Particle spectrograph

Wave operator and propagator

Spin-parity form	Covariant form	Multiplicities
0 ⁺² 0 ==0	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta}==0$	1
$1^{\frac{\#1}{1}}\mathcal{T}^{\alpha}=0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
$2^{+1}\mathcal{T}^{\alpha\beta} = 0 2$	$\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\mathcal{T}^{\chi\delta} + \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\mathcal{T}^{\chi}_{ \chi} + 3 \ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\mathcal{T}^{\alpha\beta} + \eta^{\alpha\beta} \ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\mathcal{T}^{\chi\delta} = =$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \mathcal{T}^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \mathcal{T}^{\alpha \chi} + \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \mathcal{T}^{\chi}_{\chi}$	
Total expected gauge generators:		9
- ccc ag	αβ νδ νδ νδ δ.ν	2#1

$$S = = \iiint \left(h^{\alpha\beta} \mathcal{T}_{\alpha\beta} - \alpha \left(\partial_{\beta} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h^{\chi\delta} + \partial_{\beta} \partial^{\beta} h^{\alpha}_{\alpha} \left(-2 \partial_{\delta} \partial_{\chi} h^{\chi\delta} + \partial_{\delta} \partial^{\delta} h^{\chi}_{\chi} \right) \right) \right) [t, x, y, z] d z d y d x$$

$$= \iiint \left(h^{\alpha\beta} \mathcal{T}_{\alpha\beta} - \alpha \left(\partial_{\beta} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h^{\chi\delta} + \partial_{\beta} \partial^{\beta} h^{\alpha}_{\alpha} \left(-2 \partial_{\delta} \partial_{\chi} h^{\chi\delta} + \partial_{\delta} \partial^{\delta} h^{\chi}_{\chi} \right) \right) \right) [t, x, y, z] d z d y d x$$

$$= \iiint \left(h^{\alpha\beta} \mathcal{T}_{\alpha\beta} - \alpha \left(\partial_{\beta} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h^{\chi\delta} + \partial_{\beta} \partial^{\beta} h^{\alpha}_{\alpha} \left(-2 \partial_{\delta} \partial_{\chi} h^{\chi\delta} + \partial_{\delta} \partial^{\delta} h^{\chi}_{\chi} \right) \right) \right) [t, x, y, z] d z d y d x$$

$$= \iiint \left(h^{\alpha\beta} \mathcal{T}_{\alpha\beta} - \alpha \left(\partial_{\beta} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h^{\chi\delta} + \partial_{\beta} \partial^{\beta} h^{\alpha}_{\alpha} \left(-2 \partial_{\delta} \partial_{\chi} h^{\chi\delta} + \partial_{\delta} \partial^{\delta} h^{\chi}_{\chi} \right) \right) \right) [t, x, y, z] d z d y d x$$

$$= \iiint \left(h^{\alpha\beta} \mathcal{T}_{\alpha\beta} - \alpha \left(\partial_{\beta} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h^{\chi\delta} + \partial_{\beta} \partial^{\beta} h^{\alpha}_{\alpha} \left(-2 \partial_{\delta} \partial_{\chi} h^{\chi\delta} + \partial_{\delta} \partial^{\delta} h^{\chi}_{\chi} \right) \right) \right) [t, x, y, z] d z d y d x$$

$$= \iiint \left(h^{\alpha\beta} \mathcal{T}_{\alpha\beta} - \alpha \left(\partial_{\beta} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h^{\chi\delta} + \partial_{\beta} \partial^{\delta} h^{\chi}_{\chi} \right) \left(h^{\alpha\beta} \mathcal{T}_{\alpha\beta} - \lambda h^{\alpha\beta} \partial_{\lambda} h^{\chi\delta} \right) \right) \left(h^{\alpha\beta} \mathcal{T}_{\alpha\beta} - \lambda h^{\alpha\beta} \partial_{\lambda} h^{\chi\delta} \right) \left(h^{\alpha\beta} \mathcal{T}_{\alpha\beta} - \lambda h^{\alpha\beta} \partial_{\lambda} h^{\chi\delta} \right) \left(h^{\alpha\beta} \mathcal{T}_{\alpha\beta} - \lambda h^{\alpha\beta} \partial_{\lambda} h^{\chi\delta} \right) \left(h^{\alpha\beta} \mathcal{T}_{\alpha\beta} - \lambda h^{\alpha\beta} \partial_{\lambda} h^{\chi\delta} \right) \left(h^{\alpha\beta} \partial_{\lambda} h^{\chi\delta} \right) \left(h^{\alpha\beta} \partial_{\lambda} h^{\chi\delta} \right) \left(h^{\alpha\beta} \partial_{\lambda} h^{\alpha\beta} \partial_{\lambda} h^{\chi\delta} \right) \left(h^{\alpha\beta} \partial_{\lambda} h^{\chi\delta} - \lambda h^{\alpha\beta} \partial_{\lambda} h^{\chi\delta} \right) \left(h^{\alpha\beta} \partial_{\lambda} h^{\chi$$

Massive and massless spectra

(No particles) (No particles)

Unitarity conditions