Improving heuristic mini-max search by supervised learning

Autor des Papers: Michael Buro

Evaluation: GLEM

ProbCut

- Multi-ProbCut
- EndCut

Opening book construction

Logistello

Programm für Othello (Reversi)

Evaluation: GLEM

ProbCut

- Multi-ProbCut
- EndCut

Opening book construction

GLEM

"generalized linear evaluation model"

$$e(p)=g(\Sigma w_i * c_i (p))$$

c: Konfiguration

w: Gewichtung

g: $\mathbb{R} \rightarrow \mathbb{R}$: wachsend und ableitbar

GLEM: Konfigurationen

$$c = r_1(p) \& ... \& r_n(p)$$

val(c(p)) = 1 wenn belegt, 0 sonst

Positionen belegt oder nicht belegt, tritt also ein oder nicht

GLEM: Konfigurationen generieren

Function GenConf

```
atomic feature set A, training position set E, minimal match count n
Input:
           configurations over A that are active in at least n positions of E
Output:
R := \{ \{ f(\cdot) = k \} \mid f \in A, \ k \in \text{range}(f), \, \# \text{match}(\{ f(\cdot) = k \}, E) \ge n \} 
C := R; collects all valid configurations
             ; set of configurations created in previous iteration
N := R
while N \neq \emptyset do
  M := \emptyset
                                    ; set of valid configurations in current iteration
  for each c \in N, d \in R do
                                    ; specialize configuration c
     e := c \cup \{d\}
     if \# \operatorname{match}(e, E) > n then
       M := M \cup \{e\}
                                    ; append if valid
     endif
  endfor
  N := M
                                    ; next configurations to specialize
  C := C \cup N
                                    ; add valid configurations
endwhile
return C
```

GLEM (Forts.)

$$E(w) := \Sigma(s_i - e_w(p_i))^2$$

Dieser Fehler soll minimiert werden, Gewichtungen entsprechend wählen

s_i: Positionswert

GLEM: Gewichte berechnen

Auch Gewichte kann man berechnen lassen

$$\begin{split} \boldsymbol{\delta}^{(t)} &= -\alpha \cdot (\mathbf{grad}_{\boldsymbol{w}} E)(\boldsymbol{w}^{(t)})^{\ 4} \\ \boldsymbol{w}^{(t+1)} &= \boldsymbol{w}^{(t)} + \boldsymbol{\delta}^{(t)}. \end{split}$$

alpha: stepsize

grad_w E ist ein Vektor, die partiellen

Ableitungen:

$$\frac{\partial E}{\partial w_i}(\boldsymbol{w}) = -\frac{2}{N} \sum_{k=1}^{N} \Delta_k(\boldsymbol{w}) h_{i,k}.$$

Beispiele für Patterns

Beispiel Logistello

```
f(p) = 0
   [f_{d4.s.1} + \cdots + f_{d4.s.4}] + [f_{d5.s.1} + \cdots + f_{d5.s.4}] +
   [f_{d6,s,1} + \cdots + f_{d6,s,4}] + [f_{d7,s,1} + \cdots + f_{d7,s,4}] +
   [f_{d8,s,1} + f_{d8,s,2}] + [f_{hv2,s,1} + \cdots + f_{hv2,s,4}] +
   [f_{\text{hv3},s.1} + \cdots + f_{\text{hv3},s.4}] + [f_{\text{hv4},s.1} + \cdots + f_{\text{hv4},s.4}] +
   [f_{\text{edge}+2X,s,1} + \cdots + f_{\text{edge}+2X,s,4}] +
   [f_{2\times5,s,1}+\cdots+f_{2\times5,s,8}]+
   [f_{3\times 3,s,1}+\cdots+f_{3\times 3,s,4}]+f_{\text{parity},s})(p),
```

Effekt von GLEM

d	ĺ	2	3	4	5	6	7	8	9
+0	34	32	32	35	34	31	26	26	32
+1	59	56	46	57	50	41	44	40	38
+2	83	75	70	62	61	59	48	51	54

GLEM Zusammenfassung

GLEM kombiniert also eine Sammlung von Features, die gewählt wurden

Zusammengefasste Features = Patterns

Da Konfigurationen 1 oder 0 werden, entscheiden die Gewichte alleine über ihre Wichtigkeit **Evaluation: GLEM**

ProbCut

- Multi-ProbCut
- EndCut

Opening book construction

ProbCut

Schneide Teilbäume ab, die wahrscheinlich minmax-Wert nicht beeinflussen: forward pruning.

- 1. Shallowsearch liefert v_s.
- 2. Wenn

$$a*vs+b$$

außerhalb α/β, also außerhalb von

$$[\alpha - t * \sigma, \beta + t * \sigma]$$

Suche abbrechen

3. Ansonsten: Wahren Wert v_d berechnen

ProbCut: Unterschied zu α/β-Pruning

α/β-Pruning-Prinzip: Subtrees ignorieren, die den min-max-Wert nicht beeinflussen werden.

Aber: Immer noch muss auf unterster Ebene evaluiert werden

prune backwards

Multi-ProbCut (MPC)

 Parameter: Je nach Spielsituation unterschiedlich tief suchen

Suchen mehrmals mit zunehmender Länge

durchführen

Fig. 4. (a) PROBCUT uses the shallow search result v_s to decide whether the deep result v_d lies outside (α, β) with a prescribed likelihood. (b) & (c) PROBCUT enhancements.

EndCut

Ab bestimmter Tiefe: Schätze zuerst mit Shallowsearch, weiter werdend, wie das Spiel ausgeht.

ProbCut Anwendungen

MPC wurde inzwischen auch für Schach getestet ²:

"CRAFTY's speed chess tournament score went up from 51% to 56%."

Evaluation: GLEM

ProbCut

- Multi-ProbCut
- EndCut

Opening book construction

Opening Book Construction

Verhindere, wiederholt zu verlieren

- z.B. wichtig, wenn das Programm als Server läuft

Opening Book Construction: Der Baum

Spielbaum der Positionsvariationen, mit $(W, L, D, ?), [-\infty, +\infty]$

Für Win, Loss, Draw und unbekannt und den

Wert (dann geschätzt).

Außerdem: Heuristisch beste Abweichung

Opening Book Construction: Vorgehen

"Find the node corresponding to the current position, propagate the heuristic evaluations from the leaves to that node by means of the nega-max algorithm, and choose the move that leads to the successor position with lowest evaluation."

Opening Book Construction: Vorgehen (Bild)

Figure 1: Example opening book trees. The principal leaf v_3 of T_1 is chosen for expansion. In the resulting tree T_2 leaf v_4 would be expanded next.

Fragen?

Quellen

Slide 2, Bild: Wikipedia, http://upload.wikimedia.org/wikipedia/de/6/6b/Othello_start.jpg

Genconf: Aus M. Buro: "From Simple Features to Sophisticated Evaluation Functions"

[1]: Aus M. Buro: "From Simple Features to Sophisticated Evaluation Functions"

Endcut: Aus Präsentation "Multi-ProbCut Search",

http://webdocs.cs.ualberta.ca/~mburo/ps/mpc.pdf

[2] A.X. Jiang, M. Buro, "FIRST EXPERIMENTAL RESULTS OF PROBCUT APPLIED TO

CHESS"

Opening Book Construction: M. Buro, "Toward Opening Book Learning"