

Origami Omnibus

Paper
folding for Everybody

Runihiko Rasahara

Origami Omnibus

Paper-folding for Everybody

Kunihiko Kasahara

Japan Publications, Inc.

▲ Dove of Peace (p. 362)
Rose (p. 338)

◀ Panorama Box with Four-seasonal
Scenes, developed one after the
other, beginning on the next page.

A Paper Wonderland

Boundless fantasy from a single, small sheet of paper. This is the pleasure and the miracle of the origami wonderland.

◀ Polygonal Units (pp. 202–248)
Eye, Eyebrow, Nose, Mouth, and
Mustache (pp. 328–335)
Lion (Male) Mane (p. 52)

First eight small cubes from a single
large one.

The Fun of Geometric Forms

The day when origami will be a highly valued educational tool in the mathematics classroom is just around the corner. I am delighted by anticipating its arrival.

- ◀ Multiunit Decorative Sphere (p. 29)
- Cube with a Pierrot Face (p. 66)
- Cube with a Panda Face (p. 67)
- Rhombicuboctahedron (p. 221)
- Dice (p. 64)
- Fox (p. 254)
- Fox Mobile (p. 200)

Reversing and assembling 3 of the 8 small cubes create a beautiful geometric solid, or polyhedron. The complete development appears on the next page.

Three developed polyhedrons are arranged to suggest a range of mountains. The remaining 5 compose seasonal scenes of—counterclockwise—spring, summer (early and full), autumn, and winter.

Objet d'Art (p. 216)

▼ Candle and Candlestick (p. 320)

Angel (p. 364)

Swan (p. 352)

New Materials

In this scientific age, new materials are constantly being created and marketed. These works make use of extremely popular plastic films and foil papers.

Contents

<i>Foreword by Lillian Oppenheimer</i>	5	Celestial General	34
<i>Preface</i>	7	Demon Mask	36
Introduction	21	Tengu Mask	40
The Future of a New Origami	22	Pinocchio Mask	42
<i>Symbols and folding techniques</i>	30	Monster from the Arabian Nights	44
Chapter 1: Expressions Unlimited	31	Singer of Antiwar Songs	46
Masks for All Seasons	32	Kamui Mask	48
Grinning Old Man	32	Lion (Male) Mane	52
		Gorilla	54
Chapter 2: Origami to Make You Think	55		
A New Path	56		
The Pleasure of Thinking	58		
The Assembly Technique	60		
Solid Forms Made Easy	62		
More Than Expected	64		
Cube with a Pierrot Face	66		
Cube with a Panda Face	67		
Paper Shapes	68		
Producing Major Paper Shapes	70		
The Golden Rectangle	72		
Regular-pentagonal Knot	74		
The Importance of Perceiving	76		
Skeleton Structures of Regular Polyhedrons	78		
Several Beautiful Containers	80		
Form Variation	82		

Odd-number Even Divisions	Chapter 4: Starting the
84	Animals 139
Applying Five-part Equal Folding:	Koala 140
Two Solid Figures 86	The Smart Way to Read the
Meaning of the Origami Bases	Charts; Stay One Step Ahead
88	142
Tyrannosaurus—Application of	Persian Cat 142
the Maekawa Theory 90	Llama 144
Iso-area Folding (The Kawasaki	Fox 146
Theory) 96	Beagle 150
Puzzle Cube I 98	Mother-and-child Monkeys
A Convenient Rectangle 100	154
Puzzle Cube II 102	Mouse 156
Lids for Elements 110	Elephant 162
Building-block Bisection 116	Lion 166
Making a Cube from a Cube with	Giant Panda 170
a Single Cut 118	Donkey 174
Chapter 3: Fly, Crane,	Dragon 178
Fly! 121	The Lost World of the Dinosaurs
Challenging the Eternally Fasci-	182
nating Origami Crane 122	Dimetrodon 182
New Enthusiasm 124	Pteranodon 184
Challenging the Challengers	Archaeopteryx 186
126	Stergosaurus 189
My Flying Crane 128	Tyrannosaurus Head 192
Flying White Heron 132	Brontosaurus 194
Variation on the Flying White	Mammoth 196
Heron 136	
<i>Ei Condor Pasa</i> —The Condor	Chapter 5: Beautiful
Passes 137	Polyhedrons 199
	Introduction to a New World
	200

Fox Mobile	200
Bottomless Tetrahedron and an Equilateral-triangular Flat Unit I	202
Equilateral-triangular Flat Unit II	204
Square Flat Unit	206
Module Cube	208
Cherry-blossom Unit	210
Star-within-star Unit	211
Combining the Cube and the Regular Octahedron	212
Union of Two Regular Tetrahedrons: Kepler's Star	214
Spirals	216
Univalve Shell	216
<i>Objet d'Art</i>	216
Regular-pentagonal Flat Unit	218
From Regular to Semiregular Polyhedrons	220
Lengths of Sides	222
Regular-hexagonal Flat Unit	224
Decagonal Flat Unit	226
Regular-octagonal Flat Unit	228
At the Threshold	230
The Inexhaustible Fascination of Polyhedrons	232
The Reversible Stellate Icosahedron	234
The Reversible Stellate Regular Dodecahedron	236
Greater and Lesser Stellate Dodecahedrons	240
Stellate Regular Octahedron	242
Stellate Tetrahedron	244
Stellate Square	246
Chapter 6: Viva Origami	
	249
Doubling the Pleasure	250
Water-lily Pad	250
The Ambitious Frog	252
Tadpole	252
My Favorite Fox	254
Cicada	256
Dragonfly	257
Hopping Grasshopper	259
Carp	260
Shark	262
Tropical Fish	264
Hermit Crab	266
Univalve Shell	268
Bivalve Shell	270
Seaweeds	271
Sea Anemones	272
Improvements on Traditional Works	276
Decorative Lid	276
Cube Box	278
Four-dimensional (?) Box	280
Book (Paperback)	282
Hard-cover Book with Case	284

Bookcase	286	Mustache	332
Chair and Sofa	289	Eyebrow	332
The Reader	292	Witch Claws	333
Tricorn Hat and Tree I	294	Nose	334
Trees II and III	296	Pinocchio Nose (or Bird Beak)	335
For the Sake of the Numbers 298		Cattleya	336
Tree IV	298	Rose	338
Tree V	298	Sparrow	340
Tree VI	298	Duck	342
Friedrich Froebel	304	Swallow	344
Church	306	Cormorant with Outstretched Wings	346
Which House Is More Spacious? 314		Eagle	349
Our Town	316	Swan	352
Fascinating Origami Aircraft 318		The Simple Splendor of Symbolic Forms	354
Hang-glider I	318	Dove	355
Hang-glider II	319	Peacock	356
Candle and Candlestick	320	Chicken	358
Sleigh	322	Fluttering Pheasant	360
Automobile	324	Dove of Peace	362
Pinwheel	326	Angel	364
Mr. Chino's Sense of Humor 328		Adam and Eve	366
Eye	328	Old Sol	372
Sail	329	<i>Appendix</i>	375
Lips	330	<i>Index</i>	381

Introduction

The Future of a New Origami

Today at the mention of origami, everyone calls to mind the now world-famous small colored square sheets of paper everyone uses. Actually, however, the history of such paper employed in origami for amusement is fairly short. In the late nineteenth century, a paper dealer in the Yushima district of Tokyo imported colored papers from Europe, cut them into small squares, and sold them in sets called *origami*. And this was the origin of the kind of origami popular today.

Of course, origami itself is much older than the late nineteenth century. But until that time, it had been known by a variety of names—*kami-orimono*, *orisue*, *origata*, *tatamigami*, and so on—and had employed the kind of paper called *hanshi*, which is white on both sides and rectangular in shape.

It seems likely that the Yushima paper dealer decided to cut his paper square because many of the outstanding traditional origami folds—including the crane, the paper balloon, the so-called *yakko* serving man, and the ceremonial tray-stand called a *sambō* were all produced from squares of paper. No matter what his reasons, however, his idea was an excellent one that ensured great future development.

Frankly, it is difficult to explain why the square has been as im-

portant as it has. Though it may not be an answer to the problem, my own impression is that the reason is to be found in the profound mystery inherent in the square. Observing a square piece of paper and experimenting the feel of limitless, pristine expanse it inspires awakens in me the desire to blaze my own trail in its spaces. Because they already represent preestablished ideas, such other forms as rectangles and triangles inspire this feeling to a much lesser extent.

In saying this, I have no intention of rejecting these forms. Indeed, I deal with them extensively as the outcomes of deliberate operations. But I shall go into all of this in detail in the body of the text.

In this book I intend to go beyond the appeal of finished folds and hope to examine the fascination of origami from various viewpoints. In keeping with what I said in the preceding paragraphs, I will use square paper as the basis and attempt to discover what happens to it with the initial one or two folds.

First, examine A and imagine folding corner P upward to a series of locations along the edge connecting corners a and b . Producing B by folding P divides the square in half into two equal rectangles. Producing D by folding P to b divides the square in half into two equal triangles. Neither of these ordinary results arouses any interest.

How much more challenging it is to attempt to fold so that, as is the case in B and D , the areas are equal and are half of the original sheet, though the forms produced are squares or pentagons. Can you do it?

No doubt, when you turn the page and see the answers, you will say, "Oh! So that's what you're talking about." C , which is midway between B and D , employs what is called the Haga Theorem and divides side bc into three equal parts. As astonishing as it might seem, serial folding, like the kind shown in E , generates a parabola.

Effects of
adopting
different
viewpoints

E

I hit upon this phenomenon in E myself but then later found solid scientific explanation for it in a book entitled *Shakai-jin no Sugaku* (Mathematics for the working man), by Kazuo Takano.

Folding corner P to various positions along side ab —moving from a to b —produces a line or crease describing a parabola, of which P is the focal point.

I think you should now understand how a few simple folds in a square piece of paper can be very significant. Repeated discoveries of this kind made from novel standpoints will make origami very effective in the teaching of geometry and mathematics.

When judged solely on the basis of the forms it can produce, origami may be either praised as art or condemned as mere imitation. The point I wish to make here is that, when one's viewpoint is altered, origami is seen as including many possibilities extending far beyond mere completed figures.

I must point out, however, that this book is intended for the general origami fan. Consequently, I have neither the intention nor the capability of delving profoundly into mathematical and scientific issues. Nonetheless, I have included a number of works—especially in Chapters 2 and 5—incorporating the discoveries and viewpoints of outstanding mathematically-minded origami researchers.

At present origami is going through a stage of transition from a lyrical handicraft to an intellectual hobby. We are witnessing what might be called the birth of modern origami. But in these rapidly changing times, how long the modernity represented by this book will continue to be modern is debatable.

The outstanding work on the facing page, the *tatō* was discovered by Kōji Fushimi and his wife Mitsué. At about the same time, I evolved a fold that is very similar. The difference between my version and the Fushimi one led Hisashi Abé to discover his Tripartite Fold at an Arbitrary Angle, which I shall deal with later.

Various ways to fold a square in half

(The answer to the problem posed on the preceding page)

Hiroshi Noguchi, *Kodansha Gendai Shinsho*
Zukei Asobi no Sekai (The world of playing with geometric figures). First edition, 1981. A detailed report appears in this book.

Kōji Fushimi *tatō* (variant fold)

1:1/3
Area

$$a:b = 1:\frac{1}{\sqrt{3}} = \sqrt{3}:1$$

In this fold, crease *F* must make it possible for the pairs of points to align. In the original Fushimi version, this was explained as 2 processes.

If it is folded of thin paper, light will shine through this figure, clearly indicating by means of light and dark the areas in which there are more and less layers. The areas of 2 and 4 layers have geometrically similar configurations. Bringing the 4-layer area on top of the 2-layer areas results in an overall figure consistently 3 layers thick. Mizuē Fushimi explains that it is possible to ascertain visually 1/3 of the area.

Reference
Origami Kikagaku (The geometry of origami) by Kōji and Mizuē Fushimi Nihon Hyoron-sha; first edition, July, 1979.
A milestone work in origami mathematics.

Crab folded from 2 sheets of paper. By Toshio Chino

Now to discuss a few of the major points of this book. One is the ideal origami should strive to attain. In the past, one of those ideals was the production of forms from a single sheet of paper without resorting to cutting. It was always assumed that work employing no cutting and avoiding assembling elements folded from more than one sheet was superior.

Many origamians still feel that this attitude is correct. Certainly it is justifiable in terms of level of technical folding skill. But abiding by these restrictions does not always necessarily produce the best origami work.

If we assume that origami's appeal derives solely from the forms of finished works, the objective characteristics of such works are rectilinear sharpness and rich symbolism.

As concrete examples, the crab in Fig. A, the work of the late Toshio Chino, is breathtaking in the cleanliness of its form.

Rear side of the completed figure

Complete by adjusting points *a*, *b*, and *c* so that the figure stands.

③
This is called the balloon base.

Crab

Whirling top

A small version of the ornament in the illustration at bottom left.

Although the somewhat rigid discussion up to this point might seem to suggest otherwise, the main aim of this book is to develop understanding of the diversity of the human imagination by clearly showing that the possibilities of a single sheet of paper are without limit and embrace such things as producing delightful origami forms, illustrating mathematical truths, and demonstrating rich functional variation. I hope that the many origami examples presented in the text will help achieve this aim. In concluding the introduction, I should like to offer some products of imaginative combination.

Robert Neal has combined six of the so-called balloon bases to produce a splendid ornament. Combining three of these bases represents imagination applied in three dimensions. The combination of the three is tantamount to folding from a single rectangular sheet.

Now, let us proceed to the main text and, working together, start the upward climb to new levels opening on still wider vistas of origami enjoyment.

Ornament by Robert Neal

This form is equivalent to the skeleton structure of a regular, 8-faced, solid figure called an octahedron.

The balloon base, step 3
of the crab on the preceding page

Seen
from
the
bottom

Ballon base
x 6

x 3

This provided the
hint for the decorative sphere on
the next page.

Completed sphere

Multiunit decorative sphere

+ Pinnacle joint
(4 sheets for 8
units)

Symbols and Folding Techniques

- Valley fold
- Mountain fold
- Move paper in this direction.
- Fold under.
- Pull or open out.
- Figure enlargement
- Pleat.
- Turn the model over.
- Crease by first folding and then unfolding.
- > Push inward.
- Spread layers then squash.

Chapter 1

Expressions Unlimited

Folding several examples will gradually teach you the symbols.

Fold in equal parts.

Align corners.

Fold to bring the points together.

Pinch fold.

Fold at right angles.

Cut.

Dilate.

Masks for All Seasons

Simply folding a plain sheet of paper generates infinitely variable expressions that can be used in producing human facial emotional displays as well as in suggesting the forms of various birds and animals. To start out the book, I have assembled a collection of masks that give an excellent idea of the boundless wonder of origami.

Grinning Old Man

Open without folding
the bottom point.

The basic folding is complete at step 74. But to convert this somewhat gloomy visage into a smiling face, it is necessary to fold the eyes and mouth.

Pleat on the
creases made
in step 77.

Align with
the edge
and
crease
firmly.

Expression of
the face at
step 74

⑩

⑪

⑫

⑬

Celestial General

This mask is based on the faces of the twelve Celestial Generals whose statues often accompany those of the Buddha of Healing Bhaishajyaguru (known as Yakushi in Japanese). The folding is easy, but it is important to judge size and paper quality to suggest the strength and dignity of so austere a being as a celestial general.

Steps 4 and 5 constitute what is known as the fish base, the origins of which may be traced to the fish-shaped banners called *koinobori* displayed in Japan on Boys' Day, May 5.

General

the
estial
s often
e
aishaja-
ni in
is
t to
uality
and
being

Without disturbing
point a, fold the
upper point only
upward.

Referring to the photo-
graph on the left, ad-
just the details of the
facial expression to suit
your own ideas.

The ori-
entation of the
figure has
changed.

⑩

⑪

⑫

⑬

⑭

⑮

Demon Mask

This example demonstrates how changes in folding at the finishing stage can completely alter the expression.

Fold with the color side of the paper upward.

Open the
under corner
without
creasing.

Make a
crease in
the upper
layer.

⑬

⑭

⑮

Demon mask I

Demon mask II

⑯

⑰

Demon
mask I

The completed mask

⑱

⑲

⑳

Demon
mask II

⑰

Although the mask theme shows how minor changes in folding lines greatly alter expression, in masks such features as eyes, nose, and mouth tend to become stereotyped. That is why I strove for a highly individual expression in Demon Mask I.

⑯

Dilate the tip of the nose.

⑰

It is a good idea to use a little glue to fix this point behind the mask.

Devil

Minor changes make the mask much more frightening.

Tengu Mask

The *Tengu* is a long-nosed goblin of Japanese folklore.

Pull the right
and left
corners fully.

Crease the front
corner pinching
fully.

Complete
the mask by
painting in
the eyes.

The body I
have added
was folded
from 2
pieces of paper.
It is too
simple to re-
quire expla-
nation, and I
leave devis-
ing a way to
make it up
to you.

Monster from the Arabian Nights

This will be-
come the loin-
cloth.

1/16
Face

Completed mask

Adding sun-
glasses and a soft
hat to the face in
step 6 results in
this Portrait of a
Murderer.

Singer of Antiwar Songs

We are the world...

Fold the
upper
point fully
downward.

In adjusting the folds in steps 14–17 refer more closely to the expression in the photograph than to the diagrams.

Kamui Mask

Interest in the archaeology of the Ainu people of northern Japan led me to devise this face of *Kamui*, which means God in the Ainu language.

② Do no more than make a mark.

Do no more than make a mark.

This has been folded at a slightly different angle. For the meaning of this angle, see Chapter 2, p. 84.

Lion

Now that we have worked with expressions in human and humanlike faces, let us conclude this chapter with a few funny animal faces. Full animal forms, which are more common in origami, are treated in Chapter 4. Folding methods are given for only two of the animal faces shown below.

Funny animal faces

Gorilla

Panda and child

Koala

Lion (Male) Mane

① Brown paper gives the right feeling.

Completed lion face

Face Use black paper.

①

②

③

④

⑤

⑥

⑦

⑧

Gorilla

My version is a reworking of an idea by my senior in the field Atsushi Miyashita. Try your own hand at making a body to suit this gorilla head.

Referring to the photograph, strive to create a feeling of power and humorosity.

Chapter 2

Origami to Make You Think

A New Path

The well-established origami pursuit of beautiful static forms will no doubt continue long into the future. Producing birds, other animals, flowers, insects, and other creatures from single sheets of paper and reproducing the kinds of facial expressions represented by the masks in the preceding chapter are easy and fun and therefore remain among origami's greatest appeals. Consequently, many such forms are included in this book.

But modern origami has added to this appeal the stimulation and interest of investigating functionality, posing and solving puzzles, and pursuing geometric qualities through folding paper. And this has had an elevating effect on the quality of origami in general.

To demonstrate my meaning, I shall explain as we examine an actual example. The Rouge Container shown on the right is a practical piece of packaging said to have been devised for the Maeda family, extremely wealthy feudal lords of what was once called Kaga (modern Ishikawa Prefecture). But, if practical function were the sole consideration in its design, there would be no need in folding steps 5 through 9, whose only significance is aesthetic.

In addition, though the original designer of the package may not have intended it, the ratio of exposed red and white surfaces of the paper is 1:1. This may seem like a very minor discovery, but it makes possible the creation of the form shown in *B* on the next page and the amusing puzzle associated with it. That puzzle is as follows: at stage 6, the ratio between the colored and white surfaces is 4:3; the problem is to make that ratio 3:3 by performing only 1 fold. New viewpoints of this kind open fresh paths to still greater origami interest.

Rouge container

Open the
small lower
points.

Calling-card case

Packaging for origami to be given as gifts

Completed container

Folded at b

Folded at a

Puzzle

Equalize the ratio of exposed upper and under surfaces by making 1 fold only.

The Pleasure of Thinking

Now that you understand that, in addition to the beauty of form, the stimuli of its functional, geometric, and puzzle-like attributes account for much of the charm of origami, I shall examine a number of other examples from this new vantage point.

Though not a work but only a piece of paper creased in six lines, the square in A poses an interesting question: how many isosceles triangles can you find in it?

The answer is not as easy as might seem. It is seventeen. But this is less than a puzzle than a purely geometric problem demanding proof. Providing proof posits knowledge of the following three fundamental geometric theorems:

- (1) The sum of the angles of a triangle must be two right angles.
- (2) The two base angles of an isosceles triangle are equal.
- (3) Alternate angles are equal.

I leave the proof of these theorems to algebra books. What I am attempting to demonstrate here is that viewing forms and creases, not solely from the aesthetic, but from other vantage points as well opens up whole new vistas of possibilities and interest.

Incidentally, the origami in B and C too are more than visually interesting. Inherent in them are arresting geometric discoveries.

How many isosceles triangles can you find?

Answer to puzzle B on p. 57
There are other possible correct answers; but this one, shown to me by Atsumi Funaoka, of Hyogo Prefecture, is the most elegant I have encountered.

B. Crow

$$\angle\alpha : \angle\beta : \angle\delta = 1 : 2 : 3$$

C. Grass

$Aa = Ab$

Mountain
fold inside at
this place
only.

Inside reverse fold ⑤

Stand the figure up.

The Assembly Technique

The many practically functional traditional Japanese origami folds demonstrate great variety. Aside from numerous containers, like the one already discussed, several of these serve surprising functions. I introduce a few of them here in drawings only. Since they turn up repeatedly in introductory books, I have reluctantly omitted instructions on their production. Still I hope more people will apply their ingenuity energetically to the pursuit of origami that actually work in these delightful ways.

Moving on from the topic of function, I should like to discuss the technique of assembling units to produce single works like the traditional *menko*, the dirk used by the *ninja* spies of the past, and an old-fashioned mat to put under a teapot.

Though from the purist view, compound works of this kind may seem to represent retrogression, as has recently been proved, they are actually related to the important development of unit origami. Though this topic is more fully treated in Chapter 5, a few examples of this kind of work are shown here: for instance, the origami on the next page, which is a reworking of the traditional cut fold.

Double-firing paper noisemaker

Ship that navigates on water when blown from behind

Jumping frog

Bird with wings that flutter

Traditional masterpieces that actually work in amusing ways

Fox with a mobile mouth

Camera that makes sounds

Butterfly that twirls in flight

Crow that grabs things

Old-fashioned mat

Menko

Cup

Jumbo unit spinning top

Fold 7 sheets of paper according to steps 1–5 to make 7 units.

It can be spun across the top of a table or other smooth, flat surface.

Make 7 units as in steps 5 and 6 and assemble them. A dishlike form results when the last and first units are joined.

Crease the upper layer.

Insert 1 point in the slot of the unit below and the other 2 points in the slots in the forward triangular slot.

Completed unit

Insert the upper layer in the forward slot.

Solid Forms Made Easy

Since, as you will have learned by now, assembly is an extremely simple idea, it is equally as extremely useful.

Certainly, even within the limitations of the traditionalist ideal of origami from a single, uncut sheet of paper, various innovations and developments were forthcoming. But stubborn adherence to that ideal entailed considerable technical difficulty and made it hard to produce multidimensional solid-geometric forms that were neat and clean in appearance. Unit assembly solves this problem. In addition, it provides unexpected pleasure and makes possible complex variations.

Here I present a unit-assembly version of Rouge Container shown in the opening of this chapter. Fold it yourself to experience what I mean.

Unit origami — cube: four variations

In both A and B, there are
3 slots at the places marked
★.

B

Assembly method

Working on your
own, devise others
of the many possible
variations on the
cube.

C

More Than Expected

In the preceding section, three- and six-unit assemblies were used to produce Rouge Containers of four different patterns, exactly according to plan. On this page, I present the way I attempted to make use of the colored upper and white under sides of origami paper to produce the cubes in the right column as representations of the numbers of dots on the faces of a dice, shown in the left column. I did not think the plan would go as well as it did. Still a more pleasant surprise, the cubes fulfill the dice requirement that the sum of the dots on the top and bottom faces always equal seven. Though I may seem to be praising my own efforts, I am happy that this project was so splendidly successful. Being able to encounter fascinating works of this kind depends on taking a broad view of all possibilities.

Dice (2-unit assembly)

Cube with a Pierrot Face

If a dice that always turns up a six seemed beyond expectation, this work was completely unanticipated. This six-unit inflated structure was the starting point for all of the unit origami already presented (see explanation on p. 208). The slightest folding alteration in six-unit structures of this kind changes the pattern of the finished form totally and always with surprising results. Viewed in the position shown in the photograph on p. 67, this work suddenly reveals its amusing expression.

For the I
is red on
on the o
use paper
side and
Then, th
apparent
viewed i
in the dr

Cube

Pierrot face

Panda face

For the Pierrot use paper that is red on one side and white on the other; for the Panda, use paper that is white on one side and black on the other. Then, the right face becomes apparent when the cubes are viewed in the positions shown in the drawings.

Cube with a Panda Face

Paper Shapes

As is by now obvious, most origami paper is square. This shape was naturally selected because it is easiest to use and because it does not necessitate establishing troublesome conventions.

Although the triangle might seem to be suitable, as the diagrams above indicate, it is troublesome to deal with because it comes in a number of different varieties, each with its own characteristics. The same thing can be said of the rectangle. As has been remarked in the introduction, I do not reject all shapes other than the square. But it is better to work from the square in devising shapes that suit the conditions of the form you want to produce.

Round and oval papers are unsuitable because folding produces straight lines on their surfaces. It is true that round origami was popular for a while. But it was closer to collage than to true origami; and the need to make numerous folds gradually obliterated the round lines of the original paper. Of course, some origami involving few folds and making good use of curved lines are possible; but they are, at best, few in number.

Nonetheless, it is important to understand characteristics thoroughly before using other than square paper. The shapes on p. 69 represent some of the possibilities. Let us examine them to discover which lend themselves fairly readily to origami use.

* The word, derived from "repeating tiles," represents a concept for filling plane areas and relates to the idea of the minimum unit. The triangle in B, which can be divided into three identical triangles that are geometrically similar to the original triangle is said to be "rep 3."

Various rectangles

Producing Major Paper Shapes

The term on p. 68 refers to dividing forms into forms that are geometrically similar to and congruent with each other. A form that produces such geometrically similar forms when halved is called rep 2; one that does so when divided into three equal parts, rep 3; one that does so when equally quartered, rep 4; and so on. Though most triangles are rep 4, the one in *B* on p. 68 is rep 3; and the one in *C* is rep 2.

The forms in *B* below, which turn up constantly in origami, are the only ones that are rep 2. Rectangles whose side proportion is $\sqrt{2}:1$ demonstrate the commonly observed proportions found in such familiar things as writing paper and books. This is an economical rectangle because it requires no extensive cutting or trimming. *A* helps make clear its nature in terms of mathematical principles. It is possible to ascertain whether paper and other daily materials demonstrate these proportions in the manner shown in *C*.

Examine and learn the ways of producing such paper shapes as the equilateral triangle, the rhombus, and the regular hexagon on p. 71. Mastering the production of the origami triangular measure is extremely convenient.

Origami triangular measure

With a very few folds it is possible to make a triangular measure that is useful in mathematical study. Learn to do this for yourself.

Folding for
angles of 30
and 60
degrees

The Golden Rectangle

All of the other forms on p. 69 have already been explained, but the Golden Rectangle and the regular pentagon are so difficult to deal with that, until fairly recently, even origami researchers with outstanding mathematical talents have struggled—happily—with the problem. At present, the method illustrated on the right seems the best way to generate the Golden Rectangle. Tokushige Terada, one of the people who helped enlighten me on this topic, discovered this method in a book entitled *Kōzō o tsukuru tame ni* (Composing) by Sadao Matsuura. Since then, he has discovered various ways of generating the regular pentagon too.

The ratio of the short side to the long side (the Golden Ratio) of the Golden Rectangle is the same as the ratio of a side of a regular pentagon to its diagonal line. In other words, the Golden Rectangle and the regular pentagon are the same form. It must be remembered, however, that these two forms have captured great attention solely for the sake of satisfactorily producing such origami forms as the gentian or cherry blossom or the five-pointed star.

Folding the Golden Rectangle

Although the diagram shows 8 steps, the golden rectangle can be produced successfully with only 4 creases.

In folding
leave a sm
(1 mm) ga

A
2
R
B
One
from
on p

Intermediate steps
not shown.

One vertical is dropped from point Q in step 8 on p. 72.

Approximate folding of a regular pentagon

At step 3 in the folding for the Golden Rectangle (p. 72), in attempting to determine the length of y (when the length of a side is taken as 2), we saw that $y = 5/4 = 1.25$. This gives such approximate decimal fractions as $x = \sqrt{5} - 1 \approx 1.236$.

Slightly shifting the position of A in step 1 on this page produced the highly useful regular pentagon shown in step 4.

Proof

According to the Pythagorean theorem, if the side of a square is 2, $AC = \sqrt{5}$. Consequently, $\overline{PC} = \sqrt{5} - 1$.
 $\triangle ADC \sim \triangle CPQ$.

$$\therefore \overline{PQ} = \sqrt{\frac{5-1}{2}} = \overline{QR}.$$

$\triangle ARO \sim \triangle ABC$,
 $\therefore x = \sqrt{5} - 1$.

Regular-pentagonal Knot

It is an attractive tradition in many old-fashioned Japanese inns to prepare cotton sleeping robes for guests and to arrange on top of the robe a sash tied in a pentagonal knot. No doubt, some practice is needed to master the technique of producing such a knot.

I have already explained that enthusiastic attention to folding the Golden Rectangle and the regular pentagon is based on the desire to produce origami. Here I offer proof in the form of a fold based on the pentagonal knot in which some inns tie guests' sashes. In this instance, however, no mastery is demanded. Simply follow the diagrams faithfully.

The characteristics of the rectangle on the right

$$a:b=2:\sqrt{5}-1$$

Usual

Improved pentagon (from the traditional Japanese method)

The traditional method A probably derives from the craft of crest-cutting (*mon-kiri*). Revising it as in B results in much less error.

The Importance of Perceiving

Here we see how precisely aligning corner and corner or corner and side leads to the discovery of wonderful mathematical truths. Oddly, and unfortunately, some origami specialists who failed to understand its significance have branded such precision of folding as reprehensible, copying, and mere discipline.

Today, however, I am encouraged to notice that many scholars affectionately understand the importance of precision. One of them is Kazuo Haga, who, shortly after developing an interest in origami, made a wonderful discovery as the result of one fold and a half (the half fold consisted of merely making a mark). In the introduction I touched on this discovery, which Kōji Fushimi has named the Haga Theorem.

One application of the theorem was the production of the three triangles ($\triangle n$, $\triangle m$, and $\triangle s$) shown in the figure in the upper right. They are geometrically similar figures, all of which have sides proportioned 3:4:5. Since, according to the Pythagorean theorem, the square on the hypotenuse is equal to the sum of the squares on the other two sides $5^2=4^2+3^2$. Therefore $a=5/8$.

Making immediate use of this discovery, Mr. Haga devised the pentagon shown here, which is highly useful and effective. As a matter of fact, however, he had long been in possession of the values on which the pentagon is based.

Whether things do of percep-
perceptiv-
your own

A on the
ing the re-
proportion
are already
the consid-
same kind
it in half, i-
teresting.
of the imp-
must be g-
Still the o-
pleasure in
agreement
triangles o-

Whether we discover or overlook such things depends on the important power of perception. I hope all of you will be perceptive enough to make discoveries of your own.

A on the right is for producing the rectangle whose proportions are $\sqrt{2}$ to 1. You are already familiar with it. But the considerably different folding method in *B* produces the same kind of rectangle. Folding it in half, as in *C*, too is interesting. From the standpoint of the importance of logic, *A* must be given pride of place. Still the other gives the kind of pleasure in mathematical agreement suggested by the triangles on the preceding page.

Method for folding a rectangle whose proportions are $\sqrt{2} : 1$

Traditional Japanese method

American method

Alice Gray, editor in chief of *The Origamian*, taught me the American system.

The American system is less effective because the pentagon it produces is small, but it is pleasing to fold and results in minimum aberration.

Skeleton Structures of Regular Polyhedrons

The skeleton of the regular octahedron appears in the forms of Mr. Neal's Ornament on p. 20. Here I have attempted to produce five different regular polyhedrons (see p. 205) with a uniform style.

Skeleton of a regular tetrahedron

Skeleton of a regular octahedron

Skeleton of a hexahedron

Skeleton of a regular dodecahedron

An example of applying the folding method for the Golden Rectangle (p. 72).

Skeleton of a regular icosahedron

No detailed instructions are given. But people who are interested can regard the assembly of these solid figures as fascinating puzzles to solve. The figures will be more sturdy if a little glue is applied to the insertions at junction points.

Several Beautiful Containers

To allay the disappointment of people who, having followed the explanations of ways to produce paper in various regular polygonal forms, now read that, throughout the rest of the book, we will use only square or rectangular paper, I include these beautiful containers. They are all folded in the same way, but using paper of various shapes results in dramatically different finished appearances. This kind of thing is part of the pleasure of origami. Mitsué Nakano, a fellow origamian, has published the container made from regular-octagonal paper.

To expand the fold to full-dimensional form from step 6, insert your right index finger into the part marked with a white arrow. Then grip the bottom, baglike corner between the thumb and index finger of your left hand. Continuing this all the way round will complete the container.

Form Variation

On the preceding pages, we saw how using paper of different shapes produces different final results. Now we shall see how altering folding immediately before the final finishing steps has the same effect. A is from p. 81.

①

⑦

⑥

②

③

Referring to the drawings,
work out *D* and *E* on your
own.

Odd-number Even Divisions

Having demonstrated the production of equilateral triangles and regular pentagons, now I shall explain how to divide the length of a piece of paper into odd-numbered equal divisions. In actual origami, we frequently need to divide paper into three or five equal parts. Having to divide it into seven, nine, or more equal parts is rarely necessary.

The best way to produce the often required tripartite equal division is to round the paper, without creasing it, and adjust it, hit or miss, until equal thirds are established (A). Then the creases can be made.

Since this rough system will not work for dividing a length of paper into five equal parts, we have devised an entertaining, puzzelike method. First divide both sides of the square into quarters by folding six crease lines as shown in step 1. Then fold on a line connecting points *a* and *c* (step 2). This will give values of 3 for *A* and 4 for *B*. Points *P* are on lines dividing the width of the paper into thirds.

If, in the right triangle created by folding to connect *a* and *c*, *A* is 3 and *B* is 4, on the basis of the Pythagorean theorem, we can see that the hypotenuse *C* is 5. Folding as in step 3 will divide the length into five equal parts, as seen in step 4. In that step, point *m* is the center of the side. One fold and a half as in step 5 brings the corner to a point on a line exactly 1/5 across the

The Pythagorean theorem:
 $A^2 + B^2 = C^2$.

When *A*=3 and *B*=4,
on the basis of the
Pythagorean theorem,
C=5.

8
7
6
5
4
3
2
1

width
ment i
of the
which
already

Simplified way of making divisions

Although it is not as elegant as things associated with origami usually are, I offer the division method shown in the chart on the left because it is rational and theoretically sound.

Prepare a gauge sheet in the following way. Fold a sheet of origami paper into an even number of equal parts—let us say, eight. Using this, you can divide other sheets of paper into any number of parts by positioning them on the gauge sheet as shown in the drawing. A still faster way, is to make similar use of the parallel lines on notebook paper. In Japan, primary-school children are taught this system. Though schools have their practical aims in explaining how this system works in making even divisions, understanding mathematical truths like the one shown below in step 5 is much more thrilling.

width of the paper. The noteworthy element is this: point m in step 4 is the center of the base. In other words, in step 5, which is half the fold, five equal parts have already been determined.

Steps 1–4 are for the sake of explaining step 5.

One and a half folds

The second is called half a fold because point m need be no more than a mark.

P=point of 5 equal divisions

Applying Five-part Equal Folding: Two Solid Figures

Let us immediately apply the system just presented for dividing a side into five equal parts in these two solid figures. They may seem less expressive and interesting than the solid figures we made earlier, but they can stimulate your ingenuity in interesting ways.

As is clear from the drawings, the first evolved from a solid representation of the traditional *menko*. Interestingly, step 1 of the *menko* fits exactly into step 2 of the solid form.

The second of the solid forms is nearly one half the volume of the solid forms on pp. 62 and 66. Mathematically insignificant, this point makes the work interesting by attracting attention to the topic of volume.

Traditional *menko*

Solid figure I

Meaning of the Origami Bases

The so-called basic forms or bases have been of the greatest importance to representational origami in its attempts to produce figures of birds and animals. We are indebted to such of our predecessors as Michirō Uchiyama, Kōshō Uchiyama, Akira Yoshizawa, James Sakoda, and Kōya Ohashi for organizing and popularizing these forms. But today, as origami extends its horizons, we find that none of the previously established systems covers everything.

For instance, it is not certain whether the Pattern Fold and the Pinwheel Fold shown on the right should be made from the same base or from different bases or whether the base from which the Table Fold is produced is a compound of crane bases or a development of the Pattern Fold. Even the very popular bases shown on p. 89 occur in A and B versions. Possibly lack of attention to apparently minor matters of this kind derives from a failure to take into consideration relations with the mathematics of origami.

Jun Maekawa has brought order to the picture; but, since it is difficult to explain verbally, I shall attempt to cultivate understanding of his theory by applying it in a few actual origami later.

Developmental drawing

Origami crane

Pattern basic fold

↓
Developmental drawing

Developmental drawing

↑
Pinwheel

Table basic fold

3 claws

↓
4 claws

Hint: A shaded

The Maekawa theory

Determining the minimal compositional unit of the basic form on the basis of the number of equal parts into which angles are divided.

$$\angle \alpha = 1/n \angle R \quad (n=2, 3, 4, 5 \dots)$$

When $n=2$, 1 form as in *a* on the left
When $n=4$, 2 forms as in *a* and *b* on the left

When $n=3$, 1 form as in *c* below

Application of the Maekawa theory

Puzzle: Make 4 claws from the developmental drawing of 3 claws.

Hint: Alteration of the crease lines of the shaded area.

Tyrannosaurus— Application of the Maekawa Theory

This work is found in the section called "The World of the Dinosaurs" (pp. 182–198), in Chapter 4.

Unlike sculpture, origami always returns to the original representation. This is a metric pleasure and it comes in ways that are impossible directly to measure this process.

For instance, one might consider many origami figures could be interesting in steps, but the final result is a pleasure.

⑤

Unlike that of painting or sculpture, the appeal of origami always includes an element of return to the original state and consists of the dualities of representational expression and geometric forms and of the equal pleasures of the completed figure and of the process whereby it comes into being. We must always be on the lookout for possible discoveries in the intermediate shapes appearing during this process.

For instance, in step 4 we might ask ourselves again how many isosceles triangles the figure contains. Or it might be interesting to consider *a*, *b*, and *c* in step 5 in terms of mathematical significance. Thinking this way can greatly enhance the pleasure origami gives.

⑫

⑬

Fold this
side too in
the same
way.

⑭

First make
outside re-
verse folds in
the upper
and lower
jaws.

⑮

Base line at
which the
points
separate.

⑯

Inside
reverse
fold

⑰

Inside
reverse
fold
→
Insert the
point and
make an in-
side reverse
fold.

Opened out again after all creases up to step 14 have been made, the piece of paper demonstrates the Maekawa minimal-unit form.

Peacock

Make the rhinoceros from
a large piece of paper.

Rhinoceros

Those of you who are interested should try folding these two works from the developmental drawings, the sketches, and the photographs of the finished origami. You will find they are much easier than you thought. This is a convenient way of recording new works.

Iso-area Folding (The Kawasaki Theory)

Like Jun Maekawa, a man of original ideas, Toshikazu Kawasaki has developed the idea of iso-area folding by means of which obverse and reverse of a piece of paper are exposed to equal extents.

Though difficult to explain verbally, his theory is easily understood when presented in actual origami. You will see what I mean if you learn as you make the folds shown on the right. A is the traditional pinwheel. Converting its valley folds to mountain folds and its mountain folds to valley folds results in the inversion form. In the case of B (a work published by Akira Yoshizawa), however, a slight rotation results in identical front and back sides in which the obverse and reverse of the paper are exposed to equal extents.

Square flat unit
(iso-area folding)

In the completed figure there is a pocket in each side of the square.

*Square flat unit—
developmental drawing*

This will produce a fold exactly like the one in step 12 even if all its mountain folds are converted to valley folds and its valley folds converted to mountain folds.

Fold here as in
steps 5 and 6.

Puzzle Cube I

In this figure, instead of a square flat unit like the one on the preceding page, we will make Right-triangular Flat Units. The degree of absolute similarity in them, however, is less than in the case of the square.

Without worrying about this, having made two kinds of flat units, we can proceed to the construction of an amusing puzzle figure. Assembled as shown in Figs. I through III on the opposite page, the flat units can be converted into a solid figure with a single touch. Furthermore, inverting them changes the color of the figure. Takenao Handa taught me how to do this.

Do not attempt to force the units in inverting them.

Right-triangular Flat Unit

A Convenient Rectangle

In the explanation of paper shapes on p. 68 I have already mentioned deliberate use of rectangles in this book. And, indeed there is a rectangle that works perfectly to achieve certain aims. For example, a rectangle with 1 : 2 proportions makes it possible to produce the same figure that took three balloon bases to make in the introduction.

The figures below show how it is possible to use a rectangle with proportions of 1 : 3 to make a five-pointed star, which usually requires five sheets of square paper. On the opposite page, you will see how it is possible to produce from one rectangular sheet the figure that took 16, including what was necessary for joining tabs on p. 99.

Making Puzzle Cube I from one sheet of paper demands a special, long rectangle, which can be easily produced according to the method shown in steps 1 and 2. The Haga-Fushimi Theorem (Mr. Fushimi's expansion of the Haga Theorem) makes possible dividing the side of a square into nine equal parts. A rectangle with a side made up of four of those nine equal parts is what is required for the Puzzle Cube. Nonetheless, since the paper needed for this rectangle must be fairly large, it is probably still more fun to break the cube down into units.

Puzzle cube (one rectangular sheet)

Puzzle Cube II

For the next twenty pages, I will explain a puzzle consisting of a single cube, like the one shown below, into which are fitted five other cubes. All of the cubes, except *F*, are made of two sheets of paper. Paper sizes, which decrease at regular intervals, are shown on p. 103. Cube *F* fits inside Cube *E*, Cube *E* inside Cube *D*, and so on until all are contained in Cube *A*.

When the set is complete, get together a group of friends and make the presentation shown on p. 103 until you reach the last box and the essential puzzle. It is more effective if all thirteen sheets of paper are of different colors.

1. The six faces of this cube have been divided in half. (Take out Cube *B*.)
2. It is possible to think of another kind of cube, like this one, in which the six faces are divided in half. These are the only two kinds.
3. But, if the method is changed slightly, it is possible to devise four ways of producing geometrically similar figures by bisecting through the centers or points of rhombuses on a given surface. (Take out Cube *C*.)
4. This is cut along the color boundary. Think of some other way to cut.
(Let your friends tell you which cube to remove. Generally they will select either *D* or *E*.)

Paper sizes decrease at a decrement of 1 cm; that is, *A* is 15 cm to a side, *B* is 14 cm to a side, *C* is 13 cm to a side, and so on. One of the 3 sheets for *F* is still 1 cm smaller than the other 2 (see p. 118).

5. Now you know three ways of bisecting. The final one is a regular hexagon. (Then take out cube *F*.)
6. Now, to make things interesting, I intend to make one incision in the final cube to produce a polyhedron. Do you understand what I am going to do?

Cube A — Bisecting I

Since the outermost cube must be sturdy to serve as a container for the others, use a little glue on all but one of its joint tabs. No glue is used in any of the other cubes.

**Cube B—
Bisection II**

Cube C — Bisecting horizontally

This cube makes good use of the traditional origami master-piece called the *matsu* measuring box. Making a nest of these boxes, in diminishing sizes, from the same size of paper is explained on p. 275.

Two-tone treatment

As a detour, try your hand at making these houses. The 2-story house and the tree are explained in Chapter 6.

From this point, fold as in steps 4–8.

Cube D — Bisecting on the diagonal

In combination, these geometrically similar figures produce a cube. In isolation, they serve as the roofs for houses made from the individual elements making up diagonally bisected cubes. Try your hand at them; they are used again in Chapter 6.

Lids for Elements

This too is only indirectly related to the puzzle, but the elements into which the cubes are divided may be fitted with lids.

Rectangular lid
for cube D

Square lid for cube C

⑥

House II

Cube E—Bisecting III

What shape may the cross section be assumed to take in this case?

①

②

③

④

⑤

Handmade teaching materials

When completed, the lidded versions of the four bisected cubes all have different sections. These cannot be used in the puzzle, since they cannot be fitted inside each other. Consequently, they are all made of the same size paper. Models of this kind make good handmade teaching materials for posing such mathematical problems as ascertaining which of the four cross sections has the greatest area.

- In decreasing order of surface area, the sections would be arranged *d*, *f*, *e*, and *c*.

Rhombic lid for Cube E

This is the most elaborate of the cube folds from D through F. I leave working out the improvements no doubt needed in the folding method up to the readers' ingenuity.

The shape seen in
step 11 on p. 113

This rhombic cross sec-
tion gives the impression
of being larger than the
rectangular one in Cube
E.

Do not make a
crease here.

Fold by
pinching the
crease.

⑧

⑨

⑩

⑪

⑫ Pull outward point *a*,
which is seen in step
10.

⑬

The shape seen in
step 11 on p. 113

Building-block Bisection

On the right you see an assembly of four of the eight small cubes into which the larger cube was equally divided. Undeniably this is a bisecting form of the cube. Although not directly related to the bisected-cube puzzle, this is an interesting detour.

Make 2 and combine them.

The figure in
step 8 seen
from the side.

Making a Cube from a Cube with a Single Cut

As is seen in the photograph on p. 111, making three creases in a regular-hexagonal plane makes it resemble a cube.

The same size paper will fit if this is a Regular-hexagonal Flat Unit made as shown on p. 224, in Chapter 5.

A cu...

A cube has appeared in
the cross-plane.

Continued on the
next page.

Perhaps the puzzle as a whole seems long and complicated, but I think you probably found all the individual stages easy.

Step 14 of F

Make an inside reverse fold on the creases.

⑪
Inside reverse fold

While folding point a under b, fold 2.

⑫
Make an inside reverse fold beneath this place.

puzzle
seems
mpli-
think
y found
dual

Chapter 3

Fly, Crane, Fly!

Challenging the Eternally Fascinating Origami Crane

Challenge I

The immortal origami classic, the crane, has maintained its appeal and beauty throughout the ages. For the devoted origamian, it is an object of affection and, at the same time, a stimulus to the spirit of challenge. The challenges presented here are offered, not with the intention of supplanting the traditional fold, but in the hope of further amplifying its charm through the application of original variations on the basic theme.

For many years people have amused themselves in this way, to the extent, indeed, that a very thick book could be made of nothing but the results of attempts to vary the traditional crane origami. From examining the results of their efforts, I have come to the conclusion that the challenges all fall into one of three major categories. The oldest is represented by the double connected crane called *Imose-yama* by a certain Rokōan. The fold is found in a book on folding thousand-crane amulets (1797). The aim of the design is to produce two identical cranes that are exactly like the traditional one in all respects except that they are joined. Various people, including Michiaki Katō, Kazunobu Kijima, Kazuo Kodama, Hiroshi Yamagata, Kazuyoshi Tanaka, and Shizuo Nakamura have produced splendid works in this category. The original and practical chopsticks envelope by Sachiko Kawabata, though not two connected cranes, belongs in this category because it uses part of the paper to fold the crane (actually half a crane) and the rest of the same piece of paper to produce the envelope.

Imose-yama by Rokōan,
found in the 1797 edition
of *Sembazuru*
Orikata (*Folding*
thousand-crane amulets)

"*Begging for*
favors" by
Kazunobu
Kijima

Crane-decorated chop-
sticks envelope by Sachiko
Kawabata

Crane origami

An immortal masterpiece magnificently symbolizing the form of the actual bird

This reworking of the traditional Flapping Bird in terms of the crane base might be described as a new-traditional origami.

New Year's Crane. by Toshio Chino

Challenge II

Although it might appear indistinguishable from other more general approaches, altering part of the form of the crane while following the folding method of the traditional crane base and using the word *crane* in the name of the new work offer clear proof of willingness to make a challenge. This is the second of my three categories. There are many examples of the use of this approach, which begins with the classical origami crane. In the preface to his book *Henka Origuru* (Crane origami variations; 1971), Eiji Nakamura treats the topic most ambitiously by speaking of "a thousand variations." Although not a crane at all, the phoenix, which I discovered in a book on folk origami entitled *Denshō Origami III* (1984), by Masurō Tsujimura, belongs in this category.

Dancing crane. by Isao Kondō

Traditional phoenix

This is made from a square sheet. But the paper must be thin for good results. Perhaps this accounts for the fold's failure to gain wide popularity.

New Enthusiasm

The face is roundish because of the many layers of paper.

The flying crane

Challenge III

In the first two challenges, interest is concentrated on lyrical expressiveness, although the connected cranes include an element of mathematical puzzle and Miss Kawabata's chopsticks envelope is practically functional. In this third challenge, interest shifts to the element of motion and the production of a crane with mobile wings. Of course, in this case too, lyrical beauty is very important.

With a new kind of enthusiasm, Professor and Mrs. Kōji Fushimi have produced a whole series of origami as a highly valuable teaching means for the cultivation of intuitive powers in geometry. Central in the series is the flying crane. Sky-flying Crane by Koshihide Momotani, included in a 1976 supplement edition of *Kodomo no Kagaku* (Science for children), ignited Professor Fushimi's enthusiasm for this kind of origami. As the drawing above shows, this is a clear and simple fold. It is the idea of folding a crane actually capable of flying that deserves praise for originality. Because of several overlapping layers, the head tends to be slightly round.

Free version
of the
Jun M.
(From
gamil
origami
1983)

*Free variation
of the crane, by
Jun Maekawa
(From Biba origami! [Viva
origami!],
1983)*

*Slight alterations en-
able Isao Kondō's
Dancing Crane to fly*

*(For details, see
the next page.)*

Lines l and m , which es-
tablish the crease for the
inside reverse fold, must
intersect at right angles
at the center of the
paper.

*Fushimi's flying
crane, 1983*

If Momotani kindled Fushimi's enthusiasm, Jun Maekawa provided the fuel and indeed has exerted a tremendously stimulating influence on all origami fans. Maekawa's outstanding origami have already been made widely known to the public through books. His free variation on the crane (left) is pertinent to our present theme. At a glance, it seems extremely ordinary. Actually, however, it is first-rate origami worthy to rank with the theorem of the inner center that Fushimi evolved from drawing *A* on p. 124. Without going into elaborate praise of Maekawa's crane, it is important so say that it was sufficiently appealing to excite intellectually a man of Fushimi's superb brain power. Probably the sweptback wings account for the crane's ability to fly. (This needs the kind of formula explanation that Momotani provides for his flying crane.)

*Revised, 1985,
version*

Challenging the Challengers

Flying crane representing slight modification of the one originated by Isao Kondō

Flying crane No. 1

After having introduced some excellent works by people who have challenged the classical origami crane, I now propose challenging those challengers by allowing them to pit their works against each other. It is difficult to establish superiority among works like Rokōan's *Imose-yama*, Kijima's Begging for Favors, Chino's New Year's Crane, or Kondō's Dancing Crane. But competition among them is important as long as the idea of a flying crane alone is the criterion. In the competition, points could be given for flying performance, realism of completed form, rhythm in folding production process, and new geometric discoveries. Skillfully setting up competitions of this kind could have a very stimulating effect on origami development.

Realizing the closeness of the race among the competitors, however, I decided to do no more than develop one of the cranes already devised and selected the one by Takumi Kondō.

Although origina...
ed me...
can be...
hancin...
Danci...
the on...

Fold the...
same wa...
on the...
other si...

Firmly pinch
and pull out
the central
baglike fold.

Pull the wings rear-
ward to the right
and left.

Reversing the head
from the position it
has in the Kondō
original has an in-
teresting effect.

Inside reverse
fold

Inside
reverse
fold

This is Isao
Kondō's brill-
iant variation.

Although this is not my
original idea, making it delight-
ed me. I shall be happy if it
can be accepted as further en-
hancing the appeal of Kondō's
Dancing Crane and that of
the origami crane itself.

Intermediate
steps not
shown.

Fold the
same way
on the other side.

Intermediate
steps not
shown.

My Flying Crane

My own individual personality is much more apparent in this second flying crane than it was in the first one. Although this version too is based on Kondō's crane, I call it my own because I worked hard on all the folds after step 11.

y is
ec-
n
ersion
e, I
ased
11.

Inside re-
verse fold
(where the
interpleat
areas are
flat)

Inside
reverse
fold

Inside
reverse
fold

Completed crane

After test-flying
the crane, make
such adjustments
as moving this
peak (ballast)
forward or bending
the wings tips
upward.

*Making adjustments to
the flying crane*

Making a bend in the center of the wings produces an interesting effect.

In the case of the crane and of all other flying birds, the center of gravity should be forward of the wing center line. In origami terms, two ways of achieving this end are conceivable.

1. Creating ballast in the head and the wing tips by means of several layers of paper.
2. Throwing the center of gravity forward by sweeping the wings back.

Smooth flying requires attention to more than center of gravity. But, bearing these two methods in mind as guidelines, launch your crane time and time again, making the necessary alterations each time, until it flies as you want it to. Altering the wing elevation angle and devising wing flaps for control are good ways to improve flight performance.

The crane will not fly well if the neck is bent this way.

Flying White Heron

Cran

I am especially proud of steps 14 and 15 in My Flying Crane, which, as I have said, is based on Kondō's version, the realistic appearance of the wings in which I found especially striking. This third variation on the origami crane, my own version of a flying white heron, incorporates those folding steps of which I am proud. In other words, this is a conversion of the traditional origami crane into an origami white heron.

Crane in flight

The emphasis in this work is on realism of appearance. The impression made on me by Kondō's Dancing Crane led me to devise this version. Three years intervene between it and the Flying Crane, which is comparatively recent.

- ① Do no more than make a mark.

*Completed
white
heron*

Inside reverse
fold

Full outside
reverse fold

Push inward on
creases made in
step 10.

Variations on the Flying White Heron

Flying common pheasant

We have about come to the end of my challenges to the classical origami crane. In trying to devise realistic-looking versions that actually fly, we may well be biting off more than we can chew. No matter how good they are, the folds can never match the performance of airplanes. Nonetheless, this origami white heron flies well enough to warrant making slight alterations to create other kinds of birds from it.

(Note: Please remember to make such adjustments as angling the wings upward or folding flaps in the trailing edges of the wings.)

Begin with step 7 of
the Flying White
Heron (p. 132) and
alter the head only.

*Azure-winged
magpie*

Something like the head
of a hummingbird

Outside
reverse
fold

Inside reverse
fold

Outside
reverse
fold

Pheasant

El Condor Pasa —

The Condor Passes

The condor in flight

To round out Chapter 3, I offer this old origami, in which emphasis is placed on flight performance. I used to call it Glider *Tombi* (the *tombi* is a bird called the Siberian black kite). But ever since I developed a taste for South American music, I always hum the famous Peruvian song *El Condor Pasa* whenever I fly one of these. And this led me to change the name.

The Siberian black kite in flight

Chapter 4

Starting the Animals

Koala

Animal figures are an ever-popular origami theme transcending all age and nationality boundaries and requiring no explanation to enjoy. This chapter shows how to produce, by folding square sheets of paper, many of the animals that have become stars of fairy tales, motion pictures, and television. The latter part of the chapter includes mythical beasts like the dragons plus dinosaurs, now to be seen only in the world of fossils.

Fold the rear side in the same way.

Fold upper and lower points in a twisting fashion.

Inside reverse fold

⑯

Outside reverse fold

Using a piece of paper 1/4 the size of the one used for the mother koala, make a baby koala to ride on the parent's back as shown in the photograph at the chapter opening.

⑯

⑰

⑱

The Smart Way to Read the Chart: Stay One Step Ahead

Readers who have breezed through the folds to this point may not need this hint. Still I should like remind you of the importance of always glancing

Persian Cat

ahead a step farther than the one you are performing at the given moment. Because they understand this, children generally have no trouble with folding. The Llama (p. 144) has been devised as an effective test of skill at reading the diagrams.

Llama

The llama is an animal of the greatest importance to the people who live high in the Andes Mountains of South America. Since the multiple layers make the camel-like face somewhat thick, it is good to use thin paper.

①

②

③

④

Now, look ahead. Execute this step so as to produce the form shown in step 5.

⑤

⑥

⑦

Steps 6 and 7 are executed virtually simultaneously.

Inside
reverse
fold

16

Fold the op-
posite side
in the same
way.

Fold the op-
posite side in
the same way.

Fox

Execute an outside
reverse fold on the
creases made in step
14.

Fold in
numerical
order.

Fox on the chase

(Compound figure made from 2 sheets of paper)

The head is made exactly as is the figure in the photograph.

Origami ideals

This book presents a large number of origami works made, without cutting, from single sheets of paper because undeniably being able to produce everything needed for the four legs, ears, and tails of animals in this way generates a pure kind of happiness. But, as I have said in the introduction, ingenuity applied in this method is not necessarily supreme. The charm of unit origami or of deliberate form simplification can be as great or greater. Without adhering to the traditional restriction of no cutting and only one sheet of paper work, I have devised the three foxes shown in the photographs and drawing and am proud of them all. It is important to remember that origami ideals are richly diverse.

Symbolization of the fox

(For the folding method, see Chapter 6, p. 254.)

Beagle

Producing the beagle—a breed made famous by Snoopy in the celebrated comic strip *Peanuts*—from square paper is difficult because folding results in clumsy thickness. Cut a square sheet in half on the diagonal to make an isosceles triangle. This origami fold will teach you the logic of inventiveness.

Carefully examining the positions of the points marked ●, ▲, ■, and ★ will make clear the change in shape that occurs between steps 16 and 17.

Open and flatten this peak.

As you will have noticed, by step 14, the paper is reduced to one-quarter of its original size. Consequently it is wise to use the largest possible paper.

After having made an outside reverse fold, crease at 2.

Insert on the creases made in step 22: inside reverse fold.

Pleat.

Insert this point in the inside reverse fold made in step 23. Repeat on the other side.

The first natural plain for those able orig

Japanese monkey

Try your hand at these 2 easy figures, which represent the kind of folding ingenuity employed in the beagle.

These figures, which I said at first would help make clear the nature of ingenuity in origami, explain how the two points needed for the rear legs are produced even though only four points are available from the crane base in its original square form.

Giraffe

Ingenuity

Make an inside reverse fold in each of these 4 places.

Mother-and-child Monkeys

Release the layers
of the breast.

Completed figure

This mother-and-child monkey origami recalls Peter Engel's Kangaroo in *Origami for the Connoisseur*.

Mouse

Outside
reverse
fold

Inside reverse fold
Leaving the
central one as
it is, fold the
front and rear
points.

Adjust the ex-
tent of the
pleat folds in
steps 18 and
19 to suit the
pose you have
in mind.

Inside reverse
fold.

Squirrel

They are relatives in nature, and in origami too it is possible to fold a squirrel using the same method used to fold a mouse.

↓

Inside reverse
fold inside the
topmost layer.

Readjust this crane
base according to
the creases.

Crush this
peak flat.

⑫

⑬

⑭

⑮

⑯

Turn bottom-side-up
and open to the
shape in step 2.

Open and round the ears.

Pull lightly the front leg outward.

Fold the 2 points together.

Fold the front point inward.

The completed squirrel

Pull the small inner point outward.

Inside reverse fold
Make an inside reverse fold then fully fold to one side.

Inside reverse fold

Simultaneously make 2 outside reverse folds.

Elephant

Completed elephant

Devising expressive details is left up to each individual folder.

Fold in numerical order.

Spread the forelegs and press the fold between them well inward.

Fold the same way as the crane base.

Inside reverse fold

Outside reverse fold

Inside reverse fold (rear side too)

Inside reverse fold to make the tusks

Enlarged ears

Lion

This difficult fold is hard to open entire once it has been made. Use a large sheet of paper.

Fold with colored side up.
①

③

②

Open all 4 points made in step 1.

Fold on the opposite side too as in steps 8 and 9. In other words, make a crane base.

⑦

⑤ → ⑥

Fold lightly
steps 16-18
then crease
firmly at step
19.

Flatten *b*
in step 10.

Push inward
on crease *a*.

Make inside re-
verse folds in all 4
points.

Make inside reverse folds
in all 8 points.

Pull 3 points
forward and
the other 3
rearward.

Invert only the part that will be the mane.

Because, like that of the human female body, their lithe elegance depends on predominantly curving lines and planes, most of the cats—including the lioness, the leopard, the tiger, and the cheetah—are among the most demanding creatures to express with predominantly rectilinear origami techniques. Among my own and those of other origamians, I have yet to encounter one that I find completely satisfactory. His stern cragginess makes the male lion easier to deal with. We still have a long way to go before we can treat sensuous themes in origami terms.

Giant Panda

Take care not to make creases in the face, which is underneath at this point.

Open the ears out completely.

Inside reverse fold

Steps 8–13 produce the face only.

Fold in numerical order.

Fold this side too as in steps 10 and 11.

Vary the pose to suit yourself. The one on the left represents step 23 set on end after the legs have been folded.

Donkey

Use a large sheet of paper to make the donkey, which is difficult to fold.

Fold again as in
steps 15 and 16.

Insert the small
points.

⑩

⑦

⑪

⑧

⑨

In steps 8–12, pleasure is derived from the rhythmical folding method itself. On the basis of rational thinking alone, it would be all right to proceed directly to step 13 from step 8.

This is my version, but I recommend that you arrange the details to suit your own ideas after step 35.

Dragon

This represents my challenge to a dragon by Jun Maekawa, which I had in front of me while I worked. He praised by efforts.

Following the
existing creases,
fold into the
shape in step 13.

Fold under the
long point.

Push inward on
the creases just
made.

Fold so that the white underside of the paper shows in the eyes.

Carefully examining the photograph on p. 178, work your own improvements on the dragon.

Make a pleat in the lower fold to open the mouth.

The Lost World of the Dinosaurs

The immense reptiles that once ruled the Earth and then suddenly and mysteriously vanished fascinate many people. As an origami theme, they are especially popular with young people. In the last pages of this chapter, I introduce a number of these representatives of a world now largely confined to fossils and hope they will please.

Dimetrodon

Make folds in 1 layer only at A and B.

Completed
dimetrodon

Pleat 2 layers together.
Although considered
heretical by some,
using pointed tweezers
facilitates this operation.

Fold 2 layers
together and
put the pleat
inside the
body.

Pull only the
upper corner
upward.

Do not fold the
bottom point.

Using the creases
made in step 3, pull
the inner point
outward.

Pteranodon

Inside reverse fold

Inside reverse fold

Make an inside reverse fold in the 2 points at the same time.

Inside reverse fold

Fold in numerical order.

Make an inside reverse fold in the long point only.

Fossil remains of the Birds
Recently much discussion
has been made of the fossils
of a now extinct, primitive bird
said to have lived seventy-five
million years ago, named
proto-avis. It closely resem-
bled this reptile-like forerunner
of the birds.

Archaeopteryx

Stergosaurus

Fold at this position.

ld at this
sition.

Bring *a* in step 16 out by means of an inside reverse fold.

Fold the opposite
side in the same
way.

Inside reverse
fold

Tyrannosaurus Head

This origami is intended to be a diversion. Although the Dragon on p. 90 too is a tyrannosaurus, this one is a toylike version in which the mouth opens and closes. I am proud of it for the reason given below.

I am proud of this origami because, as you can tell from step 11, it is a variation of the traditional *hakama* fold, which, in this instance, has been changed in a way to make it appealing to modern children.

Inside reverse fold

Firmly pressing the central part inward produces the shapes of the upper and lower jaws. This creates a springlike effect making it possible to open and close the mouth.

Completed fold

Insert.

Yakkosan origami, patterned on a kite named for footmen who served feudal lords in the Japan of the past

These traditional folds are worthy to rank with the crane as representative origami.

The *hakama* fold (The *hakama* is a traditional, trouser-like, Japanese garment.)

Open to the shape seen in step 9.

Readjust as in step 10.

Brontosaurus

In actuality, one of the largest reptiles of its kind, in origami form, the brontosaurus takes a much larger piece of paper than any of the other dinosaurs. For instance, if pieces about eighteen centimeters to a side were used for the stegosaurus and tyrannosaurus, the brontosaurus will need a piece twenty-four centimeters to a side.

Turn over the triangular part on the left only. Fold the same way on the rear side.

reptiles
bron-
ence of
osaurs.
eighteen
for the
the
twenty-

Mammoth

Use a large sheet of paper for the mammoth, which is difficult to fold.

Fold the 4-layered outer pleats to the front and to the rear. This will take some strength since the pleats are fairly thick.

In this case, too, examine the shape in step 18 as you fold.

These points float free.

Bend this point over fully to the right.

Make an inside reverse fold in the middle of the 4 layers in the outer 2 points.

Do not fold the small point underneath.

Carefully examining the shape in step 9, fold, holding the paper with the left hand and inserting the right thumb from below.

At this stage, open the fold out and turn over the tusks only to expose the underside of the paper. The process is not very difficult, and the effect is good.

This place comes free of the point.

24

25

27

After creasing,
push inward.

Fold on the in-side along the creases made in step 23.

29

This completes
mammoth. Improve
the realism of the
appearance by
rounding forms as
seen in A. Note that
the rear legs a have
been shortened to
prevent forward
falling.

Chapter 5

Beautiful Polyhedrons

Introduction to a New World

Getting to know a number of people, including Norishige Terada, Hisashi Abé, Professor and Mrs. Kōji Fushimi, and Jun Maekawa awakened me to the mistaken nature of my previous rejection of the idea of using origami as a way of becoming more familiar with geometry. These wonderful people have helped me find the fascinating new world of origami-geometry, which I should like to introduce to all my readers. But, instead of running the risk of failing in this endeavor as a result of inept verbal explanation, I prefer to have you come to understand this appeal through your own fingertips as you practice making a number of folds. After you have done this, read the text, which concentrates on eighteen basic solid-geometric figures (regular and semiregular polyhedrons). I have included a number of frivolous folds to break the tedium.

Display this together with the Fox on p. 146.

I recall Mrs. Mitsuē Fushimi's once remarking that an amusing mobile can be made by using the center of gravity produced at the point of

Fox Mobile

You will need 4 sheets of paper.

B reminds me of a butterfly.

P
(The center of gravity = the center of a circle)

Completed fox mobile

A

A

Platform

juncture of folds in a triangular piece of paper. Then, on my own one day, I made the folds shown in step 4 in *A* and, casually resting the figure on the point of a pencil, saw that point *P* is the center of gravity, at which good balance is possible.

Point *P* is the intersection of lines bisecting the three angles of the triangle and is the center of a circle inscribed within that triangle. I was delighted to find that it was the center of gravity of the piece because of the non-homogeneous layering throughout the triangle. When set on a platform, it somehow reminded me of a fox. Of course, the center of gravity of a homogeneous triangle is arrived at as shown in step 3 of *B*.

For good balance, use 2 layers and fold as far as step 3 in *A*.

Bottomless Tetrahedron and an Equilateral-triangular Flat Unit I

Now we move into polyhedrons with the regular tetrahedron, which consists of four equilateral-triangular faces. Milk and soft drinks are often sold in paper cartons made in this shape. There are many examples of this simple form in complete condition, but I have decided to use an incomplete one.

Equilateral-triangular pyramid
(or a bottomless tetrahedron)

After folding at 1, return to the former form at 2.

From step 3 of
the bottomless
tetrahedron

Equilateral-triangular flat unit I

Completed tetrahedron

To the eye, it seems a
perfect tetrahedron. But
let us proceed to some
other amusing
examples.

Make 4 of the figures in
step 5. Six of them com-
bined with the joining
tabs shown on the fol-
lowing page make a per-
fect regular tetrahedron.

Completed tetrahedron

No bottom

Fold in
numerical
order.

Raise and insert the
point marked ★.

Equilateral-triangular Flat Unit II

Unit I on the preceding page is so similar to this Unit II that there might seem to be little use in introducing both. But I have my reasons.

Before explaining them, I must say that I myself did not discover the folding method used in making Unit I. Hisashi Abé and Tomoko Fusé, at the same time, examined Unit II, which had already been made public at the time, and revised it to produce Unit I.

Folding both from pieces of paper of the same size will reveal that Unit I is larger and involves fewer folds than Unit II. The extra size means that, as is clear from the drawings on p. 205, joining tabs for Unit I are more troublesome than those for Unit II. And this problem exerts an influence on adjusting the lengths of sides of other polygonal units.

The relations between these two units suggest how hard it is to judge the superiority of one origami fold over another. Selecting either Unit I or Unit II, you should now try your hand at making the three regular polyhedrons shown on the right.

Equilateral-triangular Unit

Use 2 colors in folding the regular octahedron and 3 colors in making the regular icosahedron and make sure that no units of the same color appear adjacent to each other. Each of the 4 faces of the regular tetrahedron must be of a different color.

Regular tetrahedron
(6 joining tabs)

Regular octahedron
(12 joining tabs)

Regular icosahedron (30 joining tabs)

*Regular tetrahedron,
composed of 4
equilateral-triangular
faces*

*Regular octahedron,
composed of 8
equilateral-
triangular
faces.*

*Regular dodecahedron,
composed of 12
regular-pentagonal
faces*

Five regular polyhedrons

Unit 1 joining tab

If you attempt to make tabs like those in Unit II, only 1 can be produced from a piece of paper the same size as the one used in making Unit 1.

In regular polyhedrons, of which there are only the five kinds listed above, all the faces are of the same shape and are all joined in such a way as to produce identical pinnacles throughout the figure. Semi-regular polyhedrons, which do not meet these same conditions, are usually the result of combining more than two regular polygons.

Square Flat Unit

Now, turning to the Square Flat Unit, we shall immediately see what I meant when, in comparing Equilateral-triangular Units I and II, I spoke of influences on adjusting side lengths. As is seen in the drawing in A, paper for the Equilateral-triangular Unit is half the size of the paper used in making the Square Flat Unit. When you have learned to combine these two kinds of units, try producing the semiregular cuboctahedron shown on p. 207. By the way, what size should the paper be if an Equilateral-triangular Flat Unit I is to be used?

Two Square Flat Units

The one in the photograph was made of 6 B-type units. Try making one with A-type units.

Make inside reverse folds on the creases made in step 2.

Thoroughly master the method for folding from half a sheet of paper. From this point on, I shall make no more use of Equilateral-triangular Flat Unit I.

Cube (hexahedron)

▲ Cuboctahedron

This figure requires 6 A-type units, 8 Equilateral-triangular Units (type 2), and 24 joining tabs 1/16 the size of a sheet of paper.

Completed A-type unit

Insert the left and right corners underneath the pocket in the A-type unit (as shown in step 6) and inside the pocket in the B-type unit.

Make inside reverse folds on the creases made in step 7.

Module Cube

Modular origami, a new field that is, however, already familiar to many origami fans, entails preparing and combining numbers of units like the *B*-type Flat Square Unit, which have joining tabs and receiving slots, or pockets. Of course, even though they lack their own pockets and tabs, things like the *A*-type Square Flat Unit and the Equilateral-triangular Flat Unit fall into the same category. They are not, however, as convenient to use. Furthermore, because it has only three sides, it is impossible to work out equal numbers of tabs and pockets for the Equilateral-triangular Unit. Because of the ease with which it can be applied, the Square Flat Unit can be considered the source of modular origami. On these papers, I introduce two more cubes, but with different surface patterns.

Dice units

Checkerboard pattern

To produce this effect, the paper must have differently colored upper and under sides. The pinwheel pattern is attractively produced with six sheets of paper, two each of three different colors. Combining twelve units results in the checkerboard pattern.

The cubes in the opening of this chapter were made from 12 units in the stage shown in step 14 and of 6 units in the stage shown in step 12.

Make an inside reverse fold on the creases.

Make an inside reverse fold on the creases.

Make an inside reversed fold on the creases.

Pinwheel pattern

Make an inside reverse fold on the creases.

Cherry-blossom Unit

Though widely used because of convenience and versatility in production, origami units are by no means limited to the creation of polyhedrons. These Cherry-blossom Units, introduced here by way of a breather, are examples of plane applications of the system. I feel confident that both are good origami and hope you will enjoy making them.

Star-within-a-star Unit

Once again, you will need 5 sheets of paper.

Assemble the 5 pieces of paper in a circle, as you did in making the Cherry Blossom.

Open the petals out and perform steps 16 and 17 at the spots marked ★

First adjust the form to be flat.

Assemble the remaining units in the same way.

Completed unit

Combine with another unit by joining the marked spots.

Fold on the creases.

Combining the Cube and the Regular Octahedron

As an examination of the figures makes obvious, this interesting variation is a combination of the cube and the regular octahedron. It can be reconverted into a simple cube.

You will need 12 sheets of paper,
6 each of 2 colors.

Union of Two Regular Tetrahedrons: Kepler's Star

This attractive combination of two regular tetrahedrons is named Kepler's Star because it is a form first-explained by the German astronomer and mathematician Johannes Kepler (1571–1630).

Give some thought to the relation between this figure and the regular octahedron and the cube.

Regular tetrahedron Regular tetrahedron

Begin with step 12 of the regular octahedron on p. 213.

Fold this multilayered point too as step 7.

Completing the Figure Started on the Preceding Pages

Make six of the combined units seen in the photograph below and arrange them as shown in the figure on the right.

An example of the developmental form.

Fold in numerical order to divide the paper horizontally into 3 equal parts.

Crease the upper layer.

② It is important that there be space left over at the place marked ★ in step 4.

Make 4 each, in different colors, of steps 5 and 9 and insert the tabs into the slots. Assembly is easy because 9 is slightly larger. A dab of glue on each tab will ensure firm assembly.

③

④

Inside reverse fold on the creases

⑤

Fold in numerical order and assemble.

Fold the lid into position, and the figure is converted into a cube.

As is apparent from the view in A, the apexes of the regular octahedron correspond with the centers of the faces of the cube.

If glue has been used up to the stage shown in the drawing on the left, the assembly will be strong enough to permit you to convert the cube into a combination cube and octahedron and reconvernt into a cube many times.

Spirals

Folding paper is necessarily a rectilinear process. And the straight lines and forms produced in this way are one of origami's aesthetic characteristics. At the same time, however, inability to produce curved lines and planes appears to be one of origami's weaknesses. Nonetheless, using origami methods to produce something suggestive of curves is a challenging topic. I shall have succeeded if the two forms introduced here remind you of spirals.

Use half a square sheet of paper.

Univalve Shell

Object d'Art

⑪ After folding firmly, insert ★ into a.

Completed spiral Objet d'art

Turn upside-down.

Open the fold out to spiral form.

Assembling the corners that were underneath, return the fold to a flat condition.

Separate the upper and undersides.

Pleat on the creases made up to step 5.

Regular-pentagonal Flat Unit

Dodecahedron

After a considerable digression, I return to the regular dodecahedron, the sole remaining regular polyhedron to be covered. To produce it, we require a Regular-pentagonal Flat Unit. But this unit is much more difficult to make than the Equilateral-triangular or the Square versions. Once you have made it, you may want to do some extra research in written matter on the subject.

In folding, be certain that these intersection points are correct. Then fold 2 and 3.

With the underside uppermost, open the entire fold.

The joining tabs should be $1/4$ the size of A in step 4 and folded as shown in a form resembling the Japanese cushion known as a zabuton.

You will need 30 joining tabs.

On the creases, make an inside reverse fold to insert this inward.

Insert the small point first and then the larger one.

Of the 5 pockets, only the uppermost is shallow. Cut it with a knife.

Because the upper surface of the finished unit is heavily creased, use it as the underside.

Fold in numerical order.

Fold as indicated in step 17.

Fold so that these 2 margins are parallel.

From Regular to Semiregular Polyhedrons

Now that we have made Equilateral-triangular, Square, and Regular-pentagonal Flat Units, we are able to produce all five of the regular polyhedrons. Furthermore, combining these three basic flat units enables us to produce the six semiregular polyhedrons shown in the photograph on p. 221. But such combinations entail joining the sides of the flat units. And this is somewhat difficult in the case of the Regular-pentagonal Unit, the relation of the side and diagonal of which is the Golden Proportion ($\sqrt{5} - 1 : 2$). A practical solution is presented on the next page, but it would be a good idea for you to approach the matter as a sophisticated and amusing puzzle to tackle on your own. In succeeding papers, I shall introduce Regular-hexagonal, Regular-deagonal, and Regular-octagonal Flat Units that will enable us to produce all eighteen of the basic polyhedrons.

Complete team of regular polyhedrons

Six semiregular polyhedrons produced with units already introduced

▼
Rhombicuboctahedron
Equilateral-triangular Units—8
Square Units—18
Joining tabs—48

▲
Snub cube
Equilateral-triangular Units—32
Square Units—6
Joining tabs—60

▲
Icosidodecahedron
Equilateral-triangular Units—20
Regular-pentagonal Units—12
Joining tabs—60

◀
Rhombicosidodecahedron
Equilateral-triangular Units—20
Square Units—30
Regular-pentagonal units—12
Joining tabs—120

▼
Snub dodecahedron
Equilateral-triangular Units—80
Regular-pentagonal Units—12
Joining tabs—150

Lengths of Sides

To ensure that the sizes of all the six kinds of polygons used in flat units are the same, different sizes of paper must be used. Of course, in any single semiregular polyhedron, only two or three of those flat units will be combined. Paper for the figure with the smaller number of angles should be smaller. All joining tabs are the squares without folding.

A. Combining the square and the equilateral triangle

This has already been explained, but the diagram below is offered to refresh your memory.

B. Combining the regular pentagon, the square, and the equilateral triangle

Joining tab $1/16$ the size of the sheet used for the square

Equilateral triangle $1/2$ the size for the square

C. Combining the regular hexagon, the regular pentagon, the square, and the equilateral triangle

D. Combining the regular octagon, the regular hexagon, the square, and the equilateral triangle

The combination of regular octagon and regular pentagon occurs in none of the semi-regular polyhedrons.

Note: The relations for adjusting side lengths given here are solely for the units employed in this book to produce flat units for polyhedrons.

Golden Proportion

E. Combining the regular decagon, the regular hexagon, the square, and the equilateral triangle

These are given for the sake of reference; the combination of regular decagon, regular octagon, and regular pentagon does not occur.

Note: Roughly half of the ratios worked out here are practically useful approximations.

Regular-hexagonal Flat Unit

Now that the problem of adjusting lengths of sides has been dealt with, we can turn to the remaining three polygonal flat units. First I present the Regular-hexagonal Unit. The Regular-octagonal and Regular-decagonal Units cannot be used by themselves to produce solid figures but must be combined with other polygons.

Joining tabs
Joining tabs are the same size, and a simple proportional relation has been selected.

Make an inside reverse fold on the creases.

Three more semiregular polyhedrons become possible

Truncated tetrahedron
Equilateral-triangular Units—4
Regular-hexagonal Units—4
Joining tabs—18

Truncated octahedron
Square units—6
Regular-hexagonal Units—8
Joining tabs—36

Truncated icosahedron
Regular-pentagonal Units—12
Regular-hexagonal Units—20
Joining tabs—90

Two of the pockets are shallow and require that the joining tabs be adjusted as shown in A on the left.

Make the inside reverse fold in this fashion.
Repeat on the left side.

This time, make an inside reverse fold to bring the 2 points together inside the lower part.

Make an inside reverse fold on the creases in the upper right layer only.

Decagonal Flat Unit

The folding style used in this Regular-octagonal and in the succeeding Regular-decagonal Flat Units is different from the one used in preceding units. Since it results in beautiful forms well before the units are finished, this style is rhythmical and truly origamilike.

Fold the remaining 4 pockets as in step 4.

This is referred to as either the flower base or as the *oridashi-gata*.

Unfold entirely and turn the underside up.

This is easy if the creases for step 9 are made immediately after the crease in step 8.

ed side

Two new semiregular polyhedrons

Truncated hexahedron
Equilateral-triangular Units—8
Regular-octagonal Units—6
Joining tabs—36

Rhombitruncated cuboctahedron
Square Units—12
Regular-hexagonal Units—8
Regular-octagonal Units—6
Joining tabs—72

Though we do not actually use them, I present these joining tabs as samples for judging side length.

Fix in place by folding the small point inward.

Using creases produced in step 9, fold into the shape seen in step 12.

Regular-octogonal Flat Unit

The final stages of the folding process of this last of the polygonal flat units has the pleasing rhythmical feel of the folding of the Regular-octagonal Unit. Though the unit is not theoretically 100 percent accurate, this degree of accuracy makes for folding ease and beauty in the completed form. People who require total accuracy should attempt to work out their own variations on the regular pentagon shown on p. 218.

Fold in numerical order.

Fold point *a* as firmly as possible. Fold point *b* so that it is very slightly out of alignment.

④

Without
folding it,
open the
bottom layer
outward.

⑩

// Fold to
connect the *a*
points.
Take care
that it is
not the
b points.

Fold only the
top layer.

**Rhombitruncated
icosidodecahedron**
Square Units—30
Regular-hexagonal Units—20
Regular-deagonal Units—12
Joining tabs—180

Truncated dodecahedron
Equilateral-triangular
Units—20
Regular-deagonal
Units—12
Joining tabs—90

The final semiregular polyhedron

For the size of the piece of paper required for the joining tab, refer to p. 137.

Completed unit

19

18

Employing a folding method like the one used in the Regular-octagonal Flat Unit, fold into the shape shown in step 15.

fold into the shape
shown in step 15.

Though thickness makes it a little difficult, fold this firmly. After the creases have been made, unfold completely and turn the underside up.

12

13

At the Threshold

The energetic reader will already have made and arranged on his desk the eighteen basic polyhedrons, the theme of this chapter. But, since these eighteen are all produced from only six polygonal flat units—from the equilateral triangular to the regular-deoagonal—having made all of them does not mean that we have graduated from the course. As is clear from the extent to which these six units can be applied, it is possible to take many different approaches to each form and polyhedron. In other words, at this stage, we have arrived at the threshold of a whole new field of origami inquiry.

I should now like to present a few works that will stimulate awareness of the limitless possibilities for ingenuity lying ahead. You will recall that we had to cut the pocket of the Regular-pentagonal Flat Unit on p. 218. Thinking that there ought to be a better way to solve the problem of a shallow pocket, I worked out the method shown on the right. *B* and *C* on the opposite page represent folds that have developed from the slot unit on p. 215.

From step 11 on p. 219

Variant version of the Regular-pentagonal Flat Unit

This variation is not an alteration of size. But, since the pocket is slightly shallow, it is necessary to fold the joining tab as shown.

◀ Regular dodecahedron made by assembling 60 units made from rectangular pieces of paper

Regular tetrahedron made by combining Equilateral-triangular Units with 4 of the pocket units shown on p. 215

B

◀ Regular dodecahedron made by combining Regular-pentagonal Units like those in step 3 on p. 230 with 20 pinnacle-pocket units made of rectangular paper

Regular hexagon

G

This folding method is made for use under the conditions prevailing in the folding of the Regular-pentagonal Flat Unit on the left.

Variant Regular Hexagonal Unit (regular hexagon)

From step 4 on p. 224

The Inexhaustible Fascination of Polyhedrons

Now let us go a little more deeply into the virtually boundless possibilities inherent in even a single polyhedron. Up to this point, the cube, the most basic of the basic polyhedrons, has already played a part in more than eight of the figures I have presented. For doubters, I have lined them up in the photographs below.

I have said "more than eight" because, in the case of units, 6-sheet and 12-sheet assemblies too can be squares, raising the numbers of possibilities to 24, 54, 96, and so on. But without going too much into detail, I merely wish to point out the abundant possibilities of a single polyhedron. Developments become even more varied when the cube is viewed from different viewpoints as in A.

The figures in *a*, *b*, and *c* and those in *a'* and *b'*, and *a''* and *b''* look identical but are actually different.

But, since they can all be rectangular halves of a square, 7 sheets of square paper will be enough.

Joining the apexes of the points of Kepler's Star (p. 214) makes a cube.

The Reversible Stellate Icosahedron

Though Chapter 2 pursues a new origami field, in attempting something similar, Chapter 5 has caused a great deal more hard work and probably considerable fatigue. This work has been included to provide relief.

The peculiar name requires some explanation. As an examination of A shows, the regular icosahedron can be viewed as having an interior composed of three intersecting parallelograms with long and short sides illustrating the Golden Proportion. The apex of a trigonal pyramid the base of which is equal to the short side of one of those parallelograms and the edge of which is equal to one-half the diagonal of such a parallelogram becomes the center of a regular icosahedron. The volume of the icosahedron may be divided into twenty equal parts by twenty such trigonal pyramids. Consequently, as is shown on the right, this fascinating stellar form can be reassembled into a regular icosahedron by turning all the apexes of the pyramids inward to the center.

Trigonal pyramid for the regular icosahedron

Combining 20 trigonal pyramid compound forms with joining tabs results in this multipointed star. Reassembling it so that the apexes of the units are directed inward produces a regular icosahedron.

First fold to cover shaded area *a* with shaded area *b* in step 11.

Open so that the colored side is upper.

Make sure that this length is equal to one side of the Equilateral-triangular unit.

The crease should extend halfway down the lower side.

Fold the legs of the trigonal pyramids in (step 13) on the creases and then insert them in the pockets of the Equilateral-triangular Flat Units.

Fold in numerical order.

From step 11, give the figure multidimensional shape.

The Reversible Stellate Regular Dodecahedron

This very rewarding work is similar to the preceding one except that in this instance the pyramidal units have pentagonal bases and divide the volume of the solid figure into twelve equal parts when the apexes are turned inward.

As was the case with the regular icosahedron, the regular dodecahedron can be viewed as composed of 3 intersecting parallelograms the relation of the sides of which illustrates the Golden Proportion. It is troublesome, however, that in this instance the short and long sides of the parallelograms fail to correspond directly with the base or the edge of the pentagonal pyramid.

The pentagonal-pyramid compound unit

Making certain that good alignment is preserved, fold the entire piece on the creases made in step 71. Then open to the shape shown in step 75.

After step 17, assemble in multidimensional form. The apex is at the point marked ▲. Though it seems low in the drawings, it is actually as high as shown in step 20.

In folding according to the directions on p. 218, remember to cut the bottom of 1 pocket.

*The Greater Stellate
Dodecahedron*

The general drift of the ways in which they are produced is presented on the next page.

Two stellate dodecahedrons

Unlike the ones on the preceding pages, these two beautiful stellar forms cannot be converted into their corresponding solid-geometric figures. Give some thought to the differences in their appearances.

*The Lesser Stellate
Dodecahedron*

- The large one too is a dodecahedron but is composed of 112 surfaces.

The extra height of the pyramidal units (*B*) used in the two figures on the preceding page makes it impossible to invert them to convert the star form into its corresponding solid-geometric figure: the apexes would all pass through the center.

Greater and Lesser Stellate Dodecahedrons

Using paper the size shown on the right, make 2 of the Equilateral-triangular Flat Units II shown on p. 204.

③

④

⑤

⑥

⑦

In all, 30 joining tabs are needed. You should already know what their sizes and those of the other necessary materials should be.

From this point,
fold as in steps
4–8 on p. 240.

Be certain always to fold
in numerical order.

Using the same size pa-
per, make the Regular-
pentagonal Flat Unit
shown on p. 218.

From this point on, arrange
into a pentagonal pyramid
as shown on pp. 237–238. In
step 4, the shaded areas are
folded inward.

Be certain to fold in
numerical order.

As is clear from the process draw-
ings, the trigonal pyramid always
has a face that is in this shape.

The remainder is folded ac-
cording to the directions for
the Reversible Stellate
Icosahedron on p. 234.

Produce a triangular pyr-
amid by inserting the
darkly shaded part into the
slot.

Stellate Regular Octahedron

By now we have produced all five of the regular polyhedrons plus convertible stellate versions of two with the largest number of faces. Now we shall turn to the remaining three by beginning with the easiest, the regular octahedron, with which the introduction should already have made you very familiar.

For a regular tetrahedron
Joining tabs—5

For a cube
Joining tabs—7

Four regular octagonal pyramids
make a cube.

Four regular-tetragonal pyramids
make a regular tetrahedron.

Assembling the regular octahedron

Stellate Tetrahedron

Toy puzzle

The photograph below shows the completed appearance of the form presented in developmental drawings in *B* on p. 243. An excellent display of the relations between the cube and the regular tetrahedron, it is a delightful puzzle toy as well. You should have fun making it.

Stellate Square

The photograph on the right is the puzzle on p. 245 immediately before assembly into a cube. The photograph of the stellate square appears on p. 247. Actually, as was the case with the tetrahedron, there is very little stellar about its appearance. Its converted version, however, is the beautiful rhomboid dodecahedron.

Cube pyramid

Make a Square Flat Unit
of the A type, as shown
on p. 207.

Adjust this length to match that of a side of a Square Flat Unit. If the match is accurate, the folding will be correct.

Inside reverse folds on the creases

This is crease a made in step 6.

Open exactly to the middle.

Align with inside edge b.

This crease is a.

⑦

Align the mark made in step 3 with crease a.

Rhomboid dodecahedron

Chapter 6

Viva Origami!

Doubling the Pleasure

I decided to think of origami in two categories—the lyrical category of representations of bird and animals and the theoretical category including the works presented in the preceding chapter—precisely because many origamians seems to dislike the second category. The attitude of such people, however, is inconsistent. As long as they are produced by accurately folding from square pieces of paper, origami animals do not differ materially from purely geometric folds.

Nonetheless, a clear difference of mood sets one category apart from the other. While realizing this, I believe that striving to unite the two as skillfully as possible doubles the pleasure to be enjoyed—as amphibians can enjoy living both on the land and in the water. Though my actions may fall short of my words, in this final chapter, I present a random selection of themes incorporating the aim of blending the two categories.

Completed water-lily pad

Water-lily Pad

Begin with step 8 of the Regular-octagonal Flat Unit on p. 228.

A little ingenuity can change a purely geometric form into representational origami.

This is all there is to it!

Carefully observe the photograph as you work the fold into final shape.

Pinch and pull the inner corner outward.

⑦

Pinch and pull the inner corner outward.

⑧

⑨

①

②

③

The Ambitious Frog

As you will see as you fold it, this frog is very different from the one presented on pp. 250–251. In this virtually unprecedented work, halfway opening something that has already been folded produces the froglike quality. This is why it is ambitious.

Use paper 15cm to a side or smaller.

Tadpole

In machine-made paper, the fibers are uniformly oriented in the vertical direction to produce what is called the vertical grain. The cross grain, of course, runs at ninety degrees to it. When making paper airplanes, it is important to know about the grain. As is shown in A and B, paper curls when held so that the vertical grain is horizontally oriented.

Folding on the vertical grain produces a springlike effect.

Traditional frog

Inside reverse fold

Inside reverse fold

My Favorite Fox

This fold has already appeared in a photograph in Chapter 4 (p. 149). Although perhaps, having commented on the difficulty of producing them, I should not stress my feelings about a work in which curved planes play a prominent

role, this fox completely delights me. Try your hand at folding the four legs from the kind of rectangular paper shown in A on p. 245.

The completed fox

Be careful not
to crush these
curved planes.

Cicada

Dragonfly

Pull the point out from inside.

Turn the figure over.

Fold on this side as in steps 11 and 12.

Hopping Grasshopper

For fun

Because of my own interests, this book may lean a little in the direction of theory. But origami is essentially fun. And it is all the more enjoyable if its theoretical aspects are taken into consideration in a way that makes it an intellectual hobby. Nonetheless, as the outstanding origami masters of the past discovered and passed on to us, with or without theory, the important thing is to have a good time while folding.

⑥ Completed grasshopper

Carp

The colored side of the paper must be up.

①

②

③

Completed carp

④

⑤

⑥

Shark

①

②

Traditional origami:
Carp banner=fish.

④

⑤

⑥

⑦

⑩ Completed shark

Inside reverse fold

Insert point a
under point b.

Like Carp (p. 260), this Shark is based on the traditional blintz (fish) fold. As you will see, this method is used to increase the number of points available in the blintz fold.

Tropical Fish

Fold in numerical order.

Make an inside reverse fold on the creases.

⑪

People who dislike cutting origami can leave the fold as it is, though this final step makes the fish much more charming.

Twist each into attractive fin forms.

Since otherwise it is difficult to execute, flatten this inward before proceeding with the rest of the folding.

⑦

Here, both are inside reverse folds.

⑥

Here, instead of making an inside reverse fold, fold inside and bring the upper corner to the left.

Hermit Crab

Univalve Shell

Make creases in 2 sheets together.

④

⑤

⑥

⑦

Fold in numerical order.

⑨
6

By the sea, by the sea,
by the beautiful sea

A different univalve shell may
be found on p. 216. The star-
fish is the star form shown on
p. 211.

Bivalve Shell

The completed shell

Seaweeds

Sea Anemones

Make creases in all but the rear-most layer.

Following the creases, bring the 8 points together in 1 point.

Make outside reverse folds on all creases except those in the middle.

Open out in a rounded fashion.

This becomes the bottom on which the anemone stands.

Completed sea anemone

Completed seaweed

Blintz fold

Bringing the four corners of a square piece of paper together in the center in the way shown in A is a characteristic origami technique producing what is called the blintz fold (the *zabuton*, or cushion, fold in Japanese). In making this essential, basic form, most people use the method shown in B; that is, they first establish the center of the paper by folding two diagonal lines. If the paper is a reasonably accurately square, however, it may be produced—as shown in C—by a single line bisecting one side.

The C method is not necessarily superior to the B method. But I hope you will remember that there is usually more than one way to produce a desired form. The best method is the one that produces the desired effect in the finished work.

Incidentally, a reexamination of the *masu* (measuring-box) fold on pp. 106–107, in Chapter 2, should make it apparent that it is in the form shown in D. Although this proposal, made by Hisashi Abè, seems insignificant, it actually represents a tremendous improvement.

A

B

C

D

The perfectly fitting lid

To fold a traditional measuring-box and lid that fit perfectly, the lengths of a and b may be calculated as follows:

$$a = 4/3 = 1.333 \dots$$

$$b = \sqrt{2} = 1.41421 \dots$$

Although both a and b are endlessly repeating numbers, the slight difference existing between them apparently accounts for the fit.

Traditional masu

Assemble into the shape shown in step 8 on the basis of the creases.

From this point, fold again as in steps 3-5.

Improvements on Traditional Works

I have already shown one modern improvement in a traditional work by demonstrating how the *masu* can be produced by making mountain folds (seen from the underside) that bisect and run along the sides of the paper. Another such improvement is this way of folding the old-fashioned nest of boxes all from one size of paper, instead of using various sizes as is done in the traditional version.

The basic size is made by dividing a side of the piece of paper into 4 equal parts.

Decorative Lid

①

The grip is the decoration added to this *masu* lid.

②

Cube Box

After having considered the traditional *masu* from various angles, I came up with this inverted version of the one on the preceding page. With this, I shall conclude my series illustrating the Great Development of the *Masu*.

You should see that, as is explained in step 14, the completed work, shown in step 15, represents a series of 2 and a half traditional *masu* folded from 1 sheet of paper.

Four-dimensional (?) Box

First make the body and lid of the box by producing two *masu* of a fairly large size. Next, from twenty or twenty-four sheets of paper about one centimeter smaller to a side than the ones used in

Use 2 sheets of paper for each cube.

making the *masu*, make ten or twelve of the crushed cubes shown here. Put them in the box. The photograph should show the meaning of the title and the fun that can be had with this origami work.

②

③

④

⑤

⑥

Make the toy shown on the left by flattening the cubes as shown in A, turning each 90 degrees, and gluing 10 or 12 of them together.

Book (Paperback)

The idea of making a book using origami techniques is fascinating. The one presented here in photographs is my eclectic paperback version of the excellent hard-cover books produced by Martin Wall and David Brill. In theory, this version can be used to produce books with many more pages. Actually, however, the practical limit is sixteen pages with front and back covers. On pp. 284–285 is a twelve-page, hard-cover version made with compound techniques in which a separate piece of paper is used for the cover.

*Martin Wall's
easy 4-page book*

*16-page
paperback*

10-page paperback

*David Brill's
excellent
10-page book*

16-page book

Hard-cover Book with Case

This is easier to fold than the paperback on the preceding pages.

Minibook

Cover with
the lower
layer.

Bookcase

Now that you have some books, you need a bookcase to keep them in. As the diagrams make clear, both books and case have been produced at the very limits of ingenuity and therefore represent a sample of the fusion of theory and representation. Paperback books made from paper one-fourth the size of that used for the case will be a perfect fit.

Folding is much easier if colored triangles *a* and *b* are snipped off.

Using the creases formed in step 19, pinch these 3 places upward.

Make the kind of creases used for inside reverse folds at 6 places.

Push the 3
pinched pleats
upward.

Fold in
numerical order.

Insert pleats into the
slots marked with
arrows.

Making enough books to fill
this case is a big task.

The finished book-
case will be sturdier
if you put a very
small dab of glue on
the points marked
★.

Chair and Sofa

It is time to amplify the interior decor by adding chairs, a sofa, and a coffee table to the bookcase and books. Since the coffee table is merely the traditional raised tray (*ōzen*) made from rectangular paper (side proportion of 1:2), I have included no diagrammatic explanation. Ultimately a human figure will be added to the room. Paper-size ratios are given later.

Furnishings made from traditional folds

From this point, fold again as in steps 5-19
on the preceding page.

Bookcase
Reader
Organ

The Reader

The folding method developed by the famous American origamian Neal Elias is the basis for this work.

Make 4 inside reverse folds to create elbows and knees.

Tricorn Hat and Tree I

This Tricorn Hat and Tree I are made from the equilateral triangle the sixty-degree fold, shown on p. 71. Made from a square of newspaper fifty-five centimeters to a side, the hat will fit a child's head.

Made from a square of newspaper taken as shown below, the hat will fit a child.

Insert 2 layers
into the slot.

Tree foliage

Trunk

①

②

③

Completed tricorn hat

Return to previous form.

Crush and reverse.

④

⑤

Insert the top layer into the slot.

Invert the trunk and insert.

Assemble to form a square-section pipe.

The base is square.

A grove

Trees II and III

ove

On the creases made in step 6, fold on the inside and fix in place.

All lengths designated a are exactly the same.
Joining 2 of the shapes produced at step 9 results in a regular octagon.

For the Sake of the Numbers

Almost all of the trees in the preceding series have been geometrical forms. I include this fourth solely because the area in step 9 of the foliage is half that of the original piece of paper. Making it from four sheets of paper produces a much larger tree.

Completed tree IV

Tree IV

Tree VI

Tree V

Step 6 of Tree V can serve as a withered tree.

Long rectangular box

Try devising lids by using the folding methods employed in these two different kinds of boxes. The method found in the traditional nest of boxes (p. 276) will work well.

Rectangular box

With a peaked roof, this rectangular box produces a houselike appearance. But it looks more like a tool shed or a barn than a dwelling for humans. Fine houses with sloping roofs are forthcoming in later pages.

Small toothpick holder

Roof II

Roof I is found on p. 101
in Chapter 2.

The long, rec-
tangular
box on p.
300

Friedrich Froebel

The German educator and originator of the kindergarten system Friedrich Froebel (1782–1852) was the first person to value origami highly as educational material. The house on the next page is one of the origami used in his times; the nature of many of the works he employed has recently been revealed. The house presented here is a sturdier, improved version.

House

Chimney

Church

The church is composed of five different forms made from five sheets of paper.

Learning from others

As I said, I made a revised version of the house (p. 305) from Froebel's time, but I was never completely satisfied with it. One day, after adding a belfry and converting it to a church, I showed it to my small daughter Minako, who said, "But church doors are always in the middle." And right she was. I revised the origami into the form shown on the next page.

Cross

Square paper works satisfactorily when the cross is large. For a small cross, however, it is best to cut it into a triangle.

Chapel

In the case of a triangular piece of paper, step 9 becomes an inside reverse fold.

I am very proud
of the peaked
roof, which rep-
resents very
high-class de-
sign. The reason
why shall appear
hereafter.

Tree VI

The foliage is
made from the
equilateral triangle
on p. 202 in
Chapter 5.

Why the design is high-class? House (rectangular box)

①

②

③

This intersection is
an essential guide
mark.

④

⑤

⑥

Completed tree

Roof III

The fold in step 8 above, though in this case finished as a house, can become a long, rectangular box. I have referred to this as high-class design because the base of this box reveals, as is shown in the figure on the right, the $\sqrt{2} : 1$ proportion. The significant point is not the rectangle itself, which I have already adequately dealt with in Chapter 2, but the, as far as I know, unprecedented production of a rectangle with these proportions on the bottom of a box form.

When the fold in A is produced from step 7 of the house, the base is a rectangle with the $\sqrt{2} : 1$ proportions. Do not make the mistake, however, of thinking that $x:y$ is $\sqrt{2} : 1$.

Which House Is More Spacious?

The two houses in the photograph are both made from four pieces of paper of the same size. One is produced according to the diagrams on pp. 311–313; the other is house A made in the fashion shown below. A glance would seem to suggest to any eye that the house on the left (House A) is larger. In fact, however, they both have exactly the same floor area.

Roof I, step 5 from
p. 109 of Chapter 2

Combining A and B
for a two-story
house

Two new rectangular lids

Our Town

Why not make some houses for use on collage-type pictures?

House A with a window

House B with an entrance

Make this crease where you like, but be sure to align edges.

House C with a window and an entrance

Fascinating Origami Aircraft

Origami aircraft—strictly speaking, gliders—are tremendously entertaining. Among them, the ones designed by Eiji Nakamura are especially well known. Mr. Nakamura agrees with the accepted idea that, in terms of gliding performance, rectangular sheets of paper are better than square ones because of their pronounced directionality.

Nonetheless, though my attitude may seem to contradict the ideals I have expressed throughout this book, I stubbornly prefer to go on using square paper as I make origami gliders for indoor pleasure. I am confident of the merit of the following two gliders.

Hang-glider I

Grain is beside the point when the paper is used in this way.

Hang-glider II

For a discussion of grain in paper see p. 253.

Candle and Candlestick

Candlestick

Candle

The colored side should be up.

Flatten the flame, then twist it around fully.

The completed candle

Fold the 3 places indicated by the arrows as in step 4.

Make inside reverse folds in the 2 forward small inner points.

Sleigh

In place of Santa Claus,
I have put Candle
from p. 320 in this
Sleigh, which is in-
tended to serve as a
Christmas decoration.

⑫ The completed sleigh

It is possible to make a sturdy container (or attractive ashtray) by folding the rear of the sleigh (that is, the seat) exactly as the front is folded.

⑬ Open the part labeled *B* in step 13. This becomes the floor of the sleigh.

⑭ Make inside reverse folds in 2 places on the right.

⑮ Fold at a point slightly left of the halfway mark.

⑯

⑰ Put the figure in the form shown in step 13 by pushing inward and sinking the darkly shaded portions.

Automobile

This is a compound origami made from two sheets of paper. The folding of the roof is a variation of the folding of Sleigh on pp. 322–323.

Sedan

Coupe

As a look at the photograph makes clear, the license plate can be folded from points *a* and *b* in step 1 of the body.

aph
plate
as a
body.

Pinwheel

The traditional origami pinwheel

Although the traditional pinwheel, taken up several times in Chapter 2, is beautiful, it cannot be said always to function as well as it ought.

The version by the late Mr. Seiryō Takegawa twirls beautifully and is made with a minimum number of folds.

This version might be called a combination of the old and the new.

Fold the remaining small points as in step 10.

Mr. Chino's Sense of Humor

More than twenty years ago, when the American origami fan Nathan Lissac and his wife visited Japan, I took them to visit Toshio Chino, who was kind enough to show us color slides of a number of wonderful origami works. Perhaps the most impressive as an expression of Mr. Chino's artistic sense of humor was his leopard: two traditional boat origami, with a single marble in each, set on a piece of black-spotted yellow cloth.

In the next few pages, I begin by borrowing from his humorous works and go on to introduce various human facial features.

Eye

This fold is a boat. Adding a sail, as on the right, makes it a sailboat. (In such a case, the fold in step 7 is unnecessary.) But, since that is not very interesting, I have borrowed from Mr. Chino to give the origami a new twist.

Sail

Lips

I was trying for the look of sexy female lips. In case I failed to produce the right impression, I have added some accessory elements—although some may think Dracula fangs and cigarettes out of place in an origami book.

①

②

Without folding,
open the bottom point.

④

In this case
too, open the
bottom point.

⑤

The mouth of Dracula

In this case
open the
bottom point.

Mustache

There is little meaning in mustaches and eyebrows without eyes and noses. In this section, I have attempted a multi-dimensional version of an old-fashioned Japanese New Years game in which eyes, noses, and mouths are cut out of heavy paper and arranged in amusing ways within a facial outline drawn on another sheet of paper.

Eyebrow

in mus-
without
s sec-
a multi-
f an old-
ew
eyes,
e cut out
arranged
in a fa-
another

Witch Claws

Make the eye-
brow from a piece
of paper about
1/4 the ordinary
size.

The eyebrows are a variation
of the tricorn hat by Kōshō
Uchiyama.

Assemble as indi-
cated by the ★
marks in step 3.

Inside reverse
fold

To attach the mu-
stache, make a loop of
cellophane tape, ad-
hesive side out.

Nose

With the completion of the eyes, lips, mustache, eyebrows, and nose, all the parts of the face are ready.

Pinocchio Nose (or Bird Beak)

Since there is little humor in a perfectly regular nose, I have presented this other one. Attach it to your own nose for a Pinocchio look. Or hold it against your mouth like a bird beak and, sucking in, see how long you can hold it on.

Open, taking care that this does not slip from the pocket.

Cattleya

To show how random this selection of themes is, I move from faces to flowers.

The folding method of the cattleya is extremely easy, though you may be confused by the reassembly process beginning at step 11. All will be well, however, if you simply assemble as the creases indicate.

Like the conversion of the rouge container into a cube, the cup into a spinning top, the measuring box into a cube, the crane into a pheasant, and the *hakama* into a dinosaur, this is an adaptation of a traditional fold.

Curl the petals as shown in the photograph on p. 336.

Fold here as
in step 11.

Assemble
according
to the
creases.

No new creases are made after step 8.
Assemble on the basis of creases already made.

*Traditional fold:
incense container*

Rose

The folding diagrams look exactly like a puzzle.

Though the folding of steps 10–14 may seem confusing, a close examination of the diagrams shows that it is not actually very difficult.

The impression of the finished origami is closer to that of a wild rose. Try varying it to suit your own ideas; for instance, you might convert it into a dahlia.

Sparrow

Now I move from flowers to birds. You may have to fold it several times to get this sparrow looking the way you want it to. In other words, it is fairly difficult.

flow-
may
several
spar-
way
other

Duck

Swallow

Be certain to open this before folding.

Cormorant with Outstretched Wings

gs

16

17

Fold fully below crease *a*, made in step 16.

18

First crease and then push inward.

19

20

21

22

23

Eagle

①

②

⑤

③

④

Refold on existing creases.

Swan

The five preceding origami birds have been representational; the ones on the next pages are more symbolic. Comparing them will show you how origami can take various approaches to the same theme. I like all of them.

The completed swan

Folding the head

Make 2 inside
reverse folds.

The Simple Splendor of Symbolic Forms

As I have pointed out, origami may be either representational or symbolic. In general symbolic origami are simple to fold and are therefore easily reproduced.

Swan II

The folding method of this virtually legendary form can be varied in many ways. I am especially fond of it.

Dove

This fold may boldly be included among the legendary ones. It will last. I like it so much that I have

Peacock

Make certain
these edges are
aligned in a
straight line.

⑩

⑪

⑫

Outside reverse
fold

⑬

The peacock is complete at
this stage, although it is proba-
bly a good idea to make
pleats in the tail.

Make an in-
side reverse
fold in an
inward push-
ing fashion.

⑭

Fold on
this side
too as in
steps 8
and 9.

⑮

⑯

⑰

⑱

⑲

Chicken

This is my favorite of the more than ten chicken origami I have developed.

THE HEN AND ROOSTER

Fluttering Pheasant

The colored side of the paper must be up.

①

②

③

④

⑤

In Chapter 3, together with the traditional masterpiece of the flapping bird, which ranks with the origami crane for honors, I offered a challenge for the creation of different kinds of birds. This pheasant is my own response to the challenge.

Fold one of the upper right points leftward.

⑥

⑦

⑧

Holding the breast in one hand, pull the tail feathers with the other to make the wings flap.

After opening this, make an outside reverse fold.

Fold as in steps 8 and 9.

Dove of Peace

For this last in the series of birds, I have used an illustration-type system in the diagrams. Read them as if they were animation in continuous motion.

Angel

I still cannot forget the impression Toshio Chino's angel made on me when I first saw it, more than twenty years ago. This is one of the four origami that I have developed using his angel as a model. I have used something similar for the constellation Virgo as well.

Completed angel

Pinocchio Mask

From the long nose mask, we move to a mask representing the face of the puppet Pinocchio, from the famous story of the same name by Collodi. As you will remember, each time Pinocchio told a lie his nose grew longer. Since folding them produces too rigid an impression, I have painted in the eyes.

Fold with the colored side of the paper upward.

Adam and Eve

This long book is now drawing to a close. As my readers will have noticed from the frequency with which other people's names appear in its pages, during my twenty-five years of origami experience, I have been influenced directly and indirectly by many people. The greatest influence has certainly been that of Kōshō Uchiyama, whose book *Junsui Origami* (Pure origami; May, 1979, Kokudo-sha) has been a constant source of challenge for me. I feel that, in the present book, I have risen to that challenge.

Furthermore, I do not feel it disrespectful to attempt to challenge a person I regard as a teacher. Indeed, Mr. Uchiyama would no doubt welcome such a challenge.

In fact, I have included the naked figures of Adam and Eve here—fully aware of the attractive female nude origami that he has already made public.

Following a process similar to the one used in Adam, insert the lower body well; then fold *b* to prevent its slipping out.

Folding *c* produces slack that can be taken up by adjusting the pleat *s*.

The final poses
and positioning
of the heads
shown here are
only possibilities.
Work out the
ones you like
best.

Old Sol

Sun (or sunflower) to end
the book on a sunny note.

Push the small peak inward.

Return to the condition indicated by the creases.

Gently release this.

⑪

⑫

⑬

⑭

Open the bottom point.

⑮

⑯

In the remaining 3 places, repeat the process shown in steps 7-14.

In making this Old Sol, I have borrowed themes from Mr. Uchiyama. Unless you draw the face in, no one will realize that a sun is intended. Of course, you can call it a sunflower.

The origami is finished when it is folded so that a white, regular octagon appears on the underside.

Appendix

Production Guide for

the Panorama Cubes

(see frontispieces on pp. 9-15)

- B. *Mountains in Summer*
Revision of the example on p. 214. The folding method is explained on the next page.

- C. *Mountains in Autumn*
Square flat unit (p. 96)
The folding method for the roof form is explained on the next page.

- A. *Mountain in Spring*
Square flat unit (p. 206) and Pyramid (p. 238)

Rhombicosidodecahedron

Note: Paper sizes (for the origami in the frontispieces):

A-N=15 cm to a side

K=35 cm to a side

Small items=1/16 and 1/16×1/4 of 15 cm paper

Exceptions: Starfish (Five-pointed star)
1/16×1/3; Univalve shell 1/16×1/2.

Both are rectangular.

Joining tabs: 14 each of A-C and 13 each of D-H. Glue the square units.

Dodecahedron

Reference: The 2 of the 11 possible developments of the cube not used in this work.

G. Summer
Works used:
Crab (p. 26),
Five-pointed
Star (p. 100),
Univalve Shell
(p. 216),
Bivalve Shell
(p. 270).
Directions for
the Sailboat,
Sea Gull, and the
other Univalve
Shell are
omitted.

Early Summer
Works used:
House II (p.
111) and Tree
III (p. 296)

= mark means
position of
junction
between D-
H and L.
= mark means
places where
excess (join-
ing tab) is
to be left for
the inversion
of A-C.

H. Autumn
Works used: Crow
(p. 58) and
Withered Tree (p.
299). Apply your
own ingenuity to
working out Fox,
Rabbit, and other
Trees.

D. Mountains in Winter

Works used: Pyramids (p. 238), Tree (Triangular pyramid; p. 234), Tree III (p. 296), and Tree VI (p. 298). The mountain lodge is composed of House I (p. 108) and Chimney (p. 304).

E. Spring
Works used:
Tree and
Panda.
Folding ex-
planations
omitted.

You will need 6 full sheets of paper, 6 half sheets of paper, and 1 extra full sheet for joining tabs. From 6 full sheets make square flat units according to the directions on p. 96.

Completed figure

This example should make the relations between the cube and the regular dodecahedron clear.

As far as step 13 on the next page, the folding is the same as for the Regularpentagonal flat unit on p. 218.

Fold so as to align with the lower edge.

Folded correctly, the two will be out of alignment as shown.

Fold as indicated in step 10.

The 2 edges should be parallel.

Continued on the next page.

The combinations of the Cube
and the Regular Octahedron

The example on p. 212 of the main text is slightly inconvenient for the panorama cube. This is why the square flat unit has been revised.

6 sheets
Joining tab
14 sheets

Insert the foot of the pyramid on p. 204 into the pocket at step 10.

Completion of one facet

Completion of one facet

Square flat unit on p. 96

Foot + Foot
Insert the foot into the pocket.

This becomes the ridge of the roof.

Take care that this does not come out of alignment.

in inside fold creases.

Completed figure

As far as D-H and L, a total of 6 kinds of square flat units

④ Make an inside reverse fold on the creases.

Square Flat Unit (No. 3)

Of the 4 kinds of square flat units employed, this number 3 is the most useful.

②

The side, which appears outside when completed, must be up.

③

④

⑤

⑥

Fold below the uppermost layer.

⑦

⑧

Fold in numerical order.

⑨

A, visible in step 9, must be up.

1

2

3

4

Insert with 4.

⑩

⑪

⑫

Index

- Abé, Hisashi, 24, 200, 204, 274
Adam and Eve, 366
Ainu, 48
Ambitious Frog, 252
Angel, 16, 364
Archaeopteryx, 186
assembly technique, 60, 62
Automobile, 324
Azure-winged magpie, 136

balloon base, 27, 28, 89, 327
Beagle, 150
Begging for favors, 122
Bird Beak, 335
Bisection, 104, 105
 Cube III, 112
 on the Diagonal, 100
 form of the cube, 116
 horizontally, 106
Bivalve Shell, 270
blintz (fish) fold, 263, 274
boat origami, 328
Book (Paperback), 282
 Hard-cover, with Case, 284
Bookcase, 286
Bottomless Tetrahedron, 202
Brill, David, 282
Brontosaurus, 194
Buddha, 34
Building-block Bisection, 108

Calling-card case, 57
Candle, 16, 320, 322
Candlestick, 16, 320
Carp, 260, 263
Carp banner, 262
Cattleya, 336

Celestial General, 34
Chair and Sofa, 289
Chapel, 308
Checkerboard pattern, 209
Cherry-blossom Unit, 72, 210
Chicken, 358
Chimney, 304
Chino, Toshio, 26, 27, 126, 328, 329, 364
Church, 306
Cicada, 256
Cigarette, 331
classical origami crane, 136
Coffee table, 291
Collodi, 42
Combining the Cube and the Regular Octahedron, 212
Common pheasant, 136
Complete team of regular polyhedrons, 220
Condor Passes, 137
Containers, 80
Cormorant with Outstretched Wings, 346
Coupe, 324
Crab, 27
crane, 22, 124, 125, 127, 128
crane base, 27, 88, 123, 153, 160, 165
Crane-decorated chopsticks envelop, 122, 124
Crane origami, 123
Cross, 308
cross grain, 253
Crow, 58
Cube, 115, 118, 212, 232, 245
 with a Panda Face, 13, 67
 with a Pierrot Face, 13, 66

Cube Box, 278
Cube pyramid, 246
Cuboctahedron, 207, 221
cushion fold, 274

Dancing crane, 123, 125–127, 133
Decagonal Flat Unit, 226
Decorative Lid, 276
Demon Mask, 36
Denshō Origami III, 123
Devil, 39
Dice, 13, 64, 66
Dice units, 208
Dimetrodon, 182
Dinosaurs, 182, 194
dirk, 60
dodecahedron, 218
Donkey, 174
Dove, 355
 of Peace, 9, 362
Dragon, 178, 192
Dragonfly, 257
Duck, 342

Eagle, 349
El Condor Pasa, 137
Elephant, 162
Elias, Neal, 292
Engel, Peter, 155
equilateral triangle, 70, 84
Equilateral-triangular flat unit I, 203, 204, 206, 208, 230
Equilateral-triangular pyramid, 202
Eve, 366
Eye, 11, 328
Eyebrow, 11, 332

- Fish, Tropical, 264
 fish base, 34, 89, 263
 Five-part equal folding, 86
 five-pointed star, 72, 100
 Five regular polyhedron, 205
 Flapping Bird, 123
 Flat Equilateral-triangular Unit I, 202, 204, 206
 flower base, 226
 Fluttering Pheasant, 360
 Flying common pheasant, 136
 Flying crane, 124–126, 132–133
 Flying White Heron, 132, 136
 Folding for angles of 30 and 60 degrees, 71
 Folding techniques, 30
 Formula for Yoshihide Momotani's flying crane, 124
 Form Variation, 82
 Four-dimensional (?) Box, 280
 Fox, 13, 146
 on a chase, 149
 My Favorite, 254
 Fox Mobile, 13, 148, 200
 Froebel, Friedrich, 304
 Frog, 251
 Ambitious, 252
 frog base, 45, 187
 Funaoka, Atsumi, 58
 Furnishings made from traditional folds, 291
 Fusé Tomoko, 204
 Fushimi, Kōji, 24, 25, 76, 101, 124, 125, 200
 Fushimi, Mitsuë, 24, 25, 200
 Fushimi's flying crane, 125
 gentian, 72
 Giant Panda, 170
 Giraffe, 153
 Glider Tōbi, 137
 Golden Proportions, 218, 222, 223, 234, 237
 Golden Rectangle, 72, 73, 74, 79
 Gorilla, 51, 54
 Grass, 59
 Grasshopper, Hopping, 259
 Gray, Alice, 77
 Greater Stellate Dodeca- hedron, 239, 240
 Grinning Old Man, 32
 Grove, 296
 Haga, Kazuo, 76, 101
 Haga-Fushimi Theorem, 101
 Haga Theorem, 23, 76, 101
 hakama fold, 192, 193, 256
 Handmade teaching materials, 113
 Hang-glider I, 318
 Hang-glider II, 319
 Hangiri form, 106
 Hard-cover Book with Case, 284
 Healing Bhaishajaguru, 34
 Henka Origami, 123
 Hermit Crab, 266
 Honda, Takenao, 98
 Hopping Grasshopper, 259
 House, 304, 311, 314
 House A with window, 316
 House B with an entrance, 316
 House C with window and entrance, 316
 House I, 108
 House II, 111
 Hummingbird, 136
 icosahedron, 234
 Icosidodecahedron, 221
 Imose-yama, 122, 126
 incense container, 337
 Iso-area Folding, 96
 isosceles triangle, 50, 91
 Japanese monkey, 153
 Joining tabs, 224
 Jumbo unit spinning top, 61
 Junsui Origami, 366
 Kami-orimono, 22
 Kamui Mask, 48
 Katō, Michio, 122
 Kawabata, Sachiko, 122, 124
 Kawasaki, Toshikazu, 96
 Kawasaki Theory, 96
 Kepler, Johannes, 214
 Kepler's Star, 214
 Kijima, Kazunobu, 122
 Koala, 51, 140
 Kodama, Kazuo, 122
 Kodomo no Kagaku, 124
 koinobori, 34
 Kōji Fushimi tarō, 25
 Kondō, Isao, 123, 125–130
 Kōzō o tsukuru tame ni, 72
 Lengths of Sides, 222
 leopard, 328
 Lesser Stellate Dodecahedron, 239, 240
 Lids for Elements, 110
 Lion, 51, 166
 Lion (Male) Mane, 11, 52
 Lips, 330
 Lissac, Nathan, 328
 Llama, 142, 144
 Long rectangular box, 300
 Maekawa, Jun, 88, 96, 178, 200
 Maekawa minimal-unit form, 93
 Maekawa theory, 89, 90
 Mammoth, 196
 marble, 328
 Masks for All Seasons, 32
 masu measuring box, 106–108, 274, 278, 279
 masu lid, 276
 Matsumura, Sadao, 72
 measuring box, 274, 275
 Menko, 60, 61, 86
 Miyashita, Atsushi, 54
 modular origami, 208
 Module Cube, 208
 Momotani, Yoshihide, 124, 125
 monikiri, 75
 Monster from the Arabian Nights, 44
 Mother-and-child Monkeys, 154
 Mouse, 148
 Mouth, 11
 of Dracula, 331
 Mr. Chino's Sense of Humor, 328
 Multiunit Decorative Sphere, 13, 29
 Mustache, 11, 332
 My Favorite Fox, 254

- My Flying Crane, 128
 Nakamura, Eiji, 123
 Nakamura, Shizuo, 122
 Neal, Robert, 28, 78
 Neal's Ornament, 28, 78
 Nest of boxes, 106
 New Year's crane, 123, 126
 ninja, 60
 Noguchi, Hiroshi, 25
 Nose, 334
 Object d'Art, 16, 216
 octahedron, 28
 Odd-number Even Devisions, 84
 Ohashi, Kōya, 88
 old-fashioned mat, 60
 Old Sol, 372
 one and a half fold, 76, 85
 Organ, 291
Oridashi-gata, 226
 Origami aircraft, 318
Origamian, The, 77
 origami bases, 88
 Origami crane, 88, 122
 Connisseur, 155
Origami Kikagaku, 25
 origami triangular measure, 70, 71
 origami wonderland, 10
 origata, 22
 orisue, 22
 Ornament by Robert Neal, 28, 78
 Our Town, 316
 Panda and child, 51
 Panda face, 67
 Panorama Box with Four seasonal Scenes, 9
 paper balloon, 22
 Paper Shapes, 68
 pattern basic fold, 88
 Peacock, 94, 356
 Peanuts, 150
 pentagon, 76
 Pentagonal-pyramid compound unit, 236
 Perfectly fitting lid, 274
 Persian Cat, 142
 Pheasant, 136
 phoenix, 123
 Pierrot face, 67
 Pinocchio Mask, 42
 Pinocchio Nose, 335
 Pinwheel, 96, 326
 pinwheel fold, 88
 Pinwheel pattern, 209
 Polygonal Units, 11
 polyhedron, 78, 220, 232
 Portrait of a Murderer, 45
 Pteranodon, 184
 Puzzle, 56, 57
 Puzzle Cube, 98, 101, 102
 Pythagorean theorem, 73, 76
 Reader, 292
 Recliner, 292
 Rectangular box, 301
 Rectangular lid, 110, 315
 regular-decagonal flat unit, 224, 226, 230
 Regular dodecahedron, 231
 regular-dodecahedral flat unit, 220
 regular hexagon, 70, 103, 231
 Regular-hexagonal Flat Unit, 220, 224, 231
 Regular-hexagonal lid, 118
 Regular-octagonal Flat Unit, 220, 224, 226, 228
 regular octahedron, 78, 212
 regular pentagon, 72–74, 84
 regular-pentagonal flat unit, 218, 230
 Regular-pentagonal Knot, 74
 regular polyhedron, 200, 205
 220, 242
 Regular tetrahedron, 214, 231, 245
 rep, 68, 70
 Reversible Stellate Icosahedron, 234
 Reversible Stellate Regular Dodecahedron, 236
 Rhinoceros, 95
 Rhombic Lid for Cube III, 114
 Rhombicosidodecahedron, 221
 Rhombicuboctahedron, 13, 221
 Rhombitruncated cuboctahedron, 227
 Rhombitruncated icosidodecahedron, 229
 rhomboid dodecahedron, 246
 rhombus, 70
 Right-regular flat unit, 98
 Rokkōan, 122, 126
 Roof I, 108, 109
 Roof II, 302
 Roof III, 312
 Rose, 9, 338
 Rouge container, 56, 62, 64
 Sakoda, James, 88
 sambō, 22
 Sea Anemones, 272
 Seaweed, 271
 Sedan, 324
 Semba-zuru Onikata, 122
 semiregular cuboctahedron, 206
 semiregular polyhedron, 200, 205, 220, 221, 225, 227
 Several Beautiful Containers, 80
Shakai-jin no Sugaku, 23
 Shark, 262
 Siberian black kite, 137
 Simplified Sonobé system, 209
 Simplified way of making divisions, 85
 Singer of Antiwar Songs, 46
 16-page book, 283
 Skeleton Structures of Regular Polyhedrons, 78, 79
 Sky-flying crane, 124
 Sleigh, 322
 Snoopy, 150
 Snub cube, 221
 Snub dodecahedron, 221
 Sofa, 289
 Solid figure, 86, 87
 Solid Forms Made Easy, 62
 Sparrow, 340
 Spirals, 216
 square, 24, 218
 Square Flat Unit, 96, 206
 Square lid for Cube C, 110
 Squirrel, 159
 Star-within-star Unit, 211
 stellar form, 234
 Stellate dodecahedron, 239

- Stellate Regular Octahedron, 242
Stellate Square, 246
Stellate Tetrahedron, 244
Stergosaurus, 189, 194
Stool, 291
Swallow, 344
Swan, 16, 352, 353
symbolic forms, 354
Symbolization of the fox, 149
Symbols, 30
- Table, 291
Table basic fold, 88
Tadpole, 252
Takegawa, Seiryō, 327
Tanaka, Kazuyoshi, 122
tatami-gami, 22
tatō, 24, 25
Tengu Mask, 40
10-page book, 282
Terada, Norishige, 72, 200
Toy puzzle, 245
Traditional masterpieces that actually work in amusing ways, 60
- Traditional *masu*, 275
Traditional phoenix, 123
Tree I, 294
Tree II, 296
Tree III, 296
Tree IV, 298
Tree V, 298
Tree VI, 298, 310
Tricorn Hat, 294
trigonal pyramid, 234
Tropical Fish, 264
Truncated dodecahedron, 229
Truncated hexahedron, 227
Truncated icosahedron, 225
Truncated octahedron, 225
Truncated tetrahedron, 225
Tsujimura, Masurō, 123
Two-story house, 314
Two-tone (box), 106
Two-tone treatment, 107
Tyrannosaurus, 90, 194
Tyrannosaurus Head, 192
Uchiyama, Kōshō, 88, 333, 366, 374
Uchiyama, Michirō, 88
Union of Two Regular Tetrahedrons, 214
- unit-assembly, 62
Unit-origami, 62, 66
Univalve Shell, 216, 268
- Variant regular hexagonal unit, 231
Variations on the Flying White Heron, 136
Various rectangles, 69
vertical grain, 253
- Wall, Martin, 282
Water-lily Pad, 250
Whirling top, 28
Witch Claws, 333
- yakko, 22, 193
Yakushi, 34
Yamagata, Hiroshi, 122
Yoshizawa, Akira, 88, 96
- zabuton, 219, 274
Zukai Asobi no Sekai, 25