A. AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A compound comprising the formula:

JAN 2 5 2005

wherein:

R_I is a polymeric residue;

 Y_1 is O, S or NR₄;

M is O, S or NR₅;

E, is

$$\begin{array}{c|c}
 & Y_2 \\
 & \downarrow \\
 & C \\
 & D_1
\end{array}$$

$$\begin{array}{c|c}
 & & Y_3 \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

E2-4 are independently H, E1 or

- (a) is zero or one;
- (m) is zero or a positive integer;
- (n) and (p) are independently 0 or a positive integer;

 Y_{2-3} are independently O, S or NR_{10} ;

 R_{2-10} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

D₁ and D₂ are independently OH,

$$\begin{array}{c|c} & (IV) & & & & & & \\ \hline N & & & & & & \\ \hline N & & & & \\ \hline R_{13} & & & & \\ \hline \end{array} \begin{array}{c} Y_4 & & & & \\ \hline C & & & \\ \hline C & & \\ \hline R_{12} \end{array} \begin{array}{c} Y_7 & & \\ \hline C & & \\ \hline R_{12} \end{array} \begin{array}{c} Q & & \\ \hline C & & \\ \hline \end{array} \begin{array}{c} Y_7 & & \\ \hline C & & \\ \hline \end{array} ,$$

or a terminal branching group;

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

(q) is zero or a positive integer;

L₁ and L₂ are independently selected bifunctional linkers;

Y₄₋₇ are independently selected from the group consisting of O, S and NR₁₄;

 R_{11-14} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

B₁ and B₂ are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties:

provided that E, are not all H;

and D₁ and D₂ are not both OH.

2. (Original) The compound of claim 1, wherein R₁ further comprises a capping group A, selected from the group consisting of hydrogen, NH₂, OH, CO₂H, C_{1.6} moieties and

$$E_{2} \xrightarrow{ \begin{array}{c|c} E_{1} & & & & \\ \hline \\ & & & & \\ \hline \\ E_{2} & & C \end{array} \xrightarrow{ \begin{array}{c} K_{1} \\ \\ \\ \\ E_{3} \end{array} \xrightarrow{ \begin{array}{c} K_{2} \\ \\ \\ E_{4} \end{array} \xrightarrow{ \begin{array}{c} K_{2} \\ \\ \\ \end{array} \xrightarrow{ \begin{array}{c} K_{2} \\ \end{array} \xrightarrow{ \begin{array}{c} K_{2} \\ \\ \end{array} \xrightarrow{ \begin{array}{c} K_{2} \\ \end{array} \xrightarrow{ \begin{array}$$

3. (Original) A compound of claim 2, comprising the formula:

4. (Original) The compound of claim 1, wherein said terminal branching group comprises the formula:

$$E_{35}$$
 $C - E_{36}$
 E_{38}
 E_{37}

wherein

E₃₅ is

$$\begin{array}{c|c}
 & Y_2 \\
 & \downarrow \\
 & C \\
 & \downarrow \\
 & R_6
\end{array}$$

E₃₆₋₃₈ are independently H, E₃₅ or

$$\begin{array}{c|c}
 & Y_3 \\
 & \parallel \\
 & C \\
 & \downarrow \\
 & R_8
\end{array}$$

(n) and (p) are independently 0 or a positive integer;

 Y_{2-3} are independently O, S or NR_{10} ;

 R_{6-10} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

D'₁ and D'₂ are independently OH,

$$\begin{array}{c|c}
(V) & Y_4 & Y_5 \\
\hline
 & R_{13} & C \\
\end{array}$$

$$\begin{array}{c|c}
 & Y_4 \\
\hline
 & R_{12} \\
\end{array}$$

$$\begin{array}{c|c}
 & Y_5 \\
\hline
 & R_{12} \\
\end{array}$$

$$\begin{array}{c|c}
 & Y_5 \\
\hline
 & R_{12} \\
\end{array}$$

or

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

(q) is zero or a positive integer;

L₁ and L₂ are independently selected bifunctional linkers;

Y₄₋₇ are independently selected from the group consisting of O, S and NR₁₄;

R₁₁₋₁₄ are independently selected from the group consisting of hydrogen,

 C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

B₁ and B₂ are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties;

E₄₅ is

$$- \left(\begin{matrix} R_7 \\ \\ \\ \\ \\ \\ \\ \\ R_8 \end{matrix} \right) \begin{matrix} Y_2 \\ \\ \\ C \end{matrix} - D"_1$$

E₄₆₋₄₈ are independently H, E₄₅ or

$$\begin{array}{c|c}
 & & Y_3 \\
 & & C \\
 & & C \\
 & & C
\end{array}$$

wherein

D''1 and D''2 are independently OH,

$$\begin{array}{c|c}
(IV) & Y_4 \\
\hline
 & N \\
\hline
 & L_1 \\
\hline
 & L_2 \\
\hline
 & C
\end{array}$$

$$\begin{array}{c|c}
Y_4 \\
\hline
 & C
\end{array}$$

$$\begin{array}{c|c}
C \\
\hline
 & C
\end{array}$$

$$\begin{array}{c|c}
C \\
\hline
 & R_{11} \\
\hline
 & C
\end{array}$$

$$\begin{array}{c|c}
C \\
\hline
 & R_{12} \\
\hline
 & q
\end{array}$$

or

- 5. (Currently amended) The compound of claim 3, wherein Y_1 is O.
- 6. (Original) The compound of claim 1, wherein R₁ comprises a polyalkylene oxide residue.
- 7. (Original) The compound of claim 6, wherein R₁ comprises a polyethylene glycol residue.
- 8. (Original) The compound of claim 3, wherein R₁ comprises a polyethylene glycol residue.

9. (Original) The compound of claim 6, wherein R₁ is selected from the group consisting of

$$-C(=Y_8)-(CH_2)_f-O-(CH_2CH_2O)_x-A$$
, $-C(=Y_8)-Y_9-(CH_2)_f-O-(CH_2CH_2O)_x-A$,

$$-C(=Y_8)-NR_{20}-(CH_2)_{1}O-(CH_2CH_2O)_{x}-A$$
, $-(CR_{21}R_{22})_{e}-O-(CH_2)_{1}O-(CH_2CH_2O)_{x}-A$,

$$-NR_{20}-(CH_2)_{f'}O-(CH_2CH_2O)_{x}-A$$
, $-C(=Y_8)-(CH_2)_{f'}O-(CH_2CH_2O)_{x}-(CH_2)_{f'}C(=Y_8)-$

$$-C(=Y_8)-Y_9-(CH_2)_{f'}O-(CH_2CH_2O)_{x}-(CH_2)_{f'}Y_9-C(=Y_8)-$$

$$-C(=Y_8)-NR_{20}-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-NR_{20}-C(=Y_8)-$$

$$-(CR_{21}R_{22})_e$$
-O- $(CH_2)_f$ -O- $(CH_2CH_2O)_x$ - $(CH_2)_f$ -O- $(CR_{21}R_{22})_e$ -, and

wherein:

Y₈ and Y₉ are independently O, S or NR₂₀;

x is the degree of polymerization;

R₂₀, R₂₁ and R₂₂ are independently selected from among H, C₁₋₆ alkyls,

 C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls,

C₁₋₆ alkoxy, phenoxy and C₁₋₆ heteroalkoxy;

e and f are independently zero, one or two; and

A is a capping group.

- 10. (Original) The compound of claim 9, wherein R_1 comprises -O-(CH_2CH_2O)_x and x is a positive integer so that the weight average molecular weight is at least about 20,000.
- 11. (Original) The compound of claim 3, wherein R_1 has a weight average molecular weight of from about 20,000 to about 100,000.
- 12. (Original) The compound of claim 3, wherein R_1 has a weight average molecular weight of from about 25,000 to about 60,000.

13. (Original) A compound of claim 3, comprising the formula

14. (Original) The compound of claim 13, wherein D₁ is

- 15. (Original) The compound of claim 13, wherein D_1 is $\begin{array}{c|c}
 & E_{35} \\
 & C \\
 & E_{36}
 \end{array}$ $E_{38} \quad E_{37}$
- 16. (Original) The compound of claim 1, wherein L_1 is $(CH_2CH_2O)_2$.
- 17. (Original) The compound of claim 1, wherein L₂ is selected from the group consisting of -CH₂-, -CH₂CH₂-, -CH₂C(O)NHCH(CH₃)-, -(CH₂)₂-, -CH₂C(O)NHCH₂-, -(CH₂)₂-NH-, -(CH₂)₂-NH-C(O)(CH₂)₂NH- and -CH₂C(O)NHCH(CH₃CH(CH₃)₂)-.

18. (Original) A compound of claim 1, selected from the group consisting of:

wherein R₁ is a PEG residue and D is selected from the group comprising:

where B is a residue of an amine or a hydroxyl-containing drug.

- 19. (Original) A compound of claim 18, wherein B is a residue of a member of the group consisting of: daunorubicin, doxorubicin; p-aminoaniline mustard, melphalan, Ara-C (cytosine arabinoside), leucine-Ara-C, and gemeitabine
- 20. (Original) A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 1, wherein D₁ is a residue of a biologically active moiety.
- 21. (Original) A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 18.
- 22. (Currently Amended) A method of preparing a polymer conjugate, comprising: reacting a compound of the formula (VIII):

wherein

(v) and (t) are independently 0 or a positive integer up to about 6;

L₁ and L₂ are independently selected bifunctional linkers;

Y₄₋₇ are independently selected from the group consisting of O, S and NR₁₄;

R₁₁₋₁₄ are independently selected from the group consisting of hydrogen,

 C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group; and

B'₁ is a residue of a hydroxyl- or an amine-containing moiety;

with a compound of the formula (IX):

(IX)

wherein

$$E_{5} \text{ is } \qquad \frac{\left(\begin{matrix} R_{7} \\ C \end{matrix} \right) \begin{matrix} Y_{2} \\ C \end{matrix}}{C} - D_{3}$$

 E_{6-8} are independently H, E_5 or

$$\begin{array}{c|c}
 & & Y_3 \\
 & & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

wherein

D₃ and D₄ are independently OH, a leaving group which is capable of reacting with an unprotected amine or hydroxyl or a terminal branching group;

R₁ is a polymeric residue;

Y₁ is O, S or NR₄;

M is O, S or NR;

(n) and (p) are independently 0 or a positive integer;

Y₂₋₃ are independently O, S or NR₁₀; and

R₂₋₁₀ are independently selected from the group consisting of hydrogen,

 C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

provided that E_{6.8} are not all H;

and D₃ and D₄ are not both OH;

under conditions sufficient to cause a polymeric conjugate to be formed.