

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Muxes, Decoders, Shifters - 2

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Muxes, Decoders, Shifters - 2

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - ★ Muxes, Decoders, Shifters 2
 - Sequential logic design
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

- Tristate
- Decoders

- 0 and 1 values in logic circuits are implemented as voltage levels, typically:
 - 0 is represented by 0v
 - 1 is represented by a positive voltage, say 1.8v

- 0 and 1 values in logic circuits are implemented as voltage levels, typically:
 - 0 is represented by 0v
 - 1 is represented by a positive voltage, say 1.8v

Floating Value (Z)

When a wire is electrically disconnected from voltage representing 0 as well as from voltage representing 1, it is said to be in **floating** state (also called high impedance state) and is denoted by the symbol Z

- 0 and 1 values in logic circuits are implemented as voltage levels, typically:
 - 0 is represented by 0v
 - 1 is represented by a positive voltage, say 1.8v

Floating Value (Z)

When a wire is electrically disconnected from voltage representing 0 as well as from voltage representing 1, it is said to be in **floating** state (also called high impedance state) and is denoted by the symbol Z

Tristate Buffer

• Tristate gate truth table:

- ▶ When e = 1, output is same as input, and when e = 0, output is floating
- Key application is shared bus

1:2 Decoder

1:2 Decoder			

1:2 Decoder

1:2 Decoder

1:2 Decoder

1:2 Decoder

• 1:2 decoder symbol:

- Inputs: *j*
- \triangleright Output: o_0 , o_1

• 1:2 decoder logic circuit:

• 1:2 decoder truth table:

j	00	o_1
0	1	0
1	0	1

• 1:2 decoder Boolean formula:

$$o_0 = \bar{j}$$

 $o_1 = i$

$$o_1 = j$$

1:4 Decoder

1:4 Decoder

1:4 Decoder

1:4 Decoder

• 1:4 decoder symbol:

1:4 Decoder

1:4 Decoder

• 1:4 decoder symbol:

• 1:4 decoder Boolean formula:

$$o_0 = \overline{j_1} \, \overline{j_0}$$
 $o_1 = \overline{j_1} \, j_0$
 $o_2 = \overline{j_1} \, \overline{j_0}$ $o = \overline{j_1} \, j_0$

1:4 Decoder

1:4 Decoder

- 1:4 decoder symbol:

• 1:4 decoder truth table:

J1	JO	o_0	o_1	o_2	03
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

• 1:4 decoder Boolean formula:

$$o_0 = \overline{j_1} \, \overline{j_0}$$
 $o_1 = \overline{j_1} \, j_0$
 $o_2 = j_1 \, \overline{j_0}$ $o = j_1 \, j_0$

1:4 Decoder

1:4 Decoder

• 1:4 decoder symbol:

• 1:4 decoder truth table:

trutti table.					
j_1	<i>j</i> o	00	o_1	02	03
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

1:4 decoder logic circuit:

• 1:4 decoder Boolean formula:

$$o_0 = \overline{j_1} \, \overline{j_0}$$
 $o_1 = \overline{j_1} \, j_0$
 $o_2 = j_1 \, \overline{j_0}$ $o = j_1 \, j_0$

1:n Decoder

n: 1 Decoder

A combinational logic circuit having n data outputs, and $\lceil \log_2 n \rceil$ control inputs that specify which one of the outputs is 1 (remaining outputs being 0)

Think About It

• Construct a 2:1 mux using tristate buffers

Think About It

- Construct a 2:1 mux using tristate buffers
- Is it possible for all output of a decoder to be zero in case of a:
 - 2:4 decoder?
 - ► 2:3 decoder?