南京航空航天大学

-										第1页	共 6 页
	二〇)一九~	=0=	〇 第 I	I 学期	《信号	5 与系	统》	考试	试题	
	考试日	期: 20	20年	7月日	试	卷类型:	ì	式卷代号	1 :		
		班	号:		学	号:		姓	名:		
题号		1	Ξ	四	五.	六	七	八	九	+	总分
得分											
本题分	5.500	5	说明:	卷的	反面;				如试卷上: 得写在草秆		写在试
一、填空	题 (每空	1分, 共	共 25 分)								
1. 信	言号可分グ	为能量信·	号和功率	信号,能	 量信号的	的能量为	12		,平均	引功率为	
,功率信号的平均功率为,能量为;											
2. 同时满足 和 两个性质的系统称线性系统;											
3. ∃	已知离散时	寸间系统	的特征根	z_1,z_2 (\bar{z}	二阶) 为多	兵根 , z ₃ =	$= v e^{j\phi},$	$z_4 = v \epsilon$	$e^{-j\phi}$,则证	该系统为	-
ß	介的,其零	厚输入响	应的一般	形式为	$y_{zi}[n] = $;
4. t	†算下列名	各式:(其	中 ω ₀ 为	实常数)							
J	$\int_{-2}^{2} e^{j\omega_0 t} (e^{j\omega_0 t})$	$\delta(t+1)$ -	$+\delta(t-1)$	$))dt = _$			$(e^{-t}u(t)$	$)*\delta'(t)=$	=		
	$\operatorname{in}\left(\frac{\pi}{2}n\right)$								1] =		
	及 $f(t)$ 是									n=1	
b	$n\sin n\Omega t$,则其中	的 $\frac{a_0}{2}$ 税	r信号的	2		分量, 公=		称为		
,	如果 b _n =	= 0 则 f	(t) 为		_ 函数;						
6. E	已知 $f(t)$ [的频谱函	数为 F($j\omega) = F $	$(j\omega) e^{j\phi}$	(ω) , 若 f	$f_1(t) = f(t)$	(2t-1) 贝	以 $f_1(t)$ 的]频谱函数	$ otin F_1(j\omega) $
白	り模 F₁(j	$ \omega = -$, 相位 φ	$_{\mathrm{L}}(\omega) = $;		

7.	对于因果稳定的线性时不变连续系统,	系统函数 $H(s)$ 的极点应位于 s 平面的	,
	对于因果稳定的线性时不变离散系统,	其系统函数 $H(z)$ 的极点应位于 z 平面的	;

9. 连续时间信号 f(t) 的最高角频率 $\omega_m=10^4\pi(rad/s)$,若对其进行理想抽样,则奈奎斯特抽样间隔 $T_s=$ ______。

本题分数	20
得 分	

二、(20 分) 用图解法计算 $f_1(t), f_2(t)$ 的卷积 $y(t) = f_1(t) * f_2(t)$,并作出 y(t) 的图形, $f_1(t), f_2(t)$ 如图所示。

本资源免费共享 收集网站 n

本题分数	10
得 分	

三、(10 分) (每小题 5 分, 共 10 分) 求下列信号的频谱密度函数。

- 1. 已知 $f_1(t) = \frac{\sin(5t)}{5t} = Sa(5t)$, 求 $F_1(j\omega)$;
- 2. $f_2(t)$ 如图所示,求 $F_2(j\omega)$ 。

本题分数	15
得 分	

四、(15分) (每小题 5分, 共 15分) 计算下列变换或反变换。

- 1. 已知 $f(t) = te^{-t}u(t-2)$, 求拉普拉斯变换 F(s);
- 2. 已知 $x[n] = n\left(\frac{1}{2}\right)^{n-1}u[n-2]$, 求 z 变换 X(z);
- 3. 已知单边 z 变换 $X(z) = \frac{z^2}{z^2 + 3z + 2}$, 求原序列 x[n]。

本题分数	20
得 分	

五、(20 分) 电路如图所示,且处于稳定状态,t=0 时,开关 S 打开。已知 电路参数 $C=\frac{1}{5}F, L=1H, R_1=2\Omega, R_2=5\Omega, E=10V$ 。

- 1. 求电感初始电流 $i_L(0^-)$ 和电容初始电压 $u_C(0^-)$;
- 2. 作出 t > 0 时的运算等效电路;
- 3. 以电容电压 $u_C(t)$ 为响应,由等效电路求系统函数 H(s);

- 4. 由 H(s) 求冲激响应 h(t);
- 5. 求 t > 0 时 $u_C(t)$ 的全响应电压。

本题分数	15
得 分	

六、(15分) 离散系统的方框图如图所示,且初始条件为零。试求:

- 1. 系统的系统函数 H(z), 并写出系统差分方程;
- 2. 单位冲激响应 h[n];
- 3. 若 $x[n] = \left(-\frac{1}{2}\right)^n u[n]$,求系统响 应 y[n] 。

一、填空题	(每空	1分,	共 25	分)

- 1. 信号可分为能量信号和功率信号,能量信号的能量为 _____ 有限值 (<∞)____ ,平均功率为 ____ 0 ____ , 功率信号的平均功率为 ____ 有限值 (<∞)___ ,能量为 ____ ∞ ___ ;
- 3. 已知离散时间系统的特征根 z_1, z_2 (二阶) 为实根, $z_3 = |v| e^{j\phi}, z_4 = |v| e^{-j\phi}$, 则该系统为 _____5 阶的,其零输入响应的一般形式为 $y_{zi}[n] = c_1 z_1^n + (c_2 + c_3 n) z_2^n + |v|^n (c_4 \cos \phi n + c_5 \sin \phi n)$;
- 4. 计算下列各式: (其中 ω_0 为实常数)

$$\int_{-2}^{2} e^{j\omega_0 t} (\delta(t+1) + \delta(t-1)) dt = \underline{2\cos\omega_0}, \qquad (e^{-t}u(t)) * \delta'(t) = \underline{\delta(t) - e^{-t}u(t)},$$

$$\sin\left(\frac{\pi}{2}n\right) \delta[n-1] = \underline{\delta[n-1]}, \qquad u[n] * u[n-1] = \underline{nu[n]};$$

- 6. 已知 f(t) 的频谱函数为 $F(j\omega) = |F(j\omega)| e^{j\phi(\omega)}$,若 $f_1(t) = f(2t-1)$ 则 $f_1(t)$ 的频谱函数 $F_1(j\omega)$ 的模 $|F_1(j\omega)| = \frac{1}{2} |F\left(\frac{j\omega}{2}\right)|$,相位 $\phi_1(\omega) = \frac{\phi\left(\frac{\omega}{2}\right) \frac{\omega}{2}}{\phi\left(\frac{\omega}{2}\right) \frac{\omega}{2}}$;

本题分数	20
得 分	

二、(20 分) 用图解法计算 $f_1(t), f_2(t)$ 的卷积 $y(t) = f_1(t) * f_2(t)$,并作出 y(t) 的图形, $f_1(t), f_2(t)$ 如图所示。

本资源免费共享 收集网站

\mathbf{m}: 1. $t < 0, t > 4, \quad y(t) = 0;$

2.
$$1 > t \ge 0$$
, $y(t) = 2 \int_0^t \tau d\tau = t^2$;

3.
$$3 > t \ge 1$$
, $y(t) = 2 \int_{t-1}^{t} \tau d\tau = 2t - 1$;

本题分数	10
得 分	

三、 $(10\ \mathcal{G})$ (每小题 $5\ \mathcal{G}$,共 $10\ \mathcal{G}$) 求下列信号的频谱密度函数。

解:

1.
$$F_1(j\omega) = \frac{\pi}{5}g\left(\frac{\omega}{10}\right);$$

2.
$$F_2(j\omega) = -2Sa(\omega)e^{j2\omega} + 2Sa(\omega)e^{-j2\omega} = -4jSa(\omega)\sin(2\omega)$$
, 或者 $F_2(j\omega) = 2j\frac{\cos(3\omega) - \cos\omega}{\omega}$ 。

本题分数	15
得 分	

四、(15分) (每小题 5分, 共 15分) 计算下列变换或反变换。

- 1. 已知 $f(t) = te^{-t}u(t-2)$, 求拉普拉斯变换 F(s);
- 2. 已知 $x[n] = n\left(\frac{1}{2}\right)^{n-1}u[n-2]$, 求 z 变换 X(z);
- 3. 已知单边 z 变换 $X(z)=\dfrac{z^2}{z^2+3z+2},$ 求原序列 x[n]。

解:

1.
$$F(s) = \frac{2s+3}{(s+1)^2}e^{-2(s+1)}$$
;

2.
$$X(z) = \frac{4z-1}{z(2z-1)^2}$$
;

3.
$$X(z) = 2\frac{z}{z+2} - \frac{z}{z+1}$$
, $x[n] = (2 \times (-2)^n - (-1)^n)u[n]$.

本题分数	20
得 分	

五、(20 分) 电路如图所示,且处于稳定状态,t=0 时,开关 S 打开。已知 电路参数 $C=\frac{1}{5}F, L=1H, R_1=2\Omega, R_2=5\Omega, E=10V$ 。

- 1. 求电感初始电流 $i_L(0^-)$ 和电容初始电压 $u_C(0^-)$;
- 2. 作出 t > 0 时的运算等效电路;
- 3. 以电容电压 $u_C(t)$ 为响应,由等效电路求系统函数 H(s);

- 4. 由 H(s) 求冲激响应 h(t);
- 5. 求 t > 0 时 $u_C(t)$ 的全响应电压。

$$\mathbf{H}: 1. \ i_L(0^-) = i_L(0^+) = 2A, u_C(0^-) = u_C(0^+) = 10V;$$

2. 等效电路如右图;

3.
$$H(s) = \frac{5}{s^2 + 2s + 5} = \frac{5}{2} \frac{2}{(s+1)^2 + 2^2};$$

4.
$$h(t) = \frac{5}{2}e^{-t}\sin(2t)u(t);$$

5.
$$U_C(s) = \frac{10}{s^2 + 2s + 5} + \frac{10}{s} = 5\frac{2}{s^2 + 2s + 5} + \frac{10}{s}$$

$$u_C(t) = (10+5e^{-t}\sin(2t))u(t) = 5(2+e^{-t}\sin(2t))u(t)$$
.

本题分数	15
得 分	

六、(15分)离散系统的方框图如图所示,且初始条件为零。试求:

- 1. 系统的系统函数 H(z), 并写出系 统差分方程;
- 2. 单位冲激响应 h[n];
- 3. 若 $x[n] = \left(-\frac{1}{2}\right)^n u[n]$,求系统响 应 y[n] 。

解

1.
$$H(z) = \frac{2z+1}{z^2+z}$$
, $y[n+2] + y[n+1] = 2x[n+1] + x[n]$;

2.
$$H(z) = 2z^{-1}\frac{z}{z+1} + z^{-2}\frac{z}{z+1}$$
, $h[n] = 2 \times (-1)^{n-1}u[n-1] + (-1)^{n-2}u[n-2]$;

3.
$$Y(z) = \frac{2}{z+1}$$
, $y[n] = 2 \times (-1)^{n-1} u[n-1]$.