Практическая работа № 13 Основные алгоритмы работы с графами

Вариант 1 Постановка задачи

Составить программу реализации алгоритма Крускала построения остовного дерева минимального веса. Выбрать и реализовать способ представления графа в памяти.

Предусмотреть ввод с клавиатуры произвольного графа.

Разработать доступный способ (форму) вывода результирующего дерева на экран монитора.

Провести тестовый прогон программы для заданного графа в соответствии с индивидуальным заданием

Таблица индивидуальных заданий

Вариант 2

Постановка задачи

Составить программу реализации алгоритма Прима построения остовного дерева минимального веса.

Выбрать и реализовать способ представления графа в памяти.

Предусмотреть ввод с клавиатуры произвольного графа.

Разработать доступный способ (форму) вывода результирующего дерева на экран монитора.

Провести тестовый прогон программы для заданного графа в соответствии с индивидуальным заданием

Таблица индивидуальных заданий

№	Граф
14.2.1	2 6 7 3

Вариант 3

Постановка задачи

Составить программу нахождения кратчайших путей в графе заданным методом.

Выбрать и реализовать способ представления графа в памяти.

Предусмотреть ввод с клавиатуры произвольного графа.

Разработать доступный способ (форму) вывода результирующего дерева на экран монитора.

Провести тестовый прогон программы для заданного графа в соответствии с индивидуальным заданием

Методы нахождения кратчайших путей

Nº	Метод

14.3.1	Построения дерева решений
14.3.2	Естественное слияние

Таблица индивидуальных заданий

Вариант 4

Постановка задачи

Составить программу нахождения кратчайших путей в графе заданным методом.

Выбрать и реализовать способ представления графа в памяти.

Предусмотреть ввод с клавиатуры произвольного графа.

Разработать доступный способ (форму) вывода результирующего дерева на экран монитора.

Провести тестовый прогон программы для заданного графа в соответствии с индивидуальным заданием

Методы нахождения кратчайших путей

Nº	Метод
14.4.1	Дейкстра
14.4.2	Флойда
14.4.3	Йена
14.4.4	Беллмана-Форда

Таблица индивидуальных заданий

Практическая работа №14 Алгоритмы сжатия и кодирования данных

Цели работы

Изучение алгоритма оптимального префиксного кодирования Хаффмана Практическое применение алгоритма Хаффмана для сжатия данных

Постановка задачи

Провести кодирование исходной строки символов «Фамилия Имя Отчество» с использованием алгоритма Хаффмана. Исходная строка символов, таким образом, определяет индивидуальный вариант задания для каждого студента.

Для выполнения работы необходимо выполнить следующие действия:

1. Построить таблицу частот встречаемости символов в исходной строке символов для чего сформировать алфавит исходной строки и посчитать количество вхождений (частот) символов и их вероятности появления, например, для строки пупкин василий кириллович такая таблица будет иметь вид:

Таблица частот

Алфавит	п	y	K	И	Н	« »	В
Кол. вх.	2	1	2	6	1	2	2
Вероятн.	0.08	0.04	0.08	0.24	0.04	0.08	0.08
A 1							
Алфавит	a	С	Л	Й	p	O	ч
Кол. вх.	1	1	3	й 1	1	0	ч 1

(скобки < > обозначают пробел в исходной строке)

2. Отсортировать алфавит в порядке убывания частот появления символов по аналогии как показано ниже

Таблица отсортированных частот

Алфавит	И	Л	П	K	« »	В	y
Кол. вх.	6	3	2	2	2	2	1
Вероятн.	0.24	0.12	0.08	0.08	0.08	0.08	0.04
Алфавит	Н	a	c	й	p	0	ч
Алфавит Кол. вх.	н 1	a 1	c 1	й 1	р 1	0	ч 1

3. Построить дерево кодирования Хаффмана, в данном примере оно имеет вид:

Рис. 1 Дерево кодирования Хаффмана

4. Упорядочить построенное дерево слева-направо (при необходимости). Присвоить ветвям коды. Определить коды символов:

Рис. 2 Упорядоченное дерево кодирования Хаффмана

5. Провести кодирование исходной строки по аналогии с примером:

Рассчитать коэффициенты сжатия относительно кодировки ASCII и относительно равномерного кода.

6. Рассчитать среднюю длину полученного кода и его дисперсию. По результатам выполненной работы сделать выводы и сформировать отчет.

Практическая работа № 15 Стратегии и методы построения алгоритмов

Постановка задачи

Выбрать метод построения алгоритма задачи варианта. Реализовать программу. Разработать тесты. Провести тестирование. Провести эмпирическую (практическую) оценку вычислительной сложности алгоритма.

Вариант 1

Разработать процедуру оптимальной сборки изделия для случая n конвейеров, имеющих m рабочих мест каждый.

Вариант 2

Разработать процедуру оптимального способа расстановки скобок в произведении последовательности матриц, размеры которых равны (5,10,3,12,5,50,6), чтобы количество скалярных умножений стало минимальным (максимальным).

Вариант 3

Разработать процедуру решения задачи (на основе парадигмы жадного программирования) о выборе подмножества взаимно совместимых процессов, образующих множество максимального размера.

Вариант 4

Разработать процедуру сжатия данных на основе жадного алгоритма Хаффмана.

Практическое занятие №16 Метод линейного программирования

Постановка задачи

Примените метод линейного программирования для решения задачи варианта. Разработайте программу реализации задачи варианта. Выполните тестирование. Провести эмпирическую (практическую) оценку вычислительной сложности алгоритма.

Вариант 1.

Приведите следующую задачу линейного программирования к стандартной форме.

Минимизировать $2x_1 + 7x_2$, при условиях:

1)
$$x_1 = 7$$
; 2)3 $x_1 + x_2 \ge 24$; 3) $x_1 \ge 0$; 4) $x_2 \le 0$

Вариант 2

Преобразуйте следующую задачу линейного программирования в каноническую форму.

Максимизировать $2x_1$ - $6x_3$ при условиях

1)
$$x_1 + x_2 - x_3 \le 7$$

$$2)3x_1 - x_2 \ge 8$$

3)-
$$x_1 + 2x_2 + 2x_3 \ge 0$$

4)
$$x_1$$
, x_2 , $x_3 \ge 0$

Какие переменные являются базисными, а какие небазисными?

Вариант 3

Покажите, что следующая задача линейного программирования является неразрешимой:

Максимизировать $3x_1$ - $2x_2$ при условиях

1)
$$x_1 + x_2 \le 2$$

2) -
$$2x_1 - 2x_2 \le -10$$

3)
$$x_1$$
, $x_2 \ge 0$

Вариант 4

Реализовать симплекс-метод для решения задачи о коммивояжере.

Вариант 5

Реализовать задачу о коммивояжере методом ветвей и границ.

Вариант 6

Реализовать задачу о рюкзаке методом ветвей и границ.