Formeln		
Lineare Regression	Regularisierung	Convolutional Neuronal Networks
Linearer Zusammenhang zwischen den Eingabevariablen x und der Ausgabevariable y wird modelliert. $ Hypothesenfunktion: \\ h_{\theta(x)} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n \\ Kostenfunktion (MSE): \\ J(\theta) = \frac{1}{2n} \sum_{i=1}^n \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2 \\ Ziel: \\ \text{Finde Parameter } \theta \text{ um J zu minimieren } \\ \min J(\theta) \\ Multivariat: \\ \text{Mehrere Features } x_1, x_2, \ldots, x_n \\ Polynom-Regression: \\ h_{\theta(x)} = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \ldots $	$\begin{aligned} & \textbf{Kostenfunktion mit L2-Regularisierung:} \\ & J(\theta) = \text{frac}\{1\}\{2n\} \sum \left(h_{\theta(x^{\{(i)\}})} - y^{\{(i)\}}\right)^2 + \lambda \sum_{\{j=1\}}^d \theta_j^2 \end{aligned} \\ & \textbf{Effekt von } \lambda: \\ & \cdot \lambda = 0 \rightarrow \text{kein Penalty} \\ & \cdot \text{großes } \lambda \rightarrow \text{starke Bestrafung, Underfitting} \\ & \textbf{Bias-Term } \theta_0 \text{ wird oft nicht regularisiert} \end{aligned}$	
	Support Vector Machines	
Gradient Descent	Ziel:	
$\begin{array}{l} \textbf{Update-Regel:} \\ \theta_j \coloneqq \theta_j - \alpha \ \text{frac} \{\partial\} \big\{ \partial \theta_j \big\} J(\theta) \end{array}$	$m \in \atop \{w,b\} \text{ (frac}\{1\}\{2\} w ^2 + C \sum xi_i)$ Nebenbedingungen: $y^{\{(i)\}}(w^T x^{\{(i)\}} + b)ge1 - xi_i \text{ mit } xi_i ge0$	
Für lineare Regression: $\theta_j \coloneqq \theta_j + \alpha \; \operatorname{frac}\{1\}\{n\} \sum_{\{i=1\}}^n \left(y^{\{(i)\}} - h_{\theta(x^{\{(i)\}})}\right) \cdot x_j^{\{(i)\}}$	C kontrolliert Trade-off: großes $C \rightarrow$ weniger Fehler,	
Lernrate α: Zu groß → Divergenz, zu klein → langsame Konvergenz	kleines $C o$ größerer Margin $ egin{aligned} \textbf{Kernel-Trick}:\\ \textbf{z.B.}\ K(x,x') = e^{\{-\gamma x-x' ^2\}}\ (\text{RBF-Kernel}) \end{aligned} $	
Logistische Regression	Neuronale Netzwerke	
$ \begin{aligned} & \textbf{Sigmoidfunktion:} \\ & g(z) = \text{frac}\{1\} \big\{ 1 + e^{\{-z\}} \big\} \end{aligned} $	Feedforward: $z^{((l+1))} = \theta^{\{(l)\}}a^{\{(l)\}}$	
$\begin{aligned} & \textbf{Hypothese:} \\ & h_{\theta(x)} = g(\theta^T x) \end{aligned}$	$a^{\{(l+1)\}} = g(z^{\{(l+1)\}})$ Backpropagation:	Modell Evaluation
Klassifikation: $h_{\theta(x)}ge0.5 \rightarrow \text{Klasse } 1$	$\delta^{\{(L)\}} = a^{\{(L)\}} - y \ \delta^{\{(l)\}} = (\theta^{\{(l)\}})^T \delta^{\{(l+1)\}} \cdot *g'(z^{\{(l)\}})$	7 . 1 . 1
$h_{\theta(x)} < 0.5 o ext{Klasse 0}$	Gradientenabstieg:	Entscheidungsbäume
Entscheidungsgrenze: $\theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$	$\theta^{\{(l)\}} := \theta^{\{(l)\}} - \alpha \delta^{\{(l)\}} a^{\{(l-1)\}}$	Pricipal Component Analysis (PCA)
Nicht-linearität durch Features wie x_1^2, x_1x_2 , dots	Aktivierungsfunktionen: Sigmoid, Tanh, ReLU, Leaky ReLU, Softmax	