Review of Mathematical Foundations – Part 2

Objectives

Define Probability
Space

Discuss Conditional Probability and Bayes Rule

Probability Space (1/2)

A probability space is a triplet (Ω, \mathcal{B}, P) that is used to model a process or an experiment with random outcomes.

- The **sample space** Ω is the set of all possible outcomes of an experiment
 - Consider two different experiments
 - (1) Tossing a coin; (2) Tossing a die

Probability Space (2/2)

- $-\mathcal{B}$: a sigma algebra (or Borel field), or informally, a collection of subsets of Ω , subject to some constraints (like containing the empty set, being closed under complements and countable union)
- P: a measure called **probability** defined on
 B, that satisfies
 - $P(A) \ge 0$ for all $A \in \mathcal{B}$
 - $-P(\Omega)=1$
 - If $A_1, A_2, ... \in \mathcal{B}$ are pairwise disjoint then $P(\bigcup A_i) = \sum P(A_i)$ (i.e., $A_j A_k = \emptyset$, $\forall j \neq k$)

Conditional Probability

Let (Ω, \mathcal{B}, P) be a probability space, and let $H \in \mathcal{B}$ with P(H)>0. For any $B \in \mathcal{B}$, we define

$$P(B|H) = P(BH) / P(H)$$

and call P(B|H) the **conditional probability** of B, given H.

The Total Probability Rule

Let (Ω, \mathcal{B}, P) be a probability space, and let $\{H_j\}$ be pairwise disjoint events in \mathcal{B} (i.e., $H_jH_k=\mathcal{O}, \forall j\neq k$) and $\bigcup_{j=1,\ldots,\infty}H_j=\Omega$. Suppose $P(H_j)>0$, $\forall j$, then $P(B)=\sum_{j=1,\ldots,\infty}P(H_j)P(B|H_j)$

-- Such $\{H_i\}$ is called a partition of Ω .

The Bayes Rule

Let (Ω, \mathcal{B}, P) be a probability space, and let $\{H_j\}$ be pairwise disjoint events in \mathcal{B} with $\bigcup_{j=1,...,\infty} H_j = \Omega$, and $P(H_j) > 0$, $\forall j$. We have, $\forall B \in \mathcal{B}$ and P(B) > 0,

$$P(H_j) P(B | H_j)$$

$$P(H_j|B) = -----, \forall j$$

$$\sum_{i=1,...,\infty} P(H_i) P(B|H_i)$$

Independence of Events

Let (Ω, \mathcal{B}, P) be a probability space, $\forall A, B \in \mathcal{B}$, we say A and B are independent if P(AB) = P(A)P(B).