La boule chevelue sous l'angle de la géométrie différentielle

Olivier STIETEL et Raphaël TINARRAGE $Encadrante: {\rm Anne~VAUGON}$ Mai 2013

Introduction

Le présent document s'inscrit dans le cadre de notre projet de L3 dirigé par Anne Vaugon. Il a pour but de démontrer le théorème de la boule chevelue, qui stipule qu'on ne peut pas coiffer une noix de coco. Pour coiffer, il faut des cheveux : imaginons-les courts, ainsi ils peuvent être modélisés par un champ de vecteurs jamais nul. Les coiffer se fera à la manière de Mireille Mathieu : les cheveux sont plaqués à la noix de coco, sans épi et sans raie. On obtient donc un champ de vecteurs continu. Comme on se place dans le cadre de la topologie différentielle, il sera même C^{∞} .

En fait, le théorème de la boule chevelue stipule qu'il est impossible de coiffer une noix de coco, en passant par un résultat encore plus général et abstrait :

Théorème (de la boule chevelue). Pour $n \in \mathbb{N}$, S_n admet un champ de vecteur tangent lisse sans zéro si et seulement si n est impair.

Afin de le démontrer, nous suivrons la démarche de John Milnor [1].

Table des matières

1	Le	contexte de la géométrie différentielle
	1.1	Les variétés lisses
	1.2	Les variétés à bord
	1.3	Le degré
	1.4	Quelques résultats intéressants
2	Le ·	théorème de la boule chevelue
	2.1	Présentation du problème
		Le degré orienté, invariant homologique
		Preuve du théorème

1 Le contexte de la géométrie différentielle

1.1 Les variétés lisses

En accord avec le vocabulaire de J. Milnor, on appellera application lisse une application de classe C^{∞} . Le premier outil dont nous avons besoin est le difféomorphisme, qui caractérise la « ressemblance » entre deux espaces. Plus généralement :

Définition. Soient $X \subset \mathbb{R}^i$ et $Y \subset \mathbb{R}^j$ deux sous-ensembles quelconques. Une application $f: X \to Y$ est dite lisse $si \ \forall x \in U$, il existe un ouvert $U \in \mathbb{R}^i$ contenant x, et une application $F: U \to \mathbb{R}^j$ telle que f soit la restriction de F à X.

Définition. Soient $X \subset \mathbb{R}^i$ et $Y \subset \mathbb{R}^j$ deux sous-ensembles quelconques. Un difféormophisme (lisse) est une application $f: X \to Y$ bijective, lisse, et de réciproque lisse

Nous pouvons alors définir une vari'et'e, un objet assez général, qui est en fait la structure de base de la géométrie différentielle :

Définition. Une variété (lisse) M de dimension m est un sous-ensemble $M \subset \mathbb{R}^i$ tel que $\forall x \in M$, il existe deux ouverts $U \subset \mathbb{R}^i$ contenant $x, V \subset \mathbb{R}^m$, et un difféomorphisme $f: V \cap M \to U$. Un tel difféomorphisme est appelé une paramétrisation de la région. Réciproquement, l'inverse d'un tel difféomorphisme est appelé un système de coordonnées, ou une carte locale.

Autrement dit, une variété de dimension m est localement difféormophe à un ouvert de \mathbb{R}^m .

Exemples. Le graphe d'une application lisse $f: \mathbb{R}^i \to \mathbb{R}^j$ est une variété de dimension i. Ou encore $\forall n \in \mathbb{N}$, la sphère S^n est une variété de dimension n.

On veut maintenant étudier des applications entre deux variétés, et surtout pouvoir les différencier. A cet effet, le *plan tangent* en un point $x \in M$ joue le rôle d'espace vectoriel de départ pour la différentielle en x:

Définition. Soit $x \in M$, et $f: U \to V$ une paramétrisation de M autour de x. Le plan tangent à M en x est $Im(Df_x)$. Il est noté TM_x .

On vérifie que cette définition ne dépend pas de la paramétrisation choisie. Ce plan tangent est « le plan le plus proche de M passant par x »(à une translation près).

Proposition 1.1 ([1]). En fait, TM_x est un sous-espace vectoriel de \mathbb{R}^i de dimension m

Soit maintenant deux variétés $M \subset \mathbb{R}^i$ et $N \subset \mathbb{R}^j$, de dimensions respectives m et partial et a = 0 et partial et a =

Définition. Soit $x \in M$, et $\Phi : U \to \mathbb{R}^j$ une application lisse qui coïncide avec ϕ . Alors la différentielle de ϕ en x est la restriction de la différentielle $D\Phi_x$ à TM_x .

On vérifie que cette définition ne dépend pas d'un choix particulier de Φ . De plus, on montre que $D\phi_x:TM_x\to TN_{f(x)}$.

Proposition 1.2. Deux variétés difféomorphes sont de même dimension. Il suffit même qu'elles soient difféomorphes autour d'un point.

Démonstration. En effet, si $\phi: M \to N$ est un difféomorphisme, soit $\Phi_1: U \to \mathbb{R}^j$ une application lisse qui coïncide avec ϕ . Alors $D\Phi_{1x}: TM_x \to TN_{f(x)}$ est une application linéaire, et donc $dim(TM_x) \geq dim(TN_{f(x)})$. D'autre part, puisque $\phi^{-1}: N \to M$ est un difféomorphisme, on a $\Phi_2: V \to \mathbb{R}^i$ une application lisse qui coïncide avec ϕ^{-1} , et donc $dim(TN_{f(x)}) \geq dim(TM_x)$. Par suite, $dim(TM_x) = dim(TN_{f(x)})$, et d'après la proposition 1.1, M et N sont de même dimension.

1.2 Les variétés à bord

Plus généralement, on peut définir des variétés qui admettent un bord :

Définition. Une variété (lisse) à bord M de dimension m est un sous-ensemble $M \subset \mathbb{R}^i$ tel que $\forall x \in M$, il existe deux ouverts $U \in \mathbb{R}^i$ contenant $x, V \subset H^m = \mathbb{R}^{m-1} \times \mathbb{R}^+$, et un difféomorphisme $f: V \cap M \to U$.

Le bord $\partial X \subset X$ est l'ensemble des points dont l'image par une carte locale est sur le bord $\partial H^m = \mathbb{R}^{m-1} \times \{0\}.$

Exemples. $\forall n \in \mathbb{N}$, la disque fermé D_n est une variété à bord de dimension n.

On définit alors semblablement les notions de *plan tangent*, et de *différentielle* d'une application entre deux variétés à bord.

Une variété a bord peut être vue comme la réunion de deux variétés sans bord :

Proposition 1.3. Si X est une variété à bord, alors le bord ∂X est une variété (sans bord) de dimension m-1, et l'intérieur $X-\partial X$ est une variété (sans bord) de dimension m.

1.3 Le degré

On considère toujours $f:M\to N$ une application lisse, où M et N sont des variétés de dimensions respectives m et n.

Définition. Un point $x \in M$ est appelé point régulier si Df_x est surjective. Un point $y \in N$ est appelé valeur régulière si $f^{-1}(y)$ ne contient que des points réguliers. Réciproquement, si Df_x est non-surjective, x est appelé point critique, et f(x) valeur critique.

En particulier, dans le cas m = n, un point $x \in M$ est régulier si Df_x est inversible, et critique sinon.

En fait, d'après le théorème d'inversion locale, si $x \in M$ est un point régulier, alors la restriction de f à un ouvert assez petit de M est un difféormophisme. On en déduit que pour toute valeur régulière $y \in N$, $f^{-1}(y)$ est un sous-ensemble discret de \mathbb{R}^i . En particulier, si M est compact, alors $f^{-1}(y)$ est fini. Dans ce cas, on note ce nombre $\#f^{-1}(y)$. Remarquons alors que :

Proposition 1.4 ([1]). Si M est compacte, l'application $y \mapsto \#f^{-1}(y)$, définie sur l'ensemble des valeurs régulières de N, est localement constante.

On voudrait appeler cet entier le degré de l'application f: c'est l'« enroulement» de M sur N par f. Malheureusement, cette définition ne tient pas compte de la façon dont f « enroule» M, c'est à dire si elle préserve ou non son orientation. Il faut avoir recours à d'autres définitions du degré, qui s'avéreront être des invariants homotopiques : le degré modulo 2, ou le degré orienté. C'est justement le degré orienté qui va nous permettre de démontrer le théorème de la boule chevelue.

1.4 Quelques résultats intéressants

Lemme 1.1 ([1]). Si $f: M \to N$ est une application lisse entre deux variétés de dimension $m \ge n$, alors pour toute valeur régulière $y \in N$, $f^{-1}(y)$ est une variété de dimension m - n.

Lemme 1.2 ([1]). Soit $f: X \to N$ est une application lisse entre X variété à bord de dimension m, et N variété sans bord de dimension n, telles que m > n. Si $y \in N$ est une valeur régulière, alors $f^{-1}(y)$ est une variété à bord de dimension m - n, et $\partial f^{-1}(y) = f^{-1}(y) \cap \partial X$.

Proposition 1.5 ([1]). Soit M une variété sans bord de dimension m, et $g: M \to \mathbb{R}$ une application lisse, telle que 0 soit une valeur régulière. Alors

$$M^+ = \{x \in M, g(x) \ge 0\}$$

est une variété à bord de dimension m, de bord

$$\partial M^+ = \{ x \in M, g(x) = 0 \}$$

Théorème 1.1 (Sard et Brown [1]). Soit $U \subset \mathbb{R}^i$ un ouvert, et $f: U \to \mathbb{R}^j$ une application lisse. Alors l'ensemble des valeurs critiques de f est de mesure nulle dans \mathbb{R}^j .

Autrement dit, si $f: M \to N$, l'ensemble des valeurs régulières de f est dense dans N.

2 Le théorème de la boule chevelue

2.1 Présentation du problème

On a vu que coiffer une boule signifie définir un champ de vecteur tangent sans zéro sur la sphère. Plus formellement :

Définition (Sphère unité). Pour $n \in \mathbb{N}$,

$$S^n = \{ x \in \mathbb{R}^{n+1}, ||x|| = 1 \}$$

Proposition 2.1. $\forall n \in \mathbb{N}^*$, S^n est une variété de dimension n.

Démonstration. Considérons

$$\phi: \mathbb{R}^{n+1} \to \mathbb{R}$$

$$x \mapsto ||x||^2 = \sum x_k^2$$
(1)

Puisque ϕ est une application lisse (c'est un polynôme en les variables $x_1, ..., x_n$), le lemme 1.1 nous assure que l'image réciproque de la variété $\{1\} \subset \mathbb{R}$ de dimension 1 est une variété de dimension n-1. Autrement dit, $\phi^{-1}(1) = S^n$ est une variété de dimension n.

Définition. Soit M une variété lisse. Un champ de vecteurs tangent lisse sur M est une application lisse $v: M \mapsto \mathbb{R}^i$ telle que $\forall x \in M, v(x) \in TM_x$

Maintenant que ce cadre est posé, le théorème de la boule chevelue s'exprime naturellement en termes de géométrie différentielle :

Théorème 2.1 (de la boule chevelue). Pour $n \in \mathbb{N}$, S_n admet un champ de vecteur tangent lisse sans zéro si et seulement si n est impair.

Afin de prouver ce théorème, nous avons besoin de la notion de degré. La définition dont nous allons avoir besoin ici est celle du degré orienté.

2.2 Le degré orienté, invariant homologique

Avant de définir le degré orienté d'une application, nous devons orienter nos variétés.

Rappellons que dans \mathbb{R}^i , une orientation est le choix d'une base modulo la relation d'équivalence suivante : deux bases $A=(a_1,...,a_i)$ et $B=(b_1,...,b_i)$ de \mathbb{R}^i sont en relation si et seulement si les matrices de passage de A à B sont de déterminant (strictement) positif. Tout espace vectoriel a ainsi précisément deux orientations distinctes. Dans le cas d'un sous-variété, il s'agit d'orienter chacun de ses plans tangents, de manière cohérente.

Définition (Orienter une variété). Soit $M \subset \mathbb{R}^i$ une variété de dimension m. Une orientation de M est un choix d'orientation pour chaque espace vectoriel TM_x , $x \in M$. De plus, Pour chaque point $x \in M$, il existe une carte localeh sur un ouvert U contenant x qui préserve l'orientation, i.e. $\forall y \in U$, l'image d'une base de TM_y de l'orientation choisie par Dh_x est une base de \mathbb{R}^m d'orientation standard.

On peut alors définir le degré orienté d'une application :

Définition (Degré de Brouwer). Soit $f: M \to N$ une application lisse entre deux variétés, telles que M soit compacte et N connexe. On définit, pour $x \in M$, $sign(Df_x) = +1ou-1$, en fonction de ce que $Df_x: TM_x \to TN_{f(x)}$ préserve ou non l'orientation de TM_x . On définit ensuite, pour $y \in N$ valeur régulière,

$$deg(f,y) = \sum_{x \in f^{-1}(y)} sign(Df_x)$$

Puisque M est compact, rappelons que la somme précédente est finie.

Comme annoncé, on peut montrer que sous certaines conditions (M compact et N connexe), le degré est constant et invariant. Considérons alors deux sous variétés M et N de même dimension n avec M compact et N connexe; puis une application f de M dans N lisse. On veut montrer les deux théorèmes suivants :

Théorème 2.2. L'application $y \in N \longmapsto deg(f,y)$ restreinte aux valeurs régulières est constante.

On peut donc définir deg(f) comme étant le degré de f prit en n'importe quelle valeur régulière de f.

Théorème 2.3. Si g est homotope à f, alors deg(f) = deg(g)

La preuve va s'appuyer sur une série de lemmes admis :

Lemme 2.1 ([1]). L'action des difféomorphismes isotopes à l'identité est transitive sur une sous variétée connexe,

ie si $y, z \in N$ alors il existe un difféomorphismes h isotope à l'identité tel que h(y) = z.

Lemme 2.2 ([1]). L'application $deg(f, \cdot)$ est localement constante sur les valeurs régulières.

Lemme 2.3 ([1]). Si M est le bord d'une sous variété X, ie $M = \partial X$ et si f peut être prolongé par F sur X,

Alors 0 = deg(f, y), pour toute $y \in N$ valeurs régulières de f

Lemme 2.4 ([1]). Si g est homotope à f, alors deg(f,y) = deg(g,y), pour toute $y \in N$ valeurs régulières de f

On remarque qu'avec le lemme 2.4, si on a le théorème 2.2, alors le théorème 2.3 est immédiat.

Il reste à montrer le théorème 2.2 à l'aide des lemmes :

 $D\'{e}monstration.$ Soit $y,z\in N.$ Par le lemme 2.1, soit h un difféomorphismes isotope à l'identité tel que h(y)=z

On a alors $deg(h \circ f, h(y)) = \sum_{x \in h \circ f^{-1}(h(y))} signe(D(h \circ f)_x)$ = $\sum_{x \in f^{-1}(y)} signe(Df_x) = deg(f, y)$, d'un coté et $deg(h \circ f, h(y)) = deg(h \circ f, z) = deg(f, z)$, de l'autre, par le lemme 2.1 car $h \circ f$ est homotope à f. Ce qui permet de conclure la démonstration.

2.3 Preuve du théorème

La démonstration du théorème de la boule chevelue est une application directe de cette notion de degré orienté. Elle repose sur le résultat suivant :

Corollaire 2.1. Pour $n \in \mathbb{N}$ pair, l'identité sur S^n n'est pas homotope à l'application antipodale ($a: x \mapsto -x$).

Démonstration. Soit $S_n \subset \mathbb{R}^{n+1}$. En notant, pour $k \in [1, n+1]$,

$$s_k: (x_1, ..., x_k, ..., x_i) \mapsto (x_1, ..., -x_k, ..., x_i)$$

la symétrie par rapport à Vect((0,...,1,...,0)), on a évidemment $a=s_1\circ...\circ s_{n+1}$. Or une telle symétrie est de degré -1. Donc le degré de a est $(-1)^{n+1}$

Pour démontrer le théorème de la boule chevelue, nous raisonner par l'absurde, en construisant, à partir d'un champ de vecteur tangent continu sans zéro sur la sphère, une homotopie entre l'identité et l'application antipodale.

Lemme 2.5. Un champ de vecteur $v: S^n \to \mathbb{R}^i$ est tangent à S^n si et seulement si

$$\forall x \in S^n, (v(x)|x) = 0 \tag{2}$$

Démonstration. Soit $f: U \subset \mathbb{R}^n \to S^n$ une paramétrisation de S^n en $x \in S^n$. Alors $\phi \circ f: x \mapsto 1$ est une application lisse, et $D(\phi \circ f)_{f^{-1}(x)} = D\phi_x \circ Df_{f^{-1}(x)} = 0$.

Donc $TM_x = Im(Df_{f^{-1}}(x)) \subset Ker(D\phi_x)$.

Or $D\phi_x:(h_1,...,h_n) \mapsto 2 \cdot (x_1h_1+...+x_nh_n)=2 \cdot (x|h)$. Donc $Ker(D\phi_x)=Vect(x)^{\perp}$ (de dimension n, comme TM_x).

On en déduit alors $TM_x = Im(Df_{f^{-1}}(x)) = Ker(D\phi_x) = Vect(x)^{\perp}$, d'où le lemme.

Démonstration du théorème. Soit $n \in \mathbb{N}$ pair, et $v : M \mapsto \mathbb{R}^i$ un champ de vecteur tangent continu qui ne s'annule pas sur $S^n \subset \mathbb{R}^{n+1}$. Quitte à normaliser les vecteurs, on peut supposer que $\forall x \in M, ||x|| = 1$. Considérons alors

$$F: S^n \times [0, \pi] \to S^n$$
$$(x, \theta) \mapsto (x \cdot \cos(\theta), v(x) \cdot \sin(\theta))$$

Remarquons que $F(\cdot,0)$ est l'identité sur S^n , et que $F(x,\pi) = -x$ est l'application antipodale. Vérifions que F est bien une homotopie de S^n , i.e. que $\forall \theta \in [0,\pi], \forall x \in S^n, F(x,\theta) \in S^n$, i.e. que $(F(x,\theta)|F(x,\theta)) = 1$. Or

$$(F(x,\theta)|F(x,\theta)) = (x \cdot \cos(\theta)|x \cdot \cos(\theta)) + (v(x) \cdot \sin(\theta)|v(x) \cdot \sin(\theta)) + 2 \cdot (x \cdot \cos(\theta)|v(x) \cdot \sin(\theta))$$

$$= ||x|| \cdot \cos(\theta)^2 + ||v(x)|| \cdot \sin(\theta)^2 + 0$$

$$= 1$$
(3)

 $\operatorname{car}(v(x)|x) = 0$ d'après le Lemme 2.5.

F est donc une homotopie entre l'identité et l'application antipodale de S^n . C'est absurde d'après le corollaire précédent.

Références

[1] John Milnor. Topology from the differential viewpoint. The University Press of Virginia, 1997.