Sitzung 11

Bildmodelle und Zufallsvariablen

Sitzung Mathematik für Ingenieure C4: INF vom 29. Mai 2020

Wigand Rathmann

Lehrstuhl für Angewandte Analysis Department Mathematik Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Fragen

Bildmodelle und Zufallsvariablen

Ziel dieses Themas

- 1. Sie erkennen den Nutzen des Begriffs Zufallsvariable.
- Sie lernen verschiedenen Verteilungen kennen und wissen, welche Situationen diese Verteilungen angewendet werden können.
- 3. Sie können erklären, wie die Verteilungen in den Bildmodellen entstehen.
- Sie kennen die Möglichkeiten, die Binomialverteilung zu approximieren.
 Sie können mit den Begriffen gemeinsame Verteilung und
- Randverteilung arbeiten und den Zusammenhang zur stochastischen Unabhängigkeit herstellen.
- Sie wissen, wie Summen von Zufallsvariablen gebildet werden und können die entstehenden Verteilungen mit Hilfe der Faltung berechnen.

Weiterführende Fragen

 Begründen Sie, dass die gemeinsame Dichte, die sich aus den Übergangsdichten zusammensetzt, ein Wahrscheinlichkeitsmaß ist.

Weiterführende Fragen

2. Wie ist der Begriff absteigendes Produkt erklärt und auf den Binomialkoeffizienten anwenden? Wie lässt sich damit der Binomialkoeffizient verallgemeinern?

Weiterführende Fragen

3. Wiederholen Sie die Begriffe Variation und Kombination.

Qualitätskontrolle

Zur Kontrolle von 100 Werkstücken werden zwei zufällig entnommen und als **defekt** (0) oder **intakt** (1) eingestuft. 10 von 100 Werkstücken sind defekt.

Zur Erinnerung

Eine **Zufallsvariable** ist eine Abbildung $X : (\Omega, A) \to (\Omega', A')$ mit der Eigenschaft:

$$\{X \in A'\} \in \mathcal{A}$$
 für alle $A' \in \mathcal{A}'$.

 $\{X\in A'\}=\{\omega\in\Omega|X(\omega)\in A'\}$ ist ein durch X beschreibbares Ereignis.

Definition 6.1

Für jede Abbildung X heißt $A := \{X \in A'\}$ das **Urbild** von A'. Schreibweise:

 $X^{-1}(A')$.

Die Zuordnung $A'\mapsto X^{-1}\left(A'\right)=\{X\in A'\}$ von $\mathcal{P}(\Omega')\to\mathcal{P}(\Omega)$ heißt

Urbildfunktion X^{-1} .

also man hat eine Funktion die von Bildmenge zui

Bemerkung

 X^{-1} ist eine Mengenabbildung und im Gegensatz zur Umkehrfunktion immer definiert.

Punkt auf einem Rad

H beschreibe die Höhe einen Punktes auf einem Rad mit Radius 1. Der Winkel Φ sei im Intervall $[0, 2\pi]$ gleichverteilt. Wie ist die H verteilt?

Definition 6.2

- Gilt für das Paar (Ω, \mathcal{A}) $\Omega \neq \text{und } \mathcal{A}$ ist eine σ -Algebra über Ω gilt, dann heißt (Ω, \mathcal{A}) **Messraum** .
- Sind (Ω, A) und (Ω', A') Messräume und gilt $X : \Omega \longrightarrow \Omega'$ mit

$$X^{-1}(A') = \{X \in A'\} \quad \forall A' \in A'$$

dann heißt X messbar (auch A-A'-messbar).

also die "Umkehrfunktion"

Und nochmal Qualitätskontrolle

Zur Kontrolle von N Werkstücken werden n zufällig entnommen und als **defekt** (0) oder **intakt** (1) eingestuft. K von N Werkstücken sind defekt. Wie groß ist die Wahrscheinlichkeit, dass $0 \le k \le \min(K, n)$ defekte Stücke gezogen werden?

Qualitätskontrolle

Neuer Aspeckt Erzeugen von W-Modellen

• *N* Objekte, *K* sind markiert, *n* Ziehungen W-Modell für Fertigungsprotokoll $\Omega = \{0, 1\}^n$, $\mathcal{A} = \mathcal{P}(\Omega)$, Z-Dichte

$$f(\omega_1,\ldots,\omega_n) = \frac{(K)_{\sum \omega_i} (N - K)_{n - \sum \omega_i}}{(N)_n}$$

ZV Z_n beschreibt die Anzahl der gezogenen markierten Stücke

•
$$Z_n : \Omega \to \Omega'$$
 mit $(\omega_1, \ldots, \omega_n) \mapsto \sum \omega_i, \Omega' = \{0, 1, \ldots, n\}$

Definition 6.5

Ist (Ω, \mathcal{A}, P) ein W-Raum, Ω' eine (nicht leere) Menge, \mathcal{A}' ein Ereignissystem über Ω' und $X: \Omega \to \Omega'$ eine Zufallsvariable, dann ist die Zuordnung

$$A' \mapsto P^X(A') := P(X^{-1}(A')) = P(X \in A')$$
 (1)

mit $A' \in \mathcal{A}'$ ein W-Maß über (Ω', \mathcal{A}') . P^X heißt **Bildmaß von** P **unter** X oder **Verteilung von** X (bzgl. P). $(\Omega', \mathcal{A}', P^X)$ ist das **Bildmodell** von (Ω, \mathcal{A}, P) unter X.

also wir projeziern den urprünglichen W-Raum in einen geeigneten Bildraum,

Die Normal-Approximation der Binomial-Verteilung

Satz 6.9 (Zentraler Grenzwertsatz)

Die Summe vieler kleiner und voneinander unabhängiger zufälliger Ereignisse verhält sich näherungsweise – und für wachsende Anzahl der Summanden mit zunehmender Genauigkeit – wie eine Normalverteilung.

Satz 6.10 wenn man viele versuche macht, und die Ereignisse unabh

Ist F^{S_n} die Verteilungsfunktion der Binomial(n, p)-Verteilung, und Φ die Verteilungsfunktion der Standard-Normalverteilung, dann gilt

$$F^{S_n}(x) \approx \Phi\left(\frac{x-a}{\sigma}\right), \quad x \in \mathbb{R},$$
 (2)

wobei a = np und $\sigma = \sqrt{np(1-p)}$ der approximierenden Normalverteilung ist.

Definition 6.11 (Geometrische Verteilungen $Geo^{+/0}(p)$)

Für 0 und <math>q := 1 - p definierten wir die **geometrische Verteilung** Geo⁺(p) durch die Z-Dichte

$$geo^+(p; k) := pq^{k-1}, \qquad k = 1, 2, 3, ...$$
 (3)

und die **geometrische Verteilung** $Geo^0(p)$ durch die Z-Dichte

$$geo^{0}(p; k) := pq^{k}, \qquad k = 0, 1, 2, ...$$
 (4)

für Warteschlangenprozesse

Mit Wahrscheinlichkeit p sind wir in einem Zeittakt am Ziel.Je nachdem wie i

Folgerung 6.12 (Verteilungsfunktion der geometrischen Verteilung)

Die $Geo^+(p)$ -Verteilung besitzt die Verteilungsfunktion

$$F^{W_1}(x) = P(W_1 \le x) = 1 - (1 - p)^{\lfloor x \rfloor}, x \ge 0.$$

die $Geo^0(p)$ -Verteilung besitzt entsprechend die Verteilungsfunktion

$$F^{W_1-1}(x) = P(W_1-1 \le x) = 1 - (1-\rho)^{\lfloor x+1 \rfloor}, x \ge 0,$$
 (6)

(5)

Definition 6.13 (Negative Binomialverteilung)

Die **negative Binomialverteilung** $Nb^+(r,p)$ die die Anzahl W_r der Versuche bis zum r-ten Erfolg beschreibt, besitzt die Z-Dichte

$$f^{W_r}(k) = \mathsf{nb}^+(r, p; k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}, k = r, r+1, \dots$$
 (7)

Werden nur die Misserfolge gezählt, dann ergibt sich $Nb^0(r, p)$ mit der Z-Dichte

$$f^{W_r-t}(k) = \mathsf{nb}^0(r, p; k) = \binom{k+r-1}{r-1} p^r (1-p)^k, k = 0, 1, 2, \dots$$
 (8)

der R-te Erfolg geschieht im k-ten schritt.

Quellen

- Kopien Buch: Hübner, G. Stochastik. Vieweg. Kapitel 5.1-5.7
- Skript Kapitel 6.1-6.3
 (https://www.studon.fau.de/file2897817_download.html)

Weiterführende Fragen

- 1. Wie wird ein Bildmodell unter einer Zufallsvariablen *X* definiert bzw. konstruiert?
- 2. Unter Welchen Voraussetzungen ist eine Approximation der Binomialverteilung durch die Poisson-Verteilung nur sinnvoll?
- 3. Was ist die Aussage vom Zentralen Grenzwertsatz? Beladung von LKW
- 4. Wie kann der Name "Negative Binomialverteilung" begründet werden?

Ihre Fragen

... stellen, Fragen haben keine Pause.

- in den Online-Sitzungen (Vorlesungen, Übungen),
- per Mail an wigand.rathmann@fau.de oder marius.yamakou@fau.de,
- im Forum https://www.studon.fau.de/frm2897793.html,
 Die Fragen, die bis Donnerstag gestellt wurden, werden am Freitag in der Online-Runde diskutiert.
- per Telefon (zu den Sprechzeiten sind wir auch im Büro)

```
Wigand Rathmann 09131/85-67129 Mi 11-12 Uhr
Marius Yamakou 09131/85-67127 Di 14-15 Uhr
```

Sprechstunde zur Mathematik für Ingenieure

Wann: dienstags 09:00 - 16:30 Uhr und donnerstags 09:00-17:00 Uhr, Wo:

https://webconf.vc.dfn.de/ssim/ (Adobe Connect) und https://fau.zoom.us/j/91308761442 (Zoom)