https://github.com/physicell-training/ws2021

Session 11: Intracellular Modeling

Furkan Kurtoglu

@FKurtogluSysBio

PhysiCell Project

July 28, 2021

What we have learned so far

- PhysiCell folder structure
- PhysiCell model domain
 - Different dts (diffusion_dt, mechanic_dt, phenotype_dt)
- Using GUI to create config file (XML)
- PhysiCell C++ functions

What we will learn

- Basics of Kinetic Modeling (ODE Model)
- How to integrate kinetic models to ABM
- How to control phenotype based on intracellular model
- Kinetic ODE solver (libRR) related functions
- How to save intracellular data
- How to make faster your simulation with losing convergence

Agenda:

- First Session
 - PhysiCell 1.9.0
 - Kinetic SBML
 - PhysiCell Integration
 - Model Design
 - Results
 - Convergence Tests
 - libRR Add-on
 - Functions
 - Phenotypic Changes
 - Sample Model
 - Description
 - Basic Domain Creation (If we can)

PhysiCell 1.9.0

- PhysiCell 1.9.0
 - Released: 12 July 2021
- Major new features
 - Includes three intracellular modeling approaches
 - ♦ Boolean Network => PhysiBoSS
 - ♦ Kinetic Modeling (ODEs) => libroadrunner
 - Flux Balance Analysis => PhysidFBA
 - New Intracellular Object in Phenotype
 - ♦ All intracellular packages basic generic functions with same syntax
 - >> Start(), Update(), get_parameter(), set_parameter(), ...
 - ♦ Some special functions specific to packages
 - » get_boolean_variable_value(PhysiBoSS) validate_SBML_species (ODE), ...

3 Sample Projects

- PhysiBoSS
 - physiboss-cell-lines-sample

- Libroadrunner
 - ode-sample-project
- PhysidFBA
 - cancer-metabolism

Installation

- Each add-on requires related solver
 - PhysiBoSS MaBoSS
 - PhysidFBA coin-clp
 - Libroadrunner Libroadrunner (no surprise!)
- To install related solver, you need to populate sample-project, first
 - make ode-energy-sample
- Then, compile once.
 - make

PhysiBoSS

- Boolean Network
 - MaBoSS
- SysBioCurie & BSC

- https://github.com/gletort/PhysiBoSS
 - Fully integrated as "add-on" to PhysiCell
- We had an optional morning session
 - Please visit <u>agenda</u> for slides and video

PhysidFBA

- Aims to couple ABM and FBA.
- Miguel Ponce de Leon
- Approach will be explained in future slides.
- https://github.com/migp11/PhysiCelldFBA
 - Added alpha version as "add-on" to PhysiCell.

Heirendt et al, 2017

Libroadrunner

- Integrating intracellular kinetic models to individual agents.
- Individual phenotype changes according to molecular simulations
 - Intracellular values (Molecular Concentrations, Signal Transductions, i.e.)
 - Intracellular oxygen deficiency in cell leads to change necrosis rate.
 - ♦ Intracellular amino acids levels define the cellular growth / cycle rate.
- Opens new opportunities for PhysiCell syntax
 - Users can utilize SBML to model phenotypic behaviors.
 - Since molecular values can edit phenotypic parameters in SBML, PhysiCell interface is getting changed.
- LibRR is developed by
 - Herbert Sauro and Andy Somogyi
 - C++ API

SBML

- Systems Biology Mark-up Language
- Reaction Stoichiometry
- Kinetic Pseudo Steady State
 - Kinetic Ordinary Differential Equations
 - Pseudo Steady State –
 Optimization (Flux Balance
 Analysis)
- Hard to read for Human (xml file)
- Parsed according to some rules.

```
<species metaid="heme"</pre>
     id="heme"
     compartment="Comp01"
     initialConcentration="0">
   <annotation>
     <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
              xmlns:bqbiol="http://biomodels.net/biology-qualifiers/">
       <rdf:Description rdf:about="#heme">
         <br/>
<br/>
bobiol:hasPart>
            <rdf:Bag>
              <rdf:li rdf:resource="urn:miriam:uniprot:P69905"/>
              <rdf:li rdf:resource="urn:miriam:uniprot:P68871"/>
              <rdf:li rdf:resource="urn:miriam:obo.chebi:CHEBI%3A17627" />
            </rdf:Bag>
         </bgbiol:hasPart>
       </rdf:Description>
     </rdf:RDF>
  </annotation>
</species>
```

SBML

- Compartments
 - Volumetric Entities
- Species
 - Chemicals
- Reactions
 - Stoichiometric Relations
 - Boundaries (Lower and Upper) (FBA)
- Global Quantities
 - Parameters
 - Constants

- COPASI
 - ✓ Model
 - ▼ Biochemical
 - Compartments [1]

Intracellular

Species [4]

Energy

Glucose

Lactate

Oxygen

➤ Reactions [3]

Aerobic

Anaerobic

Energy_Usage

Global Quantities [3]

k_aer

k_ane

k_usage

#	Name	Reaction	Rate Law	Flux [mmol/min]	Noise Expression
1	Aerobic	Glucose + 6 * Oxygen -> 38 * Energy	Mass action (irreversible)	nan	
2	Anaerobic	Glucose -> 2 * Energy + Lactate	Mass action (irreversible)	nan	
3	Energy_Usage	Energy ->	Mass action (irreversible)	nan	
	New Reaction				

Kinetic Modeling

#	Name	Reaction
1	Aerobic	Glucose + 6 * Oxygen -> 38 * Energy
2	Anaerobic	Glucose -> 2 * Energy + Lactate
3	Energy_Usage	Energy ->
	New Reaction	

d ([Glucose] · V _{Intracellular})	= -V _{Intracellular} ·(k_aer ·[Glucose] ·[Oxygen] ·[Oxygen] ·[Oxygen] ·[Oxygen] ·[Oxygen] ·[Oxygen])
	-V _{Intracellular} ·(k_ane ·[Glucose])
$\frac{d([Oxygen] \cdot V_{Intracellular})}{dt}$	= -6 · V _{Intracellular} · (k_aer · [Glucose] · [Oxygen]
$\frac{d \big([Energy] \cdot V_{Intracellular} \big)}{d t}$	= +38·V _{Intracellular} ·(k_aer·[Glucose]·[Oxygen]·[Oxygen]·[Oxygen]·[Oxygen]·[Oxygen]·[Oxygen])
	+2·V _{Intracellular} ·(k_ane·[Glucose])
	-V _{Intracellular} ·(k_usage ·[Energy])
$\frac{d([Lactate] \cdot V_{Intracellular})}{dt}$	= +V _{Tabasall.la.} '(k ane '[Glucose]) Concentrations, Volumes, and Global Quantity Values

SBML

- General SBMLs have more than one compartment
 - Extracellular
 - Intracellular
 - Mitochondria (Sometimes)
 - Nucleus (?)
- And have two or more species for one substrate
 - Glucose[e] => extracellular
 - Glucose[i] => intracellular
- Transfer reaction between compartments
 - Glucose[e] = Glucose[i]

Assumptions

- But ...
- PhysiCell has transfer reactions through
 - BioFVM
- So, we can support specific type of SBMLs
 - Only Intracellular (might have more than one compartment Mitochondria, Nucleus)
- Well-Structured SBMLs
 - Not all SBMLs are supported!!!
 - No External Compartment and Transfer Reactions in SBML!
 - ♦ Mapping is needed between SBML & PhysiCell
 - Works on each diffusion_dt (0.01 min)
 - (as default for best convergence)

Integration Design

Performance Test

- More than 50,000 cells
- 4 substrate (internalization is on)
- 5 SBML species (4 reactions)
- 4000x4000x20 um dimensions (dx = 20 um)
- Personal PC
 - AMD 6 core 3.0 GHz, 16 GB RAM
 - 8-thread, OpenMP

	1 min output	60 min output
No SBML solver	11 secs	1 min 57 secs
SBML solver	20 secs	16 min 35 secs

Current time: 0 days, 0 hours, and 0.00 minutes, $z = 0.00 \ \mu m$ 50637 agents

How about intracellular dt

- Default 0.01 min but...
- Imagine cell is like pool with source and sink
 - A = uptaking a chemical from microenvironment
 - B = secreting a chemical to microenvironment
- If diffusion_dt and intracellular_dt is same,
 - They are matching dt's so there is no convergence difference.
 - But it is slow!
- (Figure to be drawn during presentation)

How about intracellular_dt

- However, we can change intracellular_dt.
- Let's assume that we made it 1.00 min (100 times slower)
- How it will look like (Figure to be drawn during presentation)
- So much faster
 - You will see in the Demo

How it looks

Config File

```
<cell definitions>
   <cell definition name="default" ID="0">
        <phenotype>
            <cycle code="5" name="live">
                <!-- using higher than normal significant digits to match divisions in default code -->
                <transition rates units="1/min">
                    <rate start index="0" end index="0" fixed duration="false">0.0</rate>
                </transition rates>
            </cycle>
            <death>
            <volume>
            <motility>
                <speed units="micron/min">0.0</speed>
                <persistence time units="min">0.1</persistence time>
                <migration bias units="dimensionless">.9</migration bias>
                <options>
                    <enabled>true</enabled>
                    <use 2D>true</use 2D>
                    <chemotaxis>
                        <enabled>false</enabled>
                        <substrate>oxygen</substrate>
                        <direction>1</direction>
                    </chemotaxis>
                </options>
            </motility>
            <secretion>
       </phenotype>
```

Some Results

Model 0 - SBML Model

- 4 Species
 - Oxygen
 - Glucose
 - Lactate
 - Energy
- 3 Internal Reactions
 - ♦ Aerobic reaction
 - » Glucose + Oxygen -> Energy
 - ♦ Anaerobic reaction
 - » Glucose -> Energy + Lactate
 - ◆ Energy Usage
 - » Energy ->

Model 0

- Very Simple SBML toy model
- Both simulated in PhysiCell and Copasi
- No Transfer Reaction in SBML
- No Uptake Rate
- Only solving SBML

Model 1

- Uptake glucose, oxygen
- Produces Energy internally.

SBML Events

Cycle Rate

- If Energy level is smaller than 50 a.u.
 - Equals to zero 1/min
- If Energy level is greater than 50 a.u.
 - Equals to 0.01 1/min

Model 2

- Phenotypic changes according to SBML species
- Organoid (2D) seeding.
- Lactate Secretion Rate increases
 - Lactate Concentration
- If oxygen level is less than threshold
 - Cells increase their migration speed
- If Energy level is less than threshold
 - Cells go apoptosis

Microenvironment Results

Lactate Secretion

Current time: 0 days, 0 hours, and 0.00 minutes, z = 0.00 μm 144 agents

Intracellular

How it looks

Config File

```
<cell definitions>
   <cell definition name="default" ID="0">
        <phenotype>
            <cycle code="5" name="live">
                <!-- using higher than normal significant digits to match divisions in default code -->
                <transition rates units="1/min">
                    <rate start index="0" end index="0" fixed duration="false">0.0</rate>
                </transition rates>
            </cycle>
            <death>
            <volume>
            <motility>
                <speed units="micron/min">0.0</speed>
                <persistence time units="min">0.1</persistence time>
                <migration bias units="dimensionless">.9</migration bias>
                <options>
                    <enabled>true</enabled>
                    <use 2D>true</use 2D>
                    <chemotaxis>
                        <enabled>false</enabled>
                        <substrate>oxygen</substrate>
                        <direction>1</direction>
                    </chemotaxis>
                </options>
            </motility>
            <secretion>
       </phenotype>
```

SBML-Phenotypic Parameters

PhysiCell Phenotype Parameter	First letter	phenotype_token	example
Phase Transition Rate	С	ctr_*_*	ctr_0_1
Death Rate	d	da,dn	da,dn
Persistence Time	m	mpt	mpt
Migration Speed	m	mms	mms
Migration Bias	m	mmb	mmb
Uptake rate	S	sur_*	sur_oxygen
Secretion rate	S	ssr_*	ssr_glucose
Saturation density	S	ssd_*	ssd_oxygen
Export rate	S	ser_*	ser_lactate
Target solid cytoplasmic	V	vtsc	vtsc
Target solid nuclear	V	vtsn	vtsn
Target fluid fraction	V	vff	vff

Libroadrunner Addon

- Same format for intracellular addons. (PhysiFBA, PhysiBoSS)
- Libroadrunner
 - start() = start intracellular in cell (it should be used after seeding and is called after proliferation)
 - Initialize_SBML() = to read SBML (users will not use)
 - get_values() = to get value from SBML
 - set_values() = to set value in SBML
 - update() = to simulate SBML
 - get_state() = to get the name of SBML
 - update_phenotypic_parameters() = to update phenotype according to given tokens
 - validate tokens() = to validate given token
 - validate_species() = to validate SBML species

Integration Design

Migration Speed

Cell Definition

```
Current time: 0 days, 0 hours, and 0.00 minutes, z = 0.00 \mu m
                                                                 200 µm
 0 days, 0 hours, 0 minutes, and 0.0056 seconds
```

Chemokine Distribution

Cell Definition

```
<secretion_target units="substrate density">10</secretion_target>
    <uptake_rate units="1/min">0.0</uptake_rate>
    <net_export_rate units="total substrate/min">0</net_export_rate>
</substrate>
```

```
<intracellular type="roadrunner">
    <sbml_filename>./config/Toy_oxy_mms_tr_01.xml</sbml_filename>
    <map PC substrate="oxygen" sbml species="Oxy"></map >

</intracellular>
```


Wrong Tokens

PS C:\Users\Furkan\Documents\GitHub\PhysiCell-SBML-trials\PhysiCell_intracellular_Phenotype>

Code walk

Let's do code walk together...

PhysidFBA

Flux Balance Analysis

Heirendt et al, 2017

Integration Design

PhysidFBA

- FBA is like taking a photo
- dFBA is like stop-motion video.
- dFBA simulates intracellular model
 - Finds optimal biomass creation flux
 - This value is used for volume calculation (growth of cell)
 - If cell is greater than the volume threshold
 - Divide
 - Arrest function

LibRoadRunner Interactive Demo

Model

- Three Substrates
 - Oxygen, Glucose, Lactate
 - Energy is created with two reactions
 - ♦ Glucose + Oxygen -> 38 * Energy (Aerobic)
 - ♦ Glucose -> 4 * Energy + Lactate (Anaerobic)
 - Energy consumes
 - ♦ Energy -> (Energy_Usage)
- Phenotypic Tokens
 - migration speed, apoptosis_rate, lac_Secretion_Rate, Transition_Rate

Model Rules

- Initial Energy = 450
- If Energy > 445
 - Cycle
- If Energy < 445
 - Don't Cycle
- If Energy < 440
 - Move
- If Energy < 430
 - Die

Populate together

- PhysiCell folder
- make clean
- make data-cleanup
- make reset
- make list-projects
- make ode-energy-sample
- make

- Domain size
 - X=[-500,500]
 - Y=[-500,500]
 - Z=[-10,10]
 - dx, dy, dz = 20
 - Use 2D = true
- Max-time = 1440 min
- Thread = your choice
- Save data : SVG = 30 min,

Full = 30 min

- Microenvironment Tab
- Let's add "oxygen", "glucose", "lactate"

- Oxygen
- Diffusion Coefficient = 100.0 micror
- Decay Rate = 0.0 1/min
- Initial condition = 38.0 mmHg
- Dirichlet = OFF
- Track in agents = ON

- Glucose
- Diffusion Coefficient = 300.0 micro
- Decay Rate = 0.0 1/min
- Initial condition = 50.0 a.u
- Dirichlet = OFF
- Track in agents = ON

- Lactate
- Diffusion Coefficient = 300.0 mic
- Decay Rate = 0.0 1/min
- Initial condition = 0.0 mmHg
- Dirichlet = OFF
- Track in agents = ON

Cell Type

- Only one type of cell in the name of "default"
- Cycle
 - Live Cells
 - Transition rate(s)
 - 0.0

Cell Type

No Death

Cycle	Death	Volume	Mechanics	Motility	Secretion	Custom Da	ta		^
Ap	optosis								
			death rat			1/	min		
ensition rate				O duration					
phase 0->1 transition rate				0.0			Fixed	min	
phase 0 duration				516			Fixed	min	ı
		inlysed fluid	change rate	0.05		1/	min		
lysed fluid change rate							min		
				_					
cytoplasmic biomass change rate				1.66667e-02	!		min		
nuclear biomass change rate				5.83333e-03	1	1/	min		
calcification rate				0			min		
relative rupture volume				2.0					
N	ecrosis								
				O duration					
	ph	ase 0->1 tr	ansition rate	0.0			Fixed	1/min	
	ph	ase 1->2 tr	ansition rate	0.0			Fixed	1/min	
		phas	se 0 duration	0		~	Fixed	min	
phase 1 duration				86400			Fixed	min	
	u	ınlysed fluid	change rate	0.05		1/	min		
lysed fluid change rate			0			1/min			
				1.66667e-02			1/min		
	, ,			11.000076-02		-		>	

Cell Type

No change in the Volume and Mechanics Tab

- Motility
- Speed = 0.0
- Persistence Time = 0.1
- Migration Bias = 0.9
- Enable-motility

Cell Type: Secretion

- Oxygen Tab
- Uptake rate = 0.005

Cell Type: Secretion

- Glucose Tab
- Uptake rate = 0.001

Cell Type: Secretion

- Lactate Tab
- Secretion Target = 10.0

Cell Custom Data

- We need to create intracellular data to save the data
- intra_oxy = 0.0
- intra_glu = 0.0
- intra lac = 0.0
- intra energy = 0.0

User Params

- initial_internal_oxygen (double) = 0.8
- initial_internal_glucose (double) = 15
- initial_internal_lactate (double) = 0.0
- initial_energy (double) =450

Save

- Let's look is it right.
- In my case, it did not put cell custom data
- I went to custom data in cell types tab
- And just make them 0.0
- Saved again.
- It worked!

Let's Add Intracellular Attribute

<intracellular type="roadrunner">

```
<sbml filename>./config/Toy Metabolic Model.xml</sbml filename>
          <map PC substrate="oxygen" sbml species="Oxygen"></map >
          <map PC substrate="lactate" sbml species="Lactate"></map >
          <map PC substrate="glucose" sbml species="Glucose"></map >
          <map PC phenotype="da" sbml species="apoptosis rate"></map>
          <map PC phenotype="mms" sbml species="migration speed"></map>
          <map PC phenotype="ssr lactate" sbml species="Lac Secretion Rate"></map>
          <map PC phenotype="ctr 0 0" sbml species="Transition Rate"></map>
</intracellular>
```

Funding Acknowledgements

PhysiCell Development:

- Breast Cancer Research Foundation
- Jayne Koskinas Ted Giovanis Foundation for Health and Policy
- National Cancer Institute (U01CA232137)
- National Science Foundation (1720625)

Training Materials:

Administrative supplement to NCI U01CA232137 (Year 2)