Vol. 60 No. 6 JUCHE103(2014).

A Constancy of Curvature of Statistical Manifolds with α-Connection

Min Chol Rim, Ro Kwang Won

In this paper, we study a constancy of curvature of a statistical manifold, which is importantly studied in the information geometry recently.

In [2], an α -connection was introduced into a statistical manifold and a condition for a statistical manifold to be α -flat was studied, in [3], a condition for a statistical manifold with an α -connection to be conjugate symmetric, and in [1], a condition for a statistical manifold with an α -connection to be conjugate Ricci-symmetric

It has been found that an equiaffine structure of a statistical manifold is concerned with a constancy of curvature of a statistical manifold and there has been consideration of properties of a Hessian manifold of a constant Hessian curvature, which is a special statistical manifold (see [3, 4]).

The studies in [4] imply a necessity for considering a constancy of curvature of a statistical manifold with an α – connection. Such a study is also a continuation of the previous study [1-3].

Hence, we study conditions that a statistical manifold with an α - connection is of constant curvature.

For any $\alpha \in \mathbb{R}$, a α -connection is defined in a statistical manifold (M, g, ∇) by

$$\nabla^{(\alpha)} = \frac{1+\alpha}{2} \nabla + \frac{1-\alpha}{2} \nabla^*,$$

where ∇ and ∇^* are dual connections on M. Then $(M, g, \nabla^{(\alpha)})$ is also a statistical manifold.

Let's considerate the condition that a statistical manifold $(M, g, \nabla^{(\alpha)})$ is of constant curvature for any $\alpha \in \mathbf{R}$.

Theorem 1 A statistical manifold $(M, g, \nabla^{(\alpha)})$ is of constant curvature for any $\alpha \in \mathbf{R}$ if there exist $\alpha_1, \alpha_2 \in \mathbf{R}$ $(|\alpha_1| \neq |\alpha_2|)$ such that statistical manifolds $(M, g, \nabla^{(\alpha_1)})$ and $(M, g, \nabla^{(\alpha_2)})$ are of constant curvature.

Proof Without generality, we assume $\alpha_1 \neq 0$. Then since $\nabla^{(\alpha)} = \frac{\alpha_1 + \alpha}{2\alpha_1} \nabla^{(\alpha_1)} + \frac{\alpha_1 - \alpha}{2\alpha_1} \nabla^{(-\alpha_1)}$

holds for any $\alpha \in \mathbf{R}$, the following relation

$$R^{(\alpha)}(X, Y)Z = \frac{\alpha_1 + \alpha}{2\alpha_1} R^{(\alpha_1)}(X, Y)Z + \frac{\alpha_1 - \alpha}{2\alpha_1} R^{(-\alpha_1)}(X, Y)Z +$$

$$+ (\alpha_1^2 - \alpha^2)[K(Y, K(Z, X)) - K(X, K(Y, Z))]$$

$$- 25 -$$

holds, where $K(X,Y) = \nabla_X Y - \nabla_X^g Y$ is the difference tensor field of a statistical manifold.

From the relations

$$R^{(\alpha_1)}(X, Y)Z = k_1 \{ g(Y, Z)X - g(X, Z)Y \}, \tag{1}$$

$$R^{(\alpha_2)}(X, Y)Z = k_2\{g(Y, Z)X - g(X, Z)Y\}$$
(2)

the relation

$$R^{(\alpha)}(X, Y)Z = \frac{k_2\alpha_1^2 - k_1\alpha_2^2 + (k_1 - k_2)\alpha^2}{\alpha_1^2 - \alpha_2^2} \{g(Y, Z)X - g(X, Z)Y\}$$

holds, that is, a statistical manifold $(M, \nabla^{(\alpha)}, g)$ is of constant curvature $\frac{k_2\alpha_1^2 - k_1\alpha_2^2 + (k_1 - k_2)\alpha^2}{\alpha_1^2 - \alpha_2^2}.$

Example 1 Let (M, g) be a family of normal distributions:

$$M = \left\{ p(x, \theta) \middle| p(x, \theta) = \frac{1}{\sqrt{2\pi(\theta^2)^2}} \exp\left\{ -\frac{1}{2(\theta^2)^2} (x - \theta^1)^2 \right\} \right\},$$
$$g := 2(\theta^2)^{-2} \sum_{i=0}^{\infty} d\theta^i d\theta^i \ x \in P, \ \theta^1 \in P, \ \theta^2 > 0$$

We define an α -connection by the following:

$$\nabla^{(\alpha)}_{\frac{\partial}{\partial \theta^{l}}} \frac{\partial}{\partial \theta^{l}} = (-1 + 2\alpha)(\theta^{2})^{-1} \frac{\partial}{\partial \theta^{2}} , \nabla^{(\alpha)}_{\frac{\partial}{\partial \theta^{2}}} \frac{\partial}{\partial \theta^{2}} = (1 + \alpha)(\theta^{2})^{-1} \frac{\partial}{\partial \theta^{2}}$$
$$\nabla^{(\alpha)}_{\frac{\partial}{\partial \theta^{l}}} \frac{\partial}{\partial \theta^{2}} = \nabla^{(\alpha)}_{\frac{\partial}{\partial \theta^{2}}} \frac{\partial}{\partial \theta^{l}} = 0 .$$

Then the statistical manifold $(M,g,\nabla^{(0)})$ is of constant curvature $\left(-\frac{1}{2}\right)$, and the statistical manifold $(M,g,\nabla^{(1)})$ is of constant curvature 0. Hence for any $\alpha\in \mathbf{R}$, the statistical manifold $(M,g,\nabla^{(\alpha)})$ is of constant curvature $((\alpha^2-1)/2)$.

Example 2 Let (M, g) be a family of random walk distributions [1]:

$$M = \left\{ p(x; \theta^{1}, \theta^{2}) \middle| p(x; \theta^{1}, \theta^{2}) = \sqrt{\frac{\theta^{2}}{2\pi x}} \exp\left\{-\frac{\theta^{2}x}{2} + \frac{\theta^{2}}{\theta^{1}} - \frac{\theta^{2}}{2(\theta^{1})^{2}x}\right\}, x, \mu, \lambda > 0\right\},$$

$$g = \frac{\theta^{2}}{(\theta^{1})^{3}} (d\theta^{1})^{2} + \frac{1}{2(\theta^{2})^{2}} (d\theta^{2})^{2}.$$

We define an α -connection by the following:

$$\nabla^{(\alpha)}_{\frac{\partial}{\partial \theta^{l}}} \frac{\partial}{\partial \theta^{l}} = \frac{-3(1+\alpha)}{2} (\theta^{l})^{-1} \frac{\partial}{\partial \theta^{l}} + (-1+\alpha)(\theta^{l})^{-3} (\theta^{2})^{2} \frac{\partial}{\partial \theta^{2}}$$

$$\nabla^{(\alpha)}_{\frac{\partial}{\partial \theta^{l}}} \frac{\partial}{\partial \theta^{2}} = \nabla^{(\alpha)}_{\frac{\partial}{\partial \theta^{2}}} \frac{\partial}{\partial \theta^{l}} = -\frac{-1+\alpha}{2} (\theta^{2})^{-1} \frac{\partial}{\partial \theta^{l}}, \quad \nabla^{(\alpha)}_{\frac{\partial}{\partial \theta^{2}}} \frac{\partial}{\partial \theta^{2}} = (-1+\alpha)(\theta^{2})^{-1} \frac{\partial}{\partial \theta^{2}}.$$

Then the statistical manifold $(M, g, \nabla^{(0)})$ is of constant curvature $\left(-\frac{1}{2}\right)$, and the statistical manifold $(M, g, \nabla^{(1)})$ constant curvature 0. Hence for any $\alpha \in \mathbf{R}$, the statistical manifold $(M, g, \nabla^{(\alpha)})$ is of constant curvature $\frac{\alpha^2 - 1}{2}$.

Theorem 1 implies the following facts.

Corollary 1 If there exist α_1 , $\alpha_2 \in \mathbf{R}$ $(|\alpha_1| \neq |\alpha_2|)$ such that the statistical manifold $(M, g, \nabla^{(\alpha_1)})$ is of constant curvature k_1 and the statistical manifold $(M, g, \nabla^{(\alpha_2)})$ is of constant curvature k_2 , and $k_1 = k_2 = k$ holds, then for $\alpha \in \mathbf{R}$, the statistical manifold $(M, g, \nabla^{(\alpha_2)})$ is of constant curvature k.

Corollary 2 If there exist α_1 , $\alpha_2 \in \mathbf{R}$ ($|\alpha_1| \neq |\alpha_2|$) such that the statistical manifold $(M, g, \nabla^{(\alpha_1)})$ is of constant curvature k_1 and the statistical manifold $(M, g, \nabla^{(\alpha_2)})$ constant curvature k_2 , and $k_1 \neq k_2$ holds, then for $\alpha \in \mathbf{R}$ satisfying that $\alpha^2 = \frac{k_2 \alpha_1^2 - k_1 \alpha_2^2}{k_2 - k_1}$, the statistical manifold $(M, g, \nabla^{(\alpha)})$ is flat.

Example 3 $k_1 = -1/2$, $k_2 = 0$, $\alpha_1 = 0$ and $\alpha_2 = 1$ hold in example 1 and example 2. Hence for $\alpha \in \mathbf{R}$ satisfying that $\alpha^2 = 1$, the statistical manifold $(\mathbf{M}, g, \nabla^{(\alpha)})$ is flat.

Theorem 2 If the Hessian manifold (M, g, ∇) is of constant Hessian curvature, the statistical manifold $(M, g, \nabla^{(\alpha)})$ is of constant curvature for any $\alpha \in \mathbb{R}$.

Proof If the Hessian manifold (M, g, ∇) is of constant Hessian curvature,

$$(\nabla K)(Y, Z; X) = -\frac{c}{2} \{ g(X, Y)Z + g(X, Z)Y \}, c \in \mathbf{R}$$

holds. On the other hand, the curvature tensor R^{∇^g} of Levi-Civita connection ∇^g is written by

$$R^{\nabla^{S}}(X, Y)Z = R^{\nabla}(X, Y)Z - (\nabla K)(Y, Z; X) + (\nabla K)(Z, X; Y) + K(X, K(Y, Z)) - K(Y, K(Z, X))$$

where R is the curvature tensor of ∇ and K is difference tensor $K(X,Y) := \nabla_X Y - \nabla_X^g Y$. Then

$$(\nabla K)(Y, Z; X) - (\nabla K)(Z, X; Y) = 2\{K(X, K(Y, Z)) - K(Y, K(X, Z))\} + \frac{1}{2}\{R^{\nabla}(X, Y)Z - R^{\nabla^*}(X, Y)Z\}$$

implies $R^{\nabla^g}(X, Y)Z = -\frac{c}{4}\{g(Y, Z)X - g(X, Z)Y\}$, where R^* is curvature tensor of dual connection ∇^* , that is, the statistical manifold (M, ∇^g, g) is of constant curvature. On the other hand, the statistical manifold (M, ∇, g) is flat, that is, constant curvature 0. Therefore we finish the proof of theorem from theorem 1.

3. Conclusion

We found a condition that the statistical manifold $(M, \nabla^{(\alpha)}, g)$ is of constant curvature for any $\alpha \in \mathbf{R}$. We also showed that if the Hessian manifold (M, ∇, g) is of constant Hessian curvature, the statistical manifold $(M, \nabla^{(\alpha)}, g)$ is of constant curvature for any $\alpha \in \mathbf{R}$,

References

- [1] 민철림 등; 조선민주주의인민공화국 과학원통보, 2, 11, 주체98(2009).
- [2] J. Zhang; AISM, 59, 161, 2007.
- [3] H. Matsuzoe et al.; Diff. Geom. Appl., 24, 567, 2006.
- [4] H. Furuhata; Diff. Geom. Appl., 27, 420, 2009.