PROBABILITY THEORY II

Matthew Joseph, notes by Ramdas Singh

Second Semester

List of Symbols

 $\Omega,$ a sample space.

 $\omega,$ an element of a sample space.

EX, the expectation of the random variable X.

Var X, the variance of the random variable X.

 $N(\mu,\sigma^2),$ a normal distribution with expectation μ and variance $\sigma^2.$

Contents

1			1		
		The Law of Large Numbers			
		Simple Random Walk			
1	.3	Erdös-Renyi Random Graph	7		
Appe	end	ices	11		
A Appendix					
Inde	X		15		

Chapter 1

January 3rd.

We first start with some initial statements. Let Ω be a countable state space, and let each $\omega \in \Omega$ have a probabiltiy $P(\omega)$ associated with it.

Lemma 1.1. For random variables X, Y such that $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$. Then, $EX \leq EY$.

Proof. This can easily be seen by summing over all terms via the alternate definition of the expectation,

$$EX = \sum_{\omega \in \Omega} X(\omega) P(\omega) \le \sum_{\omega \in \Omega} Y(\omega) P(\omega) = EY.$$
 (1.1)

We now state Markov's inequality.

Theorem 1.2 (Markov's inequality). If X is a non-negative randm variable, then for a > 0, we have

$$P(X > a) \le \frac{EX}{a}. (1.2)$$

Proof. Define an indicator function $I_a(\omega)$ as 1 if $X(\omega) \geq a$, and 0 if otherwise. We then have

$$I_a(\omega) \le \frac{X(\omega)}{a} \implies P(X \ge a) = EI_a \le \frac{1}{a}EX.$$
 (1.3)

Remark 1.3. A better upper bound here may be found by starting with $I_a(\omega)X(\omega)$ instead of just $X(\omega)$.

If we have $X \sim N(0,1)$, then we can find an upper bound for its probability density function.

$$P(X > a) = \int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} dx \le \int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{x}{a} e^{\frac{-x^2}{2}} dx = \frac{e^{\frac{-a^2}{2}}}{\sqrt{2\pi}a}.$$
 (1.4)

Note that X here is a random variable over a continuous state space; the previous lemma and Markov's inequality also work here. We are to show them for the continuous case instead of the discrete one.

Proof. Here, we have $0 \le X(\omega) \le Y(\omega)$ for all ω in our continuous state space Ω . We see that $\{X > x\} \subseteq \{Y > x\} \implies P(X > x) \le P(Y > x)$. Integrating both sides gives us $EX \le EY$.

Theorem 1.4 (Chebyshev's inequality). Let X be a random variable with finite mean $\mu = EX$ and finite variance $\sigma^2 = Var(X)$. Then for a > 0,

$$P(|X - \mu| > a) \le \frac{Var(X)}{a^2}.$$
(1.5)

Proof. Start with the proof of Markov's inequality, replacing the indiciator function with one that's unity when $|X - \mu| \ge a$.

Example 1.5. Suppose X_1, X_2, \ldots, X_n are n independent and identically distributed random variables, with $EX_i = \mu$ and $VarX_i = \sigma^2$. If $S_n = \sum X_i$, we then have

$$P(|S_n - n\mu| > a) \le \frac{\text{Var}S_n}{a^2} = \frac{n\sigma^2}{a^2}.$$
 (1.6)

If we replace a with $n^{\frac{1}{2}+\varepsilon}$, we then have

$$P(|S_n - n\mu| > n^{\frac{1}{2} + \varepsilon}) \le \frac{\sigma^2}{n^{2\varepsilon}} \to 0 \text{ as } n \to \infty.$$
 (1.7)

Proposition 1.6. If Var(X) = 0, then P(X = EX) = 1.

Proof. For all $\varepsilon > 0$, we have

$$P(|X - EX| > \varepsilon) \le \frac{\operatorname{Var} X}{\varepsilon^2} = 0.$$
 (1.8)

Define A_n as $\{|X - EX| > \frac{1}{n}\}$. Taking $P(\bigcup A_n) = \lim_{n \to \infty} P(A_n)$, the proof follows.

1.1 The Law of Large Numbers

We start by stating the weak law of large numbers.

Theorem 1.7 (Weak law of large numbers). Let $\{X_k\}_{k\geq 1}$ be a sequence of independent and identically distributed random variables with $E|X_i| < \infty$. Let $\mu = EX_i$. Then for any a > 0,

$$\lim_{n \to \infty} P\left(\left| \frac{X_1 + X_2 + \dots + X_n}{n} - \mu \right| > a \right) = 0. \tag{1.9}$$

Proof. For now, let us assume that Ω is countable. We begin with the case where the variance of X_i , σ^2 , is finite. Fix a > 0, and let $S_n = X_1 + X_2 + \ldots + X_n$. Then,

$$P\left(\left|\frac{S_n}{n} - \mu\right| > a\right) = P(|S_n - n\mu| > na) \le \frac{\operatorname{Var}S_n}{n^2 a^2} = \frac{n\sigma^2}{n^2 a^2} \to 0 \text{ as } n \to \infty.$$
 (1.10)

We now focus the case when the variance, σ^2 , is infinite. Assume that the expected value, μ , is 0; if it were non-zero, we would then instead work with $X_i - \mu$. Let $\delta > 0$; we shall choose a particular δ later. For each n, define n pairs of random variables, $U_1, V_1, \ldots, U_n, V_n$, as $U_k = X_k, V_k = 0$ if $|X_k| \leq \delta n$, and $U_k = 0, V_k = X_k$ if $|X_k| > \delta n$. X_k can be rewritten as $U_k + V_k$. We then have

$$\{|X_1 + \ldots + X_n| \ge na\} \subseteq \{|U_1 + \ldots + U_n| \ge \frac{na}{2}\} \cup \{|V_1 + \ldots + V_n| \ge \frac{na}{2}\}$$
 (1.11)

$$\implies P(|X_1 + \ldots + X_n| \ge na) \le P(|U_1 + \ldots + U_n| \ge \frac{na}{2}) + P(|V_1 + \ldots + V_n| \ge \frac{na}{2}). \tag{1.12}$$

We focus on the first term on the right hand side. The U_i 's are independently and identically distributed, so

$$P\left(|U_1 + \ldots + U_n| \ge \frac{na}{2}\right) \le \frac{4E[|U_1 + \ldots + U_n|^2]}{a^2n^2} = \frac{4}{a^2n^2} \left(\operatorname{Var}(U_1 + \ldots + U_n) + (nEU_i)^2\right). \tag{1.13}$$

For the variance, we have

$$Var(U_1 + ... + U_n) = nVarU_i \le nEU_i^2 \le nE[|U_i||U_i|] \le \delta n^2 E[|U_i|]$$
 (1.14)

which transforms the previous equation as

$$P(|U_1 + \ldots + U_n| \ge \frac{na}{2}) \le \frac{4}{a^2 n^2} (\delta n^2 E[|U_i|] + (nEU_i)^2).$$
 (1.15)

A lemma (to be proven later) states that $E[|U_i|] = E[|X_i|]$ as $n \to \infty$, and $EU_i = EX_i = 0$ too. So,

$$P\left(|U_1 + \ldots + U_n| \ge \frac{na}{2}\right) \le \frac{4}{a^2n^2} \left(\delta n^2 E[|U_i|] + (nEU_i)^2\right) \le \frac{4\delta E[|U_i|]}{a^2} + \frac{4}{a^2} (EU_i)^2. \tag{1.16}$$

For the second term on the right hand side, begin with

$$P(V_1 + \ldots + V_n \neq 0) \le P(\{V_1 \neq 0\} \cup \ldots \cup \{V_n \neq 0\}) \le nP(V_i \neq 0) = n \sum_{|x| > \delta n} P(X_i = x)$$

$$\le n \sum_{|x| > \delta n} \frac{|x|}{\delta n} P(X_i = x) = \frac{1}{\delta} E[|V_i|]. \tag{1.17}$$

The rightmost term here tends to 0 as $n \to \infty$. Now choose δ to be $\frac{\varepsilon a^2}{|6E|X_i||}$, and then choose N to be large enough such that for all n > N, both the terms are smaller than $\frac{\varepsilon}{2}$.

January 7th.

We now prove the lemma called upon earlier.

Lemma 1.8. If X is a discrete random variable and takes values y_1, y_2, \ldots, y_k , and $E[|X|] < \infty$, then $\lim_{n\to\infty} E[|X| 1_{|X|\leq n}] = E[|X|]$.

Proof. Notice that the terms on the left hand side and right hand side are $\sum_{y_k:|y_k|\leq n}$ and $\sum_{y_k}|y_k|P(Y=y_k)$. The condition for convergence may now be applied.

The above equation, begin inside absolute braces, must imply that the term $E[X \cdot 1_{|X| \le n}]$ must also absolutely converge to EX.

1.2 Simple Random Walk

Let $X_1, X_2, ...$ be independent and identically distributed random variables, with $X_i = 1$ with probability $\frac{1}{2}$ and $X_i = -1$ with probability $\frac{1}{2}$. Now define $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$. The sequence $(S_n)_{n \ge 0}$ is a simple random walk.

Note that $S_0=k_0=0, S_1=k_1,\ldots,S_n=k_n$ can occur if and only if $|k_i-k_{i+1}|=1$ for all $0\leq i\leq n-1$. The sequence $(k_n)_{n\geq 0}$ is a *simple path* of the simple random walk. By the event $\{S_n=k\}$, we are concerned with the event that the random walk visits k at step n. If $(k_n)_{n\geq 0}$ is given we have $X_i=k_i-k_{i-1}$. Because the X_i 's are independent and identically distributed, each event $\{X_1=l_1,X_2=l_2,\ldots,X_n=l_n\}$, where $l_i=\pm 1$, is equally likely with probability $\frac{1}{2^n}$. Thus,

$$P(S_n = k) = \frac{N_n(k)}{2^n}$$
 (1.18)

where $N_n(k)$ is defined as the number of distinct of path that start at 0 and end at k at step n. We also define $N_n^+(k)$ to be the number of distinct paths that end at k at step n and stay above the x-axis up to time n-1. The probability of the corresponding event is

$$P(\{S_1 > 0, S_2 > 0, \dots S_{n-1} > 0, S_n = k\}) = \frac{N_n^+(k)}{2^n}.$$
(1.19)

Lemma 1.9. Suppose a, a', b, b' are integers, with $0 \le a < a'$. Then the number of distinct path from (a,b) to (a',b') depends only on a'-a=n and b'-b=k, and is given by $\binom{n}{n+k}$.

Proof. Notice that we need x+1's and y-1's to appear, satisfying x+y=a'-a and x-y=b'-b. Solving, we get $x=\frac{n+k}{2}$ and $y=\frac{n-k}{2}$. Thus, the number of paths is given by $\binom{n}{n+k}$.

Using this lemma, we find that $N_n(k) = \binom{n}{\frac{n+k}{2}}$. The following convention is now followed; if t is not an integer, then $\binom{n}{t} = 0$.

Lemma 1.10 (The method of images). Suppose a, a', b, b' are integers, with $0 \le a < a'$ and b, b' > 0. Then the number of distinct paths from (a, b) to (a', b') that intersect the x-axis is equal to the number of paths from (a, -b) to (a', b').

Proof. Consider any path $(b = k_0, k_1, \ldots, k_{n-1}, k_n = b')$, from (a, b) to (a', b'), that intersects the x-axis. Let j be the smallest index for which $k_j = 0$. For ease, denote (a, b) by A, (a', b') by A', (a + j, 0) by B, and (a, -b) by A''. Reflect the segment from A to B about the x-axis to obtain a 'mirrored-path' from A'' to B; $(-b = -k_0, -k_1, \ldots, -k_{j-1}, k_j = 0, k_{j+1}, \ldots, k_n = b')$. There is now a one-to-one correspondence between the paths from A to A' that intersect the x-axis, and the paths from A'' to A'.

We can now easily compute $N_n^+(k)$; it simply the number of paths from (1,1) to (n,k) that do not intersect the x-axis.

Theorem 1.11 (Ballot theorem). The number of paths that progress from (0,0) to (n,k) through strictly positive values is given by $N_n^+(k) = \frac{k}{n} N_n(k)$.

Proof. We have

$$N_n^+(k) = \text{ number of paths from } (1,1) \text{ to } (n,k) - \text{ number of such paths that intersect the } x\text{-axis}$$

$$= N_{n-1}(k-1) - N_{n-1}(k+1)$$

$$= \binom{n-1}{\frac{n+k}{2}-1} - \binom{n-1}{\frac{n+k}{2}} = \frac{k}{n} \binom{n}{\frac{n+k}{2}} = \frac{k}{n} N_n(k). \tag{1.20}$$

Suppose $n = 2\nu$. Define $u_{2\nu}$ to be $P(S_{2\nu} = 0) = \frac{\binom{2\nu}{\nu}}{2^n}$. The question we ask is to compute the probability that the first return to 0, if at all, occurs after step n. It can be found out as

$$P(\text{first return to } 0...) = P(S_1 \neq 0, S_2 \neq 0, \dots, S_{2\nu} \neq 0)$$

$$= P(S_1 > 0, \dots, S_{2\nu} > 0) + P(S_1 < 0, \dots, S_{2\nu} < 0)$$

$$= 2P(S_1 > 0, \dots, S_{2\nu} > 0)$$

$$= 2 \sum_{k \text{ even}, k > 0} P(S_1 > 0, \dots, S_{2\nu-1} > 0, S_{2\nu} = k)$$

$$= \frac{2}{2^{2\nu}} \sum_{k \text{ even}, k > 0} N_{2\nu}^+(k)$$

$$= \frac{2}{2^{2\nu}} \sum_{k \text{ even}, k > 0} N_{2\nu-1}(k-1) - N_{2\nu-1}(k+1)$$

$$= \frac{2}{2^{2\nu}} N_{2\nu-1}(1) = u_{2\nu}.$$

$$(1.21)$$

We state this down as a lemma.

Lemma 1.12 (Basic lemma). For n even, the probability that the first return to 0, if at all, occurs after step n is the same as the probability that the location at step n is 0. For n odd, it is the probability that the location at step n-1 is 0.

We ask another question; for a fixed n, where does the random walk achieve its first maximum upto time n? For this, denote by M_n the index m at which the walk S_0, S_1, \ldots, S_n , over n steps, achieves its maximum for the first time.

For 0 < m < n, $M_n = m$ if and only if $S_m > S_0$, $S_m > S_1, \ldots, S_m > S_{m-1}$ and $S_m \ge S_{m+1}$, $S_m \ge S_{m+2}, \ldots, S_m \ge S_n$. Notice that the first of these two conditions depends only on X_1, X_2, \ldots, X_m , and the second condition depends only on $X_{m+1}, X_{m+2}, \ldots, X_n$. So, $P(M_n = m) = P(S_m > S_0, S_m > S_1, \ldots, S_m > S_{m-1}) \cdot P(S_m \ge S_{m+1}, S_m \ge S_{m+2}, \ldots, S_m \ge S_n)$.

The key idea here is to consider the reversed walk; define a new walk with $X_1' = X_m$, $X_2' = X_{m-1}, \ldots, X_m' = X_1$. Also define $S_k' = X_1' + \ldots + X_k'$. From here, we can deduce that $S_m > S_{m-i}$ is true if and only if $X_m + \ldots + X_{m-i}$ is true, which is true if and only if $S_i' > 0$ is true. So, $P(S_m > S_0, S_m > S_1, \ldots, S_m > S_{m-1}) = P(S_1' > 0, S_2' > 0, \ldots, S_m' > 0)$. If we now define $S_k'' = X_{m+1} + \ldots + X_{m+k}$, we have

$$P(S_m \ge S_{m+1}, \ S_m \ge S_{m+2}, \dots, S_m \ge S_n) = P(X_{m+1} \le 0, \ X_{m+1} + X_{m+2} \le 0, \dots, X_{m+1} + \dots + X_n \le 0)$$

$$= P(S_1'' \le 0, \ S_2'' \le 0, \dots, S_{n-m}'' \le 0)$$

$$= P(S_1'' \ge 0, \ S_2'' \ge 0, \dots, S_{n-m}'' \ge 0)$$

The first of the terms discussed, $P(S_1'>0, S_2'>0, \ldots, S_m'>0)$, can be computed for $m=2\nu, 2\nu+1$; it is simply $\frac{1}{2}u_{2\nu}$. For the latter of these terms, we introduce a new random variable \tilde{X} which has the same distribution as the X_i 's and is independent. Also define \tilde{S}_i to be $\tilde{X}+X_1+\ldots+X_{i-1}$ and \tilde{S}_0 to be 0.

We then have

$$\frac{1}{2}P(S_0 \ge 0, \dots, S_{n-m} \ge 0) = P(\tilde{X} = 1) \cdot P(S_0 \ge 0, \dots, S_{n-m} \ge 0)
= P(\tilde{X} = 1, S_0 \ge 0, S_0 \ge 0, \dots, S_{n-m} \ge 0)
= P(\tilde{S}_1 = 1, \tilde{S}_2 > 0, \dots, \tilde{S}_{n-m+1} > 0)
= P(S_1 > 0, S_2 > 0, \dots, S_{n-m+1} > 0).$$
(1.23)

Thus, we get

$$P(M_n = m) = \frac{1}{2} u_{2k} u_{2\nu - 2k} \tag{1.24}$$

where m is of the form 2k or 2k+1, and n is of the form 2ν , with $1 < k < \nu$.

January 10th.

Plugging in m = 0, we get $P(M_n = 0) = P(S_1 \le 0, ..., S_{2\nu} \le 0) = \frac{1}{2}u_{2\nu}$. For m = n, we have $P(M_n = n) = P(S_1 \le 0, ..., S_{2\nu} \le 0) = \frac{1}{2}u_{2\nu}$. Let us first compute u_{2k} .

$$u_{2k} = P(2k = 0) = \frac{\binom{2k}{k}}{2^{2k}} = \frac{(2k)!}{(k!)^2 2^{2k}}$$
$$\sim \frac{(2k)^{2k + \frac{1}{2}} e^{-2k} \sqrt{2\pi}}{(\sqrt{2pi}k^{k + \frac{1}{2}} e^{-k})^2 2^{2k}} = \frac{1}{\sqrt{\pi k}}.$$
 (1.25)

For 0 < a < b < 1, we have

$$P(an \le M_n \le bn) = \sum_{m=an}^{bn} P(M_n = m) = \sum_{k=a\nu}^{b\nu} u_{2k} u_{2\nu-2k}$$

$$\sim \sum_{k=a\nu}^{b\nu} \frac{1}{\sqrt{\pi k}} \frac{1}{\sqrt{\pi(\nu - k)}} = \sum_{k=a\nu}^{b\nu} \frac{1}{\nu \sqrt{\pi \frac{k}{\nu} \sqrt{\pi(1 - \frac{k}{\nu})}}}$$

$$\to \frac{1}{\pi} \int_a^b \frac{dx}{\sqrt{x(1 - x)}} = \frac{2}{\pi} (\arcsin \sqrt{b} - \arcsin \sqrt{a}). \tag{1.26}$$

In fact, this is the arcsin law for maxima; for $0 \le t \le 1$, we have

$$\lim_{n \to \infty} P\left(\frac{M_n}{n} \le t\right) = \frac{2}{\pi} \arcsin\sqrt{t}. \tag{1.27}$$

If we look at this as a cumulative density function, the probability density function becomes $\frac{d}{dt} \frac{2}{\pi} \arcsin \sqrt{t} = \frac{1}{\pi \sqrt{t(1-t)}}$.

We are now interested in M_n , the last time when maximum up to time n is attained. We can just look at the walk backwards again; in this case, we get

$$P(\frac{\tilde{M}_n}{n}) = P\left(\frac{n - \tilde{M}_n}{n} \le t\right) \to \frac{2}{\pi}\arcsin\sqrt{t}.$$
 (1.28)

We now ask the probability that the random walk of $n = 2\nu$ steps last visit 0 at time 2k. We denote by K_n the location of the last return to 0 in a walk of n steps. Now look at

$$\alpha_{2k,2\nu} = P(K_n = 2k) = P(S_{2k} = 0, S_{2k+1} \neq 0, \dots, S_{2\nu} \neq 0)$$

$$= P(S_{2k} = 0) \cdot P(X_{2k+1} \neq 0, \dots, X_{2k+1} + \dots + X_{2\nu} \neq 0)$$

$$= P(S_{2k} = 0) \cdot P(S_1 \neq 0, \dots, S_{2\nu-2k} \neq 0) = u_{2k} u_{2\nu-2k}.$$
(1.29)

We can also state an arcsin law for last visit here; for 0 < t < 1

$$\lim_{n \to \infty} P(K_n \le tn) = \frac{2}{\pi} \arcsin \sqrt{t}. \tag{1.30}$$

If we set the an additional limit that says t tends to 0, replacing t by an arbitrary $\varepsilon > 0$, we have

$$\lim_{n \to \infty} P(K_n = 0) = 0. \tag{1.31}$$

Given enough time, a simple random walk must return to 0.

Denote by f_{2n} the probability that the first return to 0 occurs at time 2n.

$$f_{2n} = P(S_1 \neq 0, \dots, S_{2n-1} \neq 0, S_{2n} = 0)$$

$$= P(S_1 \neq 0, \dots, S_{2n-1} \neq 0) - P(S_1 \neq 0, \dots, S_{2n} \neq 0)$$

$$= P(S_1 \neq 0, \dots, S_{2n-2} \neq 0) - P(S_1 \neq 0, \dots, S_{2n} \neq 0)$$

$$= u_{2n-2} - u_{2n} = \frac{1}{2n-1} u_{2n}.$$
(1.32)

Lemma 1.13. With the usual notation,

$$u_{2n} = f_2 u_{2n-2} + f_4 u_{2n-4} + \ldots + f_{2n} u_0. (1.33)$$

Proof. We have

$$P(S_{2n} = 0) = \sum_{k=1}^{n} P(S_{2n} = 0, \text{ first return at } 2k)$$

$$= \sum_{k=1}^{n} P(\text{first return at } 2k) \cdot P(S_{2n} = 0 \mid \text{first return at } 2k)$$

$$\implies P(S_n = 0) = \sum_{k=1}^{n} f_{2k} u_{2n-2k}. \tag{1.34}$$

Theorem 1.14. The probability that in the time interval 0 to $n = 2\nu$, the random walk spends 2k amount of time on the positive side and $2\nu - 2k$ amount of time on the negative side is $\alpha_{2k,2\nu}$.

Corollary 1.15. For 0 < t < 1.

$$P(random\ walk\ spends\ less\ than\ tn\ time\ on\ positive\ side) \to \frac{2}{\pi}\arcsin\sqrt{t}.$$
 (1.35)

Proof. This is the proof of the theorem. We introduce $b_{2k,2\nu}$; it is defined as the probability that the random walk of length 2ν and 2k sides above the x-axis. We need to show that $b_{2k,2\nu} = \alpha_{2k,2\nu}$. We have

$$b_{2\nu,2\nu} = P(S_1 \ge 0, S_2 \ge 0, \dots, S_{2\nu} \ge 0) = u_{2\nu},$$
 (1.36)

$$b_{0,2\nu} = P(S_1 \le 0, \dots, S_{2\nu} \le 0) = u_{2\nu}. \tag{1.37}$$

We are left to prove it for $1 \le k \le \nu - 1$. Assume that exactly 2k out of 2ν time are spent above the x-axis, with $1 \le k \le \nu - 1$. Suppose first return to 0 occurs at time $2r < 2\nu$. We deal in cases.

- Case I: 2r time units upto first return are on the positive side. Then, $r \leq k \leq \nu 1$. The time from 2r to 2ν has to be above the x-axis, $2k 2\nu$ time. The number of such paths is $(\frac{1}{2}2^{2r}f_{2r})(2^{2\nu-2r}b_{2k-2r,2\nu-2r})$.
- The 2r time units upto the first return are on the negative side. The nubmer of such paths is $(\frac{1}{2}2^{2r}f_{2r})(2^{2\nu-2r}b_{2k,2\nu-2r})$. Also, $\nu-r\geq k$.

Thus, we have

$$b_{2k,2\nu} = \frac{1}{2} \sum_{r=1}^{k} f_{2r} b_{2k-2r,2\nu-2r} + \frac{1}{2} \sum_{r=1}^{\nu-k} f_{2r} b_{2k,2\nu-2r}.$$
 (1.38)

We now proceed with induction on ν . We have already shown this for $\nu = 1$; assume that this is true for $\nu \leq V - 1$. By induction,

$$b_{2k,2V} = \frac{1}{2} \sum_{r=1}^{k} f_{2r} \alpha_{2k-2r,2V-2r} + \frac{1}{2} \sum_{r=1}^{V-k} f_{2r} \alpha_{2k,2V-2r}$$

$$= \frac{1}{2} u_{2V-2k} \sum_{r=1}^{k} f_{2r} u_{2k-2r} + \frac{1}{2} u_{2k} \sum_{r=1}^{V-k} f_{2r} u_{2V-2k-2r}$$

$$= u_{2k} u_{2\nu-2k} = \alpha_{2k,2\nu}. \tag{1.39}$$

January 17th.

Theorem 1.16 (Weirstrass's polynomial approximation.). Let $f:[0,1] \to \mathbb{R}$ be a continuous function. Then for every $\varepsilon > 0$, there is a polynomial P, dependent on f and ε , such that

$$|f(x) - P(x)| < \varepsilon \text{ for all } x \in [0, 1]. \tag{1.40}$$

Remark 1.17. Any continuous function $f:[0,1] \to \mathbb{R}$ is bounded and uniformly continuous. This fact will be useful in proving the previous theorem.

Proof. Start with X_1, X_2, \ldots which are independent and identically distributed Bernoulli random variables, $\operatorname{Ber}(x)$. Let $S_n = X_1 + X_2 + \ldots + X_n$. From the weak law of large numbers, we know that $\frac{S_n}{n}$ is approximately x. We can expect that f(x) will also be approximately $f(\frac{S_n}{n})$. We now have

$$f_n(x) = Ef(\frac{S_n}{n}) = \sum_{j=0}^n f(\frac{j}{n}) P(S_n = j)$$

$$= \sum_{j=0}^n f(\frac{j}{n}) \binom{n}{j} x^j (1-x)^{n-j}.$$
(1.41)

This is now a polynomial; we wish to see how close this is to f. Define A_{δ} to be $\{j: \left|\frac{j}{n} - x\right| \leq \delta\}$

$$|f_n(x) - f(x)| = \left| \sum_{j=0}^n \left(f(\frac{j}{n}) - f(x) \right) \right| P(S_n = j)$$

$$= \left| \sum_{j \in A_\delta} \left(f(\frac{j}{n}) - f(x) \right) + \sum_{j \notin A_\delta} \left(f(\frac{j}{n}) - f(x) \right) \right| P(S_n = j)$$

$$\leq \sum_{j \in A_\delta} \left| f(\frac{j}{n}) - f(x) \right| P(S_n = j) + \sum_{j \notin A_\delta} \left| f(\frac{j}{n}) - f(x) \right| P(S_n = j). \tag{1.42}$$

We have two terms to deal with now. For the first term, choose $\delta>0$ such that $|x-y|<\delta\Longrightarrow |f(x)-f(y)|<\varepsilon$; this δ can be chosen since f is uniformly continuous. Similarly, also choose $M=\sup_{x\in[0,1]}|f(x)|$. M is finite since f is bounded. Thus, we have

$$\sum_{j \in A_{\delta}} \left| f(\frac{j}{n}) \right| P(S_n = j) \le \sum_{j \in A_{\delta}} \varepsilon P(S_n = j) \le \varepsilon \tag{1.43}$$

and

$$\sum_{i \notin A_i} \le 2MP\left(\left|\frac{S_n}{n} - x\right| > \delta\right) \le 2M \frac{\operatorname{Var}(S_n)}{n^2 \delta^2} = \frac{2Mnx(1-x)}{n^2 \delta^2}.$$
(1.44)

Combining the two, and choosing n large enough, we have

$$|f_n(x) - f(x)| \le \varepsilon + \frac{2Mx(1-x)}{n\delta^2} \le \varepsilon + \frac{M}{2n\delta^2} \le 2\varepsilon.$$
 (1.45)

1.3 Erdös-Renyi Random Graph

We first discuss the setup; start with n vertices of an empty graph. For any pair of points (i, j), with $i \neq j$, join these vertices with an edge with probability p independently for all such pairs. Such a graph is denoted by $G_{n,p}$.

A collection of three points $S = \{i, j, k\}$ form a triangle if $G_{n,p}$ has the edges $\{i, j\}$, $\{j, k\}$, and $\{i, k\}$. We question the probability that such a graph has no formed triangles. Can we find $p = p_n$ such that

triangles begin to appear at p_n ? Let S be any set of three vertices. Define X_S to be the indicator function; 1 if S forms a triangle, and 0 otherwise. We note that $X_S \sim \text{Ber}(p^3)$. We note that

$$EX_S = p^3$$
, $VarX_S = p^3(1 - p^3) \le p^3$.

Denote by N the number of triangles in the graph $G_{n,p}$. Clearly,

$$N = \sum_{S:|S|=3} X_S, \ EN = \binom{n}{3} p^3 < n^3 p^3, \ \text{Var} N = \sum_S \text{Var} X_S + \sum_S \sum_{T \neq S} \text{Cov}(X_S X_T) \le n^3 p^3 + n^4 p^5$$

ALso, $P(N \ge 1) \le EN < n^3 p^3$. If $p = p_n << \frac{1}{n}$, then $P(N \ge 1) \to 0$ as $n \to \infty$. We discuss this for $p >> \frac{1}{n}$. We have

$$P(N=0) \le P(|N-EN| \ge EN) \le \frac{\text{Var}N}{(EN)^2} \le \frac{(n^3p^3 + n^4p^5)}{\frac{n^6p^6}{100}} \le \frac{100}{n^3p^3} + \frac{100}{n(np)} \to 0.$$
(1.46)

We can state this as a theorem.

Theorem 1.18. Consider G_{n,p_n} . Let E be the event that the graph is triangle free. We then have

$$P(E) \to \begin{cases} 0 & \text{if } \frac{p_n}{\underline{1}} \to \infty, \\ 1 & \text{if } \frac{p_n^p}{\underline{1}} \to 0. \end{cases}$$
 (1.47)

Now suppose that $\frac{np_n}{\to}C > 0$ as $n \to \infty$. Then we have

$$N \approx \text{Poisson}\left(\frac{C^3}{6}\right).$$
 (1.48)

January 21st.

Remark 1.19. For this next 'game', we will think of X_i 's as the winnings in game i and μ to be the entrance fees for a game.

Definition 1.20. Suppose that $X_1, X_2, ...$ are independent, but not necessarily identically distributed. Let $S_n = X_1 + ... + X_n$. We say a game with accumulated entrance fees $\{\alpha_n, n \geq 1\}$ is fair if

$$P(\left|\frac{S_n}{\alpha_n} - 1\right| > \varepsilon) \to 0 \tag{1.49}$$

for all $\varepsilon > 0$.

Using this definition of 'fair', we look at an example.

Example 1.21. This is the St. Petersburg's paradox. This is the game; toss a coin repeatedly until the first head is observed. If this head occurs at the k^{th} toss, the amount paid out is $X = 2^k$. Let us find a fair accumulated entrance fees. In this case,

$$EX = \sum_{k=1}^{\infty} \frac{1}{2^k} 2^k = \infty. \tag{1.50}$$

Suppose we play this game n times. We are to find a fair accumulated sum $\{\alpha_n\}$ such that

$$P(|S_n - \alpha_n| > \varepsilon \alpha_n) \to 0. \tag{1.51}$$

To find this, we will define

$$U_j = X_j 1_{\{X_j \le a_n\}},$$

 $V_j = X_j 1_{\{X_j > a_n\}}.$

 a_n shall be determined later. Note that $S_n = X_1 + \ldots + X_n = U_1 + \ldots + U_n + V_1 + \ldots + V_n$. Then,

$$P(|S_n - \alpha_n| > \varepsilon \alpha_n) \le P(|U_1 + \dots + U_n - \alpha_n| > \frac{1}{2}\varepsilon \alpha_n) + P(|V_1 + \dots + V_n| > \frac{1}{2}\varepsilon \alpha_n). \tag{1.52}$$

We first bound the second term on the right hand side. We have

$$P(|V_1 + \ldots + V_n| > \frac{1}{2}\varepsilon\alpha_n) \le P(\bigcup_{i=1}^n \{V_i \ne 0\}) \le nP(V_1 \ne 0) = nP(X_1 > a_n)$$
 (1.53)

$$= \sum_{2^k > a_n} P(X = 2^k) \le \frac{2n}{a_n}.$$
 (1.54)

Thus, we will require that $a_n >> n$. Also,

$$EU_1 = \sum_{k \le \log_2 a_n} 2^k \cdot 2^{-k} = \lfloor \log_2 a_n \rfloor, \quad \text{Var} U_1 \le E[U_1^2] = \sum_{k \le \log_2 a_n} (2^k)^2 \cdot 2^{-k} = 2^{\lfloor \log_2 a_n \rfloor + 1} - 1 < 2a_n.$$
(1.55)

 $\frac{1}{n}(U_1 + \ldots + U_n) \approx EU_j = \lfloor \log_2 a_n \rfloor$, so we should choose

$$\alpha_n = nEU_j = n \lfloor \log_2 a_n \rfloor. \tag{1.56}$$

This gives us

$$P(|U_1 + \ldots + U_n - \alpha_n| > \frac{1}{2}\varepsilon\alpha_n) \le \frac{n(2a_n)}{\frac{1}{4}\varepsilon^2\alpha_n^2}.$$
(1.57)

Thus, we have another condition where we require that $\frac{na_n}{\alpha_n^2} \to 0$. The conditions we require are

$$\frac{n}{a_n} \to 0$$
 and $\frac{na_n}{n^2(\log_2 a_n)^2} \to 0$.

The sequence $\{a_n\}$ defined as $a_n = n \log_2 n$ satisfies these properties. The sequence α_n is thus

$$\alpha_n = n \log_2 a_n = n \log_2 n + n \log_2 \log_2 n.$$
 (1.58)

Erdös-Renyi Random Graph

Appendices

Chapter A

Appendix

Extra content goes here.

Appendix

Index

arcsin law for last visit, 5 arcsin law for maxima, 5

Ballot theorem, 4 Basic lemma, 4

Chebyshev's inequality, 1

Markov's inequality, 1

method of images, 3

reversed walk, 4

 $\begin{array}{c} \text{simple path, 3} \\ \text{simple random walk, 3} \end{array}$

Weak law of large numbers, 2 Weirstrass's polynomial approximation, 7