Day 2 Contest: GP of NorthBeach

Moscow International Workshop 2020

November 29, 2020

A. Arrange and Count!

Keywords: string algorithms, hashes.

There are only 2n possible resulting sequences. Use polynomial hashes to count how many of them are unique. Take enough independent hashes to avoid collisions.

A hash-free solution that analyses the string period/palindromicity is also possible (?).

Complexity: $O(n \log n)$, or O(n) (?).

B. Build More 2020's!

Keywords: binary search, greedy.

Forget the 1's.

Binary search on the answer k.

With enough exchange arguments, we can show that if an answer with k subsequences s_1, \ldots, s_k exists, then s_i start at the k first 2's in order, and finish at the k last 0's in order (both from left to right).

Initially assign all s_i to only contain the first 2.

To assign remaining characters, go left to right, and try to append each character to the earliest possible s_i , until $s_i = 202$. If in the end any of s_i are unfinished, or the characters are not in order (say, the last 2 in s_i goes after the last 0), then the answer k is not achievable.

Complexity: $O(n \log n)$.

C. Choose Two Subsequences

Keywords: DP.

For all i, j compute lcs(i, j) — the longest common subsequence of $s_0 \dots s_{i-1}$ and $t_0 \dots t_{j-1}$. This a standard DP application.

Let x and y be the chosen subsequences. Suppose that x is a prefix of y, x ends before s_i , and the equal prefix of y ends before t_j . In this case update the answer with 2lcs(i,j) + (|t|-j), since we are free to take the entire suffix $t_j \dots$

On the other hand, if $s_i < t_j$ is the first mismatch between x and y, update the answer with 2lcs(i, j) + (|s| - i) + (|t| - j) (take everything after s_i and t_j).

Complexity: $O(n^2)$.

D. Determinant Strikes Back

Keywords: linear algebra.

Given two *n*-vectors a, b and a number x, we have to compute $\det(ab^T + xI)$, where I is the identity matrix. Either use Matrix determinant lemma, or the fact that $\det A$ is equal to the product of A's eigenvalues. ab^T has rank at most 1, thus n-1 of its eigenvalues are 0. The remaining eigenvalue is a^Tb as shown be the eigenvector relation $(ab^T)a = (a^Tb) \cdot a$ (still true if a = 0).

Adding xI to any matrix increases all its eigenvalues by x, thus the answer is $(x + a^T b)x^{n-1}$.

Complexity: O(n).

E. Efficient Data Structue

Keywords: data structures.

One can see that $c_i = \max_{j \leq i} (a_j + b_{j+1} + \ldots + b_i)$.

If $sb_i = b_1 + \ldots + b_i$, then $c_i = \max_{j \le i} (a_j + sb_i - sb_j) = sb_i + \max_{j \le i} (a_j - sb_j)$.

Denote $d_i = a_i - sb_i$. Maintain segment trees for sequences sb_i and d_i .

Answering a query = a single element sb_i + prefix maximum of d_i .

Updating a_i = updating a single d_i .

Updating b_i = range additions to d_i and sb_i .

If lazy propagation is used, the **complexity** is $O(\log n)$ per query.

F. Fibonacci Suffix Array

Keywords: suffix structures, patterns.

No full explanation, just some directions.

Compressed suffix automaton of fib_n is regular, and can be obtained from the ones of fib_{n-1} and fib_{n-2} with minor tweaks.

If we have the automaton, then finding the x-th suffix lexicographically is standard.

Since n is large, this can not be done explicitly, but only log max X steps of the process are needed.

G. Greatest Square

Keywords: sweep-line, sweep-line, sweep-line, sweep-line.

Consider a query point p = (x, y). Consider the 45° angle to the right of p between the horizontal and the diagonal lines. Any q = (x', y') of the polygon boundary P in this angle limits the largest square size $s \le x' - x$. A similar constraint applies for y-coordinates of points of P in the angle between vertical and diagonal lines. Constraints in both angles can be found independently, and similarly after swapping x and y.

Let a, b be the first points of P along the directions (1, 0), (1, 1) as seen from p. Then it suffices to consider the part of P between a and b.

If we find these collision points for all queries, the problem reduces to RMQ for the round-trip of P.

To find horizontal collision points (a) for all queries, we can use right-to-left sweep-line, with range updates for vertical sides of P.

We can look for diagonal collisions with vertical and horizontal sides independently. Say, for vertical sides, apply the coordinate transformation $(x, y) \to (x, y - x)$. Sides stay vertical, but $(1, 1) \to (1, 0)$, thus the same method can be applied. Similar for horizontal sides.

Coordinate compression/treap is needed on every step.

Ultimately, **complexity** is $O((n+q)\log n)$.

H. Hamming Distance

Keywords: combinatorices, divide-and-conquerish.

Let $S^i + j$ be the sequence S^i with all elements increased by j. Observe that $S^{i+1} + j$ can be obtained from $S^i + (j+1)$ by inserting j+1 in all odd positions.

Let us find the smallest Hamming distance of a sequence s to a substring of $S^i + j$. If s consists of the only element x, then the smallest distance is 0 if $j + 1 \le x \le j + i$, and 1 otherwise.

If s has more than one element, split s into a sequence of even and odd positions s_0, s_1 . One of these is matched with j + 1's, and the other with elements of $S^{i-1} + (j+1)$. Try both options recursively.

The depth of this "divide-and-conquer" is $O(\log n)$, and the **complexity** is $O(n \log n)$.

To find the total Hamming distance, count the number of matches for each element s_i against all substrings. In general, s_i occurs 2^{m-s_i} times in S^m . We only need to subtract the occurences for illegal shifts, that is, against the first i-1 and last n-i elements of S^m (these can be treated symmetrically).

One can see that the number of occurrences of x among the first y characters of S^m is $\lceil y/2^x \rceil$.

Thus the second part is doable with linear **complexity**.

I. Integers and Ranges

Keywords: DP.

Suppose that the string of digits is prepended with $d_0 = 0$. Place digits from left to right. Let (i, j, k) be a state such that:

- digits d_0, \ldots, d_i have been placed;
- the smallest suffix product divisible by 3 is $d_i \times ... \times d_i$;
- the smallest suffix product divisible by 9 is $d_k \times ... \times d_i$.

Ranges in the input provide lower bounds lb_i such that states (i, j, k) with $k < lb_i$ are illegal.

Now, consider all transitions:

- $(i, j, k) \rightarrow (i + 1, j, k) (d_{i+1} = 1, 2, 4, 5, 7, 8; 6 \text{ ways});$
- $(i, j, k) \rightarrow (i + 1, i + 1, j) (d_{i+1} = 3, 6; 2 \text{ ways});$
- $(i, j, k) \rightarrow (i + 1, i + 1, i + 1)$ $(d_{i+1} = 0, 9; 2 \text{ ways}).$

Divide all coefficients by 6, and multiply by 6^n in the end.

Now, for the current i maintain a matrix $dp_{j,k}$ of the number of ways to reach (i, j, k).

Consider moving $i \to i+1$. Then, transitions of the first type don't do anything.

Transitions of the second type put $dp_{i+1,j}$ to be the sum in the column j, divided by 3.

The final transitions put $dp_{i+1,i+1}$ to be the sum of all elements, divided by 3.

Additionally, we have to zero out all elements with $k < lb_{i+1}$.

Let us maintain column and total sums as we update the elements. Then, the row i + 1 can be filled in O(n) time.

If an element is zeroed out due to $k < lb_i$ constraint, it will remain zero. Thus, by moving a pointer p to the last zeroed-out column, we can ensure that each element is zeroed out at most once.

The total **complexity** is $O(n^2)$.

J. Jailing

Keywords: prefix sums, inclusion-exclusion, case work.

For each bounding box B_y , let's try to count sum of bounding boxes B_y contained in B_x , and containing B_x . Choose a representative of each connected component arbitrarily, and find the sum of representatives inside B_x . If $B_y \subseteq B_x$, we must have accounted for y.

If y is illegitimately counted, then y must occur outside of B_x , next to the boundary. Traverse the boundary, and fix these miscalculations.

The time to process B_x this way is proportinal to its perimeter $P(B_x)$. We can see that $P(B_x) \leq cnt(x)$, where cnt(x) is the number of occurrences of x in the matrix. Summing over all x, we can see that the time this step takes is O(nm).

In $B_x \subseteq B_y$, then the top-left corner of B_y is in the top-left part with respect to the top-left corner of B_x , and so on

Find the sum of all such corners in all four regions. Each bounding box is counted 0, 1, 2, or 4 times.

With enough inclusion-exclusion and similar 2D prefix summing in corners we can rule out the cases of 0, 1, 2. This part also takes O(nm).

With enough luck, sketchy solutions in $O(nm\min(n, m))$ time could also pass.