MATH1510 - Discrete Mathematics Graphs

University of Newcastle

University of Newcastle

MATH1510 - Graphs

1 / 18

Recap: Planar graphs

- A graph G is planar if a representation of it can be drawn on the plane without any edges crossing. (Such a drawing we call a planar configuration of G.)
- When a planar graph is drawn with no edge crossings, its edges divide the plane into regions called faces. The area *outside* the graph is also a face.
- If a graph G is in a planar configuration, the dual graph G^* has
 - ullet a vertex of G^* for each face of G,
 - \bullet an edge between two vertices of G^* for each edge separating two faces of G
 - a face of G^* for each vertex of G.

Euler's formula

Theorem (Euler, 1750)

If G is a connected planar graph with v vertices, e edges and f faces, then f + v = e + 2.

Proof

We proceed by induction on e, the number of edges. Basis Step: For e = 1, there are two cases to check:

- a loop at a single vertex: v = 1, e = 1, f = 2
- and and edge connecting two distinct vertices: v = 2, e = 1, f = 1

University of Newcastle

MATH1510 - Graphs

2 / 1

Proof (continued)

Inductive Step: Suppose the formula is true for all connected planar graphs with k edges. Let G be any connected planar graph with k+1 edges. We will remove an edge giving a new graph G' with only k edges.

- Case 1. If G has a vertex of degree 1, remove it and the incident edge to get a graph G': v' = v 1, e' = e 1, f' = f.
- Case 2. If G has no vertices of degree 1, then G contains a cycle. Let X be an edge in this cycle, then X separates a face inside the cycle from a face outside the cycle. Remove X to get a graph G': Y' = Y, E' = E - 1, E' = E - 1.

In both cases the inductive hypothesis v' + f' = e' + 2 implies v + f = e + 2, and so the inductive step is proven.

Upper bounds on edges

Using Euler's theorem on a planar simple graph, upper bounds on the number of edges in the graph can be obtained.

Corollary (Upper bound on edges)

If G is a connected, simple planar graph with at least 3 vertices, then $e \leqslant 3v-6$

Proof.

Let G^* be the dual graph of G then since G is simple $\delta(v_i^*) \ge 3$ for each vertex v_i^* if G^* .

Consequently, the sum of $\delta(v_i^*)$ over all dual vertices v_i^* is at least $3|V^*|=3f$.

But
$$f = 2 + e - v$$
, so $2e \geqslant 3(2 + e - v)$ giving $e \leqslant 3v - 6$.

University of Newcastle

MATH1510 - Graphs

5 / 18

Proving non-planarity (the first example)

Upper bound on edges

G connected, simple, planar, $v \geqslant 3 \implies e \leqslant 3v - 6$

Corollary

K₅ is not planar.

Proof.

$$e = 10 > 9 = 3 \cdot 5 - 6 = 3v - 6.$$

Q: Can we ever get e = 3v - 6?

A: Yes, if and only if all vertices v^* in the dual graph G^* have $\delta(v^*) = 3$, meaning all faces in G are triangles — G is a triangulation of the plane.

Proving non-planarity (the second example)

Corollary (Upper bound on edges for bipartite graph)

If a connected, simple planar graph contains no triangular faces, then $e \le 2v - 4$.

Note: Bipartite graphs have no triangular faces, so they must have $e \le 2v - 4$ if they are to be planar.

Corollary

 $K_{3,3}$ is not planar.

University of Newcastle

MATH1510 - Graphs

7 / 18

Graphs containing K_5 and $K_{3,3}$

Q: How do we tell if a graph is *planar* without actually finding a way of drawing it without crossings?

Certainly, it can't contain a subgraph which is a K_5 or a $K_{3,3}$. Nor can it contain subgraphs that are trivial modifications of these:

A: The surprising fact is that this is as bad as it gets: If there is no obstruction in form of a K_5 or $K_{3,3}$ inside our graph G, then G can be drawn in the plane without crossings.

University of Newcastle

MATH1510 - Graphs

8 / 18

Series reduction

Removing a vertex of degree 2 and joining the edges is called a series reduction. If a graph G_2 is obtained from a graph G_2 by a sequence of series reductions, we say G_1 and G_2 are homeomorphic to each other. More precisely, we have the following

Definition

Two graphs G_1 and G_2 are homeomorhic if there is a graph H which can be obtained from both G_1 and G_2 by a sequence of series reductions.

University of Newcastle

MATH1510 - Graphs

9 / 1

Kuratowski's Theorem

Theorem (Kuratowski's Theorem, 1935)

A graph is planar if and only if it does not contain a subgraph homeomorphic to K_5 or $K_{3,3}$.

"Only if" is obvious. "If" is difficult, beyond MATH1510.

Algorithmic complexity

Planarity testing can be done in time that grows linear in the number of vertices.

University of Newcastle

MATH1510 - Graphs

11 / 18

 K_5 in Q_4

K_5 in Q_4

University of Newcastle

MATH1510 - Graphs

13 / 18

K_5 in Q_4

University of Newcastl

MATH1510 - Graphs

15 / 18

 K_5 in Q_4

K_5 in Q_4

University of Newcastl

MATH1510 - Graphs

17 / 18

Summary

Planar graphs. can be drawn without crossings in the plane (or on the sphere)

 $\mathsf{Dual}\;\mathsf{graphs}.\;\;\mathsf{vertices}\longleftrightarrow\mathsf{faces}$

Euler's formula. f + v = e + 2

Series reduction. remove vertex of degree 2 and connect its neighbours by a new edge

Homeomorphic. two graphs that have a common series reduction

Kuratowski's theorem. planar \iff no subgraph homeomorphic to K_5 or $K_{3,3}$