# Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант <u>13</u>

| Виконав студент | <u>III-13, Жмайло Дмитро Олександрович</u> |
|-----------------|--------------------------------------------|
|                 | (шифр, прізвище, ім'я, по батькові)        |
|                 |                                            |
|                 |                                            |
| Перевірив       |                                            |
|                 | ( прізвище, ім'я, по батькові)             |

#### Київ 2021

## Лабораторна робота 3

# Дослідження ітераційних циклічних алгоритмів

**Мета -** дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

## Індивідуальне завдання

# Варіант 13

13. Для  $x \in [0, 5]$  з точністю  $\varepsilon = 10^-4$  знайти суму парних компонент ряду

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!}.$$

**Постановка задачі**  $1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\ldots+\left(-1\right)^n\frac{x^{2n}}{(2n)!}$ . Знайти суму парних компонент ряду при  $\mathbf{x} \in [0,5]$  з точністю  $\mathbf{\epsilon} = 10^-4$  використовуючи ітераційні цикли.

# Побудова математичної моделі

# Відповідно до умови складемо таблицю змінних:

| Змінна              | Tun     | Назва       | Призначення   |
|---------------------|---------|-------------|---------------|
| Початкове число х   | Дійсний | X           | Вхідні дані   |
| Задана точність є   | Дійсний | epsilon     | Вхідні дані   |
| Номер доданку п     | Дійсний | number      | Проміжні дані |
| Лічильник і         | Цілий   | i           | Проміжні дані |
| Поточна точність    | Дійсний | difference  | Проміжні дані |
| Проміжний результат | Дійсний | prev_result | Проміжні дані |
| Факторіал числа     | Цілий   | factorial   | Проміжні дані |
| Результат           | Дійсний | result      | Вихідні дані  |

Для знаходження значення виразу нам знадобиться використання таких функцій :

- **Abs(a),** яка знаходить модуль виразу, де **a** заданий вираз
- Pow(a, b), яка підносить задане число a до степеня b

Значення змінної **epsilon**  $\epsilon$  сталим і рівним **10**^-**4** 

**Оскільки** необхідно знайти суму парних компонент ряду, то для розрахунків будемо використовувати лиш компоненти, **n** яких буде кратний двом. Враховуючи це, початкове значення змінної **number** = 2, а кожне наступне значення змінної буде більшим за попереднє на 2. Тому ми можемо не брати до уваги значення виразу  $(-1)^n$ , оскільки воно завжди буде додатнім і рівним одиниці за означенням.

Для того, щоб увійти в цикл при його першому виконанні, на початку виконання програми прирівняємо значення змінної difference до одиниці

#### Розв'язання:

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії;
- Крок 2. Деталізуємо дію задання значень змінних result, prev\_result, difference, epsilon, number;
- Крок 3. Деталізуємо дію порівняння значення х;
- Крок 4. Деталізуємо дію знаходження суми парних компонент ряду;
- Крок 5. Деталізуємо дію знаходження факторіалу числа 4n;

## Псевдокод:

Крок 1

#### початок

```
введення х
присвоєння початкових значень змінним result, prev_result, difference, epsilon, number
порівняння значення х
знаходження суми парних компонент ряду
знаходження факторіалу числа 4n
виведення result
```

```
Крок 2
```

## початок

```
введення х result := 0 prev_result := 0 difference := 1 number := 2 epsilon := Pow(10, -4) порівняння значення х знаходження суми парних компонент ряду знаходження факторіалу числа 4n виведення result
```

#### кінець

Крок 3

#### початок

```
введення х result := 0 prev_result := 0 difference := 1 number := 2 epsilon := Pow(10, -4) якщо 0 \le x & x \le 5 то \frac{3 + 4 \times 6 \times 6}{3 + 4 \times 6 \times 6} знаходження факторіалу числа 4 + 6 \times 6 \times 6 числа 4 + 6 \times 6 \times 6
```

#### все якщо

#### інакше

вивід "Введено некоректне значення змінної х" виведення result

# Крок 4

## початок

```
введення х
result := 0
prev result := 0
difference := 1
number := 2
epsilon := Pow(10, -4)
якщо 0≤х && х≤5
  TO
    повторити
       prev result := result
       factorial := 1
       i := 2
       знаходження факторіалу числа 2n
       result := prev result + (Pow(x, number * 2) / factorial)
       difference := Abs(result - prev_result)
       number := number + 2
    поки difference > epsilon
    все повторити
все якщо
інакше
    вивід "Введено некоректне значення змінної х"
виведення result
```

# Крок 5

#### початок

```
введення х
result := 0
prev result := 0
difference := 1
number := 2
epsilon := Pow(10, -4)
якщо 0≤х && х≤5
  TO
    повторити
       prev result := result
       factorial := 1
       i := 2
       повторити
         factorial := factorial * i
         i := i + 1
       поки i <= (2 * number)
       все повторити
       result := prev result + (Pow(x, number * 2) / factorial)
       difference := Abs(result - prev result)
       number := number + 2
    поки difference > epsilon
    все повторити
все якщо
інакше
    вивід "Введено некоректне значення змінної х"
виведення result
```

## Блок-схема:



# Крок 3



Крок 4



Крок 5



# • Випробування алгоритму:

| Блок | Дія                                            |
|------|------------------------------------------------|
|      | Початок                                        |
| 1    | Введення х=-1                                  |
| 2    | $0 \le x \le 5$ не виконується                 |
| 3    | Вивід: "Введено некоректне значення змінної х" |
|      | Кінець                                         |

| Блок | Дія                                                                                |
|------|------------------------------------------------------------------------------------|
|      | Початок                                                                            |
| 1    | Введення х=2                                                                       |
| 2    | $0 \le 2 \le 5$ виконується                                                        |
| 3    | 1>0.0001 виконується                                                               |
| 4    | number = 2, factorial = 24,                                                        |
|      | $prev_result = 0$ , $result = 0.666666$                                            |
| 5    | <b>0.666666</b> >0.0001 виконується                                                |
| 6    | number = 4, factorial = 40320,<br>prev_result = 0.666666, result =                 |
|      | 0.673015                                                                           |
| 7    | <b>0.006349</b> >0.0001 виконується                                                |
| 8    | number = 6, factorial = 479001600,<br>prev_result = 0.673015, result =<br>0.673024 |
| 9    | <b>0.000009</b> >0.0001 <b>не</b> виконується                                      |
| 10   | Вивід: 0.673024                                                                    |
|      | Кінець                                                                             |

| Блок | Дія                                                |
|------|----------------------------------------------------|
|      | Початок                                            |
| 1    | Введення х=1                                       |
| 2    | $0 \le 1 \le 5$ виконується                        |
| 3    | 1>0.0001 виконується                               |
| 4    | number = 2, factorial = 24,                        |
|      | prev_result = <b>0</b> , result = <b>0.0416666</b> |
| 5    | 0.0416666>0.0001 виконується                       |
| 6    | number = <b>4</b> , factorial = <b>40320</b> ,     |
|      | prev_result = <b>0.0416666</b> , result =          |
|      | 0.0416914                                          |
| 7    | <b>0.0000248</b> >0.0001 <b>не</b> виконується     |
|      |                                                    |
| 8    | Вивід: 0.0416914                                   |
|      | Кінець                                             |

# Висновок:

Ми дослідили подання операторів повторення дій та набули практичних навичок їх використання під час складання циклічних програмних специфікацій. Навчилися використовувати циклічні програми для знаходження факторіалу числа, зображувати циклічні програми у вигляді блок-схем та псевдокоду.