Electronic Circuits

Op- Amp Sheet 2

1. Determine the output voltage for each circuit shown.

2. For the circuit shown, determine V_{out} . Also, find the value of R_f necessary toproduce an output that is five times the sum of the inputs in the shown circuit.

3. Calculate Vo and io for the following Op-amp circuit.

4. Design an inverting op-amp circuit to form the weighted sum Vo of two inputs V1 and V2. It is required that Vo= -(V1 +5V2). Choose values for R1, R2, and RF so That for a maximum output voltage of 10V the current in the feedback resistor will not exceed 1 mA.

- 5. Design Op-amp circuit with inputs V_1 and V_2 such that V_0 =-5 V_1 +3 V_2 using:
 - a. Only one Op-amp.
- b. More than one Op-amp.
- 6. Consider the difference-amplifier shown, for the case R_1 = R_3 = 2 k Ω and R_2 = R_4 = 200 k Ω .
 - a. Find the value of the differential gain A_d .
 - b. Find values for the resistances in the circuit so that the circuit behaves as a difference amplifier with an input resistance of $20 \text{ k}\Omega$ and a gain of 10.

7. Determine the rate of change of the output voltage in response to the step input to the integrator shown in figure.

8. A triangular waveform is applied as an input to the circuit shown. Determine what the output should be and sketch its waveform in relation to the input.

