CHAP 9 - ANALYSE ASYMPTOTIQUE

1 Relations de comparaison

1.1 Comparaison de fonctions

Définition 1

- Si $a \in \mathbb{R}$, on appelle **voisinage de** a toute partie de \mathbb{R} contenant un intervalle de la forme]a-h, a+h[où h désigne un réel non nul.
- Si f est définie sur un intervalle I, on dit que f est définie **au voisinage de** a (réel ou infini) si tout voisinage de a rencontre I.
- On dira qu'une propriété portant sur f est vraie **au voisinage de** a si elle est vraie sur l'intersection de I avec un voisinage de a.

Définition 2

Soient f et g deux fonctions définies au voisinage de a (fini ou infini). On suppose que g ne s'annule pas au voisinage de a sauf éventuellement en a (si $a \in \mathbb{R}$).

• On dit que f est **négligeable devant** g au voisinage de a, et on note f(x) = o(g(x)) si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

• On dit que f est **équivalente à** g au voisinage de a, et on note $f(x) \underset{x \to a}{\sim} g(x)$ si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

• On dit que f est **dominée par** g au voisinage de a, et on note f(x) = O(g(x)) si la fonction $\frac{f}{g}$ est bornée au voisinage de a.

Proposition 1

f est équivalente à g au voisinage de a si, et seulement si f(x) - g(x) = o(g(x)).

Exemple 1

(a) Si $P(x) = a_n x^n + \dots + a_m x^m$ avec $n > m, a_n \neq 0, a_m \neq 0$ alors

$$P(x) \underset{x \to 0}{\sim} a_m x^m$$
 et $P(x) \underset{x \to \pm \infty}{\sim} a_n x^n$

(b) Pour $(\alpha, \beta, \gamma) \in (\mathbb{R}_+^*)^3$ on a :

$$(\ln x)^{\alpha} = o(x^{\beta})$$
 et $x^{\beta} = o(e^{\gamma x})$

(c) Pour $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$ on a :

$$(\ln x)^{\beta} \underset{x \to 0}{=} o\left(\frac{1}{x^{\alpha}}\right)$$

1.2 Propriétés

Proposition 2 Transitivité des relations

Soient f, g et h des fonctions définies au voisinage de a (fini ou infini).

- Si f(x) = o(g(x)) et g(x) = o(h(x)), alors f(x) = o(h(x)).
- Si f(x) = O(g(x)) et g(x) = O(h(x)), alors f(x) = O(h(x)).
- Si $f(x) \underset{x \to a}{\sim} g(x)$ et $g(x) \underset{x \to a}{\sim} h(x)$, alors $f(x) \underset{x \to a}{\sim} h(x)$

Proposition 3 Somme

Soient f, g et h des fonctions définies au voisinage de a (fini ou infini).

- Si f(x) = o(h(x)) et g(x) = o(h(x)), alors f(x) + g(x) = o(h(x)).
- Si f(x) = O(h(x)) et g(x) = O(h(x)), alors f(x) + g(x) = O(h(x)).

Attention! La relation d'équivalence entre deux fonctions n'est pas compatible avec l'addition. Par exemple, si on considère $f: x \mapsto x^2 + x$ et $g: x \mapsto x^3 - x$, alors on a : $f(x) \underset{x \to 0}{\sim} x$ et $g(x) \underset{x \to 0}{\sim} -x$, mais $f(x) + g(x) \underset{x \to 0}{\sim} x^2$.

Proposition 4

La relation d'équivalence entre deux fonctions est compatible avec le produit et l'inverse : si f_1 , f_2 , g_1 et g_2 sont définies au voisinage de a, ne s'annulant pas au voisinage de a sauf éventuellement en a (si $a \in \mathbb{R}$) alors on a :

$$\left(f_1(x) \underset{x \to a}{\sim} g_1(x) \text{ et } f_2(x) \underset{x \to a}{\sim} g_2(x)\right) \quad \Rightarrow \quad \left(f_1(x) f_2(x) \underset{x \to a}{\sim} g_1(x) g_2(x) \text{ et } \frac{f_1(x)}{f_2(x)} \underset{x \to a}{\sim} \frac{g_1(x)}{g_2(x)}\right)$$

Proposition 5

On suppose que f et g sont définies au voisinage de a (fini ou infini), ne s'annulant pas au voisinage de a, sauf éventuellement en a (si $a \in \mathbb{R}$). On suppose que $f(x) \underset{x \to a}{\sim} g(x)$.

- Si h est une fonction telle qu'au voisinage de a on ait $f(x) \leq h(x) \leq g(x)$ alors $h(x) \underset{x \to a}{\sim} f(x)$
- Si $\lim_{a} f = l$ (fini ou infini), alors $\lim_{a} g = l$.
- Au voisinage de a, f et g sont de même signe.
- Soit h une fonction définie sur un intervalle J telle que $f \circ h$ et $g \circ h$ soient définies au voisinage de b avec $\lim_{h \to a} h = a$. Alors

$$f \circ h(x) \underset{x \to b}{\sim} g \circ h(x)$$

• Si f est une fonction positive au voisinage de a, alors pour tout $\alpha \in \mathbb{R}$:

$$f^{\alpha}(x) \underset{x \to a}{\sim} g^{\alpha}(x)$$

$$e^{f(x)} \underset{x \to a}{\sim} e^{g(x)} \iff \lim_{a} (f - g) = 0$$

Attention! On peut avoir $f(x) \underset{x \to a}{\sim} g(x)$ et $e^{f(x)} \underset{x \to a}{\nsim} e^{g(x)}$. Par exemple, on $a: x+1 \underset{x \to +\infty}{\sim} x$ mais $e^{x+1} \underset{x \to +\infty}{\nsim} e^x$.

• Si f est strictement positive au voisinage de a et si $\lim_a f = b \in \mathbb{R}^+ \setminus \{1\}$ alors

$$\ln(f(x)) \underset{x \to a}{\sim} \ln(g(x))$$

Attention! On peut avoir $f(x) \underset{x \to a}{\sim} g(x)$ et $\ln(f(x)) \underset{x \to a}{\sim} \ln(g(x))$. Par exemple, on a $x+1 \underset{x \to 0}{\sim} x^2+1$, mais $\ln(x+1) \underset{x \to 0}{\sim} \ln(x^2+1)$.

1.3 Cas des suites

On considère des suites (u_n) et (v_n) , réelles ou complexes, ne s'annulant pas à partir d'un certain rang.

Définition 3

• On dit que (u_n) est **négligeable** devant (v_n) , et on note $u_n = o(v_n)$ si

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = 0$$

- On dit que (u_n) est **dominée** par (v_n) , et on note $u_n = O(v_n)$ si $\left(\frac{u_n}{v_n}\right)$ est bornée.
- On dit que (u_n) est **équivalente** à (v_n) , et on note $u_n \sim v_n$ si

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$$

Proposition 6

$$u_n \sim v_n \Longleftrightarrow u_n - v_n = o(v_n)$$

2 Développements limités

2.1 Notion de développement limité

Définition 4

Etant donnée une partie I de \mathbb{R} , on dit que $a \in \mathbb{R}$ est **un point intérieur de** I si I contient un voisinage de a. On note $a \in \mathring{I}$.

Dans la suite du paragraphe, on suppose que f est définie sur un intervalle I et que $a \in \overset{\circ}{I}$. n désigne un entier naturel.

Définition 5

On dit que f admet un **développement limité à l'ordre** n **en** a s'il existe $(\alpha_0, \dots, \alpha_n) \in \mathbb{R}^{n+1}$, et une fonction ε définie sur I, telle que $\lim_{a} \varepsilon = 0$ et

$$f(x) = \alpha_0 + \alpha_1(x - a) + \dots + \alpha_n(x - a)^n + \varepsilon(x)(x - a)^n$$

Proposition 7

Si f admet un développement limité à l'ordre n en a, alors

$$\exists! (\alpha_0, \cdots, \alpha_n) \in \mathbb{R}^{n+1}, \quad f(x) \underset{x \to a}{=} \alpha_0 + \alpha_1(x-a) + \cdots + \alpha_n(x-a)^n + o\left((x-a)^n\right)$$

Cette égalité s'appelle le développement limité de f à l'ordre n en a, que l'on note $\mathrm{DL}_n(a)$. On a également

$$f(a+h) \underset{h\to 0}{=} \alpha_0 + \alpha_1 h + \dots + \alpha_n h^n + o(h^n)$$

Définition 6

Si $f(x) = \alpha_0 + \alpha_1(x-a) + \cdots + \alpha_n(x-a)^n + o((x-a)^n)$, l'expression $\alpha_0 + \alpha_1(x-a) + \cdots + \alpha_n(x-a)^n$ s'appelle **la partie régulière** du $DL_n(a)$ de f

Exemple 2

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + o(x^n)$$

Proposition 8

Si f admet un $\mathrm{DL}_n(a)$ de partie régulière $P(x) = \alpha_0 + \alpha_1(x-a) + \cdots + \alpha_n(x-a)^n$, alors pour tout $p \in [0, n-1]$, f admet un $\mathrm{DL}_p(a)$ dont la partie régulière est obtenue **par troncature** de P au degré p, c'est-à-dire : $f(x) = \alpha_0 + \alpha_1(x-a) + \cdots + \alpha_p(x-a)^p + o((x-a)^p)$.

Théorème 1 Formule de Taylor-Young

Si f admet une dérivée n-ème en a, alors f admet un $\mathrm{DL}_n(a)$ qui s'écrit :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n)$$

Remarque 1

Si f est de classe C^{∞} sur I, alors elle admet un développement limité à tout ordre en $a \in I$.

Exemple 3

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n})$$

$$\sin(x) = \sum_{k=0}^{n} \frac{(-1)^{k} x^{2k+1}}{(2k+1)!} + o\left(x^{2n+1}\right) \quad \text{et} \quad \cos(x) = \sum_{k=0}^{n} \frac{(-1)^{k} x^{2k}}{(2k)!} + o\left(x^{2n}\right)$$

$$\forall \alpha \in \mathbb{R}, \quad (1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^{2} + \dots + \frac{\alpha(\alpha-1) \cdots (\alpha-n+1)}{n!} x^{n} + o(x^{n})$$

2.2 Opérations

Proposition 9 Somme et produit

Soient f et g deux fonctions définies sur un intervalle I, et $a \in \stackrel{\circ}{I}$.

On suppose que f et g admettent des $DL_n(a)$ de parties régulières P(x) et Q(x) respectivement.

- Pour $(\lambda, \mu) \in \mathbb{R}^2$, la fonction $\lambda f + \mu g$ admet un $\mathrm{DL}_n(a)$ de partie régulière $\lambda P(x) + \mu Q(x)$.
- La fonction fg admet un $\mathrm{DL}_n(a)$ dont la partie régulière est obtenue en tronquant P(x)Q(x) au degré n.

Exemple 4

$$\operatorname{sh}(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o\left(x^{2n+1}\right) \quad \operatorname{et} \quad \operatorname{ch}(x) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o\left(x^{2n}\right)$$

Proposition 10

On suppose $n \ge 2$. Si f admet un $\mathrm{DL}_n(0)$ de partie régulière $\alpha_0 + \alpha_1 x + \cdots + \alpha_n x^n$, alors, en notant $p = \left\lfloor \frac{n}{2} \right\rfloor$, on a :

- Si f est paire, alors $\forall k \in [0, p-1], \alpha_{2k+1} = 0$.
- Si f est impaire, alors $\forall k \in [0, p], \alpha_{2k} = 0$.

Proposition 11 Composition

Soient I et J des intervalles tels que $0 \in I$ et $0 \in J$, f une fonction définie sur I admettant un $\mathrm{DL}_n(0)$ de partie régulière P(x) et g une fonction définie sur J admettant un $\mathrm{DL}_n(0)$ de partie régulière Q(x). On suppose que $f(I) \subset J$.

 $\underline{\text{Si } f(0) = 0}$, alors $g \circ f$ admet un $\mathrm{DL}_n(0)$ dont la partie régulière est obtenue en tronquant Q(P(x)) au degré n.

Exemple 5

$$\tan(x) = x + \frac{x^3}{3} + o(x^3)$$

2.3 Primitivation, dérivation

Théorème 2 Primitivation

Soient I un intervalle tel que $0 \in I$, f une fonction définie sur I admettant un $DL_n(0)$ de partie régulière P(x), F une primitive de f de I, et Q la primitive de P telle que Q(0) = F(0). Alors F admet un $DL_{n+1}(0)$ de partie régulière Q(x).

Exemple 6

$$\ln(1+x) = \sum_{x\to 0}^{n} \frac{(-1)^{k+1}x^k}{k} + o(x^n)$$

$$\operatorname{Arctan}(x) = \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{2k+1} + o(x^{2n+1})$$

Théorème 3 Dérivation

Soient I un intervalle tel que $0 \in I$, f une fonction définie sur I admettant un $\mathrm{DL}_n(0)$ de partie régulière P(x). Si f' admet un $\mathrm{DL}_{n-1}(0)$, alors sa partie régulière est P'(x).

Attention! La condition f' admet un $DL_{n-1}(0)$ est indispensable.

Par exemple, la fonction
$$f$$
 définie sur \mathbb{R} par : $f(x) = \begin{cases} x^3 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

admet un $DL_2(0)$, mais f' n'est pas dérivable en 0, elle n'admet donc pas de $DL_1(0)$.

3 Applications

3.1 Prolongement en un point

Proposition 12

Soient f une fonction définie sur I et a une borne finie de I, n'appartenant pas à I.

Si $f(x) = \alpha_0 + \alpha_1(x-a) + o(x-a)$, alors f se prolonge par continuité en a, en une fonction g telle que $g(a) = \alpha_0$, admettant un $\mathrm{DL}_1(a)$ de partie régulière $P(x) = \alpha_0 + \alpha_1(x-a)$.

De plus, la tangente à la courbe de g au point d'abscisse a a pour équation y = P(x).

Proposition 13

Soient f une fonction définie sur I et $a \in I$.

Si f admet un $\mathrm{DL}_n(a)$ $(n \geq 2)$ de partie régulière $P(x) = \alpha_0 + \alpha_1(x-a) + \cdots + \alpha_n(x-a)^n$, alors la position de la tangente à la courbe de f au point d'abscisse a par rapport à celle-ci est déterminée par le signe de $\alpha_p(x-a)^p$, où p est le plus petit entier tel que $p \geq 2$ et $\alpha_p \neq 0$.

3.2 Recherche d'asymptote

Définition 7

Soient D une partie non majorée (resp. non minorée) de \mathbb{R} , et f une fonction définie sur D. On dit que f admet un développement limité à l'ordre n en $+\infty$ (resp. $-\infty$) s'il existe $(\alpha_0, \dots, \alpha_n) \in \mathbb{R}^{n+1}$ et une fonction ε définie sur D telle que $\lim_{n \to \infty} \varepsilon = 0$ (resp. $\lim_{n \to \infty} \varepsilon = 0$) tels qu'au voisinage de $+\infty$ (resp. $-\infty$) on a:

$$f(x) = \alpha_0 + \frac{\alpha_1}{x} + \dots + \frac{\alpha_n}{x^n} + \frac{\varepsilon(x)}{x^n}$$

On note
$$f(x) = \alpha_0 + \frac{\alpha_1}{x} + \dots + \frac{\alpha_n}{x^n} + o\left(\frac{1}{x^n}\right)$$
 (resp. $f(x) = \alpha_0 + \frac{\alpha_1}{x} + \dots + \frac{\alpha_n}{x^n} + o\left(\frac{1}{x^n}\right)$) Une telle expression s'appelle **développement asymptotique au voisinage de** $+\infty$ (resp. $-\infty$).

Proposition 14

Soit f une fonction définie au voisinage de $\pm \infty$, telle qu'au voisinage de $\pm \infty$, pour $n \ge 1$ on ait :

$$\frac{f(x)}{x} \underset{x \to \pm \infty}{=} \alpha_0 + \frac{\alpha_1}{x} + \dots + \frac{\alpha_n}{x^n} + o\left(\frac{1}{x^n}\right)$$

Alors, la droite d'équation $y = \alpha_0 x + \alpha_1$ est asymptote à la courbe de f en $\pm \infty$.

De plus, la position de la courbe par rapport à cette asymptote est donnée par le signe de $\frac{\alpha_p}{x^p}$, où p est le plus entier tel que $p \ge 2$ et $\alpha_p \ne 0$.