

ZAFER CÖMERT Öğretim Üyesi

Çizgeler

- 1. Graf veri yapısı
- 2. Yönlü ve yönsüz graflar
- 3. Ağırlıklı graflar
- 4. Graf veri yapısı örnekleri
- 5. Graflara ilişkin kavramlar

$$\bullet D = \{A, B, C, D\}$$

•
$$K = \{(A, B), (A, D), (C, D)\}$$

 $G := (\{A, B, C, D\}, \{(A, B), (A, D), (C, D)\})$

 Bir grafta hiç kenar olmayabilir ancak en az bir tane nokta olmak zorundadır.

 Şekildeki graf yapısında 4 tane düğüm, 3 tane de kenar bulunmaktadır. A noktasından B ve D noktalarına doğru toplam iki adet kenar bulunmaktadır. Bir kenar da C ve D düğümleri arasında yer almaktadır.

Yönsüz Graf (Undirected graph)

• Bir graf yönlü olabildiği gibi yönsüz de olabilmektedir.

Yönlü Graf (Directed graph)

• Yönsüz bir graftaki kenarlar yine noktaları/düğümleri birbirine bağlar; ancak kenar iki yönü de temsil ettiğinden okla gösterilmez.

Ağırlıklı Graf (Weighted Graph)

 Ağırlıklı graflarda iki düğümü birleştiren kenarların belirli bir ağırlığı vardır. Bu ağırlık noktalar arasındaki ilişkiyi tanımlar. Bazen bu ağırlıklar maliyet olarak da ifade edilebilir.

Graflar

Ağ Grafı (Network Graph)

Sosyal Ağ Grafı (Social Network Graph)

Yol (Path)

• Graf üzerinde bir yol tanımı, ilk düğümden başlamak üzere; yol üzerindeki son düğüme ulaşıncaya kadar olan maliyet şeklide tanımlanabilir.

Döngü (self-loop)

 Bir yol başladığı düğümden yine başladığı düğüme gidecek şekilde de tanımlanabilir. Bu çoğu zaman bir döngü (self-loop) olarak adlandırılır ve maliyeti genellikle 0 (sıfır) olarak tanımlanır.

Düğüm derecesi (Degree)

• Düğüm derecesi, düğümün sahip olduğu kenar sayısını ifade etmek üzere kullanılır. Yönlü graflar için bu derece indeg (giren kenar sayısı) ve outdeg (çıkan kenar sayısı) şeklinde ifade edilebilir.

Çevrim (cycle)

- Çevrim
- D > C > E > D
- G > F > E > D > G
- C > D > E > C

Güçlü Bağlı Graf (Strongly Connected Graph)

• Yönsüz bir graf, eğer bir düğümden tüm düğümlere ulaşacak şekilde bir yola sahipse güçlü bağlı/bağlantılı graf (strongly connected graph) olarak ifade edilir.

Güçlü Bağlı Graf (Strongly Connected Graph)

• Bir yönlü bir graf güçlü bağlantılı değilse bu zayıf bağlı (weakly connected graph) olarak ifade edilir.

Tam Graf (Complete Graph)

- Her bir düğüm bir diğerine komşu olmalıdır. Tek bir adımda bir düğümden bir başka düğüme gidilebilmelidir.
- n düğüm için n(n-1)/2 kenar bulunur.

Bileşen (Component)

• Bağlı olmayan graflardaki her bir ada, ya da ayrık küme, bir bileşen (component) olarak ifade edilir.

Düzenli Graf (Regular Graph)

- Bağlı graf yapısındadır.
- Bütün düğümlerin derecesi aynıdır.

İki parçalı graf (Bipartite graph)

 Ayrık iki küme vardır ve bağlantılar, kenar bu iki küme arasında kurulur.

Tam iki parçalı graf (Complete bipartite graph)

 İki parçalı graf içinde bir düğüm; diğer gruptaki her bir düğüme doğrudan bağlı olmalıdır.

Kapsama Ağacı (Spanning tree)

• Bütün düğümleri içeren alt graftır. Her bir düğümün en fazla iki bağlantısı vardır.

Komşuluk Matrisi

 Grafların komşu liste gösterimi ve komşu matris gösterimi olmak üzere temelde iki farklı gösterim şekli bulunmaktadır.

• Komşuluk matrisinde G grafi $|N| \times |N|$ tane elemandan oluşan bir komşuluk matrisi ile ifade edilir. Matrisi n_{ij} eğer i düğümünden j düğümüne bir kenar var ise 1 değerini alır; aksi durumda 0 değeri ile ifade edilir.

Komşuluk Matrisi (Adjacency Matrix)

	Ü	1	2	3
О	О	1	0	1
1	1	0	0	0
2	0	0	0	1
3	1	0	1	0

Ağrılık Matrisi (Adjacency Matrix)

O	О	1.2	О	2.3
1	1.2	0	0	0
2	0	0	0	5.5
3	2.3	0	5.5	0

Komşu Liste

Çizgeler