Beschreibungslogik

Übungsblatt 4

Abgabe im PDF-Format bis 17.6.2020, 23:59 Uhr in Stud.IP, Ordner "Abgabe Blatt 4" Bitte nur eine PDF-Datei pro Gruppe, Lizenz "Selbst verfasstes, nicht publiziertes Werk".

- 1. (25%) Welche der folgenden Aussagen sind wahr, welche falsch? Begründe kurz.
 - a) Mit Typelimination kann man nur Erfüllbarkeit von Konzepten bezüglich TBoxen entscheiden, nicht aber Erfüllbarkeit ohne TBoxen.
 - b) Mit Typelimination kann man nicht Subsumtion oder Äquivalenz von Konzepten entscheiden.
 - c) Typelimination hat im Worst Case eine bessere Laufzeit als der Tableau-Algorithmus für \mathcal{ALC} mit TBoxen.
 - d) Disjunktionen erfordern auch bei Typelimination Backtracking.
 - e) Absorption ist für Typelimination keine wirksame Optimierungstechnik. (Denke an das Beispiel aus T4.19.)
 - f) Wenn ein Typ t schlecht in Γ ist, dann gibt es keine Interpretation \mathcal{I} , so dass $\{t_{\mathcal{I}}(d) \mid d \in \Delta^{\mathcal{I}}\} \subseteq \Gamma$ und $t = t_{\mathcal{I}}(d_0)$ für ein $d_0 \in \Delta^{\mathcal{I}}$.
- 2. (25%) Verwende Typelimination um zu entscheiden, ob
 - a) $C_0 = \exists r. \neg A$ erfüllbar bzgl. $\mathcal{T} = \{ \forall r. A \sqsubseteq A, A \sqsubseteq \bot, \forall r. A \sqsubseteq \exists r. A \}$ ist;
 - b) $C_0 = \forall r. \forall r. A$ erfüllbar bzgl. $\mathcal{T} = \{ \neg A \sqsubseteq B, A \sqsubseteq \neg B, \forall r. A \sqsubseteq \bot \}$ ist.

Gib jeweils die konstruierte Folge $\Gamma_0, \Gamma_1, \ldots$ an. Im Fall von Erfüllbarkeit gib das Modell aus dem Beweis von Lemma 5.5 an. Beim Wandeln der TBox in Normalform kannst Du Inklusionen der Form $C \sqsubseteq \bot$ direkt in $\mathsf{NNF}(\neg C)$ wandeln anstatt in $\neg C \sqcup \bot$.

- 3. (25%) Betrachte die folgenden ExpTime-Spiele und bestimme, ob Spielerin 2 eine Gewinnstrategie hat. Wenn dies der Fall ist, gib die Strategie an. Wenn nicht, beschreibe, wie Spielerin 1 spielen muss um zu gewinnen. In beiden Spielen weist die Anfangsbelegung π_0 allen Variablen "falsch" zu.
 - a) $\varphi = (p_1 \wedge p_2 \wedge \neg q_1) \vee (p_3 \wedge p_4 \wedge \neg q_2) \vee (\neg (p_1 \vee p_4) \wedge q_1 \wedge q_2),$

$$\Gamma_1 = \{p_1, \dots, p_4\}, \quad \Gamma_2 = \{q_1, q_2\}$$

b) $\varphi = ((p_1 \leftrightarrow \neg q_1) \land (p_2 \leftrightarrow \neg q_2) \land (p_1 \leftrightarrow p_2)) \lor ((p_1 \leftrightarrow q_1) \land (p_2 \leftrightarrow q_2) \land (p_1 \leftrightarrow \neg p_2)),$

$$\Gamma_1 = \{p_1, p_2\}, \quad \Gamma_2 = \{q_1, q_2\}$$

Bitte wenden.

4. (25%) Die *universelle Rolle* ist ein Rollenname u, dessen Extension in *jeder* Interpretation \mathcal{I} gleich $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ ist. Sei \mathcal{ALC}^u die Erweiterung von \mathcal{ALC} um die universelle Rolle. Zeige, dass das Erfüllbarkeitsproblem für \mathcal{ALC}^u ohne TBoxen ExpTime-hart ist; benutze dazu eine Reduktion vom Erfüllbarkeitsproblem für \mathcal{ALC} mit TBoxen.

Gib die Reduktionsfunktion an, zeige Korrektheit und begründe, dass sie in Polynomialzeit berechnet werden kann.

Hinweis: Wer Kenntnisse über (Polynomialzeit-)Reduktionen auffrischen möchte, kann z. B. Def. 17.8 und 20.1 im Skript Theoretische Informatik 1+2 (in Stud.IP) nachlesen.

5. Zusatzaufgabe (20%)

Erweitere den Typeliminationsalgorithmus aus der Vorlesung auf die Beschreibungslogik \mathcal{ALCI} , also auf \mathcal{ALC} mit inversen Rollen. Der neue Algorithmus soll korrekt und vollständig sein und auf jeder Eingabe terminieren; Beweise sind jedoch nicht gefordert, bis auf folgendes Detail: Erkläre auch, wie die Modellkonstruktion im Korrektheitsbeweis (Definition von \mathcal{I} auf Folie 5.14) geändert werden muss.

Wende den erweiterten Algorithmus auf folgende Eingaben an und überprüfe, ob er das richtige Ergebnis liefert:

a)
$$C_0 = \top$$
, $\mathcal{T} = \{ \top \sqsubseteq \exists r.A \cap \forall r^-. \neg A \}$

b)
$$C_0 = \top$$
, $\mathcal{T} = \{ \top \sqsubseteq \exists r^-.A \cap \forall r.\neg A \}$