Mathematical Modeling and Computation in Finance With Exercises and Python and MATLAB Computer Codes

C.W. Oosterlee & L.A. Grzelak

Solutions to exercises from Chapter 3

https://QuantFinanceBook.com

Ex. 3.1. The table should be filled as follows,

$\operatorname{product}$	8.5€	9€	9.5	10€	10.5€	11€	11.5€
profit $S(T)$	-%15	-%10	-%5	%0	%5	%10	%15
profit $V_c(T, S(T))$	-%100	-%100	-%100	-%100	-%50	% 0	% 50

Ex. 3.3. The code can be found under the Python icon. We fix $S = S_0$.

Figure 1: Results for Exercise 3.3

Ex. 3.5. The Δ -hedging strategy cancels out the stochastic movements of the portfolio, simply because,

$$\frac{\partial \Pi}{\partial S} = \frac{\partial V}{\partial S} - \Delta = 0,$$

due to the particular hedging strategy. In this case, $d\Pi = (...)dt$, in other words, the infinitesimal change in the portfolio is deterministic. Assume, without loss of generality,

$$d\Pi - r\Pi dt = (k(S, t) - r)\Pi dt.$$

In this case, the system is not arbitrage-free. If k > r at t = 0, one could borrow money from the money market with interest rate r, use this to buy the portfolio Π . The portfolio can be sold for an amount $(1 + k\Delta t)\Pi$ at time $t + \Delta t$. Subsequently, the borrowed money

is paid back which creates a profit $(k-r)\Pi\Delta t$. In the other case, where k < r, one would short-sell the portfolio at t=0, simultaneously put the money into a savings account. After a time increment Δt , the portfolio is bought resulting in a final profit of $(r-k)\Delta t\Pi$. So, $d\Pi = r\Pi dt$.

Ex. 3.7. The process that gives rise to the equation in the exercise is given by,

$$dX(t) = \mu X(t)dt + \sigma X(t)dW^{Q}(t).$$

Furthermore, we use r = 0. The solution for this differential process is given by

$$X(T) = X(t) \exp ((\mu - \sigma^2/2)(T - t) + \sigma(W(T) - W(t))).$$

The expression $\log(X^2(T))$ then reads,

$$\log X^{2}(T) = 2 \left(\log X(t) + (\mu - \sigma^{2}/2)(T - t) + \sigma(W^{\mathbb{Q}}(T) - W^{\mathbb{Q}}(t)) \right).$$

The Feynman-Kac theorem states that, for this problem,

$$V(X,t) = \mathbb{E}[\log(X^2(T))|\mathcal{F}_t].$$

Brownian motion W_t^Q , under measure \mathbb{Q} , is a martingale, and the last term under the expectation operator disappears. So,

$$\mathbb{E}[\log(X^2(T))|\mathcal{F}_t] = 2\left(\log X(t) + (\mu - \sigma^2/2)(T - t)\right).$$

Ex. 3.9. a. Without any dividend payment, the value of a call option, with exercise price K and time to maturity T, is given by:

$$V_c(S,t) = SF_{\mathcal{N}(0,1)}(d_1) - Ke^{-r(T-t)}F_{\mathcal{N}(0,1)}(d_2),$$

where

$$d_{1,2} = \frac{\log(S/K) + (r \pm \sigma^2/2)(T - t)}{\sigma\sqrt{T - t}}.$$

With

$$F_{\mathcal{N}(0,1)}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy,$$

the standard cumulative normal distribution function, it follows for the corresponding density that

$$f_{\mathcal{N}(0,1)}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}.$$

Further, it can be found that: $Sf_{\mathcal{N}(0,1)}(d_1) - e^{-r(T-t)}Kf_{\mathcal{N}(0,1)}(d_2) = 0$. From,

$$V_c(S,t) = SF_{\mathcal{N}(0,1)}(d_1) - Ke^{-r(T-t)}F_{\mathcal{N}(0,1)}(d_2),$$

we take derivatives with respect to S and t, Taking the derivative wrt S, gives us,

$$\Delta = F_{\mathcal{N}(0,1)}(d_1) + SF_{\mathcal{N}(0,1)}(d_1) \frac{\partial d_1}{\partial S} - Ke^{-r(T-t)} f_{\mathcal{N}(0,1)}(d_2) \frac{\partial d_2}{\partial S}$$
$$= F_{\mathcal{N}(0,1)}(d_1) + \frac{f_{\mathcal{N}(0,1)}(d_1)}{\sigma\sqrt{T-t}} - Ke^{-r(T-t)} \frac{f_{\mathcal{N}(0,1)}(d_2)}{S\sigma\sqrt{T-t}},$$

which gives us,

$$\Delta = F_{\mathcal{N}(0,1)}(d_1).$$

The derivative with respect to t gives us,

$$\frac{\partial V_c}{\partial t} = Sf_{\mathcal{N}(0,1)}(d_1)\frac{\partial d_1}{\partial t} - Kre^{-r(T-t)}F_{\mathcal{N}(0,1)}(d_2) - Ke^{-r(T-t)}f_{\mathcal{N}(0,1)}(d_2)\frac{\partial d_2}{\partial t}.$$

It follows that,

$$\frac{\partial d_1}{\partial t} = \frac{\partial d_2}{\partial t} - \frac{1}{2} \frac{\sigma}{\sqrt{T - t}},$$

nd with $Sf_{\mathcal{N}(0,1)}(d_1) - e^{-r(T-t)}Kf_{\mathcal{N}(0,1)}(d_2) = 0$, we find,

$$\frac{\partial V_c}{\partial t} = -Kre^{-r(T-t)}F_{\mathcal{N}(0,1)}(d_2) - \frac{Sf_{\mathcal{N}(0,1)}(d_1)\sigma}{2\sqrt{T-t}}$$

Further, we find for Γ ,

$$\Gamma = \frac{\partial \Delta}{\partial S} = f_{\mathcal{N}(0,1)}(d_1) \frac{\partial d_1}{\partial S} = \frac{f_{\mathcal{N}(0,1)}(d_1)}{S\sigma\sqrt{T-t}}.$$

Substituting all derived expressions in the Black-Scholes equation gives us,

$$\frac{\partial V_c}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V_c}{\partial S^2} + r \frac{\partial V_c}{\partial S} S - r V_c = \frac{-S\sigma}{2\sqrt{T-t}} f_{\mathcal{N}(0,1)}(d_1) - r K e^{-r(T-t)} F_{\mathcal{N}(0,1)}(d_2)
+ \frac{1}{2}\sigma^2 S^2 \frac{f_{\mathcal{N}(0,1)}(d_1)}{S\sigma\sqrt{T-t}} + r S F_{\mathcal{N}(0,1)}(d_1)
- r \left(S F_{\mathcal{N}(0,1)}(d_1) - K e^{-r(T-t)} F_{\mathcal{N}(0,1)}(d_2) \right)
= 0.$$

At the same time, it is easy to deduce that

$$\lim_{t \to T} V_c(t, S) = \max(S - K, 0),$$

and that the solution also satisfies the boundary conditions for S=0 and $S\to\infty$.

b. We substitute the analytic expressions for each term in the BS equation,

$$\frac{\partial V}{\partial t} = rV + Ke^{-r(t-t)}F'_{\mathcal{N}(0,1)}(d_2)\frac{\partial d_2}{\partial t}.$$

Together with the term -rV, we find

$$\begin{split} \frac{\partial V}{\partial t} - rV &= Ke^{-r(t-t)} f_{\mathcal{N}(0,1)}(d_2) \left(-\frac{r - \sigma^2/2}{\sigma\sqrt{T - t}} + \frac{d_2}{2(T - t)} \right) \\ rS \frac{\partial V}{\partial S} &= rS \left(Ke^{-r(t-t)} \frac{\partial d_2}{\partial S} F_{\mathcal{N}(0,1)}'(d_2) \right) = Ke^{-r(t-t)} f_{\mathcal{N}(0,1)}(d_2) \frac{r}{\sigma\sqrt{T - t}} \\ \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} &= -\frac{1}{2} Ke^{-r(T-t)} f_{\mathcal{N}(0,1)}(d_2) \left(\frac{\sigma}{\sqrt{T - t}} + \frac{d_2}{T - t} \right), \end{split}$$

where $f_{\mathcal{N}(0,1)}(x)$ stands for the standard normal probability density function. All terms cancel and thus the BS equation is satisfied.

Ex. 3.11. a. See the code.

As seen in the figure, there are three ranges in the pay-off at the expiry date. At the left side of the diagram, the put option pay-off is positive, in the middle part the pay-off equals zero, and at the high asset value side one profits from the call option.

b. It can be valued via the BS equation with modified boundary conditions.

$$V_{S}(S,T) = \max(S - K_{1}, 0) + \max(K_{2} - S, 0).$$

$$V_{S}(0,t) = K_{2}e^{-r(T-t)}.$$

$$V_{S}(S,t) = S - Ke^{-r(T-t)}, S(t) \to \infty.$$

c. If the volatility of the asset prices is high and investment profits are uncertain (because it is unknown in which direction the asset will move), an investor can buy a strangle.

Figure 2: Results for Exercise 3.11a