Leinster - Basic Category Theory - Selected problem solutions for Chapter 2

Adam Barber

December 9, 2021

2.1.16

(a) Interesting adjoint functors to G-sets.

The trivial group functor I sends a set to a **G**-set with the trivial action gx = x. Interesting functors

Orbit functor sends a G-set with underlying set elements a of A to:

$$A_G = \{g \cdot a, g \in G\}$$

Fixed point functor sends a G-set with underlying set elements a of A to:

$$A^G = \{a \text{ such that } g \cdot a = a \text{ for all } g \in G, a \in A\}$$

Fixed point functor - right adjoint Morphisms in a G-set are functions on the underlying set, where f commutes with g for every $g \in G$.

There is a bijection for each $A \in \mathbf{Set}$ and $B \in [G, \mathbf{Set}]$ as follows

$$[G,\mathbf{Set}](I(A),B)\to\mathbf{Set}(A,B^G)$$

$$\psi\mapsto\overline{\psi}$$

 $\overline{\psi}$ sends each element a of A to $\psi(a)$ if $g \cdot a = a$, otherwise it sends a to $\psi(\emptyset)$.

$$\mathbf{Set}(A, B^G) \to [G, \mathbf{Set}](I(A), B)$$

 $\phi \mapsto \overline{\phi}$

 ϕ sends each $a\in A$ in the underlying set of the G-set to the G-set $(g,\overline{\phi}(a)),g\in G.$

Orbit functor - left adjoint There is a bijection for each $A \in [G, \mathbf{Set}]$ and $B \in \mathbf{Set}$ as follows

$$\mathbf{Set}(A_G, B) \to [G, \mathbf{Set}](A, I(B))$$
$$\psi \mapsto \overline{\psi}$$

So each morphism in **Set** sends the set formed by the orbits of an element a of A, call this a_G , to $\psi(a_G)$, where ψ is a function of sets. Choose a G-set morphism $\overline{\psi} = \psi$, where $\overline{\psi}$ commutes with g for every g in G.

$$[G, \mathbf{Set}](A, I(B)) \to \mathbf{Set}(A_G, B)$$

 $\phi \mapsto \overline{\phi}$

Choose $\overline{\phi}$ to be a disjoint union of each orbit of a in A, $\overline{\phi}(a) = \coprod \{\phi(q \cdot a), q \in G\}$

2.1.17

Write $\mathcal{O}(X)$ for the poset of open subsets of a topological space X ordered by inclusion.

$$\Delta : \mathbf{Set} \to [\mathcal{O}(X)^{op}, \mathbf{Set}]$$

Write \mathcal{P} for the presheaf functor category, and $P \in \mathcal{P}$ for the functor which maps $\mathcal{O}(X)^{op}$ to **Set**. Take open sets U, V, such that $U \subseteq V$ in X. A presheaf consists of

- restriction maps, $P(V) \to P(U)$, these are morphisms which enforce some sort of ordering of the mapped sets,
- and the actual mapped sets P(U), P(V) which are called sections.

Since the question specifies a constant presheaf, by definition, the restriction maps of ΔA are identity maps. And the sections are just the A. Specifically $\Delta A(U) = A$ for subsets U of X, and $\Delta A(\rightarrow) = 1_A$ for morphisms.

Write $\Gamma P = P(X)$ for the **global** sections functor which takes an element of \mathcal{P} to a **Set**.

We are required to show a bijection:

For A in **Set** and B in \mathcal{P}

$$\mathbf{Set}(A, \Gamma B) \to \mathcal{P}(\Delta A, B)$$

and

$$\mathcal{P}(\Delta A, B) \to \mathbf{Set}(A, \Gamma B)$$

The maps between the presheaf functors in \mathcal{P} are natural transformations. Natural transformations are a collection of maps α_A : $\{\Delta A(A) \to B(A)\}_{A \in \mathcal{A}}$. For $U \subseteq V \subseteq X$ we have the commuting square:

$$\Delta A(X) \xrightarrow{1_A} \Delta A(V) \xrightarrow{1_A} \Delta A(U)$$

$$\downarrow^{\alpha_X} \qquad \downarrow^{\alpha_V} \qquad \downarrow^{\alpha_U}$$

$$B(X) \xrightarrow{B(f)} B(V) \xrightarrow{B(f)} B(U)$$

$$(1)$$

Recall $\Delta A(\cdot) = A$. Then the morphism in **Set** is represented by α_X above. As visible from the figure above this corresponds one to one with each α_A in \mathcal{A} , so the bijection holds. Dually using the exact same reasoning Π , the left adjoint of Δ is the presheaf evaluation at the empty set, $\Pi(P) = P(\emptyset)$.

For the left adjoint to Π , Λ , and for A in **Set** and B in \mathcal{P} , we need to show a bijection between:

$$\mathcal{P}(\Lambda A, B) \leftrightarrow \mathbf{Set}(A, \Pi(B))$$

To try and cobble together a definition of the presheaf functor Λ , start with the naturality diagram representing morphisms in \mathcal{P} :

$$\Lambda(U) \xrightarrow{A(f)} \Lambda(\emptyset)
\downarrow^{\alpha_U} \qquad \downarrow^{\alpha_\emptyset}
B(U) \xrightarrow{B(f)} B(\emptyset)$$

Note that $\Pi(B) = B(\emptyset)$. Start by choosing $\Lambda(\emptyset) = A$, so the morphism in **Set** is α_{\emptyset} . Our choice of Λ needs to make this diagram commute for all U in $\mathcal{O}(X)^{op}$. For $U \neq \emptyset$ we could try $\Lambda(U) = A$, however to force the square above to commute with this choice, will impose some structure on the presheaf B. Rather, try setting $\Lambda(U) = \emptyset$ for $U \neq \emptyset$. Choosing the initial object \emptyset of $\mathcal{O}(X)^{op}$, means there is one map out of the top LHS of the square in the above diagram, and the square commutes as required.

We also have

$$\mathcal{P}(A, \nabla B) \leftrightarrow \mathbf{Set}(\Gamma A, B)$$

 ∇ , the right adjoint to Γ can be obtained dually, by swapping **Set** with **Set**^{op} and $\mathcal{O}(X)^{op}$ with $\mathcal{O}(X)$. This is simply a relabelling which has the effect of reversing the chain of adjoint functors stated in the question. We then apply analogous reasoning, take $\nabla(U) = \{*\}$, for $U \neq X$, and $\nabla(X) = B$.

2.2.11

The full subcategory where η_a is an isomorphism

2.2.12

(a) Heuristic sort of proof if the counit, $FG(f) \to f, B \in \mathcal{B}$ is isomorphic then a mapping back exists $f \to FG(f)$ such that their composition is the identity. So for a given B and B' and FG(f) and f are one to one. Which necessarily means f and Gf are one to one, so G is full and faithful.

Algebraic proof From (2.2) the naturality axiom states:

$$\overline{(FG(B) \xrightarrow{\epsilon} B \xrightarrow{q} B'} = G(B) \xrightarrow{1_{G(B)}} G(B) \xrightarrow{G(q)} G(B')$$

 ϵ injective implies faithful: $G(q_1) = G(q_2) \implies \epsilon q_1 = \epsilon q_2 \implies q_1 = q_2$

faithful implies ϵ injective: $\epsilon q_1 = \epsilon q_2 \implies G(q_1) = G(q_2) \implies q_1 = q_2$

 ϵ is injective implies full: For a given h = G(q), need to find $q : \mathcal{B} \to \mathcal{B}$ inducing h. We know from naturality equation above that $G(q) = \overline{q\epsilon}$. ϵ needs to be invertible to retrieve q and hence satisfy fullness requirement.

full implies ϵ is injective: Put B' = FG(B) in the naturality condition above to give:

$$\overline{(FG(B) \xrightarrow{\epsilon} B \xrightarrow{\lambda} FG(B)} = G(B) \xrightarrow{1_{G(B)}} G(B) \xrightarrow{G(\lambda)} GFG(B)$$

Using fullness choose λ such that $G\lambda = \eta$. Then

$$\overline{1_{FG}}(B) = \eta_G(B)$$
, therefore

$$1_{FG}(B) = \overline{\eta_G}(B) = \lambda \epsilon_G(B).$$

So ϵ has an inverse and is therefore injective.

2.2.13

(a) We have sets S, T, a function $f: S \to T$. P(S) denotes the set of all subsets of S. The functor f^* takes elements of T to their inverse under f. Looking for left and right adjoints of f^* . We can immediately see the left adjoint of f^* is f from below.

$$P(S)(A, f^{-1}(B)) \cong P(T)(f(A), B)$$
 (2)

Now to find the right adjoint of f^* , G below:

$$P(T)(A, G(B)) \cong P(S)(f^{-1}(A), B)$$

Dualising

$$P(T)^{op}(G(B), A) \cong P(S)^{op}(B, f^{-1}(A))$$
 (3)

Equation (3) is (2) up to an isomorphism. So we choose G = f here. In fact the power set P is self adjoint. Loosely, this means we have an isomorphism between the opposite category and the original category. We use this isomorphism to get a representation of G in P(T), with the right adjoint sending B to $\overline{f(\overline{B})}$.

Because f is a bijection, elements in T that are not in $f(\overline{B})$ must have elements in B as their preimage. So $\overline{f(\overline{B})}$ consists of all sets of T where $f^{-1}(T) \subseteq B$. In summary the left adjoint of f^* is

$$F(S) = \{ t \in T, \exists s \in S : s \in f^{-1}(t) \}$$

F represents choosing elements of T such that some element of S is in the inverse image of f.

and the right adjoint

$$G(S) = \{ t \in T, \ \forall s \in S : \ s \in f^{-1}(t) \}$$

G represents choosing elements of T such that every element of S is in the inverse image of f.

(b) We are asked to interpret, in light of the results in (a.), the unit $\eta: 1_T \to G \circ F$, and counit $\epsilon: F \circ G \to 1_S$, for all adjunctions.

Consider the R(x,y) as a set in $X \times Y$ and S as a set in X. In all of the below I interpret set inclusion as logical implication.

Description of the functors used follows.

- \forall_y takes a set R(x, y) and returns S(x) with preimage in R(x, y) for all y. So each element in R(x, y) inducing S(x) is fully contained in R(x, y).
- p^* the inverse image functor takes a set S(x) and returns its preimage R(x,y). This inclusion of X into $X \times Y$ adds a variable in Y. To use parlance of first order logic the statement is free in y.
- \exists_Y takes a set R(x,y) and returns S(x) with preimage in R(x,y) for at least one y.

We know from (a) that $\exists_Y \dashv p^* \dashv \forall_Y$

 $p^* \dashv \forall_Y$

• $\eta: 1_X \to \forall_Y \circ p^*$ Plug in as argument to both sides of the implication the set S(x). Evaluating the RHS, applying p^* results in the product of S(x) with Y, the set R(x,y). So η can be interpreted as $S(x) \Longrightarrow R(x,y) \ \forall y$.

• $\epsilon: p^* \circ \forall_Y \to 1_{X \times Y}$. (??) The universal functor is projection of a subset of x-values for the set R(x,y) passed to the functor. Applying p^* to yield say $R^Y(x,y)$ makes the statement on the LHS free in y, so it requires assignment for the statement to be meaningful. If we were to assign y on the LHS for corresponding to the y value for each RHS predicate, elementwise, then we essentially just have the statement that $R^Y(x,y) \Longrightarrow R(x,y)$.

 $\exists_Y \dashv p^*$

- η: 1_{X×Y} → p* ∘ ∃_Y. (??) The existence functor is just projection of all the x values for a given set of (x, y). The resulting statement on the right hand side is free in Y after applying p* so requires assignment to be meaningful. If we were to assign y on the RHS for corresponding to the y value for each LHS predicate, elementwise, then we essentially just have an identity.
- $\epsilon: \exists_Y \circ p^* \to 1_X$ Plug in as argument to both sides of the implication the set S(x). Applying p^* returns the set R(x,y). So ϵ can be interpreted as $\exists y: R(x,y) \implies S(x)$.
- **2.2.14** Natural transformations for [A, B].

$$FA \xrightarrow{F(f)} FA'$$

$$\downarrow^{\alpha_A} \qquad \downarrow^{\alpha_{A'}}$$

$$GA \xrightarrow{G(f)} GA'$$

 $Y \in [\mathcal{B}, \mathcal{I}], F^*(Y) = Y \circ F$. Natural transformations for $[[\mathcal{A}, \mathcal{I}], [\mathcal{B}, \mathcal{I}]]$.

$$F^*Y = Y \circ F \xrightarrow{F^*(f)} F^*Y' = Y' \circ F$$

$$\downarrow^{\alpha_Y^*} \qquad \qquad \downarrow^{\alpha_{Y'}^*}$$

$$G^*Y = Y \circ G \xrightarrow{G^*(f)} G^*Y' = Y' \circ G$$

So it is evident from comparing the above natural transformation diagrams that we have the relationship $\alpha_V^*=Y\circ\alpha$

Using first triangle inequality starting at point $F^*(Y)$ we have

$$\begin{split} \epsilon_{F^*(Y)}^*F^*(\eta_Y^*)F^*(Y) = & F^*(Y)(\epsilon F)F^*(\eta_Y^*)F^*(Y) \\ = & YF(\epsilon F)(\eta F) \\ = & YF1_F \text{ since } \epsilon F \circ F\eta = 1_F \\ = & F^*(Y) \end{split}$$

The other triangle follows similarly. So by Theorem 2.2.5 we have an adjunction between F^* and G^* .

2.3.10

Equivalence between (F, G, η, ϵ) means for each A the square below commutes.

$$\begin{array}{ccc} 1_A & \xrightarrow{f} & 1_{A'} \\ \downarrow^{\alpha_A} & & \downarrow^{\alpha_{A'}} \\ GF(A) & \xrightarrow{GF(f)} & GF(A') \end{array}$$

as well as in the other direction, for all $A \in mathcal A$, the below square commutes

$$GF(A) \xrightarrow{GF(f)} GF(A')$$

$$\downarrow^{\alpha_A^{-1}} \qquad \downarrow^{\alpha_{A'}^{-1}}$$

$$A \xrightarrow{f} A'$$

For F left adjoint to G using the definition based upon initial objects, we require

A map $(F(A), \eta_A) \to (B, f)$ in $(A \Rightarrow B)$ is a map $q: F(A) \to B$ in \mathcal{B}

$$A \xrightarrow{\eta_A} GF(A)$$

$$\downarrow GF(q)$$

$$G(B)$$

So we choose $GF(q) = \alpha_A^{-1} f$

2.3.11

A map $(F(S), \eta_S) \to (A, f)$ in $(S \Rightarrow U)$ is a map $q: F(S) \to A$ in $\mathcal A$

$$S \xrightarrow{\eta_S} UF(S)$$

$$\downarrow U(q)$$

$$U(A)$$

 $U(q) \circ \eta_S$ and f commute. So in the case f is injective, then $U(q) \circ \eta_S$ must be injective. This implies in turn that η_S is injective.

2.3.12

Par

- ullet Objects: sets X
- Morphisms: Partial functions, written (f, D), where $f: X \to Y$, $X \subseteq D$, morphisms are only defined when $X \subseteq D$.

\mathbf{Set}_*

- Objects: sets $X \cup \{*\}$
- Morphisms: $f^*(X) = Y, X \subseteq D$, o.w $\{*\}$

 $F \colon \mathbf{Par} \to \mathbf{Set}_*$

$$F(f,D) = x \mapsto \begin{cases} f(X), & \text{if } X \subseteq D. \\ *, & \text{otherwise.} \end{cases}$$

 $F(X) = X \cup \{*\} \text{ on objects}$

 $G \colon \mathbf{Set}_* \to \mathbf{Par}$

$$G(f^*) = (f^*, X \setminus \{*\}),$$

 $G(X) = X \setminus \{*\}$ on objects

So we are mapping the undefined value of $\{*\}$ to the empty set. Which means $GF(\{*\}) = \emptyset$. So F and G are not isomorphic. However its seems we can construct a natural isomorphism α_X between $1_{\mathbf{Par}}$ and GF. An easier way to prove equivalence though is to show F is full, faithful and essentially surjective on objects.

F is faithful as for a morphism in \mathbf{Par} , $(X \to Y, D)$ there is at most one corresponding morphism in \mathbf{Set}_* , described in the definition of F. Alternatively, the domain of f can be recovered from Ff. It is those points which get mapped to something $\neq \{*\}$, since morphisms preserve distinguished elements. But since we have the domain then f can be recovered from Ff, since f is the restriction of Ff to the domain of Ff.

F is full as for a morphism in \mathbf{Set}_* , $Ff: X \to Y$ there is at least one morphism inducing it in \mathbf{Par} , define $L = \{x: f(x) = \{*\}\}$, then the preimage partial function is $(f, X \setminus L)$, again by definition of F.

Finally F is essentially surjective on objects, because for all objects $B \in \mathbf{Set}_*$ there exists A in \mathbf{Par} such that $F(A) \cong B$. Specifically $A = B \setminus \{*\}$.

So Par and Set_* are equivalent.

 $^{^1 \}rm https://math.stackexchange.com/questions/884451/why-are-the-category-of-pointed-sets-and-the-category-of-sets-and-partial-functi$