Complexes

William Hergès $^{\mathrm{1}}$

27 septembre 2024

Table des matières

1	Présentation			2
2	Racines			
	2.1	Racine	carré d'un complexe	2
		2.1.1	Complexe sous forme exponentielle	4
		2.1.2	Complexe sous forme cartésienne	Ç
3	Poly	nômes		Ę

Présentation

Définition 1

L'ensemble des nombres complexes est :

$$\mathbb{C} = \{a + ib | a, b \in \mathbb{R}\}\$$

C'ensemble des nombres complexes est :
$$\mathbb{C}=\{a+ib|a,b\in\mathbb{R}\}$$
 où $i^2=-1.$ On a :
$$a+ib+a'+ib'=a+a'+(b+b')i$$

$$(a+ib)(a'+ib')=aa'+aib'+a'ib-bb'$$

On utilise la lettre z pour les nombres complexes.

Définition 2

Soit $z \in \mathbb{C}$ tel que z = a + bi (où $a, b \in \mathbb{R}$).

On note $\mathfrak{Re}(z)$ la partie réelle de z qui est a.

On note $\mathfrak{Im}(z)$ la partie imaginaire de z qui est b.

On note |z| le module de z qui est $\sqrt{a^2+b^2}$.

On note $\arg z$ l'argument de z qui est l'angle entre la droite OZ et la droite \mathbb{R}^+ (où Z est le point d'affixe z).

Proposition 2.1

Forme trigonométrique

On peut donc écrire z comme :

$$z = |z|(\cos(\arg z) + i\sin(\arg z))$$

☐ Démonstration. AQT

Proposition 2.2

$$\arg z + \arg w = \arg(zw)$$

(où z et w sont deux nombres complexes.)

☐ Démonstration. AQT

Définition 3

Forme exponentielle

On note $z\in\mathbb{C}$ maintenant :

$$z = |z|e^{i \arg z}$$

$$z = |z| e^{i \arg z}$$
 avec $e^{i \alpha} := \cos \alpha + i \sin \alpha$

On utilise cette notation car les calculs sont les mêmes que ceux de la forme trigonométrique (cf. la proposition précédente).

$$z = |z|(\cos \alpha + i \sin \alpha)$$
 et $w = |w|(\cos \beta + i \sin \beta)$.

Exemple 1
$$z=|z|(\cos\alpha+i\sin\alpha) \text{ et } w=|w|(\cos\beta+i\sin\beta).$$
 On a :
$$zw=|z||w|(\cos(\alpha+\beta)+i\sin(\alpha+\beta))=|z||w|e^{i(\alpha+\beta)}$$

Racines

Racines de l'unité

Théorème 3.1 On a que toutes les solutions de : $z^n=1$ où $n\in\mathbb{N}$ et $z\in\mathbb{C}$, sont : $\{e^{\frac{2ik\pi}{n}}|k\in\mathbb{N}\}$

$$z^n = 1$$

$$\{e^{\frac{2ik\pi}{n}}|k\in\mathbb{N}\}$$

☐ Démonstration. AQT

On peut réduire l'ensemble des k à [|0;n-1|] car l'argument de z est modulo $2\pi.$

La somme des racines de l'unité est nulle

☐ Démonstration. AQT

2.1. Racine carré d'un complexe

Complexe sous forme exponentielle

Soit $z\in\mathbb{C}$. On cherche $x\in\mathbb{C}$. On note $x=re^{i\alpha}$ et $z=se^{i\beta}$.

$$x^{2} = 1$$

$$(re^{i\alpha})^2 = re^{i\alpha}$$

$$m^2 c^2 i\alpha - \alpha c^{i\beta}$$

x a comme module $\sqrt{|z|}$ et a comme argument $\frac{\beta}{2}$ ou $\frac{\beta}{2}+\pi.$

 $x \, \operatorname{est} \, \operatorname{donc}$

$$\left\{\sqrt{|z|}e^{i\frac{\beta}{2}},\sqrt{|z|}e^{i\frac{\beta}{2}+\pi}\right\}$$

2.1.2. Complexe sous forme cartésienne

Soit $X\in\mathbb{C}$ tel que X=x+iy (où $x,y\in\mathbb{R}$). Soit $z\in\mathbb{C}$ tel que z=a+ib (où $a,b\in\mathbb{R}$).

$$X^{2} = z$$
$$(x + iy)^{2} = a + ib$$
$$x^{2} + 2ixy - y^{2} = a + ib$$

Et on a :

$$x^2-y^2=a$$

$$2xy=b$$

$$x^2+y^2=\sqrt{a^2+b^2} \ \ {\rm car \ on} \ |x|^2=|z|$$

Et on résout.

Polynômes

Soit $(\lambda_0,\ldots,\lambda_n)$ une famille de nombres complexes. On note le polynôme lié à la famille

$$P(X) = \sum_{i=0}^{n} \lambda_i x^i$$

Définition 5

Le degré d'un polynôme P est noté $\mathrm{deg}P$ tel que :

$$\lambda_n \neq 0, \quad \forall i \in \mathbb{N} \geqslant n, \quad \lambda_i = 0$$

où n est le degré du polynôme.

Définition 6

Une racine $r \in \mathbb{K}$ du polynôme P est défini telle que P(r) = 0.

Théorème 6.1

Théorème de d'Alembert-Gauss

Pour tout polynôme P de degré n, il existe exactement n racines compté avec leur ordre de multiplicité. i.e.

$$P(X) = \lambda_n \prod_{k=1}^{n} (x - x_k)$$

où la famille (x_1, \ldots, x_n) sont les racines de P.

☐ Démonstration. Admis.