Chapter 4: Association Rules

Lecturer: Dr. Nguyen Thi Ngoc Anh Email: ngocanhnt@ude.edu.vn

Mining Association Rules in Large Databases

- Association rule mining
- Algorithms for scalable mining of (singledimensional Boolean) association rules in transactional databases
- Mining various kinds of association/correlation rules
- Constraint-based association mining
- Sequential pattern mining
- Applications/extensions of frequent pattern mining
- Summary

What Is Association Mining?

- Association rule mining:
 - Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.
 - Frequent pattern: pattern (set of items, sequence, etc.) that occurs frequently in a database [AIS93]
- Motivation: finding regularities in data
 - What products were often purchased together? Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - · Can we automatically classify web documents?

3

Why Is Association Mining Important?

- Foundation for many essential data mining tasks
 - Association, correlation, causality
 - Sequential patterns, temporal or cyclic association, partial periodicity, spatial and multimedia association
 - Associative classification, cluster analysis, iceberg cube, fascicles (semantic data compression)
- Broad applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis
 - Web log (click stream) analysis, DNA sequence analysis, etc.

Transaction-id	Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F

- Itemset $X = \{x_1, ..., x_k\}$
- Find all the rules X →Y with min confidence and support
 - support, s, probability that a transaction contains X∪Y
 - confidence, c, conditional probability that a transaction having X also contains Y.

Let
$$min_support = 50\%$$
,
 $min_conf = 50\%$:
 $A \rightarrow C (50\%, 66.7\%)$
 $C \rightarrow A (50\%, 100\%)$

5

Mining Association Rules: Example

Transaction-io	d Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F

Min. support 50% Min. confidence 50%

	Frequent pattern	Support
	{A}	75%
*	{B}	50%
	{C}	50%
	{A, C}	50%

For rule $A \Rightarrow C$:

support = support($\{A\} \cup \{C\}$) = 50% confidence = support($\{A\} \cup \{C\}$)/support($\{A\}$) = 66.6%

Mining Association Rules: What We Need to Know

- Goal: Rules with high support/confidence
- How to compute?
 - Support: Find sets of items that occur frequently
 - Confidence: Find frequency of subsets of supported itemsets
- If we have all frequently occurring sets of items (frequent itemsets), we can compute support and confidence!

7

Mining Association Rules in Large Databases

- Association rule mining
- Algorithms for scalable mining of (singledimensional Boolean) association rules in transactional databases
- Mining various kinds of association/correlation rules
- Constraint-based association mining
- Sequential pattern mining
- Applications/extensions of frequent pattern mining
- Summary

Apriori: A Candidate Generation-and-test Approach

- Any subset of a frequent itemset must be frequent
 - if {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - Every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!
- Method:
 - generate length (k+I) candidate itemsets from length k frequent itemsets, and
 - test the candidates against DB
- Performance studies show its efficiency and scalability
- Agrawal & Srikant 1994, Mannila, et al. 1994

The Apriori Algorithm—An Example Itemset sup Database TDB 2 {A} L_{I} 2 {A} C_{I} Tid Items {B} 3 {B} 3 10 A, C, D {C} 3 1st scan {C} 3 20 B, C, E 3 {E} 30 A, B, C, E {E} 3 40 B, E C_2 C_2 2^{nd} scan L_2 {A, B} {A, C} 2 {A, C} 2 {A, C} {B, C} 2 {A, E} 2 {B, C} {B, E} 3 {B, C} {B, E} 3 {C, E} 2 $\{B, \overline{E}\}$ {C, E} {C, E} 3rd scan {B, C, E} 10 {B, C, E}

The Apriori Algorithm

Pseudo-code:

```
C_k: Candidate itemset of size k

L_k: frequent itemset of size k

L_l = \{ \text{frequent items} \}; 
for (k = 1; L_k != \emptyset; k++) do begin

C_{k+l} = \text{candidates generated from } L_k; 
for each transaction t in database do

increment the count of all candidates in C_{k+l}
that are contained in t
L_{k+l} = \text{candidates in } C_{k+l} with min_support
end
return \bigcup_k L_k;
```

11

Important Details of Apriori

- How to generate candidates?
 - Step I: self-joining L_k
 - Step 2: pruning
- How to count supports of candidates?
- Example of Candidate-generation
 - ∘ L₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - · acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L_3
 - C₄={abcd}

How to Generate Candidates?

- Suppose the items in L_{k-1} are listed in an order
- Step 1: self-joining L_{k-1}
 insert into C_k
 select p.item₁, p.item₂, ..., p.item_{k-1}, q.item_{k-1}
 from L_{k-1} p, L_{k-1} q
 - where $p.item_1 = q.item_1$, ..., $p.item_{k-2} = q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$
- Step 2: pruning
 ∀ itemsets c in C_k do
 ∀ (k-1)-subsets s of c do
 if (s is not in L_{k-1}) then delete c from C_k

13

How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- Method:
 - Candidate itemsets are stored in a hash-tree
 - Leaf node of hash-tree contains a list of itemsets and counts
 - · Interior node contains a hash table
 - Subset function: finds all the candidates contained in a transaction

15

Efficient Implementation of Apriori in SQL

- Hard to get good performance out of pure SQL (SQL-92) based approaches alone
- Make use of object-relational extensions like UDFs, BLOBs, Table functions etc.
 - Get orders of magnitude improvement
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. In SIGMOD'98

Challenges of Frequent Pattern Mining

- Challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Partition: Scan Database Only Twice

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
 - Scan I: partition database and find local frequent patterns
 - Scan 2: consolidate global frequent patterns
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association in large databases. In VLDB'95

19

Sampling for Frequent Patterns

- Select a sample of original database, mine frequent patterns within sample using Apriori
- Scan database once to verify frequent itemsets found in sample, only borders of closure of frequent patterns are checked
 - Example: check abcd instead of ab, ac, ..., etc.
- Scan database again to find missed frequent patterns
- H.Toivonen. Sampling large databases for association rules. In VLDB'96

DHP: Reduce the Number of Candidates

- A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
 - Candidates: a, b, c, d, e
 - Hash entries: {ab, ad, ae} {bd, be, de} ...
 - Frequent I-itemset: a, b, d, e
 - ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold
- J. Park, M. Chen, and P.Yu. An effective hashbased algorithm for mining association rules. In SIGMOD'95

21

Eclat/MaxEclat and VIPER: Exploring Vertical Data Format

- Use tid-list, the list of transaction-ids containing an itemset
- Compression of tid-lists
 - Itemset A: t1, t2, t3, sup(A)=3
 - Itemset B: t2, t3, t4, sup(B)=3
 - Itemset AB: t2, t3, sup(AB)=2
- Major operation: intersection of tid-lists
- M. Zaki et al. New algorithms for fast discovery of association rules.
 In KDD'97
- P. Shenoy et al. Turbo-charging vertical mining of large databases. In SIGMOD'00

Bottleneck of Frequent-pattern Mining

- Multiple database scans are costly
- Mining long patterns needs many passes of scanning and generates lots of candidates
 - To find frequent itemset $i_1i_2...i_{100}$
 - # of scans: 100
 - # of Candidates: $\binom{1}{100} + \binom{1}{100} + \dots + \binom{1}{100} \binom{0}{0} = 2^{100} 1 = 1.27 \times 10^{30}!$
- Bottleneck: candidate-generation-and-test
- Can we avoid candidate generation?

23

Mining Frequent Patterns Without Candidate Generation

- Grow long patterns from short ones using local frequent items
 - "abc" is a frequent pattern
 - $^{\circ}$ Get all transactions having "abc": DB|abc
 - "d" is a local frequent item in DB|abc → abcd
 is a frequent pattern

Construct FP-tree from a Transaction Database

Benefits of the FP-tree Structure

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count node-links and the count field)
 - For Connect-4 DB, compression ratio could be over 100

Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list
 - F-list=f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - 0
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

27

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p's conditional pattern base

Conditional pattern bases

<u>item</u>	cond. pattern base
c	f:3
a	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts

Reduction of the single prefix path into one node

{} Concatenation of the mining results of the two parts

Mining Frequent Patterns With FP-trees

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Method
 - For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Scaling FP-growth by DB Projection

- FP-tree cannot fit in memory?—DB projection
- First partition a database into a set of projected DBs
- Then construct and mine FP-tree for each projected DB
- Parallel projection vs. Partition projection techniques
 - Parallel projection is space costly

Why Is FP-Growth the Winner?

- Divide-and-conquer:
 - decompose both the mining task and DB according to the frequent patterns obtained so far
 - leads to focused search of smaller databases
- Other factors
 - o no candidate generation, no candidate test
 - o compressed database: FP-tree structure
 - on repeated scan of entire database
 - basic ops—counting local freq items and building sub FP-tree, no pattern search and matching

37

Implications of the Methodology

- · Mining closed frequent itemsets and max-patterns
 - CLOSET (DMKD'00)
- · Mining sequential patterns
 - FreeSpan (KDD'00), PrefixSpan (ICDE'01)
- · Constraint-based mining of frequent patterns
 - Convertible constraints (KDD'00, ICDE'01)
- · Computing iceberg data cubes with complex measures
 - H-tree and H-cubing algorithm (SIGMOD'01)

Max-patterns

- Frequent pattern $\{a_1, ..., a_{100}\} \rightarrow ({}_{100}{}^{!}) + ({}_{100}{}^{2}) + ... + ({}_{1}{}^{1}{}_{0}{}^{0}{}_{0}{}^{0}) = 2^{100} 1 = 1.27*10^{30}$ frequent sub-patterns!
- Max-pattern: frequent patterns without proper frequent super pattern
 - BCDE,ACD are max-patter

• BCD is not a max-pattern

Min_sup=2

rn₹id	Items
10	A,B,C,D,E
20	B,C,D,E,
30	A,C,D,F

39

MaxMiner: Mining Max-patterns

- Ist scan: find frequent items
 - A, B, C, D, E
- 2nd scan: find support for
 - AB,AC,AD,AE,ABCDE
 - ∘ BC, BD, BE, BCDE
 - · CD, CE, CDE, DE,
- Tid Items

 10 A,B,C,D,E

 20 B,C,D,E,

 30 A,C,D,F

Potential

- Since BCDE is a max-pattern, no need to check BCD, BDE, CDE in later scan
- R. Bayardo. Efficiently mining long patterns from databases. In SIGMOD'98

Frequent Closed Patterns

- Conf(ac \rightarrow d)=100% \rightarrow record acd only
- For frequent itemset X, if there exists no item y s.t. every transaction containing X also contains y, then X is a frequent

closed pattern

• "acd" is a frequent closed pattern

Concise rep. of freq pats

Reduce # of patterns and rules

N. Pasquier et al. In ICDT'99

Min_sup=2		
TID	Items	
10	a, c, d, e, f	
20	a, b, e	
30	c, e, f	
40	a, c, d, f	
50	c, e, f	

Min_sup=2

a, b, e

c, e, f

c, e, f

a, c, d, f

Items

a, c, d, e, f

TID

20

30

Mining Frequent Closed Patterns: CLOSET

- Flist: list of all frequent items in support ascending order
 - Flist: d-a-f-e-c
- Divide search space
 - Patterns having d
 - Patterns having d but no a, etc.
- · Find frequent closed pattern recursively

 - \circ Every transaction having d also has cfa \rightarrow cfad is a frequent closed pattern
- J. Pei, J. Han & R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets", DMKD'00.

Mining Frequent Closed Patterns: CHARM

- Use vertical data format: t(AB)={T₁,T₁₂,...}
- Derive closed pattern based on vertical intersections
 - t(X)=t(Y): X and Y always happen together
 - $t(X)\subset t(Y)$: transaction having X always has Y
- Use diffset to accelerate mining
 - Only keep track of difference of tids
 - $t(X)=\{T_1,T_2,T_3\}, t(Xy)=\{T_1,T_3\}$
 - Diffset(Xy, X)={T₂}
- M. Zaki. CHARM: An Efficient Algorithm for Closed Association Rule Mining, CS-TR99-10, Rensselaer Polytechnic Institute
- M. Zaki, Fast Vertical Mining Using Diffsets, TR01-1, Department of Computer Science, Rensselaer Polytechnic Institute

43

Visualization of Association Rules: Pane Graph Pane

Mining Association Rules in Large Databases

- Association rule mining
- Algorithms for scalable mining of (single-dimensional Boolean) association rules in transactional databases
- Mining various kinds of association/correlation rules
- Constraint-based association mining
- Sequential pattern mining
- Applications/extensions of frequent pattern mining
- Summary

Mining Various Kinds of Rules or Regularities

- Multi-level, quantitative association rules, correlation and causality, ratio rules, sequential patterns, emerging patterns, temporal associations, partial periodicity
- Classification, clustering, iceberg cubes, etc.

47

Multiple-level Association Rules

- Items often form hierarchy
- Flexible support settings: Items at the lower level are expected to have lower support.
- Transaction database can be encoded based on dimensions and levels
- explore shared multi-level mining

ML/MD Associations with Flexible Support Constraints

- Why flexible support constraints?
 - Real life occurrence frequencies vary greatly
 - · Diamond, watch, pens in a shopping basket
 - Uniform support may not be an interesting model
- A flexible model
 - The lower-level, the more dimension combination, and the long pattern length, usually the smaller support
 - · General rules should be easy to specify and understand
 - Special items and special group of items may be specified individually and have higher priority

49

Multi-dimensional Association

• Single-dimensional rules:

```
buys(X, "milk") \Rightarrow buys(X, "bread")
```

- Multi-dimensional rules: ≥ 2 dimensions or predicates
 - o Inter-dimension assoc. rules (no repeated predicates)

```
\mathsf{age}(\mathsf{X}, \mathsf{"I9\text{-}25"}) \ \land \ \mathsf{occupation}(\mathsf{X}, \mathsf{"student"}) \Rightarrow \ \mathsf{buys}(\mathsf{X}, \mathsf{"coke"})
```

• hybrid-dimension assoc. rules (repeated predicates)

```
\mathsf{age}(\mathsf{X}, "\mathsf{19\text{-}25"}) \wedge \ \mathsf{buys}(\mathsf{X}, "\mathsf{popcorn"}) \Rightarrow \mathsf{buys}(\mathsf{X}, "\mathsf{coke"})
```

- Categorical Attributes
 - finite number of possible values, no ordering among values
- Quantitative Attributes
 - numeric, implicit ordering among values

Multi-level Association: Redundancy Filtering

- Some rules may be redundant due to "ancestor" relationships between items.
- Example
 - milk ⇒ wheat bread [support = 8%, confidence = 70%]
 - 2% milk ⇒ wheat bread [support = 2%, confidence = 72%]
- We say the first rule is an ancestor of the second rule.
- A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor.

51

Multi-Level Mining: Progressive Deepening

- A top-down, progressive deepening approach:
 - First mine high-level frequent items: milk (15%), bread (10%)
 - Then mine their lower-level "weaker" frequent itemsets:

2% milk (5%), wheat bread (4%)

- Different min_support threshold across multilevels lead to different algorithms:
 - If adopting the same min_support across multi-levels then toss t if any of t's ancestors is infrequent.
 - If adopting reduced min_support at lower levels
 then examine only those descendents whose ancestor's support
 is frequent/non-negligible.

Techniques for Mining MD Associations

- Search for frequent k-predicate set:
 - Example: {age, occupation, buys} is a 3-predicate set
 - Techniques can be categorized by how age are treated
- I. Using static discretization of quantitative attributes
 - Quantitative attributes are statically discretized by using predefined concept hierarchies
- 2. Quantitative association rules
 - Quantitative attributes are dynamically discretized into "bins" based on the distribution of the data
- 3. Distance-based association rules
 - This is a dynamic discretization process that considers the distance between data points

53

Static Discretization of Quantitative Attributes

- Discretized prior to mining using concept hierarchy.
- Numeric values are replaced by ranges.
- In relational database, finding all frequent k-predicate sets will require k or k+1 table scans.
- Data cube is well suited for mining.
- The cells of an n-dimensional cuboid correspond to the predicate sets.
- Mining from data cubes can be much faster.

Quantitative Association Rules

- Numeric attributes are dynamically discretized
 - Such that the confidence or compactness of the rules mined is maximized
- 2-D quantitative association rules: $A_{quan1} \wedge A_{quan2} \Rightarrow A_{cat}$
- Cluster "adiacent"

40-50K Example 30-40K

20-30K age(X,"30-34") ∧ income(X,"24K -<20K

⇒ buys(X,"high resolution TV")

Mining Distance-based Association Rules

Binning methods do not capture the semantics of interval

	Equi-width	Equi-depth	Distance-
Price(\$)	(width \$10)	(depth 2)	based
7	[0,10]	[7,20]	[7,7]
20	[11,20]	[22,50]	[20,22]
22	[21,30]	[51,53]	[50,53]
50	[31,40]		
51	[41,50]		
53	[51,60]		

- Distance-based partitioning, more meaningful discretization considering:
 - density/number of points in an interval
 - "closeness" of points in an interval

Interestingness Measure: Correlations (Lift)

- play basketball ⇒ eat cereal [40%, 66.7%] is misleading
 - The overall percentage of students eating cereal is 75% which is higher than 66.7%.
- play basketball \Rightarrow not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift

$$corr_{A,B} = \frac{P(A \cup B)}{P(A)P(B)}$$

	Basketbal I	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

57

Mining Association Rules in Large Databases

- Association rule mining
- Algorithms for scalable mining of (single-dimensional Boolean) association rules in transactional databases
- · Mining various kinds of association/correlation rules
- Constraint-based association mining
- · Sequential pattern mining
- Applications/extensions of frequent pattern mining
- Summary

Constraint-based Data Mining

- Finding all the patterns in a database autonomously? — unrealistic!
 - The patterns could be too many but not focused!
- Data mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
 - System optimization: explores such constraints for efficient mining—constraint-based mining

59

Constraints in Data Mining

- Knowledge type constraint:
 - classification, association, etc.
- Data constraint using SQL-like queries
 - find product pairs sold together in stores in Vancouver in Dec.'00
- Dimension/level constraint
 - o in relevance to region, price, brand, customer category
- Rule (or pattern) constraint
 - \circ small sales (price < \$10) triggers big sales (sum > \$200)
- Interestingness constraint
 - ∘ strong rules: min_support ≥ 3%, min_confidence ≥ 60%

Constrained Mining vs. Constraint-Based Search

- · Constrained mining vs. constraint-based search/reasoning
 - Both are aimed at reducing search space
 - Finding all patterns satisfying constraints vs. finding some (or one) answer in constraint-based search in Al
 - Constraint-pushing vs. heuristic search
 - It is an interesting research problem on how to integrate them
- Constrained mining vs. query processing in DBMS
 - Database query processing requires to find all
 - Constrained pattern mining shares a similar philosophy as pushing selections deeply in query processing

61

Constrained Frequent Pattern Mining: A Mining Query Optimization Problem

- Given a frequent pattern mining query with a set of constraints C, the algorithm should be
 - sound: it only finds frequent sets that satisfy the given constraints C
 - complete: all frequent sets satisfying the given constraints C are found
- A naïve solution
 - First find all frequent sets, and then test them for constraint satisfaction
- More efficient approaches:
 - Analyze the properties of constraints comprehensively
 - Push them as deeply as possible inside the frequent pattern computation.

Anti-Monotonicity in Constraint-Based Mining

TDB (min_sup=2)

- · Anti-monotonicity
 - When an itemset S violates the constraint, so does any of its superset
 - sum(S.Price) ≤ v is anti-monotone
 - sum(S.Price) ≥ v is not anti-monotone
- Example. C: range(S.profit) ≤ 15 is antimonotone
 - Itemset ab violates C
 - So does every superset of ab

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20 ₆₃
h	-10

Which Constraints Are Anti-Monotone?

Constraint	Antimonotone
v ∈ S	No
S⊇V	no
S⊆V	yes
min(S) ≤ v	no
min(S) ≥ v	yes
max(S) ≤ v	yes
max(S) ≥ v	no
count(S) ≤ v	yes
count(S) ≥ v	no
sum(S) ≤ v (a ∈ S, a ≥ 0)	yes
$sum(S) \ge v (a \in S, a \ge 0)$	no
range(S) ≤ v	yes
range(S) ≥ v	no
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	convertible
support(S) ≥ ξ	yes
support(S) ≤ ξ	no

Monotonicity in Constraint-Based Mining TDB (min_sup=2)

- Monotonicity
 - When an intemset S satisfies the constraint, so does any of its superset
 - sum(S.Price) ≥ v is monotone
 - min(S.Price) ≤ v is monotone
- Example. C: range(S.profit) ≥ 15
 - Itemset ab satisfies C
 - So does every superset of ab

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Which Constraints Are Monotone?

Constraint	Monotone
v ∈ S	yes
S⊇V	yes
S⊆V	no
min(S) ≤ v	yes
min(S) ≥ v	no
max(S) ≤ v	no
max(S) ≥ v	yes
count(S) ≤ v	no
count(S) ≥ v	yes
sum(S) ≤ v (a ∈ S, a ≥ 0)	no
sum(S) ≥ v (a ∈ S, a ≥ 0)	yes
range(S) ≤ v	no
range(S) ≥ v	yes
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	convertible
support(S) ≥ ξ	no
support(S) ≤ ξ	yes

Succinctness

- Succinctness:
 - Given $A_{I,}$ the set of items satisfying a succinctness constraint C, then any set S satisfying C is based on A_{I} , i.e., S contains a subset belonging to A_{I}
 - Idea:Without looking at the transaction database, whether an itemset S satisfies constraint C can be determined based on the selection of items
 - $min(S.Price) \le v$ is succinct
 - $sum(S.Price) \ge v$ is not succinct
- Optimization: If C is succinct, C is pre-counting pushable

67

Which Constraints Are Succinct?

Constraint	Succinct
v ∈ S	yes
S⊇V	yes
S⊆V	yes
min(S) ≤ v	yes
min(S) ≥ v	yes
max(S) ≤ v	yes
max(S) ≥ v	yes
count(S) ≤ v	weakly
count(S) ≥ v	weakly
sum(S) ≤ v (a ∈ S, a ≥ 0)	no
sum(S) ≥ v (a ∈ S, a ≥ 0)	no
range(S) ≤ v	no
range(S) ≥ v	no
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	no
support(S) ≥ ξ	no
support(S) ≤ ξ	no

Converting "Tough" Constraints

- Convert tough constraints into antimonotone or monotone by properly ordering items
- Examine C: avg(S.profit) ≥ 25
 - Order items in value-descending order
 - <a, f, g, d, b, h, c, e>
 - If an itemset afb violates C
 - · So does afbh, afb*
 - · It becomes anti-monotone!

TDB (min_sup=2)		
TID	Transaction	
10	a, b, c, d, f	
20	b, c, d, f, g, h	
30	a, c, d, e, f	
40	c e f d	

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10 ⁷³

Convertible Constraints

- Let R be an order of items
- Convertible anti-monotone
 - If an itemset S violates a constraint C, so does every itemset having S as a prefix w.r.t. R
 - Ex. $avg(S) \le v$ w.r.t. item value descending order
- Convertible monotone
 - If an itemset S satisfies constraint C, so does every itemset having S as a prefix w.r.t. R
 - Ex. $avg(S) \ge v$ w.r.t. item value descending order

Strongly Convertible Constraints

- $avg(X) \ge 25$ is convertible anti-monotone w.r.t. item value descending order R: < a, f, g, d, b, h, c, e>
 - If an itemset *af* violates a constraint C, so does every itemset with *af* as prefix, such as *afd*
- $avg(X) \ge 25$ is convertible monotone w.r.t. item value ascending order R^{-1} : <e, c, h, b, d, g, f, a>
 - If an itemset d satisfies a constraint C, so does itemsets df and dfa, which having d as a prefix
- Thus, $avg(X) \ge 25$ is strongly convertible

Item	Profit
а	40
р	0
С	-20
d	10
е	-30
f	30
g	20
h	-10
h	-10

75

What Constraints Are Convertible?

1					
1		Constraint	Convertible anti-monotone	Convertible monotone	Strongly convertible
		$avg(S) \le , \ge v$	Yes	Yes	Yes
		median(S) ≤ , ≥ v	Yes	Yes	Yes
	$sum(S) \le v$ (items could be of any value, $v \ge 0$)		Yes	No	No
	$\frac{sum(S) \le v \text{ (items could be of any}}{value, v \le 0)}$		No	Yes	No
	$\frac{sum(S) \geq v \text{ (items could be of any}}{value, v \geq 0)}$		No	Yes	No
	$\frac{sum(S) \geq v \text{ (items could be of any}}{value, v \leq 0)}$		Yes	No	No

	Combing Picture	Them Tog	ether—A	General
	Constraint	Antimonotone	Monotone	Succinct
	v ∈ S	no	yes	yes
	S⊇V	no	yes	yes
	S⊆V	yes	no	yes
	min(S) ≤ v	no	yes	yes
	min(S) ≥ v	yes	no	yes
	max(S) ≤ v	yes	no	yes
	max(S) ≥ v	no	yes	yes
	count(S) ≤ v	yes	no	weakly
	count(S) ≥ v	no	yes	weakly
s	um(S) ≤ v (a ∈ S, a ≥ 0)	yes	no	no
S	um(S) ≥ v (a ∈ S, a ≥ 0)	no	yes	no
	range(S) ≤ v	yes	no	no
	range(S) ≥ v	no	yes	no
	$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	convertible	convertible	no
	support(S) ≥ ξ	yes	no	no
	support(S) ≤ ξ	no	yes	no

Mining With Convertible Constraints TDB

Constra

TDB (min sup=2)

- C: avg(S.profit) ≥ 25
- List of items in every transaction in value descending order R:

<a, f, g, d, b, h, c, e>

- C is convertible anti-monotone w.r.t. R
- · Scan transaction DB once
 - remove infrequent items
 - Item h in transaction 40 is dropped
 - Itemsets a and f are good

TID	Transaction
10	a, f, d, b, c
20	f, g, d, b, c
30	a, f, d, c, e
40	f, g, h, c, e

Item	Profit
а	40
f	30
g	20
d	10
b	0
h	-10
С	-20
е	-3 0 ̄ ⁹

Can Apriori Handle Convertible Constraint?

- A convertible, not monotone nor antimonotone nor succinct constraint cannot be pushed deep into the an Apriori mining algorithm
 - Within the level wise framework, no direct pruning based on the constraint can be made ltemset df violates constraint C: avg(X)>=25
 Since adf satisfies C, Apriori needs df to assemble adf, df cannot be pruned
- But it can be pushed into frequent-pattern growth framework!

Item	Value
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Mining With Convertible Constraints

- C: avg(X)>=25, min_sup=2
- List items in every transaction in value descending order R: <a, f, g, d, b, h, c, e>
 - C is convertible anti-monotone w.r.t. R
- · Scan TDB once
 - remove infrequent items
 - · Item h is dropped
 - Itemsets a and f are good, ...
- · Projection-based mining
 - Imposing an appropriate order on item projection
 - Many tough constraints can be converted into (anti)monotone

Item	Value
а	40
f	30
g	20
d	10
b	0
h	-10
С	-20
е	-30

TDB (min_sup=2)

TID	Transaction
10	a, f, d, b, c
20	f, g, d, b, c
30	a, f, d, c, e
40	f, g, h,&d, e

Handling Multiple Constraints

- Different constraints may require different or even conflicting item-ordering
- If there exists an order R s.t. both C_1 and C_2 are convertible w.r.t. R, then there is no conflict between the two convertible constraints
- If there exists conflict on order of items
 - Try to satisfy one constraint first
 - Then using the order for the other constraint to mine frequent itemsets in the corresponding projected database

Mining Association Rules in Large Databases

- Association rule mining
- Algorithms for scalable mining of (single-dimensional Boolean) association rules in transactional databases
- Mining various kinds of association/correlation rules
- Constraint-based association mining
- Sequential pattern mining
- · Applications/extensions of frequent pattern mining
- Summary

83

Sequence Databases and Sequential Pattern Analysis

- Transaction databases, time-series databases vs. sequence databases
- Frequent patterns vs. (frequent) sequential patterns
- · Applications of sequential pattern mining
 - Customer shopping sequences:
 - First buy computer, then CD-ROM, and then digital camera, within 3 months.
 - Medical treatment, natural disasters (e.g., earthquakes), science & engineering processes, stocks and markets, etc.
 - Telephone calling patterns, Weblog click streams
 - DNA sequences and gene structures

What Is Sequential Pattern Mining?

 Given a set of sequences, find the complete set of frequent subsequences

A <u>sequence</u>: < (ef) (ab) (df) c b >

A sequence database

SID	sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

An element may contain a set of items. Items within an element are unordered and we list them alphabetically._

<a(bc)dc> is a <u>subsequence</u> of <a(bc)dc> is a <u>subsequence</u>

Given <u>support threshold</u> min_sup =2, <(ab)c> is a <u>sequential pattern</u>

25

Challenges on Sequential Pattern Mining

- A huge number of possible sequential patterns are hidden in databases
- · A mining algorithm should
 - find the complete set of patterns, when possible, satisfying the minimum support (frequency) threshold
 - be highly efficient, scalable, involving only a small number of database scans
 - be able to incorporate various kinds of user-specific constraints

Studies on Sequential Pattern Mining

- Concept introduction and an initial Apriori-like algorithm
 - R.Agrawal & R. Srikant. "Mining sequential patterns," ICDE'95
- GSP—An Apriori-based, influential mining method (developed at IBM Almaden)
 - $^\circ\,$ R. Srikant & R. Agrawal. "Mining sequential patterns: Generalizations and performance improvements," EDBT'96
- From sequential patterns to episodes (Apriori-like + constraints)
 - H. Mannila, H. Toivonen & A.I. Verkamo. "Discovery of frequent episodes in event sequences," Data Mining and Knowledge Discovery, 1997
- Mining sequential patterns with constraints
 - M.N. Garofalakis, R. Rastogi, K. Shim: SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. VLDB 1999

87

A Basic Property of Sequential Patterns: Apriori

- A basic property: Apriori (Agrawal & Sirkant'94)
 - If a sequence S is not frequent
 - Then none of the super-sequences of S is frequent
 - E.g, <hb> is infrequent \rightarrow so do <hab> and <(ah)b>

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Given <u>support threshold</u> min_sup =2

GSP—A Generalized Sequential Pattern Mining Algorithm

- GSP (Generalized Sequential Pattern) mining algorithm
 - proposed by Agrawal and Srikant, EDBT'96
- Outline of the method
 - Initially, every item in DB is a candidate of length-I
 - o for each level (i.e., sequences of length-k) do
 - scan database to collect support count for each candidate sequence
 - generate candidate length-(k+1) sequences from length-k frequent sequences using Apriori
 - repeat until no frequent sequence or no candidate can be found
- Major strength: Candidate pruning by Apriori

89

Finding Length-I Sequential Patterns

- Examine GSP using an example
- Initial candidates: all singleton sequences

<a>, , <c>, <d>, <e>, <f>, <g>,
 <h>

Scan database once, count support fo candidates
 min sup = 2

	Cand	Sup
	<a>	3
	 b>	5
r	^	4
	%	3
	<e></e>	3
	∜	2
	XX	1
	₹	1

·····- <u>-</u>			
Seq. ID	Sequence		
10	<(bd)cb(ac)>		
20	<(bf)(ce)b(fg)>		
30	<(ah)(bf)abf>		
40	<(be)(ce)d>		
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>		
			

Generating Length-2 Candidates

51 length-2 Candidates

	<a>		<c></c>	<d>></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d>></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a>	· <)>	<c></c>	<d></d>	<e></e>	<f></f>
<a>		<(a	b)>	<(ac)>	<(ad):	> <(ae)	> <(af)>
				<(bc)>	<(bd)>	> <(be)	> <(bf)>
<c></c>					<(cd):	<(ce):	> <(cf)>
<d>></d>						<(de)	> <(df)>
<e></e>			•				<(ef)>
<f></f>							
	0000			•	•		

Without Apriori property, 8*8+8*7/2=92 candidates

Apriori prunes 44.57% candidates

Generating Length-3 Candidates and Finding Length-3 Patterns

- Generate Length-3 Candidates
 - Self-join length-2 sequential patterns
 - Based on the Apriori property
 - <ab>, <aa> and <ba> are all length-2 sequential patterns → <aba> is a length-3 candidate
 - (bd)>, <bb> and <db> are all length-2 sequential patterns → <(bd)b> is a length-3 candidate
 - 46 candidates are generated
- Find Length-3 Sequential Patterns
 - Scan database once more, collect support counts for candidates
 - 19 out of 46 candidates pass support threshold

The GSP Mining Process

Bottlenecks of GSP

- · A huge set of candidates could be generated
 - I,000 frequent length-I sequences generate

$$1000 \times 1000 + \frac{1000 \times 999}{2} = 1,499,500$$
 length-2 candidates!

- · Multiple scans of database in mining
- Real challenge: mining long sequential patterns
 - An exponential number of short candidates
 - A length-100 sequential pattern needs 10³⁰ candidate sequence $s_{i=1}^{\infty}$ $\binom{100}{i} = 2^{100} - 1 \approx 10^{30}$

FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining

- A divide-and-conquer approach
 - Recursively *project* a sequence database into a set of smaller databases based on the current set of frequent patterns
 - Mine each projected database to find its patterns
- J. Han J. Pei, B. Mortazavi-Asi, Q. Chen, U. Dayal, M.C. Hsu, FreeSpan: Frequent
 pattern-projected sequential pattern mining. In KDD'00.

Sequence Database SDB

- < (bd) c b (ac) >
- < (bf) (ce) b (fg) >
- < (ah) (bf) a b f >
- < (be) (ce) d >
- < a (bd) b c b (ade) >

f_list: b:5, c:4, a:3, d:3, e:3, f:2

All seq. pat. can be divided into 6 subsets:

- •Seq. pat. containing item f
- •Those containing *e* but no *f*
- •Those containing *d* but no *e* nor *f*
- •Those containing a but no d, e or f
- •Those containing c but no a, d, e or f
- •Those containing only item b

97

From FreeSpan to PrefixSpan: Why?

- Freespan:
 - Projection-based: No candidate sequence needs to be generated
 - But, projection can be performed at any point in the sequence, and the projected sequences do will not shrink much
- PrefixSpan
 - Projection-based
 - But only prefix-based projection: less projections and quickly shrinking sequences

Prefix and Suffix (Projection)

- <a>, <aa>, <a(ab)> and <a(abc)> are <u>prefixes</u> of sequence <a(abc)(ac)d(cf)>
- Given sequence <a(abc)(ac)d(cf)>

Prefix	Suffix (Prefix-Based Projection)
<a>	<(abc)(ac)d(cf)>
<aa></aa>	<(_bc)(ac)d(cf)>
<ab></ab>	<(_c)(ac)d(cf)>

99

Mining Sequential Patterns by Prefix Projections

- Step I: find length-I sequential patterns
 - 。 <a>, , <c>, <d>, <e>, <f>
- Step 2: divide search space. The complete set of seq. pat. can be partitioned into 6 subsets:
 - The ones having prefix <a>;
 - The ones having prefix ;
 - 0
 - The ones having prefix <f>

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

Finding Seq. Patterns with Prefix <a>

- Only need to consider projections w.r.t. <a>
- Find all the length-2 seq. pat. Having prefix <a>: <aa>,<ab>, <(ab)>, <ac>, <ad>, <af>
 - Further partition into 6 subsets
 - Having prefix <aa>;
 - •
 - · Having prefix <af>

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

Efficiency of PrefixSpan

- No candidate sequence needs to be generated
- Projected databases keep shrinking
- Major cost of PrefixSpan: constructing projected databases
 - · Can be improved by bi-level projections

103

Optimization Techniques in PrefixSpan

- Physical projection vs. pseudo-projection
 - Pseudo-projection may reduce the effort of projection when the projected database fits in main memory
- Parallel projection vs. partition projection
 - Partition projection may avoid the blowup of disk space

Speed-up by Pseudo-projection

- Major cost of PrefixSpan: projection
 - Postfixes of sequences often appear repeatedly in recursive projected databases
- When (projected) database can be held in main memory, use pointers to form projections

```
• Pointer to the sequence s=<a(abc)(ac)d(cf)>
• Offset of the postfix \downarrow <a>
s|<a>: (, 2) <(abc)(ac)d(cf)>
\downarrow <ab>
s|<ab>: (, 4) <(\_c)(ac)d(cf)>
```

105

Pseudo-Projection vs. Physical Projection

- Pseudo-projection avoids physically copying postfixes
 - Efficient in running time and space when database can be held in main memory
- However, it is not efficient when database cannot fit in main memory
 - Disk-based random accessing is very costly
- Suggested Approach:
 - Integration of physical and pseudo-projection
 - Swapping to pseudo-projection when the data set fits in memory

Mining Association Rules in Large Databases

- Association rule mining
- Algorithms for scalable mining of (single-dimensional Boolean) association rules in transactional databases
- · Mining various kinds of association/correlation rules
- · Constraint-based association mining
- · Sequential pattern mining
- · Applications/extensions of frequent pattern mining
- Summary

109

Associative Classification

- Mine association possible rules (PR) in form of condset → c
 - Condset: a set of attribute-value pairs
 - C: class label
- Build Classifier
 - Organize rules according to decreasing precedence based on confidence and support
- B. Liu, W. Hsu & Y. Ma. Integrating classification and association rule mining. In KDD'98

Spatial and Multi-Media Association: A Progressive Refinement Method

- Why progressive refinement?
 - Mining operator can be expensive or cheap, fine or rough
 - Trade speed with quality: step-by-step refinement.
- Superset coverage property:
 - Preserve all the positive answers—allow a positive false test but not a false negative test.
- Two- or multi-step mining:
 - First apply rough/cheap operator (superset coverage)
 - Then apply expensive algorithm on a substantially reduced candidate set (Koperski & Han, SSD'95).

114

Progressive Refinement Mining of Spatial Associations

- Hierarchy of spatial relationship:
 - "g_close_to": near_by, touch, intersect, contain, etc.
 - First search for rough relationship and then refine it.
- Two-step mining of spatial association:
 - Step 1: rough spatial computation (as a filter)
 - Using MBR or R-tree for rough estimation.
 - Step2: Detailed spatial algorithm (as refinement)
 - Apply only to those objects which have passed the rough spatial association test (no less than min_support)

Mining Multimedia Associations

Correlations with color, spatial relationships, etc. From coarse to Fine Resolution mining

116

Further Evolution of PrefixSpan

- Closed- and max- sequential patterns
 - Finding only the most meaningful (longest) sequential patterns
- Constraint-based sequential pattern growth
 - Adding user-specific constraints
- From sequential patterns to structured patterns
 - Beyond sequential patterns, mining structured patterns in XML documents

Closed- and Max- Sequential Patterns

- A closed- sequential pattern is a frequent sequence s where there is no proper super-sequence of s sharing the same support count with s
- A max- sequential pattern is a sequential pattern p s.t.
 any proper super-pattern of p is not frequent
- Benefit of the notion of closed sequential patterns
 - $\{ \{a_1 \ a_2 \ \dots \ a_{50} \}, \{a_1 \ a_2 \ \dots \ a_{100} \} \}, \text{ with min_sup } = I \}$
 - There are 2¹⁰⁰ sequential patterns, but only 2 are closed
- Similar benefits for the notion of max- sequentialpatterns

118

Methods for Mining Closed- and Max-Sequential Patterns

- PrefixSpan or FreeSpan can be viewed as projectionguided depth-first search
- For mining max- sequential patterns, any sequence which does not contain anything beyond the already discovered ones will be removed from the projected DB
 - $\{ \{a_1 \ a_2 \ \dots \ a_{50} \}, \{a_1 \ a_2 \ \dots \ a_{100} \} \}, \text{ with min_sup} = 1 \}$
 - $^\circ$ If we have found a max-sequential pattern <a_1 a_2 ... a_{100}>, nothing will be projected in any projected DB
- Similar ideas can be applied for mining closedsequential-patterns

Constraint-Based Sequential Pattern Mining

- Constraint-based sequential pattern mining
 - · Constraints: User-specified, for focused mining of desired patterns
 - How to explore efficient mining with constraints? Optimization
- Classification of constraints
 - Anti-monotone: E.g., value_sum(S) < 150, min(S) > 10
 - Monotone: E.g., count (S) > 5, S $\supseteq \{PC, digital_camera\}$
 - Succinct: E.g., length(S) \geq 10, S \prod {Pentium, MS/Office, MS/Money}
 - Convertible: E.g., value_avg(S) < 25, profit_sum (S) > 160, max(S)/avg(S) < 2, median(S) - min(S) > 5
 - Inconvertible: E.g., avg(S) median(S) = 0

120

Sequential Pattern Growth for Constraint-Based Mining

- Efficient mining with convertible constraints
 - Not solvable by candidate generation-and-test methodology
 - Easily push-able into the sequential pattern growth framework
- Example: push avg(S) < 25 in frequent pattern growth
 - project items in value (price/profit depending on mining semantics) ascending/descending order for sequential pattern growth
 - · Grow each pattern by sequential pattern growth
 - If avg(current_pattern) O 25, toss the current_pattern
 - · Why?—future growths always make it bigger
 - But why not candidate generation?—no structure or ordering in growth

From Sequential Patterns to Structured Patterns

- · Sets, sequences, trees and other structures
 - Transaction DB: Sets of items
 - {{i₁, i₂, ..., i_m}, ...}
 - Seq. DB: Sequences of sets:
 - { $\{(i_1, i_2), ..., (i_m, i_n, i_k) >, ...\}$
 - Sets of Sequences:
 - $\bullet \ \ \{ \{ < i_1, i_2 >, \, ..., < i_m, i_n, i_k > \}, \, ... \}$
 - Sets of trees (each element being a tree):
 - $\{t_1, t_2, ..., t_n\}$
- · Applications: Mining structured patterns in XML documents

122

Mining Association Rules in Large Databases

- · Association rule mining
- Algorithms for scalable mining of (single-dimensional Boolean) association rules in transactional databases
- · Mining various kinds of association/correlation rules
- · Constraint-based association mining
- Sequential pattern mining
- Applications/extensions of frequent pattern mining
- Summary

Frequent-Pattern Mining: Achievements

- Frequent pattern mining—an important task in data mining
- Frequent pattern mining methodology
 - Candidate generation & test vs. projection-based (frequent-pattern growth)
 - Vertical vs. horizontal format
 - Various optimization methods: database partition, scan reduction, hash tree, sampling, border computation, clustering, etc.
- Related frequent-pattern mining algorithm: scope extension
 - Mining closed frequent itemsets and max-patterns (e.g., MaxMiner, CLOSET, CHARM, etc.)
 - Mining multi-level, multi-dimensional frequent patterns with flexible support constraints
 - Constraint pushing for mining optimization
 - From frequent patterns to correlation and causality

124

Frequent-Pattern Mining: Applications

- Related problems which need frequent pattern mining
 - Association-based classification
 - Iceberg cube computation
 - Database compression by fascicles and frequent patterns
 - Mining sequential patterns (GSP, PrefixSpan, SPADE, etc.)
 - Mining partial periodicity, cyclic associations, etc.
 - Mining frequent structures, trends, etc.
- Typical application examples
 - Market-basket analysis, Weblog analysis, DNA mining, etc.

Frequent-Pattern Mining: Research Problems

- Multi-dimensional gradient analysis: patterns regarding changes and differences
 - Not just counts—other measures, e.g., avg(profit)
- Mining top-k frequent patterns without support constraint
- Mining fault-tolerant associations
 - "3 out of 4 courses excellent" leads to A in data mining
- Fascicles and database compression by frequent pattern mining
- Partial periodic patterns
- DNA sequence analysis and pattern classification

126

References: Frequent-pattern Mining Methods

- R.Agarwal, C.Aggarwal, and V.V.V. Prasad. A tree projection algorithm for generation of frequent itemsets. Journal of Parallel and Distributed Computing, 2000.
- R.Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93, 207-216, Washington, D.C.
- R.Agrawal and R. Srikant. Fast algorithms for mining association rules.
 VLDB'94 487-499, Santiago, Chile.
- J. Han, J. Pei, and Y.Yin: "Mining frequent patterns without candidate generation". In Proc. ACM-SIGMOD'2000, pp. 1-12, Dallas, TX, May 2000.
- H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. KDD'94, 181-192, Seattle, WA, July 1994.

References: Frequent-pattern Mining Methods

- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95, 432-443, Zurich, Switzerland.
- C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal structures. VLDB'98, 594-605, New York, NY.
- R. Srikant and R. Agrawal. Mining generalized association rules. VLDB'95, 407-419, Zurich, Switzerland, Sept. 1995.
- R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. SIGMOD'96, I-I2, Montreal, Canada.
- H.Toivonen. Sampling large databases for association rules. VLDB'96, 134-145, Bombay, India, Sept. 1996.
- M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association rules. KDD'97. August 1997.

128

References: Frequent-pattern Mining (Performance Improvements)

- S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. SIGMOD'97, Tucson, Arizona, May 1997.
- D.W. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance of discovered association rules in large databases: An incremental updating technique. ICDE'96, New Orleans, LA.
- T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization. SIGMOD'96, Montreal, Canada.
- E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. SIGMOD'97, Tucson, Arizona.
- J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95, San Jose, CA, May 1995.

References: Frequent-pattern Mining (Performance Improvements)

- G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In G.
 Piatetsky-Shapiro and W. J. Frawley, Knowledge Discovery in Databases, AAAI/MIT Press 1991
- J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95, San Jose, CA.
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98, Seattle, WA.
- K.Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Computing optimized rectilinear regions for association rules. KDD'97, Newport Beach, CA, Aug. 1997.
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithm for discovery of association rules. Data Mining and Knowledge Discovery, 1:343-374, 1997.

130

References: Frequent-pattern Mining (Multi-level, correlation, ratio rules, etc.)

- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97, 265-276, Tucson, Arizona.
- J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. VLDB'95, 420-431, Zurich, Switzerland.
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.I. Verkamo. Finding interesting rules from large sets
 of discovered association rules. CIKM'94, 401-408, Gaithersburg, Maryland.
- F. Korn, A. Labrinidis, Y. Kotidis, and C. Faloutsos. Ratio rules: A new paradigm for fast, quantifiable data mining. VLDB'98, 582-593, New York, NY
- B. Lent, A. Swami, and J. Widom. Clustering association rules. ICDE'97, 220-231, Birmingham, England.
- R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules. VLDB'96, 122-133, Bombay, India.
- R.J. Miller and Y.Yang. Association rules over interval data. SIGMOD'97, 452-461, Tucson, Arizona.
- A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associations in a large database of customer transactions. ICDE'98, 494-502, Orlando, FL, Feb. 1998.
- D.Tsur, J. D. Ullman, S.Abitboul, C. Clifton, R. Motwani, and S. Nestorov. Query flocks: A generalization of association-rule mining. SIGMOD'98, 1-12, Seattle, Washington.
- J. Pei, A.K.H. Tung, J. Han. Fault-Tolerant Frequent Pattern Mining: Problems and Challenges. SIGMOD DMKD'01, Santa Barbara, CA.

References: Mining Max-patterns and Closed itemsets

- R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98, 85-93, Seattle, Washington.
- J. Pei, J. Han, and R. Mao, "CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets", Proc. 2000 ACM-SIGMOD Int. Workshop on Data Mining and Knowledge Discovery (DMKD'00), Dallas, TX, May 2000.
- N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. ICDT'99, 398-416, Jerusalem, Israel, Jan. 1999.
- M. Zaki. Generating Non-Redundant Association Rules. KDD'00. Boston, MA. Aug. 2000
- M. Zaki. CHARM: An Efficient Algorithm for Closed Association Rule Mining, SIAM'02

132

References: Constraint-base Frequent-pattern Mining

- G. Grahne, L. Lakshmanan, and X.Wang. Efficient mining of constrained correlated sets. ICDE'00, 512-521, San Diego, CA, Feb. 2000.
- Y. Fu and J. Han. Meta-rule-guided mining of association rules in relational databases. KDOOD'95, 39-46, Singapore, Dec. 1995.
- J. Han, L.V. S. Lakshmanan, and R.T. Ng, "Constraint-Based, Multidimensional Data Mining", COMPUTER (special issues on Data Mining), 32(8): 46-50, 1999.
- L.V.S. Lakshmanan, R. Ng, J. Han and A. Pang, "Optimization of Constrained Frequent Set Queries with 2-Variable Constraints", SIGMOD'99
- R. Ng, L.V.S. Lakshmanan, J. Han & A. Pang, "Exploratory mining and pruning optimizations of constrained association rules." SIGMOD'98
- J. Pei, J. Han, and L.V. S. Lakshmanan, "Mining Frequent Itemsets with Convertible Constraints", Proc. 2001 Int. Conf. on Data Engineering (ICDE'01), April 2001.
- J. Pei and J. Han "Can We Push More Constraints into Frequent Pattern Mining?", Proc. 2000 Int. Conf. on Knowledge Discovery and Data Mining (KDD'00), Boston, MA, August 2000.
- R. Srikant, Q.Vu, and R. Agrawal. Mining association rules with item constraints. KDD'97, 67-73, Newport Beach,
 California

References: Sequential Pattern Mining Methods

- R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95, 3-14,
 Taipei, Taiwan.
- R. Srikant and R. Agrawal. Mining sequential patterns:
 Generalizations and performance improvements. EDBT'96.
- J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.-C. Hsu, "FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining", Proc. 2000 Int. Conf. on Knowledge Discovery and Data Mining (KDD'00), Boston, MA, August 2000.
- H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1:259-289, 1997.

134

References: Sequential Pattern Mining Methods

- J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu, "PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth", Proc. 2001 Int. Conf. on Data Engineering (ICDE'01), Heidelberg, Germany, April 2001.
- B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. ICDE'98, 412-421, Orlando, FL.
- S. Ramaswamy, S. Mahajan, and A. Silberschatz. On the discovery of interesting patterns in association rules. VLDB'98, 368-379, New York, NY.
- M.J. Zaki. Efficient enumeration of frequent sequences. CIKM'98.
 Novermber 1998.
- M.N. Garofalakis, R. Rastogi, K. Shim: SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. VLDB 1999: 223-234, Edinburgh, Scotland.

References: Frequent-pattern Mining in Spatial, Multimedia, Text & Web Databases

- K. Koperski, J. Han, and G. B. Marchisio, "Mining Spatial and Image Data through Progressive Refinement Methods", Revue internationale de gomatique (European Journal of GIS and Spatial Analysis), 9(4):425-440, 1999.
- A. K. H. Tung, H. Lu, J. Han, and L. Feng, "Breaking the Barrier of Transactions: Mining Inter-Transaction Association Rules", Proc. 1999 Int. Conf. on Knowledge Discovery and Data Mining (KDD'99), San Diego, CA, Aug. 1999, pp. 297, 201.
- J. Han, G. Dong and Y.Yin, "Efficient Mining of Partial Periodic Patterns in Time Series Database", Proc. 1999 Int.
 Conf. on Data Engineering (ICDE'99), Sydney, Australia, March 1999, pp. 106-115
- H. Lu, L. Feng, and J. Han, "Beyond Intra-Transaction Association Analysis: Mining Multi-Dimensional Inter-Transaction Association Rules", ACM Transactions on Information Systems (TOIS'00), 18(4): 423-454, 2000.
- O. R. Zaiane, M. Xin, J. Han, "Discovering Web Access Patterns and Trends by Applying OLAP and Data Mining Technology on Web Logs," Proc. Advances in Digital Librar ies Conf. (ADL'98), Santa Barbara, CA, April 1998, pp. 19-29
- O. R. Zaiane, J. Han, and H. Zhu, "Mining Recurrent Items in Multimedia with Progressive Resolution Refinement", ICDE'00, San Diego, CA, Feb. 2000, pp. 461-470

136

References: Frequent-pattern Mining for Classification and Data Cube Computation

- K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. SIGMOD'99, 359-370, Philadelphia, PA, June 1999.
- M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing iceberg queries efficiently. VLDB'98, 299-310, New York, NY, Aug. 1998.
- J. Han, J. Pei, G. Dong, and K. Wang, "Computing Iceberg Data Cubes with Complex Measures", Proc. ACM-SIGMOD'2001, Santa Barbara, CA, May 2001.
- M. Kamber, J. Han, and J.Y. Chiang. Metarule-guided mining of multi-dimensional association rules using data cubes. KDD'97, 207-210, Newport Beach, California.
- K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes.
 SIGMOD'99
- T. Imielinski, L. Khachiyan, and A. Abdulghani. Cubegrades: Generalizing association rules. Technical Report, Aug. 2000