Math 101 HW 11

Jeff Carney

February 15, 2017

8.6

Let (s_n) be a sequence in \mathbb{R} .

(a)

 $\mathbf{Q}:$ Prove lim $s_n=0$ iff lim $|s_n|=0$

 (\Rightarrow)

Assume that $\lim s_n = 0$. Thus, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t. if n > N, then $|s_n| < \varepsilon$. Let $\varepsilon > 0$ and n > N. We know that $||s_n|| = |s_n| < \varepsilon$, thus $||s_n|| < \varepsilon$. \therefore $\lim |s_n| = 0$.

 \checkmark

 (\Leftarrow)

Assume that $\lim |s_n| = 0$. Thus, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t. if n > N, then $||s_n|| < \varepsilon$. Let $\varepsilon > 0$ and n > N. We know that $|s_n| = ||s_n|| < \varepsilon$, thus $|s_n| < \varepsilon$. \therefore $\lim s_n = 0$.

(b)

Q: Prove that if $s_n = (-1)^n$, then $\lim |s_n|$ exists, but $\lim s_n$ does not exist.

Proof that $\lim s_n$ does not exist:

Let $s_n = (-1)^n$. Suppose that that $\lim s_n$ exists. Let $l = \lim s_n$. We know that $s_n = \{-1, 1, -1, 1, ..\}$ is a sequence of integers. By homework 9 problem $2 \exists N \in \mathbb{N}$ s.t. if n > N, then $s_n = l$. Let n > N. Either n is odd or n is even.

n is even:

If n is even then $s_n = 1 = l$. Since n > N, $n+1 > N \Rightarrow s_{n+1} = l$. But since n+1 is odd $s_{n+1} = -1$. So we have $1 = -1 \Rightarrow \Leftarrow$. Thus, $\lim s_n$ does not exist.

n is odd:

If n is odd then $s_n = -11 = l$. Since n > N, $n+1 > N \Rightarrow s_{n+1} = l$. But since n+1 is even $s_{n+1} = 1$. So we have $1 = -1 \Rightarrow \Leftarrow$. Thus, $\lim s_n$ does not exist.

Proof that $\lim |s_n|$ exists:

Let $s_n = (-1)^n = \{-1, 1, -1, 1, ...\}$. Then $|s_n| = |(-1)^n| = \{|-1|, |1|, |-1|, |1|, ...\} = \{1, 1, 1, 1, ...\}$. Let $n \ge 1$. Thus, $\forall \varepsilon > 0 ||s_n| - 1| = |1 - 1| = 0 < \varepsilon \Rightarrow ||s_n| - 1| < \varepsilon$. Thus, $\lim s_n = 1$.

8.9

Let (s_n) be a sequence that converges.

(a)

Q: Show that if $s_n \geq a$ for all but finitely many n, then $\lim s_n \geq a$.

The finitely many n for which $s_n < a$ must come from the head because the tail is infinite. Thus, $\exists N_1 \in \mathbb{N}$ s.t. if $n > N_1$, then $s_n \geq a$. Assume that $\lim s_n = l$ and l < a. Then $\forall \varepsilon > 0$, $\exists N_2 \in \mathbb{N}$ s.t. if $n > N_2$, then $|s_n - l| < \varepsilon$. Let $N = \max\{N_1, N_2\}$ and let n > N, so $s_n \geq a$. Since l < a, $s_n - l > 0$. So we know that $\exists x \in \mathbb{R}$ s.t. $0 < x < s_n - l$. Let $\varepsilon = x$, then $|s_n - l| = s_n - l > \varepsilon \Rightarrow |s_n - l| > \varepsilon \Rightarrow \Leftarrow$. Thus $\lim s_n \geq a$.

(b)

Q: Show that if $s_n \leq b$ for all but finitely many n, then $\lim s_n \leq b$.

The finitely many n for which $s_n > b$ must come from the head because the tail is infinite. Thus, $\exists N_1 \in \mathbb{N}$ s.t. if $n > N_1$, then $s_n \leq b$. Assume that $\lim s_n = l$ and l > b. Then $\forall \varepsilon > 0$, $\exists N_2 \in \mathbb{N}$ s.t. if $n > N_2$, then $|s_n - l| < \varepsilon$. Let $N = \max\{N_1, N_2\}$ and let n > N, so $s_n \leq b$. Since l > b, $s_n - l < 0$. So we know that $\exists x \in \mathbb{R}$ s.t. $s_n - l < x < 0 \Rightarrow l - s_n > x$. Let $\varepsilon = x$, then $|s_n - l| = l - s_n > \varepsilon \Rightarrow |s_n - l| > \varepsilon \Rightarrow \Leftarrow$. Thus $\lim s_n \leq b$.

(c)

 \mathbf{Q} : Conclude that if all but finitely many s_n belong to [a,b], then $\lim s_n$ belongs to [a,b].

Let all but finitely many $s_n \in [a, b]$, then all but finitely many s_n are such that $a \leq s_n \leq b$. By part (a) we know that $\lim s_n \geq a$. By part (b) we know that $\lim s_n \leq a$. Thus, $a \leq \lim s_n \leq b \Rightarrow \lim s_n \in [a, b]$.

8.10

Q: Let (s_n) be a convergent sequence, and suppose $\lim s_n > a$. Prove there exists a number N such that n > N implies $s_n > a$

Let $\lim s_n = l$ s.t. l > a. Then $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t. if n > N then $|s_n - l| < \varepsilon$. Since l > a, $\exists x > 0$ s.t. if n > N then $|s_n - a| \ge x > 0$. Let n > N. Thus $s_n - a = |s_n - a| > 0 \Rightarrow s_n - a > 0 \Rightarrow s_n > a$.

1

(a)

Q: Prove or disprove the following: Let $\{x_n\}$ and $\{y_n\}$ be convergent sequences such that for all $n \in \mathbb{N}$, $x_n < y_n$. Then $\lim x_n < \lim y_n$.

Let $\{x_n\} = \{\frac{1}{n+1}\}$ and $\{y_n\} = \{\frac{1}{n}\}$. Then $\forall n \in \mathbb{N}, x_n < y_n$. Let $\varepsilon > 0$ be given. By Archimedes $\exists N \in \mathbb{N}$ s.t. $N > \frac{1}{\varepsilon}$. Let $n > N > \frac{1}{\varepsilon}$. So, $|\frac{1}{n} - 0| = \frac{1}{n} < \varepsilon$. \therefore lim $y_n = 0$. Now let $n + 1 > N > \frac{1}{\varepsilon}$. So, $|\frac{1}{n+1} - 0| = \frac{1}{n+1} < \varepsilon$. \therefore lim $y_n = 0$. Thus, we have disproved the statement.

(b)

Q: Prove or disprove the following: If $\{x_n\}$ diverges to ∞ then $\{x_n\}$ does not converge

WTS $\forall l \in \mathbb{R} \ \exists \varepsilon > 0 \text{ s.t. } \forall N \in \mathbb{N} \ \exists n > N \text{ s.t. } |x_n - l| > \varepsilon.$ Assume that $\{x_n\}$ diverges to ∞ , thus $\forall M > 0 \ \exists N \in \mathbb{N} \text{ s.t. } \text{if } n > N \text{ then } x_n > M.$ Let M > 0, n > N, $\varepsilon > 0$, and $l \in \mathbb{R}$. Since $x_n > M$, $|x_n - l| > |M - l|$. Thus, $\{x_n\}$ does not converge.