九州大学大学院数理学府 平成 24 年度修士課程入学試験 専門科目

- [3](1) n に関する帰納法で証明する.
- (i) n=2 のときハウスドルフ空間の定義より
- x_1 の近傍 U_1 と x_2 の近傍 U_2 で $U_1 \cap U_2$ をみたすものが存在する.
- (ii) n のとき成立すると仮定する.

つまり、 x_k の近傍 $U_k(k=1,2,\cdots,n)$ でどの異なる 2 つも交わらないものが存在する.

X がハウスドルフ空間なので, k $(k=1,2,\cdots,n)$ を固定したとき

 x_k の近傍 V_k と x_{k+1} の近傍 $V_{k,n+1}$ で交わらないものが存在する.

 $V_{n+1}=igcap_{k,n+1}^n$ とおくとこれも x_{n+1} の近傍であり, V_1,V_2,\cdots,V_n のどれとも交わらない.

 $U_1 \cap V_1, U_2 \cap V_2, \cdots, U_n \cap V_n$ と V_{n+1} は順に x_1, x_2, \cdots, x_n と x_{n+1} の近傍になっている.

これらのうち、異なる 2 つはどれも交わらない、従って n+1 のときも成立する.

以上により、与えられた命題は成立する.

(2) C の補集合 D が開集合であることを示せばよい.

従って、D 内の任意の点 x に対して x を含む開集合 U で D に含まれるものが存在すればよい.

ハウスドルフ空間の定義より, C 内の任意の点 y に対して y を含む開集合 V_y と x を含む開集合 U_y で交 わらないものがとれる. $C \subset \bigcup_{y \in C} V_y$ である. コンパクト性の定義から V_y $(y \in C)$ の中の有限個の開集合 n

П

$$V_1,V_2,\cdots,V_n$$
 で C が覆える. つまり, $C\subset igcup_{k=1}^n V_k$ である.

 V_1,V_2,\cdots,V_n で C が覆える。つまり, $C\subset\bigcup_{k=1}^nV_k$ である。 これらに対応する開集合 U_y を U_1,U_2,\cdots,U_n とおく. $U=\bigcap_{k=1}^nU_k$ も x を含む開集合となる. この U は $\bigcup_{k=1}^nV_k$ と交わらないので C とも交わらない.

よって, $U \subset D$ なので U が求める開集合になっている.

(3) B はコンパクト集合なので (2) より閉集合である. よって B の補集合 B^c は開集合である.

 $A \cap B$ の任意の開被覆 $\bigcup U_{\lambda} \subset B^{c}$ で A が覆える.

 $\lambda \in \Lambda$ A はコンパクト集合なので、この中の有限個の開集合 U_1, U_2, \cdots, U_n と B^c で A が覆える.

よって U_1, U_2, \cdots, U_n で $A \cap B$ が覆える.

 $A \cap B$ の任意の開被覆に対して有限部分被覆が存在したので $A \cap B$ はコンパクトである.

[5](1) M は円周 S^1 とホモトピー同値なので

$$H_n(M; \mathbb{Z}) \cong H_n(S^1; \mathbb{Z})$$

$$\cong \begin{cases} \mathbb{Z} \ (n = 0, 1) \\ \{0\} \ (n \neq 0, 1) \end{cases}$$

である.

(2) $\partial D^2 = S^1$ なので ∂M はトーラス $T^2 = S^1 \times S^1$ となるから

$$H_n(\partial M; \mathbb{Z}) \cong H_n(S^1 \times S^1; \mathbb{Z})$$

$$\cong \begin{cases} \mathbb{Z} \ (n = 0, 2) \\ \mathbb{Z} \oplus \mathbb{Z} \ (n = 1) \\ \{0\} \ (n \neq 0, 1) \end{cases}$$

である.

(3) 対 $(M,\partial M)$ のホモロジー群は鎖群 $C_n(M)$ と鎖群 $C_n(\partial M)$ の商鎖群 $C_n(M)/C_n(\partial M)$ のホモロジー群に等しい.

これは $S^1 \times D^2$ の境界を 1 点に縮めたものの簡約ホモロジー群に等しい.

円板 D^2 の境界 ∂D^2 を 1 点に縮めると球面 S^2 になる.

 $S^1 imes S^2$ のうち, $S^1 imes$ (この 1 点) をさらに 1 点に縮めた図形は $S^1 imes S^2$ の S^1 の作る輪を D^2 で埋めた図形とホモトピー同値である. (これは D^3 から $S^1 imes D^2$ を除いた図形である.) 従って,

$$H_n(M, \partial M; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} \ (n = 2, 3) \\ \{0\} \ (n \neq 2, 3) \end{cases}$$

である.