Pruning

Carsten Gips (FH Bielefeld)

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.

Pruning: Bedingt irrelevante Attribute

Baum:
$$\alpha = x_1(x_2(A, B), x_2(A, B), x_2(A, B))$$

Pruning: Bedingt irrelevante Attribute

Baum:
$$\alpha = x_1(x_2(A, B), x_2(A, B), x_2(A, B))$$

$$x_1$$
 ist bedingt irrelevant => Vereinfachung: $\alpha = x_2(A, B)$

Pruning: Bedingt irrelevante Attribute

Baum:
$$\alpha = x_1(x_2(A, B), x_2(A, B), x_2(A, B))$$

 x_1 ist bedingt irrelevant => Vereinfachung: $\alpha = x_2(A, B)$

Allgemein:

- Sei x̃ Weg zu Nichtendknoten x_t
- Baum dort $\alpha/\tilde{x} = x_t(\alpha_1, \dots, \alpha_{m_t})$
- x_t ist **bedingt irrelevant** unter der Bedingung \tilde{x} , wenn $\alpha_1 = \alpha_2 = \ldots = \alpha_{m_t}$
- Vereinfachung: Ersetze in α/\tilde{x} den Test x_t durch α_1

Pruning: Bedingt redundante Attribute

Baum:
$$\alpha = x_1(*, *, x_2(A, B))$$

Pruning: Bedingt redundante Attribute

Baum:
$$\alpha = x_1(*, *, x_2(A, B))$$

$$x_1$$
 ist bedingt redundant => Vereinfachung: $\alpha = x_2(A, B)$

Pruning: Bedingt redundante Attribute

Baum:
$$\alpha = x_1(*, *, x_2(A, B))$$

 x_1 ist bedingt redundant => Vereinfachung: $\alpha = x_2(A, B)$

Allgemein:

- Sei x̃ Weg zu Nichtendknoten x_t
- Baum dort $\alpha/\tilde{x} = x_t(*, \dots, *, \alpha_i, *, \dots, *)$ (mit $\alpha_i \neq *$)
- x_t ist **bedingt redundant** unter der Bedingung \tilde{x}
- **Vereinfachung**: Ersetze in α/\tilde{x} den Test x_t durch α_i

Allgemeine Transformationsregel

$$x_1(x_2(a,b),x_2(c,d)) \Leftrightarrow x_2(x_1(a,c),x_1(b,d))$$

Wrap-Up

- Pruning: Entfernen bedingt redundanter und irrelevanter Tests
- Transformationsregel zum Umbauen von Entscheidungsbäumen

LICENSE

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.