rct/3000000505.#2

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

16.06.00

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出朝年月日

Date of Application:

1999年 7月 8日

出願番号

Application Number:

平成11年特許願第194359号

出 願 人 Applicant (s):

財団法人相模中央化学研究所

株式会社プロテジーン

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 7月21日

特許庁長官 Commissioner, Patent Office

【書類名】

特許願

【整理番号】

S018208

【提出日】

平成11年 7月 8日

【あて先】

特許庁長官殿

【発明者】

【住所又は居所】

神奈川県相模原市若松3-46-50

【氏名】

加藤 誠志

【発明者】

【住所又は居所】 神奈川県川崎市多摩区西生田4-1-28-302

【氏名】

木村 知子

【特許出願人】

【代表出願人】

【識別番号】

000173762

【住所又は居所】

神奈川県相模原市西大沼4丁目4番1号

【氏名又は名称】

財団法人相模中央化学研究所

【代表者】

寺島 孜郎

【電話番号】

042 (742) 4791

【特許出願人】

【識別番号】

596134998

【住所又は居所】 東京都目黒区中町2丁目20番3号

【氏名又は名称】

株式会社プロテジーン

【代表者】

棚井 丈雄

【電話番号】

03(3792)1019

【手数料の表示】

【予納台帳番号】

011501

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1 【物件名】

要約書 1

【プルーフの要否】

要

【発明の名称】 疎水性ドメインを持つヒト蛋白質とそれをコードする DNA 【特許請求の範囲】

【請求項1】 配列番号1から配列番号10で表されるアミノ酸配列のいずれかを含む蛋白質。

【請求項2】 請求項1記載の蛋白質のいずれかをコードするDNA。

【請求項3】 配列番号11から配列番号20で表される塩基配列のいずれかを含むcDNA。

【請求項4】 配列番号21から配列番号30で表される塩基配列のいずれかからなる、請求項3記載のcDNA。

【請求項5】 請求項2から請求項4のいずれかに記載のDNAをインビトロ 翻訳あるいは真核細胞内で発現しうる発現ベクター。

【請求項6】 請求項2から請求項4のいずれかに記載のDNAを発現し、請求項1記載の蛋白質を生産しうる形質転換真核細胞。

【請求項7】 請求項1記載の蛋白質に対する抗体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、疎水性ドメインを有するヒト蛋白質、それをコードしているDNA、このDNAの発現ベクター、このDNAを発現させた真核細胞、およびこの蛋白質に対する抗体に関する。本発明の蛋白質は、医薬品として、あるいはこの蛋白質に対する抗体を作製するための抗原として用いることができる。本発明のヒトcDNAは、遺伝子診断用プローブや遺伝子治療用遺伝子源として用いることができる。また、このcDNAがコードしている蛋白質を大量生産するための遺伝子源として用いることができる。これらの遺伝子を導入して分泌蛋白質や膜蛋白質を大量発現させた細胞は、対応するレセプターやリガンドの検出、新しい低分子医薬のスクリーニングなどに利用できる。本発明の抗体は、本発明の蛋白質の検出、定量、精製などに利用できる。

[0002]

細胞は多くの蛋白質を細胞外に分泌している。これらの分泌蛋白質は、細胞の増殖制御、分化誘導、物質輸送、生体防御などにおいて重要な役割を果たしている。分泌蛋白質は細胞内蛋白質と異なり細胞外で作用するので、注射や点滴などによる体内投与が可能であり、医薬としての可能性を秘めている。事実、インターフェロン、インターロイキン、エリスロポイエチン、血栓溶解剤など、多くの

ヒト分泌蛋白質が現在医薬として使用されている。また、これら以外の分泌蛋白質についても臨床試験が進行中であり、医薬品を目指した用途開発がなされている。ヒト細胞は、まだ多くの未知の分泌蛋白質を生産していると考えられており、これらの分泌蛋白質並びにそれをコードしている遺伝子が入手できれば、これらを用いた新しい医薬品開発が期待できる。

[0003]

一方、膜蛋白質は、シグナルレセプター、イオンチャンネル、トランスポーターなどとして、細胞膜を介する物質輸送や情報伝達において重要な役割を担っている。例えば、各種サイトカインに対するレセプター、ナトリウムイオン・カリウムイオン・塩素イオン等に対するイオンチャンネル、糖・アミノ酸等に対するトランスポーターなどが知られており、その多くはすでに遺伝子もクローン化されている。これらの膜蛋白質の異常は、これまで原因不明であった多くの病気と関連していることがわかってきた。従って、新しい膜蛋白質が見い出せれば、多くの病気の原因解明につながるものと期待され、膜蛋白質をコードする新たな遺伝子の単離が望まれている。

[0004]

従来、これらの分泌蛋白質や膜蛋白質は、ヒト細胞から精製することが困難なので、遺伝子の方からのアプローチによって単離されたものが多い。一般的な方法は、cDNAライブラリーを真核細胞に導入して、cDNAを発現させたのち、目的とする活性を有する蛋白質を分泌発現あるいは膜表面上に発現している細胞をスクリーニングする、いわゆる発現クローニング法である。しかしこの方法では機能のわかった蛋白質の遺伝子しかクローン化できない。

[0005]

一般に分泌蛋白質や膜蛋白質は、蛋白質内部に少なくとも一個所疎水性ドメインを有しており、リボソームで合成された後、このドメインが分泌シグナルとして働いたり、リン脂質膜内に留まり膜にトラップされる。従って、完全長cDNAの全塩基配列を決定してやり、そのcDNAがコードしている蛋白質のアミノ酸配列の中に疎水性の高い領域が存在すれば、そのcDNAは分泌蛋白質や膜蛋白質をコードしていると考えられる。

[0006]

【発明が解決しようとする課題】

本発明の目的は、疎水性ドメインを有する新規のヒト蛋白質、この蛋白質をコードするDNA、このDNAの発現ベクター、このDNAを発現しうる形質転換 直核細胞、およびこの蛋白質に対する抗体を提供することである。

[0007]

【課題を解決するための手段】

本発明者らは鋭意研究の結果、ヒト完全長cDNAバンクの中から疎水性ドメインを有する蛋白質をコードするcDNAをクローン化し、本発明を完成した。すなわち、本発明は疎水性ドメインを有するヒト蛋白質である、配列番号1から配列番号10で表されるアミノ酸配列のいずれかを含む蛋白質を提供する。また本発明は上記蛋白質をコードするDNA、例えば配列番号11から配列番号30で表される塩基配列のいずれかを含むcDNA、並びにこのDNAをインビトロ翻訳あるいは真核細胞内で発現しうる発現ベクター、このDNAを発現し上記蛋白質を生産しうる形質転換真核細胞、およびこの蛋白質に対する抗体を提供する

[0008]

【発明の実施の形態】

本発明の蛋白質は、ヒトの臓器、細胞株などから単離する方法、本発明のアミノ酸配列に基づき化学合成によってペプチドを調製する方法、あるいは本発明の疎水性ドメインをコードするDNAを用いて組換えDNA技術で生産する方法などにより取得することができるが、組換えDNA技術で取得する方法が好ましく用いられる。例えば、本発明のcDNAを有するベクターからインビトロ転写に

[0009]

本発明の蛋白質を、インビトロ翻訳でDNAを発現させて生産させる場合には、このcDNAの翻訳領域を、RNAポリメラーゼプロモーターを有するベクターに組換え、プロモーターに対応するRNAポリメラーゼを含む、ウサギ網状赤血球溶解物や小麦胚芽抽出物などのインビトロ翻訳系に添加してやれば、本発明の蛋白質をインビトロで生産することができる。RNAポリメラーゼプロモーターとしては、T7、T3、SP6などが例示できる。これらのRNAポリメラーゼプロモーターを含むベクターとしては、PKA1、PCDM8、PT3/T718、pT7/319、pBluescript IIなどが例示できる。また、反応系にイヌ膵臓ミクロソームなどを添加してやれば、本発明の蛋白質を分泌型あるいはミクロソーム膜に組み込まれた形で発現することができる。

[0010]

本発明の蛋白質を、大腸菌などの微生物でDNAを発現させて生産させる場合には、微生物中で複製可能なオリジン、プロモーター、リボソーム結合部位、CDNAクローニング部位、ターミネーター等を有する発現ベクターに、本発明のcDNAの翻訳領域を組換えた発現ベクターを作成し、この発現ベクターで宿主細胞を形質転換したのち、得られた形質転換体を培養してやれば、このcDNAがコードしている蛋白質を微生物内で大量生産することができる。この際、任意の翻訳領域の前後に開始コドンと停止コドンを付加して発現させてやれば、任意の領域を含む蛋白質断片を得ることができる。あるいは、他の蛋白質との融合蛋白質として発現させることもできる。この融合蛋白質を適当なプロテアーゼで切断することによってこのcDNAがコードする蛋白質部分のみを取得することもできる。大腸菌用発現ベクターとしては、PUC系、PBluescript

本発明の蛋白質を、真核細胞でDNAを発現させて生産させる場合には、この cDNAの翻訳領域を、プロモーター、スプライシング領域、ポリ(A)付加部 位等を有する真核細胞用発現ベクターに組換え、真核細胞内に導入してやれば、 本発明の蛋白質を分泌生産あるいは膜蛋白質として細胞膜表面上で生産することができる。発現ベクターとしては、pKA1、pED6dpc2、pCDM8、

pSVK3、pMSG、pSVL、pBK-CMV、pBK-RSV、EBVベクター、pRS、pYES2などが例示できる。真核細胞としては、サル腎臓細胞COS7、チャイニーズハムスター卵巣細胞CHOなどの哺乳動物培養細胞、出芽酵母、分裂酵母、カイコ細胞、アフリカツメガエル卵細胞などが一般に用いられるが、本蛋白質を発現できるものであれば、いかなる真核細胞でもよい。発現ベクターを真核細胞に導入するには、電気穿孔法、リン酸カルシウム法、リポソーム法、DEAEデキストラン法など公知の方法を用いることができる。

[0012]

本発明の蛋白質を原核細胞や真核細胞で発現させたのち、培養物から目的蛋白質を単離精製するためには、公知の分離操作を組み合わせて行うことができる。例えば、尿素などの変性剤や界面活性剤による処理、超音波処理、酵素消化、塩析や溶媒沈殿法、透析、遠心分離、限外濾過、ゲル濾過、SDS-PAGE、等電点電気泳動、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、アフィニティークロマトグラフィー、逆相クロマトグラフィーなどがあげられる。

[0013]

本発明の蛋白質には、配列番号1から配列番号10で表されるアミノ酸配列のいかなる部分アミノ酸配列を含むペプチド断片(5アミノ酸残基以上)も含まれる。これらのペプチド断片は抗体を作製するための抗原として用いることができる。また、本発明の蛋白質の中でシグナル配列を有するものは、シグナル配列が除去された後、成熟蛋白質の形で分泌される。したがって、これらの成熟蛋白質は本発明の蛋白質の範疇にはいる。成熟蛋白質のN末端アミノ酸配列は、シグナル配列切断部位決定法[特開平8-187100]を用いて容易に求めることができる。また、いくつかの膜蛋白質は、細胞表面でプロセシングを受けて分泌型

となる。このような分泌型となった蛋白質あるいはペプチドも本発明の蛋白質の 範疇にはいる。アミノ酸配列の中に糖鎖結合部位が存在すると、適当な真核細胞 で発現させれば糖鎖が付加した蛋白質が得られる。したがって、このような糖鎖 が付加した蛋白質あるいはペプチドも本発明の蛋白質の範疇にはいる。

[0014]

本発明のDNAには、上記蛋白質をコードするすべてのDNAが含まれる。このDNAは、化学合成による方法、cDNAクローニングによる方法などを用いて取得することができる。

[0015]

本発明のcDNAは、例えばヒト細胞由来cDNAライブラリーからクローン 化することができる。 cDNAはヒト細胞から抽出したポリ(A) $^{\dagger}RNA$ を鋳 型として合成する。ヒト細胞としては、人体から手術などによって摘出されたも のでも培養細胞でも良い。cDNAは、岡山-Berg法[Okayama, H and Berg, P., Mol. Cell. Biol. 2:161-1 70 (1982)]、Gubler-Hoffman法[Gubler, U. and Hoffman, J., Gene 25:263-269 (1983)] などいかなる方法を用いて合成してもよいが、完全長クローンを効率的に得る ためには、実施例にあげたようなキャッピング法 [Kato, S. et al ., Gene 150:243-250 (1994)] を用いることが望ましい 。また市販のヒトcDNAライブラリーを用いることもできる。cDNAライブ ラリーから本発明のcDNAをクローン化するには、本発明のcDNAの任意の 部分の塩基配列に基づいてオリゴヌクレオチドを合成し、これをプローブとして 用いて、公知の方法によりコロニーあるいはプラークハイブリダイゼーションに よるスクリーニングを行えばよい。また、目的とするcDNA断片の両末端にハ イブリダイズするオリゴヌクレオチドを合成し、これをプライマーとして用いて 、ヒト細胞から単離したmRNAからRT-PCR法により、本発明のcDNA 断片を調製することもできる。

[0016]

本発明の c D N A は、配列番号 1 1 から配列番号 2 0 で表される塩基配列ある

いは配列番号21から配列番号30で表される塩基配列のいずれかを含むことを 特徴とするものである。それぞれのクローン番号(HP番号)、cDNAクロー ンが得られた細胞、cDNAの全塩基数、コードしている蛋白質のアミノ酸残基 数をそれぞれ表1にまとめて示した。

表 1

配列番号	HP番号	細胞	塩基数	アミノ酸		
				残基数		
1, 11, 21	HP03394		2007	3 3 9		
2, 12, 22	HP03395	胸腺	2 2 6 4	4 8 7		
3, 13, 23	HP10685	臍帯血	1907	262		
4,14,24	HP10686	PMA-U937	1727	166		
5, 15, 25	HP10689	臍帯血	2 1 5 0	4 1 6		
6, 16, 26	HP10690	臍帯血	1986	1 1 7		
7, 17, 27	HP10694	臍帯血	2170	3 2 4		
8, 18, 28	HP10696	臍帯血	1738	1 3 7		
9, 19, 29	HP10697	胸腺	1930	3 1 1		
10,20,30	HP10699	臍帯血	1892	5 4 3		

なお、配列番号11から配列番号30のいずれかに記載のcDNAの塩基配列に基づいて合成したオリゴヌクレオチドプローブを用いて、本発明で用いたヒト細胞株やヒト組織から作製したcDNAライブラリーをスクリーニングすることにより、本発明のcDNAと同一のクローンを容易に得ることができる。

[0017]

一般にヒト遺伝子は個体差による多型が頻繁に認められる。従って配列番号1 1から配列番号30において、1又は複数個のヌクレオチドの付加、欠失および /又は他のヌクレオチドによる置換がなされているcDNAも本発明の範疇には いる。

[0018]

同様に、これらの変更によって生じる、1又は複数個のアミノ酸の付加、欠失 および/又は他のアミノ酸による置換がなされている蛋白質も、配列番号1から 配列番号10で表されるアミノ酸配列を有するそれぞれの蛋白質の活性を有する 限り、本発明の範疇に入る。

[0019]

本発明のcDNAには、配列番号11から配列番号20で表される塩基配列あるいは配列番号21から配列番号30で表される塩基配列のいかなる部分塩基配列を含むcDNA断片(10bp以上)も含まれる。また、センス鎖およびアンチセンス鎖からなるDNA断片もこの範疇にはいる。これらのDNA断片は遺伝子診断用のプローブとして用いることができる。

[0020]

本発明の抗体は、本発明の蛋白質を抗原として用いて動物を免役した後、血清から得ることができる。抗原としては本発明のアミノ酸配列に基づき化学合成したペプチドや、真核細胞や原核細胞で発現させた蛋白質を用いることができる。あるいは、上記の真核細胞用発現ベクターを注射や遺伝子銃によって、動物の筋肉や皮膚に導入した後、血清を採取することによって作製することができる[特開平7-313187]。動物としては、マウス、ラット、ウサギ、ヤギ、ニワトリなどが用いられる。免疫した動物の脾臓から採取したB細胞をミエローマと融合させてハイブリドーマを作製してやれば、本発明の蛋白質に対するモノクローナル抗体を産生することができる。

[0021]

【実施例】

次に実施例により発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。DNAの組換えに関する基本的な操作および酵素反応は、文献 ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory、1989]に従った。制限酵素および各種修飾酵素は特に記載の無い場合宝酒造社製のものを用いた。各酵素反応の緩衝液組成、並びに反応条件は付属の説明書に従った。cDNA合成は文献 [Kato, S. et al., Gene 15

(1) 疎水性ドメインを有する蛋白質をコードしている c D N A の選別

cDNAライブラリーとして、ホルボールエステルで刺激した組織球リンホーマ細胞株U937(ATCC CRL 1593)mRNA、ヒト胸腺mRNA (Clontech社製)、ヒト臍帯血mRNAから作製したcDNAライブラリーを用いた。

[0022]

個々のライブラリーから完全長 c D N A クローンを選択し、その全塩基配列決定を行い、完全長 c D N A クローンからなるホモ・プロテイン c D N A バンクを構築した。ホモ・プロテイン c D N A バンクに登録された完全長 c D N A クローンがコードしている蛋白質について、K y t e - D o o l i t t l e の方法 [K y t e, J & D o o l i t t l e, R. F., J. M o l. B i o l. 1 57:105-132 (1982)]により、疎水性/親水性プロフィールを求め、疎水性ドメインの有無を調べた。コードしている蛋白質のアミノ酸配列中に分泌シグナルや膜貫通ドメインと思われる疎水的な領域があるクローンを候補クローンとして選別した。

(2) インビトロ翻訳による蛋白質合成

ブルー、20%グリセロール)2μ1を加え、95℃3分間加熱処理した後、SDSーポリアクリルアミドゲル電気泳動にかけた。オートラジオグラフィーを行ない、翻訳産物の分子量を求めた。

(3) COS7による発現

本発明の蛋白質の発現ベクターを有する大腸菌を 100μ g/m1アンピシリン含有2 x Y T 培地 2 m 1 中で 37 \mathbb{C} 2 時間培養した後、ヘルパーファージM 1 3 K O 7 (50μ 1) を添加し、37 \mathbb{C} で一晩培養した。遠心によって分離した上澄からポリエチレングリコール沈殿によって一本鎖ファージ粒子を得た。これを 100μ 1 の 1 m M トリス -0. 1 m M E D T A、 p H 8 (T E) に懸濁した

[0023]

サル腎臓由来培養細胞COS 7は、10%ウシ胎児血清を含むダルベッコ改変イーグル(DMEM)培地中、 $5\%CO_2$ 存在下、37で培養した。 1×10^5 個のCOS 7細胞を6穴プレート(ヌンク社、穴の直径3 cm)に植え、 $5\%CO_2$ 存在下、37℃で22時間培養した。培地除去後、リン酸緩衝液で細胞表面を洗浄し、さらに50 mMトリス塩酸(p H 7. 5)を含むDMEM(T DMEM 9)で再度洗浄した。この細胞に一本鎖ファージ懸濁液 1μ 1、DMEM培地 0。6 m 1、T R A N S F E C T A M TM (I B F 社) 3μ 1を懸濁したものを添加し、 $5\%CO_2$ 存在下、37℃で3時間培養した。サンプル液を除去後、T D M E M で細胞表面を洗浄し、10%ウシ胎児血清含有DMEMを1 穴あたり2 m 1 加え、 $5\%CO_2$ 存在下、37℃にて2 日間培養した。培地を1 にあるいは1 に 1 のののでは 1 ののではに 1 ののでは 1

(4) 抗体の作製

つ計50μ1を26ゲージの注射針を用いて注射した。同様の注射を一週間おきに1か月間続けた後、採血を行なった。採血した血液は4℃で一晩保存し、血液を凝固させた後、8,000×gで5分間遠心し、上澄をとった。この上澄にNaN3を0.01%になるように添加し、4℃で保存した。抗体の産生は、該当するベクターを導入したCOS7細胞の免疫染色や、細胞ライセートあるいは分泌産物を用いたウエスタンブロッティングにより確認した。

(5) クローン例

<HP03394>(配列番号1、11、21)

ヒト臍帯血 c D N A ライブラリーから得られたクローンHP03394の c D N A インサートの全塩基配列を決定したところ、45bpの5、非翻訳領域、1020bpのORF、942bpの3、非翻訳領域からなる構造を有していた。ORFは339アミノ酸残基からなる蛋白質をコードしており、N末端に推定分泌シグナルが、C末端側に一個の推定膜貫通ドメインが存在した。図1にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量36,856よりやや大きい42kDaの翻訳産物が生成した。分泌シグナル配列切断部位予測法である(-3、-1)規則を適用すると、成熟蛋白質は21番目のグルタミンから始まると予想される。

[0024]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、ヒト単球阻害レセプター(アクセション番号AAB68665)と類似性を有していた。表2に、本発明のヒト蛋白質(HP)とヒト単球阻害レセプター(MI)のアミノ酸配列の比較を示す。一はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。N末端側236アミノ酸残基において、46.2%の相同性を有していた。

表 2

HP MSPSPTALFCLGLCLG-RVPAQSGPLPKPSLQALPSSLVPLEKPVTLRCQGPPGVDLYRL

^{* *. ***.***.** *.. *.*****.* * *.*... ...**..***. .. ***}

- MI MIPTFTALLCLGLSLGPRTHMQAGPLPKPTLWAEPGSVISWGNSVTIWCQGTLEAREYRL
- HP EK-LSSSRYQDQAVL----F-IPAMKRSLAGRYRCSYQNGSLWSLPSDQLELVATGV
- .* *.... *. * * **.*. . ***** *.. ** ***.** **.
- MI DKEESPAPWDRQNPLEPKNKARFSIPSMTEDYAGRYRCYYRSPVGWSQPSDPLELVMTGA
- HP FAKPSLSAQPGPAVSSGGDVTLQCQTRYGFDQFALYKEGDPAPYKN--PER---WYRASF
 - ..**.*** *.* *.** .** .* * * * .. * . .*.
- MI YSKPTLSALPSPLVTSGKSVTLLCQSRSPMDTFLLIKERAAHPLLHLRSEHGAQQHQAEF
- HP PIITVTAAHSGTYRCYSFSSRDPYLWSAPSDPLELVVTGTSVTPSRLPTEPPSSVAEFSE
- MI PMSPVTSVHGGTYRCFSSHGFSHYLLSHPSDPLELIVSGSLEGPRPSPTRSVSTAAGPED
- HP ATAELTVSFTNEVFTTETSRSITASPKESDSPAGPARQYYTKGNLVRICLGAVILIILAG
- MI QPLMPTGSVPHSGLRRHWEVLIGVLVVSILLLSLLLFLLLQHWRQGKHRTLAQRQADFQR
- HP FLAEDWHSRRKRLRHRGRAVQRPLPPLPPLPLTRKSHGGQDGGRQDVHSRGLCS
- MI PPGAAEPEPKDGGLORRSSPAADVOGENFCAAVKNTQPEDGVEMDTRQSPHDEDPQAVTY

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA308708)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

<HP03395>(配列番号2、12、22)

ヒト胸腺 c DNAライブラリーから得られたクローンHP03395の c DN A インサートの全塩基配列を決定したところ、84bpの5、非翻訳領域、1464bpのORF、716bpの3、非翻訳領域からなる構造を有していた。ORFは487アミノ酸残基からなる蛋白質をコードしており、少なくとも6個の推定膜貫通ドメインが存在した。図2にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、高分子量の翻訳産物が生成した。

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、 本蛋白質は、N末端がヒト推定蛋白質C3f(アクセション番号AAC3600 7)より106アミノ酸残基長かった。

[0026]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ES

Tの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA182534)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

<HP10685>(配列番号3、13、23)

ヒト臍帯血cDNAライブラリーから得られたクローンHP10685のcDNAインサートの全塩基配列を決定したところ、34bpの5、非翻訳領域、789bpのORF、1084bpの3、非翻訳領域からなる構造を有していた。ORFは262アミノ酸残基からなる蛋白質をコードしており、N末端に推定分泌シグナルが、C末端側に一個の推定膜貫通ドメインが存在した。図3にKyteーDoolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量27,330とほぼ同じ27kDaの翻訳産物が生成した。この際、ミクロソームを添加すると、29kDaの産物が生成した。なお、この蛋白質のアミノ酸配列の中には、Nーグリコシレーションが起こる可能性がある部位が1箇所(182番目Asn-Thr-Ser)存在する。分泌シグナル配列切断部位予測法である(-3、-1)規則を適用すると、成熟蛋白質は28番目のセリンから始まると予想される。

[0027]

本 c D N A の塩基配列を用いてG e n B a n k を検索したところ、E S T の中に、90%以上の相同性を有するもの(例えば、アクセション番号 A A 4 4 8 7 4 5)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

<HP10686>(配列番号4、14、24)

ヒトリンホーマ細胞株U937cDNAライブラリーから得られたクローンH

P10686のcDNAインサートの全塩基配列を決定したところ、19bpの5'非翻訳領域、501bpのORF、1207bpの3'非翻訳領域からなる構造を有していた。ORFは166アミノ酸残基からなる蛋白質をコードしており、3個の推定膜貫通ドメインが存在した。図4にKyte-Doolitt1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。

[0028]

本 c D N A の塩基配列を用いてG e n B a n k を検索したところ、E S T の中に、90%以上の相同性を有するもの(例えば、アクセション番号 A I 2 7 5 1 3 9)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

<HP10689>(配列番号5、15、25)

ヒト臍帯血cDNAライブラリーから得られたクローンHP10689のcDNAインサートの全塩基配列を決定したところ、31bpの5、非翻訳領域、1251bpのORF、868bpの3、非翻訳領域からなる構造を有していた。ORFは416アミノ酸残基からなる蛋白質をコードしており、1箇所の推定膜質通ドメインが存在した。図5にKyteーDoolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量46、451よりやや小さい44kDaの翻訳産物が生成した。この際、ミクロソームを添加すると、48kDaの産物が生成した。なお、この蛋白質のアミノ酸配列の中には、Nーグリコシレーションが起こる可能性がある部位が2箇所(160番目AsnーGlyーThr、196番目AsnーMetーSer)存在する。

[0029]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、シロイナズナ推定ストリクトシジンシンターゼ(アクセション番号AAC27642)と類似性を有していた。表3に、本発明のヒト蛋白質(HP)とシロイナズナ推定ストリクトシジンシンターゼ(AT)のアミノ酸配列の比較を示す。一はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。N末端側を除く全領域において、37.4

%の相同性を有していた。

表 3

HP MSEADGLRQRRPLRPQVVTDDDGQAPEAKDGSSFSGRVFRVTFLMLAVSLTVPLLGAMML

AT MMKLLLVVAT HP LESPIDPQPLSFKEPPLLLGVLHPNTKLRQAERLFENQLVGPES--IAHIGDVMFTGTAD .**** .. .** .** .* AT SVALIFSVTDLSGEGPKHGGESMLTVQIPDFRLIPTTGALGPESFVFDFFGDGPYTGLSD HP GRVVK-LENGEI----ETIARFG-SGPCKTRDDEPVCGRPLGIR-AGPNGTLFVADAY AT GRIVKWLANESRWIDFAVTTSAREGCEGPHEHQRTEHVCGRPLGLAFDKSTGDLYIADAY HP KGLFEVNPWKREVKLLLSSETPIEGKNMSFVNDLTVTQDGRKIYFTDSSSKWQRRDYLLL .**..*. * .*..* *.*... ****** ***.*. AT MGLLKVGPTGGVANQVLPRE---LNEALRFTNSLDINPRTGVVYFTDSSSVYQRRNYIGA HP VMEGTDDGRLLEYDTVTREVKVLLDQLRFPNGVQLSPAEDFVLVAETTMARIRR----V AT MMSGDKTGRLMKYDN-TKQVTTLLSNLAFVNGVALSQNGDYLLVVETAMCRILRYWLNET HP_YVSGLMKGGADLFVENMPGFPDNIRPSSSGGYWVGMSTIRPNPGFSMLDFLSERPWIKRM *.. ... *.*.*******.*.****** AT SVKSQSHDNYEIFAEGLPGFPDNIKRSPRGGFWVGLNT---KHSKLTKFAMSNAWLGRA HP IFKLFSQ-ETVMKFVPRY---SLVLELS-DSGAFRRSLHDPDGLVATYISEVHEHDGHLY AT ALGLPVDWMKVHSVWARYNGNGMAVRLSEDSGVILEVFEGKNENKWISISEVEEKDGTLW HP LGSFRSPFLCRLSLQAV .** ..** AT VGSVNTPFAGMYKI

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ES

ヒト臍帯血cDNAライブラリーから得られたクローンHP10690のcD

<HP10690>(配列番号6、16、26)

NAインサートの全塩基配列を決定したところ、27bpの5^{*} 非翻訳領域、354bpのORF、1605bpの3^{*} 非翻訳領域からなる構造を有していた。ORFは117アミノ酸残基からなる蛋白質をコードしており、N末端に1箇所の推定分泌シグナルが存在した。図6にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量12,647よりやや大きい15kDaの翻訳産物が生成した。この際、ミクロソームを添加すると、14kDaの産物が生成した。分泌シグナル配列切断部位予測法である(-3、-1)規則を適用すると、成熟蛋白質は23番目のアスパラギン酸から始まると予想される。

[0030]

本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA215334)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

<HP10694>(配列番号7、17、27)

ヒト臍帯血cDNAライブラリーから得られたクローンHP10694のcDNAインサートの全塩基配列を決定したところ、240bpの5、非翻訳領域、975bpのORF、955bpの3、非翻訳領域からなる構造を有していた。ORFは324アミノ酸残基からなる蛋白質をコードしており、少なくとも7箇所の推定膜貫通ドメインが存在した。図7にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、高分子量の翻訳産物が生成した。

[0031]

本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中

<HP10696>(配列番号8、18、28)

ヒト臍帯血DNAライブラリーから得られたクローンHP10696のcDN Aインサートの全塩基配列を決定したところ、94bpの5、非翻訳領域、41 4bpのORF、1230bpの3、非翻訳領域からなる構造を有していた。O RFは137アミノ酸残基からなる蛋白質をコードしており、N末端に一箇所の 推定膜貫通ドメインが存在した。図8にKyte-Doolittleの方法で 求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、 ORFから予想される分子量14,492よりやや大きい20kDaの翻訳産物 が生成した。

[0032]

本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号D31289)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

<HP10697>(配列番号9、19、29)

ヒト胸腺 c D N A ライブラリーから得られたクローンHP10697の c D N A インサートの全塩基配列を決定したところ、81bpの5、非翻訳領域、936bpのORF、913bpの3、非翻訳領域からなる構造を有していた。ORFは311アミノ酸残基からなる蛋白質をコードしており、N末端に推定分泌シグナルが、内部に1箇所の推定膜貫通ドメインが存在した。図9にKyte-Doo1itt1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量33,901よりやや大きい37kDaの翻訳産物が生成した。この際、ミクロソームを添加すると、51kDaの産物が生成した。なお、この蛋白質のアミノ酸配列の中には、Nーグリコシレーションが起こる可能性がある部位が6箇所(49番目Asn-Va1-Thr、91番目Asn-Leu-Thr、108番目Asn-Thr-Se

[0033]

本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号W46202)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

<HP10699>(配列番号10、20、30)

ヒト臍帯血cDNAライブラリーから得られたクローンHP10699のcDNAインサートの全塩基配列を決定したところ、4bpの5、非翻訳領域、1632bpのORF、256bpの3、非翻訳領域からなる構造を有していた。ORFは543アミノ酸残基からなる蛋白質をコードしており、少なくとも6個の推定膜貫通ドメインが存在した。図10にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、高分子量の翻訳産物が生成した。

[0034]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、 線虫仮想蛋白質C15H9.5 (アクセション番号AAB52667)と類似性 を有していた。表10に、本発明のヒト蛋白質 (HP)と線虫仮想蛋白質C15 H9.5 (CE)のアミノ酸配列の比較を示す。一はギャップを、*は本発明の 蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。N末端とC末端を除く461アミノ酸残基において、33.8%の相同 性を有していた。

表4

HP MAVSERRGLGRGSPAEWGQRLLLVLLLGGCSGRIHRLALTGEKRADIQLNSFGFYTNGSL

CE	MIGNGNVIQADSRRNIIISDFSYGTNGTLSIAINNFTVPEKIKDSVDSTENADKL
НР	EVELSVLRLGLREAEEKSLLVGFSLSRVRSGRVRSYSTRDFQDCPLQKNSSSFLVLFLIN
	**** . ** *.***
CE	VSTTICPQVLTCTYRFLQGVIGFSLS-LGSSITRGVGSNP-HVCQLQQTDQGYDAIFFFA
HP	TKDLQVQVRKYGEQKTLFI-FPGLLPEAPSKPGLPKPQATVPRKVDGGGTSAAS-KPK
,	* . *
CE	DLP-NKQLRVYRSGIGRYIQICGTAHECQNTDAIRTPKPEELQPESSSGPVEQRGWFRNL
HP	STPAVIQGPSGKDKDLVLGLSHLNNSYNFSFHVVIGSQAE-EGQYSLNFHNC-NNSVPG-
	* * . ** * *** . *** * *** **
CE	FGRFLNPGAPQIAYDNYIPL-QVQNENQFSTNMSIRFDGKIVGQYVFMFHNCYNYRAHGY
HP	-KEHPFDITVMIREKNPDGFLSAAEMPLFKLYMVMSACFLAAGIFWVSILCR-NTYSVFK
	*.** . *.*
CE	SDRVAVDLTVDLVERNKHSYLSLQEIAKPEIYLYMSILYFGLAVYWSHLLCRSNSENIYR
HP	IHWLMAALAFTKSISLLFHSINYYFINSQGHPIEGLAVMYYIAHLLKGALLFITIALIGS
	.* .**.* **** * . * **.**** ***
CE	VHKFMAVLVFLKALSVFFHGLNYYFLSKYGMQKEIWAVLYYITHLLKGLLLFGTLILIGT
HP	GWAFIKYVLSDKEKKVFGIVIPMQVLANVAYIIIESREEGASDYVLWKEILFLVDLICCG
	**** *.**** .*.*.*. ** * ***.
CE	GYTFIKQFLTDRDRKVFMFVLPIQVIDNIILIILNESEIGTQNHETWLKLFVILDLFCCA
HP	AILFPVVWSIRHLQDASGTDGKVAVNLAKLKLFRHYYVMVICYVYFTRIIA-ILLQVAV-
	. **.***.******.*.*.*.*.*. *.*. *.* ****
CE	LVAFPIVWSIQHLVEGATTDGKAAANLEKLRLFRQFYILVVVYIYCTRFFGFILLPAPVG
HP	PFQWQWLYQLLVEGSTLAFFVLTGYKFQPTGNNPYLQLPQE
	* ** ** *******.* ** * .
CE	KVLKPHFCGAKIPNITHLMPVNLQWTIVAAVEMVTFAFFIIVGYKFRPANSHNYLLLNSD
HP	DEEDVQMEQVMTDSGFREGLSKVNKTASGRELL
CE	FDSYDVETSPKEDRKDKENNEQEIDEQFLTKAYSDANVSRRLVSDESSNNQTDYPHQKLL

[0035]

【発明の効果】

本発明は疎水性ドメインを有するヒト蛋白質、それをコードしているDNA、このDNAの発現ベクター、およびこのDNAを発現させた真核細胞を提供する。本発明の蛋白質は、いずれも分泌されるかあるいは細胞膜に存在するので、細胞の増殖や分化を制御している蛋白質と考えられる。したがって、本発明の蛋白質は、細胞の増殖や分化の制御に関わる制癌剤などの医薬品として、あるいはこの蛋白質に対する抗体を作製するための抗原として用いることができる。本発明のDNAは、遺伝子診断用プローブや遺伝子治療用遺伝子源として用いることができる。また、このDNAを用いることにより、この蛋白質を大量に発現することができる。これら遺伝子を導入してこの蛋白質を発現させた細胞は、対応するレセプターやリガンドの検出、新しい低分子医薬のスクリーニングなどに利用できる。本発明の抗体は、本発明の蛋白質の検出、定量、精製などに利用できる。本発明の抗体は、本発明の蛋白質の検出、定量、精製などに利用できる。

[0036]

【配列表】

<110> Sagami Chemical Research Center,

Protegene Inc.

<120> Human proteins having hydrophobic domains and DNAs encoding these proteins

<130> S018208

<160> 30

[0037]

<210> 1

<211> 339

<212> PRT

< 213	3> H	omo :	sapi	ence											
<400	0> 1														
Met	Ser	Pro	Ser	Pro	Thr	Ala	Leu	Phe	Cys	Leu	Gly	Leu	Cys	Leu	Gly
1				5					10					15	
Arg	Val	Pro	Ala	Gln	Ser	Gly	Pro	Leu	Pro	Lys	Pro	Ser	Leu	Gln	Ala
			20	<u> </u>				25					30		
Leu	Pro	Ser	Ser	Leu	Val	Pro	Leu	Glu	Lys	Pro	Val	Thr	Leu	Arg	Cys
		35					40					4 5			
Gln	Gly	Pro	Pro	Gly	Val	Asp	Leu	Tyr	Arg	Leu	Glu	Lys	Leu	Ser	Ser
	50					55					60				
Ser	Arg	Tyr	Gln	Asp	Gln	Ala	Val	Leu	Phe	Ile	Pro	Ala	Met	Lys	Arg
65					70					7 5					80
Ser	Leu	Ala	Gly	Arg	Tyr	Arg	Cys	Ser	Tyr	Gln	Asn	Gly	Ser	Leu	Trp
				85					90					95	
Ser	Leu	Pro	Ser	Asp	Gln	Leu	Glu	Leu	Val	Ala	Thr	Gly	Val	Phe	Ala
			100					105					110		
L y s	Pro	Ser	Leu	Ser	Ala	Gln	Pro	Gly	Pro	Ala	Val	Ser	Ser	Gly	Gly
		115					120					125			
Asp	Val	Thr	Leu	Gln	Cys	Gln	Thr	Arg	Tyr	Gly	Phe	Asp	Gln	Phe	Ala
	130					135					140				
Leu	Tyr	Lys	Glu	Gly	Asp	Pro	Ala	Pro	Tyr	Lys	Asn	Pro	Glu	Arg	Trp
145					150					155					160
Tyr	Arg	Ala	Ser	Phe	Pro	Ile	Ile	Thr	Val	Thr	Ala	Ala	His	Ser	Gly
				165					170					175	
Thr	Tyr	Arg	Cys	Tyr	Ser	Phe	Ser	Ser	Arg	Asp	Pro	Tyr	Leu	Trp	Ser
			180					185					190		
Ala	Pro	Ser	Asp	Pro	Leu	Glu	Leu	Val	Val	Thr	Gly	Thr	Ser	Val	Thr
		195					200					205			

Pro Ser Arg Leu Pro Thr Glu Pro Pro Ser Ser Val Ala Glu Phe Ser

Glu Ala Thr Ala Glu Leu Thr Val Ser Phe Thr Asn Glu Val Phe Thr Thr Glu Thr Ser Arg Ser Ile Thr Ala Ser Pro Lys Glu Ser Asp Ser Pro Ala Gly Pro Ala Arg Gln Tyr Tyr Thr Lys Gly Asn Leu Val Arg Ile Cys Leu Gly Ala Val Ile Leu Ile Ile Leu Ala Gly Phe Leu Ala Glu Asp Trp His Ser Arg Arg Lys Arg Leu Arg His Arg Gly Arg Ala Val Gln Arg Pro Leu Pro Pro Leu Pro Leu Pro Leu Thr Arg Lys Ser His Gly Gly Gln Asp Gly Gly Arg Gln Asp Val His Ser Arg Gly Leu Cys Ser [0038] <210> 2 <211> 487 <212> PRT <213> Homo sapience <400> 2 Met Ala Ser Ser Ala Glu Gly Asp Glu Gly Thr Val Val Ala Leu Ala Gly Val Leu Gln Ser Gly Phe Gln Glu Leu Ser Leu Asn Lys Leu Ala

Thr Ser Leu Gly Ala Ser Glu Gln Ala Leu Arg Leu Ile Ile Ser Ile

	Phe	Leu	Gly	Tyr	Pro	Phe	Ala	Leu	Phe	Tyr	Arg	HIS	Tyr	Leu	Phe	lyr
		50					55					60				
	Lys	Glu	Thr	Tyr	Leu	He	His	Leu	Phe	His	Thr	Phe	Thr	Gly	Leu	Ser
	65					70					75					80
	Ile	Ala	Tyr	Phe	Asn	Phe	Gly	Asn	Gln	Leu	Tyr	His	Ser	Leu	Leu	Cys
-					85					90					95	
	He	Val	Leu	Gln	Phe	Leu	Ile	Leu	Arg	Leu	Met	Gly	Arg	Thr	Ile	Thr
				100					105					110		
	Ala	Val	Leu	Thr	Thr	Phe	Cys	Phe	Gln	Met	Ala	Tyr	Leu	Leu	Ala	Gly
			115					120					125			
	Tyr	Tyr	Tyr	Thr	Ala	Thr	Gly	Asn	Tyr	Asp	Ile	Lys	Trp	Thr	Met	Pro
		130					135					140				
	His	Cys	Val	Leu	Thr	Leu	Lys	Leu	Ile	Gly	Leu	Ala	Val	Asp	Tyr	Phe
	145					150					155					160
	Asp	Gly	Gly	Lys	Asp	Gln	Asn	Ser	Leu	Ser	Ser	Glu	Gln	Gln	Lys	Tyr
					165					170					175	
	Ala	Ile	Arg	Gly	Val	Pro	Ser	Leu	Leu	Glu	Val	Ala	Gly	Phe	Ser	Tyr
				180					185					190		
	Phe	Tyr	Gly	Ala	Phe	Leu	Val	Gly	Pro	Gln	Phe	Ser	Met	Asn	His	Tyr
			195					200					205			
	Met	Lys	Leu	Val	Gin	Gly	Glu	Leu	Ile	Asp	Ile	Pro	Gly	Lys	Ile	Pro
		210					215					220				
	Asn	Ser	Ile	He	Pro	Ala	Leu	Lys	Arg	Leu	Ser	Leu	Gly	Leu	Phe	Tyr
	225					230					235					240
	Leu	Val	Gly	Tyr	Thr	Leu	Leu	Ser	Pro	His	Ile	Thr	Glu	Asp	Tyr	Let
					245					250					255	
	Leu	Thr	Glu	Asp	Tyr	Asp	Asn	His	Pro	Phe	Trp	Phe	Arg	Cys	Met	Tyr
				260					265					270		
	Met	Len	He	Trp	G1 v	Lvs	Phe	Val	Leu	Tvr	Lvs	Tvr	Val	Thr	Cys	Trr

Leu Val Thr Glu Gly Val Cys Ile Leu Thr Gly Leu Gly Phe Asn Gly Phe Glu Glu Lys Gly Lys Ala Lys Trp Asp Ala Cys Ala Asn Met Lys Val Trp Leu Phe Glu Thr Asn Pro Arg Phe Thr Gly Thr Ile Ala Ser Phe Asn Ile Asn Thr Asn Ala Trp Val Ala Arg Tyr Ile Phe Lys Arg Leu Lys Phe Leu Gly Asn Lys Glu Leu Ser Gln Gly Leu Ser Leu Leu Phe Leu Ala Leu Trp His Gly Leu His Ser Gly Tyr Leu Val Cys Phe Gln Met Glu Phe Leu Ile Val Ile Val Glu Arg Gln Ala Ala Arg Leu lle Gln Glu Ser Pro Thr Leu Ser Lys Leu Ala Ala Ile Thr Val Leu Gln Pro Phe Tyr Tyr Leu Val Gln Gln Thr Ile His Trp Leu Phe Met Gly Tyr Ser Met Thr Ala Phe Cys Leu Phe Thr Trp Asp Lys Trp Leu Lys Val Tyr Lys Ser Ile Tyr Phe Leu Gly His Ile Phe Phe Leu Ser Leu Leu Phe Ile Leu Pro Tyr Ile His Lys Ala Met Val Pro Arg Lys Glu Lys Leu Lys Lys Met Glu [0039]

<210> 3

<211> 262 <212> PRT <213> Homo sapience <400> 3 Met Ala Ala Ala Ser Ala Gly Ala Thr Arg Leu Leu Leu Leu Leu Leu Met Ala Val Ala Ala Pro Ser Arg Ala Arg Gly Ser Gly Cys Arg Ala Gly Thr Gly Ala Arg Gly Ala Gly Ala Glu Gly Arg Glu Gly Glu Ala Cys Gly Thr Val Gly Leu Leu Glu His Ser Phe Glu Ile Asp Asp Ser Ala Asn Phe Arg Lys Arg Gly Ser Leu Leu Trp Asn Gln Gln Asp Gly Thr Leu Ser Leu Ser Gln Arg Gln Leu Ser Glu Glu Glu Arg Gly Arg Leu Arg Asp Val Ala Ala Leu Asn Gly Leu Tyr Arg Val Arg Ile Pro Arg Arg Pro Gly Ala Leu Asp Gly Leu Glu Ala Gly Gly Tyr Val Ser Ser Phe Val Pro Ala Cys Ser Leu Val Glu Ser His Leu Ser Asp Gln Leu Thr Leu His Val Asp Val Ala Gly Asn Val Val Gly Val Ser Val Val Thr His Pro Gly Gly Cys Arg Gly His Glu Val Glu Asp Val

Asp Leu Glu Leu Phe Asn Thr Ser Val Gln Leu Gln Pro Pro Thr Thr

Ala Pro Gly Pro Glu Thr Ala Ala Phe Ile Glu Arg Leu Glu Met Glu

Gln Ala Gln Lys Ala Lys Asn Pro Gln Glu Gln Lys Ser Phe Phe Ala Lys Tyr Trp Met Tyr Ile Ile Pro Val Val Leu Phe Leu Met Met Ser Gly Ala Pro Asp Thr Gly Gly Gln Gly Ser Gly Arg [0040] <210> 4 <211> 166 <212> PRT <213> Homo sapience <400> 4 Met Gin Pro Pro Val Pro Gly Pro Leu Gly Leu Leu Asp Pro Ala Glu Gly Leu Ser Arg Arg Lys Lys Thr Ser Leu Trp Phe Val Gly Ser Leu Leu Leu Val Ser Val Leu Ile Val Thr Val Gly Leu Ala Ala Thr Thr Arg Thr Glu Asn Val Thr Val Gly Gly Tyr Tyr Pro Gly Ile Ile Leu Gly Phe Gly Ser Phe Leu Gly Ile Ile Gly Ile Asn Leu Val Glu Asn Arg Arg Gln Met Leu Val Ala Ala Ile Val Phe Ile Ser Phe Gly Val

出証特2000-3057447

Val Ala Ala Phe Cys Cys Ala Ile Val Asp Gly Val Phe Ala Ala Gln

His Ile Glu Pro Arg Pro Leu Thr Thr Gly Arg Cys Gln Phe Tyr Ser 125 120 115 Ser Gly Val Gly Tyr Leu Tyr Asp Val Tyr Gln Thr Glu Val Ser Arg 140 135 130 Ser Thr Glu Ile His Val Gly Phe Ala Gln Leu Thr Pro Pro Thr Pro 160 150 155 Arg Gly Phe Pro Cys Thr 165 [0041] <210> 5 <211> 416 <212> PRT <213> Homo sapience <400> 5 Met Ser Glu Ala Asp Gly Leu Arg Gln Arg Arg Pro Leu Arg Pro Gln 15 5 10 1 Val Val Thr Asp Asp Gly Gln Ala Pro Glu Ala Lys Asp Gly Ser 30 20 25

Ser Phe Ser Gly Arg Val Phe Arg Val Thr Phe Leu Met Leu Ala Val

35 40 45

Ser Leu Thr Val Pro Leu Leu Gly Ala Met Met Leu Leu Glu Ser Pro 50 55 60

Ile Asp Pro Gln Pro Leu Ser Phe Lys Glu Pro Pro Leu Leu Gly
65 70 75 80

Val Leu His Pro Asn Thr Lys Leu Arg Gln Ala Glu Arg Leu Phe Glu

85 90 95 Asn Gln Leu Val Gly Pro Glu Ser Ile Ala His Ile Gly Asp Val Met

100 105 110

Phe Thr Gly Thr Ala Asp Gly Arg Val Val Lys Leu Glu Asn Gly Glu

		115					120					125			
Ilo	Clu		Ile	Δla	Aro	Phe		Ser	Glv	Pro	Cvs	Lvs	Thr	Arg	Asp
116		1111	110	ЛΙα	n. P	135	u.,	001	0.5		140	5			•
	130	Б	17 - 1	C	C1		Dro	Lou	Clv	Ha		Ma	Clv	Pro	4 s n
	Glu	Pro	vai	(ys		Arg	Pro	Leu	ыу		AIG	Міа	GI y	Pro	
145					150		_			155		51	a 1	vy 1	160
Gly	Thr	Leu	Phe	Val	Ala	Asp	Ala	Tyr		Gly	Leu	Phe	Glu	Val	ASN
				165					170					175	
Pro	Trp	Lys	Arg	Glu	Val	Lys	Leu	Leu	Leu	Ser	Ser	Glu	Thr	Pro	lle
			180					185					190		
Glu	Gly	Lys	Asn	Met	Ser	Phe	Val	Asn	Asp	Leu	Thr	Val	Thr	Gln	Asp
		195					200					205			
Gly	Arg	Lys	Ile	Tyr	Phe	Thr	Asp	Ser	Ser	Ser	Lys	Trp	Gln	Arg	Arg
	210					215					220				
Asp	Tyr	Leu	Leu	Leu	Val	Met	Glu	Gly	Thr	Asp	Asp	Gly	Arg	Leu	Leu
225					230					235					240
Glu	Tyr	Asp	Thr	Val	Thr	Arg	Glu	Val	Lys	Val	Leu	Leu	Asp	Gln	Leu
				245					250					255	
Arg	Phe	Pro	Asn	Gly	Val	Gln	Leu	Ser	Pro	Ala	Glu	Asp	Phe	Val	Leu
			260					265					270		
Val	Ala	Glu	Thr	Thr	Met	Ala	Arg	Ile	Arg	Arg	Val	Tyr	Va l	Ser	Gly
		275					280					285			
Leu	Met	Lys	Gly	Gly	Ala	Asp	Leu	Phe	Val	Glu	Asn	Met	Pro	Gly	Phe
	290	-	-			295					300				
Pro		Asn	He	Arg	Pro		Ser	Ser	Gly	Gly	Tyr	Trp	Val	Gly	Met
305	nor	no	1	8	310	_				315					320
	The	Ho	Ara	Dro		Pro	Clv	Phe	Ser		Leu	Asp	Phe	Leu	Ser
Ser	1111	116	VIR		дэн	110	ur y	THE	330	1100		٢		335	
6. 1		D :-	Т	325	1	A ===	Ma+	110		Lve	الما آ	Phe	Ser		C 1 11
Glu	Arg	Pro		He	Lys	Arg	net			Lys	⊥cu	THE		Gln	uru
			340					345					350		

Thr Val Met Lys Phe Val Pro Arg Tyr Ser Leu Val Leu Glu Leu Ser Asp Ser Gly Ala Phe Arg Arg Ser Leu His Asp Pro Asp Gly Leu Val Ala Thr Tyr Ile Ser Glu Val His Glu His Asp Gly His Leu Tyr Leu Gly Ser Phe Arg Ser Pro Phe Leu Cys Arg Leu Ser Leu Gln Ala Val [0042] <210> 6 <211> 117 <212> PRT <213> Homo sapience <400> 6 Met Arg Leu Ser Leu Pro Leu Leu Leu Leu Leu Gly Ala Trp Ala lle Pro Gly Gly Leu Gly Asp Arg Ala Pro Leu Thr Ala Thr Ala Pro Gln Leu Asp Asp Glu Glu Met Tyr Ser Ala His Met Pro Ala His Leu Arg Cys Asp Ala Cys Arg Ala Val Ala Tyr Gln Val Ser Pro Ser Pro Leu Ser Pro Cys Pro Ala His Thr Pro Ser Gln Ala Arg Pro Leu His Pro Pro His Ile Pro Pro Pro Ala Phe Asp Pro Gln Ser Leu Pro Leu Gly Ile Lys Pro Gln Met Gln Pro Phe Ile Tyr Ser Met Pro Gln Phe

Thr His Leu Pro Ala

115

[0043]

<210> 7

<211> 324

<212> PRT

<213≻ Homo sapience

<400> 7

Met Ser Val Glu Asp Gly Gly Met Pro Gly Leu Gly Arg Pro Arg Gln

1 5 10 15

Ala Arg Trp Thr Leu Met Leu Leu Leu Ser Thr Ala Met Tyr Gly Ala

20 25 30

His Ala Pro Leu Leu Ala Leu Cys His Val Asp Gly Arg Val Pro Phe

35 40 45

Arg Pro Ser Ser Ala Val Leu Leu Thr Glu Leu Thr Lys Leu Leu Leu

50 55 60

Cys Ala Phe Ser Leu Leu Val Gly Trp Gln Ala Trp Pro Gln Gly Pro

65 70 75 80

Pro Pro Trp Arg Gln Ala Ala Pro Phe Ala Leu Ser Ala Leu Leu Tyr

85 90 95

Gly Ala Asn Asn Asn Leu Val Ile Tyr Leu Gln Arg Tyr Met Asp Pro

100 105 110

Ser Thr Tyr Gln Val Leu Ser Asn Leu Lys Ile Gly Ser Thr Ala Val

115 120 125

Leu Tyr Cys Leu Cys Leu Arg His Arg Leu Ser Val Arg Gln Gly Leu

130 135 140

Ala Leu Leu Leu Met Ala Ala Gly Ala Cys Tyr Ala Ala Gly Gly

145 150 155 160

Leu Gln Val Pro Gly Asn Thr Leu Pro Ser Pro Pro Pro Ala Ala Ala

165 170 175

Ala Ser Pro Met Pro Leu His Ile Thr Pro Leu Gly Leu Leu Leu Leu Ile Leu Tyr Cys Leu Ile Ser Gly Leu Ser Ser Val Tyr Thr Glu Leu Leu Met Lys Arg Gln Arg Leu Pro Leu Ala Leu Gln Asn Leu Phe Leu Tyr Thr Phe Gly Val Leu Leu Asn Leu Gly Leu His Ala Gly Gly Gly Ser Gly Pro Gly Leu Leu Glu Gly Phe Ser Gly Trp Ala Ala Leu Val Val Leu Ser Gln Ala Leu Asn Gly Leu Leu Met Ser Ala Val Met Lys His Gly Ser Ser Ile Thr Arg Leu Phe Val Val Ser Cys Ser Leu Val Val Asn Ala Val Leu Ser Ala Val Leu Leu Arg Leu Gln Leu Thr Ala Ala Phe Phe Leu Ala Thr Leu Leu Ile Gly Leu Ala Met Arg Leu Tyr Tyr Gly Ser Arg [0044]<210> 8 <211> 137 <212> PRT <213> Homo sapience <400> 8 Met Gly Phe Gly Ala Thr Leu Ala Val Gly Leu Thr Ile Phe Val Leu Ser Val Val Thr Ile Ile Ile Cys Phe Thr Cys Ser Cys Cys Cys Leu

Tyr Lys Thr Cys Arg Arg Pro Arg Pro Val Val Thr Thr Thr Ser Thr Thr Val Val His Ala Pro Tyr Pro Gln Pro Pro Ser Val Pro Pro Ser Tyr Pro Gly Pro Ser Tyr Gln Gly Tyr His Thr Met Pro Pro Gln Pro Gly Met Pro Ala Ala Pro Tyr Pro Met Gln Tyr Pro Pro Pro Tyr Pro Ala Gln Pro Met Gly Pro Pro Ala Tyr His Glu Thr Leu Ala Gly Gly Ala Ala Pro Tyr Pro Ala Ser Gln Pro Pro Tyr Asn Pro Ala Tyr Met Asp Ala Pro Lys Ala Ala Leu [0045] ⟨210⟩ 9 ⟨211⟩ 311 <212> PRT <213> Homo sapience <400> 9 Met Gly Val Pro Thr Ala Leu Glu Ala Gly Ser Trp Arg Trp Gly Ser Leu Leu Phe Ala Leu Phe Leu Ala Ala Ser Leu Gly Pro Val Ala Ala Phe Lys Val Ala Thr Pro Tyr Ser Leu Tyr Val Cys Pro Glu Gly Gln Asn Val Thr Leu Thr Cys Arg Leu Leu Gly Pro Val Asp Lys Gly His

Asp Val Thr Phe Tyr Lys Thr Trp Tyr Arg Ser Ser Arg Gly Glu Val

65					70					75					80
Gln	Thr	Cys	Ser	Glu	Arg	Arg	Pro	Ile	Arg	Asn	Leu	Thr	Phe	Gln	Asp
				85					90					95	
Leu	His	Leu	His	His	Gly	Gly	His	Gln	Ala	Ala	Asn	Thr	Ser	His	Asp
			100					105					110		
<u>L</u> eu	Ala	Gln	Arg	His	Gly	Leu	Glu	Ser	Ala	Ser	Asp	His	His	Gly	Asn
		115					120					125			
Phe	Ser	Ile	Thr	Met	Arg	Asn	Leu	Thr	Leu	Leu	Asp	Ser	Gly	Leu	Tyr
	130					135					140				
Cys	Cys	Leu	Val	Val	Glu	Ιle	Arg	His	His	His	Ser	Glu	His	Arg	Val
145					150					155					160
His	Gly	Ala	Met	Glu	Leu	Gln	Val	Gln	Thr	Gly	Lys	Asp	Ala	Pro	Ser
				165					170					175	
Asn	Cys	Val	Val	Tyr	Pro	Ser	Ser	Ser	Gln	Glu	Ser	Glu	Asn	Ile	Thr
			180					185					190		
Ala	Ala	Ala	Leu	Ala	Thr	Gly	Ala	Cys	He	Val	Gly	Ile	Leu	Cys	Leu
		195					200					205			
Pro	Leu	Ile	Leu	Leu	Leu	Val	Tyr	Lys	Gln	Arg	Gln	Ala	Ala	Ser	Asn
	210					215					220				
Arg	Arg	Ala	Gln	Glu	Leu	Val	Arg	Met	Asp	Ser	Asn	Ile	Gln	Gly	He
225					230					235					240
Glu	Asn	Pro	Gly	Phe	Glu	Ala	Ser	Pro	Pro	Ala	Gln	Gly	He	Pro	Glu
				245					250					255	
∆la	L y s	Val	Arg	His	Pro	Leu	Ser	Tyr	Val	Ala	Gln	Arg	Gln	Pro	Ser
			260					265					270		
Glu	Ser	Gly	Arg	His	Leu	Leu	Ser	Glu	Pro	Ser	Thr	Pro	Leu	Ser	Pro
		275					280					285			
Pro	Gly	Pro	Gly	Asp	Val	Phe	Phe	Pro	Ser	Leu	Asp	Pro	Val	Pro	Asp
	290					295					300				

Ser Pro Asn Phe Glu Val Ile [0046]<210> 10 ⟨211⟩ 543 <212> PRT <213> Homo sapience <400> 10 Met Ala Val Ser Glu Arg Arg Gly Leu Gly Arg Gly Ser Pro Ala Glu Trp Gly Gln Arg Leu Leu Leu Val Leu Leu Gly Gly Cys Ser Gly Arg Ile His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp Ile Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu Leu

Ser Val Leu Arg Leu Gly Leu Arg Glu Ala Glu Glu Lys Ser Leu Leu Val Gly Phe Ser Leu Ser Arg Val Arg Ser Gly Arg Val Arg Ser Tyr Ser Thr Arg Asp Phe Gln Asp Cys Pro Leu Gln Lys Asn Ser Ser Ser Phe Leu Val Leu Phe Leu Ile Asn Thr Lys Asp Leu Gln Val Gln Val Arg Lys Tyr Gly Glu Gln Lys Thr Leu Phe Ile Phe Pro Gly Leu Leu

Pro Glu Ala Pro Ser Lys Pro Gly Leu Pro Lys Pro Gln Ala Thr Val Pro Arg Lys Val Asp Gly Gly Gly Thr Ser Ala Ala Ser Lys Pro Lys

				165					170					175	
Ser	Thr	Pro	Ala	Val	Ile	Gln	Gly	Pro	Ser	Gly	Lys	Asp	Lys	Asp	Leu
			180					185					190		
Val	Leu	Gly	Leu	Ser	His	Leu	Asn	Asn	Ser	Tyr	Asn	Phe	Ser	Phe	His
		195					200					205			
Val	Val	Ile	Gly	Ser	Gln	Ala	Glu	Glu	Gly	Gln	Tyr	Ser	Leu	Asn	Phe
	210					215					220				
His	Asn	Cys	Asn	Asn	Ser	Val	Pro	Gly	L y s	Glu	His	Pro	Phe	Asp	Ile
225					230					235					240
Thr	Val	Met	He	Arg	Glu	Lys	Asn	Pro	Asp	Gly	Phe	Leu	Ser	Ala	Ala
				245					250					255	
Glu	Met	Pro	Leu	Phe	Lys	Leu	Tyr	Met	Val	Met	Ser	Ala	Cys	Phe	Leu
			260					265					270		
Ala	Ala	Gly	Ile	Phe	Trp	Val	Ser	Ile	Leu	Cys	Arg	Asn	Thr	Tyr	Ser
		275					280					285			
Val	Phe	Lys	Ile	His	Trp	Leu	Met	Ala	Ala	Leu	Ala	Phe	Thr	Lys	Ser
	290					295					300				
Ile	Ser	Leu	Leu	Phe	His	Ser	Ile	Asn	Tyr	Tyr	Phe	[le	Asn	Ser	Gln
305					310					315					320
Gly	His	Pro	Ile	Glu	Gly	Leu	Ala	Val	Met	Tyr	Tyr	Ile	Ala	His	Leu
				325					330					335	
Leu	Lys	Gly	Ala	Leu	Leu	Phe	He	Thr	Ile	Ala	Leu	Ile	Gly	Ser	Gly
	-	-	340					345					350		-
Trp	Ala	Phe		Lys	Tyr	Val	Leu		Asp	Lys	Glu	Lys	Lys	Val	Phe
•		355		-	v		360		•	-		365	-		
Glv	Ile		Ile	Pro	Met	Gln		Leu	Ala	Asn	Val		Tyr	Ile	Ile
2-3	370	•				375					380		- 3 -		
Ιle		Ser	Aro	Glu	Glu		Ala	Ser	Asn	Tvr		Len	Trp	Lvs	Glu
385	U I U	501	11 - 15	Ų. u	390	U . y	11 1 4		лор	395	, 1	u	P	_,_	400
000					550										100

lle Leu Phe Leu Val Asp Leu Ile Cys Cys Gly Ala Ile Leu Phe Pro 415 410 405 Val Val Trp Ser Ile Arg His Leu Gln Asp Ala Ser Gly Thr Asp Gly 430 425 420 Lys Val Ala Val Asn Leu Ala Lys Leu Lys Leu Phe Arg His Tyr Tyr 445 440 435 Val Met Val Ile Cys Tyr Val Tyr Phe Thr Arg Ile Ile Ala Ile Leu 460 455 450 Leu Gln Val Ala Val Pro Phe Gln Trp Gln Trp Leu Tyr Gln Leu Leu 480 470 475 465 Val Glu Gly Ser Thr Leu Ala Phe Phe Val Leu Thr Gly Tyr Lys Phe 495 490 485 Gln Pro Thr Gly Asn Asn Pro Tyr Leu Gln Leu Pro Gln Glu Asp Glu 505 500 Glu Asp Val Gln Met Glu Gln Val Met Thr Asp Ser Gly Phe Arg Glu 525 520 515 Gly Leu Ser Lys Val Asn Lys Thr Ala Ser Gly Arg Glu Leu Leu 540 535 530 [0047]<210> 11 ⟨211⟩ 1017 <212> DNA <213> Homo sapience <400> 11 60 atgtctccat ccccgaccgc cctcttctgt cttgggctgt gtctggggcg tgtgccagcg cagagtggac cgctccccaa gccctccctc caggctctgc ccagctccct ggtgcccctg 120 gagaagccag tgaccctccg gtgccaggga cctccgggcg tggacctgta ccgcctggag 180 aagctgagtt ccagcaggta ccaggatcag gcagtcctct tcatcccggc catgaagaga 240 agtotggctg gacgotaccg ctgctcctac cagaacggaa gcctctggtc cctgcccagc 300

gaccagctgg agetegttge caegggagtt tttgccaaac cetegetete ageceagece	360
ggcccggcgg tgtcgtcagg aggggacgta accctacagt gtcagactcg gtatggcttt	420
gaccaatttg ctctgtacaa ggaaggggac cctgcgccct acaagaatcc cgagagatgg	480
taccgggcta gttttcccat catcacggtg accgccgccc acagcggaac ctaccgatgc	540
tacagettet ccageagga eccatacetg tggteggeec ecagegaece eetggagett	600
gtggtcacag gaacctctgt gacccccagc cggttaccaa cagaaccacc ttcctcggta	660
gcagaattct cagaagccac cgctgaactg accgtctcat tcacaaacga agtcttcaca	720
actgagactt ctaggagtat caccgccagt ccaaaggagt cagactctcc agctggtcct	780
gcccgccagt actacaccaa gggcaacctg gtccggatat gcctcggggc tgtgatccta	840
ataatcctgg cggggtttct ggcagaggac tggcacagcc ggaggaagcg cctgcggcac	900
aggggcaggg ctgtgcagag gccgcttccg ccctcccgc ccctcccgct gacccggaaa	960
tcacacgggg gtcaggatgg aggccgacag gatgttcaca gccgcgggtt atgttca	1017
[0048]	
<210> 12	

<211> 1461

<212> DNA

<213> Homo sapience

atggcgtcct	cagcggaggg	ggacgagggg	actgtggtgg	cgctggcggg	ggttctgcag	60
tcgggtttcc	aggagctgag	ccttaacaag	ttggcgacgt	ccctgggcgc	gtcagaacag	120
gcgctgcggc	tgatcatctc	catcttcctg	ggttacccct	ttgctttgtt	ttatcggcat	180
taccttttct	acaaggagac	ctacctcatc	cacctcttcc	atacctttac	aggcctctca	240
attgcttatt	ttaactttgg	aaaccagctc	taccactccc	tgctgtgtat	tgtgcttcag	300
ttcctcatcc	ttcgactaat	gggccgcacc	atcactgccg	tcctcactac	cttttgcttc	360
cagatggcct	accttctggc	tggatactat	tacactgcca	ccggcaacta	cgatatcaag	420
tggacaatgc	cacattgtgt	tctgactttg	aagctgattg	gtttggctgt	tgactacttt	480
gacggaggga	aagatcagaa	ttccttgtcc	tctgagcaac	agaaatatgc	catacgtggt	540
gttccttccc	tgctggaagt	tgctggtttc	tcctacttct	atggggcctt	cttggtaggg	600
ccccagttct	caatgaatca	ctacatgaag	ctggtgcagg	gagagctgat	tgacatacca	660

ggaaagatac caaacagcat catteetget etcaagegee tgagtetggg cettttet	tac 720
ctagtgggct acacactgct cagcccccac atcacagaag actatctcct cactgaag	gac 780
tatgacaacc accecttetg gtteegetge atgtacatge tgatetgggg caagttg	gtg 840
ctgtacaaat atgtcacctg ttggctggtc acagaaggag tatgcatttt gacgggc	c tg 900
ggcttcaatg gctttgaaga aaagggcaag gcaaagtggg atgcctgtgc caacatg	aag 960
gtgtggctct ttgaaacaaa cccccgcttc actggcacca ttgcctcatt caacatca	aac 1020
accaacgcct gggtggcccg ctacatcttc aaacgactca agttccttgg aaataaa	gaa 1080
ctctctcagg gtctctcgtt gctattcctg gccctctggc acggcctgca ctcagga	tac 1140
ctggtctgct tccagatgga attcctcatt gttattgtgg aaagacaggc tgccagge	ctc 1200
attcaagaga gccccaccct gagcaagctg gccgccatta ctgtcctcca gcccttc	tac 1260
tatttggtgc aacagaccat ccactggctc ttcatgggtt actccatgac tgccttc	tgc 1320
ctcttcacgt gggacaaatg gcttaaggtg tataaatcca tctatttcct tggccac	atc 1380
ttcttcctga gcctactatt catattgcct tatattcaca aagcaatggt gccaagg	aaa 1440
gagaagttaa agaagatgga a	1461
_	

[0049]

<210> 13

<211> 786

<212> DNA

<213> Homo sapience

atggcggcag	ccagcgctgg	ggcaacccgg	ctgctcctgc	tcttgctgat	ggcggtagca	60
gcgcccagtc	gagcccgggg	cagcggctgc	cgggccggga	ctggtgcgcg	aggggctggg	120
gcggaaggtc	gagagggcga	ggcctgtggc	acggtggggc	tgctgctgga	gcactcattt	180
gagatcgatg	acagtgccaa	cttccggaag	cggggctcac	tgctctggaa	ccagcaggat	240
ggtaccttgt	ccctgtcaca	gcggcagctc	agcgaggagg	agcggggccg	actccgggat	300
gtggcagccc	tgaatggcct	gtaccgggtc	cggatcccaa	ggcgacccgg	ggccctggat	360
ggcctggaag	ctggtggcta	tgtctcctcc	tttgtccctg	cgtgctccct	ggtggagtcg	420
cacctgtcgg	accagctgac	cctgcacgtg	gatgtggccg	gcaacgtggt	gggcgtgtcg	480
gtggtgacgc	accccggggg	ctgccggggc	catgaggtgg	aggacgtgga	cctggagctg	540

ttcaacacct cggtgcagct gcagccgccc accacagccc caggccctga gacggcggcc	600
ttcattgagc gcctggagat ggaacaggcc cagaaggcca agaaccccca ggagcagaag	660
tccttcttcg ccaaatactg gatgtacatc attcccgtcg tcctgttcct catgatgtca	720
ggagcgccag acaccggggg ccagggtggg ggtgggggtg ggggtggtgg tgggggtagt	780
ggccgg	786
[0050]	
<210> 14	
<211> 498	
<212> DNA	
<213> Homo sapience	
<400> 14	
atgcagccgc cggtgcccgg gcccctgggc ctgctggacc ccgcagaagg gctttcgagg	60
aggaagaaga cgtcgctctg gtttgtgggg tctctgctgc tggtgtccgt cctcatagtc	120
accgtcgggc tggctgccac caccaggacg gagaatgtga ccgttggggg ctactaccca	180
gggatcattc tcggctttgg atctttctta ggaattattg gcatcaactt ggtggagaat	240
agaaggcaaa tgctggtggc agcgatcgtg tttatcagtt ttggcgtggt ggccgccttc	300
tgctgcgcca tcgtggacgg cgtatttgca gcacagcaca	360
acgggaagat gccagtttta ctccagtggg gtggggtact tgtacgatgt ctaccagaca	420
gaggtgagca ggagcactga gattcatgtg ggttttgctc agctaacccc gccgacccca	480
cgcggttttc cctgcaca	498
[0051]	
<210> 15	
<211> 1248	
<212> DNA	
<213> Homo sapience	
<400> 15	
atgagcgagg cggacgggct gcgacagcgc cggcccctgc ggccgcaggt cgtcacagac	60
gatgatggcc aggccccgga ggctaaggac ggcagctcct ttagcggcag agttttccga	120

gtgaccttct tgatgctggc tgtttctctc accgttcccc tgcttggagc catgatgctg

ctggaatctc	ctatagatcc	acagcctctc	agcttcaaag	aacccccgct	cttgcttggt	240	
gttctgcatc	caaatacgaa	gctgcgacag	gcagaaaggc	tgtttgaaaa	tcaacttgtt	300	
ggaccggagt	ccatagcaca	tattggggat	gtgatgttta	ctgggacagc	agatggccgg	360	
gtcgtaaaac	ttgaaaatgg	tgaaatagag	accattgccc	ggtttggttc	gggcccttgc	420	
aaaacccgag	atgatgagcc	tgtgtgtggg	agacccctgg	gtatccgtgc	agggcccaat	480	
gggactctct	ttgtggccga	tgcatacaag	ggactatttg	aagtaaatcc	ctggaaacgt	540	
gaagtgaaac	tgctgctgtc	ctccgagaca	cccattgagg	ggaagaacat	gtcctttgtg	600	
aatgatctta	cagtcactca	ggatgggagg	aagatttatt	tcaccgattc	tagcagcaaa	660	
tggcaaagac	gagactacct	gcttctggtg	atggagggca	cagatgacgg	gcgcctgctg	720	
gagtatgata	ctgtgaccag	ggaagtaaaa	gttttattgg	accagctgcg	gttcccgaat	780	
ggagtccagc	tgtctcctgc	agaagacttt	gtcctggtgg	cagaaacaac	catggccagg	840	
atacgaagag	tctacgtttc	tggcctgatg	aagggcgggg	ctgatctgtt	tgtggagaac	900	
atgcctggat	ttccagacaa	catccggccc	agcagctctg	gggggtactg	ggtgggcatg	960	
tcgaccatcc	gccctaaccc	tgggttttcc	atgctggatt	tcttatctga	gagaccctgg	1020	
attaaaagga	tgatttttaa	gctctttagt	caagagacgg	tgatgaagtt	tgtgccgcgg	1080	
tacagcctcg	tcctagaact	cagcgacagc	ggtgccttcc	ggagaagcct	gcatgatccc	1140	
gatgggctgg	tggccaccta	catcagcgag	gtgcacgaac	acgatgggca	cctgtacctg	1200	
ggctctttca	ggtcccctt	cctctgcaga	ctcagcctcc	aggctgtt		1248	
[0	052]						

<210> 16

<211> 351

<212> DNA

<213≻ Homo sapience

60	cccagggggc	cctgggccat	ctgctgggag	gctgctgctg	cactgccact	atgaggctgt
120	ggagatgtac	tggatgatga	gccccacaac	cacagccaca	gggcgccact	ctcggggaca
180	ttaccaggtg	gagctgtggc	gatgcctgca	cctgcgctgt	tgcccgctca	tcagcccaca
240	acccctccac	ctcaagccag	cacacccctt	ctgccctgct	cactgtcacc	agtccttcac
300	catcaagcca	taccactggg	ccccaatccc	ggcctttgat	ttccaccacc	ccacctcaca

cagatgcage ettteatata ttecatgeet cagtttacce atetgeetge e

351

[0053]

<210> 17

<211> 972

<212> DNA

<213> Homo sapience

<400> 17

atgagtgtag	aggatggggg	tatgccaggc	ctgggccgtc	ccaggcaggc	ccgctggacc	60
ctgatgctac	tcctatccac	tgccatgtac	ggtgcccatg	ccccattgct	ggcactgtgc	120
catgtggacg	gccgagtgcc	cttccggccc	tcctcagccg	tgctgctgac	tgagctgacc	180
aagctactgt	tatgcgcctt	ctcccttctg	gtaggctggc	aagcatggcc	ccaggggccc	240
ccaccctggc	gccaggctgc	tecettegea	ctatcagccc	tgctctatgg	cgctaacaac	300
aacctggtga	tctatcttca	gcgttacatg	gaccccagca	cctaccaggt	gctgagtaat	360
ctcaagattg	gaagcacagc	tgtgctctac	tgcctctgcc	tccggcaccg	cctctctgtg	420
cgtcaggggt	tagcgctgct	gctgctgatg	gctgcgggag	cctgctatgc	agcagggggc	480
cttcaagttc	ccgggaacac	ccttcccagt	cccctccag	cagctgctgc	cagccccatg	540
ccctgcata	tcactccgct	aggcctgctg	ctcctcattc	tgtactgcct	catctcaggc	600
ttgtcgtcag	tgtacacaga	gctgctcatg	aagcgacagc	ggctgcccct	ggcacttcag	660
aacctcttcc	tctacacttt	tggtgtgctt	ctgaatctag	gtctgcatgc	tggcggcggc	720
tctggcccag	gcctcctgga	aggtttctca	ggatgggcag	cactcgtggt	gctgagccag	780
gcactaaatg	gactgctcat	gtctgctgtc	atgaagcatg	gcagcagcat	cacacgcctc	840
tttgtggtgt	cctgctcgct	ggtggtcaac	gccgtgctct	cagcagtcct	gctacggctg	900
cagctcacag	ccgccttctt	cctggccaca	ttgctcattg	gcctggccat	gcgcctgtac	960
tatggcagcc	gc					972

[0054]

<210> 18

<211> 411

<212> DNA

<213> Homo sapience

⟨400⟩ 18

atggggttcg gagcgacctt ggccgttggc ctgaccatct ttgtgctgtc tgtcgtcact	60
atcatcatct gcttcacctg ctcctgctgc tgcctttaca agacgtgccg ccgaccacgt	120
ccggttgtca ccaccaccac atccaccact gtggtgcatg ccccttatcc tcagcctcca	180
agtgtgccgc ccagctaccc tggaccaagc taccagggct accacaccat gccgcctcag	240
ccagggatge cageageace ctacceaatg cagtacceae cacettacce ageceagece	300
atgggcccac cggcctacca cgagaccctg gctggaggag cagccgcgcc ctaccccgcc	360
agccagcctc cttacaaccc ggcctacatg gatgccccga aggcggccct c	411

[0055]

<210> 19

⟨211⟩ 933

<212> DNA

<213> Homo sapience

						0.0
atgggcgtcc	ccacggccct	ggaggccggc	agctggcgct	ggggatccct	gctcttcgct	60
ctcttcctgg	ctgcgtccct	aggtccggtg	gcagccttca	aggtcgccac	gccgtattcc	120
ctgtatgtct	gtcccgaggg	gcagaacgtc	accctcacct	gcaggctctt	gggccctgtg	180
		cttctacaag				240
		gcccatccgc				300
		caacaccagc				360
		caacttctcc				420
		ggtggtggag				480
		ggtgcagaca				540
		gagtgaaaac				600
					gcaaaggcag	660
						720
		ccaggagctg				
gaaaaccccg	gctttgaagc	ctcaccacct	gcccagggga	tacccgaggc	caaagtcagg	780
					tctgctttcg	840
					atccctggac	900

[0056]

<210> 20

<211> 1629

<212> DNA

<400> 20

<213≻ Homo sapience

(400/ 20						
atggcagtga	gcgagaggag	ggggctcggc	cgcgggagcc	ccgcggagtg	ggggcagcgg	60
ctacttctgg	tgctgctgtt	gggtggctgc	tccgggcgca	tccaccggct	ggcgctgacg	120
ggggagaagc	gagcggacat	ccagctgaac	agcttcggtt	tctacaccaa	tggctctctg	180
gaggtggagt	tgagcgtcct	gcggctgggc	ctccgggagg	cagaagagaa	gtccctgctg	240
gtggggttca	gtctcagccg	ggttcggtct	ggcagagttc	gctcctattc	aacccgggat	300
ttccaggact	gccctctcca	gaaaaacagt	agcagtttcc	tggtcctgtt	cctcatcaac	360
accaaggatc	tgcaggtcca	ggtgcggaag	tatggagagc	agaagacgtt	gtttatcttt	420
cccgggctcc	tcccggaagc	accctccaaa	ccagggctcc	cgaagccaca	ggccacagtc	480
cccgcaagg	tggatggcgg	agggacctct	gcagccagca	agcccaagtc	aacacccgca	540
gtgattcagg	gtcctagtgg	gaaggacaag	gacctggtgt	tgggcctgag	ccacctcaac	600
aactcctaca	acttcagttt	ccacgtggtg	atcggctctc	aggcggaaga	aggccagtac	660
agcctgaact	tccacaactg	caacaattca	gtgccaggaa	aggagcatcc	attcgacatc	720
acggtgatga	tccgggagaa	gaaccccgat	ggcttcctgt	cggcagcgga	gatgcccctt	780
ttcaagctct	acatggtcat	gtccgcctgc	ttcctggccg	ctggcatctt	ctgggtgtcc	840
atcctctgca	ggaacacgta	cagcgtcttc	aagatccact	ggctcatggc	ggccttggcc	900
ttcaccaaga	gcatctctct	cctcttccac	agcatcaact	actacttcat	caacagccag	960
ggccacccca	tcgaaggcct	tgccgtcatg	tactacatcg	cacacctgct	gaagggcgcc	1020
ctcctcttca	tcaccatcgc	cctgattggc	tcaggctggg	ccttcatcaa	gtacgtcctg	1080
tcggataagg	agaagaaggt	ctttgggatc	gtgatcccca	tgcaggtcct	ggccaacgtg	1140
gcctacatca	tcatcgagtc	ccgcgaggaa	ggcgccagcg	actacgtgct	gtggaaggag	1200
attttgttcc	tggtggacct	catctgctgt	ggtgccatcc	tgttccccgt	agtctggtcc	1260
atccggcatc	tccaggatgc	gtctggcaca	gacgggaagg	tggcagtgaa	cctggccaag	1320

ctgaagctgt tccggcatta ctatgtcatg gtcatctgct acgtctactt cacccgcatc	1380
atcgccatcc tgctgcaggt ggctgtgccc tttcagtggc agtggctgta ccagctcttg	1440
gtggagggct ccaccctggc cttcttcgtg ctcacgggct acaagttcca gcccacaggg	1500
aacaacccgt acctgcagct gccccaggag gacgaggagg atgttcagat ggagcaagta	1560
atgacggact ctgggttccg ggaaggcctc tccaaagtca acaaaacagc cagcgggcgg	1620
gaactgtta	1629
gaactgttu	
[0 0 5 7]	

<210> 21 <211> 2007 <212> DNA <213> Homo sapience <220> <221> CDS <222> (46)...(1065) <400> 21 cactteecte ectggeeaca gageteagga cagggetgag gaace atg tet eca 54 Met Ser Pro 1 tcc ccg acc gcc ctc ttc tgt ctt ggg ctg tgt ctg ggg cgt gtg cca 102 Ser Pro Thr Ala Leu Phe Cys Leu Gly Leu Cys Leu Gly Arg Val Pro 15 10 5 gcg cag agt gga ccg ctc ccc aag ccc tcc ctc cag gct ctg ccc agc 150 Ala Gin Ser Gly Pro Leu Pro Lys Pro Ser Leu Gin Ala Leu Pro Ser 35 30 25 20 tcc ctg gtg ccc ctg gag aag cca gtg acc ctc cgg tgc cag gga cct 198 Ser Leu Val Pro Leu Glu Lys Pro Val Thr Leu Arg Cys Gln Gly Pro 50 45 40 ccg ggc gtg gac ctg tac cgc ctg gag aag ctg agt tcc agc agg tac 246 Pro Gly Val Asp Leu Tyr Arg Leu Glu Lys Leu Ser Ser Arg Tyr

			c c					60					65				
20	+	22.5	55	atc	ctc	110	atc	ccg	acc	ata	220	202		cta	act	294	
_	_	_						Pro								204	
GIN	АЅР	70	на	Val	Leu	rne	75	LIO	діа	пес	Lys	80	361	Leu	ліа		
	0-0		000	t ac	100	tac		226	aa a	200	ctc		tcc	cta	ccc	342	
	_							aac Asn								342	
GIY	85	1 yı	Alg	Cys	Sei	90	GIII	KSII	GIY	561	95	11.0	501	Leu	110		
200		Car	cta	asa	ctc		пСС	acg	gga	att		σCC	222	rrr	trø	390	
_	_							Thr								550	
100	изр	GIII	Lси	Giu	105	741	лга	1,111	u, y	110	THE	n	Lyo	110	115		
	tca	acc	റമെ	ccc		ርርቃ	g C g	gtg	tcø		gga	ppp	gac	gta		438	
								Val								100	
Leu	Jer	пια	0111	120	u.,	110	M. C	V X	125	501	u- y	U- J	₁	130	•		
cta	റമ്മ	tøt	cag		Cgg	tat	ggC	ttt		caa	ttt	gct	ctg		aag	486	
	_	_						Phe									
D	0	0,5	135		6	- ,	- 3	140	1				145	•	·		
gaa	ggg	gac		gCg	ссс	tac	aag	aat	ссс	gag	aga	tgg		cgg	gct	534	
_		_						Asn									
	_ ,	150				·	155					160					
agt	ttt		atc	atc	acg	gtg	acc	gcc	gcc	cac	agc	gga	acc	tac	cga	582	
Ser	Phe	Pro	Ile	Ile	Thr	Val	Thr	Ala	Ala	His	Ser	Gly	Thr	Tyr	Arg		
	165					170					175						
tgc	tac	agc	ttc	tcc	agc	agg	gac	cca	tac	ctg	tgg	tcg	gcc	ссс	agc	630	
Cys	Tyr	Ser	Phe	Ser	Ser	Arg	Asp	Pro	Tyr	Leu	Trp	Ser	Ala	Pro	Ser		
180					185					190					195		
gac	ссс	ctg	gag	ctt	gtg	gtc	aca	gga	acc	tct	gtg	acc	ссс	agc	cgg	678	
Asp	Pro	Leu	Glu	Leu	Val	Val	Thr	Gly	Thr	Ser	Val	Thr	Pro	Ser	Arg		
				200					205					210			
tta	cca	aca	gaa	cca	cct	tcc	tcg	gta	gca	gaa	ttc	tca	gaa	gcc	acc	726	

Leu Pro Thr Glu Pro Pro Ser Ser Val Ala Glu Phe Ser Glu Ala Thr	
215 220 225	
gct gaa ctg acc gtc tca ttc aca aac gaa gtc ttc aca act gag act	774
Ala Glu Leu Thr Val Ser Phe Thr Asn Glu Val Phe Thr Thr Glu Thr	
230 235 240	
tct agg agt atc acc gcc agt cca aag gag tca gac tct cca gct ggt	822
Ser Arg Ser Ile Thr Ala Ser Pro Lys Glu Ser Asp Ser Pro Ala Gly	
245 250 255	
cct gcc cgc cag tac tac acc aag ggc aac ctg gtc cgg ata tgc ctc	870
Pro Ala Arg Gln Tyr Tyr Thr Lys Gly Asn Leu Val Arg Ile Cys Leu	
260 265 270 275	
ggg gct gtg atc cta ata atc ctg gcg ggg ttt ctg gca gag gac tgg	918
Gly Ala Val Ile Leu Ile Ile Leu Ala Gly Phe Leu Ala Glu Asp Trp	
280 285 290	
cac agc cgg agg aag cgc ctg cgg cac agg ggc agg gct gtg cag agg	966
His Ser Arg Arg Lys Arg Leu Arg His Arg Gly Arg Ala Val Gln Arg	
295 300 305	
ccg ctt ccg ccc ctc ccg ccc ctc ccg ctg acc cgg aaa tca cac ggg	1014
Pro Leu Pro Pro Leu Pro Leu Pro Leu Thr Arg Lys Ser His Gly	
310 315 320	
ggt cag gat gga ggc cga cag gat gtt cac agc cgc ggg tta tgt tca	1062
Gly Gln Asp Gly Gly Arg Gln Asp Val His Ser Arg Gly Leu Cys Ser	
325 330 335	
tgaccgct gaaccccagg cacggtcgta tccaagggag ggatcatggc atgggaggcg	1120
actcaaagac tggcgtgtgt ggagcgtgga agcaggaggg cagaggctac agctgtggaa	1180
acgaggccat gctgcctcct cctggtgttc catcagggag ccgttcggcc agtgtctgtc	1240
tgtctgtctg tctgcctctc tgtctgaggg caccctccat ttgggatgga aggaatctgt	1300
ggagacccca tcctcctccc tgcacactgt ggatgacatg gtaccctggc tggaccacat	1360
actggcctct ttcttcaacc tctctaatat gggctccaga cggatctcta aggttcccag	1420

ctctcagggt tgactctgtt ccatcctctg tgcaaaatcc tcccgtgctt ccctttggcc	1480
ctctgtgctc ttgtctggtt ttccccagaa actctcaccc tcactccatc tcccactgcg	1540
gtctaacaaa tctcctttcg tctctcagaa cgggtcttgc aggcagtttg ggtatgtcat	1600
tcattttcct tagtgtaaaa ctagcacgtt gcccgcttcc cttcacatta gaaaacaaga	1660
tcagcctgtg caacatggtg aaacctcatc tctaccaaca aaacaaaaaa acacaaaaat	1720
tagccaggtg tggtggtgca tccctatact cccagcaact cagggggctg aggtgggaga	1780
atggcttgag cctgggaggc agaggttgca gtgagctgag atcacaccac tgcactctag	1840
ctcgggtgac gaagcctgac tttgtctcaa aaaatacagg gatgaatatg tcaattaccc	1900
tgatttgatc atagcacgtt gtatacatgt actgcaatat tgctgtccac cccataaata	1960
tgtacaattc tgtatacatt tttaaaatca taaaaataag ataatgc	2007
[0058]	
<210> 22	
<211> 2264	
<212> DNA	
<213> Homo sapience	
<220>	
<221> CDS	
⟨222⟩ (85)(1548)	
<400> 22	
ggaattgggg gtgaagcgat agcgttttgc ccgcattcgg ggcgcgcgga gctggggggt	60
ccctgtgggg ctcccggagt taag atg gcg tcc tca gcg gag ggg gac gag	111
Met Ala Ser Ser Ala Glu Gly Asp Glu	
1 5	
ggg act gtg gtg gcg ctg gcg ggg gtt ctg cag tcg ggt ttc cag gag	159
Gly Thr Val Val Ala Leu Ala Gly Val Leu Gln Ser Gly Phe Gln Glu	
10 15 20 25	
ctg agc ctt aac aag ttg gcg acg tcc ctg ggc gcg tca gaa cag gcg	207
Leu Ser Leu Asn Lys Leu Ala Thr Ser Leu Gly Ala Ser Glu Gln Ala	20.
Len Sei Fen Weil Fas Fen Mig IIII Sei Fen Gia Wig Sei Gin Gill Wig	

35

30

ctg	cgg	ctg	atc	atc	tcc	atc	ttc	ctg	ggt	tac	ccc	ttt	gct	ttg	ttt	255	
Leu	Arg	Leu	Ile	He	Ser	I le	Phe	Leu	Gly	Tyr	Pro	Phe	Ala	Leu	Phe		
			45					50					55				
tat	cgg	cat	tac	ctt	ttc	tac	aag	gag	acc	tac	ctc	atc	cac	ctc	ttc	303	
Tyr	Arg	His	Tyr	Leu	Phe	Tyr	Lys	Glu	Thr	Tyr	Leu	Ile	His	Leu	Phe		
		60			_		65					70					
cat	acc	ttt	aca	ggc	ctc	tca	att	gct	tat	ttt	aac	ttt	gga	aac	cag	351	
His	Thr	Phe	Thr	Gly	Leu	Ser	Ile	Ala	Tyr	Phe	Asn	Phe	Gly	Asn	Gln		
	7 5					80					85						
ctc	tac	cac	tcc	ctg	ctg	tgt	att	gtg	ctt	cag	ttc	ctc	atc	ctt	cga	399	
Leu	Tyr	His	Ser	Leu	Leu	Cys	He	Val	Leu	Gln	Phe	Leu	Ile	Leu	Arg		
90					95					100					105		
										act						447	
Leu	Met	Gly	Arg	Thr	Ile	Thr	Ala	Val	Leu	Thr	Thr	Phe	Cys		Gln		
				110					115					120			
										act						495	
Met	Ala	Tyr	Leu	Leu	Ala	Gly	Tyr			Thr	Ala	Thr		Asn	Tyr		
			125					130					135			T 40	
										ctg						543	
Asp	Ile	Lys	Trp	Thr	Met	Pro			Val	Leu	Thr			Leu	He		
		140					145					150		4		501	
															ttg	591	
Gly	Leu	Ala	Val	Asp	Tyr		Asp	Gly	Gly	Lys		Gin	ASN	Ser	Leu		
	155					160					165	- 4	4	_4_		620	
															ctg	639	
		Glu	Gln	Gln		Tyr	Ala	He	Arg			Pro	Ser	Leu	Leu		
170					175					180		4.4	~ 4 ~	~~-	185	687	
															ccc	687	
Glu	Val	Ala	Gly	Phe	Ser	Tyr	Phe	ſyr	GIy	Ala	rne	Leu	yaı	ыу	Pro		

				190					195					200			
cag	ttc	tca	atg	aat	cac	tac	atg	aag	ctg	gtg	cag	gga	gag	ctg	att	735	
Gln	Phe	Ser	Met	Asn	His	Tyr	Met	Lys	Leu	Val	Gln	Gly	Glu	Leu	lle		
			205					210					215				
gac	ata	cca	gga	aag	ata	cca	aac	agc	atc	att	cct	gct	ctc	aag	cgc	783	
Asp	Ile	Pro	Gly	Lys	Ile	Pro	Asn	Ser	Ile	Ile	Pro	Ala	Leu	Lys	Arg		
		220					225					230					
ctg	agt	ctg	ggc	ctt	ttc	tac	cta	gtg	ggc	tac	aca	ctg	ctc	agc	ccc	831	
Leu	Ser	Leu	Gly	Leu	Phe	Tyr	Leu	Val	Gly	Tyr	Thr	Leu	Leu	Ser	Pro		
	235					240					245						
cac	atc	aca	gaa	gac	tat	ctc	ctc	act	gaa	gac	tat	gac	aac	cac	ccc	879	
His	Ιle	Thr	Glu	Asp	Tyr	Leu	Leu	Thr	Glu	Asp	Tyr	Asp	Asn	His	Pro		
250					255					260					265		
ttc	tgg	ttc	cgc	tgc	atg	tac	atg	ctg	atc	tgg	ggc	aag	ttt	gtg	ctg	927	
Phe	Trp	Phe	Arg	Cys	Met	Tyr	Met	Leu	Ile	Trp	Gly	Lys	Phe	Val	Leu		
				270					275					280			
tac	aaa	tat	gtc	acc	tgt	tgg	ctg	gtc	aca	gaa	gga	gta	tgc	att	ttg	975	
Tyr	Lys	Tyr	Val	Thr	Cys	Trp	Leu	Val	Thr	Glu	Gly	Val	Cys	Ile	Leu		
			285					290					295				
acg	ggc	ctg	ggc	ttc	aat	ggc	ttt	gaa	gaa	aag	ggc	aag	gca	aag	tgg	1023	
Thr	Gly	Leu	Gly	Phe	Asn	Gly	Phe	Glu	Glu	Lys	Gly	Lys	Ala	Lys	Trp		
		300					305					310					
gat	gcc	tgt	gcc	aac	atg	aag	gtg	tgg	ctc	ttt	gaa	aca	aac	ccc	cgc	1071	
Asp	Ala	Cys	Ala	Asn	Met	Lys	Val	Trp	Leu	Phe	Glu	Thr	Asn	Pro	Arg		
	315					320					325						
ttc	act	ggc	acc	att	gcc	tca	ttc	aac	atc	aac	acc	aac	gcc	tgg	gtg	1119	
Phe	Thr	Gly	Thr	Ile	Ala	Ser	Phe	Asn	Ile	Asn	Thr	Asn	Ala	Trp	Val		
330					335					340					345		
gcc	cgc	tac	atc	ttc	aaa	cga	ctc	aag	ttc	ctt	gga	aat	aaa	gaa	ctc	1167	

					_											
Ala	Arg	Tyr	Ile	Phe	Lys	Arg	Leu	Lys	Phe	Leu	Gly	Asn	Lys	Glu	Leu	
				350					355					360		
tct	cag	ggt	ctc	tcg	ttg	cta	ttc	ctg	gcc	ctc	tgg	cac	ggc	ctg	cac	1215
Ser	Gln	Gly	Leu	Ser	Leu	Leu	Phe	Leu	Ala	Leu	Trp	His	Gly	Leu	His	
			365					370					375			
tca	gga	tac	ctg	gtc	tgc	ttc	cag	atg	gaa	ttc	ctc	att	gtt	att	gtg	1263
Ser	Gly	Tyr	Leu	Val	Cys	Phe	Gln	Met	Glu	Phe	Leu	[l e	Val	Ile	Val	
		380					385					390				
gaa	aga	cag	gct	gcc	agg	ctc	att	caa	gag	agc	ccc	acc	ctg	agc	aag	1311
Glu	Arg	Gln	Ala	Ala	Arg	Leu	Ile	Gln	Glu	Ser	Pro	Thr	Leu	Ser	Lys	
	395					400					405					
ctg	gcc	gcc	att	act	gtc	ctc	cag	ссс	ttc	tac	tat	ttg	gtg	caa	cag	1359
Leu	Ala	Ala	He	Thr	Val	Leu	Gln	Pro	Phe	Tyr	Tyr	Leu	Val	Gln	Gln	
410					415					420					425	
acc	atc	cac	tgg	ctc	ttc	atg	ggt	tac	tcc	atg	act	gcc	ttc	tgo	ctc	1407
Thr	Ile	His	Trp	Leu	Phe	Met	Gly	Tyr	Ser	Met	Thr	Ala	Phe	Cys	Leu	
				430					435					440)	
ttc	acg	tgg	gac	aaa	tgg	ctt	aag	gtg	tat	aaa	tcc	atc	tat	tto	ctt	1455
Phe	Thr	Trp	Asp	Lys	Trp	Leu	Lys	Val	Tyr	Lys	Ser	Ile	Tyr	Phe	e Leu	
			445	,				450	I				455	,		
ggC	cac	ato	tto	tto	ctg	agc	cta	cta	tto	ata	ttg	cct	tat	att	t cac	1503
Gly	His	s Ile	Phe	Phe	Leu	Ser	Leu	Leu	Phe	lle	Leu	Pro	Туг	· Ile	His	
		460)				465	ı				470)			
aaa	gca	ata	ggtg	cca	agg	aaa	gag	aag	tta	aag	g aag	ate	g gaa	a ta	atc	1550
Lys	s Ala	a Me	t Val	Pro	Arg	Lys	Glu	Lys	. Lei	ı Lys	s Lys	Me	t Gli	1		
	475	5				480	ı				485	5				
cat	tttc	cctg	gtgg	gcctg	gtg C	ggga	ctgg	gt go	cagaa	aacta	a cto	cgtc	tccc	ttt	tcacagc	1610
act	tcct	ttgc	ccc	agago	cag a	ıgaat	ggaa	ıa aş	gcca	gggag	ggtg	ggaa	gatc	gat	gcttcca	1670
gC	tgtg	cctc	tgc	tgcca	agc (aagt	ctto	a t	ttgg	ggcca	a aag	gggg	aaac	ttt	tttttgg	1730

agaaggcgtc ttgctttgtc acccacgctg gaatgcagtg gcgggatctc agctcaccgc	1790
aacctccacc tcctgggttc aagtgatttt cctgcctcag cctcccaagt agctgggaat	1850
acaggcacgc caccatgccc agctaatttt tgtattttca gtagaaacgg gatttcacca	1910
cgttggccag gctggtctcg aactcctgac cgcaagtgat ccacccgcct ccgcctccca	1970
aagtgctggg attacaggcg tgagccaccg tgcccggccc aaaggggaaa ctcttgtggg	2030
aggagcagag gggctcacat ctcccctctg attcccccat gcacattgcc ttatctctcc	2090
ccatctagcc aggaatctat tgtgtttttc ttctgccaat ttactatgat tgtgtatgtg	2150
ccgctaccac caccccccc atgggggggt ggagaggggt gcaaggccct gcctgctcca	2210
ctttttctac cttggaactg tattagataa aatcacttct gtttgttcag tttt	2264
[0059]	
<210> 23	
<211> 1907	
<212> DNA	
<213> Homo sapience	
<220>	
<221> CDS	
<222> (35)(823)	
<400> 23	
acageegtee ettegetggt gggaagaage egag atg geg gea gee age get	52
Met Ala Ala Ser Ala	
1 5	
ggg gca acc cgg ctg ctc ctg ctc ttg ctg atg gcg gta gca gcg ccc	100
Gly Ala Thr Arg Leu Leu Leu Leu Leu Met Ala Val Ala Ala Pro	
10 15 20	
agt cga gcc cgg ggc agc ggc tgc cgg gcc ggg act ggt gcg cga ggg	148
Ser Arg Ala Arg Gly Ser Gly Cys Arg Ala Gly Thr Gly Ala Arg Gly	
25 30 35	
gct ggg gcg gaa ggt cga gag ggc gag gcc tgt ggc acg gtg ggg ctg	196

Ala Gly Ala Glu Gly Arg Glu Gly Glu Ala Cys Gly Thr Val Gly Leu

		_	r.
40	45	50	
ctg ctg gag cac tca tt	t gag atc gat	gac agt gcc aac ttc cgg aag	244
Leu Leu Glu His Ser Pho	e Glu Ile Asp	Asp Ser Ala Asm Phe Arg Lys	
55 60		65 70	
		gat ggt uco tog various	292
Arg Gly Ser Leu Leu Tr	p Asn Gln Gln	Asp Gly Thr Leu Ser Leu Ser	
75		80 85	240
		ggc cga ctc cgg gat gtg gca	340
Gln Arg Gln Leu Ser Gl	u Glu Glu Arg	Gly Arg Leu Arg Asp Val Ala	
90	95		388
		atc cca agg cga ccc ggg gcc	300
Ala Leu Asn Gly Leu Ty		Ile Pro Arg Arg Pro Gly Ala	
105	110	115	436
		gtc tcc tcc ttt gtc cct gcg	400
Leu Asp Gly Leu Glu Al		Val Ser Ser Phe Val Pro Ala	
120	125	130	484
		g gac cag ctg acc ctg cac gtg	20.7
		Asp Gln Leu Thr Leu His Val	
100	40	140	532
gat gtg gcc ggc aac g			
	al val Gly val	l Ser Val Val Thr His Pro Gly 160 165	
155	t- «0« «2»	100	580
		c gtg gac ctg gag ctg ttc aac p Val Asp Leu Glu Leu Phe Asn	
	nu van Gru Asj 179	100	
170		c aca gcc cca ggc cct gag acg	628
		r Thr Ala Pro Gly Pro Glu Thr	
	, in Più Più In 190	195	
185		g gaa cag gcc cag aag gcc aag	676
gcg gcc iic aii gag t	SC CIE EAE AI		

Ala Ala Phe Ile Glu Arg Leu Glu Met Glu Gln Ala Gln Lys Ala Lys	
200 205 210	
aac ccc cag gag cag aag tcc ttc ttc gcc aaa tac tgg atg tac atc	724
Asn Pro Gln Glu Gln Lys Ser Phe Phe Ala Lys Tyr Trp Met Tyr Ile	
215 220 225 230	
 att ccc gtc gtc ctg ttc ctc atg atg tca gga gcg cca gac acc ggg	772
lle Pro Val Val Leu Phe Leu Met Met Ser Gly Ala Pro Asp Thr Gly	
235 240 245	
ggc cag ggt ggg ggt ggg ggt ggt ggt ggt ggt g	820
Gly Gln Gly Gly Gly Gly Gly Gly Gly Gly Gly Ser Gly Arg	
250 255 260	
tgagggccca ggctggtcag cgtcccgtct tgcacaccca ggggcctccc ttctgctgga	880
gtcccctgtg tcctcagcca tcccaagaag ggtttgctgg tccctccttt cccccgtcc	940
cacgaggcca cctgggccag ccccttgtcc tctgccttct gctggcagag gagcagctgg	1000
actggggcct ttggcacagc agccggtgtc tcctgcgccc gcctccccca tggccccatg	1060
cagccccagg ggcttccccc ctgcccatgg agtagagccc gagatcctgg ccactatgcc	1120
agttctgacc tcgcatcccc ctaccccgag cccatgcagt ctgggaacat gccgccttct	1180
ctccagcctc tgtgcctttg ttccaggtgg tctcaccctc ctgtccctgg ctgggctagg	1240
tggtcctgtc caggctcctg cagcgccccc ctcactttga cactggacta ggatgcagcc	1300
tcccttctgt gtccccttga gggtaccctg ggtcccctca tcaggggcag aggcatgaaa	1360
gagtcggggc tggatggccg ggggcttctg ggcccgacgc ctagtgcagc ccctggggtc	1420
gtggtttgac atttgtctgc ctggtgcaaa caaggaatcc ttgcctttaa ggtgacaggc	1480
cctccacagg cttccagact tgaaggaaaa ggtttaagaa agaaaacaaa accaacagtt	1540
agtggagtca aagcccagac actgtaaata gaaccccctc caccaccccc cgccgcccag	1600
catcctacct ggactgcggt gctacgaggg cctgcgggcc tttgctgtgt gccaccctcc	1660
ctgtaagtct atttaaaaac atcgacgata cattgaaatg tgtgaacgtt ttgaaaagct	1720
acagetteca geageeaaaa geaactgttg ttttggeaag aeggteetga tgtacaaget	1780
tgattgaaat tcactgctca cttgatacgt tattcagaaa cccaaggaat ggctgtcccc	1840
atcctcatgt ggctgtgtgg agctcagctg tgttgtgtgg cagtttatta aactgtcccc	1900

cagatcg 1907

[0060]

<210> 24

<211> 1727

<212> DNA

<213> Homo sapience

<220>

<221> CDS

<222> (20)...(520)

<400> 24

agccgggtgg ggcctcggg atg cag ccg ccg gtg ccc ggg ccc ctg ggc

Met Gln Pro Pro Val Pro Gly Pro Leu Gly

5 10

ctg ctg gac ccc gca gaa ggg ctt tcg agg agg aag aag acg tcg ctc 97 Leu Leu Asp Pro Ala Glu Gly Leu Ser Arg Arg Lys Lys Thr Ser Leu

15 20 25

tgg ttt gtg ggg tct ctg ctg ctg gtg tcc gtc ctc ata gtc acc gtc 145

Trp Phe Val Gly Ser Leu Leu Leu Val Ser Val Leu Ile Val Thr Val

30 35 40

ggg ctg gct gcc acc acc agg acg gag aat gtg acc gtt ggg ggc tac 193

Gly Leu Ala Ala Thr Thr Arg Thr Glu Asn Val Thr Val Gly Gly Tyr

45 50 55

tac cca ggg atc att ctc ggc ttt gga tct ttc tta gga att att ggc 241

Tyr Pro Gly Ile Ile Leu Gly Phe Gly Ser Phe Leu Gly Ile Ile Gly

60 65 70

atc aac ttg gtg gag aat aga agg caa atg ctg gtg gca gcg atc gtg

1 le Asn Leu Val Glu Asn Arg Arg Gln Met Leu Val Ala Ala Ile Val

75 80 85 90

ttt atc agt ttt ggc gtg gtg gcc gcc ttc tgc tgc gcc atc gtg gac 337

Phe Ile Ser Phe Gly Val Val Ala Ala Phe Cys Cys Ala Ile Val Asp	
95 100 105	
ggc gta ttt gca gca cag cac att gaa ccg agg ccc ctc acc acg gga	385
Gly Val Phe Ala Ala Gln His Ile Glu Pro Arg Pro Leu Thr Thr Gly	
110 115 120	
aga tgc cag ttt tac tcc agt ggg gtg ggg tac ttg tac gat gtc tac	433
Arg Cys Gln Phe Tyr Ser Ser Gly Val Gly Tyr Leu Tyr Asp Val Tyr	
125 130 135	
cag aca gag gtg agc agg agc act gag att cat gtg ggt ttt gct cag	481
Gln Thr Glu Val Ser Arg Ser Thr Glu Ile His Val Gly Phe Ala Gln	
140 145 150	
cta acc ccg ccg acc cca cgc ggt ttt ccc tgc aca taggcgtggt ctg	530
Leu Thr Pro Pro Thr Pro Arg Gly Phe Pro Cys Thr	
155 160 165	
aatattttga ttctaatagt tcctgggggt cacccctgca gctggtgaac cgttgatgcc	590
ccctgtgttt gggaccttga catttcgatg tgctgtattt cactctggag tcagagttct	650
ggacttgctt cattaaatca caacagtctc agagtgcacg tgtccagttc tgtatggctc	710
ttccaattag catttttcta atttaattat tgcaataaga agcaaggata atacatttac	770
agtgtccgag aaacttctgg atttccctga gccaccgaca gcggcagtgt gacctcattt	830
ctctttccag gtcacctgtc actccctgga cggcaagtgc cagctgaagg tgagaagcaa	890
caccigitac igcigigacc ictatgccig cgggagcgca gagcccicgc ccgcciacta	950
tgagttcatc ggcgtcagcg gctgccagga cgtgctgcac ctgtaccgcc tgctctgggc	1010
ctctgcagtt ctgaacgtcc tgggcctgtt cctgggcatc atcaccgccg ccgtcctggg	1070
ggccttcaag gacatggtgc ctctgtccca gctggcctat ggcccagccg tcccaccaca	1130
gaccetetae aacceegece ageagateet ggeetaegea ggetteegee tgacgeeega	1190
gcctgtcccg acctgctcgt cctaccctct gccccttcag ccctgcagcc gcttcccagt	1250
tgcgccctcc tctgccctgg cttcgtctga ggacctgcag ccaccttctc caagcagctc	1310
tggctctggg cttcccggcc aggctccacc gtgctacgca cccacctact ttcccccggg	1370
ggagaagcca ccccctacg caccctgata gaggcgtgga gtaaaagata acttgtttgt	1430

ttttttttaa aaaaaaaaag gcagcctcta gaaatcccgc ttctgtggcc aacctcctag	1490
agaacccggg agaatgttcc agaagtctgt cccctccttt cctccctggg cacactggtg	1550
agggaggctg gaaccaggca gggagtgggg ccctccagac ccaggctggt gacaccttgg	1610
ctcgggctct gctcacacca aatggcgctg aaagttccca cccggcctcc tcctctgaga	1670
gcaattgttc tggtgttttc acatccctta attaattagc tattattatg attttgc	1727
[0061]	
<210> 25	
<211> 2150	
<212> DNA	
<213> Homo sapience	
<220>	
<221> CDS	
<222> (32)(1282)	
<400> 25	
ggtttctgcg ggtgaggctg gcgcccgtac c atg agc gag gcg gac ggg ctg	52
Met Ser Glu Ala Asp Gly Leu	
1 5	
cga cag cgc cgg ccc ctg cgg ccg cag gtc gtc aca gac gat gat ggc	100
cga cag cgc cgg ccc ctg cgg ccg cag gtc gtc aca gac gat gat ggc Arg Gln Arg Arg Pro Leu Arg Pro Gln Val Val Thr Asp Asp Gly	100
	100
Arg Gln Arg Arg Pro Leu Arg Pro Gln Val Val Thr Asp Asp Gly	100
Arg Gln Arg Arg Pro Leu Arg Pro Gln Val Val Thr Asp Asp Asp Gly 10 15 20	
Arg Gln Arg Arg Pro Leu Arg Pro Gln Val Val Thr Asp Asp Asp Gly 10 15 20 cag gcc ccg gag gct aag gac ggc agc tcc ttt agc ggc aga gtt ttc	
Arg Gln Arg Arg Pro Leu Arg Pro Gln Val Val Thr Asp Asp Asp Gly 10 15 20 cag gcc ccg gag gct aag gac ggc agc tcc ttt agc ggc aga gtt ttc Gln Ala Pro Glu Ala Lys Asp Gly Ser Ser Phe Ser Gly Arg Val Phe	
Arg Gln Arg Arg Pro Leu Arg Pro Gln Val Val Thr Asp Asp Asp Gly 10 15 20 cag gcc ccg gag gct aag gac ggc agc tcc ttt agc ggc aga gtt ttc Gln Ala Pro Glu Ala Lys Asp Gly Ser Ser Phe Ser Gly Arg Val Phe 25 30 35	148
Arg Gln Arg Arg Pro Leu Arg Pro Gln Val Val Thr Asp Asp Asp Gly 10 15 20 cag gcc ccg gag gct aag gac ggc agc tcc ttt agc ggc aga gtt ttc Gln Ala Pro Glu Ala Lys Asp Gly Ser Ser Phe Ser Gly Arg Val Phe 25 30 35 cga gtg acc ttc ttg atg ctg gct gtt tct ctc acc gtt ccc ctg ctt	148

65

Gly Ala Met Met Leu Leu Glu Ser Pro Ile Asp Pro Gln Pro Leu Ser

60

ttc	aaa	gaa	ccc	ccg	ctc	ttg	ctt	ggt	gtt	ctg	cat	cca	aat	acg	aag	292	
Phe	Lys	Glu	Pro	Pro	Leu	Leu	Leu	Gly	Val	Leu	His	Pro	Asn	Thr	Lys		
			75					80					85				
ctg	cga	cag	gca	gaa	agg	ctg	ttt	gaa	aat	caa	ctt	gtt	gga	ccg	gag	340	
Leu	Arg	Gln	Ala	Glu	Arg	Leu	Phe	Glu	Asn	Gln	Leu	Val	Gly	Pro	Glu		
		90					95				_	100				_	
tcc	ata	gca	cat	att	ggg	gat	gtg	atg	ttt	act	ggg	aca	gca	gat	ggc	388	
Ser	He	Ala	His	Ile	Gly	Asp	Val	Met	Phe	Thr	Gly	Thr	Ala	Asp	Gly		
	105					110					115						
cgg	gtc	gta	aaa	ctt	gaa	aat	ggt	gaa	ata	gag	acc	att	gcc	cgg	ttt	436	
	Val	Val	Lys	Leu		Asn	Gly	Glu	He		Thr	He	Ala	Arg			
120					125					130					135	40.4	
		ggc														484	
Gly	Ser	Gly	Pro	_	Lys	Thr	Arg	Asp		Glu	Pro	vai	Cys		Arg		
			- 4 -	140				4	145	4			-+-	150	t	E22	
		ggt														532	
Pro	Leu	Gly	155	Arg	на	GIY	PIO	160	GIY	1111	Leu	File	165	МІФ	изр		
ac a	tac	aag		cta	+++	σaa	σta		ccc	too	222	cat		σtσ	222	580	
_		Lys														200	
ЛΙα	1 91	170	U.J	Дец	1110	u · u	175	non	110	117	Бус	180	0.4	,	117-		
ctg	ctg	ctg	tcc	tcc	gag	aca		att	gag	ggg	aag		atg	tcc	ttt	628	
		Leu															
	185					190					195						
gtg	aat	gat	ctt	aca	gtc	act	cag	gat	ggg	agg	aag	att	tat	ttc	acc	676	
Val	Asn	Asp	Leu	Thr	Val	Thr	Gln	Asp	Gly	Arg	Lys	Ile	Tyr	Phe	Thr		
200					205					210					215		
gat	tct	agc	agc	aaa	tgg	caa	aga	cga	gac	tac	ctg	ctt	ctg	gtg	atg	724	
Asp	Ser	Ser	Ser	Lys	Trp	Gln	Arg	Arg	Asp	Tyr	Leu	Leu	Leu	Val	Met		

				220					225					230		
gag	ggC :	aca	gat	gac	ggg	cgc	ctg	ctg	gag	tat	gat	act	gtg	acc	agg	772
Glu																
			235					240					245			
gaa	gta			tta	ttg	gac	cag	ctg	cgg	ttc	ccg	aat	gga	gtc	cag	820
Glu																
		250					255					260				
ctg			gca	gaa	gac	ttt	gtc	ctg	gtg	gca	gaa	aca	acc	atg	gcc	868
						Phe										
	265					270					275					
		cga	aga	gtc	tac	gtt	tct	ggC	ctg	atg	aag	ggc	ggg	gct	gat	916
						Val										
280	1.0	8	0		285					290					295	
	111	gtg	gag	aac		cct	gga	ttt	cca	gac	aac	atc	cgg	ссс	agc	964
						Pro										
Бей	1 ,1.0	,		300					305					310		
aac	tct	ggg	ggg			gtg	ggC	atg	tcg	acc	atc	cgc	cct	aac	cct	1012
															Pro	
501	Der	u x y	315		- 1		-	320					325			
aaa	+++	trr			gat	ttc	tta			aga	ccc	tgg	att	aaa	agg	1060
															Arg	
GIY	Tite	330		Дес	,	•	335					340				
0.1-				rcto	. +++	agt			ace	gtg	atg	g aag	tt!	t gtg	д ссд	1108
															l Pro	
мес			Lys	Let	, , , ,	350			-		355					
	345			s ato	e eta			ลฮด	: ga(ago			c tte	c cg	g aga	a 1156
															g Arg	
		Sei	Let	ı va:	365		LCU		,,,,,	370		, ·			375	
360				+ 00			r eta	rostr	ታ ወቦ፤			c at	c ag	c ga	g gts	g 1204
ago	ctg	ca	ga.	i CC	c ga	r 888	, כנצ	, gu	5 8 C	, act		•	6	J		

Ser Leu His Asp Pro Asp Gly Leu Val Ala Thr Tyr Ile Ser Glu Val	
380 385 390	
cac gaa cac gat ggg cac ctg tac ctg ggc tct ttc agg tcc ccc ttc	1252
His Glu His Asp Gly His Leu Tyr Leu Gly Ser Phe Arg Ser Pro Phe	
395 400 405	
ctc tgc aga ctc agc ctc cag gct gtt tagccctccc agatagctgc c	1300

Leu Cys Arg Leu Ser Leu Gln Ala Val

410 1360 cctgccacgc aggccaggag tcttcacact caggcaccag gcctggtcca ggaggagctg 1420 tggacacagt cgtggttcaa gtgtccacat gcacctgtta gtccctgaga ggtggtggga 1480 atggctgctt cattcctcga ggatgcccgg gccccacctg ggcttgtctt tctgtttaga 1550 gggaagtgta acatatetge catgaggaae ataaatteat gtaaageeat tttetettaa acaaaacaaa actttctaag tacagtcatt ctctaggatt tgggaagctc cttgcacttg 1600 1660 gaacagggct caggtgggtg gagcagtaag gcactaccca gagagcttgc tgctgcggcc 1720 ctgtcctgcg gcctcaaagt tcttctttac tatatataac gtgcggtcat acctttcttc gttgtggtgg ggatggaaga gcagagggag catggcccag gggtgttgag gccagcggtg 1780 agagccgtgt tagccaagac atggaactgt gttctcaagg gttatgtggg gcgtgggctc 1840 1900 tccatagtgt gtatgaaaag cttgttgact ctagcggctc agagaggact ttgctgggtt 1960 tctttctgtg aatatctccg tgctgaccat gctggaattg gatgattctg caattcggga 2020 cctactgcag gggtccgttt agtaacgtct tgtctgtgat ctttgttctt gacctctaga 2080 ccccaagatg tgaacagtgc acgtgttaat gtcatctttg ctcatgtgtt ataagcccca 2140 agttgctgta tattttcaca agtatgtcta cacactggtc atgattttga taataaataa 2150 cgataaatcg

415

[0062]

<210> 26

<211> 1986

<212> DNA

<213> Homo sapience

<220>

⟨222⟩ (28)...(381)

(222) (20)(301)	
<400> 26	
acacttgctg aactggctcc tggggcc atg agg ctg tca ctg cca ctg ctg	51
Met Arg Leu Ser Leu Pro Leu Leu	
1 5	
ctg ctg ctg gga gcc tgg gcc atc cca ggg ggc ctc ggg gac agg	99
Leu Leu Leu Gly Ala Trp Ala Ile Pro Gly Gly Leu Gly Asp Arg	
10 15 20	
gcg cca ctc aca gcc aca gcc cca caa ctg gat gat gag gag atg tac	147
Ala Pro Leu Thr Ala Thr Ala Pro Gln Leu Asp Asp Glu Glu Met Tyr	
25 30 35 40	
tca gcc cac atg ccc gct cac ctg cgc tgt gat gcc tgc aga gct gtg	195
Ser Ala His Met Pro Ala His Leu Arg Cys Asp Ala Cys Arg Ala Val	
45 50 55	
get tac cag gtg agt cet tea cea etg tea eec tge eet get cae ace	243
Ala Tyr Gln Val Ser Pro Ser Pro Leu Ser Pro Cys Pro Ala His Thr	
60 65 70	
cct tct caa gcc aga ccc ctc cac cca cct cac att cca cca cc	291
Pro Ser Gln Ala Arg Pro Leu His Pro Pro His Ile Pro Pro Pro Ala	
75 80 85	
ttt gat ccc caa tcc cta cca ctg ggc atc aag cca cag atg cag cct	339
Phe Asp Pro Gln Ser Leu Pro Leu Gly Ile Lys Pro Gln Met Gln Pro	
90 95 100	
ttc ata tat tcc atg cct cag ttt acc cat ctg cct gcc ta	380
Phe Ile Tyr Ser Met Pro Gln Phe Thr His Leu Pro Ala	
105 110 115	
acagcagaca atctgggaga cctcctcagt attttgagac cccagggaat cactcacttg	440
teettagaet tetecettte caggeecate ettgagteeg gaeteeetee eeaaceetga	500

[0063]

<210> 27

<211> 2170

<212> DNA

<213> Homo sapience

<220>

<221> CDS

⟨222⟩ (241)...(1215)

ggattccttc ttccccttcc tagctccatg ggactcgccc caagactgtg gcttcaagga	60
ccaccagccc cttactcttc aagccctgac tgtggagttg gtagatgcct ctgatcctca	120
gtattctctc tggcaatgtt ccacggcttc tccttcctgg gagctggctc cataacttga	180
ttttccccaa acgtgttgca atccctgctg ccccttagcc acccagggtc ttgtgtgggt	240
atg agt gta gag gat ggg ggt atg cca ggc ctg ggc cgt ccc agg cag	288
Met Ser Val Glu Asp Gly Gly Met Pro Gly Leu Gly Arg Pro Arg Gln	
1 5 10 15	
gcc cgc tgg acc ctg atg cta ctc cta tcc act gcc atg tac ggt gcc	336
Ala Arg Trp Thr Leu Met Leu Leu Ser Thr Ala Met Tyr Gly Ala	
20 25 30	
cat gcc cca ttg ctg gca ctg tgc cat gtg gac ggc cga gtg ccc ttc	384
His Ala Pro Leu Leu Ala Leu Cys His Val Asp Gly Arg Val Pro Phe	
35 40 45	
cgg ccc tcc tca gcc gtg ctg ctg act gag ctg acc aag cta ctg tta	432
Arg Pro Ser Ser Ala Val Leu Leu Thr Glu Leu Thr Lys Leu Leu Leu	
50 55 60	
tgc gcc ttc tcc ctt ctg gta ggc tgg caa gca tgg ccc cag ggg ccc	480
Cys Ala Phe Ser Leu Leu Val Gly Trp Gln Ala Trp Pro Gln Gly Pro	
65 70 75 80	
cca ccc tgg cgc cag gct gct ccc ttc gca cta tca gcc ctg ctc tat	528
Pro Pro Trp Arg Gln Ala Ala Pro Phe Ala Leu Ser Ala Leu Leu Tyr	
85	
ggc gct aac aac ctg gtg atc tat ctt cag cgt tac atg gac ccc	576
Gly Ala Asn Asn Asn Leu Val Ile Tyr Leu Gln Arg Tyr Met Asp Pro	

			100					105					110			
agc	acc	tac	cag	gtg	ctg	agt	aat	ctc	aag	att	gga	agc	aca	gct	gtg	624
Ser	Thr	Tyr	Gln	Val	Leu	Ser	Asn	Leu	Lys	Ile	Gly	Ser	Thr	Ala	Val	
		115					120					125				
ctc	tac	tgc	ctc	tgc	ctc	cgg	cac	cgc	ctc	tct	gtg	cgt	cag	ggg	tta	672
Leu	Tyr	Cys	Leu	Cys	Leu	Arg	His	Arg	Leu	Ser	Val	Arg	Gln	Gly	Leu	
	130					135					140					
gcg	ctg	ctg	ctg	ctg	atg	gct	gcg	gga	gcc	tgc	tat	gca	gca	ggg	ggc	720
Ala	Leu	Leu	Leu	Leu	Met	Ala	Ala	Gly	Ala	Cys	Tyr	Ala	Ala	Gly	Gly	
145					150					155					160	
ctt	caa	gtt	ccc	ggg	aac	acc	ctt	ссс	agt	ccc	cct	cca	gca	gct	gct	768
Leu	Gln	Val	Pro	Gly	Asn	Thr	Leu	Pro	Ser	Pro	Pro	Pro	Ala	Ala	Ala	
				165					170					175		
gcc	agc	ccc	atg	ccc	ctg	cat	atc	act	ccg	cta	ggc	ctg	ctg	ctc	ctc	816
Ala	Ser	Pro	Met	Pro	Leu	His	Ile	Thr	Pro	Leu	Gly	Leu	Leu	Leu	Leu	
			180					185					190			
													aca			864
Ile	Leu		Cys	Leu	Ile	Ser		Leu	Ser	Ser	Val		Thr	Glu	Leu	
		195					200					205				0.0
													ctc			912
Leu		Lys	Arg	Gln	Arg		Pro	Leu	Ala	Leu		Asn	Leu	Phe	Leu	
	210					215				4	220	_ 4				000
				_									ggc			960
-	Thr	Phe	GIY	vai		Leu	ASN	Leu	ыу		HIS	Ala	Gly	ыу		
225				- 4 -	230			44-	4	235	4		-00	24.0	240	1000
													gca			1008
Ser	GLy	Pro	GIY		Leu	GIU	GIY	rne		ыу	ırp	Ага	Ala		vai	
	_ 4	_		245	_4-				250	. • -	+ - 4	~~4	~ 4 ~	255	00-	1056
gtg	ctg	agc	cag	gca	cta	aat	gga	ctg	ctc	atg	tct	gct	gtc	atg	aag	1056

Val Leu Ser Gln Ala Leu Asn Gly Leu Leu Met Ser Ala Val Met Lys	
260 265 270	
cat ggc agc agc atc aca cgc ctc ttt gtg gtg tcc tgc tcg ctg gtg	1104
His Gly Ser Ser Ile Thr Arg Leu Phe Val Val Ser Cys Ser Leu Val	
275 280 285	
gtc aac gcc gtg ctc tca gca gtc ctg cta cgg ctg cag ctc aca gcc	1152
Val Asn Ala Val Leu Ser Ala Val Leu Leu Arg Leu Gln Leu Thr Ala	
290 295 300	
gcc ttc ttc ctg gcc aca ttg ctc att ggc ctg gcc atg cgc ctg tac	1200
Ala Phe Phe Leu Ala Thr Leu Leu Ile Gly Leu Ala Met Arg Leu Tyr	
305 310 315 320	
tat ggc agc cgc tagtccctga caacttccac cctgattccg gaccctgt	1250
Tyr Gly Ser Arg	
lyl Gly Sel hig	
agattgggcg ccaccaccag atccccctcc caggccttcc tccctctccc atcagcagcc	1310
ctgtaacaag tgccttgtga gaaaagctgg agaagtgagg gcagccaggt tattctctgg	1370
aggttggtgg atgaaggggt acccctagga gatgtgaagt gtgggtttgg ttaaggaaat	1430
gcttaccatc ccccacccc aaccaagttc ttccagacta aagaattaag gtaacatcaa	1490
tacctaggcc tgagaaataa ccccatcctt gttgggcagc tccctgcttt gtcctgcatg	1550
	1610
aacagagttg atgaaagtgg ggtgtgggca acaagtggct ttccttgcct actttagtca	1670
cccagcagag ccactggagc tggctagtcc agcccagcca tggtgcatga ctcttccata	1730
agggatecte accettecae titeatgeaa gaaggeeeag tigeeacaga tiatacaace	1790
attacccaaa ccactctgac agtctcctcc agttccagca atgcctagag acatgctccc	1850
tgccctctcc acagtgctgc tccccacacc tagcctttgt tctggaaacc ccagagaggg	
ctgggcttga ctcatctcag ggaatgtagc ccctgggccc tggcttaagc cgacactcct	1910
gacctctctg ttcaccctga gggctgtctt gaagcccgct acccactctg aggctcctag	1970
gaggtaccat gcttcccact ctggggcctg cccctgccta gcagtctccc agctcccaac	2030
agcctgggga agctctgcac agagtgacct gagaccaggt acaggaaacc tgtagctcaa	2090
tcagtgtctc tttaactgca taagcaataa gatcttaata aagtcttcta ggctgtaggg	2150

tggttcctac aaccacagcc	2170											
[0064]												
<210> 28												
<211> 1738												
<212> DNA												
<213> Homo sapience												
<220>												
<221> CDS												
<222> (95)(508)												
<400> 28												
aaaaagggga ggaaattgaa actgagtggc ccacgatggg aagaggggaa agcccagggg 60												
tacaggaggc ctctgggtga aggcagaggc taac atg ggg ttc gga gcg acc 112												
Met Gly Phe Gly Ala Thr												
1 5												
ttg gcc gtt ggc ctg acc atc ttt gtg ctg tct gtc gtc act atc atc	160											
Leu Ala Val Gly Leu Thr Ile Phe Val Leu Ser Val Val Thr Ile Ile												
10 15 20												
atc tgc ttc acc tgc tcc tgc tgc ctt tac aag acg tgc cgc cga	208											
Ile Cys Phe Thr Cys Ser Cys Cys Cys Leu Tyr Lys Thr Cys Arg Arg												
25 30 35												
cca cgt ccg gtt gtc acc acc acc aca tcc acc act gtg gtg cat gcc	256											
Pro Arg Pro Val Val Thr Thr Thr Ser Thr Thr Val Val His Ala												
40 45 50												
cct tat cct cag cct cca agt gtg ccg ccc agc tac cct gga cca agc	304											
Pro Tyr Pro Gln Pro Pro Ser Val Pro Pro Ser Tyr Pro Gly Pro Ser												
55 60 65 70												
tac cag ggc tac cac acc atg ccg cct cag cca ggg atg cca gca gca	352											
Tyr Gln Gly Tyr His Thr Met Pro Pro Gln Pro Gly Met Pro Ala Ala												
75 80 85												

ccc tac cca atg cag tac cca cct tac cca gcc cag ccc atg ggc	400
Pro Tyr Pro Met Gln Tyr Pro Pro Pro Tyr Pro Ala Gln Pro Met Gly	
90 95 100	
cca ccg gcc tac cac gag acc ctg gct gga gga gca gcc gcg ccc tac	448
Pro Pro Ala Tyr His Glu Thr Leu Ala Gly Gly Ala Ala Ala Pro Tyr	
105 110 115	
ccc gcc agc cag cct cct tac aac ccg gcc tac atg gat gcc ccg aag	496
Pro Ala Ser Gln Pro Pro Tyr Asn Pro Ala Tyr Met Asp Ala Pro Lys	
120 125 130	
gcg gcc ctc tgagcattcc ctggcctctc tggctgccac ttggttatgt tgtgt	550
Ala Ala Leu	
135	
gtgtgcgtga gtggtgtgca ggcgcggttc cttacgcccc atgtgtgctg tgtgtgtcca	610
ggcacggttc cttacgcccc atgtgtgctg tgtgtgtcct gcctgtatat gtggcttcct	670
ctgatgctga caaggtgggg aacaatcctt gccagagtgg gctgggacca gactttgttc	730
tetteeteae etgaaattat getteetaaa ateteaagee aaaeteaaag aatggggtgg	790
tggggggcac cctgtgaggt ggcccctgag aggtgggggc ctctccaggg cacatctgga	850
gttcttctcc agcttaccct agggtgacca agtagggcct gtcacaccag ggtggcgcag	910
ctttctgtgt gatgcagatg tgtcctggtt tcggcagcgt agccagctgc tgcttgaggc	970
catggctcgt ccccggagtt gggggtaccc gttgcagagc cagggacatg atgcaggcga	1030
agcttgggat ctggccaagt tggactttga tcctttgggc agatgtccca ttgctccctg	1090
gagcctgtca tgcctgttgg ggatcaggca gcctcctgat gccagaacac ctcaggcaga	1150
gccctactca gctgtacctg tctgcctgga ctgtcccctg tccccgcatc tcccctggga	1210
ccagctggag ggccacatgc acacacagcc tagctgcccc cagggagctc tgctgccctt	1270
gctggccctg cccttcccac aggtgagcag ggctcctgtc caccagcaca ctcagttctc	1330
ttccctgcag tgttttcatt ttattttagc caaacatttt gcctgttttc tgtttcaaac	1390
atgatagttg atatgagact gaaacccctg ggttgtggag ggaaattggc tcagagatgg	1450
acaacctggc aactgtgagt ccctgcttcc cgacaccagc ctcatggaat atgcaacaac	1510
tcctgtaccc cagtccacgg tgttctggca gcagggacac ctgggccaat gggccatctg	1570

1630 gaccaaaggt ggggtgtggg gccctggatg gcagctctgg cccagacatg aatacctcgt gttcctcctc cctctattac tgtttcacca gagctgtctt agctcaaatc tgttgtgttt 1690 1738 ctgagtctag ggtctgtaca cttgtttata ataaatgcaa tcgtttgg [0065] <210> 29 <211> 1930 <212> DNA <213> Homo sapience <220> <221> CDS <222> (82)...(1017) <400> 29 60 agtcgcggga ggcttccccg cgccggccgc gtcccgcccg ctccccggca ccagaagctc ctctgcgcgt ccgacggcga c atg ggc gtc ccc acg gcc ctg gag gcc ggc 111 Met Gly Val Pro Thr Ala Leu Glu Ala Gly 5 10 1 age tgg cgc tgg gga tcc ctg ctc ttc gct ctc ttc ctg gct gcg tcc 159 Ser Trp Arg Trp Gly Ser Leu Leu Phe Ala Leu Phe Leu Ala Ala Ser 25 15 20 cta ggt ccg gtg gca gcc ttc aag gtc gcc acg ccg tat tcc ctg tat 207 Leu Gly Pro Val Ala Ala Phe Lys Val Ala Thr Pro Tyr Ser Leu Tyr 40 35 30 gtc tgt ccc gag ggg cag aac gtc acc ctc acc tgc agg ctc ttg ggc 255 Val Cys Pro Glu Gly Gln Asn Val Thr Leu Thr Cys Arg Leu Leu Gly 55 45 50 303 cct gtg gac aaa ggg cac gat gtg acc ttc tac aag acg tgg tac cgc Pro Val Asp Lys Gly His Asp Val Thr Phe Tyr Lys Thr Trp Tyr Arg 60 65 70

351

age teg agg gge gag gtg cag ace tge tea gag ege egg ece ate ege

																	ı
Se	r S er	Arg	Gly	Glu	Val	Gln	Thr	Cys	Ser	Glu	Arg	Arg	Pro	He	Arg		
7	5				80					85					90		
aa	cto	acg	ttc	cag	gac	ctt	cac	ctg	cac	cat	gga	ggc	cac	cag	gct	399	
As	n Leu	Thr	Phe	Gln	Asp	Leu	His	Leu	His	His	Gly	Gly	His	Gln	Ala		
				95					100					105			
gc	c aac	acc	agc	cac	gac	ctg	gct	cag	cgc	cac	ggg	ctg	gag	tcg	gcc	447	
A 1	a Asn	Thr	Ser	His	Asp	Leu	Ala	Gln	Arg	His	Gly	Leu	Glu	Ser	Ala		
			110					115					120				
tc	c gac	cac	cat	ggc	aac	ttc	tcc	atc	acc	atg	cgc	aac	ctg	acc	ctg	495	
Se	r Asp	His	His	Gly	Asn	Phe	Ser	Ile	Thr	Met	Arg	Asn	Leu	Thr	Leu		
		125					130					135					
ct.	g gat	agc	ggc	ctc	tac	tgc	tgc	ctg	gtg	gtg	gag	atc	agg	cac	cac	543	
Le	u Asp	Ser	Gly	Leu	Tyr	Cys	Cys	Leu	Val	Val	Glu	Ile	Arg	His	His		
	140					145					150						
ca	c tcg	gag	cac	agg	gtc	cat	ggt	gcc	atg	gaa	ctg	cag	gtg	cag	aca	591	
Ηi	s Ser	Glu	His	Arg	Val	His	Gly	Ala	Met	Glu	Leu	Gln	Val	Gln	Thr		
15	5				160					165					170		
gg	c aaa	gat	gca	cca	tcc	aac	tgt	gtg	gtg	tac	cca	tcc	tcc	tcc	cag	639	
G l	y Lys	Asp	Ala	Pro	Ser	Asn	Cys	Val	Val	Tyr	Pro	Ser	Ser	Ser	Gln		
				175					180					185			
ga	g agt	gaa	aac	atc	acg	gct	gca	gcc	ctg	gct	acg	ggt	gcc	tgc	atc	687	
G I	u Ser	Glu	Asn	Ile	Thr	Ala	Ala	Ala	Leu	Ala	Thr	Gly	Ala	Cys	Ile		
			190					195					200				
gt	a gga	atc	ctc	tgc	ctc	ссс	ctc	atc	ctg	ctc	ctg	gtc	tac	aag	caa	73 5	
Va	l Gly	lle	Leu	Cys	Leu	Pro	Leu	He	Leu	Leu	Leu	Val	Tyr	Lys	Gln		
		205					210					215					
ag	g cag	gca	gcc	tcc	aac	cgc	cgt	gcc	cag	gag	ctg	gtg	cgg	atg	gac	783	
Ar	g Gli	Ala	Ala	Ser	Asn	Arg	Arg	Ala	Gln	Glu	Leu	Val	Arg	Met	Asp		
	220)				225					230						

age aac att caa ggg att gaa aac eec gge ttt gaa gee tea eea eet	831
Ser Asn Ile Gln Gly Ile Glu Asn Pro Gly Phe Glu Ala Ser Pro Pro	
235 240 245 250	
gcc cag ggg ata ccc gag gcc aaa gtc agg cac ccc ctg tcc tat gtg	879
Ala Gln Gly Ile Pro Glu Ala Lys Val Arg His Pro Leu Ser Tyr Val	
255 260 265	
gcc cag cgg cag cct tct gag tct ggg cgg cat ctg ctt tcg gag ccc	927
Ala Gln Arg Gln Pro Ser Glu Ser Gly Arg His Leu Leu Ser Glu Pro	
270 275 280	
age ace eec etg tet eet eea gge eee gga gae gte tte tte eea tee	975
Ser Thr Pro Leu Ser Pro Pro Gly Pro Gly Asp Val Phe Phe Pro Ser	
285 290 295	
ctg gac cct gtc cct gac tct cca aac ttt gag gtc atc tagccc	1020
Leu Asp Pro Val Pro Asp Ser Pro Asn Phe Glu Val Ile	
300 305 310	
agctggggga cagtgggctg ttgtggctgg gtctggggca ggtgcatttg agccagggct	1080
ggctctgtga gtggcctctc cctcctgctc tgggctcaga tactgtgaca tcccagaagc	1140
ccagcccctc aacccctctg gatgctacat ggggatgctg gacggctcag cccctgttcc	1200
aaggattttg gggtgctgag attctcccct agagacctga aattcaccag ctacagatgc	1260
caaatgactt acatcttaag aagtctcaga acgtccagcc cttcagcagc tctcgttctg	1320
agacatgage cttgggatgt ggeageatea gtgggaeaag atggaeaetg ggeeaeeete	1380
ccaggcacca gacacagggc acggtggaga gacttetece ecgtggeege ettggeteee	1440
ccgttttgcc cgaggctgct cttctgtcag acttcctctt tgtaccacag tggctctggg	1500
gccaggcctg cctgcccact ggccatcgcc accttcccca gctgcctcct accagcagtt	1560
tetetgaaga tetgteaaca ggttaagtea atetgggget tecaetgeet geatteeagt	1620
ccccagaget tggtggtccc gaaacgggaa gtacatattg gggcatggtg gcctccgtga	1680
gcaaatggtg tcttgggcaa tctgaggcca ggacagatgt tgccccaccc actggagatg	1740
gtgctgaggg aggtgggtgg ggccttctgg gaaggtgagt ggagaggggc acctgcccc	1800
cgccctcccc atcccctact cccactgctc agcgcgggcc attgcaaggg tgccacacaa	1860
- · · · · · · · · · · · · · · · · · · ·	

tgtcttgtcc accetgggac actictgagt algaageggg atgetattaa aaactacatg 1920 gggaaacagg 1930 [O O 6 6] (210) 30 (211) 1892 (212) DNA (213) Homo sapience (220) (221) CDS (222) (5)(1636) (400) 30 agag atg gca gtg age gag agg ggg ctc ggc ggg agc ccc gcg 49 Met Ala Val Ser Glu Arg Arg Gly Leu Gly Arg Gly Ser Pro Ala 1 5 10 15 gag tgg ggg cag cgg cta ctt ctg gtg ctg ctg ttg ggt ggc tgc tcc 97 Glu Trp Gly Gln Arg Leu Leu Leu Val Leu Leu Leu Gly Gly Cys Ser 20 25 30 ggg cgc atc cac cgg ctg gcg ctg acg ggg gag aag cga ggg gac atc Gly Arg Ile His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp Ile 35 40 45 cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag gag 193 Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60 ttg agc gtc ctg ctg ctg ggc ctc cgg gag gca gaa gag aag tcc ctg 241
[0 0 6 6] (210) 30 (211) 1892 (212) DNA (213) Homo Sapience (220) (221) CDS (222) (5)(1636) (400) 30 agag atg gca gtg agc gag agg agg ggg ctc ggc cgc ggg agc ccc gcg Met Ala Val Ser Glu Arg Arg Gly Leu Gly Arg Gly Ser Pro Ala 1 5 10 15 gag tgg ggg cag cgg cta ctt ctg gtg ctg ctg ttg ggt ggc tgc cc Glu Trp Gly Gln Arg Leu Leu Leu Val Leu Leu Gly Gly Cys Ser 20 25 30 ggg cgc atc cac cgg ctg gcg ctg acg ggg gag aag cga gcg gac atc Gly Arg Ile His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp Ile 35 40 45 cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60
(211) 1892 (212) DNA (213) Homo sapience (220) (221) CDS (222) (5)(1636) (400) 30 agag atg gca gtg agc gag agg agg ggg ctc ggc cgc ggg agc ccc gcg 49 Met Ala Val Ser Glu Arg Arg Gly Leu Gly Arg Gly Ser Pro Ala 1 1 5 10 15 gag tgg ggg cag cgg cta ctt ctg gtg ctg ctg ttg ggt ggc tgc tcc 97 Glu Trp Gly Gln Arg Leu Leu Leu Leu Val Leu Leu Gly Gly Cys Ser 20 25 30 ggg cgc atc cac cgg ctg gcg ctg acg ggg gag aag cga gcg gac atc 145 Gly Arg Ile His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp Ile 35 40 45 cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag gt gt gag gt gt gag gt gt gag gt
C212> DNA C213> Homo sapience C220> C221> CDS C222> (5)(1636) C400> 30 agag atg gca gtg agc gag agg ggg ctc ggc cgc ggg agc ccc gcg 49 Met Ala Val Ser Glu Arg Arg Gly Leu Gly Arg Gly Ser Pro Ala 1 5 10 15 gag tgg ggg cag cgg cta ctt ctg gtg ctg ctg ttg ggt ggc tcc 97 Glu Trp Gly Gln Arg Leu Leu Leu Val Leu Leu Gly Gly Cys Ser 20 25 30 ggg cgc atc cac cgg ctg gcg ctg acg ggg gag aag cga gcg gac atc Gly Arg Ile His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp Ile 35 40 45 cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60
<pre><212> DNA (213> Homo sapience (220> (221> CDS (221> CDS (222> (5)(1636) (400> 30 agag atg gca gtg agc gag agg agg ggg ctc ggc cgc ggg agc ccc gcg 49 Met Ala Val Ser Glu Arg Arg Gly Leu Gly Arg Gly Ser Pro Ala 1</pre>
<pre> <2213> Homo sapience <2220> <221> CDS <2222> (5)(1636) <400> 30 agag atg gca gtg agc gag agg agg ggg ctc ggc cgc ggg agc ccc gcg Met Ala Val Ser Glu Arg Arg Gly Leu Gly Arg Gly Ser Pro Ala 1</pre>
C221> CDS C222> (5)(1636) C400> 30 agag atg gca gtg agc gag agg ggg ctc ggc cgc ggg agc ccc gcg 49 Met Ala Val Ser Glu Arg Arg Gly Leu Gly Arg Gly Ser Pro Ala 1 5 10 15 gag tgg ggg cag cgg cta ctt ctg gtg ctg ttg ggt ggc tgc tcc 97 Glu Trp Gly Gln Arg Leu Leu Leu Val Leu Leu Gly Gly Cys Ser 20 25 30 ggg cgc atc cac cgg ctg gcg ctg acg ggg gag aag cga gcg gac atc 145 Gly Arg Ile His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp Ile 35 40 45 cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag 193 Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60
<pre> <221> CDS <222> (5)(1636) </pre> <pre> </pre>
<pre><222> (5)(1636) <400> 30 agag atg gca gtg agc gag agg ggg ctc ggc cgc ggg agc ccc gcg Met Ala Val Ser Glu Arg Arg Gly Leu Gly Arg Gly Ser Pro Ala 1 5 10 15 gag tgg ggg cag cgg cta ctt ctg gtg ctg ctg ttg ggt ggc tgc tcc 97 Glu Trp Gly Gln Arg Leu Leu Leu Val Leu Leu Gly Gly Cys Ser 20 25 30 ggg cgc atc cac cgg ctg gcg ctg acg ggg gag aag cga gcg gac atc 145 Gly Arg Ile His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp Ile 35 40 45 cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60</pre>
agag atg gca gtg agc gag agg ggg ctc ggc cgc ggg agc ccc gcg Met Ala Val Ser Glu Arg Arg Gly Leu Gly Arg Gly Ser Pro Ala 1 5 10 15 gag tgg ggg cag cgg cta ctt ctg gtg ctg ctg ttg ggt ggc tgc tcc 97 Glu Trp Gly Gln Arg Leu Leu Leu Val Leu Leu Gly Gly Cys Ser 20 25 30 ggg cgc atc cac cgg ctg gcg ctg acg ggg gag aag cga gcg gac atc Gly Arg Ile His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp Ile 35 40 45 cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60
Met Ala Val Ser Glu Arg Arg Gly Leu Gly Arg Gly Ser Pro Ala 1 5 10 15 gag tgg ggg cag cgg cta ctt ctg gtg ctg ctg ttg ggt ggc tgc tcc Glu Trp Gly Gln Arg Leu Leu Leu Val Leu Leu Gly Gly Cys Ser 20 25 30 ggg cgc atc cac cgg ctg gcg ctg acg ggg gag aag cga gcg gac atc Gly Arg Ile His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp Ile 35 40 45 cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60
Met Ala Val Ser Glu Arg Arg Gly Leu Gly Arg Gly Ser Pro Ala 1 5 10 15 gag tgg ggg cag cgg cta ctt ctg gtg ctg ctg ttg ggt ggc tgc tcc 97 Glu Trp Gly Gln Arg Leu Leu Leu Val Leu Leu Gly Gly Cys Ser 20 25 30 ggg cgc atc cac cgg ctg gcg ctg acg ggg gag aag cga gcg gac atc Gly Arg Ile His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp Ile 35 40 45 cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60
gag tgg ggg cag cgg cta ctt ctg gtg ctg ctg ttg ggt ggc tgc tcc Glu Trp Gly Gln Arg Leu Leu Leu Val Leu Leu Gly Gly Cys Ser 20 25 30 ggg cgc atc cac cgg ctg gcg ctg acg ggg gag aag cga gcg gac atc Gly Arg Ile His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp Ile 35 40 45 cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60
gag tgg ggg cag cgg cta ctt ctg gtg ctg ctg ttg ggt ggc tgc tcc Glu Trp Gly Gln Arg Leu Leu Leu Val Leu Leu Gly Gly Cys Ser 20 25 30 ggg cgc atc cac cgg ctg gcg ctg acg ggg gag aag cga gcg gac atc Gly Arg Ile His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp Ile 35 40 45 cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60
Glu Trp Gly Gln Arg Leu Leu Leu Val Leu Leu Leu Gly Gly Cys Ser 20 25 30 ggg cgc atc cac cgg ctg gcg ctg acg ggg gag aag cga gcg gac atc Gly Arg Ile His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp Ile 35 40 cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60
ggg cgc atc cac cgg ctg gcg ctg acg ggg gag aag cga gcg gac atc Gly Arg Ile His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp Ile 35 40 45 Cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60
ggg cgc atc cac cgg ctg gcg ctg acg ggg gag aag cga gcg gac atc Gly Arg Ile His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp Ile 35 40 45 Cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60
Gly Arg I le His Arg Leu Ala Leu Thr Gly Glu Lys Arg Ala Asp I le 35 40 45 cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60
cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60
cag ctg aac agc ttc ggt ttc tac acc aat ggc tct ctg gag gtg gag Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60
Gln Leu Asn Ser Phe Gly Phe Tyr Thr Asn Gly Ser Leu Glu Val Glu 50 55 60
50 55 60
the are stoots on the sac ote cas sad sad sag and too cts 241
tig age git tig egg etg gge ete egg gug gun gun ang mag
Leu Ser Val Leu Arg Leu Gly Leu Arg Glu Ala Glu Glu Lys Ser Leu
65 70 75
ctg gtg ggg ttc agt ctc agc cgg gtt cgg tct ggc aga gtt cgc tcc 289
Leu Val Gly Phe Ser Leu Ser Arg Val Arg Ser Gly Arg Val Arg Ser
80 85 90 95

tat	tca	acc	cgg	gat	ttc	cag	gac	tgc	cct	ctc	cag	aaa	aac	agt	agc	337
Tyr	Ser	Thr	Arg	Asp	Phe	Gln	Asp	Cys	Pro	Leu	Gln	Lys	Asn	Ser	Ser	
				100					105					110		
agt	ttc	ctg	gtc	ctg	ttc	ctc	atc	aac	acc	aag	gat	ctg	cag	gtc	cag	385
Ser	Phe	Leu	Val	Leu	Phe	Leu	Ile	Asn	Thr	Lys	Asp	Leu	Gln	Val	Gln	
			115					120					125			
gtg	cgg	aag	tat	gga	gag	cag	aag	acg	ttg	ttt	atc	ttt	ccc	ggg	ctc	433
Val	Arg	Lys	Tyr	Gly	Glu	Gln	Lys	Thr	Leu	Phe	Ile	Phe	Pro	Gly	Leu	
		130					135					140				
ctc	ccg	gaa	gca	ccc	tcc	aaa	cca	ggg	ctc	ccg	aag	cca	cag	gcc	aca	481
Leu	Pro	Glu	Ala	Pro	Ser	Lys	Pro	Gly	Leu	Pro	Lys	Pro	Gln	Ala	Thr	
	145					150					155					
						ggc										529
	Pro	Arg	Lys	Val	_	Gly	Gly	Gly	Thr		Ala	Ala	Ser	Lys		
160					165					170					175	
_						att										577
Lys	Ser	Thr	Pro		Val	lle	GIn	Gly		Ser	Gly	Lys	Asp		ASP	
				180			- 4 -		185		4		44.	190	**-	COF
	_	_				cac										625
Leu	vai	Leu		Leu	Ser	His	Leu		ASI	Ser	1 yı	ASII	205	Sei	rne	
	-+-	-+-	195	aac	tot	62.4	ac a	200	~ 22	aac.	Cag	tac		cta	aac	673
						cag Gln										013
1115	Vai	210	110	Giy	SCI	G111	215	Giu	Giu	diy	GIII	220	Der	Leu	non.	
ttc	cac		tar	aar	aat	tca		cca	gga	ลลฮ	១១១		cca	ttc	gac	721
						Ser										
The	225	no	0,0	11011	11-22	230	,		0-3	23	235		•	•		
atc		gtø	atg	atc	Cgg	gag	aag	aac	ссс	gat		ttc	ctg	tcg	gca	769
						Glu									_	
		–		-			-			•	-					

•																	1
	240					245					250					255	
	gcg	gag	atg	ссс	ctt	ttc	aag	ctc	tac	atg	gtc	atg	tcc	gcc	tgc	ttc	817
	Ala	Glu	Met	Pro	Leu	Phe	Lys	Leu	Tyr	Met	Val	Met	Ser	Ala	C ys	Phe	
					260					265					270		
	ctg	gcc	gct	ggc	atc	ttc	tgg	gtg	tcc	atc	ctc	tgc	agg	aac	acg	tac	865
	Leu	Ala	Ala	Gly	Ile	Phe	Trp	Val	Ser	Ile	Leu	Cys	Arg	Asn	Thr	Tyr	
				275					280					285			
	agc	gtc	ttc	aag	atc	cac	tgg	ctc	atg	gcg	gcc	ttg	gcc	ttc	acc	aag	913
	Ser	Val	Phe	Lys	Ile	His	Trp	Leu	Met	Ala	Ala	Leu	Ala	Phe	Thr	Lys	
			290					295					300				
	agc	atc	tct	ctc	ctc	ttc	cac	agc	atc	aac	tac	tac	ttc	atc	aac	agc	961
	Ser	He	Ser	Leu	Leu	Phe	His	Ser	Ile	Asn	Tyr	Tyr	Phe	Ile	Asn	Ser	
		305					310					315					
											atg						1009
	Gln	Gly	His	Pro	Ile	Glu	Gly	Leu	Ala	Val	Met	Tyr	Tyr	Ile	Ala		
	320					325					330					335	1055
																tca	1057
	Leu	Leu	Lys	Gly	Ala	Leu	Leu	Phe	Ile			Ala	Leu	He		Ser	
					340					345					350		1105
																gtc	1105
	Gly	Trp	Ala	Phe	Ile	Lys	Tyr	Val			Asp	Lys	Glu			Val	
				355					360					365		-4-	1159
																atc	1153
	Phe	Gly	Ile	Val	He	Pro	Met			Leu	Ala	Asn			ıyr	lle	
			370					375					380		4		1901
																aag	1201
	He			Ser	Arg	Glu			Ala	ı Ser	. Asb			Let	ı ir) Lys	
		385					390					395				- ++0	1940
	gag	att	ttg	ttc	ctg	gtg	gac	cto	ato	tgo	tgt	ggt	gco	ato	CLE	g ttc	1249

Glu]	lle	Leu	Phe	Leu	Val	Asp	Leu	lle	Cys	Cys	Gly	Ala	Ile	Leu	Phe		
400					405					410					415		
ccc g	gta	gtc	tgg	tcc	atc	cgg	cat	ctc	cag	gat	gcg	tct	ggc	aca	gac	1297	
Pro N	Val	Val	Trp	Ser	Ile	Arg	His	Leu	Gln	Asp	Ala	Ser	Gly	Thr	Asp		
				420					425					430			
ggg a	aag	gtg	gca	gtg	aac	ctg	gcc	aag	ctg	aag	ctg	ttc	cgg	cat	tac	1345	
Gly I	_ys	Val	Ala	Val	Asn	Leu	Ala	Lys	Leu	Lys	Leu	Phe	Arg	His	Tyr		
			435					440					445				
tat g	gtc	atg	gtc	atc	tgc	tac	gtc	tac	ttc	acc	cgc	atc	atc	gcc	atc	1393	
Tyr V	Val	Met	Val	Ile	Cys	Tyr	Val	Tyr	Phe	Thr	Arg	Ile	Ile	Ala	Ile		
		4 50					455					460					
ctg (ctg	cag	gtg	gct	gtg	ccc	ttt	cag	tgg	cag	tgg	ctg	tac	cag	ctc	1441	
Leu I	eu	Gln	Va l	Ala	Val	Pro	Phe	Gln	Trp	Gln	Trp	Leu	Tyr	Gln	Leu		
Ą	1 65					470					475						
ttg g	gtg	gag	ggc	tcc	acc	ctg	gcc	ttc	ttc	gtg	ctc	acg	ggc	tac	aag	1489	
Leu V	/al	Glu	Gly	Ser	Thr	Leu	Ala	Phe	Phe	Val	Leu	Thr	Gly	Tyr	Lys		
480					485					490					495		
ttc o	cag	ссс	aca	ggg	aac	aac	ccg	tac	ctg	cag	ctg	ccc	cag	gag	gac	1537	
Phe (Gln	Pro	Thr	Gly	Asn	Asn	Pro	Tyr	Leu	Gln	Leu	Pro	Gln	Glu	Asp		
				500					505					510			
gag g	gag	gat	gtt	cag	atg	gag	caa	gta	atg	acg	gac	tct	ggg	ttc	cgg	1585	
Glu (Glu	Asp	Val	Gln	Met	Glu	Gln	Val	Met	Thr	Asp	Ser	Gly	Phe	Arg		
			515					520					525				
gaa g	ggC	ctc	tcc	aaa	gtc	aac	aaa	aca	gcc	agc	ggg	cgg	gaa	ctg	tta	1633	
Glu (Gly	Leu	Ser	Lys	Val	Asn	Lys	Thr	Ala	Ser	Gly	Arg	Glu	Leu	Leu		
		530					535					540					
tgato	cac	ctcc	acat	ct	cagac	caaa	ıg gg	gtcgt	tcct	ccc	ccago	catt	tct	cacto	cct	1690	
gccct	ttct	tc c	acag	cgta	it gt	gggg	gaggt	gga	agggg	ggtc	cate	gtgga	acc a	aggc	gcccag	1750	
ctccc	ccgg	ga c	cccg	gtto	c cg	ggaca	agco	cat	ttgg	aag	aaga	agtco	cct	tcct	ccccc	1810	

【図面の簡単な説明】

【図1】 クローンHPO3394がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図2】 クローンHPO3395がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図3】 クローンHP10685がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図4】 クローンHP10686がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図5】 クローンHP10689がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図6】 クローンHP10690がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図7】 クローンHP10694がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図8】 クローンHP10696がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図9】 クローンHP10697がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図10】 クローンHP10699がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【書類名】 要約書

【要約】

【課題】 疎水性ドメインを有するヒト蛋白質、それをコードしているcDNA 、このcDNAの発現ベクター、このcDNAを発現させた真核細胞、およびこ の蛋白質に対する抗体を提供する。

【解決手段】 配列番号1から配列番号10で表されるアミノ酸配列のいずれかを含む蛋白質、この蛋白質をコードするDNA、例えば配列番号11から配列番号20で表される塩基配列を含むcDNA、このcDNAの発現ベクター、およびこのcDNAを発現させた真核細胞。疎水性ドメインを有するヒト蛋白質をコードしているcDNAの組換え体を発現させることにより、この蛋白質並びにこの蛋白質を発現する真核細胞を提供することができる。

【選択図】 なし

特許出願の番号 平成11年 特許願 第194359号

受付番号 59900656612

書類名特許願

担当官 濱谷 よし子 1614

作成日 平成11年 8月24日

<認定情報・付加情報>

【特許出願人】 申請人

【識別番号】 000173762

【住所又は居所】 神奈川県相模原市西大沼4丁目4番1号

【氏名又は名称】 財団法人相模中央化学研究所

【特許出願人】

【識別番号】 596134998

【住所又は居所】 東京都目黒区中町2丁目20番3号

【氏名又は名称】 株式会社プロテジーン

出願人履歴情報

識別番号

[000173762]

1. 変更年月日 1995年 4月14日

[変更理由] 住所変更

住 所 神奈川県相模原市西大沼4丁目4番1号

氏 名 財団法人相模中央化学研究所

識別番号

[596134998]

1. 変更年月日 1996年 9月13日

[変更理由] 新規登録

住 所 東京都目黒区中町2丁目20番3号

氏 名 株式会社プロテジーン

