Modelo relacional

Conceptos

- o **BD**: Colección de *relaciones*.
- o Relación: Semeja una tabla:
 - Fila: Representa a entidad o vínculo.
 - Nombres de tabla y columnas:
 Identifican el significado de los valores.
 - Valores de columna: Mismo tipo de datos.

ALUMNO

Nombre	Código alumno	Año	Especialidad
Smith	17	1	CS
Brown	8	2	CS

Conceptos

o Terminología:

- A las tablas se las llama relaciones.
- A las filas tuplas.
- A las cabeceras de columna atributos.
- Al tipo de datos de una columna dominio.

ALUMNO

Nombre	Código alumno	Año	Especialidad
Smith	17	1	CS
Brown	8	2	CS

Dominio

O Dominio D:

Conjunto de valores atómicos (indivisible).

Consta de nombre, tipo de datos y formato.

Ej. Edades_de_Empleados: valor entre 16 y 80.

Esquema de relación $R(A_1, ..., A_n)$

Describe la relación.

- R es el nombre de la relación.
- \bullet A_1, \dots, A_n su lista de atributos.
- dom(A_i) dominio del atributo A_i.
- Grado de la relación: Número de atributos (n).

Intensión

Extensión

estado o ejemplar de relación r ó r(R) de un esquema $R(A_1, A_2, \ldots, A_n)$ es un conjunto de n-tuplas $r=\{t_1, t_2, \ldots, tm\}$ tal que

- Cada n-tupla es una lista ordenada de valores $t = \langle v_1, v_2, \ldots, v_n \rangle$
- Cada *v_i* 1≤i ≤ n es:
 - Un elemento de dom(A_i).
 - O un valor nulo.
- Un estado de relación r(R) se llama extensión.

Características de las relaciones

- Orden entre las tuplas
- Orden en los valores de una tupla
- O Valores en las tuplas:
 - Existe el valor nulo.

Notación

- Esquema de la relación ALUMNO de grado 4: ALUMNO (Nombre, Código alumno, Año, Especialidad)
- 4-tupla de la relación ALUMNO :
 t = <'Smith', 17,1,'CS'>

Notación

- o t [Nombre] = <'Smith'>
- o t [Numero, Especialidad, Año] =
 <17,'CS',1>

Notación

- Calificación atributos relación alumno
 - ALUMNO.Nombre
 - ALUMNO.Año

Restricciones

- De dominio
- De clave
- Integridad de entidades
- Integridad referencial
- Claves extranjeras o externas

Dominio

 Los valores asignados a un atributo han de ser del dominio del mismo

Restricciones de clave

- En una relación no hay 2 tuplas con todos sus valores iguales
- o e.o.c., no sería un cjto. de tuplas

Restricciones de clave

- Superclave
- Clave
- Clave candidata
- Clave primaria

COCHE

NúmeroMatrícula	NúmeroSerieMotor	Marca	Modelo	Año
Texas ABC-739	A69352	Ford	Mustang	96
Florida TVP-347	B43696	Oldsmobile	Cutlass	99
N. York MPO-22	X83554	Oldsmobile	Delta	95
California 432-TFY	C43742	Mercedes	190-D	93
California RSK-629	Y82935	Toyota	Camry	98
Texas RSK-629	U028365	Jaguar	XJS	98

Estado de la BD relacional "EMPRESA"

Figura 7.5. Esquema de base de datos relacional EMPRESA; las claves primarias están subrayadas.

Estado de la BD relacional "EMPRESA"

EMPLEADO

NOMBRE	INIC	APELLIDO	<u>NSS</u>	FECHA_NCTO	DIRECCIÓN
John	В	Smith	123456789	1965-01-09	Fresnos 731, Houston, TX
Franklin <u> </u>	T	Wong	333445555	1955-12-08	Valle 638, Houston, TX
Alicia	J	Zelaya	999887777	1968-07-19	Castillo 3321, Sucre, TX
Jennifer	S	Wallace	987654321	1941-06-20	Bravo 291, Bellaire, TX
Ramesh	K	Narayan	666884444	1962-09-15	Espiga 875, Heras, TX
Joyce	A	English	453453453	1972-07-31	Rosas 5631, Houston, TX
Ahmad	V	Jabbar	987987987	1969-03-29	Dalias 980, Houston, TX
Jaime	Ē	Borg	888665555	1937-11-10	Sorgo 450, Houston, TX

TRABAJA EN

INADAJA LIV	_	
<u>NSSE</u>	<u>NP</u>	HORAS
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20 30	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	. 30	20.0
987654321	20	15.0
888665555	20	nulo

•••

SEXO	SALARIO	NSS_SUPERV	ND
Н	30.000	333445555	5
H	40.000	888665555	5
M	25.000	987654321	4
M	43.000	888665555	4
Н	38.000	333445555	5
M	25.000	333445555	5
H	25.000	987654321	4
H	55.000	nulo	1

Figura 7.6 (1^a parte)

Ejemplar (Estado) de base de datos relacional del esquema EMPRESA.

DEPARTAMENTO

NOMBRED	<u>NÚMEROD</u>	NSS_JEFE	FECHA_INIC_JEFE
Investigación	5	333445555	1988-05-22
Administración	4	987654321	1995-01-01
Dirección	1	888665555	1981-06-19

Estado de la BD relacional "EMPRESA"

LOCALIZACIONES DEPT

<u>NÚMEROD</u>	<u>LOCALIZACIÓND</u>
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

PROYECTO

NOMBREP	<u>NÚMEROP</u>	LOCALIZACIÓNP	ND
ProductoX	1	Bellaire	5
ProductoY	2	Sugarland	5
ProductoZ	3	Houston	5
Automatización	10	Stafford	4
Reorganización	20	Houston	1
Nuevos beneficios	30	Stafford	4

DEPENDIENTE

NSSE	NOMBRE_DEPENDIENTE	SEXO	FECHA_NCTO	PARENTESCO
333445555	Alicia	M	1986-04-05	HIJA
333445555	Theodore	Н	1983-10-25	HIJO
333445555	Joy	M	1958-05-03	ESPOSA
987654321	Abner	Н	1942-02-28	ESPOSO
123456789	Michael	Н	1988-01-04	HIJO
123456789	Alicia	M	1988-12-31	HIJA
123456789	Elizabeth	M	1967-05-05	ESPOSA

Figura 7.6 (2^a parte) Ejemplar (Estado) de base de datos relacional del esquema EMPRESA.

Restricciones de integridad

- o Integridad de entidades
- Integridad referencial

Integridad de entidades

 Ningún valor de una clave primaria puede tener valor nulo.

Integridad referencial

Entre 2 relaciones.

- Consistencia entre tuplas de las 2 relaciones.
- Una tupla de la relación A hace referencia a la relación B.
- EMPLEADO.ND y DEPARTAMENTO.NUMEROD

Clave externa (extranjera)

- **CE** conjunto no vacío de atributos de R₁.
- CE es clave extranjera si:
 - **CP** es clave primaria de R₂.
 - Los dominios de CE coinciden con los de CP.
 - CE hace referencia a CP:
 - $\circ \forall t_1 \in R_1 \exists t_2 \in R_2 \mid t_1 [CE] = t_2 [CP] .$
 - \circ o bien t_1 [CE] = valor nulo .

Ejemplo

EMPLEADO.ND hace referencia a DEPARTAMENTO.

Puede hacer referencia a la propia relación:

EMPLEADO.NSS_SUPERV.

Integridad referencial en el esquema

Figura 7.7. Restricciones de integridad referencial esquema de la base de datos relacional EMPRESA.

representadas en el

Operaciones de actualización

Son las siguientes:

- Insertar
- Eliminar
- Modificar
- Cuando se aplican no deben violar ninguna RI.
 Es decir, después de que se ejecuten se debe mantener la integridad referencial de la BD

Insertar

- Se introduce una nueva tupla en la relación
- o Insertar en EMPLEADO
- <'Cecilia', 'F', 'Kolonsky', '677678989', '05-ABR-60', 'Calle Viento 6357, Malinalco, TX', 'M', 28000, nulo, 4 >

Restricciones que se pueden violar

- Dominio: Insertar< ..., 'Depto 3'>
- Entidades: Insertar < 'Cecilia',... ,'Kolonsky', nulo,...,4>
- Clave:

```
Insertar < 'Cecilia', ..., '999887777', ..., 4>
```

I. referencial:

Posibilidades

- o Ante violación de RI:
 - Rechazar
 - Corregir
 - o Entidades
 - o I.Referencial

Eliminar

- Eliminar todos los TRABAJA_EN con NSSE='999887777' y NP=10.
- o Puede violar Integridad referencial:
 - Eliminar todo EMPLEADO con NSS='999887777'

Ante violación RI

Rechazar.

Propagar

- Eliminar todas las tuplas con referencia a la eliminada.
- o Eliminación en cascada

Eliminar

Modificar:

- o Poner un valor existente en referencias.
- Poner valor nulo en referencias
 (no si es parte de la clave primaria).

• Propagar y modificar:

- Eliminar referencias en TRABAJA_EN y DEPENDIENTE.
- Modificar referencias en EMPLEADO y DEPARTAMENTO.

Modificar

Modificar el SALARIO del EMPLEADO con NSS='999887777' a 28.000.

- Para atributos que no sean clave primaria ni extranjera:
 - No suelen producirse problemas.
 - Salvo que el nuevo valor no sea un valor válido del dominio.

Modificar

- Si es clave primaria:
 - Equivale a eliminar la tupla e insertar una nueva.
 - Mismos problemas que en insertar y eliminar.

Modificar

 Si es clave extranjera: para mantener la integridad referencial el SGBD debe asegurar que el nuevo valor exista

Definir esquemas de BDR, relaciones

 DDL para definir los esquemas relacionales

Pasos definición

- o Dar nombre al esquema completo
- O Declarar dominios de atributos:
 - Nombre dominio.
 - Tipo de datos.

Pasos definición

- o Definir cada relación:
 - Nombre relación.
 - Nombre atributos.
 - Dominio atributos.
 - Indicar las distintas claves y sus tipos

Álgebra relacional

- Operaciones para manipular relaciones enteras.
- Los resultados de las operaciones son otras relaciones

Operaciones

- Seleccionar
- Proyectar
- o Operaciones de conjuntos

Selección (sigma)

- $\circ \sigma_{ND=4}(EMPLEADO)$ $\sigma_{SALARIO>30000}(EMPLEADO)$
- o Condiciones que se pueden utilizar: =, <, ≤, >, ≥, ≠, Y, O, NO.

Ejemplos selección

Para la siguiente selección

NOMBRE	INIC	APELLIDO	<u>NSS</u>	FECHA_NCTO	DIRECCIÓN
Franklin	T	Wong	333445555	1955-12-08	Valle 638, Houston, TX
Jennifer	S	Wallace	987654321	1941-06-20	Bravo 291, Bellaire, TX
Ramesh	K	Narayan	666884444	1962-09-15	Espiga 875, Heras, TX

•••

SEXO	SALARIO	NSS_SUPERV	ND
Н	40.000	888665555	5
M	43.000	888665555	4
Н	38.000	333445555	5

Proyección (pi)

$\circ \pi_{APELLIDO, NOMBRE, SALARIO}$ (EMPLEADO)

APELLIDO	NOMBRE	SALARIO
Smith	John	30.000
Wong	Franklin	40.000
Zelava	Alicia	25.000
Wallace	Jennifer	43.000
Naravan	Ramesh	38.000
English	Jovce	25.000
Jabbar	Ahmad	25.000
Borg	Jaime	55.000

Ejemplos, proyección

o Eliminación de duplicados

APELLIDO	NOMBRE	SALARIO
Smith	John	30.000
Wong	Franklin	40.000
Zelava	Alicia	25.000
Wallace	Jennifer	43.000
Naravan	Ramesh	38.000
English	Jovce	25.000
Jabbar	Ahmad	25.000
Borg	Jaime	55.000

Fig. 7.8. (b)

 $\pi_{\text{APELLIDO, NOMBRE, SALARIO}}(\text{EMPLEADO})$

SEXO	SALARIO
Н	30.000
Н	40.000
M	25.000
M	43.000
H	38.000
H	25.000
H	55.000

Fig. 7.8. (c)

 $\pi_{_{SEXO,\,SALARIO}\,(EMPLEADO)}$

Proyección (pi)

Combinación cascada de proyecciones:

$$\pi_{} (\pi_{} (R)) = \pi_{} (R)$$

donde \subset .

No conmutativa.

Resultados intermedios

 $\pi_{\text{NOMBRE, APELLIDO, SALARIO}}(\sigma_{\text{ND}=5}(\text{EMPLEADO}))$

NOMBRE	APELLIDO	SALARIO
John	Smith	30.000
Franklin	Wong	40.000
Ramesh	Narayan	38.000
Joyce	English	25.000

Alternativa

EMPS_DEP5 $\leftarrow \sigma_{ND=5}$ (EMPLEADO)

RESULTADO $\leftarrow \pi_{NOMBRE,APELLIDO,SALARIO}$ (EMPS_DE P5)

Cambios de nombre

○ TEMP $\leftarrow \sigma_{ND=5}(EMPLEADO)$ R(NOMBRE_PILA, PRIMER_APELL, SALARIO) \leftarrow

 $\pi_{NOMBRE,APELLIDO,SALARIO}$ (TEMP)

TEMP

NOMBRE	INIC	APELLIDO	NSS	FECHA_NCTO	DIRECCIÓN	
John	В	Smith	123456789	1965-01-09	Fresnos 731, Houston, TX	
Franklin	T	Wong	333445555	1955-12-08	Valle 638, Houston, TX	□
Ramesh	K	Narayan	666884444	1962-09-15	Espiga 875, Heras, TX	
Joyce	A	English	453453453	1972-07-31	Rosas 5631, Houston, TX	

R

NOMBRE_PILA	PRIMER_APELL	SALARIO
John	Smith	30.000
Franklin	Wong	40.000
Ramesh	Narayan	38.000
Joyce	English	25.000

	SEXO	SALARIO	NSS_SUPERV	ND
	Н	30.000	333445555	5
	Н	40.000	888665555	5
•••	Н	38.000	333445555	5
	M	25.000	333445555	5

Fig. 7.9. (b) Resultados de expresiones del álgebra relacional.

Operaciones de T. de conjuntos

- Operaciones binarias cuyo resultado es otra relación.
- Operaciones disponibles
 - Unión,
 - Intersección
 - Diferencia

Compatibilidad de unión

 Dos relaciones compatibles con la unión

ALUMN	
-------	--

NOM	APEL
Susana	Yáñez
Ramesh	Sánchez
Josué	Landa
Bárbara	Jaimes
Amanda	Flores
Jaime	Vélez
Ernesto	Gómez

PROFESOR

NOMBRE	APELLIDO
John	Smith
Ricardo	Bueno
Susana	Yáñez
Francisco	Jiménez
Ramesh	Sánchez

Ejemplos de unión

ALUMNO

NOM	APEL
Susana	Yáñez
Ramesh	Sánchez
Josué	Landa
Bárbara	Jaimes
Amanda	Flores
Jaime	Vélez
Ernesto	Gómez

PROFESOR

11101 20011	
NOMBRE	APELLIDO
John	Smith
Ricardo	Bueno
Susana	Yáñez
Francisco	Jiménez
Ramesh	Sánchez

NOM	APEL
Susana	Yáñez
Ramesh	Sánchez
Josué	Landa
Bárbara	Jaimes
Amanda	Flores
Jaime	Vélez
Ernesto	Gómez
John	Smith
Ricardo	Bueno
Francisco	Jiménez

Fig 7.11. (c) ALUMNO \cup PROFESOR

Ejemplos de intersección

ALUMNO

112011110		
NOM	APEL	
Susana	Yáñez	
Ramesh	Sánchez	
Josué	Landa	
Bárbara	Jaimes	
Amanda	Flores	
Jaime	Vélez	
Ernesto	Gómez	

PROFESOR

NOMBRE	APELLIDO	
John	Smith	
Ricardo	Bueno	
Susana	Yáñez	
Francisco	Jiménez	
Ramesh	Sánchez	

NOM	APEL
Susana	Yáñez
Ramesh	Sánchez

Fig 7.11. (b) ALUMNO ∩ PROFESOR

Propiedades, unión e intersección

Son conmutativas:

$$R \cup S = S \cup R$$
 $R \cap S = S \cap R$

Son asociativas:

$$(R \cup S) \cup T = R \cup (S \cup T)$$

$$(R \cap S) \cap T = R \cap (S \cap T)$$

Ejemplos de diferencia

ALUMNO

NOM	APEL
Susana	Yáñez
Ramesh	Sánchez
Josué	Landa
Bárbara	Jaimes
Amanda	Flores
Jaime	Vélez
Ernesto	Gómez

PROFESOR

NOMBRE	APELLIDO	
John	Smith	
Ricardo	Bueno	
Susana	Yáñez	
Francisco	Jiménez	
Ramesh	Sánchez	

NOM	APEL
Josué	Landa
Bárbara	Jaimes
Amanda	Flores
Jaime	Vélez
Ernesto	Gómez

Fig. 7.11. (d) ALUMNO — PROFESOR

NOMBRE	APELLIDO
John	Smith
Ricardo	Bueno
Francisco	Jiménez

Fig. 7.11. (e) PROFESOR—ALUMNO

Propiedades diferencia

 La diferencia en general no es conmutativa:

$$R - S \neq S - R$$

Producto cartesiano (CROSSJOIN)

- No han de ser compatibles con la unión
- $O(B_1,...,B_m) \times S(B_1,...,B_m) = Q(A_1,...,A_n,B_n)$
- Q tiene n'_{*} m'-tuplas.

Ejemplo

Obtener los dependientes de empleadas.

EMPS_MUJER $\leftarrow \sigma_{\text{sexo}='F'}$ (EMPLEADO)

NOMBRESEMP $\leftarrow \pi_{NOMBRE,APELLIDO,NSS}$ (EMPS_MUJER) DEPENDIENTES_EMP \leftarrow NOMBRESEMP \times DEPENDIENTE DEPEN_REALES $\leftarrow \sigma_{NSS=NSSE}$ (DEPENDIENTES_EMP)

RESUL $\leftarrow \pi_{NOMBRE,APELLIDO,NOMBRE_DEPENDIENTE}$ (DEPEN_REALES)

EMPS MUJER

NOMBRE	INIC	APELLIDO	NSS	FECHA_NCTO	DIRECCIÓN
Alicia	J	Zelava	999887777	1968-07-19	Castillo 3321, Sucre, TX
Jennifer	S	Wallace	987654321	1941-06-20	Bravo 291, Bellaire, TX
Joyce	A	English	453453453	1972-07-31	Rosas 5631, Houston, TX

NOMBRES_EMP

NOMBRE	APELLIDO	NSS
Alicia	Zelava	999887777
Jennifer	Wallace	987654321
Joyce	English	453453453

	SEXO	SALARIO	NSS_SUPERV	ND
	M	25.000	987654321	4
	M	43.000	888665555	4
•••	M	25.000	333445555	5

Fig. 7.12.

Ejemplo Producto Cartesiano

NOMBRES EMP		
NOMBRE	APELLIDO	<u>NSS</u>
Alicia	Zelaya	999887777
Jennifer	Wallace	987654321
Joyce	English	453453453

DEPENDIENTE	<u> </u>		-	
NSSE	NOMBRE DEPENDIENTE	SEXO	FECHA_NCTO	PARENTESCO
333445555	Alicia	M	1986-04-05	HIJA
333445555	Theodore	Н	1983-10-25	HIJO
333445555	Joy	M	1958-05-03	ESPOSA
987654321	Abner	Н	1942-02-28	ESPOSO
123456789	Michael	Н	1988-01-04	HIJO
123456789	Alicia	M	1988-12-31	HIJA
123456789	Elizabeth	M	1967-05-05	ESPOSA

DEPENDIENTES_EMP —NOMBRES_EMP X DEPENDIENTE

DEPENDIENTES_ NOMBRE	APELLIDO	NSS	NSSE	NOMBRE_DEPENDIENTE	SEXO	•••
Alicia	Zelaya	999887777	333445555	Alicia	M	•••
Alicia	Zelaya	999887777	333445555	Theodore	Н	•••
Alicia	Zelaya	999887777	333445555	Joy	M	•••
Alicia	Zelaya	999887777	987654321	Abner	Н	•••
Alicia	Zelaya	999887777	123456789	Michael	Н	•••
Alicia	Zelaya	999887777	123456789	Alicia	M	•••
Alicia	Zelaya	999887777	123456789	Elizabeth	M	•••
Jennifer	Wallace	987654321	333445555	Alicia	M	•••
Jennifer	Wallace	987654321	333445555	Theodore	Н	•••
Jennifer	Wallace	987654321	333445555	Joy	M	•••
Jennifer	Wallace	987654321	987654321	Abner	Н	•••
Jennifer	Wallace	987654321	123456789	Michael	Н	•••
Jennifer	Wallace	987654321	123456789	Alicia	M	•••
Jennifer	Wallace	987654321	123456789	Elizabeth	M	•••
Joyce	English	453453453	333445555	Alicia	M	•••
Joyce	English	453453453	333445555	Theodore	Н	•••
Joyce	English	453453453	333445555	Joy	M	•••
Joyce	English	453453453	987654321	Abner	Н	•••
Joyce	English	453453453	123456789	Michael	Н	•••
Joyce	English	453453453	123456789	Alicia	M	•••
Joyce	English	453453453	123456789	Elizabeth	M	 55

Fig. 7.12

Ejemplo Producto Cartesiano (2)

DEPENDIENTES I	EMP					
NOMBRE	APELLIDO	NSS	NSSE	NOMBRE_DEPENDIENTE	SEXO	•••
Alicia	Zelaya	999887777	333445555	Alicia	M	•••
Alicia	Zelaya	999887777	333445555	Theodore	Н	•••
Alicia	Zelaya	999887777	333445555	Joy	M	•••
Alicia	Zelaya	999887777	987654321	Abner	Н	•••
Alicia	Zelaya	999887777	123456789	Michael	Н	•••
Alicia	Zelaya	999887777	123456789	Alicia	M	•••
Alicia	Zelaya	999887777	123456789	Elizabeth	M	•••
Jennifer	Wallace	987654321	333445555	Alicia	M	•••
Jennifer	Wallace	987654321	333445555	Theodore	Н	•••
Jennifer	Wallace	987654321	333445555	Joy	M	•••
Jennifer	Wallace	987654321	987654321	Abner	Н	•••
Jennifer	Wallace	987654321	123456789	Michael	Н	•••
Jennifer	Wallace	987654321	123456789	Alicia	M	•••
Jennifer	Wallace	987654321	123456789	Elizabeth	M	•••
Joyce	English	453453453	333445555	Alicia	M	•••
Joyce	English	453453453	333445555	Theodore	Н	•••
Joyce	English	453453453	333445555	Joy	M	•••
Joyce	English	453453453	987654321	Abner	Н	•••
Joyce	English	453453453	123456789	Michael	Н	•••
Joyce	English	453453453	123456789	Alicia	M	•••
Joyce	English	453453453	123456789	Elizabeth	M	•••

DEPEN_REALES $\leftarrow \sigma_{NSS=NSSE}$ (DEPENDIENTES_EMP)

DEPEN_REALES

NOMBRE	APELLIDO	NSS	NSSE	NSSE NOMBRE_DEPENDIENTE		•••
Jennifer	Wallace	987654321	987654321	Abner	Н	•••

Reunión (JOIN)

- Secuencia de PRODUCTO CARTESIANO y SELECCIONAR..
- o Combina tuplas relacionadas de 2 relaciones.
- Permite procesar vínculos entre relaciones.

Reunión (JOIN), Ejemplo

 Obtener el nombre del gerente de cada departamento

 $\begin{array}{l} \mathsf{JEFE_DEPTO} \leftarrow \\ \mathsf{DEPARTAMENTO} \mid_{\mathsf{X}} \mid_{\mathsf{NSS_JEFE=NSS}} \mathsf{EMPLEADO} \\ \mathsf{RESULTADO} \leftarrow \pi_{\mathsf{NOMBRED,APELLIDO,NOMBRE}}(\mathsf{JEFE_DEPTO}) \end{array}$

JEFE_DEPTO

NOMBRED	NÚMEROD	NSS_JEFE	FECHA_INIC_JEFE	NOMBRE	INIC	APELLIDO	
Investigación	5	333445555	1988-05-22	Franklin	T	Wong]
Administración	4	987654321	1995-01-01	Jennifer	S	Wallace	}••
Dirección	1	888665555	1981-06-19	Jaime	Е	Borg	

<u>NSS</u>	FECHA_NCTO	DIRECCIÓN	SEXO	SALARIO	NSS_SUPERV	ND
333445555	1955-12-08	Valle 638, Houston, TX	Н	40.000	888665555	5
987654321	1941-06-20	Bravo 291, Bellaire, TX	M	43.000	888665555	4
888665555	1937-11-10	Sorgo 450, Houston, TX	Н	55.000	nulo	1

Fig. 7.13. La operación REUNIÓN.

Reunión y producto cartesiano

o En el ejemplo del producto cartesiano:

```
DEPENDIENTES_EMP \leftarrow

NOMBRES_EMP \times DEPENDIENTE

DEPENDIENTES_REALES\leftarrow

\sigma_{NSS=NSSE}(DEPENDIENTES\_EMP)
```

Lo anterior equivale a:
 DEPENDIENTES_REALES ←
 NOMBRES_EMP |x| NSS=NSSE

Reunión (JOIN) (2)

- No han de ser compatibles con la unión.
- $P(A_1,...,A_n) \times S(B_1,...,B_m) = Q(A_1,...,A_n,B_n)$
- Q tiene un máximo de n'* m'-tuplas.
- O Condición:
 - En términos de atributos de R y S.
 - Evaluada por cada combinación de tuplas.

Condición de reunión Tipos de reunión (JOIN)

o Tiene la forma:

```
<condición> Y <condición> Y ... Y <condición>
```

- O Cada condición tiene la forma:
 - $A_i \theta B_j$ donde $A_i \in R y B_j \in S$
 - $\theta \in \{ =, <, \le, >, \ge, \ne \}$

Reunión Theta (θ):

- Cualquier operación de reunión
- Las tuplas cuyo atributo de reunión sea nulo NO aparecen en el resultado.

Equirreunión

 Las que sólo utilizan comparaciones de igualdad.

Reunión natural *

- Equirreunión seguida de la eliminación de atributos superfluos.
 - Reunión en base a todos los pares de atributos de igual nombre.
 - Exige algún par de atributos de igual nombre.
 - Se identifica con *

Ejemplo de reunión natural

DEPTO(NOMBRED, ND,NSS_JEFE,FECHA_INIC_JEFE)

←DEPARTAMENTO

DEPTO_PROY ← PROYECTO * DEPTO

DEPTO NOMBRED	ND	NSS_JEFE	FECHA_INIC_JEFE
Investigación	5	333445555	1988-05-22
Administración	4	987654321	1995-01-01
Dirección	1	888665555	1981-06-19

PROYECTO

NOMBREP	<u>NÚMEROP</u>	LOCALIZACIÓNP	ND
ProductoX	1	Bellaire	5
ProductoY	2	Sugarland	5
ProductoZ	3	Houston	5
Automatización	10	Stafford	4
Reorganización	20	Houston	1
Nuevos beneficios	30	Stafford	4

DEPTO_PROY

NOMBREP	<u>NÚMEROP</u>	LOCALIZACIÓNP	ND	NOMBRED	NSS_JEFE	FECHA_INIC_JEFE				
ProductoX	1	Bellaire	5	Investigación	333445555	1988-05-22				
ProductoY	2	Sugarland	5	Investigación	333445555	1988-05-22				
ProductoZ	3	Houston	5	Investigación	333445555	1988-05-22				
Automatización	10	Stafford	4	Administración	987654321	1995-01-01				
Reorganización	20	Houston	1	Dirección	888665555	1981-06-1%5				
Nuevos beneficios	30	Stafford	4	Administración	987654321	1995-01-01				
_			FRD Tema 3							

Ejemplo de reunión natural (2)

LOCS_DEPTOS ← DEPARTAMENTO * LOCALIZACIONES_DEPT

DEPARTAMENTO

NOMBRED	<u>NÚMEROD</u>	NSS_JEFE	FECHA_INIC_JEFE
Investigación	5	333445555	1988-05-22
Administración	4	987654321	1995-01-01
Dirección	1	888665555	1981-06-19

LOCALIZACIONES_DEPT

<u>NÚMEROD</u>	<u>LOCALIZACIÓND</u>
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

LOCS_DEPTOS

NOMBRED	NÚMEROD	NSS_JEFE	FECHA_INIC_JEFE	LOCALIZACIÓND
Dirección	1	888665555	1981-06-19	Houston
Administración	4	987654321	1995-01-01	Stafford
Investigación	5	333445555	1988-05-22	Bellaire
Investigación	5	333445555	1988-05-22	Sugarland
Investigación	5	333445555	1988-05-22	Houston

Conjunto completo

Conjunto completo:

• Cualquier operación del álgebra relacional se puede expresar como secuencia de operaciones del conjunto $\{\sigma, \pi, \cup, --, \times\}$

División (2)

- $\circ T(Y) = R(Z) \div S(X)$ donde:
 - *X* ⊆ *Z*
 - Y = Z X (atributos de **R** y no de **S**)
- o Las tuplas t de la división cumplen:

$$t \in T$$
 si:

$$\forall t_S \in S \quad \exists t_R \in R \quad (t = t_R[Y] \land t_S = t_R[X])$$

División (2)

o Ejemplo: $T \leftarrow R \div S$

R	
A	В
a1	b1
a1 a2 a3 a4 a1 a3 a2 a3 a4	b1
a3	b1
a4	b1
a1	b2
a3	b1 b2 b2 b3 b3 b3
a2	b3
a3	b3
a4	b3
a1	b4
a1 a2	b4
a2 a3	<u>b</u> 4

\mathbf{T}	
	В
	b1
	b4

Fig. 7.15 (b)

A a1 a2 a3

División, ejemplo

 Obtener los nombres de los empleados que trabajan en todos y cada uno de los proyectos en los que trabaja John Smith.

```
SMITH \leftarrow \sigma_{\text{NOMBRE='John' YAPELLIDO='Smith'}}(\text{EMPLEADO})
NÚMSP_SMITH \leftarrow \pi_{\text{NP}}(\text{TRABAJA\_EN }|\times|_{\text{NSSE=NSS}}
SMITH)
```

NÚM	SP SMITH
	- NP
	1
	2

División, ejemplo

NSS_NÚMSP $\leftarrow \pi_{\text{NP,NSSE}}$ (TRABAJA_EN)

NSSS(NSS) \leftarrow NSS_NÚMSP \div NÚMSP_SMITH

S_NÚMSP NP	NSSE
1	123456789
2	123456789
3	666884444
ĺ	453453453
2	453453453
2.	333445555
3	333445555
10	333445555
20	333445555
30	999887777
10	999887777
10	987987987
30	987987987
30	987654321
20	987654321
	888665555

NÚM	SP SMITH
	NP
	1
	2

NSSS

RESULTADO $\leftarrow \pi_{\text{NOMBRE, APELLIDO}}$ (NSSS * EMPLEADO)

Otras operaciones relacionales

- o funciones agregadas
- o cerradura recursiva
- o reunión externa.

- SUMA
- PROMEDIO
- MÁXIMO
- MÍNIMO
- CUENTA

R(ND, NÚM_DE_EMPLEADOS, PROMEDIO_SALARIO) ← ND S CUENTA NSS, PROMEDIO SALARIO (EMPLEADO)

\mathbf{R}		
ND	NÚM_DE_EMPLEADOS	PROMEDIO_SALARIO
5	4	33250
4	3	31000
1	1	55000

○ R2← ND S CUENTA NSS, PROMEDIO SALARIO (EMPLEADO)

R2		
ND	CUENTA_NSS	PROMEDIO_SALARIO
5	4	33250
4	3	31000
1	1	55000

○ R3← ℑ CUENTA NSS, PROMEDIO SALARIO (EMPLEADO)

_R3	
CUENTA_NSS	PROMEDIO_SALARIO
8	35125

Cerradura recursiva

Se aplica a un vínculo recursivo (como SUPERVISA).

Ejemplo

 Obtener los supervisados por James Borg a todos los niveles (directa o indirectamente).

SUPERVISIÓN	
NSS1	NSS2
123456789	333445555
333445555	888665555
999887777	987654321
987654321	888665555
666884444	333445555
453453453	333445555
987987987	987654321
888665555	nulo

_	888663555
	RDO1
	NSS
	333445555
	987654321

NSS RORG

RDO2	
NSS	
123456789	
999887777	
666884444	
453453453	
987987987	

NSS_BORG $\leftarrow \pi_{NSS}(\sigma_{NOMBRE='James'\ Y\ APELLIDO='Borg'}EMPLEADO))$ SUPERVISIÓN (NSS1, NSS2) $\leftarrow \pi_{NSS,\ SS_SUPERV}(EMPLEADO)$ Supervisados directamente por Borg: RDO1 (NSS) $\leftarrow \pi_{NSS1}(SUPERVISIÓN\ \times |_{NSS2=NSS}NSS_BORG)$ Supervisados por subordinados directos de Borg: RDO2 (NSS) $\leftarrow \pi_{NSS1}(SUPERVISIÓN\ |\times |_{NSS2=NSS}RDO1)$ Supervisados en los niveles 1 y 2 por Borg: RDO \leftarrow RDO1 \cup RDO2

S2
5555
5555
4321
5555
5555
5555
4321
lo

NSS_BORG -888665555
RDO1 NSS
333445555
987654321

RDO2
NSS
123456789
999887777
666884444
453453453
987987987

79

Reunión externa izquierda R J×J S

 Conserva todas las tuplas de R aunque sea rellenando todos los campos correspondientes a S con valores nulos.

Reunión externa izquierda R J×J S

- TEMP ← EMPLEADO]×|_{NSS=NSS_JEFE} DEPARTAMENTO
- RESULTADO $\leftarrow \pi_{NOMBRE, INIC, APELLIDO, NOMBRED}$ (TEMP)

EMPLEADO

•••

 APELLIDO
 NSS

 Smith
 123456789

 Wong
 333445555

 Zelaya
 999887777

 Wallace
 987654321

 Narayan
 666884444

 English
 453453453

 Jabbar
 987987987

 Borg
 888665555

1	DEPARTAMENTO			_
-	NOMBRED	<u>NÚMEROD</u>	NSS_JEFE	
	Investigación	5	333445555	
	Administración	4	987654321	
	Dirección	1	888665555	

RESULTADO

NOMBRE	INIC	APELLIDO	NOMBRED] .
Jon	В	Smith	nulo	
Franklin	T	Wong	Investigación]
Alicia	J	Zelaya	nulo	
Jennifer	S	Wallace	Administración	_ `
Ramesh	K	Narayan	nulo	
Joyce	A	English	nulo	
Ahmad	V	Jabbar	nulo	
Jaime	E	Borg	Dirección	

Reuniones externas

Reunión externa derecha R_{|×[}S Reunión externa completa R_{]×[}

Ejemplos de álgebra relacional

C1) Nombre y dirección de los empleados del departamento de investigación.

```
\begin{split} \text{DEPTO\_INVEST} &\leftarrow \sigma_{\text{NOMBRED='Investigación'}} (\text{DEPARTAMENTO}) \\ \text{EMPS\_DEPTO\_INVEST} &\leftarrow \text{DEPTO\_INVEST} \mid \times \mid_{\text{NUMEROD=ND}} \text{EMPLEADO} \\ \text{RESULTADO} &\leftarrow \pi_{\text{NOMBRE,APELLIDO,DIRECCIÓN}} \text{(EMPS\_DEPTO\_INVEST)} \\ &\quad \text{¿Con *?} \end{split}
```

C2) Nº de proyecto, nº de departamento que lo controla, apellido, dirección y fecha de nacimiento del gerente del departamento de todos los proyectos realizados en Santiago.

```
PROYS_SANTIAGO \leftarrow \sigma_{\text{LOCALIZACIONP='Santiago'}}(\text{PROYECTO})

DEPTO_CONTR \leftarrow

PROYS_SANTIAGO |\times|_{\text{ND=NUMEROD}} DEPARTAMENTO

JEFE_DEPTO_PROY \leftarrow DEPTO_CONTR |\times|_{\text{NSS\_JEFE=NSS}} EMPLEADO RESULTADO \leftarrow \pi_{\text{NUMEROP,ND,APELLIDO,DIRECCION,FECHA_NCTO}}(\text{JEFE\_DEPTO\_PROY})
```


C3) Nombre de los empleados que trabajan en todos los proyectos del departamento 5

```
PROYS_DEPTO5(NP) \leftarrow \pi_{\text{NÚMEROP}} (\sigma_{\text{ND=5}} (PROYECTO))

EMP_PROY(NSS,NP) \leftarrow \pi_{\text{NSSE,NP}} (TRABAJA_EN)

RESUL_NSS_EMP\leftarrow EMP_PROY \div PROYS_DEPTO5

RESULTADO \leftarrow \pi_{\text{APELLIDO, NOMBRE}} (RESUL_NSS_EMP * EMPLEADO)
```

C4) Números de proyecto donde interviene Smith como trabajador o como gerente del dpto. que lo controla.

```
\begin{split} & \text{SMITHS}(\text{NSSE}) \leftarrow \pi_{\text{NSS}} \left( \sigma_{\text{APELLIDO}='\text{Smith}'} \left( \text{EMPLEADO} \right) \right) \\ & \text{SMITH}\_\text{TRAB}\_\text{PROYS} \leftarrow \pi_{\text{NP}} \left( \text{TRABAJA}\_\text{EN} * \text{SMITHS} \right) \\ & \text{JEFES} \leftarrow \pi_{\text{APELLIDO}, \, \text{NÚMEROD}} \left( \text{EMPLEADO} \, \big| \times \big|_{\, \text{NSS}=\, \text{NSS}\_\text{JEFE}} \right. \\ & \text{DEPARTAMENTO}) \\ & \text{DPTOS}\_\text{DIRIG}\_\text{SMITH}(\text{ND}) \leftarrow \pi_{\text{NÚMEROD}} \left( \sigma_{\text{APELLIDO}='\text{Smith}'} \right. \\ & \left. \left( \text{JEFES} \right) \right) \\ & \text{SMITH}\_\text{JEFE}\_\text{PROYS}(\text{NP}) \leftarrow \\ & \pi_{\text{NÚMEROP}} \left( \text{DPTOS}\_\text{DIRIG}\_\text{SMITH} * \text{PROYECTO} \right) \\ & \text{RESULTADO} \leftarrow \text{SMITH}\_\text{TRAB}\_\text{PROYS} \cup \text{SMITH}\_\text{JEFE}\_\text{PROYS} \end{split}
```

EMDLEADO								
NOMBRE	INIC	APELLIDO	<u>NSS</u>	FECHA_NCTO	DIREC	CIÓN	SEXO	
SALARIO NSS_SUPERV ND								
DEPARTAMENTO NOMBRED	<u>NÚ</u> N	MEROD NS	S_JEFE	FECHA_IN	IC_JEFE			
DEPENDIENTE								
NSSE	NOMBI	RE_DEPENDIENTI	(T)	SEXO FEC	HA_NCTO	PAR	ENTESCO	

C5) Empleados (apellido, nombre) con 2 o más dependientes.

```
T1(NSS, NUM_DE_DEPS) \leftarrow
NSSE \mathfrak{T}_{\text{CUENTA NOMBRE}} (DEPENDIENTE)

T2 \leftarrow \sigma_{\text{NUM}} (T2 * EMPLEADO)

RESULTADO \leftarrow \pi APELLIDO, NOMBRE, (T2 * EMPLEADO)
```

EMDI EADO											
NOMBRE	INIC	INIC APELLIDO		<u>NSS</u>	FECHA_	FECHA_NCTO		CIÓN SE		XO	
DEPARTAMENTO ***					SAL	SALARIO NSS		SUPERV		ND]•••
NOMBRED	<u>NÚMEROD</u> NSS_JEFE			FECHA_INIC_JEFE							
DEPENDIENTE											
NSSE	NOMBRE_DEPENDIENTE			SEXO	FECH	A_NCTO	PAR	ENTE	ESCO		

C6) Empleados (apellido, nombre) sin dependientes.

```
TODOS_EMPS \leftarrow \pi_{\rm NSS}({\rm EMPLEADO})
EMPS_CON_DEPS(NSS) \leftarrow \pi_{\rm NSSE}({\rm DEPENDIENTE})
EMPS_SIN_DEPS \leftarrow TODOS_EMPS - EMPS_CON_DEPS
RESULTADO \leftarrow
\pi_{\rm APELLIDO,\ NOMBRE}({\rm EMPS\_SIN\_DEPS}\ *\ {\rm EMPLEADO})
```

EMDI EADO										
NOMBRE	INIC	APELLIDO	<u>NSS</u>	FECHA_	FECHA_NCTO		CIÓN	SEXO		
DEDA DELA MENTEO					ARIO	NSS_SUPERV		ND		
NOMBRED	DEPARTAMENTONOMBREDNÚMERODNSS_JEFE					FECHA_INIC_JEFE				
DEPENDIENTE										
NSSE	NSSE NOMBRE_DEPENDIENTE				SEXO FECHA_NCTO		PARENTESCO			

C7) Jefes (apellido, nombre) con algún dependiente

```
JEFES(NSS) \leftarrow \pi_{\text{NSS\_JEFE}}(\text{DEPARTAMENTO})

EMPS_CON_DEPS(NSS) \leftarrow \pi_{\text{NSSE}}(\text{DEPENDIENTE})

JEFES_CON_DEPS\leftarrowJEFES \cap EMPS_CON_DEPS

RESULTADO\leftarrow

\pi_{\text{APELLIDO. NOMBRF}}(\text{JEFES\_CON\_DEPS} * \text{EMPLEADO})
```