Бином Ньютона

Владимир Подольский

Факультет компьютерных наук, Высшая Школа Экономики

Бином Ньютона

Число сочетаний: рекурсия

Треугольник Паскаля

Бином Ньютона

Разбор некоторых задач

Задача

Пусть у нас есть обучающая выборка размера n для нашей модели. Мы хотим отделить из нее тестовую выборку размера k. Сколько есть способов это сделать?

Задача

Пусть у нас есть обучающая выборка размера n для нашей модели. Мы хотим отделить из нее тестовую выборку размера k. Сколько есть способов это сделать?

• Мы хотим выбрать подмножество размера k в n элементном множестве

Задача

Пусть у нас есть обучающая выборка размера n для нашей модели. Мы хотим отделить из нее тестовую выборку размера k. Сколько есть способов это сделать?

- Мы хотим выбрать подмножество размера k в n элементном множестве
- Мы уже знаем ответ:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Задача

Пусть у нас есть обучающая выборка размера n для нашей модели. Мы хотим отделить из нее тестовую выборку размера k. Сколько есть способов это сделать?

- Мы хотим выбрать подмножество размера k в n элементном множестве
- Мы уже знаем ответ:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• Посмотрим с другой стороны

• Пусть
$$n = 5$$
 и $k = 3$

- Пусть n=5 и k=3
- Тогда ответ $\binom{5}{3} = 10$

- Пусть n = 5 и k = 3
- Тогда ответ $\binom{5}{3} = 10$
- Пусть элементы выборки A,B,C,D,E

- Пусть n=5 и k=3
- Тогда ответ $\binom{5}{3} = 10$
- Пусть элементы выборки A, B, C, D, E
- Выпишем все возможные тестовые выборки

Содержат AHe содержат AΕ B Ε B D B B Ε В В В В Bcero $\binom{4}{2}$

• Мы знаем, что сочетаний $\binom{5}{3}$

- Мы знаем, что сочетаний $\binom{5}{3}$
- Тех, что содержат $A: \binom{4}{2}$

- Мы знаем, что сочетаний $\binom{5}{3}$
- Тех, что содержат $A: \binom{4}{2}$
- Тех, что не содержат $A:\binom{4}{3}$

- Мы знаем, что сочетаний $\binom{5}{3}$
- Тех, что содержат $A:\binom{4}{2}$
- Тех, что не содержат $A:\binom{4}{3}$
- По правилу суммы получаем $\binom{4}{2} + \binom{4}{3}$ выборок

- Мы знаем, что сочетаний $\binom{5}{3}$
- Тех, что содержат $A:\binom{4}{2}$
- Тех, что не содержат $A : \binom{4}{3}$
- По правилу суммы получаем $\binom{4}{2}+\binom{4}{3}$ выборок
- Получаем $\binom{5}{3} = \binom{4}{2} + \binom{4}{3}$

- То же самое работает в случае произвольных n и k

- То же самое работает в случае произвольных n и k
- Всего выборок $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

- То же самое работает в случае произвольных n и k
- Всего выборок $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Рассмотрим элемент A в нашей выборке

- То же самое работает в случае произвольных n и k
- Всего выборок $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Рассмотрим элемент A в нашей выборке
- Можно поделить все тестовые выборки на два типа:

- То же самое работает в случае произвольных n и k
- Всего выборок $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Рассмотрим элемент A в нашей выборке
- Можно поделить все тестовые выборки на два типа:
 - 1. Выборки, содержащие A

- То же самое работает в случае произвольных n и k
- Всего выборок $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Рассмотрим элемент A в нашей выборке
- Можно поделить все тестовые выборки на два типа:
 - 1. Выборки, содержащие A
 - 2. Выборки, не содержащие A

- То же самое работает в случае произвольных n и k
- Всего выборок $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Рассмотрим элемент A в нашей выборке
- Можно поделить все тестовые выборки на два типа:
 - 1. Выборки, содержащие A
 - 2. Выборки, не содержащие A
- Есть $\binom{n-1}{k-1}$ выборок первого типа

- То же самое работает в случае произвольных n и k
- Всего выборок $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Рассмотрим элемент A в нашей выборке
- Можно поделить все тестовые выборки на два типа:
 - 1. Выборки, содержащие A
 - 2. Выборки, не содержащие A
- Есть $\binom{n-1}{k-1}$ выборок первого типа
- И есть $\binom{n-1}{k}$ выборок второго типа

- То же самое работает в случае произвольных n и k
- Всего выборок $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Рассмотрим элемент A в нашей выборке
- Можно поделить все тестовые выборки на два типа:
 - 1. Выборки, содержащие A
 - 2. Выборки, не содержащие A
- Есть $\binom{n-1}{k-1}$ выборок первого типа
- И есть $\binom{n-1}{k}$ выборок второго типа
- По правилу суммы всего получаем $\binom{n-1}{k-1} + \binom{n-1}{k}$ тестовых выборок

Задача

Пусть у нас есть обучающая выборка размера n для нашей модели. Мы хотим отделить из нее тестовую выборку размера k. Сколько есть способов это сделать?

• С одной стороны, ответ $\binom{n}{k}$

Задача

Пусть у нас есть обучающая выборка размера n для нашей модели. Мы хотим отделить из нее тестовую выборку размера k. Сколько есть способов это сделать?

- С одной стороны, ответ $\binom{n}{k}$
- С другой стороны, ответ $\binom{n-1}{k-1} + \binom{n-1}{k}$

Задача

Пусть у нас есть обучающая выборка размера n для нашей модели. Мы хотим отделить из нее тестовую выборку размера k. Сколько есть способов это сделать?

- С одной стороны, ответ $\binom{n}{k}$
- С другой стороны, ответ $\binom{n-1}{k-1} + \binom{n-1}{k}$
- Значит, мы получили равенство:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

• Мы также можем проверить равенство $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ прямым вычислением

- Мы также можем проверить равенство $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ прямым вычислением
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

- Мы также можем проверить равенство $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ прямым вычислением
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- $\binom{n-1}{k-1} = \frac{(n-1)!}{(k-1)!(n-k)!}, \binom{n-1}{k} = \frac{(n-1)!}{k!(n-k-1)!}$

- Мы также можем проверить равенство $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ прямым вычислением
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- $\binom{n-1}{k-1} = \frac{(n-1)!}{(k-1)!(n-k)!}$, $\binom{n-1}{k} = \frac{(n-1)!}{k!(n-k-1)!}$
- Получаем

$$\frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-k-1)!} =$$

- Мы также можем проверить равенство $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ прямым вычислением
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- $\binom{n-1}{k-1} = \frac{(n-1)!}{(k-1)!(n-k)!}$, $\binom{n-1}{k} = \frac{(n-1)!}{k!(n-k-1)!}$
- Получаем

$$\frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-k-1)!} = \frac{(n-1)!}{(k-1)!(n-k-1)!} \left(\frac{1}{n-k} + \frac{1}{k}\right) =$$

- Мы также можем проверить равенство $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ прямым вычислением
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- $\binom{n-1}{k-1} = \frac{(n-1)!}{(k-1)!(n-k)!}, \, \binom{n-1}{k} = \frac{(n-1)!}{k!(n-k-1)!}$
- Получаем

$$\begin{split} \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-k-1)!} &= \\ \frac{(n-1)!}{(k-1)!(n-k-1)!} \left(\frac{1}{n-k} + \frac{1}{k}\right) &= \\ \frac{(n-1)!}{(k-1)!(n-k-1)!} \left(\frac{k+(n-k)}{(n-k)k}\right) &= \end{split}$$

Прямое вычисление

- Мы также можем проверить равенство $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ прямым вычислением
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- $\binom{n-1}{k-1} = \frac{(n-1)!}{(k-1)!(n-k)!}$, $\binom{n-1}{k} = \frac{(n-1)!}{k!(n-k-1)!}$
- Получаем

$$\begin{split} &\frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-k-1)!} = \\ &\frac{(n-1)!}{(k-1)!(n-k-1)!} \left(\frac{1}{n-k} + \frac{1}{k}\right) = \\ &\frac{(n-1)!}{(k-1)!(n-k-1)!} \left(\frac{k+(n-k)}{(n-k)k}\right) = \frac{n!}{k!(n-k)!} \end{split}$$

• Мы знаем
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- Мы знаем $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Но это плохой способ вычисления

- Мы знаем $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Но это плохой способ вычисления
- Много операций, числа в вычислениях могут стать большими

- Мы знаем $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Но это плохой способ вычисления
- Много операций, числа в вычислениях могут стать большими
- Мы также знаем $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

- Мы знаем $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Но это плохой способ вычисления
- Много операций, числа в вычислениях могут стать большими
- Мы также знаем $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
- Этот способ сильно лучше

- Мы знаем $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Но это плохой способ вычисления
- Много операций, числа в вычислениях могут стать большими
- Мы также знаем $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
- Этот способ сильно лучше
- Другой хороший вариант: $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$

Число сочетаний: рекурсия

Треугольник Паскаля

Бином Ньютона

Разбор некоторых задач

$$n = 0$$

$$n = 0$$
$$n = 1$$

n	=	0
n	=	1

n = 2

n = 0	
n = 1	
n = 2	
n = 3	

Треугольник Паскаля симметричен:

Треугольник Паскаля симметричен:

Треугольник Паскаля симметричен:

Теорема

$$\binom{n}{k} = \binom{n}{n-k}$$

Теорема

$$\binom{n}{k} = \binom{n}{n-k}$$

Доказательство

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \binom{n}{n-k}$$

Теорема

Если $k \leq n/2$

$$\binom{n}{k-1} < \binom{n}{k}$$

Теорема

Если $k \leq n/2$

$$\binom{n}{k-1} < \binom{n}{k}$$

• Действительно,

$$\binom{n}{k-1} = \frac{n!}{(k-1)!(n-k+1)!} = \frac{k}{n-k+1} \cdot \frac{n!}{k!(n-k)!} < \binom{n}{k}$$

Теорема

Если $k \leq n/2$

$$\binom{n}{k-1} < \binom{n}{k}$$

• Действительно,

$$\binom{n}{k-1} = \frac{n!}{(k-1)!(n-k+1)!} = \frac{k}{\frac{k}{n-k+1}} \cdot \frac{n!}{k!(n-k)!} < \binom{n}{k}$$

• Неравенство следует из того, что $\frac{k}{n-k+1} < 1$

Теорема

Если $k \leq n/2$

$$\binom{n}{k-1} < \binom{n}{k}$$

Следствие

Если $k \geq n/2$

$$\binom{n}{k} > \binom{n}{k+1}$$

Числа сочетаний растут к середине:

Число сочетаний: рекурсия

Треугольник Паскаля

Бином Ньютона

Разбор некоторых задач

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a+b)^2 = a^2 + 2ab + b^2$$
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \ldots + \binom{n}{k}a^{n-k}b^k + \ldots + \binom{n}{n}b^n$$

Бином Ньютона

$$(a+b)^n = \tbinom{n}{0}a^n + \tbinom{n}{1}a^{n-1}b + \ldots + \tbinom{n}{k}a^{n-k}b^k + \ldots + \tbinom{n}{n}b^n$$

• Эквивалентно,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Бином Ньютона

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

• Эквивалентно,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

 Коэффициенты в этом выражении называются биномиальными коэффициентами

Бином Ньютона

Бином Ньютона

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

• Эквивалентно,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

- Коэффициенты в этом выражении называются биномиальными коэффициентами
- Они совпадают с числами сочетаний

$$(\; a+b\;) \cdot (\; a+b\;) \cdot (\; a+b\;) \cdot (\; a+b\;) \cdot (\; a+b\;)$$

• Пусть n=5

$$\left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)$$

- Пусть n = 5
- Давайте раскроем скобки

$$\left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)$$

- Пусть n=5
- Давайте раскроем скобки
- Как мы это делаем?

$$\left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)$$

- Пусть n=5
- Давайте раскроем скобки
- Как мы это делаем?
- Выбираем по слагаемому в каждой скобке

$$(\; a + b \,) \cdot (\; a + b \,)$$

- Пусть n=5
- Давайте раскроем скобки
- Как мы это делаем?
- Выбираем по слагаемому в каждой скобке
- Например, будет такой множитель

$$(\; a+b\;) \cdot (\; a+b\;) \cdot (\; a+b\;) \cdot (\; a+b\;) \cdot (\; a+b\;)$$

• Как получить множитель a^2b^3 ?

$$(\; a + b\;) \cdot (\; a + b\;)$$

- Как получить множитель a^2b^3 ?
- ullet В трех скобках выбрать b

$$(\,a + b\,) \cdot (\,a + b\,) \cdot (\,a + b\,) \cdot (\,a + b\,) \cdot (\,a + b\,)$$

- Как получить множитель a^2b^3 ?
- В трех скобках выбрать b
- Сколько есть способов это сделать?

$$(a+b)\cdot(a+b)\cdot(a+b)\cdot(a+b)\cdot(a+b)$$

- Как получить множитель a^2b^3 ?
- В трех скобках выбрать b
- Сколько есть способов это сделать?
- Это то же самое, что выбрать три скобки, в которых выберем b

$$(\; a+b\;) \cdot (\; a+b\;) \cdot (\; a+b\;) \cdot (\; a+b\;) \cdot (\; a+b\;)$$

• Нужно выбрать 3 скобки из 5

$$(\; a+b\;) \cdot (\; a+b\;) \cdot (\; a+b\;) \cdot (\; a+b\;) \cdot (\; a+b\;)$$

- Нужно выбрать 3 скобки из 5
- Это сочетания

$$\left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)\cdot \left(\hspace{.1cm} a+b\hspace{.1cm}\right)$$

- Нужно выбрать 3 скобки из 5
- Это сочетания
- есть $\binom{5}{3}$ способов!

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

• Аналогично в общем случае

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

- Аналогично в общем случае
- Раскрываем скобки

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

- Аналогично в общем случае
- Раскрываем скобки
- В каждой скобке у нас два способа выбрать слагаемое

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

- Аналогично в общем случае
- Раскрываем скобки
- В каждой скобке у нас два способа выбрать слагаемое
- Всего 2ⁿ слагаемых

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

- Аналогично в общем случае
- Раскрываем скобки
- В каждой скобке у нас два способа выбрать слагаемое
- Всего 2^n слагаемых
- Сколько слагаемых вида $a^{n-k}b^k$?

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots \cdot (a+b)}^n$$

• Чтобы получить $a^{n-k}b^k$ нам нужно выбрать b в ровно k скобках

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

- Чтобы получить $a^{n-k}b^k$ нам нужно выбрать b в ровно k скобках
- Сколько есть способов выбрать k скобок из n в нашем выражении?

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

- Чтобы получить $a^{n-k}b^k$ нам нужно выбрать b в ровно k скобках
- Сколько есть способов выбрать k скобок из n в нашем выражении?
- В точности $\binom{n}{k}$

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

- Чтобы получить $a^{n-k}b^k$ нам нужно выбрать b в ровно k скобках
- Сколько есть способов выбрать k скобок из n в нашем выражении?
- В точности $\binom{n}{k}$
- У слагаемого $a^{n-k}b^k$ будет коэффициент $\binom{n}{k}$

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

- Чтобы получить $a^{n-k}b^k$ нам нужно выбрать b в ровно k скобках
- Сколько есть способов выбрать k скобок из n в нашем выражении?
- В точности $\binom{n}{k}$
- У слагаемого $a^{n-k}b^k$ будет коэффициент $\binom{n}{k}$
- Мы получили $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

• Положим a = b = 1:

$$2^{n} = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k} + \dots + \binom{n}{n}$$

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

• Положим a = b = 1:

$$2^{n} = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k} + \dots + \binom{n}{n}$$

• Или эквивалентно, $2^n = \sum_{k=0}^n \binom{n}{k}$

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

• Положим a = b = 1:

$$2^{n} = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k} + \dots + \binom{n}{n}$$

- Или эквивалентно, $2^n = \sum_{k=0}^n \binom{n}{k}$
- Число всех подмножеств равно 2^n

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

• Положим a = 1, b = -1.

$$0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n}$$

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

• Положим a = 1, b = -1.

$$0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n}$$

• Или эквивалентно, $0 = \sum_{k=0}^n (-1)^k \binom{n}{k}$

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

• Положим a = 1, b = -1.

$$0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n}$$

- Или эквивалентно, $0 = \sum_{k=0}^{n} (-1)^k \binom{n}{k}$
- Число подмножеств нечетного размера равно числу подмножеств четного размера

Посмотрим на это на треугольнике Паскаля:

Посмотрим на это на треугольнике Паскаля:

Посмотрим на это на треугольнике Паскаля:

Это легко видеть для нечетных n

Посмотрим на это на треугольнике Паскаля:

Посмотрим на это на треугольнике Паскаля:

Но это совсем неочевидно для четных n

Бином Ньютона

Число сочетаний: рекурсия

Треугольник Паскаля

Бином Ньютона

Разбор некоторых задач

Число раздач карт

Задача

Сколькими способами можно выбрать 5 карт из стандартной колоды из 52 карт?

Число раздач карт

Задача

Сколькими способами можно выбрать 5 карт из стандартной колоды из 52 карт?

 Карты в выборке не упорядочены, так что мы выбираем подмножество

Число раздач карт

Задача

Сколькими способами можно выбрать 5 карт из стандартной колоды из 52 карт?

- Карты в выборке не упорядочены, так что мы выбираем подмножество
- Получается $\binom{52}{5} = 2598960$ способов

Две черви и три пики

Задача

Сколькими способами можно выбрать 5 карт, среди которых две черви и три пики?

Две черви и три пики

Задача

Сколькими способами можно выбрать 5 карт, среди которых две черви и три пики?

 Нам нужно взять две карты из 13 червей и 3 карты из 13 пик

Две черви и три пики

Задача

Сколькими способами можно выбрать 5 карт, среди которых две черви и три пики?

- Нам нужно взять две карты из 13 червей и 3 карты из 13 пик
- Получаем $\binom{13}{2}\binom{13}{3}=22\,308$ способов

Задача

Задача

Сколько есть неотрицательных целых чисел меньших 10000, содержащих цифру 7?

• Попробуем стандартные способы

Задача

- Попробуем стандартные способы
- Каждую из первых трех цифр можно выбрать 10 способами

Задача

- Попробуем стандартные способы
- Каждую из первых трех цифр можно выбрать 10 способами
- Последнюю цифру можно выбрать 10 способами, если первые три содержали цифру 7, и одним способом, если иначе

Задача

- Попробуем стандартные способы
- Каждую из первых трех цифр можно выбрать 10 способами
- Последнюю цифру можно выбрать 10 способами, если первые три содержали цифру 7, и одним способом, если иначе
- Но как понять, какой ответ?

Задача

Сколько есть неотрицательных целых чисел меньших 10000, содержащих цифру 7?

• Мы решали похожую задачу на прошлой неделе

Задача

- Мы решали похожую задачу на прошлой неделе
- Нужно было посчитать числа с ровно одной цифрой 7

Задача

- Мы решали похожую задачу на прошлой неделе
- Нужно было посчитать числа с ровно одной цифрой 7
- Попробуем повторить

Задача

Сколько есть неотрицательных целых чисел меньших 10000, содержащих цифру 7?

• Позицию для цифры 7 можно выбрать 4 способами

Задача

- Позицию для цифры 7 можно выбрать 4 способами
- На каждую из остальных позиций можно поставить цифру 10 способами

Задача

- Позицию для цифры 7 можно выбрать 4 способами
- На каждую из остальных позиций можно поставить цифру 10 способами
- В чем проблема?

Задача

- Позицию для цифры 7 можно выбрать 4 способами
- На каждую из остальных позиций можно поставить цифру 10 способами
- В чем проблема?
- Число 7573 посчитали два раза!

Задача

Сколько есть неотрицательных целых чисел меньших 10000, содержащих цифру 7?

• Не ясно, как это быстро посчитать

Задача

- Не ясно, как это быстро посчитать
- Но легко посчитать противоположное!

Задача

- Не ясно, как это быстро посчитать
- Но легко посчитать противоположное!
- Всего есть 9^4 чисел без цифры 7

Задача

- Не ясно, как это быстро посчитать
- Но легко посчитать противоположное!
- Всего есть 9^4 чисел без цифры 7
- Получаем $10^4 9^4 = 3\,439$ чисел, содержащих цифру 7

Задача

Сколько есть целых чисел от 0 до 9999, таких что их цифры убывают при чтении слева направо?

Задача

Сколько есть целых чисел от 0 до 9999, таких что их цифры убывают при чтении слева направо?

 Если мы попробуем посчитать варианты для каждой позиции и воспользоваться правилом произведения, у нас возникнут проблемы

Задача

Сколько есть целых чисел от 0 до 9999, таких что их цифры убывают при чтении слева направо?

- Если мы попробуем посчитать варианты для каждой позиции и воспользоваться правилом произведения, у нас возникнут проблемы
- 10 вариантов для первой позиции, но число вариантов для второй позиции уже зависит от первой цифры

Задача

Сколько есть целых чисел от 0 до 9999, таких что их цифры убывают при чтении слева направо?

- Если мы попробуем посчитать варианты для каждой позиции и воспользоваться правилом произведения, у нас возникнут проблемы
- 10 вариантов для первой позиции, но число вариантов для второй позиции уже зависит от первой цифры
- Идея: посмотрим с другой стороны

Мы выбираем какие цифры от 0 до 9 войдут в наше число

- Мы выбираем какие цифры от 0 до 9 войдут в наше число
- Как только мы выбрали четыре разные цифры, число определяется однозначно

* * * * *
Выбрали 3, 4, 2, 7

- Мы выбираем какие цифры от 0 до 9 войдут в наше число
- Как только мы выбрали четыре разные цифры, число определяется однозначно

7 4 3 2

Выбрали 3, 4, 2, 7

- Мы выбираем какие цифры от 0 до 9 войдут в наше число
- Как только мы выбрали четыре разные цифры, число определяется однозначно

- Мы выбираем какие цифры от 0 до 9 войдут в наше число
- Как только мы выбрали четыре разные цифры, число определяется однозначно
- Порядок выбора цифр не важен

- Мы выбираем какие цифры от 0 до 9 войдут в наше число
- Как только мы выбрали четыре разные цифры, число определяется однозначно
- Порядок выбора цифр не важен
- Мы выбираем сочетания размера 4 из 10 вариантов

- Мы выбираем какие цифры от 0 до 9 войдут в наше число
- Как только мы выбрали четыре разные цифры, число определяется однозначно
- Порядок выбора цифр не важен
- Мы выбираем сочетания размера 4 из 10 вариантов
- Получаем $\binom{10}{4}=210$ вариантов выбора

Фишка на доске

Фишку на доске за один ход можно сдвинуть на одну клетку направо или вверх. Сколькими способами ее можно сдвинуть из клетки [0,0] (левый нижний угол) в клетку [3,5]?

Решение

• Мы должны сделать ровно 8 ходов

Решение

- Мы должны сделать ровно 8 ходов
- Три хода должны быть сдвигом направо, а остальные
 5 вверх

Решение

- Мы должны сделать ровно 8 ходов
- Три хода должны быть сдвигом направо, а остальные
 5 вверх
- Более того, любая комбинация трех ходов направо и 5 ходов вверх приведет в нужную клетку [3,5]

Решение

- Мы должны сделать ровно 8 ходов
- Три хода должны быть сдвигом направо, а остальные
 5 вверх
- Более того, любая комбинация трех ходов направо и 5 ходов вверх приведет в нужную клетку [3,5]
- Нам нужно выбрать подмножество из 3 ходов среди 8 ходов

Решение

- Мы должны сделать ровно 8 ходов
- Три хода должны быть сдвигом направо, а остальные
 5 вверх
- Более того, любая комбинация трех ходов направо и 5 ходов вверх приведет в нужную клетку [3,5]
- Нам нужно выбрать подмножество из 3 ходов среди 8 ходов
- Получаем $\binom{8}{3} = 56$ способов

1							
1							
1							
1							
1							
1							
1	2						
1	1	1	1	1	1	1	1

1							
1							
1							
1							
1							
1							
1	2	3					
1	1	1	1	1	1	1	1

1							
1							
1							
1							
1							
1	3						
1	2	3					
1	1	1	1	1	1	1	1

1							
1							
1							
1							
1							
1	3						
1	2	3	4				
1	1	1	1	1	1	1	1

1							
1							
1							
1							
1							
1	3	6					
1	2	3	4				
1	1	1	1	1	1	1	1

1							
1							
1							
1							
1	4						
1	3	6					
1	2	3	4				
1	1	1	1	1	1	1	1

Это треугольник Паскаля!

 Мы подробно обсудили биномиальные коэффициенты

- Мы подробно обсудили биномиальные коэффициенты
- У них есть несколько математических и комбинаторных интерпретаций

- Мы подробно обсудили биномиальные коэффициенты
- У них есть несколько математических и комбинаторных интерпретаций
- Мы попрактиковались в применении наших знаний

- Мы подробно обсудили биномиальные коэффициенты
- У них есть несколько математических и комбинаторных интерпретаций
- Мы попрактиковались в применении наших знаний
- В следующем уроке мы обсудим еще одну стандартную комбинаторную постановку