Homework 3

17343147 张涵健

Exercise 1

(a)

本题多变量线性回归模型

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

初始值

alpha = 0.00015 # learn rate theta0 = 0.0 theta1 = 0.0 theta2 = 0.0

梯度下降迭代

repeat until convergence: {

$$\theta_0 := \theta_0 - \alpha_m^1 \sum_{i=1}^m (\mathbf{h}_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \cdot \mathbf{x}_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (\mathbf{h}_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \cdot \mathbf{x}_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha_m^1 \sum_{i=1}^m (\mathbf{h}_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \cdot \mathbf{x}_2^{(i)}$$

•••

}

误差计算

$$E_{\theta} = \frac{1}{2m} \sum{(h_{\theta}(x^{(i)}) - y^{(i)})^2}$$

number of iterations	 theta0	 theta1	 theta2	 training_error	testing_error
100000 1 200000	46.32960907409016 65.48714313030769	7.089390249476694 6.90006422168188	-72.75988620414542 -72.54075315993076	67.00770433342761 15.059483400506053	124.46329858931466 119.45523365857287
300000	73.56819957267346	6.820202465355145	-72.44831816837659	5.816168547023758	125.87200620863314
	76.9769615267465	6.786515073305167	-72.4093271175553	4.1714756596405875	130.0963802843273
500000	78.41485001848125	6.772305012879157	-72.39287986074687	3.878830138343642	132.14835040996874
	79.02138205049656	6.766310906330022	-72.38594205705064	3.8267587748738925	133.06196409214206
700000	79.27723019725956	6.763782464349798	-72.38301554348719	3.8174935488708424	133.45589532783626
700000	79.38515240210221	6.762715913597816	-72.38178107765161	3.81584495726178	133.6235851646329
900000	79.43067628978632	6.76226601974406	-72.38126035363443	3.8155516180283118	133.694590993324
	79.44987923651175	6.7620762449215395	-72.38104070113839	3.815499423230369	133.72459092904776
1100000	79.45797944898648 79.46139629136175	6.761996193854025	-72.380948047031 -72.38090896355249	3.815490136041301 3.815488483541725	133.73725411151614 133.7425972368003
1300000	79.46283758834896	6.761948182861316	-72.38089247730768	3.815488189507201	133.7448513523211
1400000	79.463445558156	6.76194217454583	-72.38088552305807	3.815488137188594	133.74580223459776
1500000	79.46370201278938	6.761939640110196	-72.38088258960731	3.815488127879413	133.7462033456204

分析与结论:

使用了4个参数来训练该线性回归模型,其中学习率为 0.00015, 其余为0.0。根据迭代计算结果,参数收敛在[79.46 6.76 -72.38]左右,误差也逐渐稳定降低。

(b)

当保持相同的迭代次数时,将学习率设置为 0.0002, 程序数据过大而越界, 无法得到理想的训练结果。

把迭代次数减少, 使得数据能正常

number of iterations	theta0	theta1	theta2	training_error	testing_error
1000	-1747.092728282745	131.7958507256941	-13599.995235543165	4674704255.004636	1538813586.113474
2000	51436.014528618136	-1668787.4037725977	-2716174.8003212786	3.5437945554783068e+16	2.8357602183455696e+1
3000	202387865.0383042	14756348.215457141	1969394858.6123743	1.6894932081755318e+20	7.17873281947429e+19
4000	2452706584.5497084	-489456826.4368838	5465044143.748105	5.8599010255726576e+20	8.06910246464213e+20
5000	-1386934847759261.0	1.2570051056519264e+16	2499552024712733.0	1.7480581799851765e+36	1.463898196040892e+36
6000	3.96625180332535e+16	8527347279727604.0	-5.58894082317717e+16	4.230671683943286e+35	4.6709781673527046e+3
7000	1.6433349672571274e+17	6.999276275629832e+16	-5.7522380393950176e+17	2.184088979250372e+37	2.6162941775394873e+3
8000	-1.7626500014429325e+17	-3.916079087362513e+18	1.7439749218446905e+19	1.0248526582280742e+41	1.0289891882556515e+4
9000	-1.9575725251527967e+21	-2.0053860164092135e+21	-4.53118495841687e+22	2.1345939235573072e+47	1.194375794616432e+47
10000	3.2580836445075433e+28	4.202168148587722e+28	-1.6902161595334898e+29	1.2624757062624578e+61	1.2442213123943994e+6
11000	-2.138901906816152e+29	-6.748896073187024e+28	1.2301807044033262e+30	1.0087025336838211e+61	1.1437410571706484e+6
12000	-2.040177208487852e+31	-3.503790950709059e+32	-1.6577575537485006e+32	1.399919628331892e+69	1.1621244410547459e+6
13000	-1.9576155727364825e+33	2.001728671140339e+33	-7.558395696270693e+34	7.104707957607205e+70	1.696487841554995e+70
14000	-9.039300711241737e+32	9.147054651323816e+31	-1.9695873227141808e+33	2.6593315856179417e+67	1.22643225625218e+67
15000	3.895424271491892e+33	1.4279774035998565e+33	-1.1978678059974384e+34	8.99330895104758e+69	1.0855819371629072e+7

结果也是不能正确收敛。

结论: 学习影响多变量线性回归模型的收敛, 学习率越大, 在梯度下降中影响越大, 应把学习率适当调小, 加快模型收敛, 或者将数据进行归一化, 统一数据的规模。

(c)

随机梯度下降迭代

$$\theta_j := \theta_j - \alpha (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

第一次实验

number of iterations	theta0	theta1	theta2	training_error	testing_error
100000	47.53275356332223		-73.21044226976132	139.40754237320385	
200000	66.23739455757273	6.913466788937517	-72.21467472624671	29.183690447155097	188.7550287531466
300000	73.79847050315364	6.7879178859813	-72.68875209310113	25.39185356849647	62.02875908366562
400000	77.27579711700503	6.545142753250406	-72.34699769036621	606.6351112895893	137.9578931261210
500000	78.580834959409	6.836525857454467	-72.32728676044837	55.71261196940427	320.5460931334222
600000	78.72470849399069	6.771274549700968	-72.2909023818609	4.435231682476635	143.5603945271500
700000	79.03916467750359	6.745896567270808	-72.40514159703906	8.718213802662914	92.16218140025892
800000	79.25985383719525	6.744056176368504	-72.27017627482333	6.096219021400686	100.0926023687046
900000	79.38953161583946	6.744421557640727	-72.45046189727157	8.962778342268143	93.61141155158026
1000000	79.26327229484556	6.747004380493538	-72.31843421644423	5.873675604905121	103.0324055370896
1100000	79.47426836418322	6.800168456826186	-72.48420457078659	15.818539309947871	221.2726942515377
1200000	79.53519099056251	6.74383752990372	-72.43064229273239	8.150004373548603	96.28158332507724
1300000	79.50625052539027	6.737356975646466	-72.3198850014816	8.688270727328131	89.89914454522278
1400000	79.73852207582391	6.736293688165116	-72.37677130074702	9.509649122648861	89.33030518431887
1500000	79.61349823071782	6.725191458464088	-72.33981539121214	15.87204620333893	70.68113095202317

第二次实验

number of iterations	theta0	theta1	theta2	training_error	testing_error	
100000	 45.85960252126788	6.898903407153634	-73.75987521888949	727.5731758288935	225.85117097572916	
200000	65.03092510001713	6.872988564904757	-72.57715188561805	27.753538646312208	65.243233784745	
300000	73.43426328552881	6.706867754328899	-72.51523876119572	157.0999240753341	8.350857247674377	
400000	76.83931345106463	6.841865885828547	-72.26832796622891	44.96951032851007	285.4162136461505	
500000	78.10241874902766	6.765606364359882	-72.44034060027492	5.496214741007151	109.0669612767709	
600000	78.74044883387606	6.77879305858796	-72.38434189009806	4.921106010686469	154.7426498789693	
700000	78.9895101617303	6.625481541605875	-72.32439977568212	210.92540356371256	9.729871733636493	
800000	79.27303361285716	6.744319505925608	-72.4060008950449	8.457518142608723	93.58189478619256	
900000	79.52597518716244	6.763255065955384	-72.2832052017285	4.37620262126744	144.5240575346286	
1000000	79.46419040526574	6.726662192311295	-72.21494731473604	11.876661123606691	76.25217728615245	
1100000	79.34351022353054	6.758640179080688	-72.44727125067293	4.495327553848098	120.0967529768261	
1200000	79.57780002380296	6.693858672092825	-72.49221811905828	61.185348907412376	27.5018806815618	
1300000	79.60248167805605	6.942578537053386	-72.45869227727611	348.2815659542219	818.0016998729815	
1400000	79.58914674677673	6.812958116692476	-72.64530437557977	20.713216952718525	247.4993412419088	
1500000	79.68383215363977	6.783876641904582	-72.41168840349357	9.29754607796619	189.0617722487179	

Stochastic Gradient Descent

误差波动较大,但随着迭代次数的增加,整体呈现下降趋势,但仍然存在特别大的波动。随机梯度下降对于训练样本有较大的随机波动性,存在重复样本过多的可能性,导致数据与理想的批量梯度下降有区别。优点是训练时间较快。

Exercise 2

(a)

• Sigmoid 函数 (逻辑函数)

$$g(z) = \frac{1}{1 + e^{-z}}$$

● 逻辑回归模型(概率模型+线性回归)

$$P(y=1|x;\theta) = g(\theta^T x) = rac{1}{1 + e^{-\theta^T x}}$$

• y符合二项分布,对应条件对数似然函数

$$LCL = \sum log p^{(i)} + \sum log(1 - p^{(i)})$$

(b)

• 对 w0 求导后

$$\frac{\partial}{\partial w_0} LCL = \sum (y^{(i)} - p^{(i)})$$

• 对 wj 求导后

$$\frac{\partial}{\partial w_j} LCL = \sum_{i} (y^{(i)} - p^{(i)}) x_j^{(i)}$$

• 进行梯度下降迭代(theta 换 w, p为关于w, x的函数)

$$w_j := w_j + \alpha \frac{\partial}{\partial \theta_j} LCL = w_j + \alpha \sum_j (y^{(i)} - p^{(i)}) x_j^{(i)}$$

(c)

由于训练数据比ex1大的多,因此使用随机梯度下降减少训练时间。

$$w_j := w_j + \alpha (y^{(i)} - p^{(i)}) x_j^{(i)}$$

训练结果使用错误率表示

错误分类/样本总数

• 测试参数

迭代次数以 20 次迭代为单位记录一次,共记录15次,学习率调整为0.002

number of iterations		theta1	 theta2	 theta3	theta4	theta5	 theta6	t0-rate	t1–rate
 20	 0.0003	-0.0001	 0.0005	+ -0.0002	0.0006	-0.0002	 0.0001	0.482500000000000004	0.48
40	0.0002	-0.0005	0.0008	-0.0005	0.0010	-0.0004	0.0001	0.02749999999999997	0.0300000000000000027
60	0.0003	-0.0007	0.0013	-0.0009	0.0014	-0.0006	0.0001	0.01249999999999956	0.0200000000000000018
80	0.0001	-0.0012	0.0015	-0.0013	0.0017	-0.0011	0.0001	0.002499999999999467	0.0
100	-0.0003	-0.0019	0.0017	-0.0018	0.0018	-0.0016	0.0000	0.0949999999999997	0.160000000000000003
120	0.0002	-0.0019	0.0023	-0.0019	0.0025	-0.0016	0.0001	0.0024999999999999467	0.0
140	0.0003	-0.0022	0.0026	-0.0022	0.0029	-0.0019	-0.0000	0.002499999999999467	0.0
160	0.0001	-0.0027	0.0029	-0.0027	0.0031	-0.0023	-0.0001	0.022499999999999964	0.0300000000000000027
180	0.0007	-0.0027	0.0036	-0.0027	0.0038	-0.0022	0.0002	0.0	0.0
200	0.0008	-0.0029	0.0040	-0.0030	0.0042	-0.0023	0.0002	0.0	0.0
220	0.0005	-0.0034	0.0040	-0.0036	0.0044	-0.0030	0.0001	0.00500000000000000044	0.0
240	0.0013	-0.0033	0.0048	-0.0035	0.0053	-0.0028	0.0004	0.00749999999999951	0.01000000000000000009
260	0.0015	-0.0036	0.0053	-0.0037	0.0058	-0.0029	0.0006	0.00749999999999951	0.01000000000000000009
280	0.0017	-0.0039	0.0058	-0.0040	0.0062	-0.0031	0.0005	0.00749999999999951	0.0100000000000000009
300	0.0015	-0.0042	0.0060	-0.0044	0.0065	-0.0035	0.0004	0.0024999999999999467	0.0

number of iterations	theta0	theta1	theta2	theta3	theta4	theta5	theta6	t0-rate	t1-rate
20	0.0039	-0.0012	0.0060	-0.0014	0.0068	-0.0004	0.0019	0.487500000000000004	
40	-0.0050	-0.0103	0.0074	-0.0112	0.0065	-0.0101	-0.0034	0.4625	j 0.5 j
60	-0.0039	-0.0154	0.0127	-0.0150	0.0108	-0.0144	-0.0024	0.3125	0.35
80	0.0071	-0.0150	0.0227	-0.0151	0.0221	-0.0115	0.0002	0.00749999999999951	0.01000000000000000009
100	0.0080	-0.0187	0.0290	-0.0180	0.0269	-0.0154	0.0008	0.00500000000000000044	0.0100000000000000000
120	0.0089	-0.0235	0.0347	-0.0221	0.0324	-0.0189	0.0002	0.002499999999999467	j 0.0 j
140	0.0060	-0.0280	0.0368	-0.0282	0.0356	-0.0225	-0.0016	0.0	j 0.0 j
160	0.0050	-0.0330	0.0406	-0.0345	0.0392	-0.0279	-0.0026	0.00749999999999951	j 0.0 j
180	0.0042	-0.0358	0.0447	-0.0398	0.0445	-0.0336	-0.0053	0.0150000000000000013	0.0200000000000000018
200	0.0129	-0.0368	0.0533	-0.0407	0.0547	-0.0329	-0.0027	0.0	j 0.0 j
220	0.0176	-0.0376	0.0594	-0.0426	0.0617	-0.0333	-0.0004	0.002499999999999467	0.0100000000000000000
240	0.0127	-0.0449	0.0633	-0.0495	0.0633	-0.0406	-0.0047	0.0	j 0.0 j
260	0.0098	-0.0501	0.0665	-0.0544	0.0676	-0.0457	-0.0066	0.002499999999999467	j 0.0 j
280	0.0089	-0.0554	0.0702	-0.0591	0.0706	-0.0498	-0.0084	0.00749999999999951	0.0
300	0.0062	-0.0620	0.0732	-0.0638	0.0728	-0.0557	-0.0115	0.020000000000000018	0.0300000000000000027
+	·	 		+		 	+	<u> </u>	tt

(d)

在迭代次数足够多时为0

(e)

收敛至少需要 30000 次迭代

number of iterations	theta0	theta1	theta2	theta3	theta4	theta5	theta6	t0-rate	t1-rate
10000	0.8815	-4.1809	5.7424	-4.2273	5.4712	-3.3599	0.1282	-7.316995434449817	-2.0134179956173317
20000	1.0181	-4.9595	6.9149	-5.0341	6.4778	-3.8936	0.1523	-4.605964204015925	-1.2380751044884846
30000	1.0958	-5.4492	7.6823	-5.5520	7.1053	-4.2098	0.1543	-3.530992301819622	-0.9338329927512855
40000	1.1494	-5.8137	8.2692	-5.9440	7.5691	-4.4350	0.1489	-2.9282177112021937	-0.7654955258374675
50000	1.1899	-6.1071	8.7509	-6.2639	7.9398	-4. 6097	0.1408	-2.5336426111080734	-0.6566866269008187
60000	1.2221	-6.3542	9.1626	-6.5366	8.2501	-4.7522	0.1316	-2.251353600064071	-0.5797251638382727
70000	1.2487	-6.5686	9.5240	-6.7757	8.5175	-4.8723	0.1224	-2.0373650678783375	-0.5219764609049863
80000	1.2712	-6.7586	9.8472	-6.9897	8.7531	-4. 9759	0.1133	-1.8684059433702604	-0.4767934441214429
90000	1.2906	-6.9297	10.1403	-7.1839	8.9640	-5.0668	0.1047	-1.7309020702670181	-0.4403217202928711
100000	1.3077	-7.0856	10.4090	-7.3622	9.1550	-5.1477	0.0966	-1.6163512143077792	-0.4101613721333954
110000	1.3228	-7.2292	10.6575	-7.5273	9.3298	-5.2205	0.0890	-1.519130452061745	-0.3847344330623958
120000	1.3363	-7.3623	10.8888	-7.6815	9.4910	-5.2865	0.0818	-1.4353580069881087	-0.3629576712850479
130000	1.3486	-7.4866	11.1054	-7.8262	9.6408	-5.3469	0.0751	-1.362259278382012	-0.3440609936536306
140000	1.3598	-7.6033	11.3094	-7.9628	9.7806	-5.4024	0.0688	-1.2977931818637083	-0.3274808183084083
150000	1.3700	-7.7134	11.5021	-8.0923	9.9118	-5.4538	0.0629	-1.2404214633468333	-0.3127944976242205

(f)

统一参数和迭代次数下,随着测试样本的增加,错误率逐渐降低,但由于样本的随机选取性,存在错 误率提高的波形,但整体还是下降趋势的。