Curs 4

Cuprins

1 Logica Horn

2 Rezoluţie SLD

Bibliografie:

- Logic Programming, The University of Edinburgh https://www.inf.ed.ac.uk/teaching/courses/lp/
- ☐ J.W.Lloyd, Foundations of Logic Programming, 1987

Rezoluția SLD pentru clauze propoziționale definite

Fie *S* o mulțime de clauze definite.

$$\mathsf{SLD} \boxed{ \frac{\neg p_1 \lor \cdots \lor \neg q \lor \cdots \lor \neg p_n}{\neg p_1 \lor \cdots \lor \neg q_1 \lor \cdots \lor \neg q_m \lor \cdots \lor \neg p_n} }$$

unde $q \vee \neg q_1 \vee \cdots \vee \neg q_m$ este o clauză definită din S.

O derivare din S prin rezoluție SLD pentru o întrebare q este o secvență

$$G_0 := \neg q, \quad G_1, \quad \ldots, \quad G_k, \ldots$$

în care G_{i+1} se obține din G_i prin regula SLD.

Dacă există un k cu $G_k = \square$ (clauza vidă), atunci derivarea se numește SLD-respingere.

Rezoluția SLD pentru clauze propoziționale definite

Fie *S* o mulțime de clauze definite.

$$\mathsf{SLD} \boxed{ \frac{\neg p_1 \lor \cdots \lor \neg q \lor \cdots \lor \neg p_n}{\neg p_1 \lor \cdots \lor \neg q_1 \lor \cdots \lor \neg q_m \lor \cdots \lor \neg p_n} }$$

unde $q \vee \neg q_1 \vee \cdots \vee \neg q_m$ este o clauză definită din S.

Exercițiu: Găsiți o SLD-respingere pentru următorul program Prolog:

- 1. r := p,q. 5. t.
- 2. s :- p,q. 6. q.
- 3. v := t,u. 7. u.
- 4. w := v,s. 8. p.

și ținta

Logica de ordinul I - sintaxa

Algoritmul de unificare - schemă

	Lista soluție	Lista de rezolvat
	S	R
Inițial	Ø	$t_1 \stackrel{.}{=} t'_1, \ldots, t_n \stackrel{.}{=} t'_n$
SCOATE	S	R', $t = t$
	S	R'
DESCOMPUNE	S	R' , $f(t_1,\ldots,t_n) \stackrel{.}{=} f(t'_1,\ldots,t'_n)$
	5	R' , $t_1 = t'_1, \ldots t_n = t'_n$
REZOLVĂ	S	R', $x = t$ sau $t = x$, x nu apare în t
	x = t, $S[x/t]$	R'[x/t]
Final	S	Ø

S[x/t]: în toate ecuațiile din S, x este înlocuit cu t

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{.}{=} x, \ f(x, h(x), y) \stackrel{.}{=} f(g(z), w, z)\}$ au cgu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(g(y)) \stackrel{.}{=} w, y \stackrel{.}{=} z$	REZOLVĂ
$w \doteq h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{\cdot}{=} g(z)$	SCOATE
$w \doteq h(g(z))$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	Ø	
$w \doteq h(g(z))$		

$$\square$$
 $\sigma = \{y \mapsto z, \ x \mapsto g(z), \ w \mapsto h(g(z))\}$ este cgu.

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{.}{=} x, \ f(x, h(y), y) \stackrel{.}{=} f(g(z), b, z)\}$ au cgu?

S	R	
Ø	$g(y) = x, \ f(x, h(y), y) = f(g(z), b, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), h(y) \stackrel{\cdot}{=} b, y \stackrel{\cdot}{=} z$	- EŞEC -

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)\}$ au cgu?

S	R	
Ø	$g(y) = x, \ f(x, h(y), y) = f(g(z), b, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), h(y) \stackrel{\cdot}{=} b, y \stackrel{\cdot}{=} z$	- EŞEC -

- \square h și b sunt simboluri de operații diferite!
- Nu există unificator pentru acesti termeni.

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)\}$ au cgu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \doteq f(y,w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = y, $h(g(y)) = w$, $y = z$	- EŞEC -

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)\}$ au cgu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	f(g(y),h(g(y)),y)=f(y,w,z)	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = y, $h(g(y)) = w$, $y = z$	- EŞEC -

- \square În ecuația $g(y) \stackrel{\cdot}{=} y$, variabila y apare în termenul g(y).
- Nu există unificator pentru aceste ecuații.

Logica Horn

Literali

☐ În calculul propozițional un literal este o variabilă sau negația unei variabile.

$$literal := p \mid \neg p$$
 unde p este variabilă propozițională

☐ În logica de ordinul I un literal este o formulă atomică sau negația unei formule atomice.

$$\textit{literal} := P(t_1, \ldots, t_n) \mid \neg P(t_1, \ldots, t_n)$$
 unde $P \in \mathbf{R}, \textit{ari}(P) = n$, și t_1, \ldots, t_n sunt termeni.

Clauze

O clauză este o disjuncție de literali. \square Dacă L_1, \ldots, L_n sunt literali atunci clauza $L_1 \vee \ldots \vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$ clauză = mulțime de literali \square Clauza $C = \{L_1, \ldots, L_n\}$ este satisfiabilă dacă $L_1 \vee \ldots \vee L_n$ este satisfiabilă. □ O clauză C este trivială dacă conține un literal și complementul lui. \square Când n=0 obtinem clauza vidă, care se notează \square Prin definiție, clauza
nu este satisfiabilă. Rezoluția este o metodă de verificare a satisfiabilității

unei mulțimi de clauze.

Clauze în logica de ordinul I

$$\{\neg Q_1,\ldots,\neg Q_n,P_1,\ldots,P_k\}$$

unde $n, k \ge 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

☐ formula corespunzătoare este

$$\forall x_1 \ldots \forall x_m (\neg Q_1 \vee \ldots \vee \neg Q_n \vee P_1 \vee \ldots \vee P_k)$$

unde x_1, \ldots, x_m sunt toate variabilele care apar în clauză

echivalent, putem scrie

$$\forall x_1 \ldots \forall x_m (Q_1 \wedge \ldots \wedge Q_n \to P_1 \vee \ldots \vee P_k)$$

□ cuantificarea universală a clauzelor este implicită

$$Q_1 \wedge \ldots \wedge Q_n \rightarrow P_1 \vee \ldots \vee P_k$$

Clauze definite. Programe logice. Clauze Horn

□ clauză:

$$\{\neg Q_1,\ldots,\neg Q_n,P_1,\ldots,P_k\}$$
 sau $Q_1\wedge\ldots\wedge Q_n\to P_1\vee\ldots\vee P_k$
unde $n,k\geq 0$ și $Q_1,\ldots,Q_n,P_1,\ldots,P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - \square cazul n=0: $\top \to P$ (clauză unitate, fapt)

Program logic definit = mulțime finită de clauze definite

- □ scop definit (țintă, întrebare): k=0
 - \square $Q_1 \wedge \ldots \wedge Q_n \rightarrow \bot$
- \square clauza vidă \square : n = k = 0

Clauze definite. Programe logice. Clauze Horn

□ clauză:

$$\{\neg Q_1, \dots, \neg Q_n, P_1, \dots, P_k\}$$
 sau $Q_1 \wedge \dots \wedge Q_n \to P_1 \vee \dots \vee P_k$ unde $n, k \geq 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - \square cazul n=0: $\top \to P$ (clauză unitate, fapt)

Program logic definit = mulțime finită de clauze definite

- □ scop definit (țintă, întrebare): k=0
 - \square $Q_1 \wedge \ldots \wedge Q_n \rightarrow \bot$
- \square clauza vidă \square : n = k = 0

Clauza Horn = clauză program definită sau clauză scop ($k \le 1$)

Clauze Horn ţintă

□ scop definit (ţintă, întrebare): $Q_1 \wedge \ldots \wedge Q_n \to \bot$ □ fie x_1, \ldots, x_m toate variabilele care apar în Q_1, \ldots, Q_n $\forall x_1 \ldots \forall x_m (\neg Q_1 \vee \ldots \vee \neg Q_n) \boxminus \neg \exists x_1 \ldots \exists x_m (Q_1 \wedge \ldots \wedge Q_n)$ □ clauza ţintă o vom scrie Q_1, \ldots, Q_n

Negația unei "întrebări" în PROLOG este clauză Horn țintă.

Programare logica

- □ Logica clauzelor definite/Logica Horn: un fragment al logicii de ordinul I în care singurele formule admise sunt clauze Horn
 - \square formule atomice: $P(t_1,\ldots,t_n)$
 - □ $Q_1 \wedge ... \wedge Q_n \rightarrow P$ unde toate Q_i , P sunt formule atomice, \top sau \bot
- □ Problema programării logice: reprezentăm cunoștințele ca o mulțime de clauze definite KB și suntem interesați să aflăm răspunsul la o întrebare de forma $Q_1 \wedge \ldots \wedge Q_n$, unde toate Q_i sunt formule atomice
 - $KB \models Q_1 \wedge \ldots \wedge Q_n$
 - Variabilele din KB sunt cuantificate universal.
 - □ Variabilele din $Q_1, ..., Q_n$ sunt cuantificate existențial.

Limbajul PROLOG are la bază logica clauzelor Horn.

Programare logica

Exemple

```
Fie următoarele clauze definite:
   father(jon, ken).
   father(ken, liz).
   father(X, Y) \rightarrow ancestor(X, Y)
   daugther(X, Y) \rightarrow ancestor(Y, X)
   ancestor(X, Y) \land ancestor(Y, Z) \rightarrow ancestor(X, Z)
Putem întreba:
  □ ancestor(jon, liz)
    dacă există Q astfel încât ancestor (Q, ken)
     (adică \exists Q \ ancestor(Q, ken))
```

Fie KB o mulțime de clauze definite.

$$\mathsf{SLD} \boxed{ \frac{\neg Q_1 \lor \cdots \lor \neg Q_i \lor \cdots \lor \neg Q_n}{\theta(\neg Q_1 \lor \cdots \lor \neg P_1 \lor \cdots \lor \neg P_m \lor \cdots \lor \neg Q_n)} }$$

unde

- \square $Q \lor \neg P_1 \lor \cdots \lor \neg P_m$ este o clauză definită din KB (în care toate variabilele au fost redenumite) și
- \square variabilele din $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ și Q_i se redenumesc
- \square θ este c.g.u pentru Q_i și Q

Exemple

```
father(eddard,sansa).
father(eddard,jonSnow).

stark(eddard).
stark(catelyn).

stark(X) :- father(Y,X),
stark(Y).
```

$$\mathsf{SLD} \left| \begin{array}{c} \neg Q_1 \lor \cdots \lor \neg Q_i \lor \cdots \lor \neg Q_n \\ \hline \theta(\neg Q_1 \lor \cdots \lor \neg P_1 \lor \cdots \lor \neg P_m \lor \cdots \lor \neg Q_n) \end{array} \right|$$

- \square $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ este o clauză definită din KB
- \square variabilele din $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ și Q_i se redenumesc
- \square θ este c.g.u pentru Q_i și Q.

Exemplu father(eddard, sansa) father(eddard, jonSnow) stark(eddard) stark(catelyn) $\theta(X) = jonSnow$ stark(X) $\vee \neg father(Y, X) \vee \neg stark(Y)$

SLD
$$\frac{\neg Q_1 \lor \cdots \lor \neg Q_i \lor \cdots \lor \neg Q_n}{\theta(\neg Q_1 \lor \cdots \lor \neg P_1 \lor \cdots \lor \neg P_m \lor \cdots \lor \neg Q_n)}$$

- \square $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ este o clauză definită din KB
- \square variabilele din $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ și Q_i se redenumesc
- \square θ este c.g.u pentru Q_i și Q.

Exemplu

```
father(eddard, sansa) \\ father(eddard, jonSnow) \\ \hline \neg stark(jonSnow) \\ \hline \neg father(Y, jonSnow) \lor \neg stark(Y) \\ stark(eddard) \\ stark(catelyn) \\ \hline \theta(X) = jonSnow
```

$$stark(X) \lor \neg father(Y, X) \lor \neg stark(Y)$$

$$\mathsf{SLD} \left[\begin{array}{c} \neg Q_1 \lor \cdots \lor \neg Q_i \lor \cdots \lor \neg Q_n \\ \hline \theta(\neg Q_1 \lor \cdots \lor \neg P_1 \lor \cdots \lor \neg P_m \lor \cdots \lor \neg Q_n) \end{array} \right]$$

- \square $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ este o clauză definită din KB
- \square variabilele din $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ și Q_i se redenumesc
- \square θ este c.g.u pentru Q_i și Q.

Exempli

```
father(eddard, sansa) \\ father(eddard, jonSnow) \\ stark(eddard) \\ stark(catelyn) \\ stark(X) \lor \neg father(Y, X) \lor \neg stark(Y) \\ \hline \neg stark(jonSnow) \\ \hline \neg father(Y, jonSnow) \lor \neg stark(Y) \\ \hline \end{cases}
```

Exempli

```
father(eddard, sansa) \\ father(eddard, jonSnow) \\ stark(eddard) \\ stark(catelyn) \\ stark(X) \lor \neg father(Y, X) \lor \neg stark(Y) \\ \hline \frac{\neg stark(jonSnow)}{\neg father(Y, jonSnow) \lor \neg stark(Y)} \\ \hline \frac{\neg father(Y, jonSnow) \lor \neg stark(Y)}{\neg stark(eddard)} \\ \hline
```

Exemplu

```
father(eddard, sansa)
father(eddard, jonSnow)
stark(eddard)
stark(catelyn)
stark(X) \lor \neg father(Y, X) \lor \neg stark(Y)
                                ¬stark(jonSnow)
                      \neg father(Y, jonSnow) \lor \neg stark(Y)
                      \neg father(Y, jonSnow) \lor \neg stark(Y)
                                 \negstark(eddard)
                                 \neg stark(eddard)
```

Fie KB o mulțime de clauze definite și $Q_1 \wedge ... \wedge Q_m$ o întrebare, unde Q_i sunt formule atomice.

□ O derivare din KB prin rezoluție SLD este o secvență

$$G_0 := \neg Q_1 \lor \ldots \lor \neg Q_m, \quad G_1, \quad \ldots, \quad G_k, \ldots$$

în care G_{i+1} se obține din G_i prin regula SLD.

□ Dacă există un k cu $G_k = \square$ (clauza vidă), atunci derivarea se numește SLD-respingere.

Teoremă (Completitudinea SLD-rezoluției)

Sunt echivalente:

- \square există o SLD-respingere a lui $Q_1 \wedge \ldots \wedge Q_m$ din KB,
- \square $KB \vdash_b Q_1 \land \ldots \land Q_m$,
- \square $KB \models Q_1 \wedge \cdots \wedge Q_m$.

Rezoluția SLD - arbori de căutare

Arbori SLD

- \square Presupunem că avem o mulțime de clauze definite KB și o țintă $G_0 = \neg Q_1 \lor \ldots \lor \neg Q_m$
- ☐ Construim un arbore de căutare (arbore SLD) astfel:
 - ☐ Fiecare nod al arborelui este o ţintă (posibil vidă)
 - \square Rădăcina este G_0
 - Dacă arborele are un nod G_i , iar G_{i+1} se obține din G_i folosind regula SLD folosind o clauză $C_i \in KB$, atunci nodul G_i are copilul G_{i+1} . Muchia dintre G_i și G_{i+1} este etichetată cu C_i .
- □ Dacă un arbore SLD cu rădăcina G_0 are o frunză □ (clauza vidă), atunci există o SLD-respingere a lui G_0 din KB.

Exemplu

- ☐ Fie KB următoarea mulțime de clauze definite:
 - 1 grandfather(X, Z): -father(X, Y), parent(Y, Z)
 - 2 parent(X, Y) : -father(X, Y)
 - 3 parent(X, Y) : -mother(X, Y)
 - 4 father(ken, diana)
 - 5 mother(diana, brian)
- ☐ Găsiți o respingere din KB pentru

: -grandfather(ken, Y)

Exempli

- ☐ Fie KB următoarea mulțime de clauze definite:
 - **1** grandfather(X, Z) $\vee \neg father(X, Y) \vee \neg parent(Y, Z)$
 - 2 $parent(X, Y) \lor \neg father(X, Y)$
 - \exists parent $(X, Y) \lor \neg mother(X, Y)$
 - 4 father(ken, diana)
 - 5 mother(diana, brian)
- ☐ Găsiți o respingere din KB pentru

 \neg grandfather(ken, Y)

Exemple

```
grandfather(X, Z) \lor \neg father(X, Y) \lor \neg parent(Y, Z)
parent(X, Y) \lor \neg father(X, Y)
parent(X, Y) \lor \neg mother(X, Y)
father(ken, diana)
mother(diana, brian) \neg grandfather(ken, Y)
                 \neg father(ken, V) \lor \neg parent(V, Y)
                           \neg parent(diana, Y)
           \negfather(diana, Y) \negmother(diana, Y)
```

Exemplu

Aplicarea SLD:

$\neg parent(diana, Y)$ 2 $parent(X, Y) \lor \neg father(X, Y)$ \neg father(diana, Y) Aplicarea SLD: redenumesc variabilele: $parent(X, Y_2) \vee \neg father(X, Y_2)$ determin unificatorul: $\theta = X/diana, Y_2/Y$ \square aplic regula: $\frac{\neg parent(diana, Y)}{\neg father(diana, Y)}$

Rezoluția SLD - arbori de căutare

Exercițiu

Desenați arborele SLD pentru programul Prolog de mai jos și ținta ?-p(X,X).

```
1. p(X,Y) := q(X,Z), r(Z,Y). 7. s(X) := t(X,a). 2. p(X,X) := s(X). 8. s(X) := t(X,b). 9. s(X) := t(X,X). 4. q(b,a). 10. t(a,b). 5. q(X,a) := r(a,X). 11. t(b,a). 6. r(b,a).
```

Rezoluția SLD - arbori de căutare

```
1. p(X,Y) := q(X,Z), r(Z,Y).

 s(X):-t(X,a).

                                             4. q(b,a).
                                                                                                                 10. t(a.b).
                                             5. q(X,a) :- r(a,X).
                                                                                8. s(X) :- t(X,b).
2. p(X,X) := s(X).
                                                                                                                11. t(b.a).

 q(X,b).

                                             6. r(b,a).
                                                                                9. s(X) :- t(X,X).
p(X, Y) \vee \neg q(X, Z) \vee \neg r(Z, Y)
                                                                                s(X) \vee \neg t(X, a)
                                                                                                                 t(a, b)
                                             a(b, a)
p(X, X) \vee \neg s(X)
                                             q(X, a) \vee \neg r(a, X)
                                                                                s(X) \vee \neg t(X, b)
                                                                                                                 t(b, a)
                                                                                s(X) \vee \neg t(X, X)
q(X,b)
                                             r(b, a)
```

