Omega Primality and Elasticities of Arithmetic Congruence Monoids

Bruce Zheng

July 30, 2014

1 Introduction

Let \mathbb{N} be the natural numbers $\{1, 2, ...\}$ and $\mathbb{N}_0 = \{0\} \cup \mathbb{N}$.

A monoid M is a set paired with an associative binary operation and an identity element. One easy example of a monoid is the natural numbers with the binary operation of multiplication and the identity 1.

M is commutative if for every $x, y \in M$ we have xy = yz and commutative if for every $x, y, z \in M$, xy = xz is a necessary and sufficient condition for y = z.

In M, we write that x divides y or $x \mid y$ if there exists some $z \in M$ such that xz = y. An element u is a unit of M if u divides the identity element of M, usually denoted e. A nonunit x is irreducible, or an atom, if there exist no nonunits that divide x. The set of all atoms of M is denoted $\mathcal{A}(M)$.

If $x = a_1 \cdots a_n$ for $a_i \in \mathcal{A}(M)$, then $a_1 \cdots a_n$ is an atomic factorization of x. If every nonunit of M has an atomic factorization, then M is atomic. In this paper we only consider monoids which are commutative, cancellative, and atomic. Much is known about the atomic factorizations of natural numbers:

Theorem 1.1 (Fundamental Theorem of Arithmetic). \mathbb{N} is atomic. If $x \in \mathbb{N}$ is greater than 1, then x has a unique atomic factorization up to ordering.

The uniqueness property of factorizations in \mathbb{N} is not shared in all atomic monoids nor even all submonoids of \mathbb{N} . For example, Hilbert famously used the set $\{1+4k: k \in \mathbb{N}_0\}$ as an example of a monoid without unique factorization. In this monoid, we have that 9, 21, 33, and 77 are all irreducible and $9 \cdot 77 = 21 \cdot 33$, so 693 has nonunique factorization.

Note that the Hilbert monoid is closed under multiplication as a consequence of the fact that $1^2 \equiv 1 \mod 4$. We are interested in a generalization of the Hilbert monoid called arithmetic congruence monoids.

Given $a, b \in \mathbb{N}$ with $0 < a \le b$ and $a^2 \equiv a \mod b$, the arithmetic congruence monoid (or ACM) defined by a and b is

$$M(a,b) := \{1\} \cup \{x \in \mathbb{N} : x \equiv a \bmod b\}.$$

 \mathbb{N} itself is an ACM with $\mathbb{N}=M(1,1)$. Equivalence relations are often decomposable due to the chinese remainder theorem. For example, $x\equiv 4 \bmod 6$ if and only if $x\equiv 2 \bmod 2$ and $x\equiv 1 \bmod 3$. Hence, $M(4,6)=M(2,2)\cap M(1,3)$. Note here that $2=\gcd(4,6)$ and $3=6/\gcd(4,6)$. This result generalizes to all ACM:

Theorem 1.2. [1, Lemma 4.1] Let M(a,b) be an ACM. Suppose $d = \gcd(a,b)$ and set n = b/d. Then $M(a,b) = M(d,d) \cap M(1,n)$.

Given a set S with a commutative binary operation, we the free monoid defined on S, $\mathcal{F}(S)$, is the set of all finite unordered sequences of elements of S. Elements of free monoids we call free sequences, and a free sequence $W \in \mathcal{F}(S)$ is written as

$$W = x_1 x_2 \cdots x_n = \prod_{x \in S} x^{v_x(W)}$$
 where $v_x(W) \in \mathbb{N}_0$

We say $x \in W$ or x is contained in W if $v_x(W) > 0$. The binary operation of $\mathcal{F}(S)$ is concatenation, where for $V = y_1 y_2 \cdots y_m$ we have that $WV = x_1 \cdots x_n y_1 \cdots y_m$. The identity element of $\mathcal{F}(S)$ is then the empty sequence, which we denote (*). The length of W written |W| is n. if V divides W, then V is known to be a subsequence of W, and furthermore a proper subsequence of W if we also have that |V| < |W|. We define the natural evaluation map θ from a free sequence W to the product of its elements $\theta(W) \in S$. The sumset of W written $\Sigma(W) \subseteq S$ is defined as

$$\Sigma(W) = \{\theta(V) : V \text{ is a subsequence of } W\}.$$

To make notation unambiguous, we have that the use of parenthesis denotes that the product of set elements is present in the free sequence, whereas a lack of parenthesis denotes each element being present in the free sequence. That is letting $W_1 = (ab)$ and $W_2 = ab$, we have that $|W_1| = 1$ with $ab \in W_1$, and $|W_2| = 2$ with $ab \notin W_2$.

2 Omega primality

A nonunit x of a monoid M is prime if whenever $x \mid yz$ for $y, z \in M$ either $x \mid y$ or $x \mid z$. By Euclid's lemma we have that all atoms of $\mathbb N$ are prime in $\mathbb N$.

Recall that in M(1,4), we have that $9 \cdot 77 = 21 \cdot 33$. In this case we see that the atom 9, although irreducible, does not divide 21 or 33. This means that 9 is not prime in M(1,4), and that Euclid's lemma does not hold in M(1,4). Suppose however that in M(1,4) we have $9 \mid xyz$. It turns out that either $9 \mid xy$, $9 \mid yz$, or $9 \mid xz$. In this sense 9 very close to being prime. Omega-primality is a way to measure this "closeness".

Let M be a commutative, cancellative, atomic monoid, x an element of M, and W be a free sequence over M. If x divides $\theta(W)$ but x does not divide the

evaluation of any proper subsequence of W, then W is a bullet of x. We define the omega-primality of x over M, $\omega_M(x)$ as being the supremum of lengths of all bullets of x. Then, if there is a product with length greater than $\omega_M(x)$ that is divisible by x, there exists a subproduct of length at most $\omega_M(x)$ which is divisible by x.

An element of M is prime if and only if $\omega_M(x) = 1$, and in the case of M = M(1,4) we have that $\omega_M(9) = 2$. In this section our goal is to classify the omega-primality of all ACM. We begin by classifying the omega-primality of the natural numbers:

Proposition 2.1. Let $x \in N$ and $p_1 \cdots p_m$ be the prime factorization of x. Then $\omega_{\mathbb{N}}(x) = m$.

Proof. The sequence $p_1 \cdots p_m$ is a bullet of length n for x.

We obtain an upper bound by induction. Since p_1 is prime, $\omega_{\mathbb{N}}(p_1)=1$. Assume that $\omega_{\mathbb{N}}(p_1\cdots p_k)\leq k$ for some positive integer k< m. We claim that $\omega_{\mathbb{N}}(p_1\cdots p_{k+1})\leq k+1$. Let W be a sequence of length greater than k+1 whose evaluation is divisible by $p_1\cdots p_{k+1}$. Then $\theta(W)$ is divisible by $p_1\cdots p_k$, so there exists a subproduct W_1 of length at most k whose evaluation is divisible by $p_1\cdots p_k$. Set $W_2=W/W_1$ so that $W=W_1W_2$. Since $\theta(W_1)\theta(W_2)$ is divisible by $p_1\cdots p_{k+1}$, either $p_1\cdots p_{k+1}\mid \theta(W_1)$ or $p_{k+1}\mid \theta(W_2)$. In the second case, there must exist a subproduct V of W_2 with length 1 and $\theta(V)$ divisible by p_{k+1} . Then W_1V is a proper subproduct of W with $p_1\cdots p_{k+1}\mid \theta(W_1V)$. In both cases, W is not a bullet for $p_1\cdots p_{k+1}$. Thus any bullet for $p_1\cdots p_{k+1}$ has a length of at most k+1 so $\omega_{\mathbb{N}}(p_1\cdots p_{k+1})\leq k+1$, and our claim is satisfied. Therefore $\omega_{\mathbb{N}}(x)\leq m$, and we are done.

Corollary 2.2. Let x be a positive integer with prime factorization $p_1 \cdots p_m$ and W be a free sequence over $\mathbb N$ with length $r \geq m$ and evaluation divisible by x. For all integers t, $m \leq t \leq r$, there exists a subsequence of W with length t whose evaluation is divisible by x.

Proof. Since the length of W is greater than $m=\omega_{\mathbb{N}}(x)$, there exists a proper subsequence V_0 of W where $p_1\cdots p_n\mid\theta(V)$. Furthermore, let $|V_0|$ be minimal. Then V_0 is a bullet for W, meaning that $|V_0|\leq n\leq t$. Now let $V=W/V_0$. V_0 has length $m-|V_0|$, and therefore set $V=V_1V_2$ for some $V_1,V_2,|V_1|=t-|V_0|$ and $|V_2|=m-t$. V_0V_1 is a subsequence of W of length t. Moreover, $\theta(V_0V_1)=\theta(V_0)\theta(V_1)$ is divisible by $p_1\cdots p_m$, so we are done.

Proposition 2.3. Let $M = M(d,d) \cap M(1,n)$ be an ACM and $x, y \in M$. Then $x \mid y$ if and only if $dx \mid_{\mathbb{N}} y$.

Proof. If $x \mid y$, then $y/x \in M$. Then y/x is divisible by d in \mathbb{N} , so y/(dx) is a positive integer. Therefore, $dx \mid_{\mathbb{N}} y$. If $dx \mid_{\mathbb{N}} y$, then y/(dx) is a positive integer, and y/x is a positive integer divisible by d. Furthermore, $(x/y) \equiv y(x/y) \equiv x \equiv 1 \mod n$, so $x/y \in M$.

As a result of this proposition, division in an ACM is easy in the case where d = 1, since it behaves exactly the same as divisibility in \mathbb{N} .

For an ACM $M=M(d,d)\cap M(1,n)$ and nonunit $x\in M$ define $r_x\in \mathbb{N}$ as the largest integer divisor of x relatively prime to d and define $s_x=x/r_x$. Furthermore, write $\delta(x)$ as the infimum of all nonnegative integers δ such that $s_x\mid_{\mathbb{N}} d^{\delta(x)}$ and $\gamma(x)$ as the supremum of all integers γ such that $d^\gamma\mid_{\mathbb{N}} s_x$.

Lemma 2.4. Let $M = M(d,d) \cap M(1,n)$ be an ACM with d > 1 and x,y be nonunit elements of M.

- 1. $\delta(x)$ and $\gamma(x)$ are positive integers.
- 2. $\delta(dx) = \delta(x) + 1$ and $\gamma(dx) = \gamma(x) + 1$.
- 3. If $\gamma(y) > \delta(x)$ and $r_x \mid_{\mathbb{N}} y$ then $x \mid y$.
- 4. If $\delta(x) > \delta(y) = \gamma(y)$, then $x \nmid y$.
- *Proof.* (1) Since d > 1, and $d \mid_{\mathbb{N}} x$, we have that $s_x \geq d$ and hence $\delta(x) > 0$. 1 divides s_x , so $\gamma(x)$ is also greater than 0. Finally, because s_x is finite there exists some $N \in \mathbb{N}$ such that if k > N, $d^k > s_x$, so $\gamma(x) < N < \infty$.
- (2) We have that $s_{dx}=ds_x$. Note that for any $k\in\mathbb{N}$ we have that if $ds_x\mid_{\mathbb{N}}d^{k+1}$ then $s_x\mid_{\mathbb{N}}d^k$ and if $d^{k+1}\mid_{\mathbb{N}}ds_x$ then $d^k\mid_{\mathbb{N}}s_x$. Thus $\delta(dx)\geq\delta(x)+1$ and $\gamma(dx)\leq\gamma(x)+1$. Furthermore $ds_x\mid_{\mathbb{N}}d^{\delta(x)+1}$ and $d^{\gamma(x)+1}\mid_{\mathbb{N}}ds_x$ so $\delta(dx)\leq\delta(x)+1$ and $\gamma(dx)\geq\gamma(x)+1$.
- (3) Because $\delta(x)$ is less than $\gamma(y)$, s_y/s_x is an integer divisible by d. Furthermore, r_x is relatively prime to s_y so that $r_x \mid_{\mathbb{N}} r_y$. Hence $ds_x r_x \mid_{\mathbb{N}} (s_y/s_x)s_x r_y \mid_{\mathbb{N}} y$, and by Proposition 2.3 $x \mid y$.
- (4) Because $\delta(y) = \gamma(y)$, s_y must be a power of d. Therefore $s_x \nmid_{\mathbb{N}} s_y$ and s_x is relatively prime to r_y , so $s_x \nmid_{\mathbb{N}} y$. Thus $x \nmid y$.

Theorem 2.5. Let $M = M(d,d) \cap M(1,n)$ be an ACM, $x \in M$, and $x = s_x p_1 \cdots p_m$ where $p_1 \cdots p_m$ is the prime factorization of r_x . Then $\omega(x) = \max(\delta(x) + 1, m)$.

Proof. Let $\delta = \delta(x)$ and $\mu = \max(\delta + 1, m)$.

Either $\delta=0$ or $\delta>0$. If $\delta=0$, then clearly $\omega(x)\geq 1$. Otherwise suppose that $\delta>0$. Then $d\neq 1$. Since $dp_1\cdots p_m$ and d are relatively prime to n, by Dirchlet's Theorem we may choose primes q_1 and q_2 such that $dq_1p_1\cdots p_n$ and dq_2 are equivalent to 1 modulo n and q_1,q_2 are relatively prime to x. Note that $dq_1p_1\cdots p_n$ and dq_2 are elements of M, and set $W_1=(dq_1p_1\cdots p_m)(dq_2)^{\delta}$. $p_1\cdots p_m$ divides $\theta(W_1)$ in \mathbb{N} , and $\gamma(\theta(W_1))=\delta+1>\delta$, so x divides $\theta(W_1)$ in M by Lemma 2.4 (3).

Let V_1 be a proper subproduct of W_1 : then $\gamma(\theta(V_1)) = \delta(\theta(V_1)) \leq \delta$ and $x \neq \theta(V_1)$. Then by Lemma 2.4 (4) x does not divide the evaluation of V_1 . Then W_1 is a bullet for x of length $\delta + 1$ in the case that $\delta > 0$. Therefore $\omega(x) \geq \delta + 1$ always.

Set the integer $y = d^2p_1 \cdots p_m$. Then y is relatively prime to n, so let z be the smallest positive integer such that $yz \equiv 1 \mod n$. Then $yz \in M$. For each p_i , set the integer q_i as

$$q_i = \frac{yz}{dp_i} + n = dp_1 \cdots p_{i-1} p_{i+1} \cdots p_n z + n.$$

 $dp_iq_i = yz + dnp_i \equiv 1 \mod n$, so $dp_iq_i \in M$. Then set $W_2 = \prod_{i=1}^m (dp_iq_i)$ as a free sequence over M. The evaluation of W_2 is divisible by $p_1 \cdots p_m$ in \mathbb{N} . Suppose $m > \delta$. Either d = 1 or $\delta(\theta(W_2)) = m > \delta$ so W_2 is divisible by x.

We claim that if $1 \leq j \leq m$ and $j \neq i$ then p_j does not divide q_i in \mathbb{N} . Suppose not: because $p_j \mid_{\mathbb{N}} (yz)/(dp_i)$ then $p_j \mid_{\mathbb{N}} n$, so $\gcd(x,n) > p_j > 1$, a contradiction because $x \in M(1,n)$. Our claim holds. Let V_2 be a proper subproduct of W_2 . Then for some $I \subset \{1,\ldots,m\}$, we have that $V_2 = \prod_{i \in I} (dp_iq_i)$. Let j be an element of $\{1,\ldots,m\} \setminus I$: clearly $p_j \nmid_{\mathbb{N}} \prod_{i \in I} (dq_i)$, so $p_1 \cdots p_n \nmid \theta(V_2)$. Then W_2 is a bullet for x of length m when $m > \delta$, so if $m > \delta$, $\omega(x) \geq m$.

Thus far, we have established that $\omega(x) \geq \delta(x) + 1$ and $\omega(x) \geq m$ when $m > \delta$. Thus, $\omega(x) \geq \mu$.

Let U be a free sequence over M with $x \mid \theta(U)$ and $|U| > \mu$. Because $\mu \geq m$, and U is also a free sequence over \mathbb{N} , using Corollary 2.2 there exists a subsequence T of U with length μ which is divisible by $p_1 \cdots p_m$ over \mathbb{N} . If d = 1 then $x \mid \theta(T)$. Otherwise we have that since each element in U is divisible by d, $\gamma(\theta(T)) \geq \mu > \delta$ so $x \mid \theta(T)$. U is not a bullet for x. Therefore $\omega(x) \leq \mu$. \square

3 Elasticities

3.1 Preliminary Results

We now investigate the lengths of atomic factorizations of ACM. Many results in this subsection are stated without proof; a friendly introduction to factorization lengths in ACM may be found in [3]. [1] and [2] contain a more careful exposition of preliminary results.

In Hilbert's monoid M(1,4), it is clear that factorization is nonunique. However, factorizations for a fixed element in Hilbert's monoid are always the same length: for example the nonunique factorizations of $693 = 9 \cdot 77 = 21 \cdot 33$ are both products of length 2.

On the other hand in M(4,6) we have factorizations that do differ in length. For example, we have that $10000 = 10^4 = 250 \cdot 10 \cdot 4$. There does exist a bound on the possible ratio between lengths of factorizations: given a fixed element x, if there exists a factorization of length k for x, then there does not exist a factorization of length 2k or greater for x.

We may also consider the case of M(6,6) which has even more wild behavior than M(4,6). In M(6,6), for any k>2 we have that $6^k=(2^{k-1}\cdot 3)\cdot (2\cdot 3^{k-1})$, so there exists no bound on the ratio of lengths of factorizations.

Let M be an atomic monoid and let x be a nonunit of M. The set of lengths of x is

$$\mathcal{L}(x) = \{k \in \mathbb{N} : x = a_1 \cdots a_k \text{ where } a_i \in \mathcal{A}(M)\}.$$

Then let $L(x) = \sup(\mathcal{L}(x))$ and $l(x) = \min(\mathcal{L}(x))$. We define $\rho(x)$ to be L(x)/l(x) to be elasticity of x. Furthermore $\rho(M) = \sup\{\rho(x) : x \in M, x \nmid e\}$ is the elasticity of M.

It turns out that $\rho(M(1,4)) = 1$, $\rho(M(4,6)) = 2$, and $\rho(M(6,6)) = \infty$. This variance of behavior in elasticities of ACM is largely determined by the greatest common divisor of the two integers a and b of M(a,b).

Let M = M(a, b) be an ACM and let $d = \gcd(a, b)$. If d = 1, then a = 1 (by Theorem 1.2) and M is called regular. If M is not regular, then M is singular. We classify singular ACM further based on the prime factorization of d. If d is a power of a prime, then M is local. Otherwise, M is global. M(1, 4) is regular, M(4, 6) is local, and M(6, 6) is global.

Theorem 3.1. Let M = M(a, b) be an ACM.

- 1. If M is regular, then $\rho(M) = 1$.
- 2. If M is local, then with $gcd(a,b) = p^{\alpha}$ for a prime p and $p^{\beta} \in M$ for minimal β , we have that $\rho(M) = (\alpha + \beta 1)/\alpha$.
- 3. If M is global, then $\rho(M) = \infty$.

The elasticity of M is accepted if there exists an x such that $\rho(x) = \rho(M)$. We see that if M is a regular ACM, the elasticity of M is always accepted. On the other hand, if M is a global ACM the elasticity is never accepted: the length of the factorization of x in M cannot be infinite since its factorization in \mathbb{N} is finite.

However, if M is a local ACM in general we do not really know when the elasticity of M is accepted or not. Some partial results for this problem are found in [4] and [5].

3.2 ρ_k of Local ACM

We may consider accepted elasticities in the larger context of unions of length sets: define $\rho_k(M) = \sup\{L(x) : k \in \mathcal{L}(x)\}$. $\rho(M)$ is accepted if and only if $\rho_k(M) = k\rho(M)$ for some k. Our goal for the rest of this section is to investigate the behavior of ρ_k in local ACM and find cases where the elasticity of a local ACM is not accepted.

Let M be a local ACM, so that $gcd(a,b) = p^{\alpha}$ for a prime p. Then, $a = p^{\alpha}\xi$ and $b = p^{\alpha}n$ for some integers ξ and n, and ξ is uniquely determined by n. Then we may write $M(a,b) = M(p,\alpha,n)$.

We begin with some observations on the structure of atoms:

Proposition 3.2. Let $M = M(p, \alpha, n)$ and set β to be the order of p modulo n. Let q be a prime distinct from p and m be a positive integer not divisible by p. Then

- 1. If $p^t m$ is reducible, then $t \geq 2\alpha$.
- 2. If $\alpha \le t < 2\alpha$ and $p^t m \equiv 1 \mod n$, then $p^t m$ is an atom of M.
- 3. p^{β} is the smallest power of p found in M, and an atom.
- 4. If $\beta < t < \beta + \alpha$ and $p^t q \equiv 1 \mod n$, then $p^t q$ is an atom of M.
- 5. If $\beta + \alpha \leq t$, then $p^t m$ is not an atom of M.

Proof. p^{α} divides any element of M over the natural numbers, thus any reducible element must be divisible by $p^{2\alpha}$ over the natural numbers. Hence (1) and (2) follow.

Because β is the order of p modulo n, we must have that $p^{\beta} \equiv 1 \mod M$. Then p^{β} is the smallest power of p found in M, and irreducibility immediately follows, giving us (3).

We prove (4) by contradiction. Suppose that p^tq is not an atom, so there is a nonunit divisor of p^tq . Since q is a prime, any factorization of p^tq into two nonunits will be of the form $p^r \cdot p^{t-r}q$ for $r \leq t$. Since $p^r \in M$, we must have by (3) that $r \geq \beta$. But the $t - r < \alpha$, so $p^{\alpha} \nmid_{\mathbb{N}} p^{t-r}q$. Hence $p^{t-r}q \notin M$, giving us the contradiction.

Finally we have that $p^{\beta}p^{\alpha} \mid_{\mathbb{N}} p^t m$, so by Proposition 2.3 $p^{\beta} \mid p^t m$, from which (5) follows.

We introduce our first result, which gives us a lower bound on ρ_k :

Theorem 3.3. Let $M = M(p, \alpha, n)$ be a local ACM and k be an integer greater than 1. Set β to be the order of p modulo n. Then

$$\rho_k(M) \ge \left| \frac{(k-1)(\beta-1)-1}{\alpha} \right| + k + 1.$$

Proof. Using the division algorithm, let m and r be positive integers such that $m\alpha + r = (k-1)\beta + 2\alpha - 1$ where r is at most α . Then, by Dirchlet's Theorem, there exist primes q_1, q_2, q_3, q_4 distinct from p such that

$$q_1 \equiv p^{-\beta-\alpha+1}$$
 $q_2 \equiv p^{\beta-1}$ $q_3 \equiv p^{-\alpha}$ $q_4 \equiv p^{-\alpha-r} \bmod n$.

We immediately see that $u_1 = p^{\beta+\alpha-1}q_1$, $v_1 = p^{\alpha}q_1q_2$, $v_2 = p^{\alpha}q_3$, and $v_3 = p^{\alpha+r}q_4$ are atoms of M. We also claim that the integer $u_2 = p^{2\alpha-1}q_2^{k-1}q_3^{m-1}q_4$ is also an atom in M. It suffices to show that $u_2 \equiv 1 \mod n$. Note that

$$(2\alpha - 1) + (k - 1)(\beta - 1) + (m - 1)(-\alpha) + (-\alpha - r) = (2\alpha - 1) + (k - 1)(\beta - 1) - (k - 1)(\beta - 1) - (2\alpha - 1) = 0$$

hence

$$u_2 \equiv p^{2\alpha-1}q_2^{k-1}q_3^{m-1}q_4 \equiv p^{2\alpha-1}p^{(k-1)(\beta-1)}p^{(m-1)(-\alpha)}p^{-\alpha-r} \equiv p^0 \equiv 1 \bmod n$$
 so $u_2 \in \mathcal{A}(M)$. Then set

$$x = u_1^{k-1} u_2 = p^{(k-1)(\beta+\alpha-1)+(2\alpha-1)} q_1^{k-1} q_2^{k-1} q_3^{m-1} q_4 = v_1^{k-1} v_2^{m-1} v_3.$$

Therefore $x \in M$, and $k, m + k - 1 \in \mathcal{L}(x)$. Thus, $\rho_k(M) \ge \max(\mathcal{L}(x)) \ge m + k - 1$. Moreover, we have that

$$m+k-1 = \left| \frac{(k-1)\beta + 2\alpha - 1}{\alpha} \right| + k-1 = \left| \frac{(k-1)\beta - 1}{\alpha} \right| + k+1,$$

from which we immediately obtain our result.

3.3 M(p, 1, n)

We now shift our focus to ACM of the form M = M(p, 1, n), which greatly simplifies the structure of factorizations of M. First, letting β be defined as in the previous Theorem, we now have that $\rho(M) = \beta$. Furthermore if the elasticity of M is accepted, we must have some $x \in M$ such that

$$x = p^{\beta} w_1 \cdots p^{\beta} w_k = p v_1 \cdots p v_{k\beta}.$$

Additionally, for any atom of the form $p^{\beta}m$ we must have that $m \equiv 1 \mod n$.

Let M and N be commutative, cancellative, atomic monoids. A map $\sigma:M\to N$ is a transfer homomorphism if:

- 1. For $x \in M$, $\sigma(x)$ is a unit of N if and only if x is a unit of M.
- 2. For every $a \in N$, there exists a unit u of N and $x \in M$ such that $\sigma(x) = au$.
- 3. Whenever $x \in M$ and $a, b \in N$ such that $\sigma(x) = ab$, there exist some $y, z \in M$ and units $u, v \in N$ such that x = yz, $\sigma(y) = ua$, and $\sigma(z) = vb$.

If a $\sigma: M \to N$ is a transfer homomorphism, then for any $x \in M$ we have that $\mathcal{L}(x) = \mathcal{L}(\sigma(x))$. Thus, instead of $\rho(M)$ or $\rho_k(M)$ we may equivalently consider $\rho(N)$ and $\rho_k(N)$.

Let G be a finite abelian group with element g. The submonoid T(g,G) of $(\mathbb{N},+)\times\mathcal{F}(G)$ is defined to be

$$T(g,G) = \{(0,*)\} \cup \{(t,W) \in \mathbb{N} \times \mathcal{F}(G) : t > 1 \text{ and } \theta(W) = g^t\}.$$

Proposition 3.4. Let M(p, 1, n) be a local ACM. The map

$$\sigma: M(p,1,n) \to T([p],\mathbb{Z}_n^{\times})$$

defined by

$$\sigma(1) = (0, *), \quad \sigma(x) = (t, [q_1]^{-1} \cdots [q_m]^{-1})$$

where $x = p^t q_1 \cdots q_m$ for $q_i \neq p$, is a transfer homomorphism.

Proof. We have that 1 is the only unit of M(p,1,n) and (0,*) is the only unit of $T([p], \mathbb{Z}_n^{\times})$. We have by definition that $\sigma(1) = (0,*)$. If x is not a unit, then t > 0 and $\sigma(x)$ is not a unit. Then σ satisfies conditions (1) and (2) of the definition of a transfer homomorphism.

Suppose that $(t, [a_1] \cdots [a_m]) \in T([p], \mathbb{Z}_n^{\times})$. Then by Dirchlet's Theorem there exist primes q_1, \ldots, q_m not equal to p such that $[q_1] = [a_1]^{-1}$. Furthermore we must have $[q_1] \cdots [q_m] = [p]^{-t}$ so that $p^t q_1 \cdots q_m \in M(p, 1, n)$. Furthermore, $\sigma(p^t q_1 \cdots q_m) = (t, [a_1] \cdots [a_m])$, so σ satisfies (3).

Finally, suppose that $x \in M(1, p, n)$ and that $a, b \in T([p], \mathbb{Z}_n^{\times})$. Write x as $p^tq_1\cdots q_m$. Then $\sigma(x)=(t,[q_1]^{-1}\cdots [q_m]^{-1})$. Without loss of generality we have that $a=(r,[q_1]^{-1}\cdots [q_k]^{-1})$ and that $b=(t-r,[q_{k+1}]^{-1}\cdots [q_m]^{-1})$ for some integers r and k. Then setting $y=p^rq_1\cdots q_k$ and $z=p^{t-r}q_{k+1}\cdots q_m$ we have that $y,z\in M(1,p,n)$ and that x=yz. Therefore σ satisfies (4).

It is not surprising that T(g,G) have many of the same properties as ACM of the form M(p,1,n). Notably, $\rho(T(g,G)) = o(g)$. It is then appropriate to focus on accepted elasticities of T(g,G) and $\rho_k(T(g,G))$ even though it is easy to construct some T(g,G) for which there is not a transfer homomorphism from some M(p,1,n) to T(g,G).

We summarize the remainder of the section. First, we present a closed form solution for $\rho_k(T(g,G))$ when $\langle g \rangle = G$. Next, we give several positive conditions for when $\rho_k(T(g,G)) = ko(g)$. Finally, we obtain a lower bound for the size of $G/\langle g \rangle$ for $\rho(T(g,G))$ to not be accepted.

Lemma 3.5. Let g be an element of a finite abelian group G, (t, W) be an element of T(g, G).

- 1. If t > o(g), then (t, W) is not irreducible.
- 2. If $t \leq o(g)$, then (t, W) is irreducible if and only if

$$\Sigma(W) \cap \{q, q^2, \dots, q^{t-1}\} = \varnothing.$$

Proof. (1) The empty sequence * evaluates to $e = g^{o(g)}$. Then (o(g), *) is a nontrivial divisor of (t, W).

(2) Suppose that (t, W) is not an atom. Then there exists a nontrivial divisor (r, V) of (t, W). Furthermore, r < t and V is a subsequence of W with $\theta(V)$ is g^r . Then $g^r \in \{g, g^2, \ldots, g^{t-1}\}$ and $g^r \in \Sigma(W)$.

Suppose that $g^r \in \Sigma(W) \cap \{g, g^2, \dots, g^{t-1}\}$. Then there exists a subsequence V of W with $\theta(V) = g^r$. Then (r, V) is a nontrivial divisor of (t, W).

Lemma 3.6. Let V_1 and V_2 be elements of $\mathcal{F}(G)$ and $U_1 \cdots U_k \mid V_1 V_2$ with $U_i \neq *$. If $\theta(U_i)$ is not in the sumset of V_2 for all i, then $k \leq |V_1|$.

Proof. Suppose that $k > |V_1|$. Since $U_1 \cdots U_k | V_1 V_2$, we have that $U_1 \cdots U_k = A_1 B_1 \cdots A_k B_k$ where $U_i = A_i B_i$, $A_i | V_1$, and $B_i | V_2$ for all i. Then, $A_1 \cdots A_k | V_1 = A_1 B_1 \cdots A_k = A_1 B_$

 V_1 . However, $k > |V_1|$, so for some j, $A_j = *$. Then $B_j = U_j$ and $U_j | V_2$, so $\theta(U_j)$ is found in the sumset of V_2 , and we have a contradiction.

The following theorem applies for $T([p], \mathbb{Z}_n^{\times})$ when p is a primitive root modulo n.

Theorem 3.7. Let $G = \langle g \rangle$ be a finite abelian group and k be an integer greater than 1. Then $\rho_k(T(g,G)) = (k-1)o(g) + 1$.

Proof. The elements $(o(g), *), (1, (g)^{(k-1)o(g)+1})$ are irreducible, with

$$(o(q),*)^{k-1}(1,(q)^{(k-1)o(q)+1}) = (1,q)^{(k-1)o(q)+1}.$$

Hence $\rho_k(T(g,G)) \ge (k-1)o(g) + 1$. We introduce a claim to aid construction of an upper bound on ρ_k .

Claim. If (t, W) is an atom in T(g, G) with t > o(g)/2, the number of nonidentity group elements in W is at most o(g) - t.

Proof of claim. Suppose not. Let V be the largest subsequence of W that does not contain e. Then $V=(g^{n_1})(g^{n_2})\cdots(g^{n_l})$ with $0< n_i< o(g)$ and l>o(g)-t. Since (t,W) is irreducible, by Lemma 3.5 (2) each n_i is at least t and any subsequence of V cannot have an evaluation of g_1,\ldots,g_{t-1} . Now consider the set

$$\{\theta(g^{n_1}), \theta(g^{n_1}g^{n_2}), \dots, \theta(g^{n_1}\cdots g^{n_l})\} \subseteq \{g^t, \dots, g^{o(g)}\},\$$

and note that $|\{g^t,\ldots,g^{o(g)}\}| = o(g) - t + 1$. $l \ge o(g) - t + 1$ hence there exists some j and i between 1 and l where $\theta([g^{n_1}]\cdots[g^{n_i}]) = \theta([g^{n_1}]\cdots[g^{n_j}])$. Then the sequence $[g^{n_{i+1}}][g^{n_{i+1}}]\cdots[g^{n_j}]$ is zero-sum. The evaluation of $[g^{n_{i+2}}]\cdots[g^{n_j}]$ is $g^{o(g)-n_{i+1}}$, and t > o(g)/2 so $0 < o(g)-n_{i+1} < t$. This is also a subsequence of W, meaning (t,W) is not irreducible. Contradiction, therefore |W| < o(g) - t.

We now show that $\rho_k(T(g,G)) \leq (k-1)o(g)+1$ by contradiction. Suppose that there exists an element $(t,W) \in T(g,G)$ which has an atomic factorization of length k and an atomic factorization of length m > (k-1)o(g)+1. t is at most ko(g), and m must be at most t. Then $(t,W) = (t_1,W_1)\cdots(t_k,W_k) = (r_1,V_1)\cdots(r_m,V_m)$ for atoms (t_i,W_i) and (r_m,V_m) . Without loss of generality, we may assume that [e] is not a subsequence of W and that t_i , r_j are ordered in descending order.

Because $m \leq ko(g) - r_j$, $r_j < o(g)$. Since $\sum_{i=1}^k t_i = t > (k-1)o(g) + 1$, all t_i for $i \neq k$ must be greater than o(g)/2 and $t_k > 1$. Suppose that $t_k > o(g)/2$. Then by our claim we have that $|W| = |W_1 \cdots W_k| < \sum_i^k (o(g) - t_i) < o(g) - 1$. Furthermore, $|V_1 \cdots V_m| = |W|$, so for some j we have that $V_j = *$. But $(r_j, *)$ is not an atom, so we must have that $t_k \leq o(g)/2$.

Let n be some positive integer such that $r_j \geq t_k$ for all $j \leq n$. Then g^{r_j} is not in the sumset of W_k for j > n, and

$$(k-1)o(g) + 1 < m \le t_k n + (m-n) \le \sum_{i=1}^m r_i \le t \le ko(g),$$

so $(t_k - 1)n < o(g) - 1$, and

$$m-n > (k-1)o(g) + 1 - (o(g)-1)/(t_k-1) > o(g) + 1 - \frac{o(g)-1}{t_k-1} \ge 2.$$

 $V_{n+1}\cdots V_m$ divides W. Furthermore, no V_j can be the empty sequence since (r_j,V_j) is an atom, and all $\theta(V_j)$ are not found in the sumset of W_k for $n+1 \leq j \leq m$. From our claim, $|W_1\cdots W_{k-1}| < \sum_i^{k-1}(o(g)-t_i) = (k-1)o(g)-t+t_k \leq t_k-2$. Hence, $m-n < t_k$. If $t_k < 3$ then $2 < m-n < t_k-2 < 1$, which is a contradiction. On the other hand, if $t_k \geq 3$,

$$m-n > o(g) + 1 - \frac{o(g) - 1}{2} > \frac{o(g)}{2} > \frac{o(g)}{2} - 2 \ge t_k - 2 > m - n$$

which creates another contradiction. Hence, we always arrive at a contradiction if we let $\rho_k(T(g,G)) > (k-1)o(g) + 1$, so $\rho_k(T(g,G)) \le (k-1)o(g) + 1$.

When g does not generate G, the elasticities of $\rho_k(T(g,G))$ are not nearly as well known. To aid in our investigation we introduce the concept of H-sum subsequences:

Suppose that H is a subgroup of G. Then, since H is closed over its subgroup elements, free sequences which evaluate to members of H will naturally form a submonoid of $\mathcal{F}(G)$. These free sequences are known as H-sum sequences. An H-sum sequence is a minimal it has no proper H-sum subsequences. In the case where H is the trivial group, we may instead use the term zero-sum sequence instead.

There is a relationship between minimal H-sum sequences of $\mathcal{F}(G)$ and minimal zero-sum sequences of $\mathcal{F}(G/H)$. Namely, if $(a_1H)\cdots(a_mH)$ is a minimal zero-sum sequence if and only if for any $h_1,\ldots,h_m\in H$ we have that $(h_1a_1)\cdots(h_ma_m)$ is a minimal H-sum sequence. The proof of this property may be found in [5, Propositions 5.2, 5.3].

Before continuing, we introduce three invariants. Let G be a finite abelian group. We may rewrite $G = \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_m}$. Let $d^*(G)$ be defined as $\sum_{i=1}^m (n_i - 1)$. We define the Davenport constant D(G) to be the length of the longest minimal zero-sum sequence of $\mathcal{F}(G)$. Finally define the exponent of G written $\exp(G) = n_m$, which is also the largest possible order of an element of G.

The following result is a corollary of [5, Theorem 4.5]. The original Theorem applies to local ACM, not necessarily of the form M(p, 1, n), but we have adapted the construction of atomic factorizations to that of T(g, G):

Proposition 3.8. Let G be a finite abelian group where $G \cong \langle g \rangle \times H$ for an element g and subgroup H of G, and k be an integer greater than 1. If $(k-1)d^*(H) \geq k(o(g)-1)$, then $\rho_k(T(g,G)) = ko(g)$.

Proof. Let $d = d^*(H)$. Since H is finite and abelian, we have that $H \simeq \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_m}$ for some $n_1 \mid n_2 \mid \cdots \mid n_m$. Thus, $H = \langle h_1 \rangle \times \cdots \times \langle h_n \rangle$ for some $h_1, \ldots, h_n \in H$ with $o(h_i) = n_i$.

Let $W_1 = \prod_{i=1}^m (gh_i)^{n_i-1} (g^{-1}h_i^{-1})^{n_i-1}$ and $W_2 = \prod_{i=1}^m (h_i^{-1})^{(2k-2)n_i}$ be zero-sum sequences of G. Then $\Sigma(W_1) \cap \langle g \rangle = \Sigma(W_2) \cap \langle g \rangle = \{e\}$, so $(o(g), W_1)$ and $(o(g), W_2)$ are atoms of T(g, G). Furthermore, let kd - d = q(o(g) - 1) + r with $0 \le r \le o(g) - 1$ by the division algorithm.

If $1 \le i \le kd - d$, define t_i to be the unique integer such that

$$(k-1)\sum_{j=1}^{t_i-1}(n_j-1) < i \le (k-1)\sum_{s=1}^{t_i}(n_j-1)$$

. If $1 \le i \le q$, define s_i to be equal to (i-1)(o(g)-1). Now define sequences U_1, \ldots, U_{kd-d} and V_1, \ldots, V_q where

$$U_i = (gh_{t_i})h_{t_i}^{-1}, \quad V_i = \prod_{j=s_i+1}^{s_{i+1}} (g^{-1}h_{t_j})h_{t_j}^{-1} \text{ for } i < q, \quad V_q = \prod_{j=s_q+1}^{kd-d} (g^{-1}h_{t_j})h_{t_j}^{-1}$$

Now define $U_{kd-d+1}, \ldots, U_{kd-d+q}$ as $U_{kd-d+i} = V_i$ for $1 \le i \le q$. Then we have that

$$W_1^{k-1}W_2 = U_1 \cdots U_{kd-d+q} \prod_{i=1}^m (h_i^{-1})^{2k-2}.$$

We have that $\theta(U_i) = g$ for $1 \le i \le kd - d$ and $\theta(U_j) = g^{-o(g)+1} = g$ for $kd - d + 1 \le j \le kd - d + q$. Suppose that $kd - d + q \ge ko(g)$. Then let $U = U_{ko(g)} \cdots \prod_{i=1}^m (h_i^{-1})^{2k-2}$, so $W_1^{k-1}W_2 = U_1 \cdots U_{ko(g)-1}U$. Since W_1 and W_2 are zero-sum sequences,

$$e = \theta(W_1^{k-1}W_2) = \theta(U_1)\cdots\theta(U_{ko(g)-1})\theta(U) = g^{ko(g)-1}\theta(U) = g^{-1}\theta(U)$$

from which $\theta(U) = g$ follows. Therefore, $(1, U_1), \ldots, (1, U_{ko(g)-1}), (1, U)$ are all atoms in T(g, G). Then consider the element $x = (ko(g), W_1^{k-1}W_2)$ with atomic factorizations

$$x = (o(g), W_1)^{k-1}(o(g), W_2),$$

$$x = (1, U_1) \cdots (1, U_{ko(g)-1})(1, U),$$

which are of length k and ko(g) respectively.

Thus, if $kd - d + q \ge ko(g)$, then $\rho_k(T(g,G)) = ko(g)$. Moreover, we have that $kd - d + q = \lfloor (k-1)o(g)d/(o(g)-1)\rfloor$. ko(g) is an integer hence $kd - d + q \ge ko(g)$ if and only if $(k-1)o(g)d/(o(g)-1) \ge ko(g)$, which occurs if and only if $(k-1)d \ge k(o(g)-1)$. Then if $(k-1)d \ge k(o(g)-1)$, we have $\rho_k(T(g,G)) = ko(g)$.

This proposition is also a corollary of a previous result, specifically that of [5, Proposition 4.10].

Proposition 3.9. Let $\langle g \rangle \times H \cong G$ for $g \in G$ and $H \leq G$ and let k be an integer greater than 1. If $o(g) \mid \exp(H)$, then $\rho_k(M) = ko(g)$.

Proof. Let $h \in H$ such that $o(h) = \exp(H)$. $(gh)^{k \exp(H)}$ and $(h^{-1})^{k \exp(H)}$ are zero-sum sequences; we claim that both sequences have no nonidentity powers of g in their sumsets. All subsequences of $(gh)^{k \exp(H)}$ are of the form $(gh)^n$ for some integer n between 0 and $k \exp(h)$. Suppose that $(gh)^n$ is a $\langle g \rangle$ -sum subsequence. Then, since $\langle g \rangle \cap H = \{e\}$ and $g^n h^n \in \langle g \rangle$, $h^n = e$. Hence n is divisible by $\exp(H)$ and therefore divisible by the order of g. Then $g^n h^n = e$ hence $\Sigma((gn)^{k \exp(H)}) \cap \langle g \rangle = \{e\}$. Since sumset of $(h^{-1})^{k \exp(H)}$ is a subset of H, $\Sigma((h^{-1})^{k \exp(H)}) \cap \langle g \rangle = \{e\}$. Our claim holds thus $(\exp(g), (gh)^{k \exp(H)})$ and $(\exp(g), (h^{-1})^k \exp(H))$ are atoms of T(g, G).

Set $x = (ko(g), (gh)^{k \exp(H)}(h^{-1})^{k \exp(H)})$:

$$\begin{split} x &= (o(g), *)^{k-2} (o(g), (gh)^{k \exp(H)}) (o(g), (h^{-1})^{k \exp(H)}), \\ x &= (1, (gh)h^{-1})^{ko(g)-1} \big(1, (gh)^{k(\exp(H)-o(g))+1} (h^{-1})^{k(\exp(H)-o(g))+1} \big) \end{split}$$

are two atomic factorizations of x with lengths k and ko(g) respectively. Then $\rho_k(T(g,G)) \geq ko(g)$ and $\rho_k(T(g,G)) = ko(g)$.

Proposition 3.10. Let g be an element of a finite abelian group G and let $D(G/\langle g \rangle) \geq ko(g)$. Then $\rho_k(T(g,G)) = ko(g)$.

Proof. Let ko(g) = m, $d = D(G/\langle g \rangle)$, and $h_1\langle g \rangle \cdots h_d\langle g \rangle$ be a minimal zerosum sequence of $\mathcal{F}(G/\langle g \rangle)$. Then $h_1 \cdots h_d$ is a minimal $\langle g \rangle$ -sum sequence with evaluation g^n for some integer n.

Let $U_1 = h_1 \cdots h_m$, $U_2 = h_{m+1} \cdots h_{d-1}(g^{-n}h_d)$, $V_1 = (gh_1^{-1}) \cdots (gh_m^{-1})$ and $V_2 = h_{m+1}^{-1} \cdots h_{d-1}^{-1}(g^nh_d^{-1})$; we see that U_1U_2 and V_1V_2 are minimal $\langle g \rangle$ -sum sequences with $\theta(U_1U_2) = \theta(V_1V_2) = \theta(U_2V_2) = e$. Let $x = (m, U_1U_2V_1V_2)$. Then

$$x = (o(g), *)^{k-2}(o(g), U_1U_2)(o(g), V_1V_2)$$

$$x = (1, h_1(gh_1^{-1})) \cdots (1, h_{m-1}(gh_{m-1}^{-1}))(1, h_m(gh_m^{-1})U_2V_2)$$

are two atomic factorizations of x of length k and length m respectively. Then $\rho_k(T(g,G)) = ko(g)$.

Lemma 3.11. Let g be an element of a finite abelian group G, and k be a positive integer. If $\rho_k(T(g,G)) = ko(g)$, then there exist $a_{i,j} \in G$ for $1 \le i \le k$ and $1 \le j \le ko(g)$ such that for each i, $(o(g), a_{i,1} \cdots a_{i,ko(g)})$ is an atom of T(g,G) and for each j, $a_{1,j} \cdots a_{k,j} = e$.

Proof. If $\rho_k(T(g,G)) = ko(g)$, then there exist free sequences W_1, \ldots, W_k and $V_1, \ldots, V_{ko(g)}$ such that

$$(o(g), W_1) \cdots (o(g), W_k) = (1, V_1) \cdots (1, V_{ko(G)})$$

with each $(o(g), W_i)$ and $(1, V_j)$ atoms of T(g, G). Then each W_i is a minimal zero-sum sequence and each V_j evaluates to g. Furthermore, we have that there exist $A_{i,j}$ for $1 \le i \le k$ and $1 \le j \le ko(g)$.

The main result of [4] gives us an exact condition for when the elasticity of $M = M(p, \alpha, n)$ is accepted for p primitive modulo n, but if p is not primitive very little is known about when the elasticity is not accepted. Our last result shows that given a fixed order of g, there is a bound on the cardinality of G such that below that bound the elasticity of T(g, G) cannot be accepted. This sheds some light on the conditions for having $\rho(M(p, 1, n))$ not be accepted.

First we make some observations on the structure of W for atoms of the form $(o(g), W) \in T(g, G)$.

Lemma 3.12. Let G be a finite abelian group with subgroup H, and W a zero-sum sequence of G such that $\Sigma(W) \cap H = e$. Set ψ as the natural homomorphism G to G/H and the map $\phi : \mathcal{F}(G) \to \mathcal{F}(G/H)$ given by $\phi(g_1 \cdots g_m) = \psi(g_1) \cdots \psi(g_m)$.

- 1. ϕ forms a bijection between zero-sum subsequences of W and zero-sum subsequences of $\phi(W)$.
- 2. Let $aH \in \phi(W)$. If there exists a zero-sum subsequence V of $\phi(W)$ where $0 < v_{aH}(V) < v_{aH}(\phi(W))$, then there is a unique $h \in H$ where (ah) is contained in W.

Proof. Let $\phi(W) = a_1 H \cdots a_m H$ and $W = (a_1 h_1) \cdots (a_m h_m)$.

(1) Note that $\psi(\theta(X)) = \theta(\phi(X))$. Then X is a zero-sum subsequence if of W and only if $\phi(X)$ is zero-sum subsequence of $\phi(W)$.

We show that ϕ is surjective: Let V be a zero-sum subsequence of $\phi(W)$. Because free sequences are invariant under arrangement of terms, without loss of generality we may assume $V = a_1 H \cdots a_n H$ for $n \leq m$. Then $(a_1 h_1) \cdots (a_n h_n)$ is a subsequence of W with $\phi((a_1 h_1) \cdots (a_n h_n)) = V$.

We show that ϕ is injective: Let X_1, X_2 be zero-sum subsequences of W such that $\phi(X_1) = \phi(X_2) = V$, a subsequence of $\phi(W)$. Without loss of generality let $V = a_1 H \cdots a_n H$. Then for $b_1, \ldots, b_n, c_1, \ldots, c_n \in H$ we may write $X_1 = (a_1 b_1) \cdots (a_n b_n)$ and $X_2 = (a_1 c_1) \cdots (a_n c_n)$. Suppose that $X_1 \neq X_2$, seeking a contradiction: $b_j \neq c_j$ for some positive $j \leq n$, thus

$$\theta((a_1b_1)\cdots(a_{j-1}b_{j-1})(a_jc_j)(a_{j+1}b_{j+1})\cdots(a_nb_n))=c_jb_j^{-1}\in\Sigma(W)\cap H.$$

However $c_j b_j^{-1} \neq e$ which is the contradiction. Therefore $X_1 = X_2$.

(2) Let $t = v_{aH}(V)$ and $n = v_{aH}(\phi(W))$. Then without loss of generality we may assume that a_1H, a_2H, \ldots, a_nH are all equal to aH. Then we may rewrite $W = (ah_1) \cdots (ah_n)(a_{n+1}h_{n+1}) \cdots (a_mh_m)$. For some $I \subseteq \{n+1, \ldots, m\}$ we have that $\phi\left((ah_1) \cdots (ah_t)\prod_{i \in I}(a_ih_i)\right) = V$. Let $X = \prod_{i \in I}(a_ih_i)$.

To complete the proof it suffices to show that for $i, j \in \{1, ..., n\}$, $h_i = h_j$. Without loss of generality we may assume $j \ge i$. If $1 \le i \le t$ and $t+1 \le j \le n$ then

$$\phi((ah_1)\cdots(ah_r)X) = \sigma((ah_1)\cdots(ah_{i-1})(ah_i)(ah_{i+1})\cdots(ah_r)X) = V,$$

and because V is a zero-sum sequence, from (1) $h_i = h_j$. If i and j are both at most t, then we have that $g_i = g_n = g_j$. If i and j both greater than t, then $g_i = g_1 = g_j$. Therefore $g_i = g_j$.

Theorem 3.13. Let G be a finite abelian group and g an element of G. If $o(g) > \sum_{a \in G} o(a\langle g \rangle)$, then the elasticity of T(g, G) is not accepted.

Proof. For a free sequence $W = g_1 \cdots g_m$ over G, we introduce the function f(W, n) where $f(W, n) = |\{i : 1 \le i \le m, g_i^n \ne e\}|$. That is, f(W, n) counts the elements in W which have orders that do not divide n.

Claim. If the elasticity of T(g,G) is accepted and n < o(g), then there exists an irreducible (o(g), W) such that $f(W, n) \ge o(g)$.

Proof of claim. Recall that for $g_1, g_2 \in G$, $lcm(o(g_1), o(g_2)) \geq o(g_1g_2)$. Thus if U is a free sequence with evaluation g then $f(U, n) \geq 1$. Furthermore, for free sequences U_1 and U_2 , clearly $f(U_1U_2, n) = f(U_1, n) + f(U_2, n)$. Because the elasticity of T(g, G) is accepted, there exist atoms $(o(g), W_1), \ldots, (o(g), W_k)$ and $(1, V_1), \ldots, (1, V_{ko(g)})$ where

$$(o(g), W_1) \cdots (o(g), W_k) = (1, V_1) \cdots (1, V_{ko(g)}).$$

Since $\theta(V_j) = g$, we infer that $u(V_j, n) \ge 1$. Then

$$\sum_{i=1}^{k} f(W_i, n) = \sum_{j=1}^{ko(g)} f(V_j, n) \ge ko(g).$$

By the pigeonhole principle there must exist some W_i such that $f(W_i, n) \ge o(g)$. The claim holds.

Now we continue on to the main statement, which we approach by a proof by contradiction. Suppose that the elasticity of T(g,G) is accepted. Then let $\epsilon = \exp(G/\langle g \rangle)$. From our claim there exists an atom (o(g),W) such that $f(W,\epsilon) \geq o(g)$. Then $\Sigma(W) \cap \langle g \rangle = \{e\}$, so we may define ϕ and ψ as in Lemma 3.12 letting $H = \langle g \rangle$.

Let S be the set of all $g \in G$ where $g^{\epsilon} \neq e$.

$$\sum_{g \in S} v_{\psi(g)}(\phi(W)) \ge \sum_{g \in S} v_g(W) = f(W, \epsilon) > \sum_{a \in G} o(a\langle g \rangle)$$

hence by a pigeonhole argument there exists some $a\langle g \rangle \in \psi(S)$ such that $v_{a\langle g \rangle}(\phi(W)) > o(a\langle g \rangle)$. Moreover $(a\langle g \rangle)^{o(a\langle g \rangle)}$ is a zero-sum sequence, so by Lemma 3.12 (2) there exists a unique $g_0 \in \langle g \rangle$ such that (ag_0) is contained in W. Then $(ag_0)^{o(a\langle g \rangle)}$ is a zero-sum subsequence of W, and so $(ag_0)^{\epsilon} = e$. However, $a\langle g \rangle \in \psi(S)$ so $ag_0 \in S$, meaning that $(ag_0)^{\epsilon} \neq e$, thus creating the contradiction.

References

- [1] P. Baginski and S. T. Chapman, Arithmetic Congruence Monoids: A Survey.
- [2] M. Banister, J. Chaika, S. T. Chapman, and W. Meyerson, On the Arithmetic of Arithmetical Congruence Monoids.
- [3] S. T. Chapman, A Tale of Two Monoids: A Friendly Introduction to Nonunique Factorizations, Mathematics Magazine 87:3 (June 2014).
- [4] M. Banister, J. Chaika, S. T. Chapman, and W. Meyerson, A theorem on accepted elasticity in certain local arithmetical congruence monoids.
- [5] L. Crawford, V. Ponomarenko, J. Steinberg, and M. Williams, Accepted Elasticity in Local Arithmetic Congruence Monoids.