

فريمبندي

سرفصل

- لایه فیزیکی رشتهای از بیتها را در اختیار ما میگذارد.
 - چرا لازم است تا فریمبندی صورت گیرد؟
- چگونه می شود آنها را به صورت دنبالهای از فریمها در نظر گرفت؟ طول هر فریم چقدر باشد؟

روشهای فریمبندی

- وشهای زیر بررسی خواهند شد:
 - شمارش بایت
 - Byte stuffing -
 - Bit stuffing -
- در عمل، لایه فیزیکی اغلب به شناسایی مرزهای فریم کمک میکند.
 - برای مثال: اترنت و 802.11

شمارش بایت

- تلاش اول
- بیایید هر فریم را با **طول هر فریم** شروع کنیم.
- ساده است و خوشبختانه به اندازه کافی خوب هست.

شمارش بایت (۲)

• فكر مىكنيد تا چه اندازه خوب كار كند؟

شمارش بایت (۳)

- همزمانی بعد از خطای فریم سخت است.
- دنبال روشی هستیم که شروع فریمها را پیدا کند.

Byte Stuffing

- ایده بهتر
- داشتن مقدار بایت مخصوص به عنوان پرچم (flag) برای شروع و پایان فریمها - جایگذاری (و یا stuff) پرچم داخل فریم با یک کد escape
 - پیچیدگی: باید که escape را حساب نکنیم!

Flag	Header	Payload field	Trailer	Flag
------	--------	---------------	---------	------

Byte Stuffing (2)

- قوانين:
- هر FLAG درون داده را با ESC FLAG جایگذاری کنید.
 - هر ESC درون داده را با ESC ESC جایگذاری کنید.

Byte Stuffing (3)

• حال، هر Unescaped Flag، شروع و پایان هر فریم است.

Bit Stuffing

- می توان در سطح بیت نیز stuffing را انجام داد.
- یک flag به صورت شش عدد ۱ متوالی در نظر بگیرید.
- برای رفع ابهام اینکه شش عدد متوالی ۱، شروع فریم است یا خود داده چه کار کنیم؟
 - هنگام ارسال، پس از پنج عدد ۱ در داده، یک صفر وارد کنید.
 - هنگام دریافت، صفر پس از پنج عدد ۱ را حذف کنید.

Bit Stuffing (2)

مثال:

استفاده از Coding Violations

این روش با همکاری لایه فیزیکی، هنگامی که کدهایی مانند 4B/5B به منظور بازیابی کلاک در مدولاسیون استفاده شدهاست، می تواند راهگشا باشد.

• از کدهای رزرو که در لایه فیزیکی استفاده نشدهاست، به منظور شناسایی ابتدای فریم استفاده می شود.

Data (4B) Codeword (5B) Data (4B) Codeword (5B)

استفاده از ترکیب روشها برای امنیت بیشتر

• بسیاری از پروتکلهای لایه پیوند داده از ترکیب روشهای یادشده به منظور امنیت بیشتر استفاده می کنند.

√ برای مثال اترنت و 802.11 از پترن مشهوری به نام Preamble استفاده می کنند (۷۲ بیت برای 802.11) در ادامه از روش شمارش بایت برای یافتن انتهای فریم استفاده می شود.

