

SEQUENCE LISTING

<110> Malte Buchholz
Thomas Gress
Stephanie Loesch
Ulrich Weidle

<120> Methods for diagnosis and therapy of pancreatic cancer
and composition useful thereto.

<130> 21460

<140>
<141>

<150> EP 02024539.5
<151> 2002-10-31

<160> 10

<170> PatentIn Ver. 2.1

<210> 1
<211> 5120
<212> DNA
<213> Homo sapiens

<220>

<221> CDS

<222> (366)..(1484)

<400> 1

ggtaggaggc aaccatgtgg ttccagctga atttttttt tccctctetc tttcttcact 60

cctttttctt tccaaacagg gaaaagtgtt ccacgaagcg gtagcgccctt tccgcctcgc 120

gttttcctcc ctgaccctgg tccccggctcc cgtccgggcg ccagctggtg gggcgagcgc 180

cgggagccca tctgccccca ggggcacggg gcgccccccc ggctcccgcc cggcacatgg 240

ctgcagccac ctcgcgcgca ccccgaggcg ccgcgcggcag ctcgcccag gtccgtcgaa 300

ggcgccccggc cgccccggag ccaagcagca gctgagcgaa gaagcgcccg cgtccgggaa 360

tccggg atg tcc ctc ctc ctt ctc ctc ttg cta gtt tcc tac tat gtt gga 410

Met Ser Leu Leu Leu Leu Leu Leu Val Ser Tyr Tyr Val Gly

1

5

10

15

acc ttg ggg act cac act gag atc aag aga gtg gca gag gaa aag gtc 458
Thr Leu Gly Thr His Thr Glu Ile Lys Arg Val Ala Glu Glu Lys Val

20

25

30

act ttg ccc tgc cac cat caa ctg ggg ctt cca gaa aaa gac act ctg	506		
Thr Leu Pro Cys His His Gln Leu Gly Leu Pro Glu Lys Asp Thr Leu			
35	40	45	
gat att gaa tgg ctg ctc acc gat aat gaa ggg aac caa aaa gtg gtg	554		
Asp Ile Glu Trp Leu Leu Thr Asp Asn Glu Gly Asn Gln Lys Val Val			
50	55	60	
atc act tac tcc agt cgt cat gtc tac aat aac ttg act gag gaa cag	602		
Ile Thr Tyr Ser Ser Arg His Val Tyr Asn Asn Leu Thr Glu Glu Gln			
65	70	75	
aag ggc cga gtg gcc ttt gct tcc aat ttc ctg gca gga gat gcc tcc	650		
Lys Gly Arg Val Ala Phe Ala Ser Asn Phe Leu Ala Gly Asp Ala Ser			
80	85	90	95
ttg cag att gaa cct ctg aag ccc agt gat gag ggc cggt tac acc tgt	698		
Leu Gln Ile Glu Pro Leu Lys Pro Ser Asp Glu Gly Arg Tyr Thr Cys			
100	105	110	
aag gtt aag aat tca ggg cgc tac gtg tgg agc cat gtc atc tta aaa	746		
Lys Val Lys Asn Ser Gly Arg Tyr Val Trp Ser His Val Ile Leu Lys			
115	120	125	
gtc tta gtg aga cca tcc aag ccc aag tgt gag ttg gaa gga gag ctg	794		
Val Leu Val Arg Pro Ser Lys Pro Lys Cys Glu Leu Glu Gly Glu Leu			
130	135	140	
aca gaa gga agt gac ctg act ttg cag tgt gag tca tcc tct ggc aca	842		
Thr Glu Gly Ser Asp Leu Thr Leu Gln Cys Glu Ser Ser Ser Gly Thr			
145	150	155	
gag ccc att gtg tat tac tgg cag cga atc cga gag aaa gag gga gag	890		
Glu Pro Ile Val Tyr Tyr Trp Gln Arg Ile Arg Glu Lys Glu Gly Glu			
160	165	170	175
gat gaa cgt ctg cct ccc aaa tct agg att gac tac aac cac cct gga	938		
Asp Glu Arg Leu Pro Pro Lys Ser Arg Ile Asp Tyr Asn His Pro Gly			
180	185	190	
cga gtt ctg ctg cag aat ctt acc atg tcc tac tct gga ctg tac cag	986		
Arg Val Leu Leu Gln Asn Leu Thr Met Ser Tyr Ser Gly Leu Tyr Gln			
195	200	205	
tgc aca gca ggc aac gaa gct ggg aag gaa agc tgt gtg gtg cga gta	1034		
Cys Thr Ala Gly Asn Glu Ala Gly Lys Glu Ser Cys Val Val Arg Val			
210	215	220	
act gta cag tat gta caa agc atc ggc atg gtt gca gga gca gtg aca	1082		
Thr Val Gln Tyr Val Gln Ser Ile Gly Met Val Ala Gly Ala Val Thr			

225

230

235

ggc ata gtg gct gga gcc ctg ctg att ttc ctc ttg gtg tgg ctg cta		1130
Gly Ile Val Ala Gly Ala Leu Leu Ile Phe Leu Leu Val Trp Leu Leu		
240	245	250
255		
atc cga agg aaa gac aaa gaa aga tat gag gaa gaa gag aga cct aat		1178
Ile Arg Arg Lys Asp Lys Glu Arg Tyr Glu Glu Glu Arg Pro Asn		
260	265	270
gaa att cga gaa gat gct gaa gct cca aaa gcc cgt ctt gtg aaa ccc		1226
Glu Ile Arg Glu Asp Ala Glu Ala Pro Lys Ala Arg Leu Val Lys Pro		
275	280	285
agc tcc tct tcc tca ggc tct cggtt agc tca cgc tct ggt tct tcc tcc		1274
Ser Ser Ser Ser Ser Gly Ser Arg Ser Ser Arg Ser Gly Ser Ser Ser		
290	295	300
act cgc tcc aca gca aat agt gcc tca cgc agc cag cggtt aca ctg tca		1322
Thr Arg Ser Thr Ala Asn Ser Ala Ser Arg Ser Gln Arg Thr Leu Ser		
305	310	315
act gac gca gca ccc cag cca ggg ctg gcc acc cag gca tac agc cta		1370
Thr Asp Ala Ala Pro Gln Pro Gly Leu Ala Thr Gln Ala Tyr Ser Leu		
320	325	330
335		
gtg ggg cca gag gtg aga ggt tct gaa cca aag aaa gtc cac cat gct		1418
Val Gly Pro Glu Val Arg Gly Ser Glu Pro Lys Lys Val His His Ala		
340	345	350
aat ctg acc aaa gca gaa acc aca ccc agc atg atc ccc agc cag agc		1466
Asn Leu Thr Lys Ala Glu Thr Thr Pro Ser Met Ile Pro Ser Gln Ser		
355	360	365
aga gcc ttc caa acg gtc tgaattacaa tggacttgac tcccacgctt		1514
Arg Ala Phe Gln Thr Val		
370		
tcctaggagt cagggtcttt ggactttct cgtcatttggaa gctcaagtca ccagccacac		1574
aaccagatga gaggtcatct aagtagcagt gaggatttgcg cggAACAGAT tcagatgagc		1634
attttcctta tacaatacca aacaagcaaa aggtgttaag ctgatttcatc tgtaaaaagg		1694
cattttattt tgcctttaga ccagagtaag ggaaaggcagg agtccaaatc tatttgttga		1754
ccaggacctg tggtgagaag gttggggaaa ggtgagggtga atatacctaa aacttttaat		1814
gtggatatt ttgttatcagt gctttgatttca acaattttca agagggaaatg ggatgctgtt		1874
tgtaaatttt ctatgcattt ctgcaaactt attggattat tagttattca gacagtcaag		1934
cagaacccac agcatttatta cacctgtcta caccatgtac tgagctaacc acttctaaaga		1994

aactccaaaa aaggaaacat gtgtcttcta ttctgactta acttcatttg tcataagggtt 2054
tggatattaa tttcaagggg agttgaaata gtgggagatg gagaagagtg aatgagttc 2114
tcccactcta tactaatctc actatttgta ttgagcccaa aataactatg aaaggagaca 2174
aaaatttgtg acaaaggatt gtgaagagct ttccatcttc atgatgttat gaggattgtt 2234
gacaaacatt agaaatataat aatggagcaa ttgtggattt cccctcaaata cagatgcctc 2294
taaggacttt cctgctagat atttctggaa ggagaaaata caacatgtca tttatcaacg 2354
tccttagaaa gaattcttct agagaaaaag ggatcttagga atgctgaaag attaccac 2414
ataccattat agtctcttct ttctgagaaa atgtgaaacc agaattgcaa gactgggtgg 2474
actagaaagg gagatttagat cagtttctc ttaatatgtc aaggaaggta gccgggcatg 2534
gtgccaggca cctgttaggaa aatccagcag gtggaggttt cagtgagcca agattatgcc 2594
attgcactcc agcctgggtg acaaagcaag actccatctc aaaaaaaaaa aaaaatcaag 2654
gaaggataaa aggaagttca gtattgtacc acacttggaa ctccctccat ttcttccatt 2714
ttagaaggat atgaacctgg aacttttgc gattctaagc cttaaactat caaaaagatc 2774
agggattgcc aatgcttcta atggcaactgc aagtatatgc cataaccgtt ccctcctaaa 2834
agtaaaaat gagagaaaatt cagtatttgc ccaggctcg catccagaag tctagctctg 2894
ggctggaaaga aaagggtact aatatttagg gaagagatga gaataagtag tgggtggcag 2954
gagagggctg agctagtgcc tgctaacatt ttagttgtat ctggaaaga tttagcaaaa 3014
ataactcacc aggatagctg ctgaagagtt gatgaatggg agaagaaaaga tgtttgagaa 3074
ataaaagaaaa cagcagcctg caatacaata acttgcctt ttaatagtt tgattactct 3134
tgataacctac agcacaaaatg ctggacctga atcagctctt caaggaccct agcacaaaatg 3194
tcaactgatc acctctggga gatgaaaaa cttttttttt tttgagacga agtctcgctc 3254
tgttgccccag gctggagtgc agtggcacca tctcagctca ctgcagcgtc cgcccttgg 3314
gttcaagtga ttctcctgcc ttgtcctccct gagtcgctgg tattacaggt gcctgccatc 3374
acacccagct aatttttggaa gttctgatag agacagggtt tctccatgtt ggccaggctt 3434
gtctcaagct cctgacactca agtgacctac ccacccttgg cctcccacag tgctggaagc 3494

cactgcacct ggctcagaat acttttttt ttgagatgca gtcttgctct catcacgcag 3554
gctggagtgc agtggcgat ctcggctcac tgcgacccctcc acctccccgag ttcaagcgat 3614
tctcccttcct cagcccccca agtagcttgg attatagggt tgccgacca cgtacagcta 3674
atttttgtat tttagtaga gatggggttt cgccatgttgg accaggcttgg tctaaaacg 3734
cctgaccta ggtgatccac ccaccccgcc cccacaaagt gctaggatta caggtgtgag 3794
ccaccatgcc cggcccagaa tacttttaa aagaagagca ggttagagga aagaaaaaaa 3854
ttgatgctga atgtgggtat gaaagcatgt ttctaaaatg ggaagcagat gcttaaagag 3914
gaaagactaa tctgggattt tgccccattt ctctggttt tcactcctat attaattct 3974
cacaatcgtg tcgtcacata gtgaaaaaaaaaa caaaattctt gtaaaagtccc caggagttt 4034
tgcttgggtg aaagtttag cctgagtatt ttcttcctct aaaaaaggtg ggaaatgaga 4094
cattgaggaa ttaacatata aatgtctgct atgggtttaa gagaactggc gtatttggaa 4154
tgcttcttac actaacactg tctcattgtt aatataaaaa ccccttactc taactacatt 4214
tttattcctc tggtagtgtg gtatccaggc aacatatcac ttctgctatg taattctaag 4274
aattctcatt tctagagtac ctgagccaaa caaatacaca acggaagctg cagctgtatc 4334
atcactagca atttgctcat cattatttac taccttgaa cctaaaggttt cctgcctatg 4394
cttttggaaag caaaaatcag tctccttgc atgaaaaaga gccttagatt tttaaacatg 4454
ttagttacca gaatgctaaa ataccagttt attacccaaa ttattttgga aatctatcca 4514
taatggaaatg ctacaacaaa cacataaaac agattacact aagagctgag aaattcaaag 4574
gaactgaaga ttctgagaga taaaactgttc aagtcttagc aatgatactg cacttctt 4634
tgacagggttc tgggcttaag ttagaggccc tactggttcc aaaccatatt ccactgactt 4694
tgcaagtaaa ataaatttga ttctgaaata ggaaacaaaa aaaggagaaaa taaccgaata 4754
gtagaagaaa aactgtttgt aggaagacga tgcagatgga atgatgtgga cattgagtaa 4814
ccatgtcaat aaaatatata aaccaaactt aaatttgcata aataaggaag ttggtacctt 4874
ttgttgttaca gtgtataaaa acaatttcgg aactgctgtt gcaaaaagac atatatagtt 4934
ttgcttcctt ctgggtttaa gctgttata tttcagtttc agtttaact tctaagttgc 4994
cttgtaatttggactgtgtt tcagcatcac aaaaacccaaa tatttattt ggtgcacatc 5054

gtatcagcaa ttaaaaaata aacaagtaaa agtgatactg taggagaagc tgaagctcaa 5114
aaaaaaaaa 5120

<210> 2
<211> 373
<212> PRT
<213> Homo sapiens

<400> 2
Met Ser Leu Leu Leu Leu Leu Leu Val Ser Tyr Tyr Val Gly Thr
1 5 10 15
Leu Gly Thr His Thr Glu Ile Lys Arg Val Ala Glu Glu Lys Val Thr
20 25 30
Leu Pro Cys His His Gln Leu Gly Leu Pro Glu Lys Asp Thr Leu Asp
35 40 45
Ile Glu Trp Leu Leu Thr Asp Asn Glu Gly Asn Gln Lys Val Val Ile
50 55 60
Thr Tyr Ser Ser Arg His Val Tyr Asn Asn Leu Thr Glu Glu Gln Lys
65 70 75 80
Gly Arg Val Ala Phe Ala Ser Asn Phe Leu Ala Gly Asp Ala Ser Leu
85 90 95
Gln Ile Glu Pro Leu Lys Pro Ser Asp Glu Gly Arg Tyr Thr Cys Lys
100 105 110
Val Lys Asn Ser Gly Arg Tyr Val Trp Ser His Val Ile Leu Lys Val
115 120 125
Leu Val Arg Pro Ser Lys Pro Lys Cys Glu Leu Glu Gly Glu Leu Thr
130 135 140
Glu Gly Ser Asp Leu Thr Leu Gln Cys Glu Ser Ser Ser Gly Thr Glu
145 150 155 160
Pro Ile Val Tyr Tyr Trp Gln Arg Ile Arg Glu Lys Glu Gly Glu Asp
165 170 175
Glu Arg Leu Pro Pro Lys Ser Arg Ile Asp Tyr Asn His Pro Gly Arg
180 185 190
Val Leu Leu Gln Asn Leu Thr Met Ser Tyr Ser Gly Leu Tyr Gln Cys
195 200 205

Thr Ala Gly Asn Glu Ala Gly Lys Glu Ser Cys Val Val Arg Val Thr
210 215 220

Val Gln Tyr Val Gln Ser Ile Gly Met Val Ala Gly Ala Val Thr Gly
225 230 235 240

Ile Val Ala Gly Ala Leu Leu Ile Phe Leu Leu Val Trp Leu Leu Ile
245 250 255

Arg Arg Lys Asp Lys Glu Arg Tyr Glu Glu Glu Arg Pro Asn Glu
260 265 270

Ile Arg Glu Asp Ala Glu Ala Pro Lys Ala Arg Leu Val Lys Pro Ser
275 280 285

Ser Ser Ser Ser Gly Ser Arg Ser Ser Arg Ser Gly Ser Ser Ser Thr
290 295 300

Arg Ser Thr Ala Asn Ser Ala Ser Arg Ser Gln Arg Thr Leu Ser Thr
305 310 315 320

Asp Ala Ala Pro Gln Pro Gly Leu Ala Thr Gln Ala Tyr Ser Leu Val
325 330 335

Gly Pro Glu Val Arg Gly Ser Glu Pro Lys Lys Val His His Ala Asn
340 345 350

Leu Thr Lys Ala Glu Thr Thr Pro Ser Met Ile Pro Ser Gln Ser Arg
355 360 365

Ala Phe Gln Thr Val
370

<210> 3

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:forward primer

<400> 3

ttctcttga caggttctgg gc

22

<210> 4

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:reverse primer

<400> 4

ggttggaacc agtagggcct c

21

<210> 5

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:xs13 forward
primer

<400> 5

agatccgcattt gtccttc

18

<210> 6

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:xs13 reverse
primer

<400> 6

ccttgcgcat catgggttt

19

<210> 7

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:forward primer

<400> 7

ccccaggagt ttatgcttgg

20

<210> 8

<211> 21

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:reverse primer

<400> 8
gcctggatac cacactacca g

21

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:forward primer

<400> 9
attgtcagat cgttcattgc

20

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:reverse primer

<400> 10
atggaacagg taaccagcat

20