• Find the repulsive force between 2 protons in a nucleus if their separation is 4.0×10^{-15} m and the charge of each proton is 1.6×10^{-19} C.

14.4 N

• Calculate the force of gravitational attraction between the 2 protons if the mass of a proton is 1.67×10^{-27} kg.

(use the separation value as above.)

1.16 x 10⁻³⁵ N

- A pair of equally charged particles A and B are placed a distance of 4.0 x 10^{-3} m apart and released from rest. The mass of A is 7.5 x 10^{-7} kg and B is 2.8 x 10^{-7} kg. If the initial acceleration of A is 6.0 ms⁻², calculate the
 - a.) initial acceleration of B

16.1 ms⁻²

b.) the common charge value.

8.9 x 10⁻¹¹ C

- Figure shows 2 identical spheres A and B, each of mass 20g, suspended from a fixed point O on 2 insulating threads. The sphere are in equilibrium and each carries the same amount of charge, Q.
 - a.) Find the charge on each sphere.

4.22 x 10⁻⁷ C

20° 20°

15.0 cm

b.) Find the electric force acting on each sphere.

0.071 N

• Figure shows 3 fixed charges Q_1 = -1.0 x 10⁻⁶ C, Q_2 = 4.0 x 10⁻⁶ C, Q_3 = -2.0 x 10⁻⁶ C. Find the magnitude and direction (angle from x-axis) of the resultant force that acts on Q_1

• Figure shows 2 protons separate from each other by a distance of 2.8×10^{-15} m. The charge on a proton is 1.6×10^{-19} C. Find the electric field strength E at the point

a.) P, distance 0.8×10^{-15} m from proton A.

1.8 x 10²¹ NC⁻¹

b.) Q, distance 0.8×10^{-15} m from proton B.

2.3 x 10²¹ NC⁻¹

c.) R, distance 3.5×10^{-15} m from proton A & B.

2.2 x 10²⁰ NC⁻¹

