚君, 降低轿车涂装换色成本的途径[J], 上海涂料, 2013,51(11):48-49
- [4] 肖芬 陈立新,山西大学商务学院,2018 年 06 月 11 日, "互联网+"环境下审计风险评估研究——基于模糊层次分析法,审计广角
- [5] 荀志远 赵琛琛 吴秋霖 赵辉, 青岛理工大学, 2018 年 08 月 27 日, 海绵城市建设绩效评价研究——基于直觉模糊层次分析法 工业安全与环保
- [6] 张智慧, C语言嵌入式系统编程软件设计架构研究, 单片机与嵌入式系统应用, 1:3-5、10,2018
- [7] 白永和,数学建模教学模式的探索与实践分析,信息记录材料,9:126-127,2018。
- [8] Foulds LR. Combinatorial Optimization for undergraduate. New York: Springer -Verlag,1984 (中译本: 沈明刚等.组合最优化.上海: 上海翻译出版社,1998)

附录

附录一:

1.1 A1 和 A2 每天总数表

A1 和 A2 每天总数表

日期	17日	18日	19日	20 日	21 日	22 日	23 日
A1	364	356	356	362	376	366	367
A2	96	104	104	98	84	94	93

1.2 9月20日的装配顺序表

装配顺序	品牌	配置	动力	驱动	颜色	喷涂线
1	A1	B1	汽油	四驱	黑色	C1
2	A1	B1	汽油	四驱	黑色	C2
3	A1	B1	汽油	二驱	黑色	C1
4	A1	B1	汽油	二驱	黑色	C2
5	A1	B1	汽油	二驱	黑色	C1
6	A1	B1	汽油	二驱	黑色	C2
7	A1	B1	汽油	二驱	黑色	C1
8	A1	B1	汽油	二驱	黑色	C2
9	A1	B1	汽油	二驱	黑色	C1
10	A1	B1	汽油	二驱	黑色	C2
11	A1	B1	汽油	二驱	黑色	C1
12	A1	B1	汽油	二驱	黑色	C2
13	A1	B1	汽油	二驱	黑色	C1
14	A1	B1	汽油	二驱	黑色	C2
15	A1	B1	汽油	二驱	黑色	C1

16	A1	B1	汽油	二驱	黑色	C2
17	A1	B1	汽油	二驱	黑色	C1
18	A1	B1	汽油	二驱	黑色	C2
19	A1	B1	汽油	二驱	黑色	C1
20	A1	B1	汽油	二驱	黑色	C2
21	A1	B1	汽油	四驱	黑色	C1
22	A1	B1	汽油	四驱	黑色	C2
23	A1	B1	汽油	二驱	黑色	C1
24	A1	B1	汽油	二驱	黑色	C2
25	A1	B1	汽油	二驱	黑色	C1
26	A1	B1	汽油	二驱	黑色	C2
27	A1	B1	汽油	二驱	黑色	C1
28	A1	B1	汽油	二驱	黑色	C2
29	A1	В1	汽油	二驱	黑色	C1
30	A1	B1	汽油	二驱	黑色	C2
31	A1	В1	汽油	二驱	黑色	C1
32	A1	B1	汽油	二驱	黑色	C2
33	A1	В1	汽油	二驱	黑色	C1
34	A1	B1	汽油	二驱	黑色	C2
35	A1	B1	汽油	二驱	黑色	C1
36	A1	B1	汽油	二驱	黑色	C2

37	A1	B1	汽油	二驱	黑色	C1
38	A1	B1	汽油	二驱	黑色	C2
39	A1	В1	汽油	二驱	黑色	C1
40	A1	B1	汽油	二驱	黑色	C2
41	A1	B1	汽油	四驱	黑色	C1
42	A1	B1	汽油	四驱	黑色	C2
43	A1	B1	汽油	二驱	黑色	C1
44	A1	B1	汽油	二驱	黑色	C2
45	A1	B1	汽油	二驱	黑色	C1
46	A1	B1	汽油	二驱	黑色	C2
47	A1	B1	汽油	二驱	黑色	C1
48	A1	B1	汽油	二驱	黑色	C2
49	A1	B1	汽油	二驱	黑色	C1
50	A1	B1	汽油	二驱	黑色	C2
51	A1	B1	汽油	二驱	黑色	C1
52	A1	B1	汽油	二驱	黑色	C2
53	A1	B1	汽油	二驱	黑色	C1
54	A1	B1	汽油	二驱	黑色	C2
55	A1	B1	汽油	二驱	黑色	C1
56	A1	B1	汽油	二驱	黑色	C2
57	A1	В1	汽油	二驱	黑色	C1

58	A1	B1	汽油	二驱	黑色	C2
59	A1	B1	汽油	二驱	蓝色	C1
60	A1	B1	汽油	二驱	白色	C2
61	A1	B1	汽油	四驱	蓝色	C1
62	A1	B1	汽油	四驱	白色	C2
63	A1	В1	汽油	二驱	蓝色	C1
64	A1	B1	汽油	二驱	白色	C2
65	A1	В1	汽油	二驱	蓝色	C1
66	A1	B1	汽油	二驱	白色	C2
67	A1	В1	汽油	二驱	红色	C1
68	A1	B1	汽油	二驱	银色	C2
69	A1	В1	汽油	二驱	红色	C1
70	A1	B1	汽油	二驱	银色	C2
71	A1	В1	汽油	二驱	红色	C1
72	A1	B1	汽油	二驱	银色	C2
73	A1	В1	汽油	二驱	红色	C1
74	A1	B1	汽油	二驱	银色	C2
75	A1	В1	汽油	二驱	黄色	C1
76	A1	B1	汽油	二驱	银色	C2
77	A1	B1	汽油	二驱	黄色	C1
78	A1	B1	汽油	二驱	银色	C2

79	A1	В1	汽油	二驱	黄色	C1
80	A1	B1	汽油	二驱	灰色	C2
81	A1	B1	汽油	四驱	黄色	C1
82	A1	B1	汽油	四驱	灰色	C2
83	A1	B1	汽油	二驱	黄色	C1
84	A1	B1	汽油	二驱	灰色	C2
85	A1	B1	汽油	二驱	灰色	C1
86	A1	B1	汽油	二驱	灰色	C2
87	A1	B1	汽油	二驱	灰色	C1
88	A1	B1	汽油	二驱	灰色	C2
89	A1	B1	汽油	二驱	灰色	C1
90	A1	B1	汽油	二驱	灰色	C2
91	A1	B1	汽油	二驱	灰色	C1
92	A1	B1	汽油	二驱	灰色	C2
93	A1	В1	汽油	二驱	灰色	C1
94	A1	В1	汽油	二驱	白色	C2
95	A1	В1	汽油	二驱	白色	C1
96	A1	B1	汽油	二驱	白色	C2
97	A1	В1	汽油	二驱	白色	C1
98	A1	B1	汽油	二驱	白色	C2
99	A1	В1	汽油	二驱	白色	C1

100	A1	B1	汽油	二驱	白色	C2
101	A1	B1	汽油	四驱	白色	C1
102	A1	B1	汽油	四驱	白色	C2
103	A1	B1	汽油	二驱	白色	C1
104	A1	B1	汽油	二驱	白色	C2
105	A1	B1	汽油	二驱	白色	C1
106	A1	B1	汽油	二驱	白色	C2
107	A1	B1	汽油	二驱	白色	C1
108	A1	B1	汽油	二驱	白色	C2
109	A1	В1	汽油	二驱	白色	C1
110	A1	B1	汽油	二驱	白色	C2
111	A1	B1	汽油	二驱	白色	C1
112	A1	B1	汽油	二驱	白色	C2
113	A1	В1	汽油	二驱	白色	C1
114	A1	B1	汽油	二驱	白色	C2
115	A1	В1	汽油	二驱	白色	C1
116	A1	B1	汽油	二驱	白色	C2
117	A1	В1	汽油	二驱	白色	C1
118	A1	B1	汽油	二驱	白色	C2
119	A1	B1	汽油	二驱	白色	C1
120	A1	B1	汽油	二驱	白色	C2

121	A1	B1	汽油	四驱	白色	C1
122	A1	B1	汽油	四驱	白色	C2
123	A1	B1	汽油	二驱	白色	C1
124	A1	B1	汽油	二驱	白色	C2
125	A1	B1	汽油	二驱	白色	C1
126	A1	B1	汽油	二驱	白色	C2
127	A1	B1	汽油	二驱	白色	C1
128	A1	B1	汽油	二驱	白色	C2
129	A1	B1	汽油	二驱	白色	C1
130	A1	B1	汽油	二驱	白色	C2
131	A1	B1	汽油	二驱	白色	C1
132	A1	B1	汽油	二驱	白色	C2
133	A1	B1	汽油	二驱	白色	C1
134	A1	B1	汽油	二驱	白色	C2
135	A1	B1	汽油	二驱	白色	C1
136	A1	B1	汽油	二驱	白色	C2
137	A1	В1	汽油	二驱	白色	C1
138	A1	B1	汽油	二驱	白色	C2
139	A1	B1	汽油	二驱	白色	C1
140	A1	B1	汽油	二驱	白色	C2
141	A1	B1	汽油	四驱	白色	C1

142	A1	B1	汽油	四驱	白色	C2
143	A1	B1	汽油	二驱	白色	C1
144	A1	B1	汽油	二驱	白色	C2
145	A1	B1	汽油	二驱	白色	C1
146	A1	B1	汽油	二驱	白色	C2
147	A1	B1	汽油	二驱	白色	C1
148	A1	B1	汽油	二驱	白色	C2
149	A1	B1	汽油	二驱	白色	C1
150	A1	B1	汽油	二驱	白色	C2
151	A1	B1	汽油	二驱	白色	C1
152	A1	B1	汽油	二驱	白色	C2
153	A1	B1	汽油	二驱	白色	C1
154	A1	B1	汽油	二驱	白色	C2
155	A1	В1	汽油	二驱	白色	C1
156	A1	В1	汽油	二驱	白色	C2
157	A1	В1	汽油	二驱	白色	C1
158	A1	B1	汽油	二驱	白色	C2
159	A1	В1	汽油	二驱	白色	C1
160	A1	B1	汽油	二驱	白色	C2
161	A1	B1	汽油	四驱	白色	C1
162	A1	B1	汽油	四驱	白色	C2

163	A1	B1	汽油	二驱	白色	C1
164	A1	В1	汽油	二驱	白色	C2
165	A1	B1	汽油	二驱	白色	C1
166	A1	B1	汽油	二驱	白色	C2
167	A1	B1	汽油	二驱	白色	C1
168	A1	B1	汽油	二驱	白色	C2
169	A1	B1	汽油	二驱	白色	C1
170	A1	B1	汽油	二驱	白色	C2
171	A1	B1	汽油	二驱	白色	C1
172	A1	B1	汽油	二驱	白色	C2
173	A1	B1	汽油	二驱	白色	C1
174	A1	B1	汽油	二驱	白色	C2
175	A1	B1	汽油	二驱	白色	C1
176	A1	B1	汽油	二驱	白色	C2
177	A1	B1	汽油	二驱	白色	C1
178	A1	B1	汽油	二驱	白色	C2
179	A1	B1	汽油	二驱	白色	C1
180	A1	B1	汽油	二驱	白色	C2
181	A1	B1	汽油	二驱	黑色	C1
182	A2	B1	柴油	四驱	黑色	C2
183	A2	B1	柴油	四驱	黑色	C1

184	A2	B1	汽油	二驱	黑色	C2
185	A2	B1	汽油	二驱	黑色	C1
186	A2	B1	汽油	二驱	黑色	C2
187	A2	B1	汽油	二驱	黑色	C1
188	A2	B1	汽油	二驱	黑色	C2
189	A2	B1	汽油	二驱	黑色	C1
190	A2	B1	汽油	四驱	黑色	C2
191	A2	B1	汽油	四驱	黑色	C1
192	A2	B1	汽油	二驱	黑色	C2
193	A2	B1	汽油	二驱	黑色	C1
194	A2	B1	汽油	二驱	黑色	C2
195	A2	B1	汽油	二驱	黑色	C1
196	A2	B1	汽油	二驱	黑色	C2
197	A2	B1	汽油	二驱	黑色	C1
198	A2	B1	汽油	四驱	黑色	C2
199	A2	B1	汽油	四驱	黑色	C1
200	A2	B1	汽油	二驱	黑色	C2
201	A2	B1	汽油	二驱	黑色	C1
202	A2	B1	汽油	二驱	黑色	C2
203	A2	B1	汽油	二驱	黑色	C1
204	A2	B1	汽油	二驱	黑色	C2

205 A2 B1 汽油 206 A2 B1 柴油	二驱	黑色	C1
206 A2 B1 些油			
	四驱	黑色	C2
207 A2 B1 柴油	四驱	黑色	C1
208 A2 B1 汽油	二驱	黑色	C2
209 A2 B1 汽油	二驱	黑色	C1
210 A2 B1 汽油	二驱	黑色	C2
211 A2 B1 汽油	二驱	黑色	C1
212 A2 B1 汽油	二驱	黑色	C2
213 A2 B1 汽油	二驱	黑色	C1
214 A2 B1 汽油	四驱	黑色	C2
215 A2 B1 汽油	四驱	黑色	C1
216 A2 B1 汽油	二驱	黑色	C2
217 A2 B1 汽油	二驱	黑色	C1
218 A2 B1 汽油	二驱	黑色	C2
219 A2 B1 汽油	二驱	黑色	C1
220 A2 B1 汽油	二驱	黑色	C2
221 A2 B1 汽油	二驱	黑色	C1
222 A2 B1 汽油	四驱	黑色	C2
223 A2 B1 汽油	四驱	黑色	C1
224 A2 B1 汽油	二驱	黑色	C2
225 A2 B1 汽油	二驱	黑色	C1

226	A2	B1	汽油	二驱	黑色	C2
227	A2	B1	汽油	二驱	黑色	C1
228	A2	B1	汽油	二驱	黑色	C2
229	A2	B1	汽油	二驱	黑色	C1
230	A2	B1	汽油	二驱	黑色	C2
231	A1	B1	汽油	二驱	黑色	C1
232	A1	B1	汽油	二驱	黑色	C2
233	A1	B1	汽油	二驱	黑色	C1
234	A1	B1	汽油	二驱	黑色	C2
235	A1	B1	汽油	二驱	黑色	C1
236	A1	B1	汽油	二驱	黑色	C2
237	A1	B1	汽油	二驱	黑色	C1
238	A1	B1	汽油	二驱	黑色	C2
239	A1	В1	汽油	二驱	黑色	C1
240	A1	B1	汽油	二驱	黑色	C2
241	A1	В1	汽油	二驱	黑色	C1
242	A1	B1	汽油	二驱	黑色	C2
243	A1	В1	汽油	二驱	黑色	C1
244	A1	B1	汽油	二驱	黑色	C2
245	A1	B1	汽油	二驱	黑色	C1
246	A1	B1	汽油	二驱	黑色	C2

247	A1	В1	汽油	二驱	黑色	C1
248	A1	В1	汽油	二驱	黑色	C2
249	A1	B1	汽油	二驱	黑色	C1
250	A1	B1	汽油	二驱	黑色	C2
251	A1	B1	汽油	二驱	黑色	C1
252	A1	B1	汽油	二驱	黑色	C2
253	A1	B1	汽油	二驱	黑色	C1
254	A1	B1	汽油	二驱	黑色	C2
255	A1	B1	汽油	二驱	黑色	C1
256	A1	B1	汽油	二驱	黑色	C2
257	A1	B1	汽油	二驱	黑色	C1
258	A1	B1	汽油	二驱	黑色	C2
259	A1	B1	汽油	二驱	黑色	C1
260	A1	B1	汽油	二驱	黑色	C2
261	A1	B1	汽油	二驱	黑色	C1
262	A1	B1	汽油	二驱	黑色	C2
263	A1	B1	汽油	二驱	黑色	C1
264	A1	B1	汽油	二驱	黑色	C2
265	A1	B1	汽油	二驱	黑色	C1
266	A1	B1	汽油	二驱	黑色	C2
267	A1	B1	汽油	二驱	黑色	C1

268	A1	B1	汽油	二驱	黑色	C2
269	A1	B1	汽油	二驱	黑色	C1
270	A1	B1	汽油	二驱	黑色	C2
271	A1	B1	汽油	二驱	黑色	C1
272	A1	B1	汽油	二驱	黑色	C2
273	A1	B1	汽油	二驱	黑色	C1
274	A1	B1	汽油	二驱	黑色	C2
275	A1	B1	汽油	二驱	黑色	C1
276	A1	B1	汽油	二驱	黑色	C2
277	A1	B1	汽油	二驱	黑色	C1
278	A1	B1	汽油	二驱	黑色	C2
279	A1	B1	汽油	二驱	黑色	C1
280	A1	B1	汽油	二驱	黑色	C2
281	A1	B1	汽油	二驱	黑色	C1
282	A1	B1	汽油	二驱	黑色	C2
283	A1	В1	汽油	二驱	黑色	C1
284	A1	B1	汽油	二驱	黑色	C2
285	A1	B1	汽油	二驱	黑色	C1
286	A1	B2	汽油	二驱	黑色	C2
287	A1	B2	汽油	二驱	黑色	C1
288	A1	B2	汽油	二驱	黑色	C2

289	A1	B2	汽油	二驱	黑色	C1
290	A1	B2	汽油	二驱	黑色	C2
291	A1	B2	汽油	二驱	黑色	C1
292	A1	B2	汽油	二驱	黑色	C2
293	A1	B2	汽油	二驱	黑色	C1
294	A1	B2	汽油	二驱	黑色	C2
295	A1	B2	汽油	二驱	黑色	C1
296	A1	B2	汽油	二驱	黑色	C2
297	A1	B2	汽油	二驱	黑色	C1
298	A1	B2	汽油	二驱	黑色	C2
299	A1	B2	汽油	二驱	黑色	C1
300	A1	B2	汽油	二驱	黑色	C2
301	A1	B2	汽油	二驱	白色	C1
302	A1	B2	汽油	二驱	白色	C2
303	A1	B2	汽油	二驱	白色	C1
304	A1	B2	汽油	二驱	白色	C2
305	A1	B2	汽油	二驱	白色	C1
306	A1	B2	汽油	二驱	白色	C2
307	A1	B2	汽油	二驱	白色	C1
308	A1	B2	汽油	二驱	白色	C2
309	A1	B2	汽油	二驱	白色	C1

310	A1	B2	汽油	二驱	白色	C2
311	A1	B2	汽油	二驱	白色	C1
312	A1	B2	汽油	二驱	白色	C2
313	A1	B2	汽油	二驱	白色	C1
314	A1	B2	汽油	二驱	白色	C2
315	A1	В2	汽油	二驱	白色	C1
316	A1	В2	汽油	二驱	白色	C2
317	A1	В2	汽油	二驱	白色	C1
318	A1	B2	汽油	二驱	白色	C2
319	A1	В2	汽油	二驱	白色	C1
320	A1	В2	汽油	二驱	白色	C2
321	A1	B2	汽油	二驱	白色	C1
322	A1	B2	汽油	二驱	白色	C2
323	A1	B2	汽油	二驱	白色	C1
324	A1	В2	汽油	二驱	白色	C2
325	A1	В2	汽油	二驱	白色	C1
326	A1	В2	汽油	二驱	白色	C2
327	A1	B2	汽油	二驱	白色	C1
328	A1	B2	汽油	二驱	白色	C2
329	A1	B2	汽油	二驱	白色	C1
330	A1	B2	汽油	二驱	白色	C2

331	A1	B2	汽油	二驱	白色	C1
332	A1	B2	汽油	二驱	白色	C2
333	A1	B2	汽油	二驱	白色	C1
334	A1	B2	汽油	二驱	白色	C2
335	A1	B2	汽油	二驱	白色	C1
336	A1	B2	汽油	二驱	白色	C2
337	A1	B2	汽油	二驱	白色	C1
338	A1	B2	汽油	二驱	白色	C2
339	A1	B2	汽油	二驱	白色	C1
340	A1	B2	汽油	二驱	白色	C2
341	A1	B2	汽油	二驱	白色	C1
342	A1	B2	汽油	二驱	白色	C2
343	A1	B2	汽油	二驱	白色	C1
344	A1	B2	汽油	二驱	白色	C2
345	A1	В2	汽油	二驱	白色	C1
346	A1	B2	汽油	二驱	白色	C2
347	A1	В2	汽油	二驱	白色	C1
348	A1	B2	汽油	二驱	白色	C2
349	A1	B2	汽油	二驱	白色	C1
350	A1	B2	汽油	二驱	白色	C2
351	A1	B2	汽油	二驱	白色	C1

352	A1	B2	汽油	二驱	黑色	C2
353	A1	B2	汽油	二驱	黑色	C1
354	A1	B2	汽油	二驱	黑色	C2
355	A1	B2	汽油	二驱	黑色	C1
356	A1	B2	汽油	二驱	黑色	C2
357	A1	B2	汽油	二驱	黑色	C1
358	A1	B2	汽油	二驱	黑色	C2
359	A1	B2	汽油	二驱	黑色	C1
360	A1	B2	汽油	二驱	黑色	C2
361	A1	B2	汽油	二驱	黑色	C1
362	A1	B2	汽油	二驱	黑色	C2
363	A1	B2	汽油	二驱	黑色	C1
364	A1	B2	汽油	二驱	黑色	C2
365	A1	B2	汽油	二驱	黑色	C1
366	A1	B2	汽油	二驱	黑色	C2
367	A1	B2	汽油	二驱	黑色	C1
368	A1	B2	汽油	二驱	黑色	C2
369	A1	В2	汽油	二驱	黑色	C1
370	A1	B2	汽油	二驱	黑色	C2
371	A1	B2	汽油	二驱	黑色	C1
372	A1	B2	汽油	二驱	黑色	C2

373	A1	B2	汽油	二驱	黑色	C1
374	A1	B2	汽油	二驱	黑色	C2
375	A1	B2	汽油	二驱	黑色	C1
376	A1	B2	汽油	二驱	黑色	C2
377	A1	B2	汽油	二驱	黑色	C1
378	A1	B2	汽油	二驱	黑色	C2
379	A1	B2	汽油	二驱	黑色	C1
380	A1	B2	汽油	二驱	黑色	C2
381	A1	B2	汽油	二驱	黑色	C1
382	A1	B2	汽油	二驱	黑色	C2
383	A1	B2	汽油	二驱	黑色	C1
384	A1	B2	汽油	二驱	黑色	C2
385	A1	B2	汽油	二驱	黑色	C1
386	A1	B2	汽油	二驱	黑色	C2
387	A1	B2	汽油	二驱	黑色	C1
388	A1	B2	汽油	二驱	黑色	C2
389	A1	В2	汽油	二驱	黑色	C1
390	A1	B2	汽油	二驱	黑色	C2
391	A1	B2	汽油	二驱	黑色	C1
392	A1	B2	汽油	二驱	黑色	C2
393	A1	B2	汽油	二驱	黑色	C1

394	A1	В3	汽油	二驱	黑色	C2
395	A1	В3	汽油	二驱	黑色	C1
396	A1	В3	汽油	二驱	黑色	C2
397	A1	В3	汽油	二驱	黑色	C1
398	A1	В3	汽油	二驱	黑色	C2
399	A1	В3	汽油	二驱	黑色	C1
400	A1	В3	汽油	二驱	黑色	C2
401	A1	В3	汽油	二驱	黑色	C1
402	A1	В3	汽油	二驱	黑色	C2
403	A1	В3	汽油	二驱	黑色	C1
404	A1	В3	汽油	二驱	黑色	C2
405	A1	В3	汽油	二驱	黑色	C1
406	A1	В3	汽油	二驱	黑色	C2
407	A1	B5	汽油	二驱	黑色	C1
408	A1	B5	汽油	二驱	黑色	C2
409	A1	B5	汽油	二驱	黑色	C1
410	A1	B5	汽油	二驱	黑色	C2
411	A1	B5	汽油	二驱	黑色	C1
412	A2	B1	汽油	二驱	黑色	C2
413	A2	B1	汽油	二驱	黑色	C1
414	A2	B1	汽油	二驱	黑色	C2

			>-> 1			
415	A2	B1	汽油 	二驱	黑色	C1
416	A2	B1	汽油	二驱	黑色	C2
417	A2	В1	汽油	二驱	黑色	C1
418	A2	B1	汽油	二驱	黑色	C2
419	A2	B1	汽油	二驱	黑色	C1
420	A2	B4	汽油	二驱	黑色	C2
421	A2	B4	汽油	二驱	黑色	C1
422	A2	B4	汽油	二驱	黑色	C2
423	A2	B4	汽油	二驱	黑色	C1
424	A2	B4	汽油	二驱	黑色	C2
425	A2	B4	汽油	二驱	黑色	C1
426	A2	B4	汽油	二驱	黑色	C2
427	A2	B4	汽油	二驱	黑色	C1
428	A2	B4	汽油	二驱	白色	C2
429	A2	B4	汽油	二驱	蓝色	C1
430	A2	B4	汽油	二驱	白色	C2
431	A2	B4	汽油	二驱	蓝色	C1
432	A2	B4	汽油	二驱	金色	C2
433	A2	B4	汽油	二驱	红色	C1
434	A2	B4	汽油	二驱	金色	C2
435	A2	B4	汽油	二驱	红色	C1

436	A2	B4	汽油	二驱	金色	C2
437	A2	B4	汽油	二驱	红色	C1
438	A2	B4	汽油	二驱	银色	C2
439	A2	B4	汽油	二驱	红色	C1
440	A2	B4	汽油	二驱	银色	C2
441	A2	B4	汽油	二驱	红色	C1
442	A2	B4	汽油	二驱	银色	C2
443	A2	B4	汽油	二驱	红色	C1
444	A2	B4	汽油	二驱	白色	C2
445	A2	B4	汽油	二驱	棕色	C1
446	A2	B4	汽油	二驱	白色	C2
447	A2	B4	汽油	二驱	棕色	C1
448	A2	B4	汽油	二驱	白色	C2
449	A2	B4	汽油	二驱	棕色	C1
450	A2	B4	汽油	二驱	白色	C2
451	A2	В4	汽油	二驱	棕色	C1
452	A2	B5	汽油	二驱	白色	C2
453	A2	B5	汽油	二驱	棕色	C1
454	A2	В6	汽油	二驱	白色	C2
455	A2	В6	汽油	二驱	棕色	C1
456	A2	В6	汽油	二驱	白色	C2

457	A2	В6	汽油	二驱	白色	C1
458	A2	В6	汽油	二驱	白色	C2
459	A2	В6	汽油	二驱	白色	C1
460	A2	В6	汽油	二驱	白色	C2

附录二:

2.1 装配顺序的 C 语言代码

装配顺序的 C 语言代码

```
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std;
char pp[2][3] = {\text{"A1"}, \text{"A2"}};
int pps1[10];
char pz[6][3] = {"B1", "B2", "B3", "B4", "B5", "B6"};
int pzs1[10];
char d1[2][5] = {"汽油","柴油"};
int dls1[10];
char qd[2][5] = {"二驱", "四驱"};
int qds1[10];
char ys[11][5] = {"黑色","白色","蓝色","棕色","金色","R","S","红色","黄色","
银色","灰色"};
int yss1[11];
int z[1000]; int z1;
int y[1000]; int y1;
int x[1000]; int x1;
int w[1000]; int w1;
int v[1000]; int v1;
struct A1
   int pz[6];
   int d1[2];
   int qd[2];
   int ys[9];
};
struct A2
```



```
{
   int pz[6];
   int d1[2];
   int qd[2];
   int ys[9];
};
A1 a1; A2 a2;
int hcz[4];
void hcsf(int b)
{
   int n, x, q, e, r, c;
   q=70;e=70;r=70;//第一、三、四组 70 辆
   n=b/70;//求出有几组满编(70辆)的组
   x=b%(n*70); //求出余数 X
   if(x<50)//如果余数 x 小于最低组数 50
      q=70-(50-x);//将第一组的黑车调动到第二组
      if(x<50)//如果第一组调配 20 辆还不够的话
         c=50-x; //需要调剂的数量
         if (c<20)
         {
            q=q-c://第一组减去调动的车数
            x=x+c;//第二组获得第一组调配的 车数
         else
         {
            q=q-20;
            x=x+20;
            c=50-x;
            if (c<20)
               e=e-c;//第三组减去调动的车数
               x=x+c;
            }
            else
               e=e-20;
               x=x+20;
               c=50-x://
               if (c<20)
                  r=r-c;//第四组减去调动的车数
                  x=x+c;
```

```
}
               else
                  printf("数据错误\n");
            }
         }
      }
   }
   if(x>=50)//如果余数 x 大于最低要求的 50 辆
   \{hcz[0]=q:hcz[1]=x:hcz[2]=e:hcz[3]=r:\}
int sum(int *p, int i)
   int s=0;
   while(i--)
      s+=p[i];
   return s:
}
int main(int argc, char *argv[])
   int twt;
   printf("请输入需要连续分析的天数(文件创建在D盘)\n(要连续分析7天的数
据则输入 7) \n");
   scanf("%d", &twt);
   FILE *fp;
   fp = fopen("D:\\schedule.xls", "a+");//创建表到D盘的EXCEL
   setbuf(stdin, NULL);
   for (int q=1;q \le twt;q++)
      int zab, zbb, zaw, zbw;
      z1=0;
      int ab, bb, aw, bw;
      printf("A1 型号的数据:\n");
      printf("输入各配置数量的和(输入B1、B2、B3、B4、B5、B6的和,若无则输
\lambda 0) :\n"); for (int i=0; i<6; i++) scanf ("%d", &a1. pz[i]);
      printf("输入各动力数量的和(输入汽油、柴油车数量的和,若无则输入
0):\n'');for(int i=0;i<2;i++)scanf("%d",&a1.dl[i]);
      printf("输入各驱动数量的和(输入二驱、四驱数量):\n");for(int
i=0; i<2; i++) scanf("%d", &al. qd[i]);
      printf("输入各颜色数量的和(输入黑色、白色、蓝色、棕色、金色、R 类车
(红色黄色之和)、\nS 类车(银色灰色之和)、红色、黄色、银色、灰色):\n");for(int
i=0; i<11; i++) scanf("%d", &a1. ys[i]);
      zab=ab = sum(a1. ys, 7)/2;
```



```
zaw=aw = sum(a1. ys, 7)-ab;
      printf("A2:");
      printf("输入各配置数量的和(输入B1、B2、B3、B4、B5、B6的和,若无则输
\lambda 0) :\n"); for (int i=0; i<6; i++) scanf ("%d", &a2. pz[i]);
      printf("输入各动力数量的和(输入汽油、柴油车数量的和,若无则输入
0):\n'');for(int i=0;i<2;i++)scanf("%d", &a2.d1[i]);
      printf("输入各驱动数量的和(输入二驱、四驱数量):\n");for(int
i=0; i<2; i++) scanf("%d", &a2. qd[i]);
      printf("输入各颜色数量的和(输入黑色、白色、蓝色、棕色、金色、R 类车
(红色黄色之和)、\nS 类车(银色灰色之和)、红色、黄色、银色、灰色):\n");for(int
i=0; i<11; i++) scanf("%d", &a2. ys[i]);
      zbb=bb = sum(a2. ys, 7)/2;
      zbw=bw = sum(a2. ys, 7)-bb;
      hcsf(a1.ys[0]+a2.ys[0]);//黑车分组
      for(int i=0;i<hcz[0];i++)//第一次黑车
         z[z]++]=0:
      a1. ys[0] = hcz[0];
      ab = hcz[0];
      for(;a1.ys[2]!=0;)//蓝、白车
         if(z1\%2==0)
            z[z1++]=2:ab--:a1. vs[2]--:
            if (ab==0) break;
            z[z1++]=1;ab--;a1.ys[1]--;
            if (ab==0) break;
         }
         else
            z[z1++]=1;ab--;a1.ys[1]--;
            if (ab==0) break;
            z[z1++]=2;ab--;a1.ys[2]--;
            if (ab==0) break;
         }
      /**********白天的 A1***********************/
      int alhcsl:
      if (a2. ys[0] >= bb)
         a1hcs1 = hcz[1] - bb;
      }
      else
         a1hcs1 = hcz[1] - a2.ys[0];
```



```
for(;a1.ys[5]!=0&&a1.ys[4]!=0&&ab!=a1hcs1;)//R、金车
   if(z1\%2==0)
   {
       z[z1++]=5;ab--;a1.ys[5]--;
       if (ab==a1hcs1) break;
       z[z1++]=4;ab--;a1.ys[4]--;
       if (ab==a1hcs1) break;
   }
   else
    {
       z[z1++]=4;ab--;a1.ys[4]--;
       if (ab==a1hcs1) break;
       z[z1++]=5;ab--;a1.ys[5]--;
       if (ab==a1hcs1) break;
   }
}
if(a1. ys[4]==0)
   for(;a1.ys[5]!=0&&a1.ys[6]!=0&&ab>a1hcs1;)//R、S车
       if(z1\%2==0)
           z[z1++]=5;ab--;a1.ys[5]--;
           if (ab==a1hcs1) break;
           z[z1++]=6;ab--;a1.ys[6]--;
           if (ab==a1hcs1) break;
       }
       else
           z[z1++]=6;ab--;a1.ys[6]--;
           if (ab==a1hcs1) break;
           z[z1++]=5;ab--;a1.ys[5]--;
           if (ab==a1hcs1) break;
       }
   if(a1. ys[6]==0)
       for(;a1.ys[5]!=0&&a1.ys[3]!=0&&ab>a1hcs1;)//R、棕车
       {
           if(z1\%2==0)
```

```
z[z1++]=5;ab--;a1.ys[5]--;
              if (ab==a1hcs1) break;
              z[z1++]=3;ab--;a1.ys[3]--;
              if (ab==a1hcs1) break;
           }
           else
              z[z1++]=3;ab--;a1.ys[3]--;
              if (ab==a1hcs1) break;
              z[z1++]=5;ab--;a1.ys[5]--;
              if (ab==a1hcs1) break;
       }
   }
}
else if (a1. ys[5]==0)
   for(;a1.ys[4]!=0&&a1.ys[6]!=0&&ab>a1hcs1;)//金、S车
       if(z1\%2==0)
           z[z1++]=4;ab--;a1.ys[4]--;
           if (ab==a1hcs1) break;
           z[z1++]=6;ab--;a1.ys[6]--;
           if (ab==a1hcs1) break;
       }
       else
       {
           z[z1++]=6;ab--;a1.ys[6]--;
           if (ab==a1hcs1) break;
           z[z1++]=4;ab--;a1.ys[4]--;
           if (ab==a1hcs1) break;
   }
   if(a1. ys[6]==0)
       for(;a1.ys[4]!=0&&a1.ys[3]!=0&&ab>a1hcs1;)//金、棕车
           if(z1\%2==0)
              z[z1++]=4;ab--;a1.ys[4]--;
              if (ab==a1hcs1) break;
              z[z1++]=3;ab--;a1.ys[3]--;
              if (ab==a1hcs1) break;
```



```
}
                else
                   z[z1++]=3;ab--;a1.ys[3]--;
                   if (ab==a1hcs1) break;
                   z[z1++]=4;ab--;a1.ys[4]--;
                   if (ab==a1hcs1) break;
                }
             }
         }
      }
      for(;a1.ys[6]!=0&&ab!=a1hcs1;a1.ys[6]--,ab--)//S车
         z[z1++]=6;
      for(;a1.ys[1]!=0&&a1.ys[3]!=0&&ab!=a1hcs1;)
         z[z1++]=1;ab--;a1.ys[1]--;
         if (ab==a1hcs1) break;
         z[z1++]=3:ab--:a1.ys[3]--:
         if (ab==a1hcs1) break;
      if(a1. ys[1]==0)
         for (;ab!=a1hcs1&&a1. ys[3]!=0;ab--, a1. ys[3]--)
         z[z1++]=3;
      }
      else if (a1. ys[3]==0)
         for(;ab!=alhcsl&&al.ys[1]!=0;ab--,al.ys[1]--)
             z[z1++]=1;
      }
   ******
      a1. ys[0]=ab;
      for (;ab>0;ab--)
         z[z1++]=0;
      if (a2. ys[0] >= bb)
         a2.ys[0]-=bb;
         for(;bb!=0;bb--)
             z[z1++]=0;
```



```
}
      else
          bb=a2. ys[0];
          for (; a2. ys[0]!=0; a2. ys[0]--)
             z[z1++]=0;
          for(;a2.ys[2]!=0;)//蓝、白车
             if(z1\%2==0)
                z[z1++]=2;bb--;a2.ys[2]--;
                if (bb==0) break;
                z[z1++]=1;bb--;a2.ys[1]--;
                if (bb==0) break;
             }
             else
                z[z1++]=1;ab--;a2.ys[1]--;
                if (bb==0) break;
                z[z1++]=2;ab--;a2.ys[2]--;
                if (bb==0) break;
             }
                                        白
                                                       天
                                                                     的
          /******
for(;a2.ys[5]!=0&&a2.ys[4]!=0&&bb!=0;)//R 金
             if(z1\%2==0)
                z[z1++]=5;bb--;a2.ys[5]--;
                if (bb==0) break;
                z[z1++]=4;bb--;a2.ys[4]--;
                if (bb==0) break;
             }
             else
                z[z1++]=4;bb--;a2.ys[4]--;
                if (bb==0) break;
                z[z1++]=5;bb--;a2.ys[5]--;
                if (bb==0) break;
             }
          }
          if(a2. ys[4]==0)
```



```
for(;a2.ys[5]!=0&&a2.ys[6]!=0&&bb!=0;)//R S
       if(z1\%2==0)
       {
           z[z1++]=5;bb--;a2.ys[5]--;
           if (bb==0) break;
           z[z1++]=6;bb--;a2.ys[6]--;
           if (bb==0) break;
       }
       else
           z[z1++]=6;bb--;a2. ys[6]--;
           if (bb==0) break;
           z[z1++]=5;bb--;a2. ys[5]--;
           if (bb==0) break;
   }
   if(a2. ys[6]==0)
       for(;a2.ys[5]!=0&&a2.ys[3]!=0&&bb!=0;)//R 棕
           if(z1\%2==0)
               z[z1++]=5;bb--;a2.ys[5]--;
               if (bb==0) break;
               z[z1++]=3;bb--;a2.ys[3]--;
               if (bb==0) break;
           }
           else
           {
               z[z1++]=3;bb--;a2.ys[3]--;
               if (bb==0) break;
               z[z1++]=5;bb--;a2.ys[5]--;
               if (bb==0) break;
       }
   }
else if (a2. ys[5] == 0)
   for(;a2.ys[4]!=0&&a2.ys[6]!=0&&bb!=0;)//金 S
       if(z1\%2==0)
```



```
z[z1++]=4;bb--;a2.ys[4]--;
           if (bb==0) break;
           z[z1++]=6;bb--;a2.ys[6]--;
           if (bb==0) break;
       }
       else
           z[z1++]=6;bb--;a2.ys[6]--;
           if (bb==0) break;
           z[z1++]=4;bb--;a2.ys[4]--;
           if (bb==0) break;
       }
   }
   if(a2. ys[6]==0)
       for(;a2.ys[4]!=0&&a2.ys[3]!=0&&bb!=0;)//金 棕
           if(z1\%2==0)
               z[z1++]=4;bb--;a2.ys[4]--;
               if (bb==0) break;
               z[z1++]=3;bb--;a2.ys[3]--;
               if (bb==0) break;
           }
           else
               z[z1++]=3;bb--;a2.ys[3]--;
               if (bb==0) break;
               z[z1++]=4;bb--;a2. ys[4]--;
               if (bb==0) break;
           }
       }
   }
for(;a2. ys[6]!=0&&bb!=0;a2. ys[6]--,bb--)//S
   z[z1++]=6;
for(;a2.ys[1]!=0&&a2.ys[3]!=0&&bb!=0;)
   z[z1++]=1;bb--;a2.ys[1]--;
   if (bb==0) break;
   z[z1++]=3;bb--;a2.ys[3]--;
   if (bb==0) break;
```



```
if(a2. ys[1]==0)
           for (; bb!=0&&a2. ys[3]!=0; bb--, a2. ys[3]--)
           z[z1++]=3;
        else if (a2. ys[3]==0)
           for (; bb!=0&&a2. ys[1]!=0; bb--, a2. ys[1]--)
             z[z]++]=1:
        }
  /*****/
     for (int i=0; i < hcz[2]; i++)
        z[z1++]=0:
     a1. ys[0]=hcz[2];
     aw -= hcz[2];
     for (;a1. ys[2]!=0;)
        if(z1\%2==0)
           z[z1++]=2;aw--;a1.ys[2]--;
           if (aw==0) break;
           z[z1++]=1;aw--;a1.ys[1]--;
           if (aw==0) break:
        }
        else
           z[z1++]=1;aw--;a1.ys[1]--;
           if (aw==0) break;
           z[z1++]=2;aw--;a1.ys[2]--;
           if (aw==0) break;
        }
     alhcsl;
     if (a2. ys[0] >= bw)
        a1hcs1 = hcz[3] - bw;
     else
```

```
{
   a1hcs1 = hcz[3] - a2.ys[0];
for(;a1.ys[5]!=0&&a1.ys[4]!=0&&aw>a1hcs1;)//R 金
   if(z1\%2==0)
       z[z1++]=5;aw--;a1.ys[5]--;
       if (aw==a1hcs1) break;
       z[z1++]=4;aw--;a1.ys[4]--;
       if (aw==a1hcs1) break;
   }
   else
       z[z1++]=4;aw--;a1.ys[4]--;
       if (aw==a1hcs1) break;
       z[z1++]=5;aw--;a1.ys[5]--;
       if (aw==a1hcs1) break;
   }
}
if(a1. ys[4]==0)
   for(;a1.ys[5]!=0&&a1.ys[6]!=0&&aw>a1hcs1;)//R S
   {
       if(z1\%2==0)
           z[z1++]=5;aw--;a1.ys[5]--;
           if (aw==a1hcs1) break;
           z[z1++]=6;aw--;a1.ys[6]--;
           if (aw==a1hcs1) break;
       }
       else
           z[z1++]=6;aw--;a1.ys[6]--;
           if (aw==alhcsl) break;
           z[z1++]=5;aw--;a1.ys[5]--;
           if(aw==a1hcs1)break;
       }
   if(a1. ys[6]==0)
       for(;a1.ys[5]!=0&&a1.ys[3]!=0&&aw>a1hcs1;)//R 棕
```



```
if(z1\%2==0)
           {
              z[z1++]=5;aw--;a1.ys[5]--;
              if(aw==a1hcs1)break;
              z[z1++]=3;aw--;a1.ys[3]--;
              if (aw==a1hcs1) break;
           }
           else
              z[z1++]=3;aw--;a1.ys[3]--;
              if (aw==a1hcs1) break;
              z[z1++]=5;aw--;a1.ys[5]--;
              if (aw==a1hcs1) break;
          }
       }
   }
else if (a1. ys[5]==0)
   for(;a1.ys[4]!=0&&a1.ys[6]!=0&&aw>a1hcs1;)//金 S
       if(z1\%2==0)
       {
           z[z1++]=4;aw--;a1.ys[4]--;
           if (aw==a1hcs1) break;
           z[z1++]=6;aw--;a1.ys[6]--;
           if (aw==a1hcs1) break;
       }
       else
           z[z1++]=6;aw--;a1.ys[6]--;
           if (aw==a1hcs1) break;
           z[z1++]=4;aw--;a1.ys[4]--;
           if (aw==a1hcs1) break;
       }
   if(a1. ys[6]==0)
       for(;a1.ys[4]!=0&&a1.ys[3]!=0&&aw>a1hcs1;)//金 棕
           if(z1\%2==0)
              z[z1++]=4;aw--;a1.ys[4]--;
              if (aw==a1hcs1) break;
```



```
z[z1++]=3;aw--;a1.ys[3]--;
                   if(aw==a1hcs1)break;
                }
                else
                {
                   z[z1++]=3;aw--;a1.ys[3]--;
                   if (aw==a1hcs1) break;
                   z[z1++]=4;aw--;a1.ys[4]--;
                   if(aw==a1hcs1)break;
                }
            }
         }
      for (;a1. ys[6]!=0&&aw!=a1hcs1;a1. ys[6]--, aw--)//S
         z[z1++]=6;
      for(;a1.ys[1]!=0&&a1.ys[3]!=0&&aw!=a1hcs1;)
         z[z1++]=1:aw--:a1.ys[1]--:
         if(aw==a1hcs1)break;
         z[z1++]=3;aw--;a1.ys[3]--;
         if (aw==a1hcs1) break;
      }
      if(a1.ys[1]==0)
         for(;aw!=a1hcs1&&a1.ys[3]!=0;aw--,a1.ys[3]--)
         z[z1++]=3;
      else if (a1. ys[3]==0)
         for(;aw!=a1hcs1&&a1.ys[1]!=0;aw--,a1.ys[1]--)
             z[z1++]=1;
      }
   ******
      a1. ys[0]=aw;
      for (;aw>0;aw--)
         z[z1++]=0;
      if (a2. ys[0] >= bw)
         a2. ys[0]=bw;
```



```
for(;bb!=0;bw--)
             z[z1++]=0;
      }
      else
       {
          bw=a2.ys[0];
          for(;a2.ys[0]!=0;a2.ys[0]--)
             z[z1++]=0;
          for(;a2.ys[2]!=0;)//蓝、白车
             if(z1\%2==0)
                 z[z1++]=2;bw--;a2.ys[2]--;
                 if (bw==0) break;
                 z[z1++]=1;bw--;a2.ys[1]--;
                 if (bw==0) break;
             }
             else
                 z[z1++]=1;bw--;a2.ys[1]--;
                 if (bw==0) break;
                 z[z1++]=2;bw--;a2.ys[2]--;
                 if (bw==0) break;
             }
          /**********
                                                  晚
                                                             上
                                                                        的
A2**************/
          for(;a2.ys[5]!=0&&a2.ys[4]!=0&&bw!=0;)//R 金
             if(z1\%2==0)
              {
                 z[z1++]=5;bw--;a2.ys[5]--;
                 if (bw==0) break;
                 z[z1++]=4;bw--;a2.ys[4]--;
                 if (bw==0) break;
             }
             else
                 z[z1++]=4;bw--;a2.ys[4]--;
                 if (bw==0) break;
                 z[z1++]=5;bw--;a2.ys[5]--;
                 if (bw==0) break;
             }
```



```
if(a2.ys[4]==0)
   for(;a2.ys[5]!=0&&a2.ys[6]!=0&&bw!=0;)//R S
       if(z1\%2==0)
           z[z1++]=5;bw--;a2.ys[5]--;
           if(bw==0)break;
           z[z1++]=6;bw--;a2.ys[6]--;
           if (bw==0) break:
       }
       else
           z[z1++]=6;bw--;a2.ys[6]--;
           if(bw==0)break;
           z[z1++]=5;bw--;a2.ys[5]--;
           if (bw==0) break;
       }
   if(a2. ys[6]==0)
       for(;a2.ys[5]!=0&&a2.ys[3]!=0&&bw!=0;)//R 棕
           if(z1\%2==0)
               z[z1++]=5;bw--;a2.ys[5]--;
               if (bw==0) break;
               z[z1++]=3;bw--;a2.ys[3]--;
               if (bw==0) break;
           }
           else
           {
               z[z1++]=3;bw--;a2.ys[3]--;
               if (bw==0) break;
               z[z1++]=5;bw--;a2.ys[5]--;
               if (bw==0) break;
           }
       }
   }
else if (a2. ys[5] == 0)
   for(;a2.ys[4]!=0&&a2.ys[6]!=0&&bw!=0;)//金 S
```

```
if(z1\%2==0)
           z[z1++]=4;bw--;a2.ys[4]--;
           if (bw==0) break;
           z[z1++]=6;bw--;a2.ys[6]--;
           if (bw==0) break;
       }
       else
       {
           z[z1++]=6;bw--;a2.ys[6]--;
           if (bw==0) break;
           z[z1++]=4;bw--;a2.ys[4]--;
           if (bw==0) break;
       }
   }
   if(a2. ys[6]==0)
       for(;a2.ys[4]!=0&&a2.ys[3]!=0&&bw!=0;)//金 棕
           if(z1\%2==0)
           {
               z[z1++]=4;bw--;a2.ys[4]--;
               if (bw==0) break;
               z[z1++]=3;bw--;a2.ys[3]--;
               if (bw==0) break;
           }
           else
               z[z1++]=3;bw--;a2.ys[3]--;
               if (bw==0) break;
               z[z1++]=4;bw--;a2.ys[4]--;
               if (bw==0) break;
           }
       }
   }
}
for (;a2. ys[6]!=0\&bw!=0;a2. ys[6]--,bw--)//S
   z[z1++]=6;
for (; a2. ys[1]!=0&&a2. ys[3]!=0&&bw!=0;)
   z[z1++]=1;bw--;a2.ys[1]--;
   if (bw==0) break;
   z[z1++]=3;bw--;a2.ys[3]--;
```



```
if (bw==0) break;
          }
          if(a2. ys[1]==0)
              for (; bw!=0&&a2. ys[3]!=0; bw--, a2. ys[3]--)
              z[z1++]=3;
          else if (a2. ys[3] == 0)
              for (; bw!=0&&a2. ys[1]!=0; bw--, a2. ys[1]--)
                 z[z]++]=1:
          }
   **************
       /******/
      y1=0;
       ab=sum(a1. qd, 2)/2; bb=sum(a2. qd, 2)/2;
       aw=sum(a1. qd, 2)-ab;bw=sum(a2. qd, 2)-bb;
       int ajg = (ab*2/(a1.qd[1]==0?1:a1.qd[1]))-2;
       if(ajg<5)ajg=(ab*4/(a1.qd[1]==0?1:a1.qd[1]))-2;
       int bjg = \frac{b*2}{a2. qd[1]}=0?1:a2. qd[1])-2;
       if(b,jg<5)b,jg=(bb*4/(a2,qd[1]==0?1:a2,qd[1]))-2;
      while (ab!=0)
          for(int i=0;i<2&&ab!=0&&a1.qd[1]!=0;i++)
              a1. qd[1]—, ab—, y[y1++]=1;
          for (int i=0; i \le a jg \& ab! = 0 \& a1. qd[0]! = 0; i++)
              a1. qd[0]—, ab—, y[y1++]=0;
       }
      while (bb!=0)
          for(int i=0;i<2&&bb!=0&&a2.qd[1]!=0;i++)
              a2. qd[1]--, bb--, y[y1++]=1;
          for (int i=0; i < b jg&&bb!=0&&a2. qd[0]!=0; i++)
              a2. qd[0]--, bb--, y[y1++]=0;
       while (aw!=0)
          for (int i=0; i<2&&aw!=0&&a1. qd[1]!=0; i++)
              a1. qd[1]--, aw--, y[y1++]=1;
          for (int i=0; i \le ajg\&\&aw! = 0\&\&a1. qd[0]! = 0; i++)
```



```
a1. qd[0]--, aw--, y[y1++]=0;
}
while (bw!=0)
    for (int i=0; i<2&&bw!=0&&a2. qd[1]!=0; i++)
        a2. qd[1]--, bw--, y[y1++]=1;
    for (int i=0; i < b jg \& bw! = 0 \& a2. qd[0]! = 0; i++)
        a2. qd[0]---, bw---, y[y1++]=0;
}
x1=0:
ab=sum(a1. d1, 2)/2; bb=sum(a2. d1, 2)/2;
aw=sum(a1. d1, 2)-ab;bw=sum(a2. d1, 2)-bb;
ajg = (ab*2/(a1.d1[1]==0?1:a1.d1[1]))-2;
if(ajg<5)ajg=(ab*4/(a1.d1[1]==0?1:a1.d1[1]))-2;
bjg = (bb*2/(a2. d1[1]==0?1:a2. d1[1]))-2;
if(bjg<5)bjg=(bb*4/(a2.d1[1]==0?1:a2.d1[1]))-2;
while (ab!=0)
{
    for (int i=0; i<2&&ab!=0&&a1. d1[1]!=0; i++)
        a1. d1[1]--, ab--, x[x1++]=1;
    for (int i=0; i < a jg&&ab!=0&&a1. d1[0]!=0; i++)
        a1. d1[0]--, ab--, x[x1++]=0;
}
while (bb!=0)
    for (int i=0; i<2&&bb!=0&&a2. d1[1]!=0; i++)
        a2. d1[1]—, bb—, x[x1++]=1;
    for (int i=0; i < b jg&&bb!=0&&a2. d1[0]!=0; i++)
        a2. d1[0]—, bb—, x[x1++]=0;
}
while (aw!=0)
    for(int i=0;i<2&&aw!=0&&a1.d1[1]!=0;i++)
        a1. qd[1]--, aw--, x[x1++]=1;
    for (int i=0; i \le ajg&&aw! = 0&&a1. d1[0]! = 0; i++)
        a1. qd[0]--, aw--, x[x1++]=0;
}
while(bw!=0)
    for (int i=0; i<2&&bw!=0&&a2. d1[1]!=0; i++)
        a2. d1[1]—, bw—, x[x1++]=1;
    for (int i=0; i < b jg&&bw!=0&&a2. d1[0]!=0; i++)
```



```
a2. d1[0]—, bw—, x[x1++]=0;
}
ab=sum(a1. pz, 6)/2; bb=sum(a2. pz, 6)/2;
aw=sum(a1. pz, 6)-ab; bw=sum(a2. pz, 6)-bb;
w1=0;
for(int i=0;i<6&&ab!=0;i++)
   for(;a1.pz[i]!=0&&ab!=0;a1.pz[i]--,ab--)
       w[w1++]=i;
}
for(int i=0;i<6&&bb!=0;i++)
   for (; a2. pz[i]!=0&&bb!=0; a2. pz[i]--, bb--)
       w[w1++]=i;
for (int i=0; i<6&&aw!=0; i++)
   for (; a1. pz[i]!=0&&aw!=0; a1. pz[i]--, aw--)
       w[w1++]=i;
}
for (int i=0; i<6\&bw!=0; i++)
   for (; a2. pz[i]!=0&&bw!=0; a2. pz[i]--, bw--)
       w[w1++]=i;
}
ab=zab;bb=zbb;
aw=zaw;bw=zbw;
v1=0;
while (ab--) v[v1++]=0;
while (bb--) v[v1++]=1;
while (aw--)v[v1++]=0;
while (bw--)v[v1++]=1;
ab=zab;bb=zbb;
aw=zaw;bw=zbw;
int i=0;
for (; ab!=0; i++, ab--)
   if(z[i]==5)
       if(a1. ys[7]!=0)
           z[i]=7, a1. ys[7]--;
```



```
else if (a1. ys[8]!=0)
            z[i]=8, a1. ys[8]--;
    }
    if(z[i]==6)
    {
        if(a1.ys[9]!=0)
           z[i]=9, a1. ys[9]--;
        else if (a1. ys[10]!=0)
           z[i]=10, a1. ys[10]--;
    }
for(;bb!=0;i++,bb--)
    if(z[i]==5)
        if(a2. ys[7]!=0)
           z[i]=7, a2. ys[7]--;
        else if (a2. ys[8]!=0)
           z[i]=8, a2. ys[8]--;
    }
    if(z[i]==6)
        if(a2. ys[9]!=0)
           z[i]=9, a2. ys[9]--;
        else if (a2. ys[10]!=0)
           z[i]=10, a2. ys[10]--;
    }
}
for (; aw!=0; i++, aw--)
    if(z[i]==5)
    {
        if(a1. ys[7]!=0)
           z[i]=7, a1. ys[7]--;
        else if (al. ys[8]!=0)
           z[i]=8, a1. ys[8]--;
    if(z[i]==6)
        if(a1. ys[9]!=0)
           z[i]=9, a1. ys[9]--;
        else if (a1. ys[10]!=0)
           z[i]=10, a1. ys[10]--;
```



```
}
       for(;bw!=0;i++,bw--)
          if(z[i]==5)
              if(a2. ys[7]!=0)
                 z[i]=7, a2. ys[7]--;
              else if(a2.ys[8]!=0)
                 z[i]=8, a2. ys[8]--;
          }
          if(z[i]==6)
              if(a2. ys[9]!=0)
                 z[i]=9, a2. ys[9]--;
              else if (a2. ys[10]!=0)
                 z[i]=10, a2. ys[10]--;
          }
       fprintf(fp, "分析的第%d 日的装配顺序表 \n", q); //给每天的数据命名
       fprintf(fp, "品牌\t 配置\t 动力\t 驱动\t 颜色\t 喷涂线\n");
       for (int i=0; i < z1; i++)
          fprintf(fp,
"%s\t%s\t%s\t%s\tC%d\n", pp[v[i]], pz[w[i]], d1[x[i]], qd[y[i]], ys[z[i]], i
%2+1);
          //cout<<<<","<<<<","<<<<","<<<<endl;
       }
   fclose(fp);
   return 0;
```

