Decision Trees and Random Forests

Today

Decision trees

- Classification trees
- Regression trees

Random forests

The process for learning a decision tree from training data has connections with both information theory and empirical risk minimization

Tree-Structured Partitions of Feature Space

Figures from Hastie, Tibshirani, and Friedman

Decision Trees

- A decision tree is a tree-structured partition that is used for prediction
- There are two main types
- A **classification tree** is a tree-structured partition where each rectangle is associated with a class label
- A regression tree is a tree-structured partition where each rectangle is associated with a
- For both types of decision trees, prediction is accomplished by traversing the tree from the root to a leaf, and predicting the label/real number at that rectangle.

Example: Classification Trees

- Salary
- Commute time
- 1_{offers free coffee}
- Maybe others

https://www.datacamp.com/tutorial/decision-trees-R

Visualization of a Classification Tree

Number at leaf nodes = proportion of blue class in rectangle

https://www.datacamp.com/tutorial/decision-trees-R

Example: Regression Trees

https://rpubs.com/cyobero/regression-tree

Left = "Yes" Right = "No"

Features:

- Years = number of years in MLB
- Walks = number of walks drawn last season
- Hits = number of hits last season
 - Maybe others

Response variable: Player salary

Visualization of a Regression Tree

Figures from Hastie, Tibshirani, and Friedman

Learning Decision Trees

• Given training data

$$(\boldsymbol{x}_1,y_1),\ldots,(\boldsymbol{x}_n,y_n)$$

for classification or regression, how should we construct a decision tree?

• Learning is broken into two phases:

Min
$$\frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i))$$
 NP-hard
{ all dec. } i=1
{ trees f }

Growing A Decision Tree

- 1. Identify candidate splits
- 2. Select best split

axis-orthogonal splits

Split Selection: Binary Classification

• Suppose a candidate split partitions the data into two sets. Introduce the following notation

 q_P proportion of class 1 in parent node

 q_L proportion of class 1 in left child

 q_R proportion of class 1 in right child

p proportion of data in parent node that goes to left child

Split Selection: Binary Classification

• Define the binary entropy function

$$H(q) := -[q \log_2 q + (1-q) \log_2 (1-q)]$$

function

• The *information gain* of a split is defined as

- H(q) may be viewed as a measure of node impurity
- Select the split with the largest information gain
- Repeat the process on each children
- Each node is given the label of the majority class in that rectangle

Information Gain

Poll

True or false: It is a good idea to stop growing a classification tree when the best information gain of any split is below some small, positive threshold

- (A) True
- (B) False

Ancillary Splits

Pruning

Typically one grows a large tree that perfectly fits the training data, and then **prunes** it back to avoid overfitting.

Cost-Complexity Pruning

- T_0 = initial tree (after greedy growing)
- Pruned subtree

$$\widehat{T} = \underset{T \subseteq T_0}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{T(\boldsymbol{x}_i) \neq y_i\}} + \lambda |T|$$

where

> subtrees containing root

- $\circ T \subseteq T_0$ indicates search over all pruned subtrees of T_0
- \circ |T| is the number of leaf nodes
- $\circ \lambda > 0$ is a regularization parameter
- This criterion can be optimized efficiently (no surrogate loss needed)

Extensions

Multiclass Classification:

Just replace binary entropy with entropy

$$H(q) = -\sum_{i=1}^{c} q_i \log q_i$$

Regression:

Label each node with average response value among data reaching that node

Growing: replace IG by decrease in average squared prediction error.

Pruning: cost-complexity pruning with squared error loss

Decision Trees: Summary

```
Strengths: Interpretable, expressive

Fast (learning + prediction)

Categorical features
```

Weaknesses: Training is suboptimal

Sensitivity to perturbations of training data

Ensemble Methods

Random forests and boosting are examples of **ensemble methods**: They obtain a prediction function by taking several different prediction functions (classifiers or regression estimates) and averaging* the results.

Ensemble methods are usually coupled with **decision trees**. Why trees?

- Trees are very expressive: Deep trees represent complex decision boundaries
- Trees have high variance (sensitivity): Randomization can lead to very different trees
- Averaging leads to variance reduction, meaning trees benefit a lot from averaging
- Trees can be learned very efficiently and can handle both numerical and categorical features at the same time

The basic idea behind random forests is straightforward:

Given the training data, generate L different decision trees by introducing randomness into the learning process

Examples of randomness

- Base your decision tree on a random Subsample of the full sample Select a random subset of features on which to construct your
- tree
- Randomly transform data

Having generated *L* different decision trees, the random forest predictor (classifier or regression estimate) is the average of these randomly generated decision trees.

Random forests achieve state-of-the-art prediction for many datasets. They overcome the sensitivity issue, at the expense of interpretability.

Base each tree on a bootstrap sample:

- Recall a boostrap sample is a random sample obtained by sampling with replacement, with the same size as the original training data
- If this is the only source of randomness, it is called "Bagging" for "bootstrap aggregation"

Base each split on a random subset of features:

- Avoids having all trees start out the same way (in the case of one or a few very discriminating features)
- Decreases Correlation between trees
- Hence, final classifier has less variance, being the average of de-correlated trees
- Tuning parameters:
 - Feature subset size
 - Max tree depth
 - Tree pruning penalty (although RFs also work well with no pruning)

Both bootstrap samples and random feature subsets are used in standard implementations of random forests

of trees in ensemble

Leo Breiman

Breiman, Friedman, Olshen and Stone, *Classification and Regression Trees*, 1984

Breiman, "Random forests," Machine Learning, vol. 45, pp 5-32, 2001

Breiman, "Bagging predictors," Machine Learning, vol. 24, pp 123-140, 1996

Breiman, "Statistical Modeling: the Two Cultures," Statistical Science, 2001

Summary

- Decision trees: Interpretable prediction method based on recursive partitioning of feature space
- Can handle numerical and categorical attributes seamlessly
- Greedy growing
 - Classification: information gain
 - Regression: decrease in average squared error
- Cost-complexity pruning: A form of empirical risks minimization
- Random forests: average of randomly constructed decision trees
- To learn more: Hastie, Tibshirani, and Friedman
- Fun fact: Random forests used in Xbox 360 (Kinect sensor)

