Problemi sulle trasformazioni dei gas (1)

1. Un cilindro orizzontale rigido è diviso in due parti da un setto isolante che può scorrere

senza attrito. Inizialmente un gas ideale monoatomico riempie entrambi i volumi nelle stesse condizioni, che sono $V_0=0.054\,$ m³, pressione $p_0=10^5\,$ Pa e temperatura $T_0=273\,$ K. Il volume 1 è termicamente isolato, mentre il volume 2 è in contatto termico con un serbatoio alla temperatura T_0 . Una resistenza posta nel

volume 1 scalda molto lentamente il gas (nel volume 1) e dopo il riscaldamento si trova che la pressione del gas nel volume 2 è pari a $p_2 = 7.69 \cdot 10^5$ Pa. Determinare:

- a) la temperatura T_2 del gas nel volume 2;
- b) il lavoro W_2 del gas nel volume 2;
- c) la temperatura T_1 del gas nel volume 1;
- d) il calore Q_1 scambiato dal gas nel volume 1.
- 2. Una mole di gas perfetto monoatomico alla temperatura $T_0=300~\rm K$ è racchiuso in un contenitore adiabatico di volume $V_0=0.01~\rm m^3$. Nel contenitore avviene una combustione che genera 2090 J di energia che viene ceduta al gas. Determinare:
 - a) la pressione p_0 iniziale del gas;
 - b) la temperatura T_1 del gas all'equilibrio dopo la combustione;
 - c) la pressione p_1 del gas nello stesso stato.

Successivamente, il gas si espande reversibilmente fino al volume $V_2 = 10V_0$. Determinare:

- d) il lavoro ${\it W}_{\rm 12}$ fatto dal gas durante l'espansione.
- 3. Una mole di gas ideale alla temperatura $T_0=273~{
 m K}$ e alla pressione $~p_0=10^5~{
 m Pa}$ viene

compressa a temperatura costante fino al volume $V_1=V_0/8$. Il gas viene poi riportato al volume iniziale, $V_2=V_0$, per mezzo di una espansione adiabatica reversibile, e si trova che la sua pressione è $p_2=p_0/5$. Determinare:

- a) la temperatura T_1 del gas al termine della compressione;
- b) la temperatura T_2 del gas al termine dell'espansione adiabatica;
- c) il valore della costante γ ;
- d) la variazione di energia interna ΔU_{02} del gas tra lo stato iniziale e quello finale;
- e) i valori dei calori specifici molari a volume e pressione costante c_V e c_p .