Task weekly Report

updated on 20 June 2018

Task plan each Week

Planing about Preprocess Data

Prepare Dataset

Problem

There are many attribute that can't use directly

for training the model in SVM and Deep learning.

For example,

MAC address 00:01:80:12:15:12

Because SVM and NN not supports purely categorical data. They are supporting data in vector format and continuous value.

Prepare Dataset

Solution

Using Assign Group for Dataset or one-hot technic like,

$$x = [1, 2, 3, 3, 2, 1]$$

encoding

$$1 = 0,0,1$$

$$2 = 0,1,0$$

$$3 = 1,0,0$$

Description

Try grouping the attributes that there are categorical data

- IP address
- MAC address
- Port number
- MAC address type
- LLC type
- IP version

How

Assign range of the data

1. IP Address

```
Private (Group P)

10.0.0.0 – 10.255.255.255

172.16.0.0 – 172.31.255.255

192.168.0.0 – 192.168.255.255

Usage overall

(Group U) | 1.0.0.0 - 126.255.255.255 (A), 128.0.0.0 - 191.255.255.255 (B), 192.0.0.0 - 223.255.255.255 (C)

(Group L) | 127.0.0.0 - 127.255.255.255 (loopback and diagnostic functions)

(Group E) | 224.0.0.0 - 239.255.255.255 *Experiment

(Group M) | 240.0.0.0 - 254.255.255.254 *multicast

(Group BA) | 255.255.255.255.255 *broadcast all

Ref: http://www.vlsm-calc.net/ipclasses.php, https://www.computerope.com/jargon/i/ip.htm
```

How

Assign range of the data

2. Port

[pW] Well known port : 0–1023 [pR] Registered ports : 1024–49151 [pP] Private ports : 49152-65535

3. MAC Address

```
MAC type
[2048] 0x2048 = IPv4
[0] 0x0000 = IEEE802.3
[2054] 0x2054 = ARP
[34525] 0x86DD = IPv6
[24578] 0x24578 = DEC MOP Dump/Load
Ref: https://en.wikipedia.org/wiki/EtherType
```

MAC range

[mac-type1]: CDP, VTP
[mac-type2]: Cisco
[mac-type3]: IEEE 802.x / Link Layer Discovery Protocol
[mac-type4]: IPv4 multicast
[mac-type5]: IPv6 multicast
[mac-type6]: IEC 61850-8-1 / GSSE / IEC 61850 8-1
[mac-type7]: Local

Ref: https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtm

How

Assign range of the data

4. LLC types

[0] Null LSAP[66] IEEE 802.1 Bridge Spanning Tree Protocol[170] SNAP Extension Used

Ref: https://en.wikipedia.org/wiki/IEEE_802.2

Description

Try to convert all of categorical data to be in vector format.

How

Encoding attribute by using library in keras.

Ref: https://machinelearningmastery.com/how-to-one-hot-encode-sequence-data-in-python/

Problem may occurs

MemError in python because of too many attributes.

May be fix by divide training data.

Features assigned

Preprocess 1 from dataset get 55 attributes

```
[54 attributes for training]
1. Ether_or_Dot3:
   '0' = 802.3/Dot3
   '1' = Ether
[2-8]. smact[1-7]: source MAC address group [1-7]
[9-15]. dmact[1-7]: destination MAC address group [1-7]
16. MAC-2048
17. MAC-0
18. MAC-2048
19. MAC-0
20. MAC-2054
21. MAC-34525
22. MAC-24578
23. LLC:
   '0' = is not IIc
   '1' = is IIc
```

```
24. Ilc-ssap-0
25. Ilc-ssap-66
26. Ilc-ssap-170
27. Ilc-dsap-0
28. Ilc-sap-66
29. Ilc-dsap-170
[30-34],[35-39]. s[P, U, L, E, M, BA], d[P, U, L, E, M, BA]
40. IP_ttl
[41-43]. ip[0,4,6]
44. TCP
[45-47],[48-50]. sp[W, R, P], dp[W, R, P]
51. UDP
52. ARP
53. ICMP
54. pLen
55. Status [1 attributes for prediction]
 '0' = Normal
                                             Task weekly report
 '1' = Attack
```

Experiment Dataset

Main point

Find the result that converted data is functional for training and prediction the model.

How

Find the result that dataset is useful. By evaluate the model.

Experiment with SVM model

using Sklearn library [try with CPU]

Assign parameters

Input - 54 vectors (attributes)
Output - 1 vector (Status : Attack or not)
c = 0.5 (high avoid misclassifying)

Time used: more than an hour, around 6-8 hours

Dataset used: Training dataset 100,000 packets, Test dataset 100,000 packets

Evaluate technic used: Mean Square Error (MSE) [now.. calculate..]

Using Preprocess Technic: 1 (Grouping port, ip, MAC address ...)

Plan to evaluate

Description

using confusion matrix to calculate accuracy.

Ref: https://en.wikipedia.org/w.../Evaluation_of_binary_classifiers

Experiment with Deep learning model

using Keras library [try with GPU]

Assign parameters

Layers - 3 layers [1] relu [2] sigmoid [3] softmax Input - 54 vectors (attributes)
Output - 1 vector (Status : Attack or not)
Batch size - 32
Time used - 1~2 minutes

Dataset used: Training dataset 100,000 packets, Test dataset 100,000 packets

Evaluate technic used: Mean Square Error (MSE) = 0.49228

Using Preprocess Technic: 1 (Grouping port, ip, MAC address ...)

Summary Tasks on this week

Preprocess Data

- X Preprocess set 1
- Preprocess set 2

Experiment evaluate model

- X Testing with Preprocess set 1
- Testing with Preprocess set 2