Especificación y Estimación de los MODELOS ARCH

Horacio Catalán Alonso

Noviembre de 2011

Características de las series financieras:

- 1. Son <u>leptokurticas</u> (achatadas y con colas más gordas)
- 2.Las relaciones entre ganancia y riesgo no son lineales
- 3.La volatilidad aparece en clusters
- 4.Leverage effect: la volatilidad es mayor con una caída de la variable

Bolsa Mexicana de Valores IPC

ESPECIFICACIÓN DEL MODELO ARCH(M)

MODELO ARCH(M)

El modelos ARCH(m) asume que la varianza depende de las noticias pasadas ó de los shocks pasados

$$h_{t} = \alpha_{0} + \alpha_{1} \varepsilon_{t-1}^{2} + \alpha_{2} \varepsilon_{t-2}^{2} + \cdots + \alpha_{m} \varepsilon_{t-m}^{2}$$

$$\varepsilon_t \to N(0, h_t)$$
 $\varepsilon_t = \sqrt{h_t} v_t$ $v_t \sim \text{iidN}(0, 1)$

ARCH ⇒ parece más un MA ya que la varianza condicional es un MA de los residuales al cuadrado

La especificación genera dos implicaciones:

- a) La varianza debe ser positiva y finita
- b) El método de estimación, debido a que la media y varianza de la serie deben estimarse de manera simultánea

Debe cumplirse

$$1) \quad \alpha_0 > 0 \quad \alpha_j \ge 0$$

Varianza positiva

2)
$$\alpha_i > \alpha_j$$
 Para $i > j$

las noticias más recientes tienen un mayor impacto

Especificación de los modelos ARCH

1) Estimar la media condicional del la series de los rendimientos

Usualmente se estima un modelo ARMA(p,q) de series de tiempo, en algunos casos simples solo se utiliza la constante

Modelo para DLPOIL

Criterio	AR (1)	AR(2)	AR (3)	AR(4)	AR(5)	AR (6)
Akaike info criterion	-2.072165	-2.066857	-2.063485	-2.068667	-2.067302	-2.078126*
Schwarz criterion	-2.05101*	-2.035062	-2.021006	-2.01546	-2.003325	-2.003334
Hannan-Quinn criter	-2.063763*	-2.054227	-2.046608	-2.047526	-2.041879	-2.048403

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.253	0.253	23.968	0.000
1 1	10 1	2	0.014	-0.053	24.043	0.000
ı <u> </u>]ı		3	0.054	0.069	25.159	0.000
<u>(</u>		4	-0.076	-0.115	27.314	0.000
		5	-0.128	-0.082	33.541	0.000
l I		6	-0.170	-0.137	44.557	0.000
ı	1 1	7	-0.068	0.015	46.327	0.000
ı (1		8	-0.044	-0.039	47.081	0.000
1 1	1 1	9	-0.023	0.001	47.282	0.000
ı		10	0.103	0.086	51.328	0.000
ı D		11	0.090	0.019	54.421	0.000
1 1	10 1	12	-0.014	-0.068	54.492	0.000

Dos criterios indican que es un modelo AR(1)

Dependent Variable: DLPOIL

Variable	Coefficient	Std. Error t-Statist		Prob.
С	0.002447	0.005964 0.410315		0.6818
AR(1)	0.253545	0.050452 5.025489		0.0000
R-squared	0.064222	Mean depend	dent var	0.002349
Adjusted R-squared	0.061679	S.D. depende	0.088400	
S.E. of regression	0.085630	Akaike info	criterion	-2.072165
Sum squared resid	2.698375	Schwarz crite	erion	-2.051011
Log likelihood	385.3506	Hannan-Quir	ın criter.	-2.063763
F-statistic	25.25553	Durbin-Wats	on stat	1.971647
Prob(F-statistic)	0.000001			
Inverted AR Roots	.25			

2) Identificar el efecto ARCH en el modelo

$$\hat{u}_{t}^{2} = \alpha_{0} + \alpha_{1} \hat{u}_{t-1}^{2} + \alpha_{2} \hat{u}_{t-2}^{2} + \dots + \alpha_{k} \hat{u}_{t-k}^{2} + e_{t}$$

$$H_{0}: \alpha_{1} = 0, \alpha_{2} = 0, \dots, \alpha_{k} = 0$$

$$H_{1}: \alpha_{1} \neq 0, \alpha_{2} \neq 0, \dots, \alpha_{k} \neq 0$$

Heteroskedasticity Test: ARCH

F-statistic	3.896504	Prob. F(6,357)	0.0009
Obs*R-squared	22.37233	Prob. Chi-Square(6)	0.0010

3) Identificar el ORDEN del modelo ARCH

Correlograma sobre los residuales al cuadrado

Orden	4.1	ADCII	-
Oraen	aeı	$AKU\Pi$	

3 0.057 0.028 4 0.044 0.024 5 0.135 0.122 6 0.096 0.046									
2 0.097 0.058 3 0.057 0.028 4 0.044 0.024 5 0.135 0.122 6 0.096 0.046	Q-Stat	Prob							
7 0.069 0.026 8 0.008 -0.029 9 -0.045 -0.060 1 0 0.025 0.028	15.332 18.859 20.084 20.818 27.668 31.139 32.938 32.961 33.743	0.000 0.000 0.000 0.000 0.000 0.000 0.000							
11 -0.045 -0.068 12 -0.053 -0.051									

Criterio	ARCH(1)	ARCH(2)	ARCH(3)	ARCH(4)
Akaike info criterion	-2.205135	-2.211932	-2.218494*	-2.216438
Schwarz criterion	-2.162827*	-2.159046	-2.155032	-2.142398
Hannan-Quinn criter	-2.18833	-2.190925	-2.193286*	-2.187028

DPOIL cambios en los precios del petróleo

Variable	Coefficient	Std. Error	z-Statistic	Prob.				
С	-0.000775	0.004222	-0.183473	0.8544				
AR(1)	0.204001	0.055465	3.678014	0.0002				
	Variance Equation							
C	0.002229	0.000443	5.028298	0.0000				
RESID(-1)^2	0.406690	0.080576	5.047299	0.0000				
RESID(-2)^2	0.313029	0.102691	3.048260	0.0023				
RESID(-3)^2	0.121816	0.063836	1.908246	0.0564				

Modelo ARCH(3):

Los coeficientes son positivos ARCH(3) < ARCH(2) < ARCH(1) El coeficiente de la constante es positivo

El proceso ARCH debe ser estacionario esto se garantiza cuando

$$0 \le \sum_{i=1}^{m} \alpha_i \le 1$$

RESID(-1)^2	0.406690
RESID(-2)^2	0.313029
RESID(-3)^2	0.121816
Suma	0.841535

En este ejemplo el modelo ARCH es un proceso estacionario es decir la varianza no crece indefinidamente

Varianza observada y estimada

Debilidades del modelo ARCH(m)

- •Las restricciones en los parámetros es más difícil que se cumplen cuando aumenta el orden del ARCH
- •La varianza solo se explica por las noticias no aporta más información sobre la varianza de los rendimientos
- •Tiende a sobre estimar la varianza de la serie
- No distingue entre choques positivos o negativos

ESPECIFICACIÓN DEL MODELO GARCH

Tim Bollerslev

- •Forward looking behaviour, requiere pronosticar adecuadamente la volatilidad y el riesgo de un activo
- •La volatilidad no es una serie observable en el momento t, se requieren datos históricos para estimar la volatilidad
- •Volatilidad histórica se estima con la varianza del rendimiento simple (cambio en el precio del activo)

Una opción: Exponantially Weigted Moving Average Models (EWMA) que es una extensión del promedio histórico pero haciendo que las observaciones más recientes tengan un mayor peso

$$\sigma_t^2 = (1 - \lambda) \sum_{j=0}^{\infty} \lambda^{j-1} R_{t-1-j}^2$$

 R_{t-1-j}^2 = varianza de los rendimeintos λ ="decay factor" (Riskmetrics: 0.94)

La forma más sencilla es definida como:

$$\sigma_{t+1}^2 = \lambda \sigma_t^2 + (1 - \lambda) R_t^2$$

Implica que la varianza del periodo siguiente como un promedio ponderado de la varianza actual y el rendimiento actual al cuadrado

Se asume un patrón sistemático en la evolución de la varianza

Una generalización del modelo ARCH(m) fue desarrollada por Bollerslev (1986) al proponer que la varianza condicional dependa de sus propios rezagos

$$h_{t} = \alpha_{0} + \sum_{i=1}^{m} \alpha_{i} \varepsilon_{t-i}^{2} + \sum_{j=1}^{p} \beta_{j} h_{t-i}$$

$$\varepsilon_t \to N(0, h_t)$$
 $\varepsilon_t = \sqrt{h_t} v_t$ $v_t \sim \text{iidN}(0, 1)$

La especificación GARCH se define como un modelo ARCH de orden infinito (Bollerslev, 1986)

Especificación de los modelos GARCH(m,p)

1) Estimar la media condicional de la series de los rendimientos

2) Identificar el efecto ARCH

3) Identificar el orden del modelo GARCH(m,p)

Varianza rezagada

$$\sum_{j=1}^{p} \beta_{j} h_{t-i}$$
 $\sum_{i=1}^{m} \alpha_{i} \varepsilon_{t-i}^{2}$ Noticias o shocks

Aı	itocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
			1	0.351	0.351	41.560	
		1[1	2	0.092	-0.036	44.425	0.000
	I I	ı	3	0.304	0.323	75.671	0.000
	ı	1 1	4	0.208	-0.007	90.333	0.000
	ı 🔃		5	0.074	0.019	92.201	0.000
	ı D ı	1 1	6	0.081	-0.024	94.459	0.000
	· 🗖		7	0.122	0.057	99.568	0.000
	ı]]ı		8	0.052	-0.033	100.49	0.000
	ı <u>D</u> ı		9	0.061	0.060	101.78	0.000
	ı]] ı	10 1	10	0.033	-0.063	102.16	0.000
	1 1		11	0.003	0.004	102.16	0.000
	ı) ı	1 1	12	0.026	-0.004	102.40	0.000

Ejemplo para DLIPC

Variable	Coefficient	Std. Error	z-Statistic	Prob.			
C	0.023426	0.004851	4.828773	0.0000			
AR(1)	0.093601	0.057998	1.613862	0.1066			
Variance Equation							
C	0.000296	0.000177	1.669536	0.0950			
RESID(-1)^2	0.221130	0.056141	3.938830	0.0001			
GARCH(-1)	0.765764	0.051596	14.84166	0.0000			

$$h_{t} = 0.000296 + 0.221\varepsilon_{t-1}^{2} + 0.765h_{t-1}$$

Modelo GARCH(1,1)

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob			
		1 -0.024 2 -0.044 3 0.070 4 0.004 5 -0.087 6 -0.053 7 0.037 8 -0.036 9 -0.007 10 0.011 11 0.022 12 0.012	-0.045 0.068 0.005 -0.082 -0.062 0.028 -0.028 0.002 -0.003 0.017	0.8515 2.5069 2.5112 5.1127 6.0771 6.5514 6.9969 7.0136 7.0583 7.2261	0.286 0.473 0.276 0.299 0.364 0.429 0.535 0.631 0.704	Heteroskedasticity Test: F-statistic Obs*R-squared	0.979477	Prob. F(6,321) Prob. Chi-Square

Criterios	GARCH(1,1)	GARCH(2,1)	GARCH(1,2)	GARCH(2,2)
Akaike info criterion	-1.953648*	-1.950757	-1.951604	-1.946014
Schwarz criterion	-1.896595*	-1.882294	-1.883141	-1.86614
Hannan-Quinn criter.	-1.9309*	-1.92346	-1.924307	-1.914167

0.4391

(Bollersle, 1986) demuestra que un modelo GARCH(1,1), tiene las propiedades estadísticas satisfactorias para capturar la volatilidad en los datos

Restricciones en el modelo GARCH

$$lpha_0 > 0$$
 los modelos GARH requiere $lpha_i \geq 0$ que la varianza condicional sea no negativa $eta_j \geq 0$

$$\sum_{i}^{\max(n,p)} (\alpha_i + \beta_i) < 1$$
 La varianza no crece al infinito describe un proceso estacionario

$$h_{t} = 0.000296 + 0.221\varepsilon_{t-1}^{2} + 0.765h_{t-1}$$

$$\alpha_0 = 0.000296$$

 $\alpha_1 = 0.221$ El shock de las noticias

 $\beta_1 = 0.765$ Volatilidad de un periodo anterior

$$\alpha_1 + \beta_1 = 0.986894$$

El modelo GARCH es estacionario

EXTENSIONES DE LOS MODELO GARCH

Modelo GARCH-M, ejemplo DLIPC

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
GARCH AR(1)	1.863806 0.135453	0.589412 0.059804	3.162142 2.264936	0.0016 0.0235	
Variance Equation					
warrance Equation					
C	0.000421	0.000333	1.264451	0.2061	
RESID(-1)^2	0.195389	0.061464	3.178939	0.0015	
GARCH(-1)	0.689702	0.073861	9.337797	0.0000	
DLIDJ^2	0.342618	0.113758	3.011806	0.0026	

Variable en la ecuación de la varianza

Modelo exponencial GARCH (EGARCH) (Nelson, 1991)

$$\ln h_{t} = \alpha_{0} + \sum_{i=1}^{q} \alpha_{i} \left[\frac{\mathcal{E}_{t-i}}{\sqrt{h_{t-i}}} \right] + \sum_{i=1}^{q} \alpha_{i}^{*} \left[\frac{e_{t-i}}{\sqrt{h_{t-i}}} - \mu \right] + \sum_{j=1}^{\rho} \beta_{j} \ln(h_{t-j})$$

$$LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(5)*ABS(RESID(-2)/@SQRT(GARCH(-2))) + C(6)$$

$$*ABS(RESID(-3)/@SQRT(GARCH(-3)))$$

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	0.002925	0.004378	0.668225	0.5040
AR(1)	0.253853	0.054598	4.649506	0.0000
	Variance I	Equation	Coef. p	ositivos
C(3) C(4) C(5) C(6)	-6.266212	0.192796	-32.50179	0.0000
	0.604108	0.104879	5.760023	0.0000
	0.669242	0.110166	6.074836	0.0000
	0.216108	0.110840	1.949735	0.0512

TGARCH (Threshold GARCH)

$$\mathbf{h}_{t} = \alpha_{0} + \sum_{i=1}^{m} \alpha_{i} \varepsilon_{t-i}^{2} + \sum_{j=1}^{p} \beta_{j} h_{t-j} + \sum_{k=1}^{r} \gamma_{k} \varepsilon_{t-k}^{2} \Gamma_{t-k}$$

Donde
$$\Gamma_{t-1} = 1$$
 si $\varepsilon_t < 0$
 $\Gamma_{t-1} = 0$ en otro caso

Dependent Variable: DLESP

 $GARCH = C(2) + C(3)*RESID(-1)^2*(RESID(-1)<0) + C(4)$

*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.007596	0.003889	1.953015	0.0508

Variance Equation					
C	0.001079	0.000501	2.152575	0.0314	
RESID(-1)^2*(RESID(-1)<0)	0.213303	0.097770	2.181694	0.0291	
GARCH(-1)	0.540660	0.188067	2.874833	0.0040	

Especificación y Estimación de los MODELOS ARCH

Horacio Catalán Alonso

Noviembre de 2011