## SURFACES-III

## SHAPES AND CURVATURE

Our discussion on measurements in the previous chapter concerned the internal geometry of surfaces. It ignored the shape of these surfaces in IR<sup>n</sup>. For instance the flat plane and the curved cylinder (cut open along a slit) are isometric to each other, yet they look different because of their shapes. We now discuss quantities that describe the shape of surfaces.

For a curve in R<sup>n</sup>, we determined its rate of bending in R<sup>n</sup> by computing the derivative of unit tangent vertors, i.e., the rate of change of the tangent lines. Also, for a curve in R<sup>2</sup>, the tangent spaces have codimension 1 in R<sup>2</sup> and so the amount of of bending is also captured by differentiating the unit normals.

For a surface S we have the following approaches at our disposal and we use them both:

- (A) At any pES, we look at various curves in Spassing through p and compute their accordine.
- (B) Compute the rate of change of tangent planes of S. For a surface in  $\mathbb{R}^3$ , the tangent spaces have codimension 1, so we may differentiate the unit normals.

We restrict to surfaces in R3.

Let  $S \subseteq \mathbb{R}^3$  be a surface and let  $p \in S$ . Fix a unit

normal N(p) at p. For any unit vector WETPS, the two dimensional subspace of IR3 spanned by N(p) and w, when translated to p, forms a plane through p,



say Hw. By the implicit function theorem, the NS is a regular curve near p: If S is locally given by f = 0 near p, then Dpf is parallel to NCP), while if Hw is given by a linear equation g=0, then Dpg is orthogonal to N(p); Thus f, g are a partial sequence of coordinate functions at p.

We call the set  $SNH_{\omega}$  the normal section of S at p along  $\omega$ . It remains unchanged upon replacing N(p) by -N(p) or  $\omega$  by  $-\omega$ . In what follows we only deal with an open subset around p of the normal section where it is regular and we continue to call it the normal section.

For  $p \in S$  and  $\omega \in T_pS$  as above, the normal section  $H_{\omega} \cap S$  is a plane curve where we may identify  $H_{\omega}$  with  $\mathbb{R}^2$  via the ordered orthonormal basis  $\omega_p \cdot N(p)$ . As the normal section is regular, it admits a unique unit-speed parametrisation  $\mathscr{N}(t)$  such that  $\mathscr{N}(0) = p$ ,  $\mathscr{N}(0) = \omega$ . We set  $\mathscr{N}(\omega)$  to be its signed curvature and we call it the normal curvature of S at p along  $\omega$ . Changing N(p) by -N(p) changes the sign of  $\mathscr{N}_n(\omega)$ , but  $\mathscr{N}_n(-\omega) = \mathscr{N}_n(\omega)$ .

Example: Let S be the sphere  $X^2 + Y^2 + Z^2 = R^2$ . Let p = (0,0,R). Pick N(p) = (0,0,1). Let  $w = (\omega s \varphi, s in \varphi, o) \in T_p S$ . The plane  $H_w$  is given by  $s in \varphi \cdot X - \omega s \varphi \cdot Y = 0$ . Set  $X = W \omega s \varphi$ ,  $Y = W s in \varphi$ , so that

W = Cosq. X + Sinq. Y. We use W, Z as coordinate functions on  $H_{\omega}$  and the equation of  $S \cap H_{\omega}$  is  $W^2 + Z^2 = R^2$ . Note that p = (0,0,R) has coordinates (0,R) in  $H_{\omega}$ . We parametrise the circle as 0 -> (Rsing, R6s 0) in W-Z coordinates, so that its velocity at the point (0, R) is (1,0) in W-Z coordinates or  $w = (\omega, \sin \varphi, 0)$  in X-Y-Z coordinates. The signed curvature is -1/R.