Article

Chänzz

February 9, 2024

Contents

Co	Contents	
1	Suggestions	1
2	Algebraic Geometry Prerequisites	1
3	Isbell duality	2
4	Sheaf Theory 4.1 Definition of sheaf and presheaf	2 2
5	Rings	2
6	Modules	3

1 Suggestions

• Learn math in a targeted manner according to your own motivation, rather than learning it extensively. No one has so much time to systematically study mathematics in one direction.

2 Algebraic Geometry Prerequisites

- 1. Algebraic Varieties
- 2. Schemes
- 3. Cohomology
- 4. Curves
- 5. Surfaces

6.

- algebraic variety
 - An algebraic variety is a generalization to n dimensions of algebraic curves.
- algebraic curve
 - An algebraic curve over a field \mathbb{K} is an equation f(X,Y) = 0, where f(X,Y) is a polynomial in X and Y with coefficients in \mathbb{K} .
- algebraically closed field
 - A field \mathbb{K} is said to be algebraically closed if every polynomial with coefficients in \mathbb{K} has a root in \mathbb{K} .
- algebraic closure
 - The field $\overline{\mathbb{F}}$ is called an algebraic closure of \mathbb{F} if $\overline{\mathbb{F}}$ is algebraic over \mathbb{F} and if every polynomial $f(x) \in \mathbb{F}[x]$ splits completely over $\overline{\mathbb{F}}$, so that $\overline{\mathbb{F}}$ can be said to contain all the elements that are algebraic over \mathbb{F} .

Example.

 \mathbb{C} is the algebraic closure of \mathbb{R} .

• algebraic extension

An extension \mathbb{F} of a field \mathbb{K} is said to be algebraic if every element of \mathbb{F} is algebraic over \mathbb{K} (i.e., is the root of a nonzero polynomial with coefficients in \mathbb{K}).

• field extension

A field \mathbb{K} is said to be an extension field (or field extension, or extension) of a field \mathbb{F} if \mathbb{F} is a subfield of \mathbb{K} , denoted by \mathbb{K}/\mathbb{F} .

Example.

 \mathbb{C} is an extension field of \mathbb{R} , and \mathbb{R} is an extension field of \mathbb{Q} .

- field
- ring

•

3 Isbell duality

• A general abstract adjunction.

$$(\mathcal{O} \dashv Spec)$$
: CoPresheaves $\overset{\mathcal{O}}{\underset{Spec}{\hookleftarrow}}$ Presheaves

4 Sheaf Theory

4.1 Definition of sheaf and presheaf

•

5 Rings

- A unit (or invertible element) in a ring R is an element u s.t. there is an element $v \in R$ with uv = 1. Such a v is unique. It is denoted u^{-1} , and called the inverse of u.
- A **field** is a ring in which every nonzero element in invertible. *Remark*: Both "+" and "×" are Abelian group.
- A **zerodivisor** in R is a nonzero element $r \in R$ s.t. there is a nonzero element $s \in R$ with rs = 0.
- A nonzero element that is not a zerodivisor is a nonzerodivisor.
- An **ideal** in a commutative ring R is an additive subgroup I s.t. if $r \in R$ and $s \in I$, then $rs \in I$.

An ideal I is said to be generated by a subset $S \subseteq R$ if every element $t \in I$ can be written in the form $t = \sum_{i=1}^{n} r_i s_i$ with r_i in R and s_i in S.

Remark: We can think of *S* as a basis, and $\sum_{i=1}^{n} r_i s_i$ as combination $r_1 s_1 + r_2 s_2 + \cdots + r_n s_n$.

We shall write (S) for the ideal generated by a subset $S \subseteq R$; if S consists of finitely many elements s_1, \ldots, s_n , then we usually write (s_1, \ldots, s_n) in place of (S).

By convention, the ideal generated by the empty set is 0.

- An ideal is **principal** if it can be generated by one element.
- An ideal I of a commutative ring R is **prime** if $I \neq R$ (we usually say that I is a **proper ideal** in this case) and if $f,g \in R$ and $fg \in I$ implies $f \in I$ or $g \in I$.

 Remark: f,g are element.
- Equivalently, I is prime if for any ideals J, K with $JK \subseteq I$ we have $J \subseteq I$ or $K \subseteq I$. It follows by induction on n that if I is prime and contains a product of ideals (or even a product of sets) $J_1J_2...J_n$, then I contains one of the I_i .
- The ring *R* is called a **domain** if 0 is prime.
- A maximal ideal of R is a proper ideal P not contained in any other proper ideal.
- If $P \subseteq R$ is a maximal ideal, then R/P is a field, so P is prime.
- R is called a **local ring** if P is the unique maximal ideal. We sometimes saying that (R, P) is a local ring.

- An element $h \in R$ is **prime** if it generates a prime ideal equivalently, h is prime if h is not a unit, and whenever h divides a product fg, then h divides f or h divides g.

 Remark: $h \mid fg \implies h \mid f$ or $h \mid g$.
- If *R* is a commutative ring, then a **commutative algebra** over *R* (*or* **commutative** *R***-algebra**) is commutative ring *S* together with a homomorphism $\alpha: R \to S$ of rings.
- Let R be a ring. An element $r \in R$ is **irreducible** if it is not a unit and if whenever r = st with $s, t \in R$, then one of s and t is a unit.
- A ring R is **factorial** (or a **unique factorization domain**, sometimes abbreviated U.F.D.) if R is an integral domain and elements of R can be factored uniquely into irreducible elements, the uniqueness being up to factors which are units (this is the same sense in which factorization in \mathbb{Z} is unique).

6 Modules

- If R is a ring, then an R-module M is an Abelian group with an action of R, that is, a map $R \times M \to M$, written $(r, m) \mapsto rm$, satisfying for all $r, s \in R$ and $m, n \in M$,
 - r(sm) = (rs)m (associativity)
 - r(m+n) = rm + rn
 - (r+s)m = rm + sm (distributivity, *or* bilinearity)
 - -1m = m (identity)