

High Voltage Transistors

 We declare that the material of product compliance with RoHS requirements.

DEVICE MARKING AND ORDERING INFORMATION

Device	Marking	Package	Shipping
LMBTA42LT1G	1D	SOT-23	3000/Tape&Reel
LMBTA42LT3G	1D	SOT-23	3000/Tape&Reel

MAXIMUM RATINGS

Rating	Symbol		lue LMBTA43	Unit
Collector–Emitter Voltage	V CEO	300	200	Vdc
Collector-Base Voltage	V сво	300	200	Vdc
Emitter-Base Voltage	V EBO	6.0	6.0	Vdc
Collector Current — Continuous	Ic	50	00	mAdc

LMBTA42LT1G

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR- 5 Board, (1) T _A = 25°C	Pъ	225	mW
Derate above 25°C		1.8	mW/°C
Thermal Resistance, Junction to Ambient	R _{ÐJA}	556	°C/W
Total Device Dissipation Alumina Substrate, (2) T _A = 25°C	Ро	300	mW
Derate above 25°C		2.4	mW/°C
Thermal Resistance, Junction to Ambient	R _Ð JA	417	°C/W
Junction and Storage Temperature	T J , T stg	-55 to +150	Ŝ

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Collector–Emitter Breakdown Voltage(3)	V _{(BR)CEO}			Vdc
$I_{C} = 1.0 \text{ mAdc}, I_{B} = 0$		300	_	
Collector-Base Breakdown Voltage	V _{(BR)CBO}			Vdc
$(I_C=100 \mu Adc, I_E=0)$		300	_	
Emitter–Base Breakdown Voltage	V _{(BR)EBO}	6.0		Vdc
[I _E = 100 μAdc, I _C = 0)	V (BR)EBO	0.0		vuc
Collector Cutoff Current	I _{CBO}			μAdc
$(V_{CB}=300Vdc, I_{E}=0)$		_	0.1	
$(V_{CB}=230Vdc, I_{E}=0)$		_	0.1	
$(V_{CB}=200Vdc, I_{E}=0)$		_	0.1	
Emitter Cutoff Current	I _{EBO}			μAdc
V_{EB} = 6.0Vdc, I_{C} = 0)		_	0.1	
$(V_{EB} = 4.0 \text{Vdc}, I_{C} = 0)$		_	0.1	

Symbol

Min

Max

Unit

- 1. $FR-5 = 1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.

Characteristic

3. Pulse Test: Pulse Width <300 μ s, Duty Cycle <2.0%.

LMBTA42LT1G

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) (Continued)

Characteristic		Symbol	Min	Max	Unit	
ON CHARACTERISTICS (3)						
DC Current Gain		h _{FE}			_	
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	Both Types		25	_		
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	Both Types		40	_		
$(I_{C} = 30 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$			40	_		
Collector–Emitter Saturation Voltage		V _{CE(sat)}			Vdc	
($I_C = 20 \text{ mAdc}$, $I_B = 2.0 \text{ mAdc}$)		OZ(Sai)	_	0.5		
Base–Emitter Saturation Voltage (I c = 20 mAdc, I B = 2.0 mAdc)		V BE(sat)	_	0.9	Vdc	

SMALL-SIGNAL CHARACTERISTICS

Current –Gain–Bandwidth Product	f	50		MHz
$(V_{CE} = 20 \text{ Vdc}, I_{C} = 10\text{mA}, f = 100 \text{ MHz})$	' _T	50	_	IVIMZ
Collector – Base Capacitance	C cb			pF
(V _{CB} = 20 Vdc, I _E = 0, f = 1.0 MHz)		_	3.0	

^{3.} Pulse Test: Pulse Width ≤300 μs, Duty Cycle ≤2.0%.

LMBTA42LT1G

I c, COLLECTOR CURRENT (mA)

Figure 8. DC Current Gain

100

Figure 2. Capacitance

Figure 3. Current-Gain — Bandwidth Product

I_C, COLLECTOR CURRENT (mA)

Figure 4. "On" Voltages

LMBTA42LT1G

SOT-23

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIN	METERS
D 1111	MIN	MAX	MIN	MAX
Α	0.1102	0.1197	2.80	3.04
В	0.0472	0.0551	1.20	1.40
С	0.0350	0.0440	0.89	1.11
D	0.0150	0.0200	0.37	0.50
G	0.0701	0.0807	1.78	2.04
Н	0.0005	0.0040	0.013	0.100
J	0.0034	0.0070	0.085	0.177
K	0.0140	0.0285	0.35	0.69
L	0.0350	0.0401	0.89	1.02
S	0.0830	0.1039	2.10	2.64
V	0.0177	0.0236	0.45	0.60

