Numbers are free creations of the human mind; they serve as a means of apprehending more easily and more sharply the difference of things - Richard Dedekind

1 Review Topics

Suprema and infima, extreme value theorem, intermediate value theorem, monotone functions

2 Exercises

- 2.1 For each set, compute the supremum or infimum
 - $\sup \{x \in \mathbb{R} \mid x^2 < 7\}$ in \mathbb{R} .
 - $\inf \{x \in \mathbb{Q} \mid x^2 < 7\}$ in \mathbb{Q} .
 - $\sup \{2 \frac{1}{n} \mid n \in \mathbb{N}\}.$
- 2.2 Prove that for a set $A \subset \mathbb{R}$, bounded above, that an upper bound α of A is the supremum of A if and only if for every $\beta < \alpha$, there exists $a \in A$ such that $\beta < a \leq \alpha$.

2.3 Can we apply the Extreme Value Theorem to the function x^2 on (0, 1)?

2.4 Prove that the image of an interval $I \subset \mathbb{R}$ under a continuous function $f: \mathbb{R} \to \mathbb{R}$ is also an interval.

2.5 Let f be strictly monotone and continuous on (a, b). Show that f^{-1} exists and is strictly monotone on f((a, b)).

2.6 Let $f:[0,1] \to [0,1]$ be a continuous function. Then there exists $x \in [0,1]$ such that f(x) = x.

2.7 Let $f:[0,1]\to\mathbb{R}$ be defined by $f(x)=x\mathbb{1}_{\mathbb{Q}}(x)+(1-x)\mathbb{1}_{[0,1]\setminus\mathbb{Q}}(x)$. Show that f is 1-to-1, f([0,1])=[0,1], but f is not monotone on any interval in [0,1].