

SEQUENCE LISTING

<110> SEKISUI CHEMICAL CO., LTD.
 MARINE BIOTECHNOLOGY INSTITUTE CO., LTD.
 IDENO, Akira
 MARUYAMA, Tadashi
 FURUTANI, Masahiro

<120> EXPRESSION VECTOR, HOST, FUSED PROTEIN, PROCESS FOR PRODUCING
FUSED PROTEIN AND PROCESS FOR PRODUCING PROTEIN

<130> Q83564

<150> PCT/JP2003/008020

<151> 2003-06-25

<150> JP 2002-185020

<151> 2002-06-25

<160> 30

<170> PatentIn version 3.3

<210> 1

<211> 257

<212> PRT

<213> Pyrococcus horikoshii

<400> 1

Met Lys Val Glu Arg Gly Asp Val Ile Arg Leu His Tyr Thr Gly Arg 1 5 10 15

Val Lys Glu Thr Gly Gln Ile Phe Asp Thr Thr Tyr Glu Glu Val Ala 20 25 30

Lys Glu Ala Gly Ile Tyr Asn Pro Lys Gly Ile Tyr Gly Pro Val Pro 35 40 45

Ile Ile Val Gly Ala Gly His Val Ile Ser Gly Leu Asp Lys Arg Leu 50 55 60

Val Gly Leu Glu Val Gly Lys Lys Tyr Thr Leu Glu Val Pro Pro Glu 65 . 70 . 75 . 80

Glu Gly Phe Gly Leu Arg Asp Pro Lys Leu Ile Lys Val Phe Thr Met 85 90 95

Glu Val Thr Thr Asp Asn Gly Arg Lys Met Lys Gly Arg Val Ile Thr 115 120 125

Val Ser Gly Gly Arg Val Arg Val Asp Phe Asn His Pro Leu Ala Gly 135 130 Lys Thr Leu Ile Tyr Glu Val Glu Ile Val Glu Lys Ile Glu Asp Pro 145 155 Ile Glu Lys Ile Lys Ala Leu Ile Glu Leu Arg Leu Pro Met Ile Asp 165 170 Arg Asp Lys Val Ile Ile Glu Val Gly Glu Lys Asp Val Lys Val Asn 185 Phe Gly Glu Gln Asp Val Asp Pro Lys Thr Leu Ile Leu Gly Glu Ile Leu Leu Glu Ser Asp Ile Lys Phe Leu Gly Tyr Glu Lys Val Glu Phe Lys Pro Ser Val Glu Glu Leu Leu Arg Pro Lys Gln Glu Glu Pro Val 230 Glu Glu Lys Lys Glu Glu Glu Glu Ser Glu Glu Ala Gln Ser 250 245

Ser

<210> 2 <211> 157 <212> PRT <213> Methanococcus jannaschii <400> 2

Leu Ile Asn Leu Ile Lys Lys Gly Asp Tyr Val Lys Val Asp Tyr Ile
1 5 10 15

Leu Glu Val Asp Gly Lys Val Ile Asp Thr Ser Ile Glu Glu Val Ala 20 25 30

Lys Glu Asn Lys Ile Tyr Tyr Pro Glu Arg Glu Tyr Glu Pro Ile Gly 35 40 45

Phe Ile Val Gly Asn Gly Glu Leu Ile Glu Gly Phe Glu Glu Ala Val 50 55 60

Ile Gly Met Glu Val Gly Glu Glu Lys Thr Val Thr Ile Pro Pro Glu 70 Lys Gly Tyr Gly Leu Arg Asp Glu Arg Leu Ile Gln Glu Ile Pro Lys Glu Met Phe Ala Asp Ala Asp Phe Glu Pro Gln Glu Gly Met Leu Ile 100 105 Leu Ala Ser Gly Ile Pro Ala Lys Ile Ile Lys Val Thr Asp Asp Thr 115 120 Val Thr Leu Asp Phe Asn His Glu Leu Ala Gly Lys Glu Leu Lys Phe 135 140 Thr Ile Lys Val Arg Asp Val Gln Pro Ala Glu Ser Glu <210> 3 <211> 432 <212> PRT <213> Escherichia coli <400> 3 Met Gln Val Ser Val Glu Thr Thr Gln Gly Leu Gly Arg Arg Val Thr Ile Thr Ile Ala Ala Asp Ser Ile Glu Thr Ala Val Lys Ser Glu Leu Val Asn Val Ala Lys Lys Val Arg Ile Asp Gly Phe Arg Lys Gly Lys Val Pro Met Asn Ile Val Ala Gln Arg Tyr Gly Ala Ser Val Arg Gln Asp Val Leu Gly Asp Leu Met Ser Arg Asn Phe Ile Asp Ala Ile Ile 70 75 Lys Glu Lys Ile Asn Pro Ala Gly Ala Pro Thr Tyr Val Pro Gly Glu

Tyr Lys Leu Gly Glu Asp Phe Thr Tyr Ser Val Glu Phe Glu Val Tyr
100 105 110

Pro	Glu	Val 115	Glu	Leu	Gln	Gly	Leu 120	Glu	Ala	Ile	Glu	Val 125	Glu	Lys	Pro
Ile	Val 130	Glu	Val	Thr	Asp	Ala 135	Asp	Val	Asp	Gly	Met 140	Leu	Asp	Thr	Leu
Arg 145	Lys	Gln	Gln	Ala	Thr 150	Trp	Lys	Glu	Lys	Asp 155	Gly	Ala	Val	Glu	Ala 160
Glu	Asp	Arg	Val	Thr 165	Ile	Asp	Phe	Thr	Gly 170	Ser	Val	Asp	Gly	Glu 175	Glu
Phe	Glu	Gly	Gly 180	Lys	Ala	Ser	Asp	Phe 185	Val	Leu	Ala	Met	Gly 190	Gln	Gly
Arg	Met	Ile 195	Pro	Gly	Phe	Glu	Asp 200	Gly	Ile	Lys	Gly	His 205	Lys	Ala	Gly
Glu	Glu 210	Phe	Thr	Ile	Asp	Val 215	Thr	Phe	Pro	Glu	Glu 220	Tyr	His	Ala	Glu
Asn 225	Leu	Lys	Gly	Lys	Ala 230	Ala	Lys	Phe	Ala	Ile 235	Asn	Leu	Lys	Lys	Val 240
Glu	Glu	Arg	Glu	Leu 245	Pro	Glu	Leu	Thr	Ala 250	Glu	Phe	Ile	Lys	Arg 255	Phe
Gly	Val	Glu	Asp 260	Gly	Ser	Val	Glu	Gly 265	Leu	Arg	Ala	Glu	Val 270	Arg	Lys
Asn	Met	Glu 275	Arg	Glu	Leu	Lys	Ser 280	Ala	Ile	Arg	Asn	Arg 285	Val	Lys	Ser
Gln	Ala 290	Ile	Glu	Gly	Leu	Val 295	Lys	Ala	Asn	Asp	Ile 300	Asp	Val	Pro	Ala
Ala 305	Leu	Ile	Asp	Ser	Glu 310	Ile	Asp	Val	Leu	Arg 315	Arg	Gln	Ala	Ala	Gln 320
Arg	Phe	Gly	Gly	Asn 325	Glu	Lys	Gln	Ala	Leu 330	Glu	Leu	Pro	Arg	Glu 335	Leu
Phe	Glu	Glu	Gln 340	Ala	Lys	Arg	Arg	Val 345	Val	Val	Gly	Leu	Leu 350	Leu	Gly

Glu Val Ile Arg Thr Asn Glu Leu Lys Ala Asp Glu Glu Arg Val Lys 355 360 365

Gly Leu Ile Glu Glu Met Ala Ser Ala Tyr Glu Asp Pro Lys Glu Val 370 375 380

Ile Glu Phe Tyr Ser Lys Asn Lys Glu Leu Met Asp Asn Met Arg Asn 385 390 395 400

Val Ala Leu Glu Glu Gln Ala Val Glu Ala Val Leu Ala Lys Ala Lys 405 410 415

Val Thr Glu Lys Glu Thr Thr Phe Asn Glu Leu Met Asn Gln Gln Ala 420 425 430

<210> 4

<211> 1299

<212> DNA

<213> Escherichia coli

<400> 4

atgcaagttt cagttgaaac cactcaaggc cttggccgcc gtgtaacgat tactatcgct 60 gctgacagca tcgagaccgc tgttaaaagc gagctggtca acgttgcgaa aaaagtacgt 120 attgacggct tccgcaaagg caaagtgcca atgaatatcg ttgctcagcg ttatggcgcg 180 tctgtacqcc aggacqttct gggtgacctg atgagccgta acttcattga cgccatcatt 240 aaaqaaaaaa tcaatccqqc tqqcqcaccq acttatqttc cqqqcqaata caaqctqqqt 300 360 gaagacttca cttactctgt agagtttgaa gtttatccgg aagttgaact gcagggtctg gaagcgatcg aagttgaaaa accgatcgtt gaagtgaccg acgctgacgt tgacggcatg 420 ctggatactc tgcgtaaaca gcaggcgacc tggaaagaaa aagacggcgc tgttgaagca 480 gaagaccgcg taaccatcga cttcaccggt tctgtagacg gcgaagagtt cgaaggcggt 540 aaagcgtctg atttcgtact ggcgatgggc cagggtcgta tgatcccggg ctttgaagac 600 ggtatcaaag gccacaaagc tggcgaagag ttcaccatcg acgtgacctt cccggaagaa 660 taccacgcag aaaacctgaa aggtaaagca gcgaaattcg ctatcaacct gaagaaagtt 720 gaagagcgtg aactgccgga actgactgca gaattcatca aacgtttcgg cgttgaagat 780 ggttccgtag aaggtctgcg cgctgaagtg cgtaaaaaca tggagcgcga gctgaagagc 840 gccatccgta accgcgttaa gtctcaggcg atcgaaggtc tggtaaaagc taacgacatc 900 gacgtaccgg ctgcgctgat cgacagcgaa atcgacgttc tgcgtcgcca ggctgcacag 960 cgtttcggtg gcaacgaaaa acaagctctg gaactgccgc gcgaactgtt cgaagaacag 1020

gctaaa	cgcc	gcgtagttgt	tggcctgctg	ctgggcgaag	ttatccgcac	caacgagctg	1080
aaagct	gacg	aagagcgcgt	gaaaggcctg	atcgaagaga	tggcttctgc	gtacgaagat	1140
ccgaaa	gaag	ttatcgagtt	ctacagcaaa	aacaaagaac	tgatggacaa	catgcgcaat	1200
gttgct	ctgg	aagaacaggc	tgttgaagct	gtactggcga	aagcgaaagt	gactgaaaaa	1260
gaaacc	actt	tcaacgagct	gatgaaccag	caggcgtaa			1299
<210> <211> <212>	5 270 PRT						

<210>	5	
<211>	270	
<212>	PRT	
<213>	Escherichia	coli

<400> 5

Met Lys Ser Leu Phe Lys Val Thr Leu Leu Ala Thr Thr Met Ala Val

Ala Leu His Ala Pro Ile Thr Phe Ala Ala Glu Ala Ala Lys Pro Ala

Thr Ala Ala Asp Ser Lys Ala Ala Phe Lys Asn Asp Asp Gln Lys Ser

Ala Tyr Ala Leu Gly Ala Ser Leu Gly Arg Tyr Met Glu Asn Ser Leu

Lys Glu Gln Glu Lys Leu Gly Ile Lys Leu Asp Lys Asp Gln Leu Ile

Ala Gly Val Gln Asp Ala Phe Ala Asp Lys Ser Lys Leu Ser Asp Gln

Glu Ile Glu Gln Thr Leu Gln Ala Phe Glu Ala Arg Val Lys Ser Ser 105 100

Ala Gln Ala Lys Met Glu Lys Asp Ala Ala Asp Asn Glu Ala Lys Gly 120

Lys Glu Tyr Arg Glu Lys Phe Ala Lys Glu Lys Gly Val Lys Thr Ser 135

Ser Thr Gly Leu Val Tyr Gln Val Val Glu Ala Gly Lys Gly Glu Ala

Pro Lys Asp Ser Asp Thr Val Val Asn Tyr Lys Gly Thr Leu Ile 165 170

Asp Gly Lys Glu Phe Asp Asn Ser Tyr Thr Arg Gly Glu Pro Leu Ser 180 185 190

Phe Arg Leu Asp Gly Val Ile Pro Gly Trp Thr Glu Gly Leu Lys Asn 195 200 205

Ile Lys Lys Gly Gly Lys Ile Lys Leu Val Ile Pro Pro Glu Leu Ala 210 215 220

Tyr Gly Lys Ala Gly Val Pro Gly Ile Pro Pro Asn Ser Thr Leu Val 225 230 235 240

Phe Asp Val Glu Leu Leu Asp Val Lys Pro Ala Pro Lys Ala Asp Ala 245 250 255

Lys Pro Glu Ala Asp Ala Lys Ala Ala Asp Ser Ala Lys Lys 260 265 270

<210> 6

<211> 813

<212> DNA

<213> Escherichia coli

<400> 6

atgaaatcac tgtttaaagt aacgctgctg gcgaccacaa tggccgttgc cctgcatgca 60 120 ccaatcactt ttqctqctqa aqctqcaaaa cctqctacaa ctqctgacag caaaqcagcq 180 ttcaaaaatg acgatcagaa atcagcttat gcactgggtg cttcgctggg tcgttacatg gaaaactete ttaaagaaca agaaaaactg ggcatcaaac tggataaaga tcagetgate 240 gctggtgttc aggatgcatt tgctgataag agcaaacttt ccgaccaaga gatcgaacag 300 actetgeaag cattegaage tegegtgaag tettetgete aggegaagat ggaaaaagae 360 qcqqctqata acqaaqcaaa aqqtaaaqaq taccqcqaqa aatttqccaa aqaqaaaqgt 420 480 gtgaaaacct cttccactgg tctggtttat caggtagtag aagccggtaa aggcgaagcc 540 ccgaaagaca gcgatactgt tgtagtgaac tacaaaggta cgctgatcga cggtaaagag 600 ttcgacaact cttacacccq tggtgaaccq ctctctttcc gtctggacgg tgttatcccg ggttggacag aaggtctgaa gaacatcaag aaaggcggta agatcaaact ggttattcca 660 720 ccagaactgg cttacggcaa agcgggtgtt ccggggatcc caccgaattc taccctggtg 780 tttgacgtag agctgctgga tgtgaaacca gcgccgaagg ctgatgcaaa gccggaagct gatgcgaaag ccgcagactc tgctaaaaaa taa 813

<210> 7 <211> 428 <212> PRT <213> Esche	erichia coli			
<400> 7				
Met Lys Asn 1	Trp Lys Thr 5	Leu Leu Leu	Gly Ile Ala 10	Met Ile Ala Asn 15
Thr Ser Phe	Ala Ala Pro 20	Gln Val Val 25	Asp Lys Val	Ala Ala Val Val 30
Asn Asn Gly 35	Val Val Leu	Glu Ser Asp 40	Val Asp Gly	Leu Met Gln Ser 45
Val Lys Leu 50	Asn Ala Ala	Gln Ala Arg 55	Gln Gln Leu 60	Pro Asp Asp Ala
Thr Leu Arg 65	His Gln Ile	Met Glu Arg	Leu Ile Met 75	Asp Gln Ile Ile 80
Leu Gln Met	Gly Gln Lys 85	Met Gly Val	Lys Ile Ser 90	Asp Glu Gln Leu 95
Asp Gln Ala	Ile Ala Asn 100	Ile Ala Lys 105	Gln Asn Asn	Met Thr Leu Asp
Gln Met Arg 115	Ser Arg Leu	Ala Tyr Asp 120	Gly Leu Asn	Tyr Asn Thr Tyr 125
Arg Asn Gln 130	Ile Arg Lys	Glu Met Ile 135	Ile Ser Glu 140	Val Arg Asn Asn
Glu Val Arg 145	Arg Arg Ile 150	Thr Ile Leu	Pro Gln Glu 155	Val Glu Ser Leu 160
Ala Gln Gln	Val Gly Asn 165	Gln Asn Asp	Ala Ser Thr 170	Glu Leu Asn Leu 175
Ser His Ile	Leu Ile Pro 180	Leu Pro Glu 185	Asn Pro Thr	Ser Asp Gln Val 190
Asn Glu Ala 195	Glu Ser Gln	Ala Arg Ala 200	Ile Val Asp	Gln Ala Arg Asn 205

<210> 7

Gly Ala Asp Phe Gly Lys Leu Ala Ile Ala His Ser Ala Asp Gln Gln 210 215 220

Ala Leu Asn Gly Gly Gln Met Gly Trp Gly Arg Ile Gln Glu Leu Pro 225 230 235 240

Gly Ile Phe Ala Gln Ala Leu Ser Thr Ala Lys Lys Gly Asp Ile Val\$245\$ \$250\$ \$255

Gly Pro Ile Arg Ser Gly Val Gly Phe His Ile Leu Lys Val Asn Asp 260 265 270

Leu Arg Gly Glu Ser Lys Asn Ile Ser Val Thr Glu Val His Ala Arg 275 280 285

His Ile Leu Leu Lys Pro Ser Pro Ile Met Thr Asp Glu Gln Ala Arg 290 295 300

Val Lys Leu Glu Gln Ile Ala Ala Asp Ile Lys Ser Gly Lys Thr Thr 305 310 315 320

Phe Ala Ala Ala Lys Glu Phe Ser Gln Asp Pro Gly Ser Ala Asn 325 330 335

Gln Gly Gly Asp Leu Gly Trp Ala Thr Pro Asp Ile Phe Asp Pro Ala 340 345 350

Phe Arg Asp Ala Leu Thr Arg Leu Asn Lys Gly Gln Met Ser Ala Pro 355 360 365

Val His Ser Ser Phe Gly Trp His Leu Ile Glu Leu Leu Asp Thr Arg 370 375 380

Asn Val Asp Lys Thr Asp Ala Ala Gln Lys Asp Arg Ala Tyr Arg Met 385 390 395 400

Leu Met Asn Arg Lys Phe Ser Glu Glu Ala Ala Ser Trp Met Gln Glu 405 410 415

Gln Arg Ala Ser Ala Tyr Val Lys Ile Leu Ser Asn 420 425

<210> 8

<211> 1287

<212> DNA

<213> Escherichia coli

<400> 8						
	ggaaaacgct	gcttctcggt	atcgccatga	tcgcgaatac	cagtttcgct	60
gcccccagg	tagtcgataa	agtcgcagcc	gtcgtcaata	acggcgtcgt	gctggaaagc	120
gacgttgatg	gattaatgca	gtcggtaaaa	ctgaacgctg	ctcaggcaag	gcagcaactt	180
cctgatgacg	cgacgctgcg	ccaccaaatc	atggaacgtt	tgatcatgga	tcaaatcatc	240
ctgcagatgg	ggcagaaaat	gggagtgaaa	atctccgatg	agcagctgga	tcaggcgatt	300
gctaacatcg	cgaaacagaa	caacatgacg	ctggatcaga	tgcgcagccg	tctggcttac	360
gatggactga	actacaacac	ctatcgtaac	cagatccgca	aagagatgat	tatctctgaa	420
gtgcgtaaca	acgaggtgcg	tcgtcgcatc	accatcctgc	cgcaggaagt	cgaatccctg	480
gcgcagcagg	tgggtaacca	aaacgacgcc	agcactgagc	tgaacctgag	ccacatcctg	540
atcccgctgc	cggaaaaccc	gacctctgat	caggtgaacg	aagcggaaag	ccaggcgcgc	600
gccattgtcg	atcaggcgcg	taacggcgct	gatttcggta	agctggcgat	tgctcattct	660
gccgaccagc	aggcgctgaa	cggcggccag	atgggctggg	gccgtattca	ggagttgccc	720
gggatcttcg	cccaggcatt	aagcaccgcg	aagaaaggcg	acattgttgg	cccgattcgt	780
tccggcgttg	gcttccatat	tctgaaagtt	aacgacctgc	gcggcgaaag	caaaaatatc	840
tcggtgaccg	aagttcatgc	tcgccatatt	ctgctgaaac	cgtcgccgat	catgactgac	900
gaacaggccc	gtgtgaaact	ggaacagatt	gctgctgata	tcaagagtgg	taaaacgact	960
tttgctgccg	cagcgaaaga	gttctctcag	gatccaggct	ctgctaacca	gggcggcgat	1020
ctcggctggg	ctacaccaga	tattttcgat	ccggccttcc	gtgacgccct	gactcgcctg	1080
aacaaaggtc	aaatgagtgc	accggttcac	tcttcattcg	gctggcattt	aatcgaactg	1140
ctggataccc	gtaatgtcga	taaaaccgac	gctgcgcaga	aagatcgtgc	ataccgcatg	1200
ctgatgaacc	gtaagttctc	ggaagaagca	gcaagctgga	tgcaggaaca	acgtgccagc	1260
gcctacgtta	aaatcctgag	caactaa				1287

```
<210> 9
<211> 459
<212> PRT
```

<213> Homo sapiens

<400> 9

Met Thr Ala Glu Glu Met Lys Ala Thr Glu Ser Gly Ala Gln Ser Ala 1 5 10 15

Pro Leu Pro Met Glu Gly Val Asp Ile Ser Pro Lys Gln Asp Glu Gly 20 25 30

Val Leu Lys Val Ile Lys Arg Glu Gly Thr Gly Thr Glu Met Pro Met 35 Ile Gly Asp Arg Val Phe Val His Tyr Thr Gly Trp Leu Leu Asp Gly Thr Lys Phe Asp Ser Ser Leu Asp Arg Lys Asp Lys Phe Ser Phe Asp 75 Leu Gly Lys Gly Glu Val Ile Lys Ala Trp Asp Ile Ala Ile Ala Thr 90 Met Lys Val Gly Glu Val Cys His Ile Thr Cys Lys Pro Glu Tyr Ala Tyr Gly Ser Ala Gly Ser Pro Pro Lys Ile Pro Pro Asn Ala Thr Leu 120 Val Phe Glu Val Glu Leu Phe Glu Phe Lys Gly Glu Asp Leu Thr Glu 135 Glu Glu Asp Gly Gly Ile Ile Arg Arg Ile Gln Thr Arg Gly Glu Gly 155 150 Tyr Ala Lys Pro Asn Glu Gly Ala Ile Val Glu Val Ala Leu Glu Gly 170 Tyr Tyr Lys Asp Lys Leu Phe Asp Gln Arg Glu Leu Arg Phe Glu Ile 185 Gly Glu Gly Glu Asn Leu Asp Leu Pro Tyr Gly Leu Glu Arg Ala Ile Gln Arg Met Glu Lys Gly Glu His Ser Ile Val Tyr Leu Lys Pro Ser 215 Tyr Ala Phe Gly Ser Val Gly Lys Glu Lys Phe Gln Ile Pro Pro Asn 230 Ala Glu Leu Lys Tyr Glu Leu His Leu Lys Ser Phe Glu Lys Ala Lys 250 245 Glu Ser Trp Glu Met Asn Ser Glu Glu Lys Leu Glu Gln Ser Thr Ile 265 260

Val Lys Glu Arg Gly Thr Val Tyr Phe Lys Glu Gly Lys Tyr Lys Gln 275 280 285 Ala Leu Leu Gln Tyr Lys Lys Ile Val Ser Trp Leu Glu Tyr Glu Ser 290 295 300 Ser Phe Ser Asn Glu Glu Ala Gln Lys Ala Gln Ala Leu Arg Leu Ala 315 Ser His Leu Asn Leu Ala Met Cys His Leu Lys Leu Gln Ala Phe Ser Ala Ala Ile Glu Ser Cys Asn Lys Ala Leu Glu Leu Asp Ser Asn Asn Glu Lys Gly Leu Phe Arg Arg Gly Glu Ala His Leu Ala Val Asn Asp 360 Phe Glu Leu Ala Arg Ala Asp Phe Gln Lys Val Leu Gln Leu Tyr Pro 375 Asn Asn Lys Ala Ala Lys Thr Gln Leu Ala Val Cys Gln Gln Arg Ile Arg Arg Gln Leu Ala Arg Glu Lys Lys Leu Tyr Ala Asn Met Phe Glu 405 410 Arg Leu Ala Glu Glu Glu Asn Lys Ala Lys Ala Glu Ala Ser Ser Gly 425 420 Asp His Pro Thr Asp Thr Glu Met Lys Glu Glu Gln Lys Ser Asn Thr 440 435 Ala Gly Ser Gln Ser Gln Val Glu Thr Glu Ala 450 455 <210> 10

<211> 1380 <212> DNA <213> Homo sapiens <400> 10

atgacageeg aggagatgaa ggegaeegag ageggggege agteggegee getgeeeatg

gagggagtgg acatcagccc caaacaggac gaaggcgtgc tgaaggtcat caagagagag

60

ggcacaggta cagagatgcc	catgattggg	gaccgagtct	ttgtccacta	cactggctgg	180
ctattagatg gcacaaagtt	tgactccagt	ctggatcgca	aggacaaatt	ctcctttgac	240
ctgggaaaag gggaggtcat	caaggcttgg	gacattgcca	tagccaccat	gaaggtgggg	300
gaggtgtgcc acatcacctg	caaaccagaa	tatgcctacg	gttcagcagg	cagtcctcca	360
aagattcccc ccaatgccac	gcttgtattt	gaggtggagt	tgtttgagtt	taagggagaa	420
gatctgacgg aagaggaaga	tggcggaatc	attcgcagaa	tacagactcg	cggtgaaggc	480
tatgctaagc ccaatgaggg	tgctatcgtg	gaggttgcac	tggaagggta	ctacaaggac	540
aagctctttg accagcggga	gctccgcttt	gagattggcg	agggggagaa	cctggatctg	600
ccttatggtc tggagagggc	cattcagcgc	atggagaaag	gagaacattc	catcgtgtac	660
ctcaagccca gctatgcttt	tggcagtgtt	gggaaggaaa	agttccaaat	cccaccaaat	720
gctgagctga aatatgaatt	acacctcaag	agttttgaaa	aggccaagga	gtcttgggag	780
atgaattcag aagagaagct	ggaacagagc	accatagtga	aagagcgggg	cactgtgtac	840
ttcaaggaag gtaaatacaa	gcaagcttta	ctacagtata	agaagatcgt	gtcttggctg	900
gaatatgagt ctagtttttc	caatgaggaa	gcacagaaag	cacaggccct	tcgactggcc	960
tctcacctca acctggccat	gtgtcatctg	aaactacagg	ccttctctgc	tgccattgaa	1020
agctgtaaca aggccctaga	actggacagc	aacaacgaga	agggcctctt	ccgccgggga	1080
gaggcccacc tggccgtgaa	tgactttgaa	ctggcacggg	ctgatttcca	gaaggtcctg	1140
cagctctacc ccaacaacaa	agccgccaag	acccagctgg	ctgtgtgcca	gcagcggatc	1200
cgaaggcagc ttgcccggga	gaagaagctc	tatgccaata	tgtttgagag	gctggctgag	1260
gaggagaaca aggccaaggc	agaggcttcc	tcaggagacc	atcccactga	cacagagatg	1320
aaggaggagc agaagagcaa	cacggcaggg	agccagtctc	aggtggagac	agaagcatag	1380

<210> 11

Met Ser His Pro Ser Pro Gln Ala Lys Pro Ser Asn Pro Ser Asn Pro 1 $$ 5 $$ 10 $$ 15

Arg Val Phe Phe Asp Val Asp Ile Gly Glu Arg Val Gly Arg Ile 20 25 30

Val Leu Glu Leu Phe Ala Asp Ile Val Pro Lys Thr Ala Glu Asn Phe 35 40 45

<211> 370

<212> PRT

<213> Homo sapiens

<400> 11

Arg Ala Leu Cys Thr Gly Glu Lys Gly Ile Gly His Thr Thr Gly Lys Pro Leu His Phe Lys Gly Cys Pro Phe His Arg Ile Ile Lys Lys Phe 70 Met Ile Gln Gly Gly Asp Phe Ser Asn Gln Asn Gly Thr Gly Glu Ser Ile Tyr Gly Glu Lys Phe Glu Asp Glu Asn Phe His Tyr Lys His Asp Arg Glu Gly Leu Leu Ser Met Ala Asn Ala Gly Arg Asn Thr Asn 120 Gly Ser Gln Phe Phe Ile Thr Thr Val Pro Thr Pro His Leu Asp Gly 135 Lys His Val Val Phe Gly Gln Val Ile Lys Gly Ile Gly Val Ala Arg 155 Ile Leu Glu Asn Val Glu Val Lys Gly Glu Lys Pro Ala Lys Leu Cys 170 165 Val Ile Ala Glu Cys Gly Glu Leu Lys Glu Gly Asp Asp Gly Gly Ile 185 Phe Pro Lys Asp Gly Ser Gly Asp Ser His Pro Asp Phe Pro Glu Asp 200 205 Ala Asp Ile Asp Leu Lys Asp Val Asp Lys Ile Leu Leu Ile Thr Glu Asp Leu Lys Asn Ile Gly Asn Thr Phe Phe Lys Ser Gln Asn Trp Glu 235 Met Ala Ile Lys Lys Tyr Ala Glu Val Leu Arg Tyr Val Asp Ser Ser 245 Lys Ala Val Ile Glu Thr Ala Asp Arg Ala Lys Leu Gln Pro Ile Ala 260 265 Leu Ser Cys Val Leu Asn Ile Gly Ala Cys Lys Leu Lys Met Ser Asn 280 275

Trp Gln Gly Ala Ile Asp Ser Cys Leu Glu Ala Leu Glu Leu Asp Pro 290 295 300

Ser Asn Thr Lys Ala Leu Tyr Arg Arg Ala Gln Gly Trp Gln Gly Leu 305 310 315 320

Lys Glu Tyr Asp Gln Ala Leu Ala Asp Leu Lys Lys Ala Gln Gly Ile 325 330 335

Ala Pro Glu Asp Lys Ala Ile Gln Ala Glu Leu Leu Lys Val Lys Gln 340 345 350

Lys Ile Lys Ala Gln Lys Asp Lys Glu Lys Ala Val Tyr Ala Lys Met 355 360 365

Phe Ala 370

<210> 12 <211> 1113

<212> DNA

<213> Homo sapiens

<400> 12

atqtcqcacc cqtccccca aqccaaqccc tccaacccca gtaaccctcg agtcttcttt 60 120 qacqtqqaca tcqqaqqqqa gcqaqttqqt cqaattqtct taqaattqtt tqcaqatatc 180 qtacccaaaa ctqcqqaaaa ttttcqtqca ctqtqtacaq gagaaaaaqq cattqqacac acgactggga aacctctcca tttcaaagga tgcccttttc atcgaattat taagaaattt 240 300 atgattcagg gtggagactt ctcaaatcag aatgggacag gtggagaaag tatttatggt gaaaaatttg aagatgaaaa tttccattac aagcatgatc gggagggttt actgagcatg 360 gcaaatgcag gccgcaacac aaacggttct cagtttttta tcacaacagt tccaactcct 420 480 catttqqatq qqaaacatgt ggtgtttggc caagtaatta aaggaatagg agtggcaagg 540 atattqqaaa atqtqqaaqt qaaaqqtqaa aaacctgcta aattgtgcgt tattgcagaa tgtggagaat tgaaggaagg agatgacggg ggaatattcc caaaagatgg ctctggcgac 600 agtcatccag atttccctga ggatgcggat atagatttaa aagatgtaga taaaatttta 660 720 ttaataacag aagacttaaa aaacattgga aatacttttt tcaaatccca gaactgggag 780 atggctatta aaaaatatgc agaagtttta agatacgtgg acagttcaaa ggctgttatt qaqacaqcaq ataqaqccaa qctqcaacct ataqctttaa qctqtqtact gaatattggt 840

gcttgtaaac tgaagatgtc	aaattggcag	ggagcaattg	acagttgttt	agaggctctt	900
gaactagacc catcaaatac	caaagcattg	taccgcagag	ctcaaggatg	gcaaggatta	960
aaagaatatg atcaagcatt	ggctgatctt	aagaaagctc	aggggatagc	accagaagat	1020
aaagctatcc aggcagaatt	gctgaaagtc	aaacaaaaga	taaaggcaca	gaaagataaa	1080
gagaaggcag tatatgcaaa	aatgtttgct	tag			1113
<210> 13					
<211> 422					
<212> PRT					-
<213> Homo sapiens					
<400> 13					

Met Asp	Val	Leu	Ser	Pro	Gly	Gln	Gly	Asn	Asn	Thr	Thr	Ser	Pro	Pro
1			5					10					15	

Ala Pro Phe Glu Thr Gly Gly Asn Thr Thr Gly Ile Ser Asp Val Thr 20 25 30

Val Ser Tyr Gln Val Ile Thr Ser Leu Leu Leu Gly Thr Leu Ile Phe 35 40 45

Cys Ala Val Leu Gly Asn Ala Cys Val Val Ala Ala Ile Ala Leu Glu 50 55 60

Arg Ser Leu Gln Asn Val Ala Asn Tyr Leu Ile Gly Ser Leu Ala Val 65 70 75 80

Thr Asp Leu Met Val Ser Val Leu Val Leu Pro Met Ala Ala Leu Tyr 85 90 95

Gln Val Leu Asn Lys Trp Thr Leu Gly Gln Val Thr Cys Asp Leu Phe 100 105 110

Ile Ala Leu Asp Val Leu Cys Cys Thr Ser Ser Ile Leu His Leu Cys 115 120 125

Ala Ile Ala Leu Asp Arg Tyr Trp Ala Ile Thr Asp Pro Ile Asp Tyr 130 135 140

Val Asn Lys Arg Thr Pro Arg Arg Ala Ala Leu Ile Ser Leu Thr 145 150 155 160

Trp Leu Ile Gly Phe Leu Ile Ser Ile Pro Pro Met Leu Gly Trp Arg 165 170 175

Thr	Pro	Glu	Asp 180	Arg	Ser	Asp	Pro	Asp 185	Ala	Cys	Thr	Ile	Ser 190	Lys	Asp
His	Gly	Туг 195	Thr	Ile	Tyr	Ser	Thr 200	Phe	Gly	Ala	Phe	Tyr 205	Ile	Pro	Leu
Leu	Leu 210	Met	Leu	Val	Leu	Туг 215	Gly	Arg	Ile	Phe	Arg 220	Ala	Ala	Arg	Phe
Arg 225	Ile	Arg	Lys	Thr	Val 230	Lys	Lys	Val	Glu	Lys 235	Thr	Gly	Ala	Asp	Thr 240
Arg	His	Gly	Ala	Ser 245	Pro	Ala	Pro	Gln	Pro 250	Lys	Lys	Ser	Val	Asn 255	Gly
Glu	Ser	Gly	Ser 260	Arg	Asn	Trp	Arg	Leu 265	Gly	Val	Glu	Ser	Lys 270	Ala	Gly
Gly	Ala	Leu 275	Суѕ	Ala	Asn	Gly	Ala 280	Val	Arg	Gln	Gly	Asp 285	Asp	Gly	Ala
Ala	Leu 290	Glu	Val	Ile	Glu	Val 295	His	Arg	Val	Gly	Asn 300	Ser	Lys	Glu	His
Leu 305	Pro	Leu	Pro	Ser	Glu 310	Ala	Gly	Pro	Thr	Pro 315	Cys	Ala	Pro	Ala	Ser 320
Phe	Glu	Arg	Lys	Asn 325	Glu	Arg	Asn	Ala	Glu 330	Ala	Lys	Arg	Lys	Met 335	Ala
Leu	Ala	Arg	Glu 340	Arg	Lys	Thr	Val	Lys 345	Thr	Leu	Gly	Ile	Ile 350	Met	Gly
Thr	Phe	Ile 355	Leu	Cys	Trp	Leu	Pro 360	Phe	Phe	Ile	Val	Ala 365	Leu	Val	Leu
Pro	Phe 370	Cys	Glu	Ser	Ser	Cys 375	His	Met	Pro	Thr	Leu 380	Leu	Gly	Ala	Ile
Ile 385	Asn	Trp	Leu	Gly	Туг 390	Ser	Asn	Ser	Leu	Leu 395	Asn	Pro	Val	Ile	Tyr 400
Ala	Tyr	Phe	Asn	Lys 405	Asp	Phe	Gln		Ala 410		Lys	Lys	Ile	Ile 415	Lys

Cys Lys Phe Cys Arg Gln 420

<210>	14	
<211>	1266	
<212>	DNA	
<213>	Homo	sapiens

<400> 14	tcagccctgg	tcagggcaac	aacaccacat	caccaccaac	tecetttgag	60
acggatgtgc	ccagecergg	ccayggcaac	aacaccacac	caccaccyyc	ccccccgag	
accggcggca	acactactgg	tatctccgac	gtgaccgtca	gctaccaagt	gatcacctct	120
ctgctgctgg	gcacgctcat	cttctgcgcg	gtgctgggca	atgcgtgcgt	ggtggctgcc	180
atcgccttgg	agegeteect	gcagaacgtg	gccaattatc	ttattggctc	tttggcggtc	240
accgacctca	tggtgtcggt	gttggtgctg	cccatggccg	cgctgtatca	ggtgctcaac	300
aagtggacac	tgggccaggt	aacctgcgac	ctgttcatcg	ccctcgacgt	gctgtgctgc	360
acctcatcca	tcttgcacct	gtgcgccatc	gcgctggaca	ggtactgggc	catcacggac	420
cccatcgact	acgtgaacaa	gaggacgccc	cggcgcgccg	ctgcgctcat	ctcgctcact	480
tggcttattg	gcttcctcat	ctctatcccg	cccatgctgg	gctggcgcac	cccggaagac	540
cgctcggacc	ccgacgcatg	caccattagc	aaggatcatg	gctacactat	ctattccacc	600
tttggagctt	tctacatccc	gctgctgctc	atgctggttc	tctatgggcg	catattccga	660
gctgcgcgct	tccgcatccg	caagacggtc	aaaaaggtgg	agaagaccgg	agcggacacc	720
cgccatggag	catctcccgc	cccgcagccc	aagaagagtg	tgaatggaga	gtcggggagc	780
aggaactgga	ggctgggcgt	ggagagcaag	gctgggggtg	ctctgtgcgc	caatggcgcg	840
gtgaggcaag	gtgacgatgg	cgccgccctg	gaggtgatcg	aggtgcaccg	agtgggcaac	900
tccaaagagc	acttgcctct	gcccagcgag	gctggtccta	ccccttgtgc	cccgcctct	960
ttcgagagga	aaaatgagcg	caacgccgag	gcgaagcgca	agatggccct	ggcccgagag	1020
aggaagacag	tgaagacgct	gggcatcatc	atgggcacct	tcatcctctg	ctggctgccc	1080
ttcttcatcg	tggctcttgt	tctgcccttc	tgcgagagca	gctgccacat	gcccaccctg	1140
ttgggcgcca	taatcaattg	gctgggctac	tccaactctc	tgcttaaccc	cgtcatttac	1200
gcatacttca	acaaggactt	tcaaaacgcg	tttaagaaga	tcattaagtg	taagttctgc	1260
cgccag						1266

<210> 15 <211> 40 <212> DNA

<213>	Artificial Sequence	
<220>		
<223>	linker	
<400>	15	
ggacta	gtct ggttccgcgt ggatcccata tggaatccgg	40
<210>	16	
<211>	12	
<212>	PRT	
<213>	Artificial Sequence	
<220>		
<223>	translation of linker	
<400>	16	
The Co.	r Leu Val Pro Arg Gly Ser His Met Glu Phe	
1	5 10	
_		
<210>	17	
<211> <212>	28 DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	17	
	ggga aaagttgaag ctggtgat	28
د ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱	10	
<210> <211>	18 26	
<212>	DNA	
<213>	Artificial Sequence	
.000-		
<220> <223>	PCR primer	
\223 /	rck primer	
<400>	18	
ccacta	gtag cttctgagtc ctcttc	26
<210>	19	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
	•	
<400>	19	
ggccate	gggc caagtttcag ttgaaacc	28
/2105	20	

<211> <212> <213>	28 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> ccactac	20 gtcg cctgctggtt catcagct	28
<210><211><211><212><213>	21 27 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> ggccate	21 gggc acageegagg agatgaa	27
<210> <211> <212> <213>	27 .	
<220> <223>	PCR primer	
<400> ccactaç	22 gttg cttctgtctc cacctga	27
<211> <212>	23 24 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> ggccato	23 gggc tegeaceegt eece	24
	24 31 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> ccactac	24 gtag caaacatttt tgcatatact g	31
<210>	25	

<211> <212> <213>	32 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> ggccat	25 gggc aaatcactgt ttaaagtaac gc	32
<210> <211> <212> <213>	26 29 DNA Artificial Sequence	
<220> <223>	PCr primer	
<400> ccacta	26 gttt ttttagcaga gtctgcggc	29
<210> <211> <212> <213>	27 28 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> ggccat	27 gggc aagaactgga aaacgctg	28
<210> <211> <212> <213>	28 29 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> ccacta	28 gtgt tgctcaggat tttaacgta	29
<210> <211> <212> <213>	29 26 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> atcata	29 tgaa atacctattg cctacg	26
<210>	30	

<211> 33 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 30

atgeggeege ctattactee agettggtee etc

33