eMasters in **Communication Systems** Prof. Aditya Jagannatham

Elective Module: Advanced ML Techniques

Chapter 6 Naïve Bayes Examples

Naïve Bayes Example ___Movies .

Consider a training set of people's

opinions

• like = 1 or NOT = 0 for the movies x_1) $x_2 \text{ and } y$

• The estimates of the prior probabilities

are as follows $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty$

	$x_1 = 0$	$x_1 = 1$	$p(x_1=0 y)($	$p(x_1 = 1 y)$
y = 0	3	10	$P(x_1 = 0 y=0)$ $= \frac{3}{13}$	$P(X=1 Y=0) \neq \frac{10}{13}$
y = 1	4	13	$P(X=0 y=1)$ $=\frac{4}{17}$	$P(x_1=1 y=1)$ = $\frac{13}{17}$

NOT Like x, Like y

Like y

T(=1, y=0

T(=1, y=0)

Flike x, but NOT y

Naïve Bayes Example

• The estimates of the prior probabilities

Probabilities

	$x_1 = 0$	$x_1 = 1$	$p(x_1 = 0 y) p(x_1 = 1 y)$
y = 0	3	10	$\left(\begin{array}{c} 3 \\ \hline 13 \end{array}\right) \left(\begin{array}{c} 10 \\ \hline 13 \end{array}\right)$
y = 1	4	13	$\frac{4}{17}$ $\frac{13}{17}$

$$p(4=0|y=1)$$
 $p(4=1|y=1)$

	$x_2 = 0$	$x_2 = 1$	$p(x_2 = 0 y)$	
y = 0	5	8	$p(32=n y=0)$ = $\frac{5}{13}$	$=\frac{8}{13}$
y = 1	7	10	$P(x_2 = 0 y = 1)$ $= \frac{7}{17}$	$P(x_2= y=)$ = $\frac{10}{17}$

Probabilities.

	$x_2 = 0$	$x_2 = 1$	$p(x_2 = 0 y)$	$p(x_2 = 1 y)$
y = 0	5	8	$\frac{5}{13}$	$\frac{8}{13}$
y = 1	7	10	$\frac{7}{17}$	$\frac{10}{17}$

P(y=0)
Number of

— People distikely

Total mumber

of people.

13

— 13

	Count	p(y)	y(y=v)
y = 0	13	$\left(\frac{13}{30}\right)$	
y = 1	17	$\frac{17}{30}$	

Naive Bayes Example Puson like χ_1

• What is the probability that a new person, who likes $x_1 = 1$ but NOT $x_2 = 0,...$

will like
$$y$$
?

Aposteriori probability

Ply= $|\chi_1 = 1, \chi_2 = 0| = P(y=u|\bar{x}=\bar{v})$

$$P(\chi=1,\chi_2=0|y=1) P(y=1)$$

$$P(\chi=1,\chi_2=0)$$

$$P(\chi=1,\chi_2=0)$$

$$P(\chi=1,\chi_2=0)$$

$$P(\chi=1,\chi_2=0)$$

$$P(\chi=1,\chi_2=0)$$

$$P(\chi=1,\chi_2=0)$$

$$P(y=0|X_1=1, x_2=0)$$

$$= \frac{p(x_1=1, x_2=0|y=0)}{p(x_1=1, x_2=0)}$$

$$= \frac{p(x_1=1, x_2=0|y=0)}{p(x_1=1, x_2=0)}$$

$$= \frac{p(x_1=1, x_2=0)}{p(x_1=1, x_2=0)}$$

$$= \frac{p(x_1=1, x_2=0)}{p(x_1=1, x_2=0)}$$

$$||xuy y||^{2} f$$

$$p(y=1|xy=1, x_{2}=0) > p(y=0|x_{4}=1, x_{2}=0)$$

$$\Rightarrow \frac{p(x_{4}=1|y=1)p(x_{2}=0|y=1)p(y=1)}{p(x_{4}=1, x_{2}=0)} > \frac{p(x_{4}=1|y=0)p(x_{2}=0|y=0)p(y=0)}{p(x_{4}=1|y=1)p(y=1)}$$

$$\Rightarrow p(x_{4}=1|y=1)p(x_{2}=0|y=1)p(y=1)$$

$$\Rightarrow p(x_{4}=1|y=0)p(x_{2}=0|y=0)$$

$$\Rightarrow p(x_{4}=1|y=0)p(x_{2}=0|y=0)$$

$$\Rightarrow p(y=0)$$

• We can readily compute this using the Naïve Bayes formula!

Aposteriori probabilities-

• For
$$y = 1$$
, $Q_1 = p(y = 1) \times p(x_1 = 1 | y = 1) \times p(x_2 = 0 | y = 1)$

$$= \frac{17}{30} \times \frac{13}{17} \times \frac{7}{17} = 0.178$$

• For $y = 1, Q_1 =$

$$p(y = 1) \times p(x_1 = 1|y = 1) \times p(x_2 = 0|y = 1)$$

$$= \frac{17}{30} \times \frac{13}{17} \times \frac{7}{17} = 0.178$$

• For
$$y = 0$$
, $Q_0 = p(y = 0) \times p(x_1 = 1 | y = 0) \times p(x_2 = 0 | y = 0)$

$$= \frac{13}{30} \times \frac{10}{13} \times \frac{5}{13} = 0.128$$

Naive Bayes Example Aposturiori

-Aposteriori
For
$$y = 0$$

• For
$$y = 0$$
, $Q_0 =$

$$p(y = 0) \times p(x_1 = 1|y = 0) \times p(x_2 = 0|y = 0)$$

$$= \frac{13}{30} \times \frac{10}{13} \times \frac{5}{13} = 0.128$$

- Q_1 is <u>higher</u>

 new person is "likely" to like y!

$$\Rightarrow p(y=1|x_1=1,x_2=0) > p(y=0|x_1=1,x_2=0)$$

$$\Rightarrow person is likely to like y |$$

Laplace Smoothing Example Avoid From Constability = 0

The estimates of the prior probabilities

are as follows

	$x_1 = 0$	$x_1 = 1$	$p(x_1 = 0 y) p(x_1 = 1 y)$
y = 0	3	10	$P(x=0 y=0) P(x=1 y=0) = \frac{3+1}{13+2} = \frac{4}{15} = \frac{10+1}{13+2} = \frac{11}{15} = \frac{14}{15}$
y = 1	4	13	$P(X=0 Y=1) P(X=1 Y=1)$ = $\frac{4+1}{17+2} = \frac{5}{19} = \frac{13+1}{17+2} = \frac{14}{19}$

DONOTlike x, and y 1(x=0,y=0)

Mbrie Hommendetion

• The estimates of the *prior probabilities* are as follows

	$x_1 = 0$	$x_1 = 1$	$p(x_1 = 0 y)$	$p(x_1 = 1 y)$
y = 0	3	10	$\frac{4}{15}$	$\frac{11}{15}$
y = 1	4	13	5 19	$\frac{14}{19}$

Laplace Smoothing Example AVENGERS.

					15 15 '
	$x_2 = 0$	$x_2 = 1$	$p(x_2 = 0 y)$	$p(x_2 = 1 y)$)
y = 0	5	8	$P(x_2 = 0 y = 0) = \frac{5+1}{13+2} = \frac{6}{15}$	$P(x_2=1 y=0) = \frac{8+1}{13+2} = \frac{9}{15}$	719+11=
y = 1	7	10	$P(x_2 = 0 y = 1)$ $= \frac{7+1}{17+2} = \frac{8}{19}$	$P(z_2=1 y=1)$ $=\frac{10+1}{17+2}=\frac{11}{19}$	

DINOT like X2 like y

	$x_2 = 0$	$x_2 = 1$	$p(x_2 = 0 y)$	$p(x_2 = 1 y)$
y = 0	5	8	$\frac{6}{15}$	$\frac{9}{15}$
y = 1	7	10	$\frac{8}{19}$	$\frac{11}{19}$

Laplace Smoothing Example 16. Avenyers,

- person,
- What is the probability that a new person, who likes $x_1 = 1$ but NOT $x_2 = 0,...$
 - will like y = 1?

likes $z_1 = TG$ DOES NOT like z_2 : A Venger 5.

P(like y: Avatar)?

Laplace Smoothing Example $\int (4=|y=) \times f(z=|y=|)$ we wonditionally independent given y

• We can readily compute this using the

Naïve Bayes formula!

Plant Bayes Formula!

$$P(y=1, x_2=0) < P(x_1=1, x_2=0 | y=1) P(y=1)$$

$$P(y=1, x_2=0) < P(x_1=1, x_2=0 | y=0) P(y=0)$$
Notice Bayes

$$P(x_1=1, x_2=0) < P(x_1=1, x_2=0 | y=0) P(y=0)$$

Notice Bayes

$$P(x_1=1, x_2=0) < P(x_1=1, x_2=0 | y=0) P(y=0)$$

In Probabilities.

• For
$$y = 1$$
, $Q_1 = 1$
 $p(y = 1) \times p(x_1 = 1 | y = 1) \times p(x_2 = 0 | y = 1)$

$$= \frac{17}{30} \times \frac{14}{19} \times \frac{8}{19} = 0.1758.$$

• For
$$y = 1$$
, $Q_1 = n(y = 1) \times n(x_2 = 0) = 0$

$$p(y=1) \times p(x_1 = 1|y = 1) \times p(x_2 = 0|y = 1)$$

$$= \frac{17}{30} \times \frac{14}{19} \times \frac{8}{19} = 0.1758$$

$$Q \mid \propto \text{Aposteriori prob } Y=1$$
given $x_1=1, x_2=0$

• For
$$y = 0$$
, $Q_0 = p(y = 0) \times p(x_1 = 1 | y = 0) \times p(x_2 = 0 | y = 0)$

$$= \frac{13}{30} \times \frac{11}{15} \times \frac{6}{15} = 0.1271$$

$$Q_0.$$

$$Q_0 \times \frac{13}{15} \times \frac{15}{15} = 0.1271$$

$$Q_0 \times \frac{15}{15} \times \frac{15}{15} = 0.1271$$

• For
$$y = 0$$
, $Q_0 = p(y = 0) \times p(x_1 = 1 | y = 0) \times p(x_2 = 0 | y = 0)$
= $\frac{13}{30} \times \frac{11}{15} \times \frac{6}{15} = 0.1271$

Laplace Smoothing Example Greater chance of 7 liking water

- Q_1 is <u>higher</u>
 - \Rightarrow new person is "likely" to like y!

Instructors may use this white area (14.5 cm / 25.4 cm) for the text. Three options provided below for the font size.

Font: Avenir (Book), Size: 32, Colour: Dark Grey

Font: Avenir (Book), Size: 28, Colour: Dark Grey

Font: Avenir (Book), Size: 24, Colour: Dark Grey

Do not use the space below.