Post Quantum Cryptography

Meenakshi Kansal

Rashtriya Raksha University Gandhinagar

Encryption

► Encryption : Aims to provide privacy of documents

Encryption Algorithm

Decryption Algorithm

Digital Signature

Digital Signature : Validate the authenticity of documents

Modern Cryptography

- ► Hard Mathematical Problem
 - * Factoring: Given pq find p,q.
 - * Discrete log problem: Given g, g^a find a.
- Proof of Security

If you can break encryption \implies you can factor numbers the encryption is secure \iff If factoring is hard

Modern Cryptography

- Hard Mathematical Problem
 - * Factoring: Given pq find p, q.
 - * Discrete log problem: Given g, g^a find a.
- Proof of Security

We are safe till this moment as there is no polynomial time algorithm to solve these problems on a classical machine.

► Cryptography assures that breaking a cryptosystem is atleast as hard as solving some difficult mathematical problem.

► Cryptography assures that breaking a cryptosystem is atleast as hard as solving some difficult mathematical problem.

▶ We normally model it as a classical computer.

Cryptography assures that breaking a cryptosystem is atleast as hard as solving some difficult mathematical problem.

▶ We normally model it as a classical computer.

What if the attacker is quantum?

- ► Shor (1994)
 - * efficient quantum algorithms to factor integers.

- ► Shor (1994)
 - * efficient quantum algorithms to factor integers.
- ► Is this threat real?

- ▶ Shor (1994)
 - * efficient quantum algorithms to factor integers.
- ► Is this threat real? Yes!
- ▶ Google claims it has reached quantum supremacy.

https://www.nature.com/articles/s41586

- ► Shor (1994)
 - efficient quantum algorithms to factor integers.
- ► Is this threat real? Yes!
- Google claims it has reached quantum supremacy. https://www.nature.com/articles/s41586
- Assumption that factoring is hard does not hold in a "Post Quantum World".
- ▶ Same holds for most other mathematical problems currently in use.
 - * discrete logarithm and their variants
- Need for new mathematical problems that are not solvable by quantum algorithms.
 - * Post Quantum Cryptography
- Families of post quantum cryptography:
 - * Code based cryptography
 - Hash based cryptography
 - * Isogeny based cryptography
 - * Lattice based cryptography
 - Multivariate cryptography

- ► Shor (1994)
 - efficient quantum algorithms to factor integers.
- ► Is this threat real? Yes!
- Google claims it has reached quantum supremacy. https://www.nature.com/articles/s41586
- Assumption that factoring is hard does not hold in a "Post Quantum World".
- ▶ Same holds for most other mathematical problems currently in use.
 - * discrete logarithm and their variants
- Need for new mathematical problems that are not solvable by quantum algorithms.
 - * Post Quantum Cryptography
- Families of post quantum cryptography:
 - * Code based cryptography
 - Hash based cryptography
 - * Isogeny based cryptography
 - * Lattice based cryptography
 - Multivariate cryptography

Impact of Quantum Computing on Common Cryptographic Algorithms

Cryptographic	Туре	Purpose	Impact from large
Algorithm	, ,,	i i	scale quantum
			computer
AES	Symmetric key	Encryption	Larger key sizes
			needed
SHA		Hash functions	Larger output needed
RSA	Public key	Signatures, Key establishment	No longer secure
ECDSA, ECDH (Elliptic Curve Cryptography)	Public key	Signatures, Key exchange	No longer secure

What is a Lattice?

The simplest lattice in *n*-dimensional space is the integer lattice

$$\Lambda = \mathbb{Z}^n$$

Other lattices are obtained by applying a linear transformation

$$\Lambda = \mathbf{B}\mathbb{Z}^n$$
 $(\mathbf{B} \in \mathbb{R}^{d \times n})$

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector $\mathbf{B}\mathbf{x}$ (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{B}\mathbf{x}\| \leq \lambda_1$

Approximate Shortest Vector Problem

Definition (Shortest Vector Problem, SVP_{γ})

Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector $\mathbf{B}\mathbf{x}$ (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{B}\mathbf{x}\| \leq \gamma \lambda_1$

Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector $\mathbf{B}\mathbf{x}$ within distance $\|\mathbf{B}\mathbf{x} - \mathbf{t}\| \leq \mu$ from the target

Approximate Closest Vector Problem

Definition (Closest Vector Problem, CVP_{γ})

Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector $\mathbf{B}\mathbf{x}$ within distance $\|\mathbf{B}\mathbf{x} - \mathbf{t}\| \leq \gamma \mu$ from the target

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice $\mathcal{L}(\mathbf{B})$, find n linearly independent lattice vectors $\mathbf{B}\mathbf{x}_1, \dots, \mathbf{B}\mathbf{x}_n$ of length (at most) $\max_i \|\mathbf{B}\mathbf{x}_i\| \le \lambda_n$

Approximate Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP_{\gamma})

Given a lattice $\mathcal{L}(\mathbf{B})$, find n linearly independent lattice vectors $\mathbf{B}\mathbf{x}_1, \dots, \mathbf{B}\mathbf{x}_n$ of length (at most) $\max_i \|\mathbf{B}\mathbf{x}_i\| \le \gamma \lambda_n$

Lattice Trapdoors: Geometric View Multiple Bases

Parallelopipeds

Parallelopipeds

Bad Basis

Short Integer Solution Problem

Let
$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}$$
, $q = \text{poly}(n)$, $m = \Omega(n \log q)$

Given matrix A, find "short" (low norm) vector x such that

$$\mathbf{A}\mathbf{x} = 0 \mod q \in \mathbb{Z}_q^n$$

Learning With Errors Problem

Distinguish "noisy inner products" from uniform $\textbf{Fix uniform s} \! \in \! \textbf{Z}_{\alpha}^{\ n}$

$$a_1$$
, $b_1 = \langle a_1, s \rangle + e_1$
 a_2 , $b_2 = \langle a_2, s \rangle + e_2$
 a_m , $b_m = \langle a_m, s \rangle + e_m$

٧S

uniform $\in Z_q^n$, $e_i \sim \varphi \in Z_q$

 a_i uniform $\in Z_q^n$, b_i uniform $\in Z_q$

Syntax

- $(vk, sk) \leftarrow \text{keygen}$
- $ightharpoonup \sigma \leftarrow \operatorname{sign}(sk, m)$
- $blust d \in \{0,1\} \leftarrow \mathsf{verify}(vk,m,\sigma)$

Correctness Requirement

$$\Pr\left[\mathsf{verify}\big(vk,m,\mathsf{sign}(sk,m)\big)=1\right]=1$$

for all $(vk, sk) \leftarrow \text{keygen}$ and all $m \in \text{message space}$

- Existential Forgery: given (m_i, σ_i) for $i = 1, 2, \dots, q$, attacker cannot produce a valid signature for a new message.
- ▶ Strong Existential Forgery: given (m_i, σ_i) for i = 1, 2, ..., q, attacker cannot produce a new and valid signature on any m_i

Simplified Version of CRYSTALS-Dilithium

Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler and Damien Stehlé

► Finalists of Round three in a competition organised by NIST Post-Quantum Cryptography Standardization

Important Criteria for the Design

- Simple to implement securely.
- ► Be conservative with parameters.
- ▶ Minimize the size of public key and signature.
- Be modular easy to vary security.

- strongly secure under chosen message attacks based on the hardness of lattice problems over module lattices
- based on the scheme proposed in [Lyu09]
- resemblance to the schemes proposed in [GLP12], [BG14]
- uses rejection sampling
- uses uniform distribution

[BG14] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based on learning with errors. In CT-RSA, pages 28–47, 2014.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann Practical lattice-based cryptography: A signature scheme for embedded systems. In CHES, pages 530–547, 2012.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In ASIACRYPT, pages 598–616, 2009

Let R be a polynomial ring.

- keygen (1^{λ})
 - \triangleright short $\mathbf{s}_1, \mathbf{s}_2 \leftarrow R_1$
 - ightharpoonup a $\leftarrow R$
 - ightharpoonup compute $\mathbf{t} = \mathbf{a}\mathbf{s}_1 + \mathbf{s}_2$
 - $ightharpoonup pk = (a, t), sk = (a, t, s_1, s_2)$
- sign(sk, m)
 - ightharpoonup pick $\mathbf{y}_1, \mathbf{y}_2 \leftarrow R_k$
 - ightharpoonup c $\leftarrow H(\mathbf{a}\mathbf{y}_1 + \mathbf{y}_2, m)$
 - ightharpoonup set $\mathbf{z}_1 \leftarrow \mathbf{s}_1 \mathbf{c} + \mathbf{y}_1$, $\mathbf{z}_2 \leftarrow \mathbf{s}_2 \mathbf{c} + \mathbf{y}_2$ (Rejection Sampling)
 - ightharpoonup output $\sigma=(\mathbf{z}_1,\mathbf{z}_2,\mathbf{c},m)$
- verify(pk, m, σ)
 - ightharpoonup check that $||\mathbf{z}_1||, ||\mathbf{z}_2||$ are small,
 - ightharpoonup $\mathbf{c} = H(\mathbf{az}_1 + \mathbf{z}_2 \mathbf{tc}, m)$

Cryptography from Lattices

- ► Remake old cryptography
- ► Get new primitives Fully Homomorphic Encryption

Cryptography from Lattices

- ► Remake old cryptography
- Get new primitives Fully Homomorphic Encryption

Thank you!