ECG 471/571 Modular Arithmetic b divides a, if a = b·m misinteger b | a . b is a divisor of a 1, 2, 3, 4, 6, 8, 12,29. 12 |24., 13 | 182, -5 | 30, -3 | 33 properties: O. if alb, and blc, salc 29 11 | 66, 66 | 198, 11 | 198. @. if blg, b|h, ⇒ b|(mg+n./k) Y, m, n, are integers. et. 7/14, 7/63. 7 | (2x14 + 3x63) = (2x2)x7 + (3x9)x7

Division Alg.

- Given any positive integer N.
integer A.

$$Q = q \cdot n + r$$
 $Q = q \cdot n + r$
 $Q =$

$$70 = 4 \times 15 + 10$$
. $6 = \left[\frac{a}{n} \right]$
 $9 = 4$. $r = 10$
 $11 = 1 \times 7 + 4$.
 $9 = 1$. $r = 4$.

s Modulus. n

a mod n: remainder of a divided by n.

11 mod 7 = 4.

-11 mod 7 = 3.

o congruence. integers a, b.

if $(a \mod n) = (b \mod n)$ $a = b \pmod n$

2.3.
$$73 = 4 \pmod{23}$$
 $21 = -9 \pmod{10}$

b properties. If and only if 0 . $0 = b \pmod{n} \iff n \mid (a-b)$

2.3 = 8 (mod s) $0 = 23 - 8 = 15 = 5 \times 3$.

3. $0 = b \pmod{n} \iff b = a \pmod{n}$

3. $0 = b \pmod{n} \pmod{n}$

3. $0 = b \pmod{n}$

4. $0 = b \pmod{n}$

5. $0 = b \pmod{n}$

6. $0 = b \pmod{n}$

7. $0 = b \pmod{n}$

8. $0 = b \pmod{n}$

9. $0 = b \pmod{n}$

10. $0 = b \pmod{n}$

11. $0 = b \pmod{n}$

12. $0 = b \pmod{n}$

23. $0 = b \pmod{n}$

24. $0 = b \pmod{n}$

25. $0 = b \pmod{n}$

26. $0 = b \pmod{n}$

27. $0 = b \pmod{n}$

28. $0 = b \pmod{n}$

29. $0 = b \pmod{n}$

20. $0 = b \pmod{n}$

21. $0 = b \pmod{n}$

22. $0 = b \pmod{n}$

23. $0 = b \pmod{n}$

24. $0 = b \pmod{n}$

25. $0 = b \pmod{n}$

26. $0 = b \pmod{n}$

27. $0 = b \pmod{n}$

28. $0 = b \pmod{n}$

29. $0 = b \pmod{n}$

20. $0 = b \pmod{n}$

21. $0 = b \pmod{n}$

22. $0 = b \pmod{n}$

23. $0 = b \pmod{n}$

24. $0 = b \pmod{n}$

25. $0 = b \pmod{n}$

26. $0 = b \pmod{n}$

27. $0 = b \pmod{n}$

28. $0 = b \pmod{n}$

29. $0 = b \pmod{n}$

20. $0 = b \pmod{n}$

21. $0 = b \pmod{n}$

22. $0 = b \pmod{n}$

23. $0 = b \pmod{n}$

24. $0 = b \pmod{n}$

25. $0 = b \pmod{n}$

26. $0 = b \pmod{n}$

27. $0 = b \pmod{n}$

28. $0 = b \pmod{n}$

29. $0 = b \pmod{n}$

29. $0 = b \pmod{n}$

20. $0 = b \pmod{n}$

21. $0 = b \pmod{n}$

22. $0 = b \pmod{n}$

23. $0 = b \pmod{n}$

24. $0 = b \pmod{n}$

25. $0 = b \pmod{n}$

26. $0 = b \pmod{n}$

27. $0 = b \pmod{n}$

28. $0 = b \pmod{n}$

29. $0 = b \pmod{n}$

20. $0 = b \pmod{n}$

21. $0 = b \pmod{n}$

22. $0 = b \pmod{n}$

23. $0 = b \pmod{n}$

24. $0 = b \pmod{n}$

25. $0 = b \pmod{n}$

26. $0 = b \pmod{n}$

27. $0 = b \pmod{n}$

28. $0 = b \pmod{n}$

29. $0 = b \pmod{n}$

20. $0 = b \pmod{n}$

21. $0 = b \pmod{n}$

22. $0 = b \pmod{n}$

23. $0 = b \pmod{n}$

24. $0 = b \pmod{n}$

25. $0 = b \pmod{n}$

26. $0 = b \pmod{n}$

27. $0 = b \pmod{n}$

28. $0 = b \pmod{n}$

29. $0 = b \pmod{n}$

20. $0 = b \pmod{n}$

21. $0 = b \pmod{n}$

22. $0 = b \pmod{n}$

23. $0 = b \pmod{n}$

24. $0 = b \pmod{n}$

25. $0 = b \pmod{n}$

26. $0 = b \pmod{n}$

27. $0 = b \pmod{n}$

28. $0 = b \pmod{n}$

29. $0 = b \pmod{n}$

20. $0 = b \pmod{n}$

20. $0 = b \pmod{n}$

21. $0 = b \pmod{n}$

22. $0 = b \pmod{n}$

23. $0 = b \pmod{n}$

24. $0 = b \pmod{n}$

25. $0 = b \pmod{n}$

26. $0 = b \pmod{n}$

27. $0 = b \pmod{n}$

28. $0 = b \pmod{n}$

29. $0 = b \pmod{n}$

20. $0 = b \pmod{n}$

20. 0

Modular Addition, Multiplication.

Leg. (5+7) mod 10=2 (5×7) mod 10=5

arith. Operations with set =n-lu,l,murily(group)

properties:

O.
$$(a+b) \mod n = [(a \mod n) + (b \mod n)]$$

Q.
$$(a-b)$$
 mod $n=[(amod n)-(bmod n)]$

mod n

mod n

Mod. Exponentiation

=
$$16 \times 4$$
 mod 13 $\times 11$ mod 13
= 3×4 mod 13 $\times 11 \cdot \cdot \cdot \cdot$
= 12×11 mod 13
= 132×13 mod 13 = 2

Additive (dentity (A. I) D is A.1 in Zn. $a + 0 = a \mod n$ b, a, 6 Zn a+b= o modn. a and b are additive inverse mod n. a. -a.=b 4+4 = 0 mod 8. 7+1 =0 mod 8.

-7=1 mod &.

Multiplicative Identity. 1. $a \cdot 1 = a \mod n$. $b = 1 \mod n$.

Multiplicative Inverce $a = b \pmod n$.

The following Inverce $a = b \pmod n$.

 $5.5 \equiv 1 \mod 8$. $3^{-1} = 3 \mod 8$. $3.3 \equiv 1 \mod 8$. $5^{-7} = 5 \mod 8$. 1, 3, 5. 7.

relatively prime

a is rela. prime with n

if GCD (a, n) = 1.

greatost common divisor

e.g. 7, s Multiplicative Inverse exists iff a is rela. prime with n