EECS 496: Sequential Decision Making

Soumya Ray

sray@case.edu

Office: Olin 516

Office hours: T 4-5:30 or by appointment

Today

 Propositional Logic (Chapter 7, Russell and Norvig)

What is Sequential Decision Making?

 "Decision Making": decisions about which action to execute in the world

 "Sequential": Choices made at a given point affect future outcomes and choices

Sequential Decision Making

Find a sequence of actions that maximizes utility over time/ reaches some goal

Agent-Environment Loop

Sequential Decision Making Loop

- Agent starts in some state of the world
- Repeat until done:
 - Agent takes an action based on current (possibly incomplete, uncertain) knowledge
 - The state of the world changes as a result (maybe stochastically)
 - The world may provide some feedback (reward/penalty)
 - The agent gets (possibly incomplete, uncertain) knowledge about new state
- "Done": Some sort of terminal or goal state is reached

Representation Language

- To solve an SDM problem, the agent needs to be able to represent its environment in its "head" and reason with it
 - A "language" and associated inference algorithms

 The "representational complexity" of an SDM problem depends on the type of environment

Types of Environments

Туре	Definition
Fully observable (vs. Partially Observable)	Agent's sensors present complete, accurate picture of the world (as far as determining action sequence is concerned)
Deterministic (vs. <i>Stochastic</i>)	The next state of the world is completely determined by current state and agent's action
Static (vs. <i>Dynamic</i>)	The world does not change until the agent takes an action
Discrete (vs. <i>Continuous</i>)	States, percepts and actions are discrete
Single Agent (vs. Multiagent)	The world has only one agent in it
Non-sequential (Episodic) (vs. Sequential)	Agent's current action does not affect future actions

Type of Environment

- We'll start by assuming our environments are
 - Deterministic
 - Fully observable
 - Single agent
 - Static
 - Discrete
 - Sequential

Wumpus World

Formalizing the reasoning process

 To build an automated system that can carry out this sort of reasoning, we'll equip them with knowledge bases of facts and inference algorithms to derive new facts

 Propositional logic is a way to formalize the reasoning process described in the previous slide

Syntax and Semantics

 Syntax: what strings of symbols are allowable sentences in the language

- Semantics: Given a well-formed sentence, what does it "mean"?
 - i.e. how does it connect to the external world?

Propositional Logic Syntax

- A propositional symbol is a "well formed formula" (wff) or "sentence"
 - -P, Q, RainTomorrow etc
 - Two special symbols: TRUE and FALSE

- Combining any two wffs A and B via the following logical connectives results in a wff:
 - $-(\neg A)$, $(A \land B)$, $(A \lor B)$, $(A \Longrightarrow B)$, $(A \Longleftrightarrow B)$

Valid or not?

•
$$(A \wedge B) \Longrightarrow (A \vee B)$$

•
$$(((A \Leftrightarrow B) \Leftrightarrow C) \Leftrightarrow D)$$

•
$$(\neg A \Rightarrow B \lor C) \land (A \Leftrightarrow B)$$

•
$$(A \neg \Rightarrow B)$$

Note on syntax

 Do not confuse the English words "and"/ "or" etc with the logical connectives

Semantics: Models

- A "model" assigns truth values (true or false) to all propositional symbols in the language
 - Every model assigns a truth value "true" to TRUE
 - No model assigns a truth value "true" to FALSE

Semantics of Logical Connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Truth Tables

Semantics of sentences

 The semantics defines the truth value of a sentence (wff) with respect to the model

• We say a model M is "a model of a sentence α " if α evaluates to "true" when the symbols in α are assigned values according to M

Building Knowledge Bases

Building Knowledge Bases

- Let $P_{i,j}$ represent the existence of a pit in [i, j].
- Let $B_{i,j}$ represent the existence of a breeze in [i, j]. Similarly for $S_{i,j}$
- Agent knows: $\neg P_{1,1} \land \neg P_{1,2} \land \neg P_{2,1} \land \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1} \land \neg B_{1,1} \land B_{2,1} \land \neg B_{1,2} \land \neg S_{1,1} \land S_{1,2} \land \neg S_{2,1}$
- "Pits cause breezes in adjacent squares"

$$(P_{1,1} \Rightarrow (B_{1,2} \wedge B_{2,1})) \wedge (P_{2,1} \Rightarrow (B_{1,1} \wedge B_{2,2} \wedge B_{3,1})) \wedge \dots$$

Entailment

- Given a knowledge base, we will need to identify what else is a consequence of this
 - This is logical inference (deduction)

- Inference in logic involves establishing an entailment relationship: $\alpha \models \beta$
 - $-\alpha \models \beta \ (\alpha \text{ entails } \beta) \text{ iff every model of } \alpha \text{ is also a}$ model of β

Wumpus World

Suppose our knowledge base has facts "Breeze in 2,1" and "Nothing in 1,1"

This KB entails "Nothing in 2,1" but does not entail "Nothing in 2,2"

Note: If α does not entail β then it does NOT mean $\alpha \models \neg \beta$

Note on syntax

- Things like $(\alpha \models \beta \land \gamma \models \delta)$ are NOT wffs
 - − | is a "meta-logical" symbol
 - It says something ABOUT the logic but is not IN the logic
 - Often \models is confused with ⇒
 - $-((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ is a wff
 - " $\alpha \models \beta$ and $\gamma \models \delta$ " is also ok
 - Shorthand for "every model of α is a model of β and every model of γ is a model of δ "

Putting things together

Inference by Enumeration

 Given a propositional knowledge base (KB), how will the agent deduce new facts?

- For a given fact α , does KB $\neq \alpha$?
 - i.e., every model of KB is a model of α
 - Enumerate all possible models and check

Inference by Enumeration

	$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_1
f	alse	false	true						
f	alse	false	false	false	false	false	true	false	true
	:	:	:	:	:	:	:	:	:
$\int f$	alse	true	false	false	false	false	false	false	true
f	alse	true	false	false	false	false	true	\underline{true}	\underline{true}
f	alse	true	false	false	false	true	false	\underline{true}	\underline{true}
f	alse	true	false	false	false	true	true	\underline{true}	\underline{true}
f	alse	true	false	false	true	false	false	false	true
	:		:	:		:	:	:	:
t	rue	true	true	true	true	true	true	false	false

Unfortunately, in the worst case, no more efficient strategy is possible.

Inference by Enumeration

B ₁₂	B ₂₁	S ₁₂	S ₂₁	P ₂₂	$ \begin{array}{c} P_{22} \Rightarrow B_{12} \\ \land B_{21} \end{array} $	¬P ₂₂
T	F	F	T	F	Т	Т
Т	F	F	Т	Т	F	F

Can we do better?

Definitions

• A formula α is valid if it is true in every model (tautology)

• A formula α is satisfiable if it is true in *some* model

Satisfiability and Inference

• Satisfiability and inference are linked by the proof-by-refutation theorem: $\alpha \models \beta$ iff $(\alpha \land \neg \beta)$ has no model (is unsatisfiable)