МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.4.5

Петля гистерезиса

Б03-102 Куланов Александр

- Цель работы: изучение петель гистерезиса различных ферромагнитных материалов в переменных полях.
- В работе используются: автотрансформатор, понижающий трансформатор, интегрирующая цепочка, амперметр, вольтметр, электронный осциллограф, делитель напряжения, тороидальные образцы с двумя обмотками.

1 Экспериментальная установка

Рис. 1: Схема установки

Схема установки представлена на рисунке 1. Напряжение сети (220 В, 50 Γ ц) с помощью трансформаторного блока T, состоящего из регулировочного автотрансформатора и разделительного понижающего трансформатора, подаётся на намагничивающую обмотку N_0 исследуемого образца. В цепь намагничивающей катушки, на которую подаётся некоторое напряжение V_0 , последовательно включено сопротивление R_0 . Напряжение на R_0 , равное $U_R = R_0 I_0$, где I_0 - ток в намагничивающей обмотке N_0 , подаётся на канал X осциллографа. Связь напряжённости H в образце и тока I_0 рассчитывается по теореме о циркуляции. Действующее значение переменного тока в обмотке N_0 измеряется амперметром A.

Для измерения магнитной индукции B с измерительной обмоткой $N_{\rm BX}$, пропорциональное производной dB/dt. С интегрирующей ёмкости $C_{\rm u}$ снимается напряжение $U_{\rm выx}$, пропорциональное величине B, и подается на вход Y осциллографа. Значение индукции поля B рассчитывается по формуле 1

$$|B| = \frac{1}{SN} \int U_{\text{BX}} dt = \frac{\tau_{\text{H}}}{SN} U_{\text{BMX}}, \tag{1}$$

где $\tau_{\tt m}=R_{\tt m}C_{\tt m}$ — постоянная времени RC-цепочки. Замкнутая кривая, возникающая на экране осциллографа, воспроизводит в масштабе петлю гистерезиса, который выбирается вручную.

2 Теоретические сведения

К ферромагнетикам принадлежат железо, никель, кобальт, гадолиний, их многочисленные сплавы с другими металлами. К ним примыкают ферриты — диэлектрики со структурой антиферромагнетика.

Магтнитная индукция B и напряженность магнитного поля H в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряженности, но и от предыстории образца. Связь между индукцией и напряженностью поля типичного ферромагнетика иллюстрирует рисунок 2.

Рис. 2: Петля гистерезиса

3 Обработка результатов

Занесем характеристики образцов в таблицу 1:

Материал	N_0	N_u	S, см	$2\pi R$, cm
FeNi	35	220	3,8	24
FeSi	40	400	1,2	10
Ferrit	40	400	3	25

Таблица 1: Характеристики образцов

Для каждого из трех образцов будем подбирать коэффициенты усиления на осциллографе так, чтобы предельная петля занимала большую часть экрана. Занесем в таблицу 2 полные высоты предельной петли $2X_s, 2Y_s$, соответствующие удвоенной амплитуде колебания напряженности H_s и индукции B_s , а так же двойные амплитуды коэрцетивного поля и остаточной индукции:

Материал	$2X_s$	$2Y_s$	$2X_c$	$2Y_r$
FeNi	5,2	4,6	2,4	4,4
FeSi	8,4	5	1	2
Ferrit	7,6	2	0,8	2,4

Таблица 2: Характеристики предельной петли

Затем по формулам 2 и 3

$$H = \frac{IR_0}{2\pi R} \tag{2}$$

$$B = \frac{R_{\scriptscriptstyle H} C_{\scriptscriptstyle H} U_{\scriptscriptstyle \text{BbIX}}}{S N_{\scriptscriptstyle H}} \tag{3}$$

рассчитаем цену деления по каждой из осей для каждого образца. Результаты занесем в таблицу 3

Материал	Н, А/м/дел	В, Тл/дел
FeNi	24,3	0,48
FeSi	133,3	0,83
Ferrit	10,7	0,07

Таблица 3: Цены деления

Теперь, зная цену деления можем найти двойные амплитудные значения предельной напряженности и индукции, а так же двойные амплитуды коэрцетивного поля и остаточной индукции:

Материал	2Н, А/м	ϵ	2В, Тл	ϵ
FeNi	126.36	0.10	2.20	0.11
FeSi	1119.72	0.06	4.15	0.10
Ferrit	81.32	0.07	0.14	0.24

Таблица 4: Амплитудные значения

Материал	$2H_c$, A/M	ϵ	$2B_s$, Тл	ϵ
FeNi	58.32	0.21	2.11	0.11
FeSi	133.30	0.50	1.66	0.25
Ferrit	8.56	0.62	168.00	0.20

Таблица 5: Амплитудные значения коэрц. поля и ост. индукции

Для сравнения приведем табличные данные:

Материал	H_c , A/M	B_s , Тл
FeNi	11-40	1,51
Fesi	50-100	1,21
Ferrit	20	0,27

Таблица 6: Табличные данные

4 Приложение

Графики начальных кривых намагничивания:

Рис. 3: Начальная кривая FeNi

Рис. 4: Начальная кривая Ferrit

Рис. 5: Начальная кривая FeSi