Orderings

Let R be a binary relation on a set A.

R is a pre-order: R is reflexive and transitive

R is anti-symmetric: for all a, b \in A

$$a R b \wedge b R a \implies a = b$$

R is a partial order (po): R is reflexive, transitive and anti-symmetric

R is **irreflexive**: $\forall a \in A (\neg(a R a))$

R is a strict partial order: R is irreflexive and transitive.

A partial order R is a total order if:

$$\forall a, b \in A (a R b \lor b R a)$$

The numerical orders \leq on N, Z, and R are total orders. The orders \leq are strict partial orders.

Ordering of Products

For any two partially ordered sets (A, \leq_A) and (B, \leq_B) , there are two important orders on the product set $A \times B$:

Product Order:

$$\langle a_1, b_1 \rangle \leq_P \langle a_2, b_2 \rangle \triangleq a_1 \leq_A a_2 \land b_1 \leq_B b_2$$

Lexicographic order:

$$\langle a_1, b_1 \rangle \leq_L \langle a_2, b_2 \rangle \triangleq a_1 \leq_A a_2 \vee (a_1 =_A a_2 \wedge b_1 \leq_B b_2)$$

If (A, \leq) and (B, \leq) are total orders, then the lexicographic order on $A \times B$ is total.

In general, the product order is partial.

Analysing Partial Orders

Let (A, \leq) be a partial order, and $a \in A$

Orderings

```
a is minimal \triangleq \forall b \in A \ (b \le a \implies b = a)
a is least \triangleq \forall b \in A \ (a \le b)
a is maximal \triangleq \forall b \in A \ (a \le b \implies a = b)
a is greatest \triangleq \forall b \in A \ (b \le a)
```

Well-founded Partial Orders

A partial order (A, \leq) is **well founded** when it has **no infinite decreasing chain of elements**: for every infinite sequence a_1, a_2, a_3, \ldots of elements in A with $a_1 \geq a_2 \geq a_3 \geq \ldots$, there exists $m \in N$ such that $a_n = a_m$ for every $n \geq m$.

A well-founded order need not be total, like the subset relation on the set of finite subsets of N

Proposition

If two partial orders (A, \leq) and (B, \leq) are well founded, then the lexicographical order on $A \times B$ is also well founded.

Proof Suppose
$$\langle a_1, b_1 \rangle \geq_L \langle a_2, b_2 \rangle \geq_L \langle a_3, b_3 \rangle \geq_L \dots$$

Then $a_1 \ge_A a_2 \ge_A a_3 \ge_A ...$ by the definition of \ge_L .

Since (A, \leq_A) is well founded, there exists $m \in \mathbb{N}$ such that $a_n = a_m$ for every $n \geq m$.

We also have $b_m \geq_B b_{m+1} \geq_B b_{m+2} \geq_B \dots$

This sequence also ends up being constant because (B, \leq_B) is well founded. Thus, the original sequence is ultimately constant.

The Ackermann Function

Take the function $Ack : N^2 \rightarrow N$ defined by:

Orderings

$$\mathsf{Ack}(0,y) = y+1$$
 $\mathsf{Ack}(x+1,0) = \mathsf{Ack}(x,1)$
 $\mathsf{Ack}(x+1,y+1) = \mathsf{Ack}(x,\mathsf{Ack}(x+1,y))$

We will prove that this function always terminates using a **well-founded partial** order. Consider the **strict** lexicographical order on N^2 by

$$\langle x, y \rangle < \langle x', y' \rangle$$
 when $x < x'$ or $(x = x' \text{ and } y < y')$

Notice:

$$\langle x+1,0\rangle > \langle x,1
angle \ \langle x+1,y+1\rangle > \langle x,\operatorname{Ack}(x+1,y
angle) \ \langle x+1,y+1\rangle > \langle x+1,y
angle$$

Evaluating the Ack function takes us down the order, which is **well founded**. Hence, the Ack program always gives an answer.