

Model Development Phase Template

Date	24 April 2024
Team ID	740044
Project Title	One Year Life Expectancy post on Thoracic Surgery using Machine Learning
Maximum Marks	6 Marks

Model Selection Report

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

Model	Description	Hyperparameters	PerformanceMetric (e.g., Accuracy, F1 Score)
Random Forest	Ensemble of decision trees; robust, handles complex relationships, reduces overfitting, and provides feature importance for loan approval prediction.		Accuracy score =
Decision Tree	Simple tree structure; interpretable, captures non-linear relationships, suitable for initial insights into loan		Accuracy score = 73%

6	CAAADTEDDIDGE
(1)	SMARTBRIDGE
J	a Veranda Enterprise

	approval patterns.			
KNN		-	Accuracy score =	
	Classifies based on nearest neighbors;	'	82%	
	adapts well to data patterns, effective			
	for local variations in predicting model			
	Gradient boosting with			
	trees; optimizes		Accuracy score	
Gradient	predictive performance, handles	-	=	
Boosting	complex relationships, and is suitable	82% fo	or accurate	
loan approval predictions.				

Logistic regression	Binary Classification: Logistic regression is primarily used for binar classification tasks, where the goal is predict one of two possible outcomes (e.g., spam or not spam, disease or n disease, etc.).	r to o	Accuracy score = 83%
2			