Bias and Variance of an Estimate

Mean Squared Error (MSE)

Method of Moments (MoM)

(6.4)

MLE Review

Let $X_1, X_2, ..., X_n$ be an iid sample from ~ Poisson(λ). Find an expression for the MLE of λ .

Bias

The **bias** of an estimator, $\hat{\theta}$, is defined as:

$$Bias[\widehat{ heta}] = E[\widehat{ heta}]$$
 - $heta$

If the bias of an estimator equals 0, then it is an **unbiased estimator**.

i.e. if
$$E[\hat{\theta}] = \theta$$
 or $E[\hat{p}] = p$ the estimator is unbiased.

Unbiased Estimation

If $\mathrm{E}[u(X_1,X_2,\ldots,X_n)]=\theta$, Then $u(X_1,X_2,\ldots,X_n)$ is an **unbiased estimator** of θ . Otherwise, $u(X_1,X_2,\ldots,X_n)$ is biased for θ .

Example of an Unbiased Estimator

MLE of p from a Bernoulli sample of size n:

$$\hat{p} = \frac{1}{n} \sum_{i} X_{i}$$

If an estimator is unbiased, $E[u(X_1, X_2, ... X_n)] = \theta$.

Here, $u(X_1, X_2, ..., X_n)$ is \hat{p} .

If
$$X \sim Bern(p)$$
, $E[X] = E[\overline{X}] =$

Bernoulli example

$$E[\hat{p}] = E[\frac{1}{n}\sum X_i] = \frac{1}{n}E[\sum X_i]$$

$$= \frac{1}{n}E[X_1 + X_2 + \dots + X_n]$$

$$= \frac{1}{n}(E[X_1] + E[X_2] + \dots + E[X_n])$$

$$= \frac{1}{n}(p + p + \dots + p) = p$$

A Simple Example of a Biased Estimator

Take random Bernoulli samples:

 $X_1, X_2, ..., X_n \sim Bern(p)$, where p is unknown.

Instead of using \bar{X} as my **estimator** for p, what if I don't care about likelihood and decide to blindly use $\hat{p} = \frac{1}{2}$ as my estimate? (Is that a good idea?)

What is the bias of this estimate?

Bias

In previous example, if $\hat{p} = \frac{1}{2}$

Bias =
$$E[\hat{p}] - p = \frac{1}{2} - p \neq 0$$

Let $X_1, X_2, ..., X_n \sim Bern(p)$, where p is unknown.

What if we use $\hat{p} = X_1$ instead?

$$\mathsf{E}[\hat{p}] =$$

$$Var[\hat{p}] =$$

notes

Mean Squared Error (MSE)

$$ext{MSE}(\hat{ heta}) = ext{E}_{ heta} \Big[(\hat{ heta} - heta)^2 \Big].$$

$$egin{aligned} ext{MSE}(\hat{ heta}) &= \mathbb{E}[(\hat{ heta} - heta)^2] \ &= \mathbb{E}(\hat{ heta}^2) + \mathbb{E}(heta^2) - 2 heta \mathbb{E}(\hat{ heta}) \ &= ext{Var}(\hat{ heta}) + (\mathbb{E}\hat{ heta})^2 + heta^2 - 2 heta \mathbb{E}(\hat{ heta}) \ &= ext{Var}(\hat{ heta}) + (\mathbb{E}\hat{ heta} - heta)^2 \ &= ext{Var}(\hat{ heta}) + ext{Bias}^2(\hat{ heta}) \end{aligned}$$

Mean Squared Error (MSE)

$$ext{MSE}(\hat{ heta}) = ext{E}_{ heta} \Big[(\hat{ heta} - heta)^2 \Big].$$

Alternative proof: Let $X = \hat{\theta} - \theta$. $E[X^2] = Var[X] + (E[X])^2$

$$egin{aligned} ext{MSE}(\hat{ heta}) &= \mathbb{E}[(\hat{ heta} - heta)^2] \ &= ext{Var}(\hat{ heta} - heta) + (\mathbb{E}[\hat{ heta} - heta])^2 \ &= ext{Var}(\hat{ heta}) + ext{Bias}^2(\hat{ heta}) \end{aligned}$$

Moments (Review)

Given a random variable, X,

 $E[X^k]$ is its k^{th} raw moment (" k^{th} moment").

 $E[(X - \mu)^k]$ is its k^{th} central moment.

These are known as **theoretical** moments.

Sample Moment

The kth <u>sample</u> moment is defined:

$$\frac{1}{n}\sum X_i^k$$

E.g.
$$\bar{X} = \frac{1}{n} \sum X_i$$
 is the 1st sample moment.

Method of Moments

Method of Moments

- One of the oldest methods to obtaining parameter estimates.
- Starting with the first moment, set each sample moment equal to the corresponding theoretical moment:
 - Set the second sample moment equal to the second theoretical moment. (If necessary)
 - Continue setting the third, fourth, etc. sample moments equal to the theoretical moments until the # of equations equals the # of parameters.
- Solve for the parameters.
- For as many parameters are you are solving for, you will need to match that many moments.

MOM Steps (in Stat 400)

Step 1: Find E[X], the population mean.

This will be a function of θ. We will call it $g(\theta)$

Step 2: Set the population mean equal to the sample mean. $g(\theta) = E[X] = \overline{X}$.

Step 3: Solve for θ .

Step 4: Put a tilde over θ to signify that it is an estimator!

Example

2. Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with probability density function

$$f(x) = \frac{2(\theta - x)}{\theta^2} \qquad 0 < x < \theta \qquad \theta > 0.$$

- a) Obtain the method of moments estimator of θ , θ .
- b) Is $\widetilde{\theta}$ an unbiased estimator for θ ?

c) Find $Var(\widetilde{\theta})$.

d) Find the MSE of ($\widetilde{\theta}$).

notes

Find $Var(\,\widetilde{\theta}\,\,).$

Let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x) = \frac{2(\theta - x)}{\theta^2} \qquad \underline{0 < x < \theta} \qquad \underline{\theta > 0}.$$

$$f(x; \beta, \delta) = \beta \delta x^{\delta-1} e^{-\beta x^{\delta}}, \quad x > 0,$$
 zero otherwise.

$$E(X) = \frac{1}{\beta^{1/\delta}} \Gamma\left(\frac{1}{\delta} + 1\right). \qquad \overline{X} = \frac{1}{\widetilde{\beta}^{1/\delta}} \Gamma\left(\frac{1}{\delta} + 1\right).$$

$$\widetilde{\beta} = \left(\frac{\Gamma\left(\frac{1}{\delta}+1\right)}{\overline{X}}\right)^{\delta}.$$

Gamma example

Review: Conditional Distribution Examples