

Expository graphs

Jeffrey Leek, Assistant Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

Why do we use graphs in data analysis?

- To understand data properties
- · To find patterns in data
- To suggest modeling strategies
- To "debug" analyses
- · To communicate results

Expository graphs

- To understand data properties
- $\boldsymbol{\cdot}$ To find patterns in data
- To suggest modeling strategies
- To "debug" analyses
- To communicate results

Characteristics of expository graphs

- · The goal is to communicate information
- · Information density is generally good
- Color/size are used both for aesthetics and communication
- · Expository figures have understandable axes, titles, and legends

Housing data

pData <- read.csv("./data/ss06pid.csv")</pre>

Axes

Important parameters: xlab,ylab,cex.lab,cex.axis

Axes

Legends

• Important paramters: *x*,*y*,*legend*, *other plotting parameters*

```
plot(pData$JWMNP,pData$WAGP,pch=19,col="blue",cex=0.5,xlab="TT (min)",ylab="Wages (dollars)")
legend(100,200000,legend="All surveyed",col="blue",pch=19,cex=0.5)
```


Legends

 $\label{local_potential} plot(pData\$JWMNP,pData\$WAGP,pch=19,cex=0.5,xlab="TT (min)",ylab="Wages (dollars)",col=pData\$SEX) \\ legend(100,200000,legend=c("men","women"),col=c("black","red"),pch=c(19,19),cex=c(0.5,0.5)) \\$

Titles

```
plot(pData$JWMNP,pData$WAGP,pch=19,cex=0.5,xlab="CT (min)",
    ylab="Wages (dollars)",col=pData$SEX,main="Wages earned versus commute time")
legend(100,200000,legend=c("men","women"),col=c("black","red"),pch=c(19,19),cex=c(0.5,0.5))
```

Wages earned versus commute time

Multiple panels

```
par(mfrow=c(1,2))
hist(pData$JWMNP,xlab="CT (min)",col="blue",breaks=100,main="")
plot(pData$JWMNP,pData$WAGP,pch=19,cex=0.5,xlab="CT (min)",ylab="Wages (dollars)",col=pData$SEX)
legend(100,200000,legend=c("men","women"),col=c("black","red"),pch=c(19,19),cex=c(0.5,0.5))
```


Adding text

```
par(mfrow=c(1,2))
hist(pData$JWMNP,xlab="CT (min)",col="blue",breaks=100,main="")
mtext(text="(a)",side=3,line=1)
plot(pData$JWMNP,pData$WAGP,pch=19,cex=0.5,xlab="CT (min)",ylab="Wages (dollars)",col=pData$SEX)
legend(100,200000,legend=c("men","women"),col=c("black","red"),pch=c(19,19),cex=c(0.5,0.5))
mtext(text="(b)",side=3,line=1)
```


Figure captions

Figure 1. Distribution of commute time and relationship to wage earned by sex (a) Commute times in the American Community Survey (ACS) are right skewed. (b) Commute times do not appear to be strongly correlated with wage for either sex.

Colorblindness

http://www.vischeck.com/

Graphical workflow

- Start with a rough plot
- · Tweak it to make it expository
- Save the file

8/28/13

Include it in presentations

Saving files in R is done with graphics *devices*. Use the command ?Devices to see a list. Here we will go over the most popular devices.

pdf

· Important parameters: file, height, width

```
pdf(file="twoPanel.pdf",height=4,width=8)
par(mfrow=c(1,2))
hist(pData$JWMNP,xlab="CT (min)",col="blue",breaks=100,main="")
mtext(text="(a)",side=3,line=1)
plot(pData$JWMNP,pData$WAGP,pch=19,cex=0.5,xlab="CT (min)",ylab="Wages (dollars)",col=pData$SEX)
legend(100,200000,legend=c("men","women"),col=c("black","red"),pch=c(19,19),cex=c(0.5,0.5))
mtext(text="(b)",side=3,line=1)
dev.off()
```

png

· Important parameters: file, height, width

```
png(file="twoPanel.png",height=480,width=(2*480))
par(mfrow=c(1,2))
hist(pData$JWMNP,xlab="CT (min)",col="blue",breaks=100,main="")
mtext(text="(a)",side=3,line=1)
plot(pData$JWMNP,pData$WAGP,pch=19,cex=0.5,xlab="CT (min)",ylab="Wages (dollars)",col=pData$SEX)
legend(100,200000,legend=c("men","women"),col=c("black","red"),pch=c(19,19),cex=c(0.5,0.5))
mtext(text="(b)",side=3,line=1)
dev.off()
```

RStudioGD 2

dev.copy2pdf

```
par(mfrow=c(1,2))
hist(pData$JWMNP,xlab="CT (min)",col="blue",breaks=100,main="")
plot(pData$JWMNP,pData$WAGP,pch=19,cex=0.5,xlab="CT (min)",ylab="Wages (dollars)",col=pData$SEX)
```


dev.copy2pdf

dev.copy2pdf(file="twoPanelv2.pdf")

RStudioGD

2

Something to avoid

http://www.biostat.wisc.edu/~kbroman/topten_worstgraphs/

Something to aspire to

http://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919

Further resources

- How to display data badly
- The visual display of quantitative information
- · Creating more effective graphs
- R Graphics Cookbook
- ggplot2: Elegant Graphics for Data Analysis
- Flowing Data