ОП «Политология», 2019-20

Математика и статистика, часть 2

Работа с таблицей стандартного нормального распределения. (Памятка)

А. А. Макаров, А. А. Тамбовцева, Н. А. Василёнок

В таблице указаны значения функции распределения $\Phi(z)$ стандартной нормальной случайной величины, то есть такие вероятности:

$$\Phi(z_0) = P(Z \le z_0) = P(Z < z_0),$$

где Z — случайная величина, распределенная в соответствии со стандартным нормальным законом $N(0,\ 1),$ а z_0 — конкретное значение случайной величины Z.

Задача 1. Найти вероятность P(Z < 1.06), где Z — стандартная нормальная величина.

Решение. $P(Z < 1.06) = \Phi(1.06)$. Ищем в первом столбце таблицы значение 1.0, а в первой строке – значение 0.06 (Рис. 1). На пересечении соответствующей строки и столбца находится нужное нам значение 0.8554.

x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767

Рис. 1: Поиск вероятности в таблице

Следовательно, $P(Z < 1.06) = \Phi(1.06) = 0.8554$.

Посмотрим, как соотносится найденное в решении выше значение с графиком плотности стандартного нормального распределения. Вероятность P(Z < 1.06) – это площадь под графиком функции плотности на участке от $-\infty$ до значения 1.06 (Puc. 2).

Рис. 2: Вероятность P(Z < 1.06)

Рассмотрим еще несколько примеров нахождения вероятностей. В решениях задач можно найти ответы на вопросы:

- \bullet что делать, если нужно найти значение функции распределения для отрицательных значений Z;
- как считать вероятности вида P(a < Z < b).

Задача 2. Найти вероятность P(Z < -1.23).

Решение.

$$P(Z < -1.23) = \Phi(-1.23) = 1 - \Phi(1.23) = 1 - 0.8907 = 0.1093.$$

Проследим то же самое по графику плотности вероятности (Рис. 3).

Рис. 3: Вероятность P(Z < -1.23)

Так как график функции плотности стандартного нормального распределения симметричен относительно Z=0, можем отразить интересующий нас «хвост» (закрашен красным цветом) относительно прямой Z=0, чтобы получить такой же «хвост», но уже в той части графика, где значения Z положительны (закрашен зеленым цветом). Чтобы найти площадь зеленого «хвоста», воспользуемся тем, что площадь под всем графиком плотности равна 1 и тем, что площадь под этим графиком на промежутке $(-\infty; 1.23]$ равна $\Phi(1.23)=0.8907$. В итоге получаем площадь оставшейся части, зеленого «хвоста», равную 1-0.8907=0.1093.

Задача 3. Найти P(1.15 < Z < 2.1).

2

Решение. Посчитать такую вероятность мы можем, воспользовавшись следующим равенством:

$$P(a < X < b) = F(b) - F(a) = \Phi(b) - \Phi(a).$$

Вычисляем:

$$P(1.15 < Z < 2.1) = \Phi(2.1) - \Phi(1.15) = 0.9821 - 0.8749 = 0.1072.$$

Отметим нужную нам вероятность на графике плотности (Рис. 4).

Рис. 4: Вероятность P(1.15 < Z < 2.1)

Площадь под графиком функции плотности на промежутке $(-\infty; 2.1]$ равна 0.9821 (закрашена зеленым), а площадь на промежутке $(-\infty; 1.15]$ равна 0.8749 (заштрихована). Интересующий нас участок находится в пересечении этих двух промежутков, поэтому его площадь можно найти как разность площадей под графиком плотности на этих промежутках. Получаем 0.9821 - 0.8749 = 0.1072.

Задача 4. Найти P(-1.45 < Z < -0.27).

Решение.

$$P(-1.45 < Z < -0.27) = \Phi(-0.27) - \Phi(-1.45) = (1 - \Phi(0.27)) - (1 - \Phi(1.45)) =$$
$$= \Phi(1.45) - \Phi(0.27) = 0.9265 - 0.6064 = 0.3201.$$

Проследим то же самое по графику плотности вероятности.

Рис. 5: Вероятность P(-1.45 < Z < -0.27)

Как и в задаче 1, можем интересующий нас участок (закрашен красным цветом) отразить относительно прямой Z=0 так, чтобы получить точно такой же участок в

части графика, где значения Z положительны (закрашен зеленым цветом). Как считать площадь такого участка, было разобрано в задаче 2 – считаем разницу площадей под графиком функции плотности на участках $(-\infty;\ 1.45]$ и $(-\infty;\ 0.27]$. Получаем 0.3201.