EP2210 Fairness

Lecture material:

- Bertsekas, Gallager, Data networks, 6.5
- L. Massoulie, J. Roberts, "Bandwidth sharing: objectives and algorithms," IEEE Infocom 2000, Sec. II.B.1, III.C.3.
- J-Y Le Boudec, "Rate adaptation, congestion control and fairness: a tutorial," Nov. 2005, 1.2.1, 1.4.
- MIT OpenCourseWare, 6.829
- Reading for next lecture:
 - L. Massoulie, J. Roberts, "Bandwidth sharing: objectives and algorithms," IEEE Infocom 2000.

Control functions in communication networks fairness concept

Fairness

- Scheduling: means to achieve fairness on a single link
 - E.g., GPS provides max-min fairness
- Networks?
 - How to define fairness
 - How to achieve fairness

Fairness - objectives

 How to share the network resources among the competing flows? ("parking lot scenario")

Equal rate:

$$r_i = \frac{1}{2}, \quad i = 0..n$$

$$Th = \sum_{i=0}^{n} r_i = \frac{n+1}{2}$$

Maximum network throughput (Th=n would be nice):

$$r_0 = 0$$

$$r_i = 1, \quad i = 1..n$$

$$Th = \sum_{i=0}^{n} r_i = n$$

Equal network resource: $I_0 * r_0 = I_i * r_i$, I_i is the path length

$$r_0 = \frac{1}{n+1}$$

$$r_i = \frac{n}{n+1}$$

$$Th = \frac{n^2 + 1}{n+1}$$

Fairness - objectives and algorithms

- Step 1: what is the "optimal" share?
 - What is optimal a design decision
 - Fairness definitions
 - Centralized algorithms to calculate fair shares
- Step 2: how to ensure fair shares?
 - Traffic control at the network edges (congestion or rate control)
 - Scheduling at the network nodes
- This lecture:
 - max-min fairness definition and allocation algorithm
 - proportional fairness, other fairness definitions
- Student presentation:
 - distributed control for fairness

- Simplest case:
 - without requirements on minimum or maximum rate
 - constraints are the link bandwidths
- Definition: Maximize the allocation for the most poorly treated sessions, i.e., maximize the minimum.
- Equivalent definition: allocation is max-min fair if no rates can be increased without decreasing an already smaller rate

$$r_0 = r_1 = r_2 = \frac{1}{3}, \quad r_3 = \frac{2}{3}$$

- Formal description:
 - allocated rate for session p: r_p , $r = \{r_p\}$ (maximum and minimum rate requirements not considered)
 - allocated flow on link a: $F_a = \sum_{p \in a} r_p$
 - capacity of link a: C_a

Feasible allocation r: $r_p \ge 0$, $F_a \le C_a$

Max-min fair allocation r:

- consider r max-min fair allocation and r* any feasible allocation
- for any feasible r*≠r for which r*_p>r_p
 (if in r* there is a session that gets higher rate)
- there is a p' with $r_{p'} \le r_p$ and $r^*_{p'} < r_{p'}$ (then there is a session that has smaller rate in r and has even smaller rate in r^* .)

- Simple algorithm to compute max-min fair rate vector r
 - Idea: filling procedure
 - increase rates for all sessions until one link gets saturated (the link with highest number of sessions if there are no max. rates)
 - consider only sessions not crossing saturated links, go back to 1
 - Formal algorithm in B-G p.527
 - Note, it is a centralized algorithm, it requires information about all sessions.

Filling procedure:

- 1. increase rates for all sessions until one link gets saturated (the link with highest number of sessions if there are no max. rates)
- 2. consider only sessions not crossing saturated links, go back to 1

- 1. All sessions get rate of 1/3, link(2,3) saturated, r2=r3=r5=1/3
- 2. Sessions 1 and 4 get rate increment of 1/3, link(3,5) saturated, r1=2/3
- 3. Session 4 gets rate increment of 1/3, link(4,5) saturated, r4=1

What happens with the rates if session 2 leaves?

- Can we evaluate whether an allocation is max-min fair?
- Proposition: Allocation is max-min fair if and only if each session has a bottleneck link
- Def: a is a bottleneck link for p if F_a=C_a and r_p≥r_{p′} for all p'≠p
- Find the bottleneck links for p1,p2,p3,p4,p5.

$$r2=r3=r5=1/3$$
, $r1=2/3$, $r4=1$

* : bottleneck link

- Proposition: Allocation is max-min fair if and only if each session has a bottleneck link
- 1. If **r** is max-min fair then each session has a bottleneck link
- 2. If each session has a bottleneck link then r is max-min fair

 Why do we like this proposition: given allocation r it is easy to check if a session has a bottleneck link or not, and this way we can see if r is max-min fair or not.

Proof:

- 1. If \mathbf{r} is max-min fair then each session has a bottleneck link Def: a is a bottleneck link for p if $F_a = C_a$ and $r_p \ge r_{p'}$ for all $p' \ne p$
 - Proof with contradiction: assume max-min, but p does not have bottleneck link (for each link one of these holds: $r_p < r_{p'}$ or $F_a < C_a$).
 - For all link a on the path, define σ_a :
 - if $F_a=C_a$, then there is at least one session with rate r_{pa} higher than r_p , and let $\sigma_a=r_{pa}$ - r_p and
 - if $F_a < C_a$, then the link is not saturated, and let $\sigma_a = C_a F_a$.

Possible to increase r_p with min(σ_a) without decreasing rates lower than r_p . This contradicts the max-min fairness definition.

Proof:

- 2. If each session has a bottleneck link then **r** is max-min fair Proof: consider the following for each session.
 - Consider session p with bottleneck link a ($F_a = C_a$)
 - Due to the definition of bottleneck link $r_{pa} \le r_p$, r_p can not be increased without decreasing a session with lower rate.
 - This is true for all sessions, thus the allocation is max-min fair.

Other fairness definitions - Utility function

- Utility function: to describe the value of a resource, then e.g. maximize the sum of the utilities.
- E.g.,
 - Application requires fixed rate: r*
 - Allocated rate: r
 - Utility of allocated rate:
 u(r)=0 if r<r*
 u(r)=1 if r>=r*
- Typical utility functions:
 - Linear u(r)=r
 - Logarithmic u(r)=log r -> will lead to rate-proportional fairness
 - Step function as above

Rate-proportional fairness

- Name: rate proportional or proportional fairness
- Note! Change in notation! Rate: λ, flow: r, set of flows: R
- Def1: Allocation $\Lambda = \{\lambda_r\}$ is proportionally fair if for any $\Lambda' = \{\lambda'_r\}$:

$$\sum_{R} \frac{\lambda_r' - \lambda_r}{\lambda_r} \le 0$$

- thus, for all other allocation the sum of *proportional rate* changes with respect to Λ are negative.
- Def2: The proportionally far allocation maximizes $\Sigma_R \log \lambda_r \max$ maximizes the overall utility of rate allocations with a logarithmic utility function.

Rate-proportional fairness

- Example: parking lot scneario
- L links, R₀ crosses all links, others only one link

Maximize
$$\sum_{i=0}^{L} \log \lambda_i$$

$$\sum_{i=0}^{L} \log \lambda_i = \log \lambda_0 + \sum_{i=1}^{L} \log \lambda_i = \log \lambda_0 + L \log(1 - \lambda_0)$$

$$\frac{\partial}{\partial \lambda_0} (\log \lambda_0 + L \log(1 - \lambda_0)) = 0$$

$$\Rightarrow \frac{1}{\lambda_0} - \frac{L}{1 - \lambda_0} = 0$$

$$\lambda_0 = \frac{1}{1 + L}, \quad \lambda_i = \frac{L}{1 + L}$$

Rate-proportional fairness

Maximize $\sum_{i=0}^{L} \log \lambda_i$

$$\sum_{i=0}^{L} \log \lambda_i = \log \lambda_0 + \sum_{i=1}^{L} \log \lambda_i = \log \lambda_0 + L \log(1 - \lambda_0)$$

$$\frac{\partial}{\partial \lambda_0} \left(\log \lambda_0 + L \log(1 - \lambda_0) \right) = 0$$

$$\Rightarrow \quad \frac{1}{\lambda_0} - \frac{L}{1 - \lambda_0} = 0$$

$$\lambda_0 = \frac{1}{1 + L}, \quad \lambda_i = \frac{L}{1 + L}$$

- Long routes are penalized
- The same as the "equal resources" scenario on the first slides.

Rate-proportional fairness – equivalence of definitions

• Let $\{\lambda_i^*\}$ be the optimal rate allocation and an other $\{\lambda_i^\prime\}$ allocation.

Let
$$\lambda_i' = \lambda_i^* + \Delta_i$$

$$\sum_{i=0}^{L} \log \lambda_i' = \sum_{i=0}^{L} \log (\lambda_i^* + \Delta_i)$$

$$= \sum_{i=0}^{L} \log \lambda_i^* + \sum_{i=0}^{L} \frac{\Delta_i}{\lambda_i^*} + o(\Delta^2)$$

$$\sum_{i=0}^{L} \log \lambda_i' \approx \sum_{i=0}^{L} \log \lambda_i^* + \sum_{i=0}^{L} \frac{\Delta_i}{\lambda_i^*} \Rightarrow \sum_{i=0}^{L} \frac{\Delta_i}{\lambda_i^*} \le 0$$

$$\Leftrightarrow \sum_{i=0}^{L} \frac{\lambda_i' - \lambda_i^*}{\lambda_i^*} \le 0.$$

Other bandwidth sharing objectives – home reading

- L. Massoulie, J. Roberts, "Bandwidth sharing: objectives and algorithms," IEEE Infocom 2000, sections I and II.
- Student presentation: section III.C on distributed control for fairness
- Max-min
- Proportional
- Potential delay minimization
- Weighted shares for various fairness definitions

Potential delay minimization

- Bandwidth sharing objective: minimize the delay of all transfers (elastic flows)
- File transfer time: inversly proportional to rate λ
- Objective: $min \sum 1/\lambda_r$

Fairness – distributed control

- We have seen a number of fairness definitions and bandwidth sharing objectives
- Fair allocation for a given set of flows can be calculated (filling, or solving the related optimization problem).
- How can fair allocation be provided in a distributed way?

Traffic control for max-min fairness

- GPS provides max-min fairness for a single node.
- What happens in networks with GPS nodes but without any end-to-end control? Is max-min fairness achieved?
- Multiple node example:
 - 1 flow from S1 to D1
 - 10 flows from S2 to D2

 Calculate the max-min fair rates for the entire network.

Flow to D1: 10

Flows to D2: 0.1

Traffic control for max-min fairness

- GPS provides max-min fairness for a single node.
- What happens in networks with GPS nodes but without any rate control? Is max-min fairness achieved?
- Multiple node example:
 - 1 flow from S1 to D1
 - 10 flows from S2 to D2

 Calculate the per flow rates on the links when node X and Y provides GPS, independently from each other.

(X considers the traffic that arrives to it from S1 and S2, Y considers the traffic arriving from X.)

Traffic control for max-min fairness

- GPS provides max-min fairness for a single node.
- What happens in networks with GPS nodes but without any rate control? Is max-min fairness achieved?
- Multiple node example:
 - 1 flow from S1 to D1
 - 10 flows from S2 to D2

- Without rate control:
 - X: rate 1 to all flows
 - Y: rate 0.1 to flows to D2
 - Result:
 - Flow to D1: 1
 - Flows to D2: 0.1
- Fair rates would be:
 - Flows to D1: 10
 - Flows to D2: 0.1

 Thus, max-min fairness is not achieved without end-to-end control.

Traffic control for fairness

 Student presentation on how to achieve fairness with distributed control –

Traffic control for fairness

- How to achieve fairness with distributed control other results from Massoulie and Roberts
- With fixed window size:
 - FIFO achieves proportional fairness
 - longest queue first achieves maximum throughput
 - service proportional to the square root of the buffer content achieves minimum potential delay
- With dynamic window:
 - additive increase multiplicative decrease achieves proportional fair allocation (case of TCP)
 - logarithmic increase multiplicative decrease achieves minimum potential delay
 - max-min fair rate can not be achieved with increasedecrease algorithms

Fairness - objectives and algorithms - summary

- Step 1: what is the "optimal" share?
 - What is optimal a design decision
 - Fairness definitions: max-min, proportional fair, etc.
 - Centralized algorithms to calculate fair shares
- Step 2: how to ensure fair shares?
 - Traffic control at the network edges (congestion or rate control)
 - Scheduling at the network nodes
 - E.g:
 - fixed window based congestion control + GPS: max-min
 - AIMD + FIFO: proportional fair