What and How of Machine Learning Transparency

Building Bespoke Explainability Tools with Interoperable Algorithmic Components

Welcome!

ECML-PKDD 2020

- Hands-on Tutorial.
- 2.00--6.00pm CEST.
- <u>Events.fat-forensics.org</u>
- <u>FATForensicsEvents.slack.com</u> (Registration via separate URL given in webinar.)
- Recordings published after the event.

Peter Flach

Instructors

- → Kacper Sokol
 - Researcher at Bristol University
 - Working on Explainable AI
 - Lead developer of FAT Forensics

- → Alexander Hepburn
 - Researcher at Bristol University
 - Working on cost-sensitive deep learning
 - Core developer of FAT Forensics

- → Raul Santos-Rodriguez
 - Senior Lecturer at Bristol University
 - Working on data science and intelligent systems with applications in healthcare
- → Peter Flach
 - Professor at Bristol University
 - Working on human-centred and interactive AI as well as evaluation and calibration of ML models

Schedule

Part 1: Identifying Modules of Black-box Explainers

2.002.15pm CEST (15 minutes)	Background and motivation of research on modular explainers. • Human-centred and interactive artificial intelligence. • Robust and trustworthy machine learning.	Peter Flach
2.153.15pm CEST (60 minutes)	 Modular interpretability by dissection. Bespoke surrogate explainers for tabular data and beyond. The "What?", "Why?" and "How?" of algorithmic transparency. 	Kacper Sokol

Part 2: Getting to Know FAT Forensics

3.153.30pm CEST (15 minutes)	 Introduction to open source interpretability with FAT Forensics. Promises and perils of modular research software. FAT Forensics reproducibility by design. 	Alex Hepburn
3.303.45pm CEST (15 minutes)	 Hands-on session preparation. Setting up the environment Binder, Colab, local installation. FAT Forensics' documentation tutorials, how-to guides, API. 	Alex Hepburn
3.454.15pm CEST (30 minutes)	 Opportunity to resolve issues with the environment setup. Sign up for the Slack channel; find a data set; get a black box. 	Kacper Sokol & Alex Hepburn

Part 3 (Hands-on): Building Bespoke Surrogate Explainers

4.154.30pm CEST (15 minutes)	 Introduction to the hands-on resources. Overview of the Jupyter Notebooks building modular surrogates. Interoperable algorithmic components for ML explainability. 	Alex Hepburn
4.305.50pm CEST (80 minutes)	 Active participation facilitated by the instructors (no setup needed). Building bespoke surrogate explainers of tabular data. Bring your own data and explain away. 	Kacper Sokol & Alex Hepburn
5.506.00pm CEST (10 minutes)	 Summary and farewell. Revisiting modular interpretability with surrogate explainers. Recap of interoperable transparency software FAT Forensics. 	Raul Santos- Rodriguez

Background

Where are we coming from?

- Al research in the Intelligent Systems Lab at Bristol combines
 - Data-driven AI (machine learning and data science)
 - Knowledge-intensive AI (reasoning, uncertainty, measurement)
 - Human-centred AI (explainability, human-AI interaction)
- Some examples:
 - Classifier calibration: tutorial last Monday, recording available soon
 - Measurement theory (project funded by the Alan Turing Institute)
 Performance Evaluation in Machine Learning: The Good, The Bad, The Ugly and The Way Forward

Interactive and Human-Centred AI

- As Artificial Intelligence is deployed across an expanding range of scenarios, getting the interaction between humans and intelligent machines right is critical.
 - Human agents can play many roles in a data-processing pipeline.
- To achieve **trustworthiness**, Fairness, Accountability and Transparency (FAT) are of paramount importance.
- In Bristol we are particularly interested in informing the AI perspective from other human-centred disciplines
 - o Cognitive & social science, philosophy, law, humanities, ...

Trustworthy AI in Europe

Bristol is a core partner in the TAILOR network of European centres of excellence in AI (https://liu.se/en/research/tailor/), funded by H2020 ICT-48.

- <u>Trustworthy Al</u> through integrating <u>Learning</u>, <u>Optimisation and Reasoning</u>
- Fundamental and applied research on combining AI paradigms
- PhD curriculum, summer schools, educational events
- Training materials and resources on trustworthy AI

TAILOR has kicked off in September 2020 and is funded for 3 years, so watch this space!

FAT Forensics

FAT Forensics < https://fat-forensics.org>

- A modular Python toolkit for algorithmic Fairness, Accountability and Transparency.
- Aimed at both end-users and domain experts.
- Built for research and deployment.
- Originally developed in collaboration with Thales UK.

Motivation

Black-box Explainability

- Explainers can be black boxes as well.
- We should be aware of their algorithmic assumptions and caveats.

One Explainer Does Not Fit All -- Desiderata

No free lunch (theorem) \rightarrow No universal explainer.

- (Perceived) explainability depends on explainees and use cases.
- Instead of end-to-end explainers, offer explainability modules.
- Humans may be the recipients -- they may expect an interactive "dialogue".
- Additionally, consider: explanation breadth and scope, explanation family, explanatory medium, explanation domain and explanation audience (prior knowledge), among many others.

Modular Explainability

- Identify core (algorithmic) building blocks.
- Determine their influence on the resulting explanations -- configure away.

Modular Surrogate Explainers

- We show this process for (local) surrogates of image, text and tabular data.
- The hands-on part focuses on tabular data.

Learning Outcomes

- Understanding explainers, and not only their explanations.
- In-depth, operational appreciation of (local) surrogates.
- Hands-on experience with building and evaluating (local) surrogate explainers for tabular data.

Next Up

What and How of Modular Interpretability

(Kacper Sokol)