ISSN 2337-4403 e-ISSN 2337-5000 jasm-pn00022

Isolation and identification of lactic acid bacteria in Bakasang as fermented microbe starter

Isolasi dan identifikasi bakteri asam laktat pada Bakasang sebagai *starter* mikroba produk fermentasi

J. Aquarista Ingratubun¹*, Frans G. Ijong², and Hens Onibala²

¹ Program Studi Ilmu Perairan, Program Pascasarjana, Universitas Sam Ratulangi.Jl. Kampus Unsrat Kleak, Manado 95115, Sulawesi Utara, Indonesia. ² Fakultas Perikanan dan Ilmu Kelautan,Universitas Sam Ratulangi * E-mail: ingratubunrista@gmail.com

Abstract: Food fermentation is one of various food processing techniques that has sufficient benefits of nutrition values, and also contains lactic acid bacteria which potentially inhibit pathogenic bacteria, thus prolong shelf life of products. Bakasang is a traditional fermented food from North Sulawesi since many years ago. Reported research of bakasang previously had described that lactic acid bacteria was the dominant isolates and therefore current research aimed to isolate and identify the lactic acid bacteria which associated during fermentation day 1 and day 15, respectively. Raw materials used were 5 kg intestine and liver of skipjack brought from local market Bersehati Manado. The intestine and liver of skipjack were washed and smashed and mixed with 10% salt and 5% rice from weight of the samples and then filled into bottle to be fermented for 15 days. Every 3 days (1,3,6,9,12,15), the samples were collected and analyzed for total lactic acid bacteria by using Total Plate Count Method on de Mann Rogosa Sharpe Agar after incubation at 37°C for 24 h. The colonies grown were transferred to Tryptic Soy Broth and followed by streaking them on Tryptic Soy Agar and the free growing colony on agar medium were isolated into slant agar which were used for biochemical test such as Gram's staining, motility test, catalase test, oksidase test, H₂S test, IMVIC test (Indole, Methyl Red, Voges Proskauer, Citrate) and carbohydrate fermentation. The results showed that Lactobacillus sp., Bacillus sp., Eubacterium sp., and Bifidobacterium sp. All these four bacteria were distributed from day 1 to day 15 of the fermentation process©

Keywords: bakasang; fermentation; lactic acid bacteria.

Abstrak: Fermentasi bahan pangan merupakan salah satu dari sekian banyak teknik pengolahan makanan yang mempunyai banyak manfaat dari kualitas gizi, mengandung bakteri asam laktat sehingga menghambat bakteri patogen sehingga daya simpan lebih panjang. Bakasang merupakan makanan fermentasi tradisional masyarakat Sulawesi Utara yang sudah ada sejak lama. Penelitian yang telah dilakukan terhadap bakasang menghasilkan informasi bahwa terdapat bakteri asam laktat pada bakasang sehingga menjadi tujuan untuk mengisolasi dan identifikasi bakteri asam laktat selama proses fermentasi 1-15 hari. Bahan baku bakasang ialah jeroan (usus dan hati) ikan cakalang Katsuwonis pelamis sebanyak 5 kg yang diambil dari pasar Bersehati Manado. Sampel jeroan dibersihkan kemudian dihancurkan, ditambahkan garam 10% dan nasi 5% kemudian difermentasi selama 15 hari dengan mengambil tiap-tiap sampel setiap 1, 3, 6, 9, 12, dan 15 untuk dihitung jumlah bakteri asam laktat dengan menggunakkan metode Total Plate Count pada media de Mann Rogosa Sharpe Agar dan koloni yang tumbuh di tumbuhkan kembali pada media Tryptic Soy Broth dan digores kembali pada media Tryptic Soy Agar, koloni yang tumbuh digores pada media slant agar yang selanjutnya diidentifikasi bakteri asam laktat berdasarkan uji biokimia yaitu uji pewarnaan Gram, uji motility, uji katalase, uji oksidase, uji H2S dan uji IMVIC (Indole, MethylRed, Voges Proskauer, Citrate). Hasil menunjukkan bahwa selama proses fermentasi berlangsung terdapat 4 genera bakteri asam laktat sesuai yaitu Lactobacillus sp., Bacillus sp., Eubacterium sp., dan *Bifidobacterium* sp., ke 4 genera ini tersebar pada fermentasi hari 1 sampai hari ke 15©

Kata-kata kunci: bakasang; fermentasi; bakteri asam laktat.

PENDAHULUAN

Kecenderungan meningkatnya permintaan terhadap

produk pangan dewasa ini yang bergizi tinggi dan bersifat fungsional memicu pelaku pengolahan pangan dan peneliti bidang pangan melakukan

inovasi dalam upaya mengantisipasi permintaan akan bahan pangan tersebut. Fermentasi adalah salah satu metode yang digunakan untuk menghasilkan produk pangan dengan bantuan mikroorganisme. Fermentasi juga dapat meningkatkan keamanan makanan dengan menghilangkan komponen beracun secara alami, atau mencegah pertumbuhan mikroba patogen, serta memberikan rasa menarik dan nilai gizi untuk banyak produk. Fermentasi adalah sebuah teknik yang menarik karena biaya rendah dan teknologi rendah dan dapat dengan mudah dilakukan ditingkat rumah tangga, sering dalam kombinasi dengan metode sederhana seperti pengasinan, pengeringan dengan matahari, atau pemanasan (Nout, 2001).

Bakasang merupakan salah satu produk fermentasi yang memanfaatkan limbah yaitu jeroan ikan cakalang atau ikan-ikan kecil seperti teri, sardin yang ditambahkan dengan garam. Produk ini merupakan produk tradisional unggulan masyarakat Sulawesi Utara dengan pemasaran yang hanya sekitar wilayah lokal saja. Bakasang berbentuk seperti saus, memiliki bau yang khas dan digunakan sebagai terasi yang ditambahkan pada sambal. Bakasang merupakan produk fermentasi sehingga dapat dipastikan terdapat bakteri asam laktat seperti Lactobacillus, Pseudomonas, Streptococcus, Micrococcus (Ijong dan Ohta, 1996), Lactobacillus acidophilus, Lactobacillus plantarum Srteptococcus faecalis (Yanti, 2009). Menurut Winarno dan Rachman (1974), kandungan gizi bakasang jeroan ikan cakalang terdiri dari protein (14.82 - 15.91%), lemak (0.91 - 1.37%), air (69.13)- 75,38%), dan abu (13,12 - 15,07%). Prihardini (2008) menemukan kandungan garam (18,53%), pH (5,34), dan total bakteri asam laktat 2,76 x 10^3 (koloni/ml). Penggunaan karbohidrat pengolahan bakasang menggunakan nasi sebagai pengganti gula, telah banyak diteliti bahwa fermentasi yang menggunakan nasi sebagai sumber karbohidrat memiliki banyak dibandingkan dengan menggunakan gula, secara organoleptik produk yang dihasilkan lebih baik (Murtini, 1991 dalam Tridiyani, 2010). Produkproduk fermentasi yang berasal dari Thailand, pada umumnya menggunakan nasi sebagai karbohidrat (Jatupornpipat, 2007 dan Chockchaisawasdee et al., 2010).

Prihardini (2011) telah mengidentifikasi mikoorganisme pada bakasang ialah *Lactobacillus* sp., *Arachania* sp., *Actinomyces* sp., *Arcanobacterium* sp., *Staphylococcus* sp., *Lactococcus* sp., *Enterococcus* sp., *Aerococcus* sp., dan *Gamella* sp.. Hasil penelitian dari Yanti (2009),

menemukan bakteri asam laktat yaitu *Lactobacillus* acidophilus, *Lactobacillus* plantarum dan Streptococcus faecalis.

Fardiaz (1989) menyatakan yang termasuk bakteri asam laktat adalah famili Lactobaciliaceae, vaitu Lactobacillus, dan famili Streptococcaceae, terutama Leuconostoc, Streptococcus, Pediococcus, beberapa spesies Lactobacillus bersifat homofermentatif sedangkan Leuconostoc dan Lactobacillus lainnya bersifat spesies heterofermentatif. Menurut Pato (2003), bakteri asam laktat merupakan istilah yang mulanya ditujukan hanya untuk sekelompok bakteri yang menyebabkan keasaman pada susu (milk-souring organism). Secara umum bakteri asam laktat didefinisikan sebagai suatu kelompok bakteri gram positif, tidak menghasilkan spora, berbentuk bulat atau batang yang memproduksi asam laktat sebagai produk akhir metabolik utama selama fermentasi karbohidrat. Bakteri asam laktat dikelompokkan ke dalam beberapa genus antara lain Streptococcus (termasuk Lactococcus), Leuconostoc, Pediococcus dan Lactobacillus.

Bakteri asam laktat yang terdapat pada produk bakasang berperan sangat penting dalam proses fermentasi. Pengembangan produk fermentasi ke depan dapat diketahui strain bakteri asam laktat apa yang paling dominan dalam proses fermentasi sehingga dapat dijadikan sebagai starter mikroba. Penelitian ini bertujuan untuk mengisolasi dan mengidentifikasi bakteri asam laktat pada produk bakasang.

MATERIAL DAN METODE

Bahan baku yang digunakan ialah jeroan ikan cakalang segar (Katsuwonis pelamis L.) yang diperoleh dari pasar Bersehati Manado sebanyak 5 kg. Bahan baku dibersihkan dengan air mengalir untuk menghilangkan darah dan kotoran, kemudian dihancurkan menggunakan meat chopper sampai halus, dan ditambahkan garam 10% dan nasi 5% dari berat bahan baku. Bahan baku yang sudah dicampur garam dan nasi kemudian dimasukkan dalam wadah fermentasi yang terbuat dari botol kaca yang kedap dan pada tutup botol kaca dilengkapi dengan katup yang dihubungkan dengan selang ke botol kecil berisi air yang berfungsi mengontrol gas dalam wadah fermentasi serta untuk mencegah kontaminasi dari udara luar ke dalam wadah fermentasi selama proses fermentasi berlangsung dalam waktu 15 hari. Selanjutnya wadah fermentasi dimasukkan ke dalam inkubator

yang dirancang menggunakan *box stereofoam* berukuran 49 x 39 x 32 cm, dilengkapi dengan penutup. Pada penutup dipasang termometer batang untuk mengontrol suhu di dalam inkubator. Selain itu, di dalam inkubator dipasang 2 buah lampu pijar 5 watt yang dihubungkan dengan saklar pada sisi luar. Lampu pijar berfungsi sebagai sumber panas inkubator. Suhu di dalam inkubator berfluktuasi sekitar 40-50°C.

Selama proses fermentasi pada hari ke 1, 3, 6, 9, 12, dan 15 berlangsung, dilakukan pengamatan terhadap penampakan umum bahan fermentasi dengan uji sensoris pada aspek warna, tekstur dan bau, perhitungan total bakteri asam laktat dengan moteode tuang pada media *de Mann Rogosa Sharpe Agar* (Merck, pH 5,7) yang diinkubasi pada suhu 37°C selama 24 jam. Sedangkan untuk tujuan isolasi dan identifikasi maka koloni yang tumbuh pada media *de Mann Rogosa Sharpe Agar* digores pada media *Tryptic Soy Agar* dan koloni yang tumbuh bebas kemudian dipindahkan ke media *slant* agar sebagai kultur sediaan (Ijong and Ohta, 1996).

Identifikasi bakteri dilakukan berdasarkan karakteristik uji morfologi dan biokimia (Cappuccino dan Sherman, 1992) meliputi uji pewarnaan gram, uji katalase, uji oksidase, uji motilitas, uji indol, uji Metil *red*, uji voges proskauer, uji sitrat, uji H₂S dan uji fermentasi karbohidrat. Selanjutnya hasil pengujian disesuaikan dengan karakteristik bakteri asam laktat berdasarkan manual Bergey (Holt, *et al.*, 1994).

HASIL DAN PEMBAHASAN

Hasil pengamatan umum terhadap aspek sensori pada bakasang difermentasi selama 15 hari menunjukkan bahwa penampakan bakasang jeroan ikan secara umum yaitu warna cokelat cerah, tekstur semakin kental seperti kecap dan bau aromatik kuat. Ijong (1996) menyatakan bahwa fermentasi oleh bakteri asam laktat terjadi peningkatan konsentrasi asam-asam amino seperti asam aspartat, asam glutamat, prolin dan valin yang memberi kontribusi terhadap rasa bakasang. Selanjutnya menurut Ijong (1996) bahwa kehadiran garam pada proses fermentasi menimbulkan lingkungan menguntungkan oleh bakteri asam laktat untuk bertumbuh selama proses fermentasi berlangsung dan menekan pertumbuhan mikroorganisme yang tidak diinginkan. Adams (2001) menjelaskan bahwa pertumbuhan bakteri asam laktat pada produk fermentasi bertujuan untuk menghalangi adanya

kerusakan dan bakteri patogen yang terdapat pada bahan tersebut. Pencegahan tersebut dapat terjadi dalam dua arah, yaitu memperlambat pertumbuhan bakteri patogen atau menonaktifkan atau memusnahkan organisme tersebut. Pada media selektif *de Mann Rogosa Sharpe Agar*, koloni bakteri asam laktat pada produk bakasang bertumbuh baik dari fermentasi hari 1 hingga hari ke 15, semakin lama fermentasi semakin banyak pula bakteri asam laktat yang tumbuh pada media dengan jumlah koloni 1,5 × 10⁶ sampai 2,5× 10⁶ seperti yang ditunjukkan pada Tabel.1.

Tabel 1. Total Bakteri Asam Laktat pada Media *de Mann Rogosa Sharpe Agar*

Kode Sampel	Rata-rata Total BAL (CFU/ml)
	15106
Α	1.5×10^{6}
В	$1,75 \times 10^6$
C	1.8×10^6
D	2.0×10^{6}
E	2.5×10^6
F	2.5×10^6

A: Hari 1; B: Hari 3; C: Hari 6; D: Hari 9; E: Hari 12, F: Hari 15

Koloni bakteri asam laktat yang sudah tumbuh dilakukan pengujian biokimia dengan hasil sebagai berikut: 72 isolat murni bakteri asam laktat termasuk dalam kelompok bakteri gram positif, berbentuk batang berantai maupun terpisah. Uji katalase didapatkan 16 isolat positif dan 56 isolat negatif. Uji oksidase menunjukkan 8 dari 72 isolat murni negatif. Uji Motilitas menunjukkan bakteri asam latat bersifat motil dan nonmotil. Uji fermentasi karbohidrat menunjukkan bahwa bakteri asam laktat pada bakasang bersifat homofermentatif yaitu hanya memproduksi asam dari glukosa, laktosa, fruktosa, sukrosa dan manitol. Uji H₂S, uji indol, metil red menghasilkan reaksi negatif, sebaliknya uji Voges Proskauer dan uji sitrat menunjukkan hasil positif dari hampir seluruh isolat. Dari hasil uji biokimia secara keseluruhan dapat dilihat pada Tabel 2, maka dari 72 isolat, 63 isolat teridentifikasi menjadi 4 genus yaitu Lactobacillus sp., Bacillus sp., Eubacterium sp.,

Tabel.2 Hasil Uji Biokimia Bakteri Asam Laktat Pada Produk Bakasang

Spesies		Eubacterium sp.	Lactobacillus acidophilus	Eubacterium sp.	Lactobacilius acidophilus	Lactobacilius acidophitus	Eubacterium sp.	Eubacterium sp.	Eubacterium sp.	Bifidobacterium sp.	-1	1	E	Eubacterium sp.	Eubacterium sp.	Eubacterium sp.	Lactobacilius acidophilus	Eubacterium sp.	Eubacterium sp.	Eubacterium sp.	Lactobacilius acidophilus	Lactobacilius acidophilus	Lactobacilius acidophilus
at	H	Ą	Ą	⋖	Ą	Ą	Ą	∀	Ą	Ą	Ą	∢	⋖	∢	Ą	Ą	Ą	Ą	Ą	Ą	∢	∢	Ą
ohidra	M	Ą	Ą	Ą	Ą	Ą	Ą	Ą	Ą	Ą	Ą	∢	ΑW	∢	Ą	Ą	∢	Ą	∢	4	Ą	∢	Ą
i Karl	SZ.	Ą	4	₹	Ą	∢	⋖	⋖	4	Ą	⋖	∢	⋖	∢	Ą	Ą	Ą	Ą	⋖	Ą	∢	∢	Ą
Fermentasi Karbohidrat	T	Ą	A	Ą	A	Ą	Ą	Αw	Aw	A	Ą	ΑW	Ą	4	Ą	Ą	Ą	Ą	Ą	1	AW	i)	i
Ĭ	ರ	Ą	Ą	4	Ą	Ą	Ą	4	Ą	Ą	4	∢	∢	∢	Ą	Ą	Ą	Ą	Ą	∢	Ą	∢	Ą
SITRAT		+	+	i	+	÷	ı	+	-	Ī	+	÷	+	+	+	+	+	+	+	+	+	+	+
Voges Pros-	Kauer	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Methy1	Ked	î	ı	i	t:	-	1	i	i	i)	i	ı	Ç.	i	i	i,	1.	ï	i.		i	į.	á
INDOL		î	1	i	1	31	ı	T	1	î	1	i	t	T.	1	î	4	Î	ľ.	31	-1	î	1
H2S		i	ı	i	1	i		1	1	į.	1	i	1	1	1	i.	1	ï	1	1	ı	Ĕ.	1
OKSIDASE		+	+	+	+	+	+	+	+		i	ï	i	+	+	+	+	+	+	+	+	+	+
KATA-	LASE		I	1	Ē	1	T.	1	a	Te.	31	т	t:	3 1	3	T.	ľ	ı	E	31	3	I)	1
MOTILITY		+	T	+	E	-1	+	+	+	16	+	+	+	+	+	+	1	+	4	+	3.	1	3.
PEWARNAAN	GKAM	Positifbatang	Positifbatang	Positifbatang	Positif batang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positif batang	Positifbatang	Positifbatang	Positifbatang	Positifbatang
KODE		JA11	JA12	JA13	JA21	JA22	JA23	JA31	JA32	JA33	JA41	JA42	JA43	JB11	JB12	JB13	JB21	JB22	JB23	JESI	JE32	JESS	JB41
NO		-	2	33	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22

Sambungan Tabel.2 Hasil Uji Biokimia ...

Eubacterium sp.		Lactobacillus acidophilus	Bacillus sp.		Bacillus sp.	Bacillus sp.	Eubacterium sp.	Lactobacilius acidophilus	Eubacterium sp.	Eubacterium sp.	Lactobacilins acidophilus	Lactobacillus acidophilus	Bacilius sp.	Lactobacilius acidophitus	Lactobacilius acidophitus		Bifidobacterium sp.	Eubacterium sp.	Bacilius sp.	Eubacterium sp.	Eubacterium sp.	Eubacterium sp.	Lactobacilius acidophilus	Lactobacilius acidophitus
A Eul	- A	A Lac	- Bac	۲	A Bac	A Bac	A Eul	A Lac	A Eul	A Eul	A Lac	A Lac	A Bac	A Lac	A Lac	- A	A Bif.	A Eul	A Bac	A Eul	A Eul	A Eul	A Lac	A Lac
A A	4 Y	A A	Ą	A A	4 A	A A	A 4	A A	4 A	A A	Aw A	4 4	Aw A	A A	A 4	A A	A 4	A 4	A 4	A 4	Aw 4	¥ Y	A A	A A
۲ 4	A A	4	7 4	A 7	A A	A 7	Α ,	A 4	A 2	4	A A	۷ ۲	A A	A A	4	A 7	4	A A	A 4	۷ ۲	A A	A A	A A	A A
A A	A A	A.	A A		A A	A A	AG ,	A A	A 4	A A	Aw .	A A	A A	A A	Aw .		Aw .	٧ ٧	A A	A 4	۰ ۲	Aw 2	Aw .	1
L			- 10									7-1631						-						
₹	Ą	4	Ą	Ą	⋖	∢	⋖	Ą	Ą	¥	Ą	Ą	Ą	∢	∢	Ą	∢	Ą	Ą	Ą	Ą	¥	∢	∢
+	+	+	p:	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	î	+	+	+	+	+	+	+	+	+	+	1	+	+	+	+	+	+	+	+	+	+	+
I.	1	1	+	Š.	1	Ċ	1	1	1	Ċ	1	Ţ	1	ı	1	ŗ	F	ű	ľ	Ċ	a	ı	ľ	ĵ
D	1	1	1	(i	1	ï	1	i	1	i.	1	1	4	i	1	i	t	ī	1	t	1	i	1	1
1	1	1	1	П	t	r	1	ı	1	r	1	T.	1	r	1	ı	i,	1	ı	I.	-	ı	1	1
+	1	+	ı	+	+	+	+	+	+	+	+	+	+	+	+	+	ļ.	+	+	+	+	+	+	+
i	1	ì	+	+	+	+		Ĭ	1	ī	1	ĭ	+	ï	1	í	L	ji	+	T	ı	í	i.	ì
+	+	i	+	ı	+	+	+	Ĭ	+	+	1	Ĭ	+	ï	1	ĭ	L	+	+	+	+	÷	r.	Ĩ
Positifbatang	Positifbatang	Positif batang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positif batang	Positifbatang
JB42	1B43	JC11	JC12	JC13	JC21	JC22	JC23	JC31	JC32	JC33	JC41	JC42	JC43	JD11	JD12	JD13	JD21	JD22	JD23	JD31	JD32	JD33	JD41	JD42
23	24	25	56	5	28	29	30	1	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	C.

Sambungan Tabel.2 Hasil Uji Biokimia...

Lactobacilius acidophilus	Eubacterium sp.	Eubacterium sp.	Lactobacillus acidophilus		Eubacterium sp.		Lactobacillus acidophilus	Eubacterium sp.	Eubacterium sp.	Bacillus sp.		Bacillus sp.	Bacillus sp.	Bacillus sp.	Bacilius sp.	Bacillus sp.	Lactobacillus acidophilus	Bacilius sp.	Eubacterium sp.	Eubacterium sp.	Eubacterium sp.	Lactobacillus acidophilus	Lactobacillus acidophilus	Lactobacillus plantarum
A A	A 1	A 1	A A	Α.	A A	∀	A A	4 Y	A A	A I	۲.	A I	A	A A	A A	-	4 6	A 1	A A	A I	¥	A A	A A	A A
Ą	Ą	Ą	Ą	Ą	Ą	Ą	Ą	Ą	4	⋖	Ą	Ą	Αw	Ą	4	Ą	Ą	4	Ą	A	Αw	Ą	∢	Ą
4	⋖	Ą	Ą	Ą	⋖	4	4	Ą	4	Ą	∢	⋖	∢	٧	4	∀	∢	Ą	Ą	Ą	⋖	∢	∢	Ą
1	Ą	Ą	Ą	Ą	Ą	Ą	Aw	Ą	∢	Ą	Ą	Ą	∢	Ą	Ą	Ą	Ą	Ą	Ą	Ą	Ą	-1	ar .	Ą
Ą	4	Ą	Ą	Ą	4	Ą	⋖	Ą	4	Ą	∢	∢	∢	Ą	∢	Ą	∢	Ą	4	Ą	₹	4	∢	Ą
ŀ	+	4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-1	+	+	+	÷	1
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
F	r	10	ī	1	Ť	ા	a	1	1	4	r	4	3	Y	-1	71	THE.	1	a	r	1	4	Т	<u> </u>
ř	î	1	ï.	ı	ï	1	ì	ï	î	i	î	ı	ì	i	Î	ī	î	ı	ì	ï	î	1	ï	·
1	C	1	Т	31	U	1	ea .	1	ю	+	UE	14	31	F	τ	31	+	ŧ	O.	F	Е	310	т	i I
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1	+	+	+	+	+	+
ľ	i	1	7	+	1	+	1	i	Ĭ	+	+	+	+	+	+	+	Ĭ.	+	Ti.	ı	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	_
ľ	+	+	1	1	+	1	1	+	+	+	ı	+	+-	+	+	+	Î.	+	+	+	+	ı	1	1
Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang	Positifbatang
JD43	Æ11	JE12	JE13	JE21	JE22	JE23	JE31	JE32	JE33	JE41	JE42	JE43	JF11	JF12	JF13	JF21	JF22	JF23	JF31	JF32	JF33	JF41	JF42	JF43
φ	0,	0	-	2	82	4	ς.	9	7	∞	ō.	9	_	2	52	4	99	\o	<u>-</u>		65	0		2

Tabel 3. Komposisi Mikroorganisme bakasang selama terfermentasi di laboratorium

Fermentasi (Hari)	Genus / Spesies
1	Eubacterium sp., Lactobacillus acidophilus, Bifidobacterium sp.
3	Eubacterium sp., Lactobacillus acidophilus
6	Eubacterium sp., Lactobacillus acidophilus, Bacillus sp.
9	Eubacterium sp., Lactobacillus acidophilus, Bacillus sp. Bifidobacterium sp.
12	Eubacterium sp., Lactobacillus acidophilus, Bacillus sp.
15	Eubacterium sp., Lactobacillus acidophilus, Lactobacillus plantarum, Bacillus sp.

Bifidobacterium sp. dengan pola penyebaran selama proses fermentasi hari 1 sampai hari ke 15 seperti ditunjukkan pada Tabel. 3. Menurut Bamforth (2005), bahwa bakteri asam laktat tersebar dalam 16 genus, 12 diantaranya terdapat pada makanan, positif, sebagian bersifat gram diantaranya berbentuk batang, kokus (seperti bola) atau kokobasil. Kebanyakan mesofilik, tetapi sebagian dapat tumbuh pada suhu refrigerator (4°C) sampai 45° C. Pada umumnya bertumbuh pada pH 4,0-4,5, tetapi strain yang lain dapaat bertumbuh pada pH diatas 9,0 atau pada pH 3,2.

Genus Lactobacillus dalam produk bakasanag teridentifkasi dalam 2 jenis yaitu L. plantarum (1 isolat) dan L. acidophilus (20 isolat). Holt, et al. (1994) menjelaskan Lactobacillus sp. mempunyai ciri-ciri sebagai berikut: gram positif batang, nonmotil, kadang berantai, kadang menjadi pendek, nonsporing. Koloni berpigmen, 'convex entire' dan 'opaque'. Adanya kemampuan menghasilkan katalase dan sitokrom negatif. Fakultatif anaerob, kadang mikroaerofilik, bersifat fermentatif dan menghasilkan laktat. Lactobacilli tersebar luas di lingkungan khususnya pada hewan dan sayuran, umumya terdapat pada saluran pencernaan burung, mamalia dan vagina mamalia, jarang bersifat patogen. Genus ini paling banyak digunakan sebagai starter mikroba pada produk fermentasi pangan juga silase yaitu L. plantarum (Ratnakomala et al., 2006). Nout (2001) menambahkan bahwa Lactobacillus berkontribusi terhadap rasa, waktu penyimpanan, konsisten menghasilkan asam asetaldehida, diasetil dan polisakarida.

Genus *Bacillus* pada produk bakasang teridentifikasi mencapai 12 isolat, dengan ciri-ciri (Holt, *et al.*, 1994): gram positif, motil dengan flagella peritrikus, berpasangan maupun berantai. Fakultatif anaerobik, mempunyai kemampuan katalase positif. Tersebar luas di habitat dan ada beberapa (sedikit) spesis yang bersifat patogenik pada vertebrata dan invertebrata.

Genus *Eubacterium* pada produk bakasang teridentifikasi mencapai 27 isolat dengan (Holt, *et*

al., 1994) ciri-ciri sebagai berikut warna koloni putih susu atau agak krem, bentuk koloni tidak beraturan dan menyebar, gram positif, motil, katalase negatif, oksidase positif, voges proskauer positif, bersifat homofermentasi. Spesis berubah bentuk dari bulat ke panjang, berpasangan atau berantai. Terdapat dalam rongga perut hewan, feses, produk tumbuhan, hewan dan tanah. Beberapa spesis sering bersifat patogen terhadap vertebrata.

Genus Bifidobacterium yang teridentifikasi pada bakasang hanya 2 isolat dan mempunyai (Holt et al., 1994) ciri-ciri morfologi sebagai berikut gram positif, nonmotil, katalase negatif, oksidasi positif, suhu optimum pada 30°C - 37°C, tersusun satu-satu ataupun berpasangan, membentuk formasi V, dan tidak berspora. Tumbuh berkembang dalam mulut dan saluran usus vertebrata, serangga, dan tidak bersifat patogen (Holt et al., 1994). Dewasa ini banyak digunakan sebagai starter mikroba baik produk fermentasi maupun produk lainnya. Axelsson (2004) menjelaskan bahwa genus Bifidobacterium seringkali dipertimbangkan pada konteks yang sama sebagai bakteri asam laktat yang memiliki keistimewaan lainnya seperti secara pilogenetik tidak berelasi dan mempunyai hasil yang unik pada fermentasi gula.

Fisiologi bakteri asam laktat telah diminati sejak diperkenalkan sebagai bakteri yang terlibat pada proses pengasaman bahan pangan dan produk makanan. Bakteri asam laktat secara umum berasosiasi dengan lingkungan bernutrisi tinggi, seperti produk makanan (susu, daging, minuman dan sayuran), tetapi sebagian lainnya merupakan bagian dari tumbuhan yang hidup normal juga terdapat pada mulut, usus, dan vagina mamalia. Variasi seperti ini merupakan hal umum yang terjadi. Hal tersebut terjadi karena karakteristik gram positif yang tidak dapat dibantah (Axelsson, 2004).

Ijong (1996) menjelaskan bahwa proses pembuatan bakasang pada umumnya, menjadi paling yang disukai oleh bakteri halofilik dan bakteri asam laktat. Jenis-jenis dari organisme yang ada tersebut dapat dipengaruhi oleh sumber dari bahan baku, komposisi dari campuran bahan dan prosedur fermentasi. Sejak bakteri asam laktat diketahui sangat penting pada peningkatan rasa pada makanan, kehadiran bakteri asam laktat pada bakasang juga diharapkan dapat berkontribusi secara signifikan pada aroma bakasang.

KESIMPULAN

Berdasarkan hasil yang telah diperoleh bahwa bakteri asam laktat ditemukan pada produk fermentasi bakasang mulai dari hari 1 sampai hari ke 15. Sebanyak 63 isolat yang teridentifikasi terdapat 2 genera bakteri asam laktat yaitu Lactobacillus acidophilus dan Lactobacillus plantarum, serta Bifidobacterium sp. dengan demikian dari hasil ini terlihat jelas bahwa bakasang berpotensi sebagai starter yang tepat untuk proses fermentasi, walaupun selama fermentasi masih ditemukan 2 genera bakteri lainnya seperti Bacillus sp., dan Eubacterium sp.

Ucapan terima kasih. Terima kasih kami sampaikan kepada Bakrie Centre Foundation (BCF) yang telah mendanai lewat pemberian beasiswa sehingga penelitian ini dapat terlaksana, dan kepada Fakultas Perikanan dan Ilmu Kelautan, Universitas Sam Ratulangi, untuk penggunaan Laboratorium Mikrobiologi Hasil Perikanan selama penelitian berlangsung, serta kepada Ir. Yandres Hege, M.Si untuk bantuan transportasi dan alat-alat yang digunakan pada penelitian ini.

REFERENSI

- ADAMS, M.R. (2001) Why Fermented Foods Can Be Safe. In: Adams, M.R. and Nout, M.J. Robert. (eds). *Fermentation and Food Safety*. Gaithersburg, Maryland: Aspen Publisher, Inc., pp.41.
- AXELSSON, L. (2004) Lactic Acid Bacteria: Classification and Phsicology. In: SALMINEN, S, Von WRIGHT, A, and OUWEHAND, A. (eds). Lactic Acid Bacteria. Microbiological and Functional Aspects. Third Edition, Revised and Expanded New York: Marcel Dekker, Inc.
- BAMFORTH, C. (2005) Food, Fermentation and *Micro-organisms*. Oxford: Blackwell Scientific Publications.

- CAPPUCCINO, J.G. and SHERMAN, N. (1992) *Microbiology, A Laboratory Manual*. New York: The Benjamin/Cummings Publishing Company, Inc. pp.462.
- CHOCKCHAISAWASDEE, S., NAMJAIDEE, S., POCHANA, S. and STATHOPOULOS, C, E. (2010) Development of Fermented Oyster-Mushroom Sausage. *Asian Journal of Food and Agro-Industry*.
- FARDIAZ, S. (1989) *Mikrobiologi Pangan*. Bogor: Pusat Antar Univeristas Pangan dan Gizi, Institut Pertanian Bogor.
- HOLT, J.G, et al. (1994) *Bergey's Manual of DETERMINATIVE BACTERIOLOGY*. Ninth Edition. Maryland, USA: Williams and Wilkins. pp. 527-603
- IJONG, F.G. (1996) A Study on The Production of an Indonesian Traditional Fish Sauce "Bakasang". Unpbulish Doctoral Thesis. Japan: Hiroshima University.
- IJONG, F. G. and OHTA, Y. (1996) Psycochemical and Microbiological Changer Assosiated With Bakasang Processing A Traditional Indonesia Fermented Fish Sauce. *Laboratory of Microbial Biochemistry J. Csi Food Agric.*71, pp. 69-74
- JATUPORNPIPAT, M. and KEATIKUMJORN, P. (2007) The Effect of Kefir Starter on Thai Fermented Sausage Product. *Sonklanakarin J. Sci. Technol*, 29 (4).
- NOUT, M.J.R. (2001) Fermented Foods And Their Production. In: ADAMS, M.R. and NOUT, M.J.R. (eds) *Fermentation and Food Safety*. Gaithersburg, Maryland: Aspen Publisher, Inc., p.1.
- PATO, U. (2003) Potensi Bakteri Asam Laktat yang Diisolasi Dari Dadih untuk Menurunkan Resiko Penyakit Kanker. *Jurnal Natur Indonesia* 5 (2), pp. 62-266.
- PRIHARDINI, F.J. (2008) Isolasi dan Karakterisasi Bakteri dan Bakasang Jeroan Ikan Tuna Sirip Kuning (Thunnus albacares). Available from: http://repository.ipb.ac.id/bitstream/handle/123456789/5731/Prihardini. %20Fitria%20Juniar_C2008_abstract.pdf?seq uence=1 [Accessed 20/3/13]
- RATNAKOMALA, S., RIDWAN, R., KARTINA, G. and WIDYASTUTI, Y. (2006) Pengaruh Inokulum *Lactobacillus plantarum* 1A-2 dan 1BL-2 terhadap Kualitas Silase Rumput Gajah (*Pennisetum purpureum*). *Biodiversitas*, 7 (2), pp.131-134.
- TRIDIYANI, A. (2011) Produk Fermentasi Ikan Karbohidrat Garam. Available from:

http://www.scribd.com/doc/52832855/Ferme ntasi-5. 4/12/2011 [Accessed 20/3/13] WINARNO, F., G., dan RACHMAN. (1974) *Protein, Sumber dan Perannya*. Bogor: Departemen Teknologi Hasil Perikanan. IPB. YANTI, Dwi. (2009) Skrining Bakteri Asam Laktat Sebagai Probiotik Potensial Diisolasi Dari Bakasang. Unpublish thesis (M.Sc). Manado: Univeristas Sam Ratulangi.

> Diterima: 22 April 2013 Disetujui: 29 April 2013