Замечание. Полную версию факультатива можно найти на github. com/bolychevanton/LMSH54

Говорят, Джордж Р.Р. Мартин, автор цикла "Песнь Льда и Огня", истребляет Старков: чаще "убивает" персонажей, относящихся к этому дому, чем персонажей других домов. В таблице 1 приведено количество персонажей, относящихся к тому или иному дому, упомянутых за первые 4 книги, а так же количество погибших персонажей. Предлагается протестировать отличие уровня смертности дома Старков от уровня смертности каждого из других домов на 5% уровне значимости. Необходимо привести значения оценок вероятностей смертельных исходов для всех домов, найти p-value для каждого их трех тестов, а также проделать данные эксперименты с использованием метода Бонферрони.

Дом	Упомянутые персонажи	Погибшие персонажи
House Stark	72	18
House Lannister	49	11
House Greyjoy	41	12
Night's Watch	105	41

Таблица 1: Данные взяты из датасета https://www.kaggle.com/mylesoneill/game-of-thrones

Замечание 1. В таком прекрасном разделе математики как теория вероятностей случайные величины, которые принимают всего два значения 0 и 1, называют **бернуллиевскими** случайными величинами. При этом считается, что единица принимается с конкретной вероятностью p, а ноль, соответственно, с вероятностью 1-p. Число p называют параметром бернуллиевской случайной величины.

Задача 1. Нарисуйте график функции $\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$.

Задача 2. Пусть F(x) — это площадь под графиком функции $\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$ от $-\infty$ до x.

- 1. Как будет выглядеть график функции F(x)?
 - P.S. Вез доказательства считаем, что F(0) = 0.5 и $F(x) \to 1$ при $x \to +\infty$, или, по-другому, что прямая y = 1 это горизонтальная асимптота F(x).
- 2. А как будет выглядеть график функции $F^{-1}(\alpha)$, обратной к F(x)?

Задача 3. Пусть $X_1, X_2, X_3, \ldots, X_N$ — бернуллиевские случайные величины с параметром p.

- 1. Какие значения может принимать $X_1 + X_2 + \cdots + X_N$? С какими вероятностями?
- 2. А какие значения может принимать $\frac{X_1 + X_2 + \dots + X_N}{N}$? И с какими вероятностями?
- 3. Нарисуйте график функции f(t), где $f(t) = P(\frac{X_1 + X_2 + \dots + X_N}{N} = t)$ вероятность того, что $\frac{X_1 + X_2 + \dots + X_N}{N} = t$. Если $\frac{X_1 + X_2 + \dots + X_N}{N}$ не может принимать конкретное значение t, то тогда считаем, что f(t) = 0. Для простоты положим N = 5 и $p = \frac{1}{2}$.

Теорема 1 (Центральная предельная теорема для бернуллиевских случайных величин). Пусть X_1, X_2, \dots, X_N – бернуллиевские случайные величины с параметром p. Обозначим $\hat{p} = \frac{X_1 + X_2 + \dots + X_N}{N}$, тогда

$$\mathsf{P}\left(\frac{\hat{p}-p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{N}}} \le F^{-1}(\alpha)\right) \approx \alpha$$

при достаточно больших N. Как правило, данная теорема хорошо работает при $N\geqslant 30.$

Теорема 2 (Другая центральная предельная теорема для бернуллиевских случайных величин). Пусть X_1, \ldots, X_N — бернуллиевские случайные величины с параметром p_X , а $Y_1, \ldots Y_M$ — бернуллиевские случайные величины с параметром p_Y . Обозначим $\hat{p}_X = \frac{X_1 + \cdots + X_N}{N}$ и $\hat{p}_Y = \frac{Y_1 + \cdots + Y_M}{M}$, тогда

$$\mathsf{P}\left(\frac{(\hat{p}_X - \hat{p}_Y) - (p_X - p_Y)}{\sqrt{\frac{\hat{p}_X(1 - \hat{p}_X)}{N} + \frac{\hat{p}_Y(1 - \hat{p}_Y)}{M}}} \le F^{-1}(\alpha)\right) \approx \alpha$$

Пусть X_1, X_2, \ldots, X_N — бернуллиевские случайные величины ака персонажи Старков. Будем считать, что каждый Старк умирает с вероятностью p_S , то есть $\mathsf{P}(X_i=1)=p_S$ и $\mathsf{P}(X_i=0)=1-p_S$ для всех i. Аналогично, пусть Y_1, Y_2, \ldots, Y_M — бернуллиевские случайные величины ака персонажи Ланнистеров с $\mathsf{P}(Y_i=1)=p_L$, $\mathsf{P}(Y_i=0)=1-p_L$ для всех i.

Задача 4. Пусть $\hat{p}_S = \frac{X_1 + \dots + X_N}{N}$ и $\hat{p}_L = \frac{Y_1 + \dots Y_M}{M}$. По таблице 1 определите, чему равны \hat{p}_S и \hat{p}_L .

Итак, можно ли утверждать, что Старки умирают так же, как Ланнистеры? Сформулируем данный вопрос на математическом языке:

$$H_0: p_S = p_L, \qquad H_1: p_S \neq p_L$$
 (1)

В данном аккуратном вопросе, начинающемся с «можно ли», скрыто ещё одно важное обстоятельство: нам нужен конкретный критерий, согласно которому мы считаем, когда можно, а когда нельзя. Данный критерий носит название уровня значимости. Его, как правило берут равным 5%, как мы в общем и сделаем. А сейчас попробую расшифровать, что это такое.

Обозначим $\alpha = 0.05$ и сделаем следующее: построим множество, в которое при верности H_0 некий крокодил попадёт с вероятностью не менее $1-\alpha$. Данное множество назовём *критическим*. Далее посмотрим на крокодила, попутно проверяя, принадлежит ли он критическому множеству или нет. Если принадлежит, то принимают H_0 , иначе—отвергают H_0 в пользу H_1 . В качестве так называемого крокодила предлагается взять разность $p_S - p_L$, которая должна быть равна 0 в случае верности H_0 . Итак, если H_0 верна, то, согласно теореме 2, получаем

$$\mathsf{P}\left(0 \in \left[(\hat{p}_S - \hat{p}_L) - F^{-1}(1 - \alpha)\sqrt{\frac{\hat{p}_S(1 - \hat{p}_S)}{N} + \frac{\hat{p}_L(1 - \hat{p}_L)}{M}}, +\infty \right) \right) \approx 1 - \alpha$$

Задача 5. Проверьте (1) на 5% уровне значимости, если $F^{-1}(0.95) \approx 1.645$.

Задача 6. Проверьте на 5% уровне значимости, действительно ли Старки умирают чаще

- (а) Грейджоев?
- (b) Ночного Дозора?

Мы уже находимся на финишной прямой. Мне хотелось бы рассказать про ещё одну очень популярную и нужную штуковину. Она называется p-value. Но прежде давайте вспомним про уровень значимости. Отметим, что чем он больше, тем меньше критическое множество, и, соответсвенно, тем вероятнее мы отвергнем H_0 . Так вот, p-value — это минимальный уровень значимости, при котором мы отвергаем H_0 . Давайте поясним на примере нашей задачи. Итак, мы отвергаем H_0 , когда

$$0 < (\hat{p}_S - \hat{p}_L) - F^{-1}(1 - \alpha)\sqrt{\frac{\hat{p}_S(1 - \hat{p}_S)}{N} + \frac{\hat{p}_L(1 - \hat{p}_L)}{M}}$$

И нам нужно найти минимальное α , при котором данное неравенство будет выполнятся. Это и будет искомое p-value. Строго говоря, минимум не может быть достигнут в принципе в силу строгого неравенства. По факту это то же самое, что и потребовать найти минимальное действительное x, при котором x>2. На самом деле, в правильном определении используется не минимум, а так называемый инфимум, но об этом вам расскажут позже на мехмате 1 , поэтому мы (пока) закроем глаза на математическую строгость высказывания и положим, что p-value — это решение уравнения

$$0 = (\hat{p}_S - \hat{p}_L) - F^{-1}(1 - \text{p-value})\sqrt{\frac{\hat{p}_S(1 - \hat{p}_S)}{N} + \frac{\hat{p}_L(1 - \hat{p}_L)}{M}}$$

По факту это будет «пограничным значением» уровня значимости: если p-value меньше заданного в условии уровня значимости α , то мы отвергаем H_0 , иначе — принимаем. Посчитаем p-value для каждого из случаев

	Старки vs Ланнистеры	Старки vs Грейджои	Старки vs Ночной Дозор
p-value	0.37255026511742795	0.6871878448525566	0.9779318062843195

Мы по отдельности сравнили Старков с Ланнистерами, Грейджоями и Ночным Дозором. По факту у нас есть 3 отдельные гипотезы с тремя отдельными p-value, однако мы хотим оценить ситуацию в общем! Воспользуемся методом Бонферонни: если все найденные p-value меньше чем $\alpha/3$ (тройка в знаменателе — количество гипотез), то тогда признаем, что Старки не умирают чаще остальных персонажей, иначе — сделаем вывод, что Мартин чрезмерно жесток к Старкам.

Задача 7. Действительно ли Джордж Мартин жесток к Старкам?

¹Если вы, конечно, поступите, что вряд ли