MECÁNICA	CONTROL N°2
HIEVES 28 OC	TURRE 2021

FACULTAD DE CIENCIAS INSTITUTO DE FISICA Y ASTRONOMIA

***	Universidad de Valparaíso CHILE
-----	---------------------------------------

i l							
A DET	LIDO	DATI	CDMC	,			
APEL		PAH	CKINU.	,			

1.-El sistema de la figura constituído por $m_1=1,0[kg], m_2=2,0[kg]$ y $m_3=3.0[kg],$ con velocidades de magnitud $v_1=3,0[m/s],$ $v_2=2,0[m/s]$ y $v_3=1,0[m/s]$ respectivamente, Si en t=0[s] las partículas se encuentran en las posiciones mostradas en la figura, determine

- A) La posición del C.M. en $t = 0: \vec{r}_{CM}(0)[m]$
- B) La posición del C.M. en $t = 2,0[s]:\vec{r}_{CM}(2)[m]$

$$m_{1} = 1 \text{ M}$$

$$m_{2} = 2 \text{ M}$$

$$m_{3} = 3 \text{ M}$$

$$m_{2} = 3 \text{ M}$$

$$m_{3} = 3 \text{ M}$$

$$m_{3} = 3 \text{ M}$$

$$m_{3} = 3 \text{ M}$$

$$m_{4} = 4 \text{ M}$$

$$m_{5} = 4 \text{ M}$$

$$m_{5} = 4 \text{ M}$$

$$m_{7} = 3 \text{ M}$$

$$m_{7} = 4 \text{ M}$$

$$m_{8} = 4 \text$$

MECÁNICA	CONTROL N°2
ILIEVES 28 OC	TURRE 2021

FACULTAD DE CIENCIAS INSTITUTO DE FISICA y ASTRONOMIA

*	
.*.	Universidad
*	de Valparaíso
	CHILE

l																			
l																			
l																			
l																			
APELLIDO PATERNO							Δ	P MA	Т	NC	MBR	F							
AFELLIDO FATERNO									Γ	1 .111/		110	יועוויו						

2.-El sistema de la figura constituído por $m_1=1,0[kg], m_2=2,0[kg] y m_3=3.0[kg], con velocidades de magnitud <math>v_1=3,0[m/s], v_2=2,0[m/s] y v_3=1,0[m/s]$ respectivamente, se mueve...Determine:

A)
$$\vec{V}_{CM} = \vec{V}_{CM}(t) \left[\frac{m}{s} \right]$$

C)
$$\vec{a}_{CM} = \vec{a}_{CM}(t) \left[\frac{m}{s^2} \right]$$

MECÁNICA CONTROL N°2 JUEVES 28 OCTUBRE 2021		ULTAD DE CIENCIAS ITUTO DE FISICA y ASTRONOMIA	A
APELLIDO PATERNO	AP.MAT.	NOMBRE	

Universidad deValparaíso

- 3.- Un cilindro: de masa 2,0[kg], radio 0,40[m] y Momento de Inercia respecto a un eje que pasa por su Centro de Masa I₀=0,16[kg·m²], rueda sin resbalar sobre una superficie horizontal con velocidad $\vec{v}_{CM} = 4,0\hat{\imath}[\frac{m}{s}]$ Determine:
- A)La Energía Cinetica de Rotación del Cilindro.
- B) La Energía Cinetica Total del Cilindro.

MECÁNICA	CONTROL N°2
ILIEVES 28 OC	TURRE 2021

FACULTAD DE CIENCIAS INSTITUTO DE FISICA Y ASTRONOMIA

Universidad de Valparaíso
CHILI

							_									
																ı
																ı
																ı
																ı
																ı
																ı
																ı
DEL	LIDO	PATI	TDMC	`				P M A	T	NIC	MRE	E				
(PEL		PAII	KNU.	,			А	PIVIA		17(JIVIKK	. H.				

- 4.-Una masa M=0,9 [kg] , inicialmente en reposo, cuelga de una cuerda de 0,8[m] de largo. Un proyectil de masa m=0,1[kg] se dispara horizontalmente incrustándose en M, elevándolo a una altura de 0,4[m] [PENDULO BALISTICO]. Determine:
- A) La tensión de la cuerda antes del impacto.
- B) La tensión de la cuerda después del impacto.
- C) La tensión de la cuerda finalmente (cuando M y m han alcanzado la altura máxima)

