1 Propositions

Definition: Proposition

A **proposition** is a declarative sentence (a sentence that declares a fact) is either true or false, but not both. A **compound proposition** is made from existing propositions with *logical operators*.

We use letters to denote **propositional variables** (or **statement variables**), that is, variables that represent proposition.

1.1 Propositional Logic

thu tu thuc hien: phu dinh, hoi, tuyen roi keo theo

Propositions

- Negation. The negation of p, denoted by $\neg p$ (or \overline{p}), is the statement "not p". The truth value of $\neg p$ is the opposite of the truth value of p.
- **Conjuction.** The conjuction $p \wedge q$ is true when both p and q are true and false otherwise. Note that the word "but" is used instead of "and".
- **Disjunction.** The disjunction $p \lor q$ is the proposition "p or q", false when both p and q are false and true otherwise. Can be called "inclusive or".
- **Exclusive or.** The *exclusive or* of p and q, denoted by $p \oplus q$ is "or, but not both".

Conditional Statements

■ Implication. The conditional statement $p \to q$ is "if p, then q". It's false when p is true and q is false, and true otherwise. p is called the *hypothesis* (or antecedent or premise) and q is the *conclusion* (or consequence).

```
"if p, then q"

"if p, q"

"p implies q"

"p only if q"

"p only if q"

"a sufficient condition for q is p"

"q if p"

"q when p"

"a necessary condition for p is q"

"q unless \neg p"

"p implies q"

"p only if q"

"a sufficient condition for q is p"

"q whenever p"

"q is necessary for p"

"q follows from p"
```

Especially "p only if q", it's not true when p and q has different truth values. And "q unless $\neg p$ ".

Bi-Implication. The biconditional statement $p \leftrightarrow q$ is the proposition "p if and only if q". Also called bi-implications, T when p and q have the same truth value, or $(p \to q) \land (q \to p)$

CONVERSE, CONTRAPOSITIVE, AND INVERSE Some new statements with a conditional statements $p \to q$.

- \square The **converse**: $q \rightarrow p$.
- \Box The **contrapositive**: $\neg q \rightarrow \neg p$
- \square The **inverse**: $\neg p \rightarrow \neg q$

When 2 compound propositions always have the same truth value, we call them **equivalent** (like a conditional statement and its contrapositive).

Precedence and Logical Operators

Logic and Bit Operations

Boolean variables, 1 represents T, 0 represents F.

TABLE 8 Precedence of Logical Operators.	
Operator	Precedence
_	1
^ V	2 3
$\overset{\rightarrow}{\leftrightarrow}$	4 5

2 Applications of Propositional Logic

3 Propositional Equivalences

Introduction

Definition: Tautology, Contradiction, Contigency

A compound proposition that is always true whatever the truth values of the propositional variables are, is called a *tautology*. Vice versa, **contradiction**. Neither, **contigency**.

EXAMPLE 1. $p \lor \neg p$ is tautology, $p \land \neg p$ is contradiction.

Logical Equivalences

Notation: $p \equiv q$: p and q are logically equivalence if $p \leftrightarrow q$ is tautology.

Definition: De Morgan's Laws

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Propositional Satisfiability

A compound proposition is **satisfiable** if there's a way of assigning truth values to its variables that makes it true. We call it a **solution**.

If not, it's **unsatisfiable**. In other words, its negation is tautology.

EXAMPLE. $(p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p)$ is true when p, q, and r have the same truth value. Hence, it's satisfiable.

Applications of Satisfiability

Solving Satisfiability Problems