MATH 135 Fall 2019: Midterm Examination

Q01. Let A and B be statement variables.

(a) Complete the truth table below.

A	$\mid B \mid$	$\neg B$	$A \wedge (\neg B)$	$B \iff A$	$ (A \wedge (\neg B)) \vee (B \iff A) $	$B \implies A$
\overline{T}	T	F	F	T	T	T
T	$\mid F \mid$	T	T	F	T	T
F	$\mid T \mid$	F	F	F	F	F
F	$\mid F \mid$	T	F	T	T	T

(b) Determine whether $(A \land (\neg B)) \lor (B \iff A)$ is logically equivalent to $B \implies A$. Circle the correct answer. No further justification is needed.

Equivalent Not Equivalent

Q02. Let $x, y \in \mathbb{R}$. Consider the implication S:

If
$$xy > 6$$
, then $x > 2$ and $y > 3$.

(a) State the hypothesis of S.

(b) State the conclusion of S.

$$x > 2$$
 and $y > 3$

(c) State the converse of S.

If
$$x > 2$$
 and $y > 3$, then $xy > 6$.

(d) State the contrapositive of S.

If
$$x \le 2$$
 or $y \le 3$, then $xy \le 6$.

(e) State the negation of S in a form that does not contain an implication.

$$xy \le 6, x > 2, \text{ and } y > 3.$$

(f) Indicate clearly whether the given implication S is true or false for all $x, y \in \mathbb{R}$. Then prove or disprove the statement.

Circle the correct answer: True | False

Proof. Suppose for a counterexample that x = 1 and y = 7. Clearly, xy = 7 > 6, so the hypothesis holds. However, $1 \ge 2$. Since the hypothesis is true and the conclusion false, the implication is false.

Q03. Given a variable x, let P(x) denote the open sentence $x \ge 0$, and let Q(x) denote the open sentence x < 0. Determine if the following statements are true or false. Circle the correct answers. No justification is needed.

- (a) $(\forall x \in \mathbb{R}, P(x)) \lor (\forall x \in \mathbb{R}, Q(x))$ True False
- (b) $\forall x \in \mathbb{R}, (P(x) \vee Q(x))$ True False
- (c) $(\forall x \in \mathbb{N}, P(x)) \lor (\forall x \in \mathbb{N}, Q(x))$ True False
- (d) $\forall x \in \mathbb{N}, (P(x) \vee Q(x))$ True False

Q04. For each of the following statements, indicate clearly whether the statement is true or false and then prove or disprove the statement.

(a) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + 2y = 0.$ Circle the correct answer: True False

Proof. Let x be an arbitrary real. Select $y=-\frac{x}{2}$, which is a real number. Then, $x+2y=x+2(-\frac{x}{2})=x-x=0$, as desired.

(b) $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x + 2y = 0.$ Circle the correct answer: True False

Proof. Consider the negation: $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, x + 2y \neq 0.$

Let y be an arbitrary real number. Select x = -2y + 1, which is a real number. Then, $x + 2y = (-2y + 1) + 2y = 1 \neq 0$, as desired.

Since the negation is true, the original statement is false.

Q05. Let a_1, a_2, a_3, \ldots be a sequence of positive integers defined by

$$a_1 = 1$$
, $a_2 = 5$, $a_m = a_{m-1} + 2a_{m-2}$, if $m \ge 3$.

Prove that for all $n \in \mathbb{N}$,

$$a_n = 2^n + (-1)^n$$
.

Proof. We will prove by strong induction of P(n), that $a_n = 2^n + (-1)^n$, on n.

To verify the base cases P(1) and P(2), notice that a_1 is defined to be 1 and $2^1 + (-1)^1 = 2 - 1 = 1$. Likewise, a_2 is defined to be 5 and $2^2 + (-1)^2 = 4 + 1 = 5$.

Now, suppose that for some $k \geq 3$, P(n) holds for all n < k. Specifically, P(k-1) and P(k-2) hold. Then, we take the definition of a_k :

$$\begin{aligned} a_k &= a_{k-1} + 2a_{m-2} \\ &= (2^{k-1} + (-1)^{k-1}) + 2(2^{k-2} + (-1)^{k-2}) \qquad \text{by inductive hypothesis} \\ &= 2^{k-1} + (-1)^{k-1} + 2^{k-1} + 2(-1)^{k-2} \\ &= 2^k + (-1)(-1)^{k-2} + 2(-1)^{k-2} \\ &= 2^k + (-1+2)(-1)^{k-2}(-1)(-1) \\ &= 2^k + (-1)^k \end{aligned}$$

which is exactly P(k).

Therefore, by the principle of strong induction, P(n) holds for all $n \geq 1$.

Q06.

(a) Let $n \in \mathbb{N}$. Evaluate the sum $\sum_{i=0}^{n} {n \choose n-i} 2^i$.

Solution. Recall that $1^k = 1$ for any real k. Then,

$$\sum_{i=0}^{n} \binom{n}{n-i} 2^i = \sum_{i=0}^{n} \binom{n}{n-i} 2^i 1^{n-i}$$

$$= (2+1)^n \qquad \text{by binomial theorem}$$

$$= 3^n \qquad \square$$

(b) Determine the coefficient of x^{22} in the expansion of $\left(x^2 + \frac{2}{x}\right)^{14}$.

Solution. Apply the binomial theorem:

$$\left(x^{2} + \frac{2}{x}\right)^{14} = \sum_{i=0}^{14} {14 \choose 14 - i} (x^{2})^{i} (2x^{-1})^{14 - i}$$

$$= \sum_{i=0}^{14} {14 \choose 14 - i} 2^{14 - i} x^{2i} x^{-(14 - i)}$$

$$= \sum_{i=0}^{14} {14 \choose 14 - i} 2^{14 - i} x^{3i - 14}$$

The exponent on x, 3i-14, will be 22 when i=12. On this term, the coefficient will be $\binom{14}{14-12}2^{14-12}=\binom{14}{2}2^2=364$.

Q07. Let $a, b \in \mathbb{Z}$ with $a \geq 2$. Prove that if $a \neq 13$, then $a \nmid (3b+1)$ or $3a \nmid (7b-2)$.

Proof. Let $a \geq 2$ and b be integers. We will prove the contrapositive:

If
$$a \mid (3b+1)$$
 and $3a \mid (7b-2)$, then $a = 13$.

Suppose that a divides 3b + 1 and 3a divides 7b - 2.

Then, we may write 3b + 1 = ak for some $k \in \mathbb{Z}$. But this means 9b + 3 = (3a)k, so $3a \mid 9b + 3$. By DIC, it follows that $3a \mid [7(9b + 3) - 9(7b - 2)]$. That is, $3a \mid 39$.

This means we may write 39 = 3an for an integer n. It follows that 13 = an, so $a \mid 13$. However, 13 is prime, therefore, the only value for $a \geq 2$ is 13.

Q08.

(a) Prove that for all $n \in \mathbb{N}$, $n^2 + n + 1$ is odd.

Proof. Let n be a natural number. Recall that all natural numbers are either even or odd.

If n is even, we may write n = 2k for some integer k. Then, $n^2 + n + 1 = 4k^2 + 2k + 1 = 2(2k^2 + k) + 1$. Since $2k^2 + k$ is an integer, this is an odd number.

Likewise, if n is odd, we may write n = 2k + 1 for some integer k. Then, $n^2 + n + 1 = 4k^2 + 4k + 1 + 2k + 1 + 1 = 2(2k^2 + 3k + 1) + 1$. Since $2k^2 + 3k + 1$ is an integer, this is also an odd number.

Therefore, the sum $n^2 + n + 1$ is odd for all natural n.

(b) Let $d, n \in \mathbb{N}$. Prove that if $d \mid (n^2 + n + 1)$ and $d \mid (n^2 + n + 3)$, then d = 1.

Proof. Let d and n be natural numbers such that d divides both $n^2 + n + 1$ and $n^2 + n + 3$.

Consider the case that n = 0. We have that $d \mid 1$ and $d \mid 3$.

Also, by DIC, $d \mid ((n^2 + n + 3) - (n^2 + n + 1))$, that is, $d \mid 2$.

However, 2 and 3 are both prime, so their only divisors are 1 and themselves. Since d cannot simultaneously be 2 and 3, it must be 1.

Q09. Let a and b be non-negative integers. Prove that $3^a = 8^b$ if and only if a = b = 0.

Proof. We will prove by considering both implications.

 (\Rightarrow) Let a and b be non-negative integers such that $3^a = 8^b$. Recall that integers have unique prime factorizations, and that 2 and 3 are primes.

Notice that $8^b = 2^{3b}$. For any positive a and b, because 3^a consists only of 3's, and 2^{3b} consists only of 2's, they cannot be equal. Therefore, the only possible values are a = b = 0. In this case, both values equal 1, so the equality holds.

 (\Leftarrow) Let a=b=0. Then, $3^0=1$ and $8^0=1$, so the equality holds.

Therefore, both implications hold, so the if and only if statement is true. \Box

Q10. Prove that for all $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - \frac{1}{n}.$$

Proof. We will prove by inducting the statement P(n), $\sum_{i=1}^{n} \frac{1}{i^2} \leq 2 - \frac{1}{n}$, on n.

To verify the base case P(1), notice that

$$\sum_{i=1}^{n} \frac{1}{i^2} = \frac{1}{1^2} = 1$$

and that

$$2 - \frac{1}{1} = 2 - 1 = 1$$

We have $1 \leq 1$, which is true.

Now, suppose that P(k) holds for an arbitrary $k \geq 1$. That is,

$$\sum_{i=1}^{k} \frac{1}{i^2} \le 2 - \frac{1}{k}$$

$$\frac{1}{(k+1)^2} + \sum_{i=1}^{k} \frac{1}{i^2} \le 2 - \frac{1}{k} + \frac{1}{(k+1)^2}$$

$$\sum_{i=1}^{k+1} \frac{1}{i^2} \le 2 - \frac{k^2 + k + 1}{k(k+1)^2}$$

$$< 2 - \frac{k^2 + k}{k(k+1)^2}$$

$$= 2 - \frac{k(k+1)}{k(k+1)^2}$$

$$= 2 - \frac{1}{k+1}$$

which is P(k+1).

Therefore, by the principle of mathematical induction, P(n) holds for all natural n. \square