El símbolo de Hilbert

Índice

1	El Lema de Hensel	2
2	Definición y propiedades	
3	Cálculo local en característica 0	f

1 El Lema de Hensel

Fijamos un cuerpo (conmutativo) local no arquimedeano F y denotamos por \mathfrak{o} su anillo de enteros y por \mathfrak{p} el ideal maximal. Fijamos, además, un uniformizador, $\pi\mathfrak{p}$. Denotamos por v(x) la valuación de $x \in F^{\times}$.

Lema 1.1. Sea $f \in \mathfrak{o}[X]$ con derivada f'. Si $x \in \mathfrak{o}$ y $n, k \in \mathbb{Z}$ cumplen:

- $0 \le 2k < n$,
- $f x \equiv 0 \pmod{\pi^n} y$
- v(f'x) = k.

Entonces, existe $y \in \mathfrak{o}$ tal que

- $f y \equiv 0 \pmod{\pi^{n+1}}$,
- $y \equiv x \pmod{\pi^{n-k}} y$
- v(f'y) = k.

Demostración. Eligiendo $y = x + \pi^{n-k}z, z \in \mathfrak{o}$,

$$fy = fx + \pi^{n-k} z f'x + \pi^{2(n-k)} a$$

para cierto $a \in \mathfrak{o}$. Pero $f x = \pi^n b$, para cierto $b \in \mathfrak{o}$ y $f' x = \pi^k c$, $c \in \mathfrak{o}^{\times}$. Entonces,

$$f y = \pi^n ((b + cz) + \pi^{n-2k} a)$$
,

con lo cual,

$$f y \equiv 0 \pmod{\pi^{n+1}} \Leftrightarrow b + cz \equiv 0 \pmod{\pi}$$
.

Ahora, para cierto $a' \in \mathfrak{o}$,

$$f'y = f'x + \pi^{n-k}a'.$$

Como n - k > k = v(f'x), se verifica que v(f'y) = v(f'x) = k.

Teorema 1.2. Sea $f \in \mathfrak{o}[X_1, \ldots, X_m]$. Si $x \in \mathfrak{o}^m$, $n, k \in \mathbb{Z}$ y $1 \le j \le m$ cumplen

- $0 \le 2k < n$,
- $f x \equiv 0 \pmod{\pi^n} y$
- $v(\frac{\partial f}{\partial X_i}(x)) = k$,

entonces existe $y \in \mathfrak{o}^m$ tal que

- fy = 0 e
- $y \equiv x \pmod{\pi^{n-k}}$.

Demostración. Si m=1, definimos una secuencia de la siguiente manera: tomamos $x^{(0)}=x$, solución módulo π^n , y, para $q\geq 0$, una solución módulo π^{n+q+1} , $x^{(q+1)}$, congruente con $x^{(q)}$ módulo π^{n-k+q} (Lema 1.1). Si $y=\lim_{q\to\infty}x^{(q)}$, entonces fy=0, por continuidad de f. Además, $y\equiv x\pmod{\pi^{n-k}}$ y v(f'y)=v(f'x)=k. En general, si $m\geq 1$ y j es tal que $v\left(\frac{\partial f}{\partial X_j}(x)\right)=k$, definimos

$$\tilde{f}(X) = f(x_1, \dots, x_{i-1}, X, x_{i+1}, \dots, x_m) \in \mathfrak{o}[X],$$

reduciendo el problema al caso anterior.

Corolario 1.3. Si $x \in \mathfrak{o}^m$ es un cero simple de $f \in \mathfrak{o}[X_1, \ldots, X_m]$ módulo π , entonces existe un (único) cero de f en \mathfrak{o}^m (congruente con x módulo π).

Demostración. Es el caso
$$n = 1$$
 y $k = 0$.

Nos interesa aplicar estos resultados al caso en que f representa una forma cuadrática. Si

$$f = \sum_{i \le j} a_{ij} X_i X_j \in \mathfrak{o}[X_1, \dots, X_m]$$
 (1)

es un polinomio homogéneo de grado 2, las derivadas parciales están dadas por:

$$\frac{\partial f}{\partial X_j} = \sum_{i < j} a_{ij} X_i + 2 a_{jj} X_j + \sum_{j < k} a_{jk} X_k . \tag{2}$$

Sea $N = \begin{bmatrix} a_{ij} \end{bmatrix}$, la matriz de coeficientes; esta matriz es triangular superior. Entonces, el sistema de ecuaciones $\frac{\partial f}{\partial X_i} = 0$ está representado por la matriz

$$N + {}^{t}N = \begin{bmatrix} 2 a_{11} & a_{12} & \cdot & a_{1m} \\ a_{12} & 2 a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \cdots & 2 a_{mm} \end{bmatrix} .$$
 (3)

La matriz (3) es el doble de la matriz asociada a la forma cuadrática correspondiente a f. Sea $Q: F^m \to F$ la forma cuadrática representada por f en la base canónica. Dado que f tiene coeficientes enteros, también podemos interpretar que f representa una forma cuadrática en sobre el cuerpo residual $\mathfrak{o}/\mathfrak{p}$; denotamos por $\tilde{Q}: (\mathfrak{o}/\mathfrak{p})^m \to \mathfrak{o}/\mathfrak{p}$ la forma cuadrática reducida. Una solución primitiva de Q(x) = a o, más en general, de $Q(x) \equiv a \pmod{\pi^n}$, es un vector $x \in \mathfrak{o}^m$ que verifica Q(x) = a, o bien $Q(x) \equiv a \pmod{\pi^n}$, y, además, alguna de sus coordenadas es una unidad. Es decir, x es una solución primitiva, si, al reducir coordenadas módulo π , no es el vector nulo. Una solución primitiva de Q(x) = a módulo π es lo mismo que una solución no trivial de $\tilde{Q}(x) = a$.

 $^{^{-1}}$ Si la característica del cuerpo de base es distinta de 2, asociamos, a una forma cuadrática Q, la forma bilineal simétrica $B(x,y) = \frac{Q(x+y)-Q(x)-Q(y)}{2}$. Así, si M denota la matriz asociada a B en la base canónica, vale que $2M = N + {}^tN$. Si la característica del cuerpo de base es 2, entonces la forma bilineal alternada asociada es B(x,y) = Q(x+y) + Q(x) + Q(y). La matriz correspondiente es igual a $N + {}^tN$, pero esta matriz pierde la información de la diagonal.

Definición 1.4. El discriminante de la forma cuadrática $Q: F^m \to F$ asociada al polinomio f dado por (1) es el determinante de la matriz $N + {}^tN$ definida en (3):

$$\mathsf{disc}(Q) = \mathsf{det}(N + {}^tN) \ .$$

Corolario 1.5. Si $\operatorname{disc}(Q) \in \mathfrak{o}^{\times}$, toda solución primitiva de Q(x) = a módulo π da lugar a una solución de Q(x) = a; precisamente, si $x \in \mathfrak{o}^m$ cumple que $Q(x) \equiv a \pmod{\pi}$, entonces existe $y \in \mathfrak{o}^m$ tal que $y \equiv x \pmod{\pi}$ y Q(y) = a.

Demostración. Si $\det(N + {}^tN) \in \mathfrak{o}^{\times}$, entonces toda solución primitiva de $Q(x) \equiv a \pmod{\pi}$ es simple. La condición $\det(N + {}^tN) \in \mathfrak{o}^{\times}$ equivale a

$$x \not\equiv 0 \pmod{\pi} \qquad \Rightarrow \qquad \frac{\partial f}{\partial X_i}(x) \not\equiv 0 \pmod{\pi} \; , \, \text{para algún} \; j \; .$$

Supongamos que $f \in \mathfrak{o}[X_1, \ldots, X_m]$ está escrito de la siguiente manera:

$$f = \sum_{i,j} a_{ij} X_i X_j = \sum_{i < j} (a_{ij} + a_{ji}) X_i X_j + \sum_{i=1}^m a_{ii} X_i^2.$$
 (4)

Entonces, si f es simétrico, es decir, $a_{ij} = a_{ji}$, las derivadas parciales están dadas por:

$$\frac{\partial f}{\partial X_j} = 2 \sum_{i=1}^m a_{ij} X_i . {5}$$

Sea $A = \begin{bmatrix} a_{ij} \end{bmatrix}$. El sistema $\frac{\partial f}{\partial X_i} = 0$ está representado por la matriz $A + {}^t A = 2 A$.

Corolario 1.6. Si la característica residual de F es impar y $f \in \mathfrak{o}[X_1, \ldots, X_m]$ es un polinomio homogéneo de grado 2 simétrico de la forma (4) y se cumple que $\det(a_{ij}) \in \mathfrak{o}^{\times}$, entonces toda solución primitiva de f $x \equiv a \pmod{\pi}$ se levanta a una solución de f x = a.

Demostración. Dado que, en este caso, $2 \in \mathfrak{o}^{\times}$, la condición $\det(A + {}^tA) \in \mathfrak{o}^{\times}$ equivale a $\det(A) \in \mathfrak{o}^{\times}$. Por lo tanto, f y x están en las condiciones del Corolario 1.3.

Corolario 1.7. Si la característica residual de F es par, sea $e \ge 1$ el grado de ramificación sobre \mathbb{Q}_2 , es decir, $\langle 2 \rangle = \langle \pi^e \rangle$. Si $f \in \mathfrak{o}[X_1, \ldots, X_m]$ es un polinomio homogéneo de grado 2 simétrico de la forma (4) y $x \in \mathfrak{o}^m$ cumple

- $f x \equiv a \pmod{\pi^{2e+1}} y$
- $\frac{\partial f}{\partial X_i}(x) \not\equiv 0 \pmod{\pi^{e+1}}$,

entonces x se levanta a una solución de f x = a. La condición en las derivadas se cumple, si $det(A) \in \mathfrak{o}^{\times}$ y x es una solución primitiva de f $x \equiv a$, es decir, $x \not\equiv 0 \pmod{\pi}$.

Demostración. En cuanto a la primera parte, dado que v(2) = e, las derivadas parciales de f se anulan automáticamente con orden, al menos, e. Bajo las condiciones sobre f, x y las derivadas, se satisfacen las hipótesis del Teorema 1.2, con k = e y n = 2e + 1. \square

Lema 1.8. $Si \ v \in \mathfrak{o}^{\times}$, la ecuación

$$z^2 - \pi x^2 - v y^2 = 0 ag{6}$$

admite solución no trivial en F, si y sólo si admite una solución (z, x, y) tal que $z, y \in \mathfrak{o}^{\times}$ $y \ x \in \mathfrak{o}$.

Demostración. Por homogeneidad, si (6) tiene una solución no trivial en F, existe una solución primitiva, es decir, existe una solución $(z, x, y) \in F^3$, donde $x, y, z \in \mathfrak{o}$ y

$$\min \left\{ v(x), v(y), v(z) \right\} = 0.$$

Dado que $v \in \mathfrak{o}^{\times}$, vale $v(y) \geq 1$ si y sólo $v(z) \geq 1$. Pero, en ese caso, $v(\pi x^2) \geq 2$ y, en consecuencia, $v(x) \geq 1$. Es decir, si la solución $(z, x, y) \in \mathfrak{o}^3$ es primitiva, debe cumplirse $y, z \in \mathfrak{o}^{\times}$.

2 Definición y propiedades

En esta sección, F denota un cuerpo (conmutativo) arbitrario. Fijamos F^{a}/F una clausura algebraica de F. Dados $a, b \in F^{\times}$, nos interesa saber bajo qué condiciones la forma cuadrática $Q: F^3 \to F$ dada por

$$Q(z, x, y) = z^2 - a x^2 - b y^2$$

es isotrópica sobre F, es decir, bajo qué condiciones,

$$Q(z, x, y) = 0 (7)$$

admite una solución no trivial en F.

Definición 2.1. Dados $a, b \in F^{\times}$, el símbolo de Hilbert (de a y b respecto de F) es

$$(a,b)_F=(a,b)= egin{cases} 1\ , & \mbox{si } (7) \mbox{ admite solución no trivial en } F\ , \\ -1\ , & \mbox{si no}. \end{cases}$$

Proposición 2.2. Si $b \notin (F^{\times})^2$, sea $E = F(\sqrt{b}) \subset F^{\mathsf{a}}$. Entonces,

$$(a,b) = 1 \qquad \Leftrightarrow \qquad a \in \operatorname{Nm}(E^{\times}) ,$$

donde $Nm: E^{\times} \to F^{\times}$ es la norma de la extensión E/F.

Demostración. La norma $\mathsf{Nm}: E^\times \to F^\times$ está dada por $\mathsf{Nm}(z+\sqrt{b}\,y) = z^2 - b\,y^2$. Si $a = \mathsf{Nm}(z+\sqrt{b}\,y)$, entonces (z,1,y) es una solución no trivial de (7). Recíprocamente, si $(z,x,y) \in F^3$ es solución no trivial, necesariamente $x \neq 0$ (pues $b \notin (F^\times)^2$) y, por lo tanto, $a = \mathsf{Nm}((z/x) + \sqrt{b}\,(y/x))$.

Observación 2.3. El símbolo de Hilbert tiene las siguientes propiedades:

(i)
$$(a,b) = (b,a),$$

(ii)
$$(a, c^2) = 1$$
,

(iii)
$$(a, -a) = (a, 1 - a) = 1$$
,

(iv) si
$$(a, b) = 1$$
, entonces $(aa', b) = (a', b)$,

(v)
$$(a,b) = (a,-ab) = (a,(1-a)b).$$

En particular, de (ii), se deduce que el símbolo de Hilbert induce una aplicación

$$F^{\times}/(F^{\times})^2 \times F^{\times}/(F^{\times})^2 \to \{\pm 1\}. \tag{8}$$

Más adelante veremos que el símbolo de Hilbert tiene la siguiente propiedad:

$$(aa',b) = (a,b) (a',b) .$$
 (9)

El conjunto $\{\pm 1\}$ es una realización del cuerpo de dos elementos; el cociente $F^{\times}/(F^{\times})^2$ es un espacio vectorial sobre $\{\pm 1\}$. La igualdad (9) es la bilinealidad de (8)

3 Cálculo local en característica 0

En esta sección, F denota un cuerpo (conmutativo) local, arquimedeano o no arquimedeano.

Teorema 3.1. Sea F un cuerpo local arquimedeano, $F = \mathbb{R}$ o $F = \mathbb{C}$, y sean $a, b \in F^{\times}$. Si $F = \mathbb{C}$, entonces (a, b) = 1; si $F = \mathbb{R}$, entonces

$$(a,b) = \begin{cases} 1 , & si \ a > 0 \ o \ b > 0 , \\ -1 , & si \ a < 0 \ y \ b < 0 . \end{cases}$$

Demostración. Si $F = \mathbb{C}$, entonces $\mathbb{C}^{\times} = (\mathbb{C}^{\times})^2$. Si $F = \mathbb{R}$, entonces $\mathbb{R}^{\times}/(\mathbb{R}^{\times})^2 = \{\pm 1\}$.

Lema 3.2. Sean p un primo racional impar $y F = \mathbb{Q}_p$. Si $u, v \in \mathbb{Z}_p^{\times}$,

- (u, v) = 1,
- $(pu, v) = \left(\frac{v}{p}\right) y$
- $(pu, pv) = (pu, -uv) = \left(\frac{-uv}{p}\right)$

Demostración. Dado que el cuerpo residual $\mathbb{F}_p = \mathbb{Z}_p/p\mathbb{Z}_p$ es finito, la ecuación $c^2 - u x^2 - v y^2$ tiene solución para todo $c \in \mathbb{F}_p$. En particular, eligiendo $z = c \not\equiv 0 \pmod{p}$, Q(z,x,y) = 0 tiene soluciones primitivas módulo p. Como $\operatorname{disc}(Q) = 8uv \in \mathbb{Z}_p^{\times}$, por el Corolario 1.5, toda solución primitiva módulo p da lugar a una solución no trivial en \mathbb{Q}_p . En particular, (u,v) = 1.

Por la Observación 2.3 (iv), como (u, v) = 1,

$$(pu, v) = (p, v)$$
.

Si (v/p)=1, esto quiere decir que v es un cuadrado módulo p, luego, por el Teorema 1.2, es un cuadrado en \mathbb{Z}_p^{\times} y, por la Observación 2.3 (ii), (p,v)=1, también. Recíprocamente, si (p,v)=1, la ecuación $z^2-p\,x^2-v\,y^2=0$ admite una solución de la forma $(z,x,y)\in\mathbb{Z}_p$, $y,z\in\mathbb{Z}_p^{\times}$, con lo que v es un cuadrado en \mathbb{Z}_p y (v/p)=1.

Finalmente, por la Observación 2.3 (v) y el caso anterior,

$$(pu, pv) = (pu, -p^2uv) = (pu, -uv) = \left(\frac{-uv}{p}\right).$$

Teorema 3.3. Sean p un primo racional impar $y F = \mathbb{Q}_p$ y sean $a, b \in \mathbb{Q}_p^{\times}$. Si $a = p^m u$ $y \ b = p^n v$, donde $u, v \in \mathbb{Z}_p^{\times}$, entonces

$$(a,b) = (-1)^{mn\frac{p-1}{2}} \left(\frac{u}{p}\right)^n \left(\frac{v}{p}\right)^m.$$

En particular,

$$(a,b): F^{\times}/(F^{\times})^2 \times F^{\times}/(F^{\times})^2 \to \{\pm 1\}$$

es una forma bilineal no degenerada.

Demostración. Por la Observación 2.3 (ii) y (iv), basta considerar los casos $m, n \in \{0, 1\}$. Por (i), podemos suponera $m \ge n$. Entonces, el resultado es consecuencia del Lema 3.2.

Para ver que la forma es no degenerada, elegimos representantes de $\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2$: $\{1, p, u_0, u_0 p\}$, donde $u_0 \in \mathbb{Z}_p^{\times}$ no es cuadrado, es decir, $(u_0/p) = -1$. Entonces, mirando módulo p, o bien usando la fórmula, para cada $a \in \{u_0, p, u_0 p\}$, existe b tal que (a, b) = -1.

Si
$$p=2, \mathbb{Z}_2^{\times}=1+2\mathbb{Z}_2$$
 y
$$\left(\mathbb{Z}_2^{\times}\right)^2 \subset 1+8\mathbb{Z}_2 \ .$$

Por el Teorema 1.2, vale la igualdad. Dado $u \in \mathbb{Z}_2^{\times}$, definimos

$$\epsilon(u) = \frac{u-1}{2}$$
 y $\omega(u) = \frac{u^2-1}{8}$.

Observación 3.4. Si $u \in \mathbb{Z}_{\geq} 1$ es un entero impar positivo,

$$(-1)^{\epsilon(u)} = \left(\frac{-1}{u}\right)$$
 y $(-1)^{\omega(u)} = \left(\frac{2}{u}\right)$,

donde (\cdot/u) denota el símbolo de Jacobi. $u \mapsto (-1/u)$ y $u \mapsto (2/u)$ definen caracteres del grupo de unidades $(\mathbb{Z}/8\mathbb{Z})^{\times}$. El isomorfismo

$$\frac{\left(1+2\,\mathbb{Z}_2\right)}{\left(1+8\,\mathbb{Z}_2\right)}\,\simeq\,\left(\mathbb{Z}/8\mathbb{Z}\right)^{\times}$$

dado por reducir módulo 8 permite trasladar estos caracteres a caracteres de $\mathbb{Z}_2^{\times} = 1 + 2\mathbb{Z}_2$. Definimos

$$\chi_4(u) = \left(\frac{-1}{\tilde{u}}\right) \quad \text{y} \quad \chi_8(u) = \left(\frac{2}{\tilde{u}}\right),$$

donde $\tilde{u} \in \{1, 3, 5, 7\}$ denota la clase correspondiente a u módulo 8. Se cumple que

$$\chi_4(-1) = -1$$
 y $\chi_8(-1) = 1$.

Lema 3.5. Sea $F = \mathbb{Q}_2$. Si $u, v \in \mathbb{Z}_2^{\times}$,

- $(u, v) = (-1)^{\epsilon(u)} \epsilon(v)$,
- $(2,v) = \chi_8(v) = (-1)^{\omega(v)}$,
- $(2u, v) = (2, v) (u, v) = \chi_8(v) (u, v) y$
- $(2u, 2v) = (2u, -uv) = \chi_8(uv) (u, v).$

Observación 3.6. Si $p, q \in \mathbb{Z}_{\geq 1}$ son enteros impares positivos y coprimos entre sí,

$$(p,q)_{\mathbb{Q}_2} = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} = \left(\frac{p}{q}\right)\left(\frac{q}{p}\right),$$

que es el factor en la Ley de reciprocidad cuadrática.

Demostración. Si $u \equiv 1 \pmod{4}$, entonces $u \in 1 + 8\mathbb{Z}_2$ o bien $u \in 5 + 8\mathbb{Z}_2$. En el primer caso, u es un cuadrado y (u, v) = 1. En el segundo caso, $u + 4v \in 1 + 8\mathbb{Z}_2$ y es un cuadrado, $w^2 = u + 4v$, con lo que $z^2 - ux^2 - vy^2$ admite la solución no trivial (w, 1, 2) y (u, v) = 1, también. Si $u, v \in 3 + 4\mathbb{Z}_2$, entonces

$$z^2 \, - \, u \, x^2 \, - \, v \, y^2 \, = \, 0 \quad \Rightarrow \quad z^2 \, + \, x^2 \, + \, y^2 \, \equiv \, 0 \, (\mathsf{mod} \, 4) \quad \Rightarrow \quad x,y,z \, \equiv \, 0 \, (\mathsf{mod} \, 2) \, \, ,$$

con lo cual, (7) no admite soluciones primitivas y (u, v) = -1. Esto prueba la primera afirmación: el símbolo de Hilbert es 1, si y sólo si al menos uno de u y v es congruente a 1 módulo 4.

Si (2,v)=1, por el Lema 1.8, existe una solución de $z^2-2\,x^2-v\,y^2=0$ con $z,x,y\in\mathbb{Z}_2$ y $z,y\in\mathbb{Z}_2^\times$. Mirando esta solución módulo 8, $z^2\equiv y^2\equiv 1\,(\text{mod }8)$ y

$$1 - 2x^2 - v \equiv 0 \pmod{8}$$
;

como x^2 es 0, 1 o 4 módulo 8, $v \equiv \pm 1 \pmod{8}$ y $\chi_8(v) = 1$. Recíprocamente, supongamos que $\chi_8(v) = 1$, es decir, que $v \equiv \pm 1 \pmod{8}$. Si $v \equiv 1 \pmod{8}$, entonces $v \in \left(\mathbb{Z}_2^{\times}\right)^2$ es un cuadrado y (2,v) = 1; si $v \equiv -1 \pmod{8}$ se cumple que $z^2 - 2x^2 - vy^2 = 0$ tiene a (1,1,1) como solución primitiva módulo 8, que, por el Corolario 1.7, se levanta a una solución (no trivial) en \mathbb{Z}_2^3 y, así, (2,v) = 1, en este caso también.

La igualdad (2u,v)=(2,v) (u,v) es un caso particularidad de la "bilinealidad" del símbolo de Hilbert. Si (2,v)=1 o si (u,v)=1, entonces, por la Observación 2.3 (iv), sabemos que se cumple dicha igualdad. Supongamos que (2,v)=(u,v)=-1; la afirmación es que (2u,v)=1, en este caso. Entonces, $v\equiv 3\pmod 8$ y $u\equiv 3$ o $7\pmod 8$. Observando que (1,1,1) es solución primitiva módulo 8 de $z^2-2u\,x^2-v\,y^2=0$ y levantando, 2 se deduce que (2u,v)=1.

Finalmente, $\chi_8(-1) = 1$, la Observación 2.3 (v) y el caso anterior implican

$$(2u, 2v) = (2u, -4uv) = (2u, -uv) = (2, -uv) (u, -uv)$$
$$= \chi_8(-uv) (u, v) = \chi_8(uv) (u, v)$$

Teorema 3.7. Sea $F = \mathbb{Q}_2$ y sean $a, b \in \mathbb{Q}_p^{\times}$. Si $a = 2^m u$ y $b = 2^n v$, donde $u, v \in \mathbb{Z}_2^{\times}$, entonces

$$(a,b) = (-1)^{\epsilon(u)} \epsilon(v) + m \omega(v) + n \omega(u) .$$

En particular,

$$(a,b): F^{\times}/(F^{\times})^2 \times F^{\times}/(F^{\times})^2 \to \{\pm 1\}$$

es una forma bilineal no degenerada.

Demostración. Para ver que la forma es no degenerada, elegimos representantes de $\mathbb{Q}_2^{\times}/(\mathbb{Q}_2^{\times})^2$: $\{u, 2u: u \in \{\pm 1, \pm 5\}\}$. Mirando módulo 8, (5, 2u) = -1 y, también, (-1, -5) = -1.

Observación 3.8. Siendo el símbolo de Hilbert $(a,b)_F$ una forma bilineal (simétrica) sobre el cuerpo \mathbb{F}_2 , podemos asociarle una matriz, elegida una base de $F^{\times}/(F^{\times})^2$.

- Si $F = \mathbb{C}$, entonces $\dim(\mathbb{C}^{\times}/(\mathbb{C}^{\times})^2) = 0$; no hay matriz –o la matriz tiene tamanõ 0 y hay una única opción– en este caso.
- Si $F = \mathbb{R}$, entonces $\dim(\mathbb{R}^{\times}/(\mathbb{R}^{\times})^2) = 1$; en este caso, la matriz es [1].

 $^{^2}$ O bien multiplicando u y v por cuadrados en \mathbb{Z}_2^\times para obtener las ecuaciones $z^2+2\,x^2-3\,y^2=0$ o $z^2-6\,x^2+5\,y^2=0$

• Si $F = \mathbb{Q}_p$, $p \neq 2$, entonces $\dim(\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2) = 2$; con respecto a la base $\{p, u_0\}$, donde $(u_0/p) = -1$, la matriz es

$$\begin{bmatrix} & 1 \\ 1 & \end{bmatrix} \qquad \text{si } p \equiv 1 \, (\operatorname{mod} 4) \; ,$$

$$\begin{bmatrix} 1 & 1 \\ 1 & \end{bmatrix} \qquad \text{si } p \equiv 3 \, (\operatorname{mod} 4) \; .$$

• Si $F = \mathbb{Q}_2$, entonces $\dim(\mathbb{Q}_2^{\times}/(\mathbb{Q}_2^{\times})^2) = 3$; con respecto a la base $\{2, -1, 5\}$, la matriz es

$$\begin{bmatrix} & & 1 \\ & 1 & \\ 1 & & \end{bmatrix} .$$

Observación 3.9. Si F/\mathbb{Q}_p es una extensión finita, $p \neq 2$, la demostración del Lema 3.2 se adapta. Sean $\mathfrak o$ el anillo de enteros, $\mathfrak p$ el ideal maximal, $q = |\mathfrak o/\mathfrak p|$ el cardinal del cuerpo residual y $\pi \in \mathfrak o$ un uniformizador. Si $u, v \in \mathfrak o^{\times}$, entonces

- (u, v) = 1,
- $(\pi u, v) = \left(\frac{v}{\pi}\right) y$
- $(\pi u, \pi v) = (\pi u, -uv) = \left(\frac{-uv}{\pi}\right),$

donde $(v/\pi) = \pm 1$, dependiendo de si v es o no un cuadrado en $(\mathfrak{o}/\mathfrak{p})^{\times}$. En particular, se deduce el resultado análogo al Teorema 3.3: si $a = \pi^m u$ y $b = \pi^n v$, donde $u, v \in \mathfrak{o}^{\times}$, entonces³

$$(a,b) \ = \ (-1)^{mn\,\frac{q-1}{2}} \left(\frac{u}{\pi}\right)^n \left(\frac{v}{\pi}\right)^m \ .$$

La demostración del Lema 3.5, sin embargo, depende de la estructura del grupo de unidades \mathbb{Z}_2^{\times} . Concretamente, la caracterización $\left(\mathbb{Z}_2^{\times}\right)^2 = 1 + 8\,\mathbb{Z}_2$ es esencial en la demostración.