(11) Publication number:

0 121 352

A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 84301468.9

(22) Date of filing: 06.03.84

(5) Int. Cl.³: **C** 12 **N** 15/00 C 12 P 19/34, C 07 C 103/52 12 P 21/00, C 12 N 9/48 C 12 N 9/38

//C12R1/19, C12R1/38, C12R1/07, C12R1/865

30 Priority: 28.03.83 GB 8308483

43 Date of publication of application: 10.10.84 Bulletin 84/41

(84) Designated Contracting States: BE CH DE FR GB IT LI NL SE (1) Applicant: The Public Health Laboratory Service Board 61 Colindale Avenue London NW9 5EQ(GB)

(72) Inventor: Atkinson, Anthony Twigley Mill Corner Winterbourne Gunner Salisbury Wiltshire SP 4 6JJ(GB)

(72) Inventor: Minton, Nigel Peter 6 Highbury Avenue Salisbury Wiltshire SP2 7EX(GB)

(72) Inventor: Sherwood, Roger Franklin 35 Attwood Road Salisbury Wiltshire SP1 3PR(GB)

(74) Representative: James, Stephen Richard et al, **Procurement Executive Ministry of Defence Patents** 1A(4), Room 2014 Empress State Building Lillie Road London SW6 1TR(GB)

Met - Arg - Pro - Ser - Ile - His - Arg - Thr -Ala - Ile - Ala - Ala - Val - Leu - Ala - Thr -Ala - Phe - Val - Ala - Gly - Thr

Preferably the transfer vector is a plasmid. In one preferred embodiment the leader sequence polynucleotide is downstream of and in reading phase with a bacterial or yeast promotor and a ribosome binding site, and upstream of and in reading phase with a structural gene. The structural gene may be, for example, the carboxypeptidase Ga(CPGa) gene from the chromosomal DNA of Pseudomonas species strain RS -16. Examples of plasmids containing the leader sequence polynucleotide and the CPG: gene are pNM1, pNM111, pNM14, pNM21, pNM22, pNM31, pNM32 and pLEC3.

⁽⁵⁴⁾ A leader sequence to promote the secretion of gene products.

⁵⁷⁾ A recombinant DNA transfer vector contains a leader sequence polynucleotide which codes for a signal polypeptide of formula I,

LEADER SEQUENCE TO PROMOTE THE SECRETION OF GENE PRODUCTS

5

10

The present invention relates to fragments of specific deoxyribonucleotide sequences that promote the secretion of gene products from cells and in particular to recombinant DNA transfer vectors that contain these fragments.

Recent developments in biochemistry have led to the construction of recombinant DNA transfer vectors in which, transfer vectors, for example plasmids, are made to contain exogeneous DNA. In some cases the recombinant incorporates heterologous DNA that codes for polypeptides that are ordinarily not produced by the organism susceptible to transformation by the recombinant vehicle.

In its basic outline a method of endowing a micro organism with the ability to synthesise a new protein involves three general steps:

- (a) isolation and purification of the specific gene or nucleo tide sequences containing the genetically coded information for the amino acid sequence of the desired protein or polypeptide,
- (b) recombination of the isolated gene or nucleotide sequence with an appropriate transfer vector, typically DNA of a
 20 bacteriophage or plasmid to form a recombinant transfer vector that codes, in part, for the production of the desired protein or polypeptide,

(c) transfer of the vector to the appropriate micro organism and selection of a strain of the recipient micro organism containing the desired genetic information.

Provided the gene or nucleotide sequence expresses its protein or polypeptide in the chosen micro organism, growth of the micro organism should then produce the desired protein or polypeptide in significant quantities.

Once the micro organism has been cultured, the protein or polypeptide must be isolated from the undesired materials. This step is considerably facilitated if the majority of the desired protein or polypeptide is present in the culture medium and/or the periplasmic space of the micro organism. In other words purification may be performed in a more efficient manner if, once expressed, the protein or polypeptide passes through the cell membrane and out of the cytoplasm.

10

15

20

25

30

35

The passage of the protein or polypeptide through the cell membrane is desirable for two main reasons. First the desired protein or polypeptide will generally be foreign to the micro organism in which it is expressed. In many cases, therefore, it will be quickly broken down by proteolytic enzymes etc in the cells cytoplasm and will, subsequently, have a short half life within the cell. By transferring the protein or polypeptide out of the cytoplasm soon after expression the stability of the protein or polypeptide will be greatly increased. Second the number of unwanted genetic materials and products (from which the desired protein or polypeptide must be isolated) will be far greater in the cell's cytoplasm than in the culture medium and/or in the cell's periplasmic space. It can be seen that on both of the above counts the transfer of the protein or polypeptide through the cell membrane and out of the cytoplasm will greatly facilitate protein or polypeptide isolation.

One way in which the secretion of gene products from the cell's cytoplasm may be promoted is to produce, within the cytoplasm, a preprotein or prepolypeptide in which the desired protein or polypeptide is preceded by a signal polypeptide. The predominantly hydrophobic signal polypeptide directs the desired protein or polypeptide to the cell's periplasmic space, where the signal peptide is removed as the desired protein or polypeptide

traverses the cell membrane.

10

15

20

30

Many of the known signal peptides contain cysteine residues. These residues have been found to react in the cell membrane and thereby inhibit the efficient transfer of the desired gene product out of the cell.

It is the primary object of the present invention to provide recombinant DNA transfer vectors containing a leader sequence polynucleotide that codes for a signal peptide that is cysteine free. Other objects and advantages of the present invention will become apparent from the following description thereof.

According to the present invention there is provided a recombinant DNA transfer vector comprising a leader sequence polynucleotide coding for signal polypeptide of formula I.

Fiet-Arg-Pro-Ser-lle-His-Arg-Thr-Ala-lle-Ala-

I

Ala-Val-Leu-Ala-Thr-Ala-Phe-Val-Ala-Gly-Thr

The transfer vector may be a bacteriophage or, which is preferred, a plasmid.

Preferably the majority of the codons in the nucleotide sequence are those preferred for the expression of microbial genomes. Suitable codons are listed in UK 1,568,047 and UK 2007675A, and these publications are therefore incorporated herein by reference.

In one preferred embodiment of the present transfer vector the nucleotide sequence has formula II

The nucleotide sequence coding for the signal polypeptide (the leader sequence poly nucleotide) will preferably be downstream of and in reading phase with a bacterial or a yeast promoter and a prokary-otic ribosome binding site in the transfer vector. Moreover the leader sequence polynucleotide will either be upstream of an insertion site for a structural gene or, which is preferred, will be upstream of and in reading phase with a structural gene coding for a desired protein or polypeptide. Preferably the gene codes for a eukaryotic, particularly a mammalian, protein or polypeptide.

The structural gene may code, for example, for such eukaryotic proteins as human growth hormone, human insulin or human chorionic somatomammotropin. Alternatively it may code for such prokaryotic

10

15

20

25

30

35

proteins as E.coli \$\textit{\beta}\$-galactosidase or Pseudomonas carboxy peptidase \$G_2\$ (CPG_2) (Carboxypeptidase \$G_2\$ is an enzyme, produced by Pseudomonas species strain RS-16, that has application in cancer chemotherapy. It is a \$\mathbb{Z}n^{2+}\$ containing dimer of 2 x 42,000 daltons and has high affinities (Km values of 10^5 or 10^6 M) for both 5-methyltetra-hydrofolate, the predominant ciculatory form of folate in mammals and for the folic acid antagonist methotrexate (MTX), which is widely used in cancer chemotherapy. The enzyme may be used directly for the plasma depletion of reduced folates, essential as co-factors in purine and particularly in pyrimidine biosynthesis. CPG_2 has been shown to inhibit the development of the Walker 256 carcinoma in vivo and to remove MTX from circulation in patients where prolonged exposure to high doses of MTX leads to toxicity).

Examples of transfer vectors according to the present invention that code for CPG₂ are pNM1, pNM111, pNM14, pNM21, pNM22, pNM31, pNM32 and pLEC3.

The promoter is preferably a high expression bacterial or yeast promoter for the structural gene in a variety of hosts. The particular choice of promoter will depend on the microorganism to be transformed. For example the transformation of E.coli will generally be effected by a transfer vector in which an E.coli promoter controls the expression of the structural gene. Examples of E.coli promoters are those present in the plasmids pBR 322 and pAT 153. By contrast, the transformation of Pseudomonas species will generally be effected by a transfer vector in which a Pseudomonas promoter controls the expression of the structural gene. Examples of Pseudomonas promoters are those present in the plasmid pXT 230 or Pseudomonas chromosomal DNA.

In order to express the structural gene the present transfer vector will be transformed into a suitable microorganism. According to a further aspect of the present invention therefore there is provided a microorganism transformed by a recombinant DNA transfer vector according to this invention. The microorganism will preferably be a bacterium or yeast in which high expression of the structural gene, within the transfer vector, occurs. Depending on the choice of promoter the microorganism may be a strain chosen from one of the following bacteria E.coli, Pseudomonas and Bacillus or the yeast Saccharomyces cerevisiae.

Having transformed the microorganism, the protein or polypeptide, for which the structural gene codes, may then be expressed by culturing

10

15

20

25

30

35

the transformed microorganism in a culture medium. It is the primary advantage of the present invention that culturing the transformed microorganism affords a preprotein or prepolypeptide in which the desired protein or polypeptide is preceded by the present signal polypeptide. This means that soon after expression the signal polypeptide directs the desired protein or polypeptide to the cell's periplasmic space, where the signal polypeptide is removed as the desired protein or polypeptide traverses the cell membrance. Since the present signal polypeptide is free of cysteine residues the desired gene product will be efficiently secreted through the membrane.

The present transfer vectors may be prepared by any of the methods that are well known in the recombinant DNA art. For example the leader sequence poly nucleotide may be synthesised by the modified triester method of K.Itakura etal, <u>JACS</u>, 1975, <u>97</u>, 7327 or by the improved oligodeoxynucleotide preparation described in UK 2007675A. The disclosure of both of these references is incorporated herein by reference. The synthesised polynucleotide may then be inserted in a transfer vector, preferably a plasmid. In the transfer vector it will preferably be downstream of and in reading phase with a bacterial or a yeast promoter and a prokaryotic ribosome binding site. The leader sequence polynucleotide should also be either upstream of a structural gene insertion site or upstream of and in reading phase with a structural gene.

Alternatively, DNA fragments containing the leader sequence polynucleotide may be obtained from natural sources, in particular from the chromosomal DNA of Pseudomonas species strain RS-16. In this particular case a polynucleotide (formula II above) coding for the present signal polypeptide immediately precedes a structural gene coding for CPG2. A number of the DNA fragments containing this leader sequence polynucleotide may therefore be recognised by their ability, on insertion into a plasmid and transformation of a microorganism by the resultant recombinant vector, to enable a microorganism to grow on folate. Examples of such recombinant transfer vectors that contain both a polynucleotide coding for the present signal polypeptide (formula II) above) and a structual gene coding for CPG, are pNM1, pNM111, pNM14, pNM21, pNM22, pNM31, pNM32 and pLEC3. Of course, once a Fol+ recombinant vector has been obtained in this way it may be subcloned to afford alternative vectors (either Fol or Fol) that also contain a polynucleotide coding for the present signal polypeptide.

10

15

20

25

30

35

.....

Once a suitable DNA fragment has been isolated it may then be inserted in a transfer vector, preferably a plasmid. In the transfer vector the leader sequence polynucleotide on the inserted fragment should be downstream of and in reading phase with a bacterial or a yeast promoter and a prokaryotic ribosome binding site. The leader sequence polynucleotide should also be either upstream of a structural gene insertion site or upstream of and in reading phase with a structural gene.

The structural gene for insertion downstream of and in reading phase with the present leader sequence polynucleotide may be obtained, for example, by the synthetic methods mentioned above (this is particularly useful for the preparation of genes coding for small proteins, such as human growth hormone, insulin and human chorionic somatomammotropin.) Alternatively the structural gene may be prepared from m=RNA by the use of the enzyme reverse transcriptase or may be isolated from natural sources (chromosomal DNA).

An example of the latter method is the isolation of INA fragments containing a polynucleotide sequence (shown in Table 1) coding for the enzyme CPG₂ (amino acid sequence also shown in Table 1) from Pseudomonas species strain RS-16 chromosomal INA. Examples of plasmids containing a CPG₂ structural gene, as well as a polynucleotide coding for the present signal polypeptide (formula II above), are pNM1, pNM111, pNM14, pNM21, pNM22, pNM31, pNM32 and pLEC3.

Once prepared or isolated the Leader sequence polynucleotide and the structural gene will be inserted into a transfer vector, preferably a plasmid, to form a recombinant DNA transfer vector according to the present invention. The insertion step or steps will preferably be effected by one of the well known techniques in this art that employ restriction endonucleases, see for example the methods discussed in UK 2090600A, the disclosure of which is incorporated herein by reference. The choice of transfer vector will be determined by the microorganism in which the leader sequence polynucleotide and structural gene are to be expressed. Generally the transfer vector will be a cloning vehicle that is suitable for transforming the chosen micro-organisms and that displays a phenotypical characteristic, such as antibiotic resistance, by which the recombinant transfer vectors may be selected. Thus, if the micro-organism is to be E-coli, then suitable transfer vectors will be the E-coli plasmids pBR322 and pAT153. Alternatively, if the micro-organism is to be Pseudomonas,

TABLE 1

A Polynucleotide Sequence, coding for CPG₂, isolated from Pseudomonas species strain RS - 16 chromosomal DNA

	1						•	
	Met	Arg	Pro	Ser	lle	Kis	Arg	Thr
51 -	ATG	CGC	CCA	TCC	ATC	CAC	CGC	ACA
	10					•		
Ala	lle	Ala	Ala	Val	Leu	Ala	Thr	Ala
GCC	ATC	GCC	GCC	GTG	CTG	GCC	ACC	GCC
Phe	Val	20 Ala	Gly	Thr	Ala	Leu	Ala.	Gln
TTC	GTG	GCG	GGC	ACC	GCC	CTG	GCC	CAG
110	410	400		1100	200	OIG	400	OAG
Lys	Arg	Asp	30 Asn	Val	Leu	Phe	Gln	Ala
AAG	CGC	GAC	AAC	GTG	CTG	TTC	CAG	GCA
	000		1110	020	010	110	Ond	·
				40				
Ala	Thr	Asp	Glu	Gln	Pro	Ala	Val	lle
GCT	ACC	GAC	GAG	CAG	CCG	GCC	GTG	ATC
	•		03	_	50			
Lys	Thr	Leu	Glu	Lys	Leu	Val	Asn	lle
AAG	ACG	CTG	GAG	AAG	CTG	GTC	AAC	ATC
				•		60		
Glu	Thr	Gly	Thr	${ t Gly}$	Asp	Ala	Glu	\mathtt{Gly}
GAG	ACC	GGC	ACC	GGT	GAC	GCC	GAG	GGC
lle	Ala	Ala	Ala	Gly	Asn -	Phe .	70 Leu	Glu
ATC	GCC	CCT	GCG	GGC	AAC	TTC	CTC	GAG
			•	•				
17.	Glu	Y	T	Asn	T	0 1	773	80
Ala GCC		Leu	Lys	2.0.2	Leu	Gly	Phe	Thr
GCC	GAG	CTC	AAG	DAA	CTC	GGC	TTC	ACG
Val	Mhaa	Ama	Som	T	Com	A7	03	Y
GTC	Thr ACG	Arg CGA	•	Lys		Ala	•	
	AUG	ADO	AGC ·	AAG .	TCG	GCC	GGC	CTG
90 Val	Val	Gly	Acm	A	11-	Val	03	T
GTG	GTG	GGC	Asp GAC	Asn	lle	Val	•	_
ara	414	GGC	GAG	AAC	ATC	GTG	GGC	AAG

	100							
lle	Lув	Gly	Arg	Gly	Gly	Lys	Asn	Leu
ATC	AAG	GGC	CGC	GGC	GGC	AAG	AAC	CTG
		110				•		
Leu	Leu	Met	Ser	His	Met	Asp	Thr	Val
CTG	CTG	ATG	TCG	CAC	ATG	GAC	ACC	GTC
Tyr	Leu	Lys	120 Gly	lle	Leu	Ala	Lys	Ala
TAC	CTC	AAG	GGC	TTA	CTC	GCG	AAG	GCC
_	****		•	130			_	
Pro	Phe	Arg	Val	Glu	Gly	Asp	Lys	Ala
CCG	TTC	CGC	GTC	GAA	GGC	GAC	AAG	GCC
					140		•	
${f Tyr}$	Gly	Pro	${ t Gly}$	lle	Ala	Asp	Åsp	Lуз
TAC	GGC	CCG	GGC	ATC	GCC	GAC	GAC	AAG
C3	C1	A am	43.5	Val	110	150	ma_	
Gly	Gly	Asn	Ala		lle	Leu	His	Thr
GGC -	GGC	DAA	GCG	GTC	ATC	CTG	CAC	ACG
							160	
Leu	Lys	Leu	Leu	Lys	Glu	Tyr	Gly	Val
CTC	AAG	CTG	CTG	AAG	GAA	TAC	GGC	GTG
						•		
122	Asp	Tyr	Gly	Thr	lle	Thr	Val	170
Arg CGC	GAC	TAC	GGC	ACC				Leu
OGG	GAU	TAG	GGG	ACC	ATC	ACC	GTG	CTG
Phe	Asn	Thr	Aan	Glu	Glu	T	C1	C
TTC	AAC	ACC	Asp GAC	GAG	GAA	Lys	Gly GGT	Ser
110	AAC	HCC	GAC	GAG	GAA	AAG .	GGT	TCC
180								
Phe	Gly	Ser	Arg	. Asp	Leu	lle	Gln	Glu
TTC	GGC	TCG	CGC	GAC	CTG	ATC	CAG	GAA
Glu	190 Ala	Lys	Leu	Ala	Авр	Tyr	Val	Leu
GAA	GCC	AAG	CTG	GCC	GAC	TAC	GTG	CTC
	400	DAG	O.G	400	UAU	IAU	414	010
		200		•				
Ser	Phe	Glu	Pro	Thr	Ser	Ala	Gly	qaA
TCC	TTC	GAG	CCC	ACC	AGC	GCA	GGC	GAC

							•	2133
		•	210					
Glu	Lys	Leu	Ser	Leu	\mathtt{Gly}	Thr	Ser	Gly
GAA	AAA	CTC	TCG	CTG	GGC	ACC	TCG	GGC
				220				
lle	Ala	Tyr	Val	Gln	Val	Asn	lle	Thr
ATC	GCC	TAC	GTG	CAG	GTC	AAC	ATC	ACC
	-				230			
Gly	Lys	Ala	Ser	His	Ala	Gly	Ala	Ala
GGC	AAG	GCC	TCG	CAT	GCC	GGC	GCC	GCG
						240	•	
Pro	Glu	Leu	Gly	Val	Asn	Ala	Leu	Val
CCC	GAG	CTG	GGC	GTG	AAC	G CG	CTG	GTC
			•					٠
Glu	Ala	Ser	Asp	Leu	Val	Leu	250	m
GAG	GCT	TCC	GAC	CTC	GTG		Arg	Thr
UAU	GOI	100	GAG	CIG	GIG	CTG	CGC	ACG
								260
Met	Asn	lle	Asp	Asp	Lys	Ala	Lys	Asn
ATG	AAC	ATC	GAC	GAC	AAG	GCG	AAG	AAC
Leu	Arg	Phe	Asn	Trp	Thr	lle	Ala	Lys
CTG	CGC	TIC	AAC	TGG	ACC	ATC	GCC	AAG
270	٠							
Ala	${ t Gly}$	Asn	Val	Ser	Asn	lle	lle	Pro
GCC .	GGC	AAC	GTC	TCG	DAA	ATC	ATC	CCC
			•					
17.	280	43	£00	T		42		
Ala GCC	Ser	Ala	Thr	Leu	Asn	Ala	Asp	Val
GCC	AGC	GC¢	ACG	CTG	AAC	GCC	GAC	GTG
		290						
Arg	Tyr	Ala	Arg	Asn	Glu	Asp	Phe	qsA
CGC	TAC	CCC	CGC	DAA	GAG	GAC	TTC	GAC
	•							
Ala	Ala	Met	300 Lys	Thr	Leu	Glu	Glu	Arg
GCC	GCC	ATG	AAG	ACG	CTG	GAA	GAG	CGC
					- 			-40
47 -		63	-	310	-			
Ala	Gln	Gln	Lys	Lys	Leu ·	Pro	Glu	Ala
GCG	CAG	CAG	AAG	AAG	CTG	CCC	GAG	GCC

		-			700		· C	1121352
Asp	Val	Lys	Val	lle	320 Val	Thr	Arg	Gly
GAC	CTC	AAG	GTG	ATC	GTC	ACG	CGC	GGC
						330		
Arg	Pro	Ala	Phe	Asn	Ala	Gly	Glu	$\mathtt{Gl}_{\mathbf{y}}$
CGC	CCG	GCC	TTC	TAA	GCC	GGC	GAA	GGC
							340	
Gly	Lys	Lys	Leu	Val	Авр	Lys	Ala	Val
GGC	AAG	AAG	CTG	GTC	GAC	AAG	GCG	GTG
								350
Ala	Tyr	Tyr	Lys	Glu	Ala	Gly	Gly	Thr
GCC	TAC	TAC	AAG	GAA	GCC	GGC	GGC	ACG
Leu	Gly	Val	Glu	Glu	Arg	Thr	Gly	Gly
CTG	GGC	GTG	GAA	GAG	CGC	ACC	GGC	GGC
360								. •
Gly	Thr	qaA	Ma	Ala	Tyr	Ala	Ala	Leu
GGC	ACC	GAC	GCG	GCC	TAC	GCC	GCG	CTC
	370					•		
Ser	Gly	Lys	Pro	Val	lle	Glu	Ser	Leu
TCA	GGC	AAG	CCA	GTG	ATC	GAG	AGC	CTG
		380		• •		•		
Gly	Leu	Pro	Gly	Phe	Gly	Tyr	His	Ser
GGC	CTG	CCG	GGC	TTC	GGC	TAC	CAC	AGC
			390					
Asp	Lys	Ala	Glu	Tyr	Val	Asp	lle	Ser
GAC	AAG	GCC	GAG	TAC	GTG	GAC	OTA	AGC
				400				
Ala	lle	Pro	Arg	Arg	Leu	Tyr	Met	Ala
GCG	TTA	CCG	CGC	CGC	CTG	TAC	ATG	GCT
		_			410	_		
Ala	Arg	Leu	lle	Met	Asp	Leu	Gly	Ala
CGC	CCC	CTG	OTA	ATG	GAT	CTG	GGC	GCC
Gly	Lys							
GGC	AAG	TGA -	. 31					

Amino acids 1 to 22 are the present signal polypeptide Amino acids 23 to 415 are the $\ensuremath{\text{CPG}}_2$ structural gene

NB The leader sequence polynucleotide is the preferred polynucleotide of formula II.

then a suitable transfer vector will be Pseudomonas pkT230.

The present recombinant DNA transfer vectors, micro-organisms transformed by the present recombinant DNA transfer vectors and processes for the preparation of said vectors and micro-organisms will now be described by way of example only, with particular reference to the Figures in which:

Figure 1 is a restriction enzyme cleavage site map of pNM1, Figure 2 is a restriction enzyme cleavage site map of pNM111, Figure 3 is a restriction enzyme cleavage site map of pNM14,

Figure 4 is a restriction enzyme cleavage site map of pNM21,
Figure 5 is a restriction enzyme cleavage site map of pNM22, and
Figure 6 illustrates the process for the preparation of a recombinant
plasmid containing both the present leader sequence polynucleotide and the
B-Galactosidase structural gene, and
Figure 7 is a restriction enzyme cleavage site map of pLEC3.

15 Materials and Methods

20

25

30

35

Bacterial strains and plasmids

The bacterial strains used were Escherichia coli W5445 (pro

leu thi thr sup E44 lac Y ton A r m Str) Pseudomonas putida

2440 (r) and Pseudomonas sp strain RS-16. The plasmids employed were

pBR322 (F Bolivar et al Gene, 1977, 2, 95), pAT153 (A J Twigg et al,

Nature, 1980, 283, 216) and pRT230 (M Bagdasarin et al, Gene 1981, 16,

237) and pROG5 (R.F.Sherwood et al, The Molecular Biology of Yeast, 1979

Cold Spring Harbor Publications).

Media and culture conditions

E.coli was routinely cultured in L-broth (1% tryptone, 0.5% yeast extract, 0.5% NaCl). Solidified medium (L-agar) consisted of L-broth with the addition of 2% (w/v) agar (Bacto-Difco). Antibiotic concentrations used for the selection of transformants were 50 µg/ml ampicillin, 15 µg/ml tetracycline and 30 µg/ml kanamycin. In the case of E.coli these were conducted in 2YT liquid medium (1.6% tryptone, 1% yeast extract, 0.5% NaCl) containing 1% glucose, and 0.05% folate where appropriate. The pseudomonads were grown in a minimal salts solution consisting of per litre: MgSO₄, 0.05g; CaCl₂, 2H₂O, 0.05g; FeSO₄.7H₂O, 0.005g; MmSO₄, 0.0015g; Na₂Mbo₄, 2H₂O, 0.0015g; KH₂PO₄; 5g; K₂HPO₄.5H₂O, 12g; glutamate, 10g. The minimal medium employed for E.coli was M9 medium (J Miller, Experiments in molecular genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1972).

Plasmids were purified from chloramphenicol amplified cultures (D B Clewell, J Bacteriol, 1972, 110, 667) by Brij-lysis (D B Clewell et al, Proc Natl Acad Sci, USA, 1969, 62, 1159) and subsequent caesium

chloride-ethidium bromide density gradient centrifugation (A Colman et al, Eur.J Biochem, 1978, 91, 303). A rapid, small scale plasmid isolation technique (Burnboim et al, Nuc.Acids Res, 1979, 7, 1513) was also employed for screening purposes. Chromosomal DNA from the donor Pseudomonad strain (RS-16) was prepared essentially as described by J Marmar, J.Mol.Biol, 1961, 3, 208.

Restriction, ligation and transformation methods

Restriction endonucleases and DNA ligase were purchased from Bethesda Research Laboratories and used in the buffers and under the conditions recommended by the supplier. Transformation of <u>E.coli</u> was essentially as described by S N Cohen et al., Proc.Natl.Acad.Sci., USA, 1972, 69, 2110, while Ps.putida was transformed by the method of M Bagdasarian and K N Timmis, Current Topics in Microbiology and Immunology, Eds P H Hofschneider and W Goebel, Springer Verlag, Berlin, 1981, p 47.

15 Agarose gel electrophoresis

5

10

20

Digests were electrophoresed in 0.8% agarose slab gels (10 cm x 20 cm x 0.5 cm) on a standard vertical system (Raven), employing Tris-borate-EDTA buffer. Electrophoresis of undigested DNA was at 125V, 50 mA for 3 hours, while digested DNA was electrophoresed at 15V, 10 mA for 16 hours. Fragment sizes were estimated by comparison with fragments of λ DNA digested with HindIII and λ DNA cut with both HindIII and EcoRI. Fragments were isolated from gels using electroelution

(M W McDonnell et al, Proc. Natl.Acad.Sci, USA, 1977, 74, 4835).

Determination of carboxypeptidase G2 activity

Bacteria were grown in 1 litre batch culture and 100 ml samples taken 25 at various stages in the growth phase. Samples were cooled on ice, centrifuged at 13,000 x g for 10 minutes and resuspended and frozen in 5 ml of 0.1 M Tris HCl, pH 7.3 containing 0.2 mM ZnSO,. The cells were disrupted using a MSE Ultrasonic Disintegrator (150 W) at medium frequency, amplitude 2, for three 30-second intervals on ice. Cell 30 debris was removed by centrifugation at 10,000 x g for 5 minutes. CPG, activity was determined after J L McCullough et al, J.Biol.Chem, 1971, 246, 7207. A.lml reaction cuvette containing 0.9 ml of 0.1 M Tris-HCl,pH 7.3 plus 0.2 mM ${\rm ZnSO}_{\Lambda}$ and 0.1 ml of 0.6 mM methotrexate was equilibrated at 37°C. Enzyme extract was added to the test cuvette 35 and the decrease in absorbance at 320 nm measured using a Pye-Unicam SP1800 double-beam spectrophotometer. Enzyme activity per ml extract

was calculated as \triangle 320 nm absorbance/min divided by 8.3, which is equivalent to the hydrolysis of 1 µmol of MTX/min at 37°C. Protein concentration was determined by the method of M M Bradford, Anal Biochem, 1976, 72, 248.

5 Cell fractionation techniques

Bacterial cultures were grown in the low phosphate medium of H C Neu and L A Heppel, (J Biol Chem, 1964, 240, 3685), supplemented with 100 μ g/ml ampicillin, to an OD₄₅₀ = 1.0. 40 ml of culture was centrifuged at 5000 g for 10 min, washed in 5 ml of 10 mM Tris-HCl pH 7.0, and resuspended in 0.9 ml 0.58 M sucrose, 0.2 mM DTT, 30 mM 10 Tris-HCl pH 8.0. Conversion to spheroplasts was achieved by the addition of 20 µl of lysozyme (2 mg/ml), 40 µl 0.1 M EDTA, and incubation at 230 for 10 min (HC Neu et al, J Biol Chem, 1964, 239, 3893). The spheroplasts were placed on ice and 0.1 ml of 30% (w/v) BSA added, followed by 5 ml of sucrose-tris buffer. Sedimentation 15 of the spheroplasts was achieved by centrifugation at 5000g for 10 min and the supernatant retained as the *periplasmic* fraction. The pellet was resuspended in 5 ml 10 mM Tris-HCl, 0.2 mM DTT pH 7.0 and and sonicated at 20 Kc/sec, 2 Amps for 15 sec. Remaining whole cells were removed by centrifugation at 1000 x g for 10 min. 20 Centrifugation at 100000 x g for 1 hr, at 4°C, separated the soluble (cytoplasmic) proteins from the particulate (membrane-bound) proteins. The membrane pellet was resuspended in 1 ml of 10mM Tris-HCl, 0.2 mM DTT, pH 7.0.

25 CPG₂ was assayed as described. Alkaline phosphatase was assayed according to J Miller, Experiments in Molecular genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1972, NADH oxidase according to M J Osborn et al, j Biol Chem, 1972, 247, 3962 and glyceraldehyde - 3 - phosphate dehydrogenase after K Suzuki et al, FEMS, 1971, 13, 217.

Example 1

5

10

15

20

25

30

35

Preparation of recombinant plasmid pNM1 (A plasmid containing both the present leader sequence polynucleotide and the CPG₂ structural gene)

To isolate the gene for carboxypeptidase G₂ together with the leader sequence polynucleotide chromosomal DNA prepared from the Pseudomonas host (strain RS-16) was partially digested with Sau3A and fragments of between 6-8 Md isolated from agarose gels by electroelution. The 'sized' DNA was ligated with alkaline phosphatase treated BamHl cut pBR322, transformed into E.coli W5445, and Ap^T transformants selected. Of the 3,500 Ap^T colonies obtained, approximately 70% were TC⁸. Utilisation of a rapid plasmid isolation technique on 50 Ap^T TC⁸ transformants demonstrated that 90% of the gene bank harboured plasmids of the expected size. As a further check on the authenticity of the gene bank, the individual clones were screened for the acquisition of a Leu⁺ phenotype. Two such clones were identified. Both carried a plasmid capable of transforming leuB (B-isopropylmalate dehydrogenase) E.coli mutants to prototrophy.

Acquisition of a functional CPG₂ gene should enable E.coli to utilise folic acid as a carbon source. The 2,400 gene bank clones were screened for the ability to grow on minimal medium containing folate as the sole source of carbon (ie Fol⁺). A single Fol⁺ clone was detected and shown to harbour a plasmid capable of transforming plasmid-minus W5445 to the Fol⁺ phenotype. Classical restriction mapping of this plasmid (pNM1) was undertaken which revealed the presence of a 5.9 Md insert of pseudomonad DNA within pBR322. The restriction enzyme clearage site map of pNM1 is given in Figure 1. The nucleotide sequence of the leader sequence polynucleotide and the CPG₂ structural gene is given in Table 1.

Example 2

Subcloning of plasmid pNMl to form pNMlll

In order to pinpoint the position of the CPG₂ gene and the leader sequence polynucleotide within the 5.9 Md insert, subcloning of various restriction enzyme fragments, into pBR322, was undertaken. A functional CPG₂ gene was shown not to occur on

Xhol or Sphl fragments of the pNMl insert, but was present on a 3.1 Md Bglll fragment. This latter fragment was cloned into the BamHl site of pBR322 to give pNMll (6.0 Md). A further reduction in the size of pNMll was achieved by digesting with Sall and religating the resultant fragment to yield pNMlll. In addition, plasmids in which the smaller 0.95 Md Sall fragment had become inserted in the opposite orientation to the parent plasmid (pNMll) were Fol. Taken together these subcloning results indicate that the CPG2 gene and the leader sequence polynucleotide lie between the Bglll site at 4.14 and the SAll site at 6.03 on pNMl. Furthermore, the gene contains a Sphl (5.17), Sall (5.07) and at least one Xhol (4.56 and/or 5.56) site. The restriction enzyme cleavage site map of pNMlll is given in Figure 2.

15 Preparation of recombinant plasmid pNM14. (A plasmid containing both the present leader sequence polynucleotide and the CPG₂ structural gene)

The 3.1 Md Bgl II fragment from Example 2 above was partially digested with Sau3A. These fragments were then cloned into the 20 Bam HI site of pAT153 and transformed into E coli W5445. Of the two Apr Tc Fol colonies obtained, one contained a plasmid which had acquired an extra Sal I and Bam HI site, this was pNM 14. The restriction enzyme cleavage site map of pNM 14 is given in Figure 3. Sequencing of the leader sequence polynucleotide and 25 the CPG structural gene present in pNM 14 gave the nucleotide structure shown in Table 1. DNA sequencing of pNM 14 also revealed that the Sal I - Bam HI fragment was a duplication of a segment of DNA from within the insert (marked * on Figure 3) composed of two contiguous Sau 3A fragments.

30 Example 4 and 5

Preparation of recombinant plasmids pNM 21 and pNM 22

(Plasmids containing both the present leader sequence polynucleotide and the CPG, structural gene)

The 3.1 Md <u>Bgl</u> II fragment from Example 2 was cloned into the

Bam HI site of pAT 153 and transformed into E coli W 5445. Two

Ap^T Tc^S Fol[†] colonies were obtained, one containing a plasmid pNM 21

in which the fragment was inserted in the opposite orientation to

10

15

20

25

30

35

pNM1 and one containing a plasmid pNM22 in which the fragment was inserted in the same orientation as pNM1. The restriction enzyme cleavage site maps of pNM21 and pNM22 are given in Figures 4 and 5 respectively.

The two plasmids, pNM21 and pNM22 both transformed E.coli to Fol⁺, indicating that a pseudomonad promoter was present on the 3.1Md fragment. However, cells carrying the plasmid pNM21, in which the Bglll fragment was cloned in the opposite orientation to pNM1, exhibited more rapid growth with folic acid as the sole carbon source. This difference was clearly visible on agar medium, where colonies developed concentric yellow 'halos' of precipitated pteroic acid, the insoluble product of folate hydrolysis.

Confirmation that pNM21 gave enhanced expression of CPG₂ over pNM22, was obtained by assaying enzyme production during batch growth of cells containing either plasmid. (The cells were grown in complex medium supplemented with 1% (w/v) glucose and where appropriate 0.05% (w/v) folic acid. The generation time was 56-66 min. The culture was sampled at hourly intervals and whole cells were disrupted by sonication. Enzyme activity was determined in the centrifugal extract). Results are given in Table 2.

The expression of CPG, from the plasmids pNM22 and pNM1 was 2.5 units/litre of culture, representing 0.005% soluble protein. In contrast, expression from pNM21 was 3000-3500 units/litre of culture, which represented 4.7% soluble protein. As the cloned gene is inserted into the BamHI site of pAT153, the observed higher expression of pNM21 is almost certainly due to transcriptional read through from the Tc promoter. The low expression of CPG, carried on plasmids pNM1 and pNM22 is consistent with the view that Pseudomonas promoters function poorly in E.coli. It is also apparent from Table 2 that in the presence of folate there is a two-fold increase in the specific activity of enzyme measured in cell sonicates. This phenomenon has been observed in all experiments, but does not seem to be associated with classical induction of the CPG, gene, as overall enzyme yield in the presence or absence of foliate remains at about 3000 u/litre culture. It in fact reflects a consistent depression in the

soluble protein levels measured in sonicates from cells grown in the presence of folate. There is no obvious difference in growth rate of cells grown with folate and the reasons for this result are not clear.

5 TABLE 2: CARBOXYPEPTIDASE G PRODUCTION BY E COLI W5445 CONTAINING THE PLASMIDS pnm1, pnm21 and pnm22.

	CULTURE	CARBOXY	PEPTIDASE (SPECIFIC .	C ACTIVITY	(U/MG SOI PROTEII	UBLE
	AGE	pNM1		pNM	22	pNM21	
	(HR)	-FOL	+FOL	-FOL	+FOL	-FOL	 +FOL
)	1	-			••	11.5	13.4
	2	-	-	-	-	12.9	9.6
	3	•008	•005	•010	.019	13.9	23.3
	4	•009	.011	•015	.013	12.3	26.9
	5	.007	•019	.016	.016	11.5	25.6
5	6	•005	.024	.014	.023	13.7	24.1
	7	.015	.029	.024	.043	13.2	20.6
	8	.013	.02 8	.024	.046	13.0	23.6

Expression of the cloned gene in Ps.putida

20

25

The observation that the CPG₂ gene was expressed in E.coli regardless of the orientation of the gene within the vector. suggested that the promoter region of the CPG₂ gene had been cloned with the structural gene and the leader sequence polynucleotide. The low expression of CPG₂ within E.coli from its natural promoter (pNM1, pNM22, pNM111) confirmed other findings that Pseudomonas promoters are poorly recognised by E.coli RNA polymerases. It would be expected that if the gene was introduced back into a pseudomonad cellular environment, then improved expression from the Pseudomonas promoter should result. The 3.1 Md BgIII fragment was subcloned into the Pseudomonas cloning vector pKT230 at its single BamHI site.

Two plasmids were obtained, pNM31 and pNM32 representing the two possible orientations of the cloned gene. These plasmids were transformed into Ps.putida 2440 by the method of Bagdasarian and Timmis. Pseudomonad cells carrying both plasmids were cultured in minimal salts medium and enzyme production monitored.

Yields of 500-1000 units/litre of culture were obtained regardless of gene orientation within the plasmid. Specific activity of the enzyme in cell sonicates was 1.5 to 4.0 U/mg protein representing 0.3 to 0.7% soluble protein (compared with < 0.05% soluble protein in the donor strain RS-16). This result strongly indicates that the CPG₂ promoter is present and operating in a pseudomonad background. When the same plasmids were transformed into E.coli W5445 12-40 Units/litre were found at specific activity < 0.07 U/mg (< 0.01% soluble protein).

15 Periplasmic localisation of CPG₂

10

20

25

30

35

There is evidence that CPG₂ is located in or near the periplasmic space of <u>Pseudomonas</u> strain RS-16. Pteroic acid, the product of CPG hydrolysis of folic acid is extremely insoluble and is found predominantly outside the cell in both liquid and solid media. Exogeneous pteroic acid is also seen in <u>E.coli</u> cultures containing the cloned gene when folic acid is present in the medium. This is clearly demonstrated by the 'halo' of precipitated pteroic acid observed around colonies carrying plasmids in which expression of CPG₂ is from the Tc promoter of pBR322 (eg pNM21).

The localisation of CPG₂ produced by <u>E.coli</u> cells carrying pNM21 was examined by the separation of cellular proteins into cytoplasmic, periplasmic, and whole membrane fractions. As a control, levels of three marker enzymes, alkaline phosphatase (periplasmic), glyceraldehyde-3-phosphate dehydrogenase (cytoplasmic) and NADH.O₂ oxidoreductase (membrane-bound), were also determined. As can be seen from Table 3 97% of the CPG₂ activity occurs in the periplasm, equivalent to the marker periplasmic enzyme, alkaline phosphatase. This confirms the presence in pNM21 of a leader sequence polynucleotide next to the CPG₂ gene that codes for a signal polypeptide according to this in vention that promotes the secretion of CPG₂ from the cytoplasm into the periplasmic space.

Carboxypeptidase G2 synthesised in E.coli

5

10

15

The specific activity of CPG₂ in crude cell extracts of cells carrying pNM21 was 50-fold higher than equivalent extracts from Pseudomonas strain RS-16. To determine whether the cloned gene= product in E.coli had the same properties as CPG₂ from the pseudomonad, enzyme was purified from E.coli carrying pNM21. The specific activity of purified CPG₂ (single band SDS-PAGE) was 535 U/mg of protein, which compares to 550 U/mg of protein from the pseudomonad. CPG₂ purified from E.coli clone pNM21 co-chromato-graphed with CPG₂ from Pseudomonas strain RS-16 at a sub-unit molecular weight value of 42,000 daltons. Km vallues using methotrexate as substrate were 7.4 x 10⁻⁶M and 8.0 x 10⁻⁶M respectively. In addition, antiserum raised against the Pseudomonas enzyme indicated immunological identity between the E.coli and Pseudomonas CPG₂, as a confluent precipitation line was formed on Ouchterlony double diffusion analysis.

TABLE 3

Localisation of Carboxypeptidase

				
FRACTION	CPG ₂	ENZYME A	NADHOX	
Periplasmic	97.0	97.1	6.8	0.25
Cytoplasmic	2.6	2,3	93	8.4
Membrane-bound	0.4	0.6	0.2	89.1

AP = Alkaline phosphatase

GAPDH = Glyceraldehyde-3-phosphate dehydrogenase

NADHOX = NADH.O₂ oxidoreductase

Example 6

5

10

15

20

25

30

35

Preparation of a recombinant plasmid containing both the present leader sequence polynucleotide and the B-Galactosidase structural gene

Plasmid pNM14 (Example 3) was treated with Sau 3A (GATC) and the fragments were cloned into the Bam HI site of M13 mp7 template DNA (single stranded DNA (Step A of Figure 6). The product carrying a 318bp Sau 3A fragment coding for the present signal polypeptide and the first 22 amino acids of CPG, (nucleotide sequence of this fragment shown in Table 4) was selected and made double stranded. The DNA coding for the signal polypeptide (and the first part of CPG,) was then excised as an Eco RI fragment. This Eco RI fragment was then cloned into the promoter cloning vector E.coli pMC1403 (M.J. Casadaban et al, J Bacteriol, 1980, 143, 971), which carries only the structural gene (lac Z) for B-galactosidase (ie no promoter and no ATG start codon) (Steps B and C of Figure 6). Plasmids were obtained in which the Eco RI fragment had inserted in both orientations, however, only those in which fusion of the CPG, sequence to the B-galactosidase sequence had occurred (i) yielded a 0.34 Kb fragment upon digestion with BamHI; (ii) enabled the host cell to hydrolyse the colourless lactose analogue, BCIG, and impart a blue colouration to colonies. The 0.34 Kb BamHI fragment has been recloned into M13mp7 and sequenced to confirm that fusion has occurred. The 'precursor' fusion produced will consist of the signal peptide, the first 22 amino acids of CPG2, 6 amino acids derived from the M13mp7 and pMC1403linker units, and B-galactosidase from its 8th amino acid onward.

Localisation experiments have been performed on cells carrying a plasmid coding for the 'fusion gene' where the cellular proteins have been fractionated into periplasmic, cytoplasmic and membrane fractions. In these experiments an organism (E,coli MC 1061) which is deleted for the lac Z gene was grown in phosphate medium (H.C. Neu et al, J Biol Chem, 1964, 240, 3685) and periplasmic enzymes were released from the harvested cells by conversion to spheroplasts. Separation of soluble proteins (cytoplasmic) from particulate proteins (membrane band) was achieved by sonicating the harvested

10

spheroplasts and subsequent centrifugation at 100,000g for 1hr, to sediment the cell membrane (T.J.Silhary et al, Proc Natl Acad Sci USA, 1976, 73, 3423).

The results given in Table 5 demonstrate the presence of 50% of the B-galactosidase activity in the periplasmic space. This result is in direct contrast to similar work involving fusion of other periplasmic protein signal sequences to B-galactosidase, where the fusion proteins are not exported, but become jammed in the membrane (P.J. Bassfordet al, J Bacteriol, 1979, 139, 19 and S D Emr et al, J Cell, Biol, 1980, 86, 701).

TABLE 4

The Polynucleotide Sequence of the 318 bp Sau 3A Fragment from

The Fory	Increori	de peda	ence or	the .	קט סוק	Sau Ja	. rragment	Trom
Recombina	ant Plas	mid pNM	14					
5 ' - G	ATC	CAC	GCA	CTG	AAG	GCG	CGC	GGC
· AAG	ACG	CGC	GGC	GTG	GCG	ACG	CTG	TGC
ATC	GGC	GGG	GGC	GAA	GGC	ACC	GCA	GTG
GCA	CTC	GAT	TGC	TAT	AAG	AAC	CAT	GGC
TGG	GGA	CGC	CCG	ACA	ACA	GGC	GTC	CAC
CAG	CTT	TIT	TCA	TTC	CGA	CAA	CCC	GAA
CGA	ACA	ATG	CGT	AGA	GCA	GGA	GAT	TCC

				Table 4	(comtd)			
		Met	Arg	Pro	Ser	lle	His	Arg	Thr
		ATG	CGC	CCA	TCC	ATC	CAC	CGC	ACA
	Ala	lle	Ala	Ala	Val	Leu	Ala	Thr	Ala
	GCC	ATC	GCC	GCC	CTC	CTG	GCC	ACC	GCC
5	Phe	Val	Ala	Gly	Thr	Ala	Leu	Ala	Gln
	TTC	GTG	GCG	GGC	ACC	GCC	CTG	GCC	CAG
	Lys	Arg	Авр	Asn	Val	Leu	Phe	Gln	Ala
-	AAG	CGC	GAC	AAC	GTG	CTG	TTC	CAG	GCA
	43	-							
	Ala	Thr	Asp	Glu	${ t Gln}$	${\tt Pro}$	Ala	Val	lle
10	CCT	ACC	GAC	GAG	CAG	CCG	GCC	GTG	ATC

NB. This fragment carries the leader sequence coding for the signal polypeptide, a part of the CPG₂ structural gene coding for the first 22 amino acids of the protein, the ATG start codon, the CPG₂ ribosome binding site (AGGA.) and other components of the CPG₂ promoter region.

TABLE 5
Localisation of Signal Peptide - B-galactosidase Fusion
Protein

			%	LOCALISATIO	on ^a
		CPG ₂ /B-GAL	AP	GAPDH	XOHDAN
Periplasmic		50.3	97.3	3.4	0.4
Cytoplasmic		30.9	2.5	95.3	8.2
Membrane-bound		18.8	0.2	1.3	89.4
a.	=	average results f	rom 4 expe	eriments	
CPG ₂ /B-GAL	=	Carboxypeptidase	GB-galac	tosidase f	usion prote
AP.	=	Alkaline phosphat	ase	_	TOTAL PLOCE
GAPDH	=	Glyceraldehyde-3-	phosphate	dehvdrogen	ase
NADHOX	=	NADH.02 Oxidoredu		V	

15

Example 7

5

10

15

20

25

30

Preparation of a recombinant plasmid, containing both the present leader sequence polynucleotide and the CPG₂ structural gene, able to replicate in E.coli and S.cerevisiae

A 2.03 kilobase BamHI fragment coding for the present signal polypeptide and the entire CPG₂ molecule was cloned in both orientations into the BamHI site of an E. coli/S. cerevisiae shuttle vector pROG5 (R.F. Sherwood and R.K. Gibson, The Molecular Biology of Yeast, 1979, Cold Spring Harbor Publications) to give plasmids pLEC3 and pLEC4 (Figure 7). These plasmids were transformed into S. cerevisiae strain LL20 by the lithium acetate induced transformation method described by Ito et al., J. Bact., 1983, 153, 163. Yields equivalent to 10-20 units/litre of culture volume were obtained regardless of gene orientation within the plasmid. Specific activity of the enzyme in total cell extracts was 0.2-0.3u/mg protein representing 0.005% soluble protein. This level of expression from the pseudomonad promotor in a yeast background is similar to the level found when the gene was reading from its own promotor in E.coli (0.01% soluble protein).

Localisation experiments have been performed on yeast cells carrying the above plasmids by sphaeroplasting the cells using standard techniques described by J.B.D. Beggs, Nature, 1978, 275, 105. Periplasmic enzymes, localised outside of the cell membrane, were released when the cell wall was removed. The osmotic stabiliser (1.2% sorbitol) was then replaced by 0.1M Tris-HCl buffer, pH 7.3 containing 0.2mM ZnCl₂ to lyse the sphaeroplasts and the whole centrifuged at 100,000 x g for 1 hour to separate proteins in the soluble cytoplasmic fraction from membrane bound proteins. The results in Table 6 demonstrate the presence of 64% of the CPG₂ activity in the periplasmic fraction and a further 16% associated with the cell membrane fraction.

TABLE 6

Localisation of CPG	in S. cerevisiae
	% CPG activity
Periplasmic	64
Cytoplasmic	20
Membrane bound	16

CLAIMS

10

25

1. A recombinant DNA transfer vector comprising a leader sequence polynucleotide characterised in that the leader sequence polynucleotide codes for a signal polypeptide of formula I,

2. A recombinant INA transfer vector according to claim 1 characterised in that the leader sequence polynucleotide is of formula II,

- 3. A recombinant DNA transfer vector according to either claim 1 or claim 2 characterised in that the leader sequence polynucleotide is downstream of and in reading phase with a bacterial or a yeast promoter and a prokaryotic ribosome binding site.
- 4. A recombinant DLA transfer vector according to any one of claims 1 to 3 characterised in that the leader sequence polynucleotide is upstream of and in reading phase with a structural gene.
 - 5. A recombinant DNA transfer vector according to claim 4 characterised in that the structural gene codes for human growth hormone, human insulin or human chorionic somatomammotropin.
 - 6. A recombinant DNA transfer vector according to claim 4 characterised in that the structural gene codes for E.coli β galactosidase.
- 7. A recombinant DNA transfer vector according to claim 4 characterised in that the structural gene codes for Pseudomonas carboxypeptidase G₂ (CPG₂).
 - 8. A recombinant DNA transfer vector according to claim 7 comprising a polynucleotide of formula

	1 Met	Arg	Pro	Ser	lle	His	Arg	Thr
5' -	ATG	CGC	CCA	TCC	ATC	CAC	CCC	ACA
	10			TT- 3	Ton	Ala	Thr	Ala
Ala	11 e	Ala	Ala	Val	Leu			GCC
GCC	ATC	GCC	GCC	GTG	CTG	GCC	ACC	GOO
		20	67	m	17.0	Leu	Ala	Gln
Phe	Val	Ala	Gly	Thr	Ala			CAG
TTC	GTG	GCG	GGC	ACC	GCC	CTG	GCC	CAG
_	•	l an	30 Asn	Val	Leu	Phe	Gln	Ala
Lys	Arg	Yab		GTG	CTG	TTC	CAG	GCA
AAG	CGC	GAC	AAC	GIG	OIG	110	Q _Z	
			C7	40 Gln	Pro	Ala	Val	lle
Ala	Thr	Asp	Glu			GCC	GTG	ATC
CCT	ACC	GAC	GAG	CAG	CCG	GOO	ara	410
		_	03	T	50 Leu	Val	Asn	11e
Lys	Thr	Leu	Glu	Lys				ATC
AAG	ACG	CTG	GAG	AAG	CTG	GTC	DAA	AIO
						60		
Glu	Thr	Gly	Thr	Gly	Asp	Ala	Glu	Gly
GAG	ACC	GGC	ACC	GGT	GAC	GCC	GAG	GGC
							70	
lle	Ala	Ala	Ala	Gly	Asn -	Phe	Leu	Glu
ATC	GCC	CCT	GCG	GGC	DAA	TTC	CTC	GAG
								80
Ala	Glu	Leu	Lys	Asn	Leu	Gly	Phe	Thr
GCC	GAG	CTC	AAG	DAA	CTC	GGC	TTC	ACG
					••			
Val	Thr	Arg	Ser	Lys	Ser	Ala	Gly	
GTC	ACG	CGA	AGC	AAG	TCG	GCC	CGC	CTG
90								_
Val	Val	Gly	Asp	Asn			Gly	
GTG	GTG	GGC	GAC	DAA	ATC	GTG	GGC	AAG

	100							
lle	Lys	Gly	Arg	Gly	Gly	Lys	Asn	Leu
ATC	AAG	GGC	CGC	GGC	GGC	AAG	AAC	CTG
		110						•
Leu	Leu	Met	Ser	His	Met	Asp	Thr	Val
CTG	CTG	ATG	TCG	CAC	ATG	GAC	ACC	GTC
_	_		120		_		•	
Tyr	Leu	Lys	Gly	lle	Leu	Ala	Lys	Ala
TAC	CTC	AAG	GGC	TTA	CTC	GCG	AAG	GCC
				130				. 4
Pro	Phe	Arg	Val	Glu	Gly	Asp	Lys	Ala
CCG	TTC	CGC	GTC	GAA	GGC	GAC	AAG	GCC
					4.40			: :
Tyr	Gly	Pro	Gly	lle	140 Ala	Asp	Asp	Lys
TAC	GGC	CCG	GGC	ATC	GCC	GAC	GAC	AAG
			440		400	GAO	GAC	AAG
						150		
Gly	Gly	Asn	Ala	Val	lle	Leu	His	Thr
GGC	GGC	AAC	GCG	GTC	ATC	CTG	CAC	ACG
Leu	Lys	Leu	Leu	Lys	Glu	Tyr	160 Gly	Val
CTC	AAG	CTG	CTG	AAG	GAA	TAC	GGC	GTG
								:,
A	A on	Marra	C1	(Mare	22.	m		170
Arg CGC	Asp	Tyr	Gly	Thr	lle	Thr	Val	Leu
CGC	GAC	TAC	GGC	ACC	ATC	ACC	GTG	CTG :
Phe	Asn	More	A	C7	63	T	03	~
TTC ·	AAC	Thr ACC	Asp GAC	Glu	Glu	Lys	Gly	Ser
110	AAC	ACC	GAC	GAG	GAA	AAG	GGT	TCC
180	•		•	••				•
Phe	Gly	Ser	Arg	qaA	Leu	lle	Gln	Glu
TTC	GGC	TCG	CGC	GAC	CTG	ATC	CAG	GAA
	190							.•
Glu	Ala	Lys	Leu	Ala	Asp	Tyr	Val	Leu
GAA	GCC	AAG	CTG	GCC	GAC	TAC	GTG	CTC
Som	The	200	D	mb	0		00	
Ser	Phe	Glu	Pro	Thr	Ser	Ala	Gly	Asp
TCC	TTC	GAG	CCC	ACC	AGC	GCA	GGC	GAC

•								
Glu	Lys	Leu	210 Ser	Leu	Gly	Thr	Ser	Gly
GAA	AAA	CTC	TCG	CTG	GGC	ACC	TCG	GGC
lle	Ala	Tyr	Val	220 Gln	Val	Asn	lle	Thr
ATC	GCC	TAC	GTG	CAG	GTC	AAC	ATC	ACC
AIO	400							
	_	43.	S	His	230 Ala	Gly	Ala	Ala
Gly	Lys	Ala	Ser TCG	CAT	GCC	GGC	GCC	GCG
GGC	AAG	GCC	104	VAL	400			
						240	T	Ψol
Pro	Glu	Leu	Gly	Val	Asn	Ala	Leu	Val GTC
ccc	GAG	CTG	GGC	CTG	AAC	GCG	CTG	GIO
							250	
Glu	Ala	Ser	Авр	Leu	Val	Leu	Arg	Thr
GAG	GCT	TCC	GAC	CTC	GTG	CTG	CGC	ACG
								260
Met	Asn	lle	qaA	Asp	Lув	Ala	Lys	Asn
ATG	AAC	ATC	GAC	GAC	AAG	GCG	AAG	AAC
							•	
Leu	Arg	Phe	Asn	Trp	Thr	lle	Ala	ГАв
CTG	CGC	TTC	AAC	TGG	ACC	ATC	GCC	AAG
270 Ala	Gly	Asn	Val	Ser	Asn	lle	lle	Pro
GCC	GGC	AAC	GTC	TCG	DAA	ATC	ATC	CCC
				•				
	280	43 -	m-	Leu	Asn	Ala	Asp	Val
Ala	Ser	Ala GCC	Tor ACG	CTG	AAC	GCC	GAC	GTG
GCC	AGC	GUU	ACG	OIG	ALC	400		
		290						
Arg	Tyr	Ala	Arg	Asn	Glu	Asp		_
CGC	TAC	GĊG	CGC	AAC	GAG	GAC	TTC	GAC
			300			•		
Ala	Ala	Met	Lys	Thr	Leu	Glu	Glu	Arg
GCC	GCC	ATG	AAG	ACG	CTG	GAA	GAG	CGC
				~10				
Ala	Gln	Gln	Lys	310 Lys	Leu	Pro	Glu	Ala
GCG	CAG	CAG	AAG	AAG	CTG	CCC		

		_			320			
Двр	Val	Lув	Val	lle	Val	Thr	Arg	Gly
GAC	GTG	AAG	CTG	ATC	GTC	ACG	CGC	GGC
						330 330		
Arg	Pro	Ala	Phe	Asn	Ala	Gly	Glu	Gly
CGC	CCG	GCC	TTC	TAA	GCC	GGC	GAA	GGĆ
							•.	
Gly	Lys	Lys	Leu	Val	Asp	Lys	340 Ala	7 . 3 Z
GGC	AAG	AAG	CTG	GTC	GAC	AAG	GCG	Val
			, 010	410	CAO	AAG	,404	GIG
				,				350
Ala	Tyr	Tyr	Lys	Glu	Ala	Gly	Gly	Thr
GCC	TAC	TAC	AAG	GAA	GCC	GGC	GGC	ACG
Leu	Gly	Val	Glu	Glu	Arg	Thr	$\mathtt{Gl}_{\mathbf{y}}$	Gly
CTG	GGC	GTG	GAA	GAG	CGC	ACC	GGC	GGC
360								• • • •
Gly	Thr	Asp	Ala	Ala	Tyr	Ala	Ala	Leu
GGC	ACC	GAC	GCG	GCC	TAC	GCC	GCG	CTC
Ser	370 Gly	Taro	Des	17-3	22 -	63	_	_
TCA	GGC	Lys	Pro	Val	lle	Glu	Ser	Leu
ICA	GGC	AAG	CCA	GTG	ATC	GAG	AGC .	CTG
		380						
Gly	Leu	Pro	Gly	Phe	Gly	Tyr	His	Ser
GGC	CTG	CCG	GGC	TTC	GGC	TAC	CAC	AGC
			700		•		•	
Asp	Lys	Ala	390 Gl u	Tyr	Val	Asp	lle	Ser
GAC	AAG	GCC	GAG	TAC	GTG	GAC	ATC	AGC
Ala	lle	75	4	400	-	_		
GCG	ATT	Pro CCG	Arg	Arg	Leu	Tyr	Met	Ala
dour	ALL	CCG	CGC	CGC	CTG	TAC	OTA	CCT
Ala	A	T	33.	Nr. 1	410			
CGC	Arg	Leu	lle	Met	Asp	Leu	Gly	Ala
000	CGC	CTG	ATC	ATG	GAT	CTG	GGC	GCC
Gly	Lys			•				
GGC	AAG	TGA -	31	•				

- 9. A recombinant DNA transfer vector according to any preceding claim characterised in that the transfer vector is a plasmid.
- 10. A recombinant DNA transfer vector according to claim 9 whenever taken together with claim 7 having the designation pNM1, pNM111, pNM14, pNM21, pNM22, pNM51, pNM32 or pLEC3.

20

- 11. A microorganism transformed by a transfer vector characterised in that the transfer vector is a recombinant DNA transfer vector according to claim 1.
- 10 12. A microorganism according to claim 11 characterised in that the transfer vector is a recombinant DNA transfer vector according to claim 4.
 - 13. A microorganism according to either claim 11 or claim 12 which is a bacterium of the species E.coli, Pseudomonas or
- 15 Bacillus or a yeast of the species Saccharomyces cerevisiae.
 - 14. A process for the preparation of a gene product characterised by
 - (a) culturing a microorganism according to claim 12 in a culture medium to produce the gene product in the culture medium or the periplasmic space of the microorganism, and
 - (b) isolating the gene product from the culture medium or the periplasmic space of the microorganism.
 - 15. A process according to claim 14 characterised in that the gene product is Pseudomonas carboxypeptidase G_2 or E.coli B galactosidase.

RESTRICTION ENZYME MAP OF pNM111

Fig.2.

RESTRICTION ENZYME MAP OF pNM14

Fig.3.

RESTRICTION ENZYME MAP OF pNM21

Fig 4.

RESTRICTION ENZYME MAP OF pNM 22

Fig.5.

Fig.6.

_____ pBR 322

Yeast 2/u plasmid

Yeast chromosomal leu 2 gene

Pseudomonas carboxypeptidase G2 gene

Fig.7.

RESTRICTION ENZYME MAP OF PLEC 3

EUROPEAN SEARCH REPORT

	DOCUMENTS CO.	CORPORA TO DE C			7		
. 1		WITH Indication, where appropri			EP 84301468.		
Category	of n	elevant passages	iate.	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CI. 7)		
A,D	EP - A2 - 0 0	01 931 (GENENT	FOU	1 5	C 12 N 15/00		
	INC.)	01 931 (GENENT	ECH,	1,5	C 12 P 19/34		
1	* Claims 1	,6 *			C 07 C 103/52		
					C 12 P 21/00		
A	$\frac{EP - A2 - 0}{AND}$ COMPANY)	49 619 (ELI LI	LLY	1,5	C 12 N 9/48		
	* Claims 1	2 #			C 12 N 9/38,		
D,A	& GB-A-2 007		1		C 12 R 1/19		
-,	u ub-A-2 007	075	}		C 12 R 1/38		
		~			C 12 R 1/07		
	•				C 12 R 1/865		
			. 1		·		
					TECHNICAL FIELDS		
l			Ī	. }	SEARCHED (Int. Cl. 3)		
				l	C 12 N		
j					C 12 P		
					C 07 C 103/00		
				Ī			
		•	,				
					•		
		•		·			
				- 1			
	The present search report has	been drawn up for all claims					
37	Place of search IENNA	Date of completion of th	e search		Examiner		
		02-08-1984			WOLF		
	CATEGORY OF CITED DOCI		T: theory or principle underlying the Invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons				
X : partic Y : partic docur A : techn O : non-y	cularly relevant if taken alone cularly relevant if combined want of the same category clogical background written disclosure nediate document	rith another D: d L: d	ocument cited	d in the appl for other re			

O rorm 1503.03.82

(II) Publication number:

0 121 352 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication of patent specification: 07.01.88
- (i) Int. Cl.⁴: **C 12 N 15/00**, C 12 N 9/38, C 12 N 9/52

- (1) Application number: 84301468.9
- ② Date of filing: 06.03.84

- (A) A leader sequence to promote the secretion of gene products.
- (3) Priority: 28.03.83 GB 8308483
- Date of publication of application: 10.10.84 Bulletin 84/41
- 49 Publication of the grant of the patent: 07.01.88 Bulletin 88/01
- (A) Designated Contracting States: BE CH DE FR GB IT LI NL SE
- (S) References cited: EP-A-0 001 931 EP-A-0 049 619

- (7) Proprietor: The Public Health Laboratory Service Board 61 Colindale Avenue London NW9 5EQ (GB)
- (7) Inventor: Atkinson, Anthony
 Twigley Mill Corner Winterbourne Gunner
 Salisbury Wiltshire SP 4 6JJ (GB)
 Inventor: Minton, Nigel Peter
 6 Highbury Avenue
 Salisbury Wiltshire SP2 7EX (GB)
 Inventor: Sherwood, Roger Franklin
 35 Attwood Road
 Salisbury Wiltshire SP1 3PR (GB)
- (A) Representative: James, Stephen Richard et al Procurement Executive Ministry of Defence Patents 1A(4), Room 2014 Empress State Building Lillie Road London SW6 1TR (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).

Description

50

55

The present invention relates to fragments of specific deoxyribonucleotide sequences that promote the secretion of gene products from cells and in particular to recombinant DNA transfer vectors that contain these fragments.

Recent developments in biochemistry have led to the construction of recombinant DNA transfer vectors in which, transfer vectors, for example plasmids, are made to contain exogeneous DNA. In some cases the recombinant incorporates heterologous DNA that codes for polypeptides that are ordinarily not produced by the organism susceptible to transformation by the recombinant vehicle.

In its basic outline a method of endowing a microorganism with the ability to synthesise a new protein involves three general steps:

(a) isolation and purification of the specific gene or nucleotide sequences containing the genetically coded information for the amino acid sequence of the desired protein or polypeptide,

(b) recombination of the isolated gene or nucleotide sequence with an appropriate transfer vector, typically DNA of a bacteriophage or plasmid to form a recombinant transfer vector that codes, in part, for the production of the desired protein or polypeptide,

(c) transfer of the vector to the appropriate microorganism and selection of a strain of the recipient microorganism containing the desired genetic information.

Provided the gene or nucleotide sequence expresses its protein or polypeptide in the chosen microorganism, growth of the microorganism should then produce the desired protein or polypeptide in significant quantities.

Once the microorganism has been cultured, the protein or polypeptide must be isolated from the undesired materials. This step is considerably facilitated if the majority of the desired protein or polypeptide is present in the culture medium and/or the periplasmic space of the microorganism. In other words purification may be performed in a more efficient manner if, once expressed, the protein or polypeptide passes through the cell membrane and out of the cytoplasm.

The passage of the protein or polypeptide through the cell membrane is desirable for two main reasons. First the desired protein or polypeptide will generally be foreign to the microorganism in which it is expressed. In many cases, therefore, it will be quickly broken down by proteolytic enzymes etc. in the cells cytoplasm and will, subsequently, have a short half life within the cell. By transferring the protein or polypeptide out of the cytoplasm soon after expression the stability of the protein or polypeptide will be greatly increased. Second the number of unwanted genetic materials and products (from which the desired protein or polypeptide must be isolated) will be far greater in the cell's cytoplasm than in the culture medium and/or in the cell's periplasmic space. It can be seen that on both of the above counts the transfer of the protein or polypeptide through the cell membrane and out of the cytoplasm will greatly facilitate protein or polypeptide isolation.

One way in which the secretion of gene products from the cell's cytoplasm may be promoted is to produce, within the cytoplasm, a preprotein or prepolypeptide in which the desired protein or polypeptide is preceded by a signal polypeptide. The predominantly hydrophobic signal polypeptide directs the desired protein or polypeptide to the cell's periplasmic space, where the signal peptide is removed as the desired protein or polypeptide traverses the cell membrane.

Many of the known signal peptides contain cysteine residues. These residues have been found to react in the cell membrane and thereby inhibit the efficient transfer of the desired gene product out of the cell.

It is the primary object of the present invention to provide recombinant DNA transfer vectors containing a leader sequence polynucleotide that codes for a signal peptide that is cysteine free. Other objects and advantages of the present invention will become apparent from the following description thereof.

According to the present invention there is provided a recombinant DNA transfer vector comprising a leader sequence polynucleotide coding for signal polypeptide of formula I,

Met-Arg-Pro-Ser-Ile-His-Arg-Thr-Ala-Ile-Ala-Ala-Val-Leu-Ala-Thr-Ala-Phe-Val-Ala-Gly-Thr ı

The transfer vector may be a bacteriophage or, which is preferred, a plasmid.

Preferably the majority of the codons in the nucleotide sequence are those preferred for the expression of microbial genomes. Suitable codons are listed in UK 1,568,047 and UK 2007675A, and these publications are therefore incorporated herein by reference.

In one preferred embodiment of the present transfer vector the nucleotide sequence has formula II

60	5'—	ATG	CGC	CCA	TCC	ATC GTG	CAC CTG	CGC GCC	ACA ACC	ti
								_ 3'		••

The nucleotide sequence coding for the signal polypeptide (the leader sequence polynucleotide) will preferably be downstream of and in reading phase with a bacterial or a yeast promoter and a prokaryotic

ribosome binding site in the transfer vector. Moreover the leader sequence polynucleotide will either be upstream of an insertion site for a structural gene or, which is preferred, will be upstream of and in reading phase with a structural gene coding for a desired protein or polypeptide. Preferably the gene codes for a eukaryotic, particularly a mammalian, protein or polypeptide.

The structural gene may code for such prokaryotic proteins as E. coli β -galactosidase or Pseudomonas carboxy peptidase G_2 (CPG $_2$) (Carboxypeptidase G_2 is an enzyme, produced by Pseudomonas species strain RS-16, that has application in cancer chemotherapy. It is a Zn^{2+} containing dimer of $2\times42,000$ daltons and has high affinities (Km values of 10^{-5} or 10^{-6} M) for both 5-methyltetrahydrofolate, the predominant circulatory form of folate in mammals and for the folic acid antagonist methotrexate (MTX), which is widely used in cancer chemotherapy. The enzyme may be used directly for the plasma depletion of reduced folates, essential as co-factors in purine and particularly in pyrimidine biosynthesis. CPG $_2$ has been shown to inhibit the development of the Walker 256 carcinoma *in vivo* and to remove MTX from circulation in patients where prolonged exposure to high doses of MTX leads to toxicity).

Examples of transfer vectors according to the present invention that code for CPG₂ are pNM1, pNM111,

15 pNM14, pNM21, pNM22, pNM31, pNM32 and pLEC3.

30

The promoter is preferably a high expression bacterial or yeast promoter for the structural gene in a variety of hosts. The particular choice of promoter will depend on the microorganism to be transformed. For example the transformation of E. coli will generally be effected by a transfer vector in which an E. coli promoter controls the expression of the structural gene. Examples of E. coli promoters are those present in the plasmids pBR 322 and pAT 153. By contrast, the transformation of Pseudomonas species will generally be effected by a transfer vector in which a Pseudomonas promoter controls the expression of the structural gene. Examples of Pseudomonas promoters are those present in the plasmid pKT 230 or Pseudomonas chromosomal DNA.

In order to express the structural gene the present transfer vector will be transformed into a suitable microorganism. According to a further aspect of the present invention therefore there is provided a microorganism transformed by a recombinant DNA transfer vector according to this invention. The microorganism will preferably be a bacterium or yeast in which high expression of the structural gene, within the transfer vector, occurs. Depending on the choice of promoter the microorganism may be a strain chosen from one of the following bacteria E. coli, Pseudomonas or the yeast Saccharomyces cerevisiae.

Having transformed the microorganism, the protein or polypeptide, for which the structural gene codes, may then be expressed by culturing the transformed microorganism in a culture medium. It is the primary advantage of the present invention that culturing the transformed microorganism affords a preprotein or prepolypeptide in which the desired protein or polypeptide is preceded by the present signal polypeptide. This means that soon after expression the signal polypeptide directs the desired protein or polypeptide to the cell's periplasmic space, where the signal polypeptide is removed as the desired protein or polypeptide traverses the cell membrane. Since the present signal polypeptide is free of cysteine residues the desired gene product will be efficiently secreted through the membrane.

The present transfer vectors may be prepared by any of the methods that are well known in the recombinant DNA art. For example the leader sequence polynucleotide may be synthesised by the modified triester method of K. Itakura et al, *JACS*, 1975, 97, 7327 or by the improved oligodeoxynucleotide preparation described in UK 2007675A. The disclosure of both of these references is incorporated herein by reference. The synthesised polynucleotide may then be inserted in a transfer vector, preferably a plasmid. In the transfer vector it will preferably be downstream of and in reading phase with a bacterial or a yeast promoter and a prokaryotic ribosome binding site. The leader sequence polynucleotide should also be either upstream of a structural gene insertion site or upstream of and in reading phase with a structural gene.

Alternatively, DNA fragments containing the leader sequence polynucleotide may be obtained from natural sources, in particular from the chromosomal DNA of Pseudomonas species strain RS-16. In this particular case a polynucleotide (formula II above) coding for the present signal polypeptide immediately precedes a structural gene coding for CPG₂. A number of the DNA fragments containing this leader sequence polynucleotide may therefore be recognised by their ability, on insertion into a plasmid and transformation of a microorganism by the resultant recombinant vector, to enable a microorganism to grow on folate. Examples of such recombinant transfer vectors that contain both a polynucleotide coding for the present signal polypeptide (formula II above) and a structural gene coding for CPG₂ are pNM1, pNM111, pNM14, pNM21, pNM22, pNM31, pNM32 and pLEC3. Of course, once a Fol* recombinant vector has been obtained in this way it may be subcloned to afford alternative vectors (either Fol* or Fol*) that also contain a polynucleotide coding for the present signal polypeptide.

Once a suitable DNA fragment has been isolated it may then be inserted in a transfer vector, preferably a plasmid. In the transfer vector the leader sequence polynucleotide on the inserted fragment should be downstream of and in reading phase with a bacterial or a yeast promoter and a prokaryotic ribosome binding site. The leader sequence polynucleotide should also be either upstream of a structural gene insertion site or upstream of and in reading phase with a structural gene.

The structural gene for insertion downstream of and in reading phase with the present leader sequence polynucleotide may be obtained, for example, by the synthetic methods mentioned above (this is particularly useful for the preparation of genes coding for small proteins). Alternatively the structural gene

may be prepared from m=RNA by the use of the enzyme reverse transcriptase or may be isolated from natural sources (chromosomal DNA).

An example of the latter method is the isolation of DNA fragments containing a polynucleotide sequence (shown in Table 1) coding for the enzyme CPG₂ (amino acid sequence also shown in Table 1) from Pseudomonas species strain RS-16 chromosomal DNA. Examples of plasmids containing a CPG₂ structural gene, as well as a polynucleotide coding for the present signal polypeptide (formula II above), are pNM1, pNM111, pNM14, pNM21, pNM22, pNM31, pNM32 and pLEC3.

Once prepared or isolated the leader sequence polynucleotide and the structural gene will be inserted into a transfer vector, preferably a plasmid, to form a recombinant DNA transfer vector according to the present invention. The insertion step or steps will preferably be effected by one of the well known techniques in this art that employ restriction endonucleases, see for example the methods discussed in UK 2090600A, the disclosure of which is incorporated herein by reference. The choice of transfer vector will be determined by the microorganism in which the leader sequence polynucleotide and structural gene are to be expressed. Generally the transfer vector will be a cloning vehicle that is suitable for transforming the chosen microorganisms and that displays a phenotypical characteristic, such as antibiotic resistance, by which the recombinant transfer vectors may be selected. Thus, if the microorganism is to be E. coli, then suitable transfer vectors will be the E. coli plasmids pBR322 and pAT153. Alternatively, if the microorganism is to be Pseudomonas then a suitable transfer vector will be Pseudomonas pkT230.

TABLE 1
A polynucleotide sequence, coding for CPG₂, isolated from Pseudomonas species strain RS-16 chromosomal DNA

25	5'	1 Met ATG	Arg CGC	Pro CCA	Ser TCC	lle ATC	His CAC	Arg CGC	Thr ACA
30	Ala GCC	10 Ile ATCC	Ala GCC	Ala GCC	Val GTG	Leu CTG	Ala GCC	Thr ACC	Ala GCC
	Phe TTC	Val GTG	20 Ala GCG	Gly GGC	Thr ACC	Ala GCC	Leu CTG	Ala GCC	Gin CAG
35	Lys AAG	Arg CGC	Asp GAC	30 Asn AAC	Val GTG	Leu CTG	Phe TTC	Gln CAG	Ala GCA
40	Ala GCT	Thr ACC	Asp GAC	Glu GAG	40 Gln CAG	Pro CCG	Ala GCC	Val GTG	lle '
45	Lys AAG	Thr ACG	Leu CTG	Glu GAG	Lys AAG	50 Leu CTG	Vai GTC	Asn AAC	lle ATC
50	Glu GAG	Thr ACC	Gly GGC	Thr ACC	Gly GGT	Asp GAC	60 Ala GCC	Glu GAG -	Gly GGC
	lle ATC	Ala GCC	Ala GCT	Ala GCG	Gly GGC	Asn AAC	Phe TTC	70 Leu CTC	Glu GAG
5 5	Ala	Glu	Leu CTC	Lys AAG	Asn AAC	Leu CTC	Gly GGC	Phe TTC	80 Thr ACG
60	GCC Val GTC	GAG Thr ACG	Arg CGA	Ser AGC	Lys AAG	Ser TCG	Ala GCC	Gly GGC	Leu CTG
65	90 Val GTG	Val GTG	Gly GGC	Asp GAC	Asn AAC	lle ATC	Val GTG	Gly GGC	Lys AAG
-									

0 121 352

TABLE 1 (contd.)

				TA	ABLE 1 (co	ntd.)			
5	lle ATC	100 Lys AAG	Gly GGC	Arg CGC	Gly GGC	Gly GGC	Lys AAG	Asn AAC	Leu CTG
	Leu CTG	Leu CTG	110 Met ATG	Ser TCG	His CAC	Met > ATG	Asp GAC	Thr ACC	Val GTC
10	Tyr TAC	Leu CTC	Lys AAG	120 Gly GGC	lle ATT	Leu CTC	Ala GCG	Lys AAG	Ala GCC
15	Pro CCG	Phe TTC	Arg CGC	Bal GTC	130 - Glu GAA	Gly GGC	Asp GAC	Lys AAG	Ala GCC
20	Tyr TAC	Gly GGC	Pro CCG	Gly GGC	lle ATC	140 Ala GCC	Asp GAC	Asp GAC	Lys AAG
25	Gly GGC	Gly GGC	Asn AAC	Ala GCG	Val GTC	lle ATC	150 Leu CTG	His CAC	Thr ACG
	Leu CTC	Lys AAG	Leu CTG	Leu CTG	Lys AAG	Glu GAA	Tyr TAC	160 Gly GGC	Val GTG
30	Arg CGC	Asp GAC	Tyr TAC	Gly GGC	Thr ACC	lle ATC	Thr ACC	Val GTG	170 Leu CTG
35	Phe TTC	. Asn AAC	Thr ACC	Asp GAC	Glu GAG	Glu GAA	Lys AAG	Gly GGT	Ser TCC
40	180 · Phe TTC	Gly GGC	Ser TCG	Arg CGC	Asp GAC	Leu CTG	lle ATC	GIn CAG	Glu GAA
	Glu GAA	190 Ala GCC	Lys AAG	Leu CTG	Ala GCC	Asp GAC	Tyr TAC	Val CTG	Leu CTC
45	Ser TCC	Phe TTC	200 Glu GAG	Pro CCC	Thr ACC	Ser AGC	Ala GCA	Gly GGC	Asp GAC
50	Glu GAA	Lys AAA	Leu CTC	210 Ser TCG	Leu CTG	Gly GGC	Thr ACC	Ser TCG	Gly GGC
55	lle ATC	Ala GCC	Tyr TAC	Val GTG	220 Gln CAG	Val GTC	Asn AAC	lle ATC	Thr ACC
	Gly GGC	Lys AAG	Ala GCC	Ser TCG	His CAT	230 Ala GCC	Gly GGC	Ala GCC	Ala GCG
60	Pro CCC	Glu GAG	Leu CTG	Gly GGC	Val GTG	Asn AAC	240 Ala GCG	Leu CTG	Val GTC

0 121 352

				• •					
				TA	BLE 1 (con	itd.)		250	
_	Glu GAG	Ala GCT	Ser TCC	Asp GAC	Leu CTC	Val GTG	Leu CTG	Arg CGC	Thr ACG
5	Met ATG	Asn AAC	lie ATC	Asp GAC	Asp GAC	Lys AAG	Ala GCG	Lys AAG	260 Asn AAC
10	Leu CTG	Arg CGC	Phe TTC	Asn AAC	Trp TGG	Thr ACC	lle ATC	Ala GCC	Lys AAG
15 .	270 Ala GCC	Gly GGC	Asn AAC	Val GTC	Ser TCG	Asn AAC	ile ATC	lle ATC	Pro CCC
20	Ala GCC	280 Ser AGC	Ala GCC	Thr ACG	Leu CTG	Asn AAC	Ala GCC	Asp GAC	Val GTG
	Arg CGC	Tyr TAC	290 Ala GCG	Arg CGC	Asn AAC	Glu GAG	Asp GAC	Phe TTC	Asp GAC
25	Ala GCC	Ala GCC	Met ATG	300 Lys AAG	Thr ACG	Leu CTG	Glu GAA	Glu GAG	Arg CGC
<i>30</i>	Ala GCG	GIn CAG	Gln CAG	. Lys AAG	310 Lys AAG	Leu CTG	Pro CCC	Glu GAG	Ala GCC
35	Asp GAC	Val GTG	Lys AAG	Val GTG	lle ATC	320 Vai GTC	Thr ACG	Arg CGC	Gly GGC
40	Arg CGC	Pro CCG	Ala GCC	Phe TTC	Asn AAT	Ala GCC	330 Gly GGC	Glu GAA	Gly GGC
	Gly GGC	Lys AAG	Lys AAG	Leu CTG	Val GTC	Asp GAC	Lys AAG	340 Ala GCG	Val GTG
45	Ala GCC	Tyr TAC	Tyr TAC	Lys AAG	Glu GAA	Ala GCC	Gly GGC	Gly GGC	350 Thr ACG
50	Leu CTG	Gly GGC	Val GTG	Glu GAA	Glu GAG	Arg CGC	Thr ACC	Gly GGC	Gly GGC
55	360 Gly GGC	Thr ACC	Asp GAC	Ala GCG	Ala GCC	Tyr TAC	Ala GCC	Ala GCG	Leu CTC
	Ser TCA	370 Gly GGC	Lys AAG	Pro CCA	Val GTG	lle ATC	Glu GAG	Ser AGC	Leu CTG
60	Gly GGC	Leu CTG	380 Pro CCG	Gly GGC	Phe TTC	Gly GGC	Tyr TAC	His CAC	Ser AGC

6

.. 65 _

TABLE 1 (contd.)

5	Asp GAC	Lys AAG	Ala GCC	390 Glu GAG	Tyr TAC	Val GTG	Asp GAC	lle ATC	Ser AGC
5	Ala GCG	lle ATT	Pro CCG	Arg CGC	400 Arg CGC	Leu CTG	Tyr TAC	Met ATG	Ala GCT
10	Ala CGC	Arg CGC	Leu CTG	ile ATC	Met ATG	410 Asp GAT	Leu CTG	Gly GGC	Ala GCC
15	Gly GGC	Lys AAG	TGA	—3 ′					

Amino acids 1 to 22 are the present signal polypeptide.

Amino acids 23 to 415 are the CPG2 structural gene.

NB The leader sequence polynucleotide is the preferred polynucleotide of formula II.

The present recombinant DNA transfer vectors, microorganisms transformed by the present recombinant DNA transfer vectors and processes for the preparation of said vectors and microorganisms will now be described by way of example only, with particular reference to the Figures in which:

Figure 1 is a restriction enzyme cleavage site map of pNM1,

Figure 2 is a restriction enzyme cleavage site map of pNM111,

Figure 3 is a restriction enzyme cleavage site map of pNM14,

Figure 4 is a restriction enzyme cleavage site map of pNM21,

Figure 5 is a restriction enzyme cleavage site map of pNM22, and

Figure 6 illustrates the process for the preparation of a recombinant plasmid containing both the present leader sequence polynucleotide and the β-Galactosidase structural gene, and

Figure 7 is a restriction enzyme cleavage site map of pLEC3.

Materials and methods

20

25

40

Bacterial strains and plasmids

The bacterial strains used were Escherichia coli W5445 (pro leu thi thr sup E44 lac Y ton A r m Str') Pseudomonas putida 2440 (r) and Pseudomonas sp strain RS-16. The plasmids employed were pBR322 (F. Bolivar et al Gene, 1977, 2, 95), pAT153 (A. J. Twigg et al, Nature, 1980, 283, 216) and pKT230 (M. Bagdasarin et al, Gene 1981, 16, 237) and pROG5 (R. F. Sherwood et al, The Molecular Biology of Yeast, 1979 Cold Spring Harbor Publications).

Media and culture conditions

E. coli was routinely cultured in L-broth (1% tryptone, 0.5% yeast extract, 0.5% NaCl). Solidified medium (L-agar) consisted of L-broth with the addition of 2% (w/v) agar (Bacto-Difco). Antibiotic concentrations used for the selection of transformants were 50 μg/ml ampicillin, 15 μg/ml tetracycline and 30 μg/ml kanamycin. In the case of E. coli these were conducted in 2YT liquid medium (1.6% tryptone, 1% yeast extract, 0.5% NaCl) containing 1% glucose, and 0.05% folate where appropriate. The pseudomonads were grown in a minimal salts solution consisting of per litre: MgSO₄, 0.05 g; CaCl₂, 2H₂O, 0.05 g; FeSO₄ · 7H₂O, 0.005 g; MnSO₄, 0.0015 g; Na₂Mbo₄, 2H₂O, 0.0015 g; KH₂PO₄; 5 g; K₂HPO₄:3H₂O, 12 g; glutamate, 10 g. The minimal medium employed for E. coli was M9 medium (J. Miller, Experiments in molecular genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1972).

Purification of DNA

Plasmids were purified from chloramphenicol amplified cultures (D. B. Clewell, J. Bacteriol, 1972, 110, 667) by Brij-lysis (D. B. Clewell et al, Proc. Natl. Acad. Sci., USA, 1969, 62, 1159) and subsequent caesium chloride-ethidium bromide density gradient centrifugation (A. Colman et al, Eur. J. Biochem, 1978, 91, 303). A rapid, small scale plasmid isolation technique (Birnboim et al. Nucl. Acids Res. 1979, 7, 1513) was also employed for screening purposes. Chromosomal DNA from the donor Pseudomonas strain (RS-16) was prepared essentially as described by J. Marmar, J. Mol. Biol, 1961, 3, 208.

60 Restriction, ligation and transformation methods

Restriction endonucleases and DNA ligase were purchased from Bethesda Research Laboratories and used in the buffers and under the conditions recommended by the supplier. Transformation of *E. coli* was essentially as described by S. N. Cohen et al., Proc. Natl. Acad. Sci., USA, 1972, 69, 2110, while Ps.putida was transformed by the method of M. Bagdasarian and K. N. Timmis, Current Topics in Microbiology and Immunology, Eds. P. H. Hofschneider and W. Goebel, Springer Verlag, Berlin, 1981, p. 47.

Agarose gel electrophoresis

Digests were electrophoresed in 0.8% agarose slab gels (10 cm×20 cm×0.5 cm) on a standard vertical system (Raven), employing Tris-borate-EDTA buffer. Electrophoresis of undigested DNA was at 125V, 50 mA for 3 hours, while digested DNA was electrophoresed at 15V, 10 mA for 16 hours. Fragment sizes were estimated by comparison with fragments of \(\DNA \) digested with \(Hind \) and \(\DNA \) cut with both \(Hind \) and EcoRl. Fragments were isolated from gels using electroelution (M. W. McDonnell et al, Proc. Natl. Acad. Sci, USA, 1977, 74, 4835).

Determination of carboxypeptidase G2 activity

Bacteria were grown in 1 litre batch culture and 100 ml samples taken at various stages in the growth phase. Samples were cooled on ice, centrifuged at 13,000×g for 10 minutes and resuspended and frozen in 5 ml of 0.1 M Tris HCl, pH 7.3 containing 0.2 mM ZnSO₄. The cells were disrupted using a MSE Ultrasonic Disintegrator (150 W) at medium frequency, amplitude 2, for three 30-second intervals on ice. Cell debris was removed by centrifugation at 10,000×g for 5 minutes. CPG2 activity was determined after J. L. 15 McCullough et al, J. Biol. Chem, 1971, 246, 7207. A 1 ml reaction cuvette containing 0.9 ml of 0.1 M Tris-HCl, pH 7.3 plus 0.2 mM ZnSO₄ and 0.1 ml of 0.6 mM methotrexate was equilibrated at 37°C. Enzyme extract was added to the test cuvette and the decrease in absorbance at 320 nm measured using a Pye-Unicam SP1800 double-beam spectrophotometer. Enzyme activity per ml extract was calculated as Δ 320 nm absorbance/ min divided by 8.3, which is equivalent to the hydrolysis of 1 μmol of MTX/min at 37°C. Protein concentration was determined by the method of M. M. Bradford, Anal. Biochem., 1976, 72, 248.

Cell fractionation techniques

Bacterial cultures were grown in the low phosphate medium of H. C. Neu and L. A. Heppel, (J. Biol. Chem., 1964, 240, 3685), supplemented with 100 μg/ml ampicillin, to an OD₄₅₀=1.0. 40 ml of culture was 25 centrifuged at 5000 g for 10 min, washed in 5 ml of 10 mM Tris-HCl pH 7.0, and resuspended in 0.9 ml of 0.58 M sucrose, 0.2 mM DTT, 30 mM Tris-HCl pH 8.0. Conversion to spheroplasts was achieved by the addition of 20 µl of lysozyme (2 mg/ml), 40 µl 0.1 M EDTA, and incubation at 23° for 10 min (H. C. Neu et al, J. Biol. Chem., 1964, 239, 3893). The spheroplasts were placed on ice and 0.1 ml of 30% (w/v) BSA added, followed by 5 ml of sucrose-tris buffer. Sedimentation of the spheroplasts was achieved by centrifugation 30 at 5000 g for 10 min and the supernatant retained as the 'periplasmic' fraction. The pellet was resuspended in 5 ml-10 mM Tris-HCl, 0.2 mM DTT pH 7.0 and sonicated at 20 Kc/sec, 2 Amps for 15 sec. Remaining whole cells were removed by centrifugation at 1000×g for 10 min. Centrifugation at 100000×g for 1 hr, at 4°C, separated the soluble (cytoplasmic) proteins from the particulate (membrane-bound) proteins. The membrane pellet was resuspended in 1 ml of 10 mM Tris-HCl, 0.2 mM DTT, pH 7.0.

CPG₂ was assayed as described. Alkaline phosphatase was assayed according to J. Miller, Experiments in Molecular genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1972, NADH oxidase according to M. J. Osborn et al, J. Biol. Chem., 1972, 247, 3962 and glyceraldehyde-3-phosphate dehydrogenase after K. Suzuki et al, FEMS, 1971, 13, 217.

40 Example 1

Preparation of recombinant plasmid pNM1 (A plasmid containing both the present leader sequence

polynucleotide and the CPG2 structural gene).

To isolate the gene for carboxypeptidase G2 together with the leader sequence polynucleotide chromosomal DNA prepared from the Pseudomonas host (strain RS-16) was partially digested with Sau3A and fragments of between 6-8 Md isolated from agarose gels by electroelution. The 'sized' DNA was ligated with alkaline phosphatase treated BamHI cut pBR322, transformed into E. coli W5445, and Apr transformants selected. Of the 3,500 Apr colonies obtained, approximately 70% were Tcs. Utilisation of a rapid plasmid isolation technique on 50 Apr Tcs transformants demonstrated that 90% of the gene bank harboured plasmids of the expected size. As a further check on the authenticity of the gene bank, the individual clones were screened for the acquisition of a Leu* phenotype. Two such clones were identified. Both carried a plasmid capable of transforming leuB (B-isopropylmalate dehydrogenase) E. coli mutants to

Acquisition of a functional CPG₂ gene should enable *E. coli* to utilise folic acid as a carbon source. The 2,400 gene bank clones were screened for the ability to grow on minimal medium containing folate as the sole source of carbon (i.e. Fol+). A single Fol+ clone was detected and shown to harbour a plasmid capable of transforming plasmid-minus W5445 to the Fol⁺ phenotype. Classical restriction mapping of this plasmid (pNM1) was undertaken which revealed the presence of a 5.9 Md insert of pseudomonad DNA within pBR322. The restriction enzyme cleavage site map of pNM1 is given in Figure 1. The nucleotide sequence of

the leader sequence polynucleotide and the CPG2 structural gene is given in Table 1.

Example 2

60

Subcloning of plasmid pNM1 to form pNM111

In order to pinpoint the position of the CPG2 gene and the leader sequence polynucleotide within the 5.9 Md insert, subcloning of various restriction enzyme fragments, into pBR322, was undertaken. A functional CPG2 gene was shown not to occur on Xhol or Sphl fragments of the pNM1 insert, but was

present on a 3.1 Md Bg 111 fragment. This latter fragment was cloned into the BamH1 site of pBR322 to give pNM11 (6.0 Md). A further reduction in the size of pNM11 was achieved by digesting with Sa11 and relegating the resultant fragment to yield pNM111. In addition, plasmids in which the smaller 0.95 Md Sa11 fragment had become inserted in the opposite orientation to the parent plasmid (pNM11) were Fol.. Taken 5 together these subcloning results indicate that the CPG2 gene and the leader sequence polynucleotide lie between the Bg111 site at 4.14 and the SA11 site at 6.03 on Pnml. Furthermore, the gene contains a Sphl (5.17), Sall (5.07) and at least one Xhol (4.56 and/or 5.56) site. The restriction enzyme cleavage site map of pNM111 is given in Figure 2.

to Example 3

Preparation of recombinant plasmid pNM14. (A plasmid containing both the present leader sequence polynucleotide and the CPG₂ structural gene)

The 3.1 Md Bg/ II fragment from Example 2 above was partially digested with Sau3A. These fragments were then cloned into the Bam HI site of pAT153 and transformed into E. coli W5445. Of the two 15 Apr Tcs Fol* colonies obtained, one contained a plasmid which had acquired an extra Sal I and Bam HI site, this was pNM14. The restriction enzyme cleavage site map of pNM14 is given in Figure 3. Sequencing of the leader sequence polynucleotide and the CPG2 structural gene present in pNM14 gave the nucleotide structure shown in Table 1. DNA sequencing of pNM14 also revealed that the Sal I—Bam HI fragment was a duplication of a segment of DNA from within the insert (marked * on Figure 3) composed of two contiguous 20 Sau 3A fragments.

Example 4 and 5

Preparation of recombinant plasmids pNM21 and pNM22 (Plasmids containing both the present leader

sequence polynucleotide and the CPG2 structural gene)

The 3.1 Md Bg/ II fragment from Example 2 was cloned into the Bam HI site of pAT 153 and transformed into E. coli W5445. Two Āpr Tc³ Fol* colonies were obtained, one containing a plasmid pNM21 in which the fragment was inserted in the opposite orientation to pNM1 and one containing a plasmid pNM22 in which the fragment was inserted in the same orientation as pNM1. The restriction enzyme cleavage site maps of pNM21 and pNM22 are given in Figures 4 and 5 respectively.

The two plasmids, pNM21 and pNM22 both transformed E. coli to Fol+, indicating that a pseudomonad promoter was present on the 3.1 Md fragment. However, cells carrying the plasmid pNM21, in which the Bglll fragment was cloned in the opposite orientation to pNM1, exhibited more rapid growth with folic acid as the sole carbon source. This difference was clearly visible on agar medium, where colonies developed concentric yellow "halos" of precipitated pteroic acid, the insoluble product of folate hydrolysis.

Confirmation that pNM21 gave enhanced expression of CPG₂ over pNM22, was obtained by assaying enzyme production during batch growth of cells containing either plasmid. (The cells were grown in complex medium supplemented with 1% (w/v) glucose and where appropriate 0.05% (w/v) folic acid. The generation time was 56-66 min. The culture was sampled at hourly intervals and whole cells were disrupted by sonication. Enzyme activity was determined in the centrifugal extract). Results are given in Table 2.

The expression of CPG, from the plasmids pNM22 and pNM1 was 2.5 units/litre of culture, representing 0.005% soluble protein. In contrast, expression from pNM21 was 3000-3500 units/litre of culture, which represented 4.7% soluble protein. As the cloned gene is inserted into the BamHI site of pAT153, the observed higher expression of pNM21 is almost certainly due to transcriptional read through 45 from the Tc promoter. The low expression of CPG2 carried on plasmids pNM1 and pNM22 is consistent with the view that Pseudomonas promoters function poorly in E. coli. It is also apparent from Table 2 that in the presence of folate there is a two-fold increase in the specific activity of enzyme measured in cell sonicates. This phenomenon has been observed in all experiments, but does not seem to be associated with classical induction of the CPG2 gene, as overall enzyme yield in the presence or absence of folate remains at about 3000 u/litre culture. It in fact reflects a consistent depression in the soluble protein levels measured in sonicates from cells grown in the presence of folate. There is no obvious difference in growth rate of cells grown with folate and the reasons for this result are not clear.

55

60

TABLE 2 Carboxypeptidase G production by E. coli W5445, containing the plasmids pNM1, pNM21 and pNM22

5	Culture	Carboxypeptidase G ₂ specific activity (U/MG soluble protein)								
10		pNM1		pNM22		pNM21				
	Age (hr)	-Fol	+Fol	-Fol	+Fol	-Fol	+Fol			
10	1			_		11.5	13.4			
	2	_	_	_		12.9	9.6			
15	3	.008	.005	.010	.019	13.9	23.3			
15	4	.009	.011	.015	.013	12.3	26.9			
	5	.007	.019	.016	.016	11.5	25.6			
20	6	.005	.024	.014	.023	13.7	24.1			
	7 .	.015	.029	.024	.043	13.2	20.6			
25	8	.013	.028	.024	.046	13.0	23.6			

Expression of the cloned gene in Ps. putida

The observation that the CPG2 gene was expressed in E. coli regardless of the orientation of the gene within the vector suggested that the promoter region of the CPG2 gene had been cloned with the structural gene and the leader sequence polynucleotide. The low expression of CPG₂ within E. coli from its natural promoter (pNM1, pNM22, pNM111) confirmed other findings that Pseudomonas promoters are poorly recognised by E. coli RNA polymerases. It would be expected that if the gene was introduced back into a pseudomonad cellular environment, then improved expression from the Pseudomonas promoter should result. The 3.1 Md Bgill fragment was subcloned into the Pseudomonas cloning vector pKT230 at its single BamHI site. Two plasmids were obtained, pNM31 and pNM32 representing the two possible orientations of the cloned gene. These plasmids were transformed into Ps. putida 2440 by the method of Bagdasarian and Timmis. Pseudomonas cells carrying both plasmids were cultured in minimal salts medium and enzyme

Yields of 500-1000 units/litre of culture were obtained regardless of gene orientation within the plasmid. Specific activity of the enzyme in cell sonicates was 1.5 to 4.0 U/mg protein representing 0.3 to 0.7% soluble protein (compared with <0.05% soluble protein in the donor strain RS-16). This result strongly indicates that the CPG2 promoter is present and operated in a pseudomonad background. When the same plasmids were transformed into E. coli W5445 12-40 Units/litre were found at specific activity <0.07 U/mg (<0.01% soluble protein).

Periplasmic localisation of CPG₂

There is evidence that CPG_2 is located in or near the periplasmic space of *Pseudomonas* strain RS-16. Pteroic acid, the product of CPG₂ hydrolysis of folic acid is extremely insoluble and is found predminantly outside the cell in both liquid and solid media. Exogeneous pteroic acid is also seen in E. coli cultures containing the cloned gene when folic acid is present in the medium. This is clearly demonstrated by the "halo" of precipitated pteroic acid observed around colonies carrying plasmids in which expression of CPG₂ is from the Tc promoter of pBR322 (e.g. pNM21).

The localisation of CPG₂ produced by E. coli cells carrying pNM21 was examined by the separation of cellular proteins into cytoplasmic, periplasmic, and whole membrane fractions. As a control, levels of three marker enzymes, alkaline phosphatase (periplasmic), glyceraldehyde-3-phosphate dehydrogenase (cytoplasmic) and NADH · O2 oxidoreductase (membrane-bound), were also determined. As can be seen from Table 3 97% of the CPG2 activity occurs in the periplasm, equivalent to the marker periplasmic enzyme, alkaline phosphatase. This confirms the presence in pNM21 of a leader sequence polynucleotide next to the CPG2 gene that codes for a signal polypeptide according to this invention that promotes the secretion of CPG2 from the cytoplasm into the periplasmic space.

Carboxypeptidase G2 synthesised in E. coli

The specific activity of CPG2 in crude cell extracts of cells carrying pNM21 was 50-fold higher than equivalent extracts from Pseudomonas strain RS-16. To determine whether the cloned gene=product in E.

coli had the same properties as CPG₂ from the pseudomonad, enzyme was purified from E. coli carrying pNM21. The specific activity of purified CPG₂ (single band SDS-PAGE) was 535 U/mg of protein, which compares to 550 U/mg of protein from the pseudomonad. CPG₂ purified from E. coli clone pNM21 co-chromatographed with CPG₂ from Pseudomonas strain RS-16 at a sub-unit molecular weight value of 42,000 daltons. Km values using methotrexate as substrate were 7.4×10⁻⁶M and 8.0×10⁻⁶M respectively. In addition, antiserum raised against the Pseudomonas enzyme indicated immunological identity between the E. coli and Pseudomonas CPG₂, as a confluent precipitation line was formed on Ouchterlony double diffusion analysis.

TABLE 3
Localisation of carboxypeptidase

			Enzyme activity			
Fraction Periplasmic	CPG₂	AP	GAPDH	NADHOX		
Periplasmic Cytoplasmic	97.0	97.1	6.8	0.25		
Cytoplasmic	2.6	2.3	93 .	8.4		
Membrane-bound	0.4	0.6	0.2	89.1		

AP=Alkaline phosphatase GAPDH=Glyceraldehyde-3-phosphate dehydrogenase NADHOX=NADH · O₂ oxidoreductase

Example 6

10

15

20

25

Preparation of a recombinant plasmid containing both the present leader sequence polynucleotide and the 30 β-Galactosidase structural gene

Plasmid pNM14 (Example 3) was treated with Sau 3A (GATC) and the fragments were cloned into the Bam HI site of M13 mp7 template DNA (single stranded DNA (Step A of Figure 6). The product carrying a 318bp Sau 3A fragment coding for the present signal polypeptide and the first 22 amino acids of CPG₂ (nucleotide sequence of this fragment shown in Table 4) was selected and made double stranded. The DNA coding for the signal polypeptide (and the first part of CPG₂) was then excised as an EcoRI fragment. This EcoRI fragment was then cloned into the promoter cloning vector E. coli pMC1403 (M. J. Casadaban et al, J. Bacteriol, 1980, 143, 971), which carries only the structural gene (lac Z) for β-galactosidase (i.e. no promoter and no ATG start codon) (Steps B and C of Figure 6). Plasmids were obtained in which the EcoRI fragment had inserted in both orientations, however, only those in which fusion of the CPG₂ sequence to the β-galactosidase sequence had occurred (i) yielded a 0.34 Kb fragment upon digestion with BamHI; (ii) enabled the host cell to hydrolyse the colourless lactose analogue, BCIG, and impart a blue colouration to colonies. The 0.34 Kb BamHI fragment has been recloned into M13mp7 and sequenced to confirm that fusion has occurred. The 'precursor' fusion produced will consist of the signal peptide, the first 22 amino acids of CPG₂, 6 amino acids derived from the M13mp7 and pMC1403 linker units, and β-galactosidase from its 8th amino acid onward.

Localisation experiments have been performed on cells carrying a plasmid coding for the 'fusion gene' where the cellular proteins have been fractionated into periplasmic, cytoplasmic and membrane fractions. In these experiments an organism (E. coli MC 1061) which is deleted for the lac Z gene was grown in phosphate medium (H. C. Neu et al, J. Biol. Chem., 1964, 240, 3685) and periplasmic enzymes were released from the harvested cells by conversion to spheroplasts. Separation of soluble proteins (cytoplasmic) from particulate proteins (membrane band) was achieved by sonicating the harvested spheroplasts and subsequent centrifugation at 100,000 g for 1 hr, to sediment the cell membrane (T. J. Silhary et al, Proc. Natl. Acad. Sci. USA, 1976, 73, 3423).

The results given in Table 5 demonstrate the presence of 50% of the β-galactosidase activity in the periplasmic space. This result is in direct contrast to similar work involving fusion of other periplasmic protein signal sequences to β-galactosidase, where the fusion proteins are not exported, but become jammed in the membrane (P. J. Bassford et al, J. Bacteriol, 1979, 139, 19 and S. D. Emr et al, J. Cell, Biol., 1980, 86, 701).

TABLE 4
The polynucleotide sequence of the 318 bp Sau 3A fragment from recombinant plasmid pNM14

5	5′—G	ATC	CAC	GCA	CTG	AAG	GCG	CGC	GGC	
	AAG	ACG	CGC	GGC	GTG	GCG	ACG	CTG	TGC	
	ATC	GGC	GGG	GGC	GAA	GGC	ACC	GCA	GTG	
. 10	GCA	стс	GAT	TGC	TAT	AAG	AAC	CAT	GGC	
	TGG	GGA	CGC	CCG	ACA	ACA	GGC	GTC	CAC	
15	CAG	СТТ	ш	TCA	TTC	CGA	CAA	CCC	GAA	
	CGA	ACA	ATG	CGT	AGA	GCA	GGA	GAT	TCC	
20		Met ATG	Arg CGC	Pro CCA	Ser TCC	lle ATC	His CAC	Arg CGC	Thr ACA	
	Ala GCC	lle ATC	Ala GCC	Ala GCC	Val GTG	Leu CTG	Ala GCC	Thr ACC	Ala GCC	٠
25	Phe TTC	Val GTG	Ala GCG	Gly GGC	Thr ACC	Ala GCC	Leu CTG	Ala GCC	GIn CAG	
	Lys AAG	Arg CGC	Asp GAC	Asn AAC	Val GTG	Leu *CTG	Phe TTC	GIn CAG	Ala GCA	
30	Ala GCT	Thr ACC	Asp GAC	Glu - GAG	GIn CAG	Pro CCG	Ala GCC	Val GTG	lle ATC	

NB. This fragment carries the leader sequence coding for the signal polypeptide, a part of the CPG₂ structural gene coding for the first 22 amino acids of the protein, the ATG start codon, the CPG₂ ribosome binding site (AGGA) and other components of the CPG₂ promoter region.

TABLE 5
Localisation of signal peptide—β-galactosidase fusion protein

•										
		% Localisation ^a								
	CPG₂/ß-gal	AP	GAPDH	NADHOX						
Periplasmic	50.3	97.3	3.4	0.4						
Cytoplasmic	30.9	2.5	95.3	8.2						
Membrane-bound	18.8	0.2	1.3	89.4						
	Cytoplasmic	Periplasmic 50.3 Cytoplasmic 30.9	Periplasmic 50.3 97.3 Cytoplasmic 30.9 2.5	Periplasmic 50.3 97.3 3.4 Cytoplasmic 30.9 2.5 95.3						

*=average results from 4 experiments

CPG₂/β-gal=Carboxypeptidase G₂-β-galactosidase fusion protein

AP=Alkaline phosphatase

GAPDH=Glyceraldehyde-3-phosphate dehydrogenase

NADHOX=NADH · O₂ Oxidoreductase

Example 7

55

Preparation of a recombinant plasmid, containing both the present leader sequence polynucleotide and the

CPG2 structural gene, able to replicate in E. coli and S. serevisiae

A 2.03 kilobase BamHI fragment coding for the present signal polypeptide and the entire CPG₂ molecule was cloned in both orientations into the BamHI site of an E. coli/S. cerevisiae shuttle vector pROG5 (R. F. Sherwood and R. K. Gibson, The Molecular Biology of Yeast, 1979, Cold Spring Harbor Publications) to give plasmids pLEC3 and pLEC4 (Figure 7). These plasmids were transformed into S. cerevisiae strain LL20 by the lithium acetate induced transformation method described by Ito et al., J. Bact., 1983, 153, 163. Yields equivalent to 10—20 units/litre of culture volume were obtained regardless of gene

orientation within the plasmid. Specific activity of the enzyme in total cell extracts was 0.2—0.3 u/mg protein representing 0.005% soluble protein. This level of expression from the pseudomonad promoter in a yeast background is similar to the level found when the gene was reading from its own promoter in *E. coli* (0.01% soluble protein).

Localisation experiments have been performed on yeast cells carrying the above plasmids by sphaeroplasting the cells using standard techniques described by J. B. D. Beggs, Nature, 1978, 275, 105. Periplasmic enzymes, localised outside of the cell membrane, were released when the cell wall was removed. The osmotic stabiliser (1.2M sorbitol) was then replaced by 0.1M Tris-HCl buffer, pH 7.3 containing 0.2 mM ZnCl₂ to lyse the sphaeroplasts and the whole centrifuged at 100,000×g for 1 hour to separate proteins in the soluble cytoplasmic fraction from membrane bound proteins. The results in Table 6 demonstrate the presence of 64% of the CPG₂ activity in the periplasmic fraction and a further 16% associated with the cell membrane fraction.

TABLE 6 Localisation of CPG₂ in S. cerevisiae

		% CPG ₂ activity
	Periplasmic	64
20	Cytoplasmic	20
	Membrane bound	16

25 Claims

15

1. A recombinant DNA transfer vector comprising a leader sequence polynucleotide downstream of and in reading phase with a bacterial or yeast promoter and a prokaryotic ribosome binding site and upstream of and in reading phase with a structural gene, characterised in that the leader sequence polynucleotide codes for a signal polypeptide of formula I

Met-Arg-Pro-Ser-Ile-His-Arg-Thr-Ala-Ile-Ala-Ala-Val-Leu-Ala-Thr-Ala-Phe-Val-Ala-Gly-Thr

35

2. A recombinant DNA transfer vector according to claim 1 characterised in that the leader sequence polynucleotide is of formula ${\bf II}$

	5′—	ATG	CGC	CCA	TCC	ATC	CAC	CGC	ACA	
40		GCC	ATC	GCC	GCC	GTG	CTG	GCC	ACC	11
		GCC	TTC	GTG	GCG	GGC	ACC	— 3′.		

- 3. A recombinant DNA transfer vector according to either claim 1 or claim 2 characterised in that the structural gene codes for Pseudomonas carboxypeptidase G₂ (CPG₂).
- 4. A recombinant DNA transfer vector according to either claim 1 or claim 2 characterised in that the structural gene codes for a protein or polypeptide other than Pseudomonas carboxypeptidase G₂.
- 5. A recombinant DNA transfer vector according to claim 4 characterised in that the structural gene codes for a prokaryotic protein other than Pseudomonas carboxypeptidase G_2 .
- A recombinant DNA transfer vector according to claim 5 characterised in that the structural geneto codes for E. Coli β-galactosidase.
 - 7. A recombinant DNA transfer vector according to claim 3 comprising a polynucleotide of formula

55	5′—	1 Met ATG	Arg CGC	Pro CCA	Ser TCC	lle ATC	His CAC	Arg CGC	Thr ACA
60	Ala GCC	10 Ile ATC	Ala GCC	Ala GCC	Val GTG	Leu *CTG	Ala GCC	Thr ACC	Ala GCC
60	Phe TTC	Val GTG	20 Ala GCG	Gly GGC	Thr ACC	Ala GCC	Leu CTG	Ala GCC	GIn CAG

	Lys AAG	Arg CGC	Asp GAC	30 Asn AAC	Val GTG	Leu CTG	Phe TTC	Gin CAG	Ala GCA
5	Ala GCT	Thr ACC	Asp GAC	Glu GAG	40 Gln CAG	Pro CCG	Ala GCC	Val GTG	lle ATC
10	Lys AAG	Thr ACG	Leu CTG	Glu GAG	Lys AAG	50 Leu CTG	Val GTC	Asn AAC	lle ATC
15	Glu GAG	Thr ACC	Gly GGC	Thr ACC	Gly GGT	Asp GAC	60 Ala GCC	Glu GAG	Gly GGC
	lle ATC	Ala GCC	Ala GCT	Ala GCG	Gly GGC	Asn AAC	Phe TTC	70 Leu CTC	Glu GAG
	Ala GCC	Glu GAG	Leu CTC	Lys AAG	Asn AAC	Leu CTC	Gly GGC	Phe TTC	80 Thr ACG
25	Val GTC	Thr ACG	Arg CGA	Ser AGC	Lys AAG	Ser TCG	Ala GCC	Gly GGC	Leu CTG
30	90 Val GTG	Val GTG	Gly GGC	Asp GAC	Asn ·	lle ATC	Val GTG	Gly GGC	Lys AAG
-05	lle ATC	100 Lýs AAG	Gly GGC	Arg CGC	Gly GGC	Gly GGC	Lys AAG	Asn AAC	Leu CTG
35	Leu CTG	Leu CTG	110 Met ATG	Ser TCG	His CAC	Met ATG	Asp GAC	Thr ACC	Val GTC
40	Tyr TAC	Leu CTC	Lys AAG	120 Gly GGC	lle ATT	Leu CTC	Ala GCG	Lys AAG	Ala GCC
45	Pro CCG	Phe TTC	Arg CGC	Val GTC	130 Glu GAA	Gly GGC	Asp GAC	Lys AAG	Ala GCC
50	Tyr TAC	Gly GGC	Pro CCG	Gly GGC	lle ATC	140 . Ala GCC	Asp GAC	Asp GAC	Lys AAG
	Gly GGC	Gly GGC	Asn AAC	Ala GCG	Val GTC	lle - ATC	150 Leu CTG	His CAC	Thr •ACG
55	Leu CTC	Lys AAG	Leu CTG	Leu CTG	Lys AAG	Glu GAA	Tyr TAC	160 Gly GGC	Val GTG
60	Arg CGC	Asp GAC	Tyr TAC	Gly GGC	Thr ACC	lle ATC	Thr ACC	Val GTG	170 Leu CTG
65	Phe TTC	Asn AAC	Thr ACC	Asp GAC	Glu GAG	Glu GAA	Lys AAG	Gly GGT	Ser TCC

	180 Phe TTC	Gly GGC	Ser TCG	Arg CGC	Asp GAC	Leu CTG	lle ATC	GIn CAG	Glu GAA
5 .	Glu GAA	190 Ala GCC	Lys AAG	Leu CTG	Ala GCC	Asp GAC	Tyr TAC	Val GTG	Leu CTC
10	Ser TCC	Phe TTC	200 Glu GAG	Pro CCC	Thr ACC	Ser AGC	Ala GCA	Gly GGC	Asp GAC
15	Glu GAA	Lys AAA	Leu CTC	210 Ser TCG	Leu CTG	Gly GGC	Thr ACC	Ser TCG	Gly GGC
20	lle ATC	Ala GCC	Tyr TAC	Val GTG	220 Gin CAG	Val GTC	Asn AAC	lle ATC	Thr ACC
20	Gly GGC	Lys AAG	Ala GCC	Ser TCG	His CAT	230 Ala GCC	Gly GGC	Ala GCC	Ala GCG
25	Pro CCC	Glu GAG	Leu CTG	Gly GGC	Val GTG	Asn AAC	240 Ala GCG	Leu CTG	Val GTC
30	Glu GAG	Ala GCT	Ser TCC	Asp GAC	Leu CTC	Val GTG	Leu CTG	250 Arg CGC	Thr ACG
35	Met ATG	Asn AAC	ile ATC	Asp GAC	Asp GAC	Lys AAG	Ala GCG	Lys AAG	260 Asn AAC
	Leu CTG	Arg CGC	Phe TTC	Asn AAC	Trp TGG	Thr ACC	lle ATC	Ala GCC	Lys AAG
40	270 Ala GCC	Gly GGC	Asn AAC	Val GTC	Ser TCG	Asn AAC	lle ATC	lle ATC	Pro CCC
45	Ala GCC	280 Ser AGC	Ala GCC	Thr ACG	Leu CTG.	Asn AAC	Ala GCC	Asp GAC	Val GTG
50	Arg CGC	Tyr TAC	290 Ala GCG	Arg CGC	Asn AAC	Glu GAG	Asp GAC	Phe TTC	Asp GAC
	Ala GCC	Ala GCC	Met ATG	300 Lys AAG	Thr ACG	Leu CTG	Glu GAA	Glu GAG	Arg CGC
55	Ala GCG	GIn CAG	GIn CAG	Lys AAG	310 Lys AAG	Leu CTG	Pro CCC	Glu GAG	Ala GCC
60	Asp GAC	Val GTG	Lys AAG	Val GTG	lle ATC	320 Val GTC	Thr ACG	Arg CGC	Gly GGC

	Arg CGC	Pro CCG	Ala GCC	Phe TTC	Asn AAT	Ala GCC	330 Gly GGC	Glu GAA	Gly GGC
5	Gly GGC	Lys AAG	Lys AAG	Leu CTG	Val GTC	Asp GAC	Lys AAG	340 Ala GCG	Val GTG
10	Ala GCC	Tyr TAC	Tyr TAC	Lys AAG	Glu GAA	Ala GCC	Gly GGC	Gly GGC	350 Thr ACG
	Leu CTG	Gly GGC	Val GTG	Glu GAA	Glu GAG	Arg CGC	Thr ACC	Gly GGC	Gly GGC
15	360 Gly GGC	Thr ACC	Asp GAC	Ala GCG	Ala GCC	Tyr TAC	Ala GCC	Ala GCG	Leu CTC
20	Ser TCA	370 Gly GGC	Lys AAG	Pro CCA	Val GTG	lle ATC	Glu GAG	Ser AGC	Leu CTG
25	Gly GGC	Leu CTG	380 Pro CCG	Gly GGC	Phe TTC	Gly GGC	Tyr TAC	His CAC	Ser AGC
30	Asp GAC	Lys AAG	Ala GCC	390 Glu GAG	Tyr TAC	Val GTG	Asp GAC	lle ATC	Ser AGC
	Ala GCG	lle ATT	Pro CCG	Arg CGC	400 Arg CGC	Leu CTG	Tyr TAC	Met ATG	Ala GCT
35	Ala CGC	Arg CGC	Leu CTG	lle ATC	Met ATG	410 Asp GAT	Leu CTG	Gly GGC	Ala GCC
40	Gly GGC	Lys AAG	TGA	—3 ′		-			

8. A recombinant DNA transfer vector according to any preceding claim characterised in that the transfer vector is a plasmid.

9. A microorganism transformed by a transfer vector characterised in that the transfer vector is a recombinant DNA transfer vector according to any one of the preceding claims 1 to 8.

10. A microorganism according to claim 9 which is a bacterium of the species E. coli or Pseudomonas or a yeast of the species Saccharomyces cerevisiae.

11. A process for the preparation of a gene product characterised by

(a) culturing a microorganism according to either claim 9 or claim 10 in a culture medium to produce the gene product in the culture medium or the periplasmic space of the microorganism, and

(b) isolating the gene product from the culture medium or the periplasmic space of the microorganism.

12. A process according to claim 11 characterised in that the gene product is Pseudomonas carboxypeptidase G_2 .

13. A process according to claim 11 characterised in that the gene product is a protein or polypeptide other than Pseudomonas carboxypeptidase G_2 .

14. A process according to claim 13 characterised in that the gene product is a prokaryotic protein other than Pseudomonas carboxypeptidase G_2 .

15. A process according to claim 14 characterised in that the gene product is E. coli β-galactosidase.

Patentansprüche

60

 Rekombinanter DNA-Transfervektor, enthaltend ein Leitsequenz-polynukleotid stromabwärts von und in Lesephase mit einem Bakterien- oder Hefepromotor und einer prokaryotischen Ribosomen-

Bindestelle und stromaufwärts von und in Lesephase mit einem Strukturgen, dadurch gekennzeichnet, daß das Leitsequenz-polynukleotid für ein Signalpolypeptid der Formel I codiert

> Met-Arg-Pro-Ser-Ile-His-Arg-Thr-Ala-lie-Ala-Ala-Val-Leu-Ala-Thr-Ala-Phe-Val-Ala-Gly-Thr.

2. Rekombinanter DNA-Transfervektor nach Anspruch 1, dadurch gekennzeichnet, daß das Leitsequenz-polynukleotid die Formel II aufweist

5'---TCC **ATC** CGC **ACA ATG** CGC CCA CAC GCC GCC GCC ATC GCC **GTG** CTG ACC H GCC **GTG** GCG GGC ACC -3′. TTC

- 3. Rekombinanter DNA-Transfervektor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Strukturgen für Pseudomonas-Carboxypeptidase G2 (CPG2) codiert.
- 4. Rekombinanter DNA-Transfervektor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Sturkturgen für ein anderes Protein oder Polypeptid codiert als Pseudomonas-Carboxypeptidase G2. 5. Rekombinanter DNA-Transfervektor nach Anspruch 4, dadurch gekennzeichnet, daß das Strukturgen

20 für ein anderes prokaryotisches Protein als Pseudomonas-Carboxypeptidase G2 codiert.

- 6. Rekombinanter DNA-Transfervektor nach Anspruch 5, dadurch gekennzeichnet, daß das Strukturgen für β-Galactosidase aus E. coli codiert.
 - 7. Rekombinanter DNA-Transfervektor nach Anspruch 3, enthaltend ein Polynukleotid der Formel

25	5'—	1 Met ATG	Arg CGC	Pro CCA	Ser TCC	lle ATC	His CAC	Arg CGC	Thr ACA
30	Ala GCC	10 lle ÁTC	Ala GCC	Ala GCC	Val GTG	Leu CTG _.	Ala GCC	Thr ACC	Ala GCC
35	Phe TTC	Val GTG	20 Ala GCG	Gly GGC	Thr ACC	Ala GCC	Leu CTG	Ala GCC	Gin CAG
	Lys AAG	Arg CGC	Asp GAC	30 Asn AAC	Val GTG	Leu CTG	· Phe TTC	Gin CAG	Ala GCA
40	Ala GCT	Thr ACC	Asp GAC	Glu GAG	40 Gln CAG	Pro CCG	Ala GCC	Val GTG	lle ATC
45	Lys AAG	Thr ACG	Leu CTG	Glu GAG	Lys AAG	50 Leu CTG	Val GTC	Asn AAC	lle ATC
50	Glu GAG	Thr ACC	Gly GGC	Thr ACC	Gly GGT	Asp GAC	60 Ala GCC	Glu GAG	Gly GGC
55	lle ATC	Ala GCC	Ala GCT	Ala GCG	Gly GGC	Asn AAC	Phe TTC	70 Leu CTC	Glu GAG
	Ala GCC	Glu GAG	Leu CTC	Lys AAG	Asn AAC	Leu CTC	Gly GGC	Phe TTC	80 Thr ACG
60	Val GTC	Thr ACG	Arg CGA	Ser AGC	Lys AAG	Ser TCG	Ala GCC	Gly GGC	Leu CTG

	90 Val GTG	Val GTG	Gly GGC	Asp GAC	Asn- AAC	lle ATC	Val GTG	Gly GGC	Lys AAG
5	lle ATC	100 Lys AAG	Gly GGC	Arg CGC	Gly GGC	Gly GGC	Lys AAG	Asn AAC	Leu CTG
10	Leu CTG	Leu CTG	110 Met ATG	Ser TCG	His CAC	Met ATG	Asp GAC	Thr ACC	Val GTC
15	Tyr TAC	Leu CTC	Lys AAG	120 Gly GGC	lle ATT	Leu CTC	Ala GCG	Lys AAG	Ala GCC
	Pro CCG	Phe TTC	Arg CGC	Val GTC	130 Glu GAA	Gly GGC	Asp GAC	Lys AAG	Ala GCC
20	Tyr TAC	Gly GGC	Pro CCG	Gly GGC	lle ATC	140 Ala GCC	Asp GAC	Asp GAC	Lys AAG
25	Gly GGC	Gly GGC	Asn AAC	Ala GCG	Val GTC	lle ATC	150 Leu CTG	His CAC	Thr ACG
30 _.	Leu CTC	Lys AAG	Leu CTG	Leu CTG	Lys AAG	Glu GAA	Tyr TAC	160 Gly GGC	Val GTG
35	Arg CGC	Asp GAC	Tyr TAC	Gly GGC	Thr ACC	lle ATC	Thr ACC	Val GTG	170 Leu CTG
	Phe TTC	Asn AAC	Thr ACC	Asp GAC	Glu GAG	Glu GAA	Lys AAG	Gly GGT	Ser TCC
40 ,	180 Phe TTC	Gly GGC	Ser TCG	Arg CGC	Asp GAC	Leu CTG	lle ATC	Gln CAG	Glu GAA
45	Glu GAA	190 Ala GCC	Lys AAG	Leu CTG	Ala GCC	Asp GAC	Tyr TAC	Val GTG	Leu CTC
50	Ser · TCC	Phe TTC	200 Glu GAG	Pro CCC	Thr ACC	Ser AGC	Ala GCA	Gly GGC	Asp GAC
	Glu GAA	Lys AAA	Leu CTC	210 Ser TCG	Leu CTG	Gly GGC	Thr ACC	Ser TCG	Gly GGC
55	lle ATC	Ala GCC	Tyr TAC	Val GTG	220 Gln CAG	Val GTC	Asn AAC	lle ATC	Thr ACC
60	Gly GGC	Lys - AAG	Ala GCC	Ser TCG	His CAT	230 Ala GCC	Gly GGC	Ala GCC	Ala GCG

	Pro CCC	Glu GAG	Leu CTG	Gly GGC	Val GTG	Asn AAC	240 Ala GCG	Leu CTG	Val GTC
5	Glu GAG	Ala GCT	Ser TCC	Asp GAC	Leu CTC	Val GTG	Leu CTG	250 Arg CGC	Thr ACG
10	Met ATG	Asn AAC	lle ATC	Asp GAC	Asp GAC	Lys AAG	Ala GCG	Lys AAG	260 Asn AAC
	Leu CTG	Arg CGC	Phe TTC	Asn AAC	Trp TGG	Thr ACC	lle ATC	Ala GCC	Lys AAG
15	270 Ala GCC	Gly GGC	Asn AAC	Val GTC	Ser TCG	Asn AAC	lle ATC	lle ATC	Pro CCC
20	Ala GCC	280 Ser AGC	Ala GCC	Thr ACG	Leu CTG	Asn AAC	Ala GCC	Asp GAC	Val GTG
25	Arg CGC	Tyr TAC	290 · Ala GCG	Arg CGC	Asn AAC	Glu GAG	Asp GAC	Phe TTC	Asp GAC
30	Ala GCC	Ala GCC	Met ATG	300 Lys AAG	Thr ACG	Leu CTG	Glu GAA	Glu GAG	Arg CGC
	Ala GCG	GIn CAG	GIn CAG	Lys AAG	310 Lys AAG	Leu CTG	Pro CCC	Glu GAG	Ala GCC
35	Asp GAC	Val GTG	Lys AAG	Val GTG	lle ATC	320 Val GTC	Thr ACG	Arg CGC	Gly GGC
40	Arg CGC	Pro CCG	Ala GCC	Phe TTC	Asn AAT	Ala GCC	330 Gly GGC	Glu GAA	Gly GGC
45	Gly GGC	Lys AAG	Lys AAG	Leu CTG	Val GTC	Asp GAC	Lys AAG	340 Ala GCG	Val GTG
50	Ala GCC	Tyr TAC	Tyr TAC	Lys AAG	Glu GAA	Ala GCC	Gly GGC	Gly GGC	350 Thr ACG
	Leu CTG	Gly GGC	Val GTG	Glu GAA	Glu GAG	Arg CGC	Thr ACC	Gly GGC	Gly GGC
55	360 Gly GGC	Thr ACC	Asp GAC	Ala GCG	Ala GCC	Tyr TAC	Ala GCC	Ala GCG	Leu CTC
60	Ser TCA	370 Gly GGC	Lys AAG	Pro CCA	Val GTG	ile ATC	Glu GAG	Ser AGC	Leu CTG
65	Gly GGC	Leu CTG	380 Pro CCG	Gly GGC	Phe TTC	Gly GGC	Tyr TAC	His CAC	Ser AGC

	Asp GAC	Lys AAG	Ala GCC	390 Glu GAG	Tyr TAC	Val GTG	Asp GAC	lle ATC	Ser AGC
5	Ala GCG	lle ATT	Pro CCG	Arg CGC	400 Arg CGC	Leu CTG	Tyr TAC	Met ATG	Ala GCT
10	Ala CGC	Arg CGC	Leu CTG	lle ATC	Met ATG	410 Asp GAT	Leu CTG	Gly - GGC	Ala GCC
	Gly GGC	Lys AAG	TGA	-3'					

8. Rekombinanter DNA-Transfervektor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Transfervektor ein Plasmid ist.

9. Durch einen Transfervektor transformierter Mikroorganismus, dadurch gekennzeichnet, daß der Transfervektor ein rekombinanter DNA-Transfervektor nach einem der Ansprüche 1 bis 8 ist.

10. Mikroorganismus nach Anspruch 9, der ein Bakterium der Gattung E. coli oder Pseudomonas oder eine Hefe der Gattung Saccharomyces cerevisiae ist.

11. Verfahren zur Herstellung eines Genprodukts, gekennzeichnet durch

(a) Züchten eines Mikroorganismus nach Anspruch 9 oder 10 in einem Kulturmedium zur Herstellung des Genprodukts in Kulturmedium oder im periplasmatischen Raum des Mikroorganismus, und

(b) Isolieren des Genprodukts aus dem Kulturmedium oder dem periplasmatischen Raum des Mikroorganismus.

12. Verfahren nach Anspruch 11, gekennzeichnet durch Herstellung von Pseudomonas-Carboxypeptidase G₂ als Genprodukt.

13. Verfahren nach Anspruch 11, gekennzeichnet durch Herstellung eines anderen Proteins oder 30 Polypeptids als Pseudomonas-Carboxypeptidase G₂ als Genprodukt.

14. Verfahren nach Anspruch 13, gekennzeichnet durch eines anderen prokaryotischen Proteins als Pseudomonas-Carboxypeptidase G₂ als Genprodukt.

15. Verfahren nach Anspruch 14, gekennzeichnet durch β-Galactosidase aus E. coli als Genprodukt.

5 Revendications

15

1. Un vecteur de transfert d'ADN recombinant comprenant une séquence guide de polynucléotide en aval et en phase de lecture relativement à un promoteur de bactérie ou de levure et à un site de liaison ribosomique procaryotique et en amont et en phase de lecture relativement à un gène de structure, caractérisé en ce que la séquence guide de polynucléotide code pour un polypeptide signal de formule l

ı

Met-Arg-Pro-Ser-IIe-His-Arg-Thr-Ala-IIe-Ala Ala-Val-Leu-Ala-Thr-Ala-Phe-Val-Ala-Gly-Thr.

 Un vecteur de transfert d'ADN recombinant selon la revendication 1, caractérisé en ca que la séquence guide de polynucléotide répond à la formule II

5'	ATG	CGC	CCA	TCC	ATC	CAC	CGC	ACA	
	GCC	ATC	GCC	GCC	GTG	CTG	GCC	ACC	11
	GCC	TTC	GTG	GCG	GGC	ACC	—3 ′		

3. Un vecteur de transfer d'ADN recombinant selon l'une ou l'autre des revendications 1 ou 2, caractérisé en ce que le gène de structure code pour la carboxypeptidase G_2 de Pseudomonas (CPG₂).

4. Un vecteur de transfer d'ADN recombinant selon l'une ou l'autre des revendications 1 ou 2, caractérisé en ce que le gène de structure code pour une protéine ou un polypeptide autre que la carboxypeptidase G₂ de Pseudomonas.

5. Un vecteur de transfert d'ADN recombinant selon la revendication 4 caractérisé en ce que le gène de structure code pour une protéine procaryotique autre que la carboxypeptidase G₂ de Pseudomonas.

6. Un vecteur de transfert d'ADN recombinant selon la revendication 5 caractérisé en ce que le gène de structure code pour la β-galactosidase de E. coli.

7. Un vecteur de transfert d'ADN recombinant selon la revendication 3 comprenant un polynucléotide de formule

65

45

	5'—	1 Met ATG	Arg CGC	Pro CCA	Ser TCC	lle ATC	His CAC	Arg CGC	Thr ACA
5	Ala GCC	10 Ile ATC	Ala GCC	Ala GCC	Val GTG	Leu CTG	Ala GCC	Thr ACC	Ala GCC
10	Phe TTC	val GTG	20 Ala GCG	Gly GGC	Thr ACC	Ala GCC	Leu CTG	Ala GCC	Gin CAG
15	Lys AAG	Arg CGC	Asp GAC	30 Asn AAC	Val GTG	Leu CTG	Phe TTC	Gln CAG	Ala GCA
	Ala GCT	Thr ACC	Asp GAC	Glu GAG	40 Gin CAG	Pro CCG	Ala GCC	Val GTG	lle ATC
20	Lys AAG	Thr ACG	Leu CTG	Glu GAG	Lys AAG	50 Leu CTG	Val GTC	Asn AAC	lle ATC
25	Glu GAG	Thr ACC	Gly GGC	Thr ACC	Gly GGT	Asp GAC	60 Ala \ GCC	Glu GAG	Gly GGC
30	lle ATC	Ala GCC	Ala GCT	Ala GCG	Gly GGC	Asn AAC	Phe TTC	70 Leu CTC	Glu GAG
35	Ala GCC	Glu GAG	Leu CTC	Lys AAG	Asn AAC	Leu CTC	Gly GGC	Phe TTC	80 Thr ACG
	Val GTC	Thr ACG	Arg CGA	Ser AGC	Lys AAG	Ser TCG	Ala GCC	Gly GGC	Leu CTG
40	90 Val GTG	Val GTG	Gly GGC	Asp GAC	Asn AAC	lle ATC	Val GTG	Gly GGC	Lys AAG
45	lle ATC	100 Lys AAG	Gly GGC	Arg CGC	Gly GGC	Gly GGC	Lys AAG	Asn AAC	Leu CTG
50	Leu CTG	Leu CTG	110 Met ATG	Ser TCG	His CAC	Met ATG	Asp GAC	Thr ACC	Val GTC
	Tyr TAC	Leu CTC	Lys AAG	120 Gly GGC	lle ATT	Leu CTC	Ala GCG	Lys AAG	Ala GCC
55	Pro CCG	Phe TTC	Arg CGC	Vai GTC	130 Glu GAA	Gly GGC	Asp GAC	Lys AAG	- Ala GCC
60	Tyr TAC	Gly GGC	Pro CCG	Gly GGC	lle ATC	140 Ala GCC	Asp GAC	Asp GAC	Lys AAG

	Gly GGC	Gly GGC	Asn AAC	Ala GCG	Val GTC	lle ATC	150 Leu CTG	His CAC	Thr ACG
5	Leu CTC	Lys AAG	Leu CTG	Leu CTG	Lys AAG	Glu GAA	Tyr TAC	160 Gly GGC	Val GTG
10	Arg CGC	Asp GAC	Tyr TAC	Giy GGC	Thr ACC	lle ATC	Thr ACC	Val GTG	170 Leu CTG
	Phe TTC	Asn AAC	Thr ACC	Asp GAC	Glu GAG	Glu GAA	Lys AAG	Gly GGT	Ser TCC
15	180 Phe TTC	Gly GGC	Ser TCG	Arg CGC	Asp GAC	Leu CTG	lle ATC	GIn CAG	Glu GAA
20	Glu GAA	190 Ala GCC	Lys AAG	Leu CTG	Ala GCC	Asp GAC /	Tyr TAC	Val GTG	Leu CTC
25	Ser TCC	Phe TTC	200 Glu GAG	Pro CCC	Thr ACC	Ser AGC	Ala GCA	Gly GGC	Asp GAC
30	Glu GAA	Lys AAA	Leu CTC	210 Ser TCG	Leu CTG	Gly GGC	Thr ACC	Ser TCG	Gly GGC
	lle ATC	Ala GCC	Tyr TAC	Val GTG	220 Gln CAG	Val GTC	 Asn AAC	lle ATC	Thr ACC.
35	Gly GGC	Lys AAG	Ala GCC	Ser TCG	His CAT	230 Ala GCC	Gly GGC	• Ala GCC	Ala GCG
40	Pro CCC	Glu GAG	Leu CTG	Gly GGC	Val GTG	Asn AAC	240 Ala GCG	Leu CTG	Val GTC
45	Glu GAG	Ala - GCT	Ser TCC	Asp GAC	Leu CTC	Val GTG	Leu CTG	250 Arg CGC	Thr ACG
50	Met ATG	Asn AAC	lie ATC	Asp GAC	Asp GAC	Lys AAG	Ala GCG	Lys AAG	260 Asn AAC
	Leu CTG	Arg CGC	Phe TTC	Asn AAC	Trp TGG	Thr ACC	lle ATC	Ala GCC	Lys AAG
55	270 Ala GCC	Gly GGC	Asn AAC	Val GTC	- Ser TCG	Asn AAC	lle ATC	lle ATC	Pro CCC
60	Ala GCC	280 Ser AGC	Ala GCC	Thr ACG	Leu CTG	Asn AAC	Ala GCC	Asp GAC	Val GTG
65	Arg CGC	Tyr TAC	290 Ala GCG	Arg CGC	Asn AAC	Glu GAG	Asp · GAC	Phe TTC	Asp GAC

0 121 352

	Ala GCC	Ala GCC	Met ATG	300 Lys AAG	Thr ACG	Leu CTG	Glu GAA	'Glu GAG	Arg GGC
5	Ala GCG	Gin CAG	Gln CAG	Lys AAG	310 Lys AAG	Leu CTG	Pro CCC	Glu GAG	Ala GCC
10	Asp GAC	Val GTG	Lys AAG	Val GTG	lle ATC	320 Val GTC	Thr ACG	Arg CGC	Gly GGC
15	Arg CGC	Pro CCG	Ala GCC	Phe TTC	· Asn AAT	Ala GCC	330 Gly GGC	Glu GAA	Gly GGC
20	Gly GGC	Lys AAG	Lys AAG	Leu CTG	Val GTC	Asp GAC	Lys AAG	340 Ala GCG	Val GTG
20	Ala GCC	Tyr TAC	Tyr TAC	Lys AAG	Glu GAA	Ala GCC	Gly GGC	Gly GGC	350 Thr ACG
25	Leu CTG	Gly GGC	Val GTG	Glu GAA	Glu GAG	Arg CGC	Thr ACC	Gly GGC	Gly GGC
30	360 Gly GGC	Thr ACC	Asp GAC	Ala GCG	Ala GCC	Tyr TAC	Ala GCC	Ala GCG	Leu CTC
	Ser TCA	370 Gly GGC	Lys AAG	Pro CCA	Val GTG	lle ATC	Glu GAG	Ser AGC	Leu CTG
35	Gly GGC	Leu CTG	380 Pro CCG	Gly GGC	Phe TTC	Gly GGC	Tyr TAC	His CAC	Ser AGC
40	Asp GAC	Lys AAG	Ala GCC	390 Glu GAG	Tyr TAC	Val GTG	Asp GAC	lle ATC	Ser AGC
45	Ala GCG	lle ATT	Pro CCG	Arg CGC	400 Arg CGC	Leu CTG	Tyr TAC	Met ATG	Ala GCT
50	Ala CGC	Arg CGC	Leu Č CTG	lle ATC	Met ATG	410 Asp GAT	Leu . CTG	Gly GGC	Ala GCC
	Gly GGC	Lys AAG	TGA	—3 ′					

^{8.} Un vecteur de transfert d'ADN recombinant selon l'une quelconque des revendications précédentes caractérisé en ce que le vecteur de transfert est un plasmide.

^{9.} Un micro-organisme transformé par un vecteur de transfert caractérisé en ce que le vecteur de transfert est un vecteur de transfert d'ADN recombinant selon l'une quelconque des revendications précédentes 1 à 8.

^{10.} Un micro-organisme selon la revendication 9 qui est une bactérie de l'espèce E. coli ou Pseudomonas ou une levure de l'espèce Saccharomyces cerevisiae.

^{11.} Un procédé pour la préparation d'un produit génique caractérisé par

⁽a) la culture d'un micro-organisme selon soit la revendication 9 soit la revendication 10 dans un milieu de culture pour produire le produit génique dans le milieu de culture ou dans l'espace périplasmique du micro-organisme et

(b) l'isolement du produit génique du milieu de culture ou de l'espace périplasmique du microorganisme.

12. Un procédé selon la revendication 11 caractérisé en ce que le produit génique est la carboxypeptidase G2 de Pseudomonas.

13. Un procédé selon la revendication 11 caractérisé en ce que le produit génique est une protéine ou un polypeptide autre que la carboxypeptidase G2 de Pseudomonas.

14. Un procédé selon la revendication 13 caractérisé en ce que le produit génique est une protéine procaryotique autre que la carboxypeptidase G_2 de Pseudomonas.

15. Un procédé selon la revendication 14 caractérisé en ce que le produit génique est la β-galactosidase 10 de E. coli.

15

20

25

30

35

40

45

60

65

50 55

RESTRICTION ENZYME MAP OF pNM111

Fig.2.

RESTRICTION ENZYME MAP OF pNM14

Fig.3.

RESTRICTION ENZYME MAP OF pNM21

Fig4.

RESTRICTION ENZYME MAP OF pNM 22

Fig.5.

Fig.6.

_____ pBR 322

── Yeast 2,∪ plasmid

Yeast chromosomal leu 2 gene

Pseudomonas carboxypeptidase G2 gene

Fig.7.

RESTRICTION ENZYME MAP OF PLEC 3