<u>Уровень 0 (для тех, кого не было на прошлом уроке или для тех, кто не успел/не понял).</u>

1. Открываем программу.

2. Получаем такое окно (какие-либо комментарии, выделенные серым шрифтом, можно стереть):

!!!ВНИМАНИЕ!!!

Программу для Робота мы пишем МЕЖДУ слов «нач» и «кон».

3. Чтобы писать алгоритм для Робота, надо зайти в «Вставка» => «Использовать Робот»:

Теперь наше окно выглядит вот так:

4. Заходим в «Робот», выбираем пункт «Редактировать обстановку», выбираем эту опцию.

5. Выбираем сверху тот квадратик, который предназначен для работы с Роботом (навести мышкой на квадратик, высвечивается «Робот»):

Выбираем этот «квадратик»

6. Появляется вот такое окошечко.

С помощью «+» и «-» можно добавлять или убирать строки и столбцы. Формируем свою обстановку для Робота.

7. Наживаем на ребро клеточки, оно подсвечивается жирным. Формируем путь в виде буквы «Г» (для наглядности выделено черным цветом):

8. Переносим робота, зажав кнопкой мыши, в начало пути.

9. Заходим в «Робот», находим «Редактировать обстановку», тыкаем, снимаем галочку. Поле становится зелёным.

10. Первая часть нашего алгоритма - до тех пор пока справа стена, Робот будет закрашивать клеточку, на которой он находится, и сдвигаться вверх (понятие ЦИКЛ).

Ставим курсор в первую строчку после служебного слова «нач» (помечено красным крестиком):

11. Заходим в «Вставка», выбираем пункт «нц-пока-кц». Выбираем его.

нц – начало цикла

кц – конец цикла

Эти слова обязательны для выполнения цикла!!!!

После слова «пока» мы пишем условие для его выполнения.

Теперь наш алгоритм выглядит вот таким образом:

```
1 использовать Робот
2 алг
3 нач
4 . нц пока
5 . .
6 . кц
7 .
8 кон
```

12.Заполняем его.

```
использовать Робот
1
2
   алг
3
   нач
4
   . нц пока справа стена
5

    закрасить

6
      вверх
7
    . КЦ
8
9
   кон
```

Пока справа стена (условие выполнения цикла), Робот красит клеточку и идет вверх.

13.Запустим нашу программу. Нажимаем вот этот треугольничек.

14. Программа запускается.

15. Попадаем в верхнюю клетку. Она ни в какой цикл входить не будет. Поэтому Робот её просто закрасит и повернет направо.

```
1 использовать Робот
2 алг
3 нач
4
  . нц пока справа стена
  . закрасить
6
   вверх
7
   . КЦ
8

    закрасить

9
  • вправо
10
11 кон
```

16. Теперь Робот будет идти вправо до тех пор, пока СНИЗУ будет стена.

Возникает снова цикл. «Вставка» = > «нц – пока – кц»:

```
использовать Робот
 2 алг
 3 Hay
   . нц пока справа стена
 5
    закрасить
 6
   . вверх
 7
    . кц
 8
   . закрасить
9

    вправо

10
   . нц пока
11
12
    . кц
13 кон
```

17. Заполняем тело цикла:

```
1 использовать Робот
 2
   алг
   нач
 4 . нц пока справа стена
 5 . . закрасить
 6 вверх
7
   . кц
8

    закрасить

9

    вправо

10 . нц пока снизу стена
11 закрасить
12
   . вправо
13 . кц
14 кон
```

18. Готово, теперь наш Робот красить клетки вокруг лабиринта в виде буквы «Г»:

Теперь задачу усложним.

1. Заходим снова в «Робот» => «Редактировать обстановку». Тыкаем на значок радиоактивной опасности.

2. Будем заражать радиацией некоторые из клеток на пути Робота (маршрут в виде буквы «Г» останется таким же). Для этого надо тыкнуть на соответствующую клеточку, которую хотим заразить.

Пример:

- 3. Заходим в «Робот», «Редактировать обстановку», снимаем галочку. Поле станет зелёным.
- 4. Теперь мы будем красить только те клетки, которые заражены радиацией. Вспоминаем про алгоритм с ВЕТВЛЕНИЕМ.

Теперь новый алгоритм будет выглядеть вот так:

```
использовать Робот
алг
нач
. нц пока справа стена
  . если радиация > 0
  . то закрасить
  . Bce

    вверх

. КЦ

    закрасить

    вправо

. нц пока снизу стена

    закрасить

 вправо
. кц
кон
```

!!!ВНИМАНИЕ!!!

Обратите внимание на структуру алгоритма. Есть служебные слова «если», «то» и «все». Без них алгоритм работать не будет.

5. Дополним остальные инструкции нашего алгоритма. (красным выделены те кусочки алгоритма, где мы добавили алгоритм с ветвлением):

```
использовать Робот
 2
   алг
3
   нач
4
   . нц пока справа стена
5
   если радиация > 0
6
   . . то закрасить
7
    . . Bce
8
    . вверх
9
    . кц
10
  . если радиация >
11
   то закрасить
12

    BCe

13
  • вправо
14 . нц пока снизу стена
15
    . . если радиация > 0
16 то закрасить
17
    . все
18
    . вправо
19
    . КЦ
20
   кон
```

6. Теперь Робот красит только те клетки, которые заражены радиацией. Например, вот так:

Еще усложняем задачу.

1. Мы будем ещё и считать количество зараженных клеток. Для этого введём ЦЕЛОЧИСЛЕННУЮ переменную:

```
1 использовать Робот
2 алг
3 нач
4 цел п
5 нц пока справа стена
6 если радиация > 0
7 то закрасить
8 все
```

2. С ее помощью мы будем считать количество зараженных клеток. В самом начале своего пути Робот еще не нашел НИ ОДНУ клетку. Поэтому наша переменная-счётчик равна нулю:

нач

- **.** цел n
- . n:= 0

Обратите внимание, как именно происходит присваивание значения. Ставим двоеточие «:», затем знак равно «=».

3. Теперь если Робот найдёт зараженную клетку, то значение нашей переменной-счётчика мы будем увеличивать на единицу:

```
если радиация > 0
то закрасить
n:= n + 1
все
```

4. Теперь наш алгоритм выглядит вот так:

```
использовать Робот
 2
3
  нач
4
   . цел n
   . n:= 0
5
6
   . нц пока справа стена
7
   . . если радиация > 0
8
   то закрасить
9
   n = n + 1
10
   . . все
11
   вверх
12
   . кц
   . если радиация > 0
13
14
   . то закрасить
   ...n = n + 1
15
16
   . Bce
17
   • вправо
18
   . нц пока снизу стена
19
   . . если радиация > 0
20
   . . то закрасить
21
  n = n + 1
   . . все
22
23
   . вправо
24
   . КЦ
25
   кон
```

5. Выведем сообщение. Если у нас есть зараженные клетки, мы будем выводить на экран их количество и выводить сообщение: «Заражено!».

```
. n:= 0
6 . нц пока справа стена
   . . если радиация > 0
   . . то закрасить
9
   ...n = n + 1
10
   . . Bce
11
   вверх
12
   . кц
13
   . если радиация > 0
   . то закрасить
   . . . n := n + 1
   BCe
17
   • вправо
18
   . нц пока снизу стена
19
   если радиация > 0
20
   . . то закрасить
21
   n = n + 1
22
   . . Bce
23
   . вправо
24
   КЦ
25
   . если n > 0
   . . то вывод "Заражено: ", п
27
   . . иначе вывод "Коридор чист"
28
   . Bce
29 кон
```

6. Запускаем программу. Вывод сообщения:

```
>> 0:32:11 - Новая программа - Начало выполнения
Заражено: 8
>> 0:32:14 - Новая программа - Выполнение завершено
```

Уровень 1.

Иногда при построении лабиринта может возникнуть такая ситуация, что Робот разобьется.

Здесь Робот идет влево ДО ТЕХ ПОР, пока снизу стена. Он идет влево и разбивается о стену:

Как избежать таких ситуаций?

Изменим формулировку наших инструкций.

```
использовать Робот
1
2
    алг
3
    нач
4

    нц пока слева свободно

5

    закрасить

6

    влево

7

    КЦ

8
9
    кон
```

Теперь Робот будет красить клетку и идти влево только в том случае, если слева будет свободно. Ура, теперь он не разобьётся!

Пример.

Робот красит клетки и идет влево, доходит до стены, начинает идти

Еще пример:

Задание 1.

Простые и составные алгоритмы.

Прочитать здесь: http://www.klyaksa.net/htm/konspektsch/kumir/13.htm

Задание 2. Имеется коридор П-образной формы (как в прошлом задании).

Вам необходимо не только заразить некоторые из клеток радиацией, но и задать им определенную температуру (это можно сделать в «Редакторе обстановки»).

Задание: закрасить только те клетки, которые заражены радиацией и у которых температура больше нуля.

Использовать составное условие.

Условие для проверки температуры:

температура > 0

Задание 3.

Прочитать и выполнить:

http://www.klyaksa.net/htm/konspektsch/kumir/22.htm

Задание 4.

Построить такой же вытянутый (как в примере по ссылке в Задании 3) лабиринт. Закрашивать только те клетки, у которых ТЕМПЕРАТУРА является минимальной (*).

(*) В редакторе обстановки задаваемую температуру можно менять:

Это параметр можно уменьшить:

Можно увеличить:

Задание 5.

Создать путь для Робота вдоль стену и произвольно заразим радиацией клетки. Обратите внимание, радиация может выражаться не только целым числом, а также рациональным:

Будем проходить вот этот коридор.

Теперь вам надо пройтись по этому коридору и посчитать суммарное радиоактивное излучение от всех клеток, которому был подвержен Робот.

На каждом шаге проверять: есть ли радиация. Если есть, излучение от клетки прибавить к специальной переменной.

Так как в этом примере числа у нас уже как целые, так и дробные, то необходимо завести переменную ВЕЩЕСТВЕННОГО типа.

. вещ *n*; . *n*:= 0

Дополнительные задания.

Вариант 1

 Необходимо провести Робота по коридору шириной в одну клетку из начального положения (◊) до конца коридора, закрашивая при этом все клетки коридора, которые имеют выход. Выходы размером в одну клетку располагаются произвольно по всей длине коридора. Коридор заканчивается тупиком. Коридор имеет два горизонтальных и диагональный участки в форме ∠. Пример коридора показан на рисунке.

2. Робот движется вдоль стены, профиль которой показан на рисунке, от начального положения (\Diamond) до конца стены. Необходимо закрасить все внутренние углы стены, как показано на примере. Размеры стены могут быть произвольны.

