

Java Initiation

Exercice 2 : java de base

D.Palermo

Java Initiation : Exercice
Version 1,0 – 01/2018

6

TP 2.1 - Résoudre équation second degree

Le but est de résoudre une équation du second degré tels que :

$$A \times x^2 + B \times x + C = 0$$

https://calculis.net/resoudre-equation-second-degre

Exemple d'exécution demandé :

Résoudre l'équation du second degré : $Ax^2 + Bx + C = 0$

Entrer A: 2

Entrer B: -2

Entrer C: -2

L'équation admet 2 solutions qui sont :

- ??

- ??

TP 2.2 - Programmer une suite

• Faire un programme qui calcule la suite (R _n) définis par les condition suivante :

$$R_1 = \sqrt{2} \text{ et } R_{n+1} = \sqrt{2 + R_n}$$

Exemple d'exécution :

```
Entrer n : 51
R1 = 1.4142135623730951
R10 = ??
R20 = ??
R30 = ??
R40 = ??
R50 = ??
```

Le résultat de R[51] est ??.

Cette suite tant vers le résultats positif de la résolution de l'équation $x^2 - x - 2 \times x$ qui est ??.

TP 2.3 - Fibonacci

Écrire une fonction calculant le nombre de Fibonacci d'un nombre.

Le nombre de Fibonacci F(n) est défini comme suit :

F(0) = 0;

F(1) = 1;

F(n) = F(n - 1) + F(n-2)

Exemple d'exécution :

Entrer n: 6

Fibonacci de 6 est 8 : F[6] = 8

En mathématiques, la **suite de Fibonacci** est une suite d'entiers dans laquelle chaque terme est la somme des deux termes qui le précèdent. Elle commence par les termes 0 et 1 (on trouve des définitions [réf. nécessaire] qui la font commencer avec 1 et 1). Les termes de cette suite sont appelés *nombres de Fibonacci* (suite A000045 de l'OEIS) :

\mathcal{F}_0	\mathcal{F}_1	\mathcal{F}_2	\mathcal{F}_3	\mathcal{F}_4	\mathcal{F}_5	\mathcal{F}_6	\mathcal{F}_7	\mathcal{F}_8	\mathcal{F}_9	\mathcal{F}_{10}	\mathcal{F}_{11}	\mathcal{F}_{12}	\mathcal{F}_{13}	\mathcal{F}_{14}	\mathcal{F}_{15}	\mathcal{F}_{16}	 \mathcal{F}_n
0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987	 $\mathcal{F}_{n-1} + \mathcal{F}_{n-2}$

La suite est définie par $\mathcal{F}_0=0$, $\mathcal{F}_1=1$, et $\mathcal{F}_n=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$, pour n>1.

https://fr.wikipedia.org/wiki/Suite_de_Fibonacci

TP 2.4 - Le nombre d'or & fibonacci

Soit la suite

O(1)=1

O(n) = F(n+1)/F(n) avec F(n) qui représentante la valeur de Fibonacci à l'ordre n

Programmer la suite O et comparer le résultat au nombre d'or

$$arphi=rac{1+\sqrt{5}}{2}$$

Exemple d'exécution :

Entrer N: 11

O[1] = ??

O[5] = ??

O[10] = ??

Le résultat de O[11] est ??.

Le nombre d'or est égale à : ??

https://www.maths-et-tiques.fr/index.php/histoire-des-maths/nombres/le-nombre-d-or

TP 2.5 (bonus) - Suite de Syracuse

Faire un programme qui calcule une suite de Syracuse telle que

La suite de Syracuse d'un nombre entier N > 0 est définie par récurrence, de la manière suivante :

$$u_0 = N$$

D.Palermo

et pour tout entier naturel
$$n$$
 : $u_{n+1} = \left\{ egin{array}{ll} \dfrac{u_n}{2} & ext{si } u_n ext{ est pair,} \\ 3u_n + 1 & ext{si } u_n ext{ est impair.} \end{array}
ight.$

Énoncé de la conjecture [modifier | modifier le code]

La conjecture affirme que pour tout N, il existe un indice n tel que $u_n = 1$.

Suite de Syracuse pour N = 15

и0	u_1	<i>u</i> ₂	из	и4	<i>u</i> ₅	и6	и7	<i>u</i> ₈	и9	u ₁₀	<i>u</i> ₁₁	<i>u</i> ₁₂	<i>u</i> ₁₃	<i>u</i> ₁₄	u ₁₅	<i>u</i> ₁₆	<i>u</i> 17	<i>u</i> ₁₈	<i>u</i> 19	u ₂₀	
15	46	23	70	35	106	53	160	80	40	20	10	5	16	8	4	2	1	4	2	1	2772

https://fr.wikipedia.org/wiki/Conjecture_de_Syracuse

Java Initiation : Exercice 11
Version 1,0 – 01/2018

TP 2.6 (Bonus) - Jeu des allumettes

La règle : il y a plusieurs allumettes (autant qu'on le veut) et on en retire 1,2 ou 3 et celui qui prend la dernière a perdu.

Vous jouer contre l'ordinateur

Le joueur de départ est choisi aléatoirement

Exemple:

```
Entrer votre nom : David

Choisir le nombre d'allumette de départ : 6

L'ordinateur commence

|||||| Ordinateur enlève : 1

|||| David enlève : 2

|| Ordinateur enlève : 2

| david enlève : 1

David a perdu :-(

l'ordinateur a gagner :-)
```

