# **개원일수 예측모델**

다중 분류 모형으로 효과적으로 재원일수 관리하기



# Table of Contents





01

#### 개요

재원일수란? 문제 정의

03

#### 머신러닝 모텔 적용

모델 학습 및 성능 비교 모델 평가 02

#### 데이터 탐색 및 전처리

데이터 탐색 및 전처리 가설 설정

04

#### 모델 해석 및 인사이트

모델 해석 인사이트 및 한계점



# 재원일수란?

재원일수란 **병원에 입원한 환자가 병상을 점유한 일수** (OECD, 2013)

평균 재원일수는 진료결과와 **의료서비스 질적 변이를 간접적으로 진단**하는 가장 유용한 도구

# 재원일수의 영향



01

#### 환자 측면

- 환자의 병원 내 감염에 대한 노출 또는 합병증 증가
   의료비 부담 증가
- 02

#### 병원 시스템 측면

- 급성기 환자 치료 기회 감소
- **병상 회전율 감소**로 수익 감소

03

#### 재원일수 관리 서비스

■ 머신러닝 예측모형으로 효과적으로 재원일수 관리하여 **의료 서비스의 효율성 증대**  02

# 데이터 탐색 및 전처리

- 데이터 개요
- 타겟의 분포
- 타겟과 특성 간의 관계
- 데이터 전처리
- 가설 설정



# 데이터 개요

0

샘플 수 318438

특성 수 18

1

2

3

4

6

7

8

9

10

11

12

13

14

15

16

17

0

Hospital\_code

Hospital\_type\_code

City\_Code\_Hospital

Column

case\_id

Hospital\_region\_code

Available Extra Rooms in Hospital

Department

Ward\_Type

Ward\_Facility\_Code

Bed Grade

patientid

Age

Stay

City\_Code\_Patient

Type of Admission

Severity of Illness

Visitors with Patient

Admission\_Deposit

침대 등급 환자 ID

케이스 ID

병원 코드

병원 유형 코드

병원 도시 코드

병원 지역 코드

담당 부서

병동 유형

병동 시설 코드

사용할 수 있는 추가 병실 수

환자 도시 코드 입원 유형

입원 유형 중등도

> 방문객 수 나이

다이 입원 보증금

재원일수

18

# 타겟의 분포



타겟의 분포

OECD 평균 재원일수 8.1 한국 평균 재원일수 19.1

| count | 100000.000000        |
|-------|----------------------|
| mean  | 31.917700            |
| std   | 21.449686            |
| min   | 5.00000              |
| 25%   | 15.00000             |
| 50%   | 25.000000            |
| 75%   | 35.000000            |
| max   | 105.00000            |
| Name: | Stay, dtype: float64 |

타겟의 평균

# 타겟과 특성 간의 관계



### 타겟과 특성 간의 관계



# 데이터 전처리

#### 결측값 처리

전체 31만개 데이터 중 1.46% 해당하는 결측값 제거

## 특성 강학





#### 데이터 샘플링



#### 오버샘플링

0



# 가설 설정

1

#### 입원유형

입원 유형 Urgent < Emergency < Trauma 순으로 재원일수가 길어진다. 2

#### 중증도

<u>3</u>

40

**나이가 많아질수록** 재원일수가 길어진다. 03

# 메신러닝 모델 적용

- 모델링 과정
- 모델 성능 비교
- ■모델 평가



#### 모텔링 과정

000

#### 데이터 탐색

타겟 분포 시각화, 타겟과 특성 간의 관계 시각화



000

#### 데이터 전처리

결측값 처리, 특성공학, 데이터 샘플링



000

#### 다중 분류 모델 학습

결정 트리, 랜덤 포레스트, XGB, LGBM 모델 Training

000

#### **Grid Search CV**

하이퍼파라미터 조정하여 모델 최적화



000

#### 모델 성능 비교

Val dataset 으로 accuray, f1 score 비교



000

#### 모델 평가

Test dataset 으로 accuray, f1 score, roc auc score 평가

# 모텔 성능 비교





F1 score

Accuracy & F1 score

# 모델 평가





Test Dataset

**Confusion Matrix** 

**ROC AUC score** 

04

# 모델 해씩 및 인사이트 도출

- 모델 해석
- 가설 검정
- 인사이트 도출
- 한계점 및 보완방안



## 모텔 해석

| Weight              | Feature                           |
|---------------------|-----------------------------------|
| 0.0414 ± 0.0058     | Ward_Type                         |
| 0.0311 ± 0.0033     | Bed Grade                         |
| 0.0278 ± 0.0011     | Admission_Deposit                 |
| 0.0205 ± 0.0021     | Severity of Illness               |
| 0.0163 ± 0.0046     | Type of Admission                 |
| 0.0145 ± 0.0031     | City_Code_Hospital                |
| $0.0142 \pm 0.0037$ | City_Code_Patient                 |
| 0.0138 ± 0.0020     | Ward_Facility_Code                |
| 0.0134 ± 0.0061     | ad_count                          |
| 0.0108 ± 0.0020     | Hospital_code                     |
| 0.0104 ± 0.0031     | Available Extra Rooms in Hospital |
| $0.0096 \pm 0.0042$ | Hospital_type_code                |
| 0.0066 ± 0.0023     | Hospital_region_code              |
| $0.0066 \pm 0.0036$ | Age                               |
| 0.0040 ± 0.0011     | Department                        |
|                     |                                   |

재원일수에 영향을 주는 요인 병동 유형, 침대 등급, 입원 보증금 순



10일 이하 재원일수에 영향을 주는 요인 입원 유형, 병동 시설 순 50일 이상 재원일수에 영향을 주는 요인 병동유형, 중증도 순

#### 모텔 해석

#### 입원 유형

Urgent (긴급): 걱정되는 의학적 상태나 질병이 있지만 생명을 위협하는 상태는 아닌 경우

Emergency (응급실): 환자가 응급 질병과 부상을 입는 곳이며 그 중 일부는 생명을 위협할 수 있다.

Trauma (외상센터): 외상성 부상의 예로는 자동차 사고, 총상 또는 추락으로 인한 부상이 있다.

Emergency - 10일 이하 또는 50일 이상 입원할 가능성이 높았지만 상대적으로 10 - 50일 입원할 가능성이 적었다.

Trauma - 20일 이상 입원할 가능성이 높았다.



# 모델 해석

C

#### 병동 유형

Q 병동 - 30일 이하 입원할 가능성이 높았다.

S 병동 - 50일 이상 입원할 가능성이 높았다.



# 모델 해석

## 입원 횟수

입원한 횟수 8회 이하인 환자는 재원일수가 20일 이하일 가능성이 높았고,

8회 이상인 환자는 재원일수가 50일 이상일 가능성이 높았다.



# 모텔 해석

나이

나이가 많을수록 재원일수가 길어진다.



## 모델 해석

#### 중증도와 입원유형

중증도가 낮고, 입원유형이 Urgent 일수록 재원일수가 짧다.

중증도가 높고, 입원유형이 Trauma 일수록 재원일수가 길다.



# 가설 검정

1

#### 입원유형

입원 유형 Urgent < Emergency < Trauma 순으로 <u>재원일수가</u> 길어졌다. 2

#### 중증도

중증도 Minor <
Moderate < Extreme
 순으로 <u>재워일수가</u>
<u>길어졌다.</u>

3

나이

**나이가 많아질수록** 재원일수가 길어졌다.

# 인사이트 도출

재원일수에 영향을 미치는 주요 요인들은 **병동유형,** 침대등급, 입원보증금, 중증도, 입원유형 등이 있습니다.

재원일수를 효과적으로 관리할 경우 병상가동률 증가, 환자 당 입원비용 감소, 환자 진료 기회 증가 등의 효율성을 증대시킬 수 있습니다. 맞춤형 재원일수 관리서비스는 장기입원 예측군, 집중관리군을 대상으로 **입원 시점에 장기입원** 

알람서비스, 재원일수 초과 시점에 재원일수 초과 알람서비스로 진행될 수 있습니다.



# 한계점 및 보완방안



#### 데이터의 한계

대부분의 특성이 코드화 되어 있어 구체적인 모델 해석에 어려움이 있다.

#### 모델의 한계

다중분류모델에서 정확도가 낮은 범주가 있다. ⇒ 이중분류모델로 전처리하여 장기입원을 예측할 수 있다.







# Thanks!

감사합니다!