The group G is isomorphic to the group labelled by [24, 3] in the Small Groups library. Ordinary character table of $G \cong SL(2,3)$:

	1a	$\overline{2a}$	$\overline{4a}$	3a	6a	3b	$\overline{6b}$
	1a	<u> 2</u> u	44	<u> </u>	$\overline{}$	30	00
χ_1	1	1	1	1	1	1	1
χ_2	1	1	1	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$
χ_3	1	1	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)
χ_4	3	3	-1	0	0	0	0
χ_5	2	-2	0	-1	1	-1	1
χ_6	2	-2	0	-E(3)	E(3)	$-E(3)^2$	$E(3)^{2}$
χ_7	2	-2	0	$-E(3)^2$	$E(3)^{2}$	-E(3)	E(3)

Trivial source character table of $G \cong SL(2,3)$ at p = 3:

Normalisers N_i		N_1		N	V_2
p-subgroups of G up to conjugacy in G	P_1			P_2	
Representatives $n_j \in N_i$	1a	4a	2a	1a	2a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	3	3	3	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7$	6	0	-6	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	3	-1	3	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7$	4	0	-4	1	-1

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 2, 6)(3, 8, 20)(4, 16, 13)(5, 9, 15)(7, 14, 10)(11, 18, 24)(12, 23, 21)(17, 22, 19)]) \cong C3$

 $N_1 = Group([(1,2,6)(3,8,20)(4,16,13)(5,9,15)(7,14,10)(11,18,24)(12,23,21)(17,22,19),(1,3,5,11)(2,7,9,17)(4,19,12,10)(6,13,15,21)(8,23,18,16)(14,24,22,20),(1,4,5,12)(2,8,9,18)(3,10,11,19)(6,14,15,22)(7,16,17,23)(13,20,21,24),(1,5)(2,9)(3,11)(4,12)(6,15)(7,17)(8,18)(10,19)(13,21)(14,22)(16,23)(20,24)]) \\ \cong SL(2,3) \\ N_2 = Group([(1,2,6)(3,8,20)(4,16,13)(5,9,15)(7,14,10)(11,18,24)(12,23,21)(17,22,19),(1,5)(2,9)(3,11)(4,12)(6,15)(7,17)(8,18)(10,19)(13,21)(14,22)(16,23)(20,24)]) \\ \cong SL(2,3) \\ N_2 = Group([(1,2,6)(3,8,20)(4,16,13)(5,9,15)(7,14,10)(11,18,24)(12,23,21)(17,22,19),(1,5)(2,9)(3,11)(4,12)(6,15)(7,17)(8,18)(10,19)(13,21)(14,22)(16,23)(20,24)]) \\ \cong SL(2,3) \\ N_3 = Group([(1,2,6)(3,8,20)(4,16,13)(5,9,15)(7,14,10)(11,18,24)(12,23,21)(17,22,19),(1,5)(2,9)(3,11)(4,12)(6,15)(7,17)(8,18)(10,19)(13,21)(14,22)(16,23)(20,24)]) \\ \cong SL(2,3) \\ N_3 = Group([(1,2,6)(3,8,20)(4,16,13)(5,9,15)(7,14,10)(11,18,24)(12,23,21)(17,22,19),(1,5)(2,9)(3,11)(4,12)(6,15)(7,17)(8,18)(10,19)(13,21)(14,22)(16,23)(12,23)(14,22)(16,23)$