

TMSCA HIGH SCHOOL MATHEMATICS

TEST #8 ©
JANUARY 19, 2019

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

1.	Evalu	$\frac{11\cdot 7! \div 8}{7+2^3}.$									
	(A)	149	(B)	66		(C)	770	(D)	462	(E)	998
2.	Holly	borrowed \$24	00 at	6.5% simple	e int	terest	for 18 months	. Wh	at will her mon	thly p	payments be?
	(A)	\$213.00	(B)	\$130.00		(C)	\$146.33	(D)	\$131.67	(E)	\$142.17
3.		current age is er's age. What						age v	vill be 2 years l	ess th	an ½ his
	(A)	35	(B)	55		(C)	45	(D)	38	(E)	28
4.	sales	ull cost of a but clerk then appl rs if the sales ta	lied a	15% studen	ıt di		•				
	(A)	\$35.86	(B)	\$17.58		(C)	\$33.12	(D)	\$22.08	(E)	\$23.90
5.	Find	the point of inf	lectio	n for the gra	aph	of the	e function $f(x)$	$\left(c \right) = \frac{1}{3}$	x^3-x^2 .		
	(A)	(2,0)	(B)	$\left(1,-\frac{2}{3}\right)$		(C)	$\left(2,-\frac{4}{3}\right)$	(D)	(0,0)	(E)	(1,0)
6.	Whic	h of the followi	ng is	an equation	of 1	the lir	ne through (–5	,11)]	perpendicular	to 2x	+7y = 42?
	(A)	7x - 2y = -57		(1	B)	2 <i>x</i> +	7y=1		(C) $7x-2y$	= 24	
	(D)	2x + 7y = 67		(E)	7 <i>x</i> -	-2y = -46				
7.	The n	nedians of a tri	angle	all intersect	t at	the _	·				
	(A)	Orthocenter	(B)	Centroid		(C)	Incenter	(D)	Vertex	(E)	Circumcenter
8.	What	t is the sum of t	he ari	ithmetic seq	uen	ce 16	, 18.4, 20.8,,	119.2	2?		
	(A)	2974.4	(B)	5125.6		(C)	2622.4	(D)	2906.8	(E)	5678.2
9.	. Mr. Clements finished teaching his history class at 3:07 PM. What was the smaller angle formed by the hour and minute hands of his clock at that time?										
	(A)	42°	(B)	48.5°		(C)	38.5°	(D)	51.5°	(E)	55°
10. Given that $f(x) = 2x + 5$ and $g(x) = x^2 - 1$, find $g(f(x))$.											
	(A)	$2x^2 + 4$		(1	B)	$4x^3$	$+10x^2+6x+1$	5	(C) $2x^2 + 3$		
	(D)	$4x^2 + 24$		(E)	$4x^2$	+20x + 24				
11. The total surface area of a right cone with a radius at the base of 12 ft and a vertex angle of 36° isft². (nearest square foot)											
	(A)	843	(R)	1916		(C)	718	(D)	1222	(F)	592

12. A right triangular prism has a height of $4\sqrt{2}$ inches. The base is a 30°- 60°- 90° triangle with a hypotenuse of 3.2 inches. Find the volume.

13. The function f(x) = will produce the graph shown.

- (A) $3\sin(\pi x + 1)$ (B) $3\sin(x + \pi)$ (C) $\sin(\pi(x-1)) + 3$ (D) $3\sin(\pi x 1)$ (E) $3\sin(\pi(x-1))$
- 14. A belt joins two pulleys. The smaller pulley with a radius of 24 inches and rotates at 45 rpm. The larger has a radius of 30 inches and rotates at _____rpm.
 - (A) 42 (B) 56 (C) 48 (D) 36 (E) 30
- 15. Adam and Brad started together at the starting line of a 500-m circular track. Adam ran clockwise at an average rate of 5 m/s. Brad ran counter clockwise at a rate of 7.5 m/s. How far did Adam run before he met Brad?
- (A) 200 m (B) 240 m (C) 320 m (D) 250 m (E) 300
- 16. Evaluate $\sum_{k=0}^{\infty} \frac{2}{3} \left(-\frac{3}{5} \right)^{k+2}$.
 - (A) $\frac{5}{3}$ (B) $\frac{5}{12}$ (C) $\frac{3}{5}$ (D) $-\frac{1}{4}$ (E) $\frac{3}{20}$
- 17. Let s(x) be the slant asymptote of $f(x) = \frac{3x^2 + 9x 7}{x + 3}$. Evaluate s(2).
- (A) 3.3 (B) 24 (C) 6 (D) 4.6 (E) -1
- 18. If f is continuous on the closed interval [a,b] and k is any number between f(a) and f(b), then there is at least one number c in [a,b] such that f(c)=k. This is ______.
 - (A) Sandwich Theorem (B) Rolle's Theorem (C) Fundamental Theorem of Calculus
 - (D) Intermediate Value Theorem (E) Fundamental Theorem of Algebra
- 19. Evaluate $\lim_{x\to 0} \frac{\tan x}{x}$
 - (A) ∞ (B) $-\infty$ (C) 1 (D) -1 (E) does not exist Copyright © 2018 TMSCA

20. Mr. Meredith set up a scavenger hunt for his pre-calculus class. Group A travelled 200	yards on a
bearing of 212°, then 350 yards on a bearing of 97°, then 275 yards on a bearing of 325°	to retrieve
their clues. How far were they from their point of origin? (nearest yard)	

(C) 306 yd

- 21. $\lim_{x \to 0.5} \left(\frac{6x^2 17x + 7}{2x^3 7x^2 + 3x} \right) =$
 - (A) $\frac{13}{4}$ (B) $\frac{22}{5}$ (C) 3

(A) 507 vd

(B) 85 yd

(D) 97 yd

(E) does not exist

(E) 716 yd

- 22. If $f(x) = ax^8 + bx^6 + cx^4 + dx^2 + x$ and f(-3) = 74 then f(3) = ?
 - (A) 82
- **(B)** -74
- (C) 74
- **(D)** 98
- **(E)** 80

- 23. $A = \begin{bmatrix} 3 & 5 \\ 7 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 0 & 4 \end{bmatrix}$. Calculate $\det(2A + B)$
 - (A) -119
- (B) -20
- (C) -126
- (E) 9
- 24. Find the value of k for which the system of equations 2x ky = 23x + (k+1)y = 4 has no solutions.
 - (A) 0
- (C) $-\frac{5}{2}$ (D) $-\frac{2}{5}$
- 25. Two lines that are in the same plane but never intersect are _____
 - (A) Skew
- (B) Parallel
- (C) Perpendicular (D) Concurrent (E) Bisectors

- 26. If the dots on the diagram shown are 2 inches apart both vertically and horizontally, then the area of the shaded region is ____in².
 - (A) 36
- **(B)** 44
- (C) 48
- (D) 40
- 27. What is the distance between the point (3,7) and the line 12x + 5y = 27?

- (A) $\frac{98}{169}$ (B) $\frac{44}{169}$ (C) $7\frac{7}{13}$ (D) $3\frac{5}{13}$ (E) $4\frac{7}{12}$
- 28. If $\int_0^a \cos x dx = C$ then $\int_{-a}^a 3\cos x dx =$
 - (A) 12C
- (B) 6C
- (C) 3C
- (D) 2C
- $(\mathbf{E}) \quad \mathbf{0}$
- 29. A pizza shop has 8 choices of toppings and two types of crust. The run a spring special offering a large, 3-topping pizza for \$12.00. How many possible pizza orders are there for the special if toppings can be repeated?
 - $(A) \quad 330$
- **(B)** 120
- (C) 112
- (D) 240
- **(E)** 165

- 30. Eight circles in a rectangle are congruent. Each circle is tangent to the adjacent circles and the outer six circles are tangent to the rectangle. A dart lands somewhere inside the rectangle. What is the probability that the dart lands in a circle? (nearest whole percent)
 - (E) 77% (A) 72% (B) 65% 70% (D) 67%
- 31. $1331_b = \underline{}_{b+1}$, where b > 5.
 - (A) 4000
- **(B)** 401
- (C) 1220
- **(D)** 1000
- **(E)** 1001

- 32. The measure of one interior angle of a regular decagon is •.
 - (A) 162
- **(B)** 150
- (C) 144
- (D) 120
- **(E)** 108

- 33. In the diagram, l//m. Find the value of x.
 - (A) 7
- **(B)** 1
- (\mathbf{C}) 4
- (D) 10
- **(E)** 12.5

- 34. A 15-oz bag of ground coffee is made up of 30% decaf grounds. How many ounces of decaf grounds need to be added to create a 50% mixture?
 - (A) 10.5
- **(B) 6**
- (C) 5
- **(D)** 7.5
- (\mathbf{E}) 7

- 35. What is the length of side a on the quadrilateral?
 - (A) $12\sqrt{3}$ (B) 24 (C) $6\sqrt{6}$ (D) $12\sqrt{2}$ (E) $6\sqrt{5}$

- 36. The slope of the tangent to $4x^2 9y^2 = 19$ at (-5,3) is:
- (B) $-\frac{20}{27}$ (C) $-\frac{59}{54}$ (D) $\frac{20}{27}$

- 37. A hose on full force can fill a small tank in 20 minutes. How long will it take 6 similar hoses to fill a tank that is 3 times as deep, 3 times as long and 3 times as wide?
 - (A) 240 min
- (B) 120 min
- (C) 90 min
- (D) 30 min
- **(E)** 10 min
- 38. If y varies directly with x and y = 28 when x = 200, calculate y when x = 117. (nearest tenth)
 - (A) 14.0
- (B) 26.9
- (C) 24.6
- **(D)** 16.4
- **(E)** 18.7

- 39. What is the angle between the vectors $\langle -8,17 \rangle$ and $\langle 11,5 \rangle$?
 - (A) 96°
- (B) 132°
- (C) 91°
- (D) 89°
- **(E)** 84°

- 40. Ranger Bob walks out 70 ft from the base of a large tree. If the angle of elevation from the ground where Bob stands to the top of the tree is 76°, how tall is the tree? (nearest foot)
 - (A) 103 ft
- (B) 90 ft
- (C) 68 ft
- (D) 66 ft
- **(E)** 281 ft

- 41. Let $a_1 = 12$, $a_2 = 5$ and $a_n = 2a_{n-1} 3a_{n-2}$. $a_5 = ?$
 - (A) -33
- (B) -159
- (C) -339
- (D) -56
- **(E)** 147

- 42. $a^{-4} \times b^5 \times a^2 \div b^{-3} \times a^{-5} \div b^{-2} =$
- (A) $\frac{1}{a^3}$ (B) $\frac{a^7}{h^{10}}$ (C) $\frac{1}{a^3h^2}$
- $(\mathbf{D}) \quad \frac{b^4}{7}$
- (E) $\frac{b^{10}}{7}$

- 43. Given $(3+2i)^4 + (3-2i)^3 = a+bi$, calculate a+b.
 - (A) -54
- (B) -202
- (C) 276
- (D) 56
- **(E)** 202

- 44. Find the value of x in the triangle diagram. (nearest degree)
 - (A) 40°

- (C) 43° (D) 39°

- 45. How many distinct arrangements can be made from the letters "PARALLEL".
 - (A) 20,160
- **(B)** 40,320
- (C) 6,720
- **(D)** 3,360
- **(E)** 720

- 46. Find the sum of the solutions of the equation $|x^2 3x| = -4x + 6$.
 - (A) -1
- (B) -2
- (C) 4
- $(\mathbf{D}) = \mathbf{0}$
- **(E)** 6
- 47. Given the Fibonacci-type sequence 3, a, b, 15, c, ..., find the value of a + b + c.
 - (A) 12
- **(B)** 48
- (C) 30
- (D) 33
- **(E)** 39

- 48. When $f(x) = \frac{x^2 + 1}{2 x}$ evaluate f'(3).
 - (A) 3
- (B) 4
- (C) 7
- **(D)**
- **(E)** 2
- 49. Find the sum of all two-digit numbers such that reversing the digits results in another two-digit number that is $58\frac{2}{31}\%$ less than the original.
 - (A) 154
- **(B)** 164
- (C) 186
- **(D)** 93
- 204 **(E)**

- **50.** Given GCF(36, k) = 12 and LCM(36, k) = 252, find the value of k.
 - (A) 84
- **(B) 63**
- (C) 42
- **(D)** 48
- (E) 126

(A) 9

(B) 36

TMSCA 1	18-19 HSMA T	est Ei	ight						Page
51. Find the area of the region defined by the inequalities $x \ge 0$, $y \ge 0$ and $y \le 3\cos(2x)$.									
(A)	1.5	(B)	3	(C)	6	(D)	0	(E)	4.5
52. $\csc x$	< 0 and $tan x <$	< 0. V	Where will $oldsymbol{ heta}$ to	ermin	ate?				
(A)	QI	(B)	QII	(C)	QIII	(D)	QIV	(E)	y-axis
	53. The chord \overline{AB} has a length of 14 cm is 24 cm from the center of the circle. The area of the circle is $\underline{}$ cm ²								
(A)	576π	(B)	500π	(C)	625π	(D)	380π	(E)	418π
54. If $\frac{x-1}{x+1}$	54. If $\frac{x-7}{x+4} + \frac{x+4}{x-7}$ is equal to the mixed number $A + \frac{B}{(x+4)(x-7)}$, then $B = ?$								
(A)	9	(B)	121	(C)	24	(D	8	(E	(a) 64
55. $\int_{-2}^{4} (k)$	$x^2 + 5x + 2\bigg)dx$	= 114	4. What is the	value	of <i>k</i> ?				
(A)	1	(B)	-1	(C)	-3	(D) 2	(E	2) 3
56. Find the area of the convex quadrilateral with the vertices $(2,7)$, $(4,1)$, $(1,-5)$ and $(-6,2)$.									
(A)	30.5	(B)	59.5	(C)	27.5	(D	60.5	(E	2) 24
57. If $\ln 2 = a$, $\ln 5 = b$ and $\ln 7 = c$ then $\ln 5.6 = ?$									
(A)	$\frac{2a+c}{b}$	(B)	a^2-b+c	(C)	2a-b+c	(D)	$\frac{a^2+c}{b}$	(E)	$\frac{a^2c}{b}$
58. The set of integers in ascending order {a, b, c, d, e} has a median of 14, a mean of 16.4, a mode of 11 and a range of 16. Find the value of d.									
(A)	14	(B)	19	(C)	17	(D)	21	(E)	27
59. The repeating decimal 0.363636in base 7 can be written as which of these fractions in base 7?									
(A)	$\frac{6}{667}$	(B)	$\frac{12}{3437}$	(C)	$\frac{12}{227}$	(D)	$\frac{36}{3437}$	(E)	$\frac{6}{117}$
60. How many solutions exist such that $6x + 8y = 218$, where $x, y \in \mathbb{Z}^+$.									

(C) 7

(D) 27

(E) 8

2018-2019 TMSCA Mathematics Test Eight Answers

1. D	21. B	41. D
2. C	22. E	42. E
3. A	23. C	43. A
4. E	24. D	44. B
5. B	25. B	45. D
6. A	26. D	46. B
7. B	27. D	47. E
8. A	28. B	48. B
9. D	29. D	49. C
10. E	30. E	50. A
11. B	31. D	51. A
12. D	32. C	52. D
13. E	33. A	53. C
14. D	34. B	54. B
15. A	35. D	55. E
16. E	36. B	56. D
17. C	37. C	57. C
18. D	38. D	58. B
19. C	39. C	59. C
20. B	40. E	60. A