

• Special cases: SIMO, MISO, SISO capacities $_{RX_1}$

- 1 SIMO
- ② MISO without CSIT
- ③ MISO with CSIT
- 4 SISO

- Let $x \sim CN(0,1)$ and z_i , $\forall i = 1, ..., N_r$ follow zero-mean complex Gaussian distributions.
- Define $\mathbf{R}_{\mathbf{z}} \triangleq \mathrm{E}[\mathbf{z}\mathbf{z}^H], E_s \triangleq \mathrm{E}[|s|^2].$
- (1) Specify the dimension of H, W.
- (2) Write an expression of the post-processed signal \tilde{x} in terms of **W**, **H**, p, x, **z**.
- (3) Show that $E[|s|^2] = |p|^2 = E_s$.
- (4) Show that the capacity is expressed by $C = \log_2 \left(1 + \frac{E_s W H H^H W^H}{W R_z W^H} \right)$

① SIMO

- (5) For AWGN, i.e., $\mathbf{R_z} = \sigma_z^2 \mathbf{I}_{N_r}$, show that $C = \log_2 \left(1 + \frac{E_S}{\sigma_z^2} \frac{|\mathbf{H}^H \mathbf{W}^H|^2}{|\mathbf{W}^H|^2} \right)$.
- (6) Using the Cauchy-Schwartz inequality, find the optimal **W** that maximizes C and show that the maximum capacity is $C = \log_2 \left(1 + \frac{E_S}{\sigma_z^2} |\mathbf{H}|^2\right)$.
- (7) Show that MRC achieves the maximum capacity $C = \log_2 \left(1 + \frac{E_S}{\sigma_Z^2} |\mathbf{H}|^2\right)$.

- Let $x \sim CN(0,1)$ and $z \sim CN(0,\sigma_z^2)$.
- (1) Specify the dimension of P, H.
- (2) Write an expression of the post-processed signal \tilde{x} in terms of w, H, P, x, z.
- (3) Show that the average transmit energy is $E_s = |\mathbf{P}|^2$.
- (4) Show that the capacity is expressed by $C = \log_2 \left(1 + \frac{|\mathbf{HP}|^2}{\sigma_z^2}\right)$.

• ② MISO without CSIT TX_1 $x \rightarrow Precoder$ $P \qquad \qquad Y \qquad y \qquad Weight w$

- First approach: We design \mathbf{s} such that the average transmit energy E_s is equally distributed to the antennas, i.e., $\mathbf{P} = \sqrt{\frac{E_s}{N_t}} \mathbf{1}_{N_t}$. ("Equal power allocation")
- (5) Show that the capacity is $C = \log_2 \left(1 + \frac{E_S}{N_t \sigma_Z^2} |\mathbf{H} \mathbf{1}_{N_t}|^2 \right)$.
- Second approach: We design $\mathbf{P} = \sqrt{E_s} \mathbf{e}_1$ such that the average transmit energy E_s is concentrated and by assigning x to TX_1 . ($N_t 1$ antennas are unused.) ("Antenna selection")
- (6) Show that the capacity is $C = \log_2 \left(1 + \frac{E_S}{\sigma_Z^2} \left| \mathbf{H}_{(1,1)} \right|^2 \right)$.

• ③ MISO with CSIT

- In this case, we can optimize the precoder \mathbf{P} to achieve the maximum capacity C.
- (1) Using the Cauchy-Schwartz inequality, find the optimal **P** that maximizes C with $E_s = |\mathbf{P}|^2$ and show that the maximum capacity is $C = \log_2\left(1 + \frac{|\mathbf{H}^H|^2 E_s}{\sigma_z^2}\right)$.
- (2) Show that MRT achieves the maximum capacity $C = \log_2 \left(1 + \frac{|\mathbf{H}^H|^2 E_S}{\sigma_Z^2} \right)$.

4 SISO

- Assume $x \sim CN(0,1)$ and $z \sim CN(0,\sigma_z^2)$.
- (1) Write an expression of the recovered signal \tilde{x} in terms of w, h, p, x, z
- (2) Show that the average transmit energy is $E_s = |p|^2$.
- (3) Show that the capacity is expressed by $C = \log_2 \left(1 + \frac{|h|^2 E_S}{\sigma_Z^2}\right)$.