Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

May/June 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

•	
•	
•	
•	
•	•••••••••••••••••••••••••••••••••••••••
•	••••••

2	(a)	Find the first three terms in the expansion, in ascending powers of x, of $(2 + 3x)^4$.	[2]
			••••••
			•••••
	(b)	Find the first three terms in the expansion, in ascending powers of x , of $(1 - 2x)^5$.	[2]
			••••••
			•••••
			•••••
	(c)	Hence find the coefficient of x^2 in the expansion of $(2 + 3x)^4 (1 - 2x)^5$.	[2]
			•••••
			•••••

The diagram shows graphs with equations y = f(x) and y = g(x).

Describe fully a sequence of two transformations which transforms the graph of $y = f(x)$ to $y = g(x)$. [4]

The diagram shows a sector ABC of a circle with centre A and radius 8 cm. The area of the sector is $\frac{16}{3}\pi\text{cm}^2$. The point D lies on the arc BC.

Find the perimeter of the segment <i>BCD</i> .	[4]

The line with equation y = kx - k, where k is a positive constant, is a tangent to the curve with equation

$y = -\frac{1}{2x}.$						
Find, in either	order, the value of	f <i>k</i> and the coor	dinates of the J	point where the	tangent meets the	e curve [5]
						•••••
						•••••
						•••••
			••••••			
			••••••			
						•••••
						•••••
			••••••			•••••
			•••••			•••••
•••••		•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

-	first three terms of an arithmetic progression are $\frac{p^2}{6}$, $2p - 6$ and p .
1)	Given that the common difference of the progression is not zero, find the value of p . [3]
	Using this value, find the sum to infinity of the geometric progression with first two terms
	$\frac{p^2}{6}$ and $2p - 6$. [2]

BLANK PAGE

7 A curve has equation $y = 2 + 3 \sin \frac{1}{2}x$ for $0 \le x \le 4\pi$.

(a)	State greatest and least values of <i>y</i> .	[2]

(b) Sketch the curve. [2]

(c) State the number of solutions of the equation

$$2 + 3\sin\frac{1}{2}x = 5 - 2x$$

for $0 \le x \le 4\pi$.

8 The functions f and g are defined as follows, where a and b are constants.

$$f(x) = 1 + \frac{2a}{x - a} \text{ for } x > a$$

$$g(x) = bx - 2$$
 for $x \in \mathbb{R}$

(a)	Given that $f(7) = \frac{5}{2}$ and $gf(5) = 4$, find the values of a and b . [4]

For the rest of this question, you should use the value of a which you found in (a).

(b)	Find the domain of f^{-1} .	[1]
(c)	Find an expression for $f^{-1}(x)$.	[3]
		••••••
		•••••

Water is poured into a tank at a constant rate of 500 cm³ per second. The depth of water in the tank,

t seconds after filling starts, is hcm. When the depth of water in the tank is hcm, the volume, $V \text{ cm}^3$,

Find the rate at whic	ch h is increasing at the	he instant when $h =$	10 cm.	
	•••••	•••••	***************************************	
			•••••	••••••
		•••••	•••••	
•••••	•••••		•••••	•
••••••	••••••		••••••	,
			•••••	
				,
•••••	•••••		••••••	••••••
	•••••			
			•••••	
			•••••	
•••••				
•••••	•••••		•••••	· • • • • • • • • • • • • • • • • • • •
				,
•••••	••••••		••••••	•••••

	Find the value of V at this instant.
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

The diagram shows part of the curve with equation $y = \frac{4}{(2x-1)^2}$ and parts of the lines x = 1 and y = 1. The curve passes through the points A(1, 4) and $B, (\frac{3}{2}, 1)$.

(a)	Find the exact volume generated when the shaded region is rotated through 360° about the <i>x</i> -axis. [5]

Find the area of this triangle.	
	 ••••••
	 •••••
	 ••••••
	 •••••
	••••••
	 •••••
	•••••
	 •••••
	 •••••
	 •••••
	 •••••

11	The equation of a curve is such that $\frac{dy}{dx} = 6x^2 - 30x + 6a$, where a is a positive constant. The curve has a stationary point at $(a, -15)$.							
	(a)	Find the value of a . [2]						
	(b)	Determine the nature of this stationary point. [2]						
	(b)	Determine the nature of this stationary point. [2]						
	(b)	Determine the nature of this stationary point. [2]						
	(b)	Determine the nature of this stationary point. [2]						
	(b)	Determine the nature of this stationary point. [2]						
	(b)							
	(b)							
	(b)							
	(b)							
	(b)							
	(b)							
	(b)							

(c)	Find the equation of the curve.	[3]
		•••••
		•••••
(d)	Find the coordinates of any other stationary points on the curve.	[2]
		•••••
		•••••

The diagram shows a circle P with centre (0, 2) and radius 10 and the tangent to the circle at the point A with coordinates (6, 10). It also shows a second circle Q with centre at the point where this tangent meets the y-axis and with radius $\frac{5}{2}\sqrt{5}$.

(a)	Write down the equation of circle <i>P</i> .	[1]
		•••••
(b)	Find the equation of the tangent to the circle P at A .	[2]

	ion of the t	two circle	s are 11.						oiı
									• • • •
• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	••••••	•••••		•••••	•••••	••••
• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	••••••	•••••		••••••	•••••	••••
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••	•••••	• • • •
• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••	• • • • • • • • • • • • • • • • • • • •	• • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••
• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	•••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••	••••••	••••••	•••••	•••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	•••••	•••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••
Find the	coordinate	es of the r	oints of i	ntersectio	n of the ts	angent and	circle ()	giving the	 an
		es of the p	points of i	ntersectio	n of the ta	angent and	circle Q ,	giving the a	 an
Find the		es of the p	ooints of i			angent and		giving the a	an
		es of the p	points of i					giving the a	
		es of the p	points of in					giving the a	
		es of the p	points of in					giving the a	
		es of the p	points of in					giving the a	
		es of the p	points of in					giving the a	an
		es of the p	points of in					giving the a	an
		es of the p	points of in					giving the a	
		es of the p	points of in					giving the a	an
		es of the p	points of in					giving the a	an
		es of the p	points of in					giving the a	an
		es of the p	points of in					giving the a	an
		es of the p	points of in					giving the a	an
		es of the p	points of in					giving the a	an
		es of the p	points of in					giving the a	an
		es of the p	points of in					giving the a	an
		es of the p	points of in					giving the a	an

Additional Page

must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.