3^a Lista de Exercícios EST088 - Inferência Bavesiana

Observação: as distribuições de probabilidade mencionadas ao longo dos exercícios estão descritas em um formulário disponível na última página deste material.

- 1. Considere as afirmações a seguir e indique se cada uma é Verdadeira (V) ou Falsa (F). Justifique as alternativas marcadas como falsas.
 - 1. () A distribuição preditiva a posteriori leva em conta os dados observados e fornece probabilidades para dados futuros.
 - 2. () A distribuição preditiva a priori aparece no numerador da regra de Bayes e é essencial para a obtenção da distribuição a posteriori.
 - Uma família de distribuições é dita conjugada quando a distribuição a posteriori pertence à mesma família da distribuição a priori.
 - 4. () De acordo com a Regra de Cromwell, não há problema em atribuir probabilidade nula a certos valores do parâmetro, desde que estes sejam altamente improváveis.
 - 5. () Uma classe de distribuições é dita fechada sob multiplicação se o produto de dois de seus elementos, após normalização, ainda pertencer à mesma classe.
- 2. Seja Y_1, Y_2, \ldots, Y_n uma amostra aleatória de uma distribuição de Poisson com parâmetro $\lambda > 0$. Assume-se que a distribuição a priori de λ é uma distribuição gama, denotada por $\lambda \sim \text{Gama}(\alpha, \beta)$.
 - a) Determine a densidade a posteriori de λ .
 - b) Determine a distribuição preditiva a posteriori para uma nova observação y_{n+1} e compare-a com uma distribuição conhecida na literatura.
- 3. Considere Y_1, Y_2, \ldots, Y_n uma amostra aleatória de uma distribuição geométrica com parâmetro $p \in (0,1)$. Suponha uma distribuição a priori Beta (α,β) para o parâmetro p.
 - a) Determine a distribuição a posteriori do parâmetro p.
 - b) Derive a distribuição preditiva a posteriori para uma nova observação y_{n+1} .
- 4. Seja Y_1, Y_2, \ldots, Y_n uma amostra aleatória proveniente de uma distribuição exponencial com parâmetro $\lambda > 0$, e considere uma distribuição a priori $\lambda \sim \text{Gama}(\alpha, \beta)$, com $\alpha > 0$ e $\beta > 0$.
 - a) Determine a distribuição a posteriori do parâmetro λ .
 - b) Obtenha a distribuição preditiva a posteriori para uma nova observação y_{n+1} . Compare essa distribuição com alguma distribuição conhecida na literatura.
- 5. Motores automotivos emitem diversos poluentes indesejáveis durante a queima de gasolina. Uma classe importante desses poluentes é composta pelos óxidos de nitrogênio. Suponha que Y_1, Y_2, \ldots, Y_n representem as emissões de óxidos de nitrogênio, as quais podem ser modeladas por uma distribuição normal com média desconhecida θ e variância conhecida σ^2 . Assume-se ainda uma distribuição a priori normal para θ , com média m_0 e variância v_0^2 .
 - a) Demonstre que a distribuição a posteriori de θ é uma distribuição normal, com média e variância dadas por $m_1 = \frac{\sigma^2 m_0 + n \bar{y} v_0^2}{\sigma^2 + n v_0^2}$, e $v_1^2 = \frac{\sigma^2 v_0^2}{\sigma^2 + n v_0^2}$, respectivamente.
 - b) Determine a distribuição de Y_{n+1} condicionalmente a $Y_1 = y_1, Y_2 = y_2, \dots, Y_n = y_n$.

- c) Considere que $\sigma = 0.5$, $m_0 = 2.0$, e $v_0 = 1.0$. Em uma amostra aleatória de n = 46 motores, a média observada das emissões de óxidos de nitrogênio foi 1.329. Calcule $\mathbb{P}(Y_{47} < 1.5 \mid \mathbf{y})$.
- 6. Seja Y_1, Y_2, \ldots, Y_n uma amostra aleatória proveniente de uma distribuição normal com média conhecida $\mu \in \mathbb{R}$ e variância desconhecida $\sigma^2 > 0$. Considere uma distribuição a priori para a variância dada por $\sigma^2 \sim \text{Inv-Gama}(\alpha, \beta)$, com $\alpha > 0$ e $\beta > 0$.
 - a) Determine a distribuição a posteriori do parâmetro σ^2 .
 - b) Derive a distribuição preditiva a posteriori para uma nova observação y_{n+1} e compare-a com alguma distribuição conhecida da literatura.
- 7. A distribuição de Weibull é amplamente utilizada para modelar o tempo de vida de equipamentos e peças. A função de densidade de probabilidade da distribuição de Weibull é dada por:

$$f(y \mid \theta, k) = k\theta y^{k-1} e^{-\theta y^k}, \quad y > 0,$$

onde $\theta > 0$ é o parâmetro de escala e k é o parâmetro de forma, o qual é considerado conhecido. Suponha que os dados y_1, y_2, \ldots, y_n sejam amostras independentes e identicamente distribuídas segundo essa distribuição Weibull. Demonstre que a família de distribuições gama é conjugada para a Weibull e derive a distribuição a posteriori de θ , assumindo que $\theta \sim \text{Gama}(\alpha, \beta)$.

8. Considere o modelo no qual as observações y_1, y_2, \ldots, y_n são amostras independentes e identicamente distribuídas segundo a distribuição de Rayleigh com parâmetro de escala σ , cuja função densidade é dada por:

$$f(y \mid \sigma) = \frac{y}{\sigma^2} \exp\left(-\frac{y^2}{2\sigma^2}\right), \quad y > 0.$$

Suponha que a distribuição a priori para σ^2 seja $\sigma^2 \sim \text{Inv-Gama}(\alpha, \beta)$. Demonstre que a distribuição inversa-gama é conjugada para este modelo e determine as expressões dos parâmetros da distribuição a posteriori de σ^2 em termos de α , β , n e dos dados y_1, y_2, \ldots, y_n .

9. Sejam Y_i , para $i=1,2,\ldots,n$, variáveis aleatórias condicionalmente independentes dado o parâmetro θ . Suponha que $Y_i \mid \theta$ seja distribuído segundo uma distribuição exponencial dupla (ou Laplace), com a função densidade de probabilidade dada por

$$f(y_i \mid \theta) = \frac{1}{2\theta} \exp\left(-\frac{|y_i|}{\theta}\right), \quad y_i \in \mathbb{R},$$

onde $\theta > 0$. Determine a distribuição a priori conjugada para θ e a distribuição a posteriori correspondente, considerando a observação do vetor de dados $\mathbf{y} = (y_1, \dots, y_n)$.

10. Seja Y_1, Y_2, \ldots, Y_n uma amostra aleatória de variáveis independentes e identicamente distribuídas segundo a distribuição de Maxwell com parâmetro θ , cuja função densidade é dada por:

$$f(y_i \mid \theta) = \sqrt{\frac{2}{\pi}} \theta^{\frac{3}{2}} y_i^2 \exp\left(-\frac{\theta y_i^2}{2}\right), y_i > 0.$$

- a) Mostre que a função densidade $f(y_i \mid \theta)$ pertence à família exponencial com um único parâmetro. Com base nessa amostra, determine a priori conjugada para essa distribuição.
- b) Encontre a distribuição a posteriori de $\theta \mid \mathbf{y}$ utilizando a priori conjugada. Demonstre que a distribuição a posteriori é conjugada em relação à verossimilhança $f(\mathbf{y} \mid \theta)$, ou seja, a posteriori pertence à mesma família da priori.
- 11. Seja Y_1, Y_2, \dots, Y_n uma amostra aleatória de variáveis independentes e identicamente distribuídas, com $Y_i \mid \theta \sim \text{Normal}(\mu, \theta)$, sendo μ conhecido.

- a) Mostre que a função de densidade $f(y_i \mid \theta)$ pertence à família exponencial com um único parâmetro. Com base nessa amostra, determine a priori conjugada para essa distribuição.
- b) Encontre a distribuição a posteriori de $\theta \mid \mathbf{y}$ utilizando a priori conjugada. Demonstre que a distribuição a posteriori é conjugada em relação à verossimilhança $f(\mathbf{y} \mid \theta)$, ou seja, que a posteriori pertence à mesma família da priori.
- 12. Seja Y_1, Y_2, \dots, Y_n uma amostra aleatória de variáveis independentes e identicamente distribuídas, sendo que $Y_i \mid \theta \sim \text{Geom}(\theta)$, onde θ é o parâmetro da distribuição geométrica.
 - a) Mostre que a função de densidade $f(y_i \mid \theta)$ pertence à família exponencial com um único parâmetro. Com base nesta amostra, determine a priori conjugada para essa distribuição.
 - b) Determine a distribuição a posteriori de $\theta \mid \mathbf{y}$ utilizando a priori conjugada. Mostre que a distribuição a posteriori é conjugada em relação à verossimilhança $f(\mathbf{y} \mid \theta)$, ou seja, a posteriori pertence à mesma família da priori.

Funções de densidade de probabilidade (f.d.p.) e funções de massa de probabilidade (f.m.p.) das distribuições mencionadas nos exercícios:

• Distribuição Binomial: Se $Y \sim \text{Bin}(\nu, \pi)$, então sua f.m.p. é dada por:

$$P(Y = k) = \binom{\nu}{k} \pi^k (1 - \pi)^{\nu - k}, \quad k = 0, 1, \dots, \nu.$$

• Distribuição Binomial Negativa: Se $Y \sim \text{BN}(r, p)$, então sua f.m.p. é dada por:

$$P(Y = k) = {k + r - 1 \choose k} p^r (1 - p)^k, \quad k = 0, 1, 2, \dots$$

onde r > 0 é o número de sucessos e $p \in (0,1)$ é a probabilidade de sucesso.

• Distribuição Geométrica: Se $Y \sim \text{Geom}(p)$, então sua f.m.p. é:

$$P(Y = k) = (1 - p)^{k-1}p, \quad k = 1, 2, \dots$$

onde $p \in (0,1)$ é a probabilidade de sucesso na primeira tentativa.

• Distribuição de Poisson: Se $Y \sim \text{Pois}(\lambda)$, então sua f.m.p. é dada por:

$$P(Y = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$

• Distribuição Exponencial: Se $Y \sim \text{Exp}(\lambda)$, então sua f.d.p. é dada por:

$$f(y) = \lambda e^{-\lambda y}, \quad y \ge 0.$$

• Distribuição Gama: Se $Y \sim \text{Gama}(\alpha, \beta)$, então sua f.d.p. é:

$$f(y) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\beta y}, \quad y \ge 0.$$

- Distribuição Inversa-Gama: Se $Y \sim \text{Inv-Gama}(\alpha,\beta)$, então sua f.d.p. é:

$$f(y) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{-\alpha - 1} e^{-\beta/y}, \quad y > 0,$$

onde $\alpha > 0$ é o parâmetro de forma e $\beta > 0$ é o parâmetro de escala.

• Distribuição Beta: Se $Y \sim \text{Beta}(\alpha, \beta)$, então sua f.d.p. é dada por:

$$f(y) = \frac{y^{\alpha - 1} (1 - y)^{\beta - 1}}{B(\alpha, \beta)}, \quad 0 < y < 1,$$

onde $B(\alpha, \beta)$ é a função Beta, definida em termos da função Gama $\Gamma(\cdot)$ como:

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

- Distribuição Lomax (ou Pareto Tipo II): Se $Y \sim \text{Lomax}(\alpha, \lambda)$, então sua f.d.p. é:

$$f(y) = \frac{\alpha \lambda^{\alpha}}{(y+\lambda)^{\alpha+1}}, \quad y \ge 0,$$

onde $\alpha>0$ é o parâmetro de forma e $\lambda>0$ é o parâmetro de escala.

• Distribuição t de Student (com locação e escala): Se $Y \sim t_{\nu}(\mu, \sigma^2)$, então sua f.d.p. é dada por:

$$f(y\mid \mu,\sigma^2,\nu) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\nu\pi\sigma^2}} \left(1 + \frac{1}{\nu}\left(\frac{y-\mu}{\sigma}\right)^2\right)^{-\frac{\nu+1}{2}}, \quad y \in \mathbb{R}.$$