Trabajo computacional 2

Alejandro Santorum, Sergio Galán, Rafael Sánchez

December 19, 2018

1 Ejercicio 1.

1.1 Calibración del modelo.

Siguiendo el procedimiento sugerido en el ejercicio 1, calculamos el valor de la probabilidad de que el árbol muera para cada par (diametro, fuerza) para unos valores β_0^* , β_1^* , β_2^* inicializados arbitrariamente. Tras ello, hallamos $\log(P(Y=y|X_1=x_1,X_2=x_2))$ donde y es el estado del árbol tras la tormenta.

Con estos valores, calculamos la función LOGVERO de nuestro modelo. A continuación, usamos el solver de Excel para maximizar el valor de LOGVERO en función de $\beta_0, \beta_1, \beta_2$ resultando los valores:

$$\hat{\beta}_0 = -3.543290052$$
 $\hat{\beta}_1 = 0.096791531$ $\hat{\beta}_2 = 4.423860396$

1.2 Uso del modelo como predictor.

Usando los valores anteriores de $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$ calculamos la probabilidad de que el árbol muera para cada par (x_1, x_2) . Usando una versión simple de una función sigmoide $(1siP > 0.5, 0en \ caso \ contrario)$, hallamos nuestra predicción obteniendo los siguientes porcentajes de acierto.

% aciertos totales 74.2226% % aciertos vivos 78.8093% % aciertos muertos 68.8242%

Teniendo en cuenta que tenemos pocas muestras para lo habitual al modelar una regresión logística, hemos obtenido unos resultados con bastante precisión.

2 Ejercicio 2.

2.1 Aplicación del estimador T.

Con la muestra dada, hemos calculado el valor del estimador, habiendo calculado previamente los valores de $\bar{X}, \bar{X}^2, \bar{X}^2$. A este valor lo hemos llamado $\hat{\lambda} = 1.539138622$.

2.2 Generación de muestras con el estimador.

Usando la función inv.gamma(aleatorio();3.2; $\frac{1}{\hat{\lambda}}$), generamos 250 muestras de la Gamma con parámetro $\hat{\lambda}$.

Tras ello y repitiendo el análisis de la sección anterior, hallamos el valor del estimador $\hat{\lambda^*}$. Calculamos $\delta^* = \hat{\lambda^*} - \hat{\lambda}$ y repetimos 1000 veces este cálculo con el análisis de hipótesis de *Excel*.

2.3 Cálculo del intervalo (a*,b*).

Con las 1000 muestras de la distribución de δ^* hallamos los valores a^*, b^* : $P(a^* \le \delta^* \le b^*) = 95\%$. Para ello hacemos uso de la función percentil.exc(rango; perc) para hallar a^* y b^* que dejan a cada lado un 2.5% de las muestras. De esta forma hallamos el intervalo (a^*, b^*) que aproxima al intervalo (a, b) con $a^* = -1.642438648$, $b^* = -1.599889342$.