(LCD Driver with 80-Channel Outputs)

HITACHI

Description

The HD66100F description segment driver with 80 LCD drive circuits is the improved version of the no longer current HD44100H LCD driver with 40 circuits.

It is composed of a shift register, an 80-bit latch circuit, and 80 LCD drive circuits. Its interface is compatible with the HD44100H. It reduces the number of LSI's and lowers the cost of an LCD module.

Features

- LCD driver with serial/parallel converting function
- Interface compatible with the HD44100H; connectable with HD43160AH, HD61830, HD61830B, LCD-II (HD44780), LCD-III (HD44790)
- Internal output circuits for LCD drive: 80
- Internal serial/parallel converting circuits
 - 80-bit bidirectional shift register
 - 80-bit latch circuit
- · Power supply
 - Internal logic circuit: +5V ±10%
 - LCD drive circuit: 3.0V to 6.0V
- CMOS process

Comparison with HD44100H

Table 1 shows the main differences between HD66100F and HD44100H.

Table 1 Difference between Products HD66100F and HD44100H

	HD66100F	HD44100H
LCD drive outputs	80 × 1 channel	20 × 2 channels
Supply voltage for LCD drive circuits	3 to 6V	4.5 to 11V
Multiplexing duty ratio	Static to 1/16 duty	Static to 1/32 duty
Package	100-pin plastic QFP	60-pin plastic QFP

Ordering Information

Type No.	Package	
HD66100F	100-pin plastic QFP (FP-100)	
HD66100FH	100-pin plastic QFP (FP-100B)	
HD66100D	Chip	

Pad Coordinate

 $\begin{array}{lll} \text{Chip size } (X \times Y) & : & 4.50 \text{mm} \times 4.50 \text{mm} \\ & \text{Coordinate} & : & \text{Pad Center} \\ & \text{Origin} & : & \text{Chip Center} \\ & \text{Pad size } (X \times Y) & : & 100 \mu \text{m} \times 100 \mu \text{m} \end{array}$

Unit : μ m

Pad		Coordinate		
No.	Function		Υ	
1	Y30	-1725	2100	
2	Y29	-1925	2100	
3	Y28	-2100	2060	
4	Y27	-2100	1865	
5	Y26	-2100	1690	
6	Y25	-2100	1520	
7	Y24	-2100	1360	
8	Y23	-2100	1200	
9	Y22	-2100	1040	
10	Y21	-2100	880	
11	Y20	-2100	720	
12	Y19	-2100	560	
13	Y18	-2100	400	
14	Y17	-2100	240	
15	Y16	-2100	80	
16	Y15	-2100	-80	
17	Y14	-2100	-240	
18	Y13	-2100	-400	
19	Y12	-2100	-560	
20	Y11	-2100	-720	
21	Y10	-2100	-880	
22	Y9	-2100	-1040	
23	Y8	-2100	-1200	
24	Y7	-2100	-1360	
25	Y6	-2100	-1520	
26	Y5	-2100	-1690	
27	Y4	-2100	-1865	
28	Y3	-2100	-2060	
29	Y2	-1925	-2100	
30	Y1	-1725	-2100	
31	V _{FF}	-1520	-2100	
32	V I	-1360	-2100	
33	V2	-1200	-2100	
34	V3	-1040	-2100	

	Coordinate		
Function	X	Υ	
V4	-880	-2100	
	-720	-2100	
CL1	-470	-2100	
	-270	-2100	
CL2	-70	-2100	
DI	130	-2100	
DO	350	-2100	
М	620	-2100	
V_{cc}	980	-2100	
		-2100	
		-2100	
		-2060	
		-1865	
		-1690	
		-1520	
		-1360	
		-1200	
		-1040	
		-880	
	2100	-720	
	2100	-560	
		-400	
		-240	
Y66		-80	
		80	
Y64	2100	240	
Y63	2100	400	
	V4 GND CL1 SHL CL2 DI DO M V _{CC} Y80 Y79 Y78 Y77 Y76 Y75 Y74 Y73 Y72 Y71 Y70 Y69 Y68 Y67 Y66 Y65	Function X V4 -880 GND -720 CL1 -470 SHL -270 CL2 -70 DI 130 DO 350 M 620 V _{CC} 980 Y60 1725 Y79 1925 Y78 2100 Y77 2100 Y74 2100 Y73 2100 Y70 2100 Y69 2100 Y68 2100 Y66 2100 Y65 2100 Y64 2100	

69 70 71 72 73 74 75 76 77 78	Function Y62 Y61 Y60 Y59 Y58 Y57 Y56 Y55 Y55 Y554 Y52 Y51	X 2100 2100 2100 2100 2100 2100 2100 210	7 560 720 880 1040 1200 1360 1520 1690 1865 2060 2100
70 71 72 73 74 75 76 77 78	Y61 Y60 Y59 Y58 Y57 Y56 Y55 Y54 Y53 Y52 Y51	2100 2100 2100 2100 2100 2100 2100 2100	720 880 1040 1200 1360 1520 1690 1865 2060
71 72 73 74 75 76 77 78	Y60 Y59 Y58 Y57 Y56 Y55 Y54 Y53 Y52 Y51	2100 2100 2100 2100 2100 2100 2100 2100	880 1040 1200 1360 1520 1690 1865 2060
72 73 74 75 76 77 78	Y59 Y58 Y57 Y56 Y55 Y54 Y53 Y52 Y51	2100 2100 2100 2100 2100 2100 2100 2100	1040 1200 1360 1520 1690 1865 2060
73 74 75 76 77 78 78	Y58 Y57 Y56 Y55 Y54 Y53 Y52 Y51	2100 2100 2100 2100 2100 2100 2100 1925	1200 1360 1520 1690 1865 2060
74 75 76 77 78	Y57 Y56 Y55 Y54 Y53 Y52 Y51	2100 2100 2100 2100 2100 2100 1925	1360 1520 1690 1865 2060
75 76 77 78	Y56 Y55 Y54 Y53 Y52 Y51	2100 2100 2100 2100 2100 1925	1520 1690 1865 2060
76 77 78	Y55 Y54 Y53 Y52 Y51	2100 2100 2100 1925	1690 1865 2060
77 ⁷	Y54 Y53 Y52 Y51	2100 2100 1925	1865 2060
78	Y53 Y52 Y51	2100 1925	2060
	Y52 Y51	1925	
79 `	Y51		2100
7.5			
80 `		1725	2100
81 `	Y50	1520	2100
82 `	Y49	1360	2100
83 `	Y48	1200	2100
84 `	Y47	1040	2100
	Y46	880	2100
	Y45	720	2100
	Y44	560	2100
	Y43	400	2100
89 `	Y42	240	2100
	Y41	80	2100
-	Y40	-80	2100
92 `	Y39	-240	2100
	Y38	-400	2100
	Y37	-560	2100
	Y36	-720	2100
	Y35	-880	2100
	Y34	-1040	2100
	Y33	-1200	2100
	Y32	-1360	2100
100 `	Y31	-1520	2100

Pin Arrangement

Pin Description

 V_{cc} , GND, V_{EE} : V_{cc} supplies power to the internal logic circuit. GND is the logic and drive ground. V_{EE} supplies power to the LCD drive circuit.

V1, V2, V3, and V4: V1 to V4 supply power for driving an LCD (Figure 2).

CL1: HD66100F latches data at the negative edge of CL1.

CL2: HD66100F receives shift data at the negative edge of CL2.

M: Changes LCD drive outputs to AC.

DI: Inputs data to the shift register.

DO: Output data from the shift register.

SHL: Selects a shift direction of serial data. When the serial data is input in order of D1, D2, ..., D79, D80, the relation between the data and the output Y is shown in Table 3.

Y1–Y80: Each Y outputs one of the four voltage levels—V1, V2, V3, or V4—according to the combination of M and display data (Figure 2).

NC: Do not connect any wire to these terminals.

Table 2 Pin Function

Symbol	Pin No.	Pin Name	I/O
V _{cc}	46	V _{cc}	_
GND	36	Ground	_
V_{EE}	31	V_{EE}	_
V1	32	V1	_
V2	33	V2	_
V3	34	V3	_
V4	35	V4	_
CL1	37	Clock 1	I
CL2	40	Clock 2	I
M	44	M	I
DI	41	Data in	I
DO	42	Data out	0
SHL	39	Shift left	I
Y1-Y80	1–30, 51–100	Y1-Y80	0
NC	38, 43, 45, 47–50	No connection	_

Table 3 Relation between SHL and Data Output

SHL	Y1	Y2	Y3	Y79	Y80
High	D1	D2	D3	D79	D80
Low	D80	D79	D78	D2	D1

Figure 1 Selection of LCD Drive Output

Figure 2 Power Supply for Driving an LCD

Block Functions

LCD Drive Circuits

Select one of four levels of voltage V1, V2, V3, and V4 for driving a LCD and transfer it to the output terminals according to the combination of M and the data in the latch circuit.

Latch Circuit

Latches the data input from the bidirectional shift register at the fall of CL1 and transfer its outputs to the LCD drive circuits.

Bidirectional Shift Register

Shifts the serial data at the fall of CL2 and transfers the output of each bit of the register to the latch circuit. When SHL = GND, the data input from DI shifts from bit 1 to bit 80 in order of entry. On the other hand, when SHL = V_{cc} , the data shifts from bit 80 to bit-1. In both cases, the data of the last bit of the register is latched to be output from DO at the rise of CL2.

Figure 3 Relation between SHL and the Shift Direction

Figure 4 Block Diagram

Primary Operations

Shifting Data

The input data DI shifts at the fall of CL2 and the data delayed 80 bits by the shift register is output from the DO terminal. The output of DO changes synchronously with the rise of CL2. This operation is completely unaffected by the latch clock CL1.

Latching Data

The data of the shift register is latched at the negative edge of the latch clock CL1. Thus, the outputs Y1–Y80 change synchronously with the fall of CL1.

Switching Data Shift Direction

When the shift direction switching signal SHL is connected with GND, the data D80, immediately before the negative edge of CL1, is output from the output terminal Y1. When SHL is connected with V_{cc} , it is output from Y80.

Figure 5 Timing of Receiving and Outputting Data

Figure 6 Timing of Latching Data

Figure 7 SHL and Waveforms of Data Shift

Absolute Maximum Ratings

Item		Symbol	Ratings	Unit	Note
Supply voltage Logic circuits		V _{cc}	-0.3 to +7.0	V	1
	LCD drive circuits	$V_{cc} - V_{ee}$	-0.3 to +7.0	V	
Input voltage (1)		VT1	-0.3 to V_{cc} + 0.3	V	1
Input voltage (2)		VT2	$V_{\rm cc}$ + 0.3 to $V_{\rm EE}$ – 0.3	V	2
Operation temperature		T_{opr}	-20 to +75	°C	
Storage tempera	ature	T_{stg}	-55 to +125	°C	

Notes: 1. A reference point is GND (= 0V)

2. Applies to V1-V4.

Note: If used beyond the absolute maximum ratings, LSIs may be permanently destroyed. It is best to use them at the electrical characteristics for normal operations. If they are not used at these conditions, it may affect the reliability of the device.

Electrical Characteristics

DC Characteristics ($V_{\rm cc}$ = 5V \pm 10%, $V_{\rm cc}$ – $V_{\rm EE}$ = 3.0 to 6.0V, GND = 0V, Ta = -20 to +75°C)

Item	Symbol	Terminals	Min	Тур	Max	Unit	Test Condition	Note
Input high voltage	VIH	CL1, CL2,	$0.8 \times V_{cc}$	_	V _{cc}	V		
Input low voltage	VIL	M, DI, SHL	0	_	$0.2 \times V_{cc}$	V		
Output high voltage	VOH	DO	V _{cc} - 0.4	_	_	V	I _{OH} = -0.4 mA	
Output low voltage	VOL	=		_	0.4	V	I _{OL} = +0.4 mA	
On resistance Vi-Vj	R _{on1}	Y1-Y80 V1-V4	_	_	11	kΩ	$I_{ON} = 0.1 \text{ mA to}$ one Y terminal	
	R _{on2}	_	_		30	kΩ	$I_{ON} = 0.05 \text{ mA to}$ each Y terminal	
Input leakage current	I _{IL}	CL1, CL2, M, DI, SHL	-5.0	_	5.0	μΑ	Vin = 0V to V _{cc}	
Vi leakage current	I _{VL}	V1–V4	-5.0	_	5.0	μΑ	Output Y1-Y80 open Vin = V _{CC} to V _{EE}	
Current dissipation	I_{GND}		_	_	2.0	mA	f _{CL2} = 1.0 MHz	1
	I _{EE}		_	_	0.1	mA	f _{CL1} = 2.5 kHz	

Note: 1. Input/output currents are excluded; when an input is at the intermediate level in CMOS, excessive current flows from the power supply through the input circuit.

To avoid this, VIH and VIL must be fixed at V_{cc} and GND level respectively.

Item	Symbol	Terminals	Min	Тур	Max	Unit	Note
Data shift frequency	f _{CL}	CL2	_	_	1	MHz	
Clock high level width	t _{cwн}	CL1, CL2	450	_	_	ns	
Clock low level width	t _{cwL}	CL2	450	_	_	ns	
Data set-up time	f _{su}	DI	100	_	_	ns	
Clock set-up time (1)	t _{sL}	CL2	200	_	_	ns	1
Clock set-up time (2)	t _{LS}	CL1	200	_	_	ns	2
Output delay time	$\mathbf{t}_{\sf pd}$	DO	_	_	250	ns	3
Data hold time	t _{DH}	DI	100	_	_	ns	
Clock rise/fall time	f _{ct}	CL1, CL2	_	_	50	ns	

Notes: 1. Set-up time from the fall of CL2 to that of CL1.

- 2. Set-up time from the fall CL1 to that of CL2.
- 3. Test terminal

Figure 8 Timing Chart of HD66100F

Typical Applications

Connection with the LCD Controller HD44780

Figure 9 Example of Connection (1/16 Duty Cycle, 1/5 Bias)

Figure 10 Example of Connection (1/8 Duty Cycle, 1/4 Bias)

Connection with LCD III (HD44790)

Figure 11 Example of Connection (1/3 Duty Cycle, 1/3 Bias)

Static Drive

Figure 12 Example of Connection (80–Segment Display)

Timing Chart of Input Waveforms

Figure 13 Timing Chart of Input Waveforms

- Notes: 1. Input square waves of 50% duty cycle (about 30–500 Hz) to M. The frequency depends on the specifications of LCD panels.
 - 2. The drive waveforms corresponding to the new displayed data are output at the fall of CL1. Therefore, when the alternating signal M and CL1 do not fall synchronously, DC elements are produced on the LCD drive waveforms. These DC elements may shorten the life span of the LCD, if the displayed data frequently changes (e.g. display of hours, minutes, and seconds of a clock). To avoid this, make CL1 fall synchronously with the one edge of M.
 - 3. In this example, the CMOS inverter is used as a COM signal driver in consideration of the large display area. (The load capacitance on COM is large because it is common to all the displayed segments.)
 - Usually, one of the HD66100F outputs can be used as a COM signal. The displayed data corresponding to the terminal should be 0 in that case.

Figure 14 Example of Connection

Figure 15 Timing Chart (when Y1 is Used as a COM Signal)