Physics 362 Midterm II

Name:

This is a take home exam. You have one week to complete it. You may use Maxima as needed, and you should use your homework portfolio as a reference. You may not consult with other students.

Question	Points	Score
1	40	
2	20	
3	40	
Total:	100	

1. Consider the operator A, described by the relation

$$\mathcal{A}|\psi_0^{\mathrm{SHO}}\rangle = |\psi_1^{\mathrm{ISW}}\rangle.$$

Here $|\psi_0^{\rm SHO}\rangle$ is the ground state of the harmonic oscillator, and $|\psi_1^{\rm ISW}\rangle$ is the ground state of the infinite square well.

(a) (12 points) Find the eigenvalues and eigenfunctions of \mathcal{A} .

(b) (4 points) Is A hermitian?

(c) (12 points) Find the matrix elements of ${\cal A}$ in the SHO basis.

(d) (12 points) Find the matrix elements of ${\cal A}$ in the ISW basis.

2. (a) (5 points) What is the commutator [T, V] for the harmonic oscillator?

(b) (5 points) What is the uncertainty relation for T and V for the ground state of the harmonic oscillator?

(c) (10 points) How do you reconcile this uncertainty with the fact that the ground state of the harmonic oscillator is a determinite state for energy?

- 3. The operator a_+a_- is sometimes called the "number operator".
 - (a) (10 points) Explain why this name makes sense.

(b) (10 points) What would you get if you mistakenly used a_-a_+ instead?

(c) (10 points) Are \hat{H} and a_+a_- compatible observables? What about \hat{x} and a_+a_- ?

(d) (10 points) Test the energy-time uncertainty principle for the wave function in problem 2.13 and the operator a_+a_- .