

# Data Paper

# Vertical distribution of arthropod assemblages in native and exotic forests of Terceira Island (Azores, Portugal)

Sébastien Lhoumeau<sup>‡</sup>, Abrão Leite<sup>§</sup>, Laurine Parmentier<sup>‡</sup>, Clémence Massard<sup>I</sup>, Martha Vounatsi<sup>¶</sup>, Georgery Lucie<sup>#</sup>, Paulo A. V. Borges<sup>‡,¤,«</sup>

- ‡ University of the Azores, cE3c- Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, CHANGE Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, Rua Capitão João d'Ávila, Pico da Urze, 9700-042, Angra do Heroísmo, Azores, Portugal
- § Rua Fernando Pessoa, nº99 R/C DTO 2765-483, Estoril, Portugal
- | Mestrado em Gestão e Conservação da Natureza, University of the Azores Rua Capitão João d'Ávila, Pico da Urze 9700-042, Angra do Heroísmo, Azores, Portugal
- ¶ Department of Ecology and Taxonomy, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece # UCLouvain Unamur, Faculty of Biology, Louvain-La-Neuve, Belgium
- ¤ IUCN SSC Atlantic Islands Invertebrate Specialist Group, Angra do Heroísmo, Azores, Portugal
- « IUCN SSC Monitoring Specialist Group, Angra do Heroísmo, Azores, Portugal

Corresponding author: Sébastien Lhoumeau (seb.lhoumeau@gmail.com)

Academic editor: António O. Soares

Received: 28 Mar 2025 | Accepted: 05 May 2025 | Published: 20 May 2025

Citation: Lhoumeau S, Leite A, Parmentier L, Massard C, Vounatsi M, Lucie G, Borges PAV (2025) Vertical distribution of arthropod assemblages in native and exotic forests of Terceira Island (Azores, Portugal).

Biodiversity Data Journal 13: e154240. https://doi.org/10.3897/BDJ.13.e154240

## **Abstract**

## **Background**

In the summer of 2024, a study was conducted on Terceira Island in the Azores Archipelago, Portugal, aiming to characterise the vertical diversity and spatial distribution patterns of arthropods within native and exotic forest ecosystems. This study forms part of a broader research initiative designed to investigate how alterations in habitat structure influence the complexity and stability of arthropod food webs in Azorean forest habitats. By systematically sampling arthropods across multiple vertical strata —from forest floor to canopy the study aimed to generate detailed insights into the ecological dynamics governing biodiversity patterns and species interactions. Results from this monitoring will

contribute significantly to understanding the ecological impacts of forest composition and management strategies, ultimately providing information for conservation planning and habitat restoration efforts aimed at preserving arthropod diversity and ecological resilience in island ecosystems.

## **New information**

The current dataset comprises identified terrestrial arthropods collected using SLAM (Sea, Land and Air Malaise) traps and Pitfall traps across diverse forest strata. A total of 32,797 specimens were collected from the Arachnida, Diplopoda, Chilopoda and Insecta classes. A total of 18,372 (56%) were identified at the species or subspecies level, including 12,745 adults and 5,627 juveniles for taxa, such as Araneae and Hemiptera due to the availability of reliable identification methods. The resulting dataset encompasses 150 species and 11 subspecies, distributed across 21 orders, 81 families and 148 genera.

Hemiptera emerged as the most abundant identified order, with a total of 7,697 recorded specimens and Coleoptera stood as the most taxonomically diverse, encompassing 19 distinct families and 50 species and sub-species. The ten most abundant species comprise predominantly endemic and native non-endemic species, with two exotic species detected amongst them.

This comprehensive dataset serves as a significant augmentation of the existing baseline knowledge concerning the diversity of Azorean arthropods, thereby facilitating the formulation of future long-term ecological comparisons. It offers valuable insights into the vertical distribution of species abundance within both native and exotic forests of the Azores.

# **Keywords**

occurrence, specimen, Arthropoda, Azores, forest stratification, SLAM trap, Pitfall trap, sampling event

## Introduction

Forests represent amongst the most structurally complex ecosystems on Earth (Pan et al. 2013, Ehbrecht et al. 2021), characterised by distinct vertical strata that support a wide range of biodiversity (Oliveira and Scheffers 2019). The vertical stratification of forests plays a crucial role in shaping species distributions, ecological interactions and resource availability (Laurans et al. 2014, Thiel et al. 2021, Basham et al. 2023). The different forest layers — ranging from the forest floor to the canopy — offer distinct environmental conditions, including variations in temperature, humidity, light availability and plant composition (Chen et al. 1999, De Frenne et al. 2019). Consequently, many forest-

dwelling organisms, including arthropods, exhibit strong vertical preferences and niche partitioning (Basset et al. 2003). However, despite the recognised importance of vertical stratification in forest ecology, studies on arthropod diversity across forest layers remain limited, especially in insular ecosystems (but see Costa et al. (2023)).

Arthropods are considered to be one of the most functionally diverse and ecologically significant animal groups. They play key roles in decomposition, pollination, herbivory, predation and soil aeration (Wong et al. 2019, Cardoso et al. 2020, Cardoso et al. 2024). Due to their sensitivity to habitat structure and environmental changes, arthropods are widely used as bioindicators of ecosystem health (Tsafack et al. 2023). Understanding their distribution across vertical forest layers can provide insights into species interactions, habitat specialisation and the effects of environmental disturbances on biodiversity. In island ecosystems, where species assemblages are often shaped by historical colonisation events, habitat fragmentation and the introducion of invasive species (Fernández-Palacios et al. 2021), investigating arthropod vertical stratification can be particularly valuable for conservation planning. Island ecosystems, such as those of the Azores (Portugal), exhibit unique biodiversity patterns, shaped by isolation, habitat heterogeneity and anthropogenic influences, making them valuable natural laboratories for ecological reserach and biodiversity management strategies (Mueller-Dombois 1992).

The Azorean forests, include both native and exotic forest types, each of which differs in terms of floristic composition, structural complexity and historical land use (Dias et al. 2004, Elias et al. 2016, Borges Silva et al. 2022). The native forests, which are dominated by endemic tree species, such as *Laurus azorica*, *Ilex azorica* and *Juniperus brevifolia*, represent remnants of the Pliocene/Pleistocene forests in Macaronesia (Kondraskov et al. 2015). These forests are distinguished by their notable levels of endemism and conservation importance, offering critical habitat for specialised arthropod species (Borges et al. 2022, Lhoumeau and Borges 2023). In contrast, exotic forests are characterised by the presence of the invasive species *Pittosporum undulatum*, along with other non-native vascular plants and are the result of deliberate afforestation for timber production and land management purposes (Dias et al. 2004, Borges Silva et al. 2017). As a consequence, they frequently exhibit a lack of structural and botanical diversity when compared to native forests, potentially influencing the composition and distribution of arthropod communities.

Given that many insular arthropods exhibit high levels of habitat specialisation and restricted dispersal abilities (Gillespie and Roderick 2002), their vertical distribution within forest strata could be influenced by both natural forest structure and anthropogenic modifications. Additionally, the replacement of native forests with exotic species may lead to changes in arthropod assemblages by altering microhabitat conditions, reducing resource availability and disrupting ecological interactions.

# General description

**Purpose:** The present dataset encompasses terrestrial arthropods that have been collected using Pitfall traps and SLAM (Sea, Land, and Air Malaise) traps across a variety of forest strata. This dataset is the material result of sampling events that have been conducted within the framework of a project that aims to evaluate the impact of habitat structure change on arthropod food web complexity in Azorean forests. In particular, the study seeks to assess how changes in arthropod biodiversity are influenced by the structural complexity of forests.

# **Project description**

**Title:** The impact of habitat structure change on arthropod food web complexity in Azorean forests.

**Personnel:** Paulo A. V. Borges, Sébastien Lhoumeau, Laurine Parmentier, Abrão Leite, Clémence Massard, Martha Vounatsi, Georgery Lucie

The project was conceived and is being led by Sébastien Lhoumeau and Paulo A.V. Borges.

Fieldwork (site selection and experimental setting): Sébastien Lhoumeau and Paulo A.V. Borges.

Fieldwork (authorisation): Licença Nº 23/2024/DRAAC; ADENDA CCIR-RAA/2024/7.

Fieldwork: Sébastien Lhoumeau, Clémence Massard, Martha Vounatsi, Georgery Lucie and Paulo A.V. Borges.

Parataxonomists (Laboratory): Sébastien Lhoumeau, Laurine Parmentier, Abrão Leite, Clémence Massard, Martha Vounatsi, Georgery Lucie.

Taxonomists: Paulo A. V. Borges.

Arthropod Curation: Voucher specimen management was mainly undertaken by Sébastien Lhoumeau, Laurine Parmentier and Abrão Leite.

Darwin Core Databases: Sébastien Lhoumeau and Paulo A.V. Borges.

**Study area description:** The Azores constitute an isolated archipelago located in the northern part of the mid-Atlantic Ocean, approximately 1,400 kilometres west of mainland Portugal. Comprising nine volcanic islands — namely Corvo, Flores, Faial, Pico, São Jorge, Graciosa, Terceira, São Miguel and Santa Maria — the Archipelago extends across roughly 500 km in a west-northwest to east-southeast orientation. Santa Maria, with its age around 6 to 8 million years, is the most ancient island within the archipelago. In contrast, Pico, the youngest island, has an estimated age of around 0.19 million years (Florencio et al. 2021). The islands emerged through volcanic activity along the Mid-

Atlantic Ridge, a tectonic boundary zone, characterised by ongoing seismic and geothermal phenomena and most of the islands are relatively young (Florencio et al. 2021). This volcanic origin has endowed the Azorean Islands with rugged terrains, diverse habitats and unique ecological communities, which together contribute to their important uinque biodiversity and biogeographic significance (Florencio et al. 2021, Borges et al. 2022).

During this project, the Island of Terceira (the third largest) was surveyed. Ten sampling plots were selected in areas of native vegetation, predominantly dominated by endemic species such as *Juniperus brevifolia*, *Erica azorica*, *Laurus azorica* and *Ilex azorica*, with currently some spread of invasive species like *Hedychium gardnerianum*. Ten additional plots were situated in secondary forests, predominantly characterised by *Pittosporum undulatum* and *Hedychium gardnerianum*, yet exhibiting indications of endemic and native ferns, such as *Dryopteris azorica* and *Diplazium caudatum*.

**Design description:** The experimental design comprised a 90-day sampling period, spanning from mid-June to mid-September 2024 (summer period), across all twenty sites. The sampling method employed was SLAM traps, with a maximum of three traps deployed at each site. In locations where feasible, these traps were positioned at varying heights within the forest, specifically at 0% (ground trap, hereafter GRD), 50% (understorey trap, UND) and 75% (canopy trap, CAN) of the maximum canopy height. In the event that the understorey trap was separated from the other two traps by less than 1 vertical metre, this trap was not set up.

Additionally, 14 Pitfall traps (hereafter EPI) were randomly set up at each site for a duration of 14 days, starting in July and concluding in August 2024.

**Funding:** Sebastien Lhoumeau was funded by the project "The impact of habitat structure change on arthropod food web complexity in Azorean forests" (PhD grant M3.1.a/F/012/2022).

### Additional funding come for :

Portal da Biodiversidade dos Açores (2022-2023) - PO Azores Project - M1.1.A/ INFRAEST CIENT/001/2022;

FCT-UIDB/00329/2020-2024 (Thematic Line 1 – integrated ecological assessment of environmental change on biodiversity) (2019-2024);

Science and Technology Foundation (FCT) - MACRISK-Trait-based prediction of extinction risk and invasiveness for Northern Macaronesian arthropods (FCT-PTDC/BIA-CBI/0625/2021).

Open access was funded by the project FCT-UID/00329/2025, Centre for Ecology, Evolution and Environmental Changes (CE3C).

# Sampling methods

**Description:** A total of twenty 20 m x 20 m plots were sampled in one island from the Archipelago (Terceira). Ten of these plots were set up within the most well-preserved forests in this island, having limited human disturbance (Borges et al. 2017). The native forest is dominated by endemic vegetation, such as *Juniperus brevifolia*, *Erica azorica*, *Laurus azorica* and *llex azorica* (see Borges et al. (2017) for more details). Ten other plots are in secondary forests, which are dominated by exotic and invasive trees.

Sampling description: Passive flight interception SLAM traps (Sea, Land and Air Malaise trap, Fig. 1) were used to sample the plots, with three traps being set up at each plot at different height within the forest. Traps are 110 × 110 × 110 cm. In this type of trap, the trapped arthropods crawl up the mesh and then fall inside the sampling recipient (Borges et al. 2017). Each one is filled with propylene glycol (pure 1,2-PROPANODIOL) to kill the captured arthropods and conserve the sample between collections, enabling also the preservation of DNA for future genetic analysis. Although this protocol was developed to sample flying arthropods, by working as an extension of the tree, non-flying species, such as spiders, can also crawl into the trap (Borges et al. 2017), enhancing the range of groups that can be sampled by this technique. As a result, previous studies have used these traps to analyse diversity and abundance changes in the arthropod communities in Azores pristine forest sites (Matthews et al. 2019, Borges et al. 2020, Lhoumeau and Borges 2023). The traps samples were collected after three months in the studied sites.



Figure 1. doi

Picture of the set-up of the three SLAM traps within the exotic forest (site TER-EXO-T04)

(Credit: Sébastien Lhoumeau).

We completed the sampling by using 14 passive Pitfall traps (Fig. 2) randomly distributed within the plots to sample the epigean fauna. Traps have a 5 cm opening diameter and

filled with ethylene glycol. Pitfall traps were collected after two weeks (14 nights) of continuous operation.



Figure 2. doi
Picture of a Pitfall trap set-up (the protective cover is removed) (Credit: Sébastien Lhoumeau).

**Quality control:** All sorted specimens were identified by a taxonomical expert, one of the authors P.A.V.B. and species taxonomic nomenclature and species colonisation status follows Borges et al. (2022).

# Geographic coverage

Description: Terceira Island, Azores (Portugal), Fig. 3.



Figure 3. doi

Location of Terceira Island. For comprehensive details regarding the sampling sites, refer to Table 1. The protected areas data was sourced from UNEP-WCMC (2025), while the landuse data were provided by the <u>Azorean government</u>.

#### Table 1.

List of the 20 sampled sites in Terceira.

Information about the habitat, location identifier, locality, decimal coordinates and elevation in metres are provided.

In the habitat, we classify the type of native forest based on Elias et al. (2016): (1) *Laurus* Submontane Forests, (2) *Juniperus-Ilex* Montane Forests, (3) *Juniperus* Montane Woodlands. Exotic forests are dominated by the invasive tree species *Pittosporum undulatum*.

Elevation data are sourced from OpenTopography (2013).

In locations indicated by the asterisk, only two SLAM traps were installed. The implementation of the understorey trap was rendered unfeasible due to the reduced canopy height.

| Habitat type  | Site code   | Site name      | Decimal longitude | Decimal latitude | Elevation above sea level (m) |
|---------------|-------------|----------------|-------------------|------------------|-------------------------------|
| Exotic forest | TER-EXO-T01 | Mata do Estado | -27.24            | 38.697           | 425                           |
| Exotic forest | TER-EXO-T02 | Matela         | -27.26            | 38.7             | 394                           |
| Exotic forest | TER-EXO-T04 | Serreta 400    | -27.352           | 38.765           | 376                           |

| Habitat type         | Site code            | Site name               | Decimal longitude | Decimal latitude | Elevation above sea level (m) |
|----------------------|----------------------|-------------------------|-------------------|------------------|-------------------------------|
| Exotic forest        | TER-EXO-T09          | Caparica Horses         | -27.263           | 38.762           | 417                           |
| Exotic forest        | TER-EXO-T10          | Gruta do Balcões        | -27.25            | 38.759           | 459                           |
| Exotic forest        | TER-PRIBS-T06        | Caparica                | -27.262           | 38.771           | 336                           |
| Exotic forest        | TER-PRIBS-T09        | Fontinhas               | -27.138           | 38.738           | 256                           |
| Exotic forest        | TER-PRIBS-T15        | Agualva                 | -27.193           | 38.769           | 367                           |
| Exotic forest        | TER-PRIBS-T27        | Gruta Chocolade         | -27.249           | 38.779           | 271                           |
| Exotic forest        | TER-PRIBS-T28        | Pico Rachado            | -27.31            | 38.769           | 461                           |
| Native forest<br>(1) | TER-NFBF-T-01        | Morro<br>Assombrado     | -27.219           | 38.762           | 680                           |
| Native forest (3)    | TER-NFBF-T-02<br>(*) | Biscoito da<br>Ferraria | -27.233           | 38.752           | 590                           |
| Native forest (3)    | TER-NFBF-TP41        | Pico Alto               | -27.207           | 38.75            | 673                           |
| Native forest (2)    | TER-NFPG-T-33        | Pico Galhardo           | -27.227           | 38.734           | 643                           |
| Native forest (2)    | TER-NFSB-T-07        | Lomba                   | -27.29            | 38.737           | 683                           |
| Native forest        | TER-NFSB-<br>T164B   | Santa Bárbara           | -27.308           | 38.735           | 899                           |
| Native forest        | TER-NFSB-TE48        | Lagoinha                | -27.331           | 38.752           | 678                           |
| Native forest        | TER-NFSB-TE49        | Lagoa do Pinheiro       | -27.331           | 38.752           | 927                           |
| Native forest        | TER-NFTB-T-15        | Terra Brava A           | -27.201           | 38.736           | 637                           |
| Native forest        | TER-NFTB-T-18        | Terra Brava B           | -27.197           | 38.732           | 679                           |

Coordinates: -27.04093 and -27.39698 Latitude; 38.81982 and 38.62170 Longitude.

# Taxonomic coverage

**Description:** The following orders and class are covered:

# Taxa included:

| Rank    | Scientific Name  |
|---------|------------------|
| kingdom | Animalia         |
| phylum  | Arthropoda       |
| class   | Insecta          |
| class   | Arachnida        |
| class   | Diplopoda        |
| class   | Chilopoda        |
| order   | Coleoptera       |
| order   | Hemiptera        |
| order   | Psocodea         |
| order   | Araneae          |
| order   | Neuroptera       |
| order   | Hymenoptera      |
| order   | Thysanoptera     |
| order   | Archaeognatha    |
| order   | Opiliones        |
| order   | Pseudoscorpiones |
| order   | Phasmida         |
| order   | Dermaptera       |
| order   | Julida           |
| order   | Blattodea        |
| order   | Lepidoptera      |
| order   | Ephemeroptera    |
| order   | Trichoptera      |
| order   | Lithobiomorpha   |
| order   | Geophilomorpha   |
| order   | Polydesmida      |
| order   | Strepsiptera     |

# Temporal coverage

Data range: 2024-6-11 - 2024-9-27.

Notes: SLAM traps were collected after three months in the studied sites. Pitfall traps

were recovered after two weeks (14 nights) of continuous operation.

# Collection data

Collection name: Entomoteca Dalberto Teixeira Pombo

Collection identifier: DTP

Specimen preservation method: Ethanol (96%)

# Usage licence

Usage licence: Creative Commons Public Domain Waiver (CC-Zero)

## **Data resources**

Data package title: Stratified sampling of Azorean forest arthropods

Resource link: https://doi.org/10.15468/7aue4t

Alternative identifiers: <a href="https://www.gbif.org/dataset/d3580ac2-a504-44e0-8e59-de89c">https://www.gbif.org/dataset/d3580ac2-a504-44e0-8e59-de89c</a>

430924c; http://ipt.gbif.pt/ipt/resource?r=azores\_forest\_arthropods

Number of data sets: 2

Data set name: Event table

Character set: UTF-8

**Download URL:** http://ipt.gbif.pt/ipt/archive.do?r=azores forest arthropods

Data format: Darwin Core Archive format

Data format version: Version 1.6

**Description:** The dataset was published in the Global Biodiversity Information Facility platform, GBIF (Lhoumeau and Borges 2025). The following data-table includes all the records for which a taxonomic identification of the species was possible. The dataset submitted to GBIF is structured as a sample event dataset that has been published as a Darwin Core Archive (DwCA), which is a standardised format for sharing biodiversity data as a set of one or more data tables. The core data file contains 326 records (eventID). This GBIF IPT (Integrated Publishing Toolkit, Version 2.5.6) archives the data and, thus, serves as the data repository. The data

and resource metadata are available for download in the Portuguese GBIF Portal IPT (Lhoumeau and Borges 2025).

| Column label                  | Column description                                                                                                                                                                                   |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| id                            | Unique identification code for sampling event data.                                                                                                                                                  |
| eventID                       | Identifier of the events, unique for the dataset.                                                                                                                                                    |
| samplingProtocol              | The sampling protocol used to capture the species.                                                                                                                                                   |
| sampleSizeValue               | The numeric amount of time spent in each sampling.                                                                                                                                                   |
| sampleSizeUnit                | The unit of the sample size value.                                                                                                                                                                   |
| eventDate                     | Date or date range the record was collected.                                                                                                                                                         |
| eventRemarks                  | The verbatim original representation of the date and time information for an Event In this case, we use the season and year.                                                                         |
| habitat                       | The habitat from which the sample was obtained.                                                                                                                                                      |
| locationID                    | Identifier of the location.                                                                                                                                                                          |
| islandGroup                   | Name of archipelago, always Azores in the dataset.                                                                                                                                                   |
| island                        | Name of the island, always Terceira in the dataset.                                                                                                                                                  |
| country                       | Country of the sampling site, always Portugal in the dataset.                                                                                                                                        |
| countryCode                   | ISO code of the country of the sampling site, always PT in the dataset.                                                                                                                              |
| stateProvince                 | Name of the region of the sampling site.                                                                                                                                                             |
| municipality                  | Municipality of the sampling site.                                                                                                                                                                   |
| locality                      | Name of the locality.                                                                                                                                                                                |
| minimumElevationInMetres      | The lower limit of the range of elevation (altitude, above sea level), in metres.                                                                                                                    |
| locationRemarks               | Details on the locality site.                                                                                                                                                                        |
| decimalLatitude               | Approximate decimal latitude of the trap.                                                                                                                                                            |
| decimalLongitude              | Approximate decimal longitude of the trap.                                                                                                                                                           |
| geodeticDatum                 | The ellipsoid, geodetic datum or spatial reference system (SRS) upon which the geographic coordinates given in decimalLatitude and decimalLongitude are based, always WGS84 in the dataset.          |
| coordinateUncertaintyInMetres | Uncertainty of the coordinates of the centre of the sampling plot.                                                                                                                                   |
| coordinatePrecision           | Precision of the coordinates.                                                                                                                                                                        |
| georeferenceSources           | A list (concatenated and separated) of maps, gazetteers or other resources used to georeference the Location, described specifically enough to allow anyone in the future to use the same resources. |

Data set name: Occurrence table

Character set: UTF-8

**Download URL:** <a href="http://ipt.gbif.pt/ipt/resource?r=azores">http://ipt.gbif.pt/ipt/resource?r=azores</a> forest arthropods

**Data format:** Darwin Core Archive format

Data format version: Version 1.6

Description: The dataset was published in the Global Biodiversity Information Facility platform, GBIF (Lhoumeau and Borges 2025). The following data table includes all the records for which a taxonomic identification of the species was possible. The dataset submitted to GBIF is structured as an occurrence table that has been published as a Darwin Core Archive (DwCA), which is a standardised format for sharing biodiversity data as a set of one or more data tables. The core data file contains 2399 records (occurrenceID). This GBIF IPT (Integrated Publishing Toolkit, Version 2.5.6) archives the data and, thus, serves as the data repository. The data and resource metadata are available for download in the Portuguese GBIF Portal IPT (Lhoumeau and Borges 2025).

| Column label         | Column description                                                                                                        |
|----------------------|---------------------------------------------------------------------------------------------------------------------------|
| id                   | Unique identification code for species abundance data. Equivalent here to eventID.                                        |
| type                 | The nature or genre of the resource, as defined by the Dublin Core standard. In our case "PhysicalObject".                |
| licence              | Reference to the licence under which the record is published.                                                             |
| institutionID        | The identity of the institution publishing the data.                                                                      |
| collectionID         | The identity of the collection where the specimen are conserved.                                                          |
| collectionID         | The identity of the collection publishing the data.                                                                       |
| institutionCode      | The code of the institution publishing the data.                                                                          |
| collectionCode       | The code of the collection where the specimens are conserved.                                                             |
| datasetName          | Name of the dataset.                                                                                                      |
| basisOfRecord        | The nature of the data record.                                                                                            |
| recordedBy           | A list (concatenated and separated) of names of peoples, groups or organisations who performed the sampling in the field. |
| occurrenceID         | Identifier of the record, coded as a global unique identifier.                                                            |
| organismQuantity     | A number or enumeration value for the quantity of organisms.                                                              |
| organismQuantityType | The type of quantification system used for the quantity of organisms.                                                     |
| sex                  | The sex and quantity of the individuals captured.                                                                         |

| lifeStage                | The life stage of the organisms captured.                                                                                                         |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| establishmentMeans       | The process of establishment of the species in the location, using a controlled vocabulary: 'native', 'introduced', 'endemic' or 'indeterminate'. |
| eventID                  | Identifier of the events, unique for the dataset.                                                                                                 |
| identifiedBy             | A list (concatenated and separated) of names of people, groups or organisations who assigned the taxon to the record.                             |
| dateIdentified           | The date on which the subject was determined as representing the taxon.                                                                           |
| scientificName           | Complete scientific name including author and year.                                                                                               |
| kingdom                  | Kingdom name.                                                                                                                                     |
| phylum                   | Phylum name.                                                                                                                                      |
| class                    | Class name.                                                                                                                                       |
| order                    | Order name.                                                                                                                                       |
| family                   | Family name.                                                                                                                                      |
| genus                    | Genus name.                                                                                                                                       |
| specificEpithet          | Specific epithet                                                                                                                                  |
| infraspecificEpithet     | Infraspecific epithet.                                                                                                                            |
| taxonRank                | Lowest taxonomic rank of the record.                                                                                                              |
| scientificNameAuthorship | Name of the author of the lowest taxon rank included in the record.                                                                               |
| identificationRemarks    | Information about morphospecies identification (code in Dalberto Teixeira Pombo Collection).                                                      |

## Additional information

We collected a total of 32,797 specimens of terrestrial arthropods using SLAM and Pitfall traps deployed across diverse forest strata in native and exotic forests. These specimens, representing the classes Arachnida, Diplopoda, Chilopoda and Insecta, provide a comprehensive snapshot of Azorean arthropod diversity. Of the total collected, 18,372 individuals (56%) were identified at the species or subspecies level — comprising 12,745 adults and 5,627 juveniles (Table 2).

In general, the most abundant order identified was Hemiptera, with 21,939 recorded specimens, underscoring its prevalence in these forest ecosystems. Although not the most abundant, Coleoptera emerged as the most taxonomically diverse group, being represented by 19 distinct families and 50 species and sub-species. The ten most abundant species are predominantly endemic and native non-endemic taxa, with only two introduced species amongst them. This comprehensive dataset significantly augments the existing baseline knowledge on Azorean arthropods and offers valuable

insights into the vertical distribution of species abundance within both native and exotic forests.

Table 2.

Number of individuals sampled and identified at the species or subspecies level.

CAN: canopy layer, UND: understorey layer, GRD: ground layer, EPI: epigean layer.

Epigean layer is sampled with pitfall traps whereas all the other layers are sampled with SLAM traps.

Establishment (species colonisation status) data is according to Borges et al. (2022).

| Class     | Order   | Scientific Name                             | Establishment          | EPI | GRD | UND | CAN |
|-----------|---------|---------------------------------------------|------------------------|-----|-----|-----|-----|
| Arachnida | Araneae | Acorigone acoreensis (Wunderlich, 1992)     | endemic                | 2   | 17  | 6   | 5   |
| Arachnida | Araneae | Agalenatea redii (Scopoli, 1763)            | introduced             | 0   | 2   | 0   | 0   |
| Arachnida | Araneae | Agyneta decora (O. Pickard-Cambridge, 1871) | introduced             | 2   | 1   | 0   | 0   |
| Arachnida | Araneae | Canariphantes acoreensis (Wunderlich, 1992) | endemic                | 207 | 7   | 0   | 0   |
| Arachnida | Araneae | Cheiracanthium erraticum (Walckenaer, 1802) | introduced             | 0   | 3   | 1   | 2   |
| Arachnida | Araneae | Clubiona terrestris Westring, 1851          | introduced             | 0   | 8   | 0   | 0   |
| Arachnida | Araneae | Cryptachaea blattea (Urquhart, 1886)        | introduced             | 0   | 11  | 2   | 0   |
| Arachnida | Araneae | Dysdera crocata C. L. Koch, 1838            | introduced             | 119 | 18  | 2   | , 0 |
| Arachnida | Araneae | Erigone atra Blackwall, 1833                | introduced             | 1   | 0   | 0   | 0   |
| Arachnida | Araneae | Erigone dentipalpis (Wider, 1834)           | introduced             | 0   | 1   | 0   | 0   |
| Arachnida | Araneae | Ero furcata (Villers, 1789)                 | introduced             | 32  | 25  | 10  | 6   |
| Arachnida | Araneae | Gibbaranea occidentalis Wunderlich,         | endemic                | 2   | 264 | 289 | 280 |
| Arachnida | Araneae | Lasaeola oceanica Simon, 1883               | endemic                | 0   | 3   | 0   | 0   |
| Arachnida | Araneae | Lathys dentichelis (Simon, 1883)            | native non-<br>endemic | 0   | 2   | 0   | 4   |
| Arachnida | Araneae | Leucognatha acoreensis Wunderlich,          | endemic                | 4   | 21  | 27  | 19  |
| Arachnida | Araneae | Macaroeris cata (Blackwall, 1867)           | native non-            | 0   | 24  | 11  | 15  |

| Class     | Order   | Scientific Name                                     | Establishment          | EPI | GRD | UND        | CAI |
|-----------|---------|-----------------------------------------------------|------------------------|-----|-----|------------|-----|
| Arachnida | Araneae | Macaroeris diligens (Blackwall, 1867)               | native non-<br>endemic | 0   | 6   | 5          | 11  |
| Arachnida | Araneae | Mangora acalypha (Walckenaer, 1802)                 | introduced             | 0   | 0   | . 0        | 1   |
| Arachnida | Araneae | Metellina merianae (Scopoli, 1763)                  | introduced             | 0   | 7   | . 0        | 0   |
| Arachnida | Araneae | Microlinyphia johnsoni (Blackwall, 1859)            | native non-<br>endemic | 0   | 84  | 9          | 4   |
| Arachnida | Araneae | Ostearius melanopygius (O. Pickard-Cambridge, 1880) | introduced             | 0   | 1   | ! <b>0</b> | 0   |
| Arachnida | Araneae | Palliduphantes schmitzi (Kulczynski, 1899)          | native non-<br>endemic | 5   | 2   | 1          | 0   |
| Arachnida | Araneae | Pardosa acorensis Simon, 1883                       | endemic                | 5   | 0   | 1          | 1   |
| Arachnida | Araneae | Pisaura acoreensis Wunderlich, 1992                 | endemic                | 8   | 26  | 18         | 62  |
| Arachnida | Araneae | Porrhoclubiona decora (Blackwall, 1859)             | native non-<br>endemic | 0   | 17  | 12         | 5   |
| Arachnida | Araneae | Porrhoclubiona genevensis (L. Koch, 1866)           | introduced             | 1   | 16  | 0          | 1   |
| Arachnida | Araneae | Porrhomma borgesi Wunderlich, 2008                  | endemic                | 2   | 0   | 2          | 0   |
| Arachnida | Araneae | Rugathodes acoreensis Wunderlich, 1992              | endemic                | 12  | 108 | 115        | 27  |
| Arachnida | Araneae | Savigniorrhipis acoreensis Wunderlich, 1992         | endemic                | 0   | 73  | 55         | 36  |
| Arachnida | Araneae | Segestria florentina (Rossi, 1790)                  | introduced             | 0   | 1   | 0          | 0   |
| Arachnida | Araneae | Steatoda nobilis (Thorell, 1875)                    | native non-<br>endemic | 0   | 1   | 1          | 0   |
| Arachnida | Araneae | Tenuiphantes miguelensis (Wunderlich, 1992)         | native non-<br>endemic | 304 | 18  | 1          | 1   |
| Arachnida | Araneae | Tenuiphantes tenuis (Blackwall, 1852)               | introduced             | 27  | 45  | 0          | 1   |
| Arachnida | Araneae | Theridion melanostictum O. Pickard-Cambridge, 1876  | introduced             | 0   | 1   | 0          | 0   |
| Arachnida | Araneae | Theridion musivivum Schmidt, 1956                   | native non-<br>endemic | 0   | 4   | 0          | 0   |
| Arachnida | Araneae | Walckenaeria grandis (Wunderlich, 1992)             | endemic                | 2   | 13  | 0          | 0   |
| Arachnida | Araneae | Xysticus cor Canestrini, 1873                       | native non-            | 0   | 1   | 2          | 5   |

| Class     | Order            | Scientific Name                                                | Establishment          | EPI | GRD  | UND | CAN |
|-----------|------------------|----------------------------------------------------------------|------------------------|-----|------|-----|-----|
| Arachnida | Opiliones        | Leiobunum blackwalli Meade, 1861                               | native non-<br>endemic | 335 | 1412 | 279 | 174 |
| Arachnida | Pseudoscorpiones | Chthonius ischnocheles (Hermann, 1804)                         | introduced             | 26  | 2    | 0   | 0   |
| Arachnida | Pseudoscorpiones | Ephippiochthonius tetrachelatus (Preyssler, 1790)              | introduced             | 0   | 1    | 0   | 0   |
| Arachnida | Pseudoscorpiones | Neobisium maroccanum Beier, 1930                               | introduced             | 0   | 8    | 0   | 0   |
| Chilopoda | Geophilomorpha   | Geophilus truncorum Bergsøe & Meinert, 1866                    | native non-<br>endemic | 1   | 0    | 0   | 0   |
| Chilopoda | Geophilomorpha   | Strigamia crassipes (C.L. Koch, 1835)                          | native non-<br>endemic | 2   | 1    | 0   | 0   |
| Chilopoda | Lithobiomorpha   | Lithobius pilicomis pilicomis Newport,<br>1844                 | native non-<br>endemic | 91  | 1    | 0   | 0   |
| Diplopoda | Julida           | Blaniulus guttulatus (Fabricius, 1798)                         | introduced             | 176 | 0    | 0   | 0   |
| Diplopoda | Julida           | Cylindroiulus propinquus (Porat, 1870)                         | introduced             | 10  | 0    | 0   | 0   |
| Diplopoda | Julida           | Nopoiulus kochii (Gervais, 1847)                               | introduced             | 11  | 1    | 0   | 0   |
| Diplopoda | Julida           | Ommatoiulus moreleti (Lucas, 1860)                             | introduced             | 58  | 22   | 7   | 1   |
| Diplopoda | Julida           | Proteroiulus fuscus (Am Stein, 1857)                           | introduced             | 3   | 0    | 0   | 0   |
| Diplopoda | Polydesmida      | Oxidus gracilis (C.L. Koch, 1847)                              | introduced             | 3   | 0    | 0   | 0   |
| Diplopoda | Polydesmida      | Polydesmus coriaceus Porat, 1870                               | introduced             | 13  | 0    | 0   | 0   |
| Insecta   | Archaeognatha    | Dilta saxicola (Womersley, 1930)                               | native non-<br>endemic | 0   | 4    | 0   | 2   |
| Insecta   | Archaeognatha    | Trigoniophthalmus borgesi Mendes,<br>Gaju, Bach & Molero, 2000 | endemic                | 1   | 160  | 21  | 105 |
| Insecta   | Blattodea        | Zetha simonyi (Krauss, 1892)                                   | native non-<br>endemic | 3   | 142  | 50  | 55  |
| Insecta   | Coleoptera       | Amischa analis (Gravenhorst, 1802)                             | indeterminate          | 0   | 2    | 0   | 0   |
| Insecta   | Coleoptera       | Anaspis proteus Wollaston, 1854                                | native non-<br>endemic | 0   | 114  | 74  | 73  |
| Insecta   | Coleoptera       | Anisodactylus binotatus (Fabricius, 1787)                      | introduced             | 0   | 0    | 1   | 0   |
| Insecta   | Coleoptera       | Anobium punctatum (De Geer, 1774)                              | introduced             | 0   | 1    | 0   | 0   |
| Insecta   | Coleoptera       | Anotylus nitidifrons (Wollaston, 1871)                         | indeterminate          | 270 | 1    | 0   | 0   |
| Insecta   | Coleoptera       | Atheta fungi (Gravenhorst, 1806)                               | indeterminate          | 3   | 3    | 0   | 0   |

| Class   | Order      | Scientific Name                                           | Establishment          | EPI | GRD | UND | CAN |
|---------|------------|-----------------------------------------------------------|------------------------|-----|-----|-----|-----|
| Insecta | Coleoptera | Atheta pasadenae Bernhauer, 1906                          | indeterminate          | 0   | 1   | 0   | 0   |
| Insecta | Coleoptera | Athous azoricus Platia & Gudenzi, 2002                    | endemic                | 3   | 12  | 0   | 0   |
| Insecta | Coleoptera | Brassicogethes aeneus (Fabricius, 1775)                   | introduced             | 0   | 1   | 1   | 0   |
| Insecta | Coleoptera | Calacalles subcarinatus (Israelson, 1984)                 | endemic                | 0   | 25  | 12  | 2   |
| Insecta | Coleoptera | Carpelimus corticinus (Gravenhorst, 1806)                 | indeterminate          | 6   | 8   | 0   | 0   |
| Insecta | Coleoptera | Carpelimus troglodytes troglodytes (Erichson, 1840)       | indeterminate          | 2   | 0   | 0   | 0   |
| Insecta | Coleoptera | Cartodere nodifer (Westwood, 1839)                        | introduced             | 0   | 3   | 0   | 0   |
| Insecta | Coleoptera | Catops coracinus Kellner, 1846                            | native non-<br>endemic | 1   | 6   | 1   | 0   |
| Insecta | Coleoptera | Cedrorum azoricus azoricus Borges & A.Serrano, 1993       | endemic                | 27  | 0   | 0   | 0   |
| Insecta | Coleoptera | Cephennium validum Assing & Meybohm, 2021                 | native non-<br>endemic | 1   | 0   | 0   | 0   |
| Insecta | Coleoptera | Cercyon haemorrhoidalis (Fabricius, 1775)                 | introduced             | 1   | 0   | 0   | 0   |
| Insecta | Coleoptera | Coccinella undecimpunctata undecimpunctata Linnaeus, 1758 | introduced             | 0   | 1   | 1   | 0   |
| Insecta | Coleoptera | Coccotrypes carpophagus (Hornung, 1842)                   | introduced             | 0   | 1   | 1   | 0   |
| Insecta | Coleoptera | Creophilus maxillosus maxillosus (Linnaeus, 1758)         | indeterminate          | 0   | 0   | 1   | 0   |
| Insecta | Coleoptera | Cryptamorpha desjardinsii (Guérin-<br>Méneville, 1844)    | introduced             | 0   | 1   | 0   | 1   |
| Insecta | Coleoptera | Drouetius borgesi borgesi (Machado, 2009)                 | endemic                | 1   | 67  | 3   | 1   |
| Insecta | Coleoptera | Dryops algiricus (Lucas, 1846)                            | native non-<br>endemic | 1   | 1   | 1   | 1   |
| Insecta | Coleoptera | Epitrix hirtipennis (Melsheimer, 1847)                    | introduced             | 0   | 1   | 0   | 0   |
| Insecta | Coleoptera | Gonipterus platensis (Marelli, 1926)                      | introduced             | 0   | 2   | 0   | 0   |
| Insecta | Coleoptera | Heteroderes azoricus (Tarnier, 1860)                      | endemic                | 0   | 3   | 0   | 1   |
| Insecta | Coleoptera | Heteroderes vagus Candèze, 1893                           | introduced             | 1   | 0   | 0   | 0   |

| Class   | Order      | Scientific Name                                       | Establishment          | EPI | GRD | UND | CAN |
|---------|------------|-------------------------------------------------------|------------------------|-----|-----|-----|-----|
| Insecta | Coleoptera | Kalcapion semivittatum semivittatum (Gyllenhal, 1833) | indeterminate          | 0   | 1   | 0   | 0   |
| Insecta | Coleoptera | Longitarsus kutscherai (Rye, 1872)                    | introduced             | 0   | 3   | 0   | 0   |
| Insecta | Coleoptera | Mecinus pascuorum (Gyllenhal, 1813)                   | introduced             | 0   | 1   | 2   | 0   |
| Insecta | Coleoptera | Notothecta dryochares (Israelson, 1985)               | endemic                | 1   | 52  | 8   | 2   |
| Insecta | Coleoptera | Ocypus aethiops (Waltl, 1835)                         | indeterminate          | 39  | 0   | 0   | 0   |
| Insecta | Coleoptera | Ocys harpaloides (Audinet-Serville, 1821)             | native non-<br>endemic | 0   | 0   | 5   | 0   |
| Insecta | Coleoptera | Paranchus albipes (Fabricius, 1796)                   | introduced             | 95  | 0   | 1   | 0   |
| Insecta | Coleoptera | Phloeonomus punctipennis Thomson,<br>1867             | indeterminate          | 1   | 2   | 0   | 0   |
| Insecta | Coleoptera | Phyllotreta striolata (Fabricius, 1803)               | introduced             | 0   | 0   | 1   | 1   |
| Insecta | Coleoptera | Popillia japonica Newman, 1838                        | introduced             | 0   | 4   | 0   | 0   |
| Insecta | Coleoptera | Proteinus atomarius Erichson, 1840                    | indeterminate          | 2   | 2   | 0   | 0   |
| Insecta | Coleoptera | Pseudoophonus rufipes (De Geer, 1774)                 | introduced             | 1   | 0   | 0   | 0   |
| Insecta | Coleoptera | Pseudophloeophagus tenax borgesi<br>Stüben, 2022      | endemic                | 2   | 74  | 27  | 15  |
| Insecta | Coleoptera | Psylliodes marcida (Illiger, 1807)                    | native non-<br>endemic | 0   | 1   | 0   | 0   |
| Insecta | Coleoptera | Sitona discoideus Gyllenhal, 1834                     | introduced             | 0   | 2   | 0   | 0   |
| Insecta | Coleoptera | Sphenophorus abbreviatus (Fabricius, 1787)            | introduced             | 1   | 0   | 0   | 0   |
| Insecta | Coleoptera | Stelidota geminata (Say, 1825)                        | introduced             | 47  | 0   | 1   | 0   |
| Insecta | Coleoptera | Stilbus testaceus (Panzer, 1797)                      | native non-<br>endemic | 0   | 1   | 0   | 0   |
| Insecta | Coleoptera | Tachyporus chrysomelinus (Linnaeus, 1758)             | indeterminate          | 0   | 1   | 0   | 0   |
| Insecta | Coleoptera | Tachyporus nitidulus (Fabricius, 1781)                | indeterminate          | 1   | 0   | 0   | 0   |
| Insecta | Coleoptera | Tarphius relictus Borges & Serrano,<br>2017           | endemic                | 3   | 0   | 0   | 0   |
| Insecta | Coleoptera | Trechus terrabravensis Borges, Serrano & Amorim, 2004 | endemic                | 12  | 0   | 0   | 0   |

| Class   | Order         | Scientific Name                                    | Establishment          | EPI | GRD  | UND | CAN |
|---------|---------------|----------------------------------------------------|------------------------|-----|------|-----|-----|
| Insecta | Coleoptera    | Xyleborinus alni Nijima, 1909                      | introduced             | 0   | 0    | 1   | 0   |
| Insecta | Dermaptera    | Euborellia annulipes (Lucas, 1847)                 | introduced             | 0   | 6    | 0   | 0   |
| Insecta | Dermaptera    | Forficula auricularia Linnaeus, 1758               | introduced             | 1   | 3    | 0   | 0   |
| Insecta | Ephemeroptera | Cloeon dipterum (Linnaeus, 1761)                   | native non-<br>endemic | 0   | 0    | 1   | 0   |
| Insecta | Hemiptera     | Acalypta parvula (Fallén, 1807)                    | native non-<br>endemic | 0   | 1    | 0   | 0   |
| Insecta | Hemiptera     | Acizzia uncatoides (Ferris & Klyver, 1932)         | introduced             | 0   | 512  | 82  | 62  |
| Insecta | Hemiptera     | Anthocoris nemoralis (Fabricius, 1794)             | native non-<br>endemic | 0   | 1    | 0   | 0   |
| Insecta | Hemiptera     | Aphrodes hamiltoni Quartau & Borges, 2003          | endemic                | 22  | 5    | 0   | 0   |
| Insecta | Hemiptera     | Buchananiella continua (White, 1880)               | introduced             | 0   | 1    | 0   | 0   |
| Insecta | Hemiptera     | Campyloneura virgula (Herrich-<br>Schaeffer, 1835) | native non-<br>endemic | 1   | 37   | 35  | 17  |
| Insecta | Hemiptera     | Cinara juniperi (De Geer, 1773)                    | native non-<br>endemic | 0   | 90   | 3   | 7   |
| Insecta | Hemiptera     | Cixius azoterceirae Remane & Asche,<br>1979        | endemic                | 6   | 1926 | 915 | 130 |
| Insecta | Hemiptera     | Cyphopterum adscendens (Herrich-Schäffer, 1835)    | native non-<br>endemic | 0   | 140  | 73  | 23  |
| Insecta | Hemiptera     | Eupteryx azorica Ribaut, 1941                      | endemic                | 0   | 2    | 0   | 2   |
| Insecta | Hemiptera     | Eupteryx filicum (Newman, 1853)                    | native non-<br>endemic | 0   | 20   | 4   | 0   |
| Insecta | Hemiptera     | Fulvius borgesi Chérot, Ribes & Gorczyca, 2006     | introduced             | 0   | 0    | 0   | 1   |
| Insecta | Hemiptera     | Heterotoma planicomis (Pallas, 1772)               | native non-<br>endemic | 0   | 1    | 0   | 0   |
| Insecta | Hemiptera     | Kelisia ribauti Wagner, 1938                       | native non-<br>endemic | 0   | 10   | 4   | 3   |
| Insecta | Hemiptera     | Kleidocerys ericae (Horváth, 1909)                 | native non-<br>endemic | 0   | 329  | 13  | 10  |
| Insecta | Hemiptera     | Loricula coleoptrata (Fallén, 1807)                | native non-            | 0   | 4    | 4   | 2   |

| Class   | Order       | Scientific Name                                              | Establishment                                           | EPI | GRD | UND        | CAN |
|---------|-------------|--------------------------------------------------------------|---------------------------------------------------------|-----|-----|------------|-----|
| Insecta | Hemiptera   | Megamelodes quadrimaculatus (Signoret, 1865)                 | native non-<br>endemic                                  | 43  | 0   | 0          | 1   |
| Insecta | Hemiptera   | Monalocoris filicis (Linnaeus, 1758)                         | native non-<br>endemic                                  | 0   | 112 | : 15       | 10  |
| Insecta | Hemiptera   | Nabis pseudoferus ibericus Remane,<br>1962                   | native non-<br>endemic                                  | 0   | 9   | 4          | 4   |
| Insecta | Hemiptera   | Orius laevigatus laevigatus (Fieber, 1860)                   |                                                         |     | 1   | <b>.</b> 0 | 0   |
| Insecta | Hemiptera   | Pilophorus perplexus Douglas & Scott, 1875                   | plexus Douglas & Scott, native non-endemic              |     | 0   | 42         | 0   |
| Insecta | Hemiptera   | Pinalitus oromii J. Ribes, 1992                              | endemic                                                 | 0   | 34  | 29         | 48  |
| Insecta | Hemiptera   | Rhopalosiphoninus latysiphon (Davidson, 1912)                | introduced                                              | 10  | 0   | 0          | 0   |
| Insecta | Hemiptera   | Saldula palustris (Douglas, 1874)                            | aldula palustris (Douglas, 1874) native non-<br>endemic |     | 0   | 1          | 1   |
| Insecta | Hemiptera   | Scolopostethus decoratus (Hahn, 1833) native non-<br>endemic |                                                         | 0   | 0   | 1          | 0   |
| Insecta | Hemiptera   | Siphanta acuta (Walker, 1851)                                | introduced                                              | 0   | 85  | 7          | 8   |
| Insecta | Hemiptera   | Strophingia harteni Hodkinson, 1981                          | endemic                                                 | 0   | 23  | 6          | 11  |
| Insecta | Hemiptera   | Trioza laurisilvae Hodkinson, 1990                           | native non-<br>endemic                                  | 1   | 329 | 376        | 821 |
| Insecta | Hymenoptera | Hypoponera eduardi (Forel, 1894)                             | native non-<br>endemic                                  | 0   | 0   | 1          | 2   |
| Insecta | Hymenoptera | Lasius grandis Forel, 1909                                   | native non-<br>endemic                                  | 52  | 171 | 13         | 20  |
| Insecta | Hymenoptera | Monomorium carbonarium (Smith, 1858)                         | native non-<br>endemic                                  | 0   | 0   | . 0        | 3   |
| Insecta | Hymenoptera | Tetramorium caespitum (Linnaeus, 1758)                       | native non-<br>endemic                                  | 0   | 4   | . O        | 0   |
| Insecta | Lepidoptera | Argyresthia atlanticella Rebel, 1940                         | endemic                                                 | 4   | 0   | 0          | 0   |
| Insecta | Lepidoptera | Ascotis fortunata azorica Pinker, 1971                       | endemic                                                 | 1   | 0   | 0          | 0   |
| Insecta | Lepidoptera | Mythimna unipuncta (Haworth, 1809)                           | native non-<br>endemic                                  | 1   | 0   | 0          | 0   |
| Insecta | Neuroptera  | Hemerobius azoricus Tjeder, 1948                             | endemic                                                 | 0   | 64  | 49         | 34  |
| Insecta | Phasmida    | Carausius morosus (Sinéty, 1901)                             | introduced                                              | 0   | 3   | 0          | 0   |

| Class   | Order        | Scientific Name                             | Establishment          | EPI | GRD  | UND | CAN |
|---------|--------------|---------------------------------------------|------------------------|-----|------|-----|-----|
| Insecta | Psocodea     | Atlantopsocus adustus (Hagen, 1865)         | native non-<br>endemic | 0   | 14   | 11  | 6   |
| Insecta | Psocodea     | Bertkauia lucifuga (Rambur, 1842)           | native non-<br>endemic | 0   | 16   | 4   | 2   |
| Insecta | Psocodea     | Ectopsocus briggsi McLachlan, 1899          | introduced             | 2   | 262  | 71  | 104 |
| Insecta | Psocodea     | Ectopsocus strauchi Enderlein, 1906         | native non-<br>endemic | 0   | 1    | 1   | 0   |
| Insecta | Psocodea     | Elipsocus azoricus Meinander, 1975          | endemic                | 0   | 113  | 68  | 40  |
| Insecta | Psocodea     | Elipsocus brincki Badonnel, 1963            | endemic                | 0   | 56   | 37  | 146 |
| Insecta | Psocodea     | Lachesilla greeni (Pearman, 1933)           | introduced             | 0   | 0    | 0   | 2   |
| Insecta | Psocodea     | Trichopsocus clarus (Banks, 1908)           | native non-<br>endemic | 2   | 307  | 90  | 33  |
| Insecta | Psocodea     | Valenzuela burmeisteri (Brauer, 1876)       | native non-<br>endemic | 0   | 47   | 17  | 5   |
| Insecta | Psocodea     | Valenzuela flavidus (Stephens, 1836)        | native non-<br>endemic | 2   | 1089 | 266 | 214 |
| Insecta | Strepsiptera | Elenchus tenuicomis (Kirby, 1815)           | native non-<br>endemic | 0   | 0    | 0   | 1   |
| Insecta | Thysanoptera | Anisopilothrips venustulus (Priesner, 1923) | introduced             | 0   | 1    | 0   | 0   |
| Insecta | Thysanoptera | Ceratothrips ericae (Haliday, 1836)         | native non-<br>endemic | 0   | 61   | 13  | 7   |
| Insecta | Thysanoptera | Heliothrips haemorrhoidalis (Bouché, 1833)  | introduced             | 0   | 13   | 2   | 1   |
| Insecta | Thysanoptera | Hercinothrips bicinctus (Bagnall, 1919)     | introduced             | 0   | 1    | 0   | 0   |
| Insecta | Thysanoptera | Hoplothrips corticis (De Geer, 1773)        | native non-<br>endemic | 0   | 65   | 49  | 27  |
| Insecta | Trichoptera  | Limnephilus atlanticus Nybom, 1948          | endemic                | 7   | 3    | 5   | 0   |

The dataset provides strong evidence that arthropod communities are structured differently along the vertical gradient in native and exotic forests (Fig. 4). When comparing these two types of forests, we found that distribution of arthropod abundance vary significantly across the three forest strata: ground, understorey and canopy (Table 3).

One of the most striking findings is the more even distribution of arthropods across the vertical strata in native forests compared to exotic forests, where abundance is disproportionately concentrated in the ground layer (Fig. 4).

#### Table 3.

Pairwise comparisons of adult arthropods abundance between exotic forest and native forest across different strata (EPI: epigean layer, GRD: ground layer, UND: understorey layer, CAN: canopy layer) using Wilcoxon rank sum tests.

The table presents the sample sizes (n1 and n2), test statistic values and significance levels (\*p < 0.05, \*\*p < 0.01, ns = not significant) as well as the effect size and magnitude, based on 1000 replications for the significant comparisons.

| Strata | Forest type 1 | Forest type 2 | n1 | n2 | W    | Significance | Effect size | Magnitude |
|--------|---------------|---------------|----|----|------|--------------|-------------|-----------|
| EPI    | Exotic forest | Native forest | 10 | 10 | 62.5 | ns           |             | a. a. a   |
| GRD    | Exotic forest | Native forest | 10 | 10 | 84   | **           | 0.57        | large     |
| UND    | Exotic forest | Native forest | 10 | 8  | 15   | *            | 0.52        | large     |
| CAN    | Exotic forest | Native forest | 10 | 10 | 9    | **           | 0.69        | large     |



Figure 4. doi

Abundance of arthropods across different forest strata in exotic and native forests.

The x-axis represents the total number of arthropods collected and identified, while the y-axis indicates the sampled strata (EPI: epigean, GRD: ground, UND: understorey, CAN: canopy). Points represent individual site values for a given forest type. Bars are colour-coded to distinguish between exotic forests (yellow) and native forests (green).

Kruskal-Wallis tests revealed statistically significant differences in adult abundance total across the strata of exotic forest ( $\chi 2(3) = 24.2$ , n = 40, p < 0.001) and native forest ( $\chi 2(3) = 20.8$ , n = 38, p < 0.001).

In exotic forest, Kruskal-Wallis effect size ( $\eta$ 2[H]) for the difference in adult abundance total was 0.59 (95% CI [0.35, 0.80], n = 40), indicating a large effect. In native forest, the effect was also large with 0.52 (95% CI [0.29, 0.73]).

Native forests offer a greater number of distinct ecological niches at varying heights, thus allowing for a greater degree of vertical partitioning amongst arthropod communities (Basset et al. 2003, Basset et al. 2015, Xing et al. 2023). Therefore, it was hypothesised that the distribution of the overall arthropod assemblage would differ more from one strata to another. However, the observed homogeneity in the abundance distribution could be attributed to the relatively low canopy height within the study plots (Dias et al. 2004, Elias et al. 2016). The well-developed understorey and dense canopy create a structurally complex environment that supports a high diversity of arthropods. The presence of climbing vegetation, epiphytes and diverse leaf architecture contributes to habitat complexity and homogeneity by providing multiple pathway for species to move in the ecosystems. However, when distinguishing the overall arthropod assemblage by order, we detected that native forests are supporting a higher proportion of canopy- and understorey-associated taxa (Fig. 5). Similarly to a study conducted in Amazonian forest by de Souza Amorim et al. (2022), groups such as Araneae, Hemiptera and Hymenoptera (formicidae) show significantly higher relative abundance in the upper strata (Table 4), suggesting that these layers serve as critical habitat for these functional groups (see Arvidsson et al. (2022) on spider's web). The increased presence of predators (e.g. spiders) in the canopy and understorey of native forests may indicate a more complex food web structure, with stronger top-down regulation of herbivore populations (Martinez-Almoyna et al. 2024, Wildermuth et al. 2024).

Table 4.

Statistical comparison of arthropod order abundance between exotic and native forests across different forest strata (EPI: epigean layer, GRD: ground layer, UND: understorey layer, CAN: canopy layer).

n1 and n2 represent sample sizes for exotic and native forests, respectively. p-values are derived from statistical tests (Wilcoxon rank sum tests), with significance levels indicated as: ns (not significant), \* (p < 0.05), \*\* (p < 0.01), \*\*\* (p < 0.001).

| Order         | Strata | n1   | n2   | W    | p-value | Significance |
|---------------|--------|------|------|------|---------|--------------|
| Araneae       | EPI    | 10   | 10   | 31   | 0.162   | ns           |
| Araneae       | GRD    | 10   | 10   | 19   | 0.0185  | *            |
| Araneae       | UND    | 10   | 8    | 2    | 0.00081 | ***          |
| Araneae       | CAN    | 10   | 10   | 35   | 0.272   | ns           |
| Archaeognatha | EPI    | 10   | 10   | 45   | 0.368   | ns           |
| Archaeognatha | GRD    | 10   | 10   | 31   | 0.101   | ns           |
| Archaeognatha | UND    | 10   | 8    | 25   | 0.0474  | *            |
| Archaeognatha | CAN    | 10   | , 10 | 40   | 0.399   | ns           |
| Blattodea     | GRD    | · 10 | 10   | 42.5 | 0.572   | ns           |
| Blattodea     | UND    | 10   | 8    | 20   | 0.0174  | *            |

| Order          | Strata | n1 | n2 | W    | p-value  | Significance |
|----------------|--------|----|----|------|----------|--------------|
| 3lattodea      | CAN    | 10 | 10 | 46   | 0.67     | ns           |
| Coleoptera     | EPI    | 10 | 10 | 81   | 0.0211   | *            |
| Coleoptera     | GRD    | 10 | 10 | 41   | 0.529    | ns           |
| Coleoptera     | UND    | 10 | 8  | 68   | 0.0117   | *            |
| Coleoptera     | CAN    | 10 | 10 | 100  | 0.000178 | ***          |
| Hemiptera      | EPI    | 10 | 10 | 5.5  | 0.00038  | ***          |
| Hemiptera      | GRD    | 10 | 10 | 59   | 0.529    | ns           |
| Hemiptera      | UND    | 10 | 8  | 27   | 0.274    | ns           |
| Hemiptera      | CAN    | 10 | 10 | 13   | 0.00578  | **           |
| Hymenoptera    | EPI    | 10 | 10 | 80   | 0.00597  | **           |
| Hymenoptera    | GRD    | 10 | 10 | 59   | 0.517    | ns           |
| Hymenoptera    | UND    | 10 | 8  | 39   | 0.962    | ns           |
| Hymenoptera    | CAN    | 10 | 10 | 73   | 0.0626   | ns           |
| Julida         | EPI    | 10 | 10 | 52   | 0.901    | ns           |
| Julida         | GRD    | 10 | 10 | 55   | 0.69     | ns           |
| Julida         | UND    | 10 | 8  | 35   | 0.314    | ns           |
| Lithobiomorpha | EPI    | 10 | 10 | 14.5 | 0.00789  | **           |
| Lithobiomorpha | GRD    | 10 | 10 | 45   | 0.368    | ns           |
| Neuroptera     | GRD    | 10 | 10 | 51   | 0.968    | ns           |
| Neuroptera     | UND    | 10 | 8  | 57   | 0.138    | ns           |
| Neuroptera     | CAN    | 10 | 10 | 82   | 0.0164   | *            |
| Opiliones      | EPI    | 10 | 10 | 60.5 | 0.394    | ns           |
| Opiliones      | GRD    | 10 | 10 | 75   | 0.062    | ns           |
| Opiliones      | UND    | 10 | 8  | 37   | 0.823    | ns           |
| Opiliones      | CAN    | 10 | 10 | 66.5 | 0.22     | ns           |
| Psocodea       | EPI    | 10 | 10 | 65   | 0.0779   | ns           |
| Psocodea       | GRD    | 10 | 10 | 54   | 0.796    | ns           |
| Psocodea       | UND    | 10 | 8  | 60   | 0.0831   | ns           |
| Psocodea       | CAN    | 10 | 10 | 77   | 0.0433   | *            |
| Thysanoptera   | GRD    | 10 | 10 | 66   | 0.238    | ns           |

| Order        | Strata | n1 | n2 | W    | p-value | Significance |
|--------------|--------|----|----|------|---------|--------------|
| Thysanoptera | UND    | 10 | 8  | 63.5 | 0.0325  | *            |
| Thysanoptera | CAN    | 10 | 10 | 47   | 0.843   | , <b>n</b> s |



Figure 5. doi

Arthropod vertical profiles in exotic and native forests for the 12 most abundant order sampled and identified.

Each panel represents the distribution of the relative abundance (%) of a given order to the total number of individuals sampled in a forest strata (EPI: epigean, GRD: ground, UND: understorey, CAN: canopy) of exotic forests (yellow) and native forests (green).

In the Azores, exotic forests are dominated by fast-growing, homogeneous tree species and lack the complex understorey and dense canopy of native forests (Connor et al. 2012 Borges Silva et al. 2017, Borges Silva et al. 2018). It is hypothesised that the combination of elevated canopy height and an absence of vertically structural elements may lead to a heightened degree of microclimatic differentiation, which, in turn, may result in a more pronounced vertical stratification within arthropod communities. Additionally, arthropod abundance is significantly higher in the ground layer of exotic forests compared to native forests (Table 3), suggesting that these simplified forest structures concentrate arthropod activity near the forest floor. Many arthropod orders, including detritivores (Julida, Lithobiomorpha) and scavengers (Psocodea), concentrated in the ground layer (Fig. 5). The significantly higher abundance of these groups in the lower strata (Table 4) suggests that exotic forests may be more reliant on decomposition-based energy pathways rather than complex trophic interactions involving arboreal predators and herbivores. This shift could have important implications for ecosystem functioning, potentially leading to altered nutrient cycling and reduced ecological resilience. In addition, the number of specimens sampled from the ground layer in exotic forests might be link to the invasion pattern

previously documented by Cardoso et al. (2007), where most of the species appeared to be non-indigenous in this ecosystem.

Overall, our study present, for the first time, a comprehensive stratified survey of forest arthropods in two different forest ecosystem in the Azores Archipelago. The significant differences observed in both overall abundance and order-level composition across strata provide strong evidence that these two forest type are not ecologically equivalent highlighting the need to preserve native forests and enhance vertical complexity in exotic forest to sustain arthropod biodiversity and ecosystem services in forested landscapes. Additionally, future studies should assess how forest structure, microclimatic conditions and resource availability shape arthropod vertical distribution.

# Acknowledgements

This study was only possible due to the financial support of several projects for acquiring the SLAM traps, namely:

Portal da Biodiversidade dos Açores (2022-2023) - PO Azores Project - M1.1.A/ INFRAEST CIENT/001/2022;

FCT-UIDB/00329/2020-2024 (Thematic Line 1 – integrated ecological assessment of environmental change on biodiversity) (2019-2024);

Science and Technology Foundation (FCT) - MACRISK-Trait-based prediction of extinction risk and invasiveness for Northern Macaronesian arthropods (FCT-PTDC/BIA-CBI/0625/2021).

SLwas supported by the PhD Grant "The impact of habitat structure change on arthropod food web complexity in Azorean forests" (PhD grant M3.1.a/F/012/2022).

Open access was funded by the project FCT-UID/00329/2025, Centre for Ecology, Evolution and Environmental Changes (CE3C).

## **Author contributions**

SL: Conceptualisation; Research (field and laboratory work); Data Curation; Darwin Core dataset preparation; Formal analysis and interpretation; manuscript writing and revision.

PAVB: Conceptualisation; Methodology; Research (field and laboratory work); Resources; Data Curation; Darwin Core dataset preparation; Formal analysis and interpretation; manuscript writing and revision.

AL: Laboratory work, manuscript revision.

All the remaining authors participated in research (field and laboratory work) and manuscript revision.

# References

- Arvidsson F, Montes M, Birkhofer K (2022) Microhabitat conditions affect web-building spider communities and their prey independent of effects of short-term wildlife fencing on forest vegetation. The Journal of Arachnology 50 (3). <a href="https://doi.org/10.1636/joa-s-21-046">https://doi.org/10.1636/joa-s-21-046</a>
- Basham E, Baecher JA, Klinges D, Scheffers B (2023) Vertical stratification patterns of tropical forest vertebrates: a meta-analysis. Biological Reviews 98 (1): 99-114. <a href="https://doi.org/10.1111/brv.12896">https://doi.org/10.1111/brv.12896</a>
- Basset Y, Hammond P, Barrios H, Holloway J, Miller S (2003) Vertical stratification of arthropod assemblages. In: Basset Y, Novotny V, Miller S, Kitching R (Eds) Arthropods of tropical forests. Spatio-temporal dynamics and resource use in the canopy. Cambridge University Press, 492 pp. [ISBN 978-0-521-82000-4].
- Basset Y, Cizek L, Cuénoud P, Didham R, Novotny V, Ødegaard F, Roslin T, Tishechkin A, Schmidl J, Winchester N, Roubik D, Aberlenc H, Bail J, Barrios H, Bridle J, Castaño-Meneses G, Corbara B, Curletti G, Duarte da Rocha W, De Bakker D, Delabie JC, Dejean A, Fagan L, Floren A, Kitching R, Medianero E, Gama de Oliveira E, Orivel J, Pollet M, Rapp M, Ribeiro S, Roisin Y, Schmidt J, Sørensen L, Lewinsohn T, Leponce M (2015) Arthropod distribution in a tropical rainforest: Tackling a four dimensional puzzle. PLOS One 10 (12). <a href="https://doi.org/10.1371/journal.pone.0144110">https://doi.org/10.1371/journal.pone.0144110</a>
- Borges PAV, Pimentel R, Carvalho R, Nunes R, Wallon S, Ros-Prieto A (2017) Seasonal dynamics of arthropods in the humid native forests of Terceira Island (Azores).
   Arquipelago-Life and Marine Sciences 34: 105-122. URL: <a href="chrome-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable-extension://enable
- Borges PAV, Rigal F, Ros-Prieto A, Cardoso P (2020) Increase of insular exotic arthropod diversity is a fundamental dimension of the current biodiversity crisis. Insect Conservation and Diversity 13 (5): 508-518. <a href="https://doi.org/10.1111/icad.12431">https://doi.org/10.1111/icad.12431</a>
- Borges PAV, Lamelas-Lopez L, Andrade R, Lhoumeau S, Vieira V, Soares AO, Borges I, Boieiro M, Cardoso P, Crespo LC, Karsholt O, Schülke M, Serrano ARM, Quartau JA, Assing V (2022) An updated checklist of Azorean arthropods (Arthropoda). Biodiversity Data Journal 10: e97682. <a href="https://doi.org/10.3897/BDJ.10.e97682">https://doi.org/10.3897/BDJ.10.e97682</a>
- Borges Silva L, Teixeira A, Alves M, Elias RB, Silva L (2017) Tree age determination in the widespread woody plant invader *Pittosporum undulatum*. Forest Ecology and Management 400: 457-467. <a href="https://doi.org/10.1016/j.foreco.2017.06.027">https://doi.org/10.1016/j.foreco.2017.06.027</a>
- Borges Silva L, Lourenço P, Teixeira A, Azevedo EB, Alves M, Elias RB, Silva L (2018)
  Biomass valorization in the management of woody plant invaders: The case of
  Pittosporum undulatum in the Azores. Biomass and Bioenergy 109: 155-165. <a href="https://doi.org/10.1016/j.biombioe.2017.12.025">https://doi.org/10.1016/j.biombioe.2017.12.025</a>
- Borges Silva L, Pavão D, Elias RB, Moura M, Ventura MA, Silva L (2022) Taxonomic, structural diversity and carbon stocks in a gradient of island forests. Scientific Reports 12 (1). <a href="https://doi.org/10.1038/s41598-022-05045-w">https://doi.org/10.1038/s41598-022-05045-w</a>
- Cardoso P, Borges PAV, Gaspar C (2007) Biotic integrity of the arthropod communities in the natural forests of Azores. Biodiversity and Conservation 16 (10): 2883-2901. <a href="https://doi.org/10.1007/s10531-006-9078-x">https://doi.org/10.1007/s10531-006-9078-x</a>
- Cardoso P, Barton P, Birkhofer K, Chichorro F, Deacon C, Fartmann T, Fukushima C,
   Gaigher R, Habel J, Hallmann C, Hill M, Hochkirch A, Kwak M, Mammola S, Ari Noriega

- J, Orfinger A, Pedraza F, Pryke J, Roque F, Settele J, Simaika J, Stork N, Suhling F, Vorster C, Samways M (2020) Scientists' warning to humanity on insect extinctions. Biological Conservation 242 <a href="https://doi.org/10.1016/j.biocon.2020.108426">https://doi.org/10.1016/j.biocon.2020.108426</a>
- Cardoso P, Pekar S, Birkhofer K, Chuang A, Fukushima CS, Hebets EA, Henaut Y, Hesselberg T, Malumbres-Olarte J, Michálek O, Michalko R, Scott C, Wolff J, Mammola S (2024) Ecosystem services provided by spiders. Preprints. <a href="https://doi.org/10.22541/au.172538631.11011603/v1">https://doi.org/10.22541/au.172538631.11011603/v1</a>
- Chen J, Saunders S, Crow T, Naiman R, Brosofske K, Mroz G, Brookshire B, Franklin J (1999) Microclimate in Forest Ecosystem and Landscape Ecology: Variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience 49 (4): 288-297. <a href="https://doi.org/10.2307/1313612">https://doi.org/10.2307/1313612</a>
- Connor S, van Leeuwen JN, Rittenour T, van der Knaap W, Ammann B, Björck S (2012)
   The ecological impact of oceanic island colonization a palaeoecological perspective
   from the Azores. Journal of Biogeography 39 (6): 1007-1023. <a href="https://doi.org/10.1111/j.1365-2699.2011.02671.x">https://doi.org/10.1111/j.1365-2699.2011.02671.x</a>
- Costa R, Cardoso P, Rigal F, Borges PAV (2023) Island spider origins show complex vertical stratification patterns in Macaronesia. Insect Conservation and Diversity 16 (6): 886-895. <a href="https://doi.org/10.1111/icad.12686">https://doi.org/10.1111/icad.12686</a>
- De Frenne P, Zellweger F, Rodríguez-Sánchez F, Scheffers B, Hylander K, Luoto M, Vellend M, Verheyen K, Lenoir J (2019) Global buffering of temperatures under forest canopies. Nature Ecology & Evolution 3 (5): 744-749. <a href="https://doi.org/10.1038/s41559-019-0842-1">https://doi.org/10.1038/s41559-019-0842-1</a>
- de Souza Amorim D, Brown B, Boscolo D, Ale-Rocha R, Alvarez-Garcia DM, Balbi MA, de Marco Barbosa A, Capellari RS, de Carvalho CJB, Couri MS, de Vilhena Perez Dios R, Fachin DA, Ferro G, Flores HF, Frare LM, Gudin FM, Hauser M, Lamas CJE, Lindsay K, Marinho MAT, Marques DWA, Marshall S, Mello-Patiu C, Menezes MA, Morales MN, Nihei S, Oliveira SS, Pirani G, Ribeiro GC, Riccardi PR, de Santis MD, Santos D, dos Santos JR, Silva VC, Wood EM, Rafael JA (2022) Vertical stratification of insect abundance and species richness in an Amazonian tropical forest. Scientific Reports 12 (1). <a href="https://doi.org/10.1038/s41598-022-05677-y">https://doi.org/10.1038/s41598-022-05677-y</a>
- Dias E, Elias RB, Nunes V (2004) Vegetation mapping and nature conservation: a case study in Terceira Island (Azores). Biodiversity & Conservation 13 (8): 1519-1539. <a href="https://doi.org/10.1023/B:BIOC.0000021326.50170.66">https://doi.org/10.1023/B:BIOC.0000021326.50170.66</a>
- Ehbrecht M, Seidel D, Annighöfer P, Kreft H, Köhler M, Zemp DC, Puettmann K, Nilus R, Babweteera F, Willim K, Stiers M, Soto D, Boehmer HJ, Fisichelli N, Burnett M, Juday G, Stephens S, Ammer C (2021) Global patterns and climatic controls of forest structural complexity. Nature Communications 12 (1). <a href="https://doi.org/10.1038/s41467-020-20767-z">https://doi.org/10.1038/s41467-020-20767-z</a>
- Elias RB, Gil A, Silva L, Fernández-Palacios JM, Azevedo EBd, Reis F (2016) Natural zonal vegetation of the Azores Islands: characterization and potential distribution.
   Phytocoenologia 46 (2): 107-123. <a href="https://doi.org/10.1127/phyto/2016/0132">https://doi.org/10.1127/phyto/2016/0132</a>
- Fernández-Palacios JM, Kreft H, Irl SH, Norder S, Ah-Peng C, Borges PV, Burns K, de Nascimento L, Meyer J, Montes E, Drake D (2021) Scientists' warning – The outstanding biodiversity of islands is in peril. Global Ecology and Conservation 31 <a href="https://doi.org/10.1016/j.gecco.2021.e01847">https://doi.org/10.1016/j.gecco.2021.e01847</a>
- Florencio M, Patiño J, Nogué S, Traveset A, Borges PAV, Schaefer H, Amorim IR, Arnedo M, Ávila SP, Cardoso P, de Nascimento L, Fernández-Palacios JM, Gabriel SI, Gil A, Gonçalves V, Haroun R, Illera JC, López-Darias M, Martínez A, Martins GM, Neto AI,

- Nogales M, Oromí P, Rando JC, Raposeiro PM, Rigal F, Romeiras MM, Silva L, Valido A, Vanderpoorten A, Vasconcelos R, Santos AMC (2021) Macaronesia as a Fruitful Arena for Ecology, Evolution, and Conservation Biology. Frontiers in Ecology and Evolution 9 (718169). <a href="https://doi.org/10.3389/fevo.2021.718169">https://doi.org/10.3389/fevo.2021.718169</a>
- Gillespie R, Roderick G (2002) Arthropods on Islands: Colonization, Speciation, and Conservation. Annual Review of Entomology 47 (Volume 47, 2002): 595-632. <a href="https://doi.org/10.1146/annurev.ento.47.091201.145244">https://doi.org/10.1146/annurev.ento.47.091201.145244</a>
- Kondraskov P, Schütz N, Schüßler C, Sequeira MMd, Guerra AS, Caujapé-Castells J, Jaén-Molina R, Marrero-Rodríguez Á, Koch M, Linder P, Kovar-Eder J, Thiv M (2015) Biogeography of Mediterranean hotspot biodiversity: Re-evaluating the 'Tertiary Relict' hypothesis of Macaronesian laurel forests. PLOS One 10 (7). <a href="https://doi.org/10.1371/journal.pone.0132091">https://doi.org/10.1371/journal.pone.0132091</a>
- Laurans M, Hérault B, Vieilledent G, Vincent G (2014) Vertical stratification reduces competition for light in dense tropical forests. Forest Ecology and Management 329: 79-88. <a href="https://doi.org/10.1016/j.foreco.2014.05.059">https://doi.org/10.1016/j.foreco.2014.05.059</a>
- Lhoumeau S, Borges PAV (2023) Assessing the impact of insect decline in Islands: Exploring the diversity and community patterns of indigenous and non-indigenous arthropods in the Azores native forest over 10 Years. Diversity 15 (6). <a href="https://doi.org/10.3390/d15060753">https://doi.org/10.3390/d15060753</a>
- Lhoumeau S, Borges PAV (2025) Stratified sampling of Azorean forest arthropods. Global Biodiversity Information Facilities. version 1.6. <a href="https://doi.org/10.15468/7AUE4T">https://doi.org/10.15468/7AUE4T</a>
- Martinez-Almoyna C, Calderòn-Sanou I, Lionnet C, Gielly L, Boyer F, Dufour P, Dunyach L, Miquel C, Ohlmann M, Poulenard J, Renaud J, Saillard A, Si-Moussi S, Stephan R, Varoux M, The Orchamp Consortium, Münkemüller T, Thuiller W (2024) Vegetation structure and climate shape mountain arthropod distributions across trophic levels.
   Journal of Animal Ecology 93 (10): 1510-1523. <a href="https://doi.org/10.1111/1365-2656.14164">https://doi.org/10.1111/1365-2656.14164</a>
- Matthews TJ, Sadler J, Carvalho R, Nunes R, Borges PAV (2019) Differential temporal beta-diversity patterns of native and non-native arthropod species in a fragmented native forest landscape. Ecography 42 (1): 45-54. https://doi.org/10.1111/ecog.03812
- Mueller-Dombois D (1992) The formation of island ecosystems. GeoJournal 28 (2). https://doi.org/10.1007/BF00177244
- Oliveira B, Scheffers B (2019) Vertical stratification influences global patterns of biodiversity. Ecography 42 (2): 249-249. <a href="https://doi.org/10.1111/ecog.03636">https://doi.org/10.1111/ecog.03636</a>
- OpenTopography (2013) Shuttle Radar Topography Mission (SRTM) Global.
   OpenTopography. <a href="https://doi.org/10.5069/G9445JDF">https://doi.org/10.5069/G9445JDF</a>
- Pan Y, Birdsey R, Phillips O, Jackson R (2013) The structure, distribution, and biomass of the world's forests. Annual Review of Ecology, Evolution, and Systematics 44 (Volume 44, 2013): 593-622. <a href="https://doi.org/10.1146/annurev-ecolsys-110512-135914">https://doi.org/10.1146/annurev-ecolsys-110512-135914</a>
- Thiel S, Tschapka M, Heymann E, Heer K (2021) Vertical stratification of seed-dispersing vertebrate communities and their interactions with plants in tropical forests. Biological Reviews 96 (2): 454-469. https://doi.org/10.1111/brv.12664
- Tsafack N, Lhoumeau S, Ros-Prieto A, Navarro L, Kocsis T, Manso S, Figueiredo T,
  Teresa Ferreira M, Borges PAV (2023) Arthropod-based biotic integrity indices: A novel
  tool for evaluating the ecological condition of native forests in the Azores archipelago.
  Ecological Indicators 154 <a href="https://doi.org/10.1016/j.ecolind.2023.110592">https://doi.org/10.1016/j.ecolind.2023.110592</a>
- UNEP-WCMC (2025) Protected area profile for Portugal from the World Database on Protected Areas. URL: <a href="https://www.protectedplanet.net">www.protectedplanet.net</a>

- Wildermuth B, Penanhoat A, Sennhenn-Reulen H, Matevski D, Drescher J, Aubry-Kientz M, Seidel D, Schuldt A (2024) Canopy structure influences arthropod communities within and beyond tree identity effects: Insights from combining LiDAR data, insecticidal fogging and machine learning regression modelling. Ecological Indicators 160 <a href="https://doi.org/10.1016/j.ecolind.2024.111901">https://doi.org/10.1016/j.ecolind.2024.111901</a>
- Wong ML, Guénard B, Lewis O (2019) Trait-based ecology of terrestrial arthropods.
   Biological Reviews 94 (3): 999-1022. <a href="https://doi.org/10.1111/brv.12488">https://doi.org/10.1111/brv.12488</a>
- Xing S, Leahy L, Ashton L, Kitching R, Bonebrake T, Scheffers B (2023) Ecological
  patterns and processes in the vertical dimension of terrestrial ecosystems. Journal of
  Animal Ecology 92 (3): 538-551. <a href="https://doi.org/10.1111/1365-2656.13881">https://doi.org/10.1111/1365-2656.13881</a>