Analysis III (Marciniak-Czochra)

Robin Heinemann

24. Oktober 2017

Inhaltsverzeichnis

1 Grundlagen der Maß- und Integrationstheorie

1 Grundlagen der Maß- und Integrationstheorie

Motivation: Erweiterung des Riemannintegrals auf einen größeren Bereich von Funktionen

Satz 1.1 (Kriterium für Riemann Integrierbarkeit) Sei $f:[a,b]\to\mathbb{R}$ beschränkt. Dann ist f genau dann Riemann integrierbar, falls die Menge S der Unstetigkeiten von f eine Nullmenge ist, im Sinne, dass es für jedes für jedes $\varepsilon>0$ eine abzählbare Familie von Intervallen I_i gibt, mit

$$S \subset \bigcup_{i=1}^{\infty} I_i$$

$$\sum_{i=1}^{\infty} |I_i| < \varepsilon$$

Bemerkung Insbesondere ist die Funktion

$$f: [0,1] \to \mathbb{R}, f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

nicht Riemann integrierbar.

Das Riemann-Integral der Funktion ist definiert über eine Zerlegnug des Definitionsbereiches in kleine Intervalle. Beim Lebesgue Integral wird stattdessen der Bildbereich zerlegt! Für eine nichtnegative $f:\Omega\to[0,\infty],\Omega\subset\mathbb{R}^n$ betrachten wir die Mengen

$$E_k := f^{-1}((t_k, t_{k+1}]) \subset \mathbb{R}^n$$

wobei $t_k=hk$ für ein vorgegebenens h>0, und approximieren dann das Integral von f durch

$$\sum_{i=1}^{\infty} t_k^{(h)} \mu(E_k) \le \int f(x) dx \le \sum_{i=1}^{\infty} t_{k+1}^{(h)} \mu(E_k)$$
 (*)

1

wobei das **Maß** $\mu: \mathcal{P}(\mathbb{R}^n) \to [0,\infty]$ eine Abbildung ist, welche das Maß der Menge $E=\mathcal{P}(\mathbb{R}^n)$ misst. Das Integral ergibt sich aus (*) im Limes $h\to 0$. Für das Lebesgue-Integral müssen wir ein geeignetes Maß definieren \to Lebesguemaß \mathcal{L}^n

$$\int_0^1 f(x) d\mathcal{L}^1(x) = \underbrace{\mathcal{L}^1(\mathbb{Q})}_0 \cdot 1 + \underbrace{\mathcal{L}^2(\mathbb{R} \setminus \mathbb{Q})}_1 \cdot 0 = 0$$

Definition 1.2 (Maßproblem) Wir suchen eine Abbildung $\mu: \mathcal{P}(\mathbb{R}^n) \to [0, \infty]$ mit den folgenden Eigenschaft

1.
$$\mu(A) \subseteq \mu(B) \forall A \subset B$$
 (Monotonie)

2.
$$\mu\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\mu(A_{i}) \text{ falls } A_{i}\cap A_{j}=\emptyset \forall i\neq j$$
 (\sigma-Additivit\(\text{atiletic}\))

3.
$$\mu([0,1]^n) = 1$$
 (Normierung)

4.
$$\mu(QA+y)=\mu(A)$$
 falls $Q\in O(n), y\in\mathbb{R}^n$ (Euklidische Invarianz)

Dieses Problem heißt Maßproblem. In einer etwas schwächeren Version kann man auch fordern

2.
$$\mu\left(\bigcup_{i=1}^{k} A_i\right) = \sum_{i=1}^{k} \mu(A_i)$$

4.
$$\mu(A+y) = \mu(A)$$
 für $y \in \mathbb{R}^n$

Satz 1.3 (Vitali: 1908) Es gibt keine Abbildung $\mu : \mathcal{P}(\mathbb{R}^n) \to [0, \infty]$ welche die Forderungen des Maßproblems erfüllt.

Beweis Sei $\mu: \mathcal{P}(\mathbb{R}^n) \to [0,\infty]$ eine Abbildung die Groderungen des Maßproblems erfüllt. Sei $q_i, i \in \mathbb{N}$ eine Abzählung von $[0,1]^n \cap \mathbb{Q}^n$. Wir definieren die Äquivalenzrelation $x \sim y$ auf $E := [0,1]^n$ durch $x \sim y \iff x-y \in \mathbb{Q}$. Nach dem Auswahlaxiom gibt es eine Menge $M_0 \subset [0,1]^n$, welche aus jeder Äquivalenzklasse genau ein Element enthält, das heißt es gilt:

- 1. $\forall y \in [0,1]^n \exists x \in M_0 : x \sim y \in \mathbb{Q}$
- 2. Aus $x, y \in M_0, x y \in \mathbb{Q} \implies x = y$

Wir definieren $M_i=M_0+q_i$. Aus der Definition von M_i folgt $M_i\cap M_j=\emptyset \forall i\neq j$. In der Tat falls $x\in M_i\cap M_j$, dann $x-q_i\in M_0$ und $x-q_j\in M_0\stackrel{1}{\Rightarrow}q_i=q_j$. Außerdem gilt $[0,1]^n\subset\bigcup_{i=1}^\infty M_i\subset [0,2]^n$. Die erste Einbettung folgt aus 1., die zweite Einbettung gilt, da $y+q_j\in [0,2]^n \forall y\in M_0$ und $y\in [0,1]^n$ schließlich gilt $\mu(M_i)=\mu(M_0)\forall j\in\mathbb{N}$. Dies folgt aus den Forderungen 1., 3., 4. (abgeschwächte Version reicht).

$$\implies 1 = \mu([0,1]^n) \le \mu\left(\bigcup_{j=0}^{\infty} M_j\right) = \sum_{i=0}^{\infty} \mu(M_i) = \sum_{i=0}^{\infty} \mu(M_0) \implies \mu(M_i) = \mu(M_0) > 0$$

und

$$\mu\bigg(\bigcup_{i=0}^{\infty} M_i\bigg) = \infty$$

Aus 3. und 4. folgt andererseits

$$\mu([0,2]^n) = 2^n \mu([0,1]^n) = 2^n$$

$$\stackrel{(*)}{\Longrightarrow} \mu\left(\bigcup_{i=0}^{\infty} M_i\right) \le \mu([0,2]^n) = 2^n < \infty$$

Bemerkung Jedes Maß, welche die Eigenschaften des Maßproblems erfüllt, kann also nicht auf der ganzen $\mathcal{P}(\mathbb{R}^n)$ definiert sein, sondern auf einer Untermenge der $\mathcal{P}(\mathbb{R}^n)$.

Frage: Welche ist die "größte" (eine "gute") Untermenge $\mathcal{A}\subset\mathcal{P}(\mathbb{R}^n)$, sodass es eine Lösung des Maßproblems gibt?

Definition 1.4 (Algebra und \sigma-Algebra) Eine Algebra $\mathcal A$ ist die Familie von Teilmengen einer gegebenen Menge X mit

- $x \in \mathcal{A}$
- $A \in \mathcal{A} \implies A^C := X \setminus A \in \mathcal{A}$
- $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$

Falls

$$(A_k)_{k\in\mathbb{N}}\subset\mathcal{A}\implies\bigcup_{k\in\mathbb{N}}A\in\mathcal{A}$$

so spricht man von einer σ -Algebra.

Lemma 1.5 Sei X eine Menge, \mathcal{A} eine σ Algebra und $(A_k)_{k\in\mathbb{N}}\subset\mathcal{A}$. Dann gehören $\emptyset,\bigcap_{k\in\mathbb{N}}A_k$ und $A_1\setminus A_2$ zu \mathcal{A} .

Definition 1.6 (Erzeugte und relative σ -Algebra) Für $S \subset \mathcal{P}(X)$ wird

$$\Sigma(S) = \Sigma(S \mid X) := \bigcap \{ \mathcal{A} \subset \mathcal{P}(X) \mid \mathcal{A} \text{ ist eine } \sigma\text{-Algebra mit } S \subseteq \mathcal{A} \}$$

als die von S erzeugte σ -Algebra bezeichnet. $\forall Y \subset X$ definieren wir die relative σ -Algebra

$$\mathcal{A} \cap Y := \{ A \cap Y \mid A \in \mathcal{A} \}$$

Lemma 1.7 Die erzeugte relative σ -Algebra sind wohldefiniert. Für alle Mengen $S \subset \mathcal{P}(X), Y \subset X$ gilt

$$\Sigma(S \cap Y \mid Y) = \Sigma(S \mid X) \cap Y$$

Beweis (Übungen)

Definition 1.8 (Topologischer Raum) Ein topologischer Raum ist ein Paar (X, \mathcal{O}) bestehend aus Menge X und $\mathcal{O} \subset \mathcal{P}(X)$ mit

- $\emptyset, X \in \mathcal{O}$
- $U, V \in \mathcal{O} \implies U \cap V \in \mathcal{O}$
- $(U_k)_{k\in I}\subset\mathcal{O}\implies\bigcup_{k\in I}U_k\in\mathcal{O}$ für eine beliebige Indexmenge I.

Die Elemente von \mathcal{O} werden als **offene Menge** bezeichnet.

Bemerkung Topologische Raum ist abgeschlossen unter endlichen Schnitten und abzählbaren Vereinigungen.

Definition 1.9 (Borel-\sigma-Algebra, Borel Menge) Ist X ein topologischer Raum, so ist die Borel- σ -Algebra $\mathcal{B}(X)$ diejenige σ -Algebra, die von den offenen Mengen erzeugt wird. Ihre Elemente heißen Borel-Mengen.

$$\mathcal{B}^n := \mathcal{B}(\mathbb{R}^n)$$

$$\mathcal{B} := \mathcal{B}^1$$

Bemerkung Die σ -Algebra die von den abgeschlossenen Wengen erzeugt wird, ist ebenfalls identisch mit der Borel σ -Algebra.

Definition 1.10 (Messraum, Maß, Maßraum) Eine Menge X mit einer σ -Algebra $A \subset \mathcal{P}(X)$ heißt **Messraum**. Ein **Maß** ist eine Abbildung $\mu : A \to [0, \infty]$ mit

•
$$\mu(\emptyset) = 0$$

•
$$\muig(igcup_{k\in\mathbb{N}}A_kig)=\sum_{k\in\mathbb{N}}\mu(A_k)$$
 für disjunkte Mengen

 σ -Additivität

Die Elemente in \mathcal{A} heißen messbar, und (X, \mathcal{A}, μ) heißt **Maßraum**.

Definition 1.11 (σ-Finitheit) Ein Mah heißt σ-finit, falls es eine abzählbare Überdeckung $\{X_k\}_{k\in\mathbb{N}}\subset\mathcal{A}$ von X gibt, also

$$X = \bigcup_{k \in \mathbb{N}} X_k$$

sodass $\mu(X_k) < \infty \forall k$.

 μ heißt endlich falls $\mu(X) < \infty$. Bei Wahrscheinlichkeitsmaß $\mu(X) = 1$.

Beispiel 1.12 1. Zählmaß: Für X und $A = \mathcal{P}(X)$ setze für $A \in A$:

$$\mu(A) = \begin{cases} \#A & A \text{ endlich} \\ \infty & \text{sonst} \end{cases}$$

 μ ist endlich falls X endlich und σ -finit wenn X abzählbar.

2. Dirac-Maß: Für einen fest gewählten $x_0 \in X$ und $\mathcal{A} = \mathcal{P}(X)$ setzen wir für $A \subset X$

$$\mu(A) := \begin{cases} 0 & x_0 \notin A \\ 1 & x_0 \in A \end{cases}$$

3. Positive Linear kombination: μ_1, μ_2 Maße auf (X, \mathcal{A}) . Dann ist $\mu := \alpha_1 \mu_1 + \alpha_2 \mu_2$ für $\alpha_1, \alpha_2 \geq 0$ wieder ein Maß

Lemma 1.13 Sei (X, \mathcal{A}, μ) ein Maßraum und $Y \in \mathcal{A}$. Dann ist $\mu \mid_Y (A) := \mu(A \cap Y) \forall A \in \mathcal{A}$ wieder ein Maß auf (X, \mathcal{A}) . Durch Einschränken der σ -Algebra \mathcal{A} auf $\mathcal{A} \mid_Y := \{A \in \mathcal{A} \mid A \subset Y\}$ wird $(Y, \mathcal{A} \mid_Y, \mu \mid_Y)$ auch ein Maßraum. Falls (X, \mathcal{A}, μ) σ -finit, dann $(Y, \mathcal{A} \mid_Y, \mu \mid_Y)$ auch.

Notation: Zu $(A_k)_{k\in\mathbb{N}}\subset X$ schreiben wir

- $A_k \nearrow A(k \to \infty)$ falls $A_k \subset A_{k+1} \forall k \in \mathbb{N}$ und $A = \bigcup_{k \in \mathbb{N}} A_k$
- $A_k \setminus A(k \to \infty)$ falls $A_k \supset A_{k+1} \forall k \in \mathbb{N}$ und $A = \bigcap_{k \in \mathbb{N}} A_k$

Satz 1.14 Für jeden Maßraum (X, \mathcal{A}, μ) und $(A_k)_{k \in \mathbb{N}} \subset \mathcal{A}$ gilt

1.
$$A_1 \subset A_2 \implies \mu(A_1) \le \mu(A_2)$$
 (Monotonie)

2.
$$\mu(\bigcup_{k\in\mathbb{N}}A_k)\leq\sum_{k\in\mathbb{N}}\mu(A_k)$$
 (σ -Subadditivität)

3.
$$A_k \nearrow A \implies \mu(A_k) \nearrow \mu(A)$$
 für $(k \to \infty)$ (Stetigkeit von Unten)

$$\text{4. } A_k \searrow A \implies \mu(A_k) \searrow \mu(A) \text{ für } (k \to \infty) \text{ und } \mu(A_1) < \infty \qquad \qquad \text{(Stetigkeit von Oben)}$$

Beweis 1. $A, B \in \mathcal{A}, A \subset B \implies B = A \cup (B \setminus A), B \setminus A \in \mathcal{A} \implies \mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$

2. Wir definieren $(B_k)_{k\in\mathbb{N}}\subset\mathcal{A}$ durch

$$B_1 := A_1, B_{k+1} := A_{k+1} \setminus \bigcup_{j=1}^k A_k \implies \bigcup_{k \in \mathbb{N}} B_k \qquad \qquad = \bigcup_{k \in \mathbb{N}} A_k$$

Nach Definition gilt

$$\mu\left(\bigcup_{k\in\mathbb{N}}A_k\right) = \mu\left(\bigcup_{k\in\mathbb{N}}B_k\right) = \sum_{k\in\mathbb{N}}\mu(B_k) \le \sum_{k\in\mathbb{N}}\mu(A_k)$$

3. Definieren $(C_k)_{k\in\mathbb{N}}\subset\mathcal{A}$ durch

$$C_1 := A_1$$
$$C_{k+1} := A_{k+1} \setminus A_k$$

Es gilt

$$\implies \bigcup_{k \in \mathbb{N}} C_k = \bigcup_{k \in \mathbb{N}} A_k = A\mu(A_k) \qquad = \sum_{j=1}^k \mu(C_j) \xrightarrow{k \to \infty} \sum_{k \in \mathbb{N}} \mu(C_k) = \mu(A) \le \sum_{k \in \mathbb{N}} \mu(A_k)$$

4. $D_k := A_1 \setminus A_k \forall k \in \mathbb{N}$. Damit ist $D_k \nearrow A_1 \setminus A$ und

$$\mu(A_1) - \mu(A_k) = \mu(A_1 \setminus A_k) \xrightarrow{k \to \infty} [3.] \mu(A_1 \setminus A) = \mu(A_1) - \mu(A)$$

Subtraktion von $\mu(A_1) < \infty$ liefert die Behaptung.

Beispiel 1.15 $\mu: \mathcal{P}(\mathbb{N}) \to [0, \infty], \mu(A) := \#A$. Die Mengenfolge $A_n := \{n, n+1, n+2, \dots\}$ ist fallend gegen die leere Menge, aber es ist

$$0 = \mu(\emptyset) \neq \lim_{n \to \infty} \mu(A_n) = \infty$$

Definition 1.16 (Borel-Maß) Set X ein topologischer Raum. Ein Maß auf einer Borel- σ -Algebra $\mathcal{B}(X)$ heißt Borel-Maß, falls es auf Kompakta stets endlich Werte annimmt.

Beispiel 1.17 Für $X = \mathbb{R}$ ist das Dirac-Maß ein Brel-Maß, aber nicht das Zählmaß.

Definition 1.18 (Regularität) Sei X ein topologischer Raum, (X, \mathcal{A}, μ) ein Maßraum. Das Maß μ heißt **regulär von außen**, wenn für $A \in \mathcal{A}$ gilt

$$\mu(A) = \inf \{ \mu(U) \mid A \subset U, U \text{ offen} \}$$

 μ heißt **regulär von innen**, wenn für $A \in \mathcal{A}$ gilt

$$\mu(A) = \sup \{ \mu(K) \mid K \subset A, K \text{kompakt} \}$$

Beispiel 1.19 Das Zählmaß mit $X = \mathbb{R}$, $A = \mathcal{B}$, ist regulär von inne, aber nicht von außen. Das Dirac-Maß ist regulär.