CSE7850/CX4803 Machine Learning in Computational Biology

Lecture 15: Learning from Structure Data

Yunan Luo

Amino acids are the building blocks of proteins

Amino acids vary in

- Size
- Shape
- Polarity
- Charg

Protein structure hierarchy

Structure provides insight on function

Structure provides insight on function

Source: Twitter

Bacterial flagellar motor (Tan et al., Cell, 2021)

The protein folding problem

- The function of a protein is determined in large part by its 3D shape
- Can we predict the 3D structure of a protein given only its (1D) amino-acid sequence?

Protein structure prediction

Amino acid sequence

MEKVNFLKNGVLRLPPGFRFRPTDEELVVQYLKRKVFSFPLPASIIPEVEVYKSDPWDLPGDMEQEKYFFSTK EVKYPNGNRSNRATNSGYWKATGIDKQIILRGRQQQQQLIGLKKTLVFYRGKSPHGCRTNWIMHEYRLAN LESNYHPIQGNWVICRIFLKKRGNTKNKEENMTTHDEVRNREIDKNSPVVSVKMSSRDSEALASANSELKK

Protein structure

- Homology modeling
- Fold recognition (threading)
- Fragment assembly
- Molecular dynamics

- Homology modeling
 - given a query sequence Q, a database of protein structures, do:
 - find protein P such that
 - structure of P is known
 - P has high sequence similarity to Q
 - return P's structure as an approximation to Q's structure
- Fold recognition (threading)
- Fragment assembly
- Molecular dynamics

- Homology modeling
- Fold recognition (threading)
 - given a query sequence Q, a database of known folds, do:
 - find fold F such that Q can be aligned with F in a highly compatible manner
 - return F as an approximation to Q's structure
- Fragment assembly
- Molecular dynamics

Fold: a description of the relative orientation of the secondary structure making up the tertiary structure.

- Homology modeling
- Fold recognition (threading)
- Fragment assembly (e.g., Rosetta)
 - given a guery sequence Q, a database of structure fragments, do
 - find a set of fragments that Q can be aligned with in a highly compatible manner
 - return fragment assembly as an approximation to Q's structure
- Molecular dynamics

- Homology modeling
- Fold recognition (threading)
- Fragment assembly (e.g., Rosetta)
- Molecular dynamics
 - given a query sequence Q
 - do: use laws of physics to simulate folding of Q

New approach: Deep Learning

Slides credit: Jian Peng

Residue-residue constraints

14

Protein Distance & Contact Matrix

Liu, Palmedo, et al. Cell Systems 2018

Amino acids in direct physical contact tend to covary or "coevolve" across related proteins

For example, a mutation that causes one amino acid to get bigger is more likely to preserve protein structure and function (and thus survive) if another amino acid gets smaller to make space

...GANPMHGRDQSGAVASLTSVA...
GANPMHGRDQEGAVASLTSVA...
GANPMHGRDEKGAVASLTSVG...
GANPMHGRDSHGWLASCLSVA...
GANPMNGRDVKGFVAAGASVA...
GANPMHGRDRDGAVASLTSVA...
GANPMHGRDQVGAVASLTSVA...
GANPMHGRDOEGAVASLTSVA...

...VEDLMKEVVTYRHFMNASGG...
..VEALMARVLSYRHFMNASGG...
..VATVMKQVMTYRHYLRATGG...
.VARAMREIGKYAQVLKISRG...
.VPELMQDLTSYRHFMNASGG...
ADHVLRRLSDFVPALLPLGG...
FERARTALEAYAAPLRAMGG...
VPEVMKKVMSYRHYLKATGG...

Learning co-evolution from multiple sequence alignment

Amino acid i Amino acid j X_i X_i AOKLYLTHIDAEVDGD ADTLYMTKIHHQFQGD ADRLFITEVKOVFEGD ADTLYLTMIHQKF OAD TDTLYITHIDETFOGD ADTLYLTQIRNKF OGD TSRMYITKIGOEFEGD ADRLYMTKIHHEFEGD Co-evolution

Multiple sequence

alignment

Markov random field Ising (Potts) model Undirected graphical model

Learning with Markov Random Fields (MRF)

$$L(e) = \prod_{n=1}^{N} \frac{1}{Z_e^{(n)}} \prod_{i}^{L} \exp[e_i(x_i^n) + \sum_{j \neq i} e_{i,j}(x_i^n, x_j^n)]$$

Partition function

Singleton potentials

Local AA preference

Pairwise potentials

Pairwise AA couplings

Learning algorithms:

- Mean fields approximation: EVFold, DirectInfo
- Gaussian approximation: PSICOV
- Pseudolikelihood: GREMLIN, CCMpred

Deep convolutional NNs recognize coevolutionary patterns

Recent developments go beyond contact prediction

Improved protein structure prediction using predicted interresidue orientations

PNAS, 2020

Jianyi Yanga, 10, Ivan Anishchenkob, 10, Hahnbeom Parkb, Zhenling Pengd, Sergey Ovchinnikove, and David Bakerb,c,f,2

Improved protein structure prediction using potentials from deep learning

https://doi.org/10.1038/s41586-019-1923-7 Andrew W. Senior^{1,4}*, Richard Evans^{1,4}, John Jumper^{1,4}, James Kirkpatrick^{1,4}, Laurent Sifre^{1,4}, Tim Green1, Chongli Qin1, Augustin Židek1, Alexander W. R. Nelson1, Alex Bridgland1, Received: 2 April 2019 Hugo Penedones¹, Stig Petersen¹, Karen Simonyan¹, Steve Crossan¹, Pushmeet Kohli¹ Accepted: 10 December 2019 David T. Jones^{2,3}, David Silver¹, Koray Kavukcuoglu¹ & Demis Hassabis¹

Nature, 2020 (AlphaFold 1)

Highly accurate protein structure prediction with AlphaFold

Nature, 2021 https://doi.org/10.1038/s41586-021-03819-2 John Jumper^{1,4,22}, Richard Evans^{1,4}, Alexander Pritzel^{1,4}, Tim Green^{1,4}, Michael Figurnov^{1,4}, (AlphaFold 2) Olaf Ronneberger^{1,4}, Kathryn Tunyasuvunakool^{1,4}, Russ Bates^{1,4}, Augustin Židek^{1,4}, Received: 11 May 2021 Anna Potapenko^{1,4}, Alex Bridgland^{1,4}, Clemens Meyer^{1,4}, Simon A. A. Kohl^{1,4} Accepted: 12 July 2021 Andrew J. Ballard^{1,4}, Andrew Cowie^{1,4}, Bernardino Romera-Paredes^{1,4}, Stanislav Nikolov^{1,4}, Rishub Jain^{1,4}, Jonas Adler¹, Trevor Back¹, Stig Petersen¹, David Reiman¹, Ellen Clancy¹, Published online: 15 July 2021 Michal Zielinski¹, Martin Steinegger^{2,3}, Michalina Pacholska¹, Tamas Berghammer¹ Open access Sebastian Bodenstein¹, David Silver¹, Oriol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Pushmeet Kohli¹ & Demis Hassabis¹.4™

RESEARCH ARTICLE PROTEIN FOLDING

Check for updates

Accurate prediction of protein structures and interactions using a three-track neural network

Science, 2021

MINKYUNG BAEK 📵 , FRANK DIMAIO 📵 , IVAN ANISHCHENKO 🔞 , JUSTAS DAUPARAS 🚳 , SERGEY OVCHINNIKOV 📵 , GYU RIE LEE 📵 , JUE WANG 👩 , QIAN CONG 📵 LISA N. KINCH 6 . [...] DAVID BAKER 6 +23 authors Authors Info & Affiliations

Critical Assessment of protein Structure Prediction (CASP)

- Since 1994, every two years a contest is held to see who can best predict protein structures from peptide sequences
- Targets structures are held from publication until results are in

CASP14: DeepMind's AlphaFold 2

CASP14: DeepMind's AlphaFold 2

AlphaFold

AlphaFold model

Jumper et al., *Nature*, 2021

AlphaFold model

Input module

Embedding module (Evoformer)

Structure module

Input module

Two types of input

- Multiple sequence alignment (MSA)
 - Residues in contact tend to coevolve

Template structure

- Structures are more conserved than sequence
- Use conserved fragment to guide structure prediction

27

High confidence Genetic confidence (s,r,c) database search **Evoformer** Structure Evoformer module (48 blocks) (8 blocks) Input sequence T T T T T T Pairing (r,r,c) Structure database search ← Recycling (three times) a 48 blocks (no shared weights) Row-wise Columngated MSA MSA wise representation gated sition selfwith pair attention Outer product mean Triangle Triangle Triangle Triangle selfupdate update Tranusing representation representation using sition around around (r,r,c)outgoing incoming (r,r,c) starting ending edges edges node node

Key idea: learn MSA Representations and Pair Representations and iteratively exchange information between them

Structure module

- Get structure from the MSA and pair representations
- Each residue is parameterized by a tuple representing rotation and translation

$$T_i := (R_i, \vec{\mathbf{t}}_i)$$

Iterative update to predict angle and atom positions

Readings

RESEARCH

RESEARCH ARTICLE

PROTEIN FOLDING

Accurate prediction of protein structures and interactions using a three-track neural network

Minkyung Baek^{1,2}, Frank DiMaio^{1,2}, Ivan Anishchenko^{1,2}, Justas Dauparas^{1,2}, Sergey Ovchinnikov^{3,4}, Gyu Rie Lee^{1,2}, Jue Wang^{1,2}, Qian Cong^{5,6}, Lisa N. Kinch⁷, R. Dustin Schaeffer⁶, Claudia Millán⁸, Hahnbeom Park^{1,2}, Carson Adams^{1,2}, Caleb R. Glassman^{9,10,11}, Andy DeGiovanni^{1,2}, Jose H. Pereira^{1,2}, Andria V. Rodrigues^{1,2}, Alberdina A. van Dijk^{1,3}, Ana C. Ebrecht^{1,3}, Diederik J. Opperman^{1,4}, Theo Sagmeister^{1,5}, Christoph Buhlheller^{1,5,1,6}, Tea Pavkov-Keller^{1,5,1,7}, Manoj K. Rathinaswamy^{1,8}, Udit Dalwadi^{1,9}, Calvin K. Yip^{1,9}, John E. Burke^{1,8}, K. Christopher Garcia^{9,10,11,2,0}, Nick V. Grishin^{6,7,2,1}, Paul D. Adams^{1,2,2,2}, Randy J. Read⁸, David Baker^{1,2,2,3,*}

AlphaFold (Nature, 2021)

https://www.nature.com/articles/s41586-021-03819-2

RoseTTAFold (Science, 2021)

https://www.science.org/doi/10.1126/science.abj8754

- Two deep learning papers on protein structure prediction published on the same day
- Both in the presentation paper list of this course

"Citizen science": Volunteer/distributed computing

Folding@Home

- https://foldingathome.org/home/
- Molecular dynamics (MD) simulations

Rosetta@home

- http://boinc.bakerlab.org
- Structure prediction

Foldit

nature

Explore content > About the

About the journal ∨

Publish with us >

nature > letters > article

Letter | Published: 05 June 2019

De novo protein design by citizen scientists

Brian Koepnick, Jeff Flatten, Tamir Husain, Alex Ford, Daniel-Adriano Silva, Matthew J. Bick, Aaron Bauer,
Gaohua Liu, Yojiro Ishida, Alexander Boykov, Roger D. Estep, Susan Kleinfelter, Toke Nørgård-Solano, Linda
Wei, Foldit Players, Gaetano T. Montelione, Frank DiMaio, Zoran Popović, Firas Khatib, Seth Cooper &
David Baker □

Nature 570, 390-394 (2019) | Cite this article

23k Accesses | 56 Citations | 513 Altmetric | Metrics

Protein Folding & Protein Design

- **Protein folding** (protein structure prediction)
 - Sequence -> Structure

Amino acid sequence

MEKVNFLKNGVLRLPPGFRFRPTDEELVVQYLKRKVFSFPLPASIIPEVEVYKSDPWDLPGDMEQEKYFFSTK EVKYPNGNRSNRATNSGYWKATGIDKQIILRGRQQQQLIGLKKTLVFYRGKSPHGCRTNWIMHEYRLAN LESNYHPIQGNWVICRIFLKKRGNTKNKEENMTTHDEVRNREIDKNSPVVSVKMSSRDSEALASANSELKK

Protein structure

Protein design

Structure -> Sequence

Protein structure

Algorithm / Model

Amino acid sequence

MEKVNFLKNGVLRLPPGFRFRPTDEELVVQYLKRKVFSFPLPASIIPEVEVYKSDPWDLPGDMEQEKYFFSTK EVKYPNGNRSNRATNSGYWKATGIDKQIILRGRQQQQQLIGLKKTLVFYRGKSPHGCRTNWIMHEYRLAN LESNYHPIQGNWVICRIFLKKRGNTKNKEENMTTHDEVRNREIDKNSPVVSVKMSSRDSEALASANSELKK

Protein Design by Hand!

Design sequences that folds into the following structures:

Google Colab

Cheatsheet:

Average depth per amino acid type

Depth = Distance from surface aka, how buried is each amino acid

(H) Helix

(C) Random Coil (residues which are not in any of the above conformations)

De novo Protein design

The design of a functional *de novo* protein, for example, a binder (*middle*, *magenta*) to a target protein (*middle*, *gray*), requires sampling of the backbone structure space to find a backbone compatible with the function, sequence optimization to stabilize the backbone, and designing the functional site interactions. A scoring function is necessary to select designs with desired properties, typically by identifying low-energy sequence–structure combinations.

Deep Learning for Protein Design

Conclusion

- Protein folding
 - Sequence -> Structure
- Protein design
 - Structure -> Sequence

Reminder:

- You are encouraged to ask a question during the Q&A time of a presentation
- Log your question in a survey form to receive the points (by 11:59pm, same day). Once we verified your asked question, you will receive 2 points.
- The question is expected to be in-depth and preferably can prompt discussion/debate
- clarification questions will not count, e.g.:
 - Did the paper compare their model with Random forest?
 - How did they process the input data?

