A reconciliation between finite-sample and asymptopia-based methods in conditional independence testing

Ziang Niu

Department of Statistics, Wharton School

Aug. 10, 2023

• This a joint work with

ArXiv link: https://arxiv.org/pdf/2211.14698.pdf

Outline

- **1** Hardness of CI Testing and regularity conditions \mathcal{R}_n
- **2** Two choices of \mathcal{R}_n : dCRT statistic and GCM statistic

 ${
m 3\ dCRT\ Test}$ and its equivalence to GCM Test

4 Numerical simulation

Outline

- **1** Hardness of CI Testing and regularity conditions \mathcal{R}_n
- **2** Two choices of \mathcal{R}_n : dCRT statistic and GCM statistic

 ${f 3}$ dCRT Test and its equivalence to GCM Test

4 Numerical simulation

Hardness of conditional independence testing

• Statistical task: Consider the joint distribution $\mathcal{L}_n(X, Y, Z)$, test the null hypothesis of conditional independence (CI):

$$H_0^{CI} = \boldsymbol{X} \perp \!\!\! \perp \boldsymbol{Y} | \boldsymbol{Z}.$$

Hardness of conditional independence testing

Statistical task: Consider the joint distribution \(\mathcal{L}_n(X, Y, Z)\), test the null hypothesis of conditional independence (CI):

$$H_0^{CI} = \mathbf{X} \perp \!\!\! \perp \mathbf{Y} | \mathbf{Z}.$$

Hardness of CI test: According to Shah and Peters [2020],

Hardness of conditional independence testing

• Statistical task: Consider the joint distribution $\mathcal{L}_n(X, Y, Z)$, test the null hypothesis of conditional independence (CI):

$$H_0^{CI} = \mathbf{X} \perp \!\!\! \perp \mathbf{Y} | \mathbf{Z}.$$

- Hardness of CI test: According to Shah and Peters [2020],
 - If Z is continuous, any test with Type-I error control over the entire CI null $H_0^{CI}: X \perp\!\!\!\perp Y | Z$ cannot have nontrivial power against any alternative. \Rightarrow a test with type-I error control must protect against too many sneaky ways Z can affect both X and Y.

CI testing requires assumptions

Given a set of regularity conditions R_n on L_n, one can only hope to control Type-I error over the smaller null hypothesis: H₀: H₀^{CI} ∩ R_n.

CI testing requires assumptions

• Given a set of regularity conditions \mathcal{R}_n on \mathcal{L}_n , one can only hope to control Type-I error over the smaller null hypothesis: $H_0: H_0^{CI} \cap \mathcal{R}_n$.

What kind of regularity conditions \mathcal{R}_n should we impose?

Outline

- **1** Hardness of CI Testing and regularity conditions \mathcal{R}_n
- **2** Two choices of \mathcal{R}_n : dCRT statistic and GCM statistic

3 dCRT Test and its equivalence to GCM Test

4 Numerical simulation

• Model-X (MX) assumption Candes et al. [2018]: Assume we know the conditional distribution $\mathcal{L}_n(\mathbf{X}|\mathbf{Z})$ exactly, i.e.

$$\mathscr{R}_n = \big\{ \mathscr{L}_n : \mathscr{L}_n(\boldsymbol{X}|\boldsymbol{Z}) = \mathscr{L}_n^*(\boldsymbol{X}|\boldsymbol{Z}) \big\}.$$

• Model-X (MX) assumption Candes et al. [2018]: Assume we know the conditional distribution $\mathcal{L}_n(X|Z)$ exactly, i.e.

$$\mathscr{R}_n = \{\mathscr{L}_n : \mathscr{L}_n(\mathbf{X}|\mathbf{Z}) = \mathscr{L}_n^*(\mathbf{X}|\mathbf{Z})\}.$$

where $\mathcal{L}_n^*(\boldsymbol{X}|\boldsymbol{Z})$ is the given conditional distribution.

• MX assumption is reasonable if $\mathcal{L}_n(\boldsymbol{X}|\boldsymbol{Z})$ is controlled by experimenter. Powerful CI test are available under MX assumption (the conditional randomization test (CRT, Candes et al. [2018])).

• Model-X (MX) assumption Candes et al. [2018]: Assume we know the conditional distribution $\mathcal{L}_n(X|Z)$ exactly, i.e.

$$\mathcal{R}_n = \{\mathcal{L}_n : \mathcal{L}_n(\mathbf{X}|\mathbf{Z}) = \mathcal{L}_n^*(\mathbf{X}|\mathbf{Z})\}.$$

- MX assumption is reasonable if $\mathcal{L}_n(\boldsymbol{X}|\boldsymbol{Z})$ is controlled by experimenter. Powerful CI test are available under MX assumption (the conditional randomization test (CRT, Candes et al. [2018])).
- A computationally more efficient way: dCRT Liu et al. [2022]:

• Model-X (MX) assumption Candes et al. [2018]: Assume we know the conditional distribution $\mathcal{L}_n(X|Z)$ exactly, i.e.

$$\mathcal{R}_n = \left\{ \mathcal{L}_n : \mathcal{L}_n(\mathbf{X}|\mathbf{Z}) = \mathcal{L}_n^*(\mathbf{X}|\mathbf{Z}) \right\}.$$

- MX assumption is reasonable if $\mathcal{L}_n(\boldsymbol{X}|\boldsymbol{Z})$ is controlled by experimenter. Powerful CI test are available under MX assumption (the conditional randomization test (CRT, Candes et al. [2018])).
- A computationally more efficient way: dCRT Liu et al. [2022]:
 - Fit an approximation $\hat{\mu}_{n,y}(Z)$ of $\mu_{n,y}(Z) = \mathbb{E}_{\mathscr{L}_n}[Y|Z]$ via machine learning;

• Model-X (MX) assumption Candes et al. [2018]: Assume we know the conditional distribution $\mathcal{L}_n(X|Z)$ exactly, i.e.

$$\mathcal{R}_n = \left\{ \mathcal{L}_n : \mathcal{L}_n(\mathbf{X}|\mathbf{Z}) = \mathcal{L}_n^*(\mathbf{X}|\mathbf{Z}) \right\}.$$

- MX assumption is reasonable if $\mathcal{L}_n(\boldsymbol{X}|\boldsymbol{Z})$ is controlled by experimenter. Powerful CI test are available under MX assumption (the conditional randomization test (CRT, Candes et al. [2018])).
- A computationally more efficient way: dCRT Liu et al. [2022]:
 - Fit an approximation $\hat{\mu}_{n,y}(Z)$ of $\mu_{n,y}(Z) = \mathbb{E}_{\mathscr{L}_n}[Y|Z]$ via machine learning;
 - Compute $T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \mu_{n,x}(Z_i))(Y_i \hat{\mu}_{n,y}(Z_i));$

• Model-X (MX) assumption Candes et al. [2018]: Assume we know the conditional distribution $\mathcal{L}_n(X|Z)$ exactly, i.e.

$$\mathcal{R}_n = \{\mathcal{L}_n : \mathcal{L}_n(\mathbf{X}|\mathbf{Z}) = \mathcal{L}_n^*(\mathbf{X}|\mathbf{Z})\}.$$

- MX assumption is reasonable if $\mathcal{L}_n(\boldsymbol{X}|\boldsymbol{Z})$ is controlled by experimenter. Powerful CI test are available under MX assumption (the conditional randomization test (CRT, Candes et al. [2018])).
- A computationally more efficient way: dCRT Liu et al. [2022]:
 - Fit an approximation $\hat{\mu}_{n,y}(Z)$ of $\mu_{n,y}(Z) = \mathbb{E}_{\mathscr{L}_n}[Y|Z]$ via machine learning;
 - Compute $T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \mu_{n,x}(Z_i)) (Y_i \hat{\mu}_{n,y}(Z_i));$
 - For b = 1, ..., B

• Model-X (MX) assumption Candes et al. [2018]: Assume we know the conditional distribution $\mathcal{L}_n(X|Z)$ exactly, i.e.

$$\mathcal{R}_n = \left\{ \mathcal{L}_n : \mathcal{L}_n(\mathbf{X}|\mathbf{Z}) = \mathcal{L}_n^*(\mathbf{X}|\mathbf{Z}) \right\}.$$

where $\mathcal{L}_n^*(\mathbf{X}|\mathbf{Z})$ is the given conditional distribution.

- MX assumption is reasonable if $\mathcal{L}_n(\boldsymbol{X}|\boldsymbol{Z})$ is controlled by experimenter. Powerful CI test are available under MX assumption (the conditional randomization test (CRT, Candes et al. [2018])).
- A computationally more efficient way: dCRT Liu et al. [2022]:
 - Fit an approximation $\hat{\mu}_{n,y}(Z)$ of $\mu_{n,y}(Z) = \mathbb{E}_{\mathscr{L}_n}[Y|Z]$ via machine learning;
 - Compute $T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \mu_{n,x}(Z_i)) (Y_i \hat{\mu}_{n,y}(Z_i));$
 - For b = 1, ..., B
 - Draw $\tilde{X}_i^{(b)} \sim \mathscr{L}_n^*(X_i|\mathbf{Z}=Z_i);$

• Model-X (MX) assumption Candes et al. [2018]: Assume we know the conditional distribution $\mathcal{L}_n(X|Z)$ exactly, i.e.

$$\mathcal{R}_n = \left\{ \mathcal{L}_n : \mathcal{L}_n(\mathbf{X}|\mathbf{Z}) = \mathcal{L}_n^*(\mathbf{X}|\mathbf{Z}) \right\}.$$

where $\mathcal{L}_n^*(\mathbf{X}|\mathbf{Z})$ is the given conditional distribution.

- MX assumption is reasonable if $\mathcal{L}_n(\boldsymbol{X}|\boldsymbol{Z})$ is controlled by experimenter. Powerful CI test are available under MX assumption (the conditional randomization test (CRT, Candes et al. [2018])).
- A computationally more efficient way: dCRT Liu et al. [2022]:
 - Fit an approximation $\hat{\mu}_{n,y}(Z)$ of $\mu_{n,y}(Z) = \mathbb{E}_{\mathscr{L}_n}[Y|Z]$ via machine learning;
 - Compute $T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \mu_{n,x}(Z_i))(Y_i \hat{\mu}_{n,y}(Z_i));$
 - For b = 1, ..., B
 - Draw $\tilde{X}_i^{(b)} \sim \mathscr{L}_n^*(X_i|\mathbf{Z}=Z_i);$
 - Compute test statistic

$$T_n(\tilde{X}^{(b)}, X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (\tilde{X}_i^{(b)} - \mu_{n,x}(Z_i))(Y_i - \hat{\mu}_{n,y}(Z_i));$$

• Model-X (MX) assumption Candes et al. [2018]: Assume we know the conditional distribution $\mathcal{L}_n(X|Z)$ exactly, i.e.

$$\mathcal{R}_n = \{\mathcal{L}_n : \mathcal{L}_n(\mathbf{X}|\mathbf{Z}) = \mathcal{L}_n^*(\mathbf{X}|\mathbf{Z})\}.$$

where $\mathcal{L}_n^*(\mathbf{X}|\mathbf{Z})$ is the given conditional distribution.

- MX assumption is reasonable if $\mathcal{L}_n(\boldsymbol{X}|\boldsymbol{Z})$ is controlled by experimenter. Powerful CI test are available under MX assumption (the conditional randomization test (CRT, Candes et al. [2018])).
- A computationally more efficient way: dCRT Liu et al. [2022]:
 - Fit an approximation $\hat{\mu}_{n,y}(Z)$ of $\mu_{n,y}(Z) = \mathbb{E}_{\mathscr{L}_n}[Y|Z]$ via machine learning;
 - Compute $T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \mu_{n,x}(Z_i))(Y_i \hat{\mu}_{n,y}(Z_i));$
 - For b = 1, ..., B
 - Draw $\tilde{X}_i^{(b)} \sim \mathscr{L}_n^*(X_i|\mathbf{Z}=Z_i);$
 - Compute test statistic

$$T_n(\tilde{X}^{(b)}, X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (\tilde{X}_i^{(b)} - \mu_{n,x}(Z_i)) (Y_i - \hat{\mu}_{n,y}(Z_i));$$

Compute

$$C_{n,\alpha}(X,Y,Z) = \mathbb{Q}_{1-\alpha}[\{T_n(X,Y,Z), T_n(\tilde{X}^{(1)}, X, Y, Z), \dots, T_n(\tilde{X}^B, X, Y, Z)\}].$$

《四》《圖》《意》《意》

• Model-X (MX) assumption Candes et al. [2018]: Assume we know the conditional distribution $\mathcal{L}_n(X|Z)$ exactly, i.e.

$$\mathcal{R}_n = \left\{ \mathcal{L}_n : \mathcal{L}_n(\mathbf{X}|\mathbf{Z}) = \mathcal{L}_n^*(\mathbf{X}|\mathbf{Z}) \right\}.$$

where $\mathcal{L}_n^*(X|Z)$ is the given conditional distribution.

- MX assumption is reasonable if $\mathcal{L}_n(\mathbf{X}|\mathbf{Z})$ is controlled by experimenter. Powerful CI test are available under MX assumption (the conditional randomization test (CRT, Candes et al. [2018])).
- A computationally more efficient way: dCRT Liu et al. [2022]:
 - Fit an approximation $\hat{\mu}_{n,y}(Z)$ of $\mu_{n,y}(Z) = \mathbb{E}_{\mathscr{L}_n}[Y|Z]$ via machine learning;
 - Compute $T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \mu_{n,x}(Z_i))(Y_i \hat{\mu}_{n,y}(Z_i));$
 - For $b = 1, \ldots, B$
 - Draw $\tilde{X}_i^{(b)} \sim \mathscr{L}_n^*(X_i|\mathbf{Z}=Z_i);$
 - Compute test statistic

$$T_n(\tilde{X}^{(b)}, X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (\tilde{X}_i^{(b)} - \mu_{n,x}(Z_i)) (Y_i - \hat{\mu}_{n,y}(Z_i));$$

Compute

 $C_{n,\alpha}(X,Y,Z) = \mathbb{Q}_{1-\alpha}[\{T_n(X,Y,Z),T_n(\tilde{X}^{(1)},X,Y,Z),\ldots,T_n(\tilde{X}^B,X,Y,Z)\}].$

• Reject if $T_n(X, Y, Z) > C_{n,\alpha}(X, Y, Z)$.

The GCM test Shah and Peters [2020]:

- The GCM test Shah and Peters [2020]:
 - Fit an approximation $\hat{\mu}_{n,x}(\mathbf{Z})$ of $\mu_{n,x}(\mathbf{Z}) = \mathbb{E}_{\mathscr{L}_n}[\mathbf{X}|\mathbf{Z}]$ via machine learning;

- The GCM test Shah and Peters [2020]:
 - Fit an approximation $\hat{\mu}_{n,x}(\mathbf{Z})$ of $\mu_{n,x}(\mathbf{Z}) = \mathbb{E}_{\mathscr{L}_n}[\mathbf{X}|\mathbf{Z}]$ via machine learning;
 - Fit an approximation $\hat{\mu}_{n,y}(\mathbf{Z})$ of $\mu_{n,y}(\mathbf{Z}) = \mathbb{E}_{\mathscr{L}_n}[\mathbf{Y}|\mathbf{Z}]$ via machine learning;

- The GCM test Shah and Peters [2020]:
 - Fit an approximation $\hat{\mu}_{n,x}(Z)$ of $\mu_{n,x}(Z) = \mathbb{E}_{\mathscr{L}_n}[X|Z]$ via machine learning;
 - Fit an approximation $\hat{\mu}_{n,y}(Z)$ of $\mu_{n,y}(Z) = \mathbb{E}_{\mathscr{L}_n}[Y|Z]$ via machine learning;
 - Compute $T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \hat{\mu}_{n,x}(Z_i)) (Y_i \hat{\mu}_{n,y}(Z_i));$

- The GCM test Shah and Peters [2020]:
 - Fit an approximation $\hat{\mu}_{n,x}(\mathbf{Z})$ of $\mu_{n,x}(\mathbf{Z}) = \mathbb{E}_{\mathscr{L}_n}[\mathbf{X}|\mathbf{Z}]$ via machine learning;
 - Fit an approximation $\hat{\mu}_{n,y}(Z)$ of $\mu_{n,y}(Z) = \mathbb{E}_{\mathscr{L}_n}[Y|Z]$ via machine learning;
 - Compute $T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \hat{\mu}_{n,x}(Z_i)) (Y_i \hat{\mu}_{n,y}(Z_i));$
 - Compute $(S_n^{GCM})^2(X, Y, Z) = \text{Var}[(X_i \hat{\mu}_{n,x}(Z_i))(Y_i \hat{\mu}_{n,y}(Z_i))]$ (sample variance);

- The GCM test Shah and Peters [2020]:
 - Fit an approximation $\hat{\mu}_{n,x}(\mathbf{Z})$ of $\mu_{n,x}(\mathbf{Z}) = \mathbb{E}_{\mathscr{L}_n}[\mathbf{X}|\mathbf{Z}]$ via machine learning;
 - Fit an approximation $\hat{\mu}_{n,y}(Z)$ of $\mu_{n,y}(Z) = \mathbb{E}_{\mathscr{L}_n}[Y|Z]$ via machine learning;
 - Compute $T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \hat{\mu}_{n,x}(Z_i)) (Y_i \hat{\mu}_{n,y}(Z_i));$
 - Compute $(S_n^{GCM})^2(X, Y, Z) = \text{Var}[(X_i \hat{\mu}_{n,x}(Z_i))(Y_i \hat{\mu}_{n,y}(Z_i))]$ (sample variance);
 - Reject if $T_n(X, Y, Z)/S_n^{GCM}(X, Y, Z) > z_{1-\alpha}$.

- The GCM test Shah and Peters [2020]:
 - Fit an approximation $\hat{\mu}_{n,x}(Z)$ of $\mu_{n,x}(Z) = \mathbb{E}_{\mathscr{L}_n}[X|Z]$ via machine learning;
 - Fit an approximation $\hat{\mu}_{n,y}(Z)$ of $\mu_{n,y}(Z) = \mathbb{E}_{\mathscr{L}_n}[Y|Z]$ via machine learning;
 - Compute $T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \hat{\mu}_{n,x}(Z_i)) (Y_i \hat{\mu}_{n,y}(Z_i));$
 - Compute $(S_n^{GCM})^2(X, Y, Z) = \text{Var}[(X_i \hat{\mu}_{n,x}(Z_i))(Y_i \hat{\mu}_{n,y}(Z_i))]$ (sample variance);
 - Reject if $T_n(X, Y, Z)/S_n^{GCM}(X, Y, Z) > z_{1-\alpha}$.
- This is an asymptopia-based method as opposed to resampling nature of dCRT. It
 enjoys the double robustness.

Theorem 1 (Shah and Peters [2020]; informal)

For $\mathscr{L}_n \in H_0 = H_0^{CI} \cap \mathscr{R}_n$, where \mathscr{R}_n is defined as a set of laws satisfying

$$\left\{\mathrm{RMSE}(\hat{\mu}_{n,x}) = o_P(1), \mathrm{RMSE}(\hat{\mu}_{n,y}) = o_P(1), \mathrm{RMSE}(\hat{\mu}_{n,x}) \cdot \mathrm{RMSE}(\hat{\mu}_{n,y}) = o_P(n^{-1/2})\right\},$$

then we have

 $\limsup_{n\to\infty} \sup_{\mathscr{L}_n\in H_0} \mathbb{P}_{\mathscr{L}_n}[GCM \ rejects \ null \] \leq \alpha.$

Outline

- **1** Hardness of CI Testing and regularity conditions \mathcal{R}_n
- **2** Two choices of \mathcal{R}_n : dCRT statistic and GCM statistic
- ${
 m 3\ dCRT\ Test}$ and its equivalence to GCM Test
- 4 Numerical simulation

Recall dCRT statistic

- MX framework: dCRT Liu et al. [2022]:
 - Fit an approximation $\hat{\mu}_{n,y}(Z)$ of $\mu_{n,y}(Z) = \mathbb{E}_{\mathscr{L}_n}[Y|Z]$ via machine learning;
 - Compute $T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \mu_{n,x}(Z_i)) (Y_i \hat{\mu}_{n,y}(Z_i));$
 - For b = 1, ..., B
 - Draw $\tilde{X}_i^{(b)} \sim \mathcal{L}_n^*(X_i|\mathbf{Z}=Z_i);$
 - Compute test statistic

$$T_n(\tilde{X}^{(b)}, X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (\tilde{X}_i^{(b)} - \mu_{n,x}(Z_i))(Y_i - \hat{\mu}_{n,y}(Z_i));$$

Compute

$$C_{n,\alpha}(X,Y,Z) = \mathbb{Q}_{1-\alpha}[\{T_n(X,Y,Z),T_n(\tilde{X}^{(1)},X,Y,Z),\ldots,T_n(\tilde{X}^B,X,Y,Z)\}].$$

• Reject if $T_n(X, Y, Z) > C_{n,\alpha}(X, Y, Z)$.

Recall dCRT statistic

- MX framework: dCRT Liu et al. [2022]:
 - Fit an approximation $\hat{\mu}_{n,y}(Z)$ of $\mu_{n,y}(Z) = \mathbb{E}_{\mathscr{L}_n}[Y|Z]$ via machine learning;
 - Compute $T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \mu_{n,x}(Z_i)) (Y_i \hat{\mu}_{n,y}(Z_i));$
 - For b = 1, ..., B
 - Draw $\tilde{X}_i^{(b)} \sim \mathcal{L}_n^*(X_i|\mathbf{Z}=Z_i);$
 - Compute test statistic

$$T_n(\tilde{X}^{(b)}, X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (\tilde{X}_i^{(b)} - \mu_{n,x}(Z_i))(Y_i - \hat{\mu}_{n,y}(Z_i));$$

Compute

$$C_{n,\alpha}(X,Y,Z) = \mathbb{Q}_{1-\alpha}[\{T_n(X,Y,Z),T_n(\tilde{X}^{(1)},X,Y,Z),\ldots,T_n(\tilde{X}^B,X,Y,Z)\}].$$

- Reject if $T_n(X, Y, Z) > C_{n,\alpha}(X, Y, Z)$.
- Challenge: $\mathscr{L}_n^*(X|Z)$ is usually an approximation in practice!

Recall dCRT statistic

- MX framework: dCRT Liu et al. [2022]:
 - Fit an approximation $\hat{\mu}_{n,y}(Z)$ of $\mu_{n,y}(Z) = \mathbb{E}_{\mathscr{L}_n}[Y|Z]$ via machine learning;
 - Compute $T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \mu_{n,x}(Z_i)) (Y_i \hat{\mu}_{n,y}(Z_i));$
 - For b = 1, ..., B
 - Draw $\tilde{X}_i^{(b)} \sim \mathcal{L}_n^*(X_i|\mathbf{Z}=Z_i);$
 - Compute test statistic

$$T_n(\tilde{X}^{(b)}, X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (\tilde{X}_i^{(b)} - \mu_{n,x}(Z_i)) (Y_i - \hat{\mu}_{n,y}(Z_i));$$

Compute

$$C_{n,\alpha}(X,Y,Z) = \mathbb{Q}_{1-\alpha}[\{T_n(X,Y,Z),T_n(\tilde{X}^{(1)},X,Y,Z),\ldots,T_n(\tilde{X}^B,X,Y,Z)\}].$$

- Reject if $T_n(X, Y, Z) > C_{n,\alpha}(X, Y, Z)$.
- Challenge: $\mathcal{L}_n^*(X|Z)$ is usually an approximation in practice!
- Our focus: Robustness and power of MX (dCRT) methods when $\mathcal{L}_n^*(X|Z)$ learned in sample. In other words, replace $\mu_{n,x}(\cdot)$ with the estimate $\hat{\mu}_{n,x}(\cdot)$ and draw resamples from the learned distribution $\hat{\mathcal{L}}_n^*(X_i|Z=Z_i)$.

$\widehat{\mathrm{dCRT}}$ statistic

Procedure:

- Fit an approximation $\hat{\mu}_{n,y}(\mathbf{Z})$ of $\mu_{n,y}(\mathbf{Z}) = \mathbb{E}_{\mathcal{L}_n}[\mathbf{Y}|\mathbf{Z}]$ via machine learning;
- Fit an approximation $\hat{\mu}_{n,x}(\mathbf{Z})$ of $\mu_{n,x}(\mathbf{Z}) = \mathbb{E}_{\mathscr{L}_n}[\mathbf{X}|\mathbf{Z}]$ via machine learning;
- Compute $T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \mu_{n,x}(Z_i)) (Y_i \hat{\mu}_{n,y}(Z_i));$
- For b = 1, ..., B
 - Draw $\tilde{X}_i^{(b)} \sim \hat{\mathcal{L}}_n^*(X_i|\mathbf{Z}=Z_i);$
 - Compute test statistic

$$T_n(\tilde{X}^{(b)}, X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (\tilde{X}_i^{(b)} - \hat{\mu}_{n,x}(Z_i))(Y_i - \hat{\mu}_{n,y}(Z_i));$$

Compute

$$C_{n,\alpha}(X,Y,Z) = \mathbb{Q}_{1-\alpha}[\{T_n(X,Y,Z),T_n(\tilde{X}^{(1)},X,Y,Z),\ldots,T_n(\tilde{X}^B,X,Y,Z)\}].$$

• Reject if $T_n(X, Y, Z) > C_{n,\alpha}(X, Y, Z)$.

Comparison between $\widehat{\mathrm{dCRT}}$ to GCM test

Recall the test statistic and resampling test statistic

$$T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \hat{\mu}_{n,x}) (Y_i - \hat{\mu}_{n,y}(Z_i))$$
 $T_n(\tilde{X}, X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (\tilde{X}_i - \hat{\mu}_{n,x}(Z_i)) (Y_i - \hat{\mu}_{n,y}(Z_i)).$

Comparison between $\widehat{\mathrm{dCRT}}$ to GCM test

· Recall the test statistic and resampling test statistic

$$T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \hat{\mu}_{n,x}) (Y_i - \hat{\mu}_{n,y}(Z_i))$$
 $T_n(\tilde{X}, X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (\tilde{X}_i - \hat{\mu}_{n,x}(Z_i)) (Y_i - \hat{\mu}_{n,y}(Z_i)).$

• dCRT rejects if $T_n(X, Y, Z) > \mathbb{Q}_{1-\alpha}[T_n(\tilde{X}, X, Y, Z)|X, Y, Z]$ or equivalently if

$$\begin{split} &\frac{T_n(X,Y,Z)}{S_n^{\widehat{\mathrm{dCRT}}}(X,Y,Z)} > \mathbb{Q}_{1-\alpha} \left[\frac{T_n(\tilde{X},X,Y,Z)}{S_n^{\widehat{\mathrm{dCRT}}}(X,Y,Z)} | X,Y,Z \right], \\ &S_n^{\widehat{\mathrm{dCRT}}}(X,Y,Z) = \frac{1}{n} \sum_{i=1}^n \mathrm{Var}_{\mathscr{L}_n} [X_i | Z_i] (Y_i - \hat{\mu}_{n,y}(Z_i))^2. \end{split}$$

Comparison between $\widehat{\mathrm{dCRT}}$ to GCM test

· Recall the test statistic and resampling test statistic

$$T_n(X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \hat{\mu}_{n,x}) (Y_i - \hat{\mu}_{n,y}(Z_i))$$
 $T_n(\tilde{X}, X, Y, Z) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (\tilde{X}_i - \hat{\mu}_{n,x}(Z_i)) (Y_i - \hat{\mu}_{n,y}(Z_i)).$

• dCRT rejects if $T_n(X, Y, Z) > \mathbb{Q}_{1-\alpha}[T_n(\tilde{X}, X, Y, Z)|X, Y, Z]$ or equivalently if

$$\begin{split} &\frac{T_n(X,Y,Z)}{S_n^{\widehat{\mathrm{dCRT}}}(X,Y,Z)} > \mathbb{Q}_{1-\alpha}\left[\frac{T_n(\tilde{X},X,Y,Z)}{S_n^{\widehat{\mathrm{dCRT}}}(X,Y,Z)}|X,Y,Z\right],\\ &\widehat{S_n^{\widehat{\mathrm{dCRT}}}}(X,Y,Z) = \frac{1}{n}\sum_{i=1}^n \mathrm{Var}_{\mathscr{L}_n}[X_i|Z_i](Y_i - \hat{\mu}_{n,y}(Z_i))^2. \end{split}$$

• GCM rejects if $T_n(X, Y, Z)/S_n^{GCM}(X, Y, Z) > z_{1-\alpha}$.

Comparison between $\widehat{\mathrm{dCRT}}$ to GCM test

• Recall the test statistic and resampling test statistic

$$egin{aligned} T_n(X,Y,Z) &= rac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \hat{\mu}_{n,x}) (Y_i - \hat{\mu}_{n,y}(Z_i)) \ T_n(ilde{X},X,Y,Z) &= rac{1}{\sqrt{n}} \sum_{i=1}^n (ilde{X}_i - \hat{\mu}_{n,x}(Z_i)) (Y_i - \hat{\mu}_{n,y}(Z_i)). \end{aligned}$$

• $\widehat{\mathrm{dCRT}}$ rejects if $T_n(X,Y,Z) > \mathbb{Q}_{1-\alpha}[T_n(\tilde{X},X,Y,Z)|X,Y,Z]$ or equivalently if

$$\begin{split} &\frac{T_n(X,Y,Z)}{S_n^{\widehat{\mathrm{dCRT}}}(X,Y,Z)} > \mathbb{Q}_{1-\alpha} \left[\frac{T_n(\tilde{X},X,Y,Z)}{S_n^{\widehat{\mathrm{dCRT}}}(X,Y,Z)} | X,Y,Z \right], \\ &S_n^{\widehat{\mathrm{dCRT}}}(X,Y,Z) = \frac{1}{n} \sum_{i=1}^n \mathrm{Var}_{\hat{\mathcal{L}}_n}[X_i | Z_i] (Y_i - \hat{\mu}_{n,y}(Z_i))^2. \end{split}$$

- GCM rejects if $T_n(X, Y, Z)/S_n^{GCM}(X, Y, Z) > z_{1-\alpha}$.
- Two tests are asymptotic equivalent if

◆□▶ ◆□▶ ◆ ≧ ▶ ◆ ≧ ・ 夕 Q (*)

Comparison between $\widehat{\mathrm{dCRT}}$ to GCM test

• Recall the test statistic and resampling test statistic

$$egin{aligned} T_n(X,Y,Z) &= rac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \hat{\mu}_{n,x}) (Y_i - \hat{\mu}_{n,y}(Z_i)) \ T_n(ilde{X},X,Y,Z) &= rac{1}{\sqrt{n}} \sum_{i=1}^n (ilde{X}_i - \hat{\mu}_{n,x}(Z_i)) (Y_i - \hat{\mu}_{n,y}(Z_i)). \end{aligned}$$

• $\widehat{\mathrm{dCRT}}$ rejects if $T_n(X,Y,Z) > \mathbb{Q}_{1-\alpha}[T_n(\tilde{X},X,Y,Z)|X,Y,Z]$ or equivalently if

$$\begin{split} &\frac{T_n(X,Y,Z)}{S_n^{\widehat{\mathrm{dCRT}}}(X,Y,Z)} > \mathbb{Q}_{1-\alpha} \left[\frac{T_n(\tilde{X},X,Y,Z)}{S_n^{\widehat{\mathrm{dCRT}}}(X,Y,Z)} | X,Y,Z \right], \\ &\widehat{S_n^{\widehat{\mathrm{dCRT}}}}(X,Y,Z) = \frac{1}{n} \sum_{i=1}^n \mathrm{Var}_{\hat{\mathscr{L}}_n}[X_i | Z_i] (Y_i - \hat{\mu}_{n,y}(Z_i))^2. \end{split}$$

- GCM rejects if $T_n(X, Y, Z)/S_n^{GCM}(X, Y, Z) > z_{1-\alpha}$.
- Two tests are asymptotic equivalent if
 - **1** Variance estimates S_n^{GCM} , $S_n^{\overline{\mathrm{dCRT}}}$ are asymptotically equivalent;

Comparison between dCRT to GCM test

Recall the test statistic and resampling test statistic

$$egin{aligned} T_n(X,Y,Z) &= rac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \hat{\mu}_{n,x}) (Y_i - \hat{\mu}_{n,y}(Z_i)) \ T_n(ilde{X},X,Y,Z) &= rac{1}{\sqrt{n}} \sum_{i=1}^n (ilde{X}_i - \hat{\mu}_{n,x}(Z_i)) (Y_i - \hat{\mu}_{n,y}(Z_i)). \end{aligned}$$

• dCRT rejects if $T_n(X, Y, Z) > \mathbb{Q}_{1-\alpha}[T_n(\tilde{X}, X, Y, Z)|X, Y, Z]$ or equivalently if

$$\begin{split} &\frac{T_n(X,Y,Z)}{S_n^{\widehat{\mathrm{dCRT}}}(X,Y,Z)} > \mathbb{Q}_{1-\alpha} \left[\frac{T_n(\tilde{X},X,Y,Z)}{S_n^{\widehat{\mathrm{dCRT}}}(X,Y,Z)} | X,Y,Z \right], \\ &S_n^{\widehat{\mathrm{dCRT}}}(X,Y,Z) = \frac{1}{n} \sum_{i=1}^n \mathrm{Var}_{\mathscr{L}_n}[X_i|Z_i] (Y_i - \hat{\mu}_{n,y}(Z_i))^2. \end{split}$$

- GCM rejects if $T_n(X, Y, Z)/S_n^{GCM}(X, Y, Z) > z_{1-\alpha}$.
- Two tests are asymptotic equivalent if
 - 1 Variance estimates S_n^{GCM} , $S_n^{\overline{dCRT}}$ are asymptotically equivalent;
 - **2** The normalized dCRT resmapling distribution convergence to N(0,1).

Convergence of $\widehat{\mathrm{dCRT}}$ resampling distribution to N(0,1)

• For small $n, \overline{\text{dCRT}}$ resampling distribution need not be normal; increasing n brings resampling distribution closer to normality.

Convergence of $\widehat{\mathrm{dCRT}}$ resampling distribution to N(0,1)

• For small $n, \overline{\text{dCRT}}$ resampling distribution need not be normal; increasing n brings resampling distribution closer to normality.

$\widehat{\mathrm{dCRT}}\text{-}\mathrm{GCM}$ equivalence and $\widehat{\mathrm{dCRT}}$ robustness

Equivalence result:

Theorem (Niu et al '22; informal). Assume

- 1. $\mathsf{RMSE}(\hat{\mu}_{n,\mathbf{x}}) = o_P(1), \, \mathsf{RMSE}(\hat{\mu}_{n,\mathbf{y}}) = o_P(1), \, \mathsf{RMSE}(\hat{\mu}_{n,\mathbf{x}}) \cdot \mathsf{RMSE}(\hat{\mu}_{n,\mathbf{y}}) = o_P(n^{-1/2})$
- 2. The estimated variances are consistent in the following sense:

$$\frac{1}{n}\sum_{i=1}^{n} (\mathsf{Var}_{\widehat{\mathcal{D}}_n}[X_i \mid Z_i] - \mathsf{Var}_{\mathscr{L}_n}[X_i \mid Z_i]) \mathsf{Var}_{\mathscr{L}_n}[Y_i \mid Z_i] \xrightarrow{p} 0.$$

Then, for any $\mathcal{L}_n \in H_0$, the dCRT is asymptotically equivalent to the GCM test, i.e.

 $\lim_{n\to\infty}\inf_{\mathscr{L}_n\in H_0}\mathbb{P}_{\mathscr{L}_n}[\mathsf{GCM}\ \mathsf{test}\ \mathsf{and}\ \mathsf{dCRT}\ \mathsf{coincide}]=1.$

$\widehat{\mathrm{dCRT}}\text{-}\mathrm{GCM}$ equivalence and $\widehat{\mathrm{dCRT}}$ robustness

Equivalence result:

Theorem (Niu et al '22; informal). Assume

- 1. $\mathsf{RMSE}(\hat{\mu}_{n,\mathbf{x}}) = o_P(1), \, \mathsf{RMSE}(\hat{\mu}_{n,\mathbf{y}}) = o_P(1), \, \mathsf{RMSE}(\hat{\mu}_{n,\mathbf{x}}) \cdot \mathsf{RMSE}(\hat{\mu}_{n,\mathbf{y}}) = o_P(n^{-1/2})$
- 2. The estimated variances are consistent in the following sense:

$$\frac{1}{n}\sum_{i=1}^{n} (\mathsf{Var}_{\widehat{\mathcal{D}}_n}[X_i \mid Z_i] - \mathsf{Var}_{\mathscr{L}_n}[X_i \mid Z_i]) \mathsf{Var}_{\mathscr{L}_n}[Y_i \mid Z_i] \xrightarrow{p} 0.$$

Then, for any $\mathcal{L}_n \in H_0$, the dCRT is asymptotically equivalent to the GCM test, i.e.

$$\lim_{n\to\infty}\inf_{\mathscr{L}_n\in H_0}\mathbb{P}_{\mathscr{L}_n}[\mathsf{GCM}\ \mathsf{test}\ \mathsf{and}\ \mathsf{dCRT}\ \mathsf{coincide}]=1.$$

Double robustness result:

Corollary (Niu et al '22; informal). Given conditions 1 & 2, dCRT is doubly robust: $\limsup_{n\to\infty}\sup_{\mathcal{L}_n\in H_0}\mathbb{P}_{\mathcal{L}_n}[\mathsf{dCRT}\ \mathsf{rejects}\ \mathsf{null}]\leq\alpha\,.$

Outline

- **1** Hardness of CI Testing and regularity conditions \mathcal{R}_n
- **2** Two choices of \mathcal{R}_n : dCRT statistic and GCM statistic

3 dCRT Test and its equivalence to GCM Test

4 Numerical simulation

Numerical simulation: Design

Consider

$$Z \sim N(0, \Sigma(\rho)), \ \mathscr{L}(X|Z) = N(Z^{\top}\beta, 1), \ \mathscr{L}(Y|X, Z) = N(X\theta + Z^{\top}\beta, 1)$$

where

$$\Sigma_{ij}(p) = \rho^{|i-j|}, \ \beta_j = \begin{cases} \nu & \text{if } j \leq s, \\ 0 & \text{if } j > s. \end{cases}$$

Parameters ν and θ control degree of confounding and signal strength.

- Methods compared:
 - dCRT¹ and GCM (with lasso and post-lasso);
 - Maxway CRT (a competitive method).

Some takeaways:

- Some takeaways:
 - GCM and dCRT perform similarly, consistent with asymptotic theory.

- Some takeaways:
 - GCM and dCRT perform similarly, consistent with asymptotic theory.
 - Lasso-based methods can have very inflated Type-I error in difficult settings.

- Some takeaways:
 - GCM and dCRT perform similarly, consistent with asymptotic theory.
 - Lasso-based methods can have very inflated Type-I error in difficult settings.
 - Post-lasso-based dCRT and GCM typically outperform Maxway CRT.

Some takeaways:

- Some takeaways:
 - GCM tends to outperform dCRT.

- Some takeaways:
 - GCM tends to outperform dCRT.
 - Lasso outperforms post-lasso, suggesting bias-variance trade-off.

- Some takeaways:
 - GCM tends to outperform dCRT.
 - Lasso outperforms post-lasso, suggesting bias-variance trade-off.
 - Maxway CRT has lowest power, due to data splitting.

References

- Emmanuel Candes, Yingying Fan, Lucas Janson, and Jinchi Lv. Panning for gold: 'model-x'knockoffs for high dimensional controlled variable selection. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 80(3):551–577, 2018.
- Molei Liu, Eugene Katsevich, Lucas Janson, and Aaditya Ramdas. Fast and powerful conditional randomization testing via distillation. *Biometrika*, 109(2):277–293, 2022.
- Ziang Niu, Abhinav Chakraborty, Oliver Dukes, and Eugene Katsevich. Reconciling model-x and doubly robust approaches to conditional independence testing. arXiv preprint arXiv:2211.14698, 2022.
- Rajen D Shah and Jonas Peters. The hardness of conditional independence testing and the generalised covariance measure. *The Annals of Statistics*, 48(3):1514–1538, 2020.