SPORT Classification

Here we go 🚨: Oscar & Viktor

O1 Data Set Augmentation

TIMELINE

Examples of Sports

Base Model Architecture

A pre-trained model on the famous ImageNet data set

Transfer Learning

Layers

Freezing of the layers

Get weights

Add custom layers for our specific task

Compile

Cross entropy

Adam

Early stop

Base Model Evaluation

Accuracy

Loss

Test Metrics: 98%

0.0614

Classes with the lowest metrics

	Precision	Recall	F1 Score	
Field hockey	0.83	1	0.91	
Motorcycle racing	0.83	1	0.91	
Rings	0.83	1	0.91	
Sky surfing	0.83	1	0.91	
Giant Slalom	0.83	1	0.91	
Sailboat racing	0.83	1	0.91	

In total 10 classes had a Precision lower then 1

Three Augmentations

Translation

A translation is a function that moves every point with a constant distance in a specified direction

Rotation

Rotation is a circular transformation around a point or an axis

Scaling

Scaling is a linear transformation that enlarges or shrinks objects by a scale factor that is the same in all directions

Why Manipulate the Data

- More data to train the model on
- Recognize patterns and features, more robustly
- Less sensible
- Increase the diversity
- Improving its generalization capabilities

Limitations

- Alter the meaning or semantics of an image
- Requires more time & computational cost
- Potential for introducing noise
- If the original dataset has biases
- Our data set is already diverse & big

Translation 30%

More images

Moved up

30 pixels

Moved left

30 pixels

Rotation 30% More images

Rotated

90°

Scaling 30% More images

Zoomed in

3.5x

Comparison

	Test Accuracy	Test Loss	Number Of Epochs	Time (min)
Benchmark	98.0%	0.0614	17	103
Translation	97.6%	0.1168	<mark>30</mark> (max)	157.5
Rotation	97.2%	0.1543	<mark>30</mark> (max)	147.5
<i>Scale</i>	97.8%	0.0723	20	104.3

Translation

Rotation

Scaling

Conclusion

- Good base model
- Big data
- Longer training
- Already big data
- More argumentation methods
- No significant difference

Thanks for Listening

