Final Project Part 3

Feng Wang
October 27, 2016

```
library('rattle')
library('fpc')
data(wine, package="rattle")
```

1. Algorithm and function

Algorithm

- 1. Randomly assigned three clusters means
- 2. Decide each data should belong in which cluster Compute the distance between one data with all means, and the data should belong in the cluster with the least distance.
- 3. Compute the objection function

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

4. Change the means for different cluster Since all the data has changed their cluster, for each cluster mean, it also need to update.

$$\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$$

- 5. Compute the objection function again
- 6. Start again from step b, until the J is stable

Main function

```
K_means = function(X, k){
    # group function compute for each data should belong to which cluster
    # compute the distance between data with each means
    group = function(mu, X, n){
    r = rep(0,n)
    for(i in 1:n){r[i] = which.min(rowSums(sweep(mu, 2, X[i,], "-") ^ 2))}
    return(r)
}

# j functions compute given means and assigned cluster, the objection function
# clusting error
J = function(X, mu, n, r){
    s = 0
    for(i in 1:n){s = s + sum((X[i,] - mu[r[i],]) ^ 2)}
    return(s)
}
# mu_adj function compute each cluster means
```

```
mu_adj = function(r, X ,k){
  mu = matrix(0, k, dim(X)[2])
  for(i in 1:k){
    mu[i,] = ((r == i) * 1) %*% X / sum(r == i)
  }
  return(mu)
}
# Main function
# Compute the first two steps
n = dim(X)[1]; mu_start = X[1:k,]
r_start = group(mu_start, X, n)
Iter = 0
j_dm=J(X,mu_start, n, r_start)
mu = mu_adj(r_start, X, k)
Iter = 1
j_dm = c(j_dm, J(X, mu, n, r_start))
r = group(mu, X, n)
Iter = 2
\# Use the while loops to do the K-means, and stop when J keeps the same
\label{lem:while(abs(j_dm[Iter] - j_dm[Iter-1]) != 0){}} \{
    mu = mu_adj(r, X, k)
    Iter = Iter + 1
    j_dm = c(j_dm, J(X, mu, n, r))
    r = group(mu, X, n)
    Iter = Iter + 1
    j_dm = c(j_dm, J(X, mu, n, r))
plot(j_dm, type = "l", xlab = "Iteration", ylab = "Objection function")
return(r)
```

2. Wine data

Train data without scale

```
data.train = data.matrix(wine[-1]); k = 3
par(mfrow = c(1, 2))
r1 = K_means(data.train, k)
plotcluster(data.train,r1)
```


It seems that the data has been separated, but the boundares of these three clusters are not clear. Now we bring another quantify called "accuracy" to test the clustering efficiency.

$$Accuracy = \frac{correct}{n}$$

```
Accuracy = sum(r1 == wine[1])/length(r1)
print(paste("the Accuracy for non-scale data is ", Accuracy))
```

[1] "the Accuracy for non-scale data is 0.533707865168539"

We find the accuracy for the data without scale is slightly greater than 50%, and it meets our observation that the boundary is blured.

Train data with scale

```
data.train = scale(wine[-1])
par(mfrow = c(1, 2))
r2 = K_means(data.train,k)
plotcluster(data.train,r2)
```



```
Accuracy = sum(r2 == wine[1])/length(r2)
print(paste("the Accuracy for scale data is ", Accuracy))
```

[1] "the Accuracy for scale data is 0.955056179775281"

The scale data has a highly accuracy (>90%) after the clustering, and three clusters in the graph also separate thoroughly.

The reason is that for the non-scale data, some variable may much larger than the others, and it will dominate the error when doing the K-means. But this problem could be solved using scale data.

3. Iris data

Train data without scale

```
data(iris)
data.train = data.matrix(iris[1:4]); k = 3; true_cat = iris[5]
true_cat = as.numeric(factor(true_cat$Species, levels = sort(unique(true_cat$Species))))
par(mfrow = c(1, 2))
r3 = K_means(data.train,k)
plotcluster(data.train,r3)
                                                       15
      1500
Objection function
      1000
                                                 dc 2
      500
                                                       10
                                                                 3
                                                       တ
                  5
                              15
                                     20
                                                                 0
                                                                         5
                                                                                  10
                        10
                      Iteration
                                                                         dc 1
Accuracy = sum(r3 == true_cat)/length(r3)
print(paste("the accuracy of non-scale data is ", Accuracy))
```

```
## [1] "the accuracy of non-scale data is 0.31333333333333333"
```

Train data with scale

```
data.train = scale(data.matrix(iris[1:4]))
par(mfrow = c(1, 2))
r4 = K_means(data.train,k)
plotcluster(data.train,r4)
```



```
Accuracy = sum(r4 == true_cat)/length(r4)
print(paste("the accuracy of scale data is ", Accuracy))
```

[1] "the accuracy of scale data is 0.26"

For this data, both scale and non-scale data has very low accuracy, which means that K-means might NOT work well for classifying this dataset, and the scale does NOT help.