

 $\bigvee \, \stackrel{\sim}{=} \, \, \bigvee_{1} \, ' \oplus \, \bigvee_{2} \, \longleftarrow \, \phi$ ** Ejernio @ Demestre que si V es ma represtant Productes hermitians q-intrintes entorus FXERso (b) Desciba los poductos hermitinos q-inventes en ma rep-cualquiera. (Hint: Piense que son podetos interios princios) (de Schur) Lema: Sean Wi Wz representaciones inducibles de G y sea $\varphi: W_1 \longrightarrow W_2$ un monfismo de reps. (i.e. $\varphi \in Hom_c(W_1, W_2)$ entonas o $\varphi \equiv 0$ o φ es un isomorfismo. Mas air si $W_1 = W_2$ entonus $y = \lambda Id$. Obs: Ed Lema descibe Hom (W, Wz) pra W, Wz cired. Hom (W, Wz) = (yo >Id , xec si W, ~Wz $W_1 \longrightarrow W_2$ Como y es monfimo (1) Kerly) ⊆ W, es invainte => Kerly) € { (0) W,} Si Kerly) = {0} => 4 es 1-1~ Si ber(4) = W, => 4=0~ (2) in (4) Chiz es inscrite => in(4) E { { 20} } Wz} 45: φ es 1-1 φ $W_1 \neq 2\vec{0}$ entrus $im(\varphi) \neq \{\vec{0}\}$ im(y) = Wz luego per Donotimo

Como el arguneto es reversible los tipos de isomorpo de las inductes que venos son independientes de la des composición
los tipos de isomorpho de las ineductes
que venos son indipendientes de
la des composición