MAT 150C - Homework 1 Markus Tran

Computational Exercises

1. (a)
$$(3+\alpha)(-1+2\alpha) = -3+6\alpha-\alpha+2\alpha^2=3+5\alpha=3$$
.

(b)
$$(4+2\alpha)(x+y\alpha) = 4x + 4y\alpha + 2x\alpha + 2y\alpha^2 = (4x+6y) + (2x+4y)\alpha$$
.

Solving the system

$$4x + 6y = 1$$
$$2x + 4y = 0$$

in \mathbb{F}_5 gives x = 1, y = 2.

2. $\mathbb{F}_7[x]/(x^2-c)$ is a field whenever (x^2-c) is irreducible, which occurs whenever c is not a square in \mathbb{F}_7 . In \mathbb{F}_7 , we have

$$\begin{array}{c|cc}
x & x^2 \\
\hline
0 & 0 \\
1 & 1 \\
2 & 4 \\
3 & 2 \\
4 & 2 \\
5 & 4 \\
6 & 1
\end{array}$$

Thus c = 3, 5, 6.

3. (a) $(1+x+x^2) \cdot \sum_{i=0}^{\infty} a_i x^i = a_0 + (a_0+a_1)x + (a_0+a_1+a_2)x^2 + (a_1+a_2+a_3)x^3 + \cdots$

We have $a_0 = 1$ and $a_1 = -1$. The relation $a_n = -a_{n-1} - a_{n-2}$ for $n \ge 2$ gives the sequence $(a_n) = (1, -1, 0, 1, -1, 0, \ldots)$, so

$$(1+x+x^2)^{-1} = 1-x+x^3-x^4+x^6-x^7+\cdots$$

$$\left(\sum_{i=0}^\infty x^i
ight)\left(\sum_{i=0}^\infty a_ix^i
ight)=\sum_{i=0}^\infty \left(\sum_{k=0}^i a_k
ight)x^i.$$

Similarly, we have $a_0 = 1$ and $a_1 = -1$, and the relation $a_n = -\sum_{i=0}^{n-1} a_i$ for $n \ge 2$ gives $a_n = 0$. Thus

$$\left(\sum_{i=0}^{\infty}x^i
ight)^{-1}=1-x.$$

Theoretical Exercises

1. (a) Let $x, y \in IJ$, so that $x = \sum_{i=1}^{n} f_i g_i$ and $y = \sum_{j=1}^{m} f_j g_j$ with $f_i, f_j \in I$ and $g_i, g_j \in J$. Then x + y can be written as $x + y = \sum_{k=1}^{n+m} f_k g_k$, and IJ is closed under addition.

Let $x \in IJ$ and $r \in R$ with $x = \sum_{i=1}^n f_i g_i$. Then $rx = \sum_{i=1}^n r f_i g_i$. Since I is an ideal and $f_i \in I$, then $rf_i \in I$ and so $rx \in IJ$. Therefore IJ is an ideal in R.

- (b) Let $x \in IJ$ and $x = \sum_{i=1}^{n} f_i g_i$. Since I is an ideal and $f_i \in I$, then $f_i g_i \in I$. This means that x is a sum of elements in I, and so $x \in I$. By a similar argument, $x \in J$, and altogether $x \in I \cap J$.
- (c) Let $R = \mathbb{R}[x]$, and let $I = J = (x^2)$ be the ideal consisting of polynomials with degree at least 2. Then $I \cap J = (x^2)$, but $IJ = (x^4)$, the ideal of polynomials with degree at least 4.
- 2. (a) Let a, b be nilpotent elements in R such that $a^n = b^m = 0$. Let $N = \max(n, m)$, so that $a^N = b^N = 0$. Then

$$(a+b)^{2N} = \sum_{k=0}^{2N} inom{2N}{k} a^k b^{2N-k}.$$

Since either $k \geq N$ or $2N - k \geq N$, then $a^k b^{2N-k} = 0$, and the whole sum equals 0. Thus a + b is nilpotent.

Let a be a nilpotent element in R such that $a^n = 0$, and let $r \in R$. Then $(ra)^n = r^n a^n = 0$, and ra is a nilpotent element. Therefore $\mathfrak{nil}(R)$ is an ideal.

Let \overline{x} be a nonzero element of $R/\mathfrak{nil}(R)$ with representative x where x is not nilpotent in R. Then $(\overline{x})^n = \overline{x^n} \neq \overline{0}$, since x^n is also never nilpotent. Thus \overline{x} is not nilpotent in $R/\mathfrak{nil}(R)$.

(c) Let a be a nilpotent element and u a unit in R. Then $u^{-1}a$ is another nilpotent element, and say $(u^{-1}a)^n = 0$. Then

$$(u+a)\cdot u^{-1}\sum_{i=0}^{n-1}(-1)^i(u^{-1}a)^i=(1+u^{-1}a)\cdot \sum_{i=0}^{n-1}(-1)^i(u^{-1}a)^i=1\pm (u^{-1}a)^n=1.$$

Thus u + a is a unit.

3. (a) Let $f_a \in \mathbb{F}_q[x]$ be defined as

$$f_a(x) = \prod_{b
eq a} (x-b)(a-b)^{-1}.$$

This is well defined, since $a - b \neq 0$. Furthermore, $f_a(a) = 1$ and $f_a(b) = 0$ for $b \neq a$.

(b) Let $f \in \mathbb{F}_q[x]$ be defined as

$$gf = \sum_{a \in \mathbb{F}_q} \Phi(a) \cdot f_a.$$

Then for any $a \in \mathbb{F}_q$,

$$f(a) = \underbrace{\Phi(a) \cdot f_a(a)}_{\Phi(a)} + \sum_{b
eq a} \underbrace{\Phi(b) \cdot f_b(a)}_{0} = \Phi(a).$$

(c) Part (b) shows that ev is surjective.

Let $f \in \ker(\text{ev})$, so f(a) = 0 for all $a \in \mathbb{F}_q$. Therefore (x - a) divides f, and $p = \prod_{a \in \mathbb{F}_q} (x - a)$ divides f. Every element of $\ker(\text{ev})$ can be written as pq where q is a polynomial in $\mathbb{F}_q[x]$, so $\ker(\text{ev}) \subseteq (p)$. Clearly $(p) \subseteq \ker(\text{ev})$, and altogether $\ker(\text{ev}) = (p)$.