Lectures 5 and 6

What we will do today

- Choosing summary statistics
- Model comparison and ABC
- MCMC
- ABC-MCMC
- An example: the divergence time of primates

49

Choosing summary statistics

There are now several methods for

- choosing sets of summary statistics (Fearnhead and Prangle *JRSSB*, 2012)
- choosing from a set of summary statistics (Joyce and Marjoram *SAGMB*, 2007)

For a comparative review of dimension-reduction methods in ABC, see Blum et al. (*Statistical Science*, 2013)

The package abctools in R implements these methods. See Prangle et al (Aust N Z J Stat, 2014) for further details

Model comparison - 1

How do we choose between different models?

Suppose we have p models that might have generated the data.

Assume a prior probability $\pi(\mathcal{M}_i)$ for model $i; \sum_{i=1}^p \pi(\mathcal{M}_i) = 1$

We want to estimate posterior ratios of the model probabilities, for example

$$rac{\mathbb{P}(\mathcal{M}_1|\mathcal{D})}{\mathbb{P}(\mathcal{M}_2|\mathcal{D})}$$

Note that

$$\frac{\mathbb{P}(\mathcal{M}_1|\mathcal{D})}{\mathbb{P}(\mathcal{M}_2|\mathcal{D})} = \frac{\mathbb{P}(\mathcal{D}|\mathcal{M}_1)}{\mathbb{P}(\mathcal{D}|\mathcal{M}_2)} \frac{\pi(\mathcal{M}_1)}{\pi(\mathcal{M}_2)}$$
(4)

51

Model comparison - 2

The term

$$B_{12} := \frac{\mathbb{P}(\mathcal{D}|\mathcal{M}_1)}{\mathbb{P}(\mathcal{D}|\mathcal{M}_2)}$$

is known as the Bayes factor.

If we can estimate this ratio, then we can compute the posterior ratio on left of (4)

We can approximate B_{12} using the relative acceptance rate of the rejection method

Model comparison - 3

Here is a hierarchical implementation:

- Sample a model from the prior for models
- Given the model, sample parameters from the prior for that model
- Simulate data from that model and prior
- Accept the model and parameter if $\rho(\mathcal{D}, \mathcal{D}') \leq \epsilon$; repeat
- Keep track of the acceptance probability for each model

The ratio of acceptance rates is an estimate of B_{12}

53

Model comparison - 4

Next, we consider the effects of the summary statistic aspect.

It turns out that things can get complicated, because

$$B_{12} = \frac{\mathbb{P}(\mathcal{D}|\mathcal{M}_1)}{\mathbb{P}(\mathcal{D}|\mathcal{M}_2)}$$

$$= \frac{\mathbb{P}(\mathcal{D}|S(\mathcal{D}), \mathcal{M}_1) \, \mathbb{P}(S(\mathcal{D})|\mathcal{M}_1)}{\mathbb{P}(\mathcal{D}|S(\mathcal{D}), \mathcal{M}_2) \, \mathbb{P}(S(\mathcal{D})|\mathcal{M}_2)}$$

$$= \frac{\mathbb{P}(\mathcal{D}|S(\mathcal{D}), \mathcal{M}_1)}{\mathbb{P}(\mathcal{D}|S(\mathcal{D}), \mathcal{M}_2)} \, B_{12}^S$$

Thus a summary statistic is sufficient for comparing \mathcal{M}_1 and \mathcal{M}_2 if, and only if,

$$\mathbb{P}(\mathcal{D}|S(\mathcal{D}),\mathcal{M}_1) = \mathbb{P}(\mathcal{D}|S(\mathcal{D}),\mathcal{M}_2)$$

Model comparison - 5

Note that

- \blacksquare Sufficiency for \mathcal{M}_1 or \mathcal{M}_2 alone, or for both models, does not guarantee sufficiency for ranking the models
- If the summary statistic is sufficient for a model \mathcal{M} in which both \mathcal{M}_1 and \mathcal{M}_2 are both nested, then models can be ranked

See Didelot et al (Bayesian Analysis, 2011), Robert et al (PNAS, 2011) for further details

55

Markov Chain Monte Carlo methods

56

MCMC - 1

The idea is to construct an ergodic Markov chain that has $f(\theta|\mathcal{D})$ as its stationary distribution, in the case that normalising constants cannot be computed. Here is Hastings' (Biometrika,1970) classic method:

- 1. Now at θ
- 2. Propose move to θ' according to $q(\theta \to \theta')$
- 3. Calculate the Hastings ratio

$$h = \min\left(1, \frac{\mathbb{P}(\mathcal{D} \mid \theta')\pi(\theta')q(\theta' \to \theta)}{\mathbb{P}(\mathcal{D} \mid \theta)\pi(\theta)q(\theta \to \theta')}\right)$$

4. Accept θ' with probability h, else return θ

MCMC - 2

There are more things to check:

- Is the chain ergodic?
- Does it mix well?
- Is the chain stationary?
- Burn in?
- Diagnostics of the run (no free lunches) see coda package in R for example

58

MCMC - 3

MCMC in evolutionary genetics setting

- Small tweaks in the biology often translate into huge changes in algorithm
- Long development time
- All the usual problems with convergence
- Almost all the effort goes into evaluation of likelihood

ABC-MCMC - 1

Here is an ABC version (Marjoram et al, PNAS, 2003)

- 1. Now at θ
- 2. Propose a move to θ' according to $q(\theta \to \theta')$
- 3. Generate \mathcal{D}' using θ'
- 4. If $\mathcal{D}'=\mathcal{D}$, go to next step, else return θ
- 5. Calculate

$$h = h(\theta, \theta') = \min\left(1, \frac{\pi(\theta')q(\theta' \to \theta)}{\pi(\theta)q(\theta \to \theta')}\right)$$

6. Accept θ' with probability h, else return θ

60

ABC-MCMC - 2

Lemma: The stationary distribution of the chain is, indeed, $f(\theta|\mathcal{D})$.

Proof: In class ...

ABC-MCMC - 3

Here is the practical version, for data \mathcal{D} , summary statistics S

- 4' If $ho(\mathcal{D}',\mathcal{D}) \leq \epsilon$, go to next step, otherwise return θ
- 4" If $\rho(S',S) \leq \epsilon$, go to next step, otherwise return θ

for some suitable metric ρ and approximation level ϵ

Observations now from $f(\theta \mid \rho(\mathcal{D}', \mathcal{D}) \leq \epsilon)$ or $f(\theta \mid \rho(S', S) \leq \epsilon)$

62

Variations on a theme - 1

There have been many variants on the theme. For example, one might use multiple simulations from a given θ to get a better estimate of the likelihood. This is known as the pseudo-marginal method (Beaumont, *Genetics*, 2003; Tavaré et al. *PNAS*, 2003; Andrieu & Roberts *Ann Statist*, 2009). The idea is to simulate pairs of data points $(\theta, \hat{\mathbb{P}}(\mathcal{D}|\theta))$:

2' If at θ' simulate B values of \mathcal{D}' , and use these to estimate $\mathbb{P}(\mathcal{D}|\theta')$ via

$$\hat{\mathbb{P}}(\mathcal{D}|\theta') = \frac{1}{B} \sum_{j=1}^{B} \mathbb{1}(\mathcal{D}' = \mathcal{D})$$

3' If this is 0, stay at θ ; else

Variations on a theme - 2

4' Accept θ' and $\hat{\mathbb{P}}(\mathcal{D}|\theta')$ with probability

$$h = \min \left(1, \frac{\hat{\mathbb{P}}(\mathcal{D} \mid \theta') \pi(\theta') q(\theta' \to \theta)}{\hat{\mathbb{P}}(\mathcal{D} \mid \theta) \pi(\theta) q(\theta \to \theta')} \right)$$

else stay at θ .

64

Variations on a theme - 3

- Convergence an issue?
- These methods can often be started at stationarity, so no burn-in
- If the underlying probability model is complex, simulating data will often not lead to acceptance. Thus need update for parts of the probability model (data augmentation)
- There are versions with varying ϵ ; see Bortot et al (*JASA*, 2007) for example
- There are now many hybrid versions of these approaches (e.g. ABC-within-Gibbs)