BIOINFORMATICS (FOR COMPUTER SCIENTISTS)

MPCS56420 SPRING 2020 SESSION 2

APPLICATIONS OF SEQUENCING

- The ability to generate large amounts of nucleotide sequence data has revolutionized biology in the past decade
 - Driven by technological advancements
 - New experiments are able to be conducted which were not feasible

APPLICATIONS OF SEQUENCING

 Human microbiome project requirements using Sanger sequencing

- \$667B

SEQUENCE ALL THE BACTERIA IN YOUR GUT

Human Gut Microbiome		Sanger
Number of Species	1000	
Average Genome Size	3 Mb	
Microbiome Size	3 Gb	
Desired Coverage	300 x	
Amount of Data Needed	~ 1 Tb	
Read Length		750bp
Number of Runs Needed		~14M
Cost		\$667B

APPLICATIONS OF SEQUENCING

- Not only cost, but also time
 - Sanger
 - Roche (next gen)
 - Illumina (next gen)
 - Many competing platforms in NGS

Platform	Reads	Read Length (bases)	Paired Ends	Run Time (days)	Yield (Gb)	Rate (days/Gb)
Sanger	96	750	No	0.5	0.00007	~7000 days
Roche 454 FLX Ti	1 M	400	yes	1	0.8	~1.25 days
Illumina HiSeq 2000	1 B	150	yes	11	300	~1 hr

APPLICATIONS OF SEQUENCING

- Next generation sequencing applications
 - de novo sequencing of genomes
 - transcriptomes
 - metagenomes
 - protein-genome interactions

EXPRESSED SEQUENCE TAGS

EXPRESSED SEQUENCE TAGS

ESTs

- A unique stretch of DNA within a coding region of a gene
- Short sequences from 5' or 3' from mRNA
- Read: 500-1000 basepairs
- Used to identify full-length genes
- Landmark for mapping
- Result of large scale sequencing of cDNA

ESTs, Full Length cDNA

EXPRESSED SEQUENCE TAGS

An identifiable portion of an expressed gene

EXPRESSED SEQUENCE TAGS

- Advantages of EST
 - Fast & cheap
 - They represent the most extensive available survey of the transcribed portion of genomes
 - There are indispensable for gene structure prediction, gene discovery and genome mapping:
 - Provide experimental evidence for the position of exons
 - Characterization of splice variants (e.g. different tissues)
 - Sequences of multiple ESTs can reconstitute a full-length cDNA

EXPRESSED SEQUENCE TAGS

- NCBI dbEST
- UniGene -Cluster ESTs

FULL LENGTH
CDNA FROM ESTS

ESTs, Full Length cDNA

- RNA-Seq (Whole Transcriptome
 Sequencing)
- Massively parallel sequencing method for transcriptome analyses

- Aims of RNA-seq
 - To quantify mRNA abundance
 - To determine the transcriptional structure of genes: start sites, 5' and 3' ends, splicing patterns
 - To quantify the changing expression levels of each transcript during development and under different conditions
- Identify novel sequences

- Method overview
 - Complementary DNA (cDNA) generated from RNA are sequenced using next-generation "short read" technologies
 - Reads are aligned to a reference genome and a transcriptome map is constructed
- Evaluation of alternative splicing events may be visualized in a genome browser

- Transcriptome
 - The complete set of transcripts in a cell, and their quantity, for a specific developmental stage or physiological condition
 - Tissue specific
 - Disease progression
 - Interpreting the functional elements of the genome
 - Revealing the molecular constituents of cells, tissues
 - Understanding development and disease

- Technology
 - Single-end, paired-end
 - Typically 30-400bp reads
 - Popular platforms:
 - Illumina, 454, SOLID
 - 10 million reads
 - Alignment tools
 - Bowtie, BWA, Eland etc
 - Additional step: align to exon-junctions
 - Automated pipeline for RNA-Seq:
 - Tophat : for alignment
 - Cufflinks : for calculating expression levels

```
+HWI-EAS83 20ECVAAXX:1:1:1000:549
@HWI-EAS83 20ECVAAXX:1:1:989:463
ATTCTTCCAAAAACTTCCTGATGTACCAGTCCTTTT
+HWI-EAS83 20ECVAAXX:1:1:989:463
@HWI-EAS83 20ECVAAXX:1:1:1001:547
TGGGTCTTGTAGGACTCAGCAGGAACATCAGCAAAG
+HWI-EAS83 20ECVAAXX:1:1:1001:547
[[[X[[[[[[[GX[[[XGYYZYJ
@HWI-EAS83 20ECVAAXX:1:1:765:512
AAAGAAATATTTTTCTAAGATCACAAATAACTGAA
+HWI-EAS83 20ECVAAXX:1:1:765:512
@HWI-EAS83 20ECVAAXX:1:1:979:558
TAGAAGTCGATGGAATAAAAAGTTGCATCTTGACTT
+HWI-EAS83 20ECVAAXX:1:1:979:558
@HWI-EAS83 20ECVAAXX:1:1:829:561
AACACGGACACGCCTCGGCACACTGCGGATACCACT
+HWI-EAS83 20ECVAAXX:1:1:829:561
]]]]]]]]]]]]]]][][[[[[[[[[XV]RW[X[[
@HWI-EAS83 20ECVAAXX:1:1:564:219
CCCCCCCCCCCCCCCCCCCCCCCCACCATCAAAG
+HWI-EAS83 20ECVAAXX:1:1:564:219
[[[[[[[[TTXQ[CMZZRGPRQ[CSJJCLGPCC
@HWI-EAS83 20ECVAAXX:1:1:917:419
ACCAGCTTCAGTTCAGCATCAAGACGCTCCCTCTCT
+HWI-EAS83 20ECVAAXX:1:1:917:419
] ] ] ] ] ] ] ] ] ] ] ] ] ] ] X ] Y [ [ [ ] ] [ ] [ ] ] X C [ [ [ H
@HWI-EAS83 20ECVAAXX:1:1:1001:566
TAGCAATCCATGTTTTTTTCACCCATTTGTTTTCCT
+HWI-EAS83 20ECVAAXX:1:1:1001:566
@HWI-EAS83 20ECVAAXX:1:1:913:446
AAACTTTCATCGAGTTGGATTTTGCCTCT
+HWT-FASSS 20FCVAAXXX-1-1-913-446
```


ADVANTAGE OF RNA-SEQ

- Does not require existing genomic sequence
- Very low background noise
 - Reads can be unambiguously mapped
- High-resolution
- High-throughput
 - Better than Sanger sequencing of cDNA or EST libraries
- Cost
 - Lower than traditional sequencing
- Can reveal sequence variations (SNPs)

BIOINFORMATICS (FOR COMPUTER SCIENTISTS)

MPCS56420 SPRING 2020 SESSION 2

