第3章

位相的場の理論

この章は [?, Chapter7] および [?] に相当する.この節で登場する多様体は特に断らない限り常に C^∞ 多様体である.また,体 \mathbb{K} と言ったら $\mathbb{K}=\mathbb{R}$, \mathbb{C} , \mathbb{H} のいずれかを指すことにしよう.

3.1 モノイダル圏

まず手始めに、モノイダル圏とストリング図式の準備をする.特に、コボルディズム圏と有限次元 Hilbert 空間の圏がコンパクト対称モノイダル圏であることの直感的な説明をする.

3.1.1 モノイダル圏の定義

定義 3.1: モノイダル圏

モノイダル圏 (monidal category) は、以下の5つのデータからなる:

- 圏 C
- テンソル積 (tensor product) と呼ばれる関手 \otimes : $\mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$
- 単位対象 (unit object) $I \in Ob(\mathcal{C})$
- associator と呼ばれる自然同値

$$\left\{a_{X,\,Y,\,Z}\colon (X\otimes Y)\otimes Z\stackrel{\cong}{\longrightarrow} X\otimes (Y\otimes Z)\right\}_{X,\,Y,\,Z\in\mathrm{Ob}(\mathcal{C})}$$

• left/right unitors と呼ばれる自然同値

$$\left\{ l_X \colon I \otimes X \xrightarrow{\cong} X \right\}_{X \in \mathrm{Ob}(\mathcal{X})},$$
$$\left\{ r_X \colon X \otimes I \xrightarrow{\cong} X \right\}_{X \in \mathrm{Ob}(\mathcal{X})}$$

これらは $\forall X, Y, Z, W \in Ob(\mathcal{C})$ について以下の 2 つの図式を可換にする:

(triangle diagram)

定義 3.1 は,ストリング図式(string diagram)で理解するのが良い。モノイダル圏の射 $f\colon X\longrightarrow Y,\ f'\colon X'\longrightarrow Y'$ があったら,そのテンソル積 $f\otimes f'\colon X\otimes X'\longrightarrow Y\otimes Y'$ は,ストリング図式上では次のようになる.

また、単位対象 $I \in \mathrm{Ob}(\mathcal{C})$ は空白として表す。 従って例えば射 $f \colon I \longrightarrow X$ は次のようになる:

【例 3.1.1】コボルディズム圏

厳密な構成^aは後回しにして、**コボルディズム圏** (cobordism category) を直感的に導入しよう. 圏 \mathbf{Cob}_{D+1} は、

- D 次元多様体を対象
- D+1 次元のコボルディズム (cobordism) を射

とするような圏のことを言う. D+1 次元のコボルディズム $\mathcal{M}\colon X\longrightarrow Y$ と言うのは,D+1 次元 多様体 \mathcal{M} であって, $\partial\mathcal{M}=X$ II Y となっているようなもの(の微分同相類)のことである:射 $\mathcal{M}\colon X\longrightarrow Y,\ \mathcal{N}\colon Y\longrightarrow Z$ の合成 $\mathcal{N}\circ\mathcal{M}\colon X\longrightarrow Y$ は次の図式が物語る:圏 \mathbf{Cob}_{D+1} は,disjoint union に関してモノイダル圏になる:

 $[^]a$ 例えば, $(B,\,f)$ -structure の定義から始めるコボルディズムの統一的な扱いは [?, CHAPTER 1] などを参照.

【例 3.1.2】有限次元 Hilbert 空間の圏

有限次元 K-Hilbert 空間の圏 Hilb とは,

- 有限次元 K-Hilbert 空間を対象
- 線型写像を射
- 写像の合成を射の合成

に持つような圏のことを言う. Hilb はベクトル空間のテンソル積 $V_1 \otimes V_2$ の上に内積を

$$\langle v_1 \otimes v_2, w_1 \otimes w_2 \rangle := \langle v_1, w_1 \rangle_1 \langle v_2, w_2 \rangle_2$$

と定義することでモノイダル圏になる.

3.1.2 組紐付きモノイダル圏

定義 3.2: 組紐付きモノイダル圏

組紐付きモノイダル圏 (braided monoidal category) とは、以下の 2 つからなる:

- モノイダル圏 C
- 組紐 (braiding) と呼ばれる自然同型

$$\{b_{X,Y}\colon X\otimes Y\xrightarrow{\cong} Y\otimes X\}_{X,Y\in\mathrm{Ob}(\mathcal{C})}$$

これらは $\forall X, Y, Z \in Ob(\mathcal{C})$ について以下の図式を可換にする:

(hexagon diagrams)

$$X \otimes (Y \otimes Z) \xrightarrow{a_{X,Y,Z}^{-1}} (X \otimes Y) \otimes Z \xrightarrow{b_{X,Y} \otimes 1_{Z}} (Y \otimes X) \otimes Z$$

$$\downarrow^{b_{X,Y \otimes Z}} \qquad \qquad \downarrow^{a_{Y,X,Z}}$$

$$(Y \otimes Z) \otimes X \xleftarrow{a_{Y,Z,X}^{-1}} Y \otimes (Z \otimes X) \xleftarrow{1_{X} \otimes b_{X,Z}} Y \otimes (X \otimes Z)$$

$$(X \otimes Y) \otimes Z \xrightarrow{a_{X,Y,Z}} X \otimes (Y \otimes Z) \xrightarrow{1_{X} \otimes b_{Y,Z}} X \otimes (Z \otimes Y)$$

$$\downarrow^{b_{X \otimes Y,Z}} \qquad \qquad \downarrow^{a_{X,Z,Y}^{-1}}$$

$$Z \otimes (X \otimes Y) \xleftarrow{a_{Z,X,Y}} (Z \otimes X) \otimes Y \xleftarrow{b_{X,Z} \otimes 1_{Y}} (X \otimes Z) \otimes Y$$

組紐付きモノイダル圏 $\mathcal C$ であって, $\mathcal C$ の組紐が $b_{X,Y}=b_{Y,X}^{-1}$ を充たすもののことを**対称モノイダル** 圏 (symmetric monoidal category) と呼ぶ.

ストリング図式で組紐を書く場合は次のようにする:

このとき hexagon diagrams はとてもわかりやすくなる:

対称モノイダル圏の条件も一目瞭然である:

【例 3.1.3】Cob_{D+1} の組紐

 \mathbf{Cob}_{D+1} の組紐 $b_{X,Y}\colon X\otimes Y\longrightarrow Y\otimes X$ は、多様体 $(X\times[0,1])\amalg(Y\times[0,1])$ と微分同相であるような D+1 次元多様体のことを言う:図から、 \mathbf{Cob}_{D+1} は対称モノイダル圏である.

【例 3.1.4】Hilb の組紐

Hilb の組紐は

$$b_{X,Y} \colon X \otimes Y \longrightarrow Y \otimes X,$$
$$x \otimes y \longmapsto y \otimes x$$

である.これがベクトル空間の同型写像であることが示される.明らかに $b_{X,Y}=b_{Y,X}^{-1}$ なので **Hilb** は対称モノイダル圏である.

3.1.3 閉圏・コンパクト圏・ダガー圏

圏 C を与える. **Hom 関手** (Hom functor) とは, 関手

$$\operatorname{Hom} \colon \mathcal{C}^{\operatorname{op}} \times \mathcal{C} \longrightarrow \mathbf{Sets}$$

であって

$$(X, Y) \longmapsto \operatorname{Hom}_{\mathcal{C}}(X, Y)$$

$$\Big((f, g) \colon (X', Y) \longrightarrow (X, Y') \Big) \longmapsto \Big(\operatorname{Hom}_{\mathcal{C}}(X, Y) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(X', Y'), \ h \longmapsto g \circ h \circ f \Big)$$

なる対応を与えるもののこと.

定義 3.3: 閉圏

モノイダル圏 C を与える.

• C が左に閉じている (left closed) とは, internal hom functor と呼ばれる関手

$$\multimap : \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \longrightarrow \mathbf{Sets}$$

と, currying と呼ばれる自然同型

$$\left\{c_{X,\,Y,\,Z}\colon \mathrm{Hom}\,(X\otimes Y,\,Z)\xrightarrow{\cong} \mathrm{Hom}\,(X,\,Y\multimap Z)\right\}_{X,\,Y,\,Z\in\mathrm{Ob}(\mathcal{C})}$$

の2つが存在することを言う.

• *C* が**右に閉じている** (right closed) とは, **internal hom functor** と呼ばれる関手と, **currying** と呼ばれる自然同型

$$\left\{c_{X,Y,Z} \colon \operatorname{Hom}\left(X \otimes Y, Z\right) \xrightarrow{\cong} \operatorname{Hom}\left(Y, X \multimap Z\right)\right\}_{X,Y,Z \in \operatorname{Ob}(\mathcal{C})}$$

の2つが存在することを言う.

対称モノイダル圏しか考えないので、以降では右に閉じているかどうかしか気にしないことにする.

定義 3.4: 双対

モノイダル圏 $\mathcal C$ およびその任意の対象 $X,\,X^*\in \mathrm{Ob}(\mathcal C)$ を与える. X^* が X の右双対 (right dual) であり,かつ X が X^* の左双対 (left dual) であるとは,

• unit と呼ばれる射

$$i_X \colon I \longrightarrow X^* \otimes X$$

• counit と呼ばれる射

$$e_X \colon X \otimes X^* \longrightarrow I$$

が存在して以下の図式を可換にすることを言う:

(zig-zag equations)

双対のストリング図式は、単に矢印を逆にすれば良い:

このとき zig-zag equations が本当にジグザグしていることがわかる:

定義 3.5: コンパクト圏

モノイダル圏 \mathcal{C} は、 $\forall X \in \mathrm{Ob}(\mathcal{C})$ が左・右双対を持つとき**コンパクト** (compact) であると言われる.

【例 3.1.5】Cob の unit と counit

 \mathbf{Cob}_{D+1} における $X \in \mathrm{Ob}(\mathbf{Cob}_{D+1})$ の双対とは、向き付けを逆にした D 次元多様体 X のことである。特に \mathbf{Cob}_3 における unit, counit はそれぞれ U 字管とそれを逆さにしたもののような見た目をしている:

internal hom functor を $X \multimap Y \coloneqq X^* \otimes Y$ とすれば、図から \mathbf{Cob}_3 が閉圏であることを直接確認できる。

【例 3.1.6】 Hilb の unit と counit

Hilb において $I=\mathbb{C}$ である. 従って、 $X\in \mathrm{Ob}(\mathbf{Hilb})$ の双対とは双対ベクトル空間 $\mathrm{Hom}_{\mathbb{C}}(X,\mathbb{C})$ のことである. ブラ空間のことだと言っても良い. 特に、自然な同型 $X^*\otimes Y\cong \mathrm{Hom}_{\mathbb{C}}(X,Y)$ を使うと X の unit は

$$i_X \colon I \longrightarrow X^* \otimes X,$$

 $c \longmapsto c \operatorname{id}_X$

で、counit は

$$e_X \colon X \otimes X^* \longrightarrow I,$$

 $x \otimes f \longmapsto f(x)$

であることがわかる. internal hom functor を $X \multimap Y \coloneqq X^* \otimes Y \cong \operatorname{Hom}_{\mathbb{C}}(X,Y)$ とすれば **Hilb** が閉圏であることを直接確認できる.

実は、コンパクト圏は自動的に閉圏になる. これは

$$X \multimap Y \coloneqq X^* \otimes Y$$

として internal hom functor を定義することで確認できる.

定義 3.6: ダガー圏

圏 C が**ダガー圏** (dagger category) であるとは、関手

$$\dagger \colon \mathcal{C} \longrightarrow \mathcal{C}^{\mathrm{op}}$$

が存在して以下を充たすことを言う:

- $(1) \ \forall X \in \mathrm{Ob}(\mathcal{C}) \$ に対して $X^{\dagger} = X \$ を充たす.
- (2) \mathcal{C} の任意の射 $f: X \longrightarrow Y$ に対して $(f^{\dagger})^{\dagger} = f$ を充たす.

【例 3.1.7】Cob の dagger

 \mathbf{Cob}_{D+1} における $\mathcal{M}\colon X\longrightarrow Y$ のダガーは、上下を逆にしてから \mathcal{M} の連結成分毎に向きを逆にすることで得られる.

【例 3.1.8】Hilb の dagger

Hilb における $f: X \longrightarrow Y$ のダガーは、 $\forall \phi \in X, \forall \psi \in Y$ に対して

$$\langle f^{\dagger}(\psi), \phi \rangle \coloneqq \langle \psi, f(\phi) \rangle$$

とすることで定義される.

3.1.4 モノイダル関手

モノイダル関手とは、ざっくり言うとモノイダル圏の構造を保存するような関手のことである:

定義 3.7: モノイダル関手

2つのモノイダル圏 C, D の間の関手

$$F \colon \mathcal{C} \longrightarrow \mathcal{D}$$

が lax monoidal functor であるとは、

射

$$\varepsilon\colon I_{\mathcal{D}}\longrightarrow F(I_{\mathcal{C}})$$

• 自然変換

$$\{\mu_{X,Y} \colon F(X) \otimes_{\mathcal{D}} F(Y) \longrightarrow F(X \otimes_{\mathcal{C}} Y)\}_{X,Y \in \mathrm{Ob}(\mathcal{C})}$$

があって、 $\forall X, Y, Z \in \mathrm{Ob}(\mathcal{C})$ に対して以下の図式が可換になること:

(associatibity)

$$(F(X) \otimes_{\mathcal{D}} F(Y)) \otimes_{\mathcal{D}} F(Z) \xrightarrow{a_{F(X), F(Y), F(Z)}} F(X) \otimes_{\mathcal{D}} (F(Y) \otimes_{\mathcal{D}} F(Z))$$

$$\downarrow 1_{F(X)} \otimes \mu_{Y, Z}$$

$$F(X \otimes_{\mathcal{C}} Y) \otimes_{\mathcal{D}} F(Z) \qquad F(X) \otimes_{\mathcal{D}} F(Y \otimes_{\mathcal{C}} Z)$$

$$\downarrow \mu_{X \otimes_{\mathcal{C}} Y, Z} \downarrow \qquad \qquad \downarrow \mu_{X, Y \otimes_{\mathcal{C}} Z}$$

$$F((X \otimes_{\mathcal{C}} Y) \otimes_{\mathcal{C}} Z) \xrightarrow{F(a_{X, Y, Z}^{\mathcal{C}})} F(X \otimes_{\mathcal{C}} (Y \otimes_{\mathcal{C}} Z))$$

(unitality)

$$I_{\mathcal{D}} \otimes_{\mathcal{D}} F(X) \xrightarrow{\varepsilon \otimes 1_{F(X)}} F(I_{\mathcal{C}}) \otimes_{\mathcal{D}} F(X)$$

$$\downarrow^{l_{F(X)}^{\mathcal{D}}} \qquad \qquad \downarrow^{\mu_{I_{\mathcal{C}}, X}}$$

$$F(X) \longleftarrow F(l_{X}^{\mathcal{C}}) \xrightarrow{F(l_{X}^{\mathcal{C}})} F(X) \otimes_{\mathcal{D}} F(I_{\mathcal{C}})$$

$$\downarrow^{r_{F(X)}^{\mathcal{D}}} \qquad \qquad \downarrow^{\mu_{X, I_{\mathcal{C}}}}$$

$$F(X) \longleftarrow F(r_{X}^{\mathcal{C}}) \xrightarrow{F(r_{X}^{\mathcal{C}})} F(X \otimes_{\mathcal{C}} I_{\mathcal{C}})$$

- lax monoidal functor F の ε と $\mu_{X,Y}$ が全て同型射ならば, F は strong monoidal functor と呼ばれる.
- lax monoidal functor F の ε と $\mu_{X,Y}$ が全て恒等射ならば, F は strict monoidal functor と呼ばれる.

3.2 TQFT の定義

位相的場の理論 (Topological Quantum Field Theory; TQFT) の枠組みをトップダウンに導入する.

3.2.1 Atiyah の公理系

まず,全ての出発点として Atiyah の公理系 [?] というものがある:

公理 3.1: Atiyah の公理系(若干簡略版)

体 \mathbb{K} 上の a , D 次元の**位相的場の理論** (Topological Quantum Field Theory; TQFT) とは,以下の 2 つのデータからなる:

(1) 向き付けられた (oriented) D 次元の閉多様体 (closed manifold) Σ に対応づけられた 有限次元 \mathbb{K} -ベクトル空間 $V(\Sigma)$

(2) 向き付けられた D+1 次元の境界付き多様体 M に対応づけられたベクトル $Z(M) \in V(\partial M)$ これらのデータは以下の条件を充たす:

(TQFT-1)

Z は向きを保つ微分同相写像について**関手的** (functorial) に振る舞う.

(TQFT-2)

Z は**対合的** (involutory) である.

(TQFT-3)

Z は**モノイダル的** (multiplicative b) である.

[?] に倣って公理の意味を精査していく.

(TQFT-1)

この公理は2つの要請を持つ:

- (1) D 次元閉多様体 Σ , Σ' , Σ'' の間の向きを保つ微分同相写像 $f: \Sigma \longrightarrow \Sigma'$, $g: \Sigma' \longrightarrow \Sigma''$ に対して, $V(f): V(\Sigma) \longrightarrow V(\Sigma')$ はベクトル空間の同型写像で、 $V(g \circ f) = V(g) \circ V(f)$ が成り立つ.
- (2) 向きを保つ微分同相写像 $f\colon \Sigma \longrightarrow \Sigma'$ が,D+1 次元多様体 M,M' であって $\Sigma = \partial M, \Sigma' = \partial M'$ を充たすものの上に $f\colon M \longrightarrow M'$ と拡張される場合に V(f)(Z(M)) = Z(M') を充たす.

(TQFT-2)

 Σ の逆の向きを Σ^* と書く*1とき, $V(\Sigma^*) = V(\Sigma)^*$ を充たす*2.

(TQFT-3)

この公理は5つの要請を持つ:

(1) D 次元閉多様体 Σ_1, Σ_2 に対して

$$V(\Sigma_1 \coprod \Sigma_2) = V(\Sigma_1) \otimes V(\Sigma_2)$$

が成り立つこと.

(2) D+1 次元多様体 M, M_1 , M_2 に対して $\partial M_1=\Sigma_1 \coprod \Sigma_3$, $\partial M_2=\Sigma_2 \coprod \Sigma_3^*$, $M=M_1\cup_{\Sigma_3} M_2$ が 成り立つならば,

$$Z(M) = \langle Z(M_1)|Z(M_2)\rangle$$

ただし,

$$\langle | \rangle : V(\partial M_1) \otimes V(\partial M_2) = V(\Sigma_1) \otimes V(\Sigma_3) \otimes V(\Sigma_3)^* \otimes V(\Sigma_2) \longrightarrow V(\partial M) = V(\Sigma_1) \otimes V(\Sigma_2),$$

$$|\psi_1\rangle \otimes |\psi_3\rangle \otimes \langle \varphi_3| \otimes |\psi_2\rangle \longmapsto \langle \varphi_3|\psi_3\rangle |\psi_1\rangle \otimes |\psi_2\rangle$$

である.

^a 原論文 [?] では環としていて,ベクトル空間の代わりに環上の有限生成加群を扱っている.今回は Hilbert 空間しか考えないので体 $\mathbb K$ としておいた.

 $[^]b$ 「乗法的」というと語弊がありそうなのでモノイダル的と言った.

 $^{^{*1}}$ 【例 3.1.5】の意味で Σ の双対となっている.

 $^{^{*2}}$ $V(\Sigma)$ が有限次元なので、 $V(\Sigma)^*$ はブラ空間と見做せる.

$$Z(M) = Z(M_1) \otimes Z(M_2)$$

(4) (1) から*3,

$$V(\emptyset) = \mathbb{K}$$

(5) (3) から *4 ,

$$Z(\emptyset) = 1$$

今や別の同値な定義ができる. D+1 次元多様体 M の境界 ∂M を

$$\partial M = \Sigma_1^* \coprod \Sigma_2$$

と分解すると*5, **(TQFT-3)**-(1) より $Z(M) \in V(\partial M) = Z(\Sigma_1)^* \otimes Z(\Sigma_2) \cong \operatorname{Hom}_{\mathbb{K}} \big(Z(\Sigma_1), \, Z(\Sigma_2) \big)$ が言えるので,Z(M) を線型写像 $Z(M) \colon V(\Sigma_1) \longrightarrow V(\Sigma_2)$ と同一視できるのである.**(TQFT-1)** もあわせると,結局これまで $V, \, Z$ と書いていたものは strong monoidal functor

$$Z \colon \mathbf{Cob}_{D+1} \longrightarrow \mathbf{Vec}_{\mathbb{K}}$$

の1つに集約することができる.

定義 3.8: TQFT の定義

D 次元の**位相的場の理論** (Topological Quantum Field Theory; TQFT) とは、コボルディズム圏からある対称モノイダル圏 \mathcal{D} への strict monoidal functor^a

$$Z \colon \mathbf{Cob}_{D+1} \longrightarrow \mathcal{D}$$

のこと.

興味があるのは $\mathcal{D} = \mathbf{Vec}_{\mathbb{K}}$, Hilb の場合なので,以下では TQFT と言ったら strict monoidal functor

$$Z \colon \mathbf{Cob}_{D+1} \longrightarrow \mathbf{Vec}_{\mathbb{K}}, \, \mathbf{Hilb}$$

を指すことにしよう.

a strong monoidal functor とする場合もある (例えば https://ncatlab.org/nlab/show/cobordism) ようだが、原 論文 [?] では strict monoidal functor になっていた.

^{*3} \mathbf{Cob}_{D+1} の単位対象は \emptyset なので $\emptyset = \emptyset \coprod \emptyset$. よって (1) から $V(\emptyset) = V(\emptyset) \otimes V(\emptyset)$. これを充たすのは $V(\emptyset) = 0$, \mathbb{K} (モノイダル圏 $\mathbf{Vec}_{\mathbb{K}}$ の単位対象は \mathbb{K} である) のどちらかしかないので、非自明な方を採用する.

 $^{^{*4}}$ $\emptyset=\emptyset$ \coprod \emptyset なので (3) から $Z(\emptyset)=Z(\emptyset)\otimes Z(\emptyset)$. これを充たす $V(\emptyset)=\mathbb{K}$ の元は 0,1 しかないので,非自明な方を採用する.

^{*5} どちらか一方が ∅ になっても良い