Integración de Bases de Conocimiento

Clase 4 – Datalog+/-.

Profesores: Maria Vanina Martinez y Ricardo Rodriguez

Datalog

- Diseñado para bases de datos deductivas:
 - Bases de datos que permiten obtener información que está contenida implícitamente.
 - Dos partes: la parte extensional y la parte intensional; la extensional es un conjunto de hechos (proposiciones), la intensional un conjunto de reglas que permiten obtener nueva información a partir de la parte extensional.
- Datalog es un lenguaje de programación en lógica (sintácticamente es un subconjunto de *Prolog*).
- Reglas de la forma: $\forall \mathbf{X} \forall \mathbf{Y} \ \phi(\mathbf{X}, \mathbf{Y}) \rightarrow R(\mathbf{X})$

Datalog: Poder expresivo

- No puede expresar algunos axiomas ontológicos importantes:
 - Inclusión de conceptos que involucran restricciones
 existenciales en roles en la cabeza de las reglas:

 $cientifico \sqsubseteq \exists esAutorde$

– Conceptos disjuntos:

 $artRevista \sqsubseteq \neg artConferencia$

- Funciones: (funct tienePrimerAutor)
- Buena noticia: ¡Podemos extender Datalog para representar conocimiento ontológico rico!

Razonamiento ontológico y Datalog

DL Assertion	Datalog Rule
Concept Inclusion emp ⊑ person	$emp(X) \rightarrow person(X)$
Concept Product sen-emp × emp ⊑ moreThan	$sen-emp(X),emp(Y) \rightarrow moreThan(X,Y)$
(Inverse) Role Inclusion reports⁻ ⊑ mgr	$reports(X,Y) \rightarrow mgr(Y,X)$
Role Transitivity trans(mgr)	$mgr(X,Y), mgr(Y,Z) \rightarrow mgr(X,Z)$
Participation emp ⊑ ∃report	$emp(X) \rightarrow \exists Y \ report(X,Y)$
Disjointness emp □ customer ⊑ ⊥	$emp(X), customer(X) \rightarrow \bot$
Functionality funct(reports)	$reports(X,Y), reports(X,Z) \rightarrow Y = Z$

Datalog+/-

Formalismos basados en Datalog

DLs

(DL-Lite, EL,...)

Datalog

Restricciones relacionales (IDs, FKDs)

Sin perder tratabilidad...

Extendiendo Datalog

- Extensión de Datalog permitiendo existenciales en la cabeza de las reglas: ∀X∀Y Φ(X,Y) → ∃Z Ψ(X,Z) (TGDs)
- Responder consultas (conjuntivas) en Datalog[∃] (extensión con TGDs) es indecidible (se puede simular una MT).
- Datalog+/– extiende Datalog con dependencias y restricciones de integridad... pero con limitaciones sintácticas sobre las reglas.
- Datalog+/– es una familia de lenguajes ontológicos
 - las distintas restricciones dan lugar a diferentes lenguajes con distinto poder expresivo y complejidad computacional (para tareas como query answering).

Datalog+/-

Asumimos:

- Un universo infinito de constantes Δ
- Un conjunto infinito de valores nulos (etiquetados) Δ_N
- Un conjunto infinito de variables \mathcal{V}
- Un esquema relacional \mathcal{R} , un conjunto finito de nombres de relaciones (o símbolos predicativos).
- Diferentes constantes representan diferentes valores;
 diferentes nulls pueden representar el mismo valor.
- Usamos X para denotar la secuencia $X_1, ..., X_n, n \ge 0$.
- Una (instancia de) base de datos D sobre \mathcal{R} es un conjunto de átomos con predicados en \mathcal{R} y argumentos en Δ .

Sean A y B dos estructuras relacionales finitas con signatura σ (consistiendo de funciones y relaciones).

- Un homomorfismo de A en B es una función h: dom(A) → dom(B) que preserva la estructura:
 - para cada función n-aria f en σ y elementos $a_1, ..., a_n \in dom(A)$, vale que $h(f^A(a_1, ..., a_n)) = f^B(h(a_1), ..., h(a_n))$; y
 - para cada relación n-aria R en σ y elementos $a_1, ..., a_n \in dom(A)$, vale que si $(a_1, ..., a_m) \in R^A$, entonces $(h(a_1), ..., h(a_m)) \in R^B$
- Es una relajación del concepto de isomorfismo (todo isomorfismo es homomorfismo, pero no al revés).
- La composición de homomorfismos es un homomorfismo.

Sean I y J dos *instancias de BD* sobre un esquema S.

• Para BDs, un *homomorfismo* h: $adom(I) \rightarrow adom(J)$ es una función tal que para cada símbolo relacional $P \in S$ y cada tupla $(a_1, ..., a_m)$ tenemos que:

$$\mathsf{si}\;(a_1,\,...,\,a_m)\in P^I$$
, entonces $(h(a_1),\,...,\,h(a_m))\in P^J$

- En BDs no hay funciones; la primera condición en la definición anterior no es necesaria (se cumple trivialmente).
- Dos instancias de BD I y J son homomórficamente equivalentes si existe un homomorfismo $I \rightarrow J$ y otro $J \rightarrow I$.

• Lema: Sea Q una BCQ y J una instancia de base de datos. La siguientes afirmaciones son equivalentes:

$$-J \models Q$$

- Existe un homomorfismo $h: I^Q \rightarrow J$.
- Intuitivamente, h corresponde a la asignación de variables en Q que hace que ésta se satisfaga en J.

 I^Q denota la "instancia de BD canónica" de Q, la cual es simplemente un conjunto de hechos construidos a partir de los predicados y variables de Q.

El "*Problema del homomorfismo*" pregunta simplemente si existe un homomorfismo entre dos estructuras finitas (en este caso, instancias de BD).

- Es NP-completo.
- Es un *problema fundamental* para la investigación algorítmica:
 - Todo problema de satisfacción de restricciones es un caso particular; por ejemplo, SAT.
 - Muchos problemas de lA son casos particulares; por ejemplo, planning.

Datalog+/-

- Una consulta conjuntiva (CQ) sobre \mathcal{R} tiene la forma $Q(\mathbf{X}) = \exists \mathbf{Y} \Phi(\mathbf{X}, \mathbf{Y}), \Phi$ es una conjunción de átomos.
- Una consulta conjuntiva Booleana (BCQ) sobre \mathcal{R} tiene la forma $Q() = \exists \mathbf{Y} \Phi(\mathbf{X}, \mathbf{Y}), \Phi$ es una conjunción de átomos.
- Las respuestas a una consulta se definen vía homomorfismos, mapeos μ : $\Delta \cup \Delta_N \cup \mathcal{V} \to \Delta \cup \Delta_N \cup \mathcal{V}$:
 - si $c \in \Delta$ entonces $\mu(c) = c$
 - si $c \in \Delta_N$ entonces $\mu(c) \in \Delta \cup \Delta_N$
 - μ se extiende a (conjuntos de) átomos y conjunciones.
- Conjunto de *respuestas* Q(D): conjunto de tuplas t sobre Δ t.q. $\exists \ \mu$: $\mathbf{X} \cup \mathbf{Y} \to \Delta \cup \Delta_N$ t.q. $\mu(\Phi(\mathbf{X},\mathbf{Y})) \subseteq D$, $\mathbf{y} \ \mu(\mathbf{X}) = t$.

Datalog+/-

- Tuple-generating Dependencies (TGDs) son restricciones de la forma σ: ∀X∀Y Φ(X,Y) → ∃Z Ψ(X,Z) donde Φ y Ψ son conjunciones atómicas sobre R:
 - $\forall X \forall Y \Phi(X,Y)$ se denomina el cuerpo de σ ($body(\sigma)$)
 - $-\exists \mathbf{Z} \ \Psi(\mathbf{X},\mathbf{Z})$ se denomina la cabeza de σ ($head(\sigma)$)
- Dada una BD D y un conjunto Σ de TGDs, el conjunto de modelos $mods(D, \Sigma)$ es el conjunto de todos los B tal que:
 - $-D\subseteq B$
 - cada $\sigma \in \Sigma$ es satisfecho en B (clásicamente).
- El conjunto de respuestas para una CQ Q en D y Σ , $ans(Q,D,\Sigma)$, es el conjunto de todas las tuplas a tal que $a \in Q(B)$ para todo $B \in mods(D,\Sigma)$.

Arquitectura de un sistema OBDA

- El Chase es un procedimiento para reparar una BD en relación a un conjunto de dependencias (TGDs).
- (Informalmente) Regla de aplicación de TGD:
 - una TGD σ es aplicable a una BD D si $body(\sigma)$ mapea a átomos en D
 - la aplicación de σ sobre D agrega (si ya no existe) un átomo con nulos "frescos" correspondientes a cada una de las variables existenciales cuantificadas en $head(\sigma)$.

Input: Base de datos D, conjunto de TGDs Y

Output: Un modelo de $D \cup Y$

$$\Sigma \begin{tabular}{l} \hline $\forall P \ person(P) \to \exists F \ father(F,P) & \forall F \forall P \ father(F,P) \to person(F) \end{tabular}$$

$$chase(D,Y) = D \cup ?$$

<u>Input</u>: Base de datos D, conjunto de TGDs Y<u>Output</u>: Un modelo de $D \cup Y$

<u>Input</u>: Base de datos D, conjunto de TGDs Y<u>Output</u>: Un modelo de $D \cup Y$

Person(john)

$$\forall P \ person(P) \rightarrow \exists F \ father(F,P) \quad \forall F \forall P \ father(F,P) \rightarrow person(F)$$

$$chase(D,Y) = D \cup \{father(z_1,john), \ person(z_1) \}$$

Input: Base de datos *D*, conjunto de TGDs Y

Output: Un modelo de $D \cup Y$


```
 \begin{array}{c} \Sigma \\ \forall P \ person(P) \rightarrow \exists F \ father(F,P) \quad \forall F \forall P \ father(F,P) \rightarrow person(F) \\ \\ chase(D,Y) = D \ \cup \ \{father(z_1,john), \ person(z_1), \ father(z_2,z_1) \\ \end{array}
```

Input: Base de datos D, conjunto de TGDs Y

Output: Un modelo de $D \cup Y$

$$\Sigma \begin{tabular}{l} $ \forall P \ person(P) \rightarrow \exists F \ father(F,P) \ \forall F \forall P \ father(F,P) \rightarrow person(F) \\ \hline \end{tabular}$$

 $chase(D,Y) = D \cup \{father(z_1, john), person(z_1), father(z_2, z_1), \ldots \}$

Input: Base de datos D, conjunto de TGDs Y

Output: Un modelo de $D \cup Y$

 $chase(D,Y) = D \cup \{father(z_1,john), person(z_1), father(z_2,z_1),...\}$ $INSTANCIA\ INFINITA$

Query Answering vía el chase

- El chase (posiblemente infinito) es un *modelo universal*: existe un homomorfismo de chase(D, Y) en cada $B \in mods(D, Y)$.
- Por lo tanto, tenemos que $D \cup Y \vDash Q$ ssi $chase(D, Y) \vDash Q$.

Negative Constraints y EGDs

- Negative constraints (NCs) son fórmulas de la forma
 ∀X Φ(X) → ⊥, donde Φ(X) es a conjunción of átomos.
- Las NCs son fáciles de verificar: podemos verificar que la CQ Φ(X) tiene un conjunto vacío de respuestas en D y Y.
- Equality Generating Dependencies (EGDs) son de la forma $\forall \mathbf{X} \ \Phi(\mathbf{X}) \to X_i = X_j$, donde Φ es una conjunción of átomos y X_i , X_j son variables que aparecen en \mathbf{X} .
- Se asume un conjunto de EGDs separables; intuitivamente significa que las EGDs y TGDs son independientes entre sí.

Datalog+/-: Ejemplo

```
D = \{ directs(john, sales), directs(anna, sales), \}
         directs(john, finance), supervises(anna, john),
         works in(john, sales), works in(anna, sales)
\Sigma_T = \{ works \ in (X,D) \rightarrow emp(X), \}
         manager(X) \rightarrow \exists Y \ supervises(X, Y),
         supervises(X,Y) \land directs(X,D) \rightarrow works \ in(Y,D)
 \Sigma_{NC} = \{supervises(X, Y) \land manager(Y) \rightarrow \bot, \}
        \overline{supervises(X,Y)} \land works \ in(X,D) \land directs(Y,D) \rightarrow \bot,
         directs(X,D) \land directs(X,D') \rightarrow D = D'
```

Resultados positivos

Query Answering con IDs es decidible

- PSPACE-completo en complejidad combinada
- NP-completo complejidad ba-combinada

Guarded Datalog+/-

 Una TGD se dice guarded si existe un átomo en su cuerpo que contiene todas las variables que aparecen en el cuerpo.

$$\forall X \forall Y \forall Z \ R(X,Y,Z), \ S(Y), \ P(X,Z) \rightarrow \exists W \ Q(X,W)$$

$$guard$$

- El chase tiene treewidth finito ⇒ query answering decidible
- Query answering es PTIME-completo en complejidad data.
- Extiende la Lógica de descripción ELH (misma complejidad data).

Guarded Datalog+/-

 ELH lógica de descripción muy popular para representar datasets biológicos con complejidad data PTIME.

EL TBox	Datalog [±] Representation
<i>A</i> ⊑ <i>B</i>	$\forall X A(X) \rightarrow B(X)$
$A \sqcap B \sqsubseteq C$	$\forall X A(X), B(X) \to C(X)$
∃ <i>R</i> .A <u></u> B	$\forall X R(X,Y), A(Y) \rightarrow B(X)$
A <u></u> ∃R.B	$\forall X A(X) \to \exists Y R(X,Y), B(Y)$
<i>R</i> ⊑ <i>P</i>	$\forall X \forall Y R(X,Y) \rightarrow P(X,Y)$

Linear Datalog+/-

 Una TGD se dice *linear* (lineal) si tiene sólo un átomo en su cuerpo.

$$\forall \mathbf{X} \forall \mathbf{Y} \ R(\mathbf{X}, \mathbf{Y}) \rightarrow \exists \mathbf{Z} \ Q(\mathbf{X}, \mathbf{Z})$$
guard

- Las linear TGDs son (trivialmente) guarded.
- Query answering está en AC₀ en complejidad data (reescritura de primer orden – FO rewritablity).
- Extiende la (familia de) lógicas de descripción DL-Lite (misma complejidad data).

Linear Datalog+/-

• DL-Lite familia de lógicas de descripción con data complejidad AC_0 (OWL 2 QL).

DL-Lite TBox	Datalog [±] Representation
4 = 5	VV 4/10 - D/10
<i>A</i> ⊑ <i>B</i>	$\forall X A(X) \to B(X)$
$A \sqsubseteq \exists R$	$\forall X A(X) \to \exists Y R(X,Y)$
∃ <i>R</i> ⊑ <i>A</i>	$\forall X \forall Y R(X,Y) \rightarrow A(X)$
	WWW D(V V) D(V V)
<i>R</i> ⊑ <i>P</i>	$\forall X \forall Y R(X,Y) \rightarrow P(X,Y)$

Bounded Derivation-Depth Property (BDDP)

Bounded Derivation-Depth Property (BDDP)

- Query answering en programas Datalog[∃] que satisfacen
 BDDP está en AC₀ (complejidad data).
- Bounded derivation-depth es una propiedad semántica.
- Queremos identificar un fragmento sintáctico de Datalog[∃] que satisfaga la propiedad.
- Algunos resultados:
 - Guarded Datalog[∃] no satisface BDDP (¿cómo lo probaría?)
 - Linear Datalog[∃] satisface BDDP.
 - BDDP ⇒ FO rewritability

Pero...

• ¿Qué sucede con los joins en los cuerpos de las reglas?

$$\forall A \ \forall D \ \forall P \ runs(D,P), \ area(P,A) \rightarrow \exists E \ employee(E,D,P,A)$$

• ¿Y los axiomas de *productos* de conceptos (cartesiano)?

$$\forall E \forall M \ elephant(E), \ mouse(M) \rightarrow biggerThan(E,M)$$

No se pueden garantizar modelos con forma de árbol

$$\begin{array}{c} \forall X\forall Y\ R(X,Y) \to \exists Z\ R(Y,Z) \\ \forall X\forall Y\ R(X,Y) \to S(X) \end{array} \qquad \begin{array}{c} \text{Infinita cantidad de} \\ \text{símbolos en S} \end{array}$$

$$\forall X\forall Y\ S(X),\ S(Y) \to P(X,Y) \end{array} \qquad \begin{array}{c} P \text{ forma un clique infinito} \end{array}$$

 $\forall A \forall D \forall P \ runs(D,P), \ area(P,A) \rightarrow \exists E \ employee(E,D,P,A)$

 $\forall E \forall M \ elephant(E), mouse(M) \rightarrow biggerThan(E, M)$

 Marcado Inicial: marcar todas las ocurrencias de las variables del cuerpo de la regla que no aparecen en todos los átomos de la cabeza.

$$\forall V \forall W \, R_1(V,W) \rightarrow \exists X \exists Y \exists Z \, R_2(W,X,Y,Z)$$

$$\forall V \forall W \forall X \forall Y \, R_2(V,W,X,Y) \rightarrow \exists Z \, R_1(W,Z), R_3(W,Y), R_4(Y,X)$$

$$\forall W \forall X \forall Y \, R_3(W,X), R_4(X,Y) \rightarrow \exists Z \, R_5(Z,Y,X)$$

- Marcado Inicial: marcar todas las ocurrencias de las variables del cuerpo de la regla que no aparecen en todos los átomos de la cabeza.
- Propagación: propagar el marcado de las variables del cuerpo vía los átomos de la cabeza.

$$\forall V \forall W R_1(V, W) \rightarrow \exists X \exists Y \exists Z R_2(W, X, Y, Z)$$

$$\forall V \forall W \forall X \forall Y R_2(V, W, X, Y) \rightarrow \exists Z R_1(W, Z), R_3(W, Y), R_4(Y, X)$$

$$\forall W \forall X \forall Y R_3(W, X), R_4(X, Y) \rightarrow \exists Z R_5(Z, Y, X)$$

 Las variables marcadas ocurren sólo una vez en el cuerpo de cada TGD.

```
\forall V \forall W \ R_1(V,W) \rightarrow \exists X \exists Y \exists Z \ R_2(W,X,Y,Z) \forall V \forall W \forall X \forall Y \ R_2(V,W,X,Y) \rightarrow \exists Z \ R_1(W,Z), R_3(W,Y), R_4(Y,X) \forall W \forall X \forall Y \ R_3(W,X), R_4(X,Y) \rightarrow \exists Z \ R_5(Z,Y,X)
```

El chase tiene la propiedad sticky (backward-resolution termina)

 Las variables marcadas ocurren sólo una vez en el cuerpo de cada TGD.

```
\forall V \forall W \ R_1(V,W) \rightarrow \exists X \exists Y \exists Z \ R_2(W,X,Y,Z) \forall V \forall W \forall X \forall Y \ R_2(V,W,X,Y) \rightarrow \exists Z \ R_1(W,Z), R_3(W,Y), R_4(Y,X) \forall W \forall X \forall Y \ R_3(W,X), R_4(X,Y) \rightarrow \exists Z \ R_5(Z,Y,X)
```

- Query answering en Sticky Datalog+/
 está en AC₀ (data complejidad FO rewritability)
- Extiende a la familia DL-Lite (misma complejidad data)

Polynomial Witness Property (PWP)

 PWP ⇒ re-escritura en *Datalog* (no recursivo) de tamaño polinomial.

Polynomial Witness Property (PWP)

Linear y Sticky TGDs tienen la propiedad PWP.

Finite Controllability

$$D \cup \Sigma \vDash Q \Leftrightarrow D \cup \Sigma \vDash_{fin} Q$$

- La propiedad vale para:
 - Dependencias de inclusión
 - Guarded TGDs
 - Sticky TGDs

Otras propiedades

- EGDs: $\forall X \ \forall Y \ \forall Z \ reports(X,Y), \ reports(Y,Z) \rightarrow Y = Z$
 - Non-Conflicting EGDs: no interactúan con el conjunto de TGDs.
 - Chequeo de *satisfabilidad* no agrega complejidad (misma complejidad que *query answering* para el fragmento al que pertenece $D \cup \Sigma$).
- Negative constraints: $\forall X \ emp(X), \ customer(X) \rightarrow \bot$
 - Se puede *verificar* si $D \cup \Sigma$ satisface el conjunto de NCs sin agregar complejidad.

EGDs: Finite Controllability

 Finite controllability no vale en general en la presencia de EGDs arbitrarias.

$$D = \{R(a,b)\}$$

$$\Sigma = \begin{cases} \forall X \forall Y \ R(X,Y) \to \exists Z \ R(Y,Z) \\ \forall X \forall Y \forall Z \ R(Y,X), R(Z,X) \to Y = Z \end{cases}$$
but
$$D \cup \Sigma \nvDash Q$$

$$D \cup \Sigma \vDash_{fin} Q$$

$$Q \leftarrow R(A,a)$$

 Sticky-join: sin perder FO rewritability y Polynomial Witness property (PWP) ... pero más difíciles de identificar: PSPACE-completo

	Data	Fixed Σ	Combined
Guarded	PTIME-complete	NP-complete	2EXPTIME-complete
Linear	in AC ₀	NP-complete	PSPACE-complete
Sticky	in AC ₀	NP-complete	EXPTIME-complete
Sticky-join	in AC ₀	NP-complete	EXPTIME-complete

- Misma complejidad con NCs y EGDs no conflictivas.
- Misma complejidad bajo modelos finitos.

Clases de complejidad y circuitos

Clase de complejidad NC_i:

- Para $i \geq 0$: Un lenguaje $L \subseteq \{0, 1\}^*$ está en NC_i si existe una familia de circuitos con fan-in 2 $\{C_n\}$, una MT determinista M y una constante k tal que:
 - -L es *aceptado* por $\{C_n\}$
 - $\overline{-M}$ genera $\{C_n\}$ y funciona en espacio logarítmico
 - $profundidad(C_n) \le k * (log n)^i$

Clases de complejidad y circuitos

Clases de complejidad AC_i y NC_i :

$$\begin{split} NC_0 \subseteq AC_0 \subseteq NC_1 \subseteq AC_1 \subseteq \ldots \subseteq AC_k \subseteq NC_{k+1} \\ AC_0 \subseteq NC_1 \subseteq LOGSPACE \subseteq NC_2 \end{split}$$

AC₀: Circuitos tienen profundidad constante.

AC₁: Circuitos tienen profundidad logarítmica.

Esto nos permite resolver muchos problemas.

- Si L es un lenguaje regular, entonces $L \in NC_1$.
- Sea $\Sigma = \{0,1\}$:
 - 1. Σ^* .1 \in NC₀
 - $-\{0^k \ 1^k\} \in AC_0$
 - PARES := $\{w \in \Sigma^* \mid w \text{ tiene un número par de 1's}\} \in NC_1$

Consultas FO: Complejidad data

• Teorema: Query answering para consultas FO es completo para $logtime-uniform\ AC_0$ en complejidad data.

Prueba:

- Membresía en AC_0 : Dada una base de datos, se *construye* un circuito. La consulta está fija.
- Hardness: *Transformar* los circuitos a consultas FO (transformación logtime).

Consultas FO: Complejidad data

- El esquema y la consulta se asumen fijos.
- La base de datos y el tamaño del dominio activo pueden variar.
- Familias uniformes: el número total de compuertas de entrada se determina unívocamente por el tamaño del dominio activo.
- Ejemplo:
 - Esquema: R(A,B,C), S(D), T(E,F)
 - Número de compuertas de entrada: $n^3 + n + n^2$ para algún n (es el tamaño de dominio activo).

Circuitos Booleanos: Ejemplo

Circuitos Booleanos: Ejemplo

Referencias

[NB2012] Daniele Nardi and Ronald J. Brachman. 2003. "An introduction to description logics". The Description Logic Handbook, Cambridge University Press, New York, NY, USA pp. 1–40.

[CL2007] Diego Calvanese Domenico Lembo. 2007. "Ontology-based Data Access". Tutorial at the 6th International Semantic Web Conference (ISWC 2007).

[Johnson & Klug JCSS 84] D.S. Johnson and A. Klug. "Testing containment of conjunctive queries under functional and inclusion dependencies". JCSS, 28:167189, 1984.

"Theory of Data and Knowledge Bases", dictado originalmente en TU Wien por Georg Gottlob y luego en University of Oxford por Georg Gottlob y Thomas Lukasiewicz.

M. Arenas: "Complejidad basada en circuitos". Complejidad Computacional – IIC3242, Pontificia Universidad Católica de Chile, 2014.

Referencias

Parte del contenido de este curso está basado en:

- Trabajo de investigación realizado en colaboración con Thomas Lukasiewicz, Georg Gottlob, V.S. Subrahmanian, Avigdor Gal, Andreas Pieris, Giorgio Orsi, Livia Predoiu y Oana Tifrea-Marciuska.
- Y el siguiente curso: "Methods and Tools for Developing Ontology-Based Data Access Solutions Concepts for Ontology-Based Data Access" dictado por Giuseppe De Giacomo, Domenico Lembo, Antonella Poggi, Valerio Santarelli and Domenico Fabio Savo, en ISWC 2017:

https://sites.google.com/a/dis.uniroma1.it/mt4obda/

DLs: otros constructores

- Disyunción: $\forall hasChild.(Doctor \sqcup Lawyer)$
- Restricciones de valores: ∀tieneHijo.Femenino
 - Equivalente a $\forall Y \ tieneHijo(X,Y) \rightarrow Femenino(Y)$ en FOL
- Restricciones existenciales: $\exists tieneHijo.Femenino$
 - Equivalente a $\exists Y \ tieneHijo(X,Y) \rightarrow Femenino(Y)$ en FOL.
- Restricciones de número: representan restricciones de cardinalidad en los individuos de los conceptos. Por ejemplo, $(\geq 3 \ tieneHijo) \ \sqcap \ (\leq 2 \ familiaresFemeninos)$
- Negación de conceptos: $\neg(Doctor \sqcup Lawyer)$
- Inverse role: $\forall hasChild$ -. Doctor
- Reflexive-transitive role closure: $\exists hasChild^*.Doctor$