```
In [3]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import statsmodels.api as smf
   from matplotlib import pyplot as plt
   from scipy import stats
   from scipy.stats import norm

import warnings
warnings.filterwarnings('ignore')
```

Q.1 Answer:

Out[6]:

Name of Company		Measure X (%)
0	Allied Signal	24.23
1	Bankers Trust	25.53
2	General Mills	25.41
3	ITT Industries	24.14
4	J.P.Morgan & Co.	29.62
5	Lehman Brothers	28.25
6	Marriott	25.81
7	MCI	24.39
8	Merrill Lynch	40.26
9	Microsoft	32.95
10	Morgan Stanley	91.36
11	Sun Microsystems	25.99
12	Travelers	39.42
13	US Airways	26.71
14	Warner-Lambert	35.00

In [7]: company_details.describe() #Mean: 33.271333, Standard Deviation: 16.955401

Out[7]:

	Measure X (%)
count	15.000000
mean	33.271333
std	16.945401
min	24.140000
25%	25.470000
50%	26.710000
75%	33.975000
max	91.360000

In [8]: company_details.var() #Variance:287.146612

Out[8]: Measure X (%) 287.146612

dtype: float64

Company Names according to the X

In [11]: sns.boxplot(b) # Here we have a Box Plot to find outliars in my dataset.
plt.show()

In above dataset, Morgan Stanley company $\ensuremath{\%}$ is far more away from median.

In []: