La fonction zêta de Riemann

Amaury Martiny

12 juin 2019

Résumé

This is the paper's abstract ...

Table des matières

1	Les	nombres premiers	3
	1.1	Un peu d'histoire	3
	1.2	Quelques premiers résultats	3
	1.3	Tchebychev et ses fonctions	3
	1.4		3
2	Not	re boîte à outils pour l'analyse	4
	2.1	Outils d'analyse réelle	4
		2.1.1 La sommation d'Abel	4
		2.1.2 Formule d'Euler-Maclaurin	5
	2.2	Outils d'analyse complexe	5
		2.2.1 La fonction Γ d'Euler	5
		2.2.2 Séries de Dirichlet	6
		2.2.3 Formule de Perron	6
3	La f	onction ζ de Riemann	8
	3.1	Lien avec les nombres premiers	8
	3.2	Quelques propriétés de ζ	9
		3.2.1 Expression de log ζ et fonction de van Mangoldt 1	1
	3.3	Equation fonctionnelle	3
	3.4	Prolongement et propriétés sur la bande critique	4
	3.5	Majorations près du pôle	6
	3.6	Prolongement à $\mathbb{C}\setminus\{1\}$	7
		3.6.1 Par la formule d'Euler-Maclaurin 1	7
		3.6.2 Par un contour de Hankel	8
		3.6.3 Par l'équation fonctionnelle	8
	3.7	Développement en produit d'Hadamard	8
		3.7.1 Lemmes d'analyse complexe	8
		3.7.2 Produit d'Hadamard	8
	3.8	Localisation des zéros	9
		3.8.1 Répartition globale des zéros	1

4	Le t	théorème des nombres premiers	22
	4.1	Région affaiblie sans zéros	22
	4.2	Région classique sans zéros	26
		4.2.1 Majorations dans cette région	27
		4.2.2 Théorème des nombres premiers	28
	4.3	Enoncé avec $\pi(x)$	29
	4.4	L'hypothèse de Riemann	30
	4.5	Formule explicite pour ψ	30

Chapitre 1

Les nombres premiers

- 1.1 Un peu d'histoire
- 1.2 Quelques premiers résultats

Mertens, $\sum_{p} \frac{\ln p}{p}$

1.3 Tchebychev et ses fonctions

Nous introduisons ici les fonctions de Tchebychev, car elles vont nous suivre dans toute la suite de ce rapport.

Définition 1.3.1 (Fonctions de Tchebychev). Pour $x \in \mathbb{R}$,

$$\theta(x) = \sum_{p \le x} \log p$$

1.4 Les méthodes du crible

Chapitre 2

Notre boîte à outils pour l'analyse

TODO Série de Dirichlet

2.1 Outils d'analyse réelle

2.1.1 La sommation d'Abel

Nous allons utiliser à plusieurs reprises la formule d'Abel. Elle fournit une comparaison assez précise entre somme et intégrale.

Lemme 2.1.1. Soit $(a_n)_{n\in\mathbb{N}}$ une suite numérique réelle, et $A(x) := \sum_{n\leq x} a_n$. On se donne également une fonction f de classe C^1 . Alors :

$$\forall y > x \ge 0, \quad \sum_{x < n \le y} a_n f(n) = A(y) f(y) - A(x) f(x) - \int_x^y A(t) f'(t) dt$$

 $D\acute{e}monstration.$ On remarque que A est en escalier, donc pour tout $n\geq 0,$

$$\int_{n}^{n+1} A(t)f'(t)dt = A(n)\int_{n}^{n+1} f'(t)dt = A(n)(f(n+1) - f(n)).$$

Posons M = |x| et N = |y|, alors

$$\int_{x}^{y} A(t)f'(t)dt = \sum_{n=M}^{N-1} \int_{n}^{n+1} A(t)f'(t)dt$$

$$= \sum_{n=M}^{N-1} A(n)(f(n+1) - f(n))$$

$$= \sum_{n=M+1}^{N} f(n)(A(n) - A(n-1)) - A(N)f(N) + A(M)f(M)$$

$$= \sum_{n=M+1}^{N} f(n)a_{n} - A(N)f(N) + A(M)f(M)$$

D'où la formule quand x et y sont entiers. Pour la formule générale on observe que :

$$-\int_{|x|}^{x} A(t)f'(t)dt = A(|x|)(f(x) - f(|x|)) = A(x)(f(x) - f(|x|)).$$

2.1.2 Formule d'Euler-Maclaurin

Théorème 2.1.2. Pour tout entier $k \geq 0$ et toute fonction f de classe C^r sur $[a,b], a,b \in \mathbb{Z}$, on a

$$\sum_{n=a}^{b} f(n) = \int_{a}^{b} f(t)dt + \frac{f(a) + f(b)}{2} + \sum_{k=2}^{r} \frac{b_{k}}{k!} (f^{(k-1)}(b) - f^{(k-1)(a)}) + \frac{(-1)^{r+1}}{r!} \int_{a}^{b} B_{r}(t) f^{(r)}(t)dt$$

Les b_n sont les nombres de Bernoulli, et les B_n sont les polynômes de Bernoulli, définis sur [0,1] par la récurrence classique, et ensuite prolongés par 1-périodicité.

2.2 Outils d'analyse complexe

2.2.1 La fonction Γ d'Euler

Théorème 2.2.1. Pour tout $s \in \mathbb{C} \backslash \mathbb{R}$,

$$\log \Gamma(s) = (s - \frac{1}{2}) \log s - s + \frac{1}{2} \ln(2\pi) - \int_0^\infty B_1(t) \frac{dt}{s+t}$$

2.2.2 Séries de Dirichlet

Le titre de ce rapport contient "la fonction ζ " de Riemann, mais avant de la définir, nous allons d'abord définir ce qu'est une série de Dirichlet.

Définition 2.2.2. Soit f une fonction arithmétique. Alors la série de Dirichlet associée à f est la série (formelle):

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}.$$

Nous n'allons pas démontrer le résultat suivant, voir TODO pour un démonstration

Théorème 2.2.3. Soit F une série de Dirichlet, et supposons qu'il existe $s \in \mathbb{C}$ telle que F(s) converge. Alors il existe trois réels :

$$-\infty \le \sigma_c \le \sigma_u \le \sigma_a \le +\infty$$

tels que:

— F converge pour tout s vérifiant $\sigma > \sigma_c$.

2.2.3 Formule de Perron

Nous établissons dans cette section la formule de Perron, reliant une série de Dirichlet à sa fonction sommatoire normalisée.

Dans toute cette section, nous allons noter

$$F(s) = \sum_{n \ge 1} \frac{a_n}{n^s}$$

une série de Dirichlet. On note :

- σ_c son abscisse de convergence simple,
- σ_a son abscisse de convergence absolue.

Prolongeons la suite $(a_n)_n$ en une fonction sur \mathbb{R} en posant

$$a_x = \begin{cases} a_n & \text{si } n \in \mathbb{N} \\ 0 & \text{sinon} \end{cases}$$

Définition 2.2.4 (Fonction sommatoire normalisée). Nous introduisons :

$$A^*(x) = \sum_{n < x} a_n + \frac{1}{2} a_x$$

Théorème 2.2.5 (Formule de Perron). Soit $\kappa > \max(0, \sigma_c)$. On a :

$$A^*(x) = \frac{1}{2\pi i} \int_{\kappa - i\infty}^{\kappa + i\infty} F(s) \frac{x^s}{s} ds$$

où l'intégrale est

- convergeante en valeur principale lorsque $x \in \mathbb{N}$
- semi-convergeante lors $x \in \mathbb{R} \backslash \mathbb{N}$.

Démonstration. TODO

Dans la pratique, nous n'utilison pas la formule de Perron telle quelle, mais sous une forme "effective".

Théorème 2.2.6 (Première formule de Perron effective). $Pour \kappa > \max(0, \sigma_c)$, $T \ge 1, \ x \ge 1$,

$$A(x) = \frac{1}{2\pi i} \int_{\kappa - i\infty}^{\kappa + i\infty} F(s) \frac{x^s}{s} ds + O\left(x^k \sum_{n \ge 1} \frac{|a_n|}{n^{\kappa} (1 + T|\ln \frac{x}{n}|)}\right)$$

Démonstration. TODO

Théorème 2.2.7 (Seconde formule de Perron effective). On suppose que :

- l'abscisse de convergence absolue de F(s) σ_a est finie,
- il existe un nombre réel $\alpha \geq 0$ tel que

$$\forall \sigma \in]\sigma_a, \sigma_a + 1], \quad \sum_{n>1} \frac{|a_n|}{n^{-\sigma}} = O((\sigma - \sigma_a)^{-\alpha})$$

— il existe une fonction B positive et croissante telle que

$$\forall n \geq 1, \quad |a_n| \leq B(n)$$

Alors, pour $x \ge 2$, $T \ge 2$, $\sigma \le \sigma_a$, $\kappa := \sigma_a - \sigma + 1/\ln x$,

$$\sum_{n \le x} \frac{a_n}{n^s} = \frac{1}{2\pi i} \int_{\kappa - iT}^{\kappa + iT} F(s + \omega) \frac{x^{\omega}}{\omega} d\omega + O\left(x^{\sigma_a - \sigma} \frac{\ln^{\alpha} x}{T} + \frac{B(2x)}{x^{\sigma}} \left(1 + x \frac{\ln T}{T}\right)\right)$$

Démonstration. TODO

Chapitre 3

La fonction ζ de Riemann

3.1 Lien avec les nombres premiers

La fonction que nous appelons aujourd'hui fonction ζ de Riemann a en réalité été introduite par Euler au XVIIIème siècle. Il a défini, pour tout $x\in\mathbb{R}, x>1$, la fonction

$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$$

La somme de droite est clairement convergente, donc $\zeta(x)$ est bien défini. Euler démontra par la suite le résultat suivant, qui définit un lien entre les nombres premiers et l'analyse.

Théorème 3.1.1 (Produit eulérien).

$$\zeta(x) = \prod_{p} \frac{1}{1 - p^{-x}} \quad (\sigma > 1)$$

Plus précisément, le produit infini signifie :

$$\lim_{P \to +\infty} \prod_{p \text{ premier} p \le P} \frac{1}{1 - p^{-x}} = \zeta(x) \quad (\sigma > 1)$$

 $D\acute{e}monstration.$ Pour tout nombre premier p, comme 1/p<1, on peut écrire la somme d'une suite géométrique :

$$\frac{1}{1 - p^{-x}} = \sum_{k=0}^{+\infty} \frac{1}{p^{kx}}.$$

En faisant le produit de cette égalité pour tous les nombres premiers $p_1,...,p_r$ inférieurs à un certain T, on a :

$$\prod_{p < T} \frac{1}{1 - p^{-x}} = \prod_{p < T} \sum_{k=0}^{+\infty} \frac{1}{p^{kx}}$$
(3.1)

$$= \sum_{m_1,\dots,m_r \ge 1} \frac{1}{(p_1^{m_1} \dots p_r^{m_r})^x}$$
 (3.2)

$$=\sum_{n\in\mathbb{N}_T} n^{-x} \tag{3.3}$$

où l'on a noté \mathbb{N}_T l'ensemble des entiers naturels dont tous les facteurs premiers sont inférieurs ou égaux à T.

(3.2) est jusitifiée par le fait que tous les termes sont positifs, donc on peut intervertir les sommes. (3.3) vient de la décomposition unique en facteurs premiers.

Ainsi,

$$\left| \sum_{n=1}^{\infty} \frac{1}{n^x} - \prod_{p \le T} \frac{1}{1 - p^{-x}} \right| = \left| \sum_{n \notin \mathbb{N}_T} \frac{1}{n^x} \right| \le \sum_{n \notin \mathbb{N}_T} \frac{1}{n^x} \le \sum_{n > T} \frac{1}{n^x}$$

La dernière somme est le reste d'une série convergente, donc tend vers 0, ce qui prouve à la fois la convergence du produit et la formule d'Euler.

A ce stade, nous commençons à nous convaincre du rôle important de la fonction ζ dans l'étude des nombres premiers. Une analyse plus approfondie de cette fonction va nous aider grandement, c'est ce que nous allons faire tout de suite.

3.2 Quelques propriétés de ζ

Avant d'étudier ses propriétés, commençons par définir officiellement ζ . L'idée de Riemann, dans son TODO, a été de partir de la définition d'Euler, et de considérer ζ comme fonction d'une variable complexe :

Définition 3.2.1 (Fonction ζ de Riemann). On définit, pour tout s complexe tel que $\sigma > 1$,

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Remarquons que ζ est la série de Dirichlet (voir la définition 2.2.2) associée à la fonction constante 1.

Proposition 3.2.2. Pour $\sigma > 1$, la série $\zeta(s)$ est absolument convergente.

Démonstration. C'est évident car $\left|\frac{1}{n^s}\right| = \frac{1}{n^{\sigma}}$, qui est le terme général d'une série convergente.

Cette proposition montre que la fonction ζ est bien définie sur le demi-plan $\sigma>1.$

Cela va sans dire, mais cela ira encore mieux en le disant :

Théorème 3.2.3 (Produit eulérien, variable complexe).

$$\zeta(s) = \prod_{p} \frac{1}{1 - p^{-s}} \quad (\sigma > 1)$$

Démonstration. La démonstration est exactement la même que dans le cas réel : voir la proposition 3.1.1. Il suffit de notre que $|\frac{1}{n^s}|=\frac{1}{n^\sigma}$.

Il en découle immédiatement cette 1ère propriété intéressante :

Proposition 3.2.4.

$$\zeta(s) \neq 0 \quad (\sigma > 1)$$

 $D\acute{e}monstration.$ Soit p premier fixé. L'inégalité triangulaire donne $|1-p^{-s}| \le 1+p^{-\sigma}.$ Par conséquent,

$$\ln(|1 - p^{-s}|) \le \ln(1 + p^{-\sigma}) \le p^{-\sigma}$$

où les inégalités sont données respectivement par la croissance et par la concavité du logarithme.

Ceci entraı̂ne la convergence de la série $\sum_p \ln(|1-p^{-s}|)$, pour tout s avec $\sigma>1$. Notons L_s sa limite :

$$\ln\left(\prod_{p}|1-p^{-s}|\right) = L_s,$$

et ainsi

$$\left| \prod_{p} \frac{1}{1 - p^{-s}} \right| = e^{-L_s} > 0,$$

Le terme de gauche est exactement $|\zeta(s)|$ par le produit eulérien du théorème 3.2.3.

Proposition 3.2.5.

$$|\zeta(s)| \le \frac{\sigma}{\sigma - 1} \quad (\sigma > 1)$$

Démonstration. On passe par les intégrales. Soit $N \geq 2$ et $s = \sigma + it$.

$$\begin{split} \left| \sum_{n=1}^{N} \frac{1}{n^s} \right| &\leq \sum_{n=1}^{N} \left| \frac{1}{n^s} \right| \\ &= 1 + \sum_{n=2}^{N} \frac{1}{n^{\sigma}} \\ &= 1 + \sum_{n=2}^{N} \int_{n-1}^{n} \frac{\mathrm{d}t}{t^{\sigma}} \\ &= 1 + \int_{1}^{N} \frac{\mathrm{d}t}{t^{\sigma}} \\ &= 1 + \frac{1}{\sigma - 1} \left(1 - \frac{1}{N^{\sigma - 1}} \right) \\ &\leq \frac{\sigma}{\sigma - 1}. \end{split}$$

Il suffit alors de faire tendre N vers $+\infty$.

Proposition 3.2.6. ζ est holomorphe sur le demi-plan $\sigma > 1$.

Démonstration. Soit K un compact du demi-plan $\sigma > 1$, alors K est inclus dans un $\{s \in \mathbb{C} \mid \sigma \geq a\}$ pour un certain réel a > 1. Mais alors en définissant $f_n : s \mapsto 1/n^s = \mathrm{e}^{-s \ln n}$, la fonction f_n est holomorphe sur $\sigma > 1$, et sur K, $\|f_n\|_{\infty} \leq 1/n^a$, qui est le terme général d'une série convergente.

La série de fonctions $\sum f_n$ converge vers ζ , normalement (donc uniformément) sur K. Par suite ζ est holomorphe sur le demi-plan $\sigma > 1$.

3.2.1 Expression de $\log \zeta$ et fonction de van Mangoldt

 $\zeta(s)$ est réel pour s réel, et est strictement positif. Le logarithme de ce nombre existe et est réel. Il est donc naturel de choisir, parmi tous les log ζ possible, de choisir celle qui prolonge ln ζ sur l'axe réel.

Définition 3.2.7 (Fonction de van Mangoldt).

$$\Lambda(n) = \begin{cases} \ln p & \text{s'il existe } m \ge 1 \text{ et } p \text{ tels que } n = p^m \\ 0 & \text{sinon} \end{cases}$$

Proposition 3.2.8. On peut construuire une détermination holomorphe de $\log \zeta$ pour $\sigma > 1$ en posant

$$\log \zeta(s) = \sum_p \sum_{\nu \geq 1} \frac{1}{\nu p^{\nu s}} = \sum_{n=2}^\infty \frac{\Lambda(n)}{n^s \ln n} \quad (\sigma > 1).$$

Alors pour x réel,

$$\log \zeta(x) = \ln \zeta(x).$$

 $D\acute{e}monstration.$ D'une part, pour $s=\sigma$ réel et en partant du produit eulérien 3.2.3, on a

$$\ln \zeta(\sigma) = -\sum_{p} \ln \left(1 - \frac{1}{p^{\sigma}}\right).$$

D'autre part, on développe le logarithme en série entière $\ln(1-u)=u+\frac{u^2}{2}+\ldots+\frac{u^k}{k}+\ldots$, ce qui est possible puisque $p\geq 2$ et $\sigma>1$, et on peut donc définir

$$D(s) = \sum_{p} \sum_{\nu \ge 1} \frac{1}{\nu p^{\nu s}}.$$

La série D est normalement convergente sur tout compact du demi-plan $\sigma > 1$, donc y définit une fonction holomorphe.

Sur la demi-droite réelle $s = \sigma > 1$,

$$\sum_{\nu > 1} \frac{1}{\nu p^{\nu s}} = -\ln\left(1 - \frac{1}{p^{\sigma}}\right),\,$$

donc $e^{D(s)} = \zeta(s)$.

 ${
m e}^D$ et ζ sont donc deux fonctions holomorphes du demi-plan ouvert $\sigma>1$, et coïncident sur la demi-droite réelle $s=\sigma>1$. Par unicité du prolongement, elles coïncident sur tout le demi-plan $\sigma>1$.

En dérivant l'égalité e^D et ζ , on obtient immédiatement

$$D'(s) = \frac{\zeta'(s)}{\zeta(s)},$$

et en dérivant terme à terme la série définissant D,

$$D'(s) = -\sum_{p} \sum_{\nu \ge 1} \frac{\ln p}{p^{\nu s}},$$

de sorte que l'on a, pour tout $\sigma > 1$,

$$D'(s) = \frac{\zeta'(s)}{\zeta(s)} = -\sum_{p} \sum_{\nu > 1} \frac{\ln p}{p^{\nu s}} = -\sum_{n=2}^{\infty} \frac{\Lambda(n)}{n^s}.$$

En intégrant terme à terme, la série ${\cal D}$ se réecrit alors :

$$D(s) = \sum_{n=2}^{\infty} \frac{\Lambda(n)}{n^s \ln n}$$

ce qui prouve la proposition.

Nous allons extraire une partie de la preuve ci-dessus, en la mettre dans le corollaire suivant :

Corollaire 3.2.9. On a l'égalité

$$-\frac{\zeta'(s)}{\zeta(s)} = \sum_{n>1} \frac{\Lambda(n)}{n^s} \quad (\sigma > 1)$$

Proposition 3.2.10. La fonction suivant est analytique au voisinage de 1 :

$$F(s) = -\frac{\zeta'(s)}{\zeta(s)} - \frac{1}{s-1}$$

Cette proposition découle immédiatement du lemme suivant :

Lemme 3.2.11. Soit f méromorphe avec un pôle d'ordre k en $s=\alpha$. Alors $\frac{f}{f'}$ a un pôle d'ordre 1 en $s=\alpha$, de résidu -k.

Démonstration. On peut écrire

$$f(s) = \frac{g(s)}{(s-\alpha)^k},$$

avec g holomorphe au voisinage de α et $g(\alpha) \neq 0$.

Donc pour tout s au voisinage de α ,

$$f'(s) = \frac{g'(s)}{(s-\alpha)^k} - \frac{kg(s)}{(s-\alpha)^{k+1}} = \frac{g(s)}{(s-\alpha)^k} \left(\frac{g'(s)}{g(s)} - \frac{k}{s-\alpha} \right)$$

Donc

$$\frac{f'(s)}{f(s)} = \frac{-k}{s - \alpha} + \frac{g'(s)}{g(s)}.$$

Comme $\frac{g'(s)}{g(s)}$ est holomorphe au voisinage de α , ceci prouve le lemme. \square

Preuve de la proposition 3.2.10. $-\frac{\zeta'}{\zeta}$ a un pôle d'ordre 1 en 1, $\frac{1}{s-1}$ a un pôle d'ordre 1 en 1. Leur différence est donc holomorphe au voisiange de 1.

Corollaire 3.2.12.

$$\left| \frac{\zeta'(\sigma)}{\zeta(\sigma)} \right| = O_{\sigma \to 1} \left(\frac{1}{\sigma - 1} \right)$$

3.3 Equation fonctionnelle

Théorème 3.3.1 (Equation fonctionnelle, Riemann).

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s) \quad (s \in \mathbb{C} \setminus \{0,1\})$$

Démonstration. TODO

Prolongement et propriétés sur la bande cri-3.4 tique

La définition de ζ que nous avons donnée en 3.2.1 est valable pour $\sigma > 1$. Nous allons essayer, dans cette section et dans la suivante, d'essayer de prolonger ζ sur d'autres parties du plan complexe.

Nous commençons par la prolonger jusqu'au demi-plan $\sigma > 0$. Le fermé de la région prolongée, $0 \le \sigma \le 1$, s'appelle la bande critique. Au fait, de nombreux résultats arithmétiques reliant ζ et les nombres premiers font appel aux propriétés de ζ sur cette bande critique.

Proposition 3.4.1. On a, pour $s \neq 0$ et $\sigma > 0$,

$$\zeta(s) = \frac{s}{s-1} - s \int_{1}^{\infty} \frac{\{t\}}{t^{1+s}} dt$$

 $D\acute{e}monstration.$ Pour s>1, appliquons la formule d'Abel, avec :

$$- a_n = 1,$$

$$- f: x \mapsto 1/x^s,$$

$$- x = 1, y = N$$

$$-x = 1, y = N$$

dans l'énoncé de la proposition 2.1.1 :

$$\sum_{n=1}^{N} \frac{1}{n^s} = \frac{1}{N^{s-1}} - 1 - s \int_{1}^{N} \lfloor t \rfloor t^{-s-1} dt$$

En faisant tendre N vers $+\infty$,

$$\zeta(s) = -s \int_{1}^{\infty} \lfloor t \rfloor t^{-s-1} dt$$

$$= -s \int_{1}^{\infty} t^{-s} dt - s \int_{1}^{\infty} \{t\} t^{-s-1} dt$$

$$= -s \left[\frac{t^{-s+1}}{-s+1} \right]_{1}^{\infty} - s \int_{1}^{\infty} \{t\} t^{-s-1} dt$$

$$= \frac{s}{s-1} - s \int_{1}^{\infty} \{t\} t^{-s-1} dt$$

Lemme 3.4.2 (Formule du reste). On a, pour $N \ge 1$ et $\sigma > 0$,

$$\zeta(s) = \sum_{n=1}^{N} \frac{1}{n^s} + \frac{N^{1-s}}{s-1} - s \int_{N}^{\infty} \frac{\{t\}}{t^{1+s}} dt$$

Démonstration. $\forall \sigma > 1$,

$$\begin{split} \zeta(s) - \sum_{n=1}^N &= \int_N^\infty \frac{\mathrm{d}\lfloor t \rfloor}{t^s} \\ &= \int_N^\infty \frac{\mathrm{d}t}{t^s} - \int_N^\infty \frac{\mathrm{d}\{t\}}{t^s} \\ &= -\frac{N^{1-s}}{1-s} - \int_N^\infty \frac{\mathrm{d}\{t\}}{t^s} \\ &= -\frac{N^{1-s}}{1-s} - s \int_N^\infty \frac{\{t\}}{t^{s+1}} \mathrm{d}t \end{split}$$

et cette formule est encore valable pour $\sigma > 0$ par prolongement analytique.

Proposition 3.4.3. Pour tout réel A > 0, sur la région du plan définie par $\{s \in C \mid t \ge 2, \ \sigma > 1 - \frac{A}{\ln t}\}, \ on \ a :$

$$\zeta(s) = O(\ln t)$$

$$\zeta'(s) = O(\ln^2 t)$$

lorsque $t \to +\infty$, où la constante dans le O dépend de A.

Démonstration. Pour $\sigma \geq 2$, Les égalités $|\zeta(s)| \leq \zeta(2) = O(1)$ et $|\zeta'(s)| \leq$ $\zeta'(2) = O(1)$ sont triviales, donc les deux majorations sont vérifiées pour $\sigma \geq 2$.

On peut donc supposer maintenant que $\sigma < 2$ et $t \geq 2$. Pour tout couple (σ,t) vérifiant ces conditions, on a (la première inégalité vient de l'inégalité triangulaire):

$$|s| \le \sigma + t < 2 + t \le 2t$$

et

$$|s-1| \ge t$$
.

En reportant tout cela dans le lemme 3.4.2, on obtient, pour tout $N \ge 1$:

$$|\zeta(s)| \le \sum_{n=1}^{N} \frac{1}{n^{\sigma}} + \frac{N^{1-\sigma}}{t} + 2t \int_{n}^{\infty} \frac{1}{u^{1+\sigma}} du$$
 (3.4)

En particulier, en prenant N = |t|, on a

- $$\begin{split} & & N \leq t < N+1, \\ & & \forall n \leq N, \, \ln n \leq \ln t. \end{split}$$

Par ailleurs, l'hypothèse $1 - \sigma < A/\ln t$ entraîne

$$\frac{1}{n^{\sigma}} = \frac{1}{n} n^{1-\sigma} = \frac{1}{n} e^{(1-\sigma)\ln n} < \frac{1}{n} e^{A\frac{\ln n}{\ln t}} \le \frac{1}{n} e^A = O\left(\frac{1}{n}\right)$$

On peut donc maintenant évaluer terme à terme l'équation 3.4.

$$\sum_{n=1}^{N} \frac{1}{n^{\sigma}} = O\left(\sum_{n=1}^{N} \frac{1}{n}\right) = O(\ln N) = O(\ln t)$$

$$\frac{N^{1-\sigma}}{t} = \frac{N}{t} \frac{1}{N^{\sigma}} = O\left(\frac{1}{N}\right) = O(1)$$
$$2t \int_{n}^{\infty} \frac{1}{u^{1+\sigma}} du = \frac{2t}{\sigma N^{\sigma}} = O\left(\frac{2t}{N}\right) = O(1)$$

En remplaçant dans 3.4,

$$|\zeta(s)| = O(\ln t).$$

Pour la deuxième majoration, il suffit de dériver et d'appliquer le même raisonnement. $\hfill \Box$

Par symétrie par rapport à l'axe t = 0, on a également :

Corollaire 3.4.4. Pour tout réel A>0, sur la région du plan définie par $\{s\in C\mid |t|\geq 2,\ \sigma>1-\frac{A}{\ln|t|}\}$, on a:

$$\zeta(s) = O(\ln|t|)$$

$$\zeta'(s) = O(\ln^2|t|)$$

où la constante dans le O ne dépend que de A.

3.5 Majorations près du pôle

Les estimations ci-dessus requièrent que $|t| \geq 2$, mais parfois, il nous faut estimer ζ près de son pôle s=1. C'est ce que nous allons faire dans cette section.

Proposition 3.5.1. *Soit* $\epsilon > 0$. *Si* $|t| \le 1$ *et* $0 < \sigma \le 2$,

$$\zeta(s) = O\left(\frac{1}{|s-1|}\right)$$

$$\zeta'(s) = O\left(\frac{1}{|s-1|^2}\right)$$

Démonstration. En prenant N=1 dans la formule du reste 3.4.2, on a :

$$\zeta(s) = 1 + \frac{1}{s-1} - s \int_{1}^{\infty} \frac{\{t\}}{t^{s+1}} dt$$
 (3.5)

où $\left|\frac{\{t\}}{t^{s+1}}\right| \leq \frac{1}{t^{\sigma+1}}$, donc l'intégrale converge absolument. Comme |s|=O(1) dans le domaine étudié, on a bien

$$|\zeta(s)| = O\left(\frac{1}{|s-1|}\right).$$

On dérive 3.5:

$$\zeta'(s) = -\frac{1}{(s-1)^2} - \int_1^\infty \frac{\{t\}}{t^{s+1}} dt - s \int_1^\infty \frac{(-\ln t)\{t\}}{t^{s+1}} dt.$$

Le même argument que ci-dessus montre que :

$$\zeta'(s) = O\left(\frac{1}{|s-1|^2}\right).$$

3.6 Prolongement à $\mathbb{C}\setminus\{1\}$

Théorème 3.6.1. La fonction ζ admet un unique prolongement en une fonction méromorphe sur \mathbb{C} ayant un unique pôle en s=1 de résidu 1.

Une fois ce théorème démontré, nous allons encore noter ζ cet unique prolongement. Nous allons donner plusieurs démonstrations de ce théorème.

3.6.1 Par la formule d'Euler-Maclaurin

 $D\acute{e}monstration$. Fixons s tel que $\sigma>1$, et appliquons la formule d'Euler-Maclaurin 2.1.2 à l'ordre $r\geq 1$ sur l'intervalle [1,N] à la fonction $f:t\mapsto t^{-s}$, de classe C^{∞} sur [1,N]:

$$\sum_{n=1}^{N} n^{-s} = \frac{1 - N^{1-s}}{s - 1} + \frac{1 + N^{-s}}{2} + \sum_{k=2}^{r} B_k \frac{s(s+1)...(s+k-2)}{k!} (1 - N^{-s-k+1}) - R_{r,N}(s)$$

où l'on a défini le reste $R_{r,N}(s)$ par

$$R_{r,N}(s) = \frac{s(s+1)...(s+r-1)}{r!} \int_{1}^{N} B_r(t)t^{-s-r} dt$$

Comme les B_r sont périodiques et polynomiaux sur [0,1[, ils sont bornés. Le terme à l'intérieur de l'intégrale de $R_{r,N}(s)$ est donc $O(t^{-s-r})$, qui intégrable sur $[1,+\infty]$. En faisant tender N vers l'infini, on obtient alors

$$\zeta(s) = \frac{1}{s-1} + F_r(s)$$

où l'on a noté

$$F_r(s) = \frac{1}{2} + \sum_{k=2}^r B_k \frac{s(s+1)...(s+k-2)}{k!} - \frac{s(s+1)...(s+r-1)}{r!} \int_1^\infty B_r(t) t^{-s-r} dt.$$

Montrons que F_r est holomorphe sur $\Omega_r = \{s \in \mathbb{C} \mid \sigma > 1 - r\}$. Il suffit que montrer que G_r l'est, où

$$G_r(s) = \int_1^\infty B_r(t) t^{-s-r} dt.$$

On remarque que, à t fixé, la fonction à l'intérieur $s \mapsto B_r(t) t^{-s-r}$ l'est. Soit K un compact de Ω_r , on peut fixer un $\delta > 0$ tel que $K \subset \{s \in \mathbb{C} \mid \sigma > 1 - r + \delta\}$. Sur ce compact,

$$\sup_{s \in K} \left| \frac{B_r(t)}{t^{s+r}} \right| = O\left(\frac{1}{t^{1+\delta}}\right)$$

ce qui assure, par régularité des intégrales à paramètre, que G_r , et par suite F_r est holomorphe sur Ω_r .

On peut ainsi définir une fonction entière F par

$$F(s) = F_r(s)$$
 si $s \in \Omega_r$.

F est bien définie car si $1 \le q \le r$, $F_q(s) = F_r(s) = \zeta(s) - \frac{1}{s-1}$, donc F_q et

 F_r sont holomorphes et coincident sur Ω_q connexe. On obtient finalement que $s\mapsto \frac{1}{s-1}+F(s)$ est une fonction méromorphe avec un unique pôle simple en 1 de résidu 1 qui prolonge la fonction ζ de Riemann.

L'unicité est triviale par prolongement analytique.

3.6.2 Par un contour de Hankel

3.6.3 Par l'équation fonctionnelle

Prolongement sur [0,1] par la sommation d'abel, sur $\sigma < 0$ par l'équation fonctionnelle.

3.7 Développement en produit d'Hadamard

3.7.1Lemmes d'analyse complexe

3.7.2 Produit d'Hadamard

Définition 3.7.1. On définit, pour $s \in \mathbb{C} \setminus \{0, 1\}$,

$$\xi(s) := s(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s)$$

Proposition 3.7.2. La fonction ξ vérifie l'équation fonctionelle

$$\xi(s) = \xi(1-s)$$

Démonstration. C'est juste un reformulation du théorème 3.3.1. Théorème 3.7.3. Il existe des constantes a et b telles que

$$\xi(s) = e^{as} \prod_{\rho} \left(1 - \frac{s}{\rho} \right) e^{s/\rho}$$

$$\zeta(s) = \frac{\mathrm{e}^{bs}}{2(s-1)} \Gamma(s/2+1)^{-1} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) \mathrm{e}^{s/\rho}$$

Démonstration. TODO

3.8 Localisation des zéros

Nous avons vu à la proposition 3.2.4 que ζ ne s'annule pas pour $\sigma > 1$. Nous allons montrer que cette propriété est vraie sur le demi-plan fermé $\sigma \geq 1$.

Théorème 3.8.1 (Mertens). Soit $F(s) = \sum_{n \geq 1} \frac{a_n}{n^s}$ une série de Dirichlet à coefficients positits ou nuls. Notions σ_c sont abscisse de convergence. Alors :

$$3F(\sigma) + 4\Re(F(\sigma + it)) + \Re(F(\sigma + 2it)) \ge 0 \quad (\sigma > \sigma_c)$$

Démonstration. Posons $\forall \theta \in \mathbb{R}, V(\theta) := 3 + 4\cos(\theta) + \cos(2\theta)$.

$$V(\theta) = 3 + 4\cos(\theta) + (2\cos^{2}(\theta) - 1)$$

= 2(1 + 2\cos(\theta) + \cos^{2}(\theta))
= 2(1 + \cos(\theta))^{2}
\geq 0

Or

$$3F(\sigma) + 4\Re(F(\sigma+it)) + \Re(F(\sigma+2it)) = \sum_{n \geq 1} \frac{a_n V(t \ln n)}{n^\sigma},$$

et comme les a_n sont positifs ou nuls, cela implique bien que

$$3F(\sigma) + 4\Re(F(\sigma + it)) + \Re(F(\sigma + 2it)) > 0$$

Corollaire 3.8.2.

$$\zeta^{3}(\sigma)|\zeta(\sigma+it)|^{4}|\zeta(\sigma+2it)| \ge 1 \quad (\sigma > 1)$$

 $D\acute{e}monstration.$ On applique le théorème à la fonction

$$F(s) = \log \zeta(s) = \sum_{n \ge 2} \frac{\Lambda(n)}{n^s \ln n} \quad (\sigma > 1)$$

où la 2ème égalité vient de la proposition 3.2.8. La série de droite est bien une série de Dirichlet à coefficient positifs ou nuls, d'abscisse de convergence 1. \Box

Nous sommes maintenant en mesure de prouver le résultat suivant, qui va s'avérer très important pour le théorème des nombres premiers.

Théorème 3.8.3. ζ ne s'annule pas sur le demi-plan fermé $\sigma \geq 1$.

 $D\acute{e}monstration$. On sait déjà que ζ ne s'annule pas sur le demi-plan ouvert $\sigma>1$, voir la proposition 3.2.4.

Supposons par l'absurde qu'il existe t_0 tel que $\zeta(1+it_0)=0$, on le fixe. On sait que ζ est dérivable en $1+it_0$. En particulier, en dérivant suivant l'axe des réels,

$$\lim_{\sigma \to 1^+} \frac{\zeta(\sigma + it_0) - \zeta(1 + it_0)}{\sigma - 1} \in \mathbb{C}$$

donc on peut écrire, en appliquant l'hypothèse,

$$\zeta(\sigma + it_0) = O_{\sigma \to 1^+}(\sigma - 1).$$

De plus, comme $|\zeta(s)| \leq \frac{\sigma}{\sigma-1}$ par la proposition 3.2.5, on peut écrire

$$\zeta(\sigma) = O_{\sigma \to 1^+} \left(\frac{1}{\sigma - 1} \right).$$

Enfin, par continuité de ζ ,

$$\zeta(\sigma + 2it_0) = O_{\sigma \to 1^+}(1)$$

En regroupant ces trois comportements asymptotiques, il vient :

$$\zeta^{3}(\sigma)|\zeta(\sigma+it)|^{4}|\zeta(\sigma+2it)| = O_{\sigma\to 1^{+}}(\sigma-1),$$

en particulier le membre de gauche peut être rendu arbitrairement petit lorsque $\sigma \to 1^+$, ce qui contredit l'inégalité 3.8.2.

Corollaire 3.8.4. Dans le demi-plan $\sigma \leq 0$, la fonction ζ admet pour seuls zéros les points $-2n, n \geq 1$ entier. Ce sont des zéros simples.

 $D\acute{e}monstration.$ Analyse. Soit s tel que $\sigma \leq 0.$ Réécrivons l'équation fonctionelle 3.3.1 :

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s) \quad (s \in \mathbb{C} \setminus \{0,1\})$$

Ainsi, si $s \neq 0$, $\sigma \leq 0$ et $\zeta(s) = 0$, on a forcément $\sin(\frac{\pi s}{2}) = 0$, et donc $s = -2, -4, \dots$ Mais il reste à voir si $\zeta(0)$ est nul ou non.

En multipliant l'équation fonctionnelle par (1-s) et en utilisant $s\Gamma(s)=\Gamma(s+1)$ TODO, on obtient

$$(1-s)\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(2-s)\zeta(1-s).$$

On peut passer à la limite $s\to 1$, en remarquant que d'une part $\Gamma(1)=1$, et d'autre part $\zeta(s)\sim \frac{1}{s-1}$:

$$-1 = 2\zeta(0)$$
.

Ceci montre que les seuls zéros possibles de ζ sont les -2,-4...

Synthèse. On a bien
$$\zeta(-2) = \zeta(-4) = \dots = 0$$

Les zéros aux entiers négatifs pairs sont appelés les zéros triviaux de la fonction $\zeta.$

3.8.1 Répartition globale des zéros

Développement en produit de Hadamard.

Régions sans zéros qui seront explorées plus en détails dans le chapitre sur le théorème des nombres premiers.

Chapitre 4

Le théorème des nombres premiers

Nous allons montrer le théorème des nombres premiers dans ce chapitre. Plus précisément, nous allons montrer qu'il découle presqu'immédiatement de l'existence d'une région sans zéro de la fonction ζ qui déborde sur le demi-plan $\sigma < 1$, et que plus cette région sans zéro est grande, mieux est le terme d'erreur dans le théorème des nombres premiers.

4.1 Région affaiblie sans zéros

Théorème 4.1.1 (Théorème des nombres premiers, avec terme d'erreur, version affaiblie). Il existe une constante réelle c > 0 telle que l'on ait, au voisinage de $+\infty$,

$$\psi(x) = x + O(xe^{-c\ln^{1/10}x}) \tag{4.1}$$

L'ingrédient principal pour prouver le théorème des nombres premiers est le fait que ζ ne s'annule pas sur la droite $\sigma=1$. L'idée intuitive est la suivante : si ζ a un zéro en ρ , alors $\frac{\zeta'}{\zeta}$ a un pôle en ρ . Or le produit eulérien nous donne de bonnes informations sur le comportement de $\frac{\zeta'}{\zeta}$ dans le demi-plan $\sigma>1$. En particulier, elle y est bornée. Par conséquent, si $\frac{\zeta'}{\zeta}$ (qui est négative) avait un pôle près de la droite $\sigma=1$, elle devrait y décroître très rapidement.

Théorème 4.1.2 (Région sans zéros, version affaiblie). *Il existe un réel* c > 0 tel que sur la région du plan complexe définie par $|t| \ge 2$, $\sigma \ge 1 - \frac{c}{\ln^9 |t|}$, on ait

$$\left|\frac{1}{\zeta(s)}\right| = O(\ln^7|t|)$$

lorsque $t\mapsto +\infty$. En particuler, ζ ne s'annule pas sur cette région du plan. Démonstration. Par les hypothèses du corollaire 3.4.4,

$$-\forall c>0.$$

$$- \forall 0 < \eta < \frac{c}{\ln|t|},$$

$$-\forall s = \sigma + it \text{ avec } \sigma > 1 - \eta, |t| > 2.$$

 $\begin{array}{ll} - & \forall c>0,\\ - & \forall 0<\eta<\frac{c}{\ln|t|},\\ - & \forall s=\sigma+it \text{ avec } \sigma>1-\eta, |t|\geq 2,\\ \text{alors on a bien } \sigma>1-\frac{c}{\ln|t|}, |t|\geq 2, \text{ et on pose } s_0=1+\eta+it. \text{ Par ce corollaire} \end{array}$ 3.4.4, TODO Figure

$$|\zeta(s) - \zeta(s_0)| = \left| \int_{s_0}^s \zeta'(\omega) d\omega \right| \le C_0 |s - s_0| \ln^2 |t|$$

$$\le 2C_0 \eta \ln^2 |t|,$$

où l'intégrale est bien définie car $|t| \geq 2$ donc on évite le pôle, et C_0 est une constante positive qui vient du 0 de 3.4.4.

On utilise maintenant l'inégalité fondamentale 3.8.2 due à Mertens :

$$\zeta(s_0) \ge \frac{1}{\zeta(1+\eta)^3 |\zeta(1+\eta+2it)|}$$
$$\ge \frac{C_1 \eta^3}{\ln |t|}$$

où l'on a utilisé dans la deuxième inégalité la proposition 3.4.4, qui donne la constante positive C_1 .

D'où:

$$|\zeta(s)| \ge |\zeta(s_0)| - |\zeta(s) - \zeta(s_0)|$$

$$\ge \frac{C_1^{1/4} \eta^{3/4}}{\ln^{1/4} |t|} - 2C_0 \eta \ln^2 |t|$$

Choisissons alors η pour que les deux termes se compensent, c'est-à-dire η de l'ordre de $\ln^{-9} |t|$.

Plus précisément, si l'on choisit :

$$\eta := \frac{c}{\ln^9 |t|},$$

Alors les hypothèses sont toujours vérifiées, on peut refaire le cheminement ci-dessus, et on a alors

$$|\zeta(s)| \ge \frac{C_1^{1/4}c^{3/4}}{\ln^7|t|} - \frac{2C_0c}{\ln^7|t|} \ge \frac{C_2}{\ln^7|t|}.$$

Donc ζ ne s'annule pas sur cette région, et la proposition est démontrée.

Nous sommes maintenant en mesure de prouver le théorème des nombres premiers sous sa forme 4.1.1. L'astuce est d'utiliser la formule de Perron, de

briser le segment sur lequel s'effectue l'intégration, et de le remplacer par un contour qui contient le pôle s=1 (donc forcément débordant en partie sur le demi-plan $\sigma < 1$). Le terme d'erreur vient alors de la valeur de l'intégrale sur les autres parties du contour. Formalisons cela.

Démonstration du théorème 4.1.1. Nous avons vu à la proposition 3.2.12

$$\left| \frac{\zeta'(\sigma)}{\zeta(\sigma)} \right| = O_{\sigma \to 1} \left(\frac{1}{\sigma - 1} \right)$$

Ainsi nous pouvons appliquer la seconde formule de Perron effective 2.2.7 avec :

- la série de Dirichlet $F(s) = \sum_{n \geq 1} \frac{\Lambda(n)}{n^s}$ $\alpha = 1$, $\sigma_a = 1$, et on a

$$\sum_{n>1} \frac{\Lambda(n)}{n^{-\sigma}} = -\frac{\zeta'(\sigma)}{\zeta(\sigma)} = O((\sigma - 1)^{-1})$$

— la fonction $B = \ln \text{ vérifie}$

$$\forall n \ge 1, \quad \Lambda(n) \le B(n)$$

On obtient, dans ce cas-là, pour $x \geq 2$, s = 0, $T \geq 2$, et $\sigma_1 = 1 + \frac{1}{\ln x}$:

$$\psi(x) = \sum_{n \ge 1} \Lambda(n) = \frac{1}{2\pi i} \int_{\sigma_1 - iT}^{\sigma_1 + iT} \left(-\frac{\zeta'(s)}{\zeta(s)} \right) \frac{x^s}{s} \mathrm{d}s + O\left(\frac{x \ln^2 x}{T}\right).$$

Nous allons utiliser le théorème des résidus pour estimer l'intégrale, et choisir T à la fin convenablement pour compenser les termes d'erreur.

En fixant c donné par le théorème 4.1.2, posons $\delta = \frac{c}{\ln^9 T}$, $\sigma_0 = 1 - \delta$, et rappelons que nous venons de poser $\sigma_1 = 1 + \ln x$. Alors le rectangle de sommets $(\sigma_0, \pm iT)$ et $(\sigma_1, \pm iT)$ est contenu dans cette région sans zéros. En notant $f(s) = \left(-\frac{\zeta'(s)}{\zeta(s)}\right) \frac{x^s}{s}$ l'intégrande, on a alors que s=1 est l'unique pôle de f dans ce rectangle. Le théorème des résidus nous fournit alors (le terme à l'intérieur de l'intégrale, f(s)ds, est omis pour clarté):

$$\psi(x) = \operatorname{Res}(f, 1) + \frac{1}{2\pi i} \left(\int_{\sigma_0 - iT}^{\sigma_0 + iT} + \int_{\sigma_0 + iT}^{\sigma_1 + iT} - \int_{\sigma_0 - iT}^{\sigma_1 - iT} \right) + O\left(\frac{x \ln^2 x}{T}\right).$$

Nous pouvons facilement vérifier que Res(f,1) = x, car ζ a un pôle simple en s = 1, donc

$$\psi(x) = x + \frac{1}{2\pi i} \left(\int_{\sigma_0 - iT}^{\sigma_0 + iT} + \int_{\sigma_0 + iT}^{\sigma_1 + iT} - \int_{\sigma_0 - iT}^{\sigma_1 - iT} \right) + O\left(\frac{x \ln^2 x}{T}\right)$$
(4.2)

On voit déjà le terme x de l'énoncé apparaître, essayons donc d'estimer les trois intégrales. Commençons par celle du milieu, qui a lieu sur le petit segment horizontal du haut. Notons I_h ce segment, et on a la majoration grossière :

$$|f(s)| = \left| \left(-\frac{\zeta'(s)}{\zeta(s)} \right) \frac{x^s}{s} \right| \le \frac{x^{\sigma_1}}{T} \max_{I_h} |\zeta'| \max_{I_h} \left| \frac{1}{\zeta} \right|$$

$$\le \frac{x}{T} \max_{I_h} |\zeta'| \max_{I_h} \left| \frac{1}{\zeta} \right|.$$

(Astuce : l'inégalité $|s| \ge T$ se voit mieux géométriquement.)

Mais on a déjà vu : $- \max |\zeta'| = O(\ln^2 T) \text{ dans la proposition } 3.4.4, \\ - \max |\frac{1}{\zeta}| = O(\ln^7 T) \text{ dans le théorème juste au-dessus } 4.1.2.$

$$|f(s)| = O\left(\frac{x}{T}\ln^9 T\right)$$

Comme la longueur du segement est $\sigma_1 - \sigma_0 = 1/\ln x + \delta = O(1)$, on a que

$$\int_{\sigma_0 + iT}^{\sigma_1 + iT} f(s) ds = O\left(\frac{x}{T} \ln^9 T\right)$$
(4.3)

Par symétrie par rapport à l'axe des abscisses, la troisième intégrale sur le segment de bas I_b dans 4.2 est également $O\left(\frac{x}{T}\ln^9T\right)$.

Reste à évaluer la première intégrale sur le segment vertical de gauche I_q . Pareil, majorons grossièrement:

$$|f(s)| = \left| \left(-\frac{\zeta'(s)}{\zeta(s)} \right) \frac{x^s}{s} \right| \le \frac{x^{\sigma_0}}{|s|} \max_{I_g} |\zeta'| \max_{I_g} \left| \frac{1}{\zeta} \right|$$
$$= O\left(\frac{x^{\sigma_0}}{|s|} \max_{I_g} |\zeta'| \ln^7 T \right)$$

On est tenté ici d'utiliser encore une fois la proposition 3.4.4 pour majorer $|\zeta'|$. Mais il faut faire attention, car on n'a plus le $|t| \geq 2$ nécessaire pour 3.4.4, car ce segment est assez proche du pôle s=1, donc $\max_{I_g}|\zeta'|$ peut devenir assez importante. Mais par hypothèse, $\frac{1}{|\sigma-1|} = O(\ln^9 |t|)$ Nous utilisons la proposition 3.5.1 pour avoir la majoration

$$\max_{I_a} |\zeta'| = O(\ln^{18} T) \tag{4.4}$$

En combinant 4.3 et 4.4 et en les injectant dans 4.2, on obtient

$$\psi(x) = x + O\left(x^{\sigma_0} \ln^{25} x \int_{-T}^{T} \frac{1}{1 + |t|} dt\right) + O\left(\frac{x}{T} \ln^9 T\right) + O\left(\frac{x \ln^2 x}{T}\right)$$

L'intégrale est $O(\ln T)$, et le dernier terme peut être absorbé dans $O\left(\frac{x}{T}\ln^9 T\right)$, donc

$$\psi(x) = x + O(x^{\sigma_0} \ln^{26} x) + O\left(\frac{x}{T} \ln^9 T\right)$$

En majorant encore plus grossièrement, c'est-à-dire $O(\ln^9 T) = O(\ln^2 6T)$, on peut factoriser

$$\psi(x) = x + O\left(x \ln^{26} x \left(x^{-\delta} + \frac{1}{T}\right)\right)$$
$$= x + O\left(x \ln^{26} x \left(e^{-\frac{c \ln x}{\ln^{9} T}} + e^{-\ln T}\right)\right)$$

Il faut noter que les deux termes en exponentiel varient en sens opposés lorsque T augmente. On peut les rendre égaux en choisissant $T=\exp(\ln^{1/10}x)$, auquel cas on a :

$$\psi(x) = x + O(x \ln^{26} x e^{-c \ln^{1/10} x}).$$

En choisissant c assez grand TODO, on obtient Enfin

$$\psi(x) = x + O(xe^{-c\ln^{1/10}x}).$$

4.2 Région classique sans zéros

Le terme d'erreur $O(xe^{-c\ln^{1/10}x})$ dans 4.1.1 n'est pas terrible, on peut peutêtre l'améliorer. En diagnostiquant la preuve ci-dessus, on remarque que ce terme d'erreur vient en très grande partie de l'intégrale sur le segment vertical de gauche. En fait, plus on arrive à décaler ce segment vers la gauche, plus l'intégrale sera petite.

Mais pour ce faire, il nous faut trouver une région sans zéros plus grande que celle du théorème 4.1.2. Le but de cette section est donc de démontrer le théorème suivante :

Théorème 4.2.1 (Région classique sans zéro). Il existe un réel c > 0 tel que la fonction ζ ne s'annule pas sur la région du plan définie par

$$|t| \ge 2$$
 et $\sigma \ge 1 - \frac{c}{\ln|t|}$

 $D\acute{e}monstration.$ Nous partons de la propositions 3.2.9, qui nous fournit la série de Dirichlet

$$-\frac{\zeta'(s)}{\zeta(s)} = \sum_{n \ge 1} \frac{\Lambda(n)}{n^s}.$$

Son abscisse de convergence est 1, et on a d'après la formule 3.8.1 due à Mertens, $\forall \sigma>1, \forall \gamma\in\mathbb{R}$

$$-3\frac{\zeta'(\sigma)}{\zeta(\sigma)} - 4\Re\frac{\zeta'(\sigma + i\gamma)}{\zeta(\sigma + i\gamma)} - \Re\frac{\zeta'(\sigma + 2i\gamma)}{\zeta(\sigma + 2i\gamma)} \ge 0. \tag{4.5}$$

Soit $\rho=\beta+i\gamma$ de ζ un zéro de ζ . Nous allons majorer les 3 termes ci-dessus.

Premièrement,

$$-\frac{\zeta'(\sigma)}{\zeta(\sigma)} = \frac{1}{\sigma - 1} + O(1).$$

Deuxièmement, en dérivant logarithmitiquement la formule du produit de Hadamard 3.7.3 de ζ , on a :

$$-\frac{\zeta'(s)}{\zeta(s)} = -b + \frac{1}{s-1} + \frac{\Gamma'(\frac{s}{2}+1)}{2\Gamma(\frac{s}{2}+1)} - \sum_{\rho} \left(\frac{-1}{1-\frac{s}{\rho}} + \frac{1}{\rho}\right)$$
$$= -b + \frac{1}{s-1} + \frac{\Gamma'(\frac{s}{2}+1)}{2\Gamma(\frac{s}{2}+1)} - \sum_{\rho} \left(\frac{1}{\rho} + \frac{1}{s-\rho}\right)$$

En utlisant la formule de Stirling complexe 2.2.1 POURQUOI, on a

$$-\Re\frac{\zeta'(s)}{\zeta(s)} = O(\ln(|t|)) \quad (\sigma > 1, |t| \ge 2)$$

et aussi, en tenant compte de la contribution du zéro $\beta+i\gamma$, POURQUOI

aaa

En reportant dans 4.5,

$$\frac{-3}{\sigma - 1} - 3M_1(\sigma) - \frac{4}{\sigma - \beta} + 4M_2(|\gamma|) \ln|\gamma| + M_3(|\gamma|) \ln|\gamma| \ge 0,$$

En notant c_1 , on a alors, pour $\gamma \geq 2$

$$\frac{3}{\sigma - 1} - \frac{4}{\sigma - \beta} \ge c_1 \ln |\gamma|$$

d'où

$$1 - \beta \ge \frac{1 - c_1(\sigma - 1) \ln |\gamma|}{(3/(\sigma - 1)) + c_1 \ln |\gamma|}$$

En choisissant $\sigma = 1 + (2c_1 \ln |\gamma|)^{-1}$, il suite

$$1 - \beta \ge \frac{c_1}{14 \ln |\gamma|}$$

ce qui prouve le théorème par contraposée.

4.2.1 Majorations dans cette région

Pour prouver le théorème des nombres premiers en utilisant cette région sans zéros, nous avons besoin de quelques majorations.

Proposition 4.2.2. Il existe une constante positive c telle que l'on ait, pour $|t| \ge 2$ et $\sigma \ge 1 - \frac{c}{\ln |t|}$,

$$\frac{\zeta'(s)}{\zeta(s)} = O(\ln|t|)$$

4.2.2 Théorème des nombres premiers

Théorème 4.2.3 (Théorème des nombres premiers avec terme d'erreur, de la Vallée Poussin, 1900). Il existe une constante réelle c > 0 telle que l'on ait, au voisinage $de +\infty$,

$$\psi(x) = x + O(xe^{-c\sqrt{\ln x}}) \tag{4.6}$$

Démonstration. La preuve est exactement la même que celle du théorème 4.1.1, sauf qu'on utilise la nouvelle région sans zéros que l'on vient de définir plus haut, et le rectangle est de sommets $(\sigma_0, \pm iT)$, $(\sigma_1, \pm iT)$, avec

$$-\sigma_0 = 1 - \frac{c}{\ln(T)}$$
$$-\sigma_1 = 1 + 1/\ln x$$

On réécrit :

$$\psi(x) = x + \frac{1}{2\pi i} \left(\int_{\sigma_0 - iT}^{\sigma_0 + iT} + \int_{\sigma_0 + iT}^{\sigma_1 + iT} - \int_{\sigma_0 - iT}^{\sigma_1 - iT} \right) + O\left(\frac{x \ln^2 x}{T}\right)$$
(4.7)

Mais cette fois, sur les deux segments horizontaux I_h et I_b qui sont $[\sigma_0 \pm iT, \sigma_1 \pm iT]$, on a, utilisant la proposition 4.2.2,

$$|f(s)| = \left| \left(-\frac{\zeta'(s)}{\zeta(s)} \right) \frac{x^s}{s} \right| \le \frac{x^{\sigma_1}}{T} \max_{I_h} \left| \frac{\zeta'}{\zeta} \right| \tag{4.8}$$

$$= O\left(\frac{x^{\sigma_1}\ln(T)}{T}\right) \tag{4.9}$$

$$= O\left(\frac{x \ln x}{T}\right) \tag{4.10}$$

où la dernière égalité vient du fait que l'on n'oubliera pas, à la fin de la preuve, de choisir T tel que T=O(x).

Sur le segment vertical de gauche $I_q = [\sigma_0 - iT, \sigma_0 + iT]$, on a

$$|f(s)| = \left| \left(-\frac{\zeta'(s)}{\zeta(s)} \right) \frac{x^s}{s} \right| \le \frac{x^{\sigma_0}}{|s|} \max_{I_g} \left| \frac{\zeta'}{\zeta} \right|$$
$$= O\left(\frac{x^{\sigma_0} \ln T}{|s|} \right)$$
$$= O\left(\frac{x^{1 - c/\ln T} \ln x}{|s|} \right)$$

où la deuxième ligne est justifiée par la proposition 4.2.2.

En réassemblant tout, on obtient

$$\psi(x) = x + O\left(x^{1 - \frac{c}{\ln T}} \ln x \int_{-T}^{T} \frac{\mathrm{d}t}{1 + |t|}\right) + O\left(\frac{x \ln^2 x}{T}\right)$$
$$= x + O\left(x \ln^2 x \left(e^{-\frac{c \ln x}{\ln T}} + e^{-\ln T}\right)\right)$$

En choisissant alors $T := e^{\sqrt{c \ln x}}$, on vérifie que T = O(x) pour que 4.10 soit justifiée, et on a aussi dans ce cas

$$\psi(x) = x + O(xe^{-c\sqrt{\ln x}})$$

4.3 Enoncé avec $\pi(x)$

Nous avons vu, dans les deux section précédentes, deux théorèmes que nous avons appelés "théorème des nombres premiers", mais qui ne faisaient intervenir que $\psi(x)$, sans aucun lien apparent avec $\pi(x)$. Le théorème des nombres premiers s'appelle ainsi parce qu'il a quelque chose à dire sur la distribution des nombres premiers :

Théorème 4.3.1 (Théorème des nombres premiers). Il existe une constante réelle c > 0 telle que l'on ait, au voisinage de $+\infty$,

$$\pi(x) = \int_2^x \frac{\mathrm{d}t}{\ln t} + O(x \mathrm{e}^{-c\sqrt{\ln x}})$$

Cette intégrale a en réalité un nom :

Définition 4.3.2 (Logarithme intégral). On définit le logarithme intégral, noté li, par

$$\operatorname{li}(x) = \int_0^x \frac{\mathrm{d}t}{\ln t}.$$

On définit également la fonction d'écart logarithmique intégrale :

$$\operatorname{Li}(x) = \int_{2}^{x} \frac{\mathrm{d}t}{\ln t} = \operatorname{li}(x) - \operatorname{li}(2)$$

Remarquons que $t\mapsto \frac{1}{\ln t}$ n'est pas définie pour t=1, et la définition de li doit être interprétée en valeur principale de Cauchy :

$$\operatorname{li}(x) = \lim_{\epsilon \to 0} \left(\int_0^{1-\epsilon} \frac{\mathrm{d}t}{\ln t} + \int_{1-\epsilon}^{\infty} \frac{\mathrm{d}t}{\ln t} \right).$$

Démonstration du théorème 4.3.1. TODO

On en déduit également la forme suivante, plus faible, mais plus répandue :

Théorème 4.3.3 (Théorème des nombres premiers, version affaiblie).

$$\pi(x) \sim \int_2^x \frac{\mathrm{d}t}{\ln t}$$

Démonstration. Il suffit juste de voir que (TODO Pourquoi?)

$$xe^{-c\sqrt{\ln x}} = o(\operatorname{li}(x)).$$

Proposition 4.3.4.

$$\operatorname{li}(x) = \frac{x}{\ln x} + \frac{x}{\ln^2 x} + O\left(\frac{x}{\ln^3 x}\right)$$

Démonstration. Cela se fait facilement par intégration par parties.

On a donc $\pi(x) \sim \text{li}(x) \sim \frac{x}{\ln x},$ mais li donne une meilleure approximation : TODO GRAPHE

4.4 L'hypothèse de Riemann

TODO

Théorème 4.4.1. L'hypothèse de Riemann équivaut à

$$\forall \epsilon > 0, \quad \psi(x) = x + O_{\epsilon}(x^{1/2 + \epsilon})$$

4.5 Formule explicite pour ψ