Review of Signals and Systems: Part 2

Gaurav S. Kasbekar

Dept. of Electrical Engineering

IIT Bombay

Bandwidth

- Intuitively, "bandwidth" of a signal:
 - provides a measure of extent of significant spectral content of the signal for positive frequencies
- Since the meaning of "significant spectral content" is mathematically imprecise, there is no universally accepted definition of bandwidth
 - several definitions have been proposed
- Following two examples illustrate how bandwidth is typically defined when signal is strictly band-limited
- E.g.:
- 1) Let g(t) be such that $F[g(t)] = \text{rect}\left(\frac{f}{W}\right)$
- Bandwidth of g(t):

- Bandwidth of h(t):
 - \square W
- Next, we study two commonly used definitions, which are often used for a signal that is not strictly band-limited

Null-to-null Bandwidth

- Suppose spectrum of a signal is even function of frequency with "main lobe(s)" bounded by well-defined "nulls"
- If signal is low-pass, then bandwidth is defined as:
 - □ half of total width of main lobe
- E.g.: Recall that if $g(t) = A \operatorname{rect}\left(\frac{t}{T}\right)$, where A>0 and T>0, then $G(f)=AT \operatorname{sinc}(fT)$
- Bandwidth of this signal:

$$\Box \frac{1}{T}$$

Ref: "Communication Systems" by S. Haykin and M. Moher, 5th ed

Null-to-null Bandwidth (contd.)

- If signal is band-pass with main spectral lobes centred around $\pm f_c$, where f_c is much larger than width of main-lobe, then bandwidth is defined as:
 - ☐ width of main lobe for positive frequencies
- E.g.: Consider the RF pulse $g(t) = \operatorname{Arect}\left(\frac{t}{T}\right)\cos(2\pi f_c t)$, where $f_c T \gg 1$
- G(f):
 - $\square \frac{AT}{2} \left\{ \operatorname{sinc}((f f_c)T) + \operatorname{sinc}((f + f_c)T) \right\}$
- Bandwidth of this signal:
 - $\mathbf{J} \frac{2}{T}$
- Above definition of bandwidth called "null-to-null bandwidth"
- Above example shows that shifting spectral content of a low-pass signal by a sufficiently large frequency has effect of doubling the bandwidth of the signal

Ref: "Communication Systems" by S. Haykin and M. Moher, 5th

3-dB Bandwidth

- 3-dB bandwidth of a signal g(t) is defined to be $f_2 f_1$ if:
 - $\Box f_2 > f_1 \ge 0$, for frequencies inside the band $f_1 < f < f_2$, the amplitude spectrum |G(f)| falls no lower than $\frac{1}{\sqrt{2}}$ of the maximum value of |G(f)|, and the maximum value occurs at a frequency inside the band $[f_1, f_2]$

Ref: "Communication Systems" by S. Haykin and M. Moher, 5th ed

3-dB Bandwidth (contd.) E.g.: recall that Fourier transform of $g(t) = e^{-at}u(t)$, where a > a0, is:

$$\square G(f) = \frac{1}{a + j2\pi f}$$

- 3-dB bandwidth of g(t):
 - \Box obtained by solving the equation $\frac{1}{\sqrt{a^2+4\pi^2f^2}} = \frac{1}{\sqrt{2}}\frac{1}{a}$
 - $\Box \frac{a}{2\pi}$ Hz
- If signal is band-pass, centred at $\pm f_c$, as in lower fig. on previous slide, then 3-dB bandwidth is separation, along positive frequency axis, between:
 - ☐ the two frequencies at which amplitude spectrum of signal drops to $\frac{1}{\sqrt{2}}$ of its peak value at f_c

Ref: "Communication Systems" by S. Haykin and M. Moher, 5th ed