Convolutional Neural Networks

A Gentle Introduction

Roberto Souza Assistant Professor Electrical and Software Engineering Schulich School of Engineering

Outline

Learning Goals

- Convolutional Neural Networks (CNNs)
 - Basic Operations
 - Properties
 - Computing number of parameters

Summary

Learning Goals

Understand how CNNs work and when to apply them

Compute the number of parameters of your model

Data – Euclidean Domains

- Images, audio, text among others all have regular structures in a Euclidean space
 - Convolutions are well-defined operations that can be computed efficiently in these structures

Convolutional Neural Networks

- Convolutional layers learn features
- Connected layers perform classification
- Fewer trainable parameters than fully connected networks

Fully Connected Neural Network – Global Property

- The fully connected layer can lead to an explosion in the number of parameters
- Imagine your input is a 256 x 256 image and your layer has 10 outputs, how many parameters would the model have?
 - -256x256x10 + 10 = 655,370

Convolutional Neural Network – Weight Sharing

- Convolutional neural networks share weights across inputs (i.e., connection sparsity)
- Convolutions leverage local correlations (i.e., locality)
- Imagine your input is a 1D signal of size L, your convolution size is 3 and your layer has 10 filters, how many parameters would the model have?

$$-3 \times 10 + 10 = 40$$

Convolution (single-channel input)

1x1	1 x 0	1x1	0	0
0x0	1x1	1 x 0	1	0
0 x 1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

4	

Convolution (padding)

Image can be padded prior to convolution to preserve its dimensions

N-channel Images/Signals

 Results of convolutions are stacked resulting in n-channel images/signals

Convolution – multi-channel input

- The convolutions encompass the channels of the input
- A W1 x W2 convolution is actually a W1 x W2 x nchannels convolution

Max-Pooling

- Non-linear operation
- Reduce dimensionality and computational cost
- After a max-pooling, the number of filters in the subsequent layer is increased

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Flatten

• The flatten operation is applied before the fully connected layer

1
0
4
2
1
0
2
1

CNN Hierarchy of Concepts

VGG-16 Architecture

Summary

CNNs share weights and have sparse connections

They depend on local correlations to operate

The basic operations are convolutions and max-pooling layers

Implicit hierarchy of concepts

Thank you!

