DATA606 - Linear Regression Part 2

Jason Bryer, Ph.D. November 14, 2018

Presentations

- · Jeff Littlejohn (6.5) http://rpubs.com/jefflittlejohn/Data_606_Prob_6_5_Pres
- · Asher Dvir-Djerassi (7.19)
- · Adam Douglas (7.23) http://rpubs.com/lysanthus/DATA606HWPresentation
- · Sergio Ortega-Cruz (7.41) http://rpubs.com/sortega78/439610

NYS Report Card

NYS publishes data for each school in the state. We will look at the grade 8 math scores for 2012 and 2013. 2013 was the first year the tests were aligned with the Common Core Standards. There was a lot of press about how the passing rates for most schools dropped. Two questions we wish to answer:

- 1. Did the passing rates drop in a predictable manner?
- 2. Were the drops different for charter and public schools?

```
load('../Data/NYSReportCard-Grade7Math.Rda')
head(reportCard, n=4)
```

##		BEDSCODE				School	Num'	Tested2012	Mean2012	Pass	2012	Charter
##	1	010100010020		NORTH	ALBANY	ACADEMY		47	649		13	FALSE
##	2	010100010030	WI	LLIAM S HACKET	T MIDDLE	SCHOOL		212	652		30	FALSE
##	3	010100010045	STEPHEN AN	ID HARRIET MYER	RS MIDDLE	SCH00L		262	670		50	FALSE
##	4	010100860867	KI	PP TECH VALLEY	CHARTE	R SCHOOL		61	684		85	TRUE
##		GradeSubject	County			В	0CES	NumTested2	2013 Mean	2013	Passa	2013
##	1	Grade 7 Math	Albany BOC	ES ALBANY-SCHO	H-SCHENE	CTADY-S	ARAT		45	268		0
##	2	Grade 7 Math	Albany BOC	ES ALBANY-SCHO	H-SCHENE	CTADY-S	ARAT		250	279		9
##	3	Grade 7 Math	Albany BOO	ES ALBANY-SCHO	H-SCHENE	CTADY-S	ARAT		256	284		8
##	4	Grade 7 Math	Albany BOC	ES ALBANY-SCHO	H-SCHENE	CTADY-S	ARAT		59	298		9

Descriptive Statistics

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 46.00 65.00 61.73 80.00 100.00

summary(reportCard$Pass2013)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 7.00 20.00 22.83 33.00 99.00
```

Histograms

```
melted <- melt(reportCard[,c('Pass2012', 'Pass2013')])
ggplot(melted, aes(x=value)) + geom_histogram() + facet_wrap(~ variable, ncol=1)</pre>
```


Log Transformation

Since the distribution of the 2013 passing rates is skewed, we can log transfor that variable to get a more reasonably normal distribution.

```
reportCard$LogPass2013 <- log(reportCard$Pass2013 + 1)
ggplot(reportCard, aes(x=LogPass2013)) + geom_histogram(binwidth=0.5)</pre>
```


Scatter Plot

```
\begin{split} & \texttt{ggplot}(\texttt{reportCard, aes}(\texttt{x=Pass2012, y=Pass2013, color=Charter})) + \\ & \texttt{geom\_point}(\texttt{alpha=0.5}) + \texttt{coord\_equal}() + \texttt{ylim}(\texttt{c(0,100)}) + \texttt{xlim}(\texttt{c(0,100)}) \end{split}
```


Scatter Plot (log transform)

$$\begin{split} & \texttt{ggplot}(\texttt{reportCard, aes}(\texttt{x=Pass2012, y=LogPass2013, color=Charter})) \ + \\ & \texttt{geom_point}(\texttt{alpha=0.5}) \ + \ \texttt{xlim}(\texttt{c(0,100)}) \ + \ \texttt{ylim}(\texttt{c(0, log(101))}) \end{split}$$

Correlation

cor.test(reportCard\$Pass2012, reportCard\$Pass2013)

```
##
## Pearson's product-moment correlation
##
## data: reportCard$Pass2012 and reportCard$Pass2013
## t = 47.166, df = 1360, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7667526 0.8071276
## sample estimates:
## cor
## 0.7877848</pre>
```

Correlation (log transform)

cor.test(reportCard\$Pass2012, reportCard\$LogPass2013)

```
##
## Pearson's product-moment correlation
##
## data: reportCard$Pass2012 and reportCard$LogPass2013
## t = 56.499, df = 1360, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8207912 0.8525925
## sample estimates:
## cor
## 0.8373991</pre>
```

Linear Regression

```
lm.out <- lm(Pass2013 ~ Pass2012, data=reportCard)</pre>
summary(lm.out)
##
## Call:
## lm(formula = Pass2013 ~ Pass2012, data = reportCard)
##
## Residuals:
           1Q Median
                        3Q
## -35.484 -6.878 -0.478 5.965 51.675
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## Pass2012 0.64014 0.01357 47.17 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.49 on 1360 degrees of freedom
## Multiple R-squared: 0.6206, Adjusted R-squared: 0.6203
## F-statistic: 2225 on 1 and 1360 DF, p-value: < 2.2e-16
```

Linear Regression (log transform)

```
lm.log.out <- lm(LogPass2013 ~ Pass2012, data=reportCard)</pre>
summary(lm.log.out)
##
## Call:
## lm(formula = LogPass2013 ~ Pass2012, data = reportCard)
##
## Residuals:
             1Q Median
                          3Q
## -3.3880 -0.2531 0.0776 0.3461 2.7368
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.307692 0.046030 6.685 3.37e-11 ***
## Pass2012 0.039491 0.000699 56.499 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5915 on 1360 degrees of freedom
## Multiple R-squared: 0.7012, Adjusted R-squared: 0.701
## F-statistic: 3192 on 1 and 1360 DF, p-value: < 2.2e-16
```

Did the passing rates drop in a predictable manner?

Yes! Whether we log tranform the data or not, the correlations are statistically significant with regression models with R^2 creater than 62%.

To answer the second question, whether the drops were different for public and charter schools, we'll look at the residuals.

reportCard\$residuals <- resid(lm.out)
reportCard\$residualsLog <- resid(lm.log.out)</pre>

Distribution of Residuals

ggplot(reportCard, aes(x=residuals, color=Charter)) + geom_density()

Distribution of Residuals

ggplot(reportCard, aes(x=residualsLog, color=Charter)) + geom_density()

Null Hypothesis Testing

 H_0 : There is no difference in the residuals between charter and public schools.

 H_A : There is a difference in the residuals between charter and public schools.

```
t.test(residuals ~ Charter, data=reportCard)
```

```
##
## Welch Two Sample t-test
##
## data: residuals by Charter
## t = 6.5751, df = 77.633, p-value = 5.091e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 6.411064 11.980002
## sample estimates:
## mean in group FALSE mean in group TRUE
## 0.479356 -8.716177
```

Null Hypothesis Testing (log transform)

t.test(residualsLog ~ Charter, data=reportCard)

```
##
## Welch Two Sample t-test
##
## data: residualsLog by Charter
## t = 4.7957, df = 74.136, p-value = 8.161e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.2642811 0.6399761
## sample estimates:
## mean in group FALSE mean in group TRUE
## 0.02356911 -0.42855946
```

Quadratic Models

It is possible to fit quatric models fairly easily in R, say of the following form:

$$y = b_1 x^2 + b_0$$

quad.out <- $lm(Pass2013 \sim I(Pass2012^2)$, data=reportCard) summary(quad.out)\$r.squared

[1] 0.6945532

summary(lm.out)\$r.squared

[1] 0.6206049

Quadratic Models

```
summary(quad.out)
## Call:
## lm(formula = Pass2013 ~ I(Pass2012^2), data = reportCard)
##
## Residuals:
## Min 1Q Median
                          30
                                   Max
## -42.315 -5.322 0.106 5.058 42.685
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.8155478 0.5391020 -5.223 2.04e-07 ***
## I(Pass2012^2) 0.0059130 0.0001063 55.610 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 10.31 on 1360 degrees of freedom
## Multiple R-squared: 0.6946, Adjusted R-squared: 0.6943
## F-statistic: 3092 on 1 and 1360 DF, p-value: < 2.2e-16
```

Scatter Plot

```
 \begin{split} & \texttt{ggplot}(\texttt{reportCard, aes}(\texttt{x=Pass2012, y=Pass2013})) + \\ & \texttt{geom\_point}(\texttt{alpha=0.2}) + \texttt{geom\_smooth}(\texttt{method='lm', formula=y\simpoly}(\texttt{x,2,raw=TRUE}), \texttt{size=3}) + \\ & \texttt{coord\_equal}() + \texttt{ylim}(\texttt{c}(\textbf{0,100})) + \texttt{xlim}(\texttt{c}(\textbf{0,100})) \end{split}
```


Shiny App

shiny::runGitHub('NYSchools','jbryer',subdir='NYSReportCard')

See also the Github repository for more information: https://github.com/jbryer/NYSchools