Inteligência Artificial

Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

25 de Julho de 2024

Erro de Classificação

$$err(f) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(y_i \neq f(x_i))$$

$$err(f) = \frac{exemplos_incorretamente_classificados}{total_exemplos_classificados}$$

Acurácia de Classificação

$$acc(f) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(y_i = f(x_i)) = 1 - err(f)$$

$$acc(f) = \frac{\mathsf{exemplos_corretamente_classificados}}{\mathsf{total_exemplos_classificados}}$$

• Problema da acurácia e da taxa de erro?

- Problema da acurácia e da taxa de erro?
- Distribuição de classes;
- Classes desbalanceadas;
- A 99 %, B 0,75%, C 0,25%;
- 99 % acurácia.

Erro majoritário

- Fornece um limiar abaixo do qual o erro do modelo deve ficar;
- erro maj(T) = 1 argmaxdistribuicao(c_i) i = 1,...,k;
- Exemplo:

Exemplo

- Número de exemplos:
- Número de classes:
- Distribuição de classes:

Cabeça X ₁	Peso X ₂	Sorriso X ₃	Classe Y
Redonda	8	Não	Feliz
Triangular	11	Sim	Neutro
Redonda	6	Sim	Feliz
Quadrada	9	Não	Triste
Quadrada	10	Sim	Neutro
Triangular	6	Não	Triste
Redonda	5	Sim	Feliz
Redonda	15	Não	Triste
Quadrada	12	Sim	Neutro
Redonda	7	Não	Feliz
Triangular	13	Sim	Neutro
Quadrada	10	Sim	Neutro

Exemplo

• Número de exemplos:

$$n = 12$$

• Número de classes: k = 3

- C1 = feliz
- C2 = neutro
- *C*3 = triste

• Distribuição de classes:

• distr(
$$C1$$
) = $\frac{4}{12}$ = 33.3%

• distr(C2) =
$$\frac{15}{12}$$
 = 41.7%
• distr(C3) = $\frac{3}{12}$ = 25%

- A classe C2 (neutro) é majoritária $\rightarrow \frac{5}{12}(41.7\%)$
- A classe C3 (triste) é minoritária $\rightarrow \frac{3}{12}(25\%)$
- Erro majoritário:

$$1 - \frac{5}{12} = \frac{7}{12} = 58.3\%$$

Cabeça X_1	Peso X_2	Sorriso X_3	Classe Y
Redonda	8	Não	Feliz
Triangular	11	Sim	Neutro
Redonda	6	Sim	Feliz
Quadrada	9	Não	Triste
Quadrada	10	Sim	Neutro
Triangular	6	Não	Triste
Redonda	5	Sim	Feliz
Redonda	15	Não	Triste
Quadrada	12	Sim	Neutro
Redonda	7	Não	Feliz
Triangular	13	Sim	Neutro
Quadrada	10	Sim	Neutro

- Métricas tradicionais;
- Consideram a distribuição de classes;
- Precisão;
- Revocação;
- Obtidas a partir da matriz de confusão;
- Mapeia os erros e acertos de um classificador:
 - Valores esperados;
 - Valores previstos;
- Elementos da diagonal principal correspondem aos acertos;
- Valores foras os erros;
- Matriz de confusão ideal?

Matriz de confusão

Tabelas

Exemplo	X_1	X_2	<i>X</i> ₃	Y	h(X)
z_1	α	S	2	+	+
<i>z</i> ₂	α	S	1	_	+
<i>Z</i> 3	Ь	n	1	+	_
<i>Z</i> 4	Ь	S	2	_	_
<i>Z</i> 5	С	n	2	+	+

		Pre	edita	
		+	-	Total
Verdadeira	+			
	-			
Total				

Tabelas

Exemplo	X_1	X_2	<i>X</i> ₃	Y	h(X)
z_1	α	S	2	+	+
<i>z</i> ₂	α	S	1	_	+
<i>Z</i> 3	b	n	1	+	_
<i>Z</i> 4	Ь	S	2	_	_
<i>Z</i> 5	С	n	2	+	+

		Pre	edita	
		+	-	Total
Verdadeira	+	1	2	3
veruaueira	-	1	1	2
Total		2	3	5

Matriz de confusão

- VP (Verdadeiros Positivos) = Exemplos positivos classificados como positivos;
- FP (Falsos Positivos) = Exemplos negativos classificados como positivos Verdadeira;
- FN (Falsos Negativos) = Exemplos positivos classificados como negativos;
- VN (Verdadeiros Negativos) = Exemplos negativos classificados como negativos;

$$err(h) = \frac{FP + FN}{VP + FP + FN + VN}$$

$$acc(h) = \frac{VP + VN}{VP + FP + FN + VN}$$

- Precisão;
- Revocação;
- F-score;

- Precisão;
 - "Entre todas as instâncias que foram previstas como positivas, quantas realmente são positivas?";

$$\mathsf{Precis\~ao}(\mathit{C_i}) = \frac{\mathsf{Corretamente_Reconhecidos}_{\mathit{C_i}}}{\mathsf{Total_Reconhecidos}_{\mathit{C_i}}}$$

- Revocação;
 - "Entre todas as instâncias que realmente são positivas, quantas foram corretamente identificadas pelo modelo?";

$$\mathsf{Revocaç\~ao}(\mathit{C_i}) = \frac{\mathsf{Corretamente_Reconhecidos}_{\mathit{C_i}}}{\mathsf{Total_exemplos}_{\mathit{C_i}}}$$

- F-score;
 - Média harmônica da precisão e da revocação, proporcionando um balanço entre as duas métricas;

Medida -
$$F(C_i) = \frac{2x revocação_{C_i} x precisão_{C_i}}{revocação_{C_i} + precisão_{C_i}}$$

		Predita		
		+	-	Total
Verdadeira	+	1	2	3
veruaueira	-	1	1	2
Total		2	3	5

		Pre	dita
		+	-
Verdadeira	+	VP	FN
veruadeira	-	FP	VN

		Pre	dita
		+	-
Verdadeira	+	VP	FN
veruauerra	-	FP	VN

- Precisão(+) = $\frac{VP}{VP+FP}$
- Precisão(-) = $\frac{VN}{VN+FN}$
- Revocação $(+) = \frac{VP}{VP + FN}$
- Revocação(-) = $\frac{VN}{VN+FP}$

			edita	Total
		+	-	
Verdadeira	+	1	2	3
veruaueira	-	1	1	2
Total		2	3	5

		Pre	dita
		+	-
Verdadeira	+	VP	FN
veruaueira	-	FP	VN

- Precisão(+) = $\frac{VP}{VP+FP} = \frac{1}{2} = 0.5$
- Precisão(-) = $\frac{VN}{VN+FN} = \frac{1}{3} = 0.33$
- Revocação(+) = $\frac{\mathit{VP}}{\mathit{VP}+\mathit{FN}} = \frac{1}{3} = 0.33$
- Revocação(-) = $\frac{VN}{VN+FP} = \frac{1}{2} = 0.5$

	Predita		Total	
		+	-	
Verdadeira	+	1	2	3
Verdadella	-	1	1	2
Total		2	3	5

	Pre		dita	
		+	-	
Verdadeira	+	VP	FN	
veruaueira	ı	FP VN		

• Precisão(+) =
$$\frac{VP}{VP+FP} = \frac{1}{2} = 0.5$$

• Precisão(-) =
$$\frac{VN}{VN+FN} = \frac{1}{3} = 0.33$$

• Revocação(+) =
$$\frac{VP}{VP+FN} = \frac{1}{3} = 0.33$$

• Revocação(-) =
$$\frac{VN}{VN+FP} = \frac{1}{2} = 0.5$$

• F1(+) =
$$\frac{2\times0,33\times0,5}{0,33+0,5}$$
 = 0,40

• F1(-) =
$$\frac{2\times0.5\times0.33}{0.5+0.33}$$
 = 0.40

- Análise ROC;
- Forma de avaliar classificadores;
- Problemas binários;
- Curva ROC (Receiver Operating CHaracteristics);
- Espaço ROC;
- Gráfico bidimensional;
- Taxa de VP é traçada no eixo Y;
- Taxa de FP é traçada no eixo X;
- Ponto (0,1) Representa 100 % de acerto;
- Ponto (1,0) Representa 100 % de erro.

- Classificadores binários com saídas contínuas ou probabilísticas;
- Saída discretizadas;
- Limiar;
- Curva no espaço ROC;
- Curva ROC;
- Mostra o comportamento do classificador;
- Conforme o limiar varia de $-\infty$ para $+\infty$.

Curva ROC

- Duas classes (Class): p e n;
- Conjunto de teste com 20 exemplos;
 - 10 positivos (p) e 10 negativos (n);
- Score probabilidade de p gerada por um classificador;
- Cada ponto no gráfico ROC é rotulado pelo limiar de score que o produz;
 - A curva ROC é a linha gerada a partir desses pontos;
 - Taxa de $VP = \frac{VP}{P}$;
 - Taxa de FP = $\frac{FP}{N}$;
- Curva é baseada nas taxas de VP e FP;
- Não dependem da distruição de classes;
- Area sobe a curva ROC (AUC-ROC).

Inst#	Class	Score	Inst#	Class	Score
1	P	.9	11	P	.4
2	P	.8	12	n	.39
3	n	.7	13	P	.38
4	P	.6	14	n	.37
5	P	.55	15	n	.36
6	P	.54	16	n	.35
7	n	.53	17	P	.34
8	n	.52	18	n	.33
9	P	.51	19	p	.30
10	n	.505	20	n	.1

- Podem comparar desempenho de mais classificadores;
- Quanto mais próxima do canto superior esquerdo melhor;
- Intersecção entre curvas?

- Curva PR;
- Gráfico bidimensional;
- Precisão traçada no eixo Y;
- Revocação traçada no eixo X;

- Avaliação em termos de erro e acertos;
- Regressão?

- Avaliação em termos de erro e acertos;
- Regressão?
- Tamanho do erro;
- Previsão;
- Saída contínua.

Erro quadrático médio (*mean-squared error*) é a métrica mais comum;

- Raiz do erro quadrático médio (root mean-squared error);
- Tende a maximizar o efeito de valores muito errados;

$$\mathsf{mse}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h(x_i))^2$$
$$\mathsf{rmse}(h) = \sqrt{\mathsf{mse}(h)}$$

Erro absoluto médio (mean absolute error)

 Trata todos os erros igualmente de acordo com a sua magnitude;

$$mae(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h(x_i)|$$

Exemplos

Exemplo de Cálculo do MSE e RMSE:

- Suponha que temos as previsões h(x) = [2.5, 0.0, 2.1, 1.4]
- E os valores reais y = [3.0, -0.5, 2.0, 1.0]

$$\mathsf{mse}(h) = \frac{1}{4} \left[(3.0 - 2.5)^2 + (-0.5 - 0.0)^2 + (2.0 - 2.1)^2 + (1.0 - 1.4)^2 \right]$$
$$\mathsf{mse}(h) = \frac{1}{4} \left[0.25 + 0.25 + 0.01 + 0.16 \right] = \frac{1}{4} \times 0.67 = 0.1675$$

Exemplo de Cálculo do MAE:

$$\mathsf{mae}(h) = \frac{1}{4} \left[|3.0 - 2.5| + |-0.5 - 0.0| + |2.0 - 2.1| + |1.0 - 1.4| \right]$$
$$\mathsf{mae}(h) = \frac{1}{4} \left[0.5 + 0.5 + 0.1 + 0.4 \right] = \frac{1}{4} \times 1.5 = 0.375$$

 $rmse(h) = \sqrt{0.1675} \approx 0.409$

- Erro quadrático relativo;
- Raiz do Erro Quadrático Relativo (Root Relative Squared Error)
- Pondera o erro de acordo com a sua previsibilidade: considera a distribuição dos valores em torno da média.

$$rse(h) = \frac{\sum_{i=1}^{n} (y_i - h(x_i))^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
$$rrse(h) = \sqrt{rse(h)}$$

Exemplo de Erro Quadrático Relativo

Valores reais: y = [3, 5, 2, 7]Predições: h(x) = [2.5, 4.5, 3, 6.5]Média dos valores reais: $\bar{y} = \frac{3+5+2+7}{4} = 4.25$ Cálculo do rse(h):

$$rse(h) = \frac{(3-2.5)^2 + (5-4.5)^2 + (2-3)^2 + (7-6.5)^2}{(3-4.25)^2 + (5-4.25)^2 + (2-4.25)^2 + (7-4.25)^2}$$
$$= \frac{0.25 + 0.25 + 1 + 0.25}{1.5625 + 0.5625 + 5.0625 + 7.5625} = 0.065$$

Cálculo do rrse(h):

$$\textit{rrse}(\textit{h}) = \sqrt{0.065} \approx 0.255$$

- Erro Absoluto Relativo (Relative Absolute Error);
- Mesma ponderação de valores de acordo com a distribuição em torno da média.

$$rae(h) = \frac{\sum_{i=1}^{n} |y_i - h(x_i)|}{\sum_{i=1}^{n} |y_i - \bar{y}|}$$

Exemplo de Erro Absoluto Relativo

Valores reais: y = [3, 5, 2, 7]Predições: h(x) = [2.5, 4.5, 3, 6.5]Média dos valores reais: $\bar{y} = 4.25$

Cálculo do rae(h):

$$rae(h) = \frac{|3 - 2.5| + |5 - 4.5| + |2 - 3| + |7 - 6.5|}{|3 - 4.25| + |5 - 4.25| + |2 - 4.25| + |7 - 4.25|}$$
$$= \frac{0.5 + 0.5 + 1 + 0.5}{1.25 + 0.75 + 2.25 + 2.75} = 0.163$$

- Independente da métrica;
- Quanto menor o erro melhor;
- O melhor modelo de regressão tende a ser melhor;
- Independentemente da métrica utilizada.

- Normalmente comparamos os desempenhos médios dos modelos;
- Diferença pequena;
- Testes estatísticos (testes de hipóteses);
- Verificar se a diferença nas médias é significativa;
 - Teste-t pareado;
 - Teste de Wilcoxon;
 - Teste de Friedman;

Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2024