Evaluating LLMs' Grammatical Comprehension **Across Dialects**

By Nicole Lam and Katelyn DeKeersgieter

QUESTION:

Do LLMs have inherent bias against certain dialects of English, specifically African American Vernacular English (AAVE), via reduced grammatical comprehension compared to Standard American English?

QUESTION:

Do LLMs have inherent bias against certain dialects of English, specifically African American Vernacular English (AAVE), via reduced grammatical comprehension compared to Standard American English?

Our approach: a question answering task assessing grammatical comprehension via constituency

Approach

• 1100 SAE-AAVE Equivalent Pairs

- o **11 subjects**: I, you, we, they, he, she, Mary, John, the girls, the boys, and the grandmother
- 100 accompanying predicates for the two dialects, drawing from Jack
 Sidnell's "African American Vernacular English (AAVE) Grammar."
- Question and constituent answer to accompany each predicate pair and subject configuration
- Initialized 3 Seq2Seq models with contrasting hyperparameter configurations

EXAMPLE:

We played with the dog. Played with what? **The dog.**

We be playin' with the dog. Be playin' with what? **The dog.**

Evaluation

- For all three Seq2Seq model configurations, ran 50 trials of training for each of the 3 training datasets, resulting in 450 total trials!
- Evaluated each model and training dataset pairing on a Standard American
 English evaluation dataset, an AAVE evaluation dataset, and a "mixed" dataset
 consisting of both SAE and AAVE
- Tracked validation accuracy throughout epochs of training and reported final evaluation accuracy across the datasets

RESULTS

Parameter	A	В	C
Recurrent Type	gru	rnn	rnn
Bidirectional	True	False	False
Attention	Yes	Yes	Yes
Embedding Size	100	20	75
Hidden Size	100	20	75
Attention Size	50	20	70
Batch Size	5	5	5
Learning Rate	0.01	0.01	0.01

RESULTS

Parameter	A	В	C
Recurrent Type	gru	rnn	rnn
Bidirectional	True	False	False
Attention	Yes	Yes	Yes
Embedding Size	100	20	75
Hidden Size	100	20	75
Attention Size	50	20	70
Batch Size	5	5	5
Learning Rate	0.01	0.01	0.01

RESULTS

Parameter	A	В	C
Recurrent Type	gru	rnn	rnn
Bidirectional	True	False	False
Attention	Yes	Yes	Yes
Embedding Size	100	20	75
Hidden Size	100	20	75
Attention Size	50	20	70
Batch Size	5	5	5
Learning Rate	0.01	0.01	0.01

Model	Training Set	SAE	AAVE	Mix
	SAE	0.811	0.612	0.746
A	AAVE	0.862	0.929	0.909
	Mix	0.997	0.998	0.995

Model	Training Set	SAE	AAVE	Mix
	SAE	0.224	0.262	0.297
В	AAVE	0.296	0.421	0.421
	Mix	0.633	0.628	0.665

Model	Training Set	SAE	AAVE	Mix
	SAE	0.842	0.561	0.764
C	AAVE	0.781	0.984	0.929
	Mix	0.959	0.995	0.987

Conclusions

- Models trained only on SAE exhibit disparity in grammatical comprehension
 between SAE and AAVE
- Multi-dialect training data boosts overall performance
- Need for evaluation benchmarks that incorporate dialects beyond SAE
- Strong performance by models trained only on AAVE → linguistic inheritance

Relation to Relevant Literature

Lin et al.: "One Language, Many Gaps"

- Analyzed how LLMs'
 performance for canonical
 reasoning tasks differs
 when such benchmarks
 are rewritten using AAVE
- Every model
 demonstrated "AAVE
 queries can degrade
 performance more
 substantially than
 misspelled texts in
 Standardized English,
 even when LLMs are more
 familiar with the AAVE
 queries"

Holt et al.: "Perceptions of Language Technology Failures from South Asian English Speakers"

- Analyzed how LLMs select correct definitions for words & codeswitching for South Asian English Dialects and Standard American English Dialects
- Concluded that LLM
 performance dips
 significantly in the
 presence of South Asian
 English lexical &
 syntactical features in
 comparison to equivalent
 Standard American
 features

Hofmann et al.: "Al Generates Covertly Racist Decisions about People Based on their Dialect"

- LMs "embody covert racism in the form of dialect prejudice, exhibiting raciolinguistic stereotypes" about AAVE speakers
- "Current practices of alleviating racial bias in language models... exacerbate the discrepancy between covert and overt stereotypes, by superficially obscuring the racism that language models maintain on a deeper level"

Future Directions

- Increased hyperparameter configurations, dialects, and data
- Framing our measure of grammatical comprehension as a next word
 prediction task rather than a question answering task
 - "We played with the dog. We played with what? The ___."
- Adopting other tasks for analyzing grammatical comprehension, such as measuring LLMs' abilities to correctly generate syntax trees across dialects

QUESTIONS?