

Attention Models: da motivação às variantes modernas

Intuição geométrica, formulação matemática e aplicações

Seu Nome

17 de agosto de 2025

Table of Contents

1 Motivação e Histórico

- ► Motivação e Histórico
- **▶** Transformers
- Modelos de Sequência
- Embeddings & Interpretações
- Arquiteturas & Variantes
- Treino & Hiperparâmetros
- Séries Temporais
- ► Language Models
- ▶ Vision Transformer
- Graph Attention
- ► MoE, Pruning, Distillation
- Diagnóstico & Limites
- Conclusões
- ► Backup (Opcional)
- 2/62 eferências Bibliográficas

Redes Neurais Recorrentes

1 Motivação e Histórico

Figura: Redes Neurais Recorrentes 1

- Bem adaptadas para dados sequenciais como séries temporais e texto
- Diferentes tipos de modelos: LSTM, GRU
- Diferentes arquiteturas: simples, bidirecional, encoder-decoder

¹Figura de Christopher Olah

Tipos de camadas RNN

1 Motivação e Histórico

LSTM

$$\begin{split} f_t &= \sigma(W_f[h_{t-1}, x_t] + b_f), & i_t &= \sigma(W_i[h_{t-1}, x_t] + b_i), \\ \tilde{C}_t &= \tanh(W_c[h_{t-1}, x_t] + b_c), & C_t &= f_t \odot C_{t-1} + i_t \odot \tilde{C}_t, \\ o_t &= \sigma(W_o[h_{t-1}, x_t] + b_o), & h_t &= o_t \odot \tanh(C_t) \end{split}$$

GRU

$$\begin{split} z_t &= \sigma(W_z \cdot \left[h_{t-1}, x_t\right]) \\ r_t &= \sigma(W_r \cdot \left[h_{t-1}, x_t\right]) \\ \tilde{h}_t &= \tanh(W \cdot \left[r_t \odot h_{t-1}, x_t\right]) \\ h_t &= (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t \end{split}$$

LSTM como baseline para NMT

1 Motivação e Histórico

- Encoder LSTM lê (x_1, \ldots, x_n) e produz estados h_t ; o contexto é o último estado $c = h_n$.
- Decoder LSTM gera (y_1, \ldots, y_m) condicionado a c.
- Gargalo: toda a informação comprimida em $c = h_n$.
 - Processamento sequencial ⇒ baixa paralelização.
 - Dependências longas ainda são difíceis (mesmo com portas).
 - Gargalo do contexto (vetor único) degrada qualidade em frases longas.

Atenção aditiva [1]

1 Motivação e Histórico

$$e_{ij} = a(s_{i-1}, h_j), \quad \alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}, \quad c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

- h_j : estado oculto do encoder na posição j (palavra x_j).
- s_{i-1} : estado do decoder no passo anterior (y_{i-1}) .
- e_{ij} : escore de alinhamento entre h_j e s_{i-1} (via rede feedforward).
- α_{ij} : pesos normalizados (softmax) \rightarrow distribuem a atenção sobre os h_j .
- c_i : vetor de contexto dinâmico usado para prever y_i .

Intuição: O decoder calcula, em cada passo, um mapa de atenção sobre os estados do encoder, decidindo onde focar.

Integração com encoder bidirecional e decoder

1 Motivação e Histórico

• O encoder é uma RNN bidirecional:

$$h_j = [\overrightarrow{h_j}; \overleftarrow{h_j}]$$

Cada h_j contém contexto passado e futuro da palavra x_j .

- O vetor de contexto c_i é construído a partir desses estados bidirecionais.
- O decoder (RNN unidirecional) atualiza seu estado com:

$$s_i = f(s_{i-1}, y_{i-1}, c_i)$$

- Usa o estado anterior s_{i-1} O símbolo anterior y_{i-1} O contexto dinâmico c_i
- Assim, a cada passo, o decoder combina memória interna + contexto dinâmico para prever y_i .

Resultado: Resolve o gargalo do vetor fixo único (h_n) e permite traduções mais fiéis em frases longas.

Atenção multiplicativa [2]

1 Motivação e Histórico

Três variantes de scoring:

$$e_{ij} = v^{ op} anh(W[s_j; h_i])$$
 (concat, similar ao Bahdanau) $e_{ij} = s_j^{ op} W h_i$ (general) $e_{ij} = s_j^{ op} h_i$ (dot)

- s_i : query \rightarrow estado oculto do decoder.
- h_i : key/value \rightarrow estado do encoder.
- Concat: aproxima-se da atenção aditiva de Bahdanau.
- **General:** bilinear, mais expressivo (aprende W).
- **Dot:** mais simples e rápido (nenhum parâmetro extra).

Nota: Podemos reinterpretar em termos modernos como $Q = s_i$, $K = h_i$, $V = h_i$.

Global vs Local Attention [2]

1 Motivação e Histórico

Figure 2: Global attentional model – at each time step t, the model infers a variable-length alignment weight vector a_t based on the current target state h_t and all source states \bar{h}_s . A global context vector c_t is then computed as the weighted average, according to a_t , over all the source states.

Figure 3: **Local attention model** – the model first predicts a single aligned position p_t for the current target word. A window centered around the source position p_t is then used to compute a context vector c_t , a weighted average of the source hidden states in the window. The weights a_t are inferred from the current target state h_t and those source states h_s in the window.

Self-Attention: dependências em paralelo

1 Motivação e Histórico

$$\operatorname{Att}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V, \quad Q = XW_Q, K = XW_K, V = XW_V.$$

- Calcula relações entre todos os tokens da mesma sequência, em paralelo.
- Multi-head:

$$\operatorname{MHA}(X) = \operatorname{Concat}(H_1, \dots, H_h) W_O, \quad H_r = \operatorname{softmax}\left(\frac{Q_r K_r^{\top}}{\sqrt{d_k}}\right) V_r.$$

• Comparativo: RNN/LSTM exige n passos sequenciais; self-attention faz um passo paralelo com custo $\mathcal{O}(n^2)$.

Arquitetura pré-transformer

1 Motivação e Histórico

Figura: Exemplo de arquitetura pré-transformer (aditiva) [3]

Table of Contents

2 Transformers

- Motivação e Histórico
- **▶** Transformers
- ▶ Modelos de Sequência
- Embeddings & Interpretações
- Arquiteturas & Variantes
- Treino & Hiperparâmetros
- Séries Temporais
- ► Language Models
- ► Vision Transforme
- ► Graph Attention
- ► MoE, Pruning, Distillation
- Diagnóstico & Limites
- ▶ Conclusões
- ► Backup (Opcional

12/62eferências Bibliográficas

Attention Is All You Need [4]: nascendo o Transformer

- **Remove** completamente a recorrência (sem LSTM).
- Positional encodings preservam ordem:

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d_{\text{model}}}}\right), \quad PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{\text{model}}}}\right).$$

Figura: Exemplo de codificação posicional senoidal [4]

Bloco Transformer e arquitetura

2 Transformers

• Cada bloco Transformer (pré-norm, forma comum):

$$Y = X + \text{MHA}(\text{LN}(X)),$$

 $Z = Y + \text{FFN}(\text{LN}(Y)), \quad \text{FFN}(u) = W_2 \phi(W_1 u + b_1) + b_2,$

- Empilha-se vários blocos de atenção+FFN ⇒ arquitetura Transformer.
- Máscara causal (para LMs) impede olhar o futuro:

softmax
$$\left(\frac{QK^{\top}}{\sqrt{d_k}} + M\right)$$
, $M_{ij} = \begin{cases} 0, & j \leq i \\ -\infty, & j > i \end{cases}$

Arquiteturas Transformer e Aplicações

2 Transformers

Encoder-Decoder

(Transformer original, 2017)

- Tradução automática
- Sumarização
- Diálogo
- Captioning

Encoder-only

(BERT, RoBERTa, DistilBERT)

- Classificação de texto
- NER (entidades)
- QA (extração de trechos)
- Análise semântica

Decoder-only

(GPT, LLaMA, etc.)

- Modelos de linguagem
- Geração de texto
- Completamento de prompts
- Story generation

Arquiteturas Transformer: encoder e decoder [4]

Figura: Transformer Encoder e Decoder

Figura: Multi-Head Attention

Figura: Multi-Head Attention

Resumo da evolução dos modelos

2 Transformers

Linha do tempo (síntese):

- LSTM encoder-decoder: contexto único $c = h_n$ (gargalo).
- LSTM + atenção (Bahdanau/Luong): alívio do gargalo.
- Self-attention: dependências longas em paralelo.
- Transformer: atenção + posição + FFN; várias camadas empilhadas; sem LSTM.

Fundamentos

2 Transformers

Table of Contents

3 Modelos de Sequência

- Motivação e Histórico
- **►** Transformers
- ► Modelos de Sequência
- Embeddings & Interpretações
- Arquiteturas & Variantes
- Treino & Hiperparâmetros
- ▶ Séries Temporais
- ► Language Models
- ▶ Vision Transformer
- ▶ Graph Attention
- ► MoE, Pruning, Distillation
- Diagnóstico & Limites
- Conclusões
- ► Backup (Opcional)
- 19/62eferências Bibliográficas

RNN/GRU/LSTM — limites práticos

3 Modelos de Sequência

• Cálculo sequencial ⇒ baixa paralelização

RNN/GRU/LSTM — limites práticos

3 Modelos de Sequência

- Cálculo sequencial ⇒ baixa paralelização
- Dependências longas: vanish/explode (mitigado, não resolvido)

RNN/GRU/LSTM — limites práticos

3 Modelos de Sequência

- Cálculo sequencial ⇒ baixa paralelização
- Dependências longas: vanish/explode (mitigado, não resolvido)
- Memória finita e custo de treino elevado para contextos longos

LSTM + Attention (Encoder-Decoder)

Atenção aditiva (Bahdanau)

Equações

$$e_{ij} = v^{\top} \tanh(W_1 h_i + W_2 s_j), \quad \alpha_{ij} = \operatorname{softmax}_i(e_{ij}), \quad c_j = \sum_i \alpha_{ij} h_i$$

• Alinhamento dinâmico entre estados do encoder e passos do decoder

LSTM + Attention (Encoder-Decoder)

Atenção aditiva (Bahdanau)

Equações

$$e_{ij} = v^{\top} \tanh(W_1 h_i + W_2 s_j), \quad \alpha_{ij} = \operatorname{softmax}_i(e_{ij}), \quad c_j = \sum_i \alpha_{ij} h_i$$

- Alinhamento dinâmico entre estados do encoder e passos do decoder
- Reduz gargalos de um único vetor de contexto

Table of Contents

4 Embeddings & Interpretações

- Motivação e Histórico
- ► Transformers
- ► Modelos de Sequência
- ► Embeddings & Interpretações
- Arquiteturas & Variantes
- Treino & Hiperparâmetros
- ► Séries Temporais
- ► Language Models
- ▶ Vision Transformer
- ▶ Graph Attention
- ► MoE, Pruning, Distillation
- ▶ Diagnóstico & Limites
- Conclusões
- ► Backup (Opcional)
- 22/62eferências Bibliográficas

Word/Subword Embeddings

4 Embeddings & Interpretações

• Estáticos (Word2Vec, GloVe) vs. Contextuais (ELMo, BERT)

Word/Subword Embeddings

4 Embeddings & Interpretações

- Estáticos (Word2Vec, GloVe) vs. Contextuais (ELMo, BERT)
- Subword (BPE/Unigram) para robustez morfológica

Word/Subword Embeddings

4 Embeddings & Interpretações

- Estáticos (Word2Vec, GloVe) vs. Contextuais (ELMo, BERT)
- Subword (BPE/Unigram) para robustez morfológica
- Análogos em outras modalidades: patches (ViT), time2vec (TS), node2vec (grafos)

Interpretação Geométrica da Atenção

4 Embeddings & Interpretações

ullet Q,K,V são projeções lineares do latente

Interpretação Geométrica da Atenção

4 Embeddings & Interpretações

- Q, K, V são projeções lineares do latente
- ullet Similaridade (coseno/dot) guia uma combinação convexa de V

Interpretação Geométrica da Atenção

4 Embeddings & Interpretações

- Q, K, V são projeções lineares do latente
- ullet Similaridade (coseno/dot) guia uma combinação convexa de V
- Multi-head \Rightarrow múltiplas métricas/projeções simultâneas

Interpretação Matemática: Self-Attention

4 Embeddings & Interpretações

Fórmula central (scaled dot-product)

$$Att(Q, K, V) = softmax \left(\frac{QK^{\top}}{\sqrt{d_k}}\right) V$$

• Máscara causal/atencional conforme a tarefa

Interpretação Matemática: Self-Attention

4 Embeddings & Interpretações

Fórmula central (scaled dot-product)

$$Att(Q, K, V) = softmax \left(\frac{QK^{\top}}{\sqrt{d_k}}\right) V$$

- Máscara causal/atencional conforme a tarefa
- Complexidade $\mathcal{O}(n^2)$ em tempo/memória

Interpretação Matemática: Self-Attention

4 Embeddings & Interpretações

Fórmula central (scaled dot-product)

$$Att(Q, K, V) = softmax \left(\frac{QK^{\top}}{\sqrt{d_k}}\right) V$$

- Máscara causal/atencional conforme a tarefa
- Complexidade $\mathcal{O}(n^2)$ em tempo/memória
- Gradientes e saturação da softmax

• Absolutos senoidais vs. aprendidos

- Absolutos senoidais vs. aprendidos
- Relativos e RoPE (rotary): melhor generalização/composição

- Absolutos senoidais vs. aprendidos
- Relativos e RoPE (rotary): melhor generalização/composição
- Impacto em extrapolação e contextos longos

Transformers

4 Embeddings & Interpretações

Table of Contents

5 Arquiteturas & Variantes

- Motivação e Histórico
- **►** Transformers
- Modelos de Sequência
- ▶ Embeddings & Interpretações
- ► Arquiteturas & Variantes
- ▶ Treino & Hiperparâmetros
- Séries Temporais
- ► Language Models
- **▶** Vision Transforme
- ▶ Graph Attention
- ► MoE, Pruning, Distillation
- ▶ Diagnóstico & Limites
- Conclusões
- ► Backup (Opcional)
- 28/62 ferências Bibliográficas

Arquiteturas Transformer

5 Arquiteturas & Variantes

• Encoder-Decoder, Encoder-only, Decoder-only

Arquiteturas Transformer

5 Arquiteturas & Variantes

- Encoder-Decoder, Encoder-only, Decoder-only
- Bloco: MHSA + FFN, residual + layer norm

Arquiteturas Transformer

5 Arquiteturas & Variantes

- Encoder-Decoder, Encoder-only, Decoder-only
- Bloco: MHSA + FFN, residual + layer norm
- Pré-norm vs. pós-norm (estabilidade de treino)

• Esparsidade: Longformer/BigBird (padrões locais+globais)

Trade-off

Atenções Eficientes 5 Arquiteturas & Variantes

Esparsidade: Longformer/BigBird (padrões locais+globais)

• Aproximação: Linformer, Nyströmformer

Trade-off

Atenções Eficientes

5 Arquiteturas & Variantes

- Esparsidade: Longformer/BigBird (padrões locais+globais)
- Aproximação: Linformer, Nyströmformer
- Kernels: Performer (favor+), FlashAttention (IO-aware)

Trade-off

Atenções Eficientes

5 Arquiteturas & Variantes

- Esparsidade: Longformer/BigBird (padrões locais+globais)
- Aproximação: Linformer, Nyströmformer
- Kernels: Performer (favor+), FlashAttention (IO-aware)
- Outros: Reformer (LSH)

Trade-off

Table of Contents

6 Treino & Hiperparâmetros

- Motivação e Histórico
- **▶** Transformers
- Modelos de Sequência
- Embeddings & Interpretações
- Arquiteturas & Variantes
- ► Treino & Hiperparâmetros
- Séries Temporais
- ► Language Models
- ► Vision Transformer
- ▶ Graph Attention
- ► MoE, Pruning, Distillation
- ▶ Diagnóstico & Limites
- Conclusões
- ► Backup (Opcional)

31/62eferências Bibliográficas

• AdamW, warmup + decaimento; label smoothing quando aplicável

Práticas de Treino 6 Treino & Hiperparâmetros

- AdamW, warmup + decaimento; label smoothing quando aplicável
- Regularização: dropout, stochastic depth, weight decay

- AdamW, warmup + decaimento; label smoothing quando aplicável
- Regularização: dropout, stochastic depth, weight decay
- AMP/mixed precision, grad clipping, checkpointing

Práticas de Treino 6 Treino & Hiperparâmetros

- AdamW, warmup + decaimento; label smoothing quando aplicável
- Regularização: dropout, stochastic depth, weight decay
- AMP/mixed precision, grad clipping, checkpointing
- Dados: curriculum, masking, augmentation (TS/ViT/GAT)

Hiperparâmetros Essenciais

6 Treino & Hiperparâmetros

• Profundidade, d_{model} , #heads, d_{ff} , dropout

Hiperparâmetros Essenciais

- Profundidade, d_{model} , #heads, d_{ff} , dropout
- Comprimento de contexto, batch size, LR schedule

Hiperparâmetros Essenciais

- Profundidade, d_{model} , #heads, d_{ff} , dropout
- Comprimento de contexto, batch size, LR schedule
- Específicos: tokenização (LM), patch size (ViT), janela/patch (TS)

Qual tamanho ideal? (Scaling)

6 Treino & Hiperparâmetros

• Leis de escala vs. limite de dados/compute

Qual tamanho ideal? (Scaling)

- Leis de escala vs. limite de dados/compute
- Tokens vs. parâmetros; saturação com contexto

Qual tamanho ideal? (Scaling)

- Leis de escala vs. limite de dados/compute
- Tokens vs. parâmetros; saturação com contexto
- Regra prática: dimensione para o dataset e o budget de inferência

Aplicações

Table of Contents

7 Séries Temporais

- Motivação e Histórico
- **▶** Transformers
- ▶ Modelos de Sequência
- Embeddings & Interpretações
- Arquiteturas & Variantes
- Treino & Hiperparâmetros
- ▶ Séries Temporais
- ▶ Language Models
- **▶** Vision Transforme
- ▶ Graph Attention
- ► MoE, Pruning, Distillation
- ▶ Diagnóstico & Limites
- Conclusões
- ► Backup (Opcional)
- 36/62 ferências Bibliográficas

Atenção em Séries Temporais

7 Séries Temporais

• Codificação temporal: absolutos/relativos, time2vec, calendários/sazonalidade

Atenção em Séries Temporais

7 Séries Temporais

- Codificação temporal: absolutos/relativos, time2vec, calendários/sazonalidade
- Exógenas e cross-attention; patching para contextos longos

Atenção em Séries Temporais

7 Séries Temporais

- Codificação temporal: absolutos/relativos, time2vec, calendários/sazonalidade
- Exógenas e cross-attention; patching para contextos longos
- Tarefas: previsão, imputação, detecção de anomalias

Table of Contents

8 Language Models

- Motivação e Histórico
- **▶** Transformers
- ► Modelos de Sequência
- Embeddings & Interpretações
- Arquiteturas & Variantes
- Treino & Hiperparâmetros
- Séries Temporais
- ► Language Models
- ▶ Vision Transformer
- Graph Attention
- ► MoE, Pruning, Distillation
- ▶ Diagnóstico & Limites
- Conclusões
- ► Backup (Opcional)
- 38/62 ferências Bibliográficas

Language Models (LM)

8 Language Models

• Atenção causal, next-token e masking

Language Models (LM)

8 Language Models

- Atenção causal, next-token e masking
- Pré-treino vs. fine-tuning; Instrução/LoRA/Adapters

Language Models (LM)

8 Language Models

- Atenção causal, next-token e masking
- Pré-treino vs. fine-tuning; Instrução/LoRA/Adapters
- Métricas: perplexidade e tarefas downstream

Table of Contents

9 Vision Transformer

- Motivação e Histórico
- ► Transformers
- Modelos de Sequência
- Embeddings & Interpretações
- Arquiteturas & Variantes
- Treino & Hiperparâmetros
- Séries Temporais
- ► Language Models
- **▶** Vision Transformer
- ► Graph Attention
- ► MoE, Pruning, Distillation
- Diagnóstico & Limites
- Conclusões
- ► Backup (Opcional)
- 40/62 ferências Bibliográficas

Vision Transformer (ViT)

9 Vision Transformer

• Imagem \rightarrow patches + [CLS] token

Vision Transformer (ViT)

9 Vision Transformer

- Imagem \rightarrow patches + [CLS] token
- Posicionais 2D; augmentations (RandAug, Mixup/CutMix)

Vision Transformer (ViT)

9 Vision Transformer

- Imagem \rightarrow patches + [CLS] token
- Posicionais 2D; augmentations (RandAug, Mixup/CutMix)
- Transfer: linear probe vs. fine-tune

Table of Contents

10 Graph Attention

- Motivação e Histórico
- **▶** Transformers
- Modelos de Sequência
- Embeddings & Interpretações
- Arquiteturas & Variantes
- Treino & Hiperparâmetros
- Séries Temporais
- ► Language Models
- ▶ Vision Transformer
- ► Graph Attention
- ► MoE, Pruning, Distillation
- ▶ Diagnóstico & Limites
- Conclusões
- ► Backup (Opcional)
- 42/62 ferências Bibliográficas

Graph Attention Networks (GAT)

10 Graph Attention

Coeficientes de Atenção (um cabeçalho)

$$\alpha_{ij} = \operatorname{softmax}_{j} \left(\operatorname{LeakyReLU} \left(a^{\top} [W h_{i} || W h_{j}] \right) \right)$$

• Multi-head; sobre-smoothing e escalabilidade

Graph Attention Networks (GAT)

10 Graph Attention

Coeficientes de Atenção (um cabeçalho)

$$\alpha_{ij} = \operatorname{softmax}_{j} \left(\operatorname{LeakyReLU} \left(a^{\top} [W h_{i} || W h_{j}] \right) \right)$$

- Multi-head; sobre-smoothing e escalabilidade
- Heterógrafos e atenção relacional

Escala & Compressão

10 Graph Attention

Table of Contents

11 MoE, Pruning, Distillation

- Motivação e Histórico
- **▶** Transformers
- Modelos de Sequência
- Embeddings & Interpretações
- Arquiteturas & Variantes
- Treino & Hiperparâmetros
- Séries Temporais
- ► Language Models
- ▶ Vision Transformer
- ▶ Graph Attentior
- ► MoE, Pruning, Distillation
- ▶ Diagnóstico & Limites
- Conclusões
- ► Backup (Opcional)
- 45/62 ferências Bibliográficas

Mixture of Experts (MoE) 11 MoE, Pruning, Distillation

• Gating top-1/top-2; balanceamento de carga

Mixture of Experts (MoE)

11 MoE, Pruning, Distillation

- Gating top-1/top-2; balanceamento de carga
- Roteamento esparso: capacidade vs. ociosidade

Mixture of Experts (MoE)

11 MoE, Pruning, Distillation

- Gating top-1/top-2; balanceamento de carga
- Roteamento esparso: capacidade vs. ociosidade
- Custos de comunicação e estabilidade no treino

• Não estruturado (magnitude) vs. estruturado (canal/bloco, n:m)

- Não estruturado (magnitude) vs. estruturado (canal/bloco, n:m)
- Iterativo vs. one-shot; impacto em latência real

- Não estruturado (magnitude) vs. estruturado (canal/bloco, n:m)
- Iterativo vs. one-shot; impacto em latência real
- Interação com quantização e sparsity-aware kernels

Perda típica (Hinton)

$$\mathcal{L} = (1 - \lambda) \operatorname{CE}(y, s) + \lambda T^{2} \operatorname{KL}(p_{T} \parallel q_{T})$$

• Teacher \rightarrow student; temperatura T

Perda típica (Hinton)

$$\mathcal{L} = (1 - \lambda) \operatorname{CE}(y, s) + \lambda T^{2} \operatorname{KL}(p_{T} \parallel q_{T})$$

- Teacher \rightarrow student; temperatura T
- Intermediate layer hints; task-specific vs. generalista

Perda típica (Hinton)

$$\mathcal{L} = (1 - \lambda) \operatorname{CE}(y, s) + \lambda T^{2} \operatorname{KL}(p_{T} \parallel q_{T})$$

- ullet Teacher o student; temperatura T
- Intermediate layer hints; task-specific vs. generalista
- Benefícios: latência/energia e edge deployment

Interpretação & Limitações

11 MoE, Pruning, Distillation

Table of Contents

12 Diagnóstico & Limites

- Motivação e Histórico
- **►** Transformers
- Modelos de Sequência
- Embeddings & Interpretações
- Arquiteturas & Variantes
- Treino & Hiperparâmetros
- Séries Temporais
- ► Language Models
- ▶ Vision Transformer
- ▶ Graph Attention
- ► MoE, Pruning, Distillation
- ➤ Diagnóstico & Limites
- Conclusões
- ▶ Backup (Opcional)
- 50/62 ferências Bibliográficas

Interpretação & Diagnóstico

12 Diagnóstico & Limites

• Attention rollout/flow; atenção ≠ causalidade

Interpretação & Diagnóstico

12 Diagnóstico & Limites

- Attention rollout/flow; atenção ≠ causalidade
- Probing de camadas; ablação de cabeças

Interpretação & Diagnóstico

12 Diagnóstico & Limites

- Attention rollout/flow; atenção ≠ causalidade
- Probing de camadas; ablação de cabeças
- Ferramentas de explainability por domínio

Limitações & Trade-offs

12 Diagnóstico & Limites

• Custo $\mathcal{O}(n^2)$, viés de dados, OOD robustness

Limitações & Trade-offs

12 Diagnóstico & Limites

- Custo $\mathcal{O}(n^2)$, viés de dados, OOD robustness
- Contaminação de treino e privacidade

Limitações & Trade-offs

12 Diagnóstico & Limites

- Custo $\mathcal{O}(n^2)$, viés de dados, OOD robustness
- Contaminação de treino e privacidade
- Energia/carbono e restrições de hardware

Table of Contents

13 Conclusões

- Motivação e Histórico
- ► Transformers
- Modelos de Sequência
- Embeddings & Interpretações
- Arquiteturas & Variantes
- ▶ Treino & Hiperparâmetros
- Séries Temporais
- ► Language Models
- Vision Transformer
- Graph Attention
- ► MoE, Pruning, Distillation
- ▶ Diagnóstico & Limites
- ▶ Conclusões
- ► Backup (Opcional)
- 53/62-ferências Bibliográficas

• Atenção como princípio unificador em sequência, visão e grafos

- Atenção como princípio unificador em sequência, visão e grafos
- Escolha guiada por dados, métricas e orçamento (treino/inferência)

- Atenção como princípio unificador em sequência, visão e grafos
- Escolha guiada por dados, métricas e orçamento (treino/inferência)
- Escala e compressão (MoE/pruning/distillation) para produção

Attention Models: da motivação às variantes modernas

Obrigado pela Atenção! Alguma Pergunta? Natanael Moura Junior

natmourajr@poli.ufrj.br, natmourajr@lps.ufrj.br

Obrigado!

Table of Contents

14 Backup (Opcional)

- Motivação e Histórico
- ► Transformers
- ► Modelos de Sequência
- Embeddings & Interpretações
- Arquiteturas & Variantes
- Treino & Hiperparâmetros
- ► Séries Temporais
- ► Language Models
- ▶ Vision Transformer
- ▶ Graph Attention
- ► MoE, Pruning, Distillation
- ▶ Diagnóstico & Limites
- ▶ Conclusões
- ► Backup (Opcional)

57/62eferências Bibliográficas

Equações úteis (resumo)

14 Backup (Opcional)

- Scaled dot-product, aditiva (Bahdanau)
- Atenção relativa e RoPE
- GAT detalhado; máscaras causais

Hiperparâmetros por tarefa (resumo) 14 Backup (Opcional)

- LM: contexto, BPE, heads/profundidade típicos
- ViT: patch size, MLP ratio, augmentations
- TS: janela, patching, covariáveis, perdas (MAE/MSE/Quantile)

Table of Contents

15 Referências Bibliográficas

- Motivação e Histórico
- **►** Transformers
- ▶ Modelos de Sequência
- ► Embeddings & Interpretações
- Arquiteturas & Variantes
- Treino & Hiperparâmetros
- Séries Temporais
- ► Language Models
- **▶** Vision Transforme
- ▶ Graph Attention
- ► MoE, Pruning, Distillation
- ▶ Diagnóstico & Limites
- Conclusões
- ► Backup (Opcional)
- ▶/Referências Bibliográficas

Referências Bibliográficas

15 Referências Bibliográficas

- [1] D. Bahdanau, K. Cho, and Y. Bengio, "Neural machine translation by jointly learning to align and translate," *arXiv preprint arXiv:1409.0473*, 2014.
- [2] M.-T. Luong, H. Pham, and C. D. Manning, "Effective approaches to attention-based neural machine translation," in *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 1412–1421, 2015.
- [3] S. Gu and Y. Zhuang, "Method for solving constrained 0-1 quadratic programming problems based on pointer network and reinforcement learning," *Neural Computing and Applications*, vol. 35, 2022.

Referências Bibliográficas

15 Referências Bibliográficas

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention is all you need," in *Advances in Neural Information Processing Systems*, vol. 30, 2017.