- 2. Các chiến lược quản lý bộ nhớ
- 2.4 Chiến lược phân trang

Trang nhiều mức

Nguyên tắc: Bảng quản lý trang được phân trang

Ví dụ trang 2 mức

- Máy 32 bít địa chỉ (2³²); trang kích thước 4K (2¹²) được chia
 - Số hiệu trang -20 bit
 - Độ lệch trong trang -12 bit
- Bảng trang được phân trang. Số hiệu trang được chia thành
 - Bảng trang ngoài (thư mục trang) 10 bit
 - Độ lệch trong một thư mục trang 10 bit
- Địa chỉ truy nhập có dạng <p₁, p₂, d >

- 2. Các chiến lược quản lý bộ nhớ
- 2.4 Chiến lược phân trang

Trang nhiều mức: Ví dụ trang 2 mức

- 2. Các chiến lược quản lý bộ nhớ
- 2.4 Chiến lược phân trang

Trang nhiều mức: Truy nhập bộ nhớ

- Khi thực hiện : Hệ thống nạp thư mục trang vào bộ nhớ
- Bảng trang và trang không sử dụng không cần nạp vào bộ nhớ
- Cần 3 lần truy nhập tới bộ nhớ

- 2. Các chiến lược quản lý bộ nhớ
- 2.4 Chiến lược phân trang

Bộ đệm chuyển hóa địa chỉ

- Vấn đề: Với hệ thống 64 bit
 - Trang 3, 4,... mức
 - Cần 4, 5,... lần truy nhập bô nhớ ⇒ chậm
 - Giải quyết: Bộ đệm chuyển hóa địa chỉ
 - (TLB: translation look-aside buffers)
 - 98% truy nhập bộ nhớ được thực hiện qua TLB

- 2. Các chiến lược quản lý bộ nhớ
- 2.4 Chiến lược phân trang

Bộ đệm chuyển hóa địa chỉ

- Tập thanh ghi liên kết (associative registers)
- Truy nhập song song
- Mỗi phần tử gồm
 - Khóa: Page number
 - Giá trị: Frame number
- TLB chứa đ/chỉ những trang mới truy nhập
- Khi có y/cầu <p,d>
 - Tim p trong TLB
 - Không có, tìm p trong PCB rồi đưa < p, f > vào TLB

