# Espaces probabilisés finis

#### Univers et évènements

# Exercice 1 (Décrire l'univers...)

Dans chacun des cas suivants, décrire l'univers  $\Omega$  et préciser son cardinal.

- 1. Douze chevaux (n°1 à 12) participent à une course hippique. On s'intéresse au résultat du tiercé.
- 2. Une urne contient 9 boules, numérotées de 1 à 9. On effectue 2 tirages d'une boule avec remise.
- 3. Une urne contient 9 boules, numérotées de 1 à 9. On effectue 2 tirages d'une boule sans remise.
- 4. On lance n fois un dé à 6 faces et on note les différentes valeurs obtenues  $(n \ge 1)$ .

## Exercice 2 (Expression d'évènements)

Une urne contient 10 boules numérotées de 1 à 10. On tire trois boules successivement, avec remise.

Pour tout  $i \in [1, 10]$ , on note  $A_i$  (resp.  $B_i$ ,  $C_i$ ) l'événement "Tirer la boule n°i au premier (resp. deuxième, troisième) tirage".

Exprimer les événements suivants à l'aide des  $A_i, B_i, C_i$ , puis en déduire leur probabilité.

- (a) La deuxième boule tirée porte un numéro pair.
- (b) On obtient trois fois la boule n°6.
- (c) On obtient trois fois la même valeur.
- (d) On ne tire jamais la boule n°2.
- (e) On tire exactement deux fois la boule numéro 1.

#### Probas et dénombrement

# Exercice 3 (3 lancers)

On lance 3 fois un dé à 6 faces équilibré et on note les numéros obtenus.

Quelle est la probabilité d'obtenir :

- (a) des nombres tous différents?
- (b) au moins un 6?
- (c) exactement deux 6?

#### Exercice 4 (Bulbes aléatoires)

Un jardinier a acheté un sachet de 10 bulbes de tulipes. L'étiquette indique que 4 bulbes donnent des fleurs rouges, 4 bulbes donnent des fleurs jaunes, les 2 autres donnent des tulipes roses. Le jardinier plante 3 bulbes. Quelle est la probabilité d'obtenir :

- (a) au moins une tulipe rouge?
- (b) des tulipes roses ou rouges uniquement?
- (c) des tulipes d'une seule couleur?
- (d) des tulipes de toutes les couleurs?

#### Exercice 5 (Main au hasard)

On tire au hasard 5 cartes dans un jeu de 52 cartes. Quelle est la probabilité :

- (a) D'avoir exactement 3 coeurs?
- (b) D'avoir (au moins) une paire?
- (c) D'avoir 5 cartes de la même couleur?

## Manipulation de probabilités

### Exercice 6 (Petits calculs)

Soient A et B des événements tels que  $P(A) = \frac{1}{3}$  et  $P(A \cup B) = \frac{1}{2}$ . Calculer P(B) dans les cas suivants :

- 1. A et B sont incompatibles.
- 2.  $A \subset B$ . 3. A et B sont indépendants.

## Exercice 7 (Inégalité de Boole)

Montrer par récurrence l'inégalité :

$$P\left(\bigcup_{k=1}^{n} A_k\right) \leqslant \sum_{k=1}^{n} P(A_k).$$

#### Exercice 8 (Le dé truqué)

Un dé à 6 faces est truqué : la probabilité d'obtenir  $k \in [1, 6]$  est proportionnelle à k.

- (a) Déterminer la probabilité de chaque numéro.
- (b) Quelle est la probabilité d'obtenir un nombre pair?

#### Exercice 9 (Filtre anti-spam)

On considère que 70% des mails reçus sont des spams. Un logiciel anti-spam tente d'éliminer les spams : 95% des spams sont éliminés, mais 2% des mails bienvenus sont aussi éliminés...

Quelle est la probabilté :

- 1. Qu'un mail soit bienvenu?
- 2. Qu'un mail soit éliminé?
- 3. Qu'un mail éliminé soit bienvenu?
- 4. Que le logiciel fasse mal son travail?

#### Exercice 10 (L'énigme du "faux-positif")

Seuls 1% des blocs puisés dans une mine contiennent du diamant. Un bloc contenant du diamant peut être revendu 1000 €, un bloc n'en contenant pas ne vaut rien. On possède un détecteur plutôt fiable :

- Si un bloc contient du diamant, le détecteur l'indique systématiquement.
- $\bullet\,$  Si un bloc n'en contient pas, le détecteur indique le bon résultat 90% du temps.

À l'entrée de la mine, un individu louche vous propose d'acheter un bloc pour seulement  $200 \in$ .

En le passant au détecteur, celui-ci indique qu'il contient du diamant! Faut-il accepter l'offre?

## Exercices classiques

# Exercice 11 (Chaîne de Markov)

Dans une mare avec deux nénuphars A et B, une grenouille saute aléatoirement :

- À l'instant n = 0, elle se situe sur le nénuphar A.
- $\bullet$  Entre l'instant n et l'instant n+1, indépendamment des mouvements effectués précédemment, elle choisit de sauter avec les probabilités indiquées sur le graphique suivant :



Pour tout entier  $n \in \mathbb{N}$ , on note :

 $A_n =$ "La grenouille se situe en A au temps n"

- 1. Calculer  $P(A_0)$ ,  $P(A_1)$  et  $P(A_2)$ .
- 2. À l'aide de la formule des probabilités totales, montrer que :

$$\forall n \in \mathbb{N}, \ P(A_{n+1}) = \frac{1}{3}P(A_n) + \frac{1}{2}P(\overline{A_n}).$$

- 3. En déduire l'expression de  $P(A_n)$  en fonction de n, pour tout  $n \in \mathbb{N}$ .
- 4. Que vaut  $\lim_{n\to+\infty} P(A_n)$ ?

# Exercice 12 (La ruine du joueur)

Un joueur s'installe devant une machine à sous. À chaque partie, il gagne  $1 \in$  avec probabilité p > 0 et perd 1 euro avec probabilité q = 1 - p.

On suppose qu'un partie n'est pas équilibrée :  $p \neq q$  (vraisemblablement, q > p ...)

Le joueur s'arrête :

- Soit s'il est ruiné (logique).
- $\bullet$  Soit s'il atteint la somme de  $N \in \,$  qu'il s'est fixée comme objectif.

Pour tout  $n \in [0, N]$ , on note  $R_n$  l'événement : "Le joueur, ayant un capital de départ de  $n \in$ , finiruiné." On note  $u_n = P(R_n)$ .

- 1. Donner les valeurs de  $u_0$  et de  $u_N$ .
- $2.\ En$  distinguant les cas selon le résultat de la première partie, montrer que :

$$\forall n \in [1, N-1], \ u_n = pu_{n+1} + qu_{n-1}.$$

3. En déduire l'expression :  $u_n = \frac{(q/p)^n - (q/p)^N}{1 - (q/p)^N}$ .

## Exercice 13 (Urnes au hasard)

On considère N urnes  $U_1, \ldots, U_N$ , telles que  $U_j$  contient j boules blanches et N+1-j boules noires.

- 1. On tire une boule dans une urne choisie uniformément au hasard.
- a) Quelle est la probabilité que la boule soit blanche?
- b) Si on sait que la boule est blanche, quelle est la probabilité qu'elle provienne de " $U_1$  ou  $U_N$ "?
- 2. On tire simultanément n boules dans une même urne, choisie uniformément au hasard  $(1 \le n \le N)$ . Quelle est la probabilité qu'elles soient toutes blanches?
- 3. Montrer par récurrence sur  $N \ge n$  que

$$\sum_{j=n}^{N} \binom{j}{n} = \binom{N+1}{n+1},$$

puis simplifier la probabilité précédente.

# Inspiré ESCP 2019 (voie T)

Dans une ville, l'étude des bulletins météo laisse penser que le temps qu'il fait un jour donné dépend du temps qu'il a fait la veille, et ce de la façon suivante :

- S'il fait beau un jour donné, la probabilité que cela continue le lendemain est  $\frac{4}{5}$ .
- S'il fait mauvais temps un jour donné, la probabilité que cela continue le lendemain est  $\frac{2}{5}$ .

On s'intéresse à une période débutant le jour 1, jour au cours duquel il a fait beau.

Pour tout  $n \ge 1$ , on note  $B_n$  l'évènement "Il faut beau le jour n" et  $u_n = P(B_n)$ .

- 1. Quelle est la valeur de  $u_1$ ?
- 2. À l'aide de la formule de la probabilité totale, montrer que :  $\forall n \ge 1, \ u_{n+1} = \frac{4}{5}u_n + \frac{3}{5}(1 u_n).$
- 3. En déduire l'expression de  $u_n$  en fonction de  $n \in \mathbb{N}^*$ .
- 4. Calculer  $\lim_{n\to+\infty} u_n$ . Comment interpréter ce résultat?