```
In [30]:
```

```
import pandas as pd
import seaborn as sns
```

In [31]:

```
data=pd.read_csv("/home/placement/Downloads/sid.csv")
```

In [32]:

```
data.describe()
```

Out[32]:

	ID	engine_power	age_in_days	km	previous_owners	lat
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612
4						•

In [25]:

```
list(data)
```

Out[25]:

```
['ID',
  'model',
  'engine_power',
  'age_in_days',
  'km',
  'previous_owners',
  'lat',
  'lon',
  'price']
```

In [26]:

Type *Markdown* and LaTeX: α^2

In []:

In [33]:

```
data['model']=data['model'].map({'lounge':1,'pop':2,'sport':3})
```

In [34]:

data

Out[34]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lor
0	1	1	51	882	25000	1	44.907242	8.611560
1	2	2	51	1186	32500	1	45.666359	12.241890
2	3	3	74	4658	142228	1	45.503300	11.417840
3	4	1	51	2739	160000	1	40.633171	17.634609
4	5	2	73	3074	106880	1	41.903221	12.495650
1533	1534	3	51	3712	115280	1	45.069679	7.704920
1534	1535	1	74	3835	112000	1	45.845692	8.666870
1535	1536	2	51	2223	60457	1	45.481541	9.413480
1536	1537	1	51	2557	80750	1	45.000702	7.682270
1537	1538	2	51	1766	54276	1	40.323410	17.568270

1538 rows × 9 columns

data

In [35]:

cor=data.corr()

cor

In [44]:

sns.heatmap(cor,vmax=1,vmin=-1,annot=True,linewidths=.5,cmap='bwr')

Out[44]:

<Axes: >

In []:

In []:		