```
# Print the classification report
print("\nClassification Report:")
print(classification_report(y_test, y_pred, target_names=iris.target_names))

# Print the confusion matrix
print("\nConfusion Matrix:")
cm = confusion_matrix(y_test, y_pred)
print(cm)

# Visualize the confusion matrix
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=iris.target_names, yticl
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
```

 $\overline{2}$

Classification Report:

	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	10
versicolor	1.00	1.00	1.00	9
virginica	1.00	1.00	1.00	11
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30

Confusion Matrix:

[[10 0 0] [0 9 0] [0 0 11]]

