§3. Знакопеременные ряды

П.1. Знакочередующиеся ряды. Признак Лейбница

Теорема 9 (Признак Лейбница). Пусть есть ряд $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$, $a_n > 0$. Пусть a_n монотонно убывает до нуля. Тогда ряд $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ сходится и его сумма $S \leq a_1$ не превосходит первого члена ряда.

Доказательство. Рассмотрим четную сумму $S_{2m}=(a_1-a_2)+(a_3-a_4)+\cdots+(a_{2m-1}-a_{2m})$. В силу монотонности каждое из выражений в скобках положительно, отсюда следует, что S_{2m} монотонная возрастает. С другой стороны, если перегруппировать выражение как $S_{2m}=a_1-(a_2-a_3)-(a_4-a_5)-\cdots-a_{2m}$, то каждое выражение в скобках тоже будет положительным, и $S_{2m}\leq a_1$. Получается, что S_{2m} возрастает и ограничена сверху. Следовательно, она имеет предел $\lim_{m\to\infty}S_{2m}=S$. Теперь рассмотри нечетные суммы $S_{2m+1}=S_{2m}+a_{2m+1}$. $\lim_{m\to\infty}a_{2m+1}=0$. Значит существует и предел $\lim_{m\to\infty}S_{2m+1}=S$ нечетных сумм. Получается, что исходная последовательность также имеет предел $\lim_{n\to\infty}S_n=S\leq a_1$.

<u>Пример.</u> Ряд $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ сходится (ряд Лейбница).

<u>Замечание.</u> Остаток знакочередующегося ряда обладает всеми его свойствами, например, его сумма по модулю не превосходит первого отброшенного члена $r_N = \sum_{n=N+1}^{\infty} (-1)^{n+1} a_n \xrightarrow[N \to \infty]{} r$, $r \leq |a_{N+1}|$. С помощью этого признака можно оценивать погрешность.

П.2. Абсолютная и условная сходимость

Пусть есть знакопеременный ряд $\sum_{n=1}^{\infty}a_n$. Рассмотрим знакоположительный ряд $\sum_{n=1}^{\infty}|a_n|$.

 $ag{Teopema 10.}$ Если ряд $\sum_{n=1}^{\infty} |a_n|$ сходится, то тогда сходится и знакочередующийся ряд $\sum_{n=1}^{\infty} a_n$.

Доказательство. Пусть ряд $\sum_{n=1}^{\infty} |a_n|$ сходится. Тогда по критерию Коши для любого $\varepsilon>0$ существует такое N, что для любого n>N и натурального p выполняется неравенство $|a_{n+1}|+|a_{n+2}|+\cdots+|a_{n+p}|<\varepsilon$. Тогда $|a_{n+1}+a_{n+2}+\cdots a_{n+p}|<\varepsilon$. Тогда по критерию Коши ряд $\sum_{n=1}^{\infty} a_n$ сходится.

Если сходится основной ряд и ряд из абсолютных величин, то такой ряд называется абсолютно сходящимся. Если сходится только основной ряд, а ряд из абсолютных величин расходится, то ряд сходится условно.

Свойства абсолютно сходящихся рядов

- 1) В абсолютно сходящемся ряде можно поменять местами члены ряда любым образом, при этом при такой перестановке получается абсолютно сходящийся ряд с той же суммой.
- 2) Два абсолютно сходящихся ряда можно почленно складывать и вычитать. В результате получится ряд с суммой, равной сумме или разности сумм исходных рядов соответственно.
- 3) Рассмотрим абсолютно сходящиеся ряды $\sum_{n=1}^{\infty}a_n$, $\sum_{n=1}^{\infty}b_n$. Назовем произведение этих рядов другим рядом $\sum_{n=2}^{\infty}c_n=\sum_{n=1}^{\infty}a_n*\sum_{n=1}^{\infty}b_n$, т.е. $c_2=a_1b_1$; $c_3=a_1b_2+a_2b_1$; ... ; $c_n=a_1b_{n-1}+a_2b_{n-1}+\cdots+a_{n-1}b_1$. К тому же, если $\sum_{n=1}^{\infty}a_n=A$, $\sum_{n=1}^{\infty}b_n=B$, то $\sum_{n=2}^{\infty}c_n=A*B$.

Свойства условно сходящихся рядов

- 1) Пусть есть условно сходящийся ряд $\sum_{n=1}^{\infty} a_n$. Обозначим его положительные члены $\{a_k^+\} = a_1^+; a_2^+; ...; a_k^+$ и отрицательные $\{a_k^-\} = -a_1^-; -a_2^-; ...; -a_k^-$. Множества $\{a_k^+\}$ и $\{a_k^-\}$ бесконечны. Для пояснения последнего пойдем от противного: пусть множество $\{a_k^-\}$ конечно. Тогда можно рассмотреть хвост ряда, который содержит только положительные члены. Этот хвост будет хвостом сходящегося ряда, составленного из абсолютных величин, т.е. ряд сходится абсолютно. Противоречие. Значит, множество $\{a_k^-\}$ бесконечно. Аналогичные рассуждения можно провести и для множества $\{a_k^+\}$.
- 2) Ряды $\sum_{n=1}^{\infty} a_n^+$ и $\sum_{n=1}^{\infty} a_n^-$ расходятся. Доказательство. Пусть $S_n = \sum_{k=1}^{\infty} a_k$, $\widetilde{S_n} = \sum_{k=1}^{\infty} |a_k|$, $S_m^+ = \sum_{k=1}^m a_k^+$, $S_p^- = \sum_{k=1}^p a_k^-$, m+p=n. Получаем, что $S_n = S_m^+ S_p^- \to S$; $\widetilde{S_n} = S_m^+ + S_p^- \to \infty$. Следовательно, $S_n + \widetilde{S_n} = 2S_m^+ \xrightarrow[m \to \infty]{} +\infty$. Получаем, что ряд из положительных значений расходится. Аналогичные рассуждения можно провести и для ряда с отрицательными членами.
- 3) Теорема 11 (Римана). Пусть $S \in R$ (или $\pm \infty$). В условно сходящемся ряде можно так переставить члены, что его сумма будет равняться S. Идея доказательства. Рассмотрим число S. Так как ряд, составленный из положительных членов, расходится, то выполняется неравенство $a_1^+ + a_2^+ + \cdots + a_m^+ > S$. Потом наберем такое количество отрицательных членов, чтобы выполнялось неравенство $a_1^+ + a_2^+ + \cdots + a_m^+ a_1^- a_2^- \cdots a_p^- < S$. Так, постепенно набирая то положительные, то отрицательные члены, сумма выражения начинает приближаться к числу S.

§4. Функциональные ряды П.1. Основные определения

Ряд называется функциональным, если каждый член ряд есть некая функция от $x.\ u_1(x)+u_2(x)+\cdots+u_n(x)+\cdots=\sum_{n=1}^\infty u_n(x).$

Если при $x=x_0$ числовой ряд $\sum_{n=1}^\infty u_n(x_0)$ сходится, то x_0 – точка сходимости. Множество всех точек сходимости называется областью сходимости ряда. В области сходимости ряда можно определить сумму ряда как функцию $S(x)=\sum_{n=1}^\infty u_n(x)$. При этом S(x) можно записать в виде $S(x)=\sum_{k=1}^n u_k(x)+r_n(x)$, где $r_n(x)\sum_{k=n+1}^\infty u_n(x)$ – хвост ряда. В каждой точке области сходимости стремится к нулю $r_n(x) \xrightarrow[n \to \infty]{} 0$.

Пусть x_1 принадлежит области сходимости. Тогда для любого $\varepsilon>0$ существует такое N_1 , что для любого $n>N_1$ выполняется $|r_n(x_1)|<\varepsilon$.

Пусть x_2 принадлежит области сходимости. Тогда для любого $\varepsilon>0$ существует такое N_2 , что для любого $n>N_2$ выполняется $|r_n(x_2)|<\varepsilon$.

Можно сказать, что для любого конечного числа точек $x_1, x_2, ..., x_p$ из области сходимости существует такое $N = \max(N_1, N_2, ..., N_p)$ такое, что для любого n > N и $x_k, k = 1, ..., p$ из набора выполняется неравенство $|r_n(x_k)| < \varepsilon$.

Сходящийся функциональный ряд $\sum_{n=1}^{\infty}u_n(x)$ называется равномерно сходящимся в области U, если для любого $\varepsilon>0$ существует такое N, что для любого n>N и для любого $x\in U$ выполняется неравенство $|r_n(x)|<\varepsilon$.