

Curso de

Matemáticas para Data Science: Probabilidad

Francisco Camacho

[C1] ¿Qué es la probabilidad?

Incertidumbre y probabilidad

Incertidumbre

Tomar decisiones con información incompleta.

El azar no es más que la medida de nuestra ignorancia. Los fenómenos fortuitos son, por definición, aquellos cuyas leyes o causas simplemente ignoramos

Henri Poincaré

Probabilidad

Es un lenguaje que nos da herramientas para cuantificar la incertidumbre.

Axiomas de la probabilidad

Suceso elemental:

"El resultado de lanzar un dado es 4".

$$P = rac{ ext{N}^{\circ} ext{ sucesos exitosos}}{ ext{N}^{\circ} ext{ sucesos totales}}$$

Suceso:

"El resultado de lanzar un dado es par".

Axiomas de la probabilidad

Axiomas de la probabilidad

$$0 \leq P \leq 1$$
 $\operatorname{certeza} o P = 1$ $\operatorname{imposibilidad} o P = 0$ $\operatorname{disjuntos} o P(A \cup B) = P(A) + P(B)$

¿Qué es realmente la probabilidad?

Es una creencia que tenemos sobre la ocurrencia de eventos elementales.

[C2] Probabilidad en Machine Learning

Incertidumbre y probabilidad

Fuentes de incertidumbre

- Datos
- Atributos del modelo
- Arquitectura del modelo

Modelo de clasificación

Modelo de clasificación

Todas las etapas del modelo

[C3] Tipos de probabilidad

Fundamentos de probabilidad

Tipos de probabilidad

Conjunta (joint)

Marginal

Condicional

Juego de dos dados

000			
000			
0 0			
°°			
0			
•			

Probabilidad conjunta

$$P(A,B) = P(A\&B) = P(A\cap B)$$

Probabilidad condicional

$$P(A \text{ dado } B) = P(A|B)$$

$$P(A \cap B) = P(A|B)P(B)$$

Regla del producto

[C4] Ejemplos de cálculo de probabilidad

Fundamentos de probabilidad

Correlaciones de eventos

- A = {el resultado de lanzar un dado es 4}
- B = {el resultado de lanzar un dado es par}
- C = {el resultado de lanzar un dado es impar}

Juego de ruleta

$$riangleq o \{1,2,3,4\}$$
 Jugador 1

$$riangleq o \{5,6,7,8\}$$
 Jugador 2

[C5] Ejemplos avanzados con probabilidad

Fundamentos de probabilidad

Paradoja ¿niño o niña?

 Una mujer tiene dos bebés donde el mayor es un varón.

 Una mujer tiene dos bebés donde uno de ellos es varón.

El problema de Monthy Hall

[C6] ¿Qué es una distribución?

Distribuciones de probabilidad

Volvemos al cálculo

X aleatoria
$$o$$
 $P(X=x)$ probabilidad de ocurrencia

$$P = f(X)$$

Volvemos al cálculo

 $X o ext{variable aleatoria}$

 $x o ext{valores posibles en el espacio muestran}$

Volvemos al cálculo

Discreto

Dom(X)

 $\{1, 2, 3, 4, 5, 6\}$

Continuo

 $[0,\infty]$

[C7] Distribuciones discretas

Distribuciones de probabilidad

Distribución de Bernoulli

Variables con ocurrencias binarias

$$P(X = 1) = p$$

$$P(X = 0) = 1 - p$$

Distribución binomial

Secuencia repetitiva de eventos tipo Bernoulli

P(2 caras|3 lanzamientos) = 3/8

Distribución binomial

Secuencia repetitiva de eventos tipo Bernoulli

P(k caras | n lanzamientos) = ?

Distribución binomial

$$P(\text{k caras}|\text{n lanzamientos}) = P(k; n, p)$$

$$P(k;n,p) = inom{n}{k} p^k (1-p)^{(n-k)}$$

Distribución multinomial

$$P(X_1,\ldots,X_n) = rac{n!}{k_1!\ldots k_2!} p_1^{k_1}\ldots p_n^{k_n}$$

Otras distribuciones

- Poisson
- Geométrica
- Hipergeométrica
- Binomial negativa
- ...

[C8] Usando la distribución binomial

Distribuciones de probabilidad

[C9] Distribuciones continuas

Distribuciones de probabilidad

Distribución normal (gaussiana)

Un ejemplo numérico con el siguiente dataset:

https://seattlecentral.edu/gelp/sets/057/057.html

Distribución normal (gaussiana)

$$P(X) = rac{1}{\sigma\sqrt{2\pi}} \exp{-rac{1}{2}\left(rac{X-\mu}{\sigma}
ight)^2}$$

Otras distribuciones

- Exponencial
- Pareto
- ...

[C10] ¿Cómo estimar una distribución?

Distribuciones de probabilidad

[C11] ¿Qué es MLE?

Estimación de máxima verosimilitud

MLE

Un framework para estimación de densidades de probabilidad.

Elementos de MLE

Escoger la distribución:
 Teniendo solo una muestra de los datos.

Escoger los parámetros de la distribución:
 Que mejor ajustan la distribución a los datos.

Un problema de optimización

$$P(X; \theta) = L(X; \theta)$$

$$\max L(X; heta) o \max \prod_i P(X_i; heta)$$

$$\max \log L(X; heta) o \max \sum_i \log P(X_i; heta)$$

[C12] MLE en Machine Learning

Estimación de máxima verosimilitud

ML: ajustar densidades a datos

Regresión lineal con MLE

$$y = \underbrace{m}_{ ext{pendiente}} x + \underbrace{b}_{ ext{intercepto}} = \underbrace{b_0}_{ ext{weight}} x + \underbrace{b_1}_{bias}$$

$$P(y|x) o \max \sum_i \log P(y_i|x_i; \underbrace{h}_{ ext{modelo}})$$

Regresión lineal con MLE

$$P(y|x)
ightarrow \max \sum_i \log P(y_i|x_i; \underbrace{h}_{\mathrm{modelo}})$$

$$h
ightarrow y = b_0 x + b_1$$

$$P
ightarrowrac{1}{\sigma\sqrt{2\pi}}{
m exp}-rac{1}{2}igg(rac{X-\mu}{\sigma}igg)^2$$

[C13] Regresión logística

Estimación de máxima verosimilitud

[C14] Aplicación de Regresión Logística

Estimación de máxima verosimilitud

[C15] Teorema de Bayes

Inferencia bayesiana

Dos escuelas de probabilidad

Frecuentistas Bayesianos

Teorema de Bayes

$$P(A|B) = rac{P(B|A) P(A)}{P(B)}$$
posteriori
evidencia

[C16] Bayes en Machine Learning

Inferencia bayesiana

MAP vs MLE

$$P(\overbrace{h}^{ ext{hipótesis}}) = rac{P(D|h)P(h)}{P(D)}$$

$$\max P(h|D) o \max P(D|h)P(h)$$

Clasificador óptimo de Bayes

