1 Лист 2

Задача 1.1. Дана случайная величина $\xi \in \mathbb{R}$. Предъявите функцию $G : \mathbb{R} \mapsto \mathbb{R}$, такую что случайная величина $G(\eta)$, где η имеет равномерное распределение на отрезке [0,1], имеет такое же распределение как и ξ .

Доказательство. Пусть случайная величина ξ имеет функцию распределения F Определим функцию $F^-:[0,1]\to\mathbb{R}$

$$F^{-}(y) := \inf\{x : F(x) \geqslant y\}, y \in [0, 1]$$

Покажем, что сучайная величина $X = F^-(\eta)$, где η имеет равномерное распределение на [0,1], имеет то же распредление, что и η , то есть

$$\mathbb{P}(X \leqslant x) = F(x), \quad x \in \mathbb{R}$$

Рассмотрим случай, когда $x>y\Rightarrow F(x)>F(y)$ (то есть F обратима). Заметим, что в этом случае $F^-=F^{-1}$. Нам нужно показать, что $\mathbb{P}(F^{-1}(\eta)\leqslant x)=F(x),\ x\in\mathbb{R}$

$$\{F^{-1}(\eta) \leqslant x\} = \{\eta \leqslant F(x)\}$$

$$F^{-1}(\eta) \leqslant x \Rightarrow F(F^{-1}(\eta)) \leqslant F(x) \Rightarrow \eta \leqslant F(x)$$

$$\eta \leqslant F(x) \Rightarrow F^{-1}(\eta) \leqslant F^{-1}(F(x)) = x$$

Следовательно $\mathbb{P}(F^{-1}(\eta) \leqslant x) = \mathbb{P}(\eta \leqslant F(x)) = F(x)$

Рассмотрим случай, когда F – произвольное распределение Покажем, что $\{\eta\leqslant F(x)\}\subseteq \{F^-(\eta)\leqslant x\}\subseteq \{\eta\leqslant F(x)\}$, то есть $\{\eta\leqslant F(x)\}=\{F^-(\eta)\leqslant x\}$ так как F^- не убывает, то $\eta\leqslant F(x)\to F^-(\eta)\leqslant F^-(F(x))$

$$F^{-}(F(x)) - \inf\{x_0 : F(x_0) \geqslant F(x)\}\$$

 $x \in \{x_0 : F(x_0) \geqslant F(x)\} \Rightarrow \inf\{x_0 : F(x_0) \geqslant F(x)\} \leqslant x \Rightarrow F^{-}(F(x)) \leqslant x$

Следовательно $F^-(\eta) \leqslant x \Rightarrow \{\eta \leqslant F(x)\} \subseteq \{F^-(\eta) \leqslant x\}$ Так как F монотонна и не убывает, то $F^-(\eta) \leqslant x \Rightarrow F(F^-(\eta)) \leqslant F(x)$ Покажем, что $F(F^-(y)) \geqslant y$ при $F^-(y) < \infty$

$$F^{-}(y) < \infty \Rightarrow A = \{x \in \mathbb{R} | F(x) \geqslant y\} \neq \emptyset$$

То есть существует последовательность $(x_n)_{n\in\mathbb{N}}\subseteq A: x_n\downarrow\inf A=T^-(y)\ n\to\infty$ Так как F – функция распределения случайной величины, то F непрерывна справа, откуда $F(x_n)$ убывает к $F(F^-(y))$ при $n\to\infty$, то есть $F(F^-(y))>y$. Следовательно

$$F(F^{-}(\eta)) \geqslant \eta \Rightarrow \eta \leqslant F(x) \Rightarrow \{F^{-}(\eta) \leqslant x\} \subseteq \{\eta \leqslant F(x)\}$$

Таким образом, $\{F^-(\eta)\leqslant x\}=\{\eta\leqslant F(x)\}$ Получается, что опять $\mathbb{P}(F^-(\eta)\leqslant x)=\mathbb{P}(\eta\leqslant F(x))=F(x)$ Значит функция G, котрую нужно было найти в задаче, равна F^-

Задача 1.2. Имеется случайная величина, равномерно распределенная на [0,1], и симметричная монетка. Как с их помощью построить случайную величину с плотностью распределения

$$\rho(x) = \left(3(x - 1/2)^2 + \frac{9}{8}|1 - 2x|^{1/2}\right), \quad x \in [0, 1]?$$

Доказательство.

Задача 1.3. Пусть ξ_1, ξ_2, \ldots независимые одинаково распределенные случайные величины, $\mathbb{E} |\xi_1| < \infty$, и $S_k = \sum_{i=1}^k \xi_i$, а $M_k = \max (0, S_1, \ldots, S_k)$, $k \ge 1$. Покажите, что для любого n

$$\mathbb{E}M_n = \sum_{k=1}^n \frac{\mathbb{E}S_k^+}{k}$$

где $S_k^+ = \max(0, S_k)$

Доказательство.

Задача 1.4. Пусть $\varphi(n)$ — функция Эйлера, равная количеству простых чисел p, таких что 1 . Докажите формулу Эйлера, используя вероятностные соображения:

$$\varphi(n) = \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

где произведение берется по всем простым числам p, делящим n.

Доказательство. Рассмотрим дискретное распределение на множестве $\{1, \dots, n\}$

$$\mathbb{P}(x=k) = \frac{1}{n}$$

Пусть $n=p_1^{\alpha_1}\cdot\ldots\cdot p_m^{\alpha_m}$ – разложение n.

$$A_{p_i} := \{X$$
 делится на $p_i\}$

$$P(A_{p_i}) = rac{\mbox{число элементов } \mathbb{Z}_n, \mbox{ кратных } p_i}{n} = rac{rac{n}{p_i}}{n} = rac{1}{p_i}$$

Покажем, что события A_{p_1},\dots,A_{p_m} независимы Возьмем $I=\{i_1,\dots,i_s\}\subset\{1,2,\dots,m\}$

$$P(\bigcap_I A_{p_i}) = P(A_{\cap_I p_i}) = \frac{\text{число элементов } \mathbb{Z}_n, \text{ кратных } \prod_I p_i}{n} = \frac{\frac{n}{\prod_I p_i}}{n} = \prod_I p_i^{-1} = \prod_{i \in I} P(A_{p_i})$$
 $\Rightarrow A_{p_1,...,p_m}$ независимы

Число взаимно просто с $n \Leftrightarrow$ это число не делится на $p_i, 1 \leqslant i \leqslant m$

$$P(\bigcap_{i=1}^{m} A_{p_i}^c) = \prod_{i=1}^{m} P(A_{p_i}^c) = \prod_{i=1}^{m} (1 - \frac{1}{p_i})$$

Заметим теперь, что P(X взаимнопросто с $n)=\frac{\varphi(n)}{n}$, таким образом $\frac{\varphi(n)}{n}=\prod_{n|n}(1-\frac{1}{p})$

Задача 1.5. Случайные точки $A_1=(\xi_1,\eta_1)$, $A_2=(\xi_2,\eta_2)$, $A_3=(\xi_3,\eta_3)$ независимы и нормально распределены на плоскости с нулевым математическим ожиданием и единичной матрицей ковариаций. Найдите вероятность того, что треугольник $A_1A_2A_3$ будет тупоугольным.

Доказательство.