BUSINESS INTELLIGENCE PROJECT

TOPIC

BUSINESS INTELLIGENCE ON HEART DISEASE ANALYSIS

TEAM MEMBERS

SELVA T-19MID0094

MARAM GOWTHAMI-19MID0108

SLOT: C1+TC1+TCC1

FACULTY: PROFESSOR. DEEPA K

Heart Disease Analysis using Business Intelligence

TABLE OF CONTENTS

- INTRODUCTION
- ABSTRACT
- LITERATURE SURVEY
- ARCHITECTURE DESIGN
- DATASET OVERVIEW
- BI-IMPLEMENTATION
- REFERENCES
- RELATED LINKS

INTRODUCTION

Business Intelligence in healthcare industry is paving the way for remote healthcare and offer benefits of improved patient safety and management to reduced costs, and increased revenue to better visibility into financial operations. From monitoring cash flows to remaining compliant, the healthcare industry is moving into the data-driven world. And while, it's only the beginning, BI is no longer an option for healthcare. It's a necessity.

ABSTRACT

One of the leading causes of death for both men and women is Heart disease. Here in this paper we use different machine learning techinques to predict the heart disease and Apply BI tools to represent the data on the collected.

Heart disease is one of the most significant causes of mortality in the world today. Prediction of cardiovascular disease is a critical challenge in the area of clinical data analysis. Machine learning (ML) has been shown to be effective in assisting in making decisions and predictions from the large quantity of data produced by the healthcare industry. We have also seen ML techniques being used in recent developments in different areas of the Internet of Things (IoT). Various studies give only a glimpse into predicting heart disease with ML techniques.

In this paper, we propose a novel method that aims at finding significant features by applying machine learning techniques resulting in improving the accuracy in the prediction of cardiovascular disease.

The prediction model is introduced with different combinations of features and several known classification techniques. We produce an enhanced performance level with an accuracy level of 88.7% through the prediction model for heart disease with the hybrid random forest with a linear model.

LITERATURE SURVEY

JOURNAL NAME	JOURNAL DETAILS	FINDINGS
Effective Heart	Published year:	1.Heart disease is
Disease Prediction	2019	one of the most
Using Hybrid		significant causes of
Machine Learning	Published by:	mortality in the
Techniques	Mr. Senthilkumar	world today.
	mohan	
	Mr. Chandrasekar	2.Prediction of
	Tirumalai	cardiovascular
	Mr. Gautam	disease is a critical
	srivastava	challenge in the area
		of clinical data
		analysis.
		3.Machine learning
		(ML) has been shown
		to effective in
		assisting in making
		decisions and
		predictions from the
		large quantity of
		data produced by
		the healthcare.
		industry.
		4.A novel method
		that aims at finding
		significant features by applying
		machine learning
		techniques resulting
		in improving the
		in improving the

accuracy in the prediction of cardiovascular disease.

5.The prediction model is introduced with different combinations of features and several known classification techniques.

6.In this paper used a hybrid random forest with a linear model (HRFLM) as prediction model for predicting the heart disease and it gave accuracy level of 88.7%.

JOURNAL NAME	JOURNAL DETAILS	FINDINGS
A Healthcare	Published year: 2020	1.Wearable devices
Monitoring System		have become
for the Diagnosis of	Published by:	popular with wide
Heart Disease in the	Mr. Mohammed	applications in the
IoMT Cloud	Ayoub Khan	health monitoring
Environment Using	Mr. Fahad Algarni	system which has
MSSO-ANFIS		stimulated the
		growth of IoMT.
		2.The IoMT has an
		important role to
		play in reducing
		themortality rate by
		the early detection
		of disease.
		3.To improve
		accuracy, an IoMT
		framework for the
		diagnosis of heart
		disease using
		modified salp swarm
		optimization (MSSO)
		and an adaptive
		neuro-fuzzy
		inference system
		(ANFIS) is proposed.
		The proposed model
		improves the search
		capability using the
		Levy flight algorithm.

4.The heart condition is identified by classifying the received sensor data using MSSO-ANFIS. A simulation and analysis is conducted to show that MSSA-ANFIS works well in relation to disease prediction.

5.The proposed MSSO-ANFIS prediction model obtains an accuracy of 99.45 with a precision of 96.54, which is higher than the other approaches.

JOURNAL NAME	JOURNAL DETAILS	FINDINGS
Business Intelligence for Cardiovascular Disease Assessment	Published year: 2017 Published by: Mr. Cristiana Silva Mr. Joana Pereira Mr. Luís Costa Mr. Hugo Peixoto Mr. José Machado	1.The health care industry has historicaly generated large amounts of data for various reasons, from simple record keeping to improving patient care.
		2.This paper primarily consists in the development of a Data Warehouse in order to transform the abudant and heterogeneous clinical data in a single multidimensional structure capable of responding promptly to the information consulting needs with no redundancy. 3.The main Aim of
		the project is the construction indicators using data

through Power BI. 4. With the help of indicators it was made an analysis of	4. With the help of indicators it was
indicators it was made an analysis of	indicators it was made an analysis of multidimensional data interactively from multiple perspectives and a comparsion between that data and statistics obtained
data interactively from multiple perspectives and a comparsion between	
	irom studies.

JOURNAL NAME	JOURNAL DETAILS	FINDINGS
Hypertension Is a	Published year: 2017	1. Many prospective
Risk Factor for		cohort studies have
Several Types of	Published by:	demonstrated that
Heart Disease.	National Centre	hypertension is a
	of Biotechnological	strong risk factor for
	Information	cardiovascular
		disease (CVD).
		2. Heart disease
		includes coronary
		heart disease (CHD),
		heart failure, atrial
		fibrillation, valvular
		disease, sudden
		cardiac death (SCD),
		sick sinus syndrome
		(SSS),
		cardiomyopathy, and
		aortic aneurysms.
		3. Most of the
		epidemiologic
		prospective studies
		of heart disease
		focused on
		coronary/ischemic
		heart disease. Here
		we comprehensively
		reviewed the
		association between

hypertension and the abovementioned heart diseases.

4. It found that CHD, heart failure, atrial fibrillation, aortic valvular disease, SCD, SSS, left ventricular hypertrophy, and abdominal aortic aneurysms were all associated with hypertension.

5. Those relations tended to be stronger in men. The prevention of hypertension and lowering one's blood pressure may help reduce the risk of developing heart disease.

JOURNAL NAME	JOURNAL DETAILS	FINDINGS
Extreme exercise vs.	Published year: 2021	1. Research found
no exercise at all		evidence that high
	Published by:	intensity exercise can
	CNN	acutely increase the
		risk for sudden
		cardiac arrest or
		sudden cardiac death
		in individuals with
		underlying cardiac
		disease.
		2. The vast majority
		of these deaths
		occur on the athletic
		field during severe
		exertion in the
		context of training or
		competition
		3. Less common
		causes are a variety
		of congenital
		coronary artery
		anomalies,
		myocarditis, dilated
		cardiomyopathy,
		Marfan's syndrome,
		and right ventricular
		dysplasia (in one
		series).
		4. Uncommon but
		reported causes of
		reported eduses of

these athletic field catastrophies include sarcoid, mitral valve prolapse, aortic valve stenosis, atherosclerotic coronary artery disease, and QT-interval prolongation syndrome

TECHNICAL ARCHITECTURE

DATASET DETAILS

Attribute	Description	Type
Age	Patient's age in completed years	Numeric
Sex	Patient's Gender (male represented as 1 and fe- male as 0)	Nominal
Ср	The type of Chest pain categorized into 4 values:	Nominal
Tracthre	typical angina, 2. atypical angina, 3. non- anginal pain and 4. asymptomatic Level of blood pressure at resting mode (in	Numeric
1020000	mm/Hg at the time of admitting in the hospital)	
Chol	Serum cholesterol in mg/dl	Numeric
FBS	Blood sugar levels on fasting > 120 mg/dl; repre- sented as 1 in case of true, and 0 in case of false	Nominal
Resting	Results of electrocardiogram while at rest are represented in 3 distinct values: Normal state is represented as Value 0, Abnormality in ST-T wave as Value 1, (which may include inversions of T-wave and/or depression or elevation of ST of > 0.05 mV) and any probability or certainty of LV hypertrophy by Estes' criteria as Value 2	Nominal
Thali	The accomplishment of the maximum rate of heart	Numeric
Exang	Angina induced by exercise. (0 depicting 'no' and 1 depicting 'yes')	Nominal
Oldpeak	Exercise-induced ST depression in comparison with the state of rest	Numeric
Slope	ST segment measured in terms of the slope dur- ing peak exercise depicted in three values: 1. unsloping, 2. flat and 3. downsloping	
Ca	Fluoroscopy coloured major vessels numbered from 0 to 3	Numeric
Thal	Status of the heart illustrated through three dis- tinctly numbered values. Normal numbered as 3, fixed defect as 6 and reversible defect as 7.	Nominal
Num	Heart disease diagnosis represented in 5 values, with 0 indicating total absence and 1 to 4 repre- senting the presence in different degrees.	Nominal

BI IMPLEMENTATION

Thali

Thal

REFERENCES

- https://ieeexplore.ieee.org/document/8113791
- https://pubmed.ncbi.nlm.nih.gov/?term=heart+disease
- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=87409
 89
- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=91317
 56
- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=87409
 89
- https://www.researchgate.net/publication/346035178_HEART_ DISEASE_PREDICTION_USING_MACHINE_LEARNING_DANNIEL_ SHAZMEER_CITY_UNIVERSITY_OF_MALAYSIA

PPT LINK

https://slides.com/d/r1UpAVQ/live