UNCLASSIFIED

AD NUMBER AD912567 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; 23 AUG 1973. Other requests shall be referred to Air Force Ogden Air Materiel Area, Hill AFB, UT 84406. **AUTHORITY** OOY, usaf ltr, 18 Jun 1974

HEADQUARTERS
OGDEN AIR MATERIEL AREA
UNITED STATES AIR FORCE

PROPELLANT
SURVEILLANC REPORT
LGM-30F&G STAGE I
PHASE A, SERIES II
TP-H1011

PROPELLANT LABORATORY SECTION

MAGCP REPORT

NR 271(73)

Copy available to DDC does not permit fully legible reproduction

		1
ACCESSION	for	
NTIS DDC Unarhound Justificat	White Section Butt Section	
DISTRIBUTE DISTRIBUTE	AAHL EDOOR SE SIA	
B		
<u> </u>		_

FROPELLANT SURVEILLANCE REPORT

LGM-3Ø F & G STAGE I

PHASE A, SERIES TI, TP-H1011

Submitted By

Combuetion Unit

Recommended Approval By

JOHN D. HOPPER, Chemist Component & Combustion Unit

RONALD F. LARSEN

Propellant Laboratory Section

Approved By

CHARLES M. BOCK, Chief Physical Sciences Lab Branch Directorate of Maintenance

Industrial Laboratory Division Directorate of Maintenance Ogden Air Materiel Area United States Air Force Hill Air Force Base, Utah

Copy available to DDC does not permit fully legible reproducts

ABSTRACT

This report contains propellant test results from cartons of TP-H1011 bulk propellant representing LGM-30 F and G First Stage Minuteman Motors. This report uses a statistical approach to analyze the bulk carton propellant. Testing was accomplished in accordance with MMEMP Project M-41785M, DO 12 Nr 2MP-155P, 72NE068.

An analysis of all parameters indicates that seven years of aging at 77°F temperature has not greatly affected the properties of the propellant. The potential problems are expected in the propellant for at least two years past the oldest data point.

Each point on the regression plot represents all samples at that particular age. The number of samples at each point is indicated on the sample size summary sheet on the page accompanying each regression plot. The data range at any age can be found by suitable inquiry of the GO85 System.

TABLE OF CONTENTS

	Page
Abstract	ii
List of Figures	iv
Glossary of Terms and Abbreviations	x
List of References	xit
Introduction	1
Table 1 - Test Program	3
Statistical Approach	4
Test Results	5
Conclusions	9
Recommendations	10
Distribution List	188

LIST OF FIGURES

Figure Nr		Page
	Regression Plot, Very Low Rate Tensile	
1	Strain at Maximum Stress	13
2	Maximum Stress	15
3	Strain at Rupture	17
4	Stress at Rupture	19
5	Modulus	21
	Regression Plot, Low Rate Biaxial, Tensile	
6	Strain at Maximum Stress	23
7	Maximum Stress	25
8	Strain at Rupture	27
9	Stress at Rupture	29
10	Modulus	31
	Regression Plot, Low Rate Tensile	
11	Strain at Maximum Stress	33
12	Maximum Stress	35
13	Strain at Rupture	37
14	Stress at Rupture	39
15	Modulus	41
	Regression Plot, High Rate Triaxial Tensii 600 psi	e,
16	Strain at Maximum Stress	43
17	Maximum Stress	45

Figure Nr		Page
18	Strain at Rupture	47
19	Stress at Rupture	49
20	Modulus	51
	Regression Plot, High Rate Hydrostatic	Tensile
21	Strain at Maximum Stress	53
22	Maximum Stress	55
23	Strain at Rupture	57
24	Stress at Rupture	59
25	Modulus	61
	Regression Plot, Creep, 12 lb load	
26	Compliance at 10 sec	63
27	Compliance at 20 sec	65
28	Compliance at 50 sec	67
29	Compliance at 500 sec	69
30	Compliance to failure	71
	Regression Plot, Stress Relaxation 5% Strain, -65°F	
31	Modulus at 10 sec	73
32	Modulus at 50 sec	75
33	Modulus at 100 sec	77
34	Modulus at 1000 sec	79

Figure Nr		Page
	Regression Plot, Stress Relaxation 5% Strain, -40°F	
35	Modulus at 10 sec	81
36	Modulus at 50 sec	83
37	Modulus at 100 sec	85
38	Modulus at 1000 sec	87
	Regression Plot, Stress Relaxation 3% Strain, 20°F	
39	Modulus at 10 sec	89
40	Modulus at 50 sec	91
41	Modulus at 100 sec	93
42	Modulus at 1000 sec	95
	Regression Plot, Stress Relaxation 3% Strain, 77°F	
43	Modulus at 10 sec	97
44	Modulus at 50 sec	99
45	Modulus at 100 sec	101
46	Modulus at 1000 sec	103
	Regression Plot, Stress Relaxation 3% Strain, 100°F	
47	Modulus at 10 sec	105
48	Modulus at 50 sec	107
49	Modulus at 100 sec	109
50	Modulus at 1000 sec	111

Figure Nr		Page
	Regression Plot, Stress Relaxation 3% Strain, 120°F	
51	Modulus at 10 sec	113
52	Modulus at 50 sec	11.5
53	Modulus at 100 sec	117
54	Modulus at 1000 sec	119
	Regression Plot, Stress Reimation 3% Strain, 140°F	
55	Modulus at 10 sec	121
56	Modulus at 50 sec	123
57	Modulus at 100 sec	125
58	Modulus at 1000 sec	1 27
	Regression Plot, Stress Relaxation 3% Strain, 160°F	
59	Modulus at 10 sec	129
60	Modulus at 50 sec	131
61	Modulus at 100 sec	133
62	Modulus at 1000 sec	135
	Regression Plot, Stress Relaxation 3% Strain, 180°F	
63	Modulus at 10 sec	137
64	Mcdulus at 50 sec	139
65	Modulus at 100 sec	141
66	Modulus at 1000 sec	143

Figure Nr		<u>Page</u>
67	Regression Plot, Constant Strain	145
	Regression Plot, Dynamic Response	
68	Scorage Shear Modulus, 200 Hz	147
69	Loss Tangent, 200 Hz	149
70	Storage Shear Modulus, 500 Hz	151
71	Loss Tangent, 500 Hz	153
72	Failure Envelope	155
	Regression Plot, DTA, 12°C rise/min	
73	Endotherm	157
74	Exotherm #1	159
75	Exotherm #2	161
76	Exotherm #3	163
77	Ignition Temp	165
78	Regression Plot, Heat of Explosion	167
	Regression Plot, Pressure Time, 500 psi	
79	Maximum Pressure	169
80	Time to Maximum Pressure	171
81	Regression Plot, Burning Rate	173
82	Regression Plot, Ignitability	175
83	Regression Plot, Impact Sensitivity	177
84	Regression Plot. Hardness	179

Figure Nr		Page
	Regression Plot, Sol Gel	
85	Weight Swell Ratio	181
86	Cross Link Density	183
87	Percent Extractables	185
88	Density	187

GLOSSARY OF TERMS AND ABBREVIATIONS

Aging Trend A change in properties or performance resulting from aging of waterial or component

CSA Cross Sectional Area

Ε Modulus (psi), defined as stress divided by strain along the initial linear portion of the

curve

ΕB End Bonded

EGL Effective Gage Length

Strain at maximum stress em

er Strain at rupture

DΒ Dogbone

Gradual deterioration of properties or performance Degradation

"F" ratio The ratio of the variance accounted for by the regression function to the random unexplained variance. The regression function having the most significant "F" ratio is used for plotting data. The ratio is also used in detecting signi-

ficant changes in random variation between

succeeding time points.

JANNAF Joint Army, Navy, NASA, Air Force Committee

MAGCP Propellant Lab Section at OOAMA

OOAMA Ogden Air Materiel Area, Air Force Logistics

Command

Regression The general form of the regression equation

is Y = a + bxEquation

Regression Line representing mean test values with respect

Line to time

Standard error of estimate of the regression

coefficient

Se or Sy.X Standard deviation of the data about the

regression line

GLOSSARY OF TERMS AND ABBREVIATIONS (cont)

SM Maximum Stress

Sr Stress at rupture

Standard

Deviation (S_v) Square root of variance

Strain Rate Crosshead speed divided by the EGL

"t" test

A statistical test used to detect significant differences between a measured parameter and an expected value of the parameter (determines if regression slope differs from zero at the 95%

confidence level)

Variance The sum of squares of deviations of the test

results from the mean of the series after division by one less than the total number of test

results

3 Sigma Band The area between the upper and lower 3 sigma

limit. It can be expected that 99.73% of the inventory represented by the test samples would fall within this range assuming that the popu-

lation is normally distributed.

90-90 Band It can be stated with 90% confidence that 90% of

the inventory represented by the test samples would fall within this range assuming that the

population is normally distributed.

LIST OF REFERENCES

Report Nr	<u>Title</u>	Report Date
	LGM-30 First Stage, Wing I Test Reports	
29A	Test Report (Missile in silo)	13 Jan 64
29B	Zero Time Test Results	29 Jan 64
290	Zero Time Test Results (Supplement 1)	30 Mar 64
29D	Zero Time Test Results (Aft Closure)	9 Jun 64
29E	Zero Time (Aft Closure Supplement 1)	24 Jun 64
29F	ATP Phase I Test Kesults	30 Mar 65
29G	ATP Phase I Test Results	19 Aug 65
29Н	ATP Phase I Test Results	10 Sep 65
32 A	Zero Time, Wings II-V Test Results	17 Mar 65
32B	Zero Time, Wings II-V Test Results (Aft Closure)	18 Mar 65
320	ATP Phase I, Wings II-V Test Results	3 Nov 65
៤ 9	ATP Phase I, Wings II-V (First Group)	18 Mar 66
53	ATP Phase I, Wings II-V (Second Group)	22 Apr 66
55	ATP Phase I, Wings II-V (Third Group)	29 Apr 66
58	ATP Phase I, Wings II-V (Fourth Group)	6 May 66
61	ATP Phase I, Wings II-V (Fifth Group)	10 Jun 66
66	ATP Phase I, Wings II-V (Sixth Group)	22 Jul 66
76	ATP Phase II, Wing I Test Results	24 Jan 67
78	Zero Time, Wing VI Test Results	3 Feb 67
104	ATP Phase I, Wing VI (First Group)	12 Oct 67
118	ATP Phase II, Wings II-V (First Group)	5 Mar 68
126	ATP Phase II, Wings II-V (Second Group)	11 Apr 68
130	ATP Phase II, Wings II-V (Third Group)	3 May 68

LIST OF REFERENCES (cont)

Report Nr	<u>Title</u>	Report Date
162	ATP Phase I, Wing VI (Second Group)	30 Sep 69
176	ATP Phase II, Wing VI (First Group)	15 Apr 70
181	ATP Phase III, Wing I	7 May 70
185	ATP Phase I, Wing VI (Third Group)	22 Jun 7 0
195	ATP Phase III, Wings II-V (Retest)	29 Oct 70
223	Surveillance Report LGM-30 Stage I (TP-H1C11)	Sep 71
239	Surveillance Report IGM-30 Stage I (TP-H1011 and TP-H1043)	Apr 72
258	Surveillance Report LGM-30A & B Stage I, (TP-H1011)	Nov 72
268	Surveillance Report LGM-30A & B Stage I, (TP-H1011)	May 73

INTRODUCTION

A. PURPOSE:

Quality assurance tests have been conducted for eleven years on First Stage LGM-30A, B, F and G Minuteman Motor propellant blocks to evaluate the effects of aging on TP-H1011 propellant. This report contains only those tests conducted on propellant from LGM-30F and G as instructed in Test Directive GTD-1C, Amendment J., LGM-30 First Stage Operational Propellant Laboratory Testing.

Statistical analysis of the tests performed should provide early warning if serious degradation trends occur. Annual evaluation of the propellant provides data for input into engineering reliability for service life predictions. Testing was performed in accordance with MMEMP Directive GTD-1C, Amendment 1.

B. BACKGROUND:

LGM-30F and G testing was started in 1966 with phase testing at 24 month intervals (Report Numbers 78 - zero time; 104, 162, 185-Phase I, 176, 239, 257-Phase II). Report Number 257 was the first time that LGM-30F and G data were reported in statistical analysis by itself. The present report is a continuation of testing and statistical analysis by the GO85 system.

Zero time testing for LGM-30A, B, F and G was started as soon as possible after receipt of the propellant by MAGCP. Data from these tests were used to establish a base line for each test parameter.

The LGM-30F and G propellant test matrix (Table 1) is used to determine the number of specimens to be taken from each propellant loaf and the specific test or tests to which these specimens are to be subjected. Very low rate and low rate tensile specimens are taken on all LGM-30F and G blocks. Specimens for other physical and combustion tests are taken from every third (LGM-30F and G) block.

TABLE 1

SAMPLE PLAN

The Procedure for determining tests to be performed on propellant batch samples of LGM-30 F & G First Stage Motors are as follows:

1. Divide the USAF motor serial numbers into three groups by dividing the last three digits of each serial number by three to determine the remainder integer, e.g., $154 \div 3 = 51$ with a remainder integer of 1.

tests to be performed on the forward, middle, and aft batch samples associated with a particular 2. Use the remainder integer to enter the following matrix to determine the group of motor serial number.

	בדד מזוסמט	777			
	חוספט			2	
	GROTTP TT	0	,	-	0
GROUP MATHLY	GROUP I			0	ن.
- 1	IF-HIOII PROPELLANT BATCH SAMPLE	Forward	Middle	Aft	
T 111 C41	1 1014-11				

Each group will receive the following tests:

	_	_	_	_	_	_	-		+	_	,_	
	CBOTTD TTT	TTT TOMIN	algn kate marostatic	Sol Gol	TON TON			TOA	TYTA A	W.C.	Impact	
TEST MATRIX	GROUP II	Danamic Bestones	Destrodos of the Co	Stress Relaxation		burning Kate	1100 400	uear or expression	Pressure Time			
	GROUP I	High Rate Triaxial	3008	Caaro	Riavial Loss Date	בישעדמ אחת שמיני	TCLE	***	Hardness	7.55 + 51.2 7.4-	KOTTTOROTTIST.	• • • • • • • • • • • • • • • • • • • •

NOTE: Low Rate and Very Low Rate Tensile tests are performed on all blocks.

STATISTICAL APPROACH

Linear regression analysis was used as the method of data evaluation. Data from different time periods were used to establish a least squares trend line for the data. The variance about the regression line, obtained using individual values of the dependent variable, was used to compute a tolerance interval such that at the 90% confidence level, 90% of the sample distribution falls within this interval. This tolerance interval was extrapolated to a maximum of 24 months. The "t" values and the significance of this statistic, which are reported for each regression model, give an indication of the "statistical significance" of the slope of the trend line as compared to a line of zero slope. Data were plotted by the computer. The "y" axis is computed so that the values at one inch intervals are peculiar to the data spread of the parameter tested.

TEST RESULTS

VERY LOW RATE TENSILE:

The strain properties are decreasing with the stresses and modulus increasing. All of the regressions show a statistically significant increase or decrease, but should not affect the propellant serviceability at this time (Figures 1 thru 5).

LOW RATE BIAXIAL TENSILE:

Strain at maximum stress, maximum stress, and strain at rupture show a statistically significant increase. However, it should be noted the slope of the curves is relatively flat. Stress at rupture and modulus show no significant trend (Figures 6 thru 10). LOW RATE TENSILE:

For all parameters except strain at rupture a statistically significant increase is shown (Figures 11 thru 15).

HIGH RATE TRIAXIAL:

Strain at maximum stress and strain at rupture show no significant trends. Maximum stress, stress at rupture, and modulus show a statistically significant trend (Figures 16 thru 20).

HYDROSTATIC TENSILE:

No significant trend is shown except for modulus. The modulus trend is decreasing, but the slope is gradual and should not present a problem at this time (Figures 21 thru 25).

TENSILE TESTING SUMMARY:

Stresses and modulus are gradually increasing with age as expected. Very low rate tensile strain shows a gradual decrease. Low rate tensile strain at rupture shows no significant change; all other strain graphs show a gradual increase. No operational problems are indicated in the propellant at this time.

CREEP COMPLIANCE:

The regressions show a decreasing trend except for strain at rupture which shows an increase. This agrees well with the tensile results (Figures 26 thru 30).

STRESS RELAXATION:

Data were obtained at temperatures of -65, -40, 26, 77, 100, 120, 140, 160 and 180°F (Figures 31 thru 66). At -65, -40 and 20°F the trends show a decrease except for stress relaxation modulus at -40 degrees F at 10 sec (Figure 35) and 20 degrees F at 1000 sec (Figure 42). For all other temperatures no significant changes are shown except for stress relaxation modulus at 120 degrees F, 10 and 50 sec (Figures 51 and 52) and 140 degrees F 1000 sec (Figure 58). CONSTANT STRAIN:

The regression analysis indicates a statistically significant downward trend of the rupture strain although the slope is gradual (Figure 67).

DYNAMIC RESPONSE:

The storage shear modulus at 200 and 500 Hz shows a decrease in the slope of the regression line. This slope is closer to zero or flat than in the previous report (Figures 68 thru 71).

The loss tangent at 200 and 500 Hz shows a gradual increase in the slope of the regression line (Figures 68 thru 71).

FAILURE ENVELOPE:

The majority of the points are resonably close to the curve (Figure 72).

DTA:

The endotherm shows a statistically significant increase. However, the slope of the regression line is relatively flat.

The first exotherm shows a statistically significant decrease and the second and third exotherms show no significant change.

The ignition temperature shows a statistically significant increase.

Where a significant change is shown the slope of the regression line is gradual (Figures 73 thru 77).

HEAT OF EXPLOSION:

Although the regression slope is statistically significant, the slope of the regression line is close to zero and therefore, no operational problems are expected at this time (Figure 78).

PRESSURE TIME:

The data are widely scattered on both the time to maximum pressure and the maximum pressure regressions. No aging trends are evident (Figures 79 and 30).

BURNING RATE:

Although this test shows a statistically significant increase, it should be noted that if the zero time testing points were eliminated (possible post-cure) the slope of the regression line would be practically flat (Figure 81).

IGNITABILITY:

The ignition threshold shows no significant trend (Figure 82).

IMPACT SENSITIVITY:

The regression shows no significant change (Figure 83). SHORE HARDNESS:

Very little change is occurring in the hardness (Figure 68). SOL GEL:

The weight swell ratio, cross link density and density data show a statistically significant trend. However, the slopes are very flat and the propellant service life may be extended for at least two years from the date of last testing. The percent extractables by weight shows no significant trend (Figures 85 thru 88).

CONCLUSIONS

Seven years of aging at ambient temperature (77°F) has not greatly affected the properties of the propellant. Some test parameters indicate slight aging trends, but nothing that would adversely affect the operational characteristics of the rocket motor propellant.

From the statistical analysis, it does not appear that significant propellant degradation is occurring and the propellant reliability should not be affected for at least two years past the last data point. Since failure limits are not available for the parameters tested, this statement is based on the fact that the slopes of the regression curves are relatively close to zero or flat.

RECOMMENDATIONS

It is recommended that testing be continued on a regular basis to evaluate the effects of aging on motor propellant, and to assure that the propellant will perform as designed.

THIS PAGE LEFT BLANK INTENTIONALLY

Copy available to DDC does not permit fully legible reproduction

Nr	Samples	94	59	21	30	25	15	30	15	ſΛ	10	10	10	5,091					
Age	(months)	0.69	70.0	71.0	72.0	74.0	75.0	76.0	77.0	78.0	79.0	80.0	81.0						
Nr	Samples	136	158	175	155	320	313	216	200	196	321	167	175	135	43	16	28	21	47
Age	(months)	51.0	52.0	53.0	54.0	55.0	56.0	57.0	58.0	ນ.65	0.09	61.0	62.0	63.0	64.0	65.0	0.99	67.0	0.89
Nr	Samples	82	87	72	87	93	86	69	71	62	90	109	70	105	71	127	114	118	105
Age	(months)	33.0	34.0	35.0	36.0	37.0	38.0	39.0	40.0	41.0	42.0	43.0	44.0	45.0	76.0	47.0	48.0	0.67	50.0
'n	Samples	10	S.	15	ر ا	G C	20	20	25	32	13	10	15	11	19	15	10	41	79
Λορ	(months)	0.6	10.0	12.0		16.0	15.0	17.0	18.0	0.01	20.00	21.0	23.0	24.0	25.0	27.0	30.0	31.0	32.0

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 0.0020, EGL 3.00, CSA 0.1875 EM Very Low Rate Tensile

VERY LOW RATE TENSILE

Stage 1, Wing 6, TP-H 1011 Tensile, CSH 0.0020, EGL 3.00, CSA 0.1875 SM Very Low Rate Tensile

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 0.0020, EGL 3.00, CSA 0.1875 ER Very Low Rate Tensile

SAMPLE SIZE SUMMARY

Nr Samples 64 60 21 30 25 15 30 15 10 10 10 4,620
Age (months) 69.0 70.0 71.0 72.0 74.0 75.0 77.0 78.0 80.0 81.0
Nr 136 136 158 175 175 129 206 124 129 233 145 145 16 28 28
Age (months) 51.0 52.0 53.0 54.0 56.0 60.0 60.0 65.0 65.0 65.0 65.0 65
Nr Samples 70 72 69 77 71 60 65 72 82 87 87 105 114 118
Age (months) 33.0 34.0 34.0 35.0 36.0 37.0 40.0 41.0 42.0 44.0 45.0 48.0 48.0
Nr Samples 10 5 10 20 20 22 22 13 10 11 11 15 10 15 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10
Age (months) 9.0 10.0 12.0 12.0 14.0 15.0 17.0 19.0 24.0 25.0 27.0 32.0 32.0

Stage 1 Wing 6, TP-H 1011 Tensile, CSH 0.0020, EGL 3.00, CSA 0.1875 SR Very Low Rate Tensile

Copy available to DDC does not permit fully legible reproduction

Nr	Samples	40	59	24	27	25	15	30	15	ന	10	10	10	5,152					
дgе	(months)	0.80	70.0	71.0	72.0	74.0	75.0	0.97	77.0	78.0	79.0	80.0	81.0						
Nr	Sample s	136	158	175	155	320	315	214	200	223	345	170	180	151	43	13	28	20	42
Age	(months)	51.0	52.0	53.0	54.0	55.0	56.0	57.0	58.0	59.0	0.09	61.0	62.0	63.0	64.0	65.0	0.99	67.0	68.0
Nr	Samples	82	87	72	87	93	98	69	71	79	06	109	70	105	71	127	114	118	105
Age	(months)	33.0	34.0	35.0	36.0	37.0	38.0	39.0	0.04	41.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	0.64	50.0
Nr	Samples	10	'n	15	15	10	17	20	25	22	13	10	15	11	19	15	10	41	79
Age	(months)	0.6	10.0	12.0	13.0	14.0	15.0	17.0	18.0	19.0	20.0	21.0	23.0	24.0	25.0	27.0	30.0	31.0	32.0

Stage 1 Wing 6, TP-H 1011 Tensile, CSH 0.0020, EGL 3.00, CSA 0.1875 MD Very Low Rate Tensile

₹ U

0.1375

600

3.00,

EGL

CHS 0.0020,

IC: TENSILE,

Ļ

0

Ċ,

MINC

STAGE

VERY LOW RATE TENSILE Figure 5

21 -

SAMPLE SIZE SUMMARY

Nr Samoles	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Age (months)	70.0 78.0 74.0 75.0 75.0 77.0 79.0 80.0
Nr Samples	00000044
Age (months)	53.0 57.0 60.0 61.0 64.0 66.0 69.0
Nr Samples	004000000
Age (months)	32.0 36.0 39.0 41.0 42.0 46.0 48.0 52.0
Nr Samples	H 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Age (months)	1.0 15.0 17.0 19.0 20.0 22.0 24.0 25.0

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 0000.2, EGL 1.75, CSA 1.8750 EM Low Rate Biaxial Tensile

- 23 -

SAMPLE SIZE SUPPARY

Nr Samples 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Age (months) 70.0 71.0 74.0 75.0 77.0 77.0 79.0 80.0
Nr Samples 2 2 2 2 2 4 4 4
Age (months) 53.0 57.0 60.0 61.0 64.0 66.0 67.0
Nr Samples 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Age (months) 32.0 36.0 39.0 41.0 46.0 46.0 52.0
Nr Samples 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Age (months) 1.0 15.0 17.0 19.0 20.0 22.0 24.0 25.0

Stage 1 Wing 6, TP-H 1011 Tensile, CSH 0000.2, EGL 1.75, CSA 1.8750 SM Low Rate Biexial Tensile

LOW RATE BIAXIAL TENSILE Figure 7

SAMPLE SIZE SUMMARY

Nr Samoles	2	۰ ر	1 c	۷ <	† c	7 C	4 0	۰ د	77
Age (months)	70.0	71.0	74.0	75.0	0.97	77.0	0.67	80.0	•
Nr Samples	2	7		1 0	۰ ۱	1 0	. ~	7	4
Age (months)	53.0	57.0	60.0	61.0	63.0	0.79	66.0	67.0	0.69
Nr Samples	7	7	7	7	. ~	2 2	7	7	2
Age (months)	32.0	36.0	39.0	41.0	42.0	76.0	48.0	51.0	52.0
Nr Samples		2	7	2	7	7	7	7	7
Age (months)	1.0	15.0	17.0	19.0	20.0	22.0	24.0	25.0	30.0

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 0000.2, EGL 1.75, CSA 1.8750 ER Low Rate Biaxial Tensile

SAMPLE SIZE SUMMARY

Nr Samples	7	7	4	7	2	2	2	77
Age (months)	71.0	74.0	75.0	76.0	77.0	79.0	80.0	
Nr Samples 2	7	2	7	2	7	7	4	4
Age (months)	57.0	0.09	61.0	63.0	64.0	0.99	67.0	0.69
Nr Samples 2	7	4	2	2	7	2	2	2
Age (months)	36.0	39.0	41.0	42.0	0.94	48.0	51.0	52.0
Nr Samples	7	2	7	~		7	7	2
Age (months)	15.0	17.0	19.0	20.0	22.0	24.0	25.0	30.0

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 0000.2, EGL 1.75, CSA 1.8750 SR Low Rate Biaxial Tensile

Fimiro 0

LOW RATE BIAXIAL TENSILE

いかかい ことところいろのと

SAMPLE SIZE SUMMARY

Nr Samples 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 4 4 2
Age (months) 70.0 74.0 75.0 76.0 77.0 80.0
Nr Samples 2 2 2 2 2 2 2 4 4
Age (months) 53.0 57.0 60.0 64.0 66.0 66.0 65.0 66.0 66.0
Nr Samples 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Age (months) 32.0 36.0 39.0 41.0 42.0 46.0 52.0
Nr Samples 1 2 2 2 2 2 2 2
Age (months) 1.0 15.0 17.0 19.0 22.0 24.0 25.0

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 0000.2, EGL 1.75, CSA 1.8750 MD Low Rate Biaxial Tensile

SAMPLE SIZE SUMMARY

Nr Samples 25 20 20 55 45 18 18 15 15 16 14 5 3,339	
Age (months) 67.0 68.0 69.0 71.0 72.0 74.0 75.0 77.0 78.0 80.0 81.0	
Nr Samples 15 60 15 10 16 10 10 40 40 25 24 24 30	
Age (months) 45.0 47.0 48.0 49.0 53.0 53.0 53.0 60.0 61.0 62.0 63.0 65.0	
Nr Samples 10 10 15 15 15 15 16 10 10 10	
Age (months) 22.0 23.0 24.0 25.0 25.0 30.0 31.0 34.0 34.0 38.0 38.0 40.0 41.0 42.0	
Nr 57 151 191 171 185 185 186 187 187 187 187 187 187 187 187	!
Age (months) 4.0 5.0 6.0 7.0 8.0 11.0 112.0 115.0 115.0 115.0 115.0 118.0 119.0 20.0)))]

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 2.0000. EGL 3.00. CSA 0.1875 EM Low Rate Tensile

- 33 -

SAMPLE SIZE SUMMARY

THE CONTROL OF THE STATE OF THE

Nr Samples 25 20 25 45 45 18 20 20 25 30 115 15 15 16 14 5
Age (months) 67.0 68.0 69.0 70.0 72.0 75.0 75.0 77.0 78.0 80.0 81.0
Nr Samples 15 60 15 30 45 10 10 40 40 25 15 30 30
Age (months) 45.0 47.0 48.0 48.0 52.0 52.0 55.0 59.0 60.0 64.0 65.0 65.0
Nr Samples 5 10 15 16 15 15 15 15 16 10 10
Age (months) 22.0 22.0 23.0 24.0 25.0 30.0 31.0 33.0 34.0 36.0 37.0 39.0 40.0 41.0 42.0 43.0
Nr Samples 57 151 191 171 140 185 185 186 187 112 185 167 112 18
Age (HOUTL) 4.0 4.0 5.0 6.0 7.0 8.0 8.0 11.0 112.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 16.0 19.0 19.0 20.0 21.0

Stage 1, Wing 6, TP-H 1011 Tensile, CHS 2.0000, EGL 3.00, CSA 0.1875

Low Rate Tensile

- 35 -

LOW RATE TENSILE Figure 12

CO.

ന

EGL

CHS 2.0000.

TP-H 1011 TENSILE,

Ç

MING

SAMPLE SIZE SUMMARY

Nr	Samples	27	20	55	45	18	20	25	30	15	15	5	10	14	2	3,339			
Age	(months)	0./0	0.89	0.69	70.0	71.0	72.0	74.0	75.0	76.0	77.0	78.0	79.0	80.0	81.0				
Nr	Samples	15	09	15	30	7	45	10	Ŋ	14	15	10	07	25	15	29	54	Ŋ	30
Age	(months)	45.0	47.0	48.0	0.64	51.0	52.0	53.0	54.0	55.0	58.0	59.0	0.09	61.0	62.0	63.0	0.49	65.0	0.99
Nr	Samples	S	10	15	18	15	10	'n	15	15	15	30	15	14	20	10	'n	10	30
Age	(months)	22.0	23.0	24.0	25.0	27.0	30.0	31.0	32.0	33.0	34.0	36.0	37.0	38.0	39.0	40.0	41.0	42.0	43.0
Nr	Samples	57	151	191	171	140	185	183	192	184	180	201	185	167	112	18	25	4	15
Age	(months)	7. 0	5.0	0.9	7.0	8.0	0.6	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0

Stage 1, Wing 6, TP-H 1011 Tensile, CHS 2.0000, EGL 3.00, CSA 0.1875 ER Low Rate Tensile

STATE OF THE PROPERTY OF THE P

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 2.0000, EGL 3.00, CSA 0.1875 SR Low Rate Tensile

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 2.0000, EGL 3.00, CSA 0.1875 Low Rate Tensile

11、その後の変化

LOW RATE TENSILE Figure 15

SAMPLE SIZE SUMMARY

Nr Samples 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Age (months) 66.0 67.0 68.0 69.0 71.0 72.0 77.0 77.0 78.0 79.0 80.0 82.0 83.0
Samples 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Age (months) 45.0 45.0 46.0 47.0 48.0 52.0 55.0 56.0 56.0 60.0 61.0 62.0 65.0
Nr Samples 4 7 7 6 6 6 11 11 5 2
Age (months) 24.0 24.0 25.0 25.0 26.0 29.0 30.0 31.0 32.0 33.0 35.0 36.0 38.0 41.0 44.0
Nr Samples 8 17 13 10 9 8 8 10 6 6 6 5 7 7
Age (months) 6.0 7.0 8.0 9.0 11.0 11.0 115.0 15.0 16.0 17.0 18.0 19.0 22.0 22.0 23.0

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 1750.0 EGL 1.75 CSA 1.8750 TP 0950 EM High Rate Triaxial Tensile

- 43 -

Copy available to DDC does not permit fully legible reproduction

HIGH RATE TRIAXIAL TENSILE

Figure

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 1750.0 EGL 1.75 CSA 1.8750 TP 0950 SM High Rate Triaxial Tensile

SAMPLE SIZE SUMMARY

Nr	Samples 7	1 6	7	4	'n	~	t •	4	"	•	7	7	٠ ٠	4	0		7	7		7	7	370	}	
Age (months)	66.0	67.0		0.00	0.69	70.0		77.0	72.0	7 1	73.0	74.0	11.	0.//	78.0	70 0	0.00	80.0	82.0		83.0			
Nr Samples	2	7	· •	> 6	7	4	c	7	ผ	·	4	7	·	4 (~	^	١,	4	7	٠ ٧	‡	4	7	۰ ۵
Age (months)	45.0	0.94	47.0	o o o	7.01	49.0	51.0		22.0	54.0) (0.44	56.0		20.00	59.0	0 09	0.00	61.0	62.0		63.0	0.49	65.0
Nr Samples	7 1		9	v	, r	~	5	•	‡	Φ	4	D	σ	o	ָּ כ	11	ď	٠ -	4	2	ı c	7	7	7
Age (months)	24.0	72.0	26.0	27.0	28.0	0.0	29.0	30.0) ·	31.0	32.0	2 6	33.0	34.0) (22.0	36.0	000	2.00	39.0	77 0	0.14	42.0	0.44
Nr Samples	٥.	, ;	27	10	6	. 0	0	10		o	7	5	2	S	4) ('n	œ	,	•	4	- 4	o (σ,
Age (months)	2.0	α	? 6	0.6	10.0	110	2 1	12.0	13.0	7.	14.0	15.0		16.0	17.0		70.0	19.0	000	0.0	21.0	22.0	0.6	73.0

Stage I Wing 6, TP-H 1011 Tensile, CSH 1750.0 EGL 1.75 CSA 1.8750 TP 0950 ER High Rate Triaxial Tensile

Figure 18

Nr	2	, 0	1 7	r v) <	r <	† ·	4	7	4	7	• •	4 (~1	~	,	4 0	7	340		
Age (months)	0.99	67.0	68.0	0.69	70.0	71.0	22.0	0.27	73.0	74.0	77.0	78.0	0 0 0	0.67	80.0	82.0	0 0	2.00			
Nr Samples	2	7	9	7	7	7		1 6	7	4	7	7	•		4	7	7	٠ ،	t •	3 *	0
Age (months)	45.0	46.0	47.0	48.0	49.0	51.0	52.0	2.7	2 6	0.00	26.0	58.0	59.0	60.0		0.10	62.0	63.0	0.79) ·	65.0
Nr Samples	1 t	~ \	ο ν	01	_ `	S	7	œ	· •	,	ν (xo _†	11	ιń	۰ ،	.	7	7	7	٠ ،	7
Age (months)	24.0	2.46	27.0	0.72	0.00	0.62	30.0	31.0	32.0	33.0	2.76	0.40	33.0	36.0	38.0		37.0	41.0	42.0	0 77	2.4.
Nr Samples	1,5		2 2	g	\ Q	, <u>c</u>	07	9	7	10) V	י כ	'n	œ	,		4	9	σ	•
Age (months) 6.0	7.0	8.0	0.6	10.0	11.0	12.0	2 0	13.0	14.0	15.0	16.0	17.0	0 0	0.01	19.0	20.0	2	0.12	22.0	23.0	

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 1750.0 RGL 1.75 CSA 1.8750 TP 0950 SR High Rate Triaxial Tensile

HIGH RATE TRIAXIAL TENSILE

Figure 19

49 -

SAMPLE SIZE SUMMARY

Nr Samples 2 2 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 3 4 3	
Age (months) 66.0 57.0 68.0 69.0 72.0 72.0 72.0 74.0 77.0 78.0 78.0 80.0 83.0	
Nr Samples 2 2 4 4 4 4 4 4	4
Age (months) 45.0 46.0 47.0 48.0 51.0 52.0 56.0 58.0 58.0 60.0 61.0 62.0 64.0	,
Nr Sample s 4 7 7 6 6 6 8 8 8 11 5 7 6 6 6 7 7 7 7 7 8 8 8 8 8 4 7 7 7 7 7 7 7 7 7	7
Age (months) 24.0 24.0 25.0 25.0 28.0 33.0 33.0 35.0 35.0 35.0 41.0 42.0	2.4
Nr Samples 8 17 10 9 8 10 6 6 6 7 7	ת
Age (months) 6.0 6.0 7.0 8.0 9.0 11.0 112.0 15.0 15.0 16.0 19.0 20.0 21.0 22.0	23.0

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 1750.0 EGL 1.75 GSA 1.8750 TP 0950 MP High Rate Triaxial Tensile

Copy available to DDC does not permit fully legible reproduction

これによっていることのとのなるとのないとのないというないという

SAMPLE SIZE SUMMARY

Nr Samples	10	10	ľ) tr	190				
Age (months)	77.0	78.0	80.0	82.0) 				
Nr Samples	5	5	5	ري ر	10	10	, v	ı ın	'n
Age (months)	0.29	0.99	67.0	68.0	0.69	71.0	72.0	74.0	76.0
Nr Samples	^	7	7	'n	'n	10	5	10	Ŋ
Age (months)	0.44	45.0	746.0	50.0	53.0	54.0	55.0	56.0	0.09
Nr Samples	ָר ח	S	5	5	W)	10	2	10	5
Age (months)	10.0	19.0	21.0	22.0	24.0	26.0	34.0	41.0	43.0

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 1750.0 EGL 1.75, CSA 0.1875 TP 0950 EM Hydrostatic Tensile

Figure 21

HYDROSTATIC TENSILE

SAMPLE SIZE SUMMARY

Nr Samples 10	10	5	יי	190))]			
Age (months)	78.0	80.0	82.0) 				
Nr Samples 5	S	٠,	'n	10	10	٠,	٠	5
Age (months)	0.99	67.0	68.0	0.69	71.0	72.0	74.0	76.0
Nr Samples 5	4	,	5	5	10	5	10	Ŋ
Age (months)	42.0	46.0	50.0	53.0	54.0	55.0	56.0	0.09
Nr Samples 5	^	5	2	5	10	5	10	S
Age (months)	13.0	21.0	22.0	24.0	26.0	34.0	41.0	43.0

Stage 1 Wing 6, TP-H 1011 Tensile, CSH 1750.0 EGL 1.75 CSA 0.1875 TP 0950 SM Hydrostatic Tensile

HYDROSTATIC TENSILE

SAMPLE SIZE SUMMARY

Nr Samples 10 10 5 5 5
Age (months) 77.0 78.0 80.0 82.0
Nr Samples 5 5 10 10 5 5
Age (<u>ronths)</u> 62.0 65.0 67.0 68.0 69.0 71.0 72.0
Nr <u>Samples</u> 5 4 1 5 5 10 5
Age (months) 44.0 45.0 46.0 59.0 54.0 55.0 55.0 60.0
Nr Samples 5 5 5 10 5 10
Age (months) 17.0 19.0 21.0 24.0 26.0 34.0 41.0

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 1750.0 EGL 1.75 CSA 0.1875 TP 0950 ER Hydrostatic Tensile

SAMPLE SIZE SUMMARY

Nr Samples 10 10 5 5 5 190
Age (months) 77.0 78.0 80.0 82.0
Samples 5 5 5 10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Age (months) 62.0 62.0 66.0 67.0 68.0 71.0 72.0 74.0
Nr Samples 5 4 1 1 5 5 10 5 5
Age (months) 44.0 45.0 46.0 53.0 54.0 55.0 55.0 55.0 56.0
Nr Samples 5 5 5 10 5 5
Age (months) 17.0 19.0 21.0 22.0 24.0 26.0 34.0 41.0

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 1750.0 EGL 1.75 CSA 0.1875 TP 0950 SR Hydrostatic Tensile

HYDROSTATIC TENSILE

SAMPLE SIZE SUMMARY

Nr Samples	10	10	5	ı ın	190	.			
Age (months)	77.0	78.0	80.0	82.0					
Nr Samples	2	5	5	'n	10	10	5	'n	Ŋ
Age (months)	62.0	0.99	67.0	68.0	0.69	71.0	72.0	74.0	76.0
Nr Samples	2	•	H	7.	S	10	5	10	5
Age (months)	0.44	45.0	76.0	50.0	53.0	54.0	55.0	56.0	0.09
Nr Samples	Ŋ	'n	'n	5	'n	10	2	10	5
Age (months)	17.0	19.0	21.0	22.0	24.0	26.0	34.0	41.0	43.0

Stage 1 Wing 6, TP-H 1011 Tensile, CHS 1750.0 EGL 1.75, CSA 0.:875 TP 0950 MD Hydrostatic Tensile

Nr Samples 9 9 6 10 5 5 5 5 5 5
Age (months) 72.0 74.0 75.0 76.0 77.0 79.0 80.0
Nr Samples 5 4 11 5 10 10 15 10 15 10 15 10 6
Age (months) 51.0 52.0 52.0 55.0 60.0 64.0 65.0 65.0 66.0 68.0 69.0 71.0
Nr Samples 5 5 5 10 10 5 10 5 10 5 10 5 10 5 5
Age (months) 23.0 25.0 25.0 25.0 33.0 33.0 35.0 42.0 42.0 42.0 47.0 48.0 49.0 50.0
Nr Samples 2 8 8 8 12 6 13 25 27 12 12 10 10
Age (months) 5.0 6.0 6.0 7.0 8.0 11.0 11.0 15.0 15.0 15.0 15.0 15.0 18.0 19.0 20.0 22.0

Stage 1, Wing 6, TP-H 1011, Creep Compliance at 10 sec, 12 pound Load

ここではなるできることでは、 とのできる

SAMPLE SIZE SUMMARY

Nr Samples 9 9 9 9 5 5 5 5 5 5 5 5 5
Age (months) 72.0 74.0 75.0 76.0 77.0 79.0 80.0
Nr Samples 5 4 11 10 5 16 16 16 16 16 17 18 10 10 10 10 10 10 10 10 10 10
Age (months) 51.0 52.0 52.0 55.0 60.0 60.0 64.0 65.0 66.0 66.0 66.0 66.0 66.0 66.0 66
Nr Samples 5 5 10 10 5 10 5 5 17 17
Age (months) 23.0 25.0 25.0 26.0 28.0 33.0 35.0 36.0 40.0 42.0 42.0 48.0 49.0
Nr 2 2 8 8 8 6 112 13 25 24 27 27 27 10 10
Age (months) 5.0 6.0 6.0 7.0 8.0 9.0 11.0 11.0 11.0 115.0 115.0 116.0 118.0 120.0 22.0

Stage 1, Wing 6, TP-H 1011, Creep Compliance at 20 Sec, 12 Pound Load

ď

NINC

Sfi

Nr	Samples	20	6	9	10	5	5	2	265										
Age	(months)	72.0	74.0	75.0	76.0	77.0	79.0	80.0											
Nr	Samples	ς	4	11	Ŋ	Ŋ	5	10	'n	14	, i	10	15	10	'n	15	Ŋ	20	9
Age	(months)	51.0	52.0	53.0	55.0	57.0	59.0	0.09	61.0	62.0	63.0	0.+9	65.0	0.99	67.0	68.0	0.69	70.0	71.0
Nr	Samples	2	5	5	5	S	2	10	10	5	10	2	5	10	5	2	17	80	ν,
Age	(months)	23.0	25.0	26.0	28.0	31.0	33.0	35.0	36.0	38.0	39.0	40.0	42.0	43.0	46.0	47.0	48.0	49.0	50.0
Nr	Samples	7	- α	- ∞	9	12	9	15	13	25	54	30	27	12	26	11	10	7	7
Age	(months)	5.0	0.9	7.0	0.8	0.6	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0

Stage 1, Wing 6, TP-H 1011, Creep Compliance at 50 Sec, 12 Pound Load

- 67 -

Figure 28

12 POUND LORD

SEC,

20

Я

CREEP COMPLIANCE

TP-H 1011,

. ق

STAGE 1, WING

SAMPLE SIZE SUMMARY

Nr Samples 9 9 6 10 5 5 5 5 5 5
Age (months) 72.0 74.0 75.0 75.0 77.0 77.0 80.0
Nr Samples 5 4 11 5 5 10 10 15 15 15 6
Age (months) 51.0 52.0 52.0 55.0 60.0 60.0 65.0 65.0 65.0 66.0 66
Nr Samples 5 5 5 10 10 10 5 5 10 5 17
Age (months) 23.0 25.0 26.0 28.0 33.0 35.0 35.0 40.0 42.0 47.0 48.0 48.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69
Nr Samples 2 8 8 6 11 13 25 27 27 27 10 10
Age (months) 5.0 6.0 7.0 8.0 9.0 10.0 11.0 14.0 15.0 16.0 18.0 19.0 20.0

Stage 1, Wing 6, TP-H 1011, Creep Compliance at 500 Sec, 12 Pound Load

Figure 29

CREEP COMPLIANCE AT

STACE 1, WING 6, TP-H 1011

12 POUND LORD

500 SEC.

Nr	Samples	14		10	15	10	2	15	5	20	9	σ	o,	9	10	ις	'n	2	380
Age	(months)	62.0	63.0	0.49	65.0	0.99	67.0	68.0	0.69	70.0	71.0	72.0	74.0	75.0	76.0	77.0	79.0	80.0	
Nr	Samples	2	10	S	5	01	5	5	17	∞	Ŋ	5	7	11	5	5	S	10	Ŋ
Age	(months)	38.0	39.0	40.0	42.0	43.0	0.94	47.0	78.0	49.0	50.0	51.0	52.0	53.0	55.0	57.0	59.0	0.09	61.0
Nr	Samples	5	·ν	Ś	Ŋ	5	10	٠	10	4		'n	5	'n	·	٧	S	10	10
Age	(months)	11.0	13.0	14.0	15.0	16.0	0.81	19.0	20.0	21.0	22.0	23.0	25.0	26.0	28.0	31.0	33.0	35.0	36.0

Stage 1, Wing 6, TP-H 1011, Creep Compliance to Failure, 12 Pound Load

Stage 1, Wing 6, TP-H 1011 Stress Relaxation Modulus, 9.5% Strain, 10 Sec

- 73 -

Figure 31

Nr	Samples	ന	6	7	9	က	9	9	12	ന	ന	7	ო	9	9	က	က	3	224
Age	(months)	0.49	65.0	0.99	67.0	0.89	0.69	70.0	71.0	72.0	73.0	74.0	75.0	76.0	77.0	78.0	80.0	81.0	
Nr	Samples	9	က	9	ന	ന	6	ന	9	ო	9	ന	m	ന	က	ຕ	'n	'n	9
Age	(months)	40.0	41.0	43.0	44.0	47.0	48.0	49.0	50.0	51.0	53.0	54.0	55.0	56.0	58.0	0.09	61.0	62.0	63.0
Nr	Samples	3	m	9	n	ന	9	ო	ო	က	ო	ო	m	m	ო	ო	9	9	٣
Age	(months)	11.0	13.0	16.0	18.0	19.0	20.0	21.0	22.0	24.0	25.0	26.0	27.0	29.0	32.0	33.0	35.0	37.0	38.0

Stage 1, Wing 6, TP-H 1011 Stress Relaxation Modulus, 0.5% Strain, 50 Sec

0.5% STRAIN, RELAXATION MODULUS. Figure 32 TPAH 1011 STRESS Ś STAGE 1, WING

Nr	Samples	ຠ	6	7	9	က	9	9	11	က	က	7	ო	9	9	က	ന	8	223
Age	(months)	0.49	65.0	0.99	67.0	0.89	0.69	70.0	71.0	72.0	73.0	74.0	75.0	0.97	77.0	78.0	80.0	81.0	
Nr	Samples	9	ო	9	ო	ო	σ	ო	9	ო	9	ന	ന	ო	ო	ო	S	'n	9
Age	(months)	40.0	41.0	43.0	44.0	47.0	48.0	49.0	50.0	51.0	53.0	54.0	55.0	56.0	58.0	0.09	61.0	62.0	63.0
Nr	Samples	m	ന	9	က	ო	9	en	ന	ო	ന	ო	ო	ന	က	က	9	9	ო
Age	(months)	11.0	13.0	16.0	18.0	19,0	20.0	21.0	22.0	24.0	25.0	26.0	27.0	29.0	32.0	33.0	35.0	37.0	38.0

Stage 1, Wing 6, TP-H 1011 Stress Relaxation Modulus, 0.5% Strain, 100 Sec

Nr	Samples 3	6	7	9	m	9	9	11	ო	က	7	ო	9	9	က	ო	3	223
Age	(months) 64.0	65.0	0.99	67.0	0.89	0.69	70.0	71.0	72.0	73.0	74.0	75.0	76.0	77.0	78.0	80.0	81.0	
Nr	Samples 6	ო	9	٣	ന	6	ന	9	m	9	m	ന	ന	ო	m	Ŋ	5	9
Age	(months) 40.0	41.0	43.0	44.0	47.0	48.0	49.0	50.0	51.0	53.0	54.0	55.0	56.0	58.0	0.09	61.0	62.0	63.0
Nr	Samples 3	ന	9	m	ന	9	ന	ო	ო	ო	ო	m	ო	m	ო	9	9	က
Age	(months)	13.0	16.0	18.0	19.0	20.0	21.0	22.0	24.0	25.0	26.0	27.0	29.0	32.0	33.0	35.0	37.0	38.0

Stage 1, Wing 6, TP-H 1011 Stress Relaxation Modulus, 0.5% Strain, 1000 Sec

RELAXATION MODULUS.

TP-H 10:11 JIRESS

Ó

MING

STAGE 1,

0.5% STRGIN, 1000 SEC

Nr	Samples	6	က	ო	9	60	9	9	က	11	9	6	9	'n	ო	က	က	3	224
Age	(months)	61.0	62.0	63.0	.0.49	65.0	67.0	68.0	0.69	70.0	71.0	72.0	75.0	76.0	77.0	78.0	80.0	81.0	
Nr	Samples	ന	ന	က	9	က	5	ო	ဇာ	6	9	ന	ന	9	ന	m	ო	m	ო
Age	(months)	37.0	38.0	39.0	40.0	42.0	43.0	76.0	47.0	48.0	0.65	50.0	52.0	53.0	54.0	56.0	58.0	59.0	0.09
N	Samples	7	ო	က	ო	m	က	က	9	ო	က	က	9	က	ო	က်	က	က	ო
Age	(months)	11.0	13.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	23.0	25.0	26.0	28.0	31.0	33.0	34.0	35.0	36.0

Stage 1, Wing 6, TP-H 1011 Stress Relaxation Mcdulus, 0.5% Strain, 10 Sec

0.57 STRGIN, IP-H 1011 STRESS RELAXATION MODULUS, 5 STAGE 1, WING

Figure 35

SEC

Nr	Samples	N	m	m	9	σ	9	9	ന	11	9	σ	9	5	ო	m	m	3	224
Age	(months)	0.10	62.0	63.0	0.49	65.0	67.0	68.0	0.69	70.0	71.0	72.0	75.0	76.0	77.0	78.0	80.0	81.0	
Nr	Samples		ო	m	9	က	5	ന	က	σ,	9	m	ന	9	ന	m	ന	en	m
Age	(months)	37.0	38.0	39.0	40.0	42.0	43.0	0.94	47.0	48.0	49.0	50.0	52.0	53.0	54.0	56.0	58.0	59.0	0.09
Nr	Samples	7	ന	ო	ന	က	ო	ო	9	ო	ო	m	9	ო	ო	ო	ო	ო	m
Age	(months)	11.0	13.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	23.0	25.0	26.0	28.0	31.0	33.0	34.0	35.0	36.0

Stage 1, Wing 6, TP-H 1011 Stress Relaxation Modulus, 0.5% Strat n, 50 Sec

Nr	Samples	\	m	ന	9	6	Ģ.	9	ന	11	9	6	9	2	ന	က	ന	3	224
Age	(months)	0.10	62.0	63.0	64.0	65.0	67.0	0.89	0.69	70.0	71.0	72.0	75.0	76.0	77.0	78.0	80.0	81.0	
Nr	Samples	•	ന	ო	9	ო	2	ო	m	6	9	ന	ო	9	က	m	ო	ო	ന
Age	(months)	37.0	38.0	39.0	40.0	42.0	43.0	46.0	47.0	48.0	0.65	50.0	52.0	53.0	54.0	56.0	. 58.0	59.0	0.09
Nr	Samples	7	ന	ო	က	ო	ო	ო	9	ო	ო	ო	9	ო	ო	ო	ന	ო	ო
Age	(months)	11.0	13.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	23.0	25.0	26.0	28.0	31.0	33.0	34.0	35.0	36.0

Stage 1, Wing 6, TP-H 1011 Stress Relaxation Modulus, 0.5% Strain, 100 Sec

Figure 37

H- al

ŝ

WINC

519GE 1,

SAMPLE SIZE SUMMARY

Nr	Samples 9	က	က	9	6	9	9	က	11	9	σ	9	S	ന	က	ო	က	224
Age	(months) 61.0	62.0	63.0	0.49	65.0	67.0	0.89	0.69	70.0	71.0	72.0	75.0	0.97	77.0	78.0	80.0	81.0	
Nr	Scmples	က	က	9	က	'n	က	ო	6	9	m	ო	9	က	ო	ന	က	ო
Age	(months) 37.0	38.0	39.0	40.0	42.0	43.0	0.95	47.0	48.0	0.64	50.0	52.0	53.0	54.0	56.0	58.0	59.0	0.09
Nr	Samples 2	m	ო	ო	ო	e	ო	9	ო	ന	ო	ø	ო	ო	က	ო	e	ო
Age	(months)	13.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	23.0	25.0	26.0	28.0	31.0	33.0	34.0	35.0	36.0

Stage 1, Wing 6, TP-H 1011 Stress Relaxation Modulus, 0.5% Strain, 1000 Sec

SAMPLE SIZE SUMMARY

į

Nr Samples 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
Age (months) 62.0 63.0 65.0 65.0 66.0 71.0 72.0 72.0 75.0 76.0 77.0 80.0 81.0	
Samples Samples 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	,
Age (months) 38.0 39.0 40.0 44.0 44.0 44.0 55.0 55.0 55.0 55))
Nr Samples 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ŀ
Age 11.0 11.0 13.0 15.0 15.0 20.0 24.0 27.0 27.0 27.0 27.0 27.0 27.0 33.0 35.0	

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 10 Sec

+0200

Figure 39

SAMPLE SIZE SUMMARY

Nr	Samples)	മ	6	9	7	m	9	9	7	9	ന	'n	S	7	ന	ന	9	223
Age	(months)	0.70	63.0	65.0	0.99	67.0	68.0	0.69	70.0	71.0	72.0	74.0	75.0	76.0	77.0	78.0	80.0	81.0	
Nr	Samples	n	9	7	9	က	9	9	9	ന	ന	ന	ന	9	က	m	m	က	9
Age	(months)	38.0	39.0	0.04	42.0	44.0	47.0	48.0	49.0	50.0	51.0	52.0	53.0	54.0	56.0	57.0	59.0	60.0	61.0
N	Samples	m	ന	ო	ო	9	ო	9	ო	ო	ന	ო	ო	ო	ო	ო	9	ო	m
Age	(months)	11.0	13.0	15.0	16.0	18.0	19.0	20.0	21.0	23.0	24.0	25.0	27.0	29.0	31.0	33.0	35.0	36.0	37.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 50 Sec +0200

Nr	Samples 3	6	6	9	7	m	9	9	7	9	ო	5	Ŋ	7	m	ന	6	223
Age	(months) 62.0	63.0	65.0	0,99	67.0	68.0	0.69	70.0	71.0	72.0	74.0	75.0	0.97	77.0	78.0	80.0	81.0	
Nr	Samples	9	2	9	ຕ	9	9	9	ന	ო	ო	ო	9	ო	m	က	ന	9
Age	(months)	39.0	40.0	42.0	44.0	47.0	48.0	49.0	50.0	51.0	52.0	53.0	54.0	56.0	57.0	59.0	0.09	61.0
Nr	Samples) (1)	, m	ന	• •	m	9	٣	ന	ო	ო	ო	ო	ო	ო	9	ო	e
Age	(months)	13.0	15.0	16.0	18.0	19.0	20.0	21.0	23.0	24.0	25.0	27.0	29.0	31.0	33.0	35.0	36.0	37.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 100 Sec

STAGE I WING 6, TP-H 1011 STRESS RELAXATION MODULUS, 3 PFRCTNI STRAIN, Figure 41

Nr	Samples	~	σ	σ	9	7	٣	9	9	7	9	ო	5	'n	7	ო	m	3	223
Age	(months)	0.20	53.0	65.0	65.0	67.0	68.0	0.69	70.0	71.0	72.0	74.0	75.0	76.0	77.0	78.0	80.0	81.0	
Nr	Samples	~	9	2	9	ო	9	9	9	ო	m	ო	ന	9	ო	m	ന	ო	9
Age	(months)	38.0	39.0	40.0	42.0	44.0	47.0	48.0	0.64	50.0	51.0	52.0	53.0	54.0	56.0	57.0	59.0	0.09	61.0
Nr	Sample s	m	က	က	က	9	က	9	ო	က	က	က	ო	e	ന	ო	9	က	ო
Age	(months)	11.0	13.0	15.0	16.0	18.0	19.0	20.0	21.0	23.0	24.0	25.0	27.0	29.0	31.0	33.0	35.0	36.0	37.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Per Cent Strain, 1000 Sec

SAMPLE SIZE SUMMARY

Nr Samples 12 3 6 3 6 3 6 3 6 6 6 6 6 6
Age (months) 70.0 71.0 72.0 74.0 75.0 77.0 77.0 81.0
Nr Samples 9 3 12 3 3 6 6 6 6
Age (months) 48.0 49.0 49.0 52.0 52.0 55.0 62.0 62.0 65.0 65.0 66.0 66.0 68.0 69.0
Nr Samples 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Age (months) 20.0 22.0 22.0 24.0 25.0 25.0 32.0 34.0 35.0 38.0 38.0 40.0 42.0 42.0 44.0 47.0
Nr Samples 3 6 18 22 27 27 35 37 44 44 18 16 10
Age (months) 2.0 3.0 4.0 4.0 5.0 6.0 7.0 11.0 11.0 115.0 115.0 117.0 118.0 119.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 10 Sec.

+0770

The second secon

Nr Samples 12 3 6 6 3 3 531
Age (months) 70.0 71.0 72.0 74.0 75.0 77.0 77.0 81.0
Nr Samples 9 3 3 12 3 3 6 6 9 6 6 6
Age (months) 48.0 49.0 52.0 52.0 57.0 60.0 61.0 62.0 65.0 65.0 66.0
NT Samples 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Age (months) 20.0 22.0 24.0 24.0 25.0 25.0 32.0 35.0 35.0 39.0 40.0 42.0 42.0 42.0 44.0 47.0
Nr Samples 6 18 22 27 27 35 37 44 27 44 27 18 10
Age (months) 2.0 3.0 4.0 6.0 5.0 6.0 11.0 11.0 115.0 115.0 117.0 117.0 117.0 119.0 119.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 50 Sec

STATE OF THE PARTY OF

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 100 Spc +0770

C

92 [X

Stage 1 Wing 6, TP-H 1611 Stress Relaxation Modulus, 3 Percent Strain, 1000 Sec

The state of the s

SAMPLE SIZE SUMMARY

Nr Samples) M	'n	5	ന	ന	ന	ı eri	113	•
Age (months)	74.0	75.0	76.0	77.0	78.0	79.0	81.0		
Nr Samples	n	ന	ო	ო	ო	ო	m	က	ო
Age (months)	61.0	63.0	64.0	0.99	67.0	68.0	0.69	70.0	71.0
Nr Samples	ı m	ጣ	٣	က	m	m	ო	m	ო
Age (months)	0.04	41.0	42.0	47.0	48.0	51.0	52.0	53.0	57.0
Nr Samples	m	เก	ო	ო	e	ო	ო	ო	ო
Age (months)	17.0	19.0	20.0	22.0	24.0	25.0	30.0	32.0	36.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 10 Sec

SAMPLE SIZE SUMMARY

Nr Samples	ന	ന	ന	7	ന	က	က	6	113	
Age (months)	72.0	74.0	75.0	76.0	77.0	78.0	79.0	81.0		
Nr Samples	ന	ო	ო	ო	ო	က	ო	က	ო	က
Age (months)	0.09	61.0	63.0	64.0	0.99	67.0	68.0	0.69	70.0	71.0
Nr Samples	3	സ	က	က	ო	က	m	ന	ო	က
Age (months)	1									
Nr S a mples	۳	m	ന	m	ന	က	e	က	ന	က
Age (months)	15.0	17.0	19.0	20.0	22.0	24.0	25.0	30.0	32.0	36.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 50 Sec +1000

SAMPLE SIZE SUMMARY

Nr Samples 3 3 2 2 3 3 3 113
Age (months) 72.0 74.0 75.0 76.0 77.0 78.0 79.0 81.0
Nr Samples 3 3 3 3 3 3
Age (months) 60.0 61.0 64.0 66.0 66.0 68.0 69.0 70.0
Samples 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Age (months) 39.0 40.0 41.0 47.0 43.0 52.0 53.0 57.0
Samples 3 3 3 3 3 3
Age (months) 15.0 17.0 20.0 22.0 25.0 25.0 30.0 36.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 100 Sec +1000

SAMPLE SIZE SUMMARY

Nr Samples 3 3 2 2 3 3 3 113
Age (months) 72.0 74.0 75.0 76.0 77.0 78.0 79.0 81.0
Samples 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Age (months) 60.0 61.0 63.0 64.0 66.0 67.0 68.0 69.0 71.0
Samples of the sample of the samples of the sample of the sa
Age (months) 39.0 40.0 41.0 42.0 47.0 48.0 52.0 53.0
Nr Samples 3 3 3 3 3 3 3
Age (months) 15.0 17.0 19.0 20.0 22.0 24.0 25.0 30.0 32.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 1000 Sec

Nr Sampler 3 3 6 6 3 3 114
Age (months) 68.0 69.0 70.0 71.0 72.0 75.0
Nr Samples 3 3 3 3 6 6 6 3
Age (months) 52.0 55.0 58.0 60.0 61.0 64.0 65.0 66.0
Nr Samples 3 3 3 3 5 6 6
Age (months) 36.0 37.0 38.0 43.0 46.0 47.0 48.0 49.0 50.0
Nr Samples 3 3 3 3 3 3 3
Age (months) 10.0 12.0 15.0 17.0 18.0 26.0 28.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 10 Sec +1200

SAMPLE SIZE SUMMARY

Nr Samoles	3	က	9	m	ന	6	114		
Age (months)	68.0	0.69	70.0	71.0	72.0	75.0			
Nr Samples	3	m	ო	9	ന	က	9	က	ო
Age (months)	52.0	55.0	58.0	0.09	61.0	62.0	0.49	65.0	0.99
Nr	3	ო	က	က	ന	9	ო	ന	ന
Age	1								
Nr	3	ന	ო	ო	ო	ო	ო	ო	9
Age	10.0	12.0	15.0	17.0	18.0	19.0	26.0	28.0	34.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 50 Sec

SIGGE 1 WING F

The state of the s

SAMPLE SIZE SUMMARY

Nr Samples 3 3 3 3 114
Age (months) 68.0 69.0 70.0 71.0 75.0
Nr Samples 3 3 3 6 6 6 3
Age (months) 52.0 55.0 58.0 60.0 62.0 62.0 65.0 66.0
Nr Samples 3 3 3 3 3 3
Age (months) 36.0 37.0 38.0 43.0 47.0 49.0 49.0 50.0
Nr Samples 3 3 3 3 3 6
Age (months) 10.0 12.0 15.0 17.0 19.0 26.0 28.0 34.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 100 Sec

+120°

Nr	Samples	ന	m	9	ო	m	C	114		
Age	(months)	0.89	0.69	70.0	71.0	72.0	75.0			
Nr	Samples	က	က	9	9	ო	ო	9	က	က
Age	(months)	52.0	55.0	58.0	0.09	61.0	62.0	0.49	65.0	0.99
Nr	Samples	m	က	ო	ო	က	9	ო	ന	m
Age	(months)	36.0	37.0	38.0	43.0	46.0	47.0	48.0	49.0	50.0
Nr	Samples	9	ന	ന	· m	m	က	m	က	9
Age	(months)	10.0	12.0	15.0	17.0	18.0	19.0	26.0	28.0	34.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 1000 Sec

- 119 -

The second secon

SAMPLE SIZE SUMMARY

į	O man 1 o c	Sambres	n (ກ ເ	~) (m (m (m (114	
φ.	Age (months)	72 0	5.77	74.0	0.07) () ()	78.0	79.0	19.0		
ĭ	Salumas	3) (") m	י ר	n a	. .	n «	י ר	o ") ("
Age	(months)	0.09	61.0	63.0	0.79	0.49	67.6) · «	0.09	20.02	71.0
Nr	Samples	6	, cvī	· ~	י מי	י הי	יא ני) (") (r) (°) (r)
Age	(months)	39.0	40.0	41.0	42.0	47.0	48.0	51.0	52.0	53.0	57.0
Nr	Samples	ന	ო	ო	m	ന	ന	m	က	ო	ო
Age	(months)	15.0	17.0	19.0	20.0	23.0	24.0	25.0	30.0	32.0	36.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 10 Sec

+17

G

NING NING

SIAGE

SAMPLE SIZE SUMMARY

Nr Samples 3 3 3 3 3 3 114
Age (months) 72.0 74.0 75.0 76.0 77.0 78.0 79.0
Samples 3 3 3 3 3 3 3 3
Age (months) 60.0 61.0 64.0 66.0 67.0 68.0 69.0 70.0 71.0
Nr Samples 3 3 3 3 3 3 3
Age (months) 39.0 40.0 41.0 47.0 47.0 51.0 52.0 53.0
Samples 3 3 3 3 3 3 3 3 3
Age (months) 15.0 17.0 19.0 20.0 23.0 24.0 25.0 30.0 36.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 50 Sec

+1400

SAMPLE SIZE SUMMARY

Nr Samples 3 3 3 3 3 114
Age (months) 72.0 74.0 75.0 77.0 77.0 79.0
Nr Samples 3 3 3 3 3 3 3 3
Age (months) 60.0 61.0 64.0 66.0 67.0 68.0 70.0 71.0
Nr Samples 3 3 3 3 3 3 3
Age (months) 39.0 40.0 41.0 42.0 47.0 51.0 52.0 53.0 57.0
Samples 3 3 3 3 3 3 3 3
Age (months) 15.0 17.0 19.0 23.0 24.0 25.0 32.0 32.0 36.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 100 Sec +1400

SEC

100

PERCENT SIBGIN,

m

SIMESS RELAXATION MODULUS.

TP - H 1011

SIRGE 1 WING G

- 125 -

SAMPLE SIZE SUMMARY

Nr Samples 3 3 3 3 3 114
Age (months) 72.0 74.0 75.0 76.0 77.0 78.0 79.0
Nr Samples 3 3 3 3 3 3 3
Age (months) 60.0 61.0 64.0 66.0 68.0 68.0 70.0 71.0
Samples 3 3 3 3 3 3 3 3
Age (months) 39.0 40.0 41.0 42.0 47.0 51.0 52.0 53.0 57.0
Samples - 3
Age (months) 15.0 17.0 19.0 20.0 23.0 24.0 25.0 32.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 1000 Sec +1400

SAMPLE SIZE SUMMARY

Nr Samples 3 3 3 114
Age (months) 69.0 70.0 71.0 73.0 75.0
Nr Samples 3 3 3 3 6 6 6
Age (months) 55.0 55.0 60.0 61.0 62.0 64.0 65.0 65.0
Nr Samples 3 3 3 3 3 3 3
Age (months) 37.0 38.0 43.0 46.0 47.0 49.0 59.0 53.0
Samples 3 3 3 3 3 6 6 3
Age (months) 10.0 12.0 15.0 19.0 26.0 28.0 34.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 10 Sec +1600

SAMPLE SIZE SUMMARY

Nr Samples 3 3 3 3 114
Age (months) 69.0 70.0 71.0 73.0 75.0
Nr Samples 3 3 3 3 3 3 6 6
Age (months) 55.0 59.0 60.0 61.0 62.0 64.0 65.0 65.0
Samples 3 3 3 3 3 3 3 3
Age (months) 37.0 38.0 43.0 46.0 47.0 48.0 49.0 50.0
Nr Samples 3 3 3 3 6 6 6 3
Age (months) 10.0 12.0 15.0 17.0 19.0 28.0 34.0 36.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 50 Sec

+1600

SNINDOW

Nr Nr	Samples	n c	י ע) (n c	2	1 11			
Age	(mon the)	0.60	9.5	71.0	73.0	0.6/				
Nr	Samples	m (m (m (m (6 0	m ·	۰ ۵		က
Age	(wonths)	55.0	59.0	0.09	61.0	62.0	63.0	0.49	65.0	67.0
Nr	Samples	ന	ო	ന	က	9	က	က	က	က
Age	(months)	37.0	38.0	43.0	76.0	47.0	48.0	0.64	50.0	53.0
Nr	Samples	3	က	ო	m	9	ო	ന	9	e
Age	(months)	10.0	12.0	15.0	17.0	19.0	26.0	28.0	34.0	36.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 100 Sec +160°

では、これでは、日本のは、日本のでは

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 1000 Sec

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 10 Sec

Nr	Samples	m	9	က	9	11	ო	9	m	6	9	m	m	8	227				
Age	(months)	0.99	67.0	68.0	0.69	70.0	71.0	72.0	73.0	75.0	0.97	77.0	79.0	81.0					
Nr	Samples) (r	m	m	9	σ,	ო	ო	ო	ო	9	m	ო	ო	9	9	ന	9	ø
Age	(months)	41.0	0.24	0.64	47.0	48.0	0.64	50.0	51.0	52.0	53.0	56.0	57.0	59.0	0.09	61.0	62.0	63.0	64.0
Nr	Samples	n m	n v	o ve	o	m	ო	က	9	m	ന	ო	9	က	က	9	ന	9	n
Age	(months)	10.0	15.0	17.0	19.0	20.0	23.0	24.0	25.0	26.0	28.0	30.0	32.0	34.0	35.0	36.0	38.0	39.0	0.04

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 50 Sec

MAKI	Age
SAMPLE SIZE SUMMAKI	Nr
SAM	Age
	Nr

Nr	Samples	י מי	,	ø	m	9	11	m	9	ന	6	9	ന	m -	8	227				
Age	(months)	0.99	0.00	67.0	68.0	0.69	70.0	71.0	72.0	73.0	75.0	0.97	77.0	79.0	81.0					
Nr	Samples	י ר	n	ന	ო	9	6	m	ო	ო	ന	9	ო	ო	m	9	9	ന	9	9
Age	(months)	7	47.0	43.0	0.94	47.0	48.0	0.67	50.0	51.0	52.0	53.0	56.0	57.0	59.0	0.09	61.0	62.0	63.0	0.49
Nr	Samples	n ('n	9	9	6	ო	ന	က	e	က	က	က	က	n	ന	9	ന	9	3
Age	(months)	10.0	12.0	15.0	17.0	19.0	20.0	23.0	24.0	25.0	26.0	28.0	30.0	32.0	34.0	35.0	36.0	38.0	39.0	40.0

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 100 Sec

รกากขอพ

するとなっていないのというからないないとれるので

Nr	Samples 6	ന	9	ო	9	11	က	9	e	0	9	က	က	6	227				
Age	(months) 65.0	0.99	67.0	68.0	0.69	70.0	71.0	72.0	73.0	75.0	76.0	77.0	79.0	81.0					
Nr	Samples 3	ო	ო	m	9	6	ო	ო	ო	m	9	ო	ო	ന	9	9	ന	9	છ
Age	(months)	42.0	43.0	45.0	47.0	48.0	0.65	50.0	51.0	52.0	53.0	26.0	57.0	59.0	0.09	61.0	62.0	63.0	0.49
Nr	Samples	, m	9	9	6	ო	m	ന	ო	ო	ო	ო	m	ო	ω	9	ო	9	m
Age	(months)	12.0	15.0	17.0	19.0	20.0	23.0	24.0	25.0	26.0	28.0	30.0	32.0	34.0	35.0	36.0	38.0	39.0	0.04

Stage 1 Wing 6, TP-H 1011 Stress Relaxation Modulus, 3 Percent Strain, 1000 Sec

+180°

Nr Samples 15	51.	or T	ν.	91	0	9	S.	5	722								
Age (months) 70.0	71.0	73.0	75.0	76.0	77.0	78.0	80.0	81.0									
Nr Samples 10	15	n vn	10	'n	10	'n	5	3	10	Ŋ	'n	'n	15	5	10	10	'n
Age (months) 48.0	49.0	50.0 52.0	53.0	54.0	56.0	58.0	59.0	0.09	61.0	62.0	63.0	0.49	65.0	0.99	67.0	68.0	0.69
Nr Samples 5	יט זי	u n	2	11	14	13	9	12	10	5	'n	10	7	Ŋ	'n	'n	5
Age (months) 21.0	23.0	25.0 26.0	28.0	31.0	32.0	33.0	34.0	35.0	37.0	38.0	39.0	40.0	42.0	43.0	44.0	76.0	47.0
Nr Samples 3	15	11 8	23	18	21	24	28	24	28	28	20	28	78	6	20	∞	10
Age (months) 2.0	3.0	4 rv	0.9	7.0	8.0	0.6	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0

Constant Strain TP-H 1011 Wing 6 Stage 1

Stage 1 Wing 6, TP-H 1011 Dynamic Response, Stor Shear Mod 200 HZ, 70 GM CT WT

Nr	Samples 2	4	4	7		ო	~	~	2	307								
Age	(months) 72.0	73.0	74.0	75.0	76.0	77.0	78.0	80.0	81.0									
Nr	Samples 4	က	7	7	7	7	4	7	2	9	7	7	4	7	7	7	æ	9
Age	(months)	52.0	53.0	54.0	55.0	56.0	58.0	59.0	0.09	61.0	62.0	0.49	0.99	67.0	68.0	0.69	70.0	71.0
Nr	Samples 3	9	5	7	7	2	5	6	7	,	7	9	2	e	7	5	, 1	7
Age	(months)	23.0	24.0	25.0	26.0	31.0	32.0	33.0	34.0	36.0	37.0	40.0	41.0	42.0	43.0	44.0	45.0	48.0
Nr	Samples	7	4	4	9	ო	13	18	21	16	11	16	9	2	2	7	,,	7
Age	(months)	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0

Stage I Wing 6, TP-H 1011 Dynamic Response, Loss Tangent, 200 HZ, 70 GM, CT, WT

- 149 -

SAMPLE SIZE SUMMARY

Nr Sanples 2 7	n n n n	308			
Age (months) 75.0	77.0	2			
Nr Samples 7	1404	N M W C	. 44 4	4400 V	0 14 4
Age (months) 53.0	54.0 55.0 56.0 58.0	59.0 60.0 61.0	62.0 64.0 66.0	68.0 69.0 70.0	71.0 72.0 73.0 74.0
Nr Samples 6	15 400	n ው n	H 67 V	N 17 17 0	H ପ 숙 Ƙ
Age (months) 23.0	24.0 25.0 26.0	32.0 33.0	36.0 42.0 37.0	40.0 41.0 44.0	45.0 48.0 49.0 52.0
Nr Samples) F 4 4 (3 S T T T	21 19 11	16 5 5	17145
Age (months)	2.4.0.0	0.8	12.0	14.0 15.0 16.0	18.0 19.0 20.0 21.0

Stage 1 Wing 6, TP-H 1011, Dynamic Response, Storage Shear Modulus, 500 Hz 70 Gram Center Weight

Adding the grant of the second second

The said the second of the sec

The second of the second secon

Figure 70

Stage 1 Wing 6, TP-H 1011, Dynamic Response, Loss Tangent, 500 Hz, 70 Gram Center Weight

SAMPLE SIZE SUMMARY

Nr 2 2 2 2 300
Age (months) 78.0 80.0 81.0
Nr Samples 4 4 2 2 4 4 4 4 4 4 2 2 3 3 3
Age (months) 55.0 56.0 58.0 59.0 60.0 61.0 64.0 67.0 68.0 69.0 71.0 72.0 73.0 74.0 75.0 77.0
Samples 3 5 7 3 4 4 8 8 4 7 1 1 2 2 3 3 5 5 7 4 4 7 7 3 4 4 7 7 7 7 7 7 7 7 7 7 7 7
Age (months) 24.0 24.0 25.0 25.0 33.0 33.0 40.0 44.0 45.0 48.0 52.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53
Samples 3 3 4 4 4 4 11 11 11 16 6 6 6 7 7 7
Age 3.0 4.0 4.0 5.0 6.0 7.0 11.0 11.0 12.0 13.0 14.0 15.0 18.0 19.0 23.0

THE STATE OF THE PROPERTY OF T

Stage 1 Wing 6, TP-H 1011, Dynamic Response, Loss Tangent, 500 Hz, 70 Gram Center Weight

Figure 71

THIS PAGE LEFT BLANK INTENTIONALLY

SAMPLE SIZE SUMMARY

Samples 6 6 2 262	
Age (months) 85 0	
Nr Samples 3 3 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	•
Age (<u>wonths</u>), 63.0 64.0 66.0 67.0 68.0 71.0 73.0 74.0 75.0 77.0 78.0 80.0 81.0	83.0
Name of the second seco	n c q
Age 33.0 36.0 44.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	61.0
Samples 3 11 27 29 33 33 55 55 55 55	าต
Age (morths) 1.0 1.0 5.0 6.0 7.0 8.0 12.0 13.0 17.0 18.0 23.0 24.0 25.0	32.0

Stage 1 Wing 6, TP-H 1011, DIA, Endotherm 1, 12 Degree Centigrade Rise/Min

· Company of the control of the cont

SAMPLE SIZE SUMMARY

Nr	Samples 6	258																	
Age	(months) 85.0																		
Nr	Samples 3	~ 1	7	e	Ŋ	က	9	Ŋ	7	ო	9	6	'n	ĸΩ	Ŋ	ന	'n	m	9
Age	(months) 63.0	64.0	65.0	0.99	67.0	68.0	70.0	71.0	72.0	73.0	74.0	75.0	76.0	77.0	78.0	80.0	81.0	82.0	83.0
Nr	Samples 2	S	က	7	5	7	က	5	en	5	2	,	7	m	m	7	ന	4	7
Age	(months)	36.0	39.0	40.0	42.0	43.0	0.97	47.0	48.0	49.0	52.0	53.0	54.0	55.0	57.0	58.0	59.0	0.09	61.0
Nr	Samples	, o	27	11	σ	m	ო	5	6	7	7	'n	7	ო	61	5	ო	'n	m
Age	(months)	5.0	6.0	7.0	8.0	12.0	13.0	16.0	17,0	18.0	20.0	21.0	23.0	24.0	25.0	26.0	29.0	31.0	32.0

Stage 1 Wing 6, TP-H 1011, DTA, Exotherm 1, 12 Degree Centigrade Rise/Min

SAMPLE SIZE SUMMARY

Samples 5 7 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
Age (months) 67.0 68.0 70.0 71.0 72.0 74.0 75.0 76.0 77.0 80.0 81.0 83.0 85.0	
Nr Samples 2 2 5 3 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Age (months) 42.0 42.0 43.0 46.0 47.0 52.0 53.0 55.0 57.0 59.0 61.0 63.0 64.0	
Nr Samples 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4	
Age 100nths) 12.0 12.0 13.0 16.0 17.0 24.0 24.0 24.0 25.0 26.0 33.0 33.0 39.0	

Stage 1 Wing 6, TP-H 1011, DTA, Exotherm 2, 12 Degree Centigrade Rise/Min

Stage 1 Wing 6, TP-H 1011, DTA Exotherm 3, 12 Degree Centigrade Rise/Min

The state of the s

Nr	Samples 3	5	ന	7	Ŋ	7	ო	9	6	'n	4	'n	7	'n	က	က	9	234		
Age	(months) 66.0	67.0	68.0	70.0	71.0	72.0	73.0	74.0	75.0	0.9/	77.0	78.0	80.0	81.0	82.0	83.0	85.0			
Nr	Samples 5	ო	4	7	7	; -1	7	ო	4	'n	~ I	7	ന	7	7	7	7	m	7	7
Age	(month: 36.0	39.0	40.0	42.0	43.0	46.0	47.0	48.0	0.64	52.0	53.0	54.0	55.0	57.0	58.0	0.09	61.0	63.0	0.49	65.0
Nr	Samples 2	0	27	11	6	m	က	4	6	7	7	5	7	7	7	4	7	4	ന	8
Age	(months)	2.0	0.9	7.0	8.0	12.0	13.0	16.0	17.0	18.0	20.0	21.0	23.0	24.0	25.0	26.0	29.0	31.0	32.0	33.0

Stage 1 Wing 6, TP-H 1011, DTA, Ignition Temperature, 12 Degree Cent Rise/Min

SAMPLE SIZE SUMMARY

Nr Samples 3 4 4 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Age (months) 76.0 77.0 78.0 79.0 81.0 82.0 84.0 85.0 87.0
Samples 11122322322321111111111111111111111111
Age (months) 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0 71.0 72.0 73.0
Samples 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Age (mon ths) 32.0 34.0 34.0 36.0 37.0 44.0 44.0 47.0 48.0 49.0 50.0 53.0 54.0
Samples 11 12 13 2 2 3 3 3 2 1 1 1 1 1 1 1 1 1
Age (months) 8.0 9.0 10.0 12.0 14.0 14.0 17.0 18.0 19.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 23.0 30.0

Heat of Explosion

TP-H 1011

Stage 1 Wing 6

Figure 78

SAMPLE SIZE SUMMARY

Nr Samples 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
Age (months) 64.0 64.0 66.0 69.0 70.0 71.0 72.0 73.0 74.0 76.0 77.0 78.0 79.0 81.0
Nz Samples 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Age (months) 40.0 41.0 41.0 43.0 44.0 48.0 48.0 48.0 48.0 50.0 51.0 53.0 57.0 58.0 60.0 61.0 62.0
Nr Samples 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Age (monchs) 11.0 11.0 14.0 14.0 15.0 16.0 18.0 20.0 22.0 22.0 24.0 25.0 25.0 26.0 33.0 36.0 38.0

Pressure Time Maximum Pressure TP-H ioll Stage 1 Wing 6

TP-H 1011 Time to Maximum Pressure

Stage 1 Wing 6

Nr	Samples	۱ ۵	n •	7	7	-1	2	7	ന	2		(4	7	-	,		-1	79		
Age	(months)	0 77	0.60	67.0	68.0	0.69	70.0	71.0	72.0	73.0	74.0	76.0	77.0	78.0	79.0	81.0	82.0			
Nr	Samples	4 -	-	.	-	-	1	7	ო		7	7	_	:-			-	1	7	7
Age	(months)		41.0	43.0	6.4	45.0	47.0	48.0	0.64	50.0	51.0	53.0	54.0	55.0	57.0	58.0	0.09	61.0	62.0	63.0
Nr.	Samples	٠,	4	1	2	- -1		2	-1	-1	-	,1	-	7		-	4	,	7	-
Age	(months)	0.11	14.0	15.0	16.0	18.0	19.0	20.0	21.0	22.0	24.0	25.0	26.0	29.0	31.0	33.0	36.0	37.0	38.0	39.0

Stage I Wing 6

Nr	Samples	n '	7	7		က	7	7	ന	7	7		 4	7	-	138				
Age	(months)	71.0	72.0	73.0	74.0	75.0	76.0	77.0	78.0	80.0	81.0	82.0	83.0	84.0	85.0					
Nr	Samples	-1	, —	7	7	-	-	-	7	7	7	-1	-1	ന	7	-	က	ന	;1	'n
Age	(months)	21.0	52.0	53.0	54.0	55.0	57.0	58.0	59.0	0.09	61.0	62.0	63.0	64.0	65.0	0.99	67.0	0.89	0.69	70.0
Nr	Samples	_	-		7	pred	7	7	-	-	-	-	-4		7	-	ო	က	7	7
Age	(months)	28.0	29.0	30.0	31.0	33.0	34.0	36.0	37.0	38.0	39.0	40.0	41.0	42.0	43.0	46.0	47.0	48.0	49.0	50.0
N	Samples	7	9	ന	٠ د	, , 1	-	7	~	ო	-	m	7	-	7	-1	4	-4	ო	1
Age	(months)	7.0	8,0	0.6	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	23.0	24.0	25.0	26.0

Stage 1 Wing 6, TP-H 1011, Ignitability, IGN Threshold Point, 168 Cal/Sq Cm/Sec

Ċ

CNIM

Nr Samples	4 m c	4 6	ሳ ተነሳ	7 11	ભ જ	4	ء اسم	-4	76						
Age (months)															
Nr Samples	1 2	· 7 -	w c	1 pml p	7 7	,-1 :	-4	ı 🗝	-1	6	, -4	7	, -4	7	
`	42.0														•
Nr	Samples 1	, , -	1 2		. 7	-4	4 64	,l 1	-4 r	-4 P	-1 P	¢	7 (7 +	-
Age	(months)	12.0	15.0	18.0	20.02	21.0	23.0	28.0	31.0	33.0	34.0	35.0	36.0	39.0	0.04

Stage 1 Wing 6, TP-H 1011, Impact Sensitivity, 20 No-Fire Point (CM) 2000 GMS

Figure 83

- 177 -

SAMPLE SIZE SUMMARY

Nr	Samples	2	20	35	20	20	15	2	01	10	2	2,498								
Age	(months)	0.1	72.0	74.0	75.0	76.0	77.0	78.0	79.0	80.0	81.0									
N	Samples	3	ဓ	15	15	10	'n	15	25	30	25	15	40	25	50	25	30	30	20	30
Age	(months)	21.0	52.0	53.0	55.0	56.0	57.0	58.0	59.0	0.09	61.0	62.0	63.0	0.49	65.0	0.99	67.0	68.0	0.69	70.0
Nr	Samples	O	15	15	15	10	20	10	20	15	23	25	10	25	10	15	30	30	30	15
Age	(months)	25.0	27.0	30.0	32.0	33.0	34.0	35.0	36.0	37.0	38.0	39.0	41.0	42.0	43.0	45.0	46.0	47.0	48.0	0.64
N	Samples	99	108	123	114	114	117	108	111	75	28/	104	76	78	91	83	41	15	15	25
Age	(months)	7. 0	5.0	0.9	7.0	8,0	0.6	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	24.0

Hardness

Shore A, 10 Second

TP-H 1011

Tguze 84

Stage I Wing 6, TP-H 1011, Sol Gel, Weight Swell Ratio

The state of the s

STD ERROR OF y (Sy.) 0.3085

STD ERROR OF REG COEFE 0.0009

CALC "1", SLOPE 2.2158

"1" REQ'D FOR SIG of 95% 1.960

STORAGE COND Ambient SIG OF CORRELATION Significant STORAGE COND AMDILL. CORRELATION + 0.1265 Y = 3.8415 + 0.0020 (X)SPEC CONFIG 1/2" x 1/2" x 1/2" DEG OF FREEDOM 1 and 302 SIG OF FSIgnificant STD DEV OF y (0y) 0.3105 F RATIO 4.9099 REG EQ_ 304 APPROVED, DAPF, JULY 70, LD. --- 90-90 TOLERANCE BAND RANGE OF DATA MEAN VALUE OF DATA: FAILURE CRITERIA -REGRESSION LINE 3 SIGMA BAND COAMA MEAN

1

Stage I Wing 6, TP-H 1011, Sol Gel, Cross-Link Density

the following the second second second

Nr Samples	œ	4	œ	œ	16	4	œ	4	∞	∞	4	4	4	304
Age (months)	67.00	68.00	00.69	70.00	71.00	72.00	73.00	75.00	76.00	77.00	78.00	80.00	81.00	
Nr Samples	12	œ	12	4	4	4	4	œ	∞	œ	4	12	4	
Age (months)	49.00	50.00	53.00	54.00	56.00	58.00	59.00	61.00	62.00	63.00	64.00	65.00	99	
Nr Samples	4	7	· 00	4	80	4	4	7	7	4	4	4	œ	
Age (months)	32.00	34.00	35.00	37.00	38.00	39.00	41.00	42.00	43.00	74.00	45.00	46.00	48.00	
Nr. Samples	4	· 7	7 4	- 4	- 4	• 4	· œ	9	- 4	. 4	· 4	- 4	• 4	4
Age (months)	10.00	13.00	14.00	15.00	17.00	00.41	19.00	20.00	21.00	22.00	24.00	26.00	27.00	28.00

Stage I Wing 6, TP-H 1011, Sol Gel, % Extractables

Stage I Wing 6, TP-H 1011, Sol Gel, % Extractables Figure 87

APPROVED, DAPF, JULY 70, LD.

COAMA MEAN

Nr Samples	œ	4	œ	œ	16	7	œ	4	œ	80	7	7	4	304
Age (months)	67.00	68.00	00.69	70.00	71.00	72.00	73.00	75.00	26.00	77.00	78.00	80.00	81.00	
Nr Samples	17	œ	12	4	4	4	4	œ	œ	80	7	12	4	
Age (months)	49.00	50.00	53.00	54.00	26.00	58.00	59.00	61.00	62.00	63.00	64.00	65.00	99.00	
Nr Samples	7	4	œ	4	œ	4	4	4	4	4	4	4	œ	
Age (months)	32.00	34.00	35.00	37.00	38.00	39.00	41.00	42.00	43.00	44.00	45.00	46.00	48.00	
Nr Samples	4	4	7	7	4	7	œ	7	7	4	4	4	4	4
Age (months)	10.00	13.00	14.00	15.00	17.00	18.00	19.00	20.00	21.00	22.00	24.00	26.00	27.00	28.00

Stage I Wing 6, TP-H 1011, Sol Gel, Density

Stage I Wing 6, TP-H 1011, Sol Gel, Density Figure 88

DISTRIBUTION

	NR COPIES
OOAMA MMCT MMNT	1 1
DDC (TISIR) Cameron Station, Alexandria, VA 22314	2
SAMSO, Norton AFB, CA 92409 MNNP	1
TRW Systems, Norton AFB, CA 92409 Attn: Mr. W. Emrick 524/410	1
AFPRO, Thiokol Chemical Corporation Wasatch Division P. O. Box 524 Brigham City, Utah 84302 (Cy to R. E. Keating)	2
AFRPL (MKPB) Edwards AFB, CA 93523	1
SAC (LGMB) Offutt AFB, NB 68113	1
U. S. Naval Ordnance Station, Indian Head, MA 20640 Attn: Dr. James H. Wiegand Fleet Support Dept., Propulsion System Development Division, Code FS7	1
CPIA, John Hopkins University Attn: Dr. P. L. Nichols 8621 Georgia Avenue Silver Springs, MA 20910	1
Naval Plant Branch Representative Attn: Mr. David W. Pratt P. O. Box 157 Bacchus Works Magna, Utab 84044	1