Dr. Odelu Vanga

Computer Science and Engineering Indian Institute of Information Technology Sri City odelu.vanga@iiits.in

- Residue Classes
- Finding Inverse Modulo m

- Residue Classes
- Finding Inverse Modulo m
- General Caesar Cipher

- Residue Classes
- Finding Inverse Modulo m
- General Caesar Cipher
- Affine Cipher

Definition

If m is a positive integer and m divides (b-a), then we say that

- a and b are congruent modulo m
- we write $a \equiv b \pmod{m}$

Definition

If m is a positive integer and m divides (b - a), then we say that

- a and b are congruent modulo m
- we write $a \equiv b \pmod{m}$

Examples:

ullet 3 \equiv 9 (mod 6), since 6 divides 9 - 3 = 6

Definition

If m is a positive integer and m divides (b - a), then we say that

- a and b are congruent modulo m
- we write $a \equiv b \pmod{m}$

Examples:

- $3 \equiv 9 \pmod{6}$, since 6 divides 9 3 = 6
- $-2 \equiv 28 \pmod{5}$, since 5 divides 28 (-2) = 30

Definition

If m is a positive integer and m divides (b - a), then we say that

- a and b are congruent modulo m
- we write $a \equiv b \pmod{m}$

Examples:

- $3 \equiv 9 \pmod{6}$, since 6 divides 9 3 = 6
- $-2 \equiv 28 \pmod{5}$, since 5 divides 28 (-2) = 30
- $0 \equiv -666 \pmod{3}$, since 3 divides -666 0 = -666

Definition

If m is a positive integer and m divides (b - a), then we say that

- a and b are congruent modulo m
- we write $a \equiv b \pmod{m}$

Examples:

- $3 \equiv 9 \pmod{6}$, since 6 divides 9 3 = 6
- $-2 \equiv 28 \pmod{5}$, since 5 divides 28 (-2) = 30
- $0 \equiv -666 \pmod{3}$, since 3 divides -666 0 = -666

If m does not divide b-a, we say a and b are not congruent mod m, and write $a \not\equiv b \pmod{m}$

Definition

If m is a positive integer and m divides (b-a), then we say that

- a and b are congruent modulo m
- we write $a \equiv b \pmod{m}$

Examples:

- $3 \equiv 9 \pmod{6}$, since 6 divides 9 3 = 6
- $-2 \equiv 28 \pmod{5}$, since 5 divides 28 (-2) = 30
- $0 \equiv -666 \pmod{3}$, since 3 divides -666 0 = -666

If m does not divide b-a, we say a and b are not congruent mod m, and write $a \not\equiv b \pmod{m}$

• $2 \not\equiv 7 \pmod{3}$, because 3 does not divide 7 - 2 = 5

- $a = q_1 m + r_1$ and $b = q_2 m + r_2$, where $0 \le r_1 \le m - 1$ and $0 \le r_2 \le m - 1$.
- $a \equiv b \pmod{m}$ if and only if $r_1 = r_2$.

- $a = q_1 m + r_1$ and $b = q_2 m + r_2$, where $0 \le r_1 \le m - 1$ and $0 \le r_2 \le m - 1$.
- $a \equiv b \pmod{m}$ if and only if $r_1 = r_2$.
- $r_1 = a \pmod{m}$ denotes the remainder.

- $a = q_1 m + r_1$ and $b = q_2 m + r_2$, where $0 \le r_1 \le m - 1$ and $0 \le r_2 \le m - 1$.
- $a \equiv b \pmod{m}$ if and only if $r_1 = r_2$.
- $r_1 = a \pmod{m}$ denotes the remainder.
- Thus, $a \equiv b \pmod{m}$ if and only if $a \pmod{m} = b \pmod{m}$.

- $a = q_1 m + r_1$ and $b = q_2 m + r_2$, where $0 \le r_1 \le m - 1$ and $0 \le r_2 \le m - 1$.
- $a \equiv b \pmod{m}$ if and only if $r_1 = r_2$.
- $r_1 = a \pmod{m}$ denotes the remainder.
- Thus, $a \equiv b \pmod{m}$ if and only if $a \pmod{m} = b \pmod{m}$.

Definition (Residue Class)

If a is an integer and $a \equiv b \pmod{m}$, we say that b is a residue of $a \mod m$.

- $a = q_1 m + r_1$ and $b = q_2 m + r_2$, where $0 \le r_1 \le m - 1$ and $0 \le r_2 \le m - 1$.
- $a \equiv b \pmod{m}$ if and only if $r_1 = r_2$.
- $r_1 = a \pmod{m}$ denotes the remainder.
- Thus, $a \equiv b \pmod{m}$ if and only if $a \pmod{m} = b \pmod{m}$.

Definition (Residue Class)

If a is an integer and $a \equiv b \pmod{m}$, we say that b is a residue of $a \mod m$.

 The residue class of a modulo m, denoted a, is the collection of all integers congruent to a modulo m.

- $a = q_1 m + r_1$ and $b = q_2 m + r_2$, where $0 \le r_1 \le m - 1$ and $0 \le r_2 \le m - 1$.
- $a \equiv b \pmod{m}$ if and only if $r_1 = r_2$.
- $r_1 = a \pmod{m}$ denotes the remainder.
- Thus, $a \equiv b \pmod{m}$ if and only if $a \pmod{m} = b \pmod{m}$.

Definition (Residue Class)

If a is an integer and $a \equiv b \pmod{m}$, we say that b is a residue of $a \mod m$.

- The residue class of a modulo m, denoted a, is the collection of all integers congruent to a modulo m.
- Observe that $\bar{a} = \{a + km, k \in \mathbb{Z}\}.$

- The residue class of \underline{a} modulo \underline{m} , denoted $\overline{\underline{a}}$, is the collection of all integers congruent to \underline{a} modulo \underline{m} .
- Observe that $\bar{\mathbf{a}} = \{ \mathbf{a} + \mathbf{km}, \mathbf{k} \in \mathbb{Z} \}$.

- The residue class of a modulo m, denoted a, is the collection of all integers congruent to a modulo m.
- Observe that $\bar{\mathbf{a}} = \{ \mathbf{a} + \mathbf{km}, \mathbf{k} \in \mathbb{Z} \}.$

Set of residue class $\{0, 1, 2, \dots, m-1\}$ modulo m is denoted by \mathbb{Z}_m , that is,

$$\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$$

 Addition and Multiplication works exactly like real addition and multiplication, except reduce modulo m.

- The residue class of a modulo m, denoted a, is the collection of all integers congruent to a modulo m.
- Observe that $\bar{\mathbf{a}} = \{ \mathbf{a} + \mathbf{km}, \mathbf{k} \in \mathbb{Z} \}.$

Set of residue class $\{0, 1, 2, \dots, m-1\}$ modulo m is denoted by \mathbb{Z}_m , that is,

$$\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$$

- Addition and Multiplication works exactly like real addition and multiplication, except reduce modulo m.
- 11 \times 13 = 143 in \mathbb{Z}_{16} , and reduce it to modulo 16:

- The residue class of \underline{a} modulo \underline{m} , denoted $\overline{\underline{a}}$, is the collection of all integers congruent to \underline{a} modulo \underline{m} .
- Observe that $\bar{\mathbf{a}} = \{ \mathbf{a} + \mathbf{km}, \mathbf{k} \in \mathbb{Z} \}.$

Set of residue class $\{0, 1, 2, \dots, m-1\}$ modulo m is denoted by \mathbb{Z}_m , that is,

$$\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$$

- Addition and Multiplication works exactly like real addition and multiplication, except reduce modulo m.
- $11 \times 13 = 143$ in \mathbb{Z}_{16} , and reduce it to modulo 16: $143 = 8 \times 16 + 15$, so $143 \pmod{16} = 15 \in \mathbb{Z}_{16}$

Definition (Inverse of an element)

Suppose $a \in \mathbb{Z}_m$. The multiplicative inverse of a is an element $a^{-1} \in \mathbb{Z}_m$ such that $aa^{-1} = a^{-1}a = 1 \pmod{m}$

Finding Inverse Modulo m

Theorem (Multiplicative Inverse Modulo *m*)

a and m relatively primes if and only if a^{-1} modulo m exists

Finding Inverse Modulo *m*

Theorem (Multiplicative Inverse Modulo *m*)

a and m relatively primes if and only if a^{-1} modulo m exists

Proof.

Suppose a and m are relatively prime Then, GCD(a, m) = 1

Finding Inverse Modulo *m*

Theorem (Multiplicative Inverse Modulo *m*)

a and m relatively primes if and only if a^{-1} modulo m exists

Proof.

Suppose a and m are relatively prime

Then, GCD(a, m) = 1

There exists x and y such that 1 = ax + my

Now apply modulo m, we get $1 = (ax + 0) \pmod{m}$

That is, $1 = ax \pmod{m}$

Means, there exists x such that $ax = 1 \pmod{m}$

Therefore, x is inverse of a modulo m

Find multiplicative inverse of a = 8 modulo m = 11

Find multiplicative inverse of a = 8 modulo m = 11

Finding 8⁻¹ (mod 11) using Euclidean Algorithm

$$m = qa + r$$
$$a = q_1r + r_1$$

- $11 = (1) \times 8 + 3$
- $8 = (2) \times 3 + 2$
- $3 = (1) \times 2 + 1$
- $2 = (2) \times 1 + 0$

Find multiplicative inverse of a = 8 modulo m = 11

Finding 8⁻¹ (mod 11) using Euclidean Algorithm

$$m = qa + r$$

 $a = q_1r + r_1$

- $11 = (1) \times 8 + 3$
- $8 = (2) \times 3 + 2$
- $3 = (1) \times 2 + 1$
- $2 = (2) \times 1 + 0$

- $3 = 11 (1) \times 8$
- $2 = 8 (2) \times 3$
- $1 = 3 (1) \times 2$

Find multiplicative inverse of a = 8 modulo m = 11

Finding 8⁻¹ (mod 11) using Euclidean Algorithm

$$m = qa + r$$

 $a = q_1r + r_1$

Reverse the process:

•
$$11 = (1) \times 8 + 3$$

•
$$8 = (2) \times 3 + 2$$

•
$$3 = (1) \times 2 + 1$$

•
$$2 = (2) \times 1 + 0$$

•
$$3 = 11 - (1) \times 8$$

•
$$2 = 8 - (2) \times 3$$

•
$$1 = 3 - (1) \times 2$$

Find multiplicative inverse of a = 8 modulo m = 11

Finding $8^{-1} \pmod{11}$ using Euclidean Algorithm

$$m = qa + r$$

 $a = q_1r + r_1$

Reverse the process: find
$$1 = 8x + 11y$$
 form

•
$$11 = (1) \times 8 + 3$$

•
$$8 = (2) \times 3 + 2$$

•
$$3 = (1) \times 2 + 1$$

•
$$2 = (2) \times 1 + 0$$

•
$$3 = 11 - (1) \times 8$$

•
$$2 = 8 - (2) \times 3$$

•
$$1 = 3 - (1) \times 2$$

Find multiplicative inverse of a = 8 modulo m = 11

Finding 8⁻¹ (mod 11) using Euclidean Algorithm

$$m = qa + r$$
$$a = q_1r + r_1$$

•
$$11 = (1) \times 8 + 3$$

•
$$8 = (2) \times 3 + 2$$

•
$$3 = (1) \times 2 + 1$$

•
$$2 = (2) \times 1 + 0$$

Rewrite

•
$$3 = 11 - (1) \times 8$$

•
$$2 = 8 - (2) \times 3$$

•
$$1 = 3 - (1) \times 2$$

Reverse the process: find 1 = 8x + 11y form

$$1 = 3 - (1) \times 2$$

$$= 3 - (1) \times [8 - (2) \times 3]$$

$$= (-1) \times 8 + (3) \times 3$$

$$= (1) \times 0 + (0) \times 0$$

$$= (-1) \times 8 + (3) \times [11 - (1) \times 8]$$
$$= (-4) \times 8 + (3) \times 11$$

$$x = -4 \pmod{11} = 7 = 8^{-1} \pmod{11}$$

Find Inverse of 7 modulo 26

Remainder Form

$$26 = (3) \times 7 + 5$$

$$7 = (1) \times 5 + 2$$

$$5 = (2) \times 2 + 1$$

$$2 = (2) \times 1 + 0$$

$$5 = 26 - (3) \times 7$$

$$2 = 7 - (1) \times 5$$

$$1 = 5 - (2) \times 2$$

Find Inverse of 7 modulo 26

Remainder Form

$$26 = (3) \times 7 + 5$$

$$7 = (1) \times 5 + 2$$

$$5 = (2) \times 2 + 1$$

$$2 = (2) \times 1 + 0$$

Rewrite

$$5 = 26 - (3) \times 7$$

$$2 = 7 - (1) \times 5$$

$$1 = 5 - (2) \times 2$$

Reverse Process

$$1 = 5 - (2) \times 2$$

$$1 = 5 - (2) \times [7 - (1) \times 5]$$

$$1 = (-2) \times 7 + (3) \times 5$$

$$1 = (-2) \times 7 + (3) \times [26 - (3) \times 7]$$

$$1 = (-11) \times 7 + (3) \times 26$$

$$x = -11 \pmod{26} = 15 = 7^{-1} \pmod{26}$$

Find Inverse of 7 modulo 26

Remainder Form

$$26 = (3) \times 7 + 5$$

$$7 = (1) \times 5 + 2$$

$$5 = (2) \times 2 + 1$$

$$2 = (2) \times 1 + 0$$

Rewrite

$$5 = 26 - (3) \times 7$$

$$2 = 7 - (1) \times 5$$

$$1 = 5 - (2) \times 2$$

Reverse Process

$$1 = 5 - (2) \times 2$$

$$1 = 5 - (2) \times [7 - (1) \times 5]$$

$$1 = (-2) \times 7 + (3) \times 5$$

$$1 = (-2) \times 7 + (3) \times [26 - (3) \times 7]$$

$$1 = (-11) \times 7 + (3) \times 26$$

$$x = -11 \pmod{26} = 15 = 7^{-1} \pmod{26}$$

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

- $26 = 5 \times 5 + 1$
- $5 = 5 \times 1 + 0$

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

- $26 = 5 \times 5 + 1$
- $5 = 5 \times 1 + 0$

•
$$1 = 26 - 5 \times 5$$

Finding Inverse

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

• 1 = 5x + 26ywhere x = -5 and y = 1

Rewrite

•
$$1 = 26 - 5 \times 5$$

Finding Inverse

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

•
$$1 = 5x \pmod{26}$$
, that is,
 $x = 5^{-1} = -5 \pmod{26} = 21$

Finding Inverse

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

•
$$1 = 5x \pmod{26}$$
, that is,
 $x = 5^{-1} = -5 \pmod{26} = 21$

$$\bullet \ \mathcal{P} = \mathcal{C} = \mathcal{K} = Z_{26} = \{0, 1, 2, \dots, 25\}$$

- $\mathcal{P}=\mathcal{C}=\mathcal{K}=Z_{26}=\{0,1,2,\ldots,25\}$ Z_{26} set of remainders when divide by 26
- Encryption function $E_k : \mathcal{P} \to \mathcal{C}$ and decryption function $D_k : \mathcal{C} \to \mathcal{P}$, where $k \in \mathcal{K}$, defined as follows:

- $\mathcal{P}=\mathcal{C}=\mathcal{K}=Z_{26}=\{0,1,2,\ldots,25\}$ Z_{26} set of remainders when divide by 26
- Encryption function $E_k : \mathcal{P} \to \mathcal{C}$ and decryption function $D_k : \mathcal{C} \to \mathcal{P}$, where $k \in \mathcal{K}$, defined as follows:

$$C = E_k(m) = (m+k) \pmod{26}$$

- $\mathcal{P}=\mathcal{C}=\mathcal{K}=Z_{26}=\{0,1,2,\ldots,25\}$ Z_{26} set of remainders when divide by 26
- Encryption function $E_k : \mathcal{P} \to \mathcal{C}$ and decryption function $D_k : \mathcal{C} \to \mathcal{P}$, where $k \in \mathcal{K}$, defined as follows:

$$C = E_k(m) = (m+k) \pmod{26}$$

 $m = D_k(C) = (C-k) \pmod{26}$

 Assign numerical value from 0 - 25 to each letter of plaintext alphabet a - z, respectively.

- $\mathcal{P}=\mathcal{C}=\mathcal{K}=Z_{26}=\{0,1,2,\ldots,25\}$ Z_{26} set of remainders when divide by 26
- Encryption function $E_k : \mathcal{P} \to \mathcal{C}$ and decryption function $D_k : \mathcal{C} \to \mathcal{P}$, where $k \in \mathcal{K}$, defined as follows:

$$C = E_k(m) = (m+k) \pmod{26}$$

 $m = D_k(C) = (C-k) \pmod{26}$

where $m, C \in \mathbb{Z}_{26}$

 Assign numerical value from 0 - 25 to each letter of plaintext alphabet a - z, respectively.

- $\mathcal{P} = \mathcal{C} = \mathcal{K} = Z_{26} = \{0, 1, 2, \dots, 25\}$ Z_{26} - set of remainders when divide by 26
- Encryption function $E_k : \mathcal{P} \to \mathcal{C}$ and decryption function $D_k : \mathcal{C} \to \mathcal{P}$, where $k \in \mathcal{K}$, defined as follows:

$$C = E_k(m) = (m+k) \pmod{26}$$

 $m = D_k(C) = (C-k) \pmod{26}$

where $m, C \in Z_{26}$

Note that, if key k = 3, it is simply a Caesar cipher.

Example

Find the Caesar cipher of a simple message m = "crypto" with the key k = 3

Example

Find the Caesar cipher of a simple message m = "crypto" with the key k = 3

• Assume that $m = m_1 m_2 \dots m_n$ the plaintext message with n letters m_1 to m_n

Example

Find the Caesar cipher of a simple message m = "crypto" with the key k = 3

- Assume that $m = m_1 m_2 \dots m_n$ the plaintext message with n letters m_1 to m_n
- Then $m_1 = c$, $m_2 = r$, $m_3 = y$, $m_4 = p$, $m_5 = t$, $m_6 = o$

Example

Find the Caesar cipher of a simple message m = "crypto" with the key k = 3

- Assume that $m = m_1 m_2 \dots m_n$ the plaintext message with n letters m_1 to m_n
- Then $m_1 = c$, $m_2 = r$, $m_3 = y$, $m_4 = p$, $m_5 = t$, $m_6 = o$
- Suppose the corresponding ciphertext letters are C₁ to C_n

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	I	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(1	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 1	6	17	18	1	9	20	21	22	23	24	25

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(ŗ	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 -	16	17	18	1:	9	20	21	22	23	24	25

$$m = \text{"crypto"}$$
 and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(ŗ	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 -	16	17	18	1:	9	20	21	22	23	24	25

$$m = "crypto" and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$$$

$$C_1 = E_k(m_1) = (2+3) \pmod{26}$$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	I	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(ŗ	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 -	16	17	18	1:	9	20	21	22	23	24	25

$$m = "crypto" and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$$$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26}$$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(7	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5	16	17	18	1	9	20	21	22	23	24	25

$$m = "crypto" and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$$$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	I	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(ŗ	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 -	16	17	18	1:	9	20	21	22	23	24	25

$$m = "crypto" and C_i = E_k(m_i) = (m_i + k) \pmod{26}$$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = F$$

 $C_2 = E_k(m_2) = (17+3) \pmod{26}$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	I	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(ŗ	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 -	16	17	18	1:	9	20	21	22	23	24	25

$$m = "crypto" and C_i = E_k(m_i) = (m_i + k) \pmod{26}$$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$

 $C_2 = E_k(m_2) = (17+3) \pmod{26} = 20 \pmod{26}$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(ŗ	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 -	16	17	18	1:	9	20	21	22	23	24	25

$$m = "crypto" and C_i = E_k(m_i) = (m_i + k) \pmod{26}$$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$

 $C_2 = E_k(m_2) = (17+3) \pmod{26} = 20 \pmod{26} = 20 = U$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(1	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 1	16	17	18	1	9	20	21	22	23	24	25

$$m = "crypto" and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$$$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$
 $C_2 = E_k(m_2) = (17+3) \pmod{26} = 20 \pmod{26} = 20 = U$
 $C_3 = E_k(m_3) = (24+3) \pmod{26}$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(ŗ	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 -	16	17	18	1:	9	20	21	22	23	24	25

$$m =$$
"crypto" and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$
 $C_2 = E_k(m_2) = (17+3) \pmod{26} = 20 \pmod{26} = 20 = U$
 $C_3 = E_k(m_3) = (24+3) \pmod{26} = 27 \pmod{26}$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	I	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	C	1	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 1	6	17	18	1	9	20	21	22	23	24	25

$$m = "crypto" and C_i = E_k(m_i) = (m_i + k) \pmod{26}$$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$
 $C_2 = E_k(m_2) = (17+3) \pmod{26} = 20 \pmod{26} = 20 = U$
 $C_3 = E_k(m_3) = (24+3) \pmod{26} = 27 \pmod{26} = 1 = B$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(1	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 1	16	17	18	1:	9	20	21	22	23	24	25

$$m =$$
"crypto" and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$
 $C_2 = E_k(m_2) = (17+3) \pmod{26} = 20 \pmod{26} = 20 = U$
 $C_3 = E_k(m_3) = (24+3) \pmod{26} = 27 \pmod{26} = 1 = B$
 $C_4 = E_k(m_4) = (15+3) \pmod{26}$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	I	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(ŗ	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 -	16	17	18	1	9	20	21	22	23	24	25

$$m =$$
"crypto" and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$
 $C_2 = E_k(m_2) = (17+3) \pmod{26} = 20 \pmod{26} = 20 = U$
 $C_3 = E_k(m_3) = (24+3) \pmod{26} = 27 \pmod{26} = 1 = B$
 $C_4 = E_k(m_4) = (15+3) \pmod{26} = 18 \pmod{26}$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(ŗ	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 -	16	17	18	1	9	20	21	22	23	24	25

$$m =$$
"crypto" and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$
 $C_2 = E_k(m_2) = (17+3) \pmod{26} = 20 \pmod{26} = 20 = U$
 $C_3 = E_k(m_3) = (24+3) \pmod{26} = 27 \pmod{26} = 1 = B$
 $C_4 = E_k(m_4) = (15+3) \pmod{26} = 18 \pmod{26} = 18 = S$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(1	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 1	16	17	18	1:	9	20	21	22	23	24	25

$$m =$$
"crypto" and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$
 $C_2 = E_k(m_2) = (17+3) \pmod{26} = 20 \pmod{26} = 20 = U$
 $C_3 = E_k(m_3) = (24+3) \pmod{26} = 27 \pmod{26} = 1 = B$
 $C_4 = E_k(m_4) = (15+3) \pmod{26} = 18 \pmod{26} = 18 = S$
 $C_5 = E_k(m_5) = (19+3) \pmod{26}$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(ŗ	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 -	16	17	18	1:	9	20	21	22	23	24	25

$$m =$$
"crypto" and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$
 $C_2 = E_k(m_2) = (17+3) \pmod{26} = 20 \pmod{26} = 20 = U$
 $C_3 = E_k(m_3) = (24+3) \pmod{26} = 27 \pmod{26} = 1 = B$
 $C_4 = E_k(m_4) = (15+3) \pmod{26} = 18 \pmod{26} = 18 = S$
 $C_5 = E_k(m_5) = (19+3) \pmod{26} = 22 \pmod{26}$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(1	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 1	16	17	18	1:	9	20	21	22	23	24	25

$$m =$$
"crypto" and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$
 $C_2 = E_k(m_2) = (17+3) \pmod{26} = 20 \pmod{26} = 20 = U$
 $C_3 = E_k(m_3) = (24+3) \pmod{26} = 27 \pmod{26} = 1 = B$
 $C_4 = E_k(m_4) = (15+3) \pmod{26} = 18 \pmod{26} = 18 = S$
 $C_5 = E_k(m_5) = (19+3) \pmod{26} = 22 \pmod{26} = 22 = W$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(ŗ	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 -	16	17	18	1:	9	20	21	22	23	24	25

$$m =$$
"crypto" and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$
 $C_2 = E_k(m_2) = (17+3) \pmod{26} = 20 \pmod{26} = 20 = U$
 $C_3 = E_k(m_3) = (24+3) \pmod{26} = 27 \pmod{26} = 1 = B$
 $C_4 = E_k(m_4) = (15+3) \pmod{26} = 18 \pmod{26} = 18 = S$
 $C_5 = E_k(m_5) = (19+3) \pmod{26} = 22 \pmod{26} = 22 = W$
 $C_6 = E_k(m_6) = (14+3) \pmod{26}$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(ŗ	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 1	16	17	18	1:	9	20	21	22	23	24	25

$$m =$$
"crypto" and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$
 $C_2 = E_k(m_2) = (17+3) \pmod{26} = 20 \pmod{26} = 20 = U$
 $C_3 = E_k(m_3) = (24+3) \pmod{26} = 27 \pmod{26} = 1 = B$
 $C_4 = E_k(m_4) = (15+3) \pmod{26} = 18 \pmod{26} = 18 = S$
 $C_5 = E_k(m_5) = (19+3) \pmod{26} = 22 \pmod{26} = 22 = W$
 $C_6 = E_k(m_6) = (14+3) \pmod{26} = 17 \pmod{26}$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	I	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(ŗ	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 -	16	17	18	1	9	20	21	22	23	24	25

$$m =$$
"crypto" and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$
 $C_2 = E_k(m_2) = (17+3) \pmod{26} = 20 \pmod{26} = 20 = U$
 $C_3 = E_k(m_3) = (24+3) \pmod{26} = 27 \pmod{26} = 1 = B$
 $C_4 = E_k(m_4) = (15+3) \pmod{26} = 18 \pmod{26} = 18 = S$
 $C_5 = E_k(m_5) = (19+3) \pmod{26} = 22 \pmod{26} = 22 = W$
 $C_6 = E_k(m_6) = (14+3) \pmod{26} = 17 \pmod{26} = 17 = R$

plaintext (m)	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n
Assigned No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13
plaintext (m)	0	р	(ŗ	r	S	t		u	٧	W	Х	У	Z
Assigned No.	14	15	5 -	16	17	18	1:	9	20	21	22	23	24	25

Encryption algorithm works as follows:

$$m =$$
"crypto" and $C_i = E_k(m_i) = (m_i + k) \pmod{26}$

$$C_1 = E_k(m_1) = (2+3) \pmod{26} = 5 \pmod{26} = 5 = F$$
 $C_2 = E_k(m_2) = (17+3) \pmod{26} = 20 \pmod{26} = 20 = U$
 $C_3 = E_k(m_3) = (24+3) \pmod{26} = 27 \pmod{26} = 1 = B$
 $C_4 = E_k(m_4) = (15+3) \pmod{26} = 18 \pmod{26} = 18 = S$
 $C_5 = E_k(m_5) = (19+3) \pmod{26} = 22 \pmod{26} = 22 = W$
 $C_6 = E_k(m_6) = (14+3) \pmod{26} = 17 \pmod{26} = 17 = R$

The ciphertext C is "FUBSWR", that is, $E_3(crypto) = FUBSWR$

Affine Cipher

where $m, C \in \mathbb{Z}_{26}$

Let
$$\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$$
, and $\mathcal{K} = \{(a,b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} : GCD(a,26) = 1\}$
$$C = E_k(m) = (am+b) \pmod{26}$$

$$m = D_k(C) = a^{-1}(C-b) \pmod{26}$$

Affine Cipher

Let
$$\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$$
, and $\mathcal{K} = \{(a,b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} : GCD(a,26) = 1\}$
$$C = E_k(m) = (am+b) \pmod{26}$$

$$m = D_k(C) = a^{-1}(C-b) \pmod{26}$$

where $m, C \in \mathbb{Z}_{26}$

Correctness proof:

$$D_k(E_k(m)) = D_k(am+b) \pmod{26}$$

Affine Cipher

Let
$$\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$$
, and $\mathcal{K} = \{(a,b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} : GCD(a,26) = 1\}$
$$C = E_k(m) = (am+b) \pmod{26}$$
 $m = D_k(C) = a^{-1}(C-b) \pmod{26}$

where $m, C \in \mathbb{Z}_{26}$

Correctness proof:

$$D_k(E_k(m)) = D_k(am+b) \pmod{26}$$

= $a^{-1}((am+b)-b) \pmod{26}$

Affine Cipher

Let
$$\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$$
, and $\mathcal{K} = \{(a,b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} : GCD(a,26) = 1\}$

$$C = E_k(m) = (am+b) \pmod{26}$$

$$m = D_k(C) = a^{-1}(C-b) \pmod{26}$$

where $m, C \in \mathbb{Z}_{26}$

Correctness proof:

$$D_{k}(E_{k}(m)) = D_{k}(am+b) \pmod{26}$$

$$= a^{-1}((am+b)-b) \pmod{26}$$

$$= a^{-1}(am) \pmod{26}$$

$$= (a^{-1}a)m \pmod{26}$$

$$= m \pmod{26}$$

$$= m$$

Suppose k = (7,3), then

•
$$C = E_k(m) = 7m + 3$$
 (mod 26)

Suppose k = (7,3), then

• $C = E_k(m) = 7m + 3$ (mod 26)

Remainder Form

$$26 = (3) \times 7 + 5$$

$$7 = (1) \times 5 + 2$$

$$5 = (2) \times 2 + 1$$

$$2 = (2) \times 1 + 0$$

Suppose k = (7,3), then

•
$$C = E_k(m) = 7m + 3$$
 (mod 26)

Remainder Form

$$26 = (3) \times 7 + 5$$

$$7 = (1) \times 5 + 2$$

$$5 = (2) \times 2 + 1$$

$$2 = (2) \times 1 + 0$$

Reverse Process

$$1 = 5 - (2) \times 2$$

$$1 = 5 - (2) \times [7 - (1) \times 5]$$

$$1 = (-2) \times 7 + (3) \times 5$$

$$1 = (-2) \times 7 + (3) \times [26 - (3) \times 7]$$

$$1 = (-11) \times 7 + (3) \times 26$$

$$x = -11 \pmod{26} = 15$$

Suppose k = (7,3), then

•
$$C = E_k(m) = 7m + 3$$
 (mod 26)

Remainder Form

$$26 = (3) \times 7 + 5$$

$$7 = (1) \times 5 + 2$$

$$5 = (2) \times 2 + 1$$

$$2 = (2) \times 1 + 0$$

Reverse Process

$$1 = 5 - (2) \times 2$$

$$1 = 5 - (2) \times [7 - (1) \times 5]$$

$$1 = (-2) \times 7 + (3) \times 5$$

$$1 = (-2) \times 7 + (3) \times [26 - (3) \times 7]$$

$$1 = (-11) \times 7 + (3) \times 26$$

$$x = -11 \pmod{26} = 15$$

$$D_k(C) = 15(C-3) \pmod{26}$$

Suppose k = (7,3), then

•
$$C = E_k(m) = 7m + 3$$
 (mod 26)

Remainder Form

$$26 = (3) \times 7 + 5$$

$$7 = (1) \times 5 + 2$$

$$5 = (2) \times 2 + 1$$

$$2 = (2) \times 1 + 0$$

Reverse Process

$$1 = 5 - (2) \times 2$$

$$1 = 5 - (2) \times [7 - (1) \times 5]$$

$$1 = (-2) \times 7 + (3) \times 5$$

$$1 = (-2) \times 7 + (3) \times [26 - (3) \times 7]$$

$$1 = (-11) \times 7 + (3) \times 26$$

$$x = -11 \pmod{26} = 15$$

$$D_k(C) = 15(C-3) \pmod{26}$$

= $15([7m+3]-3) \pmod{26}$

Suppose k = (7,3), then

•
$$C = E_k(m) = 7m + 3$$
 (mod 26)

Remainder Form

$$26 = (3) \times 7 + 5$$

$$7 = (1) \times 5 + 2$$

$$5 = (2) \times 2 + 1$$

$$2 = (2) \times 1 + 0$$

Reverse Process

$$1 = 5 - (2) \times 2$$

$$1 = 5 - (2) \times [7 - (1) \times 5]$$

$$1 = (-2) \times 7 + (3) \times 5$$

$$1 = (-2) \times 7 + (3) \times [26 - (3) \times 7]$$

$$1 = (-11) \times 7 + (3) \times 26$$

$$x = -11 \pmod{26} = 15$$

$$D_k(C) = 15(C-3) \pmod{26}$$

= $15([7m+3]-3) \pmod{26}$
= $105m \pmod{26}$

Suppose k = (7,3), then

•
$$C = E_k(m) = 7m + 3$$
 (mod 26)

Remainder Form

$$26 = (3) \times 7 + 5$$

$$7 = (1) \times 5 + 2$$

$$5 = (2) \times 2 + 1$$

$$2 = (2) \times 1 + 0$$

Reverse Process

$$1 = 5 - (2) \times 2$$

$$1 = 5 - (2) \times [7 - (1) \times 5]$$

$$1 = (-2) \times 7 + (3) \times 5$$

$$1 = (-2) \times 7 + (3) \times [26 - (3) \times 7]$$

$$1 = (-11) \times 7 + (3) \times 26$$

$$x = -11 \pmod{26} = 15$$

$$D_k(C) = 15(C-3) \pmod{26}$$

= $15([7m+3]-3) \pmod{26}$
= $105m \pmod{26}$
= m

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

Encryption | c r y p t o

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

Encryption							
plaintext <i>m</i>	с 2	r	у	р	t	0	

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

Encryption plaintext c r y p t o m 2 17

- the plaintext message *m*: "*crypto*"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

Encryption							
plaintext m	c 2	r 17	у 24	р	t	0	

- the plaintext message *m*: "*crypto*"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

Encryption							
plaintext m	с 2	r 17	у 24	р 15	t	0	

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

Encryption						
plaintext	С	r	у	р	t	0
m	2	17	24	15	10	

- the plaintext message *m*: "*crypto*"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

Encryption							
plaintext	С	r	у	р	t	0	
m	2	17	24	15	19	14	

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

```
plaintext | c r y p t o m | 2 17 24 15 19 14 5 m + 2
```

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

plaintext	С	r	у	р	t	0
m	2	17	24	15	19	14
5m + 2	12					

Find the Affine cipher for given

- the plaintext message *m*: "*crypto*"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

plaintext	С	r	у	р	t	0
m	2	17	24	15	19	14
5m + 2	12	87				

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

plaintext	С	r	У	р	t	0
m	2	17	24	15	19	14
5m + 2	12	87	122			

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

plaintext	С	r	У	р	t	0
m	2	17	24	15	19	14
			122			

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

plaintext	С	r	У	р	t	0
m	2	17	24 122	15	19	14
5 <i>m</i> + 2	12	87	122	77	97	

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

plaintext	С	r	У	р	t	0
m	2	17	24	15	19	14
5m + 2	12	87	122	77	97	72

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

```
plaintext | c r y p t o m | 2 17 24 15 19 14 5m+2 | 12 87 122 77 97 72 (5m+2) \pmod{26}
```

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

```
plaintext c r y p t o m 2 17 24 15 19 14 5m+2 (5m+2) (mod 26) 12
```

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

```
plaintext c r y p t o m 2 17 24 15 19 14 5m+2 (5m+2) (mod 26) 12 9
```

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

```
plaintext c r y p t o m 2 17 24 15 19 14 5m+2 (5m+2) (mod 26) 12 9 18
```

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

```
plaintext c r y p t o m 2 17 24 15 19 14 5m+2 (5m+2) (mod 26) 12 9 18 25
```

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

plaintext	С	r	У	р	t	0
m	2	17	24	15	19	14
5 <i>m</i> + 2			122			
$(5m+2) \pmod{26}$	12	9	18	25	19	

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

plaintext	С	r	У	р	t	0
m	2	17	24	15	19	14
5m + 2	12	87	122	77	97	72
$(5m+2) \pmod{26}$	12	9	18	25	19	20

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

plaintext	С	r	у	р	t	0
m	2	17	24	15	19	14
5m + 2	12	87	122	77	97	72
$(5m+2) \pmod{26}$	12	9	y 24 122 18	25	19	20
$(5m+2) \pmod{26}$ ciphertext	М					

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

plaintext	С	r	у	р	t	0
m	2	17	24	15	19	14
5m + 2	12	87	122	77	97	72
$(5m+2) \pmod{26}$	12	9	24 122 18	25	19	20
ciphertext	М	J				

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

plaintext	С	r	у	р	t	0
m	2	17	24	15	19	14
5m + 2	12	87	122	77	97	72
$(5m+2) \pmod{26}$	12	9	24 122 18	25	19	20
ciphertext	М	J	S			

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

plaintext	С	r	у	р	t	0
m	2	17	24	15	19	14
5m + 2	12	87	122	77	97	72
$(5m+2) \pmod{26}$	12	9	24 122 18	25	19	20
ciphertext	М	J	S	Z		

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

Encryption

plaintext	С	r	у	р	t	0
m	2	17	24	15	19	14
5m + 2	12	87	122 18	77	97	72
$(5m+2) \pmod{26}$	12	9	18	25	19	20
$(5m+2) \pmod{26}$ ciphertext	М	J	S	Z	Т	

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

Encryption

plaintext	С	r	у	р	t	0
m	2	17	24	15	19	14
5m + 2	12	87	122	77	97	72
$(5m+2) \pmod{26}$ ciphertext	12	9	122 18	25	19	20
ciphertext	М	J	S	Z	Т	U

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

Encryption

That is, $E_K(crypto) = MJSZTU$.

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

Encryption

That is, $E_K(crypto) = MJSZTU$.

• The decryption function is $m = D_k(C) = 5^{-1}(C-2) \pmod{26}$

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

Encryption

That is, $E_K(crypto) = MJSZTU$.

- The decryption function is $m = D_k(C) = 5^{-1}(C-2) \pmod{26}$
- We have to find the value of $5^{-1} \pmod{26}$

Find the Affine cipher for given

- the plaintext message m: "crypto"
- key k = (a, b) = (5, 2), then $C = E_k(m) = 5m + 2 \pmod{26}$

Encryption

That is, $E_K(crypto) = MJSZTU$.

- The decryption function is $m = D_k(C) = 5^{-1}(C-2) \pmod{26}$
- We have to find the value of $5^{-1} \pmod{26}$

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

- $26 = 5 \times 5 + 1$
- $5 = 5 \times 1 + 0$

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

- $26 = 5 \times 5 + 1$
- $5 = 5 \times 1 + 0$

Rewrite

• $1 = 26 - 5 \times 5$

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

Rewrite

•
$$1 = 26 - 5 \times 5$$

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

•
$$1 = 5x \pmod{26}$$
, that is,
 $x = 5^{-1} = -5 \pmod{26} = 21$

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

•
$$1 = 5x \pmod{26}$$
, that is,
 $x = 5^{-1} = -5 \pmod{26} = 21$

Decryption

cip	nertext	
C		

4 □ > 4 圖 > 4 필 > 4 필 > □

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

ciphertext
C
21(C-2)

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

ciphertext
C
21(C-2)

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

Decryption

ciphertext
C
21(C-2)

U

20

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

ciphertext
$$C$$
 21(C – 2)

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

•
$$1 = 5x \pmod{26}$$
, that is,
 $x = 5^{-1} = -5 \pmod{26} = 21$

Decryption

ciphertext
C
21(C-2)

U

20

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

ciphertext
C
21(C-2)

М	J	S	Z	Т	U
12	9	18	25	19	20
210	147	336	483	357	378

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

a tha faile and a color

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

cipnertext	IVI	J	S	Z	ı	U
C	12	9	18	25	19	20
21(<i>C</i> – 2)	210	147	336	483	357	378
$21(C-2) \pmod{26}$	2					

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

alter to a set a con-

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

cipnertext	IVI	J	5	_	ı	U
C	12	9	18	25	19	20
21(<i>C</i> – 2)	210	147	336	483	357	378
$21(C-2) \pmod{26}$	2	17				

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

alter to a set a con-

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

cipriertext	IVI	J	5	_	ı	U
C	12	9	18	25	19	20
21(<i>C</i> – 2)	210	147	336	483	357	378
$21(C-2) \pmod{26}$	2	17	24			

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

ciphertext	M	J	S	Z	ı	U
C	12	9	18	25	19	20
21(<i>C</i> – 2)	210	147	336	483	357	378
$21(C-2) \pmod{26}$	2	17	24	15		

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

a tha faile and a color

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

cipnertext	IVI	J	5		ı	U
C	12	9	18	25	19	20
21(<i>C</i> – 2)	210	147	336	483	357	378
$21(C-2) \pmod{26}$	2	17	24	15	19	

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

a tha faile and a color

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

cipnertext	IVI	J	5		ı	U
C	12	9	18	25	19	20
21(<i>C</i> – 2)	210	147	336	483	357	378
$21(C-2) \pmod{26}$	2	17	24	15	19	14

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

ciphertext	M	J	S	Z	Т	U
C	12	9		25		20
21(<i>C</i> – 2)	210	147	336	483	357	378
$21(C-2) \pmod{26}$	2	17	24	15	19	14
plaintext	С					

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

ciphertext	M	J	S	Z	Т	U
C	12	9	18	25	19	20
21(<i>C</i> – 2)	210	147	336	483	357	378
$21(C-2) \pmod{26}$	2	17	24	15	19	14
plaintext	С	r				

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

ciphertext	M	J	S	Z	Т	U
C	12	9	18		19	20
21(<i>C</i> – 2)	210	147	336	483	357	378
$21(C-2) \pmod{26}$	2	17	24		19	14
plaintext	С	r	у			

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• 1 = $5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

ciphertext	M	J	S	Z	Т	U
C	12	9	18	25	19	20
21(<i>C</i> – 2)	210	147	336	483	357	378
$21(C-2) \pmod{26}$	2	17	24	15	19	14
plaintext	С	r	у	р		

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

ciphertext	M	J	S	Z	Т	U
C	12	9	18	25	19	20
21(<i>C</i> – 2)	210	147	336	483	357	378
$21(C-2) \pmod{26}$	2	17	24	15	19	14
plaintext	С	r	у	р	t	

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

ciphertext	M	J	S	Z	Т	U
C	12	9	18	25	19	20
21(<i>C</i> – 2)	210	147	336	483	357	378
$21(C-2) \pmod{26}$	2	17	24	15	19	14
plaintext	С	r	у	р	t	0

Finding 5⁻¹ (mod 26) using Euclidean Algorithm

•
$$26 = 5 \times 5 + 1$$

•
$$5 = 5 \times 1 + 0$$

Rewrite

•
$$1 = 26 - 5 \times 5$$

•
$$1 = 5x + 26y$$

where $x = -5$ and $y = 1$

• $1 = 5x \pmod{26}$, that is, $x = 5^{-1} = -5 \pmod{26} = 21$

Decryption	1
------------	---

ciphertext	M	J	S	Z	Т	U
С	12	9	18	25	19	20
21(<i>C</i> – 2)	210	147	336	483	357	378
$21(C-2) \pmod{26}$	2	17	24	15	19	14
plaintext	С	r	у	р	t	0

Remark: If a = 1, the Affine cipher becomes simply a Caesar cipher, that is, $C = E_K(m) = x + b \pmod{26}$.

Thank You