Lab: ALU

- Please modeling an Arithmetic Logic Unit (ALU)
- Specifications
 - Module name : alu
 - Input pins: accum[7:0], data[7:0], opcode, clk, reset
 - Output pins : zero, alu_out[7:0]
 - Function:

- 1. Model the ALU in the *alu.v*. Model port interface according to the symbol view on the over. Model the functionality according to the following specifications.
 - 1). All inputs and outputs(exclude "zero" signal) are synchronized at clock rising edge.
 - 2). It is a synchronous-reset architecture. *alu_out* become 0 when the reset equal 1.
 - 3). accum, data and alu_out are using 2's complement expression.
 - 4). The *zero* bit become 1 when the *accum* equal 0, and is 0 otherwise.
 - 5). The *alu_out* becomes 0 when *opcode* is X(unknow).
 - 6). Its value is determined when the ALU decode the 3-bits opcode and performs the appropriate operation as listed below.

opcode	ALU operation	
000	Pass accumulator	
001	accumulator + data	(addition)
010	accumulator - data	(subtraction)
011	accumulator AND data	(bit-wise AND)
100	accumulator XOR data	(bit-wise XOR)
101	ABS(accumulator)	(absolute value)
110	NEG(accumulator)	(negate value)
111	Pass data	

- p.s. 1. opcode 為 101: 使用 accum[7]當作 signed bit 判斷正負
 - 2. opcode 為 110: 直接對 accum 做 2 補數運算
- 2. Check the result.

End of Lab