Exercise sheet 3

Knots and Braids, MTH436

- 1. Consider a smooth frame s_1, s_2, \ldots, s_k of a smooth vector bundle $\pi: E \to B$ over an open set $U \subset B$. Prove that any other section $s(p) = \lambda_1(p)s_1(p) + \cdots + \lambda_k(p)s_k(p)$ over U is a smooth vector field if and only if $\lambda_i: U \to \mathbb{R}$ are smooth functions.
- 2. Consider a (not-necessarily smooth) section $s: M \to T(M)$ such that $\pi \circ s = Id$, where T(M) denotes the tangent bundle and $\pi: T(M) \to M$ the natural projection. Prove that the following are equivalent (and, therefore, they are all equivalent definitions of a smooth vector field):
 - (a) $s: M \to T(M)$ is a smooth map (considering the manifold structure on T(M)).
 - (b) Given a chart $\phi: U \to \mathbb{R}^n$, let x_i be the coordinate functions, i.e. $\phi(p) = (x_1(p), x_2(p), \dots, x_n(p))$. Consider the smooth (local) frame on U given by $\frac{\partial}{\partial y_i}$. Let $\lambda_i: U \to \mathbb{R}$ define smooth functions so that $s(p) = \Sigma_i \lambda_i(p) \frac{\partial}{\partial y_i}$, then λ_i are smooth.
 - (c) Since s(p) is a tangent vector, it is a derivation. So given a smooth function $f: M \to \mathbb{R}$, $s(p)(f) \in \mathbb{R}$. Therefore, we get a map $p \to s(p)(f)$ which is smooth for every (global!) smooth function $f: M \to \mathbb{R}$ (Be careful, we are only considering global functions f, not local ones).
- 3. Prove that (global) vector fields on a smooth manifold form a vector space.
- 4. Given a vector field $p \to X_p$ where X_p may be regarded as a derivation on the germs of smooth functions at p, let $X(f) := X_p(f)$. Prove that X is as a linear map $X : C^{\infty}(M) \to C^{\infty}(M)$ which satisfies Leibnitz's rule, i.e. X(fg) = fX(g) + gX(f). Conversely, any linear map which satisfies Leibnitz rule is equal to X(f), for some vector field $p \to X_p$.
- 5. Given two vector fields X and Y, define the Lie Bracket of X and Y (denoted [X,Y]) as [X,Y](f) := X(Y(f)) Y(X(f)).
 - (a) Prove that [X, Y] is vector field.
 - (b) Prove that the Lie Bracket satisfies these properties
 - i. [X,Y+Z]=[X,Y]+[X,Z] and $[X,\lambda Y]=\lambda [X,Y]$ for any $\lambda \in \mathbb{R}$.
 - ii. [X, Y] = -[Y, X]
 - iii. [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]]. This is called the Jacobi identity.

- (c) Given a chart $\phi: U \to \mathbb{R}^n$, with its coordinate functions $x_i(p)$ defined so that $\phi(p) = (x_1(p), x_2(p), \dots, x_n(p), \text{ prove that } [\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}] = 0$
- (d) Derive a local expression for the Lie Bracket. In other words, given a chart $\phi: U \to \mathbb{R}^n$, with its coordinate functions $x_i(p)$ defined so that $\phi(p) = (x_1(p), x_2(p), \dots, x_n(p))$, express the vector fields X and Y in terms of the coordinate frame on U, i.e. $X_p = \sum_i a_i(p) \frac{\partial}{\partial x_i}$ and $Y_p = \sum_i b_i(p) \frac{\partial}{\partial x_i}$, then write an expression for [X, Y] in terms of a_i , b_i , and $\frac{\partial}{\partial x_i}$