Homework #7

Sam Fleischer

March 18, 2016

Problem 1	٠.		٠	•	 •	•	 	•		 	•	•	٠	•	•	•	 	•		٠	•	•	 •	٠				•	•	•	•		2
Problem 2							 			 							 										 						:

Problem 1

(a) Use separation of variables to find the eigenvalues λ and eigenfunctions u(x, y) of the Dirichlet Laplacian on the unit square that satisfy

$$-(u_{xx} + u_{yy}) = \lambda u \qquad 0 < x < 1, \ 0 < y < 1$$

$$u(x,0) = 0, \qquad u(x,1) = 0 \qquad 0 \le x \le 1$$

$$u(0,y) = 0, \qquad u(1,y) = 0 \qquad 0 \le y \le 1.$$

Suppose u(x, y) = F(x)G(y). Then

$$-F''G - FG'' = \lambda FG \qquad \Longrightarrow \qquad -F''G = F(G'' + \lambda G)$$

$$\Longrightarrow -\frac{F''}{F} = \frac{G''}{G} + \lambda$$

Since the left hand side is a function of *x* and the right hand side is a function of *y*, then they can only be equal if

$$-\frac{F''}{F} = \frac{G''}{G} + \lambda = \mu$$

where μ is a constant. Note the boundary conditions imply

$$F(0) = F(1) = G(0) = G(1) = 0$$

thus $F'' + \mu F = 0$ and the homogeneous Dirichlet boundary conditions imply $\mu > 0$ and

$$F(x) = A\sin(\sqrt{\mu}x)$$

The condition F(1) = 0 implies

$$0 = A\sin(\sqrt{\mu})$$
 \Longrightarrow $\mu = \pi^2 n^2$

for $n \ge 1$. Then $G'' + (\lambda - \mu)G = 0$ and the homogeneous Dirichlet boundary conditions imply $\lambda - \mu > 0$ and

$$G(y) = B \sin\left(\sqrt{\lambda - \mu}y\right)$$

The condition G(1) = 0 implies

$$0 = B \sin\left(\sqrt{\lambda - \mu}\right) \qquad \Longrightarrow \qquad \lambda - \mu = \pi^2 m^2 \qquad \Longrightarrow \qquad \lambda = \pi^2 (n^2 + m^2)$$

for $n, m \ge 1$. Thus the solution to $-(u_{xx} + u_{yy}) = \lambda u$ is

$$\sum_{n,m\geq 1} A_{n,m} \sin(n\pi x) \sin(m\pi y)$$

for some constants $A_{n,m}$. Then the eigenvalues of

$$-\nabla^2 u = \lambda u; \qquad u(x,0) = u(x,1) = u(0,y) = u(1,y)0$$

are $\lambda = \pi^2(m^2 + n^2)$ for all $n, m \ge 1$.

UC Davis Applied Mathematics (MAT207B)

(b) What is the smallest eigenvalue that is not a simple eigenvalue?

The smallest eigenvalue that is not a simple eigenvalue is $5\pi^2$ since this can be acheived when n = 1, m = 2 or when n = 2, m = 1. The only smaller eigenvalue is $2\pi^2$, but that is simple since it can only be acheived when n = m = 1.

Problem 2

(a) Let $\vec{x} = (x, y)$, $\vec{\xi} = (\xi, \eta)$, and $\vec{\xi}^* = (\xi, -\eta)$ where $\eta > 0$. Show that

$$G(\vec{x}, \vec{\xi}) = -\frac{1}{2\pi} \log \left(\frac{\left| \vec{x} - \vec{\xi} \right|}{\left| \vec{x} - \vec{\xi}^* \right|} \right)$$

is the solution of

$$-(G_{xx} + G_{yy}) = \delta(\vec{x} - \vec{\xi}) \qquad \text{in } -\infty < x < \infty, \qquad y > 0$$
$$G(\vec{x}, \vec{\xi}) = 0 \qquad \text{on } y = 0.$$

$$\begin{split} -\nabla^2 G &= -\nabla^2 \left[-\frac{1}{2\pi} \log \left(\frac{\left| \vec{x} - \vec{\xi} \right|}{\left| \vec{x} - \vec{\xi}^* \right|} \right) \right] \\ &= -\nabla^2 \left[-\frac{1}{2\pi} \log \left| \vec{x} - \vec{\xi} \right| - \left(-\frac{1}{2\pi} \log \left| \vec{x} - \vec{\xi}^* \right| \right) \right] \\ &= -\nabla^2 \left[G_F \left(\left| \vec{x} - \vec{\xi} \right| \right) - G_F \left(\left| \vec{x} - \vec{\xi}^* \right| \right) \right] \end{split}$$

where

$$G_F(r) = -\frac{1}{2\pi} \log r$$

is the free-space Green's function in two dimensions. By definition,

$$-\nabla^2 G_F\Big(\Big|\vec{x} - \vec{\xi}\Big|\Big) = \delta\Big(\vec{x} - \vec{\xi}\Big) \quad \text{and} \quad -\nabla^2 G_F\Big(\Big|\vec{x} - \vec{\xi^*}\Big|\Big) = \delta\Big(\vec{x} - \vec{\xi^*}\Big).$$

But $\delta(\vec{x} - \vec{\xi^*}) = 0$ for y > 0 since $\xi^* = (\xi, -\eta)$ where $\eta > 0$. Thus,

$$-\nabla^2 G = -\nabla^2 G_F\left(\left|\vec{x} - \vec{\xi}\right|\right) + \nabla^2 G_F\left(\left|\vec{x} - \vec{\xi}^*\right|\right)^{-0} = \delta\left(\vec{x} - \vec{\xi}\right) \quad \text{for } (x, y) \in \{(x, y) : y > 0\}$$

When y = 0, $\left| \vec{x} - \vec{\xi} \right| = \left| \vec{x} - \vec{\xi^*} \right|$, thus

$$\frac{\left|\vec{x} - \vec{\xi}\right|}{\left|\vec{x} - \vec{\xi^*}\right|} = 1 \qquad \Longrightarrow \qquad G\left(\vec{x}, \vec{\xi}\right) = -\frac{1}{2\pi}\log(1) = 0$$

UC Davis Applied Mathematics (MAT207B)

(b) Write down the Green's function representation for the solution u(x, y) of the Dirichlet problem for the Laplacian in the upper half plane

$$u_{xx} + u_{yy} = 0$$
 in $-\infty < x < \infty$, $y > 0$
 $u(x,0) = f(x)$.

You can assume that $u(x, y) \to 0$ sufficiently rapidly as $|(x, y)| \to \infty$.

We utilize Green's identity

$$\int_{\Omega} \left(u \nabla^2 v - v \nabla^2 u \right) d\vec{\xi} = \int_{\partial \Omega} \left(u \frac{\partial v}{\partial n \left(\vec{\xi} \right)} - v \frac{\partial u}{\partial n \left(\vec{\xi} \right)} \right) ds \left(\vec{\xi} \right)$$

by setting $\Omega = \{(x, y) : y > 0\}$ and v = G where G is the free-space Green's function which solves $-\nabla^2 G = \delta(x)$. Thus,

$$\int_{\Omega} \left(u \nabla^2 G - G \nabla^2 u \right) d\vec{\xi} = \int_{\partial \Omega} \left(u \frac{\partial G}{\partial n \left(\vec{\xi} \right)} - G \frac{\partial u}{\partial n \left(\vec{\xi} \right)} \right) ds \left(\vec{\xi} \right)$$

However, u is harmonic in Ω , i.e. $\nabla^2 u \equiv 0$ for $(x, y) \in \Omega$, and $-\nabla^2 G = \delta(\vec{x} - \vec{\xi})$, i.e.

$$\int_{\Omega} \left(u \nabla^2 G - \mathcal{G} \nabla^2 \widehat{u}^{-0} \right) d\vec{\xi} = -\int_{\Omega} u \left(\vec{\xi} \right) \delta \left(\vec{x} - \vec{\xi} \right) d\vec{\xi} = -u(\vec{x})$$

Also, the Dirichlet condition $u(\vec{x}) = f(x)$ on $\partial\Omega$ give us $G \equiv 0$ for y = 0 (i.e. for $(x, y) \in \partial\Omega$). Thus,

$$-u(\vec{x}) = \int_{\partial\Omega} \left(u \frac{\partial G}{\partial n(\vec{\xi})} - G \frac{\partial u}{\partial n(\vec{\xi})} \right) ds(\vec{\xi}) = \int_{\partial\Omega} u(\vec{\xi}) \frac{\partial G(x, y; \xi, \eta)}{\partial n(\vec{\xi})} ds(\vec{\xi})$$

Finally, the unit normal vector on the boundary of Ω is $-\eta$, and thus

$$u(\vec{x}) = \int_{\mathbb{R}} u(\vec{\xi}) \frac{\partial G(x, y; \xi, \eta)}{\partial \eta} d\xi$$

(c) Use the Green's function representation to show that

$$u(x, y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(t)}{(x - t)^2 + y^2} dt.$$

Rewrite $G(\vec{x}; \vec{\xi}) = G(x, y; \xi, \eta)$. Then

$$G(\vec{x}, \vec{\xi}) = \frac{1}{2\pi} \log \left(\frac{\left| \vec{x} - \vec{\xi} \right|}{\left| \vec{x} - \vec{\xi}^* \right|} \right) = -\frac{1}{4\pi} \log \left(\frac{(x - \xi)^2 + (y - \eta)^2}{(x - \xi)^2 + (y + \eta)^2} \right)$$

$$\implies \frac{\partial G}{\partial \eta} \bigg|_{\eta = 0} = \left[-\frac{1}{4\pi} \cdot \frac{\left[(x - \xi)^2 + (y + \eta)^2 \right] (-2)(y - \eta) - \left[(x - \xi)^2 + (y - \eta)^2 \right] (2)(y + \eta)}{\left((x - \xi)^2 + (y + \eta)^2 \right)^2} \right]_{\eta = 0}$$

$$= -\frac{1}{4\pi} \cdot \frac{\left[(x - \xi)^2 + y^2 \right] (-2y) - \left[(x - \xi)^2 + y^2 \right] (2y)}{\left((x - \xi)^2 + y^2 \right)^2}$$

Sam Fleischer

UC Davis Applied Mathematics (MAT207B)

Winter 2016

$$= -\frac{1}{4\pi} \cdot \frac{1}{(x-\xi)^2 + y^2} \cdot (-4y)$$
$$= \frac{y}{\pi} \frac{1}{(x-\xi)^2 + y^2}$$

Thus,

$$u(x,y) = u(\vec{x}) = \int_{\mathbb{R}} u(\vec{\xi}) \frac{\partial G(x,y;\xi,\eta)}{\partial \eta} d\xi = \frac{y}{\pi} \int_{\mathbb{R}} \frac{u(\vec{\xi})}{(x-\xi)^2 + y^2} d\xi$$

Define $t \coloneqq \xi$ and note $u(\vec{\xi}) = f(\xi)$ when $\eta = 0$. Thus,

$$u(x, y) = \frac{y}{\pi} \int_{\mathbb{R}} \frac{f(t)}{(x - t)^2 + y^2} dt$$