

Universität Ulm

Abgabe: Bis Dienstag, 24.05.2022, 14:00 Uhr

Dr. Gerhard Baur Lars von der Heide Sommersemester 2022 Punktzahl: 20

Übungen Analysis 1 für Informatiker und Ingenieure: Blatt 5

Aufgabe 1:

Finde jeweils Nullfolgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$, sodass

(2)

- a) $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$
- b) $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$
- c) $\lim_{n\to\infty} \frac{a_n}{b_n} = 42$
- d) $\lim_{n\to\infty} \frac{a_n}{b_n}$ existiert nicht.

Bemerkung: Aus dieser Aufgabe folgt, dass im Fall " $\frac{Nullfolge}{Nullfolge}$ " alles passieren kann.

Aufgabe 2:

Es sei $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge mit $\lim_{n\to\infty} a_n = a$.

(2+1)

- a) Zeige: Ist $a_n \leq c \ \forall n \in \mathbb{N}$ für ein $c \in \mathbb{R}$, so gilt auch $a \leq c$.
- b) Angenommen $a_n < c \ \forall n \in \mathbb{N}$. Gilt dann auch a < c?

Aufgabe 3: (3+4)

- a) Zeige:
 - (i) $a_n = o(b_n) \Rightarrow a_n = \mathcal{O}(b_n)$
 - (ii) $a_n, b_n = \mathcal{O}(c_n) \Rightarrow a_n + b_n = \mathcal{O}(c_n)$
 - (iii) $a_n \sim b_n, b_n \sim c_n \Rightarrow a_n \sim c_n$ wobei \sim hier asymptotisch gleich bedeutet.
- b) Um die Laufzeit von Algorithmen zu vergleichen benutzt man häufig die Landau´sche O-o-Symbolik. Beispielsweise erfordert das Lösen eines LGS der Dimension n mit den meisten Algorithmen einen Aufwand von $\mathcal{O}(n^3)$. Für sehr große n bietet diese Betrachtung eine gute grobe Abschätzung der benötigten Rechenschritte.

Im Folgenden wollen wir divergierende Folgen auf die Geschwindigkeit ihrer Divergenz untersuchen. Dabei nehmen wir an, eine Folge $(b_n)_{n\in\mathbb{N}}$ divergiert schneller als eine Folge $(a_n)_{n\in\mathbb{N}}$, falls $a_n=\mathrm{o}(b_n)$ und zwei Folgen divergieren ungefähr gleich schnell, falls weder $a_n=\mathrm{o}(b_n)$ noch $b_n=\mathrm{o}(a_n)$. Ordne die folgenden Folgen (welche wir als Laufzeiten von Algorithmen für einen Parameter n interpretieren) nach ihrer Divergenzgeschwindigkeit und beweise fünf deiner Aussagen (Vergleiche zweier Folgen).

$$2^{n+1}; \ln(n); \ n^{\frac{3}{2}} + n; \sqrt[3]{n}; e^{\sqrt{n}}; \ 200n^2 + 53n; \ n! \left(\frac{e}{n}\right)^n; \ \ln(\ln(n)); \ (e^e)^n; \ e^{(e^n)}; \ \sqrt{n}$$

Aufgabe 4:

Bestimme alle Häufungswerte folgender Folgen (die konvergenten Teilfolgen sind jeweils anzugeben): (2+3)

a)
$$a_n = (-1)^n \frac{n}{n+1}$$

b)
$$b_n = \frac{n \cdot i^n + 1}{4n - 2}$$
 mit der imaginären Einheit $i^2 = -1$.

Aufgabe 5:

Die folgenden vier gebrochen rationalen Funktionen haben jeweils bei x=1 im Nenner eine Nullstelle. (3) Untersuche jeweils $\lim_{x\to 1} f_i(x)$ für i=1,2,3,4. Welcher Zusammenhang besteht zwischen Vielfachheit der Nullstelle in Zähler und Nenner und dem Grenzwert?

$$f_1(x) = \frac{x+2}{x-1}, \ f_2(x) = \frac{x^2+x-2}{x-1}, \ f_3(x) = \frac{(x-1)(x^2+x-2)}{x-1}, \ f_4(x) = \frac{(x-1)(x+2)}{(x-1)^3}$$