STAT 576 Bayesian Analysis

Lecture 1: Review on Prerequisites

Chencheng Cai

Washington State University

Measurable Space

- $lackbox{}(\Omega,\mathcal{E})$ is called a **measurable space** if Ω is a nonempty set and \mathcal{E} is a σ -algebra on Ω .
- ▶ The σ -algebra \mathcal{E} on Ω is a collection of subsets of Ω such that
 - $\Omega \in \mathcal{E}$;
 - ▶ if $E \in \mathcal{E}$, then $E^c \in \mathcal{E}$; (closed under complementation)
 - ▶ if $E_1, E_2, \dots \in \mathcal{E}$, then $\bigcup_{i=1}^{\infty} E_i \in \mathcal{E}$. (closed under countable union)

Measurable Space

- $lackbox{}(\Omega,\mathcal{E})$ is called a **measurable space** if Ω is a nonempty set and \mathcal{E} is a σ -algebra on Ω .
- ▶ The σ -algebra \mathcal{E} on Ω is a collection of subsets of Ω such that
 - $\Omega \in \mathcal{E}$;
 - if $E \in \mathcal{E}$, then $E^c \in \mathcal{E}$; (closed under complementation)
 - ightharpoonup if $E_1, E_2, \dots \in \mathcal{E}$, then $\bigcup_{i=1}^{\infty} E_i \in \mathcal{E}$. (closed under countable union)
- ▶ A **measure** m on (Ω, \mathcal{E}) is a set function $m: \mathcal{E} \to \overline{\mathbb{R}}$ such that

 - $ightharpoonup m(E) \geq 0$ for all $E \in \mathcal{E}$;
 - ▶ if $\{E_i\}_{i=1}^{\infty}$ are pairwise **disjoint** sets in \mathcal{E} , then $m\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} m(E_i)$.

Measurable Space

- $lackbox{}(\Omega,\mathcal{E})$ is called a **measurable space** if Ω is a nonempty set and \mathcal{E} is a σ -algebra on Ω .
- ▶ The σ -algebra \mathcal{E} on Ω is a collection of subsets of Ω such that
 - $\Omega \in \mathcal{E}$:
 - if $E \in \mathcal{E}$, then $E^c \in \mathcal{E}$; (closed under complementation)
 - ▶ if $E_1, E_2, \dots \in \mathcal{E}$, then $\bigcup_{i=1}^{\infty} E_i \in \mathcal{E}$. (closed under countable union)
- ▶ A **measure** m on (Ω, \mathcal{E}) is a set function $m: \mathcal{E} \to \overline{\mathbb{R}}$ such that

 - ▶ $m(E) \ge 0$ for all $E \in \mathcal{E}$;
 - ▶ if $\{E_i\}_{i=1}^{\infty}$ are pairwise **disjoint** sets in \mathcal{E} , then $m\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} m(E_i)$.
- Common measurable spaces:
 - for $\Omega = \mathbb{R}$, \mathcal{E} contains all **Borel** sets, and we use the **Lebesgue measure**:

$$\mu((a,b)) = b - a$$

• for $\Omega = \mathbb{Z}$, \mathcal{E} contains all the subsets, and we use the **counting measure**:

$$\mu(E) = \begin{cases} |E| & \text{if } E \text{ finite} \\ +\infty & \text{if } E \text{ infinite} \end{cases}$$

Probability Space

- ightharpoonup A measurable space $(\Omega, \mathcal{E}, \mathbb{P})$ is called a **probability space** if $\mathbb{P}(\Omega) = 1$.
- In this case,
 - $ightharpoonup \Omega$: sample space.
 - $ightharpoonup E \in \mathcal{E}$: event.
 - ▶ $\mathbb{P}(E)$ for $E \in \mathcal{E}$: the probability of event E.
 - $ightharpoonup \mathbb{P}$ is called the **probability measure**

Probability Space

- ightharpoonup A measurable space $(\Omega, \mathcal{E}, \mathbb{P})$ is called a **probability space** if $\mathbb{P}(\Omega) = 1$.
- In this case,
 - $ightharpoonup \Omega$: sample space.
 - $E \in \mathcal{E}$: event.
 - ▶ $\mathbb{P}(E)$ for $E \in \mathcal{E}$: the probability of event E.
 - P is called the probability measure
- Example:

 - ▶ Then (1) the set of all rational numbers $\mathbb{Q} \cap [0,1]$ is measurable.
 - ▶ and (2) $\mathbb{P}(\mathbb{Q} \cap [0,1]) = 0$.

Random Variable

- A random variable $X(\omega)$ is a **measurable** function mapping from a probability space $(\Omega, \mathcal{E}, \mathbb{P})$ to a measurable space (Ω_X, \mathcal{X}) .
- ► Here **measurable** means
 - ▶ for any $E_X \in \mathcal{X}$, its preimage $X^{-1}(E_X)$ is measurable, i.e. $X^{-1}(E_X) \in \mathcal{E}$.

Random Variable

- A random variable $X(\omega)$ is a **measurable** function mapping from a probability space $(\Omega, \mathcal{E}, \mathbb{P})$ to a measurable space (Ω_X, \mathcal{X}) .
- ► Here **measurable** means
 - ▶ for any $E_X \in \mathcal{X}$, its preimage $X^{-1}(E_X)$ is measurable, i.e. $X^{-1}(E_X) \in \mathcal{E}$.
- ▶ Then we can define a probability measure \mathbb{P}_X on (Ω_X, \mathcal{X}) for any $E_X \in \mathcal{X}$ by

$$\mathbb{P}_X(E_X) = \mathbb{P}(X^{-1}(E_X)).$$

Random Variable

- A random variable $X(\omega)$ is a **measurable** function mapping from a probability space $(\Omega, \mathcal{E}, \mathbb{P})$ to a measurable space (Ω_X, \mathcal{X}) .
- Here measurable means
 - ▶ for any $E_X \in \mathcal{X}$, its preimage $X^{-1}(E_X)$ is measurable, i.e. $X^{-1}(E_X) \in \mathcal{E}$.
- ▶ Then we can define a probability measure \mathbb{P}_X on (Ω_X, \mathcal{X}) for any $E_X \in \mathcal{X}$ by

$$\mathbb{P}_X(E_X) = \mathbb{P}(X^{-1}(E_X)).$$

- Example:
 - ▶ Consider $\Omega = \mathbb{Z}$ with \mathcal{E} all of its subsets, and \mathbb{P} some probability measure on it.
 - $\blacktriangleright \text{ Let } X(\omega) = |\omega| \in \mathbb{Z}^+$
 - ▶ Then for any $a \in \mathbb{Z}^+$,

$$\mathbb{P}_X(X = a) = \mathbb{P}(X^{-1}(\{a\})) = \mathbb{P}(\{a, -a\}) = \mathbb{P}(a) + \mathbb{P}(-a)$$

lacktriangle For a probability space $(\mathbb{R},\mathcal{B},\mathbb{P}_X)$, its distribution function $F_X:\mathbb{R} o [0,1]$ is

$$F_X(t) = \mathbb{P}_X((-\infty, t])$$

▶ For a probability space $(\mathbb{R}, \mathcal{B}, \mathbb{P}_X)$, its distribution function $F_X : \mathbb{R} \to [0, 1]$ is

$$F_X(t) = \mathbb{P}_X((-\infty, t])$$

- ► The distribution function is *cadlag*:
 - **•** continue à droite: $\lim_{t \uparrow c} F(t)$ exists for all c.
 - ▶ limite à gauche: $\lim_{t\downarrow c} F(t) = F(c)$ for all c.

▶ For a probability space $(\mathbb{R}, \mathcal{B}, \mathbb{P}_X)$, its distribution function $F_X : \mathbb{R} \to [0, 1]$ is

$$F_X(t) = \mathbb{P}_X((-\infty, t])$$

- ► The distribution function is *cadlag*:
 - **continue** à droite: $\lim_{t \uparrow c} F(t)$ exists for all c.
 - ▶ limite à gauche: $\lim_{t\downarrow c} F(t) = F(c)$ for all c.
- ► The distribution function is non-decreasing.
- $ightharpoonup \lim_{t\to-\infty}F(t)=0 \text{ and } \lim_{t\to\infty}F(t)=1$

▶ For a probability space $(\mathbb{R}, \mathcal{B}, \mathbb{P}_X)$, its distribution function $F_X : \mathbb{R} \to [0, 1]$ is

$$F_X(t) = \mathbb{P}_X((-\infty, t])$$

- The distribution function is cadlag:
 - **continue** à droite: $\lim_{t \uparrow c} F(t)$ exists for all c.
 - ▶ limite à gauche: $\lim_{t\downarrow c} F(t) = F(c)$ for all c.
- ▶ The distribution function is non-decreasing.
- $ightharpoonup \lim_{t\to\infty}F(t)=0 \text{ and } \lim_{t\to\infty}F(t)=1$
- ▶ The probability space is uniquely determined by its distribution function because

$$\mathbb{P}_X((a,b]) = F_X(b) - F_X(a)$$

The probability measure \mathbb{P}_X is **absolutely continuous** with respect to the Lebesgue measure μ if

$$\mathbb{P}_X(E) = 0$$
 whenever $\mu(E) = 0$.

The probability measure \mathbb{P}_X is **absolutely continuous** with respect to the Lebesgue measure μ if

$$\mathbb{P}_X(E) = 0$$
 whenever $\mu(E) = 0$.

If \mathbb{P}_X is absolutely continuous with respect to the Lebesgue measure μ , we call $p: \mathbb{R} \to \mathbb{R}$ the **probability density function** of F_X if

$$\mathbb{P}_X(E) = \int_E p d\mu$$

for any Borel set E.

▶ The Leibniz rule gives F'(t) = p(t).

 \blacktriangleright The probability measure \mathbb{P}_X is absolutely continuous with respect to the Lebesgue measure μ if

$$\mathbb{P}_X(E) = 0$$
 whenever $\mu(E) = 0$.

If \mathbb{P}_X is absolutely continuous with respect to the Lebesgue measure μ , we call $p: \mathbb{R} \to \mathbb{R}$ the **probability density function** of F_X if

$$\mathbb{P}_X(E) = \int_E p d\mu$$

for any Borel set E.

- ▶ The Leibniz rule gives F'(t) = p(t).
- ▶ Similarly, if we replace all previous arguments for Lebesgue measure to counting measure, the corresponding *p* is called the **probability mass function**.

Expectation

- Suppose the random variable X is in a probability space $(\mathbb{R}, \mathcal{B}, \mathbb{P})$ with distribution function F that is absolutely continuous to the Lebesgue measure.
- lacktriangle Let f be a measurable function of X. Then the expecation of f can be written as
 - classical Rieman integral: $\int_{-\infty}^{\infty} f(x)p(x)dx$.
 - ► Lebesgue integral: $\int_{\mathbb{R}} f(x)p(x)d\mu$
 - or simply

$$\int_{\mathbb{R}} f(x)dF(x)$$

Expectation

- Suppose the random variable X is in a probability space $(\mathbb{R}, \mathcal{B}, \mathbb{P})$ with distribution function F that is absolutely continuous to the Lebesgue measure.
- lackbox Let f be a measurable function of X. Then the expecation of f can be written as
 - classical Rieman integral: $\int_{-\infty}^{\infty} f(x)p(x)dx$.
 - ▶ Lebesgue integral: $\int_{\mathbb{R}} f(x)p(x)d\mu$
 - or simply

$$\int_{\mathbb{R}} f(x)dF(x)$$

Since the formula is almost the same for continuous and discrete random variables, except that the base measure μ is Lebesgue (for continuous r.v.) and counting (for discrete), we simply use the integral for all types of random variables.

Estimation

- We observe X from a distribution from a distribution family $\mathcal{F} = \{F_{\theta} : \theta \in \Theta\}$.
- ▶ The distribution family \mathcal{F} is called **identifiable** if for any $\theta \neq \theta'$

$$\sup_{t} |F_{\theta}(t) - F_{\theta'}(t)| > 0$$

▶ The left-hand side is called Komogorov-Smirnov distance.

Estimation

- We observe X from a distributon from a distribution family $\mathcal{F} = \{F_{\theta} : \theta \in \Theta\}$.
- ▶ The distribution family \mathcal{F} is called **identifiable** if for any $\theta \neq \theta'$

$$\sup_{t} |F_{\theta}(t) - F_{\theta'}(t)| > 0$$

- ▶ The left-hand side is called Komogorov-Smirnov distance.
- ▶ If the distribution F_{θ} has a density function p_{θ} for all θ , the **likelihood** function is

$$L(\theta) = p_{\theta}(X)$$

The score function is

$$\dot{\ell}(\theta) = \frac{\partial}{\partial \theta} \log L(\theta)$$

The Fisher's information is

$$I(\theta) = \mathbb{E}_{\theta}[(\dot{\ell}(\theta))^2] = -\mathbb{E}_{\theta}[\ddot{\ell}(\theta)] = -\int \ddot{\ell}dF_{\theta}$$

Maximum Likelihood Estimator

► The Maximum Likelihood Estimator (MLE) is

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} \ L(\theta) = \underset{\theta}{\operatorname{arg\,max}} \ \ell(\theta)$$

▶ If ℓ is differentiable and $\hat{\theta}$ is an interior point of Θ , then

$$\dot{\ell}(\hat{\theta}) = 0.$$

The above is called the **estimating equation(s)**.

▶ Counter-example: $X \sim \text{unif}[0, \theta]$.

Consistency of MLE

- ▶ Let $X_1, X_2, ..., X_n$ be i.i.d. samples drawn from F_{θ_0} for some $\theta_0 \in \Theta$.
- ► The log-likelihood function is now

$$\ell_n(\theta) = \log \prod_{i=1}^n p_{\theta}(X_i) = \sum_{i=1}^n \log p_{\theta}(X_i)$$

Consistency of MLE

- Let X_1, X_2, \ldots, X_n be i.i.d. samples drawn from F_{θ_0} for some $\theta_0 \in \Theta$.
- ► The log-likelihood function is now

$$\ell_n(\theta) = \log \prod_{i=1}^n p_{\theta}(X_i) = \sum_{i=1}^n \log p_{\theta}(X_i)$$

- ▶ (1) $\hat{\theta}_n$ maximizes $\ell_n(\theta)$.
- ▶ (2) By the Law of Large Numbers, we have

$$n^{-1}\ell_n(\theta) \to \mathbb{E}_{\theta_0}[\log p_{\theta}(X)] =: \ell(\theta)$$

▶ (3) We can show that θ_0 is the maximum of the (point-wise) limit function $\ell(\theta)$:

$$\ell(\theta) < \ell(\theta_0)$$
 for all $\theta \neq \theta_0$.

Consistency of MLE

- ▶ Let $X_1, X_2, ..., X_n$ be i.i.d. samples drawn from F_{θ_0} for some $\theta_0 \in \Theta$.
- ► The log-likelihood function is now

$$\ell_n(\theta) = \log \prod_{i=1}^n p_{\theta}(X_i) = \sum_{i=1}^n \log p_{\theta}(X_i)$$

- ▶ (1) $\hat{\theta}_n$ maximizes $\ell_n(\theta)$.
- ▶ (2) By the Law of Large Numbers, we have

$$n^{-1}\ell_n(\theta) \to \mathbb{E}_{\theta_0}[\log p_{\theta}(X)] =: \ell(\theta)$$

▶ (3) We can show that θ_0 is the maximum of the (point-wise) limit function $\ell(\theta)$:

$$\ell(\theta) < \ell(\theta_0)$$
 for all $\theta \neq \theta_0$.

▶ Under certain regularity conditions (uniform convergence of ℓ_n), with (1)-(3), we have

$$\hat{\theta}_n \xrightarrow{P} \theta_0.$$

• We can have a Taylor expansion of $\dot{\ell}$ at θ_0 :

$$0 = \dot{\ell}_n(\hat{\theta}_n) = \dot{\ell}_n(\theta_0) + (\hat{\theta}_n - \theta_0)\ddot{\ell}_n(\theta_0) + \frac{1}{2}(\hat{\theta}_n - \theta_0)^2 \ddot{\ell}_n(\theta'),$$

for some θ' between θ_0 and $\hat{\theta}$.

• We can have a Taylor expansion of $\dot{\ell}$ at θ_0 :

$$0 = \dot{\ell}_n(\hat{\theta}_n) = \dot{\ell}_n(\theta_0) + (\hat{\theta}_n - \theta_0)\ddot{\ell}_n(\theta_0) + \frac{1}{2}(\hat{\theta}_n - \theta_0)^2 \ddot{\ell}_n(\theta'),$$

for some θ' between θ_0 and $\hat{\theta}$.

► Then we have

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = -\frac{\sqrt{n}\dot{\ell}_n(\theta_0)}{\ddot{\ell}_n(\theta_0) + \frac{1}{2}(\hat{\theta}_n - \theta_n)\ddot{\ell}_n(\theta')}$$

▶ We can have a Taylor expansion of $\dot{\ell}$ at θ_0 :

$$0 = \dot{\ell}_n(\hat{\theta}_n) = \dot{\ell}_n(\theta_0) + (\hat{\theta}_n - \theta_0)\ddot{\ell}_n(\theta_0) + \frac{1}{2}(\hat{\theta}_n - \theta_0)^2 \ddot{\ell}_n(\theta'),$$

for some θ' between θ_0 and $\hat{\theta}$.

► Then we have

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = -\frac{\sqrt{n}\dot{\ell}_n(\theta_0)}{\ddot{\ell}_n(\theta_0) + \frac{1}{2}(\hat{\theta}_n - \theta_n)\ddot{\ell}_n(\theta')}$$

- ▶ The CLT gives $\sqrt{n}\dot{\ell}_n(\theta_0) \xrightarrow{D} \mathcal{N}(0, I(\theta))$.
- ▶ The LLN gives $\ddot{\ell}_n(\theta_0) \xrightarrow{P} I(\theta)$.
- ▶ If $\widetilde{\ell}_n$ is bounded, by consistency, we have $(\widehat{\theta}_n \theta_n) \widetilde{\ell}_n(\theta') \xrightarrow{P} 0$.

• We can have a Taylor expansion of $\dot{\ell}$ at θ_0 :

$$0 = \dot{\ell}_n(\hat{\theta}_n) = \dot{\ell}_n(\theta_0) + (\hat{\theta}_n - \theta_0)\ddot{\ell}_n(\theta_0) + \frac{1}{2}(\hat{\theta}_n - \theta_0)^2 \ddot{\ell}_n(\theta'),$$

for some θ' between θ_0 and $\hat{\theta}$.

► Then we have

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = -\frac{\sqrt{n}\ell_n(\theta_0)}{\ddot{\ell}_n(\theta_0) + \frac{1}{2}(\hat{\theta}_n - \theta_n)\ddot{\ell}_n(\theta')}$$

- ▶ The CLT gives $\sqrt{n}\dot{\ell}_n(\theta_0) \xrightarrow{D} \mathcal{N}(0, I(\theta))$.
- ▶ The LLN gives $\ddot{\ell}_n(\theta_0) \xrightarrow{P} I(\theta)$.
- ▶ If $\widetilde{\ell}_n$ is bounded, by consistency, we have $(\widehat{\theta}_n \theta_n) \widetilde{\ell}_n(\theta') \xrightarrow{P} 0$.
- ▶ By Slutsky's lemma, we have

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{D} \mathcal{N}(0, I^{-1}(\theta))$$

- Let X_1, \ldots, X_n be i.i.d. Binomial distribution with size K (fixed) and probability $\theta \in (0,1)$.
- Likelihood function:

$$L(\theta) = \prod_{i=1}^{n} {K \choose X_i} \theta^{X_i} (1-\theta)^{K-X_i}$$

► The log-likelihood function:

$$\ell(\theta) = S_n \log \theta + (nK - S_n) \log(1 - \theta) + C,$$

where $S_n = \sum_{i=1}^n X_i$ and C is a constant of θ .

- Let X_1, \ldots, X_n be i.i.d. Binomial distribution with size K (fixed) and probability $\theta \in (0,1)$.
- Likelihood function:

$$L(\theta) = \prod_{i=1}^{n} {K \choose X_i} \theta^{X_i} (1-\theta)^{K-X_i}$$

The log-likelihood function:

$$\ell(\theta) = S_n \log \theta + (nK - S_n) \log(1 - \theta) + C,$$

where $S_n = \sum_{i=1}^n X_i$ and C is a constant of θ .

▶ The score function is

$$\dot{\ell}(\theta) = \frac{S_n}{\theta} + \frac{S_n - nK}{1 - \theta}$$

▶ By setting the score function to 0, we have

$$\hat{\theta}_n = \frac{S_n}{nK}$$

► The consistency is followed by LLN:

$$\frac{S_n}{n} \xrightarrow{P} \mathbb{E}[X_1] = K\theta$$

► The consistency is followed by LLN:

$$\frac{S_n}{n} \xrightarrow{P} \mathbb{E}[X_1] = K\theta$$

▶ The CLT is followed by the CLT of S_n :

$$n^{-1/2}S_n \xrightarrow{D} \mathcal{N}(0, I(\theta))$$

where the Fisher's information is

$$I(\theta) = -\mathbb{E}[\ddot{\ell}(\theta)] = \mathbb{E}_{\theta} \left[\frac{X_1}{\theta^2} + \frac{K - X_1}{(1 - \theta)^2} \right] = \frac{K}{\theta(1 - \theta)}$$

► Therefore,

$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{D} \mathcal{N}\left(0, \frac{\theta(1-\theta)}{K}\right)$$

- Let X_1, \ldots, X_n be i.i.d. from unif $[0, \theta]$ with $\theta \in \mathbb{R}^+$.
- ▶ The likelihood function is

$$L_n(\theta) = \prod_{i=1}^n \frac{\mathbb{I}\{X_i \le \theta\}}{\theta} = \frac{\mathbb{I}\{X_{(n)} \le \theta\}}{\theta^n}$$

- Let X_1, \ldots, X_n be i.i.d. from unif $[0, \theta]$ with $\theta \in \mathbb{R}^+$.
- ▶ The likelihood function is

$$L_n(\theta) = \prod_{i=1}^n \frac{\mathbb{I}\{X_i \le \theta\}}{\theta} = \frac{\mathbb{I}\{X_{(n)} \le \theta\}}{\theta^n}$$

The likelihood is **not** differentiable, but we can maximize it directly to have $\hat{\theta}_n = X_{(n)}$.

- Let X_1, \ldots, X_n be i.i.d. from unif $[0, \theta]$ with $\theta \in \mathbb{R}^+$.
- ▶ The likelihood function is

$$L_n(\theta) = \prod_{i=1}^n \frac{\mathbb{I}\{X_i \le \theta\}}{\theta} = \frac{\mathbb{I}\{X_{(n)} \le \theta\}}{\theta^n}$$

- The likelihood is **not** differentiable, but we can maximize it directly to have $\hat{\theta}_n = X_{(n)}$.
- ▶ The consistency is followed by that for any $0 < \epsilon < \theta$,

$$\mathbb{P}[|\hat{\theta}_n - \theta| > \epsilon] = \left(1 - \frac{\epsilon}{\theta}\right)^n \to 0.$$

▶ We have the distribution function for $n(\theta - \hat{\theta}_n)$ as

$$F(t) = 1 - \mathbb{P}[\hat{\theta}_n \le \theta - t/n] = 1 - \left(1 - \frac{t}{n\theta}\right)^n \to 1 - e^{-t/\theta}$$

▶ We have the distribution function for $n(\theta - \hat{\theta}_n)$ as

$$F(t) = 1 - \mathbb{P}[\hat{\theta}_n \le \theta - t/n] = 1 - \left(1 - \frac{t}{n\theta}\right)^n \to 1 - e^{-t/\theta}$$

lacktriangle Therefore, we have the limit distribution of $\hat{ heta}_n$ as

$$n(\theta - \hat{\theta}_n) \xrightarrow{D} \operatorname{Exp}(\theta^{-1})$$

► The CLT does not hold for this example.