INFTrees and INFforests Variable Importance

Theory

While conditional variable importance (Strobl et al) conditionally permutes each variable given the structure signified by the model that predicts the response, $Y \sim X_1, ..., X_i, ..., X_p$, our method conditionally permutes each variable given the structure outlined in a new model with the variable of interest as the response, $X_i \sim X_1, ... X_{i-1}, X_{i+1}, ... X_p$. This is not the most straightforward process, as trees partition the sample space, however, in INFTrees these partitions on the variables $X_1, ... X_{i-1}, X_{i+1}, ... X_p$ are treated as psuedo partitions on the variable of interest, X_i . This is accomplished by first partitioning on the sample predictors $X_1, ... X_{i-1}, X_{i+1}, ... X_p$ and then infering the partitions on X_i . As a visualization of this, lets return to the D_3 dataset discussed in chapter 2.

Figure 1: A Tree of the Model Y~W1,W2

Lets say we are interested in the variable importance of ω_2 . Then using the conditional variable importance (Strobl et al)'s permutation scheme, we would first look at the partitions on ω_2 from this tree.

Clearly, the values of ω_2 are less important to the patitioning structure than the interations of ω_2 and the other variables.

As you can see in Figure @ref(fig:blah) above, ...

Under the INFTrees method, before permuting, fit another tree to the model $\omega_2 \sim \omega_1$

The partitions on ω_2 implied by this model are:

Figure ___.

INFTrees

For a CART, T, representing the model Y $X_1, ..., X_p$ where $Y, X_1, ..., X_p$ are vectors of length n, the INFTrees algorithm proceeds as follows:

This procedure allows the null hypothesis that Y is independent of X_i given the values of $X_1, ... X_{i-1}, X_{i+1}, ... X_p$ to be tested. Therefor, values of VI_{inf} could be compared in a similar manner to the coefficients of linear regression.

Figure 2: Partitions on the Predictor Space W2 from Y~W1,..,W4

```
for each X_i \in X_1, ..., X_p do

Calculate: \Phi_o = RSS(T, (Y, X_1, ...X_p))

Fit the tree T_{X_i}, where T_{X_i} : X_i \sim X_1, ..., X_{i-1}, X_{i+1}, ...X_p

Extract the set P_{X_i} of partitions on X_i from T_{X_i}

Permute X_i with respect to P_{X_i}

Find \Phi^* = RSS(T, (Y, X_1, ..., X_i, ...X_p))
```

Repeat the above procedure to find the distribution of Φ^* Test the null hypothesis that Φ_o is the likely value of $RSS(T, (Y, X_1, ...X_p))$

Test the null hypothesis that Φ_o is the likely value of $RSS(T, (Y, X_1, ...))$ end for

Algorithm 1 INFTree, $VI_{inf}(T)$

Figure 3: Partitions on the Predictor Space W2 from Y~W1,..,W4

Figure 4: A Tree of the Model W2~W1

Figure 5: Partitions on the Predictor Space W2 from W2~W1

Figure 6: The Result of Permuting W2 WRT The Partitions

INFForests

The algorithm for determining $VI_{inf}(R)$ follows similarly.

```
Algorithm 2 INFForests, VI_{inf}(R)
```

```
1: Fit a random forest, R on the dataset D fitting the model Y \sim X_1, ..., X_p.
 2: for each X_i \in X_1, ..., X_p do
         for each t \in R do
 3:
             Calculate: \Xi_o = \frac{1}{\nu_t} RSS(t, \bar{B}^t)
Calculate a tree T_i that predicts X_i \sim X_1, ..., X_{i-1}, X_{i+1}, ... X_p using the subset of the observations
 4:
 5:
    used to fit t
             Permute the subset of X_i contained in \bar{B}_t with respect to the set of partions P_{xi} from T_i.
 6:
             Now find \Xi^* = \frac{1}{\nu_t} RSS(t, \bar{B}_t^*)
 7:
             The difference between these values, \Xi^* - \Xi_o, is the variable importance for X_i on t
 8:
 9:
         Test the null hypothesis that \Xi_o is the likely value of \frac{1}{\nu_t}RSS(t,\bar{B}_t^*) using the distribution of values of
10:
    \Xi^* gathered from each tree in R
11: end for
```

Comparisons and Applications

Trees

variable	inftree.variable.importance	base.variable.importance	coefficients
W1	64426.5	189161.02	5
W2	127711.4	170179.07	5
W3	0.0	0.00	2
W4	0.0	0.00	0
W5	0.0	61647.49	-5
W6	0.0	58305.01	-5
W7	0.0	0.00	-2
W8	0.0	0.00	0
W9	0.0	0.00	0
W10	0.0	0.00	0
W11	0.0	0.00	0
W12	0.0	0.00	0

```
viW2 <- as.data.frame(viW2)
ggplot(aes(x = viW2), data = viW2) +
  geom_density(fill = thesis[1], alpha = .8) +
  ggtitle("Distribution of RSS when W2 is Conditionally Permuted")+
  geom_vline(xintercept = inft[2,3])</pre>
```

Random Forests