Nome .	
-	
Matricola	

Architettura degli Elaboratori

Corso di Laurea in Informatica Appello 31 Gennaio 2014

1. (4 punti) Si consideri lo statement di alto livello $w=x^3+y+(z/x)^2$. Si traduca lo statement in una sequenza di istruzioni assembly nel modello registro-registro. Si assuma la presenza di quattro registri general purpose RA, RB, RC, RD. Si commentino le operazioni con la corrispondente notazione simbolica. Si assumano le variabili intere x, y, z disponibili nelle locazioni di memoria di indirizzi simbolici X, Y e Z, rispettivamente. Si assuma che la variabile w sia indirizzabile tramite l'indirizzo simbolico W.

	Istruzioni	Notazione Sim-		Istruzioni	Notazione Sim-
		bolica			bolica
1			7		
2			8		
3			9		
4			10		
5			11		
6			12		

		I II			1
6			12		
le segue che cias più disc	enti caratteristiche: cun file debba esser chi, calcolare il nun	32 piatti, 1024 tracce, re memorizzato su uno	512 s ed un	ettori e settori da 1 solo disco e che nor	o più dischi rigidi aventi 1024 byte. Supponendo n possa essere diviso tra file e la quantità totale
Numero	o dischi:		Spaz	xio libero:	
che essa di dime	a sia composta da <i>d</i> ensione 512 MiB, 25	ue banchi identici e che 66 MiB e 256 MiB con j	e ogni paralle	banco sia formato, elismo del byte.	ia da 2 GiB assumendo nell'ordine, da integrati
SEL1:		bit.int	SE	L4:	bit.int
SEL2:		bit.int	_ SE	L5:	bit.int
SEL3:		bit.int	_ SE	L6:	bit.int
32bit, d	lotata di stack e de	i registri BP ed SP:		-	nzioni su una macchina
azioni:	,	tenuto del registro AX MOV AX,10; PUSH AX			uente sequenza di oper- PUSH AX; POP AX

6. (3 punti) Sia dato un calcolatore, con frequenza di clock $f_{ck} = 2.0$ GHz, in grado di eseguire i 5 tipi diversi di operazioni descritte in tabella, ognuna delle quali viene eseguita in un certo numero medio di cicli di clock (c_i) . Sia dato un programma P che esegue ognuna delle operazioni in figura un certo numero X_i di volte.

i	Istruzione	c_i	X_i
1	ADD	10	$22 \cdot 10^{6}$
2	MUL	14	$12 \cdot 10^{6}$
3	MEM	6	$14 \cdot 10^6$
4	JUM	15	$9 \cdot 10^{6}$
5	DIV	18	$3 \cdot 10^{6}$

(Ja.	lco.	lare:			

(a) il numero effettivo di istruzioni macchina eseguite da P	
(b) il numero di cicli di clock del programma P	
(c) il numero medio di clock per istruzione di macchina C_{PI}	
(d) il tempo di esecuzione del programma P (in millisecondi)	

7.	(2 punti) In riferimento all'esercizio precedente, dato il tempo di esecuzione di P , si supponga
	di poter apportare un miglioramento che produce un'accelerazione di un generico componente
	hardware pari ad $a=2$. Calcolare la frequenza di utilizzo (f_u) e di inutilizzo (f_i) del componente
	in modo che risulti una accelerazione complessiva del sistema pari a $a_q = 1.4$. Fornire il tempo di
	esecuzione t_n di P (in millisecondi) sul sistema risultante.

(a)	$f_u =$	 $f_i =$	
(b)	$t_n = 1$		

- 8. (3 punti) Si consideri una gerarchia di memoria a tre livelli in cui: (a) il tempo medio di accesso al livello più alto t_{c1} è pari a 4 ns; (b) il tempo medio di accesso al livello intermedio t_{c2} è pari a 18 ns; (c) il tempo medio di accesso al livello più basso t_{c3} è pari a 80 ns; (d) il tasso di hit del livello più alto h_1 è pari a 0.8; (e) il tasso di hit del livello intermedio h_2 è pari a 0.7. Si calcoli il tempo complessivo medio di accesso alla gerarchia, in nanosecondi.

 Risposta:
- 9. (6 punti) Si forniscano i segnali di controllo temporizzati della fase di execute di una generica istruzione \mathbf{OP} \mathbf{RA} , \mathbf{RB} , \mathbf{VAR} che ha l'effetto di copiare la somma del contenuto del registro RA e della locazione di memoria di indirizzo VAR nella locazione di memoria il cui indirizzo è contenuto nel registro RB, assumendo che, nel formato in linguaggio macchina, l'istruzione occupi 32 bit organizzati, in ordinamento little-endian, come segue: i 6 bit più significativi dedicati al codice operativo, i 10 bit successivi alla specifica dei registri RA ed RB, e i 16 bit meno significativi alla codifica dell'indirizzo simbolico VAR. Si assuma che la fase di fetch termini al ciclo T3 e che la memoria risponda in \mathbf{due} cicli di clock. Si tenga in considerazione la direzionalità del registro di trasferimento dati e si assumano parole allineate da 32 bit ed una organizzazione interna a singolo bus.

$oxed{T}$	Segnali di Controllo	T	Segnali di Controllo

<u>ATTENZIONE</u>: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.