Printed Pages: 2

BCA (14-15)/D-15

LOGICAL ORGANISATION OF COMPUTER-I

Paper-BCA-114

imum mari	ks : 80
imı	ım mari

Note: Attempt any five questions. Each question carry equal marks. First question is compulsory. Attempt other four questions selecting one from each unit.

- 1. (i) Explain Maxterm.
 - (ii) What is closure property in Boolean Algebra?
 - (iii) Prove DeMorgan's Law by Venn Diagram.
 - (iv) $(3 BFC)_{16} = (?)_{10}$
 - (v) What is an XOR gate?
 - (vi) What is a combinational Circuit?
 - (vii) What is a Decoder?
 - (viii) What is code convertor?

8×2

Unit-1

- 2. (i) Explain the following complement representation of numbers by using suitable example:
 - (a) True complement
 - (b) Radix minux one Complement
 - (ii) $(01011111)_2 = (?)_8 = (?)_{16} = (?)_{10} = (?)_5$

OI

- 3. (i) What is Error Detecting and Correcting code? Explain. 8
 - (ii) Add (79)₁₀ and (98)₁₀ by using BCD addition. 8

856

Turn over

		Unit-2
4.	(i)	Explain:
		(a) Idempotent Law
		(b) Associative Law.
	(ii)	Simplify the following Boolean function by K-map
		$F(w, x, y, z) = \Sigma(0, 3, 4, 6, 7, 11, 15)$
		$+\sum_{\Phi} (2, 5, 9, 13)$
		and also draw circuit diagram for simplified expression 8
1_		or
5.	(i)	Prove DeMorgan's Law for three variables.
	(ii)	Prove the following expression using Boolean Algebra $XYZ + \overline{X}YZ + X\overline{Y}Z + X\overline{Y}\overline{Z} = XY + YZ + ZX$ 8
		Unit-3
6.	(i)	Implement the following Boolean expression using NOR gates only
		$Y = A + \overline{B}C + AC$
	(ii)	NAND gate is an Universal gate. Justify. 8
		or
7.	(i)	Implement AND, OR and NOT gate using NAND gate 8
	(ii)	Draw the circuit diagram of Boolean function using NAND gate
# E		$F = A (BC + D) + \overline{C}D$
		Unit-4
8.	(i)	Explain 4 bit Full Adder.
	(ii)	Draw circuit diagram and 4 11 c
		or
9.	Exp	lain Seven Segment Display and also draw its circuit
	diagr	ram.
Sanction of the last	The second second	10