Work09

1		擂	字
	١.	ᄲ	

- 1) 最小二乘法拟合原理是: _____。近似函数在各实验点计算结果与实验结果的偏差平方和最小
- 2. 判断
- 1)插值与拟合均采用近似函数来表示原始数据点,从这一方面说两者是类似的。
 (√)
- 2) 一般而言,最小二乘法拟合非线性函数比线性函数更困难。(✓)
- 3) 采用最小二乘法拟合线性和非线性方程的算法是相同的。(×)
- 4) 可以采用线性化方法拟合非线性方程,但这种方法不利于参数的统计学检验。(√)
- 5) 采用 polyfit 拟合多项式函数时,第三个输入变量不可以缺省。(√)
- 3.实验测得不同压力下纯水的沸点,实测数据如下:

T (K)	373.15	393.25	425.55	453.65	486.25	507.75	524.25	537.85	549.65
P (atm)	1	2	5	10	20	30	40	50	60

试编写一个 MATLAB 函数

- 1) 采用 regress 函数求取四参数蒸气压方程 $\ln P = a + bT + c/T + d \ln T$ 中的参数 a, b, c, d 的值。式中 P 为饱和蒸气压; T 为温度。
- 2) 将结果输出为以下形式:

lnP=0.0001+0.0001T+0.0001/T+0.0001lnT

即所有拟合参数保留 4 位小数。

- 3) 绘制图形直观比较拟合效果。
- 解:蒸气压方程为非线性一元函数,将其线性化后转化为多元线性回归问题,即

令:
$$f_1 = 1, f_2 = T, f_3 = \frac{1}{T}, f_4 = \ln T, y = \ln p$$

则: $y=af_1+bf_2+cf_3+df_4$

编程计算参数,程序如下:

```
function Work09_3
T=[373.15 393.25 425.55 453.65 486.25 507.75 524.25 537.85
549.65];
P=[1 2 5 10 20 30 40 50 60];
f2=T;f3=1./T;f4=log(T);y=log(P);
x=[ones(9,1),f2',f3',f4'];
q=regress(y',x);
fprintf('lnP=%.4f+%.4fT+(%.4f)/T+(%.4f)lnT\n',q)
pcal=exp(x*q);
plot(P,pcal,'bo'),hold on
refline(1,0)
xlabel('Experiment')
ylabel('Modeling')
```

执行结果:

lnP=136.8104+0.0196T+(-9710.0359)/T+(-19.9425)lnT

4 已知气体和液体的热容与温度有关,常采用多项式函数关联热容与温度的关系,如以下两式:

$$A C_p = a + bT + cT^2 + dT^3$$

$$\mathbf{B} \quad C_p = a + bT + cT^2$$

实验测得三组实验数据如下表所示:

温度		热容 (J/gmol·°C)	
(°C)	第1组	第2组	第3组
100	29.38	30.04	28.52
200	29.88	29.08	29.79
300	30.42	30.18	31.41
400	30.98	30.14	31.18
500	31.57	32.27	31.16
600	32.15	31.79	32.81
700	32.73	32.97	32.38
800	33.29	32.56	34.26
900	33.82	34.24	34.72
1000	34.31	35.27	33.69

试编写一个 MATLAB 函数:

- 1) 利用 polyfit 函数根据第 1 组实验数据拟合 A 和 B 两个多项式,作图表示两个多项式的拟合效果:
- 2) 采用 nlinfit 函数利用三组数据直接拟合 A 和 B 式,根据模型计算值与实验值 之差的平方和确定两式哪个可以更好的表示上表实验数据。将拟合效果更好 的表达式以如下格式显示在屏幕上:

Cp=0.0001+0.0001T+0.0001T^2

解:

程序如下:

```
function Excer09 4
T=100:100:1000;
Cp1=[29.38 29.88 30.42 30.98 31.57 32.15 32.73 33.29 33.82 34.31];
Cp2=[30.04 29.08 30.18 30.14 32.27 31.79 32.97 32.56 34.24 35.27];
Cp3=[28.52 29.79 31.41 31.18 31.16 32.81 32.38 34.26 34.72 33.69];
beta1=polyfit(T,Cp1,2);
beta2=polyfit(T,Cp1,3);
Tcal=100:10:1000;
plot(T,Cp1,'bo',Tcal,polyval(beta1,Tcal),'r:',Tcal,polyval(beta2,Tcal
), 'm-')
title('Polyfit')
[beta3,r]=nlinfit(repmat(T,1,3),[Cp1,Cp2,Cp3],@fun1,beta1);
[beta4,r2]=nlinfit(repmat(T,1,3),[Cp1,Cp2,Cp3],@fun2,beta2);
norm1=norm(r)
norm2=norm(r2)
if norm1>norm2
   fprintf('Cp=%.4f+%.4fT+%.8fT^2\n',beta3(end:-1:1))
else
   fprintf('Cp=%.4f+%.4fT+%.4fT^2+%.4fT^3\n',beta4(end:-1:1))
end
function y=fun1(beta,T)
y=beta(3)+beta(2)*T+beta(1)*T.^2;
function y=fun2(beta,T)
y=beta(4)+beta(3)*T+beta(2)*T.^2+beta(1)*T.^3;
作图如下:可见问题 1)两种多项式拟合差别不大;问题 2)结果显示为:
```

Cp=28.6150+0.0060T+0.0000T^2

