Statistical Formulas

Descriptive Statistics

Frequencies

Sample size *n* num of individuals in the sample.

Absolute frequency n_i . (num of x_i in the sample) Relative frequency $f_i = n_i/n$.

Cumulative absolute freq $N_i = \sum_{k=0}^{i} n_i$.

Cumulative relative freq $F_i = N_i/n$.

Central tendency statistics

Mean
$$\bar{x} = \frac{\sum x_i n_i}{n}$$
.

Median me The value with cum.rel.freq. $F_{me} = 0.5$. Mode mo The most frequent value.

Position statistics

Quartiles $Q_1,\,Q_2,\,Q_3$ divide the distribution into 4 equal parts. Their cum.rel.freqs. are $F_{Q_1}=0.25,\,F_{Q_2}=0.5$ and $F_{Q_3}=0.75$.

Percentiles P_1, P_2, \cdots, P_{99} divide the distribution into 100 equal parts.

The cum.rel.freq. is $F_{P_i} = i/100$.

Dispersion statistics

Interquartile range $IQR = Q_3 - Q_1$

Variance
$$s^2 = \frac{\sum (x_i - \bar{x})^2 n_i}{n} = \frac{\sum x_i^2 n_i}{n} - \bar{x}^2$$

Standard deviation $s = +\sqrt{s^2}$.

Coefficient of variation $cv = \frac{s}{|\bar{x}|}$.

Shape statistics

Coefficient of skewness $g_1 = \frac{\sum (x_i - \bar{x})^3 f_i}{s^3}$.

Coefficient of kurtosis $g_2 = \frac{\sum (x_i - \bar{x})^4 f_i}{s^4} - 3.$

Standarization

$$z = \frac{x - \bar{x}}{s_x}$$

Regression and correlation

Linear regression

Covariance $s_{xy} = \frac{\sum x_i y_j n_{ij}}{n} - \bar{x} \bar{y}$.

Regression lines

y on x:
$$y = \bar{y} + \frac{s_{xy}}{s_{y}^{2}}(x - \bar{x})$$

$$x \text{ on } y: \ x = \bar{x} + \frac{s_{xy}}{s_y^2}(y - \bar{y})$$

Regression coefficients

$$(y \text{ on } x) b_{yx} = \frac{s_{xy}}{s_x^2} (x \text{ on } y) b_{xy} = \frac{s_{xy}}{s_y^2}$$

Coefficient of determination

$$r^2 = \frac{s_{xy}^2}{s_x^2 s_y^2} \qquad 0 \le r^2 \le 1$$

Correlation coefficient

$$r = \frac{s_{xy}}{s_x s_y}. \qquad -1 \le r \le 1$$

Non-linear regression

Exponential model $y = e^{a+bx}$

Apply the logarithm to the dependent variable and compute the line $\log y = a + bx$.

Logarithmic model $y = a + b \log x$

Apply the logarithm to the independent variable and compute the line $y = a + b \log x$.

Potential model $y = ax^b$

Apply the logarithm to both variables and compute the line $\log y = a + b \log x$.

Probability

Basic probability

Union $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Intersection $P(A \cap B) = P(A)P(B|A)$.

Difference $P(A - B) = P(A) - P(A \cap B)$.

Contrary $P(\overline{A}) = 1 - P(A)$.

Conditional probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$.

Independent events P(A|B) = P(A).

Total prob. Theorem

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B|A_i)$$

Bayes Theorem

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{i=1}^n P(A_i)P(B|A_i)}$$

Diagnostic tests

Prevalence Proportion of people with the disease P(D).

Sensitivity P(+|D).

Specificity $P(-|\overline{D})$.

Positive Predictive Value (PPV) P(D|+).

Negative Predictive Value (NPV) $P(\overline{D}|-)$.

Positive Likelihood Ratio (LR+) $\frac{P(+|D)}{P(+|\overline{D})}$

Negative Likelihood Ratio (LR-) $\frac{P(-|D|)}{P(-|\overline{D}|)}$

Random Variables

Discrete

Binomial probability function B(n, p)

$$f(x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$$

Poisson probability function $P(\lambda)$

$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

Law of rare events $B(n,p) \approx P(np)$ for $n \geq 30$ and $p \leq 0.1$.