Discrete Mathematics: Lecture 21

predicate logic, WFFs, from NL to WFFs, logic equivalence, tautological implication

Xuming He
Associate Professor

School of Information Science and Technology
ShanghaiTech University

Spring Semester, 2022

Well-Formed Formulas

DEFINITON: well-formed formulas_{合式公式}/formulas

- propositional constants, propositional variables, and propositional functions without connectives are WFFs
- 2) If A is a WFF, then $\neg A$ is also a WFF
- 3) If A, B are WFFs and there is no individual variable x which is bound in one of A, B but free in the other, then $(A \land B), (A \lor B), (A \to B), (A \leftrightarrow B)$ are WFFs.
- 4) If A is a WFF with a free individual variable x, then $\forall x A, \exists x A$ are WFFs.
- 5) WFFs can be constructed with 1)-4).
 - Example: $\forall x \ F(x) \ \lor G(x), \forall x P(y)$ are not WFFs
 - Example: $\exists x (A(x) \rightarrow \forall y B(x, y))$ is a WFF

Precedence: \forall , \exists have higher precedence than \neg , \land , \lor , \rightarrow , \leftrightarrow

• $\forall x P(x) \rightarrow Q(y) \text{ means } (\forall x P(x)) \rightarrow Q(y), \text{ not } \forall x (P(x) \rightarrow Q(y))$

From Natural Language to WFFs

The Method of Translation:

- Introduce symbols to represent propositional constants, propositional variables, individual constants, individual variables, predicate constants, predicate variables, functions of individuals
- Construct WFFs with 1)-4) such that WFFs reflect the real meaning of the natural language

EXAMPLE: All irrational numbers are real numbers.

- Every irrational number is a real number.
- For every x, if x is an irrational number, then x is a real number.
 - I(x) = "x is an irrational number"
 - R(x) = "x is a real number"
 - Translation: $\forall x (I(x) \rightarrow R(x))$

From Natural Language to WFFs

EXAMPLE: Some real numbers are irrational numbers.

- There is a real number which is also an irrational number.
- There is an x such that x is a real number and also an irrational number.
 - I(x) = "x is an irrational number"
 - R(x) = "x is a real number"
 - Translation: $\exists x (R(x) \land I(x))$

EXAMPLE: There is a symbol that can not be understood by any person's brain.

- There is a symbol such that any person's brain can not understand it.
- There is an x such that x is a symbol and any person's brain can not understand x.
 - S(x): "x is a symbol"
 - Translation: $\exists x (S(x) \land (\cdots))$

From Natural Language to WFFs

EXAMPLE: There is a symbol that can not be understood by any person's brain.

- Any person's brain can not understand x.
- For any y, if y is a person, then y's brain cannot understand x.
 - P(y): "y is a person"
 - Translation: $\forall y (P(y) \rightarrow (\cdots))$
- y's brain cannot understand x
 - U(z,x): "z can understand x"
 - b(y) = the brain of y
 - Translation: $\neg U(b(y), x)$
- Translation: $\exists x \ \Big(S(x) \land \forall y \ \Big(P(y) \rightarrow \neg U(b(y), x) \Big) \Big)$

Interpretation

DEFINITION: an **interpretation**_{##} requires one to (remove all uncertainty)

- assign a concrete proposition to every proposition variable
- assign a concrete predicate to every predicate variable
- restrict the domain of every bound individual variable
- assign a concrete individual to every free individual variable
- choose a concrete function, if there is any

EXAMPLE: $\exists x P(x) \rightarrow q$

- Domain of x={Alice, Bob, Eve}
- P(x) = "x gets A+"
- q = "I get A+"
- If at least one of Alice, Bob, and Eve gets A+, then I get A+.

Types of WFFs

DEFINITION: A WFF is **logically valid**_{普遍有效} if it is **T** in every interpretation

• $\forall x (P(x) \lor \neg P(x))$ is logically valid

DEFINITION: A WFF is **unsatisfiable**不可满足 if it is **F** in every interpretation

• $\exists x (P(x) \land \neg P(x))$ is unsatisfiable

DEFINITION: A WFF is **satisfiable**可满足 if it is **T** in some interpretation

- $\forall x (x^2 > 0)$
 - true when domain= nonzero real numbers

THEOREM: Let A be any WFF. A is logically valid iff $\neg A$ is unsatisfiable.

Rule of Substitution: Let A be a tautology in propositional logic. If we substitute any propositional variable in A with an arbitrary WFF from predicate logic, then we get a logically valid WFF.

• $p \vee \neg p$ is a tautology; hence, $P(x) \vee \neg P(x)$ is logically valid

Logical Equivalence

DEFINITION: Two WFFs A,B are **logically equivalent**have the same truth value in every interpretation.

• notation: $A \equiv B$; example: $\forall x \ P(x) \land \forall x \ Q(x) \equiv \forall x \ (P(x) \land Q(x))$

THEOREM: $A \equiv B$ iff $A \leftrightarrow B$ is logically valid.

- $A \equiv B$
- iff A, B have the same truth value in every interpretation I
- iff $A \leftrightarrow B$ is true in every interpretation I
- iff $A \leftrightarrow B$ is logically valid

THEOREM: $A \equiv B$ iff $A \rightarrow B$ and $B \rightarrow A$ are both logically valid.

• $A \leftrightarrow B \equiv (A \to B) \land (B \to A)$

Rule of Substitution

METHOD: Applying the rule of substitution to the logical equivalences in propositional logic, we get logical equivalences in predicate logic.

$$P \lor Q \equiv Q \lor P \qquad A(x) \lor B(y) \equiv B(y) \lor A(x)$$

$$(P \land Q) \land R \equiv P \land (Q \land R) \qquad (A(x) \land B(y)) \land c \equiv A(x) \land (B(y) \land c)$$

$$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R) \qquad A(x) \land (B(y) \lor c) \equiv (A(x) \land B(y)) \lor (A(x) \land c)$$

$$P \land (P \lor Q) \equiv P \qquad A(x) \land (A(x) \lor B(y)) \equiv A(x)$$

$$\neg (P \land Q) \equiv \neg P \lor \neg Q \qquad \neg (A(x) \land B(y)) \equiv \neg A(x) \lor \neg B(y)$$

$$P \rightarrow Q \equiv \neg P \lor Q \qquad A(x) \rightarrow (\forall y B(y)) \equiv \neg A(x) \lor (\forall y B(y))$$

$$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P) \qquad A(x) \leftrightarrow c \equiv (A(x) \rightarrow c) \land (c \rightarrow A(x))$$

De Morgan's Laws for Quantifiers

```
THEOREM: \neg \forall x \ P(x) \equiv \exists x \ \neg P(x)
```

- Show that $\neg \forall x \ P(x) \rightarrow \exists x \ \neg P(x)$ is logically valid
 - Suppose that $\neg \forall x \ P(x)$ is **T** in an interpretation I
 - $\forall x P(x) \text{ is } \mathbf{F} \text{ in } I$
 - There is an x_0 such that $P(x_0)$ is **F** in I
 - There is an x_0 such that $\neg P(x_0)$ is **T** in I
 - $\exists x \neg P(x) \text{ is } \mathbf{T} \text{ in } I$
- Show that $\exists x \neg P(x) \rightarrow \neg \forall x P(x)$ is logically valid
 - Suppose that $\exists x \neg P(x)$ is **T** in an interpretation *I*
 - There is an x_0 such that $\neg P(x_0)$ is **T** in I
 - There is an x_0 such that $P(x_0)$ is **F** in I
 - $\forall x P(x)$ is **F** in *I*
 - $\neg \forall x P(x)$ is **T** in *I*

THEOREM: $\neg \exists x \ P(x) \equiv \forall x \ \neg P(x)$.

De Morgan's Laws for Quantifiers

EXAMPLE: R(x): "x is a real number"; Q(x): "x is a rational number"

- $\neg \forall x (R(x) \rightarrow Q(x))$
 - Not all real numbers are rational numbers
- Negation: $\exists x \neg (R(x) \rightarrow Q(x)) \equiv \exists x (R(x) \land \neg Q(x))$
 - There is a real number which is not rational

EXAMPLE: Let the domain be the set of all real numbers. Let Q(x): "x is a rational number" and I(x): "x is an irrational number"

- $\neg \exists x (Q(x) \land I(x))$
 - No real number is both rational and irrational.
- Negation: $\forall x \neg (Q(x) \land I(x)) \equiv \forall x (\neg Q(x) \lor \neg I(x))$
 - Any real number is either not rational or not irrational.

Distributive Laws for Quantifiers

THEOREM: $\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$

- Show that $\forall x (P(x) \land Q(x)) \rightarrow \forall x P(x) \land \forall x Q(x)$ is logically valid
 - Suppose that $\forall x (P(x) \land Q(x))$ is **T** in an interpretation *I*
 - $P(x) \wedge Q(x)$ is **T** for every x in I
 - P(x) is **T** for every x in I and Q(x) is **T** for every x in I
 - $\forall x \ P(x)$ is **T** in *I* and $\forall x \ Q(x)$ is **T** in *I*
 - $\forall x P(x) \land \forall x Q(x) \text{ is } \mathbf{T} \text{ in } I$
- Show that $\forall x \ P(x) \land \forall x \ Q(x) \rightarrow \forall x \ \left(P(x) \land Q(x)\right)$ is logically valid.
 - Suppose that $\forall x \ P(x) \land \forall x \ Q(x)$ is **T** in an interpretation *I*
 - $\forall x P(x)$ is **T** in *I* and $\forall x Q(x)$ is **T** in *I*
 - P(x) is **T** for every x in I and Q(x) is **T** for every x in I
 - $P(x) \wedge Q(x)$ is **T** for every x in I
 - $\forall x (P(x) \land Q(x)) \text{ is } \mathbf{T} \text{ in } I$

THEOREM: $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$.

Tautological Implication

DEFINITION: Let A and B be WFFs in predicate logic. A tautologically implies ($\mathbb{Z} \equiv \mathbb{Z}$) if every interpretation that causes A to be true causes B to be true.

• notation: $A \Rightarrow B$, called a **tautological implication**($\mathbf{1}$) $\mathbf{1}$

THEOREM: $A \Rightarrow B$ iff $A \rightarrow B$ is logically valid.

- $A \Rightarrow B$
- iff every interpretation that causes A to be true causes B to be true
- iff there is no interpretation such that $(A, B) = (\mathbf{T}, \mathbf{F})$
- Iff $A \rightarrow B$ is true in every interpretation
- iff $A \rightarrow B$ is logically valid

THEOREM: $A \Rightarrow B$ iff $A \land \neg B$ is unsatisfiable.

• $A \rightarrow B \equiv \neg A \lor B \equiv \neg (A \land \neg B)$

Rule of Substitution

Name	Tautological Implication	NO.
Conjunction(合取)	$(P) \land (Q) \Rightarrow P \land Q$	1
Simplification(化简)	$P \wedge Q \Rightarrow P$	2
Addition(附加)	$P \Rightarrow P \lor Q$	3
Modus ponens(假言推理)	$P \wedge (P \rightarrow Q) \Rightarrow Q$	4
Modus tollens(拒取)	$\neg Q \land (P \to Q) \Rightarrow \neg P$	5
Disjunctive syllogism(析取三段论)	$\neg P \land (P \lor Q) \Rightarrow Q$	6
Hypothetical syllogism(假言三段论)	$(P \to Q) \land (Q \to R) \Rightarrow (P \to R)$	7
Resolution (归结)	$(P \lor Q) \land (\neg P \lor R) \Rightarrow Q \lor R$	8

EXAMPLE: $P \land (P \rightarrow Q) \Rightarrow Q$ is a TI in propositional logic.

- $A(x) \land (A(x) \rightarrow B(y)) \Rightarrow B(y)$ must be a TI in predicate logic.
 - Rule of substitution: let P = A(x) and Q = B(y)

Tautological Implications

- $\forall x P(x) \lor \forall x \ Q(x) \Rightarrow \forall x \ (P(x) \lor Q(x))$
- $\exists x (P(x) \land Q(x)) \Rightarrow \exists x P(x) \land \exists x Q(x)$
- $\forall x (P(x) \to Q(x)) \Rightarrow \forall x P(x) \to \forall x Q(x)$
- $\forall x (P(x) \to Q(x)) \Rightarrow \exists x P(x) \to \exists x Q(x)$
- $\forall x (P(x) \leftrightarrow Q(x)) \Rightarrow \forall x P(x) \leftrightarrow \forall x Q(x)$
- $\forall x (P(x) \leftrightarrow Q(x)) \Rightarrow \exists x P(x) \leftrightarrow \exists x Q(x)$
- $\forall x (P(x) \to Q(x)) \land \forall x (Q(x) \to R(x)) \Rightarrow \forall x (P(x) \to R(x))$
- $\forall x (P(x) \to Q(x)) \land P(a) \Rightarrow Q(a)$

Examples

EXAMPLE:
$$\forall x (P(x) \rightarrow Q(x)) \land P(a) \Rightarrow Q(a)$$

- Suppose that the left hand side is true in an interpretation I (domain=D)
 - $\forall x (P(x) \rightarrow Q(x))$ is **T** and P(a) is **T**
 - $P(a) \rightarrow Q(a)$ is **T** and P(a) is **T**
 - Q(a) is **T** in I.

EXAMPLE: Tautological implication in the following proof?

- All rational numbers are real numbers $\forall x (P(x) \rightarrow Q(x))$
- 1/3 is a rational number P(1/3)
- 1/3 is a real number Q(1/3)
 - P(x) = "x is a rational number"
 - Q(x) = "x is a real number"
 - rule of inference: $\forall x (P(x) \rightarrow Q(x)) \land P(1/3) \Rightarrow Q(1/3)$

Examples

EXAMPLE:
$$\forall x (P(x) \to Q(x)) \land \forall x (Q(x) \to R(x)) \Rightarrow \forall x (P(x) \to R(x))$$

- Suppose that the left hand side is T in an interpretation I (domain=D)
 - $\forall x (P(x) \to Q(x))$ is **T** and $\forall x (Q(x) \to R(x))$ is **T**
 - $P(x) \to Q(x)$ is **T** for all $x \in D$ and $Q(x) \to R(x)$ is **T** for all $x \in D$
 - $P(x) \to R(x)$ is **T** for all $x \in D$
 - $\forall x (P(x) \rightarrow R(x)) \text{ is } \mathbf{T} \text{ in } I.$

EXAMPLE: Tautological implication in the following proof?

- All integers are rational numbers. $\forall x (P(x) \rightarrow Q(x))$
- All rational numbers are real numbers. $\forall x (Q(x) \rightarrow R(x))$
- All integers are real numbers. $\forall x (P(x) \rightarrow R(x))$
 - P(x) = "x is an integer"
 - Q(x) = "x is a rational number"
 - R(x) = "x is a real number"
 - rule of inference: $\forall x (P(x) \to Q(x)) \land \forall x (Q(x) \to R(x)) \Rightarrow \forall x (P(x) \to R(x))$