**Instruction:** You must show all your work clearly for credit. Partial credit will only be given to meaningful answers.

1. Use the definition of big-O to prove that  $n^4 - 8n^3 + 16n^2 - 3n + 560 \neq O(n^3)$ .

**Proof:** If true, we must have constants k and  $n_0$  such that  $n^4 - 8n^3 + 16n^2 - 3n + 560 \le n^3$ ,

$$\forall n \ge n_0$$
. Hence,  $\frac{n^4 - 8n^3 + 16n^2 - 3n + 560}{n^3} \le k$ . As  $n \to \infty$ , we have  $\infty \le k = \text{constant}$ . A

contradiction is reached, implying that  $n^4 - 8n^3 + 16n^2 - 3n + 560 \neq O(n^3)$ .

2. For any two functions f(n) and g(n), by definition, f(n) = o(g(n)) iff f(n) = O(g(n)) and  $f(n) \neq \Theta(g(n))$ . Use the definition of little-o to prove or disprove that  $n^4 - 8n^3 + 16n^2 - 3n + 560 = o(n^5)$ .

**Proof:** (i) Prove that  $n^4 - 8n^3 + 16n^2 - 3n + 560 = O(n^5)$ .

$$n^4 - 8n^3 + 16n^2 - 3n + 560$$

$$\leq n^4 + 16n^4 + 560n^4, \forall n \geq 1$$

$$\leq 577n^4, \forall n \geq 1$$

$$\leq 577n^5, \forall n \geq 1.$$

Hence, 
$$n^4 - 8n^3 + 16n^2 - 3n + 560 = O(n^5)$$
.

(ii) Prove that  $n^4 - 8n^3 + 16n^2 - 3n + 560 \neq \Theta(n^5)$ .

If true, we must have  $n^4 - 8n^3 + 16n^2 - 3n + 560 = \Omega(n^5)$ , implying that there exist constants k and  $n_0$  such that  $n^4 - 8n^3 + 16n^2 - 3n + 560 \ge kn^5$ ,  $\forall n \ge n_0$ .

Hence, 
$$\frac{n^4 - 8n^3 + 16n^2 - 3n + 560}{n^5} \ge k, \forall n \ge n_0$$
.

As  $n \to \infty$ , we have  $0 \ge k > 0$ , which is a contradiction.

Hence, 
$$n^4 - 8n^3 + 16n^2 - 3n + 560 \neq \Theta(n^5)$$
.

Conclusion: 
$$n^4 - 8n^3 + 16n^2 - 3n + 560 = o(n^5)$$
.

3. Let f(n) and g(n) be any two positive functions. Prove or disprove the statement that if f(n) = O(g(n)), then  $2^{f(n)} = O(2^{g(n)})$ .

#### **Solution:**

If 
$$f(n) = O(g(n))$$
, then  $2^{f(n)} = O(2^{g(n)})$  may or may not be true.

Take 
$$f(n) = 2n$$
,  $g(n) = n$ .

$$2^{2n} = 4^n \neq O(2^n).$$

4. By assuming that all basic operations require the same constant cost K, compute the cost of the resource function  $R_w(n)$  in closed-form for the following program segment using the simplified approach as discussed in class. *Remark*: You must first set up a summation equation for  $R_w(n)$  and then evaluate the sum(s) clearly for credit.

$$x = 210;$$
  
 $y = 560;$   
 $for i = 1 \text{ to } n*n \text{ do}$   
 $for j = i \text{ to } n \text{ do}$   
 $y = x * y / 660 + 388;$   
 $endfor;$   
 $endfor;$ 

# **Wrong Solution:**

$$T(n) = \sum_{i=1}^{n^2} \sum_{j=i}^{n} K$$

$$= K \sum_{i=1}^{n^2} (n - i + 1)$$

$$= K [n^3 - \frac{n^2 (n^2 + 1)}{2} + n^2]$$
< 0. (Q: What is wrong?)

#### **Correct Solution:**

$$T(n) = \left(\left(\sum_{i=1}^{n} + \sum_{i=n+1}^{n^{2}}\right)\sum_{j=i}^{n}\right)K$$

$$= \sum_{i=1}^{n} \sum_{j=i}^{n} K + \sum_{i=n+1}^{n^{2}} K$$

$$= K \sum_{i=1}^{n} (n-i+1) + (n^{2}-n)K$$

$$= K \left[2n^{2} - \frac{n(n+1)}{2}\right]$$

$$= K \left(\frac{3n^{2}-n}{2}\right)$$

$$= \Theta(n^{2}).$$

- 5. Given a set of records with 7 keys  $S = \{35, 28, 43, 17, 39, 3, 46\}$ .
  - (a) By using the hash function  $h(x) = x \mod m$  and chaining with singly linked list in constructing an open hash table H with m = 11 buckets, insert the records in S, in the given order, into H. You must show your computations for locations and illustrate the final structure of your hash table H clearly for credit. Remark: Insertion must be done at the beginning of the list.
  - (b) By using the hash function  $h(x) = x \mod m$  and quadratic probing in constructing a closed hash table H with m = 11 buckets, insert the records in S, in the given order, into H. You must show your computations for locations and illustrate the final structure of your hash table H clearly for credit.
  - (c) Given two hash functions  $h(x) = x \mod m$  and  $h^+(x) = p x \mod p$ . By using open addressing with  $f_i = i * h^+(x)$  and double hashing in constructing a closed hash table H with m = 11 buckets and p = 5, insert the records in S, in the given order, into H. You must show your computations for locations and illustrate the final structure of your hash table H clearly for credit.

#### **Solution:**

(a) Address computations:

35 % 11 = 2,

28 % 11 = 6,

43 % 11 = 10,

17 % 11 = 6,

39 % 11 = 6,

3% 11 = 3,

46 % 11 = 2.



Open hash table with chaining

(b) Address computations:

$$35 \% 11 = 2$$
,  
 $28 \% 11 = 6$ ,  
 $43 \% 11 = 10$ ,  
 $17 \% 11 = 6 \rightarrow 7$ ,  
 $39 \% 11 = 6 \rightarrow 7 \rightarrow 10 \rightarrow 15 \% 11 = 4$ ,  
 $3 \% 11 = 3$ ,  
 $46 \% 11 = 2 \rightarrow 3 \rightarrow 6 \rightarrow 11 \% 11 = 0$ .

| 0                          | 46            |
|----------------------------|---------------|
| 1                          |               |
| 2                          | 35            |
| 2<br>3<br>4<br>5<br>6<br>7 | 35<br>3<br>39 |
| 4                          | 39            |
| 5                          |               |
| 6                          | 28            |
|                            | 17            |
| 8                          |               |
| 9                          |               |
| 10                         | 43            |
|                            |               |

Closed hash table with quadratic probing

# (c) Address computations:

$$35 \% 11 = 2$$
,

$$28 \% 11 = 6$$
,

$$17\% 11 = 6$$
,

$$h^+(x) = p - (x \mod p) = 5 - (17 \mod 5) = 3,$$

$$h_1(x) = (h(x) + 1h^+(x)) \mod 11 = (6+3) \mod 11 = 9.$$

$$39 \% 11 = 6$$
,

$$h^+(x) = p - (x \mod p) = 5 - (39 \mod 5) = 1,$$

$$h_1(x) = (h(x) + 1h^+(x)) \mod 11 = (6+1) \mod 11 = 7.$$

$$3\% 11 = 3$$
,

$$46 \% 11 = 2$$
,

$$h^+(x) = p - (x \mod p) = 5 - (46 \mod 5) = 4,$$

$$h_1(x) = (h(x) + 1h^+(x)) \mod 11 = (2+4) \mod 11 = 6,$$

$$h_2(x) = (h(x) + 2h^+(x)) \mod 11 = (2 + 8) \mod 11 = 1.$$

| 0                          |         |
|----------------------------|---------|
| 1                          | 46      |
| 2                          | 35<br>3 |
| 2<br>3<br>4<br>5<br>6<br>7 | 3       |
| 4                          |         |
| 5                          |         |
| 6                          | 28      |
| 7                          | 39      |
| 9                          |         |
| 9                          | 17      |
| 10                         | 43      |

Closed hash table with double hashing

- 6. If a set of 4090 records is being stored using a binary tree T with 4090 nodes (one record per node), answer the following questions with *integer solution* if possible.
  - (a) What is the min height of T?
  - (b) What is the max height of T?
  - (c) What is the min number of leaves in T?
  - (d) What is the max number of leaves in T?
  - (e) If T is being implemented using the sequential array data structure, what is the size of an array A in order to store T?

### **Solution:**

$$4090 = 2^{12} - 6$$
.

(a) What is the min height of T?

$$\lfloor \operatorname{lgn} \rfloor = 11$$

(b) What is the max height of T?

$$n - 1 = 4089$$
.

(C) What is the min number of leaf in T?

(d) What is the max number of leaf in T?

Height h = 11 implies tree with  $2^{11+1} - 1 = 4095$  nodes and  $2^{11} = 2048$  leaves.

Remove 5 leaves at level h and add back 2 new leaves at level h-1:

$$2048 - 5 + 2 = 2045$$
 leaves.

(e) If T is being implemented using the sequential array implementation, what is the size of array A in order to store T?

$$2^{4089+1} - 1 = 2^{4090} - 1$$

- 7. Construct the (unique) binary tree corresponding to the given pair of tree traversals if possible. **Remark:** You must show all your steps clearly as illustrated in class for credit. If no such a tree is possible, you must justify your answer.
  - (a) Preorder: GBDFAIHJKLEC Inorder: BIAFKJHLDEGC
  - (b) Postorder: HIBCAKGEJDF Inorder: IHCBKGJEFDA
  - (c) Postorder: H G F B K L J I D A Inorder: F G H B A D K J L I

# **Solution:**

(a)



(b) No tree.



8. Given a set S of 4 records with keys  $\{x_1, x_2, x_3, x_4\}$ ,  $x_1 < x_2 < x_3 < x_4$ . Construct all possible binary search trees (BST) that can be used to store S. Remark: You must illustrate all your BSTs clearly for credit.

# **Solution:**

Number of BST =  $C_{n+1} = \frac{1}{n+1} {2n \choose n}$ , which is the (n+1)th-term Catalan number.

For 
$$n = 4$$
,  $C_5 = \frac{1}{5} {8 \choose 4} = 14$ .

### **Distinct BST's for 4 records:**

1:



2.



3:



1.



5:



6:

















- 9. Given a set of 10 records with priorities  $S = \{10, 15, 3, 8, 20, 5, 17, 27, 19, 12\}.$ 
  - (a) Construct a BST T for S by inserting the records, in the given order, into an initially empty binary search tree. When done, delete 10, and then 20 from the tree.
  - (b) Construct a BST T for S by inserting the records, in the reverse given order, into an initially empty binary search tree. When done, delete 5, and then 19 from the tree.

**Remark:** You must show your BST after each insertion/deletion for credits. For deletion, you must use deleteMin operations as discussed in class.

## **Solution:**

(a)

After insertions:



After deletions:



# (b) After insertions:



# After deletions:

