Math 104, Weekly Assignment 1: solutions.

(i)
$$\alpha = 0 + \alpha = ((-c) + c) + \alpha = (-c) + (c+\alpha) =$$

= $(-c) + (c+b) =$
= $((-c) + c) + b = 0 + b = b$.

(ii)
$$\alpha = 1 \cdot \alpha = (c^{-1} \cdot c) \cdot \alpha = c^{-1} \cdot (c\alpha) = c^{-1} \cdot (c \cdot b) = c \cdot (c^{-1} \cdot c) \cdot b = 1 \cdot b = b$$
.

(iii)
$$(-a) + a = 0$$
 (as $-a$ is the additive inverse of a) and $(-a) + (-(-a)) = 0$ (as $-(-a)$ is the additive inverse of $-a$)

So,
$$(-a) + a = (-a) + (-(-a)) \xrightarrow{(i)} a = -(-a)$$
.
Or: you can say: $(-a) + a = 0 \Rightarrow a$ is the additive inverse of $-a$.
(iv) $(a^{-1}) \cdot a = 1$ (as a^{-1} is the multiplicative inverse of a) and $(a^{-1}) \cdot (a^{-1})^{-1} = 1$ (as $(a^{-1})^{-1} = 1$ (as $(a^{-1})^{-1} = 1$).

So,
$$(a^{-1}) \cdot a = (a^{-1}) \cdot (a^{-1})^{-1} = a = (a^{-1})^{-1}$$
.
(Or: you can say: $(a^{-1}) \cdot a = 1 \rightarrow a$ is the mult inverse of a^{-1}).
(v) $(-a) \cdot b + ab = (-a) + a \cdot b = 0 \cdot b = 0 \cdot b = 0$, (i) and $-(a \cdot b) + ab = 0$

$$(a) \cdot b = -(ab).$$
 Similarly for $a \cdot (-b) = -(ab)$.
(or: (a) $b + ab = 0 \Rightarrow (a) b$ is the additive inverse of ab).

(Vi)
$$(-a)(-b) \stackrel{(v)}{=} - ((-a) \cdot b) \stackrel{(v)}{=} - (-(a \cdot b)) \stackrel{(iii)}{=} ab$$
.

$$(vii)$$
 $(-1) \cdot (-1) \stackrel{(vi)}{=} 1 \cdot 1 = 1$

Then:
$$1.1' = 1'$$
 (as 1 is a mult identity)

(iii) Suppose that
$$a'$$
, a'' are both additive inverses of a.

Then, $a + a' = 0$ $\Rightarrow a + a' = a + a'' = 0$ $\Rightarrow a + a'' = a + a'' = 0$ $\Rightarrow a + a'' = a + a'' = 0$

(iv) Suppose that a, a" are both multiplicative inverses of a to.

Then:
$$a \cdot \alpha' = 1$$
 \Rightarrow $a \cdot \alpha' = 1$ \Rightarrow $a \cdot \alpha' = \alpha \cdot \alpha'' = \alpha'' = \alpha''$ and $a \cdot \alpha'' = 1$ \Rightarrow $a \cdot \alpha' = \alpha \cdot \alpha'' = \alpha \cdot \alpha'' = \alpha'$

(v) 0 = 0 + 0, so $0 \cdot a = (0 + 0) \cdot a = 0 \cdot a + 0 \cdot a$.

(vi) Suppose that a, b \$0. Then, the multiplicative inverses of a and b exist, and:

$$a \cdot b = 0$$
 \Rightarrow $(a^{-1}) \cdot (ab) = (a^{-1}) \cdot 0 \Rightarrow b = 0, a$ contradiction.

$$((a^{-1}) \cdot a) \cdot b = 0, by (v)$$

$$= 4 \cdot b = b$$

So, at least one of a, b is O.

(3) (i)
$$(a+c)+(-(b+c))=a+(-(b)+(-(b)+(-(b)))=a+(-(b))+(-(c))+(-(c)$$

so a+c > b+c.

4

(ii)
$$ac-bc=ac+(-1b)c=(a+(-b))\cdot c=(a+(-b))\cdot c$$

And: c>0 } by definition
and a+(-b)>0 } of ordered field

 $(a+(-b))\cdot c>0.$

 $(w) \qquad bc + (-ac) = bc + (-a) \cdot c = (b+(-a)) \cdot c =$

And: -c > 0 (this is what c < 0 means),
and -(b+(-a)) = -b+a=a-b > 0

by definition

[-(b+(-a))]·(-c)>0.

So, bc + (- (ac)) >0,
so bc > ac (that is what
bc > ac means
by definition),

so ac < bc.

(iv)
$$a+c+(-(b+d))=a+c+(-b)+(-d)=$$

$$=(a+(-b))+(c+(-d))>0, \text{ by definition}$$

$$>0, \text{ of an ordered}$$

$$as a>b \qquad field.$$
is defined
$$to mean a+(-b)>0$$

(v)
$$a > 0 \xrightarrow{(i)} a + (-a) > 0 + (-a), i.e. -a < 0.$$

If
$$a < 0$$
, then $-a > 0$ (as for (v) : $a < 0$

$$(i) + (-a) + a < (-a) + 0$$
so $(-a) \cdot (-a) > 0$ (by def. of an ordered field).

If $a < 0$, then $-a > 0$ (by def. of an ordered field).

a

(vii)
$$b^{x} + (-a^{x}) = (b + a) \cdot (b-a)$$
. And

$$a,b>0$$
 Fordered $a+b>0$ $b+a$ $(b+a)(b-a)>0$.
 $a< b$ means that $b-a>0$

$$50, b^{2} + (-a^{2}) > 0, so b^{2} > a^{2}$$

• Suppose that
$$a^{\alpha} = b^{\alpha} \implies b^{\alpha} - a^{\alpha} = 0 \implies (b+\alpha)(b-\alpha) = 0$$

- If
$$b+a\neq 0$$
, then it has a multiplicative inverse, so $b-a=(b+a)^{-1} \cdot (b+a) \cdot (b-a)=$

=
$$(b+a)^{-1}$$
 · $(b+a)(b-a)$ = $(b+a)^{-1}$ · $0=0$ by $(b+a)$

50 b=d

So, b=0, i.e. b+0=0. $b+0=b+a \Rightarrow a=0$, And: b+a=0 $b+0=b+a \Rightarrow a=0$,

so $b=\alpha(=0)$

(3)

(ix) - a < b -> b - a < b -> o:

First, we show that, for a zo, then a - > > :

Indeed, if ato then $a^{-1} \neq 0$ (because $a^{-1} = 0$) $\Rightarrow a^{-1} \cdot a = 0 \cdot a = 0$ $\Rightarrow 1 = 0, \text{ contradiction}$

And suppose that at <0. Then:

Since a>0, a.a. \(\) \(

i.e. 1<0, a contradiction. So:

we don't have $a^{-1} < 0$, or $a^{-1} = 0 \implies a^{-1} > 0$ (IT is ordered, so exactly one of these three has to hold).

And:
$$a < b \xrightarrow{3(i)} a \cdot (a^{-1}) < b \cdot (a^{-1})$$

-
$$b < a = 1$$
 $(a - 1)^{-1} < (b - 1)^{-1}$, i.e. $a < b$.

we just $||M(v)||$ $||1(iv)|$

showed a

(4) Suppose that
$$\mathbb{Z}_{g}$$
 is ordered. Then, 1>0

1+1>0, i.e. 0>0,

 \mathbb{Z}_{g} ordered

 \mathbb{Z}_{g} ordered

So, Ity is not ordered.

(3)

(5) Let $A := \{x \in \mathbb{R} : x > 0 \text{ and } x^2 < 2\}$.

- $A \neq 0 (A \in A)$. - A bounded from above (say, by 2).

So: Since \mathbb{R} is complete, A has a least upper bound $b \in \mathbb{R}$.

Since IR is ordered, exactly one of the following holds:

 $b^2 < 2$ or $b^2 = 2$ or $b^2 > 2$.

- Suppose that box 2. Then, find Exo

s.t. $(b+\epsilon)^2 < 2$; then, $b+\epsilon \in A$, and $b+\epsilon > b$, an upper bound of A

a contradiction.

- Suppose that $b^2 > 2$. Then, find $\varepsilon > 0$

s.t. $(b-\varepsilon)^2 > 2$ and $b-\varepsilon > 0$. Then,

b-e will be an upper bound of A, smaller than b, the loost upper bound of A; contradiction.

50: $b^{x}=2$

(10)

Suppose that b, c are both least upper bounds of A. Then:

> b < c, as b is a least upper bound of A and c is an upper bound of A.

And: If b<c, then we have a contradiction, as the upper bound b of A cannot be smaller than the least upper bound cof A.

So, b=c.

- · 1 is an upper bound of (0,1) (as or < 1, Hove (0,1))
 - Suppose that there exists an upper bound c of (0,1),

with C<1. We have that

 $\frac{1}{2} \leq c$ (as $\frac{1}{2} \in (0,1)$), so $\frac{c+1}{2} \in (0,1)$.

And: Sc+1 > c, a contradiction.

an element an upper bound of (0,1)

- (8) (i) Correct: sup A is an upper bound of A:
 - (ii) Correct: If x is an upper bound of A, then $\sup A \leq x \quad (by \ definit \ ion \ of \ least \ upper \ bound).$

And: if $x \ge \sup A$, then $x \ge a$, tack,

which so x is an upper in turn is bound of A.

> a tack,

as an upper bound of A

- (W) Wrong: see 7.
- (3) (i) It suffices to show that supB is an upper bound of A (because then, by definition of the least upper bound supA of A; supA \le supB).

So: let a EA. We will show that a & supB.

Indeed, acASB, so as supB,

as supB is an upper bound of B. So, $a \leq \sup B$ tack $\Rightarrow \sup B$ an upper bound of A \Rightarrow

= sup A & sup B.

(ii) max A:

- is an upper bound of A (by its definition)

So, max A is the least upper bound of A.

sup $(0,1) = 1 \notin A$, so (0,1) doesn't have a maximal element.

- To Consider the set -A=q-a: aeAg.
 - -A is bounded from above: Indeed, A is bounded from below; let b be a lower bound of A. Then, b≤a tacA

 because

 i.e. -b≥ã, tãe-A

 ta∈(ordered field).

- -) -b is a lower bound of A.
 - · Since -A = TR is bounded from above,
- -A has a least upper bound cet R. I.e.:

 where $C \leq d$, and $C \leq d$.

We will show that -c is the greatest lower bound of -A. To do that, we need to show the following two:

-> -c is a lower bound of A: Let ach.

Then, $-ae-A \longrightarrow -a \le c \longrightarrow al \ge -c$ bound of A

So: -c \(\alpha\), fact => -c a lower bound of A.

 \longrightarrow $d \leq -c$, $\forall d$ lower bound of A:

Let d be a lower bound of $A \Rightarrow$ $d \leq \alpha$, $\forall \alpha \in A \Rightarrow -\alpha \leq d$, $\forall \alpha \in A$, i.e. $\tilde{\alpha} \leq -d$, $\forall \tilde{\alpha} \in -A \Rightarrow$ => -d an upper bound of A

 \Rightarrow $e \leq -d \Rightarrow d \leq -c$.

The least upper bound of -A

So, d <- c + d lower bound of A.

So, a is the greatest lower bound of A. So, A has a greatest lower bound.