Sección 4: Multiplicación de polinomios II

Precálculo

1 Lección II: Factorización

En esta lección resolveremos ejercicios sobre los casos de factorización vistos en las secciones anteriores.

1.1 Repaso

Esta ecuación sirve para conocer las soluciones para una ecuación de segundo orden y de este modo reescribir la función

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{1}$$

Figure 1: Ecuación cuadrática

2 Ejercicios

Factorizar los siguientes polinomios:

- 1. $3x^3 15x^2 + 9x$.
- 2. $(4x)^2 (3y+z)^2$.
- 3. $9x^2 30x + 25$.
- 4. $12d^2 31dh + 9h^2$.
- 5. (a+b)(a-b) + (a+b)b.
- 6. $27a^{15}b^{12} + 216$.
- 7. $x^{17} x$.
- 8. $9u^4 + 15u^2v^2 + 16v^4$.

- 9. $16a^4 81b^4$.
- 10. $x^6 y^6$.
- 11. $x^7 + x^4 16x^3 16$.
- 12. $16m^2 40mn + 25n^2$
- 13. $y^4 + 7y^2 + 12$.
- 14. $s^2t^2 2st^3 63t^4$.
- 15. $64z^4 + w^4$.
- 16. $125x^3 525x^2y + 735xy^2 343y^3$.
- 17. $3x^2 31x + 56$.

2.0.1 Solución

1. El mayor factor común de los coeficientes 3, -15 y 9 es 3, y x es el único factor común literal. Tenemos así,

$$3x^3 - 15x^2 + 9x = 3x(x^2 - 5x + 3)$$

El polinomio entre paréntesis es de la forma $x^2 + bx + c$. Al tratar de factorizarlo con la formula cuadrática, vemos que no es posible, debido a que: $\sqrt{b^2 - 4ac}$ para este caso nos da un numero imaginario, es decir una raíz de un numero negativo. De otro modo, podemos ver que al buscar dos números enteros cuyo producto sea 3 y su suma -5, no es posible. Luego, $x^2 - 5x + 3$ no es factorizable en los enteros.

2.
$$(4x)^2 - (3y+z)^2$$

$$= [4x + (3y + z)][4x - (3y + z)]$$

Se factoriza la diferencia de cuadrados

$$= (4x + 3y + z)(4x - 3y - z)$$

3. Como $9x^2 = (3x)^2$, $25 = 5^2$ y 30x = 2(3x)(5) entonces $9x^2 - 30x + 25$ es un trinomio cuadrado perfecto que es el cuadrado de 3x - 5. Así,

$$9x^2 - 30x + 25 = (3x - 5)^2$$

4. $12d^2-31dh+9h^2$ es un trinomio de la forma ax^2+bx+c , con a=12,b=-31hy $c=9h^2$. Procedemos a hallar p,q,r y s tales que

$$12d^2 - 31dh + 9h^2 = (pd + r)(ad + s)$$

es decir, tales que $pq = 12, rs = 9h^2$ y ps + rq = -31h

Por tanteo encontramos que p=3, q=4, r=-h y s=-9h cumplen las condiciones. Luego,

$$12d^2 - 31dh + 9h^2 = (3d - h)(4d - 9h)$$

- 5. (a+b)(a-b) + (a+b)b = (a+b)(a-b+b) Sacamos factor común a+b= (a+b)a
- 6. $27a^{15}b^{12} + 216 =$

$$(3a^5b^4)^3 + 6^3$$
 Suma de cubos
= $(3a^5b^4 + 6) ((3a^5b^4)^2 - (3a^5b^4) 6 + 6^2)$
= $(3a^5b^4 + 6) (9a^{10}b^8 - 18a^5b^4 + 36)$.

7. $x^{17} - x = x(x^{16} - 1)$ Sacamos factor común x

$$= x (x^{8} + 1) (x^{8} - 1)$$

$$= x (x^{8} + 1) (x^{4} + 1) (x^{4} - 1)$$

$$= x (x^{8} + 1) (x^{4} + 1) (x^{2} + 1) (x^{2} - 1)$$

$$= x (x^{8} + 1) (x^{4} + 1) (x^{2} + 1) (x + 1)(x - 1)$$

Se factoriza la diferencia de cuadrados en cada uno de los binomios que aparecieron en los renglones

8. Vemos que $9u^4 + 15u^2v^2 + 16v^4$ no es un trinomio cuadrado perfecto porque $9u^4 = \left(3u^2\right)^2$, $16v^4 = \left(4v^2\right)^2$ y $2\left(3u^2\right)\left(4v^2\right) = 24u^2v^2 \neq 15u^2v^2$

Una manera de obtener un trinomio cuadrado perfecto es convertir el segundo término en $24u^2v^2$ y ello se logra sumándole $9u^2v^2$. Para que el trinomio dado no varíe debemos restar la misma cantidad $9u^2v^2$ que se va a sumar.

$$9u^4 + 15u^2v^2 + 16v^4 = 9u^4 + 15u^2v^2 + 16v^4 + 9u^2v^2 - 9u^2v^2$$

Sumamos y restamos $9u^2v^2$

$$= (9u^4 + 15u^2v^2 + 16v^4 + 9u^2v^2) - 9u^2v^2$$

Agrupamos los primeros cuatro términos

$$= (9u^4 + 24u^2v^2 + 16v^4) - 9u^2v^2$$

Reducimos términos semejantes en el paréntesis

$$= (3u^2 + 4v^2)^2 - 9u^2v^2$$

Factorizamos el trinomio

$$= [(3u^2 + 4v^2) + 3uv] [(3u^2 + 4v^2) - 3uv]$$

Factorizamos la diferencia de cuadrados

$$= (3u^2 + 3uv + 4v^2) (3u^2 - 3uv + 4v^2)$$

Ordenamos cada factor respecto a la letra

- 9. $16a^4 81b^4$
 - $= (4a^2)^2 (9b^2)^2$ Diferencia de cuadrados $= (4a^2 + 9b^2) (4a^2 - 9b^2)$ Factorizamos la diferencia de cuadrados $= (4a^2 + 9b^2) [(2a)^2 - (3b)^2]$ El segundo factor es una diferencia de cuadrados $= (4a^2 + 9b^2) (2a + 3b)(2a - 3b)$ Factorizamos la diferencia de cuadrados.
- 10. Como el exponente 6 es múltiplo de 2 y de 3 , podemos empezar a resolver este ejercicio como una diferencia de cuadrados o como una diferencia de cubos. Si expresamos $x^6 = \left(x^3\right)^2$ y $y^6 = \left(y^3\right)^2$ tenemos que $x^6 y^6$ es una diferencia de cuadrados. Si expresamos $x^6 = \left(x^2\right)^3$ y $y^6 = \left(y^2\right)^3$ tenemos que $x^6 y^6$ es una diferencia de cubos. Vamos a trabajarlo como diferencia de cuadrados.

$$x^6 - y^6 = (x^3)^2 - (y^3)^2$$
 Diferencia de cuadrados
$$= (x^3 + y^3)(x^3 - y^3)$$
 Factorizamos la diferencia de cuadrados
$$= (x + y)(x^2 - xy + y^2)(x - y)(x^2 + xy + y^2)$$
 Factorizamos suma y diferencia de cubos.

Hacer el ejercicio expresando el polinomio inicial como una diferencia de cubos.

11.
$$x^7 + x^4 - 16x^3 - 16 = (x^7 + x^4) + (-16x^3 - 16)$$

$$= x^4 (x^3 + 1) - 16 (x^3 + 1)$$

$$= (x^3 + 1) (x^4 - 16)$$

$$= (x + 1) (x^2 - x + 1) (x^2 + 4) (x^2 - 4)$$

$$= (x + 1) (x^2 - x + 1) (x^2 + 4) (x + 2)(x - 2).$$

12. $16m^2-40mn+25n^2$ es un trinomio cuadrado perfecto ya que $16m^2=(4m)^2, 25n^2=(5n)^2$ y 40mn=2(4m)(5n). Por tanto

$$16m^2 - 40mn + 25n^2 = (4m - 5n)^2$$