SBML Model Report

Model name: "Grlich2003_RanGTP_gradient"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following three authors: Lukas Endler¹, Vijayalakshmi Chelliah² and Dirk Gorlich³ at September nineth 2008 at 2:04 p. m. and last time modified at April eighth 2016 at 3:46 p. m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	13
events	0	constraints	0
reactions	9	function definitions	0
global parameters	0	unit definitions	5
rules	0	initial assignments	0

Model Notes

This model represents a concentration gradient of RanGTP across the nuclear envelope. This gradient is generated by distribution of regulators of RanGTPase. We have taken a log linear plot of graphs generated by GENESIS and compared with the experimental graphs.

¹EMBL-EBI, lukas@ebi.ac.uk

²EMBL-EBI, viji@ebi.ac.uk

 $^{^3}$ ZMBH, INF 282, Heidelberg, dg@zmbh.uni-heidelberg.de

This model originates from BioModels Database: A Database of Annotated Published Models. It is copyright (c) 2005-2008 The BioModels Team.

For more information see the terms of use.

2 Unit Definitions

This is an overview of nine unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Definition µmol

2.2 Unit microMpsec

Name microMpsec

Definition $\mu mol \cdot s^{-1} \cdot l^{-1}$

2.3 Unit pmicroMpsec

Name pmicroMpsec

Definition $1 \cdot \mu mol^{-1} \cdot s^{-1}$

2.4 Unit psec

Name psec

Definition s^{-1}

2.5 Unit microM

Name microM

Definition $\mu mol \cdot l^{-1}$

2.6 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.7 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.8 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.9 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
nucleus cytoplasm			3 3	$1.2 \cdot 10^{-11} \\ 1.8 \cdot 10^{-11}$	1	1	

3.1 Compartment nucleus

This is a three dimensional compartment with a constant size of $1.2 \cdot 10^{-11}$ litre.

3.2 Compartment cytoplasm

This is a three dimensional compartment with a constant size of $1.8 \cdot 10^{-11}$ litre.

4 Species

This model contains 13 species. The boundary condition of two of these species is set to true so that these species' amount cannot be changed by any reaction. Section 6 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
RanGDP_nuc		nucleus	μ mol·l ⁻¹		
$RCC1_RanGDP$		nucleus	$\mu mol \cdot l^{-1}$		\Box
GDP		nucleus	$\mu mol \cdot l^{-1}$		
RCC1		nucleus	$\mu mol \cdot l^{-1}$		
$\tt RCC1_RanGTP$		nucleus	$\mu mol \cdot l^{-1}$		
$RCC1_Ran$		nucleus	$\mu mol \cdot l^{-1}$		
GTP		nucleus	$\mu mol \cdot l^{-1}$		
RanGTP_nuc		nucleus	$\mu mol \cdot l^{-1}$		
RanGAP		${ t cytoplasm}$	$\mu mol \cdot l^{-1}$		
RanBP1		${ t cytoplasm}$	$\mu mol \cdot l^{-1}$		
$RanGTP_cy$		${ t cytoplasm}$	$\mu mol \cdot l^{-1}$		
$RanGTP_RanBP1$		${ t cytoplasm}$	$\mu mol \cdot l^{-1}$		
$RanGDP_cy$		${ t cytoplasm}$	$\mu mol \cdot l^{-1}$		\Box

5 Reactions

This model contains nine reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO
1	RCC1_binding		$RanGDP_nuc + RCC1 \Longrightarrow RCC1_RanGDP$	
2	GDP-		$RCC1_RanGDP \Longrightarrow RCC1_Ran + GDP$	
	$_$ dissociation			
3	$\mathtt{GTP_binding}$		$RCC1_Ran + GTP \Longrightarrow RCC1_RanGTP$	
4	$RanGTP_release$		$RCC1_RanGTP \Longrightarrow RanGTP_nuc + RCC1$	
5	Cytoplasmic-		RanGTP_nuc ← RanGTP_cy	
	$_{ extsf{ extsf}}$ transfer			
6	Nucleoplasmic-		RanGDP_nuc ← RanGDP_cy	
	$_{ t transfer}$			
7	${\tt RanGTP_binding}$		$RanGTP_cy + RanBP1 \Longrightarrow RanGTP_RanBP1$	
8	RanBP1_RanGDP	RanBP1_RanGDP	$RanGTP_RanBP1 \xrightarrow{RanGAP} RanGDP_cy + RanBP1$	
9	${\tt RanGAP_RanGDP}$	RanGAP_RanGDP	RanGTP_cy RanGDP_cy	

5.1 Reaction RCC1_binding

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$RanGDP_nuc + RCC1 \Longrightarrow RCC1_RanGDP \qquad (1)$$

Reactants

Table 5: Properties of each reactant.

Id	Name	SBO
RanGDP_nuc		
RCC1		

Product

Table 6: Properties of each product.

Id	Name	SBO
RCC1_RanGDP		

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_1 = \text{vol}(\text{nucleus}) \cdot (\text{r1} \cdot [\text{RanGDP_nuc}] \cdot [\text{RCC1}] - \text{r8} \cdot [\text{RCC1_RanGDP}])$$
 (2)

Table 7: Properties of each parameter.

Id	Name	SBO Val	lue Unit	Constant
r1	r1		$1 \cdot \mu \text{mol}^{-1} \cdot \text{s}^{-1}$	
r8	r8	55	$5.0 s^{-1}$	

5.2 Reaction GDP_dissociation

This is a reversible reaction of one reactant forming two products.

Reaction equation

$$RCC1_RanGDP \Longrightarrow RCC1_Ran + GDP$$
 (3)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
RCC1_RanGDP		

Products

Table 9: Properties of each product.

Id	Name	SBO
RCC1_Ran		
GDP		

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_2 = \text{vol}(\text{nucleus}) \cdot (\text{r2} \cdot [\text{RCC1_RanGDP}] - \text{r7} \cdot [\text{RCC1_Ran}] \cdot [\text{GDP}]) \tag{4}$$

Table 10: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
r2	r2	$21.0 s^{-1}$	
r7	r7	$11.0 1 \cdot \mu \text{mol}^{-1} \cdot \text{s}^{-1}$	\square

5.3 Reaction GTP_binding

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$RCC1_Ran + GTP \Longrightarrow RCC1_RanGTP$$
 (5)

Reactants

Table 11: Properties of each reactant.

Id	Name	SBO
RCC1_Ran		
GTP		

Product

Table 12: Properties of each product.

Id	Name	SBO
RCC1_RanGTP		

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_3 = \text{vol}(\text{nucleus}) \cdot (\text{r3} \cdot [\text{RCC1_Ran}] \cdot [\text{GTP}] - \text{r6} \cdot [\text{RCC1_RanGTP}])$$
 (6)

Table 13: Properties of each parameter.

		•			
Id	Name	SBO	Value	Unit	Constant
r3 r6	r3 r6		0.6 19.0	$\frac{1 \cdot \mu mol^{-1} \cdot s^{-1}}{s^{-1}}$	

5.4 Reaction RanGTP_release

This is a reversible reaction of one reactant forming two products.

Reaction equation

$$RCC1_RanGTP \Longrightarrow RanGTP_nuc + RCC1$$
 (7)

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
RCC1_RanGTP		

Products

Table 15: Properties of each product.

Id	Name	SBO
RanGTP_nuc RCC1		

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$\textit{v}_{4} = vol\left(nucleus\right) \cdot \left(r4 \cdot \left[RCC1_RanGTP\right] - r5 \cdot \left[RanGTP_nuc\right] \cdot \left[RCC1\right]\right) \tag{8}$$

Table 16: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
r4	r4	55.0	s^{-1}	\overline{Z}
r5	r5	100.0	$1 \cdot \mu \text{mol}^{-1} \cdot \text{s}^{-1}$	

5.5 Reaction Cytoplasmic_transfer

This is a reversible reaction of one reactant forming one product.

Reaction equation

$$RanGTP_nuc \rightleftharpoons RanGTP_cy \tag{9}$$

Reactant

Table 17: Properties of each reactant.

Id	Name	SBO
RanGTP_nuc		

Product

Table 18: Properties of each product.

Id	Name	SBO
RanGTP_cy		

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_5 = \text{kpermRanGTP} \cdot \text{vol}(\text{nucleus}) \cdot ([\text{RanGTP_nuc}] - [\text{RanGTP_cy}])$$
 (10)

Table 19: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpermRanGTP	kpermRanGTP		0.03	s^{-1}	

5.6 Reaction Nucleoplasmic_transfer

This is a reversible reaction of one reactant forming one product.

Reaction equation

$$RanGDP_nuc \rightleftharpoons RanGDP_cy \tag{11}$$

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
RanGDP_nuc		

Product

Table 21: Properties of each product.

Id	Name	SBO
$RanGDP_cy$		

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_6 = \text{kpermRanGDP} \cdot \text{vol}(\text{nucleus}) \cdot ([\text{RanGDP_nuc}] - [\text{RanGDP_cy}])$$
 (12)

Table 22: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpermRanGDP	kpermRanGDP		0.12	s^{-1}	

5.7 Reaction RanGTP_binding

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$RanGTP_cy + RanBP1 \Longrightarrow RanGTP_RanBP1$$
 (13)

Reactants

Table 23: Properties of each reactant.

Id	Name	SBO
RanGTP_cy		
RanBP1		

Product

Table 24: Properties of each product.

Id	Name	SBO
RanGTP_RanBP1		

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_7 = (\text{kon} \cdot [\text{RanGTP_cy}] \cdot [\text{RanBP1}] - \text{koff} \cdot [\text{RanGTP_RanBP1}]) \cdot \text{vol}(\text{cytoplasm})$$
 (14)

Table 25: Properties of each parameter.

Id	Name	SBO V	Value Unit	Constant
kon koff	kon koff		$0.300 1 \cdot \mu \text{mol} \\ \cdot 10^{-4} \text{s}^{-1}$	-1·s ⁻¹

5.8 Reaction RanBP1_RanGDP

This is a reversible reaction of one reactant forming two products influenced by one modifier.

Name RanBP1_RanGDP

Reaction equation

$$RanGTP_RanBP1 \xrightarrow{RanGAP} RanGDP_cy + RanBP1$$
 (15)

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
RanGTP_RanBP1		

Modifier

Table 27: Properties of each modifier.

Id	Name	SBO
RanGAP		

Products

Table 28: Properties of each product.

Id	Name	SBO
RanGDP_cy		
RanBP1		

Kinetic Law

Derived unit $s^{-1} \cdot 10^{-6} \text{ mol}$

$$v_8 = \frac{\text{vol}\left(\text{cytoplasm}\right) \cdot \text{kcat} \cdot [\text{RanGTP_RanBP1}] \cdot [\text{RanGAP}]}{[\text{RanGTP_RanBP1}] + \text{Km}} \tag{16}$$

Table 29: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kcat	kcat	$10.8 s^{-1}$	\square
Km	Km	$0.1 \mu \text{mol} \cdot l^{-1}$	

5.9 Reaction RanGAP_RanGDP

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name RanGAP_RanGDP

Reaction equation

$$RanGTP_cy \xrightarrow{RanGAP} RanGDP_cy$$
 (17)

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
RanGTP_cy		

Modifier

Table 31: Properties of each modifier.

Id	Name	SBO
RanGAP		

Product

Table 32: Properties of each product.

Id	Name	SBO
$RanGDP_cy$		

Kinetic Law

Derived unit $s^{-1} \cdot 10^{-6} \text{ mol}$

$$v_9 = \frac{\text{vol}\left(\text{cytoplasm}\right) \cdot \text{kcat_GAP} \cdot [\text{RanGTP_cy}] \cdot [\text{RanGAP}]}{\text{Km_GAP} + [\text{RanGTP_cy}]} \tag{18}$$

Table 33: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kcat_GAP Km_GAP	kcat Km	10.6 s^{-1} 0.7 μ mol· l^{-1}	

6 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

6.1 Species RanGDP_nuc

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in RCC1_binding, Nucleoplasmic_transfer).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RanGDP_nuc} = -v_1 - v_6 \tag{19}$$

6.2 Species RCC1_RanGDP

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in GDP_dissociation and as a product in RCC1_binding).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RCC1}_{-}\mathrm{RanGDP} = v_1 - v_2 \tag{20}$$

6.3 Species GDP

Initial concentration $1.6 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in GDP_dissociation), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GDP} = 0\tag{21}$$

6.4 Species RCC1

Initial concentration $0.7~\mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in RCC1_binding and as a product in RanGTP_release).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RCC1} = v_4 - v_1 \tag{22}$$

6.5 Species RCC1_RanGTP

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in RanGTP_release and as a product in GTP_binding).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RCC1}_{-}\mathrm{RanGTP} = v_3 - v_4 \tag{23}$$

6.6 Species RCC1_Ran

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in GTP_binding and as a product in GDP-dissociation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RCC1}_{-}\mathrm{Ran} = v_2 - v_3 \tag{24}$$

6.7 Species GTP

Initial concentration $500 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in GTP_binding), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GTP} = 0\tag{25}$$

6.8 Species RanGTP_nuc

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in Cytoplasmic_transfer and as a product in RanGTP_release).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RanGTP_nuc} = v_4 - v_5 \tag{26}$$

6.9 Species RanGAP

Initial concentration $0.7 \, \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a modifier in RanBP1_RanGDP, RanGAP_RanGDP).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RanGAP} = 0\tag{27}$$

6.10 Species RanBP1

Initial concentration $2 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in RanGTP_binding and as a product in RanBP1_RanGDP).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RanBP1} = v_8 - v_7 \tag{28}$$

6.11 Species RanGTP_cy

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in RanGTP_binding, RanGAP_RanGDP and as a product in Cytoplasmic_transfer).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RanGTP}_{-}\mathrm{cy} = v_5 - v_7 - v_9 \tag{29}$$

6.12 Species RanGTP_RanBP1

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in RanBP1_RanGDP and as a product in RanGTP_binding).

$$\frac{d}{dt}RanGTP_RanBP1 = v_7 - v_8 \tag{30}$$

6.13 Species RanGDP_cy

Initial concentration 5 µmol·l⁻¹

This species takes part in three reactions (as a product in Nucleoplasmic_transfer, RanBP1-_RanGDP, RanGAP_RanGDP).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RanGDP}_{-}\mathrm{cy} = v_6 + v_8 + v_9 \tag{31}$$

BML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany