SPI Slave with Single Port RAM by Ahmed Khalaf Mohamed Ali Under the guidance of Eng. Kareem Waseem

1 Projects specifications:

1.1 Input-Output Ports

Figure 1:SPI SLAVE INTERFACE WITH SINGLE RAM

1.2 SPI SLAVE INTERFACE

1.2.1 Ports

Name	Туре	Size	Description
clk	Input	1 bit	Clock signal
rst_n	Input	1 bit	Active low reset signal
SS_n	Input	1 bit	Slave Select signal
MOSI	Input	1 bit	Master-Out-Slave-In data signal
tx_data	Input	10 bit	Transfer data output signal, Takes MOSI for 10 clock cycles and stores it in tx_data to send it to the RAM
tx_valid	Input	1 bit	Indicates when tx_data is valid
MISO	Output	1 bit	Master-In-Slave-Out data signal
rx_data	Output	10 bit	Received data from the memory
rx_valid	Output	1 bit	Indicates when rx_data is valid

1.3 Single Port sync RAM Module

1.3.1 Parameters

MEM_DEPTH, Default: 256 ADDR_SIZE, Default: 8

1.3.2 **Ports**

Name	Туре	Size	Description
clk		1 bit	Clock Signal
a_rst_n		1 bit	Active low synchronous reset signal
din	Input	10 bits	Data Input
rx_valid		1 bit	HIGH only accept din[7:0] to save the write/read address internally or write a memory word depending on the most significant 2 bits din[9:8]
dout	_	8 bits	Data Output
tx_valid	Output	1 bit	Whenever the command is memory read the tx_valid should be HIGH

1.4 SPI Slave FSM Transitions

Figure 2: SPI Slave State Transitions

2 READ-WRITE

Din[9:8] selects the mode for Read/Write on the single port synchronous RAM

din[9:8]	Command	Description
00	Write	Hold din[7:0] internally as write address
01	,,,,,,	Write din[7:0] in the memory with write address held previously
10		Hold din[7:0] internally as read address
11	Read	Read the memory with read address held previously, tx_valid should be HIGH, dout holds the word read from the memory, ignore din[7:0].

3 WAVEFORMS

Figure 3:initialization Ram

Figure 4: Write AND READ DATA AND ADDRESS

4 Synthesis snippets-One hot encoding:

4.1 Schematic after the elaboration

Figure 5:Schematic after the elaboration

4.2 Schematic after the Synthesis

Figure 6:Schematic after the Synthesis

4.3 Synthesis report showing the encoding used

84	INFO: [Synth 8-802] inferred FSM fo	r state register 'cs_reg' in mode	ule 'SPI'
85			
86	State	New Encoding	Previous Encoding
87			
88	*		
89	IDLE	00001	00001
90	CHK_CMD	00010	00010
91 ;	WRITE	00100	00100
92	READ_DATA	10000	10000
93	READ_ADD	01000	01000
94			
95	INFO: [Synth 8-3898] No Re-encoding	of one hot register 'cs_reg' in	module 'SPI'

Figure 7:Synthesis report showing the encoding used

4.4 Design Timing summary

Figure 8:Design Timing summary

5 Implementation-One hot encoding:

5.1 Utilization report

Figure 10:Utilization report

5.2 Timing report

Design Timing Summary

Figure 11:Timing report

5.3 FPGA device

Figure 12:FPGA device

5.4 Bitstream generate

Figure 13:Bitstream generate

6 Synthesis snippets-gray encoding:

6.1 Schematic after the elaboration

Figure 14:schematic after the elaboration

6.2 Schematic after the Synthesis

Figure 15:Schematic after the Synthesis

6.3 Synthesis report showing the encoding used

INFO: [Synth 8-802] inferred FSM for state register 'cs_reg' in module 'SPI'

State	ı	New Encoding	ı	Previous Encoding
IDLE	1	000	ĺ	00001
CHK_CMD	1	001	1	00010
WRITE	I	011	1	00100
READ_DATA	I	010	1	10000
READ_ADD	1	111	I	01000

INFO: [Synth 8-3354] encoded FSM with state register 'cs_reg' using encoding 'gray' in module 'SPI'

Figure 16:Synthesis report showing the encoding used

6.4 Design Timing summary

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.714 ns	Worst Hold Slack (WHS):	0.142 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	85	Total Number of Endpoints:	85	Total Number of Endpoints:	40
All user specified timing constra	ints are me	et.			

Figure 17:Design Timing summary

Figure 18:Critical path

7 Implementation-gray encoding:

7.1 Utilization report

Q								
Name 1	Slice LUTs (20800)	Slice Registers (41600)	Slice (8150)	LUT as Logic (20800)	Block RAM Tile (50)	Bonded IOB (106)	BUFGCTRL (32)	
V N SPI_SLAVE_WITH_SINGLE_PORT_RAM	43	39	20	43	0.5	5	1	
INS_RAM (RAM)	13	17	5	13	0.5	0	0	
INS_SPI (SPI)	30	22	17	30	0	0	0	

Figure 19:Utilization report

7.2 Timing report

Setup	Hold		Pulse Width
Worst Negative Slack (WNS): 5.023	Worst Hold Slack (WHS):	0.118 ns	Worst Pulse Width Slack (WPWS): 4.500 ns
Total Negative Slack (TNS): 0.000	s Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 0	Number of Failing Endpoints:	0	Number of Failing Endpoints: 0
Total Number of Endpoints: 87	Total Number of Endpoints:	87	Total Number of Endpoints: 42
All user specified timing constraints ar	met.		

Figure 20:Timing report

7.3 FPGA device

Figure 21:FPGA device

7.4 Bitstream generate

Figure 22:Bitstream generate

8 Synthesis snippets- sequential encoding:

8.1 Schematic after the elaboration

Figure 23:Schematic after the elaboration

8.2 Schematic after the Synthesis

Figure 24:Schematic after the Synthesis

8.3 Synthesis report showing the encoding used

Previous Encoding	Pre	Encoding	New	State	Sta
 00001	 	000		IDLE	II
00010	I	001		K_CMD	CHK_C
00011	I	010		WRITE	WR
00101	I	011		DATA	READ_DA
00100	I	100		D ADD	READ A

Figure 25:Synthesis report showing the encoding used

8.4 Design Timing summary

Design Timing Summary

/HS): 0.142 n	142 ns Worst Pulse Width Slack (WPWS): 4.500 ns
	142 ns Worst Pulse Width Slack (WPWS): 4.500 ns
IS): 0.000 n	000 ns Total Pulse Width Negative Slack (TPWS): 0.000 n
ndpoints: 0	Number of Failing Endpoints: 0
dpoints: 85	Total Number of Endpoints: 40

All user specified timing constraints are met.

Figure 26:Design Timing summary

Figure 27:Critical path

9 Implementation- sequential encoding:

9.1 Utilization report

Figure 28:Utilization report

9.2 Timing report

Setup	Hold	Pulse Width
Worst Negative Slack (WNS): 5.979 ns	Worst Hold Slack (WHS): 0.	.076 ns Worst Pulse Width Slack (WPWS): 4.500 ns
Total Negative Slack (TNS): 0.000 ns	Total Hold Slack (THS): 0.	.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 0	Number of Failing Endpoints: 0	Number of Failing Endpoints: 0
Total Number of Endpoints: 86	Total Number of Endpoints: 86	6 Total Number of Endpoints: 40
All user specified timing constraints are m	et.	

Figure 29:Timing report

9.3 FPGA device

Figure 30:FPGA device

9.4 Bitstream generate

Figure 31:Bitstream generate

10 BEST ENCODING:

In previous simulations we test "gray" and "sequential", "One_hot" encoding and will choose the highest implementation slack to make debug core .

In this situation the best encoding is sequential encoding with high frequency 500Mhz: Sequential encoding with debug core :

10.1 Utilization report

Figure 32:Utilization report

10.2 Timing report

Design Timing Summary

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	0.097 ns	Worst Hold Slack (WHS):	0.022 ns	Worst Pulse Width Slack (WPWS):	1.250 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	3890	Total Number of Endpoints:	3874	Total Number of Endpoints:	2154
All user specified timing constra	ints are me	et.			

Figure 33:Timing report

10.3 FPGA device

Figure 34:FPGA device

10.4 Bitstream generate

Figure 35:Bitstream generate