Worksheet 14 Solution

March 26, 2020

Question 1

a. Inner Loop Iterations (upper bound): n

Inner Loop Step Size: 1

Inner Loop Steps Total: n

Outer Loop Iterations (upper bound): n

Outer Loop Step Size: 1

Outer Loop Steps Total: n

Steps Total: $n \cdot n = n^2$

Correct Solution:

Since the inner loop starts at i+1 and ends at n-1, where i represents the variable in outer loop, the inner loop has (n-1-(i+1)+1)=n-i-1 iterations.

Since each iteration takes 1 step, the total steps taken by inner loop is:

$$(n-i-1) \cdot 1 = (n-i-1) \tag{1}$$

Now, we will evaluate total steps taken by outer loop.

Since the outer loop starts at i = 0, and ends at n - 1, the loop runs at most n iterations.

Since each iteration takes (n - i - 1) steps, the total steps of outer loop is:

$$\sum_{i=0}^{n-1} (n-i+1) = \sum_{i=0}^{n-1} [(n-1)-i]$$
 (2)

$$=\sum_{i=0}^{n-1}(n-1)-\sum_{i=0}^{n-1}i$$
(3)

$$= n(n-1) - \frac{n(n-1)}{2} \tag{4}$$

$$=\frac{n^2-n}{2}\tag{5}$$

Then, since the last **return** statement takes 1 step, it follows that the total number of steps of this algorithm is at most $\frac{n^2-n}{2}+1$, or $\mathcal{O}(n^2)$.

b. Consider the input family where none of the values in a list are the same (i.e. [1, 2, 3, 4, 5, 6, 7, 8, 9]).

Since all values in the input list are not matching, both the inner and the outer loop will run, giving the loops the total number of steps of $\frac{n^2-n}{2}$.

Since the last **return** statement takes 1 step, the total number of steps of this algorithm is $\frac{n^2-n}{2}+1$, or $\Omega(n^2)$.

Correct Solution:

Let $n \in \mathbb{N}$ and lst = [1, 2, 3, ..., n - 1, n - 1].

Since the inner loop will run without interruptions until the end, the inner loop has

$$n - 1 - (i + 1) + 1 = n - i - 1 \tag{1}$$

iterations.

Then, since the inner loop takes 1 step per iteration, the total steps taken by the inner loop is

$$(n-i-1) \cdot 1 = (n-i-1) \tag{2}$$

Since the **if condition** lst[i] == lst[j] and the **return** statement are activated when i = n - 2, the outer loop will run until i = n - 2, where j is the variable of the inner loop and i is the variable of the outer loop.

Since the outer loop starts at 0 and ends at n-2, it has

$$n - 2 + 1 = n - 1 \tag{3}$$

iterations.

Since each iteration in the outer loop takes (n - i - 1) steps, the outer loop has total cost of

$$\sum_{i=0}^{n-2} (n-i-1) = \sum_{i=0}^{n-2} (n-1) + \sum_{i=0}^{n-2} i$$
 (4)

$$= (n-1)(n-1) - \frac{(n-2)(n-1)}{2}$$
 (5)

$$=\frac{(n-1)n}{2}\tag{6}$$

Since each of the **if condition** and **return** statement has cost of 1, the total cost of algorithm is $\frac{n(n-1)}{2} + 2$, or $\Omega(n^2)$

c. Let $n \in \mathbb{N}$, and $lst_{upper} = [1, 2, 3, ..., n - 1, 1]$

Since the inner loop will run from j = i + 1 until the end without interruptions, the loop has

$$(n-1) - (i+1) + 1 = n - i - 1 \tag{1}$$

iterations.

Since the inner loop takes 1 step per iteration, the loop takes total of

$$(n-i-1) \cdot 1 = (n-i-1) \tag{2}$$

steps.

Now, because we know that the **if condition** and **return** statement will occur at i = 0, the outer loop has at most 1 iteration.

Because we know that the outer loop terminates at i = 0, the total cost of inner loop can be simplified to

$$(n-i-1) = n-1 (3)$$

Since the outer loop has 1 iteration and takes n-1 steps, the loop has total cost of n-1.

Lastly, since each of the **if condition** and **return** statement has cost of 1, the total cost of the algorithm is

$$n - 1 + 2 = n + 1 \tag{4}$$

steps, or $\Theta(n)$.

Note

- What's the lower/upper bound of this input family? How can I find them?
- [1, 2, 3, ..., 1, n-1] returns total cost of algorithm of n. Does it imply [1, 2, 3, ..., 1, n-1] is in different input family than [1, 2, 3, ..., n-1, 1]?
- $g \in \mathcal{O}(f)$: $\exists c, n_o \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow g(n) \leq cf(n)$, where $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$
- $g \in \Omega(f)$: $\exists c, n_o \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow g(n) \geq cf(n)$, where $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$
- $g \in \Theta(f)$: $g \in \mathcal{O}(f) \land g \in \Omega(f)$

Question 2