Relational Algebra - Division

Gary KL Tam

Department of Computer Science Swansea University

Division – Past Muddiest Points

Division was a bit confusing and to understand

 T_1

$$T_2$$
 cid
 $c1$
 $c2$
 $c3$

$$\Pi_{S_1-S_2}(T_1)-\Pi_{S_1-S_2}\Big(\Pi_{S_1-S_2}(T_1)\times T_2-T_1\Big)=T_1\div T_2$$

Division

$$\Pi_{S_1-S_2}(T_1) - \Pi_{S_1-S_2} \left[\Pi_{S_1-S_2}(T_1) \times T_2 - T_1 \right) = T_1 \div T_2$$

Which operations go first?

- Complex expressions can be composed recursively, just as in arithmetic.
- Parentheses and precedence rules define the order of evaluation.
- Precedence, from highest to lowest, is:

Unless very sure, use brackets!

Get supplier which supply all the parts

supp_id	part_id		part_id		Supp_id
A		•	$\sqrt{1}$	=	Α
A	2	•	(2)		
A	$\left\langle 3\right\rangle$		3		
В	1				
В	2				
С	3				
D	3				

Get supplier which supply all the parts

supp_id	part_id
Α	1
Α	2
Α	3
В	1
В	2
С	3
D	3

$$T_1 \div T_2 = \Pi_{S_1 - S_2}(T_1) - \Pi_{S_1 - S_2}(\Pi_{S_1 - S_2}(T_1) \times T_2 - T_1)$$

$$S_1 = \{\text{supp_id}, \text{part_id}\}$$
 $S_2 = \{\text{part_id}\}$ $S_1 - S_2 = \{\text{supp_id}\}$

$$S_2 = \{part_id\}$$

$$S_1 - S_2 = \{ supp_id \}$$

Note1: S₁ and S₂ are set of attributes that form the *schema*! They are not the set of tuples.

Note 2: $S_2 \subset S_1$

Get supplier which supply all the parts

supp_id	part_id
Α	1
Α	2
Α	3
В	1
В	2
С	3
D	3

Supp_id
A

$$T_1 \div T_2 = \prod_{S_1 - S_2} (T_1) - \prod_{S_1 - S_2} (\prod_{S_1 - S_2} (T_1) \times T_2 - T_1)$$

All suppliers that supply

supp_id
Α
В
С
D

Get supplier which supply all the parts

supp_id	part_id
Α	1
Α	2
Α	3
В	1
В	2
С	3
D	3

part_id	Supp_id
1	Α
2	
3	

$$T_1 \div T_2 = \prod_{S_1 - S_2} (T_1) - \prod_{S_1 - S_2} (\prod_{S_1 - S_2} (T_1) \times T_2 - T_1)$$

All possible combinations of Parts and Suppliers (which supply).

1	$S_1 -$	S_2	1	1/		12	_	<i>1</i> 1)	
		$\overline{}$							
	supp_	id	par	t_id	•	`)			
•	A			1		7			
	А			2		7			
	Α			3		7			
_	В			1		7			
-	В			2		7			
>	В			3		<			
>	С			1		7			
>	С			2		7			
>	С			3		7			
/	D			1		7			
>	D			2		7			
>	D			3		₹	= ▶	=	,
لحيا	l Mach	rali	λ						

Relational Algebra (II)

Get supplier which supply all the parts

supp_id	part_id	1	part_id		Supp_i
Α	1	•	1	=	Α
Α	2	•	2		
Α	3		3		
В	1				
В	2				
С	3				
D	3				

Relational Algebra (II)

Get supplier which supply all the parts

supp_id	part_id
Α	1
Α	2
Α	3
В	1
В	2
С	3
D	3

Supp_id
A

$$T_1 \div T_2 = \Pi_{S_1 - S_2}(T_1) - \Pi_{S_1 - S_2}(\Pi_{S_1 - S_2}(T_1) \times T_2 - T_1)$$

Suppliers, and the parts which the supplier <u>do not</u> supply

SI	oi_qqı	part_i	d	
	В	3		
	С	1		<=
	С	2		
	D	1		
	D	2		

All possible combinations of Parts and Suppliers (which supply).

supp_id	part_id
Α	1
Α	2 3
Α	3
В	1
В	2
В	3
C C C	1
С	2
С	3
D	1
D	2
D	3

	supp_id	part_id
	Α	1
_	Α	2
	Α	3
	В	1
	В	2
	С	3
	D	3

Supplier and parts that they **really** supply

Get supplier which supply all the parts

supp_id	part_id
Α	1
Α	2
Α	3
В	1
В	2
С	3
D	3

$$T_1 \div T_2 = \prod_{S_1 - S_2} (T_1) - \prod_{S_1 - S_2} (\prod_{S_1 - S_2} (T_1) \times T_2 - T_1)$$

supp_id	part_id	
В	3	
С	1	
С	2	
D	1	
D	2	

Suppliers which has <u>a/some</u> parts **not** supplied

Get supplier which supply all the parts

supp_id	part_id
Α	1
Α	2
Α	3
В	1
В	2
С	3
D	3

Supp_id A

$$T_1 \div T_2 = \Pi_{S_1 - S_2}(T_1) - \Pi_{S_1 - S_2}(\Pi_{S_1 - S_2}(T_1) \times T_2 - T_1)$$

Supplier which supply **all** the parts

Supp_id

A

B

C

D

All suppliers that supply

Suppliers which has <u>a/some</u> parts **not** supplied

Brain Teasers (2024)

• What is $r \times s$ when s is an empty \emptyset relation?

• What is $r \div s$, if s is empty \emptyset ?

Brain Teasers (2024)

• What is $r \times s$ when s is an empty \emptyset relation?

$$r \times \emptyset = \emptyset$$
, $\emptyset \times S = \emptyset$

- By definition, no tuple to pair.

For every tuple $t_1 \in T_1$ and $t_2 \in T_2$, T contains a tuple t whose values are the same as t_1 (t_2) on the attributes from T_1 (T_2).

• What is $r \div s$, if s is empty \emptyset ?

for every tuple $t_2 \in T_2$, $t_1 = (t, t_2)$ is a tuple in T_1 , where (t, t_2) represents a tuple that concatenates the attributes of t with those of t_2 .

Or $\{\langle a \rangle\} \in r \div s$ if and only if $\{\langle a \rangle\} \times s \subseteq r$

$$\Pi_{S_1-S_2}(T_1) - \Pi_{S_1-S_2}\left(\Pi_{S_1-S_2}(T_1) \times T_2 - T_1\right)$$

$$\prod_{S_1-S_2}(T_1)$$
 where $T_1=r$, i.e., everything in r satisfies.

