A common generalization of Hall's theorem and Vizing's edge-coloring theorem

landon rabern

LBD Data

Miami University Colloquium November 6, 2014

the simplest variation

• two players, Dealer and Player

landon rabern $2\ /\ 1$

the simplest variation

- two players, Dealer and Player
- the deck has just many copies of the high spade cards

the simplest variation

- two players, Dealer and Player
- the deck has just many copies of the high spade cards
- Dealer makes 5 stacks of cards with no duplicates, all cards face-up

landon rabern $2\ /\ 1$

the simplest variation

- two players, Dealer and Player
- the deck has just many copies of the high spade cards
- Dealer makes 5 stacks of cards with no duplicates, all cards face-up
- Player wins if he can pick a Royal Flush, one card from each stack

landon rabern $2\ /\ 1$

example, a Player win

example, a Player win

example, a Dealer win

winning condition

• Player cannot win if there is a set of *k* stacks that together have fewer than *k* different cards

winning condition

 Player cannot win if there is a set of k stacks that together have fewer than k different cards

winning condition

- Player cannot win if there is a set of k stacks that together have fewer than k different cards
- Hall's theorem says: Player wins otherwise

making things harder for Dealer

• this isn't a fun game, far too easy for Dealer to win

making things harder for Dealer

- this isn't a fun game, far too easy for Dealer to win
- to make a better game, we allow Player to modify some of the stacks

making things harder for Dealer

- this isn't a fun game, far too easy for Dealer to win
- to make a better game, we allow Player to modify some of the stacks

Player's Move

Player can pick any card A from the deck and swap it for another card B in one stack (not containing A).

making things harder for Dealer

- this isn't a fun game, far too easy for Dealer to win
- to make a better game, we allow Player to modify some of the stacks

Player's Move

Player can pick any card A from the deck and swap it for another card B in one stack (not containing A).

Dealer's Move

Dealer can either do nothing or swap A and B in at most one other stack.

making things harder for Dealer

- this isn't a fun game, far too easy for Dealer to win
- to make a better game, we allow Player to modify some of the stacks

Player's Move

Player can pick any card A from the deck and swap it for another card B in one stack (not containing A).

Dealer's Move

Dealer can either do nothing or swap A and B in at most one other stack.

Winning

Player wins if he can pick a Royal Flush at the start of one of his turns, otherwise Dealer wins.

example, a Player win

example, a Player win

 Player picks a King from the deck and swaps it for a Queen in the first stack

example, a Player win

 Player picks a King from the deck and swaps it for a Queen in the first stack

example, a Player win

- Player picks a King from the deck and swaps it for a Queen in the first stack
- Dealer can swap a King and Queen in one of the other stacks

example, a Player win

- Player picks a King from the deck and swaps it for a Queen in the first stack
- Dealer can swap a King and Queen in one of the other stacks

example, a Player win

- Player picks a King from the deck and swaps it for a Queen in the first stack
- Dealer can swap a King and Queen in one of the other stacks
- Player wins no matter what Dealer does

example, a Dealer win

example, a Dealer win

example, a Dealer win

example, a Dealer win

what was the difference?

landon rabern

what was the difference?

• in the top game, Dealer can prevent Player from increasing the number of different cards in the first two stacks

what was the difference?

- in the top game, Dealer can prevent Player from increasing the number of different cards in the first two stacks
- in the bottom game, Dealer cannot prevent prevent Player from increasing the number of different cards in the first three stacks

necessary condition

• if the same card appears on three stacks, Player can force the addition of a new card to these stacks

necessary condition

- if the same card appears on three stacks, Player can force the addition of a new card to these stacks
- it is not hard to show that this is essentially all Player can do

necessary condition

- if the same card appears on three stacks, Player can force the addition of a new card to these stacks
- it is not hard to show that this is essentially all Player can do
- with this we can state a necessary condition

necessary condition

- if the same card appears on three stacks, Player can force the addition of a new card to these stacks
- it is not hard to show that this is essentially all Player can do
- with this we can state a necessary condition

Degree

The *degree* of a card C in a set of stacks S is the number of times C appears in S. We write $d_S(C)$ for this quantity.

necessary condition

- if the same card appears on three stacks, Player can force the addition of a new card to these stacks
- it is not hard to show that this is essentially all Player can do
- with this we can state a necessary condition

Degree

The *degree* of a card C in a set of stacks S is the number of times C appears in S. We write $d_S(C)$ for this quantity.

Necessary Condition

If Player has a winning strategy, then for every set of stacks S we must have

$$\sum_{C\in \bigcup S} \left\lceil \frac{d_S(C)}{2} \right\rceil \ge |S|.$$

some card games winning condition

• this necessary condition is also suffcient

winning condition

this necessary condition is also suffcient

Winning Condition

Player has a winning strategy if and only if for every set of stacks S we have

$$\sum_{C\in ||S|} \left\lceil \frac{d_S(C)}{2} \right\rceil \ge |S|.$$

proof idea

 Player looks for a set of card types that give a system of distinct representatives of all the stacks containing them

landon rabern 12 / I

proof idea

 Player looks for a set of card types that give a system of distinct representatives of all the stacks containing them

proof idea

 Player looks for a set of card types that give a system of distinct representatives of all the stacks containing them

landon rabern 12 / I

proof idea

 Player looks for a set of card types that give a system of distinct representatives of all the stacks containing them

proof idea

- Player looks for a set of card types that give a system of distinct representatives of all the stacks containing them
- Player calls those stacks done and never plays with those card types again

proof idea

if no such set of card types exists, then Hall's theorem shows that there is at least one card appearing on none of the remaining stacks

landon rabern

proof idea

if no such set of card types exists, then Hall's theorem shows that there is at least one card appearing on none of the remaining stacks

• but then some card appears at least thrice, so Player can increase the

number of card types in the stacks. \overline{K}

proof idea

- if no such set of card types exists, then Hall's theorem shows that there is at least one card appearing on none of the remaining stacks
- but then some card appears at least thrice, so Player can increase the number of card types in the stacks.
- goto step 1

landon rabern

proof idea

- if no such set of card types exists, then Hall's theorem shows that there is at least one card appearing on none of the remaining stacks
- but then some card appears at least thrice, so Player can increase the number of card types in the stacks.
- goto step 1

landon rabern

proof idea

- if no such set of card types exists, then Hall's theorem shows that there is at least one card appearing on none of the remaining stacks
- but then some card appears at least thrice, so Player can increase the number of card types in the stacks.
- goto step 1

proof idea

- if no such set of card types exists, then Hall's theorem shows that there is at least one card appearing on none of the remaining stacks
- but then some card appears at least thrice, so Player can increase the number of card types in the stacks.
- goto step 1

making it harder for Player

• allow Dealer to make more swaps in response to Player's move

making it harder for Player

- allow Dealer to make more swaps in response to Player's move
- for each $t \ge 1$, the t-game is where Dealer is allowed to make up to t swaps.

making it harder for Player

- allow Dealer to make more swaps in response to Player's move
- for each $t \ge 1$, the t-game is where Dealer is allowed to make up to t swaps.

Winning Condition

Player has a winning strategy in the t-game if and only if for every set of stacks S we have

$$\sum_{C \in | \ | \ S} \left\lceil \frac{d_S(C)}{t+1} \right\rceil \ge |S|.$$

making it harder for Player

- allow Dealer to make more swaps in response to Player's move
- for each $t \ge 1$, the t-game is where Dealer is allowed to make up to t swaps.

Winning Condition

Player has a winning strategy in the t-game if and only if for every set of stacks S we have

$$\sum_{C \in \bigcup S} \left\lceil \frac{d_S(C)}{t+1} \right\rceil \ge |S|.$$

• Hall's theorem is the winning condition in the (k-1)-game when there are k total stacks

 assign colors to the edges of a graph so that incident edges get different colors

edge coloring setup

 assign colors to the edges of a graph so that incident edges get different colors

• how few colors can we use?

setup

- assign colors to the edges of a graph so that incident edges get different colors
- how few colors can we use?

Vizing's theorem

Any simple graph can be edge-colored using at most one more color than its maximum degree.

proof of Vizing's theorem

 \bullet take a minimum counterexample to Vizing's theorem, say it has maximum degree Δ

proof of Vizing's theorem

- \bullet take a minimum counterexample to Vizing's theorem, say it has maximum degree Δ
- ullet remove a vertex of degree Δ and edge-color the rest with $\Delta+1$ colors

proof of Vizing's theorem

- \bullet take a minimum counterexample to Vizing's theorem, say it has maximum degree Δ
- ullet remove a vertex of degree Δ and edge-color the rest with $\Delta+1$ colors

proof of Vizing's theorem

- \bullet take a minimum counterexample to Vizing's theorem, say it has maximum degree Δ
- ullet remove a vertex of degree Δ and edge-color the rest with $\Delta+1$ colors

proof of Vizing's theorem

- \bullet take a minimum counterexample to Vizing's theorem, say it has maximum degree Δ
- ullet remove a vertex of degree Δ and edge-color the rest with $\Delta+1$ colors

proof of Vizing's theorem

- \bullet take a minimum counterexample to Vizing's theorem, say it has maximum degree Δ
- ullet remove a vertex of degree Δ and edge-color the rest with $\Delta+1$ colors

proof of Vizing's theorem

- \bullet take a minimum counterexample to Vizing's theorem, say it has maximum degree Δ
- ullet remove a vertex of degree Δ and edge-color the rest with $\Delta+1$ colors

proof of Vizing's theorem

- \bullet take a minimum counterexample to Vizing's theorem, say it has maximum degree Δ
- ullet remove a vertex of degree Δ and edge-color the rest with $\Delta+1$ colors

proof of Vizing's theorem

 exchanging colors on a two-colored path is just a Player move followed by a Dealer move

proof of Vizing's theorem

- exchanging colors on a two-colored path is just a Player move followed by a Dealer move
- we can make any of Player's legal moves this way, so if the winning conditions are satisfied, Vizing's theorem is true

- exchanging colors on a two-colored path is just a Player move followed by a Dealer move
- we can make any of Player's legal moves this way, so if the winning conditions are satisfied, Vizing's theorem is true
- ullet each stack has at least two colors, so counting the 'cards' in two ways we get for each set of stacks S,

$$\sum_{C\in\bigcup S}d_S(C)\geq 2|S|$$

proof of Vizing's theorem

- exchanging colors on a two-colored path is just a Player move followed by a Dealer move
- we can make any of Player's legal moves this way, so if the winning conditions are satisfied, Vizing's theorem is true
- ullet each stack has at least two colors, so counting the 'cards' in two ways we get for each set of stacks S,

$$\sum_{C\in\bigcup S}d_S(C)\geq 2|S|$$

• so, we have the desired winning condition

$$\sum_{C\in\bigcup S}\frac{d_S(C)}{2}\geq |S|$$

• we introduced a simple card game

- we introduced a simple card game
- Player can pick any card A from the deck and swap it for another card B in one stack (not containing A).

- we introduced a simple card game
- Player can pick any card A from the deck and swap it for another card B in one stack (not containing A).
- Dealer can either do nothing or swap A and B in at most one other stack.

- we introduced a simple card game
- Player can pick any card A from the deck and swap it for another card B in one stack (not containing A).
- Dealer can either do nothing or swap A and B in at most one other stack.
- Player wins if he can pick a Royal Flush at the start of one of his turns, otherwise Dealer wins.

- we introduced a simple card game
- Player can pick any card A from the deck and swap it for another card B in one stack (not containing A).
- Dealer can either do nothing or swap A and B in at most one other stack.
- Player wins if he can pick a Royal Flush at the start of one of his turns, otherwise Dealer wins.
- Player has a winning strategy exactly when a Hall-like condition is satisfied

- we introduced a simple card game
- Player can pick any card A from the deck and swap it for another card B in one stack (not containing A).
- Dealer can either do nothing or swap A and B in at most one other stack.
- Player wins if he can pick a Royal Flush at the start of one of his turns, otherwise Dealer wins.
- Player has a winning strategy exactly when a Hall-like condition is satisfied
- the fact that Player wins quickly implies Vizing's edge-coloring theorem

- we introduced a simple card game
- Player can pick any card A from the deck and swap it for another card B in one stack (not containing A).
- Dealer can either do nothing or swap A and B in at most one other stack.
- Player wins if he can pick a Royal Flush at the start of one of his turns, otherwise Dealer wins.
- Player has a winning strategy exactly when a Hall-like condition is satisfied
- the fact that Player wins quickly implies Vizing's edge-coloring theorem
- most other classical edge-coloring results follow easily as well

- we introduced a simple card game
- Player can pick any card A from the deck and swap it for another card B in one stack (not containing A).
- Dealer can either do nothing or swap A and B in at most one other stack.
- Player wins if he can pick a Royal Flush at the start of one of his turns, otherwise Dealer wins.
- Player has a winning strategy exactly when a Hall-like condition is satisfied
- the fact that Player wins quickly implies Vizing's edge-coloring theorem
- most other classical edge-coloring results follow easily as well
- there is a straightforward generalization to multigraphs

- we introduced a simple card game
- Player can pick any card A from the deck and swap it for another card B in one stack (not containing A).
- Dealer can either do nothing or swap A and B in at most one other stack.
- Player wins if he can pick a Royal Flush at the start of one of his turns, otherwise Dealer wins.
- Player has a winning strategy exactly when a Hall-like condition is satisfied
- the fact that Player wins quickly implies Vizing's edge-coloring theorem
- most other classical edge-coloring results follow easily as well
- there is a straightforward generalization to multigraphs
- there is a much more general game that unifies a large chunk of edge-coloring theory