3. Topologie-Übung

Joachim Breitner

7. November 2007

Aufgabe 1

Sei (X, d) ein beschränkter metrischer Raum, $C_b(x)(X) := \{\text{beschränkte reellwertige Fnktionen auf } X\},$ $|f|_{\infty} := \sup\{|f(x)| \mid x \in X\}, \text{ Metrik } d_{\infty}(f, g) = |f - g|_{\infty} \text{ auf } C_b(X).$

Behauptung: Für jedes $a \in X$ ist die Funktion $f_a : X \to \mathbb{R}$, $x \mapsto d(a, x)$ stetig und beschränkt.

Seien $x \in x, f_a(x) \coloneqq r \in \mathbb{R}, \ \varepsilon > 0$. Dann gilt für alle $y \in B_{\frac{\varepsilon}{2}}(x)$ dass $d(a,y) \le d(a,x) + d(x,y) \le d(a,x) + \frac{\varepsilon}{2}$ sowie dass $d(a,x) \le d(a,y) + d(y,x) \le d(a,y) + \frac{\varepsilon}{2}$. Also ist $d(x,a) - \frac{\varepsilon}{2} \le d(y,a) \le d(x,a) + \frac{\varepsilon}{2}$ und $f_a(y) = d(a,y) \in B_{\varepsilon}(f_a(x))$.

Mit $\delta = \frac{\varepsilon}{2}$ gilt also: $f_a(B_\delta(x)) \subseteq B_\varepsilon(f_a(x)) = B_\varepsilon(r)$, also ist f_a stetig.

 f_a ist beschränkt, da X beschränkt ist (klar nach Definition von f_a).

Behauptung: $\varphi: X \to \mathcal{C}_b(X), x \mapsto f_X$ ist abstandserhaltend bezüglich d und d_{∞} .

Zu zeigen ist: $\forall x,y \in X: d_{\infty}(f_x,f_y)=d(x,y)$. Einerseits gilt: $d_{\infty}(f_x,f_y)=\sup_{x\in X}|f_x(t)-f_y(t)|=\sup_{x\in X}|d(x,t)-d(y,t)|\leq d(x,y)$ wegen der Dreiecksungleichung für d. Andererseits gilt: $d_{\infty}(f_x,f_y)=\sup_{x\in X}|f_x(t)-f_y(t)|\geq |f_x(y)-f_y(y)|=|d(x,y)-0|=d(x,y)$. Insgesamt gilt also: $d_{\infty}(f_x,f_y)=d(x,y)$

Aufgabe 2

(X,d)metrischer Raum, $f:\mathbb{R}_{\geq 0}\to\mathbb{R}_{\geq 0}$ monoton wachsend, nicht konstant, konkav mit f(0)=0.

Behauptung: $f \circ d$ ist Metrik auf X.

- Symmetrie: ✓
- f(d(x,x)) = f(0) = 0 für alle $x \in X$.
- $f(d(x,y)) = 0 \iff x = y;$

Da f monoton wachsend, nicht konstant und konkav ist, ist 0 die einzige Nullstelle von f: Es gibt ein $\tilde{x} \in X : f(\tilde{x}) > 0$, da f nicht konstant ist. Wäre $x \neq 0$ eine weitere Nullstelle von f, so gelte $x < \tilde{x}$, da f monoton ist. Dann: $0 = f(x) = f(\frac{x}{\tilde{x}} \cdot \tilde{x}) \geq \frac{x}{\tilde{x}} f(\tilde{x}) > 0$, `.

• Δ -Ungleichung. Zu zeigen: $f(a)+f(b)\geq f(a+b)$, denn dann gilt $\forall x,y,z\in X: f(d(x,y))+f(d(y,z))\geq f(d(x,y)+d(y,z))\geq f(d(x,z))$ Es ist: $f(a)=f(\frac{a}{a+b}(a+b))=f(\frac{a}{a+b}(a+b)+0)\geq \frac{a}{a+b}f(a+b)+(1-\frac{a}{a+b})f(0)=\frac{a}{a+b}f(a+b)$. Ebenso ist: $f(b)\geq \frac{b}{a+b}f(a+b)$. Addiert man diese Ungleichungen, erhält man $f(a)+f(b)\geq \frac{a}{a+b}f(a+b)+\frac{b}{a+b}f(a+b)=f(a+b)$.

Behauptung: Ist f streng monoton, dann definieren f und $f \circ d$ die selbe Topologie auf X.

fstreng Monoton wachsend, also gilt $\forall \varepsilon>0: d(x,y)<\varepsilon \iff f(d(x,y))< f(\varepsilon).$ Also ist: $B_\varepsilon^d(x)=\{y\in X\mid d(x,y)<\varepsilon\}=\{y\in X\mid f(d(x,y))< f(\varepsilon)\}=B_{f(x)}^{f\circ d}(x).$ Also ist jeder offene Ball bezüglich d ist ein offener Ball bezüglich $f\circ g$ und umgekehrt.

Das ist falsch! Gegenbeispiel: $X \in R$, d der euklidische Abstand, $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $0 \mapsto 0$, $x \mapsto 1 + x$ für x > 0. Dann ist $B_{\frac{1}{2}}^{f \circ d}(x) = \{x\}$

Der Beweis funktioniert mit der zusätzlichen Annahme $\lim_{x\to 0} f(x) = 0$.

Behauptung Auch wenn f streng monoton ist könnte X bezüglch $f \circ d$ vollständig sein und bezüglich d nicht.

Beispiel: Sei (X, d) ein nicht vollständiger Raum und f wie im letzten Gegenbeispiel. Dann sind Cauchyfolgen gerade die, die konstant wird, also konvergieren sie.

Aufgabe 3

Sei $X = \mathbb{R}^2$ versehen mit der SNCF-Metrik:

$$d(x,y) = \begin{cases} |x-y|, & x = \lambda y, \ y \in \mathbb{R} \\ |x| + |y|, & \text{sonst.} \end{cases}$$

Einfach zu zeigen: d ist eine Metrik. Skizzen für $B_1(\left({2\atop 0} \right))$ und $B_3(\left({2\atop 0} \right))$ hier ausgelassen.

Behauptung: $K = \{x \in \mathbb{R}^2 \mid 1 \le |x| \le 2\}$ ist beschränkt und abgeschlossen.

K ist beschränkt, da $\forall x,y \in K, x \neq \lambda y: d(x,y) = |x| + |y| \leq 2 + 2 \leq 4$ und $\forall x,y \in K, x = \lambda y: d(x,y) \leq 4$.

K ist abgeschlossen: Wir zeigen, dass $\mathbb{R}^2 \setminus K$ offen ist. Sei $x \in \mathbb{R}^2 \setminus K$. Ist $\varepsilon < |x|$, so ist $B_{\varepsilon}(x) \subseteq \{y|y = tx, t \in \mathbb{R}\}$. Wählt man ε klein genug, so ist $B_{\varepsilon}(x) \subseteq \mathbb{R}^1 \setminus K$), also ist $\mathbb{R}^2 \setminus K$ offen.

Behauptung: *K* ist nicht kompakt.

K hat eine offene Überdeckung $U = \{B_1(x) \mid x \in K_{\frac{3}{2}}\}$, wobei $K_{\frac{3}{2}} = \{x \in \mathbb{R}^2 \mid |x| = \frac{3}{2}\}$, aus der man keine endliche Teilüberdeckung auswählen kann.

Aufgabe 4

Sei $p \geq 3$ ein Primzahl und d der p-Adische Abstand auf \mathbb{Q} : $d(x,y) = |x-y|_p$, wobei für $x \in \mathbb{Q}$ gilt: $x = p^k \frac{a}{b}$, mit $p \nmid a, b$ und $|x|_p = p^{-k}$

Behauptung: Die Abbildung $x \mapsto x^2$ ist stetig auf \mathbb{Q} .

Zu zeigen: $\forall x \in , \varepsilon > 0 \ \exists \delta > 0 : f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x))$. Seien also $x \in \mathbb{Q}, \varepsilon > 0$, und sei $y \in B_{\sqrt{x}}(x)$, dann ist $|x-y|_p < \sqrt{x} \implies y-x = p^k \frac{a}{b} - p^l \frac{c}{d}$ mit $p^{-k} < \sqrt{\varepsilon}$. O.B.d.A: $k < l, \ p \nmid a,b,c,d$. Dann ist $(y-x)^2 = p^{2k} \frac{a^2}{b^2} - p^k p^l \frac{ac}{bd} + p^{2l} \frac{c^2}{d^2} = p^{2k} (\frac{a^2}{b^2} - p^{l-k} \frac{ac}{bd} + p^{2(l-k)} \frac{c^2}{d^2})$, also ist $|(y-x)^2|_p = p^{-2k} = (p^{-k})^2 < (\sqrt{\varepsilon})^2 = \varepsilon$. Hier wurde ein Denkfehler in der Beweisführung entdeckt, und eine korrekte Version für später, im Internet, angekündigt.

Behauptung: Sei $a \in \mathbb{Z}$ mit $d(a^2, -1) \le \frac{1}{p^k}$ für $k \ge 1$. Dann gibt es ein $c \in \mathbb{Z}$ mit $d((a + cp^k)^2, -1) \le \frac{1}{p^{k+1}}$.

 $|a^2-(-1)|_p=|a^2+1|_p\leq \frac{1}{p^k}$, also $a^2+1=p^kb$, $b\in \mathbb{Z}$. Gesucht ist ein $c\in \mathbb{Z}$ mit $|(a+cp^k)^2+1|\leq \frac{1}{p^{k+1}}$, also $(a+cp^k)^2+1=a^2+2p^kac+p^{2k}c^2+1=p^kb+2p^kac+p^{2k}c^2=p^k(2ac+b)+p^{2k}c^2\stackrel{!}{=}p^{k+1}\tilde{a}$. Es muss gelten: $2ac+b\equiv 0\pmod p$. So ein c existiert, da $\mathbb{Z}/p\mathbb{Z}$ Körper ist.

Behauptung: Es gibt eine Cauchyfolge in \mathbb{Q} , die bezüglich d für p=5 nicht konvergiert.

Setze $x_0 := 2$, denn $d(x_0^2, -1) = |4+1|_p = \frac{1}{5}$. Nach der letzten Teilaufgabe gibt es ein $c_1 \in \mathbb{Z}$, so dass $d((x_0 + c_1 p)^2, -1) \le \frac{1}{5^2}$. Setzte $x_1 := x_0 + c_1 p$, und analog x_2, \ldots

Das ist eine Cauchy-Folge: $|x_{n+1}-x_n|_p \leq \frac{1}{p^n}$ nach Konstruktion, und wegen $|x+y|_p \leq \max\{|x|_p,|y|_p\}$ ist (x_n) eine Cauchy-Folge. Nach Konstruktion konvergiert (x_n^2) gegen -1. Wir wissen, dass $x\mapsto x^2$ stetig ist. Konvergierte also die Folge (x_n) , so müsste für den Grenzwert x gelten: $x^2=-1$, im Widerspruch zu $x\in\mathbb{Q}$.