Publication Bias

One of the bigger problems of p-values is their use as a threshold to publish.

Most published findings confirm the hypothesis (Fanelli, 2010)

Null-results are difficult to interpret.

- -There is no effect
- -The study wasn't good

Everything we eat both causes and prevents cancer

Relative risk of cancer

SOURCE: Schoenfeld and Ioannidis, American Journal of Clinical Nutrition

As long as a research area doesn't share all results, it's not a quantitative science.

Study Registry

Promoting excellence in parapsychological research and education

Koestler Parapsychology Unit

Clinical Trials. gov PRS Protocol Registration and Results System

There can be 200 published studies with p < 0.05, but no true effect.

Publication bias can not be corrected, but it can be detected.

Simulated Studies

Hagger et al, 2010

Trim and Fill Analysis

Study 95%-CI

Adding 113 (k=1)	+	0.18 [0.00; 0.36]
Adding 112 (k=2)		0.22 [0.08; 0.36]
Adding 116 (k=3)		0.21 [0.08; 0.34]
Adding 95 (k=4)		0.19 [0.08; 0.31]
Adding 22 (k=5)		0.21 [0.10; 0.32]
Adding 58 (k=6)		0.23 [0.12; 0.34]
Adding 114 (k=7)		0.24 [0.14; 0.34]
Adding 138 (k=8)		0.24 [0.14; 0.33]
Adding 80 (k=9)		0.23 [0.14; 0.33]
Adding 76 (k=10)		0.27 [0.18; 0.36]
Adding 32 (k=11)		0.29 [0.20; 0.38]
Adding 57 (k=12)		0.29 [0.20; 0.38]
Adding 40 (k=13)		0.31 [0.22; 0.39]
Adding 41 (k=14)		0.31 [0.23; 0.40]
Adding 26 (k=15)		0.32 [0.24; 0.41]
Adding 31 (k=16)	-	0.36 [0.28; 0.44]

Failsafe N – how many studies reduce an effect to zero? Don't use it.

Meta-regression techniques might be useful (e.g., Egger's regression)