密码学复习整理

考试题型

单选题 20分 10道

简答题 20分 4题

计算题 40分 3题

证明题 20分 2题

考试内容

Enigma, md5, sha, rc4, ecb, cbc, cfb, des, aes, rsa, ecc【4大算法】

ecc 加密解密, 两种签名

公式不用背(比如ECC的签名得到的r、s的公式会提供,但是RSA不会给),会计算就行

Enigma一道计算题,最多敲两下键盘

md5考初始化的过程(结构64位的长度) / 分块,填在最后的报文的位数是不包括填充内容在内

简答题: md5报文填充过程\设计一个函数, 十行左右搞定\

des只能考sbox, 进去啥出去啥

md5和sha对照,散列长度不同,填充相同

rc4基本原理看看

分块ecb (每次加密八个字节) cbc (每次加密八个字节) cfb (每次加密一个字节)

要从程序(写程序实现加密)

aes的矩阵运算,旋转,乘法和除法 3112 BD9E

密钥生成 三种宽度的生成代码看看

证明题 - 四选二

● a,b为整数, ab≠0, 令d=gcd(a,b),一定存在整数x,y, 使d=ax+by

设d = gcd(a,b),则d|a,d|b。由整除的性质, $\forall x,y \in Z$,有d|(ax+by)。

设s为ax+by最小正值,令 $q=\lfloor rac{a}{s}
floor$,则, $r=amods=a-q\left(ax+by
ight)=a\left(1-qx
ight)+b\left(-qy
ight)$ 。

可见r也为a,b的线性组合。

由于r为amods所得,所以 $0 \le r < s$ 。

由于s为a,b线性组合的最小正值,可知r=0。

因此有s|a,同理s|b,因此,s是a与b的公约数,所以 $d \ge s$①。

因为dla,dlb,且s是a与b的一个线性组合,所以由整除性质知dls。

但由于d|s和s>0,因此 $d \le s$②。

由①②得d=s,命题得证

• 欧拉准则

 $y^2 = x \mod p$, $y \in \mathbb{Z}p$,设p > 2是一个素数, x是一个整数, gcd(x,p)=1,则

- (1) x是模p的平方剩余当且仅当 x^{(p-1)/2} ≡ 1 (mod p)
- (2) x是模p的平方非剩余当且仅当 x^{(p-1)/2} ≡ -1 (mod p)

比如1,2,4是模7的平方剩余 1³=1 mod 7 2³=1 mod 7

比如3,5,6是模7的非平方剩余: 3³= -1 mod 7

必要性这里, gcd(y,p)要么是1要么是p, 若为p则p应整除 y^2 , 模不会为x, 故gcd(y,p)=1

2. 证明 Euler 准则 (p.98) ←

若方程有解 $y \in Z_p$,则 x 是模 p 的平方剩余: $y^2 = x \mod p^{\leftarrow}$ 设 p > 2 是一个素数,x 是一个整数, $g \in (x,p) = 1$,则 x 是模 p 的平方剩余的充要条件是: \leftarrow

$$\mathbf{x}^{(p-1)/2} \equiv 1 \pmod{p} \leftarrow$$

证明:↩

(1) 必要性↩

因为 $y^2 = x \mod p$,并且 gcd(x,p)=1,所以一定有 \forall $gcd(y, p)=1; \forall$

根据 Fermat 小定理知, $y^{p-1} \equiv 1 \mod p$, 因此 $(p^{-1})/2 = (y^2)^{p-1/2} = y^{p-1} = 1 \mod p$

(2) 充分性↩

因为 $\mathbf{x}^{(p-1)/2} \equiv 1 \pmod{p}$,且 $\mathbf{x} \mod \mathbf{p} \in \mathbb{Z}_p$,不妨设 $\mathbf{x} \in \mathbb{Z}_p$ 。而 $\mathbb{Z}_p = \{0,1,2,...,p-1\}$ 是有限域, $\mathbb{Z}_p^* = \{1,2,3,...p-1\}$ 在模 \mathbf{p} 乘法运算下是一个循环群,所以一定存在 \mathbb{Z}_p^* 的一个生成元 \mathbf{b} ,使得下式成立: \leftarrow

 $x=b^i \mod p$, $1 \le i \le p-1 \le p$

例如: 1=4² mod 5; 2=3³ mod 5; 3=2³ mod 5; 4 4=3² mod 5; 4

因此,↩

 $1 = \mathbf{x}^{(p-1)/2} = (\mathbf{b}^{\mathbf{i}})^{(p-1)/2} = (\mathbf{b}^{\mathbf{p}-1})^{\mathbf{i}/2} \mod \mathbf{p} \in \mathbb{Z}$ 因为 \mathbf{b} 的阶为 $\mathbf{p}-1$,即 $\mathbf{b}^{\mathbf{p}-1} \mod \mathbf{p} = 1$,所以 \mathbf{i} 必定是偶数,于是 \mathbf{x} 模 \mathbf{p} 的平方根有整数解,并且其值为 $\mathbf{b}^{\mathbf{i}/2}$ mod \mathbf{p} 。 \mathbf{e}

• 中国剩余定理

中国剩字定理,设 M_1, M_2, \dots, M_r 两面基,则以下同家有程见: $\begin{cases}
N \equiv \alpha; \pmod{m_i}, i=1,2,\dots,r \text{ 所接M} ° E - 筋 为 <math>N \subseteq \sum_{i=1}^r \alpha_i; M_i; (M_i, m_od M_i) \end{pmatrix} \mod M$ $M \equiv M_1, M_2, \dots, M_r$ $\text{ 其中 } M_1 \equiv M/m_1;$

(1) 老证明 $\stackrel{\circ}{\Sigma}$ $Q_j * M_i * (M_i^{-1} \text{ mod } M_i)$ 是 在轻组的一个解
双扩任意 $(: j \le I ,$ 都有 $\stackrel{\circ}{\Sigma}$ $a_i * M_i * (M_i^{-1} \text{ mod } M_i)$ mod $m_j = : Q_j$, 所见得证

(以证明是 種/)唯成

假设 X, X是(a)的两个刚毅

Ni= a; mod m; Ni= a; mod m; (i=1, 2, ... y)

x1-x, =0 miny w.

., W: (x)'-y")

· M: 网络夏素 · M/(n: N)

-. x1=80, mod M .: (b)是(a)模M的唯一的

• RSA算法证明过程

```
C=Me mod n
WIRAM = Cd mod 1
  ed= 1 mod PCP+8)
  ed-1= k (p-1)(2-1)
ORM= 0 mod p, PA m=ap,
  Pi med = (ap)ed = 0 mod p = m mod p
①像Mfo mod P, Ell gcd cm, P)=1
 : med = med-1+1 = med-1. m
   = M(P-1) 4P-1 . M
  = (m^{(7-1)})^{(9-1)}.m
= 'gcd cm, 1)= 1
: Zaza' mod p, b= b' mod p
  ab= (a'+kp) (b'+k,p)
     = a'b' + K, k, p2+ (k, a'+k,b') p
: (m) mod p = 1 mod p = 1 mod p
: (m) k(2-1) mod p = 1 mod p
<. (m) kan)
m mod p = M mod p
 ·· 淳上, Med = M mod p
 · PP, Med = M mod 9,
  : Med = KiP+M = K_9+M
  ~ K(P=K29/
  i. k, p = 0 mod q, k, q = 0 mod p
 : gcd (P,9)=1
 : k1=a9, k2=bp
 · med = apg+m
 i. med = m mod (pxq)
        = m mod n
```

第一章 数学基础

整除的定义: 设a、b均为整数,且a≠0, 若存在整数k使得b=a*k,则称a整除b,记作a|b

素数的定义:整数 p 只有因子 ±1 和 ±p,则 p 为素数

互素的定义:对于整数a、b,若gcd(a,b)=1,则称a、b互素。【gcd最大公约数】

gcd定理:设a、b为整数,且a、b中至少有一个不等于0,令d=gcd(a,b),则一定存在整数x、y,使得 a*x + b*y = d。**【当a、b互素时,则一定存在整数x、y使得a*x+b*y=1成立】**

同余的定义:设a、b、n均为整数,且n \neq 0,当a-b是n的倍数时即a=b+n*k(k为整数),我们称a、b对于模n同余,记作:a = b (mod n)

• 若a=b (mod n)且c=d (mod n),则有a+c=b+d, a-c=b-d, a*c=b*d (mod n)

加法模逆元的定义: 若a+b=0 (mod n),则称a是b的加法模n逆元, b是a的加法模n逆元

乘法模逆元的定义:若a*b≡1 (mod n),则称a是b的乘法模n逆元,b是a的乘法模n逆元。a的乘法逆元记作a⁻¹。

• 怎么求乘法模逆元 (辗转相除法)

一个整数a有乘法模逆元X(a * X ≡ 1 mod N)的充要条件是 gcd(a,N) = 1,则存在X和Y,使得 a * X + N * Y = 1 成立。

举例说明: 求13模35的乘法逆元, 即求13*x + 35*y = 1中的y

① 35=2*13+9 ② 13=1*9+4 ③ 9=2*4+1

1 = 9-2*4 = 35-2*13 - (13-1*9)*2 【利用①将9换掉,利用②将4换掉】

= 35-2*13 - (13-(35-2*13))*2 【继续利用①将9换掉】

= (35-2*13)*3 - 13*2 【将35的和13的合并同类项】

= 35*3 - 8*13

解得: x=-8, y=3

其中-8 ≡ (-35+27) ≡ 27 (mod 35) 【在模35的情况下, -8和27等价】

第二章 古典密码

encrypt加密 - decrypt解密 - C密文 - M明文

单表密码:明文字母和密文字母有固定对应关系,即相同明文对应相同的密文,可以用频率分析攻击。

多表密码:每个明文用不同的单标代替,即同一明文对应不同的密文

• demo - Vigenere

 $C = (M+k_i) \% n$; $M = (C-k_i) \% n$

n是26, k是密钥的位置 19+2%26=21; 19+15%26=8

明文=<u>t</u>his cryp<u>t</u>o system is not secure (<u>19</u>,7,8,18,2,17,24,15,<u>19</u>,14,...) ← 密钥=<u>c</u>ipher ci<u>p</u>her cipher ... ← (<u>2</u>,8,<u>15</u>,7,4,17) ← 密文=<u>VPXZGIAXIV</u>... ← (<u>21</u>,15,23,25,6,8,0,23,<u>8</u>,21,...) ←

加密密码: demo - 凯撒密码 C=(M-'A'+3)%26+'A' 密文=明文+3

乘法密码: C=M * K % N ; M=C * K⁻¹ % N 【 K和N一定互质 , 不然K没有乘法逆元 】

仿射密码: $C = (M*k_1 + k_2) \% n$; $M = (C-k_2)*k_1^{-1} \% n$ ($C+k_2$ 的加法逆元) $x(k_1) m$; $x(k_1)$

enigma【重点】

部件

- 接线板**plugboard**:可以**人为**的连接X对字母,使得连接起来的字母对交换(例如,A和B连接,则人输入'A',进入机器的实际上是'B'
- 5个齿轮:每个齿轮有一个ringsetting (内部初始状态,在齿轮转动时不会更改)和messagekey (可以人为设置且会随着齿轮转动更改),这两个是用来计算△的 (messagekey ringsetting);有一张表,可以根据输入字母查到真实输入字母

```
2. rotor Idichar rotor[27]="EKMFLGDQVZNTOWYHXUSPAIBRCJ"; definition of the control of the contro
```

注意: 当数据流向是从右往左的时候,即数据进来的时候,输入的数据是下面这行,然后把上面那行对应的字母传给下一个齿轮/反射板; 当数据流向从左往右的时候,即数据出去的时候,输入的数据是上面那一行,然后把下面那行对应的字母传出去

- 反射板:和接线板差不多【那一行作为输出都可以,因为是两两交换的】
 - char reflector[27]="YRUHQSLDPXNGOKMIEBFZCWVJAT";
 // ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - 反射板上的映射是两两交换的。由于反射板上没有一个字母对应自己(但其他齿轮上允许存在自己对应自己的情况),所以一个明文字母的密文永远不会是自己【这是个缺席】。

如果W变成A, 那么输入A, 他到反射板的时候既有可能是S, 又有可能是F, 这样就不对了。

流程 (举例说明)

• 分别使用III、II、I号齿轮【左----右;输入从右边进入】 齿轮设定为:

CBA ringsetting内部

EDB messagekey外部

输入A后,外部变成EDC【是先转动齿轮,再计算△,再查表的】

因此三位的 Δ =222,

输入A(这边假设接线板上A没有接线。如果接线板上A和B之间有线,那么加上 \triangle 1的是B),加上 \triangle 1,得到I号轮真实输入A+ \triangle 1=C,进入I号轮,(**查下面那行,输出上面**)得到输出M,减去 \triangle 1得到I号轮真实输出M- \triangle 1=K;K加上 \triangle 2,得到II号轮真实输入M,进入II号轮,得到输出W,再减去 \triangle 2,得到II号轮真实输出U;U加上 \triangle 3,得到真实输入W,进入III号轮,得到输出U,减去 \triangle 3得到真实输出S;进入反射板,得到F;加上 \triangle 3,得到真实输入H,(**查上面那行,输出下面**) III号轮输出D,减去 \triangle 3得到B;B加 \triangle 2得到D,进入II号轮,得到C,C减去 \triangle 2等于A;A加上 \triangle 1得到C,进入I号轮,得到Y,Y减去 \triangle 1等于W。最后亮起来的灯泡是字母W(也假设接线板上W没有接线),W是密文。

齿轮转的问题

• 卡口: 当前齿轮处于卡口时, 会带动更高位的齿轮旋转。

QEV | Z; 齿轮的当前位置,从左到右对应齿轮 | | | | | | V V

RFWKA; 齿轮的下一步位置

举例: ① I号轮从Q到R的时候, II会转

② 假定3个齿轮为III、II、I,齿轮I的当前位置=Q且II的当前位置=A, 现在敲任何一个键,都会使I转到R这个位置, 此时I会带动II旋转, 于是II会从A转到B。

double stepping

假定III=1=A, II=4=D, I=17=Q

现在I旋转,从Q变成R,一定会带动II旋转:

III=1=A, II=5=E, I=18=R

此时再旋转I的话,【I本来是不应该带动II转的(因为当前I不在Q这个位置),】但是II还会再转(double stepping),同时由于II从E变成F,所以还会带动III旋转:

III=2=B, II=6=F, I=19=S

- 归纳起来讲, II有两种情况会转动:
 - (1) I从Q转到R
 - (2) II当前在E位置(进位的位置), I不管在什么位置

注: double stepping是由Enigma的机械结构决定的,该现象只会出现在中间那个齿轮上。若上述两个条件同时满足,II 只会转1次

messagekey的传递

发送方随机想出3个齿轮的外部状态(MessageKey)为: ABC。以明文的形式把ABC发送给对方;再想出今天要用到密钥即真正用来加密的齿轮初始状态为:ZJU。在当前齿轮初始状态为ABC的情况下,连续按下ZJU得到ZJU的密文设为Z'J'U'发送给对方。对方在齿轮初始状态为ABC的情况下,输入Z'J'U'一定可以解密出ZJU。接下去双方都把齿轮的初始状态设为ZJU,然后就可以开始正式通讯。

第三章 hash函数

MD5:不论文件多长,都得到128位的hash值

- 碰撞: 假定可以找到报文m1及m2(m1≠m2)使得md5(m1)==md5(m2),则我们称发生了md5碰撞 (collision)。
- md5碰撞可以达到骗取数字签名的目的。
 - 假定有碰撞md5(m1)==md5(m2),其中计算md5(m1)及md5(m2)时所用的4个state种子值均等于md5(letter)完成Final_MD5()前的4个state值,则一定有:md5(letter+m1) == md5(letter+m2)。因此letter+m1的签名可以用于letter+m2。
 - 计算md5(m1) == md5(m2)碰撞时, md5的种子应该等于md5(letter), 而且md5(letter) 时只能计算到Final_MD5()之前, 不能把末尾追加的数据及报文位长度也计算进去。
- md5计算过程中的分块和填充

- o md5分块计算,每块大小是**64字节**
- 当最后一块大小n小于64字节时(当原文件大小整除64B时,最后一块视作0字节),要按以下步骤补充数据凑成64字节(一开始先凑到56个字节,然后再加8个字节表示message总共的位数)
 - 步骤一(选项一): 假定块大小n<56,即[0,56))字节,则在末尾补上以下数据: 0x80 0x00 0x00 0x00 ... 0x00; 共**56-n**个字节 例如: n==55时,只要补0x80一个字节;当n==54时,要补上0x80及0x00两个字节。 (其实就是填了一个1,后面全是0)
 - 步骤一(选项二):假定该块大小n在[56,63]范围内时,则应在末尾补上64-n+56个字节(相当于补到下一个块里了)。例如当n==56时,应该补上64个字节;当n==57时,应该补上63个字节。**补的还是0x80、0x00、0x00、…、0x00**。【这是规定,必须填充至少一个字节**的填充物,所以正好56时就要填到下一个块里了】
 - 步骤二:再在后面补上8个字节,这8个字节相当于一个64位的整数,它的值=message总共的**位数**(不含填充内容),单位为**bit**。这8个字节以**小端**格式保存。
 - 位数!!!小端!!!
- 举例:

再如,长度为 55 字节时,就在原文后面一个字节的 0x80,再加 B8 01 00 00 00 00 00 00。其中 01B8h=440=55*8。

• md5

```
typedef struct _MD5_CTX {
    unsigned long state[4]; /* 128位摘要 */
    unsigned long count[2]; /* 已处理的报文的二进制位数,最大值=2^64-1
    */

    unsigned char data[64]; /* 64字节message块 */
}MD5_CTX;
int Init_MD5(MD5_CTX *MD5_ctx);
int Update_MD5(MD5_CTX *MD5_ctx, unsigned char *buffer, unsigned long count);
int Final_MD5(MD5_CTX *MD5_ctx);
```

- o init: count 归零, state设置初始值
- o update:增加count值即报文位数,分块(64字节)计算并更新到state,多余的存在data里等待之后的填充
- o final:为最后一块填充若小于56字节则补充到56,若大于补充完当前块并补充到下一个56字节,最后增加8字节报文长度

SHA

- sha-1散列算法计算出来的hash值达160位,即20字节,比md5多了32位(md5 16个字节,128位)。
- sha-1也是分块计算,每块也是64字节,当最后一块不足64字节也按照md5的方式进行填充。数据块的最后一定要补上表示报文总共位数的8个字节。
- 大端存储位数

第四章 分组密码工作模式与流密码

分组密码 ECB

把长串明文分成合适大小的block(64bit,8B),对每块进行并行的加密

加密过程: Cj = Ek(Pj)

• 解密过程: Pj = Dk(Cj)

• 弱点是:对于相同内容的明文段,加密后得到的密文块是相同的。

• 优点是:加密和解密过程均可以并行处理。

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

密文块链接模式CBC

把长串明文分成合适大小的block(64bit,8B),明文、种子异或后再加密,得到密文,并将密文当作下一轮的种子

密文先解密, 然后跟种子异或得到明文, 种子是上一轮的密文

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

- 将上一个加密的密文当成下一个加密的种子
- CO就是初始化向量IV (宽度和明文一样宽)
- 加密过程: C_j = Ek(P_j ⊕ C_{j-1})
 解密过程: P_j = Dk(C_j) ⊕ C_{j-1}

CBC模式的特点是: 当前块的密文与前一块的密文有关;加密过程只能串行处理; 解密过程可以并行处理, C_i解密后与C_{i-1}异或即可; 不同位置的相同的明文产生的密文是不一样的。

密文反馈模式 CFB

种子加密后,拿第一字节和明文异或,得到密文(8 bit)。原种子左移8位,把密文拼到原种子右边形成新种子

Cipher Feedback (CFB) mode encryption

Cipher Feedback (CFB) mode decryption

流模式,明文被分成8位的小块

- CFB(密文反馈模式)每次加密一个字节。种子数是一个64位的数。种子数加密后,取种子的第一字节,与明文异或,产生一个字节的密文。加密下一段密文时,把种子数左移8位,拼接上刚才加密产生的密文(1个字节),产生新的种子数。
- 每次把iv[0]移出去, 然后iv[i]用iv[i+1]代替, iv[7]用密文代替
- 加密过程:
 - o C_j = P_j ⊕ L₈(E_k(X_j)) X_j实际是一个64位种子数 X_{i+1} = R₅₆(X_i) || C_i
 - 。 L_8 是取低8位的意思, R_{56} 是取高56位的意思,||是拼接的意思,X的高56位放在低56位上, C_i 放在高8位上

```
//des_iv是64位的种子
1
2
    for(i=0;i<8;i++) iv[i]=des_iv[i];
 3
    for(i=0;i<n;i++)
4
    {
 5
        des_encrypt(des_iv, des_key);
        //通过异或进行加密
6
 7
        p[i] \wedge = des_iv[0];
8
        for(j=0;j<7;j++) iv[j]=iv[j+1];
9
        iv[7]=p[i];//左移8位(1字节)
10
        //得到新的des_iv
11
12
           for(j=0;j<8;j++) des_iv[j]=iv[j];</pre>
13
    }
```

• 解密过程:

∘
$$P_j = C_j \oplus L_8(E_k(X_j))$$

 $X_{i+1} = R_{56}(X_i) \parallel C_i$

● 优点: **可以从密文传输的错误中恢复**。比如要传输密文C₁, C₂, C₃, ..., C_K, 现假定C₁传输错误,把它记作C₁', 则解密还原得到的P1有错。若X1记作(*, *, *, *, *, *, *, *), 则

```
 X2 = (*, *, *, *, *, *, *, *, C_{1'}) 
 X3 = (*, *, *, *, *, *, *, C_{1'}, C_2) 
 X4 = (*, *, *, *, *, C_{1'}, C_2, C_3) 
 ... 
 X9 = (C_{1'}, C_2, C_3, C_4, C_5, C_6, C_7, C_8) 
 X10 = (C_2, C_3, C_4, C_5, C_6, C_7, C_8, C_9)
```

使用密钥X1,X2,X3,...,X9解密C1'\C2\C3\C4\C5\C6\C7\C8\C9还原得到的P1,P2,P3,...,P9全部有错,但是从P10开始的解密还原是正确的。即:错误只会影响局部解密,并不会导致全部解密错误。

流密码算法RC4

```
1 //加密和解密算法相同,RC4运行速度很快,但是不安全
2
   //程序开始
3
   #include<stdio.h>
   #include<string.h>
5
   typedef unsigned long ULONG;
6
7
   /*初始化函数*/
8
    //在初始化的过程中,密钥key的主要功能是将S-box s搅乱,i确保S-box s的每个元素都得到处
    理,j保证S-box的搅乱是随机的
    void rc4_init(unsigned char*s, unsigned char*key, unsigned long Len)
9
10
       int i = 0, j = 0;
11
12
        char k[256] = \{ 0 \};
13
       unsigned char tmp = 0;
       for (i = 0; i<256; i++)
14
15
16
            s[i] = i;
17
            k[i] = key[i\%Len];
18
19
       for (i = 0; i<256; i++)
20
21
            j = (j + s[i] + k[i]) \% 256;
22
            tmp = s[i];
23
           s[i] = s[j];//交换s[i]和s[j]
24
            s[j] = tmp;
25
        }
26
    }
27
28
   /*加解密*/
    //s是sbox, data是明文, len是明文长度
29
   void rc4_crypt(unsigned char*s, unsigned char*Data, unsigned long Len)
30
31
32
        int i = 0, j = 0, t = 0;
33
       unsigned long k = 0;
34
        unsigned char tmp;
35
       for (k = 0; k < Len; k++)
36
            i = (i + 1) \% 256;
37
38
           j = (j + s[i]) \% 256;
39
           tmp = s[i];
           s[i] = s[j];//交换s[x]和s[y]
40
41
           s[j] = tmp;
42
           t = (s[i] + s[j]) \% 256;
```

```
43
          Data[k] \wedge = s[t];
44
       }
45
    }
46
47
    //加解密要用同一个sbox
48
   int main()
49
50
        unsigned char s[256] = \{ 0 \}, s2[256] = \{ 0 \}; //s-box
51
        char key[256] = { "justfortest" };
52
        char pData[512] = "这是一个用来加密的数据Data";
53
        unsigned long len = strlen(pData);
54
        int i;
55
56
        printf("pData=%s\n", pData);
        printf("key=%s,length=%d\n\n", key, strlen(key));
57
        rc4_init(s, (unsigned char*)key, strlen(key));//已经完成了初始化
58
59
        printf("完成对S[i]的初始化,如下:\n\n");
60
        for (i = 0; i<256; i++)
61
        {
            printf("%02x", s[i]);
            if (i && (i + 1) % 16 == 0)putchar('\n');
63
64
65
        printf("\n\n");
66
        for (i = 0; i<256; i++)//用s2[i]暂时保留经过初始化的s[i], 很重要的!!!
        {
68
            s2[i] = s[i];
69
        }
70
        printf("已经初始化,现在加密:\n\n");
71
        rc4_crypt(s, (unsigned char*)pData, len);//加密
72
        printf("pData=%s\n\n", pData);
73
        printf("已经加密,现在解密:\n\n");
74
        //rc4_init(s,(unsignedchar*)key,strlen(key));//初始化密钥
75
        rc4_crypt(s2, (unsigned char*)pData, len);//解密
76
        printf("pData=%s\n\n", pData);
77
        return 0;
78 }
```

第五章 DES算法和AES算法

DES: **明文和密文64位** (8字节) ,**密钥64位** (8字节) 【但是密钥每个字节都被去掉1位,所以事实上是56位】;加密和解密的密钥相同

流程:

每轮示意图:

最开始:

• 对明文64位打乱;对密钥64位砍成56位。【查表key_perm_table】

待加密64比特数据块 56比特密钥 C_{6.1} (28比特) D_{6.1} (28比特) L, (32比特) R, (32比特) 左移位 左移位 扩展排列 \mathbf{K}_{i} 排列选择2 8个S-盒 48比特 排列 L, (32比特) R, (32比特) C, (28比特) D, (28比特)

图2.6 DES算法每轮处理过程

- 每一轮: (明文的左右每轮需要互换)
 - 。 明文分成左右32位, 复制右32位成为下一轮的左32位, 然后查表将右32位拓展成48位;
 - o 打乱56位密钥,分成左右28位,根据表格进行循环左移位1或2位,成为下一轮的密钥。
 - 。 根据表格对密钥进行排列选择,得到48位【用表: key_56bit_to_48bit_table】
 - 。 两个48位进行异或,分成8组6位,进入sbox,得到8组4位,共32位
 - 。 对sbox得到的32位结果打乱【sbox_perm_table】
 - 。 这32位与左32位异或,得到下一轮的右32位;
- 出去的时候:
 - 。 左右互换
 - 。 打乱密文【fp】
- DES算法中用的明文需按照大端规则放置
 - 1 //输入是r(按照小端,数值低位放地址低位),要把他按照大端放在s里
 2 for(i = 0;i < 4;i++) strcpy(s+i,(unsigned char*)(&r) + (3 i));
- 明文被分成L32和R32, 然后32位需要扩展成48位, 怎么扩?
 - o plaintext有8个字节(每个字节左边2位恒为0,所以有用的实际上只有48位)
 - 其中plaintext是目标数组(下标从0开始), s是源数组(下标从1开始)。假设i=0, j=0的时候, index=8, 则其实是

目标[0*6+0]=源[8-1] (以bit为单位) 【凡是用循环查找做打乱都是这么做的】

代码实现: ip[0]=58,表示目标第0位=源第(58-1)=57位if(p[57>>3]&(1<<(7-57&7))) t[0]|=(1<<7-0);//加减法比移位优先级高

//第0位其实在最左边(这边的位都是从左往右数的)

- 1 //根据plaintext_32bit_expanded_to_48bit_table这张表, 把s中的4字节共32位扩展成48位并保存到数组plaintext中; plaintext每个元素的左边2位恒为0, 右边6位用来保存数据32位转48位的过程要求使用双重循环来做,外循环8次,内循环6次,其中内循环每次只提取1位;注意提取某1位的时候只能从数组s中取(要计算该位是第几个字节中的第几位), 不得从参数r中获取; 判断某位是否为1的时候可以使用表bytebit。
- 2 //左边两位恒为0,指每个字节的低两位都是0,所以下面是j+2

```
memset(plaintext, 0, sizeof(plaintext));
    for (int i = 0; i < 8; i++) {
 5
       for (int j = 0; j < 6; j++) {
 6
            int index = plaintext_32bit_expanded_to_48bit_table[6 * i + j];
 7
            index--;
 8
            int byte, bit;
 9
            byte = index / 8;
10
            bit = index % 8;
            if (s[byte] & bytebit[bit]) {
11
12
                plaintext[i] |= bytebit[j + 2];
13
            }
14
        }
15 }
```

• 用循环做打乱比较慢,打乱64位就要做64次循环,所以可<mark>事先生成表来加快打乱</mark>。 根据打乱用的那张表建立一张新的表,假设是char t[16][16][8],第一个16表示有16组(每组4位,共64位),第二个16表示4个位的16种变化(0~15),8表示单独将这4位打乱后得到的64位结果**(通过查表的方式将4位打乱,得到的是64位)**。 将64位源分为16组,每组4位,记为a[0]a[1]a[2]...a[15],第i组打乱的结果是t[i][a[i]][0~7]。比

假设64位数据为1011 0110 1001 1111 ...

假设t[0][11]为 xx1x01x1 xxxxxxxxx ...(8个字节)

假设t[1][6]为 xxxxxxxx x0xx11xx xx0xxxxx ...(8个字节)

注:上面的x均为0。

如,

注: 对所有的t[i][0~15],其中x的位置都是确定的。若t[0][11]为xx1x01x1 xxxxxxxx,则t[0] [12]为xx1x10x0 xxxxxxxx ...。

注: t[0]~t[15]的非x位 (每一个有4个非x位) 分别在不同的位置(共64个位置)上 (每一组 (4位一组 的那个) 得到的64位结果中非X位分别在不同的位子,并且合起来看64个位子正好全被占且仅被占 1次 (互不重叠)。因此,将得到的16组64位数或一下,就得到打乱后的结果。

- 明文加密后也是48位, 然后需要缩减为32位, 怎么缩减?
 - 精简版: 进6位出4位 (8组6位, 共48位, 出来32位)
 - **给出6位二进制数,第一位和最后一位拼起来作为行号,中间4位作为列号,读取一个4位二进制数。**输入的流为48位,拆为8部分,每部分查一张表(总共有8个sbox,虽然放在一个数组里面),共得到4*8=32位数
 - o sbox的第一个下标是代表这是第几组6位输入,第二个下标是 行号*16+列号,然后根据这个 index,得到一个4位二进制数

```
1 /*
  static char sbox[8][64] =
3
      /* S1 */
4
5
      14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
       0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3,
6
7
      4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5,
      15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
8
9
10
      /* s2 */
      15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
11
12
       3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
       0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13
      13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
14
15
16
```

• 重要函数

- void des_set_key(char *key)
 - (1) 根据key_perm_table从**8字节的key中选择56位**存放到pc1m,每一位保存为一个字节。
 - (2) 根据key_rol_steps对pc1m左边28个元素及右边28个元素分别进行**循环左移**,移位以后的结果保存到pcr中。
 - (3) 根据key_56bit_to_48bit_table从pcr中**选出48个元素**,每6个元素靠右对齐合并成1个字节,保存到kn中。
- void sbox_output_perm_table_init(void)
 - (1) 根据sbox_perm_table**生成一张反查表**sbox_perm_table_inverse
 - (2) 根据sbox**生成sbox_output_perm_table**:进入sbox的6位数据出来后变成4位,再打散并保存到sbox_output_perm_table中的一个32位元素内。
- o perm_init(char perm[16][16][8], char p[64]) //生成打乱表
 - (1) p定义的是一张64位打乱表,下标为目标位,元素值为源位。
 - (2) 假定X是一个任意的64位数,现把它的64位按从左到右的顺序划分成16组,每组4位。
 - (3) 设j是第i组中的4位,显然j的值一共有16种变化,现通过查表p得到j中每个位分别落在64位中的哪一位,于是就把j中的4位打散并保存到perm[i][i]的8个字节内。
- o permute(char *inblock, char perm[16][16][8], char *outblock) //通过查表,将输出打乱
 - (1)把inblock中的8字节划分成16组,每组4位。
 - (2) 设j是第i组中的4位,查perm[i][j]得8字节即64位。
 - (3) 把每组查perm所得的64位求或,结果保存到outblock中。
- long f(unsigned long r, unsigned char subkey[8])
 - (1) 根据plaintext_32bit_expanded_to_48bit_table把r扩展成48位,并把这48位划分成8组,每组6位。
 - (2) 把这8组数按顺序分别与subkey中包含的8组数做异或运算
 - (3) 异或后仍旧得到8组数,每组6位。
 - (4) 在sbox_output_perm_table中按顺序查这8组数,每组数6位进去,出来一个包含有打散4位的32位数,把8个32位数求或即得f()的返回值。
- DES分组加密模式:ecb, cbc, cfb
 - ecb

```
1 for(i=0; i<n/8; i++)
2
        des_ecb_encrypt((DES_cblock*)pin, (DES_cblock*)pout,
3
    ks,DES_ENCRYPT); // 加密
4
        pin += 8;
5
        pout += 8;
6
   if(n\%8 != 0)
7
8
9
        memset(pin+n\%8, 0, 8-n\%8);
        des_ecb_encrypt((DES_cblock*)pin, (DES_cblock*)pout, ks,
    DES_ENCRYPT); // 加密
11
```

```
1 c[0] = des_encrypt(block[0] ^ iv);
2 c[1] = des_encrypt(block[1] ^ c[0]);
3 //c[0]和c[1]是密文, iv是8字节的初始化向量
```

。 cfb 把加密过的左边1字节放到没加密的种子右边

AES算法

先把明文按列排好,然后做行的循环左移(第0行移0个字节,。。。第i行移i个字节),然后用3 1 1 2 的矩阵(行的循环左移,第i行移3-i个字节)跟每一列进行矩阵乘法,结果按行存放(第i列结果存第i 行)。矩阵乘法的每一项均为8位数乘法(转成多项式乘然后mod(x⁸+x⁴+x³+x+1),其中除的时候-可以直接转换成+),余式转成二进制再转成16进制即得每一项的乘法答案,四项八位数乘法结果的相加为异或,得到的结果即为目标矩阵的一个值

- 明文长度 = 密文长度 = 128位 (16字节)
- 密钥长度 128位 (16字节) 192位 (24字节) 256位 (32字节) key_rounds 10 12 14
- AES算法加密流程

```
1 void aes_encrypt(unsigned char *bufin, unsigned char *bufout, unsigned
    char *key)
 2
   {
       int i;
 3
       unsigned char a[4] = {0x03, 0x01, 0x01, 0x02}; /* 定义多项式
 4
    3*x^3+x^2+x+2 */
 5
       unsigned char matrix[4][4];
       memcpy(matrix, bufin, 4*4); /* 复制明文16字节到matrix */
 6
       AddRoundKey((unsigned char *)matrix, key); /* 第0轮只做AddRoundKey()
 7
       for(i=1; i<=key_rounds; i++)</pre>
 8
 9
       { /* 第1至key_rounds轮, 做以下步骤:
10
            ByteSub, ShiftRow, MixColumn, AddRoundKey */
          ByteSub((unsigned char *)matrix, 16);
11
          MixColumnInverse((unsigned char *)matrix, a, 0);
12
          /* 不做乘法, 只做矩阵行转列 */
13
          ShiftRow((unsigned char *)matrix);
14
15
          if(i != key_rounds)
            MixColumn((unsigned char *)matrix, a, 1); /* do mul */
16
17
          else
18
             MixColumn((unsigned char *)matrix, a, 0); /* don't mul */
19
          //只做列转行
20
          AddRoundKey((unsigned char *)matrix, key+i*(4*4));
21
22
       memcpy(bufout, matrix, 4*4); /* 密文复制到bufout */
23
```

- sbox: 各不相同的256个的char类型元素数组
- ShiftRow(p): 对明文16字节构成的4*4矩阵逐行做循环左移(1~F只是代表数组的下标)

```
048C; 不移动048C159D; 循环左移1次59D126AE; 循环左移2次AE2637BF; 循环左移3次F37B
```

• MixColumn 把列取出来做乘法运算,然后以行的形式保存回p中,加密用3112,解密用BD9E **列转 行**

```
1 void MixColumn(unsigned char *p, unsigned char a[4], int do_mul)
3
      /* (1) 对p指向的4*4矩阵m中的4列做乘法运算;
4
        (2) 这里的乘法是指有限域GF(2^8)多项式模(X^4+1)乘法,具体步骤请参考教材p.61
   及p.62;
5
        (3) aes加密时采用的被乘数a为多项式3*X^3 + X^2 + X + 2,用数组表示为
6
            unsigned char a[4]=\{0x03, 0x01, 0x01, 0x02\};
        (4) aes解密时采用的被乘数a为加密所用多项式的逆, 即{0x0B, 0x0D, 0x09,
7
   0x0E};
        (5) 乘法所得4列转成4行, 保存到p中, 替换掉p中原有的矩阵;
8
9
        (6) do_mul用来控制是否要做乘法运算,加密最后一轮及解密第一轮do_mul=0,仅做
   列转行;
10
      */
    unsigned char b[4];
11
12
    unsigned char t[4][4];
13
     int j;
14
    for(j=0; j<4; j++)
15
16
        get_column(p, j, b); /* 从p所指矩阵m中提取第j列, 保存到数组b中. */
        if(do_mul) /* 在加密最后一轮以及解密第一轮的MixColumn步骤中不需要做乘法;
17
18
           aes_polynomial_mul(a, b, b); /* 其余轮都要做乘法: b = a*b mod
   (X^{4+1}); */
19
        memcpy(t[j], b, 4); /* 把乘法所得结果复制到t中第j行 */
20
21
      memcpy(p, t, 4*4); /* 复制t中矩阵到p, 替换掉p中原有矩阵 */
22 }
```

○ 加密使用的被乘数a是{3,1,1,2}。<mark>手动模拟矩阵乘法过程</mark>

- 上面解释了这么排的合理性
- mod (x⁴ + 1)的作用,就是将6次变2次,5次变1次,4次变0次
- 上面矩阵相乘得到的结果

$$x^{3}(2*1 + 1*2 + 1*3 + 3*4)$$

 $x^{2}(2*2 + 1*3 + 1*4 + 3*1)$
 $x^{1}(2*3 + 1*4 + 1*1 + 3*2)$
 $x^{0}(2*4 + 1*1 + 1*2 + 3*3)$

注意: **系数的乘法是指8位数乘法mod 0x11B**, 而加法是指异或,以 x^0 系数为例:

2*4 + 1*1 + 1*2 + 3*3 = 0x08 ^ 0x01 ^ 0x02 ^ 0x05

 $= 0x09 \land 0x02 \land 0x05 = 0x0B \land 0x05 = 0x0E$

○ **8位数乘法mod 0x11B**是什么?

■ 8位数乘法实质上是多项式乘法 mod (x⁸+x⁴+x³+x+1) 不可约就行,作者选择了这个 (为了有乘法逆元)

乘数的每一个bit都是多项式某一项的系数

举例:

求1000 1000 (x^7+x^3) * 0000 0101 mod 0x11B,可以把上述两数乘法转化成两个多项式相乘:

$$(x^7 + x^3)$$
 * $(x^2 + 1) = 0$
 $x^9 + x^7 + x^5 + x^3 = 0$
 $x^7 + x^4 + x^3 + x^2 + x \mod (x^8 + x^4 + x^3 + x + 1) 0$
再用手工除法求模: 0

把余式转化成二进制就是:↩

1001 1110←

结论:↩

 $0x88 * 0x05 = 0x9E \mod 0x11B \leftarrow$

- 可以发现4次、2次和1次前面本来都应该是 号,但是这边都是 + 号。是因为在 GF(2⁸)中,a的加法逆元还是a,所以正负没有区别
- 也可以用<mark>农夫算法</mark>,计算P=X*Y mod 0x11B

重复八次

- 先判断Y最低位是否为1
 - 为1,则P=P^X
 - 为0, 无事发生
- Y右移一位
- 判断X最高位是否为1, X左移一位 (有九位)
 - 为1, X=X^0x11B
 - 为0, 无事发生
- o x左移进位后为什么要做x = x ^ 0x11B?

```
x*y+p mod 0x11B←
设 x=1000 1000, 在 x=x<<1 后←
x=1 0001 0000←
现把 x 分解成 1 0001 1011+0000 1011 之和 (+其实是异或)←
(1 0001 1011 + 0000 1011)*y+p mod 0x11B←
=0x11B*y + 0x0B*y + p mod 0x11B←
=0x0B*y + p mod 0x11B←
这里消去划线这一项,其实就是做了 x*y mod 0x11B 的除法
求余运算。←
```

- ◆ 练习题:用农夫算法分步计算0x05 * 0x43 mod 0x11B【结果是 0x05 * 0x43 = 0x54 mod (x8+x4+x3+x+1)】
- **解密用的被乘数a是{0x0B, 0x0D, 0x09, 0x0E}**, 矩阵为

E B D 9
9 E B D
D 9 E B
B D 9 E

• 密钥的拓展

以128位种子密钥为例, 假定当前机器为大端, 设long k[4]是种子密钥,则后面还需要生成k[4]至 k[43]共40个long,步骤如下:

```
1 种子密钥是k[0]~k[3] 一个long 32位
2 k[4] = k[3];
3 把k[4]包含的4个字节循环左移1字节;
4 ByteSub(&k[4], 4); 把k[4]包含的4个字节全部替换成sbox中的值(进去8位出来8位)
5 r = 2^((i-4)/4) mod 0x11B; 计算轮常数r, 其中i是k的下标
6 k[4]首字节 ^= r; k[4]首字节与r异或
7 k[4] ^= k[0]; k[4]与k[0]异或 k[i]跟k[i-4]异或
8 k[5] = k[4] ^ k[1]; //k[i]=k[k-1]^k[i-4]
9 k[6] = k[5] ^ k[2];
10 k[7] = k[6] ^ k[3];
```

以上过程生成了4个long,是一组16字节的key。

接下去生成k[8]至k[11]的过程与k[4]至k[7]类似,其中k[8]像k[4]那样需要作特殊处理。

• 不同长度密钥的生成

根据种子密钥生成真正密钥:

```
128bit种子密钥(16字节): 生成(1+10)*4个long32, step=4, loop=10
192bit种子密钥(24字节): 生成(1+12)*4个long32, step=6, loop=8
256bit种子密钥(32字节): 生成(1+14)*4个long32, step=8, loop=7
```

```
1
   memcpy(key, seed_key, bits/8);
2
      pk = (ulong32 *)(key + 4*step);
3
      for(i=step; i<step+step*loop; i+=step)</pre>
4
         unsigned int r;
         /* 假定生成的密钥k是long32类型的数组, i是其下标,
6
7
           则当i!=0 && i%step==0时, k[i]在计算时必须做以
8
            下特殊处理:
         */
9
         pk[0] = pk[-1];
10
```

```
11
          rol_a_row(key+i*4, 1);
12
          ByteSub(key+i*4, 4);
13
          r = 1 \ll ((i-step) / step);
14
          if(r \le 0x80)
15
             r = aes_8bit_mul_mod_0x11B(r, 1);
16
          else
17
             r = aes_8bit_mul_mod_0x11B(r/4, 4);
18
          key[i*4] \land = r;
19
          pk[0] \land = pk[-step];
20
          for(j=1; j<step; j++)</pre>
21
             /* i+j是密钥k的下标, 当(i+j)%step != 0时,k[i+j]只需做简单的异或处理
22
          {
23
             if(step == 6 && i == step*loop && j>=step-2 || step == 8 && i
    == step*loop && j>=step-4)
                break; /* 128-bit key does not need to discard any steps:
24
                           4 + 4*10 - 0= 4+40 = 44 == 4+4*10
25
26
                           192-bit key should discard last 2 steps:
                           6 + 6*8 - 2 = 4+48 = 52 == 4+4*12
27
28
                           256-bit key should discard last 4 steps:
29
                           8 + 8*7 - 4 = 4+56 = 60 == 4+4*14
30
                         */
31
             if(step == 8 && j == 4) /* 对于256bit密钥, 当(i+j)%4==0时需做特殊
    处理 */
32
             {
33
                ulong32 k;
34
                k = pk[3];
                ByteSub((unsigned char *)&k, 4); /* k = scrambled pk[3] */
35
36
                pk[4] = k \wedge pk[4-8];
37
38
             else /* 当(i+j)%step != 0时, k[i+j]只需做以下异或处理 */
39
                pk[j] = pk[j-step] \land pk[j-1];
40
          }
41
          pk += step;
42
       } /* for(i=step; i<step+step*loop; i+=step) */</pre>
```

第6章 RSA算法

算法简介

<mark>加密过程:c=m^e(mod n)</mark> 公钥加密,私钥解密

解密过程: m=c^d(mod n) 其中e*d = 1 mod ((p-1)*(q-1))

• 明文m的长度和n的长度需要保持一致(假定m很小,如m^e < n, 则解密时不需要用到d,只要对m 开e次方即可。) (私钥d是某个小于1024bits的大整数)。所以RSA很少对一个字节等短明文进行加密(n越小,越不安全)。比如n有1024bit,则m[0]=0x12,m[1]=0x34,.....,m[127]=0xff,m实际上被拼成一个大数m=0x1234.....ff,他会被当成这个大数来处理

(大端规则)

- m要比n略小,不然解密得到的结果肯定是错误的,mod n只会得到一个比n小的数 虽然m的长度和n一样,但还是不能保证m比n小,所以引入2种方法
 - 将m[127]=0x00, 浪费一个字节, 1次只加密127个字节
 - 多保留几个高字节,比如m[127]~m[120],随机填写(但还是要保证高位较小)。这样做一个相同的明文可以对应不同的密文,增加了扰乱

AES vs RSA:对文件加密用的是128位密钥的aes算法。用rsa算法加密文件的话,速度太慢,故没有采纳。

数学基础

- 欧拉函数φ(n): 小于n且与n互素的整数个数
 φ(5) = 4, 因为与5互素的整数有: 1, 2, 3, 4
- 欧拉定理: 若gcd(x,n)=1, 则x^{φ(n)} = 1 (mod n)。
 例如3^{φ(5)} = 3⁴ = 81 = 1 (mod 5)
- feimat小定理: 设p为素数, 且gcd(x,p)=1, 则x^{p-1} = 1 (mod p)
 根据欧拉定理直接推, 因为p为素数时, φ(p)=p-1
- 中国剩余定理 (详见证明题)

使用拓展欧几里得算法算出Mi的逆元

- 欧拉函数的乘法性质:若n1,n2互素,则φ(n1*n2)=φ(n1)*φ(n2)
 例如:φ(3*5) =φ(3)*φ(5) = 2*4 = 8
- 欧拉函数的乘法公式: φ(n) = n * ∏ (1-1/p) p是n的所有不重复的素因子(若重复,只算1次)
 例如: φ(10) = 10 * (1-1/2) * (1-1/5) = 4

RSA应用——注册码

```
      1
      (1)软件打开时显示一个机器码

      2
      其中机器码 m'=rsa(mac, 作者公钥)

      3
      (2)软件作者: mac=rsa(m', 作者私钥)

      4
      注册码 sn=(mac, 作者私钥)

      5
      (3)软件验证注册码: rsa(sn, 作者公钥)==mac
```

RSA应用——数字签名:

• 作用:别人无法假冒A,A也无法抵赖自己发过(因为使用了A的私钥);消息在传输过程中有无被别人更改

假定A要发一封信给B,信的内容L="Hello,I'm A."该如何对信进行加密? L' = RSA(L, B的公钥) A把L'发给B,B收到后如何解密? L = RSA(L', B的私钥)

A如何对信件进行签名?

首先对信的内容计算摘要(digest),这里采用MD5算法: **M = MD5(L)** 【为什么要先MD5? 若直接对信签名,得到的签名会很长,影响传输效率,使用MD5则不论信多长,得到的摘要长度固定】 **用A的私钥对M进行签名(实际上是用A的私钥对M加密): M' = RSA(M, A的私钥)** ,此时,M'就是A对信件摘要M的签名。

假定A把L'及M'都发送给B。B如何对A的签名M'进行验证?

首先要用A的公钥对M'进行解密: m = RSA(M', A的公钥),然后RSA解密得出信件L = RSA(L', B的私钥)

最后还要判断m是否正确:若MD5(L)=m,则证明此信确实是A所发。

为了对抗旁路攻击,采取下列办法: (保护d)

私钥加密时本来是: c = m^d mod n

现在转换成以下两步

- ① $m' = m^d r^e \mod n$;
- ② $c = m'(r^e)^{-1} \mod n$;

其中r是一个随机数

第7章 椭圆曲线算法

椭圆曲线可以定义成所有满足方程 E: $y^2 = x^3 + ax + b$ 的点(x,y)所构成的集合。若 $x^3 + ax + b$ 没有重复的因式或 $4a^3 + 27b^2 \neq 0$ (称为判别式),则 E: $y^2 = x^3 + ax + b$ 能定义成为一个群。【a, b为整数, x^3 的系数恒为1】

欧拉准则

见证明题

点的代数意义

- (1) P+O=O+P=P
- (2) 如果P=(x1,y1), Q=(x2,y2), 且有x1=x2及y1=y2=0, 或有x1=x2及y1=-y2≠0,则P+Q=O;
- (3) 如果P=(x1,y1), Q=(x2, y2), 且排除(1)(2),则 P+Q=(x3,y3)由下列规则决定:

$$x3 = \lambda^2 - x1 - x2$$

 $y3 = \lambda(x1-x3) - y1$
当P \neq Q时, λ =(y2-y1)/(x2-x1);
当P=Q时, λ =(3x1²+a)/(2y1);

A为斜率,同一个点就切线(求导),不同的点就斜率

点运算

• 椭圆曲线六要素

 1
 椭圆曲线y^2 = x^3 + x + 6 (mod 11)上的点。

 2
 a=1 b=6 p=11

 3
 加上 基点G G的阶 余因子 以上6项决定一条椭圆曲线。

 4
 其中余因子=曲线的阶,即曲线上点的个数/G的阶,此值通常=1。若余因子的值不为1,则G的阶一定是曲线的阶的质因数。不为1的时候,不大安全(G的阶会变小)。

 5
 可以把α称为生成元(generator),也称作基点(base point),假定nα=0,则n称为α的阶(order)。n必须是素数。基点可以选择满足方程的任意点通过(n+1)α=α得出阶数n

 6
 通过(n+1)α=α得出阶数n

 7
 曲线上的点(x,y)一定满足条件0<= x,y <p,并且x,y一定是整数。</td>

- 点加运算:直接套点的代数意义的公式
- 点乘运算,其实就是点加运算 除法换成模p的乘法逆元,减法换成模p的加法逆元举例:设α=(2,7), 计算2α=α+α (曲线还是上面介绍六要素里面的那条) $\lambda=(3x_1^2+a)/(2y_1)=(3*2^2+1)/(2*7)=13/14=13*14^{-1}=2*3^{-1}=2*4=8 \bmod 11$ $x_3=\lambda^2-x_1-x_2=8^2-2-2=60=5 \bmod 11$ $y_3=\lambda(x_1-x_3)-y_1=8*(2-5)-7=8*(2+6)-7=8*8-7=64+4=2 \bmod 11$ 因此2α=(5,2)

公钥及私钥 R和G都是公开的

公钥点R=d*G,公钥是个点

私钥d是一个随机数,且d<n,n是G的阶

加解密以及签名

加密

r=(k*G).x k*G是一个新的点 r是这个点的x坐标 s=m*(k*R).x mod n m是明文, R是公钥 密文包括r和s两部分

- 解密
 m=s/(dr).x r=k*G(一个点)
- 签名

```
1. ecdsa(elliptic curve digital signature
algorithm) ←
(1) 签名↩
r = (k*G).x \mod n ; k 是随机数,且 k<n\leftarrow
s = (m+r*d)/k mod n ; m 是明文或 hash, d 是私钥↔
(2) 验证↩
需要证明这个((m/s mod n) *G+(r/s mod n) *R).x == r ↔
省掉了.x 和 mod n←
(m/s)*G+(r/s)*R = mG/s + rR/s = 
(mG+rdG)/s = (m+rd)G/((m+rd)/k) = kG 
如果伪造 m 或 d, 都无法通过验证。↩

 ecnr

(1) 签名↩
r = k*G.x+m \mod n
s = k-r*d \mod n \leftarrow
\leftarrow
(2)验证↩
r - (s*G+r*R).x \mod n == m \mod n \leftarrow
r - (s*G+r*R).x = r - ((k-rd)G + rdG).x \leftarrow
= r - (kG-rdG+rdG).x = r - kG.x \leftarrow
= kG.x+m-kG.x = m \leftarrow
```