<u>Help</u>

sandipan_dey >

<u>Course</u>

<u>Progress</u>

<u>Dates</u>

Discussion

MO Index

★ Course / 15 Fundamentals of Probability and Sta... / 15.3 Statistics and Confidence Int...

The following video discusses confidence intervals. As shown in that video, for large N, we can prove that for 95% of all possible samples, the population mean will be found in the *confidence interval*:

$$\overline{x}-1.96rac{\sigma_x}{\sqrt{N}}<\mu_x<\overline{x}+1.96rac{\sigma_x}{\sqrt{N}}$$

A higher confidence can be achieved, with a wider confidence interval. For example, 99% of all possible samples will satisfy,

$$\overline{x}-2.576rac{\sigma_x}{\sqrt{N}}<\mu_x<\overline{x}+2.576rac{\sigma_x}{\sqrt{N}}$$

Note that in practice: σ_x is not known and so is estimated from the sample, i.e. $\sigma_x pprox s_x$.

The Python script used in this video (and several others) is available here.

Video on confidence intervals for means

PROFESSOR: Now we're going to discuss the implications of the central limit theorem, or CLT.

And this is one of the classic results and plays a key role in

2/3

probability

Start of transcript. Skip to

the end.

Video

♣ Download video file

Transcripts

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>