

Álgebra 1

Lineu Neto $1^{\varrho}/2004$

Sumário

1	Noções de Lógica Simbólica	1
	Relações entre Proposições	
	Lei da Álgebra das Proposições	. (
2	Noções de Teoria dos Conjuntos	13
	Leis da Álgebra de Conjuntos	. 19
3	Relações e Funções	23
	Princípio da Boa Ordenação	. 39
	Comentários Finais Sobre P.B.O. e Indução Matemática	. 45
	Algumas Funções Importantes	. 50
	Tópicos Importantes	. 60
4	Estruturas Algébricas	67
	Principais Estruturas Algébricas	. 68
	Propriedades de Uma Operação Binária	. 71
	Tábua de Operação	. 83
	Estruturas Algébricas Com Duas Operações Binárias	. 89
	Exemplos de Anéis	. 93
	Exemplos de Grupos	. 116
5	Homomorfismo Entre Estruturas Algébricas	125
	Classificação de Homomorfismo	. 125
6	Polinômios	131
	Polinômios \times Funções Polinomiais	. 134
	Divisibilidade e Raízes de Polinômios	. 135
	Raízes de Polinômios	. 139
	Curiosidades: (História da Matemática)	. 141
	Comentários Finais Sobre Polinômios	. 147
7	Tópicos Especiais Sobre Anéis e Grupos	150
	Subestrutura Algébrica	. 150
	Anéis - Quociente	160

Exercícios Propostos	180
Lógica & Conjuntos & Indução	180
Relações & Funções	184
Operações Binárias	187
Homomorfismos & Polinômios	189

1 Noções de Lógica Simbólica

Definição 1.1 (Proposição Simples). Proposição (simples) é uma oração declarativa suscetível a um único valor lógico (V ou F), sem ambigüidade.

Exemplos de sentenças que não são proposições

- a) 1 + 1 (não é oração)
- b) $\sqrt{2}$ é número racional? (não é afirmação)
- c) x + 1 = 0 (não sabemos se tal sentença é V ou F, pois tal análise depende do valor atribuído à variável x)

Definição 1.2 (Proposição Composta). Proposição composta é uma proposição obtida a partir de duas ou mais proposições simples, através do uso de modificadores e/ou conectivos.

Notações. p, q, r - proposições simples P, Q, R - proposições compostas

Observação. Para determinar o valor lógico de uma proposição usamos um dispositivo prático chamado de *Tabela-Verdade*

• Modificador: \neg (ou \sim)

(aplica-se a uma proposição). Lê-se: não

$$p$$
 - proposição $\neg p$ - negação de p

Tabela-Verdade da Negação

$$\begin{array}{c|c} p & \neg p \\ \hline V & F \\ F & V \end{array}$$

• Conectivos: (aplica-se a duas ou mais proposições)

$$1^{\varrho}$$
) \vee (lê-se: "ou")

Observação. Tal conectivo não tem caráter exclusivo.

$$p, q$$
 - proposições $p \lor q$ - disjunção de $p \in q$

Tabela-Verdade da Disjunção

p	q	$p \vee q$
V	V	V
V	F	V
F	V	V
F	F	F

$$2^{\varrho}$$
) \wedge (lê-se: "e")

$$p, q$$
 - proposições $p \wedge q$ - conjunção de p e q

Tabela-Verdade da Conjunção

$$\begin{array}{c|ccc} p & q & p \wedge q \\ \hline V & V & V \\ V & F & F \\ F & V & F \\ F & F & F \end{array}$$

$3^{\varrho}) \rightarrow (\text{condicional simples})$

$$p, q$$
 - proposições

$$p \to q$$
:
 { "se p então q " ou " p é condição suficiente para q " ou " q é condição necessária para p "

Tabela-Verdade da Condicional

p	q	$p \to q$
V	V	V
V	F	F
F	V	V
F	F	V

$4^{\varrho}) \leftrightarrow (bicondicional)$

$$p, q$$
 - proposições

$$p \leftrightarrow q$$
:
$$\begin{cases}
\text{"p se e somente se q" ou} \\
\text{"p \'e condição necessária e suficiente para q" ou} \\
\text{"se p então q e reciprocamente"}
\end{cases}$$

Tabela-Verdade da Bicondicional

$$\begin{array}{c|ccc} p & q & p \leftrightarrow q \\ \hline V & V & V \\ V & F & F \\ F & V & F \\ F & F & V \end{array}$$

Observação. $p \leftrightarrow q$ é V quando p e q têm o mesmo valor lógico (ou seja, ou ambas são verdadeiras ou ambas são falsas)

Exercício: Construa tabelas-verdade para as seguintes proposições:

- a) $p \wedge (\neg p)$
- b) $\neg(\neg p)$
- c) $(p \to q) \leftrightarrow (\neg p) \lor q$
- d) $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$ (muito importante)
- e) $\neg (p \land q) \leftrightarrow (\neg p) \lor (\neg q)$
- f) $p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r)$

Observação. prioridade (de baixo pra cima):

$$\overset{\longleftrightarrow}{\to}$$
 \land, \lor

a) (contradição)

$$\begin{array}{c|cc} p & \neg p & p \land (\neg p) \\ \hline V & F & F \\ F & V & F \end{array}$$

b) $\begin{array}{c|c|c|c} p & \neg p & \neg (\neg p) \\ \hline V & F & V \\ F & V & F \end{array}$

c) (tautologia)

p	q	$\neg p$	$p \rightarrow q$	$\neg p \lor q$	$(p \to q) \leftrightarrow (\neg p \lor q)$
V	V	F	V	V	V
V	F	F	F	F	V
F	V	V	V	V	V
F	F	V	V	V	V

d) (tautologia)

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg q \rightarrow \neg p$	$(p \to q) \leftrightarrow (\neg q \to \neg q)$
\overline{V}	V	F	F	V	V	V
V	F	F	V	F	F	V
F	V	V	F	V	V	V
F	F	V	V	V	V	V

Definição 1.3 (Tautologia). Dizemos que uma proposição composta é uma Tautologia (ou proposição logicamente verdadeira) se o seu valor lógico é sempre V, independente dos valores lógicos das proposições simples que a constituem.

Exemplos: c, d (exercício anterior)

Definição 1.4 (Contradição). Dizemos que uma proposição composta é uma Contradição (ou proposição logicamente falsa) se o seu valor lógico é sempre F, independentemente dos valores lógicos das proposições simples que a constituem.

Exemplo: a (exercício anterior)

e) (tautologia)

p	q	$\neg p$	$\neg q$	$p \wedge q$	$\neg(p \land q)$	$(\neg p) \lor (\neg q)$	$\neg (p \land q) \leftrightarrow (\neg p) \lor (\neg q)$
\overline{V}	V	F	F	V	F	F	V
V	F	F	V	F	V	V	V
F	V	V	F	F	V	V	V
F	F	V	V	F	V	V	V

f) (tautologia)

p	q	r	$q \vee r$	$p \wedge q$	$p \wedge r$	$p \wedge (q \vee r)$	$(p \wedge q) \vee (p \wedge r)$	$p \land (q \lor r) \leftrightarrow$
								$(p \wedge q) \vee (p \wedge r)$
V	V	V	V	V	V	V	V	V
V	V	F	V	V	F	V	V	V
V	F	V	V	F	V	V	V	V
V	F	F	F	F	F	F	F	V
F	V	V	V	F	F	F	F	V
F	V	F	V	F	F	F	F	V
F	F	V	V	F	F	F	F	V
F	F	F	F	F	F	F	F	V

Relações entre Proposições

Definição 1.5 (Implicação Lógica). Sejam P e Q duas proposições (compostas). Dizemos que P implica em Q, simbolizado por $P \Rightarrow Q$ se o condicional $P \rightarrow Q$ é uma tautologia, isto é, se não ocorre de P ser V e Q ser F.

Observação. Em matemática, a maioria dos *Teoremas* envolve uma implicação lógica do tipo:

$$\underbrace{\mathsf{HIP\acute{O}TESE}(S)} \Longrightarrow \mathsf{TESE}$$

Teorema (proposição cuja veracidade depende de uma demonstração)

Exemplo: P:a é um número par; $Q:a^2$ é um número par; $P\Rightarrow Q$ $(P\to Q)$: se a é um número par, então a^2 também o é)

Demonstração.

H: $a \in \text{um}$ número par (isto e, a = 2k)

T: a^2 é um número par (isto é, $a^2 = 2l$)

De fato:
$$a^2 = (2k)^2 = 4k^2 = 2(2k^2) = 2l$$

Definição 1.6 (Equivalência de Proposição). Sejam P e Q proposições (compostas). Dizemos que P é equivalente a Q, simbolizado por $P \Leftrightarrow Q$, se o bicondicional $P \leftrightarrow Q$ é uma tautologia, isto é, se P e Q têm a mesma tabela-verdade (mesmo valor lógico).

Observação. Em matemática, certos teoremas envolvem uma equivalência de proposições. Neste caso:

$$HIPÓTESE(S) \iff TESE$$

Exemplo: $P: a \notin \text{um número par}; Q: a^2 \notin \text{um número par}; P \Leftrightarrow Q$ $P \leftrightarrow Q: a \notin \text{um número par se, e somente se, } a^2 \text{ também o } é.$

Demonstração.

 $H: a \in um número par$

T: a^2 é um número par

 $(\Rightarrow) H \Rightarrow T (ok!)$

 $(\Leftarrow) T \Rightarrow H$

Vimos que $(p \to q) \leftrightarrow (\neg q \to \neg p)$ é uma tautologia. Assim, $(p \to q) \Leftrightarrow (\neg q \to \neg p)$ (contra-positiva, contra-recíproca)

Assim, mostrar que se a^2 é par, então a é par é equivalente a mostrar que se a é impar, então a^2 é impar.

De fato: $(T \Rightarrow H) \Leftrightarrow (\neg H \Rightarrow \neg T)$

a é ímpar: a = 2k + 1

$$a^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2\underbrace{(2k^2 + 2k)}_{l} + 1 = 2l + 1 \Rightarrow a^2$$
 é impar

Definição 1.7 (Sentença Aberta ou Função Proposicional). Uma sentença aberta é uma sentença que envolve uma ou mais variáveis.

Observação. Uma sentença aberta NÃO é uma proposição, pois não sabemos definir o seu valor lógico, o qual depende da(s) variável(is) envolvida(s).

Notação. p(x) = sentença aberta que depende da variável x.

Exemplo: x+1=0

$$x := \underbrace{-1}_{cte}(V)$$
 $x := 1(F)$

Uma sentença aberta pode ser transformada numa proposição através de dois recursos:

- i) atribuindo-se valores constantes à(s) variável(is) envolvida(s);
- ii) usando quantificadores.

Dois quantificadores:

- a) Quantificador Universal: ∀ (lê-se: "para todo" ou "qualquer que seja");
- b) Quantificador Existencial:
 - \exists ("existe" ou "existe pelo menos um");
 - $\exists!$ (lê-se: "existe um único");
 - $\not\equiv$ (lê-se: "não existe").

Notações. $(\forall x)(p(x)); (\exists x)(p(x)); (\exists! x)(p(x)); (\not\equiv x)(p(x))$

Exercício: Considerando que todas as variáveis envolvidas são reais, use quantificadores para tornar proposições verdadeiras as seguintes sentenças abertas:

- a) $\sqrt{x^2} = x$: $(\exists x)(\sqrt{x^2}) \ (x \ge 0)$
- b) $\operatorname{sen}(x+y) = \operatorname{sen} x \cos y + \operatorname{sen} y \cos x$: $(\forall x, y)(\operatorname{sen}(x+y) = \operatorname{sen} x \cos y + \operatorname{sen} y \cos x)$

c)
$$\frac{x^2 - 1}{x - 1} = x + 1$$
: $(\exists x) \left(\frac{x^2 - 1}{x - 1} = x + 1 \right)$ $(x \neq 1)$ ou $(\forall x) \land (x \neq 1)$

d)
$$|x| = -x$$
: $(\exists x)(|x| = -x)$ $(x \le 0)$

e)
$$x < x^2$$
: $(\exists x)(x < x^2)$ $(x < 0 \text{ ou } x > 1)$

f)
$$x^2 + 1 = 0$$
: $(\nexists x)(x^2 + 1 = 0)$

Negação de Proposições e Sentenças Abertas Quantificadas:

1) Negação da negação:

$$\neg(\neg p) \Leftrightarrow p$$

2) Negação de conjunção: $(e \leftrightarrow ou)$

$$\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$$

Exemplo: $p: a \neq 0, q: b \neq 0$

 $p \wedge q : a \neq 0 \in b \neq 0$

 $\neg(p \land q) : a = 0 \text{ ou } b = 0$

3) Negação de uma disjunção: (ou \leftrightarrow e)

$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

4) Negação de uma condicional:

$$\neg(p \to q) \Leftrightarrow p \land \neg q$$

Exercício: Verifique 4) de duas maneiras:

i) através da tebela-verdade;

p	q	$\neg q$	$p \rightarrow q$	$\neg(p \to q)$	$p \land \neg q$	$\neg (p \to q) \leftrightarrow p \land \neg q$
V	V	F	V	F	F	\overline{V}
V	F	V	F	V	V	V
F	V	F	V F V	F	F	V
F	F	V	V V	F	F	V

ii) usando o resultado anterior: $(p \to q) \leftrightarrow (\neg p \lor q)$ é uma tautologia

$$\begin{array}{ccc} (p \to q) & \Leftrightarrow & (\neg p \lor q) \\ \neg (p \to q) & \Leftrightarrow & \neg (\neg p \lor q) \\ \neg (p \to q) & \Leftrightarrow & p \land \neg q \end{array}$$

5) Negação de quantificadores: $(\forall \leftrightarrow \exists)$

$$\neg(\forall x)(p(x)) \Leftrightarrow (\exists x)(\neg p(x))$$

$$\neg(\exists x)(p(x)) \Leftrightarrow (\forall x)(\neg p(x))$$

Exemplos: (nos reais)

- a) $(\forall x)(\operatorname{sen}^2 x + \cos^2 x = 1)$ (V); negação: $(\exists x)(\operatorname{sen}^2 x + \cos^2 x \neq 1)$ (F)
- b) $(\exists x)(x^2 + 1 = 0)$ (F) negação: $(\forall x)(x^2 + 1 \neq 0)$ (V)

Lei da Álgebra das Proposições

Qualquer proposição composta pode ser expressa apenas com os conectivos \land e \lor e com o modificador \neg . Em outras palavras, os conectivos \rightarrow e \leftrightarrow são "supérfluos", pois podem ser escritos em termos de \land , \lor e \neg .

Exemplo: $(p \rightarrow q) \Leftrightarrow (\neg p \lor q)$

$$(p \leftrightarrow q) \Leftrightarrow (p \to q) \land (q \to p) \Leftrightarrow (\neg p \lor q) \land (\neg q \lor p)$$

- \bullet P = "coleção" de todas as proposições
- p, q, r = proposições ("elementos de P")
- duas "operações" binárias: ∧, ∨
- uma "operação" unária: ¬
- "Relação" de equivalência
- dois extremos universais: $\begin{cases} v = \text{tautologia} \\ f = \text{contradição} \end{cases}$

$$P = P(\land, \lor, \neg, v, f)$$
 (Álgebra das Proposições)

Teorema 1.8. P satisfaz as seguintes equivalências:

- I) (Leis Associativas) $\left\{ \begin{array}{l} (p \wedge q) \wedge r \wedge r \Leftrightarrow p \wedge (q \wedge r) \\ (p \vee q) \vee r \Leftrightarrow p \vee (q \vee r) \end{array} \right.$
- II) (Leis Comutativas) $\left\{ \begin{array}{l} p \wedge q \Leftrightarrow q \wedge p \\ p \vee q \Leftrightarrow q \vee p \end{array} \right.$
- $III) \ (Leis \ Idempotentes) \ \left\{ \begin{array}{l} p \wedge p \Leftrightarrow p \wedge p \\ p \vee p \Leftrightarrow p \vee p \end{array} \right.$
- $IV) \ (Leis \ de \ Absorção) \left\{ \begin{array}{l} p \wedge (p \vee q) \Leftrightarrow p \\ p \vee (p \wedge q) \Leftrightarrow p \end{array} \right.$

$$V) \ (Leis \ Distributivas) \ \left\{ \begin{array}{l} p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r) \\ p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r) \end{array} \right.$$

$$VI) \ (Extremos \ Universals) \left\{ \begin{array}{l} p \wedge v \Leftrightarrow p \\ p \wedge f \Leftrightarrow f \\ p \vee v \Leftrightarrow v \\ p \vee f \Leftrightarrow p \end{array} \right.$$

VII) (Leis de Complementação)
$$\begin{cases} \neg(\neg p) \Leftrightarrow p \\ p \land \neg p \Leftrightarrow f \\ p \lor \neg p \Leftrightarrow v \end{cases}$$

VIII) (Leis de De Morgan)
$$\left\{ \begin{array}{l} \neg (p \land q) \Leftrightarrow \neg p \lor \neg q \\ \neg (p \lor q) \Leftrightarrow \neg p \land \neg q \end{array} \right.$$

Demonstração.

IV)(tautologia)

p	q	$p \lor q$	$p \wedge (p \vee q)$	$p \land (p \lor q) \Leftrightarrow p$
\overline{V}	V	V	V	V
V	F	V	V	V
F	V	V	F	V
F	F	F	F	V

I) (tautologia)

p	q	r	$p \wedge q$	$q \wedge r$	$(p \wedge q) \wedge r$	$p \wedge (q \wedge r)$	$\wedge r \leftrightarrow p \wedge (q \wedge r)$
V	V	V	V	V	V	V	V
V	V	F	V	F	F	F	V
V	F	V	F	F	F	F	V
V	F	F	F	F	F	F	V
F	V	V	F	V	F	F	V
F	V	F	F	F	F	F	V
F	F	V	F	F	F	F	V
F	F	F	F	F	F	F	V

VIII) $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$

p	q	$\neg p$	$\neg q$	$p \wedge q$	$\neg (p \land q)$	$\neg p \land \neg q$
\overline{V}	V		F	V	F	F
V	F	F	V	F	V	V
F	V	V	F	F	V	V
F	F	V	V	F	V	V

Observação. Seja \mathcal{A} um "conjunto" munido de duas "operações" binárias (\wedge, \vee) , uma "operação" unária ('), uma relação entre seus "elementos" e dois extremos universais (0,1). Dizemos que $\mathcal{A} = \mathcal{A}(\wedge, \vee, ', 0, 1)$ é uma Álgebra de Boole (ou Álgebra Booleana) se \mathcal{A} satisfaz as propriedades (leis) I a VIII anteriores. Assim, $P = P(\wedge, \vee, \neg, v, f)$ é uma Álgebra de Boole.

Vocabulário

- Definição
- Proposição
- Sentença aberta
- \bullet Teorema (Se hipóteses , então <u>tese</u>)
- Lema: "pequeno" Teorema (isto é, um Teorema auxiliar para demonstrar Teoremas mais complexos)
- Corolário: conseqüência de um Teorema
- Axioma (ou Postulado): proposição cuja veracidade é aceita sem demonstração (intuitivo)

Exemplo: (Geometria Plana)

Por um ponto fora de uma reta, passa uma única reta pararlela à reta dada (5 o Axioma de Euclides).

Conceito Primitivo: base de qualquer teoria matemática (não se define)
 Exemplos: ponto, reta, plano

Objetivo: "Demonstrar" Teoremas

Três técnicas básicas

- a) Direta $(H \Rightarrow T)$
- b) Indireta
 - b.1) contra-recíproco ($\neg T \Rightarrow \neg H$)
 - b.2) por absurdo: consiste em negar a tese (assumindo a hipótese verdadeira) e desenvolver um argumento lógico corrente que produza uma contradição da hipótese.

Exemplo: Teorema: $\sqrt{2}$ é um número irracional.

Demonstração. T: $\sqrt{2}$ é um número irracional

Suponha, por absurdo, que $\sqrt{2}$ é racional, ou seja, que $\sqrt{2} = a/b$, onde a, b são números inteiros, $b \neq 0$ e a e b não possuem fatores em comum (isto é, a/b é irredutível)

$$\sqrt{2} = \frac{a}{b} \Rightarrow (\sqrt{2})^2 = \frac{a^2}{b^2} \Rightarrow 2 = \frac{a^2}{b^2}$$

isto é, $a^2 = 2b^2$ é um número par (*)

Lembrando que, se a^2 é par, então a é par. Logo, a=2l (**)

Substituindo (**) em (*), temos

$$(2l)^2 = 2b^2 \Rightarrow 4l^2 = 2b^2 \Rightarrow 2l^2 = b^2$$

isto é, b^2 é par. Assim, b é par, isto é, $b = 2m \ (***)$

Conclusão: De (**) e (***), a e b têm 2 como fator comum, o que contradiz nossa hipótese de a fração a/b ser irredutível. $\sqrt{2}$ é irracional.

Exercício: (da 1ª Lista, pág. 180)

- 2) Considere as afirmações seguintes:
- Todo automóvel alemão é bom
- Se um automóvel é bom, então ele é caro
- Existem automóveis suecos bons
- Se não choveu, então todas as lojas estão abertas
- Se x < y, então z = 5 ou z = 7

Admitindo a veracidade dessas 5 afirmações e admitindo que existam automóveis franceses, alemães, suecos e coreanos, julgue os itens a seguir:

- a) (V) Se alguma loja está fechada, então choveu. (C-R)
- b) (V) Se um automóvel não é caro, então ele pode ser francês. (C-R)
- c) (V) Alguns automóveis suecos são caros.
- d) (F) Existem automóveis coreanos caros.
- e) (F) Um automóvel alemão pode não ser caro.
- f) (F) Se $z \neq 5$ e $z \neq 7$, então x > y.

2 Noções de Teoria dos Conjuntos

Três conceitos primitivos

- Conjunto: qualquer coleção de objetos;
- Elemento: objeto que constitui um conjunto;
- Pertinência: relação entre conjunto e elemento.

Notação.

 A, B, C, \ldots - conjuntos a, b, c, \ldots - elementos $x \in A$ (lê-se: "x pertence ao conjunto A") $x \notin A$ (lê-se: "x não pertence a A")

Definição 2.1 (Igualdade de Conjuntos). Dois conjuntos A e B são iguais se eles têm os mesmos elementos.

Notação.
$$A=B\Leftrightarrow (\forall\ x)((x\in A\to x\in B)\land (x\in B\to x\in A))$$

Exemplo:
$$A = \left\{\frac{1}{3}\right\}, B = \left\{\int_0^1 x^2 dx\right\}$$

 $A = B$

Caracterização de Conjuntos:

- i) Enumeração dos elementos do conjunto;
- ii) Através de uma propriedade (sentença aberta) específica dos elementos do conjunto;
- iii) Através de um dispositivo prático (Diagrama de Venn)

Notação. $A = \{x \mid P(x)\}$

Exemplo: $A = \{x \mid x \text{ \'e professor ou pesquisador de Álgebra do Departamento de Matemática}\}$

 $B = \{y \,|\, y$ é a nacionalidade dos professores de Álgebra do Departamento de Matemática da UnB}

 $A=\{$ Pavel Zalesski, Pavel Shumyatsky, Alexei Krassilnikov, Rudolf Maier, Said Sidki, Salahoddin Shokranian, Nigel Pitt, Helder Matos, Marcus Vinícius, Hemar Godinho, Lineu Neto $\}$

 $B = \{ \text{ russo, alemão, árabe, iraniano, inglês, brasileiro} \}$ Alguns conjuntos notáveis:

 a) Universo: conjunto mais abrangente dentro de um certo contexto matemático;

Notação. E= conjunto universo Em C1, C2 e C3: $E=\mathbb{R}$ Em VC: $E=\mathbb{C}$

b) Vazio: conjunto que não possui elementos;

Notação. { } ou Ø

c) Unitário: conjunto que possui um único elemento. **Exemplo:** $A = \{x \mid x \text{ \'e um m\'es que possui apenas 28 ou 29 dias} = \{ \text{ fevereiro} \}$

Definição 2.2 (Inclusão). Sejam A e B conjuntos quaisquer. Dizemos que A é subconjunto de B (ou A é parte de B ou A está contido em B ou B contém A) se todo elemento de A é também elemento de B.

Notação. $A\subseteq B$ (ou $B\supseteq A)\Leftrightarrow (\forall\,x)(x\in A\to x\in B)$

Negação: $A \nsubseteq B$ (ou $B \not\supseteq A$) $\Leftrightarrow (\exists x)(x \in A \land x \notin B)$

Dizemos que A é um subconjunto próprio de B (ou A é parte própria de B ou B contém propriamente A) se $A \subseteq B$ e $A \neq B$.

Em termos de Diagrama de Venn:

Notação. $A \subset B$ (ou $A \subsetneq B$) \Leftrightarrow $(\forall x)(x \in A \to x \in B) \land (\exists x)(x \in B \land x \notin A)$

Observações. i) $A = B \Leftrightarrow A \subseteq B \in B \subseteq A$;

- ii) $A \subseteq A$;
- iii) $\varnothing \subseteq A$

De fato: suponha, por absurdo, que $\emptyset \nsubseteq A$. Assim, $(\exists x)(x \in \emptyset \land x \notin A)$. Mas, como \emptyset não possui elemtos, isto é absurdo.

Definição 2.3 (Conjunto das Partes de Um Conjunto). Dado um conjunto A, definimos o conjunto das partes de A como sendo o conjunto de todos os subconjuntos de A.

Notação. $P(A) = \{X \mid X \subseteq A\}$

Observação. $X \in P(A) \Leftrightarrow X \subseteq A$

Exemplos:

a)
$$A = \emptyset \Rightarrow P(A) = \{\emptyset\}$$

b)
$$A = \{a\} \Rightarrow P(A) = \{\emptyset, \{a\}\}\$$

c)
$$A = \{a, b\} \Rightarrow P(A) = \{\varnothing, \{a\}, \{b\}, \{a, b\}\}$$

d)
$$A = \{a, b, c\} \Rightarrow P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$

Observações. a) Dado um conjunto A, definimos a cardinalidade de A como sendo o número de elementos de A.

Notação. |A| (ou n(A) ou #A)

b) Se |A| = n, então $|P(A)| = 2^n$

Conjuntos numéricos:

- $\mathbb{N} = \{1, 2, 3, 4, \ldots\}$ (números naturais) convenção: $0 \notin \mathbb{N}$
- $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ (números inteiros)
- $\mathbb{Q} = \{a/b \mid a, b \in \mathbb{Z} \text{ e } b \neq 0\}$ (números racionais)
 - números com representação decimal finita: 1/2 = 0.5
 - números com representação decimal infinita periódica: $1/3 = 0,333\dots$
- $\mathbb{R} = \mathbb{Q} \cup \{ \text{ números irracionais } \}$ (números reais) **Exemplos:** $\sqrt{2} \cong 1,41; \sqrt{3} \cong 1,73; \pi \cong 3,14; e \cong 2,71828$
- $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R} \text{ e } i^2 = -1 \text{ ou } i = \sqrt{-1}\}$ (números complexos)

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$

Operações com Conjuntos $(A, B \subseteq E)$

- A) União: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$
- B) Intersecção: $A \cap B = \{x \mid x \in A \in x \in B\}$
- C) Complementação: $\mathbf{C}_E A = \{x \in E \mid x \notin A\}$
- D) Diferença: $A B = \{x \mid x \in A \in x \notin B\}$ ou $A \setminus B$

Observações. a) Se $B \subseteq A$, então podemos escrever A - B de uma maneira alternativa:

$$A - B = \underbrace{\mathbb{C}_A(B)}_{\text{complementar de } B \text{ em relação a } A} = \{x \mid x \in A \text{ e } x \notin B\}$$

- b) Quando o conjunto universo E for explicitado (e não houver ambigüidade), vamos omiti-lo no símbolo do complementar. Assim, $\mathcal{C}_E(A) = \mathcal{C}(A) \quad (A \subseteq E)$.
- c) Se $A \cap B = \emptyset$, então A e B são ditos conjuntos disjuntos.

Em termos de Diagrama de Venn:

A) União:

B) Intersecção:

C) Complementação:

D) Diferença:

- **Observações.** a) $A \cup B$ é o "menor" conjunto que contém simultaneamente A e B, isto é:
 - a.1) $A \subseteq A \cup B \in B \subseteq A \cup B$;
 - a.2) Se $A\subseteq C$ e
 $B\subseteq C,$ então $A\cup B\subseteq C.$

Notação. (Reticulado)

- b) $A\cap B$ é o "maior" conjunto que está contido simultaneamente em A e B, isto é:
 - b.1) $A \cap B \subseteq A \in A \cap B \subseteq B$;
 - b.2) Se $C \subseteq A$ e $C \subseteq B$, então $C \subseteq A \cap B$.

Notação. (Reticulado) $_A$

Exercícios:

- 1) Sejam $A, B \subseteq E$. Mostre que se $A \subseteq B$, então $\mathcal{C}_E(B) \subseteq \mathcal{C}_E(A)$.
- 2) Sejam $A, B \subseteq E$. Mostre que:

a)
$$C_E(A \cup B) = C_E(A) \cap C_E(B)$$
 (1 ^a Lei de De Morgan)

b)
$$C_E(C_E(A)) = A$$

- 3) Sejam $A, B, C, D \subseteq E$ tais que $A \subseteq C$ e $B \subseteq D$. Mostre que:
 - a) $A \cup B \subseteq C \cup D$
 - b) $A \cap B \subseteq C \cap D$
- 4) Dê um contra-exemplo que refute a seguinte afirmação: se $A \cup B = A \cup C$, então B = C.
- 5) (Desafio) Mostre que se $A \cup B = A \cup C$ e $A \cap B = A \cap C$, então B = C

Demonstração. 1

$$\left\{ \begin{array}{l} \mathrm{H:}\ A\subseteq B \Leftrightarrow (\forall\ x)(x\in A\to x\in B) \quad (*) \\ \mathrm{T:}\ \mathbb{C}_E(B)\subseteq \mathbb{C}_E(A) \end{array} \right.$$

Queremos mostrar que dado $x \in \mathcal{C}_E(B)$ qualquer, então $x \in \mathcal{C}_E(A)$ $x \in \mathcal{C}_E(B) \Rightarrow x \notin B \xrightarrow[\overline{(C-R)}]{(C-R)} x \notin A \Rightarrow x \in \mathcal{C}_E(A)$

Como x é arbitrário, então

$$(\forall x)(x \in \mathcal{C}_E(B) \to x \in \mathcal{C}_E(A)), \text{ isto \'e}, \mathcal{C}_E(B) \subseteq \mathcal{C}_E(A).$$

Demonstração. 2) (se algum dos conjuntos envolvidos for \emptyset , não há nada a demonstrar)

a) Tome $x \in \mathcal{C}_E(A \cup B)$

$$x \in \mathcal{C}_E(A \cup B) \Leftrightarrow x \notin A \cup B \Leftrightarrow x \notin A \in x \notin B \Leftrightarrow x \in \mathcal{C}_E(A) \in x \in \mathcal{C}_E(B)$$

 $\Leftrightarrow x \in \mathcal{C}_E(A) \cap \mathcal{C}_E(B)$

b) Tome $x \in \mathcal{C}_E(\mathcal{C}_E(A))$

$$x \in \mathcal{C}_E(\mathcal{C}_E(A)) \Leftrightarrow x \notin \mathcal{C}_E(A) \Leftrightarrow x \in A$$

Demonstração. 3)

H:
$$\begin{cases} A \subseteq C & (*) \\ B \subseteq D & (**) \end{cases}$$
T:
$$\begin{cases} a) A \cup B \subseteq C \cup D \\ b) A \cap B \subseteq C \cap D \end{cases}$$

a)
$$x \in A \cup B \Rightarrow x \in A$$
 ou $x \in B \stackrel{\text{\tiny (*)}}{\Rightarrow} x \in C$ ou $x \in D \Rightarrow x \in C \cup D$

b)
$$x \in A \cap B \Rightarrow x \in A \text{ e } x \in B \Rightarrow x \in C \text{ e } x \in D \Rightarrow x \in C \cap D$$

Leis da Álgebra de Conjuntos

- $E \neq \emptyset$ (conjunto universo)
- $A, B, C \subseteq E$ (isto é, $A, B, C \in P(E)$)
- duas "operações" binárias: ∪, ∩
- ullet uma "operação" unária: $oldsymbol{c}_E$

 \bullet dois extremos universais: \varnothing e E

Teorema 2.4. $(P(E), \cup, \cap, \mathcal{C}_E, \varnothing, E)$ é uma Álgebra Booleana (ou Álgebra de Boole), isto é, satisfaz as seguintes leis:

$$i) \ (associativas) \ \bigg\{ \begin{array}{l} A \cup B(B \cup C) = (A \cup B) \cup C \\ A \cap B(B \cap C) = (A \cap B) \cap C \end{array} \\$$

ii) (comutativas)
$$\begin{cases} A \cup B = B \cup A \\ A \cap B = B \cap A \end{cases}$$

$$iii) \ (idempotentes) \left\{ \begin{array}{l} A \cup A = A \\ A \cap A = A \end{array} \right.$$

$$iv) \ (absorç\~ao) \ \left\{ \begin{array}{l} A \cup (A \cap B) = A \\ A \cap (A \cup B) = A \end{array} \right.$$

v) (distributivas)
$$\begin{cases} A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \\ A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \end{cases}$$

$$vi) \ (extremos \ universals) \left\{ \begin{array}{l} A \cup \varnothing = A \\ A \cap \varnothing = \varnothing \\ A \cup E = E \\ A \cap E = A \end{array} \right.$$

vii) (complementação)
$$\begin{cases} A \cup \mathcal{C}_E(A) = E \\ A \cap \mathcal{C}_E(A) = \emptyset \\ \mathcal{C}_E(\mathcal{C}_E(A)) = A \end{cases}$$

viii) (de Morgan)
$$\begin{cases} C_E(A \cup B) = C_E(A) \cap C_E(B) \\ C_E(A \cap B) = C_E(A) \cup C_E(B) \end{cases}$$

Dois exemplos de Álgebras Booleanas

PROPOSIÇÕES	CONJUNTOS
V (ou)	U
∧ (e)	\cap
¬ (não)	C_E
v (taut)	E (universo)
f (cont)	Ø
equivalência	igualdade de
de proposições	conjuntos

1^a lista

- 6) $A, B \subseteq E$ $A \triangle B := (A - B) \cup (B - A)$
 - ii) d) Tese: $A \triangle B = (A \cup B) (A \cap B)$ (igualdade de conjuntos)

Demonstração. Devemos mostrar a dupla inclusão:

I)
$$A \triangle B \subseteq (A \cup B) - (A \cap B)$$
 e

II)
$$(A \cup B) - (A \cap B) \subseteq A \triangle B$$

I) $A \triangle B \subseteq (A \cup B) - (A \cap B)$

Se $A \triangle B = \emptyset$, então não há nada a demonstrar. Se $A \triangle B \neq \emptyset$, então tome $x \in A \triangle B$ (qualquer).

$$x \in A \triangle B \Rightarrow x \in (A - B) \cup (B - A)$$

$$\Rightarrow \begin{cases} x \in A - B \\ \text{ou} \\ x \in B - A \end{cases} \Rightarrow \begin{cases} x \in A \text{ e } x \notin B \quad (1) \\ \text{ou} \\ x \in B \text{ e } x \notin A \quad (2) \end{cases}$$

$$\Rightarrow \begin{cases} x \in A - B \\ \text{ou} \\ x \in B - A \end{cases} \Rightarrow \begin{cases} x \in A \text{ e } x \notin B \quad (1) \\ \text{ou} \\ x \in B \text{ e } x \notin A \quad (2) \end{cases}$$

$$(1) \begin{cases} x \in A \\ \text{e} \\ \Rightarrow x \in A \cup B \text{ e } x \notin A \cap B \Rightarrow x \in (A \cup B) - (A \cap B) \\ x \notin B \end{cases}$$

$$(2) \begin{cases} x \in B \\ \text{e} \\ \Rightarrow x \in A \cup B \text{ e } x \notin A \cap B \Rightarrow x \in (A \cup B) - (A \cap B) \\ x \notin A \end{cases}$$

(2)
$$\begin{cases} x \in B \\ e & \stackrel{(**)}{\Rightarrow} x \in A \cup B \text{ e } x \notin A \cap B \Rightarrow x \in (A \cup B) - (A \cap B) \\ x \notin A \end{cases}$$

- (*) $A \subseteq A \cup B$; $A \cap B \subseteq B$
- (**) $B \subseteq A \cup B$; $A \cap B \subseteq A$
- II) $(A \cup B) (A \cap B) \subseteq A \triangle B$

Se $(A \cup B) - (A \cap B) = \emptyset$, então não há nada a demonstrar. Se $(A \cup B) - (A \cap B) \neq \emptyset$, então tome $x \in (A \cup B) - (A \cap B)$ (qualquer).

$$x \in (A \cup B) - (A \cap B) \Rightarrow \left\{ \begin{array}{l} x \in A \cup B \\ \\ e \\ x \notin A \cap B \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x \in A \text{ ou } x \in B \\ \\ e \\ x \notin A \text{ ou } x \notin B \end{array} \right.$$

$$\stackrel{\text{\tiny dist.}}{\Longrightarrow} \left\{ \begin{array}{l} (x \in A \text{ ou } x \in B) \text{ e } (x \notin A) \\ \text{ou} \\ (x \in A \text{ ou } x \in B) \text{ e } (x \notin B) \end{array} \right.$$

$$\stackrel{\text{dist.}}{\Longrightarrow} \left\{ \begin{array}{l} (x \in A \text{ e } x \notin A) \text{ ou } (x \in B \text{ e } x \notin A) \\ \text{ou} \\ (x \in A \text{ e } x \notin B) \text{ ou } (x \in B \text{ e } x \notin B) \end{array} \right.$$

$$\Rightarrow \left\{ \begin{array}{l} x \in B \text{ e } x \notin A \\ \text{ou} \\ x \in A \text{ e } x \notin B \end{array} \right. \Rightarrow x \in (A - B) \cup (B - A)$$

9)

$$(\Rightarrow) \left\{ \begin{array}{l} \mathrm{H:}\ A \subseteq B \\ \mathrm{T:}\ P(A) \subseteq P(B) \end{array} \right.$$

Queremos mostrar que $P(A) \subseteq P(B)$, isto é $(\forall X)(X \in P(A) \to X \in P(B))$. De fato:

Tome $X \in P(A) \Rightarrow X \subseteq A \stackrel{A \subseteq B}{\Longrightarrow} X \subseteq B \Rightarrow X \in P(B)$.

$$(\Leftarrow) \left\{ \begin{array}{l} \operatorname{H:} P(A) \subseteq P(B) \\ \operatorname{T:} A \subseteq B \end{array} \right.$$

Por hipótese, $P(A) \subseteq P(B)$, isto é, $(\forall X)(X \in P(A)) \to (X \in P(B))$. Em particular, tome X = A. Assim, $A \in P(A)$ (pois $A \subseteq A$) $\Rightarrow A \in P(B)$, isto é $A \subseteq B$.

10) $\emptyset \neq A, B \subseteq E$ $|A| < \infty; |B| < \infty$

Tese: a) $A \cap B = \emptyset \Rightarrow |A \cup B| = |A| + |B|$

b)
$$A \subseteq B \Rightarrow |B - A| = |B| - |A|$$

c)
$$|A \cup B| = |A| + |B| - |A \cap B|$$

Demonstração.

- a) $A = \{a_1, a_2, \dots, a_m\}$ $(|A| = m \in \mathbb{N})$ $B = \{b_1, b_2, \dots, b_n\}$ $(|B| = n \in \mathbb{N})$ Se $A \cap B = \emptyset$, então $a_i \neq b_j$, $\forall \ 1 \leqslant i \leqslant m$, $\forall \ 1 \leqslant j \leqslant n$. Então, $A \cup B = \{a_1, a_2, \dots, a_m, b_1, b_2, \dots, b_n\}$, isto é, $|A \cup B| = m + n = |A| + |B|$.
- b) Observe que $A \cap (B A) = \emptyset$. Por a), $|A \cup (B - A)| = |A| + |B - A| \Rightarrow |B - A| = |B| - |A|$.

c) Usando a) (indução),

$$\underbrace{\lfloor (A-B) \cup (A \cap B) \cup (B-A) \rfloor}_{A \ \cup \ B} = \underbrace{\lfloor A-B \rfloor}_{\mathbf{I}} + \underbrace{\lfloor A \cap B \rfloor}_{\mathbf{II}} + \underbrace{\lfloor B-A \rfloor}_{\mathbf{III}}$$

$$|A| \stackrel{\text{a}}{=} |A - B| + |A \cap B| \Rightarrow |A - B| = |A| - |A \cap B| \quad (*)$$

$$|B| \stackrel{\text{a}}{=} |A \cap B| + |B - A| \Rightarrow |B - A| = |B| - |A \cap B| \quad (**)$$

Substituindo (*) em I e (**) em III, temos $|A \cup B| = |A| - |A \cap B| + |A \cap B| + |B| - |A \cap B| = |A| + |B| - |A \cap B|$

3 Relações e Funções

Conceito primitivo:

- par ordenado (a, b) (coordenada)
- igualdade de pares ordenados:

$$(a,b) = (c,d) \leftrightarrow \begin{cases} a=c & e \\ b=d \end{cases}$$

Observação. Não confundir conjunto com par ordenado. conjunto: a ordem é irrelevante $\{a,b\} = \{b,a\}$ par ordenado: a ordem é essencial $(a,b) \neq (b,a)$ (se $a \neq b$)

Definição 3.1 (Produto Cartesiano). Sejam $A, B \neq \emptyset$, Definimos o Produto Cartesiano de A por B, simbolizado por $A \times B$, como sendo o seguinte conjunto:

$$A \times B \stackrel{\text{\tiny def}}{:=} \{ (x, y) \mid x \in A, y \in B \}$$

Caso particular: A = B

$$A^2 = A \times A = \{(x, y) \mid x \in A, y \in A\}$$

Observações. a) Se |A| = m e |B| = n, então $|A \times B| = m \cdot n$

- b) Se $A = \emptyset$ ou $B = \emptyset$, então $A \times B = \emptyset$
- c) Em geral, $A \times B \neq B \times A$ **Exemplo:** $A = \{1, 2, 3\}, B = \{?, !\}$

 $A \times B = \{(1,?), (1,!), (2,?), (2,!), (3,?), (3,!)\} \neq B \times A = \{(?,1), (?,2), (?,3), (!,1), (!,2), (!,3)\}$

d) Podemos generalizar produto cartesiano para n conjuntos $(n \in \mathbb{N})$

$$A_1, A_2, A_3, \dots, A_n \neq \emptyset$$

 $A_1 \times A_2 \times A_3 \times \dots \times A_n = \{(x_1, x_2, \dots, x_n) \mid x_i \in A_i, 1 \leq i \leq n\}$
Se $A_1 = A_2 = \dots = A_n = A$, então $A^n = A \times A \times \dots \times A = \{(x_1, x_2, \dots, x_n) \mid x_i \in A, i = 1, \dots, n\}$

Exemplos:

a)
$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}$$

b)
$$\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}$$

Definição 3.2 (Relação). Sejam $A, B \neq .$ Dizemos que R é uma relação ("binária") de A em B se R é um subconjunto de $A \times B$. Simbolicamente: R é relação de A em $B \leftrightarrow R \subseteq A \times B$

Notações. • $a R b \Leftrightarrow (a, b) \in R$ (negação: $a \not R b \Leftrightarrow (a, b) \notin R$)

- $D(R) = \text{domínio da relação } R = \{x \in A \mid \exists y \in B, (x, y) \in R\} \subseteq A$ (conjunto dos primeiros elementos dos pares ordenados de R)
- $Im(R) = \text{imagem da relação } R = \{y \in B \mid \exists \ x \in A, (x,y) \in R\} \subseteq B$ (conjunto dos segundos elementos dos pares ordenados de R)

Observações. i) Uma relação pode ser representada de três maneiras:

- a) através de uma lei de formação que relacione elementos $x \in A$ e $y \in B$ (pares ordenados);
- b) através de Diagrama de Venn (se $|A| < \infty$ e $|B| < \infty$) ("diagramas de fecha");
- c) no plano cartesiano;
- ii) Se A=B, então uma relação R de A em B é dita relação sobre A. R é relação sobre $A \Leftrightarrow R \subseteq A^2$

Exemplos:

a)
$$A = \mathbb{Z}$$

 $R_1 = \{(x, y) \in \mathbb{Z}^2 \mid x^2 + y^2 = 1\} \subseteq \mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$

b)
$$A = \mathbb{R}$$

 $R_2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$

c)
$$A = \{1, 2, 3, 4, 5\}, B = \{6, 7, 8\}$$

 $R_3 = \{(x, y) \in A \times B \mid x \text{ divide } y\}$

- d) $A = \{a, b, c, d\}, B = \{a, b, c\}$ $R_3 = \{(x, y) \in A \times B \mid x \text{ precede } y \text{ no alfabeto}\}$
- e) $A = \mathbb{R}$ $R_5 = \{(x, y) \in \mathbb{R}^2 \mid x + y \le 1\}$
- f) $A = \{ \text{ Cálculo 1, Cálculo 2, Cálculo 3 } \},$ $B = \{ \text{ IAL, Cálculo Numérico, EDO, VC } \}$ $R_6 = \{ (x, y) \in A \times B \mid x \text{ é pré-requisito direto de } y \}$

Em termos de gráficos e/ou diagramas de flechas, também temos as seguintes representações:

a) $R_1 = \{(-1,0), (1,0), (0,1), (0,-1)\}$

$$D(R_1) = \{-1, 0, 1\}$$

$$Im(R_1) = \{-1, 0, 1\}$$

b) (círculo unitário)

$$D(R_2) = [-1, 1] = \{x \in \mathbb{R} \mid -1 \leqslant x \leqslant 1\}$$

$$Im(R_2) = [-1, 1] = \{y \in \mathbb{R} \mid -1 \leqslant y \leqslant 1\}$$

c) $R_3 = \{(1,6), (1,7), (1,8), (2,6), (2,8), (3,6), (4,8)\}$

$$D(R_3) = \{1, 2, 3, 4\}$$
$$Im(R_3) = \{6, 7, 8\}$$

Observação. Sejam $x,y\in\mathbb{Z}$. Dizemos que "x divide y" se existe $z\in\mathbb{Z}$ tal que $x\cdot z=y$.

d) $R_4 = \{(a, b), (a, c), (b, c)\}$

$$D(R_4) = \{a, b\}$$

 $Im(R_4) = \{b, c\}$

e) (semiplano inferior)

$$D(R_5) = \mathbb{R}$$
$$Im(R_5) = \mathbb{R}$$

f) $R_6 = \{(C2, EDO), (C2, CN), (C3, VC)\}$

$$D(R_6) = \{C2, C3\}$$

 $Im(R_6) = \{EDO, CN, VC\}$

Definição 3.3 (Relação de Equivalência). Seja $A \neq \emptyset$. Seja R uma relação sobre A (isto é, $R \subseteq A \times A$). Dizemos que R é uma Relação de Equivalência se R satisfaz as seguintes condições:

 $(Reflexiva)(RE1) \ \forall \ a \in A, a \ R \ a; \ (isto \ \acute{e}, \ (a,a) \in R, \forall \ a \in A)$

 $(Sim\'etrica)(RE2) \ \forall \ a,b \in A, a \ R \ b \to b \ R \ a; \ (isto \ \'e, \ se \ (a,b) \in R, \ ent\~ao \ (b,a) \in R)$

 $(Transitiva)(RE3) \ \forall \ a,b,c \in A, (a\,R\,b) \land (b\,R\,c) \rightarrow a\,R\,c. \ (isto\ \acute{e},\ se\ (a,b) \in R, (b,c) \in R,\ ent\~ao\ (a,c) \in R)$

Exemplos:

1) $A = \{ \text{ retas no plano } \}$ $r, s \in A$ $r R s \Leftrightarrow r \parallel s \ (r \cap s = \emptyset \text{ ou } r = s)$

Afirmação. R é relação de equivalência.

De fato:

- (RE1) rRr, pois r=r;
- (RE2) $rRs \rightarrow sRr \ (r \cap s = \emptyset \rightarrow s \cap r = \emptyset);$
- (RE3) rRs, $sRt \rightarrow rRt$ ($r \cap s = \emptyset$ $s \cap t = \emptyset \rightarrow r \cap t = \emptyset$)
- 2) $A = \{ \text{ retas no plano } \}$ $r, s \in A$ $r R s \Leftrightarrow r \perp s \ (r \cap s = \{p\})$

Afirmação. R não é relação de equivalência.

- (RE1) FALHA, pois uma reta não é perpendicular a si mesma;
- (RE2) é verdadeira, pois $r \perp s \rightarrow s \perp r$, $\forall r, s \in A$;
- (RE3) FALHA, pois $r \perp s$ e $s \perp t \Rightarrow r \perp t$
- 3) $A=\{$ alunos de Álgebra 1 (turma A) $1^{\varrho}/2004$ $\}$ $x,y\in A$ $x\,R\,y \Leftrightarrow x$ e y fazem o mesmo curso (curso (x)= curso (y))

R é relação de equivalência, pois:

- (RE1) $\forall x \in A, x R x$;
- (RE2) $\forall x, y \in A$, se x R y, então y R x;
- (RE3) $\forall x, y, z \in A$, se x R y e y R z, então x R z.
- 4) $E \neq \emptyset$

$$A = P(E) = \{X \mid X \subseteq E\} \ X, Y \in A$$

 $XRY \Leftrightarrow X \subseteq Y$ (inclusão)

R NÃO é relação de equivalência, pois

- (RE1) é válida, pois $X \subseteq X$, $\forall x \in A$;
- (RE3) é válida, pois se $X \subseteq Y$ e $Y \subseteq Z$, então $X \subseteq Z$, $\forall X, Y, Z \in A$;
- (RE2) FALHA, pois $X \subseteq Y \Rightarrow Y \subseteq X$.

Exemplo: $E = \{1, 2, 3\}$

$$X = \{1\} \subseteq E \text{ e } Y = \{1, 2\} \subseteq E$$

Temos que $X \subseteq Y$, mas $Y \not\subseteq X$

- 5) $A = \mathbb{Z}$
 - $x \in \mathbb{Z}$ é par se $x = 2k, k \in \mathbb{Z}$
 - $x \in \mathbb{Z}$ é impar se $x = 2k + 1, k \in \mathbb{Z}$
 - $x, y \in A$
 - $x R y \Leftrightarrow x y = 2k, k \in \mathbb{Z}$ (isto é, $x \in y$ têm a mesma paridade)

R é relação de equivalência, pois:

$$x R y \Rightarrow x - y = 2k \stackrel{\times (-1)}{\Longrightarrow} y - x = 2 \overbrace{(-k)}^{\in \mathbb{Z}} \Rightarrow y R x$$

(RE3)
$$\forall x, y, z \in A, \underbrace{(x R y) e (y R z)}_{H} \Rightarrow \underbrace{x R z}_{T}$$
:

$$\left. \begin{array}{l} x\,R\,y \Rightarrow x - y = 2k \\ y\,R\,z \Rightarrow y - z = 2l \end{array} \right\} \Rightarrow x - y = 2\underbrace{k + l}_{\in\,\mathbb{Z}} \Rightarrow x\,R\,z$$

Tal relação é chamada de Congruência Módulo 2 e é simbolizada por: $x \equiv y \pmod{2}$ (lê-se: x é congruente a y módulo 2, isto é, x e y deixam o mesmo resto na divisão por 2) (dois restos possíveis $\{0,1\}$)

6) (Divisibilidade)

$$A = \mathbb{Z} \quad x, y \in \mathbb{Z}$$

Dizemos que "x divide y" (ou "x é divisor de y" ou "x é fator de y" ou "y é múltiplo de x" ou "y é divisível por x") se existe $z \in A$ tal que $x \cdot z = y$

Simbolicamente:

$$x \mid y^* \Leftrightarrow \exists z \in A, \ x \cdot z = y$$
 *(lê-se: x divide y)

Propriedades:

- a) $1 \mid a, \forall a \in \mathbb{Z} \text{ (pois } 1 \cdot a = a);$
- b) $a \mid 0, \forall \ a \in \mathbb{Z}$ (pois $a \cdot 0 = 0$); (Em particular, $0 \mid 0$) (\(\epsilon\) ind pois $0 = 0x, \forall \ x \in A$)
- c) $a \mid a, \forall a \in \mathbb{Z} \text{ (pois } a = a \cdot 1);$
- d) $a \mid b$ e $b \mid a \Rightarrow a = \pm b$;
- e) $a \mid b$ e $c \mid d \Rightarrow ac \mid bd$;
- f) $a \mid b$ e $b \mid c \Rightarrow a \mid c$; (transitiva)
- g) $a \mid b$ e $a \mid c \Rightarrow a \mid b \mid x + c \mid y, \forall x, y \in A;$ "a divide qualquer combinação linear inteira de b e c"

 $x R y \Leftrightarrow x \mid y$

R não é relação de equivalência, pois:

- (RE1) é verdadeira, pela propriedade c;
- (RE3) é verdadeira, pela propriedade f;
- (RE2) FALHA, pois $a \mid b \Rightarrow b \mid a$.

Exemplo: $3 \mid 12 \text{ (pois } 12 = 3 \cdot 4), \text{ mas } 12 \nmid 3.$

Notações (para Relação de Equivalência). $A \neq \emptyset$ munido de uma relação de equivalência R.

- $\begin{array}{ccc} \bullet & R \leftrightarrow \sim ; \\ (a \, R \, b \Leftrightarrow a \sim b) \end{array}$
- $x \in A$ $A \supseteq \bar{x} \stackrel{\text{def}}{:=} \{a \in A \mid a \sim x\}$ (classe de equivalência de x pela relação \sim)
- $A_{/\sim} = \{\bar{x} \mid x \in A\}$ (conjunto quociente de A pela relação \sim ou conjunto de todas as classes de equivalência)

Exemplos: (Voltando aos exemplos anteriores)

1) (Paralelismo)

$$A = \{ \text{ retas do plano } \} \quad r, s \in A$$

$$r \sim s \Leftrightarrow r \parallel s$$

$$\bar{r} = \{a \in A \mid a \sim r\} = \{a \in A \mid a \parallel r\}$$
 (feixe de retas paralelas a $r)$

$$\bar{s} = \{a \in A \mid a \sim s\} = \{a \in A \mid a \parallel s\}$$
 (feixe de retas paralelas a s)

(Tais conjuntos \bar{r} e \bar{s} representam direções do plano, horizontal e vertical, respectivamente)

$$A_{/\sim}=\{\bar{a}\mid a\in A\}=\{\text{ dire}_{\tilde{o}}\text{es do plano }\}=\{\rightarrow,\uparrow,\nearrow,\ldots\}$$

3) (Disciplina de Álgebra 1)

$$A=\{$$
alunos de Álgebra 1 (turma A) - 1º/2004 } $x,y\in A$ $x\sim y\Leftrightarrow {\rm curso}\;(x)={\rm curso}\;(y)$

 $\overline{\text{Jorge}} = \{a \in A \mid a \sim \text{Jorge}\} = \{a \in A \mid \text{curso}(a) = \text{MAT}\}\ (\text{conjunto dos alunos de MAT desta disciplina representados dor Jorge})$

$$\overline{\text{Eduardo}} = \{ a \in A \mid a \sim \text{Eduardo} \} = \{ a \in A \mid \text{curso}(a) = \text{CIC} \}$$

 $\overline{\text{Renan}} = \{ a \in A \mid a \sim \text{Renan} \} = \{ a \in A \mid \text{curso}(a) = \text{curso (Renan)} = \text{ENE} \}$

 $\overline{\text{Fernando}} = \{ a \in A \mid a \sim \text{Fernando} \} = \{ a \in A \mid \text{curso}(a) = \text{EST} \}$

 $\overline{\text{Felipe}} = \{ a \in A \mid a \sim \text{Felipe} \} = \{ a \in A \mid \text{curso}(a) = \text{FIS} \}$

 $A_{/\sim} = \{\bar{a} \mid a \in A\} = \{\overline{\text{Jorge}}, \overline{\text{Eduardo}}, \overline{\text{Renan}}, \overline{\text{Fernando}}, \overline{\text{Felipe}}\}\$ {MAT, CIC, ENE, EST, FIS}

A	Jorge	Eduardo	Renan	Fernando	Felipe
	MAT	CIC	ENE	EST	FIS

(Partição de A)

Observações. a) As cinco classes acima são duas a duas disjuntas, isto é, $\overline{X} \cap \overline{Y} = \emptyset$ (onde $\overline{X} \neq \overline{Y}$)

- b) $\overline{\text{Jorge}} \cup \overline{\text{Eduardo}} \cup \overline{\text{Renan}} \cup \overline{\text{Fernando}} \cup \overline{\text{Felipe}} = A$
- 5) $A = \mathbb{Z}$

 $x \sim y \Leftrightarrow x - y = 2k, k \in \mathbb{Z}$

 $\overline{0} = \{a \in A \mid a \sim 0\} = \{a \in \mathbb{Z} \mid a - 0 = 2k\} = \{a \in \mathbb{Z} \mid a = 2k\} = \{0, \pm 2, \pm 4, \pm 6, \ldots\}$ (conjunto dos números pares)

 $\overline{1} = \{a \in A \mid a \sim 1\} = \{a \in \mathbb{Z} \mid a - 1 = 2k\} = \{a \in \mathbb{Z} \mid a = 2k + 1\} = \{\pm 1, \pm 3, \pm 5, \pm 7, \ldots\}$ (conjunto dos números ímpares)

$$A_{/\sim} = \{\overline{0}, \overline{1}\}$$

 $\overline{0}$ $\overline{1}$ A

Observe que: a) $\overline{0} \cap \overline{1} = \emptyset$;

b)
$$\overline{0} \cup \overline{1} = A$$

Observações. a) $\overline{X} \neq \emptyset, \forall x \in A$; Isto se deve ao fato de uma relação de equivalência \sim satisfazer a propriedade reflexiva (RE1) $\forall x \in A, x \sim x$; (ou seja, $x \in \overline{X}$)

b) Dois elementos são equivalentes se , e somente se, eles representam a mesma classe. (Isto é, $\overline{X} = \overline{Y} \Leftrightarrow X \sim Y$)

$$\begin{array}{ll} \mathbf{Demonstração.} & (\Rightarrow) \left\{ \begin{array}{l} \mathbf{H} \colon \overline{X} = \overline{Y} \\ \mathbf{T} \colon x \sim y \end{array} \right. \\ \overline{X} = \left\{ a \in A \mid a \sim x \right\} = \left\{ b \in A \mid b \sim y \right\} = \overline{Y} \\ \underline{x} \in \overline{X} \text{ (pois } x \sim x) \Rightarrow x \in \overline{Y}, \text{ isto \'e}, \ x \sim y \end{array}$$

$$(\Leftarrow) \left\{ \begin{array}{l} \text{H: } x \sim y \\ \text{T: } \overline{X} = \overline{Y} \end{array} \right. \text{ (igualdade de conjuntos)}$$

Queremos mostrar uma dupla inclusão: $\overline{X} \subseteq \overline{Y}$ e $\overline{Y} \subseteq \overline{X}$.

Vamos mostrar apenas a 1^a inclusão (a 2^a é análoga, bastando trocar x por y).

Tome $a \in \overline{X}$ (arbitrário). Devemos mostrar que $a \in \overline{Y}$

$$a \in \overline{X} \Rightarrow a \sim x$$
 (I)

Por hipótese, $x \sim y$ (II)

De (I) e (II), segue que $a \sim y$ (pela propriedade transitiva (RE3)). Assim, $a \in \overline{Y}$.

Conclusão:
$$\overline{X} \subseteq \overline{Y}$$

Definição 3.4 (Partição de Um Conjunto). Seja $A \neq \emptyset$. Seja B uma coleção não-vazia de subconjuntos de A (isto é, $\emptyset \neq B \subseteq P(A)$). Dizemos que B é uma partição de A se:

- i) $\varnothing \notin B$; (isto é, todo elemento de B é não vazio)
- ii) Quaisquer dois elementos distintos de B são disjuntos (isto \acute{e} , $\forall B_1, B_2 \in B$, se $B_1 \neq B_2$, então $B_1 \cap B_2 = \varnothing$)
- iii) A união de todos os elementos de B "reproduz" o conjunto original. $\bigcup_{B_i \in B} B_i = A$

Teorema 3.5. Seja $A \neq \emptyset$ munido de uma relação de equivalência \sim . Então, o conjunto quociente $A_{/\sim} = \{\overline{x} \mid x \in A\}$ é uma partição de A. (vide os três exemplos anteriores)

Demonstração. Devemos verificar que $A_{/\sim} = B$ satisfaz as três condições de uma partição, a saber:

- i) $\varnothing \notin A_{/\sim}$;
- ii) $\forall \overline{X}, \overline{Y} \in A_{/\sim}$, se $\overline{X} \neq \overline{Y}$, então $\overline{X} \cap \overline{Y} = \emptyset$;

iii)
$$\bigcup \overline{X} = A$$
.

De fato:

- i) (ok!), pois $\overline{X} \neq \emptyset$ (pois $x \in \overline{X}$);
- ii) Equivalentemente, pelo Contra-Recíproco (ou Contra-Positiva), vamos mostrar que se $\overline{X} \cap \overline{Y} \neq \emptyset$, então $\overline{X} = \overline{Y}$.

$$\text{Tome } a \in \overline{X} \cap \overline{Y} \Rightarrow \left\{ \begin{array}{l} a \in \overline{X} \\ \mathrm{e} \\ a \in \overline{Y} \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} a \sim x \\ \mathrm{e} \\ a \sim y \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} x \sim a \\ \mathrm{e} \\ a \sim y \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} x \sim a \\ \mathrm{e} \\ a \sim y \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} x \sim a \\ \mathrm{e} \\ a \sim y \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} x \sim a \\ \mathrm{e} \\ a \sim y \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} x \sim a \\ \mathrm{e} \\ a \sim y \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} x \sim a \\ \mathrm{e} \\ a \sim y \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} x \sim a \\ \mathrm{e} \\ a \sim y \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} x \sim a \\ \mathrm{e} \\ a \sim y \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} x \sim a \\ \mathrm{e} \\ a \sim y \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} x \sim a \\ \mathrm{e} \\ a \sim y \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} x \sim a \\ \mathrm{e} \\ a \sim y \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} x \sim a \\ \mathrm{e} \\$$

- iii) (igualdade de conjuntos)
 - I) $\bigcup \overline{X} \subseteq A$;

De fato: $\forall x \in A, \ \overline{X} \subseteq A \Rightarrow \bigcup \overline{X} \subseteq A$

II)
$$A \subseteq \bigcup \overline{X}$$
: $\forall x \in A, x \in \overline{X} \subseteq \bigcup \overline{X} \Rightarrow x \in \bigcup \overline{X}$

Exemplo: (exercício 1 da 2ª lista, pág. 184)

Determine todas as relações de equivalência sobre $A = \{1, 2, 3\}$ e os respectivos conjuntos-quociente:

- $A = \{1\}$ $R = \{ (1,1) \}$ é a única relação de equivalência sobre A $\overline{1} = \{ a \in A \mid a \sim 1 \} = \{ 1 \}$ $A_{/\sim} = \{\overline{1}\} = \{\{1\}\}\$
- $A = \{1, 2\}$ $R_1 = \{ (1,1), (2,2) \}$ é uma relação de equivalência sobre A $R_2 = \{ (1,1), (2,2), (1,2), (2,1) \}$ é uma relação de equivalência

Análise para R_1 :

$$\overline{1} = \{1\}$$
 e $\overline{2} = \{2\}$
 $A_{/R_1} = \{\overline{1}, \overline{2}\} = \{\{1\}, \{2\}\}$

Análise para R_2 :

$$\overline{1} = \{1, 2\} = \overline{2}$$

$$A_{/R_2} = \{\overline{1}\}$$

```
\bullet A = \{1, 2, 3\}
    R_1 = \{(1,1), (2,2), (3,3)\}
    R_2 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}
    R_3 = \{(1,1), (2,2), (3,3), (1,3), (3,1)\}
    R_4 = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}
    R_5 = \{(1,1), (2,2), (3,3), (1,2), (2,1), (1,3), (3,1), (2,3), (3,2)\} = A \times A
    Análise para R_1
   \overline{1} = \{1\}; \ \overline{2} = \{2\}; \ \overline{3} = \{3\}
   A_{/R_1} = {\overline{1}, \overline{2}, \overline{3}} = {\{1\}, \{2\}, \{3\}\}}
    Análise para R_2
    \overline{1} = \{1, 2\} = \overline{2}; \ \overline{3} = \{3\}
   A_{/R_2} = \{\overline{1}, \overline{3}\} = \{\{1, 2\}, \{3\}\}\
    Análise para R_5
   \overline{1} = \overline{2} = \overline{3} = \{1, 2, 3\}
   A_{/R_5} = \{I\} = \{\{1, 2, 3\}\}
    Análise para R_3:
    \overline{2} = \{2\}; \ \overline{1} = \overline{3} = \{1, 3\}
   A_{/R_3} = {\overline{1}, \overline{2}} = {\{1, 3\}, \{2\}}
    Análise para R_4:
    \overline{1} = \{1\}; \ \overline{2} = \overline{3} = \{2, 3\}
   A_{/R_4} = \{\overline{1}, \overline{2}\} = \{\{1\}, \{2, 3\}\}\
```

Exercício: Explique a razão pela qual as seguintes relações NÃO são de equivalência sobre $A = \{1, 2, 3\}$

- a) $R^* = \{ (1, 1), (2, 2), (1, 2), (2, 1) \}$ não satisfaz a propriedade reflexiva para o 3 (RE1 falha)
- b) $R^{**} = \{ (1, 1), (2, 2), (3, 3), (1, 2) \}$ não satisfaz a propriedade simétrica (falta (2, 1)) (RE2 falha)
- c) $R^{***} = \{ (1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1) \}$ não satisfaz a propriedade transitiva (falta (2, 3) e (3, 2)) (RE3 falha)

Definição 3.6 (Relação de Ordem). Seja $A \neq \emptyset$ munido de uma relação R (isto é, $R \subseteq A \times A$). Dizemos que R é uma Relação de Ordem Parcial (ou que A é parcialmente ordenado por R) se valem as seguintes condições:

$$(RO1) \ \forall \ a \in A, \ a \ R \ a \ (isto \ \acute{e}, \ (a,a) \in R)); \ (Reflexiva)$$
 $(RO2) \ \forall \ a,b \in A, \ se \ a \ R \ b \ e \ b \ R \ a, \ ent \ \~ao \ a = b; \ (Anti-Sim\'etrica)$ $(RO3) \ \forall \ a,b,c \in A, \ se \ a \ R \ b \ e \ b \ R \ c, \ ent \ \~ao \ a \ R \ c. \ (Transitiva)$

Observação. Dizemos que R é uma relação de ordem total (ou que A é totalmente ordenado por R) se, além de (RO1), (RO2) e (RO3), vale uma propriedade adicional:

(RO4) $\forall a, b \in A$, tem-se que ou a R b ou b R a; (para $a \neq b$) (isto é, quaisquer dois elementos podem ser comparados)

Notação (para Relação de Ordem). $R \leftrightarrow \leq$ (lê-se: precede ou igual)

Exemplos:

1)
$$A = \mathbb{N}$$
 (ou \mathbb{Z} ou \mathbb{Q} ou \mathbb{R}) $x, y \in A$ $x \leqslant y \Leftrightarrow x - y \leqslant 0$ (\leqslant = ordem natural)
$$\xrightarrow{x = y}$$

≤ é relação de ordem total, pois

$$\begin{split} & \text{(RO1)} \ x \leqslant x, \forall \ x \in A; \\ & \text{(RO2)} \ \forall \ x, y \in A, \ x \leqslant y \ \text{e} \ y \leqslant x \Rightarrow x = y; \\ & \text{(RO3)} \ \forall \ x, y, z \in A, \ x \leqslant y \ \text{e} \ y \leqslant z \Rightarrow x \leqslant z; \\ & \text{(RO4)} \ \forall \ x, y \in A, \ x \leqslant y \ \text{ou} \ y \leqslant x \end{split}$$

2)
$$E \neq \emptyset$$

$$A = P(E) = \{X \mid X \subseteq E\}$$

$$X, Y \in A$$

$$X \leq Y \Leftrightarrow X \subseteq Y \text{ (lei de formação)}$$

$$\leq \text{é uma relação de ordem parcial (em geral, não é total)}$$

(RO1) $\forall X \in A, X \subseteq X$; (RO2) $\forall X, Y \in A$, se $X \subseteq Y$ e $Y \subseteq X$, então X = Y; (igualdade de conjuntos)

(RO3) $\forall X, Y, Z \in A$, se $X \subseteq Y$ e $Y \subseteq Z$, então $X \subseteq Z$

Observações. a) Em geral tal relação não é total.

Exemplo:
$$E = \{1, 2\}$$

 $A = P(E) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$
 $X = \{1\}, Y = \{2\}$
Temos que $X \nsubseteq Y$ e $Y \nsubseteq X$.

b) Se A é finito, então podemos representar graficamente uma relação de ordem através de um RETICULADO. ("Teoria dos Grafos")

Exemplo:
$$E = \{1, 2, 3\}$$
 $A = P(E) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $X, Y \in A$

Observação. Num reticulado é possível visualizar quando dois elementos não são comparáveis. Tais elementos devem estar no mesmo nível, de maneira que não haja aresta(s) ligando-os. No exemplo anterior, $\{\ 1\ \}$, $\{\ 2\ \}$, e $\{\ 3\ \}$ estão no mesmo nível. Logo, não são comparáveis ($\{\ 1\ \} \not\subseteq \{\ 2\ \} \not\subseteq \{\ 1\ \}$)

3)
$$A = \mathbb{N}$$
 $x, y \in A$ $x \leqslant y \Leftrightarrow x \mid y$ (isto é, $x \cdot z = y$, para algum $z \in A$) \leqslant é uma relação de ordem parcial (não é total): (RO1) $\forall \ x \in A, \ x \mid x$ (pois $x = 1 \cdot x$); (RO2) $\forall \ x, y \in A$, se $\underbrace{x \mid y \text{ e } y \mid x}_{\text{H}}$, então $\underbrace{x = y}_{\text{T}}$;

De fato:

$$x \mid y \Rightarrow x \cdot z_1 = y \quad (I) \quad (z_1 \in A)$$

$$y \mid x \Rightarrow y \cdot z_{2} = x \quad (II) \quad (z_{2} \in A)$$

$$(I) \rightarrow (II):$$

$$(x \cdot z_{1}) \cdot z_{2} = x \Rightarrow z_{1} \cdot z_{2} = 1 \Rightarrow z_{1} = 1 = z_{2}$$
Assim, $x = y$.
$$(RO3) \forall x, y, z \in A, \text{ se } \underbrace{x \mid y \in y \mid z}_{H}, \text{ então } \underbrace{x \mid z}_{T}$$

$$x \mid y \Rightarrow x \cdot l = y \quad (I) \quad (l \in A)$$

$$y \mid z \Rightarrow y \cdot m = z \quad (II) \quad (m \in A)$$

$$(I) \rightarrow (II):$$

$$(x \cdot l) \cdot m = z \Rightarrow x \cdot \underbrace{(l \cdot m)}_{\in A} = z \Rightarrow x \mid z$$

Tal relação NÃO é total pois existem elementos em A que não são comparáveis.

Exemplo:
$$x = 2$$
, $y = 3$ $x \nmid y$ e $y \nmid x$

Exercícios: 1)Usando a relação de divisibilidade, construa o reticulado correspondente ao conjunto $A = \{x \in \mathbb{N} \mid x \text{ divide } 12\} = D_{+}(12)$

2) Mostre que a relação de divisibilidade em \mathbb{Z} não é relação de ordem (Sugestão: verifique que (RO2) falha).

Resolução:

1)
$$A = D_{+}(12) = \{1, 2, 3, 4, 6, 12\}$$

 $x, y \in A$
 $x \leq y \Leftrightarrow x \mid y$

2)
$$A = \mathbb{Z}$$
 $x, y \in A$ $x \leq y \Leftrightarrow x \mid y$

$$\begin{array}{l} (\mathrm{RO1}) \ \forall \ x \in A, \ x \mid x; \\ (\mathrm{RO2}) \ \exists \ x, y \in A, \ x \mid y, \ y \mid x \ \ \mathrm{e} \ \ x \neq y \\ x \mid y \Rightarrow y = x \cdot z_1 \quad (z_1 \in A) \quad (\mathrm{I}) \\ y \mid x \Rightarrow x = y \cdot z_2 \quad (z_2 \in A) \quad (\mathrm{II}) \\ (\mathrm{II}) \rightarrow (\mathrm{I}) : \\ y = y \cdot z_2 \cdot z_1 \Rightarrow z_2 \cdot z_1 = 1 \Rightarrow z_1 = z_2 = \pm 1 \\ \mathrm{Ent\tilde{ao}} \ x = y \ \mathrm{ou} \ x = -y, \ \mathrm{logo} \ x \ \mathrm{pode} \ \mathrm{ser} \ \mathrm{diferente} \ \mathrm{de} \ y. \end{array}$$

Definição 3.7 (Elemento Mínimo e Elemento Máximo). Sejam $E \neq \emptyset$ $e \varnothing \neq A \subseteq E$ (A está ordenado por \leqslant).

- i) Dizemos que m é um elemento mínimo de A se:
 - $a) m \in A;$
 - b) m é uma cota inferior de A, isto é, $m \leq a$, $\forall a \in A$.
- ii) Dizemos que M é um elemento máximo de A se:
 - $a) M \in A;$
 - b) M é uma cota superior de A, isto é, $a \leq M$, $\forall a \in A$.

Exemplos:

- 1) $A = \mathbb{N}$; \leq = ordem habitual $A = \mathbb{N} = \{1, 2, 3, ...\}$
 - -A tem elemento mínimo (=1): 1 = min(A)
 - -A não tem elemento máximo (pois $n < n+1, \forall n \in A$)

Notação. m = min(A) e M = max(A)

- 2) $E \neq \emptyset$, A = P(E); $\leq = inclusão$ $A = \mathbb{N} = \{1, 2, 3, \ldots\}$
 - -A tem elemento mínimo: $\varnothing = min(A)$
 - -A tem elemento máximo: E = max(A)
- 3) $A = \mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}; \leqslant = \text{ordem habitual}$
 - -A não tem mínimo nem máximo (pois $n-1 < n < n+1, \forall n \in A$)

- 4) $A = \{x \in \mathbb{Z} \mid x \le 5\} = \{\dots, -1, 0, 1, 2, 3, 4, 5\}; \le = \text{ ordem habitual}$
 - -A não tem mínimo, mas tem máximo: 5 = max(A)
- 5) $A = (0,1) = \{x \in \mathbb{R} \mid 0 < x < 1\}; \le = \text{ ordem habitual }$
 - A não tem elemento mínimo (embora seja limitado inferiormente) Observe que A possui infinitas cotas inferiores em $E = \mathbb{R} : 0, -1,$ $-2, -3, \dots$ Mas nenhum $x_0 \in A$ é elemento mínimo (basta tomar $x_1 = 1/2$ $x_0 < x_0$).
 - A não tem elemento máximo.

P.B.O. (Princípio da Boa Ordenação)

- 1ª versão: (para \mathbb{N}) Todo subconjunto não-vazio de \mathbb{N} possui elemento mínimo (isto é, $\forall \varnothing \neq A \subseteq \mathbb{N}, \exists min(A)$)
- 2ª versão: (para Z)
 Todo subconjunto não-vazio e limitado inferiormente de Z possui elemento mínimo.
- $3^{\underline{a}}$ versão: (caso geral) Seja $E \neq \emptyset$ munido de uma ordem total \leqslant . E é dito bem ordenado (ou \leqslant é uma boa ordem) se todo subconjunto não-vazio e limitado inferiormente de E possui elemento mínimo.

Princípio da Indução Matemática

INDUÇÃO: PARTICULAR ⇒ GERAL

Observação. Não confundir a indução matemática com a indução empírica (usada nas Ciências Naturais). A primeira delas é utilizada para demonstrar verdades matemáticas em conjuntos infinitos que possuem elemento mínimo. Tal indução baseia-se em lógica e não pode ser refutada (após demonstrada) A segunda delas é "mais fraca" pois tenta explicar os fenômenos naturais a partir de um número finito de observações (testadas experimentalmente), as quais podem ser invalidadas com o surgimento de uma nova teoria.

Teorema 3.8 (Princípio de Indução Matemática - 1^a versão). Sejam $n_0 \in \mathbb{Z}$ fixado e P(n) uma sentença aberta que depende de n, onde $n \ge n_0$. Suponha que P(n) satisfaça duas condições:

- i) $P(n_0)$ é V; (Base da Indução)
- ii) Para todo $n \ge n_0$, se P(n) é V, então P(n+1) também o é. (Etapa da Indução)

Então,
$$P(n) \notin V, \forall n \geqslant n_0$$

Observação. Na prática, P(n) é chamada de Hipótese de Indução. (fila infinita de dominós)

Demonstração. Defina $A = \{n \in \mathbb{Z} \mid n \geqslant n_0 \in P(n) \in F\}$. Queremos mostrar que $A = \emptyset$. Suponha, por absurdo, que $A \neq \emptyset$. Como $\emptyset \neq A \subseteq \mathbb{Z}$ e é limitado inferiormente, então, pelo P.B.O. $(2^a \text{ versão}) \exists b = min(A)$, isto é, $b \in A$ e $b \leqslant n$, $\forall n \in A$. b: primeiro índice para o qual a sentença aberta é falsa. Como $b \in A$, segue que P(b) é F. (*)

$$n_0$$
 b

Além disso, $b \ge n_0$. Por i), $P(n_0)$ é V. Assim, $b \in A \ne n_0 \notin A$ e, portanto, $b > n_0$

$$b > n_0 \implies b \geqslant n_0 + 1$$

 $\Rightarrow b - 1 \geqslant n_0$

Como b-1 < b e b é o primeiro índice para o qual P(n) é F, então P(b-1) é V.

Por ii), se
$$P(b-1)$$
 é V , então $P((b-1)+1)=P(b)$ é V . (**)
Conclusão: de (*) e (**), $P(b)$ é F e V (absurdo). Portanto, $A=\varnothing$.

Exemplos:

1)
$$\underbrace{1+2+3+\ldots+n=\frac{n(n+1)}{2}}_{P(n)}$$
, $\forall n \in \mathbb{N}. \ n_0=1$

i) $P(1) \in V$:

$$1 = \frac{1(1+1)}{2} \quad \text{(ok!)}$$

ii) Dado $n \in \mathbb{N}$, devemos mostrar que se P(n) é V, então P(n+1) também o é, ou seja, que

$$1+2+\ldots+(n+1)=\frac{(n+1)(n+2)}{2}$$

De fato:
$$1 + 2 + ... + n + (n+1) \stackrel{(*)}{=} \frac{n(n+1)}{2} + (n+1)$$

= $\frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$ (ok!)

Conclusão: de i) e ii), temos, pelo princípio de indução matemática que (*) é $V, \ \forall \ n \in \mathbb{N}.$

2) Se $f(x) = x^n \ (n \in \mathbb{Z})$, então $f'(x) = nx^{n-1} \ (= P(n))$ (*)

 $1^{\underline{a}}$ resolução: (sem indução)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} \stackrel{\text{(BN)}}{=} nx^{n-1}$$

2ª resolução: (indução)

i) $n_0 = 0$, $P(0) \notin V$:

$$f(x) = x^0 = 1$$

 $f'(x) = 0 x^{0-1} = 0$

ii) Dado $n \ge 0$, devemos mostrar que se (*) é V para n, então ela também é válida para n+1, isto é, se $f(x)=x^{n+1}$, então $f'(x)=(n+1)\,x^n$.

De fato: $f(x) = x^{n+1} = x^n x$

Pela regra do produto para derivadas, temos

$$f'(x) = (x^n x)' = (x^n)' x + x^n (x)' \stackrel{(*)}{=} (n x^{n-1}) x + x^n 1$$
$$= n x^n + x^n = (n+1) x^n$$

Conclusão: de i) e ii), temos, pelo Princípio de Indução, que (*) é $V, \ \forall \ n \geqslant 0.$

3) (Lista)
$$\underbrace{1 + x + x^2 + \ldots + x^{n-1}}_{(*)} = \underbrace{\frac{(1 - x^n)}{1 - x}}_{,} \forall n \in \mathbb{N}, \forall x \in \mathbb{R}, x \neq 1$$

P.G.: $a_1 = 1 e q = x$

1º resolução: (2º grau e Cálculo 2)

$$S_n = 1 + x + x^2 + \dots + x^{n-1}$$
 (I)
 $x S_n = x + x^2 + x^3 + \dots + x^n$ (II)

(I) - (II):
$$S_n - x S_n = 1 - x^n$$

$$S_n(1 - x) = 1 - x^n \xrightarrow{x \neq 1} S_n = \frac{1 - x^n}{1 - x}$$

2ª resolução: (usando indução)

i)
$$n = 1$$
 $1 = \frac{1-x}{1-x}$

ii) Supondo que a hipótese de indução (*) é válida para $n \ge 1$, devemos mostrar a sua validade para n+1, ou seja, que $1+x+\ldots+x^n=(1-x^{n+1})/(1-x)$.

De fato:

$$1 + x + \dots + x^{n-1} + x^n = \frac{1 - x^n}{1 - x} + x^n = \frac{1 - x^n + x^n (1 - x)}{1 - x}$$
$$= \frac{1 - x^n + x^n - x^{n+1}}{1 - x} = \frac{1 - x^{n+1}}{1 - x}$$

De i) e ii), temos, pelo Princípio de Indução, que (*) é válida $\forall n \in \mathbb{N}$.

4) (Exemplo onde a hipótese de indução não é fornecida) Problema: encontrar a soma dos n primeiros números ímpares naturais.

$$n$$
 genérico: $1+3+5+7+\ldots+(2n-1)=n^2$ (*) (hipótese de indução)

i)
$$n = 1$$
: $1 = 1^2$ (ok!)

ii)
$$P(n) \notin V \stackrel{?}{\Rightarrow} P(n+1) \notin V$$
;
 $P(n) = 1 + 3 + 5 + 7 + \dots + (2n-1) = n^2 \quad (*)$
 $P(n+1) : 1 + 3 + 5 + 7 + \dots + (2n+1) = (n+1)^2 \quad (a \text{ obter})$

De fato:
$$\overbrace{1+3+5+7+\ldots+(2n-1)}^{(*)} + (2n+1) = n^2 + (2n+1) = (n+1)^2$$

De i) e ii), (*) é
$$V$$
, $\forall n \in \mathbb{N}$.

5) (Lista) (Desigualdade de Bernoulli)

$$(*)$$
 $(1+x)^n \ge 1+nx$, $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, x \ge -1$

i)
$$n = 1: 1 + x \ge 1 + x$$
 (ok!)

ii)
$$P(n) \notin V \stackrel{?}{\Rightarrow} P(n+1) \notin V$$

$$P(n): (1+x)^n \geqslant 1+nx \ (V) \ (*)$$

$$P(n): (1+x)^n \geqslant 1 + nx \quad (V) \quad (*)$$

$$P(n+1): (1+x)^{n+1} \geqslant 1 + (n+1)x$$

Como $x \ge -1$, então $x+1 \ge 0$. Logo, multiplicando (*) por x+1, não alteramos o sentido da desigualdade:

$$(1+x)^n \geqslant 1 + nx \stackrel{\times (x+1)}{\Longrightarrow} (1+x)(1+x)^n \geqslant (1+x)(1+nx) \Rightarrow (1+x)^{n+1} \geqslant 1 + nx + x + nx^2 = 1 + (n+1)x + nx^2 \geqslant 1 + (n+1)x$$

De i) e ii), (*) é
$$V$$
, $\forall n \in \mathbb{N}$.

6) (Lista) (Geometria Plana)

$$(*) d_n = \frac{n(n+3)}{2}, \ \forall \ n \in \mathbb{N}, \ n \geqslant 3$$

 d_n : número de diagonais de um polígono convexo de n lados (diagonal: segmento de reta unindo vértices não adjacentes)

$$n=3$$
: 0 diagonais $\left(=\frac{3(3-3)}{2}\right)$

$$n=4$$
: 2 diagonais $\left(=\frac{4(4-3)}{2}\right)$

 $1^{\underline{a}}$ resolução: $(2^{\underline{o}}$ grau)

$$C_{n,2} - n = \binom{n}{2} - n = \frac{n!}{2!(n-2)!} - n = \frac{n(n-1)(n-2)!}{2(n-2)!} - n = \frac{n(n-1)}{2} - n = \frac{n(n-1) - 2n}{2} = \frac{n^2 - 3n}{2} = \frac{n(n-3)}{2}$$

 $2^{\underline{a}}$ resolução: (usando indução)

i)
$$n = 3$$
: $0 = \frac{3(3-3)}{2} = d_3$ (ok!)

ii)
$$P(n) \in V \Rightarrow P(n+1) \in V \ (n \geqslant 3)$$

$$P(n): d_n = n(n-3)/2$$
 (V)

$$P(n+1)$$
: $d_{n+1} = (n+1)(n-2)/2$ (a obter)

Ao acrescentarmos mais um vértice, temos:

- i) as diagonais do polígono de n lados são preservados;
- ii) um dos lados do polígono original transforma-se numa diagonal;
- iii) pelo novo vértice, há n-2 novas diagonais.

Conclusão:

$$d_{n+1} = d_n + 1 + (n-2) \stackrel{*}{=} \frac{n(n-3)}{2} + (n-1) = \frac{n(n-3) + 2(n-1)}{2} = \frac{n^2 - n - 2}{2} = \frac{(n+1)(n-2)}{2} \quad \text{(ok!)}$$

De i) e ii), (*) é V, $\forall n \geq 3$.

7) (Lista) (Conjuntos)

Se
$$|A| = n$$
, então $|P(A)| = 2^n \quad (n \in \mathbb{Z}_+) \quad (*)$

i)
$$n = 0$$
: $A = \emptyset$

$$P(A) = \{\emptyset\}$$

$$|P(A)| = 1 = 2^0$$
 (ok!)

ii)
$$P(n)$$
 é $V \stackrel{?}{\Rightarrow} P(n+1)$ é $V (n \geqslant 0)$

$$P(n)$$
: se $|A| = n$, então $|P(A)| = 2^n$ (V)

$$P(n+1)$$
: se $|A| = n+1$, então $|P(A)| = 2^{n+1}$

Seja $B \subseteq A$. Queremos mostrar que há 2^{n+1} possibilidades para B. Observe que há dois casos a considerar:

- $1^{\underline{a}}$) $a_{n+1} \notin B$: nesse caso, $B \subseteq A_1 = \{a_1, \dots, a_n\}$. Por (*), há 2^n possibilidades para B;
- $2^{\underline{a}}$) $a_{n+1} \in B$: nesse caso, B é obtido a partir dos subconjuntos de A_1 , acrescentando-se a_{n+1} . Assim, há 2^n possibilidades para B.

Conclusão: O número total de possibilidades é $2^n + 2^n = 2 \cdot 2^n = 2^{n+1}$

Comentários Finais Sobre P.B.O. e Indução Matemática

1) As condições i) e ii) no princípio de indução (1^{a} versão) são essencias. Caso uma delas falhe, então não podemos aplicar a indução.

Exemplo: onde i) falha:

"Todo número natural coincide com o seu secessor"

$$(n = n + 1, \ \forall \ n \in \mathbb{N})$$
 (*)

Observe que ii) é válida, ou seja, P(n) é $V \Rightarrow P(n+1)$ é $V \ (n \in \mathbb{N})$

$$P(n): n = n + 1 \quad (V)$$
 \downarrow $P(n+1): n+1 = (n+1)+1 \quad (V)$

Todavia, i) falha: $P(1) \notin F$: 1 = 2 (F)

Exemplo: onde ii) falha

$$f(n) = n^2 - n + 41 \quad (n \in \mathbb{N})$$

Afirmação. f(n) é primo, $\forall n \in \mathbb{N}$

Definição 3.9 (Númeors Primos e Compostos). Seja $n \in \mathbb{N}$

- a) Dizemos que n é primo se:
 - *i*) n > 1;
 - ii) $n = ab \Rightarrow a = 1$ ou b = 1 $(a, b \in \mathbb{N})$

$$D_{+}(n) = \{d \in \mathbb{N} \mid d \text{ divide } n\} = \{1, n\}$$
 (divisores triviais)

b) Dizemos que n é composto se n não é primo, ou seja, se n possui divisores não-triviais $(\neq 1, n)$

Exemplos: a) $2, 3, 5, 7, 11, 13, 17, 19, \dots$ são primos b) $4, 6, 8, 9, \dots$ são compostos

Observe que i) é válida

$$n = 1: f(1) = 1^2 - 1 + 41 = 41$$
 é primo

$$n=2: f(2)=2^2-2+41=43$$
 é primo

$$n = 3: f(3) = 3^2 - 3 + 41 = 47$$
 é primo

 $n = 40: f(40) = 40^2 - 40 + 41 = 1601$ é primo

Todavia, para n = 41, f(n) é composto

$$f(41) = 41^2 - 41 + 41 = 41^2$$

$$D_{+}(41^{2}) = \{1, 41, 41^{2}\}$$

Assim, a condição ii) falha, pois f(40) é V, mas f(41) é F.

2) Há uma $2^{\underline{a}}$ versão para o Princípio da Indução, cuja demonstração é similar a da $1^{\underline{a}}$ versão.

Teorema 3.10 (Princípio da Indução Matemática - 2^{a} versão). Sejam $n_0 \in \mathbb{Z}$ (fixo) e P(n) uma sentença aberta que depende de $n \in \mathbb{Z}$, onde $n \ge n_0$. Suponha que P(n) satisfaça as seguintes condições:

- i) $P(n_0) \notin V$;
- ii) Dado $m \in \mathbb{Z}$, $m > n_0$, se P(k) é V para todo $n_0 \leqslant k < m$, então P(m) é V.

Então, $P(n) \notin V, \forall n \geq n_0$.

3) O elemento mínimo de um conjunto A parcialmente ordenado, quando existe, é único.

De fato: (unicidade)

Vamos mostrar que se m e m' são elementos mínimos de A, então m = m'.

H:
$$\begin{cases} m = min(A) \Rightarrow \begin{cases} a) \ m \in A \\ b) \ m \leqslant a, \ \forall \ a \in A \end{cases} \\ m' = min(A) \Rightarrow \begin{cases} a') \ m' \in A \\ b') \ m' \leqslant a, \ \forall \ a \in A \end{cases}$$

T· m=m'

De fato: de b) e a'), $m \le m'$ de a) e b'), $m' \le m$

Por (RO2), m' = m.

Definição 3.11 (Funções). Sejam $A, B \neq \emptyset$. Seja f uma relação de A em B (isto é, $f \subseteq A \times B$). Dizemos que f é uma função (ou aplicação) de A em B se:

- $i) \ \forall \ x \in A, \ \exists \ y \in B \mid (x, y) \in f;$
- $ii) \ \forall \ x \in A, \ \forall \ y,y' \in B, \ se \ (x,y) \in f \ e \ (x,y') \in f, \ ent \tilde{ao} \ y = y'.$

Em outras palavras: uma função f de A em B é uma Regra (ou correspondência) que associa a cada elemento $x \in A$ um único elemento $y \in B$.

$$x \in A \longrightarrow \begin{bmatrix} \text{FUN}\tilde{\text{CAO}} \end{bmatrix} \longrightarrow y \in B$$
 entrada saída

Notação.

$$f: A \to B$$

 $x \mapsto y = f(x)$

- $A = \text{conjunto de partida} = \text{domínio de } f \ (A = D(f))$
- $\bullet \ B = {\rm conjunto}$ de chegada = contra-domínio de $f \ (B = CD(f))$
- x = variável independente
- \bullet y =variável dependente
- $f: A \to B$ ("função de A em B")
- f(x) = imagem de x por f ou valor de f em x
- $Im(f) = \text{imagem de } f = \{y \in B \mid y = f(x), \ x \in A\} \subseteq B$
- Se A e B são conjuntos numéricos, então definimos o gráfico de f por: $G(f) = \{(x,y) \in A \times B \mid y = f(x)\}$ (alguns autores identificam G(f) com f)

Exemplos: a) $R_1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ é uma relação, mas não é função.

De fato:

i) falha, pois "sobram" elementos no domínio que não estão associados.

Exemplo: $2 \in \mathbb{R}$ não está associado a nenhum outro elemento.

ii) falha, pois existem elementos no domínio com mais de uma imagem. $\forall \ (x) \in (-1,1), \text{ existem duas imagens: } \left\{ \begin{array}{l} y = \sqrt{1-x^2} \\ y' = -\sqrt{1-x^2} \end{array} \right.$

Exemplo:
$$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \in R_1 \in \left(\frac{1}{2}, \frac{-\sqrt{3}}{2}\right) \in R_1$$

b) $R_2=\{(x,y)\in[-1,1]\times\mathbb{R}\mid y=\sqrt{1-x^2}\}$ é função. $f:\ [-1,1]\to\mathbb{R}$ $x\mapsto y=f(x)=\sqrt{1-x^2}$

- **Observações.** 1) Conhecido o gráfico de uma relação R de A em B, podemos verificar se a mesma é uma função. Isso ocorrerá se $\forall x \in A$, existir uma reta vertical interceptando o gráfico em um único ponto.
 - 2) Conhecido o gráfico de uma função

$$f: A \to B$$
$$x \mapsto y$$

obtemos D(f) e Im(f) através de projeções sobre os eixos coordenados

$$-\ D(f)=A=$$
projeção de $G(f)$ sobre o $eixo-x$

$$-Im(f) = \text{projeção de } G(f) \text{ sobre o } eixo - y$$

No exemplo anterior:
$$\left\{ \begin{array}{l} D(f) = [-1,1] \\ Im(f) = [0,1] \end{array} \right.$$

3) Em geral, trabalharemos com funções reais de uma variável real $(A, B \subset \mathbb{R})$. Quando A não for explicitamente determinado, consideraremos o domínio como sendo o "maior" conjunto possível de valores para a variável independente x.

Exemplo: a)
$$f(x) = \sqrt{1 - x^2}$$
 $D(f) = \{x \in \mathbb{R} \mid 1 - x^2 \ge 0\} = \{x \in \mathbb{R} \mid x^2 \le 1\} = \{x \in \mathbb{R} \mid |x| \le 1\} = \{x \in \mathbb{R} \mid -1 \le x \le 1\} = [-1, 1]$

Quando B não for explicitamente determinado, então $B = \mathbb{R}$. >> Toda função é uma relação, mas nem toda relação é função.

Definição 3.12 (Restrição e Prolongamento de Uma Função). Seja

$$f: A \to B$$
$$x \mapsto y = f(x)$$

uma função. Seja $A' \subseteq A$. A função

$$g: A' \to B$$

 $x \mapsto y = g(x) = f(x)$

é dita uma RESTRIÇÃO de f a A' (Dizemos também que f é um PROLONGAMENTO de g a A).

Exemplo: $f: \mathbb{R} \to \mathbb{R}$ (prolongamento de g) $x \mapsto y = f(x) = x^2$ $g: \mathbb{R}_+ \to \mathbb{R}$ (restrição de f) $x \mapsto y = g(x) = x^2$ $(\mathbb{R}_+ = \{x \in \mathbb{R} \mid x \geqslant 0\} \subseteq \mathbb{R})$

Notação. $g = f_{/_{A'}}$ (lê-se: g é a restrição de f a $A' \subseteq A$)

Algumas Funções Importantes

A) (Função Identidade)

$$Id_A: A \to A$$

 $x \mapsto Id_A(x) = x$

Em particular, se $A = \mathbb{R}$

$$Id_{\mathbb{R}}: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto Id_{\mathbb{R}}(x) = x$

B) (Função Cte)

$$f: A \to B$$

 $x \mapsto y = f(x) = b$ (fixo)

$$Im(f) = \{b\}$$

Em particular, se $A = B = \mathbb{R}$:

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto f(x) = 1$$

C) (Seqüência de Números Reais) (Cálculo 2)

$$f: \mathbb{N} \to \mathbb{R}$$

$$n \mapsto f(n) = a_n$$

$$Im(f) = \{a_n \mid n \in \mathbb{N}\} = \{a_1, a_2, \ldots\}$$

Na prática, identificamos uma sequência com a coleção dos a_n 's dispostos numa certa ordem.

Exemplo: (seqüência cte)

$$f: \mathbb{N} \to \mathbb{R}$$

$$n \mapsto f(n) = a_n = 1$$

$$Im(f) = \{1, 1, 1, 1, \ldots\} = \{1\}$$
 \neq
 $(a_n)_{n \in \mathbb{N}} = (1, 1, 1, \ldots, 1, \ldots)$

Definição 3.13 (Imagem Direta e Imagem Inversa).

i) (Imagem Direta) Sejam

$$f: A \to B$$
$$x \mapsto y = f(x)$$

 $uma função e A' \subseteq A$.

$$f(A') \stackrel{\text{\tiny def}}{:=} \{ f(x) \mid x \in A' \} \subseteq B$$

(Imagem (Direta) de A' por f)

Observação. Se A' = A, então f(A') = Im(f)

Exemplo:

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto y = f(x) = x^2$$

$$A = \mathbb{R}, \ A' = [1, 2]$$

$$f(A') = f([1, 2]) = \{f(x) \mid x \in [1, 2]\}$$

$$= \{x^2 \mid x \in [1, 2]\} = [1, 4]$$

ii) (Imagem Inversa) (não confundir com função inversa) Sejam

$$f: A \to B$$
$$x \mapsto y = f(x)$$

 $uma função e y \in B$.

$$f^{-1}(y) \stackrel{\text{\tiny def}}{:=} \{ x \in A \mid f(x) = y \} \subseteq A$$

(Imagem Inversa ou pré-imagem de y por f)

Exemplos: a) $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto y = f(x) = \sin x$$

$$x \mapsto y = f(x) = \operatorname{sen} x$$

$$f^{-1}(1) = \{x \in \mathbb{R} \mid f(x) = 1\} = \{x \in \mathbb{R} \mid \operatorname{sen} x = 1\}$$

$$= \{x \in \mathbb{R} \mid x = \pi/2 + 2k\pi, \ k \in \mathbb{Z}\}$$

b)
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = |x|$$

b)
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f(x) = |x|$
 $f^{-1}(3) = \{x \in \mathbb{R} \mid f(x) = 3\} = \{x \in \mathbb{R} \mid |x| = 3\} = \{-3, 3\}$
 $f^{-1}(-1) = \emptyset$

$$\begin{array}{c} \xrightarrow{3} & y \\ & \xrightarrow{-3} & \xrightarrow{1} & \xrightarrow{3} & x \end{array}$$

Observações. a) Se $y \in B$ é tal que $y \notin Im(f)$, então $f^{-1}(y) = \emptyset$;

b) Tal conceito pode ser generalizado para conjuntos

$$f: A \to B$$
 ; $B' \subseteq B$ $x \mapsto y = f(x)$

$$f^{-1}(B') \stackrel{\text{def}}{:=} \{ x \in A \mid f(x) \in B' \} \subseteq A$$

(Imagem inversa de B' por f)

Exemplo: $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto y = f(x) = e^x \quad (e \cong 2,71828)$$
 $Im(f) = (0, \infty) = \mathbb{R}_+^*$
 $B' = (0, 1]$

$$f^{-1}(B') = f^{-1}((0,1]) = \{x \in \mathbb{R} \mid f(x) \in (0,1]\} = (-\infty, 0]$$
$$= \{x \in \mathbb{R} \mid x \le 0\}$$

Definição 3.14 (Função Sobrejetora, Injetora e Bijetora). Seja

$$f: A \to B$$
$$x \mapsto y = f(x)$$

uma função.

- i) (vide 1^a questão da 1^a lista) f é Injetora (ou Injetiva) se $\forall x_1, x_2 \in A$, $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ (ou, pela contra-positiva, $\forall x_1, x_2 \in A$, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$).
- ii) $f \notin Sobrejetora$ (ou Sobrejetiva) se Im(f) = B, isto \acute{e} , $\forall y \in B, \exists x \in A \mid y = f(x)$.
- iii) $f \in Bijetora$ (ou Bijetiva ou Bijeção) se $f \in Simultaneamente Injetora e <math>Sobrejetora$, isto \acute{e} , $\forall y \in B$, $\exists ! x \in A \mid y = f(x)$.

Exemplos:

{ é sobrejetora não é injetora

{ é injetora não é sobrejetora

3) A...

{ não é injetora não é sobrejetora

 $\begin{array}{c} A \\ \vdots \\ \vdots \\ \end{array}$

 $\left\{ \begin{array}{l} \text{\'e injetora} \\ \text{\'e sobrejetora} \end{array} \right. \Rightarrow \text{\'e bijetora}$

5) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto f(x) = 1$

 $\left\{ \begin{array}{l} {\rm n\tilde{a}o}\ \acute{\rm e}\ {\rm injetora} \\ {\rm n\tilde{a}o}\ \acute{\rm e}\ {\rm sobrejetora} \end{array} \right.$

6) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto f(x) = x^2$

 $\left\{ \begin{array}{l} {\rm n\~{a}o}\ \acute{\rm e}\ {\rm injetora} \\ {\rm n\~{a}o}\ \acute{\rm e}\ {\rm sobrejetora} \end{array} \right.$

7) $f: \mathbb{R}_+ \to \mathbb{R}$ $x \mapsto f(x) = x^2$

 $\left\{ \begin{array}{l} \text{\'e injetora} \\ \text{n\~ao\'e sobrejetora} \end{array} \right.$

8) $f: \mathbb{R} \to \mathbb{R}_+$ $x \mapsto f(x) = x^2$

é sobrejetora não é injetora

9)
$$f: \mathbb{R}_{+} \to \mathbb{R}_{+} \\ x \mapsto f(x) = x^{2}$$

$$\begin{cases} \text{\'e injetora} \\ \text{\'e sobrejetora} \end{cases} \Rightarrow \text{\'e bijetora}$$

Definição 3.15 (Composição de Funções). Sejam $f:A\to B$ e $g:B\to C$, duas funções arbitrárias

$$A \xrightarrow{f} B \xrightarrow{g} C$$

$$x \mapsto f(x) \mapsto y = g(f(x))$$

$$Definimos \ a \ função \ composta \ de \ g \ com \ f \ por$$

$$h: \ A \to C$$

$$y = h(x) = g(f(x)) = (g \circ f)(x)$$

Observação. Pela nossa construção, $(g \circ f)$ está definida se CD(f) = D(g) = B.

Na prática, basta que $Im(f) \subseteq D(g)$.

Exemplos:

1)
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f(x) = x^2$
 $g: \mathbb{R} \to \mathbb{R}$
 $x \mapsto g(x) = x + 1$
 $g \circ f: \mathbb{R} \to \mathbb{R}$
 $x \mapsto (g \circ f)(x) = g(f(x)) = g(x^2) = x^2 + 1$
 $f \circ g: \mathbb{R} \to \mathbb{R}$
 $x \mapsto (f \circ g)(x) = f(g(x)) = f(x+1) = (x+1)^2$

Conclusão: $g \circ f \neq f \circ g$

A composição de funções não é comutativa.

Observação. $(A = B = C = \mathbb{R})$

Duas funções $f:A\to B$ e $g:C\to D$ são iguais se:

- a) A = C (mesmo domínio);
- b) B = D (mesmo contradomínio);
- c) $f(x) = g(x), \ \forall \ x \in A$ (mesma lei de associação).

No exemplo anterior:

Two exempto anterior:
$$f: \mathbb{R} \to \mathbb{R} \qquad g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = x^2 \qquad x \mapsto g(x) = x + 1$$

$$g \circ f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto (g \circ f)(x) = g(f(x)) = g(x^2) = x^2 + 1$$

$$f \circ g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto (f \circ g)(x) = f(g(x)) = f(x + 1) = (x + 1)^2$$

$$x^2 + 1 \neq (x + 1)^2$$

$$\begin{cases} f: A \to B \\ Id_A: A \to A \\ Id_B: B \to B \end{cases}$$

$$\Rightarrow f \circ Id_A = f \qquad (1)$$

$$e \quad Id_B \circ f = f \qquad (2)$$
De fato:
$$(1) \quad A \xrightarrow{Id_A} A \xrightarrow{f} B$$

$$f \circ Id_A : A \to B$$

$$(2) \quad A \xrightarrow{f} B \xrightarrow{Id_B} B$$

$$Id_B \circ f: A \to B$$

 $x \mapsto (Id_B \circ f)(x) = Id_B(f(x)) = f(x)$

Definição 3.16 (Função Inversa). Seja $f: A \to B$ uma função. Dizemos que f é inversível (isto é, que f tem inversa) se existe uma função $g: B \to A$ tal que

$$g \circ f = Id_A \quad e \quad f \circ g = Id_B$$

$$(g \circ f)(x) = g(f(x)) = g(y) = x$$

 $(f \circ g)(y) = f(g(y)) = f(x) = y$

Observação. 1)

{ é sobrejetora não é injetora

 $\nexists g \text{ (função)}$

{ é injetora não é sobrejetora

não é função $(\not \equiv g)$

3)
$$f: A \to B$$

 $x \mapsto y = f(x)$ é inversível $\Leftrightarrow f$ é bijeção

Neste caso:

$$f^{-1} = g: \quad B \to A$$

 $y \mapsto g(y) = x$

onde x é o único elemento de A tal que f(x) = y.

Neste caso:

- a) $D(f) = Im(f^{-1});$
- b) $Im(f) = D(f^{-1});$
- c) $(x,y) \in f \Leftrightarrow (y,x) \in f^{-1}$ (Se A e B são conjuntos numéricos, então os gráficos de f e f^{-1} são simétricos em relação à reta y = x)

d)
$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$

$$x \xrightarrow[f]{f} y$$

Para esboçar os gráficos de f e f^{-1} num mesmo sistema de eixos coordenados, trocamos x por y em f^{-1} . Assim,

$$x = f^{-1}(y)$$

$$\downarrow \qquad \text{mudança de variável}$$
 $y = f^{-1}(x)$

Exemplos:

Examples:
a)
$$f: \mathbb{R}_+ \to \mathbb{R}_+$$
 $x \mapsto f(x) = x^2$ (bijetora)
$$\Rightarrow \exists f^{-1}$$
 $y = f(x) = x^2 \Rightarrow x = \pm \sqrt{y} \stackrel{x>0}{\Longrightarrow} x = f^{-1}(y) = \sqrt{y}$
ou $y = f^{-1}(x) = \sqrt{x}$

b)
$$f: \mathbb{R} \to \mathbb{R}_+$$

 $x \mapsto f(x) = e^x$ (bijeção) $x \neq y \Rightarrow e^x \neq e^y$ inj
 $CD(f) = \mathbb{R}_+ = Im(f)$ sob

$$\Rightarrow \exists f^{-1}$$

 $y = e^x \Rightarrow x = \ln y \text{ ou } y = \ln x$

Tópicos Importantes

A) Determinar o número de funções $f: A \to B$, onde $A \in B$ são finitos:

$$A = \{a_1, \dots, a_m\} \ (|A| = m \in \mathbb{N})$$

$$B = \{b_1, \dots, b_n\} \ (|B| = n \in \mathbb{N})$$

Notação. • $\mathcal{F}(A, B) = \{f : A \to B \mid f \text{ \'e função}\}\$

- $Inj(A, B) = \{f : A \rightarrow B \mid f \text{ \'e injetora}\}$
- $Sur(A, B) = \{ f : A \to B \mid f \text{ \'e sobrejetora} \}$ (surjective)
- $Bij(A, B) = \{f : A \to B \mid f \text{ \'e bijetora}\}\$

Exemplos:

a) $A = \{0, 1\}; B = \{a, b\}$

Objetivo: obter pares ordenados do tipo (0,*) e (1,**), onde $*,** \in$ $\{a,b\} = B$

Assim, há $2^2 = 4$ possibilidades para escolher os pares

$$f_1: \begin{cases} 0 \mapsto a \\ 1 \mapsto a \end{cases}$$
 $f_1 = \{(0, a), (1, a)\}$

$$f_2: \begin{cases} 0 \mapsto b \\ 1 \mapsto b \end{cases}$$
 $f_2 = \{(0,b), (1,b)\}$

$$f_1 : \begin{cases} 0 \mapsto a \\ 1 \mapsto a \end{cases} \qquad f_1 = \{(0, a), (1, a)\}$$

$$f_2 : \begin{cases} 0 \mapsto b \\ 1 \mapsto b \end{cases} \qquad f_2 = \{(0, b), (1, b)\}$$

$$f_3 : \begin{cases} 0 \mapsto a \\ 1 \mapsto b \end{cases} \qquad f_3 = \{(0, a), (1, b)\}$$

$$f_4 : \begin{cases} 0 \mapsto b \\ 1 \mapsto a \end{cases} \qquad f_4 = \{(0, b), (1, a)\}$$

$$f_4: \begin{cases} 0 \mapsto b \\ 1 \mapsto a \end{cases}$$
 $f_4 = \{(0,b), (1,a)\}$

$$|\mathcal{F}(A,B)| = 4$$

b)
$$A = \{0, 1\}; B = \{a, b, c\}$$

$$f: A \to B$$

$$\begin{array}{ccc} f: & A \to B \\ & 0 \mapsto ? & (\text{ 3 escolhas para } f(0)) \\ & 1 \mapsto ?? & (\text{ 3 escolhas para } f(1)) \end{array}$$

$$1 \mapsto ??$$
 (3 escolhas para $f(1)$)

Há $3^2 = 9$ possibilidades para escolher f(0) e f(1).

$$f_{1}: \left\{ \begin{array}{l} 0 \mapsto a \\ 1 \mapsto a \end{array} \right. \qquad f_{2}: \left\{ \begin{array}{l} 0 \mapsto b \\ 1 \mapsto b \end{array} \right. \qquad f_{3}: \left\{ \begin{array}{l} 0 \mapsto c \\ 1 \mapsto c \end{array} \right.$$

$$f_{4}: \left\{ \begin{array}{l} 0 \mapsto a \\ 1 \mapsto b \end{array} \right. \qquad f_{5}: \left\{ \begin{array}{l} 0 \mapsto a \\ 1 \mapsto c \end{array} \right. \qquad f_{6}: \left\{ \begin{array}{l} 0 \mapsto b \\ 1 \mapsto a \end{array} \right.$$

$$f_{7}: \left\{ \begin{array}{l} 0 \mapsto b \\ 1 \mapsto c \end{array} \right. \qquad f_{8}: \left\{ \begin{array}{l} 0 \mapsto c \\ 1 \mapsto a \end{array} \right. \qquad f_{9}: \left\{ \begin{array}{l} 0 \mapsto c \\ 1 \mapsto b \end{array} \right.$$

$$f_2: \left\{ \begin{array}{l} 0 \mapsto b \\ 1 \mapsto b \end{array} \right.$$

$$f_3: \left\{ \begin{array}{l} 0 \mapsto c \\ 1 \mapsto c \end{array} \right.$$

$$f_4: \left\{ \begin{array}{l} 0 \mapsto a \\ 1 \mapsto b \end{array} \right.$$

$$f_5: \left\{ \begin{array}{l} 0 \mapsto a \\ 1 \mapsto c \end{array} \right.$$

$$f_6: \left\{ \begin{array}{l} 0 \mapsto b \\ 1 \mapsto a \end{array} \right.$$

$$f_7: \left\{ \begin{array}{l} 0 \mapsto b \\ 1 \mapsto c \end{array} \right.$$

$$f_8: \left\{ \begin{array}{l} 0 \mapsto c \\ 1 \mapsto a \end{array} \right.$$

$$f_9: \left\{ \begin{array}{c} 0 \mapsto c \\ 1 \mapsto b \end{array} \right.$$

$$|\mathcal{F}(A,B)| = 3^2 = 9$$

c) Se |A| = m > n = |B|, então $f: A \to B$ não é injetora. (Equivalentemente: se f é injetora, então $m \leq n$)

$$(Inj(A, B) = \varnothing)$$

d) Se |A| = m < n = |B|, então $f: A \to B$ não é sobrejetora. (Equivalentemente: se f é sobrejetora, então $m \ge n$)

$$(Sur(A, B) = \varnothing)$$

e) Se f é bijeção, m = n.

Observação. Se $f: A \to B$ é bijeção, $|A| < \infty$ e $|B| < \infty$, podemos, sem perda de generalidade, considerar A = B.

$$A = \{a_1, \dots, a_m\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$B = \{b_1, \dots, b_n\}$$

$$(a_m = a_n \in b_n = b_m)$$

Assim, uma bijeção $f: A \to A$ é dita uma permutação de A.

Notação.

$$Bij(A, A) = S_A = \begin{cases} f: A \to A \\ f \text{ \'e bijeção} \end{cases}$$

Observação.
$$|A| = n \in \mathbb{N} \Rightarrow |S_A| = n!$$

$$A = \{a_1, \dots, a_n\}$$

$$\begin{cases} a_1 \mapsto n & \text{escolhas para } f(a_1) \\ a_2 \mapsto n-1 & \text{escolhas para } f(a_2) \\ \vdots & \vdots \\ a_n \mapsto 1 & \text{escolha para } f(a_n) \end{cases}$$

Exemplos:

1)
$$A = \{1, 2\}$$
 ($|A| = 2$)

 $S_A = S_2 = \{f : A \to A \mid f \text{ \'e bije\'eao}\}$
 $|S_A| = 2$
 $f_1 : \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 2 \end{cases}$
 $f_2 : \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 1 \end{cases}$

ou $f_1 : \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$
 $f_2 : \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$

2) $A = \{1, 2, 3\}$ ($|A| = 3$)

 $S_A = S_3 = \{f : A \to A \mid f \text{ \'e bije\'eao}\}$
 $|S_A| = 3! = 6$
 $f_1 : \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 2 \\ 3 \mapsto 3 \end{cases}$

ou $f_1 : \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$
 $f_2 : \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 3 \\ 3 \mapsto 2 \end{cases}$

ou $f_3 : \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$
 $f_3 : \begin{cases} 1 \mapsto 3 \\ 2 \mapsto 2 \\ 3 \mapsto 1 \end{cases}$

ou $f_3 : \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$

$$f_{4}: \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 1 \\ 3 \mapsto 3 \end{cases} \quad \text{ou} \quad f_{4}: \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_{5}: \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 1 \end{cases} \quad \text{ou} \quad f_{5}: \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$f_{6}: \begin{cases} 1 \mapsto 3 \\ 2 \mapsto 1 \\ 3 \mapsto 2 \end{cases} \quad \text{ou} \quad f_{6}: \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

Notação. $A = \{1, 2, ..., n\}$

$$f: A \to A$$
 bijeção $f = \begin{pmatrix} 1 & 2 & \cdots & n \\ f(1) & f(2) & & f(n) \end{pmatrix}$, onde $f(i) \in A$

B) Função Inversa

Vimos que $f:A\to B$ é inversível (isto é, $\exists~g:B\to A\mid f\circ g=Id_B$ e $g\circ f=Id_A)\Leftrightarrow f$ é bijeção.

Propriedades:

- i) A inversa é única e é denotada por f^{-1}
- ii) A composição de duas bijeções é uma bijeção, isto é, se $f:A\to B$ e $g:B\to C$ são bijeções, então $g\circ f:A\to C$ também o é. Neste caso, $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$

De fato:

i) Suponha que $g:B\to A$ e $h:B\to A$ sejam inversas de f. Vamos mostrar que g=h.

$$\begin{cases} g \text{ \'e inversa de } f \Leftrightarrow g \circ f = Id_A \text{ e } f \circ g = Id_B \\ h \text{ \'e inversa de } f \Leftrightarrow h \circ f = Id_A \text{ e } f \circ h = Id_B \\ g = g \circ Id_B = g \circ (f \circ h) = (g \circ f) \circ h = Id_A \circ h = h \\ \text{Assim, } f \circ f^{-1} = Id_B \text{ e } f^{-1} \circ f = Id_A. \text{ Al\'em disso, } (f^{-1})^{-1} = f. \end{cases}$$

ii) Vamos mostrar que a composta de duas funções sobrejetoras também é sobrejetora e a composta de duas funções injetoras também é injetora.

De fato:

1º) H:
$$\begin{cases} f:A\to B & \text{sobrejetora} \\ g:B\to C & \text{sobrejetora} \end{cases}$$
T:
$$\{g\circ f:A\to C \text{ \'e sobrejetora} \}$$

Queremos mostrar que dado $z \in C$ (qualquer), existe $x \in A$ tal que $(g \circ f)(x) = z$.

De fato: como g é sobrejetora, dado $z \in C$, existe $y \in B$ tal que g(y) = z. Como f é sobrejetora, para tal $y \in B$, existe $x \in A$ tal que f(x) = y. Assim, $z = g(y) = g(f(x)) = (g \circ f)(x)$.

$$2^{\underline{o}}$$
) H:
$$\begin{cases} f: A \to B & \text{\'e injetora} \\ g: B \to C & \text{\'e injetora} \end{cases}$$

T: $\{g \circ f : A \to C \text{ \'e injetora}\}$

Queremos mostrar que $\forall x, x' \in A, x \neq x' \Rightarrow (g \circ f)(x) \neq (g \circ f)(x')$. Pela contrapositiva, isto é o mesmo que provar que $(g \circ f)(x) = (g \circ f)(x') \Rightarrow x = x'$.

$$(g \circ f)(x) = (g \circ f)(x') \Rightarrow g(f(x)) = g(f(x')) \stackrel{g \text{ \'e inj.}}{\Longrightarrow} f(x) = f(x') \stackrel{f \text{ \'e inj.}}{\Longrightarrow} x = x'$$

	Relação	Função
Domínio	está contido no conjunto de par-	
	tida, primeiros elementos dos	de partida
	pares ordenados	
	$(D(R) \subseteq A)$	(D(f) = A)

2ª lista

10)
$$E \neq \emptyset$$
; $A = P(E) = \{X \mid X \subseteq E\}$; $\emptyset, X, Y \in A$
 $X \sim Y \Leftrightarrow \text{existe } f : X \to Y \text{ bijeção}$

Tese: \sim define uma relação de equivalência sobre A. (Neste caso, dizemos que X e Y são equipotentes, isto é, |X| = |Y|).

Demonstração. Devemos verificar que \sim satisfaz as três propriedades de uma relação de equivalência:

(RE1) (reflexiva) $X \sim X$

Devemos exibir uma bijeção $f:X\to X$. Tal bijeção (mais simples) é a Função Identidade:

$$Id_X: X \to X$$

 $x \mapsto Id_X(x) = x$

 Id_X é bijeção:

- a) Id_X é injetora $(x, x' \in X)x \neq x' \Rightarrow Id_X(x) \neq Id_X(x')$
- b) Id_X é sobrejetora $CD(Id_X) = X = Im(Id_X)$

(RE2) (simétrica) $X \sim Y \stackrel{?}{\Rightarrow} Y \sim X$

$$X \sim Y \ \Rightarrow \ \exists \ f: X \sim Y \ (\mbox{bijeção}) \ (\Rightarrow \exists \ f^{-1})$$

$$\Rightarrow \ \exists \ f^{-1}: Y \to X \ \mbox{inversa, a qual \'e uma bijeção}$$

$$\Rightarrow \ Y \sim X$$

$$f \circ f^{-1} = Id_Y \text{ e } f^{-1} \circ f = Id_X$$

(RE3) (transitiva) $X \sim Y$ e $Y \sim Z \stackrel{?}{\Rightarrow} X \sim Z$

$$X \sim Y \Rightarrow \exists f : X \sim Y$$
 bijeção $Y \sim Z \Rightarrow \exists g : Y \sim Z$ bijeção

 $\Rightarrow \ \exists \ h: g \circ f: X \to Z$ bijeção $\Rightarrow X \sim Z$

(pois a composição de bijeções é uma bijeção)

- 11) (Aplicação do 10) |X| = |Y|
 - a) $X = \mathbb{N}$; $Y = \{y \in \mathbb{N} \mid y \text{ \'e par}\}\$ $Y \subseteq X$

Para mostrar que |X| = |Y|, devemos exibir uma bijeção $f: X \to Y$.

Tese:

$$f: X \to Y \\ n \mapsto f(n) = 2n$$

é bijeção.

De fato:

- i) f é injetora $n, n' \in X$ $n \neq n' \Rightarrow f(n) \neq f(n')$ $n \neq n' \Rightarrow 2n \neq 2n'$
- ii) f é sobrejetora $CD(f) = Y = Im(f) = \{2n \mid n \in X\}$
- e) $X = (-\pi/2, \pi/2); Y = \mathbb{R}$

$$f: X \to Y$$
$$x \mapsto y = \operatorname{tg} x$$

$$f^{-1}: Y \to X$$
$$x \mapsto f^{-1}(x) = \operatorname{arc} \operatorname{tg} x$$

8) Propriedades de divisibilidade

iii) H:
$$\begin{cases} a \mid b \Rightarrow \exists \ m \in \mathbb{Z} \mid a \cdot m = b \pmod{*} \\ c \mid d \Rightarrow \exists \ n \in \mathbb{Z} \mid c \cdot n = d \pmod{**} \end{cases}$$
T:
$$\{ac \mid bd \}$$

Queremos mostrar que $\exists l \in \mathbb{Z} \mid (ac) l = b d$. Multiplicando (*) e (**) termo a termo, temos (am)(cn) = b d. Assim, tome l = mn:

$$(ac)(mn) = (ac) l = b d$$

v)
$$a \mid b \in b \mid a \Leftrightarrow |a| = |b|$$
; (Se $a, b \in \mathbb{N}$, então $a \mid b \in b \mid a \Leftrightarrow a = b$)
(\Rightarrow) $\begin{cases} \text{H: } a \mid b \in b \mid a \\ \text{T: } |a| = |b| \text{ (ou } a = b \text{ ou } -b) \end{cases}$
 1^{ϱ} caso: $a = 0$
 $0 \mid b \in b \mid 0 \Rightarrow b = 0$

$$2^{\varrho} \text{ caso: } a \neq 0$$

$$a \mid b \Rightarrow \exists \ m \in \mathbb{Z} \mid a \ m = b \quad (1)$$

$$b \mid a \Rightarrow \exists \ n \in \mathbb{Z} \mid b \ n = a \quad (2)$$

$$(1) \rightarrow (2) : (a \ m) \ n = a \stackrel{a \neq 0}{\Longrightarrow} m \ n = 1$$
Se $m = n = 1, \ a = b$. se $m = n = -1, \ a = -b$. (\Leftarrow) Idem

4 Estruturas Algébricas

Objetivo: estudar as principais estruturas algébricas e algumas aplicações à Geometria, Computação e Física.

Definição 4.1 (Operação Binária ou Lei de Composição Interna). Seja $A \neq \emptyset$. Uma operação binária (ou lei de composição interna) sobre A é qualquer função de $A \times A$ em A.

Notação.

*:
$$A \times A \rightarrow A$$

 $(a, a') \mapsto a * a'$
lê-se: $a * a' =$ "a operado com a' "

Observações. i) Como * é uma função, então $\forall (a, a') \in A \times A, \exists ! \ a*a'.$ Neste caso, dizemos que * está bem definida.

ii) Além disso, queremos que $a*a' \in A$, $\forall (a,a') \in A \times A$. Neste caso, dizemos que A é fechado com relação à operação *.

Exemplos:

i)
$$A = \mathbb{N} \text{ (ou } \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C})$$

 $* = + \text{ (adição)}$
 $\oplus : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
 $(a, b) \mapsto \underbrace{a + b}_{\text{SOMA de } a \text{ e } b}$

ii)
$$A = \mathbb{N}$$
 (ou \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C})
$$* = \cdot \text{ (multiplicação)}$$

$$\odot : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

$$(a, b) \mapsto \underbrace{a \cdot b}_{\text{produto de } a \text{ por } b}$$

Definição 4.2 (Estrutura Algébrica). Seja $A \neq \emptyset$. Dizemos que A é uma estrutura algébrica se A possui uma ou mais operações binárias bem definidas, satisfazendo determinadas propriedades.

Principais Estruturas Algébricas

- com uma operação: semigrupos monóides grupos
- $\bullet \ \, {\rm com\ duas\ opera} \\ \tilde{\bullet} \ \, {\rm com\ duas\ opera} \\ \tilde{\bullet} \ \, {\rm corpos} \\ {\rm espaços\ vetoriais} \\ {\rm m\'odulos} \\$
- com três operações: { Álgebras

Exemplos:

- 1) $E \neq \emptyset$ $A = P(E) = \{X \mid X \subseteq E\}$ $* = \cup \text{(união)}, \cap \text{(intersecção)}$
 - $\begin{array}{ccc} \cup: & A\times A \to A \\ & (X,Y) \mapsto X \cup Y \end{array}$
 - $\cap: \ A \times A \to A \\ (X,Y) \mapsto X \cap Y$
- 2) $A = \{ \text{ proposições } \}$ * = \land (conjunção), \lor (disjunção)
 - $\wedge: \quad A \times A \to A \\ (p,q) \mapsto p \wedge q$
 - $\forall: A \times A \to A$ $(p,q) \mapsto p \vee q$
- 3) $A = \mathcal{M}_{m \times n}(\mathbb{R}) = \{B = (a_{ij})_{m \times n} \mid a_{ij} \in \mathbb{R}\}$ * = + (adição)

$$+: \mathcal{M}_{m \times n}(\mathbb{R}) \times \mathcal{M}_{m \times n}(\mathbb{R}) \to \mathcal{M}_{m \times n}(\mathbb{R})$$

$$(B, C) \mapsto B + C$$

onde
$$B + C = (b_{ij} + c_{ij})$$

caso particular:
$$+: \mathcal{M}_{3\times 2}(\mathbb{R}) \times \mathcal{M}_{3\times 2}(\mathbb{R}) \to \mathcal{M}_{3\times 2}(\mathbb{R})$$

$$\left(\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}, \begin{pmatrix} -1 & 3 \\ 7 & -2 \\ 0 & 1 \end{pmatrix} \right) \longmapsto \begin{pmatrix} 0 & 5 \\ 10 & 2 \\ 5 & 7 \end{pmatrix}$$

4) $A = \mathcal{M}_{m \times n}(\mathbb{R}) = \{ \text{ matrizes quadradas } n \times n \text{ com entradas reais } \}$

$$\begin{array}{ccc}
* = \cdot \\
\cdot : & \mathcal{M}_{n \times n}(\mathbb{R}) \times \mathcal{M}_{m \times n}(\mathbb{R}) & \to & \mathcal{M}_{m \times n}(\mathbb{R}) \\
B, C & \mapsto & BC
\end{array}$$

onde
$$BC = (d_{ij}), \ d_{ij} = \sum_{k=1}^{n} b_{ik} c_{kj}$$

caso particular: $\cdot: \mathcal{M}_{2\times 2}(\mathbb{R}) \times \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathcal{M}_{2\times 2}(\mathbb{R})$

$$\left(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 1 & 3 \end{pmatrix} \right) \longmapsto \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 6 \\ 1 & 12 \end{pmatrix}_{2 \times 2}$$

- 5) $A = \mathbb{N}$
 - * = potenciação

$$*: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$$

* = potenciação
* :
$$\mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

 $(a,b) \mapsto a * b = a^b (= \underbrace{a \cdot a \cdot \ldots \cdot a}_{b \text{ fatores}})$

6) $A = \mathbb{Z}$ (ou \mathbb{Q} ou \mathbb{R})

* = potenciação

Afirmação. * NÃO é operação binária sobre A

De fato:

- $-(2,-1) \in \mathbb{Z} \times \mathbb{Z}$, mas $2^{-1} \notin \mathbb{Z}$ (isto é, \mathbb{Z} NÃO é fechado para a potenciação)
- $-(2,1/2) \in \mathbb{Q} \times \mathbb{Q}$, mas $2^{1/2} \notin \mathbb{Q}$ (isto é, \mathbb{Q} NÃO é fechado para a potenciação)
- $-~(-1,1/2)\in\mathbb{R}\times\mathbb{R},~{\rm mas}~(-1)^{1/2}\notin\mathbb{R}$ (isto é, \mathbb{R} NÃO é fechado para a potenciação)

Exercícios: Verifique o fechamento (ou não) das seguintes operações em B.

i)
$$A = \mathbb{R}, * = +$$

 $B = \mathbb{R} - \mathbb{Q} \subseteq A$

ii)
$$A = \mathbb{R}, * = \cdot$$

 $B = \mathbb{R}_+^* = \{x \in \mathbb{R} \mid x > 0\} \subseteq A$

iii)
$$A = \mathcal{M}_{2\times 2}(\mathbb{R}), \ * = \cdot$$

$$B = \left\{ \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}; \alpha \in \mathbb{R} \right\} \subseteq A$$

(matriz de rotação de α rad no sentido anti-horário)

iv)
$$A = \mathbb{R}, * = -$$

 $B = \mathbb{N}$

v)
$$A = \mathbb{Z}, * = +$$

 $B_1 = \{x \in \mathbb{Z} \mid x \text{ \'e par}\} = \{x = 2k \mid k \in \mathbb{Z}\} \subseteq A$
 $B_2 = \{x \in \mathbb{Z} \mid x \text{ \'e impar}\} = \{x = 2k + 1 \mid k \in \mathbb{Z}\} \subseteq A$

Resolução:

i)
$$A = \mathbb{R}, * = +$$

 $B = \mathbb{R} - \mathbb{Q} = \{\text{números irracionais}\} \subset A$

Afirmação. B $N\tilde{A}O$ é fechado com relação a operação de adição (isto é, *=+ não é uma operação binária sobre B)

Contra-exemplo:

$$x=\pi\in B$$
e $y=-\pi\in B,$ mas $x+y=\pi+(-\pi)=0\notin B$ (isto é, $0\in\mathbb{Q})$

ii)
$$A=\mathbb{R},\ *=\cdot$$
 $B=\mathbb{R}_+^*=\{x\in\mathbb{R}\mid x>0\}$ é FECHADO com relação à operação $*=\cdot,$ pois $\forall\ x,y>0,\ x\cdot y>0$ ($\forall\ x,y\in B,\ x\cdot y\in B$)

iii)
$$A = \mathcal{M}_{2\times 2}(\mathbb{R}), \ * = \cdot$$

$$B = \left\{ \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \middle| \ \alpha \in \mathbb{R} \right\} \text{ \'e FECHADO com relação a operação } * = \cdot, \text{ pois}$$

$$X = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \in B \quad \text{e} \quad Y = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \in B$$

$$\Rightarrow X \cdot Y = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix}$$
$$= \begin{pmatrix} \cos \alpha \cos \beta - \sin \alpha \sin \beta & -\cos \alpha \sin \beta - \sin \alpha \cos \beta \\ \sin \alpha \cos \beta + \sin \beta \cos \alpha & -\sin \alpha \sin \beta + \cos \alpha \cos \beta \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{pmatrix} \in B$$

- iv) $A = \mathbb{R}, * = B = \mathbb{N} \subseteq A$ NÃO é fechado para * = -, pois $x = 1 \in B$ e $y = 2 \in B$, mas $x - y = 1 - 2 = -1 \notin B$ $(-1 \in \mathbb{Z})$
- v) $A = \mathbb{Z}, * = +$ $B_1 = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$ e $B_2 = \{x \in \mathbb{Z} \mid x = 2k+1, k \in \mathbb{Z}\}$ B_1 é FECHADO para * = +, pois: $\begin{cases} x_1 = 2k_1 \in B_1 \\ x_2 = 2k_2 \in B_1 \end{cases} \Rightarrow x_1 + x_2 = 2k_1 + 2k_2 = 2(k_1 + k_2) = 2k_3 \in B_1$ B_2 NÃO é fechado para * = +, pois: $\begin{cases} x_1 = 2k_1 + 1 \in B_2 \\ x_2 = 2k_2 + 1 \in B_2 \end{cases}, \text{ mas } x_1 + x_2 = (2k_1 + 1) + (2k_2 + 1) \\ x_2 = 2k_2 + 1 \in B_2 \end{cases}, \text{ mas } x_1 + x_2 = 2(k_1 + k_2 + 1) = 2k_3 \notin B_2$

Propriedades de Uma Operação Binária

Seja $A = \emptyset$ munido de uma operação binária *.

A) (Associatividade) Dizemos que * é associativa se $\forall x, y, z \in A$,

$$(x*y)*z = x*(y*z)$$

Neste caso, o uso de parênteses é facultativo

B) (Comutatividade) Dizemos que * é comutativa se $\forall x, y \in A$,

$$x * y = y * x$$

C) (Existência de Um Elemento Neutro) Seja $e \in A$. Dizemos que

i) e é um elemento neutro à esquerda com relação à operação * se

$$e * x = x, \ \forall \ x \in A$$

ii) e é um elemento neutro à direita com relação à operação * se

$$x * e = x, \ \forall \ x \in A$$

iii) e é um elemento neutro (bilateral) com relação à operação * se ele é simultaneamente neutro à esquerda e à direita, ou seja,

$$e * x = x = x * e, \ \forall \ x \in A$$

Exemplos:

i) $A = \mathbb{N} \text{ (ou } \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C})$

* = + é associativa e comutativa

$$\left\{ \begin{array}{l} (x+y)+z=x+(y+z) \\ x+y=y+x \end{array} \right. ; \; (\forall \; x,y,z \in A)$$

Se $A = \mathbb{N}$, então \nexists elemento neutro para * = +. Se $A = \mathbb{Z}$ (ou \mathbb{Q} , \mathbb{R} , \mathbb{C}) então e = 0 é o elemento neutro para * = +.

$$\{0 + x = x = x + 0, \ \forall \ x \in A\}$$

ii) $A = \mathbb{N}$ (ou \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C})

 $* = \cdot$ é associativa e comutativa

$$\left\{ \begin{array}{l} (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ x \cdot y = y \cdot x \end{array} \right. \; ; \; (\forall \; x, y, z \in A)$$

e=1 é o elemento neutro para $*=\cdot$

$$1 \cdot x = x = x \cdot 1, \quad \forall \ x \in A$$

iii) $A = \{ \text{ proposições } \}$

 $* = \lor$ (disjunção) é associativa e comutativa

$$\left\{ \begin{array}{l} (p \vee q) \vee r = p \vee (q \vee r) \\ p \vee q = q \vee p \end{array} \right. ; \ (\forall \ p, q, r \in A)$$

e = f (contradição) é o elemento neutro para $* = \lor$

$$p \lor f = p, \ \forall \ p \in A$$

 $*' = \land$ (conjunção) é associativa e comutativa

$$\left\{ \begin{array}{l} (p \wedge q) \wedge r = p \wedge (q \wedge r) \\ p \wedge q = q \wedge p \end{array} \right. ; \ (\forall \ p, q, r \in A)$$

e = v (tautologia) é o elemento neutro para *' = \wedge

$$p \wedge v = v \wedge p = p, \ \forall \ p \in A$$

iv)
$$A = \mathcal{F}(\mathbb{R}, \mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ \'e funç\~ao} \}$$

* = +

$$\overbrace{f+g}^{\text{soma}} : \mathbb{R} \to \mathbb{R} \\
x \mapsto (f+g)(x) = f(x) + g(x) \\
* = + \text{ \'e associativa, comutativa e po}$$

*=+ é associativa, comutativa e possui e=0 (função constante identicamente nula) como elemento neutro

$$\left\{ \begin{array}{l} (f+g)+h=f+(g+h) \\ f+g=g+f \end{array} \right., \; \forall \; f,g,h \in A$$

$$e \equiv 0$$
 (isto é, $e(x) = 0, \ \forall \ x \in \mathbb{R}$)

$$(g+0)(x) = g(x) + 0(x) = g(x) + 0 = g(x)$$
 e
 $(0+g)(x) = 0(x) + g(x) = 0 + g(x) = g(x)$

$$*' = \cdot : \quad \overbrace{f \cdot g}^{\text{produto}} : \quad \mathbb{R} \to \mathbb{R}$$

$$x \mapsto (f \cdot g)(x) = f(x)g(x)$$

$$*' = \cdot \quad \text{\'e associativa, comutativa e possui \'e}$$

 $*'=\cdot\;$ é associativa, comutativa e possu
ie=1 (função constante 1) como elemento neutro

$$\left\{ \begin{array}{l} (f \cdot g) \cdot h = f \cdot (g \cdot h) \\ f \cdot g = g \cdot f \end{array} \right. , \ \forall \ f, g, h \in A$$

$$e \equiv 1 \text{ (isto \'e, } e(x) = 1, \ \forall \ x \in \mathbb{R})$$

$$\begin{cases} (f \cdot e)(x) = f(x)e(x) = f(x) \cdot 1 = f(x) \\ (e \cdot f)(x) = e(x)f(x) = 1 \cdot f(x) = f(x) \end{cases}$$

Exercícios:

1) Considere $A = \mathcal{M}_{2\times 2}(\mathbb{R})$. Verifique que

i) * = + é associativa, comutativa e possui

$$e = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}_{2 \times 2}$$

(matriz identicamente nula) como elemento neutro para * = +.

ii) $* = \cdot$ é associativa, NÃO-comutativa e possui

$$e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{2 \times 2} = I_2$$

(matriz identidade de ordem 2) como elemento neutro para $* = \cdot$

- 2) Julgue os itens a seguir (V ou F), justificando.
 - a) (V) A subtração em \mathbb{Z} possui e = 0 como elemento neutro à direita, mas não possui elemento neutro à esquerda.
 - b) (V) A potenciação em \mathbb{N} possui e=1 como elemento neutro à direita, mas não possui elemento neutro à esquerda.
 - c) (F) A subtração em \mathbb{Z} é associativa.
 - d) (F) A subtração em \mathbb{Z} é comutativa.
 - e) (F) A potenciação em \mathbb{N} é associativa.
 - f) (F) A potenciação em \mathbb{N} é comutativa.
 - g) (V) Sejam $E \neq \emptyset$ e A = P(E). Então, $* = \cup$ é associativa, comutativa e possui $e = \emptyset$ como elemento neutro para $* = \cup$.
 - h) (V) Sejam $E \neq \emptyset$ e A = P(E). Então, $* = \cap$ é associativa, comutativa e possui e = E como elemento neutro para $* = \cup$.
- 3) Seja $A \neq \emptyset$ munido de uma operação binária *. Mostre que se $e \in A$ é um elemento neutro (bilateral), então ele é único.
- 4) Considere $A = \mathcal{F}(\mathbb{R}, \mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ \'e função} \}$
 - a) Verifique que $* = \circ$ (composição) é associativa
 - b) Verifique que $*=\circ$ NÃO é comutativa
 - c) Qual é o elemento neutro e para tal operação $*=\circ$?

1)
$$A = \mathcal{M}_{2\times 2}(\mathbb{R})$$

$$\begin{aligned} &\text{i)} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{bmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} + \begin{pmatrix} i & j \\ k & l \end{pmatrix} \end{bmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e+i & f+j \\ g+k & h+l \end{pmatrix} \\ &= \begin{pmatrix} a+e+i & b+f+j \\ c+g+k & d+h+l \end{pmatrix} = \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix} + \begin{pmatrix} i & j \\ k & l \end{pmatrix} \\ &= \begin{bmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} \end{bmatrix} + \begin{pmatrix} i & j \\ k & l \end{pmatrix} \\ &= \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix} = \begin{pmatrix} e+a & f+b \\ g+c & h+d \end{pmatrix} \\ &= \begin{pmatrix} e & f \\ g & h \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ &= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ &= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ &= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} ei+fk & ej+fl \\ gi+hk & gj+hl \end{pmatrix} \\ &= \begin{pmatrix} aei+afk+bgi+bhk & aej+afl+bgj+bhl \\ cei+cfk+dgi+dhk & cej+cfl+dgj+dhl \end{pmatrix} \\ &= \begin{pmatrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{pmatrix} \begin{pmatrix} i & j \\ k & l \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} \begin{pmatrix} i & j \\ g & h \end{pmatrix} = \begin{pmatrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{pmatrix} \\ &\neq \begin{pmatrix} e & f \\ g & h \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} ea+fc & eb+fd \\ ga+hc & gb+hd \end{pmatrix} \\ &= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{aligned}$$

2) a)
$$(V) z - 0 = z \neq -z = 0 - z, \forall z \in \mathbb{Z}^*$$

b) (V) para
$$n \in \mathbb{N}$$
, temos $n^1 = n$, mas se $a \in \mathbb{N}$ $\neq 1$, então $a^n \neq n$

c) (F) contra-exemplo:
$$(7-4)-3=0 \neq 6=7-(4-3)$$

- d) (F) contra-exemplo: $2 1 = 1 \neq -1 = 1 2$
- e) (F) Seja $a, b, c \in \mathbb{N}$, temos $a^{(b^c)} \neq (a^b)^c = a^{bc}$. Contra-exemplo: $2^{(3^4)} = 2^{81} \neq 2^{12} = (2^3)^4$
- f) (F) para $a, b \in \mathbb{N}$, temos $a^b \neq b^a$. Contra-exemplo: $2^3 = 8 \neq 9 = 3^2$
- g) (V) Para $X, Y, Z \in A$, temos $\begin{cases} X \cup (Y \cup Z) = (X \cup Y) \cup Z \\ X \cup Y = Y \cup X \\ X \cup \varnothing = \varnothing \cup X = X \end{cases}$
- h) (V) Para $X, Y, Z \in A$, temos $\begin{cases} X \cap (Y \cap Z) = (X \cap Y) \cap Z \\ X \cap Y = Y \cap X \\ X \cap E = E \cap X = X, \text{ pois } X \subseteq E \end{cases}$

Observação. Se * é comutativa, então as noções de elemento neutro à esquerda, à direita e bilateral são equivalentes.

3) (Unicidade do Elemento Neutro)

 $A \neq \emptyset$ munido de uma operação binária *. $e \in A$ = elemento neutro bilateral (caso exista).

Tese: e é único

Demonstração.

 $H: e \in neutro$

 $T: e \in \text{único}$

Suponha que e e e' são dois elementos neutros. Vamos mostrar que e=e'.

- (I) $e \in A$ = elemento neutro $\Leftrightarrow e * x = x * e = x, \forall x \in A$
- (II) $e'(\in A) = \text{elemento neutro} \Leftrightarrow e' * y = y * e' = y, \ \forall \ y \in A$

Em particular, tome x = e' em (I):

$$e * e' = e' * e = e'$$

Em particular, tome y = e em (II):

$$e' * e = e * e' = e$$

Logo, e' = e * e' = e

4) (Importante)

$$A = \mathcal{F}(\mathbb{R}, \mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ \'e função} \}$$

* = \(\circ\) (composição)

$$\circ: \quad \mathcal{F}(\mathbb{R}, \mathbb{R}) \times \mathcal{F}(\mathbb{R}, \mathbb{R}) \quad \to \quad \mathcal{F}(\mathbb{R}, \mathbb{R}) \\ (g, f) \qquad \mapsto \qquad g \circ f$$

$$\mathbb{R} \xrightarrow{f} \mathbb{R} \xrightarrow{g} \mathbb{R} \qquad \mathbb{R} \xrightarrow{f \circ g} \mathbb{R}$$

$$\mathbb{R} \xrightarrow{f} \mathbb{R} \xrightarrow{g} \mathbb{R}$$

$$\mathbb{R} \xrightarrow{g} \mathbb{R} \xrightarrow{f} \mathbb{R}$$

a) Tese: $*=\circ$ é associativa, isto é, $\forall f,g,h\in A,\ (h\circ g)\circ f=h\circ (g\circ f)$

Demonstração. Vamos mostrar que as funções $h \circ g) \circ f$ e $h \circ (g \circ f)$ são IGUAIS, ou seja:

- i) $D((h \circ g) \circ f) = D(h \circ (g \circ f))$
- ii) $CD((h \circ g) \circ f) = CD(h \circ (g \circ f))$
- iii) $\forall x \in \mathbb{R}, [(h \circ g) \circ f)](x) = [(h \circ (g \circ f)(x))](x)$

Verificando iii)

$$[(h \circ g) \circ f](x) = (h \circ g)(f(x)) = h(g(f(x)))$$
$$[h \circ (g \circ f)](x) = h((g \circ f)(x)) = h(g(f(x)))$$

b) Tese: $* = \circ$ NÃO é comutativa

Exemplo:
$$f(x) = \sin x$$
, $g(x) = x^2$
 $(g \circ f)(x) = g(f(x)) = g(\sin x) = (\sin x)^2 = \sin^2 x$
 $(f \circ g)(x) = f(g(x)) = f(x^2) = \sin x^2$

c) e = Função Identidade

$$I_{\mathbb{R}}: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto I_{\mathbb{R}}(x) = x$

$$f \circ I_{\mathbb{R}} = f \ e \ I_{\mathbb{R}} \circ f = f$$

D) (Existência de Elemento Inversível)

Seja $A \neq \emptyset$ com uma operação binária * e elemento neutro e. Dizemos que

- i) $x \in A$ é inversível à esquerda se existe $x' \in A$ tal que $x' * x = e \quad (x' = \text{inverso à esquerda de } x)$
- ii) $x \in A$ é inversível à direita se existe $x' \in A$ tal que $x * x' = e \quad (x' = \text{inverso à direita de } x)$
- iii) $x \in A$ é inversível se ele é simultaneamente inversível à esquerda e a direita, ou seja, se existe $x' \in A$ tal que

$$x' * x = e = x * x' \quad (x' = \text{inverso de } x)$$

Observações. a) Se *=+, denotamos x' por -x (oposto, simétrico ou inverso aditivo)

- b) Se $* = \cdot$, denotamos x' por x^{-1} (inverso multiplicativo de x)
- c) $\mathcal{U}_*(A) = \{x \in A \mid x \text{ \'e invers\'ivel com relação à operação *}\}$ $\mathcal{U}_*(A) \neq \emptyset$, pois $e \in \mathcal{U}_*(A)$. De fato, e * e = e.

Exemplos:

i)
$$A = \mathbb{N}, \ * = + \ (0 \neq \mathbb{N})$$

 $\mathcal{U}_{+}(\mathbb{N}) = \emptyset$

ii)
$$A = \mathbb{Z}_{+} = \{x \in \mathbb{Z} \mid x \ge 0\} = \mathbb{N} \cup \{0\}, \ * = +$$
 $e = 0$

$$\begin{cases} x \in A & (dado) \\ x' \in A & (a \text{ obter}) \\ x + x' = 0 \end{cases}$$

$$\mathcal{U}_{+}(\mathbb{Z}_{+}) = \{0\} \quad (pois \ 0 + 0 = 0)$$

- iii) $A = \mathbb{Z}, * = +, e = 0$ Sabemos que dado $x \in \mathbb{Z}$, existe $-x \in \mathbb{Z}$ tal que x + (-x) = 0 $\mathcal{U}_{+}(\mathbb{Z}) = \mathbb{Z}$
- iv) $A = \mathcal{M}_{2\times 2}(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$ * = \cdot

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2 \quad \text{(matriz identidade de ordem 2)}$$

$$X = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$$
 (NÃO é inversível com relação a operação $* = \cdot$)

$$X' \cdot X = I_2$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \stackrel{?}{=} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} a+3b=1\\ 2a+6b=0\\ c+3d=0\\ 2c+6d=1 \end{cases} \Rightarrow \begin{cases} a+3b=1\\ 2a+6b=0 \end{cases} \text{ e } \begin{cases} c+3d=0\\ 2c+6d=1 \end{cases}$$

$$\Rightarrow \begin{cases} a+3b=1 \\ a+3b=0 \end{cases} e \begin{cases} c+3d=0 \\ c+3d=1/2 \end{cases}$$

Conclusão: $\nexists X' = X^{-1}$

$$\mathcal{U}_{\cdot}(\mathcal{M}_{2\times 2}(\mathbb{R})) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| ad - bc \neq 0 \right\}$$

No exemplo anterior, det X = 6 - 6 = 0

v)
$$A = \mathcal{F}(\mathbb{R}, \mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ \'e funç\~ao} \}, * = \circ, e = I_{\mathbb{R}}$$

Exemplo: $f(x) = x^3$ é inversível com relação à operação $* = \circ$:

$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$

 $y = x^3 \Rightarrow x = \sqrt[3]{y} \text{ ou } y = \sqrt[3]{x}$

$$g(x) = \sqrt[3]{x} = f^{-1}(x)$$
, pois:

$$\begin{cases} g \circ f \stackrel{?}{=} I_{\mathbb{R}} \\ e \\ f \circ g = I_{\mathbb{R}} \end{cases}$$

$$(g \circ f)(x) = g(f(x)) = g(x^3) = \sqrt[3]{x^3} = x$$

 $(f \circ g)(x) = f(g(x)) = f(\sqrt[3]{x}) = (\sqrt[3]{x})^3 = x$

$$\mathcal{U}_{\circ}(\mathcal{F}(\mathbb{R},\mathbb{R})) = Bij(\mathbb{R},\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ \'e bijeção}\}$$

vi)
$$A = \mathbb{Q}$$
 (ou \mathbb{R} ou \mathbb{C}), $* = \cdot$, $e = 1$

$$\begin{cases} x \in A & (\text{dado}) \\ x' \in A & (\text{a obter}) \\ x' \cdot x = 1 \end{cases}$$

$$\mathcal{U}.(\mathbb{Q}) = \mathbb{Q}^* = \mathbb{Q} - \{0\}$$
Exemplo: $x = a/b \in \mathbb{Q}^* \ (a, b \in \mathbb{Z}, \ b \neq 0 \ \text{e} \ a \neq 0 \}$

Exemplo: $x = a/b \in \mathbb{Q}^* \ (a, b \in \mathbb{Z}, \ b \neq 0 \ e \ a \neq 0)$ $x^{-1} = b/a$ é o inverso de x

vii)
$$A = \mathbb{Z}, * = \cdot, e = 1$$

 $\mathcal{U}_{\cdot}(\mathbb{Z}) = \{\pm 1\}$

Observação. x=2 é inversível em \mathbb{Q} , mas não o é em \mathbb{Z} 2x = 1 NÃO tem solução em \mathbb{Z}

2x = 1 TEM solução em $\mathbb{Q}: x = 1/2$

- E) (Lei do Cancelamento) Seja $A \neq \emptyset$ munido de uma operação binária *.
 - i) $a \in A$ é regular à esquerda se $a*x = a*y \Rightarrow x = y, \ \forall \ x,y \in A$ (cancelamento à esquerda)
 - ii) $a \in A$ é regular à direita se $x * a = y * a \Rightarrow x = y, \ \forall \ x, y \in A$ (cancelamento à direita)
 - iii) $a \in A$ é regular se

$$\begin{cases} a*x = a*y \Rightarrow x = y \\ e &, \forall x, y \in A \\ x*a = y*a \Rightarrow x = y \end{cases}$$

a) Se * é comutativa, tais noções de regular á esquerda e Observações. à direita são iguais;

b) $\mathcal{R}_*(A) = \{x \in A \mid x \text{ \'e regular com relação a *}\}$

Observe que se $e \in A$ é o elemento neutro, então e é regular:

$$\left\{ \begin{array}{ll} e*x=e*y\Rightarrow x=y\\ & \text{e} & \text{, } \forall \ x,y\in A\\ x*e=y*e\Rightarrow x=y \end{array} \right.$$

```
Exemplos: i) A = \mathbb{Z}, \ * = +
\mathcal{R}_{+}(\mathbb{Z}) = \mathbb{Z}
Neste caso, \forall \ a \in \mathbb{Z}, vale
\begin{cases} a + x = a + y \Rightarrow x = y \\ e &, \ \forall \ x, y \in \mathbb{Z} \end{cases}
ii) A = \mathbb{Q} (ou \mathbb{R}, \mathbb{C}), * = \cdot
\mathcal{R}_{\cdot}(\mathbb{Q}) = \mathbb{Q}^{*}
Neste caso, se a \in \mathbb{Q}^{*}, então:
\begin{cases} a \cdot x = a \cdot y \stackrel{\dot{\Rightarrow}}{\Rightarrow} x = y \\ e &, \ \forall \ x, y \in \mathbb{Z} \end{cases}
x \cdot a = y \cdot a \stackrel{\dot{\Rightarrow}}{\Rightarrow} x = y
0 não é regular, pois 0 \cdot 1 = 0 \cdot 2, mas 1 \neq 2
```

Exercícios: (Teóricos)

- 1) Seja $A \neq \emptyset$ munido de uma operação binária * associativa e com elemento neutro e. Mostre que se $x \in A$ é inversível, então x' (inverso de x) é único.
- 2) (1º exercício da 3º lista) Seja $A \neq \emptyset$ munido de uma operação binária * associativa e com elemento neutro e. Considere $\mathcal{U}_*(A) = \{x \in A \mid x \text{ \'e invers\'evel}\}$ e $\mathcal{R}_*(A) = \{x \in A \mid x \text{ \'e regular}\}$. Verifique que:
 - a) $\mathcal{U}_*(A) \neq \emptyset$; $\mathcal{R}_*(A) \neq \emptyset$
 - b) Se $x \in \mathcal{U}_*(A)$, então $x' \in \mathcal{U}_*(A)$. Neste caso, (x')' = x
 - c) Se $x, y \in \mathcal{U}_*(A)$, então $x * y \in \mathcal{U}_*(A)$. Neste caso, (x * y)' = y' * x'

Observação. (Aplicando 2) b) e c) a dois contextos diferentes)

 1^{ϱ}) (matrizes)

$$A = \mathcal{M}_{n \times n}(\mathbb{R}), \ * = \cdot$$

 $\mathcal{U}_*(A) = \{ \text{ matrizes com determinante } \neq 0 \}$

b): $(B^{-1})^{-1} = B$; (supondo B inversível)

c): $(B \cdot C)^{-1} = C^{-1}B^{-1}$ (supondo que B e C são inversíveis)

 2^{ϱ}) (funções)

$$A = \mathcal{F}(\mathbb{R}, \mathbb{R}); * = 0$$

$$\mathcal{U}_*(A) = Bij(\mathbb{R}, \mathbb{R})$$

b): $(f^{-1})^{-1} = f$; (supondo que f seja inversível)
c): $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$ (supondo que f e g têm inversa)

Resolução:

1)

H:
$$\begin{cases} e \\ * \text{ \'e associativa} \\ x = \text{ elemento invers\'ivel} \\ x' = \text{ inverso de } x \end{cases}$$

T: { x' é único

Demonstração. Suponha que x' e x'' sejam inversos de x:

$$\begin{cases} x' * x = e = x * x' & (1) \\ x'' * x = e = x * x'' & (2) \end{cases}$$

Vamos mostrar que x'' = x'. De fato:

$$x'' = x'' * e \stackrel{\text{(1)}}{=} x'' * (x * x') \stackrel{\text{assoc.}}{=} (x'' * x) * x' \stackrel{\text{(2)}}{=} e * x' = x'$$

- 2) Tese:
 - a) $\mathcal{U}_*(A) \neq \emptyset : e \in \mathcal{U}_*(A)$, pois e * e = e $\mathcal{R}_*(A) \neq \emptyset : e \in \mathcal{R}_*(A)$
 - b) H: $x \in \mathcal{U}_*(A)$ T: $x' \in \mathcal{U}_*(A)$ e (x')' = x

Demonstração. $x \in \mathcal{U}_*(A) \Rightarrow \exists x' \in A \mid x' * x = e = x * x'$ Dessa igualdade, segue que $x' \in \mathcal{U}_*(A)$ e (x')' = x

c) H: $x, y \in \mathcal{U}_*(A)$ T: $x * y \in \mathcal{U}_*(A)$ e (x * y)' = y' * x'

Demonstração. Como o inverso é único (quando existe), basta mostrar que:

$$(x*y)*(y'*x') = e$$
 e $(y'*x')*(x*y) = e$

De fato:

$$(x*y)*(y'*x') = [x*(y*y')]*x' = [x*e]*x' = x*x' = e$$

$$(y'*x')*(x*y) = [y'*(x'*x)]*y = [y'*e]*y = y'*y = e$$

Tábua de Operação

$$A = \{a_1, a_2, \dots, a_n\}$$

$$*: A \times A \to A$$

$$(a_i, a_j) \mapsto a_i * a_j (= a_{ij})$$

A tábua da operação * é uma tabela $n \times n$ cujos elementos são os "operados" $a_i * a_j$, onde $i, j \in \{1, 2, ..., n\}$

(coluna fundamental)

Exemplos:

a)
$$A = \{-1, 1\}$$

* = \cdot

$$\begin{array}{c|cccc} \cdot & -1 & 1 \\ \hline -1 & 1 & -1 \\ 1 & -1 & 1 \end{array}$$

b)
$$E = \{a, b\}$$

 $A = P(E) = \{\varnothing, \{a\}, \{b\}, \{a, b\}\}$
 $* = \cap$

$$\begin{array}{c|ccccc} \cap & \varnothing & \{a\} & \{b\} & \{a,b\} \\ \hline \varnothing & \varnothing & \varnothing & \varnothing & \varnothing \\ \{a\} & \varnothing & \{a\} & \varnothing & \{a\} \\ \{b\} & \varnothing & \varnothing & \{b\} & \{b\} \\ \{a,b\} & \varnothing & \{a\} & \{b\} & \{a,b\} \\ \end{array}$$

c)
$$E = \{1, 2\}$$

 $A = Bij(E, E) = \{f : E \to E \mid f \text{ \'e bije\~ção}\}$
 $* = \circ$
 $f_1 : \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 2 \end{cases}$ (Identidade)
 $f_2 : \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 1 \end{cases}$
 $f_1 \circ f_1 = f_1$
 $f_1 \circ f_2 = f_2$
 $f_2 \circ f_1 = f_2$
 $f_2 \circ f_2 = f_1$
 $\frac{\circ \|f_1 \|f_2}{f_1 \|f_1 \|f_2}$
 $\frac{\circ \|f_1 \|f_2}{f_2 \|f_2 \|f_1}$

Em notação matricial:

$$f_1: \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \qquad f_2: \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

$$f_1 \circ f_2 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = f_2$$

$$f_2 \circ f_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = f_1$$

Observação. A partir da tábua de operação, é possível verificar se a mesma é comutativa, se possui elemento(s) neutro(s), se possui elemento(s) inversível(is) e se possui elemento(s) regular(es).

I) Comutatividade:

$$a_i * a_j = a_j * a_i, \ \forall \ a_i, a_j \in A$$

Neste caso, * é comutativa se a tábua da operação é simétrica em relação à diagonal principal, ou seja, os elementos em posições simétri-

cas em relação à diagonal principal são iguais.

*			a_i	a_j	
	a_{11}				
:		a_{22}			
a_i			a_{ii}	a_{ij}	
:					
a_j			a_{ji}	a_{jj}	
					a_{nn}

Nos exemplos anteriores, * é comutativa, pois:

a)
$$\begin{array}{c|c|c|c} \cdot & -1 & 1 \\ \hline -1 & 1 & -1 \\ 1 & -1 & 1 \\ \end{array}$$

II) Elemento Neutro

- $-e \in A$ é elemento neutro à esquerda $\Leftrightarrow e * a_i = a_i, \ \forall \ a_i \in A \Leftrightarrow \text{na}$ linha de e aparece uma cópia da linha fundamental;
- $-e \in A$ é elemento neutro à direita $\Leftrightarrow a_i * e = a_i, \ \forall \ a_i \in A \Leftrightarrow \text{na}$ coluna de e aparece uma cópia da coluna fundamental;
- $-e \in A$ é elemento neutro \Leftrightarrow a linha e a coluna de e são cópias, respectivamente, da linha e da coluna fundamental.

Nos exemplos anteriores

a)
$$e = 1$$
; b) $e = \{a, b\} = E$; c) $e = f_1$

III) Elemento Inverso

e =elemento neutro

 $-a_i \in A$ é inversível à esquerda $\Leftrightarrow \exists a_i' \in A \mid a_i' * a_i = e \Leftrightarrow o$ elemento neutro e aparece na coluna de a_i ;

- $-a_i \in A$ é inversível à direita $\Leftrightarrow \exists a_i' \in A \mid a_i * a_i' = e \Leftrightarrow$ o elemento neutro e aparece na linha de a_i ;
- $-a_i \in A$ é inversível \Leftrightarrow o elemento neutro e aparece na linha e na coluna de a_i .

Nos exemplos anteriores

a)
$$\begin{cases} e = 1 \\ (-1)' = -1 \\ (1)' = 1 \end{cases}$$
 b)
$$\begin{cases} e = \{a, b\} \\ (\{a, b\})' = \{a, b\} \end{cases}$$
 c)
$$\begin{cases} e = f_1 \\ (f_1)' = f_1 \\ (f_2)' = f_2 \end{cases}$$

IV) Elementos Regulares

- $-a \in A$ é regular à esquerda $\Leftrightarrow a*x = a*y \Rightarrow x = y, \ \forall \ x,y \in A \stackrel{\text{C-P}}{\Longleftrightarrow} (x \neq y \Rightarrow a*x \neq a*y, \ \forall \ x,y \in A) \Leftrightarrow \text{todos os elementos}$ da linha de a são distintos;
- $-a \in A$ é regular à direita $\Leftrightarrow x * a = y * a \Rightarrow x = y, \ \forall \ x, y \in A \iff (x \neq y \Rightarrow x * a \neq y * a, \ \forall \ x, y \in A) \Leftrightarrow \text{todos os elementos da}$ coluna de a são distintos;
- $-a \in A$ é regular \Leftrightarrow todos os elementos da linha de a são distintos e todos os elementos da coluna de a são distintos.

Exercícios: Nas tábuas de operação abaixo, verifique a comutatividade e a existência de elementos neutros, inversíveis e regulares:

- * NÃO é comutativa, pois $c*b \neq b*c$
- \bullet elemento neutro : a
- elementos inversíveis: a (bilateral)

$$(a' = a) \quad a * a = a$$

$$\underbrace{b}_{\text{inv à esq de } c} * \underbrace{c}_{\text{inv à dir de } b} = a$$

- \bullet elementos regulares: a (bilateral)
 - b regular à esquerda, mas não à direita
 - c não é regular à esquerda, mas é regular à direita.

- * não é comutativa, pois a tábua não é simétrica
- \sharp elemento neutro bilateral. a= elemento neutro à esquerda
- elementos inversíveis: ∄
- elementos regulares: a é regular bilateralmente, b é regular à esquerda, c é regular à esquerda.

Definição 4.3 (Semigrupo, Monóide, Grupo). Seja, $A \neq \emptyset$ munido de uma operação binária

$$*: A \times A \to A$$

 $(a, a') \mapsto a * a'$

 $Um\ par\ (A,*)\ \acute{e}\ dito\ uma\ Estrutura\ Alg\'ebrica\ com\ uma\ operaç\~ao\ bin\'aria\ se*\ satisfaz\ determinadas\ propriedades$

- a) O par (A, *) \acute{e} dito um Semigrupo $se * \acute{e}$ associativa;
- b) O par (A, *) \acute{e} dito um Monóide se * \acute{e} associativa e possui elemento neutro (bilateral);
- c) O par (A, *) é dito um Grupo se * é associativa, possui elemento neutro (bilateral) e todo elemento é inversível, isto é:

- i) $\forall a, b, c \in A, \ a * (b * c) = (a * b) * c;$
- $ii) \exists e \in A \mid e * a = a = a * e, \forall a \in A;$
- $iii) \ \forall \ a \in A, \ \exists \ a' \in A \mid a' * a = e = a * a'$

Exemplos: a) $(\mathbb{N}, +) = \text{semigrupo}$, mas não é monóide (pois $e = 0 \notin \mathbb{N}$) $(\nexists e)$

- b) (\mathbb{N},\cdot) = monóide, mas não é um grupo (pois existem elementos não inversíveis) (e=1)
 - c) $(\mathbb{Z}, +) = \text{grupo } (e = 0, (x)' = -x)$
- d) (\mathbb{Z} , ·) = monóide, mas não é um grupo (apenas 1 e -1 são inversíveis) ($e=1,\ (1)'=1,\ (-1)'=(-1)$)
 - e) $(\mathbb{Q}^*, \cdot) = (\mathbb{R}^*, \cdot) = (\mathbb{C}^*, \cdot) = \text{grupos } (e = 1, (x)' = 1/x)$

Exercícios: Verifique se o par (A, *) é um semigrupo, monóide ou grupo:

- a) (N, potenciação) = não é nenhuma das estruturas algébricas citadas
- b) $(\mathbb{Z}, -) = \tilde{\text{nao}}$ é nenhuma das estruturas algébricas citadas
- c) $(\mathcal{F}(\mathbb{R}, \mathbb{R}), \circ) = \text{mon\'oide}$ (mas não é grupo, pois apenas as funções bijetoras são inversíveis)
- d) $(\mathcal{M}_{m\times n}(\mathbb{R}), +) = \text{grupo } (\text{\'e} \text{ associativa}, \text{ tem o elemento neutro } (\text{matriz nula}) \text{ e existe inverso})$
- e) $(\mathcal{M}_{n\times n}(\mathbb{R}),\cdot)=$ monóide (mas não é grupo pois nem toda matriz é inversível)
 - f) $(\{v, f\}, \land)$ = monóide (mas não é grupo pois f não é inversível)
 - g) $(P(\{a,b\}), \cup) =$ monóide (não é grupo, pois apenas \emptyset tem inverso)

Resolução:

- a) potenciação não é associativa, pois: $(2^2)^3 = 2^6 \neq 2^8 = 2^{(2^3)}$
- b) não é associativa, pois:

$$(2-2)-3=0-3=-3 \neq 3=2-(-1)=2-(2-3)$$

f) é associativa, tem elemento neutro: e = v

$$\begin{array}{c|cccc}
 & & v & f \\
\hline
v & v & f \\
f & f & f
\end{array}$$

g)
$$e = \emptyset$$

Teorema 4.4. Sejam (A, *) um monóide e $\mathcal{U}_*(A) = \{x \in A \mid x \text{ \'e inversivel}\}$ $(\subseteq A)$. Então, $(\mathcal{U}_*(A), *)$ \'e um grupo.

Demonstração. Como $\mathcal{U}_*(A) \subseteq A$ e * é associativa em A, então $\mathcal{U}_*(A)$ "herda" esta propriedade.

Além disso, e (elemento neutro de A) pertence a $\mathcal{U}_*(A)$ (pois e*e=e). Por definição, $\mathcal{U}_*(A)$ é a coleção de todos os elementos inversíveis. Assim, $\forall \ a \in \mathcal{U}_*(A), \ \exists \ a' \in \mathcal{U}_*(A) \mid a*a'=e$.

Lembre-se:
$$(1^{\underline{a}} \text{ questão da } 3^{\underline{a}} \text{ lista})$$

$$\begin{cases} (x')' = x; \\ (x * y)' = y' * x' \end{cases}$$

Voltando aos exemplos anteriores:

- a) $A = \mathcal{M}_{n \times n}(\mathbb{R}), * = \cdot$ $\mathcal{U}_*(A) = GL(n, \mathbb{R}) = \{ A = (a_{ij})_{n \times n} \in \mathcal{M}_{n \times n}(\mathbb{R}) \mid \det A \neq 0 \}$ (Tal grupo é chamado Grupo Linear Geral de grau n com entradas em \mathbb{R})
- b) $A = \mathcal{F}(\mathbb{R}, \mathbb{R}), * = 0$ $\mathcal{U}_*(A) = S_{\mathbb{R}} = Bij(\mathbb{R}, \mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ \'e bijeção}\}$ (Tal grupo \'e chamado Grupo Simétrico sobre \mathbb{R})

Estruturas Algébricas Com Duas Operações Binárias

Seja $A \neq \emptyset$, munido de duas operações binárias

A tripla (A, \triangle, \square) é uma Estrutura Algébrica Com Duas Operações Binárias se \triangle e \square satisfaz certas propriedades.

Definição 4.5 (Distributividade).

- a) Dizemos que \triangle é distributiva à esquerda de \square se $\forall x, y, z \in A, x \triangle (y \square z) = (x \triangle y) \square (x \triangle z);$
- b) Dizemos que \triangle é distributiva à direita de \square se $\forall x, y, z \in A$, $(y \square z) \triangle x = (y \triangle x) \square (z \triangle x)$;
- c) Dizemos que \triangle é distributiva com relação \square se \triangle é simultaneamente distributiva à esquerda e à direita de \square .

Observação. Se \triangle é comutativa, então as três noções anteriores são equivalentes.

Exemplos:

a) (Apostila 1) $A = \{ \text{ proposições } \}$ $\Delta = \wedge \text{ ("e"), } \Box = \vee \text{ ("ou") (comutativas)}$

$$\forall p, q, r \in A, \quad p \land (q \lor r) = (p \land q) \lor (p \land r)$$
e
$$p \lor (q \land r) = (p \lor q) \land (p \lor r)$$

b) (Apostila 2)

 $E \neq \emptyset$ (universo)

$$A = P(E) = \{X \mid X \subseteq E\}$$

 $\triangle = \cap$, $\Box = \cup$ (comutativas)

$$\forall X, Y, Z \in A, \quad X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$
e
$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

Definição 4.6 (Anel, Domínio de Integridade e Corpo). Seja $A \neq \emptyset$ munido de duas operações binárias

$$+: A \times A \to A$$

 $(a, a') \mapsto a + a'$ e $\cdot: A \times A \to A$
 $(a, a') \mapsto a \cdot a'$

Dizemos que a tripla $(A, +, \cdot)$ é um Anel se:

- i) (A, +) é um grupo comutativo (também chamado grupo abeliano)
 - a) (a + b) + c = a + (b + c)
 - b) Existe $0 \in A$ tal que 0 + a = a = a + 0
 - c) Para todo $a \in A$, existe $a' = -a \in A$ tal que a + (-a) = 0
 - $d) \ a+b=b+a \quad (\forall \ a,b\in A)$
- ii) (A, \cdot) é um semigrupo: $(a \cdot b) \cdot c = a \cdot (b \cdot c), \forall a, b, c \in A$
- iii) Vale a distributividade à esquerda e à direita

$$\begin{cases} a \cdot (b+c) = ab + ac \\ e \\ (b+c) \cdot a = ba + ca \end{cases}$$

Observações. a) Se \cdot é comutativa, então $(A, +, \cdot)$ é dito um Anel Comutativo.

$$a \cdot b = b \cdot a, \ \forall \ a, b \in A$$

- b) Se A possui um elemento neutro para a operação \cdot (= 1), então $(A, +, \cdot)$ é dito um Anel Comutativo com Identidade. (identidade = elemento neutro para \cdot)
- c) $(A, +, \cdot)$ é dito um Domínio de Integridade se A é um anel comutativo com identidade $1 \neq 0$ tal que $\forall a, b \in A, a \neq 0$ e $b \neq 0 \Rightarrow a \cdot b \neq 0$ (Pela contra-positiva, isto é equivalente a $\forall a, b \in A, a \cdot b = 0 \Rightarrow a = 0$ ou b = 0)
- d) $(A, +, \cdot)$ é dito um Corpo se A é um anel comutativo com identidade $1 \neq 0$ tal que todo elemento não-nulo é inversível para a operação \cdot :

$$\forall a \in A - \{0\}, \ \exists \ a^{-1} \in A \mid a \cdot a^{-1} = 1 = a^{-1} \cdot a$$

Exemplos:

- a) $(\mathbb{Z},+,\cdot)=$ domínio de integridade, mas não é corpo. Justificativa: não é corpo, pois apenas 1 e -1 possuem inverso para a multiplicação (2 não tem inverso em \mathbb{Z} , pois $2^{-1}=1/2\notin\mathbb{Z}$)
- b) $(\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot), (\mathbb{C}, +, \cdot) = \text{corpos}$

c) $(\mathcal{M}_{n\times n}(\mathbb{R}), +, \cdot) = \text{anel.}$ Não-comutativo com identidade (logo, em particular, não é domínio de integridade) e, além disso, é possível que $a \cdot b = 0$ com $a \neq 0$ e $b \neq 0$.

Justificativa: n=2

$$-I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 é a identidade

não-comutativa:

$$a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R}) \quad \text{e} \quad b = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R})$$
$$a \cdot b = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

 \neq

$$b \cdot a = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

 $-a \neq 0$ e $b \neq 0$ tal que $a \cdot b = 0$

$$a = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$$

$$b = \begin{pmatrix} 3 & 4 \\ 0 & 2 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$$

$$a \cdot b = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} \neq \begin{pmatrix} 3 & 4 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$$

d) $(\mathcal{F}(\mathbb{R}, \mathbb{R}), +, \cdot)$ = anel comutativo com identidade, mas não é domínio de integridade, pois existem $f, g \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, ambas não-nulas, tal que $f \cdot g = 0$.

Observação.
$$f \equiv 0 \Leftrightarrow f(x) = 0, \ \forall \ x \in \mathbb{R}$$

 $f \neq 0 \Leftrightarrow \exists \ x \in \mathbb{R} \mid f(x) \neq 0$

Exemplo:

$$f(x) = \begin{cases} 0, \text{ se } x < 0 \\ 1, \text{ se } x \ge 0 \end{cases} \quad \text{e} \quad g(x) = \begin{cases} -1, \text{ se } x < 0 \\ 0, \text{ se } x \ge 0 \end{cases}$$

$$f(x) \cdot g(x) = \begin{cases} 0 \cdot (-1) = 0, \text{ se } x < 0 \\ 1 \cdot 0 = 0, \text{ se } x \ge 0 \end{cases}$$

Teorema 4.7. Todo corpo é um domínio de integridade.

Observação. Não vale a recíproca, ou seja, nem todo domínio de integridade é um corpo.

Exemplo: \mathbb{Z} é um domínio de integridade, mas NÃO é corpo (pois apenas os números 1 e -1 são inversíveis para a multiplicação). (Isto é, a equação $a \cdot x = 1$ só tem solução em \mathbb{Z} se a = 1 ou -1)

Demonstração.

 $\left\{ \begin{array}{l} \text{H: } (A,+,\cdot) \text{ \'e um corpo} \\ \text{T: } (A,+,\cdot) \text{ \'e um domínio de integridade} \end{array} \right.$

Por hipótese, $(A, +, \cdot)$ é um corpo, ou seja, A é um anel comutativo com identidade $1 \neq 0$ tal que $\forall a \in A, a \neq 0, \exists a^{-1} \in A \mid a \cdot a^{-1} = 1 = a^{-1} \cdot a$. Queremos mostrar que $(A, +, \cdot)$ é um domínio de integridade. Portanto, basta mostrar que $\forall a, b \in A$, se $a \cdot b = 0$, então a = 0 ou b = 0.

$$\begin{cases} \text{H: } a \cdot b = 0 \\ \text{T: } a = 0 \text{ ou } b = 0 \end{cases}$$

Vamos mostrar que se $a \neq 0$, então b = 0 (analogamente, se $b \neq 0$ então a = 0).

Por hipótese, $a \cdot b = 0$ (*), com $a \neq 0$. Como $a \neq 0$ e $(A, +, \cdot)$ é um corpo, então $\exists \ a^{-1} \in A \mid a \cdot a^{-1} = 1 = a^{-1} \cdot a$. Assim, multiplicando (*) por a^{-1} :

$$\begin{array}{l} a \cdot b = 0 \quad (\times a^{-1}) \\ a^{-1} \cdot (a \cdot b) = a^{-1} \cdot 0 \\ (a^{-1} \cdot a) \cdot b = 0 \Rightarrow 1 \cdot b = 0 \Rightarrow b = 0 \\ \text{Se } b \neq 0 \text{ então } \exists \ b^{-1} \in A : b \cdot b^{-1} = 1 = b^{-1} \cdot b, \text{ assim } \\ a \cdot b = 0 \\ (a \cdot b) \cdot b^{-1} = 0 \cdot b^{-1} \\ a \cdot (b \cdot b^{-1}) = 0 \Rightarrow a \cdot 1 = 0 \Rightarrow a = 0 \end{array}$$

Alguns exemplos clássicos de anéis e grupos (aplicações à Física, Computação, Geometria, Variáveis Complexas, Álgebra Linear, etc)

A) Anéis

quatro exemplos:
$$\begin{cases} A.1) \ \mathbb{Z} \\ A.2) \ \mathbb{Z}_n \text{ (anel dos inteiros m\'odulo } n) \\ A.3) \ \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{R} \\ A.4) \ \mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C} \end{cases}$$

A.1) O anel dos inteiros - \mathbb{Z}

- $(\mathbb{Z}, +, \cdot) = \text{domínio de integridade};$
- \leq = ordem total; $(x \leq y \Leftrightarrow x - y \leq 0, \ \forall \ x, y \in \mathbb{Z})$
- P.B.O.: (2ª versão)
 Todo subconjunto não-vazio de Z, limitado inferiormente, possui elemento mínimo, isto é, ∀ A ⊆ Z, A ≠ Ø, ∃ m = min(A), ou seja, m ∈ A e m ≤ x, ∀ x ∈ A. Logo, para tais conjuntos ("A"), vale o Princípio de Indução.

Teorema 4.8 (Algoritmo da Divisão de Euclides). Sejam $a, b \in \mathbb{Z}$, com b > 0. Então, existem únicos $q, r \in \mathbb{Z}$ tais que a = b + qr, onde $0 \le r < b$. (a = dividendo, b = divisor, q = quociente, r = resto)

Geometricamente: (a, b > 0)

Demonstração. I) Existência de q e r:

Defina $A = \{a - bx \mid x \in \mathbb{Z} \text{ e } a - bx \geqslant 0\}$. Temos que $A \subseteq \mathbb{Z}_+ = \mathbb{N} \cup \{0\}$.

Afirmação. $A \neq \emptyset$

De fato:

Tome x = -|a|. Então,

$$a - bx = a - b(-|a|) = a + b|a| \geqslant a + |a| \geqslant 0$$

Assim, tal número a-bx, para x=-|a|, pertence a A. Logo, pelo P.B.O., $\exists \ min(A)=r.$

Temos que:

a) $r \in A \Rightarrow \exists x = q \in \mathbb{Z} \mid r = a - bx = a - bq \text{ (ou } a = bq + r).$ Além disso, $r \ge 0$.

b) $r \leq y$, $\forall y \in A$. Falta mostrar que r < b.

Suponha, por absurdo, que $r \ge b$. Considere o número y = a - b(q + 1). Temos que

$$y = a - b(q + 1) = a - bq - b = r - b < r$$

Por outro lado, $y = r - b \ge 0$. Assim, $y \in A$ com y < r (absurdo). (pois contradiz a minimalidade de r)

Conclusão: r < b

II) Unicidade de q e r:

Vamos mostrar que se a=bq+r=bq'+r', com $q,q',r,r'\in\mathbb{Z}$ e $0 \leqslant r, r' < b$, então q = q' e r = r'.

$$bq + r = bq' + r' \Rightarrow bq - bq' = r' - r \Rightarrow b(q - q') = r' - r$$

Se mostrarmos que q = q', segue que r' = r. Suponha, por absurdo, que $q' \neq q$. Assim, $q' - q \neq 0$. Então,

$$|q' - q| > 0 \Rightarrow |q' - q| \geqslant 1 \tag{1}$$

Por outro lado,

$$\begin{cases} 0 \leqslant r' < b \\ 0 \leqslant r < b \end{cases} \Rightarrow |r' - r| < b$$
 (2) Voltando à igualdade anterior:

$$|b||q - q'| = |b(q - q')| = |r' - r|$$

$$b \stackrel{\text{\tiny (1)}}{\leqslant} b|q - q'| = |r' - r| \stackrel{\text{\tiny (2)}}{\leqslant} b$$
 (absurdo)

Conclusão: $q' = q \ (\Rightarrow r' = r)$

Exercício: Calcule q e r nos seguintes casos:

a)
$$a = 102$$
; $b = 7$

$$102 \quad \boxed{7}$$

$$32 \quad 14$$

$$4$$

$$102 = 7 \cdot 14 + 4$$

b)
$$a = -102$$
; $b = 7$
 $-102 = 7 \cdot 15 + 3$

Corolário 4.9. Dados $a, b \in \mathbb{Z}$, com $b \neq 0$, existem únicos $q, r \in \mathbb{Z}$ tais que a = bq + r, onde $0 \leq r < |b|$.

Demonstração. Como $b \neq 0$, segue que |b| > 0. Pelo Teorema anterior, existem únicos $q', r' \in \mathbb{Z}$ tais que a = |b| q' + r', com $0 \leq r < |b|$.

 $1^{\,\varrho}$ caso: b>0: neste caso, |b|=b. Assim, basta tomar q'=qe r'=r: a=bq+r, com $0\leqslant r< b.$

 2^{ϱ} caso: b < 0: neste caso, |b| = -b. Assim, basta tomar q = -q' e r = r': a = -bq' + r' = b(-q') + r', com $0 \le r < -b$.

Exemplos:
$$102 = (-7)(\underline{-14}) + \underline{4}$$

 $-102 = (-7)\underline{15} + \underline{3}$

Observação. Se r = 0, então dizemos que a divisão é EXATA. Neste caso, a = b q e dizemos que "b divide a" ou "b é divisor de a" ou "b é fator de a" ou "a é múltiplo de b" ou "a é divisível por b".

Notação. $b \mid a \Leftrightarrow \exists \ q \in \mathbb{Z} \mid b \ q = a \quad (\Leftrightarrow q = a/b \in \mathbb{Z})$ negação: $b \nmid a$

Exemplos:
$$-3 \mid 12 \text{ (pois } (-3)(-4) = 12)$$

 $-5 \mid -60 \text{ (pois } (-5)(12) = -60)$
 $-7 \nmid 20 \text{ (pois } -7x = 20 \text{ não tem solução em } \mathbb{Z})$

Teorema 4.10 (Regras de Divisibilidade).

- $i) \ 1 \mid a; \ a \mid a; \ a \mid 0;$
- $ii) \ a \mid 1 \Leftrightarrow a = 1 \ ou \ -1; \ 0 \mid b \Leftrightarrow b = 0;$
- $iii) \ a \mid b \ e \ c \mid d \Rightarrow ac \mid bd;$
- $iv) \ a \mid b \ e \ b \mid c \Rightarrow a \mid c;$
- $v) \ a \mid b \ e \ b \mid a \Rightarrow a = b \ ou \ a = -b;$
- $vi) \ a \mid b \ e \ b \neq 0 \Rightarrow |a| \leqslant |b|;$
- vii) $a \mid b \mid e \mid a \mid c \Rightarrow a \mid bx + cy, \ \forall \ x, y \in \mathbb{Z}$ $Em \ particular, \ a \mid b + c \ (x = y = 1) \ e \ a \mid b - c \ (x = 1 \ e \ y = -1)$

Demonstração.

vi)
$$\begin{cases} \text{H: } a \mid b \text{ e } b \neq 0 \\ \text{T: } |a| \leqslant |b| \end{cases}$$

$$a \mid b \Rightarrow \exists \ q \in \mathbb{Z} \mid a \, q = b$$

Como $b \neq 0$, segue que $a \neq 0$ e $q \neq 0$.

$$|a q| = |b|$$

$$|a| \leqslant |a| \underbrace{|q|}_{\geqslant 1} = |b|$$

vii)
$$\begin{cases} \text{H: } a \mid b \text{ e } a \mid c \\ \text{T: } a \mid bx + cy \\ a \mid b \Rightarrow \exists m \in \mathbb{Z} \mid am = b \quad (\times x) \\ a \mid c \Rightarrow \exists n \in \mathbb{Z} \mid an = c \quad (\times y) \\ am = b \overset{(\times x)}{\Longrightarrow} amx = bx \\ an = c \overset{(\times y)}{\Longrightarrow} any = cy \\ \Rightarrow amx + any = bx + cy \Rightarrow a\underbrace{(mx + ny)}_{q \in \mathbb{Z}} = bx + cy \Rightarrow a \mid bx + cy \end{cases}$$

Notações. $a \in \mathbb{Z}$

 $\begin{array}{l} D(a) = \{ \text{ divisores inteiros de } a \} \\ D_+(a) = \{ \text{ divisores naturais de } a \} \\ M(a) = \{ \text{ múltiplos inteiros de } a \} = a\mathbb{Z} = \{ak \mid k \in \mathbb{Z} \} \\ M_+(a) = \{ \text{ múltiplos naturais de } a \} \end{array}$

Exemplos: a) $D(1) = \{\pm 1\}$

- b) $D_{+}(1) = \{1\}$
- c) $D(2) = \{\pm 1, \pm 2\}$
- d) $D_{+}(2) = \{1, 2\}$
- e) $D(4) = \{\pm 1, \pm 2, \pm 4\}$
- f) $D_+(4) = \{1, 2, 4\}$
- g) $D(0) = \mathbb{Z}$
- h) $M(0) = \{0\}$
- i) $M(2) = 2\mathbb{Z} = \{2k \mid k \in \mathbb{Z}\} = \{0, \pm 2, \pm 3, \pm 4, \pm 6, \ldots\}$ (números pares)

Definição 4.11 (Máximo Divisor Comum e Mínimo Múltiplo Comum).

M.D.C. (Máximo Divisor Comum)

Sejam $a, b \in \mathbb{Z}$, não simultaneamente nulos. Definimos o M.D.C. de a e b como sendo o número natural d = mdc(a, b) satisfazendo as sequintes condições:

- i) $d \mid a \in d \mid b$;
- ii) Se $c \in \mathbb{N}$ tal que $c \mid a \ e \ c \mid b$, então $c \mid d \ (\Rightarrow \mid c \mid \leqslant \mid d \mid \Rightarrow c \leqslant d)$. Em outras palavras, $d = max[D(a) \cap D(b)].$

M.M.C. (Mínimo Múltiplo Comum)

Sejam $a, b \in \mathbb{Z}$, ambos $\neq 0$. Definimos o M.M.C. de a e b como sendo o número natural m = mmc(a, b) satisfazendo as sequintes condições:

- $i) a \mid m e b \mid m;$
- ii) Se $c \in \mathbb{N}$ tal que $a \mid c \in b \mid c$, então $m \mid c \iff |m| \iff |c| \Rightarrow m \iff c$. Em outras palavras, $m = min[M_{+}(a) \cap M_{+}(b)].$

Exemplo:
$$a = 45 \Rightarrow D(45) = \{\pm 1, \pm 3, \pm 5, \pm 9, \pm 15, \pm 45\}$$

 $b = 36 \Rightarrow D(36) = \{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 9, \pm 12, \pm 18, \pm 36\}$
 $D(45) \cap D(36) = \{\pm 1, \pm 3, \pm 9\}$
 $d = \text{mdc}(45, 36) = max[D(45) \cap D(36)] = 9$

Observação. Se a = 0 e $b \neq 0$, então mdc(a, b) = |b|

```
Exemplo: a = 45 \Rightarrow M(45) = \{45k \mid k \in \mathbb{Z}\} = \{0, \pm 45, \pm 90, \pm 135, \pm 90, \pm 90, \pm 135, \pm 90, \pm 135, \pm 90, \pm 135, \pm 13
\pm 180, \pm 225, \ldots
                                                                                                          b = 36 \Rightarrow M(36) = \{36k \mid k \in \mathbb{Z}\} = \{0, \pm 36, \pm 72, \pm 108, \pm 144, \pm 180, \pm 144, \pm 18
\pm 216, \ldots \}
```

```
M_{+}(45) = \{45, 90, 135, 180, 225, \ldots\}
M_{+}(36) = \{36, 72, 108, 144, 180, 216, \ldots\}
```

 $M_{+}(45) \cap M_{+}(36) = \{180, 360, 540, \ldots\}$ $m = min[M_{+}(45) \cap M_{+}(36)] = 180$

não existe elemento mínimo (∄ mmc).

Se a = b = 0, então $D(a) = D(b) = \mathbb{Z}$, $D(a) \cap D(b) = \mathbb{Z}$, não existe elemento máximo (\nexists mdc). Se a=0 ou b=0, $M(0)=\{0\}$, $M_{+}(0)=\varnothing$,

Alguns resultados importantes a respeito do M.D.C. e do M.M.C. (cujas

demonstrações são vistas no curso de Teoria dos Números):

- 1) Sejam $a, b \in \mathbb{Z}$, não simultaneamente nulos. Seja $d = \operatorname{mdc}(a, b)$. Então, existem $x_0, y_0 \in \mathbb{Z}$ tais que $d = ax_0 + by_0$.
- 2) Sejam $a, b \in \mathbb{Z}$, ambos não-nulos. Seja $d = \operatorname{mdc}(a, b)$ e $m = \operatorname{mmc}(a, b)$. Então, $d \cdot m = |a \cdot b|$.

Exemplo: a = 45, b = 36d = mdc(45, 36) = 9 e m = mmc(45, 36) = 180 $|ab| = ab = 45 \cdot 36 = 1620 = 9 \cdot 180 = dm$

3) (Método das Divisões Sucessivas para o Cálculo do M.D.C.) Sejam $a, b \in \mathbb{Z}$, com $b \neq 0$. Faça $r_0 = |b|$. Existem $q_1, r_1 \in \mathbb{Z}$ com $a = b q_1 + r_1$, onde $0 \le r_1 < |b| = r_0$.

Se $r_1 = 0$, então pare.

Se $r_1 \neq 0$, então existem $q_2, r_2 \in \mathbb{Z}$ com $r_0 = r_1 q_2 + r_2$, onde $0 \leqslant r_2 < r_1$.

Se $r_2 = 0$, então pare.

Se $r_2 \neq 0$, então existem $q_3, r_3 \in \mathbb{Z}$ com $r_1 = r_2 q_3 + r_3$, onde $0 \leqslant r_3 < r_2$.

 $r_{k-2} = r_{k-1} q_k + r_k$, onde $0 \le r_k < r_{k-1}$

Após um número finito de passos, existirá $n \in \mathbb{N}$ tal que $r_n \neq 0$ e $r_{n+1} = 0$

$$r_{n-3} = r_{n-2} q_{n-1} + r_{n-1}$$
, onde $0 < r_{n-1} < r_{n-2}$

$$r_{n-2} = r_{n-1} q_n + r_n$$
, onde $0 < r_n < r_{n-1}$

$$r_{n-2} = r_{n-1} q_n + \frac{r_n}{r_n}$$
, onde $0 < r_n < r_{n-1}$
 $r_{n-1} = r_n q_{n+1} + \underbrace{0}_{r_{n+1}}$

Afirmação. $mdc = r_n$ (último resto não nulo)

$$\underbrace{r_0>r_1>r_2>r_3>\cdots>r_k>\cdots\geqslant 0}_{\text{seqüência decrescente de inteiros n\~ao negativos (limitada); tal seqüência converge para 0}$$

Exemplo: d = mdc(45, 36) = 9

$$\begin{array}{c|cccc} \text{restos} \rightarrow & 9 & 0 \\ \hline 45 & 36 & 9 \\ \hline \text{quocientes} \rightarrow & 1 & 4 \\ \end{array}$$

Exercícios Selecionados:

- 1) Considere a = 180 e b = 252
 - a) Calcule d = mdc(a, b) pelo método das divisões sucessivas

- b) Determine $x_0, y_0 \in \mathbb{Z}$ tais que $d = ax_0 + by_0$
- c) Calcule m = mmc(a, b)
- 2) Sejam $a, b \in \mathbb{Z}$, não simultaneamente nulos. Dizemos que a e b são primos entre si (ou relativamente primos ou co-primos) se d = mdc(a, b) = 1. Mostre que dois números consecutivos são primos entre si.
- 3) Sejam $a, b, c \in \mathbb{Z}$ tais que $a \mid b c$ e mdc(a, b) = 1. Mostre que $a \mid c$.

Resolução:

b) $252 = 180 \cdot 1 + 72$ $180 = 72 \cdot 2 + 36$ $72 = 36 \cdot 2 + 0$ $36 = 180 - 72 \cdot 2 = 180 - (252 - 180 \cdot 1) \cdot 2 = 3 \cdot 180 + (-2) \cdot 252$ $x_0 = 3, \ y_0 = -2$

c) m = mmc(180, 252) $a = 180, \ b = 252, \ d = \text{mdc}(180, 252) = 36$ Segue que $a \cdot b = d \cdot m$, isto é

$$m = \frac{a \cdot b}{d} = \frac{252 \cdot 180}{36} = 1260$$

2) H: n, n+1 são dois números consecutivos T: d = mdc(n, n+1) = 1

Demonstração. De fato:

$$d = \operatorname{mdc}(n, n+1) \Rightarrow \begin{cases} d \mid n = 0 \\ d \mid n+1 \end{cases}$$

$$\stackrel{\text{vii}}{\Rightarrow} d \mid (n+1) - n = 1 \stackrel{\text{ii}}{\Rightarrow} d = 1 \text{ ou } -1 \stackrel{d \geqslant 0}{\Rightarrow} d = 1$$

H:
$$\begin{cases} a \mid b c \\ \operatorname{mdc}(a, b) = 1 \end{cases}$$
T: $a \mid c$

Demonstração. $a \mid b c \Rightarrow \exists m \in \mathbb{Z} \mid a m = b c$ (*) $\mathrm{mdc}(a,b) = 1 \Rightarrow \exists x_0, y_0 \in \mathbb{Z} \mid ax_0 + by_0 = 1$ (**) Queremos mostrar que $a \mid c$, ou seja, $\exists l \in \mathbb{Z} \mid a l = c$ Multiplicando (**) por c: $c(ax_0 + by_0) = c \cdot 1 \Rightarrow c \, ax_0 + c \, by_0 = c \overset{(*)}{\Rightarrow} c \, ax_0 + a \, my_0 = c$ $\Rightarrow a \underbrace{(cx_0 + my_0)}_{l \in \mathbb{Z}} = c \Rightarrow a \mid c$

Definição 4.12 (Número Primo e Número Composto).

- $1^{\underline{a}}$ versão: $(em \mathbb{N})$ Dizemos que $n \in \mathbb{N}$ é primo se:
 - *i*) n > 1;
 - ii) $D_+(n) = \{1, n\}$ (equivalentemente: se $n = a \cdot b$, com $a, b \in \mathbb{N}$, então ou a = 1 ou b = 1)

Dizemos que $n \in \mathbb{N}$ é composto se ele não é primo, ou seja, n > 1 e é possível escrever $n = a \cdot b$, com 1 < a, b < n $(a, b \in \mathbb{N})$.

- 2^a versão: $(em \mathbb{Z})$ Dizemos que $n \in \mathbb{Z}$ é primo se:
 - i) $n \neq 1$ e $n \neq -1$;
 - *ii)* $D(n) = \{-1, 1, n, -n\}$

Dizemos que $n \in \mathbb{Z}$ é composto se ele não é primo, isto é, se $n \neq \pm 1$ e |D(n)| > 4.

Vamos nos restringir apenas ao caso natural.

Observação. 1 e n são ditos divisores triviais de n

Exemplos: a) 2, 3, 5, 7, 11, 13, 17, 19, 23, . . . são primos

b) 4 é composto (pois $D_{+}(4) = \{1, 2, 4\}$) 6 é composto (pois $D_{+}(6) = \{1, 2, 3, 6\}$)

Notação. $\mathbb{P} = \{ p \in \mathbb{N} \mid p \text{ é primo} \}$

Exercícios Selecionados:

- 1) a) Sejam $p\in\mathbb{P}$ e $a,b\in\mathbb{N}.$ Mostre que se $p\mid a\cdot b,$ então $p\mid a$ ou $p\mid b.$
 - b) Através de um contra-exemplo, verifique que a) é falso se o número for composto.
- 2) Seja $n \in \mathbb{N}$, n > 1. Mostre que existe $p \in \mathbb{P}$ tal que $p \mid n$ (isto é, todo número natural > 1 tem um primo que o divide).

Observação. De 2), segue o Teorema Fundamental da Aritmética: Seja $n \in \mathbb{N}, \ n > 1$

- a) Existem $p_1,p_2,\ldots,p_r\in\mathbb{P}$ (não necessariamente distintos: $p_1\leqslant p_2\leqslant\ldots\leqslant p_r$) tais que $n=p_1\ldots p_r$
- b) Tal decomposição é única, ou seja, se $n=p_1\dots p_r=q_1\dots q_s$, com $p_1,\dots,p_r\in\mathbb{P}$ $(p_1\leqslant p_2\leqslant\dots\leqslant p_r)$ e $q_1,\dots,q_s\in\mathbb{P}$ $(q_1\leqslant q_2\leqslant\dots\leqslant q_s)$, então r=s e $p_1=q_1,\ p_2=q_2,\dots,\ p_r=q_s$.

Resolução:

1) a) **Demonstração.**

$$\mathbf{H} \colon \left\{ \begin{array}{l} p \in \mathbb{P} \\ p \mid a \cdot b \end{array} \right.$$

T: $p \mid a \text{ ou } p \mid b$

Queremos mostrar que se $p \mid a \cdot b$, então $p \mid a$ ou $p \mid b$. Vamos mostrar que se $p \nmid a$, então $p \mid b$. (analogamente, se $p \nmid b$, então $p \mid a$)

De fato: $p \mid a \cdot b$ e $p \nmid a$.

Afirmação. mdc(p, a) = 1

$$d = \mathrm{mdc}(p, a) \Rightarrow \left\{ \begin{array}{l} d \mid a \\ e \\ d \mid p \end{array} \right.$$

Como $d \mid p \in \mathbb{P}$, então d = 1 ou p. Temos que $d \neq p$, pois, do contrário, teríamos que $(d =)p \mid a$ (o que contradiz a nossa suposição inicial). Assim, d = 1. Portanto,

$$\begin{cases} p \mid a \cdot b \\ \operatorname{mdc}(p, a) = 1 \end{cases} \Rightarrow p \mid b$$

- b) contra-exemplo: $6 \notin \mathbb{P}$ $6 = 2 \cdot 3$ $6 \mid 6 = 2 \cdot 3$, mas $6 \nmid 2$ e $6 \nmid 3$
- 2) H: n > 1 $(n \in \mathbb{N})$ T: $\exists p \in \mathbb{P} \mid p$ divide n

Demonstração. $A = \{$ divisores naturais de n, maiores do que $1 \}$ $= \{ t \in \mathbb{N} \mid t > 1 \text{ e } t \mid n \}$

$$A \neq \varnothing \text{ (pois } n \in A); \ A \subseteq \mathbb{N}$$

$$\stackrel{\text{\tiny P.B.O.}}{\Longrightarrow} \exists \ p = min(A)$$

Afirmação. $p \in \mathbb{P}$

De fato: Como $p \in A$, segue que p > 1. p não pode ser composto pois, do contrário, chegaríamos ao seguinte absurdo:

$$p = a \cdot b, \text{ com } 1 < a, b < p = min(A)$$

$$\begin{cases} a \mid p & \text{(trans)} \\ p \mid n & \text{ } \end{cases} a \mid n$$

$$a \mid n \in a > 1 \Rightarrow a \in A \text{ (absurdo), pois } a$$

Conclusão: $p \in \mathbb{P}$

Teorema 4.13 (de Euclides). \mathbb{P} é infinito

Demonstração. $\mathbb{P} = \{x \in \mathbb{N} \mid x \text{ \'e primo}\} = \{2, 3, 5, 7, \ldots\}$

Suponha, por absurdo, que \mathbb{P} fosse finito. $\mathbb{P} = \{p_1, p_2, \dots, p_r\}$

Considere $N = p_1 p_2 \dots p_r + 1 > 1$. Pelo exercício 2), existe $p \in \mathbb{P} \mid p \mid N$. Como \mathbb{P} é finito, então $p = p_k$, onde $1 \leq k \leq r$.

$$\begin{cases} p_k \mid N = p_1 \, p_2 \dots p_k \dots p_r + 1 & (*) \\ p_k \mid p_1 \, p_2 \dots p_k \dots p_r & (**) \\ \text{Em particular, } p_k \mid (*) - (**) = N - p_1 \, p_2 \dots p_k \dots p_r \\ p_k \mid (*) - (**) = (p_1 \, p_2 \dots p_k \dots p_r + 1) - (p_1 \, p_2 \dots p_k \dots p_r) = 1 \Rightarrow p_k = 1 \\ \text{ou } -1 \\ \stackrel{p_k \in \mathbb{N}}{\Longrightarrow} p_k = 1 \text{ (absurdo), pois } p_k \in \mathbb{P} \text{ (logo, não pode ser 1)} \\ \text{Conclusão: } \mathbb{P} \text{ \'e infinito.} \end{cases}$$

A.2) O anel dos inteiros módulo n - \mathbb{Z}_n

Definição 4.14 (Congruência módulo n). Sejam $a, b \in \mathbb{Z}$ $e \ n \in \mathbb{N}$, n > 1. Dizemos que $a \ e \ b \ são$ congruentes módulo $n \ se \ n \mid a - b$.

Notação.
$$a \equiv b \pmod{n}$$
 (lê-se: $a \notin \text{congruente a } b \pmod{n}$ $a \equiv b \pmod{n} \Leftrightarrow n \mid a - b, \text{ ou seja, existe } k \in \mathbb{Z} \mid nk = a - b$

Exemplo prático: Relógio digital (congruência módulo 12)

$$15 \equiv 3 \pmod{12}$$
, pois $12 \mid 15 - 3$ resto da divisão de 15 por 12 $21 \equiv 9 \pmod{12}$, pois $12 \mid 21 - 9$

Observação. A negação de $a \equiv b \pmod{n}$ é $a \not\equiv b \pmod{n}$

Teorema 4.15. A congruência módulo n define uma relação de equivalência sobre \mathbb{Z} .

Demonstração. De fato:

(RE1) Reflexiva:
$$a \equiv a \pmod{n}$$
 pois $n \mid a - a = 0 \pmod{n}$ $0 = 0$
(RE2) Simétrica: $a \equiv b \pmod{n} \Rightarrow b \equiv a \pmod{n}$

$$a \equiv b \pmod{n} \Rightarrow n \mid a - b \Rightarrow nk = a - b, \text{ para algum } k \in \mathbb{Z} \Rightarrow (-k)n = b - a \Rightarrow n \mid b - a, \text{ isto } e, b \equiv a \pmod{n}$$
(RE3) Transitiva: $a \equiv b \pmod{n} = b \pmod{n} \Rightarrow a \equiv c \pmod{n}$

$$a \equiv b \pmod{n} \Rightarrow n \mid a - b \Rightarrow nk_1 = a - b \pmod{n} \Rightarrow a \equiv c \pmod{n}$$

$$b \equiv c \pmod{n} \Rightarrow n \mid b - c \Rightarrow nk_2 = b - c \pmod{2} \pmod{2}$$

$$(1) + (2): nk_1 + nk_2 = a - c \Rightarrow n(k_1 + k_2) = a - c \Rightarrow nk_3 = a - c \Rightarrow a \equiv c \pmod{n}$$

Exercícios Selecionados:

- 1) Verifique as seguintes propriedades de congruências: $a \equiv b \pmod{n}$, $c \equiv d \pmod{n}$
 - a) $a + c \equiv b + d \pmod{n}$
 - b) $a \cdot c \equiv b \cdot d \pmod{n}$
 - c) $a^k \equiv b^k \pmod{n}, \ \forall \ k \in \mathbb{N}$
- 2) Sejam $a, b \in \mathbb{Z}$ e $n \in \mathbb{N}$, n > 1. Então, $a \equiv b \pmod{n} \Leftrightarrow a$ e b deixam o mesmo resto na divisão por n.
- 3) Sejam $a \in \mathbb{Z}$ e $n \in \mathbb{N}$, n > 1. Então, existe um único $r \in \mathbb{Z}$, com $0 \leqslant r \leqslant n 1$ tal que $a \equiv r \pmod{n}$.

Resolução:

1) H:
$$a \equiv b \pmod{n} \Rightarrow n \mid a - b \Rightarrow nk_1 = a - b \pmod{k_1 \in \mathbb{Z}}$$
 (*) $c \equiv d \pmod{n} \Rightarrow n \mid c - d \Rightarrow nk_2 = c - d \pmod{k_2 \in \mathbb{Z}}$ (**)

a) T: $a + c \equiv b + d \pmod{n}$

Queremos mostrar que $n \mid (a+c) - (b+d)$. De fato:

$$\left. \begin{array}{c}
 n \mid a - b \\
 e \\
 n \mid c - d
\end{array} \right\} \implies n \mid (a - b) + (c - d) (= (a + c) - (b + d))$$

b) T: $ac \equiv bd \pmod{n}$

Queremos mostrar que $n \mid ac - bd$, ou seja, $nk_3 = ac - bd$ para algum $k_3 \in \mathbb{Z}$. De fato:

$$ac - bd = ac - ad + ad - bd = a(c - d) + d(a - b) \stackrel{(*)^{(*)}}{=} ank_2 + dnk_1 = n\underbrace{(ak_2 + dk_1)}_{k_3 \in \mathbb{Z}} \Rightarrow n \mid ac - bd$$

c) H:
$$a \equiv b \pmod{n} \Rightarrow n \mid a - b \Rightarrow nq_1 = a - b$$
 (1)
T: $a^k \equiv b^k \pmod{n} \Rightarrow n \mid a^k - b^k \Rightarrow nq_2 = a^k - b^k$ (2)

i)
$$k_0 = 2$$
:
 $nq_1 = a - b \xrightarrow{\times (a+b)} n \underbrace{q_1(a+b)}_{q_2} = (a-b)(a+b) = (a^2 - b^2) \Rightarrow$
 $n \mid a^2 - b^2 \Rightarrow a^2 \equiv b^2 \pmod{n}$

ii) Supondo que $a^m \equiv b^m \pmod{n}$ seja válido para todo m, tal que $2 \le m < k$, temos que mostrar que $a^k \equiv b^k \pmod{n}$ é verdadeiro.

Temos que $a^{k-1} \equiv b^{k-1} \pmod{n} \Rightarrow nq_3 = a^{k-1} - b^{k-1}$ Então,

$$a^{k} - b^{k} = a^{k} - ab^{k-1} + ab^{k-1} - b^{k}$$

$$= a(a^{k-1} - b^{k-1}) + b^{k-1}(a - b)$$

$$\stackrel{(3) e^{(1)}}{=} a n q_{3} + b^{k-1}n q_{1}$$

$$= n \underbrace{(a q_{3} + b^{k-1}q_{1})}_{q_{4}}$$

$$\Rightarrow n \mid a^k - b^k \Rightarrow a^k \equiv b^k \pmod{n}, \ \forall \ k \in \mathbb{Z}$$

2) $a \equiv b \pmod{n} \Leftrightarrow a \in b \text{ deixam o mesmo resto na divisão por } n$.

 $(\Leftarrow) H: \begin{cases} a = n q_1 + r \\ b = n q_2 + r \end{cases}$ Demonstração.

T: $a \equiv b \pmod{n}$

$$a - b = (n q_1 + r) - (n q_2 + r) = n q_1 - n q_2 = n(q_1 - q_2) = n q_3$$

 $\Rightarrow n \mid a - b \Rightarrow a \equiv b \pmod{n}$

$$(\Rightarrow)$$
 H: $a \equiv b \pmod{n} \Rightarrow \overline{a} = \overline{b} \text{ em } \mathbb{Z}_n$

$$(\Rightarrow) \text{ H: } a \equiv b \pmod{n} \Rightarrow \overline{a} = \overline{b} \text{ em } \mathbb{Z}_n$$
$$\text{T: } r_1 = r_2, \text{ onde } \left\{ \begin{array}{l} r_1 = a - n \, q_1 \\ r_2 = b - n \, q_2 \end{array} \right., \quad 0 \leqslant r_1, r_2 < n$$

Vamos supor que $r_1 \neq r_2$. Então $0 < |r_1 - r_2| < n$. Temos

$$\overline{a} = \overline{b} \quad \Rightarrow \quad \overline{n \, q_1 + r_1} = \overline{n \, q_2 + r_2} \\ \Rightarrow \quad \overline{n \, q_1} + \overline{r_1} = \overline{n \, q_2} + \overline{r_2} \Rightarrow \overline{n \, q_1} + \overline{r_1} = \overline{n \, q_2} + \overline{r_2} \\ \Rightarrow \quad \overline{0 \, q_1} + \overline{r_1} = \overline{0 \, q_2} + \overline{r_2} \Rightarrow \overline{0} + \overline{r_1} = \overline{0} + \overline{r_2} \\ \Rightarrow \quad \overline{r_1} = \overline{r_2} \Rightarrow r_1 \equiv r_2 \pmod{n} \\ \Rightarrow \quad n \mid r_1 - r_2 \Rightarrow n \, k = r_1 - r_2$$

$$n \leq |n||k| = |n k| = |r_1 - r_2| < n$$
 (absurdo)

$$(*) \quad n>0 \ \ \mathrm{e} \ \ |k|>0$$
 Então $r_1=r_2.$

3) H: $a \in \mathbb{Z}$, $n \in \mathbb{N}$, n > 1T: existe um único $r \in \mathbb{Z}$, com $0 \leqslant r \leqslant n - 1$, tal que $a \equiv r \pmod{n}$

Demonstração. Como $n \in \mathbb{N}$, podemos dividir a por n. Pelo Algoritmo da Divisão de Euclides, existem únicos $q, r \in \mathbb{Z}$ tais que a = nq + r, com $0 \le r < n \Leftrightarrow 0 \le r \le n - 1$

$$a = nq + r \Rightarrow a - r = nq \Rightarrow n \mid a - r \Rightarrow a \equiv r \pmod{n}$$

Observação. Na divisão por n, há n restos possíveis: $0, 1, 2, \ldots, n-1$.

Objetivo: "Operar" (adicionar e multiplicar) com tais congruências.

Notação. $a \in \mathbb{Z}$

- $\bar{a} = \{x \in \mathbb{Z} \mid x \equiv a \pmod{n}\}$ (classe de equivalência de a pela congruência módulo n ou classe de resíduo de a módulo n) $\bar{a} = \{x \in \mathbb{Z} \mid n \mid x a\} = \{x \in \mathbb{Z} \mid nk = x a, \ k \in \mathbb{Z}\} = \{x \in \mathbb{Z} \mid x = a + nk, \ k \in \mathbb{Z}\}$
- $\mathbb{Z}_{/\sim} = \mathbb{Z}_{/\equiv \pmod{n}} = \mathbb{Z}_n = \{\bar{a} \mid a \in \mathbb{Z}\}\$ (conjunto dos inteiros módulo n)

Pelo exercício 3, tal conjunto \mathbb{Z}_n é finito, a saber: $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$ (classes dos resíduos, ou restos, na divisão por n)

Observações. a) \bar{a} (a é dito um representante da classe)

$$\bar{a} = \bar{b} \Leftrightarrow a \equiv b \pmod{n}$$

b) \mathbb{Z}_n é uma partição de \mathbb{Z}

$$- \bar{a} \neq \emptyset$$

$$- \bar{a} \neq \bar{b} \Rightarrow \bar{a} \cap \bar{b} = \emptyset$$

$$- \bigcup_{a \in \mathbb{Z}} \bar{a} = \mathbb{Z}$$

Exemplos:

a)
$$n = 2$$

 $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$
 $\overline{0} = \{x = 0 + 2k = 2k, k \in \mathbb{Z}\} = \{0, \pm 2, \pm 4, \pm 6, \dots, \pm 2k, \dots\}$ (pares)
 $\overline{1} = \{x = 1 + 2k, k \in \mathbb{Z}\} = \{\pm 1, \pm 3, \pm 5, \pm 7, \dots\}$ (impares)

$$\begin{array}{c|cccc}
\overline{0} & \overline{1} \\
 & & & \\
 & & \\
 & \{2k\} & \{2k+1\}
\end{array}$$

b)
$$n = 3 \mathbb{Z}_3 = {\overline{0}, \overline{1}, \overline{2}}$$

 $\overline{0} = {3k, k \in \mathbb{Z}} = {0, \pm 3, \pm 6, \pm 9, \dots}$
 $\overline{1} = {3k + 1, k \in \mathbb{Z}} = {\dots, -5, -2, 1, 4, \dots}$
 $\overline{2} = {3k + 2, k \in \mathbb{Z}} = {\dots, -4, -1, 2, 5, 8, \dots}$

Operações Binárias Módulo n

• Adição:

$$+: \ \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n \\ (\bar{x}, \bar{y}) \mapsto \bar{x} + \bar{y} \stackrel{\text{def}}{:=} \overline{x + y}$$

• Multiplicação:

$$\begin{array}{ccc}
\cdot : & \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n \\
(\bar{x}, \bar{y}) \mapsto \bar{x} \cdot \bar{y} \stackrel{\text{def}}{:=} \overline{x \cdot y}
\end{array}$$

Teorema 4.16. a) As operações de "+" e "·" acima estão bem definidas, ou seja, independem da escolha dos representantes das classes;

- b) $(\mathbb{Z}_+,+,\cdot)$ é um anel comutativo com identidade (anel dos inteiros módulo n);
- c) $(\mathbb{Z}_+,+,\cdot)$ é um domínio de integridade $\Leftrightarrow n=p\in\mathbb{P}$;
- d) Se $n = p \in \mathbb{P}$, então $(\mathbb{Z}_+, +, \cdot)$ é um corpo.

Demonstração.

a)
$$\overline{x} + \overline{y} = \overline{x + y}$$

 $\overline{x} \cdot \overline{y} = \overline{x \cdot y}$

Para que tais operações sejam válidas, elas não devem depender da escolha dos representantes x e y das classes envolvidas. Isto é, se $x' \equiv x \pmod{n}$ (isto é, $\overline{x'} = \overline{x}$) e $y' \equiv y \pmod{n}$ (isto é, $\overline{y'} = \overline{y}$, então $\overline{x' + y'} = \overline{x + y}$ e $\overline{x' \cdot y'} = \overline{x \cdot y}$.

Tal resultado segue do exercício 1 (página 105) (propriedades de congruência)

$$\begin{cases} x' \equiv x \pmod{n} \\ y' \equiv y \pmod{n} \end{cases} \Rightarrow \begin{cases} x' + y' \equiv x + y \pmod{n} \\ x' \cdot y' \equiv x \cdot y \pmod{n} \end{cases}$$
$$\Rightarrow \begin{cases} \overline{x' + y'} = \overline{x + y} \\ \overline{x' \cdot y'} = \overline{x \cdot y} \end{cases}$$

- b) Tese: $(\mathbb{Z}_+,+,\cdot)$ é um anel comutativo com identidade. De fato:
 - i) $(\mathbb{Z}_+, +)$ é um grupo abeliano: $(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c});$ $\overline{a} + \overline{0} = \overline{a} = \overline{0} + \overline{a};$ $\overline{a} + (\overline{-a}) = \overline{0} = (\overline{-a}) + \overline{a};$ $\overline{a} + \overline{b} = \overline{b} + \overline{a}$
 - ii) (\mathbb{Z}_+,\cdot) é um semigrupo $\overline{a}\cdot(\overline{b}\cdot\overline{c})=(\overline{a}\cdot\overline{b})\cdot\overline{c};$
 - iii) Valem as leis distributivas $\begin{cases} \overline{a} \cdot (\overline{b} + \overline{c}) = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c} \\ e \\ (\overline{b} + \overline{c}) \cdot \overline{a} = \overline{b} \cdot \overline{a} + \overline{c} \cdot \overline{a} \end{cases}$
 - iv) \cdot é comutativo $\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a}$;
 - v) · possui $\overline{1}$ como elemento neutro: $\overline{a} \cdot \overline{1} = \overline{a} = \overline{1} \cdot \overline{a}$
- c) $(\mathbb{Z}_n, +, \cdot)$ é DI $\Leftrightarrow n = p \in \mathbb{P}$
 - (\Leftarrow) H: $n = p \in \mathbb{P}$ T: $(\mathbb{Z}_n, +, \cdot)$ é DI

Queremos mostrar que $(\mathbb{Z}_n, +, \cdot)$ é um Domínio de Integridade, isto é, anel comutativo com identidade tal que

$$\overline{a} \cdot \overline{b} = \overline{0} \Rightarrow \overline{a} = \overline{0} \text{ ou } \overline{b} = \overline{0} \quad (\overline{a}, \overline{b} \in \mathbb{Z}_n)$$

Falta mostrar que se $\overline{a} \cdot \overline{b} = \overline{0}$, então $\overline{a} = \overline{0}$ ou $\overline{b} = \overline{0}$

(*) Lembre-se:
$$p \in \mathbb{P}, \ p \mid a \cdot b \Rightarrow p \mid a \text{ ou } p \mid b$$

$$\overline{a} \cdot \overline{b} = \overline{0} \Rightarrow \overline{a} \, \overline{b} = \overline{0} \Rightarrow a \, b \equiv 0 \pmod{p} \Rightarrow p \mid a \, b - 0 = a \, b$$

$$\stackrel{(*)}{\Rightarrow} \left\{ \begin{array}{l} p \mid a \\ \text{ou} \\ p \mid b \end{array} \right. \Rightarrow \left\{ \begin{array}{l} p \mid a - 0 \\ \text{ou} \\ p \mid b - 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} a \equiv 0 \pmod{p} \\ \text{ou} \\ b \equiv 0 \pmod{p} \end{array} \right. \Rightarrow \left\{ \begin{array}{l} \overline{a} = \overline{0} \\ \text{ou} \\ \overline{b} = \overline{0} \end{array} \right.$$

$$(\Rightarrow) \ \text{H: } (\mathbb{Z}_+,+,\cdot) \text{ \'e DI} \\ \text{T: } n \in \mathbb{P}$$

pela contra-positiva,
$$(H \Rightarrow T) \Leftrightarrow (\neg T \Rightarrow \neg H)$$

¬ T:
$$n \notin \mathbb{P}$$
, ou seja, n é composto: $n = a b$, com $1 < a, b < n$. $n = a b \Rightarrow \overline{n} = \overline{a} \overline{b} = \overline{a} \cdot \overline{b} = \overline{0}$, onde $\overline{a} \neq \overline{0}$ e $\overline{b} \neq \overline{0}$, pois como

$$\left\{ \begin{array}{ll} a < n, \text{ então } n \nmid a - 0 & (a \not\equiv 0 \pmod n) \\ b < n, \text{ então } n \nmid b - 0 & (b \not\equiv 0 \pmod n) \end{array} \right.$$

d) Tese: $n = p \in \mathbb{P} \Rightarrow (\mathbb{Z}_p, +, \cdot)$ é corpo

Queremos mostrar que $(\mathbb{Z}_p, +, \cdot)$ é corpo, ou seja, anel comutativo com identidade tal que todo elemento $\neq 0$ possui inverso multiplicativo:

$$\forall \ \overline{a} \in \mathbb{Z}_p, \ \overline{a} \neq \overline{0}, \ \exists \ (\overline{a})^{-1} \in \mathbb{Z}_p \mid \overline{a} \ (\overline{a})^{-1} = \overline{1}$$

Falta mostrar que dado $\overline{a} \in \mathbb{Z}_p$, $\overline{a} \neq \overline{0}$, $\exists (\overline{a})^{-1} \in \mathbb{Z}_p \mid \overline{a}(\overline{a})^{-1} = \overline{1}$ De fato:

(*) Lembre-se:
$$p \in \mathbb{P}$$
; $a \in \mathbb{Z}$

$$p \nmid a \Rightarrow \mathrm{mdc}(p, a) = 1$$

Tome $\overline{a} \in \mathbb{Z}_p$, com $\overline{a} \neq \overline{0}$. Isto equivale a dizer que $a \not\equiv 0 \pmod{p}$, ou seja, $p \nmid a - 0 = a$. Por (*), $\mathrm{mdc}(p, a) = 1$. Logo, existem $x_0, y_0 \in \mathbb{Z}$: $px_0 + ay_0 = 1$.

Tomando a classe de equivalência

$$\overline{px_0 + ay_0} = \overline{1} \Rightarrow \overline{px_0} + \overline{ay_0} = \overline{1} \Rightarrow \overline{p}\,\overline{x_0} + \overline{a}\,\overline{y_0} = \overline{1}$$

$$\Rightarrow \overline{0}\overline{x_0} + \overline{a}\,\overline{y_0} = \overline{1} \Rightarrow \overline{0} + \overline{a}\,\overline{y_0} = \overline{1} \Rightarrow \overline{a}\underbrace{\overline{y_0}}_{(\overline{a})^{-1}} = \overline{1}$$

Exemplos: (Construção das tábuas de adição e multiplicação para \mathbb{Z}_n)

• $n = 2 : \mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$, onde $\overline{0} = \{2k \mid k \in \mathbb{Z}\}$ (pares) e $\overline{1} = \{1 + 2k \mid k \in \mathbb{Z}\}$ (impares)

•
$$n=3: \mathbb{Z}_3 = {\overline{0}, \overline{1}, \overline{2}}, \text{ onde}$$

$$\begin{cases}
\overline{0} = \{3k \mid k \in \mathbb{Z}\} \\
\overline{1} = \{1 + 3k \mid k \in \mathbb{Z}\} \\
\overline{2} = \{2 + 3k \mid k \in \mathbb{Z}\}
\end{cases}$$

•
$$n = 4$$
: $\mathbb{Z}_4 = {\overline{0}, \overline{1}, \overline{2}, \overline{3}}$, onde

+	$\overline{0}$	1	<u>2</u>	3	_		$\overline{0}$			
0	0	1	2	3	•	0	0	0	0	0
1	$\overline{1}$	$\overline{2}$	3	$\overline{0}$		$\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	3
$\overline{2}$	$\overline{2}$	3	$\overline{0}$	1		$\overline{1}$	$\overline{0}$	$\overline{2}$	$\overline{0}$	$\overline{2}$
$ \begin{array}{c c} \hline 0\\ \hline 1\\ \hline 2\\ \hline 3 \end{array} $	3	$\overline{0}$	1	$\overline{2}$		$\overline{2}$	$\begin{array}{c c} \overline{0} \\ \overline{0} \\ \overline{0} \\ \overline{0} \end{array}$	3	$\overline{2}$	1

•
$$n = 5$$
: $\mathbb{Z}_5 = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}}$, onde

$$\begin{cases}
\overline{0} = \{5k \mid k \in \mathbb{Z}\} \\
\overline{1} = \{1 + 5k \mid k \in \mathbb{Z}\} \\
\overline{2} = \{2 + 5k \mid k \in \mathbb{Z}\} \\
\overline{3} = \{3 + 5k \mid k \in \mathbb{Z}\} \\
\overline{4} = \{4 + 5k \mid k \in \mathbb{Z}\}
\end{cases}$$

+	$\overline{0}$	1	2	3	$\overline{4}$			0				
0	0	1	2	3	4	•	0	0	0	0	0	0
1	$\overline{1}$	$\overline{2}$	3	$\overline{4}$	$\overline{0}$		$\overline{1}$	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$
$\overline{2}$	$\overline{2}$	3	$\overline{4}$	$\overline{0}$	$\overline{1}$		$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\overline{1}$	3
3	3	$\overline{4}$	$\overline{0}$	1	$\overline{2}$		3	$\overline{0}$	3	1	$\overline{4}$	$\overline{2}$
$\frac{1}{2}$ $\frac{3}{4}$	$\overline{4}$	$\overline{0}$	1	$\overline{2}$	3		$\overline{4}$	$\begin{array}{c} \overline{0} \\ \overline{0} \\ \overline{0} \\ \overline{0} \\ \overline{0} \end{array}$	$\overline{4}$	3	$\overline{2}$	$\overline{1}$

•
$$n = 6$$
: $\mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$, onde

$$\begin{cases}
\overline{0} = \{6k \mid k \in \mathbb{Z}\} \\
\overline{1} = \{1 + 6k \mid k \in \mathbb{Z}\} \\
\overline{2} = \{2 + 6k \mid k \in \mathbb{Z}\} \\
\overline{3} = \{3 + 6k \mid k \in \mathbb{Z}\} \\
\overline{4} = \{4 + 6k \mid k \in \mathbb{Z}\} \\
\overline{5} = \{5 + 6k \mid k \in \mathbb{Z}\}
\end{cases}$$

	$\overline{0}$								$\overline{0}$					
0							•	0	0	0	0	0	0	0
$\overline{1}$	1	$\overline{2}$	3	$\overline{4}$	5	0		1	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$	5
$\overline{2}$	$\overline{2}$	3	$\overline{4}$	5	$\overline{0}$	$\overline{1}$		$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\overline{0}$	$\overline{2}$	$\overline{4}$
3	3	$\overline{4}$	$\overline{5}$	$\overline{0}$	$\overline{1}$	$\overline{2}$		$\overline{3}$	$\overline{0}$	3	$\overline{0}$	3	$\overline{0}$	$\overline{3}$
$\overline{4}$	$\frac{\overline{3}}{4}$	5	$\overline{0}$	1	$\overline{2}$	3		$\overline{4}$	$\overline{0}$	$\overline{4}$	$\overline{2}$	$\overline{0}$	$\overline{4}$	$\overline{2}$
5	$\frac{1}{5}$	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$		5	$\frac{\overline{0}}{0}$	5	$\overline{4}$	3	$\overline{2}$	1

Exercício: \mathbb{Z}_6 é DI? Justifique através de um exemplo.

Não, pois 6 é composto. Exemplo: $\overline{2} \neq \overline{0}$ (pois $6 \nmid 2 - 0$), $\overline{3} \neq \overline{0}$ (pois 6

A.3)
$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z} \ \mathbf{e} \ i^2 = -1\} \subset \mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}\$$
 $(i = \text{unidade imaginária})$

Graficamente: $\mathbb{C} \leftrightarrow \mathbb{R}^2$ (plano bidimensional) $\mathbb{Z}[i] \leftrightarrow \mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z} = \{(a,b) \mid a,b \in \mathbb{Z}\}$

$$\mathbb{Z}[i] \leftrightarrow \mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z} = \{(a, b) \mid a, b \in \mathbb{Z}\}$$

• Adição:

$$x = a + bi \in \mathbb{Z}[i]$$
$$y = c + di \in \mathbb{Z}[i]$$

$$x + y = (a + bi) + (c + di) \stackrel{\text{def}}{=} (a + c) + (b + d)i$$

$$(a, b) \qquad (c, d) \qquad (a + c, b + d)$$

• Multiplicação:

$$x \cdot y = (a+bi) \cdot (c+di) = (ac-bd) + (da+bc)i$$

$$(\mathbb{Z}[i], +, \cdot)$$
 é um anel comutativo com identidade $0 + 0i$, $1 = 1 + 0i$, $-(a + bi) = (-a) + (-b)i$

Exercícios:

- 1) Mostre que $(\mathbb{Z}[i], +, \cdot)$ é um domínio de integridade.
- 2) Mostre que $\mathcal{U}(\mathbb{Z}[i]) = \{\pm 1, \pm i\}$ (portanto, $\mathbb{Z}[i]$ não é corpo)

Observação. O anel $(\mathbb{Z}[i], +, \cdot)$ é dito o anel dos inteiros gaussianos.

Resolução:

1) Falta mostrar que se $(a+bi)\cdot(x+yi)=0$ (= 0 + 0i) então a+bi=0 ou x+yi=0

De fato:

Suponha que $a + bi \neq 0$, isto é, $a \neq 0$ ou $b \neq 0$ (analogamente, $x + yi \neq 0$). Vamos mostrar que x + yi = 0.

$$(a+bi)(x+yi) = 0 = 0 + 0i \Leftrightarrow \begin{cases} ax - by = 0 \\ ay + bx = 0 \end{cases} \Leftrightarrow \begin{cases} ax - by = 0 \\ bx + ay = 0 \end{cases}$$
 (*)

(*)é um Sistema Linear Homogêneo com duas equações a duas incógnitas: x,y.

Em notação matricial:

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\det A = \begin{vmatrix} a & -b \\ b & a \end{vmatrix} = a^2 + b^2 > 0 \ (\neq 0)$$

(pois $(a, b) \neq (0, 0)$)

 \Rightarrow (*) é um SPD, isto é, tem solução única, a saber: trivial (0,0).

2) Tese: $U(\mathbb{Z}[i]) = \{\pm 1, \pm i\}$

Queremos resolver a seguinte equação:

$$\underbrace{(a+bi)}_{\text{(dado)}}\underbrace{(x+yi)}_{\text{(a obter)}} = 1 = 1 + 0i$$

Como queremos que o produto seja 1, então $a+bi\neq 0$ e $x+yi\neq 0$

$$(a+bi)(x+yi) = 1 = 1 + 0i \Leftrightarrow \begin{cases} ax - by = 1 \\ ay + bx = 0 \end{cases} \Leftrightarrow \begin{cases} ax - by = 1 \\ bx + ay = 0 \end{cases}$$

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Regra de Cramer

$$x = \frac{\begin{vmatrix} 1 & -b \\ 0 & a \end{vmatrix}}{\begin{vmatrix} a & -b \\ b & a \end{vmatrix}} = \frac{a}{a^2 + b^2} \qquad y = \frac{\begin{vmatrix} a & 1 \\ b & 0 \end{vmatrix}}{\begin{vmatrix} a & -b \\ b & a \end{vmatrix}} = \frac{-b}{a^2 + b^2}$$

Assim,

$$x + yi = (a + bi)^{-1} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} \ i \in \mathbb{Z}[i]$$

Como $\frac{a}{a^2+b^2} \in \mathbb{Z}$ e $\frac{-b}{a^2+b^2} \in \mathbb{Z}$, devemos impor que $a^2+b^2=1$.

$$a^2+b^2=1$$
 tem solução em $\mathbb{Z}\Leftrightarrow \left\{ egin{array}{ll} a^2=1 & e & \text{ou} \ b^2=0 & b^2=1 \end{array}
ight.$

$$\Leftrightarrow \begin{cases} a = \pm 1 \\ e \\ b = 0 \end{cases} \quad \text{ou} \begin{cases} a = 0 \\ e \\ b = \pm 1 \end{cases}$$

Assim, (1,0),(-1,0),(0,1) e (0,-1) são as únicas soluções em \mathbb{Z} .

A.4)
$$\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\} \subset \mathbb{R}$$

• Adição:

$$(a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2}$$

• Multiplicação:

$$(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}$$

Exercício: Mostre que $(\mathbb{Z}[\sqrt{2}], +, \cdot)$ é um domínio de integridade.

 $(\mathbb{Z}[\sqrt{2}],+,\cdot)$ é DI, ou seja, é um anel comutativo com identidade $1\neq 0$, tal que, se $a+b\sqrt{2}\neq 0$ e $c+d\sqrt{2}\neq 0$, então $(a+b\sqrt{2})(c+d\sqrt{2})\neq 0$. De fato:

- i) $(\mathbb{Z}[\sqrt{2}], +)$ é um grupo abeliano:
 - $(a+b\sqrt{2})+[(c+d\sqrt{2})+(e+f\sqrt{2})] = [(a+b\sqrt{2})+(c+d\sqrt{2})]+(e+f\sqrt{2})$
 - $(a + b\sqrt{2}) + (0 + 0\sqrt{2}) = (0 + 0\sqrt{2}) + (a + b\sqrt{2}) = a + b\sqrt{2}$
 - $(a + b\sqrt{2}) + (-a b\sqrt{2}) = (-a b\sqrt{2}) + (a + b\sqrt{2}) = 0 + 0\sqrt{2}$
 - $(a + b\sqrt{2}) + (c + d\sqrt{2}) = (c + d\sqrt{2}) + (a + b\sqrt{2})$
- ii) $(\mathbb{Z}[\sqrt{2}], \cdot)$ é um semigrupo:

•
$$(a + b\sqrt{2})[(c + d\sqrt{2})(e + f\sqrt{2})] = [(a + b\sqrt{2})(c + d\sqrt{2})](e + f\sqrt{2})$$

iii) vale a distributividade à esquerda e à direita

•
$$(a+b\sqrt{2})[(c+d\sqrt{2})+(e+f\sqrt{2})] = [(c+d\sqrt{2})+(e+f\sqrt{2})](a+b\sqrt{2}) = (a+b\sqrt{2})(c+d\sqrt{2})+(a+b\sqrt{2})(e+f\sqrt{2})$$

iv) "·" é comutativa

•
$$(a + b\sqrt{2})(c + d\sqrt{2}) = (c + d\sqrt{2})(a + b\sqrt{2})$$

v) $\mathbb{Z}[\sqrt{2}]$ possui elemento neutro para a " \cdot "

•
$$(a+b\sqrt{2})(1+0\sqrt{2}) = (1+0\sqrt{2})(a+b\sqrt{2}) = a+b\sqrt{2}$$

- vi) Se $(a+b\sqrt{2}) \neq 0$ e $(c+d\sqrt{2}) \neq 0$, então $(a+b\sqrt{2})(c+d\sqrt{2}) \neq 0$ ou, pela contra-recíproca, $(a+b\sqrt{2})(c+d\sqrt{2})=0 \Rightarrow (a+b\sqrt{2})=0$ ou $(c+d\sqrt{2})=0$. Seja $(a+b\sqrt{2})(c+d\sqrt{2})=0$.
 - Suponha que $(a+b\sqrt{2}) \neq 0$, vamos mostrar que $(c+d\sqrt{2})=0$. Temos

$$(ac + 2bd) + (ad + bc)\sqrt{2} = 0 \Rightarrow \begin{cases} ac + 2bd = 0 \\ bc + ad = 0 \end{cases}$$

em notação matricial:

$$\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad (SLH)$$

$$\det \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} = a^2 - 2b^2$$

$$a^{2} - 2b^{2} = 0 \Rightarrow a^{2} = 2b^{2} \Rightarrow |a| = \sqrt{2}|b|$$

mas $a, b \in \mathbb{Z}$, então $a^2 - 2b^2 \neq 0$. Daí, temos um SPD, só a solução trivial satisfaz o sistema, então $c + d\sqrt{2} = 0 + 0\sqrt{2} = 0$

- Analogamente, se $(c + d\sqrt{2}) \neq 0$, então $(a + b\sqrt{2}) = 0$.

B) Grupos

B.1) Grupos de Rotações no Plano \mathbb{R}^2

(Rotação de (x, y) ao redor da origem de θ rad no sentido anti-horário) Em IAL (ou AL):

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \underbrace{\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}}_{\text{matriz de rotação em } \mathbb{R}} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\left(\operatorname{Em} \mathbb{R}^3: \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}\right)$$

 $\begin{pmatrix} \operatorname{Em} \, \mathbb{R}^3 : \begin{pmatrix} \cos \theta & - \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{pmatrix}$ $G = \left\{ \begin{pmatrix} \cos \theta & - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \, \middle| \, \theta \in \mathbb{R} \right\} \text{ \'e um grupo com relação à operação de }$ multiplicação de matrize

•
$$e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $(\theta = 0 \text{ ou } 2\pi)$

• fato:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \text{ se } ad - bc \neq 0$$

$$\det \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \cos^2 \theta + \sin^2 \theta = 1 \neq 0$$

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = A^{\mathrm{T}}$$

$$(A^{-1} = A^{\mathrm{T}} \text{ matrizes ortogonais})$$

B.2) Grupos & Variáveis Complexas

• $G = \{z \in \mathbb{C} \mid |z| = 1\}$ é um grupo com relação à operação de multiplicação em \mathbb{C} . (círculo unitário)

$$z = \cos \theta + i \sin \theta = e^{i\theta}$$
$$\left(z^{-1} = \frac{1}{z} = \frac{\overline{z}}{z \, \overline{z}} = \frac{\overline{z}}{|z|^2} = \overline{z}\right)$$

• $G = \{z \in \mathbb{C} \mid z^n = 1\} = \{1, w, w^2, \dots, w^{n-1}\}$, onde $w = \cos(2\pi/n) + i \sin(2\pi/n)$, é um grupo com relação à multiplicação em \mathbb{C} . (raízes n-ésimas da unidade)

B.3) Grupos & Química & Física Quântica (Grupo das Simetrias)

Motivação: Química/ Física: (simetrias de uma molécula ou de um cristal)

Exemplo: NH₃ (amônia) (molécula) CH₄ (metano) (molécula) NaCl (cloreto de sódio) (cristal)

Simetria de uma molécula: movimento em \mathbb{R}^3 que "preserve" a molécula, ou seja, movimento que leve um átomo num átomo do mesmo elemento e preserve as valências.

Simetria de um cristal: movimento em \mathbb{R}^3 que "preserve" o cristal (preservar ligações químicas e propriedades dos elementos)

 $\mathrm{Em}\ \mathbb{R}^2$

Isometria em \mathbb{R}^2 :

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

 $v \mapsto T(v)$

bijeção que preserva a distância $d(T(v_1), T(v_2)) = d(v_1, v_2)$ Em AL: as isometrias em \mathbb{R}^2 são

- Rotação em torno de pontos (linear)
- Reflexões em torno de eixos (linear)
- Translações (não é linear)

Seja $X\subseteq\mathbb{R}^2$ (por exemplo, um polígono regular) limitado. Uma simetria de X é uma isometria que leva X em X. Neste caso, as únicas simetrias de X são rotações e reflexões.

Grupos Diedrais - D_n :

Grupos das simetrias de um polígono regular de n lados em \mathbb{R}^2 :

 $n=3:D_3=$ grupo diedral das simetrias de um triângulo eqüilátero. (com relação à composição)

O = baricentro (origem fixa) (encontro das medianas)

Há seis simetrias para o triângulo equilátero:

- $\rho_{\frac{2\pi}{3}}$: rotação em torno de O no sentido anti-horário de $2\pi/3$;
- $\rho_{\frac{4\pi}{\alpha}}$: rotação em torno de O no sentido anti-horário de $4\pi/3$;
- $\rho_{2\pi}$: rotação em torno de O no sentido anti-horário de 2π ;
- τ_r : reflexão em torno da reta r passando por A e O;
- τ_s : reflexão em torno da reta s passando por B e O;
- τ_t : reflexão em torno da reta t passando por C e O

$$D_3 = \{ \rho_{\frac{2\pi}{3}}, \rho_{\frac{4\pi}{3}}, \rho_{2\pi}, \tau_r, \tau_s, \tau_t \}$$

$$\rho_{\frac{2\pi}{3}} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad \rho_{\frac{4\pi}{3}} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \quad \rho_{2\pi} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = Id$$

$$\tau_r = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad \tau_s = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \qquad \tau_t = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

(vide $3^{\underline{a}}$ lista)

n = 4: (quadrado)

$$O = \text{centro de gravidade}$$
 (fixo)

Oito simetrias:

- $\rho_{\frac{\pi}{2}}$: rotação de $\pi/2$ rad no sentido anti-horário em torno de O;
- ρ_{π} : rotação de π rad no sentido anti-horário em torno de O;
- $\rho_{\frac{3\pi}{2}}$: rotação de $3\pi/2$ rad no sentido anti-horário em torno de O;
- $\rho_{2\pi} = Id$: rotação de 2π rad no sentido anti-horário em torno de O;
- τ_r : reflexão em torno da reta r;
- τ_s : reflexão em torno da reta s;

- τ_t : reflexão em torno da reta horizontal h;
- τ_t : reflexão em torno da reta vertical v

$$D_{4} = \{I, \rho_{\frac{\pi}{2}}, \rho_{\pi}, \rho_{\frac{3\pi}{2}}, \tau_{r}, \tau_{s}, \tau_{h}, \tau_{v}\}$$

$$I = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \qquad \rho_{\frac{\pi}{2}} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

$$\rho_{\pi} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \qquad \rho_{\frac{3\pi}{2}} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$

$$\tau_{r} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \qquad \tau_{s} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

$$\tau_{h} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \qquad \tau_{v} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

Observação. (Álgebra 2) Pode-se mostrar que o grupo D_n $(n \ge 3)$ é constituído de 2n elementos, a saber:

- n rotações em torno do centro $O: 2k\pi/n, k = 1, ..., n$
- n reflexões
 - $-\ n$ ímpar: reflexão em torno de retas unindo vértices ao ponto médio do lado oposto
 - n par: reflexão em torno de retas unindo vértices opostos e reflexão em torno de retas unindo pontos médios de lados opostos

B.4) Grupos & Física

• Física Nuclear: representação de grupos para classificar partículas elementares (quarks, anti-gearks, mésons, ...)

interação fraca interação forte interação eletromagnética

• Mecânica Clássica & Relatividade: simetrias que preservem propriedades físicas e mudanças de coordenadas

– (Mecânica Clássica): Grupo de Newton - Galileu
$$\left\{ \begin{array}{l} x'=x-vt\\ t'=t \end{array} \right.$$

- (Relatividade): Grupo de Lorentz

$$\begin{cases} x' = \frac{x - vt}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \\ t' = \frac{t - \left(\frac{v}{c^2}\right)x}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \end{cases}$$

(c = velocidade da luz)

Correção: (lista 3)

9) Lembre-se: $X \neq \emptyset$ $Sim(X) = Bij(X, X) = \{f : X \to X \mid f \text{ \'e bijeção}\}\$ * = 0

(Grupo Simétrico sobre X)

Caso particular: $X = \{1, 2, \dots, n\}$

$$S_n = \{f: X \to X \mid f \text{ \'e bijeç\~ao}\}$$

$$-|S_n|=n!$$

$$-X = \{1, 2, 3\}$$

(n=3): $S_3 = \{f_1, f_2, f_3, f_4, f_5, f_6\}$, onde

$$f_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = e = Id_{x} \qquad f_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad f_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$f_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad f_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad f_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
 $f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ $f_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$

 (S_3, \circ) NÃO é abeliano, isto é, \circ não é comutativa.

Exemplo:

$$f_{2} \circ f_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = f_{3}$$

$$f_{5} \circ f_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = f_{4}$$
Conclusão: $f_{2} \circ f_{5} \neq f_{5} \circ f_{2}$

2) d)
$$n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}$$
 (múltiplos de n) $n \in \mathbb{N}$
 $n = 1 : \mathbb{Z}$
 $n = 2 : 2\mathbb{Z} = \{2k \mid k \in \mathbb{Z}\}$ (pares)

-
$$n\mathbb{Z}$$
 é fechado para + $x = nk_1 \in n\mathbb{Z} \ (k_1 \in \mathbb{Z})$ e $y = nk_2 \in n\mathbb{Z} \ (k_2 \in \mathbb{Z})$ $x + y = nk_1 + nk_2 = n\underbrace{(k_1 + k_2)}_{k_2} \in n\mathbb{Z}$

$$-n\mathbb{Z}$$
 é fechado para ·
$$x \cdot y = (nk_1) \cdot (nk_2) = n\underbrace{(k_1nk_2)}_{k_3} \in n\mathbb{Z}$$

3)
$$A = P(\{a, b\}) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$

* = \cap

$$\begin{array}{c|ccccc} \cap & \varnothing & \{a\} & \{b\} & \{a,b\} \\ \hline \varnothing & \varnothing & \varnothing & \varnothing & \varnothing \\ \{a\} & \varnothing & \{a\} & \varnothing & \{a\} \\ \{b\} & \varnothing & \varnothing & \{b\} & \{b\} \\ \{a,b\} & \varnothing & \{a\} & \{b\} & \{a,b\} \\ \end{array}$$

- $-\ *=\cap$ é comutativa pois a tábua é simétrica em relação à diagonal principal
- $-e = \{a, b\}$ (conjunto universo)
- elementos inversíveis (simetrizáveis): $\{a,b\}' = \{a,b\}$
- elementos regulares: $\{a, b\}$

Exercícios Selecionados:

- 1) a) Calcule o mdc (d) de a=3887 e b=637 usando o método das divisões sucessivas.
 - b) Determine $x_0, y_0 \in \mathbb{Z}$ tais que $d = ax_0 + by_0$
- 2) Sejam A um domínio de integridade e $a, b, c \in A$. Mostre que se ab = ac e $a \neq 0$, então b = c (lei do cancelamento)
- 3) Mostre que \sqrt{p} é irracional, onde $p \in \mathbb{P}$. (Sugestão: $p \in \mathbb{P}$ e $p \mid a \cdot b \Rightarrow p \mid a$ ou $p \mid b$)

- 4) Explique o motivo pelo qual
 - a) $\mathbb Z$ NÃO é corpo $(\mathbb Z,+,\cdot)$
 - b) $(\mathbb{Z}_6, +, \cdot)$ não é domínio de integridade
 - c) $(\mathbb{N}, +)$ não é monóide
 - d) $(\mathbb{Z}, -)$ não é semigrupo
 - e) $(\mathcal{M}_{2\times 2}(\mathbb{R}), +, \cdot)$ NÃO é domínio de integridade

Resolução:

1) a)

$$d = \mathrm{mdc}(a, b) = 13$$

b)
$$x_0, y_0 \in \mathbb{Z} = ?$$

 $13 = 3887x_0 + 637y_0$
 $3887 = 637 \cdot 6 + 65$
 $637 = 65 \cdot 9 + 52$

$$65 = 52 \cdot 1 + 13$$

$$52 = 13 \cdot 4 + 0$$

$$13 = 65 - 52 \cdot 1 = 65 - (637 - 65 \cdot 9) \cdot 1 = 65 \cdot 10 - 637 \cdot 1$$
$$= (3887 - 637 \cdot 6) \cdot 10 - 637 \cdot 1 = 3887 \cdot 10 - 637 \cdot 61$$
$$= 3887 \cdot 10 + 637 \cdot (-61)$$

2) A = DI (anel comutativo com identidade tal que $a \cdot b = 0 \Rightarrow a = 0$ ou $b = 0, \forall a, b \in A$)

$$H: \begin{cases} ab = ac \\ a \neq 0 \end{cases}$$
$$T: b = c$$

Demonstração.
$$a b = a c \Rightarrow a b - a c = 0 \Rightarrow a (b - c) = 0$$

$$\stackrel{\text{A = DI}}{\Longrightarrow} a = 0 \text{ ou } b - c = 0$$

Como
$$a \neq 0$$
, segue que $b - c = 0 \Rightarrow b = c$

3) H: $p \in \mathbb{P}$ T: \sqrt{p} é irracional

Demonstração. Suponha, por absurdo, que $\sqrt{p} \in \mathbb{Q}$. Assim, $\exists \ a,b \in \mathbb{Z}$, com $b \neq 0$ tal que $\sqrt{p} = a/b$. Sem perda de generalidade, $a,b \in \mathbb{N}$ e a/b é uma fração irredutível, isto é, $\mathrm{mdc}(a,b) = 1$.

$$\sqrt{p} = \frac{a}{b} \Rightarrow p = \frac{a^2}{b^2} \Rightarrow \underbrace{a^2 = p \cdot b^2}_{(*)} \Rightarrow p \mid a^2 = a \cdot a \Rightarrow p \mid a$$

$$p \mid a \Rightarrow \underbrace{a = p \cdot m}_{(**)}$$
 para algum $m \in \mathbb{N}$

Substituindo (**) em (*)

$$(p\,m)^2 = p\,b^2 \Rightarrow p^2\,m^2 = p\,b \stackrel{(p\,\neq\,0)}{\Rightarrow} p\,m^2 = b^2 \Rightarrow p\mid b^2 = b\cdot b \Rightarrow p\mid b$$

Conclusão: a e b têm p como fator comum o que contradiz o fato de $\mathrm{mdc}(a,b)=1.$ $\sqrt{p}\notin\mathbb{Q}.$

- 4) a) Pois apenas 1 e -1 têm inverso multiplicativo $(\mathcal{U}.(\mathbb{Z}) = \{\pm 1\})$
 - b) $6 \notin \mathbb{P} (6 = 2 \cdot 3)$ $\overline{2} \neq 0 \text{ e } \overline{3} \neq 0, \text{ mas } \overline{2} \cdot \overline{3} = \overline{6} = \overline{0}$
 - c) \nexists elemento neutro $(0 \notin \mathbb{N})$
 - d) não é associativa **Exemplo:** $(1-2)-3=-1-3=-4 \neq 2=1-(-1)=1-(2-3)$
 - e) · não é comutativa

Exemplo:

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Existem matrizes não-nulas cujo produto é a matriz nula.

Exemplo:

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

5 Homomorfismo Entre Estruturas Algébricas

Motivação: Dados A e B duas estruturas algébricas do mesmo tipo, queremos definir uma função $f:A\to B$ que "preserve" as operações de cada conjunto.

Definição 5.1 (Homomorfismo Entre Duas Estruturas Algébricas).

i) (uma operação binária)
 Sejam (A,*) e (B,∘) duas estruturas algébricas com uma operação binária. Dizemos que uma função f : A → B é um homomorfismo se f "preserva" as operações "*" e "∘", ou seja,

$$\forall \ a, a' \in A, \ f(a * a') = f(a) \circ f(a')$$

ii) (duas operações binárias) Sejam $(A, *, \square)$ e (B, \circ, \triangle) duas estruturas algébricas com duas operações binárias. Dizemos que uma função $f: A \to B$ é um homomorfismo se f "preserva" as primeiras operações "*" e " \circ " e também as segundas operações " \square " e " \triangle " de A e B, ou seja,

$$\forall a, a' \in A, \quad f(a * a') = f(a) \circ f(a')$$

$$e$$

$$f(a \square a') = f(a) \triangle f(a')$$

Classificação de Homomorfismo

Seja $f: A \to B$ um homomorfismo

a) Se f é sobrejetora, então f é dito um Epimorfismo;

- b) Se f é injetora, então f é dito um Monomorfismo;
- c) Se f é bijeção, então f é dito um Isomorfismo. Neste caso, A e B são ditos isomorfos.

Notação. $A \cong B$ (lê-se: A é isomorfo a B)

Casos particulares

- d) Se A = B, então f é dito um Endomorfismo
- e) Se A = B e f é uma bijeção, então f é dito um Automorfismo (= Endomorfismo Bijetor = Isomorfismo de um conjunto em si mesmo).

Exemplos:

a)
$$E = \{a, b\}$$

 $A = B = P(E) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\}$
 $* = \cap \text{ (operação em } A)$
 $\circ = \cup \text{ (operação em } B)$
 $f: A \to B = A$
 $X \mapsto f(X) = \mathbb{C}_E(X) = E - X$
 $f(\emptyset) = \mathbb{C}_E \emptyset = E - \emptyset = E = \{a, b\}$
 $f(\{a\}) = \mathbb{C}_E \{a\} = E - \{a\} = \{b\}$
 $f(\{b\}) = \mathbb{C}_E \{b\} = E - \{b\} = \{a\}$
 $f(E) = \mathbb{C}_E E = E - E = \emptyset$
• $f \text{ \'e injetora}$
• $f \text{ \'e sobrejetora}$ $\Rightarrow f \text{ \'e bijeção}$

Afirmação. f é um homomorfismo (entre monóides).

De fato:

$$X,Y \in A$$
 (quaisquer)
 $f(X*Y) = f(X) \circ f(Y)$
 $f(X \cap Y) = \mathcal{C}_E(X \cap Y) = \mathcal{C}_E(X) \cup \mathcal{C}_E(Y) = f(X) \cup f(Y)$

Conclusão: f é isomorfismo (na verdade, como A = B, é automorfismo).

b)
$$A = \mathbb{R}, * = + \text{ (grupo abeliano)}$$

 $B = \mathbb{R}_+^* = (0, \infty), \circ = \cdot \text{ (grupo abeliano)}$
 $f: (\mathbb{R}, +) \to (\mathbb{R}_+^*, \cdot)$
 $x \mapsto f(x) = e^x$

Afirmação. f é um isomorfismo (de grupos)

De fato:

• f é bijeção, pois

$$f^{-1}: (\mathbb{R}_+^*, \cdot) \to (\mathbb{R}, +)$$

 $x \mapsto f^{-1}(x) = \ln x$

 \acute{e} a inversa de f.

• f é homomorfismo: $x, x' \in \mathbb{R}$ $f(x * x') = f(x) \circ f(x')$ $f(x + x') = e^{x+x'} = e^x \cdot e^{x'} = f(x) \cdot f(x')$

Analogamente, f^{-1} é um homomorfismo:

$$f^{-1}(y \cdot y') = \ln(y \cdot y') = \ln y + \ln y' = f^{-1}(y) + f^{-1}(y')$$

Assim, $(\mathbb{R}, +) \cong (\mathbb{R}_+^*, \cdot)$

c) $A = GL(n, \mathbb{R}) = \text{grupo linear geral de dimensão (grau) } n \text{ com entradas}$ em $\mathbb{R} = \{A = (a_{ij}) \in \mathcal{M}_{n \times n}(\mathbb{R}) \mid A \text{ \'e invers\'evel}\} = \mathcal{U}.(\mathcal{M}_{n \times n}(\mathbb{R}))$ * = \cdot

(grupo não abeliano)

$$B = \mathbb{R}^* = \mathbb{R} - \{0\}$$
 (grupo abeliano)
 $\circ = \cdot$

$$f: A \to B$$

 $X \mapsto f(X) = \det X$

Afirmação. f é um epimorfismo (de grupos).

• $f \in \text{um homomorfismo}$: $X, Y \in A$ $f(X \cdot Y) = \det(X \cdot Y) = \det X \cdot \det Y = f(X) \cdot f(Y)$ • f é sobrejetora: Dado $\lambda \in B$, existe $X \in A$ tal que $f(X) = \lambda$

$$X = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & 1 \end{pmatrix}_{n \times n}$$
 (matriz diagonal)
$$\det X = \lambda \cdot \underbrace{1 \cdot 1 \dots 1}_{n-1 \text{ vezes}} = \lambda$$

Observação. f não é injetora, pois matrizes distintas podem ter o mesmo determinante.

Exemplo:

$$X = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \Rightarrow \det X = 1$$

$$Y = \begin{pmatrix} -1 & & & \\ & -1 & & \\ & & 1 & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix} \Rightarrow \det Y = 1$$

$$X \neq Y$$
, mas $\det X = 1 = \det Y$

Exercícios:

1) Verifique em cada caso que f é um homomorfismo e classifique-o:

a)
$$(A,+,\cdot)$$
 - anel

$$f: A \to A$$

 $x \mapsto f(x) = x$

(aplicação identidade)

b)
$$A = \mathbb{Z}$$

 $B = \mathbb{Z}_n = {\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}} \ (n \in \mathbb{N}, n > 1)$

(anéis)
$$f: \ A \to B \\ x \mapsto f(x) = \overline{x}$$

c)
$$A = \mathbb{Z}, * = +$$

 $B = 2\mathbb{Z} = \{2k \mid k \in \mathbb{Z}\}, \circ = +$
(grupos abelianos)

$$f: A \to B$$

 $x \mapsto f(x) = 2x$

d)
$$(A, +, \cdot) = \text{anel}$$

$$f: A \to B = A$$

$$x \mapsto f(x) = 0$$

(aplicação nula)

2) Verifique se

$$f: \ \mathbb{Z} \to \mathbb{Z}$$

 $x \mapsto f(x) = -x$

é um homomorfismo de anéis.

Resolução:

1) a)
$$\begin{cases} f(x+x') = x + x' = f(x) + f(x') \\ f(x \cdot x') = x \cdot x' = f(x) \cdot f(x') \end{cases}$$

$$\Rightarrow f \text{ \'e homomorfismo}$$
• $f \text{ \'e bije}$ ção
isomorfismo (na verdade, automorfismo)

b)
$$\begin{cases} f(x+x') = \overline{x+x'} = \overline{x} + \overline{x'} = f(x) + f(x') \\ f(x \cdot x') = \overline{x \cdot x'} = \overline{x} \cdot \overline{x'} = f(x) \cdot f(x') \\ \Rightarrow f \text{ \'e homomorfismo} \end{cases}$$

• f é sobrejetora: $CD(f) = \mathbb{Z}_n$

$$Im(f) = \{f(x) \mid x \in A\} = \{\overline{x} \mid x \in \mathbb{Z}\} = \mathbb{Z}_n$$

Conclusão: f é um epimorfismo (chamado de projeção canônica)

Observação. f não é injetora, pois elementos distintos podem ter a mesma imagem.

Exemplo: n=2

$$\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$$

$$2 \neq 4, \text{ mas } f(2) = \overline{2} = \overline{0} = \overline{4} = f(4)$$

c) • f(x + x') = 2(x + x') = 2x + 2x' = f(x) + f(x')

 $\Rightarrow f$ é homomorfismo de grupo

- f é sobrejetora, pois $Im(f) = \{2x \mid x \in A\} = B = CD(f)$
- f é injetora, pois $\underbrace{x \neq x'}_{\in A} \Rightarrow \underbrace{f(x)}_{\in B} = 2x \neq 2x' = \underbrace{f(x')}_{\in B}$

Assim, f é bijeção. Logo, f é isomorfismo ($\mathbb{Z} \cong 2\mathbb{Z}$)

- d) f(x + x') = 0 = 0 + 0 = f(x) + f(x')
 - $f(x \cdot x') = 0 = 0 \cdot 0 = f(x) \cdot f(x')$

Se $A \neq \{0\}$, então f não é sobrejetora. Além disso, f não é injetora.

- 2) a) f(x+x') = -(x+x') = -x x' = (-x) + (-x') = f(x) + f(x')(1^a operação é "preservada")
 - b) $f(x \cdot x') = -(x \cdot x')$ \neq $f(x) \cdot f(x') = (-x) \cdot (-x') = x \cdot x'$ $(2^{\underline{a}} \text{ operação NÃO \'e "preservada"})$

Conclusão: f NÃO é homomorfismo de anéis.

Observação. (Álgebra Linear)

A = V =espaço vetorial sobre um corpo K

+ (adição de vetores); \cdot (multiplicação por escalar)

B=W=espaço vetorial sobre um corpo K

$$T: V \to W \\ v \mapsto w = T(v)$$

é uma Transformação Linear se T "preserva" as operações "+" e "·", ou seja, se T é um homomorfismo entre espaços vetoriais

$$\begin{cases} T(v+v') = T(v) + T(v'); \ (\forall \ v, v' \in V) \\ T(\alpha v) = \alpha T(v); \ (\alpha \in K, \ v \in V) \end{cases}$$

6 Polinômios

Definição 6.1 (Polinômio com Coeficientes num Anel A). Seja A um anel comutativo com identidade. Definimos um polinômio na indeterminada X com coeficientes em A como sendo uma soma infinita do seguinte tipo:

$$a_0 + a_1X + a_2X^2 + \ldots + a_nX^n + 0X^{n+1} + 0X^{n+2} + \ldots + 0X^k + \ldots$$

(onde
$$\exists n \in \mathbb{Z}_+ \mid a_j = 0, se j \geqslant n$$
)

Por convenção, representamos apenas a parte "finita" do polinômio (sem as infinitas parcelas de 0's).

Notações. $f(X) = a_0 + a_1 X + a_2 X^2 + ... + a_n X^n$

- a_i 's $\in A$, $0 \le i \le n$: coeficientes do polinômio f(X) (constantes);
- X: indeterminada ou "variável" (pode assumir qualquer valor, NÃO necessariamente em A;
- $a_i X^i = \text{monômio de polinômio } f(X);$
- $A[X] = \{a_0 + a_1X + a_2X^2 + \ldots + a_nX^n \mid a_i\text{'s } \in A \ (0 \leq i \leq n), \ n \in \mathbb{Z}_+\}$ (lê-se: conjunto dos polinômios na indeterminada X com coeficientes no anel A)

Observações. a) Definimos o polinômio identicamente nulo como sendo aquele cujos coeficientes são todos nulos:

$$f(X) = 0 + 0X + 0X^2 + \dots = 0 \quad (a_j)'s = 0, \ \forall \ j \in \mathbb{Z}_+$$

b) Dois polinômios f(X) e g(X) são iguais se os respectivos coeficientes são iguais, isto é:

$$f(X) = a_0 + a_1 X + \ldots + a_n X^n (+ \ldots)$$

$$g(X) = b_0 + b_1 X + \ldots + b_m X^m (+ \ldots)$$

$$f(X) = g(X) \Leftrightarrow a_j = b_j, \forall j \in \mathbb{Z}_+$$

c) (Grau de Polinômio)

Seja $f(X) \in A[X] - \{0\}$. Então, $f(X) = a_0 + a_1X + \ldots + a_nX^n$, com $a_n \neq 0$ e $a_j = 0$, se $j \geq n + 1$. Definimos o grau de f(X) como sendo $gr(f) = n \in \mathbb{Z}_+$. NÃO se define grau para o polinômio identicamente nulo.

Exemplos: a)
$$f(X) = a \quad (a \neq 0)$$

$$gr(f) = 0$$
 (polinômio constante)

b)
$$f(X) = b + aX^1 \quad (a \neq 0)$$

$$gr(f) = 1$$
 (polinômio do 1^{ϱ} grau)

c)
$$f(X) = c + bX + aX^2 \quad (a \neq 0)$$

$$gr(f) = 2$$
 (polinômio do 2^{ϱ} grau)

Afirmação. Sejam
$$f(X), g(X) \in A[X] - \{0\}$$
. Então, $gr(\underbrace{f+g}_{\neq 0}) \leqslant max\{gr(f), gr(g)\}$.

$$\operatorname{Em} A[X]$$
 vamos definir duas operações

$$f(X) = a_0 + a_1 X + \ldots + a_n X^n$$
, com $a_n \neq 0$ (gr(f) = n)

$$g(X) = b_0 + b_1 X + \dots + b_m X^m$$
, com $b_m \neq 0$ (gr(g) = m

• Adição:

Adição.
$$f(X)+g(X) = \underbrace{\sum_{i=0}^{k} (a_i + b_i)X^i}_{\in A[X]} = (a_0+b_0)+(a_1+b_1)X+\ldots+(a_k+b_k)X^k,$$

onde $k \leq max\{n, m\}$

• Multiplicação:

$$f(X) \cdot g(X) = a_0 b_0 + (a_0 b_1 + a_1 b_0) X + (a_0 b_2 + a_1 b_1 + a_2 b_0) X^2 + \dots + (a_0 b_k + a_1 b_{k-1} + \dots + a_I b_{k-i} + \dots + a_k b_0) X^k + \dots + a_n b_m X^{n+m} = \sum_{k=0}^{n+m} c_k X^k,$$

onde
$$c_k = \sum_{i=0}^k a_i b_{k-i}$$

Conclusão: Como A é anel comutativo com identidade, segue que

$$A[X] = \{a_0 + a_1 X + \dots + a_n X^n \mid a_i \text{ 's } \in A \ (0 \leqslant i \leqslant n), \ n \in \mathbb{Z}_+\}$$

é também um anel comutativo com identidade chamado de Anel de Polinômios na Indeterminada X com Coeficientes em A.

$$\left\{ \begin{array}{l} 0 = \text{ polinômio nulo (elemento neutro de } +) \\ 1 = 1 + 0X + \dots \text{ (elemento neutro de } \cdot) \end{array} \right.$$

Voltando à afirmação anterior $gr(f+g) \leq max\{n, m\}$

De fato:

Suponha que n > m (se n < m, o raciocínio é similar). Então, $max\{n, m\}$ n.

$$f(X) = a_0 + a_1 X + \ldots + a_m X^m + a_{m+1} X^{m+1} + \ldots + a_n X^n, \text{ com } a_n \neq 0$$

$$g(X) = b_0 + b_1 X + \ldots + b_m X^m \ (+0 X^{m+1} + \ldots + 0 X^n), \text{ com } b_m \neq 0$$

Assim,

$$f(X) + g(X) = (a_0 + b_0) + (a_1 + b_1)X + \dots + (a_m + b_m)X^m + a_{m+1}X^{m+1} + \dots + a_nX^n$$

$$\Rightarrow \operatorname{gr}(f+g) = n = \max\{n, m\}$$
Se $n = m$ e $b_n = -a_n$, então $\operatorname{gr}(f+g) < n = \max\{n, m\}$

$$f(X) = a_0 + a_1 X + \ldots + a_n X^n$$

$$g(X) = b_0 + b_1 X + \ldots + b_n X^n = b_0 + b_1 X + \ldots + (-a_n) X^n$$

Teorema 6.2. Seja A um domínio de integridade. Então:

a) Se
$$f(X), g(X) \in A[X] - \{0\}$$
, então $gr(f \cdot g) = gr(f) + gr(g)$;

b) Se A é domínio de integridade, então A[X] também o é.

Observação. É essencial que A seja domínio de integridade.

Exemplo:
$$A = \mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$$
 (não é DI, pois $4 \notin \mathbb{P}$)
$$f(x) = g(x) = \overline{2}x + \overline{1} \in \mathbb{Z}_4[x]$$

$$gr(f) = gr(g) = 1$$

$$f(x) \cdot g(x) = (\overline{2}x + \overline{1})(\overline{2}x + \overline{1}) = (\overline{2}x + \overline{1})^2 = \overline{4}x^2 + \overline{4}x + \overline{1} = \overline{0}x^2 + \overline{0}x + \overline{1}$$
(constante)
$$gr(f \cdot g) = 0 \neq 2 = gr(f) + gr(g)$$

Demonstração.

a)
$$f(X) = a_0 + a_1 X + \ldots + a_n X^n$$
, onde $a_n \neq 0$ e $a_j = 0$, $j \geqslant n + 1$
 $(\operatorname{gr}(f) = n)$
 $g(X) = b_0 + b_1 X + \ldots + b_m X^m$, onde $b_m \neq 0$ e $b_j = 0$, $j \geqslant m + 1$
 $(\operatorname{gr}(g) = m)$
 $f(X) \cdot g(X) = c_0 + c_1 X + c_2 X^2 + \ldots + c_k X^k + \ldots$, onde

$$\begin{cases}
c_0 = a_0 b_0 \\
c_1 = a_0 b_1 + a_1 b_0 \\
c_2 = a_0 b_2 + a_1 b_1 + a_2 b_0 \\
\vdots \\
c_k = a_0 b_k + a_1 b_{k-1} + \dots + a_i b_{k-i} + \dots + a_k b_0 \\
\vdots
\end{cases}$$

Afirmação.
$$\begin{cases} (1) \ c_{n+m} \neq 0 \\ (2) \ c_{n+m+j} = 0, \ j \geqslant 1 \end{cases}$$

(1)
$$c_{n+m} = (a_0 b_{n+m} + a_1 b_{n+m-1} + \dots + a_{n-1} b_{m+1}) + (a_n b_m) + (a_{n+1} b_{m-1} + \dots + a_{n+m} b_0) = a_n b_m$$

Como A é DI, temos que se $a_n \neq 0$ e $b_m \neq 0$, então $a_n b_m \neq 0$. Assim, $c_{n+m} = a_n \, b_m \neq 0$.

(2) Exercício

De (1) e (2), segue que
$$gr(f \cdot g) = n + m = gr(f) + gr(g)$$

b) Segue trivialmente de a) pois acabamos de mostrar que se $f(X) \neq 0$ e $g(X) \neq 0$, então $f(X) \cdot g(X) \neq 0$.

Polinômios × Funções Polinomiais

Sejam A um anel comutativo com identidade e $f(X) = a_0 + a_1 X + \ldots + a_n X^n \in A[X]$. Definimos a função polinomial associada (ou induzida) ao polinômio f como sendo

$$\hat{f}: A \to A$$

$$u \mapsto \hat{f}(u) = f(u) = \underbrace{a_0 + a_1 u + \ldots + a_n u^n}_{\in A}$$

$$\begin{cases} X = \text{ indeterminada} \\ u = \text{ variável (restrito a } A) \end{cases}$$

Observação. Polinômios diferentes podem induzir a mesma função polinomial.

Exemplo:
$$A = \mathbb{Z}_2\{\overline{0}, \overline{1}\}$$

 $f(x) = x^2 + x \in \mathbb{Z}_2[x] \text{ e } g(x) = 0 \in \mathbb{Z}_2[x]$

Observe que $f(x) \neq g(x)$. Todavia, $\hat{f}(u) = \hat{g}(u)$, $\forall u \in A = \mathbb{Z}_2$ (isto é, as funções polinomiais induzidas são iguais).

$$\hat{f}: \mathbb{Z}_2 \to \mathbb{Z}_2$$

 $u \mapsto \hat{f}(u) = f(u) = u^2 + u$

$$u = \overline{0}: \hat{f}(\overline{0}) = \overline{0}^2 + \overline{0} = \overline{0}$$

$$u = \overline{1}: \hat{f}(\overline{1}) = \overline{1}^2 + \overline{1} = \overline{1} + \overline{1} = \overline{0}$$

$$\hat{g}: \ \mathbb{Z}_2 \to \mathbb{Z}_2$$

 $u \mapsto \hat{g}(u) = g(u) = \overline{0}, \ \forall \ u \in \mathbb{Z}_2$

Divisibilidade e Raízes de Polinômios

Problema:
$$f(X) = a_0 + a_1 X + \ldots + a_n X^n \in A[X]$$

 $g(X) = b_0 + b_1 X + \ldots + b_m X^m \in A[X] - \{0\}$

$$a_n X^n + \ldots + a_0 = f(X)$$
 $g(X) = b_m X^m + \ldots + b_0$
 $r(X) q(X) = (a_n/b_m)X^{n-m} + \ldots$

Solução: a partir de agora, $A = K = \text{corpo}(\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p, p \in \mathbb{P})$

Teorema 6.3 (Algoritmo de Euclides para Divisão de Polinômios). Sejam $f(X), g(X) \in K[X]$, onde K é corpo e $g(X) \neq 0$. Então, $\exists ! \ q(X), r(X) \in K[X]$ tais que

$$f(X) = g(X) \cdot q(X) + r(X)$$

 $onde \ r(X) = 0 \ ou \ gr(r) < gr(g)$

Observação. Se r(X) = 0, então a divisão é exata. Neste caso, $f(X) = g(X) \cdot q(X)$

Notação. $g(X) \mid f(X)$ (lê-se: "g(X) divide f(X)" ou "g(X) é divisor (fator) de f(X)" ou "f(X) é múltiplo de g(X)" ou "f(X) é divisível por g(X)").

Demonstração.

I) Existência:

 1^{ϱ} caso: f(X) = 0

$$\begin{array}{c|c} 0 & g(X) \\ ? & ? \end{array}$$

Tome q(X) = 0 e r(X) = f(X) = 0

$$f(X) = 0 = 0 \cdot g(X) + 0$$

$$q(X) \qquad r(X)$$

 2^{ϱ} caso: $f(X) \neq 0$ e gr(f) < gr(g)

Neste caso,

$$f(X) = \begin{array}{ccc} 0 & \cdot & g(X) & + & f(X) \\ & & & & & \\ & & q(X) & & & & r(X) \end{array}$$

 3^{ϱ} caso: $f(X) \neq 0$ e gr $(f) \geqslant \text{gr}(g)$ $f(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \in K[X],$ com $a_n \neq 0$ (gr(f) = n) $g(X) = b_m X^m + b_{m-1} X^{m-1} + \dots + b_1 X + b_0 \in K[X] - \{0\},$ com $b_m \neq 0$ (gr(g) = m)

- (*) Lembre-se: (Princípio da Indução 2^{a} versão) P(n)= sentença aberta que depende de n, onde $n\geqslant n_{0}\pmod{n_{0}}\in\mathbb{Z}$ fixo) Suponha que:
 - i) $P(n_0) \in V$;
 - ii) Dado $m \in \mathbb{Z}$, com $n_0 \leqslant m < n$, se P(m) é V, então P(n) é V.

Então, P(n) é V, $\forall n \ge n_0$.

Por hipótese, $n \ge m$.

Vamos usar indução sobre n = gr(f)

i)
$$n = 0 \ (= n_0) : f(X) = a_0 \neq 0$$

Como $n \ge m \ge 0$, segue que $m = 0$, isto é, $g(X) = b_0 \neq 0 \ (\Rightarrow b_0^{-1} \in K)$. Assim, $f(X) = (a_0/b_0) g(X) + 0$

ii) Suponha que para todo polinômio de grau menor que n seja válido o teorema, ou seja, conseguimos dividi-lo por g(X) para obter g(X) e r(X). Queremos mostrar que o mesmo é válido para f.

$$a_n X^n + \ldots + a_1 X + a_0 \quad b_m X^m + \ldots + b_1 X + b_0$$

 $f_1(X) \quad (a_n/b_m) X^{n-m}$

Defina
$$f_1(X) = f(X) - g(X) (a_n/b_m) X^{n-m}$$

(ou $f(X) = g(X) (a_n/b_m) X^{n-m} + f_1(X)$)

Observe que

$$f_1(X) = (a_n X^n + a_{n-1} X^{n-1} + \dots + a_0) - (b_m X^m + \dots + b_1 X + b_0) (a_n/b_m) X^{n-m}$$

Logo,
$$gr(f_1(X)) < n = gr(f)$$

Por (*), segue que existem $q_1(X)$ e $r_1(X)$ tais que

$$f_1(X) = g(X) \cdot q_1(X) + r_1(X),$$

onde
$$r_1(X) = 0$$
 ou $gr(r_1(X)) < gr(g(X))$. Assim,

$$f(X) = g(X) (a_n/b_m) X^{n-m} + f_1(X)$$

= $g(X) (a_n/b_m) X^{n-m} + (g(X) \cdot q_1(X) + r_1(X))$
= $g(X) [(a_n/b_m) X^{n-m} + q_1(X)] + r_1(X)$

Faça
$$q(X) = (a_n/b_m)X^{n-m} + q_1(X)$$
 e $r(X) = r_1(X)$

II) Unicidade

Suponha que
$$\exists q_1(X), q_2(X), r_1(X), r_2(X) \in K[X]$$
 tal que $f(X) = g(X) \cdot q_1(X) + r_1(X)$ e $f(X) = g(X) \cdot q_2(X) + r_2(X)$, com

$$\begin{cases} r_1(X) = 0 \text{ ou } \operatorname{gr}(r_1) < \operatorname{gr}(g) \\ r_2(X) = 0 \text{ ou } \operatorname{gr}(r_2) < \operatorname{gr}(g) \end{cases}$$

Tese:
$$\begin{cases} q_1(X) = q_2(X) \\ r_1(X) = r_2(X) \end{cases} e$$

De fato:

$$g(X) \cdot q_1(X) + r_1(X) = g(X) \cdot q_2(X) + r_2(X)$$

$$g(X)[q_1(X) - q_2(X)] = r_2(X) - r_1(X) \qquad (**)$$

Basta mostrar que $q_1(X) = q_2(X) \iff r_2(X) = r_1(X)$. Suponha, por absurdo, que $q_1(X) \neq q_2(X)$. Assim, $q_1(X) - q_2(X) \neq 0 \ (\Rightarrow \operatorname{gr}(q_1 - q_2)$ está bem definido). Tomando grau em (**):

$$\underbrace{\operatorname{gr}(g(X)) + \operatorname{gr}(q_1(X) - q_2(X))}_{\operatorname{gr}(g(X)) \leqslant} = \underbrace{\operatorname{gr}(r_2(X) - r_1(X))}_{\leqslant \max\{\operatorname{gr}(r_1), \operatorname{gr}(r_2)\} < \operatorname{gr}(g)}$$

Assim,
$$q_1(X) = q_2(X)$$
 e, portanto, $r_1(X) = r_2(X)$.

Exercícios: Obtenha q(X) e r(X) em cada caso:

a)
$$f(x) = 3x^5 + 4x^3 + 2x + 5$$
, $g(x) = 2x^3 - 3x^2 + 7$ em $\mathbb{Q}[x]$ (ou $\mathbb{R}[x]$);

b)
$$f(x) = -x^6 + 12x^4 + 8x^3 - 4x + 10$$
, $g(x) = x^2 - 3$ em $\mathbb{Z}[x]$

b)
$$f(x) = -x^6 + 12x^4 + 8x^3 - 4x + 10$$
, $g(x) = x^2 - 3$ em $\mathbb{Z}[x]$
c)
$$\begin{cases} f(x) = \overline{4}x^5 + \overline{3}x^3 - \overline{4}x^2 - \overline{2}x + \overline{3} \\ g(x) = \overline{3}x^2 - \overline{1}x - \overline{2} \text{ em } \mathbb{Z}_7[x] \end{cases}$$

onde $\mathbb{Z}_7 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$

Correção dos Exercícios:

Observação. Se o anel de coeficientes A não for um corpo (como em b), ainda sim é possível dividir f(x) por g(X), desde que b_m (coeficiente da maior potência de g(x)) tenha inverso multiplicativo em A.

a)
$$3x^{5} + 0x^{4} + 4x^{3} + 0x^{2} + 2x + 5 \qquad 2x^{3} - 3x^{2} + 7$$

$$-3x^{5} + \frac{9}{2}x^{4} - \frac{21}{2}x^{2} \qquad \frac{3}{2}x^{2} + \frac{9}{4}x + \frac{43}{8}$$

$$\frac{9}{2}x^{4} + 4x^{3} - \frac{21}{2}x^{2} + 2x + 5$$

$$-\frac{9}{2}x^{4} + \frac{27}{4}x^{3} - \frac{63}{4}x$$

$$\frac{43}{4}x^{3} - \frac{21}{2}x^{2} - \frac{55}{4}x + 5$$

$$-\frac{43}{4}x^{3} + \frac{129}{8}x^{2} - \frac{301}{8}$$

$$\frac{45}{8}x^{2} - \frac{55}{4}x - \frac{261}{8}$$

$$\begin{cases} q(x) = (3/2)x^2 + (9/4)x + (43/8) \\ r(x) = (45/8)x^2 - (55/4)x - (261/8) \end{cases}$$

b)
$$-x^{6} + 12x^{4} + 8x^{3} - 4x + 10 \quad 1x^{2} - 3$$

$$\underline{x^{6} - 3x^{4}} \quad -1x^{4} + 9x^{2} + 8x + 27$$

$$9x^{4} + 8x^{3} - 4x + 10$$

$$\underline{-9x^{4} + 27x^{2}}$$

$$8x^{3} + 27x^{2} - 4x + 10$$

$$\underline{-8x^{3} + 24x}$$

$$27x^{2} + 20x + 10$$

$$\underline{-27x^{2} + 81}$$

$$20x + 91$$

$$\begin{cases} q(x) = -x^4 + 9x^2 + 8x + 27\\ r(x) = 20x + 91 \end{cases}$$

c)

Observação. i)
$$7 \in \mathbb{P} \Rightarrow \mathbb{Z}_7 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$$
 é corpo $\Rightarrow \forall \overline{a} \in \mathbb{Z}_7; \overline{a} \neq \overline{0}, \exists \overline{b} \in \mathbb{Z}_7 \mid \overline{a} \cdot \overline{b} = \overline{1}$

ii)
$$\overline{k} = \overline{n+k}, \ \forall \ k \in \mathbb{Z} \ (\text{em } \mathbb{Z}_n), \text{ pois } n+k \equiv k \ (\text{mod } n)$$

Exemplo: Em
$$\mathbb{Z}_7$$
: $-\overline{4} = \overline{-4+7} = \overline{3}$ (pois $-4 \equiv 3 \pmod{7}$)

$$\begin{cases} q(x) = \overline{6}x^3 + \overline{2}x^2 + \overline{1}x + \overline{5} \\ r(x) = \overline{5}x + \overline{6} \end{cases}$$

Raízes de Polinômios

Definição 6.4 (Raiz de Um Polinômio). Sejam K um corpo e $f(x) \in K[x] - \{0\}$. Seja $\alpha \in K$. α é raiz de f(x) em K se $f(\alpha) = 0 \in K$.

Obter uma raiz em K para f(x) significa resolver a equação polinomial f(x) = 0 em K.

Três problemas básicos:

- 1º) Existência de soluções;
- 2^{o}) Contagem do número de soluções;
- 3^{ϱ}) Métodos de resolução de equações polinomiais
 - Geométricos;
 - Algébricos;
 - Numéricos;
 - Analíticos

Tais problemas dependem de K.

Exemplos:

- 1) $f(x) = x^2 2 \in \mathbb{Q}[x]$
 - $K = \mathbb{Q}$: f(x) = 0 NÃO tem solução em K (isto é, f não possui raiz em K)

0 soluções (pois $\pm\sqrt{2} \notin K$)

- $K = \mathbb{R}$ (ou \mathbb{C}) : f(x) = 0 tem 2 soluções em K : $\pm \sqrt{2} \in K$
- 2) $f(x) = x^2 + 1 \in \mathbb{Q}[x]$
 - $K = \mathbb{Q}$ (ou \mathbb{R}) : f(x) = 0 NÃO tem solução em K 0 soluções

De fato: Se $\alpha \in K$ fosse raiz de f(x), então $\alpha^2 + 1 = 0$. Assim,

$$\underbrace{\alpha^2}_{\geqslant 0} = \underbrace{-1}_{<0} \qquad \text{(absurdo)}$$

• $K = \mathbb{C}$: f(x) = 0 tem 2 soluções em K: $\pm i$

- $3) \ f(x) = x^3 2 \in \mathbb{Q}[x]$
 - $K = \mathbb{Q}$: f(x) = 0 NÃO tem solução em K 0 soluções
 - $K = \mathbb{R}$: f(x) = 0 tem 1 solução: $\sqrt[3]{2}$
 - $K = \mathbb{C}$: f(x) = 0 tem 3 soluções: $\sqrt[3]{2}$, $\sqrt[3]{2}w$, $\sqrt[3]{2}w^2$, onde $w = \cos(2\pi/3) + i \sin(2\pi/3)$

Curiosidades: (História da Matemática)

 $\bullet \cong 1800$ a.C.: Os babilônios já sabiam resolver determinadas equações práticas de $2^{\,\varrho}$ grau.

Exemplo: Obter dois números $x,y\in\mathbb{R}$ tais que são conhecidos

$$\begin{cases} S = x + y \\ P = x y \end{cases}$$
$$(x^2 - Sx + P = 0)$$

 \bullet Civilização grega: Os gregos já sabiam resolver, por métodos geométricos, certas equações do 2º e 3º graus.

Três Problemas "Clássicos": (geometria) (Construção com Régua e Compasso)

1º) Trissecção do Ângulo:

Problema: Dado x, é possível com régua e compasso obter y tal que ângulo $1=3\cdot$ ângulo 2? NÃO

 $2\,{}^{\varrho})$ Duplicação do Cubo:

Problema: Dado a (aresta do cubo 1), é possível com régua e compasso obter b (aresta do cubo 2) tal que $V_2=2\cdot V_1$? NÃO

 $3\,{}^{\varrho})$ Quadratura do Círculo:

Problema: Dado r, é possível com régua e compasso obter l tal que $A_{\square}=A_{\circ}?$ NÃO

• Início da Era Cristã: Os árabes hindus aperfeiçoaram os métodos antigos e obtiveram uma fórmula para obter as raízes de $f(x) = ax^2 + bx + c$ $(a \neq 0)$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(Fórmula de Bháskara) ($K = \mathbb{C}$)

• Séc. XV/XVI: quatro matemáticos italianos (Scipione Del Ferro, Tartaglia, Cardano, Ludovico Ferrari) se interessaram pela resolução de $ax^3 + bx^2 + cx + d = 0 \quad (a \neq 0)$

$$ax^3 + bx^2 + cx + d = 0 \xrightarrow{\text{mud. var.}} x^3 + px + q = 0$$

$$x = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{p^3}{27} + \frac{q^2}{4}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{p^3}{27} + \frac{q^2}{4}}}$$

(Fórmula de Cardano)

• Séc. XVII: Existe uma fórmula (semelhante à de Bháskara e à de Cardano) para resolver

$$ax^4 + bx^3 + cx^2 + dx + e = 0 \quad (a \neq 0)$$

• 1824: Abel provou que se n = 5, então não existe fórmula para resolver

$$ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0 \quad (a \neq 0)$$

• 1832: Évariste Galois (1811 - 1832) determinou condições necessárias e suficientes para que uma equação polinomial f(x) = 0 (onde $gr(f) \ge 5$) tenha solução por meio de radicais (Teoria de Galois).

Teorema 6.5 (Teorema do Resto). Sejam K um corpo e $f(x) \in K[x]$. Considere $g(x) = x - \alpha$, onde $\alpha \in K$. Então o resto da divisão de f(x) por g(x) é $f(\alpha)$.

Corolário 6.6 (Teorema de D'Allembert). Nas condições anteriores, α é raiz de $f(x) \Leftrightarrow g(x) \mid f(x)$.

Observação. Tais resultados constituem a base do Algoritmo de Briott-Ruffini para dividir f(x) por g(x).

Demonstração. (Teorema 6.5)

Como $g(x) = x - \alpha \neq 0$, então podemos dividir f(x) por g(x) usando o Algoritmo de Euclides:

$$f(x) = (x - \alpha)q(x) + r(x),$$

onde r(x) = 0 ou gr(r) < gr(g) = 1 (isto é, em qualquer caso, $r(x) = c \in K$ (constante)). Assim, $f(x) = (x - \alpha)q(x) + c$. Substituindo x por α , temos

$$f(\alpha) = (\alpha - \alpha)q(\alpha) + c \Rightarrow r(x) = c = f(\alpha)$$

Demonstração. (Corolário 6.6)

 α é raiz de

$$\begin{array}{ll} f(x) & \Leftrightarrow & f(\alpha) = 0 \\ & \stackrel{\text{Teo}}{\Leftrightarrow} & r(x) = 0 \Leftrightarrow f(x) = (x - \alpha)q(x) \\ & \Leftrightarrow & (g(x) =) \ x - \alpha \mid f(x) \end{array}$$

Exemplo: $K = \mathbb{R}$

$$f(x) = x^2 - 5x + 6$$

 $f(2) = 2^2 - 5 \cdot 2 + 6 = 0 \Rightarrow 2$ é raiz de $f \Rightarrow x - 2 \mid f(x)$
 $f(3) = 3^2 - 5 \cdot 3 + 6 = 0 \Rightarrow 3$ é raiz de $f \Rightarrow x - 3 \mid f(x)$

Teorema 6.7 (Contagem do Número de Raízes de Um Polinômio Sobre Um Corpo). Sejam K um corpo e $f(x) \in K[x] - \{0\}$. Sejam n = gr(f) e N o número de raízes de f em K. Então, $N \leq n$, isto é, o número de raízes de f em K (na verdade, em qualquer corpo L, tal que $L \supseteq K$) é no máximo o grau do polinômio.

Demonstração.

 $1^{\,\varrho}$ caso: Se f(x)não possui raiz, então não há nada a demonstrar. $\{N=0\leqslant n=\operatorname{gr}(f)$

 $2^{\,\varrho}$ caso: Seja α raiz de f(x)em K. Neste caso, pelo Teorema de D'Allembert,

$$f(x) = (x - \alpha)q(x) \qquad (*)$$

onde gr(q)=n-1. A idéia é usar indução sobre n, supondo que o resultado que queremos mostrar seja válido para polinômios de grau < n.

- i) n = 0. Neste caso, $f(x) = c \neq 0$ (constante). Assim, N = 0 = n. (Podemos supor agora que f tem raiz)
- ii) Se vale para grau < n, então vale para n. Seja $\beta \in K$ uma outra raiz de f(x) em K. Substituindo β em (*), temos

$$f(\beta) = \underbrace{(\beta - \alpha)}_{\in K} \underbrace{q(\beta)}_{\in K} = 0 \stackrel{\text{corpo}}{\Longrightarrow} \beta - \alpha = 0 \text{ ou } q(\beta) = 0$$

 $\Rightarrow \beta = \alpha$ ou β é raiz de q(x)

Como gr(q) = n - 1 < n = gr(f), segue da hipótese de indução que q(x) tem no máximo n - 1 raízes em K. Logo, f(x) tem no máximo n raízes em K.

Observação. É essencial que K seja um corpo para que tal teorema valha.

Exemplo: $f(x) = \overline{1}x^2 + \overline{1}x \in \mathbb{Z}_6[x]$, onde $\mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$. Como $6 \notin \mathbb{P}$, então \mathbb{Z}_6 não é corpo.

$$n = \operatorname{gr}(f) = 2$$

$$N = ?$$

$$x = \overline{0} : f(\overline{0}) = \overline{0} \Rightarrow \overline{0} \text{ \'e raiz}$$

$$x = \overline{1} : f(\overline{1}) = \overline{1}^2 + \overline{1} = \overline{2} \neq \overline{0}$$

$$x = \overline{2} : f(\overline{2}) = \overline{2}^2 + \overline{2} = \overline{6} = \overline{0} \Rightarrow \overline{2} \text{ \'e raiz}$$

$$x = \overline{3} : f(\overline{3}) = \overline{3}^2 + \overline{3} = \overline{12} = \overline{0} \Rightarrow \overline{3} \text{ \'e raiz}$$

$$x = \overline{4} : f(\overline{4}) = \overline{4}^2 + \overline{4} = \overline{20} = \overline{2} \neq \overline{0}$$

$$x = \overline{5} : f(\overline{5}) = \overline{5}^2 + \overline{5} = \overline{30} = \overline{0} \Rightarrow \overline{5} \text{ \'e raiz}$$

$$\operatorname{Logo}, N = 4 > n = 2$$

Pergunta: Tal exemplo contraria o Teorema? Não, pois \mathbb{Z}_6 não é corpo.

Exercícios Selecionados: (lista 4)

7) Seja K um corpo (isto é, $K = \mathbb{Q}$ ou \mathbb{R} ou \mathbb{C} ou \mathbb{Z}_p , $p \in \mathbb{P}$. Dizemos que K é algebricamente fechado se todo polinômio, não-constante, com coeficientes em K, admite pelo menos uma raiz em K (isto é, $\forall f(x) \in K[x], \ \operatorname{gr}(f) \geqslant 1, \ \exists \ \alpha \in K \mid f(\alpha) = 0$). Mostre que $K = \mathbb{R}$ não é algebricamente fechado.

Exemplo:
$$f(x) = x^2 + 1 \in \mathbb{R}[x]$$
, $gr(f) = 2$
 $\nexists \alpha \in \mathbb{R} \mid f(\alpha) = 0$, pois $\alpha^2 + 1 = 0 \Rightarrow \alpha^2 = -1$ (absurdo)

Observação. $\mathbb{C} = \{a+bi \mid a,b \in \mathbb{R}\}$ é algebricamente fechado. Este resultado é chamado de Teorema Fundamentel da Álgebra, demonstrado pela primeira vez por Karl Friedrich Gauss (1777 - 1855) em sua Tese de Doutorado em 1796 (aos 19 anos).

- 10) a) Mostre que o polinômio $f(x) = x^2$ possui infinitas raízes no anel $A = \mathcal{M}_{2\times 2}(\mathbb{R})$.
 - b) Comente o fato do polinômio f acima ter um número de raízes maior que o grau.

a)
$$f(X) = 1 X^2 \in \mathcal{M}_{2 \times 2}(\mathbb{R})[X]$$

 $f(X) = I_2 X^2$, onde

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} 0 & c \\ 0 & 0 \end{pmatrix} \in A$$
, onde $c \in \mathbb{R}$

$$f(\alpha) = \alpha^2 = \alpha \cdot \alpha = \begin{pmatrix} 0 & c \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & c \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$$

 $\Rightarrow \alpha$ é raiz de f(X) em A.

Como $c \in \mathbb{R}$ (arbitrário), então há infinitas escolhas para α , isto é, f tem infinitas raízes em A.

b) Como A não é DI, então A não é corpo. Logo, o Teorema a respeito do número de raízes não é contrariado.

- 20) a) Sejam $A = \mathbb{Z}_2\{\overline{0},\overline{1}\}$ e $f(x) = \overline{1} + x + x^3 \in \mathbb{Z}_2[x]$. Determine $g(x) \in \mathbb{Z}_2[x], g(x) \neq f(x), \text{ tal que } \hat{g} = \hat{f}.$
 - b) Sejam $A = \mathbb{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\}, \ f(x) = x, \ g(x) = x^3, \ h(x) = x + 5x^3 + x^9 \in \mathbb{Z}_3[x].$ Mostre que $\hat{f} = \hat{g} = \hat{h}$.

Lembre-se: (Polinômios vs Função Polinomial)

ullet Polinômio sobre um anel A:

$$f(x) = a_n x^n + \ldots + a_1 x + a_0 \in A[x]$$

$$\begin{cases} a_i \text{'s } \in A \\ x = \text{indeterminada} \end{cases}$$

• Função polinomial (induzida por f)

$$\hat{f}: A \to A$$

 $u \mapsto \hat{f}(u) := f(u) = a_n u^n + \ldots + a_1 u + a_0 \in A$

20) a)
$$f(x) = \overline{1} + x + x^3 \in \mathbb{Z}_2[x]$$

$$\hat{f}: \mathbb{Z}_2 \to \mathbb{Z}_2$$

 $u \mapsto \hat{f}(u) = f(u) = \overline{1} + u + u^3$

$$u = \overline{0} : \hat{f}(\overline{0}) = f(\overline{0}) = \overline{1} + \overline{0} + \overline{0}^3 = \overline{1}$$

$$u = \overline{1} : \hat{f}(\overline{1}) = f(\overline{1}) = \overline{1} + \overline{1} + \overline{1}^3 = \overline{3} = \overline{1}$$

Assim, \hat{f} é a função constante 1, pois $\forall u \in \mathbb{Z}_2$, $\hat{f}(u) = \overline{1}$. É natural definir $g(x) = \overline{1}$ (polinômio constante 1). Neste caso,

$$\hat{g}: \ \mathbb{Z}_2 \to \mathbb{Z}_2$$
 $u \mapsto \hat{g}(u) = g(u) = \overline{1}$

Logo, $\forall u \in \mathbb{Z}_2, \ \hat{g}(u) = g(u) = \overline{1} = \hat{f}(u).$

Conclusão: $f(x) \neq g(x)$ (polinômios diferentes), mas $\hat{f} = \hat{g}$ (funções polinomiais iguais).

b) **Demonstração.** Observe que $f \neq g \neq h$. Queremos mostrar que as funções polinomiais induzidas são iguais, isto é, $\hat{f} = \hat{g} = \hat{h}$.

$$\hat{f}: \mathbb{Z}_3 \to \mathbb{Z}_3$$
 $u \mapsto \hat{f}(u) = f(u) = \overline{1}u$

$$\hat{g}: \mathbb{Z}_3 \to \mathbb{Z}_3$$

 $u \mapsto \hat{q}(u) = q(u) = \overline{1}u^3$

$$\hat{h}: \ \mathbb{Z}_3 \to \mathbb{Z}_3 \\ u \mapsto \hat{h}(u) = h(u) = \overline{1}u + \overline{5}u^3 + \overline{1}u^9$$

$$u = \overline{0}: \\ \hat{f}(\overline{0}) = f(\overline{0}) = \overline{0} \\ \hat{g}(\overline{0}) = g(\overline{0}) = \overline{0}^3 = \overline{0} \\ \hat{h}(\overline{0}) = h(\overline{0}) = \overline{0} + \overline{5}\overline{0}^3 + \overline{0}^9 = \overline{0}$$

$$u = \overline{1}: \\ \hat{f}(\overline{1}) = f(\overline{1}) = \overline{1} \\ \hat{g}(\overline{1}) = g(\overline{1}) = \overline{1}^3 = \overline{1} \\ \hat{h}(\overline{1}) = h(\overline{1}) = \overline{1} + \overline{5}\overline{1}^3 + \overline{1}^9 = \overline{7} = \overline{1}$$

$$u = \overline{2}: \\ \hat{f}(\overline{2}) = f(\overline{2}) = \overline{2} \\ \hat{g}(\overline{2}) = g(\overline{2}) = \overline{2}^3 = \overline{8} = \overline{2} \\ \hat{h}(\overline{2}) = h(\overline{2}) = \overline{2} + \overline{5}\overline{2}^3 + \overline{2}^9 = \overline{2} + \overline{40} + \overline{512} = \overline{554} = \overline{2}$$

- 3) Seja A um domínio de integridade. Determine $\mathcal{U}(A[x]) = \{f(x) \in A[x] \mid f(x) \text{ \'e inversível para a multiplicação}\}.$
 - Fatos:

• A - DI $\Rightarrow A[x]$ = anel de polinômios na indeterminada x com coeficientes em A - DI. Em particular, $gr(f(x) \cdot g(x)) = gr(f(x)) + gr(g(x))$.

$$f(x) \in A[x]$$
 (Observe que $f \neq 0$ e $g \neq 0$)

$$f(x) \in \mathcal{U}(A[x]) \Leftrightarrow \exists g(x) \in A[x] \mid f(x) \cdot g(x) = 1$$

Tomando o grau em ambos os lados, temos:

$$f \cdot g = 1$$

$$\operatorname{gr}(f \cdot g) = \operatorname{gr}(1)$$

$$\operatorname{gr}(f) + \operatorname{gr}(g) = 0 \Leftrightarrow \operatorname{gr}(f) = 0 \qquad f = a_0 \in A^* = A - \{0\}$$

$$\operatorname{gr}(g) = 0 \qquad g = b_0 \in A^* = A - \{0\}$$

Assim, $a_0 \cdot b_0 = 1$, isto é, $f \in \mathcal{U}(A)$. Assim, $\mathcal{U}(A[x]) = \mathcal{U}(A)$.

Exemplos: i)
$$\mathcal{U}_{\cdot}(\mathbb{Z}[x]) = \mathcal{U}_{\cdot}(\mathbb{Z}) = \{\pm 1\}$$

ii) $\mathcal{U}_{\cdot}^{*}(\mathbb{R}[x]) = \mathcal{U}_{\cdot}(\mathbb{R}) = \mathbb{R}^{*} = \mathbb{R} - \{0\}$

Comentários Finais Sobre Polinômios

1) É possível definir polinômios via sequências infinitas. Seja A um anel comutativo com identidade.

• (seqüência de elementos de A)

$$f: \ \mathbb{Z}_+ \to A$$

 $n \mapsto f(n) = a_n$

Identificamos

$$f = (a_n)_n \in \mathbb{Z}_+ = (a_0, a_1, a_2, \dots, a_n, \dots)$$

• f é dita seqüência quase nula em A se $\exists N \in \mathbb{Z}_+ \mid a_j = 0, \ j > N$.

Exemplos:
$$0 = (0, 0, 0, ..., 0, ...)$$
 (seqüência nula) $(N = 0)$ $1 = (1, 0, 0, ..., 0, ...)$ $(N = 1)$ $f = (a_0, a_1, a_2, ..., a_n, 0, 0, ...)$ (seqüência nula) $(N = n + 1)$

• Operações com seqüências quase nulas em A:

$$f = (a_0, a_1, \dots, a_n, 0, \dots, 0, \dots)$$

$$g = (b_0, b_1, \dots, b_m, 0, \dots, 0, \dots)$$

$$- \text{ igualdade: } f = g \Leftrightarrow a_i = b_i, \ \forall \ i$$

$$- \text{ adição: } f + g = (c_0, c_1, c_2, c_3, \dots, 0, \dots, 0, \dots), \text{ onde } c_i = a_i + b_i, \ \forall \ i$$

$$- \text{ multiplicação: } f \cdot g = (d_0, d_1, d_2, \dots, 0, 0, \dots), \text{ onde}$$

$$d_0 = a_0 \ b_0$$

$$d_1 = a_0 \ b_1 + a_1 \ b_0$$

$$d_2 = a_0 \ b_2 + a_1 \ b_1 + a_2 \ b_0$$

$$\vdots$$

• Identificação:

$$\begin{array}{l} -a \in A \; (\text{constante}) \\ a = (a,0,0,0,\ldots) \\ -x \; (\text{indeterminada}) \\ x = (0,1,0,0,\ldots) \\ a \cdot x = (a,0,0,\ldots) \cdot (0,1,0,\ldots) = (0,a,0,\ldots,0,\ldots) \\ x^2 = x \cdot x = (0,1,0,\ldots) \cdot (0,1,0,\ldots) = (0,0,1,0,\ldots) \\ \vdots \qquad \qquad (\text{indugão}) \\ x^n = (\underbrace{0,0,\ldots,0}_{n \; \text{posições de 0's}},1,0,\ldots) \end{array}$$

Assim, para uma seqüência $f = (a_0, a_1, a_2, \dots, a_n, 0, \dots)$ genérica, temos:

$$f = (a_0, 0, 0, \ldots) + (0, a_1, 0, \ldots) + (0, 0, a_2, \ldots) + (0, 0, 0, a_3, 0, \ldots) + \ldots + (0, 0, \ldots, 0, a_n, 0, \ldots) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

- 2) Se K é um corpo, então K[x] possui propriedades similares a \mathbb{Z} : Semelhanças:
 - A) Algoritmo de Euclides: Dados f(x), $g(x) \in K[x]$, com $g(x) \neq 0$, existem únicos q(x), $r(x) \in K[x]$ tal que $f(x) = g(x) \cdot q(x) + r(x)$ onde r(x) = 0 ou gr(x) < gr(g).
 - B) Polinômios Irredutíveis: (análogo dos números primos) $f(x) \in K[x]$ é irredutível se:
 - i) $gr(f) \geqslant 1$;

ii) Se
$$f(x) = g(x) \cdot h(x)$$
 com $g(x)$, $h(x) \in K[x]$, então $g(x) = \text{cte}(gr(g) = 0)$ ou $h(x) = \text{cte}(gr(h) = 0)$

Exemplos:

a) $f(x) = x^2 - 5x + 6 \in \mathbb{R}[x]$ é redutível em \mathbb{R} , pois:

$$f(x) = (x-2)(x-3)$$
 (gr(g) = 1 = gr(h))

b) $f(x) = x^2 + 1 \in \mathbb{R}[x]$

fé irredutível sobre $\mathbb{R},$ mas fé redutível sobre $\mathbb{C},$ pois

$$f(x) = (x+i)(x-i)$$

c) $f(x) = x^2 - 2 \in \mathbb{R}[x]$

fé irredutível sobre $\mathbb{Q},$ mas fé redutível sobre $\mathbb{R},$ pois

$$f(x) = (x - \sqrt{2})(x + \sqrt{2})$$

C) Métodos das divisões sucessivas para o cálculo do MDC:

 $f(x),\ g(x)\in K[x]$ (não simultaneamente nulos) $d=\mathrm{mdc}(f(x),g(x))=$ último polinômio não-nulo (na divisão de f por g)

D) Fatoração única para polinômios (análogo ao Teorema Fundamental da Álgebra)

Todo polinômio $f(x) \in K[x]$, de $gr(f) \ge 1$, pode ser escrito, de forma única, como produto de polinômios irredutíveis (a menos de constantes).

Exemplo:
$$f(x) = 3x^3 - 3x \in \mathbb{R}[x]$$

 $f(x) = 3x^2 - 3x = 3x(x^2 - 1) = 3x(x + 1)(x - 1)$

7 Tópicos Especiais Sobre Anéis e Grupos

Observação. Tais tópicos serão estudados com mais detalhe nos cursos de Algebra 2 e 3).

Motivação: Comportamento de subconjunto de um anel e de um grupo com relação às operações do conjunto. Vamos introduzir a noção de subestrutura algébrica.

Subestrutura Algébrica

A - estrutura algébrica com uma (semigrupo, monóide, grupo) ou duas (anel, domínio de integridade, corpo) operações;

$$B \subseteq A$$

Dizemos que B é uma subestrutura algébrica de A se B satisfaz as seguintes condições:

- a) $B \neq \emptyset$;
- b) B é fechado com relação à(s) operação(ões) de A;
- c) B, com relação $\grave{a}(s)$ operação($\~{o}es$) de A, \acute{e} também uma estrutura algébrica do mesmo tipo de A.

Exemplos:

a)
$$A = \mathbb{C}$$
 (corpo); $B_1 = \mathbb{Q}$ (corpo); $B_2 = \mathbb{R}$ (corpo)

$$\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}$$

 B_1 é subcorpo de B_2

 B_1 é subcorpo de A

 B_2 é subcorpo de A

b)
$$A = P(\{a, b\}) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$

$$* = \cup$$

$$(A,*)$$
 - monóide

$$B = \{\varnothing, \{a, b\}\} \subseteq A$$

$$\begin{array}{c|cccc} & & \varnothing & \{a,b\} \\ \hline \varnothing & \varnothing & \{a,b\} \\ \{a,b\} & \{a,b\} & \{a,b\} \end{array} \qquad e = \varnothing$$

Assim, B é um submonóide de A.

A partir de agora, vamos nos restringir ao estudo de anéis e grupos.

I) Anéis

Definição 7.1 (Subanel). Seja $(A, +, \cdot)$ um anel. Seja $B \subseteq A$. B é dito um subanel de A se:

- a) $B \neq \emptyset$;
- b) $\forall x, y \in B, x + y \in B \quad e \quad x \cdot y \in B$;
- c) B é um anel com relação às operações de A.

Teorema 7.2 (Critério para Determinar Subanéis). Seja A um anel. $B \subseteq A$ é um subanel de A se, e somente se, valem as seguintes condições:

- i) $0 \in B$; (elemento neutro para + em A)
- $ii) \ \forall \ x,y \in B, \ x-y \in B; \ (B \ \'e \ fechado \ para -)$
- $iii) \ \forall \ x,y \in B, \ x \cdot y \in B. \ (B \ \'e \ fechado \ para \cdot)$

(Isto é, a), b) e c) são equivalentes a i), ii), iii))

Demonstração.

$$(\Rightarrow) \left\{ \begin{array}{l} \text{H: a), b), c} \\ \text{T: i), ii), iii} \end{array} \right.$$

Não há nada a demonstrar neste caso.

$$(\Leftarrow)$$
 $\begin{cases} H: i), ii), iii \\ T: a), b), c)$

- Por i), $0 \in B$. Logo, $B \neq \emptyset$ (isto é, vale a)).
- Vamos mostrar que se $x, y \in B$, então $x + y \in B$. (primeira parte de b)).

De fato:

Seja $y \in B$. Por i), $0 \in B$. Assim, segue de ii), $0 - y = -y \in B$ (isto é, se $y \in B$, então $-y \in B$).

Considere agora $x \in B$ e $-y \in B$. Por ii), segue que $x - (-y) \in B$.

- \bullet A segunda parte de b) (fechamento para ·) é equivalente a iii) (logo, não há nada a demonstrar).
- Como A é anel e $B \subseteq A$, então B "herda" as propriedades associativa, comutativa e distributiva de A. Então, B é subanel de A.

Exercícios: Verifique em cada caso que B é subanel de A:

a)
$$A = \mathbb{Z}$$

 $B = n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\} \quad (n \in \mathbb{N})$

b)
$$A = \mathcal{M}_{2 \times 2}(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$$

$$B = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\}$$

c)
$$A = \mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$$

 $B = \mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ (anel dos inteiros gaussianos)

d)
$$A = \mathbb{R}$$

 $B = \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$

$$\begin{split} A &= \mathcal{F}(\mathbb{R}, \mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ \'e funç\~ao} \} \\ B &= \mathcal{P}(\mathbb{R}, \mathbb{R}) = \{ p : \mathbb{R} \to \mathbb{R} \mid p \text{ \'e funç\~ao polinomial} \} \\ C &= \mathcal{C}(\mathbb{R}, \mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ \'e cont\'aua} \} \\ D &= \mathcal{D}(\mathbb{R}, \mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ \'e deriv\'avel} \} \\ B &\subseteq D \subseteq C \subseteq A \end{split}$$

Resolução:

a) i)
$$0 \in B$$
, pois $0 = n \cdot 0$

ii)
$$x, y \in B \Rightarrow x - y \in B$$

 $x = nk_1, k_1 \in \mathbb{Z} \text{ e } y = nk_2, k_2 \in \mathbb{Z}$
 $x - y = nk_1 - nk_2 = n\underbrace{(k_1 - k_2)}_{= k_3} \in B$

iii)
$$x, y \in B \Rightarrow x \cdot y \in B$$

 $x \cdot y = (nk_1)(nk_2) = n\underbrace{(k_1nk_2)}_{=k_2} \in B$

b) i)
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0 \in B$$
, pois basta tomar $a = 0$

ii)
$$X = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in B$$
 e $Y = \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} \in B$
$$X - Y = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a - b & 0 \\ 0 & 0 \end{pmatrix}$$

iii)
$$X \cdot Y = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a \, b & 0 \\ 0 & 0 \end{pmatrix} \in B$$

c) i)
$$0 \in B$$
, pois $0 + 0i \in B$

ii)
$$x = a + bi \in B$$
 e $y = c + di \in B$ $x - y = (a + bi) - (c + di) = \underbrace{(a - c)}_{\in \mathbb{Z}} + \underbrace{(b - d)}_{\in \mathbb{Z}} i \in B$

iii)
$$x \cdot y = (a + bi)(c + di) = \underbrace{(ac - bd)}_{\in \mathbb{Z}} + \underbrace{(ad + bc)}_{\in \mathbb{Z}} i \in B$$

d) i)
$$0 \in B$$
, pois $0 + 0\sqrt{2} \in B$

ii)
$$x = a + b\sqrt{2} \in B$$
 e $y = c + d\sqrt{2} \in B$
 $x - y = (a + b\sqrt{2}) - (c + d\sqrt{2}) = \underbrace{(a - c)}_{\in \mathbb{Z}} + \underbrace{(b - d)}_{\in \mathbb{Z}} \sqrt{2} \in B$

iii)
$$x \cdot y = (a + b\sqrt{2})(c + d\sqrt{2}) = \underbrace{(ac + 2bd)}_{\in \mathbb{Z}} + \underbrace{(ad + bc)}_{\in \mathbb{Z}} \sqrt{2} \in B$$

- e) i) $0 \in B$ (função constante)
 - ii) A diferença entre funções polinomiais (respectivamente, contínuas, deriváveis) também é polinomial (respectivamente, contínua, derivável)
 - iii) O produto de duas funções polinomiais (respectivamente, contínuas, deriváveis) é também polinomial (respectivamente, contínua, derivável)

Exemplos:
$$h(x) = \begin{cases} 1, & \text{se } x > 0 \\ 0, & \text{se } x = 0 \\ -1, & \text{se } x < 0 \end{cases} \in A$$

$$g(x) = |x| \in C$$

$$f(x) = \text{sen } x \in D$$

Exercícios:

- 1) Mostre que se B_1 e B_2 são subanéis de A, então $B_1 \cap B_2$ também o é.
- 2) Vimos que se A é um anel e $B \subseteq A$ é um subanel, então B "herda" as propriedades de A. Perém, se A é anel com identidade $1 \neq 0$, então B não necessariamente possui a mesma identidade.
 - a) Verifique que $A=\mathbb{Z}$ e $B=2\mathbb{Z}$ satisfazem a observação acima.
 - b) Considere $A = \mathcal{M}_{2\times 2}(\mathbb{R})$ e $B = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\}$.

Verifique que B possui identidade 1', mas $1' \neq 1$

$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in A \text{ e } 1' = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in B$$

Resolução:

- 1) H: B_1 e B_2 são subanéis de A T: $B_1 \cap B_2$ é subanel de A
 - i) $0 \in B_1 \cap B_2$, pois $0 \in B_1$ e $0 \in B_2$ (por hipótese)

ii)
$$\begin{cases} x \in B_1 \cap B_2 \Rightarrow x \in B_1 & \text{e} \quad x \in B_2 \\ & \text{e} & \Rightarrow & \text{e} \\ y \in B_1 \cap B_2 \Rightarrow y \in B_1 & \text{e} \quad y \in B_2 \\ \Rightarrow x - y \in B_1 \cap B_2 \end{cases} \Rightarrow x - y \in B_1$$

- iii) $x \cdot y \in B_1$ e $x \cdot y \in B_2 \Rightarrow x \cdot y \in B_1 \cap B_2$
- 2) a) $A = \mathbb{Z}$ e $B = 2\mathbb{Z}$ $(A, +, \cdot)$ é um anel comutativo com identidade $1 \neq 0$ B é subanel de A, mas $1 \notin B$, pois $2\mathbb{Z} = \{0, \pm 2, \pm 4, \ldots\}$

b)
$$A = \mathcal{M}_{2\times 2}(\mathbb{R})$$
 e $B = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\}$

$$1_A = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in A$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in B; \quad 1_B = \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} \in B$$

$$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} ab & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$$

$$\Leftrightarrow ab = a \Leftrightarrow b = 1$$

$$\Rightarrow 1_B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \neq 1_A$$

Definição 7.3 (Ideal de um Anel). Seja A um anel. Seja $I \subseteq A$. Dizemos que I é um ideal de A se:

i) I é subanel de A, ou seja

$$\left\{ \begin{array}{l} 0 \in I; \\ x-y \in I \ (x,y \in I); \\ x \cdot y \in I \ (x,y \in I) \end{array} \right.$$

 $ii) \ \forall \ a \in A, \ \forall \ x \in I, \ ent \~ao \ a \cdot x \in I \quad e \quad x \cdot a \in I$

Observação. Se A é comutativo, então $a \cdot x = x \cdot a$. Neste caso, a condição

- ii) transforma-se em:
 - ii') $\forall a \in A, \ \forall x \in I, \ a \cdot x = x \cdot a \in I$

A partir de agora, A será sempre um anel comutativo (exceto em alguns exemplos particulares)

Exemplos:

- a) $A = \mathbb{Z}$ $I = n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\} \text{ (multiplos de } n \in \mathbb{N})$ I 'e ideal de A, pois
 - i) I é subanel de A (veja página 152)
 - ii) Tome $a \in \mathbb{Z}$ e $x \in I$. Então,

$$a x = x a = a(nk) = n \underbrace{(ak)}_{l \in \mathbb{Z}} \in I$$

b)
$$A = \mathcal{M}_{2 \times 2}(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$$

$$I = \left\{ \begin{pmatrix} \alpha & \beta \\ 0 & \gamma \end{pmatrix} \middle| \alpha, \beta, \gamma \in \mathbb{R} \right\} \subseteq A$$

I é subanel de A, mas não é ideal de A, pois:

$$(I) \ 0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in I$$

(II)
$$X = \begin{pmatrix} \alpha & \beta \\ 0 & \gamma \end{pmatrix} \in I \text{ e } Y = \begin{pmatrix} \lambda & \epsilon \\ 0 & \phi \end{pmatrix} \in I$$

$$\Rightarrow X - Y = \begin{pmatrix} \alpha - \lambda & \beta - \epsilon \\ 0 & \gamma - \phi \end{pmatrix} \in I$$

(III)
$$X \cdot Y = \begin{pmatrix} \alpha & \beta \\ 0 & \gamma \end{pmatrix} \begin{pmatrix} \lambda & \epsilon \\ 0 & \phi \end{pmatrix} = \begin{pmatrix} \alpha \lambda & \alpha \epsilon + \beta \phi \\ 0 & \gamma \phi \end{pmatrix} \in I$$

De (I), (II) e (III), segue que I é subanel de A.

(IV) Tome
$$X = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$$
 e $a = \begin{pmatrix} 4 & 5 \\ 6 & 7 \end{pmatrix} \in A$

Então,
$$xa = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ 6 & 7 \end{pmatrix} = \begin{pmatrix} 16 & 19 \\ 18 & 21 \end{pmatrix} \notin I$$

Logo, I não é ideal de A.

c) $A = \mathbb{R}, I = \mathbb{Q} \subseteq A$

I é subanel de A, mas não é ideal de A (por exemplo: tome $x = 1/2 \in I$ e $a = \pi \in A$. Então, $x a \notin I$).

- d) A anel comutativo (genérico)
 - A) $\{0\}$ e A são Ideais Triviais de A. (Se I é ideal de A não-trivial, então I é dito ideal próprio de A) $\{0\} \subsetneq I \subsetneq A$
 - B) $x_1, x_2, \dots, x_n \in A$ (fixos) $I = \{a_1x_1 + a_2x_2 + \ldots + a_nx_n \mid a_i\text{'s } \in A, \ 1 \le i \le n\}$ é um ideal de A chamado de ideal gerado por x_1, \ldots, x_n

Notação. $I = (x_1, x_2, \dots, x_n)$ ou $\langle x_1, x_2, \dots, x_n \rangle$

De fato:

•
$$0 \in I$$
, pois $0 = 0x_1 + 0x_2 + \ldots + 0x_n$

•
$$0 \in I$$
, pois $0 = 0x_1 + 0x_2 + \ldots + 0x_n$
• $\begin{cases} \alpha = a_1x_1 + \ldots + a_nx_n \in I \\ \beta = b_1x_1 + \ldots + b_nx_n \in I \end{cases}$

$$\alpha - \beta = (a_1 - b_1)x_1 + \ldots + (a_n - b_n)x_n \in I$$

• $\alpha \cdot \beta \in I$ (exercício)

$$\alpha \cdot \beta = (a_1x_1 + \dots + a_nx_n)(b_1x_1 + \dots + b_nx_n) = (a_1x_1 + \dots + a_nx_n)b_1x_1 + (a_1x_1 + \dots + a_nx_n)b_2x_2 + \dots + (a_1x_1 + \dots + a_nx_n)b_nx_n = \underbrace{(a_1b_1x_1 + \dots + a_nb_1x_n)}_{\in A} x_1 + \underbrace{(a_1b_2x_1 + \dots + a_nb_2x_n)}_{\in A} x_2 + \dots + \underbrace{(a_1b_nx_1 + \dots + a_nb_nx_n)}_{\in A} x_n \in I$$

$$\underbrace{\left(a_1b_nx_1+\ldots+a_nb_nx_n\right)}_{\in A} x_n \in I$$

Tome $\alpha \in I$ e $y \in A$. Então, $\alpha \cdot y = y \cdot \alpha = y(a_1x_1 + \ldots + a_nx_n) =$ $\underbrace{(ya_1)}_{\in A} x_1 + \ldots + \underbrace{(ya_n)}_{\in A} x_n \in I.$

Caso particular: (um gerador apenas)

Neste caso, $I = (x_1) = \{ax_1 \mid a \in A\}$ (ideal principal gerado por x_1

C) (Operações com Ideais)

I, J - ideais de A

$$I\cap J\stackrel{\mbox{\tiny def}}{:=} \{x\in A\mid x\in I\ \mbox{e}\ x\in J\} \quad \mbox{(intersecção de ideais)}$$

$$I + J \stackrel{\text{\tiny def}}{:=} \{x + y \mid x \in I \text{ e } y \in J\}$$
 (adição de ideais)

Afirmação. $I \cap J$ e I + J são ideais de A

De fato:

Vamos verificar que $I \cap J$ é ideal de A (o outro caso fica como exercício)

• $0 \in I \cap J$, pois $0 \in I$ e $0 \in J$

$$\begin{array}{l} \bullet \ x,y \in I \cap J \Rightarrow x-y \in I \cap J \\ \left\{ \begin{array}{l} x \in I \cap J \Rightarrow x \in I \ \mathrm{e} \ x \in J \\ y \in I \cap J \Rightarrow y \in I \ \mathrm{e} \ y \in J \end{array} \right. \Rightarrow x-y \in I \ \mathrm{e} \ x-y \in J \\ \Rightarrow x-y \in I \cap J \end{array}$$

$$\begin{array}{l} \bullet \ x,y \in I \cap J \Rightarrow x \cdot y \in I \cap J \\ \left\{ \begin{array}{l} x \in I \cap J \Rightarrow x \in I \ \text{e} \ x \in J \\ y \in I \cap J \Rightarrow y \in I \ \text{e} \ y \in J \end{array} \right. \Rightarrow x \cdot y \in I \ \text{e} \ x \cdot y \in J \\ \Rightarrow x \cdot y \in I \cap J \end{array}$$

•
$$x \in I \cap J$$
: $a \in A \Rightarrow x a = a x \in I \cap J$
 $x \in I \cap J \Rightarrow x \in I e x \in J$
 $a \in A$

Como I é ideal, então $ax \in I$. Como J é ideal, então, $ax \in J$. Segue que $a x \in I \cap J$.

I+J é ideal de A

•
$$0 \in I + J$$
, pois $0 = \underbrace{0}_{\in I} + \underbrace{0}_{\in J} \in I + J$
• $a, b \in I + J \Rightarrow a = x_1 + y_1$ e $b = x_2 + y_2$

•
$$a, b \in I + J \Rightarrow a = x_1 + y_1$$
 e $b = x_2 + y_2$

$$a - b = (x_{1} + y_{1}) - (x_{2} + y_{2}) = \underbrace{(x_{1} - x_{2})}_{= x_{3} \in I} + \underbrace{(y_{1} - y_{2})}_{= y_{3} \in J} \in I + J$$
• $a \cdot b = (x_{1} + y_{1}) \cdot (x_{2} + y_{2}) = \underbrace{x_{1} x_{2} + x_{1} y_{2}}_{\in I} + \underbrace{x_{2} y_{1} + y_{1} y_{2}}_{\in J} = \underbrace{x_{3} + y_{3} \in I + J}_{\in I}$
• $c \in A \in (x + y) \in I + J$

$$c(x + y) = \underbrace{c x}_{\in I} + \underbrace{c y}_{\in J} \in I + J$$

$$(x + y) c = \underbrace{x c}_{\in I} + \underbrace{y c}_{\in J} \in I + J$$

Exercícios:

1)
$$A = \mathbb{Z}$$

 $I = 2\mathbb{Z} = \{0, \pm 2, \pm 4, \pm 6, \pm 8, \pm 10, \pm 12, \ldots\} = \{2x \mid x \in \mathbb{Z}\}$
 $J = 3\mathbb{Z} = \{0, \pm 3, \pm 6, \pm 9, \pm 12, \ldots\} = \{3x \mid x \in \mathbb{Z}\}$
 $I \cap J = ?$ $I + J = ?$
 $I \cap J = (\operatorname{mmc}(2, 3)) = (6) = 6\mathbb{Z}$
 $I + J = (\operatorname{mdc}(2, 3)) = (1) = \mathbb{Z}$

2) Verifique que a união de ideais, em geral, não é um ideal.

Exemplo:
$$A = \mathbb{Z}$$

$$\begin{split} I &= 2\mathbb{Z} = \{0, \pm 2, \pm 4, \ldots\} \\ J &= 3\mathbb{Z} = \{0, \pm 3, \pm 6, \ldots\} \\ I &\cup J \text{ não \'e ideal, pois} \\ x &= 2 \in I \subseteq I \cup J \text{ e } y = 3 \in J \subseteq I \cup J \\ y - x &= 3 - 2 = 1 \notin I \cup J \text{ (não vale o fechamento pra "-")} \end{split}$$

3) Mostre que todo ideal de \mathbb{Z} é principal, ou seja, se I é ideal de \mathbb{Z} , então $I = (n) = n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}$ onde $n \in \mathbb{Z}_+$.

Demonstração. Seja I um ideal de \mathbb{Z} . Se $I = \{0\}$, então não há nada a demonstrar, pois $I = 0\mathbb{Z} = \{0k \mid k \in \mathbb{Z}\} = \{0\}$.

Podemos supor que $I \neq \{0\}$. Então, $\exists \ x \in I - \{0\}$. Como I é ideal, segue que $-x \in I$. Assim, I contém elementos positivos e negativos.

Considere $S = I \cap \mathbb{N} = \{a \in I \mid a > 0\} \subseteq \mathbb{N}, \ S \neq \varnothing \stackrel{\text{\tiny PBO}}{\Rightarrow} \exists \ n = \min(S),$ ou seja, $n \in S$ e $n \leq a, \ \forall \ a \in S.$

Afirmação. $I = (n) = n\mathbb{Z}$ (igualdade de conjuntos)

(A) $n\mathbb{Z} \subseteq I$

Segue do fato de $n\mathbb{Z}$ ser ideal de \mathbb{Z}

$$\left. \begin{array}{l} n \in I \\ k \in \mathbb{Z} \end{array} \right\} \Rightarrow n \, k \in I \Rightarrow n \mathbb{Z} \subseteq I$$

(B) $I \subseteq n\mathbb{Z}$

Tome $a \in I$. Queremos mostrar que $a \in n\mathbb{Z}$ $a \in I$; n > 0

Podemos dividir a por n usando o Algoritmo de Euclides: a = kn + r, onde $0 \le r < n$. Observe que $r = a - kn \in I$.

Afirmação. $r = 0 \ (\Rightarrow a = kn)$

Se $r \neq 0$, então $r \in I$, $r > 0 \Rightarrow r \in S = I \cap \mathbb{N}$, o que é absurdo, pois r < n = min(S).

Anéis - Quociente

Motivação: Generalizar a noção de congruência para números inteiros.

Lembre-se: $A = \mathbb{Z}$

$$x, y \in \mathbb{Z}, n \in \mathbb{N}$$

 $x \equiv y \pmod{n} \Leftrightarrow n \mid x - y$, ou seja, x - y = nk, para algum $k \in \mathbb{Z}$.

Generalizando:

Sejam A um anel comutativo com identidade e I um ideal de A. Sejam $x, y \in A$. Dizemos que "x é congruente a y módulo I" se $x - y \in I$.

Notação. $x \equiv y \pmod{I} \Leftrightarrow x - y \in I$ (*)

Observações. i) A congruência em \mathbb{Z} é um caso particular da congruência acima, pois:

$$A = \mathbb{Z}, \ I = n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\} \quad (n \in \mathbb{N})$$

Neste caso, dados $x, y \in \mathbb{Z}$,

$$x \equiv y \pmod{I} \Leftrightarrow x - y \in I = n\mathbb{Z}$$

 $\Leftrightarrow x - y = nk$, para algum $k \in \mathbb{Z}$
 $\Leftrightarrow n \mid x - y \Leftrightarrow x \equiv y \pmod{n}$

ii) (*) define uma relação de equivalência sobre A, pois:

(RE1) (Reflexiva)
$$x \equiv x \pmod{I}, \ \forall \ x \in A$$

De fato: $x - x = 0 \in I$

(RE2) (Simétrica)
$$x \equiv y \pmod{I} \Rightarrow y \equiv x \pmod{I}$$

De fato: $x \equiv y \pmod{I} \Rightarrow x - y \in I \Rightarrow -(x - y) \in I \Rightarrow y - x \in I \Rightarrow y \equiv x \pmod{I}$

(RE3) (Transitiva)
$$x \equiv y \pmod{I}$$
 e $y \equiv z \pmod{I} \Rightarrow x \equiv z \pmod{I}$
De fato: $x \equiv y \pmod{I} \Rightarrow x - y \in I$ (A)
e $y \equiv z \pmod{I} \Rightarrow y - z \in I$ (B)

$$(A) + (B)$$
: Como I é ideal, segue que

$$(x-y) + (y-z) \in I \Rightarrow x-z \in I \Rightarrow x \equiv z \pmod{I}$$

- iii) Usando a congruência (*) é possível construir um novo anel análogo ao anel dos inteiros módulo n. $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$
 - A anel (comutativo com identidade)
 - $\bullet \equiv \pmod{I}$
 - $\overline{x} = \{y \in A \mid y \equiv x \pmod{I}\} = \{y \in A \mid y x = z \in I\} = \{y \in A \mid y = x + z, \text{ com } z \in I\} = X + I = \{x + z \mid z \in I\}$ (classe de equivalência de x módulo I)
 - $A_{/I} = A_{/\equiv} = \{ \overline{x} \mid x \in A \}$ (conjunto das classes de equivalência)

Observe que $A_{/I}$ é uma partição de A, ou seja,

- a) $\overline{x} \neq \emptyset$, $\forall x \in A$;
- b) $\overline{x} \neq \overline{y} \Rightarrow \overline{x} \cap \overline{y} = \emptyset$
- c) $\bigcup_{x \in A} \overline{x} = A$
- Em A_{I} , podemos definir duas operações binárias ("+" e "·") a partir das seguintes propriedades

Se
$$\left\{ \begin{array}{l} x \equiv x' \pmod{I} \\ y \equiv y' \pmod{I} \end{array} \right., \ \mathrm{ent\tilde{a}o} \ \left\{ \begin{array}{l} x + y \equiv x' + y' \pmod{I} \\ x \cdot y \equiv x' \cdot y' \pmod{I} \end{array} \right.$$

Analogamente: Se
$$\left\{\begin{array}{l} \overline{x} = \overline{x'} \\ \overline{y} = \overline{y'} \end{array}\right.$$
, então $\left\{\begin{array}{l} \overline{x+y} = \overline{x'+y'} \\ \overline{x\cdot y} = \overline{x'\cdot y'} \end{array}\right.$

Desta maneira, podemos definir adição e multiplicação sa seguinte maneira:

$$+: A_{/_{I}} \times A_{/_{I}} \to A_{/_{I}}$$
$$(\overline{x}, \overline{y}) \mapsto \overline{x} + \overline{y} \stackrel{\text{def}}{:=} \overline{x + y}$$

(independe da escolha dos representantes)

$$\begin{array}{ccc} \cdot : & A_{/_{I}} \times A_{/_{I}} \to A_{/_{I}} \\ & (\overline{x}, \overline{y}) \mapsto \overline{x} \cdot \overline{y} \stackrel{\text{def}}{:=} \overline{x \cdot y} \end{array}$$

(independe da escolha dos representantes)

Assim, $(A_{/I}, +, \cdot)$ é um anel comutativo com identidade $\overline{1}$, chamado de anel quociente de A pelo ideal I

$$\begin{cases} \overline{0} = \text{elemento neutro para} + \\ \overline{1} = \text{elemento neutro para} \cdot \end{cases}$$

Exercícios Selecionados:

- 1) Mostre que se K é um corpo, então os únicos ideais de K são os triviais: $\{0\}$ e K.
- 2) Sejam A e B anéis. Seja $f:A\to B$ um homomorfismo, ou seja,

$$\left\{ \begin{array}{l} f(a+a') = f(a) + f(a') \\ f(a \cdot a') = f(a) \cdot f(a') \end{array} \right., \ \forall \ a, a' \in A$$

Mostre que

- a) $f(0_A) = 0_B$;
- b) f(-a) = -f(a);
- c) Se A e B são domínios de integridade então ou f é a função constante 0 ou $f(1_A)=1_B$
- 3) Sejam $A \in B$ anéis e

$$f: A \to B$$

 $a \mapsto f(a)$

um homomorfismo. Definimos

- $\operatorname{Ker}(f) = \{ a \in A \mid f(a) = 0_B \} \subseteq A \text{ (núcleo de } f)$
- $Im(f) = \{f(a) \mid a \in A\} \subseteq B \text{ (imagem de } f)$

Mostre que

- a) Im(f) é um subanel de B;
- b) Ker(f) é um ideal de A;
- c) f é injetiva $\Leftrightarrow \text{Ker}(f) = \{0_A\}$ (núcleo trivial)

Resolução:

1) H:
$$\begin{cases} K - \text{corpo} \\ I - \text{ideal de } K \end{cases}$$
T: $I = \{0\}$ ou $I = K$

Demonstração. Vamos supor que $I \neq \{0\}$. Queremos mostrar que I = K.

Se $I \neq \{0\}$, então existe $a \in I$, com $a \neq 0$. Como K é corpo, então existe $b \in K$ tal que $a \cdot b = 1$. Observe que

$$\left\{ \begin{array}{l} a \in I \\ b \in K \end{array} \right. \Rightarrow a \cdot b = 1 \in I$$

Assim, segue que se $x \in K$, então $x \in I$, ou seja, $K \subseteq I$. Como $I \subseteq K$, segue que I = K.

2) a) H:
$$f: A \to B$$
 (homomorfismo)
T: $f(0_A) = 0_B$

Demonstração. $0_A + 0_A = 0_A$

$$f(0_A + 0_A) = f(0_A) \Rightarrow f(0_A) + f(0_A) = f(0_A) = f(0_A) + 0_B \Rightarrow [f(0_A) + f(0_A)] + (-f(0_A)) = [f(0_A) + 0_B] + (-f(0_A)) \Rightarrow f(0_A) + 0_B = 0_B + 0_B \Rightarrow f(0_A) = 0_B$$

b) T: f(-a) = -f(a)

Demonstração.
$$a + (-a) = 0_A$$

 $f(a + (-a)) = f(0_A) \Rightarrow f(a) + f(-a) = 0_B \Rightarrow [f(a) + f(-a)] + (-f(a)) = 0_B + (-f(a)) \Rightarrow f(-a) = -f(a)$

c) H: $A \in B$ são DI T: $f \equiv 0$ (função identidade nula) ou $f(1_A) = 1_B$

Demonstração. Vamos supor que $f \not\equiv 0$ e concluir que $f(1_A) = 1_B$.

De fato:

$$1_A \cdot 1_A = 1_A$$

$$f(1_A \cdot 1_A) = f(1_A) \Rightarrow f(1_A)f(1_A) = f(1_A) \Rightarrow f(1_A)f(1_A) - f(1_A) = 0_B \Rightarrow f(1_A)[f(1_A) - 1_B] = 0_B$$

 $\Rightarrow f(1_A) = 0_B \text{ ou } f(1_A) = 1_B$

Se ocorre o segundo caso, então (ok!). Se ocorre o primeiro, então, $\forall \ x \in A,$

$$f(x) = f(x \cdot 1_A) = f(x) \cdot f(1_A) = 0_B$$

3) Demonstração.

- a) Devemos mostrar que:
 - i) $0_B \in Im(f)$
 - ii) $b_1, b_2 \in Im(f) \Rightarrow b_1 b_2 \in Im(f)$
 - iii) $b_1, b_2 \in Im(f) \Rightarrow b_1 \cdot b_2 \in Im(f)$

De fato:

- i) Pelo exercício 2 (a), $0_B = f(0_A)$
- ii) $b_1 \in Im(f) \Rightarrow b_1 = f(a_1), \ a_1 \in A; \ b_2 \in Im(f) \Rightarrow b_2 = f(a_2), \ a_2 \in A$ Como f é homomorfismo, então $f(a_1-a_2) = f(a_1+(-a_2)) = f(a_1)+f(-a_2) = f(a_1)-f(a_2) = b_1 - b_2 \in Im(f)$

iii)
$$f(a_1 \cdot a_2) = f(a_1)f(a_2) = b_1 \cdot b_2 \in Im(f)$$

- b) Devemos mostrar que:
 - i) $0_A \in \text{Ker}(f)$
 - ii) $a_1, a_2 \in \text{Ker}(f) \Rightarrow a_1 a_2 \in \text{Ker}(f)$
 - iii) $a_1, a_2 \in \text{Ker}(f) \Rightarrow a_1 \cdot a_2 \in \text{Ker}(f)$
 - iv) $a \in \text{Ker}(f), x \in A \Rightarrow ax \in \text{Ker}(f)$ e $xa \in \text{Ker}(f)$

De fato:

- i) Pelo exercício 2 (a), $f(0_A) = 0_B \Rightarrow 0_A \in \text{Ker}(f)$
- ii) $a_1 \in \text{Ker}(f) \Rightarrow f(a_1) = 0_B$; $a_2 \in \text{Ker}(f) \Rightarrow f(a_2) = 0_B$ Como f é homomorfismo, $f(a_1 - a_2) = f(a_1) - f(a_2) = 0_B - 0_B = 0_B \Rightarrow a_1 - a_2 \in \text{Ker}(f)$
- iii) $a_1, a_2 \in \text{Ker}(f) \Rightarrow a_1 a_2 \in \text{Ker}(f)$ $a_1 \in \text{Ker}(f) \Rightarrow f(a_1) = 0$ $a_2 \in \text{Ker}(f) \Rightarrow f(a_2) = 0$ $f(a_1 - a_2) \stackrel{(*)}{=} f(a_1) + f(-a_2) \stackrel{(*)}{=} f(a_1) - f(a_2) = 0 + 0 = 0$ $\Rightarrow a_1 - a_2 \in \text{Ker}(f)$
- iv) $a \in \text{Ker}(f), x \in A \Rightarrow a \cdot x \in \text{Ker}(f) \text{ e } x \cdot a \in \text{Ker}(f)$ $a \in \text{Ker}(f) \Rightarrow f(a) = 0$ $f(a \cdot x) \stackrel{(*)}{=} f(a) \cdot f(x) = 0 \cdot f(x) = 0$ $\Rightarrow a \cdot x \in \text{Ker}(f)$ $f(x \cdot a) \stackrel{(*)}{=} f(x) \cdot f(a) = f(x) \cdot 0 = 0$ $x \cdot a \in \text{Ker}(f)$
 - (*): fé homomorfismo
- c) (\Rightarrow) $\begin{cases} \text{H: } f \text{ \'e injetiva} \\ \text{T: } \text{Ker}(f) = \{0_A\} \end{cases}$

Por hipótese, f é injetiva, ou seja, elementos distintos têm imagens distintas. Assim, se $a \in A$ é tal que $a \neq 0_A$, então $f(a) \neq f(0_A) = 0_B$. Portanto, $\forall a \neq 0_A$, $a \notin \text{Ker}(f) \Rightarrow \text{Ker}(f) = \{0_A\}$.

$$(\Leftarrow)$$
 $\begin{cases} \text{H: Ker}(f) = \{0_A\} \\ \text{T: } f \text{ \'e injetora} \end{cases}$

Queremos mostrar que se f(a) = f(a'), então a = a'.

De fato:
$$f(a) = f(a') \Rightarrow f(a) - f(a') = 0_B \Rightarrow f(a - a') = 0_B \Rightarrow a - a' \in \text{Ker}(f) = \{0_A\} \Rightarrow a - a' = 0_A$$
, isto é, $a = a' + 0_A = a'$.

Teorema 7.4 (Primeiro Teorema do Homomorfismo de Anéis). Seja $f: A \to B$ um homomorfismo de anéis. Então:

- a) Im(f) é um subanel de B;
- b) Ker(f) é um ideal de A;
- c) O anel quociente $A_{/_{Ker(f)}}$ é isomorfo a Im(f), isto é, $A_{/_{Ker(f)}} \cong Im(f)$

Demonstração. Falta apenas demonstrar c).

Queremos mostrar que existe uma função $\psi:A_{/_{\mathrm{Ker}(f)}}\to Im(f)$ tal que:

- i) ψ é bijeção;
- ii) ψ é homomorfismo.

$$f: A \to B$$
 (dada)
 $x \mapsto y = f(x)$

$$\pi: A \to A_{/_{\mathrm{Ker}(f)}}$$
 (auxiliar)
 $x \mapsto \pi(x) = \overline{x}$

$$\psi: A_{/_{\mathrm{Ker}(f)}} \to Im(f)$$
 (a obter)
 $\overline{x} \mapsto \psi(\overline{x}) := f(x)$

- i) ψ é bijeção:
 - ψ é sobrejetora: $CD(\psi) = Im(f)$

$$Im(\psi) = \{\psi(\overline{x}) \mid \overline{x} \in A_{/\mathrm{Ker}(f)}\} = \{f(x) \mid x \in A\} = Im(f)$$

• ψ é injetiva: $\psi(\overline{x}) = \psi(\overline{y}) \Rightarrow \overline{x} = \overline{y}$

De fato:

$$\psi(\overline{x}) = \psi(\overline{y}) \Rightarrow f(x) = f(y) \Rightarrow f(x) - f(y) = 0_B \Rightarrow f(x - y) = 0_B \Rightarrow x - y \in \text{Ker}(f) = I \Rightarrow x \equiv y \pmod{I} \Rightarrow \overline{x} = \overline{y}$$

- ii) ψ é homomorfismo:
 - $\psi(\overline{x} + \overline{y}) = \psi(\overline{x}) + \psi(\overline{y})$
 - $\psi(\overline{x} \cdot \overline{y}) = \psi(\overline{x}) \cdot \psi(\overline{y})$

De fato:

•
$$\psi(\overline{x} + \overline{y}) = \psi(\overline{x+y}) = f(x+y) = f(x) + f(y) = \psi(\overline{x}) + \psi(\overline{y})$$

•
$$\psi(\overline{x} \cdot \overline{y}) = \psi(\overline{x \cdot y}) = f(x \cdot y) = f(x) \cdot f(y) = \psi(\overline{x}) \cdot \psi(\overline{y})$$

II) Grupos

Definição 7.5 (Grupo). Seja $G \neq \emptyset$ munido de uma operação binária *. Dizemos que o par (G, *) é um Grupo (ou que G é um grupo) se:

- $a) * \acute{e} associativa: (a*b)*c = a*(b*c), \forall a,b,c \in G$
- b) * possui um elemento neutro $e: e*a = a*e \ (\forall \ a \in G)$
- c) $\forall a \in G, \exists a' \in G \mid a * a' = e \ e \ a' * a = e$

Observação. Se vale também a propriedade

 $d) \ \forall \ a,b \in G, \ a*b=b*a,$

então G é dito grupo abeliano (ou comutativo).

Convenção: A partir de agora, vamos adotar uma notação multiplicativa para um grupo (G, *).

notação abstrata	notação multiplicativa
*	•
e	1
a'	a^{-1}

Com esta notação, podemos definir potências inteiras de $a \in G$

$$a^{0} := 1$$

$$a^{1} := a$$

$$a^{2} := a \cdot a$$

$$\vdots$$

$$a^{n} = \underbrace{a \cdot a \cdot a \dots a}_{n \text{ vezes}} = a^{n-1} \cdot a \quad (n \in \mathbb{N})$$

$$a^{-n} = (a^{n})^{-1} \ (n \in \mathbb{N})$$

Propriedades: (Lei de Expoentes)

$$\begin{cases} a^{m} \cdot a^{n} = a^{m+n} = a^{n} \cdot a^{m} \\ (a^{m})^{n} = a^{m \cdot n} \end{cases}, \quad (m, n \in \mathbb{Z})$$
Lembre-se:
$$\begin{cases} (a^{-1})^{-1} = a \\ (a \cdot b)^{-1} = b^{-1} \cdot a^{-1} \end{cases}$$

Exercício: (Desafio)

Seja (G, \cdot) um grupo. Mostre que se $x^2 = 1, \ \forall \ x \in G$, então G é abeliano.

Sugestão: usar
$$\begin{cases} (x^{-1})^{-1} = x \\ (xy)^{-1} = y^{-1}x^{-1} \end{cases}$$

$$x, y \in G \Rightarrow x \cdot y \in G$$
 e $(x \cdot y)^{-1} \in G$, pois (G, \cdot) é grupo.
Como $x^2 = x \cdot x = 1$, $\forall x \in G$, temos $x^{-1} = x$, $\forall x \in G$. Então,

$$x \cdot y = (x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$$

mas,
$$y^{-1} = y$$
 e $x^{-1} = x$, daí

$$x \cdot y = y \cdot x, \quad \forall \ x, y \in G$$

Observação. Quando G é abeliano, é costume denotar * por +. Neste caso:

notação abstrata	notação aditiva
*	+
e	0
a'	-a

Com esta notação, podemos definir múltiplos inteiros de $a \in G$

$$\begin{aligned} 0 \cdot a &:= 0 \\ 1 \cdot a &:= a \\ -1 \cdot a &:= -a \\ n \cdot a &:= \underbrace{a + a + a + \ldots + a}_{n \text{ parcelas}} \quad (n \in \mathbb{N}) \\ -n \cdot a &:= -\underbrace{[a + a + a + \ldots + a]}_{n \cdot a} \quad (n \in \mathbb{N}) \end{aligned}$$

Propriedade: $na + ma = (n + m)a \quad (m, n \in \mathbb{Z})$

Definição 7.6 (Ordem de Um Grupo). Seja (G, \cdot) um grupo. Definimos a ordem de G como sendo a cardinalidade de G.

Notação. $\circ(G) = |G|$ (lê-se: "ordem de G")

Observação. Se $|G| < \infty$, então G é dito grupo finito. Caso contrário, G é dito grupo infinito.

Exemplos: a) $(\mathbb{Z}, +)$ = grupo infinito (abeliano)

- b) $(\mathbb{Z}_n, +) = \text{grupo finito } (|\mathbb{Z}_n| = n) \text{ (abeliano)}$
- c) $(S_n, \circ) = \text{grupo finito } (|S_n| = n!) \text{ (não-abeliano)}$
- d) (\mathbb{R}^+,\cdot) = grupo infinito (abeliano) $(|\mathbb{R}|=\infty)$

Definição 7.7 (Subgrupo). Sejam (G, \cdot) um grupo e $H \subseteq G$. Dizemos que H é um subgrupo de G se:

- a) $H \neq \emptyset$ (isto \acute{e} , $1 \in H$);
- b) $\forall h_1, h_2 \in H, h_1 \cdot h_2 \in H;$
- c) (H, \cdot) é também um grupo

Exemplos:

- a) \forall grupo (G, \cdot) , $\{1\}$ e G são subgrupos (subgrupos triviais)
- b) $G = \operatorname{GL}_n(\mathbb{R}) = \{A = (a_{ij})_{n \times n} \mid a_{ij}\text{'s} \in \mathbb{R} \text{ e det } A \neq 0\}$ (grupo linear geral de grau n); $* = \cdot$ $\det(A^{-1}) = 1/\det A$ e $\det(AB) = \det A \cdot \det B$ $H = \{A \in \operatorname{GL}_n(\mathbb{R}) \mid \det A = 1\} = \operatorname{SL}_n(\mathbb{R}) \subseteq G$ (grupo linear especial de grau n) H é subgrupo de G $(H \leq G)$

Notação. $H \leq G$ (lê-se: H é subgrupo de G)

c)
$$G = \mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}, * = +$$

 $H = \{\overline{0}, \overline{2}, \overline{4}\} \subseteq G$

Afirmação. $H \leqslant G$

$$e = \overline{0} \in H$$

$$\begin{array}{c|ccccc} + & \overline{0} & \overline{2} & \overline{4} \\ \hline 0 & \overline{0} & \overline{2} & \overline{4} \\ \overline{2} & \overline{2} & \overline{4} & \overline{0} \\ \overline{4} & \overline{4} & \overline{0} & \overline{2} \end{array}$$

(vale o fechamento)

$$(\overline{0})' = \overline{0}, \ (\overline{2})' = \overline{4} \ (= -\overline{2}), \ (\overline{4})' = \overline{2} \ (= -\overline{4})$$

d)
$$G = S_3 = \{f : \{1, 2, 3\} \rightarrow \{1, 2, 3\} \mid f \text{ \'e bijeç\~ao}\}$$

= $\{f_1, f_2, f_3, f_4, f_5, f_6\}$, onde

$$f_1 = e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
 $f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ $f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
 $f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ $f_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$

$$H_1 = \{f_1\} \leqslant G$$
 (trivial)

$$H_2 = \{f_1, f_2\} \leqslant G$$

$$H_3 = \{f_1, f_3\} \leqslant G$$

$$H_4 = \{f_1, f_4\} \leqslant G$$

$$H_5 = \{f_1, f_5, f_6\} \leqslant G$$

$$H_6 = S_3 \leqslant G$$
 (trivial)

 $H_5 \leqslant G$

De fato:

• $f_1 \in H_5$

$$f_{5} \circ f_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = f_{6}$$

$$f_{5} \circ f_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = f_{1}$$

$$f_{6} \circ f_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = f_{1}$$

$$f_{6} \circ f_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = f_{5}$$

(vale o fechamento)

$$(f_1)^{-1} = f_1, (f_5)^{-1} = f_6, (f_6)^{-1} = f_5$$

• $H_2 = \{f_1, f_2\}$

$$f_2 \circ f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = f_1$$

$$\begin{cases} f_{1} \in H_{2} \\ \text{vale o fechamento} & \Rightarrow H_{2} \leqslant G \\ (f_{1})^{-1} = f_{1}, \ (f_{2})^{-1} = f_{2} \end{cases}$$

$$\bullet H_{3} = \{f_{1}, f_{3}\}$$

$$\frac{\circ \parallel f_{1} \quad f_{3}}{f_{1} \parallel f_{1} \quad f_{3}}$$

$$f_{3} \circ f_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = f_{1}$$

$$\begin{cases} f_{1} \in H_{3} \\ \text{vale o fechamento} \\ (f_{1})^{-1} = f_{1}, \ (f_{3})^{-1} = f_{3} \end{cases}$$

$$\bullet H_{4} = \{f_{1}, f_{4}\}$$

$$\frac{\circ \parallel f_{1} \quad f_{4}}{f_{1} \parallel f_{1} \quad f_{4}}$$

$$f_{4} \circ f_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = f_{1}$$

$$\begin{cases} f_{1} \in H_{4} \\ \text{vale o fechamento} \\ (f_{1})^{-1} = f_{1}, \ (f_{4})^{-1} = f_{4} \end{cases}$$

e) (Subgrupo Cícilo)
$$(G, \cdot) - \text{grupo}, \ a \in G$$
$$H = \{a^k \mid k \in \mathbb{Z}\} = \langle a \rangle \leqslant G$$
(subgrupo cíclico gerado por a)

Observação. Se $\langle a \rangle = G$, isto é, $\forall g \in G, g = a^k$, para algum $k \in \mathbb{Z}$, então G é dito grupo cíclico gerado por a.

Afirmação. $H \leqslant G$ De fato:

• $e = a^0 \quad (k = 0) \in H$

•
$$\begin{cases} h_1 = a^{k_1} \in H \\ h_2 = a^{k_2} \in H \end{cases} \Rightarrow h_1 \cdot h_2 = a^{k_1} a^{k_2} = a^{k_1 + k_2} \in H$$

•
$$(H, \cdot)$$
 é um grupo
$$\begin{cases} - \text{ associativa} \\ - \text{ elemento neutro} \\ - (a^k)^{-1} = a^{-k} \in H \end{cases}$$

Caso particular: subgrupo cíclico com dois elementos

$$G = \mathbb{R}^*; \ a = -1$$

 $* = \cdot$

$$H = \{-1, 1\} = \langle -1 \rangle = \{(-1)^n \mid n \in \mathbb{Z}\} \subset G$$

$$\begin{array}{c|cccc} \cdot & -1 & 1 \\ \hline -1 & 1 & -1 \\ 1 & -1 & 1 \end{array}$$

Exercício: Sejam (G, \cdot) um grupo e $H \leq G$. Dados $x, y \in G$, defina:

$$x \equiv y \pmod{H} \Leftrightarrow x^{-1}y \in H$$

Mostre que \equiv define uma relação de equivalência sobre G.

Resolução:

(RE 1) (Reflexiva)
$$x \equiv x \pmod{H}$$
 (ok!), pois $x^{-1}x = 1 \in H$ (RE 2) (Simetria) $x \equiv y \pmod{H} \Rightarrow y \equiv x \pmod{H}$ De fato: $x \equiv y \pmod{H} \Rightarrow x^{-1}y \in H \Rightarrow (x^{-1}y)^{-1} \in H$ $(x^{-1}y)^{-1} = y^{-1}(x^{-1})^{-1} = y^{-1}x \Rightarrow y \equiv x \pmod{H}$ (RE 3) (Transitividade) $x \equiv y \pmod{H} \Rightarrow x^{-1}y \in H$ $y \equiv z \pmod{H} \Rightarrow y^{-1}z \in H$ Como $H \leqslant G$, $(x^{-1}y)(y^{-1}z) \in H$ $(x^{-1}y)(y^{-1}z) = x^{-1}(yy^{-1})z = (x^{-1}1)z = x^{-1}z \Rightarrow x \equiv z \pmod{H}$

Teorema 7.8 (Teorema de Lagrange). (Tal Teorema relaciona as cardinalidades de H e G, onde $H \leqslant G$ e $|G| < \infty$)

Seja (G,\cdot) um grupo finito. Seja $H \leq G$. Então, |H| divide |G|.

Exemplo:
$$G = S_3$$
; * = 0
 $|G| = 3! = 6$
 $H_1 = \{f_1\} \Rightarrow |H_1| = 1 \mid 6$
 $H_2 = \{f_1, f_2\} \Rightarrow |H_2| = 2 \mid 6$
 $H_3 = \{f_1, f_3\} \Rightarrow |H_3| = 2 \mid 6$
 $H_4 = \{f_1, f_4\} \Rightarrow |H_4| = 2 \mid 6$
 $H_5 = \{f_1, f_5, f_6\} \Rightarrow |H_5| = 3 \mid 6$
 $H_6 = S_3 \Rightarrow |H_6| = 6 \mid 6$

Correção da Lista 4

2) a) Tese: f é monomorfismo de anéis

$$f: \mathbb{C} \to \mathcal{M}_{2\times 2}(\mathbb{R})$$

$$a+b\,i\mapsto f(a+b\,i) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Demonstração.

I)
$$f$$
 é homomorfismo (preserva "+" e "·")
$$z_1 = a + b i \in \mathbb{C} \Rightarrow f(z_1) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R})$$

$$z_2 = c + d i \in \mathbb{C} \Rightarrow f(z_2) = \begin{pmatrix} c & -d \\ d & c \end{pmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R})$$

$$z_1 + z_2 = (a + c) + (b + d)i \in \mathbb{C}$$

$$f(z_1 + z_2) = \begin{pmatrix} a + c & -(b + d) \\ b + d & a + c \end{pmatrix} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \begin{pmatrix} c & -d \\ d & c \end{pmatrix}$$

$$= f(z_1) + f(z_2)$$

$$z_1 \cdot z_2 = (a + b i)(c + d i) = (ac - bd) + (ad + bc)i$$

$$f(z_1 \cdot z_2) = \begin{pmatrix} ac - bd & -(ad + bc) \\ ad + bc & ac - bd \end{pmatrix}$$

$$f(z_1) \cdot f(z_2) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} c & -d \\ d & c \end{pmatrix} \text{ II) } f \text{ é injetiva:}$$

$$\text{Ker}(f) = \{z \in \mathbb{C} \mid f(z) = 0\}$$

$$= \{a + b i \in \mathbb{C} \mid \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\}$$

$$= \{0 + 0i\} = \{0\} \Rightarrow f \text{ é injetora}$$

11)
$$f(x) = x^2 - x \in A[x]$$
, onde A é DI

Tese: As únicas raízes de f em A são 0 e 1.

Demonstração. $\alpha \in A$ é raiz de f se $f(\alpha) = 0$

$$f(\alpha) = 0 \Rightarrow \alpha^2 - \alpha = 0 \Rightarrow \alpha(\alpha - 1) = 0 \Rightarrow \alpha = 0$$
 ou $\alpha - 1 = 0 \Rightarrow \alpha = 0$ ou $\alpha = 1$

Teorema de Lagrange (7.8). Sejam (G,\cdot) um grupo finito e $H \leq G$. Então, |H| divide |G| (isto é, |G| = n|H|, com $n \in \mathbb{N}$).

Demonstração. (do Teorema 7.8)

Pelo exercício da página 172, dados $x, y \in G$, $x \equiv y \pmod{H} \Leftrightarrow x^{-1}y \in G$ H define uma relação de equivalência sobre G. Assim, podemos obter \overline{x} (classe de equivalência de x), a saber:

$$\overline{x} = \{ y \in G \mid x \equiv y \pmod{H} \} = \{ y \in G \mid x^{-1}y = h \in H \}$$

$$= \{ y \in G \mid y = xh, h \in H \} \stackrel{\text{def}}{=} xH = \{ xh \mid h \in H \}$$

 $(xH \text{ \'e a classe lateral \`a esquerda de } H \text{ determinada por } x)$

Observações. a) Poderíamos também ter definido uma outra relação de equivalência:

$$x \equiv y \pmod{H} \Leftrightarrow xy^{-1} \in H$$

Neste caso, $\overline{x} = Hx$ (classe lateral à direita de H determinada por x)

- b) Como G é finito, segue que há um número finito de classes laterais à esquerda, a saber: x_1H , x_2H ,..., x_nH . Tais classes constituem uma partição de G, ou seja:
 - i) $x_i H \neq \emptyset$, $\forall i \in \{1, \dots, n\}$;
 - ii) $x_i H \neq x_i H \Rightarrow x_i H \cap x_i H = \emptyset, (i \neq j);$
 - iii) $G = x_1 H \cup x_2 H \cup \ldots \cup x_n H$
- c) Todas as classes laterais à esqurda têm o mesmo número de elementos. De fato:

$$f: \quad H \to xH$$
$$h \mapsto f(h) = xh$$

é uma bijeção. Logo, $|xH| = |H|, \ \forall \ x \in G$.

Conclusão:

$$|G| = |x_1H| + |x_2H| + \ldots + |x_nH| = |H| + |H| + \ldots + |H| = nH$$

(n = indice de H em G = número de distintas classes à esquerda)

Exercícios:

1) Fatore os seguintes polinômios como produto de fatores irredutíveis em $\mathbb{R}[x]$:

a)
$$f(x) = x^3 + x^2 + x + 1$$

b)
$$f(x) = x^3 + 1$$

c)
$$f(x) = x^3 - 1$$

d)
$$f(x) = x^3 - x$$

e)
$$f(x) = x^3 + x$$

f)
$$f(x) = x^4 + 1$$

g)
$$f(x) = x^6 - 1$$

2) (Multiplicidade de uma Raiz)

$$K = \text{corpo (por exemplo: } \mathbb{Q}, \ \mathbb{R}, \ \mathbb{C} \text{ ou } \mathbb{Z}_p)$$

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \in K[x], \ a_n \neq 0$
 $\alpha \in K$ - raiz de $f(x)$ (isto é, $f(\alpha) = 0$)
 $m \in \mathbb{N}$

Dizemos que α é raiz de multiplicidade m se $f(x) = (x - \alpha)^m \cdot g(x)$, onde $g(x) \in K[x]$ e $g(\alpha) \neq 0$.

(Lembre-se: (Teorema do resto + Teorema de D'Allembert)

Mostre que α é raiz simples $\Leftrightarrow f(\alpha) = 0$ e $f'(\alpha) \neq 0$. Eq: α é raiz de multiplicidade $m \geq 2 \Leftrightarrow f(\alpha) = 0$ e $f'(\alpha) = 0$. (Na verdade: $f(\alpha) = f'(\alpha) = \ldots = f^{(m-1)}(\alpha) = 0$ e $f^{(m)}(\alpha) \neq 0$)

Observação.

$$m = 1 : \alpha \text{ \'e raiz simples}$$

 $f(x) = (x - \alpha)g(x)$

$$m = 2$$
: α é raiz dupla
$$f(x) = (x - \alpha)g(x)$$
 :

Resolução:

- a) Lembre-se: Todo polinômio $f(x) \in K[x]$ não-constante (isto é, $gr(f) \ge 1$) pode ser decomposto como um produto de fatores irredutíveis. Tal decomposição é única, a menos de constantes.
- b) Em \mathbb{C} (T.F.A.), os únicos polinômios irredutíveis são os lineares: ax+b, com $a \neq 0$.
- c) Em \mathbb{R} , os únicos polinômios irredutíveis são os lineares $(ax+b, \text{ com } a \neq 0)$ e os quadráticos com $\Delta < 0$ $(ax^2+bx+c, \text{ com } a \neq 0)$ e $\Delta = b^2 4ac < 0)$
- d) Se $\alpha \in \mathbb{C}$ é raiz de $f(x) \in \mathbb{R}[x]$ então $\overline{\alpha} \in \mathbb{C}$ também o é

$$(x - \alpha)(x - \overline{\alpha}) = x^2 - \underbrace{(\alpha + \overline{\alpha})}_{2 \operatorname{Re}(\alpha) \in \mathbb{R}} x + \underbrace{\alpha \overline{\alpha}}_{|\alpha|^2 \in \mathbb{R}}$$

1) a)
$$f(x) = x^3 + x^2 + x + 1 = x^2(x+1) + (x+1) = (x+1)\underbrace{(x^2+1)}_{0 = -4 < 0}$$

b)
$$f(x) = x^3 + 1 \stackrel{\text{(1)}}{=} (x+1) \underbrace{(x^2 - x + 1)}_{x^2 - x^3 \le 0}$$

c)
$$f(x) = x^3 - 1 \stackrel{\text{(2)}}{=} (x - 1)(x^2 + x + 1)$$

d)
$$f(x) = x^3 - x = x(x^2 - 1) \stackrel{\text{(3)}}{=} x(x+1)(x-1)$$

e)
$$f(x) = x^3 + x = x \underbrace{(x^2 + 1)}_{\Delta = -4 < 0}$$

f)
$$f(x) = x^4 + 1 = [(x^2)^2 + 2x^2 \cdot 1 + 1^2] - 2x^2 \cdot 1 = (x^2 + 1)^2 - \underbrace{2x^2}_{(\sqrt{2}x)^2} \stackrel{(3)}{=} (x^2 + 1 + \sqrt{2}x)(x^2 + 1 - \sqrt{2}x) = \underbrace{(x^2 + \sqrt{2}x + 1)}_{\Delta = -2 < 0} \underbrace{(x^2 + \sqrt{2}x + 1)}_{\Delta = -2 < 0} \underbrace{(x^2 - \sqrt{2}x + 1)}_{\Delta = -2 < 0}$$

g)
$$f(x) = x^6 - 1 \stackrel{\text{(3)}}{=} (x^3 - 1)(x^3 + 1)$$

$$\stackrel{\text{(2)} e^{(1)}}{=} (x - 1) \underbrace{(x^2 + x + 1)}_{\Delta = -3 < 0} (x + 1) \underbrace{(x^2 - x + 1)}_{\Delta = -3 < 0}$$
(1) $(a^3 + b^3) = (a + b)(a^2 - ab + b^2)$
(2) $(a^3 - b^3) = (a - b)(a^2 + ab + b^2)$
(3) $(a^2 - b^2) = (a + b)(a - b)$

2) (Multiplicidade)

Exemplos:

a)
$$f(x) = ax + b \in \mathbb{R}[x], \ a \neq 0$$

 $f(x) = 0 \Rightarrow ax + b = 0 \Rightarrow x = -b/a$
 $f(x) = ax + b = a\left(x + \frac{b}{a}\right) = a\left(x - \left(-\frac{b}{a}\right)\right)^1$
 $x = -b/a$ é raiz simples
 $f'(x) = a \neq 0$ (em particular, $f'(-b/a) \neq 0$)
b) $f(x) = ax^2 + bx + c \in \mathbb{R}[x]$, com $a \neq 0$
 $f(x) = 0 \Rightarrow ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $\begin{cases} \Delta > 0 : \ x_1, x_2 \in \mathbb{R}; \ x_1 \neq x_2 \\ \Delta = 0 : \ x_1, x_2 \in \mathbb{R}; \ x_1 = x_2 \\ \Delta < 0 : \ x_1, x_2 \in \mathbb{C}; \ (x_2 = \overline{x_1}) \end{cases}$
Observe que se $\Delta = 0$, então $\lambda = (-b/2a)$ é uma raiz dupla $(m = 2)$. Assim, $f(x) = a(x - x_1)(x - x_2) = a(x - \lambda)^2$ $(\lambda = x_1 = x_2)$
 $f'(x) = 2ax + b$
 $f''(x) = 2ax + b$
 $f''(x) = 2a \neq 0$ (pois $a \neq 0$)
Observe que
 $\begin{cases} f(\lambda) = 0 \\ f'(\lambda) \neq 0 \end{cases}$
c) $f(x) = x^3 \in \mathbb{R}[x]$
 $x^3 = (x - 0)^3$
 $x = 0$ é raiz tripla $(m = 3)$
 $f(x) = x^3$ $f''(x) = 6x$
 $f'(x) = 3x^2$ $f'''(x) = 6 \neq 0$
Observe que $f(0) = f'(0) = f''(0) = 0$ e $f'''(0) \neq 0$.

3) (Pendente - veja página 159)

$$A = \mathbb{Z}$$
 (anel dos inteiros)
 $a, b \in \mathbb{N}$

$$I = (a) = a\mathbb{Z} = \{ax \mid x \in \mathbb{Z}\} = \{0, \pm a, \pm 2a, \ldots\}$$

$$J = (b) = b\mathbb{Z} = \{by \mid y \in \mathbb{Z}\} = \{0, \pm b, \pm 2b, \ldots\}$$

$$I + J = (d) = d\mathbb{Z} = \{0, \pm d, \pm 2d, \ldots\}$$

$$I \cap J = (m) = m\mathbb{Z} = \{0, \pm m, \pm 2m, \ldots\}$$

Teorema 7.9. d = mdc(a, b) e m = mmc(a, b)

Exemplo: a = 2, b = 3

$$I = (2) = 2\mathbb{Z} = \{0, \pm 2, \pm 4, \pm 6, \pm 8, \pm 10, \pm 12, \ldots\}$$

$$J = (3) = 3\mathbb{Z} = \{0, \pm 3, \pm 6, \pm 9, \pm 12, \pm 15, \pm 18, \ldots\}$$

$$I + J = (\text{mdc}(3, 2)) = (1) = 1\mathbb{Z} = \mathbb{Z}$$

$$I \cap J = (\text{mmc}(2,3)) = (6) = 6\mathbb{Z} = \{0, \pm 6, \pm 12, \pm 18, \ldots\}$$

Definição 7.10 (Ordem de Um Elemento de Um Grupo). Sejam (G, \cdot) um grupo e $a \in G$. Dizemos que a tem ordem (ou período) finita se $\exists n \in \mathbb{N} \mid a^n = 1$. O mínimo valor de n é chamado de ordem (ou período) de a.

Notação.
$$\circ(a) = min\{n \in \mathbb{N} \mid a^n = 1\}$$

Observação. Caso não exista tal $n \in \mathbb{N}$, dizemos que a tem ordem infinita.

4) Calcule \circ (a) nos seguintes casos:

a)
$$G = \{\pm 1\}, * = \cdot$$

 $a = 1 \Rightarrow \circ(1)$
 $a = -1 \Rightarrow \circ(-1)$

b)
$$G = S_3$$
; $* = \circ$

$$a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \Rightarrow \circ \begin{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \end{pmatrix}$$

c)
$$G = \mathbb{Z}_6$$
; $* = +$
 $a = \overline{2} \Rightarrow \circ(\overline{2})$
 $a = \overline{3} \Rightarrow \circ(\overline{3})$

d)
$$G = \mathbb{C}^*$$
; $* = \cdot$
 $a = i \Rightarrow \circ(i)$

Resolução:

a)
$$e = 1$$
; $a^n = 1$
 $\circ(1) = 1$, pois $1^1 = 1$
 $\circ(-1) = 2$, pois $(-1)^2 = 1$

$$b) e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

 $a^n = e$ (compor $a \ n$ vezes)

$$a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \neq e$$

$$a^2 = a \circ a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \neq e$$

$$a^{3} = a^{2} \circ a = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = e$$

$$\Rightarrow \circ(a) = 3$$

c)
$$e = \overline{0}; * = +$$

$$n a = 0$$

$$a = \overline{2}$$

$$1 \cdot \overline{2} = \overline{2} \neq \overline{0}$$

$$2 \cdot \overline{2} = \overline{2} + \overline{2} = \overline{4} \neq \overline{0}$$

$$3 \cdot \overline{2} = \overline{2} + \overline{2} + \overline{2} = \overline{6} = \overline{0}$$

$$\circ(\overline{2}) = 3$$

$$a = \overline{3}$$

$$1 \cdot \overline{3} = \overline{3} \neq \overline{0}$$

$$2 \cdot \overline{3} = \overline{3} + \overline{3} = \overline{6} = \overline{0}$$

$$\circ (\overline{3}) = 2$$

$$d) e = 1; a^n = 1$$

$$a = i$$

$$a^1 = i \neq 1$$

$$a^2 = -1 \neq 1$$

$$a^3 = -i \neq 1$$

$$a^4 = 1$$

$$\circ (a) = 4$$

Exercícios Propostos

Lógica & Conjuntos & Indução

(1ª Lista de Exercícios)

1) João e Ricardo estudam em colégios diferentes, porém estudam juntos em casa. Por coincidência, no dia em que João teve aula sobre função injetora, Ricardo também a teve. No caderno de João estava escrito: "Uma função é injetora quando $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ ". Já no caderno de Ricardo estava escrito: "Uma função é injetora quando $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ ".

Assim, começou uma discussão:

- Seu professor errou disse João.
- Foi o seu quem errou, pois o meu não erra respondeu Ricardo.

Com base no texto acima, qual é a sua conclusão? Justifique.

- 2) Considere as afirmações seguintes:
 - Todo automóvel alemão é bom
 - Se um automóvel é bom, então ele é caro

- Existem automóveis suecos bons
- Se não choveu, então todas as lojas estão abertas
- Se x < y, então z = 5 ou z = 7

Admitindo a veracidade dessas 5 afirmações e admitindo que existam automóveis franceses, alemães, suecos e coreanos, julgue os itens a seguir:

- a) () Se alguma loja está fechada, então choveu.
- b) () Se um automóvel não é caro, então ele pode ser francês.
- c) () Alguns automóveis suecos são caros.
- d) () Existem automóveis coreanos caros.
- e) () Um automóvel alemão pode não ser caro.
- f) () Se $z \neq 5$ e $z \neq 7$, então x > y.
- 3) (PAS UnB) Em matemática, as manipulações algébricas são fundamentais e devem ser feitas com bastante cautela, a fim de que sejam evitadas operações incorretas. Na seqüência de igualdades abaixo, numeradas de I a VII, considere x e y números reais não-nulos.
 - I) x = y
 - II) $xy = y^2$
 - III) $x^2 xy = x^2 y^2$
 - IV) x(x y) = (x + y)(x y)
 - V) x = x + y
 - VI) x = 2x
 - VII) 1 = 2

Com base nessas informações e admitindo I como verdadeira, julgue os itens abaixo:

- a) () II é consequência de I.
- b) () Os processos de fatoração usados em III para se obter IV valem apenas para x > 0.

- c) () É correta a obtenção de V a partir de IV.
- d) () É correta a obtenção de VII a partir de VI.
- 4) Sendo $A = \{0, 1, 2, \{2\}, \{1, 2\}\}, B = \{2\}, C = \{\emptyset, 2\} \in D = \{\}, \text{ julgue}\}$ os itens abaixo:
- a) () $0 \in A$ f) () $\{1, 2\} \subseteq A$ l) () $B \in C$

- b) () $2 \in A$ g) () $\varnothing \subseteq C$ m) () $D \in C$ c) () $B \in A$ h) () $D \subseteq C$ n) () $B \subseteq C$ d) () $B \subseteq A$ i) () $1 \in A$ o) () $D \subseteq B$

- e) () $\varnothing \in C$ j) () $\varnothing \in A$ p) () $\{1, 2\} \in A$
- 5) (UnB) Sejam $A, B, C \in D$ conjuntos tais que $(A \cup B) \cap (C \cup D) = \emptyset$. Observe a tabela abaixo e julgue os itens a seguir:

Conjunto	n^{ϱ} de elementos
$(A-B)\cup(C-D)$	12
C	11
$(A \cap B) \cup (C \cap D)$	10
$A \cap B$	4
$A \cup B$	17
$(C-D)\cup(D-C)$	13

- a) () |C D| = 5
- b) () |D C| = 9
- c) () $|C \cup D| = 19$
- d) () $|(A B) \cup (B A)| = 13$
- e) () |B A| = 5
- 6) Sejam $A, B \subseteq E$. Definimos a diferença simétrica entre A e B, denotado por $A\triangle B$, por:

$$A\triangle B:=(A-B)\cup(B-A)$$

- i) Represente $A\triangle B$ por meio de Diagramas de Venn.
- ii) Mostre que:

a)
$$A \triangle A = \emptyset$$
;

b)
$$A \triangle \varnothing = A$$
;

c)
$$A \triangle B = B \triangle A$$
;

d)
$$A \triangle B = (A \cup B) - (A \cap B)$$

7) Determine os seguintes conjuntos:

$$\left\{ \begin{array}{l} \mathbb{Z}_{+} = \text{conjunto dos inteiros não-negativos} \\ \mathbb{Z}_{-} = \text{conjunto dos inteiros não-positivos} \end{array} \right.$$

a)
$$\mathbb{Z}_{+} - \mathbb{Z}_{-} =$$

b)
$$\mathbb{Z}_+ \cap \mathbb{Z}_- =$$

c)
$$\mathbb{Z}_+ \cup \mathbb{Z}_- =$$

$$\mathrm{d})\ C_{\mathbb{R}}(\mathbb{Q}) =$$

e)
$$\mathbb{Z} - \mathbb{N} =$$

$$\mathrm{f)}\ C_{\mathbb{C}}(\mathbb{R}) =$$

8) Usando o Princípio de Indução, mostre que:

a)
$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}, \ \forall \ n \in \mathbb{N};$$

b)
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}, \ \forall \ n \in \mathbb{N};$$

c)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}, \ \forall \ n \in \mathbb{N};$$

d)
$$1 + x + x^2 + \dots + x^{n-1} = \frac{1 - x^n}{1 - x}, \ \forall \ n \in \mathbb{N}, \forall \ x \in \mathbb{R}, \ x \neq 1;$$

e)
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}, \ \forall \ n \in \mathbb{N};$$

f)
$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}, \forall n \in \mathbb{N};$$

g)
$$(1+x)^n \ge 1 + nx$$
, $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ x \ge -1$; (Designaldade de Bernoulli)

h)
$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \dots + ab^{n-2} + b^{n-1}), \ \forall \ n \in \mathbb{N}, \ n \geqslant 2;$$

- i) $S_n = (n-2) \cdot 180^\circ$, $\forall n \in \mathbb{N}, n \geqslant 3$; $(S_n = \text{soma das medidas dos ângulos internos de um polígono convexo de <math>n \text{ lados})$
- j) $d_n = \frac{n(n-3)}{2}$, $\forall n \in \mathbb{N}, n \geqslant 3$; $(d_n = \text{número de diagonais de um polígono convexo de } n \text{ lados})$
- l) $n! > 2^n$, $\forall n \in \mathbb{N}, n \geqslant 4$;
- m) Se A é um conjunto finito com n elementos, então A possui 2^n subconjuntos. (Equivalente: se |A| = n, então $|P(A)| = 2^n$)
- 9) Sejam $A, B \subseteq E$. Mostre que $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$.
- 10) Sejam $A, B \subseteq E$ tais que $|A| < \infty$ e $|B| < \infty$. Mostre que:
 - a) Se $A \cap B = \emptyset$, então $|A \cup B| = |A| + |B|$;
 - b) Se $A \subseteq B$, então |B A| = |B| |A|;
 - c) $|A \cup B| = |A| + |B| |A \cap B|$

Relações & Funções

 $(2^{\underline{a}}$ Lista de Exercícios)

- 1) Determinar todas as relações de equivalência R sobre o conjunto $A=\{1,2,3\}$ e os respectivos conjuntos-quociente $A_{/_R}$.
- 2) Dar exemplos de relações R sobre o conjunto $A=\{1,2,3\}\;$ tais que:
 - a) R satisfaz (RE1), (RE2) e (RE3);
 - b) R satisfaz (RE1), mas não satisfaz (RE2) e nem (RE3);
 - c) R satisfaz (RE2), mas não satisfaz (RE1) e nem (RE3);
 - d) R satisfaz (RE3), mas não satisfaz (RE1) e nem (RE2);
 - e) R satisfaz (RE1) e (RE2), mas não satisfaz (RE3);
 - f) R satisfaz (RE1) e (RE3), mas não satisfaz (RE2);
 - g) R satisfaz (RE2) e (RE3), mas não satisfaz (RE1);

Conclusão: são independentes entre si.

- 3) Explicite a relação dada por $R = \{(x, y) \in \mathbb{R} \times \mathbb{Z} \mid 9x^2 + 4y^2 = 36\},$ determinado D(R) e Im(R).
- 4) Seja $A = \mathbb{Z} \times \mathbb{Z}^*$ ($\mathbb{Z}^* = \mathbb{Z} \{0\}$). Para $(a, b), (c, d) \in A$, defina:

$$(a,b) \sim (c,d) \Leftrightarrow ad = bc$$

Mostre que \sim define uma relação de equivalência sobre A.

5) Sejam $A = \mathbb{Z}$ e $n \in \mathbb{N}$ (fixado). Para $x, y \in A$, defina:

$$x \sim y \Leftrightarrow n \mid x - y$$

Mostre que \sim define uma relação de equivalência sobre A, chamada de congruência módulo n e denotada por $x \equiv y \pmod{n}$ (lê-se: "x é congruente a y" (módulo n)).

- 6) Sabendo que $A = \{1, 2, 3\}$ e $B = \{\Box, \triangle\}$, determine $\mathcal{F}(A, B)$, $\mathcal{F}(B, A)$, Sur(A, B), Inj(A, B), $S_A = Bij(A, A)$ e $S_B = Bij(B, B)$.
- 7) Mostre que se |A| = m e |B| = n, com $m, n \in \mathbb{N}$, então $|\mathcal{F}(A, B)| = n^m$.
- 8) Sejam $A = \mathbb{Z}$ e $a, b, c \in A$. Verifique as seguintes propriedades de divisibilidade em A:
 - i) $1 \mid a; a \mid 0; a \mid a;$
 - ii) $a \mid b \in b \mid c \Rightarrow a \mid c$;
 - iii) $a \mid b \in c \mid d \Rightarrow ac \mid bd$;
 - iv) $a \mid b \in a \mid c \Rightarrow a \mid bx + cy, \ \forall \ x, y \in A;$
 - v) $a \mid b \in b \mid a \Leftrightarrow |a| = |b|$;
 - vi) $a \mid b \in b \neq 0 \Rightarrow |a| \leqslant |b|$;
 - vii) $a \mid 1 \Leftrightarrow a = \pm 1; 0 \mid b \Leftrightarrow b = 0;$

Usando i, ii e v, conclua que a relação de divisibilidade em $A = \mathbb{Z}$ satisfaz as propriedades reflexiva e transitiva, mas não a anti-simétrica. (Portanto, não é uma relação de ordem parcial sobre \mathbb{Z} .)

9) Seja $A = \{1, 2, ..., n\}$. Denotamos por $S_A = Bij(A, A) = S_n = \{\sigma : A \to A \mid \sigma \text{ \'e bijeç\~ao}\}$. Um elemento $\sigma \in S_A$ \'e dito uma permutação de A. Mostre que $|S_A| = n!$.

10) Sejam $E \neq \emptyset$ e A = P(E). Para $\emptyset \neq X, Y \in A$, defina:

$$X \sim Y \Leftrightarrow \exists \ f: X \to Y$$
bijeção

Mostre que \sim define uma relação de equivalência sobre A. (Neste caso, dizemos que X e Y são equipotentes, ou seja, |X| = |Y|.)

- 11) Mostre que X e Y são equipotentes nos seguintes casos:
 - a) $X = \mathbb{N}, Y = \{ y \in \mathbb{N} \mid y \text{ \'e par} \};$
 - b) $X = \mathbb{Z}$; $Y = \mathbb{N}$;
 - c) X = (0,1); Y = (a,b);
 - d) $X = \mathbb{R}; Y = \mathbb{R}^*_+ = \{ y \in \mathbb{R} \mid y > 0 \}$
 - e) $X = (-\pi/2, \pi/2); Y = \mathbb{R}$

 $Sugest\~ao$:

a) Verifique que

$$f: X \to Y$$

 $n \mapsto f(n) = 2n$

é uma bijeção.

b) Verifique que

$$f: X \to Y$$
$$n \mapsto f(n) = \begin{cases} 2n, \text{ se } n > 0\\ -2n + 1, \text{ se } n \leqslant 0 \end{cases}$$

é uma bijeção.

c) Verifique que

$$f: X \to Y$$

 $x \mapsto f(x) = (b-a)x + a$

é uma bijeção.

d) e e): Lembre-se de duas funções estudadas em Cálculo 1.

12) Seja $A = \mathbb{N} \times \mathbb{N}$, onde \mathbb{N} está munido de sua ordem natural \leq . Para $(a,b),(c,d)\in A,$ defina:

$$(a,b) R (c,d) \Leftrightarrow a < c \text{ ou } a = c \text{ e } b \leqslant d$$

(ordem lexicográfica). Mostre que R define uma relação de ordem total sobre A.

13) Seja $f: A \to B$ uma função, onde $A, B \neq \emptyset$. Para $x, x' \in A$, defina:

$$x \sim x' \Leftrightarrow f(x) = f(x')$$

Verifique que \sim define uma relação de equivalência sobre A (\sim é a relação de equivalência induzida por f).

Operações Binárias

 $(3^{\underline{a}} \text{ Lista de Exercícios})$

- 1) Seja $A \neq \emptyset$ munido de uma operação binária * associativa e com elemento neutro e. Considere $\mathcal{U}_*(A) = \{x \in A \mid x \text{ \'e invers\'evel}\}$ e $\mathcal{R}_*(A) = \{x \in A \mid x \text{ \'e regular}\}$. Verifique que:
 - a) $\mathcal{U}_*(A) \neq \emptyset$ e $\mathcal{R}_*(A) \neq \emptyset$;
 - b) Se $x \in \mathcal{U}_*(A)$, então $x' \in \mathcal{U}_*(A)$. Neste caso, (x')' = x;
 - c) Se $x, y \in \mathcal{U}_*(A)$, então $x * y \in \mathcal{U}_*(A)$. Neste caso, (x * y)' = y' * x';
 - d) $\mathcal{U}_*(A) \subseteq \mathcal{R}_*(A)$.
- 2) Diga quais dos seguintes subconjuntos de $\mathbb Z$ são fechados para as operações de adição e de multiplicação:
 - a) $\mathbb{Z}_{-} = \{x \in \mathbb{Z} \mid x \leqslant 0\}$
 - b) $P = \{x \in \mathbb{Z} \mid x \text{ \'e par}\}$
 - c) $I = \{x \in \mathbb{Z} \mid x \text{ \'e impar}\}$
 - d) $n\mathbb{Z} = \{x \in \mathbb{Z} \mid x = nk, \ k \in \mathbb{Z}\}$ (conjunto dos múltiplos de n, $n \in \mathbb{N}$)
- 3) Considere $A = P(\{a, b\})$ munido de uma operação*, onde $X * Y = X \cap Y$. Verifique, usando a tábua de operação, se * é comutativa, se existe elemento neutro e quais são os elementos simetrizáveis.

- 4) Determine o número de operações binárias que se pode construir sobre um conjunto finito A com n elementos $(n \in \mathbb{N})$.
- 5) Construa a tábua de uma operação * sobre $A = \{a, b, c, d\}$ de modo que * seja comutativa, a seja elemento neutro, $\mathcal{U}_*(A) = A$, $\mathcal{R}_*(A) = A$ e b * c = a.
- 6) Construa a tábua de uma operação * sobre $A = \{e, a, b, c\}$ de modo que * seja comutativa, e seja elemento neutro, $x * a = a \ (\forall x \in A)$ e $\mathcal{R}_*(A) = A \{a\}$.
- 7) Considere $A = \mathbb{Z}$ e * = \div . Explique de duas maneiras distintas a razão pela qual * não é uma operação binária sobre A.
- 8) Considere $A = \mathbb{R}$ munido de uma operação binária *, onde x * y = y, $\forall x, y \in A$. Verifique se * é associativa, comutativa e se possui elemento neutro à esquerda, à direita e bilateral.
- 9) Considere $E = \{1, 2, 3\}$ e $A = S_3 = \{f : E \to E \mid f \text{ \'e bijeção}\}$. Construa a tábua de A com relação à operação de composição de funções, verificando se a mesma $\acute{\text{e}}$ comutativa, se existe elemento neutro, quais elementos são inversíveis e quais são regulares.
- 10) Determine todos os elementos neutros à esquerda no conjunto

$$A = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$$

para a operação de multiplicação.

11) Sejam $A \neq \emptyset$ munido de uma operação binária * e $a \in A$. Considere

$$\lambda_a: A \to A$$
 e $\xi_a: A \to A$
$$x \mapsto \lambda_a(x) = a * x$$
 e $\xi_a: A \to A$
$$x \mapsto \xi_a(x) = x * a$$

Verifique que:

- a) a é regular à esquerda $\Leftrightarrow \lambda_a$ é injetora;
- b) a é regular à direita $\Leftrightarrow \xi_a$ é injetora.

Homomorfismos & Polinômios

 $(4^{\underline{a}} \text{ Lista de Exercícios})$

1) Para $n, k \in \mathbb{Z}_+$, com $n \ge k \ge 0$, definimos o coeficiente binomial $\binom{n}{k}$ por n!/k!(n-k)!, onde

$$n! = \begin{cases} n \cdot (n-1) \cdot \dots \cdot 3 \cdot 2 \cdot 1 &, \text{ se } n \in \mathbb{N}; \\ 1 &, \text{ se } n = 0 \end{cases}$$

a) Demonstre, usando a definição de coeficiente binomial, a Relação de Stiffel:

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k} \quad (n, k \in \mathbb{Z}_+; \ n \geqslant k \geqslant 1)$$

b) Seja A um anel comutativo com identidade. Usando a) e indução sobre n, mostre que é válido o desenvolvimento binomial em A:

$$(a+b)^n = \begin{cases} \sum_{k=0}^n \binom{n}{k} a^k \cdot b^{n-k} \\ \text{ou} &, \forall a, b \in A, \forall n \in \mathbb{N} \\ \sum_{k=0}^n \binom{n}{k} a^{n-k} \cdot b^k \end{cases}$$

- 2) Mostre que:
 - a) f é um monomorfismo de anéis

$$f: \quad \mathbb{C} \rightarrow \mathcal{M}_{2\times 2}(\mathbb{R})$$

$$a+bi \mapsto f(a+bi) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

b) g é um automorfismo de anéis

$$g: \quad \mathbb{C} \rightarrow \mathbb{C}$$

 $a+bi \mapsto g(a+bi) = a-bi$

c) h não é um homomorfismo de anéis

$$h: \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathcal{M}_{2\times 2}(\mathbb{R})$$

$$\underbrace{\begin{pmatrix} a & b \\ c & d \end{pmatrix}}_{A} \mapsto h\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \underbrace{\begin{pmatrix} a & c \\ b & a \end{pmatrix}}_{\text{transposta de } A}$$

- 3) Seja A um domínio de integridade. Determine $\mathcal{U}(A[X])$.
- 4) Calcule o quociente e o resto da divisão de f(X) por g(X) para os seguintes pares de polinômios:
 - i) $f(X) = 3X^5 + 4X^3 + 2X + 5$; $g(X) = 2X^3 3X^2 + 7$ em $\mathbb{Q}[X]$;
 - ii) $f(X) = -X^6 + 12X^4 + 8X^3 4X + 10$; $g(X) = X^3 3$ em $\mathbb{Z}[X]$;
 - iii) $f(X) = \overline{4}X^5 + \overline{3}X^3 \overline{4}X^2 \overline{2}X + \overline{3}; \ g(X) = \overline{3}X^2 \overline{1}X \overline{2} \text{ em}$ $\mathbb{Z}_7[X].$
- 5) Seja $f(X) = a_n X^n + a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + \ldots + a_1 X + a_0 \in \mathbb{Z}[X],$ onde $gr(f) = n \ge 1.$
 - a) Mostre que se $r/s \in \mathbb{Q}$ é raiz de f(X), com $\mathrm{mdc}(r,s) = 1$, então $r \mid a_0 \in s \mid a_n$.
 - b) Conclua que se $r/s \in \mathbb{Q}$ é raiz de f(X), com $\mathrm{mdc}(r,s) = 1$, e $a_n \in \mathcal{U}(\mathbb{Z})$, então tal raiz é inteira.
- 6) Seja A um domínio de integridade e considere $f(X) = a_n X^n + \ldots + a_2 X^2 + a_1 X + a_0 \in A[X]$. Definimos a "derivada formal" de f(X) por:

$$f'(X) := na_n X^{n-1} + \ldots + 2a_2 X + a_1 \in A[X]$$

Mostre que: (Regras de Derivação)

- a) $(a \cdot f)' = a \cdot f'$;
- b) (f+q)' = f' + q';
- c) $(f \cdot g)' = f' \cdot g + f \cdot g';$
- d) $(f^n)' = nf^{n-1} \cdot f'$.

$$(n \in \mathbb{N}; \ f, g \in A[X]; \ a \in A)$$

- 7) Seja K um corpo. K é dito "algebricamente fechado" se $\forall f(X) \in K[X]$, com $gr(f) \geqslant 1$, $\exists \alpha \in K \mid f(\alpha) = 0$. Mostre que \mathbb{R} não é algebricamente fechado.
- 8) a) Mostre que o polinômio $f(X) = X^2 \overline{1}$ possui quatro raízes no anel \mathbb{Z}_{15} .

- b) Comente o fato do polinômio f acima ter um número de raízes maior que o grau.
- 9) Sejam K um corpo infinito e $f(X), g(X) \in K[X]$. Mostre que $f = g \Leftrightarrow \hat{f} = \hat{g}$ (isto é, dois polinômios com coeficientes num corpo infinito são iguais se, e somente se, eles induzem a mesma função polinomial).
- 10) a) Mostre que o polinômio $f(X) = X^2$ possui infinitas raízes no anel $\mathcal{M}_{2\times 2}(\mathbb{R})$.
 - b) Comente o fato do polinômio f acima ter um número de raízes maior que o grau.
- 11) Considere $f(X) = X^2 X \in A[X]$, onde A é um domínio de integridade. Mostre que as únicas raízes de f em A são 0 e 1.
- 12) Mostre que todo polinômio sobre \mathbb{R} de grau ímpar possui pelo menos uma raiz real.
- 13) Sejam $K = \mathbb{C}$ e $f(X) = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in K[X]$, onde $gr(f) = n \geqslant 1$. Mostre que f pode ser fatorada da seguinte maneira:

$$f(X) = a_n(X - \alpha_1)(X - \alpha_2) \dots (X - \alpha_n),$$

onde $\alpha_1, \ldots, \alpha_n \in K$ são as raízes de f(X) (não necessariamente distintas).

- 14) Calcule a soma e o produto de $f(X) = \overline{2}X^3 + \overline{4}X^2 + \overline{3}X + 3$ e $g(X) = \overline{3}X^4 + \overline{2}X + \overline{4}$ sobre \mathbb{Z}_5 e sobre \mathbb{Z}_7 .
- 15) Calcule q(x) e r(x) tais que f(x) = g(x)q(x) + r(x), onde r(x) = 0 ou gr(r) < gr(g):
 - a) $f(x) = x^5 x^3 + 3x 5$; $g(x) = x^2 + 7 \in \mathbb{Q}[x]$
 - b) $f(x) = x^5 x^3 + 3x 5$; $g(x) = x 2 \in \mathbb{Q}[x]$
 - c) $f(x) = x^5 x^3 + \overline{3}x \overline{5}; \ g(x) = \overline{1}x + \overline{2} \in \mathbb{Z}_5[x]$
 - d) $f(x) = x^5 x^3 + \overline{3}x \overline{5}; \ g(x) = x^3 + x \overline{1} \in \mathbb{Z}_3[x]$

16) Seja K um corpo, onde $K\subseteq\mathbb{C}$. Sejam $f(X)\in K[X]-\{0\}$, com $\operatorname{gr}(f)=n\geqslant 1,$ e $\alpha\in\mathbb{C}$ uma raiz de f(X). Então:

$$\alpha$$
 é raiz simples de $f(X) \Leftrightarrow f(\alpha) = 0$ e $f'(\alpha) \neq 0$

(Equivalentemente: α é raiz de f(X) de multiplicidade $\geqslant 2 \Leftrightarrow f(\alpha) = 0$ e $f'(\alpha) = 0$)

- 17) Liste todos os polinômios de grau ≤ 3 em $\mathbb{Z}_2[X]$ e todos os de grau ≤ 2 em $\mathbb{Z}_3[X]$ (incluindo o polinômio identicamente nulo).
- 18) Sejam (G, \cdot) um grupo e $g \in G$. Defina

$$\psi_g: \ G \ \to \ G$$

$$x \ \mapsto \ \psi_g(x) = g^{-1}xg$$

Mostre que ψ_q é um automorfismo de G.

19) Calcule o MDC em $\mathbb{Q}[X]$ entre os seguintes polinômios:

a)
$$f(x) = x^4 + x^3 + 2x^2 + x + 1$$
; $g(x) = x^3 + 4x^2 + 4x + 3$

b)
$$f(x) = 4x^5 + 7x^3 + 2x^2 + 1$$
; $g(x) = 3x^3 + x + 1$

c)
$$f(x) = x^4 + x^3 + 2x^2 + 3x + 1$$
; $g(x) = x^4 + x^3 - 2x^2 - x + 1$

- 20) a) Sejam $A = \mathbb{Z}_2$ e $f(X) = \overline{1} + X + X^3 \in \mathbb{Z}_2[X]$. Determine $g(X) \in \mathbb{Z}_2[X]$, $g(X) \neq f(X)$, tal que $\hat{g} = \hat{f}$.
 - b) Sejam $A = \mathbb{Z}_3$ e f(X) = X, $g(X) = X^3$, $h(X) = X + 5X^3 + X^9 \in \mathbb{Z}_3[X]$. Mostre que $\hat{f} = \hat{g} = \hat{h}$.
- 21) Verifique em cada caso se f é um homomorfismo de grupos:

a)
$$f: (\mathbb{Z}, +) \rightarrow (\mathbb{C}^*, \cdot)$$

 $n \mapsto f(n) = i^n$

b)
$$f: (\mathbb{C}^*, \cdot) \to (\mathbb{R}_+^*, \cdot)$$

 $z \mapsto f(z) = |z|$

c)
$$f: (\mathbb{Z}, +) \to (\mathbb{Z}, +)$$

 $n \mapsto f(n) = kn$ $(k \in \mathbb{Z} \text{ dado})$

d)
$$f: (\mathbb{R}, +) \rightarrow (\mathbb{R}, +)$$

 $x \mapsto f(x) = x + 1$

e)
$$f: (\mathbb{C}^*, \cdot) \to (\mathbb{C}^*, \cdot)$$

 $z \mapsto f(z) = \overline{z}$

- 22) Verifique em cada caso se f é um homomorfismo de anéis:
 - a) $f: \mathbb{C} \to \mathbb{C}$ $(a+bi) \mapsto f(a+bi) = a-bi$
 - b) $f: \mathbb{Z} \to \mathbb{Z}$ $x \mapsto f(x) = x + 1$
 - c) $f: \mathbb{Z} \to \mathbb{Z}$ $x \mapsto f(x) = 2x$
 - d) $f: \mathbb{Z} \to \mathbb{Z}_n$ $x \mapsto f(x) = \overline{x}$
 - e) $f: \mathbb{Z} \to \mathbb{Z}$ $x \mapsto f(x) = -x$