Lab 9

Summary

In this lab we learned the implementation of the Go-Back-N ARQ protocol. Instead of using the traditional 'timeout' function to see when to re-transmit packets, we used ACKs and NAKs to figure out when to re-transmit. Another thing I notcies was that the string length must be at least 6, that is 3 packets with 2 letters in each. The reason is that we set our N to be 3.

Exercise

After running the program 6 times with BER values:

0.001, 0.002, 0.005, 0.01, 0.02 and 0.05

Graphing Average **number of transmissions** per data packet vs **BER values**

```
bash-4.4$ ./receiver 50404 | grep "^Received corrupted packet." | wc -l
381
```

Above shows screenshot of sender and receiver. For BER of 0.05, the number of corrupted packages were too many to count manually, so I used regex.

We see that total number of corrupted packages are 381. Therefore, the average will be: 381/13 = 29.31

BER	Average
0.001	0
0.002	0.077
0.005	0.384
0.01	1.07
0.02	2.38
0.05	29.31

From this graph we observe that the graph is exponential. As the BER increases the average retransmission also increases. We see that when BER was 0.001, there were 0 re-transmissions totally. When BER was 0.05, there were 381 re-transmissions totally.