Birth Processes Birth-Death Processes Relationship to Markov Chains Linear Birth-Death Processes Examples

Birth-death processes

Jorge Júlvez University of Zaragoza Birth Processes

Birth-Death Processes Relationship to Markov Chains Linear Birth-Death Processes

Outline

- Birth Processes
- 2 Birth-Death Processes
- 3 Relationship to Markov Chains
- 4 Linear Birth-Death Processes
- 6 Examples

Birth-Death Processes

Relationship to Markov Chains Linear Birth-Death Processes

Examples

Outline

- Birth Processes

Example: Consider cells which reproduce according to the following rules:

- A cell present at time t has probability $\lambda h + o(h)$ of splitting in two in the interval (t, t + h)
- This probability is independent of age
- Events betweeen different cells are independent

Example: Consider cells which reproduce according to the following rules:

- A cell present at time t has probability $\lambda h + o(h)$ of splitting in two in the interval (t, t + h)
- This probability is independent of age
- Events betweeen different cells are independent

What is the time evolution of the system?

Non-Probabilistic Analysis

- Let n(t) =number of cells at time t
- Let λ be the birth rate per single cell

Thus $\approx \lambda n(t)\Delta(t)$ births occur in $(t, t + \Delta t)$

Then:

$$n(t + \Delta t) = n(t) + n(t)\lambda \Delta t$$

$$\frac{n(t + \Delta t) - n(t)}{\Delta t} = n(t)\lambda \rightarrow \frac{dn}{dt} = n'(t) = n(t)\lambda$$

- The solution of this differential equation is: $n(t) = Ke^{\lambda t}$
- If $n(0) = n_0$ then

$$n(t) = n_0 e^{\lambda t}$$

Probabilistic Analysis

Notation:

- N(t) = number of cells at time t
- $P\{N(t) = n\} = P_n(t)$

Assumptions:

- A cell present at time t has probability $\lambda h + o(h)$ of splitting in two in the interval (t, t + h)
- The probability of more than one birth occurring in time interval (t, t + h) is o(h)

All states are transient

Assumptions:

- Probability of splitting in (t, t + h): $\lambda h + o(h)$
- Probability of more than one split in (t, t + h): o(h)

The probability of birth in (t, t + h) if N(t) = n is $n\lambda h + o(h)$. Then,

$$P_n(t+h) = P_n(t)(1-n\lambda h - o(h)) + P_{n-1}(t)((n-1)\lambda h + o(h))$$

Assumptions:

- Probability of splitting in (t, t + h): $\lambda h + o(h)$
- Probability of more than one split in (t, t + h): o(h)

The probability of birth in (t, t + h) if N(t) = n is $n\lambda h + o(h)$. Then,

$$P_{n}(t+h) = P_{n}(t)(1 - n\lambda h - o(h)) + P_{n-1}(t)((n-1)\lambda h + o(h))$$

$$P_{n}(t+h) - P_{n}(t) = -n\lambda h P_{n}(t) + P_{n-1}(t)(n-1)\lambda h + f(h), \text{ with } f(h) \in o(h)$$

$$\frac{P_{n}(t+h) - P_{n}(t)}{h} = -n\lambda P_{n}(t) + P_{n-1}(t)(n-1)\lambda + \frac{f(h)}{h}$$

Let $h \rightarrow 0$.

$$P'_n(t) = -n\lambda P_n(t) + (n-1)\lambda P_{n-1}(t)$$

Initial condition $P_{n_0}(0) = P\{N(0) = n_0\} = 1$

Probabilities are given by a set of ordinary differential equations.

$$P'_n(t) = -n\lambda P_n(t) + (n-1)\lambda P_{n-1}(t)$$

 $P_{n_0}(0) = P\{N(0) = n_0\} = 1$

Solution

$$P_n(t) = \binom{n-1}{n-n_0} e^{-\lambda n_0 t} (1 - e^{-\lambda t})^{n-n_0} \quad n = n_0, n_0 + 1, \dots$$

where
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
.

Solution

$$P_n(t) = {n-1 \choose n-n_0} e^{-\lambda n_0 t} (1-e^{-\lambda t})^{n-n_0} \quad n=n_0, n_0+1, \dots$$

Observation: The solution can be seen as a negative binomial distribution, i.e., probability of obtaining n_0 successes in n trials. Suppose p = prob. of success and q = 1 - p = prob. of failure. Then, the probability that the first (n-1) trials result in (n_0-1) successes and $(n - n_0)$ failures followed by success on the n^{th} trial is:

$$\binom{n-1}{n-n_0}p^{n_0-1}q^{n-n_0}p=\binom{n-1}{n-n_0}p^{n_0}q^{n-n_0}; \quad n=n_0,n_0+1,\ldots$$

If $p = e^{-\lambda t}$ and $q = 1 - e^{-\lambda t}$, both equations are the same.

- Yule studied this process in connection with the theory of evolution, i.e., population consists of the species within a genus and creation of a new element is due to mutations.
- This approach neglects the probability of species dying out and size of species.
- Furry used the same model for radioactive transmutations.

Pure Birth Processes. Generalization

- In a Yule-Furry process, for N(t) = n the probability of a change during (t, t + h) depends on n.
- In a Poisson process, the probability of a change during (t, t + h) is independent of N(t).

Generalization

- Assume that for N(t) = n the probability of a new change to n+1 in (t, t+h) is $\lambda_n h + o(h)$.
- The probability of more than one change is o(h).

Pure Birth Processes. Generalization

Generalization

- Assume that for N(t) = n the probability of a new change to n+1 in (t, t+h) is $\lambda_n h + o(h)$.
- The probability of more than one change is o(h).

Then,

$$P_{n}(t+h) = P_{n}(t)(1 - \lambda_{n}h) + P_{n-1}(t)\lambda_{n-1}h + o(h), \quad n \neq 0$$

$$P_{0}(t+h) = P_{0}(t)(1 - \lambda_{0}h) + o(h)$$

$$\Rightarrow P'_{n}(t) = -\lambda_{n}P_{n}(t) + \lambda_{n-1}P_{n-1}(t)$$

$$P'_{0}(t) = -\lambda_{0}P_{n}(t)$$

Equations can be solved recursively with $P_0(t) = P_0(0)e^{-\lambda_0 t}$

Pure Birth Process. Generalization

Let the initial condition be $P_{n_0}(0) = 1$.

The resulting equations are:

$$P'_{n}(t) = -\lambda_{n}P_{n}(t) + \lambda_{n-1}P_{n-1}(t), \quad n > n_{0}$$

 $P'_{n_{0}}(t) = -\lambda_{n_{0}}P_{n_{0}}(t)$

Yule-Furry processes assumed $\lambda_n = n\lambda$

Outline

- 2 Birth-Death Processes

Birth-Death Processes

Notation

Birth Processes

- Pure Birth process: If n transitions take place during (0, t), we may refer to the process as being in state E_n .
- Changes in the pure birth process:

$$E_n \rightarrow E_{n+1} \rightarrow E_{n+2} \rightarrow \dots$$

• Birth-Death Processes consider transitions $E_n \to E_{n-1}$ as well as $E_n \to E_{n+1}$ if $n \ge 1$. If n = 0, only $E_0 \to E_1$ is allowed.

Birth Processes Relationship to Markov Chains Linear Birth-Death Processes Examples

Birth-Death Processes

Birth-Death Processes

Assumptions

Birth Processes

If the process at time t is in E_n , then during (t, t + h):

- Transition $E_n \to E_{n+1}$ has probability $\lambda_n h + o(h)$
- Transition $E_n \to E_{n-1}$ has probability $\mu_n h + o(h)$
- Probability that more than 1 change occurs = o(h).

$$P_n(t+h) = P_n(t)(1 - \lambda_n h - \mu_n h) + P_{n-1}(t)(\lambda_{n-1} h) + P_{n+1}(t)(\mu_{n+1} h) + o(h)$$

Time evolution of the probabilities

$$\Rightarrow P'_n(t) = -(\lambda_n + \mu_n)P_n(t) + \lambda_{n-1}P_{n-1}(t) + \mu_{n+1}P_{n+1}(t)$$

Birth-Death Processes

For n = 0

$$P_0(t+h) = P_0(t)(1-\lambda_0 h) + P_1(t)\mu_1 h + o(h)$$

 $\Rightarrow P_0'(t) = -\lambda_0 P_0(t) + \mu_1 P_1(t)$

- If $\lambda_0 = 0$, then $E_0 \to E_1$ is impossible and E_0 is an absorbing state.
- If $\lambda_0=0$, then $P_0'(t)=\mu_1P_1(t)\geq 0$ and hence $P_0(t)$ increases monotonically.

Note:

 $\lim_{t\to\infty} P_0(t) = P_0(\infty) =$ Probability of being absorbed.

Steady-state distribution

$$P'_0(t) = -\lambda_0 P_0(t) + \mu_1 P_1(t) P'_n(t) = -(\lambda_n + \mu_n) P_n(t) + \lambda_{n-1} P_{n-1}(t) + \mu_{n+1} P_{n+1}(t)$$

As $t \to \infty$, $P_n(t) \to P_n(limit)$. Hence, $P_0'(t) \rightarrow 0$ and $P_n'(t) \rightarrow 0$. Therefore,

$$0 = -\lambda_0 P_0 + \mu_1 P_1$$

$$\Rightarrow P_1 = \frac{\lambda_0}{\mu_1} P_0$$

$$0 = -(\lambda_1 + \mu_1) P_1 + \lambda_0 P_0 + \mu_2 P_2$$

$$\Rightarrow P_2 = \frac{\lambda_0 \lambda_1}{\mu_1 \mu_2} P_0$$

$$\Rightarrow P_3 = \frac{\lambda_0 \lambda_1 \lambda_2}{\mu_1 \mu_2 \mu_2} P_0 \qquad etc$$

19/47

Steady-state distribution

$$P_1 = \frac{\lambda_0}{\mu_1} P_0; \quad P_2 = \frac{\lambda_0 \lambda_1}{\mu_1 \mu_2} P_0; \quad P_3 = \frac{\lambda_0 \lambda_1 \lambda_2}{\mu_1 \mu_2 \mu_2} P_0; \quad P_4 = \dots$$

The dependence on the initial conditions has disappeared.

After normalizing, i.e., $\sum_{n=1}^{\infty} P_n = 1$:

$$P_{0} = \frac{1}{1 + \sum_{n=1}^{\infty} \prod_{i=0}^{n-1} \frac{\lambda_{i}}{\mu_{i+1}}}; \quad P_{n} = \frac{\prod_{i=0}^{n-1} \frac{\lambda_{i}}{\mu_{i+1}}}{1 + \sum_{n=1}^{\infty} \prod_{i=0}^{n-1} \frac{\lambda_{i}}{\mu_{i+1}}}, \quad n \geq 1$$

Steady-state distribution

$$P_0 = \frac{1}{1 + \sum_{n=1}^{\infty} \prod_{i=0}^{n-1} \frac{\lambda_i}{\mu_{i+1}}}; \quad P_n = \frac{\prod_{i=0}^{n-1} \frac{\lambda_i}{\mu_{i+1}}}{1 + \sum_{n=1}^{\infty} \prod_{i=0}^{n-1} \frac{\lambda_i}{\mu_{i+1}}}, \quad n \ge 1$$

Ergodicity condition

 $P_n > 0$, for all $n \ge 0$, i.e.,:

$$\sum_{n=1}^{\infty} \prod_{i=0}^{n-1} \frac{\lambda_i}{\mu_{i+1}} < \infty$$

Example. A single server system

Birth Processes

- constant arrival rate λ (Poisson arrivals)
- stopping rate of service μ (exponential distribution)
- states of the system: 0 (server free), 1 (server busy)

$$P'_{0}(t) = -\lambda P_{0}(t) + \mu P_{1}(t)$$

 $P'_{1}(t) = \lambda P_{0}(t) - \mu P_{1}(t)$

Example. A single server system

$$P_0'(t) = -\lambda P_0(t) + \mu P_1(t)$$

$$P_1'(t) = \lambda P_0(t) - \mu P_1(t)$$

Given that: $P_0(t) + P_1(t) = 1$, $P'_0(t) + (\lambda + \mu)P_0(t) = \mu$.

$$P_0(t) = rac{\mu}{\lambda + \mu} + \left(P_0(0) - rac{\mu}{\lambda + \mu}
ight)e^{-(\lambda + \mu)t}$$

$$P_1(t) = rac{\lambda}{\lambda + \mu} + \left(P_1(0) - rac{\lambda}{\lambda + \mu}
ight)e^{-(\lambda + \mu)t}$$

Solution = Equilibrum distribution + Deviation from the equilibrium with exponential decay.

Poisson Process. Probabilities

Poisson Process

Birth Processes

- Birth probability per time unit is constant λ
- The population size is initially 0

All states are transient

Equations

$$P'_{i}(t) = -\lambda P_{i}(t) + \lambda P_{i-1}(t), \quad i > 0$$

$$P'_{0}(t) = -\lambda P_{0}(t)$$

Poisson Process. Probabilities

Equations

$$P'_{i}(t) = -\lambda P_{i}(t) + \lambda P_{i-1}(t), \quad i > 0$$

$$P_0'(t) = -\lambda P_0(t)$$

$$\Rightarrow P_0(t) = e^{-\lambda t}$$

$$\frac{d}{dt}[e^{\lambda t}P_i(t)] = \lambda P_{i-1}(t)e^{\lambda t} \Rightarrow P_i(t) = e^{-\lambda t}\lambda \int_0^t P_{i-1}(t')e^{\lambda t'}dt'$$

$$P_1(t) = e^{-\lambda t} \lambda \int_0^t e^{-\lambda t'} e^{\lambda t'} dt' = e^{-\lambda t} (\lambda t)$$

Recursively: $P_i(t) = \frac{(\lambda t)^i}{i!} e^{-\lambda t}$

Number of births in interval $(0, t) \sim \text{Poisson}(\lambda t)$.

Pure Death Process. Probabilities

Pure Death Process

- \bullet All the individuals have the same mortality rate μ
- The population size is initially *n*

State 0 is an absorbing state. The rest are transient.

Equations

Birth Processes

$$P'_n(t) = -n\mu P_n(t)$$

 $P'_i(t) = (i+1)\mu P_{i+1}(t) - i\mu P_i(t), \quad i = 0, ..., n-1$

Pure Death Process. Probabilities

Equations

$$P'_n(t) = -n\mu P_n(t)$$

 $P'_i(t) = (i+1)\mu P_{i+1}(t) - i\mu P_i(t), \quad i = 0, ..., n-1$

$$\Rightarrow P_n(t) = e^{-n\mu t}$$

$$\frac{d}{dt}[e^{i\mu t}P_{i}(t)] = (i+1)\mu P_{i+1}(t)e^{i\mu t} \Rightarrow P_{i}(t) = (i+1)e^{-i\mu t}\mu \int_{0}^{t} P_{i+1}(t')e^{i\mu t'}dt'$$

$$P_{n-1}(t) = ne^{-(n-1)\mu t}\mu \int_0^t e^{-n\mu t'}e^{(n-1)\mu t'}dt' = ne^{-(n-1)\mu t}(1-e^{-\mu t})$$

Recursively:
$$P_i(t) = \binom{n}{i} (e^{-\mu t})^i (1 - e^{-\mu t})^{n-i}$$

Binomial distribution: The survival probability at time t is $e^{-\mu t}$ independent of others.

Birth Processes Birth-Death Processes

Linear Birth-Death Processes Examples

Outline

- Birth Processes
- Birth-Death Processes
- 3 Relationship to Markov Chains
- 4 Linear Birth-Death Processes
- 6 Examples

Birth Processes Birth-Death Processes

Linear Birth-Death Processes Examples

Relation to CTMC

Infinitesimal generator matrix:

$$Q = \begin{pmatrix} -\lambda_0 & \lambda_0 & 0 & \dots & \dots & \dots \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & 0 & \dots & \dots \\ 0 & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 & 0 & \dots & \dots \\ \vdots & 0 & \mu_3 & -(\lambda_3 + \mu_3) & \lambda_3 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Relation to DTMC

Embedded Markov chain of the process.

For $t \to \infty$, define:

$$P(E_{n+1}|E_n) = \text{Prob. of transition } E_n \to E_{n+1}$$

= Prob. of going to E_{n+1} conditional on being in E_n

Define $P(E_{n-1}|E_n)$ similarly. Then

$$P(E_{n+1}|E_n) \sim \lambda_n, P(E_{n-1}|E_n) \sim \mu_n$$

$$P(E_{n+1}|E_n) = \frac{\lambda_n}{\lambda_n + \mu_n}, P(E_{n-1}|E_n) = \frac{\mu_n}{\lambda_n + \mu_n}$$

The same conditional probabilities hold if it is given that a transition will take place in (t, t + h) conditional on being in E_n .

Birth Processes

Birth-Death Processes

Relationship to Markov Chains

Examples

Outline

- Birth Processes
- 2 Birth-Death Processes
- 3 Relationship to Markov Chains
- 4 Linear Birth-Death Processes
- 6 Examples

Linear Birth-Death Processes

Linear Birth-Death Process

- $\lambda_n = n\lambda$
- $\mu_n = n\mu$

$$\Rightarrow P'_0(t) = \mu P_1(t) P'_n(t) = -(\lambda + \mu) n P_n(t) + \lambda (n-1) P_{n-1}(t) + \mu (n+1) P_{n+1}(t)$$

Steady state behavior is characterized by:

$$\lim_{t\to\infty}P_0'(t)=0 \ \Rightarrow \ P_1(\infty)=0$$

Similarly as $t \to \infty$ $P_n'(\infty) = 0$

Linear Birth-Death Processes

Steady state behavior is characterized by:

$$\lim_{t\to\infty}P_0'(t)=0\ \Rightarrow\ P_1(\infty)=0$$

Similarly as $t \to \infty$ $P'_n(\infty) = 0$

Two cases can happen:

- If $P_0(\infty) = 1 \Rightarrow$ the probability of ultimate extinction is 1.
- If $P_0(\infty) = P_0 < 1$, the relations $P_1 = P_2 = P_3 \dots = 0$ imply with probability $1 - P_0$ that the population can increase without bounds.

The population must either die out or increase indefinitely.

Mean of a Linear Birth-Death Process

$$P'_n(t) = -(\lambda + \mu)nP_n(t) + \lambda(n-1)P_{n-1}(t) + \mu(n+1)P_{n+1}(t)$$

Define Mean by $M(t) = \sum_{n=1}^{\infty} nP_n(t)$

and consider $M'(t) = \sum_{n=1}^{\infty} nP'_n(t)$, then:

$$M'(t) = -(\lambda + \mu) \sum_{n=1}^{\infty} n^2 P_n(t) + \lambda \sum_{n=1}^{\infty} (n-1) n P_{n-1}(t) + \mu \sum_{n=1}^{\infty} (n+1) n P_{n+1}(t)$$

Write
$$(n-1)n = (n-1)^2 + (n-1), (n+1)n = (n+1)^2 - (n+1)$$

34/47

Mean of a Linear Birth-Death Process

$$M'(t) = -(\lambda + \mu) \sum_{n=1}^{\infty} n^{2} P_{n}(t)$$

$$+ \lambda \sum_{n=1}^{\infty} (n-1)^{2} P_{n-1}(t) + \mu \left(\sum_{n=1}^{\infty} (n+1)^{2} P_{n+1}(t) + P_{1}(t) \right)$$

$$+ \lambda \sum_{n=1}^{\infty} (n-1) P_{n-1}(t) - \mu \left(\sum_{n=1}^{\infty} (n+1) P_{n+1}(t) + P_{1}(t) \right)$$

$$\Rightarrow M'(t) = \lambda \sum_{n=1}^{\infty} n P_{n}(t) - \mu \sum_{n=1}^{\infty} n P_{n}(t) = (\lambda - \mu) M(t)$$

$$M(t) = n_0 e^{(\lambda - \mu)t}$$
 if $P_{n_0}(0) = 1$

35/47

Birth Processes

Birth-Death Processes

Relationship to Markov Chains

Examples

Mean of a Linear Birth-Death Process

$$M(t) = n_0 e^{(\lambda - \mu)t}$$

- If $\lambda > \mu$ then $M(t) \to \infty$
- If $\lambda < \mu$ then $M(t) \rightarrow 0$

Similarly if $M_2(t) = \sum_{n=1}^{\infty} n^2 P_n(t)$ one can show that:

$$M_2'(t) = 2(\lambda - \mu)M_2(t) + (\lambda + \mu)M(t)$$

and when $\lambda > \mu$, the variance is:

$$n_0 e^{2(\lambda-\mu)t} \left(1 - e^{(\mu-\lambda)t}\right) \frac{\lambda+\mu}{\lambda-\mu}$$

Birth Processes

Birth-Death Processes

Relationship to Markov Chains Linear Birth-Death Processes

Outline

- 6 Examples

Linear Birth-Death Process. Example

Let X(t) be the number of bacteria in a colony at instant t. Evolution of the population is described by:

- the time that each of the individuals takes for division in two (binary fission), independently of the other bacteria
- the life time of each bacterium (also independent)

Assume that:

- Time for division is exponentially dist. (rate λ)
- Life time is also exponentially dist. (rate μ)

$M(t) = n_0 e^{(\lambda - \mu)t}$

- If $\lambda > \mu$ then the population tends to infinity
- If $\lambda < \mu$ then the population tends to 0

Birth Processes

Birth-Death Processes Relationship to Markov Chains Linear Birth-Death Processes

A queueing system

- s servers
- K waiting places
- λ arrival rate (Poisson)
- $\mu \operatorname{Exp}(\mu)$ holding time (expectation $1/\mu$)

Is it a birth-death process?

A queueing system

- s servers
- K waiting places
- λ arrival rate (Poisson)
- $\mu \operatorname{Exp}(\mu)$ holding time (expectation $1/\mu$)

Let "N = number of customers in the system" be the state variable.

- N determines uniquely the number of customers in service and waiting room.
- After each arrival and departure the remaining service times of the customers in service are $Exp(\mu)$ distributed (memoryless).

Call blocking in an ATM network

An ATM network offers calls of two different types.

$$\begin{cases} R_1 = 1 \textit{Mbps} \\ \lambda_1 = \text{arrival rate} \\ \mu_1 = \text{mean holding time} \end{cases} \begin{cases} R_2 = 2 \textit{Mbps} \\ \lambda_2 = \text{arrival rate} \\ \mu_2 = \text{mean holding time} \end{cases}$$

Assume that the capacity of the link is infinite:

Is it a birth-death process?

42/47

Call blocking in an ATM network

An ATM network offers calls of two different types.

$$\begin{cases} R_1 = 1 \textit{Mbps} \\ \lambda_1 = \text{arrival rate} \\ \mu_1 = \text{mean holding time} \end{cases} \begin{cases} R_2 = 2 \textit{Mbps} \\ \lambda_2 = \text{arrival rate} \\ \mu_2 = \text{mean holding time} \end{cases}$$

Assume that the capacity of the link is infinite:

The state variable is the pair (N_1, N_2) where N_i defines the number of class-i connections in progress.

Call blocking in an ATM network

An ATM network offers calls of two different types.

$$\begin{cases} R_1 = 1 \textit{Mbps} \\ \lambda_1 = \text{arrival rate} \\ \mu_1 = \text{mean holding time} \end{cases} \begin{cases} R_2 = 2 \textit{Mbps} \\ \lambda_2 = \text{arrival rate} \\ \mu_2 = \text{mean holding time} \end{cases}$$

Assume that the capacity of the link is limited to 4.5 Mbps

Is it a birth-death process?

Call blocking in an ATM network

An ATM network offers calls of two different types.

 $egin{cases} R_1 = 1 \textit{Mbps} \ \lambda_1 = ext{arrival rate} \ \mu_1 = ext{mean holding time} \end{cases}$ $\begin{cases} R_2 = 2 \textit{Mbps} \\ \lambda_2 = \text{arrival rate} \\ \mu_2 = \text{mean holding time} \end{cases}$

Assume that the capacity of the link is limited to 4.5 Mbps

Exercise 1

Process definition

- There are two transatlantic cables each of which handle one telegraph message at a time.
- The time-to-breakdown for each has the same exponential random distribution with parameter λ .
- The time to repair for each cable has the same exponential random distribution with parameter μ .

Tasks:

- Draw the corresponding birth-death process.
- Write its infinitesimal generator.
- Write differential equations for the probabilities.
- Compute the steady state distribution

Exercise 2

Birth-disaster process

Consider that X_t is a continuous-time Markov process defined as follows:

- Each individual gives a birth after an exponential random time of parameter λ , independent of each other.
- · A disaster occurs randomly at exponential random time of parameter δ .
- Once a disaster occurs, it wipes out all the entire population.

Tasks:

- What is the infinitesimal generator matrix of the process?
- What is the time evolution of $M(t) = \mathbb{E}[X_t]$?

Acknowledgments

Much of the material in the course is based on the following courses:

- Queueing Theory / Birth-death processes.
 - J. Vitano
- Birth and Death Processes http://www.bibalex.org/supercourse/
- Performance modelling and evaluation. Birth-death processes.
 - J. Campos
- Discrete State Stochastic Processes
 - J. Baik