Lec 1 sammanfattning

Codin H

November 22, 2019

Ingår i föreläsningen

Beskrivande statistik

Konkret data som illustrerar något fenomen. Koncept som används är exempelvis lägesmått och spridningsmått.

Lägesmått

Lägesmått är exempelvis medelvärde och median

Spridningsmått

Spridningsmått är exempelvis, varians och standardavvikelsen

Varians:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
.

Standardavvikelsen:
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
.

Fördel med standardavvikelse är att resultatet uttrycks i samma enhet som mätningar.

Begrepp/definitioner

Slumpförsök

Till exempel tärningskast

Utfall

Vid tärningskast alla möjliga resultat av tärningskast (1 till 6).

Händelse

Uppsättning av utfall som till exempel jämnt antal prickar på tärningen.

Frekvenstolkning

Till exemepel vid upprepade tärningskast hur ofta kommer tärningen visa 6?

$$P(6) = \frac{1}{6}.$$

Relativ frekvens

Vid ett stort antal tärningskast så kommer relativa frekvensen för en händelse A gå mot den uppskattade sannolikheten att händelsen skall inträffa:

$$f_n(A) = \frac{\text{ant. ggr. A inträffar i n försök}}{n} \to P(A)$$
 då $n \to \infty$

Kolmogorovs axiomsystem

Ett sannolikhetsmått uppfyller följande 3 axiom.

- 1. För varje händelse A gäller att $0 \le P(A) \le 1$.
- 2. För hela Ω gäller att $P(\Omega) = 1$.
- 3. Om A_1, A_2, \cdots , är en följd av parvis oförenliga händelser så gäller att

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

Klassiska sannolikhetsdefinitionen

Sannolikheten för en händelse är antalet gynsamma utfall delat med antalet möjliga utfall. Om alla utfall i utfallsrummet har sannolikheten 1 delat med antalet möjliga utfall så föreligger likformig sannolikhetsfördelning.

Kombinatorik

Multiplikationsprincipen

Om åtgärd i kan utföras på a_i olika sätt där $i=1,2,\cdots,n$ så finns det totalt $a_1\times a_2\times\cdots\times a_n$ sätt att utföra de n åtgärderna.

Följdsats: n element kan ordnas på

$$n \times (n-1) \cdots 2 \times 1 = n!$$

olika sätt.

Olika sätt att dra k st element ur n

1. Dragning med återläggning av k st element ur n med hänsyn till ordning kan ske på

$$n \times n \times \cdots \times n = n^k$$

olika sätt.

2. Dragning utan återläggning av k st element ur n med hänsyn till ordning kan ske på

$$n(n-1)(n-2)\cdots(n-k+1)$$

olika sätt.

3. Dragning utan återläggning av k st element ur n utan hänsyn till ordning kan ske på

$$\frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} = \binom{n}{k}$$

olika sätt.

4. (Följande ingår EJ i kursen) Dragning med återläggning av k st element ur n utan hänsyn till ordning kan ske på

$$\binom{n+k-1}{k}$$

olika sätt.