Lenguajes Formales y Computabilidad Definiciones y Convenciones: Combo 1

Nicolás Cagliero

June 22, 2025

- 1. Defina cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -recursivo (no hace falta que defina "función Σ -recursiva")
- 2. Defina $\langle s_1, s_2, \dots \rangle$
- 3. Defina "f es una función Σ -mixta"
- 4. Defina "familia Σ -indexada de funciones"
- 5. Defina $R(f, \mathcal{G})$ (haga el caso de valores numéricos)

Respuestas:

- 1. Un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -recursivo cuando la función $\chi_S^{\omega^n\times\Sigma^{*m}}$ sea Σ -recursiva
- 2. $\langle s_1, s_2, \dots \rangle$ es lo que usamos para denotar al número $\prod^{\infty} pr(i)^{s_i}$ dada una infinitupla $(s_1, s_2, \dots) \in \omega^{[N]}$
- 3. Sea Σ un alfabeto finito. Dada una función f, diremos que f es $\Sigma mixta$ si cumple las siguientes propiedades:
 - (M1) Existen $n,m\geq 0,$ tales que $D_f\subseteq \omega^n\times \Sigma^{*m}$ (M2) Ya sea $I_f\subseteq \omega$ o $I_f\subseteq \Sigma^m$
- 4. Dado un alfabeto Σ , una familia Σ -indexada de funciones es una función \mathcal{G} tal que $D_{\mathcal{G}} = \Sigma$ y para cada $a \in D_{\mathcal{G}}$ se tiene que $D_{\mathcal{G}}(a)$ es una función.
- 5. Sea

$$f: S_1 \times \cdots \times S_n \times L_1 \times \cdots \times L_m \to \omega$$

con $S_1 \times \cdots \times S_n \subseteq \omega$ y $L_1 \times \cdots \times L_m \subseteq \Sigma^*$ conjuntos no vacíos y sea $\mathcal G$ una familia Σ -indexada de funciones tal que

$$\mathcal{G}_a: \omega \times S_1 \times \cdots \times S_n \times L_1 \times \cdots \times L_m \to \omega$$

para cada $a\in \Sigma,$ definimos

$$R(f,\mathcal{G}): S_1 \times \dots \times S_n \times L_1 \times \dots \times L_m \times \Sigma^* \to \omega$$

$$R(f,\mathcal{G})(\overrightarrow{x}, \overrightarrow{a}, \varepsilon) = f(\overrightarrow{x}, \overrightarrow{a})$$

$$R(f,\mathcal{G})(\overrightarrow{x}, \overrightarrow{a}, \alpha a) = \mathcal{G}_a(R(f,\mathcal{G})(\overrightarrow{x}, \overrightarrow{a}, \alpha), \overrightarrow{x}, \overrightarrow{a}, \alpha)$$