Devoir maison 2 à remettre le 3 décembre 2010

1

Exercice 1

En utilisant la FFT décimation temporelle, calculer la transformée de Fourier discrète de

$$u = [0, 1, 0, 1, 1, 1, 1, 1].$$

2) On note v * w la convolution cyclique de v = [v[0], ..., v[7]] et w = [w[0], ...w[7]]. Soit h = [h[0], ..., h[7]].

Montrer que l'équation u * v = h possède des solutions si et seulement si $\hat{h}[2] = \hat{h}[6] = 0$. Montrer que dans ce cas il existe une unique solution v de cette équation vérifiant $\hat{v}[2] = \hat{v}[6] = 0$.

3) Calculer cette solution par FFT inverse (décimation fréquentielle) si $\hat{h} = [24, 0, 0, 0, 8, 0, 0, 0].$

Exercice 2

Effectuer le produit des polynômes $x^3 + 1$ et $x^4 + x$ en utilisant la FFT décimation fréquentielle et la FFT inverse décimation temporelle. Appliquer ce résultat au calcul du produit de 1001 et 10010.

Exercice 3

La FFT sous Matlab se calcule avec la commande fft(x,p) où x est le signal à transformer et p un entier (pour nous une puissance de 2). Si le signal est de longueur inférieure à p Matlab le complète automatiquement avec des zéros. La FFT inverse se calcule avec la commande ifft(x,p).

- 1) Reprendre l'exercice précédent sous Matlab.

 $^{1. \ \} Pour \ toute \ question \ concernant \ ce \ devoir \ s'adresser \ \grave{a} \ esterle@math.u-bordeaux.fr$

Exercice 4

1) En appliquant la définition de la transformation de Fourier sur \mathbb{R} , montrer que si on pose $f(t) = e^{-|t|}$, on a, pour $x \in \mathbb{R}$,

$$\hat{f}(x) = \frac{2}{1+x^2}.$$

- 2) En déduire la valeur de l'intégrale $\int_{-\infty}^{+\infty} \frac{dx}{(1+x^2)^2}$. Connaissez vous une méthode directe pour calculer cette intégrale?
 - 3) Soit a > 0. Calculer $\sum_{n=1}^{+\infty} e^{-an}$.
- 4) En utilisant une formule du cours, en déduire la valeur de $\sum_{n=1}^{+\infty} \frac{1}{b^2+n^2}$ pour $b \in \mathbb{R}$.

Exercice 5

1) On pose g(x)=0 si $|x|<\pi,$ g(x)=1 si $\pi\leq |x|\leq 2\pi,$ g(x)=0 si $|x|>2\pi.$

Dessiner le graphe de g, et calculer

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} g(x)e^{itx}dx.$$

- 2) On pose $f(t)=\frac{\sin(2\pi t)-\sin(\pi t)}{\pi t}$ pour $t\neq 0,$ f(0)=1. Donner la transformée de Fourier de f.
- 3) En utilisant le théorème d'échantillonnage de Shannon, déterminer pour quelles valeurs positives de δ on peut reconstituer toutes les valeurs de f à partir de la suite $(f[\delta m])_{m\in\mathbb{Z}}$. Dans ce cas donner une formule explicite permettant de calculer f(t) à partir de la suite $(f[\delta m])_{m\in\mathbb{Z}}$. Détailler le cas particulier $\delta=\frac{1}{4}$.