Business Case: Target SQL

Suman Debnath

Code: https://github.com/debnsuma/dsml-2022/blob/main/DSML/case_study/code.sql

Q1: IMPORT THE DATASET AND DO USUAL EXPLORATORY ANALYSIS STEPS LIKE CHECKING THE STRUCTURE & CHARACTERISTICS OF THE DATASET

1.1 Data type of columns in a table

```
-- Product column

SELECT column_name, data_type

FROM information_schema.columns

WHERE table_name = 'products';

-- Orders column

SELECT column_name, data_type

FROM information_schema.columns

WHERE table_name = 'orders';
```


1.2 Time period for which the data is given

```
SELECT

MIN(order_purchase_timestamp) AS start_date,

MAX(order_purchase_timestamp) AS last_date

FROM orders;
```


1.3 Cities and States of customers ordered during the given period

```
SELECT DISTINCT c.customer_city as city, c.customer_state as state
FROM orders o
INNER JOIN customers c
   ON o.customer_id = c.customer_id
ORDER BY state, city
```


Q2: IN-DEPTH EXPLORATION:

2.1 Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
-- No. of orders in monthly baisis
WITH A AS (
   SELECT
        order_id,
        order_purchase_timestamp,
        EXTRACT(YEAR FROM order_purchase_timestamp) AS year,
        EXTRACT(MONTH FROM order_purchase_timestamp) AS month
    FROM orders
SELECT
   year,
   month,
    COUNT(1) as no_of_orders,
   SUM(no_of_orders) OVER(PARTITION BY year ORDER BY month ROWS BETWEEN 1 PRECEDING 1
FROM A
GROUP BY year, month
ORDER BY year, month
```

```
Result 1 (25)
year
                       month
                                              no_of_orders
                                                                    rolling_monthly_sales_..
                                              324
                                                                      328
2016
                       12
                                                                      325
2017
                       1
                                              800
                                                                      800
2017
                       2
                                              1780
                                                                      2580
                       3
                                              2682
                                                                      4462
 2017
                                              2404
                                                                      5086
  2017
                       5
                                              3700
                                                                      6104
                                                                     6945
                       6
                                              3245
2017
2017
                       7
                                              4026
                                                                      7271
2017
                       8
                                              4331
                                                                      8357
2017
                                              4285
                                                                      8616
                                              4631
                                                                      8916
 2017
                                              7544
                                                                      12175
                       12
                                              5673
                                                                      13217
  2018
                                              7269
                                                                      7269
                                                                      13997
```

```
-- No. of orders year over year

WITH A AS (
SELECT
order_id,
order_purchase_timestamp,
```

```
EXTRACT(YEAR FROM order_purchase_timestamp) AS year,
        EXTRACT (MONTH FROM order_purchase_timestamp) AS month
    FROM orders
),
B AS (
   SELECT
       A.*,
       P.payment_value
       FROM A
        INNER JOIN
           payments P
           ON A.order_id = P.order_id
   ),
C AS (
   SELECT
      year,
       month,
       SUM(payment_value) as total_sales
    FROM B
    GROUP BY year, month
    ORDER BY year, month
SELECT
   DISTINCT year,
   SUM(total_sales) OVER(PARTITION BY year) AS total_sales,
   AVG(total_sales) OVER(PARTITION BY year) AS avg_sales
ORDER BY year
```

Result 1 (3)

year	total_sales	avg_sales	
2016	59187	19729	
2017	7227504	602292	İ
2018	8673015	867301	

Points

- Year over year no. of orders are increasing
- Year end seems to have some high sales
- Nov and Dec seems to have high sales

2.2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
WITH A AS (
   SELECT
        order_id,
        CASE
           WHEN DATE_PART('hour', order_purchase_timestamp) >= 0 AND DATE_PART('hour'
           WHEN DATE_PART('hour', order_purchase_timestamp) >= 6 AND DATE_PART('hour'
           WHEN DATE_PART('hour', order_purchase_timestamp) >= 12 AND DATE_PART('hour
           ELSE 'Night'
        END AS time_of_day
   FROM orders
)
SELECT
   time_of_day,
   COUNT(1) AS no_of_orders,
   RANK() OVER(ORDER BY no_of_orders DESC) AS rank
FROM A
GROUP BY time_of_day
ORDER BY no_of_orders DESC
```

time_of_day	no_of_orders	rank	
Afternoon	38361	1	
Night	34100	2	
Morning	22240	3	
Dawn	4740	4	

Points

Afternoon and night time seems to the busiest time of the day when Brazilians order online on Target

Q3: EVOLUTION OF E-COMMERCE ORDERS IN THE BRAZIL REGION:

3.1 : Get month on month orders by states

```
-- Total sales month over month for each state

WITH A AS (

SELECT

o.order_id,
o.order_purchase_timestamp,
EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,
c.customer_city,
c.customer_state,
p.payment_value

FROM orders o
```

```
LEFT JOIN customers c ON o.customer_id = c.customer_id

LEFT JOIN payments p ON o.order_id = p.order_id

)

SELECT

customer_state,

year,

month,

SUM(payment_value) AS total_Sales

FROM A

GROUP BY customer_state, year, month

ORDER BY customer_state, year, month
```

Result 1 (100)

customer_state	year	month	total_sales
□ AC	2017	1	723
□ AC	2017	2	596
□ AC	2017	3	529
☐ AC	2017	4	1350
□ AC	2017	5	2379
☐ AC	2017	6	509
□ AC	2017	7	792
☐ AC	2017	8	764
□ AC	2017	9	2026
☐ AC	2017	10	955
□ AC	2017	11	944
□ AC	2017	12	1408
□ AC	2018	1	1155
☐ AC	2018	2	298
□ AC	2018	3	163
☐ AC	2018	4	586
□ AC	2018	5	1500
☐ AC	2018	6	596
□ AC	2018	7	1768
☐ AC	2018	8	603
□ AL	2016	10	129
□ AL	2017	1	453
□ AL	2017	2	2960
□ AL	2017	3	1416
□ AL	2017	4	5362

```
-- Total sales month over month for each state with month over month total sales

WITH A AS (
SELECT
o.order_id,
```

```
o.order_purchase_timestamp,
        EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
        EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,
        c.customer_city,
        c.customer_state,
        p.payment_value
    FROM orders o
    LEFT JOIN customers c ON o.customer_id = c.customer_id
    LEFT JOIN payments p ON o.order_id = p.order_id
),
B AS (
        SELECT
           customer_state,
           year,
           month,
            SUM(payment_value) AS total_Sales
           FROM A
           GROUP BY customer_state, year, month
           ORDER BY customer_state, year, month
SELECT
   customer_state,
   year,
    month,
    total_sales,
    SUM(total_sales) OVER(PARTITION BY customer_state ORDER BY year, month ROWS BETWE
FROM B
ORDER BY customer_state
```


3.2 : Distribution of customers across the states in Brazil

```
-- No. of customers in different states in desending order
WITH A AS (
   SELECT
       o.customer_id,
        c.customer_city,
        c.customer_state
    FROM orders o
    LEFT JOIN customers c ON o.customer_id = c.customer_id
)
SELECT
   customer_state,
    customer_city,
    COUNT(1) AS no_of_customers
FROM A
GROUP BY customer_state, customer_city
ORDER BY no_of_customers DESC
```


Points

• Sao Paulo, Rio De Janerio, and Belo Horizonte are the top 3 cities in Brazil who had the max number of customers

Q4: IMPACT ON ECONOMY: ANALYZE THE MONEY MOVEMENT BY E-COMMERCE BY LOOKING AT ORDER PRICES, FREIGHT AND OTHERS.

4.1: Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table

```
-- % Increase of sales over year from Jan 2017 to Sep 2018
WITH A AS (
    SELECT
        o.order_id,
        o.order_purchase_timestamp,
        EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
        EXTRACT (MONTH FROM o. order_purchase_timestamp) AS month,
        p.payment_value
    FROM orders o
    LEFT JOIN payments p ON o.order_id = p.order_id
    WHERE o.order_purchase_timestamp >= '2017-01-01' AND
          o.order_purchase_timestamp < '2018-09-01'</pre>
),
B AS (
        SELECT
            year,
            SUM(payment_value) AS total_Sales
            FROM A
            GROUP BY year
)
SELECT
    ((total_Sales - LAG(total_Sales) OVER (ORDER BY year)) / LAG(total_Sales) OVER (0
FROM B
ORDER BY year
```

Result 1 (2)

□ year	total_sales	percentage_increase
2017	7227504	NULL
2018	8667994	19.93
	·	V

```
-- Month over month total sales from Jan 2017 to Sep 2018
WITH A AS (
  SELECT
        o.order_id,
        o.order_purchase_timestamp,
        EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
        EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,
        p.payment_value
    FROM orders o
    LEFT JOIN payments p ON o.order_id = p.order_id
    WHERE o.order_purchase_timestamp >= '2017-01-01' AND
          o.order_purchase_timestamp < '2018-09-01'</pre>
),
B AS (
        SELECT
            year,
```

```
month,
SUM(payment_value) AS total_Sales
FROM A
GROUP BY year, month
ORDER BY year, month
)

SELECT *
FROM B;
```

Result 1 (20)

year	month	total_sales
2017	1	138033
2017	2	290950
2017	3	448393
2017	4	416487
2017	5	591137
2017	6	509746
2017	7	590449
2017	8	672295
2017	9	725648
2017	10	777463
2017	11	1191227
2017	12	875676
2018	1	1111501
2018	2	989263
2018	3	1156084
2018	4	1157374
2018	5	1150491
2018	6	1020808
2018	7	1063355
2018	8	1019118

4.2: Mean & Sum of price and freight value by customer state

```
WITH A AS (

SELECT o.order_id, o.customer_id, oi.freight_value, oi.price, c.customer_state

FROM orders o

LEFT JOIN order_items oi ON o.order_id = oi.order_id

LEFT JOIN customers c ON o.customer_id = c.customer_id
)

SELECT

customer_state,

SUM(freight_value) as total_freight_value,

AVG(freight_value) as avg_freight_value,

SUM(price) as total_price,

AVG(price) as avg_price

FROM A

GROUP BY customer_state

ORDER BY customer_state
```

customer_state	total_freight_value	avg_freight_value	total_price	avg_price	
AC	3643	39	15923	173	
AL	15701	35	80049	180	
AM	5404	32	22256	134	
AP	2752	33	13428	163	
BA	98207	25	509101	134	
CE	47640	32	226398	153	
DF	49620	20	301159	125	
ES	48808	21	273709	121	
GO	52123	22	293172	125	
MA	31142	37	119148	144	
MG	265083	20	1577418	120	
MS	18797	22	116335	142	
MT	29167	27	155803	147	
PA	38174	35	178291	165	
PB	25436	42	114944	190	
PE	58542	32	261743	144	
PI	20953	38	86618	159	
PR	115394	20	679636	118	
RJ	299241	20	1815288	124	
RN	18614	35	82724	156	
RO	11284	40	45982	165	
RR	2205	42	7797	149	
RS	132950	21	746528	119	
SC	87839	21	518071	124	
SE	13917	36	58700	152	
SP	693616	14	5174261	109	
то	11578	36	49451	156	

Q5: ANALYSIS ON SALES, FREIGHT AND DELIVERY TIME

5.1 Calculate days between purchasing, delivering and estimated delivery

```
/*
Calculate days between
- purchasing date and actual delivering date
```

```
- purchasing date and estimated delivery date

*/

SELECT
     order_id,
     order_purchase_timestamp,
     order_estimated_delivery_date,
     order_delivered_customer_date,
     DATEDIFF(day, order_purchase_timestamp, order_delivered_customer_date) AS days_to_
     DATEDIFF(day, order_purchase_timestamp, order_estimated_delivery_date) AS days_to_
     CASE
      WHEN days_to_actual_delivery_from_day_of_purchase <= days_to_estimated_deliver
     ELSE 'NO'
     END AS delivered_before_estimated_date

FROM orders
```


5.2 Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

- time_to_delivery = order_purchase_timestamp-order_delivered_customer_date
- diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

```
/*
Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

- time_to_delivery = order_purchase_timestamp-order_delivered_customer_date
- diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer

*/

SELECT

order_id,
order_purchase_timestamp,
order_estimated_delivery_date,
order_delivered_customer_date,
DATEDIFF(day, order_purchase_timestamp, order_delivered_customer_date) AS days_to_
DATEDIFF(day, order_delivered_customer_date, order_estimated_delivery_date) AS dif
CASE

WHEN diff_between_estimated_delivery_and_actual_delivery >= 0 THEN 'YES'
ELSE 'NO'
END AS delivered_before_estimated_date
```

```
FROM orders
ORDER BY order_id ;
```

order_id	order_purchase_timest	order_estimated_delive	order_delivered_custo	days_to_actual_delivery_from_day_of_purchase	diff_between_estimated_delivery_and_actual_delivery	delivered_before_estimated_date
00010242fe8c5a6d1b	2017-09-13 08:59:02	2017-09-29 00:00:00	2017-09-20 23:43:48	7	9	YES
00018f77f2f0320c557	2017-04-26 10:53:06	2017-05-15 00:00:00	2017-05-12 16:04:24	16	3	YES
000229ec398224ef6c	2018-01-14 14:33:31	2018-02-05 00:00:00	2018-01-22 13:19:16	8	14	YES
00024acbcdf0a6daa1	2018-08-08 10:00:35	2018-08-20 00:00:00	2018-08-14 13:32:39	6	6	YES
00042b26cf59d7ce69	2017-02-04 13:57:51	2017-03-17 00:00:00	2017-03-01 16:42:31	25	16	YES
00048cc3ae777c65d	2017-05-15 21:42:34	2017-06-06 00:00:00	2017-05-22 13:44:35	7	15	YES
00054e8431b9d7675	2017-12-10 11:53:48	2018-01-04 00:00:00	2017-12-18 22:03:38	8	17	YES
000576fe39319847cb	2018-07-04 12:08:27	2018-07-25 00:00:00	2018-07-09 14:04:07	5	16	YES
0005a1a1728c9d785	2018-03-19 18:40:33	2018-03-29 00:00:00	2018-03-29 18:17:31	10	0	YES
0005f50442cb953dcd	2018-07-02 13:59:39	2018-07-23 00:00:00	2018-07-04 17:28:31	2	19	YES
00061f2a7bc09da83e	2018-03-24 22:16:10	2018-04-09 00:00:00	2018-03-29 00:04:19	5	11	YES
00063b381e2406b52	2018-07-27 17:21:27	2018-08-07 00:00:00	2018-08-07 13:56:52	11	0	YES
0006ec9db01a64e59	2018-07-24 17:04:17	2018-08-22 00:00:00	2018-07-31 01:04:15	7	22	YES
0008288aa423d2a3f0	2018-02-13 22:10:21	2018-03-06 00:00:00	2018-02-26 13:55:22	13	8	YES
0009792311464db53	2018-08-14 20:43:09	2018-08-28 00:00:00	2018-08-22 12:02:27	8	6	YES
0009c9a17f916a706d	2018-04-25 09:10:41	2018-05-09 00:00:00	2018-04-30 17:54:25	5	9	YES
000aed2e25dbad2f9	2018-05-11 20:33:38	2018-05-22 00:00:00	2018-05-18 16:46:31	7	4	YES
000c3e6612759851c	2017-08-12 10:08:57	2017-09-01 00:00:00	2017-08-19 15:22:17	7	13	YES
000e562887b1f2006d	2018-02-22 11:54:42	2018-03-19 00:00:00	2018-03-12 18:46:34	18	7	YES
000e63d38ae8c00bb	2018-03-23 19:48:26	2018-04-05 00:00:00	2018-03-27 14:51:47	4	9	YES
000e906b789b55f64e	2017-11-21 18:54:23	2017-12-07 00:00:00	2017-12-09 17:27:23	18	-2	NO
000f25f4d72195062c	2018-03-07 10:33:13	2018-04-11 00:00:00	2018-03-22 16:51:52	15	20	YES
001021efaa8636c294	2018-02-27 09:27:14	2018-03-23 00:00:00	2018-03-08 20:06:33	9	15	YES
0010b2e5201cc5f1ae	2017-09-11 17:39:33	2017-09-27 00:00:00	2017-09-23 13:21:21	12	4	YES
0010dedd556712d7b	2017-10-21 19:32:06	2017-11-03 00:00:00	NULL	NULL	NULL	NO

5.3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_deli
WITH A AS (
   SELECT
        o.order_id,
        o.order_purchase_timestamp,
        o.order_estimated_delivery_date,
        o.order_delivered_customer_date,
        DATEDIFF(day, order_purchase_timestamp, order_delivered_customer_date) AS days
        DATEDIFF(day, order_delivered_customer_date, order_estimated_delivery_date) AS
        c.customer_state,
       oi.freight_value
    FROM orders o
    LEFT JOIN order_items oi ON o.order_id = oi.order_id
    LEFT JOIN customers c ON o.customer_id = c.customer_id
)
SELECT
   customer_state,
   AVG(freight_value) AS avg_freight_value,
    AVG(days_to_actual_delivery_from_day_of_purchase) AS mean_time_to_delivery,
   AVG(diff_between_estimated_delivery_and_actual_delivery) AS diff_estimated_deliver
FROM A
GROUP BY customer_state
ORDER BY customer_state
```

customer_state	avg_freight_value	mean_time_to_delivery	diff_estimated_delivery
AC	39	20	20
AL	35	24	8
AM	32	26	19
AP	33	28	18
BA	25	19	10
CE	32	20	11
DF	20	12	12
ES	21	15	10
GO	22	15	12
MA	37	21	9
MG	20	11	13
MS	22	15	11
MT	27	17	14
PA	35	23	14
PB	42	20	13
PE	32	18	13
PI	38	19	11
PR	20	11	13
RJ	20	15	12
RN	35	19	13
RO	40	19	20
RR	42	28	18
RS	21	15	14
sc	21	14	11
SE	36	21	10
SP	14	8	11
то	36	17	12

5.4 to 5.7: Sort the data to get the following:

- Top 5 states with highest/lowest average freight value sort in desc/asc limit 5
- Top 5 states with highest/lowest average time to delivery
- Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
-- Top 5 states with highest average freight value - sort in desc/asc limit 5
WITH A AS (
SELECT

o.order_id,
o.order_purchase_timestamp,
o.order_estimated_delivery_date,
o.order_delivered_customer_date,
DATEDIFF(day, order_purchase_timestamp, order_delivered_customer_date) AS days
DATEDIFF(day, order_delivered_customer_date, order_estimated_delivery_date) AS
```

```
c.customer_state,
    oi.freight_value
FROM orders o
LEFT JOIN order_items oi ON o.order_id = oi.order_id
LEFT JOIN customers c ON o.customer_id = c.customer_id
)
SELECT
    customer_state,
    AVG(freight_value) AS avg_freight_value,
    AVG(days_to_actual_delivery_from_day_of_purchase) AS mean_time_to_delivery,
    AVG(diff_between_estimated_delivery_and_actual_delivery) AS diff_estimated_deliver
FROM A
GROUP BY customer_state
ORDER BY avg_freight_value DESC
LIMIT 5
```

■ Result 1 (5)

customer_state	avg_freight_value	mean_time_to_delivery	diff_estimated_delivery
RR	42	28	18
□ PB	42	20	13
□ RO	40	19	20
□ AC	39	20	20
□ PI	38	19	11

```
-- Top 5 states with lowest average freight value - sort in desc/asc limit 5
WITH A AS (
    SELECT
        o.order_id,
        o.order_purchase_timestamp,
        o.order_estimated_delivery_date,
        o.order_delivered_customer_date,
        DATEDIFF(day, order_purchase_timestamp, order_delivered_customer_date) AS days
        DATEDIFF(day, order_delivered_customer_date, order_estimated_delivery_date) AS
        c.customer_state,
        oi.freight_value
    FROM orders o
    LEFT JOIN order_items oi ON o.order_id = oi.order_id
    LEFT JOIN customers c ON o.customer_id = c.customer_id
SELECT
    customer_state,
    AVG(freight_value) AS avg_freight_value,
    AVG(days_to_actual_delivery_from_day_of_purchase) AS mean_time_to_delivery,
   AVG(diff_between_estimated_delivery_and_actual_delivery) AS diff_estimated_deliver
GROUP BY customer_state
ORDER BY avg_freight_value
LIMIT 5
```

Result 1 (5)

customer_state	avg_freight_value	mean_time_to_delivery	diff_estimated_delivery
□ SP	14	8	11
□ DF	20	12	12
□ PR	20	11	13
RJ	20	15	12
☐ MG	20	11	13

```
-- Top 5 states with highest average time to delivery
WITH A AS (
   SELECT
        o.order_id,
        o.order_purchase_timestamp,
        o.order_estimated_delivery_date,
        o.order_delivered_customer_date,
        DATEDIFF(day, order_purchase_timestamp, order_delivered_customer_date) AS days
        DATEDIFF(day, order_delivered_customer_date, order_estimated_delivery_date) AS
        c.customer_state,
        oi.freight_value
    FROM orders o
    LEFT JOIN order_items oi ON o.order_id = oi.order_id
    LEFT JOIN customers c ON o.customer_id = c.customer_id
SELECT
    customer_state,
    AVG(freight_value) AS avg_freight_value,
    {\tt AVG}\,(days\_to\_actual\_delivery\_from\_day\_of\_purchase) \ {\tt AS} \ mean\_time\_to\_delivery,
    AVG(diff_between_estimated_delivery_and_actual_delivery) AS diff_estimated_deliver
FROM A
GROUP BY customer_state
ORDER BY mean_time_to_delivery DESC
LIMIT 5
```

Result 1 (5)

customer_state	avg_freight_value	mean_time_to_delivery	diff_estimated_delivery
□ AP	33	28	18
RR	42	28	18
□ AM	32	26	19
□ AL	35	24	8
□ PA	35	23	14

```
-- Top 5 states with lowest average time to delivery
WITH A AS (
SELECT
o.order_id,
o.order_purchase_timestamp,
```

```
o.order_estimated_delivery_date,
        o.order_delivered_customer_date,
        DATEDIFF(day, order_purchase_timestamp, order_delivered_customer_date) AS days
        DATEDIFF(day, order_delivered_customer_date, order_estimated_delivery_date) AS
        c.customer_state,
        oi.freight_value
    FROM orders o
    LEFT JOIN order_items oi ON o.order_id = oi.order_id
    LEFT JOIN customers c ON o.customer_id = c.customer_id
SELECT
    customer_state,
    AVG(freight_value) AS avg_freight_value,
    AVG(days_to_actual_delivery_from_day_of_purchase) AS mean_time_to_delivery,
    AVG(diff_between_estimated_delivery_and_actual_delivery) AS diff_estimated_deliver
FROM A
GROUP BY customer_state
ORDER BY mean_time_to_delivery
LIMIT 5
```

Result 1 (5)

customer_state	avg_freight_value	mean_time_to_delivery	diff_estimated_delivery
□ SP	14	8	11
□ PR	20	11	13
☐ MG	20	11	13
□ DF	20	12	12
SC	21	14	11

```
-- Top 5 states where delivery is really fast compared to estimated date
WITH A AS (
   SELECT
        o.order_id,
        o.order_purchase_timestamp,
        o.order_estimated_delivery_date,
        o.order_delivered_customer_date,
        DATEDIFF(day, order_purchase_timestamp, order_delivered_customer_date) AS days
        DATEDIFF(day, order_delivered_customer_date, order_estimated_delivery_date) AS
        c.customer_state,
        oi.freight_value
    FROM orders o
    LEFT JOIN order_items oi ON o.order_id = oi.order_id
    LEFT JOIN customers c ON o.customer_id = c.customer_id
SELECT
   customer_state,
    AVG(days_to_actual_delivery_from_day_of_purchase) AS mean_time_to_delivery,
   AVG(diff_between_estimated_delivery_and_actual_delivery) AS diff_estimated_deliver
FROM A
GROUP BY customer_state
```

```
ORDER BY diff_estimated_delivery
LIMIT 5
```

Result 1 (5)

customer_state	mean_time_to_delivery	diff_estimated_delivery
□ AL	24	8
☐ MA	21	9
□ BA	19	10
SE	21	10
□ ES	15	10
	•	

```
-- Top 5 states where delivery is really not so fast compared to estimated date
WITH A AS (
   SELECT
        o.order_id,
        o.order_purchase_timestamp,
       o.order_estimated_delivery_date,
        o.order_delivered_customer_date,
        DATEDIFF(day, order_purchase_timestamp, order_delivered_customer_date) AS days
        DATEDIFF(day, order_delivered_customer_date, order_estimated_delivery_date) AS
        c.customer_state,
        oi.freight_value
    FROM orders o
    LEFT JOIN order_items oi ON o.order_id = oi.order_id
    LEFT JOIN customers c ON o.customer_id = c.customer_id
)
SELECT
    customer_state,
   AVG(days_to_actual_delivery_from_day_of_purchase) AS mean_time_to_delivery,
   AVG(diff_between_estimated_delivery_and_actual_delivery) AS diff_estimated_deliver
GROUP BY customer_state
ORDER BY diff_estimated_delivery DESC
LIMIT 5
```


Q6: PAYMENT TYPE ANALYSIS:

- Month over Month count of orders for different payment types
- Count of orders based on the no. of payment installments

6.1 Month over Month count of orders for different payment types

```
-- Month over Month count of orders for different payment types
SELECT *
FROM orders;
SELECT *
FROM payments
WITH A AS (
   SELECT
       o.order_id,
        o.order_purchase_timestamp,
        EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
        EXTRACT (MONTH FROM o. order_purchase_timestamp) AS month,
       p.payment_type
    FROM orders o
    LEFT JOIN payments p ON o.order_id = p.order_id
SELECT
   payment_type,
   year,
   month,
   COUNT(1) AS no_of_orders
FROM A
GROUP BY payment_type, year, month
ORDER BY payment_type, year, month
```

■ Result 1 (91)			
payment_type	year	month	no_of_orders
□ UPI	2016	10	63
☐ UPI	2017	1	197
□ UPI	2017	2	398
□ UPI	2017	3	590
□ UPI	2017	4	496
☐ UPI	2017	5	772
□ UPI	2017	6	707
□ UPI	2017	7	845
☐ UPI	2017	8	938
☐ UPI	2017	9	903
☐ UPI	2017	10	993
□ UPI	2017	11	1509
☐ UPI	2017	12	1160
☐ UPI	2018	1	1518
□ UPI	2018	2	1325
□ UPI	2018	3	1352
☐ UPI	2018	4	1287
☐ UPI	2018	5	1263
□ UPI	2018	6	1100
□ UPI	2018	7	1229
☐ UPI	2018	8	1139
credit_card	2016	9	3
credit_card	2016	10	254
credit_card	2016	12	1
credit_card	2017	1	583

6.2 Count of orders based on the no. of payment installments

```
-- Count of orders based on the no. of payment installments
WITH A AS (
   SELECT
       o.order_id,
        o.order_purchase_timestamp,
       EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
       EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,
        p. payment_type,
        p.payment_installments
    FROM orders o
    LEFT JOIN payments p ON o.order_id = p.order_id
SELECT
   payment_installments,
   COUNT(1) AS no_of_orders
FROM A
GROUP BY payment_installments
ORDER BY payment_installments
```

Result 1 (25)

payment_installments≡	no_of_orders
0	2
1	52546
2	12413
3	10461
4	7098
5	5239
6	3920
7	1626
8	4268
9	644
10	5328
11	23
12	133
13	16
14	15
15	74
16	5
17	8
18	27
20	17
21	3
22	1
23	1
24	18