ME 599/699 Robot Modeling & Control

Multi-Joint Control

Spring 2020 Hasan Poonawala

Previously on ...

▶ Plan trajectory $q_d(t)$ for robot configuration q

Previously on ...

- ▶ Plan trajectory $q_d(t)$ for robot configuration q
- ▶ Goal: Trajectory Tracking Choose torques \(\tau\) (or motor voltages \(u\)) so that

$$q(t) \rightarrow q_d(t)$$

Previously on ...

- ▶ Plan trajectory $q_d(t)$ for robot configuration q
- Goal: Trajectory Tracking
 Choose torques τ (or motor voltages u) so that

$$q(t) \rightarrow q_d(t)$$

When

$$q_d(t) \equiv q_d$$

a constant, we get set-point regulation or goal-reaching task

► Independent Joint Control.

- ► Independent Joint Control.
 - Some robots allow us to get away with controlling each joint individually

- Independent Joint Control.
 - Some robots allow us to get away with controlling each joint individually
 - ▶ Use PID controllers and frequency-domain analysis

- Independent Joint Control.
 - Some robots allow us to get away with controlling each joint individually
 - ▶ Use PID controllers and frequency-domain analysis
 - Works for set-point regulation / slow trajectories

- Independent Joint Control.
 - Some robots allow us to get away with controlling each joint individually
 - ▶ Use PID controllers and frequency-domain analysis
 - ► Works for set-point regulation / slow trajectories
- ► Model-based Control

- Independent Joint Control.
 - Some robots allow us to get away with controlling each joint individually
 - Use PID controllers and frequency-domain analysis
 - ► Works for set-point regulation / slow trajectories
- Model-based Control
 - ► Use model

$$M(q(t))\ddot{q}(t) + C(q(t), \dot{q}(t))\dot{q}(t) + G(q(t)) = u(t)$$

- Independent Joint Control.
 - Some robots allow us to get away with controlling each joint individually
 - ▶ Use PID controllers and frequency-domain analysis
 - ► Works for set-point regulation / slow trajectories
- Model-based Control
 - Use model

$$M(q(t))\ddot{q}(t) + C(q(t),\dot{q}(t))\dot{q}(t) + G(q(t)) = u(t)$$

Lyapunov-based analysis and design

When: Want to regulate the robot config to a set-point q_d

When: Want to regulate the robot config to a set-point q_d

Assuming no gravity (or that we canceled it out using u):

$$M(q(t))\ddot{q}(t) + C(q(t), \dot{q}(t))\dot{q}(t) = u(t)$$

When: Want to regulate the robot config to a set-point q_d

Assuming no gravity (or that we canceled it out using u):

$$M(q(t))\ddot{q}(t) + C(q(t), \dot{q}(t))\dot{q}(t) = u(t)$$

Use PD control:

$$u(t) = K_P(q_d - q(t)) - K_D(\dot{q}(t))$$

When: Want to regulate the robot config to a set-point q_d

Assuming no gravity (or that we canceled it out using u):

$$M(q(t))\ddot{q}(t) + C(q(t), \dot{q}(t))\dot{q}(t) = u(t)$$

Use PD control:

$$u(t) = K_P(q_d - q(t)) - K_D(\dot{q}(t))$$

Closed-loop:

$$M(q(t))\ddot{q}(t) + C(q(t), \dot{q}(t))\dot{q}(t) = K_{P}(q_{d} - q(t)) - K_{D}\dot{q}(t)$$

$$\implies \ddot{q}(t) = M^{-1}(q(t)) \left(-C(q(t), \dot{q}(t))\dot{q}(t) + K_{P}(q_{d} - q(t)) - K_{D}\dot{q}(t) \right)$$
dropping t , $\ddot{q} = M^{-1}(q) \left(-C(q, \dot{q})\dot{q} + K_{P}(q_{d} - q) - K_{D}\dot{q} \right)$

$$\ddot{q} = M^{-1}(q) \left(-C(q,\dot{q})\dot{q} + K_P(q_d - q) - K_D(\dot{q}) \right)$$

Equilibrium occurs when $\dot{q}=\ddot{q}=0 \implies q_{eq}=q_d$

$$\ddot{q} = M^{-1}(q) \left(-C(q, \dot{q}) \dot{q} + K_P(q_d - q) - K_D(\dot{q}) \right)$$

Equilibrium occurs when $\dot{q} = \ddot{q} = 0 \implies q_{eq} = q_d$.

We want $q o q_d$, or asymptotic stability of equilibrium q_d

$$\ddot{q} = M^{-1}(q) \left(-C(q, \dot{q}) \dot{q} + K_P(q_d - q) - K_D(\dot{q}) \right)$$

Equilibrium occurs when $\dot{q}=\ddot{q}=0 \implies q_{eq}=q_d$.

We want $q o q_d$, or asymptotic stability of equilibrium q_d

Can't use methods for linear systems, simulation of all cases is infeasible.

$$\ddot{q} = M^{-1}(q) \left(-C(q, \dot{q}) \dot{q} + K_P(q_d - q) - K_D(\dot{q}) \right)$$

Equilibrium occurs when $\dot{q} = \ddot{q} = 0 \implies q_{eq} = q_d$.

We want $q o q_d$, or asymptotic stability of equilibrium q_d

Can't use methods for linear systems, simulation of all cases is infeasible.

Solution: Lyapunov methods

Lyapunov Function

For this mechanical system, we choose

V(x) =actual Kinetic Energy+ Virtual Potential Energy due to error

Lyapunov Function

For this mechanical system, we choose

V(x) =actual Kinetic Energy+ Virtual Potential Energy due to error

$$V(x) = V(q, \dot{q}) = \frac{1}{2} \dot{q}^{T} M(q) \dot{q} + \frac{1}{2} (q - q_d)^{T} K_{P}(q - q_d)$$

Potential is spring-like with spring constant K_P .

Lyapunov Function

For this mechanical system, we choose

V(x) =actual Kinetic Energy+ Virtual Potential Energy due to error

$$V(x) = V(q, \dot{q}) = \frac{1}{2} \dot{q}^T M(q) \dot{q} + \frac{1}{2} (q - q_d)^T K_P (q - q_d)$$

Potential is spring-like with spring constant K_P .

Is this a proper candidate Lyapunov function?

▶ Need $K_P > 0$, M(q) > 0 (positive definite)

M(q) > 0 is true for any valid Euler-Lagrangian mechanical system!

Directional Derivative of Lyapunov Function

$$V(x) = V(q, \dot{q}) = \frac{1}{2} \dot{q}^T M(q) \dot{q} + \frac{1}{2} (q - q_d)^T K_P(q - q_d)$$

How does V(x) change along solutions $\bar{x}(t)$?

$$\dot{V}(t) = \frac{\partial V}{\partial x} \dot{x}$$

$$\dot{q} = \dot{q}^T M(q) \ddot{q} + \frac{1}{2} \dot{q}^T \dot{M}(q) \dot{q} + (q - q_d)^T K_P \dot{q}$$

Next: substitute for \ddot{q}

$$\ddot{q} = M^{-1}(q) \left(-C(q, \dot{q}) \dot{q} + K_P(q_d - q) - K_D \dot{q} \right)$$

$$\dot{V}(t) = \dot{q}^{T} M(q) \ddot{q} + \frac{1}{2} \dot{q}^{T} \dot{M}(q) \dot{q} + (q - q_{d})^{T} K_{P} \dot{q}$$

$$= \dot{q}^{T} M(q) \left(M^{-1}(q) \left(-C(q, \dot{q}) \dot{q} + K_{P}(q_{d} - q) - K_{D} \dot{q} \right) \right) (2)$$

$$+ \frac{1}{2} \dot{q}^{T} \dot{M}(q) \dot{q} + (q - q_{d})^{T} K_{P} \dot{q}$$

The mass-matrix terms cancel, so does the term involving K_P . Exercise: confirm that you get from the equation above to:

$$\dot{V}(t) = \frac{1}{2}\dot{q}^T \left(\dot{M}(q) - 2C(q,\dot{q})\right)\dot{q} - \dot{q}^T K_D \dot{q}$$

Skew Symmetry Property

$$\dot{V}(t) = -\dot{q}^T K_D \dot{q},$$

because for any EL-system, $\dot{M}(q) - 2C(q, \dot{q})$ is a skew-symmetric matrix!

(See Section 5.2.1 in 07_Manipulator_Kinematics_Dynamics.pdf)

So, if $\dot{q} \neq 0$, then $\dot{V} < 0$.

To apply Lyapunov's conclusions, we actually want $q \to q_d$ is that when $q \neq q_d, \dot{q} \neq 0$, THEN $\dot{V} < 0$.

Skew Symmetry Property

$$\dot{V}(t) = -\dot{q}^T K_D \dot{q},$$

because for any EL-system, $\dot{M}(q) - 2C(q, \dot{q})$ is a skew-symmetric matrix!

(See Section 5.2.1 in 07_Manipulator_Kinematics_Dynamics.pdf)

So, if $\dot{q} \neq 0$, then $\dot{V} < 0$.

To apply Lyapunov's conclusions, we actually want $q \to q_d$ is that when $q \neq q_d, \dot{q} \neq 0$, THEN $\dot{V} < 0$.

A solution comes through La Salle's invariance principle (Hello again, ME 672).

Intuition: When its impossible for $\dot{V}(t) = 0$ forever at any state where $V(q) \neq 0$, then $q \rightarrow q_d$.

Summary

- For set-point regulation,
- ► Assuming gravity isn't affecting dynamics, no external forces,
- ▶ PD control is enough to get $q \rightarrow q_d$. no coupled model issues !!!

Summary

- For set-point regulation,
- Assuming gravity isn't affecting dynamics, no external forces,
- ▶ PD control is enough to get $q \rightarrow q_d$. no coupled model issues !!!

Furthermore:

▶ if $G(q) \neq 0$, then q_{eq} satisfies

$$G(q_{eq}) = K_P(q_d - q_{eq}),$$

and this equilibrium $(\neq q_d)$ is locally asymptotically stable.

To reduce error, increase K_P!

Summary

- For set-point regulation,
- Assuming gravity isn't affecting dynamics, no external forces,
- ▶ PD control is enough to get $q \rightarrow q_d$. no coupled model issues !!!

Furthermore:

▶ if $G(q) \neq 0$, then q_{eq} satisfies

$$G(q_{eq}) = K_P(q_d - q_{eq}),$$

and this equilibrium $(\neq q_d)$ is locally asymptotically stable.

To reduce error, increase K_P!

Question: Will an integrator work to handle gravity, like in the case of independent joint control?

The power of PD-feedback breaks down when the trajectory has significant accelerations, and so is not really static or quasi-static.

The power of PD-feedback breaks down when the trajectory has significant accelerations, and so is not really static or quasi-static.

PD-control also does not account for obstacles or contacts, since the analyzed model excludes $J(q)^T f_{tip}$.

The power of PD-feedback breaks down when the trajectory has significant accelerations, and so is not really static or quasi-static.

PD-control also does not account for obstacles or contacts, since the analyzed model excludes $J(q)^T f_{tip}$.

Now, we use the model to implement the Computed Torque Control, or Inverse Dynamics Control, or basic Feedback Linearization.

The power of PD-feedback breaks down when the trajectory has significant accelerations, and so is not really static or quasi-static.

PD-control also does not account for obstacles or contacts, since the analyzed model excludes $J(q)^T f_{tip}$.

Now, we use the model to implement the Computed Torque Control, or Inverse Dynamics Control, or basic Feedback Linearization.

Real Model: $M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = u(t)$

The power of PD-feedback breaks down when the trajectory has significant accelerations, and so is not really static or quasi-static.

PD-control also does not account for obstacles or contacts, since the analyzed model excludes $J(q)^T f_{tip}$.

Now, we use the model to implement the Computed Torque Control, or Inverse Dynamics Control, or basic Feedback Linearization.

Real Model: $M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = u(t)$ What you think is model: $\hat{M}(q)$, $\hat{C}(q,\dot{q})$, $\hat{G}(q)$

The power of PD-feedback breaks down when the trajectory has significant accelerations, and so is not really static or quasi-static.

PD-control also does not account for obstacles or contacts, since the analyzed model excludes $J(q)^T f_{tip}$.

Now, we use the model to implement the Computed Torque Control, or Inverse Dynamics Control, or basic Feedback Linearization.

Real Model: $M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = u(t)$ What you think is model: $\hat{M}(q)$, $\hat{C}(q,\dot{q})$, $\hat{G}(q)$

Choose control to get rid of nonlinearity:

$$u(t) = \hat{M}(q)\ddot{a}_q(t) + \hat{C}(q,\dot{q})\dot{q} + \hat{G}(q).$$

Inverse Dynamics Control

Real Model: $M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = u(t)$ What you think is model: $\hat{M}(q)$, $\hat{C}(q,\dot{q})$, $\hat{G}(q)$

Choose control to get rid of nonlinearity:

$$u(t) = \hat{M}(q)a_q(t) + \hat{C}(q,\dot{q})\dot{q} + \hat{G}(q).$$

Closed-loop:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = \hat{M}(q)a_q(t) + \hat{C}(q,\dot{q})\dot{q} + \hat{G}(q)$$
 (3)

Real Model: $M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = u(t)$ What you think is model: $\hat{M}(q)$, $\hat{C}(q,\dot{q})$, $\hat{G}(q)$ Choose control to get rid of nonlinearity:

$$u(t) = \hat{M}(q)a_q(t) + \hat{C}(q, \dot{q})\dot{q} + \hat{G}(q).$$

Closed-loop:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = \hat{M}(q)a_q(t) + \hat{C}(q,\dot{q})\dot{q} + \hat{G}(q)$$
 (3)

IF
$$\hat{M}(q)=M(q),\;\hat{C}(q,\dot{q})=\hat{C}(q,\dot{q}),\;\hat{G}(q)=G(q),$$
 then
$$M(q)\ddot{q}=M(q)a_q(t)$$

Real Model: $M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = u(t)$ What you think is model: $\hat{M}(q)$, $\hat{C}(q,\dot{q})$, $\hat{G}(q)$

Choose control to get rid of nonlinearity:

$$u(t) = \hat{M}(q)a_q(t) + \hat{C}(q,\dot{q})\dot{q} + \hat{G}(q).$$

Closed-loop:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = \hat{M}(q)a_q(t) + \hat{C}(q,\dot{q})\dot{q} + \hat{G}(q)$$
 (3)

IF
$$\hat{M}(q)=M(q),\;\hat{C}(q,\dot{q})=\hat{C}(q,\dot{q}),\;\hat{G}(q)=G(q),$$
 then
$$M(q)\ddot{q}=M(q)a_q(t)$$

Since M(q) > 0 for all q,

$$\ddot{q} = a_q(t)$$

Real Model: $M(q)\ddot{q} + C(q, \dot{q})\dot{q} + G(q) = u(t)$ What you think is model: $\hat{M}(q)$, $\hat{C}(q, \dot{q})$, $\hat{G}(q)$

Choose control to get rid of nonlinearity:

$$u(t) = \hat{M}(q)a_q(t) + \hat{C}(q,\dot{q})\dot{q} + \hat{G}(q).$$

Closed-loop:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = \hat{M}(q)a_q(t) + \hat{C}(q,\dot{q})\dot{q} + \hat{G}(q)$$
 (3)

IF
$$\hat{M}(q)=M(q)$$
, $\hat{C}(q,\dot{q})=\hat{C}(q,\dot{q})$, $\hat{G}(q)=G(q)$, then
$$M(q)\ddot{q}=M(q)a_q(t)$$

Since M(q) > 0 for all q,

$$\ddot{q} = a_a(t)$$

Computed torque control gives us a linear system! Just need to design $a_q(t)$ so that $q(t) o q_d(t)$

$$\ddot{q} = a_q(t) \tag{4}$$

Given $q_d(t)$, one choice for $a_q(t)$ is

$$a_q(t) = \ddot{q}_d(t) + \mathcal{K}_P\left(q_d(t) - q(t)\right) + \mathcal{K}_D\left(\dot{q}_d(t) - \dot{q}(t)\right)$$

$$\ddot{q} = a_q(t) \tag{4}$$

Given $q_d(t)$, one choice for $a_q(t)$ is

$$a_q(t) = \ddot{q}_d(t) + \mathcal{K}_P\left(q_d(t) - q(t)\right) + \mathcal{K}_D\left(\dot{q}_d(t) - \dot{q}(t)\right)$$

Note that $\ddot{q}_d(t)$ is like a feed forward term, and the remainder is the feedback term for this second-order system.

$$\ddot{q} = a_q(t) \tag{4}$$

Given $q_d(t)$, one choice for $a_q(t)$ is

$$a_q(t) = \ddot{q}_d(t) + \mathcal{K}_P\left(q_d(t) - q(t)\right) + \mathcal{K}_D\left(\dot{q}_d(t) - \dot{q}(t)\right)$$

Note that $\ddot{q}_d(t)$ is like a feed forward term, and the remainder is the feedback term for this second-order system.

Defining the error as $e(t) = q(t) - q_d(t)$, we can rewrite the equation (4) as

$$\ddot{e}(t) + K_D \dot{e}(t) + K_P e(t) = 0.$$

Choosing $K_D > 0$ and $K_P > 0$ will ensure $e(t) \rightarrow 0$!

Note that the control we wrote down is

$$egin{split} u(t) &= \hat{M}(q) a_q(t) + \hat{C}(q,\dot{q}) \dot{q} + \hat{G}(q) \ &= \hat{M}(q) \left(\ddot{q}_d(t) + \mathcal{K}_P \left(q_d(t) - q(t)
ight) + \mathcal{K}_D \left(\dot{q}_d(t) - \dot{q}(t)
ight)
ight) \ &+ \hat{C}(q,\dot{q}) \dot{q} + \hat{G}(q) \end{split}$$

We don't need to construct the matrices $\hat{M}(q)$ and $\hat{C}(q, \dot{q})$, and vector $\hat{G}(q)$ explicitly in order to implement this control law.

Note that the control we wrote down is

$$egin{split} u(t) &= \hat{M}(q) a_q(t) + \hat{C}(q,\dot{q}) \dot{q} + \hat{G}(q) \ &= \hat{M}(q) \left(\ddot{q}_d(t) + \mathcal{K}_P \left(q_d(t) - q(t)
ight) + \mathcal{K}_D \left(\dot{q}_d(t) - \dot{q}(t)
ight)
ight) \ &+ \hat{C}(q,\dot{q}) \dot{q} + \hat{G}(q) \end{split}$$

We don't need to construct the matrices $\hat{M}(q)$ and $\hat{C}(q, \dot{q})$, and vector $\hat{G}(q)$ explicitly in order to implement this control law.

We can use the recursive Newton-Euler Algorithm to calculate u(t) given $a_q(t)$ and the relevant frames, link geometry, and inertia parameters.

Note that the control we wrote down is

$$egin{aligned} u(t) &= \hat{M}(q) a_q(t) + \hat{C}(q,\dot{q}) \dot{q} + \hat{G}(q) \ &= \hat{M}(q) \left(\ddot{q}_d(t) + \mathcal{K}_P \left(q_d(t) - q(t)
ight) + \mathcal{K}_D \left(\dot{q}_d(t) - \dot{q}(t)
ight)
ight) \ &+ \hat{C}(q,\dot{q}) \dot{q} + \hat{G}(q) \end{aligned}$$

We don't need to construct the matrices $\hat{M}(q)$ and $\hat{C}(q, \dot{q})$, and vector $\hat{G}(q)$ explicitly in order to implement this control law.

We can use the recursive Newton-Euler Algorithm to calculate u(t) given $a_q(t)$ and the relevant frames, link geometry, and inertia parameters.

Physics simulators for robots use this method.

Task Space Inverse Dynamics

Let X be the end-effector pose with orientation given by a minimal representation of SO(3). Then,

$$\dot{x} = J_a(q)\dot{q} \implies \ddot{X} = J_a(q)\ddot{q} + \dot{J}_a(q)\dot{q}$$
 (5)

Task Space Inverse Dynamics

Let X be the end-effector pose with orientation given by a minimal representation of SO(3). Then,

$$\dot{x} = J_a(q)\dot{q} \implies \ddot{X} = J_a(q)\ddot{q} + \dot{J}_a(q)\dot{q}$$
 (5)

If we choose

$$a_q = J_a(q)^{-1} \left(a_X - \dot{J}_a(q) \dot{q} \right) \tag{6}$$

then the joint space inverse dynamics control implies a task space dynamics of

$$\ddot{X} = a_X \tag{7}$$

and we can now track task space trajectories $X_d(t)$.

BUT $J_a(q)$ must be non-singular.

In some cases, Jacobian pseudoinverses may be used.

What happens when $\hat{M}(q) \neq M(q)$, $\hat{C}(q,\dot{q}) \neq \hat{C}(q,\dot{q})$, $\hat{G}(q) \neq G(q)$?

Our closed-loop under inverse dynamics control is

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q} + G(q) = \hat{M}(q)a_q(t) + \hat{C}(q, \dot{q})\dot{q} + \hat{G}(q)$$

Rewrite above as

$$\begin{split} M(q)\ddot{q} &= \hat{M}(q)a_{q}(t) + \hat{C}(q,\dot{q})\dot{q} - C(q,\dot{q})\dot{q} + \hat{G}(q) - G(q) \\ M(q)\ddot{q} &= M(q)a_{q}(t) + \left(\hat{M}(q) - M(q)\right)a_{q}(t) \\ &+ \left(\hat{C}(q,\dot{q}) - C(q,\dot{q})\right)\dot{q} + \left(\hat{G}(q) - G(q)\right) \\ &= M(q)a_{q}(t) + \tilde{M}a_{q}(t) + \tilde{C}\dot{q} + \tilde{G} \\ \implies \ddot{q} &= a_{q}(t) + M^{-1}(q)\left(\tilde{M}a_{q}(t) + \tilde{C}\dot{q} + \tilde{G}\right) \end{split}$$

$$\ddot{q} = a_q(t) + M^{-1}(q) \left(\tilde{M} a_q(t) + \tilde{C} \dot{q} + \tilde{G} \right)$$

$$= a_q + \eta(q, \dot{q}, \ddot{q}, a_q)$$
(8)

If we had perfect knowledge of the model parameters, $\eta(q, \dot{q}, \ddot{q}, a_q) = 0$, because $\tilde{M} = \hat{M}(q) - M(q) = 0$ and so on.

To account for non-zero $\eta(q, \dot{q}, \ddot{q}, a_q)$, we choose a_q as

$$a_q(t) = \ddot{q}_d(t) + \mathcal{K}_P\left(q_d(t) - q(t)\right) + \mathcal{K}_D\left(\dot{q}_d(t) - \dot{q}(t)\right) + \delta a$$

$$\ddot{q} = a_q(t) + M^{-1}(q) \left(\tilde{M} a_q(t) + \tilde{C} \dot{q} + \tilde{G} \right)$$

$$= a_q + \eta(q, \dot{q}, \ddot{q}, a_q)$$

$$(9)$$

If we had perfect knowledge of the model parameters, $\eta(q,\dot{q},\ddot{q},a_q)=0$, because $\tilde{M}=\hat{M}(q)-M(q)=0$ and so on.

To account for non-zero $\eta(q, \dot{q}, \ddot{q}, a_q)$, we choose a_q as

$$a_q(t) = \ddot{q}_d(t) + \mathcal{K}_P\left(q_d(t) - q(t)
ight) + \mathcal{K}_D\left(\dot{q}_d(t) - \dot{q}(t)
ight) + \delta a$$

Let
$$e(t) = \begin{bmatrix} q(t) - q_d(t) \\ \dot{q}(t) - \dot{q}_d(t) \end{bmatrix}$$
. Our closed-loop is now

$$\dot{e} = \begin{bmatrix} 0 & I \\ -K_P & -K_D \end{bmatrix} e + \begin{bmatrix} 0 \\ I \end{bmatrix} (\delta a + \eta) \tag{10}$$

$$\dot{\mathbf{e}} = egin{bmatrix} 0 & I \ -K_P & -K_D \end{bmatrix} \mathbf{e} + egin{bmatrix} 0 \ I \end{bmatrix} (\delta \mathbf{a} + \eta (q, \dot{q}, \ddot{q}, a_q))$$

We can now easily see why the new term δa is what we use to account for non-zero $\eta(q, \dot{q}, \ddot{q}, a_q)$.

$$\dot{\mathbf{e}} = egin{bmatrix} 0 & I \ -K_P & -K_D \end{bmatrix} \mathbf{e} + egin{bmatrix} 0 \ I \end{bmatrix} (\delta \mathbf{a} + \eta (q, \dot{q}, \ddot{q}, a_q))$$

We can now easily see why the new term δa is what we use to account for non-zero $\eta(q, \dot{q}, \ddot{q}, a_q)$.

Remember that we can't compute $\eta(q, \dot{q}, \ddot{q}, a_q)$, because it depends on the true model, which we assume we don't know.

$$\dot{\mathbf{e}} = \begin{bmatrix} 0 & I \\ -K_P & -K_D \end{bmatrix} \mathbf{e} + \begin{bmatrix} 0 \\ I \end{bmatrix} (\delta \mathbf{a} + \eta(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}, \mathbf{a}_q))$$

We can now easily see why the new term δa is what we use to account for non-zero $\eta(q, \dot{q}, \ddot{q}, a_q)$.

Remember that we can't compute $\eta(q, \dot{q}, \ddot{q}, a_q)$, because it depends on the true model, which we assume we don't know.

How do we choose δa ?

$$\dot{e} = egin{bmatrix} 0 & I \ -K_P & -K_D \end{bmatrix} e + egin{bmatrix} 0 \ I \end{bmatrix} (\delta a + \eta(q,\dot{q},\ddot{q},a_q))$$

We can now easily see why the new term δa is what we use to account for non-zero $\eta(q, \dot{q}, \ddot{q}, a_q)$.

Remember that we can't compute $\eta(q, \dot{q}, \ddot{q}, a_q)$, because it depends on the true model, which we assume we don't know.

How do we choose δa ? Lyapunov methods

$$\dot{\mathbf{e}} = \begin{bmatrix} 0 & I \\ -K_P & -K_D \end{bmatrix} \mathbf{e} + \begin{bmatrix} 0 \\ I \end{bmatrix} (\delta \mathbf{a} + \eta(q, \dot{q}, \ddot{q}, a_q))$$

Suppose we can bound η as

$$\|\eta\| \leq \rho(e,t),$$

we can then design δa to guarantee ultimate $e(t) \rightarrow 0$.

$$\dot{e} = egin{bmatrix} 0 & I \ -K_P & -K_D \end{bmatrix} e + egin{bmatrix} 0 \ I \end{bmatrix} (\delta a + \eta(q,\dot{q},\ddot{q},a_q))$$

Suppose we can bound η as

$$\|\eta\| \leq \rho(e, t),$$

we can then design δa to guarantee ultimate $e(t) \rightarrow 0$.

Let
$$A = \begin{bmatrix} 0 & I \\ -K_P & -K_D \end{bmatrix}$$
, and $B = \begin{bmatrix} 0 \\ I \end{bmatrix}$. $\dot{e} = Ae + B(\delta a + \eta)$.

$$\dot{\mathbf{e}} = \begin{bmatrix} 0 & I \\ -K_P & -K_D \end{bmatrix} \mathbf{e} + \begin{bmatrix} 0 \\ I \end{bmatrix} (\delta \mathbf{a} + \eta(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}, \mathbf{a}_q))$$

Suppose we can bound η as

$$\|\eta\| \leq \rho(e,t),$$

we can then design δa to guarantee ultimate $e(t) \rightarrow 0$.

Let
$$A = \begin{bmatrix} 0 & I \\ -K_P & -K_D \end{bmatrix}$$
, and $B = \begin{bmatrix} 0 \\ I \end{bmatrix}$. $\dot{e} = Ae + B(\delta a + \eta)$.

Let $V = e^T P e$ where $A^T P + P A = -Q$. Since A can be made Hurwitz by choosing K_P and K_D , we know that for each Q > 0 there exists P > 0 that satisfies the Lyapunov equation $A^T P + P A = -Q$.

We have that

$$\dot{V} = e^{T} P A e + e^{T} A^{T} P e + 2 e^{T} P B (\delta a + \eta)$$

$$= -e^{T} Q e + 2 e^{T} P B (\delta a + \eta)$$
(11)

We choose

$$\delta a = \begin{cases} -\rho(e, t) \frac{B^T P e}{\|B^T P e\|} & , & \text{if } \|B^T P e\| \neq 0 \\ 0 & , & \text{if } \|B^T P e\| = 0 \end{cases}$$
 (12)

Let $w = B^T Pe$. Then the second term in (11) is then

$$w^{T} \left(-\rho \frac{w}{\|w\|} + \eta\right) \leq -\rho \|w\| + \|w\| \|\eta\| \quad (w^{T} \eta \leq \|w\| \|\eta\|)$$

$$\leq \|w\| (-\rho + \|\eta\|)$$

$$\leq 0, \qquad (\|\eta\| \leq \rho(e, t))$$

when $e \neq 0$.

So,

$$egin{aligned} \dot{V} &= -e^T Q e + 2 w^T (\delta a + \eta) \ &\leq -e^T Q e + 0 \ &< 0 \end{aligned}$$
 (from previous slide)

In summary, if we can bound η (see notes Section 5.5),

So,

$$\dot{V} = -e^T Q e + 2 w^T (\delta a + \eta)$$
 $\leq -e^T Q e + 0$ (from previous slide)
 < 0 ($Q > 0$)

In summary, if we can bound η (see notes Section 5.5), which depends on our model errors,

So,

$$\dot{V} = -e^T Q e + 2 w^T (\delta a + \eta)$$
 $\leq -e^T Q e + 0$ (from previous slide)
 < 0 ($Q > 0$)

In summary, if we can bound η (see notes Section 5.5), which depends on our model errors, we can achieve $e(t) \to 0$ using the robust version of the inverse dynamics control.

So,

$$egin{aligned} \dot{V} &= -e^T Q e + 2 w^T (\delta a + \eta) \ &\leq -e^T Q e + 0 \ &< 0 \end{aligned}$$
 (from previous slide)

In summary, if we can bound η (see notes Section 5.5), which depends on our model errors, we can achieve $e(t) \to 0$ using the robust version of the inverse dynamics control.

Issues:

- ▶ If the bound ρ is large (due to large errors η), then the demanded control u becomes larger than motor capacity
- ► The control is discontinuous at w = 0, which is tricky to implement; overheats electric motors.

The error in model estimate affects $\rho(\epsilon,t)$ which ruins the lowest achievable error in continuous robust inverse dynamics control.

- The error in model estimate affects $\rho(\epsilon, t)$ which ruins the lowest achievable error in continuous robust inverse dynamics control.
- ▶ Ideally, we want smaller model errors to achieve lower error.

- The error in model estimate affects $\rho(\epsilon, t)$ which ruins the lowest achievable error in continuous robust inverse dynamics control.
- ▶ Ideally, we want smaller model errors to achieve lower error.
- Luckily, we can learn models on-the-fly using adaptive control theory.

Key idea: EL model is linear in parameters!

Key idea: EL model is linear in parameters!

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) \rightarrow Y(q,\dot{q},\ddot{q})\Theta$$

- \triangleright Θ : a vector function that depend on link masses, lengths, g
- $Y(q, \dot{q}, \ddot{q})$ a vector function that DOES NOT DEPEND on robot parameters

Key idea: EL model is linear in parameters!

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) \rightarrow Y(q,\dot{q},\ddot{q})\Theta$$

- \triangleright Θ : a vector function that depend on link masses, lengths, g
- $Y(q,\dot{q},\ddot{q})$ a vector function that DOES NOT DEPEND on robot parameters

We don't know true parameters Θ .

Key idea: EL model is linear in parameters!

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) \rightarrow Y(q,\dot{q},\ddot{q})\Theta$$

- \triangleright Θ : a vector function that depend on link masses, lengths, g
- $Y(q,\dot{q},\ddot{q})$ a vector function that DOES NOT DEPEND on robot parameters

We don't know true parameters Θ .

We have a guess $\hat{\Theta}$ (which we may convert into $\hat{M}(q)$, $\hat{C}(q,\dot{q})$, $\hat{G}(q)$).

We would hope $\hat{\Theta} = \Theta$.

We would hope $\hat{\Theta} = \Theta$.

Since guessing right is unlikely, we design a continuous update rule for $\hat{\Theta}(t)$.

We would hope $\hat{\Theta} = \Theta$.

Since guessing right is unlikely, we design a continuous update rule for $\hat{\Theta}(t)$.

KEY ADAPTIVE CONTROL BEHAVIOR:

This update rule WILL NOT ensure that $\hat{\Theta}(t) \to \Theta$, but it ensures that

$$e(t) \rightarrow 0$$
.

We would hope $\hat{\Theta} = \Theta$.

Since guessing right is unlikely, we design a continuous update rule for $\hat{\Theta}(t)$.

KEY ADAPTIVE CONTROL BEHAVIOR:

This update rule WILL NOT ensure that $\hat{\Theta}(t) \to \Theta$, but it ensures that

$$e(t) \rightarrow 0$$
.

This update rule relies on the linearity in parameters property.

Let $\tilde{q}=q-q_d$, $\tilde{\dot{q}}=\dot{q}-\dot{q}_d$ Choosing $u=Y(q,\dot{q},a_q)\hat{\Theta}$, where $a_q=\ddot{q}_d(t)-K_P\tilde{q}-K_D\tilde{\dot{q}}$ we get

$$\ddot{\tilde{q}} + K_1 \dot{\tilde{q}} + K_0 \dot{\tilde{q}} = M^{-1} Y(q, \dot{q}, \ddot{q}) \tilde{\Theta} = \Phi \tilde{\Theta},$$
 (13)

where $\tilde{\Theta} = \hat{\Theta} - \Theta$.

Let $\tilde{q}=q-q_d$, $\tilde{\dot{q}}=\dot{q}-\dot{q}_d$ Choosing $u=Y(q,\dot{q},a_q)\hat{\Theta}$, where $a_q=\ddot{q}_d(t)-K_P\tilde{q}-K_D\tilde{\dot{q}}$ we get

$$\ddot{\tilde{q}} + K_1 \dot{\tilde{q}} + K_0 \dot{\tilde{q}} = M^{-1} Y(q, \dot{q}, \ddot{q}) \tilde{\Theta} = \Phi \tilde{\Theta}, \tag{13}$$

where $\tilde{\Theta} = \hat{\Theta} - \Theta$.

Let
$$e = \begin{bmatrix} \tilde{q} \\ \tilde{\tilde{q}} \end{bmatrix}$$
. We get the ODE

$$\dot{e} = Ae + B\Phi\tilde{\theta} \tag{14}$$

which is effectively the same ODE as in the robust case, but without δa .

Consider a function of $e, \tilde{\Theta}$ given by

$$V(e, \tilde{\Theta}) = e^{T} P e + \tilde{\Theta}^{T} \Gamma \tilde{\Theta}. \tag{15}$$

For P>0 and $\Gamma>0$, $V(e,\tilde{\Theta})=0$ when e=0 and $\Theta=\hat{\Theta}$.

Consider a function of $e, \tilde{\Theta}$ given by

$$V(e, \tilde{\Theta}) = e^{T} P e + \tilde{\Theta}^{T} \Gamma \tilde{\Theta}. \tag{15}$$

For P > 0 and $\Gamma > 0$, $V(e, \tilde{\Theta}) = 0$ when e = 0 and $\Theta = \hat{\Theta}$. Again, we know there exists Q > 0 such that $A^T P + PA = -Q$.

Consider a function of $e, \tilde{\Theta}$ given by

$$V(e, \tilde{\Theta}) = e^{T} P e + \tilde{\Theta}^{T} \Gamma \tilde{\Theta}.$$
 (15)

For P > 0 and $\Gamma > 0$, $V(e, \tilde{\Theta}) = 0$ when e = 0 and $\Theta = \hat{\Theta}$. Again, we know there exists Q > 0 such that $A^T P + PA = -Q$.

We have

$$\dot{V}(e,\tilde{\Theta}) = -e^{T}Qe + 2\tilde{\Theta}^{T}\left(\Phi^{T}B^{T}Pe + \Gamma\dot{\hat{\Theta}}\right)$$
 (16)

If we knew Θ the second term is made zero by choosing $\hat{\Theta} = \Theta$.

Consider a function of $e, \tilde{\Theta}$ given by

$$V(e, \tilde{\Theta}) = e^{T} P e + \tilde{\Theta}^{T} \Gamma \tilde{\Theta}. \tag{15}$$

For P > 0 and $\Gamma > 0$, $V(e, \tilde{\Theta}) = 0$ when e = 0 and $\Theta = \hat{\Theta}$. Again, we know there exists Q > 0 such that $A^T P + PA = -Q$.

We have

$$\dot{V}(e,\tilde{\Theta}) = -e^{T}Qe + 2\tilde{\Theta}^{T}\left(\Phi^{T}B^{T}Pe + \Gamma\dot{\hat{\Theta}}\right)$$
(16)

If we knew Θ the second term is made zero by choosing $\hat{\Theta} = \Theta$. Since we don't, we instead choose

$$\dot{\hat{\Theta}} = -\Gamma^{-1} \Phi^T B^T P e \tag{17}$$

$$(\implies \dot{V} \le 0, \text{ and } \dot{V} < 0 \text{ when } e \ne 0) \tag{18}$$

It's like a nonlinear integral control!

Summary:

Parameter update: $\dot{\hat{\Theta}} = -\Gamma^{-1}\Phi^T B^T Pe$

- Parameter update: $\dot{\hat{\Theta}} = -\Gamma^{-1}\Phi^T B^T Pe$
- Ensures that $e(t) \rightarrow 0$ for any initial guess $\Theta(0)$ Analysis uses Barbalat's Lemma to handle $\dot{V} \not< 0$. (ME 699 in Fall 2020)

- Parameter update: $\dot{\hat{\Theta}} = -\Gamma^{-1}\Phi^T B^T Pe$
- ► Ensures that $e(t) \rightarrow 0$ for any initial guess $\Theta(0)$ Analysis uses Barbalat's Lemma to handle $\dot{V} \not< 0$. (ME 699 in Fall 2020)
- ▶ DOES NOT ensure that $\hat{\Theta}(t) \rightarrow \Theta$. . .

- Parameter update: $\dot{\hat{\Theta}} = -\Gamma^{-1}\Phi^T B^T Pe$
- ► Ensures that $e(t) \rightarrow 0$ for any initial guess $\Theta(0)$ Analysis uses Barbalat's Lemma to handle $\dot{V} \not< 0$. (ME 699 in Fall 2020)
- ▶ DOES NOT ensure that $\hat{\Theta}(t) \rightarrow \Theta$. . .
- unless a condition known as Persistence of Excitation holds.

- Parameter update: $\dot{\hat{\Theta}} = -\Gamma^{-1}\Phi^T B^T Pe$
- ► Ensures that $e(t) \rightarrow 0$ for any initial guess $\Theta(0)$ Analysis uses Barbalat's Lemma to handle $\dot{V} \not< 0$. (ME 699 in Fall 2020)
- ▶ DOES NOT ensure that $\hat{\Theta}(t) \rightarrow \Theta$. . .
- unless a condition known as Persistence of Excitation holds.
 - when e = 0, $\dot{\Theta} = 0$. Update stops.

- Parameter update: $\dot{\hat{\Theta}} = -\Gamma^{-1}\Phi^T B^T Pe$
- ► Ensures that $e(t) \rightarrow 0$ for any initial guess $\Theta(0)$ Analysis uses Barbalat's Lemma to handle $\dot{V} \not< 0$. (ME 699 in Fall 2020)
- ▶ DOES NOT ensure that $\hat{\Theta}(t) \rightarrow \Theta$. . .
- unless a condition known as Persistence of Excitation holds.
 - when e = 0, $\dot{\Theta} = 0$. Update stops.
 - Some disturbances keep pushing e(t) away from zero in a way that allows update to continue while e stays small

- Parameter update: $\dot{\hat{\Theta}} = -\Gamma^{-1}\Phi^T B^T Pe$
- ► Ensures that $e(t) \rightarrow 0$ for any initial guess $\Theta(0)$ Analysis uses Barbalat's Lemma to handle $\dot{V} \not< 0$. (ME 699 in Fall 2020)
- ▶ DOES NOT ensure that $\hat{\Theta}(t) \rightarrow \Theta$. . .
- unless a condition known as Persistence of Excitation holds.
 - when e = 0, $\dot{\Theta} = 0$. Update stops.
 - Some disturbances keep pushing e(t) away from zero in a way that allows update to continue while e stays small
 - ▶ PoE: says when $\hat{\Theta}(t) \to \Theta$ as opposed to $\|\hat{\Theta}(t)\| \to \infty$

- Parameter update: $\dot{\hat{\Theta}} = -\Gamma^{-1}\Phi^T B^T Pe$
- ► Ensures that $e(t) \rightarrow 0$ for any initial guess $\Theta(0)$ Analysis uses Barbalat's Lemma to handle $\dot{V} \not< 0$. (ME 699 in Fall 2020)
- ▶ DOES NOT ensure that $\hat{\Theta}(t) \rightarrow \Theta$. . .
- unless a condition known as Persistence of Excitation holds.
 - when e = 0, $\dot{\Theta} = 0$. Update stops.
 - Some disturbances keep pushing e(t) away from zero in a way that allows update to continue while e stays small
 - ▶ PoE: says when $\hat{\Theta}(t) \to \Theta$ as opposed to $\|\hat{\Theta}(t)\| \to \infty$
 - ▶ PoE rule is important. Bad updates caused the NASA X-15 to crash in 1967.
 - (Mathematical analysis is sometimes not optional).

