# COL 351: Analysis and Design of Algorithms

Lecture 31

### **Mathematical Formulation**

Given: A directed network G = (V, E, c) with

- source node s, and sink node t.
- Capacity function: Edge e has a capacity  $c(e) \ge 0$ .

**Define:** 
$$f_{out}(x) = \sum_{(x, y) \in E} f(x, y)$$
, and similarly  $f_{in}(x) = \sum_{(y, x) \in E} f(y, x)$ 

**Maximize:**  $f_{out}(s)$  or  $f_{in}(t)$ 

#### **Subject to:**

- 1.  $0 \le f(e) \le c(e)$ , for  $e \in E$
- **2.**  $f_{out}(x) = f_{in}(x)$ , for  $x \neq s, t$

### **Construction of Residual Graph**

For each  $(x, y) \in E(G)$ :

| If $c(x, y) - f(x, y) > 0$ | Include $(x, y)$ in $G_f$ and set $c_r(x, y) = c(x, y) - f(x, y)$ | Forward edge  |
|----------------------------|-------------------------------------------------------------------|---------------|
| If $f(x, y) > 0$           | Include $(y, x)$ in $G_f$ and set $c_r(y, x) = f(x, y)$           | Backward edge |





## Increasing Flow using Residual graph



Introduce reverse edges that can cancel flows.



#### Ford-Fulkerson-algo(G, s, t):

- 1. Initialise f=02. While( $\exists s \to t$  path in  $G_f$ ):
  2.1 Let P be an  $s \to t$  path in  $G_f$ 2.2 Let  $c_{min} = \min\{c(e) \mid e \in P\}$ 2.3 For each  $(x,y) \in P$ :

  If (x,y) is forward edge :  $f(x,y) = f(x,y) + c_{min}$ If (x,y) is backward edge :  $f(x,y) = f(x,y) c_{min}$
- 3. Return f.

\* To compute 
$$G_{f}$$
 we Look at current  $(s,t)$ -flow and original copacities in  $G_{f}$ 



#### Ford-Fulkerson-algo(*G*, *s*, *t*):

- 1. Initialise f = 0
- 2. **While**( $\exists s \rightarrow t \text{ path in } G_f$ ):
  - 2.1 Let P be an  $s \to t$  path in  $G_f$
  - 2.2 Let  $c_{min} = \min\{c(e) \mid e \in P\}$
  - 2.3 For each  $(x, y) \in P$ :

If (x, y) is forward edge :  $f(x, y) = f(x, y) + c_{min}$ 

If (x, y) is backward edge :  $f(x, y) = f(x, y) - c_{min}$ 

3. Return f.

Is capacity constraint satisfied?

$$\frac{\langle (x,y)=50 \rangle}{\text{fold } (x,y)=10}$$

#### Ford-Fulkerson-algo(G, s, t):

- 1. Initialise f = 0
- 2. **While**( $\exists s \rightarrow t \text{ path in } G_f$ ):
  - 2.1 Let P be an  $s \to t$  path in  $G_f$
  - 2.2 Let  $c_{min} = \min\{c(e) \mid e \in P\}$
  - 2.3 For each  $(x, y) \in P$ :

If (x, y) is forward edge :  $f(x, y) = f(x, y) + c_{min}$ 

If (x, y) is backward edge :  $f(x, y) = f(x, y) - c_{min}$ 

3. Return f.

For any 
$$(x,y)$$
, frew  $(x,y) > 0$  if flow passed in Backward direction

Is capacity constraint satisfied?

Crain 
$$\leq 10$$

for  $= fold - Crain = 10 - Crain \geq 0$ 

#### Ford-Fulkerson-algo(G, s, t):

- 1. Initialise f = 0
- 2. **While**( $\exists s \rightarrow t \text{ path in } G_f$ ):
  - 2.1 Let P be an  $s \to t$  path in  $G_f$
  - 2.2 Let  $c_{min} = \min\{c(e) \mid e \in P\}$
  - 2.3 For each  $(x, y) \in P$ :

If (x, y) is forward edge:  $f(x, y) = f(x, y) + c_{min}$ 

If (x, y) is backward edge :  $f(x, y) = f(x, y) - c_{min}$ 

3. Return f.

Is flow at each node conserved?



Case 1: fin, fout incremented by Crim



Case 2: fin, fout decremented by Comin



Case 3: fin, fout remains some

### Natural Upper bound on (s,t)-max-flow



### Natural Upper bound on (s,t)-max-flow



#### Lemma 1:

For any partition  $(A, \bar{A})$  of vertices with  $s \in A, \ t \in \bar{A}$ ,  $(s,t)\text{-max-flow-value} \ \leq \sum_{(x,y)\in (A\times \bar{A})\cap E} c(x,y)$ 

Proof will follow from Property on last slide

# (s,t)-Cuts



#### **Definition:**

Any partition  $(A, \bar{A})$  of vertices with  $s \in A, \ t \in \bar{A}$ 

### **Definitions**



<u>Definition</u>: For any cut  $(A, \bar{A})$ ,

$$c(A, \bar{A}) = \sum_{\substack{(x,y) \in \\ (A \times \bar{A}) \cap E}} c(x,y)$$

Capacity of cut

$$f_{out}(A) = \sum_{\substack{(x,y) \in \\ (A \times \bar{A}) \cap E}} f(x,y)$$

$$f_{in}(A) = \sum_{\substack{(x,y) \in \\ (\bar{A} \times A) \cap E}} f(x,y)$$

## **Property of Flows & Cuts**

<u>Property:</u> For any (s, t) – cut  $(A, \bar{A})$  and any flow f,

$$value(f) = f_{out}(A) - f_{in}(A)$$

Homework: Provide mathematical people