Estructuras Discretas

Práctica 04: Interpretaciones de la lógica

"Karyme I. Azpeitia García"
"Dorantes Perez Brando"
"Valencia Cruz Jonathan Josué"

10/31/2020

¿Puedes decir a cúales los siguientes ejemplos corresponden nuestros operadores?

Es decir qué operador asocia a donde y cuál de los siguientes cuatro ejemplos corresponde a nuestra implementación.

\overline{PQR}	$(P \wedge Q) \vee R$	valor	$P \wedge (Q \wedge R)$	valor
001	$(0) \lor 1$	1	$0 \wedge (1)$	0

Dado que nuestros operadores lógicos \land, \lor tienen la siguiente firma

```
-- | conj, disy. Metodo que representa las compuertas AND, OR
(.^.), (.|.) :: a -> a -> a
infixl 7 .^., .|.
```

Notamos que \land, \lor tienen la misma precedencía y ambos asocian empezando a la izquierda por lo que el ejemplo que corresponde a nuestra implementación es $(P \land Q) \lor R$.

\overline{PQR}	$(P \to Q) \to R$	valor	$P \wedge (Q \vee R)$	valor
000	$1 \rightarrow 0$	0	$0 \rightarrow 1$	1

Dado que nuestro operador lógico \rightarrow tiene la siguiente firma

```
(.->.) :: MyBool -> MyBool --ex
infixr 2 .->.
(.->.) p q = (.|.) q ((.¬.)p)
```

Notamos que \rightarrow tiene precedencía 2 y asocia a la derecha por lo que el ejemplo que corresponde a nuestra implementación es $P \land (Q \lor R)$.

¿Puedes ver por qué $P \wedge R \rightarrow Q$ se evalúa a BTrue?

```
modelo =["P","Q"]
f=(Impl(Conj (Var "P")(Var "R"))(Var "Q"))
```

Sabemos que "P", "Q" tienen valor 1 y dado que en nuestra implementación \wedge tiene mayor precedencía que \rightarrow y asocia por la izquierda entonces la fórmula se representa $(P \wedge R) \rightarrow Q$, de tal manera que:

 $P \wedge R$ se evalua en BFalse

 $BFalse \rightarrow Q$ se evalúa en "'BTrue"'

¿Funciona nuestra implementación?

El siguiente acertijo fue propuesto por Lewis Carroll:

- Todos los bebés son ilógicos.
- Nadie que sea despistado puede manejar un cocodrilo.
- Las personas ilógicas son despistadas.

¿Qué se puede concluir del argumento?

Los bebés no pueden manejar un cocodrilo.

Variables proposicionales:

- B: Es un bebé.
- M: Puede manejar un cocodrilo.
- L: Es lógico.
- D: Es despistado.

Usando las variables proposicionales anteriores tenemos

Todos los bebés son ilógicos.

$$B \to \neg L$$

Nadie que sea despistado puede manejar un cocodrilo.

$$D \to \neg M$$

Las personas ilógicas son despistadas.

$$\neg L \rightarrow \neg D$$

Los bebés no pueden manejar un cocodrilo.

$$B \to \neg M$$

Por lo anterior podemos ver que tenemos como premisas $B \to \neg L, D \to \neg M, \neg L \to \neg D$ y como conclusión $B \to \neg M$.

Ahora veamos que nuestro argumento es correcto, es decir

$$\models ((B \rightarrow \neg L) \land (D \rightarrow \neg M) \land (\neg L \rightarrow \neg D)) \rightarrow (B \rightarrow \neg M)$$

Ahora planteamos nuestro módelo \mathcal{M} con B=0, M=0, L=1, D=1, para comprobar que nuestro modelo es correcto utilizaremos la fúnción interpreta, donde nuestro módelo es representado con ["M", "L"] y la expresión $((B \to \neg L) \land (D \to \neg M) \land (\neg L \to \neg D)) \to (B \to \neg M)$ la llamaremos e.

```
*Formulas> interpreta [ "L", "D"] e #t
```

Entonces podemos decir que nuestro argumento es correcto.