Introduction to Rings and Modules

Lecture 2, Monday March 20 2023 Ari Feiglin

2.1 Ideals

Definition 2.1.1:

Suppose R is a ring, then a subset $\emptyset \neq I \subseteq R$ is a left ideal if:

- (1) (I, +) is a subgroup of (R, +).
- (2) For every $a \in I$ and every $r \in R$, $ra \in I$.

If I is closed on the right by multiplication of R then it is a right ideal. If I is both a left and right ideal, it is a bidirectional ideal (or simply an ideal) and is denoted $I \subseteq R$.

Notice that:

- (1) If R is commutative, left ideals, right ideals, and bidirectional ideals are all the same.
- (2) Every left or right ideal is a subrng of R (since (I,\cdot) is necessarily a semigroup since multiplication is associative and it is closed), but it may not contain an identity.
- (3) If an ideal is also a subring, that is $1_R \in I$, then for every $r \in R$ $r \cdot 1_R = 1_R \cdot r = r \in I$, so I = R.

A trivial example of an ideal is the trivial ring $\{0\}$ since $r \cdot 0 = 0 \cdot r = 0$. And another trivial example of an ideal is just R itself.

Example 2.1.2:

If R is a ring and $a \in R$ then $Ra = \{ra \mid r \in R\}$ is the smallest left ideal containing a.

- (1) (Ra, +) is a group since $0_R \in Ra$ and if $r_1a, r_2a \in Ra$ then $r_1a + r_2a = (r_1 + r_2)a \in Ra$ and $r_1a + (-r_1)a = (r_1 r_1)a = 0_R$.
- (2) If $r \in R$ then for any $r'a \in R$, $rr'a \in Ra$ so Ra is a left ideal.
- (3) If I is a left ideal containing a then for every $r \in R$ we have that $ra \in I$ by the definition of a left ideal, and so $Ra \subseteq I$.

We also called Ra the left ideal generated by a. We define aR in a similar fashion, it is also the smallest right ideal containing a and is the right ideal generated by a.

Example 2.1.3:

If R is a ring and $a \in R$ then any bidirectional ideal must contain elements of the form ras for $r, s \in R$. But it must also be a group under addition and so it must be closed under addition so it must contain all the elements of the form $\sum_{i=1}^{n} r_i a s_i$ for $r_i, s_i \in R$. This is the smallest group generated by $\{ras \mid r, s \in R\}$. This is a group under addition since $-\sum r_i a s_i = \sum (-r_i) a s_i$ and it is by definition closed under addition and contains 0_R . And it is closed under both left and right multiplication so it is a bidirectional ideal.

This is obviously the smallest bidirectional ideal containing a since any bidirectional ideal containing a must contain all elements of the form ras and their sums.

Example 2.1.4:

Take $R = M_n(\mathbb{R})$ and a = diag(0, 1, 1, ..., 1). Then

$$Ra = \left\{ M \begin{pmatrix} 0 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \middle| M \in M_n(\mathbb{R}) \right\}$$

If we let m_{ij} be the elements of M then

$$M \cdot a = \begin{pmatrix} 0 & m_{21} & \cdots & m_{n1} \\ \vdots & & \ddots & \vdots \\ 0 & m_{2n} & \cdots & m_{nn} \end{pmatrix}$$

So Ra is the set of all matrices whose first column is 0. Similarly aR is the set of all matrices whose first row is 0.

Example 2.1.5:

If R is a group and $J \subseteq R$ is a bidirectional ideal then $M_n(J) \subseteq M_n(R)$. The ideality of $M_n(J)$ follows simply from the ideality of J. And as it turns out, the converse is true as well: for every bidirectional ideal $I \subseteq M_n(R)$ there exists $J \subseteq R$ such that $M_n(J) = I$. Let J be the set of all $a \in R$ such that a is an element of a matrix in I. Then $I \subseteq M_n(J)$. If $x \in J$ then there exists an $M \in I$ where $x = m_{ij}$. Take A to be the matrix of 0s except for $a_{jj} = 1$ and B the same but $b_{ii} = 1$. Then

$$[BMA]_{ts} = R_t(BM) \cdot C_s(A) = R_t(B) \cdot M \cdot C_s(A)$$

And so if $t \neq i$ or $s \neq j$ then $R_t(B) = 0$ or $C_s(A) = 0$ and this is 0. If t, s = i, j then this is equal to $m_{ij} = x$ and since I is an ideal $BMA \in I$ and BMA is the matrix of 0s except for at index i, j which is x. And so for any

Notice that if \mathbb{F} is a field, and $\{0\} \neq I \leq \mathbb{F}$ is an ideal then $a \in I$ and so $a^{-1} \in \mathbb{F}$ so $aa^{-1} = 1 \in I$ and therefore $I = \mathbb{F}$. So fields only have trivial ideals.

An important insight to have with rings is that prime decomposition need not be unique $(p \neq 0, 1)$ is prime in R if $p \mid ab$ means $p \mid a$ or $p \mid b$). For example the ring $\{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$ has two decompositions for $6, 2 \cdot 3$ and $(1 + \sqrt{-5})(1 - \sqrt{-5})$. We will define later what a prime ideal is, and prime ideals do have a notion of unique decompositions.

Definition 2.1.6:

If R is a ring and $a, b \in R$ then:

$$Ra + Rb = \{r_1a + r_2b \mid r_1, r_2 \in R\}$$

This is still an ideal since the product of subgroups (sum of abelian subgroups) is itself a subgroup, and this is obviously closed under left multiplication by R. And if $S \subseteq R$ is a subset, then

$$RS = \left\{ \sum_{i=1}^{n} r_i s_i \mid n \in \mathbb{N}, r_i \in R, s_i \in S \right\}$$

So if $S = \{a\}$ then RS = Ra and if $S = \{a, b\}$ then RS = Ra + Rb. And we similarly define this for right ideals.

Definition 2.1.7:

If R is a commutative ring and $I \subseteq R$ an ideal, then we define

$$\sqrt{I} = \{ a \in R \mid \exists n \in \mathbb{N} \colon a^n \in I \}$$

This is called the radical ideal of I.

Notice that $I \subseteq \sqrt{I}$, and that this is indeed an ideal:

- (1) If $a \in \sqrt{I}$ and $r \in R$ then since $a^n \in I$ we have that $(ra)^n = r^n a^n$ since R is commutative and $r^n \in R$ and $a \in I$ so $(ra)^n \in I$ so $ra \in \sqrt{I}$.
- (2) If $a \in \sqrt{I}$ then $-a \in \sqrt{I}$ since -a = (-1)a and \sqrt{I} is closed under left multiplication by above.
- (3) Suppose $a, b \in \sqrt{I}$ where $a^n, b^m \in I$. Then by the binomial theorem (since it is simple why this holds in commutative rings):

$$(a+b)^{n+m} = \sum_{k=0}^{n} {n+m \choose k} a^k \cdot b^{n+m-k}$$

where for $n \in \mathbb{N}$, $na = a + \cdots + a$ (n summands). If $k \ge n$ then $a^k = a^n a^{k-n}$ where $a^n \in I$ and $a^{k-n} \in R$ so $a^k \in I$ and so $a^k b^{n+m-k} \in I$ (and so is $\binom{n+m}{k} a^k b^{n+m-k}$ since I is a group under addition). And if k < n then m < n+m-k

and so as before $b^{n+m-k} \in I$ and so $\binom{n+m}{k}a^kb^{n+m-k} \in I$ and so our sum is in I. So \sqrt{I} is closed under addition and therefore is an ideal.

Definition 2.1.8:

 $a \in R$ is nilpotent if there exists an $n \ge 1$ such that $a^n = 0_R$.

So if R is commutative then $\{a \in R \mid a \text{ is nilpotent}\} = \{a \in R \mid \exists n \in \mathbb{N} : a^n = 0_R\} = \sqrt{\{0_R\}}$. And since $\{0_R\}$ is an ideal, so is its radical and therefore the set of nilpotent elements in R is also an ideal.

Suppose R is a ring and $\emptyset \neq J \subseteq R$ is a subset such that $(J, +) \leq (R, +)$. Since (R, +) is abelian, J is normal, and so ${}^{R}/_{J}$ is a quotient group, where (a + J) + (b + J) = (a + b) + J. Now we'd like to define

$$(a+J)\cdot(b+J) = (ab) + J$$

When is this well-defined? Suppose $a_1 + J = a_2 + J$ and $b_1 + J = b_2 + J$ then $a_2 = a_1 + j$ for $j \in J$ and $b_2 = b_1 + j'$ for $j' \in J$. We want to satisfy

$$(a_1b_1) + J = (a_2b_2) + J \iff a_2b_2 - a_1b_1 \in J$$

And since

$$a_2b_2 - a_1b_1 = (a_1 + j)(b_1 + j') - a_1b_1 = a_1b_1 + a_1j' + jb_1 + jj'$$

In order for this to be in J we must have that $a_1j'+jb_1 \in J$ for every $a_1,b_1 \in R$ and $j \in J$. And this is equivalent to having $aj \in J$ and $ja \in J$ for every $a,j \in J$, which is equivalent to J being a bidirectional ideal. So in order for R/J to have a ring structure (or at least for multiplication to be well-defined) it is necessary and sufficient for J to be a bidirectional ideal.

This leads us to the following definition of the quotient ring:

Definition 2.1.9:

Suppose R is a ring and $I \subseteq R$ is a bidirectional ideal, then we define the quotient ring $\binom{R}{I}$, +, \cdot) where $\binom{R}{I}$ is the set of cosets of I under addition, addition is defined as normal, and multiplication of cosets as defined above.

We showed that this is indeed well-defined, and is a ring since -(aI) = (-a)I and I is the identity.

Proposition 2.1.10:

Suppose $f: R \longrightarrow S$ is a ring homomorphism, then we define

$$\operatorname{Ker}(f) = \{ a \in R \mid f(a) = 0_S \} = f^{-1}(0), \quad \operatorname{Im}(f) = \{ s \in S \mid \exists r \in R : f(r) = s \} = f(R) \}$$

and Ker(f) is a bidirectional ideal of R and Im(f) is a subring of S.

Proof:

We know that since f is also a group homomorphism from (R, +) to (S, +), Ker(f) is a subgroup of (R, +) by group theory. Suppose $r \in R$ and $a \in Ker(f)$ then $f(ra) = f(r)f(a) = f(r)0_S = 0_S$ so $ra \in Ker(f)$ and $f(ar) = f(a)f(r) = 0_S f(r) = 0_S$ so $ar \in Ker(f)$ and so Ker(f) is a bidirectional ideal of R.

And Im(f) is a subgroup of (R, +). Since $f(1_R) = 1_S$, this means that $1_S \in \text{Im}(f)$ and since f(a)f(b) = f(ab), Im(f) is closed under multiplication so it is a subring of S.

Theorem 2.1.11 (The First Isomorphism Theorem):

Suppose $f: R \longrightarrow S$ is a ring homomorphism, then there is a natural isomorphism

$$^{R}/_{\operatorname{Ker}(f)} \cong \operatorname{Im}(f)$$

(in other words, ${}^{R}/_{\operatorname{Ker}(f)}$ and $\operatorname{Im}(f)$ are ring-isomorphic.)