Project Presentation

Architecture used in the Paper::

Figure 1: Architecture of Convolutional Neural Network (CNN)

Figure. 2 Typical CNN Architecture

Datasets for it: MNIST dataset

dataset link:

https://www.tensorflow.org/datasets/catalog/mnist

It includes 70000 image for (Training & Testing)

number of classes: 10

dimension of images = 28*28

number of traning: 60000

number of testing: 10000

Our Model:

```
model = Sequential()

model.add(Conv2D (32 ,(3,3) ,kernel_regularizer=regularizers.12(0.0001), input_shape = x_train.shape [1: ]))
model.add(Activation ( "relu" ))
model.add(MaxPooling2D (pool_size = (2,2)))

model.add(Conv2D (64 ,(3,3),kernel_regularizer=regularizers.12(0.0001)))
model.add(MaxPooling2D (pool_size = (2,2)))

model.add(MaxPooling2D (pool_size = (2,2)))

model.add(Conv2D (64 ,(3,3),kernel_regularizer=regularizers.12(0.0001)))
model.add(Conv2D (64 ,(3,3),kernel_regularizer=regularizers.12(0.0001)))
model.add(MaxPooling2D (pool_size = (2,2)))

model.add(MaxPooling2D (pool_size = (2,2)))

model.add (Platten())
model.add (Dense (64))
model.add (Dense (64))
model.add (Dense (64))
model.add (Dense (64))
model.add (Dense (10))
model.add (Dense (10))
model.add (Dense (10))
model.add (Dense (10))
model.add (Activation ("relu"))
```

model.summary:

model.summary()			
Model: "sequential_7"			
Layer (type)	Output		Param #
conv2d_14 (Conv2D)	(None,	26, 26, 32)	320
activation_21 (Activation)	(None,	26, 26, 32)	0
max_pooling2d_11 (MaxPooling	(None,	13, 13, 32)	0
conv2d_15 (Conv2D)	(None,	11, 11, 64)	18496
activation_22 (Activation)	(None,	11, 11, 64)	0
max_pooling2d_12 (MaxPooling	(None,	5, 5, 64)	0
conv2d_16 (Conv2D)	(None,	3, 3, 64)	36928
activation_23 (Activation)	(None,	3, 3, 64)	0
max_pooling2d_13 (MaxPooling	(None,	1, 1, 64)	0
flatten_3 (Flatten)	(None,	64)	0
dense_9 (Dense)	(None,	64)	4160
activation_24 (Activation)	(None,	64)	0
dense_10 (Dense)	(None,	32)	2080
activation_25 (Activation)	(None,	32)	0
dense_11 (Dense)	(None,	10)	330
activation_26 (Activation)	(None,	10)	0

Hyperparameters:

```
optimizer = 'adam'
loss = "sparse_categorical_crossentropy"
epochs = 5
batch_size = 128
```

learning rate = 0.001

regularization = 0.0001

Result:::

this image is number 1 and he is predicted as num 1

Accuracy::: 98%

Confusion matrix:

loss Curve:

```
In [82]: plt.figure(figsize = (10,7)) plt.plot(xc , train loss) plt.xlabel('num of epochs') plt.ylabel('loss')

Dut[82]: Text(0, 0.5, 'loss')

0.40

0.35

0.20

0.15

0.10

0.00

0.15

0.10

0.00

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0
```