

Faculty of Computer Science and Information Technology

Discrete Mathematics

Lecture 4

Sequences and Summations

Sequences

- Definition: A sequence is a set of things (usually numbers) that are in order.
- For example, 1, 2, 3, 5, 8 is a sequence with five terms and 1, 3, 9, 27, 81, . . . , 30, . . . is an infinite sequence.
- We use the notation a_n to denote the image of the integer n. We call a_n a term of the sequence.
- We use the notation $\{a_n\}$ to describe the sequence.

$${a_n} = {a_1, a_2, a_3, \dots}$$

Sequences

Example :

ullet Consider the sequence $\{a_n\}$, where

$$a_n = \frac{1}{n}$$

The list of the terms of this sequence, beginning with a_1 , namely,

$$a_{1}$$
, a_{2} , a_{3} , a_{4} ,...,

Starts with

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

Sequences

- (1) $a_n = n^2$, where n = 1,2,3...
 - What are the elements of the sequence?
 1, 4, 9, 16, 25, ...
- (2) $a_n = (-1)^n$, where n=0,1,2,3,...
 - Elements of the sequence?

- 3) $a_n = 2^n$, where n=0,1,2,3,...
 - Elements of the sequence?

 Definition: A geometric progression is a sequence of the form:

$$a, ar, ar^2, \ldots, ar^n, \ldots$$

where the initial term a and the common ratio r are real numbers.

2, 10, 50, 250, ...

Geometric – Example1

$$1, -1, 1, -1, 1, \ldots;$$

$$\{ar^n\},$$

$$n = 0,1,2,...$$

$$a = 1$$

$$r = -1$$

$$ar^n$$
 a_3ar, ar^2, \dots, ar^n

$$\{ar^n\}, \qquad n = 0,1,2,...$$

$$a = 2$$

$$r = 5$$

$$\begin{cases} 2(5)^n \end{cases}_{n=0}^{\infty}$$

$$r = 5$$

$$6, 2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \dots$$

$$6, 2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \dots$$

$$\{ar^n\},$$

$$n = 0,1,2,...$$

$$a = 6$$

 $r = 1/3$

Find
$$a, r$$
? $\{3 * 4^n\}$, $n = 0, 1, 2, ...$

$$\{ar^n\}, \qquad n = 0,1,2,...$$

$$a = 3$$

$$a = 3$$
 $r = 4$

Find
$$a, r$$
? $\{3 * 4^n\}, n = 1, 2, 3, ...$

$$a = 12$$
 $r = 4$
 $(3 * 4^n), n = 1, 2, 3, ...$
 $(3 * 4^n), n = 1, 2, 3, ...$

Examples:

1. Let a = 1 and r = -1. Then:

$$\{b_n\} = \{b_0, b_1, b_2, b_3, b_4, \dots\} = \{1, -1, 1, -1, 1, \dots\}$$

2. Let a = 2 and r = 5. Then:

$$\{c_n\} = \{c_0, c_1, c_2, c_3, c_4, \dots\} = \{2, 10, 50, 250, 1250, \dots\}$$

3. Let a = 6 and r = 1/3. Then:

$$\{d_n\} = \{d_0, d_1, d_2, d_3, d_4, \dots\} = \{6, 2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \dots\}$$

Definition:

An arithmetic progression is a sequence of the form:

$$a, a + d, a + 2d, \dots, a + nd, \dots$$

where the **initial term a** and the common difference d are real numbers.

Arithmetic – Example 1

$$-1, 3, 7, 11, \ldots,$$

$$\underbrace{1}_{3}, 7, 11, \ldots,$$

$${a + nd}, \quad n = 0,1,2,...$$

$$a = -1$$
 $d = 4$

$$a = -1$$
 $d = 4$
 $\int_{-1 + 4n^{2}}^{4} n = 0$

Arithmetic – Example 2

$$7, 4, 1, -2, \dots$$

$$\{a+nd\},$$

$$n = 0,1,2,...$$

$$a = 7$$

$$d = -3$$

Examples

1. Let a = -1 and d = 4:

$$\{s_n\} = \{s_0, s_1, s_2, s_3, s_4, \dots\} = \{-1, 3, 7, 11, 15, \dots\}$$

2. Let a = 7 and d = -3:

$$\{t_n\} = \{t_0, t_1, t_2, t_3, t_4, \dots\} = \{7, 4, 1, -2, -5, \dots\}$$

3. Let a = 1 and d = 2:

$$\{u_n\} = \{u_0, u_1, u_2, u_3, u_4, \dots\} = \{1, 3, 5, 7, 9, \dots\}$$

Recurrence Relations

Definition: A *recurrence relation* for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, $a_0, a_1, ..., a_{n-1}$, for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.

❖ A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

Recurrence Relations

Examples

Example 1: Let $\{a_n\}$ be a sequence that satisfies the recurrence relation

$$a_n = a_{n-1} + 3$$
 for $n = 1,2,3,4,...$
 $a_0 = 2$.

What are a_1 , a_2 and a_3 ?

[Here a_0 = 2 is the initial condition.]

Solution: We see from the recurrence relation that

$$a_1 = a_0 + 3 = 2 + 3 = 5$$

 $a_2 = 5 + 3 = 8$
 $a_3 = 8 + 3 = 11$

Recurrence Relations

Examples

Example 2: Let $\{a_n\}$ be a sequence that satisfies the recurrence relation

$$a_n = a_{n-1} - a_{n-2}$$
 for $n = 2,3,4,...$

$$a_0 = 3$$
 and $a_1 = 5$.

What are a_2 and a_3 ?

[Here the initial conditions are a_0 = 3 and a_1 = 5.]

Solution: We see from the recurrence relation that

$$a_2 = a_1 - a_0 = 5 - 3 = 2$$

$$a_3 = a_2 - a_1 = 2 - 5 = -3$$

Fibonacci Sequence

The Fibonacci sequence, f_0, f_1, f_2, \dots , is defined by the initial conditions $f_0 = 0, f_1 = 1$, and the recurrence relation

$$f_n = f_{n-1} + f_{n-2}$$

for
$$n = 2, 3, 4, \dots$$

Example: Find f_2 , f_3 , f_4 , f_5 and f_6

Answer:

$$f_2 = f_1 + f_0 = 1 + 0 = 1,$$

 $f_3 = f_2 + f_1 = 1 + 1 = 2,$
 $f_4 = f_3 + f_2 = 2 + 1 = 3,$
 $f_5 = f_4 + f_3 = 3 + 2 = 5,$
 $f_6 = f_5 + f_4 = 5 + 3 = 8.$

0, 1, 1, 2, 3, 5, 8, ...

Iterative Solution Example

Method 1: Working upward, forward substitution

Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for n = 2,3,4,... and suppose that $a_1 = 2$.

$$a_2 = 2 + 3$$

$$a_3 = (2+3) + 3 = 2 + 3 \cdot 2$$

$$a_4 = (2 + 2 \cdot 3) + 3 = 2 + 3 \cdot 3$$

$$a_{1} = (2+2\cdot3)+3=2+3\cdot3$$

$$2+3*(-1)$$

$$a_n = a_{n-1} + 3 = (2 + 3 \cdot (n - 2)) + 3 = 2 + 3(n - 1)$$

Iterative Solution Example

Method 2: Working downward, backward substitution

Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for n = 2,3,4,... and suppose that $a_1 = 2$.

$$a_n = a_{n-1} + 3$$

 $= (a_{n-2} + 3) + 3 = a_{n-2} + 3 \cdot 2$
 $= (a_{n-3} + 3) + 3 \cdot 2 = a_{n-3} + 3 \cdot 3$
.
 $= a_2 + 3(n-2) = (a_1 + 3) + 3(n-2) = 2 + 3(n-1)$

Useful Sequences

TABLE 1	Some	Useful	Seq	uences.
---------	------	--------	-----	---------

nth Term	First 10 Terms	
n^2	1, 4, 9, 16, 25, 36, 49, 64, 81, 100,	
n^3	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,	
n^4	1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,	
2^n	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,	
3^n	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,	
n!	1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,	
f_n	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,	

Next, we introduce summation notation.

We begin by describing the notation used to express the sum of the terms

$$a_m, a_{m+1}, \ldots, a_n$$

from the sequence $\{a_n\}$. We use the notation

$$\sum_{j=m}^{n} a_j, \qquad \sum_{j=m}^{n} a_j, \qquad \text{or} \qquad \sum_{m \leq j \leq n} a_j$$

(read as the sum from j = m to j = n of a_i)

to represent

Here, the variable j is called the **index of summation**

$$a_m + a_{m+1} + \cdots + a_n$$
.

$$\sum_{j=m}^{n} a_{j} = \sum_{i=m}^{n} a_{i} = \sum_{k=m}^{n} a_{k}$$

Here, the index of summation runs through all integers starting with its lower limit m and ending with its upper limit n. A large uppercase Greek letter sigma, Σ, is used to denote summation.

Example 1

Express the sum of the first 100 terms of the sequence $\{a_n\}$,

where
$$a_n = 1/n$$
 for $n = 1, 2, 3, ...$

Answer

$$\sum_{n=1}^{100} 1/n$$

$$\sum_{n=1}^{100} 1/n = 1 + \frac{1}{2} + \frac{1}{5} + \frac{1}{4} + \dots + \frac{1}{600}$$

The lower limit index of summation is 1, and the upper is 100.

Example 2

What is the value of $\sum_{j=1}^{5} j^2$?

Answer

$$\sum_{j=1}^{5} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2$$
$$= 1 + 4 + 9 + 16 + 25$$
$$= 55.$$

Example 3

What is the value of $\sum_{s \in \{0,2,4\}} s$?

$$\sum_{s \in \{0,2,4\}} s = 0 + 2 + 4 = 6.$$

Example 5

What is the value of $\sum_{k=4}^{8} (-1)^k$?

Solution: We have

$$\sum_{k=4}^{8} (-1)^k = (-1)^4 + (-1)^5 + (-1)^6 + (-1)^7 + (-1)^8$$
$$= 1 + (-1) + 1 + (-1) + 1$$
$$= 1.$$

Questions?