Operational Reactor Safety 22.091/22.903

Lecture 18

Pilgrim Nuclear Power Station Background Information

Mark Santiago – Pilgrim Training

Pilgrim Station Facts

- 700 MWe Boiling Water Reactor
- 2028 MWth
- Nominal Operating pressure 1030 psig
- 145 control rods
- 580 fuel bundles
- Mark 1 Containment

Pilgrim Station Facts

- Went commercial in 1972
- License will currently expire in Aug 2012
- Application for 20 Year license renewal submitted
 - Expect approval later in 2008.
- Operates on a 24 month refueling cycle
- Owned by Entergy
- Part of a twelve unit nuclear fleet
- Entergy has filed for a permit for new BWR in Mississippi.

Pressurized Water Reactor

Boiling Water Reactor

Reactor and Turbine Buildings

Reactivity Coefficients

- Void Coefficient
 (~-1X 10⁻³ Δk/k / % Voids)
- Moderator Temperature Coefficient (~ -1X 10⁻⁴ Δk/k / °F)
- Doppler Coefficient
 (~ -1X 10⁻⁵ Δk/k / °Fuel Temperature)

Critical Power

OR

Critical Power Ratio (CPR)

$$CPR = \frac{CP}{AP} > 1.0$$

Where:

CPR = critical power ratio

CP = bundle power at which OTB occurs

AP = actual bundle power

MCPR LIMITS

POWER OWER LOW FPAPDR	RAMETERS MWT MWE MLB/HR BTU/LB	2015.7 716.5 59.273 0.656	3DM/P11 PERIODI USER RE CALC RE	C LOG QUEST SULTS	6- 6- CAS RES LPR	MAR-2008 06 E ID FMLD10	:40 CALCULATED :40 PRINTED 80306064009 80306062454
	PSIa	27.58 1045.75	Keff XE WORT		1095	D TIME CHAM	עם גז
	MWD/sT	23308.1	XE/RATE			D LINE SUMM E POWER	99.4%
		3181.3	AVE VF			E FLOW	85.9%
MCPR	,	1.712	FLLLP	0.9		D LINE	110.5%
CORRECT OPTION:		MOST LIM	PS ON	MANUAL F	.996 MAP LOW MCP NON-SYMME LOC	RLIM= 1.460	FCBB= N/A
0.855	29-22		-20-11	0.713			LOC 35-26-11
0.845	29-18		-22-10	0.689	31-24-11		27-18-11
0.841	31-24		-22-10	0.688	29-18-11		27-22-10
0.840	35-24		-26-11	0.687	35-24-11		29-20-10
0.823	27-16		-18-11	0.674	27-16-11	0.927	31-26-11
0.822	31-16		-28-11	0.674	37-26-10		27-20-11
0.822 0.819	39-16 37-14		-20-10	0.672	31-16-11		33-24-11
0.818	37-26		-24-11 -18-11	0.669 0.657	37-22-10 37-14-10		19-26-11
0.813	37-22		-24-11	0.655	35-12-10	w - m	31-22-11 31-18-11

17	AL OC
L 35 08 08 12 1.029 14 1.061 16 1.026 18 1.070 20 1.254 27 10 08 P 10 22 1.313 24 1.388	4 3 2 1
18 1.070 20 1.254 27 10 08 10 22 1.313 P 24 1.388	0 9 8 7
P 24 1.388	6 5 4 3
L D * 26 1.434 28 1.419	2 1 0 9
15 L 32 1.332 34 1.243 36 1.157	8 7 <- 6
07 L 03 40 0.950 0 42 0.783 0 44 0.632 0 46 0.415 0	4 3 2
L L L L L L L C CORE AVERAGE RADIAL POWER DISTRIBUTION RING # 1 2 3 4 5 6 7 REL PW 0.899 1.395 1.346 1.269 1.226 1.120 0.563	

Abnormal Operational Transients

- Abnormal Operating Transients include the events following a single equipment malfunction or a single operator error that is reasonably expected during the course of planned operations.
- Power failures, pump trips, and rod withdrawal errors are typical of the single malfunctions or errors initiating the events in this category.

Reactor Limits

 To avoid the unacceptable safety results for abnormal operational transients, reactor operating limits are specified. Operating limits are specified to maintain adequate margin to the onset of boiling transition and failure due to cladding strain (CPR & LHGR). To ensure that adequate margin is maintained and an unacceptable result is avoided, a design requirement based on a statistical analysis was selected. This requirement would ensure that during an abnormal operational transient, 99.9% of the fuel rods would be expected to avoid boiling transition.

Abnormal Operational Transients Event Categories

- Events Resulting in a Nuclear System Pressure Increase
 - Ex: Turbine trip (turbine stop valve closure)
- Events Resulting in a Reactor Vessel Water Temperature Decrease
 - Ex: Inadvertent Pump Start
- Events Resulting in a Positive Reactivity Insertion
 - Ex: Continuous, inadvertent rod withdrawal

Abnormal Operational Transients Event Categories Cont.

- Events Resulting in a Reactor Vessel Coolant Inventory Decrease
 - Ex: Loss of feedwater flow
- Events Resulting in a Core Coolant Flow Decrease
 - Ex: Recirculation pump seizure
- Events Resulting in a Core Coolant Flow Increase
 - Ex: Recirculation Flow Control Failure Increasing Flow

DESIGN BASIS ACCIDENTS

 A design basis accident is a hypothesized accident; the characteristics and consequences of which are utilized in the design of those systems and components pertinent to the preservation of radioactive materials barriers, and the restriction of radioactive material release from the barriers.

Unacceptable Results

- radioactive material release which results in dose consequences that exceeds the guideline values of 10CFR100
- failure of fuel cladding which would cause changes in core geometry such that core cooling would be inhibited
- nuclear system stress in excess of those allowed for the accident classification by applicable codes
- containment stresses in excess of those allowed for the accident classification by applicable industry codes when containment is required
- overexposure to radiation of station personnel in the control room

DESIGN BASIS ACCIDENTS

- Control Rod Drop Accident
- Loss of Coolant Accident
- Main Steam Line Break Accident

Source unknown. All rights reserved. This content is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/fairuse.

PRIMARY AND SECONDARY CONTAINMENT SYSTEMS FIGURE 1 REV. 1

R 5

Drywell

- Steel ASME Code pressure vessel
- Shaped like an inverted light bulb

Pressure Suppression Chamber and Pool

Hydrogen Event At TMI

 The first warning of the presence of hydrogen in the system was quite violent, but thanks to the heavily over engineered containment structure, it was almost anticlimactic save for its implications. A poorly shielded relay sparked, detonating the hydrogen in the containment. Containment building pressure zoomed to a frightening 28 pounds per square inch, and stayed there for nearly eight seconds as the hydrogen burned. The force shook the control room floor noticeably, and was thought to be equivalent to the explosion of several modern 1,000 pound bombs.

Hydrogen Combustion The Burn

- Deflagrations are combustion waves which heat the gas by thermal conduction
- Travel Subsonically and cause low pressure loads on the containment

Hydrogen Event At TMI Burnt crane controls

Hydrogen Combustion The Boom

- Detonation heats the unburned gas by compression from shock waves.
- The waves travel supersonically and produce high pressure loads on the containment.

Containment Damage

- Hydrogen can create excessive drywell pressure
- Containment design pressure =
- 56 psi
- Estimated failure pressure =
- ~ 200 psi
- Estimated pressure with 30% metal-water reaction with a burn
- >> 200psi

Hydrogen Event At TMI 'Nuf said'

Drywell head

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

MIT OpenCourseWare http://ocw.mit.edu

22.091 Nuclear Reactor Safety Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.