

Tarea 8: Ecuaciones diferenciales

Varela Mancilla Dhyna Guadalupe dvarela2611@gmail.com

29 de mayo 2018

Cada nombre de cada programa fue asignado por el número de problema seguido por el inciso y un nombre general que los identifica.

Problema 1:

Programa **1tayl.f90**: Se resolvió la ecuacion diferencial por el método de Taylor a tercer orden. Los datos se guardaron en **tayl.dat** y se presentan en la figura 1.

$$y' + 2y = t \exp[3t], y(0) = 0 \text{ y } \Delta t = 0.01$$

Figura 1. Gráfica de la solución

Problema 2:

Programa **2eu1.f90**: Se resolvió la ecuación diferencialy" +6y'+9y=0, y(0)=4 y y'(0)=-4 por el método de Euler. Para resolver esta ecuación, se tomo a $y_1=y,y_2=y'$, obteniendo así $y2'=-6y_2-9y_1$, $y_1'=y_2$ con $y_1(0)=4,y_2(0)=-4$ a $\Delta t=0.01$ Los datos se guardaron en **eu1.dat** y se presentan en la figura 2.

Figura 2. Gráfica de la solución $\Delta t = 0.01$

Programa **2eu2.f90**:Se repitió el proceso para $\Delta t=0.001$, los datos se guardaron en **eu2.dat** y se presentan en la figura 3.

Figura 3. Gráfica de la solución a $\Delta t = 0.001$

Problema 3:

Programa **3rk1.f90**: Se resolvió la ecuacion diferencial $y'+2y=t\exp[3t]$, y(0)=0 y $\Delta t=0.01$ por el método de Runge-Kutta de segundo orden (Modificación de Euler). Los datos se guardaron en **rk1.dat** y se presentan en la figura 4.

Física computacional 1

Figura 4. Gráfica de la solución

Programa **3rk2.f90**: Se resolvió la ecuacion diferencial y''+6y'+9y=0, y(0)=4 y y'(0)=-4 por el método de Runge-Kutta de segundo orden (Modificación de Euler). Para resolver esta ecuación, se tomo a $y_1=y,y_2=y'$, obteniendo así $y2'=-6y_2-9y_1$, $y_1'=y_2$ con $y_1(0)=4$, $y_2(0)=-4$ a $\Delta t=0.01$ Los datos se guardaron en **rk2.dat** y se presentan en la figura 5.

Figura 5. Gráfica de la solución $\Delta t = 0.01$

3rk3.f90:Se repitió el proceso para $\Delta t=0.001$, los datos se guardaron en rk3.dat y se presentan en la figura 6.

Figura 6. Gráfica de la solución $\Delta t = 0.001$