# Machine Learning

Russell Chap. 18, 19, 20 Luger Chap. 10

### **Machine Learning**

#### Definition

 Changes in a system that enable it to perform better on repetition of same task

#### Types of learning

- Supervised learning
  - Given: cyamples
     Given: cyamples (labeled)
  - Learning: model rules, trees, neural nets to give the right answer
- Unsupervised learning
  - Given: cyroblem instanceexamples (unlabeled)
  - Learning: clusters, probability distributions
- Reinforcement learning
  - Given: <action, reward> experiences
  - Learning: rules for right action

# Machine Learning

#### Supervised learning

| Н   | W  | Grade |
|-----|----|-------|
| 185 | 65 | F     |
| 162 | 80 | Α     |
| 175 | 70 | F     |
| 165 | 92 | А     |
|     |    |       |



<187, 68> → ?

#### Unsupervised learning

| Н   | W  |
|-----|----|
| 185 | 65 |
| 160 | 90 |
| 180 | 70 |
| 165 | 95 |
|     |    |



Group?

## Supervised Learning

- Example: <x, f(x)>
  - X: input, f(X): output (f: target function)
- Learning
  - Given a set of examples
  - Find f (model or classifier)

### Supervised Learning

- x = <size, color, shape>
- f(x) = Y/N (good obj?)
- <small, blue, cube> → N
- <large, blue, ball> → Y
- <large, red, cube> → N

✓ <large, red, ball> →

learning

If (shape = ball) then Y If (shape = cube) then N

# Learning Concepts

- Learning
  - Search through a concept space
- Concept representation
  - Conjunctive logical description
     ∀Y, color(Y, red) ∧ shape(Y, ball) → <X, red, ball>
- Concept space
  - a set of descriptions with a partial ordering by generality
     X, Y, ball> is more general than <X, red, ball>

## **Concept Representation**



### **Concept Space**



### Version Space

- Version space
  - a set of descriptions consistent with example concepts
- Consistent concept example
  - Training examples
    - <small, red, ball> → Y
    - <large, red, ball> → Y
    - <small, red, cube> → N
  - Consistency
    - <X, red, ball>, <X, Y, ball>, ...: Consistent (gives correct answer)
    - <X, red, Z>, <small, red, Z>, ... : Inconsistent

# Version Space Search



# Version Space Search

#### Algorithm

- G: Most general description consistent with examples
- S: Most specific descriptions consistent with examples
  - Start with G = most general, S = ∅
  - For positive examples: Make S more general
  - For negative examples: Make G more specific
  - Until G = S



# Version Space Search

Generalization by a positive example

Specialization by a negative example

```
G: \langle X, Y, Z \rangle
S: Ø
                                                       +: <small, red, ball>
G: \langle X, Y, Z \rangle
S: <small, red, ball>
                                                       -: <small, blue, ball>
G: <a href="https://www.com/scales.com/">large, Y, Z> <X, red, Z> <X, Y, cube></a>
S: <small, red, ball>
                                                       +: <large, red, ball>
G: \langle X, \text{ red}, Z \rangle
S: <X, red, ball>
                                                       -: <large, red, cube>
G: <small, red, Z> <X, red, ball>
S: <X, red, ball>
```

### Limitation

#### Binary function

- Learning Y(concept)/N(not concept) function only Ex> f(x): x → A or B or C?
- Conjunctive function description
  - Learning conjunctive description only Ex> f(x) = (a ∧ b) ∨ c ?



#### **Decision Tree**

#### Decision tree

- Representing the model(classifier) as a tree
  - $X : (A_1, A_2, ..., A_n), f(X) = C_1 \text{ or } C_2 \text{ or } ... C_m$
  - Internal nodes: attributes (A<sub>i</sub>)
  - Edges: different attribute values
  - Leaves: answer (C<sub>k</sub>)

$$X = \langle large, red, ball \rangle \longrightarrow \begin{cases} color? \\ blue \\ N \end{cases}$$
  $shape? \\ ball \\ Y \end{cases} N$ 

| NO. | RISK     | CREDIT<br>HISTORY | DEBT | COLLATERAL | INCOME        |
|-----|----------|-------------------|------|------------|---------------|
| 1.  | high     | bad               | high | none       | \$0 to \$15k  |
| 2.  | high     | unknown           | high | none       | \$15 to \$35k |
| 3.  | moderate | unknown           | low  | none       | \$15 to \$35k |
| 4.  | high     | unknown           | low  | none       | \$0 to \$15k  |
| 5,  | low      | unknown           | low  | none       | over \$35k    |
| 6.  | low      | unknown           | low  | adequate   | over \$35k    |
| 7.  | high     | bad               | low  | none       | \$0 to \$15k  |
| 8.  | moderate | bad               | low  | adequate   | over \$35k    |
| 9,  | low      | good              | low  | none       | over \$35k    |
| 10. | low      | good              | high | adequate   | over \$35k    |
| 11. | high     | good              | high | none       | \$0 to \$15k  |
| 12. | moderate | good              | high | none       | \$15 to \$35k |
| 13. | low      | good              | high | none       | over \$35k    |
| 14. | high     | bad               | high | none       | \$15 to \$35k |



# **Decision Tree Learning**

#### Goal

Build the (smallest) decision tree consistent with examples

```
<small, red, ball> → Y
<small, blue, ball> → N
<large, red, ball> → Y
<large, red, cube> → N

color?
blue
red
shape?
ball
cube
Y
N
```

#### Method

Recursively choose an attribute and split examples

## **Decision Tree Learning**

```
function BuildTree (e: set of examples)
   if (all examples \in C_k) return a leaf node C_k
   if (no example left) return majority class from parent
   if (no attribute left) return majority class
                                                                 BuildTree(e)
   else
        root ← choose an attribute A
       for each value v<sub>i</sub> of A
           e_i \leftarrow examples with A = v_i
                                                     BuildTree(e<sub>1</sub>) BuildTree(e<sub>2</sub>)
           subtree ← BuildTree (e<sub>i</sub>)
            add branch v<sub>i</sub> and subtree
        return (root)
```

| NO. | RISK     | CREDIT<br>HISTORY | DEBT | COLLATERAL | INCOME        |
|-----|----------|-------------------|------|------------|---------------|
| 1.  | high     | bad               | high | none       | \$0 to \$15k  |
| 2.  | high     | unknown           | high | none       | \$15 to \$35k |
| 3.  | moderate | unknown           | low  | none       | \$15 to \$35k |
| 4.  | high     | unknown           | low  | none       | \$0 to \$15k  |
| 5,  | low      | unknown           | low  | none       | over \$35k    |
| 6.  | low      | unknown           | low  | adequate   | over \$35k    |
| 7.  | high     | bad               | low  | none       | \$0 to \$15k  |
| 8.  | moderate | bad               | low  | adequate   | over \$35k    |
| 9,  | low      | good              | low  | none       | over \$35k    |
| 10. | low      | good              | high | adequate   | over \$35k    |
| 11. | high     | good              | high | none       | \$0 to \$15k  |
| 12. | moderate | good              | high | none       | \$15 to \$35k |
| 13. | low      | good              | high | none       | over \$35k    |
| 14. | high     | bad               | high | none       | \$15 to \$35k |





### Selection of Attributes

#### ■ Different selection → different tree

■ 
$$(a=0, b=0) \rightarrow Yes$$
  
 $(a=0, b=1) \rightarrow No$   
 $(a=1, b=0) \rightarrow Yes$   
 $(a=1, b=1) \rightarrow No$ 



#### Rule

- Select A that classifies most examples
- Selection based on information theory

- Amount of information
  - Depend on the probability
    - Example> Rolling a die
       Knowing that output is 2 (prob.=1/6) → most information
       Knowing that output is even (prob.=1/2)
       Knowing that output is 1~6 (prob.=1) → zero information
  - Low prob. → high info.
  - Prob. 1 → 0 info.

$$I(m) = \log_2(\frac{1}{p(m)}) = -\log_2(p(m))$$

- Entropy of a set
  - $M = \{m_1, m_2, \dots, m_n\}, m_i \text{ has probability } p(m_i)$
  - E(M) = expected amount of information

$$E(M) = \sum p(m_i)/(m_i) = \sum -p(m_i)\log(p(m_i))$$

- Examples
  - M: {H(1,2), L(3,4)}  $\rightarrow E(M) = \left(-\frac{1}{2}\log\frac{1}{2}\right) + \left(-\frac{1}{2}\log\frac{1}{2}\right) = 1.0$
  - M: {H(1,2,3), L(4)}  $\rightarrow E(M) = \left(-\frac{3}{4}\log\frac{3}{4}\right) + \left(-\frac{1}{4}\log\frac{1}{4}\right) = 0.81$
  - M: {H(1,2,3,4), L()}  $\rightarrow E(M) = \left(-\frac{4}{4}\log\frac{4}{4}\right) + \left(-\frac{0}{4}\log\frac{0}{4}\right) = 0.0$

# -

H, H, H, H  
L, L, L, L 
$$E = -1/2\log 1/2 - 1/2\log 1/2 = 1.0$$



- $\rightarrow$  A1 < A2 < A3 reduces more entropy
- A1 < A2 < A3 has more information for H/L decision

- Attribute selection
  - Select A that reduces entropy most
    - Entropy =  $0 \rightarrow$  all examples are in one category  $\rightarrow$  leaf
  - Gain = current entropy expected entropy after check A
  - Select A with largest gain



$$Gain(A) = E(S) - \sum \frac{|S_i|}{|S|} E(S_i)$$

$$S = \{H(1,2,4,7,11,14), M(3,8,12), L(5,6,9,10,13)\}$$

**E(S)** = 
$$\left(-\frac{6}{14}\log\frac{6}{14}\right) + \left(-\frac{3}{14}\log\frac{3}{14}\right) + \left(-\frac{5}{14}\log\frac{5}{14}\right) = 1.53$$

If we select A = income,

$$E(S_1) = \left(-\frac{4}{4}\log\frac{4}{4}\right) + 0 + 0 = 0.0$$

**E(S<sub>2</sub>)** = 
$$\left(-\frac{2}{4}\log\frac{2}{4}\right) + \left(-\frac{2}{4}\log\frac{2}{4}\right) + 0 = 1.0$$

**E(S<sub>3</sub>)** = 
$$0 + \left(-\frac{1}{6}\log\frac{1}{6}\right) + \left(-\frac{5}{6}\log\frac{5}{6}\right) = 0.65$$

**Gain(A=income)** = 
$$1.53 - \left(\frac{4}{14} \times 0.0 + \frac{4}{14} \times 1.0 + \frac{6}{14} \times 0.65\right) = 0.97$$

$$S = \{H(1,2,4,7,11,14), M(3,8,12), L(5,6,9,10,13)\}$$

Gain(A=income) = 0.97

Gain(A=credit) =0.27

Gain(A=debt) = 0.58

Gain(A=collateral) = 0.76



Select 'income' for partition

#### Result tree



### **Gain Ratio**

#### Problem

 Information gain measure is biased towards attributes with a large number of values

#### GainRatio

Normalization to information gain

$$SplitInfo_{A}(S) = -\sum_{j=1}^{\nu} \frac{|S_{j}|}{|S|} \times \log(\frac{|S_{j}|}{|S|})$$

 $GainRatio(A) = Gain(A) / SplitInfo_A$ 

$$Gain = 0.46$$
 **Sex** 
$$SplitInfo = 1.0$$
 
$$GainRatio = 0.46$$
 
$$H,H,H,H,H,H$$
 
$$L$$
 
$$L,L,L,L,L,L,L$$



Gain = 1.0 SplitInfo = 3.0GainRatio = 0.33

# Gini Impurity

- CART (classification and regression tree) algorithm
  - Gini impurity is a measure of how often a randomly chosen element from the set would be incorrectly labeled
  - The Gini impurity can be computed by summing the probability  $p_i$  of an item with label i

Gini Index:  $\sum_{k 
eq i} p_k = 1 - p_i$ 

## Gini Impurity

#### Attribute Selection

■ To compute Gini impurity for a set of items with J classes, suppose  $i \in \{1, 2, ..., J\}$ , and let  $p_i$  be the fraction of items labeled with class i in the set

$$I_G(p) = \sum_{i=1}^J p_i \sum_{k 
eq i} p_k = \sum_{i=1}^J p_i (1-p_i) = \sum_{i=1}^J (p_i - p_i{}^2) = \sum_{i=1}^J p_i - \sum_{i=1}^J p_i{}^2 = 1 - \sum_{i=1}^J p_i{}^2$$

- Select A that reduces Impurity is most small
  - Impurity = 0 → all examples are in one category → leaf

### Overfitting

- The generated model may overfit to the training data
  - Too many branches, some may reflect anomalies due to noise or outliers
  - Result is in poor accuracy for unseen samples



# Pruning



#### Prepruning

- Halt tree construction early
- Do not split a node if this would result in the goodness measure falling below a threshold

#### Postpruning

- Remove branches from a "fully grown" tree
- If pruning a node lead to a smaller error rate (with test set), prune it

### Performance of Learning

#### Performance measure

- 1. Collect set of examples
- 2. Divide it into training set / test set
- 3. Learning by using training set
- 4. Measure the % of correct answer on test set

#### K-fold cross-validation

- Divide the data set into k subsets
- Use k-1 subsets as training data and 1 subset as test data
- Repeat k times, and average the accuracy

$$S_1, S_2, S_3, S_4, S_5$$
  
 $S_1, S_2, S_3, S_4, S_5$   
 $S_1, S_2, S_3, S_4, S_5$ 

## Performance of Learning

### The learning curve

 Measure the % of correct classification with different size of randomly selected training sets



# WEKA

# Machine learning/data mining software written in Java

- http://www.cs.waikato.ac.nz/ml/weka
- Used for research, education, and applications
- Complements "Data Mining" by Witten & Frank

#### Main features

- Comprehensive set of data pre-processing tools, learning algorithms and evaluation methods
- Graphical user interfaces (incl. data visualization)
- Environment for comparing learning algorithms

# Data Files (ARFF)

- @relation heart-disease-simplified
- @attribute age numeric
- @attribute sex {female, male}
- @attribute chest\_pain\_type {typ\_angina, asympt, non\_anginal, typ\_angina}
- @attribute cholesterol numeric
- @attribute exercise\_induced\_angina {no, yes}
- @attribute class {present, not\_present}
- @data
- 63,male,typ\_angina,233,no,not\_present
- 67,male,asympt,286,yes,present
- 67, male, asympt, 229, yes, present

. . .













#### Source

- Data can be imported from a file in various formats: ARFF, CSV, C4.5, binary
- Data can also be read from a URL or from an SQL database (using JDBC)

## Pre-processing tools

- Called "filters"
- Discretization, normalization, resampling, attribute selection, transforming and combining attributes, ...



# Explorer: building "classifiers"

- Classifiers in WEKA are models for predicting nominal or numeric quantities
- Implemented learning schemes include:
  - Decision trees and lists, instance-based classifiers, support vector machines, multi-layer perceptrons, logistic regression, Bayes' nets, ...
- "Meta"-classifiers include:
  - Bagging, boosting, stacking, error-correcting output codes, locally weighted learning, ...









- WEKA contains "clusterers" for finding groups of similar instances in a dataset
- Implemented schemes are:
  - *k*-Means, EM, Cobweb, *X*-means, FarthestFirst
- Clusters can be visualized and compared to "true" clusters (if given)
- Evaluation based on loglikelihood if clustering scheme produces a probability distribution

# Explorer: data visualization

- Visualization very useful in practice: e.g. helps to determine difficulty of the learning problem
  - WEKA can visualize single attributes (1-d) and pairs of attributes (2-d)
  - Color-coded class values
  - "Jitter" option to deal with nominal attributes (and to detect "hidden" data points)
  - "Zoom-in" function







- Experimenter makes it easy to compare the performance of different learning schemes
  - For classification and regression problems
  - Results can be written into file or database
  - Evaluation options: cross-validation, learning curve, hold-out
  - Can also iterate over different parameter settings
  - Significance-testing built in!



# **Unsupervised Learning**

Class labels are not provided



Clustering

## K-Means Method

#### K-means

- Input: a set of unclassified data objects
- Output: k clusters

## Algorithm

- Choose k objects as initial cluster centers
- 2. Assign each object to the cluster with the nearest center
- 3. Update cluster centers as the mean point of the cluster
- 4. Go back to Step 2, stop when there is no change

## K-Means Method



### Assumption

 Data are generated from a mixture distribution with k components (C<sub>1</sub>, ..., C<sub>k</sub>)

$$P(x) = \sum_{i} P(C_i) P(x \mid C_i)$$

EX> Mixture Gaussian





- Clustering = finding the unknown distribution
  - If we assume mixture Gaussian, find
    - $W_i : P(C_i)$
    - μ<sub>i</sub>: mean of C<sub>i</sub>
    - $\sigma_i$ : variance of  $C_i$



## Finding C<sub>i</sub>

- If we know  $C_i$  ( $w_i$ ,  $\mu_i$ ,  $\sigma_i$ )  $\rightarrow$  We can find which  $C_i$  generate x
- If we know which C<sub>i</sub> generate x  $\rightarrow$  We can find C<sub>i</sub> (w<sub>i</sub>,  $\mu_i$ ,  $\sigma_i$ )

#### Basic idea

- Assume C<sub>i</sub>
- Repeat:
  - Assign cluster (according to  $p(C_i | x)$ )
  - Compute new  $C_i$  ( $w_i$ ,  $\mu_i$ ,  $\sigma_i$ )

- Expectation
- **Maximization**

- Algorithm (Mixture Gaussian)
  - Initialize C<sub>i</sub> (w<sub>i</sub>, μ<sub>i</sub>, σ<sub>i</sub>) arbitrarily
  - Repeat:
    - E-step

$$p_{ij} = P(C_i \mid x_j) = \alpha P(x_j \mid C_i) P(C_i)$$

M-step

$$w_i = p_i = \sum_j p_{ij}$$

$$\mu_i = \sum_j \frac{p_{ij}}{p_i} x_j$$

$$\sigma_i = \sum_j \frac{p_{ij}}{p_i} (x_j - \mu_i)^2$$

# Hierarchical Clustering

Find a hierarchical cluster structure



- Conceptual clustering
  - Input: a set of unclassified objects
  - Output: a hierarchy of classes (clusters)
  - Goal: maximize the similarity of objects in the same class

## Hierarchical Clustering

#### COBWEB

- Use Category utility
  - $C = \{C_1 .. C_p\}$  categories
  - $A = \{A_1 ... A_n\}$  attributes, each  $A_i$  has  $\{V_{i1} ... V_{im}\}$  values

$$CU(C) = \frac{1}{p} \sum_{k} P(C_{k}) \left[ \sum_{i} \sum_{j} P(A_{i} = V_{ij} \mid C_{k})^{2} - \sum_{i} \sum_{j} P(A_{i} = V_{ij})^{2} \right]$$

P(A=V | C): prob. of correctly guessing the value when we know the category labels

P(A=V) : prob. of correctly guessing the value without the knowledge of category structure

## Hierarchical Clustering

#### COBWEB(C, i)

Compute CU of each case, and choose best

- 1. Put i in one subclass  $C1 \rightarrow COBWEB(C1, i)$
- 2. Split a subclass C1  $\rightarrow$  COBWEB(C, i)
- 3. Merge two subclass to  $Cm \rightarrow COBWEB(Cm, i)$
- 4. Make a new subclass Cn





| Category | C1                  | P(C1)=4/4            |
|----------|---------------------|----------------------|
| Feature  | Value               | p(vlc)               |
| Tails    | One                 | 0.50                 |
|          | Two                 | 0.50                 |
| Color    | Light<br>Dark       | 0.50<br>0.50         |
| Nudei    | One<br>Two<br>Three | 0.25<br>0.50<br>0.25 |
|          |                     |                      |

|          | ~~~                 | _                 |
|----------|---------------------|-------------------|
| Category | C2                  | P(C2)=1/4         |
| Feature  | Value               | p(vlc)            |
| Tails    | One                 | 1.0               |
|          | Two                 | 0.0               |
| Color    | Light<br>Dark       | 1.0<br>0.0        |
| Nuclei   | One<br>Two<br>Three | 1.0<br>0.0<br>0.0 |

| Category | Сз                  | P(C3)=2/4         |
|----------|---------------------|-------------------|
| Feature  | Value               | p(vlc)            |
| Tails    | One                 | 0.0               |
|          | Two                 | 1.0               |
| Color    | Light<br>Dark       | 0.50<br>0.50      |
| Nuclei   | One<br>Two<br>Three | 0.0<br>1.0<br>0.0 |
|          | $\sim$              |                   |

|          | ~~~                 |                   |
|----------|---------------------|-------------------|
| Category | C4                  | P(C4)=1/4         |
| Feature  | Value               | p(vlc)            |
| Tails    | One                 | 1.0               |
|          | Two                 | 0.0               |
| Color    | Light<br>Dark       | 0.0<br>1.0        |
| Nuclei   | One<br>Two<br>Three | 0.0<br>0.0<br>1.0 |

| Category | C5    | P(C5)=1/4 |
|----------|-------|-----------|
| Feature  | Value | p(vlc)    |
| Tails    | One   | 0.0       |
|          | Two   | 1.0       |
| Color    | Light | 1.0       |
|          | Dark  | 0.0       |
| Nuclei   | One   | 0.0       |
| Nuclei   |       | 1.0       |
|          | Two   |           |
|          | Three | 0.0       |

| Category | C6    | P(C6)=1/4 |
|----------|-------|-----------|
| Feature  | Value | p(vlc)    |
| Tails    | One   | 0.0       |
|          | Two   | 1.0       |
| Color    | Light | 0.0       |
|          | Dark  | 1.0       |
| Nuclei   | One   | 0.0       |
|          | Two   | 1.0       |
|          | Three | 0.0       |









## **Density-Based Methods**

- Group objects in dense region
  - Density parameters

**Radius**  $\varepsilon$ : distance to determine the neighborhood

MinPts: Minimum number of points in neighborhood

- Core object
  - *ε*-neighborhood contains *MinPts* objects
- Directly density-reachable
  - p is directly density-reachable from q
     if q is a core object, and
     p is ε-neighborhood of q





## Density-reachable

• p is density-reachable from q if there are objects p<sub>1</sub>(=q), p<sub>2</sub>, ... p<sub>n</sub> such that



 $p_{i+1}$  is directly density-reachable from  $p_i$ 

## Density-connected

p is density-connected to q if there is an object o such that

**p** and **q** are density-reachable from **o** 





## **Density-Based Methods**

#### DBSCAN

- Cluster a maximal set of density-connected points
  - Arbitrary select a point  $\boldsymbol{p}$  and retrieve all  $\varepsilon$ -neighborhood
  - 2. If **p** is a core object, a cluster is formed
  - From each core object **p**, iteratively collects directly density-reachable objects (may merge clusters)
  - 4. Continue the process until no new points can be added

## Major features

- Discover clusters of arbitrary shape
- Handle noise
- Problem: selecting parameters
   ε and MinPts



# 4

# **Density-Based Methods**



MinPts = 5