Ejercicios tipo examen Sesión de refuerzo Sistemas Dinámicos Discretos y Continuos

Dra. Neus Garrido Sàez

Máster en Ingeniería Matemática y Computación Escuela Superior en Ingeniería y Tecnología

Contenido

- 1 Ejercicio 1
- 2 Ejercicio 2
- 3 Ejercicio 3
- 4 Ejercicio 4

1

Ejercicio 1

Enunciado

Cuando un objeto absorbe calor del medio que lo rodea sigue la Ley de Newton, que expresa la rapidez con la que se enfría un objeto a partir de su temperatura T y la temperatura ambiente T_a con la expresión:

$$T' = K(T - T_a).$$

- (a) Obtén la solución analítica, teniendo en cuenta que $T(t_0) = T_0$.
- (b) Para K=-0.5 y temperatura ambiente la que haya en tu sala, representa el campo de direcciones en la malla t=0+n, $T=T_a-1+n$ (n=0,1,2).
- (c) Determina el valor de K si una barra de metal a $20^{\circ}C$ se introduce en un recipiente con agua hirviendo y su temperatura aumenta $2^{\circ}C/s$.
- (d) Obtén los puntos de equilibrio y determina si son atractores, repulsores o nodos.
- (e) Representa el diagrama de bifurcación del sistema.

Enunciado

Cuando un objeto absorbe calor del medio que lo rodea sigue la Ley de Newton, que expresa la rapidez con la que se enfría un objeto a partir de su temperatura T y la temperatura ambiente T_a con la expresión:

$$T' = K(T - T_a).$$

(a) Obtén la solución analítica, teniendo en cuenta que $T(t_0)=T_0$. Solución.

EDO de variables separables:

$$\frac{dT}{dt} = K(T - T_a) \rightarrow \int \frac{1}{T - T_a} dT = \int K dt$$

$$\rightarrow \ln(T - T_a) = Kt + C$$

$$\rightarrow T - T_a = Ce^{Kt}$$

- Solución general: $T(t) = T_a + Ce^{Kt}$
- Solución particular:

$$T(t_0) = T_0 \rightarrow T_0 = T_a + Ce^{Kt_0} \rightarrow C = (T_0 - T_a)e^{-Kt_0}$$

$$T(t) = T_a + (T_0 - T_a)e^{K(t - t_0)}$$

Enunciado

Cuando un objeto absorbe calor del medio que lo rodea sigue la Ley de Newton, que expresa la rapidez con la que se enfría un objeto a partir de su temperatura T y la temperatura ambiente T_a con la expresión:

$$T' = K(T - T_a).$$

(b) Para K=-0.5 y temperatura ambiente la que haya en tu sala, representa el campo de direcciones en la malla t=0+n, $T=T_a-1+n$ (n=0,1,2). Solución. Tomamos $T_a=20^{\circ}C$.

t = 0 + n	0	0	0	1	1	1	2	2	2
$T = T_a - 1 + n$	19	20	21	19	20	21	19	20	21
$T' = -0.5(T - T_a)$	0.5	0	-0.5	0.5	0	-0.5	0.5	0	-0.5

Enunciado

Cuando un objeto absorbe calor del medio que lo rodea sigue la Ley de Newton, que expresa la rapidez con la que se enfría un objeto a partir de su temperatura T y la temperatura ambiente T_a con la expresión:

$$T' = K(T - T_a).$$

(c) Determina el valor de K si una barra de metal a $20^{\circ}C$ se introduce en un recipiente con agua hirviendo y su temperatura aumenta $2^{\circ}C/s$. Solución.

$$T_0 = 20^{\circ}C,$$
 $T' = 2^{\circ}C/s,$ $T_a = 100^{\circ}C$
$$T' = K(T - T_a) \rightarrow K = \frac{T'}{T - T_a} = \frac{2}{20 - 100} = -0.025.$$

Enunciado

Cuando un objeto absorbe calor del medio que lo rodea sigue la Ley de Newton, que expresa la rapidez con la que se enfría un objeto a partir de su temperatura T y la temperatura ambiente T_a con la expresión:

$$T' = K(T - T_a).$$

- (d) Obtén los puntos de equilibrio y determina si son atractores, repulsores o nodos. Solución.
 - Puntos de equilibrio:

$$f(T) = 0 \Leftrightarrow K(T - T_a) = 0 \Leftrightarrow T^* = T_a$$

Dinámica de los puntos de equilibrio:

$$f'(T) = K \rightarrow f'(T^*) = K$$

- \bigstar K < 0: T^* atractor
- \rightarrow K > 0: T^* repulsor
- \rightarrow K=0: todos los puntos son de equilibrio y son nodos

Enunciado

Cuando un objeto absorbe calor del medio que lo rodea sigue la Ley de Newton, que expresa la rapidez con la que se enfría un objeto a partir de su temperatura T y la temperatura ambiente T_a con la expresión:

$$T' = K(T - T_a).$$

(e) Representa el diagrama de bifurcación del sistema. **Solución.**

2

Ejercicio 2

Enunciado

Considera el siguiente sistema dinámico: $\left\{ \begin{array}{lll} x' & = & x-y^2 \\ y' & = & -y \end{array} \right.$

- (1) Calcula los puntos fijos y de equilibrio.
- (2) Linealiza el sistema y calcula los valores propios y di de qué tipo son los puntos de equilibrio. Esboza un dibujo.
- (3) Vuelve al sistema no lineal y resuélvelo hasta donde sepas.

Enunciado

Considera el siguiente sistema dinámico: $\begin{cases} x' = x - y^2 \\ y' = -y \end{cases}$

- (1) Calcula los puntos fijos y de equilibrio.
- (2) Linealiza el sistema y calcula los valores propios y di de qué tipo son los puntos de equilibrio. Esboza un dibujo.
- (3) Vuelve al sistema no lineal y resuélvelo hasta donde sepas.
- (1) Puntos fijos:

$$\left\{ \begin{array}{ccc} x-y^2 & = & x \\ -y & = & y \end{array} \right. \Rightarrow \quad X^F = \left\{ (x,0) : x \in \mathbb{R} \right\} \text{ (eje de abscisas)}$$

Puntos de equilibrio:

$$\begin{cases} x - y^2 = 0 \\ -y = 0 \end{cases} \Rightarrow X^* = (0,0)$$

Enunciado

Considera el siguiente sistema dinámico: $\begin{cases} x' = x - y^2 \\ y' = -y \end{cases}$

- (1) Calcula los puntos fijos y de equilibrio.
- (2) Linealiza el sistema y calcula los valores propios y di de qué tipo son los puntos de equilibrio. Esboza un dibujo.
- (3) Vuelve al sistema no lineal y resuélvelo hasta donde sepas.
- (2) Sistema linealizado: X' = AX

$$J_F(x,y) = \begin{bmatrix} 1 & -2y \\ 0 & -1 \end{bmatrix} \Rightarrow A = J_F(X^*) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Valores y vectores propios:

$$\lambda_1 = 1, \quad \vec{v_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \lambda_2 = -1, \quad \vec{v_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 $\Rightarrow \lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 \neq \lambda_2$, $\lambda_2 < 0 < \lambda_1 \Rightarrow X^*$ punto de silla

Enunciado

Considera el siguiente sistema dinámico: $\left\{ \begin{array}{lll} x' & = & x-y^2 \\ y' & = & -y \end{array} \right.$

- (1) Calcula los puntos fijos y de equilibrio.
- (2) Linealiza el sistema y calcula los valores propios y di de qué tipo son los puntos de equilibrio. Esboza un dibujo.
- (3) Vuelve al sistema no lineal y resuélvelo hasta donde sepas.
- (2) Plano de fases:

Solución general:

$$X(t) = C_1 e^t \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 e^{-t} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{cases} x(t) = C_1 e^t \\ y(t) = C_2 e^{-t} \end{cases}$$

- Eje X: recta inestable
- Eje *Y*: recta estable

Enunciado

Considera el siguiente sistema dinámico: $\left\{ \begin{array}{lll} x' & = & x-y^2 \\ y' & = & -y \end{array} \right.$

- (1) Calcula los puntos fijos y de equilibrio.
- (2) Linealiza el sistema y calcula los valores propios y di de qué tipo son los puntos de equilibrio. Esboza un dibujo.
- (3) Vuelve al sistema no lineal y resuélvelo hasta donde sepas.

(3)

$$\begin{cases} x' = x - y^2 \\ y' = -y \end{cases} \Rightarrow y(t) = K_1 e^{-t}$$

Entonces,

$$x' = x - y^2 = x - K_1^2 e^{-2t}$$

Solución general:

$$x(t) = x_H(t) + x_P(t)$$

Ecuación homogénea: $x' = x \Rightarrow x_H(t) = K_2 e^t$ Conjetura: $x_P(t) = K_3 e^{-2t} \Rightarrow x'(t) = -2K_3 e^{-2t}$

Enunciado

Considera el siguiente sistema dinámico: $\begin{cases} x' = x - y^2 \\ y' = -y \end{cases}$

- (1) Calcula los puntos fijos y de equilibrio.
- (2) Linealiza el sistema y calcula los valores propios y di de qué tipo son los puntos de equilibrio. Esboza un dibujo.
- (3) Vuelve al sistema no lineal y resuélvelo hasta donde sepas.
- (3) Igualando las expresiones:

$$x_P(t) = -\frac{1}{3}K_1^2 e^{-2t}$$

$$x(t) = x_H(t) + x_P(t) = K_2 e^t - \frac{1}{3} K_1^2 e^{-2t}$$

Solución general del sistema no lineal: $\left\{ \begin{array}{lcl} x(t) & = & K_2 e^t - \frac{1}{3} K_1^2 e^{-2t} \\ y(t) & = & K_1 e^{-t} \end{array} \right.$

3

Ejercicio 3

Enunciado

Realiza un estudio dinámico complejo de la siguiente familia de funciones:

$$g_{\theta}(z) = \frac{z(1+\theta z)}{2+\theta z}$$

Enunciado

Realiza un estudio dinámico complejo de la siguiente familia de funciones:

$$g_{\theta}(z) = \frac{z(1+\theta z)}{2+\theta z}$$

Puntos fijos:

$$g_{\theta}(z) = z \quad \Leftrightarrow \quad \frac{-z}{2 + \theta z} = 0 \quad \Leftrightarrow \quad z^* = 0$$

Enunciado

Realiza un estudio dinámico complejo de la siguiente familia de funciones:

$$g_{\theta}(z) = \frac{z(1+\theta z)}{2+\theta z}$$

Puntos fijos:

$$g_{\theta}(z) = z \quad \Leftrightarrow \quad \frac{-z}{2 + \theta z} = 0 \quad \Leftrightarrow \quad z^* = 0$$

Estabilidad del punto fijo:

$$g'_{\theta}(z) = \frac{\theta^2 z^2 + 4\theta z + 2}{(\theta z + 2)^2} \quad \Rightarrow \quad |g'_{\theta}(z^*)| = \frac{1}{2}$$

 $\Rightarrow z^* = 0$ es atractor

Enunciado

Realiza un estudio dinámico complejo de la siguiente familia de funciones:

$$g_{\theta}(z) = \frac{z(1+\theta z)}{2+\theta z}$$

Puntos fijos:

$$g_{\theta}(z) = z \quad \Leftrightarrow \quad \frac{-z}{2 + \theta z} = 0 \quad \Leftrightarrow \quad z^* = 0$$

Estabilidad del punto fijo:

$$g'_{\theta}(z) = \frac{\theta^2 z^2 + 4\theta z + 2}{(\theta z + 2)^2} \quad \Rightarrow \quad |g'_{\theta}(z^*)| = \frac{1}{2}$$

 $\Rightarrow z^* = 0$ es atractor

Puntos críticos:

$$g'_{\theta}(z) = 0 \quad \Leftrightarrow \quad \left\{ \begin{array}{l} z_1^C(\theta) = \frac{-2 - \sqrt{2}}{\theta} \\ \\ z_2^C(\theta) = \frac{-2 + \sqrt{2}}{\theta} \end{array} \right.$$

Enunciado

Realiza un estudio dinámico complejo de la siguiente familia de funciones:

$$g_{\theta}(z) = \frac{z(1+\theta z)}{2+\theta z}$$

Planos de parámetros

Enunciado

Realiza un estudio dinámico complejo de la siguiente familia de funciones:

$$g_{\theta}(z) = \frac{z(1+\theta z)}{2+\theta z}$$

Planos dinámicos

Enunciado

Realiza un estudio dinámico complejo de la siguiente familia de funciones:

10

-10

$$g_{\theta}(z) = \frac{z(1+\theta z)}{2+\theta z}$$

Planos dinámicos

¿Conclusiones?

4

Ejercicio 4

Enunciado

Realiza un estudio dinámico complejo completo del método iterativo

$$y_k = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$x_{k+1} = y_k - \frac{f(x_k)}{f(x_k) - 7f(y_k)}, \quad k = 0, 1, 2, \dots$$

aplicado sobre el polinomio $p_{\lambda}(z)=z^2+\lambda$, $\lambda\in\mathbb{C}$.

■ Operador de punto fijo:

■ Operador de punto fijo:

$$y = \frac{z^2 - \lambda}{2z}$$
, $R_{\lambda}(z) = y - \frac{p(z)}{p(z) - 7p(y)} = \frac{2z^4 + 3\lambda z^2 - 3\lambda^2}{3z^3 + 7\lambda z}$

■ Operador de punto fijo:

$$y = \frac{z^2 - \lambda}{2z}$$
, $R_{\lambda}(z) = y - \frac{p(z)}{p(z) - 7p(y)} = \frac{2z^4 + 3\lambda z^2 - 3\lambda^2}{3z^3 + 7\lambda z}$

Puntos fijos:

$$R_{\lambda}(z^F) = z^F$$

■ Operador de punto fijo:

$$y = \frac{z^2 - \lambda}{2z}$$
, $R_{\lambda}(z) = y - \frac{p(z)}{p(z) - 7p(y)} = \frac{2z^4 + 3\lambda z^2 - 3\lambda^2}{3z^3 + 7\lambda z}$

■ Puntos fijos:

$$R_{\lambda}(z^F) = z^F \quad \Leftrightarrow \quad z^F = \begin{cases} z_1^F = -i\sqrt{\lambda}, \\ z_2^F = i\sqrt{\lambda}, \\ z_3^F = -i\sqrt{3\lambda} \\ z_4^F = i\sqrt{3\lambda} \end{cases}$$

Operador de punto fijo:

$$y = \frac{z^2 - \lambda}{2z}$$
, $R_{\lambda}(z) = y - \frac{p(z)}{p(z) - 7p(y)} = \frac{2z^4 + 3\lambda z^2 - 3\lambda^2}{3z^3 + 7\lambda z}$

■ Puntos fijos:

$$R_{\lambda}(z^F) = z^F \quad \Leftrightarrow \quad z^F = \begin{cases} z_1^F = -i\sqrt{\lambda}, \\ z_2^F = i\sqrt{\lambda}, \\ z_3^F = -i\sqrt{3\lambda} \end{cases}$$
 $z_4^F = i\sqrt{3\lambda}$

■ Estabilidad:

$$R'_{\lambda}(z) = \frac{3(z^2 + \lambda)^2 (2z^2 + 7\lambda)}{(3z^3 + 7\lambda z)^2}$$

■ Operador de punto fijo:

$$y = \frac{z^2 - \lambda}{2z}$$
, $R_{\lambda}(z) = y - \frac{p(z)}{p(z) - 7p(y)} = \frac{2z^4 + 3\lambda z^2 - 3\lambda^2}{3z^3 + 7\lambda z}$

■ Puntos fijos:

$$R_{\lambda}(z^{F}) = z^{F} \quad \Leftrightarrow \quad z^{F} = \begin{cases} z_{1}^{F} = -i\sqrt{\lambda}, \\ z_{2}^{F} = i\sqrt{\lambda}, \\ z_{3}^{F} = -i\sqrt{3\lambda} \end{cases}$$
$$z_{4}^{F} = i\sqrt{3\lambda}$$

Estabilidad:

$$R_{\lambda}'(z) = \frac{3(z^2+\lambda)^2(2z^2+7\lambda)}{(3z^3+7\lambda z)^2} \Rightarrow \begin{cases} |R_{\lambda}(z_{1,2}^F)| = 0 < 1 & \Rightarrow z_1^F \text{ y } z_2^F \text{ superatractores} \\ |R_{\lambda}(z_{3,4}^F)| = 1 & \Rightarrow z_3^F \text{ y } z_4^F \text{ neutros} \end{cases}$$

■ Operador de punto fijo:

$$y = \frac{z^2 - \lambda}{2z}$$
, $R_{\lambda}(z) = y - \frac{p(z)}{p(z) - 7p(y)} = \frac{2z^4 + 3\lambda z^2 - 3\lambda^2}{3z^3 + 7\lambda z}$

Puntos fijos:

$$R_{\lambda}(z^{F}) = z^{F} \quad \Leftrightarrow \quad z^{F} = \begin{cases} z_{1}^{F} = -i\sqrt{\lambda}, \\ z_{2}^{F} = i\sqrt{\lambda}, \\ z_{3}^{F} = -i\sqrt{3\lambda} \\ z_{4}^{F} = i\sqrt{3\lambda} \end{cases}$$

■ Estabilidad:

$$R_{\lambda}'(z) = \frac{3(z^2+\lambda)^2(2z^2+7\lambda)}{(3z^3+7\lambda z)^2} \Rightarrow \begin{cases} |R_{\lambda}(z_{1,2}^F)| = 0 < 1 & \Rightarrow z_1^F \text{ y } z_2^F \text{ superatractores} \\ |R_{\lambda}(z_{3,4}^F)| = 1 & \Rightarrow z_3^F \text{ y } z_4^F \text{ neutros} \end{cases}$$

■ Puntos críticos libres:

$$R'_{\lambda}(z) = 0$$

■ Operador de punto fijo:

$$y = \frac{z^2 - \lambda}{2z}, \qquad R_{\lambda}(z) = y - \frac{p(z)}{p(z) - 7p(y)} = \frac{2z^4 + 3\lambda z^2 - 3\lambda^2}{3z^3 + 7\lambda z}$$

Puntos fijos:

$$R_{\lambda}(z^{F}) = z^{F} \quad \Leftrightarrow \quad z^{F} = \begin{cases} z_{1}^{F} = -i\sqrt{\lambda}, \\ z_{2}^{F} = i\sqrt{\lambda}, \\ z_{3}^{F} = -i\sqrt{3\lambda} \\ z_{4}^{F} = i\sqrt{3\lambda} \end{cases}$$

■ Estabilidad:

$$R_{\lambda}'(z) = \frac{3(z^2+\lambda)^2(2z^2+7\lambda)}{(3z^3+7\lambda z)^2} \Rightarrow \begin{cases} |R_{\lambda}(z_{1,2}^F)| = 0 < 1 & \Rightarrow z_1^F \text{ y } z_2^F \text{ superatractores} \\ |R_{\lambda}(z_{3,4}^F)| = 1 & \Rightarrow z_3^F \text{ y } z_4^F \text{ neutros} \end{cases}$$

■ Puntos críticos libres:

$$R'_{\lambda}(z) = 0 \quad \Leftrightarrow \quad z^C = \left\{ -i\sqrt{\lambda}, i\sqrt{\lambda}, -i\sqrt{\frac{7\lambda}{2}}, i\sqrt{\frac{7\lambda}{2}} \right\}$$

Operador de punto fijo:

$$y = \frac{z^2 - \lambda}{2z}$$
, $R_{\lambda}(z) = y - \frac{p(z)}{p(z) - 7p(y)} = \frac{2z^4 + 3\lambda z^2 - 3\lambda^2}{3z^3 + 7\lambda z}$

Puntos fijos:

$$R_{\lambda}(z^{F}) = z^{F} \quad \Leftrightarrow \quad z^{F} = \begin{cases} z_{1}^{F} = -i\sqrt{\lambda}, \\ z_{2}^{F} = i\sqrt{\lambda}, \\ z_{3}^{F} = -i\sqrt{3\lambda} \\ z_{4}^{F} = i\sqrt{3\lambda} \end{cases}$$

■ Estabilidad:

$$R_{\lambda}'(z) = \frac{3(z^2+\lambda)^2(2z^2+7\lambda)}{(3z^3+7\lambda z)^2} \Rightarrow \begin{cases} |R_{\lambda}(z_{1,2}^F)| = 0 < 1 & \Rightarrow z_1^F \text{ y } z_2^F \text{ superatractores} \\ |R_{\lambda}(z_{3,4}^F)| = 1 & \Rightarrow z_3^F \text{ y } z_4^F \text{ neutros} \end{cases}$$

■ Puntos críticos libres:

$$R'_{\lambda}(z) = 0 \quad \Leftrightarrow \quad z^{C} = \left\{ -i\sqrt{\lambda}, i\sqrt{\lambda}, -i\sqrt{\frac{7\lambda}{2}}, i\sqrt{\frac{7\lambda}{2}} \right\}$$

$$cr_{1} = -i\sqrt{\frac{7\lambda}{2}}, \qquad cr_{2} = i\sqrt{\frac{7\lambda}{2}}$$

Planos de parámetros

