# Contajes (Sesión 2)

#### **Modelos Lineales Generalizados**

#### Grado de Estadística

23/11/2018





## Índice

- 1 Introducción a los modelos multinomiales
- Tablas I x J
- Tablas I x J x K
  - Total fijado
  - Total bivariantefijado
- Validación
- Ejemplo

#### Clasificación de modelos

| Explicative                |                                                                | Respons                                 | se Variable          |                                               |                      |
|----------------------------|----------------------------------------------------------------|-----------------------------------------|----------------------|-----------------------------------------------|----------------------|
| Variables                  | Dicothomic or                                                  | Polythomic                              | Counts               | Conti                                         | nuous                |
|                            | Binary                                                         |                                         | (discrete)           | Normal                                        | Time between events  |
| Dicothomic                 | Contingency tables<br>Logistic regression<br>Log-linear models | Contingency tables<br>Log-linear models | Log-linear<br>models | Tests for 2<br>subpopulation<br>means: t.test | Survival<br>Analysis |
| Polythomic                 | Contingency tables<br>Logistic regression<br>Log-linear models | Contingency tables<br>Log-linear models | Log-linear<br>models | ONEWAY,<br>ANOVA                              | Survival<br>Analysis |
| Continuous<br>(covariates) | Logistic regression                                            | *                                       | Log-linear<br>models | Multiple regression                           | Survival<br>Analysis |
| Factors and covariates     | Logistic regression                                            | *                                       | Log-linear<br>models | Covariance<br>Analysis                        | Survival<br>Analysis |
| Random<br>Effects          | Mixed models                                                   | Mixed models                            | Mixed<br>models      | Mixed models                                  | Mixed models         |

#### Introducción

- La relación entre los modelos log-lineales y los modelos de respuesta multinomial procede del hecho que la ley multinomial puede derivarse a partir de un conjunto de variables de Poisson condicionadas a un número total de observaciones fijado.
- El hecho de tener el número total de eventos fijado es lo que hace que estemos ante una distribución multinomial y no de Poisson.
- Ciertos modelos log-lineales son equivalentes a modelos de respuesta multinomial:
  - si parámetros de interés son los cocientes de las medias de las variables poissonianas
  - o equivalentemente, si los cocientes de las medias de Poisson respecto los totales
- Los modelos log-lineales vinculados a modelos multinomiales llevan un conjunto de parámetros molestos (nuisance parameters) vinculados a los totales parciales o totales de la tabla.
- Notas: no todos los modelos log-lineales son equivalentes a modelos multinomiales ni viceversa

# Notación (I)

- ullet  $Y_1,\ldots,Y_L$ : variables de Poisson independientes esperanzas de las anteriores variables
- Índices de tablas:
  - Filas: i = 1, ..., I
  - Columnas:  $j = 1, \ldots, J$
  - Subtablas:  $k = 1, \dots, K$
- Factores: A, B, C, ...

|                                                                                   | FACTOR C                |           |                             |                   |                             |             |                                                         |            |                           |                              |                      |                  |  |
|-----------------------------------------------------------------------------------|-------------------------|-----------|-----------------------------|-------------------|-----------------------------|-------------|---------------------------------------------------------|------------|---------------------------|------------------------------|----------------------|------------------|--|
|                                                                                   |                         | FAC       | TOR B                       |                   |                             | FAC         | TOR B                                                   |            |                           | FA                           | CTOR B               | ,                |  |
| FACTOR                                                                            |                         | (         | C <sub>1</sub>              |                   |                             |             |                                                         |            |                           |                              | C <sub>K</sub>       |                  |  |
| A                                                                                 | B <sub>1</sub>          |           | B <sub>J</sub>              | TOTAL             | $B_1$                       |             | $B_J$                                                   | TOTAL      | B <sub>1</sub>            |                              | B <sub>J</sub>       | TOTAL            |  |
| <b>A</b> <sub>1</sub>                                                             | Y <sub>111</sub>        |           | $y_{1J1}$                   | Y <sub>1+1</sub>  |                             |             |                                                         |            | Y <sub>11K</sub>          |                              | $y_{1JK}$            | Y <sub>1+K</sub> |  |
| A <sub>2</sub>                                                                    | Y <sub>211</sub>        | •••       | $y_{2J1}$                   | Y <sub>2+1</sub>  |                             | •••         | ***                                                     | ***        | $y_{21K}$                 | ***                          | $y_{2JK}$            | $y_{2*K}$        |  |
|                                                                                   |                         | •••       | ***                         |                   |                             | •••         |                                                         | •••        | ***                       | ***                          | ***                  | ***              |  |
| AI                                                                                | <b>y</b> <sub>111</sub> |           | $\mathbf{y}_{\mathtt{IJ1}}$ | У <sub>I +1</sub> |                             |             |                                                         | ***        | $\mathbf{y}_{\text{I1K}}$ |                              | $y_{ijk}$            | $y_{I+K}$        |  |
| TOTAL                                                                             | Y <sub>+11</sub>        |           | Y <sub>+J1</sub>            | У1                |                             |             |                                                         |            | Y <sub>+1K</sub>          |                              | Y <sub>+JK</sub>     | yK               |  |
| Total margina                                                                     | l univaria              | nte del   | factor A                    | $Y_{i++} =$       | $\sum_{j}\sum_{i}$          | $Y_{ijk}$ . | Tota                                                    | l marginal |                           | te de lo $\sum_j Y_{ij}$     | s factores           | A y C:           |  |
| Total marginal                                                                    | univariar               | nte del f | factor B:                   | $Y_{+j+} =$       | $\sum_{i}$                  | $Y_{ijk}$   | Tota                                                    | l margina  |                           | te de lo $= \sum_{i} Y_{ij}$ | s factores           | В у С:           |  |
| Total marginal univariante del factor $c$ : $Y_{++k} = \sum_{i} \sum_{j} Y_{ijk}$ |                         |           |                             |                   |                             | $Y_{ijk}$   | Total trivariante de los factores A, B y C: $Y_{ijk}$ . |            |                           |                              | . Y <sub>ijk</sub> . |                  |  |
| Total marginal                                                                    | bivarian                | te de los | s factore                   | s A y B:          | $Y_{ij+} = \sum_{ij+1}^{n}$ | $Y_{ijk}$   |                                                         |            |                           |                              | $\sum_{k} Y_{ijk}$ . |                  |  |
|                                                                                   |                         |           |                             |                   |                             |             |                                                         |            |                           |                              |                      |                  |  |

# Tablas de 2 dimensiones (I x J)

• En tablas de dimensión 2, la hipótesis que las filas (A) y las columnas (B) son independientes puede formularse como que la probabilidad total es igual al producto de probabilidades marginales:

| Valor fijado    |            | Total de observaciones: $\mu$                                                                                   |
|-----------------|------------|-----------------------------------------------------------------------------------------------------------------|
| H <sub>0</sub>  | Expresión  | $\pi_{ij} = \pi_{i\cdot} \cdot \pi_{\cdot j} \ E[Y_{ij}] = Y_{++} \cdot \pi_{i\cdot} \cdot \pi_{\cdot j}$       |
| (independencia) | Modelo     | $log(\mu_{ij}) = \eta_{ij} = \mu + \alpha_i + \beta_j$                                                          |
|                 | Parámetros | I+J-1                                                                                                           |
| H <sub>1</sub>  | Expresión  | $\pi_{ij} \neq \pi_{i\cdot} \cdot \pi_{\cdot j}$ $E[Y_{ij}] \neq Y_{++} \cdot \pi_{i\cdot} \cdot \pi_{\cdot j}$ |
| (dependencia)   | Modelo     | $log(\mu_{ij}) = \eta_{ij} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij}$                                      |
|                 | Parámetros | I · J                                                                                                           |

# Tablas de 2 dimensiones (I x J)

- La relación (dependencia) entre los dos factores A y B puede resolverse realizando el contraste de las interacciones en el modelo log-lineal: una interacción significativa implica relación entre las variables.
- ullet En el fondo, se realiza un contraste equivalente al que se realiza con el test de la  $\chi 2$
- Observaciones para los modelos posteriores:
  - Los modelos log-lineales para el análisis de tablas de contingencia son jerárquicos, en el sentido que los términos de interacciones de orden superior, sólo se pueden incluir en el modelo si los términos de interacciones de orden inferior están presentes.
  - Los parámetros correspondientes a las constantes fijadas siempre deben incluirse en el modelo

#### Tablas de 3 dimensiones

- Total fijado (Ejemplo: encuesta sin cuotas sobre 3 factores)
  - Independencia total
  - Independencia por bloques
  - Independencia parcial
  - Asociación uniforme
- Total bivariante fijado (Ejemplo: encuesta con una cuota de hombres/mujeres)
  - Homogeneidad de filas para todas las subtablas
  - Homogeneidad por fila dentro de cada subtabla
  - Homogeneidad entre 2 factores para todas las combinaciones del otro factor

# Tablas de 3 dim. Total fijado. Independencia total

En tablas de dimensión 3, la hipótesis de independencia total entre las 3 respuestas filas (A), columnas (B) y subtablas (C) con total fijado - se verifica a través del
análisis de cualquier interacción.

| Valor fijado        |            | Total de observaciones: $\mu$                                                                                                                                  |
|---------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $H_0$               | Expresión  | $\pi_{ijk} = \pi_{i\cdots} \cdot \pi_{\cdot j} \cdot \pi_{\cdots k} \ E[Y_{ijk}] = Y_{+++} \cdot \pi_{i\cdots} \cdot \pi_{\cdot j} \cdot \pi_{\cdots k}$       |
| (independencia)     | Modelo     | $log(\mu_{ijk}) = \eta_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k$                                                                                            |
|                     | Parámetros | I+J+K-2                                                                                                                                                        |
| $H_1$ (dependencia) | Expresión  | $\pi_{ijk} \neq \pi_{i\cdots} \cdot \pi_{\cdot j} \cdot \pi_{\cdots k}$ $E[Y_{ijk}] \neq Y_{+++} \cdot \pi_{i\cdots} \cdot \pi_{\cdot j} \cdot \pi_{\cdots k}$ |
| (dependencia)       | Modelo     | Cualquiera con alguna interacción                                                                                                                              |
| Modelo              | Modelo     | $log(\mu_{ijk}) = \eta_{ijk} =$                                                                                                                                |
| saturado            |            | $\mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \alpha \gamma_{ik} + \beta \gamma_{jk} + \alpha \beta \gamma_{ijk}$                                            |
|                     | Parámetros | I · J · K                                                                                                                                                      |

# Tablas de 3 dim. Total fijado. Independendencia total

#### • Ejemplo de independencia total

|       | С  | _   |       |       | C  | +    |       |       | То | tal  |       |
|-------|----|-----|-------|-------|----|------|-------|-------|----|------|-------|
|       | B- | B+  | Total |       | B- | B+   | Total |       | B- | B+   | Total |
| A-    | 7  | 181 | 188   | A-    | 23 | 584  | 607   | A-    | 30 | 765  | 795   |
| A+    | 16 | 403 | 419   | A+    | 53 | 1301 | 1354  | A+    | 69 | 1704 | 1773  |
| Total | 23 | 584 | 607   | Total | 76 | 1885 | 1961  | Total | 99 | 2469 | 2568  |

$$\pi_{A_{+}} = \frac{1773}{2568} = 0.690$$

$$\pi_{B_{+}} = \frac{2469}{2568} = 0.961$$

$$\pi_{A_{+}B_{+}C_{+}} = \frac{1301}{2568} = 0.506 \simeq \pi_{A_{+}} \cdot \pi_{B_{+}} \cdot \pi_{C_{+}}$$

$$\pi_{C_{+}} = \frac{1961}{2568} = 0.764$$

## Tablas de 3 dim. Total fijado. Independencia total (Ej. R)

#### Modelo minimal

```
## Call:
## glm(formula = Y ~ A + B + C, family = poisson, data = df0)
##
## Deviance Residuals:
   -0.091312 -0.038955
                          0.024518
                                   0.003539 -0.083749
   0.013191 -0.019941
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.98023
                           0.11058
                                     17.91
                                             <2e-16 ***
                           0.04268
## AYes
               0.80209
                                     18.79
                                            <2e-16 ***
## BYes
               3.21645
                           0.10250
                                     31.38
                                            <2e-16 ***
               1.17268
                           0.04645
                                     25.25
                                             <2e-16 ***
## CYes
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
       Null deviance: 3.8546e+03 on 7 degrees of freedom
## Residual deviance: 3.0397e-02 on 4 degrees of freedom
## ATC: 59.342
##
## Number of Fisher Scoring iterations: 3
```

23/11/2018

## Tablas de 3 dim. Total fijado. Independencia total (Ej. R)

#### Modelo maximal

```
##
## Call:
## glm(formula = Y ~ A * B * C, family = poisson, data = df0)
## Deviance Residuals:
## [1] 0 0 0 0 0 0 0 0
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)
               1.945910 0.377964 5.148 2.63e-07 ***
## AYes
                 0.826679 0.453163 1.824 0.06812
## BYes
                 3.252587 0.385204 8.444 < 2e-16 ***
## CYes
                1.189584 0.431666 2.756 0.00585 **
## AYes:BYes
              -0.026239 0.461913 -0.057 0.95470
## AYes:CYes
                0.008119 0.517401 0.016 0.98748
## BYes:CYes
                -0.018180 0.439969 -0.041 0.96704
                            0.527438 -0.014 0.98855
## AYes:BYes:CYes -0.007571
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
      Null deviance: 3.8546e+03 on 7 degrees of freedom
## Residual deviance: 2.7756e-13 on 0 degrees of freedom
## AIC: 67.312
## Number of Fisher Scoring iterations: 3
```

## Tablas de 3 dim. Total fijado. Independencia por bloques

 En tablas de dimensión 3, la hipótesis de independencia por bloques, por ejemplo, del factor A (filas) de las otras 2 respuestas (columnas y subtablas) se verifica mediante la ausencia de otras interacciones que no sean las de estas 2 últimas respuestas.

| Valor fijado        |            | Total de observaciones: $\mu$                                                                                          |
|---------------------|------------|------------------------------------------------------------------------------------------------------------------------|
| H <sub>0</sub>      | Expresión  | $\pi_{ijk} = \pi_{i\cdots} \cdot \pi_{\cdot jk} \ E[Y_{ijk}] = Y_{+++} \cdot \pi_{i\cdots} \cdot \pi_{\cdot jk}$       |
| (ind. por bloques)  | Modelo     | $\log(\mu_{ijk}) = \eta_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \beta\gamma_{jk}$                                |
|                     | Parámetros | I+JK-1                                                                                                                 |
| $H_1$ (dependencia) | Expresión  | $\pi_{ijk} \neq \pi_{i\cdots} \cdot \pi_{\cdot jk}$ $E[Y_{ijk}] \neq Y_{+++} \cdot \pi_{i\cdots} \cdot \pi_{\cdot jk}$ |
| (dependencia)       | Modelo     | Cualquiera con alguna interacción excepto BC                                                                           |
| Modelo              | Modelo     | $log(\mu_{ijk}) = \eta_{ijk} =$                                                                                        |
| saturado            |            | $\mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \alpha \gamma_{ik} + \beta \gamma_{jk} + \alpha \beta \gamma_{ijk}$    |
|                     | Parámetros | I · J · K                                                                                                              |

# Tablas de 3 dim. Total fijado. Independencia por bloques (Ej)

 Ejemplo de independencia por bloques. A es independiente de B y C si no se considera C y B respectivamente.

| B- B+ Total B- B+ Total                                                                              |    |     |       |
|------------------------------------------------------------------------------------------------------|----|-----|-------|
|                                                                                                      | B- | B+  | Total |
| A- 13 67 80 A- 1 13 14 A-                                                                            | 14 | 80  | 94    |
| A+         30         148         178         A+         1         30         31         A+          | 31 | 178 | 209   |
| Total         43         215         258         Total         2         43         45         Total | 45 | 258 | 303   |

$$\pi_{A_{+}} = \frac{209}{303} = 0.690$$

$$\pi_{B_{+}} = \frac{258}{303} = 0.851$$

$$\pi_{A_{+}B_{+}C_{+}} = \frac{30}{303} = 0.099 \neq \pi_{A_{+}} \cdot \pi_{B_{+}} \cdot \pi_{C_{+}}$$

$$\pi_{C_{+}} = \frac{45}{303} = 0.149$$

$$\pi_{A_{+}B_{+}C_{+}} = \frac{30}{303} = 0.099 \simeq \pi_{A_{+}} \cdot \pi_{B_{+}C_{+}}$$

$$\pi_{B_{+}C_{+}} = \frac{43}{202} = 0.142$$

# Tablas de 3 dim. Total fijado. Independencia por bloques (Ej)

• A es independiente de B sin considerar C:

$$OR_{AB}=rac{14\cdot178}{31\cdot80}\approx1$$

• A es independiente de C sin considerar B:

$$OR_{AB}=rac{80\cdot31}{178\cdot14}\approx1$$

• A es independiente de B y C conjuntamente

|       | B- C- | B+ C- | B- C+ | B+ C+ | Total |
|-------|-------|-------|-------|-------|-------|
| A-    | 13    | 67    | 1     | 13    | 94    |
| A+    | 30    | 148   | 1     | 30    | 209   |
| Total | 43    | 215   | 2     | 43    | 303   |

Expected table under independence

## [,1] [,2] [,3] [,4] ## [1,] 13.33993 66.69967 0.620462 13.33993 ## [2,] 29.66007 148.30033 1.379538 29.66007

#### Modelo minimal

```
##
## Call:
## glm(formula = Y ~ A + B * C, family = poisson, data = df0)
## Deviance Residuals:
             0.06230 0.03675 -0.02467 0.44216 -0.33997 -0.09347
##
   0.06230
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.5908
                          0.1749 14.812 < 2e-16 ***
## AYes
                0.7990
                         0.1242 6.434 1.24e-10 ***
               1.6094
                          0.1671 9.634 < 2e-16 ***
## BYes
               -3.0681
                       0.7234 -4.241 2.22e-05 ***
## CYes
               1.4586
                          0.7424 1.965 0.0494 *
## BYes:CYes
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
      Null deviance: 381.74419 on 7 degrees of freedom
## Residual deviance: 0.33828 on 3 degrees of freedom
## AIC: 46.54
## Number of Fisher Scoring iterations: 4
```

23/11/2018

## Tablas de 3 dim. Total fijado. Independencia por bloques (Ej. R)

#### Modelo maximal

```
##
## Call:
## glm(formula = Y ~ A * B * C, family = poisson, data = df0)
## Deviance Residuals:
## [1] 0 0 0 0 0 0 0 0
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                  2.56495
                             0.27735
                                       9.248 < 2e-16 ***
                                       2.518
## AYes
                  0.83625
                             0.33205
                                               0.0118 *
## BYes
                 1.63974
                             0.30307
                                       5.411 6.28e-08 ***
## CYes
               -2.56495
                             1.03774 -2.472
                                               0.0134 *
## AYes:BYes
               -0.04373
                             0.36323 -0.120
                                               0.9042
## AYes:CYes
               -0.83625
                             1.45267 -0.576
                                               0.5648
## BYes:CYes
                  0.92521
                             1.08109
                                       0.856
                                               0.3921
## AYes:BYes:CYes 0.87998
                             1.49739
                                       0.588
                                               0.5568
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
      Null deviance: 3.8174e+02 on 7 degrees of freedom
## Residual deviance: 5.0626e-14 on 0 degrees of freedom
## AIC: 52.202
## Number of Fisher Scoring iterations: 3
```

# Tablas de 3 dim. Total fijado. Independencia parcial o condicional

• En tablas de dimensión 3, la hipótesis de **independencia parcial entre 2 factores**, por ejemplo A (filas) y B (columnas) se verificaría mediante el contraste de la interacción de A con B y la interacción de orden 2.

| Valor fijado        |            | Total de observaciones: $\mu$                                                                                                                        |
|---------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| H <sub>0</sub>      | Expresión  | $\pi_{ij\cdot} = \pi_{i\cdot k} \cdot \pi_{\cdot j k}  \forall i, j, k \ E[Y_{ijk}] = Y_{+++} \cdot \pi_{i\cdot k} \cdot \pi_{\cdot j k}$            |
| (ind. parcial)      | Modelo     | $log(\mu_{ijk}) = \eta_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \alpha \gamma_{ik} + \beta \gamma_{jk}$                                         |
|                     | Parámetros | $(I+J-1)\cdot K$                                                                                                                                     |
| $H_1$ (dependencia) | Expresión  | $\pi_{ij} \neq \pi_{i \cdot   k} \cdot \pi_{\cdot j   k}  \exists i, j, k$ $E[Y_{ijk}] \neq Y_{+++} \cdot \pi_{i \cdot   k} \cdot \pi_{\cdot j   k}$ |
| (dependencia)       | Modelo     | Cualquiera con interacción distinta a AC y BC                                                                                                        |
| Modelo              | Modelo     | $log(\mu_{ijk}) = \eta_{ijk} =$                                                                                                                      |
| saturado            |            | $\mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \alpha \gamma_{ik} + \beta \gamma_{jk} + \alpha \beta \gamma_{ijk}$                                  |
|                     | Parámetros | I · J · K                                                                                                                                            |

# Tablas de 3 dim. Total fijado. Independencia parcial o condicional

- Conceptualmente, implica que la relación entre 2 (A y B) de las 3 variables viene explicada por una tercera (C):
- Ejemplos:

$$A \leftarrow \mathbf{C} \rightarrow \mathbf{B}$$

$$A \to \textbf{C} \leftarrow \textbf{B}$$

$$A \leftarrow \mathbf{C} \leftarrow \mathbf{B}$$

- Condicionado a C (ya sea C+ o C-) A y B son independientes.
- La relación entre llevar habitualmente una cajetilla de tabaco encima (A) y tener cáncer de pulmón (B) viene explicado por fumar (C). Condicionado a fumar (C), llevar una cajetilla de tabaco (A) y tener cáncer de pulmón (B) son independientes.

## Tablas de 3 dim. Total fijado. Independencia parcial o condicional.

Condicionado a C, A y B son independientes

|       | С  | _  |       |       | C  | +   |       |       | То | tal |       |
|-------|----|----|-------|-------|----|-----|-------|-------|----|-----|-------|
|       | B- | B+ | Total |       | B- | B+  | Total |       | B- | B+  | Total |
| A-    | 30 | 6  | 36    | A-    | 3  | 20  | 23    | A-    | 33 | 26  | 59    |
| A+    | 40 | 8  | 48    | A+    | 22 | 148 | 170   | A+    | 62 | 150 | 212   |
| Total | 70 | 24 | 94    | Total | 25 | 168 | 193   | Total | 95 | 176 | 271   |

• Es equivalente mirar las probabilidades que los ORs:

$$OR_{AB|C+} = \frac{30.8}{6.40} = 1$$
  $OR_{AC} = \frac{36.48}{23.170} = 5.54$   $OR_{AB|C-} = \frac{3.148}{20.22} \approx 1$   $OR_{BC} = \frac{70.168}{94.25} = 5.00$ 

# Tablas de 3 dim. Total fijado. Asociación uniforme

 En tablas de dimensión 3, la hipótesis de asociación uniforme para cualquiera 2 factores condicionado a un tercero se verificaría mediante el contraste de la interacción de orden 2 (es una generalización de la independencia parcial)

| Valor fijado        |            | Total de observaciones: $\mu$                                                                                                                                                                                                                     |
|---------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H <sub>0</sub>      | Expresión  | $egin{array}{ll} \pi_{ij\cdot} &= \pi_{i\cdot k} \cdot \pi_{\cdot j k} & orall i,j,k \ \pi_{i\cdot k} &= \pi_{i\cdot j} \cdot \pi_{\cdot k j} & orall i,j,k \ \pi_{jk\cdot} &= \pi_{j\cdot i} \cdot \pi_{\cdot k i} & orall i,j,k \end{array}$ |
| (asoc. unif.)       | Modelo     | $log(\mu_{ijk}) = \eta_{ijk} =$                                                                                                                                                                                                                   |
|                     |            | $\mu + \alpha_i + \beta_j + \gamma_k + \alpha \beta_{ij} + \alpha \gamma_{ik} + \beta \gamma_{jk}$                                                                                                                                                |
|                     | Parámetros | $IJK - (I-1)\cdot (J-1)\cdot (K-1)$                                                                                                                                                                                                               |
| $H_1$ (dependencia) | Expresión  | $\pi_{ij \cdot} \neq \pi_{i \cdot   k} \cdot \pi_{\cdot j   k}  \exists i, j, k \ E[Y_{ijk}] \neq Y_{+++} \cdot \pi_{i \cdot   k} \cdot \pi_{\cdot j   k}$                                                                                        |
| (dependencia)       | Modelo     | Modelo saturado                                                                                                                                                                                                                                   |
| Modelo              | Modelo     | $log(\mu_{ijk}) = \eta_{ijk} =$                                                                                                                                                                                                                   |
| saturado            |            | $\mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \alpha \gamma_{ik} + \beta \gamma_{jk} + \alpha \beta \gamma_{ijk}$                                                                                                                               |
|                     | Parámetros | I · J · K                                                                                                                                                                                                                                         |

# Tablas de 3 dim. Total fijado. Asociación uniforme

- Condicionado a C, A y B son independientes
- Condicionado a B, A y C son independientes
- Condicionado a A, B y C son independientes
- A, B y C no son independientes

# Tablas de 3 dim. Total bivariado fijado. Homogeneidad por fila comunes a las subtablas

 En tablas de dimensión 3, la hipótesis de homogeneidad o probabilidades idénticas por fila comunes a todas las subtablas (probabilidad marginal univariante igual a probabilidad condicional) se verifica mediante el análisis de las interacciones simples

| Valor fijado            |            | Total bivariado: $\mu$                                                                                              |
|-------------------------|------------|---------------------------------------------------------------------------------------------------------------------|
| H <sub>0</sub>          | Expresión  | $\pi_{j ik} = \pi_{\cdot j \cdot}  orall i, j, k \ E[Y_{ijk}] = Y_{i+k} \cdot \pi_{\cdot j}.$                      |
| (homogeneidad)          | Modelo     | $log(\mu_{ijk}) = \eta_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \alpha \gamma_{ik}$                            |
|                         | Parámetros | IK + J - 1                                                                                                          |
| $H_1$ (no homogeneidad) | Expresión  | $\pi_{j ik}  eq \pi_{\cdot j}.  \exists i, j, k \ E[Y_{ijk}]  eq Y_{i+k} \cdot \pi_{\cdot j}.$                      |
| (no nomogeneidad)       | Modelo     | Cualquiera con interacción distinta a AC                                                                            |
| Modelo                  | Modelo     | $log(\mu_{ijk}) = \eta_{ijk} =$                                                                                     |
| saturado                |            | $\mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \alpha \gamma_{ik} + \beta \gamma_{jk} + \alpha \beta \gamma_{ijk}$ |
|                         | Parámetros | I · J · K                                                                                                           |

# Tablas de 3 dim. Total bivariado fijado. Homogeneidad de cada fila dentro de cada subtabla

 En tablas de dimensión 3, la hipótesis de homogeneidad, probabilidades idénticas por filas dentro de cada subtabla, donde la variable de respuesta es la columna, factor B, las variables explicativas son los factores A y C con totales bivariantes según A y C fijados (la función de probabilidad conjunta es por tanto, producto de probabilidades multinomiales)

| Valor fijado                     | Total bivariado: $\mu$ |                                                                                                                                                                     |  |  |
|----------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| H <sub>0</sub>                   | Expresión              | $egin{array}{ll} \pi_{ijk} = \pi_{i \cdot k} \cdot \pi_{\cdot jk} & orall i, j, k \ E[Y_{ijk}] = Y_{i + k} \cdot \pi_{i \cdot k} \cdot \pi_{\cdot jk} \end{array}$ |  |  |
| (homogeneidad)                   | Modelo                 | $log(\mu_{ijk}) = \eta_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \alpha \gamma_{ik} + \beta \gamma_{jk}$                                                        |  |  |
|                                  | Parámetros             | $K \cdot (I + J - 1)$                                                                                                                                               |  |  |
| H <sub>1</sub> (no homogeneidad) | Expresión              | $\pi_{ijk} \neq \pi_{i \cdot k \cdot \pi_{\cdot jk}}  \exists i, j, k $ $E[Y_{ijk}] \neq Y_{i+k} \cdot \pi_{i \cdot k} \cdot \pi_{\cdot jk}$                        |  |  |
|                                  | Modelo                 | Cualquiera con interacción distinta a AC y BC                                                                                                                       |  |  |
| Modelo                           | Modelo                 | $log(\mu_{ijk}) = \eta_{ijk} =$                                                                                                                                     |  |  |
| saturado                         |                        | $\mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \alpha \gamma_{ik} + \beta \gamma_{jk} + \alpha \beta \gamma_{ijk}$                                                 |  |  |
|                                  | Parámetros             | I · J · K                                                                                                                                                           |  |  |

# Tablas de 3 dim. Total bivariado fijado. Homogeneidad total

 La hipótesis de homogeneidad, asociación entre el factor C y B es la misma para todos los niveles de A-B (probabilidad marginal bivariante de C y B idéntica, para cada grupo de A-B)

| Valor fijado           |                                                                                                    | Total de observaciones: $\mu$                                                                                                                                                   |  |  |
|------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| H <sub>0</sub>         | Expresión                                                                                          | $\pi_{ijk} = \pi_{ij} \cdot \pi_{i \cdot k} \cdot \pi_{\cdot jk} \qquad orall i, j, k \ E[Y_{ijk}] = Y_{i+k} \cdot \pi_{ij} \cdot \pi_{i \cdot k} \cdot \pi_{\cdot jk}$        |  |  |
| (Homogeneidad)         | Modelo                                                                                             | $log(\mu_{ijk}) = \eta_{ijk} =$                                                                                                                                                 |  |  |
|                        | $\mu + \alpha_i + \beta_j + \gamma_k + \alpha \beta_{ij} + \alpha \gamma_{ik} + \beta \gamma_{jk}$ |                                                                                                                                                                                 |  |  |
|                        | Parámetros                                                                                         | $(I-1)\cdot (J-1)\cdot (K-1)$                                                                                                                                                   |  |  |
| $H_1$ (Heterogeneidad) | Expresión                                                                                          | $\pi_{ijk}  eq \pi_{ij} \cdot \pi_{i \cdot k} \cdot \pi_{\cdot jk}  \qquad \forall i, j, k $ $E[Y_{ijk}]  eq Y_{i+k} \cdot \pi_{ij} \cdot \pi_{i \cdot k} \cdot \pi_{\cdot jk}$ |  |  |
| (Tieterogeneidad)      | Modelo Modelo saturado                                                                             |                                                                                                                                                                                 |  |  |
| Modelo                 | Modelo                                                                                             | $log(\mu_{ijk}) = \eta_{ijk} =$                                                                                                                                                 |  |  |
| saturado               |                                                                                                    | $\mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \alpha \gamma_{ik} + \beta \gamma_{jk} + \alpha \beta \gamma_{ijk}$                                                             |  |  |
|                        | Parámetros                                                                                         | I · J · K                                                                                                                                                                       |  |  |

## Tablas de 3 dim. Relación logística vs Modelos Log-lineales

 Supongase que el factor B es la respuesta dicotómica y los Factores A y C las variables explicativas (totales bivariantes A y C fijados)

| Modelos log-lineales | Regresión logística |
|----------------------|---------------------|
| AC + B               | 1 (Minimal)         |
| AC + AB              | A                   |
| AC + BC              | С                   |
| AC + AB + BC         | A+C                 |
| ABC                  | AC (Maximal)        |

• La relación viene dada por:

$$log(\mu_{ij}) = \mu + \theta_i + \alpha_j + x_i^T \beta_j$$

$$log(\mu_{iJ}) = \mu + \theta_i + \alpha_J + x_i^T \beta_J$$

$$log(\mu_{ij}) - log(\mu_{iJ}) = log\left(\frac{\pi_{ij}}{\pi_{iJ}}\right) = (\alpha_j - \alpha_J) + x_i^T (\beta_j - \beta_J)$$

# Validación. Diagnosis

• Estadístico de devianza. Si el modelo es correcto, para muestras grandes tiene una distribución  $\chi^2$  con grados de libertad calculados como la diferencia entre el número de celdas no nulas menos el número de parámetros independientes del modelo:

$$D = 2 \sum y_i \cdot log\left(\frac{y_i}{\hat{\mu}_i}\right) \sim \chi^2$$

• Los residuos estandarizados de Pearson extremos tendrán valores superiores a 2 o 3 desviaciones típicas.

# Ejemplo. Datos (I)

 Un grupo de 4991 estudiantes de secundaria de Wisconsin se clasifican en la siguiente tabla de contingencia según su ESTATUS socio-económico (A, con 4 niveles), la MOTIVACIÓN recibida de los padres en sus estudios (C, 2 niveles BAJO-ALTO) y sus PLANES de continuación en la Universidad (B, 2 niveles SI-NO). Se consideran las 3 variables como respuesta. Datos de Fienberg (1977)

| [                          | FACTOR C-Motivación (E)            |                     |       |                                              |                     |       |
|----------------------------|------------------------------------|---------------------|-------|----------------------------------------------|---------------------|-------|
|                            | FACTOR B - Universidad?  C1 - Bajo |                     |       | FACTOR B Universidad?  C <sub>K=2</sub> Alto |                     |       |
| FACTOR A Estatus Social    |                                    |                     |       |                                              |                     |       |
|                            | B <sub>1</sub> No                  | B <sub>J=2</sub> Si | TOTAL | B <sub>1</sub> No                            | B <sub>J=2</sub> Si | TOTAL |
| A <sub>1</sub> Bajo        | 749                                | 35                  | 784   | 233                                          | 133                 | 366   |
| A₂ Medio- Bajo             | 627                                | 38                  | 665   | 330                                          | 303                 | 633   |
| A <sub>2</sub> Medio- Alto | 420                                | 37                  | 457   | 374                                          | 467                 | 841   |
| A <sub>I=4</sub> Alto      | 153                                | 26                  | 179   | 266                                          | 800                 | 1066  |
| TOTAL                      | 1949                               | 136                 | 2085  | 1203                                         | 1703                | 2906  |

# Ejemplo. Datos (II)

```
##
                 В
                      C Freq
## 1
           Bajo No Baja 749
           Bajo No Alta 233
## 2
           Bajo Si Baja 35
## 3
## 4
           Bajo Si Alta 133
## 5
      Medio-Bajo No Baja
                         627
## 6
      Medio-Bajo No Alta
                         330
                         38
## 7
      Medio-Bajo Si Baja
## 8
     Medio-Bajo Si Alta
                         303
## 9
     Medio-Alto No Baja
                         420
                         374
## 10 Medio-Alto No Alta
## 11 Medio-Alto Si Baja
                         37
## 12 Medio-Alto Si Alta
                         467
                         153
## 13
           Alto No Baja
## 14
           Alto No Alta
                         266
## 15
           Alto Si Baja 26
## 16
           Alto Si Alta
                         800
```

# Ejemplo. Comparación de modelos

- La siguiente tabla contiene los modelos ajustados, su devianza y su interpretación
  - A: ESTATUS socio-económico
  - B: Planes para la UNIVERSIDAD
  - C: MOTIVACIÓN de los padres
- ¿Qué modelo se escogería?

| Modelo                | Devianza | GL | Intrepretacion                                                       |
|-----------------------|----------|----|----------------------------------------------------------------------|
| A + B + C             | 2714     | 10 | Motivación, Universidad y Estatus social independientes              |
| A + B * C             | 1092     | 9  | Estatus social es independiente de la Motivación y Universidad       |
| B + A * C             | 1877     | 7  | Asistencia a Universidad es independiente de Motivación y Estatus    |
| C + A * B             | 1920     | 7  | Motivación de los padres es independiente de Estatus y Universidad   |
| A * B + A * C         | 1084     | 4  | Condicionado al Estatus, Motivación y Universidad son independientes |
| A * B + B * C         | 298      | 6  | Condicionado a Universidad, Estatus y Motivación son independientes  |
| A * C + B * C         | 255      | 6  | Condicionado a Motivación, Estatus y Universidad son independientes  |
| A * B + A * C + B * C | 2        | 3  | Las 3 previas juntas                                                 |
| A * B * C             | 0        | 0  | Nada es independiente                                                |

# Ejemplo. Modelo seleccionado: AB + AC + BC

```
##
## Call:
## glm(formula = get(paste0("form", i)), family = "poisson", data = d)
##
## Deviance Residuals:
##
## -0.15119
             0.27320
                       0.73044 -0.35578
                                          0.04135 -0.05691 -0.16639
                                               12
##
                            10
                                     11
                                                         13
                       0.04719
                                 0.15116 -0.04217
                                                    0.32807 -0.24539
   0.05952
            -0.04446
##
        15
                  16
## -0.75147
             0.14245
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
                   6.62426
## (Intercept)
                                0.03602 183.918 < 2e-16 ***
## AMedio-Bajo
                   -0.18496 0.05304 -3.487 0.000489 ***
## AMedio-Alto
                    -0.58183 0.05931 -9.810 < 2e-16 ***
                    -1.62046
                                0.08450 -19.178 < 2e-16 ***
## AAlto
## BSi
                    -3.19497 0.11850 -26.962 < 2e-16 ***
## CAlta
                    -1.19117
                                0.07166 -16.622 < 2e-16 ***
## AMedio-Bajo:BSi 0.42013
                                0.11768 3.570 0.000357 ***
## AMedio-Alto:BSi
                  0.73851
                                0.11382 6.488 8.69e-11 ***
## AAlto:BSi
                     1.59311
                                0.11527 13.820 < 2e-16 ***
## AMedio-Bajo:CAlta 0.55410
                                0.09469
                                         5.852 4.87e-09 ***
## AMedio-Alto:CAlta 1.07056
                                0.09649 11.095 < 2e-16 ***
## AAlto:CAlta
                     1.78588
                                0.11444 15.606 < 2e-16 ***
                                0.09867 27.191 < 2e-16 ***
## BSi:CAlta
                     2.68292
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
```

# Ejemplo. Modelo maximal. Interpretación (Ejercicio)

```
##
## Call:
## glm(formula = get(pasteO("form", i)), family = "poisson", data = d)
##
## Deviance Residuals:
   [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##
## Coefficients:
                        Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                         6.61874
                                    0.03654 181.141 < 2e-16 ***
## AMedio-Bajo
                        -0.17779
                                    0.05413 -3.285 0.00102 **
## AMedio-Alto
                        -0.57848
                                    0.06096 -9.490 < 2e-16 ***
## AAlto
                        -1.58830
                                    0.08872 - 17.903 < 2e - 16 ***
## RSi
                        -3.06339
                                    0.17294 -17.714 < 2e-16 ***
## CAlta
                                    0.07501 -15.567 < 2e-16 ***
                        -1.16770
## AMedio-Bajo:BSi
                        0.26003
                                    0.24045
                                             1.081 0.27951
## AMedio-Alto:BSi
                         0.63405
                                    0.24355
                                             2.603
                                                   0.00923 **
                                             4.717 2.39e-06 ***
## AAlto:BSi
                         1.29105
                                    0.27369
## AMedio-Bajo: CAlta
                         0.52585
                                    0.10125
                                             5.193 2.06e-07 ***
## AMedio-Alto:CAlta
                         1.05170
                                    0.10335 10.176 < 2e-16 ***
## AAlto:CAlta
                         1.72076
                                    0.12618 13.637 < 2e-16 ***
## BSi:CAlta
                         2.50270
                                    0.20425 12.253 < 2e-16 ***
## AMedio-Bajo:BSi:CAlta 0.21530
                                    0.27561
                                             0.781 0.43469
## AMedio-Alto:BSi:CAlta
                         0.14871
                                    0.27557
                                              0.540 0.58945
## AAlto:BSi:CAlta
                         0.37076
                                    0.30286
                                             1.224
                                                    0.22088
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 3.211e+03 on 15 degrees of freedom
## Residual deviance: 5.107e-14
                                on 0 degrees of freedom
```

Basandote en el modelo maximal:

Interpreta la interceptInterpreta el coeficiente: AAlto

Interpreta el coeficiente: AAlto:CAlta
Interpreta el coeficiente: AAlto:EAlta
Interpreta el coeficiente: AAlto:BSi:CAlta

## Ejemplo. Modelo maximal. Interpretación (Solución)

- **1** La exponencial de la *intercept* representa el número de individuos en el nivel de referencia: exp(-0.17779) = 753
- Que La exponencial de AAlto representa el cociente entre el número de individuos en este nivel respecto al nivel de referencia dentro de los alumnos situados en las categorías de referencia de B (No) y C (Bajo):

$$exp(-1.58830) = \frac{153}{749} = 0.20427$$

La exponencial de AAlto:CAlta representa, para el nivel de referencia de B, cuanto mayor es el ratio de los que tienen factor Alta en el nivel C respecto a la referencia del nivel C comparando el mismo ratio entre los niveles Alto y Bajo del nivel A:

$$exp(1.72076) = \frac{266/153}{233/749} = 5.5887$$

La exponencial de AAlto:BSi:CAlta representa cuanto mayor es el anterior ratio en el nivel Alto de A respecto al de referencia:

$$exp(0.37076) = \frac{\frac{800/26}{133/35}}{\frac{266/153}{233/749}} = 1.4488$$

# Ejemplo. Estupefacientes. Datos

#### Datos

```
cigarette: yes/nomarijuana: yes/noalcohol: yes/no
```

Tabla en diferentes formatos:

```
## , , alcohol = yes
##
##
            marijuana
## cigarette yes no
         yes 911 538
##
##
              44 456
         nο
##
   , , alcohol = no
##
##
            marijuana
   cigarette yes
##
               3 43
         ves
##
               2 279
         no
```

```
##
                      marijuana yes
                                      no
## alcohol cigarette
## yes
                                 911 538
           yes
##
                                  44 456
           no
## no
                                     43
           yes
                                   2 279
##
           no
```

# Ejemplo. Estupefacientes. Inspeccionar datos

 El hecho de fumar y consumir marihuana está relacionado tanto en los que beben alcohol como en los que no. Vemos que los estudiantes que probaron cigarrillos y alcohol, el 62% también probó marihuana. Del mismo modo, de aquellos estudiantes que no probaron cigarrillos ni alcohol, el 99% también no probó marihuana. Definitivamente parece que hay alguna relación.

```
, , alcohol = yes
##
##
            marijuana
  cigarette
                    yes
                                nο
         ves 0.6287095 0.3712905
##
             0.0880000 0.9120000
##
##
   , , alcohol = no
##
##
            marijuana
## cigarette
                      ves
                                  no
         yes 0.065217391 0.9347826
##
##
             0.007117438 0.9928826
```

### Ejemplo. Estupefacientes. Hipotesi: Independencia total

•  $H_0: pi_{ijk} = pi_i \cdot pi_j \cdot pi_k \leftrightarrow Independencia Total$ 

```
## (Intercept) 4.1725378 0.06495836 64.234043 0.000000e+00
## cigaretteyes 0.6493063 0.04415087 14.706534 5.852911e-49
## marijuanayes -0.3154188 0.04244454 -7.431316 1.075222e-13
## alcoholyes 1.7851115 0.05975887 29.871911 4.559915e-196

1-pchisq(mod0$deviance,mod0$df.residual) # p-valor
```

```
## [1] 0
```

• Mirando el *summary* parece que este es un gran modelo ya que hay coeficientes muy significativos con p-valores cercanos a 0, pero tenemos que mirar la desvianza residual. Se rechaza  $H_0$  de independencia total ya que obtenemos un p-valor para contrastar la validez del modelo cercano a cero y una deviança residual (1286) muy por encima del punto crítico (9.5). Debemos probar la independencia por bloques

#### Ejemplo. Estupefacientes. Valores predichos vs. observados

• Se confirma que no es un gran ajuste

```
cbind(mod0$data, fitted(mod0))
```

```
##
     cigarette marijuana alcohol Freq fitted(mod0)
                                    911
                                            539.98258
## 1
           ves
                      ves
                               ves
                                     44
## 2
                                            282.09123
                               yes
            nο
                      yes
## 3
                                    538
                                            740.22612
           ves
                       no
                               ves
## 4
                                    456
                                            386.70007
                               yes
            nο
                       nο
## 5
                                      3
                                             90.59739
           ves
                      ves
                                no
## 6
                                            47.32880
            nο
                      yes
                                no
                                            124, 19392
## 7
           yes
                       no
                                nο
                                     43
                                    279
                                             64.87990
## 8
            no
                       no
                                no
```

#### Ejemplo. Estupefacientes. Interpretación

• El odd de haber consumido marihuana coincide con la odd manualmente calculada

```
exp(coef(mod0)['marijuanayes'])

## marijuanayes
## 0.7294833

pt <- with(seniors.df,tapply(Freq,marijuana,sum))
pt[2]/pt[1]</pre>
```

ves

## 0.7294833

### Ejemplo. Estupefacientes. Hipotesis: Independencia por bloques

•  $H_0: pi_{ijk} = pi_j \cdot pi_{ik} \leftrightarrow Independència por bloques$ 

Estimate Std. Error

```
## (Intercept) 5.0905320 0.06228346 81.731679 0.000000e+00
## cigaretteyes -1.8097133 0.15905298 -11.378054 5.378681e-30
## alcoholyes 0.5762534 0.07455681 7.729051 1.083512e-14
## marijuanayes -0.3154188 0.04244461 -7.431304 1.075320e-13
## cigaretteyes:alcoholyes 2.8737341 0.16729609 17.177534 3.911936e-66
```

z value

Pr(>|z|)

23/11/2018

40 / 48

```
1-pchisq(mod1a$deviance,mod1a$df.residual)
```

```
## [1] 0
```

• Rechazo  $H_0$  de independencia por bloques de marihuana

Grado de Estadística Contajes (Sesión 2)

### Ejemplo. Estupefacientes. Hipotesis: Independencia por bloques

•  $H_0: pi_{ijk} = pi_j \cdot pi_{ik} \leftrightarrow Independència por bloques$ 

Estimate Std. Error z value

```
## (Intercept) 4.7049519 0.06282180 74.893617 0.000000e+00
## cigaretteyes 0.6493063 0.04415071 14.706589 5.848207e-49
## marijuanayes -4.1651136 0.45067171 -9.242013 2.419038e-20
## alcoholyes 1.1271857 0.06412166 17.578860 3.576938e-69
## marijuanayes:alcoholyes 4.1250878 0.45294386 9.107283 8.447108e-20
```

Pr(>|z|)

```
1-pchisq(mod1b$deviance,mod1b$df.residual)
```

```
## [1] 0
```

• Rechazo H<sub>0</sub> de independencia por bloques de cigarros

### Ejemplo. Estupefacientes. Hipotesis: Independencia por bloques

•  $H_0: pi_{ijk} = pi_j \cdot pi_{ik} \leftrightarrow Independencia por bloques$ 

Pr(>|z|)

Estimate Std. Error z value

```
1-pchisq(mod1c$deviance,mod1c$df.residual)
```

```
## [1] 0
```

• Rechazo  $H_0$  de independencia por bloques de alcohol

#### Ejemplo. Estupefacientes. Hipótesis: Independencia Parcial

•  $H_0: pi_{ijk} = pi_{ik} \cdot pi_{jk} \leftrightarrow \text{Independencia parcial}$ 

```
## (Intercept) 5.62294604 0.06005168 93.635111 0.000000e+0)
## marijuanayes -4.16511363 0.45066572 -9.242136 2.416258e-20
## cigaretteyes -1.80971327 0.15905294 -11.378056 5.378524e-30
## alcoholyes -0.08167244 0.07809686 -1.045784 2.956608e--01
## marijuanayes:alcoholyes 4.12508777 0.45293789 9.107403 8.437777e-20
## cigaretteyes:alcoholyes 2.87373412 0.16729594 17.177548 3.910951e-66
```

1-pchisq(mod2a\$deviance,mod2a\$df.residual)

```
## [1] 0
```

ullet Rechazo  $H_0$  de independencia parcial mediada por alcohol

### Ejemplo. Estupefacientes. Hipótesis: Independencia Parcial

•  $H_0: pi_{ijk} = pi_{ij} \cdot pi_{ik} \leftrightarrow Independencia parcial$ 

```
1-pchisq(mod2b$deviance,mod2b$df.residual)
```

```
## [1] 0
```

ullet Rechazo  $H_0$  de independencia parcial mediada por tabaco

23/11/2018

#### Ejemplo. Estupefacientes. Hipótesis: Independencia Parcial

•  $H_0: pi_{ijk} = pi_{ij} \cdot pi_{jk} \leftrightarrow Independencia parcial$ 

1-pchisq(mod2c\$deviance,mod2c\$df.residual)

```
## [1] 0
```

ullet Rechazo  $H_0$  de independencia parcial mediada por marihuana

Grado de Estadística Contajes (Sesión 2) 23/11/2018

# Ejemplo. Estupefacientes. Hipótesis: Asociación uniforme

```
Estimate Std. Error
                                                    z value
                                                                Pr(>|z|)
  (Intercept)
                             5.633420 0.05970084 94.360822 0.000000e+00
## cigaretteves
                            -1.886669 0.16269698 -11.596213 4.307172e-31
## marijuanayes
                            -5.309042 0.47519695 -11.172299 5.571964e-29
## alcoholyes
                                                   6.437073 1.217997e-10
                            0.487719 0.07576720
## cigaretteves:marijuanaves 2.847889 0.16383940 17.382200 1.125516e-67
## cigaretteves:alcoholves
                             2.054534 0.17406432 11.803304 3.752817e-32
## marijuanayes:alcoholyes 2.986014 0.46467793 6.425987 1.310164e-10
```

```
1-pchisq(mod3$deviance,mod3$df.residual)
```

```
## [1] 0.5408396
```

• Acepto  $H_0 \rightarrow$  la tabla de contingencia es consistente con la asociación uniforme.

23/11/2018

46 / 48

Grado de Estadística Contaies (Sesión 2)

# Ejemplo. Estupefacientes. Valors predichos vs. observados

```
##
     cigarette marijuana alcohol Freq fitted(mod3)
## 1
                                      911
                                             910.38317
            ves
                       ves
                                ves
## 2
             no
                                yes
                                       44
                                               44.61683
                       yes
## 3
                                      538
                                              538.61683
            ves
                        no
                                ves
                                              455.38317
## 4
                                      456
             no
                        no
                                yes
## 5
                                        3
                                                3.61683
            yes
                       yes
                                 no
                                                1.38317
## 6
                                        2
             no
                       yes
                                 no
                                       43
                                               42.38317
## 7
            yes
                        no
                                 no
                                      279
                                              279.61683
## 8
             no
                        no
                                 no
```

#### Ejemplo. Estupefacientes. Interpretación

 Los estudiantes que probaron la marihuana tienen odds estimadas de haber probado el alcohol que son 19 veces superiores a las odds de los estudiantes que no probaron la marihuana. Y el hecho de que no aparezca la interacción triple nos dice que este hecho es independiente de si han probado el tabaco o no.

```
exp(coef(mod3)["marijuanayes:alcoholyes"])
```

```
## marijuanayes:alcoholyes
## 19.80658
```