Corona Trend (EDA + Prediction) MVP

Using deep-learning methods (LSTM)

Executive Summary

To better understand disease progression, we've developed a robust (and extensible) MVP forecasting engine using Deep Learning Method (LSTM) ...

Objective

Build forecasts for COVID19 disease progression using Deep Learning Method (LSTM)

Complication

- 1. 3253 trends in 58 states (one trend per town)
- 2. 74 days of data (2020/01/22 2020/04/04)
- 3. Uni-variate (temporal) data for forecasting

Approach

Understand data

Build MVP using 1 algorithm

1. LSTM on 1 trend

- 1. Create Modeling Dataset
- 2. Distributions
- 3. Temporal trends
- 4. Build Dash framework to visualize data

Current Deliverable

Enhance Forecasting Process

Next Phase →

1. Data enrichment (exogenous data)

2. Algorithm enrichment ... with the following insights.

- Accuracy using LSTM on trend for Middlesex county using 7 hold-out days = 86%
- The lower accuracies are in the recent days, where the trend seems to be getting better
- (1) Accuracy = 1 abs(RMSE / Actual Volume)

RMSE = Root Mean Square Error, a measure of how good the forecasts are in out-of-time hold-out days (1 week)

Actual trend vs. predicted using LSTM

Understand Data

Dashboard layout – top 20 high risk towns

- When this dashboard is launched from the command line, one can view the results in a web-browser
- US-level view (only looking at the high risk towns) looking at the grain of a town
- 3) State-level view (only looking at the high risk towns) looking at the grain of a town
- Town-level view to understand detailed trends
- Various measures (population size, incidence, increase in incidence over the last day, deaths)
- The towns ranked ordered by descending risk
- 7) A distribution of measure

US View – increase in incidence from previous day

- When this dashboard is launched from the command line, one can view the results in a web-browser
- US-level view (only looking at the high risk towns) looking at the grain of a town
- 3) State-level view (only looking at the high risk towns) looking at the grain of a town
- Town-level view to understand detailed trends
- 5) Various measures (population size, incidence, increase in incidence over the last day, deaths)
- The towns ranked ordered by descending risk
- 7) A distribution of measure

State View (grain = town) – increase in incidence from previous day

- 1) State high risk town tab
- 2) Contextual filtering
- 3) Towns rank ordered by metric
- 4) The metric value

State View – cumulative incidence till 04/04/2020

- Middlesex the largest county by population has the highest number of cases
- 2) Suffolk county is very densely populated and has a lot of cases despite its lower population counts

State View – population size in 04/04/2020

- 1) Middlesex the largest county by population
- 2) Worcester county has nearly ½ the size of population as in Worcester

Town trend – incidence rate

- Middlesex the largest county by population has the highest number of cases
- 2) As of 04/04/2020, Middlesex county still is in its growth phase. Growth does not seem to be abating

- Day over day growth is still high confirming the previous hypothesis that Middlesex county is still in its growth phase.
- 2) Social distancing measures need to continue

New incidences are growing around
 18% day over day

 Only about 0.14% of population has tested positive. The numbers are relatively small

Should lock-down measures be relaxed sooner rather than later, the new case incidence can significantly spike up

1) Deaths rate is also climbing

Build MVP

Algorithm development steps

Generating forecasts @ scale involves getting through 18 steps including ...

Enhance Forecasting Process

Enriching components – data & algorithms

Data enrichment can occur through the inclusion of data sources such as ...

#	Data Type	Example	
1	Population	 Size Age distributions Find similar towns around the globe 	
2	Others	 Lock-down period start Degree of lock-down Exposed individuals and Susceptible Individual movements 	

... and algorithm enrichment can occur by evaluating output from algorithms including ...

#	Algo. Type	Example	
1	Explainable	 Naïve (Moving average) Multi-variate regression Decision tree Exponential Smoothing ARIMA ARIMAX 	
2	Blackbox (with SHAP)	Multi-variate scenarios (with exogenous variables) 1. Random Forest 2. Adaboost	

Appendix – Files in package

Files in the package

#	Component	File(s)	Purpose
1	Git Clone & Daily Pull	 Time_series_covid19_confirmed_us.csv Time_series_covid19_deaths_us.csv 	Raw data (https://github.com/CSSEGISandData/COVID-19)
2	Data Prep	 01_parse_covid_data.ipynb 02_create_modeling_data_set.ipynb 03_build_lstm_model.ipynb 	 Load data into SQL (for posterity) Prepare data Leverage output from data & model in Dash / Other viz. tools
3	Data (& Result) Exploration	04_app.py (Launches a dashboard on the Web)	 Understand the various dimensions of data Use dimensions to infer patterns and improve forecasting algorithms
4	Output	 Covid19_2020_04_05.csv Covid_ms_data.xlsx 	The modeling dataset for data prepared till 04/05/2020 The output of LSTM
5	Discussion	1. 05_corona_trend_mvp_2020_04_05_v2	This deck to summarize insights for broader discussion