

RD-A152 624

TESTING THE ORGANIZATIONAL ASSESSMENT MODEL OF WORK
UNIT DESIGN A SYSTEMS. (U) MINNESOTA UNIV MINNEAPOLIS
STRATEGIC MANAGEMENT RESEARCH CENT. C GRESNOV ET AL.

1/1

UNCLASSIFIED

FEB 85

N00014-84-K-00167A-8-0 NR F/G 5/9

NL

END
FILED
DTIC

MICROSCOPY RESOLUTION TEST CHART
Nikon Microscope Model Labophot

2

AD-A152 624

Testing the Organizational Assessment Model of Work Unit Design: A Systems Approach

Christopher Gresov
Graduate School of Business
Columbia University

Robert Brazin

THE STRATEGIC MANAGEMENT RESEARCH CENTER

ABOVE
1000
1000

Sponsored by
School of Management
Hubert H. Humphrey Institute of Public Affairs
Department of Agricultural & Applied Economics
University of Minnesota

United States
85-0329001

2

Testing the Organizational Assessment Model
of Work Unit Design:
A Systems Approach

Christopher Gresov
Graduate School of Business
Columbia University

Robert Drazin
Graduate School of Business
Columbia University

and

Andrew H. Van de Ven
School of Management
University of Minnesota

Support for this research was provided in part by the Wisconsin Job Service Division of the Department of Industry, Labor and Human Relations, the California Employment Development Department, and by the Program on Organizational Effectiveness of the Office of Naval Research under contract number N00014-S4-K-0016.

Submitted to the Organization and Management Theory Division of the Academy of Management for Presentation at the 1985 Meetings.

Christopher Gresov
& Robert Drazin
721 Uris Hall
Columbia University
New York, NY 10027
Phone: 212-280-4431

Andrew H. Van de Ven
School of Management
University of Minnesota
Minneapolis, MN 55455
Phone: 612-376-1502

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER ONR Technical Report #8.	2. GOVT ACCESSION NO. ADA153674	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Testing the Organizational Assessment Model of Work Unit Design: A Systems Approach	5. TYPE OF REPORT & PERIOD COVERED Interim Technical Report	
6. AUTHOR(S) Christopher Gresnov, Robert Drazin and Andrew H. Van de Ven	7. PERFORMING ORG. REPORT NUMBER N00014-84-K0016	
8. PERFORMING ORGANIZATION NAME AND ADDRESS Strategic Management Research Center University of Minnesota 271 - 19th Avenue S, Minneapolis, MN 55455	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR #170-966	
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Organizational Effectiveness Group Code 4420E, Arlington, VA 22217	12. REPORT DATE February, 1985	
13. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	14. NUMBER OF PAGES 43	
15. SECURITY CLASS. (of this report) Unclassified		
16. DECLASSIFICATION/DOWNGRADING SCHEDULE		
17. DISTRIBUTION STATEMENT (and Distribution by Report)		
Approved for public release; distribution unlimited. Reproduction in whole or part is permitted for any purpose of the United States government.		
18. DISTRIBUTION STATEMENT (for the address entered in Block 20, if different from Report)		
19. SUPPLEMENTARY NOTES		
20. KEY WORDS (Continue on reverse side if necessary and identify by block number) Contingency Theory, Organization Design, Organizational Assessment, Work Unit Design, Job Satisfaction		
21. ABSTRACT (Continue on reverse side if necessary and identify by block number) A systems approach to testing contingency theory propositions is presented and used to test a contingency theory of work unit design. Focusing on job satisfaction rather than efficiency, results show an improvement over a previous study that addressed efficiency. Suggestions are made as to the extension of the systems approach and its further refinement.		

Testing the Organizational Assessment Model
of Work Unit Design: A Systems Approach

ABSTRACT

A systems approach to testing contingency theory propositions is presented and used to test a contingency theory of work unit design. Focusing on job satisfaction rather than efficiency, results show an improvement over a previous study that addressed efficiency. Suggestions are made as to the extension of the systems approach and its further refinement.

At the heart of all contingency theory lies the basic proposition that high performance is the result of a "fit" between contextual elements (e.g. environment, task, technology) and internal organizational arrangements. Poorer performance, conversely, is felt to be the consequence of "misfit." Despite the centrality of the notion of "fit" in organization research, few scholars have explicitly examined or elaborated its implications in the development and empirical testing of contingency theories (Schoonhoven, 1981; Tosi and Slocum, 1984; Van de Ven and Drazin, 1985). While propelling many of the models and theories of the last two decades, the "fit" concept itself has been largely relegated to a metatheoretical background issue.

The apparent instability of contingency theory findings (Pennings, 1975; Tosi and Slocum, 1984; Van de Ven and Drazin, 1985) however, has led to greater attention being devoted to the concept of "fit," and a variety of alternative approaches and formulations have been developed to test for it. In their review of the fit concept in contingency theory, Van de Ven and Drazin (1985) point out that at least three distinct approaches have been developed, which they have termed Selection, Interaction and Systems. In the Selection approach, fit is an assumed premise in causal models relating context and structure. The causal mechanism is generally viewed as natural and/or managerial selection. Methods generally involve the test for significant correlations or regression coefficients of context on structure, though in current views variables subject to universal switching rules should exhibit higher correlations than more particularistic variables.

The Interaction approach generally defines fit as an interaction of pairs of organizational context-structure factors on performance.

Consequently, research employs MANOVA or regression to assess the significance of context-structure interaction terms. In a current variant of the Interaction approach, fit is viewed as conformity to a linear relationship between context and design. Residuals from the hypothesized linear relationship, when regressed on performance, should be significant.

Van de Ven and Drazin (1985) have suggested a third approach which they term the Systems approach. The Systems approach conceives of fit as the internal consistency of multiple contingencies, structural, and performance characteristics. Given a contingency formulation, a certain ideal-type design will be appropriate, deviations from which result in poorer performance.

Drazin and Van de Ven (1984) compared and tested the three approaches on a single set of data and found the Systems approach performed well, relative to the others. Given these results, it is felt that the Systems approach deserves further development and extension. While including job satisfaction as a performance variable, the focus of their analysis was on work unit efficiency. In an attempt to replicate and extend their findings, the research applies the Systems approach primarily to the performance variable of job satisfaction. The Systems approach will be described in greater detail, followed by a presentation of a task contingent theory of work unit design and satisfaction. The results of the Systems approach test of the theory will be followed by conclusions regarding this particular approach to fit studies and speculations regarding directions for future research.

The Systems Approach to Fit

The Systems approach to fit is holistic, as opposed to reductionistic, in formulation. Reductionistic approaches treat the design of an organization as decomposable into parts whose implications for performance can be assessed separately, with the assumption that the knowledge derived is then easily reaggregated in an additive fashion. Systems theorists, on the other hand, conceive of organizations as wholes that are more than simple sums of parts -- the pattern of relations between parts is an additional element that logically contributes to an understanding of the whole. Consequently, examination of the pattern of coherence between design components is a crucial feature that distinguishes the Systems approach to fit analysis from other alternatives. Thus, this approach posits that high performance results both from fits between design components, as well as fits of individual components to context alone (Child, 1975; Tushman and Nadler, 1978).

In Van de Ven and Drazin's (1985) formulation, a coherent pattern of design components that "fits" a particular context is construed as an "ideal pattern." Focusing then on the multi-variate nature of design, they hypothesized that departures or deviations from the ideal pattern along any or several dimensions will result in lower performance. An important feature assumed here is that departure or deviation in any direction results in a similar performance penalty. Thus, deviation is an "omnidirectional" possibility, so long as the component score in the ideal pattern lies within the observed range along that dimension. Thus, the Systems approach avoids the "More (or less) is better" characterization of many other formulations.

Van de Ven and Drazin (1985) suggest a three-step procedure to test this approach to fit. First, ideal patterns of design scores are generated either theoretically, or empirically (as in Ferry, 1979). Second, distances from actual organizations to their respective ideal types are calculated according to the following euclidean distance formula:

$$\text{DIST}_{ij} = \sqrt{\sum_{s=1}^N (x_{is} - x_{js})^2}$$

where DIST_{ij} = euclidean distance from the j^{th} focal organization to its ideal type i , and,

x_{is} = score of the ideal type organization on the s^{th} structural dimension, and,

x_{js} = score of the j^{th} unit on the s^{th} structural dimension.

The final step lies in the actual test of the contingency theory by correlating the derived distance with the selected performance variable. The fit proposition is demonstrated if lack of fit or "misfit" (observed as euclidean distance from the relevant ideal type) correlates significantly and negatively with performance.

Finally, it should be noted that the Systems approach is conceptually distinct from contingency notions -- it is possible, especially in the case where ideal types are derived empirically, to observe a strong negative relationship between distance and performance and yet not have a contingency factor that results in radically different ideal types. The extent of the difference between ideal types is assessed with MANOVA and ANOVA, as will be shown in the course of the analysis.

The Task Contingent Model of Work Unit Design

The Systems approach can fruitfully be applied to a test of a task contingent model of work unit design developed by Van de Ven and associates (Van de Ven and Delbecq, 1974; Van de Ven, Delbecq and Koenig, 1976; Van de Ven, 1976a, 1976b; Van de Ven and Drazin, 1978). This model has been extended and incorporated as a core part of the larger Organizational Assessment (OA) framework and instruments (Van de Ven and Ferry, 1980; Ferry, 1983). The OA research program aims to develop a conceptual framework and related measurement instruments for assessing the performance of jobs, work groups, inter-unit relationships, and organizations on the basis of how they are organized and the environments in which they operate. At the heart of the OA research effort is a contingency theory of job, work unit, and organizational design. Here the focus is specifically on the OA task contingent theory of work unit design. By definition, the work unit is the smallest collective group in the organization and consists of a supervisor and all personnel who report directly to that supervisor.

OA task contingency theory in part proposes that high-performing units which undertake work at low or high levels of difficulty and variability will adopt systematized or developmental programs or modes of structure to organize repetitive activities. Figure 1 shows the underlying structure and process dimensions that distinguish between these programs.

The structural elements of these programs are defined in terms of: (1) specialization, the number of different work activities performed by a unit, (2) standardization, the procedures and pacing rules that are followed in task performance; (3) discretion, the amount of work-related

decision making that the supervisor and employees exercise; and (4) personnel expertise, the skills required of personnel to operate the program. Process is defined as the coordination pattern among unit personnel who execute the work program. Coordination is indicated by of the frequency of verbal and written communication, as well as the frequency of conflict and the methods used to resolve that conflict among unit personnel.

Unit efficiency (output per person) and the average level of job satisfaction of unit personnel are hypothesized in this model to be a function of the fit between the level of task uncertainty faced by the unit and its internal pattern of structure and process.

- - - - -
Insert Figure 1 about here
- - - - -

This analysis focuses primarily on job satisfaction as a performance indicator. Dewar and Werbel (1979) noted that satisfaction allows "a better comparison of universalistic and contingency predication because internal organizational characteristics such as structure and control styles, are more likely to determine satisfaction ... than they are other performance variables, such as growth and profit" (p. 427). The primary focus of Drazin and Van de Ven's (1984) earlier Systems tests of the OA task contingency model was on unit efficiency. A worthwhile replication effort should focus on a Systems analysis of job satisfaction, especially since the predictions the model makes for satisfaction equate to those for unit efficiency.

Figure 1

Hypotheses in Task Contingent Model of Work Unit Design

Task Contingent Factor

Task Uncertainty
(Difficulty and
Variability)

If Low

If High

Unit Structure

1. Unit Specialization	High	Low
2. Unit Standardization	High	Low
3. Personnel Expertise	Low	High
4. Supervisory Discretion	High	Low
5. Employee Discretion	Low	High

Unit Processes

6. Verbal Communication	Low	High
7. Written Communication	Low	High
8. Frequency of Conflict	Low	High
9. Conflict Resolution By:		
a. Avoidance	High	Low
b. Smoothing	High	Low
c. Authority	High	Low
d. Confrontation	Low	High

Performance (With
Above Pattern)

Job Satisfaction	High	High
Unit Efficiency	High	High

Performance (With
A Different Pattern)

Job Satisfaction	Low	Low
Unit Efficiency	Low	Low

Source: Lirtzman, 1974.

Sample and Measurement Procedures

Data were obtained from 629 employment security units in 60 offices located throughout California and Wisconsin in 1975 and 1978. These units administer the Department of Labor's Job Services, Unemployment Insurance, Workman's Compensation, and Work Incentive programs at the local community level.

With the exception of unit efficiency, all the dimensions in Figure 1 were measured with the Organization Assessment Instrument (OAI), as developed and evaluated by Van de Ven and Ferry (1980). Questionnaires were completed by all unit members and supervisors during business hours after an OA research team member explained the purpose and use of the study. The data reported here are at the unit level and were the result of an aggregation procedure which gave equal weight to the response of the unit supervisor and the average of all responses of the unit personnel reporting to the supervisor. Measures of efficiency were obtained from organizational performance records for each unit and consist of the amount of output produced per full-time equivalent position.

The 473 units for which scores were obtained on the satisfaction and task uncertainty scales are used in the analysis. Units scoring in the middle third on task uncertainty were dropped from the analysis, in order to better demarcate the distinction between high and low task uncertainty in the systematized and developmental modes of organizing.

OA task contingency theory is in essence a theory of organization modes, rather than a collection of individual task-design hypotheses. As logically coherent patterns of structure and process, the systematized and developmental modes are expected to be associated, respectively, with low and high levels of task uncertainty. Lack of correlation should

LIST 2
OPNAV

Deputy Chief of Naval Operations
(Manpower, Personnel, and Training)
Head, Research, Development, and
Studies Branch (OP-01B7)
1812 Arlington Annex
Washington, DC 20350

Director
Civilian Personnel Division (OP-14)
Department of the Navy
1803 Arlington Annex
Washington, DC 20350

Deputy Chief of Naval Operations
(Manpower, Personnel, and Training)
Director, Human Resource Management Division
(OP-15)
Department of the Navy
Washington, DC 20350

Chief of Naval Operations
Head, Manpower, Personnel, Training
and Reserves Team (Op-964D)
The Pentagon, 4A478
Washington, DC 20350

Chief of Naval Operations
Assistant, Personnel Logistics
Planning (Op-987H)
The Pentagon, 5D772
Washington, DC 20350

LIST 1
MANDATORY

Defense Technical Information Center (12 copies)
ATTN: DTIC DDA-2
Selection and Preliminary Cataloging Section
Cameron Station
Alexandria, VA 22314

Library of Congress (3 copies)
Science and Technology Division
Washington, D.C. 20540

Office of Naval Research (3 copies)
Code 4420E
800 N. Quincy Street
Arlington, VA 22217

Naval Research Laboratory (6 copies)
Code 2627
Washington, D.C. 20375

Office of Naval Research
Director, Technology Programs
Code 200
800 N. Quincy Street
Arlington, VA 22217

Psychologist
Office of Naval Research
Detachment, Pasadena
1030 East Green Street
Pasadena, CA 91106

4420E DISTRIBUTION LIST

1976b "Equally Efficient Structural Variations Within Organizations,"
Chapter 6 in R. H. Kilmann, L. R. Pondy, and D. P. Slevin (eds.),
The Management of Organization Design: Research and Methodology,
Vol. 2, New York: North-Holland, Elsevier, pp. 150-170.

Van de Ven, Andrew H. and Andre L. Delbecq
1974 "A Task Contingent Model of Work-Unit Structure,"
Administrative Science Quarterly, 19, 2: 183-197 (June).

Van de Ven, Andrew H., Andre L. Delbecq and Richard Koenig, Jr.
1976 "Determinants of Coordination Made Within Organizations,"
American Sociological Review, Vol. 41, No. 3 (April).

Van de Ven, Andrew H. and Robert Drazin
1978 "Test of a Task Contingent Theory of Work Unit Design and
Performance," Paper presented at Academy of Management Annual
Conference, San Francisco (August).

1985 "The Concept of Fit in Contingency Theory," in B. Staw and
L. Cummings, Research in Organizational Behavior, Vol. 5
(forthcoming).

Van de Ven, Andrew H. and Diane L. Ferry
1980 Measuring and Assessing Organizations, New York: Wiley.

REFERENCES

Carroll, J. D. and J. J. Chang
1970 "Analysis of Individual Differences in Multidimensional Scaling
Via an N-Way Generalization of Eckart-Young Decomposition,"
Psychometrica, Vol. 35, pp. 283-319.

Child, J.
1975 "Managerial and Organization Factors Associated with Company
Performance -- Part II: A Contingency Analysis," Journal of
Management Studies, 12: 12-27.

Dewar, R. and J. Werbel
1979 "Universalistic and Contingency Predictions of Employee Satisfaction
and Conflict," Administrative Science Quarterly, 24: 426-448.

Drazin, Robert and Andrew H. Van de Ven
1984 "An Examination of Alternative Forms of Fit in Contingency Theory,"
working paper, New York: Graduate School of Business, Columbia
University.

Ferry, Diane L.
1979 A Test of a Task Contingent Model of Unit Structure and Efficiency,
Philadelphia: The Wharton School, University of Pennsylvania,
Unpublished doctoral dissertation.

1983 "The Organization Assessment Instrument: An Evaluation of Intrinsic
Validity," Paper presented at 43rd Annual Meeting of Academy of
Management, Dallas (August).

Pennings, J. M.
1975 "The Relevance of the Structural-Contingency Model of Organizational
Effectiveness," Administrative Science Quarterly, 20: 393-410.

Schoonhoven, C. B.
1981 "Problems with Contingency Theory: Testing Assumptions Hidden
Within the Language of Contingency Theory," Administrative Science
Quarterly, 26: 349-377.

Tosi, H. and J. Slocum
1984 "Contingency Theory: Some Suggested Directions," Journal of
Management, Vol. 10, No. 1, 9-26.

Tushman, M. L. and D. A. Nadler
1978 "Information Processing as an Integrating Concept in
Organizational Design," Academy of Management Review, 3: 613-624.

Van de Ven, Andrew H.
1976a "A Framework for Organization Assessment," Academy of Management
Review, 1, 1: 64-78 (January).

Footnotes

¹Because a sizable number of the one-way ANOVAs mentioned above were not significant, an additional analysis was conducted to determine whether contingency effects (represented by those variables for which the ANOVAs were significant) versus universalistic effects (represented by those for which differences were not significant) predominated. Dewar and Werbel (1979) found both universalistic and contingency effects in their analysis of the effect of technological routiness (equivalent to task variability) and structure on satisfaction outcomes. The structure and process variables with significant ANOVAs were separated to create a "contingent" distance measure. "Contingent" distance correlated significantly at -.17 with both satisfaction ($p < .007$) and efficiency ($p < .066$). This result leads to the conclusion that over the range of this set of data anyway, contingent effects on satisfaction were not predominant.

performance contours do not retain the same slope over the range of the data, or where ideal points are negative (implying the worst possible performance, with deviation resulting in improvement) rather than positive (Carroll and Chang, 1970). For these reasons, the search for innovative methodologies is likely to continue, possibly outside the scope of those methods currently in vogue among organizational scholars.

Despite these caveats, it is evident that the Systems approach (in whatever form) should be extended both to different classes of data and to a wider class of contingency propositions. One obvious conclusion from this research is that the body of contingent propositions that has entered into the "folk wisdom" of organizational research with little empirical support is still amenable to rigorous empirical investigation. A program of research guided by the Systems approach holds the promise of a tremendous accumulation of replicable findings. Further, such a body of findings will simultaneously fulfill demands for both descriptive and normative theories, since any analysis involving the identification and test of ideal patterns implies both the development of descriptive theory and the documentation of normative propositions.

importance of using multiple performance variables in fit analyses. It may very well be possible, as Dewar and Werbel (1979) have suggested, that task uncertainty-design variable combinations have a more immediate and binding effect on outcomes such as satisfaction than on more objective performance indicators such as growth, profit, or efficiency. On the other hand, it may very well be the case that in social service organizations of the type represented in this data base, the goals and objectives that guide overall design choices are geared more to the optimization of employee satisfaction than that of other performance indicators.

It should be noted that the assumptions employed by this particular approach to systems analysis somewhat restrict the attempt to analyze and discriminate between ideal patterns. First, deviation from ideal pattern is assumed to be related linearly to lower performance, i.e. penalties in the form of lower performance are proportionally constant regardless of the magnitude of the deviation. Second, ideal patterns are viewed as being optimal only (there is, given a particular context, no one "worst way to organize" only a best one). Third, ideal types are singular. The approach does not provide for the possibility of multiple ideal types, or equifinality, given a particular context. In fact, should an equifinality principle be operative, there would be a tendency for correlations between distance and performance to be lower. More sophisticated refinement of the methodology is required, in order to be able to identify the operations of equifinality in the presence of multiple ideal types. In addition, the restrictive assumption of a linear relationship between distance from ideal type and lower performance may not be entirely justified. It is possible to envisage instances where

TABLE 2

Correlations of Distance Measure
With Job Satisfaction and Unit Efficiency

Job Satisfaction -.503^a

Unit Efficiency -.314^b

^ap < .0001, N = 248

^bp < .0008, N = 114

($p < .0008$). These results compare favorably with those obtained by Drazin and Van de Ven (1984), who obtained significant correlations of $-.14$ ($p < .003$) for satisfaction and $-.25$ ($p < .0001$) for efficiency, in an analysis in which high performers were identified on the basis of unit efficiency, as opposed to job satisfaction.¹

- - - - -
Insert Table 2 about here
- - - - -

Summary and Conclusions

This paper has argued that the concept of fit is central to the development and testing of contingency theory models. While several approaches to fit have been advanced in recent years, the Systems approach developed by Van de Ven and Drazin (1985) and Drazin and Van de Ven (1984) appears to hold great promise. This observation holds particularly for tests of theories that are essentially models of organizing modes, such as the OA contingency of work unit design. Because it focuses on ideal types and multivariate deviation from them, the Systems approach appears well suited to explore propositions that involve not only individual decision-context interactions, but patterns of coherence between them. As such it recognizes both the multivariate nature of design and the concept of fit that is its essence.

The present research has extended the results obtained by Drazin and Van de Ven (1984), as well as providing some cross-validation for the systems approach itself. When high performers were identified and ideal patterns derived on the basis of job satisfaction rather than unit efficiency, the correlations of the distance measure with both performance variables was markedly improved. The results highlight the

Table 1

Profiles of Mean Unit Structure and
Process Scores for Highly Satisfied¹
Low and High Task Uncertainty Units¹

	<u>Task Uncertainty</u>			
	Low	High	F	p <
<u>UNIT STRUCTURE</u>				
Unit Specialization	3.167	2.938	0.11	.744
Unit Standardization	3.721	3.150	5.84	.0205
Personnel Expertise	2.853	3.004	2.75	.106
Supervisory Discretion	3.200	2.858	1.87	.179
Employee Discretion	3.253	3.879	12.29	.0012
<u>UNIT PROCESS</u>				
Written Communication	1.447	2.012	14.42	.0005
Verbal Communication	1.881	2.721	27.67	.0001
Frequency of Conflict	1.444	1.750	1.28	.264
Conflict Resolution by:				
Avoidance	1.556	1.826	0.77	.387
Smoothing	2.556	2.304	0.56	.456
Authority	3.222	2.957	0.25	.620
Confrontation	3.611	4.043	2.64	.1125

¹An overall MANOVA using all 12 variables produced an F = 2.99
(p < .0089).

The last column indicates the results of one-way ANOVAs to determine if the means of the profiles on each dimension were different. Differences in means for four of the structure and process dimensions were significant, and an overall MANOVA using all twelve variables was also significant ($F = 2.99$; $p < .009$). Further, it is worthwhile noting that in all but one case (the exception being conflict resolution by authority) the differences were in the same direction as that hypothesized in the OA contingency model presented in Figure 1. Thus the high performing profiles present fair approximations of the systematized and developmental modes posited in the theory.

- - - - -
Insert Table 1 about here
- - - - -

The second step of the analysis involved the calculation of the difference between design profiles of individual units and their respective ideal pattern. This was done according to the euclidean distance formula presented above. Lack of fit, or deviation from ideal pattern, should result in poorer performance; hence, the distance measure should correlate negatively and significantly with the two performance measures, job satisfaction and unit efficiency. In order to avoid the possible tautology of testing the same high performing units from which the ideal patterns were initially derived and to be certain that the results would not be influenced by these units, the high performers were dropped from the final step of the analysis. Thus the final step involved the correlation of the distance measure for the remaining units with their respective performance scores. As Table 2 shows, distance correlated with job satisfaction $-.50$ ($p < .0001$) and with unit efficiency $-.31$.

Exhibit 1

The Systems Approach: A Geometric Representation

The Systems approach first identifies ideal patterns appropriate to different levels of context. These patterns are depicted as points (here, I and II) in n -dimensional space, where n is the number of structure and process dimensions. Distance from the ideal point results in proportionally lower performance, regardless of the direction of the deviation involved. The circles can be conceived of as iso-performance contours. Thus, any two units on a circle (and therefore equidistant from the ideal point) will have the same performance, despite the fact that their structure and process scores may be fairly similar (A and B) or very different (C and D). In this example, A and B, C and D have equal performance, but the proximities of E and F to their respective ideal points give them superior performance.

result a lower performance, regardless of the direction in which departure from ideal-type pattern occurs. (See Exhibit 1.)

Data and Results

Conceptually, the Systems approach is similar to the deviation score analysis referred to in the brief description of the Interaction approach above. However, with the Systems approach deviation is measured as the distance from a point in a twelve-dimensional, geometric profile rather than as the distance from a single linear equation line. Thus, systems analysis focuses on differences in pattern profiles and accounts for the full set of all twelve unit structure and process variables. In contrast, the Interaction approach analyzes the fit between task uncertainty and each of the unit design characteristics only one dimension at a time.

The three-step procedure described above was used to analyze the pattern form of fit in relation to job satisfaction. Pattern profiles were generated for the highest performing units (based on the satisfaction measure) under conditions of low and high task uncertainty. The mean scores on these 12 structure and process dimensions were considered as empirically derived "ideal" types representing the systematized and developmental modes. ANOVA and MANOVA tests were run on these ideal types to determine if their profiles actually differed and a comparison was made between the profiles generated and the theory shown in Figure 1 to determine if the derived values matched the predicted ordinal relationships of the OA task contingency theory.

Table 1 shows the unit design profiles of highly satisfied (hence high-performing) units under conditions of low and high task uncertainty.

LIST 3
NAVMAT & NPRDC

NAVMAT

Program Administrator for Manpower,
Personnel, and Training
MAT-0722
800 N. Quincy Street
Arlington, VA 22217

Naval Material Command
Management Training Center
NAVMAT 09M32
Jefferson Plaza, Bldg #2, Rm 150
1421 Jefferson Davis Highway
Arlington, VA 20360

Naval Material Command
Director, Productivity Management Office
MAT-00K
Crystal Plaza #5
Room 632
Washington, DC 20360

Naval Material Command
Deputy Chief of Naval Material, MAT-03
Crystal Plaza #5
Room 236
Washington, DC 20360

Naval Personnel R&D Center (4 copies)
Technical Director
Director, Manpower & Personnel
Laboratory, Code 06
Director, System Laboratory, Code 07
Director, Future Technology, Code 41
San Diego, CA 92152

Navy Personnel R&D Center
Washington Liaison Office
Ballston Tower #3, Room 93
Arlington, VA 22217

LIST 4
MEDICAL

Commanding Officer
Naval Health Research Center
San Diego, CA 92152

Psychology Department
Naval Regional Medical Center
San Diego, CA 92134

Commanding Officer
Naval Submarine Medical
Research Laboratory
Naval Submarine Base
New London, Box 900
Groton, CT 06349

Commanding Officer
Naval Aerospace Medical
Research Lab
Naval Air Station
Pensacola, FL 32508

Program Manager for Human
Performance (Code 44)
Naval Medical R&D Command
National Naval Medical Center
Bethesda, MD 20014

Navy Health Research Center
Technical Director
P.O. Box 85122
San Diego, CA 92138

LIST 5
NAVAL ACADEMY AND NAVAL POSTGRADUATE SCHOOL

Naval Postgraduate School (3 copies)
ATTN: Chairman, Dept. of
Administrative Science
Department of Administrative Sciences
Monterey, CA 93940

U.S. Naval Academy
ATTN: Chairman, Department
of Leadership and Law
Stop 7-B
Annapolis, MD 21402

Superintendent
ATTN: Director of Research
Naval Academy, U.S.
Annapolis, MD 21402

LIST 6
HRM

Commanding Officer
Organizational Effectiveness Center
Naval Air Station
Alameda, CA 94591

Commanding Officer
Organizational Effectiveness Center
Naval Training Center
San Diego, CA 92133

Commanding Officer
Organizational Effectiveness Center
Naval Submarine Base New London
P.O. Box 81
Groton, CT 06349

Commanding Officer
Organizational Effectiveness Center
Naval Air Station
Mayport, FL 32228

Commanding Officer
Organizational Effectiveness Center
Pearl Harbor, HI 96860

Commanding Officer
Organizational Effectiveness Center
Naval Base (Blg. NH-46)
Charleston, SC 29408

Commanding Officer
Organizational Effectiveness Center
Naval Air Station Memphis
Millington, TN 38054

Commanding Officer
Organizational Effectiveness Center
1300 Wilson Boulevard, rm 114A8
Arlington, VA 22209

Commanding Officer
Organizational Effectiveness Center
5621-23 Tidewater Drive
Norfolk, VA 23509

Commander
Organizational Effectiveness Center
5621 Tidewater Drive
Norfolk, VA 23509

Commanding Officer
Organizational Effectiveness Center
Naval Air Station Whidbey Island
Oak Harbor, WA 98278

Commanding Officer
Organizational Effectiveness Center
Box 23
FPO New York 09510

Commanding Officer
Organizational Effectiveness Center
Box 41
FPO New York 09540

Commanding Officer
Organizational Effectiveness Center
Box 60
FPO San Francisco 96651

Commanding Officer
Organizational Effectiveness System, Pacific
Pearl Harbor, HI 96860

Commanding Officer
Organizational Effectiveness System, Atlantic
5621 Tidewater Drive
Norfolk, VA 23509

Commanding Officer
U.S. Navy Organizational Effectiveness System, Europe
FPO New York 09510

Commanding Officer
U.S. Navy Organizational Effectiveness Center
Box 4
FPO Seattle 98762

LIST 7
NAVY MISCELLANEOUS

Naval Military Personnel Command (2 copies)
HRM Department (NMPC-6)
Washington, DC 20350

Naval Training Analysis
and Evaluation Group
Orlando, FL 32813

Commanding Officer
ATTN: TIC, Bldg. 2068
Naval Training Equipment Center
Orlando, FL 32813

Chief of Naval Education
and Training (N-5)
Director, Research Development,
Test and Evaluation
Naval Air Station
Pensacola, FL 32508

Chief of Naval Technical Training
ATTN: Code D17
NAS Memphis (75)
Millington, TN 38D54

Navy Recruiting Command
Head, Research and Analysis Branch
Code 434, Room 8001
801 North Randolph Street
Arlington, VA 22203

Navy Recruiting Command
Director, Recruiting Advertising Dept.
Code 40
801 North Randolph Street
Arlington, VA 22203

Naval Weapons Center
Code 694
China Lake, CA 93555

LIST 8
USMC

Headquarters, U.S. Marine Corps
Code MPI-20
Washington, DC 20380

Headquarters, U.S. Marine Corps
ATTN: Scientific Adviser,
Code RD-1
Washington, DC 20380

Education Advisor
Education Center (EO31)
MCDEC
Quantico, VA 22134

Commanding Officer
Education Center (EO31)
MCDEC
Quantico, VA 22134

Commanding Officer
U.S. Marine Corps
Command and Staff College
Quantico, VA 22134

LIST 9
OTHER FEDERAL GOVERNMENT

Defense Advanced Research
Projects Agency
Director, Cybernetics
Technology Office
1400 Wilson Blvd, Rm 625
Arlington, VA 22209

Dr. Douglas Hunter
Defense Intelligence School
Washington, DC 20374

Dr. Brian Usilaner
GAO
Washington, DC 20548

National Institute of Education
EOLC/SMO
1200 19th Street, N.W.
Washington, DC 20208

National Institute of Mental Health
Division of Extramural Research Programs
5600 Fishers Lane
Rockville, MD 20852

National Institute of Mental Health
Minority Group Mental Health Programs
Room 7 - 102
5600 Fishers Lane
Rockville, MD 20852

Office of Personnel Management
Office of Planning and Evaluation
Research Management Division
1900 E Street, N.W.
Washington, DC 20415

Chief, Psychological Research Branch
U.S. Coast Guard (G-P-1/2/TP42)
Washington, D.C. 20593

Social and Developmental Psychology
Program
National Science Foundation
Washington, D.C. 20550

Dr. Earl Potter
U.S. Coast Guard Academy
New London, CT 06320

Division of Industrial Science
& Technological Innovation
Productivity Improvement Research
National Science Foundation
Washington, D.C. 20550

Douglas B. Blackburn, Director
National Defense University
Mobilization Concepts Development
Center
Washington, D.C. 20319

Chairman, Dept. of Medical Psychology
School of Medicine
Uniformed Services University of
the Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20814

LIST 10
ARMY

Headquarters, FORSCOM
ATTN: AFPR-HR
Ft. McPherson, GA 30330

Army Research Institute
Field Unit - Leavenworth
P.O. Box 3122
Fort Leavenworth, XS 66027

Technical Director (3 copies)
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Head, Department of Behavior
Science and Leadership
U.S. Military Academy, New York 10996

Walter Reed Army Medical Center
W. R. Army Institute of Research
Division of Neuropsychiatry
Forest Glen
Washington, D.C. 20012

Army Military Personnel Command
Attn: DAPC-OE
200 Stovall Street
Alexandria, VA 22322

Research Psychologist
Selection and Classification Performance
Measurement Team
Army Research Institute
Attention: PERI-SF (Mr. Dennis Leedom)
5001 Eisenhower Avenue
Alexandria, VA 22333

Commanding Officer
Organisational Effectiveness Center & School
Fort Ord, CA 93941

LIST 11
AIR FORCE

Air University Library
LSE 76-443
Maxwell AFB, AL 36112

Head, Department of Behavioral
Science and Leadership
U.S. Air Force Academy, CO 80840

MAJ Robert Gregory
USAFA/DFBL
U.S. Air Force Academy, CO 80840

AFOSR/NL
Building 410
Bolling AFB
Washington, DC 20332

Department of the Air Force
HQ USAF/NPXHL
Pentagon
Washington, DC 20330

Technical Director
AFHRL/MO(T)
Brooks AFB
San Antonio, TX 78235

AFMPC/MPCYPR
Randolph AFB, TX 78150

LIST 12
MISCELLANEOUS

Australian Embassy
Office of the Air Attaché (S3B)
1601 Massachusetts Avenue, N.W.
Washington, D.C. 20036

British Embassy
Scientific Information Officer
Room 509
3100 Massachusetts Avenue, N.W.
Washington, DC 20008

Canadian Defense Liaison Staff,
Washington
ATTN: CDRD
2450 Massachusetts Avenue, N.W.
Washington, DC 20008

Commandant, Royal Military
College of Canada
ATTN: Department of Military
Leadership and Management
Kingston, Ontario K7L 2W3

National Defence Headquarters
DPAR
Ottawa, Ontario K1A 0K2

Mr. Luigi Petrullo
2431 North Edgewood Street
Arlington, VA 22207

Sequential by Principal Investigator

LIST 13
CURRENT CONTRACTORS

Dr. Clayton P. Alderfer
Yale University
School of Organization and Management
New Haven, Connecticut 06520

Dr. Janet L. Barnes-Farrell
Department of Psychology
University of Hawaii
2430 Campus Road
Honolulu, HI 96822

Dr. Jomills Braddock
John Hopkins University
Center for the Social Organization
of Schools
3505 N. Charles Street
Baltimore, MD 21218

Dr. Sara Yogeve
Northwestern University
Graduate School of Management
2001 Sheridan Road
Evanston, IL 60201

Dr. Terry Connolly
University of Arizona
Department of Psychology, Rm. 312
Tucson, AZ 85721

Dr. Richard Daft
Texas A&M University
Department of Management
College Station, TX 77843

Dr. Randy Dunham
University of Wisconsin
Graduate School of Business
Madison, WI 53706

List 13 (continued)

Dr. J. Richard Hackman
School of Organization
and Management
Box 1A, Yale University
New Haven, CT 06520

Dr. Wayne Holder
American Humane Association
P.O. Box 1266
Denver, CO 80201

Dr. Daniel Ilgen
Department of Psychology
Michigan State University
East Lansing, MI 48824

Dr. David Johnson
Professor, Educational Psychology
178 Pillsbury Drive, S.E.
University of Minnesota
Minneapolis, MN 55455

Dr. Dan Landis
The University of Mississippi
College of Liberal Arts
University, MS 38677

Dr. Frank J. Landy
The Pennsylvania State University
Department of Psychology
417 Bruce V. Moore Building
University Park, PA 16802

Dr. Bibb Latane
The University of North Carolina
at Chapel Hill
Manning Hall 026A
Chapel Hill, NC 27514

Dr. Cynthia D. Fisher
College of Business Administration
Texas A&M University
College Station, TX 77843

Dr. Thomas M. Ostrom
The Ohio State University
Department of Psychology
116E Stadium
404C West 17th Avenue
Columbus, OH 43210

Dr. William G. Ouchi
University of California,
Los Angeles
Graduate School of Management
Los Angeles, CA 90024

Dr. Robert Rice
State University of New York at Buffalo
Department of Psychology
Buffalo, NY 14226

Dr. Benjamin Schneider
Department of Psychology
University of Maryland
College Park, MD 20742

Dr. H. Wallace Sinaiko
Program Director, Manpower Research
and Advisory Services
Smithsonian Institution
801 N. Pitt Street, Suite 120
Alexandria, VA 22314

Dr. Eliot Smith
Psychology Department
Purdue University
West Lafayette, IN 47907

Dr. Barbara Saboda
Public Applied Systems Division
Westinghouse Electric Corporation
P.O. Box 866
Columbia, MD 21044

Dr. Harry C. Triandis
Department of Psychology
University of Illinois
Champaign, IL 61820

Dr. Anne S. Tsui
Duke University
The Fuqua School of Business
Durham, NC 27706

Dr. Andrew H. Van de Ven
University of Minnesota
Office of Research Administration
1919 University Avenue
St. Paul, MN 55104

Dr. Sabra Woolley
SRA Corporation
901 South Highland Street
Arlington, VA 22204

University of Minnesota
Strategic Management Research Center
Discussion Paper Series

February 1, 1984

Copies of papers can be obtained by writing to the Strategic Management Research Center, 832 Management and Economics Building, University of Minnesota, 271-19th Avenue South, Minneapolis, Minnesota 55455, or by calling (612)376-1502.

- (1) Andrew H. Van de Ven, John M. Bryson, and Robert King, "Visions for the Strategic Management Research Center at the University of Minnesota" (March 1984)
- (2)* Andrew H. Van de Ven and R. Edward Freeman, "Three R's of administrative behavior: Rational, random and reasonable...and the greatest of these is reason" (February 1984)
- (3)** John M. Bryson, "The policy process and organizational form," in the Policy Studies Journal, Vol. 12, No. 3, March, 1984, pp.445-463.
- (4) John M. Bryson and Kimberly B. Boal, "Strategic management in a metropolitan area; the implementation of Minnesota's Metropolitan Land Act of 1976" (February 1984)
- (5) Kimberly B. Boal and John M. Bryson, "Representation, testing, and policy implications of procedural planning methods" (February 1984)
- (6) John M. Bryson, "The role of forums, arenas, and courts in organizational design and change" (February 1984)
- (7)** Andrew H. Van de Ven, Roger Hudson, and Dean M. Schroeder, "Designing new business startups: Entrepreneurial, organizational, and ecological considerations," Journal of Management. Vol 10. No. 1, 1984, pp. 87-107.
- (8) Ian Maitland, John Bryson, and Andrew H. Van de Ven, "Sociologists, economists, and opportunism" (March 1984)
- (9) Andrew Van de Ven and Roger Hudson, "Managing attention to strategic choices" (April 1984)
- (10) Andrew Van de Ven and Associates, "The Minnesota innovation research program" (April 1984)
- (11) Robert S. Goodman and Evonne Jonas Kruger, "Historiography and its potential uses by strategic management researchers" (April 1984)

- (12) Michael A. Rappa, "Capital financing strategies of Japanese semiconductor manufacturers and the cost of capital in Japan" (May 1984)
- (13) Daniel R. Gilbert, Jr. and Nancy C. Roberts, "The leader and organization culture: navigating the tricky currents" (July 1984)
- (14)**Andrew H. Van de Ven and Gordon Walker, "Dynamics of interorganizational coordination" (July 1984)
- (15) Charles C. Manz, Kevin W. Mossholder, and Fred Luthans, "An integrated perspective of self-control in organization" (July 1984)
- (16) Robert P. King, "Technical and institutional innovation in North America grain production: The new information technology" (August 1984)
- (17) John J. Mauriel, "Major strategic issues facing public school executives" (August 1984)
- (18) R. Edward Freeman and Shannon Shipp, "Stakeholder management and industrial marketing" (August 1984)
- (19)**Andrew H. Van de Ven and Robert Drazin, "The concept of fit in contingency theory" (August 1984)
- (20) Robert Drazin and Andrew H. Van de Ven, "An examination of alternative forms of fit in contingency theory" (August 1984)
- (21) Andrew H. Van de Ven, "Central Problems in the Management of Innovation" (December, 1984)
- (22) Daniel R. Gilbert and R. Edward Freeman, "Strategic management and responsibility: A game theoretic approach" (January 1985)
- (23) Daniel R. Gilbert, "Corporate Strategy and Ethics," forthcoming (1985) in Journal of Business Ethics (February 1985).

* Currently Unavailable.

** Published.

END

FILMED

5-85

DTIC