Topology I

Ji, Yong-hyeon

November 26, 2024

We cover the following topics in this note.

- Topology; Topological Space
- Open Set
- Continuous Mapping
- Distance Function; Metric Topology

Topology

Definition. Let *S* be a non-empty set. A **topology** on *S* is a subset

$$\mathcal{T} = \{U: U \subseteq S\} \subseteq 2^S$$

that satisfies the axioms:

- (O1) *S* and \emptyset are elements of \mathcal{T} : $S \in \mathcal{T}$ and $\emptyset \in \mathcal{T}$.
- $(O2)^a$ The union of an arbitrary subset of \mathcal{T} is an element of \mathcal{T} :

$$\{U_{\alpha}\}_{\alpha\in\Lambda}\subseteq\mathcal{T}\implies\bigcup_{\alpha\in\Lambda}U_{\alpha}\in\mathcal{T}.$$

 $(O3)^b$ The intersection of any finite subset of \mathcal{T} is an element of \mathcal{T} :

$$\{U_i\}_{i=1}^n \subseteq \mathcal{T} \implies \bigcap_{i=1}^n U_i \in \mathcal{T}.$$

Remark. By mathematical induction, we have

O3
$$\iff$$
 $[\{U_1, U_2\} \subseteq \mathcal{T} \Rightarrow U_1 \cap U_2 \in \mathcal{T}].$

Topological Space

Definition. Let *S* be a set. Let \mathcal{T} be a topology on *S*. Then the ordered pair (S, \mathcal{T}) is called a **topological space**.

Open Set

Definition. Let (S, \mathcal{T}) be a topological space. $E \subseteq S$ is an **open set**, or **open** (in S) iff $E \in \mathcal{T}$.

Remark. A subset $\mathcal{T} \subseteq 2^S$ is a topology on S if and only if

- (i) \emptyset and S are open;
- (ii) Let $\{E_{\alpha}\}_{\alpha \in \Lambda} \subseteq \mathcal{T}$. Then $\bigcup_{\alpha \in \Lambda} E_{\alpha}$ is open.
- (iii) Let $\{E_i\}_{i=1}^n \subseteq \mathcal{T}$. Then $\bigcap_{i=1}^n E_i$ is open.

 $^{^{}a}\mathcal{T}$ is closed under *arbitrary* unions

 $^{^{}b}\mathcal{T}$ is closed under *finite* intersection

Continuous Mapping

Definition. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces. Let $f: X \to Y$ be a mapping from X to Y.

(1) (Continuous at a Point) Let $x \in X$. The mapping f is **continuous at** x if and only if

$$\forall U_Y \in \mathcal{T}_Y, (f(x) \in U_Y \implies \exists U_X \in \mathcal{T}_X \text{ such that } x \in U_X \land f[U_X] \subseteq U_Y.)$$

- (2) (Continuous on a Set) Let $S \subseteq X$. The mapping f is **continuous on** S if and only if f is continuous at every point $x \in S$.
- (3) (Continuous Everywhere) The mapping f is **continuous on** X if and only if

$$U_Y \in \mathcal{T}_Y \implies f^{-1}[U_Y] \in \mathcal{T}_X,$$

where $f^{-1}[U_Y] = \{x \in X : f(x) \in U_Y\}$ is the preimage of U_Y under f.

Example 1 (Cofinite Topology). Let *S* be a set. Define a subset $\mathcal{T}_C \subseteq 2^S$ by

$$\mathcal{T}_{C} := \left\{ T \subseteq S : T^{C} \subseteq S \text{ is a finite set} \right\} \cup \{\emptyset\}$$

We claim that \mathcal{T}_C be a topology on S:

- (i) Clearly $\subseteq \in \mathcal{T}_C$. Since $S^C = \emptyset$ and \emptyset is finite, $S \in \mathcal{T}$.
- (ii) Let $\{E_{\alpha}\}_{{\alpha}\in\Lambda}\subseteq \mathcal{T}_{C}$. Then

$$\left(\bigcup_{\alpha \in \Lambda} E_{\alpha}\right)^{C} = \bigcap_{\alpha \in \Lambda} E_{\alpha}^{C}$$

and so

(iii)

Example 2 (Discrete Topology).

Example 3 (Indiscrete Topology).

Finer and Coarser

Definition.

Distance Function

Definition. TBA

Metric Topology

Definition. TBA

References

- [1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 8. 위상수학 (a) 위상공간의 정의." YouTube Video, 41:25. Published September 27, 2019. URL: https://www.youtube.com/watch?v=q8BtXIFzo2Q.
- [2] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 9. 위상수학 (b) 해석학개론과 거리위상" YouTube Video, 33:43. Published September 29, 2019. URL: https://www.youtube.com/watch?v=uJ0Gw7Yxk7c&t=242s.

A Complement of Family

Note.

$$\left(\bigcup_{i\in\Lambda}E_i\right)^C=\bigcap_{i\in\Lambda}\left(E_i\right)^C$$

Proof. content...