ECE449: Lab 5 - Genetic Algorithm

NOVEMBER 21TH, 2019

Genetic Algorithm

Genetic algorithm

- OPTIMIZATION ALGORITHM
- ONE OF EVOLUTIONARY ALGORITHMS

Domains of use

- SCHEDULING, TIMETABLING
- "AUTOMATIC" (EVOLUTIONARY) DESIGN
- GENERALLY: PROBLEMS WITH MANY LOCAL OPTIMA

THE 2006 NASA ST5 SPACECRAFT ANTENNA.

Parts of GA

Optimization problem

- SELECT THE BEST PERFORMING SOLUTION FOR OUR PROBLEM.
 - EXAMPLE: MINIMIZE AN EQUATION $g(x, y) = x^2 + y^2$
 - EXAMPLE: FIND THE BEST COMBINATION

Solution

- REPRESENTED AS A VECTOR
 - EQUATION: [2, 1], [0, 0], [0.3, 1.6]
 - COMBINATION: [0, 1, 0, 1, 1, 0, 0, 0, 0, 0]

• THE best

Parts of GA

Fitness function

- EVALUATES THE QUALITY OF A SOLUTION
- GIVES A SINGLE VALUE
 - Higher value = better solution f(solution) = quality

$$f(x, y) = -g(x, y) = -(x^2+y^2)$$

$$f(1,1) = -2$$

$$f(0,0)=0$$

Parts of GA

Population

- SET OF SOLUTIONS
- Size of the population
 - NUMBER OF SOLUTION IN THE POPULATION
- EXAMPLE:
 - POPULATION OF SIZE 5
 - [[1,4], [2.1, 8], [0.2, 3.1], [6.1, 4.8], [1.2, 0.3]]
- MEMBERS OF A POPULATION ARE CALLED individuals

Operations on individuals

Crossover

- Takes 2 or more individuals
- COMBINES THEM TO PRODUCE NEW INDIVIDUALS
- [0.2, 0.4], [0.8, 0.5] -> [0.2, 0.5], [0.8, 0.4]

Mutation

- APPLIED ON ONE INDIVIDUAL
- RANDOMLY CHANGE A PORTION OF AN INDIVIDUAL
- [**0.2**, 0.4] -> [**0.25**, 0.4]

Algorithm

1. Randomly create a population (f rst generation)

2. Iterate:

- 1. EVALUATE THE FITNESS OF THE EACH INDIVIDUAL
- 2. STOCHASTICALLY PERFORM crossover
- 3. STOCHASTICALLY PERFORM mutation
- 4. **Select** THE NEW POPULATION (NEXT GENERATION)

The lab

Exercise 1

- MINIMIZE A FUNCTION
- THE STRUCTURE OF THE ALGORITHM IS FROM A LIBRARY
 - WE WILL IMPLEMENT THE OPERATORS
 - CREATE, CROSSOVER AND MUTATE ARE DONE
 - YOU WILL PROGRAM THE FITNESS FUNCTION
- How to use the library?
 - LOOK AT PYTHON SUPPLEMENT

The lab

• Exercise 2

- Wireless Sensor Network
 - NODE SENDS MESSAGE TO THE CLUSTER HEAD
 - CLUSTER HEAD FORWARDS THE MESSAGE TO THE SINK
 - USER ACCESS THE DATA AT THE SINK
- FIND THE OPTIMAL POSITIONS OF CLUSTER HEADS

