# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-326225

(43)Date of publication of application: 16.12.1997

(51)Int.Cl.

H01H 37/54

(21)Application number: 08-163833

(71)Applicant: FUJI TANSHI KOGYO KK

(22)Date of filing:

04.06.1996

(72)Inventor: NOZOKI TSUYOSHI

## (54) THERMO-RELAY

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a low cost delay thermo-

relay.

SOLUTION: Contacts 5 are adapted to stand face to face opposite to each other on a surface of an insulation board 6 and a bimetallic strip 2 is placed over between these contacts 5. ON—type relay wherein a free end of the bimetallic strip 2 extending from one contact 5 normally keeps contact with the other contact 5 or OFF—type one wherein the free end keeps apart are sellected. A heat emitting body 3 such as a resistor or a PTC heating body is formed on a back side surface of this insulation board 6 and two lead wires 7 extending therefrom are connected to a voltage limiting side via a limit switch. The dimetallic strip 2 is blipped by turning on the limit switch. A low cost delay relay used as a delay switch and the like is thereby made possible.



# **LEGAL STATUS**

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-326225

(43)公開日 平成9年(1997)12月16日

(51) Int.CL\*

識別記号

庁内整理番号

FΙ

技術表示箇所

H01H 37/54

H01H 37/54

D

# 審査請求 未請求 請求項の数3 FD (全 3 頁)

(21)出顧番号

特顏平8-163833

(71)出願人 596091956

富士增子工業株式会社

(22)出願日

平成8年(1996)6月4日

大阪市淀川区十八条2丁目18-98

(72)発明者 除 堅

大阪市淀川区十八条2丁目18-98

(74)代理人 弁理士 立花 良介

## (54) 【発明の名称】 サーモリレー

## (57)【要約】

【課題】 低コストの遅延サーモリレーの提供 【解決手段】 ・絶縁基板の表面に接点を対向対峙させ、 この接点間にバイメタルを掛け渡す。一方の接点から伸 びるバイメタルの自由端が他方の接点に常時当接するオ ンタイプと離れているオフタイプが選択される。セラミ ック基板からなるこの絶縁基板の裏側面には抵抗やPT C発熱体等の発熱体を形成し、これら伸びる二本のリー ド線を制限スイッチを介して制限電圧側に接続する。制 限スイッチのオンによりバイメタルは反転する。

【効果】 延引スイッチ等に利用される低コストの遅延 リレーが可能になった。



#### 【特許請求の範囲】

【請求項1】 絶縁基板6の表面にバイメタル2とこれ への作動熱を供給する発熱体3を配置してなる。 サーモ リレー。

【請求項2】 薄いセラミック基板の上側面に接点5. 5を対峙形成し、両接点間にバイメタル2を掛け渡し、 セラミック基板の裏面にPTC発熱体3を形成してな る、サーモリレー。

【請求項3】 薄いセラミック基板の上側面に接点5. 5を対峙形成し、両接点間にバイメタル2を掛け渡し、 セラミック基板の裏面に抵抗等の発熱体3を取り付け、 この発熱体3を制御スイッチ4を経て制御電圧に接続す る,サーモリレー。

### 【発明の詳細な説明】

### [0001]

【発明の属する技術分野】本発明はバイメタルのオン・ オフによって直接負荷を遅延制御するサーモリレーに関 する。

#### [0002]

【従来の技術】従来のリレーは磁性体やマグネットコイ 20 ルそしてバネ等で構成され、コイル通電によって瞬時に 負荷を制御する。

#### [0003]

【発明が解決しようとする課題】従来方式リレーは部品 点数が多くコスト高である。セラミック基板の利便さと バイメタルの遅延性を利用した低コストのリレーを提供 するのが本発明であり、以下図面に基づいて詳しく説明 する.

## [0004]

側面に接点を対峙形成し、両接点間にパイメタルを掛け 渡し、セラミック基板の裏面にPTC発熱体を形成す る。バイメタルは常時オンあるいはオフに設定され、加 熱により反転する。キューリ温度に達するまでの遅延時 間は、小型化によっ著しく短縮される。

#### [0005]

【発明の実施の形態】セラミック等からなる絶縁基板6 の上側面に接点5、5を対峙形成し、この接点間にバイ メタル2を掛け渡す。一方の接点5から伸びるバイメタ ル2の自由端は他の接点5に常時当接あるいは離れてい 40 1 るようにセッテイグされている。常時当接のパイメタル は所定温度に達して始めてこの接点5から離れる。 絶縁 基板6の裏側面に発熱体3を形成し、リード線7、7を これから伸ばす。この発熱体3は、抵抗やPTC材料で 形成される。PTC発熱体の場合にはキューリ温度以下 でバイメタル2が作動するように設定される。このよう に構成されるサーモリレー本体1の利用例を第1.3図

#### に示す。

【0006】第1図は常時オンのバイメタル2を負荷回 路に配置してある。制御スイッチ4をオンにすると、制 御電圧が発熱体3に加えられ昇温する。サーモリレー本 体1の熱容量に応じて昇温速度は異なる。熱容量を今日 の集積化技術を利用して極めて小さく採れば、昇温速度 は著しく大きくなり、速動応動型となる。所定温度に達 するとバイメタル2の自由端は第2図のように接点5か ら離れる。PTC発熱体の場合にはキューリ温度以下で 10 バイメタル2は離れる。PTC発熱体はキューリ温度に 達すると急峻な抵抗値を呈し余分な発熱は抑制される。 制御スイッチ4を開くと発熱体3は降温してパイメタル 2はオン状態に戻る。

【0007】第3図はシャント制御方式(延引スイッ チ)の実施例であり、負荷に対して並列に制御スイッチ と発熱体3の直列回路が配置されている。負荷側回路に 挿入されたバイメタル2は常時オフの状態である。制御 スイッチ4がオンになると、発熱体3は昇温しパイメタ ル2はオン状態に変化する。遅延リレーとして作動す る。過渡応答性はサーモリレー本体1の熱容量と周囲の 熱環境に左右される。第2図の実施例は一枚のセラミッ ク基板6に一個のバイメタル2を配置したが、複数のバ イメタル2を配置して多数の負荷を制御することもでき る。また、PTC発熱体3との対を複数配置して個別に 負荷を制御することもできる。

#### [0008]

【発明の効果】要するに、本発明は薄いセラミック基板 の上側面に接点5.5を対峙形成し、両接点間にバイメ タル2を掛け渡し、セラミック基板の裏面に抵抗等の発 【課題を解決するための手段】薄いセラミック基板の上 30 熱体3を取り付け,この発熱体3を制御スイッチ4を経 て制御電圧に接続するため,低コストの遅延リレーを提 供できる。

## 【図面の簡単な説明】

【第1図】常時オンのバイメタルよりなるサーモリレー 本体を負荷回路に配置した時の回路図である。

【第2図】サーモリレー本体の正面図である。

【第3図】常時オフのバイメタルよりなるサーモリレー 本体を負荷回路に配置した時の回路図である。

## 【符号の説明】

- サーモリレー本体
- 2 バイメタル
- 3 発熱体
- 4 制御スイッチ
- 5 接点
- ß 絶椽基板
- 7 リード線

特開平9-326225

(3)



•

.

.