Problem 1 (3.1.1). Show that Ext(H,G) is a contravariant functor of H for fixed G and covariant for fixed H.

Proof. Let $f: A \to B$ be an R-module homomorphism and let H be a fixed R-module with a projective resolution P:

$$\cdots \longrightarrow P_2 \xrightarrow{f_2} P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} H \longrightarrow 0$$

Then apply $\operatorname{Hom}_R(H, -)$ with both A and B and to f for each entry in the exact sequence for the projective resolution. This gives us two chain complexes with a map at each group

$$\cdots \longleftarrow P_{2}^{A} \xleftarrow{f_{2}^{A}} P_{1}^{A} \xleftarrow{f_{1}^{A}} P_{0} \xleftarrow{f_{0}^{A}} H^{A} \longleftarrow 0$$

$$\downarrow g_{2}^{*} \qquad \downarrow g_{1}^{*} \qquad \downarrow g_{0}^{*} \qquad \downarrow g^{*}$$

$$\cdots \longleftarrow P_{2}^{B} \xleftarrow{f_{2}^{B}} P_{1}^{B} \xleftarrow{f_{1}^{B}} P_{0} \xleftarrow{f_{0}^{B}} H^{B} \longleftarrow 0$$

where $H^A := \operatorname{Hom}_R(H, A)$ and $g^* : \operatorname{Hom}_R(H, A) \to \operatorname{Hom}_R(H, B)$.

Now we will show that g_i^* forms a chain map. However if we write it out we get

$$f_n^B \circ g_n^*(h) = g_{n+1}^* \circ f_n^A(h)$$

$$f_n^B(g \circ h) = g_{n+1}^*(h \circ f_n)$$

$$(g \circ h) \circ f_n = g \circ (h \circ f_n)$$

which are equal by associativity of function composition. Since this is a chain map this induces a homomorphism on homology which is exactly $\operatorname{Ext}(H,A) \xrightarrow{g_*} \operatorname{Ext}(H,B)$. This will preserve composition since we are sending functions to functions. Therefore $\operatorname{Ext}(H,-)$ is a covariant functor.

To show that $\operatorname{Ext}(-,G)$ is a contravariant functor we trace out the procedure gone through in class. Let A and B be R-modules with projective resolutions P and Q respectively. Let $f:A\to B$ be an R-module homomorphism. Then extend f to a chain map α in the form

$$\cdots \longrightarrow P_2 \xrightarrow{\partial_2^A} P_1 \xrightarrow{\partial_1^A} P_0 \xrightarrow{\partial_0^A} A \longrightarrow 0$$

$$\downarrow^{\alpha_2} \qquad \downarrow^{\alpha_1} \qquad \downarrow^{\alpha_0} \qquad \downarrow^f$$

$$\cdots \longrightarrow Q_2 \xrightarrow{\partial_2^B} Q_1 \xrightarrow{\partial_1^B} Q_0 \xrightarrow{\partial_0^B} B \longrightarrow 0$$

Then we dualize with $\operatorname{Hom}(-,G)$ giving us two chain complexes with a chain map α^*

We showed in class that α^* is in fact a chain map for the new complexes. As such it induces a homomorphism on homology which is $g_* : \operatorname{Ext}(B,G) \to \operatorname{Ext}(A,G)$. This shows that $\operatorname{Ext}(-,G)$ is indeed a contravariant functor as composition is preserved for the same reason as above.

Problem 2 (3.1.2). Show that the maps $G \xrightarrow{n} G$ and $H \xrightarrow{n} H$ multiplying each element by the integer n induce multiplication by n in Ext(H,G).

Proof. Let A be a generating set for G. Then we have a free resolution of G of the form

$$0 \longrightarrow \ker(f) \xrightarrow{i} F(A) \xrightarrow{f} G \longrightarrow 0$$

where i is inclusion, f is the evaluation map, and F(A) is the free group on A. Fortunately the map that multiplies by n has a lift where it is also multiplication by n. Thus we have

$$0 \longrightarrow \ker(f) \xrightarrow{i} F(A) \xrightarrow{f} G \longrightarrow 0$$

$$\downarrow^{n} \qquad \downarrow^{n} \qquad \downarrow^{n}$$

$$0 \longrightarrow \ker(f) \xrightarrow{i} F(A) \xrightarrow{f} G \longrightarrow 0$$

Then we dualize to get

$$0 \longleftarrow \ker(f)^* \xleftarrow{i^*} F(A) \xleftarrow{f^*} G^* \longleftarrow 0$$

$$\uparrow^{n^*} \qquad \uparrow^{n^*} \qquad \uparrow^{n^*}$$

$$0 \longleftarrow \ker(f)^* \xleftarrow{i^*} F(A)^* \xleftarrow{f^*} G^* \longleftarrow 0$$

Now we need to know what the n^* maps are. However as it turns out if we have a map in one of the groups in the above diagram h. Then $n^*(h)(x) = h(nx) = nh(x)$ which implies that n^* is once again the multiplication by n map. Since it is the multiplication map everywhere the induced map on homology will also be the multiplication by n map. Thus $\text{Ext}(-, H)(\cdot n) = \cdot n$.

Similarly if we use $\operatorname{Ext}(G, -)$ we dualize first and then place the n^* maps in. However since these maps are endomorphisms we get the same diagram

$$0 \longleftarrow \ker(f)^* \xleftarrow{i^*} F(A)^* \xleftarrow{f^*} G^* \longleftarrow 0$$

$$\downarrow^{n^*} \qquad \downarrow^{n^*} \qquad \downarrow^{n^*}$$

$$0 \longleftarrow \ker(f)^* \xleftarrow{i^*} F(A)^* \xleftarrow{f^*} G^* \longleftarrow 0$$

which must have the same then induce the same maps giving $\operatorname{Ext}(G,-)(\cdot n)=\cdot n$

Problem 3 (3.1.3). Regarding \mathbb{Z}_2 as a module over the ring \mathbb{Z}_4 , construct a resolution of \mathbb{Z}_2 by free modules over \mathbb{Z}_4 and use this to show that $\operatorname{Ext}_{\mathbb{Z}_4}^n(\mathbb{Z}_2,\mathbb{Z}_2)$ is nonzero for all n.

We can construct a free resolution of \mathbb{Z}_2 of the form

$$\cdots \longrightarrow \mathbb{Z}_4 \stackrel{2}{\longrightarrow} \mathbb{Z}_4 \stackrel{2}{\longrightarrow} \mathbb{Z}_4 \stackrel{\operatorname{mod}}{\longrightarrow} \mathbb{Z}_2 \longrightarrow 0$$

When we dualize with $\text{Hom}(-,\mathbb{Z}_2)$ we get

$$\cdots \leftarrow \stackrel{0}{\longleftarrow} \mathbb{Z}_0 \leftarrow \stackrel{0}{\longleftarrow} \mathbb{Z}_2 \leftarrow \stackrel{0}{\longleftarrow} \mathbb{Z}_2 \leftarrow \stackrel{0}{\longleftarrow} \mathbb{Z}_2 \leftarrow \cdots = 0$$

Which has nonzero homology groups everywhere. As such $\operatorname{Ext}_{\mathbb{Z}_4}^n(\mathbb{Z}_2,\mathbb{Z}_2)$ is nonzero for all n.