Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

SA NO. TA(AG) 03-75

EXPLORATORY KRAFT AND NSSC PULPING AND PRODUCTION

OF A BLEACHED, MARKET-GRADE, KRAFT PULP

FROM COLOMBIAN HARDWOOD MIXTURES

Ву

JAMES F. LAUNDRIE, Chemical Engineer

March 1977

LIMITED DISTRIBUTION

AID Report No. 8

FOREST PRODUCTS LABORATORY

MADISON 5, WISCONSIN

UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE

In Cooperation with the University of Wisconsin

EXPLORATORY KRAFT AND NSSC PULPING AND PRODUCTION

OF A BLEACHED, MARKET-GRADE, KRAFT PULP

FROM COLOMBIAN HARDWOOD MIXTURES

Ву

JAMES F. LAUNDRIE, Chemical Engineer

Forest Products Laboratory, $\frac{1}{}$ Forest Service U.S. Department of Agriculture

Summary

Kraft pulps, with quality equal to or better than those of North American hardwood kraft pulps, were made using 3 mixtures of 17 Colombian hardwood species. The concept of using a high-yield kraft process to produce 25 to 30 percent screenings for use in corrugating medium and the screened pulp for linerboard was verified as being feasible. Semichemical kraft pulp, with a Kappa number equal to that of the kraft screenings, had handsheet properties comparable to those of the kraft screenings. Handsheet tests indicate that acceptable quality corrugating medium can be made from all three mixtures cooked by the neutral sulfite semichemical (NSSC) process. Improved handsheet quality can be obtained by the addition of caustic soda to the NSSC pulping liquor and/or by reducing the pulp yield. Semichemical kraft and green liquor pulps at 73 percent yield are deficient in the handsheet properties considered essential for the production of acceptable quality corrugating medium.

^{1/} Maintained at Madison, Wis., in cooperation with the University of Wisconsin.

Log Processing and Makeup of Mixtures

Eighteen different species, with a total dry weight of about 8,000 pounds, were harvested in Colombia. This wood resource, covering a range of densities and colors, was received by the Forest Products Laboratory (FPL) in August 1976. Upon receipt, the identification of each species was verified. A 1-foot length was cut from the butt log of each species to provide material for botanical studies, and 1-inch disks were cut from each log for the determination of specific gravity.

All logs were peeled and converted into nominal 5/8-inch chips, keeping each individual species separate. The bark was used in another study to determine calorific value and other potential uses. The chips were screened, and the amounts of oversize (+1-1/4 inches) and undersize (-1/4 inch) were determined. Samples of chips from each species were analyzed for ash and silica. For exploratory kraft and NSSC digestions, mixtures of the screened chips were made to simulate three potential naturally occurring density distributions. Chemical analyses were made on samples of the three mixtures to determine ash, silica, pH, lignin, and extractives. For pilot-scale kraft digestions, a larger quantity of only mixture A was made. Small quantities of three additional mixtures were also made to determine the effect of adding increasing amounts of caustic soda to NSSC cooking liquors as the density of the woods in the mixtures increased.

Exploratory Kraft Pulping

Kraft pulps having less than 1 percent screenings were made using the three mixtures. Kraft digestions were also made using the three

mixtures to yield pulps having 25 to 30 percent screenings. These digestions were made to verify the feasibility of using the screened pulp for linerboard and the screenings for corrugating medium. Semichemical kraft and green liquor pulps were also made from mixture A and evaluated for possible use in corrugating medium. The screenings and semichemical pulps were refined to about 350 milliliters (Canadian Standard freeness) in a 12-inch-diameter, single-rotating disk mill and made into handsheets having a basis weight of 26 pounds per 1,000 square feet. Strength development of the screened pulps was in a Valley beater, and handsheets were made and evaluated according to standard TAPPI methods.

Exploratory NSSC Pulping

NSSC pulps with yields of about 75 percent were made from the three mixtures. Additional NSSC digestions of only mixture A were made with increasing amounts of sodium sulfite and sodium carbonate and time at cooking temperature in order to obtain lower yield pulps. The effects of adding increasing amounts of caustic soda to the cooking liquor as the density of the woods in the mixture increased were also determined in another series of NSSC digestions made at the 75 percent yield level. All of these semichemical pulps were refined to about 350 milliliters (Canadian Standard freeness) in a 12-inch-diameter, single-rotating disk mill and made into handsheets having a basis weight of 26 pounds per 1,000 square feet.

Pilot-Scale Kraft Pulping and Bleaching

Three pilot-scale digestions of mixture A were made under the following conditions:

- (1) 16 percent active alkali.
- (2) 25 percent sulfidity.
- (3) 4-to-1 water-to-wood ratio.
- (4) 90 minutes to raise the temperature to 170° C.
- (5) 90 minutes at 170° C.

Each digestion was blown, and the resulting pulps were washed, screened through a 0.012-inch slotted flat screen, and wet lapped. The pulps were combined before CEDED bleaching, and the composite pulp had a Kappa number of 27.6. A pilot-scale CEDED bleach of the composite kraft pulp was made to produce a bleached market-type pulp.

Results

Properties of Individual Species and Mixtures

The specific gravity, ash, and silica contents of the individual species are given in table 1. The specific gravity ranged from a low of 0.141 to a high of 0.859. Ash contents ranged from 0.18 to 3.73 percent, while silica contents ranged from none to a high of 1.48 percent.

The amounts of the individual species in the three mixtures are given in table 2. The lowest density species was excluded from the mixtures because of the small amount of good fiber in this species. Mixture A contains an even distribution of species, while mixture B is weighted with more of the high-density species, and mixture C is weighted with more of the intermediate-density species. The weighted average specific gravity of the three mixtures is 0.510, 0.667, and 0.544, respectively. As shown in table 3, there were only small differences in the pH and

the amounts of ash, extractives, and lignin in the three mixtures. A larger difference was found in the amount of silica, however, which ranged from 0.04 to 0.28 percent.

Quality of Screened Exploratory Kraft Pulps

As shown in table 4, similar yields and Kappa numbers were obtained from all three mixtures cooked under the same conditions.

There were only small differences in the quality of the fully cooked kraft pulps made from the three mixtures (table 5). The strength properties of these pulps were equal to or better than those of North American hardwood kraft pulps and comparable to previous results found with similar mixtures of tropical hardwoods from both the Philippines and Ghana. The screened pulp from the digestion of mixture C designed to give a high percentage of screenings was only slightly lower in strength than that of the fully cooked kraft pulp made from the same mixture. However, the screened pulps from the digestions of mixtures A and B designed to give high percentages of screenings had considerably lower strength than those of the fully cooked pulps made from the same mixtures. The most severe loss was in bursting strength, which was about 20 percent at 350 milliliters (Canadian Standard freeness).

Quality of Exploratory Semichemical and Screenings Pulps for Corrugating Medium

The conditions and results of the NSSC digestions are given in table 6. As was found with the Philippine and Ghanaian mixtures, the differences between the three Colombian mixtures in their response to

NSSC pulping to 75 percent yield are small. Using mixture A, the addition of 3 percent caustic soda to the NSSC pulping liquor reduced the cooking time at 175° C. from 90 to 70 minutes and increased the spent liquor pH from 8.5 to 9.8. Increasing only the cooking time from 90 to 215 minutes, while cooking mixture A with the same chemical charge used to produce the 75 percent yield pulp, reduced the pulp yield to about 69 percent. Increasing the sodium sulfite to 22 percent, the sodium carbonate to 5.5 percent, and the cooking time at 175° C. to 255 minutes gave a pulp yield of about 66 percent. Reducing the yield further would not be economically practicable because of the excessive amounts of chemical and time at cooking temperature that would be required.

The addition of increasing amounts of caustic soda to the NSSC cooking liquor as the density of the woods in the mixtures increases was shown to be an effective way of obtaining the same yield pulps without changing the cooking time.

The handsheet properties of the semichemical and screenings pulps are given in table 7. Based on these data, it appears that acceptable quality corrugating medium could be made from 75 percent yield NSSC pulps of mixtures A and C, while the pulping conditions for mixture B need to be changed to obtain comparable handsheet properties. Both the lower yield NSSC pulps and the 75 percent yield pulp made with the addition of 3 percent caustic soda to the NSSC pulping liquor had improved handsheet properties in excess of those normally required to produce a good quality corrugating medium on the paper machine. Similar improved handsheet properties were also obtained from the NSSC pulps made from the lower density wood mixtures where caustic soda was added to the cooking liquor.

Handsheet properties of the kraft screenings pulps indicate that all three mixtures would produce acceptable quality corrugating medium.

Both the kraft semichemical and the green liquor semichemical pulps at the 73 percent yield level appear to be unacceptable for producing good quality corrugating medium. As the yield of the kraft semichemical pulps was reduced, the handsheet properties increased. However, it was not until a yield of about 59 percent was reached that the handsheet properties approached those of the kraft screenings made from the same wood mixture. This was not unexpected since the kraft semichemical pulp at 59 percent yield has about the same Kappa number as the kraft screenings.

Response to Bleaching and Quality of Bleached Pulp

The conditions and results of the pilot-scale CEDED bleach of the kraft pulp are given in table 8. Bleaching with CEDED gave a bleached pulp with a brightness of 86.0 percent and a viscosity of 10.2 centipoises.

Handsheet properties of both the unbleached and bleached pilot-scale pulps are given in table 9. Compared to the unbleached kraft pulp, the CEDED bleached pulp was 10 to 20 percent lower in bursting and tensile strengths, while the tearing resistance of the CEDED bleached pulp was about the same as the unbleached kraft pulp. Drying of the CEDED bleached pulp on the paper machine caused a loss in all strength properties of about 10 percent.

Even with the above losses, the CEDED bleached pulp was equal to or better than the two bleached kraft market pulps made from North American hardwoods grown in different areas (machine run No. 7156).

Conclusions

- (1) The strength properties of the kraft pulps made from all three mixtures were equal to or better than those of North American hardwood kraft pulps.
- (2) It appears that acceptable quality corrugating medium could be made from mixtures A and C cooked to 75 percent yield by the NSSC process. Mixture B would require modification of the cooking conditions to obtain comparable handsheet properties.
- (3) Improved handsheet quality can be obtained by the addition of caustic soda to the NSSC pulping liquor and/or by reducing pulp yield.

 Reducing the NSSC pulp yield to less than 66 percent would not be economically practicable because of the excessive amounts of chemical and time at cooking temperature that would be required.
- (4) The concept of using only one high-yield kraft pulping process to produce 25 to 30 percent screenings for use in the manufacture of corrugating medium and screened pulp for use in linerboard was verified as being feasible.
- (5) Semichemical kraft and green liquor pulps at 73 percent yield are deficient in the handsheet properties considered essential for the production of good quality corrugating medium.
- (6) Semichemical kraft pulp, with a Kappa number equal to that of the kraft screenings, had handsheet properties comparable to those of kraft screenings. However, the total yield advantage was small; the semichemical kraft pulp had a yield of 59 percent, while the combined yield of the screenings and screened pulp was 55 percent.
- (7) Kraft pulp from a mixture of Colombian hardwoods can be bleached using CEDED to provide a strong market grade of pulp.

Table 1.--Specific gravity, ash, and silica content of 18 Colombian hardwoods

		Species	Specific/	Ash ² /	Silica ² /
No.	Common name	Botanical name	gravity ¹	Ash-	Silica—
				Pct	Pct
1	Peine mono	Apeiba apera	0.141	3.55	<0.01
2	Ceiba	Ceiba pentandre	.225	3.73	< .01
3	Yarumo	Cecropia sp.	.250	1.71	.02
4	Cirpo	Pourouma sp.	.369	.76	< .01
5	Chingale	Jacaranda copaia	.372	. 58	< .01
6	Dormilon	Vochysia ferruginea	. 447	.82	.02
7	Sande	Brosimum utile	.494	.51	.01
8	Sangretoro	Virola sebifera	.511	.33	< .01
9	Arenillo	Catostemma alstonii	. 536	1.26	< .01
10	Canelo	Nectandra sp.	. 546	.18	< .01
11	Perillo negro	Couma macrocarpa	. 547	.40	< .01
12	Casaco	Hieronyma sp.	.603	. 55	< .01
13	Carbonero	Enterolobium schomburgkii	.634	.75	< .01
14	Chocho	Ormosia paraensis	.671	. 29	.01
15	Carreto	Aspidosperma sp.	.692	.62	< .01
16	Lecheperra	Helicostylis tomentosa	.785	1.10	.03
17	Tamarindo	Dialium guianense	.823	1.82	1.48
18	Caimo	Pouteria sp.	.859	.95	. 55

^{1/} Dry weight, green volume basis.

^{2/} Moisture-free wood basis.

Table 2.--Composition of 3 mixtures of 17 Colombian hardwoods

	Specific gravity	Miset	re composition	2/
Species 1/	Specific gravity range	-		
		A	В	С
		Pct	Pct	Pct
2 - 3	0.225 - 0.250	16.67	2	4
4 - 5	.369372	16.67	4	8
6 - 8	.447511	16.67	9	20
9 - 11	.536547	16.67	15	40
12 - 14	.603671	16.67	20	20
15 - 18	.692859	16.67	50	8

 $[\]frac{1}{2}$ / See table 1 for names of the individual species. $\frac{2}{2}$ / Moisture-free wood basis.

Table 3.--Chemical analysis of Colombian chip mixtures

Winter	. 11	1/	SiO ₂ 1/	Ex	tractives	1/	Lignin 1/	
Mixture	pН	ASI	5102	Ethyl Alcohol Hot ether benzene water		riguin-		
		Pct	Pct	Pct	Pct	Pct	Pct	
A	5.71	0.94	0.06	0.33	3.84	3.79	28.71	
В	5.81	.91	.28	.34	3.15	3.15	28.60	
С	5.59	.68	.04	.31	3.66	3.66	29.51	

^{1/} Moisture-free wood basis.

Kappa number	Fiberized screenings			;	83.0	1	i	i	1	i i		;	80.1		;	98.8
Kappa	Screened or whole pulp			24.5	67.5	87.0	150.0	162.0	172.0	170.0		23.3	56.7		23.4	55.3
1 ⁴ 2/	Screen- ings	Pct		1.2	27.6	1	1	1	1	1		4.	19.0		.7	21.2
Yield ² /	Total	Pct		6.94	54.6	58.8	65.8	0.69	72.6	72.5		47.5	53.6		46.7	52.4
Black liquor	$\frac{\text{Na}_2\text{S}}{(\text{Na}_2^2\text{O})}$	<u>G/1</u>		6.9	8°9	7.6	7.9	4.3	5,3	35.0		9.9	7.4		6.5	7.2
Black	NaOH (Na ₂ 0)	<u>G/1</u>	MIXTURE A	9.4	7.7	4.3	7.1	1.7	1.8	0	MIXTURE B	5,3	9.5	MIXTURE C	5,1	8°3
0	At tempera- ture	Min	MIX	90	15	15	0	0	0	0	MIX	06	15	MIX	90	15
Time	To tempera-	Min		90	06	09	09	80	55	55		90	06		06	06
Cooking	tempera- ture	့ျ		170	170	170	170	160	160	160		170	170		170	170
Activo	alkali ² /	Pct		16.0	16.0	14.0	14.0	10.0	10.0	17.5		16.0	16.0		16.0	16.0
Digestion	No.			6078X	X8809	6124X	6119X	X6809	3,6095X	⊼, 6096X		6081X	6083X		X0809	6084X

 $\frac{1}{4}$ Unless otherwise noted, the following constant conditions were used: 25.0 pct sulfidity and 4-to-1 water-to-wood ratio. $\frac{2}{3}$ Moisture-free wood basis. $\frac{3}{4}$ Green liquor at 100 pct sulfidity based on active alkali.

Forest Service U.S. Department of Agriculture Forest Products Laboratory Madison, Wisconsin 53705

	Apparent density	G/cm ³		0.52	. 47		.45	.45 .51		.51 .58 .64	. 47
Ø	Breaking length	<u>N</u>		5.6 8.8 11.0	3.7 11.3 11.0		4.1 7.3 9.2	2.5 6.5 8.0		5.1 8.4 10.4	3.4 8.4 9.7
properties	Tear			124.0 125.0 124.5	65.5 88.5 103.0		85.6 133.0 140.5	61.5 118.0 129.0		113.8 143.0 140.0	80.5 133.0 127.5
Handsheet	Burst factor			22.0 48.5 68.0	11.5 40.0 55.0		14.6 55.0 61.0	8.5 31.0 49.0		20.0 47.0 65.0	12.5 45.0 61.0
Ha	Beating time	Min		0 16 30	0 24 43		0 23 45	0 29 47		0 22 42	0 32 55
	Freeness (Canadian Standard)	W	MIXTURE A	670 550 350	725 550 350	MIXTURE B	690 550 350	730 550 350	MIXTURE C	675 550 350	730 550 350
	Fibers per gram	x10-5		90°5	:		77.3	:		70.3	1
Pulp properties	Coarse- ness	Mg/100 m		11.4	:		12.9	ł		13.9	1
Pulp pr	Average fiber length	製		1.12	1		1.18	!		1.23	1
	Kappa number			24.5	67.5		23.3	56.7		23.4	55.3
Digochion	No.			6078X	X8809		6081X	6083X		X0809	0084X

Table 6.--NSSC pulping of Colombian hardwood mixtures

Chip	Digestion	Chemic	als char	ged ² /	Time at	Spent li	Lquor	Yield ² /
mixture	No.	Na ₂ SO ₃	Na ₂ CO ₃	NaOH	175° C	Na ₂ SO ₃	рН	11e1d
		Pct	Pct	Pct	Min	G/1		Pct
A	2536Y	16.0	4.0	0	90	15.0	8.5	74.0
В	2541Y	16.0	4.0	0	120	14.6	8.6	75.2
С	2540Y	16.0	4.0	0	105	13.8		74.3
A	2545Y	16.0	4.0	3.0	70	13.1	9.8	73.2
<u>(2)</u>	2544Y	16.0	4.0	2.0	75	16.6	9.4	74.0
(<u>3</u>)	2543Y	16.0	4.0	1.0	75	14.4	8.6	74.2
(<u>4</u>)	2542Y	16.0	4.0	0	45	17.8	7.9	74.4
A	2546Y	16.0	4.0	0	215	7.0	8.8	69.2
A	2548Y	22.0	5.5	0	255	12.9	9.3	66.1

^{1/} Constant conditions used were 3.5-to-1 water-to-wood ratio, 15-min presteaming at 15 lb/in²g, and 120-min rise from 80° to 175° C.

 $[\]frac{2}{}$ Contains 14 species with specific gravity at or less than 0.692. $\frac{3}{}$ Contains 10 species with specific gravity at or less than 0.547. $\frac{4}{}$ Contains 4 species with specific gravity at or less than 0.372.

Table 7.--Handsheet properties of neutral sulfite, kraft, and green liquor semichemical pulps and kraft screenings made from mixtures of Colombian hardwoods

Chip mixture	Pulping process	Diges- tion No.	Pulp yield	Freeness (Canadian Standard)	Basis weight	Thick- ness	Burst factor	Tear factor	Breaking length	Apparent density	Ring	Concora
			Pct	MI LI	Lb/1,000 ft ² OF MIXTURE	MI1s COMPOSITION	TION		ΣI	G/cm ³	97	97
CBA	NSSC do	2536Y 2541Y 2540Y	74.0 75.2 74.3	350 370 325	26.0 26.2 26.3	10.6 11.2 10.7	21.5 19.1 20.8	60.6 59.7 56.6	4,785 4,380 4,540	0.42	55.4 50.0 57.8	56.8 46.6 58.4
CBA	Kraft screeningsdo	6088X 6083X 6084X	27.0 19.0 21.2	345 375 360	27.2 26.9 26.8	9.6 10.2 8.4	37.6 28.9 38.6	97.0 71.5 109.6	7,060 5,580 6,810	. 49	66.2 58.4 70.8	71.2 59.8 67.2
			EFFE	EFFECTS OF WOOD	DENSITY	AND CAUS	AND CAUSTIC ADDITION	LION				
⊲ ଏ ମିତାର	NSSC NSSC + 3% NaOH NSSC + 2% NaOH NSSC + 1% NaOH NSSC	2536Y 2545Y 2544Y 2543Y 2542Y	74.0 73.2 74.0 74.2	350 340 380 355 380	26.0 26.5 26.7 25.9 26.1	10.6 9.5 9.8 9.7	21.5 29.2 26.4 28.1 32.5	60.6 67.4 70.1 64.7 67.1	4,785 5,895 5,540 5,830 6,485	. 42 . 48 . 47 . 46	55.4 63.8 64.8 66.4 72.4	56.8 66.0 62.0 64.2 65.6
				щ	EFFECTS OF	YIELD						
444	op	2536Y 2546Y 2548Y	74.0 69.2 66.1	350 345 350	26.0 27.3 28.2	10.6 9.8 10.1	21.5 27.2 30.1	60.6 78.0 70.4	4,785 5,925 6,140	. 48	55.4 67.0 68.6	56.8 67.6 75.6
4444	Kraftdo do Green liquor	6124X 6119X 6089X 6095X 6096X	58.8 65.8 69.0 72.6	340 350 340 365 335	25.9 26.2 26.3 26.5	9.6 10.5 10.9 11.7	34.8 22.6 16.9 13.9	111.2 75.6 59.5 42.6 54.9	6,795 5,080 4,115 3,325 4,005	.47 .43 .42 .39	44.4 39.6 44.4 41.0 50.2	69.4 55.0 47.0 38.8 48.0

1/ Contains 14 species with specific gravity at or less than 0.692. 2/ Contains 10 species with specific gravity at or less than 0.547. 3/ Contains 4 species with specific gravity at or less than 0.372.

Table 8.--Handsheet properties of unbleached and bleached pilot-scale kraft pulps from mixture A of Colombian hardwoods and bleached kraft market pulps from North American hardwoods

		Ha	ndsheet	Handsheet properties	S		Pulp pr	Pulp properties
Kraft pulp type	Freeness (Canadian Standard)	Beating time	Burst factor	Tear factor	Breaking length	Apparent density	Bright- ness	Viscosity
	MI	Min			〗	G/cm ³	Pct	c.P.
Unbleached	625	0	27.0	122.2	6.3	0.57	;	1
	550	10	45.0	117.0	8.5	.61	1	i
	350	25	63.0	108.0	10.4	.67	1	+
BleachedCEDED	575	0	19.0	109.0	4.2	. 58	86.0	10.2
	550	5	28.0	114.0	5.4	.61	1	;
	350	24	53.0	118.0	8.1	. 68	1	1 0
BleachedCEDED	615	0	13.6	94.2	3.4	. 56	;	;
(paper machine	550	12	23.5	123.0	4.9	09°	1	1
dried)	350	32	45.5	113.0	7.5	.67	1	;
Bleached market pulp	089	0	10.6	9°66	3.0	.55	89.4	11.2
(Southern U.S.	550	18	35.5	117.0	6.4	.64	1	1
hardwoodsdried)	350	35	55.0	110.0	8.1	69.	1	1
Bleached market pulp	565	0	12.1	72.1	2.7	09°	88.9	11.2
(eastern Canadian	550	က	14.0	73.0	3.1	.61	!	!
hardwoodsdried)	350	36	37.0	81.0	6.1	.71	1	•

