Course project 1

 $Biswajit\ Chowdhury$ 20/06/2019

Loading the data

5 NA 2012-10-01

6 NA 2012-10-01

```
activityData <- read.csv("activity.csv")
head(activityData)

## steps date interval
## 1 NA 2012-10-01 0
## 2 NA 2012-10-01 5
## 3 NA 2012-10-01 10
## 4 NA 2012-10-01 15
```

Calculate the total number of steps taken per day

20

25

Total number of steps taken per day

Calculate and report the mean and median of the total number of steps taken per day

Average Activity per day

the maximum number of steps?

```
head(stepsperinterval)
```

```
## 1 interval steps
## 1 0 1.7169811
## 2 5 0.3396226
## 3 10 0.1320755
## 4 15 0.1509434
## 5 20 0.0754717
## 6 25 2.0943396
```

```
maxsteps<- stepsperinterval[which.max(stepsperinterval$steps),1]
maxsteps</pre>
```

[1] 835

Imputing missing values

Calculate the total number of missing values in the data set

```
totalNa<- sum(!complete.cases(activityData))
totalNa
## [1] 2304</pre>
```

Devise a strategy for filling in all of the missing values in the dataset. Here we fill the missing values with the mean steps taken per interval.

```
new_data <- transform(activityData, steps = ifelse(is.na(activityData$steps),</pre>
head(new_data)
##
         steps
                     date interval
## 1 1.7169811 2012-10-01
## 2 0.3396226 2012-10-01
                                 5
## 3 0.1320755 2012-10-01
                                10
## 4 0.1509434 2012-10-01
                                15
## 5 0.0754717 2012-10-01
                                20
## 6 2.0943396 2012-10-01
                                25
```

histogram of the total number of steps taken each day and Calculate and report the mean and median total number of steps taken per day.

Difference between impute and non-impute data


```
# Calculate new mean and median for imputed data.

newmeansteps <- mean(newStepsPerDay$steps)
newmediansteps <- median(newStepsPerDay$steps)

# Difference between new and old mean, median
diff_mean<- newmeansteps-meansteps
diff_mean

## [1] 0

diff_med <- newmediansteps-mediansteps
diff_med

## [1] 1.188679

#Calculate total difference.

total_diff <- sum(newStepsPerDay$steps) - sum(stepPerDay$steps)
total_diff</pre>
```

[1] 86129.51

Are there differences in activity patterns between weekdays and weekends?

Average Steps per Day by Interval

