

### **Outline**

- Introduction
- Big data techniques
- Association rule (Implementation)
- Big data technologies
- **\***Future Work
- **\*** References

# Introduction



No single standard definition...

• It represents massive data sets with large, more varied and complex structure with challenge of storing, analyzing and visualizing for extracting meaningful results [1].

Factors generating bi

- Medical records
- Scientific research
- Government
- Natural disaster and resource management
- Mobile phone
- Private sector
- Military surveillance
- Financial services
- Retail
- Social networks
- Web logs, text, document, photography, audio, video.
- Search indexing
- Call detail records
- Sensor networks and telecommunications



Scientific instrument



**Mobile devices** 







Social media and networks



### Motivation and benefits

• Exponential growth of digital world [2]



- Better aimed marketing
- Client based segmentation
- Automated decision making
- Greater return on investments
- Quantification of risks and market trending
- Better planning and forecasting
- Identification of consumer behaviour and production yield extension
- Predictive analytics on traffic flows
- Identification of threats from different video, audio and data feeds.

Potential of big data

Retail

- Health care [3]
  - Clinical data
  - Pharmaceutical R&D data
  - Activity (claims) and cost data
- Public sector [3]
  - Creating transparency
  - Population segmentation
  - Automatic decision making
  - Innovation of new product and service



- Marketing
- Merchandising
- Operations
- Supply chain







## Potential of big data

- Manufacturing [3]
  - Research and development and produ
  - Product lifecycle management.
  - Design to value.
  - Open innovation



- Smart routing
- Geo targeted advertising
- Emergency response
- Urban planning
- Social network analysis [3]
  - More targeted advertising
  - Marketing campaigns and capacit
  - Customer behavior and buying pa
  - Sentiment analytics







# **Association rule learning**

# Association rule in big data

- Association rules are the form  $A \rightarrow B$ .  $A \rightarrow B$  is different from  $B \rightarrow A$ .
- This implies that if a customer purchase item A then he also purchase item B.
- For support level that generate less than **100,000 rules**, Apriori finishes on all datasets in less than **1 minute**.
- For support level that generate less than **1,000,000 rules**, which are sufficient for prediction purposes Apriori finishes processing in less than **10 minutes**. [14]

# Real life application

| Field of work | Problem             | Method applied                                                             | Outcome                               |
|---------------|---------------------|----------------------------------------------------------------------------|---------------------------------------|
|               |                     |                                                                            |                                       |
| Government    | Fraud at Consignia  | Use of "ifthen"                                                            | Detectors that successfully spot      |
| sector.       | , UK's Post office  | association rule.                                                          | abnormal transactions.                |
| Researchers   | group               | E.g. Normal behavior rule                                                  | They also copy themselves, so         |
| of King's     |                     | "IF time < 1200 AND item =                                                 | CIFD adapts itself to create          |
| College       |                     | stamps THEN \$2 < cost <                                                   | detectors that correspond to          |
| London [19]   |                     | \$4."                                                                      | the most prevalent patterns of fraud. |
|               |                     |                                                                            |                                       |
| [20]          | accessibility of an | Spatial association rule mining to geo-referenced U.K. census data of 1991 | planning in area near a local         |

| Health  | care Anomaly detection | In training         | Apriori Success rate of classifier was |
|---------|------------------------|---------------------|----------------------------------------|
| sector. | and classification     | algorithm was appl  | ied and 69.11%.                        |
| [21]    | in Breast Cancer.      | association rules   | were Time required for training was    |
|         |                        | extracted. The supp | ort was much less then neural network. |
|         |                        | set to 10% an       | d the                                  |
|         |                        | confidence to 0%.   |                                        |

# Real life application

| Field of work              | Problem                                                         | Method applied                                                                                                                                                                                              | Outcome                                                                                                             |
|----------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Retail Sector.             | Purchasing                                                      | On a dataset of 353,421 records                                                                                                                                                                             | s In a time duration of 1.5                                                                                         |
| [22]                       | behavior of                                                     | from 1903 households abou                                                                                                                                                                                   | t hours about 2.6% of                                                                                               |
|                            | customer                                                        | . ,,                                                                                                                                                                                                        | y accepted and rest were r rejected.  f Thus total rules reduced to g about 14 rules per d household from 537 rules |
|                            |                                                                 | , ·                                                                                                                                                                                                         |                                                                                                                     |
| Telecom<br>Sector.<br>[23] | pairs or triples<br>or quadruples<br>customers are<br>currently | Use of association rule by treating the top-k country item set as a market basket for each of account. Exploiting temporal nature of data by using traffic from last month as a baseline for current month. | a high rate of fraud calls<br>trends associated with<br>a adult entertainment                                       |

# Real life application

| Field of work     | Problem Statement            | Method applied       | Outcome                     |
|-------------------|------------------------------|----------------------|-----------------------------|
|                   |                              |                      |                             |
| Manufacturing     | Setting up a system which    | Use of Rule-Growth   | Found the main              |
| sector.           | provides result identical to | that mines sequentia | I dysfunction responsible   |
| VAM Drilling      | g human observation          | rules by FP-growth   | for delay.                  |
| industries France | related to performance       | with varying the     | e Finding that generator is |
| [24]              | and dysfunctions during      | parameters minimum   | cause for exceeding         |
|                   | forging.                     | support and minimum  | n maximum time in           |
|                   |                              | confidence           | starting phase              |
|                   |                              |                      | The third major problem     |
|                   |                              |                      | was the lack of             |
|                   |                              |                      | effectiveness of metal      |
|                   |                              |                      | strippers                   |
|                   |                              |                      |                             |

# Market Basket Analysis

- In Retail each customer purchases different set of products, different quantities, different times
- Retailers uses this information to:
  - Gain insight about its merchandise (products):
    - Fast and slow movers
    - Products which are purchased together
    - Products which might benefit from promotion
  - Take action:
    - Store layouts
    - Which products to put on specials, promote, coupons...
- Combining all of this with a customer loyalty card it becomes even more valuable

### **DATASET** [18]

| S.No. | Item 1    | Item 2  | Item 3       |
|-------|-----------|---------|--------------|
| 1.    | Bread     | Butter  | Milk         |
| 2.    | lce-cream | Bread   | Butter       |
| 3.    | Bread     | Butter  | Noodles      |
| 4.    | Bread     | Noodles | lce-cream    |
| 5.    | Butter    | Milk    | Bread        |
| 6.    | Bread     | Noodles | Ice-cream    |
| 7.    | Milk      | Butter  | Bread        |
| 8.    | lce-cream | Milk    | Bread        |
| 9.    | Butter    | Milk    | Noodles      |
| 10.   | Noodles   | Butter  | Ice-cream 15 |

| S.No. | Item 1     | Item 2  | Item 3    |
|-------|------------|---------|-----------|
| 1.    | .Bread     | Butter  | Milk      |
| 2.    | .lce-cream | Bread   | Butter    |
| 3.    | .Bread     | Butter  | Noodles   |
| 4.    | .Bread     | Noodles | Ice-cream |
| 5.    | .Butter    | Milk    | Bread     |
| 6.    | .Bread     | Noodles | Ice-cream |
| 7.    | . Milk     | Butter  | Bread     |
| 8.    | .lce-cream | Milk    | Bread     |
| 9.    | . Butter   | Milk    | Noodles   |
| 10.   | . Noodles  | Butter  | Ice-cream |

- The support for ten transactions where bread and noodles occur together is three. Support for {Bread, Noodles} = 3/10= 0.30.
- This means the association of data set or item set, the bread and noodles brought together with 30 percent support.

| S.No. | Item 1    | Item 2  | Item 3    |
|-------|-----------|---------|-----------|
| 1.    | Bread     | Butter  | Milk      |
| 2.    | Ice-cream | Bread   | Butter    |
| 3.    | Bread     | Butter  | Noodles   |
| 4.    | Bread     | Noodles | Ice-cream |
| 5.    | Butter    | Milk    | Bread     |
| 6.    | Bread     | Noodles | Ice-cream |
| 7.    | Milk      | Butter  | Bread     |
| 8.    | Ice-cream | Milk    | Bread     |
| 9.    | Butter    | Milk    | Noodles   |
| 10.   | Noodles   | Butter  | Ice-cream |

Confidence 
$$(A \rightarrow B) = \frac{\text{Number of tuples containing both A and B}}{\text{Number of tuples containing A}}$$
Confidence for Bread  $\Rightarrow$  Noodles = 3/8 = 0.375

- This means that a customer who buy bread then there is a confidence of 37.5 percent that it also buy noodles.

#### APRIORI ALGORITHM

- Apriori is an algorithm for finding frequent item-sets using candidate generation. [18]
- Given minimum required support 'S' as interestingness criterion: -
  - (1) Search for all individual elements (1-element item-set) that have a minimum support of 'S'.
  - (2) From the results of the previous search for 'i' element item-set, search for all 'i+ 1' element item-sets that have a minimum support of 'S'. This becomes the set of all frequent '(i+ 1)' item-sets that are interesting.
    - (3) Repeat step 2 until item-set size reaches maximum.

#### **EXPLANATION**

• In the given dataset every item occurs three or more than three times and total number of transaction is ten so,

#### **Minimum Support = 0.3**

Interestingness of 1- element item-sets: - {Bread}, {Butter}, {milk},
 {ice-cream}, {noodles}

| Item-set  | Support |
|-----------|---------|
| Bread     | 0.8     |
| Butter    | 0.7     |
| Noodles   | 0.5     |
| Ice-cream | 0.5     |
| Milk      | 0.5     |

#### **EXPLANATION**

- Interestingness 2-element item-sets
- {Bread, Butter}, {Bread, Milk}, {Bread, Noodles}, {Bread, Ice-cream}, {Butter, Milk}, {Butter, Noodles}, {Noodles, ice-cream}, etc.

| Item-sets             | Support |
|-----------------------|---------|
| {Bread, Butter}       | 0.5     |
| {Bread, Milk}         | 0.4     |
| {Bread, Noodles}      | 0.3     |
| {Bread, Ice-cream}    | 0.4     |
| {Butter, Milk}        | 0.4     |
| {Butter, Noodles}     | 0.3     |
| {Butter, Ice-cream}   | 0.2     |
| {Noodles, Milk}       | 0.1     |
| {Noodles, Ice-cream } | 0.3     |
| {Milk, Ice-cream}     | 0.1     |

| S.No. | Item 1     | Item 2  | Item 3    |
|-------|------------|---------|-----------|
| 1     | .Bread     | Butter  | Milk      |
| 2     | .lce-cream | Bread   | Butter    |
| 3     | .Bread     | Butter  | Noodles   |
| 4     | . Bread    | Noodles | lce-cream |
| 5     | .Butter    | Milk    | Bread     |
| 6     | . Bread    | Noodles | Ice-cream |
| 7     | .Milk      | Butter  | Bread     |
| 8     | .lce-cream | Milk    | Bread     |
| 9     | .Butter    | Milk    | Noodles   |
| 10    | . Noodles  | Butter  | Ice-cream |

### **EXPLANATION**

Interestingness 3-element item-sets.

| Item-set                    | Support |
|-----------------------------|---------|
| {Bread, Butter, Milk}       | 0.3     |
| {Bread, Ice-cream, Noodles} | 0.2     |
| {Bread, Butter, Noodles}    | 0.1     |

• The main advantage of the Apriori algorithm is that it only takes data from previous iteration not from the whole data.

### MINING ASSOCIATION RULES

**RULES: - [18]** 

- (1) Use Apriori to generate item-sets of different sizes.
- (2) At each iteration divide each frequent item-set X into two parts antecedent (LHS) and consequent (RHS) this represents a rule of the form LHS→RHS.
- (3) Discard all rules whose confidence is less than minimum confidence

| S.No. | Item 1     | Item 2  | Item 3    |
|-------|------------|---------|-----------|
| 1.    | .Bread     | Butter  | Milk      |
| 2     | .lce-cream | Bread   | Butter    |
| 3     | .Bread     | Butter  | Noodles   |
| 4     | .Bread     | Noodles | Ice-cream |
| 5     | .Butter    | Milk    | Bread     |
| 6     | .Bread     | Noodles | Ice-cream |
| 7     | .Milk      | Butter  | Bread     |
| 8     | .lce-cream | Milk    | Bread     |
| 9     | .Butter    | Milk    | Noodles   |
| 10    | . Noodles  | Butter  | Ice-cream |

| RULE                     | CONFIDENCE(Percentage) |
|--------------------------|------------------------|
| {Bread} → {Butter, Milk} | 37                     |
| {Butter} → {Bread, Milk} | 42                     |
| {Milk} → {Bread, Butter} | 60                     |
| {Bread, Butter} → {Milk} | 60                     |
| {Bread, Milk} → {Butter} | 75                     |
| {Butter, Milk} → {Bread} | 75                     |

### Final outcome

• If the minimum confidence threshold is 70 percentage, and the minimum support is 30 percentage, then discovered rules are

```
{Bread, Milk} → {Butter}
{Butter, Milk} → {Bread}
```

#### **EXPERIMENT**

- Bakery Dataset
- On a database with number of items = 50
- Total number of receipt = 75000
- Minimum Support = 0.04