Objektově-orientované databázové systémy

Z FITwiki

Založeno na materiálech od pmikus

Základní pojmy

Data

reprezentace skutečnosti, schopné přenosu, uchování, interpretace, zpracování, hodnoty různých datových typů

Informace

data, která mají sémantiku

Znalosti

informace po zařazení do souvislostí

Systém

množina prvků a vazeb mezi nimi, účelově definované na nějakém nosiči

Nosič

- množina prvků systému ve vzájemných informačních a procesních vztazích
- prvky nosiče = zdroje
- výsek reálného světa (knihovna, škola, úřad, atd.)

Zdroje

- fyzické (osoby, materiál, stroje, finance)
- konceptuální (informace)

Struktura

je uspořádaná n-tice, prvek kartézského součinu, představuje strukturovanou hodnotu vytvořenou pevným počtem pojmenovaných dílčích hodnot obecně různých typů. Pojmenované hodnoty označujeme jako **vlastnosti**.

- žádné omezení datových typů vlastností (data, složené typy i algoritmy)
- definice pouze rozhraní polymorfismus struktur
- komunikace zasíláním zpráv (vysílající struktura nemusí znát příjemce zprávy polymorfismus zpráva může být interpretována různým způsobem v závislosti na typu přijímající struktury)

Kolekce

je uspořádaná multimnožina. Předem neomezený počet hodnot stejných datových typů

- standardní operace: add, item, count, remove
- kurzor (iterátor) ukazovátko do kolekce, posouvání oběma směry
- uspořádání nad kolekcí (jedno nebo více podle různých klíčů)
- vlastnosti nejčastěji agregáty: maximum, minimum, suma, průměr
- tabulka v relační databázi je vlastně kolekcí bez vlastních vlastností a s často omezenou funkčností,
 jejímiž prvky jsou struktury s vlastnostmi jednoduchých typů
- častý požadavek jedinečnost prvku v kolekci

Prostá struktura

je struktura bez identifikace.

- 1 Základní pojmy
 - 1.1 Vztahy
- 2 Caché
- 3 Java EE
 - 3.1 Vrstvy
 - 3.2 Java EE aplikace
 - 3.3 Kontejnery
 - 3.4 Technologie

Objekt

- struktura s identifikací OID jednoznačná identifikace objektu v celém systému
- identifikovatelný, odkazovatelný
- perzistetní dynamická nebo statiská prezistence
- porovnávání objektů:
 - identické objekty/struktury stejné atributy
 - totožné objekty stejné OID

Extent

- kolekce obsahující obor hodnot pro objekty jistého typu
- důležitý navigační prvek v OO databázích
- kolekci udržuje OODBMS
 - v případě dědění může být neefektivní (nová instance vložení do všech extentů hierarchie dědičnosti)
 - uživatel má možnost omezit, které třídy budou tvořit extenty
- je nejcastejsim vstupnim bodem do objektove databaze (iterujeme pres objekty urciteho typu v extentu a z nich se pomoci vztahu dostavame k dalsim informacim)

abstraktní typ

struktury, které slouží jen jako stavební kameny (vzory) pro vytváření následníků Poznamka: Abstraktni typ muze mit extent (budou tam vyskyty vsech nasledníku toho datoveho typu)

konkrétní typ

struktury, které skutečně budou mít své výskyty a budou skutečnými strukturami

Vztahy

- dva pohledy na strukturu:
 - definiční definice metadat (jak má struktura daného typu vypadat z hlediska vlastností a jejich typů)
 - výskytový vytváříme konkrétní výskyty (instance) struktury (jaké jsou hodnoty vlastností)

Vztah

je vazba mezi výskyty objektů

• výskyt struktury, v níž se vyskytuje vlastnost typu struktura (je nezajímavé, jde-li o prostou strukturu nebo objekt), nazveme vlastníkem; hodnotu vlastnosti nazveme členem

Typy vztahů

- Členem je prostá struktura jedná se o hierarchické členění struktur (základní prostředek pro vytváření komplexních hierarchicky strukturovaných hodnot)
- Členem je kolekce prostých struktur opět pouze hierarchické zanoření
- Členem je jediný objekt vztah 1:1 realizovaný pomocí OID
- Členem je kolekce objektů vztah 1:N, kolekce obsahuje reference na objekty
- Objekty ani kolekce objektů nemohou existovat bez vztahů a naopak.

Inverzní vztahy

se mohou automaticky dotvořit při vzniku vztahu (atribut inverse), velmi usnadňují vývoj IS (automatické udržování integrity apod.).

Dědičnost

umožňuje definici typu pomocí typu jiného.

- Pojmy předek a následník, přímý předek, přímý následník -> dědičnost, přímá dědičnost
- Vlastnosti se mohou přidávat, modifikovat i ubírat.
- Binární relace dědičnosti je tranzitivní uzávěr relace přímé dedičnosti. Obě tyto binární relace jsou uspořádáním.
- **Generalizace** je postup vytváření hierarchie dědičnosti hledáním společných vlastností a vytvářením předků.
- Specializace je opačný postup ke generalizaci, kdy se rozrůzňují typy a vznikají tak následníci.
- Abstraktní typy existují pouze kvůli hierarchii dědičnosti, ale nelze vytvářet jejich instance.
- jednoduchá dědičnost každý následník smí mít pouze jediného předka (zakreslený graf je potom stromem)
- vícenásobné dědičnosti počet předků není omezen (zakreslený graf je obecný acyklický graf)
- v grafu dědičnosti se nesmí vyskytovat cyklus

Caché

- Vytvořeno společností InterSystems
- Postrelační databáze (je schopna pracovat jak z relačního tak objektového pohledu)
- Aplikační i datový server + integrované vývojové prostředí
- Přístup k objektům přes ID, pojmenovaný dotaz, Ad-hoc dotaz

Architektura databáze

- základní jednotkou modelování jsou objekty organizované do tříd
- Caché Class Dictionary úložiště tříd a dat
- každá třída jsou dvě synchronní sady kódu pro relační i objektový přístup
- Vlastnosti jsou do relačního modelu mapovány
 - jednohodnotové vlastnosti sloupce
 - vícehodnotové zvlášť tabulka s vazbou na tabulku objektů třídy
- třídy lze tvořit pomocí
 - Caché studia (ručně)
 - Pomoci DDL SQL
 - Programově pomocí objektů
 - Pomocí XML
 - pomocí UML (import UML specifikací)

Typy tříd

- Abstraktní třídy nelze instanciovat
- Registrované třídy lze instanciovat, nejosu perzsitentní
- Persistentní třídy lze instanciovat jsou perzistentní
- Vnořené třídy nejsou perzistentní samy o sobě, ale jen jako součást perzistentní třídy
- Odvozené třídy vznikají dědičností, polymorfismem
- Datové typy

Scriptování

- Caché Object Script
 - značně odlišné od klasických programovacích jazyků
 - významené mezery
 - 2 typy proměnných globály (perzistentní) a dočasné
 - 2 typy funkcí vnitřní (systémové) a vnější (uživatelské)
- Caché Basic
 - Vychází z VisualBasic
- obojí je možné kombiovat

CSP - "Caché server pages"

- Dynamicky generovaná stránka, session automaticky
- Podobné JSP

Java EE

- Platforma pro vývoj a provoz aplikací (virtuální stroj, podpůrné nástroje)
- Databázová vrstva, Business vrstva (chování), Webová vrstva, Klientska vrstva

Vrstvy

- 1. Databazova
- 2. Business
 - Implementace chovani aplikace
 - Potencionelne distribuovana
- 3. Webova
- 4. Klientska
 - Aplikace nebo prohlizec

Tucne vrstvy spadaji do kompetence Java EE serveru

- datová vrstva
 - 1. Java Beans
 - 2. Java Persistence API (JPA)
- webová aplikace
 - 1. Java Server Pages (JSP)
 - 2. JSP Standard Tag Library (JSTL)
 - 3. Java Server Faces (JSF)

Java EE aplikace

EJB (Enterprise Java Beans) moduly

- definují veřejná rozhraní
- implementují chování
- lze je odděleně nasadit na servery
- EJB vrstva zajišťuje vzdálené volání funkcí rozhraní

Webove moduly

uzivatelske rozhrani

Kontejnery

- Prostředí pro běh aplikace na serveru (webový, EJB)
- Webovy kontejner beh webu
- EJB kontejner beh EJB modulu, volani funkci
- Java EE kontejner Webovy + EJB kontejer

Dostupne kontejnery

- Java EE kontejnery
 - GlassFish (Sun)
 - JBoss (Red Hat)
 - Geronimo (Apache)
 - WebSphere (IBM)
- Pouze webove servery

- Tomcat (Apache)
- Jetty (Mort Bay Consulting)

Technologie

- Java Beans pomocí anotací vytvoření entity persistence z třídy
- **Java Persistence API** O/R framework, relační úroveň (JDBC spojen s databází), objektově orientované API, mapování tříd na tabulky (detaily anotacemi)
- Java Servlet implementuje chování serveru
- Java Server Pages dynamické webové stránky (XHTML kód, kód v Javě (scriptlet), definované značky, výrazy)
- JSP Standard Tag Library množina základních značek
- Facelets nástupce JSP v Java EE 6, založeno na XML, šablonování komponent a stránek, překlad na interní objektovou reprezentaci
- **Java Server Faces** MVC framework nad Facelets, značky pro generování základních prvků uživatelského rozhraní

Zpracování JSP stránky

- stránka se překládá na servlet (třídu)
- překlad zajišťuje kontejner

Citováno z "http://wiki.fituska.eu/index.php?title=Objektov%C4%9B-orientovan%C3%A9_datab%C3%A1zov%C3%A9_syst%C3%A9my&oldid=12994"
Kategorie: Státnice 2011 | Pokročilé informační systémy

Stránka byla naposledy editována 22. 6. 2015 v 09:15.