```
In [1]: include("/home/nicole/Jupyter/SSBRnoJ/src/SSBR.jl")
        using SSBR
In [2]: function getPos(ped,IDs)
            posAi = Array(Int64, size(IDs, 1))
            for (i,id) = enumerate(IDs[:,1])
                posAi[i] = ped.idMap[id].seqID
            end
            return posAi
        end
Out[2]: getPos (generic function with 1 method)
In [3]:
       ; cd Data/0.1/G/3
        /home/nicole/Jupyter/JG3/Data/0.1/G/3
In [4]:
        ;ls
        GEIINT . LAL
        PedAll.txt
        Phe.txt
        PheAll.txt
        Regression.G5.G.J.txt
        Regression.G5.G.JC.txt
        Regression.G5.G.PBLUP.txt
        all.ID
        alphaEstimates
        genotype.ID
        meanOfSNPGAll
        meanOfSNPGG0
        meanOfSNPGG1
        meanOfSNPGG2
        meanOfSNPGG3
        meanOfSNPGG4
        meanOfSNPGG5
        noGenotype.ID
        sim.bv
        sim.phenotype
```

```
In [5]: |;awk '{print $1}' PedAll.txt | sort -b > all.ID
 In [6]: | ;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
 In [7]: |;join -v1 all.ID genotype.ID > noGenotype.ID
 In [8]: | ;awk '{print $1,$2}' Phe.txt > sim.phenotype
 In [9]: | ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [10]: ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]: ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [12]: ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [13]: ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]: ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]: ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]: ;join GO.ID genotype.ID > GO.Genotype.ID
In [17]: |;join G1.ID genotype.ID > G1.Genotype.ID
In [18]: ;join G2.ID genotype.ID > G2.Genotype.ID
In [19]: ;join G3.ID genotype.ID > G3.Genotype.ID
In [20]: |;join G4.ID genotype.ID > G4.Genotype.ID
In [21]: ;join G5.ID genotype.ID > G5.Genotype.ID
```

```
In [22]: ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]: ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [24]: ;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
         ; join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [25]:
         ; join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [26]:
         ;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
In [27]:
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc G4.Genotype.ID;wc G5.Genotype
In [28]:
          200 200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]: ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype.ID;wc G4.noGenotype.ID;wc G
          7800 7800 46800 G0.noGenotype.ID
          7800 7800 46800 Gl.noGenotype.ID
          7800 7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
In [30]:
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreeding=false)
         nothing
         df
                = read genotypes("GenNF.txt", numSSBayes)
                                                                                 # with centering
         M Mats = make MMats(df, A Mats, ped, center=true);
         y Vecs = make yVecs("sim.phenotype",ped,numSSBayes);
         Z Mats = make ZMats(ped,y Vecs,numSSBayes)
         X Mats, W Mats = make_XWMats(Z_Mats,M_Mats,numSSBayes)
                                                                                 # no J
         nothing
```

```
In [31]:
         vG
                = 0.865
                = 7.792
         vRes
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M Mats,y Vecs, Z Mats, X Mats, W Mats, A Mats, numSSBayes, vRes, vG, nIter, outFreq=5000);
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         2516.200708 seconds (23.06 G allocations: 724.032 GB, 7.49% gc time)
In [32]: betaHat
Out[32]: 1-element Array{Float64,1}:
          10.1262
In [33]: using DataFrames
         df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',header=false)
In [34]:
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
```

```
In [35]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with epsilon
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n", reg1)
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.771
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.965
Out[35]: 0.7707566326819858
In [36]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[36]: 0.14367634985758374
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # with epsilon
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3f\n", reg2)
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.919
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.117
Out[37]: 0.9187733972454654
In [38]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[38]: 0.953525130062704
```

```
In [39]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 ) # with epsilon
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg3)
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.705
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.947
Out[39]: 0.7049162479443926
In [40]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: -0.04321183018975166
In [41]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.547
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 1.298
Out[41]: 0.5472383142143654
In [42]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[42]: -1.0628838455123286
```

```
In [43]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.544
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 1.061
Out[43]: 0.5438181542899715
In [44]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[44]: -0.2705586042606952
In [45]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         reg5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", reg5)
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.607
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 1.078
Out[45]: 0.6068846671428424
In [46]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[46]: 0.07895439168748619
```

```
In [47]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", reg6)
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.595
         SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = 1.062
Out[47]: 0.5945344396011729
In [48]: GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[48]: 0.4220914514268618
In [49]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", req7)
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.654
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 1.086
Out[49]: 0.6540739476732571
In [50]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[50]: 0.7210406124002395
```

```
In [51]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", reg8)
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.916
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 1.118
Out[51]: 0.9161622997736107
In [52]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[52]: 0.973414093403939
In [53]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.908
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 1.025
Out[53]: 0.9075598942797868
In [54]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[54]: 0.54765517244781
```

```
In [55]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.946
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 1.150
Out[55]: 0.9462180674545377
In [56]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[56]: 0.43535539143939433
In [57]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req10)
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.921
         SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = 1.083
Out[57]: 0.9208873412042186
In [58]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[58]: 0.7758369355545847
```

```
In [59]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req11)
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.916
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 1.087
Out[59]: 0.9160377387260304
In [60]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[60]: 1.0224784801173736
In [61]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg12)
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.908
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 1.104
Out[61]: 0.9084728756748334
In [62]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[62]: 1.1907411371049461
```

```
In [63]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req13)
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.916
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 1.118
Out[63]: 0.9161622997736107
In [64]: writedlm("Correlation.G5.G.C.txt",cor13)
In [65]: writedlm("Regression.G5.G.C.txt",reg13)
In [66]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[66]: 0.973414093403939
In [67]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.542
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 1.744
Out[67]: 0.5417315144414319
In [68]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[68]: -1.1041797177677168
```

```
In [69]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.523
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 1.076
Out[69]: 0.522723675483651
In [70]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[70]: -0.28865896312480005
In [71]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor15 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg15)
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.593
         SSBRJC from Gibbs - G2.noGenotype.ID: regression of TBV on GEBV = 1.086
Out[71]: 0.5925842356262196
In [72]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[72]: 0.06108560851140678
```

```
In [73]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor16 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg16)
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.579
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 1.062
Out[73]: 0.5789685758480504
In [74]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[74]: 0.4066969122296692
In [75]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor17 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg17)
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.643
         SSBRJC from Gibbs - G4.noGenotype.ID: regression of TBV on GEBV = 1.084
Out[75]: 0.6434042525305196
In [76]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[76]: 0.7089970092026829
In [77]: numSSBayes
Out[77]: SSBR.NumSSBayes(54925,45925,9000,40000,39000,1000,200)
```