

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO					
Disciplina:					Código da Disciplina:
Propulsão Veicular					EMC505
Course:					
Vehicle Propulsion					
Materia:					
Propulsión vehicular					
Periodicidade: Anual	Carga horária total:	80	Carga horária	semanal:	02 - 00 - 00
Curso/Habilitação/Ênfase:	'	,	Séri	e: Po	eríodo:
Engenharia Mecânica			5	D	iurno
Engenharia Mecânica			4	D	iurno
Engenharia Mecânica			5	N	oturno
Engenharia Mecânica			4	N	oturno
Professor Responsável:		Titulação - Gradua	ção		Pós-Graduação
Clayton Barcelos Zabeu		Engenheiro Me	cânico		Doutor
Professores:		Titulação - Gradua	ção		Pós-Graduação
Clayton Barcelos Zabeu		Engenheiro Me	cânico		Doutor
Fernando Malvezzi		Engenheiro Me	cânico		Doutor
Renato Romio		Engenheiro Me	cânico		Especialista

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

CONHECIMENTOS

- C1 Princípios de funcionamento dos motores de combustão interna(MCI).
- C2 Associação dos conhecimentos de Termodinâmica à máquina térmica MCI.
- C3 Ensaios, propriedades e curvas características.
- C4 Combustão em MCI. Pós-tratamento de gases visando abater emissões de poluentes ambientais.
- C5 A alimentação de ar e combustível dos motores.
- C6 A ignição.
- C7 Sistemas eletrônicos de gerenciamento de motores.
- C8 Sistemas alternativos de propulsão.

HABILIDADES

- H1 Conhecer os motores alternativos e suas partes.
- H2 Comparar desempenho e curvas características de motores.
- H3 Calibrar sistemas de gerenciamento eletrônicos de MCIs.
- H4 Analisar resultados obtidos com modelos matemáticos e ensaios experimentais.

ATITUDES

- Al Desenvolver a consciência de que o aluno é o elemento central no processo de ensino-aprendizagem.
- A2 Manter uma atitude crítica e participativa durante as aulas.
- A3 Ter motivação para enfrentar problemas de engenharia automotiva.
- A4 Valorizar o rigor conceitual.

2020-EMC505 página 1 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

- A5 Trabalhar em equipes e em rede para solucionar problemas de engenharia.
- A6 Proatividade.

EMENTA

Motores de combustão interna: ciclos padrão a ar, curvas características de motores, combustão em motores a pistão, formação de mistura, sistemas de injeção de combustível & ignição e emissões. Sistemas de propulsão híbridos, elétricos.

SYLLABUS

Internal combustion engines: thermodynamic analysis of the combustion and gas exchange processes, engine performance curves, combustion, air-fuel mixture requirements/formation, ignition/Injection systems and emissions/aftertreatment. Hybrid and electric propulsion systems.

TEMARIO

Motores de combustión interna alternativos: análisis termodinámico de la combustión y los procesos de intercambio de gases, las curvas características del motor de combustión interna, los requisitos de mezcla, sistemas de encendido y emisiones. Sistemas de propulsión híbridos y eléctricos.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Sala de aula invertida
- Project Based Learning

METODOLOGIA DIDÁTICA

Aulas expositivas onde são apresentados os conceitos básicos do conjunto de conhecimento da disciplina, eventualmente apresentados com o uso de projetor multimídia e componentes reais de motores e veículos;

Atividades experimentais no laboratório de engenharia automobilística, onde o aluno, por meio de PBL (problem based learning), consolida o conhecimento adquirido participando de competições acadêmicas:

- avaliação experimental de desempenho de motor de combustão interna por meio de ensaios em bancada dinamométrica;
- ensaios de fluxo em cabeçotes;
- aumento de potência/torque de um motor monocilíndro, aplicado a um mini-veículo, objetivando adequação a uma competição tipo "arrancada".

Durante as atividades de PBL os alunos interagem com profissionais da área automotiva que atuam como mentores das equipes.

2020-EMC505 página 2 de 9

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

MATEMÁTICA: Cálculo diferencial e integral, álgebra linear, análise vetorial.

FÍSICA: Mecânica Geral, Eletricidade Básica.

QUÍMICA: Combustíveis, lubrificantes, estequiometria.

FENÔMENOS DE TRANSPORTE: Mecânica dos Fluidos, Transmissão de Calor.

TERMODINÂMICA: gás perfeito, ciclos, Primeira Lei, Segunda Lei.

ELEMENTOS DE MÁQUINAS.

MECANISMOS E DINÂMICA DOS SISTEMAS.

LÍNGUA INGLESA: desejável para a leitura de textos técnicos.

CONTRIBUIÇÃO DA DISCIPLINA

- Introduzir os fundamentos de motores e máquinas térmicas aplicados a sistemas

de propulsão veicular;

- Desenvolver a capacidade do aluno para elaborar modelos matemáticos aplicados a sistemas veiculares.
- Exercitar a análise de resultados do desempenho de motores e sistemas veiculares, obtidos por meio de modelos matemáticos e ensaios experimentais.
- Interação com profissionais da área automotiva que atuam como mentores das equipes.

BIBLIOGRAFIA

Bibliografia Básica:

BRUNETTI, Franco. Motores de combustão interna. São Paulo: Blucher, 2012. v. 1. 553 p. ISBN 9788521207085.

BRUNETTI, Franco. Motores de combustão interna. São Paulo: Blucher, 2012. v. 2. 485 p. ISBN 97885212007092.

Bibliografia Complementar:

BOSCH, Robert. Manual de tecnologia automotiva. Tradução de Euryale de Jesus Zerbini. São Paulo, SP: Edgard Blücher, 2005. 1232 p. ISBN 8521203780.

HEYWOOD, John B. Internal combustion engine fundamentals. New York: McGraw-Hill, 1988. 930 p. (McGraw-Hill Series in Mechanical Engineering). ISBN 0-07-100499-8.

TAYLOR, Charles Fayette. Análise dos motores de combustão interna. Trad. de Mauro O. C. Amorelli. São Paulo, SP: Edgard Blücher, 1988. v. 1.

TAYLOR, Charles Fayette. Análise dos motores de combustão interna. Trad. de Mauro O. C. Amorelli. São Paulo, SP: Edgard Blücher, 1988. v. 2.

TAYLOR, Charles Fayette. Effect of size on the design and performance of internal combustion engines. s.l.p: ASME, [s.d.].

2020-EMC505 página 3 de 9

TAYLOR, Charles Fayette; MIT. The internal combustion engine in theory and practice. Massachussets: MIT, $1960. \ v. \ 1.$

TAYLOR, Charles Fayette; TAYLOR, Edward S. The internal-combustion engine. Scranton, Pen: International Textbook, 1961. 668 p.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos e provas (quatro e duas substitutivas).

Pesos dos trabalhos:

 $k_1: 1,0 k_2: 1,0$

Peso de $MP(k_p)$: 0,7 Peso de $MT(k_p)$: 0,3

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

Os trabalhos T1 e T2 são associados às atividades laboratoriais, problemas e trabalhos propostos e às modificações realizadas nos motores.

2020-EMC505 página 4 de 9

OUTRAS INFORMAÇÕ	DES

2020-EMC505 página 5 de 9

		SOFTWARES NECESSÁRIOS PARA A DISCIPLINA	
AVL	Boost		

2020-EMC505 página 6 de 9

APROVAÇÕES

2020-EMC505 página 7 de 9

	PROGRAMA DA DISCIPLINA	
N° da	Conteúdo	EAA
semana		
1 T	Aulas somente para a la série.	0
2 Т	Introdução ao curso. Definição e comparação com motores de	0
	combustão externa. Classificação dos MCIs quanto à forma	
	construtiva. Breve visita aos Laboratórios.	
3 Т	Classificação dos MCIs quanto ao desenvolvimento da combustão.	0
	Combustíveis. Números de octano e de cetano.	
4 T	Entes geométricos e cinemáticos de MCIs.	0
5 T	Ciclos padrão ar - Otto e Diesel.	1% a 10%
6 Т	Ciclos reais de motores alternativos de 2T e 4T. Comparações.	1% a 10%
	Exercícios.	
7 T	Revisão e exercícios.	61% a 90%
8 T	Período de provas - P1	0
9 T	Dia não letivo	0
10 T	Parâmetros característicos em MCIs.	0
11 T	Atividades nos motores experimentais.	41% a 60%
12 T	Curvas de desempenho de MCIs.Laboratório.Levantamento	1% a 10%
	experimental de T, N, Ce, rendimentos térmico, volumétrico,	
	glocbal. Parte da nota T1.	
13 T	Combustão MCIs.	0
14 T	Atividades nos motores experimentais.	41% a 60%
15 T	Semana de Inovação - SMILE.Atividades nos motores experimentais	0
	(opcional)	
16 T	Atividades nos motores experimentais.	61% a 90%
17 T	Revisão e exercícios.	0
18 T	Feriado - dia não letivo.	0
19 T	Período de provas - P2.	0
20 T	Período de provas - P2.Competição 1º semestre.	0
21 T	Atividades planejamento.	0
22 T	Atividades planejamento.	0
23 T	Período de provas - PS1	0
24 T	Formação de mistura combustível-ar em MIFs. Sistemas de	0
	injeção/gerenciamento eletrônicos.	
25 T	Sistemas de injeção em MIC.	0
26 T	Consumo de ar em MC 4T.	0
27 T	Consumo de ar em MC 4T. Laboratório.Parte nota de trabalho T2.	0
28 T	Atividades nos motores experimentais.Simulação 1D. AVL Boost	41% a 60%
29 T	Revisão e exercícios.	91% a
		100%
30 T	Período de provas - P3.	0
31 T	Emissões e pós-tratamento de gases de escapamento de MCIs.	0
32 T	Atividades nos motores experimentais.	41% a 60%
33 T	Sistemas de ignição em MIF.	1% a 10%
34 T	Sistemas de lubrificação e de arrefecimento em MCI.	41% a 60%
35 T	Sistemas alternativos de propulsão (elétrica, híbrida, fuel cell)	0

2020-EMC505 página 8 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

36 T	Sistemas de sobrealimentação em MCI.	0		
37 T	Revisão e exercícios.	91% a		
		100%		
38 T	Período de provas - P4.	0		
39 T	Período de provas - P4.	0		
40 T	Preparação carros (para alunos que se matricularem na disciplina	0		
	eletiva)			
41 T	Período de provas - PS2	0		
Legenda	Legenda: T = Teoria, E = Exercício, L = Laboratório			

2020-EMC505 página 9 de 9