

NCEAC

NCEAC.FORM.001							
Course Outline -Fall 2025							
School / Department	School of Systems and Technology – SST / Department of Computer Science						
Course Code	CS4152	CS4152					
Course Title	Deep Learning and Ne	ural Networks	S				
Theory / Lab / FYP	Theory						
Degree Program	BS (CS)						
Credit Hours	3	Contact	t Hours	3 + 4.5			
Pre-requisite	Linear Algebra: Understanding of vectors, matrices, eigenvalues, and eigenvectors, which are essential for image transformations and processing in both spatial and frequency domains. Calculus: Knowledge of calculus, particularly differential equations and integrals, is required for understanding image gradients, optimization, and filtering techniques. Probability and Statistics: A foundation in probability and statistics is important for noise modeling, image restoration, and understanding algorithms related to machine learning and pattern recognition in image processing. Programming Skills: Proficiency in programming languages such as Python is required to implement algorithms and handle practical image processing tasks. Signals and Systems: An introductory course in signals and systems, including the basics of Fourier transforms and signal filtering, is often required, as it directly connects to processing images in the frequency domain.						
	Class Exercise/Class A Assignments and Quiz		10%				
Methods of Assessment	Mid-Term Examinatio		25%				
(Can be changed as per course requirement)	Case Study/Projects/C Computing Problems (omplex	15%				
	Final Examination		35%				
	Total		100%				
Course Moderator / Coordinator	Dr. Jameel Ahmad						
Contact	Jameel.ahmad@umt.edu.pk						
Counseling Hours	Tuesday and Wednesday (11am-2pm) Room STD 402						
Semester Offered	Fall 2025						

NCEAC

NCEAC.FORM.001

T	NCEAC.FORM.001
Course Synopsis	Deep learning has transformed artificial intelligence, achieving state-of-the-art performance in areas like computer vision, speech recognition, and natural language processing, with computer vision applications now ubiquitous in search, medicine, autonomous vehicles, drones, and more. This undergraduate course delves into the fundamentals of neural networks and deep learning, focusing on architectures such as convolutional neural networks (CNNs) and their application to visual recognition tasks like image classification, object localization, and detection. This course will introduce Deep Learning by focusing on:
	 Artificial Neural Network's basic architecture and how they mimic the human brain using simple mathematical models. The mathematical models, understanding learning laws, selecting activation functions, and how to train the networks to solve classification problems. This course will further introduce advanced topics in neural networks, the convolutional and recurrent network structures.
	Generative deep models will also be taught in this course.
Course Objectives	 Gain hands-on experience designing, training, and evaluating deep learning models using frameworks like TensorFlow and PyTorch. Implement and analyze key architectures, including CNNs, RNNs, GANs, and Transformers, for real-world applications. Build a strong foundation to apply deep learning techniques in computer vision, NLP, and other advanced domains.
Textbook	 [CB] C. M. Bishop and H. Bishop, Deep Learning Foundations and Concepts. Springer, 2024. [Online]. Available: https://www.bishopbook.com/ C. C. Aggarwal, Neural Networks and Deep Learning: A Textbook. Springer, 2018.
Reference Books	 I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. [Online]. Available: http://www.deeplearningbook.org/Rajkumar Tekchandani and Neeraj Kumar. Applied Deep Learning Design and implement your own Neural Networks to solve real-world problems. BPB Publications 2023. A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep Learning, 2021. [Online]. Available: https://d2l.ai/ F. Chollet, Deep Learning with Python, 2nd ed. Manning, 2021. E. Stevens, L. Antiga, and T. Viehmann, Deep Learning with PyTorch. Manning, 2020.
Technology	The course provides hands on experience on Python Programming

Course	Learning	Outcomes ((CLOs)
--------	----------	------------	-------	---

Domain & BT* Level

After the successful completion of course, the students will be able to:

NCEAC

NCEAC.FORM.001 CLO 1: Explain fundamental concepts of artificial neural networks (ANN) and Cognitive, (C2) deep learning architectures. CLO 2: Implement and train different neural network models using Cognitive, (C3) programming frameworks (e.g., TensorFlow, PyTorch). CLO 3: Apply optimization techniques such as gradient descent, backpropagation, and regularization to train deep learning models for Cognitive, (C3) computational efficiency **CLO 4:** Design deep learning solutions for real-world problems. Cognitive, (C5) **CLO 5:** Evaluate and interpret the performance of deep learning models using Cognitive, (C5) appropriate metrics and visualization tools * BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

CLOs / PLOs	CLO 1	CLO 2	CLO 3	CLO4	CLO 5
PLO1: Academic Education	✓				
PLO2: Knowledge for Solving Computing Problems		✓			
PLO3: Problem Analysis			✓		
PLO4: Design/ Development of Solutions				✓	
PLO5: Modern Tool Usage					✓
PLO6: Individual and Team Work					
PLO7: Communication					
PLO8: Computing Professionalism and Society					
PLO9: Ethics					
PLO10: Life-long Learning					

Tentat	Tentative Lecture-wise list of topics						
L No	Topics	Reading	Sessional Assessment	CLOs			
L 1	What is Deep Learning? History and Evolution of Neural Networks Applications of Deep Learning Course objectives and assessment criteria	CB: Ch 6					
L 2	Mathematical Foundations Linear Algebra: Vectors, Matrices, Tensors Calculus: Gradients, Chain Rule Probability and Statistics: Distributions, Bayes Theorem	Notes		CLO 1			
L 3	Introduction to Neural Networks Neural Nets as Universal Approximators Biological vs. Artificial Neurons Perceptron and Activation Functions	CB: Ch 6					

NCEAC

NCEAC.FORM.001

Tentat	ive Lecture-wise list of topics		NCEAC.FORM.(<u> </u>	
L No	Topics	Reading	Sessional Assessment	CLOs	
L 4	Feedforward Neural Networks (FNN) Architecture and Forward Propagation Loss Functions and Gradient Descent Convergence Issues Momentum	CB: Ch 7	Assignment-1		
L 5	Backpropagation Algorithm Chain Rule in Backpropagation Implementation of Backpropagation	CB: Ch 8	Quiz 1		
L 6	Training Neural Networks, I Activation functions Data preprocessing Weight initialization Optimization Techniques Stochastic Gradient Descent (SGD) Momentum, RMSProp, Adam Optimizers, 2 nd order methods	CB: Ch 8	Case Study Project		
L 7	Training Neural Networks II Data augmentation, Overfitting/Regularization Techniques (L1/,L2), choosing a loss function, Batch Normalization, Dropout CB: Ch 9				
L 8	Hyperparameter Tuning o Learning Rate, Batch Size, Epochs o Grid Search and Random Search				
L 9	Implementing Neural Networks with TensorFlow & PyTorch (Lab) Writing code for simple feedforward networks Basics of Python for Deep Learning NumPy, Pandas, Matplotlib Training and evaluating ANN models Hands-on Lab: Building and Training FNN	Notes	Assignment 2		
L 10	Introduction to CNNs (Convolutional Neural Networks) Convolutional Layers, Pooling Layers, fully connected Layers, Feature Maps and Filters, Learning	CB: Ch 10			
L 11	CNN Architectures I Batch Normalization, Transfer learning and fine-tuning pre-trained models AlexNet, VGG, GoogLeNet, ResNet and its variants	CB: Ch 10	Quiz 2		
L 12	Advanced CNN Architectures Efficient architectures: , Inception U-Net			CLO 3	
L 13	Applications of CNNs Image Classification, Object Detection: Single-stage detectors, Two-stage detectors Semantic/Instance/Panoptic Segmentation	Notes Class Activity			
	Object Detection with Deep Learning : R-CNN, Fast R-CNN, Faster R-CNN, YOLO, SSD		Assignment-3		
L 14	Semantic Segmentation : Fully Convolutional Networks (FCNs), U-Net, DeepLab	Notes			

NCEAC

NCEAC.FORM.001

	ive Lecture-wise list of topics		Cana! 1	
L No	Topics	Reading	Sessional Assessment	CLOs
L 15	Instance Segmentation: Mask R-CNN, panoptic segmentation			
L 16	Hands-on Lab: Image Detection, Classification and segmentation with CNNs			
	MIDTERM			
L 17	Generative Models Autoencoders and variational autoencoders (VAEs)	CB: Ch 19		
L 18	Generative Adversarial Networks (GANs): DCGAN, CycleGAN, StyleGAN, Applictiona DeepDream, Style Transfer	CB: Ch 17		
L 19	Introduction to RNNs (Recurrent Neural Networks) Sequence Modeling and Time Series Data RNN Architecture and Challenges, Hopfield Networks, Stochastic RNN (e.g. Boltzmann Machines, RBM)	CB: Ch 12	Quiz 3	
L 20	Long Short-Term Memory (LSTM) and GRU Vanishing Gradient Problem LSTM and GRU Architectures	CB: Ch 12	Class Activity	
L 21	Applications of RNNs Text Generation, Sentiment Analysis Speech Recognition			
L 22	Hands-on Lab: Text Classification with RNNs			
	Case Study: Real-world RNN Application		Class Activity	CLO 4
L 23	Attention Mechanisms and Transformers	CB: Ch 12		
L 24	Self-Attention, BERT, GPT, Vision Transformers (ViTs) Applications in image classification and object detection	CB: Ch 12		
L 25	Large Language Models (LLMs) GPT (Generative Pre-trained Transformer) series (e.g., GPT-3, GPT-4). BERT (Bidirectional Encoder Representations from Transformers). T5 (Text-to-Text Transfer Transformer) and PaLM (Pathways Language Model).	Notes/Slides		
L 26	Diffusion Models DDPM (Denoising Diffusion Probabilistic Models). DDIM (Denoising Diffusion Implicit Models). Latent Diffusion Models (e.g., Stable Diffusion).	CB: Ch 20		
L 27	Applications of Diffusion Models: Image generation (e.g., DALL·E 2, Stable Diffusion). Video generation, audio synthesis, and molecular design.	CB: Ch 20		

NCEAC

NCEAC.FORM.001

Tentat	Tentative Lecture-wise list of topics						
L No	Topics	Reading	Sessional Assessment	CLOs			
L 28	Multimodal Learning: Vision-language models (CLIP, DALL-E), image captioning, VQA						
L 29	Reinforcement Learning with Deep Networks Q-Learning and Deep Q-Networks (DQN), Policy Gradients,	Notes/slides					
L 30	Neural Rendering and 3D Vision, PyTorch3D, TensorFlow Graphics, and NeRF-specific libraries (e.g., NeRF-pytorch).	Notes/slides					
L 31	Tools and Frameworks Hands-on Lab LLMs: Hugging Face Transformers, OpenAI API, and TensorFlow/PyTorch implementations. Diffusion Models: Hugging Face Diffusers, PyTorch implementations, and	Notes/slides					
L 32	open-source projects like Stable Diffusion FINAL						

Assessments

CLOs	Quiz 1	Quiz 2	Quiz 3	Assignment 1	Assignment 2	Assignment 3	dЭЭ	Mid Term	Final Term
1	✓			✓				✓	
2		✓			✓		✓	✓	
3			✓			✓	✓		✓
4							✓		✓
5				✓	✓	✓	✓		

Course Moderator Name:	_Dr. Jameel Ahmad
Course Moderator Signature.	

