Joint Representation for Image and text

Dexiong Chen and Xi Shen

Objective: multimodal learning for image and text

- Image search: retrieving images for a given text description
- Image annotation : searching descriptions for a given image
- Image description: generating descriptions for a given image

Difficult Task

Integrating vision, language understanding and learning

Database: Flickr [M. Hodosh and al. 2013]

Each image contains five descriptions

- A football player pauses during a game.
- A football player wears a green jersey with the number "4" on it.
- Greenbay football player is being handed a towel on the field.
- Green Bay Packer player cooling off
- Someone takes a cloth off of a Green Bay Packers football player.
- Flickr8K: 6000, 1000, 1000 for train, validation and test. Flickr30K: 28000, 1000, 1000 for train, validation and test

Previous work: MNLM model [R. Kiros and al. 2014]

Encoder loss (kiros loss):

$$\min_{\boldsymbol{\theta}} \ \sum_{\mathbf{x}} \sum_{k} \max\{0, \alpha - s(\mathbf{x}, \mathbf{v}) + s(\mathbf{x}, \mathbf{v}_k)\} + \sum_{\mathbf{v}} \sum_{k} \max\{0, \alpha - s(\mathbf{v}, \mathbf{x}) + s(\mathbf{v}, \mathbf{x}_k)\}$$

Performance of MNLM: image search and image annotation results

Model	Image Annotation				Image Search					
	$\mathbf{R}@1$	$\mathbf{R}@5$	$\mathbf{R}@10$	$\mathbf{Med}\ r$	$\mathbf{R}@1$	$\mathbf{R}@5$	$\mathbf{R}@10$	$\mathbf{Med}\ r$		
Flickr8K										
DeFrag	12.6	32.9	44.0	14	9.7	29.6	42.5	15		
m-RNN-AlexNet	14.5	37.2	48.5	11	11.5	31.0	42.4	15		
NIC	20	-	61	6	19	-	64	5		
MNLM	18.0	40.9	55.0	8	12.5	37.0	51.5	10		
Our reimplemented MNLM	17.8	46.9	59.4	6.5	15.2	38.8	52.3	9		
		F	lickr30K							
DeFrag	16.4	40.2	54.7	8	10.3	31.4	44.5	13		
m-RNN-AlexNet	18.4	40.2	50.9	10	12.6	31.2	41.5	16		
m-RNN- V ggNet	35.4	63.8	73.7	3	22.8	50.7	63.1	5		
NIC	17	-	56	7	17	-	57	7		
DeepVS	22.2	48.2	61.4	4.8	15.2	37.7	50.5	9.2		
MNLM	23.0	50.7	62.9	5	16.8	42.0	56.5	8		
Our reimplemented MNLM	24.1	51.2	62.9	5	19.0	44.4	57.7	7		

Previous work: NIC model [O. Vinyals and al. 2015]

Log-perplexity (log-ppl) loss:

$$L(I,S) = -\sum_{t=1}^{N} \log p_t(S_t)$$

Advantage: Enable text generation

Performance of NIC: Bleu scores for image description [K. Papineni and al. 2002]

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{cases}$$

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

c : length of candidate sentence

R: length of reference sentence

N = 4

 $wn = \frac{1}{4}$

pn: n gram precision

Motivation: can image features learned by MNLM be used to generate sentence?

- Use latent space features to train NIC -> meaningful descriptions
- High probability to get same descriptions for similar images -> overfitting
- Why not combine two models ? -> Our encoder-decoder model

Our model: combination of the both models

Detail of the model (1): LSTM [S. Hochreiter and J. Schmidhuber, 1997] for encoder

Detail of the model (2): LSTM [S. Hochreiter and J. Schmidhuber, 1997] for decoder

Detail of the model (3)

- Total loss = lambda * kiros_loss + log-ppl_loss, lambda is determined by experiments
- Decoder LSTM enables to generate image describtion
- Image retrieval and image annotation can be determined by finding the smallest loss of :

Match_Error(Image, Text) = 1 - cosine_similarity(Image_feature, Text_feature)

Implementation details

- Toolbox: Theano and Keras [P.W.D. Charles 2013]
- Optimization method : rmsprop [T Tieleman and al. 2012]
- Implemented model: MNLM, NIC and the combined model
- Early stop, dropout [N Srivastava and al. 2014] etc.
- Besides the usual hyper-parameters, our model contains extra hyperparameters such as lambda etc.
- Run more than 80 models.
- Train and validate on the same loss.
- Beam search for sentence generation, match_error for image annotation and image retrieval

Image search and annotation results

Flickr 8k										
Model	Image search				Image annotation					
	R@1	R@5	R@10	Median	Mean	R@1	R@5	R@10	Median	Mean
MNLM [R. Kiros and al. 2014]	12.5	37.0	51.5	10	-	18.0	40.9	55.0	8	
NIC [O. Vinyals and al. 2015]	19	-	64	5	-	20	-	61	6	
Our reimplemented MNLM	15.2	38.8	52.3	9	34.7	17.8	46.9	59.4	6.5	36.8
Our model (Only Kiros loss)	17.54	44.06	58.63	7	27.96	22.70	50.80	65.20	5	31.575

Image search and annotation results

Flickr 30k									
Model	Image search				Image annotation				
	R@1	R@5	R@10	Median	R@1	R@5	R@10	Median	
MNLM [R. Kiros and al. 2014]	16.8	42.0	56.5	8	23.0	50.7	62.9	5	
NIC [O. Vinyals and al. 2015]	17	-	57	7	17	-	56	7	
BRNN [A. Karpathy and al. 2015]	15.2	37.7	50.5	9.2	22.2	48.2	61.4	4.8	
Our reimplemented MNLM	19.0	44.4	57.7	7	24.1	51.2	62.9	5	
Our model (Only Kiros loss)	17.56	45.42	57.4	7	24.8	51.1	63.4	5	

Image description results

Flickr 8k								
Model	BLEU							
iviouei	BLEU-1	BLEU-2	BLEU-3	BLEU-4				
NIC [O. Vinyals and al. 2015]	63	41	27	-				
BRNN [A. Karpathy and al. 2015]	57.9	38.3	24.5	16.0				
Our model	60.0	40.9	27.1	17.6				

Flickr 30k								
Madal	BLEU							
Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4				
NIC [O. Vinyals and al. 2015]	66.3	42.3	27.7	18.3				
BRNN [A. Karpathy and al. 2015]	57.9	36.9	24.0	15.7				
Our model	62.7	41.4	27.4	17.8				

Quantitative examples: retrieval examples

A group of dogs runs beside a pond through a field.

a boy wearing a teal shirt is riding a skateboard on a sidewalk

Image Description Examples

Discussion

- NIC model has fine-tuned CNN, whereas our model does not.
- MNLM performs better with more data, since more difference between the unrelated image and sentence will be learnt
- The two parts (MNLM and NIC) in our model, share the same image feature.
- In our model, two losses can be viewed as a regularized term for another

- The cosine similarity enables to get good result, experiment shows the consideration of log-ppl loss can improve the image search result.
- lambda is not difficult to tune, in praticice, making the kiros loss and log-ppl loss converge to the same scale. (lambda * kiros loss ≈ log-ppl loss)
- Flickr8k allows us to choose and fix the best hyperparameters for other larger datasets.
- Dropout (in LSTM) is helpful to avoid overfitting.
- Initializing the word embedding with Glove or not does not impact the results

 Take about 2 hours to train flickr8k and 10 hours to train flickr30k on a GPU NVIDIA GeForce GT 750M

Future work

- Analysis and illustration of learned embedding space for words, using techniques like PCA.
- Instead of only considering kiros loss for ranking, we can take into account of logppl loss.
- Using other metrics to evaluate generated descriptions, such as METEOR.
- Use a larger dataset: MS COCO, study the transfer learning and scalability of our model.
- Check if fine-tuning CNN can improve results.

Conclusion

- An encoder-decoder model which learns in the meantime multimodal representation and text reconstruction.
- Combination of two models does improve performance.
- A simple but powerful model which accomplishes several tasks at the same time.