4 Intégrales généralisées II

4.1

Soit $f \in C^1(\mathbf{R}^+, \mathbf{R})$, telle que $\int_0^{+\infty} f$ converge. Montrer qu'il existe a > 0 tel que $\int_0^a t f(t) dt = a^2 f(a)$ (étudier $x \to \frac{1}{x} \int_0^x t f(t) dt$).

4.2

Soit f une fonction continue positive sur $]0, +\infty[$. Montrer que f est intégrable ssi la fonction : $x \to \frac{1}{x} \int_x^{2x} f$ l'est .

4.3

Soit f une application continue 2π -périodique de ${\bf R}$ vers ${\bf C}$.

- a) Trouver une condition nécessaire et suffisante pour que f admette une primitive 2π -périodique.
- b) Soit b > 0. Montrer que $\int_1^{+\infty} \frac{f(t) c_0(f)}{t^b} dt$ converge.
- c) Pour $b \in]0,1]$ et $c_0(f) \neq 0$, trouver un équivalent de $\int_1^X \frac{f(t)}{t^b} dt$ lorsque X tend vers $+\infty$.

5 Interversions de symboles

5.1

Limite, lorsque n tend vers l'infini de $\int_0^n x^{-1/n} (1 - \frac{x}{n})^n dx$.

5.2

Soient a et b deux réels > 0. Mettre sous forme de série $\int_0^1 \frac{t^a}{1+t^b}$

5.3

On pose

$$u_n = \sum_{k=1}^n \frac{1}{k} \left(\frac{n-1}{n} \right)^k.$$

Quelle est la limite de u_n ? Montrer que $u_n = \ln n + K + o(1)$ où K est une constante que l'on explicitera à l'aide d'une intégrale.

Soit $f \in C(\mathbb{R}^+, \mathbb{R})$ possédant une limite finie l en $+\infty$. On pose :

$$\phi(x) = \int_0^{+\infty} \left(\frac{\sin xy}{y}\right)^2 f(y) dy.$$

$$\lim_{x \to 0} \frac{\phi(x)}{x}.$$

Etudier

Intégrales à paramètre

6.1

Etudier l'intégrale à paramètre $f(x) = \int_0^{+\infty} \frac{\ln(x^2 + t^2)}{1 + t^2}$ et la calculer. Idem pour $f(x) = \int_0^{+\infty} \frac{\ln(1+t^2)}{x^2+t^2}$

6.2

Même question avec $I(x) = \int_0^{\pi/2} \ln(\cos^2 t + x^2 \sin^2 t) dt$. May be 0 Met.

6.3

Même question avec $I(a) = \int_0^{+\infty} \frac{\sinh x}{x} e^{-ax} dx$.

6.4 for July sandes it growt

Soit la série $\sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{2^{2n} n!^2}$.

- a) Montrer que la somme f de cette série est définie sur ${\bf R}$ et y vérifie une EDL du second ordre à déterminer.
- b) Comparer f et $x \to \int_0^{\pi/2} \cos(x \sin y) dy$.
- c) Existence et calcul de $\int_0^{+\infty} e^{-st} f(t) dt$ pour s > 1 puis pour s > 0. In the plane

Equivalents intégraux

7.1

Limite puis équivalent de $I_n = \int_0^{+\infty} \frac{e^{-nt} \ln t}{\sqrt{t}} dt$.

7.2

Déterminer un équivalent de $\int_0^1 \frac{t^{n+1} \ln t}{1-t^2}$ lorsque n tend vers $+\infty$.