Discussion - Nov 7

Calculus	review
----------	--------

1.	Here's a noustandard way to do calculus. Let	E represent
·	an infinitesimal, a "fake" number with the proj	
	€2=0 and if CER with c>o, O <e<c< th=""><th></th></e<c<>	
	than all positive numbers). Derivative rule: f(a+b)	=f(a)+bf'(a) E.
	(a) Check $(f(x)g(x)) = f(x)g'(x) + f'(x)g(x)$	f'(x)9/4)62
	(b) Check $(1/f(x))' = -f(x)/f(x)^2$	+(x)9(x)E E
(C) Find a pule for (f(x)g(x)h(x))	4
	d) Check $(f(g(x)))' = f'(g(x)) g'(x)$	felgle) Se
	(e) Check $(cf(x))^1 = cf'(x)$	
($\frac{(C_f(x))}{(C_f(x))} = \frac{C_f(x)}{(C_f(x))}$	

(t) Check (f(x)+g(x))'=f'(x)+g'(x)

2.	Compl	ete	the	tables
	•			

.f(x)	£'(x)	f (x)	f(x)+c
C		C	
X		Х	
× ⁿ		(n≠-1) X ^N	
\sqrt{X}		X ⁻¹	
JX Sin(cx) cos(cx) ecx		·X	
cos(cx)		5 in(c x) cos(c x)	
e.cx'		cos(cx)	
9		o CX	

3. Solve the differential equation $f'=\lambda f$ (also written as $dx = \lambda f$ or $df - \lambda f = 0$)

4. Draw vector fields for f' = f and f' = -f.

5. Try drawing the graph of a solution to f'' - f' - 6f = 0with f(0) = 1 and f'(0) = 0 by contemplating consavity.

6. Solve the differential equation f'' - f' - 6f = 0(take a leap by factoring out dx!)