# Design of Experiments and Sensitivity analysis Course and practical application

ExModelo Summer School

**OpenMOLE** 

June 24, 2019

- Interactive model exploration by hand and the need for preliminary experiments
- ► The Design of Experiments (DOE) as the definition of computational experiments to extract information from the simulation model
- Example: NetLogo behavior space: basic grid DOE
- Sensitivity analysis as an advanced DOE

**Remark 1:** terminology strongly depends on disciplines and practices

**Remark 2:** most are generally **preliminary experiments** to prepare more elaborated, question-related, experiments

- Basic experiments
- 2 High-dimensional samplings
- Sensitivity analysis
- 4 Application in OpenMOLE
- 6 Practical application

- Basic experiments
- Wigh-dimensional samplings
- Sensitivity analysis
- 4 Application in OpenMOLE
- Practical application

Provide explicitly sampling points on which the model (or its replication task) will be run: notion of **direct sampling** in OpenMOLE (corresponds to DOE in the literature)

- full samplings
- elaborated sampling for high dimensions given a low computational budget (the curse of dimensionality)

- ▶ when model is slow or computational budget highly limited
- does not capture interaction between parameters, and highly dependent on nominal values
- seen as a bad practice BUT useful for models taking significant time, and prone to thematic interpretation



- quickly limited by the curse of dimensionality in practice still powerful with a quick model and a low number of parameters
- naive approach, i.e. only DOE for many "simulation-newcomers" such as economics or some parts of physics

- Basic experiments
- 2 High-dimensional samplings
- Sensitivity analysis
- 4 Application in OpenMOLE
- 6 Practical application

Computational limitations  $\implies$  need specific methods to efficiently sample the parameter space

Different methods for improving sampling in numerical experiments given limited computational resources have been proposed, as for example:

- ► Sobol sequences (quicker convergence of integral estimation)
- Latin Hypercube Sampling
- Orthogonal sampling

L2-discrepancy given for normalized data points  $\mathbf{X} = (x_{ij}) \in [0,1]^d$  by

$$\left\| \mathbf{t} \in [0,1]^d \mapsto \frac{1}{n} \sum_{i} \mathbb{1}_{\prod_{j} \times_{ij} < t_j} - \prod_{j} t_j \right\|_2$$



Latin cube: one point in each row and column; hypercube generalization in any dimension

- Estimate integral in 1/N instead of  $1/\sqrt{N}$  with random sampling
- Constructed recursively (using bit representations)

discrepancy (also Halton sequences e.g.)

For N = 2500 samples in 2 dimensions



- Basic experiments
- 2 High-dimensional samplings
- Sensitivity analysis
- 4 Application in OpenMOLE
- Practical application

**Aim of sensitivity analysis methods** *How to summarize model sensitivity and isolate principal factors* ?

- ► Most methods are *global*, i.e. provide an aggregate of factor effect on the full parameter space
- Advanced methods, still useful for preliminary experiments e.g. to discard factors from further experiments
- Examples: Morris and Saltelli methods

**Idea:** Sample trajectories in the parameter space in a One-At-a-Time manner. Screening method isolating **elementary effects** 

- isolate local effects of factors
- more efficient than point sampling to get individual effects
- useful as a first experiment to understand the relative influence of factors

Introduced by [Morris, 1991], improved by [Saltelli et al., 2004], [Campolor propose to extend the method with Sobol sequences

$$ST_i = \frac{E_{\mathbf{X} \sim i} \left[ Var(Y | \mathbf{X} \sim i) \right]}{Var(Y)}$$

- Basic experiments
- 2 High-dimensional samplings
- Sensitivity analysis
- Application in OpenMOLE
- Practical application

## Syntax of the direct sampling:

```
val explo = DirectSampling(
    evaluation = model,
    sampling = ...
)
```

#### **One-factor sampling:**

```
Grid sampling
   sampling =
        (x1 in (0.0 to 1.0 by 0.5)) x
        (x2 in (0.0 to 1.0 by 0.5))
LHS Sampling
   sampling = LHS(
      100,
      x1 in (0.0, 1.0),
      x2 in (0.0,1.0)
Sobol sampling
   sampling = SobolSampling(
        100, x1 in (0.0,1.0), x2 in
  (0.0.1.0)
```

```
Saltelli is a method in itself
val sen = SensitivitySaltelli(
      evaluation = (model on env by 1000),
      samples = 100000,
      inputs = Seq(
           humanFollowProbability in (0.0,1.0),
           humanInformedRatio in (0.0,1.0),
           humanInformProbability in (0.0,1.0)),
      outputs = Seq(totalZombified, halfZombified),
```

#### Morris is also a method

```
val morrisHook =
val sen = SensitivityMorris(
     evaluation = model on env hook morrisHook,
      inputs = Seq(
           humanFollowProbability in (0.0,1.0),
           humanInformedRatio in (0.0,1.0),
           humanInformProbability in (0.0,1.0)),
      outputs = Seq(totalZombified, halfZombified),
      repetitions = 100,
      levels = 5
```

- Basic experiments
- 2 High-dimensional samplings
- Sensitivity analysis
- 4 Application in OpenMOLE
- Practical application

Your turn to run some direct samplings and/or sensitivity analysis

- given the described zombie model, what first experiment beyond stochasticity would be relevant?
- write a script
- explore results (using e.g. the OpenMOLE GUI plots)

### References I



Computer Physics Communications, 182(4):978–988.

Morris, M. D. (1991).

Factorial sampling plans for preliminary computational experiments.

Technometrics, 33(2):161-174.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004).

Sensitivity analysis in practice: a guide to assessing scientific models.

Chichester, England.