Name: Adam Frank October 4, 2020

Math 637: Exam 1

1. () Let G be a group. Prove that if $a \in G$ is the only element of order 2 then $a \in Z(G)$.

Proof. Let $b \in G$, then

$$(bab^{-1})^2 = bab^{-1}bab^{-1}$$
$$= ba^2b^{-1}$$
$$= bb^{-1}$$
$$= 1$$

Since there is only one element of order 2, either $bab^{-1}=a$ or $bab^{-1}=\mathbb{1}$. The latter implies $a=\mathbb{1}$ so we must have $bab^{-1}=a$ and therefore ba=ab so $a\in Z(G)$.

2. () Let |a| = 5 and show that $C_G(a) = C_G(a^3)$.

Proof. One direction is trivial: If $b \in C_G(a)$ then $ba^3 = a^3b$ by three operations of "swapparoo".¹ Now suppose $b \in C_G(a^3)$ so that $ba^3 = a^3b$. Then since |a| = 5 we have $ba^3a^2 = a^3ba^2 = b$. From this we can derive

$$ab = a(a^3ba^2)$$

$$= a^4(a^3ba^2)a^2$$

$$= a^2ba^4$$

$$= a^2(a^3ba^2)a^4$$

$$= ab$$

 $^{^{1}}$ Of course "swaparoo" means the old ab=ba.

3. () Prove that no group can have exactly two elements of order 2.

Proof. Suppose $a \neq b \in G$ each have order 2. Note in particular that this entails $a^{-1} = a$ and $b^{-1} = b$. Then we show that also ab has order 2. This follows since $(ab)^2 = abab = 1$ holds if and only if $ab = a^{-1}b^{-1} = ab$. The later of course is a tautology.

4. ()

Let p be a prime and $Z = \{z \in \mathbb{C} | z^{p^n} = 1 \text{ for some } n \in \mathbb{Z}^+ \}$. For each $k \in \mathbb{Z}^+$ define $H_k = \{z \in \mathbb{Z} | z^{p^k} = 1\}$. Prove that $H_k \leq H_m$ if and only if $k \leq m$.

Proof. Suppose $H_k \leq H_m$. First note that $e^{2i\pi/p^k} \in H_k$ and if $z \in H_k$ then there exists a non-negative integer x such that $(e^{2i\pi/p^k})^x = z$. Likewise $e^{2i\pi/p^m} \in H_m$ and if $z \in H_m$ then there exists a non-negative integer x such that $(e^{2i\pi/p^m})^x = z$. Now by the subgroup relation $e^{2i\pi/p^k} \in H_m$ and therefore there is some non-negative integer x such that

$$e^{2i\pi/p^k} = (e^{2i\pi/p^m})^x$$
$$= e^{2i\pi x/p^m}$$

In particular we can choose $0 \le 2\pi x/p^m < 2\pi$. Since these complex numbers in polar form are expressed with arguments each less than 2π we can infer that

$$\frac{1}{p^k} = \frac{x}{p^m}$$

and therefore p^{m-k} is a non-negative integer, hence $m-k \geq 0$ and so $m \geq k$.

Conversely, suppose that $m \ge k$. Certainly the subset relation holds since $(e^{2i\pi/p^k})^{p^m} = (e^{2i\pi})^{p^{m-k}}$ and since m-k is a non-negative integer, we have $(e^{2i\pi})^{p^{m-k}} = 1$.

Now let $a, b \in H_k$ so that there exist poisitive integers x, y such that $a = e^{2i\pi x/p^k}$ and $b = e^{2i\pi y/p^k}$. Then since

$$ab^{-1} = e^{2i\pi(x-y)/p^k}$$

and since x - y is an integer, then $(ab^{-1})^{p^k} = 1$. Hence $ab^{-1} \in H_k$ and therefore H_k is a subgroup of H_m .

5. () Let Z_n be a cyclic group of order n and for each $a \in \mathbb{Z}$ let

$$\sigma_a: Z_n \to Z_n$$

by $\sigma_a(x) = x^a$. Prove that σ_a is an automorphism if and only if (a, n) = 1.

Proof. Let d = (a, n) and let z generate Z_n . First suppose d > 1 for the contrapositive. Let n = xd and a = yd. Note in particular that 1 < x < n so that $z^x \neq 1$. Now we have

$$\sigma_a(z^x) = z^{ax} = z^{ydx} = z^{yn} = 1$$

This shows that σ_a is not injective, since $\sigma_a(\mathbb{1}) = \mathbb{1} = \sigma_a(z^x)$. This concludes one direction of the proof. Now suppose that d = 1. We will see that the map is injective, so suppose that $\sigma_a(z^p) = \sigma_a(z^q)$ so that therefore

$$z^{ap} = z^{aq}$$

Hence $ap \equiv aq \mod n$, and because d = 1 we can infer that $p \equiv q \mod n$. But this entails that $z^p = z^q$. Now since Z_n is finite and $\sigma_a : Z_n \to Z_n$ then surjectivity follows from injectivity. All that remains is to see that the map is a homomorphism. But $\sigma_a(z^iz^j) = z^{(i+j)a} = z^{ia}z^{ij} = \sigma_a(z^i)\sigma_a(z^j)$.

(In case the principle used above needs justification: We know that $ap \equiv aq \mod n$ entails $p \equiv q \mod n$ because we can multiply both sides of the first equivalence by the inverse of a. This is guaranteed to exist by Bezout's identity ax + ny = 1, which makes x the multiplicative inverse of a.)

6. ()

Prove that no group is the union of two proper subgroups.

Proof. Suppose $G = A \cup B$ where A, B < G. If $A \le B$ then $A \cup B = B < G$, so this is impossible, and there must be some $a \in A$ where $a \notin G \setminus B$. By a symmetric consideration, there must be some $b \in B$ where $b \notin G \setminus A$. Now either $ab \in A$ or $ab \in B$. Without loss of generality suppose $ab \in A$. But then $a^{-1} \in A$ and hence $a^{-1}ab = b \in A$, a contradiction. f

7. () Let G be a finite group with more than one element. Show that G has an element of prime order.

Proof. There must exist an element of order greater than 1, call it $g \in G$. Now consider the group generated by g, which is $\langle g \rangle$. This is a cyclic group and therefore if d is any divisor of |g| then there is an element of order d (namely, $g^{|g|/d}$, due to theorem 7 of section 2.3 of Dummit and Foote). In particular there must be some prime divisor of |g|, which entails the existence of an element of prime order.

8. () Suppose G is a finite abelian group and G has no element of order 2. Show that $x \mapsto x^2$ is an automorphism.

Proof. We show that the map, call it φ , is injective. If $\varphi(x) = \varphi(y) = x^2 = y^2$ then $\mathbb{1} = x^{-2}y^2 = (x^{-1}y)^2$ since G is abelian. But since $x^{-1}y$ can't have order 2, it must have order 1 and be the identity. Then $\mathbb{1} = x^{-1}y$ and therefore x = y.

Since φ is a map from G to G, and since G is finite, then injectivity implies surjectivity. All that remains is to show that φ is a homomorphism. But this follows from abelianness:

$$\varphi(ab) = (ab)^2 = a^2b^2 = \varphi(a)\varphi(b)$$

"Abelianness" ... "abelianity" ... "abelianism". You know what I meant.