Университет ИТМО ФПИиКТ

Лабораторная работа №5 по Вычислительной математике

Выполнил: Балтабаев Дамир

Группа: Р3210

Вариант: 3

Преподаватель: Малышева Татьяна Алексеевна

Цель лабораторной работы:

Решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

Порядок выполнения:

- 2. Вычислительная реализация задачи:
 - 2.1. Используя первую или вторую интерполяционную формулу Ньютона, первую или вторую интерполяционную формулу Гаусса вычислить значения функции при данных значениях аргумента (для значения X₁ и X₂, см. табл. 1 4).
 - 2.2. Построить таблицу конечных разностей.
 - 2.3. Подробные вычисления привести в отчете.
- 3. Программная реализация задачи:
 - 3.1. Исходные данные задаются в виде: а) набора данных (таблицы x,y), б) на основе выбранной функции (например, $\sin x$).
 - 3.2. Вычислить приближенное значение функции для заданного значения аргумента, введенного с клавиатуры, указанными методами (см. табл.5).
 - 3.3. Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционного многочлена Ньютона/Гаусса (разными цветами).
- 4. Анализ результатов работы: апробация и тестирование.

Рабочие формулы:

$$L_n(x) = \sum_{i=0}^{n} y_i \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j}$$

$$N_n(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n y_0$$

$$N_n(x) = y_n + t\Delta y_{n-1} + \frac{t(t+1)}{2!}\Delta^2 y_{n-2} + \dots + \frac{t(t+1)\dots(t+n-1)}{n!}\Delta^n y_0$$

Первая интерполяционная формула Гаусса (x>a)

$$\begin{split} P_n(x) &= y_0 + t\Delta y_0 + \frac{t(t-1)}{2!} \Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!} \Delta^3 y_{-1} \\ &+ \frac{(t+1)t(t-1)(t-2)}{4!} \Delta^4 y_{-2} \\ &+ \frac{(t+2)(t+1)t(t-1)(t-2)}{5!} \Delta^5 y_{-2} \dots \\ &+ \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!} \Delta^{2n-1} y_{-(n-1)} \\ &+ \frac{(t+n-1)\dots(t-n)}{(2n)!} \Delta^{2n} y_{-n} \end{split}$$

Вторая интерполяционная формула Гаусса (x < a)

$$P_{n}(x) = y_{0} + t\Delta y_{-1} + \frac{t(t+1)}{2!} \Delta^{2} y_{-1} + \frac{(t+1)t(t-1)}{3!} \Delta^{3} y_{-2} + \frac{(t+2)(t+1)t(t-1)}{4!} \Delta^{4} y_{-2} + \cdots + \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!} \Delta^{2n-1} y_{-n} + \frac{(t+n)(t+n-1)\dots(t-n+1)}{(2n)!} \Delta^{2n} y_{-n}$$

Вычислительная реализация:

Таблица 3

х	У		
1,10	0,2234		
1,25	1,2438		
1,40	2,2644		
1,55	3,2984		
1,70	4,3222		
1,85	5,3516		
2,00	6,3867		

№ варианта	X ₁	X ₂
3	1,121	1,482

Многочлен Ньютона

Т.к х1 = 1,121 лежит в левой половине отрезка, то воспользуемся формулой Ньютона для интерполирования вперед(первой)

Для
$$x1=1,121$$
: $t = (x-x0)/h = (1,121-1,1)/0,15 = 0,14$

Nº	xi	yi	Δyi	∆2yi	∆3yi	∆4yi	∆5 yi	∆6 yi
0	1,1	0,2234	1,0204	0,0002	0,0132	-0,0368	0,0762	-0,1313
1	1,25	1,2438	1,0206	0,0134	-0,0236	0,0394	-0,0551	
2	1,4	2,2644	1,034	-0,0102	0,0158	-0,0157		
3	1,55	3,2984	1,0238	0,0056	1E-04			
4	1,7	4,3222	1,0294	0,0057				
5	1,85	5,3516	1,0351					
6	2	6,3867						

 $N6(x) = y0 + t\Delta y0 + t(t-1)^* \Delta 2y0/2! + t(t-1)(t-2)^* \Delta 3y0/3! + t(t-1)(t-2)(t-3)^* \Delta 4y0/4! + t(t-1)(t-2)(t-3)(t-4)^* \Delta 5y0/5! + t(t-1)(t-2)(t-3)(t-4)(t-5)^* \Delta 6y0/6!$

y(1,121) = 0,2234 + 0,14*1,0204 + (0,14*(0,14-1)*0,0002)/2 + (0,14*(0,14-1)*(0,14-2)*0,0132)/6 + (0,14*(0,14-1)*(0,14-2)*(0,14-3)* -0,0368)/24 + (0,14*(0,14-1)*(0,14-2)*(0,14-3)*(0,14-4)*(0,14-1)*(0,14-2)*(0,14-3)*(0,14-4)*(0,14-5)* -0,1313)/720 = 0,37147968132678056

Т.к х2 = 1,482 лежит в левой половине отрезка, то воспользуемся формулой Ньютона для интерполирования вперед(первой)

Для
$$x1=1,482$$
: $t=(x-x0)/h=(1,482-1,4)/0,15=0,55$

Nº	xi	yi	Δyi	∆2yi	∆3yi	∆4yi	∆5 yi	∆6 yi
0	1,1	0,2234	1,0204	0,0002	0,0132	-0,0368	0,0762	-0,1313
1	1,25	1,2438	1,0206	0,0134	-0,0236	0,0394	-0,0551	
2	1,4	2,2644	1,034	-0,0102	0,0158	-0,0157		
3	1,55	3,2984	1,0238	0,0056	1E-04			
4	1,7	4,3222	1,0294	0,0057				
5	1,85	5,3516	1,0351					
6	2	6,3867						

 $N4(x) = y0 + t\Delta y0 + t(t-1)^* \Delta 2y0/2! + t(t-1)(t-2)^* \Delta 3y0/3! + t(t-1)(t-2)(t-3)^* \Delta 4y0/4!$ $y(1,482) = 2,2644 + 0,55*1,034 + (0,55*(0,55-1)* -0,0102)/2 + (0,55*(0,55-1)*(0,55-2)* \\0,0158)/6 + (0,55*(0,55-1)*(0,55-2)*(0,55-3)* -0,0157)/24 = 2,835882459453125$

Многочлен Гаусса

T.к x1 = 1,121 > 1,1, то воспользуемся первой формулой Гаусса

Для
$$x1=1,121$$
: $t=(x-x0)/h=(1,121-1,1)/0,15=0,14$

xi	yi	Δyi	∆2yi	∆3yi	∆4yi	∆5 yi	∆6 yi
						Δ5 Y ₀	Δ6 Y ₀
$X_0 = 1,1$	$Y_0 = 0,2234$	$\Delta Y_0 = 1,0204$	$\Delta 2 Y_0 = 0,0002$	$\Delta 3 Y_0 = 0.0132$	$\Delta 4 Y_0 = -0.0368$	=	= -
						0,0762	0,1313
X ₁ =						Δ5 Y ₁	
1,25	$Y_1 = 1,2438$	$\Delta Y_1 = 1,0206$	$\Delta 2 Y_1 = 0.0134$	$\Delta 3 Y_1 = -0.0236$	$\Delta 4 Y_1 = 0.0394$	= -	
1,25						0,0551	
$X_2 = 1,4$	$Y_2 = 2,2644$	$\Delta Y_2 = 1,034$	$\Delta 2 Y_2 = -0.0102$	$\Delta 3 Y_2 = 0.0158$	Δ4 Y ₂ = -0,0157		
X ₃ =	Y ₃ = 3,2984	Δ Y ₃ = 1,0238	Δ2 Y ₃ = 0,0056	Δ3 Y ₃ = 1E-04			
1,55	13-3,2304	Δ 1 3 = 1,0238	Δ2 1 3 = 0,0030	Δ3 1 3 = 1L-04			
$X_4 = 1,7$	Y ₄ = 4,3222	Δ Y ₄ = 1,0294	$\Delta 2 Y_4 = 0,0057$				
X ₅ =	Y ₅ = 5,3516	Δ Y ₅ = 1,0351					
1,85	15 – 3,3310	Δ 1 5- 1,0551					
$X_6 = 2$	Y ₆ = 6,3867						

 $P6(x) = y0 + t\Delta y0$

 $T.\kappa \ x2 = 1,482 < 1,55$, то воспользуемся второй формулой Гаусса

Для
$$x2=1,482$$
: $t = (x-x0)/h = (1,482-1,55)/0,15 = -0,453$

xi	yi	Δyi	∆2yi	∆3yi	∆4yi	Δ5 yi	∆6yi
X ₋₃ = 1,1	Y ₋₃ = 0,2234	Δ Y ₋₃ = 1,0204	Δ2 Y ₋₃ = 0,0002	Δ3 Y ₋₃ = 0,0132	Δ4 Y ₋₃ = - 0,0368	Δ5 Y ₋₃ = 0,0762	Δ6 Y ₋₃ = - 0,1313
X ₋₂ = 1,25	Y ₋₂ = 1,2438	Δ Y ₋₂ = 1,0206	Δ2 Y ₋₂ = 0,0134	Δ3 Y ₋₂ = -0,0236	Δ4 Y ₋₂ = 0,0394	Δ5 Y ₋₂ = -0,0551	
X ₋₁ = 1,4	Y ₋₁ = 2,2644	Δ Y ₋₁ = 1,034	Δ2 Y ₋₁ = -0,0102	Δ3 Y ₋₁ = 0,0158	Δ4 Y ₋₁ = - 0,0157		
X ₀ = 1,55	Y ₀ = 3,2984	Δ Y ₀ = 1,0238	Δ2 Y ₀ = 0,0056	Δ3 Y ₀ = 1E-04			
$X_1 = 1,7$	Y ₁ = 4,3222	Δ Y ₁ = 1,0294	Δ2 Y ₁ = 0,0057				
X ₂ = 1,85	Y ₂ = 5,3516	Δ Y ₂ = 1,0351					
$X_3 = 2$	Y ₃ = 6,3867						

$$P6(x) = y0 + t \Delta Y_{-1} + t(t+1) \Delta 2 Y_{-1}/2! + t(t+1)(t-1) \Delta 3 Y_{-2}/3! + t(t+2)(t+1)(t-1) \Delta 4 Y_{-2}/4! + t(t+2)(t+1)(t-1)(t-2) \Delta 5 Y_{-3}/5! + t(t+3)(t+2)(t+1)(t-1)(t-2) \Delta 6 Y_{-3}/6!$$

 $y(1,482) = 3,2984 + -0,453* 1,034 + (-0,453*(-0,453+1)*-0,0102)/2 + (-0,453*(-0,453+1)*(-0,453-1)* -0,0236)/6 + (-0,453*(-0,453+2)*(-0,453+1)*(-0,453+1)*(-0,453-1)* 0,0394)/24 + (-0,453*(-0,453+2)*(-0,453+1)*(-0,453-1)*(-0,453-2)* 0,0762)/120 + (-0,453*(-0,453+3)*(-0,453+2)*(-0,453+1)*(-0,453-1)*(-0,453-2)* -0,1313)/720 = \mathbf{2,83052696867701186680930875}$

Листинг программы

Многочлен Лагранжа

Многочлен Ньютона

```
public double interpolation() {

   double h = x[1] - x[0];
   double[][] deltaMatrix = new double[x.length][x.length];
   for (int i = 0; i < x.length; i++) {
      deltaMatrix[i][0] = y[i];
   }

   for (int i = 1; i < x.length; i++) {
      for (int j = 0; j < (x.length - i); j++) {
            deltaMatrix[j][i] = deltaMatrix[j + 1][i - 1] - deltaMatrix[j][i - 1];
      }
   }

   if (XCoordinate <= x[x.length / 2]) {
      return (firstInterpolationFunction(deltaMatrix, h));
   } else {
      return (secondInterpolationFunction(deltaMatrix, h));
   }
}</pre>
```

```
public double firstInterpolationFunction(double[][] deltaMatrix, double h) {
     double answer;
     double t = (XCoordinate - x[x0]) / h;
     answer = y[x\theta];
          double new_t = t;
          for (int j = 1; j < i; j++) {
               <u>new_t</u> *= t - j;
          \underline{answer} += (\underline{new\_t} * deltaMatrix[\underline{x0}][\underline{i}]) / getFactorial(\underline{i});
     return <u>answer</u>;
public double secondInterpolationFunction(double[][] deltaMatrix, double h) {
     double answer;
          double new_t = t;
          for (int j = 1; j < \underline{i}; j++) {
               <u>new_t</u> *= t + j;
          <u>answer</u> += (\underline{new\_t} * deltaMatrix[x.length - <math>\underline{i} - 1][\underline{i}]) / getFactorial(\underline{i});
     return answer;
```

Результаты выполнения программы:

```
Выберите способ задания данных:(введите номер)

1. Набор данных (таблицы х,у)

2. На основе выбранной функции

Введите количество точек:

Введите значения X (через пробел):

Введите значения Y (через пробел):

Введите координату X:

Введите значения X (через пробел):

Введите координату X:

Введите координату X:

Введите координату X:

Введите координату X:

Введите значения X (через пробел):

Вве
```


Вывод:

В результате выполнения данной лабораторной я познакомился с методами интерполяции функции и реализовал метод с использование многочлена Лагранжа и метод с использованием многочлена Ньютона с конечными разностями. Понял что такое интерполирование и для чего оно необходимо.