Linear Algebra on a distributed environment

Jing Liu
TDB & LMB, Uppsala University
Programming of Parallel Computers, Jan, 2015

Topics in LA

- Solve linear equations
- Matrices operations
 - Matrices addition/ multiplication / transformation
 - * Eigenvalue/ Eigenvector
 - Transpose, projection ...
- Vector space
- ...

Scalar Vector Matrix

Loops

- LA operations are often basic building blocks in scientific applications
- Three basic types of loops
 - Perfectly parallel loops
 - Reduction loops
 - Recursive loops
 - Combination of different loops

Perfectly parallel loops

```
■ Example Z_m = \lambda X_m + Y_m
for ( i = 0; i < m; i ++ ){
Z[i] = \lambda * X[i] + Y[i];
}
```

```
X,Y,Z P1 P2 P3 P4 P5 P6 .... Pn
```

MPI Scatter and MPI_Gather

Reduction loops

- Limited parallelism
- Example: Dot production $s = X \cdot Y^T$

```
for ( i = 0; i < m; i ++ ) {
    s += X[i] + Y[i];
}
```

X P1 P2 P3 P4 P5 P6 Pn
Y P1 P2 P3 P4 P5 P6 Pn

MPI Reduce, MPI Allreduce

Recursive loops

- Each iteration depends on the previous one
- Hardly parallelize, "serial" loop
- Example

```
for ( i = 1; i < m; i ++) {
    X[i] = X[i] + X[i-1];
}
```


Nested loops

- Often the order of loops can be interchanged → for maximal parallelism, choose the perfectly-parallel loops as outmost, and parallelize over it.
- Example: Matrix-Vector multiplication

```
for (\underline{i} = 0; \underline{i} < m; \underline{i} + +){

for (\underline{j} = 0; \underline{j} < m; \underline{j} + +){

Y[i] + = A[i][j] * X[j];
}
```


Nested loops – Alt 1

Row-wise partition

All processors have a copy of X, one piece of A and Y.

Nested loop – Alt. 2

Block algorithm with 1D partition

Y ₁		A ₀₀	A ₀₁	A ₀₂	A ₀₃		X_0	
Y ₂		A ₁₀	A ₁₁	A ₁₂	A ₁₃	*	X ₁	
Y ₃	_	A ₂₀	A ₂₁	A ₂₂	A ₂₃	·	X_2	
Y ₄		A ₃₀	A ₃₁	A ₃₂	A ₃₃		X_3	

- Step 1: Compute Y[i] = A[i][i] * X[i] in process i, and then shift X[i] circular one step up.
- Step 2: Compute again, in which j=(i+1) mod p, shift X circular one step up.
- Repeat, in total (p-1) step

Nested loop – Alt. 2 cont.

- Non-blocking communication to shift X, before computation. MPI_Isend, MPI_Irecv, MPI_wait
- Which one is more efficient?
 - * Alt. 2 is more memory efficient.
 - * CPU efficient is all depends on the problem size, computer systems, implementations of MPI functions, etc.

Nested loop – Alt. 3

- Block algorithm 2D partition
- Processor block $\sqrt{p} * \sqrt{p}$,
- Step 1: Divide A_{mn} to √p * √p blocks, X to √p parts
- Step 2: Processor P_{ij} get block A_{ij} and X_j, and hold Y_i^(j) = 0
- Step 3: P_{ij} computes Y_i^(j) = A_{ij} * X_j
- Step 4: Accumulate Y_i in each row.

Nested loop – Alt. 3

- Efficient for large matrices.
- Scalability? 2D > 1D. For many processors, 1D partition strips become so thin and communications increases faster.

Matrix-Matrix Multi.

$$C(i,j) = \Sigma_k A(i,k) B(k,j)$$

More nested Loops

- Example : Matrix-Matrix Multiplication
- i and j are perfectly parallel loops, k is reduction loop

Matrix-Matrix Multi.

■ 1D partitioning – choose j as the outmost loop → partition data column wise

$$A_0$$
 A_1 A_2 A_3

B ₀₀	B ₀₁	B ₀₂	B ₀₃
B ₁₀			
B ₂₀			
B ₃₀			B ₃₃

. . . .

C = A*B, 1D partition

- A is needed in every processor.
- Alt. 1 : Every processor has completed A,
 - → Not scalable (memory?!)
- Alt. 2: Shift A around.
 - → Similar idea to matrix-vector alt. 2.
 - → For many processors, the stripes (block-columns) become thin and comm. overhead becomes large.

C = A*B, 2D partition

- Choose both i and j outmost.
- √p * √p blocks, each processor gets one block of each matrix.
- In processor P_{ij} , compute $C_{ij} = \sum_{k=0}^{\sqrt{p}-1} A_{ik} * B_{kj}$
 - → P_{ij} need all blocks A_{ik} in block row i, and B_{ki} in block column j
 - → Communications needed.

C = A*B, 2D partition, Alt. 1

- Simple and naïve method.
- Simply distribute A in each block row, and distribute of B in each block column, using MPI_functions
 - → limited scalability due to memory.
 - → Bad performance if data don't fit in catch

C = A*B, 2D partition, Alt. 2 Cannon's Algorithm (1969)

- Shift and compute. M*M mesh (√p * √p blocks processors, data).
- Phase 1: shift
 - Shift the i th block row of A i steps cyclically to the left.
 - Shift the j th block column of B j steps cyclically upwards

A ₀₀	A ₀₁	A ₀₂	A ₀₃
A ₁₁	A ₁₂	A ₁₃	A ₁₀
A ₂₂	A ₂₃	A ₂₀	A ₂₁
A ₃₃	A ₃₀	A ₃₁	A ₃₂

B ₀₀	B ₁₁	B ₂₂	B ₃₃
B ₁₀		B ₃₂	B ₀₃
B ₂₀	B ₃₁	B ₀₂	B ₁₃
B ₃₀	B ₀₁	B ₁₂	B ₂₃

C = A*B, 2D partition, Alt. 2 Cannon's Algorithm Cont.

- Phase 2: Compute and shift
- For each iteration do:
 - * Compute $C_{ij} = A_{ik} * B_{kj}$ in each processor P_{ij} , where $k = (i+j+l) \mod M$, where l is the number of iterations (start from 0).
 - Shift A one step left, B one step upwards
- In total, M-1 steps. We can do shift with nonblocking communication, and compute while sending.
- Read more on-line <u>Cannon's algorithm</u>.

C = A*B, 2D partition, Alt. 3 Fox's Algorithm

- In total M-1 step.
- For each step k (k = 0,1,..., M-1)
 - Broadcast block n of A within each block row i (n = (i+k) mod M)
 - Multiply the broadcasted block with B-block in each processor (C_{ii} += A_{in}*B_{ni})
 - Shift blocks of B, one step upwards.

C = A*B, 2D partition

- Both Cannon's and fox's algorithm is scalable.
- Which is more efficient?
 - Depends on problem size, computer system, efficiency of MPI, etc
- Read more about efficient on Fox and Cannon.

Advanced Topic: Recursive loop

Example:

```
for ( i=1; i<n; i++){
    X[i] += X[i-1];
}
```


Assignment 1

- Dense matrix-matrix multiplication.
- Fortran/C/C++ and MPI.
- Two parameters:
 - The number of process
 - The size of matrices
- Randomly generate A and B
- Distribute data
- Implement Fox's algorithm
- Collect data and output.

Assignment 1, cont.

- Data generation (at rank 0): srand(), rand() / CALL RANDOM_SEED(), CALL RANDOM_NUMBER()
- Data distribution: use MPI_Type_vector, MPI_Cart_rank, MPI_Isend, MPI_Recv
- Data Collection: MPI_Probe,
 MPI_Cart_coords, MPI_Recv, MPI_wait

Assignment 1, cont.

- C structure / C++ class is helpful to make a nicer code.
 - Name space works for large project.
- Good coding style makes your code more understandable and maintainable.
- Write comments in your code to help yourself and others.
- Demo code at https://github.com/JinLi971/MPI_DEMO

More Advanced Topic: BLAS

- CPUs:
 - Armadillo: Matlab style, C++ coding.
 - **CBLAS**: GNU supported.
 - Support: AMD -> ACML; IBM -> ESSL;
 Apple -> Accelerate framework; HP -> MLIB;
 SUN -> Sun Performance Library,
 - **Intel Math Kernel Library**
- GPUs: NVIDIA -> <u>CuBLAS</u>
 - OPENCL: third part support.

More Advanced Topic: Sparse Matrix

A sparse matrix is a matrix populated primarily with zeros.

- Save sparse matrix:
 - Dictionary of keys
 - List of lists
 - Coordinate list
 - Yale format
 - # Etc.

More Advanced Topic: Application using LA

- PageRank: imaging incredible large matrix
- Modern <u>Digital imaging</u>.
 - Video tracking: Xbox Kinect
- Genetics
- Cryptography
- Economic
- More ...

More Advanced Topic: Application using LA

- Schedule & auto tuning
 - Test cases and pre-determined
 - Dynamically schedule
- Kernel and Convolution
 - Performs in parallel computers, edges of each blocks need to fix, according to the size of the kernel