データベースシステム 外部ソート

これまで考えてきたこと

- 効率よく検索するための物理的データ格納方式と索引について学んできた
- ▶ これまで想定した「検索」は「選択演算」のこと
- 思い出そう: (関係代数で)検索のための演算には何があった?

今回取り上げる演算

▶結合演算

▶射影演算→ソート処理が重要

ポイント

なぜ射影演算の コストが重要なの?

今から考えること

- ここでも考えるべきは「IOコスト」, つまりメモリに呼び出 すページ数を以下に抑えるか, です
- ▶ IOコストを踏まえながら「結合アルゴリズム」と「ソートアルゴリズム」をいくつか勉強します。

復習:マージソート

データベースの中身をソートする

- 基本的にはマージソートを使う
- しかしソートするにはデータをメモリに持ってこなければならない

IGBもあるような巨大なテーブルはどうやっ てソートしよう?

外部ソート(K-wayマージソート) ディスクとバッファプールを使ってメモリに 収まりきらないデータのソートをしてしまう

K-wayマージソートの手順

STEP1: ページ毎に並べ替えをする

(2)ページの中身を並べ替える

K-wayマージソートの手順(続きをやってみよう)

3	12	6	9	8	9	I	2	П	12	8	16
2	10	4	5	3	4	5	7	I	4	13	14
3	9	2	8	2	3	6	8	6	7	2	12

K-wayマージソートの手順

STEP3:「ラン」 (Level2)内で並べ替え

(3)小さい順に出力用ページ に並べる [[] [] [] (4)出力用ページがいっぱい になったらディスクに

書き出す

2
2

2
3

2
4

2
3

A
3

A
3

A
3

A
3

A
3

A
3

A
3

A
3

A
3

A
3

A
3

A
3

A
3

A
3

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B
4

B<

2

- (1) M-1個分のレベル0のランをレベル1の「ラン」とする
- (2) レベル1内の各レベル0ランから1ページずつ呼び出す

2 3	2 4	2 3	1 2	1 4	2 8
3 9	5 6	3 4	5 6	6 7	12 13
-1012-	89	89-	7 8	-1112-	14 16

K-wayマージソートの手順(続きをやろう)

K-wayマージソートの手順

STEP4:「ラン」 (Level)内で並べ替え

(4)出力用ページがいっぱい になったらディスクに 書き出す

(3)小さい順に出力用ページ に並べる [______

- (1) K=M-1個分のレベル1のランをレベル2の「ラン」とする
- (2) レベル2内の各レベル1ランから1ページずつ呼び出す

K-wayマージソートの手順(続きをやろう)

外部ソートのIOコスト

外部ソートのIOコスト

2Nlog_BN

▶理由

- I回のソートにつきNページを読み込み,並べ替えたページを Nページ書き込むのでIOコストは2N
- ▶ ソートを繰り返す回数は log_BN
- ▶ なのでソートのIOコストは 2Nlog_BN