Matlab Table Summarize and Aggregate by Groups

back to Fan's Intro Math for Econ, Matlab Examples, or MEconTools Repositories

Group Table Rows and Sum within Group

There is a table where subsets of rows belong to different simulations, with exogenous fixed ρ parameters. For each ρ parameter combination, there are, stored as different rows, a number of model predictions and data moments, and corresponding difference. Find the total difference between model and data for subsets of rows based for each ρ parameter set.

First, create a table where each ρ group is identified jointly by ρ_a and ρ_b , stored in the 3rd and 4th rows.

```
% Make N by 2 matrix of fieldname + value type
mt_st_variable_names_types = [...
    ["year", "double"];["category", "string"];...
    ["rhoa", "double"];["rhob", "double"]; ...
    ["numberWorkersSimu", "logical"]; ["numberWorkersData", "double"]];
% Make table using fieldnames & value types from above
tb agg exa = table('Size',[0,size(mt st variable names types,1)],...
 'VariableNames', mt_st_variable_names_types(:,1),...
 'VariableTypes', mt_st_variable_names_types(:,2));
% Table with data inputs
tb_agg_exa = [tb_agg_exa;...
    \{1, 'C001', 0.50, 0.50, 5.5, 6.05\}; \{2, 'C002', 0.50, 0.50, 3.7, 4.4\}; \dots
    \{1, 'C001', 0.25, 0.30, 2.5, 3.65\}; \{2, 'C002', 0.25, 0.30, 0.1, 1.6\}; \dots
    {3, 'C001', 0.25, 0.50, 0.01, 1.66}];
% Generate model and data difference
tb_agg_exa{:, "diff"} = tb_agg_exa{:, "numberWorkersSimu"} - tb_agg_exa{:, "numberWorkersData"]
% Display
disp(tb agg exa);
```

year	category	rhoa	rhob	numberWorkersSimu	numberWorkersData	diff
1	"C001"	0.5	0.5	5.5	6.05	-0.55
2	"C002"	0.5	0.5	3.7	4.4	-0.7
1	"C001"	0.25	0.3	2.5	3.65	-1.15
2	"C002"	0.25	0.3	0.1	1.6	-1.5
3	"C001"	0.25	0.5	0.01	1.66	-1.65

Second, select the subset of columns that are relevant for aggregation.

```
% Select
tb_agg_exa = tb_agg_exa(:, ["rhoa", "rhob", "diff"]);
% Display
disp(tb_agg_exa);
```

```
        rhoa
        rhob
        diff

        0.5
        0.5
        -0.55

        0.5
        0.5
        -0.7

        0.25
        0.3
        -1.15

        0.25
        0.3
        -1.5
```

```
0.25 0.5 -1.65
```

Third, group by unique combinations of rhoa, rhob, and aggregate. Then generate group ID.

```
% Sum within groupo
tb_groupby_agg_sum = groupsummary(tb_agg_exa, ["rhoa", "rhob"], "sum");
% Generate grouping ID
tb_groupby_agg_sum{:, "ID"} = (1:1:size(tb_groupby_agg_sum, 1))';
tb_groupby_agg_sum = movevars(tb_groupby_agg_sum, "ID", "Before", 1);
disp(tb_groupby_agg_sum);
```

ID	rhoa	rhob	GroupCount	sum_diff
_				
1	0.25	0.3	2	-2.65
2	0.25	0.5	1	-1.65
3	0.5	0.5	2	-1.25