LP: Amplificateur linéaire intégré

Utilité du montage suiveur

Utilité du montage soustracteur

Conditions de non-saturation du courant en sortie d'un AO pour le montage amplificateur inverseur

• Charge: $R_u = 3 k\Omega$

• Gain :
$$\frac{R_2}{R_1} = 10$$

R_2	R_1	Commentaires
$1~k\Omega$	$100\varOmega$	Saturation
$3~k\Omega$	300arOmega	Cas limite
$10~k\Omega$	$1~k\Omega$	Bon choix

Montage intégrateur

Théorème de Millman appliqué en V_:

$$\frac{(V_e - V_-)}{R} + jC\omega(V_S - V_-) = 0$$

Or
$$V_{-} = V_{+} = 0$$

$$\Rightarrow V_S = -\frac{1}{jRC\omega}V_e$$

Dans le domaine temporel :

$$V_{s} = -\frac{1}{RC} \int dt V_{e}(t)$$

Mesure du cycle d'hystérésis du fer doux

$$r = 20 \Omega$$

$$R = 50 k\Omega$$

$$C = 7 \mu F$$

$$N_1 = 500$$

$$N_2 = 100$$

$$H = \frac{N_1 I_1}{L} = \frac{N_1}{rL} V_r$$

$$V_2 = N_2 \frac{d\phi}{dt} = N_2 S \frac{dB}{dt}$$

Grâce à l'AO intégrateur :

$$\Rightarrow B = \frac{RC}{N_2S}V_S$$

