\boldsymbol{x}	-1/3	1/3	3	5	17/3	19/3
f(x)	-10	-1	7	-5	-9	-4
f'(x)	-9	-5	3	-2	-10	6

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 2.

Solution: $h'(2) = f'(g(2))g'(2) = f'(3) \cdot (2) = (3) \cdot (2) = 6$

$$y - (7) = 6(x - 2)$$

x	-1	0	4	8	9	10
f(x)	-5	2	-4	6	1	9
f'(x)	-9	11	-2	7	3	5

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 1.

Solution: $h'(1) = f'(g(1))g'(1) = f'(4) \cdot (4) = (-2) \cdot (4) = -8$

$$y - (-4) = -8(x - 1)$$

x	-1/3	1/3	3	5	11/2	6
f(x)	3	2	-1	7	5	4
f'(x)	-3	8	-9	6	-2	-10

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 1.

Solution: $h'(1) = f'(g(1))g'(1) = f'(3) \cdot (2) = (-9) \cdot (2) = -18$

$$y - (-1) = -18(x - 1)$$

x	-2/3	-1/3	3	6	7	8
f(x)	1	2	- 9	-11	5	3
f'(x)	3	4	9	10	7	8

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 2.

Solution: $h'(2) = f'(g(2))g'(2) = f'(3) \cdot (3) = (9) \cdot (3) = 27$

$$y - (-9) = 27(x - 2)$$

x	-1/2	0	3	6	7	8
f(x)	-11	7	-10	9	-8	-1
f'(x)	2	6	7	10	-11	-8

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 0.

Solution: $h'(0) = f'(g(0))g'(0) = f'(3) \cdot (3) = (7) \cdot (3) = 21$

$$y - (-10) = 21(x - 0)$$

x	-4/3	-2/3	2	4	9/2	5
f(x)	-3	-5	-6	7	1	-11
f'(x)	3	7	-8	1	-5	4

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 1.

Solution: $h'(1) = f'(g(1))g'(1) = f'(2) \cdot (2) = (-8) \cdot (2) = -16$

$$y - (-6) = -16(x - 1)$$

x	-1	0	2	4	9/2	5
$\int f(x)$	6	-10	-8	-7	9	4
f'(x)	10	6	-5	2	8	1

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 1.

Solution: $h'(1) = f'(g(1))g'(1) = f'(2) \cdot (2) = (-5) \cdot (2) = -10$

$$y - (-8) = -10(x - 1)$$

x	-1/2	0	2	4	9/2	5
f(x)	5	-9	4	2	10	-6
f'(x)	6	-10	-7	-5	-8	-3

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 0.

Solution: $h'(0) = f'(g(0))g'(0) = f'(2) \cdot (2) = (-7) \cdot (2) = -14$

$$y - (4) = -14(x - 0)$$

x	-3/2	-1	2	5	6	7
$\int f(x)$	1	10	-3	-4	9	5
f'(x)	3	11	8	-1	5	4

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 1.

Solution: $h'(1) = f'(g(1))g'(1) = f'(2) \cdot (3) = (8) \cdot (3) = 24$

$$y - (-3) = 24(x - 1)$$

x	-1/2	0	2	4	13/2	7
f(x)	3	4	-7	5	2	8
f'(x)	-8	3	1	4	-7	-10

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 1.

Solution: $h'(1) = f'(g(1))g'(1) = f'(2) \cdot (2) = (1) \cdot (2) = 2$

$$y - (-7) = 2(x - 1)$$

x	-1/2	0	2	4	13/2	7
f(x)	-4	-7	-10	- 9	-1	-2
f'(x)	-11	-4	-3	-5	7	-9

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 0.

Solution: $h'(0) = f'(g(0))g'(0) = f'(2) \cdot (2) = (-3) \cdot (2) = -6$

$$y - (-10) = -6(x - 0)$$

x	0	1	3	5	15/2	8
f(x)	4	-11	7	8	-1	-10
f'(x)	-7	11	-3	-2	-8	-10

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 0.

Solution: $h'(0) = f'(g(0))g'(0) = f'(3) \cdot (2) = (-3) \cdot (2) = -6$

$$y - (7) = -6(x - 0)$$

x	-1	0	2	4	14/3	16/3
$\int f(x)$	-6	-1	10	-4	9	-7
f'(x)	4	10	-11	2	-5	-8

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 0.

Solution: $h'(0) = f'(g(0))g'(0) = f'(2) \cdot (2) = (-11) \cdot (2) = -22$

$$y - (10) = -22(x - 0)$$

x	-1/2	0	2	4	5	6
$\int f(x)$	-9	7	-1	8	5	-10
f'(x)	10	-6	-2	-5	3	-11

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 1.

Solution: $h'(1) = f'(g(1))g'(1) = f'(2) \cdot (2) = (-2) \cdot (2) = -4$

$$y - (-1) = -4(x - 1)$$

x	-1/3	1/3	4	7	8	9
f(x)	-3	10	4	-1	-11	-7
f'(x)	-3	6	4	2	-8	5

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 2.

Solution: $h'(2) = f'(g(2))g'(2) = f'(4) \cdot (3) = (4) \cdot (3) = 12$

$$y - (4) = 12(x - 2)$$

x	-5/3	-4/3	1	3	11/2	6
f(x)	-4	5	-8	-3	11	-10
f'(x)	-7	3	-10	-2	4	11

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 2.

Solution: $h'(2) = f'(g(2))g'(2) = f'(1) \cdot (2) = (-10) \cdot (2) = -20$

$$y - (-8) = -20(x - 2)$$

x	0	1	3	5	8	9
f(x)	-6	11	-4	8	- 9	2
f'(x)	3	-6	-10	9	-8	-2

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 0.

Solution: $h'(0) = f'(g(0))g'(0) = f'(3) \cdot (2) = (-10) \cdot (2) = -20$

$$y - (-4) = -20(x - 0)$$

x	-1/2	0	2	4	19/3	20/3
f(x)	-1	-7	-4	8	-5	3
f'(x)	-10	-4	5	3	9	6

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 1.

Solution: $h'(1) = f'(g(1))g'(1) = f'(2) \cdot (2) = (5) \cdot (2) = 10$

$$y - (-4) = 10(x - 1)$$

x	-5/3	-4/3	2	5	9	10
f(x)	4	-8	-2	3	-10	-7
f'(x)	4	-5	-3	-10	-7	1

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 1.

Solution: $h'(1) = f'(g(1))g'(1) = f'(2) \cdot (3) = (-3) \cdot (3) = -9$

$$y - (-2) = -9(x - 1)$$

x	-1/2	0	3	6	10	11
f(x)	4	-10	-3	5	6	-2
f'(x)	8	-10	9	-6	-5	4

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 1.

Solution: $h'(1) = f'(g(1))g'(1) = f'(3) \cdot (3) = (9) \cdot (3) = 27$

$$y - (-3) = 27(x - 1)$$