# Deductive databases Datalog

#### Guillaume Raschia — Université de Nantes

Last update: October 15, 2012

[Source : S. Abiteboul, INRIA]

[Source : E. Zimányi, Univ. libre de Bruxelles]

[Source : J. D. Ullman, Stanford]

[Source : W. Nutt, Free University of Bozen-Bolzano]



### Introduction

### Querying relational database

- Relational Calculus (RC) over FO formulas: highly expressive query language
- RC cannot express many important queries, e.g.,
  - · transitive closures and
  - generalized aggregates
- Need of more powerful logic-based languages that subsume RC

O0000 00000000 Bottom-up 000000 000000000 0000000 Top-down 000000 0000000000

SQL 000000 000000000

### Contents

The logic of query languages

The power of recursion

Fixpoint semantics

Proof-theoretic semantics

Negation within recursion

SQL recursive queries

# Datalog

#### Two alternative viewpoints

database vs. logic programming

Columns are named

$$\mathtt{I} = \{R(0,1), R(1,2), S(1,1), S(1,2)\}$$

Set of facts

Columns are numbered

Oatalog 00000 00000000 Bottom-up 000000 0000000000 Top-down 000000 00000000000

# Another example

| Student |       |        |  |  |
|---------|-------|--------|--|--|
| Name    | Major | Year   |  |  |
| Alice   | CS    | senior |  |  |
| Bob     | CS    | junior |  |  |
| Carol   | ee    | junior |  |  |

|       | Enroll |       |
|-------|--------|-------|
| Name  | Course | Grade |
| Alice | cs123  | 2.7   |
| Bob   | cs101  | 3.0   |
| Bob   | cs143  | 3.3   |
| Carol | cs143  | 3.3   |
| Carol | cs101  | 2.7   |

Student(Alice, cs, senior) Student(Bob, cs, junior) Student(Carol, ee, junior) Enroll(Alice, cs123, 2.7) Enroll(Bob, cs101, 3.0) Enroll(Bob, cs143, 3.3) Enroll(Carol, cs143, 3.3) Enroll(Carol, cs101, 2.7)

In the following: Student is "St" and Enroll is "En"

### Datalog rules

"A tool for deducing new facts"

### Example

$$\underbrace{Q_1(x)}_{\text{head}} \leftarrow \underbrace{\mathsf{St}(x,\_, \text{ junior}), \underbrace{\mathsf{En}(x, \mathsf{cs}101,\_)}_{\text{body}}, \mathsf{En}(x, \mathsf{cs}143,\_)}_{\mathsf{body}}$$

- Commas are logical conjuncts, order of goals is immaterial
- Goals are stored relations, head is not
- $var(r) = \{x, _{-1}, _{-2}, _{-3}\}$
- $adom(r) = \{junior, cs101, cs143\}$

### Safe rule

$$R(\vec{u}) \leftarrow R_1(\vec{u_1}), \dots, R_n(\vec{u_n})$$
 for  $n \ge 1$ 

- Variables in var(r) may be:
  - **Distinguished**: variables that occur in the head  $\vec{u}$  of r
  - Anonymous: unnamed existentially bound variables, all denoted '\_' in rules and '\_\_i' in var(r)

### Safety

Each **distinguished variable** must also occur in the body  $\vec{u_1}, \ldots, \vec{u_n}$ .

• Safe rules are then range-restricted queries

### Rule evaluation

Let r be a rule; I a database instance over  $\mathcal{R}$ .

- We denote  $adom(r, I) = adom(r) \cup adom(I)$
- Valuation  $\nu$  : mapping from var(r) to D
- Instantiation:  $R(\nu(\vec{u})) \leftarrow R_1(\nu(\vec{u_1})), \dots, R_n(\nu(\vec{u_n}))$
- r(I), the image of I under r, is the set of all possible instantiations
- $adom(r(I)) \subseteq adom(r, I)$ : finiteness of the answer

### Straightforward algorithm

Systematic valuation of the set of variables in r within adom(r, I)

### Rules as queries

Boolean or closed queries:

$$Q_2(\mathsf{Carol}) \leftarrow .$$
 or  $Q_2(\mathsf{Carol}).$   $Q_3() \leftarrow \cdots$  where  $Q_3 \in \Big\{ \{ \} = \mathsf{false}, \{ \langle \rangle \} = \mathsf{true} \Big\}$ 

Open queries with free tuples (constants and variables):

$$Q_4(x, cs101) \leftarrow \cdots$$

 Their answer is a (possibly empty) set of facts satisfying the query

$${Q_4(Bob, cs101), Q_4(Carol, cs101)}$$

## Incorporating equality

Rule-based queries with equality predicate

• Mainly the same: R(3.0) and R(x), x = 3.0

Problem #1

$$S(x, y) \leftarrow R(x), y = z$$

### Safe query revisited

Same as before + each variable in the body is equal to some constant or some variable in an atom  $R_i(\vec{u_i})$ 

# Incorporating equality (cont'd)

### Problem #2

$$S(x) \leftarrow R(x), x = 3.0, x = 6.0$$

- Unsatisafiable queries  $Q^{\emptyset}$
- Satisfiable queries have the same expressive power than regular rule-based queries
- Extension to any built-in predicate (< > etc.) is obvious

# Conjunctive queries

#### **Theorem**

Rule-based queries are equivalent to SPC

Selection:

$$\sigma_{v=w}(R) = Q(\vec{x}) \leftarrow R(\vec{x}), \vec{x}_{[v]} = \vec{x}_{[w]}$$
  
where  $\vec{x}_{[i]} = x_i, \vec{x}_{[a]} = a$ 

Projection:

$$\pi_{\vec{\ell}}(R) = Q(x_{\ell_1}, \dots, x_{\ell_k}) \leftarrow R(\vec{x})$$

Cross product:

$$R \times S = Q(\vec{x}, \vec{y}) \leftarrow R(\vec{x}), S(\vec{y})$$

# Datalog programs

Example:

$$Q_5(x) \leftarrow \text{St}(x, \_, \text{junior}), \text{En}(x, \text{cs143}, y), y > 3.0$$
  
 $Q_6(x, y) \leftarrow \text{St}(x, \_, \text{senior}), \text{En}(x, \text{cs143}, y)$ 

- Datalog program *P*: **finite set of datalog rules**
- Order of rules doesn't matter
- Scope of variables is local to rules

## Datalog vs. relational model

| Datalog           | Relational model    |
|-------------------|---------------------|
| Base predicate    | Table or relation   |
| Derived predicate | View or query       |
| Fact              | Row or tuple        |
| Argument          | Column or Attribute |

- Extensional database: base predicate
- Intensional database: derived predicate (defined by rules)
- Assumptions:
  - edb occurs only in the body of the rules
  - idb occurs at least in one head of some rule



# More about programs

### Let P a Datalog program;

- Schema  $\mathcal{P} = \operatorname{edb}(P) \cup \operatorname{idb}(P)$
- Semantics of P: maps instances over edb(P) to instances over idb(P)
- The 3 ways:
  - 1. Multiple outputs within the same evaluation
  - 2. Composition and views for CQ
  - 3. Union operator: multiple rules with same head

# CQ programs

### Closure under composition

A CQ program P is equivalent to a rule-based CQ

Example:

$$S_1(x) \leftarrow Q(x, y), R(y)$$
  
$$S(x, z) \leftarrow S_1(x), T(x, y, z)$$

is equivalent to CQ:  $S(x, z) \leftarrow Q(x, y_1), R(y_1), T(x, y_2, z)$ 

• Problem arises with hidden unsatisfiable equalities

$$T(a,x) \leftarrow R(x)$$
  
 $S(x) \leftarrow T(b,x)$ 

# Expressiveness

• A program for union:

$$Q_7(x) \leftarrow \text{St}(x, \_, \text{junior}), \text{En}(x, \text{cs}143, y), y > 3.0$$
  
 $Q_7(x) \leftarrow \text{St}(x, \_, \text{junior}), \text{En}(x, \text{cs}101, y), y > 3.0$ 

Keep in mind that the semantics is set-theoretic

#### **Theorem**

Single output nr-Datalog programs are equivalent to SPCU

## Negation

### Syntax

• Negation can only be applied to goals of rules

Registered
$$(x, y) \leftarrow \text{En}(x, y, z)$$
  
UnregCs143 $(x) \leftarrow \text{St}(x, \neg, \text{junior}), \neg \text{Registered}(x, \text{cs143})$ 

#### Unsafe rules

$$S(x, y) \leftarrow R(x), \neg T(y)$$

# Unsafe rules with negation

• To sum up:

$$S(x) \leftarrow R(y)$$
 (1)

$$S(x) \leftarrow R(y), x < y$$
 (2)

$$S(x,y) \leftarrow R(x), \neg T(y)$$
 (3)

- Two problems arise:
  - Infinite output from finite input
  - Domain-dependent query
- Domain-independence and finiteness of answer are undecidable
- Sufficient conditions are required

### Safety—ultimately—revisited

#### A rule is **safe** iff:

- 1. Each distinguished variable,
- 2. Each named variable in a built-in predicate, and
- 3. Each named variable in a negated goal,

### also occurs in a positive relational goal

- Safe rules prevent from infinite and domain-dependent results
- Variables bound to constants (x = 2) are obviously safe-range

# Safety relaxation

- Safety: sufficient but not necessary condition
- Example with existential variables in negated goals

$$R(x, y) \leftarrow \mathsf{St}(x, \mathsf{cs}, y), \neg \mathsf{En}(x, \mathsf{cs}143, \mathbf{z})$$

The above rule can be viewed as a shorthand for

RegCs143(
$$x$$
, cs143)  $\leftarrow$  En( $x$ , cs143,  $z$ )  
 $R(x, y) \leftarrow$  St( $x$ , cs,  $y$ ),  $\neg$ RegCs143( $x$ , cs143)

• Anonymous variable to the rescue: ...  $\neg En(x, cs143, \_)$ 

## Universal quantification

A common use of negation

### Example

Find senior students who completed all requirements for a cs major

- Equivalence:  $\forall x.P(x) \Leftrightarrow \neg \exists x. \neg P(x)$
- Find senior students who are not missing any requirement for a cs major

# Universal quantification (cont'd)

### Howto build Datalog query

- It requires two steps
  - 1. Formulate complementary query: find students who did not register to some of the courses required for a cs major

$$\mathsf{MissingReq}(x) \leftarrow \mathsf{St}(x, \_, \mathsf{senior}), \mathsf{Req}(\mathsf{cs}, y), \neg \mathsf{Registered}(x, y)$$

2. Original query reformulated as: find senior students who are not missing any requirement for a cs major

$$Q_8(x) \leftarrow \mathsf{St}(x, \_, \mathsf{senior}), \neg \mathsf{MissingReq}(x)$$

# Expressiveness

#### Theorem

Single output nr-Datalog programs are equivalent to RA

• Generic translation of **monotonic** rule *r*:

$$Q(r) = \pi_{\mathsf{head}} \Big( \sigma_{\mathsf{body\ constraints}} (\times \mathsf{body\ predicates}) \Big)$$

Mapping rules with negated goals into RA

$$r: \cdots \leftarrow R(x), \neg S(y)$$

- Define  $r^+ : \cdots \leftarrow R(x)$  and  $r^- : \cdots \leftarrow R(x), S(y)$
- Template of algebraic expression:  $Q(r) = Q(r^+) Q(r^-)$

# Evaluation of *nr*-Datalog¬ programs

For any nr-Datalog $\neg$  program  $P = \{r_1, \ldots, r_m\}$ , there exists an **ordering** on rules such that the relation name in the head of rule  $r_i$  does not occur in the body of any rule  $r_j$  if  $r_j \leq r_i$ 

- Rules evaluation follows from ≤
- Since there is no recursion, there always exists a first rule within edb's only in the body
- Distinct rules with same head have same position in the ordering

## More about expressiveness

- nr-Datalog¬ can even express min and max!
- Counting elements in a set modulo an integer requires recursion
- Recursion addresses connectivity and transitive closure issues
  - Corporate hierarchy
  - File system
  - Transport network
  - XML document
  - ...
- Other aggregates (count, sum, avg, etc.) require recursion and arithmetic

# Exercises 1/2

#### 1. Definitions

Rule, Head, Distinguished variable, Goal, Datalog program, *nr*-Datalog<sup>¬</sup>, Safety, Edb, Idb

#### 2. True or False?

- i) Union op. is mimicked with multiple rules having the same head.
- ii) Every *nr*-Datalog program is equivalent to RA.
- iii) Safety condition is necessary.
- iv) Negation can occur in the head.
- v)  $adom(r(I)) \subseteq adom(r) \cup adom(I)$ .

# Exercises 2/2

# 3. *nr*-Datalog<sup>¬</sup> queries *❷*

- 1. Find courses where none of the students in cs major enrolled.
- 2. Find courses where all of the students in cs major enrolled.
- Provide nr-Datalog program to compute the maximum value from R:1

### 4. Problem 🕏

An *inequality atom* is an expression of the form  $x \neq y$  or  $x \neq a$  where x, y are variables and a is a constant. Show that the family of rule-based conjunctive queries with equality and inequality strictly dominates the family of rule-based conjunctive queries with equality.

Datalog

Bottom-up 000000 00000000000 0000000 Top-down 000000 0000000000

SQL 000000 000000000

### Outline

The logic of query languages

The power of recursion

Fixpoint semantics

Proof-theoretic semantics

Negation within recursion

SQL recursive queries

# Excerpt of Tramway database

| Links | Line | Station               | Next-Station          |
|-------|------|-----------------------|-----------------------|
|       | 1    | Chantiers Navals      | Médiathèque           |
|       | 1    | Médiathèque           | Commerce              |
|       | 1    | Commerce              | Duchesse Anne Château |
|       | 1    | Duchesse Anne Château | Gare SNCF             |
|       | 2    | Hôtel Dieu            | Commerce              |
|       | 2    | Commerce              | Place du Cirque       |
|       | 2    | Place du Cirque       | 50 Otages             |
|       | 3    | Commerce              | Bretagne              |
|       | 3    | Bretagne              | Jean Jaurès           |
|       | :    | :                     | :                     |

# Example: (recursive) program $P_{tram}$

```
\begin{array}{lll} r_1: & \operatorname{St\_Reach}(x,x) & \leftarrow \operatorname{Links}(\_,x,\_) \\ r_2: & \operatorname{St\_Reach}(x,y) & \leftarrow \operatorname{St\_Reach}(x,z), \operatorname{Links}(\_,z,y) \\ r_3: & \operatorname{Li\_Reach}(x,u) & \leftarrow \operatorname{St\_Reach}(x,z), \operatorname{Links}(u,z,\_) \\ r_4: & \operatorname{Ans}_1(y) & \leftarrow \operatorname{St\_Reach}(\operatorname{Commerce},y) \\ r_5: & \operatorname{Ans}_2(u) & \leftarrow \operatorname{Li\_Reach}(\operatorname{Commerce},u) \\ r_6: & \operatorname{Ans}_3() & \leftarrow \operatorname{St\_Reach}(\operatorname{Commerce},\operatorname{Gare} \operatorname{SNCF}) \end{array}
```

Observe that St\_Reach is defined using recursion

# Example: program $P_{\text{tram}}$ (con't)

- Schema:
  - $\mathcal{P}_{tram} = \{Links, St\_Reach, Li\_Reach, Ans_1, Ans_2, Ans_3\}$
  - $\operatorname{edb}(P_{\operatorname{tram}}) = \{\operatorname{Links}\}\$
  - $idb(P_{tram}) = \{St\_Reach, Li\_Reach, Ans_1, Ans_2, Ans_3\}$
- Valuation  $\nu$  of  $var(r_2)$ :

$$u(x) =$$
 "Chantiers Navals",  $\nu(y) =$  "Place du Cirque",  $\nu(z) =$  "Commerce",  $\nu(\_) = 2$ 

Instantiation of r<sub>2</sub>:

 $St\_Reach(Chantiers\ Navals, Place\ du\ Cirque) \leftarrow \\ St\_Reach(Chantiers\ Navals, Commerce), \\ Links(2, Commerce, Place\ du\ Cirque)$ 

### Deciding recursion

### Dependency graph G(P)

- Vertices are idb(P)
- Edge  $X \to Y$  iff there is a rule with X in the head and Y in the body

Cycle means recursion; no cycle means no recursion

### Example

$$\begin{split} \mathcal{G}(P_{\mathsf{tram}}) &= \Big( \{ \mathsf{St\_Reach}, \mathsf{Li\_Reach}, \mathsf{Ans}_1, \mathsf{Ans}_2, \mathsf{Ans}_3 \}, \\ \Big\{ \mathsf{St\_Reach} &\to \mathsf{St\_Reach}, \mathsf{Li\_Reach} &\to \mathsf{St\_Reach}, \mathsf{Ans}_1 &\to \mathsf{St\_Reach}, \\ &\quad \mathsf{Ans}_2 &\to \mathsf{Li\_Reach}, \mathsf{Ans}_3 &\to \mathsf{St\_Reach} \Big\} \Big) \end{split}$$

# Semantics of a Datalog program

What is the database instance over  $\mathcal{P}$  that is the answer of a given Datalog program P?

### Alternative semantics for positive logic programs are equivalent

- The three semantics:
  - Model-theoretic—declarative meaning of a program
  - **Fixpoint**—bottom-up implementation of deductive DBs
  - Proof-theoretic—SLD resolution and top-down execution
- Semantics for more general programs (e.g. with negation) is more complex

### Model-theoretic semantics

#### Main idea

View P as a **first-order sentence**  $\Sigma_P$  that describes the answer

• Associate a formula to a rule  $r = R(\vec{u}) \leftarrow R_1(\vec{u_1}), \dots, R_n(\vec{u_n})$ :

$$\forall x_1,\ldots,x_m\Big(R_1(\vec{u_1})\wedge\ldots\wedge R_n(\vec{u_n})\longrightarrow R(\vec{u})\Big)$$

where  $x_1, \ldots, x_m$  are the variables occurring in the rule

•  $P = \{r_1, \ldots, r_a\}$ :

$$\Sigma_P = r_1 \wedge \ldots \wedge r_a$$

# Model-theoretic semantics (cont'd)

### Model $\mathcal{M}$ of $\Sigma_P$

 $\mathcal{M}$  satisfies  $\Sigma_P$ :  $\mathcal{M} \models r_1 \wedge \ldots \wedge r_q$ 

•  $\mathcal{M} \models r$ : for each  $\nu$  such that  $R_1(\nu(\vec{u_1})), \ldots, R_n(\nu(\vec{u_n}))$  belong to  $\mathcal{M}$ , then  $R(\nu(\vec{u}))$  also belongs to  $\mathcal{M}$ 

Actually, the answer of P is a singular model of  $\Sigma_P$ 

1 1

## Example - Transitive closure

| N |   |             |                       |
|---|---|-------------|-----------------------|
| ( | ĵ | 7           | Γ                     |
| 0 | 1 | 0           | 1                     |
| 1 | 2 | 1           | 2                     |
| 2 | 3 | 1<br>2<br>0 | 3                     |
|   |   | 0           | 2                     |
|   |   | 1           | 2<br>3<br>2<br>3<br>3 |
|   |   | 0           | 3                     |
|   |   | 6           | 6                     |

| $\mathcal{M}$ |   |   |   |
|---------------|---|---|---|
| (             | ĵ | 7 | Γ |
| 0             | 1 | 0 | 1 |
| 1             | 2 | 1 | 2 |
| 2             | 3 | 2 | 3 |
|               |   | 0 | 2 |
|               |   | 1 | 3 |

 $\mathcal{M}'$  is not a model of  $\Sigma_P$  since P(0,3) does not belong to  $\mathcal{M}'$ 

## Minimal model of *P* containing I

## Closed World Assumption (CWA)

- Database is assumed to be complete
- Known facts are sure (true); other facts are not (false)

## Semantics P(I) of program P

- In: a Datalog program P, an instance I over edb(P)
- Out: a **model** of P, that is, an instance over P satisfying  $\Sigma_P$
- P(I), is the minimal model of P containing I
- Problems :
  - 1. Is this definition correct? (existence and uniqueness)
  - 2. How do we compute it efficiently?



# An upper bound

- P(I) is an instance over  $\mathcal{P}$
- Only a finite set of instances in adom(P, I)
- Consider one of them,  $\mathcal{B}(P, I)$  built as follows:
  - For each  $R \in edb(P)$ , a fact  $R(\vec{u})$  is in  $\mathcal{B}(P, I)$  iff it is in I
  - For each  $R \in idb(P)$ , each fact  $R(\vec{u})$  with constants in adom(P, I) is in  $\mathcal{B}(P, I)$
- $\mathcal{B}(P, I)$  is a model of P containing I
- $P(I) \subseteq \mathcal{B}(P, I)$

### Main result

#### **Theorem**

Let P be a Datalog program, I an instance over edb(P), and  $\mathfrak{M}$  the set of models of P containing I. Then

- 1.  $\bigcap \mathfrak{M}$  is the minimal model of P containing I, so P(I) is defined
- 2.  $adom(P(I)) \subseteq adom(P, I)$
- 3. For each R in edb(P), P(I)(R) = I(R)
  - Very inefficient algorithm:
    - 1. Find the set  $\mathfrak{M}$  of instances over  $\mathcal{P}$  that are subsets of  $\mathcal{B}(P, \mathbb{I})$ , satisfying  $\Sigma_P$  and containing  $\mathbb{I}$
    - 2. The answer is  $\bigcap \mathfrak{M}$

# Exercises 1/2

#### 1. Definitions

Datalog, Dependency graph, Model, Model-theoretic semantics, CWA

#### 2. True or False?

- i) Answer of a Datalog program is the so-called minimal model.
- ii) Datalog dominates RA.
- iii) Each goal of a rule is a node in the dependency graph.
- iv) CWA states that the database is assumed to be complete.
- v) Cycle detection in a graph is undecidable.

# Exercises 2/2

### 3. Misc. 🔎

- 1. Give a Datalog program that yields, for each pairs of stations (a, b), the station c such that c is reachable (1) from both a and b, and (2) from a or b.
- 2. Prove that Datalog queries are monotonic.

#### 4. Problem

Give a proof of each of the three results from the "minimal model" theorem. <u>Hint</u>: First, build upon an intermediate result that states for every valuation of goals of a rule in  $\bigcap \mathfrak{M}$ , valuation of the head is also in  $\bigcap \mathfrak{M}$ . And second, Use  $\mathcal{B}(P, \mathbf{I}) \in \mathfrak{M}$ .

Datalog 00000 00000000 Bottom-up 00000 000000000 0000000 Top-down 000000 0000000000

SQL 000000 000000000

### Outline

The logic of query languages

The power of recursion

#### Fixpoint semantics

Proof-theoretic semantics

Negation within recursion

SQL recursive queries

# Fixpoint semantics

#### A bottom-up semantics for Datalog

- ullet Let P a datalog program, K an instance over  ${\mathcal P}$
- A fact F is an **immediate consequence** for K and P if:
  - 1.  $F \in K(R)$  for some edb R, or
  - 2.  $F \leftarrow F_1, \dots, F_n$  is an instantiation of a rule in P and each  $F_i \in K$

### Immediate consequence operator

$$T_P: \mathsf{inst}(\mathcal{P}) \to \mathsf{inst}(\mathcal{P})$$

$$\mathsf{K} \longmapsto T_P(\mathsf{K}) = \{\mathsf{immediate consequences for K and } P\}$$

Datalog 00000 00000000 Top-down 000000 00000000000

SQL 000000 000000000

## Some properties

### Property 1

 $T_P$  is **monotonic** 

$$\forall I, J, I \subseteq J \Rightarrow T_P(I) \subseteq T_P(J)$$

### Property 2

K over  $\mathcal{P}$  is a model of  $\Sigma_{\mathcal{P}}$  iff  $T_{\mathcal{P}}(\mathtt{K})\subseteq\mathtt{K}$ 

# Some properties (cont'd)

### Definition (Fixpoint)

K is a **fixpoint** of  $T_P$  iff  $T_P(K) = K$ 

### Property 3

Each fixpoint of  $T_P$  ( $T_P(K) = K$ ) is a model of  $\Sigma_P$  ( $T_P(K) \subseteq K$ ) The converse does not necessarily hold

### Property 4

For each P and I over edb(P),  $T_P$  has a least fixpoint containing I

### Construction

- Compute  $T_P(I)$ ,  $T_P(T_P(I))$ ,  $T_P^3(I)$ , etc.
- $I \subseteq T_P(I) \subseteq T_P^2(I) \subseteq T_P^3(I) \subseteq \cdots \subseteq \mathcal{B}(P, I)$
- $\{T_P^i(I)\}_i$  reaches a fixpoint after at most  $N = |\mathcal{B}(P, I)|$  steps:

$$T_P(T_P^N(I)) = T_P^N(I)$$

• We denote this fixpoint  $T_P^{\omega}(\mathtt{I})$ 

#### **Theorem**

The least fixpoint  $T_P^{\omega}(I)$  is equal to the minimal model P(I)

## Example - Transitive closure

$$T(x,y) \leftarrow G(x,y)$$
  
 $T(x,y) \leftarrow G(x,z), T(z,y)$   
 $I = \{G(0,1), G(1,2), G(2,3)\}$ 

It yields to:

$$T_{P}(I) = I \cup \{T(0,1), T(1,2), T(2,3)\}$$

$$T_{P}^{2}(I) = T_{P}(I) \cup \{T(0,2), T(1,3)\}$$

$$T_{P}^{3}(I) = T_{P}^{2}(I) \cup \{T(0,3)\} \text{ and } T_{P}^{4}(I) = T_{P}^{3}(I)$$

•  $T_P^{\omega}(\mathbf{I}) = T_P^3(\mathbf{I})$ 

# Example - Transitive closure (con't)

| $T_{F}^{\omega}$ | $\zeta(I)$ | = ' | $T_P^3(I)$ | )_ |
|------------------|------------|-----|------------|----|
| (                | ŝ          |     | T          |    |
| 0                | 1          | 0   | 1          |    |
| 1                | 2          | 1   | 2          |    |
| 2                | 3          | 2   | 3          |    |
|                  |            | 0   | 2          |    |
|                  |            | 1   | 3          |    |
|                  |            | 0   | 3          |    |

| ${\mathcal F}$ |   |   |        |
|----------------|---|---|--------|
| (              | ĵ | 7 | Γ      |
| 0              | 1 | 0 | 1      |
| 1              | 2 | 1 | 2      |
| 2              | 3 | 2 | 3      |
| 3              | 2 | 0 | 2      |
|                |   | 1 | 3      |
|                |   | 0 | 3      |
|                |   | 3 | 3<br>2 |
|                |   | 3 | 3      |

| $\mathcal{M}$ | 1 |             |             |
|---------------|---|-------------|-------------|
| (             | Ĝ | 7           | Γ           |
| 0             | 1 | 0           | 1           |
| 1             | 2 | 1           | 2           |
| 2             | 3 | 1<br>2<br>0 | 3           |
|               |   | 0           | 2<br>3<br>2 |
|               |   | 1           | 3           |
|               |   | 0           | 3           |
|               |   | 3           | 2           |

 ${\cal M}$  is even not a fixpoint!

 ${\mathcal F}$  is not the least fixpoint

## Evaluation of Datalog programs

- Lots of research in the late 80'th
- Top-down or bottom-up evaluation
- Direct evaluation vs. compilation into a more efficient program
- No product!
- Some influence on logic programming
- Renewal with knowledge bases (Linked Data)
- To come:
  - 1. Semi-naive bottom-up evaluation
  - Top-down: QSQ
     Bottom-up: Magic

### Reverse-Same-Generation

$$rsg(x,y) \leftarrow flat(x,y)$$

$$rsg(x,y) \leftarrow up(x,x_1), rsg(y_1,x_1), down(y_1,y)$$

a e a f f m g n h n i o j o

flat g f m n n o p m

down

I f

m f

g b

h c

i d

p k

# Graphically



## Naive algorithm

```
\begin{array}{l} \mathsf{rsg} \ := \emptyset \\ \\ \mathsf{repeat} \\ \\ \mathsf{rsg} \ := \mathsf{rsg} \ \cup \ \mathsf{flat} \ \cup \ \pi_{16} \Big( \sigma_{2=4} \big( \sigma_{3=5} \big( \mathsf{up} \times \mathsf{rsg} \times \mathsf{down} \big) \big) \Big) \\ \\ \mathsf{until} \quad \mathsf{fixpoint} \end{array}
```

#### Language equivalence

SPCU + while loop = Datalog expressive power

# Naive algorithm (cont'd)

### One single step computation

$$\operatorname{rsg}^{i+1} = \operatorname{rsg}^{i} \cup \operatorname{flat} \cup \pi_{16} \left( \sigma_{2=4} (\sigma_{3=5} (\operatorname{up} \times \operatorname{rsg}^{i} \times \operatorname{down})) \right)$$

where 
$$rsg^i := T^i_{RSG}(I)(rsg)$$

- Evaluation example:
  - level 0: ∅
  - level 1:  $\{(g, f), (m, n), (m, o), (p, m)\}$
  - level 2: {level 1}  $\cup$  {(a,b),(h,f),(i,f),(j,f),(f,k)}
  - level 3: {level 2}  $\cup$  {(a, c), (a, d)}
  - level 4: {level 3}

### Limitations

- Redundant computation
  - Each layer recomputes all elements of the previous layer
  - $rsg^i \subset rsg^{i+1}$
- Inflation: both the problem and the solution

# Semi-naive algorithm

- Focus on the **new facts** generated at each step
- New expression: RSG'

$$\Delta_{\mathsf{rsg}}^{1}(x,y) \leftarrow \mathsf{flat}(x,y)$$

$$\left[ \Delta_{\mathsf{rsg}}^{i+1}(x,y) \leftarrow \mathsf{up}(x,x_{1}), \Delta_{\mathsf{rsg}}^{i}(y_{1},x_{1}), \mathsf{down}(y_{1},y) \right]_{i \geq 1}$$

- No more recursive, even not a Datalog program...
- For each input I, new facts are  $\mathsf{rsg}^{i+1} \mathsf{rsg}^i \ \subseteq \delta^{i+1}_\mathsf{rsg} = RSG'(\mathtt{I})(\Delta^{i+1}_\mathsf{rsg}) \subseteq \mathsf{rsg}^{i+1}$
- Ultimate answer set:  $RSG(I)(rsg) = \bigcup_{1 < i} (\delta_{rsg}^i)$
- Much less redundancy

## Improved semi-naive algorithm

• Knowing:  $\delta_{\mathsf{rsg}}^{i+1} \neq \mathsf{rsg}^{i+1} - \mathsf{rsg}^{i}$ 

e.g., 
$$(g, f) \in \delta_{rsg}^2$$
, not in  $rsg^2 - rsg^1$ 

• Use  $rsg^i - rsg^{i-1}$  instead of  $\Delta^i_{rsg}$  in the second "rule" of RSG'

$$\left[ \begin{array}{ccc} \Delta^1_{\mathsf{rsg}}(x,y) & \leftarrow & \mathsf{flat}(x,y) \\ \mathsf{rsg}^1 & := & \Delta^1_{\mathsf{rsg}} \end{array} \right] \\ \left[ \begin{array}{ccc} \mathsf{temp}_{\mathsf{rsg}}^{i+1}(x,y) & \leftarrow & \mathsf{up}(x,x_1), \Delta^i_{\mathsf{rsg}}(y_1,x_1), \mathsf{down}(y_1,y) \\ \Delta^{i+1}_{\mathsf{rsg}} & := & \mathsf{temp}_{\mathsf{rsg}}^{i+1} - \mathsf{rsg}^i \\ \mathsf{rsg}^{i+1} & := & \mathsf{rsg}^i \cup \Delta^{i+1}_{\mathsf{rsg}} \end{array} \right]_{i \geq 1}$$

#### Non linear rules

### Example: ancestor

$$\operatorname{anc}(x,y) \leftarrow \operatorname{par}(x,y)$$
  
 $\operatorname{anc}(x,y) \leftarrow \operatorname{anc}(x,z), \operatorname{anc}(z,y)$ 

Semi-naive evaluation:

$$\begin{bmatrix} \Delta_{\mathsf{anc}}^1(x,y) & \leftarrow & \mathsf{par}(x,y) \\ \mathsf{anc}^1 & := & \Delta_{\mathsf{anc}}^1 \end{bmatrix}$$
 
$$\begin{bmatrix} \mathsf{temp}_{\mathsf{anc}}^{i+1}(x,y) & \leftarrow & \Delta_{\mathsf{anc}}^i(x,z), \mathsf{anc}(z,y) \\ \mathsf{temp}_{\mathsf{anc}}^{i+1}(x,y) & \leftarrow & \mathsf{anc}(x,z), \Delta_{\mathsf{anc}}^i(z,y) \\ \Delta_{\mathsf{anc}}^{i+1} & := & \mathsf{temp}_{\mathsf{anc}}^{i+1} - \mathsf{anc}^i \\ \mathsf{anc}^{i+1} & := & \mathsf{anc}^i \cup \Delta_{\mathsf{anc}}^{i+1} \end{bmatrix}_{i \geq 1}$$

# Non linear rules (cont'd)

### Still some redundancy

Suppose an input instance par =  $\{(1,2),(2,3)\}$ ;

$$\begin{split} & \Delta_{\text{anc}}^1 = \{(1,2),(2,3)\} \\ & \text{anc}^1 = \{(1,2),(2,3)\} \\ & \Delta_{\text{anc}}^2 = \{(1,3)\} \end{split}$$

- Both rules for temp $_{anc}^2$  compute the join of tuples (1,2) and (2,3)
- Redundant computation of (2,3)

# Non linear rules (cont'd)

#### New rules

Use instead of the two rules for temp $_{anc}^{i+1}$ :

$$\mathsf{temp}_{\mathsf{anc}}^{i+1}(x,y) \leftarrow \Delta_{\mathsf{anc}}^i(x,z), \mathsf{anc}^{i-1}(z,y)$$
$$\mathsf{temp}_{\mathsf{anc}}^{i+1}(x,y) \leftarrow \mathsf{anc}^i(x,z), \Delta_{\mathsf{anc}}^i(z,y)$$

## Static program analysis

### Satisfiability

Is there a db instance I such that for each R in P(I), P(I)(R) is non-empty?

- Remind that RC query satisfiability is undecidable
- Datalog is somehow both:
  - more powerful than RC (with recursion) and
  - less powerful than RC (w/o negation)
- Satisfiability is decidable for Datalog programs!

# Static program analysis (cont'd)

#### Containment

- For each db instance I, is P(I)(R) included into P'(I)(R) for all R?
- · Query optimization purpose, coupled with boundedness

#### **Boundedness**

- The fixpoint is reached after a bounded number of steps
- More optimization...

### Boundedness

## Definition (Stage)

The smallest integer i such that  $T_P^i(I) = T_P^\omega(I)$  is called the stage for P and I

### Property

nr-Datalog programs are bounded:

$$\exists d, \forall I \text{ over } edb(P), stage(P, I) \leq d$$

### More about boundedness

### Falsely recursive program

$$Q(x,y) \leftarrow R(x,y)$$
$$Q(x,y) \leftarrow S(x), Q(x,y)$$

- R may substitute to Q in the body
- Bounded Datalog program

#### Truly recursive program

$$Q(x,y) \leftarrow R(x,y)$$
$$Q(x,y) \leftarrow T(x,z), Q(z,y)$$

Unbounded Datalog program

Datalog 00000 00000000 Bottom-up
00000
00000000

Top-down 000000 00000000000

## A couple of more results and statements

- Containment is undecidable
- Boundedness is undecidable
- Optimization will be difficult
- Heuristics are welcome!

# Exercises 1/2

#### 1. Definitions

Immediate consequence, Fixpoint, Boundedness, Stage, Naive evaluation, Semi-naive evaluation, Non linear rules

#### 2. True or False?

- i) Immediate consequence operator is monotonic.
- ii) Each model of  $\Sigma_P$  is a fixpoint of  $T_P$ .
- iii) There are  $|\mathcal{B}(P, I)|$  steps to reach the fixpoint.
- iv) Semi-naive evaluation does not compute redundant fact.
- v) Datalog is equivalent to SPCU.
- vi) Satisfiability is decidable for Datalog programs.

# Exercises 2/2

#### 3. Reverse-Same-Generation

- 1. Show all the redondant facts from RSG' w/o improvement.
- 2. Exhibit an instance I such that RSG' satisfies  $\delta_{rsg}^i \neq \emptyset$ ,  $\forall i > 0$ .

#### 4. Problem

In the presence of many idb's in the program, show that there exists an evaluation ordering that prevents from redondant fact computation.

<u>Hint</u>: analyze the structure of the Datalog program b.t.w. of mutual recursion (predicates onto the same cycle in the dependency graph).

### Proof-theoretic semantics

A **top-down** execution of a Datalog program

Each goal in a rule body is viewed as a call to a procedure defined by other rules

### Example

$$S(x_1, x_3) \leftarrow T(x_1, x_2), R(x_2, a, x_3)$$

$$T(x_1, x_4) \leftarrow R(x_1, a, x_2), R(x_2, b, x_3), T(x_3, x_4)$$

$$T(x_1, x_3) \leftarrow R(x_1, a, x_2), R(x_2, a, x_3)$$

$$I = \{R(1, a, 2), R(2, b, 3), R(3, a, 4), R(4, a, 5), R(5, a, 6)\}$$

Query:  $\leftarrow S(1,6)$ 

### Proof tree



(a) Datalog proof

### Horn clause

Equivalent formula of a Datalog rule  $R(\vec{u}) \leftarrow R_1(\vec{u_1}), \dots R_n(\vec{u_n})$ 

$$\forall x_1,\ldots,x_m: (R(\vec{u}) \vee \neg R_1(\vec{u_1}) \vee \ldots \vee \neg R_n(\vec{u_n}))$$

### Definition (Horn clause)

Disjunction of literals of which at most one is positive

**Definite** Horn clause has exactly one positive literal

#### General statement

A Datalog program is a set of definite Horn clauses

# Logic programming terminology

#### More about clauses

A ground clause has no occurrence of variables

$$q:\leftarrow S(1,6)$$

Query q is a goal equivalent to formula  $\neg S(1,6)$ 

Then, to prove S(1,6), it suffices to exhibit a **refutation** of q

# A way to deriving proofs: SLD resolution

### Warm-up

A program with only ground rules and ground facts

(1) 
$$S(1,6) \leftarrow T(1,5), R(5,a,6)$$

(2) 
$$T(1,5) \leftarrow R(1,a,2), R(2,b,3), T(3,5)$$

(3) 
$$T(3,5) \leftarrow R(3,a,4), R(4,a,5)$$

$$(4) R(1,a,2) \leftarrow$$

$$(5) R(2,b,3) \leftarrow$$

(6) 
$$R(3, a, 4) \leftarrow$$

(7) 
$$R(4, a, 5) \leftarrow$$

(8) 
$$R(5, a, 6) \leftarrow$$

# Technique: refutation

| Goal                                                                                                   | Used rule |
|--------------------------------------------------------------------------------------------------------|-----------|
| $\neg S(1,6)$                                                                                          |           |
| $\Rightarrow \neg T(1,5) \vee \neg R(5,a,6)$                                                           | (1)       |
| $\Rightarrow \left(\neg R(1, a, 2) \vee \neg R(2, b, 3) \vee \neg T(3, 5)\right) \vee \neg R(5, a, 6)$ | (2)       |
| $\Rightarrow \neg R(2, b, 3) \lor \neg T(3, 5) \lor \neg R(5, a, 6)$                                   | (4)       |
| $\Rightarrow \neg T(3,5) \lor \neg R(5,a,6)$                                                           | (5)       |
| $\Rightarrow \left(\neg R(3, a, 4) \lor \neg R(4, a, 5)\right) \lor \neg R(5, a, 6)$                   | (3)       |
| $\Rightarrow \neg R(4, a, 5) \lor \neg R(5, a, 6)$                                                     | (6)       |
| $\Rightarrow \neg R(5, a, 6)$                                                                          | (7)       |
| ⇒ false                                                                                                | (8)       |

### SLD resolution

We start with a program (inc. the db facts):  $P(I) = P_I(\{\})$ 

$$S(x_1, x_3) \leftarrow T(x_1, x_2), R(x_2, a, x_3)$$
  
 $T(x_1, x_4) \leftarrow R(x_1, a, x_2), R(x_2, b, x_3), T(x_3, x_4)$   
 $T(x_1, x_3) \leftarrow R(x_1, a, x_2), R(x_2, a, x_3)$   
 $R(1, a, 2) \leftarrow$   
 $R(2, b, 3) \leftarrow$   
 $R(3, a, 4) \leftarrow$   
 $R(4, a, 5) \leftarrow$   
 $R(5, a, 6) \leftarrow$ 

#### Resolution

Build all proof trees of idb's by means of goal unification

### Unification

#### Unifier for two atoms A, B

A **substitution**  $\theta$  such that  $\theta A = \theta B$ 

Example:  $P(x_1, x_2, a)$  and  $P(b, x_3, x_4)$  are unifiable b.t.w. substitution  $\alpha = \{x_1/b, x_2/c, x_3/c, x_4/a\}$ 

Definition (Most general unifier—mgu— $\theta$ )

For each unifier  $\alpha$ , there is a substitution  $\beta$  such that  $\alpha=\theta\beta$ 

Example cont'd: mgu is  $\theta = \{x_1/b, x_2/x_3, x_4/a\}$ 

#### Goal unification

#### One step of resolution

## Definition (Resolvent)

Given  $r: A \leftarrow B_1, \ldots B_n$  and  $\leftarrow g$  (no variables in common), if there exists an mgu  $\theta$  for A and g, then the **resolvent** of r and g is  $\leftarrow \theta B_1, \ldots, \theta B_n$ 

Example:

$$S(x_1, x_3) \leftarrow T(x_1, x_2), R(x_2, a, x_3)$$
  
  $\leftarrow S(1, 6)$ 

- mgu  $\theta = \{x_1/1, x_3/6\}$
- Resolvent is then  $\leftarrow T(1, x_2), R(x_2, a, 6)$

# Goal unification (cont'd)

#### Sketch of the algorithm main loop:

- 1. Goal:  $\leftarrow A_1, \ldots, A_i, \ldots, A_m$
- 2. Rule:  $B_1 \leftarrow B_2, \dots, B_n$
- 3.  $\theta$ : mgu of  $A_i$  and  $B_1$
- 4. New goal:  $\leftarrow \theta A_1, \dots, \theta A_{i-1}, \frac{\theta B_2, \dots, \theta B_n}{\theta B_n}, \theta A_{i+1}, \dots, \theta A_m$

#### Stop condition:

- failure (no rule), or
- empty goal, then result =  $\theta_1 \dots \theta_k$  init. goal

## SLD refutation



# SLD refutation (cont'd)

This also provides binding for the variables of the original goal

### Example

 $\leftarrow T(x,y)$  provides all the pairs (x,y) such that  $\neg T(x,y)$  is false, i.e., T(x,y) holds

#### Soundness and completeness

(a,b) is in the answer to  $\leftarrow T(x,y)$  iff (a,b) is in P(I)(T)

### SLD trees

- Top-down technique: success on □ (any branch)
- Nondeterminism:
  - 1. Which atom to select in the current goal?
  - 2. Which rule to use?
- Use a selection rule to select goal
- Prolog selects the leftmost atom of the goal
- Once an atom has been selected, try all possible rules

SLD stands for *Selection rule-driven Linear resolution for Definite clauses...* 

## Example of a SLD tree



## Bottom-up or top-down?

- Top-down pro's:
  - Take benefits from constants and constraints in unification
- Top-down con's:
  - Infinite loop for transitive closure
- Deductive DB mix bottom-up and top-down approaches in their evaluation techniques

# Exercises 1/2

#### 1. Definitions

Horn clause, Proof tree, Refutation, Unification, Mgu, Resolvent

#### 2. True or False?

- i) Whatever the semantics, result set remains the same.
- ii) SLD resolution is bottom-up.
- iii) SLD resolution assumes Edb's.
- iv) Goal unification is the basic building block for resolution.
- v) Mgu's are unique.

# Exercises 2/2

## 3. SLD refutation 🖾

Give an SLD refutation for:

- 1.  $\leftarrow S(x,6)$
- 2.  $\leftarrow rsg(a, d)$

#### 4. Problem

Let A, B be atoms; prove the three following properties:

- 1. If there exists a unifier for A, B, then A, B have an mgu.
- 2. If  $\theta$  and  $\theta'$  are mgu's for A, B then  $\theta \sim \theta'$ .
- 3. Let A, B be atoms with mgu  $\theta$ . Then for each atom C, if  $C = \theta_1 A = \theta_2 B$  for substitutions  $\theta_1$ ,  $\theta_2$ , then  $C = \theta_3 \circ \theta(A) = \theta_3 \circ \theta(B)$  for some substitution  $\theta_3$ .

Datalog 00000 00000000 Bottom-up 000000 000000000 0000000 Top-down
000000
000000000000

Datalog Occident

SQL 000000 000000000

### Outline

The logic of query languages

The power of recursion

Fixpoint semantics

Proof-theoretic semantics

Negation within recursion

SQL recursive querie

# Datalog with negation

Transitive closure

$$T(x,y) \leftarrow G(x,y)$$
  
 $T(x,y) \leftarrow G(x,z), T(z,y)$ 

• Complement CT of T (pairs of disconnected nodes in G)

$$CT(x,y) \leftarrow \neg T(x,y)$$

- For convenience, assume an active domain interpretation
- Datalog¬
  - Allow in bodies of rules, literals of the form  $\neg R_i(\vec{u_i})$
  - $\neg = (x, y)$  is denoted by  $x \neq y$

## Fixpoint semantics

- Notation : J|R is restriction of J to R
- Extend the immediate consequence operator
- For K over  $\mathcal{P}$ , a fact F is in  $T_{\mathcal{P}}(K)$  if
  - $F \in \mathbb{K}|\operatorname{edb}(P)$ , or
  - $F \leftarrow F_1, \dots, F_n$  an instantiation of a rule in P such that
    - 1. if  $F_i$  is a positive literal then  $F_i \in K$
    - 2. if  $F_i = \neg G_i$  then  $G_i \notin K$
- $T_P$  is no more inflationary:  $K \not\subseteq T_P(K)$

### **Problems**

T<sub>P</sub> may not have any fixpoint

$$P_1 = \{p \leftarrow \neg p\}$$

T<sub>P</sub> may have several least fixpoints containing I

$$P_2 = \{ p \leftarrow \neg q; q \leftarrow \neg p \}$$

- Two least fixpoints (containing  $\emptyset$ ):  $\{p\}$  and  $\{q\}$
- Bottom-up fixpoint evaluation gives  $T^{\omega}_{P_2}(\emptyset) = \{p,q\}$

# Problems (cont'd)

•  $T_P$  has a least fixpoint but sequence  $\{T_P^i(\emptyset)\}_{i>0}$  diverges

$$P_3 = \{ p \leftarrow \neg r; r \leftarrow \neg p; p \leftarrow \neg p, r \}$$

- $T_{P_3}$  has a least fixpoint  $\{p\}$
- $\{T_{P_3}^i(\emptyset)\}_{i>0}$  alternates between  $\emptyset$  and  $\{p,r\}$
- $T_P$  has a least fixpoint and  $\{T_P^i(\emptyset)\}_{i>0}$  converges to something else

$$P_4 = p \leftarrow p, q \leftarrow q, p \leftarrow \neg p, q \leftarrow \neg p$$

- $\{T_{P_A}^i(\emptyset)\}_{i>0}$  converges to  $\{p,q\}$
- Least fixpoint of  $T_{P_4}$  is  $\{p\}$

# Problems (cont'd)

Rules of the form  $P(x,y) \leftarrow P(x,y)$ 

- Change the semantics of program
- Force  $T_P$  to be inflationary so force convergence
- Correspond to tautologies  $p \lor \neg p$

#### Model-theoretic semantics: Problems

- Some programs have no model
- Some have no minimal model containing I
- When a program has several minimal models, choose between them

# Potpourri

#### Let P be a program without negation then

- 1. intersection of two models of P is a model of P
- 2. P has a minimal model
- 3.  $T_P$  is monotonic

On the other hand consider the program  $P = \{a \leftarrow \neg b\}$ :

- 1.  $\{a\}$  and  $\{b\}$  are models of P but  $\emptyset = \{a\} \cap \{b\}$  is not
- 2.  $\{a\}$  and  $\{b\}$  are two distinct minimal models of P
- 3.  $T_P(\emptyset) = \{a\}$ , and  $T_P(\{b\}) = \emptyset$ . Thus  $T_P$  is not monotonic  $(\emptyset \subseteq \{b\}, \text{ but } \{a\} \not\subseteq \emptyset)$

## Semi-positive datalog

- Only apply negation to edb relations
- Semi-positive program that is neither in Datalog nor in RC:

$$T(x, y) \leftarrow \neg G(x, y), Adom(x), Adom(y)$$
  
 $T(x, y) \leftarrow \neg G(x, z), T(z, y), Adom(x)$ 

#### Intuition

One could eliminate negation from semi-positive programs by adding, for each edb relation R, a new edb relation  $\bar{R}$  holding the complement of R (w.r.t. the active domain), and replacing  $\neg R(x)$  by  $\bar{R}(x)$ 

# Semi-positive datalog (cont'd)

#### Inheritance

Many nice properties of positive Datalog

- $\Sigma_P$  has a unique minimal model J satisfying J | edb(P) = I
- $T_P$  has a unique least fixpoint J satisfying J|edb(P) = I
- Both semantics coincide

#### Limitation

$$r_1: T(x, y) \leftarrow G(x, y)$$
  
 $r_2: T(x, y) \leftarrow G(x, z), T(z, y)$   
 $r_3: CT(x, y) \leftarrow \neg T(x, y), Adom(x), Adom(y)$ 

• CT is not a semi-positive program

### Extension

### Key idea

Parse P as a sequence of semi-positive subprograms  $(P^1, \ldots, P^n)$ 

- CT is  $(\{r_1, r_2\}, \{r_3\})$
- Closure under composition
- Stratified Datalog

## Stratified Datalog

## Definition (Stratification of a Datalog program P)

Sequence of Datalog<sup>¬</sup> programs  $(P^1, ..., P^n)$  and some mapping  $\sigma$  from idb(P) to [1..n] such that:

- (i)  $\{P^1, \dots, P^n\}$  is a partition of P
- (ii) For each R, all rules defining R are in  $P^{\sigma(R)}$
- (iii) If  $R(\vec{u}) \leftarrow \dots S(\vec{v}) \dots$  is a rule in P, and S is an idb relation, then  $\sigma(S) \leq \sigma(R)$
- (iv) If  $R(\vec{u}) \leftarrow \dots \neg S(\vec{v}) \dots$  is a rule in P, and S is an idb relation, then  $\sigma(S) < \sigma(R)$ 
  - Each  $P^i$  is called a **stratum**

# Stratification example

Stratification of CT

$$r_1: T(x,y) \leftarrow G(x,y)$$

$$r_2: T(x,y) \leftarrow G(x,z), T(z,y)$$

$$r_3: CT(x,y) \leftarrow \neg T(x,y), Adom(x), Adom(y)$$

- Constraints:
  - $r_1$  and  $r_2$  are both in  $P^{\sigma(T)}$  by (ii)
  - $\sigma(T) < \sigma(CT)$  by (iv)
- Strata:
  - First stratum:  $P^1 = \{r_1, r_2\}$  (defining T)
  - Second stratum:  $P^2 = \{r_3\}$  (defining CT using T)

## More Stratification examples

P<sub>7</sub> defined by

$$r_1: S(x) \leftarrow R_2(x), \neg R_1(x)$$
  
 $r_2: T(x) \leftarrow R_3(x), \neg R_1(x)$   
 $r_3: U(x) \leftarrow R_4(x), \neg T(x)$   
 $r_4: V(x) \leftarrow R_5(x), \neg S(x), \neg U(x)$ 

Then P<sub>7</sub> has 5 distinct stratifications, namely,

$$(\{r_1\}, \{r_2\}, \{r_3\}, \{r_4\})$$

$$(\{r_2\}, \{r_1\}, \{r_3\}, \{r_4\})$$

$$(\{r_2\}, \{r_3\}, \{r_1\}, \{r_4\})$$

$$(\{r_1, r_2\}, \{r_3\}, \{r_4\})$$

$$(\{r_2\}, \{r_1, r_3\}, \{r_4\})$$

•  $P_2 = \{p \leftarrow \neg q, q \leftarrow \neg p\}$  has no stratification

## Testing stratification

### Definition (Precedence graph $G_P$ of P revisited)

- Vertices are the idb's of P
- Edge (R, S) with label '+' if S is used positively in some rule defining R
- Edge (R, S) with label '-' if S occurs negatively in some rule defining R

P is **stratifiable** iff  $\mathcal{G}_P$  has no cycle containing a negative edge

## Testing stratification (cont'd)

#### Sketch of the proof

- Let P be a program whose precedence graph  $\mathcal{G}_P$  has no cycle with negative edges;
- $C_1, \ldots, C_n$  are the strongly connected components of  $\mathcal{G}_P$
- $C_i \prec C_j$  if there is an edge from  $C_i$  to some node of  $C_j$ , where  $\prec$  is acyclic
- Turn this partial order into a sort  $(C_{i_1}, \ldots, C_{i_n})$
- This provides a stratification

### Stratification: semantics

- Given P a program with stratification  $\sigma = (P^1, \dots, P^n)$  and I an instance
  - $J_0 = I$
  - $J_i = J_{i-1} \cup P^i(J_{i-1}| edb(P^i))$ where  $P^i(J)$  is the semi-positive semantics
  - $J_n$  is denoted  $\sigma(I)$ , the semantics of P under  $\sigma$

#### **Theorem**

All stratifications  $\sigma$  of a Datalog program P are equivalent Actually, we denote  $P^{\text{strat}}(I)$  the semantics of a stratified Datalog program P, whatever would be its stratification  $\sigma$ 

#### Results

Given P a stratified Datalog $\neg$  program, and I an instance

- 1.  $P^{\text{strat}}(I)$  is a **minimal model** of  $\Sigma_P$  whose restriction to edb(P) equals I
- 2.  $P^{\text{strat}}(I)$  is a **least fixpoint** of  $T_P$  whose restriction to edb(P) equals I
- 3.  $P^{\text{strat}}(\mathtt{I})$  is a "supported" model of P relative to  $\mathtt{I}$   $(P^{\text{strat}}(\mathtt{I}) \subseteq T_P(P^{\text{strat}}(\mathtt{I})) \cup \mathtt{I})$ 
  - Limited power w.r.t.—full—Datalog¬

## Exercises 1/2

#### 1. Definitions

 $T_P$ , Inflationary property, Semi-positive Datalog $^{\neg}$ , Stratified Datalog $^{\neg}$ , Stratum, Precedence graph

#### 2. True or False?

- i)  $T_P$  for Datalog remains inflationary.
- ii)  $T_P$  for Datalog may have several least fixpoints.
- iii)  $T_P$  for semi-positive Datalog remains inflationary.
- iv) Stratified Datalog is equivalent to Datalog.
- v) Semantics depends on the choice for a stratification.

# Exercises 2/2

## 3. Practical Datalog

- 1. Draw the precedence graph for  $P_2$ ,  $P_7$  and CT.
- 2. Compute CT on  $I = \{G(0,1), G(1,2), G(2,3)\}$  and follow the stratified semantics.

#### 4. Problem

- 1. Exhibit a Datalog program P and an instance K over P such that K is a model of  $\Sigma_P$  but not a fixpoint of  $T_P$ .
- 2. Show that, for Datalog $\neg$  programs P, a least fixpoint of  $T_P$  is not necessarily a minimal model of  $\Sigma_P$  and, conversely, a minimal model of  $\Sigma_P$  is not necessarily a least fixpoint of  $T_P$ .

Datalog 00000 00000000 Bottom-up 000000 0000000000 Top-down 000000 00000000000

SQL 000000 000000000

### Outline

The logic of query languages

The power of recursion

Fixpoint semantics

Proof-theoretic semantics

Negation within recursion

SQL recursive queries

## SQL-99 recursion

- Datalog recursion has inspired the addition of recursion to the SQL-99 standard
- Tricky, because SQL allows negation, grouping and aggregation, which interact with recursion in strange ways
- Form of SQL recursive queries:

```
WITH <stuff that looks like Datalog rules> <a SQL query about EDB, IDB> ;
```

"Datalog rule":

[RECURSIVE] <name>(<arguments>) AS <query>

# From Datalog to SQL

• Datalog program  $P_{\text{cous}}$ :

```
r_1: sib(x, y) \leftarrow par(x, z), par(y, z), x \neq y
```

$$r_2$$
:  $cousin(x, y) \leftarrow sib(x, y)$ 

$$r_3$$
: cousin $(x, y) \leftarrow par(x, x_1), par(y, y_1), cousin $(x_1, y_1)$$ 

Generalized cousins: people with common ancestors

# $P_{\text{cous}}$ on instance I of par



black lines are instance I, red lines are sib and green lines are cousin

### Example: SQL Recursion

- Find Sally's cousins
- par(child,parent) is  $edb(P_{cous})$

```
WITH sib(x,y) AS

SELECT p1.child, p2.child

FROM par p1, par p2

WHERE p1.parent = p2.parent AND

p1.child <> p2.child,
```

Translates r<sub>1</sub>

## Example: SQL Recursion (cont'd)

Recursive part:

• Translates  $r_2 \cup r_3$ 

## Example: SQL Recursion (cont'd)

With those definitions, we can add the query, which is about the virtual view cousin(x, y):

```
WITH ...
SELECT y FROM cousin WHERE x = 'Sally';
```

Datalog 00000 00000000

Top-down 000000 00000000000

## Legal SQL recursion

- It is possible to syntactically define SQL recursions that does not have a meaning
- The SQL standard restricts recursion so there is a meaning
- And that meaning can be obtained by semi-naive evaluation with restrictions

#### Key point

Legal SQL recursion is given by stratified programs only

Datalog 00000 00000000

Top-down 000000 00000000000

### Stratification of SQL recursive queries

- Vertices are
  - idb's declared in WITH clause
  - SQL subqueries in the body of the "rules" (any level of nesting)
- Edges (P, Q):
  - P is a rule head and Q is a relation (but subqueries) in the FROM list
  - 2. P is a rule head and Q is an immediate subquery of that rule
  - 3. *P* is a subquery, and *Q* is a relation in its FROM list or an immediate subquery (like 1 and 2)
- Negation symbol whenever P is not monotonic in Q

## Monotonicity

If relation P is a function of relation Q, we say P is monotonic in Q if inserting tuples into Q cannot cause any tuple to be deleted from P

#### Examples

Monotonic dependency:

$$P = Q \cup R$$
$$P = \sigma_{a=10}(Q)$$

Non-monotonic dependency:

SELECT AVG(grade) FROM Enroll WHERE course='cs143';

## Nice Shot from David Fetter, 2009

Mandelbrot-set written entirely in SQL2008-conformant SQL and powered by PostgreSQL 8.4

```
WITH RECURSIVE
x(i)
AS (
    VALUES(0)
UNTON ALL.
    SELECT i + 1 FROM v WHERE i < 101
),
Z(Ix, Iv, Cx, Cv, X, Y, I)
AS (
    SELECT Ix, Iv, X::float, Y::float, X::float, Y::float, O
    FR.OM
        (SELECT -2.2 + 0.031 * i, i FROM x) AS xgen(x,ix)
    CROSS JOIN
        (SELECT -1.5 + 0.031 * i, i FROM x) AS ygen(y,iy)
    UNION ALL
    SELECT Ix, Iy, Cx, Cy, X * X - Y * Y + Cx AS X,
           Y * X * 2 + Cv, I + 1
    FROM Z
    WHERE X * X + Y * Y < 16.0
    AND T < 27
),
```

# Nice Shot from David Fetter (cont'd)

```
Zt (Ix, Iy, I) AS (
    SELECT Ix, Iy, MAX(I) AS I
    FROM Z
    GROUP BY Iv, Ix
    ORDER BY Iv, Ix
SELECT array_to_string(
    array_agg(
        SUBSTRING(
              .,,,---++++%%%%@@@@#### ',
            GREATEST(I.1).
    ),"
FROM Zt
GROUP BY Iv
ORDER BY Iy;
```

## Nice shot from David Fetter (cont'd)



## Exercises 1/2

#### 1. Definitions

WITH statement, Legal SQL recursion, Monotonicity, SQL Precedence graph

#### 2. True or False?

- i) SQL "WITH" queries could be expressed by regular S-F-W queries.
- ii) Agregate functions (avg, sum, max, min) are not allowed in SQL recursive queries.
- iii) Semantics of a SQL recursive query is the one from the stratified Datalog<sup>¬</sup>.

# Exercises 2/2

### 3. Misc.

- 1. Draw the precedence graph for program cousin.
- 2. Build a non-legal SQL recursive query.

#### 4. Problem

Given a relation Vertice(from, to, cost) that represents a non-directed labelled graph, give the SQL query that computes the shortest path from node A.

# Readings

- Serge Abiteboul, Richard Hull, and Victor Vianu.
   Foundations of Databases. Addison-Wesley, 1995.
   Chapters 12, 13, 15.
- Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom.
   Database Systems: The Complete Book (2nd edition),
   Prentice Hall, 2008.

Chapters 5.3, 5.4.