

Penerapan Model Machine Learning untuk Memprediksi Fraud Auto Insurance

Kelompok 4:

Arjun Michael Rogan 2206032860

Audrey Febe Gaberia Siregar 2206052010

Fedora Almanda 2206052004

Sean Felix Fefri Hutagaol 2206051840

Sebastianus Radityo Yoga Pradana 2206051853

Daftar Isi

Latar Belakang	3
Rumusan Masalah	6
Tujuan Penelitian	7
Alur Simulasi	27
Eksplorasi Data	28
Pre-Processing Data	47
Pipeline Model	60
Optimasi Parameter	61
Evaluasi Kinerja Model	63
Model Terbaik serta Aspek Interpretability dan Explanability	64
Kesimpulan	68

Latar Belakang

Auto Insurance?

Auto Insurance merupakan tipe asuransi yang menyediakan perlindungan terhadap kerugian atau kerusakan pada kendaraan seperti mobil, sepeda motor, atau kendaraan komersial, dan lain-lain, tergantung dari kontrak atau *policy* asuransinya

Source: Fast Track Monitoring System; © Insurance Services Office, Inc., 2023, Chart by Francis Analytics and Actuarial Data Mining.

Latar Belakang

Fraud On Auto Insurance?

Fraud adalah segala bentuk kecurangan yang dilakukan sepihak demi mendapatkan keuntungan pribadi (AAIA, 2023)

Dampak Dari Fraud

- Meningkatkan biaya klaim, menurunkan profitabilitas.
- Mendorong kenaikan premi untuk menutup kerugian.
- Memerlukan investasi dalam sistem deteksi dan investigasi fraud.
- Kenaikan premi bagi seluruh pemegang polis, bukan hanya pelaku fraud.
- Mengurangi kepercayaan konsumen terhadap industri asuransi.
- Mengganggu stabilitas ekonomi di sektor asuransi.
- Meningkatkan beban hukum dan pengeluaran terkait pencegahan fraud.
- Mengurangi efektivitas perlindungan konsumen secara keseluruhan.

Latar Belakang

Machine Learning for Fraud Problems

Untuk mendeteksi fraud asuransi, perusahaan asuransi memanfaatkan model machine learning.

Data Processing & Learning Algorithm

Raw Data

Predictive Model

Machine Learning dapat membantu memprediksi fraud asuransi dengan menganalisis data historis berukuran besar untuk mempelajari pola dan anomali terkait aktivitas penipuan.

Rumusan Masalah

- Bagaimana perbandingan performa model Logistic Regression, Support Vector Classification (SVC), Random Forest, dan XGBoost?
- Apa bentuk model terbaik untuk memprediksi terjadinya *fraud* pada klaim *auto insurance*?
- Bagaimana aspek interpretability dan explainability dari model terbaik yang diperoleh dalam mendeteksi fraud pada klaim auto insurance?

Tujuan Penelitian

- Membandingkan performa model Logistic Regression, Support Vector Classification (SVC), Random Forest, dan XGBoost.
- Mengetahui model terbaik untuk memprediksi terjadinya fraud pada klaim auto insurance
- Menilai aspek interpretability dan explainability dari model terbaik

UNIVERSITAS INDONESIA Verdes: Avalidas, destrice FMIPA

Logistic Regression

Definisi Logistic Regression:

Pengembangan regresi linear dengan fungsi logistik untuk data dengan label berupa kelas.

Visualisasi:

Rumus - rumus:

Bentuk regresi logistik:

$$p(x) = \sigma(w^{T}z)$$

$$= \frac{1}{1 + exp(-(w_0 + w^{T}x))}$$

dengan

$$z = (1, x_1, ..., x_D)^T$$
 $w = (w_0, w_1, ..., w_D)^T$

Support Vector Machine (SVM)

Definisi SVM

Algoritma pembelajaran mesin yang digunakan untuk klasifikasi dan regresi dengan menemukan hyperplane optimal yang memisahkan data ke dalam kelas-kelas berbeda dengan margin maksimal.

Fungsi Kernel:

Fungsi Kernel adalah fungsi yang mengukur kemiripan antara dua vektor data tersebut dalam ruang asli, yang setara dengan melakukan produk dalam ruang berdimensi lebih tinggi tanpa melakukan transformasi eksplisit.

Visualisasi:

Support Vector Machine (SVM)

Formula:

Fungsi Optimasi Margin Lunak:

$$\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{n=1}^N \xi_n$$

s.t. $t_n \left(w^T \phi(x_n) + b \right) \ge 1 - \xi_n, \quad n = 1, \dots, N$
 $\xi_n \ge 0$

Fungsi Dual Margin Lunak:

$$\max_{a} \tilde{L}(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(x_n, x_m)$$
s.t. $0 \le a_n \le C, \quad n = 1, \dots, N$

$$\sum_{n=1}^{N} a_n t_n = 0$$

Fungsi Prediksi:

$$\max_{w,b} \left\{ \frac{1}{\|w\|} \min_n \left[t_n \left(w^T \phi(x_n) + b \right) \right] \right\}$$

Fungsi Prediksi:

$$f(\mathbf{x}) = d(y(x)) = d\left(\sum_{m \in 1} a_m y_m K(\mathbf{x}, \mathbf{x}_m) + b\right)$$

UNIVERSITAS INDONESIA Novice: Analisia, Suntive FMIPA

Random Forest

ILUSTRASI

Definisi Random Forest

Random Forest merupakan model *machine learning* yang mengimplementasikan *ensemble learning*, yaitu *bagging*, terhadap model Decision Tree. Random Forest mampu menangani masalah overfitting pada model Decision Tree.

Bagging

Bagging merupakan pendekatan pada ensemble learning di manan beberapa model dasar dibangun secara independen dan prediksi akhir adalah pemilihan (voting) dari masing-masing model dasar tersebut.

Random Forest

Rumus - rumus:

Gini Impurity

$$G=1-\sum_{i=1}^k p_i^2$$

Recursive Partitioning

$$ext{Best Split} = \operatorname{argmin}\left[w_{ ext{left}}I_{ ext{left}} + w_{ ext{right}}I_{ ext{right}}
ight]$$

Bagging

$$D_b = \{(x_1,y_1),(x_2,y_2),\dots,(x_m,y_m)\}$$

Out-of-Bag Error

$$OOB = rac{1}{n} \sum_{i=1}^n \mathbb{I}(y_i
eq \hat{y}_{OOB,i})$$

Ensemble Prediction

$$\hat{y} = \operatorname{mode}(\{T_1(x), T_2(x), \ldots, T_k(x)\})$$

eXtreme Gradient Boosting (XGBoost)

Definisi XGBoost:

Implementasi yang dioptimalkan dari algoritma Gradient Boosting.

Gradient Boosting:

Teknik ensemble dalam machine learning untuk membangun model prediksi yang kuat dari kombinasi beberapa model yang lemah.

ILUSTRASI

Sumber: https://mikulskibartosz.name/images/2019-08-26-how-to-plot-the-decision-trees-from-xgboost-classifier/xgboost_tree.pngtext

eXtreme Gradient Boosting (XGBoost)

Rumus - rumus:

Objective Function

$$\mathcal{L}(\phi) = \sum_{i=1}^n l(y_i, \hat{y}_i) + \sum_{k=1}^K \Omega(f_k)$$

Split Gain

$$ext{Gain} = rac{1}{2} \left[rac{(G_L + G_R)^2}{H_L + H_R + \lambda} - rac{G_L^2}{H_L + \lambda} - rac{G_R^2}{H_R + \lambda}
ight] - \gamma$$

Leaf Weight

$$w_j = -rac{\sum_{i \in ext{leaf}_j} g_i}{\sum_{i \in ext{leaf}_j} h_i + \lambda}$$

Learning Rate

$$\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + \eta f_t(x_i)$$

UNIVERSITAS INDONESIA Advices: Avalidas, Swelfix

Min-Max Scaling

Definisi Scaling

Proses penyesuaian rentang nilai dan distribusi dari fitur-fitur yang dipakai dalam Machine Learning.

Fungsi Scaling

Tujuan scaling adalah untuk memastikan bahwa tidak ada fitur yang mendominasi fitur lain. Dominasi suatu fitur bisa disebabkan oleh perbedaan rentang nilai, yang mana dapat mempengaruhi kinerja suatu machine learning.

Min-Max Scaling

Proses ini mengskalakan setiap fitur numerik ke dalam range tetap [0,1]. Min-Max Scaling dilakukan ketika dataset memiliki rentang nilai yang ekstrem dan tidak berdistribusi normal.

$$X^{'} = rac{X - X_{min}}{X_{max} - X_{min}}$$

Keterangan:

 X^\prime : Nilai setelah scaling X : Nilai awal

 X_{min} : Nilai minimum fitur X_{max} : Nilai maksimum fitur

Synthetic Minority Oversampling Technique (SMOTE)

Definisi

Teknik yang digunakan untuk menangani masalah ketidakseimbangan kelas dalam dataset

Kegunaan

Untuk mengurangi bias dalam model *machine learning* yang disebabkan oleh ketidakseimbangan jumlah data antara kelas-kelas target.

Hyperparameter Tuning

Definisi

Hyperparameter Tuning adalah proses optimalisasi hyperparameter model machine learning untuk meningkatkan akurasi model dan mencegah terjadinya overfitting dan underfitting.

g=tbn:ANd9GcRPDzu1EInJLRQoCrOR-fOeBBI mhr92zaLpg&s

Grid Search and Cross Validation

- Metode *hyperparameter tuning* di mana algoritmanya menguji berbagai kombinasi *hyperparameter* untuk menemukan kombinasi *hyperparameter* terbaik.
- Cross-validation dilakukan pada setiap kombinasi hyperparameter untuk mencegah overfitting.
- Data dilatih dan diuji pada subset data yang berbeda-beda.

Area Under the Curve (AUC) - Receiver Operating Characteristic (ROC)

Definisi

Metrik evaluasi yang digunakan untuk mengukur kinerja model klasifikasi.

AUC

Luas area di bawah kurva ROC yang memberikan nilai seberapa baik model dapat membedakan antara kelas positif dan negatif.

Nilai AUC berkisar antara O hingga 1, dengan interpretasi sebagai berikut:

- AUC = 1 (Model sempurna dalam membedakan kelas.)
- AUC = 0.5 (Model tidak memiliki kemampuan memisahkan kelas.)
- AUC < 0.5 (Model berkinerja lebih buruk daripada prediksi acak.)

Reference: Corbacioğlu ŞK, Aksel G. Receiver operating characteristic curve analysis in diagnostic accuracy studies: A guide to interpreting the area under the curve value. Turk J Emerg Med. 2023 Oct 3;23(4):195-198. doi: 10.4103/tjem.tjem_182_23. PMID: 38024184; PMCID: PMC10664195.

Area Under the Curve (AUC) - Receiver Operating Characteristic (ROC)

ROC

Kurva yang menampilkan hubungan antara True Positive Rate (TPR) dan False Positive Rate (FPR) untuk berbagai threshold keputusan yang digunakan oleh model.

TPR/sensitivity/recall

Proporsi data positif yang diprediksi benar oleh model.

$$TPR = \frac{True \, Positive \, (TP)}{True \, Positive \, (TP) + False \, Negative \, (FN)}$$

FPR

Proporsi data negatif yang salah diprediksi sebagai positif oleh model.

$$FPR = \frac{False\ Positive\ (FP)}{False\ Positive\ (FP) + True\ Negative\ (TN)}$$

Area Under the Curve (AUC) - Receiver Operating Characteristic (ROC)

Interpretasi AUC - ROC

0.5 - 0.6	Failed
0.6 - 07	Worthless
0.7 - 0.8	Poor
0.8 - 0.9	Good
> 0.9	Excellent

sumber:

Polo TCF, Miot HA. Use of ROC curves in clinical and experimental studies. J Vasc Bras. 2020;19: e20200186.

https://doi.org/10.1590/1677-5449.200186

Confusion Matrix

Confusion Matrix

Tabel yang digunakan untuk mengevaluasi kinerja model klasifikasi dengan cara menunjukkan hasil prediksi model terhadap data uji dibandingkan dengan nilai sebenarnya.

Prediksi Negatif

Prediksi Positif

Aktual Negatif True Negative (TN) False Positive (TP)

Aktual Positif

False Negative (FN) True Positive (FP)

Metrik evaluasi yang dapat dihitung:

Accuracy: Mengukur proporsi prediksi benar dari keseluruhan prediksi.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Precision: Mengukur proporsi prediksi positif yang benar dari semua prediksi positif.

$$Precision = \frac{TP}{TP + FP}$$

Recall: menunjukkan seberapa baik model dalam menangkap semua kasus positif

$$Recall = \frac{TP}{TP + FN}$$

Confusion Matrix

Prediksi Negatif

Prediksi Positif

Aktual Negatif True Negative (TN) False Positive (TP)

Aktual Positif False Negative (FN)

True Positive (FP)

Metrik evaluasi yang dapat dihitung:

F-1 Score: rata-rata harmonis dari precision dan recall.

$$F1 - Score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

False Positive Rate (FPR): Mengukur proporsi prediksi positif yang salah dari semua kasus negatif yang ada.

$$FPR = \frac{FP}{FP + TN}$$

Specificity (True Negative Rate): Mengukur proporsi prediksi negatif yang benar dari semua kasus negatif yang ada.

$$Specificity = \frac{TN}{TN + FP}$$

Feature Importance

Definisi

Ukuran kontribusi setiap fitur terhadap prediksi yang dihasilkan

Ukuran dapat dihitung berdasarkan metrik **Gain:**

- Mengukur rata-rata penurunan loss
- Peningkatan gain yang signifikan --> fitur penting

Rumus-rumus Feature Importance

$$ext{Gain}_{ ext{split}} = rac{1}{2} \left(rac{G_L^2}{H_L + \lambda} + rac{G_R^2}{H_R + \lambda} - rac{(G_L + G_R)^2}{H_L + H_R + \lambda}
ight) - \gamma$$

 G_L dan H_L : Total gradien dan hessian di cabang kiri setelah split.

 G_R dan H_R : Total gradien dan hessian di cabang kanan setelah split.

 λ : Parameter regularisasi L2.

 γ : Penalti pruning.

Partial Dependence Plot (PDP)

Definisi

Grafik yang menunjukkan ketergantungan antara respons dan satu atau beberapa fitur masukan, dengan mengabaikan nilai semua fitur masukan lainnya.

Jenis Ilustrasi:

One-Way

One-Way PDP menunjukkan hubungan antara satu fitur dengan prediksi model dan fitur lain dianggap tetap. Biasanya divisualisasikan dengan grafik garis.

Two-Way

Two-Way PDP memperlihatkan interaksi antara dua fitur dengan prediksi model. PDP ini biasanya divisualisasikan dalam bentuk peta kontur (heatmap) atau permukaan 3D.

UNIVERSITAS INDONESIA Vividas, Tradition, Tradition FMIPA

Partial Dependence Plot (PDP)

Rumus

Untuk satu fitur X(j), PDP didefinisikan sebagai:

$$PD(X_j) = rac{1}{n} \sum_{i=1}^n \hat{f}(X_j, X_{-j}^{(i)})$$

Keterangan:

- $oldsymbol{\hat{f}}$: fungsi prediksi model
- X_j : fitur target yang ingin dipelajari
- ullet $X_{-j}^{(i)}$: nilai dari semua fitur lain kecuali X_j untuk data ke-i
- n: jumlah sampel data

Contoh Plot

Individual Conditional Expectation (ICE)

Definisi

Individual Conditional Expectation (ICE) adalah teknik yang digunakan dalam analisis model prediktif untuk memahami bagaimana prediksi model berubah seiring perubahan pada satu variabel input, dengan mempertahankan nilai variabel lainnya tetap konstan. Berbeda dengan Partial Dependence Plots (PDP), yang menggambarkan hubungan rata-rata antara fitur dan target, ICE menggambarkan prediksi untuk setiap individu dalam dataset untuk berbagai nilai fitur.

Alur Simulasi

Identifikasi Fitur Numerik

1	months_as_customer: jumlah bulan terdaftar asuransi sebelum polis autoinsurance
2	age: usia pemegang polis.
3	policy_number: nomor indentifikasi unik pemegang polis.
4	policy_deductable: deductible setiap klaim.
5	policy_annual_premium: jumlah premi tahunan.
6	umbrella_limit: Coverage limit under an umbrella insurance policy, which provides additional liability coverage.
7	capital_gains: Capital gains reported by the insured, relevant to their financial profile.
8	capital_loss: Capital losses reported by the insured, which also relate to financial circumstances.
9	incident_hour_of_the_day: jam kejadian kecelakaan

Identifikasi Fitur Numerik

10	number_of_vehicles_involved: Jumlah kendaraan yang terlibat dalam kecelakaan
11	bodily_injuries: Jumlah orang yang mengalami cedera pada kecelakaan
12	witnesses: Jumlah saksi yang melaporkan kecelakaan
13	total_claim_amount: Jumlah total klaim dalam dolar.
14	injury_claim: Bagian dari jumlah total klaim yang disebabkan oleh cedera.
15	property_claim: Bagian dari jumlah total klaim yang disebabkan oleh kerusakan properti.
16	vehicle_claim: Bagian dari jumlah total klaim yang disebabkan oleh kerusakan kendaraan
17	auto_year: Tahun produksi dari kenderaan pihak tertanggung.

Identifikasi Fitur Kategorik Nominal

1	policy_bind_date: tanggal pemegang polis bergabung ke polis asuransi
2	policy_state: negara bagian polis asuransi didaftarkan
3	insured_zip: kode pos pemegang polis asuransi
4	insured_sex: gender pemegang polis (M untuk laki-laki dan F untuk perempuan)
5	insured_occupation: pekerjaan pemegang polis
6	insured_hobbies: hobi pemegang polis
7	insured_relationship: status hubungan dan keluarga pemegang polis
8	incident_date: tanggal kecelakaan
9	incident_type: tipe kecelakaan
10	collision_type: area terdampak pada kecelakaan (contoh: tabrakan depan, tabrakan samping)

Identifikasi Fitur Kategorik Nominal

11	authorities_contacted: Pihak berwenang yang dikontak setelah terjadi kecelakaan (polisi, pemadam kendaraan, ambulans, lainnya, tidak ada)
12	incident_state: Negara bagian di mana kecelakaan terjadi.
13	incident_city: Kota di mana kecelakaan terjadi
14	incident_location: Alamat atau lokasi spesifik terjadinya kecelakaan.
15	property_damage: Indikator terjadinya kerusakan properti (Ya/Tidak)
16	police_report_available Indikator ketersediaan laporan polisi (Ya/Tidak)
17	auto_make: Merk dari kenderaan pihak tertanggung.
18	auto_model: Model dari kenderaan pihak tertanggung.
19	fraud_reported: Indikator klaim dilaporkan sebagai fraud (Ya/Tidak)
20	policy_csl: batas besar klaim (per orang/per insiden).

Identifikasi Fitur Kategorik Ordinal

- 1 incident_severity: tingkat keparahan kecelakaan (contoh: minor, major, total loss).
- insured_education_level: tingkat pendidikan pemegang polis

insured_zip	insured_sex	insured_education_level	insured_occupation	insured_hobbies	insured_relationship	capital- gains	capital- loss	incident_date
432220	MALE	MD	protective-serv	reading	wife	0	0	2015-01-22
443920	MALE	High School	prof-specialty	paintball	other-relative	72700	-68200	2015-01-11
453148	MALE	MD	priv-house-serv	chess	own-child	0	-31000	2015-01-19
473328	MALE	Masters	prof-specialty	video-games	husband	53200	0	2015-01-18
472248	MALE	High School	farming-fishing	video-games	wife	51400	-64000	2015-01-09

incident_type	collision_type	incident_severity	authorities_contacted	incident_state	incident_city	incident_location	incident_hour_of_the_day
Single Vehicle Collision	Rear Collision	Total Loss	Ambulance	sc	Northbend	6655 5th Drive	9
Multi-vehicle Collision	Rear Collision	Major Damage	Ambulance	sc	Hillsdale	2526 Embaracadero Ave	20
Single Vehicle Collision	Front Collision	Total Loss	Ambulance	wv	Northbend	5667 4th Drive	15
Multi-vehicle Collision	Side Collision	Major Damage	Ambulance	sc	Columbus	4687 5th Drive	22
Multi-vehicle Collision	Front Collision	Major Damage	Ambulance	NY	Hillsdale	8353 Britain Ridge	74

number_of_vehicles_involved	property_damage	bodily_injuries	witnesses	police_report_available	total_claim_amount	injury_claim	property_claim
1	YES		0	NO	56520	4710	9420
3	NO	0	0	YES	71520	17880	5960
1		2	2		98160	8180	16360
4	NO	0	0	?	75600	12600	12600
3	NO	1	2	?	77110	14020	14020

vehicle_claim	auto_make	auto_model	auto_year	fraud_reported	_c39
42390	Saab	95	2000	N	NaN
47680	Suburu	Forrestor	2000	Υ	NaN
73620	Dodge	RAM	2011	Υ	NaN
50400	Toyota	Corolla	2005	N	NaN
49070	Suburu	Impreza	2015	N	NaN

1000 entri data; 39 variabel

UNIVERSITAS INDONESIA Virolai; Freddin, Freddin

Summary Data

mo	onths as customer	age	policy_number	\	poli	cy bind date	policy_deductable	\
count	1000.000000	1000.000000	1000.000000	count	•	1000	1000.000000	
mean	203.954000	38.948000	546238.648000	mean	2002-02-08 04:40:	47.999999872	1136.000000	1
min	0.000000	19.000000	100804.000000	min	1990-01	L-08 00:00:00	500.000000	l
25%	115.750000	32.000000	335980.250000	25%	1995-09	9-19 00:00:00	500.000000	1
50%	199.500000	38.000000	533135.000000	50%	2002-04	1-01 12:00:00	1000.000000	1
75%	276.250000	44.000000	759099.750000	75%	2008-04	1-21 12:00:00	2000.000000	1
max	479.000000	64.000000	999435.000000	max	2015-02	2-22 00:00:00	2000.000000	1
std	115.113174	9.140287	257063.005276	std		NaN	611.864673)
	policy_annua	al_premium	umbrella_l	imit	insured_zip	capital-g	gains \	
count	16	000000.000	1.000000	e+03	1000.000000	1000.00	0000	
mean	12	256.406150	1.101000	e+06	501214.488000	25126.10	0000	
min	4	133.330000	-1.000000	e+06 4	430104.000000	0.00	0000	
25%	16	989.607500	0.00000	e+00 4	448404.500000	0.00	0000	
50%	12	257.200000	0.000000	e+00 4	466445.500000	0.00	0000	
75%	14	115.695000	0.00000	e+00 (603251.000000	51025.00	0000	
max	26	947.590000	1.000000	e+07	620962.000000	100500.00	0000	
std	2	244.167395	2.297407	'e+06	71701.610941	27872.18	37708	

UNIVERSITAS INDONESIA Vortes; Professe, Justilia FMIPA

Summary Data

capital-loss	incid	ent_hour_of_the_day	· \	number_of_vehicles_involve	d bodily_injuries	witnesses \
1000.000000		1000.000000	count	1000.0000	1000.000000	1000.000000
-26793.700000		11.644000	mean	1.8390	0.992000	1.487000
-111100.000000		0.000000) min	1.0000	0.000000	0.00000
-51500.000000		6.000000	25%	1.0000	0.000000	1.000000
-23250.000000		12.000000	50%	1.0000	1.000000	1.000000
0.000000		17.000000	75%	3.0000	2.000000	2.000000
0.000000	• • •	23.000000	max	4.0000	2.000000	3.00000
28104.096686	• • •	6.951373	std	1.0188	0.820127	1.111335
total_claim	_amount	injury_claim	property_c	laim vehicle_claim \		o_year _c39
t 100	0.00000	1000.000000	1000.00	0000 1000.000000	count 1000.	000000 0.0
5276	1.94000	7433.420000	7399.57	0000 37928.950000		103000 NaN
10	0.00000	0.000000	0.00	0000 70.000000	min 1995.	000000 NaN
4181	2.50000	4295.000000	4445.00	0000 30292.500000	25% 2000.	000000 NaN
5805	5.00000	6775.000000	6750.00	0000 42100.000000	50% 2005.	000000 NaN
7059	2.50000	11305.000000	10885.00	0000 50822.500000	75% 2010.	000000 NaN
11492	0.00000	21450.000000	23670.00	0000 79560.000000	max 2015.	000000 NaN
2640	1.53319	4880.951853	4824.72	6179 18886.252893	std 6.	015861 NaN
	1000.000000 -26793.700000 -111100.000000 -51500.000000 0.000000 0.000000 28104.096686 total_claim t 100 5276 100 4181 5805 7059 11492	1000.00000026793.700000111100.000000051500.0000000 0.0000000 0.0000000 0.0000000 28104.096686 total_claim_amount t 1000.000000 52761.94000 100.000000 41812.500000 58055.000000 70592.500000	1000.000000 1000.000000000000000000	1000.000000 1000.000000 count -26793.700000 11.644000 mean -111100.000000 0.0000000 25% -23250.000000 12.000000 50% 0.000000 17.000000 75% 0.000000 23.000000 max 28104.096686 23.000000 max 28104.096686 6.951373 std total_claim_amount injury_claim property_c t 1000.00000 1000.000000 1000.00 52761.94000 7433.420000 7399.57 100.00000 0.0000000 0.00 41812.50000 4295.000000 4445.00 58055.00000 6775.0000000 6750.00 70592.50000 11305.0000000 10885.00	1000.000000 1000.000000 count 1000.000000000000000000000000000000000	1000.000000 1000.000000 count 1000.000000 1000.000000 count 11.644000 mean 1.83900 0.992000 count 11.644000 mean 1.83900 0.992000 count 11.000000 0.900000 0.900000 count 11.000000 0.9000000 count 11.000000 0.9000000 0.9000000 count 11.000000 0.9000000 count 11.000000 0.9000000 count 11.000000 0.9000000 count 11.000000 0.9000000 0.9000000 0.9000000 0.9000000 count 11.000000 0.900000 count 11.000000 count 11.000000 count 11.0000000 count 11.00000000 count 11.0000000 count 11.0000000000 count 11.00000000 count 11.0000000 count 11.00000000 count 11.0000000 count 11.00000000 count 11.00000000 count 11.00000000 count 11.00000000000000000000000000000000000

Data	columns (total 40 columns):		
#	Column	Non-Null Count	Dtype
0	months_as_customer	1000 non-null	int64
1	age	1000 non-null	int64
2	policy_number	1000 non-null	int64
3	policy_bind_date	1000 non-null	datetime64[ns]
4	policy_state	1000 non-null	object
5	policy_csl	1000 non-null	object
6	policy_deductable	1000 non-null	int64
7	policy_annual_premium	1000 non-null	float64
8	umbrella_limit	1000 non-null	int64
9	insured_zip	1000 non-null	int64
10	insured_sex	1000 non-null	object
11	insured_education_level	1000 non-null	object
12	insured_occupation	1000 non-null	object
13	insured_hobbies	1000 non-null	object
14	insured_relationship	1000 non-null	object
15	capital-gains	1000 non-null	int64
16	capital-loss	1000 non-null	int64
17	incident_date	1000 non-null	datetime64[ns]

18	incident_type	1000	non-null	object
19	collision_type	1000	non-null	object
20	incident_severity	1000	non-null	object
21	authorities_contacted	1000	non-null	object
22	incident_state	1000	non-null	object
23	incident_city	1000	non-null	object
24	incident_location	1000	non-null	object
25	incident_hour_of_the_day	1000	non-null	int64
26	number_of_vehicles_involved	1000	non-null	int64
27	property_damage	1000	non-null	object
28	bodily_injuries	1000	non-null	int64
29	witnesses	1000	non-null	int64
30	police_report_available	1000	non-null	object
31	total_claim_amount	1000	non-null	int64
32	injury_claim	1000	non-null	int64
33	property_claim	1000	non-null	int64
34	vehicle_claim	1000	non-null	int64
35	auto_make	1000	non-null	object
36	auto_model	1000	non-null	object
37	auto_year	1000	non-null	int64
38	fraud_reported	1000	non-null	object
39	_c39	0 nor	n-null	float64
dtype	object(19)			
29 30 31 32 33 34 35 36 37 38 39	witnesses police_report_available total_claim_amount injury_claim property_claim vehicle_claim auto_make auto_model auto_year fraud_reported	1000 1000 1000 1000 1000 1000 1000 100	non-null non-null non-null non-null non-null non-null non-null non-null non-null	int64 object int64 int64 int64 object object int64 object float64

UNIVERSITAS INDONESIA Vortes: ?*vletta, ?*vletta

Plot Fitur Nominal

UNIVERSITAS INDONESIA Vivotas; Trolding, Trottias FMIPA

Plot Fitur Nominal

UNIVERSITAS INDONESIA Vireles: Problem: Strettive FMIPA

Plot Fitur Nominal

UNIVERSITAS INDONESIA Vortes: Problem: Suntive FMIPA

Plot Fitur Ordinal

UNIVERSITAS INDONESIA Violeti, Trolding, Statiffia

Plot Fitur Numerik

Eksplorasi Data Plot Fitur Numerik

Plot Fitur Numerik

UNIVERSITAS INDONESIA

Vertes: Fredian, Justita

FMIPA

Plot Fitur Nominal (Respon)

Missing Values

```
Columns containing NaN: ['authorities_contacted', '_c39']

Counts of NaN in each column:
authorities_contacted 91
_c39 1000
dtype: int64

Entries with NaN in each column:
authorities_contacted: [4, 13, 27, 37, 51, 52, 57, 69, 78, 81, 83, 88, 92, 95, _c39: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2
```


UNIVERSITAS INDONESIA Vortes; Professe, Justilia FMIPA

Missing Values

Pre-Processing Data

Drop Variabel

Variabel yang Dibuang	Alasan
policy_number	Hanya berupa <i>identifier</i> , tidak memberikan informasi apapun
insured_zip	Hanya berupa <i>identifier</i> dan terdapat 995 nilai unik dari 1000 entri.
insured_relationship	Informasi kurang jelas karena berisi status pernikahan di suatu entri tetapi status kekerabatan di entri lainnya.
incident_location	Setiap entri berisi nilai yang berbeda (unik). Sebagai gantinya, variabel incident_city tetap digunakan.
auto_make	variabel auto_model merupakan subset dari auto_make dan memberikan informasi lebih detail.

Menghapus kolom 'policy_number', 'insured_zip', 'insured_relationship', 'incident_location', 'auto_make'

Menghapus kolom 'policy_number', 'insured_zip', 'insured_relationship', 'incident_location', 'auto_make'

Mengolah Missing Values

BEFORE

	authorities_contacted	_c39
419	NaN	NaN
420	NaN	NaN
421	NaN	NaN
422	NaN	NaN
423	NaN	NaN

PROCESS

AFTER

	authorities_co	ntacted
419	No	Contact
420	No	Contact
421	No	Contact
422	No	Contact
423	No	Contact

- Data NaN pada authorities_contacted aslinya bernilai "None" tetapi terbaca sebagai NaN karena bahasa pemrograman python. Data NaN diubah menjadi "No Contact" agar dataset tetap bisa diproses.
- Label _c39 bukan merupakan label untuk sebuah kolom, melainkan informasi tambahan pada dataset bahwa terdapat 39 kolom (variabel) pada dataset. Oleh karena itu, kolom _c39 harus dihapus.

Mengolah Missing Values

Dilakukan imputasi variabel kategorik dengan mengganti *missing values* dengan modus dari masing-masing variabel.

Menghapus Outlier

```
Original DataFrame shape: (1000, 34)
DataFrame shape after outlier removal: (988, 34)
Removed 12 rows.
Indices of removed rows: [79, 168, 359, 412, 430, 449, 532, 552, 602, 647, 651, 850]
```

- Terdapat 12 baris outlier yang terdapat pada dataframe.
- Menghapus 12 baris outlier pada data
- Data frame berubah dari memiliki 1000 baris dan 34 kolom data menjadi 988 baris dan 34 kolom data

	policy_bind_date	incident_date	Duration
0	1997-11-20	2015-01-22	6272
1	1994-05-27	2015-01-11	7534
2	1991-02-08	2015-01-19	8746
3	2000-02-18	2015-01-18	5448
4	1992-04-04	2015-01-09	8315

Duration merupakan jumlah hari antara kapan polis terbit dan insiden terjadi.

Setelah diperoleh variabel Duration, variabel policy_bind_date dan incident_date dihapus.

Splitting Dataset

X_train.head()				
months_as_customer	age	policy_deductable	policy_annual_premium	umbrella_limit i
239	40	500	1463.95	0
143	34	500	1442.27	0
342	49	500	1722.95	0
147	34	1000	1275.81	0
184	38	1000	1437.53	0

y_train.head <mark>()</mark>		
fraud	_reported_Y	
935	False	
598	False	
237	False	
264	False	
94	True	

X_test.head()				
months_as_customer	age	policy_deductable	policy_annual_premium	umbrella_limit
81	25	500	920.30	5000000
54	35	500	1261.28	0
253	41	2000	1312.75	0
210	35	500	1433.24	0
259	44	2000	1655.79	C

y_test.head()		
fraud_reported_Y		
544	True	
357	False	
565	True	
315	True	
654	False	

Encoding

0

S

UNIVERSITAS INDONESIA Valories: Structure, Structure,

BEFORE

pol	icy_state
0	ОН
1	IL
2	IN
3	IL.
4	IL

	authorities_contacted
4	Ambulance
243	Fire
494	No Contact
675	Other
999	Police

	insured_sex
3	MALE
4	MALE
11	FEMALE
12	FEMALE

AFTER

	policy_state_IN	policy_state_OH
0	False	True
1	False	False
2	True	False
3	False	False
4	False	False

	authorities_contacted_Fire	authorities_contacted_No Contact	authorities_contacted_Other	authorities_contacted_Police
4	False	False	False	False
243	True	False	False	False
494	False	True	False	False
675	False	False	True	False
999	False	False	False	True

	insured_sex_MALE
3	True
4	True
11	False
12	False

ONE-HOT ENCODER

One-Hot Encoder merupakan mekanisme pengolahan variabel kategorik nominal di mana sebuah n-level variabel dikonversi menjadi (n-1) variabel dummy dengan nilai True dan False.

Baseline diperoleh ketika semua variabel dummy bernilai False.

Encoding

BEFORE

	insured_education_level	incident_severity
0	MD	Total Loss
1	High School	Major Damage
5	JD	Major Damage
6	Associate	Minor Damage
7	PhD	Total Loss
14	Masters	Major Damage
40	College	Minor Damage
434	College	Trivial Damage

R O C E S

S

AFTER

	insured_education_level	incident_severity
0	6	4
1	3	3
5	5	3
6	1	2
7	7	4
14	4	3
40	2	2
434	2	1

ORDINAL ENCODER

Ordinal Encoder merupakan mekanisme pengolahan variabel kategorik ordinal di mana nilai dari variabel tersebut diubah menjadi angka sesuai dengan urutan.

Scaling

BEFORE

X_train.head()					
months_as_customer	age	policy_deductable	policy_annual_premium	umbrella_limit i	
239	40	500	1463.95	0	
143	34	500	1442.27	0	
342	49	500	1722.95	0	
147	34	1000	1275.81	0	
184	38	1000	1437.53	0	

X_test.head()				
months_as_customer	age	policy_deductable	policy_annual_premium	umbrella_limit
81	25	500	920.30	5000000
54	35	500	1261.28	0
253	41	2000	1312.75	0
210	35	500	1433.24	0
259	44	2000	1655.79	0

AFTER

X_train.head()					
months_as_customer	age	policy_deductable	policy_annual_premium	umbrella_limit	
0.498956	0.466667	0.000000	0.646738	0.111111	
0.298539	0.333333	0.000000	0.631593	0.111111	
0.713987	0.666667	0.000000	0.827672	0.111111	
0.306889	0.333333	0.333333	0.515306	0.111111	
0.384134	0.422222	0.333333	0.628282	0.111111	

X_test.hea	d()				
months_as_	customer	age	policy_deductable	policy_annual_premium	umbrella_limit
	0.169102	0.133333	0.0	0.266951	0.666667
	0.112735	0.355556	0.0	0.505156	0.111111
	0.528184	0.488889	1.0	0.541112	0.111111
	0.438413	0.355556	0.0	0.625285	0.111111
	0.540710	0.555556	1.0	0.780755	0.111111

C

SMOTE

Mengolah Data Tidak Seimbang

Modelling: Pipeline

Logistic Regression

Random Forest

SVC

XGBoost

Modelling: Optimasi Parameter

Logistic Regression

Parameter	Nilai Optimal
C	1
penalty	11
solver	saga

Support Vector Classification (SVC)

Parameter	Nilai Optimal
C	0.1
class_weight	balanced
degree	2
gamma	1
kernel	rbf
max_iter	500

Modelling: Optimasi Parameter

Random Forest

Parameter	Nilai Optimal
max_depth	6
min_samples_leaf	50
min_samples_split	150

XGBoost

Parameter	Nilai Optimal
eta	0.05
gamma	O
lambda	9
max depth	9

Modelling: Kinerja Model

Model	Random Forest	Logistic Regression	Support Vector Classification (SVC)	XGBoost
AUC-ROC	0.64306259416	0.72427983539	0.5	0.7898917956444322
Specificity	0.6577181208	0. 0.67361111111112	1	0.8322147651006712
Sensitiity	0.551020408	0.59259259259	0	0.5714285714285714

Berdasarkan perbandingan dari nilai AUC-ROC, Specificity, dan Sensitivity keempat model, didapat model terbaik adalah **XGBoost**.

Best Model: Confussion Matrix

Confusion Matrix of XGBoost Model

Specificity

$$\frac{\text{TP}}{\text{TP + FN}} = \frac{124}{124 + 25} = 0.8322$$

Sensitivity

$$\frac{TN}{TN + FP} = \frac{28}{28 + 21} = 0,5714$$

Best Model: Feature Importance

Dilihat dari feature importance, fitur "incident_severity", "insured_hobbies", dan "auto model" akan meningkatkan akurasi prediksi model.

Best Model: PDP

0.265 0.260 0.255 Partial dependence 0.250 0.245 0.240 0.235 0.0 0.5 1.5 3.0 1.0 2.0 2.5 witnesses

Berdasarkan grafik, peluang terjadi fraud akan meningkat pada saat nilai premi dalam rentang 900–970 dan 1140–1290 dan akan cenderung menurun pada saat interval nilai premi lainnya

Berdasarkan dari grafik, semakin banyak jumlah saksi yang melaporkan maka semakin tinggi probabilitas terjadinya fraud. (witnesses memiliki hubungan positif dengan probabilitas fraud)

Berdasarkan dari grafik, semakin tua (semakin besar usia) pemegang polis, maka probabilitas terjadinya fraud cenderung menurun. (age memiliki hubungan negatif dengan probabilitas fraud)

Best Model: ICE

Dilihat dari grafik, secara keseluruhan fitur ini memiliki pengaruh yang rendah dengan kecenderungan di area non fraud, meskipun ada beberapa kasus outlier. Peluang terjadi fraud akan meningkat pada beberapa interval, namun akan menurun dan kembali normal pada interval setelahnya

Dilihat dari grafik, secara keseluruhan fitur ini memiliki pengaruh yang sedikit rendah dengan kecenderungan di area non fraud, meskipun ada beberapa kasus outlier.

Secara keseluruhan semakin tinggi usia, peluang terjadi fraud akan semakin menurun

Dilihat dari grafik, secara keseluruhan fitur ini memiliki pengaruh yang cukup baik dengan kecenderungan di area non fraud, meskipun ada beberapa kasus outlier.

Secara keseluruhan semakin banyak jumlah saksi yang melapor, peluang terjadinya fraud akan semakin tinggi

Kesimpulan

Melalui hasil evaluasi, didapatkan bahwa di antara pemodelan Random Forest, Logistic Regression, Support Vector Clasification, dan XGBoost, didapatkan bahwa pemodelan yang terbaik adalah pemodelan berdasarkan XGBoost dengan AUC-ROC Score sebesar 0.7898917956444322.

Interpretasi dari model XGBoost diberikan dalam 3 aspek, yaitu Feature Importance, PDP, dan ICE. Berdasarkan aspek Feature Importance, didapatkan bahwa variabel "incident_severity" adalah variabel yang paling memberi pengaruh dalam meningkatkan akurasi dalam prediksi model.

Lampiran

Code untuk pemrosesan data dapat diakses melalui tautan berikut:

https://colab.research.google.com/drive/1IZOf-aZN8udykXmsgLb26nqoFZdLPPNb?usp=sharing#scrollTo=VGKUBgL28BT1

Daftar Pustaka

Hendri Murfi. (2024). Ilmu Data. Lecture Notes.

Muhammad Adli Rahmat Solihin. (2024). Analisis Kinerja Model Approximating XGBoost untuk Deteksi Fraud Klaim Asuransi.

TERIMAKASIH