8 класс	№№ задач	la	16	18	2	За	36	4	5		6a	66	7
	число решивших	96	11	7	32	3	1	23	7	0	45	10	15
9 класс	№№ задач	1		2	3		4	5		6		7	
	число решивших	49		41		2	1	92		23		24	
10 класс	№№ задач	1		2	3		4	5a	56	,	6	7	
	число решивших	40		135		35	2	92	46		7	38	

В целом участники олимпиады справились с предложенными задачами успешно. «Непосильных» задач не оказалось: каждую задачу решил хотя бы один школьник. Некоторые же школьники решили все предложенные задачи. Статистику решения каждой задачи по классам вы видите в таблице.

Приведем теперь тексты предлагавшихся задач и решения некоторых из них*).

8 класс Первый день

1. На карточках написаны числа, каждое из которых равно +1 или −1. Разрешается, указав три карточки, спросить: «Чему равно произведение чисел на этих карточках?» (Сами числа нам не сообщают.) Какое наименьшее число таких вопросов надо задать, чтобы узнать произведение чисел на всех карточках, если число карточек равно: а) 30; б) 31; в) 32 ?

В каждом случае докажите, что меньшим

числом вопросов обойтись нельзя.

 Среди чисел вида 36^k — 5^l, где k и l — натуральные числа, найдите наименьшее по абсолютной величине. Докажите, что найденное число действительно наименьшее.

 з) Каждая из сторон выпуклого шестиугольника имеет длину больше 1. Всегда ли в нем найдется диагональ длины больше 2? б) В выпуклом шестнугольнике ABCDEF длины диагоналей AD, BE и CF больше 2. Всегда ли у него найдется сторона длины больше 1?.

Второй день

4. Найдите все натуральные числа n и k такие, что n^n имеет k цифр, а k^k имеет n цифр.

5. На катетах СА и СВ равнобедренного прямоугольного треугольника АВС выбраны соответственно точки D и E так, что CD = CE. Продолжения перпендикуляров, опущенных из точек D и C на прямую AE, пересекают гипотенузу AB соответственно в точках K и L. Докажите, что KL = LB.

6. На шахматной доске 8×8 двое играют в игру «кошки — мышки». У первого одна фишка — мышка, у второго несколько фишек — кошек. Все фишки ходят одинаково: вправо, влево, вверх или вниз на одну клетку. Если мышка оказалась на краю доски, то очередным ходом она спрыгивает с доски; если кошка и мышка попадают на одну клетку, то кошка съедает мышку.

Играющие ходят по очереди, причем второй передвигает своим ходом всех своих кошек сразу (разных кошек можно при этом сдвигать в разных направлениях). Начинает мышка. Она старается спрыгнуть с доски, а кошки стараются до этого ее съесть.

а) Пусть кошек всего две. Мышка уже поставлена на какую-то клетку не на краю. Можно ли так поставить кошек на краю доски, чтобы они сумели съесть мышку?

б) Пусть кошек три, но зато мышка имеет лишний ход: в первый раз она делает два хода подряд. Докажите, что мышка сможет убежать от кошек, каково бы ни было начальное расположение фишек.

 Докажите, что числа 1, 2, 3, . . ., 32 можно расставить в таком порядке, чтобы ни для каких двух чисел их полусумма не равня-

^{*)} Мы даем полные тексты всех задач олимпиады. Часть из них была уже опубликована в «Задачнике «Кванта», см. «Квант», 1974, №№ 7, 8.