Assignment 3

Evan Curry Wilbur

March 16, 2023

5.01

Compute 1+1+1+1+1 in the finite field \mathbb{F}_2 .

Solution.

$$1+1+1+1+1=1$$
.

5.02

Compute

$$\underbrace{1+1+1+\cdots+1}_{107}$$

in the finite field \mathbb{F}_2 .

Solution.

$$\underbrace{1 + 1 + 1 + \dots + 1}_{107} = 1.$$

5.03

Compute $(1 + x + x^2)^4$ as a polynomial with coefficients in \mathbb{F}_2 .

Solution

Using the Freshman's dream theorem, we are actually allowed to distribute the exponent across the addition so

$$(1+x+x^2)^4 = 1^4 + x^4 + (x^2)^4$$
$$= 1+x^2+x^8$$

Compute the product $(x^4 + x^3 + x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)$ in the collection of polynomials with coefficients in \mathbb{F}_2 .

Solution.

Worked this out on paper. Hopefully you can trust I did the algebra correctly since I'm too lazy to type up all the steps:

$$x^{12} + x^9 + x^6 + x^3 + 1$$

5.05

Let $g(x) = x^3 + x + 1$ be a generating polynomials for a CRC/ Compute the CRC for the byte 11100011.

Solution.

$$\Box$$

5.08

Verify that the CRC with generating polynomial $1 + x^2 + x^3 + x^4$ fails to detect two-bit errors that are a multiple of 7 bits apart.

Solution

According to the textbook, it is sufficient to show that $g|x^7 + 1$. Indeed, it can be easily verified that

$$x^7 + 1 = (x^3 + x^2 + 1)(x^4 + x^3 + x^2 + 1)$$

6.01

Factor the integers 1028 and 2057 into primes.

Solution.

$$1028 = 2^2 \times 257$$

$$2057 = 11^2 \times 17.$$

Find the reduction mod 88 of -1000.

Solution.

 $-1000 \cong 56 \mod 88.$

6.07

Prove in general that if r is the reduction of $N \mod m$, and if $r \neq 0$, then m-r is the reduction of $-N \mod m$.

Solution.

Let $r \cong N \mod m$ where 0 < r < m. So there exists a $q \in \mathbb{Z}$ such that N = qm + r. Then

$$\begin{split} N = qm + r \Rightarrow -N &= -qm - r \\ &= -qm - r + m - m \\ &= -(q+1)m + (m-r). \end{split}$$

Since 0 < r < m it follows that 0 < m - r. Furthermore, r > 0 hence m - r < m. Therefore, 0 < m - r < m and so m - r is the reduction of -N modulo m.

6.22

Show that for any integer n, the integers n and $n^2 + 1$ are relatively prime.

Solution.

Let $d = \gcd(n, n^2 + 1)$. Then d|n and $d|n^2 + 1$. But also, $d|n^2$ so it must be that $d|n^2 + 1 - n^2$ since it's just a linear combination of elements that are divisible by d. Thus d|1 so d = 1.

6.37

Find gcd(1112, 1544) and express it in the form 1112x + 1544y for some integers x and y by hand computation.

Solution.

$$gcd(1112, 1544) = 8$$

 $1112 \times 25 + 1544 \times -18 = 8$

Compute and reduce modulo the indicated modulus: $110 \times 124 \mod 3$ and also $12 + 1234567890 \mod 10$.

Solution.

$$110 \times 124 \mod 3 \cong 2 \times 1 \mod 3$$

 $\cong 2 \mod 3$
 $12 + 1234567890 \mod 10 \cong 2 + 0 \mod 10$
 $= 2 \mod 10$

6.50

Compute $2^{1000}\%11$

Solution.

$$2^{10} \cong 1 \mod 11$$
 $(2^{10})^{100} \cong 1^{100} \mod 11$
 $2^{1000} \cong 1 \mod 11$

6.57

From the definition, find $\varphi(36), \varphi(18)$, and $\varphi(28)$. Solution.

$$\varphi(36) = 12$$
$$\varphi(18) = 6$$
$$\varphi(28) = 12$$

6.52

Find the multiplicative inverse of 3 modulo 100 Solution.

$$3 \times 67 \cong 1 \mod 100$$
.

Show that $x^2 - y^2 = 102$ has no solution in the integers.

Solution.

6.81

Show that $x^3 + y^3 = 3$ has no solution in the integers.

Solution.

Since $x^3 + y^3 = (x + y)(x^2 - xy + y^2)$ and 3 is prime, one of the following two cases would have to be true

1.
$$x + y = 1$$
 and $x^2 - xy + y^2 = 3$

2.
$$x + y = 3$$
 and $x^2 - xy + y^2 = 1$

Suppose the first case. Then y = 1 - x so

$$x^{2} - xy + y^{2} = 3 \Rightarrow x^{2} - x(1 - x) + (1 - x)^{2} = 3$$

 $\Rightarrow 3x^{2} - 3x - 2 = 0$
 $\Rightarrow x = \frac{3}{2} \text{ or } x = \frac{-1}{2}.$

In both of these two solutions, x is not an integer, so case 1 fails. Suppose instead that it is case 2. Then similarly y = 3 - x

$$x^{2} - xy + y^{2} = 1 \Rightarrow x^{2} - x(3 - x) + (3 - x)^{2} = 1$$
$$\Rightarrow 3x^{2} - 9x + 8 = 0$$

which has discriminant -15, and so has no real solution. In both cases, we are unable to get integer solutions. Thus the equation has no integer solutions.

8.17

Show that

 $123456789123456789 + 234567891234567891 \neq 358025680358025680$

Solution.

123456789123456789 + 234567891234567891 = 358024680358024680

and

 $358024680358024680 \neq 358025680358025680$