

RdF – Reconnaissance des Formes Semaine 3 : attributs pour la segmentation

Master ASE: http://master-ase.univ-lille1.fr/

Master Informatique: http://www.fil.univ-lille1.fr/

Spécialité IVI: http://master-ivi.univ-lille1.fr/

Segmentation par classification (régions)

Objectif

associer une étiquette à chaque pixel d'une image, pour obtenir une nouvelle image dans laquelle les régions sont marquées.

Méthode

- 1) associer un vecteur attribut à chaque pixel de l'image;
- 2) déterminer des classes regroupant les pixels similaires;
- 3) assigner une classe à chaque pixel selon ses attributs.

Plan du cours

- 1 Apprentissage et classification étapes d'une procédure de classification exemple: binarisation par analyse de l'histogramme attributs d'un pixel: niveau de gris, couleur, texture ...
- 2 Textures propriété complexe à définir, approche intuitive approche statistique de la définition d'une texture
- 2 Texture : approche par matrices de co-occurences matrices des co-occurences propriétés des matrices des co-occurences: attributs d'Haralick
- 3 Texture : approche par filtrage filtres de Gabor: orientation et étendue d'une texture décomposition en ondelettes

Classification

Étapes d'un processus de reconnaissance

- 1) acquisition des données grâce à un ou plusieurs capteurs;
- 2) extraction d'attributs caractéristiques des observations;
- 3) catégorisation ou description des observations: classification.

Extraction des attributs d'une observation

grâce à une fonction A(.) définie sur l'espace des observations et à valeur dans l'espace des attributs (souvent sous-espace de \mathbb{R}^n):

$$A \colon \ O \ o \ \mathbb{R}^n$$
 , $o \ o \ (A_1(o), A_2(o), \cdots, A_n(o))^T$

Classification

fonction L(.) définie sur l'espace des attributs vers un ensemble de cardinal fini, dont les éléments sont les étiquettes.

$$L \colon \mathbb{R}^n \to \{1, \cdots, C\}$$
 , $x \to L(x)$

Apprentissage automatique

Comment déterminer les étiquettes?

la combinaison des fonctions A(.) et L(.) définit une partition de l'espace des observations en classes (une classe par étiquette). l'apprentissage est l'étape durant laquelle sont déterminées les fonctions A(.) et L(.) les plus adaptées à classification.

Classification supervisée

on connaît a priori le nombre de classes et on dispose d'un ensemble d'observations dont les étiquettes sont connues. cet ensemble est appelé ensemble d'apprentissage.

Classification non supervisée

on doit déterminer le nombre de classes et la partition de l'espace des observations en analysant directement les données. mise en évidence des groupes d'observations (clusters).

Exemple: binarisation par analyse de l'histogramme (1/2)

Binarisation

on suppose que l'image ne contient que deux types de régions: les objets et le fond.

la binarisation consiste à affecter à chaque pixel une étiquette indiquant s'il appartient à un objet (1) ou au fond (0). méthode de classification binaire, car uniquement 2 classes.

Vecteur attribut du pixel

vecteur à une seule dimension : le niveau de gris du pixel.

$$A \colon \mathbb{R}^2 o \mathbb{R}, \qquad L \colon \mathbb{R} o \{0,1\}, \ P = (x \ y)^T o A(P) \qquad g o L(g)$$

Exemple: binarisation par analyse de l'histogramme (2/2)

Classification = seuillage

le seuillage est une partition de R en deux sous-espaces, ex:

$$L_s\colon \mathbb{R} o \{\cdot, \cdot\},$$
 $g o \cdot si \ g < s, \ et \ g o \cdot si \ g \ge s$

Histogramme des niveaux de gris

Attributs d'un pixel

Propres au pixel

niveau de gris : mesure de l'intensité lumineuse composantes couleur : mesures de l'éclairement dans différentes gammes de longueurs d'ondes et ensuite ???

Attributs du pixel et de son voisinage

pour définir un vecteur d'attributs, il faut disposer d'un nombre plus élevé d'informations, donc on utilise un voisinage. exemple: pixel et son voisinage 5x5

région uniforme

isolé dans du foncé

isolé dans du clair

isolé dans un damier

Texture (1/2)

Définition?

variations de l'intensité lumineuse dans le voisinage, qui peut refléter des propriétés de l'objet (rugosité, granularité, etc.)

Exemples, base de textures de Brodatz

$\overline{\text{Texture}}$ (2/2)

Problèmes

il n'existe pas de modèle mathématique suffisamment général pour décrire toutes les configurations possibles d'un voisinage. il n'existe pas de distance entre deux textures différentes. les propriétés d'une texture sont très liées à l'échelle de l'image.

Approches principales pour quantifier les textures statistiques calculées sur tous les pixels du voisinage matrices des co-occurences et indices d'Haralick modélisation paramétrique, par exemple ondelettes de Gabor

Attributs statistiques

Calculés à partir de l'histogramme

un histogramme h(g) des niveaux de gris g est calculé sur un voisinage de taille fixe centré sur chaque pixel de l'image

moyenne
$$M = \sum_{g} g \cdot h(g)$$

variance
$$\sigma^2 = \sum_{g} (g - M)^2 \cdot h(g)$$

cumulant
$$C = \sum_{g} (g - M)^{3} \cdot h(g)$$

kurtosis
$$K = \sum_{g} (g - M)^4 \cdot h(g)$$

entropie
$$E = -\sum_{g} \log[h(g)] \cdot h(g)$$

Matrice des co-occurrences

Principe

déterminer le nombre de configurations dans un voisinage pour lesquelles les niveaux de gris d'une paire de pixels (suivant cette configuration) prennent des valeurs particulières.

Calcul

 T_x et T_y sont les dimensions de la région analysée,

 C_x et C_v sont les dimensions de l'ensemble des configurations,

G est le nombre de niveaux de gris: $0 \le g \le G-1$

la matrice des co-occurences, de dimension GxG, est donnée par:

$$M_{dx,dy}(u,v) = \sum_{i=1}^{N_x-C_x} \sum_{j=1}^{N_y-C_y} \delta[(I(x,y)-u)\cdot (I(x+dx,y+dy)-v)]$$

dans laquelle $\delta[x]=1$ ssi x=0

Exemple de calcul

Cas traité dans l'exemple

niveaux de gris codés entre 0 et 7 (3 bits) configuration $d_x = 1$ et $d_y = 2$ région de taille 4x4

Exemple sur une image (16 niveaux de gris)

Attributs d'Haralick

Objectif

simplifier la représentation des matrices des co-occurrences

Exemples d'attributs

(u,v) désignent les coordonnées d'un élément de la matrice M(u,v) désigne la valeur normalisée (divisée par le nb de pixels)

moyenne
$$M = \sum_{u,v} M(u,v)$$

$$\mathbf{variance\ en\ u} \qquad \boldsymbol{V}_{\boldsymbol{u}} \ = \ \sum_{\boldsymbol{u}\,,\boldsymbol{v}} \left(\boldsymbol{u} - \boldsymbol{M}\right) \cdot \boldsymbol{M}\left(\boldsymbol{u}\,,\boldsymbol{v}\right)$$

entropie
$$E = -\sum_{u,v} \log(M(u,v)) \cdot M(u,v)$$

moment différentiel inverse $MDI = -\sum_{u,v} \frac{1}{1+(u-v)^2} \cdot M(u,v)$

Exemple d'attributs d'Haralick

Description fréquentielle d'une texture

Principe

une texture est une répétition dans l'image d'éléments avec une fréquence spatiale déterminée.

Détermination de la texture

filtrage de l'image pour mettre en évidence les répétitions : par transformation de Fourier, par transformation en ondelettes, par banc de filtres adaptés, exemple : filtres de Gabor

Fonction de Gabor

produit d'une fonction gaussienne par un sinus ou un cosinus:

$$G_c(x,y) = \cos(\omega_x x + \omega_y y) \cdot e^{-\frac{x^2 + y^2}{2\sigma^2}} \qquad G_s(x,y) = \sin(\omega_x x + \omega_y y) \cdot e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Analyse par filtres de Gabor

Principe

une texture est caractérisée par les statistiques (moyenne, variance, etc.) calculées sur les réponses d'un ensemble de filtres de Gabor.

Réponse d'un filtre

convolution de l'image avec une fonction de Gabor donnée

Exemples de fonctions de Gabor pour l'analyse de textures

anti-symétriques fonction sinus

Exemple de filtrage d'image

Pour approfondir

Duda, Hart, Stork, « Pattern Classification », 2ème édition, Wiley-Interscience, 2001.

http://rii.ricoh.com/~stork/DHS.html

cours de Ronan Fablet sur les textures (ENST Bretagne)

perso.telecom-bretagne.eu/ronanfablet/data/coursTexture_F4B202v2.pdf

