5. Boosting Algorithms

that are tree-based

Tomasz Kajdanowicz

ex. Random Forest

Sequential Decision Tree Building

The building process

For each leaf node:

For each feature:

- Sort the instances in the node by the feature value
- Linear scan to decide the best split on the feature

Take the best split and do it

Parallelize Node Building at Each Level

- parallelize node building at each level
- workload imbalance problem (number of leafs)

Parallelize Split Finding on Each Node

too much overhead for small nodes.

1. For each feature:

- Sort the instances by the feature value
- Linear scan to decide the best split on the feature

2. Take the best split and do it

Parallelize Split Finding at Each Level by Features

For each feature:

>

For each leaf node:

Can sort globally first!

- Sort the instances of the node by the feature value
- Linear scan to decide the best split on the feature

Take the best split for each node and do it

Advantages:

- workload totally balanced number of instances for each
 feature is the same, the
 workload for different jobs is
 the same
- overhead for parallelization is small split finding at the whole level rather than a single node

AdaBoost.PL

Output: The classifier (H)Output: The classifier (H)**Procedure: Procedure:** 1: $w^1 \leftarrow (\frac{1}{n}, ..., \frac{1}{n})$ 1: **for** $p \leftarrow 1$ to M **do** 2: $H^p \leftarrow ADABOOST(D_{np}^p, T)$ 2: **for** $t \leftarrow 1$ to T **do** 3: $H^{p^*} \leftarrow$ the weak classifiers in H^p sorted w.r.t. $\alpha^{p(t)}$ 3: $h^{(t)} \leftarrow \text{LearnWeakClassifier}(w^t)$ 4: end for $\epsilon_{-} \leftarrow \sum_{i=1}^{n} w_{i}^{t} I \left\{ h^{(t)} \left(x_{i} \right) \neq y_{i} \right\}$ $\alpha^{t} \leftarrow \frac{1}{2} \ln \left(\frac{1 - \epsilon_{-}}{\epsilon_{-}} \right)$ 5: for $t \leftarrow 1$ to T do 6: $h^{(t)} \leftarrow \text{MERGE}(h^{1^*(t)}, ..., h^{M^*(t)})$ 7: $\alpha^t \leftarrow \frac{1}{M} \sum_{p=1}^{M} \alpha^{p^*(t)}$ for $i \leftarrow 1$ to n do if $h^{(t)}(x_i) \neq y_i$ then $w_i^{t+1} \leftarrow \frac{w_i^t}{2\epsilon}$ 8: end for 9: return $H = \sum_{t=1}^{T} \alpha^t h^{(t)}$ else $w_i^{t+1} \leftarrow \frac{w_i^t}{2(1-\epsilon_-)}$ 10: end if 11: end for 12: 13: end for 14: return $H = \sum_{t=1}^{T} \alpha^{t} h^{(t)}$

Algorithm 1 ADABOOST (D_n, T)

Input: Training set of n examples (D_n)

Number of boosting iterations (T)

Palit, Indranil, and Chandan K. Reddy. "Parallelized boosting with map-reduce." 2010 IEEE International Conference on Data Mining Workshops. IEEE, 2010.

Algorithm 2 ADABOOST.PL $(D_{n^1}^1, ..., D_{n^M}^M, T)$

Number of boosting iterations (T)

Input: The training sets of M workers $(D_{n_1}^1,...,D_{n_M}^M)$

number of workers			
dataset	instances	attributes	
musk	6598	167	
swsequence	3527	6349	

Gradient boosting machines (GBMs)

How to understand GBMs?

additive modeling

intuition behind gradient boosting

Example

Performance

Hyper-parameters

L2 loss optimizing algorithm

Additive modeling

Additive modeling

$$F_M(\mathbf{x}) = f_1(\mathbf{x}) + \dots + f_M(\mathbf{x}) = \sum_{m=1}^M f_m(\mathbf{x})$$

Greedy approach

Our aim:
$$\hat{y} = \sum_{m=1}^{M} f_m(\mathbf{x})$$

Gradient boosting machines use additive modeling to gradually nudge an approximate model with greedy approach:

$$F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + f_m(\mathbf{x})$$

Intuition behind gradient boosting

 $f_0(x)$ - initial model (predicts y given x)

then, let's gradually nudge the model towards the known target value y by adding one or more tweaks

$$\hat{\mathbf{y}} = f_0(\mathbf{x}) + \Delta_1(\mathbf{x}) + \Delta_2(\mathbf{x}) + \dots + \Delta_M(\mathbf{x})$$

$$= f_0(\mathbf{x}) + \sum_{m=1}^{M} \Delta_m(\mathbf{x})$$

$$= F_M(\mathbf{x})$$

$rac{ ext{Stage}}{m}$	$egin{aligned} \mathbf{Boosted} \\ \mathbf{Model} \end{aligned}$	$\begin{array}{c} \mathbf{Model} \\ \mathbf{Output} \; \hat{y} \end{array}$	Train Δ_m on $y - F_{m-1}$	$egin{aligned} \mathbf{Noisy} \ \mathbf{Prediction} \ \Delta_m \end{aligned}$
0	F_0	70		
1	$F_1 = F_0 + \Delta_1$	70 + 15 = 85	100-70=30	$\Delta_1 = 15$
2	$F_2 = F_1 + \Delta_2$	85 + 20 = 105	100-85=15	$\Delta_2 = 20$
3	$F_3 = F_2 + \Delta_3$	105 - 10 = 95	100 - 105 = -5	$\Delta_3 =$ -10
4	$F_4 = F_3 + \Delta_4$	95 + 5 = 100	100-95=5	$\Delta_4 = 5$

REMARK!

- Direction vector and residuals vector
- There will be so-called **learning rate**, that speeds up or slows down the overall approach of predicted y to real y, which helps to reduce the likelihood of overfitting

Example	sqfeet	rent
	750	1160
<u>Data:</u>	800	1200
	850	1280
	900	1450
	950	2000

Notation: X - feature vectors, y - rent vector, $F_m(x_i)$ - predicted value, $F_m(X)$ - predicted target vector

<u>Task:</u> predict rent price given square footage

Initial model: mean (average), then: regression tree stump

\mathbf{sqfeet}	\mathbf{rent}	F_0	$\mathbf{y} - F_0$
750	1160	1418	-258
800	1200	1418	-218
850	1280	1418	-138
900	1450	1418	32
950	2000	1418	582

 $y - F_m$ - called pseudo-responses

shows not only the direction but the magnitude

$$x < 925$$
 $x > = 925$
 $[-258, -218, -138, 32]$
 $[582]$
 $[582]$
 $[582]$
 $[582]$
 $[582]$

x < 825 x > 825

x < 925 x > = 925 [-20,20,-54.2,115.8] x > = 925 [-61.7] x = -61.7 x = -61.7

$$F_m(X) = F_{m-1}(X) + \eta \Delta_m(X)$$

$$\eta = 1.0$$

$$F_1 = F_0 + \Delta_1, F_2 = F_1 + \Delta_2$$

Δ_1	F_1	\mathbf{y} - F_1	Δ_2	F_2	\mathbf{y} - F_2	Δ_3	F_3
-145.5	1272.5	-112.5	-92.5	1180	-20	15.4	1195.4
-145.5	1272.5	-72.5	-92.5	1180	20	15.4	1195.4
-145.5	1272.5	7.5	61.7	1334.2	-54.2	15.4	1349.6
-145.5	1272.5	177.5	61.7	1334.2	115.8	15.4	1349.6
582	2000	0	61.7	2061.7	-61.7	-61.7	2000

we are always training on the residual vector $\mathbf{y} - \mathbf{F}_{m-1}$ but get imperfect model

blue dots - residual vector elements used to train weak models, **dashed lines** - predictions made by weak models, **dotted line** - origin at 0

composite model sums together all of the weak models

blue dots - residual vector
elements used to train weak
models,
dashed lines - predictions made
by weak models,
dotted line - origin at 0

adding all of weak models to the initial average model

Measuring model performance

The loss across all **N** observations is just the average of all the individual observation losses:

$$L(\mathbf{y}, F_M(X)) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, F_M(\mathbf{x}_i))$$

The mean squared error (MSE) is the most common, and what we are optimizing:

$$L(\mathbf{y}, F_M(X)) = \frac{1}{N} \sum_{i=1}^{N} (y_i - F_M(\mathbf{x}_i))^2$$

Choosing hyper-parameters

number of stages M

the learning rate $\,\eta\,$

L2 loss optimizing algorithm

Algorithm: $l2boost(X,y,M,\eta)$ returns model F_M Let $F_0(X) = \frac{1}{N} \sum_{i=1}^{N} y_i$, mean of target y across all observations for m = 1 to M do Let $\mathbf{r}_{m-1} = \mathbf{y} - F_{m-1}(X)$ be the residual direction vector Train regression tree Δ_m on \mathbf{r}_{m-1} , minimizing squared error $F_m(X) = F_{m-1}(X) + \eta \Delta_m(X)$ end return F_M

Why **gradient** boosting?

a mathematician's favorite trick: showing how our current problem is just a flavor of another well-known problem for which we have lots of useful results

GBM training weak learners on residual vectors optimizes the mean squared error (MSE), the L_2 loss, between the true target y and the intermediate predictions $F_m(X)$

Is adding weak models Δ_m to our GBM additive model $F_m(X) = F_{m-1}(X) + \eta \Delta_m(X)$ performing gradient descent in some way?

To uncover the loss function optimized we just have to integrate the residuals $y - F_m(X)$

$$L(\mathbf{y}, F_M(X)) = \frac{1}{N} \sum_{i=1}^{N} (y_i - F_M(\mathbf{x}_i))^2$$

$$L(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

since N is a constant once we start boosting, and f(x) and cf(x) have the same x minimum point, let's drop the 1/N constant

$$L(\mathbf{y}, \hat{\mathbf{y}}) = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

taking the partial derivative of the loss function with respect to a specific

approximation
$$\hat{y}_j$$
 $\frac{\partial}{\partial \hat{y}_j} L(\mathbf{y}, \hat{\mathbf{y}}) = \frac{\partial}{\partial \hat{y}_j} \sum_{i=1}^N (y_i - \hat{y}_i)^2$

$$= \frac{\partial}{\partial \hat{y}_j} (y_j - \hat{y}_j)^2$$

$$= 2(y_j - \hat{y}_j) \frac{\partial}{\partial \hat{y}_j} (y_j - \hat{y}_j)$$

$$= -2(y_j - \hat{y}_j)$$

remove the summation because the partial derivative of *L* for *i*≠*j* is 0

$$\nabla_{\hat{\mathbf{y}}} L(\mathbf{y}, \hat{\mathbf{y}}) = -2(\mathbf{y} - \hat{\mathbf{y}})$$

XGBoost

Difference between GBM and XGBoost?

- XGBoost and GBM follows the principle of gradient boosting
- XGBoost uses a more regularized model formalization to control complexity of the model and over-fitting, which gives it better performance.
- Objective Function : Training Loss + Regularization
- Regularization: complexity of the model

$$Obj = \sum_{i=1}^{n} l(y_i, \hat{y}_i) + \sum_{k=1}^{K} \Omega(f_k)$$

Training Loss measures how well model fit on training data

Regularization, measures complexity of trees

Complexity of a tree

Taken into account:

- Number of leaves in tree T
- Leaf weigh penalty parameter γ
- Tree size penalty parameter λ
- Score of a leaf w_i

$$\Omega(F_t) = \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{T} w_j^2$$

$$Obj(F_t) = -\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T$$

$$G_j = \sum_{i \in I_j} \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)})$$

$$H_j = \sum_{i \in I_j} \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$$

$$I = \{i | q(x_i) = j\}$$

LightGBM

LightGBM

Gradient-based One-Side Sampling (GOSS):

- exclude a significant proportion of data instances with small gradients, and only use the rest to estimate the information gain
- since the data instances with larger gradients play a more important role in the computation of information gain, GOSS can obtain quite accurate estimation of the information gain with a much smaller data size -> FASTER

Exclusive Feature Bundling (EFB):

- bundle mutually exclusive features (i.e., they rarely take nonzero values simultaneously), to reduce the number of features
- finding the optimal bundling of exclusive features is NP-hard, but a greedy algorithm can achieve quite good approximation ratio

Figure 1: Time-AUC curve on Flight Delay.

Figure 2: Time-NDCG curve on LETOR.

CatBoost

CatBoost

- ordered boosting a permutation-driven alternative to the classic algorithm
 - \circ Adresses the **prediction shift** problem gradients used at each step are estimated using the target values of the same data points the current model F_{m-1} was built on
- an innovative algorithm for processing categorical features

Function	XGBoost	CatBoost	Light GBM
Important parameters which control overfitting	 learning_rate or eta optimal values lie between 0.01-0.2 max_depth min_child_weight: similar to min_child leaf; default is 1 	1. Learning_rate 2. Depth - value can be any integer up to 16. Recommended - [1 to 10] 3. No such feature like min_child_weight 4. I2-leaf-reg: L2 regularization coefficient. Used for leaf value calculation (any positive integer allowed)	 learning_rate max_depth: default is 20. Important to note that tree still grows leaf-wise. Hence it is important to tune num_leaves (number of leaves in a tree) which should be smaller than 2^(max_depth). It is a very important parameter for LGBM min_data_in_leaf: default=20, alias= min_data, min_child_samples
Parameters for categorical values	Not Available	 cat_features: It denotes the index of categorical features one_hot_max_size: Use one-hot encoding for all features with number of different values less than or equal to the given parameter value (max – 255) 	categorical_feature: specify the categorical features we want to use for training our model
Parameters for controlling speed	 colsample_bytree: subsample ratio of columns subsample: subsample ratio of the training instance n_estimators: maximum number of decision trees; high value can lead to overfitting 	 rsm: Random subspace method. The percentage of features to use at each split selection No such parameter to subset data iterations: maximum number of trees that can be built; high value can lead to overfitting 	 feature_fraction: fraction of features to be taken for each iteration bagging_fraction: data to be used for each iteration and is generally used to speed up the training and avoid overfitting num_iterations: number of boosting iterations to be performed; default=100

Thank you