Convex Hull

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

You are travelling on a ship in an archipelago. The ship has a convex hull which is K centimetres thick. The archipelago has N islands, numbered from 1 to N. There are M sea routes amongst them, where the i-th route runs directly between two different islands a_i and b_i ($1 \le a_i, b_i \le N$), takes t_i minutes to travel along in either direction, and has rocks that wear down the ship's hull by h_i centimetres. There may be multiple routes running between a pair of islands.

You would like to travel from island A to a different island B ($1 \le A, B \le N$) along a sequence of sea routes, such that your ship's hull remains intact – in other words, such that the sum of the routes' h_i values is strictly less than K.

Additionally, you are in a hurry, so you would like to minimize the amount of time necessary to reach island B from island A. It may not be possible to reach island B from island A, however, either due to insufficient sea routes or having the ship's hull wear out.

Input

The first line of input contains three integers K, N and M ($1 \le K \le 200$, $2 \le N \le 2000$, $1 \le M \le 10\,000$), each separated by one space. The next M lines each contain 4 integers $a_i\,b_i\,t_i$ and h_i ($1 \le a_i, b_i \le N, 1 \le t_i \le 10^5, 0 \le h_i \le 200$), each separated by one space. The i-th line in this set of M lines describes the i-th sea route (which runs from island a_i to island b_i , takes t_i minutes and wears down the ship's hull by h_i centimetres). Notice that $a_i \ne b_i$ (that is, the ends of a sea route are distinct islands).

The last line of input contains two integers A and B $(1 \le A, B \le N; A \ne B)$, the islands between which we want to travel.

Output

Output a single integer: the integer representing the minimal time required to travel from A to B without wearing out the ship's hull, or -1 to indicate that there is no way to travel from A to B without wearing out the ship's hull.

Scoring

Subtask 1 (25 points): $N \leq 50$.

Subtask 2 (25 points): K = 1.

Subtask 3 (50 points): No further constraints.

Examples

standard input	standard output
10 4 7	7
1 2 4 4	
1 3 7 2	
3 1 8 1	
3 2 2 2	
4 2 1 6	
3 4 1 1	
1 4 6 12	
1 4	
3 3 3	-1
1 2 5 1	
3 2 8 2	
1 3 1 3	
1 3	

Note

In the first example given above, the path of length 1 from 1 to 4 would wear out the hull of the ship. The three paths of length 2 ([1,2,4] and [1,3,4] two different ways) take at least 8 minutes. The path [1,2,3,4] takes 7 minutes and only wears down the hull by 7 centimetres, whereas the path [1,3,2,4] takes 13 minutes and wears down the hull by 5 centimetres.

In the second example, the direct path [1,3] wears down the hull to 0, as does the path [1,2,3].