Logistic Regression in R

Andre Archer
Northwestern University
Research Computing Services

Format of the Online Workshop

- In this workshop, I will be using Google Slides and live coding in RStudio
 - I will be using the Rmd file, linear_model_code.Rmd, to teach the workshop.
- If you have an questions, please put them in the chat.
 - There are TAs monitoring the chat. They will respond to questions.
 - If necessary, I will be interrupted by a TA.

Contents

- 1) Data Description
- 2) Goals of this workshop
- 3) Linear Regression vs. Logistic Regression
- 4) Logistic Regression
 - a) Logistic Model with Total Volume
 - b) Logistic Model with only a constant term
 - c) Logistic Model with Total Volume and Type
- 5) Conclusion and Next Steps
- 6) Exercises

Data Description

Data we are working with

- Dataset contains 18729 samples of avocado prices and volume sold across U.S. cities
- The dataset set contains variables:
 - PriceCategory whether each average avocado sample is 'Expensive' or 'Cheap'
 - TotalVolume total volume sold
 - Type whether the avocado was organic or conventional
 - Year year in which the recording was made
 - Region region in the U.S. the recording was made
 - Month month in the recording was made

Goals of this workshop

Goals

- 1) Predict the probability of a sample being "expensive" or "cheap" based on its type of avocado, total volume sold, year in which the sample was conducted
- 2) From the probabilities, predict whether a sample is expensive or cheap
- 3) Understand the effects of total volume, type and year on the probability that a sample is expensive or cheap

Linear Regression vs. Logistic

Regression

Why Linear Models are not appropriate

- Goal 1: Predict the probability of a sample being "expensive" or "cheap" based on its type of avocado, total volume sold, year in which the sample was conducted
 - That is, convert binary data to probability scores. Linear regression cannot do this.

- Goal 1: Predict the probability of a sample being "expensive" or "cheap" based on its type of avocado, total volume sold, year in which the sample was conducted
 - That is, convert binary data to probability scores. Linear regression cannot do this.
- By definition, logistic models convert binary data to probability scores.

- Goal 1: Predict the probability of a sample being "expensive" or "cheap" based on its type of avocado, total volume sold, year in which the sample was conducted
 - That is, convert binary data to probability scores. Linear regression cannot do this.
- By definition, logistic models convert binary data to probability scores

$$\log \frac{P}{1-P} = \beta_0 + \beta_1 \times (\text{Explanatory Variable 1}) + \beta_2 \times (\text{Explanatory Variable 2}) + \dots$$

where P is the probability being expensive.

- Goal 1: Predict the probability of a sample being "expensive" or "cheap" based on its type of avocado, total volume sold, year in which the sample was conducted
 - That is, convert binary data to probability scores. Linear regression cannot do this.
- By definition, logistic models convert binary data to probability scores

$$\log \frac{P}{1-P} = \beta_0 + \beta_1 \times (\text{Explanatory Variable 1}) + \beta_2 \times (\text{Explanatory Variable 2}) + \dots$$

where P is the probability being expensive.

Odds is the ratio of the probability of being expensive to the probability of being cheap

- Odd > 1 implies the probability of being expensive is higher
- Odd < 1 implies the probability of being cheap is higher

- Goal 1: Predict the probability of a sample being "expensive" or "cheap" based on its type of avocado, total volume sold, year in which the sample was conducted
 - That is, convert binary data to probability scores. Linear regression cannot do this.
- By definition, logistic models convert binary data to probability scores

$$\log \frac{P}{1-P} = \beta_0 + \beta_1 \times (\text{Explanatory Variable 1}) + \beta_2 \times (\text{Explanatory Variable 2}) + \dots$$

where P is the probability being expensive.

- Goal 3: Understand the effects of total volume, type and year on the probability that a sample is expensive or cheap
 - After fitting, we can interpret the coefficients.
 - For example, holding all other variables fixed, the log odds changes by β_1 when Explanatory Variable 1 increases by 1.

- Goal 1: Predict the probability of a sample being "expensive" or "cheap" based on its type of avocado, total volume sold, year in which the sample was conducted
 - That is, convert binary data to probability scores. Linear regression cannot do this.
- By definition, logistic models convert binary data to probability scores.

$$\log \frac{P}{1-P} = \beta_0 + \beta_1 \times (\text{Explanatory Variable 1}) + \beta_2 \times (\text{Explanatory Variable 2}) + \dots$$

where P is the probability being expensive.

With a few mathematical tricks, the model can be converted in terms of P.

- Goal 1: Predict the probability of a sample being "expensive" or "cheap" based on its type of avocado, total volume sold, year in which the sample was conducted
 - That is, convert binary data to probability scores. Linear regression cannot do this.
- By logistic models, convert binary data to probability scores

$$P = \frac{e^{\beta_0 + \beta_1 \times (\text{Explanatory Variable 1}) + \beta_2 \times (\text{Explanatory Variable 2}) + \dots}}{1 + e^{\beta_0 + \beta_1 \times (\text{Explanatory Variable 1}) + \beta_2 \times (\text{Explanatory Variable 2}) + \dots}}$$

where P is the probability being expensive.

Why Linear Models are appropriate

- Goal 1: Predict the probability of a sample being "expensive" or "cheap" based on its type of avocado, total volume sold, year in which the sample was conducted
 - That is, convert binary data to probability scores. Linear regression cannot do this.
- By definition, logistic models convert binary data to probability scores

$$P = \frac{e^{\beta_0 + \beta_1 \times (\text{Explanatory Variable 1}) + \beta_2 \times (\text{Explanatory Variable 2}) + \dots}}{1 + e^{\beta_0 + \beta_1 \times (\text{Explanatory Variable 1}) + \beta_2 \times (\text{Explanatory Variable 2}) + \dots}}$$

where P is the probability being expensive.

Goal 2: From the probabilities, predict whether a sample is expensive or cheap

Logistic Model with Total Volume

Scatter plot of Price Category vs. Total Volume

- Samples with lower volume are likely to be expensive
- Samples with higher volume are likely to be cheap
- Let's use a logistic model to predict the probability of being expensive using total volume sold

- Samples with lower volume are likely to be expensive
- Samples with higher volume are likely to be cheap
- Let's use a logistic model to predict the probability of being expensive using total volume sold

$$\log \frac{P}{1 - P} = \beta_0 + \beta_1 \times \text{Total Volume}$$

- Samples with lower volume are likely to be expensive
- Samples with higher volume are likely to be cheap
- Let's use a logistic model to predict the probability of being expensive using total volume sold

- Samples with lower volume are likely to be expensive
- Samples with higher volume are likely to be cheap
- Let's use a logistic model to predict the probability of being expensive using total volume sold

$$\log \frac{P}{1-P} = \beta_0 + \beta_1 \times \text{Total Volume}$$
 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 6.961950 0.109664 63.48 <2e-16 *** TotalVolume -0.617017 0.009562 -64.53 <2e-16 ***

- Samples with lower volume are likely to be expensive
- Samples with higher volume are likely to be cheap
- Let's use a logistic model to predict the probability of being expensive using total volume sold

$$\log \frac{P}{1 - P} = 6.96 - 0.617 \times \text{Total Volume}$$

Deviance

- For a linear model, deviance is sum of squares of the residuals
- Deviance is a more generalized "sum of squares of the residuals" for GLMs, like logistic models and Poisson models
 - Significant reduction of deviance is important
 - Deviance allows us to compare nested models

Predict Function

- We can use the "predict" to determine the probability of any dataset with the same terms as our model
- "predict" returns the predicted log-odds

$$\log \text{ odds} = \log \frac{P}{1 - P}$$

To get the probability, we need to simple transformation

$$P = \frac{e^{\log \text{ odds}}}{1 + e^{\log \text{ odds}}}$$

Predicting Classes

- Samples with lower volume are likely to be expensive
- Samples with higher volume are likely to be cheap
- Let's use a logistic model to predict the probability of being expensive using total volume sold

$$\log \frac{P}{1-P} = 6.96 - 0.617 \times \text{Total Volume}$$

- How do we get the probabilities of the fitted data?
- How do we use the model to predict classes?

Predicting Class Probabilities

- Samples with lower volume are likely to be expensive
- Samples with higher volume are likely to be cheap
- Let's use a logistic model to predict the probability of being expensive using total volume sold

$$\log \frac{P}{1-P} = 6.96 - 0.617 \times \text{Total Volume}$$

- How do we get the probabilities of the fitted data?
- How do we use the model to predict classes?
 - We have decide on a threshold probability.

Predicting Class Probabilities

- Samples with lower volume are likely to be expensive
- Samples with higher volume are likely to be cheap
- Let's use a logistic model to predict the probability of being expensive using total volume sold

$$\log \frac{P}{1-P} = 6.96 - 0.617 \times \text{Total Volume}$$

- How do we get the probabilities of the fitted data?
- How do we use the model to predict classes?
 - We have decide on a threshold probability.
 - If $P \ge 0.5$, then the sample is expensive.

Predicting Classes

- Samples with lower volume are likely to be expensive
- Samples with higher volume are likely to be cheap
- Let's use a logistic model to predict the probability of being expensive using total volume sold

$$\log \frac{P}{1-P} = 6.96 - 0.617 \times \text{Total Volume}$$

- How do we get the probabilities of the fitted data?
- How do we use the model to predict classes?
 - We have decide on a threshold probability.
 - \circ If P >= 0.5, then sample is expensive.
 - \circ If P < 0.5, then the sample is cheap.

	Predicted Class 0	Predicted Class 1
Actual Class 0		
Actual Class 1		

	Predicted Class 0	Predicted Class 1
Actual Class 0	Total number of correctly predicted cheap avocados	
Actual Class 1		

	Predicted Class 0	Predicted Class 1
Actual Class 0	Total number of correctly predicted cheap avocados	
Actual Class 1		Total number of correctly predicted expensive avocados

	Predicted Class 0	Predicted Class 1
Actual Class 0	Total number of correctly predicted cheap avocados	Total number of cheap avocados incorrectly predicted as expensive
Actual Class 1		Total number of correctly predicted expensive avocados

	Predicted Class 0	Predicted Class 1
Actual Class 0	Total number of correctly predicted cheap avocados	Total number of cheap avocados incorrectly predicted as expensive
Actual Class 1	Total number of expensive avocados incorrectly predicted as cheap	Total number of correctly predicted expensive avocados

Logistic Model with only constant term

Logistic Model with constant term

Let's use a logistic model to predict the probability of being expensive using total volume sold

$$\log \frac{P}{1 - P} = \beta_0$$

Let's use a logistic model to predict the probability of being expensive using total volume sold

$$\log \frac{P}{1 - P} = \beta_0$$

Model assigns constant probability to each class. Why would we do this?

$$\log \frac{P}{1 - P} = \beta_0$$

- Model assigns constant probability to each class. Why would we do this?
 - This is known as the null model. It is worst possible model since we are always going to make a class prediction error
 - Let's say we have two samples: one is expensive and the other is cheap.
 - The null model will assign both the same probability score so any threshold decision will make at least one error.

$$\log \frac{P}{1 - P} = \beta_0$$

- Model assigns constant probability to each class. Why would we do this?
 - This is known as the null model. It is worst possible model since we are always going to make a class prediction error
 - We can run an ANOVA to see if other models significantly reduce the deviance relative to the null model

$$\log \frac{P}{1-P} = \beta_0$$
 Estimate Std. Error z value (Intercept) -0.01304 0.01481 -0.881

- Model assigns constant probability to each class. Why would we do this?
 - This is known as the null model. It worst possible model since we are always going to make a class prediction error
 - We can run an ANOVA to see if other models significantly reduce the deviance relative to the null model

Scatter plot of Price Category vs. Total Volume colored by Type

- The type variable adds more information about which samples are "cheap" and "expensive"
- If organic and lower volume sold, then the avocado is likely to be expensive
- If conventional and high volume sold, the the avocado is likely to be cheap

- The type variable adds more information about which samples are "cheap" and "expensive"
- If organic and lower volume sold, then the avocado is likely to be expensive
- If conventional and high volume sold, the the avocado is likely to be cheap
- Let's use a logistic model to predict the probability of being expensive using total volume sold and type

$$\log \frac{P}{1-P} = \beta_0 + \beta_1 \times \text{Total Volume} + \beta_2 \times \text{Type}$$

$$\text{Type = 0 if conventional}$$

$$\text{Type = 1 if organic}$$

 Let's use a logistic model to predict the probability of being expensive using total volume sold and type

$$\log \frac{P}{1-P} = \beta_0 + \beta_1 \times \text{Total Volume} + \beta_2 \times \text{Type}$$

If conventional avocado,

$$\log \frac{P}{1-P} = \beta_0 + \beta_1 \times \text{Total Volume} \cdot$$

 Let's use a logistic model to predict the probability of being expensive using total volume sold and type

$$\log \frac{P}{1-P} = \beta_0 + \beta_1 \times \text{Total Volume} + \beta_2 \times \text{Type}$$

If conventional avocado,

$$\log \frac{P}{1-P} = \beta_0 + \beta_1 \times \text{Total Volume} \cdot$$

If organic avocado,

$$\log \frac{P}{1-P} = \beta_0 + \beta_2 + \beta_1 \times \text{Total Volume}$$


```
\log \frac{P}{1-P} = \beta_0 + \beta_1 \times \text{Total Volume} + \beta_2 \times \text{Type} Coefficients: Estimate Std. Error z value \text{Pr}(>|z|) (Intercept) 1.83471 0.17872 10.27 <2e-16 *** TotalVolume -0.24828 0.01371 -18.10 <2e-16 *** Typeorganic 1.91438 0.05662 33.81 <2e-16 ***
```



```
\log \frac{P}{1-P} = \beta_0 + \beta_1 \times \text{Total Volume} + \beta_2 \times \text{Type}
Coefficients:

Estimate Std. Error z value \Pr(>|z|)
(Intercept) 1.83471 0.17872 10.27 <2e-16 ***
TotalVolume -0.24828 0.01371 -18.10 <2e-16 ***
Typeorganic 1.91438 0.05662 33.81 <2e-16 ***
```


$$\log \frac{P}{1-P} = \beta_0 + \beta_1 \times \text{Total Volume} + \beta_2 \times \text{Type}$$
Coefficients:
Estimate Std. Error z value $\Pr(>|z|)$
(Intercept) 1.83471 0.17872 10.27 <2e-16 ***
TotalVolume 0.24828 0.01371 -18.10 <2e-16 ***
Typeorganic 1.91438 0.05662 33.81 <2e-16 ***

$$\log \frac{P}{1-P} = 1.83 - 0.24 \times \text{Total Volume} + 1.91 \times \text{Type}$$

 Let's use a logistic model to predict the probability of being expensive using total volume sold and type

$$\log \frac{P}{1 - P} = 1.83 - 0.24 \times \text{Total Volume} + 1.91 \times \text{Type}$$

If conventional avocado,

$$\log \frac{P}{1 - P} = 1.83 - 0.24 \times \text{Total Volume}$$

 Let's use a logistic model to predict the probability of being expensive using total volume sold and type

$$\log \frac{P}{1 - P} = 1.83 - 0.24 \times \text{Total Volume} + 1.91 \times \text{Type}$$

If conventional avocado,

$$\log \frac{P}{1 - P} = 1.83 - 0.24 \times \text{Total Volume}$$

If organic avocado,

$$\log \frac{P}{1-P} = 3.74 - 0.24 \times \text{Total Volume}$$

 Let's use a logistic model to predict the probability of being expensive using total volume sold and type

$$\log \frac{P}{1-P} = 1.83 - 0.24 \times \text{Total Volume} + 1.91 \times \text{Type}$$

1) Print the model summary

$$\log \frac{P}{1 - P} = 1.83 - 0.24 \times \text{Total Volume} + 1.91 \times \text{Type}$$

- 1) Print the model summary
- 2) Compute the predicted log-odds and probabilities on unseen data

$$\log \frac{P}{1 - P} = 1.83 - 0.24 \times \text{Total Volume} + 1.91 \times \text{Type}$$

- 1) Print the model summary
- 2) Compute the predicted log-odds and probabilities on unseen data
- 3) Predict classes from the probabilities scores assigned to trained data

$$\log \frac{P}{1 - P} = 1.83 - 0.24 \times \text{Total Volume} + 1.91 \times \text{Type}$$

- 1) Print the model summary
- 2) Compute the predicted log-odds and probabilities on unseen data
- 3) Predict classes from the probabilities scores assigned to trained data
- 4) Compute the confusion matrix of predicted classes

$$\log \frac{P}{1 - P} = 1.83 - 0.24 \times \text{Total Volume} + 1.91 \times \text{Type}$$

- 1) Print the model summary
- Compute the predicted log-odds and probabilities on unseen data
- 3) Predict classes from the probabilities scores assigned to trained data
- 4) Compute the confusion matrix of predicted classes
- 5) Use ANOVA to compare this model to the null model and the model with total volume.

Conclusion and Next Steps

- We found reasonable logistic models of whether an avocado was cheap or expensive using total volume and type.
- Exercises will allow you to experiment further with year, volume and type.
- Going further, you might want to consider
 - Model selection for logistic regression
 - Goodness of fit measures: AIC, BIC
 - Statistical tests for goodness of fit
 - Comparing logistic models using ROC curves and AUC
 - Picking the best threshold value

Exercises

- 1. Open the file logistic_model_exercises.Rmd
- 2. Get cracking!