Some Background Def ?: The seq X_n is called Stationary $(X_n, X_{n+1}, \dots) \stackrel{d}{=} (X_1, X_2, \dots)$ Defis An event $A \in B$ is said to be INV $A = B \in B^N$ s.t. $A = B \in B^N$ $A = \{(x_n, y_n) \in B\}$ and L= {A & B : A is invariant} s invariant -o-alg Thm (SLLN) Let X; be a stationary seq of random variables s.t. $\mathbb{E}(|x_1|) < \infty$. Let Sn = 5 X; Then $\frac{S_h}{S_h}$ $\frac{a \cdot s}{s}$ $\mathbb{E}(x, |\mathcal{I})$ Last Class:

Thin The unbounded open cluster, if it exists is unique a.s. (Pp).

(\{0,13\text{F}, \mathcal{I}, \mathbb{P}\)

Lemma: Fix pe [0,1] and A E J. Given n > 1 I m_n > 1 and an event D_n depending on configuration of the edges in $[-m_n, m_n]$ d. Such that $\mathbb{P}_{p}(A \Delta \mathbb{P}_{n}) \leq \frac{1}{n}$. Proof (Bootstrapping + Dynkins TI - 2 method) Let $G = \{D: D \text{ is a cylinder set }\}$ $= \{D: D \text{ depends on the config of }\}$ $= \{D: D \text{ depends on the config of }\}$ $= \{D: D \text{ depends on the config of }\}$ Let d= SA ∈ 7: Y n ≥ 1 3 Dn ∈ 6 s.t.

TPp (A DDn) ≤ 57 Then using Dynkms TI-2 thm we'll show $J \subseteq L$. EXC:

(1) Non-empty

(2) Closed under

finite intersections

a° d is a λ-system

(i) sze L because Δ is a cylinder set

(ii) $A \in A \implies A' \in A$ Since $A \triangle B = A^C \triangle B^C$ If 3 Dn s.t. P(ADD) =1 => \$\parabox (\parabox \Dan) \chi \=> \parabox \in \L. (111) I is closed under disjoint union Fix n > 1 and { A; = i > 1} paiwise disjoint Sets in L. Choose m = m(n) s.t. $\sum_{m+1}^{\infty} \mathbb{P}_{p}(A_{i}^{n}) < \frac{1}{2n}$ For i=1,...m ,A; ∈L to get Dn, i ∈ G s.t. Pp (A: DD,i) = anm $\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_{i} \Delta\left(\bigcup_{i=1}^{\infty}\mathcal{D}_{n,i}\right)\right)$ $\leq \mathbb{P}_{p} \left(\bigcup_{i=1}^{\infty} A_{i} \Delta \bigcup_{i=1}^{m} A_{i} \right) \left(A_{i} A_{i}$

$$+ \mathcal{P}\left(\bigcup_{i=1}^{m} A_{i} \Delta \bigcup_{i=1}^{m} \mathcal{D}_{n,i} \right)$$

$$\leq \frac{1}{2n} + \frac{m}{2nm} = \frac{1}{n}$$

For $2 \in \mathbb{Z}^d$ and $\omega \in \{0,1\}^E$ define $\omega_3 \in \{0,1\}^E$ as follows:

For an event $A \in J$ Let $A^3 = \{w: wa \in A\}$

Defⁿ: A is translation invariant. If $A^3 = A$ $\forall 3 \in \mathbb{Z}^d$

(i)
$$\{\#(Cu) = \infty \text{ for some } u \in \mathbb{Z}^d \}$$

(ii) Let
$$k \in \mathbb{N} \cup \{\infty\}$$
 and $E_R = \{R \text{ disjoint unboundedd} \}$ clusters

$$\mathbb{P}_{p}(A \Delta D_{n}^{3n}) = \mathbb{P}_{p}(A^{2n} \Delta D_{n}^{3n})$$

$$= \mathbb{P}_{p} (A \Delta D_{n}) \xrightarrow{\text{as } n \neq \infty}$$

$$\mathbb{P}_{p}\left(A \Delta \left(D_{n} \Delta D_{n}^{3}\right)\right) \leq \mathbb{P}_{p}\left(A \Delta D_{n}\right) + \mathbb{P}\left(A \Delta D_{n}^{3}\right)$$

as now

$$\Rightarrow$$
 \mathbb{P}_{p} $(\mathbb{D}_{n} \wedge \mathbb{D}_{n}^{2n}) \longrightarrow \mathbb{P}^{(4)}$

So
$$(\mathbb{P}_p(A)) = \mathbb{P}_p(A) \Rightarrow \mathbb{P}_p(A) \in \{0,1\}$$

Recall:

Eo, E, · · · · Eo where
$$E_R = S \exists exactly (Response of the clusters)$$

$$\mathbb{P}_{p}\left(E_{o} \sqcup E_{\infty}\left(\bigsqcup_{i=1}^{\infty}E_{i}\right)\right) = 1$$

Constlary:
$$\exists N = N(\phi) \in \{0, \infty\} \cup N \text{ s.t.}$$

$$\mathbb{P}_{p}(\exists exactly N unbounded open clusters) = 1$$

Step (1):	The r	number o	r possible	unbdd	Clusters
<u> </u>	0,1,	80			
Suppose	not	then	N € {2,3	ر کر	
P, (B	m n	all the 1	U un bound	ed clust	ers?)
			→ 1 as	m → ∞	
Given 1	>0	2 ME,	٠٤٠		
· ·	V		J un bounde	ed cluste	us?)
				7, 1	
A w>N					
Let Am:	$=$ ${\mathcal{B}_{m}}$	n fall to	e N un l	pounded (clusters?}
	\rightarrow d	sesn't d	lipend on a	edges in	\mathbb{B}_{m}
1			ก	<u> </u>	
	Cm= {all edges are	OR OR	IIP	(Amn Cm)) > Pcc >
				= "p (ttn	n) (PCcm) 2 md > 0
9	108			L	

So P(E)>0 => =

This does not rule out only many so clustes
be cause one cannot find a finite Box which
intersects all of them.

Step 2) Rule out $N = \infty$ (Next time).