

GRIP @ The Spark Foundation

Task 1: Prediction using Supervised Machine Learning

In this regression task I tried to predict the percentage of marks that a student expected to score based upon the numbers of hours they studied

CSV_Data can be found at http://bit.ly/w-data

Name Manish Singh

1. Importing Required Libraries

```
In [3]:
         # Importing the required Libraries
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LinearRegression
         print(" All required packages included successfully!")
         All required packages included successfully!
```

2. Reading the data from Data Source

Reading Data From Remote Link

```
url = r"https://raw.githubusercontent.com/AdiPersonalWorks/Random/master/student_scores%20-%20student_scores.csv"
         s_data = pd.read_csv(url)
         print ("Data import Successfully")
         s_data.head(10)
        Data import Successfully
Out[4]:
           Hours Scores
             2.5
                     21
             5.1
                     47
```

27 2 3.2 75 3.5 30 1.5 20 88 9.2 60 8.3 81 2.7 25 3. Data Visualization

Plotting the distribution of scores

s_data.plot(x= 'Hours', y= 'Scores', style = 'o')

In [5]:

```
plt.title('Hours vs Percentage')
plt.xlabel('Hours Studied')
plt.ylabel('Percentage Score')
plt.show()
                  Hours vs Percentage
        Scores
 90
```


y = s_data.iloc[:, 1].values

```
4. Model Training
In [7]:
```

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2, random_state = 0) regressor = LinearRegression() regressor.fit(X_train.reshape(-1,1), y_train)

```
print("Training Complete")
Training Complete
5. Plotting the line of regression
```

Plotting the lines of regression

#Model Prediction

62 60.491033

In [11]:

In [14]:

In [15]:

line = regressor.coef_*X+regressor.intercept_

```
# Plotting for the test data
plt.scatter(X, y)
plt.plot(X, line,color='lightpink');
plt.show()
80
```

60 40 20 6. Making Predictions # Testing data print(X_test)

y_pred = regressor.predict(X_test) [[1.5] [3.2] [7.4] [2.5] [5.9]] 7. Comparing Actual Result to the Predicted Model Result. In [10]: # Comparing Actual Vs Predicted Result

Actual Predicted

df = pd.DataFrame({'Actual' : y_test, 'Predicted' : y_pred})

```
Out[10]:
                20 16.884145
                27 33.732261
                69 75.357018
                30 26.794801
```

Estimating training and test score print("Training Score:", regressor.score(X_train, y_train)) print("Test Score:", regressor.score(X_test, y_test)) Training Score: 0.9515510725211552 Test Score: 0.9454906892105356

Plotting the bar graph to depict the difference between the actual and predicted values. df.plot(kind='bar', figsize=(5,5)) plt.grid(which='major',linewidth= '0.5',color='red') plt.grid(which='minor',linewidth ='0.5',color='blue')

own_pred = regressor.predict(test) print("No of Hours = {}".format(hours)) print("Predicted Score = {}".format(own_pred[0]))

Predicted Score = 93.69173248737538

Tetsing the model with our own data

The final step is to evaluate the performance of algorithm. This step is particularly important to compare how well different algorithm performs on a particular Dataset. Here different error have been

R-2: 0.9454906892105356

8. Evaluating the model

test = np.array([hours]) test = test.reshape(-1,1)

hours = 9.25

No of Hours = 9.25

calculated to compare the model performance and predict the accuracy. from sklearn import metrics

print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test,y_pred)) print('Root Mean Squared Error:',np.sqrt(metrics.mean_squared_error(y_test,y_pred))) print('R-2:', metrics.r2_score(y_test, y_pred)) Mean Absolute Error: 4.183859899002975 Mean Squared Error: 21.5987693072174 Root Mean Squared Error: 4.6474476121003665

R-2 gives the score of model fit and in this case we have R-2 = 0.9454906892105356 which is actally great score for this model.

THANK YOU SO MUCH!!

9. Conclusion I was successfully able to carry-out Prediction using Supervised ML task and was able to evaluate the model's Performance on various Parameters.