Heart Disease Prediction

Using Supervised Machine Learning Models

Problem Statement Objective Approach Data Insights Sample Data **Data Preprocessing** Contents **Results and Inferences Peer Method Benchmarking Proposed Novelty in Approach Areas of Refinement** Conclusion

Problem Statement

Heart disease is a leading cause of death, yet predicting it early remains difficult due to diverse risk factors like age, BMI, and lifestyle. Our ensemble learning approach combines multiple models to enhance accuracy and support timely interventions.

Objective

The goal is to enhance heart disease prediction accuracy by applying supervised machine learning models such as Logistic Regression, Decision Trees, Random Forests, Ensemble Methods, and Artificial Neural Networks. The models are optimized using feature engineering, data preprocessing, and class balancing, and evaluated with metrics like Accuracy, Precision, Recall, and F1 Score to support early diagnosis.

Features

General Health

Checkup

Exercise

Heart_Disease
Skin Cancer

Other Cancer

Depression

Diabetes

Arthritis

Sex

Age_Category

Height_(cm)

Weight in kilograms

BMI

Smoking_History

Alcohol_Consumption

Fruit_Consumption

Green_Vegetables_Consumption

FriedPotato_Consumption

DATA

Values

Excellent', 'Fair', 'Very Good', 'Poor', 'Good'

Within the past year', 'Within the past 2 years', 'Within the past 5 years', '5 or more years ago', 'Never'

Yes', 'No' Yes', 'No'

0.1

0.1

Yes', 'No'

No', 'Yes', 'No, pre-diabetes or borderline diabetes', 'Yes, but female told only during pregnancy'

Yes', 'No'

Male'. 'Female'

40-44', '80+', '30-34', '55-59', '65-69', '75-79', '70-74', '50-54', '25-29', '60-64', '45-49', '18-24', '35-39'

Height in centimeters

Weight in kilograms

Numerical value

Yes', 'No'

Numerical value

Numerical value

Numerical value

Numerical value

Data Insights

Total samples: 308854

• Total Features: **19** (Numerical **-9**, Categorical **-10**)

1:24971

Data Preprocessing

Feature Construction: Derived 4 new features

Feature Scaling: **StandardScaler** on numerical attributes

☐ Feature Encoding: OnehotEncoder on Categorical attributes

□ Handling Imbalanced Target Class: Undersampling and SMOTE

Following are the observations when fit() method is applied on the Test dataset.

Model Used	Sampling technique	Accuracy	Precision	Recall	F1 Score
Logistic Regression	Undersampling	0.7522	0.7371	0.7839	0.7598
	SMOTE	0.743	0.2202	0.7805	0.3435
Decision Tree	Undersampling	0.7429	0.7218	0.7905	0.7546
	SMOTE	0.4705	0.1306	0.9099	0.2283
Random Forest	Undersampling	0.7487	0.7195	0.8152	0.7644
	SMOTE	0.6907	0.1927	0.813	0.3116
Ensemble Learning	Undersampling	0.7526	0.7277	0.8072	0.7654
	SMOTE	0.6881	0.1938	0.8296	0.3142
Neural Network	Undersampling	0.7543	0.7214	0.8286	0.7713
	SMOTE	0.8065	0.2434	0.5913	0.3448

Inferences

- Neural Network with Undersampling emerged as the top performer, achieving the highest F1 Score (0.7713), indicating the best balance between precision and recall.
- Ensemble Learning and Random Forest (with Undersampling) followed closely, showing competitive F1 scores (0.7654 and 0.7644 respectively), making them reliable alternatives.
- Across all models, Undersampling consistently outperformed SMOTE, which suffered from very low precision values, significantly reducing F1 Scores.
- Accuracy alone was not a sufficient indicator of model performance SMOTE showed decent accuracy in some cases but very poor F1 Scores due to imbalance in precision and recall.
- Overall Model Ranking: Neural Network > Ensemble Learning > Random Forest > Logistic Regression > Decision Tree

F1 Score Comparison: Undersampling vs SMOTE

Undersampling: Accuracy, F1 score plot

Neural Network Model Summary

- Loss function: binary_crossentropy
- **Regularization**: L2 regularization
- Activation function: selu, relu, sigmoid
- Metrics: Accuracy, Precision, Recall and F1 score
- Early Stopping: val_accuracy
- fit():
 - o epochs = 100,
 - batch_size = 32,
 - validation_split = 0.2,
 - early_stopping = val_accuracy

Model: "sequential_16"	•		
Layer (type)	0utput	Shape	Param #
dense_52 (Dense)	(None,	90)	3060
batch_normalization_24 (Batc	(None,	90)	360
dropout_32 (Dropout)	(None,	90)	0
dense_53 (Dense)	(None,	40)	3640
batch_normalization_25 (Batc	(None,	40)	160
dropout_33 (Dropout)	(None,	40)	0
dense_54 (Dense)	(None,	1)	41
Total params: 7,261 Trainable params: 7,001 Non-trainable params: 260			

Hyperparameter tuning and Cross
 Validation: GridSearchCV

Peer Comparison

Model Used	Metric	Peer Benchmark	Current Benchmark
Logistic Regression	Accuracy	0.9197	0.7522
	F1 Score	0.0472	0.7598
Decision Tree	Accuracy	0.9191	0.7429
Decision free	F1 Score	0	0.7546
Random Forest	Accuracy	0.9194	0.7487
Randomiiolest	F1 Score	0.0235	0.7644
Neural Network	Accuracy	0.9191	0.7543
Hediai Network	F1 Score	0	0.7713

Peer vs Current Benchmarks

Proposed Novelty in Approach

- Introduced 4 new features from existing features.
 - o BMI_Category: categorize into Underweight, Normal, Overweight, Obese
 - Healthy_eating_ratio: FriedPotato_Consumption (Fruit_Consumption + Green_Vegetables_Consumption)/2
 - Age_numeric: taking the mean of Age_Category
 - Cancer_Risk: columns grouped into one

Overcoming target class imbalance by undersampling the data for training. Only
 49942 samples were considered.

Columns neglected as part of Feature selection are: Age_Category, Skin_Cancer,
 Other_Cancer and Checkup

Areas of Refinement

Dataset needs to have more laboratory result data like Cholestrol level, Blood
 Pressure, Blood Sugar and ECG reports.

• Lack of instances or samples to overcome class imbalances

Conclusion

In this project, we explored and compared various machine learning models to predict the likelihood of heart disease, with the aim of identifying the most effective approach for early detection. By analyzing model performance through metrics like Accuracy, Precision, Recall, and F1 Score, we found that neural networks, in particular, offer promising results when paired with proper data balancing techniques like undersampling.

We hope this work contributes meaningfully toward building smarter, data-driven solutions in the healthcare space—especially in aiding early diagnosis and timely intervention for heart disease. With further optimization and real-world validation, such predictive models can play a crucial role in reducing the burden of cardiovascular conditions and ultimately saving lives.

Link to code:

https://jupyter.e.cloudxlab.com/user/vaishaksatheesh 6467/notebooks/keras_sample_projects/CVD_Final_Pr oject.ipynb#

Google Drive Link:

https://drive.google.com/drive/folders/1IGt3J6xJu9D

McUo9bg3MKKiDgQj4szG?usp=drive link