# **Computational Analysis of Sound and Music**



### **Research Project Topics**

Dr.-Ing. Jakob Abeßer

Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de











#### **Topic #1: Sound Event Classification**

- Dataset
  - ESC-50 datasets (https://github.com/karolpiczak/ESC-50)
- Task
- Classify isolated sound recordings into 50 sound classes
- Aspects to look deeper into
  - Compare different spectrogram representations (STFT, Mel Spectrogram etc.)
  - Data augmentation (<a href="https://github.com/iver56/audiomentations">https://github.com/iver56/audiomentations</a> )







#### **Topic #2: Vehicle Type Classification**

- Dataset
  - IDMT-TRAFFIC (<a href="https://www.idmt.fraunhofer.de/en/publications/datasets/traffic.html">https://www.idmt.fraunhofer.de/en/publications/datasets/traffic.html</a>)
- Tasks
- Vehicle type classification (bus, car, motorcycle, truck)
- Movement direction estimation (left > right, right > left)
- Aspects to look deeper into
  - Classify between noisy sound classes
  - How to analyze stereo signals (time-of-arrival differences)





#### **Topic #3: Bird Activity Detection**

- Dataset
  - warblrb10k dataset (<a href="https://dcase.community/challenge2018/task-bird-audio-detection">https://dcase.community/challenge2018/task-bird-audio-detection</a>) 2,000 smartphone recordings
- Task
- Classify a 10s audio recording for bird activity (active / not active)
- Aspects to look deeper into
  - How to deal with large variety of background sounds?
  - Convolutional Neural Networks to learn spectro-temporal patterns (bird vocalizations)







#### **Topic #4: Acoustic Scene Classification**

- Dataset
  - DCASE-2013-Task1 (<a href="https://dcase.community/challenge2013/task-acoustic-scene-classification">https://dcase.community/challenge2013/task-acoustic-scene-classification</a>)
- Task
- Classify the acoustic scene (10 classes) given a 30s binaural audio recording
- Aspects to look deeper into
  - How to summarize long-term characteristics of audio signals?
  - Convolutional Neural Networks



## , I

#### **Topic #5: Music Genre Classification**

- Dataset
  - FMA-small (<a href="https://github.com/mdeff/fma">https://github.com/mdeff/fma</a>) 8000 30s tracks, 8 genres
- Task
- Classify the music genre
- Aspects to look deeper into
  - Compare different audio features (rhythm, harmony, timbre)



## B



#### **Topic #6: Music Instrument Classification**

- Dataset
  - MedleyDB (<a href="https://medleydb.weebly.com/">https://medleydb.weebly.com/</a>) 196 multitracks
- Task
- Instrument recognition in multitimbral mixtures or classifying individual stems (one instrument active per stem)
- Aspects to look deeper into
  - How robust is instrument recognition vs. #overlapping instruments?
  - How does instrumentation relate to music genre (also annotated)?
    - Co-occurrence matrix



#### **Topic #7: Chord Recognition**





- Dataset
  - IDMT-SMT-CHORDS
     (https://www.idmt.fraunhofer.de/en/publications/datasets/chords.html)
- Task
- Estimate chord type (3-voiced / 4-voiced chords) from keyboard instruments / guitars
- Aspects to look deeper into
  - Compare classical approach (template matching on chroma vectors) with deep learning based approach (CNN)

#### **Topic #8: Electric Engine Monitoring**

- Dataset
  - IDMT-ISA-ELECTRIC-ENGINE (<a href="https://zenodo.org/records/7551261">https://zenodo.org/records/7551261</a>)
- Task
- Estimate operational state from audio recording ("good", "heavy load" and "broken")
- Aspects to look deeper into
  - Data augmentation
  - Adding ambient background noise to increase robustness



#### **Topic #9: Compressed Air Leakage Detection**

- Dataset
  - IDMT-ISA-COMPRESSED-AIR (<a href="https://zenodo.org/records/7551606">https://zenodo.org/records/7551606</a>)
- Task
- Estimate leak types (3 classes) and noise types (5 classes)
- Aspects to look deeper into
  - Influence of microphone recording setup
  - Background noises



#### **Topic #10: Record-Your-Own-Soundscapes**

- Dataset
  - Soundscape recordings
- Task
- Sound Event Detection
- Annotation using Sonic Visualiser
- Aspects to look deeper into
  - Annotator Agreement
  - Background Noises
  - Temporal long-term structure of audio recordings

| Sources for Audio Datasets                                                                                | MIR     | Env. Sounds |
|-----------------------------------------------------------------------------------------------------------|---------|-------------|
| <ul> <li>https://www.audiocontentanalysis.org/datasets.ht</li> <li>ml</li> </ul>                          | $\odot$ |             |
| https://ismir.net/resources/datasets/                                                                     | $\odot$ | $\odot$     |
| <ul> <li>https://www.idmt.fraunhofer.de/en/publications/<br/>datasets.html</li> </ul>                     | $\odot$ | $\odot$     |
| https://zenodo.org                                                                                        | $\odot$ | $\odot$     |
| <ul> <li>https://homepages.tuni.fi/toni.heittola/datasets</li> </ul>                                      |         | $\odot$     |
| <ul> <li>https://towardsdatascience.com/40-open-source-<br/>audio-datasets-for-ml-59dc39d48f06</li> </ul> | $\odot$ |             |