NUS Reading Seminar Summer 2023 Session 2

Clement Yung

20 May 2023

Axiom of Determinacy

Definition

The Axiom of Determinacy, also written as AD, asserts that the game G_A is determined for all $A \subseteq \omega^{\omega}$.

Lemma

If AC holds, then G_A is not determined for some $A \subseteq \omega^{\omega}$. Hence, AD is incompatible with AC.

Given
$$x=(b_0,b_1,\dots)$$
 and a strategy σ for Player I, we denotet
$$\sigma*x:=(\sigma(\emptyset),b_0,\sigma(\sigma(\emptyset),b_0),b_1,\dots)$$

Proof.

We first note that each strategy is a function from $\omega^{<\omega}$ to ω , so each player has at most 2^{\aleph_0} many strategies for games of the form G_A . It's easy to construct 2^{\aleph_0} many strategies for each player. Also, observe that the map $x\mapsto \sigma*x$ is injective, so for each σ the set $\{\sigma*x:x\in\omega^\omega\}$ has size 2^{\aleph_0} .

Proof (Cont.)

Let $\{\sigma_{\alpha}: \alpha < 2^{\aleph_0}\}$ and $\{\tau_{\alpha}: \alpha < 2^{\aleph_0}\}$ enumerate all strategies. Define $X = \{x_{\alpha}: \alpha < 2^{\aleph_0}\}, Y = \{y_{\alpha}: \alpha < 2^{\aleph_0}\} \subseteq \omega^{\omega}$ as follows:

- (1) Suppose $\{x_{\xi}: \xi < \alpha\}$ has been defined. Choose $y_{\alpha} \notin \{x_{\xi}: \xi < \alpha\}$ such that $y_{\alpha} = \sigma_{\alpha} * z$ for some $z \in \omega^{\omega}$.
- (2) Suppose $\{y_{\xi}: \xi \leq \alpha\}$ has been defined. Choose $x_{\alpha} \notin \{y_{\xi}: \xi \leq \alpha\}$ such that $x_{\alpha} = \tau_{\alpha} * z$ for some $z \in \omega^{\omega}$.

Clearly X and Y are disjoint, and no strategy for either player works: If Player I chooses strategy σ , then by construction Player II can play some sequence $z \in \omega^{\omega}$ such that $\sigma * z \notin X$, (and similarly for Player II.

However, AD implies that countable choice for real numbers holds.

Lemma

AD implies that every countable set of non-empty subsets of ω^{ω} has a choice function.

Proof.

Let $\{X_n : n < \omega\}$ be a family of non-empty subsets of ω^{ω} . Define:

$$A := \{x = (a_0, b_0, a_1, b_1, \dots) \in \omega^{\omega} : (b_0, b_1, \dots) \notin X_{a_0}\}$$

Consider the game G_A . Clearly Player I does not have a winning strategy, for if Player I plays a_0 , then Player II may choose any $(b_0, b_1, \dots) \in X_{a_0}$ and plays it. By AD, Player II has a winning strategy τ . A choice function would thus be:

$$f(X_n) := \tau * (n,0,0,\ldots)$$

An important consequence of this fact is that:

Corollary

AD implies that ω_1 is regular.

Note that ZF + " ω_1 is singular" is indeed consistent (if ZFC is consistent).

A few concluding remarks on AD:

- (1) AD is essentially a large cardinal axiom. In fact, a result of Woodin says that ZF + AD is equiconsistent with ZFC + ω many Woodin cardinals.
- (2) AD is compatible with dependent choice (DC). However, I cannot find any resources on whether it's known that AD → DC.

Recursive Trees

Recall that a tree is a subset $T\subseteq\omega^{<\omega}$ closed under initial segments.

Recall also that if T is a tree, then a rank function $f: T \to \mathbf{ORD}$ is a function such that:

$$s \sqsubseteq t \implies f(t) < f(s)$$

We have proved via hand-waving that every well-founded tree has a rank function.

Definition

Let T be a tree. The *height* of T, denoted by ||T||, is:

 $||T|| := \min\{f(\emptyset) : f : T \to \mathbf{ORD} \text{ is a rank function}\}\$

See Example 1.14 of *Recursive Aspects of Descriptive Set Theory*, Mansfield-Weitkamp for some examples.

Lemma

For all $\alpha < \omega_1$, there exists a tree T such that $||T|| = \alpha$.

Sketch of Proof.

This lemma is hard to prove without pictures, so I shall just include a rough explanation of how to prove this lemma. We induct on α .

- (1) If $\alpha = 0$, the tree $T = {\emptyset}$ works.
- (2) Suppose $\alpha=\beta+1$. Let T be a tree such that $\|T\|=\beta$. Append a node above the root of the tree, and the new tree has height α .
- (3) Suppose $\alpha = \sup_{n < \omega} \alpha_n$ is a limit ordinal. Let T_n be a tree with height α_n . Start with a root with infinitely many branches. Append each T_n to one of these branches. The new tree has height α .

Definition

Let $x \in \omega^{\omega}$. We define:

$$\omega_1^x := \sup\{\|T\| : T \text{ is a tree recursive in } x\}$$

Since $||T|| < \omega_1$ for all T, and there are only countably many trees recursive in x, we have that $\omega_1^x < \omega_1$ as long as ω_1 is regular.

Clearly if $x \equiv_T y$, then $\omega_1^x = \omega_1^y$. Thus, if Γ is the set of Turing degrees, then:

$$\mathsf{CK} : \mathsf{\Gamma} \to \omega_1, \ \mathsf{CK}([x]) := \omega_1^x$$

is a well-defined function (as long as ω_1 is regular).

Martin's Measure

Given $x \in \omega^{\omega}$, recall that a *cone* is a set C_x of the form:

$$C_x := \{ \deg(y) : x \leq_{\mathrm{T}} y \}$$

x is also called the apex of the cone.

Definition

The Martin measure is the set:

$$\mathcal{D} := \{ X \subseteq \omega_1 : \mathsf{CK}^{-1}[X] \text{ contains a cone} \}$$

 \mathcal{D} is clearly a filter, as the intersection of two cones remains to be a cone (if A and B are Turing degrees, then $C_A \cap C_B = C_{A \oplus B}$). Furthermore, using countable choice, given Turing degrees $\{A_n\}_{n<\omega}$ we may define the supremum $A:=\bigoplus_{n<\omega}A_n$. Then:

$$\bigcap_{n<\omega}C_{A_n}=C_A$$

Therefore, \mathcal{D} is a ω_1 -complete filter.

Theorem (Martin, Solovay)

If AD holds, then $\mathcal D$ is a ω_1 -complete non-principal ultrafilter on ω_1 .

Proof.

We first use AD to show that \mathcal{D} is an ultrafilter. Let $X \subseteq \omega_1$.

Note that $CK^{-1}[\omega_1 \setminus X] = \Gamma \setminus CK^{-1}[X]$. Let $\Lambda := CK^{-1}[X]$, and it suffices to show that either Λ or $\Gamma \setminus \Lambda$ contains a cone.

Let $A_{\Lambda} := \{x \in \omega^{\omega} : [x] \in \Lambda\}$. By AD, $G_{A_{\Lambda}}$ is determined, so there exists a winning strategy σ for either Player I or II. We consider the cone $C := C_{\text{deg}(\sigma)}$.

(1) Suppose σ is a winning strategy for I. Let $x \in \omega^{\omega}$ such that $\sigma \leq_{\mathrm{T}} x$. Let $y := \sigma * x$. Then:

$$x \leq_{\mathrm{T}} y \leq_{\mathrm{T}} \sigma * x \leq_{\mathrm{T}} x$$

so [x] = [y]. Since I wins with $\sigma, x \in A_{\Lambda}$. Therefore $[y] \in \Lambda$, so $C \subseteq \Lambda$.

(2) Similarly, if σ is a winning strategy for I, then $C \subseteq \Gamma \setminus \Lambda$. Thus \mathcal{D} is an ultrafilter.

Proof (Cont.)

We now show that \mathcal{D} is non-principal. Suppose not, so $\{\alpha\} \in \mathcal{D}$ for some $\alpha < \omega_1$. Let $x \in \omega^{\omega}$ such that $C_x \subseteq \mathsf{CK}^{-1}(\alpha)$. In other words, we have that:

$$x \leq_{\mathrm{T}} y \implies \omega_1^y = \alpha$$

Let T be a tree such that $\|T\| > \alpha$. Let $y \in \omega^{\omega}$ such that $[y] = [x] \oplus \deg(T)$. Clearly $x \leq_T y$, so by the above we have that $\omega_1^y = \alpha$. But then T is recursive in y, so $\omega_1^y \geq \|T\| > \alpha$, a contradiction.

A few remarks on some related results:

(1) The theorem can be proved without recursion theory. Given $x,y\in\omega^{\omega}$, define:

$$x \leq y \iff x \in L[y]$$

This is a relation that behaves very similarly to \leq_T . We can basically repeat the proof with \leq_T replaced by \preceq .

- (2) AD implies that \aleph_2 is also measurable.
- (3) AD implies that $cf(\omega_n) = \omega_2$ for all $n \ge 2$. In particular, \aleph_n is not measurable for $n \ge 3$.

AD and Measurability

Theorem

AD implies that:

- (1) Every set of reals is Lebesgue measurable.
- (2) Every set of reals has the property of Baire.
- (3) Every uncountable set of reals contains a perfect subset.

We shall only prove (1).

Recall the following measure-theoretic fact (which can be proven in ZF + CC):

Fact

For any $A \subseteq \mathbb{R}$ and $\varepsilon > 0$, there exists an open $U \supseteq A$ such that $\mu(U) \le \mu^*(A) + \varepsilon$.

Taking countable intersections of such open sets, there exists some measurable $E \supseteq A$ such that every measurable subset of $E \setminus A$ is null. Therefore, it suffices to show that:

Under AD, if $S \subseteq \mathbb{R}$ is such that every measurable subset of S is null, then S is null.

The Covering Game

We introduce a game that we need to apply AD to. Fix some $S \subseteq [0,1]$ and $\varepsilon > 0$ such that every measurable subset of S is null. We let K_n to be the set of all sets $G \subseteq \mathbb{R}$ such that:

- (1) G is a finite union of rational intervals.
- (2) $\mu(G) \leq \frac{\varepsilon}{2^{2(n+1)}}$.

By countable choice, K_n is countable. We enumerate K_n by writing $K_n = \{G_k^n : n < \omega\}$.

Given $(a_0, a_1, \dots) \in \{0, 1\}^{\omega}$, we define:

$$a:=\sum_{n=0}^{\infty}\frac{a_n}{2^{n+1}}$$

The rules of the game are as follows:

- (1) $a_n = 0$ or 1 for all n.
- (2) $a \in S$.
- (3) $a \notin \bigcup_{n=0}^{\infty} G_{b_n}^n$.

Intuitively, Player I tries to play a real number $a \in S$, and Player II tries to cover a by some union $\bigcup_{n=0}^{\infty} H_n$ such that $H_n \in K_n$ for all n.

Lemma

Player I does not have a winning strategy in this game.

Proof.

Suppose σ is a winning strategy for I. Define $f:\omega^\omega\to\omega^\omega$ by:

$$f(b) = a = (a_0, a_1, ...), \text{ where } \sigma * b = (a_0, b_0, a_1, b_1, ...)$$

Clearly f is continuous. We borrow the fact that the continuous image of AN open set is measurable, and so $Z := f[\omega^{\omega}]$ is a measurable subset of S.

By the hypothesis on S, Z is null. Since null sets can be covered by arbitrarily small open sets, we may pick $G_{b_n}^n \in K_n$ such that $Z \subseteq \bigcup_{n=0}^\infty G_{b_n}^n$. If II plays (b_0, b_1, \ldots) , then clearly I always lose whenever I follows the strategy σ , a contradiction.

Proof of Theorem.

By AD and the previous lemma, II has a winning strategy τ . It suffices to show that $\mu^*(S) \leq \varepsilon$ for arbitrarily $\varepsilon > 0$.

For each $s = (a_0, \ldots, a_n)$ of 0 and 1, let:

$$G_s := G_{b_n}^n$$
, where $b_n = \sigma(a_0, b_0, \dots, b_{n-1}, a_n)$

Since τ is a winning strategy, for any $a=(a_0,a_1,\dots)\in S$ which I plays, we have that $a\in\bigcup_{s\sqsubseteq a}G_s$. Thus:

$$S\subseteqigcup_{s\in\{0,1\}^{<\omega}}G_s=igcup_{n=1}^\inftyigcup_{s\in\{0,1\}^n}G_s$$

Proof of Theorem (Cont.)

Now for any n, we have that:

$$\mu\left(\bigcup_{s\in\{0,1\}^n}G_s\right)\leq \sum_{s\in\{0,1\}^n}\mu(G_s)\leq 2^n\cdot\frac{\varepsilon}{2^{2n}}=\frac{\varepsilon}{2^n}$$

Therefore:

$$\mu^*(S) \leq \sum_{n=1}^{\infty} \mu \left(\bigcup_{s \in \{0,1\}^n} G_s \right) \leq \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon$$

as desired.

Concluding remarks:

- (1) Unsurprisingly, the "converse" to the theorem is false. We have that "ZF + DC+ Every subset of $\mathbb R$ is Lebesgue measurable" is equiconsistent with "ZFC + \exists inaccessible", while we recall that ZF + AD is equiconsistent with ω many Woodin cardinals.
- (2) However, we do not know if the three properties are "independent" for instance, it's open if "ZF + DC+ Every subset of $\mathbb R$ is Lebesgue measurable" implies that every subset of $\mathbb R$ has the perfect set property.