Конспекты по математическому анализу

Анатолий Коченюк, Георгий Каданцев, Константин Бац

2022 год, семестр 4

1 Повторение

Задачи и темы, которые мы будем обсуждать в новом семестре: многообразия, дифференциальные формы на них, криволинейные интегралы, интегралы от параметров, формула Стокса, формула Остроградского, γ -, β -функции.

Интеграл от функции произвольного знака это разность интегралов компонент. В случаях, когда оба слогаемых не бесконечные, такая разность имеет смысл.

Интеграл комплекснозначной функции это сумма интегралов вещественных компонент функции.

$$\int_E f d\mu = \int_E \operatorname{Re} f d\mu + \int_E \operatorname{Im} f d\mu$$

Монотонность интеграла.

$$\int_{E} (f_1 + f_2) \geqslant \int_{E} f_1 = \infty$$

Теорема 1 (Теорема Леви для последовательности). Если f_n неотрицательные измеримые на E функции и $f_n \uparrow f$ возрастая сходится поточечно к f, то

$$\lim_{E} \int_{E} f_{n} d\mu = \int \lim_{E} f_{n} d\mu = \int f d\mu$$

Теорема 2 (Теорема Леви для рядов). Если f_n неотрицательные измеримые на E функции, то интеграл от ряда совпадает с суммой ряда из интегралов.

$$\int_{E} \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} = \sum_{n=1}^{\infty} \int_{E} f_n d\mu$$

Доказательство. Пусть
$$S_n(x) = \sum_{n=1}^\infty f_n(x)$$
 — частичная сумма. $S(x) = \sum_{n=1}^\infty f_n(x) = \lim_{n \to \infty} S_n(x)$

Пример. Функция, которая не удовлетворяет условиям теоремы Леви:

$$f_k(x) = \xi_{\lceil k, k+1 \rceil}(x)$$

$$\int_{[0,+\infty]} f_k(x) d\mu = \int_{[k,k+1]} f_k(x) d\mu = 1$$
$$\int f(x) d\mu = \int_{[0,+\infty]} 0 d\mu = 0$$

Замечание. 1. Для $f \in S(E)$ $|f| \in L(E,\mu)$ тогда и только тогда, когда $f \in L(E,\mu)$.

2. Если интеграл $\int_E f d\mu$ определен, то $\int_E |f| d\mu \geqslant |\int_E f d\mu|.$

Отсутпление про суммируемую мажоранту.

Если функция имеет суммируемую мажоранту, то сама она является суммируемой.

... $L_1(E,\mu)$: две функиции эквивалентны по мере на E, если они совпадают почти везде на E. Другими словами, мера подмножества E, на котором функции принимают разные значения, равна

$$||f||_1 = \int_E |f| d\mu$$

Элементы $L_1(E,\mu)$ могут быть определены не на всём E целиком, но на множестве полной меры.

$$|f + g| \le |f| + |g|$$

Эта норма невырожденная. Если $f \in S_+(E)$ и f = 0, то f = 0 почти всюду на E.

Теорема 3 (Счётная аддитивность интеграла). Пусть $f \in S(E)$ $E = \bigcup_{k=1}^{\infty} E_k, E_k \in ?,$ определн $\int_E f d\mu$. Тогда

$$\int_E f d\mu = \sum_{k=1}^\infty \int_{E_k} f d\mu$$

Доказательство. ...

Теорема 4 (О приближении интеграла интегралом по множеству конечной меры). Пусть мера Eконечна и $f \in L(E, \mu)$ суммиурема. Тогда

$$\forall \epsilon > 0 \exists E_0 \subset E : \mu(E_0) < +\infty$$
и $\int_{E \setminus E_0} |f| d\mu < \epsilon$

Доказательство. Не умаляя общности $f\geqslant 0$ на E. Продложим f нулем вне E. $J(A)=\int_A f d\mu$ — мера. $E_K = E\{f > \frac{1}{k}\}, \, E_* = E\{f > 0\} = \bigcup_{k=1}^\infty E_k.$ Непрерывность меры снизу E_k — множества конечной меры.

Научились приближать с любой точностью интеграл интегралом по множествам конечной меры.

Теорема Фато и теорема Лебега.

Теорема 5. Пусть f_k $inS_+(E)$ для всех $k\in\mathbb{N}$. Тогда $\varliminf_{k\in\infty}\leqslant\varliminf_{k}\int_E f_k(x)$. И если $f_k(x) \to f(x)$ на E, то $\int_E f(x) \leqslant \underline{\lim} \int_E f_k(x)$

Теорема 6 (Теорема Лебега о мажорированной сходимости). Пусть $f_n \to f$ сходится почти везде на E и $\Phi \in L(E,\mu)$: $\forall k \in \mathbb{N} |f_k| \leqslant \Phi$ почти везде на E. Тогда $f \in L(E,\mu)$ и $\lim_{k \to \infty} \int_E f d\mu$

Интеграл положительнозначной функции определяет меру. Интеграл функции это разность мер компонент. Такая разность называется заряд.

Теорема 7 (Фубини).

$$x = (x_1, \dots, x_k)$$
$$y = (y_1, \dots, y_m)$$
$$f(x, y) \in \mathcal{L}(E, \lambda_{k+m})$$
$$E \in \mathcal{A}_{k+m}$$

TO:

1. Для почти всех $x \in \mathbb{R}^k$ $g\left(\cdot\right) = f\left(x,\cdot\right) \in \mathcal{L}\left(E\left(x,\cdot\right)\right)$

2.
$$I(x) = \int_{E(x,\cdot)} f(x,y) d\lambda_m(y) \in \mathcal{L}(\mathbb{R}^k)$$

3.

$$\int_{E} f\left(x,y\right) d\lambda_{k+m}\left(x,y\right) = \int_{\mathbb{R}^{k}} \left(\int_{E\left(x,\cdot\right)} f\left(x,y\right) d\lambda_{m}(y) \right) d\lambda_{k}(x)$$

Пример. $E = A \times \{0\} \subseteq \mathbb{R}^{k+m}$ $0 \in \mathbb{R}^n$

A — неизмеримое в \mathbb{R}^k

E – измеримо в \mathbb{R}^{k+m}

 $Pr_x(E) = A$ — неизмеримое

Если $Pr_x(E)$ измеримо, то вместо интеграла по \mathbb{R}^k можно написать интеграл по проекции

Рис. 1: Переход в интегралу по проекции

Замечание. Если E – компактное или открытое, то $Pr_x(E)$ измеримо.

 $Pr_x(E) = \Phi(E)$, где $\Phi(x,y) \equiv x$ – отображение проектирования

Если E – компактное, то $\Phi(E)$ – компактное. Если открытое, то открытое.

Пример. 1.

$$\int_0^1 dx \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dy = I_1$$

$$\int_0^1 dy \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dx = I_2$$

Если интегралы существуют, то они антиравны.

$$I_1 = \int_0^1 \frac{y}{(x^2 + y^2)} \Big|_{y=0}^{y=1} dx = \int_0^1 \frac{1}{x^2 + 1} - 0 dx = \operatorname{arctg} x \Big|_0^1 = \frac{\pi}{4}.$$

Вывод: функция $f(x,y) \notin \mathcal{L}\left([0,1]^2, \lambda_2\right)$

2.

$$\int_{-1}^{1} dx \int_{-1}^{1} \frac{xy}{(x^2 + y^2)^2} dy$$
$$\int_{-1}^{1} dy \int_{-1}^{1} \frac{xy}{(x^2 + y^2)^2} dx$$

$$f \in \mathcal{L}^2\left([-1,1]^2\right) \iff |f| \in \mathcal{L}\left([-1,1]^2\right) \implies |f| \in \mathcal{L}\left([-1,1]^2\right)$$

$$\iint_{[0,1]^2} f\left(x,y\right) dy = \int_0^1 dx \int_0^1 \frac{xy}{\left(x^2 + y^2\right)^2} dx$$

<....>

Утверждение 7.1. Семейство называется суммируемым, если функция суммируема

Утверждение 7.2. Если семейство $(a_x)_{x\in X}$ суммируемо, то $\{x:a_x\neq 0\}$ – не более чем счётное.

Доказатель ство. Не умаляя общности $a_x\geqslant 0$ $+\infty>\int_X a_x dv=\int_{X_0} a_x dv>\int a_x dv\geqslant \frac{1}{j}\nu\left(x_j\right)\implies \nu(x_j)<+\infty$ $X_0=\bigcup_{j=1}^\infty X_j$ — не более, чем счётное

Утверждение 7.3. $\supset X$ – н.б.ч.с, Y – числовое множество, $(a_x)_{x\in X}\subseteq Y$ $\varphi:\mathbb{N}\to X$ Тогда (a_x) суммируемы $\iff \sum_{k=1}^\infty a_{\varphi(k)}$ сходится абсолютно.

2 Замена переменной в интеграле по мере

2.1 "Пересадка" меры

$$\begin{split} \Phi: X &\to Y \;. \; \exists \; (X,\mathcal{A},\mu) - \text{пространство с мерой.} \\ \mathcal{D} &= \left\{B \subseteq Y \middle| \Phi^{-1}(B) \in \mathcal{A} \right\} \\ \Phi^{-1} \left(\bigcap_{k=1}^{\infty} B_k \right) &= \bigcap_{k=1}^{\infty} \Phi^{-1}\left(B_k\right) \in \mathcal{A} \\ \nu\left(B\right) &= \mu\left(\Phi^{-1}\left(B\right)\right) \end{split}$$

Пример.
$$X = [0, 2\pi)$$
 $\mathcal{A} = \mathcal{A}_1 \cap [0, 2\pi)$ $\Phi(t \in X) = (\cos t, \sin t)$

Теорема 8 (Общая схема замены переменных). $\supset (X, \mathcal{A}, \mu)$ (Y, \mathcal{D}, ν)

 $\Phi: X \to Y$ – не портит измеримость.

$$\exists h \in S_+(X) : \forall B \in \mathfrak{D}$$

$$\nu(B) = \int_{\Phi^{-1}(B)} h d\mu$$

Тогда $\forall f \in f \in S(Y, \nu)$

$$\int_Y f d\nu = \int_X f\left(\Phi(x)\right) h(x) d\mu(x)$$

 \mathcal{A} оказатель ство. $f \circ \Phi$ — измерима?

 $X\{f\circ\Phi< a\}=\Phi^{-1}$ $(Y\{f< a\}).$ $Y\{f< a\}\in\mathcal{L},$ т.к. f измеримо. А тогда $\Phi^{-1}(\ldots)\in\mathcal{A}$ Совпадение интегралов:

1. f – ступенчатая, $f = \sum\limits_{k=1}^K C_k \chi_{D_k} \quad \{D_k\}$ – разбиение X

$$\int_{Y} f d\nu = \sum_{k=1}^{K} C_{k} \nu (D_{k}) = \sum_{k=1}^{K} C_{k} \int_{\Phi^{-1}(D_{k})} h d\mu =$$

$$= \int_{X} \left(\sum_{k=1}^{K} C_{k} \chi_{\Phi^{-1}(D_{k})} \right)$$

$$= \int_{X} f \circ \Phi(x) h(x) d\mu(x)$$

$$f \circ \Phi(x) = C_{k} \quad x \in \Phi^{-1}(D_{k})$$

$$f \circ \Phi(x) = C_k \quad x \in \Phi^{-1}(D_k)$$

$$\sum_{k=1}^K C_k \chi_{\Phi^{-1}(D_k)}(x) = C_k.$$

2. $f \in S_+(Y)$ $\exists \{g_i\}$ – ступенчатая небобратимая $g_i \uparrow f$

$$\int_{Y} f d\nu = \lim_{j \to \infty} \int_{Y} g_{j} d\nu = \lim_{j \to \infty} \int_{X} g_{j} \left(\Phi(x) \right) h(x) d\mu$$

$$= \int_{X} f \left(\Phi(x) \right) h(x) dm u(x).$$

3. Общий случай:

$$f = f_+ + f_-$$

$$\int_{Y} f d\nu = \int_{Y} f_{+} - \int_{Y} f_{-} d\mu = \int_{X} f_{+} (\Phi(x)) h(x) d\mu(x) - \int_{Y} f_{-} (\Phi(x)) h(x) d\mu(x)$$
$$= \int_{Y} f (\Phi(x)) h(x) d\mu(x) \quad (f (\Phi) h)_{+} = f_{+} (\Phi) h.$$

Следствие 8.1. $\supset (X, \mathcal{A}, \mu)$ (Y, \mathcal{D}, ν)

$$h \in S_+(X); \quad \Phi : X \to Y \quad \Phi^{-1}(\mathcal{D}) \subseteq \mathcal{A}$$

и выполняется условие теоремы общей замены переменной. Тогда $\forall E \subseteq \mathcal{D} \quad f \in S\left(E, \nu\right)$:

$$\int_E f(y) d\nu(y) = \int_{\Phi^{-1}(E) f(\Phi(x)) h(x) d\mu(x)}$$

Рассмотрим продолжение нулём f с E на Y

$$\int_E f d\nu = \int_Y (y) \chi_E(y) d\nu(y) = \int_X f\left(\Phi(x)\right) \underbrace{\chi_E\left(\Phi(x)\right)}) \chi_{\Phi^{-1}(E)} h(x) d\mu(x) = \int_{\Phi^{-1}(E)} f\left(\Phi(x)h(x)d\mu(x)\right).$$

Следствие 8.2 (частный случай 1). Если $h \equiv 1$ в условии теоремы.

 $(\forall E|in\mathcal{D} \quad \nu(E) = \int_{\Phi^{-1}(E)} d\mu = \mu\left(\Phi^{-1}\left(E\right)\right))$

мера ν при этом называется образом меры μ

$$\forall f \in S(E)$$
 $\int_{E} f d\nu = \int_{\Phi^{-1}(E)} f \circ \Phi(x) d\mu(x)$

Следствие 8.3 (Частный случай 2). X = Y $\Phi = id$ $\nu(E) = \int_E h(x) d\mu(x)$

< ... >

Теорема 9. $\sqsupset (X, \mathcal{A}, \mu)$ – пространство с мерой, $\Phi : X \to Y$ $h \in S_+(X)$ Следующие утверждения равносильны:

- 1. h плотность ν относительно μ
- 2. $\forall E \in \mathcal{A}$

$$\inf_{E} h\mu E \leqslant \nu(E) \leqslant \sup_{D} h\mu(E)$$

Доказатель ство. $I\iff \forall E\in\mathcal{A}\quad \nu(E)=\int_E hd\mu$ T.o. $I\implies II$

Теорема 10 (Критерий плотности). $\supset (X, A)$ – измеримое пространство, μ, ν – опр. (?) A $h \in S_+(X)$. Тогда следующие утверждения равносильны:

- 1. h плотность меры ν относительно μ ($\forall E \in \mathcal{A} \quad \nu(E) = \int_E h d\mu$)
- 2. $\forall E \in \mathcal{A}$

$$\inf_E h \cdot \mu(E) \leqslant d(E) \leqslant \sup_E h \cdot \mu(E)$$

Если $(X, \mathcal{A}, \mu) = (\mathbb{R}^n, \mathcal{A}, \lambda_n)$, тогда $1 \iff 3$:

3

$$\forall P \in \mathcal{P}_n \quad \inf_{P} h \cdot \mu(P) \leqslant \nu(P) \leqslant \sup_{P} h \cdot \mu(P)$$

 \mathcal{A} оказательство. План: $1 \implies 2 \implies 3$

 $2 \implies 1? \not\prec E \in \mathcal{A} \quad \nu(E) \stackrel{?}{=} \int_E h d\mu$

$$E = E\left\{h = 0\right\} \coprod E\left\{h = +\infty\right\} \coprod E\left\{0 < h < +\infty\right\}$$

$$\nu(E) = \nu(E\{h = 0\}) + \nu(E\{h = +\infty\}) + \nu(E\{0 < h < +\infty\})$$

$$\nu(E\{h = 0\}) \leqslant \sup_{E\{h = 0\}} = 0 = \int_{E\{h = 0\}} h d\mu$$

$$\nu(E\{h = +\infty\}) \leqslant h \cdot \mu(E) + \infty \cdot \mu(E) = \int_{E\{h = +\infty\}h d\mu}.$$

$$\begin{split} & \underbrace{\frac{1}{q}} \in (0,1), \ q > 1 \quad (0,+\infty) = \bigvee k \in \mathbb{Z}[q^k,q^{k+1}) \\ & E\{h \in (0,+\infty)\} = \bigvee E\{q^k \leqslant h < q^{k+1}\} \\ & q^k \mu(E_k) \leqslant \nu(E_k) \leqslant q^{k+1} \cdot \mu(E_k) \\ & q^k \mu(E_k) \leqslant \int h d\mu \leqslant q^{k+1} \cdot \mu(E_k) \\ & \frac{\nu(E_k)}{q} \leqslant q^k \cdot \mu(E_k) \leqslant \int_{E_k} h d\mu = q \cdot q^k \mu(E_k) \leqslant q \cdot \nu(E_k) \\ & \Pi \text{росуммируем это по всем } k. \\ & \frac{1}{q} \nu(E) = \int_E h d\mu \leqslant q \cdot \nu(E), \ q \to 1 \implies \nu(E) \leqslant \int_E h d\mu \leqslant \nu(E) \implies \nu(E) = \int_E h d\mu \\ & \not\sim \mathcal{V} - \text{стандартное продолжениe} < \ldots > \text{(нужно дополнить)} \end{split}$$

Теорема 11. $\Box \Phi$ – диффеоморфизм множеств $G, O \subseteq \mathbb{R}^n$ $G \xrightarrow{\Phi} O$

Тогда $\forall E \in \mathcal{A}_n \quad E \subseteq O$

$$\lambda_n(E) = \int_{\Phi^{-1}(E)} \left| \det \Phi' \right| d\lambda_n$$
$$\lambda_n(O) = \int_G \left| \det \Phi' \right| d\lambda_n$$

Если $O \sim \widetilde{O}$ $G \sim \widetilde{G}$ $\left(\lambda_n(O \backslash \widetilde{O}) = \varnothing \ldots\right)$, то

$$\lambda_n(\widetilde{O}) = \int_{\widetilde{G}} \left| \det \Phi' \right| d\lambda_n$$

Замечание.

$$\nu(P)\leqslant \sup_{P}hd\mu(P) - \text{ от противного}$$
 \Longrightarrow \exists ячейки $P_0:$
$$\nu(P)>M\cdot\mu(P)=\sup_{P_0}h\cdot\mu(P)$$

$$\Phi(x)=\Phi(x_0)+d_{x_0}\Phi(x-x_0)+o(x-x_0)$$

$$x\approx x_0 \qquad \Phi(x)\approx \Phi(x_0)+d_{x_0}\Phi(x-x_0)$$

Если Q — малая ячейка, то

$$\lambda_n(\Phi(Q)) \approx \lambda_n d_{x_0} \Phi(Q) = \left| \det \Phi'_{x_0} \right| \lambda_n(Q)$$

Следствие 11.1. Если $\Phi:G o O$ — диффеоморфизм, $G,O\subseteq\mathbb{R}^n$ $\widetilde{G}\sim G,\widetilde{O}\sim O$ $f\in S(O),$ то

$$\int_{\tilde{O}} f(x)d\lambda_n(x) = \int_{\tilde{G}} f(\Phi(u)) \left| \det \Phi'(u) d\lambda_n(u) \right|$$

Пример. Полярные координаты.

$$x = r \cos \varphi, \ y = r \sin \varphi.$$

$$\Phi : (r, \varphi) \to (x, y),$$

$$([0, +\infty) \times [-\pi, \pi])) \to \mathbb{R}^n,$$

$$(0, +\infty] \times (-\pi, \pi))) \to \mathbb{R}^n \setminus (-\infty, 0]).$$

$$\det \Phi' = r; \quad E = \mathbb{R}^2 :$$

$$\iint\limits_E f(x,y)dxdy = \iint\limits_{\Phi^{-1}} f(r\cos\varphi,r\sin\varphi)rdrd\varphi$$

Пример (интеграл Эйлера-Пуассона).

$$I = \int_{0}^{+\infty} e^{-x^{2}} dx$$

$$I \cdot I = \int_{0}^{+\infty} e^{-x^{2}} dx \cdot \int_{0}^{+\infty} e^{-ys} = \iint_{\{x \ge 0, y \ge 0\}} e^{-x^{2} + y^{2}} dx dy$$

$$= \iint_{\{0 \le \varphi \le \frac{\pi}{2} \quad r > = 0\}} e^{-r^{2}} r dr d\varphi$$

$$= \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{+\infty} r e^{-r^{2}} dr$$

$$= \frac{\pi}{2} \cdot \frac{e^{-r^{2}}}{-2} \Big|_{0}^{+\infty} = \frac{\pi}{4}$$

$$I = \int_{0}^{+\infty} r^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$$

Пример. Цилиницрические координаты

$$r\cos\varphi = x$$
$$r\sin\varphi = y$$
$$h = z$$

 $\begin{array}{ll} \Phi: (r,\varphi,h) \to (x,y,z) & \Phi: (0,+\infty) \times (-pi,pi) \times \mathbb{R} \to \mathbb{R}^3 \backslash \{(x,0,z) | \mid x \leqslant 0\}\} \\ |\det \Phi'| = r \\ \iiint_E f(x,y,z) dx dy dz = \iiint_{\Phi^1(E)} f(r\cos\varphi,r\sin\varphi,h) \cdot r dr d\varphi dh \end{array}$

Пример. Сферические координаты $r = \sqrt{x^2 + y^2 + z^2}$

$$r\cos\varphi\cos\psi = x$$
$$r\sin\varphi\cos\psi = y$$
$$r\sin\psi\varphi\sin\psi = y$$

 $\det \Phi' = r^2 \cos \varphi$ Можно обобщить на \mathbb{R}^n

$$r = ||x||$$

$$x_1 = r \cos \varphi_{n-1} \cos \varphi_{n-2} \dots \cos \varphi_1$$

$$\dots$$

$$x_{n-2} = r \cos \varphi_{n-1} \cos \varphi_{n-2} \sin \varphi_{n-3}$$

$$x_{n-1} = r \cos \varphi_{n-1} \sin \varphi_{n-2}$$

$$x_n = r \sin \varphi_{n-1}$$

Пример.

$$\iiint\limits_{\substack{x^2+y^2+z^2\leqslant \mathbb{R}^2\\x^2+y\leqslant z^2\\z\geqslant 0}}f(x,y,z)\,dx\,dy\,dz$$

Преобразовать используя:

• Цилиндрические координаты

Перепишем множество интегрирования в новых координатах: $\begin{cases} r^2 + h^2 \leqslant R^2 \\ r^2 \leqslant h^2 \implies r \leqslant h \\ h \geqslant 0, r \geqslant 0 \end{cases}$

$$\begin{split} I &= \iiint\limits_{\substack{r^2 + h^2 \leqslant R^2 \\ r \leqslant h \\ h \geqslant 0, r \geqslant 0}} f\left(r\cos\varphi, r\sin\varphi, h\right) r dr d\varphi dh \\ &= \iint\limits_{\substack{\pi \leqslant \varphi \leqslant \pi \\ 0 \leqslant r \leqslant \frac{R}{\sqrt{2}}}} r \int_r^{\sqrt{R^2 - r^2}} f\left(r\cos\varphi, r\sin\varphi, h\right) dr \\ &= \int_{-\pi}^{\pi} d\varphi \int_0^{\frac{R}{\sqrt{2}}} r dr \int_r^{\sqrt{R^2 - r^2}} f\left(r\cos\varphi, r\sin\varphi, h\right) dh \end{split}$$

• Цилиндрические координаты (второй вариант)

$$\int_0^{\frac{R}{\sqrt{2}}} dh \int_{-\pi}^{\pi} d\varphi \int_0^h rf dr + \int_{\frac{R}{\sqrt{2}}} dh \int_{-\pi}^{\pi} d\varphi \int_0^{\sqrt{R^2-h^2}} rf dr$$

• Сферические координаты

$$\begin{cases} x = r \cos \varphi \sin \psi \\ y = r \sin \varphi \cos \psi \\ z = r \sin \psi \\ \text{tg}^2 \psi \geqslant 0 \\ \sin \psi \geqslant 0 \end{cases}$$

$$0\leqslant r\leqslant R$$

$$r^2\cos^2\psi\leqslant r^2\sin^2\psi$$

$$r\sin\psi\geqslant 0$$

$$\begin{split} I &= \iiint\limits_{E} f\left(r\cos\varphi\cos\psi, r\sin\varphi\cos\psi, r\sin\varphi\right) r^{2}\cos\psi dr d\varphi d\psi \\ &= \int_{-\pi}^{\pi} d\varphi \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\psi \int_{0}^{R} f(\ldots) r^{2}\cos\psi dr \end{split}$$

Пример.

$$\iiint_E z dx dy dz$$

E:

$$t^{2}(x^{2} + y^{2}) \leqslant z^{2}$$
$$0 \leqslant z \leqslant t \leqslant 3$$

$$\iiint_{E} z dx dy dz = \iint_{\{0 \le z \le t \le 3\}} dz dt \iint_{\{x^{2} + y^{2} \le \frac{4z^{2}}{t^{2}}\}} z dx dy$$

$$= \iint_{\{0 \le z \le t \le 3\}} dz dt z \pi \cdot \frac{4z^{2}}{z^{2}}$$

$$= 4\pi \iint_{\{0 \le z \le t \le 3\}} \frac{z^{3}}{t^{2}} dz dt$$

$$= 4\pi \int_{0}^{3} \frac{1}{t^{2}} dt \int_{0}^{t} z^{3} dz = \frac{4\pi}{4} \left(\int_{0}^{3} t^{2} dt\right) = \pi \cdot 9$$

3 Мера Лебега-Стилтьеса

$$\exists g(x) \uparrow$$
 на \mathbb{R} и непрерывна слева $\left(\lim_{x \to x_0 - 0} g(x) \equiv g(x_0)\right)$

Задача 1. Если h(x) – произвольная возрастающая функция, то её можно превратить в непрерывную слева исправлением нбчс количества точек.

$$\exists\uparrow$$
и непрерывная слева $g(x)=h(x)$ всюду кроме точек разрыва $h(x)$ $g(x_0)=\lim_{x\to x_0=0}h(x)$

Определим $\mu_g([a,b]) = g(b) - g(a) \geqslant 0$. Так же верно, что μ_g обладает счетной аддитивностью на \mathcal{P}_1 (доказывается так же, как в случае с мерой Лебега) $\implies \mu_g$ – мера на \mathcal{P}_1

Стандартное продолжение μ_g , которое также обозначается μ_g называется мерой Лебега-Стилтьеса, порождённой функцией g

$$\mu_g\left(\{c\}\right) = \mu_g\left(\bigcap_{j=1}^{\infty} \left[c, c + \frac{1}{j}\right]\right)$$

$$= \lim_{j \to \infty} \mu_g\left(\left[c, c + \frac{1}{j}\right]\right)$$

$$= \lim_{j \to \infty} g(c + \frac{1}{j}) - g(c) = g(c + 0) - g(c)$$

$$= g(c + 0)$$

 \Longrightarrow Если c – точка непрерывности, то $\mu_g(\{c\})=0$ $\mu_g([a,b])=\mu_g([a,b])+\mu_g(\{b\})=g(b)-g(a)+g(b+0)-g(b)=(g(b+0)-g(a-0))$ $\mu_g((a,b))=\mu_g([a,b])-\mu(\{a\})=g(b)-g(a)-(g(a+0)-g(a))=g(b)-g(a+0)$ $\mu_g((a,b])=g(b+0)-g(a+0)$

Определение 1. Пусть $\mu = \sum_{k=1}^{\infty} h_k \delta_{a_k}, \quad h_k \geqslant 0, \quad \delta_a(E) = \begin{cases} 1, & a \in E \\ 0, & a \notin E \end{cases}$, тогда μ — дискретная мера.

$$E, E_j \in 2^{\mathbb{R}}$$
 $E = \bigvee_{i=1}^{\infty} E_j \implies \delta_{a_k}(E) = \sum_{j=1}^{\infty} \delta_{a_k}(E_j)$

$$\mu(E) = \mu(\bigvee_{j=1}^{\infty} E_j) = \sum_{k} \sum_{j} h_k \delta_{a_k}(E_j)$$
$$= \sum_{j} \mu(E_j)$$

Последний переход в равенстве по теореме Тонелли.

Замечание.
$$\exists \ \{a_k\}_{k=1}^{\infty} \subseteq \mathbb{R}$$
 $\forall [a,b] \quad \sum_{k:a_k \in [a,b]} h_k < +\infty$

Пример. Если $\{a_k\}$ — дискретно (без точек сгущения на \mathbb{R}), то условие автоматически выполняется, т.к. перечесечения a_k -ых с промежутком будет конечно, а значит и сама сумма будет конечна

$$A = \mathbb{Q} \quad h_k = \frac{1}{2^k}$$

Определение 2 (функция Хэвисайда).

$$\Theta(x) = \begin{cases} 0 & , x \le 0 \\ 1 & , x > 0 \end{cases}$$

 $\exists x_0 \in \mathbb{R} \quad \forall C \in \mathbb{R}$

$$g(x) = \sum_{k=1}^{\infty} h_k \cdot (\Theta(x - a_k) - \Theta(x_0 - a_k)) + C$$

- 1. g(x) возрастает
- 2. $x \in [a, b]$ $\sum_{k} h_k(\Theta(x a_k) \Theta(x_0 a_k)) \le \sum_{a_k: I_{x, x_0}} h_k$

Разность Тет ненулевая, если a_k находится между x и x_0 – I_{x,x_0}

Утверждение 11.1. $A = \{a_k\}_k$

- 1. $q \in C(\mathbb{R}\backslash A)$
- 2. Непрерывность слева на A

Доказатель ство. 1. $\exists x \in \mathbb{R} \backslash A \quad \exists (a,b) \ni x$

$$\forall \forall \varepsilon > 0 \quad \sum_{k: a_k \in [a,b]} h_k < +\infty \implies \exists K: \sum_{\substack{a_k \in [a,b] \\ k > K}} \leqslant \frac{\varepsilon}{2}.$$

 $g_k(x) = h_k \left(\Theta(x-a_k) - \Theta(x_0-a_k)\right)$ — локально постоянны в точке $x \ (\exists V_\delta(x) : g_k \mid_{V_\delta(x)} \equiv const$ для $k=1,\ldots,k$

Не умаляя общности $[a,b] \supseteq V_{\delta}(x)$

$$g(\widetilde{x}) - g(x) = \sum_{k=1}^{\infty} h_k \left(\Theta(x - a_k) - \Theta(x - a_k) \right) - \sum_{k=1}^{\infty} h_k \left(\Theta(\widetilde{x} - a_k) - \Theta(x_0 - a_k) \right)$$

$$= \sum_{k=1}^{\infty} h_k \left(\Theta(x - a_k) - \Theta(\widetilde{x} - a_k) \right)$$

$$= \sum_{k=1}^{K} h_k \left(\Theta(x - a_k) - \Theta(\widetilde{x} - a_k) \right) + \sum_{k=K+1}^{\infty} h_k \left(\Theta(x - a_k) - \Theta(\widetilde{x} - a_k) \right)$$

$$= \underbrace{\sum_{k=1}^{K} h_k \left(\Theta(x - a_k) - \Theta(\widetilde{x} - a_k) \right)}_{=0} + \underbrace{\sum_{k=K+1}^{\infty} h_k \left(\Theta(x - a_k) - \Theta(\widetilde{x} - a_k) \right)}_{=0}$$

⇒ Непрерываность

Если
$$x=a_k$$
 $g(x)=g_{k_0}(x)+\sum_{\substack{k\neq k_0\\\text{непрерывна как в пред. случас}}}g_k$

$$\begin{split} \mu_g\left([a,b)\right]) &= g(b) - g(a) \\ &= \sum_{k=1}^{\infty} h_k \left(\Theta(b-a_k) - \Theta(a-a_k)\right) \qquad a \leqslant a_k \leqslant b \\ &= \sum_{k: a \leqslant a_k < b} h_k = \mu([a,b)]) \end{split}$$

 μ и μ_g совпадают на совокупности всевозможных промежутков.

Определение 3. Пусть $f: \mathbb{R} \to \mathbb{R}$.

Функция f называется локально суммируемой на $\mathbb{R} \iff \forall [a,b] \qquad f |_{[a,b]} \in \mathcal{L}(\lambda_1).$

Определение 4. $f: \mathbb{R} \to \mathbb{R}$.

Функция f называется абсолютно непрерывной, если существует локально суммируемая функция h(x) и точка $x_0 \in \mathbb{R}$:

$$g(x) = \int_{x_0}^x h(x)d\lambda$$

(интеграл Лебега. Если $x < x_0$, то $\int_{x_0}^x h \, d\lambda = - \int_{[x,x_0]} h \, d\lambda$)

Если h непрерывна в точке x, то g(x) дифференцируема в точке x и g'(x) = h(x). Доказательство – смотри теорему Барроу. . .

Если $h(x) \geqslant 0$, то $g(x) \nearrow$

 Φ ункция g(x) непрерывна на $\mathbb R$. Следует из абсолютной непрерывности интеграла.

Теорема 12 (воспоминание).

$$\mu(E) = \int_{\Phi^{-1}} h d\mu \iff \forall E \in \mathcal{A} \quad \inf_{E} h \mu(E) \leqslant \nu(E) \leqslant \sup_{E} h \mu(E)$$

Замечание.

$$g(x) = \sum_{k=1}^{\infty} h_k \left(\Theta(x - a_k) - \Theta(x_0 - a_k) \right)$$

Для этой меру нужно было фиксировать открытый интервал Δ , что

$$\forall [a, b] \subseteq \Delta \quad \sum_{k: a_k \in [a, b]} h_k < +\infty$$

$$g(a_k + 0) - g(a_k - 0) = h_k \left(\Theta(a_k - a_k + 0) - \Theta(x_0 - a_k + 0) - \Theta(a_k - a_k - 0) + \Theta(x_0 - a_k - 0) \right)$$

= h_k

Утверждение 12.1. Если $\nu=\sum\limits_k h_k \delta_{a_k}$, то ν совпадает с μ_g на \mathcal{A}_{μ_g} при условии (*).

Доказатель ство. Если хочется скорее сослаться на теорему об единственности, то можно сделать так: Рассмотрим [a,b). $\nu([a,b)) = \sum_{k:a\in [a,b)} h_k$.

$$\mu_g([a,b)) = g(b) - g(a) = \sum_{k \in \mathbb{N}} h_k \left(\Theta(b - a_k) - \Theta(a - a_k) \right) = \sum_{k : a_k \in [a,b)} h_k.$$

Если $\{a_k\}_k$ — конечное множество, то вопросов с суммируемостью не веознкает.

$$g(x) = \sum_{k} h_k \cdot \Theta(x - a_k) + C$$

Замечание. Локально суммируемая функция — это такая, что она будет на любом шаре суммируемой по Лебегу

Теорема 13. g(x) – абслолютно непрерывная $\iff \exists h \in \mathcal{L}_{loc}(\mathbb{R}, \lambda) \, \exists x_0 \in \mathbb{R}, c \in \mathbb{R}$

$$(x) = \int_{x_0}^{x} h(x)d\lambda + C$$

По теореме Барроу g(x):

- $g(x) \in C(\mathbb{R})$,
- g(x) дифференцируема в точках ... функции h(x).

 \mathcal{A} оказательство. • Если $x_1 \in \mathbb{R}$

$$g(x) - g(x_1) = \int_{x_1}^x h(x)dx$$

$$\begin{split} & \exists \delta_0 > 0, x \in V_{\delta_0}(x_1), \quad h \in \mathcal{L}\left(V_{\delta_0}\right) \\ & \forall \varepsilon > 0 \\ & \exists \delta(\leqslant \delta_0) > 0: \int_E h(x) d\lambda < \varepsilon \\ & \iff \text{Если } |x_1 - x| < \delta \quad \left| \int_{x_1}^x h(x) dx \right| \leqslant \varepsilon \end{split}$$

• Пусть x_1 — точка непрерывности для h(x). $h(x) = h(x_1) + \underbrace{\alpha(x-x_1)}_{o(1) \text{ при } x \to x_1}$

$$\frac{g(x) - g(x_1)}{x - x_1} = \frac{1}{x - x_1} \int_{x_1}^x h(x_1) + \alpha(x - x_1) dx = h(x_1) + \frac{1}{x - x_1} \int_{x_1}^x \alpha(x - x_1) dx \leqslant \varepsilon(x - x_1)$$

Если "x остаточно близок к x_1 "

Замечание. В частности, если $h(x) \in C(\mathbb{R}) \implies g \in C^1(\mathbb{R})$ и $g'(x) \equiv h(x)$

Замечание.

$$\int_E f d\nu = \sum_{k : a_k \in E} h_k f(a_k) = \sum_{k : a_k \in E} f(a_k) \cdot \text{ скачок } g(a_k)$$

Утверждение 13.1. $\exists g(x) = \int_{x_0}^x h(x)d\lambda_1(x) + C \quad h(x) \geqslant 0 \quad h \in \mathcal{L}_{loc}(\mathbb{R},\lambda)$ абсолютно непрерывная возрастающая функция.

Тогда $\int_E f d\mu_g = \int_E f(x)h(x)d\lambda(x)$.

В частности, \forall возрастающей $g(x) \in C^1(\mathbb{R})$.

$$\int_{E} f d\mu_{g} = \int_{E} f \cdot g'(x) d\lambda(x) \left(= \int_{E} f \cdot dg \right).$$

Доказатель ство. $\langle \nu(E) \rangle = \int_E h d\lambda_1$.

$$\mu_g(\langle a,b\rangle) = \mu_g([a,b)) = g(b) - g(a) = \int_a^b h(x)d\lambda_1 = \nu([a,b)) = \nu(\langle a,b\rangle).$$

 μ_q и ν совпадают на открытых. Если K – компакт, $K = B \setminus (B \setminus K)$

$$\nu(K) + +\nu(B\backslash K) = \nu(B)$$
 $\mu_{\sigma}(K) = \nu(K) = \nu(B) - \nu(B\backslash K)$

 $\Box E - \lambda_1$ -мера O

 $\implies \exists \delta > 0 \exists$ открытое $G : E \subseteq G$ и : $\lambda_1(G) < \delta$

 $\Longrightarrow \int |_{G_0}$ – абсолютно непрерывное $\Longrightarrow \forall \varepsilon > 0 \exists \delta > 0 : \lambda_1(\widetilde{E}) < \delta$ $\widetilde{E} \subseteq G$

$$\int_{\widetilde{E}} h < \varepsilon \quad \widetilde{E} = G \implies \nu(G) < \varepsilon \implies \mu_q(G) < \varepsilon \varepsilon - \forall \implies \nu(E) = \mu_q(E) = 0$$

 $\int_{\tilde{E}} h < \varepsilon \quad \tilde{E} = G \implies \nu(G) < \varepsilon \implies \mu_g(G) < \varepsilon \varepsilon - \forall \implies \nu(E) = \mu_g(E) = 0$ Если E — неограничено λ_1 —меры $0 \implies \exists$ ограниченое $E_j : E = \bigcup E_j$. $\forall i \in \mathbb{N} \ \lambda_1(E_j) = 0 \implies \exists$ $\nu(E_i) = \mu_a(E_i) = 0 \implies \nu(E) = \mu_a(E).$

Дальше можно применить теорему о плотности меры. Применяю общую мхему замены переменной все доказывается.

Задача 2. 1. $g(x) = \operatorname{arctg} x$. Найти:

(a)
$$\sup \left\{ \mu_g(I) : I = \langle a, b \rangle, \ \lambda_1(I) \leqslant \delta \right\}, \ \delta > 0.$$

(b)
$$\sup \left\{ \lambda_1(I) : I = \langle a, b \rangle, \ \mu_g(I) \leqslant \delta \right\}, \ \delta > 0.$$

2.
$$g(x) = \operatorname{arctg} x + \Theta(x - 1)$$

(a) Для
$$\delta = 1$$

Решение. $\mu_g(I) = g(b) - g(a) = \int_I g'(t) dt = \int_{[a,b]} \frac{dt}{1+t^2}$

1. (a)

$$\sup\{\mu_g(I)\} = 2\int_0^{\frac{\pi}{2}} \frac{dt}{1+t^2}$$

Пример. Пример меры Лебега-Стилтьеса не евклидовой, не дискретной, не абсолютно непрерывной:

$$C_0 = [0,1]$$
 $C_1 = \left[0,\frac{1}{3}\right] \cup \left[\frac{2}{3},1\right]$
 $C_2 = \left[0,\frac{1}{9}\right] \cup \left[\frac{2}{9},\frac{1}{3}\right] \cup \left[\frac{2}{3},\frac{7}{9}\right] \cup \left[\frac{8}{9},1\right]$
 $C_{k+1} \subseteq C_k \quad C_k$ — компакт
 $C = \bigcap_{k=1}^{\infty} C_k$ — компакт
 $\lambda_1(C) = \lambda_1([0,1]) - \frac{1}{3} - \frac{2}{9} - \dots - \frac{2^{k-1}}{3^k} = 0$

$$\psi(x) = \frac{1}{3}x \quad \Theta(x) = 1 - x$$

$$\Phi = \{[0,1] \cap C, \psi(C), \Theta\psi(C), \psi\psi(C), \psi\Theta(C), \Theta\psi\psi(C), \Theta\psi\Theta\psi(C), \ldots\}$$

- полукольцо

 $\mu(C)=1$ $\mu(P)=\frac{1}{2^k}$ — если P есть результат применения k штук ψ и Θ $\not\sim \mu$ — стандартное продолжение

4 Интегралы, зависящие от параметра

Пример.

$$\Gamma(p) = \int_0^{+\infty} x^{p-1} e^{-x} dx, \quad p > 0, p \in \mathbb{R}; \quad \int_a^b f(x, y) dx, \quad \int_{\Omega} (y)^{\beta}(y) f(x, y) dx.$$

Пока что мы будем рассматривать интегралы, зависящие от параметра y по фиксированному промежутку: $I(y) = \int_X f(x,y) d\mu(x)$.

Пусть у нас есть пространство с мерой $(X, \mathcal{A}, \mu), f(\dot{\mu}) \in \mathcal{L}(X, \mu). Y \subseteq \overline{Y}.$

Для чего это нужно? Бывает, что просто сформулированные задачи имеют ответ в виде интеграла с параметром. Бывает, что введение параметра упрощает вычисление интеграла.

Утверждение 13.2. f уовлетворяет условию Лебега локально относительно y_0, y_0 — параметр, если \exists открытое $V(y_0)$ в \overline{Y} и $\Phi_{(x)} \in \mathcal{L}(X,\mu) \ \forall y \in V(y_0)$ для почти всех $x \in X$.

Утверждение 13.3. Пусть у нас есть пространство с мерой (X, \mathcal{A}, μ) , \overline{Y} — метрическое пространство, $Y \subseteq \overline{Y}$, y_0 — предельная точка для Y. Почти везде $f(x,y) \to g(x)$ при $y \to y_0$, и f(x,y) удовлетворяет локаольно условию Лебега относительно y_0 .

Тогда $g(x) \in \mathcal{L}(X,\mu)$ и

$$\lim_{y \to y_0} \int_X f(x, y) d\mu(x) = \int_X g(x) d\mu(x)$$

Доказательство. Так как y_0 — предельная, $\exists \{y_k\} \subseteq Y \to y_0$. $f_k(x) = f(x,y_k), y_k \in V(y_0) \Longrightarrow |f_k(x)| \leqslant \Phi(x) \Longrightarrow$ по теореме Лебега о мажорируемой сходимости, $g(x) = \lim_{k \to \infty} f(x,y_k) \in \mathcal{L}(X,\mu)$ и

$$\int_X g(x)d\mu = \int_X \lim_{k \to \infty} f(x, y_k)d\mu = \lim_{k \to \infty} \int_X f(x, y_k)d\mu.$$

 $I(y) = \int_{Y} f(x,y) d\mu(x); \quad \lim_{k \to \infty} I(y_k) \,\,\forall \,\,$ последовательности $y_k \to y_o \implies \exists \lim_{y \to y_0} Y(y).$

Пример.
$$\exists p_0 > 0 \quad \exists \forall p \in V_\delta(p)$$
 $x \in (0,1] \quad x^{p-1}e^{-x} \leq x^{p_0-\delta}e^{-x}$
 $x > 1 \quad x^{p-1}e^{-x} \leq x^{p_0+\delta}e^{-x}$

$$\Phi(x) = \begin{cases} x^{p_0-\delta}e^{-x} & , x \in (0,1] \\ x^{p_0+\delta}e^{-x} & , x > 1 \end{cases} \quad \int_0^{+\infty} x^q e^{-x} dx - \text{сходится для любого}$$

Замечание. Если в условиях предыдущего утверждения f(x,y) — непрерывна по y в точке y_0 , то наш интеграл I(y) тоже будет непрерывен в точке y_0 .

Определение 5. Пусть имеется пространство с мерой $(X, \mathcal{A}, \mu), y_0$ — предельная точка для $Y \subseteq \overline{Y}$ $f(x,y) \Rightarrow g(x)$ на X при $y \to y_0$ если $\forall \varepsilon > 0 \exists$ окрестность $V(y_0)$:

$$\forall x \in X \quad \forall y \in V(y_0) \quad |f(x,y) - g(x)| < \varepsilon \iff \sup_{x \in X} |f(x,y) - g(x)| \underset{y \to y_0}{\longrightarrow} 0.$$

Пример. 1. (хороший) $f(x,y) = \frac{\sin(x^2 + y^2)}{1 + x^2 + y^2}$ $y \to +\infty$

$$|f(x,y)| \le \frac{1}{1+y^n} \implies y \to \infty \sup |f(x,y)| = \frac{1}{1+y^n} \underset{y \to \infty}{\longrightarrow} 0.$$

Сходимость есть и равномерная сходимость тоже есть.

2. (плохой) $xye^{-xy} \underset{y \to 0}{\longrightarrow} 0$. Сходимость к нулю есть, а

$$\sup x > 0xye^{-xy} \geqslant f(\frac{1}{y},y) = \frac{1}{e} \to 0 \implies$$
 равномерно не сходится.

Утверждение 13.4. Пусть $(X, A, \mu), \mu(X) < +\infty$.

$$f(x,y) \underset{y \to y_0}{\Longrightarrow} g(x), \quad f(x,y) \in \mathcal{L}(X,\mu).$$

Тогда $g(x) \in \mathcal{L}(X,\mu)$ И

$$\lim_{y \to y_0} \int_X f(x, y) d\mu(x) = \int_X g(x) d\mu(x)$$

Доказатель ство. Для $\varepsilon=1$ \exists окрестность $V(y_0): \forall x \in X, y \in V(y_0) |f(x,y)-g(x)| \leqslant 1:$ $|g(x)| \leqslant |f(x,y)| + |g(x)-f(x,y)| \leqslant |f(x,y)| + 1 \Longrightarrow g \in \mathcal{L}(X,\mu)$

Утверждение 13.5. (X, \mathcal{A}, μ) — пространство с метрой $y \subseteq \mathbb{R}(\mathbb{C})$, y_0 — предельная точка для Y. Пусть f(x,y), f'_y — удовлетворяет условию Липшица локально, $f: X \times Y \to \mathbb{R}(\mathbb{C})$. Тогда $I(y) = \int_X f(x,y) d\mu(x)$ дифференцируема в точке y_0 и

$$I'(y_0) = \int_Y f'_y(x, y) d\mu(x).$$

Доказательство.

$$I'(y_0) = \lim_{y \to y_0} \frac{I(y) - I(y_0)}{y - u_0}$$

$$= \lim_{y \to y_0} \frac{1}{y - y_0} \int_X \underbrace{(f(x, y) - f(x, y_0))}_{f'_y(x, y_0 + \Theta(y - y_0)), \ \Theta \in (0, 1)} d\mu(x)$$

$$= \lim_{X \to y_0} \int_X f'_y(x, y_0 + \Theta(y - y_0)) d\mu(x)$$

$$= \int_X \lim_{X \to y_0} \lim_{X \to y_0} (\dots) d\mu(x) = \int_X f'_y(x, y_0) d\mu(x).$$

 $y \in V_{\delta}(y_0)$ – из условия Липшица для $f_y' \implies C(y) \in V_{\delta}(y_0)$

$$\implies \underbrace{\left| \underbrace{f_y'(x, C(y))}_{f_y'(x, y_0)} \right|} \leqslant \Phi(x)$$

Пример. $\Gamma(p) \int_0^\infty x^{p-1} e^{-x} d\mu$

$$f_p'(x,p) = (p-1)x^{p-2}e^{-x}, \ p-2 > -1 \implies p > 1.$$

При p > 1

$$\Gamma'(p) = (p-1) \int_0^{+\infty} x^{p-2} e^{-x} = (p-1) \cdot \Gamma(p-1) \implies \Gamma'(p) = (p-1) \cdot \Gamma(p-1).$$

$$\Gamma(p) = \int_0^{+\infty} \frac{('x^p)}{p} = \frac{1}{p} \left(x^p e^{-x} \Big|_o^{\infty} - \int_o^{+\infty} x^p ('e^{-x}) dx \right) = \frac{1}{p} \cdot (p+1).$$

$$\Gamma(1) = \int_0^{+\infty} e^{-x} = 1$$

$$\Gamma(2) = 1$$

$$\Gamma(3) = 2$$

$$\Gamma(n) = (n-1)! \quad n \in \mathbb{N}.$$

5 Г-функция Эйлера

Определение 6.
$$\Gamma(p) = \int_0^{+\infty} x^{p-1} e^{-x} dx$$

 $p > 0$

Свойство 1.

$$\Gamma(p+1) = p\Gamma(p) \quad \forall p > 0$$

- формула приведения

$$\Gamma(p) = \frac{\Gamma(p+1)}{p}$$

– определение для Γ в $\mathbb{R} \setminus (\mathbb{Z}_{-})$

$$\Gamma(1) = 1 \quad \Gamma(p+1) = p!$$

$$\Gamma(\frac{1}{2}) = \frac{e^{-x}}{\sqrt{x}} dx = 2 \int_0^{+\infty} e^{-t^2} dt = 2 \cdot \frac{\sqrt{\pi}}{2} = \sqrt{\pi}$$

$$\Gamma(\frac{3}{2}) = \frac{1}{2} \Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2}$$

$$\Gamma(\frac{5}{2}) = \frac{3\sqrt{\pi}}{4}$$

$$\Gamma(\frac{2n+1}{2}) = \frac{(2n-1)!!}{2^n} \sqrt{\pi} (\text{по индукции})$$

Замечание (Дифиренцирование Г-функции).

$$\Gamma^{(k)}(p) = \int_0^{+\infty} \underbrace{x^{p-1}e^{-x}\left(\ln x\right)^k}_{f_k(x,p)} dx.$$

$$\frac{\partial f_k(x,p)}{\partial p} = f_{k+1}(x,p)$$

Замечание. Локальное условие Лебега $\forall p_0$?

$$\exists V_{p_0} : \exists \Phi(x) \in \mathcal{L} \left((0, +\infty) : |f_k(x, p)| \leq \Phi(x) \right).$$

$$x^{p-1} \leqslant x^{2p_0 - 1} + x^{\frac{p_0}{2} - 1}$$

$$\Phi(x) = \left(x^{2p_0 - 1} + x^{\frac{p_0}{2} - 1}\right) e^{-x} \left|\ln x\right|^k.$$

 Φ – мажоранта для $f_l(x,p) \forall p \in V_{p_0}$

$$\int_{0}^{+\infty} x^{p-1} e^{-x} |\ln x|^{k} dx < +\infty$$

$$x^{p-1} |\ln x|^{k} = o(e^{\frac{x}{2}}) \quad x \to +\infty$$

$$x^{p-1} e^{-x} |\ln x|^{k} \sim x^{p-1} |\ln x|^{k} = o(x^{p-1-\alpha})$$

$$|\ln x|^{k} = o(x^{-\alpha}), \quad \alpha > 0$$

$$x \to 0^{+} \quad p - \alpha > 0.$$

Получается, что Γ – класса C^{∞} там, где она определена. $\Gamma \in C^{\infty}$ ($\mathbb{R} \setminus \mathbb{Z}_{-}$)

Геометрические характеристики γ -функции и элементарные факты

Свойство 2 (Геометрические свойства). 1. $\gamma(p)$ строго выпукла на любом отрезке, лежащем в её области определения

- 2. На $(0, +\infty)$ $\Gamma(p)$ имеет единственный экстремум в точке $c \in (1, 2)$
- 3. $p \to 0$ $\Gamma(p) \sim \frac{1}{p}$

Доказатель ство.
$$\Gamma_{p^2}^{(2)}(p) = \int_0^{+\infty} x^{p-1} e^{-x} ln^2 x dx > 0 \implies 1$$
 $\Gamma(1) = 0! = 1 = 1! = \Gamma(2) \implies$ по теореме Роля $\exists c \in (1,2): \quad \Gamma'(c) = 0.$ c — точка минимума $\Gamma'(p) \neq 0$ при $p \neq c, p > 0$

Замечание. Аналог формулы стрилинга. При $p \to \infty$ верно, что $\Gamma(p) = \sqrt{2\pi p} \left(\frac{p}{e}\right)^p e^{\frac{\Theta}{12}}$, где $\Theta \in (0,1)$.

6 Бета-функция

Определение 7.
$$B(p,q)=\int_0^1 x^{p-1}(1-x)^{q-1}dx$$
 $B(p,q)=B(q,p)\forall p,q>0$ $B(p,q)=\frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$

Теорема 14 (формула Эйлера-Гаусса).

$$\Gamma(p) = \lim_{k \to \infty} \frac{l^p \cdot k!}{p(p-1)\dots(p+k)} \quad \forall p \in \mathbb{R} \backslash \mathbb{Z}_-.$$

Рис. 2: gamma-function

Доказательство.

$$\begin{split} &\Gamma(p) = \int_0^{+\infty} x^{p-1} e^{-x} dx = \left| t = e^{-x}, x = -\ln t, dx = -\frac{dt}{t} \right| \int_0^1 (-\ln t)^{p-1} t \left(-\frac{dt}{t} \right) = \int_0^1 (-\ln t)^{p-1} dt \\ &= \int_0^1 \left(\lim_{k \to \infty} \underbrace{k(1 - t^{1/k})}_{g(k)} \right)^{p-1} dt = = \\ &g'(k) = (1 - t^{1/k}) + k(-t^{1/k}) \cdot (\ln t) \cdot \left(+\frac{1}{k^2} \right) \\ &= t^{\frac{1}{k}} \left(t^{-\frac{1}{k}} - 1 + \frac{\ln t}{k} \right) \\ &= \left\{ f \uparrow \quad \text{, если } p \geqslant 1 \implies \text{Применим теорему Леви} \\ &= \lim_{k \to \infty} \int_0^1 \left(k(1 - t^{\frac{1}{k}}) \right)^{p-1} dt = \lim_{k \to \infty} k^{p-1} \int_0^1 s^{p-1} (-k)(1 - s)^{k-1} ds = \lim_{k \to \infty} k^p B(p, k) \\ &= \lim_{k \to \infty} k^p \frac{\Gamma(p)\Gamma(k)}{\Gamma(p+k)} = \lim_{k \to \infty} k^p \cdot (k-1)! \frac{\Gamma(p)}{(p+k-1)(p+k-2) \dots p\Gamma(p)} \\ &= \frac{k^p k!}{p(p+1) \dots (p+k)} \cdot \underbrace{\frac{p+k}{k}}_{k} \, . \end{split}$$

Для p < 0 по индукции по m $p \in (-(m+1), -m)$ Если формула верна для p+1, то

$$\Gamma(p) = \frac{\Gamma(p+1)}{p} = \frac{1}{p} \lim_{k \to \infty} \frac{k^{p+1} \cdot k!}{(p+1)(p+2)\dots(p+k+1)}$$
$$= \lim_{k \to \infty} \frac{k^p \cdot k!}{p(p+1)\dots(p+k)} \cdot \underbrace{\frac{k}{p+k+1}}_{l}.$$

Лемма 14.1. Пусть $a\in\mathbb{R},\ f(x)\in C([a,+\infty))$ и f ограничена на $([a,+\infty)):\ \int_a^{+\infty}f(x)dx$ сходится. Тогда

$$I(y) = \int_{a}^{+\infty} e^{-xy} f(x) dx \in C([0, +\infty)).$$

Доказательство. $A \in [a, +\infty)$

$$\int_{A}^{+\infty} e^{-xy} f(x) dx = \left| F(x) = \int_{A}^{x} f(t) dt \right| = (F(x) - F(A)) \cdot e^{-xy} \Big|_{A}^{+\infty} + \int_{A}^{+\infty} y e^{-xy} (F(x) - F(A)) dx$$
$$= \left| \exists \lim_{x \to \infty} F(x) \left(= \int_{A}^{+\infty} f(t) dt \right).$$

Для
$$\varepsilon>0$$
 $\exists A:\left|\int_X^{+\infty}f(t)dt\right|<\frac{\varepsilon}{3}\quad\forall x\geqslant A$ Для $x\geqslant A\quad |F(x)-FA(A)|=\left|\int_X^{+\infty}f(t)dt\right|<\frac{\varepsilon}{3}$

$$|I_A(y)| \leqslant \int_A^{+\infty} y e^{-xy} |F(x) - F(A)| dx$$

$$< \frac{\varepsilon}{3} \int_0^{+\infty} y e^{-xy} dx = \frac{\varepsilon}{3}$$

$$I(y) = \int_a^A e^{-xy} f(x) dx + I_A(y)$$

$$I(y) - I(y_0) = J(y) - J(y_0) + I_A(y) - I_A(y_0).$$

 $J(y) - J(y_0) \to 0$ при $y \to y_0$ (условие непрерывности собственных интегралов).

$$\exists V(y_0): \quad \forall y \in V(y_0) |J(y) - J(y_0)| < \frac{\varepsilon}{3}.$$

Следствие 14.1.

$$\int_{a}^{+\infty} f(x)dx = \int_{a}^{+\infty} \lim_{y \to 0} e^{-xy} f(x)dx.$$

Рис. 3: Инетграл с переменными пределами

Пример (Одно из значений интегрального синуса).

$$\int_{0}^{+\infty} \frac{\sin x}{x}$$

$$I(y) = \int_{0}^{\infty} \underbrace{e^{-xy} \frac{\sin x}{x}} dx$$

$$\frac{\partial f}{\partial x} = -e^{-xy} \sin x$$

$$y_{0} > 0 \quad V_{y_{0}} = \left(\frac{y_{0}}{2}, 2y_{0}\right) \implies \left|\frac{\partial f}{\partial y}\right| \leqslant e^{-\frac{xy_{0}}{2}}$$

$$\implies \forall y_{0} I'(y) = -\int_{0}^{+\infty} e^{-xy} \sin x dx \dots$$

$$I(y) = \int_{0}^{+\infty} e^{-xy} d\cos x = \cos x \cdot e^{-xy} \Big|_{0}^{+\infty} + y \int_{0}^{+\infty} ('\sin x) e^{-xy} dx$$

$$= -1 + y \left(\sin x e^{-xy} \Big|_{0}^{+\infty} + y \int_{0}^{+\infty} \sin x e^{-xy} dx\right) = -1 + y^{2} \left(-I(y)\right)$$

$$\implies I(y) \cdot (1 + y^{2}) = -1.$$

$$I'(y) = I(y) = \left(-\frac{1}{1 + y^{2}}\right) \implies I(y) = C - \int \frac{dy}{1 + y^{2}} = C - \arctan y$$

$$y \to +\infty, y \geqslant 1 \Big| e^{-xy} \frac{\sin x}{x} \Big| \leqslant e^{-x} - \text{суммируемая мажоранта.}$$

$$C - \frac{\pi}{2} = \lim_{y \to \infty} e^{-xy} \frac{\sin x}{x} dx = 0 \implies C = \frac{\pi}{2}$$

$$I(y) = \frac{\pi}{2} - \operatorname{arctg} y \forall y > 0.$$

Но по лемме I(y) неотрицательная в точке y = 0.

$$I(0) = \lim_{y \to 0} I(y) = \lim_{y \to 0} \left(\frac{\pi}{2} - \operatorname{arctg} y \right) = \frac{\pi}{2} \implies \int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

Дифференцирование интеграла по параметру в случае переменных пределов интегрирования.

$$I(y) = \int_{lpha(y)}^{eta(y)} f(x,y) dx; \quad f \in C\left([a,b](x\ni) imes [c,d](\ni y)
ight), \quad lpha(y), eta(y) : [c,d]
ightarrow [a,b]$$
 дифф.

Теорема 15 (Правило Лейбница). Тогда I(y) дифференцируемо на [c,d] и

$$I(y) = \int_{\alpha(y)}^{\beta(y)} f_y'(x, y) dx + f(\beta(y), y) \cdot \beta'(y) - f(\alpha(y), y) \cdot \alpha'(y).$$

Доказательство.

$$\begin{split} \Phi(x,y) &= \int_a^x f(t,y) dt \\ \frac{\partial \Phi}{\partial x} &= f(x,y) \text{ непрерывна в } Q \\ \frac{\partial \Phi}{\partial y} &= \lim_{\Delta \to y} \frac{1}{\Delta y} \left(\int_a^x f(t,y+\Delta y) dt - \int_a^x f_y'(t,y) dt \right) \end{split}$$

$$\frac{\partial \Phi}{\partial y}(x_1, y_1) - \frac{\partial \Phi}{\partial y}(x, y) = \int_a^x f_y'(t, y_1) dx + \left(\int_a^x f_y'(t, y) dx - \int_a^x f_y'(t, y) dx\right) - \int_a^x f_y'(t, y) dx.$$

Таким образом $\Phi(x,y)$ дифферецируема на Q

$$I(y) = \Phi(\beta(y), y) - \Phi(\alpha(y), y)$$

$$I'(y) = P'hi_x(\beta(y), y) \cdot \beta'(y) + \Phi'_y(\beta(y), y) - \Phi'_x(\alpha(y), y) \cdot \alpha'(y) - \Phi'_y(\alpha(y), y).$$

Пример.

$$I(p) = \int_{p^2}^{p^3} \frac{x^2 + 2p}{\ln^2 |x| + 1} dx$$

 $\forall p \neq 0, \quad [a, b] = [p - \delta, p + \delta] \quad [c, d]$

$$I'(p) = \int_{n^2}^{p^3} \frac{2}{\ln^2 |x| + 1} dx + \frac{p^6 + 2p}{\ln^2 |p^3| + 1} \cdot 3p^2 - \frac{p^4 + 2p}{\ln^2 |p^2| + 1} \cdot 2p.$$

7 Интегрирование на многообразиях

Определение 8. $\gamma:[a,b]\to\mathbb{R}$ кусочно-гладкое, простой путь (биекция) или заскнутый простой (едиснтвенная точка самопересечния – концы).

Пусть $\Gamma = \gamma([a,b])$ — носитель нашего пути...

$$\mathcal{B} = \{ B \mid \gamma^{-1}(B) \in \mathcal{A}.$$

$$ds = \nu(B) = \int_{\gamma^{-1}(B)} ||\gamma'|| (t) dt.$$

$$f: \Gamma \to \mathbb{R}(\mathbb{C}). \int_B f ds = \int_{\gamma^{-1}(B)} f(\gamma(t)) \cdot \|\gamma'(t)\|.$$

Интеграл не зависит от выбора параметризации. Также не зависит от ориентации кривой.

Пример.
$$\int_C x^2 s d$$
 $C: \begin{cases} x^2 + y^2 + z^2 = R^2 \\ x + y + z = 0 \end{cases}$

$$I = \int_C x^2 ds = \int_C y^2 ds = \int_C z^2 ds \implies I = \frac{1}{3} \int_C \underbrace{x^2 + y^2 + z^2}_{=R^2} ds = \frac{R^2}{3} \int_C ds = \frac{R^2}{3} \cdot 2\pi R...$$