

Chapitre 1 Mots et langages

DR ING FATMA SOMAA

CPI2

Plan

- 1. Vocabulaire et Mot
- 2. Langage
- 3. Propriétés des langages
- 4. Operations sur les langages
- 5. Définition des langages

Un **alphabet** (ou vocabulaire) est un ensemble fini, non vide de symboles. On le note généralement X ou Σ

- Alphabet Latin $\Sigma = \{a,b,c,...,z\}$
- Alphabet binaire $\Sigma = \{0,1\}$
- Σ ={rouge,noir,0,1,a}

Mot ou chaîne : Séquence de symboles de l'alphabet. Noté w.

- w_1 = voiture; w_2 = voyage deux mots définies sur l'alphabet Latin
- w_1 =00101; w_2 =101101 sont deux mots définies sur l'alphabet binaire.
- w_1 =noir01rouge; w_2 =10AAnoir: sont deux mots définies sur l'alphabet Σ ={rouge,noir,0,1,a}

Taille d'un mot : |w| = nombre de symboles constituant le mot.

- |rouge|=5 en considérant l'alphabet Latin
- |001|=3 en considérant l'alphabet binaire
- |rouge|=1 en considérant l'alphabet Σ ={rouge,noir,0,1,a}

Chaîne vide : notée e s'il n'appartient pas à l'alphabet ou ε $|\varepsilon|=0$.

Sous chaîne : x est une sous chaîne de w si il existe y et z (chaînes sur la même alphabet). Tel que $w = y \times z$.

Préfixe : x est un préfixe de w si il existe y tel que: w = x y.

Suffixe: x est un suffixe de w si il existe y tel que w = y x.

- x = voit est un préfixe de w = voiture, car il existe y = ure tel que w = voit ure = x y
- x = ture est un suffixe de w = voiture, car il existe y = voi tel que w = voi ture = x y

Exercice

Ex1: Donner les sous chaines wi associes aux mots suivants :

1) abba sur le vocabulaire {a, b}

2) (x1*(x2+x1)) sur le vocabulaire $\{x1, x2, +, *, (,)\}$

Ex2:

Quelle est la longueur des mots abba et **E**

sur le Vocabulaire {a,b}

Exercice corrigé

Ex1:

1) Si le vocabulaire $X = \{a, b\}$ alors dans le mot abba,

$$w_1 = a$$

$$w_2 = ab$$

$$w_3 = bb$$

$$w_1 = a$$
 $w_2 = ab$ $w_3 = bb$ $w_4 = abba$

2) Si le vocabulaire est $X = \{x1, x2, +, *, (,)\}$ alors dans le mot (x1*(x2+x1))

$$W_1 = ($$

$$W_1 = (W_2 = x1)$$

$$W_3 = *$$

$$W_4 = ($$

$$W_a = ($$
 $W_5 = x2$

$$W_6 = +$$

$$W_7 = x1$$

$$W_8 =)$$

$$w_6 = +$$
 $w_7 = x1$ $w_8 =)$ $w_9 =)$

Le mot abba est de longueur 4, |abba| = 4

Le mot e est de longueur 0, $| \epsilon | = 0$

Nombre d'occurrences d'un symbole dans un mot :

Le nombre d'occurrences d'un symbole x dans un mot w est le nombre de fois ou ce symbole apparait dans ce mot w. On le note $\|\mathbf{w}\|_{\mathbf{x}}$.

$$|\omega| = \sum_{x \in X} |\omega|_x$$

Exercice:

Quel est le nombre d'occurrences de b dans les mots abba et **E**

Corrige:

Ensemble de mots choisis dans un alphabet.

Un langage peut être infini mais il existe un nombre finie de symboles permettant de composer les mots de ce langage.

```
\Sigma^k = \text{ensemble des mots de longueur k avec des symboles de } \Sigma \text{Exemple}: \ \Sigma = \{0,1\} \Sigma^1 = \{0,1\} \Sigma^2 = \{00,01,10,11\} \Sigma^0 = \{\epsilon\}
```

 Σ^* Ensemble de toute les séquences de taille fini défini sur Σ : Fermeture de l'alphabet.

$$\Sigma *= \{ \varepsilon \} \cup \Sigma^1 \cup \Sigma^2 \dots$$

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \dots$$

$$\Sigma^+ \cup \{\epsilon\} = \Sigma^*$$

Un langage c'est un ensemble de mots appartenant à Σ^* et qui vérifie une propriété donnée : L= {w $\in \Sigma^*$ | w possède la propriété P}

Exemples

- Ensemble des mots anglais légales
- Ensemble des mots de l'alphabet binaire contenant un nombre de n de 0 suivie par le même nombre n de 1.

```
L=\{\epsilon; 01; 0011; 000111; \dots\}.
```

• Ensemble des mots de l'alphabet binaire ayant un même nombre de 0 et de 1.

```
L=\{\varepsilon; 01; 10; 0101; 1001; \dots\}.
```

Ensemble des mots de l'alphabet binaire tel que leur valeur est premier.

```
L=\{\varepsilon; 10; 11; 101; 111; 1011; ...\}
```

Exemples

- •Le langage vide $L=\emptyset$;
- Le langage {ε} contenant le mot vide.
 - Note: $\emptyset \neq \{\epsilon\}$.
 - Note: L'alphabet Σ est un ensemble fini.
- Ensemble des palindromes sur l'alphabet $\Sigma = \{a,b\}$
 - \circ L = {w $\in \Sigma^* \mid w = w^R$ }
 - L = {ε,aba,bab,a,b,...}

Propriétés des langages

- • Σ^* est infinie et dénombrable.
- $L = L_1 \cup L_2 = \{ w \in \Sigma^* \mid w \in L_1 \text{ ou } w \in L_2 \}$
- $L = L_1 \cap L_2 = \{ w \in \Sigma^* \mid w \in L_1 \text{ et } w \in L_2 \}$
- Concaténation :

$$L = L_1 . L_2 = L_1 L_2 = \{ w \in \Sigma^* \mid \exists x, y, w = xy, x \in L_1, y \in L_2 \}$$

Fermeture de Kleene.

- $L^* = \{ w \in \Sigma^* | w = w_1 w_2 ... w_k, k \ge 0 \text{ et } w_1, w_2, ..., w_k \in L \}$
- $k = 0 \Rightarrow w = \varepsilon$; $k = 1 \Rightarrow w \in L$;
- Si L est un langage alors L* désigne l'ensemble de toute les chaînes de longueur finies formées par concaténation de mots de L, où chaque mot peut être utilisé de 0 à n fois, la chaîne vide est inclus.

Propriétés des langages

```
\bullet L \cup M = M \cup L.
```

Union est commutative.

• $(L \cup M) \cup N = L \cup (M \cup N)$.

Union est associative.

• (LM)N = L(MN).

Concaténation est associative

Note: Concaténation n'est pas commutative, i.e.,

Il existe L et M tel que LM \neq ML.

Exemple:

- L={aa,b}
- L*={ε,b,aa,bb,aab,baa,bbb,aaaa,aabb,baab,bbaa,bbbb,aaaab,aabaa,aabbb,baaaa,bbaab,bbbaa,bbbbb,...}

Note : $\emptyset^* = \{\varepsilon\} \neq \emptyset$

Propriétés des langages

- \bullet L(M \cup N) = LM \cup LN.
 - Concaténation est distributive à gauche pour l'union.
- $(M \cup N)L = ML \cup NL$.
 - Concaténation est distributive à droite pour l'union.
- $L \cup L = L$.
 - Union est idempotente.
- \emptyset * = { ε }, { ε }*={ ε }
- $L^+ = LL^* = L^*L, L^* = L^+ \cup \{\epsilon\}$
- •(L*) *= L* . Fermeture est idempotente

Concaténation : soient u et v deux mots définis sur l'alphabet \sum , tel que :

$$u=x_1x_2...x_n$$

$$u = x_1 x_2 ... x_n$$
 $v = y_1 y_2 ... y_m$

Concaténation est non commutative

$$w=u.v=x_1x_2...x_ny_1y_2...y_m$$

Propriétés :

- |w|=|uv|=|u|+|v|
- Est associative
- ε est l'élément neutre pour la concaténation. $\varepsilon x = x \varepsilon = x$

Facteur: soit u,v,w,t des mots définis sur \sum tel que w = uvt

- **si** $u = \varepsilon$ alors v est dit facteur gauche de w (ou préfixe).
- **si** $t = \varepsilon$ alors v est dit facteur droit de w (ou suffixe).
- si $u = t = \varepsilon$ alors w est un facteur de lui même.

Occurrence d'un symbole dans un mot :

$$|abaaba|_a=4$$

Image (reverse): w=aabab w^R=babaa

Facteur: soit u,v,w,t des mots définis sur \sum tel que w = uvt

- **si** $u = \varepsilon$ alors v est dit facteur gauche de w (ou préfixe).
- **si** $t = \varepsilon$ alors v est dit facteur droit de w (ou suffixe).
- si $u = t = \varepsilon$ alors w est un facteur de lui même.

Occurrence d'un symbole dans un mot :

$$|abaaba|_a=4$$

Image (reverse): w=aabab w^R=babaa

Soient A et B deux langages alors on a les opérations suivantes:

Intersection $A \cap B = \{\omega / \omega \in A \text{ et } \omega \in B\}$

Union $A+B = \{\omega / \omega \in A \text{ ou } \omega \in B\}$

Complémentation A-B = $\{\omega / \omega \in A \text{ et } \omega \notin B\}$

Concaténation

$$A.B = \{\omega / \exists u \in A \text{ et } \exists v \in B \text{ et } \omega = u.v\}$$

Propriétés

Soient A, B, C des langages, on a

$$A.(B+C) = A.B + A.C$$

(A+B).C = A.C+B.C

$$A \subseteq B \Rightarrow AC \subseteq BC$$

 $CA \subseteq CB$

Notation

$$a^{k} = aaaaaaaaa.....$$
 $a^{2} = aa$
 $<----->$
 $k \text{ fois}$
 $a^{0} = \varepsilon$
 $a^{*} = \{a^{i} / i \ge 0\} = \{a^{0}, a^{1}, a^{2},, a^{i}, ...\}$
 $a^{+} = \{a^{i} / i > 0\} = \{a^{1}, a^{2},, a^{i}, ...\}$

Exercice

Calculer A* pour chacun des ensembles A suivants:

$$A = \{a\}$$

```
corrigé Si A = {a} alors A* = {a}* = a* 

Car A* = A^0 + A^1 + A^2 + ... A^i + ...

A^0 = {\epsilon} = {a^0}

A^1 = AA^0 = {a} {\epsilon} = {a} = {a^1}

A^2 = AA^1 = {a}{a} = {aa} = {a^2}

A^i = {a^i}

A^{i+1} = A A^i = {a}{a^i} = {a^{i+1}}

....

A* = {\epsilon, a, aa, aaa, ...} = {a^0, a^1, a^2, a^3, ...} = a*
```

Exercice

Calculer A. ϕ et A. $\{\epsilon\}$ Montrer qu'on n'a pas A. $(B \cap C) = A.B \cap A.C$ **corrigé**

```
A.\phi = \phi.A = \phi

A.\{\varepsilon\} = \{\varepsilon\}.A= A

On <u>n'a pas</u> A.(B \cap C) = A.B \cap A.C

Contre exemple : A = \{\varepsilon, x\}, B = \{xy\}, C = \{y\}

Car A.(B \cap C) \neq A.B \cap A.C

En effet (B \cap C) = \phi donc A. (B \cap C) = \phi

Par contre A.B = \{xy, xxy\} et A.C = \{y, xy\} donc A.B \cap A.C = \{xy\}
```

langages formels Tout sous ensemble de Σ^* dont les mots peuvent être définis de deux façons

Définition par propriété : Modélisation formelle d'une description naturel d'un langage.

Exemple:

L1 : {ensemble de mots définies sur {a,b} de longueur pair}

L1 =
$$\{w \in \{a,b\}^* / |w| = 2n ; n \ge 0\}$$

Définition récursive : Définition dans laquelle, un langage est définie sur lui même.

$$L_2 = \{ w \in \Sigma^* | w = a \text{ ou } w = aw_1; w_1 \in L_2 \} = \{a, aa, ..., aaaa, ... \}$$

$$L_3 = \{ w \in \Sigma^* | w = \varepsilon \text{ ou } w = w_1 w_2; |w_1| = 2 \text{ et } w_2 \in L_3 \}$$

$$L_3 \equiv L_1$$

Expressions régulières :

$$L_4=\{\varepsilon,x,xx,xxx,xxxx,....\}$$

soit $S=\{x\}$ alors $L_4=S^*$ ou $L_4=\{x\}^*$

Considérons l'étoile de la fermeture de Kleene appliquée à la lettre x.

- x*: indiquera une séquence quelconque de x qui peut être vide.
- $X^* = \varepsilon$ ou X ou XX ou XXX...

$$L_4$$
 = langage (x^*)

Considérons le langage

```
L = \{a,ab,abb,abbb,abbb,...\}
```

Toutes les chaînes constitués par un a suivi d'un nombre quelconque de b

On peut noter : L=Langage(ab*)

Langage dans lequel les mots sont la concaténation d'un a (a) initial avec un nombre quelconque de b (b*).

Appliquons l'étoile de Kleene à toute la chaîne ab, on aura : $(ab)^* = \varepsilon$ ou ab ou abab ou

Le langage définit par l'expression :

→ Ensemble de toutes les chaînes de a et de b qui ont au moins deux lettres, qui commencent et finissent par un a. et qui n'ont que des b ou rien à l'intérieur.

langage $(ab*a)=\{aa,aba,abba,abbba,...\}$

Remarque:

- **Fausse description**: Ensemble de tous les mots qui commencent et puis finissent par *a* et qui n'ont que des *b* (ou rien) entre eux.
- Le mot a appartient a cette description.

Le langage définit par l'expression :

→ Ensemble de toutes les chaînes de a et de b dans lesquelles les a's viennent avant les b's.

langage
$$(a*b*)=\{\varepsilon,a,b,aa,bb,ab,bb,aaa,abb,...\}$$

Remarque:

- $a*b* \neq (ab)*$
- Le langage à droite contient *abab* tandis que celui à gauche ne le contient pas

```
si r<sub>1</sub> et r<sub>2</sub> sont deux expressions régulières alors ;
   \cdot r_1 r_2
   • \mathbf{r}_1 \cup \mathbf{r}_2
   • r<sub>1</sub>*
 Sont des expressions régulières
 Exemple 1:
 \sum = \{a,b\}
 L={w \in \Sigma^* \mid w contient la sous chaîne aa }
 R = (a \cup b)^* aa (a \cup b)^*
 Exemple 2:
 \sum = \{a,b\}
 L={w \in \Sigma^* \mid w \text{ ne} \text{ contient pas 3 } b \text{ consécutifs }}
 R = (a \cup ba \cup bba)^* (\varepsilon \cup b \cup bb)
```

Théorème:

• Un langage L est dit régulier si et seulement si il existe une expression régulière qui le génère.

Propriétés Étant donné deux langages réguliers L₁ et L₂

- $L_1 \cup L_2$: est un langage régulier
- L₁ . L₂ : est un langage régulier
- L₁*: est un langage régulier
- •L₁ \cap L₂ = est un langage régulier
- L^R : est un langage régulier
- L₁\L₂ : est un langage régulier

Deux expressions régulières α et β sont dites équivalentes si L(α) = L(β) Autrement s'ils génèrent le même langage

Exemple:

Langage de tous les mots qui ont au moins 2 a's peut être décrit par l'expression régulière :

$$(a \cup b)*a (a \cup b)*a (a \cup b)*$$

Autre expression régulière

On peut noter :

$$(a \cup b)*a (a \cup b)*a (a \cup b)*=b*ab*a(a \cup b)*$$

Exercice

même temps}

Donner les expressions régulières qui génèrent les langages suivants: L1 = $\{\omega \in \{a,b\}^*$, tel que ω contient exactement bbb L2 = $\{\omega \in \{a,b\}^*$, tel que ω contient la sous chaîne bbb} L3 = $\{\omega \in \{a,b\}^*$, tel que ω contient seulement 3b, le reste c'est des a's L4 = $\{\omega \in \{a,b\}^*$, tel que ω contient un nombre de a divisible par 3 $\}$ L5 = $\{\omega \in \{a,b\}^*$, tel que ω contient un nombre paire de a $\}$ L6= $\{\{\omega \in \{a,b\}^*, \text{ tel que } \omega \text{ ne contient pas 3b Consécultifs}\}$ L6 = $\{\omega \in \{a,b\}^*$, tel que ω contient un nombre impaire de b

L7 = $\{\omega \in \{a,b\}^*$, tel que ω contient la sous chaîne aaa ou la sous chaîne bbb mais pas les deux en

Questions?

