BROJNI NIZ

Realan brojni niz ili kraće samo niz je svako preslikavanje $f: \mathbb{N} \to \mathbb{R}$.

Niz se označava sa $\{a_n\}_{n\in\mathbb{N}}$ ili samo $\{a_n\}$ gde je $f(n)=a_n$ i kaže se da je a_n opšti član niza $\{a_n\}$.

Primer 1. Članovi niza čiji je opšti član:

$$a_n = n^2$$
 su $a_1 = 1$, $a_2 = 4$, $a_3 = 9$, $a_4 = 16$, ...

$$b_n = \frac{1}{n}$$
 su $b_1 = 1$, $b_2 = \frac{1}{2}$, $b_3 = \frac{1}{3}$, $b_4 = \frac{1}{4}$, ...

$$c_n = 2$$
 su $c_1 = 2$, $c_2 = 2$, $c_3 = 2$, $c_4 = 2$, ...

$$d_n = (-1)^n$$
 su $d_1 = -1$, $d_2 = 1$, $d_3 = -1$, $d_4 = 1$, ...

Niz kod kog svi članovi imaju istu vrednost (kao c_n u prethodnom primeru) naziva se **stacionarni niz.**

Ako postoji realan broj G takav da je $a_n \leq G$, $\forall n \in \mathbb{N}$ kažemo da je niz $\{a_n\}$ ograničen sa gornje strane brojem G i broj G se tada naziva gornje ograničenje niza.

Ako postoji realan broj g takav da je $g \le a_n$, $\forall n \in \mathbb{N}$ kažemo da je niz $\{a_n\}$ ograničen sa donje strane brojem g i broj g se tada naziva donje ograničenje niza.

Ako postoji i gornje i donje ograničenje niza, kaže se da je niz ograničen.

Očigledno, gornje i donje ograničenje niza nije jedinstveno.

Najmanje gornje ograničenje niza naziva se supremum i označava sa sup a_n , a najveće donje ograničenje niza naziva se infimum i označava se $\inf_{n\in\mathbb{N}}a_n$.

Primer 2. Niz $\{a_n\}$, $a_n=n^2$ je ograničen sa donje strane. Brojevi $0,-2,\frac{1}{2},1,\ldots$ predstavljaju njegova donja ograničenja, a inf $a_n=1$ jer je $n^2\geq 1$ za svako $n\in\mathbb{N}$. Ovaj niz nije ograničen sa gornje strane.

Niz $\{b_n\}$, $b_n = \frac{1}{n}$ je ograničen (i sa gornje i sa donje strane), a pošto je $0 < \frac{1}{n} \le 1$, $\forall n \in \mathbb{N}$, to je sup $b_n = 1$, a inf $b_n = 0$.

Niz $\{c_n\}$, $c_n=2$ je takođe ograničen i važi $\sup c_n=\inf c_n=2.$

Niz
$$\{d_n\}$$
, $d_n = (-1)^n$ je ograničen jer $-1 \le (-1)^n \le 1$, $\forall n \in \mathbb{N}$, pa je sup $d_n = 1$, a inf $d_n = -1$.

Za proizvoljan realan broj a, otvoren interval $(a - \varepsilon, a + \varepsilon)$, gde je $\varepsilon > 0$, naziva se ε -okolina tačke a.

Realan broj a je **tačka nagomilavanja niza** $\{a_n\}$ akko se u svakoj ε -okolini broja a nalazi beskonačno mnogo članova tog niza.

Primer 3. Za niz $\{b_n\}$, $b_n = \frac{1}{n}$ tačka nagomilavanja je broj 0 jer se u proizvoljnoj ε -okolini tačke 0, tj. u intervalu $(-\varepsilon, \varepsilon)$ nalazi beskonačno mnogo članova niza b_n .

Za niz $\{c_n\}$, $c_n=2$ tačka nagomilavanja je broj 2 jer se svi članovi niza c_n nalaze u bilo kojoj okolini tačke 2.

Za niz $\{a_n\}$, $a_n=n^2$ ne postoji tačka nagomilavanja jer se njegovi članovi neograničeno povećavaju.

Za niz $\{d_n\}$, $d_n = (-1)^n$ tačke nagomilavanja su brojevi ± 1 jer se u proizvoljnoj ε -okolini oba broja nalazi beskonačno mnogo članova niza d_n .

Realan broj a je **granična vrednost niza** $\{a_n\}$ akko se izvan proizvoljne ε -okoline broja a nalazi najviše konačno mnogo članova niza $\{a_n\}$, tj.

$$(\forall \varepsilon > 0)(\exists n_0(\varepsilon) \in \mathbb{N})(\forall n \in \mathbb{N})(n \ge n_0 \Rightarrow |a_n - a| < \varepsilon).$$

Ovo znači da se za svako $\varepsilon > 0$ može pronaći prirodan broj n_0 , koji zavisi od ε , takav da se svi članovi niza $\{a_n\}$ čiji je indeks veći od n_0 nalaze u ε -okolini tačke a.

1

BROJNI NIZ 2

Ovaj iskaz se označava sa $\lim_{n\to\infty}a_n=a$ ili $a_n\longrightarrow a$ kad $n\longrightarrow\infty$ $(a_n$ teži u a kad n teži u ∞).

Ako niz $\{a_n\}$ ima graničnu vrednost $a \in \mathbb{R}$ kaže se da je konvergentan, tj. da konvergira ili teži ka tački a. Ako niz nije konvergentan, on je **divergentan** tj. divergira.

Očigledno je da je granična vrednost niza ujedno i tačka nagomilavanja tog niza, kao i da niz sa više tačaka nagomilavanja

Niz $\{a_n\}$ teži u ∞ , kad n teži u ∞ , tj. $\lim_{n\to\infty} a_n = \infty$ akko

$$(\forall M > 0)(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N})(n \ge n_0 \Rightarrow a_n > M).$$

Niz $\{a_n\}$ teži u $-\infty$, kad n teži u ∞ , tj. $\lim_{n\to\infty} a_n = -\infty$ akko

$$(\forall M < 0)(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N})(n \ge n_0 \Rightarrow a_n < M).$$

Za niz $\{a_n\}$ koji teži ka ∞ ili $-\infty$ kaže se da je divergentan u užem smislu. Dok se za niz koji je divergentan, ali ne u užem smislu kaže da je divergentan u širem smislu.

Primer 4. Niz $\{a_n\}$, $a_n = n^2$ nije konvergentan jer nema tačku nagomilavanja.

Niz $\{d_n\}$, $d_n = (-1)^n$ nije konvergentan jer ima dve tačke nagomilavanja.

Niz $\{c_n\}$, $c_n=2$ je konvergentan i važi $\lim_{n \to \infty} c_n=2$, jer se u svakoj ε -okolini tačke 2 nalaze svi članovi ovog niza.

Niz $\{b_n\}$, $b_n=\frac{1}{n}$ je takođe konvergentan i važi $\lim_{n\to\infty}\frac{1}{n}=0$ jer je $\left|\frac{1}{n}-0\right|<\varepsilon\Longleftrightarrow n>\frac{1}{\varepsilon}$, što znači da se unutar proizvoljne ε -okoline tačke 0 nalaze svi članovi niza čiji je indeks veći od $\frac{1}{\varepsilon}$.

Osnovne osobine konvergentnih nizova:

- Ako je $\lim_{n\to\infty} a_n = a$, tada je a jedina tačka nagomilavanja niza $\{a_n\}$.
- \bullet Konvergentan niz $\{a_n\}$ ima jedinstvenu graničnu vrednost i ta granična vrednost je jednaka tački nagomilavanja tog niza.
- Konvergentan niz je ograničen.
- \bullet Ako je niz $\{a_n\}$ ograničen i ima jednu tačku nagomilavanja, tada je on konvergentan i njegova granična vrednost je tačka nagomilavanja.
- Ako su nizovi {a_n} i {b_n} takvi da je a_n ≤ b_n, za svako n ≥ n₀ ∈ N i i ako je lim a_n = a, lim b_n = b, tada je a ≤ b.
 Ako su nizovi {a_n}, {b_n} i {c_n} takvi da je a_n ≤ b_n ≤ c_n, za svako n ≥ n₀ ∈ N i ako je lim a_n = lim c_n = a onda
- je i $\lim_{n\to\infty}b_n=a$. Ako je niz $\{a_n\}$ ograničen i niz $\{b_n\}$ takav da je $\lim_{n\to\infty}b_n=0$, tada je $\lim_{n\to\infty}(a_n\cdot b_n)=0$.

Računske operacije sa graničnim vrednostima:

Ako je $\lim_{n\to\infty}a_n=a,\ \lim_{n\to\infty}b_n=b$ i c konstanta, $a,b,c\in\mathbb{R},$ tada je:

- $\bullet \lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n = ca;$
- $\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n = a \pm b$;
- $\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n = a \cdot b;$
- $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} = \frac{a}{b}$, gde je $b_n \neq 0$ i $b\neq 0$;

Niz $\{a_n\}$ je monotono:

- nerastući ako je $a_n \geq a_{n+1}$, za svako $n \in \mathbb{N}$.
- neopadajući ako je $a_n \leq a_{n+1}$, za svako $n \in \mathbb{N}$.
- rastući ako je $a_n < a_{n+1}$, za svako $n \in \mathbb{N}$.
- opadajući ako je $a_n > a_{n+1}$, za svako $n \in \mathbb{N}$.

BROJNI NIZ 3

Niz $\{a_n\}_{n\in\mathbb{N}}$ je monoton ako ima bilo koju od ovih osobina.

Princip monotonije: svaki monoton i ograničen niz je konvergentan.

Teorema: Niz $\{a_n\}$ čiji je opšti član $a_n = \left(1 + \frac{1}{n}\right)^n$, $n \in \mathbb{N}$ je konvergentan.

Ideja dokaza: Može se pokazati da je ovaj niz ograničen, tj. da je $2 \le a_n \le 3$ i da je monotono rastući, pa je po principu monotonije on konvergenta, tj. ima graničnu vrednost. Ta granična vrednost zove se e.

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

Broj e je iracionalan broj. Njegova približna vrednost je $e \approx 2,718281...$ i ona se uzima kao osnova prirodnog logaritma. Važne osobine:

- Ako niz $\{a_n\}$, $a_n > 0$ konvergira ka broju a > 0, tada je i niz $\{\ln a_n\}$ konvergentan i konvergira ka broju $\ln a$.
- Ako niz $\{a_n\}$ konvergira ka broju a, tada je i niz $\{e^{a_n}\}$ konvergentan i konvergira ka broju e^a .
- Ako niz $\{a_n\}$, $a_n \ge 0$ konvergira ka broju a, tada je i niz $\{\sqrt[k]{a_n}\}$, $k \in \mathbb{N}$, konvergentan i konvergira ka broju $\sqrt[k]{a}$.

Izrazi oblika:

"
$$\frac{\infty}{\infty}$$
", "
 $\frac{0}{0}$ ", "
 $0 \cdot \infty$ ", "
 $\infty - \infty$ ", "
 0^{0} ", "
 ∞^{0} ", "
 1^{∞} ",

zovu se neodređeni izrazi.

Primeri izraza koji nisu neodređeni:
$$\label{eq:primeri izraza koji nisu neodređeni:} \\ \label{eq:primeri izraza koji nisu neodređeni:} \\ \label{$$

Važne granične vrednosti kod nizova su:

$$\bullet \lim_{n \to \infty} \frac{1}{n^{\alpha}} = \begin{cases} 0, & \alpha > 0 \\ 1, & \alpha = 0 \\ \infty, & \alpha < 0 \end{cases}$$

$$\bullet \lim_{n \to \infty} q^n = \begin{cases} 0, & q \in (-1, 1), \text{ tj. } |q| < 1 \\ \infty, & q > 1 \\ 1, & q = 1 \\ \text{ne postoji, } q \le -1 \end{cases}$$

$$\bullet \lim_{n \to \infty} \sqrt[n]{a} = 1, a > 0,$$

- $\bullet \lim_{n \to \infty} \sqrt[n]{n} = 1,$
- $\lim_{n \to \infty} a_n = \pm \infty \Rightarrow \lim_{n \to \infty} \left(1 + \frac{1}{a_n} \right)^{a_n} = e.$

Skala rasta nizova za

$$\ln n \prec n^a \prec n^b \prec p^n \prec q^n \prec n! \prec n^n,$$

za 0 < a < b, 1 < p < q.

Oznaka ≺ čita se "sporije raste".

Svi nizovi sa opštim članovima navedenim u skali rasta teže u beskonačno kad $n \longrightarrow \infty$, pri čemu najsporije teži ka beskonačno niz sa opštim članom $\ln n$, a najbrže sa opštim članom n^n .