- We work in the language $L_E = \{\bar{0}, +, v, f, ', (,), -, \rightarrow, \forall, =, \leqslant, \#\}$
 - **Definition 1.** A subset $A \subseteq \mathbb{N}^k$ is definable if there is a formula $\varphi(v_1, \ldots, v_k)$ such that

$$(n_1,\ldots,n_k)\in A\iff \varphi(\overline{n_1},\ldots,\overline{n_k})$$

- **Definition 2.** A subset $A \subseteq \mathbb{N}^k$ is provably definable if there is $\varphi(\mathbf{x})$ such that $S \vdash \varphi(\mathbf{n}) \iff \mathbf{n} \in A$
- and $S \vdash \neg \varphi(\mathbf{n}) \iff \mathbf{n} \notin A$
- **Definition 3.** A function $f: \mathbb{N}^k \longrightarrow \mathbb{N}$ is definable if $A = \{\mathbf{x}, f(\mathbf{x}) \mid \mathbf{x} \in \mathbb{N}^k\}$ is definable.
- 5 It is weakly provably definable from S if A is provably definable from S.
- 6 It is provably definable if for all $\mathbf{n} \in \mathbb{N}^k$, $S \vdash \forall v(\varphi(\bar{\mathbf{n}}, v) \leftrightarrow f(\bar{\mathbf{n}}) = v)$
- 7 **Definition 4.** 1. $+: \mathbb{N} \longrightarrow \mathbb{N} \setminus \{0\}$ is injective.
- 2. Adding and multiplying by 0 on the right: $\forall v(v+\bar{0}=\bar{0})$ and $\forall v(v\times\bar{0}=\bar{0})$
- 3. Addition, multiplication: $\forall v_1 \forall v_2 (v_1 + v_2^+ = (v_1 + v_2)^+)$ and $\forall v_1 \forall v_2 (v_1 \times v_2^+ = v_1 \times v_2 + v_2)$.
- 4. Relation \leq is a total order, $\bar{0}$ is the least element, n^+ is the successor of n.
 - 5. For any formula $\varphi(x)$ in one variable:

$$\left(\varphi(\bar{0}) \wedge \forall v_0 \left(\varphi(v_0) \to \varphi(v_0^+)\right)\right) \to \forall v_0 \left(\varphi(v_0)\right)$$

- Definition 5. For $\varphi = \sigma_0 \dots \sigma_n$ a formula of L, $\lceil \varphi \rceil = \sum_{i=0}^n \lceil \sigma_i \rceil 13^i$
- Definition 6. $\Sigma_0 = \Pi_0 = \Delta_0$ formulas without unbounded quantifiers. Σ_{n+1} : formulas of the form
- $\exists x \varphi(x)$, with $\varphi \in \Pi_n$. Similarly, Π_{n+1} is the formulas of the form $\forall x \varphi(x)$ with $\varphi \in \Sigma_n$.
- ¹⁴ A formula ψ is provably Σ_n from S if there is a $\varphi \in \Sigma_n$, such that $S \vdash \psi \leftrightarrow \varphi$.

Lemma 7 (Diagonal Lemma). For any formula $F(v_1)$ there is a formula C such that:

$$\mathrm{PA} \vdash F(\ulcorner C \urcorner) \leftrightarrow C$$

- 15 Provability Rules
- 1. If $S \vdash \varphi$ then $PA \vdash Pr_S(\overline{\varphi})$.
- 2. $\operatorname{PA} \vdash \operatorname{Pr}_S(\overline{\varphi} \to \psi^{\neg}) \to (\operatorname{Pr}_S(\overline{\varphi}) \to \operatorname{Pr}_S(\overline{\psi})).$
- 3. $\operatorname{PA} \vdash \operatorname{Pr}_S(\lceil \overline{\varphi} \rceil) \to \operatorname{Pr}_S(\lceil \overline{\operatorname{Pr}_S(\lceil \overline{\varphi} \rceil)} \rceil)$
- Definition 8. A set S of assumptions is n-inconsistent if for some Σ_n formula $\exists x \psi(x), S \vdash \exists x \psi(x)$ but
- for all $m \in \mathbb{N}$, $S \vdash \neg \psi(\overline{m})$. It is *n-consistent* if it is not *n*-inconsistent.