<u> SRC – תרגום פקודות אסמבלי</u>

7,10,11,16,17,18,19,25,30,31 – הבאים פנויים עבור קידוד פקודות חדשות Opc

орс	פקודת אסמבלי	הסבר הפקודה	תנאי
1	ld ra, c2	$R[ra] \leftarrow M[c2]$	rb = 0
1	ld ra, c2(<i>rb</i>)	$R[ra] \leftarrow M[c2 + R[rb]]$	$rb \neq 0$
2	ldr ra, c1	$R[ra] \leftarrow M[c1 + PC]$	
3	st ra, c2	$M[c2] \leftarrow R[ra]$	rb = 0
3	st ra, c2(rb)	$M[c2 + R[rb]] \leftarrow R[ra]$	$rb \neq 0$
4	str ra, c1	$M[c1 + PC] \leftarrow R[ra]$	
5	la ra, c2	$R[ra] \leftarrow c2$	rb = 0
5	la ra, c2(<i>rb</i>)	$R[ra] \leftarrow c2 + R[rb]$	$rb \neq 0$
6	lar ra, c1	$R[ra] \leftarrow c1 + PC$	
8	br rb	PC = R[rb]	<i>c</i> 3 < 20 >= 1
8	br <i>zr</i> rb, rc	if(R[rc] = 0) PC = R[rb]	<i>c</i> 3 < 20 >= 2
8	br <i>nz</i> rb, rc	$if(R[rc] \neq 0) PC = R[rb]$	<i>c</i> 3 < 20 >= 3
8	br <i>pl</i> rb, rc	$if(R[rc] \ge 0) PC = R[rb]$	<i>c</i> 3 < 20 >= 4
8	brmi rb, rc	if(R[rc] < 0) PC = R[rb]	<i>c</i> 3 < 20 >= 5
9	brlnv ra	R[ra] = PC	<i>c</i> 3 < 20 >= 0
9	brl ra, rb	R[ra] = PC, $PC = R[rb]$	<i>c</i> 3 < 20 >= 1
9	brlzr ra, rb, <i>rc</i>	R[ra] = PC, $if(R[rc] = 0)PC = R[rb]$	<i>c</i> 3 < 20 >= 2
9	brlnz ra, rb, <i>rc</i>	$R[ra] = PC$, $if(R[rc] \neq 0)PC = R[rb]$	<i>c</i> 3 < 20 >= 3
9	brlpl ra, rb, <i>rc</i>	$R[ra] = PC$, $if(R[rc] \ge 0)PC = R[rb]$	<i>c</i> 3 < 20 >= 4
9	brl <i>mi</i> ra, rb, <i>rc</i>	R[ra] = PC, $if(R[rc] < 0)PC = R[rb]$	<i>c</i> 3 < 20 >= 5
12	add ra, rb, <i>rc</i>	R[ra] = R[rb] + R[rc]	
13	addi ra, rb, c2	R[ra] = R[rb] + c2	
14	sub ra, rb, <i>rc</i>	R[ra] = R[rb] - R[rc]	
15	neg ra,rc	R[ra] = -R[rc]	
20	and ra, rb, rc	R[ra] = R[rb] and $R[rc]$	
21	and <i>i</i> ra, rb, <i>c</i> 2	R[ra] = R[rb] and $c2$	
22	or ra, rb, <i>rc</i>	$R[ra] = R[rb] \ or \ R[rc]$	
23	ori ra, rb, c2	R[ra] = R[rb] or c2	
24	not ra,rc	R[ra] = not(R[rc])	
26	shr ra, rb, <i>c</i> 3	$R[ra] = shift\ right\ of\ R[rb], c3 < 40 > times$	$c3 < 40 > \neq 0$
26	shr ra, rb, rc	$R[ra] = shift \ right \ of \ R[rb], R[rc] < 40 > times$	<i>c</i> 3 < 40 >= 0
27	shra ra, rb, c3	$R[ra] = shift \ right \ arith \ of \ R[rb], c3 < 40 > times$	$c3 < 40 > \neq 0$
27	shra ra, rb, rc	$R[ra] = shift \ right \ arith \ of \ R[rb], R[rc] < 40 > times$	c3 < 40 >= 0
28	shl ra, rb, c3	R[ra] = shift left of $R[rb]$, $c3 < 40 > $ times	$c3 < 40 > \neq 0$
28	shl ra, rb, rc	$R[ra] = shift \ left \ of \ R[rb], R[rc] < 40 > times$	c3 < 40 >= 0
29	shc ra, rb, c3	R[ra] = shift circularly of R[rb], c3 < 40 > times	$c3 < 40 > \neq 0$
29	shc ra, rb, rc	R[ra] = shift circularly of R[rb], R[rc] < 40 > times	c3 < 40 >= 0