

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

| ФАКУЛЬТЕТ | «Информатика и системы управления»                        |  |  |
|-----------|-----------------------------------------------------------|--|--|
| КАФЕДРА   | «Программное обеспечение ЭВМ и информационные технологии» |  |  |

# ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ по курсу «Моделирование»

«Марковские процессы»

| Студент:     | ИУ7-73Б  |                 | М. Д. Маслова   |
|--------------|----------|-----------------|-----------------|
|              | (группа) | (подпись, дата) | (И. О. Фамилия) |
| Руководители | ó:       |                 | И. В. Рудаков   |
|              |          | (подпись, дата) | (И. О. Фамилия) |

## СОДЕРЖАНИЕ

| 1 | Зад | ание                                     |
|---|-----|------------------------------------------|
| 2 | Teo | ретическая часть                         |
|   | 2.1 | Марковские процессы                      |
|   | 2.2 | Предельные вероятности состояний         |
|   | 2.3 | Время наступления установившегося режима |
| 3 | Пра | актическая часть                         |
|   | 3.1 | Текст программы                          |
|   | 3.2 | Полученный результат                     |

### 1 Задание

Разработать программное обеспечение, предоставляющее возможность определения вероятности и времени пребывания системы массового обслуживания в каждом состоянии в установившемся режиме работы.

Реализовать графический интерфейс, позволяющий задать количество состояний системы (их не более десяти) и матрицу интенсивностей переходов.

#### 2 Теоретическая часть

#### 2.1 Марковские процессы

Случаный процесс, протекающий в некоторой системе S, называется **марковским**, если для каждого момента времени вероятность любого состояния системы в будущем зависит только от ее состояния в настоящем времени и не зависит от того, когда и каким образом система пришла в это состояние, то есть не зависит от того, как процесс развивался в прошлом.

#### 2.2 Предельные вероятности состояний

Для марковских процессов используются уравнения Колмогорова, составляющиеся по следующему правилу:

- 1. В левой части каждого уравнения стоит производная вероятности состояния.
- 2. Правая часть чодержит столько членов, сколько стрелок связано с этим состоянием; если стрелка направлена из состояния соответствующий член имеет знак «-», если в состояние знак «+».
- 3. Каждый член равен плотности веротности перехода (интенсивности), соответсвующей данной стрелке, умноженной на вероятность того состояния, из которого исходит стрелка.

То есть строится система уравнений, которые имеют вид:

$$P'_{i}(t) = \sum_{j=1}^{n} \lambda_{ji} P_{j}(t) - P_{i}(t) \sum_{j=1}^{n} \lambda_{ij},$$
(2.1)

где  $P_i(t)$  – вероятность того, что система находится в i-ом состоянии; n — число состояний в системе;

 $\lambda_i j$  — интенсивность перехода системы из i-ого состояния в j-ое.

Одно из уравнений данной системы заменяется условием нормировки:

$$\sum_{i=1}^{n} P_i(t) = 1. (2.2)$$

В силу того, что *предельные вероятности состояний постоянны*, для их определения в уравнениях Колмогорова необходимо *заменить их про-*

*изводные нулями* и решить полученную систему линейных алгебраческих уравнений.

Отметим, что предельная вероятность состояния показывает *среднее относительное время пребывания* системы в этом состоянии.

### 2.3 Время наступления установившегося режима

- 3 Практическая часть
- 3.1 Текст программы
- 3.2 Полученный результат