

SenseTime Introduction

SenseTime focuses on invention and development of computer vision and deep learning technologies. Our prestige technologies offer sensation and perception being implemented to wide range of system applications, to seize, to analyze and to understand varieties of vision information, as natural as human being & animals.

SenseTime is the one of the pioneers in the industries of face recognition, object recognition, image searching, and intelligent monitoring by the virtue of its innovated technologies. By the end of 2014, SenseTime has cooperated with more than 60 well-known organizations in both business and research areas. We were favored by IDG Capital, which is one of the biggest venture capital investor and have successfully closed an investment deal for over millions of dollars.

One of the most remarkable breakthrough of SenseTime in 2014 is our core technology - face recognition, has now been developed to, and reached over 99% accuracy rate, and that figure shows it performs even better than natural human's recognition.

THE THE

SENSETIME

Big Visual Data

NVIDIA GPUs

Deep Learning

Big Visual Data

Our Awards	Conference	Best Paper
Machine Learning	NIPS '10	Best Student Paper
Computer Vision	CVPR'09	Best Paper
Artificial Intelligence	AAAI' 15	Best Student Paper

- ≥ 2GPUs → 300 GPUs
- CVPR: 14/29 deep learning papers published in the whole world. (12'-14')

Deep Learning

Detection

- Pedestrian detection
- Human pose estimation
- Facial keypoint detection

Segmentation

- Face parsing
- Pedestrian parsing

Recognition

- Face attribute recognition
- Human identity recognition across camera views

SENSETIME

Oil Painting
Paper
Toy

Capturing

Enhancement

Localization

Classification

- Face
- Book
- Bag

The Photo is Captured by an Android Phone with Baidu SuperCamera

A Book

"How to say it for woman"

- Paper Bags
- 7-UP

The Photo is Captured by an Android Phone with Baidu SuperCamera

sansatima

DCNN for Low-Level Vision

Data: Big data with real-world degradation

DCNN for Low-Level Vision

- Data: Big data with real-world degradation
- Architecture: use domain-specific knowledge
 A Large Kernel Deep CNN for deconvolution

-121x121 spatial support based on kernel SVD

DCNN for Low-Level Vision

- Data: Big data with real-world degradation
- Architecture: use domain-specific knowledge
- Training: Better initialization, GPU acceleration

12-20 hours

A novel weights initialization Supervised pre-training

SENSETIME

图像服务

ImagePro

智能对比增强

照片快速去噪

图像前景分割

自动提高亮度 Night Enhance

超分辨率 Super Resolution Upscale

照片细节增强 Detail Enhance

图像智能补全 Inpainting

简单色彩转移 Naive Color Transfer

Understanding: Localization & Classification

ImageNet Large Scale Visual Recognition Challenge 2014

(Ordered by mean average precision				
	Team name	Entry description	Description of outside data used	mean AP	Number of object categories won
	GOOGLEINEL	Ensemble of detection models. Validation is 44.5% mAP	Pretraining on ILSVRC12 classification data.	0.439329	142
		Combine multiple models described in the abstract without contextual modeling. The training data includes the validation dataset 2.	ImageNet classification and localization data	0.406998	
	11 10001111		ImageNet classification and localization data	0.406659	29
	Deep Insight	Combination of three detection models	Three CNNs from classification task are used for initialization.	0.404517	27
- 1		Combine multiple models described in the abstract without contextual modeling. The training data includes the validation dataset 2.	ImageNet classification and localization data	0.40352	
	CUHK DeepID- Net2	Combine multiple models described in the abstract without contextual modeling	ImageNet classification and localization data	0.403417	

DCNN for Object Recognition

A Novel Data Generation for Pre-training

DCNN for Object Recognition

A novel DCNN pipeline

DCNN for Object Recognition

A deformable constraint pooling

DCNN for ImageNet

- Training
- 4-core 3.3G CPU
 - 70 seconds /image
 - 50 months for training
- Titan GPU
 - 1s / image
 - 21 days for training

Face Verification

- #1 on LFW, with mean accuracy ~99.53%
- Human Performance on LFW ~ 97.53%

Nicole Kidman

Nicole Kidman

Coo d'Este

Melina Kanakaredes

Jim O'Brien

Jim O'Brien

LFW Ranking

Methods	Accuracy		
FR+FCN	0.9645 ± 0.0025		
DeepFace-ensemble	0.9735 ± 0.0025		
DeepID	0.9745 ± 0.0026		
GaussianFace	0.9852 ± 0.0066		
DeepID2	0.9915 ± 0.0013		
DeepID2+	0.9947 ± 0.0012		
DeepID3	0.9953 ± 0.0010		

DCNN for Face Recognition/Verification

- 10,000+ Class
 Better generalization for verification
- Joint Identification-Verification
 Reduce intra-person variation

DCNN for Face Recognition/Verification

- Learning by predicting 10,000+ Class
- Joint Identification-Verification
- Over-complete representation
 Learning features from multiple cropped face regions

Robust Face Detection

DCNN for Face Recognition/Verification

- CPU cores @2.66GHz: ~20 days
- Titan Z GPU: 6 hours

sansatima

Computer Vision Solutions

SEEING

 Low-light Enhancement, Visibility Enhancement (haze, dust), Super Resolution, Blur Removal

UNDERSTANDING

 Face detection, recognition, verification, Object Recognition, Gesture recognition, Pedestrian Detection, Crowd Analysis

