Devoir à la maison n° 13 : corrigé

SOLUTION 1.

1. a. On a évidemment $[(1-X)+X]^{2n-1}=1$. En développant le membre de gauche à l'aide de la formule du binôme de Newton, on obtient

$$\sum_{k=0}^{2n-1} {2n-1 \choose k} X^k (1-X)^{2n-1-k} = 1$$

En séparant la somme en deux parties, on a également

$$\sum_{k=0}^{n-1} \binom{2n-1}{k} X^k (1-X)^{2n-1-k} + \sum_{k=n}^{2n-1} \binom{2n-1}{k} X^k (1-X)^{2n-1-k} = 1$$

ou encore

$$(1-X)^n \sum_{k=0}^{n-1} \binom{2n-1}{k} X^k (1-X)^{n-1-k} + X^n \sum_{k=n}^{2n-1} \binom{2n-1}{k} X^{k-n} (1-X)^{2n-1-k} = 1$$

Il suffit donc de poser

$$F_n = \sum_{k=0}^{n-1} \binom{2n-1}{k} X^k (1-X)^{n-1-k} \qquad \qquad G_n = \sum_{k=n}^{2n-1} \binom{2n-1}{k} X^{k-n} (1-X)^{2n-1-k}$$

 F_n et G_n ainsi définis sont des combinaisons linéaires de polynômes de $\mathbb{R}_{n-1}[X]$ donc des polynômes de $\mathbb{R}_{n-1}[X]$.

b. Soit (F,G) un couple de polynômes de $\mathbb{R}_{n-1}[X]$ vérifiant

$$(1-X)^nF + X^nG = 1$$

Alors

$$(1-X)^{n}(F-F_{n})+X^{n}(G-G_{n})=0$$

Ainsi X^n divise $F-F_n$. Or $\deg(F-F_n)\leqslant n-1$ donc $F=F_n$. De même, $(1-X)^n$ divise $G-G_n$ mais $\deg(G-G_n)\leqslant n-1$ donc $G=G_n$.

2. a. En substituant 1-X à X dans l'égalité $(1-X)^n F_n(X) + X^n G_n(X) = 1$, on obtient

$$(1-X)^n G_n(1-X) + X^n F_n(1-X) = 1$$

Mais l'unicité des polynômes F_n et G_n prouvée à la question **1.b** montre que $F_n(1-X) = G_n(X)$ et que $G_n(1-X) = F_n(X)$.

b. En évaluant l'égalité $(1-X)^n F_n(X) + X^n G_n(X) = 1$ en 0, on obtient $F_n(0) = 1$. En évaluant cette même égalité en $\frac{1}{2}$, on obtient

$$\frac{1}{2^n} F_n\left(\frac{1}{2}\right) + \frac{1}{2^n} G_n\left(\frac{1}{2}\right) = 1$$

Or $G_n\left(\frac{1}{2}\right) = F_n\left(1 - \frac{1}{2}\right) = F_n\left(\frac{1}{2}\right)$ d'après la question **2.a**. Ainsi $F_n\left(\frac{1}{2}\right) = 2^{n-1}$. Enfin, on a prouvé à la question **1.a** que

$$F_n = \sum_{k=0}^{n-1} {k \choose 2n-1} X^k (1-X)^{n-1-k}$$

Ainsi $F_n(1) = \binom{2n-1}{n-1} = \binom{2n-1}{n}$.

3. a. Pour $x \neq 1$,

$$F_{n}(x) = \frac{1}{(1-x)^{n}} - \frac{x^{n}G_{n}(x)}{(1-x)^{n}} = \frac{1}{(1-x)^{n}} - x^{n-1} \frac{xG_{n}(x)}{(1-x)^{n}}$$

Or $\lim_{x\to 0} \frac{xG_n(x)}{(1-x)^n} = 0$ car G_n est continue en 0. Il s'ensuit donc que

$$F_n(x) = (1-x)^{-n} + o(x^{n-1})$$

b. Le développement limité de $x \mapsto (1+x)^{\alpha}$ en 0 est usuel.

$$(1-x)^{-n} = \sum_{k=0}^{n-1} \frac{\prod_{j=0}^{k-1} (-n-j)}{k!} (-x)^k + o(x^{n-1})$$

$$= \sum_{k=0}^{n-1} \frac{(-1)^k \prod_{j=0}^{k-1} (n+j)}{k!} (-x)^k + o(x^{n-1})$$

$$= \sum_{k=0}^{n-1} \frac{\prod_{j=0}^{k-1} (n+j)}{k!} x^k + o(x^{n-1})$$

$$= \sum_{k=0}^{n-1} \frac{(n+k-1)!}{k!(n-1)!} x^k + o(x^{n-1})$$

$$= \sum_{k=0}^{n-1} \frac{(n+k-1)!}{k!(n-1)!} x^k + o(x^{n-1})$$

Puisque deg $F_n \leq n-1$, on a par unicité du développement limité, on a pour x au voisinage de 0

$$F_n(x) = \sum_{k=0}^{n-1} \binom{n+k-1}{k} x^k$$

Comme tout voisinage de 0 est infini

$$F_n = \sum_{k=0}^{n-1} \binom{n+k-1}{k} X^k$$

4. a. Première méthode : En dérivant la relation $(1-X)^n + X^n G_n = 1$, on obtient

$$-n(1-X)^{n-1}F_n + (1-X)^nF_n' + nX^{n-1}G_n + X^nG_n' = 0$$

ou encore

$$(1-X)^{n-1} (nF_n - (1-X)F'_n) = X^{n-1} (nG_n + F'_n)$$

Comme X^{n-1} et $(1-X)^{n-1}$ sont premiers entre eux, X^{n-1} divise $\mathfrak{nF}_{\mathfrak{n}}-(1-X)F'_{\mathfrak{n}}.$ De plus,

$$\deg(nF_n - (1 - X)F'_n \leqslant n - 1$$

donc il existe $k \in \mathbb{R}$ tel que $nF_n - (1-X)F_n' = kX^{n-1}$. En évaluant cette égalité en 1, on obtient $k = nF_n(1) = n\binom{2n-1}{n}$.

Seconde méthode : D'après 3.b, $F_n = \sum_{k=0}^{n-1} {n+k-1 \choose k} X^k$. Ainsi

$$\begin{split} nF_n - (1-X)F_n' &= n\sum_{k=0}^{n-1} \binom{n+k-1}{k} X^k - (1-X)\sum_{k=1}^{n-1} k \binom{n+k-1}{k} X^{k-1} \\ &= n+\sum_{k=1}^{n-1} \binom{n+k-1}{k} X^k - \sum_{k=1}^{n-1} k \binom{n+k-1}{k} X^{k-1} + \sum_{k=1}^{n-1} k \binom{n+k-1}{k} X^k \\ &= n+\sum_{k=1}^{n-1} (n+k) \binom{n+k-1}{k} X^k - \sum_{k=1}^{n-1} k \binom{n+k-1}{k} X^{k-1} \\ &= n+\sum_{k=1}^{n-1} (k+1) \binom{n+k}{k+1} X^k - \sum_{k=0}^{n-2} (k+1) \binom{n+k}{k+1} X^k \\ &= \sum_{k=0}^{n-1} (k+1) \binom{n+k}{k+1} X^k - \sum_{k=0}^{n-2} (k+1) \binom{n+k}{k+1} X^k \\ &= n\binom{2n-1}{n} X^{n-1} \end{split}$$

b. La résolution est évidente : les solutions sur] $-\infty$, 1[sont les fonctions $x \mapsto \frac{\lambda}{(1-x)^n}$ avec $\lambda \in \mathbb{R}$.

- c. Remarquons que si un tel polynôme H_n existe alors $\deg H_n = 2n-1$. Notons E l'ensemble des polynômes de $\mathbb{R}_{2n-1}[X]$ s'annulant en 0. E est un sous-espace vectoriel de $\mathbb{R}_{2n-1}[X]$ de dimension 2n-1 puisque c'est, par exemple, le noyau de la forme linéaire non nulle $P \in \mathbb{R}_{2n-1}[X] \mapsto P(0)$. L'application $D : \begin{cases} E \longrightarrow \mathbb{R}_{2n-2}[X] \\ P \longmapsto P' \end{cases}$ est bien définie puisque pour tout $P \in \mathbb{R}[X]$, $\deg P' \leqslant \deg P-1$. C'est clairement une application linéaire. D est injective puisque si $P \in \operatorname{Ker} D$, P' = 0 i.e. P est constant et P(0) = 0 donc P est nul. Puisque dim $E = \dim \mathbb{R}_{2n-2}[X] = 2n-1$, P est bijective. Le polynôme P est constant et P(0) = 0 donc P est nul. Puisque dim P un unique antécédent par P dans P dans P d'existence et l'unicité de P est constant et P est constant et P est constant et P est constant et P est nul. Puisque dim P est P est constant et P est exemple et P est constant et P est est et P est est exemple et P est e
- **d.** Remarquons que F_n (ou plutôt la fonction polynomiale qui lui est associée) est solution de (\mathcal{E}) : $ny (1-x)y' = n\binom{2n-1}{n}x^{n-1}$ sur \mathbb{R} et a fortiori sur $]-\infty,1[$. On applique la méthode de variation de la constante. On cherche une solution de (\mathcal{E}) sous la forme $x\mapsto \frac{\lambda(x)}{(1-x)^n}$. Une telle fonction est solution si et seulement si $-\frac{\lambda'(x)(1-x)}{(1-x)^n}=n\binom{2n-1}{n}x^{n-1}$ pour tout $x\in]-\infty,1[$ i.e. si et seulement si $\lambda'(x)=-n\binom{2n-1}{n}x^{n-1}(1-x)^{n-1}$ pour tout $x\in]-\infty,1[$. Il suffit par exemple de choisir $\lambda(x)=-n\binom{2n-1}{n}H_n(x)$ pour $x\in]-\infty,1[$. Les solutions de (\mathcal{E}) sur $]-\infty,1[$ sont donc les fonctions $x\mapsto \frac{\lambda-n\binom{2n-1}{n}H_n(x)}{(1-x)^n}$ avec $\lambda\in\mathbb{R}$. Il existe donc $\lambda\in\mathbb{R}$ tel que

$$\forall x \in]-\infty, 1[, F_n(x) = \frac{\lambda - n\binom{2n-1}{n}H_n(x)}{(1-x)^n}$$

Or $F_n(0) = 1$ et $H_n(0) = 0$ donc $\lambda = 1$. Ainsi

$$\forall x \in]-\infty, 1[, F_n(x) = \frac{1 - n\binom{2n-1}{n}H_n(x)}{(1-x)^n}$$

e. La relation obtenue à la question précédente peut encore s'écrire :

$$\forall x \in]-\infty, 1[, (1-x)^n F_n(x) = 1 - n \binom{2n-1}{n} H_n(x)$$

Les polynômes $(1-X)^n F_n$ et $1-n{2n-1 \choose n} H_n$ coïncident donc sur l'ensemble infini $]-\infty,1[$, ils sont donc égaux.

- **5. a.** Puisque $(1-X)^n F_n = 1 n \binom{2n-1}{n} H_n$, on obtient $H_n(1) = \frac{1}{n \binom{2n-1}{n-1}}$.
 - **b.** Rappelons que pour tout $x \in \mathbb{R}$, $H'_n(x) = x^{n-1}(1-x)^{n-1}$.
 - ▶ Si n est impair, H_n' est positive sur $\mathbb R$ et ne s'annule qu'en 0 et 1. H_n est donc strictement croissante sur $\mathbb R$. De plus, deg $H_n = 2n 1 \geqslant 1$ donc les limites de H_n en $-\infty$ et $+\infty$ sont infinies. Les variations de H_n imposent $\lim_{-\infty} H_n = -\infty$ et $\lim_{+\infty} H_n = +\infty$.
 - ▶ Si n est pair, H'_n est négative sur $]-\infty,0]$, positive sur [0,1], négative sur $[1,+\infty[$ et ne s'annule qu'en 0 et 1. Ainsi H_n est strictement décroissante sur $]-\infty,0]$, strictement croissante sur [0,1] et strictement décroissante sur $[1,+\infty[$. Pour les mêmes raisons que précédemment, les limites de H_n en $-\infty$ et $+\infty$ sont infinies et les variations de H_n imposent $\lim_{-\infty} H_n = +\infty$ et $\lim_{+\infty} H_n = -\infty$.
 - c. Puisque $(1-X)^n F_n = 1-n \binom{2n-1}{n} H_n$ et que $F_n(1) \neq 0$, les racines réelles de F_n sont exactement les antécédents distincts de 1 de $\frac{1}{n \binom{2n-1}{n}}$ par H_n .
 - ▶ Si n est impair, les variations et la continuité de H_n montrent que $\frac{1}{n\binom{2n-1}{n}}$ admet un unique antécédent par H_n . Puisque $H_n(1) = \frac{1}{n\binom{2n-1}{n}}$, 1 est l'unique antécédent de $\frac{1}{n\binom{2n-1}{n}}$ par H_n . Mais celui-ci est à exclure puisque $F_n(1) \neq 0$. Ainsi F_n n'admet pas de racine réelle.
 - Si n est pair, les variations et la continuité de H_n montrent que $\frac{1}{n\binom{2n-1}{n}}$ admet un unique antécédent par H_n sur $]-\infty,0]$. Puisque $H_n(1)=\frac{1}{n\binom{2n-1}{n}}$, les variations de H_n montrent que le seul autre antécédent de $\frac{1}{n\binom{2n-1}{n}}$ par H_n est 1. Mais celui-ci est à exclure puisque $F_n(1)\neq 0$. Ainsi F_n admet une unique racine réelle et on peut même préciser que celle-ci est strictement négative.