

Software Defined Network, Openflow e Mininet

Renan S. Silva, Ruan P. Medeiros, Ricardo Sohn

uber.renan@gmail.com
 pm.ruan@gmail.com
ricardosohn@gmail.com

Departamento de Ciência da Computação Centro de Ciências e Tecnológias Universidade do Estado de Santa Catarina

7 de Dezembro de 2015

Sumário

Objetivo

Software Defined Network

OpenFlow

Mininet

Experimentos

Conclusão

Referências

Objetivo

Analisar o desempenho do Mininet em relação a redes tradicionais na transmissão de fluxos de dados de tamanho médio.

Motivação

- A Software Defined Network (SDN) é um novo paradigma de rede que permite um nível de controle e flexibilidade inédito da rede.
- O Hardware é caro.
- É necessário alternativas viáveis para impulsionar o desenvolvimento cientifico.

Software Defined Network

Software Defined Network

Software Defined Network

Redes tradicionais

- Redes tradicionais são complexas e dificeis de gerenciar.
 - É necessário usar recursos de baixo nível.
 - Muitas vezes específicos do fabricante.
 - Reconfiguração autmatica e mecanismos de resposta não se mostram suficiente.
- São verticalmente integradas. *Data plane* e *Control plane* estão juntas no mesmo dipositivo.

Software Defined Network

O que é

- A Open Networking Foundation define SDN como sendo a separação lógica do Data Plane e Control Plane.
- Switchs são simples redirecionadores de tráfego.
- Controle da rede é logicamente centralizado.
- Regras são definidas baseadas em fluxo, não em destinos.

Data plane

No SDN, o *Data plane* é o elemento da rede que guiado por uma entidade controladora é reponsável por:

- Inspecionar
- Modificar
- Dropping
- Forwarding

Data plane

O *Data plane*, guiado pelo controlador, pode desempenhar varios papeis da rede:

- Switch
- Roteador
- Firewall
- Load Balancer
- Traffic shaper

Control plane

O *Control plane* é responsável por controlar e monitorar o *Data plane*.

- Define como um dispositivo se comporta na rede.
- O Control plane executa um Network Operating System (NOS).
- Se comunica com o Data plane atravéz da Southbound API.
- Se comunica com o mundo externo atravéz da Northbound API.

Visão Geral

OpenFlow

OpenFlow

OpenFlow

- O Openflow é uma das diversas Southbound APIs disponíveis.
 - Mantida e desenvolvida pela ONF.
 - Open source.
 - Padronizada.
 - Suportada por diversos fabricantes.
 - Operação reativa ou pró-ativa

Miniet

Mininet

Mininet

- O Mininet é um simulador de redes.
 - Utiliza Linux Container Architecture e Network Namespaces.
 - Provê isolamento do sistema hospedeiro.
 - Permite a ligação com uma rede real.
 - É executado dentro de uma Jail.
 - Licença baseada na licença BSD.
 - Criado para impulsionar o desenvolvimento e uso do SDN/OpenFlow.
 - Utilizado atravéz de sua API Python ou de um Shell interativo.

Mininet

- Por rodar em cima do kernel Linux é possível desenvolver aplicativos que são testados no Mininet e implantados em uma rede real com pouca ou nenhuma alteração.
- Permite o desenvolvimento de protótipos e experimentos em um ambiente autocontido que pode ser distruido e reproduzido com facilidade.
- Uma máquina virtual modelo está disponível em http://mininet.org/download/.

Limitações

Algumas limitações do Mininet

- Sistemas de arquivos compartilhado.
 - Economiza espaço, simplifica compartilhamento de arquivos entre hosts.
 - Pode criar conflitos com programas/daemons que necessitem de configurações diferentes.
- Hosts virtuais competem por tempo de CPU.
- Os hosts possuem o mesmo PID.
- Limitado as sistemas GNU/Linux.

Experimentos

Experimentos

Benchmark da Rede

Cópia de arquivos de 256, 512, 768 e 1024 Megabytes.

- Cópia realizada via rsync
- rsync tunelado via ssh para realizar a transferência via rede.
- Arquivos de conteúdo aleatório gerados com via /dev/urandom.
- Cache limpo antes de cada teste para melhorar a reprodutibilidade do experimento.

Ambiente de testes

Foram utilizados 3 ambientes de testes:

- Mininet executando na máquina virtual disponibilizada pelo desenvolvedor.
- Núvem baseada em OpenStack (F109).
- Rede física (F112).

Topologia de rede utilizada

Figura: Topologia da rede do ambiente de testes

Resultados

Resultados

Resultados do Mininet

Figura: Taxa de transferência de arquivo de 512 Megabytes no Mininet

Figura: Taxa de transferência de arquivo de 1024 Megabytes no Mininet

Resultados do OpenStack

Figura: Taxa de transferência de arquivo de 512 Megabytes no OpenStack

Figura: Taxa de transferência de arquivo de 1024 Megabytes no OpenStack

Resultados da rede física

Figura: Taxa de transferência de arquivo de 512 Megabytes no ambiente físico

Figura: Taxa de transferência de arquivo de 1024 Megabytes no ambiente físico

Comportamento anormal

Figura: Comportamento anormal no Mininet

Análise

Análise

Transferência média

Taxa de transferência média observada

Tamanho do arquivo	Real	Mininet	OpenStack
256 Megabytes		6.67 MB/s	2.57 MB/s
512 Megabytes	6.07 MB/s	7.15 MB/s	2.26 MB/s
768 Megabytes	7.62 MB/s	6.61 MB/s	2.36 MB/s
1024 Megabytes	6.64 MB/s	7.17 MB/s	2.10 MB/s

Tabela: Taxa de transferência média

Desvio padrão

Desvio padrão das taxas observadas

Tamanho do arquivo	Real	Mininet
256 Megabytes	4.26	0.560
512 Megabytes	3.76	0.594
768 Megabytes	2.47	0.645
1024 Megabytes	2.95	0.549

Tabela: Desvio padrão da taxa de transferência

Resultados da rede física

Figura: Taxa, média e desvio padrão de transferência no ambiente real

Resultados do Mininet

Figura: Taxa, média e desvio padrão de transferência no ambiente Mininet

Anomalia

Comportamento anomal no Mininet

- Queda de 6.9 MB/s para 495 KB/s.
- Variação de apenas 26.6 BK/s após a queda.
- Aconteceu várias vezes.
- Nenhuma vez voltou a velocidade padrão.
- Resultados com anomalias foram descartados.

Conlusão

Conclusão

Conlusão

Conclusão

- Mininet apresentou comportamentos anormais.
- Mininet se mostrou uma ferramenta simples de se usar e bem documentada.
- Desempenho do Mininet se mostrou levemente superior, 4.45%.
- Rede física apresentou grande variação enquanto que o Mininet se manteve estável, apenas 17% da variação da rede física.
- Resultados com anomalias nos ambientes Mininet e OpenStack foram descartados.
- Possível interferência externa em ambos os casos.
 - Não foi possível isolar o problema.

Alternativas

Alternativas ao Mininet

- Maxinet Tem como objetivo rodar o Mininet de forma distribuida com a finalidade de simular redes maiores do que o Mininet permite, sem afetar a fidelidade do desempenho.
- Mininet-Hifi Tem como objetivo aumentar a fidelidade e reprodutibilidade dos experimentos realizados no Mininet.

Trabalhos futuros

Trabalhos futuros

- Executar os testes novamente em outro ambiente, versões mais novas/velhas dos pacotes.
- Experiementar em outras alternativas ao Mininet.

Perguntas

Perguntas?

Referências I

- BENSON, A. A. T.; MALTZ, D. *Unraveling the Complexity of the Network Management*. [S.I.: s.n.], 2010.
- HANDIGOL, N. et al. Reproducible network experiments using container-based emulation. p. 253–264, 2012.
- RREUTZ, D. et al. Software-defined networking: A comprehensive survey. *CoRR*, 2014.
- LANTZ, B.; HELLER, B.; MCKEOWN, N. A network in a laptop, rapid prototyping for software-defined networks. 2010.
- OLIVEIRA, R. L. S. de et al. Using mininet for emulation and prototyping software-defined networks. 2013.

Referências II

- ONF. Software-Defined Networking: The New Norm for Networks. [S.l.: s.n.], 2012.
- ONF. SDN Architecture Overview. [S.l.: s.n.], 2013.
- ONF. SDN Architecture. [S.l.: s.n.], 2014.
- ONF. SDN in the Campus Environment. [S.l.: s.n.], 2014.
- WETTE, P. et al. Maxinet: Distributed emulation of software-defined networks. June 2014.