Lecture 16 (GDA Continuted)

If $\Sigma_0 = \Sigma_1 = \Sigma$, we get a linear separator and Σ is given as:

$$\Sigma = \frac{1}{m} \sum_{i=0}^{m} (x_i - \mu_{y_i})(x_i - \mu_{y_i})^T$$

1 How to Use Model

We know Θ , how do we obtain the prediction?

$$P(y|x;\Theta) = \frac{P(x|y;\Theta)P(y|\Theta)}{P(x;\Theta)}$$

Now, $P(x) = P(x|y=0;\Theta)\phi + P(x|y=1;\Theta)(1-\phi)$. The above expression will simplify to:

$$P(y|x;\Theta) = \frac{1}{1 + \frac{P(x|y=1;\Theta)(1-\phi)}{P(x|y=0;\Theta)\phi}}$$
$$P(y|x;\Theta) = \frac{1}{1+A}$$

Now, the decision boundary is given by $\log A = 0$. On simplifying this equation, we get:

$$\log A = \log \left(\frac{1 - \phi}{\phi} \sqrt{\frac{|\Sigma_1|}{|\Sigma_0|}} \right) + \frac{1}{2} \left(x^T (\Sigma_1^{-1} - \Sigma_0^{-1}) x - 2(\mu_1^T \Sigma_1^{-1} - \mu_0^T \Sigma_0^{-1}) x + \mu_1 \Sigma_1^{-1} \mu_1 - \mu_0^T \Sigma_0^{-1} \mu_0 \right)$$

Therefore, the separator in general will be quadratic. If $\Sigma_0 = \Sigma_1 = \Sigma$, then $\log A$ simplifies to:

$$\log A = \log \left(\frac{1 - \phi}{\phi} \right) - (\mu_1 - \mu_0)^T \Sigma^{-1} x + \frac{1}{2} \left(\mu_1^T \Sigma^{-1} \mu_1 + \mu_0^T \Sigma^{-1} \mu_0 \right)$$

This form is similar to $\log A = \theta^T x$ where the x_0 term is separate

2 Comparison with Logistic Regression (for special case)

- 1. GDA makes stronger assumptions than logistic regression
- 2. GDA is less likely to overfit since it is more constrained
- 3. GDA is better only if assumptions are correct