

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
8. Januar 2004 (08.01.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/004021 A2

(51) Internationale Patentklassifikation⁷: **H01L 41/083**,
41/24

(72) Erfinder; und
(75) Erfinder/Anmelder (*nur für US*): MOHR, Markus
[DE/DE]; Gartenstr. 2 A, 91154 Roth (DE).

(21) Internationales Aktenzeichen: PCT/DE2003/002079

(74) Gemeinsamer Vertreter: SIEMENS AKTIENGESELLSCHAFT; Postfach 22 16 34, 80506 München (DE).

(22) Internationales Anmeldedatum:
23. Juni 2003 (23.06.2003)

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Einreichungssprache: Deutsch

Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
102 29 494.1 1. Juli 2002 (01.07.2002) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): SIEMENS AKTIENGESELLSCHAFT [DE/DE];
Wittelsbacherplatz 2, 80333 München (DE).

[Fortsetzung auf der nächsten Seite]

(54) Title: PIEZO ACTUATOR AND METHOD FOR PRODUCTION THEREOF

(54) Bezeichnung: PIEZOAKTOR SOWIE VERFAHREN ZU DESSEN HERSTELLUNG

(57) Abstract: The invention relates to a piezo actuator with a piezostack (1) and a spacer (10, 11), made from an insulating material and arranged adjacent to the piezostack (1). The spacer (10, 11) is embodied for the fixing of contact elements (4, 5). A contact between the contact elements (4, 5) and the piezostack (1) is established by means of a wiring element (2, 3). A shrink element (12) surrounds the piezoactuator from the outside and fixes the individual components of the piezoactuator.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft einen Piezoaktor mit einem Piezostack (1) und einem aus einem isolierenden Material hergestellten Distanzstück (10, 11), welches benachbart zum Piezostack (1) angeordnet ist. Das Distanzstück (10, 11) ist zur Fixierung von Kontaktlementen (4, 5) ausgebildet. Ein Kontakt zwischen den Kontaktlementen (4, 5) und dem Piezostack (1) wird über ein Verdrahtungselement (2, 3) hergestellt. Ein Schrumpflement (12) umgibt den Piezoaktor von außen und fixiert die einzelnen Bauteile des Piezoaktors.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Beschreibung

Piezoaktor sowie Verfahren zu dessen Herstellung

5 Die vorliegende Erfindung betrifft einen Piezoaktor, insbesondere zur Betätigung einer Ventileinrichtung zum Einspritzen von Kraftstoff für Brennkraftmaschinen sowie ein Verfahren zur Herstellung eines Piezoaktors.

10 Piezoaktoren werden beispielsweise bei Kraftstoffeinspritz- einrichtungen zur Betätigung einer Ventilnadel zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine verwendet. Ein derartiger Piezoaktor ist in der schematischen Explosionsdarstellung in Fig. 3 gezeigt. Der Piezoaktor umfasst einen Piezostack 1, welcher über Drahtkontakte 2, 3 mit jeweils einem Kontaktpin 4, 5 verbunden wird. Um hierbei unbeabsichtigte Kontaktierungen am Piezoaktor zu vermeiden, sind Isolierfolien 6 am Piezostack 1 anzubringen. Nach dem Kontaktieren wird der Piezostack 1 in eine aus einem oberen Gehäuseteil 8 und einem unteren Gehäuseteil 9 bestehende Kunststoffhülse eingebracht und mit einer Silikonmasse 7 vergossen. In Fig. 3 ist in der Explosionsdarstellung die Silikonmasse in ihrer theoretischen Geometrie nach dem Aushärten dargestellt. Da durch das Einbringen einer Vergussmasse mit einer zu hohen Viskosität die Kontaktierdrähte 2, 3 beschädigt werden könnten, muss eine äußerst niedrige Viskosität gewählt werden. Durch diese niedrige Viskosität besteht jedoch die Gefahr, dass die Vergussmasse ausläuft und am Fertigteil sogenannte "Häute" bildet, welche in einem anschließenden zusätzlichen Arbeitsgang aufwendig entfernt werden müssen. Weiterhin sind aufgrund der niedrigen Viskosität der Vergussmasse lange Aushärtezeiten notwendig, in denen die Kontaktpins 4, 5 gegen Lageänderungen fixiert werden müssen. Dies macht die Herstellung der Piezoaktoren besonders kosten- und zeitintensiv und erfordert weiterhin entsprechende Haltevorrichtungen, um Lageänderungen der Kontaktpins 4, 5 zu verhindern.

Ein weiterer Nachteil bei den bekannten Piezoaktoren ist, dass die als Vergussmasse verwendete Silikonmasse bei Kontakt mit Kraftstoffen oder Reinigungsmitteln aufquillt. Hierdurch kann es zu Beschädigungen am Piezoaktor kommen. Dies kann 5 insbesondere bei Verwendung von Piezoaktoren in Kraftstoff-einspritzventilen nicht ausgeschlossen werden.

Es ist daher Aufgabe der vorliegenden Erfindung, einen Piezo-aktor bereitzustellen, welcher einen einfachen und kosten-10 günstigen Aufbau aufweist sowie ein Herstellverfahren zur Herstellung eines Piezoaktors bereitzustellen, welches schnell und kostengünstig durchführbar ist.

Diese Aufgabe wird durch einen Piezoaktor mit den Merkmalen 15 des Patentanspruchs 1 bzw. ein Verfahren mit den Merkmalen des Anspruchs 9 gelöst, die Unteransprüche zeigen jeweils bevorzugte Weiterbildungen der Erfindung.

Der erfindungsgemäße Piezoaktor umfasst einen Piezostack so-20 wie ein aus einem isolierenden Material hergestelltes Dis-tanzstück. Das Distanzstück ist dabei benachbart zum Pie-zostack angeordnet und ist für eine Positionierung von Kon-taktelementen für den Piezostack ausgebildet. Ein Verdra-hungselement stellt einen Kontakt zwischen den Kontaktelemen-25 ten und dem Piezostack her. Die oben genannten Bauteile des Piezoaktors werden dabei von einem Schrumpfelement, welches die Piezoaktorbauteile von außen umgibt, fixiert. Das Schrumpfelement wird dabei über die lose benachbart zueinan-der bzw. verdrahteten Bauteile des Piezoaktors geschoben und 30 anschließend geschrumpft. Durch die beim Schrumpfen des Schrumpfelements entstehenden Kräfte werden die einzelnen Komponenten dabei sicher fixiert. Im Vergleich mit dem Stand der Technik weist der erfindungsgemäße Piezoaktor somit keine Vergussmasse auf, welche aufwendig aushärten muss, so dass 35 insbesondere eine signifikant reduzierte Montagezeit erhalten wird. Weiterhin können die im Stand der Technik notwendigen Isolierfolien sowie der dazu notwendige Montagevorgang ent-

fallen. Darüber hinaus ist keine Nacharbeit aufgrund evtl. ausgelaufener Vergussmasse notwendig. Weiterhin weist der erfindungsgemäße Piezoaktor deutliche Kostenvorteile auf, da im Vergleich mit den Kosten für die Vergussmasse und des weiterhin notwendigen Gehäuses das Schrumpfelement als kostengünstige Massenware bezogen werden kann. Es sei angemerkt, dass das Schrumpfelement besonders bevorzugt mittels Heißluft geschrumpft wird. Weiterhin sei angemerkt, dass die durch das erfindungsgemäße Schrumpfgehäuse aufgebrachte Fixierkraft durch Auswahl unterschiedlichen Schrumpfmaterials hinsichtlich dessen Schrumpfungsverhältnis sowie Auswahl der Schrumpftemperatur in gewissem Umfang eingestellt werden kann. Dadurch kann insbesondere sichergestellt werden, dass ausreichende Fixierkräfte auf die einzelnen Bauteile des Piezoaktors im endmontierten Zustand ausgeübt werden.

Vorzugsweise ist das Schrumpfelement als Schrumpfschlauch ausgebildet, welcher über die vormontierten Bauteile des Piezoaktors übergestreift wird. Gemäß einer anderen bevorzugten Ausgestaltung der Erfindung ist das Schrumpfelement als eine rechteckige oder quadratische Schrumpffolie ausgebildet, welche um die vormontierten Bauteile des Piezoaktors herumgerollt wird, so dass ein in Längsrichtung offener bzw. geschlitzter Schrumpfschlauch entsteht, welcher anschließend über die Bauteile des Piezoaktors aufgeschrumpft wird. Es sei angemerkt, dass es auch möglich ist, den geschlitzten Schrumpfschlauch an der Stoßstelle punktuell oder über die gesamte Schlitzlänge zu verbinden.

Besonders bevorzugt sind die Kontakt elemente integral mit dem Distanzstück ausgebildet. Dies kann beispielsweise dadurch realisiert werden, dass bei der Herstellung des Distanzstückes mittels Gießen, die Kontakt elemente mit eingegossen werden.

Gemäß einer anderen bevorzugten Ausgestaltung der vorliegenden Erfindung sind die Kontakt elemente in im Distanzstück ge-

bildeten Aussparungen angeordnet. Beispielsweise sind als Kontaktelemente zwei im Wesentlichen zylinderförmige Kontakt-
pins vorgesehen, welche in eine entsprechend gebildete Aus-
sparung im Distanzstück eingeschoben werden können.

5

Gemäß einer noch anderen bevorzugten Ausgestaltung der vorliegenden Erfindung sind die Kontaktelemente nur an einem Abschnitt, z.B. an einem Punkt oder einer Umfangslinie, mit dem Distanzstück verbunden. Dies kann beispielsweise mittels Kleben erfolgen. Eine abschließende Fixierung der Kontaktelemente am Distanzstück erfolgt dabei mittels des Schrumpfschlauchs. Durch diese Anordnung der Kontaktelemente können diese in gewissem Umfang frei schwingen und somit auch in gewissem Umfang Relativbewegungen zwischen den Kontaktelementen und weiteren mit diesen in Verbindung stehenden Bauteilen ohne Beschädigung des Piezoaktors ermöglichen.

10

15

Vorzugsweise ist das Schrumpfelement an seiner Innenseite mit einem Klebstoff beschichtet. Dadurch kann eine noch bessere Fixierung der Piezoaktorbauteile durch den aufgeschrumpften Schrumpfschlauch ermöglicht werden.

20

25

30

Gemäß einer weiteren bevorzugten Ausgestaltung der vorliegenden Erfindung sind die Kontaktelemente derart ausgebildet, dass ein Verdrehen des Kontaktelements gegenüber dem Distanzstück verhindert wird. Dies kann beispielsweise dadurch erreicht werden, dass die Kontaktelemente als Dreikantstab, Vierkantstab oder Vieleckstab ausgebildet sind, oder dass die Kontaktelemente ein vorstehendes Element als Verdrehsicherung oder eine Rändelung aufweisen.

35

Beim erfindungsgemäßen Verfahren zur Herstellung eines Piezoaktors wird zuerst der Piezostack und das Distanzstück hergestellt. Anschließend wird das Distanzstück benachbart zum Piezostack angeordnet und das Distanzstück mit Kontaktelementen bestückt. Wie vorher beschrieben, ist hierzu eine Alternative, dass die Kontaktelemente integral bei einem Gießen

des Distanzstücks in dieses integriert werden. Anschließend erfolgt eine Verdrahtung der Kontaktlemente mit dem Piezostack mittels entsprechender Verdrahtungselemente, so dass eine teilvormontierte Einheit entsteht. An dieser teilvormontierten Einheit wird an deren Außenseite ein Schrumpfelement angeordnet, welches anschließend durch Schrumpfen die Bauteile der teilvormontierten Einheit fixiert. Beim erfindungsgemäßen Verfahren kann somit auf das aufwendige Vergießen des Piezostacks mit kontaktierten Kontaktlementen und das Aushärten verzichtet werden. Dadurch wird die zur Herstellung des Piezoaktors benötigte Zeit deutlich verringert. Weiterhin sind erfindungsgemäß keine aufwendigen Nachbearbeitungsschritte mehr notwendig. Der Piezoaktor kann unmittelbar nach dem Schrumpfen des Schrumpfelements ohne Aushärtezeit o.ä.

10 verwendet werden. Eine vergrößerte Fixierkraft kann dabei erhalten werden, wenn die Innenseite des Schrumpfelements mit einem Klebstoff versehen wird, welcher beim Schrumpfen des Schrumpfelements eine zusätzliche Fixierkraft zur Fixierung der Bauteile des Piezoaktors bereitstellt.

20 · Es sei angemerkt, dass die teilvormontierte Einheit auf verschiedene Arten erhalten werden kann. Entweder durch Fixierung der Distanzstücke und anschließendes Positionieren beim Schrumpfen (die Verdrahtung ist in der Regel sehr elastisch und hält die Distanzstücke nicht auf Position) oder die Distanzstücke werden mittels Kleber oder doppelseitigem Klebeband auf dem Stack fixiert, wodurch sowohl beim Verdrahten wie auch beim Schrumpfen keine zusätzliche Fixierung nötig ist.

25 30 Nachfolgend wird unter Bezugnahme auf die Zeichnung ein bevorzugtes Ausführungsbeispiel der vorliegenden Erfindung beschrieben. In der Zeichnung ist:

35 Figur 1 eine schematische Explosionsdarstellung eines Piezoaktors gemäß einem Ausführungsbeispiel der vorliegenden Erfindung,

Figur 2 eine Schnittansicht des Piezoaktors im montierten Zustand gemäß dem erfindungsgemäßen Ausführungsbeispiel, und

5

Figur 3 eine schematische Explosionsdarstellung eines Piezoaktors gemäß dem Stand der Technik.

Nachfolgend wird unter Bezugnahme auf die Fig. 1 und 2 ein
10 Ausführungsbeispiel eines Piezoaktors gemäß der vorliegenden Erfindung beschrieben.

Wie in Fig. 1 gezeigt, umfasst der erfindungsgemäße Piezoaktor einen im Wesentlichen quaderförmigen Piezostack 1, welcher über Drahtkontakte 2, 3 jeweils mittels einem Kontaktpin 4, 5 verbunden ist. Zwischen den Drahtkontakten 2, 3 und dem Piezostack 1 ist ein erstes Distanzstück 10 und ein zweites Distanzstück 11 angeordnet. Die Distanzstücke sind aus einem isolierenden Material hergestellt und werden im Voraus bei-
15 spielsweise mittels Spritzgießen o.ä. hergestellt. In den Distanzstücken 10, 11 ist jeweils eine Aussparung 13 bzw. 14 vorgesehen, um je einen Kontaktpin 4 bzw. 5 aufzunehmen. Wie in Fig. 1 gezeigt, sind die Kontaktpins im Wesentlichen zy- linderförmig und somit sind die Aussparungen 13, 14 in den
20 Distanzstücken entsprechend gebildet. Um ein Verdrehen der Kontaktpins 4, 5 im montierten Zustand in den Distanzstücken 10, 11 zu verhindern, sind an den Distanzstücken vorstehende Bereiche 15 gebildet, welche beispielsweise mittels teilwei-
25 sem Rändeln der Kontaktpins hergestellt werden können. Wie aus Fig. 1 ersichtlich ist, können die Kontaktpins 4, 5 ein- fach von oben in die Distanzstücke 10, 11 eingeschoben wer-
30 den. Um ein Herausfallen der Kontaktpins 4, 5 zu verhindern, weisen die Distanzstücke 10, 11 an ihrem unteren Ende jeweils einen Anschlag 16 bzw. 17 auf. Zur richtigen Positionierung
35 der Kontaktpins 4, 5 kann auch eine Presspassung zwischen Distanzstück und dem Pin vorgesehen werden.

Weiterhin umfasst der erfindungsgemäße Piezoaktor ein Schrumpflement 12, welches den äußeren Abschluss des Piezoaktors bildet. In Fig. 1 ist das Schrumpflement 12 in seiner theoretischen Geometrie nach dem Schrumpfen über die aus den 5 oben erwähnten Bauteilen vormontierten Einheit dargestellt. Vor dem Schrumpfen weist das Schrumpflement eine schlauchförmige Gestalt auf.

Die Herstellung des erfindungsgemäßen Piezoaktors ist dabei 10 wie folgt: In einem ersten Schritt wird in bekannter Weise der Piezostack 1 und die Distanzstücke 10 und 11 separat hergestellt. Dabei können die Kontaktpins 4, 5 entweder integral gleich bei der Herstellung der Distanzstücke in diese integriert werden, oder sie werden nach dem Herstellen der Dis- 15 tanzstücke 10, 11 in die entsprechend gebildeten Aussparungen 13, 14 eingeschoben. Anschließend werden die Distanzstücke mit den montierten bzw. integralen Kontaktpins 4, 5 benachbart zum Piezostack 1 angeordnet und die Drahtkontakte 2, 3 werden zur Kontaktierung der Kontaktpins 4, 5 mit dem Pie- 20 zostack 1 in bekannter Weise mit diesen Bauteilen verdrahtet. Nach der Verdrahtung weisen diese derart vormontierten Bau- teile des Piezoaktors schon eine gewisse Eigenstabilität auf, so dass keine zusätzlichen Einrichtungen zum Halten einzelner Bauteile in der vormontierten Einheit notwendig sind. An- 25 schließend wird ein Schrumpfschlauch 12 lose über die vormon- tierte Baueinheit geschoben und anschließend mittels Schrumpfen, beispielsweise mittels Heißluft, zur endgültigen Fixie- rung der Bauteile des Piezoaktors aufgeschrumpft. Somit ist eine kostengünstige und schnelle Montage des Piezoaktors si- 30 chergestellt.

Erfindungsgemäß wird somit eine besonders kompakte Bauweise des Piezoaktors ermöglicht. Weiterhin ergeben sich keine Probleme infolge des Quellens einer im Stand der Technik ver- 35 wendeten Vergussmasse bei Eindringen von Kraftstoffen oder Reinigungsmitteln in den Piezoaktor, da das isolierende Mate- rial für die Distanzstücke 10, 11 beliebig auswählbar ist.

Weiterhin erfolgt bei der Montage des erfindungsgemäßem Piezoaktors keine Ausdünstung von Lösungsmitteln. Da erfindungsgemäß weiterhin das Gehäuse durch den billigen und ein geringes Gewicht aufweisenden Schrumpfschlauch ersetzt wird, ergibt sich weiterhin eine Gewichtersparnis beim erfindungsgemäßem Piezoaktor.

Der erfindungsgemäße Piezoaktor wird insbesondere als Aktor zur Betätigung von Einspritzventilen zur Einspritzung von Kraftstoff, beispielsweise bei Speichereinspritzsystemen, verwendet. Da derartige Piezoaktoren in Serienfertigung hergestellt werden, ergeben sich große herstellungsbedingte Kostenvorteile durch die vorliegende Erfindung.

Die vorhergehende Beschreibung des Ausführungsbeispiels gemäß der vorliegenden Erfindung dient nur zu illustrativen Zwecken und nicht zum Zwecke der Beschränkung der Erfindung. Im Rahmen der Erfindung sind verschiedene Änderungen und Modifikationen möglich, ohne den Umfang der Erfindung sowie ihrer Äquivalente zu verlassen.

Patentansprüche

1. Piezoaktor, insbesondere zur Betätigung einer Ventileinrichtung zum Einspritzen von Kraftstoff, umfassend:
 - 5 - einen Piezostack (1),
 - ein aus einem isolierenden Material hergestelltes Distanzstück (10, 11), das benachbart zum Piezostack (1) angeordnet ist, wobei das Distanzstück (10, 11) zur Positionierung von Kontaktelementen (4, 5) für den Piezostack (1) ausgebildet ist,
 - 10 - ein Verdrahtungselement (2, 3) zur Bereitstellung eines elektrischen Kontaktes zwischen den Kontaktelementen (4, 5) und dem Piezostack (1), und
 - ein Schrumpfelement (12), welches den Piezoaktor von außen umgibt und im geschrumpften Zustand die Bauteile des Piezoaktors fixiert.
2. Piezoaktor nach Anspruch 1, dadurch gekennzeichnet, dass das Schrumpfelement (12) als Schrumpfschlauch oder als Schrumpffolie ausgebildet ist.
3. Piezoaktor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Kontaktelement (4, 5) integral im Distanzstück (10, 11) gebildet ist.
- 25 4. Piezoaktor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Kontaktelement (4, 5) in im Distanzstück (10, 11) gebildeten Aussparungen (13, 14) angeordnet ist.
- 30 5. Piezoaktor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Kontaktelement (4, 5) an einem Abschnitt am Distanzstück mit diesem verbunden ist und mittels des Schrumpfelements am Distanzstück fixierbar ist.

10

6. Piezoaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Schrumpfelement (12) an seiner Innenseite einen Klebstoff aufweist.

5 7. Piezoaktor nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass das Kontaktelement (4, 5) derart ausgebildet ist, dass es im montierten Zustand im Distanzstück (10, 11) gegen ein Verdrehen gegenüber dem Distanzstück (10, 11) gesichert ist.

10 8. Piezoaktor nach Anspruch 7, dadurch gekennzeichnet, dass die Kontaktelemente (4, 5) als zwei Kontaktpins ausgebildet sind, wobei die Kontakt pins eine geometrische Gestalt von Dreikantstäben oder Vierkantstäben oder Vieleckstäben aufweisen oder wobei die Kontakt pins wenigstens ein vorstehendes Element als Verdrehsicherung aufweisen.

15 9. Verfahren zur Herstellung eines Piezoaktors, umfassend die Schritte:

- Herstellen eines Piezostacks (1),
- Herstellen eines Distanzstücks (10, 11) aus einem isolierenden Material,
- Anordnen von Kontaktelementen (4, 5) am Distanzstück (10, 11),
- Anordnen des Distanzstücks (10, 11) benachbart zum Piezostack (1),
- Verdrahten der Kontaktelemente (4, 5) mit dem Piezostack (1) mittels eines Verdrahtungselements (2, 3), so dass eine vormontierte Einheit erhalten wird,
- Anordnen eines Schrumpfelements (12) an der Außenseite der vormontierten Einheit, und
- Schrumpfen des Schrumpfelements (12) zur Fixierung der Bauteile der vormontierten Einheit.

20 30 35 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Kontaktelemente (4, 5) bei der Herstel-

11

lung des Distanzstücks (10, 11) integral mit diesem, insbesondere mittels Gießen, gebildet werden.

11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Kontaktelemente (4, 5) in im Distanzstück (10, 11) ausgebildeten Aussparungen (13, 14) angeordnet werden.

12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Innenseite des Schrumpfelements (12) einen Klebstoff aufweist, welcher beim Schrumpfen des Schrumpfelements (12) eine zusätzliche Fixierung der Bauteile der vormontierten Einheit ermöglicht.

1/2

FIG 1

FIG 2

FIG 3 Stand der Technik

THIS PAGE BLANK (USPTO)

Docket # 53-03P12931

Applic. #

Applicant: Reindell Willgast et al.

Lerner and Greenberg, P.A.
Post Office Box 2480
Hollywood, FL 33022-2480
Tel: (954) 925-1100 Fax: (954) 925-1101