Computational Photography

* Study the basics of computation and its impact on the entire workflow of photography, from capturing, manipulating and collaborating on, and sharing photographs.

Digital Video

* Video is basically just a stack of images in Time

- 1. Relationship between Images and Videos
- 2. Persistence of vision in playing (and capturing) Videos
- 3. Extend filtering and processing of Images to Videos
- 4. Tracking points in Videos

Recall: A Digital Image

Georgia Tech's Mascot Buzz, in Black and White

```
= 512 \text{ pixels}
= 512 \text{ pixels}
= 512 \text{ pixels}
```

512x512 pixels = 262,144 pixels = .26 MP image

- * "Digital" Image!
 - * numeric representation in two-dimensions (x and y)
 - * referred to as I(x,y) in continuous function form, I(i,j) in discrete

Recall: A Digital Image

Georgia Tech's Mascot Buzz, in Black and White

- 512x512 pixels = 262,144 pixels
 - 202,144 pixels
 - =.26 *MP image*

- * Image Resolution!
 - * expressed as representation of Width and Height of the image
- * Each pixel (picture element) contains light intensities for each value of x and y of I(x,y)

Video: Images OVER Time

- * "Digital" Video!
 - * numeric representation in two-dimensions (x and y), stacked in time, t
 - * referred to as I(x,y,t) in continuous function form, I(i,j,t) in discrete

Video: Images OVER Time

- * Video Resolution!
 - * expressed as representation of Width and Height of the image
 - * Usually in aspect ratios of 4x3, 16x9, etc
- * File formats! Include images, frame-rates, and codec/wrappers

Persistence of Vision

- * If image frames are captured and played back (refreshed) at a rate faster 1/24th of a second
- * We see flicker-free appearance of motion

Persistence of Vision

- * Foundational observation of why we perceive video
- * Rationale behind the invention of video cameras
 - * Muybridge (1830-1904) used stop-action photographs to study animal motion
 - * Marey (1830-1904) developed Chronophotographe to capture motion

en.wikipedia.org/wiki/File:Muybridge_race_horse_animated.gif Pictured in 1887, Animated in 2006 en.wikipedia.org/wiki/File:Marey_-_birds.jpg

Processin 9/Filterin 9 Video

- * Same as with images, just over a video volume
- * Can filter in 3D
 - * (x, y, t)
- * Motion information is used in video compression

Processin 9/Filterin 9 Video

- * Same concepts of change detection as in xy- space
 - * apply to xt- and ytspace.
 - * If all pixels from one frame to another frame, that follows, it are different, than it maybe a drastic motion change

Feature Detection and Matching

- * Same as in images
- * Leverage the fact that features found in one frame may be visible in the next

Feature Tracking

- * Direct approaches to tracking
 - * Find a feature, and match it to feature in the next frame)
- * Motion-based approaches,
 - * Compute the motion at pixel level between frames (OPTICAL flow)

Tracking, Registration in Video

Registration and Blending in Video

Summary

- * Representational relationship between Images and Videos
- * Persistence of vision in playing (and capturing) Videos
- * Extension of filtering and processing from Images to Videos
- * Methods used for tracking points in Videos

Next Class

* Video Textures and More

Credits

- * For more information, see
 - * Richard Szeliski

 (2010) Computer Vision!

 Algorithms and Applications,

 Springer
- * Some video retrieved from
 - * http://commons.wikimedia.org/
 - * From Professors Essa's Lab

Computational Photography

* Study the basics of computation and its impact on the entire workflow of photography, from capturing, manipulating and collaborating on, and sharing photographs.

