Particle Filtering and Learning in Finance

Nick Polson¹

¹University of Chicago GSB Joint work with Michael Johannes (Columbia) and Arthur Korteweg (Stanford)

October, 2008

Overview

- Particle Filtering, Learning and Smoothing
- Conditional Sufficient Statistics
- Filtering and Learning works for empirical asset pricing problems.
- Sequential Predictive Regressions: Dividend yields and Payout ratios
- Carvalho, Johannes, Lopes and Polson (2008). Particle Learning and Smoothing

Filtering

Data y_t depends on a latent state variable, x_t.

Observation equation:
$$y_t = f\left(x_t, \varepsilon_t^{y}\right)$$

State evolution: $x_{t+1} = g\left(x_t, \varepsilon_{t+1}^{x}\right)$,

- Posterior distribution of $p\left(x_{t}|y^{t}\right)$ where $y^{t}=\left(y_{1},...,y_{t}\right)$
- Kalman filter, FFBS (Filter Forward Backwards Sample)
 Discrete HMM (Baum-Welch, Viterbi, Scott)
- Prediction and Bayesian updating.

$$\rho\left(x_{t+1}|y^{t}\right) = \int \rho\left(x_{t+1}|x_{t}\right)\rho\left(x_{t}|y^{t}\right)dx_{t},\tag{1}$$

updated by Bayes rule

$$\underbrace{p\left(x_{t+1}|y^{t+1}\right)}_{\text{Posterior}} \propto \underbrace{p\left(y_{t+1}|x_{t+1}\right)}_{\text{Likelihood}} \underbrace{p\left(x_{t+1}|y^{t}\right)}_{\text{Prior}}.$$
 (2)

SV: Motivating Example

SV models (JPR, EJP)

$$\begin{aligned} y_{t+1} &= \sqrt{V_{t+1}} \varepsilon_{t+1}^{y} \\ \log \left(V_{t+1} \right) &= \alpha_{v} + \beta_{v} \log \left(V_{t} \right) + \sigma_{v} \varepsilon_{t+1}^{v}, \end{aligned}$$

Typical parameters $\alpha_v = 0$, $\beta_v = 0.95$, and $\sigma_v = 0.10$.

Algorithm

- Track $(\theta, x_t, s_t)^{(i)}$ including sufficient statistics.
- Algorithm: Exact state filtering and parameter learning

Step 1: Draw
$$(\theta, x_t, s_t)^{(i)} \sim Multi_N \left(\left\{w\left((x_t, \theta)^{(i)}\right)\right\}_{i=1}^N\right)$$

Step 2: Draw
$$x_{t+1}^{(i)} \sim p\left(x_{t+1} | (x_t, \theta)^{(i)}, y_{t+1}\right)$$

Step 3: Update sufficient statistics:

$$\mathbf{s}_{t+1}^{(i)} = \mathcal{S}\left(\mathbf{s}_{t}^{(i)}, \mathbf{x}_{t+1}^{(i)}, \mathbf{y}_{t+1}\right) \text{ for } i = 1, ..., N$$

Step 4: Draw
$$\theta^{(i)} \sim p\left(\theta | s_{t+1}^{(i)}\right)$$

Conditional Suffi cient Statistics

Parameter posteriors and sufficient statistics,

$$\mathbf{x}_{t+1} = \mathbf{Z}_t' \boldsymbol{\beta} + \sigma_{\mathbf{X}} \sqrt{\omega_{t+1}} \epsilon_{t+1}$$

where
$$Z_t = (1, x_t)'$$
 and $\beta = (\alpha_x, \beta_x)'$.

• Posteriors $p\left(\sigma^2|s_{t+1}\right) \sim \mathcal{IG}\left(a_{t+1}, A_{t+1}\right)$, $p\left(\sigma_x^2|s_{t+1}\right) \sim \mathcal{IG}\left(b_{t+1}, B_{t+1}\right)$, and $p\left(\beta|\sigma_x^2, s_{t+1}\right) \sim \mathcal{N}\left(c_{t+1}, \sigma_x^2 C_{t+1}^{-1}\right)$.

Hyperparameters

$$\begin{aligned} A_{t+1} &= \frac{\left(y_{t+1} - x_{t+1}\right)^2}{\lambda_{t+1}} + A_t \\ B_{t+1} &= B_t + c_t' C_t c_t + \frac{x_{t+1}^2}{\omega_{t+1}} - c_{t+1}' C_{t+1} c_{t+1} \\ c_{t+1} &= C_{t+1}^{-1} \left(C_t c_t + \frac{Z_t' x_{t+1}}{\omega_{t+1}} \right) \\ C_{t+1} &= C_t + \frac{Z_t Z_t'}{\omega_{t+1}}, \end{aligned}$$

which defines the vector of sufficient statistics, $s_{t+1} = (A_{t+1}, B_{t+1}, c_{t+1}, C_{t+1}).$

Predictive Regressions

- Stock market return predictability often regarded as stylized fact.
- Standard predictive regression model:

$$r_{t+1} = \alpha + \beta x_t + \sigma \varepsilon_{t+1}^r$$

$$x_{t+1} = \alpha_x + \beta_x x_t + \sigma_x \varepsilon_{t+1}^x,$$

- How does the evidence for predictability arise?
 - Slow accumulation over time?
 - Or concentrated in particular sub-periods?

Big Picture

- How do investors make (portfolio) decisions?
 - They use models, considering multiple ones: Standard model? Stochastic volatility? Is β constant?
 - They learn about which model(s) work as new information arrives.
 - They care about uncertainty: estimation risk, state variables and models themselves.
- Current academic research:
 - Rational expectations: exact nature of predictability is known.
 - Model diagnostics: chose one "best" model.
 - Bayesian learning: one-shot problem.

Our Approach

- Sequential learning
- Portfolio formation
 - Based on currently available evidence
 - Taking all uncertainty into account: parameters, states and models.

Overview of Results

- Inference on predictability:
 - Predictability is stronger for net payout than for dividend yield.
 - The classical constant coefficients, constant volatility models is rejected for both payout measures.
 - Learn about predictability faster in stochastic volatility models.
- Portfolio formation:
 - Form portfolios that take into account all sources of uncertainty (parameter, state and model).
 - Learning.
 - Conditional skewness and kurtosis.
 - Stochastic volatility important for portfolio formation.

Models

Standard predictive regression model:

$$r_{t+1} = \alpha + \beta x_t + \sigma \varepsilon_{t+1}^r$$

$$x_{t+1} = \alpha_x + \beta_x x_t + \sigma_x \varepsilon_{t+1}^x,$$

- r_{t+1} is the value weighted excess market return; x_t is a maesure of yield (cash dividend yield or net payout yield of Boudoukh et al., 2007).
- The errors have correlation ρ (Stambaugh, 1999)
- Statistical issues: asymptotics due to unit roots, correlated errors, x₀, long-horizon regressions.
- Specification issues:
 - Time-varying volatility and the relationship between x_t and expected returns

Drifting Coeffi cients

- Theory: Common models (e.g. Santos and Veronesi, 2005) imply that the loading on x_t varies over time (surplus consumption ratio).
- Empirically, ample evidence that relationship between predictors and equity premium changes over time.
 - Lettau and Van Nieuwerburgh (2007).
 - Abrupt shifts vs. slow drifts: how does the economy change over time?

Model Extensions

Stochastic volatility (SV) and "drifting" coefficients (DC):

$$r_{t+1} = \alpha + \beta_0 x_t + \beta_t x_t + \exp(V_t^r/2) \varepsilon_{t+1}^r$$

$$x_{t+1} = \alpha_x + \beta_x x_t + \exp(V_t^x/2) \varepsilon_{t+1}^x$$

- Latent state variables:
 - V_t are stochastic volatilities (AR(1) processes)
 - β_t is an AR(1) with long-run mean zero:

$$\beta_{t+1} = \beta_{\beta}\beta_t + \sigma_{\beta}\varepsilon_{t+1}^{\beta}$$

Models: benchmark, SV, DC, SVDC.

Bayesian Inference

- We want the distribution of the unknown, conditional on the known: the posterior distribution.
 - Unknowns: parameters (θ) and latent states (L_t), and models.
 - Known: observed returns and dividend yields.
- With $j = 1 \dots J$ models (\mathcal{M}_j) , need to compute

$$p(\theta, L^t, \mathcal{M}_j | y^t)$$

where $y^t = \{r_{\tau}, x_{\tau}\}_{\tau=1}^t$ is the observed data.

Model Inference

- It is useful to decompose the posterior into two components:
 - Parameter and state variable inference within a model.
 - Inference across models.

$$\rho\left(L^{t}, \theta, \mathcal{M}_{j} | y^{t}\right) = \rho\left(L^{t}, \theta | \mathcal{M}_{j}, y^{t}\right) \rho\left(\mathcal{M}_{j} | y^{t}\right)$$

 The fist term is what we usually focus on, decomposed into a likelihood and prior:

$$p\left(L^{t},\theta|\mathcal{M}_{j},y^{t}\right)\propto p(y^{t}|L^{t},\theta,\mathcal{M}_{j})p(L^{t},\theta|\mathcal{M}_{j})$$

- The second term is a posterior model probability.
 - Classical methods pick the "best" model. Bayesians compare models and average across models, following the rules of probability.

Sequential Model Choice

 The criterion for comparing models is the posterior odds ratio:

$$odds\left(\mathcal{M}_{j} \text{ vs. } \mathcal{M}_{k}|y^{t}\right) = \frac{\rho\left(\mathcal{M}_{j}|y^{t}\right)}{\rho\left(\mathcal{M}_{k}|y^{t}\right)} = \frac{\rho\left(y^{t}|\mathcal{M}_{j}\right)}{\rho\left(y^{t}|\mathcal{M}_{k}\right)} \frac{\rho\left(\mathcal{M}_{j}\right)}{\rho\left(\mathcal{M}_{k}\right)}$$

- The term $p\left(\mathcal{M}_{j}\right)/p\left(\mathcal{M}_{k}\right)$ is the prior odds ratio.
- The Bayes Factor is:

$$\mathcal{BF}_{j,k}^t = \mathcal{LR}_{j,k}^t = \frac{p(y^t | \mathcal{M}_j)}{p(y^t | \mathcal{M}_k)} = \frac{p(y^t | y^{t-1}, \mathcal{M}_j)}{p(y^t | y^{t-1}, \mathcal{M}_k)} \mathcal{LR}_{j,k}^{t-1}$$

- Essentially a likelihood ratio, but where all other aspect of uncertainty (parameters, states) are accounted for.
- "Automatic" Occam's razor: Bayes Factors automatically punish needlessly complicated models by integrating out all sources of uncertainty.
- Sequential model monitoring: how and when does the weight of evidence shift?

Optimal Portfolio Allocation

• Investors maximize expected utility:

$$\max_{\omega_t} E_t \left[U \left(r_{t+1}^p \right) \right]$$

where
$$r_{t+1}^{p} = 1 + r_{t}^{f} + \omega_{t} \left(r_{t+1} - r_{t}^{f} \right)$$
 and $U \left(r_{t+1}^{p} \right) = \frac{\left(r_{t+1}^{p} \right)^{1-\gamma}}{1-\gamma}$.

- Static and not fully rational:
 - Does not take into account wealth in future states.
 - No intertemporal hedging.
 - Dynamic problem is intractable: how to deal with the fact that I know today that I will be revising my beliefs in the future?
- Model averaging:

$$E_{t}\left[U\left(r_{t+1}^{p}\right)\right] = \sum_{j=1}^{J} E_{t}\left[U\left(r_{t+1}^{p}\right)|\mathcal{M}_{j}\right] p\left(\mathcal{M}_{j}|y^{t}\right)$$

$$= \sum_{i=1}^{J} \int U\left(r_{t+1}^{p}\right) p\left(r_{t+1}^{p}|\mathcal{M}_{j}, y^{t}\right) p\left(\mathcal{M}_{j}|y^{t}\right) dr_{t+1}^{p}$$

Performance Evaluation

- After computing portfolio weights, a Bayesian investor waits for data.
 - After realizing portfolio returns, revise beliefs: recompute parameter and state variables estimates, update model probabilities and recompute expected utility.
- What about out-of-sample performance evaluation?
 Sharpe Ratios, CE, etc.
 - Play no formal role in the Bayesian approach: model probabilities take care of everything.
 - Example: $\mu=25\%/\text{year}$, which generates very high expected utility and certainty equivalents compared to other models.
 - At best, some sort of crude model specification tool.
- Interesting contrasts between "performance" of optimal strategies compared to others.

Computation: Particle Learning (PL)

- Compute posteriors for each model and model probabilities ∀t.
- Markov Chain Monte Carlo (MCMC) too expensive Difficult to compute marginal likelihoods for model probabilities.
- Particle Learning: fully recursive
 - Approximate fi Iters for nonlinear or nonnormal settings (Kalman doesn't apply).
 - Dominant paradigm in all signal tracking problems: robots, radar (military or weather), missile guidance, traffi c, GPS, etc.
 - Accurate and computationally attractive.
- Problem: typically used where models and parameters are known. Here add learning.

Data

- Value-weighted monthly equity returns, 1927-2005.
- Dividend yield:
 - Traditional cash dividends.
 - Net payout yield: Boudoukh et al. (2007)
- Measuring cash payouts is not easy:
 - Prior to 1983: CRSP changes in shares outstanding.
 - From 1983 onwards: Use issuances and repurchases from statement of cash flows
- Structural breaks?
 - Boudoukh et al. (2007) test for and reject a structural change.

Cumulative Regressions (OLS)

Particle Estimates: Benchmark Model, Dividend Yield

Benchmark Model, Net Payout Yield

Hypothesis Testing

• Test \mathcal{H}_0 : $\beta = 0$ by computing Bayes factors:

$$\begin{split} \mathcal{BF}_{0,1}^t &= \frac{\rho\left(\mathcal{H}_0|y^t\right)}{\rho\left(\mathcal{H}_1|y^t\right)} \\ &= \frac{\rho\left(\beta = 0|y^t, \mathcal{H}_1\right)}{\rho\left(\beta = 0|\mathcal{H}_1\right)} \end{split}$$

Convert to probabilities:

$$\mathsf{Prob}\left[\mathcal{H}_0|\boldsymbol{y}^t\right] = \frac{\mathcal{BF}_{0,1}^t}{1 + \mathcal{BF}_{0,1}^t}$$

Priors

- We use conjugate priors, which admit sufficient statistics for posteriors.
- We use the 1927-1936 period to "train" the priors.
 - Estimate regressions, take point estimates and standard errors to formulate priors.
 - Avoids the need for subjective priors.
 - Exception: Drifting coeffi cients model: calibrate prior to imply on average high persistence (0.95 monthly autocorrelation, with standard deviation 0.1).

Lindley's Paradox

Lindley's Paradox

- Conflict between p-values and Bayes factors in large samples.
 - T-statistic is about 2 to 2.5: signifi cant at the 5% level.
 - Posterior probability for d/p in benchmark model is about 10-15%.
- Why? Large-sample approximation:

$$\mathcal{BF}_{0,1}^T pprox \sqrt{T} \exp\left(-rac{t_T^2}{2}
ight)$$

- T = 900, $t_T = 2$ implies $\mathcal{BF} = 1.3$ and posterior probability is approximately 80%.
- T = 900, $t_T = 3$ implies $\mathcal{BF} = 0.32$ and posterior probability is approximately 25%.
- Need to reduce p-values in large samples.

DC, Dividend Yield

SV, Net Payout Yield

Predictability Estimates across Models

Hypothesis Tests

Sequential Model Probabilities

Optimal Portfolio Weights, Dividend Yield ($\gamma = 4$)

Portfolio Stats: Dividend Yield

$\gamma = 4$	mean	s.d.	skew	kurt	S.R.	C.E.	APY
Full-data OLS	9.16	10.57	0.60	24.35	0.14	0.78	8.58
Cumulative OLS	6.20	4.72	1.30	13.57	0.14	-0.34	6.08
Rolling OLS	10.11	20.43	-4.41	66.20	0.09	-175.45	6.78
Benchmark	6.89	6.32	1.33	15.20	0.13	0.00	6.67
DC	7.34	8.03	-1.54	42.58	0.12	-0.23	6.99
SV1	11.03	12.42	1.13	13.53	0.16	1.96	10.24
SVDC	8.87	13.22	-1.04	22.61	0.11	-1.39	7.94
Model-avge	7.28	7.71	-1.88	50.35	0.12	-0.20	6.85
SV2	7.52	8.09	-0.16	6.31	0.13	0.09	7.17
$\gamma = 6$	mean	s.d.	skew	kurt	S.R.	C.E.	APY
Full-data OLS	7.43	7.05	0.55	24.24	0.14	0.53	7.16
Cumulative OLS	5.45	3.20	1.43	13.36	0.14	-0.23	5.39
Rolling OLS	8.06	13.61	-4.39	66.09	0.09	-22.28	6.93
Benchmark	5.91	4.25	1.47	15.33	0.13	0.00	5.81
DC	6.23	5.39	-1.41	41.29	0.12	-0.12	6.06
SV1	8.82	8.94	1.79	19.86	0.16	1.20	8.40
SVDC	7.46	9.48	-1.14	30.14	0.11	-1.26	6.98
Model-avge	6.22	5.18	-1.69	48.67	0.12	-0.07	6.01
SV2	6.40	5.60	-0.13	6.37	0.13	0.07	6.23
$\gamma = 8$	mean	s.d.	skew	kurt	S.R.	C.E.	APY
Full-data OLS	6.56	5.30	0.49	23.98	0.14	0.41	6.40
Cumulative OLS	5.08	2.46	1.51	12.92	0.14	-0.17	5.04
Rolling OLS	7.03	10.21	-4.36	65.85	0.09	-11.52	6.43
Benchmark	5.42	3.24	1.57	14.89	0.13	0.00	5.35
DC	5.64	4.09	-1.23	39.64	0.12	-0.10	5.54
SV1	7.67	7.00	2.24	23.75	0.15	0.88	7.41
SVDC	6.65	7.22	-0.80	29.51	0.06	-0.83	6.37
Model-avge	5.67	3.93	-1.48	46.95	0.12	-0.02	5.54
SV2	5.79	4.29	-0.10	6.45	0.12	0.04	5.69
	•				4 €		4 = > 4

Portfolio Stats: Net Payout Yield

$\gamma = 4$	mean	s.d.	skew	kurt	S.R.	C.E.	APY
Full-data OLS	9.52	11.54	0.38	18.66	0.14	0.99	8.83
Cumulative OLS	6.55	6.60	1.14	14.54	0.11	-0.12	6.32
Rolling OLS	11.43	18.31	-2.70	29.45	0.12	-12.83	9.39
Benchmark	7.21	8.49	1.21	15.93	0.11	0.00	6.84
DC	7.64	8.63	0.51	17.63	0.12	0.34	7.25
SV1	6.69	6.01	0.80	10.52	0.13	0.16	6.49
SVDC	6.91	10.10	1.28	16.75	0.08	-0.87	6.40
Model-avge	6.79	6.04	0.79	10.35	0.13	0.25	6.59
SV2	7.46	8.16	-0.33	6.50	0.12	0.29	7.10
$\gamma = 6$	mean	s.d.	skew	kurt	S.R.	C.E.	APY
Full-data OLS	7.71	7.70	0.33	18.65	0.14	0.68	7.39
Cumulative OLS	5.72	4.43	1.20	14.56	0.11	-0.08	5.61
Rolling OLS	8.98	12.19	-2.70	40.89	0.12	-4.80	5.61
Benchmark	6.17	5.71	1.29	16.16	0.11	0.00	5.99
DC	6.49	5.92	0.97	22.05	0.12	0.23	6.30
SV1	5.89	4.23	1.03	12.05	0.13	0.15	5.79
SVDC	6.08	7.22	2.19	28.03	0.08	-0.61	5.81
Model-avge	5.97	4.27	0.96	12.03	0.13	0.21	5.86
SV2	6.40	5.63	-0.29	6.68	0.12	0.21	6.22
$\gamma = 8$	mean	s.d.	skew	kurt	S.R.	C.E.	APY
Full-data OLS	6.80	5.78	0.28	18.55	0.14	0.51	6.61
Cumulative OLS	5.31	3.36	1.25	14.38	0.11	-0.06	5.24
Rolling OLS	7.75	9.14	-2.69	40.64	0.12	-2.94	7.29
Benchmark	5.64	4.30	1.34	16.07	0.11	0.00	5.54
DC	5.87	4.46	1.00	22.16	0.12	0.16	5.75
SV1	5.44	3.29	1.12	12.91	0.12	0.09	5.38
SVDC	5.62	5.79	2.95	43.27	0.08	-0.54	5.44
Model-avge	5.51	3.31	1.09	12.90	0.13	0.15	5.44
SV2	5.83	4.30	-0.23	6.58	0.12	0.15	5.72
	• 1					→ < □ →	< = >

Extensions

- Economic restrictions on priors
- Intertemporal hedging
- Long-horizon predictability
 - Larger role for parameter uncertainty in portfolio formation.

Conclusions

- Stock return predictability examined sequentially.
 - Predictability is stronger for net payout than for dividend yield.
 - The classical constant coefficients, constant volatility models is rejected for both payout measures.
 - Learn about predictability faster in stochastic volatility models.
- Portfolio formation:
 - Form portfolios that take into account all sources of uncertainty (parameter, state and model).
 - Learning.
 - Conditional skewness and kurtosis.
 - Stochastic volatility important for portfolio formation.

