

Amendments to the Specification:

Please replace paragraph [00124], bridging pages 35 to 36, with the following amended paragraph:

The invention encompasses antibodies (preferably monoclonal antibodies) or fragments thereof that specifically bind Fc γ RIIB, preferably human Fc γ RIIB, more preferably native human Fc γ RIIB with a greater affinity than said antibodies or fragments thereof bind Fc γ RIIA, preferably human Fc γ RIIA, more preferably native human Fc γ RIIA. Preferably, the antibodies of the invention bind the extracellular domain of native human Fc γ RIIB. In certain embodiments, the antibodies or fragments thereof bind to Fc γ RIIB with an affinity greater than two-fold, four fold, 6 fold, 10 fold, 20 fold, 50 fold, 100 fold, 1000 fold, 10⁴ fold, 10⁵ fold, 10⁶ fold, 10⁷ fold, or 10⁸ fold than said antibodies or fragments thereof bind Fc γ RIIA. In one particular embodiment, the antibody is a mouse monoclonal antibody produced by clone 2B6 or 3H7, having ATCC accession numbers PTA-4591 and PTA-4592, respectively. Hybridomas producing antibodies of the invention have been deposited with the American Type Culture Collection (10801 University Blvd., Manassas, VA. 20110-2209) on August 13, 2002 under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedures, and assigned accession numbers PTA-4591 (for hybridoma producing 2B6) and PTA-4592 (for hybridoma producing 3H7), respectively and are incorporated herein by reference. In a specific embodiment, the invention encompasses an antibody with the heavy chain having the amino acid sequence of SEQ ID No 2 and the light chain having the amino acid sequence of SEQ ID No. 4. In a preferred embodiment, the antibodies of the invention are human or have been humanized, preferably a humanized version of the antibody produced by clone 3H7 or 2B6. In yet another preferred embodiment, the antibodies of the invention further do not bind Fc activation receptors, e.g., Fc γ IIIA, Fc γ IIIB, etc. In one embodiment, the Fc γ RIIB-specific antibody in accordance with the invention is not the monoclonal antibody designated KB61, as disclosed in Pulford *et al.*, 1986 (*Immunology*, 57: 71-76) or the monoclonal antibody designated MAbII8D2 as disclosed in Weinrich *et al.*, 1996, (*Hybridoma*, 15(2):109-6). In a specific embodiment, the Fc γ RIIB-specific antibody of the invention does not bind to the same epitope and/or does not compete

with binding with the monoclonal antibody KB61 or II8D2. Preferably, the Fc γ RIIB-specific antibody of the invention does not bind the amino acid sequence SDPNFSI (SEQ ID NO:5) corresponding to positions 135-141 of Fc γ RIib2 isoform.

Please replace paragraph [00125] at page 36 with the following amended paragraph:

The invention also encompasses other antibodies, preferably monoclonal antibodies or fragments thereof that specifically bind Fc γ RIIB, preferably human Fc γ RIIB, more preferably native human Fc γ RIIB, produced by clones including but not limited to 1D5, 2E1, 2H9, 2D11, and 1F2 having ATCC Accession numbers, , , , , , PTA-5958, PTA-5961, PTA-5962, PTA-5960, and PTA-5959, respectively. Hybridomas producing the above-identified clones were deposited with the American Type Culture Collection (10801 University Blvd., Manassas, VA 20110-2209) on , respectively May 7, 2004 and are incorporated herein by reference.

Please replace the table immediately following paragraph [00179] at page 58 with the following amended table:

Plasmid	Receptor	N-ter	172-180	C-ter
pMGX125	RIIb	IIb	<u>KKFSRSDPN</u> <u>(SEQ ID NO:6)</u>	APS-----SS (IIb) <u>(SEQ ID NO:12)</u>
pMGX126	RIIa/b	IIa	<u>QKFSRLDPN</u> <u>(SEQ ID NO:7)</u>	APS-----SS (IIb) <u>(SEQ ID NO:12)</u>
pMGX127		IIa	<u>QKFSRLDPT</u> <u>(SEQ ID NO:8)</u>	APS-----SS (IIb) <u>(SEQ ID NO:12)</u>
pMGX128		IIb	<u>KKFSRLDPT</u> <u>(SEQ ID NO:9)</u>	APS-----SS (IIb) <u>(SEQ ID NO:12)</u>
pMGX129		IIa	<u>QKFSHLDPT</u> <u>(SEQ ID NO:10)</u>	APS-----SS (IIb) <u>(SEQ ID NO:12)</u>
pMGX130		IIb	<u>KKFSHLDPT</u> <u>(SEQ ID NO:11)</u>	APS-----SS (IIb) <u>(SEQ ID NO:12)</u>
pMGX131		IIa	<u>QKFSRLDPN</u> <u>(SEQ ID NO:7)</u>	VPSMGSSS(IIa) <u>(SEQ ID NO:13)</u>
pMGX132		IIb	<u>KKFSRSDPN</u> <u>(SEQ ID NO:6)</u>	VPSMGSSS(IIa) <u>(SEQ ID NO:13)</u>
pMGX133	RIIa-131R	IIa	<u>QKFSRLDPT</u> <u>(SEQ ID NO:8)</u>	VPSMGSSS(IIa) <u>(SEQ ID NO:13)</u>
pMGX134	RIIa-131H	IIa	<u>QKFSHLDPT</u> <u>(SEQ ID NO:10)</u>	VPSMGSSS(IIa) <u>(SEQ ID NO:13)</u>
pMGX135		IIb	<u>KKFSRLDPT</u> <u>(SEQ ID NO:9)</u>	VPSMGSSS(IIa) <u>(SEQ ID NO:13)</u>
pMGX136		IIb	<u>KKFSHLDPT</u> <u>(SEQ ID NO:11)</u>	VPSMGSSS(IIa) <u>(SEQ ID NO:13)</u>