International Journal of Mathematics and Computer Applications Research (IJMCAR) ISSN(P 2249-6955; ISSN(E): 2249-8060 Vol. 5, Issue 3, Jun 2015, 75-80 TJPRC Pvt. Ltd.

LINE DOUBLE DOMINATION IN GRAPHS

M. H. MUDDEBIHAL¹ & SUHAS P. GADE²

¹Department of Mathematics Gulbarga University, Gulbarga, Karnataka, India ²Department of Mathematics, Sangameshwar College, Solapur, Maharashtra, India

ABSTRACT

Let G = (V, E) be a graph. A set $D \subseteq V$ is called a dominating set if every vertex in V - D is adjacent to at least one vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a minimal dominating set. A subset D^d of V[L(G)] is a double dominating set of L(G) if for every vertex $v \in V[L(G)]$, $|N[v] \cap D^d| \ge 2$, that is v is in D^d and has at least one neighbour in D^d or v is in $V[L(G)] - D^d$ and has at least two neighbours in D^d . The line double domination number $\gamma_{dd}(G)$ is the minimum cardinality among all line double dominating sets of L(G). In this paper many bounds on $\gamma_{dd}(G)$ were obtained in terms of vertices, edges and other different parameters of G, but not the elements of L(G), further we develop its relationship with other different domination parameters.

KEYWORDS: Line Graph, Dominating Set, Double Dominating Set, Double Domination Number

Subject Classification Number: AMS-05C69, 05C70.

1. INTRODUCTION

All graphs under consideration are finite undirected and loop-less without multiple edges. Let G = (V, E) be a graph with vertex set V and edge set E. As usual p = |V| and q = |E| denote the number of vertices and edges of a graph G respectively. In general we use 0 < X > 0 denote the sub-graph induced by the set of vertices X and X(v) and X[v] denote the open and closed neighbourhood of a vertex v, respectively. The minimum (maximum) degree among the vertices of G is denoted by $G(G)(\Delta(G))$. A vertex of degree one is called an end vertex. Also G(G)(G)(G)(G) is the minimum number of vertices (edges) in a maximal independent set of vertex (edge) of $G \cdot \chi(G)(\chi''(G))$ is the minimum G for which G has an G-vertices (G-edges) colourings. A line graph G is the graph whose vertices correspond to the edges of G and two vertices in G-edges) colourings. A line graph G-edges in G-are adjacent. We begin with some standard definitions from domination theory. Let G = (V, E) be a graph. A set G-edges in a graph G-is called a dominating set of G-every vertex in G-edges adjacent to some vertex in G-edges in a graph G-edges and G-edges in a graph G-edges in a graph G-edges in a graph G-edges in a graph G-edges in G-edges in a graph G-edges in a graph G-edges in G-

www.tiprc.org editor@tjprc.org

76 M. H. Muddebihal & Suhas. P. Gade

every vertex in V[L(G)] is dominated by at least two vertices in S. Or a subset D^d of V[L(G)] is a double dominating set of L(G) if for every vertex $v \in V[L(G)]$, $|N[v] \cap D^d| \ge 2$, that is v is in D^d and has at least one neighbour in D^d or v is in $V[L(G)] - D^d$ has at least two neighbours in D^d and is denoted by $\gamma_{ddl}(G)$. In this paper, many bounds on $\gamma_{ddl}(G)$ were obtained in terms of vertices, edges of G but not the member of L(G) Also we establish line double domination of a line graph and express the results with other different domination parameters of G.

We need the following Theorem to prove our further results.

Theorem A[1]: Let G be a graph with diam(G) = 2 then $\gamma_t(G) \leq \delta(G) + 1$.

Theorem B[4]: If G is a graph without isolated vertices and $p \geq 3$ then $\gamma_{ss}(G) = \alpha_0(G)$.

Theorem G[4]: A non split dominating set D of G is minimal if and only if for each vertex $v \in D$ there exist a vertex $u \in V - D$ such that $N(u) \cap D = \{v\}$.

Theorem D[2]: For any connected (p,q) graph $G, \chi(G) \leq \Delta(G) + 1$.

Theorem E[3]: For any connected (p,q) graph G, $\left[\frac{diam(G)}{3}\right] \leq \gamma(G)$.

Observation 1: For any connected (p,q) graph $G, p-\gamma_{ddl}(G) \ge 1$.

2. Upper Bound for $\gamma_{ddl}(G)$:

We shall establish the upper bound for $\gamma_{ddl}(G)$ in terms of the vertices of G.

Theorem 1: For any connected (p,q) graph G, $\gamma_{ddl}(G) \leq p-1$. Equality holds for P_3 , C_4 , C_5 .

Proof: Suppose D^d is a double dominating set of L(G). Then by definition of double domination, $|V[L(G)]| \ge 2$. Further by observation, $p - \gamma_{ddl}(G) \ge 1$. Clearly it follows that $\gamma_{ddl}(G) \le p - 1$. Suppose G is isomorphic to P_3, C_3, C_4, C_5 . Then in this case $|D^d| = p - 1$.

In Theorem 2, the upper bound for $\gamma_{ddl}(G)$ shall be expressed in terms of $\gamma(G)$ and vertices of G.

Theorem 2: For any connected (p,q) graph $G, \gamma_{ddl}(G) + diam(G) \leq p + \gamma(G)$.

Proof: Let $I = \{e_1, e_2, e_3, ..., e_n\}$ subset of E(G) be the minimal set of edges which constitutes the longest path between any two distinct vertices $u, v \in V(G)$ such that dist(u, v) = diam(G). Furthermore let $D = \{v_1, v_2, ..., v_i\}$ be any minimal dominating set of G and let $E = \{e_1, e_2, ..., e_n\}$ be the set of edges of G. Now by definition of L(G), E(G) = V[L(G)]. Let $D^d = \{u_1, u_2, ..., u_k\}$ be the double dominating set of L(G) such that $|N[u] \cap D^d| \ge 2 \forall u \in V[L(G)] - D^d$. It follows that $|D^d| \cup dist(u, v) \le p \cup |D|$ and hence $\gamma_{ddl}(G) + diam(G) \le p + \gamma(G)$.

Theorem 3: For any connected (p, q) graph $G, \gamma_{ddl}(G) \leq q$.

Proof: Suppose $H = \{u_1, u_2, \dots, u_m\}$ be the subset of V[L(G)] and $\deg(u_i)$, $\forall u_i \in H$ has at least two. Then D_1 is subset of H form a minimal dominating set of L(G). Further if $I = \{u_1, u_2, \dots, u_m\}$ be the set all end vertices in L(G) then $I \cup H_1 = D^d$ where $H_1 \subseteq H$ form a double dominating set of L(G) such that $|N[u] \cap D^d| \ge 2 \ \forall \ u \in V[L(G)] - D^d$. Since V[L(G)] = E(G) = q, it follows that $|D^d| \le q$. Hence $\gamma_{ddl}(G) \le q$.

Theorem 4: For any connected (p,q) graph $G, \gamma_{ddl}(G) + \gamma[L(G)] \leq p+2$.

Proof: Let D be the minimal dominating set of G. Now in L(G), if $F = \{u_1, u_2, ..., u_k\}$ be the set of all end vertices in L(G). Then $F \cup H = D^d$, where $H \subseteq V[L(G)] - F$ forms a double dominating set of L(G), such that $|N[u] \cap D^d| \ge 2 \ \forall \ u \in V[L(G)] - D^d$. Since each vertex in L(G) corresponds to the edges of G and each edge in G is incident to two vertices of G, it follows that $|D^d| \cup |D| \le p + 2$. Hence $\gamma_{ddl}(G) + \gamma[L(G)] \le p + 2$.

Theorem 5: For any connected (p,q) graph $G, \gamma_{ddl}(G) \leq p$.

Proof: Let D be any minimal dominating set of G. Further let $E = \{e_1, e_2, ..., e_n\}$ be the set of all edges which are incident to the vertices of G. Now by definition of line graph, V[L(G)] = E(G). Suppose $I = \{u_1, u_2, ..., u_i\}$ be the set of all end vertices in L(G), then $I \cup H = D$ where H

Subset of F, forms a double dominating set of L(G) such that $|N[u] \cap D^d| \ge 2 \ \forall \ u \in V[L(G)] - D^d$. Clearly $|D^d| = |I \cup H| \le p$. It follows that $\gamma_{ddl}(G) \le p$.

Theorem 6: For any connected (p,q) graph $G, \gamma_{ddl}(G) + \chi(G) \leq p + \Delta(G)$.

Proof: By Theorem 1 and by Theorem D, clearly it follows that $\gamma_{ddl}(G) + \chi(G) \leq p + \Delta(G)$.

Theorem 7: For any connected (p,q) graph $G, \gamma_{ddl}(G) + \gamma(G) \leq p + \left\lceil \frac{\alpha_0}{2} \right\rceil$. Equality holds for C_4 .

Proof: Let $B = \{v_1, v_2, \dots, v_k\}$ be the minimum set of vertices which covers all the edges of G such that $|B| = \alpha_0$. Further D be a γ -set of G. Let $E = \{e_1, e_2, \dots, e_n\}$ be the set of all edges of G.

Now by definition of line graph L(G), E(G) = V[L(G)]. Suppose $I = \{u_1, u_2, ..., u_k\}$ be the set of all end vertices in L(G), then $|I \cup H| = D^d$ where $H \subseteq E$, forms a double dominating set of L(G) such that $|N[u] \cap D^d| \ge 2 \ \forall \ u \in V[L(G)] - D^d$. It follows that $2\{|H \cup I| \cup |D|\} - |B| \le 2p$ and hence $\gamma_{ddl}(G) + \gamma(G) \le p + \left\lceil \frac{\alpha_0}{2} \right\rceil$. Suppose G is isomorphic to C_4 . Then in this case, |B| = 2 and $\alpha_0(G) = 2 = \alpha(G)$. Clearly, $\gamma_{ddl}(G) + \gamma(G) \le p + \left\lceil \frac{\alpha_0}{2} \right\rceil$.

www.tjprc.org editor@tjprc.org

78 M. H. Muddebihal & Suhas. P. Gade

Theorem 8: For any connected (p, q) graph $G \gamma_{ddl}(G) \leq \gamma_s(G) + \gamma_{ss}(G)$.

Proof: By Theorem 12 and Theorem 13 the result follows.

3. Lower Bound for $\gamma_{ddl}(G)$:

Theorem 9: For any connected (p,q) graph G, $\left\lceil \frac{p}{\Delta(G)} \right\rceil \leq \gamma_{ddl}(G)$.

Proof: Let $D = \{v_1, v_2, \dots, v_k\}$ be any minimal dominating set of G and let $F = \{e_1, e_2, \dots, e_i\}$ be the set of edges which are incident with the vertices of G. Now by the definition of L(G),

 $F \subseteq V[L(G)]$. Clearly $D^d = \{u_1, u_2, \dots, u_k\} \subseteq F$ in L(G) forms the double dominating set of L(G) such that $|N[u] \cap D^d| \ge 2 \ \forall \ u \in V[L(G)] - D^d$. Further, suppose $C = \{v_1, v_2, \dots, v_n\} =$ be the set of all non end vertices in G, then there exists at least one vertex v of maximum degree

$$\Delta(G)$$
 in C , such that $|D^d|$. $\Delta(G) \ge p$. It follows that $\gamma_{ddl}(G) \ge \left[\frac{p}{\Delta(G)}\right]$.

Theorem 10: If every non end vertices of a tree is adjacent to at least one end vertices, then $\gamma_{ddl}(G) \ge p - m$. Where m is the number of end vertices in T.

Proof: Let T be a tree. If $diam(T) \geq 3$ and $S = \{v_1, v_2, \dots, v_m\}$ be the set of all end vertices of T with |S| = m and $d(v_i) = 1, 1 \leq i \leq m$. Let $E = \{e_1, e_2, \dots, e_i\}$ be the edge set of T. Now by the definition line graph L(G), E(G) = V[L(G)]. Suppose $I = \{u_1, u_2, \dots, u_k\}$ be the set of all end vertices in L(G), then $I \cup H = D^d$ where $H \subseteq E$, forms a double dominating set of L(G) such that $|N[u] \cap D^d| \geq 2 \forall u V[LG)] - D^d$. Since for any tree T, q = p - 1, it follows that $|D^d| \geq p - |S|$ and hence, $\gamma_{ddi}(G) \geq p - m$.

Theorem 11: For any connected (p,q) graph $G, \gamma_t(G) \leq \gamma_{ddl}(G)$.

Proof: Let $v \in V(G)$ and $\deg(v) = \delta(G)$. Since diam(G) = 2, then by Theorem A the dominating set $D, |D| \leq \delta(G) + 1$. Therefore, $\gamma_t(G) \leq \delta(G) + 1$. Suppose for any connected graph with $diam(G) \geq 2$, again by Theorem A, $|D| \geq \delta(G) + 1$. Hence $\gamma_t(G) \geq \delta(G) + 1$. Now let D^d be a double dominating set of L(G) such that $|N[u] \cap D^d| \geq 2 \ \forall \ u \in V[L(G)] - D^d$. Again by Theorem A, $|D^d| \geq \delta[L(G)] + 2$. Clearly it follows that $\gamma_{ddl}(G) \geq \delta[L(G)] + 2$. Hence $\gamma_t(G) \leq \gamma_{ddl}(G)$.

Theorem 12: For any connected (p,q) graph $G_1\gamma_s(G) \leq \gamma_{ddl}(G)$.

Proof: Let S be a maximum independent set of vertices in G. Then there exists a set S_1 subset of S such that S_1 has at least two vertices and every vertex in S_1 is adjacent to some vertex in $V - S_1$. Hence $V - S_1$ is a split dominating set of G. Therefore $|V - S_1| \le |S|$. Hence $\gamma_s(G) \le \beta_0$. Now let D^d be a double dominating set in L(G) such

that $|N[u] \cap D^d| \ge 2 \ \forall \ u \in V[L(G)] - D^d$. Since E(G) = V[L(G)], and let S^I be a maximum independent set of L(G). Then every vertex in S^I is adjacent to some vertex in $V[L(G)] - D^d$, such that $|N[v] \cap S^I| \ge 1 \ \forall \ v \in V[L(G)]$. Clearly, $|N[v] \cap S^I| \le |N[v] \cap D^d|$ it follows that $\beta_0[L(G)] \le \gamma_{ddl}(G)$. Hence $\gamma_s(G) \le \gamma_{ddl}(G)$.

Theorem 13: For any connected (p,q) graph $\gamma_{\sigma}(G) \leq \gamma_{dol}(G)$.

Proof: Let v be a vertex of maximum degree $\Delta(G)$. Then v is adjacent to N(v) vertices such that $\Delta(G) = N(v)$. Hence V - N(v) is a dominating set. Let D be a connected dominating set of G such that $D \leq V - \Delta(G)$. Therefore $|D| \leq |V - N(v)|$. Hence $\gamma_c(G) \leq p - \Delta(G)$. Now, let D^d be a double dominating set of L(G) such that $|N[v] \cap D^d| \geq 2 \ \forall \ u \in V[L(G)] - D^d$. Also $D^d \geq V - \Delta[L(G)]$. Therefore $|D^d| \geq |V - \Delta(G)|$, it follows that $\gamma_{ddl}(G) \geq p - \Delta[L(G)]$. Hence $\gamma_c(G) \leq \gamma_{ddl}(G)$.

Theorem 14: For any connected (p,q) graph G, $\gamma_{ss}(G) \leq \gamma_{ddl}(G)$.

Proof: Let S be a maximum independent set of vertices in G. Then V-S is a strong split dominating set of G. Since S is maximum, V-S is minimum. Thus $\gamma_{ss}(G)=\alpha_0(G)$. Now let D^d be a double dominating set in L(G). Since E(G)=V[L(G)]. Let S^I be a maximum independent set of L(G). Then $V[L(G)]-S^I$ is minimum and $|V[L(G)]-S^I| \leq |D^d|$. Clearly it follows that $\alpha_0[L(G)] \leq \gamma_{ddl}(G)$. Hence $\gamma_{ss}(G) \leq \gamma_{ddl}(G)$.

Theorem 15: For any connected (p, q) graph $\gamma_{ns}(G) \leq \gamma_{ddl}(G)$.

Proof: By Theorem [C], a non-split dominating set D of G is minimal if and only if for each vertex $u \in V - D$ such that $N(u) \cap D = \{v\}$. Therefore $|N(u) \cap D| = 1$. Now let D^d be a double dominating set of L(G) such that $|N[u] \cap D^d| \ge 2 \ \forall \ u \in V[L(G)] - D^d$. From the above, if for each vertex $v \in D^d$ then there exists a vertex $u \in V - D^d$ such that $N(u) \cap D^d = \{v_i, v_j\}$ for $i \ne j$ and $1 \le i, j \le n$. Therefore $|N(u) \cap D^d| = 2$. It is clear that $|N(u) \cap D| \le |N(u) \cap D^d|$. Hence $y_{ns}(G) \le y_{ddl}(G)$.

Theorem 16: For any connected (p,q) graph $G, \gamma(G) \leq \gamma_{ddl}(G)$.

Proof: Let $E = \{e_1, e_2, ..., e_n\}$ be the set of edges of G. Let $D = \{v_1, v_2, ..., v_k\}$ be any minimal dominating set of G such that for every vertex $v \in V(G) - D$ such that $|N[v] \cap D| \ge 1$. Now by definition of L(G), V[L(G)] = E(G), let $D^d = \{u_1, u_2, ..., u_i\}$, $1 \le i \le n$, in L(G), forms the double dominating set of L(G), such that $|N[u] \cap D^d| \ge 2 \ \forall \ u \in V[L(G)] - D^d$. It follows that $|D| \le |D^d|$ and

www.tjprc.org editor@tjprc.org

hence $\gamma(G) \leq \gamma_{ddl}(G)$.

Theorem 17: For any connected
$$(p,q)$$
 graph $G_r\left[\frac{diam(G)}{3}\right] \leq \gamma_{cldl}(G)$.

Proof: By Theorem [E] and Theorem [16] the result follows.

REFERENCES

- 1. Gangadharappa D. B. And A. R. Desai, Some bounds on Domination of a graph, J.Comp. and Math.Sci. Vol. 2(2), 234-242(2011).
- 2. F. Harary, "Graph Theory", Adison Wesley, Reading Mass (1972)
- 3. T.W.Haynes, S.T. Hedetniemi and P.J. Slater, "Fundamentals of Domination in Graphs". Marcel Dekker, Inc; New York, (1998).
- 4. V. R. Kulli, "Theory of Domination in Graphs", Vishwa International Publications, India, (2010).