2024 - 2025 年河南工业大学期末考试

概率论与数理统计

注意事项:

- 1. 答卷前, 考生务必将自己的姓名和准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
- 3. 考试结束后,将本试卷和答题卡一并交回。请认真核对监考员在答上所粘贴的条形码上 的姓名、准考证号与您本人是否相符。

一、 填空题 (共 10 题, 每空 3 分, 共 30 分)

- 1. 设随机事件 A, B, C 相互独立, 且 $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(C) = \frac{1}{4}$, 则 A, B, C 至少有一个事件发生 的概率为
- 2. 已知随机变量 X,Y 相互独立,且 $P\{X^2+Y^2=0\}=\frac{3}{4}$,其联合分布律和边缘分布律如表. 则 (F) 处的值为 .

X Υ	0 1	$P(Y=y_j)$		
0	(A) (B)	(C)		
1	(D) (E)	(F)		
P_{xy}	$\frac{4}{5}$ (G)			

Table 1: 分布表

3.	随机变量 2	【 服从正态分布	N(1,4),则	P(X =	1) =	

- 4. 设样本 $X_1,...,X_n$ 来自总体 $X,X\sim B(m,p)$, \overline{X} 为样本均值,则 $D\left(\overline{X}\right)=$ ______.
- 5. 将 3 个球随机的放入 3 个盒子中去,每个盒子恰有一球的概率是 .
- 6. 设 P(A) = 0.3, P(B) = 0.4, P(A|B) = 0.6, 则 $P(A \cup B) =$.
- 7. 设两个相互独立的随机变量 X,Y 分别服从参数 λ 为 2, 3 的指数分布, 则 D(2X-3Y+1)= .
- 8. 已知总体 $X \sim N(0,4)$. X_1, X_2, X_3 是来自总体 X 的样本, 则 $\sum_{i=1}^3 \frac{X_i^2}{4} \sim$ ______.
- 9. 设 X_1, X_2, X_3 是来自总体 X 的样本,在 $\hat{\mu}_1 = \frac{X_1 + X_2}{2}$, $\hat{\mu}_2 = \frac{X_1 + 2X_3}{3}$ 中,参数 E(X) 较好的估计量是 ______.
- 10. 从总体中抽取 9 个样本,其样本均值 $\overline{X}=21.4$,样本标准差 S=0.18. 设总体服从正态分布,取 $\alpha=0.05$,则总体期望的置信区间为(保留两位小数)______(注: $t_{0.025}(8)=2.306$).

二、 选择题 (共 5 题, 每题 3 分, 共 15 分)

- 1. 关于随机变量的以下说法正确的是()
 - A. 不相关一定独立

B. 边缘分布可以确定联合分布

C. 独立一定不相关

- D. D(X + Y) = D(X) + D(Y)
- 2. 设 $_{n}X_{1},...,X_{n}$ 是总体 X 的简单随机样本, $E(X)=\mu,D(X)=\sigma^{2}$. 已知 $C\sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$ 是 σ^2 的 无偏估计量, 则 C = ()
 - A. $\frac{1}{n}$

C. $\frac{1}{2(n-1)}$

- 3. 设随机变量 $X \sim N(2, \sigma^2)$, 且 $P(2 \le X \le 4) = 0.3$, 则 P(X < 0) = (
 - A. 0.3

B. 0.2

- D. 0.6
- 4. 设 $X_1,...,X_{16}$ 是来自正态总体 N(0,1) 的样本, \overline{X} 是样本均值, 若 $P(|\overline{X}| \geq b) = 0.01$, 则 b = () ($\geq \pm : \Phi(2.33) = 0.99$)
 - A. 0.5825
- B. 0.6877
- C. 2.33
- D. 9.32
- 5. 设随机变量 X 的概率密度函数为 $f_{X(x)}, Y = -2X$, 则 Y 的概率密度函数为 $f_{Y(y)} =$
 - $\mathsf{A.} \ -\tfrac{1}{2} f_{X(-\frac{y}{2}+2)} \qquad \qquad \mathsf{B.} \ \tfrac{1}{2} f_{X(-\frac{y}{2}+2)} \qquad \qquad \mathsf{C.} \ -2 f_{X(-\frac{y}{2}+2)} \qquad \qquad \mathsf{D.} \ 2 f_{X(-\frac{y}{2}+2)}$

三、 计算题 (10 分)

- 订昇樫(IU カ) 设随机变量 X 的概率密度函数为 $f(x) = \begin{cases} x, 0 < x < 1 \\ 1, 1 \le x \le \frac{3}{2}. \\ 0.$ 其它
 - 求(1) P{0.3 < x < 3};(2) E(X);(3) D(X).
- 2. 果树的主人外出, 委托邻居浇水。设已知如果不浇水, 树死去的概率为 0.8; 若浇水则树 死去的概率为 0.15。有 0.9 的把握确定邻居会记得浇水。
 - (1) 求主人回来树还活着的概率;
 - (2) 若主人回来树已死去, 求邻居忘记浇水的概率。
- 3. 设二维离散型随机变量 (X,Y) 的联合分布律如下表。
 - (1) 求 $P\{X = Y\}$;
 - (2) 求 X, Y 的相关系数 $\rho_{\{XY\}}$;
 - (3) X, Y 是否不线性相关? 是否独立? 为什么?

X Y	1	3
0	0	$\frac{1}{8}$
1	$\frac{3}{8}$	0
2	3 8 3 8	0
3	0	1/8

Table 2: 联合分布律

- 4. 这个题目无语 设总体 X 的概率密度函数为 $f(x;\theta) = \theta x^{\{\theta-1\}}, 0 < x < 1,$ 其中 $\theta > 0$ 为未知参数。 $X_1, ..., X_n$ 为来自总体 X 的简单随机样本, 求 θ 的最大似然估计量。
- 5. 根据以往经验, 某种电器元件的寿命 (单位: 小时) 服从参数为 $\lambda=0.01$ 的指数分布。现 随机地取 16 只, 设它们的寿命是相互独立的, 求这 16 只元件的寿命的总和大于 1920 小 时的概率。 (注: $\Phi(0.8) = 0.7881$)

6. 游客乘电梯参观电视塔顶层, 电梯于每个整点的第 5 分钟、25 分钟和 55 分钟从底层启 动。一游客在8点到9点之间的任意时刻到达底层候梯处,求他等候时间的数学期望。