OI 训练赛 Day1

[算法基础]

题目名称	英文名	时间限制	内存限制	答案比较方式
伐木	tree	1s	128MB	全文比较,忽略行尾空白和文末回车
数字表格	num	1s	128MB	全文比较,忽略行尾空白和文末回车
剑客	sword	1s	128MB	全文比较,忽略行尾空白和文末回车
序列	seq	1s	128MB	实数比较

欢迎参加今天的训练赛! 本次考试注意事项如下:

- 评测在 64 位 Linux 下使用 lemon 进行, 栈空间不限制。
- 每道题目的源代码命名为"题目英文名.cpp",输入文件为"题目英文名.in",输出文件为"题目英文名.out"。
- 所有题目均需要建立子文件夹,文件目录与 NOIP 一致。这也就是说:您需要提交一个文件夹,这个文件夹中包含几个子文件夹,分别命名为题目英文名。在每个子文件夹下,需要有一份源码,命名为"题目英文名.cpp"。
- 如果对上述的规则有疑问,请直接询问讲师。答疑范围与 NOIP 一致:考场上只回答与具体题目内容无关的询问,或是解释模糊不清的题意。
- 建议在考试结束前 15 分钟停止编码,检查每一题的输入输出、所开的内存空间大小,以免翻车。
- 题目难度未必是递增的,个人擅长的方向也有所不同,故建议不要死磕某一题。智 慧人生,品味舍得。
- 友谊第一,比赛第二,无需计较比赛结果。能从比赛中锻炼手感、学点知识,就是好的 ^_^

那么,祝君好运!

Good luck, Have fun!

阮行止, rxz@luogu.org

A. 伐木(tree)

题目描述

" 伐木丁丁,鸟鸣嘤嘤。 出自幽谷,迁于乔木。 嘤其鸣矣,求其友声。"

――《诗经・小雅》

森林里有 n 棵树,你的任务是把它们全都砍掉。每棵树有自己的高度,而我们每次砍树,都是砍掉树顶端的一截。一棵树的高度被我们砍到 0 时,我们认为这棵树已经砍完了。

我们知道,能否制造和使用工具,是人类与其他动物的根本区别。作为聪明的人类,你手中有一台伐木机,它的功能是:每次可以任选若干棵树,再任选一个长度 k ,伐木机把这些树都砍掉 k 的长度。当然了,树不能被砍到负数高度——这意味着 k 不能大于你选择的树中的最低高度。

在过去的日子里,森林里的树是每年种一次的。所以,目前森林里这 n 棵树的高度分别为 1,2,3...n.

我们想知道,最少用多少次伐木机,即可砍完这片森林。

输入格式

输入仅一行,一个正整数,表示 n.

输出格式

输出仅一行,一个正整数,表示至少需要用多少次伐木机。

样例数据

tree.in	tree.out
1	1
2	2
3	2

第二组数据,先利用伐木机把2砍掉一米。在这之后,两棵树的高度都是1了,我们可以一次性将它们都砍掉。

第三组数据,先将1和3砍掉一米,树木高度变成0,2,2。接下来将后两棵树砍掉即可。 只使用了两次伐木机。

数据规模与约定

对于前 30%的数据,保证 $n \le 10$. 对于前 60%的数据,保证 $n \le 10000$. 对于 100%的数据,保证 $n \le 10^{18}$.

B. 数字表格(num)

题目描述

许多年后,面对着一代又一代的 Oler, 奥雷连诺上校都会回想起那个下午, 他的父亲带他去见识数字表格。

这个表格的大小是 $n \times m$,也就是说有 n 行, m 列。这不是一张普通的表格;它的每一个元素,都是有意义的:位于第 i 行、第 j 列的数字,恰好是 $i \times j$.

那时,奥雷连诺痴迷于一个问题:这个表格中,第 k 大的数字是多少?幼年的奥雷连诺可以记下表上的每一个数,然后给它们从小到大排序,最后数出第 k 大的数。

时光如白驹过隙,匆匆而已……奥雷连诺上校心血来潮,想再玩一次少年时的游戏。然 而他的记忆力已经大不如前,只能询问带着计算机的你了。

输入格式

输入仅一行,三个正整数,分别表示 n,m,k.

输出格式

输出仅一行,一个正整数,表示这个表格中第 k 大的数。

样例数据

num.in	num.out
2 2 2	2
2 3 4	3
1 10 5	5

第二组数据中,表格里有1、2、2、3、4、6这六个数,其中第四大的是3。

数据规模与约定

对于前 40%的数据, 保证 $n, m \le 1000$.

对于前 60%的数据, 保证 $n, m \le 10000$.

对于 100%的数据, 保证 $n, m \le 500000, k \le n \cdot m$.

C. 剑客(sword)

题目描述

每一个人都可能是剑客,譬如李白,十五好剑术,遍干诸侯。

我们的剑客正在攻击一个目标,他需要给目标造成 n 点伤害。

本来,剑客每 x 秒可以打出 1 点伤害,但他可以花费一些金币,来学习一些技能。共有 m 种技能,第 i 个技能耗费掉 b_i 枚金币,可以将剑客的攻击间隔从 x 改为 a_i . 请注意,剑客只能学习至多一种技能。

由于这场战斗是最终决战,现场有 k 名吃瓜群众。剑客可以雇佣任意一名吃瓜群众,第 i 名吃瓜群众可以直接对目标造成 c_i 点伤害,而雇佣这名吃瓜群众需要 d_i 枚金币。注意剑客只能雇佣至多一名吃瓜群众。

剑客有 s 枚金币。现在需要知道: 他对目标造成 n 点伤害, 最少需要多少秒。

输入格式

第一行, 三个正整数, 分别表示 n, m, k.

第二行,两个正整数,分别表示 x,s.

第三行,m 个正整数,表示 $a_1, a_2, \dots a_m$.

第四行,m个正整数,表示 $b_1,b_2,...b_m$.

第五行,k 个正整数,表示 $c_1, c_2, ... c_k$.

第六行, k 个正整数, 表示 $d_1, d_2, ...d_k$.

输出格式

输出仅一行,一个正整数,表示最短时间。

样例数据

sword.in	sword.out
20 3 2	20
10 99	
2 4 3	
20 10 40	
4 15	
10 80	
20 3 2	200
10 99	
2 4 3	
200 100 400	
4 15	
100 800	

第一组数据,我们花费 10 个金币把 x 降到 4,花费 80 个金币雇佣第二个吃瓜群众。 吃瓜群众帮我们造成了 15 点伤害,剑客只需要打出 5 点伤害即可。用时 20 秒。

第二组数据,剑客啥也买不起,只能硬打出20点伤害,用时200秒。

数据规模与约定

首先,我们保证输入数据中的所有整数,都不超过 2×10^9 . 另外,每个技能不会使得 x 升高 (即 $a_i \le x$);没有任何吃瓜群众可以造成多于 n 的伤害 (即 $c_i \le n$)。

对于前 30%的数据,保证 $m,k \le 1000$. 对于 100%的数据,保证 $n,m,k \le 100000$.

D. 序列(seq)

题目描述

考虑一个序列,定义它的"不稳定值"为其所有子区间的"平衡度量"的最大值。 对于一个子区间,定义它的"平衡度量"为:这个子区间中所有数的和的绝对值。

今给定长为 n 的整数序列 $\{a\}$ 。需要选择实数 x,使得序列 $a_1-x,a_2-x,...,a_n-x$ 的 "不稳定值"最小。求这个最小的不稳定值。

输入格式

第一行,一个正整数,表示 n. 第二行,n 个整数,表示序列 $\{a\}$.

输出格式

输出仅一行,一个实数,表示新序列 $\{a_i - x\}$ 可能取到的最小的"不稳定值"。

请注意,本题采用实数比较模式来判断选手答案是否正确。 只要选手程序的输出与参考答案的误差不超过10⁻⁶,即判定为答案正确。

样例数据

seq.in	seq.out
3	1.000000000000000
1 2 3	
4	2.000000000000000
1 2 3 4	
10	4.500000000000000
1 10 2 9 3 8 4 7 5 6	

第一组数据, 取 x = 2, 序列变为 -1, 0, 1. 此时, 序列的"不稳定值"是 1.

第二组数据,取 x = 2.5,序列变成 -1.5, -0.5, 0.5, 1.5。此时,平衡度量的最大值为前两个元素造成的 |-1.5-0.5|=2,或后两个元素造成的 |0.5+1.5|=2. 无论如何,平衡度量的最大值是 2,即为整个序列的"不稳定值"。

数据规模与约定

对于前 40%的数据,保证 $n \le 5$, $|a_i| \le 5$. 对于 100%的数据,保证 $n \le 200000$, $|a_i| \le 10000$.