

SOMMAIRE

- Introduction
- Data pre-processing
- ☐ Génération dendrogramme CAH
- □ ACP
- Analyse avancée
- ☐ Test d'adéquation
- ☐ Test de comparaison
- Conclusion

Votre entreprise d'agroalimentaire de poulet souhaite se développer à l'international.

<u>Stratégie</u>: exportation dans le(s) nouveau(x) pays ciblé(s).

Objectif : cibler certains pays / "groupes" de pays dont on connaît les caractéristiques.

Source: site FAO

Présentation des étapes de pre-processing

- Téléchargement des données FAO
- Calcul de l'évolution population (2014 vs 2018)
- Calcul du ratio protéines animales/total protéines
- Calcul des derniers indicateurs proposés (Dispo protéines/calories)
- Ajout de variables « additionnelles »
- Hypothèse d'indice de Stabilité Politique pour Nv-Calédonie & Poly-française:
 - o imputation par la moyenne des îles voisines
- Hypothèse de revenu national brut pour Taïwan:
 - o les données des variables retenues sont relativement proches pour les 3 RAS/province chinoises : RNB Taïwan = moy (Honk-Kong + Macao)

Introduction Data pre-processing Dendrogramme ACP Analyse avancée Test adéquation Test comparaison Conclusion

Balance commerciale mondiale

Balance commerciale : Viande de Volailles en 2018

- Identification des 2 très/plus gros exportateurs
- Des pays comme le Mexique, l'Arabie Saoudite, le Japon présente une BC déficitaire (importations >> exportations)
- En Europe : Pays-Bas et Pologne sont de forts exportateurs

Introduction Data pre-processing Dendrogramme ACP Analyse avancée Test adéquation Test comparaison Conclusion

Réserve mondiale de poulets

Réserve mondiale de Poulets en 2018

- Pour les réserves, on retrouve USA et brésil, mais aussi Chine, Indonésie ...
- Peu de réserves en Afrique, Europe centrale et nordique

Introduction Data pre-processing Dendrogramme ACP Analyse avancée Test adéquation Test comparaison Conclusion

Présentation des étapes de pre-processing

- Dans l'analyse qui va suivre, j'ai choisi de <u>n'exclure aucun pays</u> parmi ceux présentés précédemment, de sorte à dénaturer le moins possible le dataset et dérouler le process de clustering avec toutes les parties.
- Dans un autre contexte, la pré-étude que j'aurais menée aurait conduit à écarter le maximum de pays ne présentant pas les caractéristiques adéquates pour répondre à notre objectif.
- Éléments clés à prendre en compte pour la faisabilité de l'étude :
 - Tenir compte des politiques commerciales :
 - libéralisation des échanges (facilitée en Europe)
 - o taxes & quotas (privilégier la proximité)
 - o **impact environnemental** (réduire empreinte carbone)
 - Sonder le marché concurrentiel (gros exportateur/producteur de poulets à écarter)
 - > Tenir compte de la richesse intérieure/pouvoir d'achat par habitant
 - > Tenir compte de la **démographie**

Présentation des variables : 1er clustering

- 4 variables proposées sont calculées
- Choix d'ajouter 3 autres variables (issues du site FAO)

4 variables proposées

+ 3 variables

	evo_pop_18_v_14 (%) prot	Proportion de téines d'origine animale (%)	Disponibilité alimentaire en protéines (kg/hbt)	Disponibilité alimentaire en calories (Kcal/hbt)	Stabilité politique	Tx_depd_importations (%)	Revenu National Brut/hbt
Zone							- 1
Australie	5.5	66.7	38.7	1237715	1.0	1.3	56682.7
Belgique	2.3	58.7	36.4	1375685	0.4	226.1	47529.1
Chine - RAS de Hong- Kong	3.3	73.1	46.9	1192820	0.8	343.5	51252.6
Chine - RAS de Macao	7.1	64.8	40.0	1214720	1.3	86.7	79270.6
Chine, Taiwan Province de	1.0	50.6	31.5	1088795	0.8	25.1	65262.0

 $TDI = \frac{Importations}{Production + Importations - Exportations} \times 100$

Génération du dendrogramme

• Découpage en 5 clusters et association cluster/pays

Visualisation géographique des 5 clusters

Choropleth : groupement des pays basé sur le clustering

Eboulis des valeurs propres

• Variance totale 1^{er} plan factoriel: 75%


```
# Choix du nombre de composantes à calculer
n comp = 2
                                               # Nbmaxi = Min(p, n-1) = Min(4, 172-1)
# selection des colonnes à prendre en compte dans l'ACP
data_pca = table_vf
# préparation des données pour L'ACP
        = data pca.values
names = list(data_pca.index)
features = data_pca.columns
# Centrage et Réduction
# std scale = preprocessing. StandardScaler(). fit(X) #Compute the mean and std to be used for later scaling
std scale = preprocessing.RobustScaler().fit(X)
                                                         #Removes the median and scales the data according to the quantile range
X_scaled = std_scale.transform(X)
# Calcul des composantes principales
pca = decomposition.PCA(n components=n comp)
pca.fit(X_scaled)
# Projection des individus
X_projected = pca.transform(X_scaled)
# Eboulis des valeurs propres
display_scree_plot(pca)
# Cercle des corrélations
pcs = pca.components_
# Adaptation de la fonction pr obtention 2 infos sur le même tracé (ajout scale factor pour les corrélations)
\label{linear_display_circles} display\_circles(X\_projected,pcs, n\_comp, pca, [(0,1)], labels = np.array(features), illustrative\_var=clusters, alpha=1)
# Projection des individus
display_factorial_planes(X_projected, n_comp, pca, [(0,1)], labels=np.array(names), alpha=1, illustrative_var=clusters)
```

Définies dans le fichier <u>functions.py</u>

Cercle des corrélations

- Projection des individus sur le 1^{er} plan factoriel
- Superposition des variables + centroïdes des 5 clusters

D'après les éléments présentés dans la partie «Data pre-processing», mon choix se porte sur le cluster C1 comprenant 17 pays à exploiter.

Radar Clustering

• La caractérisation moyenne des différents clusters obtenus est présentée ci-dessous

• «Bons et mauvais clients» apparaissent ici justifiant le choix du cluster qui a été fait.

Raffinement de l'analyse sur la base des 17 pays choisis

- Rappel : réduction empreinte carbone et libéralisation échanges facilitée
- Considération d'une nouvelle variable « Distance »

```
# ajout de variables supplémentaires
url_distance = 'INPUTS_FORMATION/P5_csv_Distances.csv'
dist = pd.read_csv(url_distance, sep=';',encoding='utf-8')
distance = dist.copy()
distance = distance.dropna()
table vf = pd.merge(table vf,distance, how="left", on="Zone")
```

Zone	Distance (km)
Afghanistan	5590
Afrique du Sud	9354
Albanie	1604
Algérie	1340
Allemagne	440

4 variables proposées

Proportion de Disponibilité Disponibilité Revenu evo_pop_18_v_14 protéines d'origine
(%) Stabilité Tx_depd_importations Distance alimentaire en alimentaire en National politique (km) animale (%) protéines (kg/hbt) calories (Kcal/hbt) Brut/hbt Zone 5.5 66.7 Australie 38.7 1237715 1.0 1.3 56682.7 16975 2.3 58.7 36.4 1375685 0.4 226.1 47529.1 262 Belgique Chine - RAS 3.3 73.1 de Hong-46.9 1192820 8.0 343.5 51252.6 9639 Kong Chine - RAS 7.1 64.8 1.3 40.0 1214720 79270.6 9602 de Macao Chine, Taiwan 1.0 50.6 31.5 1088795 8.0 25.1 65262.0 9911 Province de

Priorisation et stratégie finale

- nlargest (10, [«TDI (%)»])
- nsmallest (8, [«Distance (km)»])
- nsmallest (6, [«D Exports-Imports»])
- marché > 4 Millions

	Cluster	evo_pop_18_v_14 (%)	Proportion de protéines d'origine animale (%)	Disponibilité alimentaire en protéines (kg/hbt)	Disponibilité alimentaire en calories (Kcal/hbt)	Stabilité politique	Tx_depd_importations (%)	Revenu National Brut/hbt	Distance (km)	D Exports- Imports	Population_18 (x1000)
Zone											
Allemagne	5	2.06	60.75	38.47	1297210	0.60	48.34	49335.79	440	-231.0	83124.0
Suède	5	2.89	63.99	38.53	1162160	0.91	37.50	56569.57	1546	-55.0	9972.0
Autriche	5	3.20	60.33	39.83	1348675	0.92	62.30	51904.41	1035	-31.0	8891.0
Irlande	5	4.15	61.24	42.92	1418025	1.03	63.64	62488.32	778	-15.0	4819.0
Danemark	5	1.55	68.10	42.73	1241365	0.96	90.97	62635.09	1028	1.0	5752.0

Normalité des distribution : Distributions de Gauss

• Pour les graphiques et tests qui vont suivre, conservation de 3 variables (proposées) et 1 de mon choix

Les distributions paraissent normales, à l'exception peut-être de la variable
 « Stabilité politique » → A priori à confirmer/infirmer

Normalité des distribution : Quantile-Quantile plots

• On retrouve cet « a priori » dans les tracés de quantiles

Normalité des distribution : tests statistiques

Utilisation des 2 tests les plus communs

from scipy.stats import ks_2samp								
	Stabilité politique	Disponibilité alimentaire en calories (Kcal/hbt)	evo_pop_18_v_14 (%)	Disponibilité alimentaire en protéines (kg/hbt)				
D_statistic	0.0788372	0.0654419	0.066814	0.0937674				
p_value	0.30323	0.531472	0.504903	0.141031				
Normality	normal	normal	normal	normal				

La variable a une distribution normale (Ho)

But : ne pas rejeter Ho

On cherche à limiter le risque de se tromper en obtenant une p_value >> 0.05

Le test de Kolmogorov-Smirnov valide pour les 4 variables le caractère normal de leur distribution

Le test de Shapiro-Wilk le réfute pour 3 variables

• On retiendra donc que seule la variable « <u>Dispo alim en calorie</u> » suit une loi normale.

Homoscédasticité (test d'égalité des variances)

• Utilisation des 2 tests les plus communs sur les populations :

cluster	1	2	3	4	5
nb_pays	17	31	42	38	44

from	scipy.s	tats import	bartle	tt		
	Stabilité politique	Disponibilité alimentaire en ca	lories (Kcal/hbt)	evo_pop_18_	v_14 (%)	Disponibilité alimentaire en protéines (kg/hbt)
Statistic	8.2647		0.186381		1.26172	0.45788
p_value	0.00404234		0.665946		0.261326	0.498616
Variance	diff		equal		equal	equal

Le test de Bartlett montre que l'homoscédasticité n'est pas vérifiée pour la variable « stabilité politique»

- Le test de Levene montre que l'homoscédasticité n'est pas vérifiée pour la variable « stabilité politique»
- On retiendra donc que l'homoscédasticité entre ces 2 populations n'est pas validée pour la variable « <u>stabilité politique</u> ».

Invalidation des Hypothèses de :

- 1) Normalité (plusieurs variables dont la loi n'est pas normale)
- 2) Homoscédasticité (au moins 1 variable montrant une hétéroscédasticité)
- → On ne peut donc conclure quant à la différence entre les clusters

Des tests statistiques non-paramétriques tels que les tests de :

- Mann-Whitney U
- et plus généralement Kruskal Wallis H, seraient plus à même de tester les différences significatives entre ces 2 clusters.

Merci

