M621~HW,~due~April~6~I will return these to your mailbox Thursday night April 6.

- 1. Let p be a prime, let $t(x) = x^4 p \in \mathbb{Q}[x]$, and let $S \subseteq \mathbb{C}$ be a splitting field of t(x) over \mathbb{Q} .
 - (a) Show that t(x) is irreducible.
 - (b) Determine the roots of t(x).
 - (c) Determine $[S:\mathbb{Q}]$, with explanation.
 - (d) Since S/\mathbb{Q} is Galois, $|Aut(S/\mathbb{Q})| = [S:\mathbb{Q}]$. Moreover, as we showed, since $\deg(t(x)) = 4$, $Aut(S/\mathbb{Q})$ is isomorphic to a subgroup of S_4 . Based on your knowledge of S_4 and its Sylow subgroups, explain why $Aut(S/\mathbb{Q})$ is isomorphic to a Sylow-2 subgroup of $Aut(S/\mathbb{Q})$. [Note each Sylow-2 subgroup of S_4 is isomorphic to S_4 .

- 2. Let $\gamma = \sqrt{2 + \sqrt{2}}$.
 - (a) Find $m_{\gamma,\mathbb{Q}(\sqrt{2})}(x).$ (It has degree two.)
 - (b) Find the minimal polynomial $m_{\gamma,\mathbb{Q}}(x)$. (It has degree 4.) Show some work.
 - (c) Find the roots of $m_{\gamma,\mathbb{Q}}(x)$.
 - (d) Show that $\mathbb{Q}(\gamma)$ is the splitting field of $m_{\gamma,\mathbb{Q}}(x)$ (over \mathbb{Q}).
 - (e) +1 EC: Determine $Aut(\mathbb{Q}(\gamma)/\mathbb{Q})$ up to isomorphism, providing a brief well-reasoned argument.