Rodrigo Alcaraz de la Osa

4° ESO

MRU

Características

Las características del movimiento rectilíneo uniforme (MRU) son:

- Trayectoria rectilínea.
- Velocidad v constante (aceleración a = 0).

Ecuación principal

La ecuación principal (también llamada ecuación del movimiento o ecuación de la posición) del MRU es:

$$x(t) = x_0 + v(t - t_0),$$

donde x es la posición final, x_0 la posición inicial, v la velocidad, t el tiempo final y t_0 el tiempo inicial.

Gráficas

Características

Las características del movimiento rectilíneo uniformemente variado (MRUV) son:

- Trayectoria rectilínea.
- Aceleración a constante (velocidad v variable).

Ecuaciones principales

La ecuaciones principales del MRUV son:

Posición:
$$x(t) = x_0 + v_0(t - t_0) + \frac{1}{2}a(t - t_0)^2$$
 (1)

Velocidad:
$$v(t) = v_0 + a(t - t_0)$$
 (2)

$$v^2 - v_0^2 = 2a\Delta x$$

donde x es la posición final, x_0 la posición inicial, v_0 la velocidad inicial, *a* la aceleración, *t* el tiempo final, t_0 el tiempo inicial y $\Delta x = x - x_0$ es la distancia o espacio recorrido.

MRUV (cont.)

Gráficas

Caida libre/lanzamiento vertical

La caída libre o lanzamiento vertical es un caso especial de MRUV en el que la aceleración es igual a la aceleración de la **gravedad**. En el caso de la Tierra, $a = -g = -9.8 \text{ m/s}^2$ (el signo – indica que la aceleración de la gravedad apunta, siempre, hacia abajo).

Encuentros

Se trata de situaciones en las que dos cuerpos comienzan en posiciones distintas y acaban encontrándose al cabo de un cierto tiempo. Seguimos estos **tres pasos**:

- . Escribir las ecuaciones de la posición de cada cuerpo.
- 2. Imponer la condición de encuentro, es decir, que ambas posiciones coinciden cuando se encuentran.
- 3. **Despejar** la magnitud que me pidan.

Ejemplo

Un coche se desplaza por una carretera que es paralela a la vía de un tren. El coche se detiene ante un semáforo que está con luz roja en el mismo instante que pasa un tren con una rapidez constante de 12 m/s. El coche permanece detenido durante 6 s y luego arranca con una aceleración constante de 2 m/s^2 . Determinar:

- a) El tiempo que emplea el coche en alcanzar al tren, medido desde el instante en que se detuvo ante el semáforo.
- b) La distancia que recorrió el coche desde el semáforo hasta que alcanzó al tren.
- c) La rapidez del coche en el instante que alcanza al tren.

Solución

a) Lo primero que hacemos es escribir las ecuaciones del movimiento de cada móvil:

Coche (MRUV):
$$x_c = x_{0_c} + v_{0_c}(t - t_{0_c}) + \frac{1}{2}a_c(t - t_{0_c})^2$$

Tren (MRU): $x_t = x_{0_c} + v_t(t - t_{0_c})$

Ejemplo (cont.)

a) Particularizamos para nuestro caso:

$$v_{0_{c}} = 0; \quad v_{t} = 12 \text{ m/s}$$

$$a_{c} = 2 \text{ m/s}^{2}$$

$$t_{0_{c}} = 6 \text{ s}; \quad t_{0_{t}} = 0$$
Coche (MRUV): $x_{c} = 0 + 0 \cdot (t - 6) + \frac{1}{2} \cdot 2 \cdot (t - 6)^{2}$

$$= (t - 6)^{2} = t^{2} - 12t + 36$$
Tren (MRU): $x_{t} = 0 + 12 \cdot (t - 0) = 12t$

 $x_{0_c} = x_{0_t} = 0$

A continuación imponemos la condición de encuentro:

$$x_{c} = x_{t}$$

$$t^{2} - 12t + 36 = 12t$$

$$t^{2} - 24t + 36 = 0$$

Despejamos el **tiempo de encuentro** t^* :

$$t^* = \frac{24 \pm \sqrt{24^2 - 4 \cdot 1 \cdot 36}}{2} = \frac{24 \pm \sqrt{432}}{2} = \begin{cases} 22.4 \\ 1.65 \end{cases}$$

donde descartamos la solución t = 1.6 s por ser menor que los 6 s que está parado el coche en el semáforo. Podemos comprobar esto representando la gráfica de posición frente a tiempo (x - t) para cada móvil:

donde se ve claramente cómo el coche está parado los primeros 6 s para después arrancar acelerando (parábola) y alcanzando al tren a los 22.4 s.

b) Para calcular la distancia recorrida por el coche solo tenemos que sustituir el tiempo de encuentro, $t^* = 22.4$ s, en su ecuación de posición, ya que comienza en $x_0 = 0$:

$$x_{c}(t^{*}) = t^{*2} - 12t^{*} + 36 = 22.4^{2} - 12 \cdot 22.4 + 36 = 268.7 \text{ m}$$

c) La **rapidez** del coche cuando alcanza al tren la podemos calcular utilizando la ecuación de la velocidad del coche, sustituyendo $t = t^*$:

$$v_{c}(t^{*}) = v_{0_{c}} + a_{c}(t^{*} - t_{0}) = 0 + 2 \cdot (22.4 - 6) = 32.8 \text{ m/s}$$

MCU

Características

Las características del movimiento circular uniforme (MCU) son:

- Trayectoria circular.
- Módulo de la velocidad constante (aceleración tangencial $a_t = 0$).

Ecuación principal

La ecuación principal del MCU es:

$$\varphi(t) = \varphi_0 + \omega(t - t_0),$$

donde φ es la posición angular final, φ_0 la posición angular inicial, ω la velocidad angular, t el tiempo final y t_0 el tiempo inicial.

Periodo T El tiempo que tarda el móvil en completar una vuelta completa se llama **periodo**, T.

Frecuencia f El número de vueltas que da el móvil en 1 s es la **frecuencia**, f, y está relacionada con el periodo:

$$f = \frac{1}{T} \left[\frac{1}{s} = s^{-1} = Hz \right]$$

La frecuencia o velocidad angular, ω , está relacionada con el periodo y la frecuencia a través de las expresiones:

$$\omega = \frac{\Delta\omega}{\Delta t} = \frac{2\pi}{T} = 2\pi f$$

Las magnitudes lineales y angulares se relacionan a través del radio R:

$$e = \varphi R$$

$$v = \omega R$$

Aceleración centrípeta \vec{a}_c

También llamada aceleración normal, es una aceleración que surge del cambio de dirección de la velocidad. Su módulo es igual a:

$$a_{\rm c} = \frac{v^2}{R}$$

y siempre se dirige hacia el centro de la circunferencia.