Informe en Formato IEEE

1. Abstract

El proyecto desarrollado consiste en un amperímetro y voltímetro digital implementado con un microcontrolador con EEPROM. Está diseñado para medir la corriente y el voltaje de baterías y motores en automóviles eléctricos, proporcionando datos precisos y almacenándolos para análisis posterior. Este sistema integra sensores, procesamiento digital y una interfaz visual en un LCD, lo que facilita el monitoreo y diagnóstico del rendimiento energético.

2. Introducción

El auge de los automóviles eléctricos ha planteado la necesidad de herramientas precisas para medir y optimizar su rendimiento energético. Este proyecto integra medición de corriente y voltaje con almacenamiento de datos mediante un microcontrolador con EEPROM. Se enfoca en proveer una solución portátil y confiable para el monitoreo de baterías y motores en diversas condiciones de operación.

3. Descripción Funcional

El sistema consta de:

- Voltímetro: mide el voltaje de las baterías mediante divisores resistivos.
- Amperímetro: utiliza el sensor ACS712 para convertir la corriente en una señal de voltaje proporcional.
- Microcontrolador con EEPROM: realiza cálculos de conversión, muestra los datos en un LCD y los almacena para análisis.

4. Diagrama en Bloques

El diagrama en bloques describe las funciones principales del sistema. Lo incluiría como una imagen que contiene:

- 1. **Entrada**: Sensor ACS712 para corriente y divisores resistivos para voltaje.
- Procesamiento: Microcontrolador con conversión y almacenamiento de datos en EEPROM.
- 3. Salida: Visualización de datos en pantalla LCD.

Diagrama en Bloques del Sistema

El diagrama en bloques muestra cómo el sensor de corriente y el divisor resistivo alimentan datos al microcontrolador, que procesa y almacena la información, y luego envía las lecturas a la pantalla LCD.

5. Diagrama de Código

Un pseudocódigo representaría la lógica básica:

- 1. Configuración de pines ADC y I2C.
- 2. Lectura de datos del sensor ACS712 y del divisor resistivo.
- 3. Cálculo de corriente y voltaje.
- 4. Almacenamiento en EEPROM y visualización en LCD.
- 5. Repetición en bucle.

6. Descripción de Circuitos

El sistema se basa en los siguientes circuitos:

- **Voltímetro**: Usa resistencias R1 y R2 como divisor resistivo para adaptar el rango del voltaje de las baterías al ADC del microcontrolador.
- Amperímetro: Implementado con un sensor ACS712, que mide la corriente como un voltaje proporcional.
- Microcontrolador con EEPROM: Recibe las señales analógicas, realiza conversiones digitales y almacena los datos.
- LCD: Muestra los valores calculados para facilitar la lectura.

7. Alcance Logrado

El sistema desarrollado permite:

• Medir corriente y voltaje de baterías y motores.

- Mostrar los valores en tiempo real en una pantalla LCD.
- Almacenar datos en EEPROM para análisis posterior.
 Se logró integrar sensores, procesamiento y visualización en un solo dispositivo funcional.

8. Conclusiones

El proyecto demostró ser efectivo para la medición precisa de corriente y voltaje en aplicaciones automotrices eléctricas. La integración de almacenamiento no volátil amplía su aplicabilidad para monitoreo prolongado. En futuras iteraciones, se podrían agregar capacidades de comunicación inalámbrica para monitoreo remoto.

9. Anexos

Esquematico:

Hoja de datos del ACS712:

https://www.alldatasheet.com/datasheet-pdf/view/168326/ALLEGRO/ACS712.html