A^{-1} sea simétrica definida posi-	tiva.
QVQ: A simétrica =	⇒ A ⁻¹ simétrica
Supongamos que A-1 n	o es simétrica.
	$AA^{-1} \neq A(A^{-1})^{T}$
	$I \neq A^{T}(A^{-1})^{T}$ $A \leq A^{T}(A^{-1})^{T}$ $A \leq A^{T}(A^{-1})^{T}$
	$I \neq I^{T}$
⟨≃⟩	I ≠ I Absurdo
: Si A es simétrico	entonces A-1 también.
$QVQ: Adp \Rightarrow A^{-1}dp$	
$X^{T} A^{-1} X = X^{T} A^{-1} A A^{-1}$	
$= ((A^{-1})^T \times)^T$ $= (A^{-1} \times)^T \wedge A$	
$QVQ: (A^{-1}x)^T A (A^{-1}x)$	> 0 \(\forall x \neq 0\)
Sea $\hat{x} = A^{-1}x$. $\hat{x} = 0$	<=> x=0 porque A-1 inversible.
$(A^{-1}x)^{T}A(A^{-1}x) = \hat{x}^{T}A\hat{y}$	> O Y x ≠ O Porque A dp.
: Si A es dp entonce	es A-1 también.

17. Sea una matriz A simétrica definida positiva. Demostrar o dar un contraejemplo para que la matriz

