1 Express the joint probability $e_{kk'}$ in terms of $N,\langle k \rangle$, number of nodes with degree k, N_k , and $E_{kk'}$ (note that $E_{kk'}$ is twice the number of links when k = k').

The textbook shows that

$$E_{kk'} = e_{kk'} < k > N$$

We rewrite this to get

$$e_{kk'} = \frac{E_{kk'}}{\langle k \rangle N}$$

2 Express the conditional probability P(k'|k) in terms of N, $\langle k \rangle$, N_k, and the number of links connecting nodes of degree k and k', E_{kk'} (note that E_{kk'}) is twice the number of links when k = k').

$$P(k|k') = \frac{\sum_{k}^{E_{kk'}} \frac{\sum_{k}^{k} k N_k}{k N_k}}{\sum_{k}^{k} k N_k}$$

where \sum_kkN_k is the total number of links in the model. This simplifies to

$$P(k|k') = \frac{E_{kk'}}{\langle k \rangle N_k}$$

3 Express the probability q_k, discussed in this chapter, in terms of number of nodes N, average degree $\langle k \rangle$, N_k, and E_{kk'}.

$$q_k = \frac{kN_k}{\sum_k kN_k}$$

4 Based on these expressions, show that for any network we have $e_{k'}=q_kP(k'|k)$

$$e_{kk'} = q_k P(k'|k)$$

$$q_k P(k'|k) = \frac{kN_k}{\sum_k kN_k} \frac{E_{kk'}}{\langle k \rangle N_k}$$