[ENONCE] TP7 Geometrie

April 10, 2020

1 Utilisation de transformations matricielles

Pour ce TP, vous avez:

- Un test Moodle constitué de questions (pas de CodeRunner) auxquelles vous allez répondre au fur et à mesure de l'avancée de votre travail.
- Un dépôt pour rendre votre vidéo.

Pour ceux qui utilisent la version PDF, il manque les images et la vidéo dans le fichier mais elles sont présentes dans l'archive.

1.1 Différentes formes et différentes représentations

Dans la suite des manipulations à faire, vous aurez besoin des figures suivantes :

- Un carré K
- Un triangle isocèle rectangle IR
- Un triangle équilatéral Tri
- Un cercle C

• Un parallèlogramme Para

Les variables sont définies dans la cellule ci-dessous.

1.2 Compositions de transformations : la maison

A partir des formes de base et en appliquant plusieurs transformations successives, réalisez la figure suivante :

Vous devez déterminer les rapports d'homothéties de manière exacte ainsi que les angles des rotations : pas de 0,5 pour approximer $\frac{\pi}{6}$.

- Le côté de la maison mesure 6
- Celui de la porte est 3 fois plus petit et "centré"
- Les cercles des fenêtres ont le même rayon que celui de base et la position est approximative.
- Il ne reste plus qu'à trouver les dimensions du toit et à le positionner de manière exacte!

Peu importe les couleurs que vous obtenez.

```
In [3]: # Insérez votre code ici
```

1.3 Compositions de transformations : le tangram

A partir des formes de base et en appliquant plusieurs transformations successives, réalisez la figure suivante :

- Ne vous préoccupez pas des couleurs.
- Le triangle violet et le triangle marron ont les même dimension que celui de la figure de base.
- A nouveau, vous devez trouver les valeurs exactes des rapports d'homothéties, des angles de rotations, des coordonnées des vecteurs de translation.

```
In [4]: # Insérez votre code ici
```

2 Construction d'une animation

Dans cet exercice, vous devez créer une animation :

Le cercle reste fixe au centre de la figure.

Le carré fait un tour complet autour du cercle, un peu comme la terre autour du soleil.

Le reste est laissé à votre libre créativité! Pour vous aider, ci-dessous un exemple d'animation à adapter.

```
In [5]: # EXEMPLE
        fig = plt.figure() # Récupération de la figure
        N = 50 # Nombre d'images dans la vidéo/animation
        # La fonction d'animation. A chaque image, i est incrémenté.
        def animate(i):
            fig.clear() # Nettoyage de la figure entre deux images.
            # Le nettoyage ré-initialise la fenêtre donc à chaque fois,
            # elle est redéfinie :
            plt.axis('scaled') # Repère orthonormé
            plt.axis([-2,2,-2,2]) # Extrêmités de la fenêtre.
            # Vecteur de translation pour le premier triangle
            u = np.array([[1],[1]])
            # Vecteur de translation pour le second triangle
            v = np.array([[-1],[0]])
            TriU = T(i/N*u,Tri) # Translation d'une fraction du vecteur.
            TriV = T(i/N*v,Tri)
            # A la fin de l'animation, les triangles ont été translatés
            # de u et v respectivement
            .....
            Aspects techniques :
            La fonction FuncAnimation nécessite dans ses arguments une fonction
            "animate" (cela s'appelle un call-back)
            Pour fonctionner, "animate" doit retourner les "lignes"
            constituant la figure
            n n n
            lineU, = plt.plot(TriU[0,:],TriU[1,:])
            lineV, = plt.fill(TriV[0,:],TriV[1,:])
            return (lineU,lineV,)
        # Mise en oeuvre réelle de l'animation :
        anim = ani.FuncAnimation(fig, animate, frames=N)
        anim.save('exemple.mp4') # Sauvegarde dans un fichier
        disp.HTML(anim.to_html5_video()) # Intégration au notebook
Out[5]: <IPython.core.display.HTML object>
```


In [6]: # Insérez votre code ici

- Répondez aux questions du testDéposez votre vidéo.

3 FIN!