P.PORTO

Trabalho Inteligência artificial

Tiago Lopes , 8180341

17 de junho de 2024

Conteúdo

1			2
	1.1	Resumo	2
	1.2	Introdução	3
		1.2.1 Arquitetura da aplicação	3
	1.3	Dataset	4
	1.4	Tratamento dos dados	5
	1.5	Treino dos modelos	6
		1.5.1 Random Forest Regressor	6
		1.5.2 Decision Tree Regressor	9
		1.5.3 Gradient Boosting Regressor	1
	1.6	Aplicação web	3
		1.6.1 Backend(Api)	3
		1.6.2 Frontend	4
	1.7	Conclusões e Trabalho Futuro	6

Capítulo 1

1.1 Resumo

Este projeto tem como tema principal o treino de modelos com Machine Learning abordados na disciplina de inteligência artificial dos quais os modelos escolhidos foram RandomForest [3], DecisionTree [1], GradientBoosting [2], todos os modelos são treinados com *scikit learn*. Para o treino do modelo foi utilizado um dataset sobre o preço de casas, foi feita uma comparação ente os diferentes modelos na sua eficácia nas previsões. Foi construido uma aplicação web onde os utilizadores podem interagir, escolher diferentes modelos e receber uma previsão sobre os dados inseridos. A aplicação web foi construido atráves das frameworks fastapi(backend) e angular(frontend).

1.2 Introdução

Ao longo deste documento desenvolvido no âmbito da disciplina de inteligência artificial é descrito os processos de treino de 3 modelos diferentes e do desenvolvimento da aplicação web para os utilizadores interagirem com os mesmos já treinados. Numa primeira fase é descrito o tratamento dos dados para o treino, de seguida os modelos são treinados com as várias configurações e por ultimo são comparados os resultados dos vários modelos.

1.2.1 Arquitetura da aplicação

Para o utilizador conseguir interagir com os modelos treinados foi criado uma aplicação web, para o seu desenvolvimento foi utilizado as frameworks FastApi e o Angular.

Para a o backend esta a ser utilizado o FastApi que é a api que fornece os pedidos para o frontend desenvolvido com a framework angular. Para guardar as previsões feitas pelo utilizar é usado a base de dados *mongoDB*.

Figura 1.1: Arquitetura

1.3 Dataset

Para treinar os modelos foi escolhido um dataset no website Kagle sobre o preço de varias casas.

O conjunto de dados inclui preços de venda de casas nos EUA. As casas foram vendidas no período de maio de 2014 a maio de 2015.

Colunas:

• id: id para uma casa

• date: Data de venda da casa

• price: O preço é o alvo da previsão

• bedrooms: Número de quartos na casa

• bathrooms: Número de casas de banho

• sqft_living: area da casa

• sqft_lot: area do terreno

• floors: $N^{\underline{o}}$ de andares

• waterfront: Vista para o mar

• view: Se foi vista

• condition: Qualidade da casa geral

 $\bullet\,$ grade: Grau geral dado a cada, com base no sistema de classificação dos EUA

• sqft_above: area da casa sem porão

• sqft_basement: area da porão

• yr_built: Ano de construção

• yr_renovated: Ano em que a casa foi renovada

• zipcode: código postal

• lat: latitude

• long: longitude

• sqft_living15: Área em 2015 (implica algumas renovações)

• sqft_lot15: Área do terreno em 2015 (implica algumas renovações)

https://www.kaggle.com/datasets/soylevbeytullah/house-prices-dataset

1.4 Tratamento dos dados

Antes de começar a se treinar os modelos primeiro é necessário fazer o tratamento do *dataset*, o que inclui remover dados desnecessário, adicionar novas variáveis e converter alguma variável para ser um valor numérico caso seja necessário.

Após remover todas as colunas do dataset menos relevantes converti as areas para metros quadrados.

[21613	rows x 8	columns]					
	price	bedrooms	bathrooms	living_m2	lot_m2	grade	lat long
0	221900.0	3	1.00	109.62554	524.901950	7	47.5112 -122.257
1	538000.0	3	2.25	238.76071	672.803526	7	47.7210 -122.319
2	180000.0	2	1.00	71.53531	929.030000	6	47.7379 -122.233
3	604000.0	4	3.00	182.08988	464.515000	7	47.5208 -122.393
4	510000.0	3	2.00	156.07704	750.656240	8	47.6168 -122.045
21608	360000.0	3	2.50	142.14159	105.073293	8	47.6993 -122.346
21609	400000.0	4	2.50	214.60593	540.045139	8	47.5107 -122.362
21610	402101.0	2	0.75	94.76106	125.419050	7	47.5944 -122.299
21611	400000.0	3	2.50	148.64480	221.852364	8	47.5345 -122.069
21612	325000.0	2	0.75	94.76106	99.963628	7	47.5941 -122.299

Figura 1.2: Dados brutos

Frame para o treino do modelo:

[21613 rows x 8 columns]							
	bedrooms	bathrooms	living_m2	lot_m2	grade	lat	long
0	3	1.00	109.62554	524.901950	7	47.5112	-122.257
1	3	2.25	238.76071	672.803526	7	47.7210	-122.319
2	2	1.00	71.53531	929.030000	6	47.7379	-122.233
3	4	3.00	182.08988	464.515000	7	47.5208	-122.393
4	3	2.00	156.07704	750.656240	8	47.6168	-122.045
21608	3	2.50	142.14159	105.073293	8	47.6993	-122.346
21609	4	2.50	214.60593	540.045139	8	47.5107	-122.362
21610	2	0.75	94.76106	125.419050	7	47.5944	-122.299
21611	3	2.50	148.64480	221.852364	8	47.5345	-122.069
21612	2	0.75	94.76106	99.963628	7	47.5941	-122.299

Figura 1.3: Dados de treino

Depois de os dados estarem prontos para o treino do modelo o frame dos dados foi separado em dois frames, frame de treino que representa 80 por cento

dos dados e o frame de teste que representa os restantes 20 por cento.

O frame de treino é utilizado para treinar o modelo e o frame de teste é para validar e comparar o valor previsto com o valor real de cada previsão. O próximo passo é configurar os modelos e enviar os frames para realizar o treino.

1.5 Treino dos modelos

Para o treino dos modelos foi utilizado modelos de regressão ideias para prever dados de valores contínuos e identificar relações entre variáveis como por exemplo, preços ,vendas, numero de clientes entre outros. Podemos encontrar esta informação na documentação do [4]

Modelos utilizados:

- Random Forest Regressor
- Decision Tree Regressor
- Gradient Boosting Regressor

Estes modelos enquadram-se com o dataset escolhido já que estamos a prever o preço das casas.

1.5.1 Random Forest Regressor

O modelo Random Forest Regressor utiliza várias árvores de decisão para fazer as suas previsões, dividindo as árvores em diferentes sub amostras do *dataset* e utiliza a média para melhorar a precisão da previsão e controlar o overfitting.

Numa primeira fase o modelo foi treinado como os parâmetro pré-definidos do scikit learn, que obteve previsões bastante razoáveis. O score, que é o coeficiente de determinação foi **0.8433995172992348** que é um resultado razoável.

A melhor pontuação possível para o coeficiente de determinação é ${\bf 1}$.E pode ser negativo (porque o modelo pode ser pior). Um modelo constante que sempre prevê o valor esperado de y, independentemente das características de entrada, obteria uma pontuação de ${\bf 0}$.

Parâmetro	Valor	Explicação
max_depth	None	Profundidade máxima das árvores.
max_features	1.0	Número de recursos a serem considerados para a melhor divisão.
max_leaf_nodes	None	Número máximo de nós folha.
max_samples	None	Número máximo de amostras
min_samples_leaf	1	Número mínimo de amostras que um nó folha deve ter.
min_samples_split	2	Número mínimo de amostras necessárias para dividir um nó.
n_estimators	100	Número de árvores.

Tabela 1.1: Parâmetros do RandomForestRegressor

• Descrições dos parâmetros:

- max_depth=None: Permite que as árvores cresçam até que todas as folhas sejam puras ou tenham menos de min_samples_split amostras.
- max_features=1.0: Utiliza todos os recursos para considerar a melhor divisão em cada nó.
- max_leaf_nodes=None: Não limita o número de nós folha.
- max_samples=None: Usa todas as amostras disponíveis para treinar cada árvore.
- min_samples_leaf=1: Cada nó folha deve ter pelo menos 1 amostra.
- min_samples_split=2: Cada divisão de nó requer pelo menos 2 amostras.
- n_estimators=100: Constrói 100 árvores.

Numa segunda fase no treino do modelo as configurações do mesmo foram alteradas para tentar obter previsões mais precisas para tal foi utilizado os seguintes parâmetro:

Parâmetro	Valor
max depth	20
max features	log2
min samples leaf	1
min samples split	5
n estimators	500
bootstrap	False

Tabela 1.2: Legenda da tabela

Foi aumentado o numero de de árvores para tornar o modelo mais robusto, limitouse a profundidade de cada árvore para evitar overfitting.

Comparação

Figura 1.4: Variáveis mais importantes

Figura 1.5: Comparação entre valores reais e previstos

Figura 1.6: Resíduos nos valores previsto

Modelo	Valor previsto	Valor real	
RandomForestRegressor(Default)	232,979.5€	221900.0€	Ao ana-
RandomForestRegressor(Tuning)	225,555.59€	221900.0€	

lisar os resultados deste modelo obtivemos uma previsão bastante próxima do valor real.Dos 3 modelos este é o que tem melhor desempenho.

1.5.2 Decision Tree Regressor

O modelo de Decision Tree Regressor cria uma estrutura de árvore de decisão, onde cada nó interno representa uma característica do dataset, cada ramo representa uma decisão baseada nessa característica, e cada folha representa um valor numérico da previsão.

Com os parâmetros pré-definidos do scikit learn obtivemos um score de **0.6887864786944242**. Para tentar melhorar o modelo as configurações foram alteradas para os seguintes parâmetros:

Parâmetro	Valor
Criterion	squared_error
Splitter	best
Max_depth	None
Min_samples_split	2
Min_samples_leaf	1
Min_weight_fraction_leaf	0.0
Max_features	None
Random_state	42
Max_leaf_nodes	None
Min_impurity_decrease	0.0

Tabela 1.3: Parâmetros do modelo de árvore de decisão

O score obtido teve uma pequena melhoria, 0.7111943250955093

Comparação

Figura 1.7: Variáveis mais importantes

Figura 1.8: Comparação entre valores reais e previstos

Figura 1.9: Resíduos nos valores previsto

Modelo	Valor previsto	Valor real
DecisionTreeRegressor(Default)	221900.0€	221900.0€
DecisionTreeRegressor(Tuning)	221900.0€	221900.0€

Neste tipo de modelos os dados usados no treino ficam "gravados" e caso o input de dados seja o mesmo o valor da previsão vai ser igual ao valor real.Não fica muito claro se o modelo esta a prever bem ou não.

1.5.3 Gradient Boosting Regressor

O Gradient Boosting Regressor construi varias árvores de decisão de forma sequencial, ajustando-as para minimizar os resíduos do modelo anterior. Ele é amplamente utilizado devido à sua capacidade de lidar com uma variedade de problemas de regressão, é indicado para dados complexos.

Na primeira fase de treino do modelo *Gradient Boosting Regressor* com os dados pré-definidos obtivemos um score de **0.8245403342159418**.

Parâmetro	Valor
Learning_rate	0.05
Max_depth	None
Min_samples_leaf	5
L2_regularization	0.1
Max_leaf_nodes	31
Max_bins	255

Tabela 1.4: Parâmetros

Com estes parâmetros obteve-se um score de ${\bf 0.8701319137320694}$

Comparação

Figura 1.10: Comparação entre valores reais e previstos

Figura 1.11: Resíduos nos valores previsto

Modelo	Valor previsto	Valor real
GradientBoostingRegressor(Default)	282,515.47€	221900.0€
GradientBoostingRegressor(Tuning)	284,267.17€	221900.0€

Apesar deste modelo ter um score relativamente alto as previsões tem bastante diferença com o valor real. Se analisarmos os gráficos de comparação e de resíduos vemos que ambos os modelos tem muito outliers o que influencia na previsão do modelo.

1.6 Aplicação web

Para o utilizador interagir com os modelos treinados foi desenvolvido uma pequena aplicação web dividida em dois componentes principais, backend efrontend.

1.6.1 Backend(Api)

O backend oferece os seguintes pedidos:

Figura 1.12: Api

1.6.2 Frontend

 ${\bf A}$ parte interativa para o utilizador esta dividida em duas paginas, pagina principal e modelos

Página principal:

- Cria novas previsões
- Visualizar as previsões já feitas
- Eliminar previsões
- Selecionar vários modelos diferentes

Figura 1.13: Página Principal

Modelos:

- Visualizar os gráficos dos modelos default
- Visualizar os gráficos com as diferentes configurações

Figura 1.14: Gráficos

1.7 Conclusões e Trabalho Futuro

Com o desenvolvimento deste tipo de aplicações web e os treinos dos modelos foi possível criar uma ferramenta com utilidade para prever preços de casa. Após os resultado obtidos e os teste elaborados o modelo como melhor desempenho foi o **Random Forest Regressor**, o modelo apresenta previsões muito próximas aos valores reais.

Bibliografia

- [1] Scikit-learn. Decision tree regressor, 2023.
- [2] Scikit-learn. Gradient boosting regressor, 2023.
- [3] Scikit-learn. Random forest regressor, 2023.
- [4] Scikit-learn. Regresion, 2023.