INDUSTRIAL ORGANIC CHEMISTRY- July 11th, 2017

SURNAME:	NAME:	ID NUMBER:

A possible way to exploit hydrogen produced by water hydrolysis is the production of methane according to the Sabatier reaction ($CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$). A simplified process layout consists of a heat exchanger (HE), where the fresh feed at 500 K is heated up using the reactor effluents, and of a reactor where a conversion of 95% of CO_2 is achieved when operated at 8 atm. The formation of CO is also experienced in the reactor.

By assuming that:

- The reacting mixture is an ideal mixture of ideal gases
- The thermodynamic equilibrium is reached at the outlet of the reactor (species present at equilibrium: CO₂, H₂, CH₄, H₂O, CO)
- The heat exchanger is ideal and the heat losses are negligible
- The reactor is designed to remove 7000 cal/mol of charge
- The fresh feed is at 500 K and the molar ratio between CO2 and H2 is 1:4
- The pressure drop is negligible
- 1. Evaluate the composition and the temperature of the stream leaving the reactor

H ₂ O	H_2	
CH ₄	СО	
CO ₂	Temperature	

2.	Evaluate the	e temperature	of the stream	entering th	e reactor (T_{in}	1

Temperature			

3. Evaluate the temperature of the stream leaving the heat exchanger (T_{sc})

Thermodynamic data:

Sabatier reaction:

$$K_{eq}(T) = \exp\left(\frac{1}{1.987} \left(\frac{56000}{T^2} + \frac{34633}{T} - 16.4 \ln T + 0.00557 T\right) + 33.165\right)$$
 where T in [K]

Water gas shift reaction: $\Delta G_{WGS}^{0}(T) = -8514 + 7.71 \cdot T$ [cal/mol] where T in [K]

Reference state: ideal gas at 1 atm

	∆H ⁰ ғ(298K)	Ср
	[cal/mol]	[cal/mol]
H ₂	0	2207
CO	-26420	2253
CO ₂	-94050	3284
CH ₄	-17890	3438
H ₂ O	-57800	2662

Heat capacity can be assumed constant in the range of temperature of interest.