# POPULASI DAN SAMPEL

Bambang Avip Priatna Martadiputra

## **PENGERTIAN**

- Populasi adalah wilayah generalisasi yang terdiri atas objek/subjek yang mempunyai kualiatas dan karakteristik tertentu yang ditetapkan oleh peneliti untuk dipelajari kemudian ditarik kesimpulannya. (Sugiyono, 2007: 90).
- Jadi populasi bukan hanya orang, tetapi juga objek dan benda-benda alam lainnya. Populasi juga bukan sekedar banyaknya objek/subjek yang diteliti, tetapi meliputi seluruh karakteristik/sifat yang dimiliki oleh subjek atau objek tersebut.

# PENGERTIAN SAMPEL DAN TEKNIK SAMPLING

- Sampel adalah bagian dari jumlah dan karakteristik yang dimiliki oleh populasi tersebut. Sedangkan sampling adalah suatu proses memilih sebagian dari unsur populasi yang jumlahnya mencukupi secara statistik sehingga dengan mempelajari sampel serta memahami karakteristik-karakteristiknya (ciri-cirinya) akan diketahui informasi tentang keadaan populasi.
- Teknik sampling adalah suatu cara untuk menentukan banyaknya sampel dan pemilihan calon anggota sampel, sehingga setiap sampel yang terpilih dalam penelitian dapat mewakili populasinya (representatif) baik dari aspek jumlah maupun dari aspek karakteristik yang dimiliki populasi.

## **TEKNIK SAMPLING**

- Apabila semua anggota populasi dipilih menjadi anggota sampel, maka proses ini disebut sensus (sampel jenuh).
- Teknik sampling dapat dikelompokkan menjadi dua, yaitu:
   1) Probability sampling, meliputi:
  - acak sederhana (simple random),
  - acak bertingkat proporsional (proportionate stratified random),
  - acak bertingkat tidak proporsional (disproportionate stratified random), dan
  - cluster/area sampling;
- 2) **Nonprobability sampling**, meliputi: sampling sistematis, sampling kuota, sampling incidental, purposive sampling, sampling jenuh, dan snowball sampling.

# TEKNIK-TEKNIK PROBABILITY SAMPLING Teknik yang memberi peluang yang sama bagi setiap anggota populasi untuk dipilih menjadi sampel)

#### 1) Simple random sampling (populasi homogen)

• pengambilan sampel dilakukan secara acak tanpa memperhatikan strata yang ada. Teknik ini hanya digunakan jika populasinya homogen.

#### 2) Proportionale stratifiled random sampling (populasi tidak homogen)

• pengambilan sampel dilakukan secara acak dengan memperhatikan strata yang ada. Artinya setiap strata terwakili sesuai proporsinya.

#### 3) Disproportionate stratifiled random sampling

 teknik ini digunakan untuk menentukan jumlah sampel dengan populasi berstrata tetapi kurang proporsional, artinya ada beberapa kelompok strata yang ukurannya kecil sekali

#### 4) Cluster sampling (Sampling Daerah)

- teknik ini digunakan untuk menentukan jumlah sampel jika sumber data sangat luas. Pengambilan sampel didasarkan daerah populasi yang telah ditetapkan.
- Misalnya dari 27 propinsi diambil 10 propinsi secara random/acak.

#### NONPROBABILITY SAMPLING

# (Teknik yang tidak memberi peluang yang sama bagi setiap anggota populasi untuk dipilih menjadi sampel)

#### 1) Sampling sistematis

pengambilan sampel dilakukan berdasarkan urutan dari anggota populasi yang telah diberi nomor

#### 2) Sampling kuota

 pengambilan sampel dilakukan terhadap anggota populasi yang mempunyai ciri-ciri tertentu sampai jumlah (kuota yang diinginkan.

#### 3) Sampling insidental

 pengambilan sampel berdasarkan kebetulan, yaitu siapa saja yang secara kebetulan bertemu dengan peneliti dapat digunakan sebagai sampel bila orang yang kebetulan dijumpai dianggap cocok debagai sumber data.

#### 4) Purposive sampling

penentuan sampel berdasarkan pertimbangan tertentu.

#### 5) Sampling jenuh

• penentuan sampel bila semua anggota populasi digunakan sebagai sampel.

#### 6) Snowball sampling

 penentuan sampel yang mula-mula jumlahnya kecil, kemudian sampel itu disuruh memilih teman-temannya untuk dijadikan sampel. Demikian seterusnya, sehingga jumlah sampel semakin banyak. Ibarat bola salju.

### MENENTUKAN UKURAN SAMPEL

- Syarat :
- (1) Ukuran Populasi(N) diketahui
- (2) Pilih taraf signifikansi  $\alpha$  yang diinginkan
  - Ada tiga metode praktis, yaitu:
- (1) Tabel Kretjie
- (2) Nomogram Harry King (lihat Sugiyono, 2007)
- (3) Rumus Slovin

# Tabel Krecjie untuk Menentukan Ukuran Sampel Minimum pada Taraf Signifikansi $\alpha$ = 0,01 (1 %); 0,05 (5 %); dan 0,10 (10 %)

|     | Taraf Signifikansi |    |     |     | Taraf Signifikansi |     |     |         | Taraf Signifikansi |     |     |
|-----|--------------------|----|-----|-----|--------------------|-----|-----|---------|--------------------|-----|-----|
| N   | 1%                 | 5% | 10% | N   | 1%                 | 5%  | 10% | N       | 1%                 | 5%  | 10% |
| 10  | 10                 | 10 | 10  | 320 | 216                | 167 | 147 | 3,000   | 543                | 312 | 248 |
| 15  | 15                 | 14 | 14  | 340 | 225                | 172 | 151 | 3,500   | 558                | 317 | 251 |
| 20  | 19                 | 19 | 19  | 360 | 234                | 177 | 155 | 4,000   | 569                | 320 | 254 |
| 25  | 24                 | 23 | 23  | 380 | 242                | 182 | 158 | 4,500   | 578                | 323 | 225 |
| 30  | 19                 | 28 | 27  | 400 | 250                | 186 | 162 | 5,000   | 586                | 326 | 257 |
| 35  | 33                 | 32 | 31  | 420 | 257                | 191 | 165 | 6,000   | 598                | 329 | 259 |
| 40  | 38                 | 36 | 35  | 440 | 265                | 195 | 168 | 7,000   | 606                | 332 | 261 |
| 45  | 42                 | 40 | 39  | 460 | 272                | 198 | 171 | 8,000   | 613                | 334 | 263 |
| 50  | 47                 | 44 | 42  | 480 | 279                | 202 | 173 | 9,000   | 618                | 335 | 263 |
| 55  | 51                 | 48 | 46  | 500 | 285                | 205 | 176 | 10,000  | 622                | 336 | 263 |
| 60  | 55                 | 51 | 49  | 550 | 301                | 213 | 182 | 15,000  | 635                | 340 | 266 |
| 65  | 59                 | 55 | 53  | 600 | 315                | 221 | 187 | 20,000  | 642                | 342 | 267 |
| 70  | 63                 | 58 | 56  | 650 | 329                | 227 | 191 | 30,000  | 649                | 344 | 268 |
| 75  | 67                 | 62 | 59  | 700 | 341                | 233 | 195 | 40,000  | 653                | 345 | 269 |
| 80  | 71                 | 65 | 62  | 750 | 352                | 238 | 199 | 50,000  | 655                | 346 | 269 |
| 85  | 75                 | 68 | 65  | 800 | 363                | 243 | 202 | 75,000  | 658                | 346 | 270 |
| 90  | 79                 | 72 | 68  | 850 | 373                | 247 | 205 | 100,000 | 659                | 347 | 270 |
| 95  | 83                 | 75 | 71  | 900 | 382                | 251 | 208 | 150,000 | 661                | 347 | 270 |
| 100 | 87                 | 78 | 73  | 950 | 391                | 255 | 211 | 200,000 | 661                | 347 | 270 |

### **RUMUS SLOVIN**

 Rumus Slovin untuk menentukan ukuran sampel minimal (n) jika diketahui ukuran populasi (N) pada taraf signifikansi α adalah:

$$n = \frac{N}{1 + N\alpha^2}$$

- Contoh:
- Berapa ukuran sampel minimum yang harus diambil dari populasi yang berukuran
- A. 1000 dengan taraf signifikansi  $\alpha = 0.05$
- B. 45.250 dengan taraf signifikansi  $\alpha$  = 0,01
- Jawab :
- A.  $n = \frac{N}{1+N\alpha^2} = \frac{1000}{1+1000(0.05)^2} = 285,7143 \approx 286$  (dibulatkan ke atas)
- B.  $n = \frac{N}{1 + N\alpha^2} = \frac{45.250}{1 + 45.250(0.01)^2} = 8.190,045 \approx 8.191$  (dibulatkan ke atas)



berpendidikan SLTA, 15 % berpendidikan Diploma. 40 % berpendidikan S1, dan 20 % berpendidikan S2 dan S3 akan diambil sampel menggunakan rumus Slovin pada taraf signifikansi  $\alpha$  = 0,05 maka secara proporsional, ukuran sampel untuk masing-masing tingkat pendidikan adalah sebagai berikut

|            |            | Ukuran Sampel       |            |  |  |  |
|------------|------------|---------------------|------------|--|--|--|
| Pendidikan | Prosentase | Slovin              | Pembulatan |  |  |  |
| SLTA       | 25         | 25 % x 286 = 71.50  | 72         |  |  |  |
| Diploma    | 15         | 15 % x 286 = 42.90  | 43         |  |  |  |
| <b>S</b> 1 | 40         | 40 % x 286 = 114.40 | 114        |  |  |  |
| S2 dan S3  | 20         | 20 % x 286 = 57.20  | 57         |  |  |  |
| Jumlah     | 100        | Jumlah              | 286        |  |  |  |

# RUMUS-RUMUS PENENTUAN UKURAN SAMPEL LAINNYA

Untuk Uji Proporsi

• Official Option

$$n \ge \frac{pq}{\sigma_p^2}$$
,

- dengan
- n = ukuran sampel yang diperlukan
- p = prosentase hipotesis yang dinyatakan dalam peluang,
- biasanya 0,50
- q = 1- p•  $\sigma_p^2 = \frac{p_0 - p}{z_{1-\frac{1}{2}\alpha}}$
- perbedaan antara yang ditaksir pada H₁ dengan H₀ dibagi dengan nilai z pada taraf signifikansi α tertentu.

## RUMUS PENENTUAN SAMPEL Untuk Uji Perbedaan Rata-Rata

 $n \ge \left(\frac{\sigma \cdot z}{b}\right)^2$ 

- dengan
- n = ukuran sampel yang diperlukan
- σ = simpangan baku populasi
- $z = nilai z pada tabel distribusi normal pada taraf signifikansi <math>\alpha$  tertentu
- b = perbedaan antara yang ditaksir dengan tolok ukur penafsiran.