

# EKF HW guide

Date: 2021/05/04





### Ultimate goal & Environment

- Locate your cart correctly while move toward target points
  - Use EKF localization
- Landmarks correspondences & position are known
  - Unknown correspondence for bonus question
- Actuator & sensor were both perturbed
  - Stochastically with known variances
- Utilize MATLAB as environment
  - Hand in script(s) that can be validate by actual running





### Provided interface to physical world

X\_t = VehicleModel(v, w, X\_t-I)

v : Forward speed ←

w : Rotation speed ←

• X\_t-I : Previous state [X,Y,Theta] ←

• X\_t : Return state after actuating ←

SenseData = SensorModel(X\_t, LM)

• X\_t :Actual state [X,Y,Theta]

• LM : Landmark coordinates

• Data : Sensor readings [IsSensed, Relative distance, Relative angle]

• If landmark is in cart's left hand side, Relative angle > 0

Command given by navigation control

This is what you should estimate: Localizing + Navigation algorithm DO NOT access these variables except the initial value





# Example of "SenseData"

Size: (3\*N)<sup>T</sup> N: count of LMs

Is correspond LM sensed?

Sensed relative distance

Sensed relative direction

| 1    | 0 | 0 | ••• | 1     |
|------|---|---|-----|-------|
| 13.3 | X | X | ••• | 5.3   |
| 0.75 | X | x | ••• | -0.12 |



# Algorithm you should build up

- Xe\_t = Estimate(v, w, Xe\_t-I, SenseData)
  - [v, w] : Command data
  - Xe t-I : Previous estimated state
  - Data : Sensor readings
  - Xe\_t : Return estimated state after actuating + sensing
- [v, w] = Navigation(goal, Xe\_t)
  - Goal : Target state
  - Xe t : Estimated state
  - [v, w] : Generated command





#### Each state/variable is related as shown





Do NOT modify any red colored parameters

## Self check list & tips

- Can algorithm handle multiple landmarks simultaneously?
- How to relate sensor variance to state space?
- Does it works stably at all condition?
- Visualize your result
  - Direction of car's heading
  - Variance of states
  - Use different color for before & after filtering
- About I~4 hours work
  - Seek for help if longer than expected





## For your reference

Red: predicted distribution Green: updated distribution

Blue: actual position

#### Without sensor



#### With sensor





### continued

Red: predicted distribution

Green: updated distribution

Blue: actual position

#### Without sensor



#### With sensor







#### **Bonus**

- Try same problem with unknown correspondence
- Use function SensorModelUC(X\_t, LM) instead of original
- Example of "SenseDataUCT"
  - It is possible to return null data if nothing was sensed

Size:  $(2*N)^T$ N: count of sensed LMs

| Sensed relative distance  | 13.3 | 6.8   | 3.9  | ••• | 5.3   |
|---------------------------|------|-------|------|-----|-------|
| Sensed relative direction | 0.75 | -0.13 | 0.44 |     | -0.12 |

