Implicit Q Learning: Improvements on Antmaze

Reporter:

廖修誼 (111652017)

吳泓諺 (111652040)

王裕昕 (111550066)

Outline

- Part I (Introduction)
- Part II (Interesting findings)
- Part III (Tech. 1 Distribution model)
- Part IV (Tech. 2 D2RL)
- Part V (Tech. 3 Bounus Reward)
- Part VI (Conclusion)

Part I (Introduction)

IQL Setting

- Offline RL
- main insight: no need to evaluate OOD actions
- method: approx. an upper expectile of distribution
- Goal: minimizing the deviation from the behavior policy

IQL algorithm

Algorithm 1 Implicit Q-learning

Initialize parameters ψ , θ , $\hat{\theta}$, ϕ .

TD learning (IQL):

for each gradient step do

$$\psi \leftarrow \psi - \lambda_V \nabla_{\psi} L_V(\psi)$$

$$\theta \leftarrow \theta - \lambda_Q \nabla_{\theta} L_Q(\theta)$$

$$\hat{\theta} \leftarrow (1 - \alpha)\hat{\theta} + \alpha\theta$$

end for

Policy extraction (AWR):

for each gradient step do

$$\phi \leftarrow \phi - \lambda_{\pi} \nabla_{\phi} \bar{L}_{\pi}(\phi) \leftarrow$$

end for

$$\left[L_V(\psi) = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[L_2^{ au} \left(Q_{\hat{ heta}}(s,a) - V_{\psi}(s)
ight)
ight]$$

$$\left| L_{Q}(\theta) = \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\left(r(s,a) + \gamma V_{\psi}\left(s'\right) - Q_{\theta}(s,a) \right)^{2} \right] \right|$$

$$L_{\pi}(\phi) = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\exp \left(eta \left(Q_{\hat{ heta}}(s,a) - V_{\psi}(s)
ight) \right) \log \pi_{\phi}(a \mid s)
ight]$$

Result Reproduce (antmaze-v0)

umaze, $\tau = 0.9$

medium, $\tau = 0.9$

large, $\tau = 0.9$

large-diverse, $\tau = 0.9$

Experiment

Dataset	BC	10%BC	DT	AWAC	Onestep RL	TD3+BC	CQL	IQL (Ours)
halfcheetah-medium-v2	42.6	42.5	42.6	43.5	48.4	48.3	44.0	47.4
hopper-medium-v2	52.9	56.9	67.6	57.0	59.6	59.3	58.5	66.3
walker2d-medium-v2	75.3	75.0	74.0	72.4	81.8	83.7	72.5	78.3
halfcheetah-medium-replay-v2	36.6	40.6	36.6	40.5	38.1	44.6	45.5	44.2
hopper-medium-replay-v2	18.1	75.9	82.7	37.2	97.5	60.9	95.0	94.7
walker2d-medium-replay-v2	26.0	62.5	66.6	27.0	49.5	81.8	77.2	73.9
halfcheetah-medium-expert-v2	55.2	92.9	86.8	42.8	93.4	90.7	91.6	86.7
hopper-medium-expert-v2	52.5	110.9	107.6	55.8	103.3	98.0	105.4	91.5
walker2d-medium-expert-v2	107.5	109.0	108.1	74.5	113.0	110.1	108.8	109.6
locomotion-v2 total	466.7	666.2	672.6	450.7	684.6	677.4	698.5	692.4
antmaze-umaze-v0	54.6	62.8	59.2	56.7	64.3	78.6	74.0	87.5
antmaze-umaze-diverse-v0	45.6	50.2	53.0	49.3	60.7	71.4	84.0	62.2
antmaze-medium-play-v0	0.0	5.4	0.0	0.0	0.3	10.6	61.2	71.2
antmaze-medium-diverse-v0	0.0	9.8	0.0	0.7	0.0	3.0	53.7	70.0
antmaze-large-play-v0	0.0	0.0	0.0	0.0	0.0	0.2	15.8	39.6
antmaze-large-diverse-v0	0.0	6.0	0.0	1.0	0.0	0.0	14.9	47.5
antmaze-v0 total	100.2	134.2	112.2	107.7	125.3	163.8	303.6	378.0
total	566.9	800.4	784.8	558.4	809.9	841.2	1002.1	1070.4
kitchen-v0 total	154.5		-	_	_	_	144.6	159.8
adroit-v0 total	104.5	1-	-1	-	-	-	93.6	118.1
total+kitchen+adroit	825.9	-	=:	-	-	-	1240.3	1348.3
runtime	10m	10m	960m	20m	$\approx 20 \text{m}^*$	20m	80m	20m

Ref: (IQL) https://arxiv.org/abs/2110.06169

Part II (Interesting findings)

Rethink on the equation

value network:

$$\left|L_V(\psi) = \mathbb{E}_{(s,a) \sim \mathcal{D}}\left[L_2^{ au}\left(Q_{\hat{ heta}}(s,a) - V_{\psi}(s)
ight)
ight]
ight|$$

Q < V

Q network:

$$\left| L_{Q}(\theta) = \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\left(r(s,a) + \gamma V_{\psi}(s') - Q_{\theta}(s,a) \right)^{2} \right] \right|$$

 $Q \rightarrow r + \gamma * V$

Policy:

$$\left| L_{\pi}(\phi) = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\exp \left(\beta \left(Q_{\hat{\theta}}(s,a) - V_{\psi}(s) \right) \right) \log \pi_{\phi}(a \mid s) \right] \right|$$

What if there is no double Q in implementation

$$adv = q - v$$

Meaning of *T*

$$\left| L_2^{\tau}(u) = |\tau - 1(u < 0)| u^2 \right|$$

Lemma 2. For all s, τ_1 and τ_2 such that $\tau_1 < \tau_2$ we get

$$V_{\tau_1}(s) \le V_{\tau_2}(s).$$

expectile = 0.8

expectile = 0.9

Evolve from quantile regression loss

The Quantile Regression Loss

• Given that the derivative of $L(x; Z, \tau)$ is $F_Z(x) - \tau$, we can recover the QR loss by integration

Quantile regression (QR) loss:

$$L_{QR}(x;Z,\tau) = (\tau-1) \int_{-\infty}^{x} (z-x) dF_Z(z) + \tau \int_{x}^{\infty} (z-x) dF_Z(z)$$

(It is easy to verify that $\frac{d}{dx}L_{QR}(x;Z,\tau)=F_Z(x)-\tau$ by the Leibniz integral rule)

Alternative expression of QR loss: $\frac{d}{dx} \left(\int_{a(x)}^{b(x)} f(x,t) \, dt \right)$

$$\rho_{\tau}(y) := y(\tau - \mathbb{I}\{y < 0\})$$

$$= f(x, b(x)) \cdot \frac{d}{dx}b(x) - f(x, a(x)) \cdot \frac{d}{dx}a(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x}f(x, t) dt$$

$$L_{OR}(x; Z, \tau) = E_Z[\rho_{\tau}(Z - x)]$$

Value loss

$$\left|L_V(\psi) = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[L_2^{ au} \left(Q_{\hat{ heta}}(s,a) - V_{\psi}(s) \right)
ight]
ight|$$

$$L_2^{\tau}(u) = |\tau - \mathbb{1}(u < 0)|u^2.$$

Part III (Tech. 1 - Distribution model)

Motivation idea

improve performance with Distributionalizing IQL

Comparison : our method & quantile

implicit quantile network

$$\delta_t^{\tau,\tau'} = r_t + \gamma Z_{\tau'}(x_{t+1}, \pi_{\beta}(x_{t+1})) - Z_{\tau}(x_t, a_t).$$
 (2)

Then, the IQN loss function is given by

$$\mathcal{L}(x_t, a_t, r_t, x_{t+1}) = \frac{1}{N'} \sum_{i=1}^{N} \sum_{j=1}^{N'} \rho_{\tau_i}^{\kappa} \left(\delta_t^{\tau_i, \tau_j'} \right), \quad (3)$$

Distributional IQL

$$\left|L_V(\psi) = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[L_2^{ au} \left(Q_{\hat{ heta}}(s,a) - V_{\psi}(s)
ight)
ight]
ight|$$

$$\left| L_{Q}(\theta) = \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\left(r(s,a) + \gamma V_{\psi}\left(s'\right) - Q_{\theta}(s,a) \right)^{2} \right] \right|$$

mean_loss =
$$\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{T} \sum_{k=1}^{T} (q_{ij} - v_{ik})^2 \cdot |\tau - 1_{\{q_{ij} - v_{ik} < 0\}}| \cdot \operatorname{prob}_{ij} \cdot \operatorname{prob}_{ik}$$

Guess, benefit of our method: Two step policy improvement

$$\begin{split} L_{Q}(\theta) &= \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[(r(s,a) + \gamma V_{\psi}(s') - Q_{\theta}(s,a))^{2} \right] \\ \delta &= r + \gamma G_{\theta'} \left(\tau'; s', a' \right) - G_{\theta} \left(\tau; s, a \right). \\ \mathcal{L}_{\kappa}(\delta; \tau) &= \begin{cases} |\tau - \mathbb{1}(\delta < 0)| \cdot \delta^{2}/(2\kappa) & \text{if } |\delta| \leq \kappa \\ |\tau - \mathbb{1}(\delta < 0)| \cdot (|\delta| - \kappa/2) & \text{otherwise} \end{cases}. \end{split}$$

However, experiment result is ...

antmaze-medium-play-v0 - expectile 0.9

antmaze-large-play-v0, expectile 0.9

Part IV (Tech. 2 - D2RL)

Motivation idea

- The problem of choosing architecture designs has been largely ignored.
- Information loss when forwarding through layers.
- The effective rank of the feature matrix is low.
- Add skip connections from the input.

Ref: https://arxiv.org/pdf/2010.09163

Skip Connection

original:

nn.Linear(in dim, hidden dim)

nn.Linear(hidden_dim, hidden_dim)

nn.Linear(hidden_dim, out_dim)

with skip connections:

nn.Linear(in dim, hidden dim)

nn.Linear(in_dim + hidden_dim, hidden_dim)

nn.Linear(hidden_dim, out_dim)

Results — srank

$$srank_{\delta}(\Phi) = \min\{k : \frac{\sum_{i=1}^{k} \sigma_i(\Phi)}{\sum_{i=1}^{d} \sigma_i(\Phi)} \ge 1 - \delta\}$$

	antma	ze-large	halfcheetah-expert		
1M-steps	IQL	IQL+SC	IQL	IQL+SC	
Policy	227	232	226	232	
Q-network	223	231	225	233	

Results

- competitive performance similar to original IQL
- outperforms IQL on antmaze-large
- prevent the reduction of effective ranks

better convergence on antmaze-large

Part V (Tech. 3 - Bonus Reward)

Motivation idea

Offline Reinforcement Learning as Anti-Exploration

Shideh Rezaeifar*¹, Robert Dadashi*², Nino Vieillard^{2,3}, Léonard Hussenot^{2,4}, Olivier Bachem², Olivier Pietquin², and Matthieu Geist²

¹University of Geneva ²Google Research, Brain Team ³Univ. Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France ⁴Univ. Lille, CNRS, Inria Scool, UMR 9189 CRIStAL

(subtractive) Bounus Reward Property

Train Bounus Reward (CVAE)

Algorithm 1 CVAE training.

- 1: Initialize CVAE networks Φ and Ψ
- 2: for step i = 0 to N do
- 3: Sample a minibatch of k state-action pairs $\{(s_t, a_t), t = 1, ..., k\}$ from \mathcal{D}
- 4: Train Φ and Ψ using $\mathcal{L}_{\Phi,\Psi}$, see Eq. (5)

depends on complexity of replicating action

CVAE

Encoder

$$egin{aligned} & \downarrow & \mu, \sigma \ & z \sim \mathcal{N}(\mu, \sigma) \end{aligned}$$

Decoder

$$\begin{array}{c} s \rightarrow \\ z \rightarrow \end{array} \Psi \rightarrow \hat{a}$$

Loss

$$\min_{\Phi,\Psi} \|a - \hat{a}\|_2^2 + \mathrm{KL}(\mathcal{N}(\mu,\sigma),\mathcal{N}(0,I))$$

Bonus definition

$$b(s, \pi(s)) = \beta \|\Psi(\Phi(s, \pi(s))) - \pi(s)\|_2^2$$

Train Bounus Reward (RND)

Algorithm 1 CVAE training.

- 1: Initialize CVAE networks Φ and Ψ
- 2: for step i = 0 to N do
- 3: Sample a minibatch of k state-action pairs $\{(s_t, a_t), t = 1, ..., k\}$ from \mathcal{D}
- 4: Train Φ and Ψ using $\mathcal{L}_{\Phi,\Psi}$, see Eq. (5)

Apply Bounus Reward to IQL

Algorithm 1 Implicit Q-learning

Initialize parameters ψ , θ , $\hat{\theta}$, ϕ .

TD learning (IQL):

for each gradient step do

$$\psi \leftarrow \psi - \lambda_V \nabla_{\psi} L_V(\psi)^*$$

$$\theta \leftarrow \theta - \lambda_Q \nabla_{\theta} L_Q(\theta) -$$

$$\hat{\theta} \leftarrow (1 - \alpha)\hat{\theta} + \alpha\theta$$

end for

Policy extraction (AWR):

for each gradient step do

$$\phi \leftarrow \phi - \lambda_{\pi} \nabla_{\phi} L_{\pi}(\phi) \leftarrow$$

end for

$$L_V(\psi) = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[L_2^{\tau} \left(Q_{\theta}(s,a) - V_{\psi}(s) \right) \right]$$

$$L_V(\psi) = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[L_2^{ au} \left(\left(Q_{\hat{ heta}}(s,a) - b(s,a) \right) - V_{\psi}(s)
ight)
ight]$$

$$L_Q(heta) = \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\left(r(s,a) + \gamma V_{\overline{\psi}}\left(s'\right) - Q_{ heta}(s,a)
ight)^2
ight]$$

$$L_Q(\theta) = \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\mathbb{E}_{a' = \mu_{theta(s')}, \epsilon \sim N(0,\sigma I)} [\left. (r(s,a) + \gamma(Q_{\psi}\left(s',a' + \epsilon\right) - b\left(s',a'\right)) - Q_{\theta}(s,a)) \right.]^2 \right]$$

$$L_{\pi}(\phi) = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\exp \left(\beta \left(Q_{\theta}(s,a) - V_{\psi}(s) \right) \right) \log \pi_{\phi}(a \mid s) \right]$$

$$L_{\pi}(\phi) = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\exp \left(etaig(Q_{\hat{ heta}}(s,a) - b(s,a)
ight) - V_{\psi}(s)
ight) \log \pi_{\phi}(a \mid s)
ight]$$

Part VI (Conclusion)

Recall

- Part I (Introduction)
- Part II (interesting findings)
- Part III (Tech. 1 Distribution model): modify update formulas to distribution form
- Part IV (Tech. 2 D2RL): modify neural layers
- Part V (Tech. 3 bonus reward): modify reward

Thank you for your attention