

Genotype Imputation Tutorial

Anna Díez-Villanueva 17-05-2021

GenRisk-cancer

- Basic concepts
- Reference panels
- Genotype imputation background
- Quality control filters before imputation
- Data preparation before imputation
- Imputation
 - a) Manually
 - b) Server
 - Michigan Imputation Server
 - TOPMed Imputation Server
 - c) Bot

Coffee break

- Practical

Introduction to some concepts

• Human genome \rightarrow 3×10⁹ base pairs

SNP:

- ~ 40 millions
- Positions in the genome where some individuals have one nucleotide (e.g. A) and others have a different one (e.g. a G).
- Vast majority bi-allelic (0 major allele / 1 minor allele)
- Minor allele frequency (MAF)
 - Common variants \rightarrow SNPs with MAF > 0.05
 - Rare variants → SNPs with MAF < 0.05

- Human cells are diploid
 - two copies of each chromosome
 - one inherited from mother and one from father

Strand

Haplotype:

- Description of SNP alleles on a chromosome region
- 0/1 encoding:
 - 0 for reference (major) allele
 - 1 for alternative (minor) allele

Genotype:

- Description of SNP alleles on both chromosome copies
- 0/1/2 encoding:
 - 0 both chromosome strands contain the major allele
 - 1 the chromosomes contain different alleles (heterozygous)
 - 2 both chromosome strands contain the minor allele

AA GT TT CG AA CC TG TT AA
0 1 2 1 0 0 1 2 0

Genotype for 8 SNPs and 1 individual

• **Phenotype** \rightarrow Characteristics or traits of an organism.

Reference Panels

Reference Panels

• 1000 genomes

https://www.internationalgenome.org/

• Haplotype Reference Consortium (HRC)

http://www.haplotype-reference-consortium.org/

Trans-Omics for Precision Medicine (TOPMed)

https://www.nhlbiwgs.org/

Reference Panels Comparison

	1000 Genomes	HRC 2016	TOPMed	
Number of samples	2.504	32.470	97.256	
Number of sites	Number of sites ~49M		~308M	
Chromosomes	chr1 - chr22, chrX	chr1 - chr22, chrX	chr1 - chr22, chrX	
Populations	Multiethnic	Mostly European	Multiethnic	
Variants	SNPs + indels	SNPs	SNPs + indels	
Genome build	hg19	hg19	hg38	

https://imputationserver.readthedocs.io/en/latest/workshops/ASHG2020/Session6/

Reference Panel Comparison

Reference Panel Comparison

TOPMed Reference Panel:

- Biggest number of samples and variants.
- Gives highest imputation quality in all populations.
- Rare variants, with MAF < 0.05, well imputed (r²≥0.8)
- Small effect of genotyping array.

→ Asian population needs an specific reference panel.

Genotype imputation background

Phasing

- In microarrays, each SNP is genotyped independently.
- For a genotype with k 1's there are 2^{k-1} possible pairs of haplotypes explaining it.

Phasing

• Why? It helps to make the process of imputation faster.

https://www.genome.gov/sites/default/files/genome-old/pages/Research/DER/ICHG-1000GenomesTutorial/Imputation_in_GWAS_Studies.pdf

- Computational approaches to genotype phasing
 - Statistical methods: PHASE, Phamily, PL, GERBIL, SHAPEIT, Eagle, ...
 - Combinatorial methods: Parsimony, HAP, 2SNP, ENT, ...

Phasing: example with eagle

Data is usually broken into manageable chunks of ~20Mb each phased independently:

```
./eagle
--vcfRef HRC.r1-1.GRCh37.chr20.genotypes.bcf
--vcfTarget chunk_20_0000000001_0020000000.vcf.gz
--geneticMapFile genetic_map_chr20_combined_b37.txt
--outPrefix chunk_20_000000001_0020000000.phased
--bpStart 1
--bpEnd 20000000
--chrom 20
```


Genotype imputation

Statistical inference of unobserved genotypes to:

- Increase the number of tested variants.
- Perform meta-analysis using different arrays.

Genotype imputation vs Whole Genome Sequencing

- Whole Genome Sequencing (WGS) is expensive, \$600 to \$1000 per genome.
- Genotyping:
 - is cheaper \$50 to \$200 per genome.
 - is limited to predetermined set of mostly common (MAF>0.05) variants.
- Genotyping + Imputation is good enough!!
 - The genotyped SNPs are linked (correlated) to ungenotyped SNPs.

```
Linkage Disequilibrium (LD)
```

Linkage disequilibrium

- Non-random association of alleles at different SNPs in a given population.
- Mutations that remain on the same haplotype throughout the generations are in LD.
- LD is lost with time and distance between SNPs.

Sequenced and phased reference haplotypes

Haplotype	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6	SNP 7
1	1	0	1	1	0	0	1
2	0	1	1	1	0	0	1
3	0	0	1	1	1	0	0
4	0	1	1	0	0	0	1
5	1	0	1	0	0	1	0
6	1	1	0	1	1	0	0

0: ref allele

1: alt allele

Genotyped (microarray)

Haplotype	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6	SNP 7
1	0	?	1	0	?	?	1
2	1	?	1	0	?	?	0

Sequenced and phased reference haplotypes

Haplotype	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6	SNP 7
1	1		1	1			1
2	0		1	1			1
3	0		1	1			0
4	0		1	0			1
5	1		1	0			0
6	1		0	1			0

Haplotype	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6	SNP 7
1	0	?	1	0	?	?	1
2	1	?	1	0	?	?	0

Sequenced and phased reference haplotypes

Haplotype	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6	SNP 7
1	1	0	1	1	0	0	1
2	0	1	1	1	0	0	1
3	0	0	1	1	1	0	0
4	0	1	1	0	0	0	1
5	1	0	1	0	0	1	0
6	1	1	0	1	1	0	0

Haplotype	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6	SNP 7
1	0	1	1	0	0	0	1
2	1	?	1	0	?	?	0

Sequenced and phased reference haplotypes

Haplotype	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6	SNP 7
1	1		1	1			1
2	0		1	1			1
3	0		1	1			0
4	0		1	0			1
5	1		1	0			0
6	1		0	1			0

Haplotype	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6	SNP 7
1	0	1	1	0	0	0	1
2	1	?	1	0	?	?	0

Sequenced and phased reference haplotypes

Haplotype	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6	SNP 7
1	1	0	1	1	0	0	1
2	0	1	1	1	0	0	1
3	0	0	1	1	1	0	0
4	0	1	1	0	0	0	1
5	1	0	1	0	0	1	0
6	1	1	0	1	1	0	0

Haplotype	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6	SNP 7
1	0	1	2	2	0	0	1
2	1	0	1	0	0	1	0

Quality control before imputation

- Variant filters
- Sample filters

a) Proportion of missing values: Remove SNPs with more than 5% of missing data.

b) Proportion of missing values: Remove samples with more than 10% of missing data.

c) Sex concordance: Check samples with no sex concordance

plink function --check-sex \rightarrow compares sex assignments in the input dataset with those imputed from X chromosome inbreeding coefficients

Variant filters

Sample filters

d) Heterozygosity: Remove samples with high or low heterozygosity.

Heterozygosity = having two different alleles of a specific SNP

The heterozygosity rate of an individual is the proportion of heterozygous genotypes.

- High heterozygosity means lots of genetic variability \rightarrow low quality sample?
- Low heterozygosity means little genetic variability \rightarrow inbreeding?

plink function --het \rightarrow computes observed and expected autosomal homozygous genotype counts for each sample, and reports method-of-moments F coefficient estimates.

mean(proportion of heterozygous sites) $\pm 4 * sd(proportion of heterozygous sites)$

- Variant filters
- Sample filters

e) Duplicates and relatedness: Check related samples.

plink function --genome \rightarrow invokes an identical by state (IBS) and identical by descent (IBD) computation and returns PI_HAT summary statistic.

 $PI_HAT > 0.8$

- Variant filters
- Sample filters

f) Hardy-Weinberg equilibrium

Biallelic marker having allele frequencies p and q=1-p, is in equilibrium if and only if:

P(AA) =
$$p^2$$

P(Aa) = $2pq$
 χ^2 test
P(aa) = q^2

A disequilibrium can be expected in cases so HWE should only be investigated in controls.

plink function --hardy -> returns HWE rates

HWE in controls p-value < 1e-04

Variant filters

Sample filters

g) Ancestry: Check samples with a different ancestry

Principal Component Analysis (PCA) with 2,300 ancestry-informative marker SNPs.

Each study will have different filtering thresholds!

Data preparation before imputation

a) Filter in valid SNPs

- Remove SNPs outside autosomes or chrX

- Remove SNPs with invalid alleles Valid alleles are A, C, T o G

- Remove multiple mapping SNPs

- Remove monomorphic SNPs with MAF < 0.00001

b) Liftover

Transform data from a genome version to another genome version.

Suppose our data is in hg19 and we want to impute using TOPMed panel as reference \rightarrow hg19 to hg38

https://github.com/sritchie73/liftOverPlink

Download the chain file that allows the mass conversion of coordinates from one assembly to another.

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/liftOver/

```
liftOverPlink.py
-m plinkFile.map
-p plinkFile.ped
-o plinkFile_lifted
-c hg19ToHg38.over.chain.gz
```


c) Check bim

20 rs6078030 0.1781993 61098 A G
20 GSA-rs6076506 0.1882266 63231 C A
20 rs60263736 0.2246549 70980 A G
20 rs892665 0.244747 75254 A C
20 chr20-76786 0.251949 76786 A G
20 rs1935386 0.2532204 87416 A C
20 GSA-rs75507632 0.2337057 90814 G A
20 rs13039134 0.2247925 92366 G A
20 rs6052070 0.1985757 96931 G A
20 rs6037772 0.1780502 100505 G A

https://www.well.ox.ac.uk/~wrayner/tools/

Checks:

Strand, alleles, position, Ref/Alt assignments and frequency differences

Produces:

A set of plink commands to update or remove SNPs

Updates:

Strand, position, ref/alt assignment

Removes:

- A/T & G/C SNPs if MAF > 0.4
- SNPs with differing alleles
- SNPs with > 0.2 allele frequency difference
- SNPs not in reference panel

c) Check bim

https://www.well.ox.ac.uk/~wrayner/tools/

1.- Convert ped/map to bed

```
plink --file plinkFile_lifted --make-bed --out plinkFile
```

2.- Create a frequency file

```
plink --freq --bfile plinkFile --out plinkFile
```

3.- Check bim

```
perl HRC-1000G-check-bim.pl -h
-r PASS.Variants.TOPMed_freeze5_hg38_dbSNP.tab.gz
-b plinkFile.bim -f plinkFile.frq
-p EUR
-o outputDir
```


c) Check bim

Run-plink.sh

```
plink --bfile plinkFile --exclude Exclude-plinkFile-HRC.txt --make-bed --out TEMP1
plink --bfile TEMP1 --update-map Chromosome-plinkFile-HRC.txt --update-chr --make-bed --out TEMP2
plink --bfile TEMP2 --update-map Position-plinkFile-HRC.txt --make-bed --out TEMP3
plink --bfile TEMP3 --flip Strand-Flip-plinkFile-HRC.txt --make-bed --out TEMP4
plink --bfile TEMP4 --a2-allele Force-Allelel-plinkFile-HRC.txt --make-bed --out plinkFile-updated
plink --bfile plinkFile-updated --real-ref-alleles --make-bed --chr 1 --out plinkFile-updated-chrl
plink --bfile plinkFile-updated --real-ref-alleles --recode vcf --chr 1 --out plinkFile-updated-chrl
plink --bfile plinkFile-updated --real-ref-alleles --make-bed --chr 2 --out plinkFile-updated-chr2
plink --bfile plinkFile-updated --real-ref-alleles --recode vcf --chr 2 --out plinkFile-updated-chr2
plink --bfile plinkFile-updated --real-ref-alleles --make-bed --chr 3 --out plinkFile-updated-chr3
plink --bfile plinkFile-updated --real-ref-alleles --recode vcf --chr 3 --out plinkFile-updated-chr3
plink --bfile plinkFile-updated --real-ref-alleles --make-bed --chr 4 --out plinkFile-updated-chr4
plink --bfile plinkFile-updated --real-ref-alleles --recode vcf --chr 4 --out plinkFile-updated-chr4
plink --bfile plinkFile-updated --real-ref-alleles --make-bed --chr 5 --out plinkFile-updated-chr5
plink --bfile plinkFile-updated --real-ref-alleles --recode vcf --chr 5 --out plinkFile-updated-chr5
plink --bfile plinkFile-updated --real-ref-alleles --recode vcf --chr 21 --out plinkFile-updated-chr21
plink --bfile plinkFile-updated --real-ref-alleles --make-bed --chr 22 --out plinkFile-updated-chr22
plink --bfile plinkFile-updated --real-ref-alleles --recode vcf --chr 22 --out plinkFile-updated-chr22
plink --bfile plinkFile-updated --real-ref-alleles --make-bed --chr 23 --out plinkFile-updated-chr23
plink --bfile plinkFile-updated --real-ref-alleles --recode vcf --chr 23 --out plinkFile-updated-chr23
rm TEMP*
```


d) Chromosome X heterozygosity in males

Setting as missing those heterozygous SNPs from male samples in chrX

```
plink
--bfile plinkFile-updated-chr23
--set-hh-missing
--chr-output chrM
--make-bed
--out plinkFile_chrX
```

e) Create and index vcf files for each chromosome

Save SNPs with the reference allele matching with reference panel

```
bim <- read.table("plinkFile-updated-chr20.bim")
write.table(bim[,c(2,6)], file = "snps.txt")</pre>
```

Extract data from each chromosome and save as vcf

```
plink
--bfile plinkFile-updated-chr20
--reference-allele snps.txt
--chr-output chrM
--recode vcf
--out plinkFile_chr20
```

Create vcf.gz file

```
vcf-sort plinkFile_chr20.vcf | bqzip -c > plinkFile_chr20.vcf.qz
```

Index vcf.gz file

bcftools index plinkFile_chr20.vcf.gz \rightarrow .csi (coordinate-sorted index) file is created.

Imputation

Algorithms

• IMPUTE4:

https://jmarchini.org/impute-4/

Minimac4:

https://genome.sph.umich.edu/wiki/Minimac4

Others: Beagle; MaCH, Ped_Pop, ...

Algorithms

Method	Input data format	CPU seconds per sample *
Minimac4	individual=row; snp=column	3.97
Impute4	snp=row; individual=column	7.99

^{*} Single-threaded CPU to impute chromosome 20 (1,718,742 markers) from 2,452 reference samples from the 1000 Genomes Project. Imputation analyses were run on a 2.6 GHz Intel Xeon E5-2630v2 computer with 128 GB of memory.

CPU time is the sum of user and system time reported by the Unix time command. DOI: 10.1016/j.ajhg.2018.07.015

- Similar accuracy
- Different data formats
- Different processing time

a) Manually

Manual Imputation with Minimac

https://genome.sph.umich.edu/wiki/Minimac4

Data is usually broken into manageable chunks each phased independently:

```
Minimac4
--refHaps HRC.r1-1.GRCh37.chr20.shapeit3.mac5.aa.genotypes.m3vcf.gz
--haps chunk_20_0000000001_0020000000.phased.vcf
--chr 20
--start 1
--end 20000000
--window 500000
--prefix chunk_20_000000001_0020000000
```


Manual Imputation with Impute

https://jmarchini.org/impute-4/

Data is usually broken into manageable chunks each phased independently:

```
impute4.1.2_r300.1
-h reference.hap.gz
-l reference.legend
-m chunk_20_000000001_0020000000.phased.maps.txt
-g chunk_20_000000001_0020000000.phased.haps.gz
-int 0 20000000
-o chunk_20_000000001_0020000000
```

b) Server

Imputation in a server

1.

Upload GWAS data

2.

Server performs

- Quality checks
- Pre-phasing
- Imputation
- Encryption

3.

Download results

Imputation in a server

Submit a job

- Input Validation and Quality Control executed right after data upload
- Immediate feedback to users
- Jobs passing the QC are then added to a long-time queue for Phasing & Imputation
- Outputs SNP statistics and a QC Report for each job

Michigan Imputation Server

https://imputationserver.sph.umich.edu/index.html

Submit Job

TOPMed Imputation Server

https://imputation.biodatacatalyst.nhlbi.nih.gov

Output from the server

Input errors:

Input Validation

The provided VCF file is malformed. Error during index creation: [tabix] was bgzip used to compress this file? (see Help).

Input Validation

The provided VCF file contains more than one chromosome. Please split your input VCF file by chromosome (see Help).

Input Validation

Unable to parse header with error: Your input file has a malformed header: We never saw the required CHROM header line (starting with one #) for the input VCF file (see Help).

Input errors:

Excluded sites in total: 695

Remaining sites in total: 185,791 See snps-excluded.txt for details

Typed only sites: 397

See typed-only.txt for details

Warning: 2 Chunk(s) excluded: reference overlap < 50.0% (see chunks-excluded.txt for details).

Remaining chunk(s): 40

Error: More than 100 obvious strand flips have been detected. Please check strand. Imputation cannot be started!

Input errors:

Filtered sites:

Filter flag set: 0 Invalid alleles: 0 Multiallelic sites: 0 Duplicated sites: 0

NonSNP sites: 0

Monomorphic sites: 688

Allele mismatch: 0

SNPs call rate < 90%: 0

Excluded sites in total: 688

Remaining sites in total: 1,325,650 See snps-excluded.txt for details

Pre-phasing and Imputation

```
Chr 11 Chr 22 Chr 12 Chr 13 Chr 14 Chr 15

Chr 16 Chr 17 Chr 18 Chr 19 Chr 1 Chr 2

Chr 3 Chr 4 Chr 5 Chr 6 Chr 7 Chr 8

Chr 9 Chr 20 Chr 10 Chr 21
```

Download Results

• An email with a password is sent

Dear Anna Díez-Villanueva, the password for the imputation results is: NgB4ZipiS4frUH

The results can be downloaded from https://imputation.biodatacatalyst.nhlbi.nih.gov/start.html#!jobs/job-20210318-160032-233/results

All imputed genotypes are in encrypted zip files (e.g. chr_1.zip)

QC Report: Allele Frequency Check

Ref Allele Frequency (Uploaded Samples)

QC Report: Allele Frequency Errors

Download Results

Info File

Example: chr20.info.gz

```
SNP REF(0) ALT(1) ALT_Frq MAF AvgCall Rsq Genotyped ...
20:61795:G:T G T 0.26318 0.26318 0.88455 0.54658 Imputed ...
20:63231:T:G T G 0.03843 0.03843 0.98342 0.67736 Imputed ...
20:63244:A:C A C 0.16132 0.16132 0.91761 0.49907 Imputed ...
```

Rsq

- Estimated value of the squared correlation between imputed genotypes and true, unobserved genotypes.
- Observed dosage variance / Expected dosage variance, given observed allele frequency and assuming Hardy-Weinberg equilibrium.

Minimal Rsq value for common variants 0.30 Minimal Rsq value for rare variants 0.50

Dosage File

Example: chr20.dose.vcf.gz

```
#CHROM
       POS
             ID
                                 ALT QUAL FILTER INFO
20
       61795 20:61795:G:T G
                                           PASS
                                                    AF=0.26318; MAF=0.26318 R2=0.54658; IMPUTED
       63231 20:63231:T:G T>
                                           PASS
                                                    AF=0.03843;MAF=0.03843R2=0.67736;IMPUTED
20
20
       63244 20:63244:A:C A C
                                           PASS
                                                    AF=0.16132; MAF=0.16132 R2=0.49907; IMPUTED
20
       68749 20:68749:T:C T
                                           PASS
                                                    AF=0.59894; MAF=0.40106 R2=0.98392; TYPED
20
       161502 20:161502:C:T C
                                           PASS
                                                    AF=0.05882; MAF=0.05882 TYPED_ONLY
```

```
FORMAT Sample1

GT:DS:GP 1|0:1.126:0.100,0.673,0.226

GT:DS:GP 0|0:0.002:0.998,0.002,0.000

GT:DS:GP 0|0:0.285:0.723,0.270,0.008

GT:DS:GP 1|1:1.999:0.000,0.001,0.999

GT:DS:GP 0|0:0:1,0,0
```

GT → genotype

DS → dosage

GP → genotype posterior probabilities

c) Bot

Imputation bot

GitHub - lukfor/imputationbot: Automate interactions with the imputation servers

- Automate remote imputation
- Submit and monitor jobs from the command line
- Different commands can easily be combined
- Improves automation

Practical Case

https://mybinder.org/v2/gh/victor-moreno/ImputationTutorial/master?urlpath=rstudio

HapMap 3 samples

https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html

- 1.397 samples from 11 human populations.

- Assembly hg18.	ASW	African ancestry in Southwest USA
, 3	CEU	Utah residents with Northern and Western European ancestry from the CEPH collection
	СНВ	Han Chinese in Beijing, China
	CHD	Chinese in Metropolitan Denver, Colorado
	GIH	Gujarati Indians in Houston, Texas
	JPT	Japanese in Tokyo, Japan
	LWK	Luhya in Webuye, Kenya
	MXL	Mexican ancestry in Los Angeles, California
	MKK	Maasai in Kinyawa, Kenya
	TSI	Toscani in Italia
	YRI	Yoruba in Ibadan, Nigeria

→ ~100 random samples selected for the practical. (~80 European and ~20 African)

Plink files: BED, BIM, FAM

\rightarrow SNP annotations rs6078030 0.1781993 61098 C A 70980 20 rs60263736 0.2246549 1. Chromosome code 0.244747 75254 20 rs892665 2. Variant identifier chr20-76786 0.251949 76786 20 rs1935386 0.2532204 87416 A 3. Position in morgans or centimorgans 20 GSA-rs75507632 0.2337057 90814 G 4. Base-pair coordinate (1-based) 20 rs13039134 0.2247925 92366 5. Allele 1 (minor) 20 rs6052070 0.1985757 96931 6. Allele 2 (major) 20 rs6037772 0.1780502 100505 G

fam → sample information

6. Phenotype value ('1' = control, '2' = case, '-9'/'0'/non-numeric = missing data if case/control)

bed → binary biallelic genotype data

S-1-0154 S-1-0154 0 0 1 2

A-0-0147 A-0-0147 0 0 2 1

Plink files: PED, MAP

map → SNP annotations

- 1. Chromosome code
- 2. Variant identifier
- 3. Position in morgans or centimorgans
- 4. Base-pair coordinate

```
20 rs6078030 0.0 80457

20 GSA-rs6076506 0.0 82590

20 rs60263736 0.0 90339

20 rs892665 0.0 94613

20 rs1935386 0.0 106775

20 GSA-rs75507632 0.0 110173

20 rs13039134 0.0 111725

20 rs6052070 0.0 116290

20 rs6037772 0.0 119864
```

ped → sample information

One line per sample. The first six fields are the same as those in a <u>.fam</u> file. The seventh and eighth fields are allele calls for the first variant; the 9th and 10th are allele calls for the second variant; and so on.

```
S-1-0154
      S-1-0154
                  A-0-0147
     A-0-0147
                   S-1-0110
      S-1-0110
                 2 GGAAGGACACAAGAAAAGGAGAAAAA
A-0-0201
     A-0-0201
                 1 GGAAGGCCACAAGAAAAGGGGAAAAA
     S-1-0095
S-1-0095
                 2 GGAAGGACCCAAGGAAAAGGGGAAAAA
A-0-0152
     A-0-0152
                 1 GGAAGGACCCAAGGAAAAGGGGAAAAA
A-0-0178
     A-0-0178
               2 1 GGAAGGCCACAAGAAAAGGAAAAAA
F-0-0250
     F-0-0250
                 1 GGAAGGACCCAAGAGAAAAGGGAAAAGA
S-1-0037
      S-1-0037
               2 2 GGAAGGAACCAAGGAAAAGGGGAAAAA
               S-1-0009
     S-1-0009
```

