Prvé skúsenosti so spracovaním raw GNSS dát zo zariadení so systémom Android

Peter Špánik, Ján Hefty, Ľubomíra Gerhátová, Juraj Papčo¹

¹Katedra geodetických základov, Stavebná fakulta, Slovenská technická univerzita v Bratislave, email⊠: peter.spanik@stuba.sk, jan.hefty@stuba.sk, lubomira.gerhatova@stuba.sk, jurai.papco@stuba.sk

Družicové metody v geodezii a katastru Fakulta stavební VUT v Brňe. 1. 2. 2018

Raw (angl. surové, prvotné) GNSS dáta

Čo rozumieme pod pojmom raw dáta?

- pod termínom raw (angl. surové) dáta rozumieme merania získané spracovaním prijímaného družicového signálu,
- predstavujú vstup do algoritmu na určovanie polohy,
- zvyčajne pod termínom raw dáta rozumieme kódové merania získané koreláciou pseudonáhodných kódov (pseudovzdialenosti), fázové merania a dopplerovské merania posunu prijímanej frekvencie.

Na čo sú raw dáta dobré?

 ak máme prístup k raw dátam môžeme ich modifikovať (napr. uplatniť korekcie z atmosféry, ionosféry alebo dáta filtrovať, prípadne selektovať na základe vybraných kritérii) ešte pred ich použitím v algoritme na určovanie polohy.

Prístup k raw dátam na OS Android

- oznámenie prístupu k raw dátam z interných GNSS chipsetov mobilných zariadení s OS Android bolo oznámené na konferencii Google I/O v máji 2016,
- raw dáta uvoľnené s novou verziou OS Android Nougat (API v.24),
- implementácia prístupu k raw dátam je prostredníctvom aplikačného rozhrania (frameworku) android.location, v ktorom pribudli nové triedy:
 - GnssClock implementácia funkcií interných hodín,
 - GnssMeasurement implementácia GNSS meraní,
 - GnssNavigationMessage implementácia bitov nav. správy,
- OS Android je postavený na programovacom jazyku Java a celá dokumentácia týchto tried je dostupná na:
 - www.developer.and roid.com/reference/and roid/location/package-summary.html

Výpočet pseudovzdialenosti

Pseudovzdialenosť – je geometrická vzdialenosť medzi družicou a prijímačom zaťažená vplyvom nesúladu časovej stupnice systémového času GNSS a časovej stupnice hodín prijímača.

$$R_r^s = (t_r - t^s) \cdot c \tag{m}$$

$$t_r = \mathsf{TimeNanos} - (\mathsf{FullBiasNanos} - \mathsf{BiasNanos}) \times$$
 (ns)

 $t^s = \mathsf{ReceivedSvTimeNanos} + \mathsf{GPSweek} \times \mathsf{NanosecondsInWeek}$ (ns)

Prečo nie sú dostupné priamo pseudovzdialenosti?

- v prijímanom signáli je okrem pseudonáhodného kódu (PRN) namodulovaná aj navigačná správa. Modulačná rýchlosť kódu PRN je pre GPS 1.023 Mbit/s, nav. správa je modulovaná rýchlosťou 50 bit/s, t.j. výrazne pomalšie,
- v podmienkach so zhoršeným prijímom signálu je niekedy nemožné spoľahlivo dekódovať bity navigačnej správy. Dôsledkom je, že prijímač nevie dekódovať hodnotu TOW - Time of Week, ktorá je vysielaná v každom subframe nav. správy (každých 6 sekúnd),
- informácia o úrovni synchronizácie je dostupná pomocou metódy getState triedy GnssMeasurement, ktorá vracia celé číslo,
- použiteľné sú len merania s bitmi TOW_DECODED alebo GLO_TOD_DECODED nastavenými na hodnotu 1.

Informácia o úrovni synchronizácie signálu

	State	GLO_TOD_KNOWN	TOW_KNOWN	SBAS_SYNC	GAL_E1B_PAGE_SYNC	GAL_E1C_2ND_CODE_LOCK	GAL_E1BC_CODE_LOCK	BDS_D2_SUBFRAME_SYNC	BDS_D2_BIT_SYNC	GLO_TOD_DECODED	GLO_STRING_SYNC	SYMBOL_SYNC	MSEC_AMBIGUOUS	TOW_DECODED	SUBFRAME_SYNC	BIT_SYNC	CODE_LOCK
GNSS	Bit no.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPS	16	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	17	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
	39	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1
	47	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
	51	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1
GLONASS	49	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1
	99	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1
	227	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1
	16	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
GALILEO	1074	0	0	0	0	0	1	0	0	0	0	1	1	0	0	1	0
	5162	0	0	0	1	0	1	0	0	0	0	1	0	1	0	1	0

Ďalšie dostupné merania

Dopplerovské merania

- dostupné pomocou getPseudorangeRateMetersPerSecond
- nie sú to priamo merania frekvenčného posunu, ale hodnoty radiálnej rýchlosti družice voči prijímaču (tieto veličiny sú ekvivalentné),
- návratové hodnoty sú v m/s a sú kladné v prípade, ak sa družica od prijímača vzďaľuje (t.j. dopplerovský posun je záporný).

Fázové merania

- dostupné pomocou metódy getAccumulatedDeltaRangeMeters
- návratové hodnoty sú vyjadrené v metroch a zodpovedajú naakumulovanej/nasčítanej hodnote pseudovzdialenosti od okamihu prvého merania,
- dostupnosť hodnôt je značne limitovaná technológiou duty-cycling, ktorá cyklicky vypína a zapína GNSS chipset, čím znemožňuje kontinuálne sledovanie fázy družicového signálu.

Ukážky raw dát zo smartfónu Huawei P10

Zobrazenie rozdielov pseudovzdialeností medzi jednotlivými epochami spolu s hodnotami dopplerovských meraní. Diferencie pseudovzdialeností sú výrazne zašumenejšie ako dopplerovské merania, ktoré by tak mohli byť využité na vyhladenie pseudovzdialeností.

Dostupnosť fázových meraní

Ukážka dostupnosti fázových meraní v závislosti od epochy merania. Periódy dostupných a nedostupných fázových meraní sa nepravidelne striedajú, pričom najdlhšie sú fázové merania dostupné bez prerušenia asi 300 sekúnd (5 minút).

Porovnanie SNR pre Huawei P10 a geodetický prijímač

Pri tomto meraní bol smartfón položený na skale na Námestí Slobody v Bratislave a geodetický prijímač bol vzdialený asi 30 metrov. Obe zariadenia mali veľmi podobný málo zatienený horizont. Priemerné hodnoty SNR sú pre Huawei P10 menšie o $10-15~{\rm dBHz}.$

Hodnoty SNR pre Huawei P10

Pri tomto meraní bol smartfón položený na hlave piliera asi 1.2 m nad povrchom pochôdznej strechy bloku A SvF STU. Výrazné oscilácie sú pravdepodobne spôsobené odrazmi od okolitých objektov (národná banka, strojovňa výťahu, samotná strecha). Výrazný vplyv odrazených signálov je spôsobený použitím málo kvalitných GNSS antén v smartfónoch.

Vyhladzovanie pseudovzdialeností

Bežne sa používajú na vyhladzovanie pseudovzdialeností fázové merania (tzv. *Hatch filter*). Namiesto týchto hodnôt je možné využiť aj dopplerovské merania, čím sa vyhladzovanie stane omnoho robustnejšie, pretože tie nemajú cycle-slipy. Vyhladzovanie má potom tvar:

$$\hat{R}_{i}^{s} = \frac{1}{n} R_{i}^{s} + \frac{n-1}{n} \left(\hat{R}_{i-1}^{s} + D_{i}^{s} \right)$$

kde jednotlivé premenné sú:

- \hat{R}_i^s vyhladená hodnota pseudovzdialenosti v epoche i,
- ullet R_i^s pôvodná pseudovzdialenosť v epoche i,
- D_i^s dopplerovské meranie v epoche i,
- n dĺžka vyhladzovacieho okna.

Systematický efekt vyhladzovania

Určenie polohy smartfónu z raw dát

Na určenie polohy boli využité MATLAB skripty zverejnené Googlom, ktoré sú voľne dostupné na adrese:

https://github.com/google/gps-measurement-tools

Základné charakteristiky – absolútne určenie polohy:

- využitá MNŠ s aplikovaním váh meraní,
- váhy boli určené ako $w_i=1/\sigma_i$, resp. $w_i=(k/n+k)/\sigma_i$ (k je postupne narastajúca dĺžka filtra), pričom σ_i sa získala ako návratová hodnota z metódy getReceivedSvTimeUncertainityNanos,
- využité len kódové merania (pôvodné aj vyhladené),
- doplnené modely ionosféry (Klobuchar) a troposféry (Niell).

Základné charakteristiky – absolútne určenie polohy:

využité dvojnásobné diferencie kódových meraní.

Výsledky spracovania pre n=50

Porovnanie spracovania pre rôzne n

Numerické porovnanie výsledkov

Porovnanie výsledkov pre rozličné varianty výpočtu s $n=50\,$

	WLS Pr	WLS PrSm	WLS PrSmITr	WLS DD
rozptyl (N)	28.09	8.54	8.48	6.73
rozptyl (E)	28.61	10.09	10.23	7.44
posun (N)	0.02	0.44	0.05	-0.09
posun (E)	2.32	1.40	1.00	0.10
$\sigma_{ m N}$	4.95	1.24	1.23	1.24
$\sigma_{ m E}$	5.66	1.45	1.50	1.12
$\sigma_{ m NE}$	7.52	1.91	1.94	1.67

Zistenia, závery a námety

- využitím raw GNSS meraní zo smartfónu Huawei P10 sme dosiahli výsledky na úrovni presnosti, ktorú je možné dosiahnuť aj výstupom z interného GNSS chipsetu (interný GNSS vs. naše len GPS),
- prínos ionosférických a troposférických korekcií sa zdá byť zanedbateľný (súvislosť s veľmi zašumenými kódovými meraniami),
- funkcia duty-cycling znemožňuje získanie dlhšieho záznamu fázových meraní, a tým aj využitie iných algoritmov (PPP, RTK),
- výhľadové využitie staršieho tabletu HTC Google Nexus 9, ktorý má vypnutú funkciu duty-cycling,
- nedostatočná kvalita meraní je spôsobená najmä málo kvalitnou anténou v smartfóne (lineárne polarizovaná anténa, geodetické antény majú RHCP polarizáciu). Zistiť možnosti pripojenia externej GNSS antény na interný chip zariadenia s OS Android.

Súčasné aplikácie využívajúce raw GNSS dáta

- Geo++ RINEX Logger zaznamenáva dostupné raw merania vo formáte RINEX, možné meniť formát, hlavičku. Možnosti voľby aké družice a s akým stavom synchronizáciou sa majú ukladať,
- G-RitZ Logger podobné ako Geo++ RINEX Logger, umožňuje aj záznam iných senzorových dát, čo môže byť výhoda pri využívaní fúznych algoritmov (napr. GNSS + INS),
- PPP WizLite využíva raw GNSS merania na určenie polohy pomocou PPP, implementovaný algoritmus CNES PPP-Wizard,
- RTCM Converter umožňuje konverziu raw dát na RTCM formát, ktorý posiela na existujúci NTRIP caster.

Ďakujem za pozornosť!

Kontakty:

peter.spanik@stuba.sk, jan.hefty@stuba.sk lubomira.gerhatova@stuba.sk, juraj.papco@stuba.sk

Prezentácia je dostupná na adrese:

https://spanikp.github.io/presentations/GNSS-Brno-2018.pdf