BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH ĐẠI HỌC, CAO ĐỔNG NĂM 2002 ------ĐÁP ÁN VÀ THANG ĐIỂM ĐỀ THI CHÍNH THỨC MÔN TOÁN, KHỐI B

Câu	ý	Nội dung	ÐН	CĐ
I	1	Với $m = 1$ ta có $y = x^4 - 8x^2 + 10$ là hàm chẩn \Rightarrow đồ thị đối xứng qua Oy .	$\sum 1,0 \mathbf{d}$	$\sum 1,5\mathbf{d}$
		Tập xác định $\forall x \in R$, $y' = 4x^3 - 16x = 4x(x^2 - 4)$, $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \pm 2 \end{bmatrix}$ $y'' = 12x^2 - 16 = 12\left(x^2 - \frac{4}{3}\right), y'' = 0 \Leftrightarrow x = \pm \frac{2}{\sqrt{3}}.$ Bảng biến thiên:	0,25 đ	0,5 ₫
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,5 đ	0,5 ₫
		Hai điểm cực tiểu : $A_1(-2;-6)$ và $A_2(2;-6)$. Một điểm cực đại: $B(0;10)$. Hai điểm uốn: $U_1\left(\frac{-2}{\sqrt{3}};\frac{10}{9}\right)$ và $U_2\left(\frac{2}{\sqrt{3}};\frac{10}{9}\right)$. Giao điểm của đồ thị với trục tung là $B(0;10)$. Đồ thị cắt trục hoành tại 4 điểm có hoành độ: $x=\pm\sqrt{4+\sqrt{6}}$ và $x=\pm\sqrt{4-\sqrt{6}}$.	0,25 ₫	0,5 đ
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

I	2	$y' = 4mx^3 + 2(m^2 - 9)x = 2x(2mx^2 + m^2 - 9),$	$\sum 1,0$ d	$\sum 1,0$ đ
		$y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ 2mx^2 + m^2 - 9 = 0 \end{bmatrix}$	0,25 đ	0,25 đ
		Hàm số có ba điểm cực trị \Leftrightarrow phương trình $y'=0$ có 3 nghiệm phân biệt (khi đó y' đổi dấu khi qua các nghiệm) \Leftrightarrow phương trình	0,25 đ	0,25 đ
		$2mx^2 + m^2 - 9 = 0$ có 2 nghiệm phân biệt khác 0.		
		$2mx^2 + m^2 - 9 = 0 \Leftrightarrow \begin{cases} m \neq 0 \\ x^2 = \frac{9 - m^2}{2m} \end{cases}$. Phương trình $2mx^2 + m^2 - 9 = 0$	0,25 đ	0,25 đ
		có 2 nghiệm khác $0 \Leftrightarrow \begin{bmatrix} m < -3 \\ 0 < m < 3. \end{bmatrix}$	0,25 đ	0,25 đ
		Vậy hàm số có ba điểm cực trị $\Leftrightarrow \begin{bmatrix} m < -3 \\ 0 < m < 3. \end{bmatrix}$		
II	1	$\sin^2 3x - \cos^2 4x = \sin^2 5x - \cos^2 6x$	$\sum 1,0 \mathbf{d}$	$\sum 1,0 \mathbf{d}$
		$\Leftrightarrow \frac{1 - \cos 6x}{2} - \frac{1 + \cos 8x}{2} = \frac{1 - \cos 10x}{2} - \frac{1 + \cos 12x}{2}$	0,25 đ	0,25 đ
		$\Leftrightarrow (\cos 12x + \cos 10x) - (\cos 8x + \cos 6x) = 0$	0.25 #	0.25 #
		$\Leftrightarrow \cos x (\cos 11x - \cos 7x) = 0$	0,25 đ	0,25 đ
		$\Leftrightarrow \cos x \sin 9x \sin 2x = 0$ $\Leftrightarrow \sin 9x \sin 2x = 0 \Leftrightarrow \begin{bmatrix} x = \frac{k\pi}{9} \\ x = \frac{k\pi}{2} \end{bmatrix} k \in \mathbb{Z}.$	0,5 đ	0,5 đ
		Chú ý: Thí sinh có thể sử dụng các cách biến đổi khác để đưa về phương trình tích.		
	2		$\sum 1,0 \mathbf{d}$	$\sum 1,0\mathbf{d}$
		$\log_{x} \left(\log_{3}(9^{x} - 72)\right) \le 1 (1).$ $\text{Diều kiện:} \begin{cases} x > 0, x \ne 1 \\ 9^{x} - 72 > 0 \iff 9^{x} - 72 > 1 \iff x > \log_{9} 73 (2). \\ \log_{3}(9^{x} - 72) > 0 \end{cases}$	0,25 đ	0,25 đ
		Do $x > \log_9 73 > 1$ nên $(1) \Leftrightarrow \log_3 (9^x - 72) \le x$		
		$\Leftrightarrow 9^x - 72 \le 3^x \Leftrightarrow (3^x)^2 - 3^x - 72 \le 0 $ (3). Đặt $t = 3^x$ thì (3) trở thành	0,25 đ	0,25 đ
		$t^2 - t - 72 \le 0 \Leftrightarrow -8 \le t \le 9 \Leftrightarrow -8 \le 3^x \le 9 \Leftrightarrow x \le 2$. Kết hợp với điều kiện (2) ta được nghiệm của bất phương trình là:	0,25 đ	0,25 đ
		$\log_9 73 < x \le 2.$	0,25 đ	0,25 ₫

	3	$\begin{cases} \sqrt[3]{x-y} = \sqrt{x-y} & (1) \\ x+y = \sqrt{x+y+2} & (2). \end{cases}$ Điều kiện: $\begin{cases} x-y \ge 0 \\ x+y \ge 0. \end{cases}$ (3)	$\sum 1,0 \mathbf{d}$ 0,25 \mathbf{d}	$\sum_{0,25} 1.0 \mathbf{d}$
		$(1) \Leftrightarrow \sqrt[3]{x - y} \left(1 - \sqrt[6]{x - y} \right) = 0 \Leftrightarrow \begin{bmatrix} x = y \\ x = y + 1. \end{bmatrix}$ Thay $x = y$ vào (2), giải ra ta được $x = y = 1$.	0,25 đ	0,25 đ
		Thay $x = y + 1$ vào (2), giải ra ta có: $x = \frac{3}{2}, y = \frac{1}{2}$.	0,25 đ	0,25 đ
		Kết hợp với điều kiện (3) hệ phương trình có 2 nghiệm: $x = 1, y = 1$ và $x = \frac{3}{2}, y = \frac{1}{2}$	0,25 đ	0,25 đ
		Chú ý: Thí sinh có thể nâng hai vế của (1) lên luỹ thừa bậc 6 để di đến kết quả:		
III		x = y + 1.	$\sum 1,0 \mathbf{d}$	$\sum 1,5\mathbf{d}$
		$y = \sqrt{4 - \frac{x^2}{4}}$ $y = \frac{x^2}{4\sqrt{2}}$ $-4 -2\sqrt{2}$ $y = \frac{x^2}{4\sqrt{2}}$ $2\sqrt{2}$ $2\sqrt{2}$ $4 x$		
		Tìm giao điểm của hai đường cong $y = \sqrt{4 - \frac{x^2}{4}}$ và $y = \frac{x^2}{4\sqrt{2}}$:		
		,2		
		$\sqrt{4 - \frac{x^2}{4}} = \frac{x^2}{4\sqrt{2}} \Leftrightarrow \frac{x^4}{32} + \frac{x^2}{4} - 4 = 0 \Leftrightarrow x^2 = 8 \Leftrightarrow x = \pm\sqrt{8}.$	0,25 đ	0,5 đ
		Trên $\left[-\sqrt{8}; \sqrt{8}\right]$ ta có $\frac{x^2}{4\sqrt{2}} \le \sqrt{4 - \frac{x^2}{4}}$ và do hình đối xứng qua trục tung		
		nên $S = 2 \int_{0}^{\sqrt{8}} \left(\sqrt{4 - \frac{x^2}{4}} - \frac{x^2}{4\sqrt{2}} \right) dx = \int_{0}^{\sqrt{8}} \sqrt{16 - x^2} dx - \frac{1}{2\sqrt{2}} \int_{0}^{\sqrt{8}} x^2 dx = S_1 - S_2.$	0,25 đ	0,25 đ
		Để tính S_1 ta dùng phép đổi biến $x = 4 \sin t$, khi $0 \le t \le \frac{\pi}{4}$ thì $0 \le x \le \sqrt{8}$.		
		$dx = 4\cos t dt \text{ và } \cos t > 0 \forall t \in \left[0; \frac{\pi}{4}\right]. \text{ Do d\'o}$		

		$\sqrt{8}$ $\frac{\pi}{4}$ $\frac{\pi}{4}$	0,25 đ	0,5 đ
		$S_1 = \int_0^{\sqrt{8}} \sqrt{16 - x^2} dx = 16 \int_0^4 \cos^2 t dt = 8 \int_0^4 (1 + \cos 2t) dt = 2\pi + 4.$	0,25 đ	0,25 đ
		$S_2 = \frac{1}{2\sqrt{2}} \int_0^{\sqrt{8}} x^2 dx = \frac{1}{6\sqrt{2}} x^3 \Big _0^{\sqrt{8}} = \frac{8}{3}. \text{ Vậy } S = S_1 - S_2 = 2\pi + \frac{4}{3}.$	0,23 0	0,25 d
		Chú ý: Thí sinh có thể tính diện tích $S = \int_{-\sqrt{8}}^{\sqrt{8}} \left(\sqrt{4 - \frac{x^2}{4}} - \frac{x^2}{4\sqrt{2}} \right) dx$.		
IV	1	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & \\ & & \\ & \\ &$	\(\sum_{1,0} \) d	\(\sum_{1,5} d\)
		Khoảng cách từ I đến đường thẳng AB bằng $\frac{\sqrt{5}}{2} \Rightarrow AD = \sqrt{5}$ và $IA = IB = \frac{5}{2} .$ Do đó A,B là các giao điểm của đường thẳng AB với đường tròn tâm I và bán kính $R = \frac{5}{2}$. Vậy tọa độ A,B là nghiệm của hệ :	0,25 đ	0,25 ₫
		$\begin{cases} x - 2y + 2 = 0\\ \left(x - \frac{1}{2}\right)^2 + y^2 = \left(\frac{5}{2}\right)^2 \end{cases}$	0,25 đ	0,5 đ
		Giải hệ ta được $A(-2;0), B(2;2)$ (vì $x_A < 0$)	0,25 đ	0,5 đ
		$\Rightarrow C(3;0), D(-1;-2).$	0,25 đ	0,25 đ
		<u>Chú ý</u> :		
		Thí sinh có thể tìm tọa độ điểm H là hình chiếu của I trên đường thẳng AB . Sau đó tìm A,B là giao điểm của đường tròn tâm H bán kính HA với đường thẳng AB .		

IV	2a)	Tìm khoảng cách giữa A_1B và B_1D .	$\sum 1,0 \mathbf{d}$	$\sum 1,5\mathbf{d}$
		A_1 A_2 A_3 A_4 A_5	0,25 đ	0,25 đ
		<u>Cách I</u> . Chọn hệ tọa độ Đêcac vuông góc <i>Oxyz</i> sao cho		
		$A(0;0;0), B(a;0;0), D(0;a;0), A_1(0;0;a) \Rightarrow C(a;a;0); B_1(a;0;a); C_1(a;a;a), D_1(0;a;a)$	0,25 đ	0,5 đ
		$\Rightarrow A_1B = (a;0;-a), B_1D = (-a;a;-a), A_1B_1 = (a;0;0) \text{ và } [\overrightarrow{A_1B}, \overrightarrow{B_1D}] = (a^2;2a^2;a^2).$	0,25 đ	0,25 đ
		$ \overrightarrow{A_1B} = (a;0;-a), \overrightarrow{B_1D} = (-a;a;-a), \overrightarrow{A_1B_1} = (a;0;0) \text{ và} \left[\overrightarrow{A_1B}, \overrightarrow{B_1D} \right] = (a^2;2a^2;a^2).$ $ \overrightarrow{A_1B} = (a;0;-a), \overrightarrow{B_1D} = (-a;a;-a), \overrightarrow{A_1B_1} = (a;0;0) \text{ và} \left[\overrightarrow{A_1B}, \overrightarrow{B_1D} \right] = (a^2;2a^2;a^2).$ $ \overrightarrow{A_1B} = (a;0;-a), \overrightarrow{A_1B_1} = (a;0;0) \text{ và} \left[\overrightarrow{A_1B}, \overrightarrow{B_1D} \right] = (a^2;2a^2;a^2).$ $ \overrightarrow{A_1B} = (a;0;-a), \overrightarrow{A_1B_1} = (a;0;0) \text{ và} \left[\overrightarrow{A_1B}, \overrightarrow{B_1D} \right] = (a^2;2a^2;a^2).$	0,25 đ	0,5 đ
		$ \underbrace{\mathbf{C\acute{a}ch\ II.}}_{A_1B\perp AD} \xrightarrow{A_1B\perp AB_1} \Rightarrow A_1B\perp (AB_1C_1D) \Rightarrow A_1B\perp B_1D. $		
		Tương tự $A_1C_1 \perp B_1D \Rightarrow B_1D \perp (A_1BC_1)$.	0,25 đ	0,25 đ
		Gọi $G = B_1 D \cap (A_1 B C_1)$. Do $B_1 A_1 = B_1 B = B_1 C_1 = a$ nên $GA_1 = GB = GC_1 \Rightarrow G \text{ là tâm tam giác đều } A_1 B C_1 \text{ có cạnh bằng } a\sqrt{2} \text{ .}$ Gọi I là trung điểm của $A_1 B$ thì IG là đường vuông góc chung của $A_1 B$ và	0,25 đ	0,5 đ
		B_1D , nên $d(A_1B, B_1D) = IG = \frac{1}{3}C_1I = \frac{1}{3}A_1B\frac{\sqrt{3}}{2} = \frac{a}{\sqrt{6}}$.	0,25 đ	0,5 đ
		Chú ý: Thí sinh có thể viết phương trình mặt phẳng (P) chứa A_1B và song song với		
		B_1D là: $x + 2y + z - a = 0$ và tính khoảng cách từ B_1 (hoặc từ D) tới (P) ,		
		hoặc viết phương trình mặt phẳng (Q) chứa B_1D và song song với A_1B là:		
		$x+2y+z-2a=0$ và tính khoảng cách từ A_1 (hoặc từ B) tới Q .		

	2b)	Cách I.	$\sum 1,0 \mathbf{d}$
		Từ <u>Cách I</u> của 2a) ta tìm được $M\left(a;0;\frac{a}{2}\right), N\left(\frac{a}{2};a;0\right), P\left(0;\frac{a}{2};a\right)$	0,25 đ
		$\Rightarrow \overrightarrow{MP} = \left(-a; \frac{a}{2}; \frac{a}{2}\right), \overrightarrow{NC_1} = \left(\frac{a}{2}; 0; a\right) \Rightarrow \overrightarrow{MP}. \overrightarrow{NC_1} = 0.$ Vậy $MP \perp C_1 N$.	0,5 đ 0,25 đ
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,25 đ 0,25 đ 0,25 đ 0,25 đ
V			$\sum 1,0 \mathbf{d}$
		Số tam giác có các đỉnh là 3 trong $2n$ điểm A_1, A_2, \dots, A_{2n} là C_{2n}^3 .	0,25 đ
		Gọi đường chéo của đa giác đều $A_1A_2\cdots A_{2n}$ đi qua tâm đường tròn (O) là đường chéo lớn thì đa giác đã cho có n đường chéo lớn.	
		Mỗi hình chữ nhật có các đỉnh là 4 trong $2n$ điểm A_1, A_2, \cdots, A_{2n} có các đường chéo là hai đường chéo lớn. Ngược lại, với mỗi cặp đường chéo lớn ta có các đầu mút của chúng là 4 đỉnh của một hình chữ nhật. Vậy số hình chữ nhật nói trên bằng số cặp đường chéo lớn của đa giác $A_1A_2\cdots A_{2n}$ tức C_n^2 .	0,25 đ
		Theo giả thiết thì:	

$$C_{2n}^{3} = 20C_{n}^{2} \Leftrightarrow \frac{(2n)!}{3!(2n-3)!} = 20\frac{n!}{2!(n-2)!} \Leftrightarrow \frac{2n\cdot(2n-1)(2n-2)}{6} = 20\frac{n(n-1)}{2}$$

$$\Leftrightarrow 2n-1=15 \Leftrightarrow n=8.$$

$$Chú \acute{v}:$$
Thí sinh có thể tìm số hình chữ nhật bằng các cách khác. Nếu lý luận đúng để đi đến kết quả số hình chữ nhật là $\frac{n(n-1)}{2}$ thì cho điểm tối đa phần này.