

/	Please write clearly in block capitals.					
	Centre number	Candidate number				
	Surname					
	Forename(s)					
	Candidate signature	I declare this is my own work.	ノ			

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM03) Unit FP2 Pure Mathematics

Monday 20 January 2020 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA booklet of formulae and statistical tables (enclosed).
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use					
Question	Mark				
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
TOTAL					

FM03

A	_ 11	questions	•	41		and the second second
Angwer	211	MILESTIONS	ın	TNA	enacee	nrovided
\neg 113 \vee 101	an	uucsiions		เมเบ	SDUCCS	DIOVIGEG.

			0	0	1
1	The matrix	$\mathbf{A} =$	0	1	0
			_1	0	0

1 (a) Describe fully the single transformation represented by the matrix $\bf A$ [2 marks]

1 (b) The matrix **B** represents a reflection in the plane y = z

Find the matrix $\mathbf{A} + \mathbf{B} + \mathbf{B}^{-1}$	[2 marks]

Answer			

!	Evaluate the improper integral
	$\int_0^\infty \left(\frac{2x}{x^2+9} - \frac{6}{3x+2}\right) \mathrm{d}x$
	showing the limiting process used.
	Give your answer in the form $\ln p$, where p is a rational number. [6 marks]

Answer

Turn over ▶

[3 marks]

3	The points A and B have position vectors \mathbf{a} and \mathbf{b} respectively relative to an
	origin O , where

$$a=2i-j+2k \quad \text{ and } \quad b=-3i+2j+k$$

3	(a)	Use a vector product to show that the area of triangle OAB	is	$\frac{3}{2}\sqrt{10}$
---	-----	---	----	------------------------

3	(b)	The vector \mathbf{c} is given by $\mathbf{c} = 3\mathbf{i} - \mathbf{j} + 7\mathbf{k}$
•	(/	The vector energiven by e or just

Use a scalar triple product to determine whether or not	\boldsymbol{a} , \boldsymbol{b} and \boldsymbol{c} are coplanar	
vectors.		
	[2 marks]

Answer			
-			

Do not write outside the box

$\sum_{r=1}^{n} r \times 4^{r-1} = \frac{1}{9} + \frac{4^{n}}{9} (3n - 1)$	
r=1	[6]

Turn over ▶

5 The line 1	L has equation
--------------	----------------

		$\begin{bmatrix} 1 & 1 \\ 2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
5	(a) (i)) Find the direction cosines of ${\it L}$	[3 marks]
		Answer	
5	(a) (ii)	i) Find the acute angle between L and the x -axis, giving your answer.	wer to the nearest 0.1° [1 mark]
		Answer	

5 (b) The plane Π has equation	$\mathbf{r} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 12$
------------------------------------	---

Find the position vector of the point of intersection of $\,L\,$ and $\,\Pi\,$

[4 marks]

Answer

	d^2v	
	$\frac{d^2y}{dx^2} + 9y = 9x^2 + 6x + 2\cos 3x$	
	ai	[9 ma
		•
-		
-		
-		
-		

Do not write outside the box Answer _____

Turn over ▶

7	(a)	Using the	e definition
---	-----	-----------	--------------

$$\tanh y = \frac{e^{y} - e^{-y}}{e^{y} + e^{-y}}$$

prove that, for -1 < x < 1

$$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

[3 marks]

7	(b) (i)	Hence find, in terms of r , the coefficient of x^r in the Maclaurin series
		expansion of $\tanh^{-1} x$

[2 marks]

7	(b) (ii) Hence, or otherwise, given that $y = \tanh^{-1} x$, deduce the value of	of

Answer _____

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\mathrm{d}^3y}{\mathrm{d}x^3} + \frac{\mathrm{d}^5y}{\mathrm{d}x^5} + \frac{\mathrm{d}^7y}{\mathrm{d}x^7}\right) \text{ when } x = 0$$

[2 marks]

	

Answer ____

8		The matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 \\ 1 & k & 4 \\ 2 & 3 & k \end{bmatrix}$, where k is a real constant.	
8	(a)	Show that ${f A}$ is a non-singular matrix.	[3 marks]
8	(b)	Find ${\bf A}^{-1}$ in terms of k	[5 marks]

Answer		
Use \mathbf{A}^{-1} to solve the equat	ions	
	x + 2y - z = 1	
	x + ky + 4z = 3	
	2x + 3y + kz = 6	
Give your solution in terms	of k	[3
		•

Turn over ▶

$$mx^4 + x^3 + (m+n) x^2 - x + n = 0$$
, where $m \neq 0$ and $n \neq 0$

has roots $\,\alpha\,,\beta\,,\gamma\,$ and $\,\delta\,$

It is given that $\alpha + \beta = 0$

9 (a) (i) Explain why
$$\gamma + \delta = -\frac{1}{m}$$

[1 mark]

9	(a) (ii)	Show that	n = -m
---	----------	-----------	--------

[6	mar	ks
----	-----	----

Hence find all possible values of m for which the roots α , β , γ and δ are real and distinct. [4 marks]	distinct.	
distinct.	distinct.	
		[4 marks]

Answer

10	A curve C is defined for $x > 0$
	At each point (x, y) on the curve C
	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2}{x}y = \frac{\cos x}{x}$
10 (a)	By using an integrating factor, find the general solution of this differential equation. [5 marks]
	Answer

10	(b)	It is given that, as $x \to 0$, $y \to k$, where k is a constant.
10	(b) (i)	Find the value of k
		Fully justify your answer. [4 marks]
		k =
0	(b) (ii)	A student states that the curve $y = k \cos x$ passes through all the stationary points of C
		Determine whether or not the student is correct.
		Fully justify your answer. [2 marks]

11 (a)	Express $-128 i$ in the form $r e^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$	[2 marks]
	-128 i =	
1 (b)		
	$z^7 + 128 i = 0$	
	giving your solutions in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r > 0$ and $-\pi < \theta \le \pi$	[4 marks]
	Answer	

- 11 (c) It is given that $z^7 + 128 i = (z + k i) Q(z)$, where k is an integer.
- 11 (c) (i) On the Argand diagram below, show the six roots of the equation $\mathcal{Q}(z)\!=\!0$

[3 marks]

11 (c) (ii) Express $\mathcal{Q}(z)$ as a product of three quadratic factors, each in the form

$$z^2 + \mathrm{i}(p\sin(q\pi))z + t$$

where p and t are integers and $0 < q < \frac{1}{2}$

[4 marks]

	/ \	
O	[7]	=
\sim	(~ /	

13

12 The diagram shows a sketch of the curve C_1 , the pole O and the initial line.

The curve $\,C_1\,$ has polar equation $\,r=\frac{2}{3+2\cos\theta}\,$, $\,0\leq\theta\leq2\pi$

The circle C_2 has polar equation $r = \sin\left(\theta - \frac{\pi}{6}\right)$, $\frac{\pi}{6} \le \theta \le \frac{7\pi}{6}$

12	(a) (i)	Verify that the	pole O	lies on	the circle	C
----	---------	-----------------	----------	---------	------------	---

[1 mark]

area of the circle C_2 is $\frac{1}{4}$

[3 marks]

-	

Explain why OP is a diameter of the circle C_2	[2 marks]
Hence find the Cartesian equation of the tangent to the circle C_2 at the point	P [4 marks]

- 13 A curve C has equation $y = a \cosh\left(\frac{x}{a}\right)$, where a is a positive constant.
- 13 (a) Show that the length of the curve from x = -d to x = d is $2a \sinh\left(\frac{d}{a}\right)$

[4 marks]

13 (b) The ends of a chain are attached to points P and Q such that PQ is horizontal and of length 2d

The chain hangs below PQ. Its shape is modelled by the curve C

The length of the chain is s

The lowest point of the chain is at a distance $\frac{s}{2n}$ below PQ, where n > 1

13 (b) (i) Use a suitable sketch to show that $a + \frac{s}{2n} = a \cosh\left(\frac{d}{a}\right)$

[1 mark]

13	(b) (ii)	Hence show that
		$a + \frac{s}{2n} = \sqrt{a^2 + \frac{s^2}{4}}$
		$a+\frac{1}{2n}=\sqrt{a^2+\frac{1}{4}}$
		[2 marks]
		[=
		$S = \{1, \dots, N\}$ $S = \{2, \dots, N\}$ $\{n+1\}$
13	(b) (iii)	Show that $PQ = \frac{s}{2n} \left(n^2 - 1 \right) \ln \left(\frac{n+1}{n-1} \right)$
		· · · · ·
		[7 marks]

Do not write outside the
box
-
-
-
-
-
-
-
-
_
-
_
-
_
-
_
-
-
-
-
-
-
-
-
14
_

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2020 Oxford International AQA Examinations and its licensors. All rights reserved.

