

Algorithms and Applications of Data Mining

Yijun Lin

yijunlin@usc.edu

01/31

About This Course

- Spring 2021, Friday, 6-8 PM PST
- Instructor: Yao-Yi Chiang
- TA: Yijun Lin
 - Office Hour Sat. 7-9 PM PST
- Syllabus:

	Topic	Readings and Assignments	Deliverables/Due Dates
Week 1	Introduction to Data Mining	Ch1: Data Mining and	
Week 2	MapReduce	Ch2: Large-Scale File Systems and Map-Reduce	Homework 1 assigned
Week 3	Frequent itemsets and Association rules	Ch6: Frequent itemsets,	Homework 2 assigned
Week 4	Clustering	Ch7: Clustering	Homework 1 due
Week 5	Recommendation Systems: Content- based	Ch9: Recommendation systems	Homework 2 due, Homework 3 assigned
Week 6	Recommendation Systems: Collaborative Filtering	Ch9: Recommendation systems	Homework 3 due

Assignments

- Theoretical and programming questions
 - Real-world datasets
- Homework 1 basic spark operations
- Homework 2 mining frequent itemset
- Homework 3 recommender system
- Optional clustering

Config Environment

- Python is required for all the assignments
- Implementing with Apache Spark Framework
 - python=3.7
 - pyspark=3.0.1
 - git clone https://github.com/linyijun/cis-data-mining-ta-materials
- Install miniconda/anaconda
 - conda env create -f spark-env.yml python=3.7
- Install PyCharm

Introduction to Spark

What is Spark?

Apache Spark is a unified analytics engine for Spark large-scale data processing

- **Application areas**
 - Interactive Data Query
 - Real-time Data Analysis
 - Streaming Data Processing

Spark Stack

- An RDD is an immutable, in-memory collection of objects
- Each RDD can be split into multiple partitions, which in turn are computed on different nodes of the cluster
- RDDs seem a lot like Scala collections
 - RDD[T] and List[T]

How to create an RDD

- RDDs can be created in two ways:
 - Creating from a SparkContext object
 - Transforming from an existing RDD

- Creating from a SparkContext object
 - Can be thought as your handle to the Spark cluster
 - Represents the connection to a Spark cluster

- Creating from a SparkContext object
 - parallelize: convert a local Scala collection to an RDD

```
a_list = ['you', 'jump', 'I', 'jump', '']
a_rdd = sc.parallelize(a_list) # RDD[String]
```


- Creating from a SparkContext object
 - parallelize: convert a local Scala collection to an RDD

```
a_list = ['you', 'jump', 'I', 'jump', '']
a_rdd = sc.parallelize(a_list) # RDD[String]
```

textFile: read a file from HDFS or local file system

```
input_file = 'work-count-sample-doc.txt'
text_rdd = sc.textFile(input_file)
```


- Transforming from an existing RDD
 - E.g., calling a map operation on an existing RDD,
 it will return a new RDD

```
# call a map operation on an RDD
length_rdd = word_rdd.map(lambda x: len(x)) # RDD[Int]
```

RDD Operations

- Transformations
 - E.g., map, filter, ...

```
# call a map operation on an RDD
length_rdd = word_rdd.map(lambda x: len(x)) # RDD[Int]
```

- Actions
 - E.g., collect, reduce ...

```
a_coll = a_rdd.collect() # RDD -> collection
print(a_coll) # ['you', 'jump', 'I', 'jump', '']
```

Transformations VS Actions

Transformations

- Return new RDDs as results
- They are lazy, the result RDD is not immediately computed

Actions

- Compute a result based on an RDD, and returned
- They are eager, the result is immediately computed

Transformations VS Actions

- Transformations
 - Return new RDDs as results
 - They are lazy, the result RDD is not immediately computed

```
# call a map operation on an RDD
length_rdd = word_rdd.map(lambda x: len(x)) # RDD[Int]
```

- Actions
 - Compute a result based on an RDD, and returned
 - They are eager, the result is immediately computed

```
a_coll = a_rdd.collect() # RDD -> collection
print(a_coll) # ['you', 'jump', 'I', 'jump', '']
```

Word Count

```
word_count.py ×
                text.txt ×
       from pyspark import SparkContext
       import os
2
3
4
5
6
       sc = SparkContext('local[*]', 'wordCount')
7
8
       input_file_path = './text.txt'
9
       textRDD = sc.textFile(input_file_path)
10
11
       counts = textRDD.flatMap(lambda line: line.split(' ')) \
12
           .map(lambda word: (word, 1)).reduceByKey(lambda a, b: a+b).collect()
13
14
15
       for each_word in counts:
           print(each_word)
16
17
```

If you want to learn more...

- Official documentation
 - http://spark.apache.org/docs/latest/
- Online course
 - Coursera: Big Data Analysis with Scala and Spark
- Books
 - Learning Spark, O' Reilly
 - Advanced Analytics with Spark: Patterns for Learning from Data at Scale, O' Reilly
 - Machine Learning with Spark, Packt