Japanese Kokai Patent Application No. Sho 52[1977]-89070

PTO 02-4682

SEMICONDUCTOR DEVICE

Hiromoto Serizawa and Shoichi Fukai

UNITED STATES PATENT AND TRADEMARK OFFICE WASHINGTON, D.C. SEPTEMBER 2002
TRANSLATED BY THE RALPH MCELROY TRANSLATION COMPANY

JAPANESE PATENT OFFICE PATENT JOURNAL (A)

KOKAI PATENT APPLICATION NO. SHO 52[1977]-89070

Int. Cl. ² :	H 01 L	21/20
	G 02 B	5/14
	H 01 L	31/00
	H 01 L	33/00

Sequence Nos. for Office Use: 6684-57 7377-57

6513-57 7448-23

Filing No.: Sho 51[1976]-5611

Filing Date: January 20, 1976

Publication Date: July 26, 1977

No. of Inventions: 1 (Total of 4 pages)

Examination Request: Not filed

SEMICONDUCTOR DEVICE

[Handotai sochi]

Inventors: Hiromoto Serizawa and

Shoichi Fukai

Applicant: Matsushita Electric Industrial Co.,

Ltd.

[There are no amendments to this patent.]

Claims

1. A type of semiconductor device characterized by the fact that it has a hetero-junction of Si, Ge, or group II-VI, group III-V, or other cubic crystal compound semiconductor and tetragonal crystal-structure or cubic crystal-structure ABO₃ perovskite type

oxide (where A is an element selected from K, Ba, Sr and Pb, and B is an element selected from the group of Ti, Ta, Zr, Fe, Sn and Ce).

- 2. The semiconductor device described in Claim 1 characterized by the fact that said hetero-junction is formed from the (100) plane of said Si, Ge, or cubic crystal compound semiconductor and the (001) plane of said tetragonal crystal-structure perovskite type oxide.
- 3. The semiconductor device described in Claim 1 characterized by the fact that said hetero-junction is formed from the (100) plane of said Si, Ge or cubic crystal compound semiconductor and the (100) plane of said cubic crystal-structure perovskite type oxide.

Detailed explanation of the invention

This invention pertains to a type of semiconductor device. More specifically, this invention is for obtaining a type of semiconductor base material for application in photo-semiconductors and other semiconductor devices.

That is, the purpose of this invention is provide a type semiconductor substrate for application in various semiconductor devices characterized by the fact that it has a hetero-junction of Si, Ge, or GaAs, GaP, or other group III-V compound semiconductor, or ZnSe, ZnTe, or other group II-VI compound semiconductor and BaTiO₃, SrTiO₃, or another tetragonal crystal-structure or cubic crystal-structure oxide of Ti, Ta, Zr, Fe, Sn or Ce generally represented as perovskite type ABO₃.

When epitaxial growth of hetero substances is used to form a double hetero-structure of $Ga_xAl_{1-x}As$ for the GaAs semiconductor laser, the characteristics are improved significantly. Consequently, this phenomenon has attracted significant attention. In the prior art, research has been undertaken on junctions for many types of semiconductors, such as GaAs-Ge, ZnSe-ZnTe, ZnSe-GaAs, etc. However, for the conventional junction, even when it is referred to as a hetero-junction, it is still an epitaxial structure between semiconductors. Little study has been made on the epitaxial junctions between semiconductor and dielectric, insulator, metal, etc. On the other hand, many studies have been made on sapphire Al_2O_3 and spinel (MgO * Al_2O_3) for use as insulating substrates in vapor phase growth of Si. On such substrates, epitaxial growth of Si is performed. In addition, GaAs or other crystal has been epitaxially grown on Al_2O_5 , $MgAl_2O_4$, BeO, etc.

As far as growth of oxide insulators on semiconductor is concerned, examples include SiO₂, GaO₂, Al₂O₃, etc. on Si and GaAs. They are formed as protective films or insulating separating films. However, there is no epitaxial growth. As far as a junction between insulators is concerned, there have been reports on epitaxial growth of Bi₄Ti₅O₁₂ on MgO or MgAl₂O₄.

The present invention provides a type of substrate for a semiconductor device with epitaxial hetero-junction of BaTiO₃ or other perovskite type crystal and a semiconductor. This type of substrate for a semiconductor device has not been seen in the prior art.

Studies have been made on using BaTiO₃ or other perovskite type ABO₃ crystal as a ferroelectric material. In particular, as it is a substance with a high melting point, it has been used as a ceramic in many practical applications. The following table lists the crystalline properties of the ABO₃ type crystal.

	2	. ③	(4)	<u>(5)</u>
* # &	格子定数	章 点	地區與係數	エピタキシャル何
BaTiOs	a-3,994 a-4-038	1618	/0	GaAs,ZaSe
BrTiOs	4-3.905	~2000	1.1×10	81, GaP
Patios	e=3-904 c=4,152			Si, GaP
812101	4-4-099	2640	8.75×10 ⁻⁴ 9.34×10 ⁻⁴	GaAs, ZnSe
SrSnOs	a-4-02		•	GaAs , Zz8e
BaZrOs	4-4.192	2688	5,64×10 ⁻⁴ 6,64×10 ⁻⁶	ImP,ZmTe, CdS
BaSnOs	4-4-12			ImP, ZmTo
KTaO:	2-089 4-003	1357		GeAs

Key: 1 Name of substance

- 2 Lattice constant
- 3 Melting point
- 4 Thermal expansion coefficient
- 5 Epitaxial examples

This table lists the lattice constants, melting points and thermal expansion coefficients of the ABO₃ type crystals, such as BaTiO₃, SrTiO₃, PbTiO₃, SrZrO₃, BaZrO₃ and KTaO₃, as well as examples of the epitaxial semiconductor layers epitaxially grown on said crystals.

However, when epitaxial growth of the semiconductor layer listed in the above table is performed on said ABO₃ type crystal, when the (001) plane of the tetragonal crystal of ABO₃ type and the (100) plane of the cubic crystal are used, good epitaxial growth takes place in the <100> direction of the ABO₃ type crystal and the <100> direction of the semiconductor layer. That is, as shown in Figure 1, epitaxial growth takes place in the <100> direction of the ABO₃ crystal and in the <100> direction of the semiconductor layer. Also, for the ABO₃ type cubic crystal, good epitaxial growth takes place for the (100) plane of said crystal and the (100) plane

of the semiconductor layer. In the following, we will examine the case of a junction between Si and sapphire as a typical example of the epitaxial growth of a semiconductor layer on an insulating substrate.

Usually, in growth of Si (100), which is often used in LSI, etc., on a sapphire, while Si has a diamond structure (cubic crystal), the sapphire has a rhomboherald [transliteration] crystal form. Consequently, the (100) plane of Si is epitaxially grown on the ($10\overline{1}2$) plane of the sapphire. In this case, deviations in the lattice constants of the Si(100) plane and the sapphire ($10\overline{1}2$) plane are 14.3% and 5.7% for the two sides, respectively. Also, the thermal expansion coefficient of sapphire is about twice that of Si. At a temperature of about 1000°C as required for growth of Si, the deviation in the lattice is small, yet, as the system is cooled down, significant strain is developed.

On the other hand, as far as the junction between ABO₃ crystal and Si or GaP or other semiconductor is concerned, the deviation in the lattice constant on the growth plane determined on the base of the data listed in the above table is much smaller than that in the case of Si and sapphire at room temperature. Also, as far as thermal expansion coefficient is concerned, while said group II-VI and group III-V semiconductors usually have thermal expansion coefficients much larger than that of Si, the thermal expansion coefficient of ABO₃ crystal is similar to or smaller than that of sapphire. Consequently, the thermal strain developed due to cooling is much smaller than that developed at the interface between sapphire and Si.

In addition, when said oxides are used as substrate, because the melting point is high, it allows growth with substrate in a high-temperature state. In this way, one can obtain an epitaxial hetero-junction for said ABO₃ crystal and semiconductor layer much better than that for Si and sapphire.

In the following, we will examine application examples of epitaxial growth in this invention.

(1) Growth of Si on SrTiO₃

(100) plane of SrTiO₃ single crystal is cut out and polished to mirror surface quality. Then, the surface processing layer is etched off to form a substrate for epitaxial growth. On this substrate, growth is performed using a Si epitaxial device by means of decomposition of SiH₄ as is commonly used. The temperature of the substrate is in the range of 950-1100°C. H₂ gas containing 4% SiH₄ is fed to flow corresponding to a substantial concentration [flow rate] of SiH₄ of 30 cc/min, with H₂ gas used as a carrier gas with a flow rate of 30 L/min. The growth rate of Si is about 0.2-0.3 μm/min to a thickness of several μm to tens of μm. For the grown Si, the epitaxial structure is checked by X-ray diffraction and electron beam diffraction. (100) plane of Si is grown on (100) plane of SrTiO₃.

Also, similar epitaxial growth of Si can be made on other substrates, such as BaTiO₃, PbTiO₃, SrZrO₃, SrFeO₃, etc.

(2) Vapor phase growth of GaAs on SrZrO₃

Just as in the case of vapor phase growth of Si, (100) plane of SrZrO₃ is cut out and is polished to mirror surface quality. Then, the surface processing layer is etched off to form a substrate for epitaxial growth. Then, the device shown in Figure 2 is used for growth. Figure 2 is a schematic diagram illustrating the growth device. In Figure 2, (1) represents a heating furnace; (2) represents a furnace core tube; (3) represents a graphite table; (4) represents a SrTiO₃ single crystal substrate; (5) represents an AsH₃ source; (6) represents a (CH₃)₃Ga source; and (7), (8), (9) represent H₂ sources. In the growth, the reaction between (CH₃)₃Ga and AsH₃ is adopted. The (CH₃)₃Ga source is kept at 0°C, and at a concentration of 10% for AsH₃ in H₂ gas flow, the gas mixture is fed in. H₂ flows through a Pd diffusion plate, and is used as a carrier gas. The flow rate of H₂ gas is 3 L/min, and the flow rate of AsH₃ is 450 mL/min (10% in hydrogen), and the hydrogen gas is fed at 30 mL/min through (CH₃)₃Ga. The temperature of the substrate is about 800°C, and a growth layer with thickness in the range of several thousand Å to about 100 μm is obtained. The growth layer is checked by means of X-ray and electron beam diffraction, and it is found to be a single crystal thin film. Also, growth is performed for GaAs (100) on the (001) plane of SrZrO₃. In addition, epitaxial growth has been confirmed for BaTiO₃ and PbTiO₃.

(3) Vapor deposition of ZnSe on SrTiO₃

Vapor deposition is performed on the (001) plane of SrTiO₃ as a substrate and using ZnSe single crystal as the evaporation source. The temperature of the substrate is changed in the range of 200-600°C, and the temperature of the evaporation source is in the range of 800-1000°C. When the substrate temperature is in the range of 400-500°C, results of the electron beam diffraction indicate certain twin and super-lattice spots. However, the obtained epitaxial film has a relatively good quality.

According to the present invention, on an ABO₃ perovskite type insulating substrate, Si, Ge or other semiconductor crystal is grown, so that it is possible to obtain a high-quality substrate for forming semiconductor integrated circuits. Also, by means of growth of group II-VI and group III-V crystals, it is possible to obtain substrates useful for manufacturing photo-integrated circuits.

As explained above, this invention can form hetero-junction of ABO₃ perovskite type oxide (with A representing K, Ba, Sr, Pb, and B representing Ta, Ti, Zr, Fe, Sn, Ce) in tetragonal crystal or cubic crystal structure and cubic crystal semiconductor layer. It is possible to obtain thin film single crystal with few defects and with good crystallinity. The obtained semiconductor substrates can be used in manufacturing various types of semiconductor devices.

Brief description of the figures

Figure 1 is a diagram illustrating the orientation configuration of the epitaxial junction between ABO₃ type crystal and semiconductor layer. Figure 2 is a schematic diagram illustrating an GaAs epitaxial growth device in an application example of this invention.

- 1 Heating furnace
- 4 Substrate crystal
- 5 AsH₃ source
- 6 (CH₃)₃Ga source
- 7, 8, 9 H_2 gas source

Figure 1

Key: 1 Semiconductor layer

Figure 2

CLIPPEDIMAGE= JP352089070A

PAT-NO: JP352089070A

DOCUMENT-IDENTIFIER: JP 52089070 A

TITLE: SEMICONDUCTOR DEVICE

PUBN-DATE: July 26, 1977

INVENTOR-INFORMATION:

NAME

SERIZAWA, HIROMOTO

FUKAI, SHOICHI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

MATSUSHITA ELECTRIC IND CO LTD

N/A

APPL-NO: JP51005611

APPL-DATE: January 20, 1976

INT-CL (IPC): H01L021/20; H01L033/00; H01L031/00

;G02B005/14

ABSTRACT:

PURPOSE: To produce thin film single crystal of good crystallinity by the hetero bonding of perovskite type crystals of given metal and Si, Ge or group

II-VI, III-V compound semiconductors.

COPYRIGHT: (C) 1977, JPO&Japio

09日本国特許庁

①特許出願公開

公開特許公報

昭52—89070

	識別記号	砂日本分類 99(5) B 15	庁内整理番号 6684-57	砂公開 昭和52年(1977) 7月26日
G 02 B 5/14 H 01 L 31/00		99(5) J 4 99(5) H 0	7377—57 6513—57	発明の数 1 審査請求 未請求
H 01 L 33/00		104 G 0	7448—23	(全 4 頁)

69半導体装置

②特

願 昭51-5611

@出 願 昭51(1976)1月20日

700発明 者 芹沢皓元

門真市大字門真1006番地松下電

器株式会社内

00発 明 者 深井正一

門真市大字門真1006番地松下電

器産業株式会社内

砂田 願 人 松下電器産業株式会社

門真市大字門真1006番地

人 弁理士 中尾敏男

外1名

2、特許請求の範囲

(1) Si, Ge あるいはI-VI 嵌,I-V 底等の 立方晶系化合物半導体と、正方晶もしくは立方 品構造のABOs ペロプスカイト空(ただしAは K, Ba, Sr, Pb の過より選択された1つ、B はTi, Ta, Zr, Ec, Sn, Co の供より最択され た1つ)鯉化物との異植接合を有するととを特 徴とする半導体装置。

(2) 上記 Si. Ge あるいは立方晶系化合物半導体 の【100】面と上記正方品構造のペロプスカイ ト型便化物の(OO1) 面とで上記異種接合を形 成したことを特徴とする特許請求の範囲第1項 K 配数の半導体装置。

(5) 上記 Si, Ge あるいは立方晶系化合物半条体 の 1 100 1 面と上記立方品構造のヘロザスカイ 1型酸化物の(100)面とで上配異種接合を形 成したことを特徴とする特許請求の範囲第1項

、化配数の半導体装置。

本発明は半導体袋は比較し、光半導体装置ある いはその他の半事体委進への応用に通した半導体 基体を持るものである。

すなわち本発明はSi , Go あるいは GaAs , GaP などの 1 - V 底化合物半導体あるいは ZnSe, ZnTe などのIーリ族化合物半導体とBaTiOs や SrTiOs カでのペロプスカイト形 ABOs のように一般的に 者を表わせる正方品あるいは立方品構造の Ti,Ta Zr, Fe, Sn, Ce の数化物との異種接合を形成し、 私々の半導体装置の応用に供する半導体基体を得 るととを目的としている。

異植物質のエピチャシャル成長は GaAe半導体レ -ザーがGa_Ali_xAs とダブルヘテロ保証にする ととによって大きな特性の向上をみて非常に住目 されるK至った。従来より、ヘテロエピタキシャ ル成長はGaAs - Go , ZnSo - ZnTo , ZnSo -GaAs などの多くの半導体について接合が研究さ れているが、従来の接合は異種接合といっても半

特別昭52-89070(2)

海体同志のエピッキシャルであり、半導体と既置体、絶縁体、金属などのエピッキシャル接合はあまり研究されていない。しかるに、Siの気相成長にかける絶縁基板としてのサファイアAlzOs ヤスピネル(MgO・AlzOs) は多くの研究がなされている。これらの基板上にはSiのエピッキシャル成長がされているほか、GaAs などの結晶 AlzOs, MgAlzOa, BeO などにエピッキシャル成長がなされている。

また、半導体上への飲化物色級体の成長はSi や GaAs 上げ SiO2、GaO、Al 2O3 などがあり、保護膜としてまた色緑分脂膜としてまされているが、エビチャンヤル成長されているものはない。色緑物同志の接合としては MgO ヤ MgAl 2O4 上に Bi 4Tis U12 のエビチャンヤル成長がなされた例は報告されている。

そこで、本発明は従来行われていたい baTiOs などのペロブスカイト型結晶と半導体とのエビタ キシャル異確接合により良好なる半導体装置用基 体を得るものである。

りなる結晶の格子定数・融点・熱能服係数かよび その結晶にエピッキシャル成長するエピッキシャ ル学様体質の例を記載したものである。

ところで、これらABOs 型結晶上に上記表に記載 収の半導体層をエピメキシャル成長する場合AB Us 型のたとえば正方品結晶の(OO1)面と立方島 半蝿体の〔100〕面をとると、ABO: 型の結晶の く 100 > 方向と半導体層のく 100 > 方向とは良好 なエピタキシャル成長が行われる。すなわち第1 凶に示すように ABOs 結晶のく 100>方向と半点 体層のく100>方向とはエピョキシャル成長する。 な **♪ AbO 5 "型の立方結晶の場合は〔100〕面と半** 毎体層の【100】面で良好なエピチャシャル成長 を行わせることができる。ここで、絶縁基板上に 半導体層をエピタキシャル成長する代表的な例と してSi とサファイアとの接合を考えてみる。 通常LSI等で使われるSi(100)のサファイ ア上への成長において、Si はダイヤモンド構造 (立方晶系) をしているのに対してサファイアは ロンポヘラルドの結晶形のためSiの(100)面は

さて、BaTiOs などのベロブスカイト型 ABOs 結晶は虫誘電体材料として研究されてきた。特に高触点物質であるためのセラミックとして実用化されている場合が多い。 ABOs 型 の転品学的性質を下表に示す。

物 質 名	格子定数		熱能嵌係数	エビタキシャル
BaT1O5	a=3.994 c=4-038	1618	∕ ∕0	GaAs, ZnSe
SrTiOs	4-3.905	~2000	1.1 × 104	Si, GaP
PbT (Os	a=3.904 0=4,152			Si, GaP
Sr2rOs	4-4-099	2640	8.75×10 ⁻⁴ 9.34×10 ⁻⁴	GaAs , ZzSe
SrSnOs	4-4-02			GaAs, ZnSe
BaZrOs	4-4.192	2688	5.64×10 ⁻⁶ 6.64×10 ⁻⁶	InP, ZnTe
BaSzOs	4-4-12			InP, ZnTe
KTaOs	3-989 6-4,003	1357		GaAs

との表は ABOs 型歯菌すなわち BaTiOs, SrTiOs, PbTiOs, SrZrOs, SrSnOs, BaZrOs, KTaOs I

サファイアの(1012)面にエピタキシャル成長する。このときの Si(100)面とサファイアの(1012)面の各山の格子定数のメレは2 辺がそれぞれ 14.3% と 5.7 % の値を有している。また 無影照係数は Si よりサファイアの方が約 2 倍の値をしてかり。 Si を成長させるに必要を 1000 ℃ 的後の温度では格子のメレとしてはいく 分少をく なるが今辺に伴う界面における歪が多く含まれてい

一方、ABOs 結晶と Sia るいは GaP などの半導体との接合をみると上記袋から求めた成長面での格子定数のメレとしては常温にかいてSiとサファイアの場合に比較してはるかに少ない値となる。また熱能緩係数にかいては これらまー N 族 , 里ーV 族半導体 の熱膨緩係数は 一般に Siよりも大きいのに対して ABOs 結晶 はサファイアと あまり かわらない かそれ以下の値であるため合 切による熱をとしてはサファイアと Siとの界面に比べて非常に 小さくなる。

さらにこれらの観化物を基板とする場合には融点

特别昭52-39070(3)

が高いために高温度基板状態での成長も可能となる。このように、上記ABUs 型結晶と半導体層とはSiとサファイブよりもすぐれた良好なエピッキシアル異種接合を得ることができる。

以下、エピチャシャル成長を行った本発明の実施性を図面とともに説明する。

(1) SrTiOs 上へのSi の成長。

SzTiOs 単結品を(100)面に切り出し、鉄面に研摩してその後表面加工層をエッテングでとり 除いてエピッキンヤル用基板とする。これを基板 として通常用いられる SiHs の分解による Si エピ タキシヤル装置により成長させた。基板固底を 950~1100 でとし、4 % SiHs 入り Hz ガスを SiHs の実質負底で3 0 cc/min に相当する量をHz ガスをキャリアガスとして3 0 k/min で扱して成 長させた。成長 Si は 0.2~ 0.3 μ/min で数μ~ 数十 μ 成長させた。成長 Si は X 級回折かよび電 子盤回折によってエピッキシヤルしていることが 確認された。 8zTiOs (100)面上に Si の (100) 面が成長していた。

よって単語品種膜であることが確認されるとともに SrZrOs 結晶 (OO1) 面に GaAs (100) が成長していた。また BaTiOs , PbTiOs についてもエビタキシャルが促出された。

(5) SrTiOs 上への ZuSe の蒸帘。

SrTiOs の(001)面を基板として ZnSe 単結晶を悪発限として無角を行なった。基板温度は 200℃~ 800℃まで変化させ、蒸増限温度は 800℃~ 1000℃で行なった。基板温度 400℃~ 500℃にかいて電子線図折の結果では若干の双晶や組格子スポットがみられたが、かなり良好なエピッキシャル膜を得ることができた。

このように本発明によれば、ABUs ベロブスカイト型色像高板上にSi,Go 等の半線体結晶を成長させることにより良好な半線体集積回路用の高体を得ることができ、またI-II,I-V 族結晶を成長させることにより光集積回路用としてすぐれた基体を得ることができる。

以上のように本名明は正方晶あるいは立方晶構造のABOs ペロブスカイト型(ただしA:K,Ba,

また、基板として、BaliOs , PholiOs , SrZrOs , SrleOs などにかいても同様に3i のエピタキシャ ルが移められた。

(2) SrZrOs 上への GaAs の気相広長。

Siの気相成長の場合と同様に Sr2rOs を (100) に切り出し、観面に研除し、その後表面加工層を エッチング除去してエビタキシャル用基板とし、 第2回に示す成長装置により成長を行った。第2 図に成長装置の低略を示す。第2図にかいて、1 は加熱炉、2は炉お管、3はグラファイト台、4 世 SrTiOs 单結晶基板、 5 は Ands 茶、 6 は (Cds)s Kは(CHs)sGaとAsHsの反応が使われた。(CHs)s GaソースはOでに保たれ、 AsHs はHz 気張中に10 多台ませて限入された。H2 は Pd 拡散板を通して キャリアガスとした。液量はEi ガスが 31/min 。 AsHs 450ml/min (10多水果中) (CHs)sGa 比 は水紫ガスを30ml/min 通過させた。基板温度は 約800℃とし約千点から約100mの縁さまでの 成長度を得た。成長藩は又譲かよび電子線回折に

Sr, Pb、B: Ta, Ti, Zr, Fe, Sn, Ce) 創化物 と立方晶系半導体層の異雄接合を形成するもので あって、欠陥の少ない結晶性の良好な薄膜鼻結晶 を得ることができ、各種半導体装置に適した半導 体基体を得るものである。

4、図面の簡単な説明

第1回はABOs型結晶と半導体層とのエビチキシャル接合の方位関係図、第2回は本発明の一実施例にかけるGaAsエビチャシャル成長装置の機略構成図である。

1 … … 加熱炉、 4 … … 基板結晶、 5 … … Asrds 页、 6 … … (Crls)s Ga 项、 7 , 8 , 9 … … rd2 ガス 页。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名

