Algebra. Laurea in Informatica a.a. 2023-2024

Canale 1. Proff. Paolo Piazza e Gabriele Viaggi Esame scritto del 9/1/2024. Compito A. Tempo a disposizione: 2 ore e 30 minuti.

Nome e Cognome:	
email istituzionale:	

Esercizio	Punti totali	Punteggio
1	7	
2	6	
3	6	
4	6	
5	8	
Totale	33	

ATTENZIONE:

- Utilizzare il retro della pagina se necessario.
- I compiti disordinati o poco leggibili non saranno neanche corretti.
- Spiegare il procedimento ed i calcoli eseguiti, e **giustificare ogni risposta**. La valutazione terrà conto della presentazione: leggibilità, grammatica, sintassi, ordine, chiarezza, rigore matematico, capacità di sintesi.
- Una risposta giusta con giustificazione sbagliata viene valutata ≤ 0 .
- Scrivete le risposte negli appositi riquadri quando presenti.
- I fogli di brutta non saranno accettati; consegnare esclusivamente questi fogli.
- Tutti i dispositivi elettronici (smartphones, tablets, PC, etc, etc) devono essere spenti ed in borsa.
- Non sono ammessi libri o appunti ad eccezione di un formulario di una pagina A4 fronte retro (max 35 righe a facciata, no dimostrazioni).

1

Esercizio 1.

- (1) In un anello unitario $(A, +, \cdot)$ definire l'insieme degli elementi invertibili $\mathcal{U}(A)$ e spiegare, giustificando i passaggi, qual è la sua struttura algebrica rispetto alla moltiplicazione.
- (2) Siano (G,·) e (H,⋆) due gruppi, con elementi neutri 1_G e 1_H.
 (2.1). Come si definisce il nucleo di un omomorfismo ψ : G → H e che cosa ha a che fare con l'iniettività di ψ ?
 (2.2) Il nucleo di un omomorfismo ψ è un sottogruppo ? Il nucleo di un omomorfismo ψ è un sottogruppo normale ?
- Spiegare in dettaglio.
 (3) Dare la definizione di indipendenza lineare di k vettori $\{\underline{v}_1, \dots, \underline{v}_k\}$ in uno spazio vettoriale V.
- (4) Sia $T:V\to V$ un'applicazione lineare. Cosa possiamo dire su autovettori associati ad autovalori distinti ?
 - (4.1) Enunciare il risultato.
 - (4.2) Dimostrarlo.

Soluzione.

- (1) $\mathcal{U}(A) := \{ a \in A \mid \exists a' \in A \text{ tale che } a \cdot a' = 1 = a' \cdot a \}$. $\mathcal{U}(A)$ contiene ovviamente l'unità moltiplicativa di A ed è chiuso rispetto al prodotto in A perché se $a, b \in \mathcal{U}(A)$ con inversi a' e b' allora $a \cdot b$ ha inverso $b' \cdot a'$ e quindi è in $\mathcal{U}(A)$. Per definizione ogni elemento in $\mathcal{U}(A)$ ha un inverso. Infine, il prodotto è associativo perché indotto da A. Ne segue che $\mathcal{U}(A)$ è un gruppo rispetto a \cdot .
- (2) [PC] p. 246 e p. 257.
- (3) [A-dF] definizione 4.6
- (4) [A-dF] Prop. 13.6.

Esercizio 2. Si trovino tutte le soluzioni intere del sistema di equazioni congruenziali

$$\begin{cases} x \equiv 13^{190} \mod 35 \\ 4x \equiv 8 \mod 6 \end{cases}$$

Soluzione. Applicando il teorema cinema dei resti nella seconda formulazione alla prima equazione $(35 = 5 \cdot 7, MCD(5, 7) = 1)$ e semplificando la seconda equazione, il sistema risulta equivalente al seguente:

$$\begin{cases} x \equiv 13^{190} \mod 5 \\ x \equiv 13^{190} \mod 7 \\ 2x \equiv 4 \mod 3. \end{cases}$$

La prima equazione si può semplificare nel seguente modo:

$$x \equiv 3^{190} \mod 5$$
 (essendo $13 \equiv 3 \mod 5$)
 $x \equiv 3^{\varphi(5)\cdot 47+2} \mod 5$ (essendo $\varphi(5) = 4$)
 $x \equiv 3^2 \mod 5$ (per il teorema di Eulero-Fermat)
 $x \equiv 4 \mod 5$ (essendo $3^2 \equiv 4 \mod 5$)

La seconda equazione, osservando che $13 \equiv -1 \mod 7$, equivale a $x \equiv (-1)^{190} \mod 7$ e cioè a

$$x \equiv 1 \mod 7$$

Infine la terza equazione, essendo $2 \cdot 2 \equiv 1 \mod 3$ ed essendo $8 \equiv 2 \mod 3$, si può riscrivere, moltiplicando per 2, come

$$x \equiv 2 \mod 3$$

Il sistema da risolvere è in conclusione

$$\begin{cases} x \equiv 4 \mod 5 \\ x \equiv 1 \mod 7 \\ x \equiv 2 \mod 3. \end{cases}$$

Una soluzione dell'ultimo sistema (che è un sistema cinese in forma standard) è 29, quindi l'insieme delle soluzioni è

$$S = \{29 + 105z \,|\, z \in \mathbb{Z}\}$$

dove $105 = 3 \cdot 5 \cdot 7$.

Esercizio 3. Sia G un gruppo e $H \leq G$ un suo sottogruppo. Verificare che

- (1) per ogni fissato $g \in G$ l'insieme $H^g := \{g^{-1}hg \mid h \in H\}$ è un sottogruppo
- (2) H
 in isomorfo a H^g . (Suggerimento: l'applicazione $H \ni h \to g^{-1}hg \in H^g$ può risultare utile).

Soluzione.

Utilizzeremo la seguente notazione: $h^g := g^{-1}hg$. Sia $g\in G.$ L'insieme H^g è non vuoto poichè $1_G^g=1_G\in H^g.$ Siano ora $h_1^g,h_2^g\in H^g.$ Allora

$$(h_1^g)(h_2^g)^{-1} = g^{-1}h_1g(g^{-1}h_2g)^{-1} = g^{-1}h_1gg^{-1}h_2^{-1}g = g^{-1}h_1h_2^{-1}g = (h_1h_2^{-1})^g,$$

che è in H^g in quanto $h_1h_2^{-1} \in H$. Per la caratterizzazione dei sottogruppi di un gruppo si ha che $H^g \leq G$.

Consideriamo l'applicazione

$$\phi_g: H \longrightarrow H^g, \qquad h \longmapsto g^{-1}hg.$$

È facile vedere che ϕ_q è biettiva. Siano ora $h_1, h_2 \in H$. Si ha

$$\phi_g(h_1h_2) = g^{-1}h_1h_2g = (g^{-1}h_1g)(g^{-1}h_2g) = \phi_g(h_1)\phi_g(h_2).$$

Pertanto ϕ_q è un omomorfismo, quindi un isomorfismo di gruppi.

Esercizio 4.

- **4.1** Consideriamo il gruppo simmetrico S_3 .
 - (1) Quali sono i possibili ordini dei sottogruppi di S_3 e perché?
 - (2) Elencare i 4 sottogruppi non-banali di S_3 . Disegnare il diagramma di Hasse (o reticolo) dei sottogruppi di S_3 .
 - (3) Spiegare se esistono sottogruppi ciclici in S_3 ed in caso affermativo esplici-
 - (4) Spiegare se esistono sottogruppi normali in S_3 ; in caso affermativo esplicitarli e spiegare perché sono normali.

4.2 Determinare la parità in S_9 di $\sigma := (2345) \circ (35) \circ (479) \circ (218)$. (Attenzione, questa *non* è una decomposizione in cicli disgiunti). Calcolare σ^{-1} .

Soluzione.

Per (1) vedere [PC] p. 225. Gli ordini sono 1, 2, 3, 6 per il Teorema di Lagrange. I 4 sottogruppi non-banali sono tutti ciclici. L'unico sottogruppo di ordine 3 è normale perché ha indice 2 oppure si verifica "a mano". Vedere pagina 239 e 240 in [PC].

(2) È facile vedere che la decomposizione in cicli disgiunti di σ è: $\sigma = (1832) \circ (4795)$ Ne segue che σ è pari.

$$\sigma^{-1} = (1238)(4597).$$

Esercizio 5. Sia $u \in \mathbb{R}$ e sia A(u) la matrice

$$A(u) := \left| \begin{array}{ccc} 1 & u/2 & 1/2 \\ 0 & 2 & 0 \\ 2 & u & 1 \end{array} \right|$$

Sia $T_u: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da $A(u): T_u := L_{A(u)}$.

5.1. Determinare il polinomio caratteristico di T_u e gli autovalori di T_u .

 ${\bf 5.2}$ Verificare che T_0 è diagonalizzabile e determinare una base di autovettori.

5.3. Studiare la diagonalizzabilità di T_u al variare di $u \in \mathbb{R}$.

Soluzione: Il polinomio caratteristico di A_u è $(2-\lambda)(\lambda^2-2\lambda)$ che ha radici $\lambda_1=2$ con molteplicità algebrica 2 e $\lambda_2=0$ con molteplicità algebrica 1. Notiamo che il polinomio caratteristico non dipende da u. Si ha

$$A(0) = \left| \begin{array}{ccc} 1 & 0 & 1/2 \\ 0 & 2 & 0 \\ 2 & 0 & 1 \end{array} \right|$$

L'autospazio V_0 di A(0) è il nucleo di A(0) , che è $\{\underline{x}\,|A(0)\underline{x}=\underline{0}\}$; lo riscriviamo come le soluzioni del sistema

$$\begin{cases} x_1 + \frac{x_3}{2} = 0 \\ x_2 = 0 \\ 2x_1 + x_3 = 0 \end{cases}$$

Si ha (facile) $V_0 = \mathbb{R}(1,0,-2)$. Passiamo a $V_2 = \operatorname{Ker}(A(0)-2I_3)$; quindi V_2 è il nucleo di

$$A(0) - 2I_3 = \begin{vmatrix} -1 & 0 & 1/2 \\ 0 & 0 & 0 \\ 2 & 0 & -1 \end{vmatrix}$$

Ne segue che

$$V_2 = \{ \underline{x} \, | 2x_1 - x_3 = 0 \}$$

che ha base, ad esempio, $\{(1,0,2),(0,1,0)\}$. Conclusione: i tre vettori

$$\{(1,0,-2),(1,0,2),(0,1,0)\}$$

sono una base di autovettori per T_0 . In particolare T_0 è diagonalizzabile.

Passiamo allo studio della diagonalizzabilità di T_u al variare di u. Per l'autovalore λ_2 sappiamo che la molteplicità algebrica è necessariamente uguale a quella geometrica (perché $1 \leq m_g(\lambda_2)$; $m_g(\lambda_2) \leq m_a(\lambda_2) = 1$ e quindi $m_g(\lambda_2) = m_a(\lambda_2) = 1$). Possiamo quindi concentrarci sull'autovalore $\lambda_1 = 2$. L'autospazio relativo all'autovalore

 $\lambda_1=2$ è dato da $\operatorname{Ker}(A_u-2I_3).$ Ma

$$A_u - 2I_3 = \begin{vmatrix} -1 & u/2 & 1/2 \\ 0 & 0 & 0 \\ 2 & u & -1 \end{vmatrix}$$

La dimensione dell'autospazio V_2 è quindi uguale a $3-r_u$ con r_u uguale al rango di questa matrice. Questa dimensione è quindi uguale a 2, che è la molteplicità algebrica dell'autovalore, se e solo se r_u è uguale a 1. Tuttavia, è semplice verificare che $r_u=1$ se e solo se u=0. Quindi, la molteplicità algebrica di ogni autovalore è uguale alla sua molteplicità geometrica se e solo se u=0. La conclusione è che T_u è diagonalizzabile se e solo se u=0.