AI: Sudoku problem using Constraint Satisfaction Search

Team Members: Dipneet Kaur (12) & Drishti Malhotra (13)

Components of Constraint Satisfaction Problem (CSP)

Using Sudoku and identifying these components:

Variables:

Rows are indexed alphabetically starting with {A, B, C, D .. and so on.} Columns are indexed by digits starting with {1,2,3 ,4 .. and so on.} For 9*9 sudoku boards, variables are {A1, A2...A9, B1, B2 ,..., I1,I2,...I9.} At max 81 variables can be present.

Domain:

For each variable, the value lies b/w [1,9]

Constraints:

Each row consists of 9 distinct values ∈ [1,9].

I.e. <(A1,A2..A9), (all should be distinct)> and so on.

Each column consists of 9 distinct values ∈ [1,9].

I.e. <(A1,B1,...,I1), (all should be distinct)>

For each 3*3 blocks (no overlapping blocks) starting from A1 cell, consists of the 9 distinct values ∈ [1,9].

I.e. <(A1,A2,A3,B1,B2,B3,C1,C2,C3), (all should be distinct)>

Brute force to get all possibilities:

Brute force	Generate all possible woulds and test if
Generate & test	a world is a model.
	Complexity O (cdm) Wariables
	o (cdm) a Variables d values d'- World C-look ups to check o (cdm) a c constraints
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Possible Worlds # Variables - 53 # domains - 9 possible Worlds 953.

Reducing the Search space:

CSP as SEARCH	
Components of Seach.	
O States @ Start State 3 G	ical State
(Partial) assignment Empty Con of values to Assignment Ass Valiables (A) Successor State	ple te
State with next Variable assigned. Start State Start Start State Start	_
3 1 9 Start State 5 8 2 7 4 7 6 8 1759342 Puzzle is given 3 1 9 5 8 2 7 4 7 6	27 95 4 6 93 593628147 468137259 736415892 159862374 842379561
8+alu 8 3 1759312	985241736 617593428 324786915
Successor stale	fool state.

CSP Search using Backtracking:

Methodology:

For each row, column and block of 3*3 We maintain a set which will tell us about the values which are already taken by the particular row, column and block.

When we assign a value to a cell, we find out a value which is not included in the underlying row, column and block, and assign that value to the cell.

In the same manner we try to assign values to all the cells until all cells are filled or a constraint violation has taken place.

In case of a constraint violation we backtrack and try to assign other values. We keep on repeating these steps until all the cells are filled.

Using Constraint Propagation to solve CSP:

			Ce	ons-	tra	int	P	rope	292	tion
	weekstern.				THE RESERVE THE PERSONNELS.	AND DESCRIPTION OF THE PARTY.	Ci	H	1	Variable A2
-	1,2	7 .	1,2'	1,2,3				8		is dependent
		ALASAN SAN	The second second second second			8	1	4	7	on B2. I2, A1. A9, B1, B3
3	1,2,4	6	4,8,5							
ep		3		4	1	4,5		9		That Means Az's
5		5		8	3,4	2		7		Constraint
6		4		3,9	7	5,9		6		involves variables B2. Iz, A1. A9,
7		8	TOTAL COLUMN			,		3		131,133.
8		1	7	5	9	3	4	2		
9		2						1		
	TL	"7"	ica	255	3 10 6 6	1 to	T2.	+h	en.	A2 is recomputed
	A_2	. 5	, 7	ااند	han	<i>y</i>	onl	u 5	7	his recompution
										changes itis
	Ca	اادط		cons	stra	int	proj	paga	atio	2
						mple				
	-		F	Townson, No.						OEF
4	-	ħ	-	1,5				ainT		14 15
5	-	+	6	2		Pro	Pag	atio		1
6	13,	9	7 1	5,91		~20pesset		1	6	13 7 9
				NI	9 J E	EAR	H	1		alues

Generalization

For sudoku of sizes 16*16, 25*25, 36*36, n*n in general

We would need to assume n as a perfect square for making smaller blocks, Let m = sqrt(n)

Variables will increase depending on the board size (Number of variable = n*n - #(given values)) At max n*n variables can be present.

Domain for each cell will become [1,n]

Constraints:

For each row we need distinct values for each cell \in [1,n] For each column we need distinct values for each cell \in [1,n] For each block of m*m we need distinct values for each cell \in [1,n]

Methodology will be the same as previous.

References:

www.medium.com

Thank You.