中山大学本科生期末考试

考试科目:《线性代数》(B卷)

学年学期: 2021-2022 学年第 1 学期 姓 名: _____

学 院/系:	数学学院		学	号:		
考试方式:	闭卷		年级	专业:		
考试时长:	120 分钟		班	别:		
警示	中山大学授予学士					士学位."
	一以下为试题区域,共	10 道大题, 总	分 100 分,考	生情在答题	民上作答———	
一、判断题。		1/1-14				
5 0 1 WH	阶方阵,满足 <i>A</i> =	0, 则 A *	=0.			()
解析:	\ 0	1				
$ A^* = A ^{n-1}$			Y32			
2. 设 A、 B 均	匀为 n 阶方阵,则 (.	(A+B)(A-B)	$B)=A^2-1$	3^{2} .		(\times)
解析:	0			06		
(A+B)(A-	$\mathbf{B}) = \mathbf{A}^2 - \mathbf{B}^2 + \mathbf{B} \times$	$A - A \times B =$	$\neq A^2 - B^2(2)$	矩阵乘法不	具有交换律)	
3. 若 A 、 B 为同型矩阵,则 A 与 B 等价当且仅当 $R(A) = R(B)$.						()
4. 假设 n 维向	可量 a_1 是 a_2 与 a_3 的	的线性组合,	则 a_3 必是	a_1 与 a_2 的	线性组合。	(x)
5. 设 <i>A</i> 为 <i>n</i> 解析:	阶方阵,则 <i>A</i> 与 <i>A</i> ^T	的特征值相	等。		*	(√)
$ A^T - \lambda E =$	$ A^T - \lambda E^T = (A -$	$-\lambda E)^T = A$	$ -\lambda E $			
	x a a a	2 1 2	2			
	$a x a \dots a$	a				
二、计算行列	列式 a a x d		写出必要的	步骤。		
	i i i i a a a s	:		S C()	16	
	$a a a \dots a a \dots a a \dots a a$	x		ATINI) 4.	
解:	X 0 · · ·		- 1	XEDI) 4 . ´ (×6) ^{.~}	
	000	ー 	O A T	[xt cn	-1/a] (X	-W)^7-

将第 i 行减去第一行 ($i = 2, 3 \cdots n$), 得到

$$\begin{vmatrix} x & a & a & \dots & a \\ a - x & x - a & 0 & \dots & 0 \\ a - x & 0 & x - a & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ a - x & 0 & 0 & \dots & x - a \end{vmatrix}$$

再将第一列依次加上第 i 列 ($i = 2, \dots, n$)

$$\begin{vmatrix} x + (n-1)a & a & a & \dots & a \\ 0 & x - a & 0 & \dots & 0 \\ 0 & 0 & x - a & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & x - a \end{vmatrix}$$

所以行列式的值为 $[x + (n-1)a](x-a)^{n-1}$

所以行列式的值为
$$[x + (n-1)a](x-a)^{n-1}$$
 三、求 $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 4 & -2 \\ 5 & -4 & 1 \end{pmatrix}$ 的逆矩阵,写出必要的步骤。(10 分)解:

|A| = 2, 故 A^{-1} 存在.

$$A_{11} = -4$$
, $A_{21} = 2$, $A_{31} = 0$
 $A_{12} = -13$, $A_{22} = 6$, $A_{32} = -1$
 $A_{13} = -32$, $A_{23} = 14$, $A_{33} = -2$

故

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \mathbf{A}^* = \begin{pmatrix} -2 & 1 & 0 \\ -\frac{13}{2} & 3 & -\frac{1}{2} \\ -16 & 7 & -1 \end{pmatrix}$$

四、设
$$AP = PB$$
, 其中 $P = \begin{pmatrix} -1 & -4 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$, 求 $E + A + A^2 + A^3 + A^4 + A^5$.

解:

$$AP = PB$$

$$APP^{-1} = A = PBP^{-1}$$

$$P = \begin{bmatrix} -1 & -4 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$P^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 4 \\ -1 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ -1 & -1 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 3 & 4 \\ -1 & -2 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 3 & 4 \\ -1 & -2 \end{bmatrix}^{2} = \begin{bmatrix} 5 & 4 \\ -1 & 0 \end{bmatrix}$$

$$A^{4} = \begin{bmatrix} 3 & 4 \\ -1 & -2 \end{bmatrix}^{3} = \begin{bmatrix} 11 & 12 \\ -3 & -4 \end{bmatrix}$$

$$A^{5} = \begin{bmatrix} 3 & 4 \\ -1 & -2 \end{bmatrix}^{4} = \begin{bmatrix} 21 & 20 \\ -5 & -4 \end{bmatrix}$$

$$A^{5} = \begin{bmatrix} 3 & 4 \\ -1 & -2 \end{bmatrix}^{5} = \begin{bmatrix} 43 & 44 \\ -11 & -12 \end{bmatrix}$$

$$E + A + A^{2} + A^{3} + A^{4} + A^{5} = \begin{bmatrix} 84 & 84 \\ -21 & -21 \end{bmatrix}$$

解:

由于系数矩阵是方阵, 由克拉默法则知, 它有唯一解的充要条件是系数行列式 $\det \mathbf{A} \neq 0$.

$$\det \mathbf{A} = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 1 - \lambda \\ 1 & 1 & \lambda \end{vmatrix}$$

$$= (1 - \lambda) \begin{vmatrix} \lambda & 1 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} \lambda & 2 & 1 \\ 0 & 0 & 1 \\ 1 & 1 + \lambda & \lambda \end{vmatrix}$$

$$= (\lambda - 1)^{2}(\lambda + 2)$$

$$\hat{\mathbf{x}} 3 \bar{\mathbf{y}} + 7$$

即当 $\lambda \neq 1$, 且 $\lambda \neq -2$ 时, det $\mathbf{A} \neq 0$, 所以此时方程组有唯一解。 当 $\lambda = 1$ 时, 方程组所对应的增广矩阵可化为

即当
$$\lambda \neq 1$$
, 且 $\lambda \neq -2$ 时, det $A \neq 0$, 所以此时方程组有唯一解。 $0 \neq 1$ 计 0

$$\begin{cases} x_1 = 1 - x_2 - x_3, \\ x_2 = x_2, \\ x_3 = x_3. \end{cases}$$

令 $x_2 = c_1, x_3 = c_2$,并把上式写成向量形式的解

$$x = c_1 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} (c_1, c_2 为任意实数).$$

六、设向量组 $\alpha_1 = (1,1,3,1)^T, \alpha_2 = (-1,1,-1,3)^T, \alpha_3 = (5,-2,8,-9)^T, \alpha_4 = (-1,3,1,7)^T,$ 求该向量组的一个最大无关组并用它表示其余向量。

以向量组为列向量组成 A. 应用初等行变换化为最简形式.

$$A = \begin{pmatrix} 1 & -1 & 5 & -1 \\ 1 & 1 & -2 & 3 \\ 3 & -1 & 8 & 1 \\ 1 & 3 & -9 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 5 & -1 \\ 0 & 2 & -7 & 4 \\ 0 & 2 & -7 & 4 \\ 0 & 4 & -14 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 5 & -1 \\ 0 & 1 & -\frac{7}{2} & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & \frac{3}{2} & 1 \\ 0 & 1 & -\frac{7}{2} & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = B,$$

可知, α_1 , α_2 为向量组的一个极大无关组。 所以 $\alpha_3 = \frac{3}{2}\alpha_1 - \frac{7}{2}\alpha_2$, $\alpha_4 = \alpha_1 + 2\alpha_2$

七、已知四元非齐次线性方程组的系数矩阵的秩为 3, $\alpha_1,\alpha_2,\alpha_3$ 为它的三个解,且满足 $\alpha_1 = (1, -1, 2, -3)^T$, $\alpha_2 + 2\alpha_3 = (4, 6, 3, 2)^T$, 求该线性方程组的通解。

解:

而 R(A) = 3。于是 n - R(A) = 4 - 3 = 1,故 Ax = 0 的基础解系有一个向量。(2 分) $A[(\alpha_2 + 2\alpha_3) - 3\alpha_1] = b + 2b - 3b = 0,$

所以通解为
$$c\begin{pmatrix} 1\\9\\-3\\11\end{pmatrix} + \begin{pmatrix} 1\\2\\-3\\11\end{pmatrix} + \begin{pmatrix} 1\\2\\-3\end{pmatrix}$$
 λ^2+3-1 λ^2+3-1 λ^2+3-1

八、设三阶矩阵A的特征值为1,2,3,对应特征值1

$$(1,0,1)^T$$
, $a_3 = (0,1,1)^T$, 求矩阵 A_{\circ}

$$\begin{pmatrix} a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} + \lambda - 4$$

$$\therefore \mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 1 & 2 \\ -2 & -1 & 4 \end{pmatrix}$$

九、求正交变换 x = Py, 将二次型 $f(x_1, x_2, x_3) = x_1^2 - x_3^2 - 4x_1x_2 - 4x_2x_3$ 化为标准型, 并写出该标准型。

$$|A - \lambda E| = \begin{vmatrix} 1 - \lambda & -2 & 0 \\ -2 & -\lambda & -2 \\ 0 & -2 & -1 - \lambda \end{vmatrix} = \lambda(3 - \lambda)(3 + \lambda)$$

解得特征值 $\lambda_1 = 0$, $\lambda_2 = 3$, $\lambda_3 = -3$ 对应于 $\lambda_1 = 0$ 求解 Ax = 0, 由

$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 0 & -2 \\ 0 & -2 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix}$$

解得一个特征向量为

$$\beta_1 = \left(\begin{array}{c} -1 \\ -\frac{1}{2} \\ 1 \end{array} \right)$$

对应于 $\lambda_2 = 3$ 求解 (A - 3E)x = 0, 由

$$A - 3E = \begin{pmatrix} -2 & -2 & 0 \\ -2 & -3 & -2 \\ 0 & -2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

解得一个特征向量为

$$\beta_2 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

对应于 $\lambda_3 = 3$ 求解 (A + 3E)x = 0, 由

$$A + 3E = \begin{pmatrix} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$
解得一个特征向量为
$$\beta_3 = \begin{pmatrix} \frac{1}{2} \\ 1 \\ 1 \end{pmatrix}$$
的位化得

$$\beta_3 = \begin{pmatrix} \frac{1}{2} \\ 1 \\ 1 \end{pmatrix}$$

单位化得

$$p_{1} = \frac{\beta_{1}}{||\beta_{1}||} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \\ \frac{2}{3} \end{pmatrix}$$

$$p_{2} = \frac{\beta_{2}}{||\beta_{2}||} = \begin{pmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \end{pmatrix}$$

$$p_{3} = \frac{\beta_{3}}{||\beta_{3}||} = \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$$

$$P^{-1}AP = P^{T}AP = \Lambda = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

从而作正交变换 x = Py 二次型化为标准型

$$3y_2^2 - 3y_3^2$$

十、设 n 维非零列向量 $\alpha_1, \alpha_2, \dots, \alpha_n$ 满足对于任意的 $i \neq j$, 有 $\alpha_i^T A \alpha_j = 0$, 其中 A 为实对 称正定矩阵,证明向量组 $\alpha_1, \alpha_2, ..., \alpha_n$ 线性无关。解:

设存在一组数 k_1, k_2, \dots, k_n 满足 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_n\alpha_n = O$,

取任意一个 α_i 在等式两边同左乘 $\alpha_i^T A$

得到 $\alpha_i^T A k_1 \alpha_1 + \dots + \alpha_i^T A k_i \alpha_i + \dots + \alpha_i^T A k_n \alpha_n = 0(*)$,

根据题意 $\alpha_i^T A \alpha_i = 0 (i \neq j, i, j = 1, 2, \dots, n),$

所以 (*) 式可化为 $k_1 \alpha_i^T A \alpha_1 + \dots + k_i \alpha_i^T A \alpha_i + \dots + k_n \alpha_i^T A \alpha_n = k_i \alpha_i^T A \alpha_i = 0$,

又因为 $A \in n$ 阶正定矩阵,

所以对于非零向量 α_i 必有 $\alpha_i^T A a_i \neq 0$,

由此可得 $k_i = 0 (i = 1, 2, \dots, n)$, 所以 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关。