Mathematics Department Perth Modern

| rmula sheet provided: Yes                                                                                                             | ЮЯ  |
|---------------------------------------------------------------------------------------------------------------------------------------|-----|
| sk weighting:10_%                                                                                                                     | εT  |
| ırks available:46 marks                                                                                                               | ₽W  |
| of<br>A4 paper, and up to three calculators approved for use in the<br>WACE examinations                                              |     |
| ecial items: Drawing instruments, templates, notes on one unfolded shee                                                               | dς  |
| ndard items: Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters | st2 |
| aterials required: Calculator with CAS capability (to be provided by the student)                                                     | ³M  |
| imber of questions:8                                                                                                                  | υN  |
| ne allowed for this task:45 mins                                                                                                      | ηİΤ |
| г <b>қ </b> ғλbe:                                                                                                                     | ΕŢ  |
| ıte: 30 March                                                                                                                         | εQ  |
| ndent name: Teacher name:                                                                                                             | 175 |
| ourseMethods_Test 2_ Year12                                                                                                           | ၁   |
| PERTH MODERN SCHOOL Independent Public School                                                                                         |     |

Note: All part questions worth more than 2 marks require working to obtain full marks.

| 9  | 13 | т I | T . |  |
|----|----|-----|-----|--|
| S) | С  | a   | I.  |  |

Mathematics Department

Perth Modern

Perth Modern

Mathematics Department

(3 & 3 = 6 marks)

Q1 (3.2.1-3.2.3) Determine  $^{\bigvee}$  in terms of  $^{\chi}$  for the following.

a) 
$$\frac{dy}{dx} = 5x^3 - \frac{2}{x^2}$$
 given that  $y = 10$  when  $x = 2$ .

$$\frac{dy}{dx} = \frac{50x^2}{(5-x^3)^5}$$
 given that  $y = 100$  when  $x = 2$ .

metres. Determine the displacement when  $^{\it 1}$  =6 . (1 - 12) . When t =1 the displacement is SZ metres and when  $^t$  =3 the displacement is -1.0 A particle travels along a straight line such that its acceleration at time  $^{1}$  seconds is equal to (4 marks) (3.2.21-3.2.22)

(2. 2, 1 & 2 = 7 marks)

Working out space

Q3 (3.2.10-3.2.11)

Consider the function f(x) which is graphed for  $2 \le x \le 6$ .



a) By using rectangles of width one unit, as shown above, determine a lower estimate for the area under f(x) for  $2 \le x \le 6$ .

b) By using rectangles of width one unit, as shown above, determine an upper estimate for the area under f(x) for  $2 \le x \le 6$ .

c) Determine a better approximation for the area under f(x) for  $2 \le x \le 6$ .

d) Describe two different methods to improve the approximation for the area under f(x) for  $2 \le x \le 6$ .

Mathematics Department Perth Modern

(3 & 2 = 5 marks)(71.2.8-81.2.8) þδ

described by  $\frac{dV}{dt} = 230 - \frac{120}{120}$ An oil tank is drained of oil such that if  $^{V\,ML}$  of oil in the tank  $^t$  seconds after draining commences is

a) How much oil was in the full tank? (nearest kL) The initially full tank is emptied in 2 mins.

b) How much oil was drained from the tank in the fifth second, nearest kL.

Consider a function f(x) which is only defined for  $-5 \le x \le 7$  with f(z) = 0 = 0 = 0(2, 2 & 2 = 6 marks)(3.2.11-3.2.14)

$$II = (I -)$$

$$\mathcal{E}_{P} = xp(x) \int_{\mathcal{E}} \int_{\mathcal{E}} dx$$

$$\mathcal{E} = xb(x) \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} dx$$

It is known that  $f(x) \ge 0$  for  $0 \le x \le 0$  and  $f(x) \le 0$  for  $0 \le x \le 7$ . Determine.

$$xp(x)^{-1}\int_{-1}^{1}\int_{0}^{1}$$
 (a

$$xp(x) \int_{-\infty}^{\infty} q$$

c) The area between y = f(x) and the x axes for  $-5 \le x \le 7$ .

Mathematics Department Perth Modern

Working out space

8 P a g e

Mathematics Department

Perth Modern

Q6 (3.2.20)

(4 marks)

Determine to two decimal places the area between the curves  $y=x^3+x+1$  and y=4x. (Hint- Sketch the curves first on your classpad)

(2 & 2 = 4 marks)

Consider  $y = \int_{0}^{t} t^3 + 3(1 + 4e^{2t})^5 dt$ 

Determine.

**6** | P a g e

Mathematics Department Perth Modern

(4 marks) Q8 (3.1.4)

The instantaneous rate of decline in the number of kangaroos on a particular park is 30% of the population per year. If there were 12 050 kangaroos on the park 3 years ago, how many will be on the park in four years from now

Q9 (3.2.6) (2 & 4 =6 marks)
(a) Determine 
$$\frac{d}{dx} \left( x(x+1)^{\frac{1}{1}} \right)$$
.

(b) Using your result from part (a) and without using your classpad determine