Øving for prøve i kapittel 5-7 (fredag 3. nov.)

Oppgave 1

Gjør om:

- a) 14 m til lengde målt i km.
- b) 25000 m til lengde målt i mil.
- c) 23,5 mm til lengde målt i dm.

Oppgave 2

Gjør om:

- a) $145\,\mathrm{m}^2$ til areal målt i km².
- b) $28000 \,\mathrm{m}^2$ til areal målt i dm².
- c) $223.5 \,\mathrm{mm}^2$ til areal målt i dm^2 .

Oppgave 3

I en klasse er det 21 personer som kjører til skolen og 10 som tar båt. Hva er forholdet mellom antall personer som kjører og tar båt?

Oppgave 4

Du lager et lotteri og ønsker at forholdet mellom antall vinnerlodd og taperlodd skal være 2 : 7. Hvis du lager 12 vinnerlodd, hvor mange taperlodd må du da lage?

Oppgave 5

I en twistpose er det 15 sjokolader igjen, alle av de to beste sortene, som er *Marsipan* og *Cocos*. Forholdet mellom *Marsipan* og *Cocos* i posen er 1:4.

- a) Hvor mange Marsipan og hvor mange Cocos ligger i posen?
- b) Etter en stund har forholdet endret seg til 1:3. Hva kan ha skjedd?

Oppgave 6

Trekant $\triangle ABC$ inneholder vinklene 35° og 60°, mens $\triangle DEF$ inneholder vinklene 85° og 40°.

- a) Finn den resterende vinkelen i begge trekantene.
- **b)** Er trekantene formlike?

Oppgave 7

- a) Forklar (NØYE!) hvorfor trekantene $\triangle ABC$ og $\triangle ADC$ er formlike. Lag en tegning som viser hvor på figuren man kan finne $\angle A, \angle B$ og $\angle C$.
- b) Hvilke sider i trekantene er samsvarende?
- c) AB = 10, BC = 6 og AC = 8. Forklar hvorfor høyden til $\triangle ABC$ er 4,8.
- d) Hva er arealet til $\triangle ABC$?
- e) Hva er arealet til $\triangle ADC$?

Oppgave 8

- a) Skriv om arealformelen for en trekant til en formel for grunnlinjen g. Hva er g hvis h=4 og A=12?
- **b)** Skriv om arealformelen for et trapes til en formel for a. Hva er a hvis h=3,b=3 og A=15?
- c) Skriv om arealformelen for et trapes til en formel for h. Hva er h hvis a=3,b=7 og A=25?
- d) Skriv om omkretsformelen for en sirkel til en formel for radiusen r. Hva er r hvis $O=12\pi$?

Oppgave 9

Linjalen på bildet er en klassisk linjal med cm-mål.

På kartet over er huset til Sindre markert med den røde prikken til høyre, og Helland skule (ungdomsskolen i Vestnes) markert med den røde prikken til venstre. Kartet er i målestokken 1:50000.

- a) Hvor langt er det mellom huset til Sindre og Helland skule?
- **b)** Etter at dette kartet ble lagd, har en bro blitt bygget over Tresfjorden (fjorden på kartet). Broen er ca 2 km lang i virkeligheten. Hvor lang blir denne broen på kartet?

Oppgave 10

I denne oppgaven bruker vi at $\pi \approx 3$.

En idrettsbane har mål som vist i figuren under:

- a) Finn omkretsen til idrettsbanen. Vurder om svaret du finner virker rimelig.
- b) Finn arealet til idrettsbanen.

Oppgave 11

- a) Skriv om arealformelen for en sirkel til en formel for radiusen r.
- d) Hvis en sirkel har arealet 36π , hva er da radiusen til sirkelen?

Oppgave 12

I en bøtte med 21 L maling er det blandet grønn og rød maling i forholdet 2:5.

- a) Hvor mye grønn maling er det i bøtten?
- b) Hvor mye rød maling er det i bøtten?
- c) Hva kan du gjøre for å endre forholdet til 2:9?
- d) Hva kan du gjøre for å endre forholdet til 1:2?

Løsningsforslag

1

- a) 14 m = 0.014 km
- **b)** $25000 \,\mathrm{m} = 2.5 \,\mathrm{mil}$
- c) $23.5 \,\mathrm{mm} = 0.235 \,\mathrm{dm}$

2

- a) $145 \,\mathrm{m}^2 = 0.000145 \,\mathrm{km}^2$.
- **b)** $28\,000\,\text{m}^2 = 2\,800\,000\,\text{dm}^2$ **c)** $223.5\,\text{mm}^2 = 0.02235\,\text{dm}^2$.
- **3** Forholdet er:

$$\frac{\text{antall som kjører til skolen}}{\text{antall som tar båt}} = \frac{21}{10}$$
$$= 2.1$$

4 Vi vet at:

$$\frac{\text{vinnerlodd}}{\text{taperlodd}} = \frac{2}{7}$$

12 vinnerlodd er 6 ganger mer enn 2. Det betyr at vi må ha 6 ganger flere taperlodd for at forholdet skal bli det samme:

$$\frac{2 \cdot 6}{7 \cdot 6} = \frac{12}{42}$$

Vi må altså lage 42 taperlodd.

a) Siden forholdet er 1:4 er det 1+4=5 deler i alt. Det betyr at det er $15 \cdot \frac{1}{5} = 3$ Marsipan og $15 \cdot \frac{4}{5} = 12$ Cocos.

b)

- Det kan ha blitt spist 3 Cocos. For da er forholdet $\frac{3}{9} = \frac{1}{3}$.
- Det kan ha blitt spist 2 Marsipan og 9 Cocos. For da er forholdet $\frac{1}{3}$.
- Det kan ha blitt spist én Marsipan og 6 Cocos. For da er forholdet $\frac{2}{6} = \frac{1}{3}$

6

a) For $\triangle ABC$:

$$180^{\circ} - 35^{\circ} - 60^{\circ} = 85^{\circ}$$

For $\triangle DEF$:

$$180^{\circ} - 85^{\circ} - 40^{\circ} = 55^{\circ}$$

b) Trekantene har forskjellige vinkelverdier og er derfor ikke formlike.

7

(Noen ganger kan det være lurt å tegne trekantene hver for seg for et tydeligere bilde:)

a)

- Trekantene deler $\angle A$
- Begge trekantene har en 90° vinkel.
- Trekantene har derfor to samsvarende vinkelverdier, og er da formlike.

b)

- AB og AC er samsvarende (hører til 90°-graderen).
- BC og DC er samsvarende (hører til $\angle A$).
- AC og AD er samsvarende (hører til $\angle B$).

c) Høyden i $\triangle ABC$ er lengden av DC. Av det vi fant i oppgave b) og Regel ?? vet vi at:

$$\frac{AC}{AB} = \frac{DC}{BC}$$

$$\frac{8}{10} = \frac{DC}{6}$$

$$\frac{8 \cdot 6}{10} = \frac{DC \cdot \cancel{6}}{\cancel{6}}$$

$$\frac{48}{10} = DC$$

$$4.8 = DC$$

Derfor er høyden 4,8.

c) $\triangle ABC$ har grunnlinjen AB = 10 og høyden DC = 4.8:

$$A = \frac{g \cdot h}{2}$$

$$= \frac{10 \cdot 4.8}{2}$$

$$= \frac{48}{2}$$

$$= 24$$

d) Hvis vi velger oss AD som grunnlinje i $\triangle DEF$ blir høyden DC=4.8. Lengde til AD kan vi finne på lignende måte som i opg b):

$$\frac{AD}{AC} = \frac{DC}{BC}$$

$$\frac{AD}{8} = \frac{4.8}{6}$$

$$\frac{AD \cdot \$}{\$} = \frac{4.8 \cdot 8}{6}$$

$$AD = \frac{38.4}{6}$$

$$= 6.4$$

Arealet blir derfor:

$$A = \frac{6,4 \cdot 4,8}{2}$$
$$= \frac{10 \cdot 4,8}{2}$$
$$= \frac{48}{2}$$
$$= 24$$

8

a) Vi skriver om arealformelen slik at h står alene på én side:

$$A = \frac{g \cdot h}{2}$$

$$2 \cdot A = \frac{2 \cdot g \cdot h}{2}$$

$$\frac{2A}{h} = \frac{g \cdot h}{k}$$

$$\frac{2A}{h} = g$$

Når vi vet at h=4 og A=12 kan vi bruke formelen over tl å finne g:

$$g = \frac{2 \cdot 12}{4}$$
$$= 6$$

b) Vi skriver om arealformelen slik at a står alene på én side:

$$A = \frac{a+b}{2}$$

$$2 \cdot A = \frac{2 \cdot g \cdot h}{2}$$

$$\frac{2A}{h} = \frac{g \cdot \cancel{h}}{\cancel{k}}$$

$$\frac{2A}{h} = g$$

Når vi vet at h=4 og A=12 kan vi bruke formelen over tl å finne g:

$$g = \frac{2 \cdot 12}{4}$$
$$= 6$$

b) Vi skriver om arealformelen slik at a står alene på én side:

$$A = \frac{(a+b)h}{2}$$
$$2 \cdot A = 2 \cdot \frac{(a+b)h}{2}$$
$$\frac{2A}{h} = \frac{(a+b)h}{k}$$
$$\frac{2A}{h} - b = a$$

Når vi vet at h=3, b=3 og A=15 kan vi bruke formelen over til å finne a:

$$a = \frac{2 \cdot 15}{3} - 3$$
$$= \frac{30}{3} - 3$$
$$= 10 - 3$$
$$= 7$$

c) Vi skriver om arealformelen slik at h står alene på én side:

$$A = \frac{(a+b)h}{2}$$
$$2 \cdot A = 2 \cdot \frac{(a+b)h}{2}$$
$$\frac{2A}{(a+b)} = \frac{(a+b)h}{(a+b)}$$
$$\frac{2A}{(a+b)} = h$$

Når vi vet at a=3,b=7 og A=25 kan vi bruke formelen over til å finne h:

$$h = \frac{2 \cdot 25}{(3+7)}$$
$$= \frac{50}{10}$$
$$= 5$$

a) På karter er det 10 cm mellom huset og skolen. Målestokken sier at én cm på kartet er 50 000 i virkeligheten, altså at:

$$10\,\mathrm{cm}$$
 i virkeligheten = $10\cdot50\,000\,\mathrm{cm}$ i virkeligheten = $500\,000\,\mathrm{cm}$ i virkeligheten = $5\,\mathrm{km}$

Det er altså 5 km mellom skolen og huset.

b) Målestokken forteller at:

$$\frac{\text{lengde på kart}}{\text{lengde i virkeligheten}} = \frac{1}{50\,000}$$
$$\frac{\text{lengde på kart}}{2\,\text{km}} = \frac{1}{50\,000}$$
$$\text{lengde på kart} = \frac{200\,000\,\text{cm}}{50\,000}$$
$$= 4\,\text{cm}$$

10 Idrettsbanen består av to halvsirkler, begge med 40 m radius, og to lengder, begge 80 m. Da to halvsirklene kan vi slå sammen til én sirkel, som har omkretsen $O_s = 2\pi r$. Altså er:

$$O_s = 2\pi \cdot 40$$

$$\approx 2 \cdot 3 \cdot 40$$

$$= 240$$

Omkretsen av hele løpebanen blir derfor:

$$240 + 80 + 80 = 400$$

Det er derfor 400 m rundt banen, noe som gir mening siden det er en idrettsbane.

12

a) Siden forholdet er 2 : 5 er det i alt 2+5=7 deler. Den grønne malingen utgjør derfor $\frac{2}{7}$ av 21 L som er:

$$\frac{2}{7} \cdot 21 \, L = 6 \, L$$

b) Siden det er 6 L grønn maling må det være 21L - 6L = 15L rød maling.

- c) Skal forholdet bli 2 : 9 trengervi 4 deler til med rød maling. Hver del er 21 L : 7 = 3 L, derfor må vi helle 3 $L \cdot 4$ = 12 L maling i bøtta.
- **d)** Hvis jeg har 3 deler grønn maling og 6 deler rød maling blir forholdet $\frac{3}{6} = \frac{1}{2}$. Derfor må jeg tilsette $1 \cdot 3L = 3L$ grønn maling og $1 \cdot 3L = 3L$ rød maling.