

Dynamical Post-Processing for Manipulation Trajectories

Internship Report

Sarah Braun July 24th, 2017

Technische Universität München

Motivation

Classical manipulation planners:

- ► Sampling-based
- Output kinematic path consisting of sequence of robot configurations
- ⇒ Dynamics not yet taken into account
- \Rightarrow Local improvements possible

Evaluation of Various Post-Processing Strategies

- 1. Hauser's shortcutting idea
- 2. Smooth object interaction
- 3. Sampling of new transitions
- 4. Sampling of new grasps and placements

1. Hauser's Shortcutting Idea

- Transform path to start-stop-trajectory
- ► Shortcut iteratively:
 - sample two points
 - compute shortcut
 - check collisions

1. Hauser's Shortcutting Idea

- ► Transform path to start-stop-trajectory
- ► Shortcut iteratively:
 - ▶ sample two points
- **How?** ▶ compute shortcut
 - check collisions

Basic Idea

- ▶ find "bottleneck" axis
- synchronize all axes to bottleneck time

Basic Idea

- ▶ find "bottleneck" axis
- synchronize all axes to bottleneck time

Basic Idea

- ▶ find "bottleneck" axis
- synchronize all axes to bottleneck time

Problem

- synchronization to arbitrary subsequent point in time not always possible
- each axis has inoperative time intervals in which axis cannot be synchronized

Basic Idea

- ▶ find "bottleneck" axis
- synchronize all axes to bottleneck time

Reflexxes

- find "bottleneck axis" and inoperative time intervals
- synchronize all axes to earliest possible point in time

2. Smooth Interaction

▶ "interaction" = approaching the object to be gripped

- current solution: stop between motion and grasp
- stopping takes a lot of time

2. Smooth Interaction

▶ "interaction" = approaching the object to be gripped

- better: slide smoothly into linear movement
- use Reflexxes for computation of orange motion

3. Sampling of New Transitions - Basic Idea

► Recall: Manipulation Planner

 Idea: Sample new transitions and re-plan preceeding and succeeding trajectories

3. Sampling of New Transitions - Basic Idea

► Recall: Manipulation Planner

 Idea: Sample new transitions and re-plan preceeding and succeeding trajectories

New transition is ...

... either new inverse kinematic
(for active arms)

... or arbitrary valid configuration (for passive arms)

Re-plan using Reflexxes:

Re-plan using Reflexxes:

Re-plan using Reflexxes:

4. Sampling of New Grasps and Placements

- ► Recall: Manipulation Planner
 - Sample a set of fixed grasps
 - ► For these, sample configuration roadmaps
- ▶ Post-Processing so far: Stick to these grasps

4. Sampling of New Grasps and Placements

- ► Recall: Manipulation Planner
 - Sample a set of fixed grasps
 - For these, sample configuration roadmaps
- Post-Processing so far: Stick to these grasps
- Idea: Also sample new grasps and re-plan
- But: New grasp changes collision checks for all subsequent action

... after Hauser's Shortcutting

... after Shortcutting + Smooth Interaction

... after Transition Sampling

Comparison of the Post-Processing Steps

Outlook Master's Thesis

- Task: Modeling of a dynamic manipulation task as a MINLP
- MINLP = Mixed IntegerNonlinear Program
- Include dynamic constraints into optimization

 Idea: Informed search in sampling-based manipulation planner

Outlook Master's Thesis

- Task: Modeling of a dynamic manipulation task as a MINLP
- MINLP = Mixed IntegerNonlinear Program
- Include dynamic constraints into optimization
- ⇒ Systematic approach for local, time-optimal solutions
- ⇒ Potential new approach for global solutions

 Idea: Informed search in sampling-based manipulation planner

Outlook Master's Thesis

- Task: Modeling of a dynamic manipulation task as a MINLP
- MINLP = Mixed IntegerNonlinear Program
- Include dynamic constraints into optimization
- ⇒ Systematic approach for local, time-optimal solutions
- ⇒ Potential new approach for global solutions

- Idea: Informed search in sampling-based manipulation planner
- ⇒ More effective sampling strategies

Backup

Synchronization not always possible

No Post-Processing

Hauser's Shortcutting

Shortcutting plus Smooth Interaction

Sampling of New Transitions

