SAPIENZA Università di Roma – MSc. in Engineering in Computer Science

Formal Methods - Final Test B - December 21, 2017

(Time to complete the test: 2 hours)

Exercise 1. Express the following UML class diagram in FOL:

Exercise 2. Consider the above UML class diagram and the following (partial) instantiation:

Customer				provides	contacts/cost			
c1 c2 c3	$\begin{bmatrix} b1 \\ b2 \\ b3 \end{bmatrix}$	Services s1 s2 s3	$\begin{array}{c} Provider \\ \hline p1 \\ p2 \end{array}$	p1 s1 p1 s2 p1 s3	c1 c1 c1 b2	s1 s2 s3 s1	p1 p1 p1 p1 p2	90.0 80.0 50.0 170,0
<u>c4</u>				p2 s2	b2	s2	p2	100,0

- 1. Check whether the above instantiation, once completed, is correct, and explain why it is or it is not.
- 2. Express in FOL the following queries and evaluate them over the completed instantiation:
 - (a) Check that, for every provider x and service y involved in a contract, provider x does provide service y.
 - (b) Return those customers that have contracts only for services provided by p2.
 - (c) Return those customers that have a contract for with all providers.

Exercise 3. Model check the Mu-Calculus formula $\nu X.\mu Y.((b \land [next]X) \lor (a \land \langle next \rangle Y))$ and the CTL formula $EF(AG(a \supset EXAX \neg a))$ (showing its translation in Mu-Calculus) against the following transition system:

Exercise 4. Check whether the Hoare triple below is correct, by using $(x \ge 0 \land y \ge 0 \land x + y = 31)$ as invariant:

$${x = 31 \land y = 0}$$
 while(x>0) do (x=x-1; y:= y+1) ${y = 31}$

Exercise 5. Check whether the following FOL formula is valid, by using tableaux:

$$(\exists x. P(x) \lor \exists x. Q(x)) \equiv \exists x. (P(x) \lor Q(x))$$

Exercise 6 (optional). Model check the LTL formula $\Diamond \Box \neg b$ against the following transition system, by considering that the Büchi automaton for $\neg(\Diamond \Box \neg b)$ is the one below:

to finish

