1. (Currently Amended) A method for generating steam , in particular			
ultrapure steam, by comprising:			
introducing a fuel and an oxidizing agent in a stoichiometric ratio into a reaction			
zone-and-;			
exothermically reacting them,the fuel and oxidizing agent to form hot reaction			
gases;			
transferring the hot reaction gases formed into an evaporation zone,;			
introducing water in liquid and/orform, vapor form, or both into the evaporation			
zone, the water which is introduced being evaporated-and/or, superheated, or both as it			
mixes with the hot reaction gases, characterized in that to form a steam-containing			
reaction mixture; and			
catalytically afterburning the steam-containing reaction mixture undergoes			
catalytic afterburning.			
2. (Currently Amended) The method as claimed in claim 1, characterized in			
that-comprising:			
flowing the steam-containing reaction mixture flows-through a gas-permeable			
structure with a catalytically active surface.			
3. (Currently Amended) The method as claimed in claim 2, characterized in			
that wherein the gas-permeable structure is comprises a foamed metallic or ceramic			
material.			
4. (Currently Amended) The method as claimed in claim 2, characterized in			
that wherein the catalytically active surface is comprises platinum.			
5. (Currently Amended) The method as claimed in claim 1, characterized in			
that comprising:			
<u>causing</u> the steam-containing reaction mixture <u>leaves</u> -to <u>leave</u> the evaporation			
zone via a throttle point and is accelerated as it does so accelerating the steam-containing			
reaction mixture.			

- 6. (Currently Amended) The method as claimed in claim 5, eharacterized in that wherein accelerating comprises accelerating the reaction mixture is accelerated to the speed of sound.
- 7. (Currently Amended) The method as claimed in claim 1, characterized in that wherein the oxidizing agent is comprises oxygen.
- 8. (Currently Amended) The method as claimed in claim 1, characterized in that wherein the oxidizing agent is comprises hydrogen peroxide.
- 9. (Currently Amended) The method as claimed in claim 1, characterized in that wherein the fuel is comprises hydrogen.
- 10. (Currently Amended) The method as claimed in claim 1, characterized in that wherein the fuel is comprises a hydrocarbon.
- 11. (Currently Amended) The method as claimed in claim 8, characterized in that wherein the fuel is comprises natural gas.
- 12. (Currently Amended) The use of the method as claimed in one of claims

 1-9 for generating ultrapure steam Claim 1, comprising:

 forming a product with a steam content of at least 99.9% by weight, a temperature of up to 2000 K, and a pressure of up to 30 bar.
- 13. (Currently Amended) The use of the method as claimed in one of claims

 1-11 for generating Claim 1, comprising:

 introducing a steam product as working medium in an energy conversion process which is free of CO₂ emissions.
- 14. (Currently Amended) The use of the method as claimed in one of claims

1-11 for generating Claim 1, comprising:	
introducing a steam product for treating special was	ste.

15.	(Currently Amended)	A steam generator for generating steam_, in	
partie	ular ultrapure steam, substanti	ally-comprising:	
	_a combustion and evaporation	on chamber (2) having a reaction zone (14) for the	
exoth	ermic reaction of a fuel and an	oxidizing agent, and having an evaporation zone	
(15)- f	or the evaporation, and/or sup	erheating, or both of an injected quantity of water,;	
	_a device for feeding the fuel	(4) and the oxidizing agent (5) into the reaction zone	
(14), to form a fuel/oxidizing agent mixture;			
an ignition device (1) for igniting at least some of the fuel/oxidizing agent			
mixtu	re , ;		
	_a device (12) for feeding wa	ter (6)-into the evaporation zone (15), and to form a	
steam-containing reaction mixture;			
	_an outlet nozzle (7)-for the s	team-containing reaction mixture, characterized in	
that:	and		
	_a catalytic afterburning chan	nber (3) is arranged downstream of the reaction and	
evapo	ration chamber-(2).		

- 16. (Currently Amended) The steam generator as claimed in claim 15, eharacterized in that wherein the catalytic afterburning chamber (3) is designed as comprises a housing (20), and a through-flow body with a catalytically active surface, a the free cross section of flow (21) of which is the housing being acted on over a region of its axial length by a the through-flow body (16) with a catalytically active surface.
- 17. (Currently Amended) The steam generator as claimed in claim 16, characterized in that the flow passage (21) of the afterburning chamber (3) is of comprises a substantially cylindrical designflow passage.
- 18. (Currently Amended) The steam generator as claimed in claim 17, eharacterized in that wherein the housing (20) is designed as comprises a double-casing

tube.

- 19. (Currently Amended) The steam generator as claimed in claim 18, eharacterized in that wherein the housing (20) of the afterburning chamber (3) is aircooled.
- 20. (Currently Amended) The steam generator as claimed in claim 16, eharacterized in that wherein the through-flow body (16) is based on comprises a foamed metal material or on-a foamed ceramic material.
- 21. (Currently Amended) The steam generator as claimed in claim 16, eharacterized in that wherein the through-flow body (16) is based on comprises a metallic or ceramic honeycomb structure.
- 22. (Currently Amended) The steam generator as claimed in claim 16, eharacterized in that further comprising a gas-analysis device (22) is arranged downstream of the through-flow body.
- 23. (Currently Amended) The steam generator as claimed in claim 22, eharacterized in that further comprising a lambda sensor (22) is arranged inside the flow passage (21).
- 24. (Currently Amended) The steam generator as claimed in claim 22,

 characterized in that further comprising:

 a removal pipe;

 a pressure-relief device;

 a chamber including the gas-analysis device;

 wherein the housing of the afterburning chamber (3) has a through-opening for a the removal pipe (23), which the removal pipe (23) is designed to be being gas-permeable toward the flow passage (21) and ; and

 wherein the removal pipe outside the housing (20) is in communication, via a the

pressure-relief device (24), with athe chamber (25) which accommodates a including the gas-analysis device, in particular a lambda sensor (22).

25. (New) The steam generator as claimed in claim 24, wherein the gasanalysis device comprises a lambda sensor.