Sujet 1

Questions de cours

- 1. Donner la définition d'une partie ouverte et d'une partie fermée de \mathbb{R}^2 .
- 2. Une partie de \mathbb{R}^2 peut-elle être ni ouverte ni fermée? Justifier.

Exercice

Étudier l'existence des limites suivantes :

- $f(x,y) = \frac{xy^2}{x^3 + y^3}$ lorsque $(x,y) \to (0,0)$.
- $g(x,y) = \frac{xy + 2x + y 2}{x + y 1}$ lorsque $(x,y) \to (1,0)$.
- $h(x,y) = \cos(x+y)$ lorsque $(x,y) \to (0,0)$.

Sujet 2

Questions de cours

- 1. Formuler la seconde inégalité triangulaire.
- 2. Démontrer cette inégalité.

Exercice

Soit
$$f:(x,y) \mapsto \begin{cases} \frac{x^5}{x^4 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$
.

- 1. Quel est l'ensemble de définition de f (noté \mathcal{D}_f)?
- 2. f est-elle continue sur \mathcal{D}_f ?
- 3. Les applications partielles de f sont-elles continues?

Sujet 3

Questions de cours

- 1. Que signifie que deux normes sont équivalentes?
- 2. Donner un exemple de deux normes équivalentes sur \mathbb{R}^2 . Justifier.

Exercice

Soit
$$f: \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & -9x^2 - 16y^2 \end{array}$$
.

- 1. La fonction f est-elle définie et continue sur \mathbb{R}^2 ?
- 2. Déterminer toutes les lignes de niveaux de f.

Sujet 4

Questions de cours

- 1. Donner la définition d'une norme.
- 2. Donner la définition des normes $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_{+\infty}$ de \mathbb{R}^2 . Dessiner les boules unités associées à ces normes.

Exercice

Soit
$$f:(x,y) \mapsto \frac{1}{\sqrt{x^4 + y^4}} \times \sin(x^4 + y^4)$$
.

- 1. Déterminer l'ensemble de définition de f.
- 2. f peut-elle être prolongée par continuité en (0,0)?

Sujet 5

Questions de cours

- 1. Donner la définition d'une distance.
- 2. Existe t-il une distance sur \mathbb{R}^2 qui n'est pas induite par une norme? Justifier.

Exercice

Soit
$$f:(x,y) \mapsto \begin{cases} x^2 - 4y^2 & \text{si } x + 2y \ge 0 \\ x^2 + 4y^2 + 4xy & \text{si } x + 2y < 0 \end{cases}$$
.

Étudier la continuité de f sur \mathbb{R}^2 .

Sujet 6

Questions de cours

- 1. Donner la définition d'un disque ouvert et d'un disque fermé.
- 2. L'ensemble $\{(x,y)\in\mathbb{R}^2: 3|x|+8|y|=2\}$ représente t-il un cercle par rapport à une certaine norme ?

Exercice

Étudier l'existence des limites suivantes :

- $f(x,y) = \frac{x^2y^2}{x^3 + y^3}$ lorsque $(x,y) \to (0,0)$.
- $g(x,y) = \frac{xy}{x^2 + y 1}$ lorsque $(x,y) \to (0,1)$.
- $h(x,y) = \tan(x^2 y^2)$ lorsque $(x,y) \to (0,0)$.

Sujet 7

Questions de cours

Soit $f: \mathbb{R}^2 \to \mathbb{R}$, et soit $A \subset \mathbb{R}^2$.

- 1. Donner la définition de l'image de A par f.
- 2. Si $A = \mathbb{R}^2$, y a t-il une différence entre le graphe de f et l'image de A par f?

Exercice

- 1. Soit $N_1:(x,y)\mapsto 4|x+y|-3|x-y|$. N_1 est-elle une norme sur \mathbb{R}^2 ?
- 2. Soit $N_2:(x,y)\mapsto 4\sqrt{x^2+5y^2}$. N_2 est-elle une norme sur \mathbb{R}^2 ?
- 3. Soit $N_3:(x,y)\mapsto \left(|x|^3+|y|^3\right)^{1/3}$. N_3 est-elle une norme sur \mathbb{R}^2 ?

Sujet 8

Questions de cours

- 1. Donner la définition d'une ligne de niveau d'une fonction de deux variables réelles à valeurs réelles.
- 2. Tracer quelques lignes de niveaux de la fonction $f: \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & -x+y \end{array}$.

Exercice

Soit
$$N: (x, y) \mapsto \sqrt{9x^2 + 4y^2}$$
.

1. Déterminer le plus grand réel $\alpha > 0$ tel que pour tout $(x, y) \in \mathbb{R}^2$,

$$\alpha \|(x,y)\|_2 \le N(x,y).$$

2. Déterminer le plus petit réel $\beta > 0$ tel que pour tout $(x, y) \in \mathbb{R}^2$,

$$N(x,y) \le \beta \|(x,y)\|_2.$$

3. Qu'en déduire?

Sujet 9

Questions de cours

- 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}$. Donner la définition des fonctions partielles de f.
- 2. Déterminer l'ensemble de définition de la fonction $g:(x,y)\mapsto \frac{x^2y}{x^2+y^2+1}$. Quelles sont les fonctions partielles de g?

Exercice

Soit N une norme sur \mathbb{R}^2 .

- 1. Montrer que $d:(u,v)\mapsto N(3u-3v)$ est une distance sur \mathbb{R}^2 .
- 2. Dessiner la boule de centre (2,1) et de rayon 1 pour la distance d lorsque $N = \|\cdot\|_1$ puis lorsque $N = \|\cdot\|_2$.

Sujet 10

Questions de cours

- 1. Donner la définition d'une ligne de niveau d'une fonction de deux variables réelles à valeurs réelles.
- 2. Tracer quelques lignes de niveaux de la fonction $f: \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & 2x^2 + 2y \end{array}$.

Exercice

Soit
$$N:(x,y)\mapsto \int_0^1|x+ty|\mathrm{d}t.$$

Montrer que N est une norme sur \mathbb{R}^2 .

Sujet 11

Questions de cours

- 1. Donner la définition d'une limite finie d'une fonction de deux variables en un point.
- 2. Donner un exemple d'une fonction définie au voisinage de (0,0) n'admettant pas de limite en (0,0).

Exercice

Soit
$$d:(u,v)\mapsto \frac{3}{\pi}\arctan(\|u-v\|_{\infty})$$
. On admet que d est une distance sur \mathbb{R}^2 .

Exprimer de façon explicite l'ensemble des points de la boule unité fermée pour la distance d, puis dessiner cet ensemble.

Sujet 12

Questions de cours

- 1. Donner la définition de la continuité d'une fonction en un point.
- 2. Peut-on toujours prolonger une fonction par continuité en un point? Justifier.

Exercice

Soit
$$N$$
 une norme sur \mathbb{R}^2 .
Montrer que l'application $d:(u,v)\mapsto \frac{N(u-v)}{1+N(u-v)}$ définit une distance.