

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

Ingeniería en Sistemas Computacionales

DOCUMENT SIMILARITY

Práctica 2

NATURAL LANGUAGE PROCESSING

Integrantes:

Garcia Quiroz Gustavo Ivan
Hernández Medina Ulises
Reyes Nunez Sebastian
Saucedo Moreno César Enrique

Profesor:

Juarez Gambino Joel Omar.

Grupo 7CV2

03 / Abril / 2025

2025 ~ 1

TABLAS DE EVIDENCIA

Test documento 1 arxiv_cl_2.bib: We propose a novel approach for generating complex outputs that significantly improves accuracy in text-to-SQL tasks. Our method leverages execution results to select the most semantically consistent query from multiple candidates, enabling smaller, cost-effective models to surpass computationally intensive reasoning methods such as o1, o3-mini, and DeepSeek R1 while reducing inference cost by as much as 30 times. It integrates effortlessly with existing models, offering a practical and scalable pathway to state-of-the-art SQL generation.

Documento del corpus	Representación vectorial	Características extraídas	Elemento de comparación	Valor de similitud
10.48550./ar Xiv.2503.104 86	TF-IDF	Unigramas	Abstract	0.3127
10.48550./ar Xiv.2503.104 60	TF-IDF	Unigramas	Abstract	0.1532
10.48550./ar Xiv.2503.110 74	TF-IDF	Unigramas	Abstract	0.1532
10.1001/jam ahealthforu m.2024.5586	TF-IDF	Unigramas	Abstract	0.1507
10.1186/s13 561-025-006 11-0	TF-IDF	Unigramas	Abstract	0.1413
10.3390/jima ging1008019 2	TF-IDF	Unigramas	Abstract	0.1365
10.48550./ar Xiv.2503.108 14	TF-IDF	Unigramas	Abstract	0.1320

10.48550./ar Xiv.2503.106 66	TF-IDF	Unigramas	Abstract	0.1242
10.3390/jima ging1009021 5	TF-IDF	Unigramas	Abstract	0.1173
10.1136/jitc- 2024-011149	TF-IDF	Unigramas	Abstract	0.1116

Test documento 2 arxiv_cv_2.ris: SU-YOLO: Spiking Neural Network for Efficient Underwater Object Detection

Documento del corpus	Representación vectorial	Características extraídas	Elemento de comparación	Valor de similitud
10.48550./ar Xiv.2503.110 05	Binaria	Bigrama	Título	0.2673
10.48550./ar Xiv.2503.113 89	Binaria	Bigrama	Título	0.2673
10.3390/jima ging1008019 7	Binaria	Bigrama	Título	0.2500
10.48550./ar Xiv.2503.	Binaria	Bigrama	Título	0.2357
10.48550./ar Xiv.2503.	Binaria	Bigrama	Título	0.2236
10.48550./ar Xiv.2503.	Binaria	Bigrama	Título	0.2041

Test documento 3 AS_3.ris: Employee task performance plays a critical role in driving organizational success, and understanding its interaction with employee psychological status is essential for unlocking a workforce's full potential. Psychological ownership has been shown to significantly influence performance outcomes, making it crucial to explore how these dynamics shape individual effectiveness. This study attempts to gain a deeper understanding of how employees' sense of ownership influences their intrapreneurial behavior and contributes to enhanced task performance outcomes within organizational settings. A sample of full-time employees based in the United States provided 523 responses on an online questionnaire. The hypotheses were tested using SmartPLS. The findings support that intrapreneurial behavior exhibits full mediation of task performance's relationship with psychological ownership. The outcomes indicate that when employees feel a sense of personal responsibility and attachment to their work, it significantly fosters their innovative actions and enhances their performance, thereby contributing to organizational success. This study contributes to the existing literature by arguing that employees who feel attached to the organization take more responsibility, improve performance, and proactively establish creative innovations to foster organizational success. Study limitations and recommendations are discussed.

Documento del corpus	Representación vectorial	Características extraídas	Elemento de comparación	Valor de similitud
10.48550./ar Xiv.2503.098 96	Frecuencia	Unigrama	Abstract	0.2889
10.48550./ar Xiv.2503.105 42	Frecuencia	Unigrama	Abstract	0.2601
10.48550./ar Xiv.2503.106 71	Frecuencia	Unigrama	Abstract	0.2586
10.48550./ar Xiv.2503.106 79	Frecuencia	Unigrama	Abstract	0.2582
10.48550./ar Xiv.2503.106 59	Frecuencia	Unigrama	Abstract	0.2574

10.1001/jam anetworkop en.2025.072 8	Frecuencia	Unigrama	Abstract	0.2237
10.1093/bjs/ znaf005	Frecuencia	Unigrama	Abstract	0.2125
10.1007/s40 265-025-021 62-4	Frecuencia	Unigrama	Abstract	0.2120
Non	Frecuencia	Unigrama	Abstract	0.2116
10.7150/thn o.104858	Frecuencia	Unigrama	Abstract	0.2113

Test documento 5 LG 3.bib: How a single fertilized cell gives rise to a complex array of specialized cell types in development is a central question in biology. The cells grow, divide, and acquire differentiated characteristics through poorly understood molecular processes. A key approach to studying developmental processes is to infer the tree graph of cell lineage division and differentiation histories, providing an analytical framework for dissecting individual cells' molecular decisions during replication and differentiation. Although genetically engineered lineage-tracing methods have advanced the field, they are either infeasible or ethically constrained in many organisms. In contrast, modern single-cell technologies can measure high-content molecular profiles (e.g., transcriptomes) in a wide range of biological systems. Here, we introduce CellTreeQM, a novel deep learning method based on transformer architectures that learns an embedding space with geometric properties optimized for tree-graph inference. By formulating lineage reconstruction as a tree-metric learning problem, we have systematically explored supervised, weakly supervised, and unsupervised training settings and present a Cell Lineage Reconstruction Benchmark to facilitate comprehensive evaluation of our learning method. We benchmarked the method on (1) synthetic data modeled via Brownian motion with independent noise and spurious signals and (2) lineage-resolved single-cell RNA sequencing datasets. Experimental results show that CellTreeQM recovers lineage structures with minimal supervision and limited data, offering a scalable framework for uncovering cell lineage relationships in challenging animal models. To our knowledge, this is the first method to cast cell lineage inference explicitly as

a metric learning task, paving the way for future computational models aimed at uncovering the molecular dynamics of cell lineage.

Documento del corpus	Representaci ón vectorial	Característic as extraídas	Elemento de comparaci ón	Valor de similitu d
10.1073/pnas.2420466122	Bigrama	Binaria	Abstract	0,0845
10.48550JarXiv.2503.11044	Bigrama	Binaria	Abstract	00801
10.1172/JC1185217	Bigrama	Binaria	Abstract	0.0620
10.48550JarXiv.2503.10620	Bigrama	Binaria	Abstract	00612
10.4855WarXiv.2503.10661	Bigrama	Binaria	Abstract	0.0546
10.1007/500018-025-0564 2-8	Bigrama	Binaria	Abstract	0,0540
10.4855WarXiv.2503.11101	Bigrama	Binaria	Abstract	0,0529
10.1038/543018-025-0093 3-2	Bigrama	Binaria	Abstract	0.0525
10.1038/s43018-025-0092 8-z	Bigrama	Binaria	Abstract	0.0510
10.48550./arXiv.2503.1116 4	Bigrama	Binaria	Abstract	00481

Test documento 6 pubmed_natcard_2.bib: Post-injury remodeling is a complex process involving temporal specific cellular interactions in the injured tissue where the resident fibroblasts play multiple roles. Here, we performed single-cell and spatial transcriptome analysis in human and mouse infarcted hearts to dissect the molecular basis of these interactions. We identified a unique fibroblast subset with high CD248 expression, strongly associated with extracellular matrix remodeling.

Genetic Cd248 deletion in fibroblasts mitigated cardiac fibrosis and dysfunction following ischemia/reperfusion. Mechanistically, CD248 stabilizes type I transforming growth factor beta receptor and thus upregulates fibroblast ACKR3 expression, leading to enhanced T cell retention. This CD248-mediated fibroblast-T cell interaction is required to sustain fibroblast activation and scar expansion. Disrupting this interaction using monoclonal antibody or chimeric antigen receptor T cell reduces T cell infiltration and consequently ameliorates cardiac fibrosis and dysfunction. Our findings reveal a CD248+ fibroblast subpopulation as a key regulator of immune-fibroblast cross-talk and a potential therapy to treat tissue fibrosis.

Documento del corpus	Representaci ón vectorial	Característic as extraídas	Elemento de comparaci ón	Valor de similitu d
10.1182/blood.202402544 0	Unigrama	Frecuencia	Abstract	0.3808
10.1016/j.cce112025.02.00 9	Unigrama	Frecuencia	Abstract	0.3745
10.1038/543018-025-0092 7-0	Unigrama	Frecuencia	Abstract	0.3617
10.1172/JC1185217	Unigrama	Frecuencia	Abstract	0.3426
10.1093/brain/awaf096	Unigrama	Frecuencia	Abstract	0.3344
10.4855WarXiv.2503.11241	Unigrama	Frecuencia	Abstract	0.2800
10.4855WarXiv.2503.11439	Unigrama	Frecuencia	Abstract	0.2068
10.4855WarXiv.2503.10875	Unigrama	Frecuencia	Abstract	0.2016
10.4855WarXiv.2503.11465	Unigrama	Frecuencia	Abstract	0.2002
10.48550JarXiv.2503.11495	Unigrama	Frecuencia	Abstract	0.1999

Test documento 7 pubmed_natcom_2.bib: A genome-wide cross-trait analysis characterizes the shared genetic architecture between lung and gastrointestinal diseases.

Documento del corpus	Representaci ón vectorial	Característic as extraídas	Elemento de comparaci ón	Valor de similitu d
10.1038/s41588-025-02136- y	TF-IDF	Unigramas	Título	0.3347
10.1038/s41467-025-57452- y	TF-IDF	Unigramas	Título	0.2386
10.48550./arXiv.2503.10655	TF-IDF	Unigramas	Título	0.1637
10.1186/512889-025-21910- 5	TF-IDF	Unigramas	Título	0.1436
10.4855WarXiv.2503.10713	TF-IDF	Unigramas	Título	0.1376
10.1016/j.autrev.2025.1038 04	TF-IDF	Unigramas	Título	0.1371
10.1016/j.autrev.2025.1038 04	TF-IDF	Unigramas	Título	0.1371
10.4855WarXiv.2503.10740	TF-IDF	Unigramas	Título	0.1339
10.4855WarXiv.2503.09743	TF-IDF	Unigramas	Título	0.1325
10.48550./arXiv.2503.10354	TF-IDF	Unigramas	Título	0.1270

Test documento 8 test.bib:"Bring Your Rear Cameras for Egocentric 3D Human Pose Estimation" [Simulación de documento con 100% de similitud]

Documento del corpus	Representaci ón vectorial	Característic as extraídas	Elemento de comparació n	Valor de similitu d
10.4855WarXiv.2503.1165 2	TF-IDF	Unigramas	Título	1.00
10.48550JarXiv.2503.1119 4	TF-IDF	Unigramas	Título	0.3863
10.1186/s13024-025-0081 9-y	TF-IDF	Unigramas	Título	0.3501
10.4855WarXiv.2503.1114	TF-IDF	Unigramas	Título	0.2088
10.1038/541586-025-0887 3-8	TF-IDF	Unigramas	Título	0.2033
10.1126/science.adu6445	TF-IDF	Unigramas	Título	0.1928
10.4855WarXiv.2503.1134 5	TF-IDF	Unigramas	Título	0.1872
10.4855WarXiv.2503.1137	TF-IDF	Unigramas	Título	0.1702
10.1146/annurev-virology- 092818-015907	TF-IDF	Unigramas	Título	0.1613
10.1016/j.cell.2025.02.009	TF-IDF	Unigramas	Título	0.1600