Solution to HW3

Dilawar Singh

November 15, 2016

- 1. (4 points) Refer to homework statement.
 - (a) (2 points) **Solution:** For every y, we can find at least one x smaller than y such that f(x) is smaller than f(y).

negation For any y, there is no x smaller than y such that f(x) is smaller than f(y). $\forall x, \nexists y$ such that if x < y then f(x) < f(y). Or, $\forall x, \exists y$ such that if x < y then $f(x) \ge f(y)$.

Now, rewriting the previous statement,

For every x, there does not exists any y such that

Using natural language, there could be multiple ways to write same thing . It is not easy to verify if all of those statements are equivalent. Mathematical symbols give a less error-prone way to operate on logical statements.

(b) (2 points) Solution:

There is at least one place where f is 0. Or, There is at least one x such that f(x) = 0.

Negation There is no place where f is zero. Or, $\forall x \ f(x) \neq 0$.

- 2. (4 points) See the statement on google group.
 - (a) (2 points) Solution:

negation f is NOT increasing. $x < y \implies f(x) \ge f(y)$

(b) (2 points) Solution:

Negation f DOES NOT have a local maxima at a i.e. in the δ neighbourhood of a, f does not have this shape \lor

$$\forall \delta > 0, \exists h \in (a - \delta, a + \delta), \text{ such that } f(a) \geq f(a + h).$$

3. (12 points) The quadratic approximation goes like the following.

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x).$$

And the solutions are plotted below. Note that this is not the replacement for algebraic analysis.

Quadratic approximation of various functions

Figure 1: f is e^x , sinx, x^3 , and $\frac{1}{1-x}$

4. (12 points) (a) (4 points) **Solution:** For f to be even, we must have f(x) = f(-x). Therefore, for all x such that $ax^3 + bx^2 + cx + d = -ax^3 + bx^3 - cx + d$, f is even. That is $ax^3 + cx = 0 \implies x = 0, \pm \sqrt{\frac{-c}{a}}$. Similarly, for f to be odd,

$$-ax^{3} + bx^{2} - cx + d = -ax^{3} - bx^{2} - cx - d$$
. That is $bx^{2} + d = 0 \implies x = \pm \sqrt{\frac{-d}{b}}$.

(b) (12 points) Solution:

(c) (4 points) Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(-x) = \lim_{h \to 0} \frac{f(-x+h) - f(-x)}{h} \tag{1}$$

$$= \lim_{h \to 0} \frac{f(-(x-h)) - f(x)}{h}$$
 (2)

$$=\lim_{h\to 0}\frac{f(x-h)-f(x)}{h}\tag{3}$$

$$= \lim_{h \to 0} -\frac{f(x) - f(x - h)}{h} \tag{4}$$

$$=\lim_{h\to 0}\frac{f(x)-f(x-h)}{-h}\tag{5}$$

$$=f'(x) \tag{6}$$

Or, $f'(-x) = f'(-x)\frac{d(-x)}{dx}$ (using chain rule). This gives us f'(-x) = -f'(-x) therefore f'(-x) is a even function.

Similarly (i.e. I am too lazy to do any work), one can show that q' is odd.

5. (20 points) See the statement.

Solution:

Following figure shows the solution:

Figure 2: Solution to question 5. Functions are $x^4 - 2x^2 + 3$, $\frac{x^2+2}{x-3}$, $sin(x)^2$, and $\sqrt{x^2+x}$