SCRUM Portfolio Planning and Delivery Optimization Model

Generated Assistant

August 11, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	4
4	4. Conditions	5
5	5. DecisionVariables	6

1 1. Sets (Entities)

- \mathcal{P} : Projects (Entity: Project)
- \mathcal{T} : Teams (Entity: Team)
- W: Workers (Entity: Worker)
- \mathcal{F} : Features (Entity: Feature)
- S: Skills (Entity: Skill)
- \mathcal{R} : Roles (Entity: Role)
- \mathcal{PO} : Product Owners (Entity: ProductOwner)
- SM: Scrum Masters (Entity: ScrumMaster)
- \mathcal{PB} : Product Backlogs (Entity: ProductBacklog)
- SP: Sprints (Entity: Sprint)
- SPP: Sprint Planning events (Entity: SprintPlanning)
- \mathcal{DS} : Daily Scrums (Entity: DailyScrum)
- \mathcal{SR} : Sprint Reviews (Entity: SprintReview)
- \mathcal{SRE} : Sprint Retrospectives (Entity: SprintRetrospective)
- \mathcal{SBL} : Sprint Backlogs (Entity: SprintBacklog)
- \mathcal{SG} : Sprint Goals (Entity: SprintGoal)
- \mathcal{E} : Epics (Entity: Epic)
- *US*: User Stories (Entity: UserStory)
- TSK: Tasks (Entity: Task)
- \mathcal{DEV} : Development Snapshots (Entity: DevelopmentSnapshot)
- \mathcal{BL} : Blockers (Entity: Blocker)
- SH: Stakeholders (Entity: Stakeholder)
- VEL: Velocity records (Entity: Velocity)
- \mathcal{REP} : Release Plans (Entity: ReleasePlan)
- \mathcal{RM} : Roadmaps (Entity: Roadmap)
- SCB: Scrum Boards (Entity: ScrumBoard)
- \mathcal{FED} : Feature Documentation (Entity: FeatureDocumentation)

2 2. Indices

- $p \in \mathcal{P}$ (projects), $t \in \mathcal{T}$ (teams), $w \in \mathcal{W}$ (workers)
- $f \in \mathcal{F}$ (features), $e \in \mathcal{E}$ (epics), $u \in \mathcal{US}$ (user stories)
- $k \in \mathcal{TSK}$ (tasks), $bl \in \mathcal{BL}$ (blockers)
- $s \in \mathcal{SP}$ (sprints), $rep \in \mathcal{REP}$ (release plans)
- $vel \in \mathcal{VEL}$ (velocity records)

Parameters (from Entities/Attributes and Relationships)

- Feature attributes: $eff_f \ge 0$ (Feature.estimated_effort), $prio_f^F \ge 0$ (Feature.priority).
- User Story attributes: $prio_u^U \ge 0$ (UserStory.priority), $sp_u \ge 0$ (UserStory.story_points), $hasAcc_u \in \{0,1\}$ (UserStory.acceptance_criteria present).
- Task attributes: $eff_k^T \ge 0$ (Task.effort), $isCode_k \in \{0,1\}$ (Task.type = code), linkage $L_{k,u}^{US} \in \{0,1\}$ (Task \to UserStory).
- Blocker attributes: $sev_{bl} \ge 0$ (Blocker.severity), linkage $L_{k,bl}^{BL} \in \{0,1\}$ (Task \rightarrow Blocker).
- Velocity attributes: \overline{v}_t (Velocity.avg._story_points for team t).
- Availability: $av_w \ge 0$ (Worker availability); capacity transform α hours-to-story-points.
- Planning targets: \widehat{cap}_s (target story points commitment for sprint s), DoD $\in \{0, 1\}$ gate flag(s), allowed daily duration $\widehat{d}^{\text{daily}}$ (e.g. 15 minutes).
- Release dates: $date_{rep}^{plan}$ (ReleasePlan.planned_date), $date_{rep}^{calc}$ (calculated date from workload; model-dependent).
- Documentation links: $link_f^{FED} \in \{0,1\}$ (Feature has linked docs), att_s^{SR} (SprintReview.attendees_count).

Decision Variables (from Decision Variables.csv)

- $x_{u,s} \in \{0,1\}$ (DV0: assign_user_story_to_sprint): story u is selected for sprint s.
- $y_{f,rep} \in \{0,1\}$ (DV1: select_feature_for_release): feature f included in release plan rep.
- $h_k \in \mathbb{Z}_{\geq 0}$ (DV2: allocate_task_effort): hours allocated to task k.
- $\hat{p}_u \in \{1, 2, 3, 4, 5\}$ (DV3: set_user_story_priority): planned execution priority for user story u during sprinting.
- $C_s \in \mathbb{Z}_{\geq 0}$ (DV4: team_capacity_committed): committed sprint capacity (story points) for sprint s.
- $r_{bl}^{BL} \in \{0,1\}$ (DV5: activate_blocker_resolution): 1 if blocker bl is scheduled for resolution in plan horizon.
- $a_{w,k} \in \{0,1\}$ (DV6: assign_worker_to_task): worker w works on task k.
- $q_u \in \mathbb{Z}_{\geq 0}$ (DV7: qa_test_allocation): number of test cases planned for user story u.
- $r_k^T \in \{0,1\}$ (DV8: code_review_required): task k has mandatory code review gate.

- $z_s \in \mathbb{Z}_{\geq 0}$ (DV9: bugfix_story_points_buffer): sprint s bugfix buffer (story points).
- $g \in \{0, 1, 2, 3, 4\}$ (DV10: ci_pipeline_gate_level): number of CI mandatory gates before merge (global or pipeline).
- $B_{rep} \in \{1, \dots, 20\}$ (DV11: release_batch_size): number of features per release batch rep.

3 3. Goals

Generic multi-objective structure with scalarization (weights from Goals.csv):

 $\max / \min \sum_{i} w_i \cdot \text{Goal}_i$ with w_i from CSV and signs given by GoalType.

Below, each item shows ID, name, and mathematical form. (Weights shown as $W[\cdot]$.)

ximize_team_velocity

$$\max \ W[G0] \cdot \sum_{t \in \mathcal{T}} \overline{v}_t$$

(proxy objective to favor historically higher throughput teams in planning)

 $total_estimated_effort$

$$\min W[G1] \cdot \sum_{f \in \mathcal{F}} \sum_{rep \in \mathcal{REP}} eff_f y_{f,rep}$$

ory_priority_coverage

$$\max W[G2] \cdot \sum_{u \in \mathcal{US}} \sum_{s \in \mathcal{SP}} prio_u^U x_{u,s}$$

open_blocker_severity

$$\min W[G3] \cdot \sum_{bl \in \mathcal{BL}} sev_{bl} \left(1 - r_{bl}^{BL} \right)$$

rint_goal_achievement

$$\max W[G4] \cdot \sum_{s \in \mathcal{SP}} \underbrace{\phi_s(C_s, \{x_{u,s}\}, z_s)}_{\text{proxy for goal achievement } \in [0,1]}$$

where ϕ_s is a monotone proxy increasing with capacity sufficiency vs. planned load.

nize_cycle_tasks_effort

$$\min \ W[G5] \cdot \sum_{k \in \mathcal{TSK}} h_k$$

imize_feature_priority

$$\max W[G6] \cdot \sum_{f \in \mathcal{F}} \sum_{ren \in \mathcal{REP}} prio_f^F y_{f,rep}$$

 $e_wip_status_pressure$

$$\min W[G7] \cdot \sum_{k \in \mathcal{TSK}} \underbrace{\psi_k(\{a_{w,k}\})}_{\text{WIP proxy}}$$

with ψ_k increasing in parallel task starts / context switching.

ize_backlog_freshness

$$\max W[G8] \cdot \sum_{pb \in \mathcal{PB}} \text{freshness}(pb)$$

(data-quality proxy using last_updated; encourages grooming cadence)

mize_release_slippage

$$\min \ W[G9] \cdot \sum_{rep \in \mathcal{REP}} \left| \ date_{rep}^{calc} - date_{rep}^{plan} \ \right|$$

 ${
m mize_team_utilization}$

$$\max W[G10] \cdot \frac{\sum_{w \in \mathcal{W}} \sum_{k \in \mathcal{TSK}} a_{w,k} h_k}{\sum_{w \in \mathcal{W}} av_w}$$

 $int_duration_variance$

$$\min \ W[G11] \cdot \sum_{s \in \mathcal{SP}} (\operatorname{duration}(s) - \widehat{\operatorname{duration}})^2$$

4 4. Conditions

Each condition is expressed as a hard constraint ("must-match"), a soft constraint ("may-match") or a prohibition ("cannot-match") using the CSV $CriteriaType = \{2, 1, 0\}$ respectively. Below, we write the mathematical form and (where applicable) note the type.

d_workers (Must: 2)

$$\sum_{k \in \mathcal{TSK}} a_{w,k} h_k \leq a v_w \qquad \forall w \in \mathcal{W}.$$

out_story (Must: 2)

$$\sum_{u \in \mathcal{US}} L_{k,u}^{US} \ge 1 \qquad \forall k \in \mathcal{TSK}.$$

alignment (Must: 2)

$$r_k^T \geq isCode_k \quad \forall k \in \mathcal{TSK} \quad \text{(code tasks require review gate)}.$$

ned_scope (Must: 2)

$$\sum_{u \in \mathcal{US}} x_{u,s} \leq C_s + z_s \qquad \forall s \in \mathcal{SP}.$$

Interprets C_s (commitment) and z_s (bugfix buffer) as WIP cap in story-point units (via sp_u if desired).

 $_{\text{coverage}}$ (Must: 2)

$$x_{u,s} \leq hasAcc_u \quad \forall u \in \mathcal{US}, \ \forall s \in \mathcal{SP}.$$

 ked_{tasks} (Must: 2)

$$r_{bl}^{BL} \ \geq \ \min \big\{ 1, \sum_k L_{k,bl}^{BL} \big\} \qquad \forall bl \in \mathcal{BL}.$$

(If any task is blocked by bl, schedule its resolution.)

 wed_code (Must: 2)

$$r_k^T \in \{0, 1\}, \quad r_k^T = 1 \text{ if } isCode_k = 1.$$

(Equivalent to C2; kept explicit for audit.)

rticipation (May: 1)

$$att_s^{SR} \geq \widehat{A} \quad \forall s \in \mathcal{SP}$$

where \widehat{A} is a recommended threshold for Sprint Review attendees (soft target).

ily_scrum (Must: 2)

$$\operatorname{duration}(ds) \leq \widehat{d}^{\operatorname{daily}} \qquad \forall ds \in \mathcal{DS}.$$

ne_quality (Must: 2)

1{documentation present at spp} = 1 $\forall spp \in \mathcal{SPP}$.

size_spikes (May: 1)

 $\Delta \# (\text{entries in } pb) \leq \widehat{\Delta} \qquad \forall pb \in \mathcal{PB}.$

n_linkage (Must: 2)

$$link_f^{FED} = 1 \quad \forall f \in \mathcal{F}.$$

5 5. DecisionVariables

n_user_story_to_sprint $x_{u,s} \in \{0,1\}$ for $u \in \mathcal{US}, s \in \mathcal{SP}$.

ect_feature_for_release $y_{f,rep} \in \{0,1\}$ for $f \in \mathcal{F}, rep \in \mathcal{REP}$.

2 allocate_task_effort $h_k \in \mathbb{Z}_{\geq 0}$ for $k \in \mathcal{TSK}$.

et_user_story_priority $\hat{p}_u \in \{1, 2, 3, 4, 5\}$ for $u \in \mathcal{US}$.

a_capacity_committed $C_s \in \mathbb{Z}_{\geq 0}$ for $s \in \mathcal{SP}$.

ate_blocker_resolution $r_{bl}^{BL} \in \{0, 1\}$ for $bl \in \mathcal{BL}$.

assign_worker_to_task $a_{w,k} \in \{0,1\}$ for $w \in \mathcal{W}, k \in \mathcal{TSK}$.

V7 qa_test_allocation $q_u \in \mathbb{Z}_{\geq 0}$ for $u \in \mathcal{US}$.

code_review_required $r_k^T \in \{0, 1\}$ for $k \in \mathcal{TSK}$.

ix_story_points_buffer $z_s \in \mathbb{Z}_{\geq 0}$ for $s \in \mathcal{SP}$.

ci_pipeline_gate_level $g \in \{0, 1, 2, 3, 4\}.$

11 release_batch_size $B_{rep} \in \{1, \dots, 20\}$ for $rep \in \mathcal{REP}$.

Additional Linking / Accounting Constraints (derived from Entities/Relations)

• Story-to-sprint workload accounting (optional):

$$\sum_{u \in \mathcal{US}} sp_u \, x_{u,s} \, \le \, C_s + z_s \qquad \forall s \in \mathcal{SP}.$$

• Task assignment to availability (refines C0):

$$\sum_{k \in \mathcal{TSK}} a_{w,k} h_k \leq a v_w \qquad \forall w \in \mathcal{W}.$$

• Release batch size control:

$$\sum_{f \in \mathcal{F}} y_{f,rep} \leq B_{rep} \qquad \forall rep \in \mathcal{REP}.$$