$$E_{tot} = E_{TB} + E_{disp} + E_{charge} + E_{rep}$$

$$E_{TB} =$$

$$E_{disp} =$$

$$E_{charge} =$$

1 Total Energy for GFN2-xTB

$$E_{GFN2-xTB} = E_{rep}^{(0)} + E_{disp}^{(0,1,2)} + E_{EHT}^{(1)} + E_{IES+IXC}^{(2)} + E_{AES+AXC}^{(2)} + E_{IES+IXC}^{(3)}$$
$$= E_{rep} + E_{disp}^{D4'} + E_{EHT} + E_{\gamma} + E_{AES} + E_{AXC} + E_{\Gamma}^{GFN2}$$
(1)

1.1 Repulsion Energy

$$E_{rep} = \frac{1}{2} \sum_{A,B} \frac{Z_A^{eff} Z_B^{eff}}{R_{AB}} e^{-\sqrt{a_A a_B} (R_{AB})^{(k_f)}}$$

$$k_f = \begin{cases} 1 & if A, B \in \{H, He\} \\ \frac{3}{2} & otherwise \end{cases}$$

$$(2)$$

 Z^{eff} and a are variables fitted for each element. A,B are the labels of atoms. Since we only have C and H in our systems we can simplify this quite a bit in code. R_{AB} is the distance between the A and B atoms.

1.2 Extended Hückel Theory Energy

$$E_{EHT} = \sum_{\mu\nu} P_{\mu\nu} + H_{\mu\nu}^{EHT} \tag{3}$$

where μ and ν are AO indecies, l and l' index shells. Both AO's are associated with an atom labled A and B.

$$P_{\mu\nu} = P_{\mu\nu}^{(0)} + \delta P_{\mu\nu}$$

$$P_{\mu\nu}^{(0)} = ??$$

$$\delta P_{\mu\nu} = ??$$

$$H_{\mu\nu}^{EHT} = \frac{1}{2} K_{AB}^{ll'} S_{\mu\nu} (H_{\mu\mu} + H_{\nu\nu})$$

$$\cdot X(EN_A, EN_B)$$

$$\cdot \Pi(R_{AB}, l, l')$$

$$\cdot Y(\zeta_l^A, \zeta_l^B), \forall \mu \in l(A), \nu \in l'(B)$$
(4)

 $K_{AB}^{ll'}$ is a element and shell specific fitted constant however, in GFN2 it only depends on the shells. $S_{\mu\nu} = \langle \phi_{\mu} | \phi_{\nu} \rangle$ is just the overlap of the orbitals. In GFN2

 $H_{\kappa\kappa} = h_A^l - \delta h_{CN_A'}^l CN_A'$ where CN_A' is the modified GFN2-type Coordinate Number for the element of atom A. h_A^l and $\delta h_{CN_A'}^l$ are both fitted constants. EN_A is the electronegativity of the element of atom A.

$$X(EN_A, EN_B) = 1 + k_{EN}\Delta E N_{AB}^2$$

$$k_{EN} = 0.02 \text{ in GFN2}$$

$$\Delta E N_{AB}^2 = (EN_A - EN_B)^2$$
(5)

The electronegativity for C and H are 2.55 and 2.20 according to wikipedia. Thus here is a table for the combinations we will be working with:

$$\begin{array}{c|cccc} A & B & X(EN_A, EN_B) \\ \hline C & C & 1 \\ C & H & 1 + 0.02 \cdot (0.35^2) \\ H & C & 1 + 0.02 \cdot (0.35^2) \\ H & H & 1 \end{array}$$

$$\Pi(R_{AB}, l, l') = \left(1 + k_{A, l}^{\text{poly}} \left(\frac{R_{AB}}{R_{\text{cov}, AB}}\right)^{\frac{1}{2}}\right) \left(1 + k_{B, l'}^{\text{poly}} \left(\frac{R_{AB}}{R_{\text{cov}, AB}}\right)^{\frac{1}{2}}\right)$$
(6)

$$Y(\zeta_l^A, \zeta_{l'}^B) = \left(\frac{2\sqrt{\zeta_l^A \zeta_{l'}^B}}{\zeta_l^A + \zeta_{l'}^B}\right)^{\frac{1}{2}}$$

$$\tag{7}$$

Here, ζ_l^A are the STO exponents of the GFN2-xTB AO basis. Slater Type Orbitals are defined as such:

$$\chi_{\zeta,n,l,m}(r,\theta,\varphi) = NY_{l,m}(\theta,\varphi)r^{n-1}e^{-\zeta r}$$

N is a normalisation constant, Y are spherical harmonic funtions, n, l, m are the quantum numbers for the AO. r, θ, φ are polar 3D coordinates. ζ determines the radial extent of the STO, a large value gives rise to a function that is "tight" around the nucleus and a small value gives a more "diffuse" function. This ζ is the one mentioned in the Y term of E_{EHT} and is a value fitted when constructing the basis set, thus it is given to us.

 $^{^1\}mathrm{p}.2109, \quad \mathrm{https://www.taylorfrancis.com/books/mono/10.1201/b12286/crc-handbook-chemistry-physics-william-haynes}$

1.3 Isotropic electrostatic and XC energy

1.3.1 Second order

$$E_{\gamma} = \frac{1}{2} \sum_{A,B}^{N_{atoms}} \sum_{l \in A} \sum_{l' \in B} q_l q_{l'} \gamma_{AB,ll'}$$

$$\gamma_{AB,ll'} = \frac{1}{\sqrt{R_{AB}^2 + \eta_{AB,ll'}^{-2}}}$$

$$\eta_{AB,ll'} = \frac{1}{2} \left[\eta_A (1 + k_A^l) + \eta_B (1 + k_B^{l'}) \right]$$
(8)

 q_l is a partial muliken charge. η_A and η_B are element-specific fit parameters, while k_A^l and $k_B^{l'}$ are element-specific scaling factors for the individual shells $(k_A^l=0 \text{ when } l=0)$.

1.3.2 Third order

$$E_{\Gamma}^{GFN2} = \frac{1}{3} \sum_{A}^{N_{atoms}} \sum_{l \in A} (q_l)^3 K_l^{\Gamma} \Gamma_A \tag{9}$$

 K_l^{Γ} is a shell specific constant common for all elements and Γ_A is an element specific constant.

1.4 Anisotropic electrostatic energy

$$E_{AES} = E_{q\mu} + E_{q\Theta} + E_{\mu\mu}$$

$$= \frac{1}{2} \sum_{A,B} \{ f_3(R_{AB}) [q_A(\boldsymbol{\mu}_B^T \boldsymbol{R}_{BA}) + q_B(\boldsymbol{\mu}_A^T \boldsymbol{R}_{AB})]$$

$$+ f_5(R_{AB}) [q_A \boldsymbol{R}_{AB}^T \boldsymbol{\Theta}_B \boldsymbol{R}_{AB} + q_B \boldsymbol{R}_{AB}^T \boldsymbol{\Theta}_A \boldsymbol{R}_{AB}$$

$$- 3(\boldsymbol{\mu}_A^T \boldsymbol{R}_{AB}) (\boldsymbol{\mu}_B^T \boldsymbol{R}_{AB}) + (\boldsymbol{\mu}_A^T \boldsymbol{\mu}_B) R_{AB}^2] \}$$

$$(10)$$

What is \mathbf{R} ? If T is transposition then it has to be a tensor of some kind, we believe it to be a coloumn vector due to the sandwiching of Θ . $\boldsymbol{\mu}_A$ is the cumulative atomic dipole moment of atom A (probably a coloumn vector) and $\boldsymbol{\Theta}_A$ is the corresponding traceless quadrupole moment (probably a 2 dimensional matrix). The curly braces and brackets are used in the same way as normal

parenthesis for showing order of operations. q_A is the atomic charge of atom A.

$$\Theta_A^{\alpha\beta} = \frac{3}{2}\theta_A^{\alpha\beta} - \frac{\delta_{\alpha\beta}}{2}\left(\theta_A^{xx} + \theta_A^{yy} + \theta_A^{zz}\right) \tag{11}$$

$$\theta_A^{\alpha\beta} = \sum_{\kappa \in A} \sum_{\lambda} P_{\lambda} \left(\alpha_A D_{\lambda\kappa}^{\beta} + \beta_A D_{\lambda\kappa}^{\alpha} - \alpha_A \beta_A S_{\lambda\kappa} - Q_{\lambda\kappa}^{\alpha\beta} \right) \tag{12}$$

$$q_A = Z_A - \sum_{\kappa \in A} \sum_{\lambda} P_{\kappa \lambda} S_{\lambda \kappa} \tag{13}$$

$$\mu_A^{\alpha} = \sum_{\kappa \in A} \sum_{\lambda} P_{\kappa\lambda} \left(\alpha_A S_{\kappa\lambda} - D_{\kappa\lambda}^{\alpha} \right) \tag{14}$$

$$D_{\lambda\kappa}^{\alpha} = \langle \phi_{\lambda} | \alpha_i | \phi_{\kappa} \rangle \tag{15}$$

$$D^{\alpha}_{\lambda\kappa} = \langle \phi_{\lambda} | \alpha_{i} | \phi_{\kappa} \rangle \tag{15}$$

$$Q^{\alpha\beta}_{\lambda\kappa} = \langle \phi_{\lambda} | \alpha_{i} \beta_{i} | \phi_{\kappa} \rangle \tag{16}$$

 α and β are Cartesian components (wtf is this? why do they dispear when we use Θ and so on?? Is it because they are used to index in the matrix and vector? is $\delta_{\alpha\beta}$ just the delta function then, that would make some sence. But what is α_i then!?)

$$f_n(R_{AB}) = \frac{f_{damp}(a_n, R_{AB})}{R_{AB}^n} = \frac{1}{R_{AB}^n} \frac{1}{1 + 6\left(\frac{R_0^{AB}}{R_{AB}}\right)^{a_n}}$$
(17)

$$R_0^{AB} = 0.5(R_0^{A'} + R_0^{B'}) (18)$$

$$R_0^{A'} = \begin{cases} R_0^A + \frac{R_{max} - R_0^A}{1 + exp[-4(CN'_A - N_{val} - \Delta_{val})]} & \text{if } N_{val} \text{ is given} \\ 5.0 \text{ bohrs} & \text{otherwise} \end{cases}$$
(19)

$$R_{max} = 5.0 \text{ bohrs} \tag{20}$$

$$\Delta_{val} = 1.2 \tag{21}$$

 R_0^A is a fitted value for 12 elements and 5.0 for the rest. a_n are adjusted global parameters.

1.5 Anisotropic XC energy

$$E_{AXC} = \sum_{A} (f_{XC}^{\mu_A} |\boldsymbol{\mu}_A|^2 + f_{XC}^{\Theta_A} ||\boldsymbol{\Theta}_A||^2)$$
 (22)

Where $f_{XC}^{\mu_A}$ and $f_{XC}^{\Theta_A}$ are fitted values. What norms are these?