Homework 1: Report

110024516 統研所 邱繼賢

1 Introduction

1.1 Abstract

本次作業使用 Fashion-MNIST dataset,希望透過 shallow neural network 分析二維圖片資料來分類其屬於十種服飾類別中的哪一種類,並希望模型在 test data 上的準確率可以達到 87%。

1.2 Data

在 Fashion-MNIST dataset 中,總共有 60000 筆 train data 和 10000 筆 test data,每筆資料的 input variable 都是一個 28×28 的二維陣列,response variable 爲該圖片對應到的 label $(0\sim9)$,爲了方便我們之後的模型處理,將每一筆 28×28 matrix form input variable 都轉換成 784×1 vector form,而 label response 都轉換成 one-hot 的形式: (10×1) vector with true label = 1, others = 0,然後再將 train data 以 55000:5000 的比例隨機分成 train set 和 validation set,各資料集的維度如下所示:

 X_{train} : (55000, 784), Y_{train} : (55000, 10)

 X_{val} : (5000, 784), Y_{val} : (5000, 10)

 X_{test} : (10000, 784), Y_{test} : (10000, 10)

所有的 input variable 都 element-wise 的除以 255,也就是對 data 做 normalize 用以避免一些太大的數值影響後續參數的估計。

2 Shallow Neural Network

2.1 Architecture

我們建構一個兩層 hidden layers 的 shallow neural network model,兩層 hidden layers 的 neuron 個數分別為 (600,400),每層的 hidden layer 使用 ReLU activation function,output layer 使用 softmax activation function,模型的架構如 Figure 1 所示,最後再利用模型預測出來的類別以及真實資料的類別計算 Accuracy 和 Cross-entropy loss: $L(y,\hat{y}) = -\sum y \log(\hat{y})$

Figure 1: Architecture of model

2.2 Implementation Detail for gradient of loss

Cross-entropy loss : $L = \sum_{n=1}^{M} L^{(n)}$, and our goal is to evaluate $\frac{\partial L^{(n)}}{\partial W_{i,j}^{(k)}}$ in each k-th layer. By chain rule :

$$rac{\partial L^{(n)}}{\partial W_{i,j}^{(k)}} = rac{\partial L^{(n)}}{\partial z_j^{(k)}} \cdot rac{\partial z_j^{(k)}}{\partial W_{i,j}^{(k)}}$$

The second term $\frac{\partial z_j^{(k)}}{\partial W_{i,j}^{(k)}}$ can be computed by forward pass

$$\frac{\partial z_{j}^{(k)}}{\partial W_{i,j}^{(k)}} = \begin{cases} x_{i}^{(n)} & , \text{for } k = 1\\ a_{i}^{(k-1)} = act(z_{i}^{k-1}) & , \text{for } k > 1 \end{cases}$$

details can be seen in Listing 1

Listing 1: Forward Pass

and the first term $\delta_j^{(k)} = \frac{\partial L^{(n)}}{\partial z_j^{(k)}}$ can be computed by backward pass

$$\begin{split} \delta_{j}^{(k)} &= \frac{\partial L^{(n)}}{\partial z_{j}^{(k)}} = \frac{\partial L^{(n)}}{\partial a_{j}^{(k)}} \cdot \frac{\partial a_{j}^{(k)}}{\partial z_{j}^{(k)}} = \frac{\partial L^{(n)}}{\partial a_{j}^{(k)}} \cdot act'(z_{j}^{(k)}) \\ &= \left[\sum_{s} \frac{\partial L^{(n)}}{\partial z_{s}^{(k+1)}} \cdot \frac{\partial z_{s}^{(k+1)}}{\partial a_{j}^{(k)}} \right] \cdot act'(z_{j}^{(k)}) \\ &= \left[\sum_{s} \delta_{s}^{(k+1)} \cdot W_{j,s}^{(k+1)} \right] \cdot act'(z_{j}^{(k)}) \end{split}$$

details can be seen in Listing 2

```
def back_propagate(self, y, output):
          current_batch_size = y.shape[0]
          dZ3 = output - y.T
          dW3 = (1/current_batch_size) *
                np.matmul(dZ3, self.cache["A2"].T)
          db3 = (1/current_batch_size) *
                np.sum(dZ3, axis=1, keepdims=True)
          dA2 = np.matmul(self.params["W3"].T, dZ3)
          dZ2 = dA2 * self.activation(self.cache["Z2"],
11
                                       derivative=True)
          dW2 = (1/current_batch_size) *
13
                np.matmul(dZ2, self.cache["A1"].T)
          db2 = (1/current_batch_size) *
15
                np.sum(dZ2, axis=1, keepdims=True)
16
          dA1 = np.matmul(self.params["W2"].T, dZ2)
18
          dZ1 = dA1 * self.activation(self.cache["Z1"],
19
                                       derivative=True)
20
          dW1 = (1/current_batch_size) *
                np.matmul(dZ1, self.cache["X"])
22
          db1 = (1/current_batch_size) *
                np.sum(dZ1, axis=1, keepdims=True)
24
          self.grads = {"W1":dW1, "b1":db1, "W2":dW2, "b2":db2,
26
                         "W3":dW3, "b3":db3}
27
          return self.grads
```

Listing 2: Backward Pass

2.3 Training and Validation

模型參數更新的方式是採用 mini-batch 加上 Momentum, 演算法如下:

$$v^{(t+1)} \leftarrow \beta v^{(t)} - (1-\beta) \nabla L(y, \hat{y})$$

$$w^{(t+1)} \leftarrow w^{(t)} - \eta v^{(t+1)}$$

 (eta,η) 都是 hyperparameter,Momentum 相較於一般的 mini-batch SGD,比較不會錯誤的收斂在 local minimum or saddle points。

訓練模型的途中可以藉由觀察 training 和 validation dataset 各自的 Accuracy 和 Cross-entropy loss 得知模型是否有 overfitting 的現象,藉此來挑整 hyperparameter,例如:Figure 2 中可以看到在 Epoch 超過 200 後 validation loss 開始逐漸上升,代表模型在此時已經有 overfitting 的情況發生了,這種情況可以提早停止我們模型的 training,這也是爲什麼我們一開始需要從 train data 中額外多分割出一份 validation data 的原因,因爲只觀察 train data 的話,是無法發現 overfitting 的現象。其餘的 hyperparameter 也是用類似的同時觀察 train and validation loss 所得,在此就不多加贅述。

Figure 2: Overfitting Example

2.4 Testing Result

選定的 hyperparameter 如下:

Epoch = 500, Batch size = 500, Learning rate $\eta = 0.01$, $\beta = 0.8$

如 Listing 3 所示,可以藉由更改 train.py 中的參數設定值更改包括:neuron, epoch, batch size, learning rate, β,各項 hyperparameter,但若想要更改模型 layer 數量,則需改寫 $feed_forward$ 和 $back_propagate$ 的部分

```
snn = ShallowNeuralNetwork(sezes=[784,600,400,10],

epochs=500, activation="relu")

snn.train(x_train, y_train, x_val, y_val, batch_sizes=500,

optimizer="momentum", l_rate=0.01, beta=0.8)
```

Listing 3: Setting hyperparameter

模型對 train data 以及 validation data 的 accuracy 和 cross-entropy loss 呈現於 Figure 3 & 4,可以看出差不多 500 epochs 的時候, Validation loss 呈現穩定不再明顯下降, Validation accuracy 在此時也已經超過 87%,那麼此時就可以停止訓練模型了,然後再將訓練好的模型對 test data 預測並計算準確率和 loss,可得 Accuracy = 88.84%, Loss = 0.3301,實驗結果可見於 test.py。

Figure 3: ReLU: Train v.s. Validation loss

3 Some Questions

3.1 What about deep NN?

隨著模型的層數增加,的確會使得 training accuracy 上升,但 validation (testing) accuracy 不一定也會上升,如同 Figure 5 所示,層數從 1 逐漸增加到

Figure 4: ReLU: Train v.s. Validation accuracy

4, training loss 逐漸下降(training accuracy 逐漸上升),但當層數>2時,validation loss 不降反升(validation accuracy 不升反降),會產生這種現象就是因爲模型太過複雜,產生了 overfitting 的現象。

3.2 Other activation function

在其他 hyperparameter 都不變的情況下,將 activation function 分別改成 sigmoid, tanh, hard tanh 三種,各自去訓練模型,然後觀察其預測值在 test data 上的表現,結果呈現如下表:

Activation	ReLU	Sigmoid	tanh	Hard tanh
Test loss	0.3301	0.4657	0.3426	0.3408
Test accuracy	0.8884	0.8331	0.8799	0.8852

使用 Sigmoid, tanh, Hard tanh 訓練時的 train (validation) loss and accuracy 各自呈現於 Figure $6\sim11$,可以看出像是 Sigmoid, tanh 這種連續性的 activation function模型的收斂速度會慢於 ReLU, Hard tanh 這種 piecewise linear activation function,在相同的 epochs 下,對 test data 的預測準確率也較差。

Figure 5: Loss in different Layers

Figure 6: Sigmoid: Train v.s. Validation loss

Figure 7: Sigmoid : Train v.s. Validation accuracy

Figure 8: tanh : Train v.s. Validation loss

Figure 9: tanh : Train v.s. Validation accuracy

Figure 10: Hard tanh: Train v.s. Validation loss

Figure 11: Hard tanh : Train v.s. Validation accuracy