Societatea de Științe Matematice din România

Olimpiada Naţională de Matematică Etapa Naţională, Sibiu, 8 aprilie 2014

CLASA a VIII-a SOLUȚII ȘI BAREME ORIENTATIVE

Problema 1. Fie $a, b, c \in (0, \infty)$. Demonstrați inegalitatea:

$$\frac{a - \sqrt{bc}}{a + 2(b + c)} + \frac{b - \sqrt{ca}}{b + 2(c + a)} + \frac{c - \sqrt{ab}}{c + 2(a + b)} \ge 0.$$

Soluție. Din inegalitatea mediilor avem $\sqrt{bc} \leq \frac{b+c}{2}$, deci

$$\frac{a - \sqrt{bc}}{a + 2(b + c)} \ge \frac{a - \frac{b + c}{2}}{a + 2(b + c)} = \frac{2a - b - c}{2(a + 2b + 2c)}$$

Atunci membrul stång al inegalității din enunț este mai mare sau egal cu $\frac{2a-b-c}{2\left(a+2b+2c\right)} + \frac{2b-c-a}{2\left(2a+b+2c\right)} + \frac{2c-a-b}{2\left(2a+2b+c\right)} \stackrel{not}{=} S \qquad \qquad \mathbf{2p}$ Notând $a+2b+2c=5x,\ 2a+b+2c=5y\ \text{şi}\ 2a+2b+c=5z,\ \text{obţinem}$ $a=-3x+2y+2z,\ b=2x-3y+2z\ \text{şi}\ c=2x+2y-3z.\ \text{Atunci}$ $\frac{2a-b-c}{2\left(a+2b+2c\right)} = \frac{-10x+5y+5z}{10x} = \frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-2\right) \qquad \qquad \mathbf{3p}$

Scriind relațiile analoage și sumând avem:

$$S = \frac{1}{2} \left(\frac{y}{x} + \frac{z}{x} - 2 \right) + \frac{1}{2} \left(\frac{x}{y} + \frac{z}{y} - 2 \right) + \frac{1}{2} \left(\frac{x}{z} + \frac{y}{z} - 2 \right) =$$

$$= \frac{1}{2} \left[\left(\frac{x}{y} + \frac{y}{x} \right) + \left(\frac{x}{z} + \frac{z}{x} \right) + \left(\frac{z}{y} + \frac{y}{z} \right) - 6 \right] \ge 0,$$

Problema 2. Fie ABCDA'B'C'D' un cub cu muchia AB = a. Considerăm punctele $E \in (AB)$ și $F \in (BC)$ astfel încât AE + CF = EF.

- a) Determinați măsura unghiului format de planele (D'DE) și (D'DF).
- b) Calculați distanța de la D' la dreapta EF.

Soluție. a) Segmentul [BA] îl prelungim cu segmentul $[AH] \equiv [FC]$. Atunci $\Delta DAH \equiv \Delta DCF$ (C.C.), de unde $\widehat{H}DA \equiv \widehat{F}DC$, deci $m\left(\widehat{H}DF\right) =$ 90° .

Apoi, $[DH] \equiv [DF]$, de unde $\Delta DHE \equiv \Delta DFE$ (L.L.L.) și de aici Deoarece $FD \perp DD'$ și $ED \perp DD'$, rezultă $m((D'D\widehat{E}), (D'DF)) =$

b) Notăm cu P proiecția punctului D pe dreapta EF. Conform teoremei celor trei perpendiculare obtinem $D'P \perp EF$, deci d(D', EF) = D'P .. 1p Din congruența $\Delta DHE \equiv \Delta DFE$, obținem DP = AD = a 1p

Problema 3. Se consideră multimea $A = \{n, n+1, n+2, ..., 2n\}$, unde n > 4 este un număr natural. Determinați cea mai mică valoare a lui npentru care A conține cinci elemente a < b < c < d < e astfel încât

$$\frac{a}{c} = \frac{b}{d} = \frac{c}{e}.$$

Soluție. Fie $p, q \in \mathbb{N}^*$, (p, q) = 1 astfel încât $\frac{a}{c} = \frac{b}{d} = \frac{c}{e} = \frac{p}{q}$. Evident p < q. Cum numerele a, b și c se divid cu p, iar numerele c, d și e se divid cu q, rezultă că există $m \in \mathbb{N}^*$ astfel încât $c = mpq \dots 1$

Deoarece $e-a \leq 2n-n=n$, iar n trebuie să fie minim, trebuie ca numerele a, b și c să fie multipli consecutivi ai lui p, iar c, d și e să fie multipli consecutivi ai lui q. Prin urmare, a = mpq - 2p și e = mpq + 2q 1p

Deoarece $n \leq a < e \leq 2n \leq 2a$, rezultă $2a \geq e$, adică $2mpq - 4p \geq e$

$$mpq + 2q$$
, sau $mpq \ge 4p + 2q$. (*)
 $Cum \frac{c}{e} = \frac{mpq}{mpq + 2q} = \frac{p}{q}$, obţinem $m(q - p) = 2$, deci $m \in \{1, 2\}$... $\mathbf{1p}$

Dacă m = 1, atunci q - p = 2, deci q = p + 2. Înlocuind în (*) obţinem: $(p-2)^2 \ge 8$, de unde $p \ge 5$. Pentru p = 5 și q = 7, avem a = 25, b = 30, c=35, d=42, e=49 și, deoarece $n \le a < e \le 2n$, rezultă n=25 **2p** Dacă m=2, atunci q-p=1, deci q=p+1. Înlocuind în (*) obținem: $(p-1)^2 \geq 2$, de unde $p \geq 3$. Pentru p=3 și q=4, avem a=18, b=21,

Problema 4. a) Demonstrați că suprafața unui pătrat de latură 2 nu se poate acoperi cu trei discuri de rază 1.

b) Demonstrați că folosind trei discuri de rază 1 se poate acoperi mai mult de 99,75% din suprafața unui pătrat de latură 2.

Soluție. Fie ABCD un pătrat de latură 2 și S_1 , S_2 și S_3 trei discuri de rază 1.

a) Presupunem prin reducere la absurd că S_1 , S_2 şi S_3 acoperă suprafața pătratului. Deoarece latura pătratului este egală cu diametrul unui disc, este necesar ca două vârfuri alăturate ale pătratului, fie acestea A şi B, să fie acoperite de un același disc S_1 , adică [AB] este diametrul lui $S_1 \ldots 1\mathbf{p}$

Fie $M \in (AD)$. Cum MC > 2, atunci M şi C sunt în discuri diferite. Putem presupune $C \in S_2$ şi $(AD) \subset C_3$. Analog $D \in S_3$ şi $(BC) \subset C_2$. Atunci $(BC] \subset S_2$ şi $(AD] \subset S_3$.

b) Fie $M \in (AC)$ astfel încât AM = 2. Notăm cu P şi R proiecțiile lui M pe AB şi AD. Fie $T \in BC$ astfel încât ca PT = 2 şi $U \in DC$ astfel ca RU = 2. Considerăm discurile de diametre AM, PT şi RU. Suprafața neacoperită de acestea este inclusă în interiorul pătratului format cu punctele C, U, X şi T unde $X \in (MC)$.

Este suficient să arătăm că $\mathcal{A}_{CUXT} < 0,25\% \cdot \mathcal{A}_{ABCD}$, ceea ce este echivalent cu $CT < \frac{1}{20}BC = 0,1$ sau BT > 1,9.

Avem $AP = \sqrt{2}$, $BP = 2 - \sqrt{2}$, $BT^2 = 4 - (2 - \sqrt{2})^2 = 4\sqrt{2} - 2$.