

Proposal Presentation

Matting based on Bayesian algorithm

Lingyu Gong, Changhong Li, Qiwen Tan E3 School

Date 15/02/2024

Group Introduction

Members and Roles

Algorithm Engineer – Tan

- Algorithm Research
- Algorithm Function Encapsulation

Reliability Engineer – Gong

- Unit Test
- E2E Test

Integration Engineer – Li

- System Integration
- Code Lint and Review

Presentation

Content

- Group Introduction
- Mathematical Algorithm
- Function Blocks
- Testing Plan
- Flow of Implementation
- Milestones and timeline

Corner Stone

$$C = \alpha F + (1 - \alpha)B$$

C: The actual observed color of the pixel.

F: Foreground color.

B: Background color.

 α : The probability of the pixel belonging to the foreground, which is the primary value we aim to solve.

Challenge

How do we solve seven unknowns with three equations?

Maximum Likelihood

Maximum A Posteriori

$$arg \max_{\alpha,F,B} P(\alpha,F,B|C) = arg \max_{\alpha,F,B} \frac{P(C|\alpha,F,B)P(\alpha,F,B)}{P(C)}$$

Log Likelihood

$$L(\alpha, F, B|C) = \arg\max_{\alpha, F, B} L(C|\alpha, F, B) + L(F) + L(B) + L(\alpha)$$
Constant(omitted)

Let's solve each terms one by one

 $arg max L(C|\alpha, F, B)$

Recall
$$C=\alpha F+(1-\alpha)B$$

Ţ

Minimize the difference between C and $ar{C}$

$$L(C|\alpha, F, B) = -\frac{||C - \alpha F - (1 - \alpha)B||^2}{\sigma_C^2}$$

(where σ_C^2 is the standard deviation)

L(F)

$$L(F) = -\frac{(F - \overline{F})^T \sum_{F}^{-1} (F - \overline{F})}{2}$$

Weighted Covariance Matrix: Distance

Bayesian

L(B)

Similarly, we have L(B)

$$L(B) = -\frac{(B - \bar{B})^T \sum_{B=0}^{-1} (B - \bar{B})}{2}$$

Log Likelihood

$$L(\alpha, F, B | C) = \arg\max_{\alpha, F, B} L(C | \alpha, F, B) + L(F) + L(B)$$

$$\frac{||C - \alpha F - (1 - \alpha)B||^2}{\sigma_C^2} \qquad \frac{(F - \overline{F})^T \sum_F^{-1} (F - \overline{F})}{2} \qquad \frac{(B - \overline{B})^T \sum_B^{-1} (B - \overline{B})}{2}$$

Iteration

Treat α as a constant and find partial derivatives of F and B

$$\begin{bmatrix} \Sigma_F^{-1} + I\alpha^2/\sigma_C^2 & I\alpha(1-\alpha)/\sigma_C^2 \\ I\alpha(1-\alpha)/\sigma_C^2 & \Sigma_B^{-1} + I\alpha^2/\sigma_C^2 \end{bmatrix} {F \choose B} = \begin{pmatrix} \Sigma_F^{-1}\bar{F} + C\alpha/\sigma_C^2 \\ \Sigma_B^{-1}\bar{B} + C(1-\alpha)/\sigma_C^2 \end{pmatrix}$$

Treat F and B as constants and find partial derivative of α

$$\alpha = \frac{(C - B) \cdot (F - B)}{||F - B||^2}$$

Preprocessing

- Simplification: Efficiency, Streamlining, Single Intensity.
- Threshold Consistency: Predefined Thresholds,
 Intensity Classification.
- Standard Matting Practice: Image Matting,
 Grayscale Guide.
- Compatibility with Logic: Processing Consistency,
 Intensity-based Logic.

Calculating

The calculations provide key color insights for distinguishing the foreground from the background, crucial for areas with unclear boundaries like hair or fur.

- Mean Calculation: Color Averaging, RGB Channels, Region Centrality
- Covariance Matrix: Color Variation, Channel Relationship, Texture Analysis
- Normalization: Scale Adjustment, Pixel Count Relevance, Average Representation
- Variance Calculation: Noise Estimation, Texture Characterization,
 Color Deviation Measurement

Iterating

This part will refine the alpha matte in complex image areas (such as edges, hair, fur) by iteratively adjusting transparency and color for precise foreground-background separation.

- Alpha Matte Refinement: Precise Transparency Adjustment
- Complex Area Focus: Edge, Hair, Fur Detailing
- Iterative Calculations: Repeated Fine-Tuning
- Foreground-Background Separation: Accurate Color Segregation
- Transparency Calculation: Alpha Value Determination
- Color Matching: Foreground-Background Color Alignment
- Convergence Check: Optimal Alpha Value Assessment

User Interface

Data visualization capabilities

Easy integration with MATLAB's computational functions

User-friendly interface for creating and customizing GUIs without needing extensive programming skills.

Unittest

Unittest

Use Case	Module	Use Case Description	Test Type	Pre-conditions	Input/Operation Procedure	Expected results	Real Ouput	Status	Comments
UC-001	2	Test with uniform trimap	Functional Test	oriImg is loaded, triMap is uniform, FThreshold and BThreshold are set.		All pixels in backImg should be zero if triMap is uniform and above FThreshold, and vice versa for frontImg.			
UC-002		Test with clear trimap separation	Functional Test	orilmg is loaded, triMap has clear separations, thresholds are defined.		frontimg and backing should accurately reflect the separations in triMap, with unknownimg being zero.			
UC-003		Test with trimap at FThreshold	Boundary Test	orilmg is loaded, triMap values are at FThreshold.		Pixels at FThreshold should be classified as background in backling.			
UC-004			Boundary Test	oriImg is loaded, triMap values are at BThreshold.		Pixels at BThreshold should be classified as foreground in frontimg.			
UC-005	Preprocessin g pics	Test with non-conforming trimap dimensions	Exception Test	orilmg is loaded, triMap dimensions do not match orilmg.	ed, triMap dimensions do not Attempt to run the segmentation code with non-conforming triMap. Attempt to run the segmentation code with non-conforming triMap. The code should handle the error gracefully and not crash. An error message should be displayed.				
UC-006		Performance test with large images	Performance Test	Large orilmg and corresponding triMap are loaded.	Run the segmentation code on a very large image.	The function should complete within a reasonable time frame without running out of memory.			
UC-007	,	Test with noisy trimap	Robustness Test	orilmg is loaded, triMap has noise.	Run the segmentation code on an image with	The code should robustly handle the noise and segment the image as well as possible given the noisy trimap.			
UC-008		Test with varying FThreshold and BThreshold	Functional Test	orilmg and triMap are loaded.	Run the segmentation code with varying FThreshold and BThreshold to test their impact on segmentation.	The segmentation should vary according to the thresholds, showing a clear impact on the result.			
UC-009			Functional Test	frontImg, backImg, unknownImg, and oriImg are initialized with uniform color.		Fmean, Bmean, Umean, and oriMean should all be the same as the uniform color value. coF and coB should be zeros.			
UC-010		Test with distinct foreground and background	Functional Test	frontImg and backImg have distinct non-zero regions; unknownImg is properly initialized.		Fmean and Bmean should reflect the distinct regions, coF and coB should represent the variance within each region.			
UC-011		Test with a single pixel foreground/background Boundary Test		frontImg and backImg each contain a single non-zero pixel.		The code should handle the single pixel without error, and the means should match the pixel values.			
UC-012		Test with empty foreground/background Exception Test		frontimg and backing are completely zero; unknowning and orilmg are non-zero.		The means for frontimg and backing should be zero, and covariance matrices should be zeros.			
UC-013	Analysis	_	Performance Test	Large frontimg, backing, unknownimg, and orilmg are initialized.		The function should complete within a reasonable time frame without memory errors.			
UC-014		Test with varying image intensities		frontImg, backImg, unknownImg, and oriImg are initialized with varying intensities.		Fmean, Bmean, Umean, and oriMean should correctly represent the varying intensities.			
UC-015	5	Test with noise in images	Robustness Test	frontImg, backImg, unknownImg, and oriImg are initialized with added noise.		The computed means should be close to the true values before noise, and the covariance matrices should capture the noise.			
UC-016		Test with non-uniform unknown region	Functional Test	unknownImg has varying intensities while frontImg and backImg are uniform.	Run the code to calculate means and covariance matrices, focusing on Umean and variance within unknownImg.	Umean should reflect the non-uniform intensities and the variance should capture the spread of the values in unknownlmg.			

E2E test

E2E test

			-		•			
Test Case No.	Test Case Description	Test Type	Pre-conditions	Input/Operation Procedure	Expected results	Real Ouput	Status	Comments
1 C:=OO1	Processing Standard Image and Trimap	l I	A standard image and corresponding trimap		Foreground, background, and matte are correctly generated			
1				0 .	, ,			L
TC-002	Processing High-Resolution Image	Performance	A high-resolution image and trimap are	,	Foreground, background, and matte are	ļ ,	' i	!
	Troccosing riight Resolution mage	Testing	provided	Observe the results	correctly generated without performance			
TC-003	Handling Incomplete Trimap	Exception	An image and an incomplete trimap are	Execute the Bayesian_Matting function	The function should handle the incomplete		1	1
	Tranding incomplete Trimap	Handling	provided	Observe the results	trimap appropriately	ļ ,	' i	!
TC-004	Llandling Missing Trimon	Exception	An image is provided without a trimap	Execute the Bayesian_Matting function	The function should appropriately error out or			
	Handling Missing Trimap	Handling	All image is provided without a trimap	2. Observe how the function responds	handle the missing trimap			1
TC-005	Processing Noisy Image	Noise	A noisy image and corresponding trimap are	Execute the Bayesian_Matting function	Foreground, background, and matte should be			
	Processing Noisy Image	Handling	provided	2. Observe the results	correctly generated despite the noise			1

Flow of Implementation

Project Structure Overview

Multiple Layers | Modules

- Block Users from underlying algorithms
- Modular Integration(decrease coupling, easier test and intergration

Flow of Implementation

Implementation flow

Milestones and timeline

Project implementation Gantt chart

No	Period	Task	Result	Res	1	2	3	4	5	6	7	8	9	10 1	1 12
1	1	Group Name and Membership	Project Membership structure map	1										\top	
2		Roles of everyone in the group[algorithms, i/o, testing]	Project Membership structure map	1						\Box				\top	\top
3		Describe the key mathematical steps in easy-to-understand terms	3-5 pages slides handcraft	Tan						\Box				\top	\top
4		Show how that leads to a flow diagram of the implementation	flow chart of implementation	Li						\Box				\top	\top
5	PLAN(1-4)	Present a plan showing the core algorithmic functions and who will implement them. Stage the development .	Development plan	Tan										\top	\top
6		Define an e2e test and how it will be implemented	E2E test instances list	Gong										\top	Т
7		Define unit tests for your core functionality	unit test instances list	Gong										\top	\top
8		Declare some milestones and timeline	This plan	Li										\top	
9		Slides integration	Plan slides	Gong				*							
10		Implement Core Algorithm function block	Functional Code block	Tan											
11	MATLAB IMP(5-6)	Integrate the code and compare the result with Laplacian matting	Matlab Project	Li											
12	MATLAB IMP(5-6)	Code Linting and review	Matlab Project	Li											
13		Unit Test and e2e test	Test Report	Gong						*					
14	14	Implement Core Algorithm function block	Functional Code block	Tan											
15		Integrate the code	Python Project	Li											
16	DOTHON IMP 6	Code Linting and review	Python Project	Li											
17	PYTHON IMP & PROGRESS	Unit Test and e2e test	Test Report	Gong											
18	UPDATE(7-9)	Slides update Algo	3 pages slides	Tan											
19		Slides update Inte	3 pages slides	Li											
20		Slides update Test	3 pages slides	Gong									*	\top	Т
21	PRESENTATION(10- 11)	Slides update Algo	5 pages slides	Tan											
22		Slides update Inte	5 pages slides	Li											
23		Slides update Test	5 pages slides	Gong											
24		Lint check	Lint Report	Li											
25	25 TEST OTHER	Unit Test	Unit test Report	Tan											
26	CODE(12)	E2E Test	E2E test report	Gong											
27		Test Report	Integrated Test Report	Li											*

Gantt Plan Format

- Task Description
- Expected Result
- Responsibility
- Weekly Node

Gantt Plan(5 parts)

- Plan And Presentation(4w)
- Matlab Implementation(2w)
- Python Implementation(3w)
- Final Presentation(2w)
- Test Other Code(1w)

Milestones and timeline

How to achieve this...

Flow control

- Version control
- Document control

Cycle benchmarking

Progress Control

• Wook nodes plan

- Week nodes plan
- 2 meetings / week

Code quality control

```
// Lint is a Devoted-specific linter for go code.
// It can be built and run as a standalone binary,
// but is intended to be used as a plugin with golangci-lint.
package main
import (
    "golang.org/x/tools/go/analysis"
    "golang.org/x/tools/go/analysis"
    "golang.org/x/tools/go/analysis/multichecker"
)
type analyzerPlugin struct()
func (-analyzerPlugin Sctunelyzers() []-analysis.Analyzer {
    return []-analysis.Analyzer(Analyzer2, ... }
}
// AnalyzerPlugin exposes the required interface for a golangci-lint plugin.
// https://golangci-lint.run/contributing/new-linters/&create-a-plugin
func main() {
    multichecker.Main(AnalyzerPlugin.GetAnalyzers()...)
}
```

Code Review

- Code Linting
- Code Tuning

Reliability Testing

- Unit Test
- E2E Test

In-time
High-quality
Project

Thank You

