3.1 Sets $c = \{1, 2, \dots, C\}$ Set of carcass suppliers $p = \{1, 2, \dots, P\}$ Set of packing facilities Set of cold storage facilities $s = \{1, 2, \dots, S\}$ $m = \{1, 2, \dots, M\}$ Set of retailers Set of all nodes $\omega = c \cup p \cup s \cup m$ $vc = \{1, 2, \dots, VC\}$ Set of vehicle types at 1st echelon $vp = \{1, 2, \dots, VP\}$ Set of vehicle types at 2nd echelon $vs = \{1, 2, \dots, VS\}$ Set of vehicle types at 3rd echelon $vm = \{1, 2, \dots, VM\}$ Set of vehicle types at 4th echelon $t = \{1, 2, \dots, T\}$ Set of periods

3.2 Parameters

*de*_{kt} The demand for node k for red meat in period t ($k \in m$)

Inventory holding cost for node j in period t ($j \in p \cup s \cup m$)

 vpc_{it} Variable production cost at packing facility type i for produce red meat in period t ($i \in p$)

 fpc_i Fixed production cost at packing facility type i for produce red meat $(i \in p)$ sc_{it} Supply cost at carcass supplier type i for supply carcass in period t $(i \in c)$

afc_j Annual fixed cost for opening cold storage facility type j ($j \in s$)

 $disa_{ij}$ The distance among nodes i and j $(i, j \in p \cup s)$ $disb_{jk}$ The distance among nodes j and k $(j, k \in s \cup m)$ $disc_{ik}$ The distance among nodes i and k $(i, k \in p \cup m)$ $disd_{ij}$ The distance among nodes i and j $(i, j \in c \cup p)$

 $caps_j$ Holding capacity of cold storage facility type j for holding red meat $(j \in s)$ $capf_i$ Holding capacity of packing facility type i for holding red meat $(i \in p)$ $capr_k$ Holding capacity of retailer type k for holding red meat $(k \in m)$

th f_{it} Maximum production capacity at packing facility type i in period t ($i \in p$)
th c_{it} Maximum supply capacity at carcass supplier type i in period t ($i \in c$)

 cva_{vp} The storage capacity of vehicle type vp cvb_{vs} The storage capacity of vehicle type vs cvc_{vc} The storage capacity of vehicle type vc cvd_{vm} The storage capacity of vehicle type vm

 vta_{vp} Variable transport cost for vehicle type vp per unit distance vtb_{vs} Variable transport cost for vehicle type vs per unit distance vtc_{vc} Variable transport cost for vehicle type vs per unit distance vtd_{vm} Variable transport cost for vehicle type vm per unit distance

Fixed transport cost for vehicle type \emph{vp} per trip fta_{vp} ftb_{vs} Fixed transport cost for vehicle type vs per trip ftc_{vc} Fixed transport cost for vehicle type vc per trip ftd_{vm} Fixed transport cost for vehicle type vm per trip nva_{vpt} The number of vehicle type vp existing in period t nvb_{vst} The number of vehicle type vs existing in period tThe number of vehicle type vc existing in period t nvc_{vct} nvd_{vmt} The number of vehicle type vm existing in period t

tn The number of all available nodes

 β A coefficient converting the meat to carcass unit I_{i0} Initial inventory level of red meat in node i ($i \in p \cup m$)

3.3 Decision variables

 ZS_i 1, if cold storage facility type *j* opened, 0, else $(j \in s)$

 UA_{vpt} 1, if vehicle type vp is used in period t, 0, else UB_{vst} 1, if vehicle type vs is used in period t, 0, else UC_{vct} 1, if vehicle type vc is used in period t, 0, else UD_{vmt} 1, if vehicle type vm is used in period t, 0, else

 OP_{it} 1, if packing facility type i produces in period t, 0, else $(i \in p)$ XA_{ijvpt} 1, if arc (ij) is visited by vehicle type vp in period t, 0, else $(ij \in p \cup s)$

 XB_{ikvct} 1, if arc (i,k) is visited by vehicle type vc in period t, 0, else $(i,k \in c \cup p)$

 YA_{ikvst} 1, if arc (j,k) is visited by vehicle type vs in period t, 0, else ()

 YB_{ikvmt} 1, if arc (*i,k*) is visited by vehicle type vm in period t, 0, else (*i*, $k \in p \cup m$) XP_{it} The quantity of red meat that facility type i produced in period t ($i \in p$)

 QA_{ijvpt} The quantity of red meat transferred among node i and j by the vehicle type vp in period t ($i, j \in p \cup s$) QB_{ikvct} The quantity of red meat transferred among node i and k by the vehicle type vc in period t ($i, k \in c \cup p$) CA_{jkvst} The quantity of red meat transferred among node i and k by the vehicle type vs in period t ($i, k \in s \cup m$) CA_{jkvst} The quantity of red meat transferred among node i and k by the vehicle type vs in period t ($i, k \in p \cup m$)

The quantity of red meat transferred among node i and k by the vehicle type vs in period t ($i, k \in p \cup m$)

 I_{jt} The inventory level at node j for red meat in period t ($j \in p \cup s \cup m$)

 EA_{jt} An auxiliary variable used for sub-tour elimination for cold storage facility type j in period t ($j \in s$)

An auxiliary variable used for sub-tour elimination for retailer type k at 3rd echelon in period t ($k \in m$)

 EC_{it} An auxiliary variable used for sub-tour elimination for packing facility type i in period t ($i \in p$)

 ED_{kt} An auxiliary variable used for sub-tour elimination for retailer type k at 4th echelon in period t ($k \in m$)

