Lecture 10: Networks (Counting on steroids) Modeling Social Data, Spring 2017 Columbia University

Chris Lam

April 7, 2017

1 On Networks

1.1 History

- '30s: Breaking news: Networks are a thing!
- '60s: Random graph theory: Erdos + Rengi ('59)
 - thought of graphs as math, as objects to be studied
 - high probability: more clustered in one component
 - low probability: more scattered across multiple components
- '70s: Granovetter ('73): Clustering and weak ties
 - The friends of my friends are often friends.

Figure 1: Granovetter: this is forbidden; it's impossible for A-C and A-B to be the case without B-C being a thing as well!

- Ties can be strong (triadic closure) or weak (bridges).
- I may not know too well the people who bridge me to other communities.
- '70s relatively recently: Cross-platform data outside of surveys for social networks isn't lying around, making it hard to study.
- '70s: de Solla Price ('65,'76): Cumulative advantage in citation networks in many other words:
 - Uneven distribution of attention
 - Popularity begets itself
 - There are a few celebrities and a bunch of nobodies.
- '90s: Watts + Strogatz ('98): Small-world networks
 - Randomly rewired edges of a regular network

- Bridged the gap between IRL and the completely random graph
- Featured short path lengths (ie. just a few hops from A to B), triadic closure, and bridging
- '00s: Newman, Barabusi, Watts ('06): Empirical structure from actual data, ie. hairballs
 - Adamic + Glance ('05): Homophily
 - Warning: location of nodes (blogs) may be contrived.
 - Favors the lowest-energy configuration: force-directed, springlike edges that collapse close-together nodes more densely together in parameter space.

1.2 Types of networks

Networks are abstractions of different types of data. We can be handed social (think: Facebook), informational (think: the web, political blogs, citations), activity (think: email), biological, and even geographical (think: roads) networks. It's important not to lose sight of what's being abstracted to a network.

Representations, ie. levels of abstraction

Undirected

Figure 2: Bidirectional friendship (one would hope)

• Directed

Figure 3: Directed network, eg. followers of a FB page

- Weighted (the old ARPAnet, the OG Internet, whose edge costs varied)
- Metadata: attributes of the nodes and edges themselves
- Ego networks: by changing the threshold for what constitutes a 'meaningful' interaction or relationship, we change what the network looks like. 'All my FB friends', for example, will be much denser than 'my carefully maintained relationships'.

1.3 Data Structures of Networks

- Edge list: storage :) compute :(

 - To check if edge is present, requires a big scan, linear through number of edges
- Adjacency matrix: checking edges:) linear algebra:)
 - Storage in a sparse matrix is more efficient
 - The not as big scan: run down the row or column; but this gets less easy for directed graphs because the matrix for these aren't symmetric
 - Compute time \propto number of nodes
- Adjacency list: graph traversal:)
 - Compute time \propto average number of neighbors for all nodes

Descriptive Stats of Networks:

Stat	Definition	Associated algorithm
Degree	# connections a node has	Degree distributions (counting)
Path length	Shortest path between 2 nodes	BFS
Clustering	How many friends of friends are also friends?	Triangle counting
Components	# disconnected parts	Connected components

2 Coding up Networks

• Computing degree distribution (ie. How many nodes have 1,2,etc. neighbors?)

```
group by source count \# destination nodes \to (source,degree) group by degree count \# source nodes
```

• Computing path length - sometimes we'll need to logscale to handle distributions for which magnitude comparisons make more sense (think celebrities again)

BFS: every newly discovered node is at distance, or path length, of one more than the current maximum distance. All pairs' path length $\propto \#$ nodes x # edges

```
init nodes at \infty source dist 0 curr boundary is source new boundary is empty explore non-empty boundary loop over all nodes in curr boundary explore each undiscovered neighbor dist \leftarrow curr dist + 1 add neighbor to boundary curr boundary \leftarrow next boundary terminate when no more 'next boundary'
```

• Computing connectedness

init nodes at ∞

pick random unreached node (until no unreached nodes left)

run BFS from that node

label everything that's reached as one component

ullet Counting number of mutual friends for every pair \propto d²; that is, the few celebrities among us will kill our computers.

We can use an adjacency list - here, it's: i, j1, j2, and j3

Figure 4: Counting mutual friends

for each node:

run over all pairs of its neighbors

increment count by 1

• Counting triangles: checking if the j's themselves are connected

Now it makes more sense to use an adjacency matrix, which provides a better memory footprint - else, computation is hell.

for each node:

run over all its neighbors

increment node's count if neighbors are connected

We can measure how clustered a network is, or how connected a person is, by taking the ratio of number of actual triangles over possible triangles.