"Enhanced 3D Shape Reconstruction With Knowledge Graph of Category Concept"

Machine Learning with Knowledge Graphs 2024 - Nicolas Mogicato

Why is this paper interesting?

- Reconstructing 3D objects from 2D images is crucial in computer graphics/vision
- Traditional methods struggle to capture realistic essence of object categories
- Innovative approach incorporates graph-based conceptual knowledge into deep learning frameworks
- Structured knowledge graphs + neural networks = geometrically and conceptually consistent 3D shapes

Key Findings

3D Shape Reconstruction

- Under-constrained problem
- Traditional methods reliant on silhouettes or shading often inadequate for real-world applications
- Significant progress leveraging deep learning, particularly with encoder-decoder(-refiner) frameworks, integrating view and shape info to increase accuracy

(a) Image

(b) Silhouette

Novel Multimodal Framework

Graph-based conceptual knowledge to enhance 3D shape reconstruction from a single RGB image

Framework Design

- Dual Concept Classifiers
- Loss Functions to verify quality
- Mirroring human cognitive abilities in machine learning contexts

Framework Design

- Dual Concept Classifiers
- Loss Functions to verify quality
- Mirroring human cognitive abilities in machine learning contexts

Framework Design

- Dual Concept Classifiers
- Loss Functions to verify quality
- Mirroring human cognitive abilities in machine learning contexts

3D shape reconstruction methodologies

Framework - Implementation Overview

- Pix2Vox-A architecture + graph-based conceptual knowledge
- Binary occupancy volume

Framework - Baseline Architecture

Framework - Proposed Enhancements

Framework - Proposed Enhancements

Modules are pipeline agnostic, can be integrated into existing frameworks

High-level conceptual info avoids need of direct visual data

Advanced loss functions during training to optimize realism and accuracy

Framework - Loss Functions

Reconstruction Loss

- Mean cross-entropy between predicted voxel values of the reconstructed volume and ground-truth voxel values
- Does the generated 3D shape match the actual structure of the object at voxel level?
- Binary voxel occupation guiding the network

$$L_{rec} = \frac{1}{N} \sum_{i=1}^{N} [p'_{i}log(p_{i}) + (1 - p'_{i})log(1 - p_{i})],$$

Concept Loss

- Mean cross-entropy between predicted conceptual part labels of reconstructed shape and the ground-truth labels from input
- Does the reconstructed shape align with the conceptual understanding of the object ?
- Only used in category-specific training
- Using concept loss in category-agnostic setting could result in misleading training signals

$$L_{cpt} = \frac{1}{M} \sum_{i=1}^{M} (s_i' log(s_i) + (1 - s_i') log(1 - s_i)),$$

Experiments

- Evaluate 3D shape reconstruction framework using synthetic and real datasets
- Study focused on 13 major categories with more than 40,000 models

Experiments - Evaluation Metric

- Intersection-over-Union (IoU) to assess the quality of the reconstruction
- Higher IoU values indicate better reconstruction quality

IoU =
$$\frac{\sum_{i,j,k} I(p_{(i,j,k)} > t) I(p'_{i,j,k})}{\sum_{i,j,k} I[I(p_{(i,j,k)} > t) + I(p'_{i,j,k})]},$$

Experiment - Synthetic Datasets

Table 3. Comparison of Single-View 3D Object Reconstruction on ShapeNet with Volume Size 64³ Using IoU (in %) Evaluation Metric

	airplane	bench	cabinet	car	chair	display	lamp	speaker	rifle	sofa	table	telephone	vessel	all
3DensiNet [56]	54.6	38.5	72.1	79.7	45.5	43.6	33.3	67.3	47.1	64.5	49.6	75.3	50.8	55.5
Voxel-Tube [44]	60.2	46.3	74.4	81.6	51.3	49.6	36.9	68.2	50.9	67.4	52.9	75.4	53.5	59.1
Pix2Vox [67]	61.4	46.4	72.9	80.6	50.6	47.3	37.9	66.8	51.6	67.2	52.2	74.3	53.7	59.7
Ours	63.6	48.5	75.8	82.1	52.9	49.3	36.7	68.5	52.5	68.9	54.0	77.1	54.8	61.4
Pix2Vox* [67]	63.2	48.4	73.9	81.3	50.8	48.0	38.8	67.2	54.2	67.8	51.9	76.8	54.9	60.4
Ours*	68.1	53.2	77.1	83.1	53.6	50.8	38.9	69.8	54.7	69.7	54.2	79.4	56.7	62.9

Experiment - Real-World Datasets

	aeroplane	boat	car	chair	diningtable	sofa	tymonitor	all
3D-R2N2 [10]	54.4	56.0	69.9	28.0	-	33.2	57.4	-
DCT [22]	55.5	52.3	63.5	25.0	-	46.2	54.9	-
3DensiNet [56]	-	32.6	60.7	25.9	-	57.4	60.6	-
Pix2Vox [67]	60.4	67.3	79.4	41.1	39.8	66.6	54.9	58.5
Ours	65.7	73.6	81.0	54.8	45.7	75.9	63.8	65.8
Pix2Vox* [67]	71.2	76.3	82.3	57.8	46.3	80.6	64.7	68.5
Ours*	75.6	84.7	85.1	64.0	46.5	84.3	73.3	73.4

Experiments - Visual Improvements

 Incorporation of conceptual knowledge enhances accuracy and detail of 3D shape reconstructions, outperforming existing state-of-the-art models

Experiments - Conceptual Knowledge Framework

	airplane	bench	cabinet	car	chair	display	lamp	speaker	rifle	sofa	table	telephone	vessel	all
baseline	68.4	61.6	79.2	85.4	56.7	53.7	44.3	71.4	61.5	70.9	60.1	77.6	59.4	66.1
baseline + semantic label	68.5	60.8	78.6	85.0	58.1	55.0	47.5	71.7	63.5	72.3	59.5	82.6	60.5	66.8
baseline + prototype volume (ours)	69.2	60.7	79.4	85.4	59.2	56.0	47.4	71.8	63.6	72.9	61.4	80.8	60.6	67.6

Concept-Assisted Shape Creation

Discussion

Benefits

- Improved Understanding and Performance
- Structural Emphasis
- Multi-modal Fusion
- Data Augmentation

Limitations

- Increased Complexity and Training Time
- Memory and Efficiency Concerns

Summary

Novel multimodal framework

- Combines knowledge graph conceptual knowledge with deep neural networks
- Precise 3D shape reconstruction from single RGB images

Promising Results

- Tested on benchmark datasets
- Framework surpasses existing methods
- Ability to generate novel 3D shapes

Future Potential

 Expanding the framework to utilize other shape representations for more efficient high-resolution 3D reconstruction

Sources

https://www.researchgate.net/publication/363153397 Enhanced 3D Shape Reconstruction With Knowledge Graph of Category Concept

https://github.com/KKeishiro/Shape-from-Silhouettes

https://paperswithcode.com/task/3d-reconstruction

https://www.researchgate.net/publication/52006563 Three-Dimensional Scene Reconstruction A Review of Approaches

https://www.semanticscholar.org/paper/Multi-View-Stereo%3A-A-Tutorial-Furukawa-Hern%C3%A1ndez/a9d8591b30c579470edbece62201604b368887f4

https://www.researchgate.net/publication/329482025 A Region-Based Gauss-Newton Approach to Real-Time Monocular Multiple Object Tracking

https://www.researchgate.net/publication/3414425 Representation Plurality and Fusion for 3-D Face Recognition

https://github.com/hzxie/Pix2Vox

https://www.andrew.cmu.edu/course/16-889/projects/rohansax/proj2/

https://cvgl.stanford.edu/projects/pascal3d.html

https://arxiv.org/abs/1901.11153