Defining causal effects

UCLA SOCIOL 114: Social Data Science Winter 2025

28 Jan 2025

Learning goals for today

By the end of class, you will be able to

- explain the fundamental problem of causal inference and the need for causal arguments
- ► define potential outcomes
- ► recall mathematical concepts from probability
 - ► random variables
 - expectation
 - conditional expectation

Left photo: By Fernando Frazão/Agência Brasil - http://agenciabrasil.ebc.com.br/sites/_agenciabrasil2013/files/fotos/1035034-_mg_0802_04.08.16.jpg, CCBY3.0br, https://commons.wikimedia.org/w/index.php?curid=50548410 Right photo: By Agencia Brasil Fotografias - EUA levam ouro na ginástica artística feminina; Brasil fica em 8 lugar. CC BY 2.0. https://commons.wikimedia.org/w/index.ohp?curid=50584648

- 1. Statistical evidence
 - Simone Biles swung on the uneven bars. She won a gold medal.

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

1. Statistical evidence

- ► Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	?	?
lan	?	No (0)	?

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	?
lan	?	No (0)	?

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	+1
lan	?	No (0)	?

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
lan	No (0)	No (0)	?

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
lan	No (0)	No (0)	0

Holland 1986

Descriptive evidence

Holland 1986

Holland 1986

Holland 1986

Causal inference is a missing data problem

lifespan
diet

Person 2 missing lifespan lifespan Person 3 lifespan missing lifespan Person 4 missing lifespan lifespan Person 5 lifespan missing lifespan Person 6 lifespan missing lifespan Person 7 missing lifespan lifespan Person 8 lifespan missing lifespan Outcome outcome under under Mediterranean standard Mediterranean diet diet diet diet	Person 1	litespan	missing	litespan
Person 4 missing lifespan lifespan Person 5 lifespan missing lifespan Person 6 lifespan missing lifespan Person 7 missing lifespan lifespan Person 8 lifespan missing lifespan Outcome Outcome under under Mediterranean standard Mediterranea	Person 2	missing	lifespan	lifespan
Person 5 lifespan missing lifespan Person 6 lifespan missing lifespan Person 7 missing lifespan lifespan Person 8 lifespan missing lifespan Outcome Outcome Outcome under under Mediterranean standard Mediterranea	Person 3	lifespan	missing	lifespan
Person 6 lifespan missing lifespan Person 7 missing lifespan lifespan Person 8 lifespan missing lifespan Outcome Outcome Outcome under under Mediterranean standard Mediterranea	Person 4	missing	lifespan	lifespan
Person 7 missing lifespan lifespan Person 8 lifespan missing lifespan Outcome Outcome Outcome under under Mediterranean standard Mediterranea	Person 5	lifespan	missing	lifespan
Person 8 lifespan missing lifespan Outcome Outcome Outcome under under Mediterranean standard Mediterranea	Person 6	lifespan	missing	lifespan
Outcome Outcome Outcome under under under Mediterranean standard Mediterranea	Person 7	missing	lifespan	lifespan
under under under Mediterranean standard Mediterranea	Person 8	lifespan	missing	lifespan
		under Mediterranean	under standard	under Mediterranea

miccina

 Y_i Outcome

ome Whether person i survived

 Y_i Outcome Whether person i survived A_i Treatment Whether person i at a Mediterranean diet

Y_i	Outcome	Whether person <i>i</i> survived
A_i	Treatment	Whether person i ate a Mediterranean diet
Y_i^a	Potential Outcome	Outcome person i would realize if
		assigned to treatment value a

Outcome A_i Treatment

Whether person *i* survived

Whether person i ate a Mediterranean diet Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

 $Y_{lan} = survived$

Ian survived

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

 $Y_{\mathsf{lan}} = \mathtt{survived}$ lan survived

 $A_{lan} = MediterraneanDiet$ lan ate a Mediterranean diet

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

 $Y_{lan} = survived$ lan survived

 $A_{lan} = MediterraneanDiet$ lan ate a Mediterranean diet

 $Y_{\mathsf{lan}}^{\mathsf{MediterraneanDiet}} = \mathtt{survived}$ lan would survive on a Mediterranean diet

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if assigned to treatment value a

Examples:

 $Y_{lan} = survived$ lan survived

 $A_{lan} = MediterraneanDiet$ lan ate a Mediterranean diet

 $Y_{lan}^{Mediterranean Diet} = survived$ Ian would survive on a Mediterranean diet

 $Y_{\mathsf{lan}}^{\mathsf{StandardDiet}} = \mathtt{died}$ lan would die on a standard diet

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

 $Y_{lan} = survived$ lan survived

 $A_{lan} = MediterraneanDiet$ lan ate a Mediterranean diet

 $Y_{lan}^{Mediterranean Diet} = survived$ Ian would survive on a Mediterranean diet

 $Y_{lan}^{\mathsf{StandardDiet}} = \mathtt{died}$ lan would die on a standard diet

Discuss.

Which potential outcome is observed?

Which is counterfactual?

The consistency assumption

 $Y_i^{\text{MediterraneanDiet}}$

 $Y_i^{\mathsf{StandardDiet}}$

Potential Outcomes

The consistency assumption

 $Y_i^{\mathsf{MediterraneanDiet}}$

 $Y_i^{\text{StandardDiet}}$

Potential Outcomes

Y

Factual Outcomes

The consistency assumption

Consistency Assumption

$$Y_i^{A_i} = Y_i$$

 $Y_i^{\mathsf{MediterraneanDiet}}$

 $Y_i^{\text{StandardDiet}}$

Potential Outcomes

 Y_i

Factual Outcomes

A person's potential outcome is a fixed quantity

A person's potential outcome is a fixed quantity

 $Y_{\mathsf{lan}}^{\mathsf{MediterraneanDiet}} = \mathtt{survived}$

A person's potential outcome is a fixed quantity

$$Y_{\mathsf{lan}}^{\mathsf{MediterraneanDiet}} = \mathtt{survived}$$

The outcome for a random person is a random variable

A person's potential outcome is a fixed quantity

$$Y_{\mathsf{lan}}^{\mathsf{MediterraneanDiet}} = \mathtt{survived}$$

The outcome for a random person is a random variable

► Draw a random person from the population

A person's potential outcome is a fixed quantity

$$Y_{lan}^{MediterraneanDiet} = survived$$

The outcome for a random person is a random variable

- ► Draw a random person from the population
- Assign them a Mediterranean diet

A person's potential outcome is a fixed quantity

$$Y_{lan}^{MediterraneanDiet} = survived$$

The outcome for a random person is a random variable

- ► Draw a random person from the population
- ► Assign them a Mediterranean diet
- ightharpoonup The outcome $Y^{\text{MediterraneanDiet}}$ is a random variable:
 - ► takes the value survived if we randomly sample some people
 - takes the value died if we randomly sample others

A person's potential outcome is a fixed quantity

$$Y_{lan}^{MediterraneanDiet} = survived$$

The outcome for a random person is a random variable

- ► Draw a random person from the population
- ► Assign them a Mediterranean diet
- ightharpoonup The outcome $Y^{\text{MediterraneanDiet}}$ is a random variable:
 - takes the value survived if we randomly sample some people
 - takes the value died if we randomly sample others

Check for understanding:

Does it make sense to write $V(Y_i^a)$? How about $V(Y^a)$

Notation: Expectation operator

The expectation operator E() denotes the population mean

$$\mathsf{E}(Y^a) = \frac{1}{n} \sum_{i=1}^n Y_i^a$$

The quantity Y^a inside the expectation must be a random variable

Notation: Expectation operator

The **expectation operator** E() denotes the population mean

$$\mathsf{E}(Y^{\mathsf{a}}) = \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{\mathsf{a}}$$

The quantity Y^a inside the expectation must be a random variable

A conditional expectation is denoted with a vertical bar

$$\mathsf{E}(Y\mid A=a)=\frac{1}{n_a}\sum_{i\cdot A\cdot =a}Y_i$$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

 $1. \ \, \mathsf{E}(\mathsf{Earnings} \mid \mathsf{Degree} = \mathsf{TRUE}) > \mathsf{E}(\mathsf{Earnings} \mid \mathsf{Degree} = \mathsf{FALSE})$

 $2. \ \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{TRUE}}) > \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{FALSE}})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

- 1. $E(Earnings \mid Degree = TRUE) > E(Earnings \mid Degree = FALSE)$
 - ► Average earnings are higher among those with college degrees

 $2. \ \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{TRUE}}) > \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{FALSE}})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

- 1. $E(Earnings \mid Degree = TRUE) > E(Earnings \mid Degree = FALSE)$
 - ► Average earnings are higher among those with college degrees

- $2. \ \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{TRUE}}) > \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{FALSE}})$
 - ► On average, a degree causes higher earnings

Practice:	How would	you write this	in math?

1. On average, students who do the homework learn more than those who don't

2. On average, doing the homework causes more learning

Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't

$$\mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{TRUE}) > \mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{FALSE})$$

2. On average, doing the homework causes more learning

Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't

$$\mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{TRUE}) > \mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{FALSE})$$

2. On average, doing the homework causes more learning

$$\mathsf{E}(\mathsf{Learning}^{\mathsf{HW}=\mathsf{TRUE}}) > \mathsf{E}(\mathsf{Learning}^{\mathsf{HW}=\mathsf{FALSE}})$$

An example about inequality

Americans' education in 1900

(Brand 2023 p. 6)

- ► 6% graduated from high school
- o / o graduated from high school

▶ 3% graduated from college

Figure 1.1 High School and Four-Year College Completion Rates, 1940–2020

Source: U.S. Census Bureau, March Current Population Survey and Annual Social and Economic Supplement to the Current Population Survey.

Why did education expand?

- ► Public investment in college
 - ► Morrill Act (1862) sold land to establish colleges
 - ► G.I. Bill (1944) funded veterans' college

Why did education expand?

- ► Public investment in college
 - ► Morrill Act (1862) sold land to establish colleges
 - ► G.I. Bill (1944) funded veterans' college
- ► Rising labor market demand for skills

We would like to know whether college pays off : does it have positive effects on desired outcomes?	

People with college degrees earn more

A college degree causes higher earnings

People with college degrees earn more

A college degree causes higher earnings

Two sets of people Two treatments

People with college degrees earn more

A college degree causes higher earnings

Two sets of people Two treatments

People with college degrees earn more

A college degree causes higher earnings

Two sets of people
Two treatments

Same people Two treatments

People with college degrees earn more

A college degree causes higher earnings

People with college degrees earn more

A college degree causes higher earnings

The fundamental problem of causal inference

The data

The fundamental problem of causal inference

The fundamental problem of causal inference

The data

control

treatment

control

treatment

Quick review

- 1. causal effects involve missing data
 - ► Nick finished college college
 - outcome without college is unobserved

Quick review

- 1. causal effects involve missing data
 - ► Nick finished college college
 - outcome without college is unobserved
- 2. randomization solves the missing data problem by design
 - ► treated and control groups are exchangeable

Quick review

- 1. causal effects involve missing data
 - ► Nick finished college college
 - outcome without college is unobserved
- 2. randomization solves the missing data problem by design
 - ► treated and control groups are exchangeable
- 3. observational studies solve the missing data problem by assumptions
 - ▶ find population subgroups who look similar before treatment
 - assume it is like an experiment within the subgroups

Learning goals for today

By the end of class, you will be able to

- explain the fundamental problem of causal inference and the need for causal arguments
- ► define potential outcomes
- ► recall mathematical concepts from probability
 - ► random variables
 - expectation
 - conditional expectation

You can now

► Read Chapter 1 of Hernán and Robins 2020