Abelian Variety Cryptosystems

Kevin Johnson 6017605 February 23, 2015

- 0.1 The Discrete Logarithm Problem
- 0.2 Polynomials, Algebraic Sets and Genus
- 0.3 Elliptic Curves
- 0.4 Hyperelliptic Curves
- 0.4.1 The Jacobian of a Hyperelliptic Curve

Unlike the case of elliptic curves, when the genus \mathfrak{g} of a curve \mathfrak{C} is greater than 1, the set of points on \mathfrak{C} will not always form a group.

Example 0.4.2.

Luckily, there is another way to form an abelian group with hyperelliptic curves. Indeed, let $\mathfrak D$ be the set of all formal finite sums

$$\sum_{i} m_{i} P_{i}$$

where $m_i \in \mathbb{Z}$ and P_i are points on the curve \mathfrak{C} . We call elements of \mathfrak{D} divisors of \mathfrak{C} . Given a rational function f in $\mathbb{Z}_p[\mathfrak{C}]$, we can define the corresponding divisor to f as

$$(f) = \sum_{i} m_i P_i$$

where P_i are the zeros and poles of f with multiplicities m_i . Divisors of this form are called principal divisors and we let \mathfrak{P} denote the subset of all of them in \mathfrak{D} . If we define the operation on \mathfrak{D} by

$$\sum_{i} m_{i} P_{i} + \sum_{i} m'_{i} P_{i} = \sum_{i} (m_{i} + m') P_{i}$$

then $\mathfrak D$ becomes and abelian group. Unfortunetly, this group is far too large for cryptographic purposes. So we consider the subgroup $\mathfrak D^0$ of all divisors of $\mathfrak D$ whos coefficients sum to 0. That is, divisors $\sum_i m_i P_i$ such that $\sum_i m_i = 0$.

Even though this subgroup is still infinite, we can define two divisors D_1, D_2 of \mathfrak{D}^0 to be equal if $D_1 - D_2$ is equal to the divisor of a rational function on \mathfrak{C} . That is, $D_1 - D_2 = (f)$ for $f \in \mathbb{Z}_p[\mathfrak{C}]$. This new quotient group, denoted

$$\mathfrak{J}=\mathfrak{D}^0/\mathfrak{P}$$

is called the jacobian of the curve $\mathfrak C$ and is a finite abelian group. This will be the group used to build hyperelliptic cryptosystems.

0.4.3 Representation of Divisors

At hough the Jacobian $\mathfrak J$ of an hyperelliptic curve $\mathfrak C$ is a finite abelian group, elements of $\mathfrak J$ are very hard to represent.

Example 0.4.4.

0.5 Abelian Varieties