Breathing life into renal CEST-imaging: A feasibility study on retrospective gating in renal CEST imaging

Patrik Jan Gallinnis¹, Karl Ludger Radke¹, Julia Stabinska², Rosanna Strunk¹, Alexandra Ljimani¹, Hans-Jörg Wittsack¹, Anja Müller-Lutz¹

 Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Germany
Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA

INTRODUCTION:

Renal CEST imaging is challenging due to the respiratory motion that negatively affect the z-spectra. In our previous study, we performed in vivo renal CEST imaging in transplanted kidneys where the respiratory motion is minimal [1]. In this pilot study, we aim to investigate the CEST effects in native human kidneys. To reduce the respiratory motion artifacts, we apply a retrospective gating analysis method proposed by Jones et. al. [2].

METHODS:

The CEST measurements were performed in a healthy volunteer (male, 26 years) on a 3 Tesla MRI system (Siemens MAGNETOM Prisma), using body- and spine-coil in combination with a multi-echo gradient echo sequence consisting of a pulse train of 15 pulses, a pulse amplitude of 1.5 μ T and a pulse and inter pulse duration of 100 ms, acquiring 80 frequency offsets in a range of \pm 5 ppm. The CEST sequence was repeated three times to ensure sufficient sampling rate after the retrospective gating. A two point Dixon method (TE₁/TE₂= (2.5/3.7) ms) was performed for fat suppression [1]. A respiratory cushion was used to assign each image a respiratory state. The water only images in the lower third of the breathing curve were retained for MTR_{asym} analysis. To obtain frequency shifts due to B₀-inhomogenities, a single Lorentzian line shape was fitted and the corresponding offset was used for frequency adjustment [2]. MTR_{asym} values were calculated pixel wise in the kidney and intervertebral discs (IVD) in the frequency ranges (1.2 \pm 0.25) ppm for hydroxyl-, (2.0 \pm 0.25) ppm for amineand (3.5 \pm 0.25) ppm for amide-proton groups. The IVD was used as a static reference to asses, whether the CEST effects get change due to data point rejection. Mann-Whitney U test was used to determine significant differences in the CEST effects.

RESULTS:

Determined renal CEST effects without retrospective gating are (0.80 ± 0.66) %, (0.36 ± 1.05) %, (-1.60 ± 1.76) % and (2.17 ± 1.96) %, (0.95 ± 1.28) %, (-1.20 ± 1.89) % with retrospective gating at 1.2, 2.0 and 3.5 ppm, respectively. The CEST effects in the IVD are correspondingly (0.56 ± 0.50) %, (0.73 ± 0.15) %, (-0.46 ± 0.58) % and (0.85 ± 0.66) %, (0.64 ± 0.24) %, (-0.24 ± 0.27) % at 1.2, 2.0 and 3.5 ppm, respectively. While the CEST effects measured in the kidney are significantly higher (p < 0.01), no significant changes were found in the IVD when the retrospective gating was used. Furthermore, MTR_{asym} maps obtained with retrospective gating showed visibility of the renal structures in the parenchyma.

Figure 1. Exemplary z-spectra (black dots) and corresponding MTRasym (red crosses) from the medulla without (left) and with (right) retrospective gating. Upper MTRasym maps are calculated without and lower with retrospective gating.

DISCUSSION:

In our previous study [1] CEST effects of (2.3 ± 3.65) %, (1.4 ± 1.75) % and (0.3 ± 1.24) % were respectively measured for hydroxl-, amine- and amide-proton groups in the medulla of allograft patients. In the cortex, CEST effects of (3.3 ± 4.25) %, (1.3 ± 2.0) % and (-0.1 ± 1.49) % were obtained. The results obtained in this study are in good agreement with those findings. Slight differences were found in the CEST effect of the amide-group, which are likely due to differences in CEST protocols and high inter-subject variability.

CONCLUSION:

The method shows the feasibility of retrospective gating in renal CEST measurements. The reproducibility and possible applicability to pathologies will be investigated in further studies.

ACKNOWLEDGMENTS:

Patrik Jan Gallinnis is supported by the Jürgen Manchot Foundation, Düsseldorf, Germany.

REFERENCES:

- 1. Stabinska J, et al. Magn Reson Imaging. 2022;90:61-69.
- 2. Jones KM, et al. Tomography. 2017 Dec;3(4):201-210.