PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-114766

(43)Date of publication of application: 26.04.1994

(51)Int.CI.

B25J 9/22 B25J 3/04

G05D 3/12

(21)Application number: 04-263739

(71)Applicant : HITACHI LTD

(22)Date of filing:

01.10.1992

(72)Inventor: TSUCHIYA MASAHIRO

KAMESHIMA KOJI YAMAMOTO HIROSHI HAMADA TOMOYUKI KIMURA KEIICHI KIKUCHI HIRONARI

(54) REMOTE CONTROL DEVICE FOR MANIPULATOR (57)Abstract:

PURPOSE: To improve the operability series by independently computing a relative state by an operation series control system and a working series control system operated by means of a work message. CONSTITUTION: A ground series control system as an operation steries control system comprises a central processing layer CPU 101, an image measuring means 102 connected thereto, a graphic display 103, and an input output device 104. An on-track control system as a working series control system comprises a central processing unit CPU 101, a image measuring device 102, and a slave arm input output device 105. An on-track series system is caused to execute a work according to a command from the ground series control system. The respective CPUs 101 for the two systems individually control a work environment model, and perform control based on respective image measurement results such that working environment where the working is actually executed is kept equal to a work environment model, and work image level communicated is carried out therebetween.

LEGAL STATUS

[Date of request for examination]

29.03.1999

[Date of sending the examiner's decision of

23.04.2002

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-114766

(43)公開日 平成6年(1994)4月26日

(51)Int.Cl.5		識別記号	庁内整理番号	FΙ		技術表示箇所
B 2 5 J	•	Z				
	3/04				•	
G 0 5 D	3/12	N	9179-3H	•		

審査請求 未請求 請求項の数11(全 27 頁)

(21)出願番号	特顯平4-263739	(71)出願人 000005108		
		株式会社日立製作所		
(22)出顧日	平成4年(1992)10月1日	東京都千代田区神田駿河台四丁目 6 番地		
•		(72)発明者 土屋 雅弘		
		茨城県土浦市神立町502番地 株式会社日		
		立製作所機械研究所内		
		(72)発明者 亀島 鉱二		
		茨城県土浦市神立町502番地 株式会社日		
		立製作所機械研究所内		
		(72)発明者 山本 広志		
		茨城県土浦市神立町502番地 株式会社日		
		立製作所機械研究所內		
		(74)代理人 弁理士 鞠招 辰之		
		最終頁に続く		

(54)【発明の名称】 マニピュレータの遠隔制御装置

(57)【要約】

【目的】 スレーブアームを含んでなるマニピュレータ の遠隔操作において、オペレータの操作するマスタアー ムの操作性を向上させる。

【構成】 マスタアームを管理する操作系管理システムとスレーブアームを管理する作業系管理システムから構成され、各システムは、それぞれ環境モデルを参照して作業概念レベルの情報制御を自律分散的に行う複数の情報制御手段から構成され、かつ、それぞれが持つ前記環境モデルを実際の作業環境と等しくなるように、絶えず更新する手段を備えてなるマニピュレータ遠隔制御装置。

【効果】

【特許請求の範囲】

【請求項1】 中央処理装置と画像計測手段とオペレー タ提示用画面と入出力装置から構成される操作系管理シ ステムと、画像計測手段とスレーブアーム入出力装置と - 中央処理装置から構成される作業系管理システムとから 構成されるマニピュレータの遠隔制御装置において、作 業系管理システムは操作系管理システムから伝送される 作業メッセージに基づいて作業を実施し、操作系管理シ ステムと作業系管理システムが独立に作業を管理し、操 作系管理システムおよび作業系管理システムでそれぞれ 10 独立に相互の状況を計算することを特徴とするマニピュ レータの遠隔制御装置。

【請求項2】 中央処理装置と画像計測手段とオペレー タ提示用画面と入出力装置から構成される操作系管理シ ステムと、画像計測手段とスレーブアーム入出力装置と 中央処理装置から構成される作業系管理システムとから 構成されるマニピュレータの遠隔制御装置において、作 業系管理システムは操作系管理システムから伝送される 作業メッセージに基づいてスレーブアームによる作業を 実施し、操作系管理システムは該作業メッセージに基づ 20 くスレーブアームの動作を前記作業系管理システムとは 独立にシミュレートして前記オペレータ提示用画面に表 示することを特徴とするマニピュレータの遠隔制御装 置。

【請求項3】 操作系管理システムと作業系管理システ ムが、それぞれ、自システムの各構成要素がアクセスす ることができる環境モデルを格納した記憶手段と、操作 系管理システムが持つ記憶手段に格納されている環境モ デルと作業系管理システムが持つ記憶手段に格納されて いる環境モデルを常に等しくさせるように働く画像計測 手段とを備えてなることを特徴とする請求項1または2 に記載のマニピュレータの遠隔制御装置。

【請求項4】 前記環境モデルは、物体の形状と、物体 を操作する上で特徴となる事項を記述した部分と、物体 固有の名称と、物体の位置、姿勢と、他の物体との接続 関係と接続状態を記述した部分とから構成されていると とを特徴とする請求項3に記載のマニピュレータの違隔 制御装置。

【請求項5】 作業を指示する操作系管理システムと、 該指示に基づいてスレーブアームの作業を制御する作業 40 系管理システムとを含んでなるマニピュレータの遠隔制 御装置において、操作系管理システムから作業系管理シ ステムへの作業の指示は、作業概念レベルで記述された 作業ネットワークを用いて行われることを特徴とするマ ニピュレータの遠隔制御装置。

【請求項6】 前記作業ネットワークは、少なくとも作 業の名称と作業を実行するために必要なデータとを含ん で構成され、階層構造で記述されることを特徴とする請 求項5に記載のマニピュレータの遠隔制御装置。

テムは、操作系管理システムの各構成要素が作業系管理 システムに備えられた記憶手段に、作業系管理システム の各構成要素が操作系管理システムに備えられた記憶手

段に、それぞれアクセスでき、各記憶手段に格納された 環境モデルを読み出し、書き込みできる手段を備えて成 るととを特徴とする請求項3または4に記載のマニピュ

レータの遠隔制御装置。

【請求項8】 スレープアームの作業を制御する作業系 管理システムに通信手段を介して作業を指示する操作系 管理システムと、該指示に基づいてスレープアームの作 業を制御する作業系管理システムとを含んでなるマニビ ュレータの遠隔制御装置において、作業系管理システム は、通信異常事態発生を検知する手段と、状態遷移図に より表現される安全管理ルールを記憶する手段と、通信 異常事態発生が検知されたとき前記状態遷移図を参照し てスレープアームの動作を指示する手段とを備えている ととを特徴とするマニピュレータの遠隔制御装置。

【請求項9】 操作系管理システムは、作業系管理シス テムで制御される動作に必要な情報の管理を、オペレー タ提示用画面との対話的操作を用いて行う手段を備えて いることを特徴とする請求項1乃至4及び7のうちのい ずれかに記載のマニピュレータの遠隔制御装置。

【請求項10】 操作系管理システムは、作業対象物体 を環境モデルへ入力する手段と、作業対象物体が前記入 力する手段を介して環境モデルへ入力される際の位置の あいまいさと形状のあいまいさを処理する画像計測手段 とを備えることを特徴とする請求項3,4及び7のうち のいずれかに記載のマニピュレータの遠隔制御装置。

【請求項11】 操作系管理システム及び作業系管理シ ステムの各構成要素は、前記環境モデルにアクセスしな がら、自律分散的に動作するように構成されたものであ ることを特徴とする請求項3、4、7及び10のうちの いずれかに記載のマニピュレータの遠隔制御装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はオペレータが操作するマ ニピュレータに係り、特に人間にとって耐え難い環境お よび宇宙空間内での作業を確実に行なうに好適なマニビ ュレータの遠隔操作装置に関する。

[0002]

【従来の技術】従来のマニピュレータは、複雑なマニピ ュレータの動作を行なうのをオペレータの技術に頼る傾 向があった。例えば、マスタースレーブ形マニピュレー タにおいては、マスターアームとスレーブアームとが同 一又は相似形になっているため、マスターアームが人間 の操作に不適な構造であったり、オペレータ自身がマス ターアームの操作の邪魔になってしまうほど大きかった り、また細かい操作ができないことがあった。

【0003】また、遠隔操作においては、マニピュレー 【請求項7】 操作系管理システム及び作業系管理シス 50 タ自身がオペレータの視野を遮ぎり、オペレータは顔を

左右に動かしながら操作しなければならない場合があった。このため、ITVなどの利用も行なわれたが、1つの画像では充分な視野が得られず、またテレビカメラを多数配置すると画像とマニピュレータとの関係が変わずり、オペレータが操作を誤ることがあった。

【0004】最近では、コンピュータ技術の急速な進歩により、マニピュレータやロボットの制御に計算機が取り入れられ、制御が高度化して来ている。その一例として、アイ・イー・コン'84(IECON'84)の第40頁〜第45頁に示されるように、形状の異なるマスタ10ーアームとスレーブアームとの手先の運動を計算機を用いた高速座標変換演算により1対1に対応させているものがある。

[0005]

【発明が解決しようとする課題】上述した従来技術は、まだ個々の狭い技術分野にとどまり、マニピュレータを総合的な見地から検討して人間を含めたシステム技術として完成していないといえる。例えば、上述の高速座標変換演算技術の場合でも、マスタアームとスレーブアームとにおいて、それぞれの基準座標と各アーム手先の位20置との2点を一致させているため各アームの運動の比率は一定となっている。このため、スレーブアームによって精密な作業を実現する場合には、マスターアームをスレーブアームの要求動作と同様に細かな微小動作を行なわればならず、またこれと逆にスレーブアームが大きな動作を必要とする場合には、同様にマスタアームを大きく動作しなければならない。

【0006】とのように、スレーブアームの作業は、オペレータに大きな負担をかけ、その技術により作業の実現性が決められることになる。

【0007】とのような、オペレータの負担に加え、ITVを見ながら操作するときには、画像を見てテレビカメラの方向を考えマスターアームを操作することになり精神的な負担も大きくなる。

【0008】また、宇宙の衛星軌道上を移動する例えば 人工衛星の機器を地上からマニピュレータを介して操作 するような場合、地上のマスターアームが操作されてか らその操作信号が衛星に到達し、マニピュレータの画像 が地上に到達するまでに数秒の時間が経過する。そのた め、地上で監視している画像が実際の状態よりも時間的 に前の状態を示すととになり、本当はマニピュレータの アームが必要な位置にすでに到達しているのにまだ到達 していないと錯覚して、アームをオーバランさせるよう なことになる。

【0009】本発明の目的は、オペレータの操作するマスタアームの操作性を向上させることのできるマニピュレータの遠隔操作装置を提供するにある。

[0010]

【課題を解決するための手段】上記目的は、オペレータ が操作する操作系管理システムと、この操作系管理シス 50 テムから出される作業指示に基づいて作業を実施するマニピュレータを制御する作業系管理システムが、それぞれ個別に中央処理装置を持ち、個別に作業場所の状態や作業対象物の状態を表現する環境モデルを管理して、作業系管理システムは操作系管理システムから出された作業指示に従って作業を実施するとともに、操作系管理システムが作業系管理システムが行う演算と同様の演算を作業系管理システムと独立に実施し、演算結果を表示することにより違成される。

[0011]

【作用】オペレータが操作する操作系管理システムと、スレーブアームを制御する作業系管理システムが、それぞれ個別に中央処理装置を持ち、個別に環境モデルを管理して、操作系管理システムと作業系管理システムが独立に相互の状況を計算することにより、それぞれが管理している環境モデルを一致させる。それぞれが管理している環境モデルを一致させる。それぞれが管理している環境モデルを一致させる。とにより、操作系管理システムと、作業系管理システムとの間で作業イメージレベルの通信を行うことが可能になる。また、この様なシステムにすることにより、操作系管理システムにおいて、スレーブアームの実時間における動作をシミュレートして環境モデルとともに画面表示することが可能となる。実時間での動作をシミュレートして画面表示することにより、通信遅延による操作性の劣化を無くし、通信の信頼性を高めることができる。

[0012]

【実施例】

(第1の実施例)以下、本発明の第1の実施例を図面を 参照して説明する。

30 【0013】まず、本発明の装置の一実施例を説明する に先立って、本発明の動作原理を図7を用いて説明する。図7に示したマスタースレーブマニピュレータは、マスタアーム201と、該マスタアーム201と異なる 構造のスレーブアーム202で構成されている。いま、マスタアーム201の基準座標系をM、この基準座標系 Mからマスタアーム201の手先までの座標変換マトリクスをT。m、スレーブアーム202の基準座標系をS、この基準座標系Sからスレーブアーム202の手先までの座標変換マトリクスをT。sとし、前述した座標で換マトリクス下。m、T。s間でのスケール変換マトリクスをKとすると、座標変換演算の手順は次のようになる。

【0014】すなわち、マスターアーム201の各リンクのパラメータと各リンク連結軸の位置とから前述したマスタアーム手先までの座標変換マトリクスT。mを求めることができる。次にマスタアーム手先までの座標変換マトリクスT。mとスレーブアーム手先までの座標変換マトリクスT。sとの間でのスケール変換及び基点シフトを含んだ座標変換演算は次の(1)式で表わされる。

0 (0015)

$$T, s = K \cdot T, m$$

CCでKは [0016] 【数1】

$$K = \begin{bmatrix} a & 0 & 0 & d \\ 0 & b & 0 & e \\ 0 & 0 & c & f \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \dots \dots (2)$$

 $\overline{2}$

 $\{0017\}$ とすると、d = e = F = 0のとき T_{e} sは T。血をマスタアーム201の基準座標系Mのx軸方向 にa倍、y軸方向にb倍、z軸方向にc倍にしたものと なる。そして3軸方向に均等に拡大する場合にはa=b = c とすればよいことになる。そして、前述した(1)式 により得られた変換マトリクスT。Sに対し、スレーブ アーム202のリンクパラメータを与え、スレープアー ムの各軸の目標値を逆座標変換演算により求める。との ようにして得られたスレープアーム202の各軸の目標 値に対し、各軸ごとにサーボ制御すれば、各アームの可 20 動領域内では、アームの形状に係りなくマスタアーム2 01の運動を任意に拡大または縮小してスレーブアーム 202を操作することができる。

【0018】次に、a=b=c=1のとき、T。sはT。 mをマスタアーム1の基準座標系Mのx軸方向にd、y 方向にc、z方向にf平行移動したものとなる。そし て、前述した(1)式により得られた変換マトリクスT。 sに対し、スレーブアーム202のリンクパラメータを 与え、スレープアーム202の各軸の目標値を逆変換演 算により求める。このようにして得られたスレープアー 30 ム202の各軸の目標値に対し、各軸ごとにサーボ制御 すれば、マスタアームの基準点とスレーブアームの基準 点を任意にずらして操作することができる。

【0019】次に上述した本発明の原理にもとづいて、 本発明の装置の一実施例を図4を参照して説明する。図 4に示すマスタースレーブマニピュレータは、マスタア ーム201と、該マスタアーム201と異なる構造を持 ち作業対象物301に作業するスレーブアーム202で 構成されている。中央処理装置101は座標変換演算お よび両アームの制御等を行う。本発明の特長である座標 40 変換追加装置218は、入出力装置217のキーボード からの入力に基づき(2)式のKを作り、中央処理装置1 01に(1)式に示す座標変換を追加する指示を与える。 マスタアーム201の入出力装置204は、マスタアー ム201の各関節角度等を中央処理装置101へ入力 し、また中央処理装置101からマスタアーム201へ の指令値をサーボ増幅し、マスタアーム201の各関節 のアクチュエータを駆動する働きをする。スレープアー ム202の入出力装置206は、スレーブアーム202

... (1)

央処理装置101からスレーブアーム202への指令値 をサーボ増幅し、スレーブアーム202の各関節のアク チュエータを駆動する働きをする。

6

【0020】ジョイスティック207は、中央処理装置 101内部の切換えにより、マスタアーム201の代り にスレープアーム202、及び後述するアニメーション 画像に対する指令値を出す。ジョイスティック207の 入出力装置208は、ジョイスティック207の傾き角 10 の信号等を中央処理装置101へ入力し、また、中央処 理装置101からジョイスティック207への力帰還信 号をサーボ増幅し、ジョイスティック207のアクチュ エータを駆動する働きをもつ。画像入力装置209は、 スレーブアーム202の作業を種々の方向から監視す る。画像処理装置210は、画像入力装置209で入力 した画像にFFT等の演算を施し、パターン同定等を行 う。シミュレーション手段211は、コンピュータグラ フィックによってスレープアームの状態をリアルタイム で表示するアニメーション用計算機である。オペレータ 提示用画面103は、シミュレーション手段211によ るアニメーション画像を表示する他、アニメーション画 像と画像入力装置209で入力した実画像を重ねて表示 することもでき、さらにモード切換等のメニュー表示を 始め、中央処理装置101及びシミュレーション手段2 11とのマンマシンインタフェースの対話用出力にも用 いられる。テレビモニタ213は、画像入力装置209 の映像を表示する。入出力装置217はスケール変換定 数、基点シフト指示メニューの入力を始め、中央処理装 置101及びシミュレーション手段211とのマンマシ ンインタフェースの対話メッセージ入力に用いられる。 【0021】次に本実施例の信号の流れの主なものを、 操作系管理システム部分を示す図2及び作業系管理シス テム部分を示す図3を用いて説明する。なお、実際のも のは、マスタアーム、スレープアーム、ジョイスティッ ク共に6自由度を持つが、以下、簡単のため3自由度と して説明を行う。

【0022】マスタアーム201の各関節軸には位置検 出センサ214A~214Cが設けられており、該位置 検出センサ214A~214Cの信号はマスタアーム入 出力装置204で処理され、シミュレーション手段21 1へ入力される。スレーブアーム202の各関節軸には 位置検出センサ215A~215Cが設けられており、 該位置検出センサ215A~215Cの信号はスレーブ アーム入出力装置206で処理され、マニピュレーショ ン手段230へ入力される。マニピュレーション手段2 30では一般化座標への座標変換演算を行い、さらに座 標変換追加装置218の指示に基づき、第2一般化座標 への座標変換を行うことにより、スレーブアーム202 への指定値を決定する。との信号はスレーブアーム入出 の各関節角度等を中央処理装置101へ入力し、また中 50 力装置206を経てスレープアーム202の各関節軸に

設けたアクチュエータ21.6A~21.6Cを駆動する。 又同時に、マニピュレーション手段230からシミュレーション手段211へ信号が送られ、オペレータ提示用 画面103上にスレーブアームのアニメーション画像が 表示される。

【0023】ジョイスティックにはその角度を検出する位置検出センサ217A~217Cが設けられており、位置検出センサ217A~217Cの信号はジョイスティック入出力装置208で処理され、シミュレーション手段211 10ではスレーブアームへの指令を決定する際に、外部からの切換信号に基づき、マスタアームとジョイスティックのいずれからの信号を参照するかを決定する。また、画像入力装置209で入力された画像は、画像処理装置210でFFT、パターン同定が行われた後、実画像をテレビモニタ213で表示すると同時にシミュレーション手段211へ送られ、必要に応じてオペレータ提示用画面103において、アニメーション画像に重ねて表示される。

【0024】次に、位置検出センサ214A~214C からの信号をマスタアーム入出力装置204で処理する 際の具体例を図5に示す。これはジョイスティック、ス レープアームのものに関しても同様である。 図5 におい て位置検出センサ214A~214Cとしては回転式バ ルス発生器を用いている。との位置検出センサ214A ~214Cからは90°位相のずれた1組のパルス信号 すなわちA相及びB相が回転角に応じて発生され、方向 判別回路401に入力されて回転角の方向判別が行われ る。一方A相またはB相の信号がカウンタ402に入力 され、パルス数がカウントされる。前記方向判別回路4 0-1 から出力される方向信号403はカウンタ402に 入力され、パルス数の増減の切換えを行う。したがっ て、カウンタ402の値は回転角の増減に対応して増減 するので、カウンタ402の出力404を外部から読み 込むことによって回転角を検知することができる。

【0025】図6は中央処理装置101の具体的な構成例を示す。この中にはデータの入出力制御及び加減算を行うプロセッサ501、三角関数表やマニピュレータのリンクバラメタなどのデータを格納するメモリ502、掛算器503及び割算器504がバス回路505を介して相互に接続されている。さらにこのバス回路506 A~506 Eが接続されている。インタフェイス回路506 A~506 Eには各アーム入出力装置206,204、ジョイスティック入出力装置208、シミュレション手段211 および座標変換追加装置218がそれを お接続されている。プロセッサ501はバス回路505を介してバス回路505に接続されている全ての機器にアクセスし、データを処理することができる。

【0026】次に上述した本発明の装置の一実施例の動 50

の作を説明する。マスタアーム201を動作させると、マスタアーム201の各関節角は位置検出センサ214A~214Cにより検出される。との検出信号はマスタアーム入出力装置204を介してシミュレーション手段211に入力される。シミュレーション手段211はマスタアーム201の手先座標系MCのマスタアーム基準度 標系Mに対する相対位置関係を座標変換マトリクスT。 mとして記憶しており、一般化座標への座標変換演算を行う。また座標変換追加装置218は、入出力装置104からの入力に基づき、マスタアーム201の手先運動

4からの入力に基づき、マスタアーム201の手先運動に対するスレーブアーム202の手先の運動の寸法比率すなわちスケール変換定数、およびマスタアーム201の先端の位置とスレーブアーム202の先端の位置の基準点のシフト量を示すマトリクスKを記憶しており、シミュレーション手段211に座標変換の追加を指示する。すると、シミュレーション手段211はマスタアーム座標変換マトリクスT。mに対しKを作用させる演算

を行い、スレーブアーム座標変換マトリクスT。sを得る。シミュレーション手段211は次に、スレーブアーム202の手先座標系SCのスレーブアーム基準座標系Sに対する相対位置がスレーブアーム座標変換マトリクスT。sに一致するようにしたときのスレーブアーム202の各関節軸目標値を逆座標変換演算により求め、これをスレーブアーム入出力装置206に出力する。

【0027】スレーブアーム入出力装置206はアクチ

ュエータ216A~216Cを駆動する。これにより、 マスタアーム201の手先の運動をスケール変換、基点 シフトあるいは両方を行ってスレーブアーム202の手 先の運動に伝達することができる。この結果、各アーム の可動領域内では、アームの形状に係りなく、マスタア ーム201の手先の運動を、任意に拡大または縮小して スレーブアーム202の手先に伝えることができ、マス タアーム201の操作に対してスレープアーム202を 細かく運動させたり、粗雑であるが大きく動作を与える ことができる。また、必要な場合、入出力装置104か らの入力による座標変換追加装置218の指令で、シミ ュレーション手段211は、スレーブアーム202を一 時的にマスタアーム201から切離して静止させてお き、操作者はマスタアーム201のみを任意の位置まで 動かすようにできる。マスターアーム201が所要の位 置まで動かされた状態で、座標変換追加装置218は、 マスタアーム201とスレーブアーム202の位置のず れ量を(2)式のd、e、fの部分に記憶しなおす。との 状態で再び入出力装置104の入力によってマスタアー ム201とスレーブアーム202を連動させることによ り、マスタアーム201とスレーブアーム202の動作 基準点を自由に設定し直すことができ、常にマスタアー ム201を操縦者にとって操作し易い位置で動かすこと

60 【0028】一方、ショイスティックの位置検出センサ

ができる。

217A~217Cからの信号は、ジョイスティック入 出力装置208を経てシミュレーション手段211に入 力される。シミュレーション手段211はこの信号を時 間的に積分し、ジョイスティック207の仮想的な手先 - 座標系JCのジョイスティック基準座標系Jに対する相 対位置関係を座標変換マトリクスT。」として記憶す る。そして、前述のT。sを求める際に、外部からの切 換信号によりT。mの代りにT。」を用いることにより、 ジョイスティック207を操縦することによりスレーブ アーム202を動かすことができる。マスタアーム20 10 1は、位置指令としてスレーブアーム202への指令を 出し、ジョイスティックは速度指令としてスレープアー ム202への指令を出すため、操作者は状況に応じて使 い易い方を選択することができる。ジョイスティック2 07を用いた場合も、スケール変換によってジョイステ ィックを倒した際のスレーブアームの移動速度を自由に 設定できる等の利点が生じる。

【0029】さらに、第2一般化座標、すなわち(2)式 のKT。mをスレーブアーム入出力装置206へ出力す 出力すると同時にシミュレーション手段211へ出力す ることにより、オペレータ提示用画面103において、 アニメーション画像として見ることができる。スレーブ アーム202を動かさずにアニメーション画像を示すこ とにより、スケール変換等の効果による動きを確認でき るので、危険な状況に陥いるととがない。

【0030】さらに、地上から宇宙にあるスレーブアー ムを操作するときには、通信の遅れ時間を利用し、実際 のスレープアームの動きより早く、シミュレーションさ れた画像を見ることができ、マスタアームの誤操作をチ ェックして修正することにも使用できる。もし、実際の (リアルタイムでの) スレーブアームの動きを知りたい ときには、アニメーション画像を通信の遅れ時間分だけ おくらして表示すればよい。

【0031】また、スレーブアーム202を動かすのと*

* 同時にアニメーションを表示した場合、アニメーション は任意の方向から見た場合の表示ができるので、操作性 は向上する。

【0032】また、画像入力装置209により入力され た画像はテレビモニタ213で表示する他、オペレータ 提示用画面103のアニメーション画像に重ね表示する ことができる。 これにより、より現実的な画像情報が得 られると共に、実画像においては手前の物体の影になっ て死角となる部分もアニメーション画像では表示できる ので、実画像とアニメーションがお互いの欠点を補い合 うととができる。

【0033】なお、この際座標変換追加装置218は第 2一般化座標への変換マトリックスKをアニメーション 画像が実画像にずれることなく重なるように決定する必 要がある。

【0034】さらに、図4に示したように、画像入力装 置209は複数あり、種々の方向からスレープアームを 見ているため、操作者がテレビモニタ213を見ながら 操作する際には、マスタアーム201との方向との対応 る代りに、あるいはスレープアーム入出力装置206へ 20 付けを常に頭においておかねばならず、基点シフト等を 行ううえでも困難となる。従って、スレーブアーム座標 変換マトリクスT。Sを得る際に、i番目の画像入力装 置209とスレーブアーム202の方向を補正する座標 変換マトリクスをRiとすると、

 $T_s s = R i \cdot K \cdot T_s m$

として、T。s を得ることにより、操作者は方向の差を 意識することなく、マスタアーム201を操作すること ができる。Ri・Kは座標変換追加装置218により与 えられる。

30 【0035】ととで、i番目の画像入力装置209の視 線の方向のロール角、ピッチ角、ヨー角をαί、βί、γ iとすると、Riは次式で与えられる。

[0036]

【数2】

$$Ri = \begin{bmatrix} \cos \gamma_i \cos \beta_i & \cos \gamma_i \sin \beta_i \sin \alpha_i & \cos \gamma_i \sin \beta_i \cos \alpha_i \\ -\sin \gamma_i \cos \alpha_i & +\sin \gamma_i \sin \alpha_i \end{bmatrix} 0$$

$$\frac{\sin \gamma_i \cos \beta_i}{\sin \gamma_i \cos \alpha_i} & \sin \gamma_i \sin \beta_i \cos \alpha_i \\ +\sin \gamma_i \cos \alpha_i & -\cos \gamma_i \sin \alpha_i \end{bmatrix} 0$$

$$0 & 0 & 0 & 1$$

【0037】とのような座標変換マトリックスRを導入 すると宇宙におけるスレーブアームの熱変形、慣性変形 に対応した信号をスレーブアームに与えることができ、 操作性が向上する。上記の目的の場合、アーム変形によ る先端の姿勢のロール角、ピッチ角、ヨー角をδ、ε、

くとし、ひずみによる x、y、 z 方向へのずれ位置を p、q、rとすると、

[0038]

【数3】

50

$$R \ i = \begin{bmatrix} \cos \zeta \cos \varepsilon & \cos \zeta \sin \varepsilon \sin \delta & \cos \zeta \sin \varepsilon \cos \delta \\ -\sin \zeta \cos \delta & +\sin \zeta \sin \delta & p \\ \sin \zeta \cos \varepsilon & \sin \zeta \sin \varepsilon \sin \delta & \sin \zeta \sin \varepsilon \cos \delta \\ +\cos \zeta \cos \delta & -\cos \zeta \sin \delta & q \\ -\sin \varepsilon & \cos \varepsilon \sin \delta & \cos \delta \cos \delta & r \\ 0 & 0 & 0 & i \end{bmatrix}$$

【0039】と表すことができる。

【0040】次に、本発明のもう一つの実施例を図7を 用いて説明する。との実施例はマスタアーム201の手 先の位置の微小変位に対し、スケール変換演算を行った ものを、スレープアーム202の手先の微小変位として スレーブアーム202に伝えるようにしたものである。 そして、図2、3に示す実施例と同様にマスタアーム2 01の基準座標系をM、基準座標系Mからマスタアーム 201の手先までの座標変換マトリクスT。m、スケー ル変換演算等のための変換マトリクスをKとする。また 20 位 d Q との間には次の関係がある。 スレープアーム202の基準座標変換マトリクスをT。 sとすると、座標変換演算の手順は次のようになる。す*

(J:ヤコビ行列)

今、マスタアーム201を微小運動MDさせたとき、そ の各関節軸の変位の変化をdQとし、マスタアーム20%

 $dT_s = JdQ$

 $dT_{\bullet}m = Jm \cdot dQm$

ここでdT₆mをスケール変換してスレープアーム20 2の手先の微小運動dT。sを次式から得る。

 $dT_{6}s = KdT_{6}m$

次にスレープアーム202の各関節軸の微小変位dQs をスレープアーム202のヤコビ行列Jsの逆行列1/☆ $dQs = 1/(Js) \cdot dT_s s$

上式で得られたスレープアーム202の各関節軸の微小 変位 d Q s をスレープアーム202の各関節軸の位置に 加え、これをスレーブアーム202の各関節軸のサーボ 制御回路の目標値とする。

【0045】次に上述した原理にもとついて本発明の制 御装置の他の実施例を図8を用いて説明する。なお、ジ ョイスティック207、画像入力装置209、シミュレ 40 ーション手段211等の取扱いについては、最初の例に 準じるので、ここではマスタアーム201とスレーブア ーム202の関係のみについて説明する。

【0046】図8において図2、3と同符号のものは同 一部分または相当する部分である。701は差分回路、 702は増分回路である。差分回路701はサンプリン グタイムにおけるセンサ2 1 4 A ~2 1 4 Cのセンサ信 号の変化分を検出する。中央処理装置101は前述した (3)~(6)式で示された計算を行い、スレーブアーム2 02の各関節軸の変化分を求め、この変化分を増分回路 50 との差から関節角の変化量 4 Q m を求める。次にテーブ

*なわち、マスタアーム201の各リンクパラメタとその 各関節軸の位置から座標変換マトリクスT。mが求めら れる。またスレーブアーム202の各リンクパラメタと その手先の位置を示す座標変換マトリクスT。Sが与え られれば、スレーブアーム202の各軸の目標値が求め られる。

【0041】今ある時点でマスタアーム201とスレー ブアーム202の運動を同期させるものとすると、手先 の位置の微小変位dT。とマニピュレータ各軸の微小変

[0042]

... (3)

※1のヤコビ行列をJとしたとき、マスタアーム201の 手先の微小運動 d T。nは次の式から得られる。

[0043]

★ [0044]

... (5)

☆(Js)を解くことにより求める。すなわち、

... (6)

702に出力する。増分回路702はスレーブアーム2 02の各関節軸毎に現在目標値に中央処理装置で求めた 変化分を入力する。スレープアーム入出力装置206は スレーブアーム202の各関節軸に設けたアクチュエー タ216A~216Cを駆動する。これらアクチュエー タ216A~216Cにより、スレーブアーム202は 駆動されるが、その移動量は検出器215A~215C によって検出され、スレーブアーム入出力装置206に フィードバックされる。その結果、マスタアーム201 の手先の運動をスケール変換してスレーブアームの手先 に伝達することができる。

【0047】上述した本発明の制御装置の他の実施例に おける演算回路の演算処理動作を図9を用いて説明す る。最初に、初期位置でスタートすると、マスタアーム 1の各関節の初期値を読み込んでおく。次にマスタアー ム1とスレーブアームの関節角を入力し、前回のデータ

ルを参照して三角関係を求め、マスタアーム1のヤコビ 行列Jmを計算する。関節角変化量dQmとヤコビ行列 Jmからマスタアーム1の手先変位dT。mを求める。 スケール変換定数Kは入力されたデータを用いて得る。 -マスタアームの手先変位dT。mにKを乗じてスレーブ アームの手先変位d T, s を求める。次にスレーブアー ムのヤコビ逆行列1/Jsを求める。このdT。sに1 /Jsを乗じることによりスレーブアームの各関節角変 位dQsを求めスレーブアームの関節角QsとdQsの 和をとってスレーブアームの各サーボ系に結果を出力す る。上記手続きを運転終了まで繰返し実行する。

【0048】この実施例によれば、図2、3に示す実施 例と同様な効果が得られると共に、マスタアーム201 とスレープアーム202の手先位置がどこにあっても同 期スタートすることができ、かつ任意のスケール変位が 可能である。

【0049】図11は本発明の装置のさらに他の実施例 を示すもので、との図において、図2,3と同符号のも のは同一部分である。この実施例は、スレーブアーム2 変化に対応して、マスタアーム201の運動に対するス レープアーム202の運動のスケール変換の定数を変え るようにしたものであり、画像入力装置209にそのズ ームレンズの動きを検出するセンサ1001を設け、と のセンサ情報を座標変換追加装置218に入力する。座 標変換追加装置218はこのセンサ情報と予め求めてお いたデータを用いて補正演算を行うことにより、スケー ル変換マトリクスKを決定し、前述した実施例と同様に 中央処理装置101に座標変換の追加を指示し、中央処 理装置101はスレーブアーム202の運動をマスタア 30 ーム201のそれに対してスケール変換動作させるため の目標値を演算する。図11において、213はテレビ モニタである。

【0050】次に上述した本発明の装置の他の実施例の 動作を図10に示すフローチャートを用いて説明する。 まず初期位置でスタートすると、マスタアーム201の 各関節角が読み込まれる。次にテーブルを参照して三角 関数の値が求められ、得られた三角関数の値を用いて手 先座標T。mが求められる。 前述したように画像入力装 置209のズームレンズと同期させる場合、ズームレン 40 ズに装着したセンサ1001によりズーム比が検出さ れ、スケール変換マトリクスドが決定される。ズームレ ンズと同期しない場合はあらかじめ入力されたスケール 変換マトリクスKが用いられる。次にマスタアーム20 1の手先位置T。mにKを乗じてスレープアーム202 の手先位置T。sを求める。CのT。sより逆座標変換演 算でスレーブアーム202の各関節の目標値を求め、と れをスレーブアームの各サーボ系に出力する。上記操作 を運転終了まで繰返し実行する。

【0051】このように構成したことにより、画像入力 50 2と、画像計測手段102に接続されたカメラ209、

装置209のズーム比を任意に変えても、マスタアーム 201の手先の運動とテレビモニタ213上のスレーブ アーム202の手先映像の運動の大きさの比率を常に一 定に保つことができる。その結果、常に適切な操作感覚 が得られ、操作性が向上する。

【0052】(第2の実施例)

1. 第2の実施例説明

図1を用いて本発明の第2の実施例を説明する。

【0053】本実施例は、操作系管理システムと作業系 10 管理システムとからなり、操作系管理システムは、中央 処理装置101と、中央処理装置101に接続された画 像計測手段102と、中央処理装置101と画像計測手 段102に接続されたグラフィックディスプレイ103 と、中央処理装置101に接続された入出力装置104 から構成され、作業系管理システムは、中央処理装置 1 01と、中央処理装置101に接続された画像計測手段 102及びスレーブアーム105とから構成される。と のシステムは、例えば軌道上にある作業環境モデルを操 作系管理システムと作業系管理システムの中央処理装置 02の手先を投影する画像入力装置209のズーム比の 20 101が個別に管理している。実際に作業が行われる作 業環境(例えば軌道上の宇宙船内)とこの作業環境をシ ミュレートした作業環境モデル(コンピュータ内に構築 された環境)とは、画像計測結果に基づき常に等しくな るように中央処理装置で管理されている。また、地上か らの命令で軌道上のスレーブアームが作業を行うときに は、軌道上での作業の進行に合わせて、操作系管理シス テムの中央処理装置が作業のシュミレーションを行うと とにより、作業環境モデルと作業環境とを一致させてい る。グラフィックディスプレイ103は、システムの状 況をオペレータに示し、入出力装置104を用いたオペ レータとシステムとの対話的操作のためのインターフェ ースの役割を果たしている。スレーブアーム入出力装置 105は、スレーブアームを制御するための情報の入出 力を行っている。

【0054】2. 第2の実施例の概要説明 図2及び図3を用いてシステム構成を説明する。 【0055】本システムは、操作系管理システム10 6、及び、作業系管理システム107から構成される。 前記操作系管理システム106は、シミュレーション手 段211と、該シミュレーション手段211に接続され た画像計測手段102、オペレータ提示用画面103、 入出力装置104、ジョイスティック入出力装置20 8, 228, 2 i 8、ジョイスティック207, 2 i 7、マスタアーム入出力装置204,224,2j4、 マスタアーム201、2j1とを含んで構成されてい る。前記作業系管理システムは、マニピュレーション手 段230と、該マニピュレーション手段230に接続さ れたスレーブアーム入出力装置206,226,2m 6、スレーブアーム202、2m2、画像計測手段10

229、2n9とを含んで構成されている。なお、前記ショイスティック入出力装置、前記ショイスティック、前記マスタアーム入出力装置、前記マスタアーム、前記スレーブアーム入出力装置、前記スレーブアーム、前記・画像計測手段、前記カメラは複数あっても差し支えない。

【0056】また、シミュレーション手段211とマニピュレーション手段230は通信手段により相互に通信可能に接続されている。

【0057】本実施例では、宇宙作業用機器や作業対象 10 物を含む軌道上系で行なわれる作業の合理化を目的として、地上の操作系管理システム(以下、地上系管理システムもしくは単に地上系という)に設置された、オペレータ提示用画面103との対話的操作を通して、作業に必要なデータベースを自律的に生成する。

【0058】(1)環境モデルの作成

この作業は軌道上の作業環境と地上系が持っている環境 モデル1107(5.3環境モデルの説明参照)を等し くするために、まず、環境モデル1107に登録されて いない物体を新たに登録する作業である。

【0059】オペレータが、マウス、もしくはキーボード等の入出力装置104を用いて、環境モデル1107 に登録したい物体の名称と、およその位置を与えると、

「建設装置(特開平2-209562)」記載の画像計測手段102が、軌道上に置かれた物体の、正確な位置と姿勢を計測して、環境モデル1107に登録する。以後、前記画像計測手段は、1秒以内の周期で登録物体の位置姿勢計測を継続し、環境モデル1107を絶えず更新する。前記画像計測手段は、地上系管理システム106と、操作系管理システム(以下、軌道上系管理システムしりには単に軌道上系という)107に組みこまれ、カメラ209、229、2n9が取り込んだ画像から作業対象物体の位置、姿勢の計測を行う。

【0060】(2)軌道上作業の計画

軌道上作業の計画は、オペレータが作成した環境モデル 1107上で作業概念レベルの表現(以後作業メッセー ジと記す)により、オペレータ提示用画面103との対 話的操作で行われる。地上系管理システム106は、オペレータが入出力装置104を用いて入力した作業メッセージから、作業ネットワークを作成する。作業ネットワークは、作業環境の微小変動や、メカ的に発生する、誤差の影響を受けない程度に抽象化された記述方式を用いているので、ロボット言語よりも長時間保存することができる。

【0061】(3)地上系と軌道上系の情報通信 地上系管理システム106から軌道上系管理システム1 07へは、作業ネットワーク、地上系で観測された軌道 上系環境データ(作業対象物体名、物体位置姿勢)が送 られる。軌道上系から地上系へは、画像データ、軌道上 系で観測された軌道上系環境データ(作業対象物体名、 物体位置姿勢、スレーブアーム位置姿勢)が送られる。 【0062】(4)執道上系による計画作業の実行と地 上系での作業監視

16

地上系のシミュレーション手段211及び軌道上系のマ ニピュレーション手段230をそれぞれ示す図12と図 13を参照して軌道上系による計画作業の実行と地上系 での作業監視について説明する。環境モデル1107を ベースにして、軌道上系と地上系で互いに独立して作業 ネットワークが展開され、ロボット言語が生成される。 ロボット言語は、画像計測値に基づいてダイナミックに 生成されるデータである。ロボット言語は、即、ロボッ トの関節角度の時系列データに変換され、地上系では作 業シミュレーションを行ない、軌道上系ではロボットを 動作させる。地上系で行なわれる作業のシミュレーショ ンは、軌道上系が実際に行なっている作業の監視用に用 いられる。システムに異常が発生したときには、地上系 監視手段1104、軌道上系監視手段1204が単独 で、あるいは、協調して(通信異常は協調して発見でき る)、異常個所を検出し、それに応じて対応する。

20. 【0063】3. 操作系管理システム (地上系管理システム)

3. 1 構成の説明

地上系管理システム106のシミュレーション手段21 1は、図12に示されているように、オフラインシミュ レータ1100と、オフラインシミュレータ1100に 接続されたオンラインシミュレータ1101及び地上系 監視手段1104と、オフラインシミュレータ1100 及びオンラインシミュレータ1101に接続された環境 モデル管理手段1103と、オフラインシミュレータ1 100及び環境モデル管理手段1103に接続されたア ニメータ1102と、オフラインシミュレータ1100 に接続されたデータ受信装置1105と、オンラインシ ミュレータ1101に接続されたデータ送信装置110 6と、環境モデル管理手段1103に接続された環境モ デル1107とを含んで構成される。前記オフラインシ ミュレータ1100は、作業ネットワーク生成手段11 08と作業ネットワーク生成手段1108に接続された インターフェース制御手段1109とから構成される。 前記オンラインシミュレータ1101は、作業ネットワ ーク管理手段1110と、該作業ネットワーク管理手段 1110に接続されたロボット言語生成手段1111 と、ロボット言語生成手段1111に接続されたロボッ ト言語解釈手段1112とから構成される。前記環境モ デル管理手段1103は、クラスフレーム検索手段11 13と、クラスフレーム検索手段1113に接続された インスタンスフレーム発生手段1114と、インスタン スフレーム発生手段1114に接続されたインスタンス フレーム更新手段1115とから構成される。前記環境 モデル1107 (5. 3環境モデルの説明参照) は、ク 50 ラスフレームとインスタンスフレームから構成される。

18

【0064】3.2機能の説明

オフラインシミュレータ1100は、環境モデル1107の作成と、軌道上作業計画の作成とをオペレータ提示用画面103との対話的操作を用いて行なうための機能・を備える。作業ネットワーク生成手段1108は、入出力装置104を用いてオペレータが入力した作業メッセージに基づいて作業ネットワーク(5.2作業ネットワークの説明参照)を生成する。インターフェース制御手段1109は、オペレータとオペレータ提示用画面103との対話的操作を制御する(制御の詳細は、7.オペ10レータ提示用画面の項参照)。

【0065】オンラインシミュレータ1101は、作業ネットワークで表現された軌道上作業を実行するためのデータを生成する。作業ネットワーク管理手段1110は、作業ネットワークを管理し、オペレータの要求に応じて、ロボット言語生成手段1111は、作業ネットワークに基づいてロボット言語を生成する。ロボット言語解釈手段1112は、ロボット言語を関節角度の時系列データに変換する。

【0066】環境モデル管理手段1103は、インタフ ェース制御手段1109を介して入力されるオペレータ の指示、画像計測手段102によって入力される計測デ ータ、軌道上作業の実行に伴う作業環境の更新などによ って、作業環境と環境モデル1107との間に矛盾が起 こらないように環境モデル1107を管理する。 クラス フレーム検索手段1113は、入出力装置104を用い て、インターフェース制御手段1109を介してオペレ ータが入力する作業対象物体名すなわちクラス名から、 クラスフレーム(5.3環境モデルの説明参照)を検索 する。インスタンスフレーム発生手段1114は、検索 されたクラスに属するインスタンスを発生する。インス タンスフレーム更新手段1115は、画像計測値や、イ ンターフェース制御手段1109や、ロボット言語解釈 手段1112から渡されるデータに基づいて、インスタ ンスフレームを更新する。

【0067】アニメータ1102は、環境モデル1107に基づいてグラフィックアニメーションを作成し、オペレータ提示用画面103に表示する。データ受信装置1105は軌道系のマニピュレーション手段230から40送られてくるデータを受信する。データ送信装置1106は前記マニピュレーション手段230ヘデータを送信する。地上系監視手段1104は、常にシステムの動作状態を監視して、異常があればオフラインジミュレータ1100へ通知する。

【0068】3.3動作の説明

次に、環境モデル1107の作成時のシステムの動作を 説明する。環境モデル1107の作成時には、オペレー タ割込みによる対象指示プロセスと、システムによる対 象物体自動計測プロセスが同時に機能している。ここ で、1つのプロセスは複数のプロセスにより階層化されて構成されているが、個々のプロセスは自律分散化している。すなわち、個々のプロセスは、ある条件が満たされたときだけ起動し、なんらかの作業をする。この様なシステムでは、プロセス間の実行順序(流れ図)は存在しない。

【0069】そとで、まず、オペレータによる対象指示 プロセスを説明する。インタフェース制御手段1109 は、アニメータ1102を通して、対話メッセージとコ マンドメニューをオペレータ提示用画面103に出力す る。すると、オペレータは、オペレータ提示用画面10 3に表示された対話メッセージに従って、入出力装置1 04を用いて作業対象物体クラス名称を入力する。との クラス名称は、インターフェース制御手段1109を介 して、環境モデル管理手段1103へ渡される。環境モ デル管理手段1103では、クラス名称に相当するクラ スフレーム(5.3環境モデルの説明参照)を環境モデ ル1107から検索し、クラスに属するインスタンスフ レーム(5.3環境モデルの説明参照)を生成して環境 モデル1107に追加する。一方、アニメータ1102 は、常に環境モデルを描画データに変換して、オペレー タ提示用画面103に表示しているので、環境モデルの 更新結果(この場合は作業対象物体の登録状況)は、 即、オペレータ提示用画面103に反映される。

【0070】マウスによる作業対象物体の位置修正を行なうときには、インタフェース制御手段1109が、マウス座標を3次元座標(作業対象物体位置座標)に変換させる。すると、インスタンスフレーム更新手段1115は、このデータをもらって、生成したインスタンスの位置スロット(5.3環境モデルの説明参照)を更新する。

【0071】次にシステムによる対象物体自動計測プロセスについて説明する。上記のプロセスが働いていないときにはインターフェース制御手段1109から出される画像計測要求に基づいて、画像計測手段102が、作業対象物体の位置姿勢を自動計測する。すると、インスタンスフレーム更新手段1115は、この計測値に基づいて、生成したインスタンスフレームの位置、及び姿勢スロットを更新する。すると、アニメータ1102は、これらの更新状況をオペレータ提示用画面103に出力する。

【0072】つぎに、軌道上作業の計画と計画作業の実行時のシステムの動作を説明する。

【0073】インタフェース制御手段1109が、アニメータ1102を介して、オペレータ提示用画面103 に対話メッセージとコマンドメニューを表示する。これに従って、オペレータは、入出力装置104を用いて、作業メッセージを入力する。インタフェース制御手段1109は、入力された作業メッセージを受取り、作業ネットワーク生成手段1108に渡す。すると作業ネット

ワーク生成手段1108は、作業メッセージを解釈し て、作業ネットワークを生成する(5.2作業ネットワ ークの説明参照)。生成された作業ネットワークは、作 **業ネットワーク管理手段1110に記憶される。作業ネ** - ットワーク管理手段1110は、オペレータからの作業 実行要求を受け取ると、ただちに、指定された作業ネッ トワークをロボット言語生成手段1111に渡す。ロボ ット言語生成手段1111は、作業環境モデル1107 を参照しながら、作業ネットワークを動作スキーマ(動 作の最小単位のこと、詳細は5.2で述べる)のレベル 10 にまで展開してからロボット言語に変換する。得られた ロボット言語はロボット言語解釈手段1112に渡さ れ、ロボット言語解釈手段1112は、ロボット言語を 解釈して、スレープアーム・シミュレータを動かすため の関節角の時系列データを生成し、インスタンスフレー ム更新手段1115に渡す。インスタンスフレーム更新 手段1115による環境モデル1107のインスタンス フレーム更新状況は、即、アニメータ1102を介し て、オペレータ提示用画面103に表示される。このと き、オペレータは、オペレータ提示用画面103を見な 20 がら、軌道上に設置されたロボットの作業状況を監視す ることができる。ロボット言語を生成する過程で、画像 計測要求がでた場合には、計測結果に基づいて環境モデ ル1107を修正し、この環境モデル1107をもとに してロボット言語に変換する。

【0074】地上系監視手段1104は、システムの動作状態(異常の有無)を定期的だオフラインシミュレータ1100に通知する。また、地上系監視手段1104は、前記オフラインシミュレータから非常停止命令を受信すると、ただちに、システムを停止させる。

【0075】4. 作業系管理システム (軌道上系管理システム)

4.1 構成の説明

軌道上系管理システム107のマニピュレーション手段 230は、オンラインシミュレータ1101と、オンラ インシミュレータ1101に接続された環境モデル管理 手段1103, スレーブアーム制御装置1216及びデ ータ受信装置1205と、スレーブアーム制御装置12 16に接続されたデータ送信装置1206と、軌道上系 監視手段1204と、環境モデル管理手段1103に接 40 続された環境モデル1107とを含んで構成されてい る。前記オンラインシミュレータ1101は、作業ネッ トワーク管理手段1110と、作業ネットワーク管理手 段1110に接続されたロボット言語生成手段1111 と、ロボット言語生成手段1111に接続されたロボッ ト言語解釈手段1112とから構成される。前記環境モ デル管理手段1103はインスタンスフレーム更新手段 1115を含んで構成され、画像計測手段102に接続 される。前記環境モデル1107(5.2参照)は、ク ラスフレームと、インスタンスフレームから構成され

る。データ受信装置1205とデータ送信装置1206 は、地上系のシミュレーション手段211のデータ送信 装置1106及びデータ受信装置1105とそれぞれ通 信可能となっている。スレーブアーム制御装置1216 には、衛星動作手段260及びスレーブアーム入出力装 置105が接続される。

【0076】4.2機能の説明

オンラインシミュレータ1101は、作業ネットワークを用いて、軌道上作業を実行するためのデータを生成する。作業ネットワーク管理手段1110は、作業ネットワーク管理手段1110は、作業ネットワークを管理し、オペレータ、あるいは、軌道上系監視手段1204からの要求(6.システムの安全管理参照)に応じて、ロボット言語生成手段1111にで選す。ロボット言語生成手段1111は、作業ネットワークからロボット言語を生成し、ロボット言語解釈手段1112は、ロボット言語を関節角度の時系列データに変換する。環境モデル管理手段1103は、画像計測手段102による計測データや、軌道上作業の実行に伴う作業環境の更新に対して、作業環境と作業環境モデル1107が常に等しくなるように環境モデル1107を管理する。

【0077】データ受信装置1205はシミュレーション手段211から送られてくるデータを受信する。データ送信装置1206は前記シミュレーション手段へデータを送信する。軌道上系監視手段1204は、常にシステムの動作状態を監視して、異常があれば、オフラインシミュレータ1100へ通知する。スレーブアーム制御装置1216は、スレーブアーム制御データを作成し、スレーブアーム入出力装置105へ制御データを渡す。スレーブアーム人出力装置105へ制御データを渡す。スレーブアーム人出力装置105へ制御データを渡す。ストーブアーム制御禁用1216は、深熱地であるにより

30 スレーブアーム制御装置1216は、姿勢制御を行う場合、姿勢制御データを作成し衛星動作手段260にわたす。制御データ生成方法に関しては「可動物を備えた人工衛星の制御装置」(特願平)に記載されている方法が適用可能である。

【0078】4.3動作の説明

作業ネットワーク管理手段1110は、オペレータから作業ネットワーク実行要求を受け取ると、作業ネットワークをロボット言語生成手段1111に渡す。ロボット言語生成手段1111に渡す。ロボット言語生成手段1111は、環境モデル1107を参配しながら、作業ネットワークを動作スキーマ(動作の最小単位のこと、詳細は5.2で述べる)のレベルにまで展開してからロボット言語に変換する。ロボット言語を生成する過程で、画像計測要求がでた場合には、計測結果に基づいて環境モデル1107を修正して、これをもとにしてロボット言語に変換する。得られたロボット言語は、ロボット言語解釈手段1112と、スレーブアーム制御装置1216に渡される。ロボット言語解釈手段1112は、ロボット言語を解釈して、スレーブアームを動かすための関節角の時系列データを生成し、インスタンスフレーム更新手段1115に渡す。また、スレーブ

アーム制御装置1216が、姿勢制御を行う場合、姿勢 制御データを作成し、衛星動作手段260にわたす。ス レーブアーム制御装置1216は、スレーブアームを制 御するためのデータを生成し、スレーブアーム入出力装 -置206に渡す。最後に軌道上系監視手段1204は、 軌道上系管理システム107の動作状態(異常の有無) を定期的にオフラインシミュレータに送信する。また、 オフラインシミュレータから非常停止命令を受信する と、ただちに、軌道上系管理システム107を停止させ る。

(0079]5. 通信方式

5. 1作業概念レベルの通信階層

次に、図14を参照して本実施例の地上系と軌道上系と の間で取り交わされる通信方式を説明する。地上系から 軌道上系には、作業ネットワークと、地上系監視手段1 104からのメッセージが送られる。 軌道上系から地上 系には、画像データと、軌道上系の画像計測手段による 画像計測値(作業対象物体の位置と姿勢)と軌道上系監 視手段1204からのメッセージが送られる。

信1300、オペレーションコード送信1301、リタ ーンコード受信1302、地上系軌道上系状況計算13 03、状況一致?1304、オペレーション進行処理1 305、異常回避処理1306、データベース受信13 07、オペレーションコード受信1308、リターンコ ード送信1309、地上系、軌道上系状况計算131 0、状況一致?1311、オペレーション進行処理13 12、異常回避処理1313の各手順を含んで構成され* carry (A, [P1, P2], B)

意味:物体Aを地点PIと地点PDを通って地点Bまで運ぶ。 【0084】CCで、AとBは共に作業対象物体の名前 で、Aは運ぶもの、BはAを設置させるものを指す。PIとP 2はワールド座標系における位置座標である。ロボット 言語生成手段1111は、以下に示す展開規則に従っ ※

carry (A, [P1, P2], B)

= grasp (A) \rightarrow path [P1,P2] \rightarrow attach_to (B) (8)

[0085]

この式では、grasp(A)とattach_to(B)が動作スキ **★**[0086] ーマである。

grasp (A) = approach_point -- grsp_point

attach_to (B) = approach_point→attach_point 、は、正確かつ確実な位置決め精度を要求される動作な

式(3)と式(4)は動作スキーマの展開式である。これ らの式のapproach_point(つぎの動作に望むための基 準位置、姿勢)やgrasp_point(物体把持動作のために スレーブ・マニピュレータ手先がとらなければならない 位置、姿勢)やattach_point(把持物体を設置するた めにスレーブ・マニピュレータ手先が取らなければなら ない位置、姿勢)は、作業対象物体(AあるいはB)の 形状、位置、姿勢に依存して決められる。そとで、環境 モデル1107のAまたはBに関するフレーム(5.3 参照)を参照する。さらにgrasp__pointとattach__poin 50 下にはパリューが定義されている。以下、まず、環境モ

* る。手順1300から手順1306までが送信側の手 順、手順1307から手順1313までが受信側の手順

【0081】本通信方式の動作を次に説明する。まず、 手順1300で送信側がデータベースを送信すると、手 順1307で受信側がデータベースを受信する。次に、、 手順1301で送信側がオペレーションコードを送信す ると、手順1308で受信側がオペレーションコードを 受信する。次に、1309で受信側がリターンコードを 10 送信すると、手順1302で送信側がリターンコードを 受信する。次に、手順1303と手順1310で送信側 と受信側が、ともに地上系と軌道上系の状況計算を行 い、手順1304と手順1311で地上系と軌道上系の 状況 (状況計算の結果) が一致しているかどうかを確認 する。ととで、もし状況が一致したならば、オペレーシ ョンの進行処理が行われる。もし状況が一致しなけれ ば、システム異常と判断され、安全管理ネットワークが 示すルールに従って異常回避処理が行われる。

【0082】5.2作業ネットワークの説明 【0080】図14に示す通信方式は、データベース送 20 作業ネットワークは、作業ネットワーク生成手段110 8が、オペレータの入力メッセージから生成する。作業 概念レベルの作業機作業表現方式である。作業ネットワ ークを用いれば、作業機 (マニピュレータ等) に対して 計画された作業を、作業環境の揺らぎ(微小変動)から 影響を受けない程度に抽象化して記述することができ る。ことで、作業ネットワークの1実施例carryの記述 方法と意味を示す。

[0083]

30% て、まず作業ネットワークを動作スキーマのレベルに展 開する。つぎに、環境モデル1107を参照しながら、 動作スキーマからロボット言語を生成する。展開規則を 以下に示す。

(7)

(9) (10)

れらの行程を経て、ロボット言語が生成される。 【0087】5.3環境モデルの説明 環境モデル1107は、フレーム構造で記述されてい る。また、フレーム間の関係は、すべて階層関係になっ ている。また、フレーム自体も階層構造になっていて、 フレームの下にはいくつかのスロットが、定義されてい る。同時にスロットの下にはファシット、ファシットの

ので、approach_pointに臨んだときに再計測する。と

デル1107の構造を説明する。

【0088】環境モデルは、クラスフレームとインスタンスフレームから構成されている。クラスに対してインスタンスは下位階層になっている。クラスフレームには、物体の形状と、操作する上で特徴となる事項(つかみ方、取付け方、センシング方法など)が格納される。操作する上での特徴を記述するには、詳細なデータが必要であるため、下位階層に新たなクラスを定義する。このように、クラスには幾つかの種類があり、種類の名前とその定義は明確にされている。インスタンスフレームには、物体固有の名称、物体の位置、姿勢と他の物体との接続関係と接続状態(単に置かれているだけとか、取り付けられている、などの違い)が記述される。

【0089】6. システムの安全管理

6. 1 概要

システムに異常が発生した場合には、軌道上系管理システム107は、自律動作により、安全な状態に移って、待機、または、終了する。まず、作業ネットワーク管理手段1110が、システム異常の状態(通信遮断、軌道上系管理システム107の故障、地上系管理システム12006の故障)を分析して、安全管理用の作業ネットワークを、ロボット言語生成手段1111にわたす。この後の動作は、5.3記載の軌道上系管理システムの動作と同じである。

【0090】6. 2通信遮断の場合

ノイズによる一時的な通信不良時には、作業機を一時停止させ、通信復帰通知が来るまで待機する。

【0091】通信器の故障などによる、永続的な通信不良時には、以下の手順を踏んで、初期姿勢に戻す。

【0092】(1)作業機を初期姿勢に戻す。

【0093】(2)作業機が作業中(例えば、把持物体がある場合)の場合には、その時点で最低限の作業を行って、作業対象を安全な位置に設置(例えば、把持物体を一番近くの取付け装置に取り付ける)してから、初期姿勢に戻す。

【0094】(3)地上系監視手段1104から、通信復帰通知が来るまで待機する。

* (0095)6.3軌道上系管理システムの故障の場合 (1)軌道上系監視手段1204は、異常事態発生を、 地上系監視手段1104に通知する。

24

【0096】(2)作業機を停止させてから、軌道上系管理システム107を停止させる。

【0097】6.4地上系管理システムの故障の場合

(1) 地上系監視手段1104は、異常事態発生を、軌道上系監視手段1204に通知して、地上系管理システム106を停止させる。

【0098】(2)異常事態発生を知らされた軌道上系管理システム107は、作業機を初期姿勢に戻す。

【0099】(3)作業機が作業中(例えば、把持物体がある場合)の場合には、その時点で最低限の作業を行って、作業対象を安全な位置に設置(例えば、把持物体を一番近くの取付け装置に取り付ける)してから、初期姿勢に戻す。

【0.100】(4)地上系監視手段1104から、地上系管理システム復帰通知が来るまで待機する。

【0101】6.5安全管理ネットワーク

システムの安全管理ルールは、図15のような状態遷移 図で表現される。状態遷移図では、ネットワークの状態 変数から、次に進む「節」が1つ決まる。ネットワーク の「枝」は、前配作業ネットワークに対応している。従って、システムのあらゆる異常から来る擾乱に対して、 現時点までの作業手順と無関係に状態変数が1つ定まり、次に選択すべき「枝」と「節」が1つ決まる。この 性質のために、動的な行動計画立案能力を要求される自 律システムに対して、この手法(状態遷移図を用いた行動計画ルール表現法)は有効である。

【0102】ととろで、図15の状態遷移図は、状態遷移図を用いた行動計画ルール表現法の1実施例で、軌道上系には、A,B2つの取付け装置と、作業機、および、作業対象物体が存在し、作業機によるAからB、または、BからAへの物体移動作業を想定している。との場合の状態変数になる情報、および、状態変数(r**で表記)を以下に示す。

. [0103]

(1) 軌道上系監視手段からの異常通知

・通信異常/通信復帰・・・・・・・・・(r00/r01)

・軌道上系管理システムの異常/復帰・・・・・ (r10/r11)

・地上系管理システムの異常/復帰・・・・・・(r20/r21)

(2)作業機の作業状況

・物体を把持している/いない・・・・・・(r30/r31)

・取付け装置Aに近い/Bに近い・・・・・・(r 4 0 / r 4 1)

(3) 状態変数の時間変化

· x 秒以上変化していない/変化している · · · · · (r50/r51)

次に、状態遷移図から作成したルールリストを示す。 ※ ※【0104】

if (r01 & r11 & r21 & r31 & r4* & r5*) then n0

if (r00 & r11 & r21 & r31 & r4* & r5*) then n1

if (r00 & r11 & r21 & r30 & r40 & r5*) then n3 if (r00 & r11 & r21 & r30 & r41 & r5*) then n4 if (r01 & r10 & r2* & r3* & r4* & r51) then n2 if (r01 & r10 & r2* & r3* & r4* & r50) then n5 if (r01 & r11 & r20 & r31 & r4* & r5*) then n2 if (r01 & r11 & r20 & r30 & r40 & r5*) then n3 (r01 & r11 & r20 & r30 & r41 & r5*) then n4

7. オペレータ提示用画面

管理システム106から、軌道上系管理システム107 を遠隔操作するために、軌道上の作業環境のグラフィッ ク・アニメーションをマウスで操作しながら、新しい作 業環境のモデルの作成、作業の計画、作業の実行を行う ための専用環境を備えている。図16にオペレータ提示 用画面103の外観図を示す。図16に示すようにオペ レータ提示用画面103には作業環境モデル1107を 表示するメインウィンドウの他、キーコマンド入力用ウ ィンドウ2枚、画像計測状況をオペレータに提示するた めの実画像ウィンドウ1枚が表示される。

- 【0105】本実施例のシステムは、大きく分けると
- (1)環境モデルの作成、(2)軌道上作業の計画、
- (3)計画作業の実行という3種類の操作モードを持っ ・ている。

【0106】7.1環境モデルの作成モード 環境モデルの作成モードは、作業対象物体を新しく環境 モデル1107に登録するモードである。具体的には、 アイコンなどでオペレータ提示画面に表示された候補モ デルのリストのなかから、作業環境には存在するが、環 境モデル中に登録されていない物体モデルをオペレータ 30 がマウスで選びだし、実画像上に重ねあわせる。

【0107】ととで、オペレータ誤りの原因になる位置 のあいまいさ(実画像と物体モデルが正確に位置合わせ をされない可能性)と、形状のあいまいさ(似ているが 違うモデルが選ばれてしまう可能性)は、画像計測手段 102により処理することができる。 位置のあいまいさ の処理の具体例は、「建設装置」(特開平2-209562) に記載されている。形状のあいまいさは、「リアルタイ ム一般化ハフ変換装置」(特願平02-313350)記載の装 置を使って、候補モデルのリスト(環境モデルのクラス 40 フレーム群)の中から、作業環境には存在するが環境モ デル中に登録されていない物体モデルを、自動的に検索 して、環境モデルに登録する(環境モデルのインスタン*

*スフレームを発生し、位置、姿勢データを格納する)と オペレータ提示用画面103は、オペレータが、地上系(10)とにより処理することができる。この方法では、前記カ メラにより取り込まれた画像から、物体候補パターンを 抽出し、環境モデル中の物体モデル群との照合、検証を 繰り返しながら、最終的に正しい候補を決定する。とと ろが、システムに、高度な環境認識 (パターン認識) 能 力を持たせるためには、異なる照合階層を持つ照合アル ゴリズムを融合する必要がある反面、照合階層の数だけ 照合モデルの記述方式が存在することが、システム実現 上の問題点ともなる。一方、環境モデルは、CADデー タで与えることができる。そこで、一旦、CADデータ 20 を、アニメータ1102を通して画像データ化した後 で、ハフ変換し、ハフパラメータで記述された照合モデ ルを生成する。

> 【0108】ハフパラメータ抽出アルゴリズムは、25 6×256 (画素) の画像空間を16×16 (画素) の 小ウィンドウに分割して、各ウィンドウを個別に「リア ルタイム一般化ハフ変換装置」(特願平02-313350)記 載の装置を用いてハフ変換することにより、ハフパラメ ータを抽出する。

【0109】照合検証ルールを以下に示す。

【0110】まず、照合パターンの表記を以下のように 定義する。

【0111】画像から抽出した物体パターン:P データベースから取りだした物体モデル:Q ここで、照合パターンQの信頼度を、PとQを抽出した 小ウィンドウWpとWqの中で、互いに重なっている小 ウィンドウの総和Sp∩qの、Qを抽出したウィンドウ の総和Sqに対する比Rと定義する。

【0112】次に、互いに重なっているウィンドウWp ∩qから、ハフ変換により抽出される線分パラメータ $(\rho pi, \theta pi), (\rho qi, \theta qi) の \rho - \theta 空間内の距離$ の総和をDと定義する。とのDをSp∩qで正規化した照 合パターンを、一致度Cと定義する。

【0113】すなわち、

$$R = S p \cap q / S q$$

$$C = \{ (| \rho pi - \rho qi| + k | \theta pi - \theta qi|) \} / S p \cap q$$

$$= D / S p \cap q$$
(12)

k:定数

% (0114]

(11), (12)式から次の判定ルールが求められる。

$$R > \theta_1$$
 (13) $C > \theta_2$ (14)

 θ_1 , θ_2 : しきい値

てこで、(13) 式と(14) 式を同時に満たす照合バターン(Pi, Qj) の組み合わせの中で、Cが最大となるQjを検索バターンとする。

- (0115)7.2軌道上作業の計画モード

軌道上作業の計画モードでは、作業機のアニメーションをマウスで操作するという直接的な方法で作業メッセージを入力する。作業メッセージの入力方法に関する詳細は、「3次元選択方式」(特開平1-112374)に記載されている。

【0116】7.3計画作業の実行モード

計画作業の実行モードでは、作業実行命令を出して、作業実行中に適時行われる画像計測の状況の確認メッセージが出される。

【0117】8. 補足

本システムは、遠隔操作装置であり、地上、あるは、海底など、あらゆる環境下に置かれた、管理システムを遠隔操作する上で有効である。また、複数の管理システムが互いに遠隔操作を行う場合もある。このようなシステムを実現する上で重要なのは、(1)管理システムを構成するモジュール(本実施例では、作業ネットワーク生成手段1108や、インタフェース制御手段1109など)が、自律分散的に動作することと、(2)各モジュールが動作するときに参照するための共通の記憶手段(本実施例では、環境モデル1107)を管理システムが個別に、あるいは、共有していることである。また、自律分散的に動作させるためのルールの記述には、上記5.5項記載の「状態遷移図を用いた行動計画ルール表

【0118】(第3の実施例)本発明は、実際の運用時だけでなくオペレータの訓練、または、各機器の実用前試験にも適用できる。まず、軌道上系管理システムを地上の実験場に設置して、「ロボットと作業対象物の相対運動模擬装置」(特願平3-343947)記載の相対運動演算手段を、マニピュレーション手段230のスレーブアーム制御装置1216に接続することにより、宇宙機回収ミッションのオペレータ訓練設備を構成することができる。

現法」が有効である。また、本実施例では、環境認識プ

ロセス専用に環境モデルを作成する必要がない。

[0119]

【発明の効果】本発明によれば、マニピュレータのマスタアームの操作性が向上し、その結果マニピュレータ自体の操作性も向上する。

【図面の簡単な説明】

【図1】本発明の第1の実施例の要部構成を示すブロック図である。

【図2】図1に示す実施例の部分の詳細構成例を示すブロック図である。

【図3】図1 に示す実施例の部分の詳細構成例を示すブロック図である。

【図4】本発明の実施例の具体的全体構成例を示す斜視 図である。

【図5】図1 に示す実施例の部分の詳細構成例を示すブロック図である。

【図6】図1に示す中央処理装置101の具体的構成例を示すブロック図である。

【図7】本発明の動作原理を示す説明図である。

【図8】本発明の他の実施例によるマニピュレータ制御 システムのブロック図である。

10 【図9】本発明の実施例における演算処理動作を示すフローチャートである。

【図10】本発明の実施例における演算処理動作を示す フローチャートである。

【図11】本発明の他の実施例によるマニピュレータ制 御システムのブロック図

【図12】図2に示す実施例の部分の詳細を示すブロック図である。

【図13】図3に示す実施例の部分の詳細を示すブロック図である。

ムを実現する上で重要なのは、(1)管理システムを構 20 【図14】本発明の実施例における通信プロトコルを示成するモジュール(本実施例では、作業ネットワーク生 すブロック図である。

【図15】本発明の実施例で用いられる安全管理ネット ワークの状態遷移図である。

【符号の説明】

101 中央処理装置

102 画像計測手段

103 オペレータ提示画面 (グラフィックディスプレイ)

104 入出力装置

30 105 スレーブアーム入出力装置

106 操作系管理システム(地上系管理システム)

107 作業系管理システム(軌道上系管理システム)

201 マスタアーム

202 スレーブアーム

204, 224, 2 j 4 マスタアーム入出力装置

205 中央処理装置

206, 226, 2m6 スレーブアーム入出力装置

207 ジョイスティック

208, 228, 2 i 8 ジョイスティック入出力装置

40 209, 229, 2n9 画像入力装置

210 画像処理装置

211 シミュレーション手段・

213 テレビモニタ

214A, 214B, 214C 位置検出センサ

216A, 216B, 216C アクチュエータ

217 入出力装置

217A. 217B. 217C 位置検出センサ

218 座標変換追加装置

230 マニピュレーション手段

50 260 衛星動作手段

301 作業対象物

402 カウンタ 501 プロセッサ

-502 メモリ

503 掛算器

401 方向判別回路

*504 割算器 505 バス回路

506A, 506B, 506C, 506D, 506E

30

インタフェイス回路

701 差分回路

* 702 增分回路

【図1】

【図2】

【図4】

【図5】

[図7]

[図8]

[図9]

[図10]

[図11]

【図15】

[図12]

[図13]

[図14]

【手続補正書】

【提出日】平成4年10月2日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0016

【補正方法】変更

【補正内容】

[0016]

【数1】

$$K = \begin{bmatrix} a & 0 & 0 & d \\ 0 & b & 0 & e \\ 0 & 0 & c & f \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \dots \dots (2)$$

フロントページの続き

(72)発明者 浜田 朋之

茨城県土浦市神立町 502番地 株式会社日 立製作所機械研究所内 (72)発明者 木村 圭一

茨城県土浦市神立町502番地 株式会社日

立製作所機械研究所内

(72)発明者 菊池 宏成

茨城県土浦市神立町502番地 株式会社日

立製作所機械研究所内