Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання практичної роботи №3 з дисципліни: «Твердотільна електроніки-1»

Виконавець: Студент 3-го курсу	(підпис)	А.С. Мнацаканов	
Превірив:	(пілпис)	Л. М. Королевич	

1. Завдання

Побудувати графіки розподілу електричного поля, елеткричного потенціалу та енергетичні діаграми ідеалізованого p-n переходу. Розрахувати відстань між металургійною і реальною межами поділу pn переходу. Розрахунки і побудови робити в рівноважному стані, а також при двох прикладених зовнішній напругах: $(0,8) \cdot \varphi_0$ та $(-2) \cdot \varphi_0$ (побудови для всіх трьох випадків робити на одному графіку з однаковим масштабом).

2. Розрахунки та побудова графіків

Для того щоб побудувати графік розподілу електричного поля я буду користуватися формулами які я отримав у практичній роботі №2, ось перша пара:

$$E_p(x) = \frac{qN_A'}{2\varepsilon\varepsilon_0} \cdot (x^2 - l_p^2) \tag{1}$$

$$E_n(x) = \frac{qN_D'}{2\varepsilon\varepsilon_0} \cdot (x^2 - l_n^2) \tag{2}$$

Рис. 1: Графіки розподілу електричного поля

Наступні графіки (Рис. 2) були побудовані з використанням формул, які теж були виведені в попередній роботі:

$$\varphi_p(x) = \frac{qN_A'}{6\varepsilon\varepsilon_0} \cdot (3l_p^2 x - x^3 + 2l_p^3) \tag{3}$$

$$\varphi_n(x) = \varphi_0 + \frac{qN_D'}{6\varepsilon\varepsilon_0} \cdot (3l_n^2 x - x^3 - 2l_n^3) \tag{4}$$

Рис. 2: Графіки розподілу електричного потенціалу

Для того щоб знайти функцію за допомогою якої можна описати енергетичну діаграму p-n переходу я знайшовши E_{F_i} за формулою:

Для того щоб отримати схожу діаграму як в книжці та зробити все як прийнято, тобто зона провідності зверху а валентна зона знизу, то я до функції що описує потенціал приставив знак мінус, тобто перевеннув їх та оримав графіки як на Рис. 5. Також для знаходження δ я знайшов положення рівня Фермі та його точку перетину ідеалізованим графіком, відстань від цієї точки до нуля і буде відстань між металургійною і реальною межами поділу рп переходу.

$$E_{F_i} = \frac{E_C + E_V}{2},\tag{5}$$

де $E_C=0.7099$ та $E_V=-0.71$ які я заздалегідь визначив зі своїх графіків підставивши отримав наступне:

$$E_{F_n} = E_{F_i} - k \cdot T \cdot \ln\left(\frac{N_D}{n_i}\right),\tag{6}$$

де $k=8.617333262\cdot 10^{-5}eB\cdot K^{-1},$ Т = 300 K, $N_D'=3.8\cdot 10^{18},$ $n_i=1.79\cdot 10^6$

Рис. 3: Енергетична діаграма ідеалізованого р-п переходу (з книги)

Рис. 4: Енергетична діаграма ідеалізованого р-п переходу

Рис. 5: Енергетичні діаграми ідеалізованого р-п переходу

4. Таблиці контрольних величин

Графіки розподілу електричного поля

	р, см	n, cm
рівноважний стан	-0.000986104	7.502e-05
$U = (0.8) \cdot \varphi_0$	-0.00055042	4.188e-05
$U = (-2) \cdot \varphi_0$	-0.00135746	0.00010328

Графіки розподілу електричного потенціалу

	р, см	n, cm
рівноважний стан	-0.000986104	7.5e-05
$U = (0.8) \cdot \varphi_0$	-0.0005504	4.188e-05
$U = (-2) \cdot \varphi_0$	-0.001357463	0.00010328

Енергетичні діаграми ідеалізованого р-п переходу

	р, см	n, cm	висота потенціального бар'єру	$E_F \leftrightarrow E_A$
рівноважний стан	0.0009	7.5e-05	1.0442	
$U = (0.8) \cdot \varphi_0$	-0.0005	4.188e-05	1.8796	
$U = (-2) \cdot \varphi_0$	-0.0013	0.00010328	-1.0442	