

Чепарухин Сергей Data Scientist@Mail.Ru

Что это?

А еще?

Профиль

Ваша персональная лента

Используя Пульс, вы принимаете Условия Использования

Кадетское братство: кто стоит за одним из крупнейших подрядчиков Москвы времен Собянина

Уже несколько лет в России действует таинственная компания с названием из трех букв, которой один за другим достаются огромные госконтракты. При этом владельцы э

FORBES.RU

Что можно рекомендовать?

- Видео
- Музыку
- Статьи
- Книги
- Посты в социальных сетях

Теория

U - множество субъектов(users/пользователей/клиентов)

I - множество объектов(items/предметов/товаров/видео/треков)

Ү - пространство описания транзакций

D - $(u_t,i_t,y_t)_{t=1}^m \in U imes I imes Y$ - транзакционные данные

Агрегированные данные:

$$R = ||aggr\{(u_t,i_t,y_t) \in D|u_t = u,i_t = i\}||$$

Задачи:

- прогнозирование незаполненных ячеек матрицы R
- оценивание сходства
- формирование списка рекомендаций для и или і

Рекомендательные системы на основе рейтинга

U - пользователи сайта

I - фильмы

 $r_{ui} =$ рейтинг, который пользователь и поставил фильму і

Задачи персонализации предложений:

- для пользователя:
 - выдать оценку фильму і
 - выдать ранжированный список рекомендованных фильмов
- для фильма:
 - выдать список фильмов, близких к і

Netflix Prize

- 1. 2006-2009
- 2. 100 млн оценок({1,2,3,4,5})
- 3. Задача улучшить качество предсказания оценки пользователя на 10%
- 4. Приз 1 000 000 \$
- 5. метрика RMSE

Netflix Prize

Rank		Team Name	Best Test Score	% Improvement	Best Submit Time							
	Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos											
1	1 1 1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28							
2	1	The Ensemble	0.8567	10.06	2009-07-26 18:38:22							
3	1	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40							

Выводы:

- 1) Можно делать композиции алгоритмов
- 2) Методов решения задачи много
 - Конкурсы опасны самые точные методы были слишком сложны для масштабирования и внедрения
 - Метрика не очень:(

Специфика задачи построения рекомендательных систем

- Отсутствует признаковое описание
- Имеется в наличии очень малое количество данных
- Данные смещены в положительную сторону

Типы рекомендательных систем

- Collaborative Filtering
- Content-Based systems
- Knowledge-based systems

Коллаборативная фильтрация

- Корреляционные модели
 - хранение всей исходной матрицы R
 - сходство пользователей корреляция строк R
 - сходство предметов корреляция столбцов R
- Model Based подход
 - оценивание скрытых характеристик(профилей)
 пользователей и предметов
 - о хранение профилей вместо всей матрицы
 - сходство пользователей и предметов сходство их профилей

Простая коллаборативная фильтрация

"Пользователи, покупавшие яблоки,

также покупали туалетную бумагу"

Проблемы:

- Тривиальные рекомендации
- Не учитываются интересы пользователей
- Проблема холодного старта
- Надо хранить всю матрицу R

User Based

"Пользователи, похожие на этого пользователя, часто покупают яблоки"

$$U(u_0)=\{sim(u_0,u)>lpha\}$$
-коллаборация $I(u_0)=\{i\in I|B(i)=rac{U(u_0)\cap U(i)}{U(u_0)\cup U(i)}>0\}$ - множество кандидатов

Сортируем по В, берем топ - готово!

Проблемы User Based

- Проблема холодного старта
- надо хранить всю матрицу R
- нечего рекомендовать новым пользователям

Item Based

"Вместе с товарами, которые покупал Вася, часто покупают X"

$$X = \{i \in I | \exists i_0 : i_0 \in I(u_0) \text{ и } B(i) = sim(i,i_0) > \alpha \}$$
 Сортируем по В, берем топ.

Проблемы Item Based

- тривиальность рекомендаций
- Проблема холодного старта
- надо хранить всю матрицу R

Меры похожести

- Корреляция Пирсона
- Косинусная мера
- статистические критерии:
 - $\circ \chi^2$ тест
 - о тест Фишера
- Что-либо еще(специфика задачи)

Пример: Item2Item

Youtube(2010):

- Идем от похожести роликов
- Рассматриваем взаимодействия за некоторый период времени(сутки)
- c_{ij} количество раз, когда лайкали/смотрели/долго смотрели ролик і с роликом ј

$$r(i,j)=rac{c_{ij}}{c_ic_j}$$

Корреляционные модели: резюме

Преимущества:

- Легко понять
- Легко реализовать

Недостатки:

- Не хватает теоретического обоснования(все вокруг эвристик)
- Требуется хранить большие объемы данных
- Проблема холодного старта

Латентные модели

Латентная модель: по данным мы пытаемся оценить:

 $(p_{tu})_{t \in G}, |G| \ll |I|$ - профили пользователя

 $(q_{ti})_{t\in H}, |H| \ll |U|$ - профили предметов

Типы моделей

- Ко-кластеризация:
 - \circ жесткая p_{tu} , q_{ti} 1 если принадлежит к кластеру, 0 если нет
 - \circ мягкая p_{tu}, q_{ti} степени принадлежности к кластерам(EM алгоритм)
- Матричные разложения
- Вероятностные модели
- Нейронные сети

Матричные разложения

Есть множество интересов - Т, профили представимы в виде матриц:

$$P=(p_{tu})_{|T| imes|U|}, Q=(q_{ti})_{|T| imes|I|}$$

Задача: найти разложение $\ r_{ui} = \sum_{t \in T} \pi_t p_{tu} q_{ti}$

Или в матричном виде: $R = P^T \Delta Q, \Delta = diag(\pi_i)_{i \in T}$

Методы решения:

SVD - сингулярное разложение

NNMF - неотрицательное матричное разложение

SVD разложение

Пытаемся разложить нашу матрицу на необходимые для нас профили

Латентные факторы

Latent variable view serious Braveheart The Color Amadeus Purple Lethal Weapon Sense and Sensibility Ocean's 11 Geared Geared towards * towards males females The Lion King Dumb and Dumber The Princess Independence Diaries Day escapist

Как решаем

Постановка задачи: $||R-P^TQ||^2
ightarrow \min_{P,Q}$

Используем SGD:

Пусть
$$\epsilon_{ui} = r_{ui} - p_u^T q_i$$

Тогда:

$$egin{aligned} p_u &= p_u + \eta \epsilon_{ui} q_i \ q_i &= q_i + \eta \epsilon_{ui} p_u \end{aligned}$$

Легко ввести регуляризацию: $+\lambda ||P||^2 + \mu ||Q||^2$

Отсутствие интерпретируемости

Линейные модели

Нет признаков - не беда, сделаем!

Признаки:

- Номер пользователя и (one-hot encoding)
- Номер объекта і (one-hot encoding)
- Любая дополнительная информация о объекте/пользователе(кол-во взаимодействий пользователя с другими объектами, кол-во взаимодействий других пользователей с этим объектом)

$egin{array}{cccccccccccccccccccccccccccccccccccc$		u_1	u_2	u_3	i ₁	i ₂	<i>i</i> ₃	a_1	a ₂	у
x ₃ 0 1 0 0 1 0 0.0 1.0 1 x ₄ 0 0 1 1 0 0 0.3 0.7 3	r ₁	1	0	0	1	0	0	2.0	0.0	2
x ₄ 0 0 1 1 0 0 0.3 0.7 3	r ₂	1	0	0	0	1	0	1.5	0.5	4
	<i>x</i> ₃	0	1	0	0	1	0	0.0	1.0	1
r ₅ 0 0 1 0 0 1 3.2 1.7 5	r ₄	0	0	1	1	0	0	0.3	0.7	3
	x ₅	0	0	1	0	0	1	3.2	1.7	5
	Users				Items			Auxiliary Features		

Factorization Machines

Факторизационные машины представлены как универсальная модель коллаборативной фильтрации, обобщающая многие из известных моделей:

$$h(x) = w_0 + \sum_{j=1}^p w_j x_j + \sum_{j=1}^p \sum_{j'=j+1}^p x_j x_{j'} V_j^T V_{j'}$$

 $x \in R^p$ - вектор признаков объекта

h(x)- предсказание

Модель "квадратичной" регрессии

Factorization Machines

$$h(x) = w_0 + \sum_{j=1}^p w_j x_j + \sum_{j=1}^p \sum_{j'=j+1}^p x_j x_{j'} V_j^T V_{j'}$$

	u_1	u_2	u_3	i ₁	i ₂	<i>i</i> ₃	a_1	a ₂	у	
<i>x</i> ₁	1	0	0	1	0	0	2.0	0.0	2	h
<i>x</i> ₂	1	0	0	0	1	0	1.5	0.5	4	1
<i>x</i> ₃	0	1	0	0	1	0	0.0	1.0	1	╠
<i>x</i> ₄	0	0	1	1	0	0	0.3	0.7	3	1
<i>x</i> ₅	0	0	1	0	0	1	3.2	1.7	5	
							'			
	Users							Auxiliary Features		

Factorization Machines

- Позволяет моделировать популярные модели коллаборативной фильтрации
- Позволяет добавить новые признаки(контекст)
- Имеет эффективный алгоритм обучения
- Kyчa opensource библиотек

Model-Based

- Обучение моделей в оффлайне
- Модели надо часто переобучать и обновлять
- Проблема подбора кандидатов

Процесс рекомендаций

Генерация кандидатов

- Топ по кликам/покупкам
- Топ по интересу пользователя
- Похожие на просмотренные
- Approximate Nearest Neighbour Search
- Заготовленные заранее самые "важные" объекты для пользователя

Метрики

- Математические:
 - MAE
 - RMSE
 - Precision@K
 - Recall@K
 - MAP@K
 - o DCG@K
- Качественные метрики:
 - Ручная разметка(side-by-side, user)

Метрики

MAE

$$MAE = rac{1}{k} \sum_{i=1}^k |r_i - y_i|$$

RMSE

$$RMSE = \sqrt{rac{1}{k}\sum_{i=1}^k (r_i - y_i)^2}$$

Метрики

DCG

$$DCG@k = \sum_{i=1}^k rac{2^{rel_i}-1}{log_2(i+1)}$$

А еще важно:

- Разнообразие
- Неожиданность
- Свежесть
- Удобство в использовании
- Доверие
- Кликбейт, желтизна

Открытые вопросы

- Как обосновывать рекомендации?
- Как решать проблему холодного старта?
- Как учитывать контекст?
- Как учитывать неявные предпочтения?
- Как помогать выбираться из "пузыря"?
- Как учитывать связи между пользователями?

Технические вопросы

- Как быстро перестраивать рекомендации?
- Как масштабировать?
- Как отбирать кандидатов?

Вопросы?