Dana je PDE $a(x,y)u_x + b(x,y)u_y = 0$, kjer sta $a,b \in \infty(\mathbb{R}^2)$. NDE, ki ji morajo zadostiti nivojnice rešitvene ploskve u = u(x,y) je $a \, \mathrm{d}y = b \, \mathrm{d}x$. Iz dobljene enačbe izrazimo splošno konstanto C, splošna rešitev pa je u = u(x,y) = F(C). Uporabimo še začetni pogoj.

Uvedba novih spremenljivk s, t: $u_x = u_s s_x + u_t t_x$, $u_y = u_s s_y + u_t t_y$.

Poseben primer novih spremenljivk:

Če za PDE $a(x,y)u_x+b(x,y)u_y+c(x,y)u=d(x,y), \ a,b,c,d\in C^\infty(\mathbb{R}^2)$ uvajamo novi spremenljivki t in s, za kateri velja $as_x+bs_y=0$ in $at_x+bt_y\neq 0$, dobimo NDE 1. reda:

$$u_t + \frac{c}{at_x + bt_y}u = \frac{d}{at_x + bt_y}.$$

Krajšanje metode z nivojnicami: $ds = 0 = s_x dx + s_y dy$. Iz pogoja $as_x + bs_y = 0$ izrazimo npr. s_x z s_y , nesemo v enačbo ds = 0, krajšamo s_y , rešimo NDE in dobimo splošno rešitev: s = F(C). Potrebujemo neko rešitev, torej lahko izberemo kar F = id. Za t si izberemo tako funkcijo x, y (čim enostavnejšo), da bo izpolnjen pogoj $at_x + bt_y \neq 0$ in da bosta s in t neodvisni, torej da velja:

$$\det \begin{bmatrix} s_x & s_y \\ t_x & t_y \end{bmatrix} \neq 0.$$

KVAZILINIEARNA PDE

Oblika: $a(x,y,u)u_x + b(x,y,u)u_y = c(x,y,u)$. Začetni pogoj: rešitev vsebuje krivuljo $\Gamma(s) = (x_0(s),y_0(s),u_0(s))$. u = u(x,y) je ploskev z normalo $\vec{n} = (e_x,u_y,-1)$. Zaradi tipa enačbe velja $(a,b,c) \cdot \vec{n} = 0$, torej rešitvena ploskev sestoji iz krivulj, za katere velja $\dot{\gamma} = (a,b,c)$. Rešujemo <u>karakteristični sistem</u>: $\dot{x} = a(x,y,u)$, $\dot{y} = b(x,y,u)$, $\dot{u} = c(x,y,u)$. Rešitvam karakterističnega sistema pravimo <u>karakteristike</u> in načeloma napolnijo cel \mathbb{R}^3 . Rešitev sestavimo iz krivulj (karakteristik), ki sekajo začetno krivuljo Γ : $x(0) = x_0(s)$, $y(0) = y_0(s)$, $u(0) = u_0(s)$. Dobimo parametrično rešitev: u = u(x,y).

Definicija: Transverzalnostni pogoj:

$$(T) = \det \begin{bmatrix} a(x_0, y_0) & b(x_0, y_0) \\ x'_0(s) & y'_0(s) \end{bmatrix} \neq 0,$$

kjer je (a,b) tangenta karakteristik (prvi dve komponenti), (x'_0,y'_0) pa tangenta začetne krivulje (prvi dve komponenti). IZREK:

- (i) Če je (T) izpolnjen za vsak $s \in \mathbb{R}$, obstaja <u>natanko ena</u> rešitev začetnega problema, definirana na okolici začetne krivulje $\Gamma(s)$, $s \in \mathbb{R}$
- (ii) če je (T) prekršen za vsak $s \in \mathbb{R}$, imamo dve možnosti:
 - a) ne obstaja rešitev, če Γ ni karakteristika (Γ je karakteristika, če je izpolnjen pogoj v točki b),
 - b) imamo neskončno rešitev, če je $\Gamma' || (a, b, c)$.

Če ima enačba neskončno rešitev (sledimo točki b) iz zgornjega izreka) in iščemo več kot eno, se lahko zgodi, da nam metoda karakteristik ponudi le eno. Ideja: izberemo si začetno krivuljo Γ_1 , ki zadošča naslednjima pogojema:

- (1) netangentno seka Γ ,
- $(2)\,$ izpolnjuje (T) za originalno enačbo.

LEMA: $(ax + by)u_x + (bx + dy)u_y = 0$, $a, b, d \in \mathbb{R}$, $ad - b^2 > 0$, a + d < 0. Naj bo u rešitev enačbe razreda $C^1(\mathbb{R}^2)$. Tedaj je u konstantna.

Trik za neskončne sisteme NDE za $x_n(t)$: rešimo ga s pomočjo rodovne funkcije $Q(y,t) = \sum_{n=1}^{\infty} x_n(t)y^n$. Velja: $yQ_y = \sum_{n=1}^{\infty} nx_n(t)y^n$, $Q_y - Q/y = \sum_{n=1}^{\infty} nx_{n+1}y^n$. Z upoštevanjem rekurzivne zveze dobimo PDE za Q, rešimo, razvijemo rešitev v vrsto po y.

LAGRANGEEVA METODA ZA KVAZILINEARNE PDE

TRDITEV: Naj bo $F: \mathbb{R}^3 \longrightarrow \mathbb{R}$ C^{∞} z lastnostma:

- (i) obstaja $p \in \mathbb{R}^3$: F(p) = 0 in $F_u(p) \neq 0$,
- (ii) F je prvi integral karakterističnega sistema $\dot{x} = a(x, y, u), \quad \dot{y} = b(x, y, u), \quad \dot{u} = c(x, y, u).$

Potem je z enačbo F(x, y, u) = 0 dobro definirana implicitna rešitev enačbe $a(x, y, u)u_x + b(x, y, u)u_y) = c(x, y, u)$ na okolici točke n

p. **Metoda:** Naj bosta F in G gladka, funkcijsko neodvisna integrala karakterističnega sistema. Potem je splošna rešitev $\Psi(F(x, y, u), G(x, 0), kjer je \Psi$ poljubna funkcija. F(x, y, u) = C, G(x, y, u) = D. Metoda nam generira splošne rešitve, nimamo pa relacije med

začetno krivuljo in enoličnostjo rešitve ter metode ne moremo posplošiti za nelinearne PDE. Iz parametrične rešitve karakterističnega sistema izrazimo konstanti C in D. To sta naša prva integrala F in G, ki sta zdaj odvisna le od x, y, u, ne pa od C, D. Dobimo Ψ in upoštevamo še začetni pogoj (ga vstavimo v Ψ). Navadno lahko uganemo predpis za Ψ , da bo res enak 0. Če hočemo vedeti kaj o enoličnosti, se lotimo naloge z metodo karakteristik in preverimo transverzalnostni pogoj. Zanimivi vzorci: $(x^2)^{\cdot} = 2x\dot{x}, (xy)^{\cdot} = \dot{x}y + x\dot{y}, (\ln x)^{\cdot} = \frac{\dot{x}}{x}$.

TRDITEV: Naj bosta $\vec{P}_j : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $j \in \{1,2\}$, vektorski polji ortogonalni na Q(x,y,u) = (a(x,y,u),b(x,y,u),c(x,y,u)), neodvisni in rot \vec{P}_j . Tedaj sta njuna potenciala prva integrala karakterističnega sistema.

Nelinearne PDE 1. reda

Oblika: $F(x, y, u, u_x, u_y) = 0$, označimo $p = u_x$, $q = u_y$. Iščemo rešitev pri pogojih $u(\alpha(t), \beta(t)) = \gamma(t)$.

Metoda karakteristik: Za karakteristike vzamemo <u>tvorilke</u> stožca, tj. "središčne premice". To so rešitve sistema $\dot{x} = F_p$, $\dot{y} =$ F_q , $\dot{u}=pF_p+qF_q$, $\dot{p}=-F_x-F_up$, $\dot{q}=-F_y-F_uq$. Za določanje konstant upoštevamo začetno krivuljo in dva naravna

- $F(x, y, u, p, q)|_{t=0} = 0$,
- $\Gamma' \perp \vec{n}|_{t=0}$: $(p(0), q(0), -1) \cdot \Gamma'(s) = 0$.

Če u=u(x,y) določa ploskev v prostoru, je enačba tangentne ravnine na to ploskev v točki (x,y,u(x,y)) enaka: $u_x(X-x)+u(x,y)$ $u_y(Y-y)-(U-u)=0$ (normala ravnine je $(A,B,C)=(u_x,u_y,-1)$). Razdalja od tangentne ravnine do točke (a,b,c) je:

$$d(AX + BY + CU + D = 0, (a, b, c)) = \frac{|Aa + Bb + Cc + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

EKSISTENČNI IZREK ZA NELINEARNE PDE 1. REDA

IZREK: Naj bo u = u(x, y) rešitev začetnega problema

$$F(x, y, u, u_x, u_y) = 0$$
, $u(\alpha(s), \beta(s)) = \gamma(s)$, za $s \in \mathcal{I}$.

Če sta $p(s) = u_x(\alpha(s), \beta(s))$ in $q(s) = u_y(\alpha(s), \beta(s))$ edini funkciji, za kateri velja:

- (1) $(T) = \det \begin{bmatrix} \alpha' & \beta' \\ F_p & F_q \end{bmatrix} (s) \neq 0 \quad \forall s \in \mathcal{I},$
- (2) $F(\alpha(s), \beta(s), \gamma(s), p(s), q(s)) = 0 \quad \forall s \in \mathcal{I},$
- $(3) (p(s), q(s), -1) \cdot (\alpha'(s), \beta'(s), \gamma'(s)) = 0 \quad \forall s \in \mathcal{I}.$

Potem je rešitev u enolična.

PFAFFOVA ENAČBA

Oblika: p(x, y, z) dx + q(x, y, z) dy + r(x, y, z) dz = 0. Geometrijski pomen: $\vec{F} = (p, q, r)$. Iščemo družino ploskev $G(x, y, z) = C \in \mathbb{R}$, ki je pravokotna na \vec{F} , tj. obstaja $\mu = \mu(x, y, z)$: grad $(G) = \mu \vec{F}$.

Lema: Potreben in zadosten pogoj za rešitev Pfaffove PDE je $\vec{F} \cdot \text{rot} \vec{F} = 0$.

Velja: $\operatorname{rot}(\mu \vec{F}) = \operatorname{grad} \mu \times \vec{F} + \mu \operatorname{rot} \vec{F}$.

Metoda za reševanje: Predpostavimo, da iščemo rešitve, katerih presek z ravnino z = konst. je krivulja brez samopresečišč. Na tem preseku velja p dx + q dy = 0. Torej imamo rešitev te NDE: u(x, y, z) = C(z). Rešitev iščemo z nastavkom G(x, y, z) = C(z)u(x,y,z)-C(z). Če je potreben pogoj izpolnjen, obstajata C in μ , da je grad $G=\mu F$.

Ko iz zveze grad $(G) = \mu \vec{F}$ izračunamo C(z), ga vstavimo v G(x, y, z) = u(x, y, z) - C(z). Rešitev je družina ploskev G(x, y, z) = 0.

LINEARNE PDE 2. REDA

Oblika: $a(x,y)u_{xx} + 2b(x,y)u_{xy} + c(x,y)u_{yy} + 1$. red = 0. $\delta = b^2 - ac$. Ločimo tri tipe PDE:

- (i) če je $\delta > 0$ na D, je PDE hiperbolična na D,
- (ii) če je $\delta = 0$ na D, je PDE parabolična na D,
- (iii) če je $\delta < 0$ na D, je PDE eliptična na D.

Vsi trije tipi se prevedejo na kanonično obliko z vpeljavo novih koordinat (t, s):

- (i) Za (t,s) vzamemo neki rešitvi enačb $at_x + (b + \sqrt{\delta})t_y = 0$, $as_x + (b \sqrt{\delta})s_y = 0$. Dobimo: $u_{st} + 1$. red = 0.
- (ii) Za t vzamemo neko rešitev enačbe $at_x + bt_y = 0$, za s pa poljubno funkcijo, neodvisno od t. Dobimo: $u_{ss} + 1$. red = 0.
- (iii) Poiščemo (kompleksno) rešitev $av_x + (b + \sqrt{\delta})v_y = 0$. Vzamemo t = Re v in s = Im v. Dobimo: $u_{tt} + u_{ss} + 1$. red = 0.

Za računanje enačb, ki porodijo nove spremenljivke, uporabiš čisto prvo (najbolj na začetku, prvi list, prvi način reševanja za prvo obliko) metodo z nivojnicami. Tj. iz enačbe v zgornjih točkah izraziš npr. v_x in jo neseš v d $v=0=v_x$ d $x+v_y$ dy, krajšaš v_y , rešiš NDE et voilà!

Pomoč: $u_x = u_s s_x + u_t t_x$, $u_y = u_s s_y + u_t t_y$, $u_{xx} = (u_x)_s s_x + (u_x)_t t_x$, $u_{xy} = (u_x)_s s_y + (u_x)_t t_y$, $u_{yy} = (u_y)_s s_x + (u_y)_t t_x$. Pri iskanju rešitev PDE v kanonični obliki dobiš splošni funkciji C(t) in D(s).

VALOVNA ENAČBA

Oblika: $u_{tt} - c^2 u_{xx} = 0$. $x \in \mathbb{R}$ je točka na struni, $t \ge 0$. u = u(x,t) predstavlja odmik točke v danem času. Novi spremenljivki: $\xi = x + ct$, $\eta = x - ct$. Splošna rešitev: $u = F(\xi) + G(\eta) = F(x + ct) + G(x - ct)$.

d'Alembertova formula za homogeno valovno enačbo pri pogojih $u(x,0) = f(x), u_t(x,0) = g(x)$: $u(x,t) = \frac{1}{2}(f(x+ct) + f(x-ct))$ (ct)) + $\frac{1}{2c} \int_{x-ct}^{x+ct} g(s) \, \mathrm{d}s$.

Trikotnik vpliva označimo z $\triangle(x_0,t_0)$ in je določen s točkami $(x_0-ct_0,0),(x_0+ct_0,0),(x_0,t_0)$. Na grafu je x na x- osi, t pa na

Nehomogena valovna enačba: $u_{tt} - c^2 u_{xx} = F(x,t)$. Rešitev je oblike: $u(x,t) = u_{\text{HOM}}(x,t) + u_{\text{PART}}(x,t)$, kjer je $u_{\text{PART}}(x,t) = u_{\text{PART}}(x,t)$ $\frac{1}{2c} \iint_{\Delta(x,t)} F(\xi,\tau) \,\mathrm{d}\xi \,\mathrm{d}\tau.$

Za partikularni del torej integriramo: $u_{\text{PART}}(x,t) = \frac{1}{2c} \int_0^t d\tau \int_{x-c(t-\tau)}^{x+c(t-\tau)} F(\xi,\tau) d\xi$.

ODVOD INTEGRALA: $F(x) = \int_{u(x)}^{v(x)} f(x,s) ds$. Potem $F'(x) = \int_{u(x)}^{v(x)} \frac{\partial}{\partial x} f(x,s) ds + f(x,(v(x))v'(x) - f(x,u(x))u'(x)$.

TRDITEV: Naj bodo f,g in $F(\cdot,t)$ lihe za $t\geq 0$. Tedaj je d'Alembertova rešitev tudi liha. Ob predpostavkah $f\in\mathcal{C}^2(\mathbb{R}),g\in\mathcal{C}^1(\mathbb{R}),F,\frac{\partial F}{\partial x}\in\mathcal{C}(\mathbb{R}^2)$ dobimo klasično rešitev, tj. $u\in\mathcal{C}^2(\mathbb{R}^2)$.

SEPARACIJA SPREMENLJIVK

```
L^2([-\pi,\pi]) = \{f: [-\pi,\pi] \longrightarrow \mathbb{R}, \int_{-\pi}^{\pi} |f|^2 dx < \infty\} je vektorski prostor s skalarnim produktom \langle f,g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx. Množica
```

 $\{\frac{1}{2\pi}, \frac{1}{\pi}\sin x, \frac{1}{\pi}\cos x, \frac{1}{\pi}\sin 2x, \frac{1}{\pi}\cos 2x, \ldots\}$. je <u>kompleten</u> (vsako funkcijo se da na enoličen način razviti v tem sistemu), <u>ortonormiran</u> sistem za ta produkt.

Fourierjev razvoj: $f \in L^2([-\pi, \pi])$:

$$\tilde{f}(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$

$$a_n = \langle f, \frac{1}{\pi} \cos nx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, \quad n \in \mathbb{N}_0,$$

$$b_n = \langle f, \frac{1}{\pi} \sin nx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx, \quad n \in \mathbb{N}.$$

$$b_n = \langle f, \frac{1}{\pi} \sin nx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx, \quad n \in \mathbb{N}.$$

Sinusna in kosinusna vrsta: $f \in L^2([0,\pi])$. Za tako funkcijo obstaja liha in soda razširitev na $[-\pi,\pi]$. Za \tilde{f}^S so $b_n=0$, za \tilde{f}^L pa $a_n = 0$.

Posledica: Na $[0,\pi]$ za f obstajata dva razvoja: **sinusna vrsta**: $\tilde{f}(x) = \sum_{n=1}^{\infty} \tilde{b}_n \sin nx$ in **kosinusna vrsta**: $\tilde{f}(x) = \sum_{n=1}^{\infty} \tilde{b}_n \sin nx$ $\begin{array}{l} \frac{\tilde{a}_0}{2} \sum_{n=1}^{\infty} \tilde{a}_n \cos nx, \text{ kjer sta:} \\ \tilde{a}_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, \mathrm{d}x, \quad n \in \mathbb{N}, \end{array}$

$$\tilde{b}_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx, \quad n \in \mathbb{N}_0.$$

S substitucijo lahko razvoje prevedemo na poljuben interval [-L, L] oz. [0, L], L > 0. V tem primeru je $\{\frac{1}{2L}, \frac{1}{L}\sin\frac{n\pi x}{L}, \frac{1}{L}\cos\frac{n\pi x}{L}, \ldots\}$ KONS.

KONS. Uporabni integrali:
$$\int_{a}^{b} \sin(\frac{n\pi x}{b-a})^{2} dx = \int_{a}^{b} \cos(\frac{n\pi x}{b-a})^{2} dx = \frac{(b-a)\left(\sin\left(\frac{2\pi an}{b-a}\right) - \sin\left(\frac{2\pi bn}{b-a}\right) + 2\pi n\right)}{4\pi n}, n \in \mathbb{C}$$

$$(\int_{a}^{b} x^{i} \sin(kx) dx)_{1,2} = (\frac{-\sin(ak) + ak \cos(ak) + \sin(bk) - bk \cos(bk)}{k^{2}}, \frac{(a^{2}k^{2} - 2)\cos(ak) - 2ak \sin(ak) + (2-b^{2}k^{2})\cos(bk) + 2bk \sin(bk)}{k^{3}})$$

$$(\int_{a}^{b} x^{i} \cos(kx) dx)_{1,2} = (\frac{-ak \sin(ak) - \cos(ak) + bk \sin(bk) + \cos(bk)}{k^{2}}, \frac{(2-a^{2}k^{2})\sin(ak) - 2ak \cos(ak) + (b^{2}k^{2} - 2)\sin(bk) + 2bk \cos(bk)}{k^{3}})$$

$$\int_{a}^{b} (x - a)(b - x)\sin(kx) dx = \frac{k(a-b)(\sin(ak) + \sin(bk)) + 2\cos(ak) - 2\cos(bk)}{k^{3}}$$

$$\int_{a}^{b} (x - a)(b - x)\sin(kx) dx = \frac{k(a-b)(\cos(ak) + \cos(bk)) + 2\sin(ak) + 2\sin(bk)}{k^{3}}$$

$$\int_{a}^{b} (x-a)(b-x)\cos(kx) \, dx = \frac{k(a-b)(\cos(ak)+\cos(bk))-2\sin(ak)+2\sin(bk)}{12\sin(ak)+2\sin(bk)}$$

 $\int_{a}^{b} (x-a)(b-x)\cos(kx) dx = \frac{k(a-b)(\cos(ak)+\cos(bk))-2\sin(ak)+2\sin(bk)}{k^{3}}$ $\int_{a}^{b} \sin(mx)\cos(kx) dx = \frac{-k\sin(ak)\sin(am)-m\cos(ak)\cos(am)+k\sin(bk)\sin(bm)+m\cos(bk)\cos(bm)}{k^{3}}$

$$\int_{a} \sin(mx) \cos(kx) dx = \frac{k^{2} - m^{2}}{\int_{a}^{b} \sin(mx) \sin(kx) dx} = \frac{-m \sin(ak) \cos(am) + k \cos(ak) \sin(am) + m \sin(bk) \cos(bm) - k \cos(bk) \sin(bm)}{k^{2} - m^{2}}$$

 $\int_a^b \sin(mx) \sin(kx) dx = \frac{k^2 - m^2}{\int_a^b \cos(mx) \cos(kx) dx} = \frac{-k \sin(ak) \cos(am) + m \cos(ak) \sin(am) + k \sin(bk) \cos(bm) - m \cos(bk) \sin(bm)}{k^2 - m^2}, \text{ povsod so } m, n, k \in \mathbb{C}$ **Metoda separacije:** Kdaj jo uporabimo: <u>Trivialen pogoj:</u> Imamo eno spremenljivko na omejenem območju in s homogenimi robnimi pogoji, npr.

 $x \in [0, L]$: $\alpha u(0, t) + \beta u_x(0, t) = 0$, $\gamma u(t) + \delta u_x(L, t) = 0$, $\alpha, \beta, \gamma, \delta \in \mathbb{R}$.

Netrivialen pogoj: Diferencialni operator, ki določa PDE, zadošča Sturm-Liouvillovi teoriji, tj. množica lastnih funkcij, ki jih dobimo iz robnega problema tvori K.O.N.S.

Štirje koraki metode: (zato K.O.N.S. 4)

#1: Separacija: nastavek u(x,t) = X(x)T(t). (Nastavek vstavi v enačbo in loči spremenljivke, dobljeno enačbo pa enači z $\mu \in \mathbb{R}$.) #2: Določanje lastnih funkcij $\{X_n\}_{n\in\mathbb{N}}$ iz robnega problema za NDE. (Reši NDE za X, homogeni robni pogoji ti dajo začetne pogoje za NDE. Obravnavati moraš možnosti $\mu > 0, \mu = 0, \mu < 0$. Če je v kakšnem primeru $X \equiv 0$, lastnih funkcij v tem primeru ni. Pri izbire množice lastnih funkcij, lahko splošno konstanto za vsak člen BSS postaviš na 1.)

#3: Iskanje pripadajočih $\{T_n\}_{n\in\mathbb{N}}$. (Z μ , ki ga dobiš v #2 in določa družino lastnih funkcij, reši še NDE za T. Splošno konstanto lahko tu pustiš, lahko si misliš, za je v njej spravljena konstanta iz množice lastnih funkcij za X.)

#4: Splošna rešitev $u = \sum_{n=1}^{\infty} X_n T_n$. (Rešitev naj bi bila odvisna od števno mnogo konstant, ki jih določiš iz nehomogenega robnega pogoja. Dobro je opaziti morebitne sinusne/kosinusne vrste, ki jih dobiš z robnim pogojem, in upoštevati zvezo s koeficienti iz razvoja v sinusno/kosinusnov vrsto, torej $C_n = a_n$ ali b_n .)

Če za nobeno od spremenljivk nimamo homogenega robnega pogoja, razbijemo problem na dva dela, npr: $\triangle u=0$ razbijemo na $u=v+w, \Delta v=0$ in $\Delta w=0$, pri čemer v-ju in w-ju damo vsakemu en homogen robni pogoj in en pogoj, ki je od u-ja.

$$u_{xx} = \cos^2(\varphi)u_{rr} - \frac{\sin(2\varphi)}{r}u_{r\varphi} + \frac{\sin^2(\varphi)}{r^2}u_{\varphi\varphi} + \frac{\sin^2(\varphi)}{r}u_r + \frac{\sin(2\varphi)}{r^2}u_{\varphi},$$

$$u_{xy} = \frac{1}{2}\sin(2\varphi)u_{rr} + \frac{\cos(2\varphi)}{r}u_{r\varphi} - \frac{\sin(2\varphi)}{2r^2}u_{\varphi\varphi} - \frac{\sin(2\varphi)}{2r}u_{r} - \frac{\cos(2\varphi)}{r^2}u_{\varphi\varphi}$$

Polarne koordinate:
$$u_x = \cos(\varphi)u_r - \frac{\sin(\varphi)}{r}u_{\varphi}$$
, $u_y = \sin(\varphi)u_r + \frac{\cos(\varphi)}{r}u_{\varphi}$, $u_{xx} = \cos^2(\varphi)u_{rr} - \frac{\sin(2\varphi)}{r}u_{r\varphi} + \frac{\sin^2(\varphi)}{r^2}u_{\varphi\varphi} + \frac{\sin^2(\varphi)}{r}u_r + \frac{\sin(2\varphi)}{r^2}u_{\varphi}$, $u_{xy} = \frac{1}{2}\sin(2\varphi)u_{rr} + \frac{\cos(2\varphi)}{r}u_{r\varphi} - \frac{\sin(2\varphi)}{2r^2}u_{\varphi\varphi} - \frac{\sin(2\varphi)}{2r}u_r - \frac{\cos(2\varphi)}{r^2}u_{\varphi}$, $u_{yy} = \sin^2(\varphi)u_{rr} + \frac{\sin(2\varphi)}{r}u_{r\varphi} + \frac{\cos^2(\varphi)}{r^2}u_{\varphi\varphi} + \frac{\cos^2(\varphi)}{r}u_r - \frac{\sin(2\varphi)}{r^2}u_{\varphi}$, $u_{yy} = \sin^2(\varphi)u_{rr} + \frac{\sin(2\varphi)}{r}u_{r\varphi} + \frac{\cos^2(\varphi)}{r^2}u_{\varphi\varphi} + \frac{\cos^2(\varphi)}{r}u_r - \frac{\sin(2\varphi)}{r^2}u_{\varphi}$, $u_{yy} = \sin^2(\varphi)u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\varphi\varphi}$

NDE VIŠJIH REDOV

Ne nastopa y: uvedemo z = y'.

Obe strani sta odvoda nečesa: integriramo in dodamo konstanto.

Odvodi: $y'/y = (\log(y))', xy' + y = (xy)', \frac{y''y - y'^2}{y^2} = (\frac{y}{y})', \frac{y'x - y}{x^2} = (\frac{y}{x})'.$ Ne nastopa x: uvedemo z(y) = y', y neodvisna spr. $y'' = \dot{z}z, y''' = \ddot{z}z^2 + \dot{z}^2z.$ Homogena: $F(x, ty, ty', \dots, ty^{(n)}) = t^k F(x, y, y', \dots, y^{(n)}).$ Vpeljemo z(x) = y'/y. $y''/y = z' + z^2.$ Z utežjo: $F(kx, k^m y, k^{m-1}y', \dots, k^{m-n}y^{(n)}) = k^p F(x, y, y', \dots, y^{(n)}).$ Uvedemo: $x = e^t, y = u(t)e^{mt}.$

INTEGRALI IN FORMULE

$$\begin{split} & \int \ln x \, \mathrm{d}x = x \ln x - x + C \\ & \int x^m \log(x) \, \mathrm{d}x = x^{m+1} \left(\frac{\log x}{m+1} - \frac{1}{(m+1)^2} \right) + C \\ & \int p(x) e^{kx} \, \mathrm{d}x = q(x) e^{kx} + C, \, \mathrm{st}(q) = \mathrm{st}(p) \\ & \int e^{ax} \sin(bx) \, \mathrm{d}x = \frac{e^{ax}}{a^2 + b^2} (a \sin(bx) - b \cos(bx)) + C \\ & \int e^{ax} \cos(bx) \, \mathrm{d}x = \frac{e^{ax}}{a^2 + b^2} (a \cos(bx) + b \sin(bx)) + C \\ & \int \frac{1}{\sqrt{a^2 + x^2}} \, \mathrm{d}x = \operatorname{arsh} \frac{x}{a} + C = \log|x + \sqrt{x^2 + a^2}| + C \\ & \int \frac{1}{\sqrt{a^2 - x^2}} \, \mathrm{d}x = \arcsin \frac{x}{a} + C \\ & \int \frac{1}{a^2 + x^2} \, \mathrm{d}x = \frac{1}{a} \arctan \frac{x}{a} + C \\ & \sin^2(x/2) = (1 - \cos(x))/2 \end{split}$$

Faktorizacija:

$$\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}
\sin x - \sin y = 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}
\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}
\cos x - \cos y = -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$$

$$\int \frac{1}{\sin(x)} dx = \ln \tan(x/2) + C$$

$$\int \frac{1}{\cos(x)} dx = -\log(\cot(x/2)) + C$$

$$\int \frac{1}{\tan(x)} dx = \log(\sin(x)) + C$$

$$\int \tan(x) dx = -\log(\cos(x)) + C$$

$$\int x/(1+x) dx = x - \log(x+1) + C$$

$$\int x/(1+x) dx = x - \log(x+1) + C$$

$$\int \sin^{2}(x) dx = \frac{1}{2}(x - \sin x \cos x) + C$$

$$\int \cos^{2}(x) dx = \frac{1}{2}(x + \sin x \cos x) + C$$

$$\cos^{2}(x/2) = (1 + \cos(x))/2$$

Antifaktorizacija:

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin(\alpha + \beta) + \sin(\alpha - \beta) \right]$$

$$\cos \alpha \sin \beta = \frac{1}{2} \left[\sin(\alpha + \beta) - \sin(\alpha - \beta) \right]$$

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right]$$

$$\sin \alpha \sin \beta = -\frac{1}{2} \left[\cos(\alpha + \beta) - \cos(\alpha - \beta) \right]$$