RK pisni izpit 29. 6. 2010

1) Na strežniku je spletna stran, ki vsebuje spodnjo kodo:

```
<html>
<head>
  <title>Področja našega dela in raziskovanja</title>
</head>
<body>

            <img border="0" src="images/omara.jpg" width="306" height="321">
            <img border="0" src="images/kabel.jpg" width="306" height="321">
            <img border="0" src="images/kabel.jpg" width="306" height="321">
            <ii><a href="index2.html">Komunikacije</a>
            <a href="http://marvin.fri.uni-lj.si/izo.html">Izobraževanje</a>

            </hr>
            </html>
```

- a) Koliko zahtev HTTP mora poslati naš spletni brskalnik, da nam prikaže zgornjo spletno stran?
- b) Kaj pomeni vrstica Keep-alive, če se pojavi v glavi (header) zahteve HTTP? Ali uporaba te vrstice kaj spremeni število zahtev, ki jih mora naš brskalnik poslati?
- c) Kaj pomeni, če nam strežnik odgovori s HTTP odgovorom z oznako 500 (Internal server error)? Gre za napako na omrežju, odjemalcu ali na strežniku?
- 2) Napišite, kakšen je broadcast naslov na povezavni in na omrežni plasti omrežju z naslovom 132.212.96/19, kjer se uporablja protokol Ethernet? Napišite tudi največji in najmanjši IPv4 naslov naprave v tem podomrežju. Ali lahko znotraj tega naslovnega prostora naredimo podomrežje, v katerem bo lahko več kot 256 naprav? Če je odgovor da, navedite primer, če ne pa utemeljite. Za IPv4 uporabite decimalno notacijo.
- 3) TCP oddajnik pošilja TCP sprejemniku 1200 bytov dolge segmente. TCP srejemnik sprejema po vrsti segmente z zaporednimi številkami 12400, 13600, 16000, 17200, 14800. Kakšne potrditve pošilja sprejemnik ob vsakem prejemu segmenta? Zanimajo nas le številke potrditev.
- 4) Imamo kriptosistem, ki ga sestavlja škatla P0 in škatli S0 in S1. Permutacije v škatlah so:
 - P0 = (61047235)
 - P znotraj S0 = (3 1 7 6 12 0 8 13 15 14 9 10 11 2 4 5)
 - P znotraj S1 = (8 5 0 7 14 2 15 13 10 11 3 4 1 12 9 6)

Kriptosistem prikazuje spodnja slika, koder in dekoder v škatlah S pa sta podana v tabeli. V kaj se kriptira 01101001? Pokažite tudi vmesne korake.

npina o i i	01001.10
4/16	
0000	8
0001	5
0010	13
0011	1
0100	12
0101	9
0110	6
0111	10
1000	11
1001	3
1010	4
1011	14
1100	2
1101	15
1110	0
1111	7

16/4	
0	1000
1	0110
2	1100
3	1111
4	0000
5	0111
6	1001
7	1010
8	1011
9	0001
10	0010
11	1101
12	1110
13	0011
14	0100
15	0101

- 5) Čemu vse služi protokol DNS? Kakšne zapise hrani v bazi in zakaj? Kaj je prednost in kaj slabost začasnega hranjenja DNS podatkov (DNS caching)?
- 6) Kaj so kolizijski in kaj nekolizijski protokoli? Opišite po en primer vsakega. Na kateri plasti jih srečamo?
- 7) Kaj je TTL, kateri protokol ga uporablja in kako, na kateri plasti se to dogaja? Kako TTL pomaga pri izvedbi storitve traceroute?

8) Navedite, na katero plast po modelu TCP/IP sodijo naslednje storitve oziroma protokoli:

a) Manchestersko kodiranje	f) ujemanje najdaljše predpone
b) Overjanje z digitalnimi potrdili	g) UMTS, GPRS, EDGE
c) IEEE 802.15	h) računanje RTT in odmika
d) virtualne zveze	i) izogibanje zamašitvam
e) RIP, EIGRP in BGP	j) ping

9) S programom Wireshark smo zajeli spodnjo zahtevo:

In odgovor na to zahtevo:

```
Ethernet II, Src: Microsof_19:87:c6 (00:03:ff:19:87:c6), Dst: DigitalD_96:c6:57 (00:11:6b:96:c6:57)

□ Destination: DigitalD_96:c6:57 (00:11:6b:96:c6:57)

□ Source: Microsof_19:87:c6 (00:03:ff:19:87:c6)

Type: IPv6 (0x86dd)

□ Internet Protocol Version 6

□ 0110 ... = Version: 6

... 0000 0000 ... ... ... = Traffic class: 0x00000000

Payload length: 32

Next header: ICMPv6 (0x3a)

Hop limit: 255

Source: 2001:1470:fffd::10 (2001:1470:fffd::10)

Destination: 2001:1470:fffd::a (2001:1470:fffd::a)

□ Internet Control Message Protocol v6

Type: 136 (Neighbor advertisement)

Code: 0

Checksum: 0xf148 [correct]

□ Flags: 0x60000000

□ Target: 2001:1470:fffd::10 (2001:1470:fffd::10)

□ ICMPv6 Option (Target link-layer address)
```

- a) Katere protokole prepoznate?
- b) Uvrstite jih po plasteh.
- c) Osredotočimo se na protokol, ki je najnižje (torej je najbližje fizični plasti). Čemu je namenjen oz. zakaj potrebujemo ta protokol?
- d) Poznate še kakšen takšen protokol (glede na vprašanje 3)? V kakšnih omrežjih se uporablja?
- 10) S programom Wireshark smo zajeli spodnjo sejo:

```
220 Private FTP. Tresspassers will be shot.
USER tralala
331 Password required for tralala
PASS hopsasa
230 Logged on
SYST
215 UNIX emulated by FileZilla
PWD
257 "/" is current directory.
EPSV
229 Entering Extended Passive Mode (|||3932|)
LIST
150 Connection accepted
226 Transfer OK
QUIT
221 Goodbye
```

- e) Za kateri protokol gre?
- f) Opiši in nariši, kako se v tem primeru odpirajo povezave med strežnikom in odjemalcem.
- g) Omrežje je preko NAT-a priklopljeno v internet. Kako lahko v takem omrežju delujeta zgornji strežnik in kako odjemalec? Kako lahko rešujemo opisane težave?