大津城市建设学院 2012~2013 学年第二学期 《概率论与数理统计》试题 A 卷

课程号: 10102011,10102002Z

课序号: 01-18; 01-02

班级

台号

題号	-	 Ξ	四	75	1	LI	- 11		
得分				11	1	4	八	九	总分
1373						1		-	

试卷说明: 闭卷考试, 时间 120 分钟。 适用班级或专业方向:理工科各专业

一、填空题 (本题共5小题,每小题3分,共15分)

得分

2. 若 $E(X) = 1, D(X) = 2, 则 E(X^2) = 3$

3. 设 X - N(3,16), 则 $Y = \frac{X^2 - 3}{4}$ 的概率密度 $f_{\gamma}(y)$ 的表达式为 $\frac{1}{\sqrt{12}} e^{-\frac{y^2}{2}}$ 4. 设 随 机 变 置 $X_1, X_2, \cdots, X_n, \cdots$ 相 互 独 立 , 且 都 服 从 区 间 (0,2) 上 的 均 匀 分 布 , 则

イツで はまめ、ま

5. 已知 $X \sim N(0,1)$, $Y \sim N(0,1)$, 且X、Y相互独立,则 $\rho_{XY} = 0$

二、选择题 (本题共5小题, 每小题3分, 共15分)

相至独立, 概多数为0

1. 已知总体X的分布函数为F(x),若 X_1,X_2,X_3 为来自总体X的样本,则

$$P\{X_1 \leq x_1, X_2 \leq x_2, X_3 \leq x_3\}$$
 \(\forall \)

(A)
$$\prod_{i=1}^{3} F(x_i)$$
: (B) $\sum_{i=1}^{3} F(x_i)$: (C) $F(x)$:

(B)
$$-\frac{3}{2}F(x_i)$$

(C)
$$F(x)$$
:

(D)
$$F^3(x)$$

到的都是正

2.一款产品

(3.)设A,B,(

4. 在估计

5. 某人打

(A)

求(1)

学号

四、(本题 10 分) 已知连续型随机变量 X 的分布函数为 $F(x) = \begin{cases} A - e^{-5x}, & x > 0 \\ 0, & x \le 0 \end{cases}$

· 班级 求 (1) A值; (2) X的概率密度函数 f(x); (3) P{|X|<5}.

(1, Fw) = Cian Full=1

(im(A-e-xx) = A-(im e-xx) = 1 x+100(A-e-xx) = A-0=1

- P1 -5CXC53

=p[-scx<0]+p[ocxes]

= 0 + F(s) - F(s) - P(x=s)= $1 - e^{-is}$

(2) fix)= fix)

1(x)= (5e-5x, x)0

1(x)= (5e-5x, x)0

姓名

五、(本题 10 分)设随机变量 X 在区间(0,1)上服从均匀分布,

fix1= 10=1.

8X+154

人生生

hy= 4 hiy=+ hiy=+ hiy=+ hiy)-hiy) -1×学学二共

得分

1. 一个学校有507、292、312和344名学生分别选了微积分、离散数学、数据库和C语言课,且有14人同时选了微积分和数据库课,43人同时选了离散数学和及语言课,211人同时选了离散数学和数据库课,213人同时选了微积分和C语言课,没有学生同时选微积分和高散数学课,也没有学生同时选数据库和C语言课。问共有多少学生参加了这四门课程的选课?

一种 发 链 选择 微 积 , 离 散 数 据 产 和 C 设 是 深 分 别 为 事 件 A . B . C . D 则 [A]=50], | B]=年, | C|=312, | D=364, | And=14, | BnD]=43, | AnD]=213 | Bnd=211, | An B]= 自 0 | | CnD|=0

1) - |AUBUC VD| = |A|+|8|+|c|+|D|-|Anc|-|Bno)-|Ano|-|Bnc|
= 974

"共有974 学生参加3效四门课程的选课。

:

. 4

六、(本题 6 分) 由某机器生产的螺栓的长度 X 服从参数为 $\mu=10.05$, $\sigma^2=0.03^2$ 的正态分布, 规定长度在范围10.05±0.06内为合格品,求一螺栓为次品的概率.

. 这里Φ(1.00) = 0.8413, Φ(2.00) = 0.9772.

得分

七、(本题 10 分)已知二维随机变量(X,Y)的概率密度为:

$$f(x,y) = \begin{cases} 2x, & 0 < x < 1, 0 < y < 1 \\ 0, & \text{ YE} \end{cases}$$

(1) 求关于X,Y的边缘概率密度 $f_X(x)$ 和 $f_Y(y)$:

(2) 问 X 与 Y 是否独立?

"
$$f_{X}(X) = \int_{0}^{1} 2X dy = 2X$$
 $f_{Y}(Y) = \int_{0}^{1} 2X dX = X^{2}|_{0}^{1} = 1$

八、(本题 14 分)设二维离散型随机变量(X,Y)的分布律为

得分	

X	0	1	2
Y			
0	0.1	0.2	0.2
1	0.3	01	0.1

求 (1) $\min(X,Y)$ 的分布律; (2) E(X), E(Y), E(XY); (3) 协方差 Cov(X,Y).

= EXY)-EXYEX!

号 密

近 级

封

名

线

九、(本题 10 分)设总体 X 服从参数为 λ 的泊松分布, $\lambda > 0$ 未知,且 X_1, X_2, \cdots, X_n 是来自总体 X 的样本,(1)求 λ 的最大似然估计量;(2) 该估计量是否为无偏估计,说明理由.

得分