# Al for inter-well saturation mapping

Al Berserkers

### The problem and solution

#### **Data Driven Method**

Take the Data and use ensemble ML models:

- -SciKit Bagging regressor. Train 2 hours.

  MSE 0.086
- Catboost CatBoost regressor.Train 10 minutes. MSE 0.055
  - XGBRegressor. Train 20 seconds. MSE-0.076

### Data Driven+Physics

Take the Data and use ensemble ML models plus use physical models simulation:

- Archie's law, Archie's - Dahnov formula. We need more parameters for the equation. We use a=1,n=2,m=2 and Pickett plot.

Reformulated for electrical resistivity, the equation reads

$$R_t = a\phi^{-m}S_w^{-n}R_w$$

with  $R_t$  for the fluid saturated rock resistivity, and  $R_w$  for the brine resistivity.

### Challenges deep-dive

### Challenge 1

# Data interpretation problem.

We try to understand how the data is organise. It takes some time to understand but we manage it.

### Challenge 2

# Materials about petrophysics.

We try to get some domain specific information about problem.

### Challenge 3

# Choose right models and combine with physics simulations.

We need to choose ensemble models, deep learning models. What best models Archie,double water ets?

### **Data Exploration**

#### **Porosity Distribution**

Clearly see close to normal data distribution.

#### **Resistivity Distribution**

Most of the data between 0 and 15.

## Water Saturation Distribution

Two peaks 1.0 and 0.8





Pair plot correlation chart between all features. Not seen any good correlation.



3D Cube model.It helps us to correctly interpret the data.

### Possible models strategy

