Course id: BIT 116 Course Name: Maths I
Program: BIT FALL 2019

Semester: 1 Year/ I semester

COLLEGE OF MANAGEMENT & INFORMATION TECHNOLOGY

BACHELOR IN INFORMATION TECHNOLOGY

ASSIGNMENT

Submitted by: Submitted to:

Name: Sunil Kumar Goley Tamang

Year/ Semester: First, Fall 2019

LCID: LC00017000862

Date: 2020.06.03

Name: Lincoln University

Course id: BIT 116

Course Name: Maths I Program: BIT FALL 2019 Semester: 1 Year/ I semester

1. Find the Domain and Range of $f(x) = \sqrt{2 - x - x^2}$

> Solution:

Here,

$$2-x-x^2=0$$

Or,
$$(2+x)(1-x) = 0$$

Either,
$$x = 1$$
 or, -2

The interval be $(-\infty,-2)U(-2,1)U(1,\infty)$

Now, the sign conversion,

	2+x	1-x	(2+x)(1-x)
(-∞,-2)	-	+	-
(-2,1)	+	+	+
(1,∞)	+	-	-

Here, only the positive sign is taken. So, the Domain is found to be (-2,1).

For range,

$$y = \sqrt{2 - x - x^2}$$

 $=\sqrt{(2+x)(1-x)}$

For, minimum value we take x=0, then the output will be maximum value. So the Range is $(0,\sqrt{2})$.

1. Find the solution of: $\frac{dx}{x^2+1} + \frac{dy}{y+1} = 0$

> Solution:

Here,

Integrating both side;

$$\int \frac{dx}{x^2 + 1} + \int \frac{dy}{y + 1} = 0$$

Or, $tan^{-1}x + log(y+1) = 0$

2. Differentiate: y = 4sect + tant

> Solution:

Given,

y= 4sect +tant

Differentiate with respect to t we get,

Or,
$$\frac{dy}{dt} = \frac{d(4sect+tant)}{dt}$$

$$\therefore \frac{dy}{dt} = 4sect. tant + sec^2 t$$

- 3. If $f''(x)=20x^3-12x^2+6x$, then find f(x).
 - > Solution:

Given,

$$f''(x) = 20x^3 - 12x^2 + 6x$$

Integrating both sides we get,

Or,
$$\int f''(x) = \int 20x^3 - 12x^2 + 6x$$

Or,
$$f'(x) = \int 20x^3 - 12x^2 + 6x$$

Or,
$$f'(x) = \frac{20x^4}{4} - \frac{12x^3}{3} + \frac{6x^2}{2}$$

Or, $f'(x) = 5x^4 - 4x^3 + 3x^2$

Or,
$$f'(x) = 5x^4 - 4x^3 + 3x^2$$

Integrating both sides we get,

Or,
$$\int f'(x) = \int 5x^4 - 4x^3 + 3x^2$$

Or,
$$f(x) = \frac{5x^5}{5} - \frac{4x^4}{4} + \frac{3x^3}{3}$$

Or, $f(x) = x^5 - x^4 + x^3$

Or,
$$f(x) = x^5 - x^4 + x^3$$

Hence, f(x) is found to be $x^5-x^4+x^3$.

4. Find the area enclosed between x axis, the curve $y=x^3-2x+5$ and the ordinates x=1 and x=2.

Χ

From the formula;

Area=
$$\int_a^b (upper\ function - lower function) dx$$

Now a=1 and b=2 then the function becomes

$$A = \int_{1}^{2} x^{3} - 2x + 5$$

$$A = \left[\frac{x^4}{4} - \frac{2x^2}{2} + 5x\right]_1^2$$

$$A = [4-4+10] - \left[\frac{1}{4} + 4\right]$$

$$A=10-\frac{17}{4}$$

Hence, the area enclosed between x-axis is found to be 5.75 sq unit.

- 5. Find $\int \frac{dx}{e^x + 1}$ (Antiderivatives)
 - > Solution:

Given,

Or,
$$\int \frac{dx}{e^x + 1}$$

Or,
$$\int \frac{e^x + 1 - e^x}{e^x + 1} dx$$

Or,
$$\int \frac{e^x + 1}{e^x + 1} dx - \int \frac{e^x}{e^x + 1} dx$$

Or,
$$\int dx - \ln(e^x + 1)$$

Or, x-
$$ln(e^x+1) + C$$

- \therefore Antiderivatives of the function $\int \frac{dx}{e^{x}+1}$ is found to be x-ln(e^x+1)+C.
- 6. State and Verify mean value theorem for $f(x) = x^3-x$ in [0,2]
 - > Solution:

Here,

Given function is $f(x) = x^3$ -x which is continuous on close interval [a,b]

Then, there exist some number in c in [a,b] such that f'(c)

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$[a,b]=[0,2]$$

Then, a=0 and b=2.

Course id: BIT 116

Course Name: Maths I Program: BIT FALL 2019 Semester: 1 Year/ I semester

Now,
$$f(a)=x^3-x$$

Or,
$$f(0)=0$$

$$f(b)=x^3-x$$

$$f(2) = 6$$

Or,
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Or,
$$f'(c) = \frac{6-0}{2-0}$$

$$\therefore$$
 f'(c) =3

Again,
$$f'(c)=3x^2$$

From above we found f'(c)=3

Or,
$$3 = 3x^2$$

Or,
$$x=1$$

Therefore, 1 lies between the interval 0 and 2. Hence, it proves mean value theorem.