NOI2025 广东省队集训

GDOI

时间: 2025 年 4 月 xx 日

题目名称	序列变换	追忆	小方的疑惑
题目类型	传统题	传统题	传统题
目录	trans	recall	square
可执行文件名	trans	recall	square
输入文件名	trans.in	recall.in	square.in
输出文件名	trans.out	recall.out	square.out
每个测试点时限	1 秒	4 秒	2 秒
内存限制	1024 MB	1024 MB	1024 MB
子任务数目	10	20	25
测试点是否等分	是	是	是

提交源程序文件名

对于 C++ 语言	trans.cpp	recall.cpp	square.cpp
-----------	-----------	------------	------------

编译选项

对于 C++ 语言	-02 -std=c++14
-----------	----------------

注意事项 (请仔细阅读)

- 1. 测试机器: CPU(AMD Ryzen 5 3600 6-Core Processor *12), RAM 8.0G。
- 2. 系统环境: NOI Linux 2.0(基于 Ubuntu 20.04.1)。
- 3. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 4. C/C++ 中函数 main() 返回类型必须是 int,程序正常结束返回值必须是 0。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。

NOI2025 广东省队集训 1 序列变换 (trans)

序列变换 (trans)

【题目描述】

给定一个长度为n 的整数序列a (下标从1 开始),你可以进行以下操作若干次:

• 选择一个区间 [l,r],对于所有 $i \in N, x \in \{0,1\}, l+3i+x \le r$,将 a_{l+3i+x} 增加 $(-1)^x$ 。

问至少需要多少次操作,才能使 a 序列的所有位置值均为 0,若无解,则输出 -1。

【输入格式】

从文件 trans.in 中读入数据。

第一行两个正整数 T, n,表示数据组数以及每组数据的序列长度。

接下来 T 行,每行一个长度为 n 的整数序列 a。

【输出格式】

输出到文件 trans.out 中。

T 行,每行一个数,表示对应的数据的答案。

【样例 1 输入】

```
1 4 5

2 -1 0 1 -1 1

3 -1 -2 -3 -4 5

4 -11 -45 14 -1919 810

5 -1 -2 3 4 -5
```

【样例 1 输出】

```
1 2 2 11 3 1975 4 -1
```

【样例 1 解释】

对于第一组数据,进行操作[1,5],[2,3]即可。

【样例 2】

见选手目录下的 trans/trans2.in 与 trans/trans2.ans。

【样例 3】

见选手目录下的 trans/trans3.in 与 trans/trans3.ans。

【样例 4】

见选手目录下的 trans/trans4.in 与 trans/trans4.ans。

【数据范围】

对于所有测试数据,保证 T=30。

测试点编号	n =	$ a_i \leq$
1	5	5
2	20	10
3	70	100
4,5	200	10^{10}
6, 7	2×10^3	2×10^3
8, 9, 10	3×10^4	10^{10}

追忆 (recall)

【题目描述】

小 L 出了一个和 DAG 有关的问题并打算投给联合省选。虽然题目很烂,但因为是题,所以被纳入了被选题当中。小 L 因此很不重视,决定脚造数据。

然而,联合省选前一天,DAY1 T2 被爆破了,于是小 L 的题就变成了 DAY1 T2,并且因为小 L 太懒,所以没有重造数据。不出意外的话,意外发生了,小 L 的题被大量暴力通过了。

以上内容纯属虚构。

小 L 追忆了一下造数据的过程,发现他生成的 DAG 其实是按照以下方式生成的:

• 对于 $i=2\sim n$, a_i,b_i 在 $1\sim i-1$ 中随机生成,然后 i 向 a_i,b_i 连有向边。

小 L 心想,数据既然是随机的,那么这个 DAG 处理起来肯定就很简单,于是给了你 n-1 个询问,第 i ($1 \le i < n$) 个询问有参数 x_i ($1 \le x_i \le i$),求 i+1 到 x_i 的最短路,如果 i+1 无法到达 x_i 则输出 -1。

【输入格式】

从文件 recall.in 中读入数据。

第一行两个正整数 n, seed,其中 seed 是用来生成 a_i , b_i 的随机种子。 具体的, a_i , b_i 按照如下程序生成:

```
unsigned shift(unsigned &a)
1
2
3
        a^=a<<13;
        a^=a>>7;
4
        a^=a<<17;
5
        return a;
6
7
   }
   void init(unsigned seed)
8
9
   {
        for(int i=2;i<=n;i++)
10
            a[i]=shift(seed)\%(i-1)+1,
11
            b[i]=shift(seed)\%(i-1)+1;
12
13
   }
```

NOI2025 广东省队集训 2 追忆 (recall)

保证 seed 在 $[1,2^{32})$ 中随机生成。 第二行 n-1 个正整数 x_1, x_2, \dots, x_{n-1} 。

【输出格式】

输出到文件 recall.out 中。

记第 i 次询问的答案为 s_i ,由于输出量过大,你只需要输出 $\bigoplus_{i=1}^{n-1}(s_i+2)\times i$ 即可,其中 \oplus 为异或运算。

【样例 1 输入】

【样例 1 输出】

1 17

【样例1解释】

 $a_{2\sim 10}$ 分别为 1, 2, 2, 4, 1, 5, 1, 4, 9。 $b_{2\sim 10}$ 分别为 1, 2, 3, 2, 1, 1, 6, 7, 9。 $s_{1\sim 9}$ 分别为 1, 2, 1, 2, -1, 3, 1, 2, 3。

【样例 2】

见选手目录下的 recall/recall2.in 与 recall/recall2.ans。 满足特殊性质 A

【样例 3】

见选手目录下的 recall/recall3.in 与 recall/recall3.ans。 满足特殊性质 B

【样例 4】

见选手目录下的 recall/recall4.in 与 recall/recall4.ans。

NOI2025 广东省队集训 2 追忆 (recall)

【数据范围】

为了方便选手调试,下发文件中的输出文件的内容为 $s_{1\sim n-1}$ 。

测试点编号	n =	特殊性质
1	10	A
2,3	5×10^4	A
4,5	10^{5}	无
6, 7	3×10^5	无
8,9	5×10^5	A
10, 11	5×10^5	无
12,13	10^{6}	В
14, 15	10^{6}	无
16, 17	2×10^{6}	В
18, 19, 20	2×10^6	无

特殊性质 A: 保证 x_i 在 $1 \sim i$ 中随机生成。

特殊性质 B: 保证 $x_i \leq 10^3$ 。

小方的疑惑 (square)

【题目描述】

小方(275307894a)是一名国家集训队队员,他一直有很多疑惑。

这天,小 L 送给他了一个长度为 n 的正整数序列 a 和一个长度为 n-1 的正整数序列 b (下标均从 1 开始),其中序列 b 满足 $1 < b_i < i$ 。

小方可以执行如下操作若干次:

• 选择一个 $i(1 \le i < n)$ 满足 $a_{b_i} > 0$,将 a_{b_i} 减去 1,将 a_{i+1} 增加 1。

小方很疑惑有多少种本质不同的序列 a 可以被生成,可他想了很久却想不到一个优秀的做法,请你帮帮他。

由于答案很大, 所以要对 109+7 取模。

【输入格式】

从文件 square.in 中读入数据。

第一行一个正整数 n。

第二行 n-1 个正整数 b_1, b_2, \dots, b_{n-1} 。

第三行 n 个非负整数 a_1, a_2, \dots, a_n 。

【输出格式】

输出到文件 square.out 中。

一行一个数,表示最终的答案。

【样例 1 输入】

1 4 2 1 1 2 3 1 1 1 0

【样例 1 输出】

1 7

【样例1解释】

可以被生成的序列 a 的为:[1,1,1,0],[1,0,1,1],[0,1,2,0],[0,0,2,1],[0,2,1,0],[0,1,1,1],[0,0,1,2]。

【样例 2 输入】

```
1 6 2 1 1 2 2 3 3 1 1 4 5 1 4
```

【样例 2 输出】

1 63

【样例 3】

见选手目录下的 *square/square3.in* 与 *square/square3.ans*。

【样例 4】

见选手目录下的 *square/square4.in* 与 *square/square4.ans*。

【样例 5】

见选手目录下的 square/square5.in 与 square/square5.ans。

【样例 6】

见选手目录下的 *square/square6.in* 与 *square/square6.ans*。

【样例7】

见选手目录下的 *square/square7.in* 与 *square/square7.ans*。

【数据范围】

对于所有数据,保证 $0 \le a_i \le 10^9, 1 \le b_i \le i$ 。

测试点编号	n =	特殊性质
1	5	A
2,3	5	无
4,5	100	无
6,7	500	A
8 ~ 10	500	无
11 ~ 13	8×10^3	A
$14 \sim 16$	8×10^3	В
$17 \sim 25$	8×10^3	无

特殊性质 A: 对于任意 $1 \le i \le n$ 均满足 $a_i = 1$ 。 特殊性质 B: 对于任意 $2 \le i \le n$ 均满足 $b_i = \lfloor \frac{i+1}{2} \rfloor$ 。