

Fig.2a.

Downstream - Broadcast

Upstream - Interleaved Multiplex

202

Fig.2b.

SUBSTITUTE SHEET (RULE 26)

Fig.3a

PLOAM cells contain grants, message fields, sync bytes and CRC check bytes

	ATM Cell	54	•
	ATM Cell	28	
	ATM Cell PI DAM2	27	
ormat	M Cell ATM Cell	2	
m Frame Format	ATM Cell	-	
Downstream Fr	DI OAMA1	ייייייייייייייייייייייייייייייייייייייי	

Fig.3b

Overhead, preamble, delimiting bits and a "guard band" between cells designated "D"

ATM Cell	ATM Cell
----------	----------

Fig.4.

50
52
52
522
523
40
46
42
43 45
41
57

SUBSTITUTE SHEET (RULE 26)

WO 2005/096574

4/16

PCT/GB2005/001252

Fig.6.

Fig.7.

5/16

S T E P	Description	Mì	M2	МЗ	c ₀	c ₁	c ₂	$E(t_x) = c_0 t_x + c_1 t_{x-1} + c_2 t_{x-2}$
	Initially all memory locations are set to zero. Coefficients fixed.	0	0	0	c ₀	Cı	C ₂	
1a	Shift Data (redundant this time)	0	0	0	c ₀	Cı	C ₂	
1b	Sample signal at position x, save to first data location	RI	0	0	Co	Cı	C ₂	
lc	Calculate equalised data, E	RI	0	0	c ₀	Cı	c_2	c ₀ .R1
2a	Shift data	0	RI	0	Co	Cı	c_2	
2b	Sample signal at position x+1, save to first data location	R2	RI	0	c ₀	Cı	c ₂	
2c	Calculate equalised data, E	R2	R1	0	c ₀	Cı	c_2	$c_0.R2 + c_1.R1$
3a	Shift data	0	R2	RI	c_0	Cı	c ₂	
3b	Sample signal at position x+2, save to first data location	R3	R2	R1	c ₀	C1	c ₂	
3c	Calculate equalised data, E	R3	R2	RI	c _o	Cı	C ₂	$c_0.R3 + c_1.R2 + c_2.R1$
4	Shift data, Sample signal at position x+3, save to first data location, Calculate equalised data, E	R4	R3	R2	c ₀	Cı	c ₂	c ₀ .R4 + c ₁ .R3 + c ₂ .R2
5	Shift data, Sample signal at position x+4, save to first data location, Calculate equalised data, E	R5	R4	R3	C ₀	Cı	c ₂	c ₀ .R5 + c ₁ .R4 + c ₂ .R3
6	Shift data, Sample signal at position x+5, save to first data location, Calculate equalised data, E	R6	R5	R4	c ₀	Ci	C ₂	c ₀ .R6 + c ₁ .R5 + c ₂ .R4
7	Shift data, Sample signal at position x+6, save to first data location, Calculate equalised data, E	R7	R6	R5	c ₀	Cı	c ₂	c ₀ .R7 + c ₁ .R6 + c ₂ .R5

Fig.8a.

S T E P	Description	MI	M2	МЗ	C ₀	Cl	C ₂
0	Initially all memory locations are set to zero. Coefficients set to their initial values	0	0	0	c ₀ (0)	c ₁ (0)	c ₂ (0)
la	Shift Data (redundant this time)	0	0	0	$c_0(0)$	$c_1(0)$	$c_2(0)$
1b	Sample signal at position x, save to first data location	R1	0	0	c ₀ (0)	c ₁ (0)	c ₂ (0)
1c	Calculate equalised data, E	RI	0	0	$c_0(0)$	$c_1(0)$	$c_2(0)$
ld	Calculate "error", e	RI	0	0	$c_0(0)$	c ₁ (0)	$c_2(0)$
1e	Calculate gradient, δc	Rl	0	0	$c_0(0)$	$c_1(0)$	$c_2(0)$
1f	Tweak Coefficients c=c+δc	RI	0	0	$c_0(1) =$	$c_i(1) =$	$c_2(1) =$
					$c_0(0) +$	$c_1(0) +$	$c_2(0) +$
2-			201		δc_0	δc ₁	δc_2
2a	Shift Data	0 R2	RI	0	$c_0(1)$	$c_i(1)$	$c_2(1)$
2b	Sample signal at position x+1, save to first data location		RI	0	c ₀ (1)	c ₁ (1)	c ₂ (1)
2c	Calculate equalised data, E	R2	RI	0	$c_0(1)$	$c_1(1)$	$c_2(1)$
<u>2d</u>	Calculate "error", e	R2	R1	0	$c_0(1)$	$c_1(1)$	$c_2(1)$
2e	Calculate gradient, δc	R2	RI	0	$c_0(1)$	$c_1(1)$	$c_2(1)$
2f	Tweak Coefficients c=c+δc	R2	RI	0	$c_0(2) = c_0(1) + \delta c_0$	$c_1(2) = c_1(1) + \delta c_1$	$c_2(2) = c_2(1) + \delta c_2$
3a	Shift Data	0	R2	RI	$c_0(2)$	c ₁ (2)	$c_2(2)$
3b	Sample signal at position x+2, save to first data location	R3	R2	R1	c ₀ (2)	c ₁ (2)	c ₂ (2)
3c	Calculate equalised data, E	R3	R2	RI	$c_0(2)$	c ₁ (2)	c ₂ (2)
3d	Calculate "error", e	R3	R2	RI	$c_0(2)$	c ₁ (2)	$c_2(2)$
3e	Calculate gradient, δc	R3	R2	R1	$c_0(2)$	c ₁ (2)	$c_2(2)$
3f	Tweak Coefficients c=c+δc	R3	R2	RI	$c_0(3) = c_0(2) + \delta c_0$	$c_1(3) = c_1(2) + \delta c_1$	$c_2(3) = c_2(2) + \delta c_2$
4a	Shift Data	0	R3	R2	$c_0(3)$		
4b	Sample signal at position x+3, save	R4	R3	R2	$c_0(3)$	$c_1(3)$ $c_1(3)$	$c_2(3)$ $c_2(3)$
	to first data location				-0(0)	-1(-)	-2(-)
4c	Calculate equalised data, E	R4	R3	R2	c ₀ (3)	c ₁ (3)	c ₂ (3)
4d	Calculate "error", e	R4	R3	R2	$c_0(3)$	c ₁ (3)	$c_2(3)$
4e	Calculate gradient, δc	R4	R3	R2	$c_0(3)$	c ₁ (3)	$C_2(3)$
4f	Tweak Coefficients c=c+δc	R4	R3	R2	$c_0(4) =$	$c_1(4) =$	$c_2(4) =$
					$c_0(3) +$	$c_1(3) +$	$c_2(3) +$
					δc_0	δς	δc_2

Fig.8b.

S T E P	Description	Error, e	Gradient	E
0	Initially all memory locations are set to zero. Coefficients set to their initial values			
1a	Shift Data (redundant this time)			
1b	Sample signal at position x, save to first data location			
1c	Calculate equalised data, E			$E(1) = c_0(0).R1$
ld	Calculate "error", e	e(1) = K(1) - E(1)		
1e	Calculate gradient, δc		$\delta c = (\delta c_0, \\ \delta c_1, \delta c_2)$	•
1f	Tweak Coefficients c=c+δc	•		
2a	Shift Data			
2b	Sample signal at position x+1, save to first data location			
2c	Calculate equalised data, E			$E(2) = c_0(1).R2 + c_1(1).R1$
2d	Calculate "error", e	e(2) = K(2) - E(2)		
2e	Calculate gradient, δc		$\delta c = (\delta c_0, \\ \delta c_1, \delta c_2)$	
2f	Tweak Coefficients c=c+δc			
3a	Shift Data			
3b	Sample signal at position x+2, save to first data location			
3c	Calculate equalised data, E			$E(3) = c_0(2).R3 + c_1(2).R2 + c_2(2).R1$
3d	Calculate "error", e	e(3) = K(3) - E(3)		
3e	Calculate gradient, δc		$\delta c = (\delta c_0, \\ \delta c_1, \delta c_2)$	
3f	Tweak Coefficients c=c+δc			
4a	Shift Data			
4b	Sample signal at position x+3, save to first data location			
4c	Calculate equalised data, E			$E(4) = c_0(3).R4 + c_1(3).R3 + c_2(3).R2$
4d	Calculate "error", e	e(4) = K(4) - E(4)		
4e	Calculate gradient, δc		$\delta c = (\delta c_0, \\ \delta c_1, \delta c_2)$	
4f	Tweak Coefficients c=c+δc			

Fig.9a.

Ste	p	Description	M1	M2	42 M3 ON	
	II	Determine ONU				j
	III	Retrieve coefficients for ONU				j
	IV	Shift Data	0	0	0	J
	V	Sample signal, save to first data location	Ri	0	0	J
.	VI	Calculate equalised data, E	Ri	0	0	J
1	VII	Calculate "error", e	Ri	0	0	J
	VIII	Calculate gradient, δc	Ri	0	0	J
	ΙX	Tweak Coefficients c=c+δc	Ri	0	0	J
	х	End of Cell? [No]	Ri	0	0	j
i+1	IV	Shift Data	0	Ri	0	J
	٧	Sample signal, save to first data location	Ri+1	Ri	0	J
	VI	Calculate equalised data, E	Ri+1	Ri	0	j
	VII	Calculate "error", e	Ri+1	Ri	0	j
	VIII	Calculate gradient, δc	Ri+1	Ri	0	j
	IX	Tweak Coefficients c=c+δc	Ri+1	Ri	0	j
	X	End of Cell? [No]	Ri+1	Ri	0	j
j+2	IV	Shift Data	0	Ri+1	Ri	j
	V	Sample signal, save to first data	Ri+2	Ri+1	Ri	j
		location				<u> </u>
	VI	Calculate equalised data, E	Ri+2	Ri+1	Ri	<u>j</u>
	VII	Calculate "error", e	Ri+2	Ri+1	Ri	j
	VIII	Calculate gradient, δc	Ri+2	Ri+1	Ri	j
	IX	Tweak Coefficients c=c+δc	Ri+2	Ri+1	Ri	j
	X	End of Cell? [No]	Ri+2	Ri+1	Ri	j
i+3	IV	Shift Data	0	Ri+2	Ri+1	j
ì	V	Sample signal, save to first data location	Ri+3	Ri+2	Ri+1	j
	VI	Calculate equalised data, E	Ri+3	Ri+2	Ri+1	j
	VII	Calculate "error", e	Ri+3	Ri+2	Ri+1	j
	VIII	Calculate gradient, δc	Ri+3	Ri+2	Ri+1	j
	IX	Tweak Coefficients c=c+δc	Ri+3	Ri+2	Ri+1	j
	X	End of Cell? [No]	Ri+3	Ri+2	Ri+1	j
	End of Cell? [No] Etc, etc, etc, X End of Cell? [Yes] Store coefficients for ONU j Start loop for new cell			66	"	j j j

Fig.9a (Cont).

St	ер	Description	Ml	M2	M3	ONU
M	II	Determine ONU				n
M	III	Retrieve coefficients for ONU				n
M	IV ·	Shift Data	0 .	0	0	n
	V	Sample signal, save to first data	Rm	0	0	n
	·	location				
	VI	Calculate equalised data, E	Rm	0	0	n
	VII	Calculate "error", e	Rm	0	0	n
	VIII	Calculate gradient, δc	Rm	0	0	n
	IX	Tweak Coefficients c=c+δc	Rm	0	0	n
	Х	End of Cell? [No]	Rm	0	0	n
M+	IV	Shift Data	0	Rm	0	n
	V	Sample signal, save to first data	Rm+1	Rm	0	n
		location				
	VI	Calculate equalised data, E	Rm+1	Rm	0	n
	VII	Calculate "error", e	Rm+1	Rm	0	n
ļ	VIII	Calculate gradient, δc	Rm+1	Rm	0	n
	IX	Tweak Coefficients c=c+δc	Rm+1	Rm	0	n
	X	End of Cell? [No]	Rm+1	Rm	0	n
M+ 2	IV	Shift Data	0	Rm+1	Rm	n
		Etc, etc, etc				
L	1					

Fig.9b.

Step		C ₀	Cl	c_2	Error	Gradient	Е
	II						
	III	$c_0(j,i)$	$c_1(j,i)$	$c_2(j,i)$			
	IV	$c_0(j,i)$	$c_1(j,i)$	$c_2(j,i)$		·	
	٧	$c_0(j,i)$	$c_1(j,i)$	$c_2(j,i)$	· · · · · · · · · · · · · · · · · · ·		
	VI	$c_0(j,i)$	c ₁ (j,i)	$c_2(j,i)$			E(i)
	VII	$c_0(j,i)$	$c_1(j,i)$	$c_2(j,i)$	C		
i	AÍII	$c_0(j,i)$	$c_l(j,i)$	$c_2(j,i)$		δς	
:	ΙX	$c_0(j,i+1) =$	$c_1(j,i+1) =$	$c_2(j,i+1) =$			
•		$c_0(j,i) +$	c ₁ (j,i) +	c ₂ (j,i) +			
		δc_0	δcι	δc₂			
	X	$c_0(j,i+1)$	$c_1(j,i+1)$	$c_2(j,i+1)$	<u>.</u>		
i+1	IV	$c_0(j,i+1)$	$c_1(j,i+1)$	$c_2(j,i+1)$			
	V	$c_0(j,i+1)$	$c_1(j,i+1)$	c ₂ (j,i+1)		·	
	VI	$c_0(j,i+1)$	$c_1(j,i+1)$	$c_2(j,i+1)$			E(i+1)
	VII	$c_0(j,i+1)$	$c_1(j,i+1)$	$c_2(j,i+1)$	е		
:	VIII	$c_0(j,i+1)$	c ₁ (j,i+1)	$c_2(j,i+1)$		δс	
	IX	$c_0(j,i+2) =$	$c_1(j,i+2) =$	$c_2(j,i+2) =$			
		$c_0(j,i+1) +$	$c_1(j,i+1) +$	$c_2(j,i+1) +$			
		δc_0	δcι	δc_2			,
	Х	$c_0(j,i+2)$	$c_1(j,i+2)$	$c_2(j,i+2)$			
i+2	IV	$c_0(j,i+2)$	$c_1(j,i+2)$	$c_2(j,i+2)$			
	V	$c_0(j,i+2)$	$c_1(j,i+2)$	$c_2(j,i+2)$			
	VI	$c_0(j,i+2)$	$c_1(j,i+2)$	$c_2(j,i+2)$			E(i+2)
	VII	$c_0(j,i+2)$	$c_1(j,i+2)$	$c_2(j,i+2)$	е		
	VIII	$c_0(j,i+2)$	$c_1(j,i+2)$	$c_2(j,i+2)$		δς	
	IX	$c_0(j,i+3) =$	$c_1(j,i+3) =$	$c_2(j,i+3) =$			
		$c_0(j,i+2) +$	$c_1(j,i+2) +$	$c_2(j,i+2) +$			
		δc_0	δc ₁	δc_2			
	Х	$c_0(j,i+3)$	$c_1(j,i+3)$	$c_2(j,i+3)$			
i+3	IV	$c_0(j,i+3)$	$c_1(j,i+3)$	$c_2(j,i+3)$			
	V	$c_0(j,i+3)$	$c_1(j,i+3)$	$c_2(j,i+3)$			
	VI	$c_0(j,i+3)$	$c_1(j,i+3)$	$c_2(j,i+3)$			E(i+3)
	VII	$c_0(j,i+3)$	$c_1(j,i+3)$	$c_2(j,i+3)$	е		
	VIII	$c_0(j,i+3)$	$c_1(j,i+3)$	$c_2(j,i+3)$		δς	
	IX	$c_0(j,i+4) =$					
		$c_0(j,i+3) +$	-				
		δc_0	δc ₁	δc_2			
<u></u>	Х	$c_0(j,i+4)$	$c_1(j,i+4)$	$c_2(j,i+4)$			
		"	"	c			
1	X	"	٠.	66			

WO 2005/096574 PCT/GB2005/001252 11/16

Fig.9b (Cont).

Step		C ₀	\mathbf{c}_1	C ₂	Error	Gradient	E
		Store co	efficients for	r ONU j			
M	II						
M	III	$c_0(n,m)$	$c_i(n,m)$	$c_2(n,m)$			
M	IV	c ₀ (n,m)	$c_1(n,m)$	c ₂ (n,m)			
	V	$c_0(n,m)$	$c_1(n,m)$	c ₂ (n,m)			
	VI	$c_0(n,m)$	$c_1(n,m)$	c ₂ (n,m)			E(m)
	VII	$c_0(n,m)$	$c_i(n,m)$	$c_2(n,m)$	е		
	VIII	$c_0(n,m)$	$c_1(n,m)$	$c_2(n,m)$		δς	
	ΙX	$c_0(n,m+1)$	$c_1(n,m+1)$	$c_2(n,m+1)$			
	1	$=c_0(n,m)$	$=c_1(n,m)$	$=c_2(n,m)$			
		$+\delta c_0$	+ δc ₁	$+\delta c_2$			
	Х	$c_0(n,m+1)$	$c_1(n,m+1)$	$c_2(n,m+1)$			
M+	IV	$c_0(n,m+1)$	$c_1(n,m+1)$	$c_2(n,m+1)$			
1	٧	$c_0(n,m+1)$	$c_1(n,m+1)$	$c_2(n,m+1)$			
	VI	$c_0(n,m+1)$	$c_1(n,m+1)$	$c_2(n,m+1)$			E(m+1)
	VII	$c_0(n,m+1)$	$c_1(n,m+1)$	$c_2(n,m+1)$	е		
	VIII	$c_0(n,m+1)$	$c_1(n,m+1)$	$c_2(n,m+1)$		δς	
	IX	$c_0(n,m+2)$	$c_1(n,m+2)$	$c_2(n,m+2)$			
		=	=	=			
		$c_0(n,m+1)$	$c_1(n,m+1)$	$c_2(n,m+1)$			
		$+\delta c_0$	+ δc ₁	$+\delta c_2$			
	X	$c_0(n,m+2)$	$c_1(n,m+2)$	$c_2(n,m+2)$			
M+	VI	$c_0(n,m+2)$	$c_1(n,m+2)$	$c_2(n,m+2)$			
2				_ , ,			
L							

SUBSTITUTE SHEET (RULE 26)

Fig.11.

Fig. 12a.

Fig. 12b.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

16/16

