NEUFLOW: A DATAFLOW ARCHITECTURE FOR VISION

Clément Farabet, Yann LeCun

joint work with:

Yann LeCun, Laurent Najman, Marco Scoffier, Srinivas Turaga Eugenio Culurciello, Berin Martini, Polina Akselrod, Darko Jelaca,

NEUFLOW: ARCHITECTURE

NEUFLOW: PROCESSING TILE (PT) STRUCTURE

term-by-term
s t reaming
o perators
(MUL,DIV,ADD,
SUB,MAX)

[x8,2 per tile]

configurable router, to stream data in and out of the tile, to neighbors or DMA ports

[x20]

configurable piece-wise linear or quadratic mapper

[x4]

full 1/2D parallel convolver with 100 MAC units

[x4]

configurable bank of FIFOs , for stream buffering, up to 10kB per PT

[8x]

per PI [Virtex6 LX240T]

a home-grown compiler that compiles ConvNets and the likes to sequences of grid reconfigurations (e.g. neuFlow bytecode)

1/5


```
high-level
(functional)
description
```

```
net = nn.Sequential()
net:add(nn.SpatialConvolution(3,6,9,9))
net:add(nn.Tanh())
net:add(nn.SpatialSubSampling(6,4,4))
net:add(nn.SpatialConvolution(6,12,9,9))
net:add(nn.SpatialLinear(12,6))
```

(Torch5 code)

3/5

divide the graph into subgraphs that fit on the grid

for each subgraph, generate the routes and configs for each PT and DMA port

once configured, data streams ripple through the grid,

the grid is "passive"

5/5
global
optimization:
instruction
reordering

- configuration cycles
- data streaming cycles

LUAFLOW: SUPPORTED OPERATIONS

Coding: Q8.8 (16bit, fixed-point)

- → 1D convolution
- → 2D convolution
- ◆ local pooling/subsampling/histogramming (max,average,weighted)
- ◆ term-by-term div/add/sub/mul/muladd
- → point-wise non-linear mapping
- → local contrast normalization
- ◆ temporal difference

\ ...

PROFILING*

	Intel 2Core	neuFlow Virtex4	neuFlow Virtex 6	nVidia GT335m	neuFlow IBM 45nm	nVidia GTX480
Peak GOP/sec	10?	40	160	182	1280	1350
Actual GOP/sec	1.1	37	147	54	1164	294
FPS	1.4	46	182	67	1456	374
Power (W)	30	10	10	30	5	220
Embed? (GOP/s/W)	0.03667	3.7	14.7	1.8	232.8	1.33636

^{*} computing a 16x10x10 filter bank over a 4x500x500 input image

RESOURCES

	neuFlow Virtex4	neuFlow Virtex 6	neuFlow IBM 45nm 3x3mm	neuFlow IBM 45nm 6x6mm
Peak GOP/sec	40	160	320	1280
Sys+DDR Frequency MHz	200	200	400	400
DDR Bdwdth GB/s (pins)	0.8 (16)	3 (64)	6 (64)	24 (256)
MACs #avail (#used)	192 (109)	680 (436)	436 (all)	1744 (all)
Tiles #avail	4	20	20	80

dense labeling of natural images

multiscale ConvNet, trained endto-end to optimize a dual term energy: a segmentation loss and a pixelwise classification loss

sky
tree
road
grass
water
building
mountain
object

Live Demo.

thank you

www.neuflow.org