

New York State Mathematics Association of Two-Year Colleges

Math League Contest ~ Spring 2011 ~ Solutions

1.	Letting $x = 1$ gives: $f(1) - 2f(2011) = 1$, and letting $x = 2011$ gives: $f(2011) - 2f(1) = 2011$.
	Solving these two linear equations for $f(2011)$, gives $f(2011) = -671$. Answer: -671
2.	$\left(x^2 + 7x + 11\right)^{x^2 + 3x - 10} = 1$ will be true only when $x^2 + 7x + 11 = 1$ or $x^2 + 3x - 10 = 0$ with
	$x^2 + 7x + 11 \neq 0$. $x^2 + 7x + 11 = 1 \implies x^2 + 7x + 10 = 0 \implies (x+5)(x+2) = 0 \implies x = -5, x = -2$.
	$x^2 + 3x - 10 = 0 \implies (x+5)(x-2) = 0 \implies x = -5, x = 2$. Thus, $x \in \{-5, -2, 2\}$. Answer: c
3.	5 will divide every multiple of 5 once, every multiple of $5^2 = 25$ twice, every multiple of $5^3 = 125$ three times. $200 \div 5 = 40$, $200 \div 25 = 8$, and 125 divides 200 only once. Thus, there are
	40+8+1=49 fives that will factor out of 200!. Answer: b
4.	Let x represent the number of people in the group, and C be the cost for the rental. Thus, we get the
	equations: $\frac{C}{x+1} = \frac{C}{x} - 5$ and $\frac{C}{x+3} = \frac{C}{x} - 12$. Solving gives $x = 7$ (and $C = 280$). Answer: 7
5.	Noticing the symmetry in the coefficients of the polynomial $ax^4 - 7x^3 + 8x^2 - 7x + a$, divide the
	equation $ax^4 - 7x^3 + 8x^2 - 7x + a = 0$ by x^4 to obtain $a - 7x^{-1} + 8x^{-2} - 7x^{-3} + ax^{-4} = 0$, for non-
	zero x. This new equation can be rewritten as $a-7\left(x^{-1}\right)^1+8\left(x^{-1}\right)^2-7\left(x^{-1}\right)^3+a\left(x^{-1}\right)^4=0$ or
	$a\left(x^{-1}\right)^4 - 7\left(x^{-1}\right)^3 + 8\left(x^{-1}\right)^2 - 7\left(x^{-1}\right)^1 + a = 0.$ Hence, if x solves the original equation, then so will
	x^{-1} . Thus, $x = 2011^{-1}$ must be the other real root. Answer: 2011^{-1} or $\frac{1}{2011}$
6.	$\sin(t) = \cos\left(\frac{\pi}{2} - t\right) \Rightarrow \cos^{-1}\left(\sin(t)\right) = \frac{\pi}{2} - t \Rightarrow \cos^{-1}\left(\sin(t)\right) + t = \frac{\pi}{2}, \text{ now let } x = \sin(t), \text{ so that}$
	$t = \sin^{-1}(x) \Rightarrow \cos^{-1}(x) + \sin^{-1}(x) = \frac{\pi}{2} \Rightarrow f(x) = \frac{1}{\left(\frac{\pi}{2}\right)} = \frac{2}{\pi}$, which is a horizontal line. Answer: d
7.	Let $x = \sin(15^\circ) + \sin(75^\circ)$, but $\sin(15^\circ) = \cos(75^\circ)$. Thus, $x = \cos(75^\circ) + \sin(75^\circ)$. Squaring:
	$x^{2} = \cos^{2}(75^{\circ}) + 2\cos(75^{\circ})\sin(75^{\circ}) + \sin^{2}(75^{\circ}) = \cos^{2}(75^{\circ}) + \sin^{2}(75^{\circ}) + 2\cos(75^{\circ})\sin(75^{\circ})$
	sin(2.75°), double angle formula
	$x^2 = 1 + \sin(150^\circ) = 1 + \sin(30^\circ) = 1 + \frac{1}{2}$ \Rightarrow $x^2 = \frac{3}{2}$ \Rightarrow $x = \sqrt{\frac{3}{2}}$, taking the positive square root,
	since $x > 0$. $x = \sqrt{\frac{3}{2}} \cdot \sqrt{\frac{2}{2}} = \frac{\sqrt{6}}{2}$.
8.	A regular polygon with n sides has n vertices. Each of the n vertices can form a diagonal with all
	vertices except itself and the two adjacent ones. Thus, there are $n(n-3)$ diagonals that can be
	formed. However, that counts each diagonal twice (since it counts the one from vertex A to vertex B
	and from vertex B to vertex A). Hence, there are $\frac{1}{2}n(n-3)$ diagonals. Solving $\frac{1}{2}n(n-3)=54$, gives
	$n^2 - 3n - 108 = 0 \implies (n+9)(n-12) = 0 \implies n = -9$, 12. Taking the positive answer Answer: 12

 $\Rightarrow \frac{1}{2}(a+b) = \frac{5}{12} \Rightarrow \frac{12}{10}(a+b) = 1 \Rightarrow \frac{6}{5}(a+b) = 1$

14.

Answer: $\frac{6}{5}$ hrs. or 1.2 hrs. or 72 minutes

15.
$$S(n) = \sum_{k=2}^{n} \frac{1}{\log_{k}(n!)} = \sum_{k=2}^{n} \frac{1}{\left[\frac{\log_{n}(n!)}{\log_{n}(k)}\right]} = \sum_{k=2}^{n} \frac{\log_{n}(k)}{\log_{n}(n!)} = \frac{1}{\log_{n}(n!)} \sum_{k=2}^{n} \log_{n}(k)$$

$$= \frac{1}{\log_{n}(n!)} \left[\log_{n}(2) + \log_{n}(3) + \log_{n}(4) + \dots + \log_{n}(n-2) + \log_{n}(n-1) + \log_{n}(n)\right]$$

$$= \frac{1}{\log_{n}(n!)} \left[\log_{n}(2 \cdot 3 \cdot 4 \cdot \dots \cdot (n-2) \cdot (n-1) \cdot n)\right] = \frac{1}{\log_{n}(n!)} \left[\log_{n}(n!)\right] = 1$$
Answer: b

- The check amount is 100x + y cents. It was cashed for 100y + x, with a difference of (100x + y) (100y + x) = 100(x y) + (y x) = 100(x y) (x y) = 99(x y). Hence, the amount of over payment (in cents) must be a multiple of 99. 198 = 2.99, 1089 = 11.99, and 495 = 5.99, only 972 is not a multiple of 99.
- 17. If the teams are equally matched, then the probability of each winning any one game is ½. In order for Team A to win, the team would have to win either the next 2 games, or 2 of the next 3 or 4 games with the final game being a win. We can symbolize this as: AA, ABA, BAA, ABBA, BABA, BBAA, which yields the following probabilities: $\left(\frac{1}{2}\right)^2$, $\left(\frac{1}{2}\right)^3$, $\left(\frac{1}{2}\right)^4$, $\left(\frac{1}{2}\right)^4$, $\left(\frac{1}{2}\right)^4$. Summing these gives:

$$\left(\frac{1}{2}\right)^2 \left[1 + \frac{1}{2} + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2\right] = \frac{1}{4} \left[2 + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}\right] = \frac{1}{4} \left(\frac{11}{4}\right) = \frac{11}{16}$$
 Answer: $\frac{11}{16}$

18. Draw a line segment that is perpendicular to the bisector to create two congruent right triangles, as shown. Taking the point (1,1) on the line y = x yields a length of $\sqrt{2}$ for the hypotenuse of the triangle. Thus, the other hypotenuse must also have a length of $\sqrt{2}$. Now determine the point on the line y = x where y = 3x labeled y = 3x labele

 $\Rightarrow x = \sqrt{\frac{1}{5}} = \frac{\sqrt{5}}{5}, \text{ taking the positive value for } x, \text{ which makes the } y\text{-value } 3\frac{\sqrt{5}}{5}.$ The midpoint of the segment, which is on the bisector, can now be found: $\left(\frac{1+\sqrt{5}/5}{2}, \frac{1+3\sqrt{5}/5}{2}\right)$. So the

slope of the bisector is: $\frac{\left(\frac{1+3\sqrt{5}/5}{2}-0\right)}{\left(\frac{1+\sqrt{5}/5}{2}-0\right)} = \frac{1+\frac{3\sqrt{5}}{5}}{1+\frac{\sqrt{5}}{5}} = \frac{5+3\sqrt{5}}{5+\sqrt{5}} = \frac{5+3\sqrt{5}}{5+\sqrt{5}} \cdot \frac{5-\sqrt{5}}{5-\sqrt{5}} = \frac{25+10\sqrt{5}-15}{25-5} = \frac{1+\sqrt{5}}{2}$

Answer: b

19. Adding all sums of groups of four: 138+144+151+153+158=744. This sum includes each age exactly four times, hence $744 \div 4 = 186$ is the sum of all five ages. The largest sum (158) of four of

the ages must omit the lowest age. Therefore, the youngest is 186-158=28.

Answer: b

If Statement I were true, then exactly three would be false, making Statement III also true. Hence, Statements I and III cannot be true. Statements II and IV are consistent.

Answer: d

