

MOSFET transistors: review

Field effect transistors (FETs)

Types	Operation	Channel
MOSFET (Metal-Oxide Semiconductor FET)	Enhancement	N channel (or N-MOS) P channel (or P-MOS)
	Deplexion	N channel (or N-MOS) P channel (or P-MOS)

Basic features

- They are unipolar: only one type of carrier
- They control I through V (in bipolars I is controlled through I)
- Three terminals:
 - Source: send carriers
 - Gate: controls the passage of carriers
 - Drain: receives carriers

Structure of the Enhancement N-channel MOS Transistor (n-MOS)

Operation

Operation

Operation

© UC3M

Characteristic curves

Ohmic zone

$$i_D = K \left[2(V_{GS} - V_t)V_{DS} - V_{DS}^2 \right]$$

Saturation Region (I_D does not depend on V_{DS})

$$i_D = K(V_{GS} - V_t)^2$$

$$K = \frac{1}{2} \mu_n C_{ox} \frac{W}{L}$$

Characteristic curves: saturation

Saturation Region (I_D does not depend on V_{DS})

$$i_D = K(V_{GS} - V_t)^2$$

Characteristic curves

 V_{A} is the modulation voltage of the channel, produces an effect similar to the Early voltage in BJTs. Considering it:

$$i_D = K(V_{GS} - V_t)^2 (1 + \lambda V_{DS})$$

MOSFET with channel p (P-MOS)

• In enhancement pmos, there is a channel if: $V_{GS} \leq V_{t} < 0$

 $V_{DS} \ge V_{GS} - V_{t}$ In ohmic zone

$$V_{DS} \leq V_{GS} - V_{t}$$
 in saturation

Deplexion MOSFET

- Similar, but with the channel already manufactured:
 - You have to apply a tension V_{GS}<0 to remove the channel (the e- move away from the door)
 - If $V_{GS} \le V_{t} < 0$ Then there is no channel (cutoff)
- Otherwise, it works the same as enhancement:

Summary

• In the enhancement nmos, there is a channel if: $V_{GS} \ge V_t > 0$

$$V_{DS} \leq V_{GS} - V_t$$
 In ohmic zone $V_{DS} \geq V_{GS} - V_t$ in saturation

 \blacksquare In the enhancement pmos, there is a channel if: $V_{GS} \leq V_t < 0$ $V_{DS} \geq V_{GS} - V_t \quad \text{In ohmic zone}$

 $V_{DS} \leq V_{GS} - V_t$ in saturation

■ In the deplexion nmos, there is a channel if: $V_{GS} \geq V_t, \ V_t < 0$ $V_{DS} \leq V_{GS} - V_t$ In ohmic zone $V_{DS} \geq V_{GS} - V_t$ in saturation

■ In the deplexion pmos, there is a channel if: $V_{GS} \leq V_t, \ V_t > 0$ $V_{DS} \geq V_{GS} - V_t$ In ohmic zone $V_{DS} \leq V_{GS} - V_t$ in saturation