Mid 1 Review: Limits and Continuity

Xia Yuxuan

University of Michigan - Shanghai Jiao Tong University Joint Institute

October 18, 2020

- 1. Limit of Function
- 2. Landau Notation
- 3. Continuity
- 4. Continuous Functions
- 5. Inverse Function
- 6. Uniform Continuity

Definitions

2.4.1. Definition. Let f be a real- or complex-valued function defined on a subset of $\mathbb R$ that includes some interval (a,∞) , $a\in\mathbb R$. Then f converges to $L\in\mathbb C$ as $x\to\infty$, written

$$\lim_{x \to \infty} f(x) = L \qquad :\Leftrightarrow \qquad \bigvee_{\varepsilon > 0} \exists \forall c |f(x) - L| < \varepsilon. \tag{2.4.1}$$

2.4.3. Definition. Let f be a real- or complex-valued function defined on a subset $\Omega \subset \mathbb{R}$ and let x_0 be an accumulation point of Ω . Then the limit of f as $x \to x_0$ is equal to $L \in \mathbb{C}$, written

$$\lim_{x\to x_0} f(x) = L \quad :\Leftrightarrow \quad \underset{\varepsilon>0}{\forall} \underset{\delta>0}{\exists} \quad \forall \quad |x-x_0| < \delta \Rightarrow |f(x)-L| < \varepsilon.$$

A Useful Theorem

2.4.9. Theorem. Let f be a real- or complex-valued function defined on a subset $\Omega \subset \mathbb{R}$ and let x_0 be an accumulation point of Ω . Then

$$\lim_{x \to x_0} f(x) = L \qquad \Leftrightarrow \qquad \bigvee_{\substack{(a_n) \\ a_n \in \Omega \setminus \{x_0\}}} \left(a_n \xrightarrow{n \to \infty} x_0 \Rightarrow f(a_n) \xrightarrow{n \to \infty} L \right)$$

A similar result holds for $x_0 = \pm \infty$.

While the definition is mostly used to prove that a limit **exists**, this theorem is generally used to prove that a limit **doesn't exist** (by constructing two sequences that converge to different limits).

Limit Operations and Common Limits

- 2.4.5. Theorem. Let f and g be real- or complex-valued functions and x_0 an accumulation point of $\operatorname{dom} f \cap \operatorname{dom} g$ such that $\lim_{x \to x_0} f(x)$ and
- $\lim_{x \to x_0} g(x)$ exist. Then
 - 1. $\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$,
 - 2. $\lim_{x \to x_0} (f(x) \cdot g(x)) = \left(\lim_{x \to x_0} f(x)\right) \left(\lim_{x \to x_0} g(x)\right),$
 - 3. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$ if $\lim_{x \to x_0} g(x) \neq 0$.

These statements remain true if $x_0 = \pm \infty$.

The starting point to use these operations are some common limits:

- 1. $\lim_{x\to x_0} f(x) = f(x_0)$ (if f is defined at x_0)
- 2. $\lim_{x\to\infty} x^{-p} = 0, p > 0$
- 3. $\lim_{x\to\infty} c = c$
- 4. $\lim_{x\to x_0/\infty} f(x) = \infty \Leftrightarrow \lim_{x\to x_0/\infty} 1/f(x) = 0$
- 5. ...

Limit Substitution Rule

2.5.10. Theorem. Let f, g be real functions such that $\lim_{x \to x_0} g(x) = L$ exists and f is continuous at $L \in \text{dom } f$. Then

$$\lim_{x\to x_0} f(g(x)) = f(L).$$

Example:

If $f:\mathbb{R}\to\mathbb{R}$ is a continuous function such that $\lim_{x\to 0}\frac{f(x)}{x}=\alpha$ for some $\alpha\in\mathbb{R}$, calculate

i)
$$\lim_{x \to 0} \frac{f(2x)}{x},$$

ii)
$$\lim_{x \to 0} \frac{[f(2x)]^2}{x^2}$$
,

iii)
$$\lim_{x \to 0} \frac{[f(2x)]^2}{x}.$$

Use common sense when calculating limits!

One Sided Limits

2.4.6. Definition. Let f be a real- or complex-valued function defined on a subset $\Omega \subset \mathbb{R}$ and let x_0 be an accumulation point of Ω .

Then the limit of f as x converges to x_0 from above is equal to $L \in \mathbb{C}$,

$$\lim_{x \searrow x_0} f(x) = L \quad :\Leftrightarrow \quad \forall \exists \forall 0 < x - x_0 < \delta \Rightarrow |f(x) - L| < \varepsilon.$$

Analogously, the limit of f as x converges to x_0 from below is equal to $L \in \mathbb{C}$,

$$\lim_{\substack{x \nearrow x_0 \\ x \nearrow x_0}} f(x) = L \quad :\Leftrightarrow \quad \forall \exists \forall 0 < x_0 - x < \delta \Rightarrow |f(x) - L| < \varepsilon.$$

2.4.7. Remark. Clearly, $f(x) \to L$ as $x \to x_0$ if and only if $f(x) \to L$ as $x \searrow x_0$ and $f(x) \to L$ as $x \nearrow x_0$.

Big-O Symbol

2.4.12. Definition. Let f, ϕ be real- or complex-valued functions defined on a subset $\Omega \subset \mathbb{R}$ and let x_0 be an accumulation point of Ω . We say that

$$f(x) = O(\phi(x))$$
 as $x \to x_0$

if and only if

$$\exists_{C>0} \exists_{x>0} \forall_{x\in\Omega} |x-x_0| < \varepsilon \quad \Rightarrow \quad |f(x)| \le C|\phi(x)|$$
(2.4.2)

2.4.23. Theorem. Let f, ϕ be a real- or complex-valued functions defined on a subset $\Omega \subset \mathbb{R}$ and let x_0 be an accumulation point of Ω . If $x_0 \in \Omega$, we require $\phi(x_0) > 0$. Suppose that exists some $C \geq 0$ such that

$$\lim_{x \to x_0} \frac{|f(x)|}{|\phi(x)|} = C. \tag{2.4.4}$$

Then $f(x) = O(\phi(x))$ as $x \to x_0$.

Example:

$$x^{3} + 2x^{2} - x + 1 = O(x^{3}) = O(x^{4}), \quad x \to \infty$$

Little-o Symbol

2.4.17. Definition. Let f, ϕ be real- or complex-valued functions defined on a subset $\Omega \subset \mathbb{R}$ and let x_0 be an accumulation point of Ω . We say that

$$f(x) = o(\phi(x))$$
 as $x \to x_0$

if and only if

$$\forall \exists_{C>0} \forall x \in \Omega \setminus \{x_0\} \quad |x - x_0| < \varepsilon \quad \Rightarrow \quad |f(x)| < C|\phi(x)| \tag{2.4.3}$$

2.4.24. Theorem. Let f, ϕ be a real- or complex-valued functions defined on an interval $I \subset \mathbb{R}$ and let $x_0 \in \overline{I}$. Then

$$\lim_{x \to x_0} \frac{|f(x)|}{|\phi(x)|} = 0 \qquad \Leftrightarrow \qquad f(x) = o(\phi(x)) \text{ as } x \to x_0. \tag{2.4.5}$$

Example:

$$x^{3} + 2x^{2} - x + 1 = o(x^{4}), \qquad x \to \infty$$

For little-o (and sometimes big-O), it's more easy to use the definition by limits then the definition by inequalities.

Common Properties

- ightharpoonup o(f(x)) = O(f(x))
- ightharpoonup O(f(x)) + O(g(x)) = O(|f(x)| + |g(x)|)
- O(f(x))O(g(x)) = O(f(x)g(x))
- O(O(f(x))) = O(f(x))
- o(O(f(x))) = o(f(x))

Definition

2.5.1. Definition. Let $\Omega \subset \mathbb{R}$ be any set and $f: \Omega \to \mathbb{R}$ be a function defined on Ω . Let $x_0 \in \Omega$. We say that f is **continuous** at x_0 if

$$\lim_{x\to x_0}f(x)=f(x_0).$$

If $U \subset \Omega$, we say that f is *continuous on* U if f is continuous at every $x_0 \in U$.

We say that f is *continuous on its domain*, or simply *continuous*, if f is continuous at every $x_0 \in \Omega$.

Three points:

- 1. $\lim_{x\to x_0} f(x)$ exists
- 2. $f(x_0)$ exists
- 3. $\lim_{x \to x_0} f(x) = f(x_0)$

Manipulating Continuous Functions

If f and g are continuous, then on points when taking function makes sense:

- ightharpoonup f + g is continuous
- $ightharpoonup f \cdot g$ is continuous
- ▶ f/g is continuous $(g \neq 0)$
- ▶ $f \circ g$ is continuous

Most elementary functions are continuous except on some certain points.

Theorems for Continuous Functions

The two most important theorems for continuous functions are as follows:

- 2.5.13. Bolzano Intermediate Value Theorem. Let a < b and $f: [a, b] \to \mathbb{R}$ be a continuous function. Then for $y \in [\min\{f(a), f(b)\}, \max\{f(a), f(b)\}]$ there exists some $x \in [a, b]$ such that y = f(x).
- 2.5.17. Theorem. Let a < b and $f: [a, b] \to \mathbb{R}$ be a continuous function. Then there exists a $y \in [a, b]$ such that $f(x) \le f(y)$ for all $x \in [a, b]$.

Hence $\max\{f(x): x \in [a, b]\}$ exists. Colloquially, we say that "a continuous function attains its maximum".

Intermediate Value Theorem

The **Intermediate Value Theorem** states that every value between the end points can be attained for a continuous function.

Two theorems stem from the intermediate value theorem:

- 2.5.12. Theorem. Let a < b and $f : [a, b] \to \mathbb{R}$ be a continuous function with f(a) < 0 < f(b). Then there exists some $x \in [a, b]$ such that f(x) = 0.
- 2.5.14. Theorem. Let $f: [a, b] \to \mathbb{R}$ be a continuous function with ran $f \subset [a, b]$. Then f has a fixed point, i.e., there exists some $x \in [a, b]$ such that f(x) = x.

Continuous Function Attains its Extremum

Theorem **2.5.17** states that every continuous function on a **closed interval** attains its extremum (maximum/minimum).

We can furthermore state that the image of a function on an closed interval is also an closed interval:

2.5.25. Corollary. Let $\Omega \subset \mathbb{R}$ and $f \colon \Omega \to \mathbb{R}$ continuous. Suppose that $I \subset \Omega$ is a closed interval. Then the image

$$f(I) = \left\{ y \in \mathbb{R} : \underset{x \in I}{\exists} f(x) = y \right\}$$

is also a closed interval.

 $x \in \mathbb{R}$,

Exercise

Prove that the equation

$$x^2 + |x|^{5/2} - 4x + 1 = 0,$$

has a solution in the interval (1,2).

Exercise

Suppose that $f \colon \mathbb{R} \to (0, \infty)$ is continuous and satisfies $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0$.

- i) Show that f attains its maximum, i.e., there exists some $x_0 \in \mathbb{R}$ such that $f(x_0) \ge f(x)$ for all $x \in \mathbb{R}$. (2 Marks)
- ii) Let x_0 be given as in i) above and let $y_0 := f(x_0)$. Show that ran $f = (0, y_0]$, i.e., for every $\eta \in (0, y_0]$ there exists some $\xi \in \mathbb{R}$ such that $f(\xi) = \eta$. (2 Marks)

-jectives

- 2.5.18. Definition. Let $\Omega,\widetilde{\Omega}\subset\mathbb{R}$ and $f\colon\Omega\to\widetilde{\Omega}$ a function. We say that f is
 - *injective* if $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ for all $x_1, x_2 \in \Omega$;
 - surjective if for every $y \in \widetilde{\Omega}$ there exists an $x \in \Omega$ such that f(x) = y (i.e., if ran $f = \widetilde{\Omega}$);
 - ▶ bijective if for every $y \in \Omega$ there exists a unique $x \in \Omega$ such that f(x) = y (i.e., f is injective and surjective).

Injective can be seen as "one to one" **Surjective** can be seen as "onto"

Bijectivity and Monotonicity

2.5.19. Theorem. Let $a, b \in \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$ such that a < b. Let $f: (a, b) \to \mathbb{R}$ be strictly increasing and continuous. Then

$$\alpha := \lim_{x \searrow a} f(x) \ge -\infty,$$
 $\beta := \lim_{x \nearrow b} f(x) \le \infty,$

exist and $f:(a,b)\to(\alpha,\beta)$ is bijective. Furthermore, the inverse function f^{-1} is also continuous and strictly increasing and, furthermore,

$$\lim_{y \searrow \alpha} f^{-1}(y) = a, \qquad \qquad \lim_{y \nearrow \beta} f^{-1}(y) = b. \tag{2.5.1}$$

2.5.20. Theorem. Let $I \subset \mathbb{R}$ be an interval and $\widetilde{\Omega} \subset \mathbb{R}$ a set. If $f \colon I \to \widetilde{\Omega}$ is continuous and bijective, then f is strictly monotonic on I.

Basically speaking, for continuous functions:

strictly monotonic \Leftrightarrow bijective \Leftrightarrow invertible

Definition and Theorems

2.5.23. Definition. Let $I \subset \mathbb{R}$ be an interval and $f: \Omega \to \mathbb{R}$ a function with $I \subset \Omega$. Then f is called *uniformly continuous on I* if and only if

$$\forall \underset{\varepsilon>0}{\exists} \forall |x-y| < \delta \Rightarrow |f(x)-f(y)| < \varepsilon.$$

A uniformly continuous function loose speaking is a continuous function that does not increase or decrease "too rapidly".

The one important theorem on uniform continuity is as follows:

2.5.24. Theorem. Let $f: \Omega \to \mathbb{R}$ a function with $I = [a, b] \subset \Omega$. If f is continuous on [a, b] then f is also uniformly continuous on [a, b].