Graphs: Concepts, Representation and Examples

Jussara M Almeida

Lecture slides by Kevin Wayne Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

3. GRAPHS

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- DAGs and topological ordering

Undirected graphs - grafe

Notation. G = (V, E)

- V = nodes (or vertices)
- E = edges (or arcs) between pairs of nodes.
- · Captures pairwise relationship between objects.
- Graph size parameters: n = |V|, m = |E|.

$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$E = \{ 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6, 7-8 \}$$

$$m = 11, n = 8$$

One week of Enron emails

Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.

Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle is proportional to the person's body-mass index. The interior color of the circles indicates the person's obesity status: yellow denotes an obese person (body-mass index, ≥30) and green denotes a nonobese person. The colors of the ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange denotes a familial tie.

Directed graph + 0. graficos directorals aportan para uma direção professoral lisa direção este ma orestar, uma relação entre dois verticaes

Directed graph: Asymetric relationship between two nodes; edges have direction

Direction may capture dependencies

CS Prerequisite Chart

Weighted graph

les grafo possi pesos poro relacionen os oresta captura do a força desa relação

Weights assigned to edges capture strength of relationship.

Weighted graph

Os pesos pode ser alcibido dos varleis

Weights may be assigned to nodes

Node: character

Edge: two characters mentioned within

15 words in book

Size of node: importance (PageRank)

Size of label: importance (betweenness)

Node color: community

Weighted graph

Network of Thrones

Source: A. Beveridge and J. Shan, "Network of Thrones," Math Horizons Magazine, Vol. 23, No. 4 (2016), pp. 18-22

Some graph applications

graph	node	edge		
communication	telephone, computer	fiber optic cable		
circuit	gate, register, processor	wire		
mechanical	joint	rod, beam, spring		
financial	stock, currency	transactions		
transportation	street intersection, airport	highway, airway route		
internet	class C network			
game	board position	legal move		
social relationship	person, actor	friendship, movie cast		
neural network	neuron	synapse		
protein network	protein	protein-protein interaction		
molecule	molecule atom			

Graph traversal o transport, entre os renteces, conectanda os por areta una das operações mois fundamentais, One of the most fundamental graph operations is that of traversing a

- sequence of nodes connected by edges
 - Ex: user browsing Web pages
 - Rumor passing by word-of-mouth
 - Airline passenger with multiple connections

Transportation networks: Small number of hubs; short paths between cities

Paths and connectivity

Def. A path in an undirected graph G = (V, E) is a sequence of nodes $v_1, v_2, ..., v_k$ with the property that each consecutive pair v_{i-1}, v_i is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Connectivity in directed graphs

In a directed path, it is possible for u to have a path to v, while v has no path to u

There is a path from B to every other node; There is no path from any node back to B

Connectivity in directed graphs

A directed graph is strongly connected if, for every two nodes u and v,

- there is a path from u to v and
- there is a path from v to u

Connected components

A connected component of an undirected graph G = (V, E) is a subgraph
 G' = (V', E'), where V' ⊂ V and E' ⊂ E such that, for every u, v ∈ V', there is a path between u and v in G.

Connected components

A connected component of an undirected graph G = (V, E) is a subgraph
 G' = (V', E'), where V' ⊂ V and E' ⊂ E such that, for every u, v ∈ V', there is a path between u and v in G.

Connected components

Figure 4: Group networks (nodes are groups and edges connect groups with users in common).

Figure 5: User network (nodes are users and edges connect users with group in common. Subgraph of election period).

Strongly connected components

A strongly connected component of a directed graph G = (V, E) is a subgraph G' = (V', E'), where V' ⊂ V and E' ⊂ E such that, for every u, v ∈ V', there are paths between u and v and between v and u in G.

Strongly connected components

A strongly connected component of a directed graph G = (V, E) is a subgraph G' = (V', E'), where V' ⊂ V and E' ⊂ E such that, for every u, v ∈ V', there are paths between u and v and between v and u in G.

Cycles

Def. A cycle is a path v_1 , v_2 , ..., v_k in which $v_1 = v_k$, k > 2, and the first k - 1 nodes are all distinct.

me ceso de une solte complete

cycle C = 1-2-4-5-3-1

Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third:

- G is connected. \bigcirc
- G does not contain a cycle.
- G has n-1 edges. Q

g - outs

Deleting any edge from a tree will disconnect it!

Any tree with n nodes has exactly n-1 edges

Rooted trees

Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

Phylogeny trees

Describe evolutionary history of species.

Isomorphic graphs

- Two graphs that contain the same number of vertices connected in the same way are said to be isomorphic
- Formally: two graphs G and H, both with vertices V = {1, 2, ..., n}, are isomorphic if there exists a permutation p of V such that (u,v) is an edge in G if and only if (p(u), p(v)) is an edge in H

Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- · Two representations of each edge.
- Space proportional to n².
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

grofor pode ser representados de formos defendes

	1	2	3	4	5	6	7	8	
1	0	1	1	0	0	0	0	0	
2	1	0	1	1	1	0	0	0	
3	1	1	0	0	1	0	1	1	
4	0	1	0	0	1	0	0	0	
5	0	1	1	1	0	1	0	0	
6	0	0	0	0	1	0	0	0	
7	0	0	1	0	0	0	0	1	
8	0	0	1	0	0	0	1	0	

Graph representation: adjacency lists

flists

Con as puncipos defete

Adjacency lists. Node-indexed array of lists.

· Two representations of each edge.

- Space is $\Theta(m+n)$.
- Checking if (u, v) is an edge takes O(degree(u)) time.
- Identifying all edges takes $\Theta(m+n)$ time.

degree = number of ne