试卷 7

一、填空	፬(每空 2	2 分,共	30	分)
------	--------	-------	----	----

- 1. _____是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。
- 2. 数据的逻辑结构可分为集合、线性结构、 结构和 结构。
- 3. 数据元素之间的关系在计算机中有两种不同的表示方法: 顺序映象和非顺序映象, 由此得到两种不同的存储结构: 顺序存储结构和 。
- 4. 算法的五个重要特性包括:有穷性、 、 、输入和输出。
- 5. 下面的算法计算实数 x(x>0)的非负整数 $n(n \ge 0)$ 次幂, 其时间复杂度是 。

```
double Power(double x, int n)
{
    double y = 1;
    if (n > 0)
    {
        y = Power(x, n / 2);
        y *= y;
        if (n % 2 == 1) y *= x;
    }
    return y;
}
```

- 6. 只在表的一端进行插入和删除的线性表称为____。在表的一端进行插入、另一端进行删除的线性表称为___。
- 7. 在 C 语言中定义下面的二维实型数组:

double a[5][10];

每个元素占用 8 字节内存空间, 若数组起始地址为 0x1000, 则元素 a[3][5] 的地址为 0x 。

8. 已知完全二叉树有 1024 个结点,则该二叉树的深度为____。

	9.	包含 5 个顶点的有向图, 至多有_	条弧。
	10.	深度为10的完全二叉树至少有_	个结点, 至多有个结点。
	11.	包含20个顶点的连通图, 其最小	生成树拥有条边。
ž. Ž	二、	单项选择题 (每小题 2 分,共 20	分)
	1.	若元素 1, 2, 3 依次进栈, 则出栈的	n次序不可能是 。
		A) 3, 2, 1 B) 1, 3, 2	
П	2.	在无附加头结点的链栈中, 若栈顶	质指针为 top,将指针 s 所指示的结点
	入村	栈, 所执行的操作为。	
Ļ		A) s->next = top; top = top->next; B) top = s; s->next = top; C) s->next = top->next; top->next =	· S;
	•	D) s->next = top; top = s; $t = T(t) + t = t + t + t = t + t = t = t = t = t$	
	3.	在 尤 附加头结点的链核甲, 若核、	顶指针为 top, 则判断栈空的条件是
		0	
		A) top==NULL C) top->next == top	B) top!=NULL D) top->next==NULL
	4.	, 1	队首和队尾指针分别是 front 和 rear,
		判断队空的条件是。	
	7147	A) front $== 0$ B) rear $== 0$	C) front $==$ M - 1 D) front $==$ rear
Î	5.		
		A) 直接插入法和冒泡法是稳定的 B) 快速法在任何情况下都是最快 C) 二路归并算法需要的辅助空间	的
		D) 堆排序的时间复杂度是 $O(n lb)$	

6. 主关键字是指能唯一标识一条记录的

A) 一个数据项 B) 一组数据项 C)A或B

7. 按照二叉树的定义, 具有 3 个结点的二叉树有

D) 以上都不是

种形态。

A) 3

B) 4

C) 5

- D) 6
- 求串 s2 在串 s1 中首次出现的位置的运算是
 - A) 连接
- B)求串长
- C) 求子串
- D) 模式匹配

- 以下数据结构中, 是线性结构
 - A) 串
- B) 广义表
- C) 稀疏矩阵
- D)二叉树
- 10. 下面算法的时间复杂度, 效率最高
 - A) O(n)
- B) O(lb *n*)
- C) O(*n* lb *n*)
- D) $O(n^2)$

三、分析题(每小题 5 分, 共 30 分)

- 1. 若二叉树先根遍历的序列为: EFGADCB, 中根遍历的序列为 GDAFBCE, 请画出二叉树形态。
- 已知电文为"ABBCDADDDCACAAAD",根据字母的出现频率构造 哈夫曼树, 并写出每个字符的哈夫曼编码。

字母	频率	哈夫曼编码
Α		
В		
С		
D		

3. 请写出用 Dijkstra 算法求从顶点 1 出发到其余顶点的最短路径的计算 过程。

4. 已知散列表表长为 15. 地址计算公式为

$H(k) = k \mod 13$

冲突处理方式为线性探测再散列,将关键字5、15、18、2、3、31、16、4依次 插入到散列表中, 请写出散列表的状态。

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

根据下面左边图所示的无向图,请用Prim算法从顶点1出发求最小生 成树的步骤。

根据上面右图所示的有向无环图进行拓扑排序,请写出至少5种排序 结果。

四、综合应用题(每小题10分,共20分)

1. 单值化处理

顺序表结构类型定义如下:

struct ALIST

float *data:

// 动态数组起始地址

int size, length; // 动态数组大小、顺序表长度

请编写算法,对于顺序表中所有值相同的元素,只保留其中第一个元 素, 删除其余的元素。

假如线性表为(2.5, 3.8, 1.2, 2.5, 4.7, 3.8, 3.8, 9.1, 1.2), 则经过单值化处 理后将变为(2.5, 3.8, 1.2, 4.7, 9.1)。

void Unique(ALIST *list);

要求: 用文字描述算法思想, 并估算时间复杂度, 然后用 C/C++语言编码。

2. 二叉树采用链式存储结构, 结点的存储结构如下图所示:

数据结构试卷7答案

- 一、填空题(每空2分,共30分)
- 3. 数据元素
- 4. 树型、图状(或网状)
- 5. 链式存储结构
- 6. 确定性、可行性(或可行性、确定性)
- 7. O(lb n)
- 8. 栈、队列
- 9. 0x1118
- 10. 11
- 11. 20
- 12. 512, 1023
- 13. 19
- 二、单项选择题 (每小题 2 分, 共 20 分)
- 14. C
- 15. D
- 16. A
- 17. D
- 18. B
- 19. C
- 20. C

- 21. D
- 22. A
- 23. B
- 三、分析题(每小题5分,共30分)
- 24.

25.

字母	频率	哈夫曼编码
A	6	0
В	2	100
С	3	101
D	5	11

26.

步骤	顶点			距离					路径		
	1火点	Α	В	С	D	Е	Α	В	С	D	E
0	A	0	1	∞	6	4	-	A	-	A	A
1	В	0	1	9	6	3	-	Α	В	A	В
2	Е	0	1	8	4	3	-	Α	Е	Е	В

路径	长度	最短路径
A→B	1	A→B
A→C	7	$A \rightarrow B \rightarrow E \rightarrow D \rightarrow C$
A→D	4	$A \rightarrow B \rightarrow E \rightarrow D$
A→E	3	A→B→E

3	D	0	1	7	4	3	-	Α	D	Е	В
4	С	0	1	7	4	3	-	Α	D	Е	В

27.

 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
		15	2	3	5	18	31	16	4					

28.

29. ABEFGHCD ABEGHFCD

ABEGFHCD ABGEFHCD

- 四、综合应用题(每题10分,共20分)
- 30. 变量 n 表示要删除的元素的数量。遇相同的值,则 n 加 1; 遇不同的值,则将该元素前移 n 个位置,最后将表长减去 n。

31. 空二叉树深度为 0。非空二叉树, 先求左、右子树的深度, 取最大值再加 1(即根结点)。

```
int Depth(NODE *root)
{
    int d = 0, d1, d2;
    if (root)
    {
        d1 = Depth(root->lch);
        d2 = Depth(root->rch);
        d = (d1 >= d2 ? d1 : d2) + 1;
    }
}
```

```
return d;
}
时间复杂度为 O(n)。
求深度的语句若写成
d = (Depth(root->lch) >= Depth(root->rch) ? Depth(root->lch) :
Depth(root->rch)) + 1;
则会导致重复计算,时间复杂度可达 O(2<sup>n</sup>),应扣分。
```