MATH 430

Introduction to Topology

mqtrinh.github.io/math/teaching/yale/math-430/

9 psets 36%

1 midterm Mon 2/24 24%

1 final 40%

Munkres, Topology, 2nd Ed.

[late hw policy]

[schedule]

[intros]

I) algebraic topology:

how to tell shapes apart?

Euler: Königsberg (1736), "V - E + F = 2" (1750)

Poincaré: Analysis situs (1890s–1900s)

II) point-set topology:

what IS shape?

Weyl: rigorous defn of "surface" (1913)

Hausdorff: topological spaces (1914)

[we first do (II), then do (I)]

(Munkres §12)

fix a set X

Def a topology on X is a collection T of subsets of X

- s.t. 1) Ø and X are in T
- 2) if {U_i}_i is a subcollection of T, then the union of the U_i in X is an element of T
- 3) if {U_i}_i is a <u>finite</u> subcollection of T, then the intersection of the U_i in X is an element of T

we say that T is a <u>topology</u> on X the elements of T are its <u>open sets</u>

 $\underline{\mathsf{Ex}}$ $\mathsf{X} = \{\mathsf{a},\,\mathsf{b},\,\mathsf{c}\}$

[in each case, Ø is not depicted, of course]

[give a collection of subsets that isn't a topology?]

$$\underline{Ex}$$
 $X = R^n \text{ with } |x| = \text{sqrt(sum_i } x_i^2)$

write
$$B(x, \delta) = \{y \text{ in } R^n \mid |y - x| < \delta\}$$

we say U sub R^n is <u>analytically open</u> iff for all x in U, there is some $\delta > 0$ s.t. B(x, δ) sub U

Thm {analytically open sets} is a topology on R^n

- 1) easy
- 2) suppose U_i anlytc opens, U = bigcup_i U_i pick x in U x belongs to x in U_j for some j pick δ > 0 s.t. B(x, δ) sub U_j sub U

3) suppose finitely many i, U_i analytic opens, V = bigcap_i U_i pick x in V for all i, pick δ_i > 0 s.t. B(x, δ_i) sub U_i

[what next?] let δ = min_i δ _i then B(x, δ) sub B(x, δ _i) sub U_i for all i therefore B(x, δ) sub V

[observe: 3) wouldn't work for infinite $\delta_i \rightarrow 0$]

we call this the <u>analytic topology</u> T_{an} on R^n

Rem far from the only topology possible! always have <u>discrete</u> and <u>indiscrete</u> topologies

Ex X arbitrary

 $T_f = \{\emptyset\} \text{ cup } \{U \text{ sub } X \text{ s.t. } X - U \text{ is finite}\}$

<u>Prop</u> T_f is a topology on X

- 1) easy
- 2) suppose X U_i finite for all i

 X bigcup_i U_i = bigcap_i U_i

 [what if instead U_i = Ø for some i?]
- 3) suppose X U_i finite for all i

 X bigcap_i U_i = bigcup_i X U_i

 unions of finite sets are finite

 [what if instead U_i = Ø for some i?]

we call this the <u>finite complement</u> topology

<u>Df</u> given topologies T, T' on the same X

when T is a subcollection of T', we say that T is <u>coarser</u> than T' and T' is finer than T

[T' is more refined: it sees more open sets]

Ex [how do the topologies on R^n compare? analytic, discrete, indiscrete, finite-comp]

T_{indisc} sub T_f sub T_{an} sub T_{disc}

Rem topologies can be incomparable: think about $X = \{a, b, c\}$ Ex X = Z, the set of integers

<u>Proof</u> assume finitely many primes p

we say U sub Z is <u>evenly spaced</u> iff
U is a union of sets of the form aZ + b
with a, b in Z and a ≠ 0

then $Z - bigcup_p pZ = bigcap_p (Z - pZ)$ is open because Z - pZ is open for all p

<u>Prop</u> {evenly spaced sets} is a topology on Z

but $Z - bigcup_p pZ = \{\pm 1\}$ because if |a| > 1, then some prime divides a

[assume this for now]

so {±1} is open, but not evenly spaced □

Cor there are infinitely many prime numbers

[deduction observed by Furstenberg in 1955]