Sean Kunz

CS 575 HW #1

1. Prove the following using the original definitions of O, Ω , θ , and ω .

1.1.
$$15n^2 + 5n + 8 = O(n^2)$$

$$g(n)$$
 is $O(f(n))$ if for positive constants c and N, $0 \le g(n) \le cf(n)$ for all $n \ge N$

$$g(n) = 15n^2 + 5n + 8$$

$$f(n) = n^2$$

$$0 \le 15n^2 + 5n + 8 \le cn^2$$

$$0 \le 15 + 5/n + 8/n^2 \le c$$
 (Divide both sides by n^2)

For
$$N = 1$$
, $c = 28$, $0 \le 28 \le 28$

Expression is satisfied.

1.2.
$$n^3 + 2n + 5 = \Omega(n^3)$$

$$g(n)$$
 is $\Omega(f(n))$ if for positive constants c and N, $0 \le cf(n) \le g(n)$ for all $n \ge N$

$$g(n) = n^3 + 2n + 5$$

$$f(n) = n^3$$

$$0 \le cn^3 \le n^3 + 2n + 5$$

$$0 \le c \le 1 + 2/n^2 + 5/n^3$$
 (Divide both sides by n^3)

For
$$N = 1$$
, $c = 8$, $0 \le 8 \le 8$

Expression is satisfied.

1.3.
$$\sum_{i=1}^{k} a_i n^i = \Omega(n^k)$$
 for $k > 1$. Assume that $a_i > 0$ for all i.

$$g(n)$$
 is $\Omega(f(n))$ if for positive constants c and N, $0 \le cf(n) \le g(n)$ for all $n \ge N$

$$g(n) = \sum_{i=1}^{k} a_i n^i$$

$$f(n) = n^k$$

$$0 <= cn^k <= \sum_{i=1}^k a_i n^i$$

$$0 \le cn^k \le a(1-n^k)/(1-n)$$
 (Geometric Series)

$$0 \le cn^k \le a/(1-n) - an^k/(1-n)$$
 (Separate terms)

$$0 \le c \le a/n^k(1-n) - a(1-n)$$
 (Divide both sides by n^k)

For
$$N = 2$$
, $k = 1$, $a = 1$, $c = \frac{1}{2}$, $0 <= \frac{1}{2} <= \frac{1}{2}$

Expression is satisfied.

1.4.
$$n^7 + 3n^2 = \theta(n^7)$$

$$g(n)$$
 is $\theta(f(n))$ if for positive constants c, d, and N, $0 \le cf(n) \le g(n) \le df(n)$ for all $n \ge N$

$$0 \le cn^7 \le n^7 + 3n^2 \le dn^7$$

$$0 \le cn^7 \le n^7 + 3n^2$$

$$0 \le c \le 1 + 3/n^5$$

For
$$N = 1$$
, $c = 4$, $0 \le 4 \le 4$

```
Expression is satisfied.
```

$$n^7 + 3n^2 \le dn^7$$

For
$$N = 1$$
, $d = 4$, $4 <= 4$

Expression is satisfied.

2. Prove the following using limits.

$$\begin{cases} \text{c then } f(n) = \theta(g(n)) \text{ if } c > 0 \\ \lim_{n \to \infty} f(n)/g(n) = \{0 \text{ then } f(n) = o(g(n)) \\ \{\infty \text{ then } f(n) = \omega(g(n)) \} \end{cases}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) = o(g(n)) \}$$

$$\{ x \text{ then } f(n) =$$

2.2.
$$n \ln n^7 = o(n^3)$$

 $f(n) = n \ln n^7$
 $g(n) = n^3$
 $\lim_{n \to \infty} n \ln n^7 / n^3$
 $\lim_{n \to \infty} \ln n^7 / n^2$
 $\lim_{n \to \infty} 7 / 2n^2 = 0$ (L'Hopital's)

 $\lim_{k \to \infty} \frac{k!}{\ln^k(3)} * 3^n = 0$

3. Prove that 7^n -1 is divisible by 6 for $n=1,\,2,\,3,\,\dots$ using induction

 $m \mod n = m - n \operatorname{floor}(m / n)$

Base: For n = 1

$$7^{n} - 1 = 7^{1} - 1 = 6.6 - 6$$
 floor(1) = 0. Satisfied.

<u>Hypothesis</u>: Assume true for (n+1).

Induction: 7^{n+1} - 1 is divisible by 6.

 $7*7^n$ - 1 - $(7^n$ - 1). If we subtract a multiple of 6 from a value, we should get another multiple of 6.

6*7ⁿ is a multiple of 6 as it is multiplied by 6.

4. Analyze the worst-case time complexity in terms of Big Oh notation. Briefly, yet clearly explain your answer.

- 4.1. O(lg(n)). By instruction count, we see that lg(n) + 1 instructions are performed in the loop due to the statement i=2*i.
- 4.2. $O(n \lg(n))$. By instruction count, the outer for loop executes n times. The three function calls have time complexities of O(1), $O(\lg(n))$, and O(1), respectively. Since each of these are called n times, the highest order term is then n $\lg(n)$.
- 4.3. O(2^s), where s is the number of bits for a value n. When the value computed for a factorial gets large enough, it will no longer fit in a word and multiplication will no longer be a constant time operation.