Written Assignment 1 — Solutions

CS 440 September 17, 2025

Name: Yat Long Szeto BU ID: 90479281

Question 1: Shortest Path Composition

Proof

$$p^* = p_1 \cdot p_2$$
 split $a \rightarrow b$ path at c
 $\cot(p^*) = \cot(p_1) + \cot(p_2)$ path cost additivity

 $\exists \tilde{p}_1 : \cot(\tilde{p}_1) < \cot(p_1)$ assume p_1 not shortest
 $\cot(\tilde{p}_1 \cdot p_2) = \cot(\tilde{p}_1) + \cot(p_2)$ concatenate paths
 $\cot(p_1) + \cot(p_2)$ by assumption
 $\cot(p_1) + \cot(p_2)$ substitution

This contradicts the optimality of p^* . Therefore p_1 must be a shortest $a \to c$ path and there is no such \tilde{p}_1 exists. WLOG, replace the prefix p_1 by the suffix p_2 and c by b. The same reasoning shows that if p_2 were not shortest $c \to b$, then replacing it with a shorter path would also contradict the optimality of p^* . Hence p_2 is a shortest $c \to b$ path as well.

Question 2: Iterative Deepening Returns Shortest Paths

Proof

$$\ell(v) = \min\{\operatorname{length}(P) : P \text{ is an } s \rightarrow v \text{ path}\} \quad \text{define shortest distance}$$
 When IDDFS, $d < \ell(v) \Rightarrow v$ not found too shallow
$$d = \ell(v) \Rightarrow v \text{ reachable} \qquad \qquad \text{path length fits}$$
 IDDFS finishes depth $d = \ell(v)$ before $d+1$ order of search v first discovered = at depth $\ell(v)$ cannot appear earlier

Therefore, the first time v is returned by Iterative Deepening is exactly at depth $\ell(v)$, and the path has the minimum number of edges.

Question 3: Diameter Bound

Proof

Fix
$$u,v\in V,\ u\neq v.$$
 setup
$$W=(v_0,\dots,v_k),\ v_0=u,\ v_k=v \qquad \text{a }u\to v \text{ walk of minimum length}$$
 $\exists i< j:\ v_i=v_j \Rightarrow W'=(v_0,\dots,v_i,v_{j+1},\dots,v_k) \qquad \text{delete cycle}$ $\text{len}(W')=k-(j-i)< k=\text{len}(W) \qquad \text{strictly shorter}$ $\Rightarrow \neg\exists\, i< j:\ v_i=v_j \qquad \text{contradiction to minimality}$ $\Rightarrow W \text{ is simple} \qquad \text{no repetitions}$ Let $P=W,\ |P|=m \text{ (edges)} \Rightarrow P \text{ visits } m+1 \text{ distinct vertices}$ path has one more vertex
$$m+1\leq |V| \Rightarrow m\leq |V|-1 \qquad \text{counting bound}$$
 $\text{dist}(u,v)=|P|\leq |V|-1 \qquad \text{shortest path equals } |P|$ $\text{diam}(G)=\max_{u\neq v} \text{dist}(u,v)\leq |V|-1 \qquad \text{take max}$

Question 4 — Dijkstra's Algorithm and Shortest Paths

Theorem 1. Let G = (V, E, w) be a directed graph with strictly positive edge weights w(e) > 0. When Dijkstra's algorithm is run from a source s and it returns a path to any vertex v, the returned path has length $\delta(s, v)$, the true shortest-path distance from s to v.

Proof. Assume for contradiction that some vertex is *settled* with an incorrect label. Let v be the first such vertex extracted from the priority queue with $d[v] > \delta(s, v)$; thus, every previously settled u satisfies $d[u] = \delta(s, u)$.

Consider a shortest $s \to v$ path P, and let y be the first vertex on P that is not yet settled just before v is extracted; let x be the predecessor of y on P. By choice of y, x is settled. By the induction hypothesis for earlier settled vertices, $d[x] = \delta(s, x)$. When x was settled, the relaxation of edge (x, y) gave

$$d[y] < d[x] + w(x,y) = \delta(s,x) + w(x,y) = \delta(s,y),$$

and since y lies on a shortest $s \to v$ path, we have $\delta(s, y) \leq \delta(s, v)$. Hence

$$d[y] \leq \delta(s, v).$$

Because Dijkstra extracts the unsettled vertex with minimum key, it holds that

$$d[v] < d[y] < \delta(s, v),$$

contradicting the assumption $d[v] > \delta(s, v)$. Therefore no such v exists, and every vertex is settled with its true distance; in particular, the path returned to any v is a shortest path. \square