1 Computing the Minimum Cost of a Flight

Problem Introduction

Now, you are interested in minimizing not the number of segments, but the total cost of a flight. For this you construct a weighted graph: the weight of an edge from one city to another one is the cost of the corresponding flight.

Problem Description

Task. Given an *directed* graph with positive edge weights and with n vertices and m edges as well as two vertices u and v, compute the weight of a shortest path between u and v (that is, the minimum total weight of a path from u to v).

Input Format. A graph is given in the standard format. The next line contains two vertices u and v.

Constraints. $1 \le n \le 10^4$, $0 \le m \le 10^5$, $u \ne v$, $1 \le u, v \le n$, edge weights are non-negative integers not exceeding 10^8 .

Output Format. Output the minimum weight of a path from u to v, or -1 if there is no path.

Time Limits.

language	С	C++	Java	Python	C#	Haskell	JavaScript	Ruby	Scala
time (sec)	2	2	3	10	3	4	10	10	6

Memory Limit. 512MB.

Sample 1.

Input:

4 4 1 2 1

412

232

1 3 5

1 3 Output:

3

Explanation:

There is a unique shortest path from vertex 1 to vertex 3 in this graph $(1 \rightarrow 2 \rightarrow 3)$, and it has weight 3.

Sample 2.

Input:

5 9
1 2 4
1 3 2
2 3 2
3 2 1
2 4 2
3 5 4
5 4 1
2 5 3
3 4 4
1 5

Output:

6

There are two paths from 1 to 5 of total weight 6: $1 \rightarrow 3 \rightarrow 5$ and $1 \rightarrow 3 \rightarrow 2 \rightarrow 5$.

Sample 3.

Input:

3 3

1 2 7 1 3 5

2 3 2

3 2

Output:

-1

There is no path from 3 to 2.