BAYESIAN LEARNING

Bayesian reasoning provides a probabilistic approach to inference. It is based on the assumption that the quantities of interest are governed by probability distributions and that optimal decisions can be made by reasoning about these probabilities together with observed data

INTRODUCTION

Bayesian learning methods are relevant to study of machine learning for two different reasons.

- 1. Bayesian learning algorithms that calculate explicit probabilities for hypotheses, such as the naive Bayes classifier, are among the most practical approaches to certain types of learning problems
- 2. is that they provide a useful perspective for understanding many learning algorithms that do not explicitly manipulate probabilities.

Features of Bayesian Learning Methods

- Each observed training example can incrementally decrease or increase the estimated probability that a hypothesis is correct. This provides a more flexible approach to learning than algorithms that completely eliminate a hypothesis if it is found to be inconsistent with any single example
- Prior knowledge can be combined with observed data to determine the final probability
 of a hypothesis. In Bayesian learning, prior knowledge is provided by asserting (1) a
 prior probability for each candidate hypothesis, and (2) a probability distribution over
 observed data for each possible hypothesis.
- Bayesian methods can accommodate hypotheses that make probabilistic predictions
- New instances can be classified by combining the predictions of multiple hypotheses, weighted by their probabilities.
- Even in cases where Bayesian methods prove computationally intractable, they can
 provide a standard of optimal decision making against which other practical methods
 can be measured.

Practical difficulty in applying Bayesian methods

- One practical difficulty in applying Bayesian methods is that they typically require
 initial knowledge of many probabilities. When these probabilities are not known in
 advance they are often estimated based on background knowledge, previously available
 data, and assumptions about the form of the underlying distributions.
- A second practical difficulty is the significant computational cost required to determine the Bayes optimal hypothesis in the general case. In certain specialized situations, this computational cost can be significantly reduced.

BAYES THEOREM

Bayes theorem provides a way to calculate the probability of a hypothesis based on its prior probability, the probabilities of observing various data given the hypothesis, and the observed data itself.

Notations

- P(h) prior probability of h, reflects any background knowledge about the chance that h is correct
- P(D) prior probability of D, probability that D will be observed
- P(D|h) probability of observing D given a world in which h holds
- •P(h|D) posterior probability of h, reflects confidence that h holds after D has been observed

Bayes theorem is the cornerstone of Bayesian learning methods because it provides a way to calculate the posterior probability P(h|D), from the prior probability P(h), together with P(D) and P(D|h).

Bayes Theorem:

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- •P(h|D) increases with P(h) and with P(D|h) according to Bayes theorem.
- •P(h|D) decreases as P(D) increases, because the more probable it is that D will be observed independent of h, the less evidence D provides in support of h

Maximum a Posteriori (MAP) Hypothesis

- In many learning scenarios, the learner considers some set of candidate hypotheses H
 and is interested in finding the most probable hypothesis h ∈ H given the observed data
 D. Any such maximally probable hypothesis is called a maximum a posteriori (MAP)
 hypothesis.
- Bayes theorem to calculate the posterior probability of each candidate hypothesis is h_{MAP} is a MAP hypothesis provided

$$h_{MAP} = \underset{h \in H}{argmax} \ P(h|D)$$

$$= \underset{h \in H}{argmax} \ \frac{P(D|h)P(h)}{P(D)}$$

$$= \underset{h \in H}{argmax} \ P(D|h)P(h)$$

P(D) can be dropped, because it is a constant independent of h

Maximum Likelihood (ML) Hypothesis

- In some cases, it is assumed that every hypothesis in H is equally probable a priori
 (P(h_i) = P(h_j) for all h_i and h_j in H).
- In this case the below equation can be simplified and need only consider the term P(D|h)
 to find the most probable hypothesis.

$$h_{MAP} = \underset{h \in H}{\operatorname{argmax}} P(D|h)P(h)$$

the equation can be simplified

$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} P(D|h)$$

P(D|h) is often called the likelihood of the data D given h, and any hypothesis that maximizes P(D|h) is called a maximum likelihood (ML) hypothesis

Consider a medical diagnosis problem in which there are two alternative hypotheses: (1) that the patient has particular form of cancer, and (2) that the patient does not. The available data is from a particular laboratory test with two possible outcomes: + (positive) and - (negative).

- We have prior knowledge that over the entire population of people only .008 have this
 disease. Furthermore, the lab test is only an imperfect indicator of the disease.
- The test returns a correct positive result in only 98% of the cases in which the disease is
 actually present and a correct negative result in only 97% of the cases in which the
 disease is not present. In other cases, the test returns the opposite result.
- The above situation can be summarized by the following probabilities:

$$P(cancer) = .008$$
 $P(\neg cancer) = 0.992$ $P(\oplus | cancer) = .98$ $P(\ominus | cancer) = .02$ $P(\oplus | \neg cancer) = .03$ $P(\ominus | \neg cancer) = .97$

Suppose a new patient is observed for whom the lab test returns a positive (+) result. Should we diagnose the patient as having cancer or not?

$$P(\oplus|cancer)P(cancer) = (.98).008 = .0078$$

 $P(\oplus|\neg cancer)P(\neg cancer) = (.03).992 = .0298$
 $\Rightarrow h_{MAP} = \neg cancer$

The exact posterior probabilities can also be determined by normalizing the above quantities so that they sum to 1

$$P(cancer | \oplus) = \frac{0.0078}{0.0078 + 0.0298} = 0.21$$

$$P(\neg cancer | \oplus) = \frac{0.0298}{0.0078 + 0.0298} = 0.79$$

Basic formulas for calculating probabilities are summarized in Table

• Product rule: probability $P(A \wedge B)$ of a conjunction of two events A and B

$$P(A \wedge B) = P(A|B)P(B) = P(B|A)P(A)$$

• Sum rule: probability of a disjunction of two events A and B

$$P(A \vee B) = P(A) + P(B) - P(A \wedge B)$$

Bayes theorem: the posterior probability P(h|D) of h given D

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

• Theorem of total probability: if events A_1, \ldots, A_n are mutually exclusive with $\sum_{i=1}^n P(A_i) = 1$, then

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

BAYES THEOREM AND CONCEPT LEARNING

What is the relationship between Bayes theorem and the problem of concept learning?

Since Bayes theorem provides a principled way to calculate the posterior probability of each hypothesis given the training data, and can use it as the basis for a straightforward learning algorithm that calculates the probability for each possible hypothesis, then outputs the most probable.

Brute-Force Bayes Concept Learning

Consider the concept learning problem

- Assume the learner considers some finite hypothesis space H defined over the instance space X, in which the task is to learn some target concept c : X → {0,1}.
- Learner is given some sequence of training examples ((x₁, d₁) . . . (x_m, d_m)) where x_i is some instance from X and where d_i is the target value of x_i (i.e., d_i = c(x_i)).
- The sequence of target values are written as D = (d₁ . . . d_m).

We can design a straightforward concept learning algorithm to output the maximum a posteriori hypothesis, based on Bayes theorem, as follows:

BRUTE-FORCE MAP LEARNING algorithm:

1. For each hypothesis h in H, calculate the posterior probability

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

2. Output the hypothesis h_{MAP} with the highest posterior probability

$$h_{MAP} = \underset{h \in H}{argmax} P(h|D)$$

In order specify a learning problem for the BRUTE-FORCE MAP LEARNING algorithm we must specify what values are to be used for P(h) and for P(D|h)?

Let's choose P(h) and for P(D|h) to be consistent with the following assumptions:

- **1.** The training data D is noise free (i.e., $d_i = c(x_i)$).
- The target concept c is contained in the hypothesis space H.
- We have no a priori reason to believe that any hypothesis is more probable than any other.

What values should we specify for P(h)?

- Given no prior knowledge that one hypothesis is more likely than another, it is reasonable to assign the same prior probability to every hypothesis h in H.
- Assume the target concept is contained in H and require that these prior probabilities sum to 1.

$$P(h) = \frac{1}{|H|} \text{ for all } h \in H$$

What choice shall we make for P(D|h)?

- P(D|h) is the probability of observing the target values D = (d₁ . . . d_m) for the fixed set of instances (x₁ . . . x_m), given a world in which hypothesis h holds
- Since we assume noise-free training data, the probability of observing classification d_i given h is just 1 if d_i = h(x_i) and 0 if d_i ≠ h(x_i). Therefore,

$$P(D|h) = \begin{cases} 1 & \text{if } d_i = h(x_i) \text{ for all } d_i \in D \\ 0 & \text{otherwise} \end{cases}$$

Given these choices for P(h) and for P(D|h) we now have a fully-defined problem for the above BRUTE-FORCE MAP LEARNING algorithm.

Recalling Bayes theorem, we have

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

Consider the case where h is inconsistent with the training data D

$$P(h|D) = \frac{0 \cdot P(h)}{P(D)} = 0$$

The posterior probability of a hypothesis inconsistent with D is zero

Consider the case where h is consistent with D

$$P(h|D) = \frac{1 \cdot \frac{1}{|H|}}{P(D)} = \frac{1 \cdot \frac{1}{|H|}}{\frac{|VS_{H,D}|}{|H|}} = \frac{1}{|VS_{H,D}|}$$

Where, VS_{H,D} is the subset of hypotheses from H that are consistent with D

To summarize, Bayes theorem implies that the posterior probability P(h|D) under our assumed P(h) and P(D|h) is

$$P(D|h) = \begin{cases} \frac{1}{|V | S|_{H,D}|} & \text{if h is consistent with D} \\ 0 & \text{otherwise} \end{cases}$$

 $VS_{H,D}$ is the subset of hypotheses from H that are consistent with D (i.e., $VS_{H,D}$ is the version space of H with respect to D as defined in Chapter 2). It is easy to verify that $P(D) = \frac{|VS_{H,D}|}{|H|}$ above, because the sum over all hypotheses of P(h|D) must be one and because the number of hypotheses from H consistent with D is by definition $|VS_{H,D}|$. Alternatively, we can derive P(D) from the theorem of total probability (see Table 6.1) and the fact that the hypotheses are mutually exclusive (i.e., $(\forall i \neq j)(P(h_i \land h_j) = 0)$)

$$P(D) = \sum_{h_i \in H} P(D|h_i) P(h_i)$$

$$= \sum_{h_i \in VS_{H,D}} 1 \cdot \frac{1}{|H|} + \sum_{h_i \notin VS_{H,D}} 0 \cdot \frac{1}{|H|}$$

$$= \sum_{h_i \in VS_{H,D}} 1 \cdot \frac{1}{|H|}$$

$$= \frac{|VS_{H,D}|}{|H|}$$

The Evolution of Probabilities Associated with Hypotheses

- Figure (a) all hypotheses have the same probability.
- Figures (b) and (c), As training data accumulates, the posterior probability for inconsistent hypotheses becomes zero while the total probability summing to 1 is shared equally among the remaining consistent hypotheses.

