Dependência e Indopendência Linear

- * LD: linearmente dependente
- * LI: linearmente independente

Vetores Multiple ponum

memo derecão

1) Doin Vetoren

Os restores i e no denominam re LD quando forem múltiplos entre si, i. e.

Coro contrario, \vec{u} : \vec{v} não denominados LI. Gramaticamente, tempo \vec{u} , \vec{v} LD \Leftrightarrow \vec{u} // \vec{v} \vec{v} , \vec{v} LI \Leftrightarrow \vec{u} : \vec{v} parisem direções distintos.

$$\vec{u} / \vec{s} \quad LD \qquad \vec{u} / \vec{s} \quad LI$$

Um reter vi é uma combinação linear de i a 7, quando podemos excrever

* D'é multiple de qualquer veter, logo, D'e v LD D=0.7

2°) Três Vetores

O veltorer ni, no vi via ditor LD quando forem coplanares (vetores no menno plano). Caro ino nos ocorra, ni, no vi denominam-se LI.

LD (coplomares) LI (mão coplomores)

Olso: 1) ni, ni e ni não LD quando um deles é olitido por uma combinação linear dos outros.

Teorema: $\vec{a}, \vec{b}, \vec{c}$ vão (x = y = z = 0)

Sistema de Coordenados

Para qualquer ponto P = (a, b, c) de espaço trudimensional \mathbb{R}^3 teremos:

$$\overrightarrow{OP} = \overrightarrow{aL} + \overrightarrow{b} + \overrightarrow{ck}$$

$$p = (0, b, c)$$
 * Consenção
 $\vec{j} = (1, 0, 0)$ $\{\vec{l}, \vec{j}, \vec{k}\}$ é a lore conômica de R
 $\vec{k} = (0, 0, 1)$

Def: Uma bore de \mathbb{R}^3 é qualquer conjunto de três netores LI.

$$\{x: \{\overrightarrow{L}, \overrightarrow{q}, \overrightarrow{k}\}, \underbrace{\{\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{\lambda}\}}_{\text{outra bore}}$$