Formelsammlung - ET/TI

Marc Ludwig

5. Oktober 2011

Inhaltsverzeichnis

T	IVI	atnem	ашк	Э
1	Alg	ebra		6
	1.1		nregeln fuer Potenzen	6
	1.2		nmenhang zwischen Wurzeln und Potenzen	6
	1.3		zen und Logarithmen	7
		1.3.1	Der natuerliche Logarithmus	7
		1.3.2	Rechnen mit Logarithmen	7
	1.4	Der B	inomische Lehrsatz	7
	1.5		Kosinus, Tangens und Kotangens	8
		1.5.1	Beziehungen zwischen Sinus, Kosinus, Tangens und Kotangens	8
		1.5.2	Additions theoreme	8
		1.5.3	Funktionen des doppelten und halben Winkels	9
		1.5.4	Umformungen	9
	1.6	Komp	lexe Zahlen	10
		1.6.1	Umrechnungen zwischen den Darstellungsformen	10
		1.6.2	Rechnen mit Komplexen Zahlen	11
2	Fun	ktione	n	12
	2.1	Gleich	ungen	12
		2.1.1	Gleichungen n-ten Grades	12
		2.1.2	Lineare Gleichungen	12
		2.1.3	Quadratische Gleichungen	13
		2.1.4	Biquadratische Gleichungen	13
		2.1.5	Gleichungen höheren Grades	13
		2.1.6	Wurzelgleichung	13
		2.1.7	Ungleichungen	14
		2.1.8	Betragsgleichungen	14
3	Vek	torrec	hnung	15
	3.1		rechnung	15
			Grundlagen	15

		3.1.2	Vektoroperationen	16
		3.1.3	Geraden	17
		3.1.4	Ebenen	17
4	Diff	erentia	alrechnung	19
	4.1		9	19
		4.1.1		19
		4.1.2	<u> </u>	20
		4.1.3		20
		4.1.4		21
		4.1.5		2^{2}
		4.1.6		2^{2}
	4.2	Differe		24
		4.2.1		24
		4.2.2	~	24
	4.3	Differe		26
		4.3.1		26
		4.3.2		27
_			1.70.00	~ ~
5	Folg	gen un	d Reihen	29
6	Inte	rpolat	ion	30
II	Р	hysik	9	31
	_	iiy Siik		, _
7	Kin	ematil		32
	7.1	Analo	\circ	32
		7.1.1		33
		7.1.2		33
	7.2	Dynar		34
		7.2.1		34
		7.2.2	Drehbewegung(Rotation)	34
		7.2.3	Geneigte Ebene	35
		7.2.4	Geneigte Ebene	35
			Geneigte Ebene	35 35
		7.2.4	Geneigte Ebene	35 35 36
		7.2.4 $7.2.5$	Geneigte Ebene Reibung Feder Elastischer Stoss Unelastischer Stoss	35 35 36 36
		7.2.4 7.2.5 7.2.6 7.2.7 7.2.8	Geneigte Ebene Reibung Feder Elastischer Stoss Unelastischer Stoss Rotierendes Bezugssystem	35 35 36 36 37
	7.3	7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Schwe	Geneigte Ebene Reibung Feder Elastischer Stoss Unelastischer Stoss Rotierendes Bezugssystem rpunkt	35 36 36 37 38
	7.4	7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Schwe Trägh	Geneigte Ebene Reibung Feder Elastischer Stoss Unelastischer Stoss Rotierendes Bezugssystem rpunkt eitsmoment	35 36 36 37 38 38
		7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Schwe Trägh Elastic	Geneigte Ebene Reibung Feder Elastischer Stoss Unelastischer Stoss Rotierendes Bezugssystem rpunkt eitsmoment	35 36 36 37 38

INHA	LTSVER	ZEICHNIS

~
3
v

		7.6.1 7.6.2	0.00	41 42
8	Flui	ddyna		14
	8.1 8.2			44 45
9	Gra	vitatio	on 4	16
10	Elel	ctrosta	atik 4	17
11	The	rmody	,	19
			seasonang	49
				49
			r	49 49
				49
				50
		11.6.1		50
				50
		11.6.3	Zustandsänderung des idealen Gases	50
12	Opt	ik	Ę	52
	12.1	Brecht	O .	52
				52
		1		52
				53 54
	12.5	LICITUM	venieniertei)4
II	I	Elektr	rotechnik	55
13	Glei	ichstro	omtechnik	56
			-0	56
				57
	13.3	Kirchh	hoffsche Gesetze	57
14				58
				59
	14.2		8	59
				59 59
				59
				59
			·	

14.3	Sinusförmige Größen	60
	14.3.1 Sinusschwingung	60
	14.3.2 Kosinusschwingung	60
	14.3.3 Nullphasenzeit	60
	14.3.4 Addition zweier Sinusgrößen gleicher Frequenz	60
	14.3.5 Wechsel zwischen Sinus und Kosinus	61
	14.3.6 Differentiation und Integration von Sinusgrößen	63
	14.3.7 R, L und C im kompl. Zeigerbereich	63
	14.3.8 Widerstands und Leitwertoperator	63
	14.3.9 Resultierende Operatoren	64
	14.3.10 Anteile am komplexen Widerstand (Impedanz)	64
	14.3.11 Anteile am komplexen Leiwert (Admitanz)	64
	14.3.12 komplexer Widerstand / komplexer Leitwert	64
	14.3.13 Momentanleistung / Augenblicksleistung	65
	14.3.14 Blindleistung	65
	14.3.15 Mittlere Leistung / Wirkleistung	65
	14.3.16 Definition von Blind- und Scheinleistung	65
	$14.3.17\mathrm{Beziehungen}$ zwischen Wirk- Blind- und Scheinleistung	66
	14.3.18 Die komplexe Leistung	66

${\bf Teil~I}$ ${\bf Mathematik}$

Kapitel 1

Algebra

Why waste time learning when ignorance is instantaneous?
- Hobbes

1.1 Rechenregeln fuer Potenzen

$$a^{m} \cdot a^{n} = a^{m+n} \qquad \frac{a^{m}}{a^{n}} = a^{m-n} \qquad (a^{m})^{n} = (a^{n})^{m} = a^{m \cdot n}$$
$$a^{n} \cdot b^{n} = (a \cdot b)^{n} \qquad \frac{a^{n}}{b^{n}} = \left(\frac{a}{b}\right)^{n} \qquad \text{(fuer a > 0) } a^{b} = e^{b \cdot \ln a}$$

1.2 Zusammenhang zwischen Wurzeln und Potenzen

Im Folgenden wird vorausgesetzt, dass alle Potenzen und Wurzeln existieren.

$$\sqrt[n]{a} = a^{\frac{1}{n}} \qquad \qquad \sqrt[n]{a^m} = a^{\frac{m}{n}} \qquad \qquad \left(\sqrt[n]{a}\right)^m = a^{\frac{m}{n}}$$

1.3 Potenzen und Logarithmen

Schreibweise: $x = \log_a(b)$ mit $a > 0, a \neq 1$ und b > 0.

Es gillt: $\log_a(1) = 0$, $\log_a(a) = 1$.

1.3.1 Der natuerliche Logarithmus

Der Logarithmus zur Basis e mit $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2,71828...$

$$\log_e(b) = \ln(b) \qquad \qquad \ln\left(\frac{1}{e}\right) = -1; \text{ da } e^{-1} = \frac{1}{e}$$

Man beachte: $x^a = e^{\ln(x) \cdot a}$

1.3.2 Rechnen mit Logarithmen

Es gillt:	Weitere Beziehungen:
$\log_a(u \cdot v) = \log_a(u) + \log_a(v)$	$\log_a\left(\sqrt[n]{u}\right) = \frac{1}{n}\log_a\left(u\right)$
$\log_a\left(\frac{u}{v}\right) = \log_a\left(u\right) - \log_a\left(v\right)$	$a^{\log_a(u)} = \log_a^n(a^u) = u$
$\log_a(u^p) = p \cdot \log_a(u)$	$\log_a(u) = \frac{\log_c(u)}{\log_c(a)}$

1.4 Der Binomische Lehrsatz

Die Potenzen eines Binoms a+b lassen sich nach dem Binomischen Lehrsatz wie folgt entwickeln $(n \in \mathbb{N}^*)$:

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1} \cdot b^1 + \binom{n}{2}a^{n-2} \cdot b^2 + \binom{n}{3}a^{n-3} \cdot b^3 + \ldots + \binom{n}{n-1}a^1 \cdot b^{n-1} + b^n$$

Die Koeffizienten $\binom{n}{k}$ heißen Binominalkoeffizienten, ihr Bildungsgesetz lautet:

$$\binom{n}{k} = \frac{n(n-1)(n-2)...[n-(k-1)]}{k!} = \frac{n!}{k!(n-k)!}$$

Einige Eigenschaften der Binominalkoeffizienten

$$\binom{n}{0} = \binom{n}{n} = 1 \qquad \binom{n}{k} = 0 \text{ fuer } k > n \qquad \binom{n}{1} = \binom{n}{n-1} = n$$

$$\binom{n}{k} = \binom{n}{n-k} \qquad \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

1.5 Sinus, Kosinus, Tangens und Kotangens

1.5.1 Beziehungen zwischen Sinus, Kosinus, Tangens und Kotangens

$$\sin^{2}(\alpha) + \cos^{2}(\alpha) = 1 \qquad \tan(\alpha) \cdot \cot(\alpha) = 1$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \qquad \cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)}$$

$$1 + \tan^{2}(\alpha) = \frac{1}{\cos^{2}(\alpha)} \qquad 1 + \cot^{2}(\alpha) = \frac{1}{\sin^{2}(\alpha)}$$

1.5.2 Additions theoreme

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$
$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$
$$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)}$$

1.5.3 Funktionen des doppelten und halben Winkels

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) = 2\cos^2(\alpha) - 1 = 1 - 2\sin^2(\alpha)$$

$$\tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)}$$

$$\sin^2\left(\frac{\alpha}{2}\right) = \frac{1}{2}(1 - \cos(\alpha))$$

$$\cos^2\left(\frac{\alpha}{2}\right) = \frac{1}{2}(1 + \cos(\alpha))$$

$$\tan^2\left(\frac{\alpha}{2}\right) = \frac{1 - \cos(\alpha)}{1 + \cos(\alpha)}$$

1.5.4 Umformungen

Summe oder Differenz in ein Produkt

$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
$$\sin(\alpha) - \sin(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$
$$\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
$$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

Produkt in eine Summe oder Differenz

$$2\sin(\alpha)\sin(\beta) = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha - \beta) + \cos(\alpha + \beta)$$

$$2\sin(\alpha)\cos(\beta) = \sin(\alpha - \beta) + \sin(\alpha + \beta)$$

1.6 Komplexe Zahlen

Für die Menge aller komplexen Zahlen schreibt man:

$$\mathbb{C} = \{z | z = a + bj, a \in \mathbb{R} \land b \in \mathbb{R}\}\$$

a-Realteil b-Imaginaerteil j-imaginaere Einheit

kartesiche Form	trigonometrische Form	exponentialform
z = a + bj	$z = z (\cos \varphi + j \cdot \sin \varphi)$	$z = z \cdot e^{j\varphi}$
$z^* = (a+bj)^* = a-bj$	$z^* = z (\cos \varphi - j \cdot \sin \varphi)$	$z^* = z \cdot e^{-j\varphi}$

|z| = Betrag von z

 $\varphi = Argument (Winkel) von z$

 $z^* = \text{Konjugiert komplexe Zahl}$

1.6.1 Umrechnungen zwischen den Darstellungsformen

$\textbf{Polarform} \rightarrow \textbf{Kartesiche Form}$

$$z = |z| \cdot e^{j\varphi} = |z| \left(\cos\varphi + j \cdot \sin\varphi\right) = \underbrace{|z| \cdot \cos\varphi}_a + j \cdot \underbrace{|z| \cdot \sin\varphi}_b = a + bj$$

$Kartesische\ Form\ \rightarrow\ Polarform$

$$|z| = \sqrt{a^2 + b^2}, \quad \tan \varphi = \frac{b}{a}$$

1.6.2 Rechnen mit Komplexen Zahlen

Multiplikation

In kartesischer Form:

$$z_1 \cdot z_2 = (a_1 + jb_1) \cdot (a_2 + jb_2) = (a_1a_2 - b_1b_2) + j \cdot (a_1b_2 + a_2b_1)$$

In der Polarform:

$$z_{1} \cdot z_{2} = [|z_{1}| (\cos \varphi_{1} + j \cdot \sin \varphi_{1})] \cdot [|z_{2}| (\cos \varphi_{2} + j \cdot \sin \varphi_{2})]$$

$$= (|z_{1}| |z_{2}|) \cdot [\cos (\varphi_{1} + \varphi_{2}) + j \cdot \sin (\varphi_{1} + \varphi_{2})]$$

$$= (|z_{1}| \cdot e^{j\varphi_{1}}) \cdot (|z_{2}| \cdot e^{j\varphi_{2}}) = (|z_{1}| |z_{2}|) \cdot e^{j(\varphi_{1} + \varphi_{2})}$$

Division

In kartesischer Form

In der Polarform

Kapitel 2

Funktionen

2.1 Gleichungen

2.1.1 Gleichungen n-ten Grades

$$a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \ldots + a_1 \cdot x + a_0 = 0 \quad (a_n \neq 0, a_k \in \mathbb{R})$$

Eigenschafften

- \bullet Die Gleichung besitzen maximal n reelle Lösungen.
- ullet Es gibt genau n komplexe Lösungen.
- $\bullet\,$ Für ungerades n gibt es mindestens eine reelle Lösung.
- Komplexe Lösungen treten immer Paarweise auf.
- Es existieren nur Lösungsformeln bis $n \le 4$. Für n > 4 gibt es nur noch grafische oder numerische Lösungswege.
- Wenn eine Nullstelle bekannt ist kann man die Gleichung um einen Grad verringern, indem man denn zugehörigen Linearfaktor $x-x_1$ abspaltet(Polynome Division).

2.1.2 Lineare Gleichungen

$$a_1 \cdot x + a_0 = 0 \Rightarrow x_1 = -\frac{a_0}{a_1} \quad (a_1 \neq 0)$$

2.1.3 Quadratische Gleichungen

$$a_2 \cdot x^2 + a_1 \cdot x + a_0 = 0 \quad (a_2 \neq 0)$$

Normalform mit Lösung

$$x^{2} + p \cdot x + q = 0 \Rightarrow x_{1/2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$$

Überprüfung (Vietascher Wurzelsatz)

$$x_1 + x_2 = -p \qquad \qquad x_1 \cdot x_2 = q$$

 x_1, x_2 : Lösung der quadratischen Gleichung.

2.1.4 Biquadratische Gleichungen

Diese Gleichungen lassen sich mithilfe der Substitution lösen.

$$a \cdot x^4 + b \cdot x^2 + c = 0$$

$$a \cdot u^2 + b \cdot u + c = 0$$

$$u = x^2$$

$$x = \pm \sqrt{u}$$

Das u kann mithilfe der Lösungsformel einer quadratischen Gleichung gelöst werden.

2.1.5 Gleichungen höheren Grades

Gleichungen höheren Grades kann man durch graphische oder numerische Ansätze lösen. Hilfreich ist das finden einer Lösung und das abspalten eines Linearfaktor , mithilfe der Polynomdivision oder dem Hornor Schema,von der ursprünglichen Gleichung.

Polynom division

$$\frac{f(x)}{x - x_0} = \frac{a_3 \cdot x^3 + a_2 \cdot x^2 + a_1 \cdot x + a_0}{x - x_0} = b_2 \cdot x^2 + b_1 \cdot x + b_0 + r(x)$$

 x_0 ist dabei die erste gefunden Nullstelle. r(x) verschwindet wenn x_0 ein Nullstellen oder eine Lösung von f(x) ist.

$$r(x) = \frac{a_3 \cdot x_0^3 + a_2 \cdot x_0^2 + a_1 \cdot x_0 + a_0}{x - x_0} = \frac{f(x_0)}{x - x_0}$$

2.1.6 Wurzelgleichung

Wurzelgleichungen löst man durch quadrieren oder mit hilfe von Substitution. Bei Wurzelgleichung ist zu beachten das quadrieren keine Aquivalente Umformung ist und das Ergebniss überprüft werden muss.

2.1.7 Ungleichungen

- Beidseitiges Subtrahieren oder Addieren ist möglich
- Die Ungleichung darf mit einer beliebige positiven Zahl multipliziert oder dividiert werden
- Die Ungleichung darf mit einer beliebige negativen Zahl multipliziert oder dividiert werden, wenn man gleichzeitig das Relationszeichen umdreht.

2.1.8 Betragsgleichungen

Betragsgleichungen löst man mithilfe der Fallunterscheidung. Dabei wird einmal davon ausgegangen das der Term inerhalb des Betrags einmal positiv und einmal negativen sein kann.

$$y = |x| = \begin{cases} x & \text{für } x \ge 0 \\ -x & \text{für } x < 0 \end{cases}$$

Kapitel 3

Vektorrechnung

3.1 Vektorrechnung

3.1.1 Grundlagen

Darstellung

$$\vec{a} = \vec{a}_x + \vec{a}_y + \vec{a}_z$$

$$= a_x \vec{e}_x + a_y \vec{e}_y + a_y \vec{e}_y$$

$$= \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$$

Betrag

$$|\vec{a}| = a$$

$$= \sqrt{a_x^2 + a_y^2 + a_z^2}$$

$$= \sqrt{\vec{a} \circ \vec{a}}$$

2 Punkt Vektor

$$\vec{P_1P_2} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix}$$

Richtungswinkel

$$\cos \alpha = \frac{a_x}{|\vec{a}|}$$

$$\cos \beta = \frac{a_y}{|\vec{a}|}$$

$$\cos \gamma = \frac{a_z}{|\vec{a}|}$$

$$1 = \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma$$

3.1.2 Vektoroperationen

Addition und Subtraktion

$$\vec{a} \pm \vec{b} = \begin{pmatrix} a_x \pm b_x \\ a_y \pm b_y \\ a_z \pm b_z \end{pmatrix}$$

Einheitsvektor

$$\vec{e}_a = \frac{\vec{a}}{|\vec{a}|} = \begin{pmatrix} a_x/|\vec{a}| \\ a_y/|\vec{a}| \\ a_z/|\vec{a}| \end{pmatrix}$$

Skalarprodukt

$$\vec{a} \circ \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \circ \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$$
$$= a_x b_x + a_y b_y + a_z b_z$$
$$= |\vec{a}| \cdot |\vec{b}| \cdot \cos \angle (\vec{a}, \vec{b})$$

Spatprodukt

$$\vec{a} \circ (\vec{b} \times \vec{c})$$

Volumen des Parallelpiped $\vec{a}, \vec{b}, \vec{c}$

$$\begin{split} [\vec{a}\vec{b}\vec{c}] &= \vec{a} \circ (\vec{b} \times \vec{c}) \\ &= a_x(b_yc_z - b_zc_y) \\ &+ a_y(b_zc_x - b_xc_z) \\ &+ a_z(b_xc_y - b_yc_x) \\ &= \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} \end{split}$$

Multiplikation mit einem Skalar

$$a \cdot \vec{b} = \begin{pmatrix} ab_x \\ ab_y \\ ab_z \end{pmatrix}$$

Kreuzprodukt

 $|\vec{a} \times \vec{b}|$ Fläche des Parallelograms \vec{a}, \vec{b} $\vec{a} \times \vec{b} \perp \vec{a} \wedge \vec{a} \times \vec{b} \perp \vec{b}$

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$$

$$= \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix}$$

$$= \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

Schnittwinkel

$$\cos \angle (\vec{a}, \vec{b}) = \frac{\vec{a} \circ \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

Projektion

$$ec{a}_b = \left(rac{ec{a} \circ ec{b}}{|ec{a}|^2}
ight) ec{a} = (ec{b} \circ ec{e}_a) ec{e}_a$$

3.1.3 Geraden

Geradegleichung

$$\vec{r}(t) = \vec{r}_1 + t\vec{a}$$

= $\vec{r}_1 + t(\vec{r}_2 - \vec{r}_1)$

Abstand zweier paralleler Geraden

$$\vec{r}(t) = \vec{r}_1 + t\vec{a}_1$$

$$\vec{g}(t) = \vec{r}_2 + t\vec{a}_1$$

$$d = \frac{|\vec{a}_1 \times (\vec{r}_2 - \vec{r}_1)|}{\vec{a}_1}$$

3.1.4 Ebenen

Ebenengleichung

$$\begin{split} \vec{r}(t,s) &= \vec{r}_1 + t \vec{a}_1 + s \vec{a}_2 \\ &= \vec{r}_1 + t (\vec{r}_2 - \vec{r}_1) \\ &+ s (\vec{r}_3 - \vec{r}_1) \end{split}$$

Normalenvektor

$$\vec{n} = \vec{a}_1 \times \vec{a}_2$$

Hessesche Normalform

$$0 = \frac{Ax + By + Cz + D}{\sqrt{A^2 + B^2 + C^2}}$$

Abstand eines Punktes von einer Geraden

$$\vec{r}(t) = \vec{r}_1 + t\vec{a}$$

$$d = \frac{|\vec{a} \times (\vec{OP} - \vec{r}_1)|}{\vec{a}}$$

Abstand zweier windschiefen Geraden

$$\vec{r}(t) = \vec{r}_1 + t\vec{a}_1$$

$$\vec{g}(t) = \vec{r}_2 + t\vec{a}_2$$

$$d = \frac{|\vec{a}_1 \circ (\vec{a}_2 \times (\vec{r}_2 - \vec{r}_1))|}{\vec{a}_1 \times \vec{a}_2}$$

Parameterfreie Darstellung

$$\begin{split} \vec{r}(t,s) &= \vec{r}_1 + t \vec{a}_1 + s \vec{a}_2 \\ \vec{r} \circ (\vec{a}_1 \times \vec{a}_2) &= \vec{r}_1 \circ (\vec{a}_1 \times \vec{a}_2) \\ &+ t \vec{a}_1 \circ (\vec{a}_1 \times \vec{a}_2) \\ &+ s \vec{a}_2 \circ (\vec{a}_1 \times \vec{a}_2) \\ \vec{r} \circ \vec{n} &= \vec{r}_1 \circ \vec{n} + 0 + 0 \\ \vec{n} \circ (\vec{r} - \vec{r}_1) &= 0 \end{split}$$

Normierter Normalenvektor

$$\vec{e}_n = \frac{\vec{a}_1 \times \vec{a}_2}{|\vec{a}_1 \times \vec{a}_2|}$$

Abstand eines Punktes von einer Ebene

$$d = \frac{|\vec{n} \times \left(\vec{OP} - \vec{r_1} \right)|}{\vec{n}}$$
$$d = \frac{Ap_1 + Bp_2 + Cp_3 + D}{\sqrt{A^2 + B^2 + C^2}}$$

Abstand eines Geraden von einer Abstand zweier paralleler Ebenen Ebene

$$\vec{r}(t) = \vec{r}_G + t\vec{a}_1$$

$$d = \frac{|\vec{n} \times (\vec{r}_G - \vec{r}_1)|}{\vec{n}}$$

$$d = \frac{Ar_{G1} + Br_{G2} + Cr_{G3} + D}{\sqrt{A^2 + B^2 + C^2}}$$

Schnittwinkel zweier Ebenen

$$\cos\angle(\vec{n}_1,\vec{n}_2) = \frac{\vec{n}_1 \circ \vec{n}_2}{|\vec{n}_1| \cdot |\vec{n}_2|}$$

$$\vec{r}(t,s) = \vec{r}_1 + t\vec{a}_1 + s\vec{a}_2$$

$$\vec{g}(t,s) = \vec{r}_2 + t\vec{a}_3 + s\vec{a}_4$$

$$d = \frac{|\vec{n} \times (\vec{r}_1 - \vec{r}_2)|}{\vec{n}}$$

Durchstoßpunkt

$$\begin{split} \vec{r}(t) &= \vec{r}_G + t\vec{a} \\ \vec{r}_s &= \vec{r}_G + \frac{\vec{n} \circ (\vec{r}_1 - \vec{r}_G)}{\vec{n} \circ \vec{a}} \vec{a} \\ \varphi &= \arcsin\left(\frac{|\vec{n} \circ \vec{a}|}{|\vec{n}| \cdot |\vec{a}|}\right) \end{split}$$

Kapitel 4

Differentialrechnung

4.1 Differntialrechnung

4.1.1 Erste Ableitungen der elementaren Funktionen

Potenzfunktion

$$x^n \iff n \cdot x^{n-1}$$

Logarithmusfunktionen

$$\begin{array}{cccc} \ln x & & \Longleftrightarrow & \frac{1}{x} \\ \log_a x & & \Longleftrightarrow & \frac{1}{(\ln a) \cdot x} \end{array}$$

Arcusfunktionen

$$\begin{array}{cccc} \arcsin x & \iff & \frac{1}{\sqrt{1-x^2}} \\ \arccos x & \iff & \frac{-1}{\sqrt{1-x^2}} \\ \arctan x & \iff & \frac{1}{1-x^2} \end{array}$$

Exponentialfunktionen

$$e^x \iff e^x$$
 $a^x \iff \ln a \cdot a^x$

Trigonometrische Funktionen

$$\begin{array}{ccc}
\sin x & \iff & \cos x \\
\cos x & \iff & -\sin x \\
\tan x & \iff & \frac{1}{\cos^2 x} \\
\tan x & \iff & 1 + \tan^2 x
\end{array}$$

Hyperbolische Funktionen

$$sinh x \iff cosh x
cosh x \iff sinh x
tanh x \iff \frac{1}{\cosh^2 x}
tanh x \iff 1 + tanh^2 x$$

4.1.2 Rechenregeln

Faktorregel

Summenregel

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(C \cdot f(x) \right) = C \cdot f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(g(x) + f(x) \right) = g'(x) + f'(x)$$

Produktregel

$$\frac{\mathrm{d}}{\mathrm{d}x} (g(x) \cdot f(x)) = g'(x) \cdot f(x) + g(x) \cdot f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} (h(x) \cdot g(x) \cdot f(x)) = h' \cdot g \cdot f + h \cdot g' \cdot f + h \cdot g \cdot f'$$

Quotientenregel

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{g(x)}{f(x)} \right) = \frac{g'(x) \cdot f(x) - g(x) \cdot f'(x)}{f(x)^2}$$

Kettenregel

Logarithmische Ableitungen

$$\frac{\mathrm{d}}{\mathrm{d}x} (g(f(x))) = g'(f) \cdot f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} y = f(x)$$

$$\frac{1}{y} y' = \frac{\mathrm{d}}{\mathrm{d}x} \ln f(x)$$

4.1.3 Fehlerrechnung

Absoluter Fehler

 Δx Absoluter Fehler der Eingangsgröße Δy Absoluter Fehler der Ausgangsgröße

$$\Delta y = f(x + \Delta x) - f(x)$$

Relativer Fehler

 δx Relativer Fehler der Eingangsgröße in % δy Relativer Fehler der Ausgangsgröße in %

$$\delta x = \frac{\Delta x}{x}$$

$$\delta y = \frac{\Delta y}{y}$$

$$\Delta y = f'(x) \cdot \Delta x$$

$$\delta y = \frac{x \cdot f'(x)}{f(x)} \delta x$$

4.1.4 Linearisierung und Taylor-Polynom

Tangentengleichung

 x_0 Punkt an dem das Polynom entwickelt wird

$$y_T(x) = f(x_0) + f'(x_0)(x - x_0)$$

Taylor Polynom

 x_0 Punkt an dem das Polynom entwickelt wird R_n Restglied

$$y(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$
$$y(x) = \sum_{i=0}^n \frac{f^{(i)}}{i!}(x - x_0)^i + R_n(x)$$

Restglied

 x_0 Punkt an dem das Polynom entwickelt wird $x_0 < c < x$, wenn $x_0 < x$ $x_0 > c > x$, wenn $x_0 > x$

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

4.1.5 Grenzwertregel von Bernoulli und de l'Hospital de l'Hospital

Gilt nur wenn $\lim_{x \to x_0} f(x)$ gleich $\frac{0}{0}$ oder $\frac{\infty}{\infty}$ ist

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

4.1.6 Differentielle Kurvenuntersuchung

Normale der Kurve

$$y_N(x) = f(x_0) - \frac{1}{f'(x)} (x - x_0)$$

Monotonie-Verhalten

$$f'(x) = \begin{cases} > 0 \text{ Monoton wachsend} \\ < 0 \text{ Monoton fallend} \end{cases}$$

Ableitung in Polarkordinaten

 \dot{r} Ableitung nach φ \ddot{r} Zweite Ableitung nach φ

$$y(\varphi) = r(\varphi)\sin\varphi$$

$$x(\varphi) = r(\varphi)\cos\varphi$$

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{r'\sin\varphi + r\cos\varphi}{r'\cos\varphi - r\sin\varphi}$$

$$y'' = \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{2(r')^2 - r \cdot r'' + r^2}{(r'\cos\varphi - r\sin\varphi)^3}$$

Bogendifferential

"Wegelement" einer Funktion

$$ds = \sqrt{1 + (f'(x))^2} \cdot dx$$
$$ds = \sqrt{(\dot{x})^2 + (\dot{y})^2} \cdot dt$$
$$ds = \sqrt{r^2 + (r')^2} \cdot d\varphi$$

Krümmungs-Verhalten

$$f''(x) = \begin{cases} > 0 \text{ Linkskr.(konvex)} \\ < 0 \text{ Rechtskr.(konkav)} \end{cases}$$

Ableitung in Parameterform

 \dot{x} Ableitung nach t \dot{y} Ableitung nach t

$$y = y(t)$$

$$x = x(t)$$

$$y' = \frac{dy}{dx} = \frac{\dot{y}}{\dot{x}}$$

$$y'' = \frac{d^2y}{dx^2} = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\dot{x}^3}$$

Winkeländerung

$$\tau = \arctan y'$$
$$d\tau = \frac{y''}{1 + (y')^2} \cdot dx$$

Krümmungskreis

$$\rho = \frac{1}{|\kappa|}$$

$$x_K = x_P - y' \frac{1 + (y')^2}{|y''|}$$

$$y_K = y_P + \frac{1 + (y')^2}{|y''|}$$

 ρ : Radius

 (x_K, y_K) : Kreismittelpunkt

 (x_P, y_P) : Kurvenpunkt

Kurvenkrümmung

$$\kappa = \frac{\mathrm{d}\tau}{\mathrm{d}s}$$

$$\kappa = \frac{y''}{\sqrt{(1+(y')^2)^3}}$$

$$\kappa = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\sqrt{(\dot{x}^2 + \dot{y}^2)^3}}$$

$$\kappa = \frac{2(r')^2 - r \cdot r'' + r^2}{\sqrt{(r^2 + (r')^2)^3}}$$

4.2 Differentialgleichungen

Anfangswertproblem: Werte nur an einer Stelle vorgegeben Randwertproblem: Werte an mehreren Stellen vorgegeben

Lineare DG

$$y_{all} = y_h + y_p$$

4.2.1 DG 1. Ordnung

Trennung der variablen

$$y'(x) = f(x) \cdot g(y)$$
$$\int \frac{dy}{g(y)} = \int f(x) dx$$

Lineare DG

$$y' + f(x) \cdot g(y) = g(x)g(x) = 0 \Rightarrow \text{homogen}$$

$$y_{all} = e^{-F(x)} \cdot \left(\int g(x) \cdot e^{F(x)} \, dx + C \right)$$

4.2.2 Lineare DG 2. Ordnung

Darstellung

$$a(x) \cdot y'' + b(x) \cdot y' + c(x) \cdot y = g(x)$$

 $g(x) = 0 \Rightarrow \text{homogen}$

Fundamental Lösungen

 $a\lambda^2 + b\lambda + c = 0$

 $+ C_2 e^{\alpha x} \cdot \sin(\beta x)$

$$\lambda_{1/2} = \alpha \pm \beta \cdot j$$

$$y_h = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} \quad \lambda_1 \neq \lambda_2$$

$$y_h = C_1 e^{\lambda_1 x} + C_2 x e^{\lambda_2 x} \quad \lambda_1 = \lambda_2$$

$$y_h = C_1 e^{\alpha x} \cdot \cos(\beta x)$$

In Folgenden Aufzählungen gillt:

- G(x) Ansatz
- g(x) Störglied
- r Anzahl der Resonanzfälle

Partikuläre Lösungen(Polynom)

$$a\lambda^{2} + b\lambda + c = 0$$

$$g(x) = b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{n}x^{n}$$

$$G(x) = B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n} \qquad \lambda \neq 0$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) \cdot x^{r} \qquad \lambda = 0$$

Partikuläre Lösungen(Polynom und e-Funktion)

$$a\lambda^{2} + b\lambda + c = 0$$

$$g(x) = (b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{n}x^{n}) e^{mx}$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) e^{mx} \qquad \lambda \neq m$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) e^{mx} \cdot x^{r} \qquad \lambda = m$$

Partikuläre Lösungen(sin- und cos Funktion)

$$a\lambda^{2} + b\lambda + c = 0$$

$$g(x) = a\cos(kx) + b\sin(kx)$$

$$G(x) = A\cos(kx) + B\sin(kx)$$

$$\lambda \neq \pm kj$$

$$G(x) = A\cos(kx) + B\sin(kx) \cdot x^{r}$$

$$\lambda = \pm kj$$

Partikuläre Lösungen(e-, sin- und cos Funktion)

$$0 = a\lambda^{2} + b\lambda + c$$

$$g(x) = (b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{n}x^{n}) e^{mx} \cdot (c\cos(kx) + d\sin(kx))$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) e^{mx} \cdot (C\cos(kx) + D\sin(kx))$$

$$\lambda \neq m \pm kj$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) e^{mx} \cdot (C\cos(kx) + D\sin(kx)) \cdot x^{r}$$

$$\lambda = m \pm kj$$

4.3 Differential- und Integralrechnung mit mehreren Variablen

4.3.1 Differential rechnung

Aleitung

$$y = f(x_1, x_2, \dots, x_3)$$

$$\frac{\partial y}{\partial x_1} = y_{x_1}$$
Alles bis auf x_1 ist konstant beim ableiten
$$\frac{\partial y}{\partial x_n} = y_{x_n}$$
Alles bis auf x_n ist konstant beim ableiten
$$\frac{\partial^2 y}{\partial x_1^2} = y_{x_1 x_1}$$
Alles bis auf x_1 ist konstant beim ableiten
$$y_{x_1 x_2} = y_{x_2 x_1}$$

Tangentialebene

 (x_0, y_0) Entwicklungspunkte der Ebene

$$z - z_0 = f_x(x_0; y_0) \cdot (x - x_0) + f_y(x_0; y_0) \cdot (y - y_0)$$

Totales Differential

$$dz = f_x \cdot dx + f_y \cdot dy$$

Extrema

$$\begin{split} f_x(x_0,y_0) &= 0 & f_y(x_0,y_0) = 0 \\ f_{xx}(x_0;y_0) &< 0 & \text{Maximum} \\ f_{xx}(x_0;y_0) &> 0 & \text{Minimum} \\ \left| f_{xx}(x_0;y_0) & f_{xy}(x_0;y_0) \right| &> 0 \end{split}$$

Sattelpunkt

$$f_x(x_0, y_0) = 0 f_y(x_0, y_0) = 0$$

$$\begin{vmatrix} f_{xx}(x_0; y_0) & f_{xy}(x_0; y_0) \\ f_{xy}(x_0; y_0) & f_{yy}(x_0; y_0) \end{vmatrix} < 0$$

Richtungsableitung

$$\frac{\partial z}{\partial \vec{a}} = \frac{1}{\sqrt{a_x^2 + a_y^2}} \cdot (a_x z_x + a_y z_y)$$
$$\frac{\partial z}{\partial \alpha} = z_x \cos \alpha + z_y \sin \alpha$$
$$\frac{\partial z}{\partial \alpha} = \vec{e_a} \cdot \text{grad}(z)$$

4.3.2 Mehrfachintegral

Polarkordinaten

$$x = x_0 + r\cos\varphi$$

Volumen

$$\iiint_V \mathrm{d}V = \int_x \int_y \int_z \mathrm{d}z \, \mathrm{d}y \, \mathrm{d}x$$
$$\iiint_V \mathrm{d}V = \int_r \int_\varphi \int_z r \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\varphi$$

Masse

$$m = \iint_{(A)} \rho(x, y) \, dx \, dy$$
$$m = \iint_{(A)} \rho(r, \varphi) r \, dr \, d\varphi$$
$$m = \iiint_{(V)} \rho(x, y) \, dz \, dx \, dy$$
$$m = \iiint_{(V)} \rho(r, \varphi) r \, dz \, dr \, d\varphi$$

$$y = y_0 + r \sin \varphi$$

Fläche

$$A = \iint_{(A)} \mathrm{d}A$$

Statisches Moment

 (M_x, M_y) Achsmomente

$$M_x:$$

$$= \iint_{(A)} y \rho(x, y) \, dx \, dy$$

$$= \iint_{(A)} y_0 + r \sin \varphi \rho(r, \varphi) r \, dr \, d\varphi$$

$$M_y:$$

$$= \iint_{(A)} x \rho(x, y) \, dx \, dy$$

$$= \iint_{(A)} x_0 + r \cos \varphi \rho(r, \varphi) r \, dr \, d\varphi$$

Schwerpunkt

$$x_s = \frac{M_y}{m} y_s = \frac{M_x}{m}$$

Trägheitsmoment

$$I_x = \iint_{(A)} y^2 \rho(x, y) \, dx \, dy$$

$$I_x = \iint_{(A)} (y_0 + r \sin \varphi)^2 \rho(r, \varphi) r \, dr \, d\varphi$$

$$I_y = \iint_{(A)} x^2 \rho(x, y) \, dx \, dy$$

$$I_y = \iint_{(A)} (x_0 + r \cos \varphi)^2 \rho(r, \varphi) r \, dr \, d\varphi$$

Polares Trägheitsmoment

$$I_x = \iint_{(A)} (y^2 + x^2) \rho(x, y) dx dy$$
$$I_x = \iint_{(A)} ((y_0 + r \sin \varphi)^2 + (x_0 + r \cos \varphi)^2) \rho(r, \varphi) r dr d\varphi$$

Kugelkoordinaten

$$V = \int_r \int_{\vartheta} \int_{\varphi} r^2 \sin \vartheta \, \mathrm{d}\varphi \, \mathrm{d}\vartheta \, \mathrm{d}r$$

Kapitel 5 Folgen und Reihen

Kapitel 6 Interpolation

Teil II Physik

Kapitel 7

Kinematik

Perfection is achieved only on the point of collapse.

- C. N. Parkinson

7.1 Analogietabelle

Translation		Rotation
\vec{s}		$ec{arphi}$
$ec{ec{v}} \stackrel{ds}{\overset{dt}{\overset{dt}{\overset{ds}}{\overset{ds}}{\overset{ds}{\overset{ds}{\overset{ds}{\overset{ds}{\overset{ds}{\overset{ds}}{\overset{ds}}{\overset{ds}}{\overset{ds}}{\overset{ds}}}}{\overset{d}}{\overset{ds}}{\overset{ds}{\overset{ds}{\overset{d}}{\overset{ds}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{s}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{d}}{\overset{s}}{\overset{s}}{\overset{s}}{\overset{s}}{\overset{s}}{\overset{s}}{\overset{s}}{\overset{s}}{\overset{s}}{\overset{s}}}}}}{\overset{s}}}{\overset{s}}{\overset{s}}{\overset{s}}{\overset{s}}{\overset{s}}}{\overset{s}}}}}}}}$		$\downarrow \frac{d\varphi}{\vec{\omega}}$
$ec{v}$	$\vec{v} = \vec{\omega} \times \vec{r}$	
$\stackrel{\downarrow}{\vec{a}} rac{dv}{dt}$	9	$ \downarrow \frac{d\omega}{dt} $ $ \vec{\alpha} $
\vec{a}	$a = \underbrace{\alpha \times r} - \underbrace{\omega^2 r}$	\vec{lpha}
	a_{Tan} a_R	
m		J
$ec{\vec{F}} \stackrel{dm}{\overset{dm}{\overset{dt}{\overset{d}}{\overset{dt}{\overset{dt}{\overset{dt}{\overset{dt}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}{\overset{dt}{\overset{dt}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{dt}}{\overset{d}}{\overset{dt}}{\overset{dt}}{\overset{dt}}}{\overset{d}}{\overset{dt}}{\overset{d}}}{\overset{d}}{}}{}}{}{\overset{}{}{}}{}}{}}{}}{}}{}}{}}{}}{}}{}}{}}{}}{}}{}}{}}{}}{}}{}}{$		$ec{\vec{M}}^{rac{dJ}{dt}}$
F		\dot{M}
$ \downarrow \frac{dF}{dt} \\ \vec{p} \\ \frac{m}{2}v^2 $		dM
$ec{p}$		\dot{L}
$\frac{m}{2}v^2$	E_{kin}	$\stackrel{\downarrow}{\vec{L}} \stackrel{dt}{dt} = \frac{J}{2}\omega^2$

7.1.1 Translation

$$a(t) = a_0 = \frac{\mathrm{d}v}{\mathrm{d}t} = \dot{v} = \ddot{s}$$

$$v(t) = a_0 \cdot t + v_0 = \frac{\mathrm{d}s}{\mathrm{d}t} = \dot{s}$$

$$s(t) = \frac{1}{2}a_0 \cdot t^2 + v_0 \cdot t + s_0$$

Bahngroessen

$$a_t(t) = a_0 = \frac{\mathrm{d}v}{\mathrm{d}t} = \dot{v} = \ddot{s}$$
$$v(t) = a_0 \cdot t + v_0 = \frac{\mathrm{d}s}{\mathrm{d}t} = \dot{s}$$
$$s(t) = \frac{1}{2}a_0 \cdot t^2 + v_0 \cdot t + s_0$$

Kreisfrequenz

$$\omega = \frac{2 \cdot \pi}{T}$$

$$= 2 \cdot \pi \cdot n$$

$$= 2 \cdot \pi \cdot f$$

Umdrehungen

$$N = \frac{\omega_0 \cdot t}{2 \cdot \pi} + \frac{1}{2} \cdot \frac{\alpha}{2 \cdot \pi} \cdot t^2$$
$$= n_0 \cdot t + \frac{\alpha}{4 \cdot \pi} \cdot t^2$$

7.1.2 Rotation

$$\alpha(t) = \alpha_0 = \frac{\mathrm{d}\omega}{\mathrm{d}t} = \dot{\omega} = \ddot{\varphi}$$

$$\omega(t) = \alpha_0 \cdot t + \omega_0 = \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \dot{\varphi}$$

$$\varphi(t) = \frac{1}{2}\alpha_0 \cdot t^2 + \omega_0 \cdot t + \varphi_0$$

Winkelgroessen

$$\vec{a_t} = \vec{\alpha} \times \vec{r} = \alpha \cdot r \qquad \alpha \perp r$$

$$\vec{\alpha} = \vec{r} \times \vec{a_t}$$

$$\vec{v} = \vec{\omega} \times \vec{r} = \omega \cdot r \qquad \omega \perp r$$

$$\vec{\omega} = \vec{r} \times \vec{v}$$

$$s = \varphi \cdot r$$

Radialbeschleunigung

$$a_r = \frac{v^2}{r}$$
$$= v \cdot \omega$$
$$= \omega^2 \cdot r$$

7.2 Dynamik

7.2.1 Geradlinig (Translation)

$$\vec{F} = m \cdot \vec{a}$$

$$\vec{F}_{\text{Tr}} = -m \cdot \vec{a}$$

Impuls

$$\vec{p} = m \cdot \vec{v}$$

$$\vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = m \cdot \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \vec{v} \cdot \frac{\mathrm{d}m}{\mathrm{d}t}$$
$$\Delta \vec{p} = \vec{p}_2 - \vec{p}_1 = \int_{\vec{p}_2}^{\vec{p}_1} \mathrm{d}p = \int_0^t \vec{F} \, \mathrm{d}t$$

Arbeit

$$W = -\int_{\vec{s}_1}^{\vec{s}_2} \vec{F}_{\text{Tr}} \circ d\vec{s}$$
$$= \int_{\vec{v}_0}^{\vec{v}_1} m\vec{v} \circ d\vec{v} = \frac{1}{2} m \left(v_1^2 - v_0^2 \right)$$

$$W_{\rm hub} = mgh$$

Kinetische Energie

$$E_{\rm kin} = \frac{1}{2}mv^2$$

$$P = \vec{F} \circ \vec{v} = \frac{\mathrm{d}W}{\mathrm{d}t} = \dot{W}$$

7.2.2 Drehbewegung(Rotation)

Massentraegheitsmoment

$$J = \int r^2 \, \mathrm{d}m$$

$$\vec{M} = \vec{r} \times \vec{F} = J\vec{\alpha} = \dot{\vec{L}}$$

Drehimpuls

$$\begin{split} \vec{L} &= \vec{r} \times \vec{p} \\ &= J \cdot \vec{\omega} \end{split}$$

$$E_{kin} = \frac{1}{2}J\omega^2$$

Arbeit

$$W = \int_{\varphi_0}^{\varphi_1} \vec{M} \circ \vec{e_\omega} \, d\varphi$$
$$= \int_{\vec{\omega}_0}^{\vec{\omega}_1} J\vec{\omega} \, d\vec{\omega}$$
$$= \frac{1}{2} J \left(\omega_1^2 - \omega_0^2 \right)$$

7.2.3 Geneigte Ebene

Kräfte

$$\vec{F}_N = \vec{F}_G \cos \alpha$$
$$\vec{F}_H = \vec{F}_G \sin \alpha$$

7.2.4 Reibung

 ${\bf Reibungskraft}$

$$F_R = \mu \cdot F_N$$

7.2.5 Feder

HOOKsches Gesetz

$$F = -kx$$
$$M = D\varphi$$

Leistung

$$P = \vec{M} \circ \vec{\omega}$$

Zentripedalkraft

$$\begin{split} F_{zp} &= -m \cdot \omega^2 \cdot r \\ &= -m \cdot v^2 \cdot \frac{\vec{e_r}}{r} \end{split}$$

Rollreibung

$$M = f \cdot F_N$$
$$F_R = \frac{f}{r} \cdot F_N$$

Federspannarbeit

$$W = \int_{x_{\min}}^{x_{\max}} F \, \mathrm{d}x = \int_{x_{\min}}^{x_{\max}} kx \, \mathrm{d}x$$
$$= \frac{1}{2} \cdot k \cdot \left(x_{\max}^2 - x_{\min}^2\right)$$

7.2.6 Elastischer Stoss

Energie vor den Stoß = Energie nach den Stoß

$$\sum E_{\rm kin} = \sum E'_{\rm kin}$$

Impulserhaltung

Impuls vor den Stoß = Impuls nach den <math>Stoß

$$\sum m\vec{v} = \sum m\vec{v}'$$

Zentraler, Gerader, Elastischer Stoss

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2$$
$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

$$v_2' = \frac{2m_1}{m_1 + m_2} v_1 + \frac{m_2 - m_1}{m_1 + m_2} v_2$$
$$v_1' = \frac{2m_2}{m_1 + m_2} v_2 + \frac{m_1 - m_2}{m_1 + m_2} v_1$$

7.2.7 Unelastischer Stoss

Energieerhaltung

Energie vor den Stoß = Energie nach den Stoß + Arbeit

$$\sum E_{\rm kin} = \sum E'_{\rm kin} + \Delta W$$

Impulserhaltung

Impuls vor den Stoß = Impuls nach den Stoß

$$\sum m\vec{v} = \sum m\vec{v}'$$

Total unelastischer Stoss

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}(m_1 + m_2)v'^2 + \Delta W$$
$$m_1v_1 + m_2v_2 = (m_1 + m_2)v'$$

$$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

$$\Delta W = \frac{m_1 \cdot m_2}{2(m_1 + m_2)} (v_1 - v_2)^2$$

Drehimpulserhaltungssatz

Drehinpuls zur Zeit 1 = Drehimpuls zur Zeit 2

$$\sum \vec{L} = \sum \vec{L}'$$

Kopplung zweier Rotationskörper

$$\vec{\omega}' = \frac{J_0 \vec{\omega_0} + J_1 \vec{\omega_1}}{J_1 + J_2}$$

$$W = \frac{J_0 \cdot J_1}{2(J_0 + J_1)} (\omega_0 - \omega_1)^2$$

7.2.8 Rotierendes Bezugssystem

Zentrifugalkraft

Corioliskraft

$$\vec{F}_Z = F_r \cdot \vec{e}_r = -m\vec{\omega} \times (\vec{\omega} \times \vec{r})$$

$$= -m\vec{\omega} \times \vec{v}$$

$$\vec{F}_C = -2m\vec{\omega} \times \vec{v}$$

$$F_Z = -m\frac{v^2}{r} = -m\omega^2 r$$

7.3 Schwerpunkt

mehrere Punktmassen

$$\vec{r}_{\rm Sp} = \frac{\sum \vec{r}_i m_i}{\sum m_i}$$

Schwerpunkt in Zylinderkoordinaten

$$r_{\rm Sp} = \frac{\int_z \int_\varphi \int_r r^2 \rho \, dr \, d\varphi \, dz}{\int_z \int_\varphi \int_r r \rho \, dr \, d\varphi \, dz}$$

$$\varphi_{\rm Sp} = \frac{\int_z \int_\varphi \int_r \varphi r \rho \, dr \, d\varphi \, dz}{\int_z \int_\varphi \int_r r \rho \, dr \, d\varphi \, dz}$$

$$z_{\rm Sp} = \frac{\int_z \int_\varphi \int_r z r \rho \, dr \, d\varphi \, dz}{\int_z \int_\varphi \int_r r \rho \, dr \, d\varphi \, dz}$$

$$x = r \cos \varphi \quad y = r \sin \varphi \quad z = z$$

Allgemein

$$\vec{r}_{\rm Sp} = \frac{\int \vec{r} \, \mathrm{d}m}{\int \mathrm{d}m}$$

Schwerpunkt in karthesischen Koordinaten

$$x_{\mathrm{Sp}} = \frac{\int_{z} \int_{y} \int_{x} x \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{\int_{z} \int_{y} \int_{x} \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}$$
$$y_{\mathrm{Sp}} = \frac{\int_{z} \int_{y} \int_{x} y \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{\int_{z} \int_{y} \int_{x} \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}$$
$$z_{\mathrm{Sp}} = \frac{\int_{z} \int_{y} \int_{x} z \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{\int_{z} \int_{y} \int_{x} \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}$$

7.4 Trägheitsmoment

$$J = \sum_{i} m_{i} r_{i}^{2}$$

$$J = \int_{m} r^{2} dm$$

$$J = \int_{z} \int_{c} \int_{r} r^{3} \rho dr d\varphi dz$$

STEINER'scher Satz

$$J_x = mr^2 + J_s$$

Traegheitsmoment Kugel

$$J_{\rm Sp} = \frac{2}{5}mr^2$$

Traegheitsmoment Zylinder

$$J_{\rm Sp} = \frac{1}{2}mr^2$$

Traegheitmoment Kreisring (Torus)

$$J_{\rm Sp} = mr^2$$

Traegheitsmoment Stab

$$J_{\rm Sp} = \frac{1}{12} m l^2$$

7.5 Elastizitaetslehre

Spannung

$$\vec{\sigma} = \frac{\mathrm{d}\vec{F}_n}{\mathrm{d}A}$$

$$\sigma = E\varepsilon = E\frac{\Delta l}{l}$$

$$\vec{\tau} = \frac{\mathrm{d}\vec{F}_t}{\mathrm{d}A}$$

Schubmodul

$$G = \frac{\tau}{\varphi}$$

Drillung

$$\psi = \frac{\mathrm{d}\varphi}{\mathrm{d}l} = \frac{W_t}{G \cdot J_p} \tau = \frac{M_t}{G \cdot J_p}$$

Flaechenmoment

$$J_p = \int r^2 \, \mathrm{d}A = \int_{\varphi} \int_r r^3 \, \mathrm{d}r \, \mathrm{d}\varphi$$

Verformungsarbeit

$$W = V \int \sigma(\varepsilon) \,\mathrm{d}\varepsilon$$

7.6 Schwingungen

Harmonische Schwingungen

$$u(t) = A\cos(\omega t + \varphi_0)$$

7.6.1 Ungedämpfte Schwingungen

$$\ddot{x} = -\frac{k}{m}x$$

$$x(t) = \hat{x}\cos(\omega_0 t + \varphi_0)$$

$$\dot{x}(t) = -\hat{x}\omega\sin(\omega_0 t + \varphi_0)$$

$$\ddot{x}(t) = -\hat{x}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{k}{m}}$$

$$T = 2\pi\sqrt{\frac{m}{k}}$$

Mathemetisches Pendel

$$\ddot{\varphi} = -\frac{g}{l}\varphi$$

$$\varphi(t) = \hat{\varphi}\cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\hat{\varphi}\omega\sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\hat{\varphi}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{g}{l}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{g}{l}}$$

$$T = 2\pi\sqrt{\frac{l}{g}}$$

Physikalisches Pendel

$$\ddot{\varphi} = -\frac{lmg}{J_A} \varphi$$

$$\varphi(t) = \hat{\varphi} \cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\hat{\varphi} \omega \sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\hat{\varphi} \omega^2 \cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{mgl}{J_A}}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{mgl}{J_A}}$$

$$T = 2\pi \sqrt{\frac{J_A}{mgl}}$$

Torsionsschwingung

$$\ddot{\varphi} = -\frac{D}{J_A} \varphi$$

$$\varphi(t) = \dot{\varphi} \cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\dot{\varphi} \omega \sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\dot{\varphi} \omega^2 \cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{D}{J_A}}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{D}{J_A}}$$

$$T = 2\pi \sqrt{\frac{J_A}{D}}$$

Flüssigkeitspendel

$$\ddot{y} = -\frac{2A\rho g}{m}y$$

$$\varphi(t) = \hat{y}\cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\hat{y}\omega\sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\hat{y}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{2A\rho g}{m}} = \sqrt{\frac{2g}{l}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{2g}{l}}$$

$$T = 2\pi\sqrt{\frac{l}{2g}}$$

Elektrischer Schwingkreis

$$0 = L\ddot{Q} + \frac{Q}{C}$$

$$q(t) = \hat{Q}\cos(\omega_0 t + \varphi_0)$$

$$\dot{q}(t) = -\hat{Q}\omega\sin(\omega_0 t + \varphi_0)$$

$$\ddot{q}(t) = -\hat{Q}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{1}{LC}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{1}{LC}}$$

$$T = 2\pi\sqrt{\frac{1}{LC}}$$

7.6.2 Gedaempfte Schwingungen

Schwingungsgleichung

$$m\ddot{x} = -kx + F_R$$

COULOMB Reibung

$$F_R = -\operatorname{sgn}(\dot{x})\mu F_N$$
$$0 = m\ddot{x} + kx + \operatorname{sgn}(\dot{x})\mu F_N$$

Gleitreibung

$$x(t) = -(\hat{x}_0 - \hat{x}_1)\cos(\omega t) - \hat{x}_1 \qquad 0 \le t \le \frac{T}{2}$$

$$x(t) = -(\hat{x}_0 - 3\hat{x}_1)\cos(\omega t) + \hat{x}_1 \qquad \frac{T}{2} \le t \le T$$

$$\hat{x}_1 = \frac{\mu F_N}{k}$$

Viskosereibung

$$d = 2D$$

$$Q = \frac{1}{d}$$

$$x(t) = \hat{x}e^{-\delta t}e^{\pm j\sqrt{\omega_0^2 - \delta^2 t}}$$

$$x(t) = \hat{x}e^{-\delta t}e^{\pm j\omega_0\sqrt{1 - D^2 t}}$$

$$\delta = \frac{b}{2m}$$

$$D = \frac{\delta}{\omega_0}$$

$$D = \frac{b}{2\sqrt{mk}}$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

$$\Lambda = \ln\left(\frac{x(t)}{x(t+T)}\right)$$

$$\Lambda = \delta T$$

$$\omega_D = \sqrt{\frac{k}{m}} - \left(\frac{b}{2m}\right)^2$$

$$K(t) = \hat{x}e^{-\delta t}\cos(\sqrt{\omega_0^2 - \delta^2 t} + \varphi)$$

$$x(t) = \hat{x}e^{-\delta t}\cos(\sqrt{\omega_0^2 - \delta^2 t} + \varphi)$$

$$x(t) = \hat{x}e^{-\delta t}(1 - \delta t)$$

$$x(t) = \hat{x}e^{-\delta t}(1 - \delta t)$$

$$x(t) = \hat{x}e^{-\delta t}e^{\pm j\sqrt{\omega_0^2 - \delta^2 t}}$$

Fluiddynamik

Premature optimization is the root of all evil.
- D. Knuth

On the other hand, we cannot ignore efficiency. - Jon Bentley

8.1 Ohne Reibung

Statischer Druck

Dynamischer Druck

Schweredruck

$$p = \frac{\mathrm{d}F_N}{\mathrm{d}A}$$

$$p = \frac{1}{2}\rho v^2$$

$$p = \frac{\rho V g}{A}$$
$$= h \rho g$$

Volumenstrom

$$\begin{split} \dot{V} &= vA \\ &= \iint_A \vec{v} \, \mathrm{d}\vec{A} \\ &= \frac{\mathrm{d}V}{\mathrm{d}t} \\ &= Q \end{split}$$

Massenstrom

$$\begin{split} \dot{m} &= jA \\ &= \iint_A \vec{j} \, \mathrm{d}\vec{A} \\ &= \frac{\mathrm{d}m}{\mathrm{d}t} \end{split}$$

Auftrieb

$$\begin{split} \vec{F_A} &= -\rho_V \vec{g} V \\ &= -\frac{\rho_V}{\rho_M} \vec{F_G} \end{split}$$

${\bf Kontinuit\"{a}tsgleichung}$

$$\begin{split} \dot{m}|_1 &= \dot{m}|_2 \quad \dot{V}\Big|_1 = \dot{V}\Big|_2 \\ v_1 A_1 &= v_2 A_2 \quad \rho_1 = \rho_2 \end{split}$$

Kompressibilität

$$\kappa = \frac{\Delta V}{\Delta p V}$$

Volumenausdehnungskoeffezient

$$\frac{\Delta V}{V} = \gamma \Delta T$$

8.2 Laminare Reibung

Newtonsches Reibungsgesetz

$$F_R = \eta A \frac{\mathrm{d}v}{\mathrm{d}x}$$

Laminare Strömung (Rohr)

$$v(r) = \frac{p}{4\eta l} \left(R^2 - r^2 \right)$$
$$p = \frac{4\eta l}{R^2} v(0)$$
$$\dot{V} = \frac{\pi R^4}{8\eta l} p$$

Umströmung (Kugel)

$$F_R = 6\pi \eta r v$$

Barometrische Höhenformel

$$p = p_0 e^{-Ch}$$
$$C = \frac{\rho_0 g}{p_0}$$

Bernoulli Gleichung

$$p + \frac{1}{2}\rho v^2 + \rho gh = \text{const}$$

Bernoulligleichung mit Reibung

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1$$

= $p_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2 + \Delta p$

Reynoldszahl

$$Re = \frac{L\rho v}{\eta}$$

$$Re > Re_{krit}$$
 Strömung wird Turbulent

Gravitation

The year is 787!

A.D.?

- Monty Python

Gravitationskraft

$$\vec{F}_{g,2} = -G \frac{m_1 m_2}{r_{12}^2} \vec{e}_r$$

$$\vec{F}_g = \vec{E}_g \cdot m = \vec{g} m$$

Arbeit

$$W_{12} = -\int_{\vec{r}_1}^{\vec{r}_2} \vec{F}_g \circ d\vec{r}$$
$$= GmM\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

Gravitationspotential

$$\phi = -G\frac{M}{r}$$

$$\vec{E}_q = \text{grad}\phi$$

Planetenbahnen

$$\left(\frac{a}{a_E}\right)^3 = \left(\frac{T}{T_E}\right)^2$$

Elektrostatik

Don't interrupt me while I'm interrupting.
- Winston S. Churchill

Ladung

$$Q = n \cdot e_0$$
$$= CU$$
$$= \int i \, \mathrm{d}t$$

COULOMB Gesetz

$$\begin{split} \vec{F}_{12} &= \frac{1}{4\pi\epsilon} \frac{Q_1 Q_2}{r^2} \vec{r_1 2} \\ &= \vec{E} Q \\ \vec{E} &= \frac{1}{4\pi\epsilon} \frac{Q}{r^2} \vec{r} \\ &= -\operatorname{grad} \varphi \\ &= -\left(\frac{\partial \varphi}{\partial x} \vec{e}_x + \frac{\partial \varphi}{\partial y} \vec{e}_y + \frac{\partial \varphi}{\partial z} \vec{e}_z\right) \end{split}$$

Punktladungen

$$\vec{E}(\vec{r}) = \sum_{i=1}^{N} \vec{E}_i \vec{r}_i$$

Spannung

$$U_{AB} = \frac{W_{AB}}{Q}$$

$$= \int_{A}^{B} \vec{E} \circ d\vec{s}$$

$$= \oint_{s} \vec{E} \circ d\vec{s} = 0$$

$$= \varphi_{A} - \varphi_{B}$$

$$= -\int_{\infty}^{A} \vec{E} \circ d\vec{s}$$

$$-\left(-\int_{\infty}^{B} \vec{E} \circ d\vec{s}\right)$$

El- / Verschiebungsfluß

$$\psi = \int_A \vec{E} \circ d\vec{A}$$

$$\psi = \oint_A \vec{E} \circ d\vec{A} = \frac{Q}{\epsilon}$$

Kapazität

$$Q = CU$$

OHMsches Gesetz

$$I = \oint_{A} \vec{j} \circ d\vec{A}$$
$$= \oint_{A} \kappa \vec{E} \circ d\vec{A}$$
$$= \underbrace{\kappa E \cdot 4\pi r^{2}}_{\text{Kugel}}$$

Flußdichte

$$\vec{D} = \frac{\mathrm{d}Q}{\mathrm{d}A}\vec{e}_A$$

$$\vec{D} = \epsilon \vec{E}$$

$$Q = \oint_A D \,\mathrm{d}A$$

Arbeit im elektrischem Feld

$$w = \frac{1}{2}\vec{E} \circ \vec{D}$$

$$W = \int_{V} w \, dV$$

$$= -Q \int_{A}^{B} \vec{E} \circ d\vec{s}$$

$$= \int_{U} Q \, dU$$

$$= \int_{U} CU \, dU$$

$$= \frac{1}{2}CU^{2}$$

Thermodynamik

11.1 Wärmedehnung

$$\rho(T) = \rho_0 (1 - \beta (T - T_0))$$

$$V(T) = V_0 (1 + \gamma (T - T_0))$$

$$l(T) = l_0 (1 + \alpha (T - T_0))$$

$$\gamma \approx 3 \cdot \alpha$$

$$\gamma \approx \beta$$

11.2 Wärme

$$\Delta Q = c \cdot m(T - T_0)$$

$$\Delta Q = C(T - T_0)$$

$$\Delta Q = \int_{T_0}^T c \cdot m \, dT$$

$$\Delta Q = c_{mol} \cdot n(T - T_0)$$

11.3 Mischtemperatur

$$T_{m} = \frac{\sum_{i=1}^{n} T_{i} m_{i} c_{i}}{\sum_{i=1}^{n} m_{i} c_{i}}$$

 \dot{Q} Ist durch einen mehrschichtiges stationäres System Konstant

11.4 Wärmeleitung

$$\begin{split} \dot{Q} &= \frac{\mathrm{d}Q}{\mathrm{d}t} = \Phi = P \\ \vec{q} &= \frac{\dot{Q}}{A} \cdot \vec{e_A} \\ \vec{q} &= -\lambda \, \mathrm{grad}T \\ \vec{q} &= \frac{\lambda}{s} \left(T_A - T_B \right) \cdot \vec{e_s} \\ \dot{q} &= \frac{1}{\sum_{i=1}^n \frac{s_i}{\lambda_i}} \cdot \left(T_A - T_B \right) \end{split}$$

11.5 Wärmekonvektion

$$\dot{q} = \alpha \left(T_A - T_B \right)$$

$$\dot{q} = \frac{1}{\sum_{i=1}^n \frac{1}{\alpha_i}} \cdot \left(T_A - T_B \right)$$

11.6 Wärmewiderstand

$$R_{th} = \frac{T_A - T_B}{\dot{q} \cdot A} = \frac{s}{\lambda A} = \frac{1}{\alpha A} = \sum_{i=1}^{n} R_i$$

11.6.1 Wärmeübertragung

$$k = \frac{1}{\sum_{i=1}^{n} \frac{s_{i}}{\lambda_{i}} + \sum_{i=1}^{n} \frac{1}{\alpha_{i}} + \sum_{i=1}^{n} R_{i}}$$

$$\dot{q} = \frac{1}{\sum_{i=1}^{n} \frac{s_{i}}{\lambda_{i}} + \sum_{i=1}^{n} \frac{1}{\alpha_{i}} + \sum_{i=1}^{n} R_{i}} \cdot (T_{A} - T_{B})$$

$$\dot{q} = k \cdot (T_{A} - T_{B})$$

11.6.2 Wärmestrahlung

$$\alpha = \varepsilon$$

$$1 = \alpha + \tau + \vartheta$$

$$\dot{Q} = \varepsilon A \sigma T^4$$

$$\dot{Q}_{AB} = C_{AB} A_A \left(T_A^4 - T_B^4 \right)$$

$$C_{AB} = \varepsilon_{AB} \sigma = \frac{\sigma}{\frac{1}{\varepsilon_A} + \frac{1}{\varepsilon_B} - 1} = \frac{1}{\frac{1}{\sigma_A} + \frac{1}{\sigma_B} - \frac{1}{\sigma}} \qquad \text{Parallel}$$

$$C_{AB} = \frac{\sigma}{\frac{1}{\varepsilon_A} + \frac{A_A}{A_B} \left(\frac{1}{\varepsilon_B} - 1 \right)} \qquad A_A \text{ von } A_B \text{ umschlossen}$$

$$C_{AB} \approx \varepsilon_A \sigma \qquad \text{parallel } (A_A \ll A_B)$$

11.6.3 Zustandsänderung des idealen Gases

Teilchen stehen nicht in Wechselwirkung, besitzen kein Volumen und es kommt zu keinem Phasenübergang

Energie

$$U_{12} = Q_{12} + W_{12}$$

Nur Isobar:
$$dH = c_p m dT = U + p dV$$

$$dS = \frac{dQ}{T}$$

Zustandsgleichung

$$\frac{pV}{T} = \text{const}$$

$$pV = NkT = mR_sT = nRT$$

$$R_s = \frac{nR}{m}$$

$$R_s = c_n - c_v$$

Isotherm

$$\begin{split} pV &= \text{const} \\ T &= \text{const} \\ U_{12} &= 0 \\ U_{12} &= Q_{12} + W_{12} \\ Q_{12} &= -W_{12} \\ W_{12} &= p_1 V_1 \ln \frac{V_2}{V_1} \\ W_{12} &= p_1 V_1 \ln \frac{p_1}{p_2} \\ S_{12} &= m c_p \ln \frac{V_2}{V_1} + m c_V \ln \frac{p_2}{p_1} \end{split}$$

Isobar

$$\frac{V}{T} = \text{const}$$

$$p = \text{const}$$

$$Q_{12} = mc_p (T_2 - T_1)$$

$$W_{12} = -p (V_2 - V_1)$$

$$U_{12} = Q_{12} + W_{12}$$

$$S_{12} = mc_p \ln \frac{V_2}{V_1}$$

Isochor

$$\frac{p}{T} = \text{const}$$

$$V = \text{const}$$

$$Q_{12} = mc_v (T_2 - T_1)$$

$$W_{12} = 0$$

$$U_{12} = Q_{12}$$

$$S_{12} = mc_v \ln \frac{p_2}{p_1}$$

Adiabat

$$pV^{\kappa} = \text{const}$$

$$Q = \text{const}$$

$$\kappa = \frac{c_p}{c_V}$$

$$\frac{T_2}{T_1} = \left(\frac{V_2}{V_1}\right)^{1-\kappa} = \left(\frac{p_2}{p_1}\right)^{\frac{\kappa-1}{\kappa}}$$

$$Q_{12} = 0$$

$$W_{12} = mc_v \left(T_2 - T_1\right)$$

$$W_{12} = \frac{RT_1}{\kappa - 1} \left(\left(\frac{V_2}{V_1}\right)^{1-\kappa} - 1\right)$$

$$U_{12} = W_{12}$$

$$S_{12} = 0$$
:

Kreisprozess

$$\begin{split} \oint \mathrm{d}U &= 0 \\ \oint \mathrm{d}U &= \oint \mathrm{d}Q + \oint \mathrm{d}W \\ \text{Revesiebel:} \oint \mathrm{d}S &= 0 \\ \text{Irrevesiebel} \oint \mathrm{d}S &> 0 \end{split}$$

Carnot-Prozeß

$$\eta_C = \frac{W_{ab}}{Q_{zu}}$$

$$\eta_C = \frac{Q_{zu} - Q_{AB}}{Q_{zu}}$$

$$\eta_C = \frac{T_h - T_n}{T_n}$$

Optik

The path taken between two points by a ray of light is the path that can be traversed in the least time.

- Pierre de Fermat

12.1 Brechung

12.2 Totalreflexion

$$\frac{\sin \varepsilon_1}{\sin \varepsilon_2} = \frac{n_2}{n_1} = \frac{c_1}{c_2}$$

$$\varepsilon_2 = \arcsin \frac{\sin \varepsilon_1 \cdot n_1}{n_2}$$

$$\sin \varepsilon_g = \frac{n_2}{n_1}$$

Totalreflexion tritt nur auf, wenn der Lichtstrahl von einen dichteren in ein optisch dünneren Stoff übergeht.

12.3 Hohlspiegel

12.4 Linse

$$\frac{1}{f'} = \frac{1}{a'} - \frac{1}{a}$$
$$\frac{1}{f} = \frac{1}{a'} + \frac{1}{a}$$

$$f = \frac{a \cdot a'}{a + a'} = -f'$$

$$a' = \frac{af'}{a + f'}$$

$$\beta' = \frac{f'}{a + f'}$$

$$\beta' = \frac{y'}{y}$$

$$D' = \frac{1}{f'} = (n_L - 1) \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

Linsenform	\bigcirc					
Bezeichnung	bi- konvex	plan- konvex	konkav- konvex	bi- konkav	plan- konkav	konvex- konkav
Radien	$r_1 > 0$ $r_2 < 0$	$r_1 = \infty \\ r_2 < 0$	$r_1 < r_2 < 0$	$r_1 < 0 \\ r_2 > 0$	$r_1 = \infty \\ r_2 > 0$	$r_2 < r_1 < 0$
Brennweite im optisch dünneren Medium	f' > 0	f'>0	f'>0	f' <0	f' < 0	f' < 0

12.5 Lichtwellenleiter

Totalreflexion (Grenzwinkel)

$$n_1 \sin (90^\circ - \vartheta_1) = n_2 \Longrightarrow \cos \vartheta_1 = \frac{n_2}{n_1}$$

numerische Apertur

$$\begin{aligned} A_{WL} &= n_0 \sin \vartheta_0 = n_1 \sqrt{1 - \cos^2 \vartheta_1} \\ &= n_1 \sqrt{1 - \left(\frac{n_2}{n_1}\right)^2} \\ &= \sqrt{n_1^2 - n_2^2} \\ &= \sqrt{n_{Kern}^2 - n_{Mantel}^2} \end{aligned}$$

Teil III Elektrotechnik

Gleichstromtechnik

13.1 Grundgrößen

Elementarladung

$$e \approx 1.6 \cdot 10^{-19} C$$

[Q] = 1C = 1As $Q = n \cdot e$

Strom

$$[I] = 1A$$
$$i(t) = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

Potential

$$[\varphi] = 1V = 1\frac{Nm}{As} = 1\frac{kgm^2}{As^3}$$
$$\varphi = \frac{W}{Q}$$

Stromdichte

$$[J] = 1 \frac{A}{mm^2}$$

$$\vec{J} = \frac{I}{\vec{A}}$$

Spannung

$$[U] = 1V$$

$$U_{AB} = \varphi_a - \varphi_b$$

Widerstand und Leitwert

$$[R] = 1\Omega = 1\frac{V}{A}$$

$$R = \frac{U}{I}$$

$$= \rho \frac{l}{A} = \frac{1}{\kappa} \frac{l}{A}$$

$$[G] = 1S = 1\frac{A}{V}$$

$$G = \frac{I}{U}$$

$$= \frac{1}{R}$$

$$= \kappa \frac{A}{l} = \frac{1}{\rho} \frac{A}{l}$$

Temperaturabhängigkeit

$$R_2 = R_1 \cdot \left(1 + \alpha \left(\vartheta_2 - \vartheta_1\right) + \beta \left(\vartheta_2 - \vartheta_1\right)^2\right)$$

Leistung

Leistung im Mittel

$$[P] = 1W = 1VA$$
$$P = u(t) \cdot i(t)$$

$$P = \frac{1}{T} \int_0^T u(t) \cdot i(t) \, \mathrm{d}t$$

13.2 Lineare Quellen

Spannungsquelle

$$U = U_q - R_i \cdot I$$
$$I_K = \frac{U_q}{R_i}$$

$$I = I_q - \frac{U}{R_i}$$
$$U_l = I_q \cdot R_i$$

13.3 Kirchhoffsche Gesetze

Knotenpunktsatz

Maschensatz

$$\sum_{i=1}^{n} I_i = 0$$

$$\sum_{i=1}^{n} U_i = 0$$

Wechselstromtechnik

No rule is so general, which admits not some exception.

- Robert Burton

Periodische zeitabhängige Größen

Allgemein
$$x(t) \to \text{speziell } u(t); i(t); q(t); \dots$$

es gillt $x(t) = x(t + n \cdot T); (n \in \mathbb{N}^*)$

Wechselgrößen

Allgemein $x_{\sim}(t)$; periodisch sich ändernde Größe, deren Gleichanteil bzw. zeitlich linearer Mittelwert gleich Null ist.

Nachweis:

$$\int_{t_1}^{t_1+n \cdot T} x_{\sim}(t) dt = 0 \; ; \; (n \in \mathbb{N}^*) \; ; \; t_1 \text{ beliebiger Zeitwert}$$

Mischgrößen

Sind periodisch, Ihr Gleichanteil \overline{x} bzw. zeitlich linearer Mittelwert jedoch ist ungleich Null.

Mischgröße = Wechselgröße + Gleichanteil
$$x(t) = x_{\sim}(t) + \overline{x}$$
 = gleichanteilbehaftete Wechselgröße

Anteile und Formfaktoren

Gleichanteil

$$\overline{x} = \frac{1}{n \cdot T} \cdot \int_{t_{1}}^{t_{1} + n \cdot T} x\left(t\right) dt$$

Formfaktor

$$F = \frac{x_{eff}}{|\overline{x}|}$$
 $x_{eff} = |\overline{x}| \cdot F$

Gleichrichtwert

$$\left|\overline{x}\right| = \frac{1}{n \cdot T} \cdot \int_{t_1}^{t_1 + n \cdot T} \left|x\right|(t) dt$$

crest - Faktor

Effektivwert

Effektivwert
$$\sigma = \frac{\hat{x}}{x_{eff}}$$

$$x_{eff} = X = \sqrt{\frac{1}{n \cdot T} \cdot \int_{t_1}^{t_1 + n \cdot T} x^2(t) dt}$$

$$n \in \mathbb{N}^* \to t1$$
 beliebiger Zeitwert $\to [|\overline{x}|] = [x(t)]$

Leistung und Leistungsfaktoren

Wirkleistung 14.2.1

$$\begin{split} P &= \frac{1}{n \cdot T} \int_{t_{1}}^{t_{1} + n \cdot T} P\left(t\right) dt \\ &= \frac{1}{n \cdot T} \int_{t_{1}}^{t_{1} + n \cdot T} u\left(t\right) \cdot i\left(t\right) dt \end{split}$$

14.2.2 Mittlere Leistung

$$\bar{p}\left(t\right) = P = \frac{1}{n \cdot T} \int_{t_{1}}^{t_{1} + n \cdot T} P\left(t\right) dt$$

14.2.3 Scheinleistung

$$S = u_{eff} \cdot i_{eff} = U \cdot I$$

14.2.4 Leistungsfaktor

$$\begin{split} \lambda &= \frac{P}{S} \\ &= \frac{\frac{1}{n \cdot T} \int_{t_{1}}^{t_{1} + n \cdot T} p\left(t\right) dt}{u_{eff} \cdot i_{eff}} \\ &= \frac{\int_{t_{1}}^{t_{1} + n \cdot T} u\left(t\right) \cdot i\left(t\right) dt}{\sqrt{\int_{t_{1}}^{t_{1} + n \cdot T} u^{2}\left(t\right) dt} \cdot \sqrt{\int_{t_{1}}^{t_{1} + n \cdot T} i^{2}\left(t\right) dt}} \end{split}$$

14.3 Sinusförmige Größen

14.3.1 Sinusschwingung

14.3.2 Kosinusschwingung

 $x(t) = \hat{x}\cos(2\pi f + \varphi_x)$

 $x(\omega t) = \hat{x}\cos(\omega t + \varphi_x)$

$$x(t) = \hat{x}\sin(2\pi f + \varphi_x)$$
$$x(\omega t) = \hat{x}\sin(\omega t + \varphi_x)$$

• \hat{x} : Amplitude

• \hat{x} : Amplitude

• φ_x : Nullphasenwinkel

• φ_x : Nullphasenwinkel

- $\varphi_x > 0$: Rechtssverschiebung der Kurve
- $\varphi_x > 0$: Linksverschiebung der Kurve

14.3.3 Nullphasenzeit

$$t_x = -\frac{\varphi_x}{\omega} = -\varphi_x \cdot \frac{T}{2\pi}$$

14.3.4 Addition zweier Sinusgrößen gleicher Frequenz

mit:
$$a = \hat{a} \sin(\omega t + \alpha) \wedge b = \hat{b} \sin(\omega t + \beta)$$

Resultierende Funktion:

$$x = a + b$$

$$= \hat{a}\sin(\omega t + \alpha) + \hat{b}\sin(\omega t + \beta)$$

$$= \hat{x}\sin(\omega t + \varphi)$$

- \hat{x} : resultierende Amplitude
- φ : Nullphasenwinkel

Wobei:
$$\hat{x} = +\sqrt{\hat{a}^2 + \hat{b}^2 + 2\hat{a}\hat{b}\cos(\alpha - \beta)}$$

$$\varphi = \arctan\frac{\hat{a}\sin\alpha + \hat{b}\sin\beta}{\hat{a}\cos\alpha + \hat{b}\cos\beta}$$

Vierquadrantenarkustangens

$\varphi = \arctan \frac{ZP}{NP}$		
2. Quadrant $ZP > 0, NP < 0$	1. Quadrant $ZP > 0, NP > 0$	
3. Quadrant $ZP < 0, NP < 0$	4. Quadrant $ZP < 0, NP > 0$	

Der rotierende Zeiger als rotierender Vektor

Allgemein gillt:
$$\sin{(\omega t + \varphi_x)} = \frac{GK}{HT} = \frac{b}{\hat{x}}$$

$$\cos{(\omega t + \varphi_x)} = \frac{AK}{HT} = \frac{a}{\hat{x}}$$

$$b = \hat{x}\sin{(\omega t + \varphi_x)}$$

$$a = \hat{x}\cos{(\omega t + \varphi_x)}$$
Als Einheitsvektor: $\vec{x} = a \cdot \vec{i} + b \cdot \vec{j}$

Zeigerspitzenendpunkt

14.3.5 Wechsel zwischen Sinus und Kosinus

$$\hat{x}(t)\cos(\omega t + \varphi_x) \equiv \hat{x}(t)\sin\left(\omega t + \varphi_x + \frac{\pi}{2}\right)$$
$$\hat{x}(t)\sin(\omega t + \varphi_x) \equiv \hat{x}(t)\cos\left(\omega t + \varphi_x - \frac{\pi}{2}\right)$$

Zeitbereich		komplexer Zeitbereich
$x = \hat{x}\sin\left(\omega t + \varphi_x\right)$	$\xrightarrow{Hintransformation1}$	$\underline{x} = \hat{x}\cos(\omega t + \varphi_x) + j\hat{x}\sin(\omega t + \varphi_x)$
$x = \hat{x}\cos\left(\omega t + \varphi_x\right)$	$\xrightarrow{Hintransformation2}$	$\underline{x} = \hat{x}e^{j(\omega t + \varphi_x)}$
		Berechnungen im komplexen Bereich
$y = Im\{y\} = \hat{y}\sin(\omega t + \varphi_y)$	$\xleftarrow{Ruecktransformation1}$	$\underline{y} = \hat{y}e^{j(\omega t + \varphi_y)}$
$y = Re\{y\} = \hat{y}\cos(\omega t + \varphi_y)$	$\xleftarrow{Ruecktransformation2}$	$\underline{y} = \hat{y}\cos(\omega t + \varphi_y) + j\hat{y}\sin(\omega t + \varphi_y)$

- HT1 erfordert die Ergänzung eines gleichwertigen reellen Kosinusterms mit dem ursprünglichen Sinusterm als Imaginärteil
- HT2 erfordert die Ergänzung eines gleichwertigen imaginären Sinusterms mit dem ursprünglichen Kosinusterm als Realteil
- RT1 entnahme des Imaginärteils
- RT2 entnahme des Realteils

Merke:
$$\frac{1}{j} = -j \qquad j = e^{j\frac{\pi}{2}}$$

14.3.6 Differentiation und Integration von Sinusgrößen

Zeitbereich	Zeigerbereich
$x(t) = \hat{x}\sin(\omega t + \varphi_x) \xrightarrow{HT_1} x(t) = \hat{x}\cos(\omega t + \varphi_x) \xrightarrow{HT_2}$	$\underline{x} = \hat{x}e^{j(\omega t + \varphi_x)}$
$\frac{d^n x(t)}{dt^n} \xrightarrow{HT_{1/2}}$	$\frac{d^n \underline{x}(t)}{dt^n} = (j\omega)^n \underline{x}$

Zeitbereich	Zeigerbereich
$x(t) = \hat{x}\sin(\omega t + \varphi_x) \xrightarrow{HT_1} x(t) = \hat{x}\cos(\omega t + \varphi_x) \xrightarrow{HT_2}$	$\underline{x} = \hat{x}e^{j(\omega t + \varphi_x)}$
$\int \cdots \int x(t) dt^n \xrightarrow{HT_{1/2}}$	$\int \cdots \int \underline{x}(t) dt = \frac{1}{(j\omega)^n} \underline{x}$

14.3.7 R, L und C im kompl. Zeigerbereich

Ohmscher Widerstand	$\hat{U} = R\hat{I} \hat{I} = \frac{\hat{U}}{R}$
Induktivität	$\hat{U} = \omega L \hat{I} \hat{I} = \frac{\hat{U}}{\omega L}$
Kapazität	$\hat{U} = \frac{\hat{I}}{\omega C} \hat{I} = \omega C \hat{U}$

14.3.8 Widerstands und Leitwertoperator

\underline{Z} komplexer Widerstand / Impedanz	\underline{Y} komplexer Leitwert / Admitanz
$\underline{Z} = \frac{\underline{u}}{\underline{i}} = \frac{\hat{U}}{\hat{I}} \cdot e^{j(\varphi_u - \varphi_i)}$	$\underline{Y} = \frac{1}{\underline{Z}} = \frac{\hat{I}}{\hat{U}} \cdot e^{j(\varphi_i - \varphi_u)}$
$ \underline{Z} = Z = \frac{\hat{U}}{\hat{I}} = \frac{U}{I}$	$ \underline{Y} = Y = \frac{1}{\underline{Z}} = \overline{U}$
$mit \varphi_u - \varphi_i = \varphi_Z$	$mit \varphi_i - \varphi_u = -\varphi_Z = \gamma_Y$

Widerstand

$$\underline{Z} = R \wedge \underline{Y} = 1/R$$

Kapazität

$$\underline{Z} = \frac{1}{j\omega C} = \frac{1}{\omega C} e^{-j\frac{\pi}{2}} \wedge \underline{Y} = j\omega C = \omega C e^{j\frac{\pi}{2}}$$

Induktivität

$$\underline{Z} = j\omega L = \omega L e^{j\frac{\pi}{2}} \wedge \underline{Y} = \frac{1}{j\omega L} = \frac{1}{\omega L} e^{-j\frac{\pi}{2}}$$

14.3.9 Resultierende Operatoren

Reihenschaltung

$$\underline{Z}_{ges} = \sum_{i=1}^{n} \underline{Z}_{i}$$

$$\underline{Y}_{ges} = \sum_{i=1}^{n} \underline{Y}_{i}$$

Spannungsteiler

$$\frac{\underline{u}_1}{\underline{u}_2} = \frac{\underline{Z}_1 + \underline{Z}_2}{\underline{Z}_2}$$

$$\frac{\underline{i}_1}{\underline{i}_2} = \frac{\underline{Y}_1}{\underline{Y}_2}$$

14.3.10 Anteile am komplexen Widerstand (Impedanz)

$$\underline{Z} = \operatorname{Re}\{\underline{Z}\} + j \cdot \operatorname{Im}\{\underline{Z}\} = R + jX = |\underline{Z}| \cdot e^{j\varphi}$$

mit $\varphi = \varphi_u - \varphi_i$ Phasenwinkel; R = Wirkwiderstand;

 $X = \text{Blindwiderstand}; |\underline{Z}| = \text{Scheinwiderstand}$

$$R = R$$
 $L = \frac{X}{\omega} \text{ mit } X > 0$ $C = -\frac{1}{\omega X} \text{ mit } X < 0$

14.3.11 Anteile am komplexen Leiwert (Admitanz)

$$\underline{Y} = \text{Re}\{\underline{Y}\} + j \cdot \text{Im}\{\underline{Y}\} = G + jB = |\underline{Y}| \cdot e^{j\gamma}$$

mit $\gamma = \varphi_i - \varphi_u$ Phasenwinkel; G = Wirkleitwert;

 $B = Blindleitwert; |\underline{Y}| = Scheinleitwert$

$$R = \frac{1}{G}$$
 $C = \frac{B}{\omega}$ mit $B > 0$ $L = -\frac{1}{\omega B}$ mit $B < 0$

14.3.12 komplexer Widerstand / komplexer Leitwert

$$\underline{Y} = G + jB = \frac{1}{\underline{Z}} = \frac{1}{Z} \cdot e^{-j\varphi}$$

$$= \frac{1}{\sqrt{R^2 + X^2}} \cdot e^{-j \arctan \frac{X}{R}}$$

$$= \frac{1}{R + jX} = \frac{R - jX}{R^2 + X^2} = \underbrace{\frac{R}{R^2 + X^2}}_{G} \underbrace{-j\frac{X}{R^2 + X^2}}_{R}$$

$$\underline{Z} = R + jX = \frac{1}{\underline{Y}} = \frac{1}{Y} \cdot e^{-j\gamma}$$

$$= \frac{1}{\sqrt{G^2 + B^2}} \cdot e^{-j \arctan \frac{B}{G}}$$

$$= \frac{1}{G + jB} = \frac{G - jB}{G^2 + B^2} = \underbrace{\frac{G}{G^2 + B^2}}_{R} - j\frac{B}{G^2 + B^2}$$

14.3.13 Momentanleistung / Augenblicksleistung

$$\begin{split} P\left(t\right) &= \underbrace{UI\cos\varphi}_{\text{zeitlich konstant}} - \underbrace{UI\cos\left(2\omega t + \varphi_u + \varphi_i\right)}_{\text{mit doppelter Frequenz schwingend}} \\ &= UI\cos\varphi - UI\cos\left(2\omega t + 2\varphi_u - \varphi\right) \\ \\ \text{mit } \varphi &= \varphi_u - \varphi_i \rightarrow \varphi_i = \varphi_u - \varphi \end{split}$$

14.3.14 Blindleistung

Ermittlung des Blindleistungsanteils aus der Momentanleistung

$$P\left(t\right) = \underbrace{UI\cos\varphi}_{\text{Wirkleistung}} \underbrace{-UI\sin\varphi \cdot \sin\left(2\omega t + 2\varphi_u\right)}_{\text{Blindleistung}}$$

$$P_{aes}\left(t\right) = P_{wirk}\left(t\right) + P_{blind}\left(t\right)$$

$$u\left(t\right)\cdot i\left(t\right) \begin{cases} > 0 \text{ Energie zum Verbraucher} \\ < 0 \text{ Energie zum Erzeuger} \end{cases}$$

14.3.15 Mittlere Leistung / Wirkleistung

$$P = \overline{P}\left(t\right) = \frac{1}{n \cdot T} \int_{t_1}^{t_1 + n \cdot T} u\left(t\right) \cdot i\left(t\right) dt = UI\cos\varphi$$

14.3.16 Definition von Blind- und Scheinleistung

$$\begin{split} Q &= UI \sin \varphi \quad [Q] = \text{var} \quad \text{mit} \begin{cases} Q > 0 \text{ induktive Blindleistung } Q_{ind} \\ Q < 0 \text{ kapazitive Blindleistung } Q_{kap} \end{cases} \\ S &= u_{eff} \cdot i_{eff} = U \cdot I \quad [S] = VA \end{split}$$

14.3.17Beziehungen zwischen Wirk- Blind- und Scheinleistung

$$P = UI \cdot \cos \varphi$$
 $Q = UI \cdot \sin \varphi$ $S = UI$

$$\tan \varphi = \frac{Q}{P} = \frac{\sin \varphi}{\cos \varphi}$$
 Leistungsfaktor
$$\lambda = \frac{P}{S} = \cos \varphi$$

$$P = \sqrt{S^2 - Q^2}$$

$$= S \cdot \cos \varphi$$

$$= \frac{Q}{\tan \varphi}$$

$$Q = \begin{cases} > 0 \rightarrow Q_{ind} = \sqrt{S^2 - P^2} \\ < 0 \rightarrow Q_{kap} = -\sqrt{S^2 - P^2} \end{cases}$$

$$S = \sqrt{P^2 + Q^2}$$

$$Q = S \cdot \sin \varphi = P \cdot \tan \varphi$$

$$Q = S \cdot \sin \varphi = P \cdot \tan \varphi$$

$$Q = \frac{Q}{\sin \varphi}$$

$$Q = \frac{P}{\cos \varphi}$$

$$\varphi = \arctan \frac{Q}{P}$$

$$Q = \arcsin \frac{Q}{S}$$

$$= \arcsin \frac{Q}{S}$$

$$= \arccos \frac{P}{S}$$

Die komplexe Leistung 14.3.18

 $P^2 + Q^2 = U^2 \cdot I^2 = S^2$

$$\begin{split} \underline{S} &= \underline{U} \cdot \underline{I}^* & *- \text{konjugiert Komplex} \\ &= U \cdot I \cdot e^{j(\varphi_u - \varphi_i)} \\ &= S \cdot e^{j\varphi} \\ &= \underbrace{S \cdot \cos \varphi}_{P} + j \cdot \underbrace{S \cdot \sin \varphi}_{Q} \\ &= P + jQ & [\underline{S}] = VA \quad [P] = W \quad [Q] = var \end{split}$$

Zusammenhang mit dem komplexen Leitwert / Widerstand

$$S = I^2 \cdot Z$$
 $P = I^2 \cdot R = U^2 \cdot G$ $Q = I^2 \cdot X = -U^2 \cdot B$