

Can you predict the future? Introducing the NEON Ecological Forecasting Challenge

Ecological Forecasting Initiative Meeting 2024 Monday 10th June 2024

> Workshop leads: Freya Olsson, Quinn Thomas, Cayelan Carey, Mary Lofton Virginia Tech, USA

Objectives:

- 1. Introduce NEON and the Forecasting Challenge
- 2. Provide tools and resources to contribute to the Challenge
- 3. Introduce the Challenge cyberinfrastructure
- 4. Explore the existing forecast catalogue

Workshop Overview

9:30-10.00 Introductory presentation

10:00-11.00 Challenge contributor

tutorial

11.00-11.15 Break

11:15-11:45 Challenge **organizer**

walk-through

11.45-12:15 Challenge synthesis

example

Ecological forecasting

An emerging and growing field

Lewis, A. S. L et al. (2022). Increased adoption of best practices in ecological forecasting enables comparisons of forecastability. *Ecol. Appl.*, 32(2), e02500.

Forecasting Challenges

Forecasting is challenging!

A Challenge to catalyze progress

Why a forecasting challenge? – the power of many forecasts!

- 1. A community of forecasting
 - Standards
 - Development of tools and infrastructure
 - A forecasting platform

Established the **EFI-NEON Forecasting Challenge** (2021)!

Ecological Forecasting Initiative Research Co-ordination Network

- EFI RCN Goals
 - lower barriers
 - community building
 - infrastructure
 - platform development

Ecological Forecasting Initiative Research Coordination Network

5-year project

Create a community of practice that builds capacity for ecological forecasting by leveraging NEON data products.

https://ecoforecast.org/rcn/

Funded by the National Science Foundation (DEB-1926388)

What is neen?

The National Ecological Observatory Network (NEON) is a continental-scale observation facility

- collect long-term, openaccess ecological data
- 47 terrestrial and 34 aquatic sites
- 194 data products

NEON sites across the US

I Data Collection

- Standardized methodologies
- Co-located sites
- Data available via S3 cloud storage and API

What is neen?

The National Ecological Observatory Network (NEON) is a continental-scale observation facility

- collect long-term, openaccess ecological data
- 47 terrestrial and 34 aquatic sites
- 194 data products

2.1. NEON Mission

NEON is a National Science Foundation-sponsored facility for research and education on long-term, large-scale ecological change. NEON's goals are derived from the Integrated Science and Education Plan.

The goals of NEON are to:

- Enable understanding and <u>forecasting</u> of the impacts of climate change, land use change, and invasive species on aspects of continental-scale ecology such as biodiversity, biogeochemistry, infectious diseases, and ecohydrology
- Enable society and the scientific community to use ecological information and forecasts to understand and effectively address critical ecological questions and issues
- Provide physical and information infrastructure to support research, education, and land management.

What is the EFI-NEON Challenge?

ticks

"A platform for the community to make predictions of conditions at NEON sites **before the data are collected**"

- All 81 sites
 - 5 themes

What is the EFI-NEON Challenge?

"A platform for the community to make predictions of conditions at NEON sites **before the data are collected**"

- All 81 sites
 - 5 themes
- > 30,000 forecast submitted!

Forecast = A prediction of future environmental conditions that includes quantified uncertainty

Challenge overview

Objectives:

- 1. Introduce NEON and the Forecasting Challenge
- 2. Provide tools and resources to contribute to the Challenge
- 3. Introduce the Challenge cyberinfrastructure
- 4. Explore the existing forecast catalogue and scores

Forecast contributor:

- Aquatics theme Can we predict how water temperature will change over the next month?
 - Water temperature in lakes
 - NEONs water temperature data product (DP1.20264.001)
 - 30 day forecast horizon
 - Data latency of 2-3 days
- Simple baseline model to build on

Intro to key terms

- Targets
- NOAA weather
- Uncertainty
- Forecast standards

Key Challenge terms

Weather forecast covariates

- National Oceanic and Atmospheric Administration
- 3 NOAA forecast data products available via the vera4castHelpers R package:
 - Stage_1: raw forecasts from NOAA.
 30 member ensemble forecast.
 - Stage_2: processed from stage_1.
 Recommended for future forecasts (hourly inputs)
 - Stage_3: the historic data product.
 A 'stacked' data set taking every 1 day-ahead forecast.
 Useful for model training/calibration.
- Eight weather variables

Forecast uncertainty

- Forecasts must include an estimate of uncertainty.
- The uncertainty can be represented using:
 - different model runs (ensemble members)
 or
 - a **distribution** (e.g. a normal distribution with a mean and standard deviation).

Forecast standards

Help maintain consistency in forecast generation, submissions and scoring

Need to submit a forecast in a standardized format

- file format (csv)
- file name format ([theme]-[reference_datetime]-[team_name].csv)
- specific column names
- column format (datetime/character/integer/etc.)

datetime	reference_datetime	duration	site_id	depth_m	family	parameter	variable	prediction	model_id	project_id
2024-05-02	2024-05-01	P1D	fcre	1.6	ensemble	1	temperature	22.63	example_ID	neon4cast
2024-05-02	2024-05-01	P1D	fcre	1.6	ensemble	2	temperature	26.88	example_ID	neon4cast
2024-05-02	2024-05-01	P1D	fcre	1.6	ensemble	3	temperature	24.57	example_ID	neon4cast
2024-05-02	2023-05-01	P1D	fcre	1.6	ensemble	4	temperature	23.17	example_ID	neon4cast
•••	•••		•••	•••	• • •		•••	•••	• • •	• • •
2024-05-31	2023-05-01	P1D	fcre	1.6	ensemble	1	temperature	19.40	example_ID	neon4cast
2024-05-31	2023-05-01	P1D	fcre	1.6	ensemble	2	temperature	20.31	example_ID	neon4cast
2024-05-31	2023-05-01	P1D	fcre	1.6	ensemble	3	temperature	25.61	example_ID	neon4cast
2024-05-31	2023-05-01	P1D	fcre	1.6	ensemble	4	temperature	22.74	example_ID	neon4cast

Filename = aquatics-2024-06-10-example_ID.csv

Basic workflow to submit a forecast

- Read EFI-NEON Challenge documentation (https://projects.ecoforecast.org/neon4cast-dashboard/)
- 2. Investigate the forecast target variables
- 3. Build/apply your model!
- 4. Produce forecast of future conditions SUBMIT TO THE CHALLENGE!
- 5. Register, complete model description, and submit your forecasts
- 6. Wait for the scores to come in and revel in the glory of predicting the future (~5-day before first evaluation)
- 7. Use new data to update the model Workflow automation
- 8. Submit another forecast! And another ...!

Key points:

Include uncertainty

- Distribution
- Ensemble

```
Defined in the family and parameter columns e.g. family = normal parameter = mu + sigma
```

What period does the forecast cover? (e.g. daily = P1D)

When is the forecast for?

Use multiple ideas of time

- Duration
- Datetime
- Reference_datetime

→ When was the forecast generated?

Follow a standard format

- Required columns
- csv file

R functions are available to help you check your forecast format!

Install neon4cast from GitHub

More information:

information: https://projects.ecoforecast.org/neon4cast-ci/

Questions?

https://xkcd.com/2370

Let's forecast!

- 1. Follow-along R markdown
 - Forecasting water temperature using a Linear model with air temperature
- 2. Modify the model and submit an automated forecast!

Installation instructions

https://github.com/eco4cast/NEON-Challenge-EFI2024/