Rotational Motion

Circle movement

Rotating Objects?

- Wheel
- Disk
- Sphere
- Lots of things can rotate!

Variables

Angular displacement (θ): Change in Angle

Angular velocity (ω): Change in angle of time

Angular acceleration (α): Change of angular velocity over time

Radius (r): How far away something is

Moment of Inertia (I): like mass but for rotating objects

These are Awfully Similar to Kinematics...

- Everything has a linear equivalent!
- Kinematic equations still apply
- A horizontally mounted wheel is initially at rest, and then begins to accelerate constantly until it has reached an angular velocity 10 pi after 5 complete revolutions. What was the angular acceleration of the wheel?

Equations

1.
$$\omega = \omega_0 + \alpha t$$

2.
$$heta= heta_0+\omega_0 t+rac{1}{2}lpha t^2$$

3.
$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$$

2.
$$\theta=\theta_0+\omega_0t+\frac{1}{2}\alpha t^2$$
3. $\omega^2=\omega_0^2+2\alpha(\theta-\theta_0)$
4. $\theta-\theta_0=\frac{1}{2}(\omega_0+\omega)t$

More Kinematic and Rotational Connections

•	r*∆6	9 =Δx
---	------	------------------

- r*ω=v
- r*α=a
 - Units?
 - Radians!

$v=\omega r$	v is linear speed, ω is angular speed, and r is radius	The linear speed is proportional to the angular speed and the radius.
$a_t = lpha r$	a_t is tangential acceleration	The tangential acceleration is

acceleration and the radius.

• What is the acceleration of a point a distance of 3m away from the rotational point and an angular acceleration of 3 rad/s²?

Moment of Inertia

- Rotational Mass
- Equations depend on shape
 - Why it is harder to rotate an unfilled hoop
 - https://www.youtube.c om/watch?v=CHQOctE vtTY
 - Our Units?

Practice Question

- What is the moment of inertia of a sphere with mass 6kg and radius 5m?
- What about a solid cylinder?
- Or a spherical shell?

Angular Momentum

- Momentum has a rotational equivalent!
- Angular momentum (L)
 - Momentum is usually p=mv
 - Rotational equivalents
 - Also L=mvr for a point
- Why is this useful?
 - Conservation of angular momentum!
 - Angular Impulse...
 - Torque!

Torque

- Force has a rotational equivalent!
- Torque (τ)
 - Rotational Force
 - Force is usually F=ma
 - Rotational equivalents?
 - \circ Torque is also τ =Fd=I α
 - Torques cause rotation!
 - Output
 Units?
- Rotational Impulse
 - Linear impulse, Ft
 - o Rotational equivalents?

What is Torque?

Torque is defined as the Force that is applied TANGENT to the circle and at some lever arm distance causing rotation around a specific point.

Practice

A figure skater spins at a rate of 4 revolutions/second with her arms outstretched. Her rotational inertia is 2 kg m². When she pulls her arms in, her rotational inertia is 0.64 kg m².

What is her initial angular momentum?

What will be her angular velocity after her arms are pulled in?

A flywheel is a solid disk with a mass of 10 kg and a radius of 2 meters. What torque is necessary to accelerate the flywheel from 20 revolutions/minute to 50 revolutions/minute in 10 seconds?

$$(I=\frac{1}{2}*m*r^2)$$

Energy

- Rotational motion has energy!
 - Linear Kinetic energy is $\frac{1}{2}$ * m^*v^2
 - Rotational equivalents?
- What is the rotational energy of a wheel with moment of inertia of 3 kg*m² and angular velocity of 2 rad/s?

Centripetal Acceleration

https://www.youtube.com/watch?v=bpFK2VCRHUs

$$a_c = rac{v^2}{r}$$

- Units?
- What is the centripetal acceleration of an object with a velocity of 6 m/s rotating at a radius of 3m?

Review Videos

https://www.youtube.com/watch?v=fmXFWi-WfyU

https://www.youtube.com/watch?v=b-HZ1SZPaQw