Weixing Hao

Google Scholar: Link Website: Link Tel: +1 - 573-202-1902

LinkedIn: www.linkedin.com/in/weixing-hao E-mail: davidhao1994@gmail.com

Research Interests and Goals

Project Leadership: Leads aerosol science research from experimental design to data-driven insights.

Interdisciplinary Approach: Integrates engineering, environmental science, and public health to solve air quality challenges.

Aerosol Measurement: Advances bioaerosol detection, particle characterization, and exposure assessment for safer environments.

Health and Air Quality: Enhances occupational air filtration, inhalation toxicology, and aerosol health research.

Collaborative Research: Develops cross-disciplinary solutions for aerosol mitigation and control.

Education

University of Miami

Ph.D. in Chemical, Environmental and Materials Engineering;	8/2022 - present
Advisor: Yang Wang	
Dissertation: The Role of Aerosol Particle Size in the Dynamics and Control of Indoor Bioaerosols	
Missouri University of Science and Technology (transferred to the University of Miami)	Rolla, MO, USA
Ph.D. Candidate in Civil and Environmental Engineering;	8/2019 - 8/2022
University of Science and Technology Beijing	Beijing, China
M.E. in Metallurgical Engineering;	9/2016 - 1/2019
North China University of Science and Technology	Hebei, China
B.E. in Metallurgical Engineering;	9/2012 - 7/2016

Academic & Research Experience

University of Miami Miami, FL, USA

Creducto Research Assistant 8/2010 present

Graduate Research Assistant 8/2019 – present

- Led a bioaerosol viability study using bacterial culture techniques and qPCR molecular analysis, evaluating the effects of UV germicidal irradiation, ozone, relative humidity, and temperature, with a focus on size-dependent viability.
- Investigated the filtration performance of 250+ non-medical materials during COVID-19, achieving N95-level efficiency with layered designs while maintaining breathability. Findings shaped public health guidelines and received 10+ media coverage (NYT, BBC, NPR).
- Developed numerical models in COMSOL Multiphysics and MATLAB to optimize Condensation Particle Counters (CPC) performance for improving sub-3 nm detection accuracy for industrial and environmental monitoring.
- Mentored 10+ undergraduate and master's students in research projects, fostering technical expertise and independent research skills.
- Authored and presented 20+ research papers and conference presentations, demonstrating strong scientific communication skills.
- Established and managed lab operations as a founding member, leading logistics, coordination, and relocation to a new institution.

Graduate Teaching Assistant

1/2020 - present

Miami, FL, USA

- Assisted in 5 undergraduate and graduate courses (ENV ENG 5662 Air Pollution Control; ENV ENG 3603 Chemical Fundamentals of Environmental Engineering; ENV ENG 2601 Fundamentals of Environmental Engineering and Science; CET 340 Introduction to Environmental Engineering; CET 541/641 Environmental Engineering Microbiology) handling grading, lab demonstrations, presentations, and one-on-one academic support, facilitating a deeper understanding of environmental engineering principles.
- Developed strong **communication and instructional skills**, simplifying complex engineering concepts, encouraging active discussions, and fostering a collaborative learning environment.

Pacific Northwest National Laboratory

Richland, WA, USA

Visiting Scholar

10/2023 - 3/2024

- Awarded the competitive **NSF INTERN Fellowship** for research collaboration at PNNL.
- Developed **supervised Machine Learning models** (Random Forest) to identify New Particle Formation (NPF) events with **90-95% accuracy**.
- Investigated key atmospheric variables affecting NPF, including solar radiation, relative humidity, and temperature.
- Applied Partial Dependence Plots (PDPs) to uncover non-linear relationships between environmental variables and NPF, offering mechanistic
 insights for predictive modeling.

Publications

Patent

• Hao, W., Huang, Y., Wang, Y. Simulated respiratory system and method," No. 63/323,698, 2022.

Peer-Reviewed Journal Papers (11 Publications, 254 Citations)

- 1. Hao, W., A. Parasch, S. Williams, J. Li, H. Ma, J. Burken, Y. Wang. 2020. Filtration performances of non-medical materials as candidates for manufacturing facemasks and respirators. *International Journal of Hygiene and Environmental Health* 229:113582. https://doi.org/10.1016/j.ijheh.2020.113582
- 2.Hao, W., G. Xu, Y. Wang. 2021. Factors influencing the filtration performance of homemade face masks. *Journal of Occupational and Environmental Hygiene* 18:128-138. https://doi.org/10.1080/15459624.2020.1868482 (The most cited articles published within the last 3 years)
- 3. Hao, W., Stolzenburg, M., Attoui, M., Zhang, J., & Wang, Y. 2021. Optimizing the activation efficiency of sub-3 nm particles in a laminar flow condensation particle counter: Model simulation. *Journal of Aerosol Science*, 158, 105841. https://doi.org/10.1016/j.jaerosci.2021.105841
- 4. Hao, W., Kapiamba, K. F., Abhayaratne, V., Usman, S., Huang, Y. W., & Wang, Y. 2022. A simulated respiratory system for secondhand smoke generation and characterization. *Inhalation Toxicology*, 1-11. https://doi.org/10.1080/08958378.2022.2075493
- 5. Hao, W., F. Mei, S. Hering, S. Spielman, Y. Wang. 2023. Mapping the performance of a versatile water-based condensation particle counter (vWCPC) with numerical simulation and experimental study. *Atmospheric Measurement Techniques*, 16, 3973–3986. https://doi.org/10.5194/amt-16-3973-2023
- 6. Hao, W., Huang, Y. W., & Wang, Y. 2023. Bioaerosol size as a potential determinant of airborne E. coli viability under ultraviolet germicidal irradiation and ozone disinfection. Nanotechnology, 35, 145702. https://doi.org/10.1088/1361-6528/ad14b4
- 7. Cheng, S., Hao, W., Wang, Y., & Yang, S. 2022. Commercial Janus Fabrics as Reusable Facemask Materials: A Balance of Water Repellency, Filtration Efficiency, Breathability, and Reusability. ACS Applied Materials & Interfaces, 14(28), 32579-32589. https://doi.org/10.1021/acsami.2c09544
- 8. Kapiamba, K., Hao, W., Adom, S., Liu, W., Huang, Y., Wang, Y. 2022. Examining the metal contents in primary and secondhand aerosols released by electronic cigarettes. *Chemical Research in Toxicology*, 35, 954-962. https://doi.org/10.1021/acs.chemrestox.1c00411
- 9. Brooks, J. P., Lupfer, C., Yang, W., **Hao, W.,** & Kapiamba, K. F. 2022. The effect of hypochlorous acid on the filtration performance and bacterial decontamination of N95 filtering facemask respirators. *American Journal of Infection Control*, 1-5. https://doi.org/10.1016/j.ajic.2022.07.013
- 10. Li, Y., Peng, Z., Li, J., Wei, C., Liu, S., **Hao, W.,** ... & Wu, C. 2023. Wearable MXene-Graphene Sensing of Influenza and SARS-CoV-2 Virus in Air and Breath: From Lab to Clinic. *Advanced Materials Technologies*, 2201787. https://doi.org/10.1002/admt.202201787
- 11. Gonzalez, A., Aboubakr, H. A., Brockgreitens, J., **Hao, W.,** Wang, Y., Goyal, S. M., & Abbas, A. 2021. Durable nanocomposite face masks with high particulate filtration and rapid inactivation of coronaviruses. *Scientific Reports*, 11(1), 1-11. http://doi.org/10.1038/s41598-021-03771-1 (**Top 100 in Materials Science**)

Academic Activities

Reviewer Activities of Journals: peer-reviewed 30+ publications across 10+ journals:

• PLOS One; Scientific Report; Aerosol Science & Technology; Atmospheric Measurement Techniques; Planetary and Space Science; ACS Omega; Journal of Hazardous Materials; Journal of Aerosol Science; ACS Environment & Health; Frontiers of Environmental Science & Engineering

Professional Membership:

- Member of the American Association for Aerosol Research (AAAR).
- Member of the Center for Aerosol Science and Technology (CAST) at the University of Miami.

Conference: technical oral and poster presentations:

Invited Talks

- 10/2023: UM-CEME Fall 2023 Graduate Seminar at the University of Miami **Hao, W.,** Y. Wang. *Toward Cleaner Breathing: Research in Particulate Filtration and Bioaerosol Mitigation*.
- 4/2023: National Society of Black Engineers (NSBE) at the University of Miami **Hao**, W., Huang, Y. W., & Wang, Y. *Influence of UV Irradiation on the Size-dependent Survivability of E. Coli-containing Bioaerosols*.

Oral Presentations

• 10/2024: 42nd AAAR Annual Conference - **Hao, W.,** Mehra, M., Chakraborty, T. C., Mei, F., & Wang, Y. Employing Machine Learning for New Particle Formation Identification and Mechanistic Analysis: Insights from a Six-Year Observational Study in the Southern Great

Plains.

- 10/2023: 41st AAAR Annual Conference **Hao, W.,** F. Mei, S. Hering, S. Spielman, Y. Wang. *Mapping the Performance of a Versatile Water-based Condensation Particle Counter (vWCPC) with Numerical Simulation and Experimental Study.*
- 4/2023: Air Pollution Workshop at the University of Florida- **Hao, W.,** Huang, Y. W., & Wang, Y. *Influence of UV Irradiation on the Size-dependent Survivability of E. Coli-containing Bioaerosols*.
- 3/2023: 15th Graduate + Postdoctoral Research Symposium at the University of Miami **Hao, W.,** Huang, Y. W., & Wang, Y. *Influence of UV Irradiation on the Size-dependent Survivability of E. Coli-containing Bioaerosols*.
- 10/2021: 39th AAAR Annual Conference **Hao, W.,** Stolzenburg, M., Attoui, M., Zhang, J., & Wang, Y. *Optimizing the Activation Efficiency of Sub-3 nm Particles in Laminar Flow Condensation Particle Counters by Model Simulation.*
- 10/2021: 39th AAAR Annual Conference **Hao, W.,** Kapiamba, K. F., Abhayaratne, V., Usman, S., Huang, Y. W., & Wang, Y. A Simulated Respiratory System for Secondhand Smoke Generation and Characterization.
- 10/2020: 25th MAEEC Annual Conference **Hao, W.,** A. Parasch, S. Williams, J. Li, H. Ma, J. Burken, Y. Wang. *Filtration Performance of Common Non-Medical Materials Used in Homemade Face Coverings*.

Poster Presentations

- 1/2025: 3rd Center for Aerosol Science and Technology (CAST) workshop at the University of Miami **Hao, W.,** Mehra, M., Chakraborty, T. C., Mei, F., & Wang, Y. Employing Machine Learning for New Particle Formation Identification and Mechanistic Analysis: Insights from a Six-Year Observational Study in the Southern Great Plains.
- 1/2024: 2nd Center for Aerosol Science and Technology (CAST) workshop at the University of Miami **Hao, W.,** Mehra, M., Chakraborty, T. C., Mei, F., & Wang, Y. Employing Machine Learning for New Particle Formation Identification and Mechanistic Analysis: Insights from a Six-Year Observational Study in the Southern Great Plains.
- 3/2023: Research day at the College of Engineering at the University of Miami **Hao, W.,** Huang, Y. W., & Wang, Y. *Influence of UV Irradiation on the Size-dependent Survivability of E. Coli-containing Bioaerosols.*
- 1/2023: 1st Center for Aerosol Science and Technology (CAST) workshop at the University of Miami **Hao, W.,** Huang, Y. W., & Wang, Y. *Influence of UV Irradiation on the Size-dependent Survivability of E. Coli-containing Bioaerosols.*
- 10/2022: 40th AAAR Annual Conference **Hao, W.,** Huang, Y. W., & Wang, Y. *Influence of UV Irradiation on the Size-dependent Survivability of E. Coli-containing Bioaerosols*.
- 03/2022: Center for Biomedical Research (CBR) Symposium, Missouri S&T, **Hao, W.,** Huang, Y. W., & Wang, Y. *Influence of UV Irradiation on the Size-dependent Survivability of E. Coli-containing Bioaerosols*.
- 10/2020: 38th AAAR Annual Conference **Hao, W.,** A. Parasch, S. Williams, J. Li, H. Ma, J. Burken, Y. Wang. Filtration Performance of Common Non-Medical Materials as Candidates for Homemade Face Mask Filters.
- 10/2019: 24th MAEEC Annual Conference **Hao, W.,** Stolzenburg, M., Attoui, M., Zhang, J., & Wang, Y. Enhancing the Detection Efficiency of Sub-3 nm Aerosols with A Modified Condensation Particle Counter.

Research Projects

Understanding the evolution and transport of indoor bioaerosols

9/2020 - present

- Investigated the size-dependent bioaerosol viability in indoor environments, analyzing the effects of UV germicidal irradiation (UVGI), ozone, time decay, relative humidity, and temperature on airborne pathogens in a controlled bioaerosol generation system.
- $\bullet \ \ Evaluated \ pathogen \ via billity \ within \ bioaerosols \ using \ a \ combination \ of \ \textbf{bacterial culture techniques} \ and \ \textbf{qPCR molecular analysis}.$
- <u>Technologies Utilized</u>: Sioutas Cascade Impactor; Gelatin filter; SKC BioSampler; 6 Jet Refillable Collison Nebulizer; Bacterial culture methods; qPCR molecular science; Inductively Coupled Plasma Mass Spectrometry.

Filtration performances of household materials for facemasks

8/2019 - 10/2021

- Investigated the filtration performance of common household materials for use in 3D-printed respirators and DIY facemasks during COVID-19.
- Determined the **key factors** influencing the filtration performance of homemade face masks.
- Evaluated the filtration efficiency and breathability of 250+ different non-medical and fabric materials and freely shared them with the public.
- Achieved N95-level filtration efficiency using multiple layers of household air filters without significant flow resistance increase.
- Recommended **optimal material combinations** (fibrous and fabric layers) to maximize aerosol filtration while maintaining comfort.
- Demonstrated that washing and drying did not significantly degrade filtration performance, supporting material **reusability**.
- Explored triboelectric charging to enhance filtration efficiency, though its transient nature limited long-term practicality.
- Featured in 10+ major media outlets, including the New York Times, BBC News, NPR News, etc.
- Technologies Utilized: Scanning Mobility Particle Sizer; Aerodynamic Particle Sizer; Condensation particle Counter; Constant Output Atomizer; Air

Model simulation of laminar flow Condensation Particle Counters (CPC)

- Simulated alcohol- and water-based CPCs using COMSOL Multiphysics and MATLAB, evaluating their performance under various operating
 conditions (temperature, flow rate, inlet pressure, and geometry).
- Examined particle activation and droplet growth dynamics, identifying conditions where droplet growth reduction impacts counting efficiency, especially in low-pressure environments.
- Offered insights beneficial for future adjustments and enhancements in CPCs tailored to sub-3 nm particle detection, especially for precise particle detection and atmospheric aerosol monitoring.
- Technologies Utilized: COMSOL Multiphysics Simulation Coupled with MATLAB.

Machine learning for New Particle Formation (NPF) identification and analysis

10/2023 - 10/2024

- Conducted a six-year observational study at the DOE Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site to analyze NPF events.
- Developed supervised Machine Learning models using **Random Forest classifiers** to identify NPF events with 90–95% accuracy.
- Investigated **key atmospheric variables** influencing NPF, including solar radiation, relative humidity, and temperature, with feature importance analysis highlighting solar radiation intensity as a primary driver.
- Analyzed seasonal and diurnal patterns, revealing NPF frequency peaks in winter and spring with minimal occurrence in summer.
- Utilized Partial Dependence Plots (PDPs) to explore the non-linear relationships between atmospheric variables and NPF, providing
 mechanistic insights into their impact.
- Technologies Utilized: Random Forest, Python (scikit-learn), MATLAB, Aerosol Data Analysis Tools.

Awards and Skills

- Awards:
 - o Outstanding Graduate Student Research Award Nominee (2024) University of Miami (Link)
 - o US Student Travel Grant (2023) 41st Annual American Association for Aerosol Research Conference, Portland, Oregon
 - o Graduate Student Travel Scholarship (2023) University of Miami
 - o Cover Feature Chemical Research in Toxicology (Link)
- Selected Media coverage on particle filtration during COVID-19:
 - o The New York Times: What's the Best Material for a Mask for Coronavirus?
 - o BBC News: Why we should all be wearing face masks
 - o NPR News: Adding A Nylon Stocking Layer Could Boost Protection From Cloth Masks, Study Finds
 - o C&EN News: Scientists take a closer look at materials for homemade masks
 - o Daily Herald: What makes for a good homemade face mask?
- Research Skills: Experimental design; Statistical analysis; Data processing; Data normalization; Data visualization
- Aerosol Instrumentation: Scanning Mobility Particle Sizer (SMPS); Aerodynamic Particle Sizer (APS); Condensation particle Counter (CPC); Constant Output Atomizer; 6 Jet Refillable Collison Nebulizer; Air Sampling Cassette; Sioutas Cascade Impactor; SKC BioSampler
- Characterization Technologies: Scanning Electron Microscope (SEM); Quantitative Polymerase Chain Reaction (qPCR); Inductively Coupled Plasma Mass Spectrometry (ICP-MS); Bacterial Culture Methods
- Computational Modeling: COMSOL Multiphysics
- Data Science & Development Tools:
 - $\circ \textbf{Programming Languages} : Python; MATLAB$
 - Framework/Libraries: NumPy; Scikit-learn; Pandas, etc.
 Algorithms: Supervised machine learning; Random Forest
 - o Development Tools: Google Colab; GitHub