4302305 - Lista de Exercícios VII

Louis Bergamo Radial 8992822

1 de junho de 2024

Exercício 4

Exercício 1

Um anel fino de massa m e raio R oscila num plano vertical em torno do ponto fixo O, como mostrado na Figura 1. Uma conta de massa m move-se sem atrito ao redor do anel.

Figura 1: Sistema do Exercício 1

(a) Mostre que a lagrangiana do sistema é

$$L = \frac{3}{2} m R^2 \dot{\theta}_1^2 + \frac{1}{2} m R \dot{\theta}_2^2 + m R^2 \dot{\theta}_1 \dot{\theta}_2 \cos{(\theta_1 - \theta_2)} + 2 m g R \cos{\theta_1} + m g R \cos{\theta_2}.$$

- (b) Considerando pequenas oscilações, obtenha os modos normais e respectivas frequências.
- (c) Obtenha a solução para a condição inicial $\theta_1(0) = 0$, $\theta_2(0) = \theta_0$, e $\dot{\theta}_1(0) = \dot{\theta}_2(0) = 0$.

Resolução. Tomando o ponto O como a origem do sistema de coordenadas, a posição da conta é dada por

$$\mathbf{r}_2 = \mathbf{r}_1 + R \left(\sin \theta_2 \mathbf{e}_x - \cos \theta_2 \mathbf{e}_y \right),$$

em que $r_1 = R \left(\sin \theta_1 e_x - \cos \theta_1 e_y \right)$ é a posição do centro de massa do anel. As velocidades da conta e do centro de massa do anel são dadas por

$$\dot{r}_1 = R\dot{\theta}_1 \left(\cos\theta_1 e_x + \sin\theta_1 e_y\right)$$
 e $\dot{r}_2 = \dot{r}_1 + R\dot{\theta}_2 \left(\cos\theta_2 e_x + \sin\theta_2 e_y\right)$,

portanto a energia cinética da conta é

$$T_{2} = \frac{1}{2} m \left[R^{2} \dot{\theta}_{1}^{2} + 2 \langle \dot{r}_{1}, R \dot{\theta}_{2} \left(\cos \theta_{2} e_{x} + \sin \theta_{2} e_{y} \right) \rangle + R^{2} \dot{\theta}_{2}^{2} \right]$$

$$= \frac{1}{2} m R^{2} \left(\dot{\theta}_{1}^{2} + \dot{\theta}_{2}^{2} \right) + m R^{2} \dot{\theta}_{1} \dot{\theta}_{2} \left(\cos \theta_{1} \cos \theta_{2} + \sin \theta_{1} \sin \theta_{2} \right)$$

$$= \frac{1}{2} m R^{2} \left(\dot{\theta}_{1}^{2} + \dot{\theta}_{2}^{2} \right) + m R^{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos \left(\theta_{1} - \theta_{2} \right).$$

O momento de inércia do anel pelo eixo que passa por seu centro de massa é mR^2 , portanto o momento de inércia pelo ponto O é $2mR^2$, pelo teorema dos eixos paralelos. Assim, a energia cinética do anel é dada por $T_1 = mR^2\dot{\theta}_1^2$, de forma que a energia cinética do sistema é

$$T = \frac{3}{2} m R^2 \dot{\theta}_1^2 + \frac{1}{2} m R^2 \dot{\theta}_2^2 + m R^2 \dot{\theta}_1 \dot{\theta}_2 \cos(\theta_1 - \theta_2).$$

A energia potencial do sistema é dada por

$$V = mg\langle r_1, e_y \rangle + mg\langle r_2, e_y \rangle$$

= -2mgR \cos \theta_1 - mgR \cos \theta_2,

portanto a lagrangiana do sistema é

$$L = \frac{3}{2} m R^2 \dot{\theta}_1^2 + \frac{1}{2} m R \dot{\theta}_2^2 + m R^2 \dot{\theta}_1 \dot{\theta}_2 \cos{(\theta_1 - \theta_2)} + 2 m g R \cos{\theta_1} + m g R \cos{\theta_2}.$$

Para uma configuração de equilíbrio $q^{(0)} = \left(\theta_1^{(0)}, \theta_2^{(0)}\right)$, devemos ter

$$\frac{\partial V}{\partial \theta_k}\Big|_{q^{(0)}} = 0 \implies \theta_k^{(0)} = n_k \pi,$$

com $n_k \in \mathbb{Z}$ e $k \in \{1, 2\}$. Definimos

$$V_{k\ell} = \left. \frac{\partial^2 V}{\partial \theta_k \partial \theta_\ell} \right|_{a^{(0)}}$$

e representamos matricialmente por

$$[V_{k\ell}] = \begin{bmatrix} 2mgR(-1)^{n_1} & 0 \\ 0 & mgR(-1)^{n_2} \end{bmatrix}.$$

Para que $q^{(0)}$ seja um ponto de equilíbrio, devemos ter n_1 e n_2 pares, isto é, $q^{(0)} \equiv (0,0)$.