

Bluetooth Data Acquisition System

Test Plan

Developed By: (Team #5)

Andy Elliott Arsalan Sabet Sarvestani Jelon Anderson Sam Salin

Version 1.0 November 24th, 2016

Pages:

Test Plan

Table Of Contents

Introduction	3
Relevant Specifications and Requirements	3
Recording of Results	3
Design Documentation	3
Reference Design Documentation	4
Objective Overview	4
Required Resources	4
Test Cases	4
Test Case Descriptions	6

1. Introduction

The purpose of this product test plan is to document how the product will be tested to ensure reliable functionality and meet the engineering requirements specified in the product design specification document.

In the scope of our project. This document addresses the proper testing procedure and verification needed to the design of the BluDAQ communication product. This document contains test plan includes test cases for the hardware, firmware, and mobile application software.

2. Relevant Specifications and Requirements

- 2.1. The system should be able to detect motion within 6 m from the device.
- 2.2. The device must be interfaceable.
- 2.3. The system should be able to detect temperature in the range of -40 to 85 oC.
- 2.4. The system should be able to detect humidity in the range of 0 to 100% relative humidity.
- 2.5. The system should be able to detect pressure in the range of 300 to 1100 hPa.
- 2.6. The system should be able to detect light in the range of 400 to 500nm wavelength.
- 2.7. The system must be able to operate wirelessly with the use of a battery.
 - 2.7.1. The battery should be rechargeable.
 - 2.7.2. If the battery is not rechargeable it should be a commonly available battery type (AA, AAA, 9v, etc.).

3. Recording of Results

For the purpose of the practicum project all test result documentation will be noted in the individual test descriptions under Pass, Fail, N/A, and Comments. If further space is required, the person conducting the test can use an additional page with clear comments indicating which test and what step the specific comment is referring to.

4. Design Documentation

If needed, please refer to the following design documentation for more information.

BluDAQ practicum project Github page: https://github.com/ssalin/Practicum BluDAQ Eagle schematic file:

https://github.com/ssalin/Practicum/blob/Master/Hardware/schematics/BlueDaq_V1.0.sch

https://github.com/ssalin/Practicum/blob/Master/Hardware/schematics/BlueDag V1.0.brd

5. Reference Design Documentation

Requirements Specification:

https://github.com/ssalin/Practicum/wiki/Requirements-Specification

SparkFun Power Cell - LiPo Charger/Booster: https://www.sparkfun.com/products/11231 Relevant Data Sheets:

https://github.com/ssalin/Practicum/tree/Master/Hardware/Data%20Sheets

6. Objective Overview

The objective of these tests is to do a parametric test to verify power parameters such as input voltages from USB and LiPo battery. Additionally, functional testing will also occur to test for the various functionality of the overall system such as Bluetooth connectivity and sensor capabilities along with firmware testing.

7. Required Resources

- 7.1. At least one assembled BluDAQ PCB (more for concurrent testing) with battery and charger
- 7.2. Personnel Training and Expertise
 - 7.2.1. Ability to use digital multimeter
 - 7.2.2. Create test scripts
 - 7.2.3. Understand schematics and PCB layouts
- 7.3. Equipment
 - 7.3.1. Digital multimeter
 - 7.3.2. Eagle CAD
 - 7.3.3. Thermometer
 - 7.3.4. Barometer
 - 7.3.5. Humidity sensor
- 7.4. Environment
 - 7.4.1. Temperature testing
 - 7.4.1.1. 4 °C and 21 °C (room temperature)
 - 7.4.2. Humidity and pressure testing will test against the current humidity and pressure for when the test is occurring

8. Test Cases

- 8.1. Power Testing
 - 8.1.1. Power with 9v battery

- 8.1.2. Power directly with Micro USB
- 8.1.3. Power directly LiPo battery
- 8.1.4. Recharge LiPo battery and power system
- 8.1.5. Battery Lifetime?
- 8.2. Bluetooth Connectivity
 - 8.2.1. Detect Bluetooth signal from BluDAQ by device
 - 8.2.2. Establish connection between BluDAQ and app
- 8.3. App Testing
 - 8.3.1. Verify authentication with BluDAQ
 - 8.3.2. Display environmental sensor outputs
 - 8.3.2.1. Temperature
 - 8.3.2.2. Pressure
 - 8.3.2.3. Humidity
 - 8.3.2.4. Light
 - 8.3.2.5. Motion
 - 8.3.3. Disable to connection with BlueDAQ
- 8.4. Functional Testing
 - 8.4.1. Temperature sensor
 - 8.4.2. Pressure sensor
 - 8.4.3. Humidity sensor
 - 8.4.4. Light sensor
 - 8.4.5. Motion sensor
- 8.5. Firmware Testing
 - 8.5.1. EEPROM functionality
 - 8.5.2. Automation and authenticate struct updates
 - 8.5.3. Host Authentication

9. Test Case Descriptions

Test Writer:Sam Salin			
Test Case Name:	Test ID#:	Blu-PWR-01	
the power supplies need to be thoroughly and completely before they are connected to the rest of the board in order to ensure that the rest of the chipset does not catch fire, explode, or otherwise die from being exposed to incorrect voltage.		Type:	White Box
Test Information			
Name of Tester:		Date:	
Hardware Ver:	BlueDAQ Version 3	Time:	

Setup: Board should be assembled entirely except for the jumper resistors that connect the power supply to the VCC rails.

Step	Action	Expected Result	Pass	Fail	N / A	Comments
1	Make sure Vcc is 5v when running off USB. test both with and without LiPo connected	Vcc should be 5v				
2	Make sure Vcc is 5v when running off LiPo, disconnected from usb	Vcc should be 5v				
3	Make sure Vcc is 5v when powered by 9v battery	Vcc should be 5v				

Test Writer: Jelon Anderson							
Test Case Name:		Overall Firmware			Test ID#:	Blu-FWR-01	
	iption:	Functional testing of system firmware.				White Box	
		Test serial communication with target					
		device. Utilize MCU EEPROM to					
		authenticate access			on t		
		load and update sy					
			sterri ilaț	ys 10 C	OHILI	OI	
Test li	nformation	relays.					
	Name of Tester: Date:						
Firmw	are Ver:	Rev 1				Time:	
Setup	: Using Arduino na	no and serial window	to verify	/ test r	esul	ts.	
Step	Action	Expected Result	Pass	Fai	N	Comments	
Отор	7100.011			1	,		
				•	A		
1	Verify Host	Program should					
'	Authentication.	grant access if					
		authentication					
	By providing						
	valid and invalid	host key					
	hosts.	matches.					
2	Verify load and	Program should					
	update	be able to read					
	automation from	and write from					
	EEPROM.	static EEPROM					
	Check status	address.					
	after EEPROM	Elements will be					
	execution	parsed out to set					
		up INTC					
		oscillation					
3	INTC Detection.	Main loop					
	Verify interrupt	execute when					
	occurs and	global run flag is					
	change	set to true.					
	program flag for						
	loop execution.						
4	Test	The program					
-	communication	should be able to					
	with BME chip	read temp,					
	via I ² C bus	pressure,					
	via i O bus	humidity values.					
		These values					
		should be the					
		same as the					
		environment					
		within the					
		device's accuracy					
		tolerance.					