

University of Houston-Downtown College of Science and Technology Department of Computer Science and Engineering Technology

Statistical and Machine Learning CS 4319

Support Vector Machine

Pablo Guillen-Rondon, Ph.D. Adjunct Faculty - UHD

- A classifier derived from statistical learning theory by Vapnik, et al. in 1992
- SVM became famous when, using images as input, it gave accuracy comparable to neural-network with hand-designed features in a handwriting recognition task
- Currently, SVM is widely used in object detection & recognition, content-based image retrieval, text recognition, biometrics, speech recognition, etc.
- Also used for regression

• g(x) is a linear function:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

A hyper-plane in the feature space

• (Unit-length) normal vector of the hyper-plane:

$$\mathbf{n} = \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

- denotes +1
- denotes -1

• How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

 X_2

- denotes +1
- denotes -1

 How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

- denotes +1
 - odenotes -1

• How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

- denotes +1
 - denotes -1

• How would you classify these points using a linear discriminant function in order to minimize the error rate?

• Infinite number of answers!

• Which one is the best?

○ denotes -1

denotes +1

• The linear discriminant function (classifier) with the maximum margin is the best

 Margin is defined as the width that the boundary could be increased by before hitting a data point

- Why it is the best?
 - Robust to outliners and thus strong generalization ability

• Given a set of data points:

$$\{(\mathbf{x}_i, y_i)\}, i = 1, 2, \dots, n$$
 where

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b > 0$

For
$$y_i = -1$$
, $\mathbf{w}^T \mathbf{x}_i + b < 0$

With a scale transformation on both w
 and b, the above is equivalent to

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$

For
$$y_i = -1$$
, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

We know that

$$\mathbf{w}^T \mathbf{x}^+ + b = 1$$
$$\mathbf{w}^T \mathbf{x}^- + b = -1$$

• The margin width is:

$$M = (\mathbf{x}^+ - \mathbf{x}^-) \cdot \mathbf{n}$$
$$= (\mathbf{x}^+ - \mathbf{x}^-) \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|} = \frac{2}{\|\mathbf{w}\|}$$

• Formulation:

maximize
$$\frac{2}{\|\mathbf{w}\|}$$

such that

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$
For $y_i = -1$, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

• Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

such that

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$
For $y_i = -1$, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

• Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

such that

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$

Solving the Optimization Problem

Quadratic programming with linear constraints

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

s.t.
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$

Lagrangian Function

minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t. $\alpha_i \ge 0$

Solving the Optimization Problem

■ The linear discriminant function is:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \sum_{i \in SV} \alpha_i \mathbf{x}_i^T \mathbf{x} + b$$

Notice it relies on a *dot product* between the test point x and the support vectors x_i

Also keep in mind that solving the optimization problem involved computing the dot products $x_i^T x_i$ between all pairs of training points

What if data is not linear separable?
 (noisy data, outliers, etc.)

Slack variables ξ_i can be added to allow misclassification of difficult or noisy data points

Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

such that

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i$$
$$\xi_i \ge 0$$

• Parameter C can be viewed as a way to control over-fitting.

Non-linear SVMs: Feature Space

• General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Nonlinear SVMs: The Kernel Trick

• With this mapping, our discriminant function is now:

$$g(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i \in SV} \alpha_i \phi(\mathbf{x}_i)^T \phi(\mathbf{x}) + b$$

No need to know this mapping explicitly, because we only use the dot product of feature vectors in both the training and test.

A *kernel function* is defined as a function that corresponds to a dot product of two feature vectors in some expanded feature space:

$$K(\mathbf{x}_i, \mathbf{x}_j) \equiv \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

Nonlinear SVMs: The Kernel Trick

Examples of commonly-used kernel functions:

Linear kernel:
$$K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$$

- Polynomial kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$
- □ Gaussian (Radial-Basis Function (RBF)) kernel:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$$

Sigmoid:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\beta_0 \mathbf{x}_i^T \mathbf{x}_j + \beta_1)$$

Support Vector Machine: Algorithm

- 1. Choose a kernel function
- 2. Choose a value for *C*
- 3. Solve the quadratic programming problem
- 4. Construct the discriminant function from the support vectors