Linear Transformations Part II

Textbook: Section 2.2

Announcements

- The last hour before the lecture next week will be a review session! Please collect your questions and email me if you would like to discuss anything particular. (include MAT224 in subject, thanks)
- All vector spaces from now on, unless stated otherwise, will be assumed to be finite dimensional.

Remember that a basis encodes a vector $\vec{v} \in V$ as an n-tuple. We can use the same idea to encode linear transformations

Example 2.2.2

Let $V = W = \mathbb{R}^2$ with the standard basis $\{\vec{e}_1, \vec{e}_2\}$. Define $V \xrightarrow{T} W$ by

$$T(\vec{e}_1) = \vec{e}_1 + \vec{e}_2$$

$$T(\vec{e}_2) = \vec{2}e_1 - 2\vec{e}_2$$

Algorithm

Given a transformation $V \xrightarrow{T} W$ given as a 'formula', this is how to compute its matrix in two chosen bases

$$\alpha = \{\vec{\alpha}_1, \dots \vec{\alpha}_m\}$$

of V and

$$\beta = \{\vec{\beta}_1, \dots \vec{\beta}_n\}$$

of W

- 1. For each basis element $\vec{\alpha}_i$ in V, compute $T(\vec{\alpha}_i)$.
- 2. Find the coorindate vector $\gamma^{\beta}(T(\vec{\alpha}_i)) = [T(\vec{\alpha}_i)]_{\beta}$.
- 3. Assemble these coordinate vectors as columns in a matrix

Discussion

Apply the above algorithm to find the matrix representing the derivative $\frac{d}{dx}$ from $\mathcal{P}_2(\mathbb{R})$ to itself. Choose the basis on $\mathcal{P}_2(\mathbb{R})$ consisting of monomials $\alpha = \{1, x, x^2\}$.

Definition 2.2.6

Let T be a transformation between finite dimensional vector spaces V and W with bases α and β respectively. The matrix of the linear transformation T with respect to bases α and β is the matrix $[T]^{\beta}_{\alpha}$ satisfying

$$[T]^{\beta}_{\alpha} \cdot [\vec{v}]_{\alpha} = [T(\vec{v})]_{\beta}$$

Linear Transformations, Image & Kernel

Discussion

- 1. What does he 'size' of the matrix $[T]_{\alpha}^{\beta}$ depend on?
- 2. What is the matrix of the identity transformation $V \xrightarrow{\mathrm{id}_V} V$?

Exmaple

We compute the matrix of the linear transformation $\mathcal{P}_3(\mathbb{R}) \xrightarrow{\mathrm{ev}_2} \mathbb{R}$

Discussion

On the contrary, given a matrix $A \in Mat_n$.	$_{m}(\mathbb{R})$, does this give	ve us a transformation?	What are the d	lomain and
codomain?				

Summary

- 1. The upshot of this section is that linear transformations are completely interchangable with matrices! The identification depends on the choice of bases for the domain and codomain.
- 2. The operations
 - matrix of a transformation $[T]^{\beta}_{\alpha}$
 - transformation of a matrix T_A

are inverse to each other.

We now rephrase the algorithm from before in more mathematical terms. (Remember, abstraction is a powerful tool!)

Proposition

In the context of the above definition, the matrix of T can be computed as

$$[T]^{\beta}_{\alpha} = \gamma^{\beta} \circ T \circ (\gamma^{\alpha})^{-1}$$

Proof.

Discussion

Without doing a lot of work, can you argue what the matrix representing the composition $F \circ T$ is assuming you know [F] and [T]?

Definition

Let $V \xrightarrow{T} W$ be a linear transformation and pick $\vec{w} \in W$. The *preimage of* \vec{w} under T is the subset of all $\vec{v} \in V$ that map to \vec{w} under T.

$$T^{-}1(w)\{\vec{v} \in V \mid T(\vec{v}) = \vec{w}\}$$

We do not say that T is invertible here and T^{-1} is not the inverse of T