Аналитическая геометрия. Лекции

1 Векторная алгебра

Определение 1. Вектором называется отрезок, с выбранном на нём направлением.

Определение 2. Два вектора называется **коллинеарными**, если они лежат на одной прямой или на параллельных прямых.

Определение 3. Три вектора называются **компланарными**, если они лежат на прямых, параллельных некоторой плоскости.

Определение 4. Вектор определяется точкой начала и точкой конца.

 \overrightarrow{AB} .

Вектор, у которого точка начала фиксирована, называется **связанным**. Вектор, у которого точка начала не фиксированная, называется **своболным**.

Вектор характеризуется длиной и направлением.

Два вектора называются **сонаправленными**, если они *коллинеарны* и имеют одно и то же направление.

Два вектора называются **противоположно направленными** если они *коллинеарны* и имеют противоположные направления.

Два векторы называются равными, если:

- 1. Они коллинеарны и сонаправлены
- 2. Их длины равны

Определение 5. Вектор, длина которого равна 1 называется единичным вектором или **ортом**.

$$\vec{e} \quad |\vec{e}| = 1.$$

Определение 6. Вектор, длина которого равна нулю (начало и конец совпадают) называется **нулевым вектором**. Направление нулевого вектора произвольное. Нулевой вектор коллинеарен всем векторам.

$$|\vec{0}| = 0.$$

Определение 7. Суммой векторов \vec{a} и \vec{b} называется \vec{c} , который получается по правилу треугольника:

1. Конец вектора \vec{a} совмещают с началом вектора \vec{b}

2. Тогда вектор, идущий из начала вектора $ec{a}$ к концу вектора $ec{b}$ и будет вектором $ec{c}$.

Определение 8. Суммой векторов \vec{a} и \vec{b} называется вектор \vec{c} , который получается по правилу параллелограмма следующим образом:

- 1. Совмещают начала векторов \vec{a} и \vec{b}
- 2. Достраивают фигуры до параллелограмма
- 3. Тогда вектор, идущий из начала вектором по диагонали параллограмма и будет исходным вектором \vec{c} .

Замечание. Если два вектора коллинеарны, то их можно сложить только правилу треугольника.

Определение 9. Произведение вектора \vec{a} на число λ называется вектор \vec{c} , который будет коллинеарен вектору \vec{a} , длина которого будет или меньше в $|\lambda|$ раз и будет сонаправлен, если $\lambda>0$, и противонаправлен, если $\lambda<0$.

1.1 Свойства векторов

$$\vec{a} + \vec{b} = \vec{b} + \vec{a} \tag{1}$$

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$
 (2)

$$\forall \vec{a} \exists \vec{0} \qquad \vec{a} + \vec{0} = \vec{a} \tag{3}$$

$$\forall \vec{a} \exists \vec{b} \qquad \vec{a} + \vec{b} = \vec{0} \Rightarrow -\vec{b} = \vec{a} \tag{4}$$

$$\lambda \left(\vec{a} + \vec{b} \right) = \lambda \vec{a} + \lambda \vec{b} \tag{5}$$

$$\lambda(p\vec{a}) = (\lambda p)\,\vec{a}\tag{6}$$

$$(\lambda + q)\,\vec{a} = \lambda\vec{a} + q\vec{a} \tag{7}$$

Определение 10. Разностью векторов и называется вектор, который получается следующим образом:

- 1. Совмещаем начала вектооров и
- 2. Вектор, который идёт из конца вектора в начало вектора и есть искомый вектор .

1.2 Ортогональная проекция вектора на направление

Определение 11. Основание точки O_a перпендикуляра, опущенного их точки A на прямую L называется **ортогональной проекцией точ-**

 $\mathbf{k}\mathbf{u}$ A на прямую L.

Определение 12. Пусть имеем вектор \overrightarrow{AB} . Пусть O_a - ортогональная проекция начала вектора \overrightarrow{AB} на прямую L, а O_b - это ортогональная проекция конца вектора \overrightarrow{AB} на прямую L. Тогда вектор $\overrightarrow{O_aO_b}$, соединяющий проекции и лежащий на прямой L, называется ортогональной проекцией вектора \overrightarrow{AB} на прямую L.

Определение 13. Осью называется прямая с выбранным на ней направлением.

Если на прямой L выбрано направление, то длину $\overrightarrow{O_aO_b}$ берут со знаком +, если направление вектора совпадает с выбранным направлением L, и со знаком -, если нет.

Определение 14. Длину вектора $\overrightarrow{O_aO_b}$ со знаком, определяющим направление этого вектора, называют ортогональной проекцией вектора \overrightarrow{AB} на ось \overrightarrow{l} .

 $np_{\vec{l}}\overrightarrow{AB}$.

Определение 15. Ортогональную проекцию вектора на ненулевой вектор \vec{l} называеют ортогональной проекцией этого вектора на направление вектора \vec{l} .

Замечание. Важно! *Ортогональная проекция вектора на направление* - это **число**!

Теорема 1. Ортогональная проекция вектора \vec{a} на направление ненулевого вектора \vec{l} равна произведению длины вектора \vec{l} на $\cos\phi = \widehat{\vec{al}}$

Теорема 2. Ортогональная проекция суммы векторов \vec{a} и \vec{b} на направление ненулевого вектора \vec{l} равна сумме ортогональных проекций вектора \vec{a} и \vec{b} на направление ненулевого вектора \vec{l} .

$$np_{\vec{l}}\left(\vec{a}+\vec{b}\right) = np_{\vec{l}}\vec{a} + np_{\vec{l}}\vec{b}.$$

Теорема 3. Ортогональная проекция вектора произведения \vec{a} и числа λ на направление ненулевого вектора \vec{l} равна произведению числа λ на ортогональную проекцию вектора \vec{a} .

$$np_{\vec{i}}\lambda\vec{a} = \lambda np_{\vec{i}}\vec{a}.$$

2 Линейная зависимость и независимость векторов

Определение 16.

$$\lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + \ldots + \lambda_n \vec{a_n}$$
 где λ_i – произвольные числа

называется линейной комбинацией системы векторов \vec{a} , а числа λ - коэффициентом линейнгой комбинации.

Если $\forall \lambda = 0$, то линейную комбинацию называют *правильной*. Если $\neg \forall \lambda = 0$, то линейную комбинацию называют *неправильной*.

Определение 17. Система векторов называется *линейно-зависимой*, если существует нетривиальная равная нулевомувектору линейной комбинация этих векторов:

$$\lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + \ldots + \lambda \vec{a_n} = \vec{0}$$
$$\lambda_1^2 + \lambda_2^2 + \ldots + \lambda_n^2 = 0$$

Определение 18. Система векторо называется *линейно-независимой*, если существует только тривиальная равная нулевому вектору линейная комбинация.

$$\lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + \ldots + \lambda \vec{a_n} = \vec{0}$$

Теорема 4. Система векторов линейно-независима тогда и только тогда, когда один из этих векторов можно представить в виде линейной комбинации других векторов.

Доказательство. 1). Пусть система векторов линейно-зависима. Тогда по определению существует нетривиальная равная нулевому вектору линейная комбинация этих векторов:

$$\lambda_1 \neq 0$$

$$\lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + \ldots + \lambda_n \vec{a_n} = \vec{0}$$

$$\vec{a_1} = -\frac{\lambda_2}{\lambda_1} \vec{a_2} - \frac{\lambda_3}{\lambda_1} \vec{a_3} - \ldots - \frac{\lambda_n}{\lambda_1} \vec{a_n}$$

Обозначим $\beta_i = -\frac{\lambda_i}{\lambda_1},$ где $i \in N \land 2 \leq i \leq n.$ Получаем:

$$\vec{a_1} = \beta_2 \vec{a_2} + \beta_3 \vec{a_3} + \ldots + \beta_n \vec{a_n}$$

Что и требовалось доказать.

Доказательство. 2) Пусть один из векторов можно представить в виде

П

линейной комбинации другиз векторов системы (возьмем $\vec{a_1}$. Перенесём слагаемые из правой части в левую:

$$\vec{a_1} - \lambda_2 \vec{a_2} - \lambda_3 \vec{a_3} - \ldots - \lambda_n \vec{a_n} = \vec{0}$$

Получили нетривиальную равную нулевому вектору линейную комбинацию векторов. По определению, данная система векторов является nune пинейно-зависимой.

2.1 Критерии линейной зависимости 2 и 3 векторов

Теорема 5. Два вектору *линейно-зависимы* тогда и только тогда, когда они *коллинеарный*.

Доказательство. 1) Необходимость.

Пусть система векторв $\vec{a_1}$, $\vec{a_2}$ линейно-зависима. Тогда по определению \exists тривиальная линейная зависимость $= \vec{0}$ этих векторов. Пусть $\lambda_1 \neq 1$, тогда $\vec{a_1} = -\frac{\lambda_2}{\lambda_1}\vec{a_2}$. Обозначим $\beta = -\frac{\lambda_2}{\lambda_1}$, тогда $\vec{a_1} = \beta\vec{a_2}$. По определению произведение вектора на число $\vec{a_1}$ и $\vec{a_2}$ коллинеарны. 2) Достаточность.

Пусть $\vec{a_1} \parallel \vec{a_2}$. Тогда $\vec{a_1} = \lambda \vec{a_2}$ (по определению произведения вектора на число). Перенесем все налево:

$$\vec{a_1} - \lambda \vec{a_2} = \vec{0}$$

По определению $\vec{a_1}$ и $\vec{a_2}$ являются линейной зависимостью.

Теорема 6. Три вектора линейной зависимы тогда и только тогда, когда они компланарны.

Доказательство. (1) Пусть $\vec{a_1}$, $\vec{a_2}$, $\vec{a_3}$ - линейная зависимость, тогда по определению существуют:

$$\lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + \lambda_3 \vec{a_3} = \vec{0}$$

Тогда:

$$\lambda_1 \neq 0$$

$$\vec{a_1} = -\frac{\lambda_2}{\lambda_1} \vec{a_2} - \frac{\lambda_3}{\lambda_1} \vec{a_3}$$

Обозначим $\beta = -\frac{\lambda_i}{\lambda}$, где i = 2, 3.

$$\vec{a_1} = \beta_2 \vec{a_2} + \beta_3 \vec{a_3}$$

Совместим начала $\vec{a_2}$ и $\vec{a_3}$ и построим $\beta_2\vec{a_2}$ и $\beta_3\vec{a_3}$, где $\beta_2,\beta_3>0$. Т.к. $\vec{a_3}$ лежит на диагонали параллелограмма (из правила сложения векторов параллелограммом), получается, что вектора $\vec{a_1},\vec{a_2},\vec{a_3}$ лежат в одной плоскости, что и требовалось доказать.

(2) Пусть $\vec{a_1}, \vec{a_2}, \vec{a_3}$ лежат в одной плоскости (компланарны). Совместим начала векторов, концы векторов обозначим A_i . Проведём через A_1 прямую, параллельную $\vec{a_3}$.

$$\overrightarrow{OA_2'} \parallel \overrightarrow{OA_2}$$

$$\Rightarrow \overrightarrow{OA_2'} = \lambda_2 \overrightarrow{OA_2}$$

$$\overrightarrow{OA_3'} \parallel \overrightarrow{OA_3}$$

$$\Rightarrow \overrightarrow{OA_3'} = \lambda_3 \overrightarrow{OA_3}$$

Тогда согласно правилу параллелограмма сложения векторов $\overrightarrow{OA_1} = \overrightarrow{OA_2} = \overrightarrow{OA_3}$, то $\overrightarrow{a_1} = \lambda_2 \overrightarrow{a_2} + \lambda_3 \overrightarrow{a_3}$.

Теорема 7. Любые 4 вектора линейно зависимы.

3 Базис

Определение 19. Базис - упорядоченный набор векторов.

Введём обозначения:

- ullet V_1 пространство всех коллинеарных векторов
- ullet V_2 пространство всех компланарных векторов
- ullet V_3 пространство всех свободных векторов

Пространство V_1

Пусть $\vec{e} \neq \vec{0} \in V_1$, тогда $\forall \vec{x} \in V_1$ ($\vec{x} = \lambda \vec{e}$, т.к. $\vec{x} \parallel \vec{e}$). Тогда $\vec{x} = \lambda \vec{e}$ называется разложением \vec{x} по базису \vec{e} в V_1 , а λ - координаты \vec{x} в этом базисе.

Пространство V_2

Любая упорядоченная пара неколлинеарных векторов в V_2 является базисом V_2 .

Пусть в V_2 $\vec{e_1}$ ψ $\vec{e_2}$, тогда эти вектора можно рассматривать как базис $V_2, \vec{x} \in V_2 \Rightarrow \vec{e_1}, \vec{e_2}, \vec{x}$ - линейная зависимость.

$$\vec{x} = \lambda_1 \vec{e_1} + \lambda_2 \vec{e_2}$$

- разложение вектора \vec{x} по базису $\vec{e_1}, \vec{e_2}$. λ_1 и λ_2 называются координатами \vec{x} в этом базисе. Базис в V_2 называется ортогональным, если базисные вектора лежат на перпендикулярных прямых.

Пространство V_3

Любая упорядоченная тройка некомпланарных векторов в V_3 называется базисом в V_3 .

Пусть $\vec{e_1}, \vec{e_2}, \vec{e_3}$ - упорядоченная тройка векторов в $V_3, \vec{x} \in V_3$. Тогда система векторов линейно зависима (по теореме 7). По теореме 4:

$$\vec{x} = \lambda_1 \vec{e_1} + \lambda_2 \vec{e_2} + \lambda_3 \vec{e_3}$$

Данное выражение называется разложением \vec{x} по базису $\vec{e_1}, \vec{e_2}, \vec{e_3}$ в V_3 , а $\lambda_1, \lambda_2, \lambda_3$ называются корординатами \vec{x} в базисе.

Базис в V_3 , если базисные вектора лежат на взаимно перпендикулярных прямых.

Определение 20. Ортонормированный базис - ортогональный базис из \vec{e} векторов.

Теорема 8. О разложении вектора по базису

Любой вектор можно разложить по базису и при этом единственным образом.

Доказательство. Пусть в пространстве V_3 зафиксирован базис $\vec{e_1}, \vec{e_2}, \vec{e_3}$. Возьмём вектор \vec{x} . Тогда система векторов $\vec{x}, \vec{e_1}, \vec{e_2}, \vec{e_3}$ - линейно зависима, если вектор \vec{x} можно представить в виде линейной комбинации векторов $\vec{e_1}, \vec{e_2}, \vec{e_3}$:

$$\vec{x} = \lambda_1 \vec{e_1} + \lambda_2 \vec{e_2} + \lambda_3 + \vec{e_3} \tag{1}$$

Предположим, что разложение вектора \vec{x} - не единственное.

$$\vec{x} = \rho \vec{e_1} + \rho \vec{e_2} + \rho \vec{e_3} \tag{2}$$

Вычтем из (1) уранвение (2). Тогда:

$$\vec{0} = (\lambda_1 - \rho_1)\vec{e_1} + (\lambda_2 - \rho_2)\vec{e_2} + (\lambda_3 - \rho_3)\vec{e_3}$$
(3)

Поскольку базисные вектора $\vec{e_1}, \vec{e_2}, \vec{e_3}$ - линейно независимы, то выражение (3) представляет собой тривиальную линейную комбинацию векторов $\vec{e_1}, \vec{e_2}, \vec{e_3}$, равную нулю. Тогда получаем:

$$\begin{array}{lll} \lambda_1 - \delta_1 = 0 & \lambda_1 = \delta_1 \\ \lambda_2 - \delta_2 = 0 & \Rightarrow & \lambda_2 = \delta_2 \\ \lambda_3 - \delta_3 = 0 & \lambda_3 = \delta_3 \end{array}$$

Коэффициенты равны, что и требовалось доказать.

3 Базис 7

Пример. Пусть в пространстве V_2 зафиксирован базис $\vec{i}, \vec{j}.$

$$\begin{split} |\vec{i}| &= 1, \quad |\vec{j}| = 1 \\ \vec{a} &= \overrightarrow{OA} + \overrightarrow{OB} \\ \overrightarrow{OA} \parallel \vec{i} \Rightarrow \overrightarrow{OA} = x_a \vec{i} \\ \overrightarrow{OB} \parallel \vec{j} \Rightarrow \overrightarrow{OB} = y_a \vec{j} \\ \Rightarrow \vec{a} = x_a \vec{i} + y_a \vec{j} \end{split}$$

Пример. Пусть в пространстве V_3 зафиксирован ортонормированный базис $\vec{i}, \vec{j}, \vec{k}$ Тогда:

$$\vec{a} = \{x_a, y_a, z_a\}$$
$$\vec{a} = x_a \vec{i} + y_a \vec{j} + z_a \vec{k}$$

Задание

Разложить \vec{a} по векторам $\vec{a}, \vec{b}, \vec{c}.$ Дано:

$$\vec{a} = 3\vec{i} - 4\vec{j}$$
$$\vec{b} = 2\vec{i} - \vec{j}$$
$$\vec{c} = -\vec{i} - 5\vec{j}$$

Решение:

$$\vec{a} = \alpha \vec{b} + \beta \vec{c}$$

$$3\vec{i} - 4\vec{j} = \alpha(2\vec{i} + \vec{j}) + \beta(-\vec{i} + 5\vec{j})$$

$$3\vec{i} - 4\vec{j} = (2\alpha - \beta)\vec{i} + (\alpha + 5\beta)\vec{j} \Rightarrow$$

$$\begin{cases} 3 = 2\alpha - \beta \\ -4 = \alpha + 5\beta \end{cases} \Rightarrow \begin{cases} \beta = -1 \\ \alpha - 1 \end{cases}$$

Замечание. Два вектора равны, если равны соответствующие координаты.

3.1 Координаты вектора. Действия с векторами

Пусть:

$$\vec{a} = \{x_a, y_a, x_a\}$$
$$\vec{b} = \{x_b, y_b, z_b\}$$

Тогда:

$$\vec{c} = \vec{a} + \vec{b} = \{x_a + x_b, y_a + y_b, z_a + z_b\}$$

 $k\vec{a} = \{kx_a, ky_a, kz_a\}$

3 Базис

Замечание. $k\vec{a}=k\cdot\{\ldots\}$ - так записывать нельзя!

Если $\vec{a} \parallel \vec{b}$, то $\vec{b} = \lambda \vec{a}, \lambda = const$

$$\begin{cases} x_b = \lambda x_a \\ y_b = \lambda y_a \\ z_b = \lambda z_b \end{cases} \Rightarrow \frac{x_a}{x_b} = \frac{y_a}{y_b} = \frac{z_a}{z_b}$$

Расчёт косинуса угла по разложению в базисе

Пример. В V_2 :

$$\vec{a} = \{x_a, y_a, z_a\}$$
$$|\vec{a}| = \sqrt{x_a^2 + y_a^2 + z_a^2}$$
$$\cos \alpha = \frac{x_a}{|\vec{a}|}$$
$$\cos \beta = \frac{y_a}{|\vec{a}|}$$

Пример. Для V_3 :

$$\cos \alpha = \frac{x_a}{|\vec{a}|} \qquad x_a = |\vec{a}| \cos \alpha$$

$$\cos \beta = \frac{y_a}{|\vec{a}|} \qquad y_a = |\vec{a}| \cos \beta$$

$$\cos \gamma = \frac{z_a}{|\vec{a}|} \qquad z_a = |\vec{a}| \cos \gamma$$

Возведём в квадрат:

$$\begin{aligned} |\vec{a}|^2 \cos^2 \alpha + |\vec{a}|^2 \cos^2 \beta + |\vec{a}|^2 \cos^2 \gamma &= x_a^2 + y_a^2 + z_a^2 = |\vec{a}|^2 \\ \Rightarrow \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma &= 1 \end{aligned}$$

В результате получаем орт вектора \vec{a} :

$$\vec{e_a} = \{\cos \alpha, \cos \beta, \cos \gamma\}$$

3.2 Скалярное произведение векторов

Определение 21. Скалярным произведением векторов \vec{a}, \vec{b} называется *число* равное произведению длин этих векторов на косинус угла между ними.

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \phi$$

3.2.1 Свойства скалярного произведения

1. Коммунитативность

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

2.

$$\vec{a}^2 \ge 0$$
$$\vec{a}^2 = 0 \Leftrightarrow \vec{a} = \vec{0}$$
$$\vec{a}^2 = |\vec{a}|^2$$

3. Дистрибутивность

$$\left(\vec{a} + \vec{b}\right) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$

4. Ассоциативность

$$(\lambda \vec{a}) \cdot \vec{b} = \lambda \left(\vec{a} \cdot \vec{b} \right)$$

3.2.2 Формула для вычисления скалярного произведения двух векторов, заданных ортонормированным базисом

$$ec{a}\cdotec{b}=|ec{a}|\cdot|ec{b}|\cosarphi$$
 $ec{a}\cdotec{b}>0,$ если $arphi\in\left(0;rac{\pi}{2}
ight)$ $ec{a}\cdotec{b}<0,$ если $arphi\in\left(rac{\pi}{2};\pi
ight)$ $ec{a}\cdotec{b}=0,$ если $arphi=rac{\pi}{2}$

Пусть в пространстве V_3 с заданным ортонормированном базисе $\vec{i}, \vec{j}, \vec{k}$ заданы вектора \vec{a}, \vec{b} :

$$\vec{a} = x_a \vec{i} + y_a \vec{j} + z_a \vec{k}$$
$$\vec{b} = x_b \vec{i} + y_b \vec{j} + z_b \vec{k}$$

Тогда:

$$\begin{split} \vec{i}^2 &= \vec{i} \cdot \vec{i} = |\vec{i}|^2 = 1 \\ \vec{j}^2 &= \vec{j} \cdot \vec{j} = |\vec{j}|^2 = 1 \\ \vec{k}^2 &= \vec{k} \cdot \vec{k} = |\vec{k}|^2 = 1 \end{split} \qquad \begin{aligned} \vec{i} \perp \vec{j} &\Rightarrow \vec{i} \cdot \vec{j} = 0 \\ \vec{i} \perp \vec{k} &\Rightarrow \vec{i} \cdot \vec{k} = 0 \\ \vec{j} \perp \vec{k} &\Rightarrow \vec{j} \cdot \vec{k} = 0 \end{aligned}$$

$$\begin{split} \vec{a} \cdot \vec{b} &= \left(x_a \vec{i} + y_a \vec{j} + z_a \vec{k} \right) \left(x_b \vec{i} + y_b \vec{j} + z_b \vec{k} \right) \\ &= x_a x_b \vec{i}^2 + x_a y_b (\vec{i} \cdot \vec{j}) + x_a z_b (\vec{i} \cdot \vec{k}) \\ &+ y_a x_a (\vec{i} \cdot \vec{j}) + y_a y_b \vec{j}^2 + y_a z_b (\vec{j} \cdot \vec{k}) \\ &+ z_a x_b (\vec{i} \cdot \vec{k}) + z_a y_b (\vec{j} \cdot \vec{k}) + z_a z_b \vec{k}^2 \\ &= x_a x_b + y_a y_b + z_a z_b \end{split}$$

$$\vec{a} \cdot \vec{b} = x_a x_b + y_a y_b + z_a z_b$$

3.2.3 Формула косинуса между векторами, заданными ортонормированным базисом

Т.к. $\vec{a}\vec{b}=|\vec{a}||\vec{b}|\cos\phi$, то:

$$\cos \varphi = \frac{\vec{a}\vec{b}}{|\vec{a}||\vec{b}|}$$

$$= \frac{x_a x_b + y_a y_b + z_a z_b}{|\vec{a}| \cdot |\vec{b}|}$$

$$= \frac{x_a x_b + y_a y_b + z_a z_b}{\sqrt{x_a^2 + y_a^2 + z_a^2} + \sqrt{x_b^2 + y_b^2 + z}}$$

$$\cos \varphi = \frac{x_a x_b + y_a y_b + z_a z_b}{\sqrt{x_a^2 + y_a^2 + z_a^2} + \sqrt{x_b^2 + y_b^2 + z}}$$

3.3 Векторное произведение векторов

Определение 22. Тройка векторов называется **правой**, если кратчайший поворот от вектора \vec{a} к \vec{b} осуществляется *против часовой стрелки* (смотря из конца вектора \vec{c}).

Определение 23. Тройка векторов называется **левой**, если кратчайший поворот от вектора \vec{a} к \vec{b} осуществляется *по часовой стрелки* (смотря из конца вектора \vec{c}).

Определение 24. Векторным произведением векторов \vec{a} и \vec{b} называется вектор \vec{c} , который удовлетворяет следующему условию:

- 1. \vec{c} ортогонален векторам \vec{a} и \vec{b} (перпендикулярен плоскости, в которой лежат вектора \vec{a} и \vec{b});
- 2. $\vec{c} = |\vec{a}||\vec{b}| \cdot \sin \phi$
- 3. Вектора $\vec{a}, \vec{b}, \vec{c}$ образуют *правую* тройку векторов.

Обозначение:

$$\vec{a} imes \vec{b}$$
 или $[\vec{a}, \vec{b}]$

3.3.1 Свойства векторного произведения векторов

1. Антикомунитативность

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

2. Дистрибутивность

$$(\vec{a_1} + \vec{a_2}) \times \vec{b} = \vec{a_1} \times \vec{b} + \vec{a_2} \times \vec{b}$$

3. Ассоциативность

$$(\lambda \vec{a}) imes \vec{b} = \lambda \left(\vec{a} imes \vec{b} \right)$$

3 Базис

3.3.2 Формула для вычисления векторного произведения в правом ортонормированном базисе

Пусть V_3 определен правый ортонормированный базис $\vec{i}, \vec{j}, \vec{k}$. Рассмотрим векторное произведение:

$$\vec{i} \times \vec{i} = \vec{0}$$
$$\vec{j} \times \vec{j} = \vec{0}$$
$$\vec{k} \times \vec{k} = \vec{0}$$

$$\begin{split} \vec{i} \times \vec{j} &= \vec{k} \\ \vec{i} \times \vec{k} &= -\vec{j} \\ \vec{j} \times \vec{k} &= \vec{i} \\ \vec{j} \times \vec{i} &= -\vec{k} \\ \vec{k} \times \vec{i} &= \vec{j} \\ \vec{k} \times \vec{j} &= -\vec{i} \end{split}$$

Рассмотрим два вектора $\vec{a} = \{x_a, y_a, z_a\}$ и $\vec{b} = \{x_b, y_b, z_b\}$. Тогда можно записать разложение этих векторов по базису:

$$\vec{a} = x_a \vec{i} + y_a \vec{j} + z_a \vec{k}$$
$$\vec{b} = x_b \vec{i} + y_b \vec{j} + z_b \vec{k}$$

Найдем векторное произведение этих векторов:

$$\begin{split} \vec{a} \times \vec{b} &= (x_a \vec{i} + y_a \vec{j} + z_a \vec{k}) \times (x_b \vec{i} + y_b \vec{j} + z_b \vec{k}) = \\ &= x_a x_b (\vec{i} \times \vec{i}) + x_a y_b (\vec{i} \times \vec{j}) + x_a z_b (\vec{i} \times \vec{k}) + \\ &+ y_a x_a (\vec{j} \times \vec{i}) + y_a y_b (\vec{j} \times \vec{j}) + y_a z_b (\vec{j} \times \vec{k}) + \\ &+ z_a x_b (\vec{k} \times \vec{i}) + z_a y_b (\vec{k} \times \vec{j}) + z_a z_b (\vec{k} \times \vec{k}) = \\ &= x_a y_b \vec{k} - x_a z_b \vec{j} - y_a x_b \vec{k} + y_a z_b \vec{i} + z_a x_b \vec{j} - z_a y_b \vec{j} = \\ &= (y_a z_b - z_a y_b) \vec{i} - (x_a z_b - z_a x_b) \vec{j} + (x_a y_b - y_a x_b) \vec{k} = (*) \end{split}$$

Можно заметить, что это равняется определителю:

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_a & y_a & z_a \\ x_b & y_b & z_b \end{vmatrix} = \vec{i} \cdot \begin{vmatrix} y_a & z_a \\ y_b & z_b \end{vmatrix} - \vec{j} \cdot \begin{vmatrix} x_a & z_a \\ x_b & z_b \end{vmatrix} + \vec{k} \cdot \begin{vmatrix} x_a & y_a \\ x_b & y_b \end{vmatrix}$$

Тем самым мы получаем:

Теорема 9. Для того, чтобы векторы были коллинеарны, необходимо и достаточно, чтобы их векторное произведение было равно нулевому вектору.

3.3.3 Геометрическое приложение векторов.

Пусть $\vec{a} = \{x_a y_a, x_a\}$ и $\vec{b} = \{x_b, y_b, z_b\}$. Совместим начала этих векторов и достроим до параллелограмма. Тогда площадь этого параллелограмма будет равна модулю векторного произведения этих векторов.

Пример.

$$A(1,2,-1), \quad B(-1,1,0), \quad C(0,-1,2)$$

$$\overrightarrow{AB} = \{-2,-1,1\}$$

$$\overrightarrow{AC} = \{-1,-3,3\}$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & -1 & 1 \\ -1 & -3 & 3 \end{vmatrix} = \vec{i} \cdot (-1)^{1+1} \begin{vmatrix} -1 & 1 \\ -3 & 3 \end{vmatrix} + \vec{j} \cdot (-1)^{1+2} \begin{vmatrix} -2 & 1 \\ -1 & 3 \end{vmatrix} + \vec{k} \cdot (-1)^{1+3} \begin{vmatrix} -2 & -1 \\ -1 & -3 \end{vmatrix} = 0\vec{i} + 5\vec{j} + 5\vec{k}$$

$$\vec{c} = \{0, 5, 5\} \Rightarrow |\vec{c}| = \sqrt{50} = 5\sqrt{2}$$

 $S_{ABC} = \frac{1}{2}S_{ABCD} = \frac{1}{2} \cdot 5\sqrt{2} = \frac{5}{\sqrt{2}}$

3.4 Смешанное произведение

Определение 25. Смешанное поизведение векторов $\vec{a}, \vec{b}, \vec{c}$ называется скалярное произведения первых двух векторов \vec{a} и \vec{b} на третий вектор \vec{c} .

$$\vec{a}\vec{b}\vec{c} = (\vec{a}\cdot\vec{b})\times\vec{c}$$

3.4.1 Свойства смешанных произведений

1. Свойство перестановки (кососимметричности)

$$\vec{a}\vec{b}\vec{c} = \vec{c}\vec{a}\vec{b} = \vec{b}\vec{c}\vec{a} = -\vec{b}\vec{a}\vec{c} = -\vec{c}\vec{b}\vec{a} = -\vec{a}\vec{c}\vec{b}$$

2. Три вектора компланарны тогда и только тогда, когда их смешанное произведение равно 0.

$$ec{a}, ec{b}, ec{c}$$
 - компланарны $\Leftrightarrow ec{a} ec{b} ec{c} = 0$

Замечание. $\vec{a}\vec{b}\vec{c}>0$, если \vec{a},\vec{b},\vec{c} - правая тройка векторов. $\vec{a}\vec{b}\vec{c}<0$, если \vec{a},\vec{b},\vec{c} - левая тройка векторов.

3. Свойство ассоциативности

$$(\lambda \vec{a})\vec{b}\vec{c} = \lambda(\vec{a}\vec{b}\vec{c})$$

Доказательство.

$$(\lambda \vec{a}) \vec{b} \vec{c} = (\lambda \vec{a}) \vec{d} = \lambda (\vec{a} \vec{d}) = \lambda (\vec{a} (\vec{b} \vec{c})) = \lambda (\vec{a} \vec{b} \vec{c})$$

Замечание. Примечание: это работает для любого положения λ .

4. Свойство коммутативности

$$(\vec{a_1} + \vec{a_2})\vec{b}\vec{c} = \vec{a_1}\vec{b}\vec{c} + \vec{a_2}\vec{b}\vec{c}$$

Доказательство.

$$\begin{split} (\vec{a_1} + \vec{a_2}) \vec{b} \vec{c} &= (\vec{a_1} + \vec{a_2}) \vec{d} \\ &= \vec{a_1} \vec{d} + \vec{a_2} \vec{d} \\ &= \vec{a_1} (\vec{b} \vec{c}) + \vec{a_2} (\vec{b} \vec{c}) \\ &= \vec{a_1} \vec{b} \vec{c} + \vec{a_2} \vec{b} \vec{c} \end{split}$$

Замечание. Работает не только для \vec{a} , но и векторов \vec{b} и \vec{c} .

3.4.2 Формула смешанного произведения трёх векторов в правом ортонормированном базисе

Пусть $\vec{a}, \vec{b}, \vec{c}$ заданы координатами:

$$\vec{a} = \{x_a, y_a, x_a\}$$
$$\vec{b} = \{x_b, y_b, .z_b\}$$
$$\vec{c} = \{x_c, y_c, z_c\}$$

14

Найдём смешанное произведение:

$$\vec{a}\vec{b}\vec{c} = (\vec{a} \times \vec{b}) \cdot \vec{c} = \left\{ \begin{vmatrix} y_a & z_a \\ y_b & z_b \end{vmatrix}, - \begin{vmatrix} x_a & z_a \\ x_b & z_b \end{vmatrix}, \begin{vmatrix} x_a & y_a \\ x_b & y_b \end{vmatrix} \right\} \cdot \vec{c} =$$

$$= \begin{vmatrix} y_a & z_a \\ y_b & z_b \end{vmatrix} \cdot x_c - \begin{vmatrix} x_a & z_a \\ x_b & z_b \end{vmatrix} \cdot y_c + \begin{vmatrix} x_a & y_a \\ x_b & y_b \end{vmatrix} \cdot z_c =$$

$$= \begin{vmatrix} x_a & y_a & z_a \\ x_b & y_b & z_b \\ x_c & y_c & z_c \end{vmatrix}$$

T.e.

$$\vec{a}\vec{b}\vec{c} = \begin{vmatrix} x_a & y_a & z_c \\ x_b & y_b & z_b \\ x_c & y_c & z_c \end{vmatrix}$$

3.4.3 Геометрическое приложение смешанного произведения

Пусть $\vec{a}, \vec{b}, \vec{c}$. Совместим начала этих векторов и достроим до параллелипипеда. Тогда $V_{paral} = |\vec{a}\vec{b}\vec{c}|$.

Замечание.

$$V_{pyramid} = \frac{1}{6}V_{paral} = \frac{1}{6} \cdot |\vec{a}\vec{b}\vec{c}|$$

4 Прямая на плоскости

4.1 Каноническое уравнение

Пусть прямая l проходит через точку $M_0(x_0,y_0)$ и задана направляющим вектором $\vec{S}=\{m,n\}$ (т.е. вектор паралеллен прямой). Выберем на прямой l произвольную точку M. Составим $\overrightarrow{M_0M}=\{x-x_0,y-y_0,z-z_0\}$.

$$\overrightarrow{M_0M} \parallel \overrightarrow{s} \Rightarrow \boxed{\frac{x-x_0}{m} = \frac{y-y_0}{n}}$$

4.2 Параметрическое уравнение

Пусть прямая l задана каноническим уравнением:

$$\frac{x - x_0}{m} = \frac{y - y_0}{n}$$

Обозначим коеффициент пропорциональности через t. Тогда:

$$\frac{x-x_0}{\frac{y-y_0}{n}} = t \Rightarrow \begin{cases} x = x_0 + mt \\ y = y_0 + nt \end{cases}$$

4.3 Через две точки

Пусть прямая l проходит через точки $M_0(x_0,y_0)$ и M(x,y). Выберем на прямой l произвольную точку $M_1(x_1,y_1)$. Составим два вектора $\overrightarrow{M_0M}$, $\overrightarrow{M_0,M_1}$.

$$\overrightarrow{M_0M} = \{x - x_0, y - y_0\}$$
 $\overrightarrow{M_0M_1} = \{x_1 - x_0, y_1 - y_0\}$

Т.к. вектора коллинеарны, то и соответствующие координаты пропорциональны:

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0}$$

4.4 В отрезках

Пусть прямая l отсекает от координатного угла отрезки a и b. Тогда прямая l проходит через точки A(0,a) и B(b,0).

$$\frac{x-a}{0-a} = \frac{y-0}{b-0} \Rightarrow \boxed{\frac{x}{a} + \frac{y}{b} = 1}$$