Large- Q_T W-boson production at the Tevatron¹

Nikolaos Kidonakis^a and Agustín Sabio Vera^b

^a Cavendish Laboratory, University of Cambridge Madingley Road, Cambridge CB3 0HE, England and

Kennesaw State University, 1000 Chastain Rd., #1202 Kennesaw, GA 30144-5591, USA

^b II. Institut für Theoretische Physik, Universität Hamburg Luruper Chaussee 149, 22761 Hamburg, Germany

Abstract

The production of W bosons at large transverse momentum at the Tevatron is dominated by soft-gluon corrections. In this talk we present a calculation of these corrections at next-to-next-to-leading order. The corrections enhance the transverse momentum distribution of the W while reducing the scale dependence.

¹Presented at DPF04, Riverside, California, August 26-31, 2004.

1 Introduction

W hadroproduction is useful in estimates of backgrounds to new physics (such as Higgs production). The transverse momentum, Q_T , distribution of the W falls rapidly by several orders of magnitude as Q_T increases.

Full next-to-leading order (NLO) results for W hadroproduction at large Q_T have been available for some time [1, 2]. At lowest order the partonic channels involved are $q(p_a) + g(p_b) \longrightarrow W(Q) + q(p_c)$ and $q(p_a) + \bar{q}(p_b) \longrightarrow W(Q) + g(p_c)$. We define $s = (p_a + p_b)^2$, $t = (p_a - Q)^2$, $u = (p_b - Q)^2$ and $s_2 = s + t + u - Q^2$. At threshold, i.e. when we have just enough energy to produce a W with a certain Q_T , $s_2 \to 0$.

The large- Q_T distribution is enhanced by soft-gluon corrections, which are dominant near threshold. These corrections are of the form $\mathcal{D}_l(s_2) \equiv [\ln^l(s_2/Q_T^2)/s_2]_+$. For the order α_s^n corrections $l \leq 2n-1$. At NLO in α_s , we have terms with $\mathcal{D}_1(s_2)$ and $\mathcal{D}_0(s_2)$ logarithms, as well as $\delta(s_2)$ terms that involve the virtual corrections.

At next-to-next-to-leading order (NNLO) in α_s , we have terms with $\mathcal{D}_3(s_2)$, $\mathcal{D}_2(s_2)$, $\mathcal{D}_1(s_2)$, and $\mathcal{D}_0(s_2)$ logarithms, as well as $\delta(s_2)$ terms for the virtual corrections. Thus, at NNLO, the leading logs (LL) are $\mathcal{D}_3(s_2)$, the next-to-leading logs (NLL) are $\mathcal{D}_2(s_2)$, the next-to-next-to-leading logs (NNLL) are $\mathcal{D}_0(s_2)$.

We can formally resum these soft logarithms to all orders in α_s [3, 4, 5]. This has been done explicitly for W production in Ref. [6]. However, for numerical results here we expand the resummed formula to NNLO to avoid using prescriptions for the resummed cross section [7].

A unified approach and a master formula for calculating these soft logarithms at NNLO for any process has been presented in Ref. [8]. It has been applied to W production in Ref. [9].

2 W production with large Q_T at the Tevatron

We now present our numerical results for large- Q_T W-boson production [9] at the Fermilab Tevatron.

The Q_T distribution is shown in Fig. 1 at Tevatron Run I, with $\sqrt{S}=1.8$ TeV. In the left frame we show the differential distribution $d\sigma/dQ_T^2$ at Born (lowest order), NLO, and NNLO, all with scale $\mu=Q_T$, while in the right frame we show a plot of the scale dependence at $Q_T=80$ GeV. For the NNLO corrections we show both NNLL and NNNLL results. The NNLL results are complete while in the NNNLL results we have included the dominant NNNLL terms (more two-loop calculations are needed for an exact NNNLL calculation [10]). Throughout we have used the MRST2002 NNLO parton densities [11]. We see that the NNLO corrections are not very large but they significantly diminish the factorization/renormalization scale dependence of the cross section.

In Fig. 2 we show similar results for Tevatron Run II, with $\sqrt{S} = 1.96$ TeV. In the left frame we plot $d\sigma/dQ_T^2$ with $\mu = Q_T$, while in the right frame we show results at $\mu = Q_T/2$ and $2Q_T$. Again, the reduction of the scale dependence at NNLO is evident: the two NNLO curves are on top of each other. Finally, we note that similar results have been derived for the related

Figure 1: W-boson production at large Q_T at $\sqrt{S} = 1.8$ TeV.

process of direct photon production [12].

Acknowledgments

We thank Richard Gonsalves for help with the NLO corrections. The research of N.K. has been supported by a Marie Curie Fellowship of the European Community program "Improving Human Research Potential" under contract no. HPMF-CT-2001-01221. The work of A.S.V. was supported by an Alexander von Humboldt Postdoctoral Fellowship.

References

- [1] P.B. Arnold and M.H. Reno, Nucl. Phys. B319, 37 (1989); (E) B330, 284 (1990).
- R.J. Gonsalves, J. Pawlowski, and C.-F. Wai, Phys. Rev. D40, 2245 (1989); Phys. Lett. B252, 663 (1990).
- [3] N. Kidonakis and G. Sterman, Phys. Lett. B387, 867 (1996); Nucl. Phys. B505, 321 (1997);
 N. Kidonakis, G. Oderda, and G. Sterman, Nucl. Phys. B531, 365 (1998).
- [4] E. Laenen, G. Oderda, and G. Sterman, *Phys. Lett.* **B438**, 173 (1998).
- [5] N. Kidonakis, Int. J. Mod. Phys. A15, 1245 (2000); Mod. Phys. Lett. A19, 405 (2004).
- [6] N. Kidonakis and V. Del Duca, Phys. Lett. B480, 87 (2000), N. Kidonakis, in EPS-HEP99, hep-ph/9910240.

Figure 2: W-boson production at large Q_T at $\sqrt{S} = 1.96$ TeV.

- [7] N. Kidonakis, Phys. Rev. D64, 014009 (2001); N. Kidonakis and R. Vogt, Phys. Rev. D68, 114014 (2003).
- [8] N. Kidonakis, Int. J. Mod. Phys. A19, 1793 (2004).
- [9] N. Kidonakis and A. Sabio Vera, *JHEP* **02**, 027 (2004); in DIS2004, hep-ph/0405013.
- [10] N. Kidonakis, hep-ph/0208056; in DIS2003, hep-ph/0307145.
- [11] A.D. Martin, R.G. Roberts, W.J. Stirling, and R.S. Thorne, Eur. Phys. J. C28, 455 (2003).
- [12] N. Kidonakis and J.F. Owens, Phys. Rev. D 61, 094004 (2000); Int. J. Mod. Phys. A19, 149 (2004).