1. Introduction

'010' sequence detector를 Verilog를 이용해서 구현해본다.

2. Implementation

구현하고자 하는 sequence detector는 sequence의 마지막이 '010'일 때, Output이 1이며, 나머지에서는 0이다. Mealy machine으로 구현하며, State는 Clock의 positive edge일 때 변화한다. Input 변수 areset이 1이면, 초기 State로 돌아간다. 구현을 위한 State transition diagram과 table은 다음과 같다.

	Present otate	Input	next state	output
	0,00	Se &	D ₁ D ₀	detected
δ,	00	0	S, 01	D
		/	S ₂ 10	D
٥,	0	0	S, 01	0
		1	S ₁ 0 1 S ₃ 1 1	O
5_	10	0	S, 01	0
		1	S. 10	D
5	11	o	S, 01 S ₂ 10	
~ 3	, ,	1	9, 01	1
		1	5, 10	0

4개의 State 변수를 사용하며, 2 bit로 모든 State를 나타낼 수 있다. Input 변수 areset이 asserted 일 때, S0의 State로 Synchronous하게 변화하며, Output이 1인 경우는 State S3일 때, Input이 0인

경우밖에 없다.

3. Result

주어진 템플릿 코드에 case구문을 사용해서 구현한 결과, 테스트 벤치 코드에서 에러 결과가 0개로 출력되었으며, Sequence에서 '010'을 올바르게 탐지해내는 detector를 구현했음을 확인할 수 있었다.

4. Conclusion/Discussion

Mealy machine으로 구현하기 때문에, State 변수의 개수를 줄일 수 있다. Mealy machine의 state도 Clock에 Synchronous하게 변화하지만, Output은 Input이 asynchronous한 경우, 불안정하게 변화할 수 있다. 안정적인 구현을 위해서는 Moore machine이 바람직할 것이다.