Solucions comentades

1. Demostra que per tot nombre real x diferent de zero, $x + \frac{1}{x} < 2$ implica $x \le 0$. Indica quin mètode de demostració utilitzes.

Fem la prova pel mètode del contrarecíproc. Per tant, demostrem que per tot nombre real x, si x > 0 aleshores $x + 1/x \ge 2$. Suposem que x és un nombre real positiu. Tenim les següents equivalències :

$$x + \frac{1}{x} \geqslant 2 \Leftrightarrow x + \frac{1}{x} - 2 \geqslant 0 \Leftrightarrow \frac{x^2 + 1 - 2x}{x} \geqslant 0 \Leftrightarrow \frac{(x - 1)^2}{x} \geqslant 0.$$

Com que x > 0 i el quadrat de qualsevol nombre real és més gran o igual que 0, tenim que

$$\frac{(x-1)^2}{x} \geqslant 0.$$

Per tant,

$$x + \frac{1}{x} \geqslant 2.$$

2. Siguin *A*, *B* i *C* conjunts. Dóna una demostració de la següent igualtat:

$$(A \cup B) \setminus (A \cap B \cap C) = [A \setminus (B \cap C)] \cup [B \setminus (A \cap C)].$$

Per demostrar la igualtat, n'hi ha prou en demostrar les dues inclusions

$$(A \cup B) \setminus (A \cap B \cap C) \subseteq [A \setminus (B \cap C)] \cup [B \setminus (A \cap C)]$$

i

$$[A \setminus (B \cap C)] \cup [B \setminus (A \cap C)] \subseteq (A \cup B) \setminus (A \cap B \cap C).$$

Demostrem primer $(A \cup B) \setminus (A \cap B \cap C) \subseteq [A \setminus (B \cap C)] \cup [B \setminus (A \cap C)]$. Sigui $a \in (A \cup B) \setminus (A \cap B \cap C)$ arbitrari. Aleshores $a \in A \cup B$ i $a \notin A \cap B \cap C$. Com que $a \in A \cup B$, tenim que $a \in A$ o bé $a \in B$. Farem la demostració per casos.

- Cas $a \in A$. Si $a \in B \cap C$, aleshores $a \in A \cap B \cap C$, però això contradiu la hipòtesi que $a \notin A \cap B \cap C$. Per tant, $a \notin B \cap C$. Així, $a \in A \setminus (B \cap C)$ i per tant $a \in [A \setminus (B \cap C)] \cup [B \setminus (A \cap C)]$.
- Cas $a \in B$. Si $a \in A \cap C$, aleshores $a \in A \cap B \cap C$, però això contradiu la hipòtesi que $a \notin A \cap B \cap C$. Per tant, $a \notin A \cap C$. Així, $a \in B \setminus (A \cap C)$ i per tant $a \in [A \setminus (B \cap C)] \cup [B \setminus (A \cap C)]$.

Com que en tots dos casos $a \in [A \setminus (B \cap C)] \cup [B \setminus (A \cap C)]$, hem demostrat que per tot a, si $a \in (A \cup B) \setminus (A \cap B \cap C)$, aleshores $a \in [A \setminus (B \cap C)] \cup [B \setminus (A \cap C)]$, és a dir queda establerta la primera inclusió.

Ara demostrem $[A \setminus (B \cap C)] \cup [B \setminus (A \cap C)] \subseteq (A \cup B) \setminus (A \cap B \cap C)$. Sigui $a \in [A \setminus (B \cap C)] \cup [B \setminus (A \cap C)]$ arbitrari. Aleshores $a \in A \setminus (B \cap C)$ o bé $a \in B \setminus (A \cap C)$. Fem la demostració per casos.

- Cas $a \in A \setminus (B \cap C)$. Aleshores $a \in A$ i $a \notin B \cap C$. Com que $a \in A$, $a \in A \cup B$. Com que $a \notin B \cap C$, $a \notin A \cap B \cap C$. Per tant, $a \in (A \cup B) \setminus (A \cap B \cap C)$.
- Cas $a \in B \setminus (A \cap C)$. Aleshores $a \in B$ i $a \notin A \cap C$. Com que $a \in B$, $a \in A \cup B$. Com que $a \notin A \cap C$, $a \notin A \cap B \cap C$. Per tant, $a \in (A \cup B) \setminus (A \cap B \cap C)$.

En tots dos casos, $a \in (A \cup B) \setminus (A \cap B \cap C)$. Hem demostrat que per tot a, si $a \in [A \setminus (B \cap C)] \cup [B \setminus (A \cap C)]$, aleshores $a \in (A \cup B) \setminus (A \cap B \cap C)$. Queda per tant establerta la segona inclusió.

3. Considera els següents conjunts:

$$A = \{a, b, \{c\}, d\}, B = \{a, \{b\}, c, d\}, C = \{\emptyset, a, b, c\}$$

- (a) Troba $(A \setminus B) \times C$
- **(b)** Troba $A \setminus \mathcal{P}(B)$

Digues raonadament si són certes o falses les següents afirmacions:

- (c) $\{\emptyset\} \in \mathcal{P}(\mathcal{P}(C))$
- (d) $\{\emptyset\} \in \mathcal{P}(C)$
- (e) $\{(a,c),(a,b)\} \in \mathcal{P}((A \times B) \cap (B \times A))$
- **(f)** $\{(a,c),(a,b)\} \in \mathcal{P}((A \times B) \cup (B \times A))$
- (g) $\{\{(\{c\},\emptyset),(a,b)\}\}\in \mathcal{P}(\mathcal{P}(A\times C))$
- (a) Per calcular $(A \setminus B) \times C$ primer tobarem $A \setminus B$ que no és altra cosa que $\{x \in A : x \notin B\}$. Mirant en les definicions per extensió dels conjunts A i B veiem que $a \in A$ i $a \in B$; $b \in A$ i $b \notin B$; $\{c\} \in A$ i $\{c\} \notin B$; $d \in A$ i $d \in B$ tenim que $A \setminus B = \{b, \{c\}\}$. Ara recordem la definició de producte cartesià, $(A \setminus B) \times C = \{(x,y) : x \in (A \setminus B) \ y \in C\}$. Per tant $(A \setminus B) \times C = \{(b,\emptyset), (b,a), (b,b), (b,c), (\{c\},\emptyset), (\{c\},b), (\{c\},c)\}$.
- **(b)** Partim de nou de la definició $A \setminus \mathcal{P}(B) = \{ x \in A : x \notin \mathcal{P}(B) \}$, a més recordem que $\mathcal{P}(B) = \{ D : D \subseteq B \}$. Ara raonem i no farà falta que calculem tot $\mathcal{P}(B)$. Observem que $\{c\} \in A$ i $\{c\} \subseteq B$ ja que tots el elements que pertanyen a $\{c\}$, és a dir c pertany també a B. Els altres elements d' A no són subconjunts de B, ja que no són conjunts formats per elements de B. Així $A \setminus \mathcal{P}(B) = \{a, b, d\}$.
- (c) $\{\emptyset\} \in \mathcal{P}(\mathcal{P}(C))$ si i només si $\{\emptyset\} \subseteq \mathcal{P}(C)$ per la definició de conjunt de les parts. $\{\emptyset\} \subseteq \mathcal{P}(C)$ sii $\emptyset \in \mathcal{P}(C)$ per la definició de subconjunt. I això és el mateix que dir que $\emptyset \subseteq C$. Aquesta última expressió és certa, ja que per tot conjunt $X, \emptyset \subseteq X$, per tant la primera expressió és també certa.
- (d) $\{\emptyset\} \in \mathcal{P}(C)$ si i només si $\{\emptyset\} \subseteq C$ per la definició de conjunt de les parts. $\{\emptyset\} \subseteq C$ sii $\emptyset \in C$ per la definició de subconjunt. Ara bé, aquesta expressió és certa, ja que \emptyset apareix explícitament a la llista que defineix C per extensió.
- (e) $\{(a,c),(a,b)\}\in \mathcal{P}((A\times B)\cap (B\times A))$ sii $\{(a,c),(a,b)\}\subseteq (A\times B)\cap (B\times A)$ per definició de conjunt de les parts. $\{(a,c),(a,b)\}\subseteq (A\times B)\cap (B\times A)$ sii $(a,c),(a,b)\in (A\times B)\cap (B\times A)$ per la definició de subconjunt. Però això és el mateix que dir $(a,c)\in (A\times B)\cap (B\times A)$ i $(a,b)\in (A\times B)\cap (B\times A)$. Aquesta expressió és equivalent a $(a,c)\in (A\times B)$ i $(a,c)\in (B\times A)$ i $(a,b)\in (A\times B)$ i $(a,b)\in (B\times A)$ per la definició de intersecció de conjunts. Ara bé, aquesta expressió és falsa ja que $(a,b)\notin A\times B$ per la definició de producte cartesià, perquè $b\notin B$ ja que no el trobem a la llista de la definició per extensió. (Nota: $b\neq \{b\}$). Com aquesta expressió és falsa, també ho és la primera.
- (f) $\{(a,c),(a,b)\} \in \mathcal{P}((A \times B) \cup (B \times A))$ sii $\{(a,c),(a,b)\} \subseteq (A \times B) \cup (B \times A)$ per definició de conjunt de les parts. $\{(a,c),(a,b)\} \subseteq (A \times B) \cup (B \times A)$ sii $(a,c),(a,b) \in (A \times B) \cup (B \times A)$ per la definició de subconjunt. Però això es el mateix que dir $(a,c) \in (A \times B) \cup (B \times A)$ i $(a,b) \in (A \times B) \cup (B \times A)$. Aquesta expressió és equivalent a $(a,c) \in (A \times B)$ o $(a,c) \in (B \times A)$ i $(a,b) \in (A \times B)$ o $(a,b) \in (B \times A)$ per la definició de unió de conjunts. Ara observem que aquesta expressió és certa ja que ambdues disjuncions son certes: $(a,c) \in A \times B$ per la definició de producte cartesià, perquè $a \in A$ i $c \in B$ -els trobem a la llista de la definició per extensió- i $(a,b) \in B \times A$ per la definició de producte cartesià, perquè $a \in B$ i $b \in A$. Per tant la primera expressió és també certa.
- (g) $\{\{(c, \{\emptyset\}), (a, b)\}\} \in \mathcal{P}(\mathcal{P}(A \times C)) \text{ sii } \{\{(\{c\}, \emptyset), (a, b)\}\} \subseteq \mathcal{P}(A \times C) \text{ per definició de conjunt de les parts.}$ $\{\{(\{c\}, \emptyset), (a, b)\}\} \subseteq \mathcal{P}(A \times C) \text{ sii } \{(\{c\}, \emptyset), (a, b)\} \in \mathcal{P}(A \times C) \text{ per definició de subconjunt.}$

 $\{(\{c\},\emptyset),(a,b)\}\in\mathcal{P}(A\times C)\text{ sii }\{(\{c\},\emptyset),(a,b)\}\subseteq A\times C\text{ altra vegada per definició de les parts d'un conjunt.} \{(\{c\},\emptyset),(a,b)\}\subseteq A\times C\text{ sii }(\{c\},\emptyset),(a,b)\in A\times C\text{ és a dir }(\{c\},\emptyset)\in A\times C\text{ i }(a,b)\in A\times C\text{. Així veiem que és certa, perquè els dos parells ordenats pertanyen a }A\times C\text{ ja que }\{c\},a\in A\text{ i }\emptyset,b\in C\text{. Com aquesta expressió és certa i equivalent a la primera, tenim que aquella també ho és.}$

4. En el conjunt dels nombres reals \mathbb{R} definim les relacions E i G de la forma següent:

Per tot $x, y \in \mathbb{R}$, xEy si i només si y - x és racional.

Per tot $x, y \in \mathbb{R}$, xGy si i només si y - x és enter parell.

Es demana

(a) Demostra $G \subseteq E$.

Per demostrar $G \subseteq E$, hem de veure que per tot $(a,b) \in \mathbb{R} \times \mathbb{R}$, si $(a,b) \in G$, aleshores $(a,b) \in E$. Sigui $(a,b) \in \mathbb{R} \times \mathbb{R}$ arbitrari. Si $(a,b) \in G$, aleshores b-a és un enter parell, en particular $b-a \in \mathbb{Z}$. Com que $\mathbb{Z} \subseteq \mathbb{Q}$, aleshores $b-a \in \mathbb{Q}$ i per tant $(a,b) \in E$ com volíem demostrar.

(b) Demostra que *G* és relació d'equivalència.

Recordem que una relació és d'equivalència si i només si és reflexiva, transitiva i simètrica.

- Reflexiva Sigui $a \in \mathbb{R}$ arbitrari. Com que $a a = 0 = 2 \cdot 0$ i $0 \in \mathbb{Z}$ tenim que a a és enter parell i per tant aGa. Com que a és un real arbitrari, hem demostrat que per tot $x \in \mathbb{R}$, xGx, és a dir que G és reflexiva.
- Transitiva Siguin $a,b,c\in\mathbb{R}$ tals que aGb i bGc. Com que aGb, aleshores hi ha $k\in\mathbb{Z}$ tal que b-a=2k, anàlogament de bGc obtenim que hi ha $s\in\mathbb{Z}$ tal que c-b=2s. Observem doncs que c-a=c-b+b-d=2s+2k=2(s+k) i com que $s+k\in\mathbb{Z}$ ja que $s,k\in\mathbb{Z}$, aleshores c-a és un enter parell i per tant aGc. Com que a,b,c són reals arbitraris, hem demostrat que per tot $x,y,z\in\mathbb{R}$, si xGy i yGz, aleshores xGz; és a dir que G és transitiva.
- Simètrica Siguin $a,b \in \mathbb{R}$ tals que aGb. Com que aGb, aleshores hi ha $k \in \mathbb{Z}$ tal que b-a=2k, Observem doncs que a-b=-(b-a)=-2k=2(-k) i com que $-k \in \mathbb{Z}$ ja que $k \in \mathbb{Z}$, aleshores a-b és un enter parell i per tant bGa. Com que a,b són reals arbitraris, hem demostrat que per tot $x,y \in \mathbb{R}$, si xGy aleshores yGx; és a dir que G és simètrica.
 - (c) Calcula les classes d'equivalència respecte $G: \overline{-1}, \overline{\frac{1}{3}}, \overline{1}$ i $\overline{\pi}$.

$$\overline{-1} = \{ x \in \mathbb{R} : xG - 1 \} = \{ x \in \mathbb{R} : -1Gx \} = \{ x \in \mathbb{R} : \exists k \in \mathbb{Z} (x - (-1) = 2k) \} = \{ x \in \mathbb{R} : \exists k \in \mathbb{Z} (x = 2k - 1) \} = \{ x \in \mathbb{Z} : x \text{ és senar} \}.$$

$$\frac{1}{3} = \{x \in \mathbb{R} : \frac{1}{3}Gx\} = \{x \in \mathbb{R} : \exists k \in \mathbb{Z}(x - \frac{1}{3} = 2k)\} = \{x \in \mathbb{R} : \exists k \in \mathbb{Z}(x = 2k + \frac{1}{3})\} = \{2k + \frac{1}{3} : k \in \mathbb{Z}\}.$$

 $\overline{1} = \{x \in \mathbb{Z} : x \text{ és senar}\} = \overline{-1} \text{ ja que } -1G1 \text{ perquè } 1 - (-1) = 2 = 2 \cdot 1 \text{ i } 1 \in \mathbb{Z}.$

$$\overline{\pi} = \{x \in \mathbb{R} : \pi G x\} = \{x \in \mathbb{R} : \exists k \in \mathbb{Z}(x - \pi = 2k)\} = \{x \in \mathbb{R} : \exists k \in \mathbb{Z}(x = 2k + \pi)\} = \{2k + \pi : k \in \mathbb{Z}\}.$$

(d) Calcula la classe d'equivalència respecte a G d'un element arbitrari $a \in \mathbb{R}$.

$$\overline{a} = \{x \in \mathbb{R} : aGx\} = \{x \in \mathbb{R} : \exists k \in \mathbb{Z}(x - a = 2k)\} = \{x \in \mathbb{R} : \exists k \in \mathbb{Z}(x = 2k + a)\} = \{2k + a : k \in \mathbb{Z}\}.$$

(e) Dóna la partició associada a G, és a dir, el conjunt quocient \mathbb{R}/G .

$$\mathbb{R}/G =_{\mathbf{def}} \{ \overline{a} \subseteq \mathbb{R} : a \in \mathbb{R} \} = \{ \overline{a} \subseteq \mathbb{R} : a \in [0,2) \}.$$

Per demostrar la igualtat cal demostrar les dues inclusions.

Com que $[0,2) \subseteq \mathbb{R}$, trivialment $\{\overline{a} \subseteq \mathbb{R} : a \in [0,2)\} \subseteq \{\overline{a} \subseteq \mathbb{R} : a \in \mathbb{R}\}$.

Per veure l'altra inclusió hem de veure que per tot $b \in \mathbb{R}$, $\bar{b} \in \{\bar{a} \subseteq \mathbb{R} : a \in [0,2)\}$.

Sigui $b \in \mathbb{R}$, denotem per [b] la part entera d'b, és a dir $[b] = \max\{n \in \mathbb{Z} : n \leq b\}$. Observem que $0 \leq b - [b] < 1$.

Si [b] és enter parell aleshores b-(b-[b])=[b] és un enter parell i per tant $\bar{b}=\overline{b-[b]}$ i com que $b-[b]\in[0,1)\subseteq[0,2), \bar{b}\in\{\overline{a}\subseteq\mathbb{R}:a\in[0,2)\}.$

Si [b] és un enter senar aleshores b-(b-[b]+1)=[b]-1 és un enter parell i per tant $\bar{b}=\overline{b-[b]+1}$ i com que $b-[b]+1\in[1,2)\subseteq[0,2)$, $\bar{b}\in\{\bar{a}\subseteq\mathbb{R}:a\in[0,2)\}$.

Observem també que $\{\bar{a} \subseteq \mathbb{R} : a \in [0,2)\}$ és una bona representació de \mathbb{R}/G , és a dir que per qualssevol $x,y \in [0,2)$, $\bar{x} = \bar{y}$ implica x = y.

Siguin $a, b \in [0, 2)$ tals que $\bar{a} = \bar{b}$. Com que $a, b \in [0, 2)$, aleshores |a - b| < 2. Si suposem que $\bar{a} = \bar{b}$, aleshores b - a i a - b són enters parells que és equivalent a dir que |a - b| és natural parell. Ara bé si |a - b| < 2 i |a - b| és natural parell, aleshores |a - b| = 0 i per tant a = b.