GT Algorithmique Distribuée - 7 Mars 2016

TIME VS. INFORMATION TRADEOFFS FOR LEADER ELECTION IN ANONYMOUS TREES

Christian Glacet

Avery Miller

Andrzej Pelc

CNR - IEIIT, Turin, Italie

Université de Tel-Aviv, Israël

UQO, Gatineau, Canada

Anonymous election?

OUTPUT

Anonymous election?

Agree on a node ID: b

OUTPUT

Anonymous election?

Agree on a node ID: b

OUTPUT

Anonymous election?

Agree on a node ID: b

OUTPUT

Agree on a node "ID": (0,1) / (3,1,0) /...

DISTRIBUTED COMPUTATION

Partial knowledge of the graph (local)

⇒ need of communication to discover the graph

WHAT IS TYPICALLY OBSERVED

Time
Memory
Communication cost

DISTRIBUTED COMPUTATION

Partial knowledge of the graph (local)

⇒ need of communication to discover the graph

WHAT IS TYPICALLY OBSERVED

Time
Memory
Communication cost

OBSERVATIONS

- In trees, election can be done in time D
 - Nodes see the whole graph and can:
 - locate itself;
 - elect locally;
 - output the path to the leader;
- Without any additional info. election is not possible in time < D.
- Helping nodes by giving them: the size of the network n, the diameter D, ...

MORE GENERAL QUESTION

- What amount of information has to be known so election can be done in time at most τ < D ? (for different values of τ)
- Remark: we only observe graphs where election is possible in time τ .
 - Intuitively, graphs that are not too symmetric.
- Things we don't look at:
 - Communication/memory costs, local computation power, ...
 - Randomised algorithms

DETAILS OF THE MODEL

Local model (input and output ports).

After r rounds, a node knows the ball of radius r

An oracle gives an advice to all nodes (a single advice is shared).

- The oracle sees the whole graph
- We look at the size (in bits) of the advice

Every node use its local view (ball) and the advice to elect.

Election: all nodes output a simple path, all paths lead to the same node.

RESULTS

Time	Advice size	Remark
D	0	
D-1	Θ(log D)	
D-2	Θ(log D) Θ(log n)	D even D odd
[β*D, D-3], $\beta > 1/2$	$O(n log n/D)$ $\Omega(n/D)$	upper bound D even or $\tau < D-3$
$\alpha*D, \alpha < 1/2$	$\Theta(n)$	except when D is small (D ∈ o(log n))

UPPER BOUNDS

Key ideas

- Elect the around the center:
 - Even diameter: elect the central node
 - Odd diameter
 - find the central edge
 - elect one of its end
- Advice:
 - Find subgraphs that only a portion of the nodes can see
 - Use it to give personalised advices
 - "if you see X then do ..."

Odd diameter \Rightarrow it exists a central edge

LOWER BOUNDS

Key ideas

- Key idea for lower bounds (generally speaking):
 - Show a family of trees in which for any two given graphs
 - if the oracle gives the same advice,
 - then election fails in one of the two graphs.
 - Show that this family is "big".
- Take care, election has to be possible in this family of trees!
 - Technic: Prove that election is feasible when the whole graph is given as an advice.

SUITE DE LA PRÉSENTATION

Time	Advice size	Remark
D	0	
D-1	Θ(log D)	
D-2	Θ(log D) Θ(log n)	D even D odd
[β*D, D-3], $\beta > 1/2$	$O(n log n/D)$ $\Omega(n/D)$	upper bound D even or $\tau < D-3$
$\alpha*D, \alpha < 1/2$	Θ(n)	except when D is small (D ∈ o(log n))

ODD DIAMETER, TIME D-2

Upper Bound

ADVICE

Advice

- A path that appears in T₀ but not in T₁
- The port number from c₁ to c₀

size: O(D log n)

ELECTION

Election for a node u

- If a u sees the path
 - then it elects co (how?)
 - otherwise it uses the port number to find/elect co

PROOF

What we need to prove

- 1. It exists a path that appears in T₀ but not in T₁
- 2. Nodes in T_i are able to find c_i

SUCH A DISTINCTIVE PATH EXISTS

- If there is no distinctive path, then
- $T_0 = T_1$
- some nodes have the same view and therefore can't elect correctly
- ie, they will elect symmetrically

SUCH A DISTINCTIVE PATH EXISTS

- If there is no distinctive path, then
- $T_0 = T_1$
- some nodes have the same view and therefore can't elect correctly
- ie, they will elect symmetrically

FINDING CANDIDATES

How does nodes in T_i find c_i

- Unterminated path: a path that does not end on a leaf
- case 1:
 - All unterminated path starting from u go through c₀.
 - c₀ is the furthest node from u
 through which all unterminated path
 g₀.

FINDING CANDIDATES

How does nodes in T_i find c_i

- Unterminated path: a path that does not end on a leaf
- case2:
 - All unterminated path starting from u go through c₁.
 - In this case it exists w in the view of u such that $d(w,c_1) > d(u,c_1)$
 - The candidate of u is the node one step closer (ie, c₀)

FINDING CANDIDATES

How does nodes in T_i find c_i

- Unterminated path: a path that does not end on a leaf
- There are more cases that all can be detected using this kind of information.
- Some other cases need an advice to distinguish specific cases (ie, a bit to tell if all unterminated paths of all nodes go through the central edge).

ADVICE

Advice

- A path that appears in T₀ but not in T₁
- The port number from c₁ to c₀

size: O(D log n)

REDUCE ADVICE SIZE

- Build two lexicographically ordered lists L₀ and L₁ of all paths starting from c₀ in T₀ (respc. c₁ in T₁)
- Take as a marker, the first path in L₀ that does not appear in L₁
- Give as an advice:
 - the index of this path: j
 - ▶ the first port number that differ in $L_0[j] \neq L_1[j]$: p
 - and its index in L₀[j]: k
- This advice size is O(log n)

ODD DIAMETER, TIME D-2

Lower Bound

LOWER BOUND

For a time exactly D-2 and D odd

- Reduction to a pair breaking problem:
 - 1. The pair breaking problem requires $\Omega(\log \log Z)$ bits of advice
 - 2. Use an hypothetical algorithm, ELECT, that solves leader election in time D-2 using o(log log Z) bits to solve the pair breaking problem.

LOWER BOUND

For a time exactly D-2 and D odd

- Reduction to a pair breaking problem:
 - 1. The pair breaking problem requires $\Omega(\log \log Z)$ bits of advice
 - 2. Use an hypothetical algorithm, ELECT, that solves leader election in time D-2 using o(log log Z) bits to solve the pair breaking problem.

PAIR BREAKING PROBLEM

PAIR BREAKING PROBLEM

Integer set S = {1,..., Z}

PAIR BREAKING PROBLEM

- Integer set $S = \{1,..., Z\}$
- Every instance of the problem is a pair $(a,b) \in S^2$, $a \neq b$

a

b

- Integer set $S = \{1, ..., Z\}$
- Every instance of the problem is a pair $(a,b) \in S^2$, $a \neq b$
- Anonymous Players
 - know either a or b
 - must output either "I" or "you"

- Integer set $S = \{1, ..., Z\}$
- Every instance of the problem is a pair $(a,b) \in S^2$, $a \neq b$
- Anonymous Players
 - know either a or b
 - must output either "I" or "you"

SUCCES

- Integer set $S = \{1, ..., Z\}$
- Every instance of the problem is a pair $(a,b) \in S^2$, $a \neq b$
- Anonymous Players
 - know either a or b
 - must output either "I" or "you"

FAILURE

- Integer set S = {1,..., Z}
- Every instance of the problem is a pair $(a,b) \in S^2$, $a \neq b$
- Anonymous Players
 - know either a or b
 - must output either "I" or "you"
- Oracle
 - knows Z, a and b
 - shout an advice

FAILURE

Question:

What is the minimum size of advice so players can succeed for every pair $(a,b) \in S^2$, $a \neq b$?

First observation:

Giving the position of the first bit that differs in a and b is enough to guaranty success.

For an integer set of size Z, the advice size is O(log log Z)

Is $\Omega(\log \log Z)$ the lower bound on this game?

Coloration of a grid

Integer set $S = \{1,...,Z\}$

Coloration of a grid

- Integer set $S = \{1,...,Z\}$
- Every instance of the problem is a a cell $(a pair (a,b) \in S^2, a < b)$

Coloration of a grid

- Integer set $S = \{1,...,Z\}$
- Every instance of the problem is a a cell $(a pair (a,b) \in S^2, a < b)$
- Oracle
 - knows Z, a and b
 - shout an advice: color every cell

Coloration rules

Coloration rules

Coloration rules

Coloration rules

Coloration rules

Coloration rules

Coloration rules

Coloration rules

Coloration rules

3 colors available

3 colors available

3 colors available

At least 1/3 of them share the same color

At least 1/3 of them share the same color

k colors Z integers Proper k-coloration, (no mono-chromatic triplets)

Remember that if $|S_1| \ge Z/k! \ge 3$ then S_1 is not coloured properly

- Remember that if $|S_1| \ge Z/k! \ge 3$ then S_1 is not coloured properly
- Thus, if S_k is coloured properly with k colors then $Z/k^k \le Z/k! < 3$

- $Z < 3k^k$
- log Z < 3k*log(k)
- $\log Z < 3k^2$

- Remember that if $|S_1| \ge Z/k! \ge 3$ then S_1 is not coloured properly
- Thus, if S_k is coloured properly with k colors then $Z/k^k \le Z/k! < 3$

- $Z < 3k^k$
- $\log Z < 3k*\log(k)$
- $\log Z < 3k^2$
- $k > \sqrt{(1/3*\log Z)}$

- Remember that if $|S_1| \ge Z/k! \ge 3$ then S_1 is not coloured properly
- Thus, if S_k is coloured properly with k colors then $Z/k^k \le Z/k! < 3$
- \Rightarrow k > $\sqrt{(1/3*\log Z)}$

$$Z < 3k^k$$

$$log Z < 3k*log(k)$$

$$\log Z < 3k^2$$

$$k > \sqrt{(1/3*\log Z)}$$

Number of bits to encode these colors: $> \log(\sqrt{(1/3*\log Z)})$ $> 1/2(\log (1/3*\log Z))$

- Remember that if $|S_1| \ge Z/k! \ge 3$ then S_1 is not coloured properly
- Thus, if S_k is coloured properly with k colors then $Z/k^k \le Z/k! < 3$
- \Rightarrow k > $\sqrt{(1/3*\log Z)}$

The advice has size $\Omega(\log \log Z)$.

LOWER BOUND

For a time exactly D-2 and D odd

- Reduction to a pair breaking problem:
 - 1. The pair breaking problem requires $\Omega(\log \log Z)$ bits of advice
 - 2. Use an hypothetical algorithm, ELECT, that solves leader election in time D-2 using o(log log Z) bits to solve the pair breaking problem.

parameter δ

parameter δ

parameter δ

parameter δ

The number of leaves is determined by any bijective function &:

f:
$$\{1,...,Z\} \to \{1,...,\delta\}^{\delta}$$

parameter δ

a
$$f(a) = (a_1, a_2, ..., a_\delta)$$

b
$$f(b)=(b_1,b_2,...,b_{\delta})$$

The number of leaves is determined by any bijective function £:

f:
$$\{1,...,Z\} \to \{1,...,\delta\}^{\delta}$$

parameter δ

The number of leaves is determined by any bijective function £:

f:
$$\{1,...,Z\} \to \{1,...,\delta\}^{\delta}$$

parameter δ

The number of leaves is determined by any bijective function £:

$$f: \{1,...,Z\} \to \{1,...,\delta\}^{\delta}$$

The number of trees in this family is δ^δ

How to solve pair breaking problem using election in double brooms

- Hypothesis It exists an algorithm ELECT that solves leader election:
 - \blacktriangleright on double brooms of parameter δ
 - in time D-2
 - using an oracle \mathcal{O} that gives advices of size o(log log Z), $Z = \delta^{\delta}$
- Lets now describe:
 - The coloration function: using \mathcal{O}
 - The decision function used by Alice and Bob: using ELECT

Coloration function C, the Oracle's job

INPUT INTEGERS:

C:

OUTPUT COLOR: some advice

BUILD THE DOUBLE BROOM FOR (a,b)

GIVE IT TO THE ORACLE O

Which output

some advice

Players strategy - Alice's point of view

Players strategy - Alice's point of view

?

Players strategy - Alice's point of view

Players strategy - Bob's point of view

Players strategy - Bob's point of view

7

Players strategy - Bob's point of view

αı a_2 \textbf{a}_{δ}

αı a_2 \textbf{a}_{δ} δ+1

LOWER BOUND CONCLUSION

- We solved the pair breaking problem using only o(log log Z) bits, with $Z = \delta^{\delta}$, a contradiction, therefore the assumption that ELECT exists is false.
- ► Make $\delta = \sqrt{n}$ ⇒ size of double brooms is n,
- and the bound on the size of the advice turns out to be:
 - ▶ $\Omega(\log \log \delta^{\delta}) \in \Omega(\log \log \sqrt{n^{\sqrt{n}}}) \in \Omega(\log n)$

RESULTS

Time	Advice size	Remark
D	0	
D-1	Θ(log D)	
D-2	Θ(log D) Θ(log n)	D even D odd
[β*D, D-3], $\beta > 1/2$	$O(n log n/D)$ $\Omega(n/D)$	upper bound D even or $\tau < D-3$
$\alpha*D, \alpha<1/2$	$\Theta(n)$	D not too small $(D \in \omega(\log^2 n))$

OPEN PROBLEMS

- Lower bound for $\tau = D-3$ when D is odd
- Lower and upper bounds for times close to D, $\tau = D \pm o(D)$
- Lower and upper bounds for small diameters $D \in O(\log^2 n)$
- Lower bound for $\tau \in o(diam)$.
 - At first sight it may seems like the bound $\Omega(n)$ still holds, but it's not the case because it is difficult to build a large family of trees in which election is still possible.

MERCI

Questions?

QUESTION N° 1

Can you show a tree where election is not possible in time τ ?

An example for $\tau < D/2$

Node local knowledge

Oracle's advice (whole graph)

QUESTION N° 1

Can you show a tree where election is not possible in time τ ?

An example for $\tau < D/2$

Node local knowledge

Oracle's advice (whole graph)

QUESTION N°2

Does the algorithm has to know D? Is it given fro free, etc.?

Path-graphs family of size D-1, election in time in Gi is i-1:

Suppose we have < D-1 different advices, then two graphs have the same advice:

