## Chapter 14

## **Hermitian Spaces**

## 14.1 Sesquilinear and Hermitian Forms, Pre-Hilbert Spaces and Hermitian Spaces

In this chapter we generalize the basic results of Euclidean geometry presented in Chapter 12 to vector spaces over the complex numbers. Such a generalization is inevitable and not simply a luxury. For example, linear maps may not have real eigenvalues, but they always have complex eigenvalues. Furthermore, some very important classes of linear maps can be diagonalized if they are extended to the complexification of a real vector space. This is the case for orthogonal matrices and, more generally, normal matrices. Also, complex vector spaces are often the natural framework in physics or engineering, and they are more convenient for dealing with Fourier series. However, some complications arise due to complex conjugation.

Recall that for any complex number  $z \in \mathbb{C}$ , if z = x + iy where  $x, y \in \mathbb{R}$ , we let  $\Re z = x$ , the real part of z, and  $\Im z = y$ , the imaginary part of z. We also denote the conjugate of z = x + iy by  $\overline{z} = x - iy$ , and the absolute value (or length, or modulus) of z by |z|. Recall that  $|z|^2 = z\overline{z} = x^2 + y^2$ .

There are many natural situations where a map  $\varphi \colon E \times E \to \mathbb{C}$  is linear in its first argument and only semilinear in its second argument, which means that  $\varphi(u, \mu v) = \overline{\mu}\varphi(u, v)$ , as opposed to  $\varphi(u, \mu v) = \mu\varphi(u, v)$ . For example, the natural inner product to deal with functions  $f \colon \mathbb{R} \to \mathbb{C}$ , especially Fourier series, is

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx,$$

which is semilinear (but not linear) in g. Thus, when generalizing a result from the real case of a Euclidean space to the complex case, we always have to check very carefully that our proofs do not rely on linearity in the second argument. Otherwise, we need to revise our proofs, and sometimes the result is simply wrong!