Тема 2

Основные теоремы нейроинформатики

В этой лекции мы рассмотрим одну из базовых в теории нейронных сетей теорем – теорему Колмогорова о представимости непрерывной функции.

Теорема Колмогорова

Гильберт, в списке своих проблем, которые, по его мнению, должны были определять развитие математики XX века, под номером 13 поместил следующую задачу: представляется ли корень уравнения

$$x^{7}+ax^{3}+bx^{2}+cx+1=0$$

(как функция коэффициентов) суперпозицией каких-либо непрерывных функций двух переменных?

А. Н. Колмогоров дал ответ на этот вопрос, найдя решение для более общей задачи: можно ли произвольную непрерывную функцию n переменных получить с помощью операций сложения, умножения и суперпозиции из непрерывных функций двух переменных? В серии работ А.Н.Колмогоров, затем В.И.Арнольд [5] и вновь А.Н.Колмогоров [1] решили эту проблему: можно получить любую непрерывную функцию n переменных с помощью операций сложения, умножения и суперпозиции из непрерывных функций $o\partial horo$ переменного.

Теорема Колмогорова 2.1. При любом целом $n \ge 2$ существуют такие определенные на отрезке $E^1 = [0,1]$ непрерывные действительные функции $\psi^{pq}(x)$, что каждая определенная на n-мерном единичном кубе E^n непрерывная действительная функция $f(x_1,...,x_n)$ представима в виде:

$$f(x_1,...,x_n) = \sum_{q=1}^{2n+1} \chi_q \left[\sum_{p=1}^n \psi^{pq}(x_p) \right], \tag{2.1}$$

 χ_q — действительны и непрерывны, а функции $\psi^{pq}(x_p)$ - непрерывны и не зависят от функции $f(x_1,...,x_n)$.

Доказательство.

1. Построение ψ^{pq} , где

$$1 \le p \le n$$
, $1 \le q \le 2n+1$, $k = 1, 2, ...$

Доказательство проведем для n=2. Для n>2 теорема доказывается аналогично. Равенство (2.1) для n=2 примет вид:

$$f(x_1, x_2) = \sum_{q=1}^{5} \chi_q \left[\psi^q(x_1) + \varphi^q(x_2) \right]. \tag{2.1'}$$

Рассмотрим сегменты $A^q_{k,i} = \left[\frac{1}{18^k}\left(i-1-\frac{q}{6}\right), \frac{1}{18^k}\left(i-\frac{1}{6}-\frac{q}{6}\right)\right], 1 \le i \le m_k = 18^k + 1.$ Эти сегменты имеют длину $\frac{1}{18^k} \cdot \frac{5}{6}$, а при фиксированных k и q получаются один из другого при переходе от i к i'=i+1 с помощью сдвига вправо на расстояние $\frac{1}{18^k}$, то есть, расположены без перекрытий, с промежутками длины $\frac{1}{6\cdot 18^k}$.

В соответствии с этим кубики $S^q_{k,i_1,i_2} = A^q_{k,i_1} \times A^q_{k,i_2}$, с ребрами длины $\frac{5}{6\cdot 18^k}$ при фиксированных k и q покрывают единичный куб E^2 с точностью до щелей ширины $\frac{1}{6\cdot 18^k}$.

Для дальнейшего доказательства потребуются следующие три леммы.

Лемма 2.1. Система всех кубиков S^q_{k,i_1,i_2} с постоянной k и переменными q и i_1,i_2 покрывают единичный куб E^2 так, что каждая точка из E^2 оказывается покрытой не менее трех раз.

Доказательство. Введем следующие обозначения:

$$B_{k,i}^q = \left[\frac{i-q-2}{18^k \cdot 6}, \frac{i-q-1}{18^k \cdot 6} \right), \ P_{k,i_1,i_2}^q = B_{k,i_1}^q \times B_{k,i_2}^q, \ \text{где } i_1, i_2 = 1,..., 18^k + 1.$$

Очевидно, что для фиксированных q и k, сегменты P^q_{k,i_1,i_2} покрывают весь единичный квадрат E^2 так, что каждая точка E^2 принадлежит какому-либо сегменту P^q_{k,i_1,i_2} и притом только одному.

Определим характеристическую функцию $\delta^q_{i_1,i_2}$ для сегмента P^q_{k,i_1,i_2} :

$$\delta_{i_1,i_2}^q = egin{cases} 0, \ \text{если}\ (i_1-q)\ \text{или}\ (i_2-q)\ \text{кратно}\ 6, \\ 1, \ \text{в другом}\ \text{случаe} \end{cases}$$

Иначе говоря, характеристические функция $\delta^q_{i_1,i_2}$ равна нулю для тех q,i_1,i_2 , для которых сегменты P^q_{k,i_1,i_2} не покрыты одним из S^q_{k,j_1,j_2} , и равна единице для других.

Рисунок 2.1. Вид сегментов S^q_{k,i_1,i_2} .

Выберем произвольную точку $x \in E^2$. Для этой точки существуют i_1, i_2 такие, что $x \in P^q_{k,i_1,i_2}$.

Для этого P^q_{k,i_1,i_2} оценим сумму характеристических функций $\mathcal{S}^q_{i_1,i_2}$:

$$\sum_{q=1}^5 \delta^q_{i_1,i_2}$$

Так как $5 \ge q \ge 1$, то (i_1-q) будет кратно 6-ти не более одного раза, и (i_2-q) будет кратно 6-ти не более одного раза, то есть, $\delta^q_{i_1,i_2}$, не менее трех раз из пяти будет равна единице. Таким образом

$$\sum_{i_1,i_2}^5 \delta_{i_1,i_2}^q \ge 3.$$

Другими словами, сегмент P^q_{k,i_1,i_2} , а следовательно и точка x, покрываются не менее трех раз системой квадратов S^q_{k,j_1,j_2} для фиксированного k и $1 \le q \le 5$. Лемма доказана.

Лемма 2.2. Можно подобрать константы $\lambda_{k,i}^{pq}$ и ε_k так, что будут выполнены условия:

1)
$$\lambda_{k,i}^{pq} < \lambda_{k,i+1}^{pq} \le \lambda_{k,i}^{pq} + \frac{1}{2^k}$$
;

- 2) $\lambda_{k,i}^{pq} \leq \lambda_{k+1,i'}^{pq} \leq \lambda_{k,i}^{pq} + \mathcal{E}_k \mathcal{E}_{k+1}$, если сегменты $A_{k,i}^q$ и $A_{k+1,i'}^q$ пересекаются;
- 3) сегменты $\Delta_{k,i_1,i_2}^q = \left[\lambda_{k,i_1}^{1q} + \lambda_{k,i_2}^{2q}; \lambda_{k,i_1}^{1a} + \lambda_{k,i_2}^{2q} + 2\varepsilon_k\right]$ при фиксированных k и q попарно не пересекаются.

Доказывается при помощи индукции по k.

Упражнение. Доказать лемму 2.2.

Замечание. Легко заметить, что из 1) и 3) вытекает

$$4)\,\varepsilon_k\leq\frac{1}{2^k}.$$

На основе указанных ранее свойств сегментов $A_{k,i}^q$ и свойств 1), 2) и 4), констант $\lambda_{k,i}^{pq}$ и ε_k доказывается лемма:

Лемма 2.3. При фиксированных q требования:

5)
$$\lambda_{k,i}^{1q} \le \psi^q(x) \le \lambda_{k,i}^{1q} + \varepsilon_k$$
, $\lambda_{k,i}^{2q} \le \varphi^q(x) \le \lambda_{k,i}^{2q} + \varepsilon_k$

при $x \in A^q_{k,i}$, однозначно определяют на E^1 непрерывные функции ψ^q, φ^q .

Доказательство. Доказывается от противного. Пусть существуют непрерывные на E^1 функции $\gamma_1^q(x), \gamma_2^q(x)$, удовлетворяющие условиям 1), 2), 4), 5) и отличные от $\psi^q(x), \varphi^q(x)$. Тогда

$$\lambda_{k,i}^{1q} \le \gamma_1^q(x) \le \lambda_{k,i}^{1q} + \varepsilon_k, \quad \lambda_{k,i}^{2q} \le \gamma_2^q(x) \le \lambda_{k,i}^{2q} + \varepsilon_k. \tag{2.2}$$

Из этих неравенств, а также из неравенств 5) следует:

$$\lim_{k\to\infty}\lambda_{k,i}^{1q}=\psi^q(x)=\gamma_1^q(x).$$

Получили противоречие. Аналогично доказывается для $\, \varphi^q(x) \,$ и $\, \gamma_2^q(x) \,$. Лемма доказана.

Замечание. Легко видеть, что по построению функции ψ^q, ϕ^q — монотонно возрастающие. Из 5) и 3) вытекает

6)
$$\psi^q(x_1) + \varphi^q(x_2) \in \Delta^q_{k,i_1,i_2}$$
 при $(x_1,x_2) \in S^q_{k,i_1,i_2}$.

2. Построение функции χ^q . Установив существование функций ψ^q, φ^q и констант $\lambda_{k,i}^{pq}$ и ε_k , обладающих свойствами 1) – 6), переходим к доказательству основной

части теоремы. Искомые функции будут построены в виде $\chi^q = \lim_{r \to \infty} \chi^q_r$, где $\chi^q_0 \equiv 0$, а χ^q_r для r > 0 будут определены с помощью индукции по r одновременно с натуральным k_r . Обозначим

$$f_r(x_1, x_2) = \sum_{q=1}^{5} \chi_r^q \left[\psi^q(x_1) + \varphi^q(x_2) \right], \tag{2.3}$$

$$M_r = \sup_{F^2} |f - f_r|$$
. (2.4)

1-й шаг. Очевидно, что $f_0 \equiv 0$, $M_0 = \sup_{F^2} \left| f \right|$.

2-й шаг. Допустим, что непрерывная функция χ_{r-1}^q и номер k_{r-1} уже определены. Тем самым определена на E^2 и непрерывная функция f_{r-1} . Так как диаметры кубиков S_{k,i_1,i_2}^q при $k \to \infty$ стремятся к нулю, то можно выбрать k_r столь большим, чтобы колебание $f-f_{r-1}$ на любом S_{k,i_1,i_2}^q не превосходило $\frac{1}{6}M_{r-1}$.

3-й шаг. Пусть $\xi_{k,i}^q$ — произвольные точки из соответствующего сегмента в $A_{k,i}^q$. На сегменте $\Delta_{k,i,i,j}^q$ положим

$$\chi_r^q(y) = \chi_{r-1}^q(y) + \frac{1}{3} \left[f\left(\xi_{k,i_1}^q, \xi_{k,i_2}^q\right) - f_{r-1}\left(\xi_{k,i_1}^q, \xi_{k,i_2}^q\right) \right]. \tag{2.5}$$

Очевидно, что фиксированные таким образом значения функции χ^q_r подчинены неравенству

$$\left|\chi_r^q(y) - \chi_{r-1}^q(y)\right| \le \frac{1}{3}M_{r-1}.$$
 (2.6)

Вне сегментов Δ_{k,i_1,i_2}^q доопределим функцию χ_r^q произвольно, но с соблюдением этого же неравенства (2.6) и непрерывности.

Оценим теперь $f-f_r$ в произвольной точке $\left(x_1,x_2\right) \in E^2$. Очевидно, что

$$f(x_{1}, x_{2}) - f_{r}(x_{1}, x_{2}) = f(x_{1}, x_{2}) - f_{r-1}(x_{1}, x_{2}) - \sum_{q=1}^{5} \{ \chi_{r}^{q} [\psi^{q}(x_{1}) + \varphi^{q}(x_{2})] - \chi_{r-1}^{q} [\psi^{q}(x_{1}) + \varphi^{q}(x_{2})] \}.$$

$$(2.7)$$

Это равенство получается, если к левой части прибавить $f_{r-1}(x_1,x_2)$, вычесть определение этой функции, а $f_r(x_1,x_2)$ представим ее определением.

Сумму \sum_{q} в (2.7) представим в виде $\sum^{1} + \sum^{2}$, где \sum^{1} распространена на некоторые из 3-х значений q, для которых точка (x_1, x_2) входит в какой-либо из кубиков S_{k,i_1,i_2}^q (такие существуют по лемме 2.1), а сумма \sum^{2} распространена на остающиеся 2 значения q.

Для каждого слагаемого из \sum^{1} получаем в силу (2.5)

$$\chi_{r}^{q} \left[\psi^{q} \left(x_{1} \right) + \varphi^{q} \left(x_{2} \right) \right] - \chi_{r-1}^{q} \left[\psi^{q} \left(x_{1} \right) + \varphi^{q} \left(x_{2} \right) \right] =
= \frac{1}{3} \left[f \left(\xi_{k,i_{1}}^{q}, \xi_{k,i_{2}}^{q} \right) - f_{r-1} \left(\xi_{k,i_{1}}^{q}, \xi_{k,i_{2}}^{q} \right) \right] =
= \frac{1}{3} \left[f \left(x_{1}, x_{2} \right) - f_{r-1} \left(x_{1}, x_{2} \right) \right] + \frac{w^{q}}{3},$$
(2.8)

где

$$\left| w^q \right| \le \frac{1}{6} M_{r-1} \tag{2.9}$$

Слагаемые из \sum^2 оцениваются при помощи (2.6). Из (2.5) и (2.8), (2.9) и (2.6) получаем:

$$\begin{aligned} |f - f_r| &= \left| \frac{1}{3} \cdot 3 \cdot w^q + \sum^2 \left(\chi_r^q - \chi_{r-1}^q \right) \right| \le \\ &\le \frac{1}{6} M_{r-1} + \frac{2}{3} M_{r-1} = \frac{5}{6} M_{r-1} \ . \end{aligned}$$
 (2.10)

Так как $f - f_{r-1}$ в равенстве (2.7) и в представлении (2.8) взаимно уничтожаются.

Так как (2.10) справедливо в любой точке $(x_1, x_2) \in E^2$, то

$$M_r \le \frac{5}{6} M_{r-1}, \quad M_r \le \left(\frac{5}{6}\right)^r M_0.$$
 (2.11)

Из (2.6) и (2.11) вытекает, что разности $\chi_r^q - \chi_{r-1}^q$ не превосходят по абсолютной величине соответствующих членов абсолютно сходящегося ряда $\sum_r \frac{1}{3} M_{r-1}$:

$$\frac{1}{3}M_{r-1} = \frac{1}{3} \cdot \left(\frac{5}{6}\right)^{r-1} \cdot M_0 \ge \chi_r^q - \chi_{r-1}^q$$

Поэтому функция χ_r^q при $r \to \infty$, по признаку Вейрштрасса равномерной сходимости рядов функций, равномерно сходится к непрерывным предельным функциям χ^q . Каждый из q рядов $\sum_r (\chi_r^q - \chi_{r-1}^q)$ - равномерно сходится, следовательно, равномерно сходится и сумма по q этих рядов.

Из соотношений (2.4) и (2.3) и оценки (2.11) предельным переходом при $r \to \infty$ получаем равенство (2.1'), чем и заканчивается доказательство теоремы.

Литература

- 1. Колмогоров А.Н. О представлении непрерывных функций нескольких переменных в виде суперпозиции непрерывных функций одного переменного. Доклад. АН СССР, 1957. Т. 114, No. 5. С. 953-956.
- 2. К. Иосида «Функциональный анализ», «Мир», М., 1967, с. 17.
- 3. Горбань А.Н., Россиев Д.А. Нейронные сети на персональном компьютере. «Наука», Новосибирск, 1996.
- 4. Курош А. Г. Лекции по общей алгебре. «Наука», Москва, 1973.
- 5. Арнольд В. И. О представлении функций нескольких переменных в виде суперпозиции функций меньшего числа переменных. // Математическое просвещение, 19 № с. 41-61.
- 6. Stone M.N. The generalized Weierstrass approximation theorem. Math. Mag., 1948. V.21. PP. 167-183, 237-254.
- 7. Cybenko G. Approximation by superposition of a sigmoidal function. Mathematics of Control, Signals, and Systems, 1989. Vol. 2. PP. 303 314.