Differential Calculus with Applications to Life Sciences

Math 102:105

Pooya Ronagh

Agenda for today:

- Euler's Method
- Disease dynamics
- Trig derivatives

Last time: Euler's Method

$$\frac{dy}{dx} = f(y) \qquad y_{i+1} = y_i + \Delta \times f(y_i)$$

Example: Approximate the solution of the IVP below at x=2.

$$\begin{cases} \frac{dy}{dx} = y + 1\\ y(0) = 2 \end{cases}$$

Last time: Euler's Method

$$\frac{dy}{dx} = f(y) \qquad y_{i+1} = y_i + \Delta \times f(y_i)$$

Example: Approximate the solution of the IVP below at x=2.

on using spreadsheet

$$\begin{cases} \frac{dy}{dx} = y + 1 \\ y(0) = 2 \end{cases}$$
 Watch video link [45]

N: number of individuals in the population (no birth, death or migration)

N: individuals in the population (no birth, death or migration)

I: infected individuals

S: susceptible individuals

The disease spreads with a rate proportional to the product of two types in the population, which DE described the spread of the disease?

$$(A) \quad \frac{dI}{dt} = -bI(N-I) \quad (B) \quad \frac{dI}{dt} = bI(N-I)$$

$$(C) \quad \frac{dS}{dt} = -bSI \qquad (D) \quad \frac{dI}{dt} = bSI$$

N: individuals in the population (no birth, death or migration)

I: infected individuals

S: susceptible individuals

The disease spreads with a rate proportional to the product of two types in the population, which DE described the spread of the disease?

Rate of transmission

$$(A) \quad \frac{dI}{dt} = -bI(N-I) \quad (B) \quad \frac{dI}{dt} = bI(N-I)$$

$$(C) \quad \frac{dS}{dt} = -bSI \qquad (D) \quad \frac{dI}{dt} = bSI$$

N: individuals in the population (no birth, death or migration)

I: infected individuals S: susceptible individuals

The disease spreads with a rate proportional to the product of two types in the population, now also consider that each individual recovers from the disease.

Rate of recovery

$$\frac{dI}{dt} = bI(N - I) - \mu I$$

N: individuals in the population (no birth, death or migration)

I: infected individuals S: susceptible individuals

The disease spreads with a rate proportional to the product of two types in the population, now also consider that each individual recovers from the disease.

Rate of recovery

$$\frac{dI}{dt} = bI(N - I) - \mu I$$

Question: For what values of b and \(\mu\) does the disease become epidemic?

9

Euler's Method Revisited

$$\frac{dy}{dx} = f(y) \qquad y_{i+1} = y_i + \Delta \times f(y_i)$$

Example: Approximate the solution of the logistic DE as an IVP.

$$\begin{cases} y' = ry(1 - \frac{1}{K}y) \\ y(0) = 0.01 \end{cases}$$

Last time...

$$\tan \theta = \sin \theta / \cos \theta$$

$$sec θ = 1 / cos θ$$

$$\cot \theta = 1 / \tan \theta$$

$$csc \theta = 1 / sin \theta$$

Which of the following is not a trig identity?

(A)
$$1 + \cot^2 \theta = \csc^2 \theta$$

(B)
$$tan^2\theta + 1 = sec^2\theta$$

(C)
$$\sin(2\theta) = 2 \sin\theta \cos\theta$$

(D)
$$\cos (\theta) = \sin (\theta - \pi/2)$$

(E)
$$\sin(\theta) = \cos(\theta - \pi/2)$$

Pythagorus Theorem:

$$\sin(\theta)^2 + \cos(\theta)^2 = 1$$

Famous Angles

What is $cos(2\pi/3)$?

$$(A) \quad \frac{\sqrt{3}}{2}$$

(A)
$$\frac{\sqrt{3}}{2}$$
 (B) $-\frac{\sqrt{3}}{2}$ (C) $\frac{1}{2}$ (D) $-\frac{1}{2}$

$$(C)$$
 $\frac{1}{2}$

$$(D) - \frac{1}{2}$$

What is $tan(\pi/4)$?

(A)
$$\frac{1}{\sqrt{2}}$$
 (B) 1 (C) 45 (D) $\frac{1}{2}$

$$(B)$$
 1

$$(C)$$
 45

$$(D) \quad \frac{1}{2}$$

Sums of angles

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$$

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

$$\cos^2\alpha = \frac{1 + \cos 2\alpha}{2}$$

$$1 + \cot^2\alpha = \csc^2\alpha$$

$$1 + \tan^2\alpha = \sec^2\alpha$$

Use the definition of derivative at a point x on the x-axis...

Use the definition of derivative at a point x on the x-axis...

Need to know the following limits:

$$\lim_{h \to 0} \frac{\cos(h) - 1}{h}$$

$$\lim_{h \to 0} \frac{\sin(h)}{h}$$

Use the definition of derivative at a point x on the x-axis...

Need to know the following limits:

$$\lim_{h \to 0} \frac{\cos(h) - 1}{h} = 0 \qquad \qquad \lim_{h \to 0} \frac{\sin(h)}{h} = 1$$

What is the derivative of cot(x)?

- (A) csc(x)cot(x)
- (B) $-\csc(x)\cot(x)$
- (C) $csc^2(x)$
- (D) $-\csc^2(x)$
- (E) $sec^2(x)$

What is the derivative of cot(x)?

$$(A) \csc(x)\cot(x)$$

(B)
$$-\csc(x)\cot(x)$$

(C)
$$csc^2(x)$$

(D)
$$-\csc^2(x)$$

(E)
$$sec^2(x)$$

$$\frac{d}{dx}\sin(x) = \cos(x)$$

$$\frac{d}{dx}\cos(x) = -\sin(x)$$

$$\frac{d}{dx}\tan(x) = \sec^2(x)$$

$$\frac{d}{dx}\cot(x) = -\csc^2(x)$$

Periods of trig functions

The **period** of the function y = f(x) is the smallest number T for which

$$f(t + T) = f(t)$$

for all values of t.

Example: What is the period of $f(x) = 1 + 2 \sin (3x - 1)$?

Question: What is the phase-shift of this function?

Amplitude of trig functions

The **amplitude** of a trig function y = f(x) is defined as

 $(\max f - \min f)/2.$

Example: What is the amplitude of $f(x) = 1 + 2 \sin (3x - 1)$?

The **midline** (or average) of a trig function y = f(x) is defined as

 $(\max f + \min f)/2.$

Example: What is the midline of $f(x) = 1 + 2 \sin (3x - 1)$?

Next time: final period office hours

Nov 23 PL12.2

Nov 24 WW 11

Nov 25 OSH 6

