AARHUS SCHOOL OF ENGINEERING

Sundhedsteknologi 3. semesterprojekt

Rapport

 $Gruppe\ 2$

Martin Banasik

(201408398)

Vejleder:

Studenter vejleder

Aarhus Universitet

Resumé Abstract

Forord 2

Forkortelser 3

 ${\bf SRM} \qquad \quad - \quad {\bf Synkerefleks monitor}$

VCR - Vestdansk Center for Rygmarvsskade

Patient O - Inkomplet rygmarvsskadet med sessioner i eksoskelet sdjifsdoifjsdoifjsdijfosdijfosdijf fji sodfjosdi ojsfo sdjofjsod jffosdj fojf

Ordforklaringer 4

SRM - Medicinsk teknologivurdering

VCR - Vestdansk Center for Rygmarvsskade

Patient O - Inkomplet rygmarvsskadet med sessioner i eksoskelet sdjifsdoifjsdoifjsdijfosdi

Indholdsfortegnelse

Kapitel 1 Resume Abstract	1
Kapitel 2 Forord	2
Kapitel 3 Forkortelser	3
Kapitel 4 Ordforklaringer	4
Kapitel 5 Indledning 5.0.1 Baggrund	9
Kapitel 6 Krav 6.1 Systembeskrivelse 6.2 Aktørbeskrivelse 6.3 Funktionelle krav 6.4 Ikke-funktionelle krav	12 13
Kapitel 7 Afgrænsning	16
Kapitel 8 Metode 8.1 Udviklingsværktøjer	17 19
Kapitel 9 Analyse	2 2
Kapitel 10 Arkitektur	2 3
Kapitel 11 Design	24
Kapitel 12 Implementering	25
Kapitel 13 Test	2 6
Kapitel 14 Resultater	27
Kapitel 15 Diskussion af resultater	2 8
Kapitel 16 Konklusion	2 9

In dholds for tegnels e

Kapitel 17 Fremtidigt arbejde			
Kapitel 18 Sikkerhed	31		
Litteratur	32		
Kapitel 19 Bilagsliste	33		
19.1 Bilag 1 - Kravspecifikation	33		
19.2 Bilag 2 - Accepttestspecifikation	33		
19.3 Bilag 3 - Analyse	33		
19.4 Bilag4 - Arkitektur	33		
19.5 Bilag 5 - Kravspecifikation	33		
19.6 Bilag 8 - Om Dysfagi	33		
19.7 Bilag 11 - Mail korrespondance	33		
19.8 Bilag 6 - Implementering og test	33		

Indledning 5

5.0.1 Baggrund

En normal synkeproces er kendetegnet ved at føden fra den bageste del af mundhulen transporteres via. svælget og til spiserøret uden besvær. Forstyrrelser i synkeprocessen, dens hastighed og frekvens kaldes for dysfagi [1]. Dysfagi er den medicinske betegnelse for symptomer relateret til synkebesvær. Det er vigtigt at differentiere mellem nedre og øvre dysfagi. Øvre dysfagi omfatter den præ-orale, orale og faryngeale fase, hvorimod nedre dysfagi er relateret til den øsofageale fase dvs. mavesæk og spiserør [2]. Det skal dog nævnes, at der er uenigheder om definitionen af dysfagi. Den manglende konsensus om definitionen gør rapportering af dysfagi-insidens og prævalens uklar [2]. Ifølge patientombuddets temarapport fra 2012 om dysfagi at [3]:

- 60-87 % af beboere på plejehjem for ældre har synkebesværligheder.
- 30 % alle apopleksipatienter har dysfagi.
- 20-50 % af patienter med Parkinson og Alzheimer har dysfagi.
- 30-60 % af patienter med muskelsvind har dysfagi.
- Herudover er der ca. 10.000 børn, unge og voksne med Cerebral Parese (CP) også kendt som "spastisk lammelse", der har synkebesvær.

Som det ses i de nævnte statistikker, rammer dysfagi en bredt vifte af patienter fra forskellige patientgrupper. Dysfagi-konsekvenserne kan læses i *Bilag 8 - Om Dysfagi*.

Udredning af øvre dysfagi består af en diagnostisk strategi med tre trin: en tidlig screening, som skal afdække eksistensen af synkebesværligheder, en all-around klinisk undersøgelse, der estimerer synkebesværlighedens omfang og en instrumentel undersøgelse vha. Fiber Endoskopisk Evaluering af Synkefunktionen (FEES) og/eller Funktionel Videoradiologisk Evaluering af Synkefunktionen (FVES). Disse undersøgelsesmetoder er præget af subjektive vurderinger som klinikeren rapporterer undervejs i undersøgelsen og dette kan forringe undersøgelsens reproducerbarhed. Resultatet kan være underdiagnostik og derved dårlig tilrettelæggelse af et behandlingsforløb. I Bilag 8 - Om Dysfagi belyses hvordan FEES og FVES foretages. Begge undersøgelser anvendes til at vurdere aspirationsrisiko og til at angive anbefalinger for oral indtagelse, men flere studier viser, at begge metoder ikke er tilstrækkelig pålidelige, ofte ikke gentagelige og dyre i pris [4] [5] [6] [7]. Der er derfor brug for alternative metoder, som kan give objektive vurderinger,

som er billig i pris og ikke-invasiv. En af disse metoder er at kombinere elektromyografi (EMG) og bioimpedans sensorer. Et forudgående projekt til dette projekt har anvendt en prisvenlig EMG sensor af typen MyoWareTM Muscle Sensor til at måle synkesignaler på raske personer med succes [8, s. 58]. I dette projekt anvendes også den samme EMG sensor for at reproducere de samme resultater. EMG alene er ikke tiltrækkelig nok til at vurdere synkefunktionen, da den kun bidrager med informationer om muskelaktiviteten i de muskler, der deltager i synkningen [6]. Derfor er der i dette projekt valgt at kombinere EMG'en med en prisbillig bioimpedans sensor, som en gruppe forskere har anbefalet, samt beskrevet en opskrift til udviklingen af sådan en bioimpedans sensor [9].

Denne bioimpedans sensor benyttes til at måle den elektriske impedans i vævet ved at udnytte forholdet mellem spænding og strøm jf. Ohms lov.

$$R = \frac{V}{I}$$

Under væske- og/eller fødeindtagelse samt vejrtrækning ændres forholdet mellem spænding og strøm i svælget og det er denne ændring som bioimpedans sensoren skal måle. Som det ses på figur 5.1, er svælget åben og fuld af luft under vejtrækning. Luft er dårlig til at lede strøm og har en høj elektrisk modstand. Den høje elektriske modstand falder under synkning af væske eller mad ved at svælgets hulrum indsnævres som et resultat af en opadgående bevægelse af hyoid og larynx. Dette observeres som et drop i bioimpedans signalet og lave svingninger i EMG signalet for raske personer. For personer med dysfagi vil droppet i bioimpedans signalet være lavere [6]. I dette projekt udvikles en bioimpedans sensor, der kan måle det nævnte drop i spændingen. Sammen bioimpedansen anvendes en kommerciel EMG-måler, der supplerer bioimpedansen.

Figur 5.1: Illustration af, hvodan emg-og bioimpedans signaler opfører sig under vejrtrækning og mad/drikke indtagelse[6]

5.0.2 Problemformulering

Dette projekt undersøger muligheden for at udvikle et device, der består af en bioimpedans sensor og en EMG-måler, der tilsammen kan monitorere og detektere synkefrekvensen hos raske personer. Devicet bliver fremover omtalt som synkerefleksmonitor(SRM). Dette Projekt vil søge svar til følgende spørgsmål:

- Kan man udvikle en prisbillig bioimpedans sensor, der kan være alternativ til Fiber Endoskopisk Evaluering af Synkefunktionen (FEES) og Funktionel Videoradiologisk Evaluering af Synkefunktionen (FVES) til at undersøge synkefrekvensen på personer, der er ramt af dysfagi?
- Kan man kombinere bioimpedans sensor og EMG-måler til måling af dysfagi?

Ved hjælp af systematisk og ikke-systematisk litteratursøgning vil disse spørgsmål blive besvaret gennem dette projekt.

5.0.3 Formål

Formålet med dette projekt er at udvikle et produkt, der består af en bioimpedansmåler(BI-måler), der kan måle pålidelige bioimpedans signaler, samt kombinere BI-måleren med en kommerciel EMG sensor for at kunne detektere synkefrekvensen på raske objekter. Det overordnet systemet, der vil blive realiseret består af en BI sensor med elektroder, som er koblet til et rask objekt, en EMG måler med tre elektroder, som også er koblet til det samme objekt og en pc som anvendes til processering og visning af data til et sundhedspersonale, se figur 5.2.

Figur 5.2: Illustration af det overordnet system som dette projekt vil realisere

Projektet vil fokusere på udvikling af den anbefalede prisbillige bioimpedans-måler(BI-måler). Det er ligeledes projektets mål at genskabe de to signaler, der er vist på figur 5.1. EMG-måleren bruges som supplerende redskab til BI-måleren, da den kan detektere muskelaktiviteter, som finder sted før, under og efter et synk. Disse muskelaktiviteter er en forudsætning for at synkningen kan ske.

Det skal dog for god ordens skyld understreges at systemet, der realiseres i dette projekt er på Proof-of-Concept stadie og må derfor ikke anvendes til klinisk brug. Det er ikke projektets mål at udvikle en endelig BI-måler, der kan sættes i produktion eller anvendes til screening af personer med mistanke for dysfagi.

5.0.4 Projektdeltagere og hovedansvarsområder

Arbejdsfordelingen i mellem gruppemedlemmerne er fordelt ligeligt på grund af gruppens størrelse. Gruppen har valgt at dele projektet op i en software-og hardwaredel, hvor alle i gruppen har ansvaret for begge dele. Argumentet for denne kollektive ansvarsfordeling er valgt, da gruppens medlemmer har vurderet, at en skarp opdeling af ansvarsområder vil medføre mindre koordinering og risiko for, at man isolere sig kun til sit ansvarsområder. Tabel 5.1 viser den valgte ansvarsfordeling.

Projektdeltagere	Hovedansvarsområder
Mohamed Hussein Mohamed	Hardware & Software
Martin Banasik	Hardware & Software

Tabel 5.1: indeholder gruppemedlemmernes navne og hovedansvarsområder

Krav 6

På baggrund af et møde med Jim Jensen fra Hammel Neurocenter, som er projektets udbyder, hvor udfordringer med nuværende behandlinger og udredninger af dysfagipatienter blev diskuteret, er der udarbejdet en kravspecifikation til et system kaldet Synkerefleksmonitor (SRM). Formålet med mødet var ikke at etablere kunde/leverandør- relation, hvor krav til et kommende produkt skal forhandles på plads. Mødet havde i stedet en uformel karakter, hvor Hammel Neurocenter frivilligt er gået med til at mødes med gruppens medlemmer for at bidrage med deres ekspertise indenfor behandling og udredning af dysfagipatienter. Kravene til produktet som skal realiseres under dette projekt, er suverænt udspecificeret af gruppens medlemmer uden indblanding af projektets udbyder. Fra udbydernes side var der kun et ønske om at bidrage med udvikling af nye metoder til udredning af dysfagipatienter, hvilken dette projekt også har intentioner om.

I det følgende beskrives kort det overordnede system, efterfulgt af funktionelle og ikke funktionelle krav.

6.1 Systembeskrivelse

Systemet består af et BI kredsløb og en kommerciel EMG-måler, der tilsammen udgør SRM'en, se figur 6.1. SRM'en initieres af et sundhedspersonale ved første at tilkoble elektroder fra hhv. BI- og EMG-måleren til et raske måleobjekt. Derefter igangsætter sundhedspersonalet målingerne via. en brugergrænseflade på en PC. Begge målinger kører simultant. Efterfølgende opsamles målingerne i en A/D-konverter, der omsætter de målte værdier fra analoge til digitale værdier, som PC'en kan arbejde med. I PC'en processeres de to målinger og vises til sundhedspersonalet via. brugergrænsefladen.

6.2. Aktørbeskrivelse

Figur 6.1: Aktør-kontekst diagram illustrer det overordnet systemet, som betsår af to måleapparater, en A/D-konverter og en PC. Et sundhedspersonale igangsætter målingerne via. en brugergrænseflade. Måleobjektet er tilkoblet til begge apparater.

6.2 Aktørbeskrivelse

Til aktør-kontekst diagrammet følger der en en aktør beskrivelse, der beskriver kort hver komponentes funktion, se tabel 6.1.

Akt ørnavn	Type	Beskrivelse
Sundhedspersonale	Primær	Sundhedspersonalet tilkobler BI- og EMG-måleren til måleobjektet vha. elektroder, samt starter målingen. Yderligere interagerer sundhedspersonalet med en brugergrænseflade.
Bioimpedans-måler	Sekundær	BI- måleren anvendes til at måle bioimpedans signaler fra måleobjektet
EMG-måler	Sekundær	EMG-måleren anvendes til at måle EMG signaler fra måleobjektet.
Måleobjekt	Sekundær	Måleobjektet er kilden hvorfra biosignalerne indhentes. Måleobjektet er tilkoblet til både BI- og EMG-måleren.
${ m A/D} ext{-}{ m konverter}$	Sekundær	${\rm A/D\textsc{-}konverterens}$ funktion er at konvertere analoge signaler fra hhv. BI-og EMG-måleren til digitale signaler.
PC	Sekundær	Denne brugergrænseflade bruges til at visualisere de målte signaler i graf form.

Tabel 6.1: Aktørbeskrivelse for det samlede system

6.3 Funktionelle krav

Tabel 6.2 beskriver funktionelle krav, der stilles til applikationen synkerefleksmonitor. Nogle krav er vigtigere end andre, og de prioriteres vha. MosCow-metoden. Kravene i Must og Should kategorien prioriteres højest. I dette projekt bestræbes det at opfylde kravene i Must og Should. Yderligere detaljer om kravspecifikationen henvises til Bilag 1 - Kravspecifikation. Her kan man bl.a. læse ændringer i kravspecifikationen under projektet.

Must have	Should have	
1. Systemet skal have en bioimpedans sensor (BI), der kan måle bioimpedans signaler	5. Matlab GUI, der kan præsentere BI og EMG signaler	
2. Systemet skal have EMG sensor, der kan måle EMG signaler	6. Både BI og EMG målinger skal køre simultant	
 3. Systemet skal kunne vise BI og EMG signaler over tid på en graf (offline) i Matlab 4. Systemet skal kunne beregne BI på baggrund af målte spændinger 		
	· · · · · · · · · · · · · · · · · · ·	
Could have	Would have	
7. Validere bioimpedans sensoren op imod kommerciel BI måler	Would have 10. Mobilt synkerefleksmonitor med touch skærm	
7. Validere bioimpedans sensoren op imod	10. Mobilt synkerefleksmonitor med touch	

Tabel 6.2: MoSCoW opdeling af funktionelle krav til synkerefleksmonitorens software og hardware

6.3. Funktionelle krav

For at realisere *Must og Should* kravene, er der udviklet use cases, der bidrager til opfyldelsen af disse krav. Brugergrænsefladen til applikationen er forsøgt forsimplet, således at brugeren kun forholder sig til behandlede data og ikke rådata. På Figur 6.2 ses det to aktører, der interagerer med to use cases. Herunder beskrives funktionerne af de to use cases.

Figur 6.2: UseCase diagram for synkerefleksmonitoren. Systemet består af to usecases, der tilsammen bruges til at starte, måle og gemme BI og EMG målinger

Use Case - Start Measurements: Denne use case bruges til at igangsætte en måling. Når sundhedspersonalet trykker på denne knap, køres der en række funktioner, der til sammen behandler og visualisere to målinger. Funktionaliteten af denne knap implementeres i Matlab. I *Bilag 6 - Implementering og test* kan du bl.a. læse om de underliggende funktioner, som eksekveres, når denne knap aktiveres af brugeren.

Use Case - Save Measurements: Denne use case muliggør at brugerne kan gemme to målinger lokalt i en csv fil. Her gemmes de to målinger, som brugeren har taget simultant i use casen "Start Measurements".

6.4. Ikke-funktionelle krav

Nedenunder er der en fully dressed for "Start Measurements" use casen. Her kan du læse de trin som brugeren skal igennem for at igangsætte en måling. Fully dressed for use casen "Save Measurements" henvises der til Bilag 1 - Kravspecifikation.

Use Cases - fully dressed

Use Case - Start Measurements

	Hovedscenarie
	Start Measurements
	At måle to signaler simultant
	Startes af Sundhedspersonalet
	Sundhedspersonale (primær)
	1 måling pr. kørsel
	BI-måleren og EMG-måleren er ledige og operationelle. Elektroderne påsat måleobjektet og GUI-vinduet er åbent
	To målinger foretages og vises til brugeren
1.	Sundhedspersonalet trykker på knappen "Start Measurements"
2.	En række funktioner køres automatisk og systemet sørger for at to målinger foretages simultant
	[<i>Undtagelse 2.a:</i>] Systemet foretager ikke målinger
2.a	Applikationen genstartes og hovedscenarie 1 i use casen gentages
	2.

Tabel 6.3: Fully dressed for use casen Start Measurements

6.4 Ikke-funktionelle krav

Afgrænsning 7

Metode 8

8.1 Udviklingsværktøjer

8.1.1 Analyse og designmetode

ASE-modellen V-modellen

Dette afsnit har til formål at beskrive hvilke tekniske metoder, der er benyttet af udarbejdelsen af bachelorprojektet. Primært er der tale om metoder fra faget ISE. I dette afsnit bliver der også beskrevet hvilke arbejdsredskaber, der er benyttet til udførelse af bachelorprojektet og rapporten.

Den overordnet udviklingsproces bachelorprojektet har brugt var ASE-modellen, se figur 8.1, som er udviklet af Ingeniørhøjskolen Aarhus Universitet. Modellen anvendes til udvikling af hardware og software, hvilket der var behov for at udvikle af Synkefrekvensmonitor. Den er opbygget med en række faser i starten som skal følges. Dernæst kommer design, implementering og test fasen hvor det har givet gruppen mulighed for at arbejde iterativ, ved at sikre at forfedret produkt ved at hele tiden bygge erfaringer ved hver iteration. Til slut blev der samlet op med en integrationstest med hardware og software og en acceptest blev udført.

8.1. Udviklingsværktøjer

Figur 8.1: V-modellens udviklingsfaser/?]

Udover ASE-modellen blev metoden fra af V-modellen også brugt. Som det kan ses i figur 8.2 består V-modellen af udviklingsfaser hvor hver fase bliver testet og valideret inden næste fase påbegynder. Dette sikre at man får lavet den højest kvalitet for hver fase og projektet.

Ved udvikling af prototypen blev der er i første fase, udviklet en kravspecifikation fra vores MoSCow analyse. Denne analyse indeholdte alt fra de krav som skulle med i projektet, dem som vi måske kunne nå og dem som vi ikke ville udføre, men kunne perspektivere til og videreudvikles på. Til disse krav blev der forbedret en accepttest, som skal teste det færdige produkts funktioner og egenskaber.

Anden fase er system design. Hvor der undersøges hvilke hardware komponenter som kan bruges til understøtte kravene. Hertil laves en system test, som tester sammenspillet mellem de forskellige systemer efterhånden som de bliver integreret.

Tredje fase:

fjerde fase:

implementering:

Figur 8.2: V-modellens udviklingsfaser/?]

Til beskrivelse samt opbygning af Synkerefleksmonitor er der fra ISE benyttet metoden SysML. SysML er brugt til diagramanalyse, specifikation, design og verificerer Synkerefleksmonitor. Hvilket resulterer i en beskrivelse af systemets opbygning og kommunikation. Dernæst er der lavet en applikationsmodel, som giver det samlet overblik over Synkerefleksmonitor. Applikationsmodellen består af en domænemodel, hvor alle aktiviterne i synkerefleksmonitor er beskrevet samt tilhørende klassediagrammer med metoder fra sekvensdiagrammer som beskriver systemets virkning og interaktionen mellem de forskellige dele, som er specifikt for hvert use case.

Programmet Visio er blevet brugt til udvikling af alle SysML- og UML-diagrammer. Koden og GUI er skrevet og udviklet i Matlab. Rapporten, bilag, mødereferater og logbog er skrevet i tekstsproget Latex på hjemmesiden Overleaf.

8.2 Den gennemførte proces

Bachelorprojektet startede med at få lavet en tidsplan over hele forløbet, med udkast fra bachelorforprojektet. Her blev der der brugt TeamGantt som projektstyringsværktøj, til oprettelse af tidsplanen, som er en online portal hvor alle gruppedeltager har mulighed for at se og rette i tidsplanen. Siden er bygget op om et Gantt-skeam som viser aktivterne i kalenderformat, som bruges til at dokumenterer planlægningen[?, s. 297]. Ved brug af versionshistorik af tidsplanen, var det muligt at følge ændringer undervejs i projektet. Se

Bilag 2 for versionshistorik af tidsplanen. Projektet brugte TeamGantt kun til grovplaner med strukturen efter ASE-modellen. Udførelsen af de enkelte elementer fra ASE-modellen blev udført ved brug af V-modellen, for at opretholde en høj kvalitet i projektet. V-modellen sikre at hver fase er færdig og giver mulighed for at test løbende før næste fase begynder[?, s. 12].

Undervejs er de specifikke opgaver oprettet, for hvert sprint, i programmet Pivotal Tracker. Når en opgave blev oprettet blev der taget op i gruppen hvilken prioritering opgaven skulle have ved brug af en terning fra 1 til 8 point. Hvert medlem viste sine valgte point. Ved uoverensstemmelse af point skulle hvert medlem argumentere og der blev diskuteret i gruppen om en fælles prioritering af opgaven.

- SysML og UML
- Husk referencer til litteratur, samt afvigelser fra teoriens metoder

8.3 Beskriv Processen 1-2 sider - ikke tekniske del

- Gruppedannelser Bachelorprojekt gruppen
- Anvendelse af samarbejdsaftaler Der er udarbejdet en samarbjdsaftale som kan ses i Bilag XX. Den er udarbejdet på bag grund af erfaringer fra tideligere projekter og hvad dette projekt kræver.

• Arbejdsfordeling

Arbejdsfordelingen af de praktiskeopgaver og ansvarlige områder er beskrevet i samarbejdsaftalen, se bilag XX. Alle opgaver har været lagt ind i Pivotal Tracker hvor hvert medlem har kunne vælge opgaver efter interesse og efter den overordnet planlægning.

• Planlægning

Teamgantt er den overordnet planlægning som bliver diskuteret og redigeret hver fredag efter et sprint er fuldendt.

• Møder

Scrum møder hver dag kl. 8:30 som omhandler igangværende opgaver og status og fremgangen på disse. Møde hver fredag. 14 omhandlende ugens sprint og status sprintes opgaver.

• Projektledelse

Der er en ligefordelt ledelse i gruppen, med et fælles ansvar, med roller, opgave planlægning og organisering. Se samarbejdskontrakt bilag XX.

• Projektsadministation

Der er opdelt ansvarsopgaver i gruppen i mellem såsom, dokument ansvar og referant ved møder. Se den nærmere oversigt i samarbejdsaftalen Bilag XX.

$8.3.\,$ Beskriv Processen1-2sider - ikke tekniske del

• Sprints (Scrum)
Gruppen har valgt at køre med ugentlige scrum sprints med værktøjet Pivotal Tracker.

Den gennemførte proces beskrives nærmere i procesbeskrivelsen i projektets bilag.

Analyse 9

Arkitektur 10

Design 1 1

Implementering 12

Test 13

Resultater 14

Diskussion af resultater 15

Konklusion 16

Fremtidigt arbejde 17

Sikkerhed 18

Litteratur

- $[1] Sundhedsstyrelsen. National klinisk retningslinje for øvre dysfagi. \\ http://sundhedsstyrelsen.dk/media/7E4C638B32204D5F97BCB9805D12C32F.ashx, \\ 2015.$
- [2] Annette Kjaersgaard. Difficulties in swallowing and eating following acquired brain injury From a professional and a patient perspective. 2013.
- [3] Martin. Bommersholdt, Patientombuddets læringsenhed, and Maja. Bennett. Temarapport om dysfagi. 15 Juni, 2012.
- [4] A. M. Kelly, P. Leslie, T. Beale, C. Payten, and M. J. Drinnan. Fibreoptic endoscopic evaluation of swallowing and videofluoroscopy: Does examination type influence perception of pharyngeal residue severity? *Clinical Otolaryngology*, 31(5):425–432, 2006.
- [5] Gary H. McCullough, Robert T. Wertz, John C. Rosenbek, Russell H. Mills, Wanda G. Webb, and Katherine B. Ross. Inter- and intrajudge reliability for videofluoroscopic swallowing evaluation measures. *Dysphagia*, 16(2):110–118, 2001.
- [6] Corinna Schultheiss, Thomas Schauer, Holger Nahrstaedt, and Rainer O. Seidl. Automated detection and evaluation of swallowing using a combined emg/bioimpedance measurement system. Scientific World Journal, 2014, 2014.
- [7] H. Nahrstaedt, C. Schultheiss, R. O. Seidl, and T. Schauer. Swallow detection algorithm based on bioimpedance and EMG measurements. In *IFAC Proceedings Volumes (IFAC-Papers Online)*, 2012.
- [8] Mette Christensen, Elisabeth; Lundbak Strand. Bachelor project: Swallows, Et System til Screening og Monitorering af Dysfagi. Technical report, 2017.
- [9] Kevin R. Aroom, Matthew T. Harting, Charles S. Cox, Ravi S. Radharkrishnan, Carter Smith, and Brijesh S. Gill. Bioimpedance Analysis: A Guide to Simple Design and Implementation. *Journal of Surgical Research*, 153(1):23–30, 2009.

Bilagsliste 19

- 19.1 Bilag 1 Kravspecifikation
- 19.2 Bilag 2 Accepttestspecifikation
- 19.3 Bilag 3 Analyse
- 19.4 Bilag4 Arkitektur
- 19.5 Bilag 5 Kravspecifikation
- 19.6 Bilag 8 Om Dysfagi
- 19.7 Bilag 11 Mail korrespondance
- 19.8 Bilag 6 Implementering og test