

Linear Algebra Workbook Solutions

Inverses

INVERSE OF A TRANSFORMATION

 \blacksquare 1. Given a vector \overrightarrow{v} in \mathbb{R}^3 , what would the identity transformation be?

Solution:

In \mathbb{R}^3 , the identity transformation would be written as $I: \mathbb{R}^3 \to \mathbb{R}^3$, or maybe as $I_{\mathbb{R}^3}(\overrightarrow{v}) = \overrightarrow{v}$.

 \blacksquare 2. If a transformation T is invertible, what are the three conclusions that we can make about it?

Solution:

If a transformation T is invertible, we can conclude that

- 1. its inverse transformation is unique,
- 2. T is injective (or one-to-one), and
- 3. T is surjective (or onto).

■ 3. If you can prove that a transformation T is both injective and surjective, and if you know that its inverse is unique, then what can you say about the transformation?

Solution:

You know the transformation is invertible.

■ 4. Is the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ invertible?

$$T(x) = x^2$$

Solution:

The transform says that, given a value of x, the transform will return a value of x^2 . So for instance, if we put in x=2, the transform will return $x^2=2^2=4$. But if we put in x=-2, the transform will also return $x^2=(-2)^2=4$. In other words, the transform can use two different values of x and return the same value for both, which means the transformation isn't one-to-one, and therefore can't be invertible.

5. Prove that $(T^{-1})^{-1} = T$.

Solution:

We know that any transformation multiplied by the identity transformation will simply give us back the original transformation.

$$(T^{-1})^{-1} = (T^{-1})^{-1}I$$

We also know that the identity transformation is equal to an inverse transformation multiplied by itself, $I = T^{-1}T$, so we can write

$$(T^{-1})^{-1} = (T^{-1})^{-1}(T^{-1}T)$$

Rearrange the parentheses.

$$(T^{-1})^{-1} = [(T^{-1})^{-1}T^{-1}]T$$

Pull out the inverse, switching the order.

$$(T^{-1})^{-1} = [T(T^{-1})]^{-1}T$$

$$(T^{-1})^{-1} = [TT^{-1}]^{-1}T$$

Then the result in the parentheses is just the identity transformation.

$$(T^{-1})^{-1} = [I]^{-1}T$$

$$(T^{-1})^{-1} = IT$$

$$(T^{-1})^{-1} = T$$

■ 6. Prove that the inverse of a transformation is unique.

Solution:

Let's assume that the inverse of a transformation is actually not unique, such that there's an invertible transformation T that has two unique inverses T_1^{-1} and T_2^{-1} , and $T_1^{-1} \neq T_2^{-1}$.

If this were true, it means that $TT_1^{-1} = T_1^{-1}T = I$ and $TT_2^{-1} = T_2^{-1}T = I$, because a transformation multiplied by its inverse will give you the identity transformation.

What we want to show is that, in fact, $T_1^{-1} = T_2^{-1}$, which will mean that our initial assumption that they're two *unique* inverses will be wrong. Let's start with T_1^{-1} :

$$T_1^{-1} = T_1^{-1}I$$

$$T_1^{-1} = T_1^{-1}(TT_2^{-1})$$

$$T_1^{-1} = (T_1^{-1}T)T_2^{-1}$$

$$T_1^{-1} = IT_2^{-1}$$

$$T_1^{-1} = T_2^{-1}$$

We've shown that $T_1^{-1} = T_2^{-1}$, even though our initial assumption was that $T_1^{-1} \neq T_2^{-1}$. Therefore, we know that the inverse of a transformation must always be unique.

INVERTIBILITY FROM THE MATRIX-VECTOR PRODUCT

■ 1. Is the matrix invertible?

$$\begin{bmatrix} 1 & 2 & 0 \\ -3 & 5 & -1 \end{bmatrix}$$

Solution:

The matrix isn't square, so it can't be invertible.

2. Is the matrix invertible?

$$\begin{bmatrix} \pi & -\pi \\ -\pi & \pi \end{bmatrix}$$

Solution:

Divide through the matrix by π ,

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

then put it into reduced row-echelon form.

$$\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

Because we don't have a pivot entry in every row, the matrix is not invertible.

■ 3. Is the matrix invertible?

$$\begin{bmatrix} \pi & -\pi \\ \pi & \pi \end{bmatrix}$$

Solution:

Divide through the matrix by π ,

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

then put it into reduced row-echelon form.

$$\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Because we were able to get the matrix into reduced row-echelon form, the matrix is invertible.

■ 4. Find the dimensions of the transformation matrix for each transformation, if each transformation were written as a matrix-vector product, $T(\overrightarrow{x}) = M\overrightarrow{x}$.

$$T: \mathbb{R}^3 \to \mathbb{R}^6$$

$$T: \mathbb{R}^4 \to \mathbb{R}^2$$

$$T: \mathbb{R}^u \to \mathbb{R}^w$$

Solution:

If $T: \mathbb{R}^3 \to \mathbb{R}^6$ were written as $T(\overrightarrow{x}) = M \overrightarrow{x}$, then M would be a 6×3 matrix.

If $T: \mathbb{R}^4 \to \mathbb{R}^2$ were written as $T(\overrightarrow{x}) = M\overrightarrow{x}$, then M would be a 2×4 matrix.

If $T: \mathbb{R}^u \to \mathbb{R}^w$ were written as $T(\overrightarrow{x}) = M\overrightarrow{x}$, then M would be a $w \times u$ matrix.

■ 5. Using the transformations from the previous question, state the dimensions of \vec{x} , and then state the dimensions of $T(\vec{x})$.

Solution:

For the transformation $\mathbb{R}^3 \to \mathbb{R}^6$, \overrightarrow{x} must be a 3×1 vector. We know that a 6×3 matrix multiplied by a 3×1 vector will return a 6×1 vector, so $T(\overrightarrow{x})$ is a 6×1 vector.

For the transformation $T: \mathbb{R}^4 \to \mathbb{R}^2$, \overrightarrow{x} must be a 4×1 vector. We know that a 2×4 matrix multiplied by a 4×1 vector will return a 2×1 vector, so $T(\overrightarrow{x})$ is a 2×1 vector.

For the transformation $T: \mathbb{R}^u \to \mathbb{R}^w$, \overrightarrow{x} must be a $u \times 1$ vector. We know that a $u \times u$ matrix multiplied by a $u \times 1$ vector will return a $u \times 1$ vector, so $T(\overrightarrow{x})$ is a $u \times 1$ vector.

■ 6. What can we say about the invertibility of the transformation $T: \mathbb{R}^u \to \mathbb{R}^w$ from the last two questions?

Solution:

We actually can't tell whether $T: \mathbb{R}^u \to \mathbb{R}^w$ is invertible. If w = u, then the transformation matrix is square, and there's then a possibility that the matrix, and therefore the transformation, is invertible. If $u \neq w$, then the transformation matrix isn't square, and the transformation is definitely not invertible.

INVERSE TRANSFORMATIONS ARE LINEAR

■ 1. Given two $n \times n$ matrices, A and B, if we know that AB = I and BA = I, where I is the $n \times n$ identity matrix, then what else do we know about A and B?

Solution:

We know that A and B must be inverses of one another.

2. Find the inverse of the matrix.

$$\begin{bmatrix} \pi & -\pi \\ \pi & \pi \end{bmatrix}$$

Solution:

First, set up the augmented matrix,

$$\begin{bmatrix} \pi & -\pi & | & 1 & 0 \\ \pi & \pi & | & 0 & 1 \end{bmatrix}$$

then put it into reduced row-echelon form.

$$\begin{bmatrix} 1 & -1 & | & \frac{1}{\pi} & 0 \\ 1 & 1 & | & 0 & \frac{1}{\pi} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & | & \frac{1}{\pi} & 0 \\ 0 & 2 & | & -\frac{1}{\pi} & \frac{1}{\pi} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & | & \frac{1}{\pi} & 0 \\ 0 & 1 & | & -\frac{1}{2\pi} & \frac{1}{2\pi} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & | & \frac{1}{2\pi} & \frac{1}{2\pi} \\ 0 & 1 & | & -\frac{1}{2\pi} & \frac{1}{2\pi} \end{bmatrix}$$

So the inverse matrix is

$$\begin{bmatrix} \frac{1}{2\pi} & \frac{1}{2\pi} \\ -\frac{1}{2\pi} & \frac{1}{2\pi} \end{bmatrix}$$

■ 3. Prove that the matrix found in the previous question is actually the inverse of the original matrix.

Solution:

To prove that the matrices are inverses of one another, multiply them to show that we get the identity matrix. The product of the original matrix by the inverse gives

$$\begin{bmatrix} \pi & -\pi \\ \pi & \pi \end{bmatrix} \begin{bmatrix} \frac{1}{2\pi} & \frac{1}{2\pi} \\ -\frac{1}{2\pi} & \frac{1}{2\pi} \end{bmatrix} = \begin{bmatrix} \pi \left(\frac{1}{2\pi} \right) - \pi \left(-\frac{1}{2\pi} \right) & \pi \left(\frac{1}{2\pi} \right) - \pi \left(\frac{1}{2\pi} \right) \\ \pi \left(\frac{1}{2\pi} \right) + \pi \left(-\frac{1}{2\pi} \right) & \pi \left(\frac{1}{2\pi} \right) + \pi \left(\frac{1}{2\pi} \right) \end{bmatrix}$$

$$\begin{bmatrix} \pi & -\pi \\ \pi & \pi \end{bmatrix} \begin{bmatrix} \frac{1}{2\pi} & \frac{1}{2\pi} \\ -\frac{1}{2\pi} & \frac{1}{2\pi} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} + \frac{1}{2} & \frac{1}{2} - \frac{1}{2} \\ \frac{1}{2} - \frac{1}{2} & \frac{1}{2} + \frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} \pi & -\pi \\ \pi & \pi \end{bmatrix} \begin{bmatrix} \frac{1}{2\pi} & \frac{1}{2\pi} \\ -\frac{1}{2\pi} & \frac{1}{2\pi} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

And the product of the inverse matrix by the original gives

$$\begin{bmatrix} \frac{1}{2\pi} & \frac{1}{2\pi} \\ -\frac{1}{2\pi} & \frac{1}{2\pi} \end{bmatrix} \begin{bmatrix} \pi & -\pi \\ \pi & \pi \end{bmatrix} = \begin{bmatrix} \frac{1}{2\pi}\pi + \frac{1}{2\pi}\pi & \frac{1}{2\pi}(-\pi) + \frac{1}{2\pi}\pi \\ -\frac{1}{2\pi}\pi + \frac{1}{2\pi}\pi & -\frac{1}{2\pi}(-\pi) + \frac{1}{2\pi}\pi \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{2\pi} & \frac{1}{2\pi} \\ -\frac{1}{2\pi} & \frac{1}{2\pi} \end{bmatrix} \begin{bmatrix} \pi & -\pi \\ \pi & \pi \end{bmatrix} = \begin{bmatrix} \frac{1}{2} + \frac{1}{2} & -\frac{1}{2} + \frac{1}{2} \\ -\frac{1}{2} + \frac{1}{2} & \frac{1}{2} + \frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{2\pi} & \frac{1}{2\pi} \\ \frac{1}{2\pi} & \frac{1}{2\pi} \end{bmatrix} \begin{bmatrix} \pi & -\pi \\ \pi & \pi \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

■ 4. Find the inverse of the matrix.

$$\begin{bmatrix}
1 & 2 & 3 \\
0 & 1 & 5 \\
5 & 6 & 0
\end{bmatrix}$$

Solution:

Set up the augmented matrix,

$$\begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 5 & | & 0 & 1 & 0 \\ 5 & 6 & 0 & | & 0 & 0 & 1 \end{bmatrix}$$

then put it into reduced row-echelon form.

$$\begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 5 & | & 0 & 1 & 0 \\ 5 & 6 & 0 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 5 & | & 0 & 1 & 0 \\ 0 & -4 & -15 & | & -5 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -7 & | & 1 & -2 & 0 \\ 0 & 1 & 5 & | & 0 & 1 & 0 \\ 0 & -4 & -15 & | & -5 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -7 & | & 1 & -2 & 0 \\ 0 & 1 & 5 & | & 0 & 1 & 0 \\ 0 & 0 & 5 & | & -5 & 4 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -7 & | & 1 & -2 & 0 \\ 0 & 1 & 5 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & \frac{4}{5} & \frac{1}{5} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & -6 & \frac{18}{5} & \frac{7}{5} \\ 0 & 1 & 5 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & \frac{4}{5} & \frac{1}{5} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & | & -6 & \frac{18}{5} & \frac{7}{5} \\ 0 & 1 & 0 & | & 5 & -3 & -1 \\ 0 & 0 & 1 & | & -1 & \frac{4}{5} & \frac{1}{5} \end{bmatrix}$$

Then the inverse matrix is

$$\begin{bmatrix} -6 & \frac{18}{5} & \frac{7}{5} \\ 5 & -3 & -1 \\ -1 & \frac{4}{5} & \frac{1}{5} \end{bmatrix}$$

■ 5. Prove that the matrix we found in the previous question is actually the inverse of the original matrix.

Solution:

Multiply the original matrix by its inverse.

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 5 \\ 5 & 6 & 0 \end{bmatrix} \begin{bmatrix} -6 & \frac{18}{5} & \frac{7}{5} \\ 5 & -3 & -1 \\ -1 & \frac{4}{5} & \frac{1}{5} \end{bmatrix}$$

$$\begin{bmatrix} 1(-6) + 2(5) + 3(-1) & 1\left(\frac{18}{5}\right) + 2(-3) + 3\left(\frac{4}{5}\right) & 1\left(\frac{7}{5}\right) + 2(-1) + 3\left(\frac{1}{5}\right) \\ 0(-6) + 1(5) + 5(-1) & 0\left(\frac{18}{5}\right) + 1(-3) + 5\left(\frac{4}{5}\right) & 0\left(\frac{7}{5}\right) + 1(-1) + 5\left(\frac{1}{5}\right) \\ 5(-6) + 6(5) + 0(-1) & 5\left(\frac{18}{5}\right) + 6(-3) + 0\left(\frac{4}{5}\right) & 5\left(\frac{7}{5}\right) + 6(-1) + 0\left(\frac{1}{5}\right) \end{bmatrix}$$

$$\begin{bmatrix} -6+10-3 & \frac{18}{5}-6+\frac{12}{5} & \frac{7}{5}-2+\frac{3}{5} \\ 0+5-5 & 0-3+4 & 0-1+1 \\ -30+30+0 & 18-18+0 & 7-6+0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Because we get the identity matrix, we know that the two matrices we multiplied together must be inverses of one another.

 \blacksquare 6. Prove that the inverse of an invertible linear transformation T is also a linear transformation.

Solution:

We know that T is linear, which means that for vectors \overrightarrow{x} and \overrightarrow{y} and a constant c, we know $T(\overrightarrow{x}+\overrightarrow{y})=T(\overrightarrow{x})+T(\overrightarrow{y})$ and $T(c\overrightarrow{x})=cT(\overrightarrow{x})$. We also know that $(T^{-1}\circ T)(\overrightarrow{x})=(T\circ T^{-1})(\overrightarrow{x})=I(\overrightarrow{x})$, and we want to prove that $T^{-1}(\overrightarrow{x}+\overrightarrow{y})=T^{-1}(\overrightarrow{x})+T^{-1}(\overrightarrow{y})$ and $T^{-1}(c\overrightarrow{x})=cT^{-1}(\overrightarrow{x})$.

We know that $(T \circ T^{-1})(\overrightarrow{x} + \overrightarrow{y})$ is the same as saying $I(\overrightarrow{x} + \overrightarrow{y})$.

$$(T \circ T^{-1})(\overrightarrow{x} + \overrightarrow{y}) = I(\overrightarrow{x} + \overrightarrow{y})$$

$$(T \circ T^{-1})(\overrightarrow{x} + \overrightarrow{y}) = \overrightarrow{x} + \overrightarrow{y}$$

Using that same logic, we can also say that $\overrightarrow{x} + \overrightarrow{y}$ is the same as saying $I\overrightarrow{x} + I\overrightarrow{y}$, or $(T \circ T^{-1})\overrightarrow{x} + (T \circ T^{-1})\overrightarrow{y}$, which means that we now have

$$(T \circ T^{-1})(\overrightarrow{x} + \overrightarrow{y}) = I(\overrightarrow{x} + \overrightarrow{y})$$

$$(T \circ T^{-1})(\overrightarrow{x} + \overrightarrow{y}) = I\overrightarrow{x} + I\overrightarrow{y}$$

$$(T \circ T^{-1})(\overrightarrow{x} + \overrightarrow{y}) = (T \circ T^{-1})\overrightarrow{x} + (T \circ T^{-1})\overrightarrow{y}$$

If we rearrange this, we get

$$T[T^{-1}(\overrightarrow{x} + \overrightarrow{y})] = T[T^{-1}(\overrightarrow{x}) + T^{-1}(\overrightarrow{y})]$$

and if we apply T^{-1} to both sides, we get

$$T^{-1}(T[T^{-1}(\overrightarrow{x} + \overrightarrow{y})]) = T^{-1}(T[T^{-1}(\overrightarrow{x}) + T^{-1}(\overrightarrow{y})])$$

$$(I)[T^{-1}(\overrightarrow{x}+\overrightarrow{y})]=(I)[T^{-1}(\overrightarrow{x})+T^{-1}(\overrightarrow{y})]$$

$$T^{-1}(\overrightarrow{x} + \overrightarrow{y}) = T^{-1}(\overrightarrow{x}) + T^{-1}(\overrightarrow{y})$$

MATRIX INVERSES, AND INVERTIBLE AND SINGULAR MATRICES

 \blacksquare 1. Find the inverse of matrix G.

$$G = \begin{bmatrix} -3 & 8 \\ 0 & -2 \end{bmatrix}$$

Solution:

Plug into the formula for the inverse matrix.

$$G^{-1} = \frac{1}{|G|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$G^{-1} = \frac{1}{\begin{vmatrix} -3 & 8 \\ 0 & -2 \end{vmatrix}} \begin{bmatrix} -2 & -8 \\ 0 & -3 \end{bmatrix}$$

$$G^{-1} = \frac{1}{(-3)(-2) - (8)(0)} \begin{bmatrix} -2 & -8 \\ 0 & -3 \end{bmatrix}$$

$$G^{-1} = \frac{1}{6} \begin{bmatrix} -2 & -8 \\ 0 & -3 \end{bmatrix}$$

$$G^{-1} = \begin{bmatrix} -\frac{1}{3} & -\frac{4}{3} \\ 0 & -\frac{1}{2} \end{bmatrix}$$

 \blacksquare 2. Find the inverse of matrix N.

$$N = \begin{bmatrix} 11 & -4 \\ 5 & -3 \end{bmatrix}$$

Solution:

Plug into the formula for the inverse matrix.

$$N^{-1} = \frac{1}{|N|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$N^{-1} = \frac{1}{\begin{vmatrix} 11 & -4 \\ 5 & -3 \end{vmatrix}} \begin{bmatrix} -3 & 4 \\ -5 & 11 \end{bmatrix}$$

$$N^{-1} = \frac{1}{(11)(-3) - (-4)(5)} \begin{bmatrix} -3 & 4 \\ -5 & 11 \end{bmatrix}$$

$$N^{-1} = \frac{1}{-33 + 20} \begin{bmatrix} -3 & 4 \\ -5 & 11 \end{bmatrix}$$

$$N^{-1} = -\frac{1}{13} \begin{bmatrix} -3 & 4\\ -5 & 11 \end{bmatrix}$$

$$N^{-1} = \begin{bmatrix} \frac{3}{13} & -\frac{4}{13} \\ \frac{5}{13} & -\frac{11}{13} \end{bmatrix}$$

■ 3. What is the inverse of matrix *K*?

$$K = \begin{bmatrix} 3 & 3 \\ -6 & 0 \end{bmatrix}$$

Solution:

Plug into the formula for the inverse matrix.

$$K^{-1} = \frac{1}{|K|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$K^{-1} = \frac{1}{\begin{vmatrix} 3 & 3 \\ -6 & 0 \end{vmatrix}} \begin{bmatrix} 0 & -3 \\ 6 & 3 \end{bmatrix}$$

$$K^{-1} = \frac{1}{(3)(0) - (3)(-6)} \begin{bmatrix} 0 & -3 \\ 6 & 3 \end{bmatrix}$$

$$K^{-1} = \frac{1}{0+18} \begin{bmatrix} 0 & -3 \\ 6 & 3 \end{bmatrix}$$

$$K^{-1} = \frac{1}{18} \begin{bmatrix} 0 & -3 \\ 6 & 3 \end{bmatrix}$$

$$K^{-1} = \begin{bmatrix} 0 & -\frac{1}{6} \\ \frac{1}{3} & \frac{1}{6} \end{bmatrix}$$

4. Is the matrix invertible or singular?

$$Z = \begin{bmatrix} 4 & 2 \\ -2 & -1 \end{bmatrix}$$

Solution:

Find the determinant of the matrix.

$$|Z| = \begin{vmatrix} 4 & 2 \\ -2 & -1 \end{vmatrix}$$

$$|Z| = (4)(-1) - (2)(-2)$$

$$|Z| = -4 + 4$$

$$|Z| = 0$$

Because the determinant is 0, Z is a singular matrix that has no inverse.

■ 5. Is the matrix invertible or singular?

$$Y = \begin{bmatrix} 0 & 6 \\ 2 & -1 \end{bmatrix}$$

Solution:

Find the determinant of the matrix.

$$|Y| = \begin{vmatrix} 0 & 6 \\ 2 & -1 \end{vmatrix}$$

$$|Y| = (0)(-1) - (6)(2)$$

$$|Y| = 0 - 12$$

$$|Y| = -12$$

Because the determinant is non-zero, Y is an invertible matrix with a defined inverse.

■ 6. Is *B* invertible?

$$B = \begin{bmatrix} -4 & 1 \\ -5 & 0 \end{bmatrix}$$

Solution:

Find the determinant of the matrix.

$$|B| = \begin{vmatrix} -4 & 1 \\ -5 & 0 \end{vmatrix}$$

$$|B| = (-4)(0) - (1)(-5)$$

$$|B| = 0 + 5$$

$$|B| = 5$$

Because the determinant is non-zero, B is an invertible matrix with a defined inverse.

SOLVING SYSTEMS WITH INVERSE MATRICES

■ 1. Use an inverse matrix to solve the system.

$$-4x + 3y = -14$$

$$7x - 4y = 32$$

Solution:

Transfer the system into a matrix equation.

$$\begin{bmatrix} -4 & 3 \\ 7 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -14 \\ 32 \end{bmatrix}$$

Find the inverse of the coefficient matrix.

$$M^{-1} = \frac{1}{(-4)(-4) - (3)(7)} \begin{bmatrix} -4 & -3 \\ -7 & -4 \end{bmatrix}$$

$$M^{-1} = -\frac{1}{5} \begin{bmatrix} -4 & -3 \\ -7 & -4 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{7}{5} & \frac{4}{5} \end{bmatrix}$$

The solution to the system is

$$\overrightarrow{a} = \begin{bmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{7}{5} & \frac{4}{5} \end{bmatrix} \begin{bmatrix} -14 \\ 32 \end{bmatrix}$$

$$\overrightarrow{a} = \begin{bmatrix} \frac{4}{5}(-14) + \frac{3}{5}(32) \\ \frac{7}{5}(-14) + \frac{4}{5}(32) \end{bmatrix}$$

$$\overrightarrow{a} = \begin{bmatrix} -\frac{56}{5} + \frac{96}{5} \\ -\frac{98}{5} + \frac{128}{5} \end{bmatrix}$$

$$\overrightarrow{a} = \begin{bmatrix} \frac{40}{5} \\ \frac{30}{5} \end{bmatrix}$$

$$\overrightarrow{a} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$$

■ 2. Use an inverse matrix to solve the system.

$$6x - 11y = 2$$

$$-10x + 7y = -26$$

Solution:

Transfer the system into a matrix equation.

$$\begin{bmatrix} 6 & -11 \\ -10 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ -26 \end{bmatrix}$$

Find the inverse of the coefficient matrix.

$$M^{-1} = \frac{1}{(6)(7) - (-11)(-10)} \begin{bmatrix} 7 & 11 \\ 10 & 6 \end{bmatrix}$$

$$M^{-1} = -\frac{1}{68} \begin{bmatrix} 7 & 11 \\ 10 & 6 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} -\frac{7}{68} & -\frac{11}{68} \\ -\frac{10}{68} & -\frac{6}{68} \end{bmatrix}$$

The solution to the system is

$$\vec{a} = \begin{bmatrix} -\frac{7}{68} & -\frac{11}{8} \\ -\frac{10}{68} & -\frac{6}{68} \end{bmatrix} \begin{bmatrix} 2 \\ -26 \end{bmatrix}$$

$$\overrightarrow{a} = \begin{vmatrix} -\frac{7}{68}(2) - \frac{11}{68}(-26) \\ -\frac{10}{68}(2) - \frac{6}{68}(-26) \end{vmatrix}$$

$$\overrightarrow{a} = \begin{bmatrix} -\frac{14}{68} + \frac{286}{68} \\ -\frac{20}{68} + \frac{156}{68} \end{bmatrix}$$

$$\overrightarrow{a} = \begin{bmatrix} \frac{272}{68} \\ \frac{136}{68} \end{bmatrix}$$

$$\overrightarrow{a} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

■ 3. Use an inverse matrix to solve the system.

$$13y - 6x = -81$$

$$7x + 17 = -22y$$

Solution:

Transfer the system into a matrix equation.

$$\begin{bmatrix} -6 & 13 \\ 7 & 22 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -81 \\ -17 \end{bmatrix}$$

Find the inverse of the coefficient matrix.

$$M^{-1} = \frac{1}{(-6)(22) - (13)(7)} \begin{bmatrix} 22 & -13 \\ -7 & -6 \end{bmatrix}$$

$$M^{-1} = -\frac{1}{223} \begin{bmatrix} 22 & -13 \\ -7 & -6 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} -\frac{22}{223} & \frac{13}{223} \\ \frac{7}{223} & \frac{6}{223} \end{bmatrix}$$

The solution to the system is

$$\vec{a} = \begin{bmatrix} -\frac{22}{223} & \frac{13}{223} \\ \frac{7}{223} & \frac{6}{223} \end{bmatrix} \begin{bmatrix} -81 \\ -17 \end{bmatrix}$$

$$\overrightarrow{a} = \begin{bmatrix} -\frac{22}{223}(-81) + \frac{13}{223}(-17) \\ \frac{7}{223}(-81) + \frac{6}{223}(-17) \end{bmatrix}$$

$$\overrightarrow{a} = \begin{bmatrix} \frac{1,782}{223} & \frac{221}{223} \\ \frac{567}{223} & \frac{102}{223} \end{bmatrix}$$

$$\vec{a} = \begin{bmatrix} \frac{1,561}{223} \\ -\frac{669}{223} \end{bmatrix}$$

$$\overrightarrow{a} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 \\ -3 \end{bmatrix}$$

■ 4. Sketch a graph of vectors to visually find the solution to the system.

$$3x = 3$$

$$x - y = -2$$

Solution:

Put the system into a matrix equation.

$$\begin{bmatrix} 3 \\ 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ -1 \end{bmatrix} y = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

From the vector equation, we can sketch the vectors $\vec{s} = (3,1)$ for x, $\vec{t} = (0, -1)$ for y, and the resulting vector $\vec{u} = (3, -2)$.

If we play around a little bit with the vectors in the graph, we can see that putting one \vec{s} and three \vec{t} s together will get us back to the terminal point of \vec{u} , so x = 1 and y = 3.

■ 5. Sketch a graph of vectors to visually find the solution to the system.

$$-y = -4$$

$$2x - y = -2$$

Solution:

Put the system into a matrix equation.

$$\begin{bmatrix} 0 \\ 2 \end{bmatrix} x + \begin{bmatrix} -1 \\ -1 \end{bmatrix} y = \begin{bmatrix} -4 \\ -2 \end{bmatrix}$$

From the vector equation, we can sketch the vectors $\vec{s} = (0,2)$ for x, $\vec{t} = (-1, -1)$ for y, and the resulting vector $\vec{u} = (-4, -2)$.

If we play around a little bit with the vectors in the graph, we can see that putting one \vec{s} and four \vec{t} s together will get us back to the terminal point of \vec{u} , so x = 1 and y = 4.

■ 6. Sketch a graph of vectors to visually find the solution to the system.

$$x - y = 0$$

$$x + y = 2$$

Solution:

Put the system into a matrix equation.

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} x + \begin{bmatrix} -1 \\ 1 \end{bmatrix} y = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

From the vector equation, we can sketch the vectors $\vec{s} = (1,1)$ for x, $\vec{t} = (-1,1)$ for y, and the resulting vector $\vec{u} = (0,2)$.

If we play around a little bit with the vectors in the graph, we can see that putting one \vec{s} and one \vec{t} together will get us back to the terminal point of \vec{u} , so x = 1 and y = 1.

