## Отчёт по лабораторной работе №1

Информационная безопасность

Екатерина Павловна Канева

# Содержание

| 1 | Цель работы                             | 5  |
|---|-----------------------------------------|----|
| 2 | Задание                                 | 6  |
| 3 | - · · · · · · · · · · · · · · · · · · · | 7  |
|   | 3.1 Лабораторная работа                 | 7  |
|   | 3.2 Домашнее задание                    | 15 |
|   | 3.3 Контрольные вопросы                 | 17 |
| 4 | Выводы                                  | 20 |

# Список иллюстраций

| 5.1  | Создание виртуальной машины                     | Ŏ  |
|------|-------------------------------------------------|----|
| 3.2  | Выбор объёма оперативной памяти                 | 8  |
| 3.3  | Выбор создания виртуального жёсткого диска      | 9  |
| 3.4  | Выбор формата жёсткого диска                    | 10 |
| 3.5  | Выбор динамического типа жёсткого диска         | 10 |
| 3.6  | Выбор размера виртуального жёсткого диска       | 11 |
| 3.7  |                                                 | 11 |
| 3.8  | Выбор языка интерфейса при установке            | 12 |
| 3.9  | Выбор раскладки клавиатуры                      | 12 |
| 3.10 | Выбор комбинации для смены раскладки клавиатуры | 13 |
|      | 1 1                                             | 13 |
| 3.12 | Отключен KDUMP                                  | 13 |
| 3.13 | Хост                                            | 14 |
| 3.14 | Пароль для root                                 | 14 |
| 3.15 | Создание польнователя                           | 14 |
| 3.16 | 1 ''                                            | 15 |
| 3.17 | 1 1 1                                           | 15 |
| 3.18 |                                                 | 15 |
| 3.19 | Проверка модели процессора                      | 16 |
| 3.20 | Проверка объёма доступной памяти                | 16 |
| 3.21 | Тип обнаруженного гипервизора                   | 16 |
| 3.22 | Последовательность монтирования файловых систем | 17 |

## Список таблиц

## 1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину.

### 2 Задание

- Установка операционной системы на виртуальную машину.
- Настройка виртуальной машины.
- Получить следующую информацию:
- Версия ядра Linux (Linux version).
- Частота процессора (Detected Mhz processor).
- Модель процессора (CPU0).
- Объём доступной оперативной памяти (Memory available).
- Тип обнаруженного гипервизора (Hypervisor detected).
- Тип файловой системы корневого раздела.
- Последовательность монтирования файловых систем.

### 3 Выполнение лабораторной работы

#### 3.1 Лабораторная работа

Работа выполнялась на персональном ноутбуке.

Предварительно было установлено дополнительно программное обеспечение – виртуальная машина Oracle VM VirtualBox (пакет Windows hosts с сайта в сети Интернет: здесь) и образ необходимый образ операционной системы (Rocky Linux, DVD).

Создана новая машина. В графе Имя был указан логин в дисплейном классе – epkaneva; в графе Тип – Linux; в графе Версия - Fedora 64-bit (рис. 3.1):



Рис. 3.1: Создание виртуальной машины.

Далее был выбран объём памяти – 2048 Мб (рис. 3.2):



Рис. 3.2: Выбор объёма оперативной памяти.

Далее был создан виртуальный жёсткий диск (рис. 3.3), выбран тип VDI (VirtualBox Disk Image) (рис. 3.4), выбран динамический тип жёсткого диска (рис. 3.5):



Рис. 3.3: Выбор создания виртуального жёсткого диска.



Рис. 3.4: Выбор формата жёсткого диска.



Рис. 3.5: Выбор динамического типа жёсткого диска.

Далее для виртуального жёсткого диска был задан объём 40 Гб (рис. 3.6):



Рис. 3.6: Выбор размера виртуального жёсткого диска.

После этого был выбран образ жёсткого диска (рис. 3.7):



Рис. 3.7: Выбор образа жёсткого диска.

После завершения настройки виртуальная машина была запущена.

Далее запустился процесс установки. В качестве языка интерфейса был выбран английский язык (рис. 3.8). В качестве языков клавиатуры установлены английский и русский (рис. 3.9), выбрана комбинация для смены раскладки (рис.

3.10).



Рис. 3.8: Выбор языка интерфейса при установке.



Рис. 3.9: Выбор раскладки клавиатуры.

| Which combination(s) would you prefer for sw       | viccining between keybo | ard tayouts: |
|----------------------------------------------------|-------------------------|--------------|
| Left Win (while pressed)                           |                         |              |
| Left Win to first layout; Right Win/Menu to last l | ayout                   |              |
| Menu                                               |                         |              |
| Menu (while pressed), Shift+Menu for Menu          |                         |              |
| Right Alt                                          |                         |              |
| Right Alt (while pressed)                          |                         |              |
| Right Ctrl                                         |                         |              |
| Right Ctrl (while pressed)                         |                         |              |
| Right Ctrl+Right Shift                             |                         |              |
| Right Shift                                        |                         |              |
| Right Win                                          |                         |              |
| Right Win (while pressed)                          |                         |              |
| Scroll Lock                                        |                         |              |
| ☐ Shift+Caps Lock                                  |                         |              |
| ₩in+Space                                          |                         |              |

Рис. 3.10: Выбор комбинации для смены раскладки клавиатуры.

Далее были выбраны параметры установки (Server with GUI + Development Tools), был отключен KDUMP (рис. 3.12), задано имя хоста epkaneva.localdomain (рис. 3.13):



Рис. 3.11: Параметры.



Рис. 3.12: Отключен КDUMP.



Рис. 3.13: Хост.

Также были заданы пароль для root и пользователь (рис. 3.14 и 3.15):



Рис. 3.14: Пароль для root.



Рис. 3.15: Создание польнователя.

Далее была запущена установка. Образ ОС был успешно установлен на виртуальную машину, виртуальная машина запускается и работает корректно.

Также загрузили образ диска дополнений гостевой ОС (рис. 3.16):



Рис. 3.16: Образ диска.

#### 3.2 Домашнее задание

Далее была начата работа по выполнению "домашнего задания". С помощью различных команд (в основном, dmesg) была получена следующая информация:

• Версия ядра Linux, т.е. Linux version (рис. 3.17):

dmesg | grep -i "Linux version"

```
[epkaneva@epkaneva ~]$ dmesg | grep -i "linux"

[ 0.0000000] Linux version 5.14.0-362.8.1.el9_3.x86_64 (mockbuild@iadl-prod-bu ild001.bld.equ.rockylinux.org) (gcc (GCC) 11.4.1 20230605 (Red Hat 11.4.1-2), GN U ld version 2.35.2-42.el9) #1 SMP PREEHPT_DYNAMIC Wed Nov 8 17:36:32 UTC 2023

[ 0.000000] The list of certified hardware and cloud instances for Enterprise
```

Рис. 3.17: Проверка версии Linux.

• Частота процессора, т.е. Detected Mhz processor (рис. 3.18):

dmesg | grep -i "processor"

```
[epkaneva@epkaneva ~]$ dmesg | grep -i "processor"
[ 0.008007] tsc: Detected 2592.004 MHz processor
[ 0.184346] smphoot: Total of l processor activate
```

Рис. 3.18: Проверка частоты процессора.

• Модель процессора, т.е. CPU0 (рис. 3.19):

```
dmesg | grep -i "CPU0"
```

```
[epkaneva@epkaneva ~]$ dmesg | grep -i "CPU0"
[ 0.184346] smpboot: CPU0: Intel(R) Core(TH) i3-10110U CPU @ 2.106Hz (family: 0x6, model: 0x8e, stepping: 0xc)
```

Рис. 3.19: Проверка модели процессора.

Модель процессора: Intel(R) Core(TM) i1-10110U.

• Объём доступной оперативной памяти, т.е. Memory available (рис. 3.20):

```
dmesg | grep -i "Memory"
```

```
[epkaneva@epkaneva ~]$ dmesg | grep -i "available"

[ 0.001748] On node 0, zone DMA: 1 pages in unavailable ranges

[ 0.001775] On node 0, zone DMA: 97 pages in unavailable ranges

[ 0.002216] On node 0, zone DMA32: 16 pages in unavailable ranges

[ 0.002608] [mem 0x80000000-0xfebfffff] available for PCI devices

[ 0.020975] Hemory: 260860K/2096696K available (16384K kernel code, 5596K nwd ata, 11444K rodata, 3824K init, 18424K bss, 157760K reserved, 0K cma-reserved)
```

Рис. 3.20: Проверка объёма доступной памяти.

Памяти доступно: 260860К/2096696К.

• Тип обнаруженного гипервизора, т.е. Hypervisor detected (рис. 3.21):

```
dmesg | grep -i "Hypervisor detected"
```

```
[epkaneva@epkaneva ~]$ dmesg | grep -i "hypervisor"
[ 0.0080000] Hypervisor detected: KVM
[ 0.065866] SRBDS: Unknown: Dependent on hypervisor status
[ 0.065867] GDS: Unknown: Dependent on hypervisor status
```

Рис. 3.21: Тип обнаруженного гипервизора.

Тип гипервизора: KVM.

• Тип файловой системы корневого раздела. Для этого заходим в приложение Disks:

Тип: ext4.

• Последовательность монтирования файловых систем (рис. 3.22):

mount

```
[epkaneva@epkaneva ~]$ mount
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime,seclabel)
devtmpfs on /dev type devtmpfs (rw,nosuid,seclabel,size=4096k,nr_inodes=242371,m
ode=755,inode64)
securityfs on /sys/kernel/security type securityfs (rw,nosuid,nodev,noexec,relatime)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev,seclabel,inode64)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,seclabel,gid=5,mode=62
0,ptmxmode=000)
tmpfs on /run type tmpfs (rw,nosuid,nodev,seclabel,size=400584k,nr_inodes=819200,mode=755,inode64)
cgroup2 on /sys/fs/cgroup type cgroup2 (rw,nosuid,nodev,noexec,relatime,seclabel,nsdelegate,memory_recursiveprot)
pstore on /sys/fs/pstore type pstore (rw,nosuid,nodev,noexec,relatime,seclabel)
bpf on /sys/fs/pstore type pstore (rw,nosuid,nodev,noexec,relatime,mode=700)
/dev/mapper/rl_epkaneva=root on / type xfs (rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsfze=32k,noquota)
selinuxfs on /sys/fs/selinux type selinuxfs (rw,nosuid,noexec,relatime)
```

Рис. 3.22: Последовательность монтирования файловых систем.

#### 3.3 Контрольные вопросы

1. Какую информацию содержит учётная запись пользователя?

Имя пользователя, зашифрованный пароль пользователя, идентификационный номер пользователя, идентификационный номер группы пользователя, домашний каталог, командный интерпретатор пользвателя.

- 2. Укажите команды терминала и приведите примеры:
- для получения справки по команде: man <command> (man cd)
- для перемещения по файловой системе: cd <path> (cd work/study)
- для просмотра содержимого каталога: ls or dir
- для определения объёма каталога: du

- для создания каталогов: mkdir <name> (mkdir lab01)
- для удаления каталогов: rm <name> (rm -r lab01)
- для создания файлов: touch <name> (touch lab01.md)
- для удаления файлов: rm -r <name> (rm lab01.md)
- для задания определённых прав на файл / каталог: chmod + x <name/path> (chmod + x lab01)
- для просмотра истории команд: history.
- 3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система – это порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании.

Примеры файловых систем:

- Журналируемая файловая система (JFS). Журналируемые файловые системы позволяют быстро восстанавливать данные в случае сбоя. Это достигается за счет ведения журнала изменений файлов.
- Файловая система на компакт-диске. Это файловая система, которая хранится на компакт-диске и доступна только для чтения.
- Файловая система RAM. Диск RAM это виртуальный жесткий диск, хранящийся в оперативной памяти.
- Сетевая файловая система (NFS). Сетевая файловая система, или NFS, это распределенная файловая система, предоставляющая доступ к файлам и каталогам, хранящимся в удаленных системах, обычными средствами для работы с локальными файлами.

- Система имен файлов (NameFS). Система имен файлов содержит функции монтирования файл-на-файл и каталог-на-каталог (также называемое слабое монтирование), которые позволяют монтировать подкаталог или файловую систему в другом месте в области имен файлов, что позволяет иметь доступ к файлу с помощью двух различных путей.
- 4. Как посмотреть, какие файловые системы подмонтированы в ОС?

С помощью команды mount.

5. Как удалить зависший процесс?

с помощью команды kill.

### 4 Выводы

Установили ОС на виртуальную машину и настроили минимально необходимые для дальнейшей работы программы и сервисы. Узнали дополнительную информацию о машине.