Similar to Romanian. Cluj-Napoca — Romania, 3-14 July 2018

Let $f: \{1, 2, 3, \ldots\} \to \{2, 3, \ldots\}$ be a function such that $f(m+n) \mid f(m) + f(n)$ for all pairs m, n of positive integers. Prove that there exists a positive integer c > 1 which divides all values of f.

Solution 1. For every positive integer m, define $S_m = \{n : m \mid f(n)\}.$

Lemma. If the set S_m is infinite, then $S_m = \{d, 2d, 3d, \ldots\} = d \cdot \mathbb{Z}_{>0}$ for some positive integer d. *Proof.* Let $d = \min S_m$; the definition of S_m yields $m \mid f(d)$.

Whenever $n \in S_m$ and n > d, we have $m \mid f(n) \mid f(n-d) + f(d)$, so $m \mid f(n-d)$ and therefore $n-d \in S_m$. Let $r \leq d$ be the least positive integer with $n \equiv r \pmod{d}$; repeating the same step, we can see that $n-d, n-2d, \ldots, r \in S_m$. By the minimality of d, this shows r = d and therefore $d \mid n$.

Starting from an arbitrarily large element of S_m , the process above reaches all multiples of d; so they all are elements of S_m .

The solution for the problem will be split into two cases.

Case 1: The function f is bounded.

Call a prime p frequent if the set S_p is infinite, i.e., if p divides f(n) for infinitely many positive integers n; otherwise call p sporadic. Since the function f is bounded, there are only a finite number of primes that divide at least one f(n); so altogether there are finitely many numbers n such that f(n) has a sporadic prime divisor. Let N be a positive integer, greater than all those numbers n.

Let p_1, \ldots, p_k be the frequent primes. By the lemma we have $S_{p_i} = d_i \cdot \mathbb{Z}_{>0}$ for some d_i . Consider the number

$$n = Nd_1d_2\cdots d_k + 1.$$

Due to n > N, all prime divisors of f(n) are frequent primes. Let p_i be any frequent prime divisor of f(n). Then $n \in S_{p_i}$, and therefore $d_i \mid n$. But $n \equiv 1 \pmod{d_i}$, which means $d_i = 1$. Hence $S_{p_i} = 1 \cdot \mathbb{Z}_{>0} = \mathbb{Z}_{>0}$ and therefore p_i is a common divisor of all values f(n).

Case 2: f is unbounded.

We prove that f(1) divides all f(n).

Let a = f(1). Since $1 \in S_a$, by the lemma it suffices to prove that S_a is an infinite set.

Call a positive integer p a peak if $f(p) > \max(f(1), \ldots, f(p-1))$. Since f is not bounded, there are infinitely many peaks. Let $1 = p_1 < p_2 < \dots$ be the sequence of all peaks, and let $h_k = f(p_k)$. Notice that for any peak p_i and for any $k < p_i$, we have $f(p_i) \mid f(k) + f(p_i - k) < p_i$ $2f(p_i)$, hence

$$f(k) + f(p_i - k) = f(p_i) = h_i.$$
 (1)

By the pigeonhole principle, among the numbers h_1, h_2, \ldots there are infinitely many that are congruent modulo a. Let $k_0 < k_1 < k_2 < \dots$ be an infinite sequence of positive integers such that $h_{k_0} \equiv h_{k_1} \equiv \dots \pmod{a}$. Notice that

$$f(p_{k_i} - p_{k_0}) = f(p_{k_i}) - f(p_{k_0}) = h_{k_i} - h_{k_0} \equiv 0 \pmod{a},$$

so $p_{k_i} - p_{k_0} \in S_a$ for all $i = 1, 2, \ldots$ This provides infinitely many elements in S_a . Hence, S_a is an infinite set, and therefore f(1) = a divides f(n) for every n.

Comment. As an extension of the solution above, it can be proven that if f is not bounded then f(n) = an with a = f(1).

Take an arbitrary positive integer n; we will show that f(n+1) = f(n) + a. Then it follows by induction that f(n) = an.

Take a peak p such that p > n+2 and h = f(p) > f(n) + 2a. By (1) we have f(p-1) = f(p) - f(1) = h - a and f(n+1) = f(p) - f(p-n-1) = h - f(p-n-1). From $h - a = f(p-1) \mid f(n) + f(p-n-1) < f(n) + h < 2(h-a)$ we get f(n) + f(p-n-1) = h - a. Then

$$f(n+1) - f(n) = (h - f(p-n-1)) - (h - a - f(p-n-1)) = a.$$

On the other hand, there exists a wide family of bounded functions satisfying the required properties. Here we present a few examples:

$$f(n) = c; \quad f(n) = \begin{cases} 2c & \text{if } n \text{ is even} \\ c & \text{if } n \text{ is odd;} \end{cases} \quad f(n) = \begin{cases} 2018c & \text{if } n \leq 2018 \\ c & \text{if } n > 2018. \end{cases}$$

Solution 2. Let $d_n = \gcd(f(n), f(1))$. From $d_{n+1} \mid f(1)$ and $d_{n+1} \mid f(n+1) \mid f(n) + f(1)$, we can see that $d_{n+1} \mid f(n)$; then $d_{n+1} \mid \gcd(f(n), f(1)) = d_n$. So the sequence d_1, d_2, \ldots is nonincreasing in the sense that every element is a divisor of the previous elements. Let $d = \min(d_1, d_2, \ldots) = \gcd(d_1, d_2, \ldots) = \gcd(f(1), f(2), \ldots)$; we have to prove $d \ge 2$.

For the sake of contradiction, suppose that the statement is wrong, so d = 1; that means there is some index n_0 such that $d_n = 1$ for every $n \ge n_0$, i.e., f(n) is coprime with f(1).

Claim 1. If $2^k \ge n_0$ then $f(2^k) \le 2^k$.

Proof. By the condition, $f(2n) \mid 2f(n)$; a trivial induction yields $f(2^k) \mid 2^k f(1)$. If $2^k \ge n_0$ then $f(2^k)$ is coprime with f(1), so $f(2^k)$ is a divisor of 2^k .

Claim 2. There is a constant C such that f(n) < n + C for every n.

Proof. Take the first power of 2 which is greater than or equal to n_0 : let $K = 2^k \ge n_0$. By Claim 1, we have $f(K) \le K$. Notice that $f(n+K) \mid f(n) + f(K)$ implies $f(n+K) \le f(n) + f(K) \le f(n) + K$. If n = tK + r for some $t \ge 0$ and $1 \le r \le K$, then we conclude

$$f(n) \leq K + f(n-K) \leq 2K + f(n-2K) \leq \ldots \leq tK + f(r) < n + \max(f(1), f(2), \ldots, f(K)),$$

so the claim is true with $C = \max(f(1), \ldots, f(K)).$

Claim 3. If $a, b \in \mathbb{Z}_{>0}$ are coprime then $\gcd(f(a), f(b)) \mid f(1)$. In particular, if $a, b \ge n_0$ are coprime then f(a) and f(b) are coprime.

Proof. Let $d = \gcd(f(a), f(b))$. We can replicate Euclid's algorithm. Formally, apply induction on a + b. If a = 1 or b = 1 then we already have $d \mid f(1)$.

Without loss of generality, suppose 1 < a < b. Then $d \mid f(a)$ and $d \mid f(b) \mid f(a) + f(b-a)$, so $d \mid f(b-a)$. Therefore d divides $\gcd(f(a), f(b-a))$ which is a divisor of f(1) by the induction hypothesis.

Let $p_1 < p_2 < \dots$ be the sequence of all prime numbers; for every k, let q_k be the lowest power of p_k with $q_k \ge n_0$. (Notice that there are only finitely many positive integers with $q_k \ne p_k$.)

Take a positive integer N, and consider the numbers

$$f(1), f(q_1), f(q_2), \ldots, f(q_N).$$

Here we have N+1 numbers, each being greater than 1, and they are pairwise coprime by Claim 3. Therefore, they have at least N+1 different prime divisors in total, and their greatest prime divisor is at least p_{N+1} . Hence, $\max(f(1), f(q_1), \ldots, f(q_N)) \ge p_{N+1}$.

Choose N such that $\max(q_1, \ldots, q_N) = p_N$ (this is achieved if N is sufficiently large), and $p_{N+1} - p_N > C$ (that is possible, because there are arbitrarily long gaps between the primes). Then we establish a contradiction

 $p_{N+1} \leq \max(f(1), f(q_1), \dots, f(q_N)) < \max(1 + C, q_1 + C, \dots, q_N + C) = p_N + C < p_{N+1}$ which proves the statement.