Homework 2

 ${\bf Jonas\ Trepiakas\ -\ jtrepiakas@berkeley.edu}$

1: (a) Let $f + g \in I + J$ with $f \in I, g \in J$ and let $h \in k[x_1, \dots, x_n]$. Then $h(f + g) = \underbrace{hf}_{\in I} + \underbrace{hg}_{\in J}$ where

 $hf \in I$ since I is an ideal and $hg \in J$ since J is an ideal. Commutativity in $k[x_1, \ldots, x_n]$ ensures that this is two-sided. It is clearly a ring and thus an ideal.

- (\subset) : We have $I \cup J \subset I + J$ since $0 \in I, J$, so $V(I + J) \subset V(I \cup J) = V(I) \cap V(J)$.
- (\supset) : For any $a \in V(I) \cap V(J)$, we have for any $f \in I$ and $g \in J$ that f(a) = 0 = g(a), so 0 = f(a) + g(a) = (f+g)(a) and thus $a \in V(f+g)$. Therefore $V(I) \cap V(J) \subset V(f+g)$.

(a) We first show that $(y-x^2)$ is a prime ideal in k[x,y]. We claim $k[x,y]/(y-x^2) \cong k[x]$ which is an integral domain and thus it would follow that $(y-x^2)$ is a prime ideal.

Proof of claim: Let $F \in k[x,y]$ with $F(x,y) = \sum_{i,j} a_{ij} x^i y^j$. Then $\pi(F) = \sum_{i,j} a_{ij} x^{i+2j} \in k[x]$, so π here is surjective and has kernel $(y-x^2)$. The result then follows from the first isomorphism theorem. Now by problem 3.(d) underneath, any prime ideal is a radical ideal, so by Hilbert's Nullstellensatz, since \mathbb{C} is closed, $I(V(y-x^2)) = \sqrt{(y-x^2)} = (y-x^2)$. By proposition 1 in section 1.5, Fulton, we then have that $V(y-x^2)$ is irreducible.

(b) We have that $x^2 = y^4$ implies $x = \pm y^2$. hence we find $0 = y^4 - x^2y^2 + xy^2 - x^3 = y^4 - y^6 \pm y^4 \mp y^6$, so $0 = 2y^4 - 2y^6 = 2y^4(1 - y^2)$ and hence $y \in \{0, \pm 1\}$. For $x = -y^2$, we have the other condition satisfied trivially.

Thus the irreducible components are

$$v(x+y^2), (1,1), (1,-1).$$

(a) Assume $a^n \in I, b^m \in I$. Then

$$(a+b)^{n+m} = \sum_{i=0}^{n+m} a^i b^{n+m-i}$$

If $i \geq n$, then $a^i \in I$, so $a^i b^{n+m-i} \in I$. If i < n, then $n+m-i \geq n+m-i=m$, so $b^{n+m-i} \in I$ and hence $a^i b^{n+m-i} \in I$.

(b) We have $0 \in \sqrt{0}$ as $0 \in I$.

Let $f,g \in \sqrt{I}$ with $f^k,g^j \in I$. Then $f^{2k},(-g)^{2j} \in I$, so by $a,(f-g)^{2(k+j)} \in I$, so $f-g \in \sqrt{I}$, so \sqrt{I} is

closed under subtraction. now $(fg)^{kj} = f^{kj}g^{kj} = (f^k)^j (g^j)^k \in I$, so $fg \in \sqrt{I}$. Hence \sqrt{I} is a ring. Let $f \in \sqrt{I}$ with $f^k \in I$, and $r \in R$. Then $(fr)^k = f^kr^k \in I$, so $fr \in \sqrt{I}$, and $(rf)^k = r^kf^k \in I$, so $rf \in \sqrt{I}$, hence \sqrt{I} is an ideal.

- (c) Let $f^k \in \sqrt{I}$. Then there exists an $l \in \mathbb{Z}_+$ such that $f^{kl} = (f^k)^l \in I$, and hence $f \in \sqrt{I}$. Therefore \sqrt{I} is a radical ideal.
- (d) Let P be a prime ideal. Let $r^k \in P$. By definition of prime ideal, we thus have that since $rr^{k-1} \in P$, either r or r^{k-1} is in P. If $r \in P$, we are done. Assume $r \notin P$. Then $r^{k-1} \in P$ and we repeat the procedure; subtracting 1 from the exponent of r each time. After k-1 turns, we will find $r \in P$ or $r \in P$, contradicting $r \notin P$. Hence $r \in P$, so P is a radical ideal as r was arbitrary.
- **4:** Let X, Y be algebraic sets.
- (a) We claim $I(X \cup Y) = I(X) \cap I(Y)$.

Proof: (\subset): Let $f \in I(X \cup Y)$. Then for all $x \in X \cup Y$, f(x) = 0, and thus since $X, Y \subset X \cup Y$, we have for all $x \in X$ and for all $y \in Y$, f(x) = 0 = f(y), so $I(X \cup Y) \subset I(X) \cap I(Y)$.

 (\supset) : Let $f \in I(X) \cap I(Y)$. Then for all $x \in X$ and all $y \in Y$, we have f(x) = 0 = f(y), so since for any $z \in X \cup Y$, $z \in X$ or $z \in Y$, we have that for all $z \in X \cup Y$, f(z) = 0.

(b) This is false: Let $X=\{(x,y)\mid y=0\}=V(y)$ and $Y=\{(x,y)\mid y=x^2\}=V(y-x^2)$. Then $I\left(X\cap Y\right)=I\left((0,0)\right)$ which is all functions that vanish on (0,0). However, I(X)=(y) and $I(Y)=\left(y-x^2\right)$, so $I(X)+I(Y)=\left(y,y-x^2\right)=\left(x^2\right)\neq (x,y)=I(X\cap Y)$.

5: Let $I \subset R$ be any ideal. We wish to show that it is finitely generated.

Choose any $x_0 \in I$ and let I_0 be the ideal generated by x_0 . If $I = I_0$, we are done. Otherwise, choose $x_1 \in I - I_0$ and let I_1 be the ideal generated by x_1 and x_0 . Generally, if $I_{n-1} \neq I$, then choose $x_n \in I - I_{n-1}$ and let $I_n = (x_0, \ldots, x_n)$. Thus we get an ascending chain of ideals:

$$I_0 \subsetneq I_1 \subsetneq I_2 \subsetneq \dots$$

By assumption this ascending chain ends; say it ends with I_N . Then by construction, I_N must equal I and hence

$$I=(x_0,\ldots,x_N)$$
.

Thus I is finitely generated, i.e. Noetherian, and since I was arbitrary, all ideals in R are finitely generated, so R is Noetherian.