CONVOLUTION KERNELS FOR NATURAL LANGUAGE

Paper by: Michael Collins, Nigel Duffy Presented by: Ruinan (Renie) Lu

AYUSH BADOLA(B20MT012)

NATURAL LANGUAGE PROCESSING

- ☐ TRAINING GIVEN A STRING OR SENTENCE FINDING THE HIDDEN STRUCTURE
- □ PARSING-TASKS INVOLVING TREE DATA STRUCTURE
- ☐ TAGGING-TASKS INVOLVING HIDDEN TEXT SEQUENCES

STRUCTURE IN NLP TASK

Parse tree: Lou Gerstner is chairman of IBM -- [S [NP Lou Gerstner] [VP is [NP chairman [PP of [NP IBM]]]]

DEALING WITH AMBIGUITY

- ☐ Stochastic grammar: --
- ☐ PCFG (Probabilistic Context Free Grammar) for parsing
- ☐ HMM (Hidden Markov Model) for tagging
- Probabilities are attached to rules in the grammar.
- Rule probabilities are estimated using MLE (Maximum likelihood estimation).
- Probabilities are used to rank the competing analyses for the same sentence.

PCFGs AS PARSING METHOD

- Counts the relative number of occurrences of a given rule.
- Uses the count to represent its learned knowledge.
- Makes strong independence assumptions.
- Ignores substantial amounts of structural information (e.g. assume rules applied at level i in the parse tree are unrelated to those applied at level i+1).

INTRODUCTION TO KERNELS

- ☐ Kernels basically takes the dot product between two feature vectors
- ☐ they try to find out similarities between objects
- reduces the complexity of computations

APPLYING KERNEL METHOD TO NLP PROBLEMS

- ☐ Input in NLP-Trees, sequences, etc.
- kernel used-tree kernel(convolution kernels)
- the kernel function counts the number of common subtrees in any two trees to find similarity between them.
- finds dependencies between structural information.

TREE AND SUBTREE

REPRESENTATION OF TREE KERNELS

- Enumerate (implicitly) all tree fragments:1,...,n.
- Represent each tree by an n-d vector:
- number of occurrences of the i'th tree fragment in tree T
- ☐ Tree T is represented as:
- h(T)=(h1(T),h2(T),h3(T),....hn(T))
- □ n is very large

DEFINING TREE KERNEL

- ☐ INNER PRODUCT BETWEEN TWO TREES T1 AND T2
- $\square \quad K(T1,T2)=h(T1).h(T2)$
- ☐ INDICATOR FUNCTION(I)
- ☐ Ii(n)=1 if sub-tree is seen rooted at node; and 0 otherwise

definition cont...

$$\mathbf{h}(T_1) \cdot \mathbf{h}(T_2) = \sum_{i} h_i(T_1) h_i(T_2) = \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} \sum_{i} I_i(n_1) I_i(n_2) = \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} C(n_1, n_2)$$

Recursive definition

- □ If the productions at n1 and n2 are different C(n1,n2)=0.
- If the productions at n1 and n2 are the same, and n1 and n2 are pre-terminals, then C(n1,n2)=1.
- Else if the productions at n1 and n2 are the same and n1 and n2 are not pre-terminals,

$$C(n_1, n_2) = \prod_{j=1}^{nc(n_1)} (1 + C(ch(n_1, j), ch(n_2, j))),$$

EXPERIMENT OUTCOMES

- applied tree kernel to the problem of parsing the Penn treebank ATIS corpus
- ☐ Applied Voted Perceptron using tree kernel to the test set.
- ☐ Applied PCFG on same
- voted perceptron using kernel performed better with better accuracy

PERFORMANCE OF PERCEPTRON WITH KERNEL (improvement is relative to PCFG)

Scale	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Score	77±1	78±1	79 ± 1	79 ± 1	79 ± 1	79 ± 1	79±1	79 ± 1	78 ± 1
Imp.	11 ± 6	17±5	20 ± 4	21 ± 3	21 ± 4	22 ± 4	21 ± 4	19 ± 4	17 ± 5