MSc Individual Project Progress Report

Michael Song (02405765) on 07 August

Progress before last meeting

- Background and progress report
- Data collection (journal images with labels)
- Synthetic datasets for training
- Trained following models:
 - Text Line Detector (LD), based on Faster-RCNN
 - Text Line Recognizer (LR), based on CRNN
 - Character Detector (CD), based on Faster-RCNN
 - Character Recognizer (CR), based on Faster-RCNN
 - Character Classifier (CC), based on ResNet
- Compared the performance with following methods:
 - CR
 - CD + CC
 - -LD + CR
 - LD + CD + CC
 - -LD + LR
- LD + LR is better and chosen for further improvement
 - LD performs well on the most common layout.
 - LR only performs well on train/validation set, but not on target images.
 - * The synthetic training set may not fully matches the target data.
 - Both LD and LR are only trained on vertical text images.
- Manual text extraction performed on 20 images as **testing set**.
- LD Model Training:
 - Synthetic dataset with random layouts and icon integration.
 - Extensive data augmentation techniques used.
- LR Model Training:
 - Combined vertical and horizontal text, frequency-based character selection.
 - Typeface variety increased from 1 to 4.
 - Extensive data augmentation applied.
- Results:
 - LD and LR can handle diverse text layouts.
 - LD is better at ignoring non-text areas.
 - LR shows reduced over-fitting.
- Metrics:
 - Inference speed: **0.8** sec/image.
 - CER: **0.44**
 - BLEU-4: **0.41**
- Comparison with Baseline:
 - Outperforms Apple's OCR engine in CER and BLEU-4.
- Processed textual data from 35,851 journal images.
- Training pipeline improvement:
 - Typeface variety increased from 4 to 12
 - Wider range of data augmentation
 - LR model architecture adjustment
 - Introduce word-based character selection in training data
- Improved result:
 - Average CER improved to **0.33** for 20 images

- * 0.28 for 17 common layout images
- * Less than 0.2 on half of the images
- Average BLEU-4 improved to **0.55** for 20 images
 - * 0.62 for 17 common layout images
- User interface:
 - Load and display image locally
 - Zoom and shift the image
 - Perform OCR on the image
 - Show the results of both detection and recognition
 - Switch between traditional and simplified Chinese

Progress since last meeting

Confidence Scores

- Idea: the average output value from the recognition model for each character
 - For example, the output text for a file is "ABCD",
 - assuming there are only 4 characters in the database,
 - the raw output from the recognition model may be:
 - $-[[0.1, 0.2, \mathbf{0.4}, 0.3], [\mathbf{0.4}, 0.2, 0.1, 0.3], [0.1, \mathbf{0.4}, 0.2, 0.3], [0.1, 0.2, 0.3, \mathbf{0.4}]],$
 - the index of the item with the highest value will be decoded to character,
 - the average of these values will be used as confidence score, which in this case is 0.4
- The prediction with a higher confidence score is theoretically more accurate.
- Relation to other metrics:

Character Error Rate (CER) and BLEU-4 Score for each file, sorted by (BLEU-4 - CER)

Confidence CER

BLEU-4

0.2

0.0

17.txt 09.txt 15.txt 18.txt 03.txt 04.txt 14.txt 20.txt 02.txt 08.txt 11.txt 16.txt 12.txt 07.txt 10.txt 06.txt 01.txt 05.txt 19.txt 13.txt File Name

• Distribution of confidence scores on all 36,101 journal pages:

- Around 30% have a confidence score higher than 0.9 (CER < 0.15 in general)

- Around 70% have a confidence score higher than 0.8 (CER < 0.20 in general)
- Average confidence scores during the publication period:

Baseline Comparison

• Apple Preview and PaddleOCR (v4)

- CER of PaddleOCR is very high as it orders the textlines from left to right
- Our models still lack performance on horizontal text, as the training data is designed to have much more **vertical text** to match the distribution of target data.

Future work

• Final report

Questions

• Report structure