Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Elektronika 2

Željko Butković

5. Pojačala s povratnom vezom

Povratna veza

U sustavu s povratnom vezom → informacija ili signal vraća s izlaza na ulaz, gdje se uspoređuje s ulaznom veličinom

Povratna veza omogućuje regulaciju sustava

Sustavi s povratnom vezom prisutni su u tehnici, ali i u drugim područjima poput fizike, ekonomije biologije i sl

Povratna veza → pozitivna ili negativna.

- □ negativna povratna veza → smanjuje izlazni signal
- □ pozitivna povratna veza → povećava izlazni signal

U elektronici se primjenjuju obje vrste povratne veze

Negativna povratna veza u pojačalima

U pojačalima → negativna povratna veza → smanjuje izlazni signal i pojačanje pojačala, ali osigurava niz poboljšanja:

- stabilizira pojačanje, tj. čini ga neosjetljivijim na promjene parametra sklopa i radnih uvjeta, kao što je npr. promjena temperature,
- smanjuje nelinearna izobličenja, čime se postiže bolja linearnost pojačala,
- povećava širinu frekvencijskog pojasa pojačala,
- djeluje na ulaznu i izlaznu impedanciju sklopa, čime se stvarna pojačala mogu približiti karakteristikama idealnih pojačala.

Primjer pojačala s povratnom vezom

Pojačalo u spoju zajedničkog emitera s emiterskom degeneracijom Preko otpornika R_E dio izlaznog signala vraća se na ulaz Naponsko pojačanje

$$A_V \approx -\frac{R_C \| R_T}{R_E}$$

Pojačanje se po iznosu smanjuje u odnosu na pojačanje pojačala bez degeneracije, ali postaje stabilnije, jer ne ovisi o parametrima tranzistora, čije se vrijednosti rasipaju i podložne su temperaturnoj promjeni.

Struktura pojačala s povratnom vezom (1)

A-grana → osnovno pojačalo bez povratne veze

pojačanje A-grane
$$\rightarrow A = x_{iz}/x_a$$

 β -grana \rightarrow grana povratne veze

koeficijent povratne veze $\rightarrow \beta = x_f/x_{iz}$

Struktura pojačala s povratnom vezom (2)

 $x_{iz} \rightarrow \text{uzorak}, x_f \rightarrow \text{povratni signal}$

komparator signala $\rightarrow x_a = x_{ul} - x_f$

pojačanje pojačala s povratnom vezom $\rightarrow A_f = \frac{x_{iz}}{x_{vd}} = \frac{A}{1 + \beta A}$

 $\beta A \rightarrow$ pojačanje u petlji povratne veze

 $F = 1 + \beta A \rightarrow \text{faktor povratne veze}$

Stabilizacija pojačanja

Promjena pojačanja A osnovnog pojačala izaziva manju promjenu pojačanja A_f pojačala s povratnom vezom.

$$dA_f = \frac{dA}{(1+\beta A)^2} \rightarrow \frac{dA_f}{A_f} = \frac{1}{1+\beta A} \frac{dA}{A} = \frac{1}{F} \frac{dA}{A}$$

Primjer 5.1

U pojačalu s povratnom vezom pojačanje osnovnog pojačala $A=10^4$, a koeficijent povratne veze $\beta=0.01$. Kolika će biti relativna promjena pojačanja A_f pojačala s povratnom vezom, ako se pojačanje osnovnog pojačala A smanji za 20%?

Linearizacija prijenosne karakteristike pojačala

Primjer 5.2

Pojačalo radi s naponima napajanja $U_{PP}=10~{
m V}$ i $U_{NN}=-10~{
m V}$. Prijenosna karakteristika naponskog pojačanja A_V pojačala bez povratne veze može se aproksimirati po odsječcima:

$$|u_{IZ}| < 2 \text{ V} \rightarrow A_{V1} = 1000$$

za 2 V
$$< |u_{IZ}| < 10 \text{ V} \rightarrow A_{V1} = 100.$$

Odrediti prijenosnu karakteristiku naponskog pojačanja A_{Vf} pojačala s povratnom vezom koje kao osnovno pojačalo sadrži gore navedeno pojačalo i za koje je koeficijent povratne veze $\beta = 0,01$.

Linearizacija prijenosne karakteristike izlaznog pojačala (1)

Uključenje povratne veze

Linearizacija prijenosne karakteristike izlaznog pojačala (2)

Izlazno protutaktno pojačalo klase B

Uključenje povratne veze

Proširenje frekvencijskog pojasa – visoke frekvencije

Frekvencijski odziv osnovnog pojačala i koeficijenta povratne veze

$$A(j\omega) = \frac{A_0}{1 + j\omega/\omega_g} \qquad \beta = \beta_0 \neq f(j\omega)$$

Frekvencijski odziv pojačala s povratnom vezom

$$A_{f}(j\omega) = \frac{A(j\omega)}{1 + \beta A(j\omega)} \rightarrow A_{f}(j\omega) = \frac{A_{0f}}{1 + j\omega/\omega_{gf}}$$

$$A_{0f} = \frac{A_0}{1 + \beta A_0} \qquad \omega_{gf} = \omega_g \left(1 + \beta A_0 \right)$$

$$A_{0f} \omega_{gf} = A_0 \omega_g$$

Proširenje frekvencijskog pojasa – niske frekvencije

Frekvencijski odziv osnovnog pojačala i koeficijenta povratne veze

$$A(j\omega) = A_0 \frac{j\omega/\omega_d}{1 + j\omega/\omega_d} \qquad \beta = \beta_0 \neq f(j\omega)$$

Frekvencijski odziv pojačala s povratnom vezom

$$A_f(j\omega) = \frac{A(j\omega)}{1 + \beta A(j\omega)} \rightarrow A_f(j\omega) = A_{0f} \frac{j\omega/\omega_{df}}{1 + j\omega/\omega_{df}}$$

$$A_{0f} = \frac{A_0}{1 + \beta A_0} \qquad \omega_{df} = \frac{\omega_d}{1 + \beta A_0}$$

Proširenje frekvencijskog pojasa

Naponska-serijska povratna veza

$$A_{V} = \frac{u_{iz}}{u_{a}}$$
 $\beta = \frac{u_{f}}{u_{iz}}$ $u_{a} = u_{ul} - u_{f}$ $A_{Vf} = \frac{u_{iz}}{u_{ul}} = \frac{A_{V}}{1 + \beta A_{V}}$

Strujna-serijska povratna veza

$$G_{M} = \frac{i_{iz}}{u_{a}}$$
 $\beta = \frac{u_{f}}{i_{iz}}$ $u_{a} = u_{ul} - u_{f}$ $G_{Mf} = \frac{i_{iz}}{u_{ul}} = \frac{G_{M}}{1 + \beta G_{M}}$

Strujna-paralelna povratna veza

$$A_I = \frac{i_{iz}}{i_a}$$
 $\beta = \frac{i_f}{i_{iz}}$ $i_a = i_{ul} - i_f$ $A_{If} = \frac{i_{iz}}{i_{ul}} = \frac{A_I}{1 + \beta A_I}$

Naponska-paralelna povratna veza

$$R_{M} = \frac{u_{iz}}{i_{a}}$$
 $\beta = \frac{i_{f}}{u_{iz}}$ $i_{a} = i_{ul} - i_{f}$ $R_{Mf} = \frac{u_{iz}}{i_{ul}} = \frac{R_{M}}{1 + \beta R_{M}}$

Utjecaj serijske povratne veze na ulazni otpor

Naponska-serijska povratna veza

$$R_{ul} = \frac{u_a}{i_{ul}} \qquad u_f = \beta u_{iz}$$

$$R_{ulf} = \frac{u_{ul}}{i_{ul}} = \frac{u_{ul}}{u_a/R_{ul}} = R_{ul} \frac{u_a + u_f}{u_a} =$$

$$= R_{ul} \left(1 + \frac{u_f}{u_{iz}} \frac{u_{iz}}{u_a} \right) = R_{ul} \left(1 + \beta A_V \right)$$

Strujna-serijska povratna veza – $A_V \rightarrow G_M$, $u_f = \beta i_{iz}$

$$R_{ulf} = \frac{u_{ul}}{i_{ul}} = R_{ul} \left(1 + \frac{u_f}{i_{iz}} \frac{i_{iz}}{u_a} \right) = R_{ul} \left(1 + \beta G_M \right)$$

Utjecaj paralelne povratne veze na ulazni otpor

Strujna-paralelna povratna veza

$$R_{ul} = \frac{u_{ul}}{i_a} \qquad i_f = \beta i_{iz}$$

$$\frac{1}{R_{ulf}} = \frac{i_{ul}}{u_{ul}} = \frac{i_{ul}}{R_{ul}} = \frac{1}{R_{ul}} \frac{i_a + i_f}{i_a} =$$

$$= \frac{1}{R_{ul}} \left(1 + \frac{i_f}{i_{iz}} \frac{i_{iz}}{i_a} \right) = \frac{1}{R_{ul}} \left(1 + \beta A_I \right)$$

$$R_{ulf} = \frac{R_{ul}}{1 + \beta A_I}$$

Naponska-paralelna povratna veza – $A_I \rightarrow R_M$, $i_f = \beta u_{iz}$

$$\frac{1}{R_{ulf}} = \frac{i_{ul}}{u_{ul}} = \frac{1}{R_{ul}} \left(1 + \frac{i_f}{u_{iz}} \frac{u_{iz}}{i_a} \right) = \frac{1}{R_{ul}} \left(1 + \beta R_M \right) \rightarrow R_{ulf} = \frac{R_{ul}}{1 + \beta R_M}$$

Utjecaj naponske povratne veze na izlazni otpor

Naponska-serijska povratna veza

$$A_{v} = \lim_{R_{T} \to \infty} A_{V}$$

$$i = \frac{u - A_{v} u_{a}}{R_{iz}}$$

$$u_{a} = -u_{f} = -\beta u_{iz} = -\beta u$$

$$i = \frac{u + \beta A_{v} u}{R_{iz}}$$

$$R_{izf} = \frac{u}{i} = \frac{R_{iz}}{1 + \beta A}$$

Naponska-paralelna povratna veza

$$R_{izf} = \frac{u}{i} = \frac{R_{iz}}{1 + \beta R_m} \qquad R_m = \lim_{R_T \to \infty} R_M$$

Utjecaj strujne povratne veze na izlazni otpor

Strujna-paralelna povratna veza

$$A_{i} = \lim_{R_{T} \to 0} A_{I}$$

$$u \qquad i_{a} = -i_{f} = -\beta i_{iz} = \beta i$$

$$u = R_{iz} (i + A_i i_a) =$$

$$= R_{iz} (i + \beta A_i i)$$

$$R_{izf} = \frac{u}{i} = R_{iz} \left(1 + \beta A_i \right)$$

Strujna-serijska povratna veza

$$R_{izf} = \frac{u}{i} = R_{iz} \left(1 + \beta G_m \right) \qquad G_m = \lim_{R_T \to 0} G_M$$

Utjecaj vrsta povratnih veza na svojstva pojačala

Za jake povratne veze $\rightarrow \beta A >> 1$

Naponska-serijska

$$A_{Vf} = \frac{A_V}{1 + \beta A_V} \to \frac{1}{\beta}$$

$$R_{ulf} = R_{ul} (1 + \beta A_V) \to \infty$$

$$R_{izf} = \frac{R_{iz}}{1 + \beta A} \to 0$$

Strujna-paralelna

$$A_{If} = \frac{A_I}{1 + \beta A_I} \to \frac{1}{\beta}$$

$$R_{ulf} = \frac{R_{ul}}{1 + \beta A_I} \to 0$$

$$R_{izf} = R_{iz} (1 + \beta A_i) \to \infty$$

Strujna-serijska

$$G_{Mf} = \frac{G_M}{1 + \beta G_M} \to \frac{1}{\beta}$$

$$R_{ulf} = R_{ul} (1 + \beta G_M) \to \infty$$

$$R_{izf} = R_{iz} (1 + \beta G_m) \to \infty$$

Naponska-paralelna

$$R_{Mf} = \frac{R_M}{1 + \beta R_M} \to \frac{1}{\beta}$$

$$R_{ulf} = \frac{R_{ul}}{1 + \beta R_M} \to 0$$

$$R_{izf} = \frac{R_{iz}}{1 + \beta R_M} \to 0$$

Modeli pojačala s povratnom vezom (1)

Vrsta povratne veze	Model pojačala s povratnom vezom	Tip pojačala	Idealno pojačalo
Naponska- serijska	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Naponsko pojačalo	$R_{ulf} \to \infty$ $R_{izf} \to 0$
Strujna- serijska	$\begin{array}{c c} & i_{iz} \\ & \downarrow \\ &$	Strminsko pojačalo	$R_{ulf} \to \infty$ $R_{izf} \to \infty$

Modeli pojačala s povratnom vezom (2)

Vrsta povratne veze	Model pojačala s povratnom vezom	Tip pojačala	Idealno pojačalo
Strujna- paralelna	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Strujno pojačalo	$R_{ulf} \rightarrow 0$ $R_{izf} \rightarrow \infty$
Naponska- paralelna	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Otporno pojačalo	$R_{ulf} \to 0$ $R_{izf} \to 0$

Postupak analize pojačala s povratnom vezom (1)

	Vrsta povratne veze			
Karakteristika	Naponska- serijska	Strujna- serijska	Strujna- paralelna	Naponska- paralelna
Uzorak x _{iz}	napon	struja	struja	napon
Povratni signal x_f	napon	napon	struja	struja
Uvjet za određivanje ulaznog kruga*	$u_{iz}=0$	$i_{iz}=0$	$i_{iz}=0$	$u_{iz}=0$
Uvjet za određivanje izlaznog kruga*	$i_{ul}=0$	$i_{ul}=0$	$u_{ul} = 0$	$u_{ul} = 0$

 $^{^*}$ Opisani postupak određuje osnovno pojačalo bez povratne veze uz opterećenje elemenata β -grane.

Postupak analize pojačala s povratnom vezom (2)

	Vrsta povratne veze			
Karakteristika	Naponska- serijska	Strujna- serijska	Strujna- paralelna	Naponska- paralelna
$A = x_{iz}/x_a$	$A_V = u_{iz}/u_a$	$G_M = i_{iz}/u_a$	$A_I = i_{iz}/i_a$	$R_M = u_{iz}/i_a$
$\beta = x_f/x_{iz}$	u_f/u_{iz}	u_f/i_{iz}	i_f/i_{iz}	i_f/u_{iz}
A_f	$A_{Vf} = \frac{A_V}{1 + \beta A_V}$	$G_{Mf} = \frac{G_M}{1 + \beta G_M}$	$A_{If} = \frac{A_I}{1 + \beta A_I}$	$R_{Mf} = \frac{R_M}{1 + \beta R_M}$
R_{ulf}	$R_{ul}\left(1+\beta A_{V}\right)$	$R_{ul}\left(1+\betaG_{M}\right)$	$R_{ul}/(1+\beta A_I)$	$R_{ul}/(1+\beta R_M)$
R_{izf}	$R_{iz}/(1+\beta A_{v})$	$R_{iz}\left(1+\betaG_{m}\right)$	$R_{iz}\left(1+\betaA_{i}\right)$	$R_{iz}/(1+\beta R_m)$

Primjer 5.3 (1)

Primjenom postupka za analizu pojačala s povratnom vezom odrediti pojačanja $A_{Vf}=u_{iz}/u_{ul},\,A_{If}=i_{iz}/i_{ul}$, te otpore R_{ulf} i R_{izf} pojačala na slici. Analizu provesti u području srednjih frekvencija. Zadano je: $U_{CC}=15$ V, $R_g=500$ $\Omega,\,R_1=360$ k $\Omega,\,R_2=40$ k $\Omega,\,R_{C1}=1,4$ k $\Omega,\,R_{E1}=500$ $\Omega,\,R_F=4,5$ k Ω i $R_T=5$ k Ω . Parametri

oba bipolarna tranzistora su

$$\beta \approx h_{fe} = 100$$
 i $U_{\gamma} = 0.7$ V. Za oba tranzistora zanemariti porast struja kolektora s naponima u_{CE} u normalnom aktivnom području. Naponski ekvivalent temperature $U_{T} = 25$ mV.

Primjer 5.3 (2)

A-grana

Primjer 5.4 (1)

Primjenom postupka za analizu pojačala s povratnom vezom odrediti pojačanja

 $A_{V\!f}=u_{iz}/u_{ul},\,A_{I\!f}=i_{iz}/i_{ul},\,G_{M\!f}=i_{iz}/u_{ul}$, te otpor R_{ulf} pojačala na slici. Analizu provesti u području srednjih frekvencija. Zadano je: $U_{CC}=12~{
m V},\,R_g=500~\Omega,\,R_1=150~{
m k}\Omega,\,R_2=25~{
m k}\Omega,\,R_{C1}=6~{
m k}\Omega,\,R_{E1}=500~\Omega,\,R_{C2}=4~{
m k}\Omega,\,R_F=20~{
m k}\Omega,\,R_{E3}=500~\Omega$ i

 $R_T = 500~\Omega$. Parametri bipolarnih tranzistora su jednaki i iznose $\beta \approx h_{fe} = 100$ i $U_\gamma = 0.7~\mathrm{V}$. Za sve tranzistore zanemariti porast struja kolektora s naponima u_{CE} u normalnom aktivnom području. Parametri Zenerove diode su $U_Z = 3.5~\mathrm{V}$ i $r_Z = 10~\Omega$. Naponski ekvivalent temperature $U_T = 25~\mathrm{mV}$.

Primjer 5.4 (2)

A-grana

Primjer 5.5 (1)

Primjenom postupka za analizu pojačala s povratnom vezom odrediti pojačanja $A_{Vf}=u_{iz}/u_{ul}, A_{If}=i_{iz}/i_{ul}$, te otpor R_{ulf} pojačala na slici. Analizu provesti u području srednjih frekvencija. Zadano je: $U_{CC}=15$ V, $R_{C1}=6$ k Ω , $R_{F}=15$ k Ω ,

 $R_{E1}=1~{\rm k}\Omega,\,R_{E2}=500~\Omega$ i $R_T=2~{\rm k}\Omega.$ Parametri bipolarnih tranzistora su jednaki i iznose $\beta\approx h_{fe}=100~{\rm i}~U_{\gamma}=0,7~{\rm V}.$ Za oba tranzistora zanemariti porast struja kolektora s naponima u_{CE} u normalnom aktivnom području. Naponski ekvivalent temperature $U_T=25~{\rm mV}.$

Primjer 5.5 (2)

A-grana

Primjer 5.6 (1)

Primjenom postupka za analizu pojačala s povratnom vezom odrediti pojačanja

 $A_{V\!f}=u_{iz}/u_{ul}$ i $A_{I\!f}=i_{iz}/i_{ul}$, te otpore $R_{ul\!f}$ i $R_{iz\!f}$ pojačala na slici. Analizu provesti u području srednjih frekvencija. Zadano je: $U_{CC}=U_{EE}=12$ V, $R_{C1}=8$ k Ω , $R_{C2}=3$ k Ω ,

 $R_{C3}=1~{\rm k}\Omega$, $R_{B1}=15~{\rm k}\Omega$, $R_F=10~{\rm k}\Omega$ i $R_T=10~{\rm k}\Omega$. Parametri bipolarnih tranzistora

su jednaki i iznose

$$\beta \approx h_{fe} = 100 \text{ i } U_{\gamma} = 0.7 \text{ V}.$$

Za sve tranzistore zanemariti porast struja kolektora s naponima u_{CE} u normalnom aktivnom području. Parametri Zenerovih dioda su

$$U_{Z1} = 3 \text{ V}, \ U_{Z2} = 6 \text{ V i}$$

 $r_Z = 10 \ \Omega$. Naponski ekvivalent temperature

$$U_T = 25 \text{ mV}.$$

Primjer 5.6 (2)

A-grana

