

- 、有理数与无理数 *00:00*

1. 有理数 00:04

● **表示符号**: 用大写字母*Q*表示

● 组成要素:

- o 正有理数(正整数、正分数)
- o 负有理数(负整数、负分数)

0 零

- 小数特征:可以表示为有限小数或无限循环小数
- 典型例子:

- 3 / 7 (循环小数)
- o 0.75 (有限小数)
- o -2 (负整数)
- 2. 无理数 00:59
- **表示特征**:不包含零,只有正无理数和负无理数
- **小数特征**:无限不循环小数
- 常见类型:
 - 圆周率: π≈3.1415926...
 - o **自然对数底**: *e* ≈ 2.71828...
 - **开不尽根号**: $\sqrt{2}$ 、 $\sqrt{3}$ 等 (但 $\sqrt{4}$ = 2是有理数)
 - 特殊对数: 如log₃2
 - o **三角函数值**: 部分三角函数结果为无理数
- 3. 有理数无理数运算 03:02
- 1) 有理数与有理数运算 03:09
- 运算结果:加减乘除(除数不为零)结果仍为有理数
- **原理说明**:分数运算结果仍为分数或整数,对应有限小数或循环小数
- 2) 有理数与无理数运算 03:19
- 加减法则: 有理数 ± 无理数=无理数
 - 例: 3 + √2 为无理数
- 乘除法则(非零有理数):
 - 有理数(非零)×或÷无理数=无理数
 - o 例: $3 \times \sqrt{2}$ 、 $3 \div \sqrt{2}$ 均为无理数
- 3) 零与无理数运算 04:49
- 特殊情形:零×或÷无理数=零(有理数)
 - o 例: $0 \times \sqrt{2} = 0$, $0 \div \sqrt{5} = 0$
- 4) 无理数与无理数运算 05:01
- **不确定性**: 结果可能为有理数或无理数
 - o 例1: $\sqrt{2} + \sqrt{3}$ (无理数)
 - o 例2: $2\sqrt{2} \div \sqrt{2} = 2$ (有理数)
- 4. 应用案例 05:28
- 1) 例题:判断无理数

● 题目解析:

○ 有理数项: $-\frac{1}{4}$ 、 $\frac{2}{3}$ 、3.14

○ 无理数项: $\sqrt{3}$ 、 $\sqrt{5}$ 、 π 、 $\log_3 2$

○ 关键判断:

■ 分数和有限小数必为有理数

■ 开不尽根号、π、特殊对数必为无理数

答案: C (4个)

2) 例题:有理数等式计算 06:51

● **解题方法**:门当户对法则

o 有理数部分对应相等: x + 2y = 17

○ 无理数系数对应相等: $-y\sqrt{2} = 4\sqrt{2} \Rightarrow y = -4$

● 计算过程:

o 代入得x = 25

o 最终计算: $(\sqrt{25} - 4)^{2013} = 1^{2013} = 1$

● 答案: A

● 易错点: 忽略"门当户对"原则可能导致方程建立错误

一、知识小结

` 加奶小细			
知识点	核心内容	考试重点/易混淆	难度系数
		点	
有理数与无	有理数(Q): 可表示为分	区分有理数与无理	** \ \ \ \ \ \
理数的定义	数(整数/分数),小数形	数的核心标准是 小	
	式为 有限小数 或 无限循环	数形式 ,而非分数	
	小数 ;无理数: 无限不循	形式(如 √ 4=2是	
	环小数 (如π、e、√2)。	有理数)。	

实数的分类	实数(R)包含有理数和无	易忽略 零属于有理	** \$ \$ \$
结构	理数,有理数进一步分为	数 ,且无理数必须	
	正有理数、负有理数 和	满足 无限不循环 。	
	零;无理数仅含 正/负无理		
	数(无零)。		
无理数的常	1. 圆周率 π、自然常数e;;	易混淆√4(有理	* * * ☆ ☆
见类型	2. 开不尽方的根式(如√	数)与√2(无理	
	2、√3);;3. 特定对数	数) ;注意三角函	
	(如log₃2)。	数/反三角函数也	
		可能生成无理数	
		(未展开)。	
有理数与无	1. 有理数±×÷有理数=有理	门当户对法则:等	****
理数的运算	数;; 2. 有理数±无理数=无	式两边有理数、无	
性质	理数;;3. 非零有理数×÷无	理数部分需分别对	
	理数=无理数 ;;4. 零×÷无	应相等(例题中	
	理数=有理数(零);;5.无	x+2y=17, 4√2=-	
	理数间运算结果 不确定	y√2) 。	
	(如 √ 8÷ √ 2=2为有理		
	数)。		
典型例题解	1. 判断无理数数量:	易错点: 忽略log32	***☆☆
析	√3、√5、π、log₃2 为无理	的无理性 或误判	
	数;;2. 利用门当户对法则	3.14(有限小数)	
	解方程(x=25, y=-4),最	为无理数。	
	终计算 √25+(-4)²⁰¹³=1 。		