

Introdução à Engenharia Química e Bioquímica

Aula 1 Balanços Energéticos MIEQB ano lectivo de 2020/2021

Sumário da aula

Fundamentos dos balanços energéticos

- > Formas de energia. 1ª Lei da Termodinâmica
- > Energias cinética e potencial
- ➤ Balanços de energia a sistemas fechado e aberto. Entalpia

- 1. Qual a potência (energia/tempo) necessária para bombear 1250 m³/h de água de um tanque de armazenamento para uma dada unidade? (A resposta determina o "tamanho" do motor de bomba necessário).
- 2. Qual a energia necessária para converter 2000 kg de água líquida a 30 °C a vapor a 180 °C?
- 3. Destila-se uma mistura de hidrocarbonetos, obtendo-se uma corrente de líquido e uma corrente de vapor, cada uma com um caudal e composição conhecidos. A energia fornecida à coluna de destilação provém da condensação de vapor saturado à pressão de 15 bar. A que velocidade deve-se fornecer o vapor para processar 2000 moles/h de alimentação?
- 4. Ocorre uma reacção química altamente exotérmica A-> B num reator contínuo. Pretendendo-se obter uma conversão de 75% de A, a que velocidade se deve retirar energia do reactor para que a sua temperatura se mantenha constante?
- 5. Quanto carvão deve-se queimar por dia para gerar o vapor necessário ao funcionamento das turbinas na produção de eletricidade suficiente para atender às necessidades diárias energéticas de uma cidade de 500 mil pessoas?
- 6. Um dado processo químico tem quatro reactores, 25 bombas e vários compressores, colunas de destilação, tanques de mistura, evaporadores, filtros e outras unidades de processamento e separação de materiais. Cada uma destas unidades consome ou liberta energia.
 - a) Como podemos operar o processo de forma a minimizar a energia total? (por exemplo, a energia libertada numa unidade poderá ser transferida para uma outra unidade, consumidora de energia?)
 - b) Qual é a necessidade total de energia do processo, e quanto será o custo para fornecer essa energia? (a resposta pode determinar se o processo é economicamente viável ou não).

- 1. Qual a potência (energia/tempo) necessária para bombear 1250 m³/h de água de um tanque de armazenamento para uma dada unidade? (A resposta determina o "tamanho" do motor de bomba necessário).
- 2. Qual a energia necessária para converter 2000 kg de água líquida a 30 °C a vapor a 180 °C?
- 3. Destila-se uma mistura de hidrocarbonetos, obtendo-se uma corrente de líquido e uma corrente de vapor, cada uma com um caudal e composição conhecidos. A energia fornecida à coluna de destilação provém da condensação de vapor saturado à pressão de 15 bar. A que velocidade deve-se fornecer o vapor para processar 2000 moles/h de alimentação?
- 4. Ocorre uma reacção química altamente exotérmica A-> B num reator contínuo. Pretendendo-se obter uma conversão de 75% de A, a que velocidade se deve retirar energia do reactor para que a sua temperatura se mantenha constante?
- 5. Quanto carvão deve-se queimar por dia para gerar o vapor necessário ao funcionamento das turbinas na produção de eletricidade suficiente para atender às necessidades diárias energéticas de uma cidade de 500 mil pessoas?
- 6. Um dado processo químico tem quatro reactores, 25 bombas e vários compressores, colunas de destilação, tanques de mistura, evaporadores, filtros e outras unidades de processamento e separação de materiais. Cada uma destas unidades consome ou liberta energia.
 - a) Como podemos operar o processo de forma a minimizar a energia total? (por exemplo, a energia libertada numa unidade poderá ser transferida para uma outra unidade, consumidora de energia?)
 - b) Qual é a necessidade total de energia do processo, e quanto será o custo para fornecer essa energia? (a resposta pode determinar se o processo é economicamente viável ou não).

- 1. Qual a potência (energia/tempo) necessária para bombear 1250 m³/h de água de um tanque de armazenamento para uma dada unidade? (A resposta determina o "tamanho" do motor de bomba necessário).
- 2. Qual a energia necessária para converter 2000 kg de água líquida a 30 °C a vapor a 180 °C?
- 3. Destila-se uma mistura de hidrocarbonetos, obtendo-se uma corrente de líquido e uma corrente de vapor, cada uma com um caudal e composição conhecidos. A energia fornecida à coluna de destilação provém da condensação de vapor saturado à pressão de 15 bar. A que velocidade deve-se fornecer o vapor para processar 2000 moles/h de alimentação?
- 4. Ocorre uma reacção química altamente exotérmica A-> B num reator contínuo. Pretendendo-se obter uma conversão de 75% de A, a que velocidade se deve retirar energia do reactor para que a sua temperatura se mantenha constante?
- 5. Quanto carvão deve-se queimar por dia para gerar o vapor necessário ao funcionamento das turbinas na produção de eletricidade suficiente para atender às necessidades diárias energéticas de uma cidade de 500 mil pessoas?
- 6. Um dado processo químico tem quatro reactores, 25 bombas e vários compressores, colunas de destilação, tanques de mistura, evaporadores, filtros e outras unidades de processamento e separação de materiais. Cada uma destas unidades consome ou liberta energia.
 - a) Como podemos operar o processo de forma a minimizar a energia total? (por exemplo, a energia libertada numa unidade poderá ser transferida para uma outra unidade, consumidora de energia?)
 - b) Qual é a necessidade total de energia do processo, e quanto será o custo para fornecer essa energia? (a resposta pode determinar se o processo é economicamente viável ou não).

- 1. Qual a potência (energia/tempo) necessária para bombear 1250 m³/h de água de um tanque de armazenamento para uma dada unidade? (A resposta determina o "tamanho" do motor de bomba necessário).
- 2. Qual a energia necessária para converter 2000 kg de água líquida a 30 °C a vapor a 180 °C?
- 3. Destila-se uma mistura de hidrocarbonetos, obtendo-se uma corrente de líquido e uma corrente de vapor, cada uma com um caudal e composição conhecidos. A energia fornecida à coluna de destilação provém da condensação de vapor saturado à pressão de 15 bar. A que velocidade deve-se fornecer o vapor para processar 2000 moles/h de alimentação?
- 4. Ocorre uma reacção química altamente exotérmica A-> B num reator contínuo. Pretendendo-se obter uma conversão de 75% de A, a que velocidade se deve retirar energia do reactor para que a sua temperatura se mantenha constante?
- 5. Quanto carvão deve-se queimar por dia para gerar o vapor necessário ao funcionamento das turbinas na produção de eletricidade suficiente para atender às necessidades diárias energéticas de uma cidade de 500 mil pessoas?
- 6. Um dado processo químico tem quatro reactores, 25 bombas e vários compressores, colunas de destilação, tanques de mistura, evaporadores, filtros e outras unidades de processamento e separação de materiais. Cada uma destas unidades consome ou liberta energia.
 - a) Como podemos operar o processo de forma a minimizar a energia total? (por exemplo, a energia libertada numa unidade poderá ser transferida para uma outra unidade, consumidora de energia?)
 - b) Qual é a necessidade total de energia do processo, e quanto será o custo para fornecer essa energia? (a resposta pode determinar se o processo é economicamente viável ou não).

- 1. Qual a potência (energia/tempo) necessária para bombear 1250 m³/h de água de um tanque de armazenamento para uma dada unidade? (A resposta determina o "tamanho" do motor de bomba necessário).
- 2. Qual a energia necessária para converter 2000 kg de água líquida a 30 °C a vapor a 180 °C?
- 3. Destila-se uma mistura de hidrocarbonetos, obtendo-se uma corrente de líquido e uma corrente de vapor, cada uma com um caudal e composição conhecidos. A energia fornecida à coluna de destilação provém da condensação de vapor saturado à pressão de 15 bar. A que velocidade deve-se fornecer o vapor para processar 2000 moles/h de alimentação?
- 4. Ocorre uma reacção química altamente exotérmica A-> B num reator contínuo. Pretendendo-se obter uma conversão de 75% de A, a que velocidade se deve retirar energia do reactor para que a sua temperatura se mantenha constante?
- 5. Quanto carvão deve-se queimar por dia para gerar o vapor necessário ao funcionamento das turbinas na produção de eletricidade suficiente para atender às necessidades diárias energéticas de uma cidade de 500 mil pessoas?
- 6. Um dado processo químico tem quatro reactores, 25 bombas e vários compressores, colunas de destilação, tanques de mistura, evaporadores, filtros e outras unidades de processamento e separação de materiais. Cada uma destas unidades consome ou liberta energia.
 - a) Como podemos operar o processo de forma a minimizar a energia total? (por exemplo, a energia libertada numa unidade poderá ser transferida para uma outra unidade, consumidora de energia?)
 - b) Qual é a necessidade total de energia do processo, e quanto será o custo para fornecer essa energia? (a resposta pode determinar se o processo é economicamente viável ou não).

- 1. Qual a potência (energia/tempo) necessária para bombear 1250 m³/h de água de um tanque de armazenamento para uma dada unidade? (A resposta determina o "tamanho" do motor de bomba necessário).
- 2. Qual a energia necessária para converter 2000 kg de água líquida a 30 °C a vapor a 180 °C?
- 3. Destila-se uma mistura de hidrocarbonetos, obtendo-se uma corrente de líquido e uma corrente de vapor, cada uma com um caudal e composição conhecidos. A energia fornecida à coluna de destilação provém da condensação de vapor saturado à pressão de 15 bar. A que velocidade deve-se fornecer o vapor para processar 2000 moles/h de alimentação?
- 4. Ocorre uma reacção química altamente exotérmica A-> B num reator contínuo. Pretendendo-se obter uma conversão de 75% de A, a que velocidade se deve retirar energia do reactor para que a sua temperatura se mantenha constante?
- 5. Quanto carvão deve-se queimar por dia para gerar o vapor necessário ao funcionamento das turbinas na produção de eletricidade suficiente para atender às necessidades diárias energéticas de uma cidade de 500 mil pessoas?
- 6. Um dado processo químico tem quatro reactores, 25 bombas e vários compressores, colunas de destilação, tanques de mistura, evaporadores, filtros e outras unidades de processamento e separação de materiais. Cada uma destas unidades consome ou liberta energia.
 - a) Como podemos operar o processo de forma a minimizar a energia total? (por exemplo, a energia libertada numa unidade poderá ser transferida para uma outra unidade, consumidora de energia?)
 - b) Qual é a necessidade total de energia do processo, e quanto será o custo para fornecer essa energia? (a resposta pode determinar se o processo é economicamente viável ou não).

- 1. Qual a potência (energia/tempo) necessária para bombear 1250 m³/h de água de um tanque de armazenamento para uma dada unidade? (A resposta determina o "tamanho" do motor de bomba necessário).
- 2. Qual a energia necessária para converter 2000 kg de água líquida a 30 °C a vapor a 180 °C?
- 3. Destila-se uma mistura de hidrocarbonetos, obtendo-se uma corrente de líquido e uma corrente de vapor, cada uma com um caudal e composição conhecidos. A energia fornecida à coluna de destilação provém da condensação de vapor saturado à pressão de 15 bar. A que velocidade deve-se fornecer o vapor para processar 2000 moles/h de alimentação?
- 4. Ocorre uma reacção química altamente exotérmica A-> B num reator contínuo. Pretendendo-se obter uma conversão de 75% de A, a que velocidade se deve retirar energia do reactor para que a sua temperatura se mantenha constante?
- 5. Quanto carvão deve-se queimar por dia para gerar o vapor necessário ao funcionamento das turbinas na produção de eletricidade suficiente para atender às necessidades diárias energéticas de uma cidade de 500 mil pessoas?
- 6. Um dado processo químico tem quatro reactores, 25 bombas e vários compressores, colunas de destilação, tanques de mistura, evaporadores, filtros e outras unidades de processamento e separação de materiais. Cada uma destas unidades consome ou liberta energia.
 - a) Como podemos operar o processo de forma a minimizar a energia total? (por exemplo, a energia libertada numa unidade poderá ser transferida para uma outra unidade, consumidora de energia?)
 - b) Qual é a necessidade total de energia do processo, e quanto será o custo para fornecer essa energia? (a resposta pode determinar se o processo é economicamente viável ou não).

Equação de conservação de energia

• Os balanços de energia são equações que traduzem o princípio da conservação de energia para um determinado sistema (1º Princípio da Termodinâmica)

Consumo de energia dentro do sistema
 Acumulação de energia no sistema

IUPAC

Possíveis formas de energia de um dado sistema

- Energia Cinética: $E_c = \frac{1}{2}$ m u²
- Energia Potencial: $E_p = m g h$
- Energia Interna: U
- Calor: Q ("+" quando transferido da vizinhança para o sistema)
- ("+" quando feito no sistema pela vizinhança) Trabalho: W

("+" quando feito pelo sistema à vizinhança) FELDER E ROUSSEAU

Calcule a energia cinética, em joules por segundo, de uma corrente de água fluindo com um caudal de 2 m³/h num tubo com 2 cm de diâmetro interno.

$$(1N = 1 \text{ kg.m.s}^{-2})$$

Diâmetro=0.02 m Caudal volumétrico Q=2m³/h

$$E_c = \frac{1}{2}mu^2$$

$$\dot{E_c} = \frac{1}{2}\dot{m}u^2$$

Calcule a energia cinética, em joules por segundo, de uma corrente de água fluindo com um caudal de 2 m³/h num tubo com 2 cm de diâmetro interno.

$$(1N = 1 \text{ kg.m.s}^{-2})$$

Diâmetro=0.02 m Caudal volumétrico Q=2m³/h

Resolução:

$$u = \frac{Q}{A} = \frac{2m^3/h \times (\frac{1h}{3600s})}{\pi 0.01^2 m^2} = 1.77 \ m/s$$

$$E_c = \frac{1}{2}mu^2$$

$$\dot{E_c} = \frac{1}{2}\dot{m}u^2$$

Calcule a energia cinética, em joules por segundo, de uma corrente de água fluindo com um caudal de 2 m³/h num tubo com 2 cm de diâmetro interno.

$$(1N = 1 \text{ kg.m.s}^{-2})$$

Diâmetro=0.02 m Caudal volumétrico Q=2m³/h

Resolução:

$$u = \frac{Q}{A} = \frac{2m^3/h \times (\frac{1h}{3600s})}{\pi 0.01^2 m^2} = 1.77 \text{ m/s}$$

$$E_c = \frac{1}{2}mu^2$$

$$\dot{E_c} = \frac{1}{2}\dot{m}u^2$$

$$\dot{E_c} = \frac{1}{2}\dot{m}u^2$$

Caudal mássico

$$\dot{m} = Q \times \rho = 2m^3/h \times (\frac{1h}{3600s}) \times 1000kg/m^3 = 0.556 kg/s$$

Calcule a energia cinética, em joules por segundo, de uma corrente de água fluindo com um caudal de 2 m³/h num tubo com 2 cm de diâmetro interno.

$$(1N = 1 \text{ kg.m.s}^{-2})$$

Diâmetro=0.02 m Caudal volumétrico Q=2m³/h

Resolução:

$$u = \frac{Q}{A} = \frac{2m^3/h \times (\frac{1h}{3600s})}{\pi 0.01^2 m^2} = 1.77 \ m/s$$

$$E_c = \frac{1}{2}mu^2$$

$$\dot{E_c} = \frac{1}{2}\dot{m}u^2$$

$$\dot{E_c} = \frac{1}{2}\dot{m}u^2$$

Caudal mássico

$$\dot{m} = Q \times \rho = 2m^3/h \times (\frac{1h}{3600s}) \times 1000kg/m^3 = 0.556 kg/s$$

$$\dot{E_c} = \frac{1}{2}\dot{m}u^2 = \frac{1}{2}0.556 \times 1.77^2 = 0.87 J/s$$

$$1J=(Kgm^2)/s^2$$

5.2.

Bombeia-se petróleo de uma profundidade de 220 m abaixo da superfície da Terra até uma altura de 20 m acima da superfície, a um caudal de 15 kg/s. Calcule a variação de energia potencial associada a este processo. Qual a potência mínima da bomba a usar?

 $(1N = 1 \text{ kg.m.s}^{-2})$

Bombeia-se petróleo de uma profundidade de 220 m abaixo da superfície da Terra até uma altura de 20 m acima da superfície, a um caudal de 15 kg/s. Calcule a variação de energia potencial associada a este processo. Qual a potência mínima da bomba a usar?

$$(1N = 1 \text{ kg.m.s}^{-2})$$

Profundidade h1= -220 m até h2=20 m

$$E_p = mgh$$

$$\dot{E_p} = \dot{m}gh$$

Bombeia-se petróleo de uma profundidade de 220 m abaixo da superfície da Terra até uma altura de 20 m acima da superfície, a um caudal de 15 kg/s. Calcule a variação de energia potencial associada a este processo. Qual a potência mínima da bomba a usar?

$$(1N = 1 \text{ kg.m.s}^{-2})$$

Profundidade h1= -220 m até h2=20 m

Resolução:

$$\Delta \dot{E}_p = \dot{E}_{p2} - \dot{E}_{p1} = \dot{m}g(h_2 - h_1)$$

$$E_p = mgh$$

$$\dot{E_p} = \dot{m}gh$$

Bombeia-se petróleo de uma profundidade de 220 m abaixo da superfície da Terra até uma altura de 20 m acima da superfície, a um caudal de 15 kg/s. Calcule a variação de energia potencial associada a este processo. Qual a potência mínima da bomba a usar?

$$(1N = 1 \text{ kg.m.s}^{-2})$$

Profundidade h1= -220 m até h2=20 m

Resolução:

$$\Delta \dot{E}_p = \dot{E}_{p2} - \dot{E}_{p1} = \dot{m}g(h_2 - h_1)$$

$$\Delta \dot{E}_p = 15 \ kg/s \times 9.81 \ m/s^2 \times (20 - (-220)) \ m$$

$$\Delta \dot{E}_p = 35300 \, J/s$$

$$E_p = mgh$$

$$\dot{E_p} = \dot{m}gh$$

$$1 J=1 Kgm^2 s^{-2}$$

Bombeia-se petróleo de uma profundidade de 220 m abaixo da superfície da Terra até uma altura de 20 m acima da superfície, a um caudal de 15 kg/s. Calcule a variação de energia potencial associada a este processo. Qual a potência mínima da bomba a usar?

$$(1N = 1 \text{ kg.m.s}^{-2})$$

Profundidade h1= -220 m até h2=20 m

Resolução:

$$\Delta \dot{E}_p = \dot{E}_{p2} - \dot{E}_{p1} = \dot{m}g(h_2 - h_1)$$

$$\Delta \dot{E}_p = 15 \ kg/s \times 9.81 \ m/s^2 \times (20 - (-220)) \ m$$

$$\Delta \dot{E}_p = 35300 \, J/s$$

$$E_p = mgh$$

$$\dot{E_p} = \dot{m}gh$$

A potência mínima da bomba a usar seria de 35.3 kW (1 W = 1 J/s)

Sistema fechado: não há transferência de massa

através da fronteira do sistema (quando existe,

diz-se que é um sistema aberto)

Exemplos:

> Sistema fechado: processo descontínuo

> Sistema aberto: processos semi-contínuo e contínuo

Num sistema fechado não há transferência de massa através do sistema. Mas pode haver transferência de energia (na forma de trabalho e/ou de calor)

Energia transferida para o sistema Energia final do sistema Energia inicial do sistema

Energia final do sistema = Energia inicial do sistema = Energia transferida para o sistema

Balanço de energia é realizado entre dois instantes temporais, t_i e t_f

Energia final do sistema Energia inicial do sistema

Energia transferida para o sistema

- Energia inicial do sistema = $U_i + E_{c_i} + E_{p_i}$
- Energia final do sistema = $U_f + E_{c_f} + E_{p_f}$
- Energia transferida = Q W

$$(U_f - U_i) + (E_{c_f} - E_{c_i}) + (E_{p_f} - E_{p_i}) = Q - W$$

E_c: Energia Cinética

E_D: Energia Potencial

U: Energia Interna

Q: Calor

W: Trabalho

(+W quando feito **pelo** sistema à vizinhança)

Energia final do sistema Energia inicial do sistema

Energia transferida para o sistema

$$(U_f - U_i) + (E_{c_f} - E_{c_i}) + (E_{p_f} - E_{p_i}) = Q - W$$

$$\Delta U + \Delta E_c + \Delta E_p = Q - W$$

1º lei da termodinâmica para um sistema fechado

SCIENCE & TECHNOLOG Balanço de energia a um sistema fechado: considerações

$$\Delta U + \Delta E_c + \Delta E_p = Q - W$$

Energia Interna U: depende da composição química, estado de agregação [U = f(estado físico, T)]; U $\neq f(P)$ para gases ideais; U $\approx \neq f(P)$ para sólidos e líquidos

- Se sistema para o qual $\Delta T = 0$; \nexists mudanças de fase; \nexists reacções químicas => $\Delta U \approx 0$
- Se sistema não acelera => ΔE_c = 0; Posição do sistema não se altera => ΔE_p = 0
- Se sistema adiabático (não há trocas de calor com o exterior) => Q = 0
- Se sistema n\u00e3o realiza trabalho de/para o exterior => W = 0

Balanço de energia a um sistema aberto

Sistema aberto: há transferência de massa através da fronteira do sistema

Existirá trabalho realizado pela vizinhança no sistema para introduzir massa no sistema e trabalho realizado pelo sistema na vizinhança pela massa que sai do sistema

(através de uma bomba, ou pelo próprio fluido por alteração da relação PV)

Que tipos de trabalho podemos ter?

- Trabalho de máquina (Shaft work)
- Trabalho de fluxo ou de escoamento (Flow work)

Trabalho de máquina, \dot{W}_s : Trabalho realizado pelo fluido numa peça móvel do sistema (exemplo: o rotor de uma bomba)

Trabalho de fluxo, $\dot{W_{fl}}$: Trabalho realizado pelo fluido nas correntes de saída e de entrada

Trabalho <u>total</u> realizado por um sistema aberto $\dot{W} = \dot{W}_S + \dot{W}_{fl}$

Trabalho de fluxo ou de escoamento

$$\dot{V}_{\text{in}}(\text{m}^3/\text{s})$$
 $P_{\text{in}}(\text{N/m}^2)$
PROCESS $\dot{V}_{\text{out}}(\text{m}^3/\text{s})$
 $P_{\text{out}}(\text{N/m}^2)$

- $\dot{W}_{in}(N.m/s) = P_{in}(N/m^2) \dot{V}_{in}(m^3/s)$
- $\dot{W}_{out}(N.m/s) = P_{out}(N/m^2) \dot{V}_{out}(m^3/s)$

$$\dot{W}_{fl} = P_{out}\dot{V}_{out} - P_{in}\dot{V}_{in}$$

'PV' mede a quantidade de energia associada ao conjunto sistema-vizinhança devido ao facto do sistema ocupar um volume V quando submetido a uma dada pressão P

Trabalho realizado quando um fluido é expandido ou comprimido- Trabalho PV

Considerando o esquema pistão-cilindro. Aplica-se uma força f ao pistão para comprimir o gas. O trabalho realizado é o produto da força externa com o vector deslocamento. Como o deslocamento e a força estão na mesma diracção podemos escrever simplesmente a força vezes o deslocamento

Uma mudança positiva no deslocamento produz uma mudança negativa no volume. Assim a relação entre W e a variação de volume é dada por:

W = -PdV. Não esquecer o sinal negativo.

$$W = \int_{ex}^{\overline{f}_{ex}} d\overline{s}$$

$$\overline{f}_{ex} = P_{ex} A \qquad ds = -\frac{dV}{A}$$

$$\therefore W = \int_{ex}^{\overline{f}_{ex}} A(-\frac{dV}{A}) = -\int_{ex}^{\overline{f}_{ex}} dV = W$$

(+W quando feito ao sistema pela vizinhança)

Propriedades específicas; Entalpia

Propriedades de um processo:

- Extensivas (proporcionais à quantidade de matéria; exemplos: massa, mole, volume, energia)
- Intensivas (independente da quantidade; exemplo: temperatura, pressão)

Propriedade específica: propriedade extensiva dividida pela quantidade total de matéria

Volume específico, \hat{V} [m³/kg] = volume/massa

Energia interna específica, \widehat{U} [J/kg] = energia/massa

Propriedades específicas; Entalpia

Propriedades de um processo:

- Extensivas (proporcionais à quantidade de matéria; exemplos: massa, mole, volume, energia)
- Intensivas (independente da quantidade; exemplo: temperatura, pressão)

Propriedade específica: propriedade extensiva dividida pela quantidade total de matéria

Volume específico, \hat{V} [m³/kg] = volume/massa

Energia interna específica, \widehat{U} [J/kg] = energia/massa

Entalpia específica, \widehat{H} [J/kg] $\widehat{H} \equiv \widehat{U} + P\widehat{V}$

A energia interna e o volume molar específicos do hélio a 300K e 1 atm são 3800 J/mol e 24.63 L/mol, respectivamente. Calcule a entalpia específica do hélio nas condições anteriores.

0.08206 Latm/(mol.K) = 8.314 J/(mol.K)

A energia interna e o volume molar específicos do hélio a 300K e 1 atm são 3800 J/mol e 24.63 L/mol, respectivamente. Calcule a entalpia específica do hélio nas condições anteriores.

0.08206 Latm/(mol.K) = 8.314 J/(mol.K)

Resolução:

$$\widehat{H} = \widehat{U} + P\widehat{V} = 3800 J/mol + 1 atm \times 24.63 L/mol$$

A energia interna e o volume molar específicos do hélio a 300K e 1 atm são 3800 J/mol e 24.63 L/mol, respectivamente. Calcule a entalpia específica do hélio nas condições anteriores.

0.08206 Latm/(mol.K) = 8.314 J/(mol.K)

Resolução:

$$\widehat{H} = \widehat{U} + P\widehat{V} = 3800 J/mol + 1atm \times 24.63 L/mol$$

$$1 \text{ atm} = \frac{8.314 J/mol.K}{0.08206 L/(mol.K)} = 101.3 J/L$$

$$\widehat{H} = 3800 J/mol + 101.3 J/L \times 24.63 L/mol$$

$$\widehat{H} = 6295 J/mol$$

Estado estacionário

Entrada de Energia no sistema

Saída de Energia do sistema (+Q quando fornecido ao sistema)

(+W quando feito pelo sistema à vizinhança)

$$\dot{Q} + \sum_{\substack{correntes \\ entrada}} \dot{E_j} = \sum_{\substack{correntes \\ saída}} \dot{E_j} + \dot{W}$$

[=] energia/tempo

$$\sum_{\substack{correntes\\saida}} \dot{E_j} - \sum_{\substack{correntes\\entrada}} \dot{E_j} = \dot{Q} - \dot{W}$$

$$\sum_{\substack{correntes\\saida}} \dot{E}_j - \sum_{\substack{correntes\\entrada}} \dot{E}_j = \dot{Q} - \dot{W}$$

$$\star \qquad \dot{E}_j = \dot{U}_j + \dot{E_c}_j + \dot{E_p}_j$$

$$\dot{U}_{j} = \dot{m}_{j} \hat{U}_{j}$$

$$\dot{E}_{c_{j}} = \dot{m}_{j} u_{j}^{2} / 2$$

$$\dot{E}_{p_{i}} = \dot{m}_{j} g z_{j}$$

$$\begin{array}{ll}
\dot{U_j} = \dot{m_j} \hat{U_j} \\
\dot{E_{c_j}} = \dot{m_j} u_j^2 / 2 \\
\dot{E_{n_j}} = \dot{m_j} q z_j
\end{array}
\qquad
\dot{E_j} = \dot{m_j} \left(\widehat{U_j} + \frac{u_j^2}{2} + g z_j \right)$$

E_c: Energia Cinética

E_n: Energia Potencial

U: Energia Interna

$$\dot{\mathbf{W}} = \dot{W}_S + \dot{W}_{fl} = \dot{W}_S + \sum_{\substack{correntes \\ saida}} P_j \dot{V}_j - \sum_{\substack{correntes \\ entrada}} P_j \dot{V}_j$$

$$\dot{V_j} = \dot{m_j} \hat{V_j}$$

$$\dot{V}_{j} = \dot{m}_{j}\hat{V}_{j}$$

$$\dot{W} = \dot{W}_{S} + \sum_{\substack{correntes \\ saída}} \dot{m}_{j}P_{j}\hat{V}_{j} - \sum_{\substack{correntes \\ entrada}} \dot{m}_{j}P_{j}\hat{V}_{j}$$

$$\sum_{\substack{\text{correntes}\\\text{sa\'ida}}} \dot{E_j} - \sum_{\substack{\text{correntes}\\\text{entrada}}} \dot{E_j} = \dot{Q} - \dot{W}$$

$$\dot{E}_{j} = \dot{m}_{j} \left(\hat{U}_{j} + \frac{u_{j}^{2}}{2} + gz_{j} \right)$$

$$\dot{W} = \dot{W}_{s} + \sum_{\substack{correntes \\ saida}} \dot{m}_{j} P_{j} \hat{V}_{j} - \sum_{\substack{correntes \\ entrada}} \dot{m}_{j} P_{j} \hat{V}_{j}$$

$$\sum_{\substack{correntes\\ saida}} \dot{m_j} \left(\widehat{U}_j + P_j \widehat{V}_j + \frac{u_j^2}{2} + gz_j \right) - \sum_{\substack{correntes\\ entrada}} \dot{m_j} \left(\widehat{U}_j + P_j \widehat{V}_j + \frac{u_j^2}{2} + gz_j \right) = \dot{Q} - \dot{W}_s$$

$$\sum_{\substack{correntes\\saída}} \dot{m}_{j} \left(\widehat{U}_{j} + P_{j} \widehat{V}_{j} + \frac{u_{j}^{2}}{2} + gz_{j} \right) - \sum_{\substack{correntes\\entrada}} \dot{m}_{j} \left(\widehat{U}_{j} + P_{j} \widehat{V}_{j} + \frac{u_{j}^{2}}{2} + gz_{j} \right) = \dot{Q} - \dot{W}_{s}$$

$$\widehat{H}_j = \widehat{U}_j + P_j \widehat{V}_j$$

$$\sum_{\substack{correntes\\saída}} \dot{m_j} \left(\widehat{H}_j + \frac{u_j^2}{2} + gz_j \right) - \sum_{\substack{correntes\\entrada}} \dot{m_j} \left(\widehat{H}_j + \frac{u_j^2}{2} + gz_j \right) = \dot{Q} - \dot{W}_s$$

$$\sum_{\substack{correntes\\saida}} \dot{m_j} \left(\widehat{H_j} + \frac{u_j^2}{2} + gz_j \right) - \sum_{\substack{correntes\\entrada}} \dot{m_j} \left(\widehat{H_j} + \frac{u_j^2}{2} + gz_j \right) = \dot{Q} - \dot{W_s}$$

$$\Delta \dot{H} = \sum_{\substack{correntes \ saida}} \dot{m}_j \widehat{H}_j - \sum_{\substack{correntes \ entrada}} \dot{m}_j \widehat{H}_j$$
 $\Delta \dot{E}_c = \sum_{\substack{correntes \ saida}} \dot{m}_j u_j^2/2 - \sum_{\substack{correntes \ entrada}} \dot{m}_j u_j^2/2$
 $\Delta \dot{E}_p = \sum_{\substack{correntes \ saida}} \dot{m}_j g z_j - \sum_{\substack{correntes \ entrada}} \dot{m}_j g z_j$

$$\Delta \dot{H} + \Delta \dot{E_c} + \Delta \dot{E_p} = \dot{Q} - \dot{W_s}$$

i.e. a velocidade à qual a energia é transferida para o sistema (na forma de calor e/ou de trabalho) é igual à diferença entre as velocidades de transporte de energia a entrar e a sair do sistema

Balanço de energia a um sistema aberto: considerações

$$\Delta \dot{H} + \Delta \dot{E_c} + \Delta \dot{E_p} = \dot{Q} - \dot{W_s}$$

- Se não existem partes móveis no sistema $\dot{W}_s = 0$
- Se as velocidades de todas as correntes são iguais $\Delta \vec{E}_c = 0$
- Se todas as correntes entram e saem à mesma altura $\Delta E_p = 0$

Importância da 'ENTALPIA' em 'cálculos de engenharia!

'Entalpia' ≡ do grego 'enthalpos' (i.e. "to put heat into")

Balanço de energia a um sistema aberto: considerações

$$\Delta \dot{H} + \Delta \dot{E_c} + \Delta \dot{E_p} = \dot{Q} - \dot{W_s}$$

- Não existem partes móveis no sistema $\dot{W}_s = 0$
- As velocidades de todas as correntes são iguais $\Delta \dot{E}_c = 0$
- Todas as correntes entram e saem à mesma altura $\Delta \dot{E_p} = 0$
- Sistema adiabático (não há trocas de calor com o exterior) $\dot{Q} = 0$

$$\sum_{\substack{correntes\\saída}} \dot{H}_j = \sum_{\substack{correntes\\entrada}} \dot{H}_j$$

$$\Delta U + \Delta E_c + \Delta E_p = Q - W$$

Podemos considerar um sistema fechado porque consideramos que toda a massa de água entra na central.

Simplificações:

- $\Delta T = 0 e \Delta P = 0 \Rightarrow \Delta U \approx 0$
- Sistema não acelera => $\Delta E_c = 0$
- Não há trocas de calor com o exterior $(T_{ar} \approx T_{água}) => Q = 0$

$$\Delta U + \Delta E_c + \Delta E_p = Q - W$$

Podemos considerar um sistema fechado porque consideramos que toda a massa de água entra na central.

Simplificações:

- $\Delta T = 0 e \Delta P = 0 \Rightarrow \Delta U \approx 0$
- Sistema não acelera => $\Delta E_c = 0$
- Não há trocas de calor com o exterior $(T_{ar} \approx T_{água}) => Q = 0$

$$\Delta E_p = -W$$

$$\Delta U + \Delta E_c + \Delta E_p = Q - W$$

Podemos considerar um sistema fechado porque consideramos que toda a massa de água entra na central.

Simplificações:

- $\Delta T = 0 e \Delta P = 0 \Rightarrow \Delta U \approx 0$
- Sistema não acelera => $\Delta E_c = 0$
- Não há trocas de calor com o exterior $(T_{ar} \approx T_{água}) => Q = 0$

$$\Delta E_p = -W$$

$$\Delta \dot{E}_p = \dot{E}_{p2} - \dot{E}_{p1} = \dot{m}g(h_2 - h_1)$$

$$\Delta \dot{E}_p = 417000 \, kg/60s \times 9.81 \, m/s^2 \times (0 - 100) \, m$$

$$\Delta U + \Delta E_c + \Delta E_p = Q - W$$

Podemos considerar um sistema fechado porque consideramos que toda a massa de água entra na central.

Simplificações:

- $\Delta T = 0 e \Delta P = 0 \Rightarrow \Delta U \approx 0$
- Sistema não acelera => $\Delta E_c = 0$
- Não há trocas de calor com o exterior $(T_{ar} \approx T_{água}) => Q = 0$

$$\Delta E_p = -W$$

Porque o sinal positivo??

$$\Delta \dot{E}_p = \dot{E}_{p2} - \dot{E}_{p1} = \dot{m}g(h_2 - h_1)$$

$$\Delta \dot{E}_p = 417000 \ kg/60s \times 9.81 m/s^2 \times (0 - 100) m$$

$$\Delta \dot{E}_p = -6.82 \ MJ/s = -6.82 \ MW \qquad => \text{A potência máxima possível} = 6.82 \ \text{MW}$$

Uma turbina é accionada pela passagem de 500 kg/h de vapor. O vapor entra na turbina a 44 bar e 450 ºC, com uma velocidade linear de 60 m/s, saindo da turbina 5 m abaixo do ponto de entrada, a 1 bar e com uma velocidade linear de 360 m/s. A turbina desenvolve uma potência de 700 kW. As perdas de calor são aproximadamente de 41.8 MJ/h. calcule a variação de entalpia associada ao processo

Uma turbina é accionada pela passagem de 500 kg/h de vapor. O vapor entra na turbina a 44 bar e 450 ºC, com uma velocidade linear de 60 m/s, saindo da turbina 5 m abaixo do ponto de entrada, a 1 bar e com uma velocidade linear de 360 m/s. A turbina desenvolve uma potência de 700 kW. As perdas de calor são aproximadamente de 41.8 MJ/h. calcule a variação de entalpia associada ao processo

Resolução: $\Delta \dot{H} + \Delta \dot{E_c} + \Delta \dot{E_p} = \dot{Q} - \dot{W_s}$

Sistema aberto

$$\dot{m} = 500 \; \frac{kg}{h} \frac{1h}{3600s} = 0.139 \frac{kg}{s}$$

Q= 41.8
$$\frac{MJ}{h} \frac{1h}{3600s} \frac{1000kJ}{1MJ} = 11611J/s$$

Uma turbina é accionada pela passagem de 500 kg/h de vapor. O vapor entra na turbina a 44 bar e 450 °C, com uma velocidade linear de 60 m/s, saindo da turbina 5 m abaixo do ponto de entrada, a 1 bar e com uma velocidade linear de 360 m/s. A turbina desenvolve uma potência de 700 kW. As perdas de calor são aproximadamente de 41.8 MJ/h. calcule a variação de entalpia associada ao processo

Resolução:
$$\Delta \dot{H} + \Delta \dot{E_c} + \Delta \dot{E_p} = \dot{Q} - \dot{W_S}$$
 Sistema aberto

$$\dot{W}_{s} = 700 \ kJ/s$$
 $\dot{Q} = 11611 \ kJ/s$

$$\Delta \dot{E}_{p} = \dot{E}_{p2} - \dot{E}_{p1} = \dot{m}g(h_{2} - h_{1})$$

$$= 0.139 \ kg/s \times 9.81 \ m/s^{2} \times (0 - 5) \ m$$

$$= -6.81 \ J/s$$

$$\dot{m} = 500 \; \frac{kg}{h} \frac{1h}{3600s} = 0.139 \frac{kg}{s}$$

Q= 41.8
$$\frac{MJ}{h} \frac{1h}{3600s} \frac{1000kJ}{1MJ} = 11611J/s$$

Uma turbina é accionada pela passagem de 500 kg/h de vapor. O vapor entra na turbina a 44 bar e 450 °C, com uma velocidade linear de 60 m/s, saindo da turbina 5 m abaixo do ponto de entrada, a 1 bar e com uma velocidade linear de 360 m/s. A turbina desenvolve uma potência de 700 kW. As perdas de calor são aproximadamente de 41.8 MJ/h. calcule a variação de entalpia associada ao processo

Resolução:
$$\Delta \dot{H} + \Delta \dot{E_c} + \Delta \dot{E_p} = \dot{Q} - \dot{W_S}$$
 Sistema aberto

$$\dot{W}_{s} = 700 \, kJ/s \qquad \dot{Q} = 11611 \, kJ/s$$

$$\Delta \dot{E}_{p} = \dot{E}_{p2} - \dot{E}_{p1} = \dot{m}g(h_{2} - h_{1})$$

$$= 0.139 \, kg/s \times 9.81 \, m/s^{2} \times (0 - 5) \, m$$

$$= -6.81 \, J/s$$

$$\Delta \dot{E}_{c} = \dot{E}_{c2} - \dot{E}_{c1} = \frac{1}{2} \dot{m}(u_{2}^{2} - u_{1}^{2})$$

$$= \frac{1}{2} \times 0.139 \, kg/s \times (360^{2} - 60^{2})$$

$$= +8750 \, J/s$$

$$\dot{m} = 500 \, \frac{kg}{h} \frac{1h}{3600s} = 0.139 \frac{kg}{s}$$

$$Q=41.8 \frac{MJ}{h} \frac{1h}{3600s} \frac{1000kJ}{1MJ} = 11611J/s$$

Uma turbina é accionada pela passagem de 500 kg/h de vapor. O vapor entra na turbina a 44 bar e 450 °C, com uma velocidade linear de 60 m/s, saindo da turbina 5 m abaixo do ponto de entrada, a 1 bar e com uma velocidade linear de 360 m/s. A turbina desenvolve uma potência de 700 kW. As perdas de calor são aproximadamente de 41.8 MJ/h. calcule a variação de entalpia associada ao processo

Resolução:
$$\Delta \dot{H} + \Delta \dot{E_c} + \Delta \dot{E_p} = \dot{Q} - \dot{W_S}$$
 Sistema aberto

$$\dot{W}_{S} = 700 \ kJ/s \qquad \dot{Q} = 11611 \ kJ/s$$

$$\Delta \dot{E}_{p} = \dot{E}_{p2} - \dot{E}_{p1} = \dot{m}g(h_{2} - h_{1})$$

$$= 0.139 \ kg/s \times 9.81 \ m/s^{2} \times (0 - 5) \ m$$

$$= -6.81 \ J/s$$

$$\Delta \dot{E}_{c} = \dot{E}_{c2} - \dot{E}_{c1} = \frac{1}{2} \dot{m}(u_{2}^{2} - u_{1}^{2})$$

$$= \frac{1}{2} \times 0.139 \ kg/s \times (360^{2} - 60^{2})$$

$$= +8750 \ J/s$$

$$\dot{m} = 500 \, \frac{kg}{h} \frac{1h}{3600s} = 0.139 \frac{kg}{s}$$

Q= 41.8
$$\frac{MJ}{h} \frac{1h}{3600s} \frac{1000kJ}{1MJ} = 11611J/s$$

$$\Delta \dot{H} = -\Delta \dot{E_c} - \Delta \dot{E_p} + \dot{Q} - \dot{W_s}$$

$$\Delta \dot{H} = -8750 + 6.81 - 11611 - 700000$$

$$\Delta \dot{H}$$
 =-720.3 kW