Name		Index No
Sign	•••••	······
545/2		
Chemistry	-	
Paper 2		
July/August 2019		
2 hours		

ACEITEKA JOINT MOCK EXAMINATIONS 2019

UGANDA CERTIFICATE OF EDUCATION

CHEMISTRY PAPER 2

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- This paper consists of two Sections A and B.
- Section A consists of 10 structured questions. Attempt all questions in this section.

 Answers to these questions must be written in the spaces provided ONLY.
- Section B consists of 4 semi-structured questions. Attempt ONLY TWO questions. from this section. Answers to the questions must be written in the answer booklets provided.
- In both sections all working must be shown clearly.

	FOR EXAMINER'S USE ONLY													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	TOTAL
	4.7													

Aceiteka Joint Mock Examinations 2019

SECTION A (50 MARKS)

All questions are compulsory

	ods of separating
Chromatography	(1 mark)
Fractional crystallization	(1 mark)
re of water and the following substance was shake	
Ethanol Observation	(½ mark)
Reason	(½ mark)
Edible oil	
Observation	(1 mark)
Reason	(½ mark)
parating funnel was used to separate a mixture of lands and the component that came off first.	kerosene and water. (½ mark)
	Fractional crystallization what would be observed and give a reason for you re of water and the following substance was shake me time. Ethanol Observation Edible oil Observation Reason Reason

2

	(ii	- I and the second of the seco	(1 mark)
			<u> </u>
•	When	a mixture of sodium chloride and liquid, L, was heated, hydro	gen chloride was
	evolve	d. The second of	
	(a)	Identify L.	(1 mark)
			······
	(b)	Write equation:	
		(i) For the reaction leading to the formation of hydrogen c	hloride
,			(1½ marks
			•••••
		(ii) To show how an aqueous solution of hydrogen chloride	would react with
		iron.	(1½ marks
			· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	
	(c)	(i) Write an ionic equation to show the reaction that would	take place; if
		hydrogen chloride was bubbled into aqueous silver nitr	ate solution.
			(½ mark)
			,
		(ii) State the application of the reaction in (c) (i) in analyti	cal chemistry.
			(½ mark)

Name one reagent which could be used to distinguish between members of each of the following pairs of ions and in each state what would be observed if the reagent you have named was treated separately with each member of the pair.

(6 marks each)

Pair of ions	Reagent	Observation
(a) SO_4^{2-} (aq) and SO_3^{2-} (aq)		ep 1
(b) $Al^{3+}_{(aq)}$ and $Pb^{2+}_{(aq)}$		
(c) I- (aq) and Cl- (aq)		
,		

4. In an experiment to investigate the decomposition of 50cm³ of 0.2M hydrogen peroxide, the following graph was obtained.

	(a)	write equation for the decomposition of hydrogen peroxide.	(1½ marks)
	(b)	Name one compound that can be used to speed up the rate of this re	
	(c)	On the same axes above, sketch the graph for the decomposition of peroxide if the compound you have named in (b) was used.	
		peroxide if the compound you have hamed in (b) was ased.	(,
	(d)	Calculate the rate of the reaction in the first 20 minutes.	(1 mark)
	` '		
	(e)	(i) Determine the rate of the reaction after 20 minutes.	(½ mark)
		(ii) Give a reason for your answer in (e) (i)	(½ mark)
5.	(a)	Distinguish between the terms "atomic number" and "atomic m	ass. (1 mark)

5 .

(b)	The full symbols of three atoms of a certain element are: ${}^{39}_{19}X$	$\frac{10}{19}X$ and
	41 ₁₉ Z	
(i)	Suggest a reason for the difference in the atomic masses of the	
 (ii) 	State one word, which means the existence of X, Y and Z.	(½ mark)
(c) 	Briefly give a reason why an atom of an element is neutral.	
 (a)	An iron panga, which was left in the garden for some weeks was	
 (a)		
 (a) (i)	An iron panga, which was left in the garden for some weeks wa	as found coate
(Car	An iron panga, which was left in the garden for some weeks was with deposits of solid Q.	
(Car	An iron panga, which was left in the garden for some weeks was with deposits of solid Q.	as found coate
(i)	An iron panga, which was left in the garden for some weeks we with deposits of solid Q. State the colour of Q	as found coate (½ mark)
(i) (ii)	An iron panga, which was left in the garden for some weeks we with deposits of solid Q. State the colour of Q Write the chemical name of Q	as found coate (½ mark)
(i)	An iron panga, which was left in the garden for some weeks we with deposits of solid Q. State the colour of Q	as found coate (½ mark)
(i) (ii)	An iron panga, which was left in the garden for some weeks we with deposits of solid Q. State the colour of Q Write the chemical name of Q State;	as found coate (½ mark) (1 mark)
(i) (ii)	An iron panga, which was left in the garden for some weeks we with deposits of solid Q. State the colour of Q Write the chemical name of Q State;	as found coate (½ mark) (1 mark)
(i) (ii)	An iron panga, which was left in the garden for some weeks we with deposits of solid Q. State the colour of Q Write the chemical name of Q State;	as found coate (½ mark) (1 mark)

	Why is it important to galvanize iron.	(1 mark
(c)	Iron can react with oxygen in the absence of water.	
	Write equation for the reaction of oxygen and iron.	(1 mark
Whe	n 7.17g of an oxide ${f W}$, of lead was completely reduced by he	
carbo	on monoxide, 6.21g of lead was produced.	
(a)	Determine the percentage composition of W.	(2 marl
		•••••
		•••••
(b)	Calculate the molecular formula of W. (O=16, Pb = 2017,	
(b)	Calculate the molecular formula of W. (O=16, Pb = 2017,	W = 239)
(b)		W = 239) (2 ½ma
(b) 		W = 239) (2 ½ma
(b) 		W = 239) (2 ½ma
(b) 		W = 239) (2 ½ma
(b) 		W = 239) (2 ½ma
(b) 		W = 239) (2 ½ma
(b) 		W = 239) (2 ½ma
(b) 		W = 239) (2 ½ma
(b) 		W = 239) (2 ½ma
(b) 		W = 239) (2 ½ma
(b) 		W = 239) (2 ½ma
(b)		W = 239) (2 ½ma

ow to the formation of B . Opper (II) oxide.	(½ mark) (1 mark) (1½ marks)					
ow to the formation of B . Opper (II) oxide.	(½ mark) (1 mark) (1½ marks) en carbon dioxide					
ow to the formation of B . Opper (II) oxide.	(½ mark) (1 mark) (1½ marks) en carbon dioxide					
ow to the formation of B . Opper (II) oxide.	(1 mark) (1½ marks) en carbon dioxide					
ow to the formation of B . Opper (II) oxide.	(1 mark) (1½ marks)en carbon dioxide					
opper (II) oxide.	(1½ marks)en carbon dioxide					
opper (II) oxide.	(1½ marks)					
	en carbon dioxide					
(Exhibited (ii) State what would be observed if carbon dioxide and gas B were separately						
eagent you have named in (c) (i).	(1 mark)					
n are some of the reactions that increase	se the amount of					
here.						
farms Comment of	(1 mark)					
)	here. term fermentation.					

	(ii)	One difference between combustion and fermentation.	(1½ marks)
	b) (i)	Write equation to show: Complete combustion of propane.	(1½ marks)
	(ii)	Fermentation of glucose, C ₆ H ₁₂ O ₆	(1½ marks)
10.	 (a)	Define the term acid.	(1 mark)
	(b)	When a mixture of concentrated sulphuric acid and potassium nitric acid was produced. State the property of concentrated sulphuric acid upon which depended.	
	(c)	(i) Name the reagent (s) that is or are used to identify a nitra	(1 mark)
		(ii) State what would be observed when aqueous nitrate ion reagent (s) you have named in (c) (i).	is treated with the

SECTION B (30 MARKS)

Attempt any two questions from this section. Extra questions answered will not be marked.

11.	(a)	Describe the extraction of sulphur using the Frasch pump.	(7 marks)
	. ,	(Diagram <u>not</u> required)	
	(b)	Explain the reaction of sulphuric acid with; (i) Sugar (Sucrose), C ₁₂ H ₂₂ O ₁₁	(7 marks)
		(ii) iron(ii) sulphide	
	(c)	State any two ways in which the gaseous product in (b) (ii) po	ollutes air.
			(1 mark)
12.	(a)	Lead (II) oxide was added a little at a time to warm dilute nituuntil no further change.	ic acid in a beaker
		(i) State what was observed.	(½ marks)
		(ii) Write equation for the reaction that took place.	(1½ marks)
		(iii) Describe how pure crystals of lead (II) nitrate can be	obtained from the
		reaction mixture in the beaker.	(4 marks)
	(b)	State what would be observed and write equation for the reac	tion that would take
	(0)	place if lead(II) nitrate was heated strongly.	(4 marks)
	(c)	A few drops of aqueous solution of sodium chloride were add nitrate solution.	ded to aqueous lead (II)
		(i) State what was observed.	(½ mark)
		(ii) Write equation to illustrate your observation in (i).	(1½ marks)
	(d)	The reaction mixture in (c) was heated and then allowed to co	ool.
		(i) State what was observed.	(1 mark)
		(ii) Give a reason for your observation in (d) (i).	(1 mark)

10

13.	(a)	(i)	Explain how ethene can be prepared starting from ethanol.	
			(Diagram is not required)	(4 marks)
		(ii)	Name one reagent that would be used to identify ethene and	d state what
			would be observed if ethene was treated with the reagent yo	u have named.
			•	(2 marks)
	(b)	(i)	Differentiate between the terms monomer and polymer.	(1 mark)
		(ii)	Write an equation for the polymerization of ethene; name t	he product and
			indicate which one of the substances is the monomer.	(2½ marks)
	(c)	(i)	The polymer derived from ethene is synthetic, a thermo-s	softening
	()		plastic and non-biodegradable. Explain.	(3 marks)
		(ii)	State the disadvantage of the polymer of ethene which is the	he result of its
		()	non-biodegradable property.	(1 mark)
14.	Sodi	um hyd	lroxide is manufactured by electrolysis process in a mercury c	athode cell, and it
	is us	ed in m	anufacture of soap.	
	(a)	Stat	e what is meant by the term "electrolysis".	(1 mark)
	(b)	Nar	ne the substance used as,	
		(i)	the anode.	(½ mark)
		(ii)	the electrolyte.	(½ mark)
	(c)	Out	line a process by which sodium hydroxide is manufactured.	
	``		uations are not required)	(4½ marks)
	(d)	(i)	Name one raw material used in the manufacture of soap.	(1 mark)
	` '	(ii)	Describe briefly a process in which soap is produced from	n sodium hydroxide
			and the material you have named in (d) (i).	(4 marks)
	(e)	Wh	en a mixture of dilute sodium hydroxide and ammonium chlo	oride was heated, gas 7
	` /	was	s evolved.	
		(i)	Identify T	(½ mark) *

- (ii) State the property of sodium hydroxide which made the reaction leading to formation of T possible. (1 mark)
- (iii) Name a laboratory reagent which is used to identify **T** and state what would be observed when **T** is treated with the reagent you have named.

(2 marks)

END.