Lógica para Computação Aula 15 - Lógica Proposicional¹

Sílvia M.W. Moraes

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, continuamos a estudar a Lógica Proposicional: dedução natural.
- Este material foi construído com base nos slides do prof.
 Rafael Bordini e dos livros do Mortari e do Huth & Ryan.

Sumário

1 Lógica Proposicional: Dedução Natural

2 Próxima Aula

Lógica Proposicional - Relembrando ...

- Argumento Lógico = premissas + conclusão
- $\varphi_1, \varphi_2, ..., \varphi_n \models \psi$ é igual a $\phi_1, \phi_2, ..., \varphi_n \vdash \psi$?
- Regras de Dedução Natural
 - $\wedge e_1$ e $\wedge e_2$; $\wedge i$
 - ¬¬e
 - $\rightarrow e \ e \rightarrow i$
 - ∀i₁ e ∀i₂; ∀e
 - ¬*e* e ¬*i*
 - ⊥ e
- Equivalência e Teoremas

Lógica Proposicional - Regras Derivadas

- As regras vistas até agora são suficientes para provar qualquer sequente válido da lógica proposicional.
- Outras regras, que podem ser derivadas (ou deduzidas) das regras básicas, podem facilitar algumas provas, ainda que não sejam necessárias.
- Veremos algumas dessas regras nessa aula...

Lógica Proposicional - Modus Tollens

Notação: MT

$$\frac{\varphi \to \psi \qquad \neg \psi}{\neg \varphi}$$

A regra é deduzida de $\rightarrow e$, $\neg e$ e $\neg i$.

Demonstração da dedução do **Modus Tolens**: $\varphi \to \psi, \neg \psi \vdash \neg \varphi$

1. $\varphi \rightarrow \psi$ premissa 2. $\neg \psi$ premissa 3. φ hipótese 4. $\psi \rightarrow e \ 1,3$ 5. $\bot \neg e \ 2,4$ 6. $\neg \varphi \neg i \ 3-5$

 Exemplo - Prove que o sequente de p → (q → r), p, ¬r ⊢¬q é válido, usando dedução natural:

1.
$$p \rightarrow (q \rightarrow r)$$
 premissa
2. p premissa
3. $\neg r$ premissa
4. $q \rightarrow r$ $\rightarrow e 1,2$
5. $\neg a$ MT 4.3

Lógica Proposicional - Introdução da Dupla Negação

Notação: ¬¬i

$$\frac{\boldsymbol{\varphi}}{\neg \neg \boldsymbol{\varphi}}$$
 (¬¬i)

A regra é deduzida de $\neg e$ e $\neg i$.

Demonstração da dedução da dupla negação: $\varphi \vdash \neg \neg \varphi$

- 1. φ premissa
- 2. $\neg \varphi$ hipótese
- 3. ⊥ ¬*e* 1,2
- 4. $\neg \varphi \quad \neg i \ 2-3$

• Exemplo - Prove que o sequente de $\neg p \rightarrow q, \neg p \vdash \neg \neg q$ é válido, usando dedução natural:

1.
$$\neg p \rightarrow q$$
 premissa

2.
$$\neg p$$
 premissa

3.
$$q \rightarrow e \ 1,2$$

4. $\neg g \rightarrow r \ 3$

4.
$$\neg \neg q$$
 $\neg \neg i$ 3

Lógica Proposicional - Demonstração por Absurdo

- Também chamada de Redução ao Absurdo, a regra de Demonstração por Absurdo (DPA) diz que se obtivermos uma contradição a partir de ¬φ, então podemos deduzir φ.
- Notação: DPA

A regra é deduzida de $\rightarrow i$, $\neg i$, $\rightarrow e$ e $\neg e$.

Demonstração por absurdo:

$$^{\lnot} \varphi o \perp \vdash \varphi$$

- 1. $\neg \phi \rightarrow \perp$ dado
- 2. $\neg \varphi$ hipótese 3. $\bot \rightarrow e 1,2$
- 4. $\neg \varphi$ $\neg i$ 2-3
- 5. φ $\neg e$ 4

 Exemplo - Prove que o sequente de p ∨ q, ¬q ⊢ p é válido, usando DPA:

1.	p\	√ q	premissa	
2.	-	q	premissa	
3.		p	hipótese	
4.		מ	hipótese	
5.	_	L	¬e 3,4	
6.	(q	hipótese	
7.	-	L	¬e 6,2	
8.		L	∨ <i>e</i> 1, 4-5, 6-7	
9.		מ	DPA 3-8	

Lógica Proposicional - Lei do Terceiro Excluído

 A Lei do Terceiro Excluído (LTE) diz que φ∨¬φ é verdadeira (para qualquer que seja o valor de φ, verdadeiro ou falso).

Demonstração da lei do Terceiro Excluído usando demonstração por absurdo:

 $\phi \lor \lnot \phi$ (LTE)

1.	$\lnot (\varphi \lor \lnot \varphi)$	hipótese	
2.	φ	hipótese	
3.	$\mid arphi ee ee ee ee ee ee ee ee ee e$	$\vee i_1$ 2	
4.		¬e 3,1	
5.	$\neg \varphi$	hipótese	
6.	$ \varphi \lor \lnot \varphi$	∨ <i>i</i> ₂ 5	
7.		¬e 6,1	
8.		<i>∨e</i> 1, 2-4,5-7	
9.	$\overline{\hspace{1.5cm} (\varphi \vee \neg \varphi)}$	DPA 1-8	_
			0

• Exemplo - Prove que o sequente de $p \to q \vdash \neg p \lor q$ é válido, usando dedução natural:

1.	$p \rightarrow q$	premissa
2.	$\neg p \lor p$	LTE
3.	$\neg p$	hipótese
4.	$\neg p \lor q$	∨ <i>i</i> ₁ 3
5.	р	hipótese
6.	q	ightarrow e 1,5
7.	$\neg p \lor q$	∨ <i>i</i> ₂ 6
8.	$\neg p \lor q$	<i>∨e</i> 2, 3-4,5-7

Lógica Proposicional - Exercícios

- Atividade I: Prove que os sequentes dos argumentos abaixo são válidos usando dedução natural.

 - 2 $\neg p \rightarrow q, \neg q \vdash p$ (use DPA)

Leitura

 Huth, M. R. A; Ryan, M. D. Lógica em Ciência da Computação: Modelagem e Argumentação sobre Sistemas: Capítulo 1 - seção 1.2