Statistical Foundations of Learning

Debarghya Ghoshdastidar

School of Computation, Information and Technology Technical University of Munich Infinite hypothesis classes and uniform convergence

Recap

- Goal: Find bound on the generalisation error of ERM solution \widehat{h}
- If hypothesis class $\mathcal{H} \subset \{\pm 1\}^{\mathcal{X}}$ is finite:
 - Uniform convergence bound

(for 0-1 loss)

$$\max_{h \in \mathcal{H}} |L_S(h) - L_{\mathcal{D}}(h)| \le \sqrt{\frac{\ln(|\mathcal{H}|) + \ln(\frac{2}{\delta})}{2m}} \quad \text{with probability } 1 - \delta$$

• Generalisation error bound

$$L_{\mathcal{D}}(\widehat{h}) \le L_{\mathcal{D}}(\mathcal{H}) + \sqrt{\frac{2\ln(|\mathcal{H}|) + 2\ln(\frac{2}{\delta})}{m}}$$
 with probability $1 - \delta$

From finite to infinite \mathcal{H}

- Uniform convergence bound when \mathcal{H} is infinite
 - With uniform convergence, we can prove generalisation error bound for ERM as before
- Challenge: Previous bound depends on $|\mathcal{H}|$ Which proof step led to $|\mathcal{H}|$ in bound?
 - Union bound over all $h \in \mathcal{H}$
- Do we need to consider all $h \in \mathcal{H}$?
 - No. For m training samples, there can be at most 2^m distinct predictions

Outline

- Growth function
 - How many distinct predictors can \mathcal{H} provide on any m samples?
- ullet Uniform convergence bound for infinite ${\cal H}$
 - Growth function replaces $|\mathcal{H}|$ in bound
- Proof of uniform convergence (main ideas; not needed for exam)

Growth function

• Consider sequence $C = (x_1, \ldots, x_m) \in \mathcal{X}^m$

C only has features, not labels

• Restriction of hypothesis class $\mathcal{H} \subseteq \{-1, +1\}^{\mathcal{X}}$ to C

$$\mathcal{H}_{|C} = \left\{ (h(x_1), \dots, h(x_m)) : h \in \mathcal{H} \right\}$$

- Set of all possible labelling of the m data points in C using \mathcal{H}
- Growth function of \mathcal{H}

$$\tau_{\mathcal{H}}(m) = \max_{C \subseteq \mathcal{X}: |C| = m} |\mathcal{H}_{|C}|$$

- Maximum number of possible binary labelling for any m instances in $\mathcal X$ using $\mathcal H$
- Verify $\tau_{\mathcal{H}}(m) \leq \min\{|\mathcal{H}|, 2^m\}$

Example: Threshold functions

• A threshold function $h_t : \mathbb{R} \to \{\pm 1\}$ has one parameter $t \in \mathcal{X}$ $h_t(x) = \begin{cases} -1 & \text{if } x \leq t \\ +1 & \text{if } x > t \end{cases}$

- Let $\mathcal{H}_{thr} = \{h_t(\cdot) : t \in \mathbb{R}\} \subset \{\pm 1\}^{\mathbb{R}}$
- Compute $\tau_{\mathcal{H}_{thr}}(1)$
 - Let $C = \{x_1\}$
 - We either have $h_t(x_1) = +1$ if $t \ge x_1$ or $h_t(x_1) = -1$ if $t < x_1$
 - $\mathcal{H}_{thr|C} = \{(+1), (-1)\}$ for every C of size $1 \implies \tau_{\mathcal{H}_{thr}}(1) = 2$

Example: Threshold functions

- Compute $\tau_{\mathcal{H}_{thr}}(2)$
 - Let $C = \{x_1, x_2\}$ with $x_1 < x_2$
 - $\mathcal{H}_{thr|C} = \left\{ \underbrace{(-1, -1)}_{\text{if } t \ge x_2}, \underbrace{(-1, +1)}_{\text{if } x_1 \le t < x_2}, \underbrace{(+1, +1)}_{\text{if } t < x_1} \right\}$ (+1, -1) cannot happen since $x_1 < x_2$
 - So $\tau_{\mathcal{H}_{thr}}(2) = 3$
- Does above imply that $|\mathcal{H}_{thr|C}| = 3$ for all C of size 2?
 - No. We could have $C = \{x_1, x_1\}$
- Use previous arguments to verify that $\tau_{\mathcal{H}_{thr}}(m) = m+1$

Example: Decision stumps

• A one-dimensional decision stump has two parameters $t \in \mathcal{X}$ and $b \in \{\pm 1\}$

$$h_{t,b}(x) = \begin{cases} b & \text{if } x \le t \\ -b & \text{if } x > t \end{cases}$$

- Let $\mathcal{H}_{ds-1} = \{h_{t,b}(\cdot) : t \in \mathbb{R}, b \in \{\pm 1\}\} \subset \{\pm 1\}^{\mathbb{R}}$
- Compute $\tau_{\mathcal{H}_{do,1}}(m)$

Example: Decision stumps

- Answer $\tau_{\mathcal{H}_{ds-1}}(m) = 2m$
- Take $C = \{x_1, x_2, \dots, x_m\}$ with $x_1 < x_2 < \dots < x_m$
- For $b=-1,\,m+1$ possible labellings $(-1,\ldots,-1),(-1,\ldots,-1,+1),\ldots,(+1,\ldots,+1)$
- For b = 1, signs reverse $(+1, \ldots, +1), (+1, \ldots, +1, -1), \ldots, (-1, \ldots, -1)$
- We have $(+1, \ldots, +1)$ and $(-1, \ldots, -1)$ in both cases (need to count only once)
- Hence 2m possible functions

Uniform convergence for infinite \mathcal{H}

Theorem UC.1 (Uniform convergence of $L_S(\cdot)$ for infinite \mathcal{H})

Let $\epsilon \in (0,1)$ and $m > \frac{2 \ln 4}{\epsilon^2}$. Let $\mathcal{H} \subset \{\pm 1\}^{\mathcal{X}}$ and we measure risk with respect to 0-1 loss.

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left(\sup_{h \in \mathcal{H}} |L_S(h) - L_{\mathcal{D}}(h)| > \epsilon \right) \le \tau_{\mathcal{H}}(2m) \cdot 4e^{-m\epsilon^2/8}$$

Equivalent statement: Let $\delta \in (0,1)$. With probability $\geq 1-\delta$,

$$\sup_{h \in \mathcal{H}} |L_S(h) - L_{\mathcal{D}}(h)| \le \sqrt{\frac{8 \ln \left(\tau_{\mathcal{H}}(2m)\right) + 8 \ln \left(\frac{4}{\delta}\right)}{m}}$$

Generalisation error for ERM

• Use previous result to verify that for ERM solution \hat{h}

$$L_{\mathcal{D}}(\widehat{h}) \le L_{\mathcal{D}}(\mathcal{H}) + 2\sqrt{\frac{8\ln(\tau_{\mathcal{H}}(2m)) + 8\ln(\frac{4}{\delta})}{m}}$$
 with probability $1 - \delta$

• Consider ERM over \mathcal{H}_{ds-1} . Use above result to derive generalisation error bound

$$L_{\mathcal{D}}(\widehat{h}) \le L_{\mathcal{D}}(\mathcal{H}) + 2\sqrt{\frac{8\ln(4m) + 8\ln(\frac{4}{\delta})}{m}}$$
 with probability $1 - \delta$

- Set $\delta = 0.01$ and large $m = 10^7$
- There is 99% chance of having $L_{\mathcal{D}}(\widehat{h}) < L_{\mathcal{D}}(\mathcal{H}) + 0.01$... ERM finds nearly best solution

Generalisation error for ERM over other \mathcal{H}

- For arbitrary infinite \mathcal{H} , recall that $\tau_{\mathcal{H}}(2m) \leq 2^{2m}$
- Using this bound for growth function

$$L_{\mathcal{D}}(\widehat{h}) \le L_{\mathcal{D}}(\mathcal{H}) + 2\sqrt{\frac{16m + 8\ln(\frac{4}{\delta})}{m}}$$
 with probability $1 - \delta$

- Bound is meaningless since $L_{\mathcal{D}}(\widehat{h}) \leq 1$ trivially
- Next topic: We will derive non-trivial bound on $\tau_{\mathcal{H}}$ in terms of VC dimension

Proof Step 1: Symmetrisation – idea

- Need to show $\sup_{h\in\mathcal{H}}|L_S(h)-L_{\mathcal{D}}(h)|$ is not large
- Recall: Main challenge in the proof is union bound over all \mathcal{H} (due to sup)
 - Cannot avoid this, but use a trick to reduce number of terms
- How many possible values of $|L_S(h) L_D(h)|$ can we have?
 - $L_{\mathcal{D}}(\cdot)$ can take at most $|\mathcal{H}|$ values (unique value for every $h \in \mathcal{H}$)
 - $L_S(\cdot)$ can take only m+1 values in set $\left\{0,\frac{1}{m},\frac{2}{m},\ldots,1\right\}$
- Idea: "Replace" $L_{\mathcal{D}}(\cdot)$ by empirical risk $L_{S'}(h)$ over an independent set S' of size m

Proof Step 1: Symmetrisation – result

Lemma UC.2 (Symmetrisation by introducing independent copy of S)

Let $S, S' \sim \mathcal{D}^m$ be two independent training sets, each of size m. For $m\epsilon^2 > 2 \ln 4$,

$$\mathbb{P}_{S}\left(\sup_{h\in\mathcal{H}}|L_{S}(h)-L_{\mathcal{D}}(h)|>\epsilon\right)\leq 2\mathbb{P}_{S,S'}\left(\sup_{h\in\mathcal{H}}|L_{S}(h)-L_{S'}(h)|>\frac{\epsilon}{2}\right)$$

- Intuition: If $L_S(h)$ is close to $L_D(h)$, then
 - $L_{S'}(h)$ is also likely to be close to $L_{\mathcal{D}}(h)$ (since S' has same distribution as S)
 - $L_S(\cdot)$ and $L_{S'}(h)$ are likely to be close to each other (both close to $L_{\mathcal{D}}(h)$)
- Advantage of this step: $|L_S(\cdot) L_{S'}(\cdot)|$ takes only m+1 distinct values for all $h \in \mathcal{H}$

Proof Step 2: Swapping permutations – idea

- Need to show $\sup_{h \in \mathcal{H}} |L_S(h) L_{S'}(h)|$ is not large
- Naive idea (does not work, but informative):

•
$$\sup_{h \in \mathcal{H}} |L_S(h) - L_{S'}(h)| = \max_{\mathbf{h} \in \mathcal{H}_{|S \cup S'}} |L_S(\mathbf{h}) - L_{S'}(\mathbf{h})|$$

- Can bound probability for every **h**, and apply union bound over $\mathcal{H}_{|S \cup S'}$
- Union bound leads to multiplicative factor of $|\mathcal{H}_{|S \cup S'}| \leq \tau_{\mathcal{H}}(2m)$
- Why doesn't this work?
 - $\mathcal{H}_{|S \cup S'|}$ is random, depends on S, S' (can apply union bound only when union is fixed)

Proof Step 2: Swapping permutations – idea

- Idea that works: Can apply above if we condition on S, S' ... makes $\mathcal{H}_{|S \cup S'}$ fixed
 - Introduce another source of randomness (Rademacher symmetrisation)
- Swapping permutation:
 - Let (x_i, y_i) be the i^{th} instance in S, and (x'_i, y'_i) be i^{th} instance in S'
 - Define $Y_{(\sigma_1,...,\sigma_m)} = \frac{1}{m} \sum_{i=1}^m \sigma_i \cdot (\mathbf{1} \{h(x_i) \neq y_i\} \mathbf{1} \{h(x_i') \neq y_i'\})$... for $\sigma_i \in \{\pm 1\}$
 - Note $Y_{(1,...,1)} = L_S(h) L_{S'}(h)$
 - $\sigma_i = -1$ means we swap i^{th} instances in S and S'

Proof Step 2: Swapping permutations – idea

• $Y_{(\sigma_1,...,\sigma_m)}$ has same distribution as $Y_{(1,...,1)}$

$$\mathbb{P}_{S,S'}\left(\sup_{h\in\mathcal{H}}|L_S(h) - L_{S'}(h)| > \frac{\epsilon}{2}\right) = \mathbb{P}_{S,S'}\left(\sup_{h\in\mathcal{H}}|Y_{(1,\dots,1)}| > \frac{\epsilon}{2}\right)$$

$$= \frac{1}{2^m} \sum_{\sigma_1,\dots,\sigma_m\in\{\pm 1\}} \mathbb{P}_{S,S'}\left(\sup_{h\in\mathcal{H}}|Y_{(\sigma_1,\dots,\sigma_m)}| > \frac{\epsilon}{2}\right)$$

- Random swapping / Rademacher symmetrisation
 - Average can be viewed as an expectation
 - $\sigma_1, \ldots, \sigma_m$ i.i.d., each takes values ± 1 with equal probability (Rademacher variables)

Proof Step 2: Swapping permutations – result

Lemma UC.3 (Symmetrisation by introducing Rademacher variables)

Let $\sigma = (\sigma_1, \dots, \sigma_m)$ where $\sigma_1, \dots, \sigma_m$ i.i.d. Rademacher variable

$$\mathbb{P}_{S,S'}\left(\sup_{h\in\mathcal{H}}|L_S(h) - L_{S'}(h)| > \frac{\epsilon}{2}\right) = \mathbb{P}_{S,S',\sigma}\left(\sup_{h\in\mathcal{H}}|Y_{\sigma}| > \frac{\epsilon}{2}\right)$$
$$= \mathbb{E}_{S,S'}\left[\mathbb{P}_{\sigma|S,S'}\left(\sup_{h\in\mathcal{H}}|Y_{\sigma}| > \frac{\epsilon}{2}\right)\right]$$

• Advantage of this step: Probability is conditioned over S, S'. Can apply the union bound over $\mathcal{H}_{|S \cup S'}$

Proof Step 3: Union bound

Can apply union bound since we condition over S, S' (that is, S, S' kept fixed)

$$\mathbb{P}_{\sigma|S,S'}\left(\sup_{h\in\mathcal{H}}|Y_{\sigma}|>\frac{\epsilon}{2}\right) = \mathbb{P}_{\sigma|S,S'}\left(\max_{\mathbf{h}\in\mathcal{H}_{|S\cup S'}}|Y_{\sigma}|>\frac{\epsilon}{2}\right) \qquad Y_{\sigma} \text{ is function of } S,S',h$$

$$\leq \sum_{\mathbf{h}\in\mathcal{H}_{|S\cup S'}}\mathbb{P}_{\sigma|S,S'}\left(|Y_{\sigma}(\mathbf{h})|>\frac{\epsilon}{2}\right) \qquad \text{union bound}$$

$$\leq |\mathcal{H}_{|S\cup S'}|\cdot 2e^{-m\epsilon^2/8} \qquad \text{Hoeffding's inequality}$$

$$\leq \tau_{\mathcal{H}}(2m)\cdot 2e^{-m\epsilon^2/8}$$

Bound does not depend on S, S'. Does not change after taking $\mathbb{E}_{S,S'}[\cdot]$