UNIT-II (MULTIPLE CHOICE QUESTIONS)

S.NO	QUESTION	BLOOMS LEVEL	CLO	
1.	Which method/s of representation of numbers occupies large amount of memory than others? a) Sign-magnitude b) 1's compliment c) 2's compliment			
	d) Both a	and b		
2.	Which representation is most efficient to perform an numbers? a) Sign-magnitude b) 1's compliment c) 2'S compliment d) None of the above	ithmetic operations on the		
3.	Which method of representation has two representat a) Sign-magnitude b) 1's compliment c) 2's compliment d) None of the above			
4.	When we perform subtraction on -7 and 1 the answer a) 1010 b) 1110 c) 0110 d) 1000			
5.	When we perform subtraction on -7 and -5 the answ is a) 11110 b) 1110 c) 1010 d) 0010	er in 2's compliment form		
6.	When we subtract -3 from 2, the answer in 2's comp a) 0001 b) 1101 c) 0101 d) 1001	liment form is		

7.	The processor keeps track of the results of its operations using a flags called .	
	a) Conditional code flags	
	b) Test output flagsc) Type flags	
	d) Status flags	
8.	The register used to store the flags is called as	
	a) Flag register	
	b) Status registers	
	c) Test register	
	d) Log register	
9.	The Flag 'V' is set to 1 indicates that,	
	a) The operation is valid	
	b) The operation is validated	
	c) The operation as resulted in an overflow	
	d) Both a and c	
10.	In some pipelined systems, a different instruction is used to add to numbers	
	which can affect the flags upon execution. That instruction is	
	a) AddSetCC	
	b) AddCC c) Add ++	
	d) SumSetCC	
11.	The most efficient method followed by computers to multiply two unsigned	
	numbers is a) Booth algorithm	
	b) Bit pair recording of multipliers	
	c) Restoring algorithm	
	d) Non restoring algorithm	
12.	For the addition of large integers most of the systems make use of	
12.		
	a) Fast adders	
	b) Full adders c) Carry look-ahead adders	
	d) Ripple adder	
		1

13.	In a normal n-bit adder, to find out if an overflow as occurred we make use of	
	a) And gate	
	b) Nand gate	
	c) Nor gate	
	d) Xor gate	
14.	In the implementation of a Multiplier circuit in the system we make use of	
	a) Counter	
	b) Flip flop	
	c) Shift register	
	d) Push down stack	
15.	When 1101 is used to divide 100010010 the remainder is	
	a) 101	
	b) 11 c) 0	
	d) 1	
16.	The logic operations are implemented using circuits.	
	a) Bridge	
	b) Logical	
	c) Combinatorial	
	d) Gate	
17.	The carry generation function: $ci + 1 = yici + xici + xiyi$, is implemented in	
	a) Half adders	
	b) Full adders	
	c) Ripple adders	
	d) Fast adders	
18.	The carry in the ripple adders,(which is true)	
10.	a) Are generated at the beginning only.	
	b) Must travel through the configuration.	
	c) Is generated at the end of each operation.	
	d) None of the above	
19.	In full adders the sum circuit is implemented using a) And & or gates	
	b) NAND gate	
	c) XOR	
	d) XNOR	

20.	The usual implementation of the carry circuit involves	
	a) And and or gates	
	b) XOR	
	c) NAND	
	d) XNOR	
21.	Problems in Multiplication	
21.	The product of 1101 & 1011 is	
	a) 10001111	
	b) 10101010	
	c) 11110000 d) 11001100	
	d) 11001100	
22.	The product of -13 & 11 is	
	a) 1100110011	
	b) 1101110001	
	c) 1010101010 d) 1111111000	
	u) 1111111000	
23.	We make use of circuits to implement multiplication.	
	a) Flip flops	
	b) Combinatorial	
	c) Fast adders d) Carry look ahead	
	d) Carry rook anead	
24.	The multiplier is stored in	
	a) PC Registerb) Shift register	
	c) Cache	
	d) IR	
25.	The is used to co-ordinate the operation of the multiplier.	
	a) Controller	
	b) Coordinator	
	c) Control sequencer d) Program Counter	
	a, i rogium counter	
26.	The method used to reduce the maximum number of summands by half is	
	a) Fast multiplication	
	b) Bit-pair recording	
	c) Quick multiplication	
	d) Carry Save Summand	

27.	a) -1 b) 0 c) +1 d) both a and b	
28.	The multiplier -6(11010) is recorded as, a) 0-1-2 b) 0-1+1-10 c) -2-10 d) None of the above	
29.	The numbers written to the power of 10 in the representation of decimal numbers are called as a) Height factors b) Size factors c) Scale factors d) Space Factors	
30.	If the decimal point is placed to the right of the first significant digit, then the number is called as a) Orthogonal b) Normalized c) Determinate d) Diagonal	
31.	constitute the representation of the floating number. a) Sign b) Significant digits c) Scale factor d) All of the above	
32.	a) Significant b) Determinant c) Mantissa d) Exponent	
33.) In Booth's algorithm, for Multiplier=1000 and Multiplicand=1100. How many number of cycles are required to get the correct multiplication result? a. 4 b. 5 c. 3 d. 6	

34.	In Booth's algorithm, for Multiplier=100 and Multiplicand=1100. How many number of cycles are required to get the correct multiplication result? a. 4 b. 5 c. 3 d. 6	
35.	In IEEE 32-bit representations, the mantissa of the fraction is said to occupy bits. a) 24 b) 23 c) 20 d) 16	
36.	The normalized representation of 0.0010110 * 2 ^ 9 is a) 0 10001000 0010110 b) 0 10000101 0110 c) 0 10101010 1110 d) 0 11110100 11100	
37.	The 32 bit representation of the decimal number is called as a) Double-precision b) Single-precision c) Extended format d) None of the above	
38.	In 32 bit representation the scale factor as a range of a) -128 to 127 b) -256 to 255 c) 0 to 255 d) -16 to 15	
39.	In double precision format the size of the mantissa is a) 32 bit b) 52 bit c) 64 bit d) 72 bit	
40.	Which of the following is ordinary (average) multiplier in booth recoding multiplication? a. 01010101 b. 00001111 c. 11001100 d. None of these	

41.	In booth recoding, M is multiplicand and -1 is booth recoded multiplier, then what will be the result of multiplication? a. 1's complement of M b. 2's complement of M c. M	
	d. Right shift of M	
42.	In Booth's algorithm, if Q0=0 and Q-1=0 then it will perform which operation, a. A=A-M b. A=A+M c. Arithmetic right shift of A, Q and Q-1 d. A=M-A	
43.	In Booth's algorithm, if Q0=1 and Q-1=1 then it will perform which operation, a. A=A-M b. A=A+M c. Arithmetic right shift of A, Q and Q-1 d. A=M-A	
44.	In Booth's algorithm, if Q0=1 and Q-1=0 then it will perform which operation, a. A=A-M b. A=A+M c. Arithmetic right shift of A, Q and Q-1 d. A=M-A	
45.	In Booth's algorithm, if Q0=0 and Q-1=1 then it will perform which operation, a. A=A-M b. A=A+M c. Arithmetic right shift of A, Q and Q-1 d. A=M-A	
46.	What version of multiplicand will be selected if consecutive multiplier bits are 00? a. 0*M b. +1*M c1*M d. 2*M	
47.	What version of multiplicand will be selected if consecutive multiplier bits are 01? a. 0*M b. +1*M c1*M d2*M	

48.)What version of multiplicand will be selected if consecutive multiplier bits are 10? a. 0*M b. +1*M c1*M d. 0*M	
49.	Which of the following is good multiplier in booth recoding multiplication? a. 01010101 b. 00001111 c. 11001100 d. None of these	
50.	Which of the following is worst case multiplier in booth recoding multiplication? a. 01010101 b. 00001111 c. 11001100 d. None of these	

PART B 2 Marks with answers

S.NO	QUESTION	BLOOMS LEVEL	CLO
1	Differentiate between restoring and non- restoring division		
2	2 Explain the design of a four bits carry look ahead adder circuit		
3	3 Add +5 and -9 using 2's compliment method		
4	4 Given Booth's algorithm to multiply two binary numbers, explain the working of the		
	algorithm with an example.		
5	5 Explain with figure the design of a 4-bit carry look ahead adder		
6	6 With figure explain circuit arrangements for binary division.		
7	7 IEEE standard for floating point numbers, explain.		
8	8 Design 4 bit carry look ahead logic and explain how it is faster them 4 bit ripple adder		

9	9 Multiply 14 x - 8 using Booth's algorithm	
10	10 Explain normalization,	
	excess - exponent and special	
	values with respect to IEEE	
	floating point representation	

PART C 12 Marks (Only Question)

		BLOOMS	
S.NO	QUESTION	LEVEL	CLO
1	1 Discuss in detail Multiplication of positive numbers with Problem Solving		
2	2 Explain in detail Signed operand multiplication with Problem solving		
3	3 Explain in detail about Fast multiplication- Bit pair recoding of Multipliers, Problem Solving		
4	4 Explain in detail about Carry Save Addition of summands, Problem Solving		
5	5 Discuss in detail about Integer division — Restoring Division with Solving Problems		
6	6 Explain in detail Non Restoring Division with Solving Problems		
7	7 Discuss in detail about Floating point numbers and operations with Solving Problems		

8	8 Explain in detail Addition and subtraction of Signed numbers with Problem solving	
9	9 Discuss in detail about Design of fast adders, Ripple carry adder and Carry look ahead adder	