## WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) International Patent Classification <sup>6</sup> :                                                                                                                                                                                                                                                         |                            | (11) International Publication Number: WO 99/01567                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| C12Q 1/00, 1/44, C12N 9/18, G01N 33/53                                                                                                                                                                                                                                                                          | A2                         | (43) International Publication Date: 14 January 1999 (14.01.99)                                                                                       |
| (21) International Application Number: PCT/US                                                                                                                                                                                                                                                                   | 98/137                     | (US). COOK, William, J. [-/US]; 1322 Badham Drive, Birmingham, AL 35216 (US).                                                                         |
| (22) International Filing Date: 1 July 1998 (                                                                                                                                                                                                                                                                   | 01.07.9                    | (74) Agent: SERTICH, Gary, J.; Arnold, White & Durkee, P.O. Box 4433, Houston, TX 77210 (US).                                                         |
| (30) Priority Data: 60/051,437  1 July 1997 (01.07.97)  (63) Related by Continuation (CON) or Continuation-ir (CIP) to Earlier Application US Filed on 1 July 1997 (                                                                                                                                            | n-Part<br>437 (C<br>01.07. | <ul> <li>Published         <ul> <li>Without international search report and to be republished<br/>upon receipt of that report.</li> </ul> </li> </ul> |
| (71) Applicants (for all designated States except US): T<br>VERSITY OF UTAH [US/US]; 229 Wintro, S<br>City, UT 84132 (US). EMORY UNIVERSITY [-/I                                                                                                                                                                | Sait L                     | ike                                                                                                                                                   |
| (72) Inventors; and (75) Inventors/Applicants (for US only): HILL, Christ [-/US]; 465 3rd Avenue, Salt Lake City, U (US). WILKINSON, Keith, D. [-/US]; 2633 Apa Lilburn, GA 30247 (US). JOHNSTON, Steven, 0 1554 East Bryan, Salt Lake City, UT 84105 (US). Christopher, N. [-/US]; 30 Blain Street, Allston, N | che La<br>C. [-/U<br>LARS  | ne,  <br>S];                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                 | DELI                       | <br>  IOUITINATING ENZYME AND VARIANTS THEREOF                                                                                                        |

(54) Title: METHODS AND COMPOSITIONS FOR A DEUBIQUITINATING ENZYME AND VARIANTS THEREOF

#### (57) Abstract

The present invention relates to methods for the identification of candidate inhibitor substances that inhibit deubiquitinating activity based on the x-ray crystallographic structure of the active site of the enzyme. Changes in the properties of the enzyme are useful in identifying such substances. Also disclosed are variants of the enzyme that are useful in deubiquitinating proteins and small peptides.

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|   |    |                          |    |                     |    |                       | ~~ | Ott-                     |
|---|----|--------------------------|----|---------------------|----|-----------------------|----|--------------------------|
| ı | ΑĽ | Albania                  | ES | Spain               | LS | Lesotho               | SI | Slovenia                 |
|   | AM | Armenia                  | FI | Finland             | LT | Lithuania             | SK | Slovakia                 |
| ı | AT | Austria                  | FR | France              | LU | Luxembourg            | SN | Senegai                  |
| ŀ | AU | Australia                | GA | Gabon               | LV | Latvia                | SZ | Swaziland                |
| l | AZ | Azerbaijan               | GB | United Kingdom      | MC | Monaco                | TD | Chad                     |
| l | BA | Bosnia and Herzegovina   | GE | Georgia             | MD | Republic of Moldova   | TG | Togo                     |
| ١ | BB | Barbados                 | GH | Ghana               | MG | Madagascar            | TJ | Tajikistan               |
| l | BE | Belgium                  | GN | Guinea              | MK | The former Yugoslav   | TM | Turkmenistan             |
| l | BF | Burkina Paso             | GR | Greece              |    | Republic of Macedonia | TR | Turkey                   |
| ı | BG | Bulgaria                 | HU | Hungary             | ML | Mali                  | TT | Trinidad and Tobago      |
| ı | BJ | Benin                    | IR | Ireland             | MN | Mongolia              | UA | Ukraine                  |
| l | BR | Brazil                   | IL | Israel              | MR | Mauritania            | UG | Uganda                   |
| l | BY | Belarus                  | IS | Iceland             | MW | Malawi                | US | United States of America |
| l | CA | Canada                   | IT | Italy               | MX | Mexico                | UZ | Uzbekistan               |
| l | CF | Central African Republic | JP | Japan               | NE | Niger                 | VN | Viet Nam                 |
| l | CG | Congo                    | KE | Kenya               | NL | Netherlands           | YU | Yugoslavia               |
| l | CH | Switzerland              | KG | Kyrgyzstan          | NO | Norway                | zw | Zimbabwe                 |
| l | CI | Côte d'Ivoire            | KP | Democratic People's | NZ | New Zealand           |    |                          |
| l | CM | Cameroon                 | *  | Republic of Korea   | PL | Poland                |    |                          |
| l | CN | China                    | KR | Republic of Korea   | PT | Portugal              |    |                          |
| l | CU | Cuba                     | KZ | Kazakstan           | RO | Romania               |    |                          |
| ١ | cz | Czech Republic           | LC | Saint Lucia         | RU | Russian Federation    |    |                          |
| ł | DE | Germany                  | LI | Liechtenstein       | SD | Sudan                 |    |                          |
| ı | DK | Denmark                  | LK | Sri Lanka           | SE | Sweden                |    |                          |
| 1 | EE | Estonia                  | LR | Liberia             | SG | Singapore             |    |                          |
| ١ |    |                          |    |                     |    |                       |    |                          |
|   |    |                          |    |                     |    |                       |    |                          |

#### **DESCRIPTION**

# METHODS AND COMPOSITIONS FOR A DEUBIQUITINATING ENZYME AND VARIANTS THEREOF

5

10

15

20

25

#### **BACKGROUND OF THE INVENTION**

#### 1. Field of the Invention

The present invention is generally directed to crystal protein structures, and more specifically to Ubiquitin C-terminal hydrolase, which catalyzes the removal of adducts from the C-terminus of ubiquitin.

#### 2. Description of Related Art

Ubiquitin is a small (8.6 kDa) highly conserved protein that is best known for its role in targeting proteins for degradation by the 26S protease. Recent reviews include (Ciechanover and Schwartz, 1994; Hershko and Ciechanover, 1992; Jentsch, 1992; Wilkinson et al., 1995). Ubiquitin has been implicated in numerous cellular processes, including: cell cycle control, oncoprotein degradation, receptor function, apoptosis, regulation of transcription, stress responses, maintenance of chromatin structure, DNA repair, signaling pathways, antigen presentation, and the degradation of abnormal proteins. Monomeric ubiquitin is activated by E1 (ubiquitin activating enzyme), which forms a thiolester bond with the ubiquitin C-terminus. Families of E2 (ubiquitin conjugating) and E3 (ubiquitin ligase) enzymes then catalyze ligation of the ubiquitin C-terminus to lysine side chains of acceptor proteins. Acceptor proteins can be modified with a single ubiquitin attached to one or more different lysine side chains. Alternatively, acceptor proteins can be polyubiquitinated, with a lysine side chain of the first ubiquitin conjugated to the C-terminus of the next, to form long chains attached to the target protein. Efficient targeting for degradation by the 26S protease appears to require polyubiquitination (Chau et al., 1989; Gregori et al., 1990). In addition to targeting proteins for degradation by the 26S protease, other roles of ubiquitination include modification of chromatin structure (Bradbury, 1992)

30

lysosomal targeting (Hicke and Riezman, 1996) and regulation of a kinase activity (Chen et al., 1996).

In addition to isopeptide linkages to the lysine side chains of acceptor proteins, the ubiquitin C-terminus is also found attached to α-amino groups in peptide bonds, since all known ubiquitin genes encode fusion proteins in which ubiquitin is followed by a C-terminal extension (Özkaynak et al., 1987). Proteolytic processing at the ubiquitin C-terminus is catalyzed by deubiquitinating enzymes (DUB). Such processing is likely to be required for several different functions, including: liberation of monomeric ubiquitin from the polyprotein precursors, release of polyubiquitin chains from the remnants of 26S protease substrates, disassembly of polyubiquitin chains to allow recycling of monomeric ubiquitin, reversal of regulatory ubiquitination, editing of inappropriately ubiquitinated proteins, and regeneration of active ubiquitin from adducts with small cellular nucleophiles (such as glutathione) that may be produced by side reactions. Additionally, several ubiquitin-like proteins that occur as fusions or conjugates have been identified, at least some of which appear to undergo a similar processing (Haas et al., 1996; Matunis et al., 1996; Narasimhan et al., 1996; Olvera and Wool, 1993).

20

25

30

15

5

10

In light of the many different substrates, and the extensive biological consequences of ubiquitination, it is not surprising that numerous deubiquitinating enzymes have been identified. These enzymes fall into two distinct families of cysteine proteases, UBPs (<u>ubiquitin-specific proteases</u>) (Baker *et al.*, 1992; Tobias and Varshavsky, 1992) and UCHs (<u>ubiquitin C-terminal hydrolases</u>) (Pickart and Rose, 1985). Both classes of enzymes hydrolyze the peptide bond (either α- or ε-linked) at the C-terminus of ubiquitin. The UBP enzymes, 16 of which have been identified in yeast, were named for their ability to cleave large model fusion proteins at the C-terminus of ubiquitin. They vary in molecular weight from 50 kDa to 300 kDa, and exhibit a broad range of substrate specificity. Roles assigned for UBPs include cleavage of ubiquitin from the remnants of degraded protein (Papa and Hochstrasser, 1993) and disassembly of polyubiquitin chains to yield functional

monomers (Wilkinson et al., 1995). They appear to function in cell fate determination (Huang et al., 1995), transcriptional silencing (Henchoz et al., 1996; Moazed and Johnson, 1996), and the response to cytokines (Zhu et al., 1996).

5

10

15

20

The well characterized UCH enzymes are generally smaller than the UBPs, (25-28 kDa), although two larger sequences have been deposited in the GenBank database. Disruption or deletion of the one UCH gene identified in yeast confers no discernible phenotype, suggesting that the substrate specificity of UCH enzymes may overlap with the UBP enzymes (Baker et al., 1992; Miller et al., 1989). Biochemical studies have demonstrated that the human enzymes, UCH-L1 and UCH-L3, and the UCHs from S. cerevisiae and D. melanogaster hydrolyze ε-linked amide bonds at the C-terminus of ubiquitin (Cohen) (Roff et al., 1996; Wilkinson, 1997), although most studies have focused on the hydrolysis of  $\alpha$ -linked peptide bonds and small thiolester, ester, and amide linked adducts (Pickart and Rose, 1986; Wilkinson et al., 1986). In general, most of these small adducts are good substrates, except for peptide extensions with proline immediately following the scissile bond. UCH-L3 cleaves peptide extensions of up to 20 residues from ubiquitin with high efficiency and low sequence preference, while larger folded extensions are not cleaved (Wilkinson, 1997). Similar results have been reported for the yeast UCH (Liu et al., 1989; Miller et al., 1989). These data suggest that the UCH enzymes may function to regenerate active ubiquitin from adducts with small nucleophiles (Pickart and Rose, 1985). The observed tissue specificity of UCH enzymes may reflect a distinct sets of substrate(s) (Wilkinson et al., 1992). UCH-L1 is identical to PGP9.5, the neuronal ubiquitin C-terminal hydrolase that constitutes several percent of the total soluble protein in mammalian brain (Wilkinson et al., 1989). UCH-L2 appears to be constitutively expressed in many tissues, while UCH-L3 is expressed in hematopoetic cells.

25

30

An alignment of five UCH sequences shows that only 12% of the residues are invariant (FIG. 1). Site directed mutagenesis of invariant residues on UCH-L1 implicates Cys-95 (UCH-L3 numbering) as the active site nucleophile, and His-169 as

the general base in catalysis, with an important role also played by Asp-184 (Larsen *et al.*, 1996). The UCH enzymes do not appear to share significant sequence similarity with any other protein.

5

In order to understand better the catalytic mechanism and substrate specificity of UCH enzymes, the inventors have determined the crystal structure of recombinant human UCH-L3 at a resolution of 1.8 Å. This structure has some similarities with the papain family of cysteine proteases, including an active site catalytic triad and oxyanion hole. A major topological difference from papain includes a 20-residue disordered loop that spans the active site. Based upon the structure, the present invention sets forth a binding orientation for ubiquitin substrates on UCH enzymes. Moreover, the invention shows that the UCH active site is normally closed and opens upon binding to substrate, and that the disordered loop may function to define the substrate specificity of UCH enzymes.

15

10

#### **SUMMARY OF THE INVENTION**

In one aspect, the present invention provides an isolated and purified amino acid sequence that encodes a deubiquitinating enzyme polypeptide UCH-L3. Preferably, a UCH-L3 peptide of the invention is a synthetic or recombinant polypeptide. More preferably, a polynucleotide of the present invention encodes a polypeptide comprising the structure of FIG. 1.

25

20

In certain embodiments, an amino acid sequence of the present invention encodes a variant UCH-L3 molecule that possesses structural differences from the native UCH-L3 protein. Such structural differences include greater stability; *i.e.* ability to resist the effects of oxidation, heat, and so forth. Moreover, such structural differences may include UCH-L3 variants that are capable of cleaving larger proteins from the ubiquitin molecule than may be accomplished by the native UCH-L3 protein.

A further advantage of the present invention includes the production of inhibitors of UCH-L3 proteins that specifically interact at the active site to reduce or eliminate UCH-L3 activity.

5

In yet another embodiment, the present invention contemplates a process of preparing an UCH-L3 or variant UCH-L3 comprising transfecting a cell with polynucleotide that encodes an UCH-L3 or variant UCH-L3 polypeptide to produce a transformed host cell; and maintaining the transformed host cell under biological conditions sufficient for expression of the polypeptide. The transformed host cell can be a eukaryotic cell. Alternatively, the host cell is a prokaryotic cell.

10

In still another embodiment, the present invention provides an antibody immunoreactive with an UCH-L3 or variant UCH-L3. Preferably, an antibody of the invention is a monoclonal antibody.

15 .

In another aspect, the present invention contemplates a process of producing an antibody immunoreactive with an UCH-L3 or variant UCH-L3 comprising the steps of (a) transfecting a recombinant host cell with a polynucleotide that encodes an UCH-L3 or variant UCH-L3; (b) culturing the host cell under conditions sufficient for expression of the polypeptide; (c) recovering the polypeptide; and (d) preparing the antibody to the polypeptide.

20

In yet another aspect, the present invention contemplates a process of screening substances for their ability to interact with UCH-L3 or variant UCH-L3 comprising the steps of providing an UCH-L3 or variant UCH-L3, and testing the ability of selected substances to interact with the UCH-L3 or variant UCH-L3.

25

30

In a preferred embodiment, providing an UCH-L3 or variant UCH-L3 is transfecting a host cell with a polynucleotide that encodes an UCH-L3 or variant UCH-L3 to form a transformed cell and maintaining the transformed cell under biological conditions sufficient for expression of the UCH-L3 or variant UCH-L3.

10

15

20

25

30

#### BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.

- FIG. 1 Sequence alignment of UCH enzymes. Every tenth UCH-L3 residue is delineated with a space. Active site residues (Gln-89, Cys-95, His-169, and Asp-184 of UCH-L3) are indicated in red. Other invariant residues are indicated in orange. Secondary structural elements seen in the UCH-L3 crystal structure are indicated above the sequence, (FIG. 3). Residues that are disordered in the UCH-L3 crystal structure are indicated with broken lines. SwissProt Database entries shown are: UCH-L3, (Human; SW:P15374); UCH-L1, (Human; SW:P09936); UBL-DROME (D. melanogaster; SW:P35122); SCHPO, (S. pombe; SW:Q10171); YUH1, (S. cerevisiae; SW:P35127).
- FIG. 2 Electron Density Map. Electron density map (blue) is shown contoured at 1.0 RMSD with the refined coordinates. Map calculation used  $\lambda 1$  (0.9796 Å) structure factor amplitudes in the resolution range 10-2.35 Å. The MAD phases were refined by solvent flattening and histogram shifting. The position of the selenium atom of Met-87 is apparent from the pseudo isomorphous ( $\lambda 3-\lambda 1$ ) difference map (red), which is contoured at 30 RMSD. This figure was made with the program O (Jones *et al.*, 1991)
- FIG. 3 Ribbon diagram of UCH-L3. Side chains of the active site residues, Gln-89, Cys-85, His-169, and Asp-184, are shown in red and labeled Q, C, H, and D. Amino and Carboxyl termini are denoted with N and C. Residues 146 and 167, which mark the ends of the large disordered loop, are indicated. Secondary structures were defined by the program PROMOTIF (Hutchinson and Thornton,

1996). Strands are colored green and helices blue. Helix 4, which contains the active site nucleophile, Cys-95, is colored cyan. Strand 1 (29-34), strand 2 (49-57), strand 3 (168-176), strand 4 (179-183), strand 5 (191-195), strand 6 (223-229). Helix 1 (residues 13-22), helix 2 (39-42), helix 3 (60-76), helix 4 (92-110), helix 5 (118-125), helix 6 (131-140), helix 7 (201-215). Helix 4 has two kinks at residues 95 and 105 that separate the large central  $\alpha$ -helical segment from the two short  $3_{10}$  segments at the ends of this helix. All other helices are alpha. FIG. 3 and FIG. 5A were made with the programs MOLSCRIPT (Kraulis, 1991) and RASTER 3D (Bacon and Anderson, 1988).

10

15

5

FIG. 4 Comparison of UCH-L3 and Papain-like active sites. A) Active site residues of UCH-L3. Gln-89, Cys-95, His-169, and Asp-184, are shown in thick lines. A representative collection of 8 papain-like enzyme active sites are shown in thin lines following least squares overlap on the active site residue Cα atoms. The papain-like structures shown have PBD identifiers 9pap, 4pad, 1pop, 2act, 1aec, 1huc, 1csb, 1gec. Other papain-like structures used in structural comparisons in this paper are: 1the, 1cpj, 1pad, 2pad, 5pad, 6pad, 1stf, 1pip, 1ppp, 1pe6, 1ppd, 1ppn, 1ppo. Refer to the PBD for primary references to these structures, which are not included here because of space limits.

20

25

30

FIG. 5 Comparison of UCH-L3 with Cathepsin B. A) UCH-L3 (upper) and cathepsin B (lower) shown in a similar orientation as FIG. 3. Equivalent residues were defined by LSQMAN (Kleywegt and Jones, 1994). Pairs of C<sup>α</sup> atoms were included in the overlap in their separation is less than 3.0 Å and if they form a stretch of at least 5 contiguous residues. Equivalent residues, as defined by LSQMAN, are shown in the cyan ribbon representation, and listed here: residues 32-37 of UCH-L3::residues 152-157 of cathepsin B, 48-60::166-178, 84-90::18-24, 92-106::27-40, 167-174::197-204, 182-186::217-221. B) Topology diagram of secondary structure for β-sheet and helix 4 of UCH-L3 (upper) and structurally equivalent segments of cathepsin B (lower). Secondary structural elements are colored according to their order of occurrence along the amino acid sequence; (red, orange, yellow, green, cyan,

blue, magenta). The main topological difference is for the helix, which in papain-like enzymes is the first of these secondary structural elements in the sequence, while for UCH-L3 helix 4 is found between strands 2 and 3. The long disordered loop of UCH-L3 is indicated with a dotted line.

5

10

FIG. 6 Active site clefts of papain-like enzymes and UCH-L3. Orientation is the same as for FIG. 3. A) Glycyl Endopeptidase complex with the inhibitor Benzyloxycarbonyl-L-V-G-Methylene, which occupies the S4, S3, S2 and S1 sites (O'Hara et al., 1995). B) Cathepsin B with the inhibitor CA030, which occupies the S2, S1, S1' and S2' sites (Turk et al, 1995). Protein surfaces are colored gray/green according to curvature. Bound inhibitors are red. Active site Cys residue is yellow, other active site residues magenta. C) UCH-L3 molecular surface colored for the invariant residue of FIG. 1. Active site residues are shown in magenta, basic residues blue, acidic residue red, polar residues cyan, and hydrophobic residues green. This figure was prepared with the program GRASP (Nicholls et al., 1991).

15

20

FIG. 7 Proposed orientation of UCH-L3/Ubiquitin binding. This view is approximately perpendicular (from the left) of FIG. 3. Crystal structure of UCH-L3 is shown with β-strands green, helix-4 cyan, and other structure yellow. The glycyl endopeptidase and cathepsin B S and S' site inhibitors of FIG. 6A and FIG. 6B are shown in red and magenta respectively after least squares overlap of the papain-like enzyme complexes on the UCH-L3 crystal structure. The structure of ubiquitin (Vijay-Kumar *et al.*, 1987), shown in gray, has been positioned with the basic face adjacent to UCH-L3, the C-terminal carboxylate adjacent to UCH-L3 Cys-95, and with the flexible C-terminal residues following the path of the Glycyl Endopeptidase S site inhibitor.

25

30

FIG. 8 The active site cleft of UCH-L3 is blocked. Stereoview of the UCH-L3 active site in approximately the same orientation as FIG. 3. The active site residues Gln-89, Cys-95, His-169, and Asp-184, are labeled with Q, C, H, and D, respectively. UCH-L3 residues Leu-9, Glu-10, Ala-11, and Ser-92 are labeled.

UCH-L3 is colored cyan, with the two segments proposed to move upon binding substrate colored green (residues 9-12; 90-94). The S4-S1 site inhibitor of Glycyl Endopeptidase (FIG. 6A) is shown in red after superposition on the UCH active site residue  $C^{\alpha}$  atoms.

5

10

FIG. 9 Possible orientations of the UCH-L3 disordered loop. The crystal structure of UCH-L3 is shown in the same color representation and orientation as FIG. 7. The docked ubiquitin molecule has been moved slightly away from the UCH-L3 for clarity. Residues that follow ubiquitin in an  $\alpha$ -linked substrate adduct have been included in dark gray color. Three possible classes of conformation are shown in magenta, blue, and red, for the disordered loop (residues 147-166) with respect to the substrate.

15

FIG. 10 Relative rates of hydrolysis of ubiquitin derivatives by UCH isozymes. The rates of hydrolysis were measured by HPLC according to Wilkinson et al. (1986). The brackets [] surround the leaving group. The rates shown are obtained with 15  $\mu$ M substrates (~ 20 times  $K_m$ ) and are given as the ratio of rates for the indicated substrate vs. that for ubiquitin ethyl ester. The error bars represent the standard error of the mean (See Table 1 for absolute rates). Note the log scale.

20

FIG. 11 UbCEP52 is a substrate for UCH-L3. Each lane contains 10 μg of substrate and 1 μg of enzyme. The time of digestion is given in minutes. A: SDS-PAGE of the reaction time course, protein detected by Coomassie Blue staining. B: Immunoblot of a duplicate gel, probed with rabbit antisera to human CEP52. The unmarked band is a minor contaminant.

25

30

FIG. 12 Nucleic acid inhibits the processing of UbCEP52 by UCH-L3. Nucleic acid was added at a concentration of 0.05 mg/mL, and incubated for ten minutes with the substrate before enzyme was added to start the reaction. Addition of dsDNA to UbOEt had no effect on the rate of ester hydrolysis (triangles). The rate of hydrolysis of UbCEP52 is only a few-fold slower (+). Addition of RNAse A slightly

increased the rate of hydrolysis of UbCEP52 (x). Single stranded DNA had little effect (solid circles), while either *E. coli* RNA (solid squares), a plasmid DNA (open circles), or a double-stranded 42 bp DNA (open squares) significantly inhibited.

5

FIG. 13 Co-translational processing of the proubiquitin (left panel) and UbCEP80 (right panel) gene products by UCH-L1 and UCH-L3. The bacterial host BL21(DE3) was co-transformed with a plasmid encoding the substrates and the Amp<sup>r</sup> gene product and a second vector encoding the indicated enzyme and Kan<sup>r</sup> gene product. Protein production was induced with IPTG for three hours and whole cell lysates were subjected to SDS-PAGE and immunoblotting with anti-ubiquitin (left panel) or anti-CEP80 (right panel) antibodies.

#### **DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS**

15

10

The present inventors have determined the UCH-L3 crystal structure in atomic detail, which provides the basis for altering the active site of the protein. UCH-L3 belongs to a family of UCH (ubiquitin C-terminal hydrolase) enzymes that all catalyze the removal of adducts from the C-terminus of the small protein ubiquitin. Because the similarity in amino acid sequences indicates that all of the UCH enzymes will have the same three dimensional structure, and because UCH-L3 is the first UCH for which a structure is known, the present invention is applicable to all UCH enzymes.

20

25

UCH-L3 has a core catalytic structure that strongly resembles cathepsin B, a papain-like protease. The active site groove is occluded by two loops, and it is postulated that a substrate-induced conformational change is required to clear the cleft and allow access to the active-site cysteine. Thus, only ubiquitin derivatives are substrates because only they can form the extensive interactions with the S' site required to trigger the necessary conformational change generating the active conformation of the enzyme.

Specificity for P' residues must be determined by the residues lining the corresponding S' sites on the UCH enzymes. The sequence of these proteins varies widely in several areas, including a region just N-terminal to the active site histidine. This sequence is disordered in the UCH-L3 structure, but may be positioned to form a significant contact region with the P' residues of substrates. Thus, it is likely that this hypervariable region is important in determining substrate selectivity and the somewhat shorter loop near the active site cysteine in UCH-L1 restricts the possible substrates by conferring a narrower or more restricted active site cleft.

10

5

UCH enzymes have potential in the commercial production of peptides (and possibly proteins), that are initially expressed as ubiquitin fusions from which the ubiquitin is later cleaved by UCH activity. UCH-L3 is already used in this way for the production of peptides. *See*, for example, U.S. Patent No. 5,620,923. The utility of this process could be enhanced by the availability of a UCH enzyme that possess greater thermal and/or chemical stability.

15

Knowledge of the UCH-L3 structure can be used to design variants with enhanced properties such as increased stability. This work can be performed by inspection of the UCH-L3 structure on a graphics workstation, by computer manipulation of UCH-L3 coordinates, and calculations such as energy minimization. Variants whose potential properties are initially predicted in light of the UCH-L3 structure can be produced by the usual techniques of molecular biology.

25

20

Enhanced stability might result from increasing the number of salt bridge or hydrogen bonding interactions, improving the packing of hydrophobic groups, or by adding disulfide bonds. Chemical stability might be improved by replacement of chemically labile groups with more stable amino acid residues. For example, buried methionine residues might be replaced with the more inert leucine amino acid residue. Cysteine residues might also be replaced, for example with alanine or serine side chains.

30

The present invention provides teaching to replace an active site residue, such as cysteine-95, with another amino acid residue to produce a more stable enzyme that uses a serine protease mechanism rather than the cysteine protease mechanism of wild type UCH enzymes. For example, the present invention provides guidance to make other changes in the enzyme structure, such changing aspartic acid to asparagine, to alter the specificity or stability of the enzyme. All such approaches to produce a more stable enzyme will be assisted by knowledge of the UCH-L3 structure.

10

5

Because ubiquitin chemistry is of fundamental importance to cellular metabolism, it may be possible to design therapeutic agents that function through modification of UCH activities. For example, a specific UCH inhibitor may increase (or reduce) the rate at which a protein(s) is degraded by the 26S protease. Because some proteins that function in proliferation are normally turned over by ubiquitin-mediated degradation, UCH inhibitors may have utility in the treatment of cancers. Another possible utility is in the treatment of wasting diseases which are thought to result from excessive ubiquitin-mediated proteolysis. UCH inhibitors may also find utility in the treatment of neurodegenerative diseases, since the UCH-L1 isozyme is highly abundant in neuronal tissue, and these diseases are characterized by deposits that are rich in ubiquitin conjugates (i.e. UCH substrates).

20

25

30

15

Ubiquitin C-terminal hydrolases catalyze the removal of adducts from the C-terminus of ubiquitin. The present inventors have determined the crystal structure of the recombinant human <u>u</u>biquitin <u>C-</u>terminal <u>hy</u>drolase, UCH-L3, by X-ray crystallography at 1.8 Å resolution. The structure is comprised of a central antiparallel β-sheet flanked on both sides by α-helices. The β-sheet and one of the helices resemble the well known papain-like cysteine proteases, with the greatest similarity to cathepsin B. This similarity includes the UCH-L3 active site catalytic triad of Cys-95, His-169 and Asp-184, and the oxyanion hole residue Gln-89. Papain and UCH-L3 differ, however, in strand and helix connectivity, which in the UCH-L3 structure includes a disordered 20-residue loop (res 147-166) that is positioned over the active site and may function in the definition of substrate specificity. Based upon

10

15

20

25

analogy with inhibitor complexes of the papain-like enzymes, the inventors set forth the following mechanism to describe the binding of ubiquitin to UCH-L3. The UCH-L3 active site cleft appears to be masked in the unliganded structure by two different segments of the enzyme (res 9-12 and 90-94), thus implying a conformational change upon substrate binding and suggesting a mechanism to limit non-specific hydrolysis.

#### Crystallization

The recombinant human UCH-L3 used in these studies was purified as described (Larsen *et al.*, 1996). The protein solution used in crystallization trials was 12 mg/mL UCH-L3 in 50 mM Tris Hcl, pH 7.6, 15 mM BME, 1 mM EDTA. This solution was stored in aliquots at -70°C. Crystallization was performed at 4°C in sitting drops. The reservoir solution was 26% (w/w) PEG 4000, 200 mM sodium acetate, 100 mM Pipes pH 6.7, and 10 mM DTT. The drop solution was 3 μL of protein solution mixed with 3 μL of reservoir solution. These conditions produced crystalline aggregates after 4-5 days.

Single crystals were obtained by microseeding. One of the initial aggregates was ground up with a needle, and the needle streaked through a drop that was identical to the conditions described above, but which had equilibrated for 3-5 days. Small single crystals appeared after several days.

Large crystals were obtained by macroseeding. Using a rayon loop, a small single crystal was transferred into reservoir solution, allowed to wash for several minutes, and then transferred into another drop that has been equilibrated for 3-5 days. The same reservoir and drop condition used to obtain the initial aggregates were also used for the subsequent micro and macroseeding. The crystals attain their maximum size in 5-10 days following macroseeding. Typical crystal dimensions are  $0.3 \text{ mm} \times 0.6 \text{ mm}$ .

10

15

20

25

30

For generation of selenomethionine-substituted UCH-L3 (SeUCH-L3), the gal-,met- auxotroph B834(DE3) of the BL21 strain (Studier and Moffatt, 1986) harboring pRSL3 (Larsen et al., 1996) was grown on LB agar as colonies. A single colony was inoculated into 50 mL LB media and grown overnight, followed by dilution into 6 liters of modified M9 media. Solutions O, P, S, and V (Weber et al., 1992), uracil (Final concentration of 1 mM), and selenomethionine (final concentration of 50 µg/l) were sterile filtered and added to M9 media.

At an OD<sub>600</sub>nm of 0.6, the cells were induced with 0.5 mM IPTG for three hours before harvesting by centrifugation. Purification of SeUCH-L3 was the same as for wild type. Ion electrospray mass spectrometry showed an incorporation of >98% Se at each Met codon. SeUCH-L3 and wild type UCH-L3 have comparable specific activities. SeUCH-L3 crystals were grown under the same conditions as native protein, although in this case the seeding steps proved unnecessary and growth time from initial set up was 5-10 days.

#### **Data Collection and Processing**

The native and SeUCH-L3 crystals are isomorphous; space group  $P2_12_12_1$ , cell dimensions: a=48.6 Å, b=60.8 Å, c=81.4 Å. There is one molecule in the asymmetric unit, and the Matthew's parameter,  $V_m$ , is 2.37 Å $^3$ Da $^{-1}$ , which corresponds to a solvent content of 48% (Matthews, 1968).

All data were collected at 100K. Prior to cryocooling the crystals were transferred to the reservoir solution, and then to a series of solutions that were identical except for 2% increments in glycerol concentration up to a final concentration of 18% glycerol. The cryoprotected crystals were suspended in a rayon loop and cooled by plunging into liquid nitrogen.

Multiwavelength data were collected from a single SeUCH-L3 crystal on a MAR imaging plate detector at beamline X12C of the National Synchrotron Light

10

Source, Brookhaven National Laboratory. The three wavelengths collected were selected from the fluorescence spectrum;  $\lambda 1$  (0.9796 Å) was chosen as the inflection, or rise, corresponding to the minimum value of f';  $\lambda 2$  (0.9793 Å) was taken as the peak, corresponding to the maximum in f";  $\lambda 3$  (0.9300 Å) was chosen for the remote wavelength, corresponding to the maximum in f'. Data from each wavelength were indexed and integrated independently, and data from all three wavelengths were scaled together from 6.0 Å to 2.2 Å. The resulting scale factors were then applied separately to each individual wavelength for data from 30 Å to 2.35 Å. Data from a native crystal were collected to 1.8 Å resolution on a MAR imaging plate detector at beamline 7-1 of the Stanford Synchrotron Radiation Laboratory, Palo Alto. All data were processed with the programs DENZO and SCALEPAK (Otwinowski, 1993). See Table 1 for data statistics.

Table 1. Data Processing Statistics

|                         | Native      | λ1          | λ2                | λ3          |
|-------------------------|-------------|-------------|-------------------|-------------|
|                         | SSRLa       | NSLSª       | NSLS <sup>a</sup> | NSLSª       |
| Wavelength (Å)          | 1.080       | 0.9796      | 0.9793            | 0.930       |
| Resolution limit (Å)    | 1.80        | 2.35        | 2.35              | 2.35        |
| High resol. shell (Å)   | (1.83-1.80) | (2.43-2.35) | (2.43-            | (2.43-2.35) |
|                         |             |             | 2.35)             |             |
| #Unique reflections     | 23334       | 11282       | 11217             | 11108       |
| Completeness (%)        | 98 (93)     | 96 (86)     | 90 (84)           | 89 (91)     |
| <i o<sub="">(1)&gt;</i> | 20 (5)      | 15 (5)      | 15 (5)            | 15 (6)      |
| Redundancy <sup>b</sup> | 4.5 (3)     | 2 (1)       | 2(1)              | 2 (1.5)     |
| R sym (%) <sup>c</sup>  | 4.0 (19)    | 4.9 (13.2)  | 4.4 (12.1)        | 4.8 (13.7)  |
| Mosaicity (°)           | 1.18        | 0.42        | 0.42              | 0.42        |
|                         |             |             |                   |             |

Data were collected on MAR imaging plate detectors on beamline 7-1 at the Stanford Synchrotron Radiation Laboratory (SSRL) or beamline X12C of the National Synchrotron Light Source (NSLS).

Data were processed with DENZO and SCALEPACK (Otwinowski, 1993).

15

20

Redundancy is defined as the ratio of observed/unique structure factor amplitudes.

<sup>&</sup>lt;sup>c</sup> R sym = 100 \*  $\Sigma_{hkl}\Sigma i|I_i < I>| = \Sigma < I>$ 

10

15

20

25

#### Structure Determination and Refinement

Crystallographic computing was performed using programs from the CCP4 suite (CCP4, 1994), unless otherwise stated. Of the seven methionine residues in UCH-L3, all except the amino terminal Met are ordered. The six selenium sites were identified from difference Patterson and Fourier functions using the program XtalView (McRee, 1992). Selenium parameters were refined in MLPHARE (Otwinowski, 1991), treating λ1 as the native data of a conventional multiple isomorphous phase determination (Ramakrishnan and Biou, 1997). The mean figure of merit calculated by MLPHARE was 0.42.

Phases computed with MLPHARE were refined by solvent flattening and histogram shifting with the program DM (Cowtan, 1994) to a mean figure of merit of 0.77. The resulting electron density map was readily interpretable for the majority of the UCH-L3 sequence, see FIG. 2. Rounds of refinement with XPLOR (Brünger, 1992b) were interspersed with mode building (Jones *et al.*, 1991). λ1 amplitudes from 10.0 Å to 2.35 Å resolution were used in the refinement, with phase restraints also applied. At this stage the Rvalue against 10.0 Å to 2.35 Å data was 24.3% and the free Rvalue was 30.4% (Brünger, 1992a). No sigma cuts were applied to refinement or Rvalue calculations.

Refinement was continued against 6.0 Å to 1.8 Å data collected from a native crystal (see Table 2). Because of a slight deviation from true isomorphism between the native and SeUCH-L3 crystals, phase restrains were not employed for the high resolution refinement. The final model includes 121 water molecules and 205 of the total 230 UCH-L3 residues. The current Rvalue is 23.0% and the free Rvalue is 28.6%. The first four residues at the amino-terminus are disordered, as are residues 147-166 and 218. The model has good stereochemistry as judged by PROCHECK (Laskowski *et al.*, 1993).

-17-

#### **UCH-L3 COORDINATES**

REMARK FILENAME="134\_reb\_8\_bref.pdb"

REMARK TOPH19.pep -MACRO for protein sequence

REMARK DATE:14-Mar-97 22:45:32 created by user: stemmler

|    | ATOM        | 1           | CB          | ARG | 5  | 34.943 | 15.749 | 56.409 | 1.00 | 29.03 | AAAA |
|----|-------------|-------------|-------------|-----|----|--------|--------|--------|------|-------|------|
|    |             | 2           | CG          | ARG | 5  | 34.137 | 16.647 | 57.309 | 1.00 | 30.95 | AAAA |
|    | ATOM        | 3           | CD          | ARG | 5  | 34.789 | 16.934 | 58.656 | 1.00 | 32.26 | AAAA |
| 10 | ATOM        | 4           | NE          | ARG | 5  | 34.211 | 18.164 | 59.198 | 1.00 | 36.00 | AAAA |
|    |             | 5           | HE          | ARG | 5  | 33.836 | 18.803 | 58.557 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 6           | CZ          | ARG | 5  | 34.155 | 18.493 | 60.486 | 1.00 | 36.77 | AAAA |
|    | ATOM        | 7           | NH1         | ARG | 5  | 33.606 | 19.646 | 60.843 | 1.00 | 38.66 | AAAA |
|    | ATOM        | 8           | <b>HH11</b> | ARG | 5  | 33.219 | 20.248 | 60.144 | 1.00 | 0.00  | AAAA |
| 15 | ATOM        | 9           | <b>HH12</b> | ARG | 5  | 33.563 | 19.905 | 61.809 | 1.00 |       | AAAA |
|    | ATOM        | 10          | NH2         | ARG | 5  | 34.687 | 17.707 | 61.408 | 1.00 | 36.16 | AAAA |
|    | ATOM        | 11          | <b>HH21</b> | ARG | 5  | 35.156 | 16.864 | 61.142 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 12          | <b>HH22</b> | ARG | 5  | 34.619 | 17.958 | 62.372 | 1.00 | 0.00  | AAAA |
|    | MOTA        | 13          | C           | ARG | 5  | 34.702 | 17.197 | 54.397 | 1.00 | 26.94 |      |
| 20 | MOTA        | 14          | 0           | ARG | 5  | 33.828 | 18.051 | 54.424 | 1.00 | 24.12 |      |
|    | ATOM        | 15          | HT1         | ARG | 5  | 36.170 | 14.703 | 54.248 | 1.00 | 0.00  | AAAA |
|    | <b>ATOM</b> | 16          | HT2         | ARG | 5  |        | 14.767 | 53.128 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 17          | N           | ARG | 5  |        | 14.709 | 54.140 | 1.00 | 34.97 |      |
|    | ATOM        | 18          | HT3         | ARG | 5  | 34.838 | 13.776 | 54.488 | 1.00 | 0.00  | AAAA |
| 25 | ATOM        | 19          | CA          | ARG | 5  | 34.460 | 15.792 | 54.952 | 1.00 | 30.10 |      |
|    | ATOM        | 20          | N           | TRP | 6  | 35.923 | 17.431 | 53.940 | 1.00 | 25.41 |      |
|    | ATOM        | 21          | H           | TRP | 6  | 36.595 | 16.737 | 53.823 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 22          | CA          | TRP | 6  |        | 18.767 | 53.614 | 1.00 | 22.76 |      |
|    | ATOM        | 23          | CB          | TRP | 6  | 37.836 | 18.901 | 53.993 | 1.00 | 20.39 |      |
| 30 | ATOM        | 24          | CG          | TRP | 6  | 38.117 | 18.460 | 55.390 | 1.00 | 22.77 |      |
|    | MOTA        | 25          | CD2         | TRP | 6  | 37.623 | 19.059 | 56.594 | 1.00 | 20.61 |      |
|    | ATOM        | <b>26</b> · | CE2         | TRP | 6  | 38.108 | 18.291 | 57.671 | 1.00 |       | AAAA |
|    | ATOM        | 27          | CE3         | TRP | 6  |        | 20.177 | 56.860 | 1.00 |       | AAAA |
|    | ATOM        | 28          | CD1         | TRP | 6  |        | 17.392 | 55.778 | 1.00 |       | AAAA |
| 35 | MOTA        | 29          | NE1         | TRP | 6  | 38.872 | 17.283 | 57.144 | 1.00 |       | AAAA |
|    | ATOM        | 30          | HE1         | TRP | 6  |        | 16.602 | 57.685 | 1.00 | 0.00  | AAAA |
|    | <b>MOTA</b> | 31          | CZ2         | TRP | 6  | 37.816 | 18.594 | 59.002 | 1.00 |       | AAAA |
|    | ATOM        | 32          | CZ3         | TRP | 6  | 36.537 | 20.483 | 58.184 | 1.00 |       | AAAA |
|    | ATOM        | 33          | CH2         | TRP | .6 | 37.032 | 19.690 | 59.238 | 1.00 |       | AAAA |
| 40 | ATOM        | 34          | C           | TRP | 6  | 36.187 | 19.085 | 52.141 | 1.00 |       | AAAA |
| ·  | ATOM        | 35          | 0           | TRP | 6  | 36.015 | 18.194 | 51.321 | 1.00 |       | AAAA |
|    | ATOM        | 36          | N           | LEU | 7  | 36.200 | 20.366 | 51.815 | 1.00 | 20.82 | AAAA |
|    |             |             |             |     |    |        |        |        |      |       |      |

|    | ATOM | 37         | H   | LEU  | 7  | 36.125 21.021 | 52.539 | 1.00 | O.OO AAAA         |
|----|------|------------|-----|------|----|---------------|--------|------|-------------------|
|    | MOTA | 38         | CA  | LEU  | 7  | 36.317 20.802 | 50.423 | 1.00 | 24.47 AAAA        |
|    | ATOM | 39         | СВ  | LEU  | 7  | 36.404 22.327 | 50.367 | 1.00 | <b>24.34 AAAA</b> |
| •  | MOTA | 40         | CG  | LEU  | 7  | 36.146 23.017 | 49.040 | 1.00 | 22.59 AAAA        |
| 5  | ATOM | 41         | CD1 | LEU  | 7  | 34.687 22.829 | 48.654 | 1.00 | <b>26.54 AAAA</b> |
|    | ATOM | 42         | CD2 | LEU  | 7  | 36.497 24.483 | 49.174 | 1.00 | 21.09 AAAA        |
|    | ATOM | 43         | C   | LEU  | 7  | 37.567 20.197 | 49.771 | 1.00 | 23.51 AAAA        |
|    | ATOM | 44         | 0   | LEU  | 7  | 38.653 20.247 | 50.341 | 1.00 | <b>25.30 AAAA</b> |
|    | ATOM | 45         | N   | PRO  | 8  | 37.403 19.505 | 48.638 | 1.00 | 26.01 AAAA        |
| 10 | ATOM | 46         | CD  | PRO  | 8  | 36.137 19.093 | 48.006 | 1.00 | <b>27.47 AAAA</b> |
|    | ATOM | 47         | CA  | PRO  | 8  | 38.559 18.953 | 47.929 | 1.00 | 25.82 AAAA        |
|    | ATOM | 48         | CB  | PRO  | 8  | 37.935 18.297 | 46.701 | 1.00 | 27.75 AAAA        |
|    | ATOM | 49         | CG  | PRO  | 8  | 36.553 17.925 | 47.172 | 1.00 | 27.83 AAAA        |
|    | ATOM |            | C   | PRO  | 8  | 39.570 20.034 | 47.550 | 1.00 | <b>24.44 AAAA</b> |
| 15 | ATOM | 51         | 0   | PRO  | 8  | 39.217 21.195 | 47.386 | 1.00 | 22.60 AAAA        |
|    | ATOM | 52         | N   | LEU  | 9  | 40.829 19.647 | 47.415 | 1.00 | 27.15 AAAA        |
|    | ATOM | 53         | Н   | LEU  | 9  | 41.016 18.683 | 47.463 | 1.00 | O.OO AAAA         |
|    | ATOM | 54         | CA  | LEU  | 9  | 41.900 20.614 | 47.200 | 1.00 | 26.84 AAAA        |
|    | MOTA | 55         | CB  | LEU  | 9  | 43.179 20.145 | 47.910 | 1.00 | 26.91 AAAA        |
| 20 | ATOM | 56         | CG  | LEU  | 9  | 42.992 19.872 | 49.410 | 1.00 | 26.00 AAAA        |
|    | ATOM | 57         | CD1 | LEU  | 9  | 44.337 19.580 | 50.023 | 1.00 | 27.63 AAAA        |
|    | ATOM |            | CD2 | Ϋ́ΕΠ | 9  | 42.319 21.062 | 50.114 | 1.00 | 21.92 AAAA        |
|    | ATOM |            | C   | LEU  | 9  | 42.145 20.885 | 45.712 | 1.00 | 26.78 AAAA        |
|    | MOTA | 60         | 0   | LEU  | 9  | 43.133 20.437 | 45.119 | 1.00 | 26.81 AAAA        |
| 25 | MOTA | 61         | N   | GLU  | 10 | 41.168 21.542 | 45.102 | 1.00 | 26.31 AAAA        |
|    | ATOM | 62         | Н   | GLU  | 10 | 40.351 21.729 | 45.616 | 1.00 | AAAA 00.0         |
|    | ATOM | 63         | CA  | GLU  | 10 | 41.244 21.971 | 43.716 | 1.00 | 27.90 AAAA        |
|    | ATOM | 64         | CB  | GLU  | 10 | 40.755 20.874 | 42.772 | 1.00 | <b>33.87 AAAA</b> |
|    | MOTA | 65         | CG  | GLU  | 10 | 39.629 20.026 | 43.317 | 1.00 | 45.72 AAAA        |
| 30 | ATOM |            | CD  | GLU  | 10 | 39.141 18.967 | 42.323 | 1.00 | <b>53.31 AAAA</b> |
|    | ATOM |            | 0E1 | GLU  | 10 | 38.277 19.304 | 41.469 | 1.00 | <b>52.71 AAAA</b> |
|    | MOTA | 68         | 0E2 | GLU  | 10 | 39.590 17.796 | 42.437 | 1.00 | <b>55.78 AAAA</b> |
|    | ATOM |            | C   | GLU  | 10 | 40.369 23.186 | 43.571 | 1.00 | 25.52 AAAA        |
|    |      | 70         | 0   | GLU  | 10 | 39.368 23.305 | 44.268 | 1.00 | 25.82 AAAA        |
| 35 |      | 71         | N   | ALA  | 11 | 40.835 24.158 | 42.798 | 1.00 | 27.87 AAAA        |
|    | ATOM | 72         | Н   | ALA  | 11 | 41.697 23.992 | 42.356 | 1.00 | O.OO AAAA         |
|    |      | 73         | CA  | ALA  | 11 | 40.094 25.395 | 42.580 | 1.00 | 26.92 AAAA        |
|    | ATOM |            | CB  | ALA  | 11 | 41.001 26.443 | 42.011 | 1.00 | 26.26 AAAA        |
|    |      | 75         | C   | ALA  | 11 | 38.935 25.121 | 41.620 | 1.00 | 30.85 AAAA        |
| 40 | ATOM | 76         | 0   | ALA  | 11 | 39.117 25.060 | 40.401 | 1.00 | 35.58 AAAA        |
|    | ATOM | <b>7</b> 7 | N   | ASN  | 12 | 37.764 24.878 | 42.193 | 1.00 | 29.56 AAAA        |
|    | ATOM |            | Н   | ASN  | 12 | 37.726 24.985 | 43.160 | 1.00 | 0.00 AAAA         |
|    | ATOM | 79         | CA  | ASN  | 12 | 36.591 24.423 | 41.462 | 1.00 | 28.53 AAAA        |
|    |      |            |     |      |    |               |        |      |                   |

|    | ATOM | 80  | CB   | ASN        | 12 | 36.368 22.936 | 41.738 | 1.00 | 29.60 | AAAA |
|----|------|-----|------|------------|----|---------------|--------|------|-------|------|
|    | ATOM | 81  | CG   | ASN        | 12 | 35.298 22.334 | 40.870 | 1.00 | 30.93 | AAAA |
|    | ATOM | 82  | 0D1  | ASN        | 12 | 34.252 22.940 | 40.629 | 1.00 | 33.85 | AAAA |
|    | ATOM | 83  | ND2  | ASN        | 12 | 35.509 21.098 | 40.467 | 1.00 | 34.38 | AAAA |
| 5  | ATOM | 84  | HD21 | ASN        | 12 | 36.288 20.611 | 40.798 | 1.00 | 0.00  | AAAA |
|    | ATOM | 85  | HD22 | ASN        | 12 | 34.848 20.762 | 39.828 | 1.00 | 0.00  | AAAA |
|    | MOTA | 86  | C    | ASN        | 12 | 35.358 25.225 | 41.891 | 1.00 | 24.71 | AAAA |
|    | ATOM | 87  | 0    | ASN        | 12 | 34.693 24.887 | 42.867 | 1.00 | 25.47 | AAAA |
|    | ATOM | 88  | N    | <b>PRO</b> | 13 | 35.065 26.321 | 41.181 | 1.00 | 23.24 | AAAA |
| 10 | ATOM | 89  | CD   | PR0        | 13 | 35.778 26.765 | 39.971 | 1.00 | 22.18 | AAAA |
|    | ATOM | 90  | CA   | PR0        | 13 | 33.963 27.223 | 41.515 | 1.00 | 23.35 | AAAA |
|    | MOTA | 91  | CB   | PRO        | 13 | 33.883 28.143 | 40.303 | 1.00 | 24.69 | AAAA |
|    | ATOM | 92  | CG   | PRO        | 13 | 35.244 28.138 | 39.750 | 1.00 | 23.36 | AAAA |
|    | ATOM | 93  | C    | <b>PRO</b> | 13 | 32.633 26.507 | 41.770 | 1.00 | 23.21 | AAAA |
| 15 | ATOM | 94  | 0    | PRO        | 13 | 31.939 26.820 | 42.720 | 1.00 | 23.70 | AAAA |
|    | ATOM | 95  | N    | GLU        | 14 | 32.310 25.502 | 40.966 | 1.00 | 26.47 | AAAA |
|    | ATOM | 96  | Н    | GLU        | 14 | 32.975 25.148 | 40.341 | 1.00 | 0.00  | AAAA |
|    | ATOM | 97  | CA   | GLU        | 14 | 30.975 24.917 | 41.027 | 1.00 | 31.39 | AAAA |
|    | ATOM | 98  | CB   | GLU        | 14 | 30.666 24.117 | 39.757 | 1.00 | 38.34 | AAAA |
| 20 | MOTA | 99  | CG   | GLU        | 14 | 29.181 23.754 | 39.611 | 1.00 | 51.49 | AAAA |
|    | ATOM | 100 | CD   | GLU        | 14 | 28.796 23.371 | 38.181 | 1.00 | 60.13 | AAAA |
|    | ATOM | 101 | 0E1  | GLU        | 14 | 28.176 24.206 | 37.473 | 1.00 | 62.58 | AAAA |
|    | ATOM | 102 | 0E2  | GLU        | 14 | 29.120 22.230 | 37.766 | 1.00 | 63.49 | AAAA |
|    | ATOM | 103 | C    | GLU        | 14 | 30.751 24.051 | 42.267 | 1.00 | 28.36 | AAAA |
| 25 | ATOM | 104 | 0    | GLU        | 14 | 29.693 24.131 | 42.895 | 1.00 | 26.17 | AAAA |
|    | ATOM | 105 | N    | VAL        | 15 | 31.749 23.241 | 42.618 | 1.00 | 25.73 | AAAA |
|    | ATOM | 106 | Н    | VAL        | 15 | 32.517 23.168 | 42.008 | 1.00 | 0.00  | AAAA |
|    | ATOM | 107 | CA   | VAL        | 15 | 31.733 22.474 | 43.869 | 1.00 | 24.08 | AAAA |
|    | ATOM | 108 | CB   | VAL        | 15 | 32.956 21.511 | 43.945 | 1.00 | 23.74 | AAAA |
| 30 | ATOM | 109 | CG1  | VAL        | 15 | 33.007 20.829 | 45.290 | 1.00 | 25.22 | AAAA |
|    | ATOM | 110 | CG2  | VAL        | 15 | 32.860 20.440 | 42.849 | 1.00 | 19.71 | AAAA |
|    | ATOM | 111 | C    | VAL        | 15 | 31.712 23.397 | 45.109 | 1.00 | 22.96 | AAAA |
|    | ATOM | 112 | 0    | VAL        | 15 | 30.904 23.217 | 46.023 | 1.00 | 22.19 | AAAA |
|    | ATOM | 113 | N    | THR        | 16 | 32.537 24.440 | 45.089 | 1.00 | 22.52 | AAAA |
| 35 | ATOM | 114 | H    | THR        | 16 | 33.201 24.524 | 44.368 | 1.00 | 0.00  | AAAA |
|    | ATOM | 115 | CA   | THR        | 16 | 32.530 25.436 | 46.156 | 1.00 | 20.27 | AAAA |
|    | ATOM | 116 | CB   | THR        | 16 | 33.633 26.458 | 45.926 | 1.00 | 18.24 | AAAA |
|    | ATOM | 117 | 0G1  | THR        | 16 | 34.835 25.756 | 45.605 | 1.00 | 18.68 | AAAA |
|    | MOTA | 118 | HG1  | THR        | 16 | 35.579 26.372 | 45.533 | 1.00 |       | AAAA |
| 40 | ATOM | 119 | CG2  | THR        | 16 | 33.858 27.292 | 47.169 | 1.00 | 17.57 |      |
|    | ATOM | 120 | C    | THR        | 16 | 31.192 26.164 | 46.315 | 1.00 | 22.22 | AAAA |
|    | ATOM | 121 | 0    | THR        | 16 | 30.700 26.352 | 47.440 | 1.00 |       | AAAA |
|    | ATOM | 122 | N    | ASN        | 17 | 30.589 26.550 | 45.192 | 1.00 | 22.44 | AAAA |
|    |      |     |      |            |    |               |        |      |       |      |

|    | ATOM        | 123 | Н    | ASN | 17 | 31.067 | 26.433 | 44.350 | 1.00 | 0.00  | AAAA |
|----|-------------|-----|------|-----|----|--------|--------|--------|------|-------|------|
|    | ATOM        | 124 | CA   | ASN | 17 | 29.268 | 27.190 | 45.197 | 1.00 | 22.07 | AAAA |
|    | ATOM        | 125 | CB   | ASN | 17 | 28.932 | 27.721 | 43.807 | 1.00 | 22.34 | AAAA |
| _  | <b>ATOM</b> | 126 | CG   | ASN | 17 | 29.788 | 28.905 | 43.424 | 1.00 | 23.06 | AAAA |
| 5  | <b>ATOM</b> | 127 | 0D1  | ASN | 17 | 30.205 | 29.679 | 44.282 | 1.00 | 21.72 | AAAA |
|    | ATOM        | 128 | ND2  | ASN | 17 | 30.007 | 29.089 | 42.129 | 1.00 | 20.19 | AAAA |
|    | ATOM        | 129 | HD21 | ASN | 17 | 29.565 | 28.488 | 41.489 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 130 | HD22 | ASN | 17 | 30.606 | 29.826 | 41.897 | 1.00 | 0.00  | AAAA |
|    | MOTA        | 131 | C    | ASN | 17 | 28.165 | 26.234 | 45.669 | 1.00 | 20.44 | AAAA |
| 10 | ATOM        | 132 | 0    | ASN | 17 | 27.300 | 26.625 | 46.449 | 1.00 | 20.46 | AAAA |
|    | ATOM        | 133 | N    | GLN | 18 | 28.276 | 24.961 | 45.316 | 1.00 | 20.08 | AAAA |
|    | ATOM        | 134 | Н    | GLN | 18 | 28.974 | 24.713 | 44.675 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 135 | CA   | GLN | 18 | 27.358 | 23.958 | 45.853 | 1.00 | 24.90 | AAAA |
|    | ATOM        | 136 | CB   | GLN | 18 | 27.549 | 22.612 | 45.148 | 1.00 | 30.06 | AAAA |
| 15 | MOTA        | 137 | CG   | GLN | 18 | 26.740 | 22.490 | 43.862 | 1.00 | 42.05 | AAAA |
|    | MOTA        | 138 | CD   | GLN | 18 | 25.343 | 23.105 | 43.988 | 1.00 | 51.77 | AAAA |
|    | MOTA        | 139 | 0E1  | GLN | 18 | 24.448 | 22.521 | 44.607 | 1.00 | 55.04 | AAAA |
|    | ATOM        | 140 | NE2  | GLN | 18 | 25.173 | 24.317 | 43.456 | 1.00 | 52.02 | AAAA |
|    | MOTA        | 141 | HE21 | GLN | 18 | 25.902 | 24.740 | 42.952 | 1.00 | 0.00  | AAAA |
| 20 | ATOM        | 142 | HE22 | GLN | 18 | 24.293 | 24.702 | 43.641 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 143 | C    | GLN | 18 | 27.471 | 23.778 | 47.367 | 1.00 | 26.45 |      |
|    | ATOM        | 144 | 0    | GLN | 18 | 26.453 |        | 48.068 | 1.00 | 21.63 |      |
|    | ATOM        | 145 | N    | PHE | 19 | 28.705 |        | 47.875 | 1.00 | 26.95 |      |
|    | ATOM        | 146 | Н    | PHE | 19 | 29.452 |        | 47.242 | 1.00 | 0.00  | AAAA |
| 25 | ATOM        | 147 | CA   | PHE | 19 | 28.967 |        | 49.317 | 1.00 | 24.56 |      |
|    | ATOM        | 148 | CB   | PHE | 19 | 30.471 |        | 49.544 | 1.00 | 28.12 |      |
|    | MOTA        | 149 | CG   | PHE | 19 | 30.836 |        | 50.950 | 1.00 | 30.72 |      |
|    | MOTA        | 150 | CD1  | PHE | 19 | 30.010 |        | 51.692 | 1.00 | 30.11 |      |
|    | MOTA        | 151 | CD2  | PHE | 19 | 32.035 |        | 51.516 | 1.00 | 29.96 |      |
| 30 | MOTA        | 152 | CE1  | PHE | 19 | 30.383 |        | 52.980 | 1.00 | 31.40 |      |
|    |             | 153 | CE2  | PHE | 19 | 32.415 |        | 52.805 | 1.00 |       | AAAA |
|    |             | 154 | CZ   | PHE | 19 | 31.591 |        | 53.533 | 1.00 | 28.78 |      |
|    | ATOM        | 155 | C    | PHE | 19 | 28.450 |        | 50.088 | 1.00 | 22.86 |      |
|    |             | 156 | 0    | PHE | 19 | 27.789 |        | 51.121 | 1.00 | 20.58 |      |
| 35 | ATOM        | 157 | N    | LEU | 20 | 28.672 |        | 49.525 | 1.00 |       | AAAA |
|    |             | 158 | Н    | LEU | 20 | 29.271 |        | 48.752 | 1.00 |       | AAAA |
|    |             | 159 | CA   | LEU | 20 | 28.088 |        | 50.037 | 1.00 |       | AAAA |
|    |             | 160 | CB   | LEU | 20 | 28.421 |        | 49.088 | 1.00 |       | AAAA |
|    | ATOM        | 161 | CG   | LEU | 20 | 29.828 |        | 49.129 | 1.00 |       | AAAA |
| 40 |             | 162 | CD1  | LEU | 20 | 29.857 |        | 48.468 | 1.00 |       | AAAA |
|    |             | 163 | CD2  |     | 20 | 30.234 |        | 50.567 | 1.00 |       | AAAA |
|    |             | 164 | C    | LEU | 20 | 26.560 |        | 50.197 | 1.00 |       | AAAA |
|    | ATOM        | 165 | 0    | LEU | 20 | 25.986 | 27.680 | 51.211 | 1.00 | 21.79 | AAAA |
|    |             |     |      |     |    |        |        |        |      |       |      |

|    | ATOM | 166 | N    | LYS | 21 | 25.907 26.748 | 49.171 | 1.00 | 22.10 | AAAA |
|----|------|-----|------|-----|----|---------------|--------|------|-------|------|
|    | ATOM | 167 | Н    | LYS | 21 | 26.421 26.490 | 48.376 | 1.00 | 0.00  | AAAA |
|    | ATOM | 168 | CA   | LYS | 21 | 24.474 26.520 | 49.220 | 1.00 | 23.06 | AAAA |
|    | ATOM | 169 | CB   | LYS | 21 | 24.026 25.887 | 47.900 | 1.00 | 25.93 | AAAA |
| 5  | ATOM | 170 | CG   | LYS | 21 | 22.528 25.662 | 47.768 | 1.00 | 35.03 | AAAA |
|    | ATOM | 171 | CD   | LYS | 21 | 22.270 24.673 | 46.651 | 1.00 | 43.04 | AAAA |
|    | ATOM | 172 | CE   | LYS | 21 | 20.819 24.706 | 46.198 | 1.00 | 49.98 | AAAA |
|    | ATOM | 173 | NZ   | LYS | 21 | 20.563 23.681 | 45.137 | 1.00 | 53.62 | AAAA |
|    | ATOM | 174 | HZ1  | LYS | 21 | 20.728 22.728 | 45.519 | 1.00 | 0.00  | AAAA |
| 10 | ATOM | 175 | HZ2  | LYS | 21 | 21.199 23.859 | 44.333 | 1.00 | 0.00  | AAAA |
|    | ATOM | 176 | HZ3  | LYS | 21 | 19.576 23.773 | 44.822 | 1.00 | 0.00  | AAAA |
|    | ATOM | 177 | C    | LYS | 21 | 24.124 25.607 | 50.397 | 1.00 | 19.59 | AAAA |
|    | ATOM | 178 | 0    | LYS | 21 | 23.266 25.906 | 51.220 | 1.00 | 24.24 | AAAA |
|    | ATOM | 179 | N    | GLN | 22 | 24.836 24.508 | 50.499 | 1.00 | 20.54 | AAAA |
| 15 | ATOM | 180 | Н    | GLN | 22 | 25.555 24.352 | 49.846 | 1.00 | 0.00  | AAAA |
|    | ATOM | 181 | ĊA   | GLN | 22 | 24.549 23.510 | 51.504 | 1.00 | 22.64 | AAAA |
| •  | ATOM | 182 | CB   | GLN | 22 | 25.314 22.252 | 51.121 | 1.00 | 24.37 | AAAA |
|    | ATOM | 183 | CG.  | GLN | 22 | 25.554 21.226 | 52.180 | 1.00 | 35.79 | AAAA |
|    | ATOM | 184 | CD   | GLN | 22 | 26.685 20.299 | 51.773 | 1.00 | 42.90 | AAAA |
| 20 | ATOM | 185 | OE1  | GLN | 22 | 27.008 20.178 | 50.584 | 1.00 | 45.37 | AAAA |
|    | ATOM | 186 | NE2  | GLN | 22 | 27.353 19.719 | 52.751 | 1.00 | 44.56 | AAAA |
|    | ATOM | 187 | HE21 | GLN | 22 | 27.195 19.868 | 53.698 | 1.00 | 0.00  | AAAA |
|    | ATOM | 188 | HE22 | GLN | 22 | 28.038 19.097 | 52.405 | 1.00 | 0.00  | AAAA |
|    | MOTÁ | 189 | C    | GLN | 22 | 24.873 24.011 | 52.924 | 1.00 | 25.82 | AAAA |
| 25 | MOTA | 190 | 0    | GLN | 22 | 24.161 23.680 | 53.878 | 1.00 | 25.10 | AAAA |
|    | ATOM | 191 | N    | LEU | 23 | 25.756 25.004 | 53.011 | 1.00 | 24.28 | AAAA |
|    | MOTA | 192 | Н    | LEU | 23 | 26.233 25.265 | 52.199 | 1.00 | 0.00  | AAAA |
|    | ATOM | 193 | CA   | LEU | 23 | 26.068 25.649 | 54.289 | 1.00 | 22.60 | AAAA |
|    | MOTA | 194 | CB   | LEU | 23 | 27.476 26.249 | 54.240 | 1.00 | 23.15 | AAAA |
| 30 | ATOM | 195 | CG   | LEU | 23 | 28.621 25.216 | 54.126 | 1.00 | 27.13 | AAAA |
|    | ATOM | 196 | CD1  | LEU | 23 | 29.966 25.935 | 53.935 | 1.00 | 22.36 | AAAA |
|    | MOTA | 197 | CD2  | LEU | 23 | 28.650 24.292 | 55.360 | 1.00 | 22.91 | AAAA |
|    | ATOM | 198 | C    | LEU | 23 | 25.046 26.722 | 54.690 | 1.00 | 21.30 | AAAA |
|    | MOTA | 199 | 0    | LEU | 23 | 25.134 27.307 | 55.770 | 1.00 | 19.91 | AAAA |
| 35 | ATOM | 200 | N    | GLY | 24 | 24.102 27.009 | 53.792 | 1.00 | 22.47 | AAAA |
|    | ATOM | 201 | Н    | GLY | 24 | 24.162 26.600 | 52.902 | 1.00 | 0.00  | AAAA |
|    | ATOM | 202 | CA   | GLY | 24 | 22.979 27.880 | 54.123 | 1.00 | 18.64 | AAAA |
|    | ATOM | 203 | C    | GLY | 24 | 23.062 29.291 | 53.583 | 1.00 | 20.19 | AAAA |
|    | ATOM | 204 | 0    | GLY | 24 | 22.359 30.187 | 54.058 | 1.00 | 21.11 | AAAA |
| 40 | ATOM | 205 | N    | LEU | 25 | 23.917 29.497 | 52.582 | 1.00 | 21.94 | AAAA |
|    | MOTA | 206 | Н    | LEU | 25 | 24.454 28.744 | 52.264 | 1.00 | 0.00  | AAAA |
|    | MOTA | 207 | CA   | LEU | 25 | 24.070 30.802 | 51.936 | 1.00 | 22.38 | AAAA |
|    | ATOM | 208 | CB   | LEU | 25 | 25.525 31.053 | 51.514 | 1.00 | 21.52 | AAAA |
|    |      |     |      |     |    |               |        |      |       |      |

|    | ATOM | 209 | CG   | LEU        | 25        | 26.611 3 | 1.599 | 52.432 | 1.00 | 24.11 | AAAA |
|----|------|-----|------|------------|-----------|----------|-------|--------|------|-------|------|
|    | ATOM | 210 | CD1  | LEU        | 25        | 26.183 3 | 2.924 | 52.976 | 1.00 | 26.31 | AAAA |
|    | ATOM | 211 | CD2  | LEU        | 25        | 26.9113  | 0.589 | 53.536 | 1.00 | 25.31 | AAAA |
|    | ATOM | 212 | C    | LEU        | 25        | 23.218 3 | 0.870 | 50.670 | 1.00 | 23.83 | AAAA |
| 5  | ATOM | 213 | 0    | LEU        | 25        | 23.382 3 | 0.069 | 49.744 | 1.00 | 22.04 | AAAA |
|    | ATOM | 214 | N    | HIS        | 26        | 22.437 3 | 1.935 | 50.568 | 1.00 | 27.33 | AAAA |
|    | ATOM | 215 | Н    | HIS        | 26        | 22.373 3 | 2.444 | 51.402 | 1.00 | 0.00  | AAAA |
|    | ATOM | 216 | CA   | HIS        | 26        | 21.827 3 | 2.302 | 49.297 | 1.00 | 30.72 | AAAA |
|    | MOTA | 217 | CB   | HIS        | 26        | 20.858 3 | 3.461 | 49.519 | 1.00 | 35.03 | AAAA |
| 10 | ATOM | 218 | CG   | HIS        | 26        | 19.725 3 | 3.126 | 50.440 | 1.00 | 39.71 | AAAA |
|    | ATOM | 219 | CD2  | HIS        | 26        | 19.605 3 | 3.253 | 51.781 | 1.00 | 38.99 | AAAA |
|    | ATOM | 220 | ND1  | HIS        | 26        | 18.546 3 | 2.562 | 49.999 | 1.00 | 40.72 | AAAA |
|    | ATOM | 221 | HD1  | HIS        | 26        | 18.332 3 | 2.241 | 49.089 | 1.00 | 0.00  | AAAA |
|    | ATOM | 222 | CE1  | HIS        | 26        | 17.743 3 | 2.369 | 51.032 | 1.00 | 39.92 | AAAA |
| 15 | ATOM | 223 | NE2  | HIS        | 26        | 18.359 3 | 2.785 | 52.123 | 1.00 | 39.81 | AAAA |
|    | ATOM | 224 | HE2  | HIS        | <b>26</b> | 18.134 3 | 2.577 | 53.054 | 1.00 | 0.00  | AAAA |
|    | ATOM | 225 | C    | HIS        | 26        | 22.910 3 | 2.705 | 48.286 | 1.00 | 30.28 | AAAA |
|    | ATOM | 226 | 0    | HIS        | 26        | 23.899 3 | 3.337 | 48.655 | 1.00 | 32.24 | AAAA |
|    | ATOM | 227 | N    | PR0        | 27        | 22.681 3 | 2.456 | 46.989 | 1.00 | 28.45 | AAAA |
| 20 | ATOM | 228 | CD   | PR0        | 27        | 21.500 3 | 1.803 | 46.395 | 1.00 | 30.37 | AAAA |
|    | ATOM | 229 | CA   | PR0        | 27        | 23.753 3 | 2.629 | 46.003 | 1.00 | 24.28 | AAAA |
|    | ATOM | 230 | CB   | PRO        | 27        | 23.367 3 | 1.657 | 44.904 | 1.00 | 27.20 | AAAA |
|    | ATOM | 231 | CG   | PRO        | 27        | 21.850 3 | 1.731 | 44.917 | 1.00 | 31.25 | AAAA |
|    | ATOM | 232 | C    | <b>PRO</b> | 27        | 23.856 3 | 4.044 | 45.465 | 1.00 | 23.59 | AAAA |
| 25 | ATOM | 233 | 0    | PR0        | 27        | 23.941 3 | 4.235 | 44.267 | 1.00 | 28.42 | AAAA |
|    | ATOM | 234 | N    | ASN        | 28        | 23.971 3 | 5.021 | 46.349 | 1.00 | 21.98 | AAAA |
|    | ATOM | 235 | Н    | ASN        | 28        | 24.029 3 | 4.719 | 47.277 | 1.00 | 0.00  | AAAA |
|    | ATOM | 236 | CA   | ASN        | 28        | 24.197 3 | 6.393 | 45.911 | 1.00 | 25.40 | AAAA |
|    | ATOM | 237 | CB   | ASN        | 28        | 23.630 3 | 7.402 | 46.913 | 1.00 | 29.65 | AAAA |
| 30 | ATOM | 238 | CG   | ASN        | 28        | 23.848 3 | 6.989 | 48.341 | 1.00 | 36.22 | AAAA |
|    | ATOM | 239 | 0D1  | ASN        | 28        | 24.378 3 | 7.743 | 49.162 | 1.00 | 39.03 | AAAA |
|    | ATOM | 240 | ND2  | ASN        | 28        | 23.289 3 | 5.853 | 48.689 | 1.00 | 39.95 | AAAA |
|    | ATOM | 241 | HD21 | ASN        | 28        | 23.560 3 | 5.562 | 49.587 | 1.00 | 0.00  | AAAA |
|    | ATOM | 242 | HD22 | ASN        | 28        | 22.654 3 | 5.468 | 48.059 | 1.00 | 0.00  | AAAA |
| 35 | ATOM | 243 | C    | ASN        | 28        | 25.676 3 | 6.670 | 45.714 | 1.00 | 24.12 | AAAA |
|    | ATOM | 244 | 0    | ASN        | 28        | 26.063 3 | 7.766 | 45.316 | 1.00 | 25.78 | AAAA |
|    | ATOM | 245 | N    | TRP        | 29        | 26.490 3 | 5.759 | 46.237 | 1.00 | 22.87 | AAAA |
|    | ATOM | 246 | Н    | TRP        | 29        | 26.120 3 | 5.099 | 46.851 | 1.00 | 0.00  | AAAA |
|    | ATOM | 247 | CA   | TRP        | 29        | 27.926 3 | 5.739 | 45.966 | 1.00 | 21.65 | AAAA |
| 40 | ATOM | 248 | CB   | TRP        | 29        | 28.737 3 | 6.004 | 47.245 | 1.00 | 19.38 | AAAA |
|    | ATOM | 249 | CG   | TRP        | 29        | 28.640 3 | 7.388 | 47.766 | 1.00 | 18.45 | AAAA |
|    | ATOM | 250 | CD2  | TRP        | 29        | 29.441 3 | 8.519 | 47.389 | 1.00 | 18.42 | AAAA |
|    | ATOM | 251 | CE2  | TRP        | 29        | 28.946 3 | 9.636 | 48.101 | 1.00 | 19.19 | AAAA |
|    |      |     |      |            |           |          |       |        |      |       |      |

|    | ATOM | 252   | CE3         | TRP | 29 | 30.518 38.706 | 46.510 | 1.00 | 19.40 | AAAA |
|----|------|-------|-------------|-----|----|---------------|--------|------|-------|------|
|    | ATOM | 253   | CD1         | TRP | 29 | 27.736 37.846 | 48.672 | 1.00 | 19.49 | AAAA |
|    | ATOM | 254   | NE1         | TRP | 29 | 27.909 39.191 | 48.881 | 1.00 | 19.40 | AAAA |
|    | ATOM | 255   | HE1         | TRP | 29 | 27.325 39.692 | 49.489 | 1.00 | 0.00  | AAAA |
| 5  | ATOM | 256   | CZ2         | TRP | 29 | 29.487 40.924 | 47.961 | 1.00 | 19.87 | AAAA |
| -  | ATOM | 257   | CZ3         | TRP | 29 | 31.057 39.993 | 46.367 | 1.00 | 18.65 | AAAA |
|    | ATOM | 258   | CH2         | TRP | 29 | 30.539 41.079 | 47.090 | 1.00 | 18.95 | AAAA |
|    | ATOM | 259   | C           | TRP | 29 | 28.233 34.352 | 45.446 | 1.00 | 19.35 | AAAA |
|    | ATOM | 260   | 0           | TRP | 29 | 27.682 33.369 | 45.953 | 1.00 | 21.87 | AAAA |
| 10 | ATOM | 261   | N           | GLN | 30 | 29.000 34.275 | 44.357 | 1.00 | 19.97 | AAAA |
|    | ATOM | 262   | Н           | GLN | 30 | 29.276 35.096 | 43.900 | 1.00 | 0.00  | AAAA |
|    | ATOM | 263   | CA          | GLN | 30 | 29.401 32.984 | 43.783 | 1.00 | 19.00 | AAAA |
|    | ATOM | 264   | CB          | GLN | 30 | 28.543 32.671 | 42.552 | 1.00 | 20.67 | AAAA |
|    | ATOM | 265   | CG          | GLN | 30 | 27.042 32.621 | 42.844 | 1.00 | 21.49 | AAAA |
| 15 | ATOM | 266   | CD          | GLN | 30 | 26.632 31.302 | 43.408 | 1.00 | 20.18 | AAAA |
|    | ATOM | 267   | 0E1         | GLN | 30 | 26.459 30.349 | 42.671 | 1.00 | 23.21 | AAAA |
|    | ATOM | 268   | NE2         | GLN | 30 | 26.636 31.188 | 44.725 | 1.00 | 22.75 | AAAA |
|    | ATOM | 269   | <b>HE21</b> | GLN | 30 | 26.874 31.932 | 45.294 | 1.00 | 0.00  | AAAA |
|    | ATOM | 270   | <b>HE22</b> | GLN | 30 | 26.395 30.274 | 44.998 | 1.00 | 0.00  | AAAA |
| 20 | ATOM | 271   | C           | GLN | 30 | 30.876 32.995 | 43.383 | 1.00 | 18.13 | AAAA |
|    | ATOM | 272   | 0           | GLN | 30 | 31.378 34.008 | 42.896 | 1.00 | 19.67 | AAAA |
|    | ATOM | 273   | N           | PHE | 31 | 31.575 31.892 | 43.615 | 1.00 | 18.15 | AAAA |
|    | ATOM | 274   | Н           | PHE | 31 | 31.160 31.192 | 44.148 | 1.00 | 0.00  | AAAA |
|    | ATOM | 275   | CA          | PHE | 31 | 32.952 31.764 | 43.136 | 1.00 |       | AAAA |
| 25 | ATOM | 276   | CB          | PHE | 31 | 33.651 30.576 | 43.791 | 1.00 |       | AAAA |
|    | ATOM | 277   | CG          | PHE | 31 | 34.089 30.841 | 45.211 | 1.00 |       | AAAA |
|    | ATOM | 278   | CD1         | PHE | 31 | 33.322 30.396 | 46.288 | 1.00 |       | AAAA |
|    | ATOM | 279   | CD2         | PHE | 31 | 35.263 31.563 | 45.476 | 1.00 |       | AAAA |
|    | ATOM | 280   | CE1         | PHE | 31 | 33.719 30.657 | 47.608 | 1.00 |       | AAAA |
| 30 | ATOM | 281 - | CE2         | PHE | 31 | 35.663 31.826 | 46.789 | 1.00 | 17.15 | AAAA |
|    | ATOM | 282   | CZ          | PHE | 31 | 34.893 31.374 | 47.856 | 1.00 |       | AAAA |
|    | ATOM | 283   | C           | PHE | 31 | 33.023 31.606 |        | 1.00 |       | AAAA |
|    | ATOM | 284   | 0           | PHE | 31 | 32.214 30.891 | 41.025 | 1.00 |       | AAAA |
|    | ATOM | 285   | N           | VAL | 32 | 34.029 32.232 |        | 1.00 |       | AAAA |
| 35 | ATOM | 286   | Н           | VAL | 32 | 34.545 32.853 |        | 1.00 |       | AAAA |
|    | ATOM | 287   | CA          | VAL | 32 | 34.349 32.045 | 39.616 | 1.00 |       | AAAA |
|    | ATOM | 288   | CB          | VAL | 32 | 34.004 33.332 |        | 1.00 |       | AAAA |
|    | ATOM | 289   | CG1         | VAL | 32 | 32.508 33.586 | 38.787 | 1.00 |       | AAAA |
|    | ATOM | 290   | CG2         | VAL | 32 | 34.702 34.563 |        | 1.00 |       | AAAA |
| 40 | ATOM | 291   | C           | VAL | 32 | 35.847 31.736 |        | 1.00 |       | AAAA |
|    | ATOM | 292   | 0           | VAL | 32 | 36.619 32.038 |        | 1.00 |       | AAAA |
|    | ATOM | 293   | N           | ASP | 33 | 36.251 31.088 |        | 1.00 |       | AAAA |
|    | ATOM | 294   | Н           | ASP | 33 | 35.575 30.751 | 37.793 | 1.00 | 0.00  | AAAA |
|    |      |       |             |     |    |               |        |      |       |      |

|    | MOTA | 295  | CA  | ASP        | 33 | 37.677 30.936 | 38.103 | 1.00 | <b>24.10 AAAA</b> |
|----|------|------|-----|------------|----|---------------|--------|------|-------------------|
|    | ATOM | 296  | CB  | ASP        | 33 | 37.877 30.087 | 36.867 | 1.00 | 23.40 AAAA        |
|    | ATOM | 297  | CG  | ASP        | 33 | 37.547 28.662 | 37.101 | 1.00 | 28.62 AAAA        |
|    | ATOM | 298  | 0D1 | <b>ASP</b> | 33 | 38.155 28.078 | 38.023 | 1.00 | 31.38 AAAA        |
| 5  | ATOM | 299  | 0D2 | ASP        | 33 | 36.637 28.146 | 36.415 | 1.00 | 31.16 AAAA        |
|    | ATOM | 300  | C   | ASP        | 33 | 38.324 32.278 | 37.849 | 1.00 | <b>24.54 AAAA</b> |
|    | ATOM | 301  | 0   | ASP        | 33 | 37.694 33.163 | 37.268 | 1.00 | 25.36 AAAA        |
|    | ATOM | 302  | N   | VAL        | 34 | 39.547 32.465 | 38.333 | 1.00 | 23.21 AAAA        |
|    | ATOM | 303  | Н   | VAL        | 34 | 39.885 31.900 | 39.060 | 1.00 | AAAA 00.0         |
| 10 | ATOM | 304  | CA  | VAL        | 34 | 40.379 33.527 | 37.787 | 1.00 | 26.15 AAAA        |
|    | ATOM | 305  | CB  | VAL        | 34 | 41.176 34.265 | 38.881 | 1.00 | 25.11 AAAA        |
|    | ATOM | 306  | CG1 | VAL        | 34 | 42.030 35.353 | 38.243 | 1.00 | 24.72 AAAA        |
|    | ATOM | 307  | CG2 | VAL        | 34 | 40.216 34.871 | 39.916 | 1.00 | 23.17 AAAA        |
|    | ATOM | 308  | C   | VAL        | 34 | 41.324 32.869 | 36.769 | 1.00 | 26.65 AAAA        |
| 15 | ATOM | 309. | 0   | VAL        | 34 | 41.990 31.884 | 37.080 | 1.00 | 27.57 AAAA        |
|    | ATOM | 310  | N   | TYR        | 35 | 41.149 33.214 | 35.500 | 1.00 | 26.68 AAAA        |
|    | ATOM | 311  | Н   | TYR        | 35 | 40.563 33.967 | 35.283 | 1.00 | AAAA 00.0         |
|    | ATOM | 312  | CA  | TYR        | 35 | 41.782 32.450 | 34.430 | 1.00 | 26.52 AAAA        |
|    | ATOM | 313  | CB  | TYR        | 35 | 41.012 32.649 | 33.116 | 1.00 | 25.88 AAAA        |
| 20 | ATOM | 314  | CG  | TYR        | 35 | 39.736 31.831 | 33.066 | 1.00 | 22.69 AAAA        |
|    | ATOM | 315  | CD1 | TYR        | 35 | 38.494 32.409 | 33.344 | 1.00 | 22.08 AAAA        |
|    | ATOM | 316  | CE1 | TYR        | 35 | 37.348 31.628 | 33.440 | 1.00 | 18.63 AAAA        |
|    | ATOM | 317  | CD2 | TYR        | 35 | 39.791 30.455 | 32.872 | 1.00 | 24.37 AAAA        |
|    | ATOM | 318  | CE2 | TYR        | 35 | 38.657 29.672 | 32.964 | 1.00 | 23.29 AAAA        |
| 25 | ATOM | 319  | CZ  | TYR        | 35 | 37.442 30.264 | 33.251 | 1.00 | 21.25 AAAA        |
|    | ATOM | 320  | OH  | TYR        | 35 | 36.321 29.472 | 33.331 | 1.00 | 22.79 AAAA        |
|    | ATOM | 321  | HH  | TYR        | 35 | 35.794 29.791 | 34.083 | 1.00 | O.OO AAAA         |
|    | ATOM | 322  | C   | TYR        | 35 | 43.262 32.795 | 34.266 | 1.00 | 28.14 AAAA        |
|    | ATOM | 323  | 0   | TYR        | 35 | 44.064 31.950 | 33.869 | 1.00 | 31.16 AAAA        |
| 30 | ATOM | 324  | N   | GLY        | 36 | 43.615 34.023 | 34.626 | 1.00 | 30.78 AAAA        |
|    | ATOM | 325  | Н   | GLY        | 36 | 42.903 34.661 | 34.827 | 1.00 | 0.00 AAAA         |
|    | ATOM | 326  | CA  | GLY        | 36 | 45.013 34.404 | 34.757 | 1.00 | 35.11 AAAA        |
|    | ATOM |      | C   | GLY        | 36 | 45.130 35.712 | 35.520 | 1.00 | 37.27 AAAA        |
|    | ATOM | 328  | 0   | GLY        | 36 | 44.114 36.294 | 35.889 | 1.00 | 38.81 AAAA        |
| 35 | ATOM | 329  | N   | MET        | 37 | 46.356 36.177 | 35.756 | 1.00 | 41.81 AAAA        |
|    | ATOM | 330  | Н   | MET        | 37 | 47.091 35.568 | 35.539 | 1.00 | O.OO AAAA         |
|    | ATOM |      | CA  | . MET      | 37 | 46.590 37.477 | 36.400 | 1.00 | 44.35 AAAA        |
|    | ATOM | 332  | CB  | MET        | 37 | 47.883 37.457 | 37.231 | 1.00 | 48.91 AAAA        |
|    | ATOM | 333  | CG  | MET        | 37 | 48.285 36.101 | 37.820 | 1.00 | 53.53 AAAA        |
| 40 | ATOM |      | SD  | MET        | 37 | 47.107 35.436 | 39.011 | 1.00 | 65.33 AAAA        |
|    | ATOM |      | CE  | MET        | 37 | 48.083 34.161 | 39.821 | 1.00 | 58.45 AAAA        |
|    | ATOM |      | C   | MET        | 37 | 46.678 38.598 | 35.356 | 1.00 | 45.24 AAAA        |
|    | ATOM | 337  | 0   | MET        | 37 | 46.695 39.778 | 35.694 | 1.00 | 48.93 AAAA        |
|    |      |      |     |            |    |               |        |      |                   |

|    | ATOM | 338              | N          | ASP | 38 | 46.841 38.214 | 34.095 | 1.00 | 44.40 | AAAA |
|----|------|------------------|------------|-----|----|---------------|--------|------|-------|------|
|    | ATOM | 339              | Н          | ASP | 38 | 47.007 37.262 | 33.943 | 1.00 | 0.00  | AAAA |
|    | ATOM | 340              | CA         | ASP | 38 | 46.750 39.127 | 32.958 | 1.00 | 44.85 | AAAA |
|    | ATOM | 341              | CB         | ASP | 38 | 46.718 38.296 | 31.668 | 1.00 | 54.39 | AAAA |
| 5  | ATOM | 342              | CG         | ASP | 38 | 47.302 39.024 | 30.461 | 1.00 | 61.36 | AAAA |
|    | ATOM | 343              | 0D1        | ASP | 38 | 47.368 40.273 | 30.451 | 1.00 | 65.74 | AAAA |
|    | MOTA | 344              | <b>OD2</b> | ASP | 38 | 47.647 38.328 | 29.478 | 1.00 | 67.49 | AAAA |
|    | ATOM | 345              | C          | ASP | 38 | 45.477 39.980 | 33.038 | 1.00 | 42.01 | AAAA |
|    | ATOM | 346 <sup>-</sup> | 0          | ASP | 38 | 44.382 39.453 | 33.209 | 1.00 | 38.13 | AAAA |
| 10 | MOTA | 347              | N          | PRO | 39 | 45.592 41.284 | 32.746 | 1.00 | 42.09 | AAAA |
|    | ATOM | 348              | CD         | PR0 | 39 | 46.871 42.020 | 32.774 | 1.00 | 43.41 | AAAA |
|    | ATOM | 349              | CA         | PR0 | 39 | 44.441 42.193 | 32.631 | 1.00 | 40.63 | AAAA |
|    | MOTA | 350              | CB         | PR0 | 39 | 45.046 43.461 | 32.042 | 1.00 | 40.54 | AAAA |
|    | ATOM | 351              | CG         | PR0 | 39 | 46.464 43.449 | 32.509 | 1.00 | 42.45 | AAAA |
| 15 | ATOM | 352              | C          | PR0 | 39 | 43.315 41.673 | 31.744 | 1.00 | 40.33 | AAAA |
|    | ATOM | 353              | 0          | PR0 | 39 | 42.146 41.990 | 31.959 | 1.00 | 40.35 | AAAA |
|    | ATOM | 354              | N          | GLU | 40 | 43.683 40.979 | 30.675 | 1.00 | 39.70 | AAAA |
|    | ATOM | 355              | Н          | GLU | 40 | 44.637 40.883 | 30.494 | 1.00 |       | AAAA |
|    | MOTA | 356              | CA         | GLU | 40 | 42.695 40.457 | 29.736 | 1.00 | 39.58 |      |
| 20 | ATOM | 357              | CB         | GLU | 40 | 43.391 39.907 | 28.487 | 1.00 | 38.40 |      |
|    | MOTA | 358              | CG         | GLU | 40 | 43.806 41.003 | 27.512 | 1.00 | 39.64 |      |
|    | ATOM | 359              | CD         | GLU | 40 | 44.733 40.531 | 26.388 | 1.00 | 39.81 |      |
|    | ATOM | 360              | 0E1        | GLU | 40 | 45.443 39.501 | 26.546 | 1.00 | 35.20 |      |
|    | MOTA | 361              | <b>OE2</b> | GLU | 40 | 44.802 41.261 | 25.372 | 1.00 | 37.81 |      |
| 25 | ATOM | 362              | C          | GLU | 40 | 41.823 39.381 | 30.377 | 1.00 | 38.35 |      |
|    | ATOM | 363              | 0          | GLU | 40 | 40.616 39.318 | 30.134 | 1.00 | 39.28 |      |
| •  | ATOM | 364              | N          | LEU | 41 | 42.426 38.578 | 31.248 | 1.00 | 36.49 |      |
|    | ATOM | 365              | Н          | LEU | 41 | 43.381 38.714 | 31.409 | 1.00 | 0.00  | AAAA |
|    | ATOM | 366              | CA         | LEU | 41 | 41.691 37.538 | 31.966 | 1.00 | 35.44 |      |
| 30 | ATOM | 367              | CB         | LEU | 41 | 42.567 36.300 | 32.135 | 1.00 |       | AAAA |
|    | ATOM |                  | CG         | LEU | 41 | 42.961 35.650 | 30.805 | 1.00 |       | AAAA |
|    | ATOM |                  | CD1        | LEU | 41 | 44.058 34.633 | 31.026 | 1.00 |       | AAAA |
|    | ATOM | 370              | CD2        |     | 41 | 41.754 35.002 | 30.181 | 1.00 |       | AAAA |
|    | ATOM | 371              | C          | LEU | 41 | 41.161 38.015 | 33.321 | 1.00 |       | AAAA |
| 35 | ATOM |                  | 0          | LEU | 41 | 40.068 37.623 | 33.735 | 1.00 |       | AAAA |
|    | ATOM | 373              | N          | LEU | 42 | 41.834 38.995 | 33.918 | 1.00 |       | AAAA |
|    | ATOM |                  | Н          | LEU | 42 | 42.629 39.346 | 33.483 | 1.00 | 0.00  | AAAA |
|    | ATOM |                  | CA         | LEU | 42 | 41.370 39.565 | 35.177 | 1.00 |       | AAAA |
|    | ATOM |                  | CB         | LEU | 42 | 42.426 40.495 | 35.778 | 1.00 |       | AAAA |
| 40 | ATOM |                  | CG         | LEU | 42 | 43.141 40.129 | 37.083 | 1.00 |       | AAAA |
|    | ATOM |                  | CD1        | LEU | 42 | 43.441 41.416 | 37.830 | 1.00 |       | AAAA |
|    | ATOM |                  |            | LEU | 42 | 42.304 39.211 | 37.950 | 1.00 |       | AAAA |
|    | ATOM | 380              | C          | LEU | 42 | 40.074 40.344 | 34.983 | 1.00 | 31.86 | AAAA |
|    |      |                  |            |     |    |               |        |      |       |      |

|    | ATOM | 381 | 0   | LEU | 42         | 39.146 40.232 | 35.782 | 1.00 | 31.41 AAA | A |
|----|------|-----|-----|-----|------------|---------------|--------|------|-----------|---|
|    | ATOM | 382 | N   | SER | 43         | 39.993 41.114 | 33.905 | 1.00 | 32.09 AAA | A |
|    | ATOM | 383 | Н   | SER | 43         | 40.722 41.122 | 33.244 | 1.00 | 0.00 AAA  | A |
|    | ATOM | 384 | CA  | SER | 43         | 38.809 41.942 | 33.660 | 1.00 | 30.91 AAA | A |
| 5  | ATOM | 385 | CB  | SER | 43         | 39.067 42.895 | 32.488 | 1.00 | 30.06 AAA | A |
|    | ATOM | 386 | OG  | SER | 43         | 39.651 42.207 | 31.402 | 1.00 | 33.39 AAA | A |
|    | ATOM | 387 | HG  | SER | 43         | 40.500 42.602 | 31.162 | 1.00 | 0.00 AAA  | A |
|    | ATOM | 388 | C   | SER | 43         | 37.540 41.111 | 33.401 | 1.00 | 27.31 AAA | A |
|    | ATOM | 389 | 0   | SER | 43         | 36.430 41.614 | 33.510 | 1.00 | 27.97 AAA | A |
| 10 | ATOM | 390 | N   | MET | 44         | 37.709 39.819 | 33.160 | 1.00 | 24.99 AAA | A |
|    | ATOM | 391 | Н   | MET | 44         | 38.618 39.473 | 33.038 | 1.00 | 0.00 AAA  | A |
|    | ATOM | 392 | CA  | MET | <b>4</b> 4 | 36.570 38.918 | 33.035 | 1.00 | 27.37 AAA | A |
|    | ATOM | 393 | CB  | MET | 44         | 37.007 37.600 | 32.420 | 1.00 | 29.97 AAA | A |
|    | ATOM | 394 | CG  | MET | 44         | 37.265 37.623 | 30.948 | 1.00 | 30.45 AAA | A |
| 15 | ATOM | 395 | SD  | MET | 44         | 38.047 36.072 | 30.555 | 1.00 | 40.12 AAA | A |
|    | ATOM | 396 | CE  | MET | 44         | 36.647 34.951 | 30.644 | 1.00 | 38.79 AAA | A |
|    | ATOM | 397 | C   | MET | 44         | 35.838 38.595 | 34.351 | 1.00 | 30.11 AAA | A |
|    | ATOM | 398 | 0   | MET | 44         | 34.770 37.981 | 34.337 | 1.00 | 31.53 AAA | A |
|    | ATOM | 399 | N   | VAL | 45         | 36.484 38.830 | 35.484 | 1.00 | 29.44 AAA | A |
| 20 | ATOM | 400 | Н   | VAL | 45         | 37.345 39.290 | 35.448 | 1.00 | 0.00 AAA  |   |
|    | ATOM | 401 | CA  | VAL | 45         | 35.893 38.445 | 36.763 | 1.00 | 26.30 AAA |   |
|    | ATOM | 402 | CB  | VAL | 45         | 36.965 38.411 | 37.875 | 1.00 | 24.98 AAA |   |
|    | ATOM | 403 | CG1 | VAL | 45         | 36.338 38.051 | 39.227 | 1.00 | 21.57 AAA |   |
|    | ATOM | 404 | CG2 | VAL | 45         | 38.043 37.412 | 37.503 | 1.00 | 23.63 AAA |   |
| 25 | ATOM | 405 | C   | VAL | 45         | 34.747 39.381 | 37.173 | 1.00 | 26.01 AAA |   |
|    | ATOM | 406 | 0   | VAL | 45         | 34.901 40.603 | 37.199 | 1.00 | 25.56 AAA |   |
|    | ATOM | 407 | N   | PRO | 46         | 33.566 38.820 | 37.457 | 1.00 | 26.96 AAA |   |
|    | ATOM | 408 | CD  | PR0 | 46         | 33.174 37.412 | 37.264 | 1.00 | 28.85 AAA |   |
|    | ATOM | 409 | CA  | PRO | 46         | 32.446 39.616 | 37.959 | 1.00 | 26.67 AAA |   |
| 30 | ATOM | 410 | CB  | PRO | 46         | 31.356 38.578 | 38.209 | 1.00 | 26.01 AAA |   |
|    | ATOM | 411 | CG  | PRO | 46         | 31.679 37.474 | 37.282 | 1.00 | 24.45 AAA |   |
|    | ATOM | 412 | C   | PRO | 46         | 32.822 40.338 | 39.234 | 1.00 | 26.63 AAA |   |
|    | ATOM |     | 0   | PRO | 46         | 33.536 39.788 | 40.054 | 1.00 | 29.14 AAA |   |
|    | ATOM |     | N   | ARG | 47         | 32.427 41.600 | 39.348 | 1.00 | 28.89 AAA |   |
| 35 | ATOM |     | H   | ARG | 47         | 31.947 41.987 | 38.584 | 1.00 | 0.00 AAA  |   |
|    | ATOM | 416 | CA  | ARG | 47         | 32.660 42.390 | 40.558 | 1.00 | 31.96 AAA |   |
|    | ATOM |     | CB  | ARG | 47         | 33.439 43.660 | 40.232 | 1.00 | 38.74 AAA |   |
|    | ATOM |     | CG  | ARG | 47         | 34.628 43.440 | 39.357 | 1.00 | 45.55 AAA |   |
|    | ATOM |     | CD  | ARG | 47         | 35.882 43.853 | 40.069 | 1.00 | 53.22 AAA |   |
| 40 | ATOM |     | NE  | ARG | 47         | 37.031 43.644 | 39.196 | 1.00 | 57.19 AAA |   |
|    | ATOM | 421 | HE  | ARG | 47         | 36.970 42.863 | 38.611 | 1.00 | 0.00 AAA  |   |
|    | ATOM |     | CZ  | ARG | 47         | 38.126 44.395 | 39.204 | 1.00 | 59.13 AAA |   |
|    | ATOM | 423 | NH1 | ARG | 47         | 39.033 44.235 | 38.246 | 1.00 | 58.34 AAA | A |
|    |      |     |     |     |            |               |        |      |           |   |

|    | ATOM   | 424        | HH11        | ARG | 47         | 38.884 43.574 | 37.513 | 1.00 | 0.00  | AAAA |
|----|--------|------------|-------------|-----|------------|---------------|--------|------|-------|------|
|    | ATOM   | 425        | HH12        | ARG | 47         | 39.848 44.815 | 38.243 | 1.00 | 0.00  | AAAA |
|    | ATOM   | 426        | NH2         | ARG | 47         | 38.341 45.252 | 40.202 | 1.00 | 57.19 | AAAA |
|    | . ATOM | 427        | <b>HH21</b> | ARG | 47         | 39.161 45.822 | 40.207 | 1.00 | 0.00  | AAAA |
| 5  | ATOM   | 428        | HH22        | ARG | 47         | 37.667 45.360 | 40.937 | 1.00 | 0.00  | AAAA |
|    | ATOM   | 429        | C           | ARG | 47         | 31.334 42.788 | 41.207 | 1.00 | 31.57 | AAAA |
|    | ATOM   | 430        | 0           | ARG | 47         | 30.279 42.698 | 40.578 | 1.00 | 35.91 | AAAA |
|    |        | 431        | N           | PRO | 48         | 31.375 43.285 | 42.450 | 1.00 | 28.07 | AAAA |
|    | ATOM   | 432        | CD          | PRO | 48         | 30.207 43.903 | 43.087 | 1.00 | 29.27 | AAAA |
| 10 | ATOM   | 433        | CA          | PRO | 48         | 32.511 43.267 | 43.374 | 1.00 | 27.18 | AAAA |
|    | ATOM   | 434        | CB          | PRO | 48         | 31.948 43.916 | 44.635 | 1.00 | 25.16 | AAAA |
|    | ATOM   | 435        | CG          | PRO | 48         | 30.837 44.729 | 44.159 | 1.00 | 30.03 | AAAA |
|    | ATOM   | 436        | C           | PRO | 48         | 33.010 41.854 | 43.664 | 1.00 | 26.56 | AAAA |
|    | ATOM   | 437        | 0           | PRO | 48         | 32.286 40.875 | 43.454 | 1.00 | 24.00 | AAAA |
| 15 | ATOM   | 438        | N           | VAL | 49         | 34.301 41.761 | 43.982 | 1.00 | 25.54 | AAAA |
|    | ATOM   | 439        | H           | VAL | 49         | 34.852 42.554 | 43.813 | 1.00 | 0.00  | AAAA |
|    | MOTA   | 440        | CA          | VAL | 49         | 34.911 40.547 | 44.520 | 1.00 | 21.73 | AAAA |
|    | ATOM   | 441        | CB          | VAL | 49         | 36.246 40.261 | 43.799 | 1.00 | 22.26 | AAAA |
|    | MOTA   | 442        | CG1         | VAL | 49         | 36.948 39.064 | 44.423 | 1.00 | 20.99 | AAAA |
| 20 | ATOM   | 443        | CG2         | VAL | 49         | 35.991 40.004 | 42.332 | 1.00 | 21.69 | AAAA |
|    | ATOM   | 444        | C           | VAL | 49         | 35.182 40.791 | 46.004 | 1.00 | 17.83 | AAAA |
|    | ATOM   | 445        | 0           | VAL | 49         | 35.671 41.851 | 46.363 | 1.00 | 19.33 | AAAA |
|    | ATOM   | 446        | N           | CYS | 50         | 34.736 39.895 | 46.880 | 1.00 | 19.34 | AAAA |
|    | MOTA   | 447        | Н           | CYS | 50         | 34.184 39.155 | 46.538 | 1.00 | 0.00  | AAAA |
| 25 | ATOM   | 448        | CA          | CYS | <b>5</b> 0 | 35.030 40.082 | 48.305 | 1.00 | 19.43 | AAAA |
|    | MOTA   | 449        | CB          | CYS | 50         | 33.751 40.098 | 49.147 | 1.00 | 18.28 | AAAA |
|    | ATOM   | <b>450</b> | SG          | CYS | 50         | 32.923 38.524 | 49.247 | 1.00 | 22.22 | AAAA |
|    | ATOM   | 451        | C           | CYS | 50         | 36.016 39.068 | 48.892 | 1.00 | 18.64 | AAAA |
|    | ATOM   | 452        | 0           | CYS | 50         | 36.363 39.141 | 50.067 | 1.00 |       | AAAA |
| 30 | ATOM   | 453        | N           | ALA | 51         | 36.527 38.174 | 48.064 | 1.00 | 16.97 | AAAA |
|    | ATOM   | 454        | Н           | ALA | 51         | 36.204 38.132 | 47.146 | 1.00 | 0.00  | AAAA |
|    | ATOM   | 455        | CA          | ALA | 51         | 37.527 37.235 | 48.525 | 1.00 | 12.98 | AAAA |
|    | ATOM   | 456        | CB          | ALA | 51         | 36.899 36.197 | 49.434 | 1.00 |       | AAAA |
|    | ATOM   | 457        | C           | ALA | 51         | 38.156 36.559 | 47.345 | 1.00 |       | AAAA |
| 35 | ATOM   | 458        | 0           | ALA | 51         | 37.489 36.264 | 46.361 | 1.00 | 18.29 | AAAA |
|    | MOTA   | 459        | N           | VAL | 52         | 39.454 36.304 | 47.447 | 1.00 | 16.94 | AAAA |
|    | ATOM   | 460        | Н           | VAL | 52         | 39.935 36.706 | 48.201 | 1.00 | 0.00  | AAAA |
|    | ATOM   | 461        | CA          | VAL | 52         | 40.148 35.446 | 46.485 | 1.00 | 16.89 | AAAA |
|    | ATOM   | 462        | CB          | VAL | 52         | 41.325 36.226 | 45.769 | 1.00 | 14.71 | AAAA |
| 40 | ATOM   | 463        | CG1         | VAL | 52         | 42.104 35.295 | 44.864 | 1.00 |       | AAAA |
|    | MOTA   | 464        | CG2         | VAL | 52         | 40.784 37.417 | 44.983 | 1.00 |       | AAAA |
|    | MOTA   | 465        | C           | VAL | 52         | 40.711 34.245 | 47.249 | 1.00 |       | AAAA |
|    | MOTA   | 466        | 0           | VAL | 52         | 41.310 34.403 | 48.326 | 1.00 | 18.19 | AAAA |
|    |        |            |             |     |            |               |        |      |       |      |

|    | ATOM | 467 | N   | LEU | 53         | 40.428 33.050 | 46.765 | 1.00 | 12.59 | AAAA |
|----|------|-----|-----|-----|------------|---------------|--------|------|-------|------|
|    | ATOM | 468 | H   | LEU | 53         | 39.784 32.985 | 46.031 | 1.00 | 0.00  | AAAA |
|    | ATOM | 469 | CA  | LEU | <b>5</b> 3 | 41.081 31.873 | 47.287 | 1.00 | 14.74 | AAAA |
|    | ATOM |     | CB  | LEU | 53         | 40.067 30.754 | 47.519 | 1.00 | 16.32 | AAAA |
| 5  | ATOM | 471 | CG  | LEU | 53         | 39.487 30.583 | 48.937 | 1.00 | 18.05 | AAAA |
| •  | ATOM | 472 | CD1 | LEU | 53         | 38.986 31.897 | 49.449 | 1.00 | 16.19 | AAAA |
|    | ATOM |     | CD2 | LEU | 53         | 38.370 29.542 | 48.921 | 1.00 | 15.85 | AAAA |
|    | ATOM | 474 | C   | LEU | 53         | 42.186 31.408 | 46.327 | 1.00 | 20.78 | AAAA |
|    |      | 475 | 0   | LEU | 53         | 41.992 31.395 | 45.109 | 1.00 | 15.78 | AAAA |
| 10 | ATOM |     | N   | LEU | 54         | 43.389 31.205 | 46.873 | 1.00 | 19.44 | AAAA |
|    | ATOM |     | Н   | LEU | 54         | 43.473 31.356 | 47.838 | 1.00 | 0.00  | AAAA |
|    | ATOM |     | CA  | LEU | 54         | 44.527 30.741 | 46.081 | 1.00 | 19.71 | AAAA |
|    | ATOM |     | CB  | LEU | 54         | 45.728 31.698 | 46.209 | 1.00 | 19.22 | AAAA |
|    | ATOM | 480 | CG  | LEU | 54         | 47.039 31.318 | 45.501 | 1.00 | 18.95 | AAAA |
| 15 | ATOM | 481 | CD1 | LEU | 54         | 46.863 31.342 | 43.981 | 1.00 | 15.60 | AAAA |
|    | ATOM | 482 | CD2 | LEU | 54         | 48.118 32.309 | 45.904 | 1.00 | 18.59 | AAAA |
|    | ATOM |     | C   | LEU | 54         | 44.938 29.353 | 46.504 | 1.00 | 19.65 | AAAA |
|    | ATOM |     | 0   | LEU | 54         | 45.116 29.081 | 47.709 | 1.00 | 16.10 | AAAA |
|    | ATOM |     | N   | LEU | <b>5</b> 5 | 44.939 28.457 | 45.517 | 1.00 | 19.34 | AAAA |
| 20 | ATOM | 486 | Н   | LEU | 55         | 44.559 28.742 | 44.656 | 1.00 | 0.00  | AAAA |
|    | MOTA | 487 | CA  | LEU | <b>5</b> 5 | 45.465 27.098 | 45.662 | 1.00 | 19.42 | AAAA |
|    | MOTA | 488 | CB  | LEU | <b>5</b> 5 | 44.586 26.099 | 44.908 | 1.00 | 18.64 |      |
|    | ATOM | 489 | CG  | LEU | 55         | 44.979 24.625 | 45.027 | 1.00 | 20.11 | AAAA |
|    | ATOM | 490 | CD1 | LEU | 55         | 44.716 24.084 | 46.435 | 1.00 | 22.00 | AAAA |
| 25 | ATOM | 491 | CD2 | LEU | 55         | 44.183 23.827 | 44.019 | 1.00 | 22.10 |      |
|    | ATOM | 492 | C   | LEU | <b>55</b>  | 46.882 27.044 | 45.105 | 1.00 | 22.01 |      |
|    | ATOM | 493 | 0   | LEU | 55         | 47.107 27.348 | 43.930 | 1.00 | 19.66 |      |
|    | ATOM | 494 | N   | PHE | 56         | 47.836 26.685 | 45.959 | 1.00 | 21.06 |      |
|    | ATOM | 495 | Н   | PHE | 56         | 47.572 26.417 | 46.861 | 1.00 |       | AAAA |
| 30 | ATOM | 496 | CA  | PHE | 56         | 49.249 26.696 | 45.580 | 1.00 | 20.59 |      |
|    | ATOM | 497 | CB  | PHE | 56         | 49.883 28.048 | 45.948 | 1.00 | 16.88 |      |
|    | ATOM | 498 | CG  | PHE | 56         | 50.061 28.261 | 47.418 | 1.00 | 23.60 |      |
|    | ATOM | 499 | CD1 | PHE | 56         | 51.221 27.831 | 48.063 | 1.00 | 25.11 |      |
|    | ATOM | 500 | CD2 | PHE | 56         | 49.073 28.886 | 48.172 | 1.00 | 23.92 |      |
| 35 | ATOM | 501 | CE1 | PHE | 56         | 51.384 28.015 | 49.433 | 1.00 | 27.68 |      |
|    | ATOM | 502 | CE2 | PHE | 56         | 49.235 29.078 | 49.549 | 1.00 | 23.11 |      |
|    | ATOM | 503 | CZ  | PHE | 56         | 50.383 28.642 | 50.176 | 1.00 | 26.70 |      |
|    | ATOM | 504 | C   | PHE | 56         | 49.963 25.540 | 46.266 | 1.00 | 22.28 |      |
|    | ATOM | 505 | 0   | PHE | 56         | 49.394 24.890 | 47.158 | 1.00 | 21.61 |      |
| 40 | ATOM | 506 | N   | PRO | 57         | 51.193 25.208 | 45.819 | 1.00 | 27.77 |      |
|    | ATOM | 507 | CD  | PRO | 57         | 51.930 25.733 | 44.651 | 1.00 | 25.94 |      |
|    | ATOM | 508 | CA  | PRO | 57         | 51.891 24.060 | 46.423 | 1.00 | 26.56 |      |
|    | ATOM | 509 | CB  | PRO | 57         | 52.538 23.377 | 45.216 | 1.00 | 27.54 | AAAA |
|    |      |     |     |     |            |               |        |      |       |      |

|    | ATOM        | 510        | CG  | PR0 | 57 | 52.668 24.507 | 44.160 | 1.00 | 29.50 AAAA        |
|----|-------------|------------|-----|-----|----|---------------|--------|------|-------------------|
|    | ATOM        | 511        | C   | PRO | 57 | 52.906 24.439 | 47.523 | 1.00 | 23.83 AAAA        |
|    | MOTA        | 512        | 0   | PRO | 57 | 53.565 25.481 | 47.460 | 1.00 | 23.72 AAAA        |
| _  | ATOM        | 513        | N   | ILE | 58 | 52.874 23.689 | 48.615 | 1.00 | 27.04 AAAA        |
| 5  | ATOM        | 514        | Н   | ILE | 58 | 52.184 23.055 | 48.691 | 1.00 | <b>O.00</b> AAAA  |
|    | MOTA        | 515        | CA  | ILE | 58 | 53.800 23.906 | 49.728 | 1.00 | 31.09 AAAA        |
|    | ATOM        | 516        | CB  | ILE | 58 | 53.241 23.338 | 51.064 | 1.00 | 32.61 AAAA        |
|    | MOTA        | 517        | CG2 | ILE | 58 | 54.204 23.642 | 52.226 | 1.00 | 31.31 AAAA        |
|    | <b>MOTA</b> | 518        | CG1 | ILE | 58 | 51.875 23.949 | 51.363 | 1.00 | <b>30.84 AAAA</b> |
| 10 | ATOM        | 519        | CD  | ILE | 58 | 51.174 23.250 | 52.487 | 1.00 | 29.57 AAAA        |
|    | MOTA        | 520        | C   | ILE | 58 | 55.142 23.234 | 49.427 | 1.00 | 31.74 AAAA        |
|    | ATOM        | 521        | 0   | ILE | 58 | 55.278 22.009 | 49.512 | 1.00 | <b>33.47 AAAA</b> |
|    | <b>ATOM</b> | 522        | N   | THR | 59 | 56.072 24.022 | 48.910 | 1.00 | 33.63 AAAA        |
|    | <b>MOTA</b> | 523        | Н   | THR | 59 | 55.804 24.955 | 48.785 | 1.00 | 0.00 AAAA         |
| 15 | ATOM        | 524        | CA  | THR | 59 | 57.390 23.511 | 48.556 | 1.00 | 32.86 AAAA        |
|    | ATOM        | 525        | CB  | THR | 59 | 57.838 24.082 | 47.205 | 1.00 | 34.38 AAAA        |
|    | MOTA        | 526        | 0G1 | THR | 59 | 57.864 25.513 | 47.284 | 1.00 | 30.05 AAAA        |
|    | ATOM        | 527        | HG1 | THR | 59 | 57.104 25.829 | 46.781 | 1.00 | 0.00 AAAA         |
|    | <b>MOTA</b> | 528        | CG2 | THR | 59 | 56.877 23.658 | 46.091 | 1.00 | <b>34.44 AAAA</b> |
| 20 | ATOM        | 529        | C   | THR | 59 | 58.417 23.901 | 49.616 | 1.00 | <b>34.06 AAAA</b> |
|    | ATOM        | 530        | 0   | THR | 59 | 58.157 24.786 | 50.429 | 1.00 | <b>30.95 AAAA</b> |
|    | ATOM        | 531        | N   | GLU | 60 | 59.593 23.271 | 49.578 | 1.00 | 36.00 AAAA        |
|    | ATOM        | 532        | Н   | GLU | 60 | 59.653 22.488 | 48.995 | 1.00 | <b>0.00 AAAA</b>  |
|    | ATOM        | 533        | CA  | GLU | 60 | 60.720 23.670 | 50.426 | 1.00 | 36.26 AAAA        |
| 25 | <b>ATOM</b> | 534        | CB  | GLU | 60 | 61.980 22.903 | 50.033 | 1.00 | <b>42.18 AAAA</b> |
|    | ATOM        | <b>535</b> | CG  | GLU | 60 | 62.050 21.471 | 50.549 | 1.00 | <b>53.87 AAAA</b> |
|    | ATOM        | 536        | CD  | GLU | 60 | 63.296 20.736 | 50.068 | 1.00 | 59.16 AAAA        |
| •  | ATOM        | 537        | 0E1 | GLU | 60 | 64.348 20.813 | 50.747 | 1.00 | 63.06 AAAA        |
|    | ATOM        | 538        | 0E2 | GLU | 60 | 63.225 20.091 | 48.996 | 1.00 | 63.28 AAAA        |
| 30 | ATOM        | 539        | C   | GLU | 60 | 60.982 25.153 | 50.256 | 1.00 | 35.56 AAAA        |
|    | ATOM        | 540        | 0   | GLU | 60 | 61.101 25.890 | 51.228 | 1.00 | 37.03 AAAA        |
|    | <b>MOTA</b> | 541        | N   | LYS | 61 | 60.986 25.582 | 48.999 | 1.00 | 35.28 AAAA        |
|    | ATOM        | 542        | Н   | LYS | 61 | 60.883 24.902 | 48.307 | 1.00 | <b>0.00 AAAA</b>  |
|    | ATOM        | 543        | CA  | LYS | 61 | 61.178 26.974 | 48.607 | 1.00 | 35.78 AAAA        |
| 35 | ATOM        | 544        | CB  | LYS | 61 | 61.079 27.060 | 47.088 | 1.00 | 38.62 AAAA        |
|    | ATOM        | 545        | CG  | LYS | 61 | 61.833 28.185 | 46.448 | 1.00 | 43.95 AAAA        |
|    | ATOM        | 546        | CD  | LYS | 61 | 62.080 27.843 | 44.990 | 1.00 | 46.20 AAAA        |
|    | ATOM        |            | CE  | LYS | 61 | 63.096 28.769 | 44.355 | 1.00 | 48.83 AAAA        |
|    | ATOM        |            | NZ  | LYS | 61 | 63.535 28.244 | 43.029 | 1.00 | <b>51.71 AAAA</b> |
| 40 | ATOM        |            | HZ1 | LYS | 61 | 62.705 28.054 | 42.432 | 1.00 | 0.00 AAAA         |
|    | ATOM        |            | HZ2 | LYS | 61 | 64.068 27.364 | 43.181 | 1.00 | 0.00 AAAA         |
|    | ATOM        |            |     | LYS | 61 | 64.154 28.942 | 42.568 | 1.00 | 0.00 AAAA         |
|    | ATOM        | <b>552</b> | C   | LYS | 61 | 60.115 27.877 | 49.246 | 1.00 | 36.67 AAAA        |
|    |             |            |     |     |    |               |        |      |                   |

|    | ATOM | 553        | 0   | LYS | 61        | 60.425 28.913 | 49.836 | 1.00 | 36.93 AAAA        |
|----|------|------------|-----|-----|-----------|---------------|--------|------|-------------------|
|    | ATOM | 554        | N   | TYR | 62        | 58.859 27.447 | 49.168 | 1.00 | 35.28 AAAA        |
|    | ATOM | 555        | Н   | TYR | 62        | 58.677 26.650 | 48.629 | 1.00 | O.OO AAAA         |
|    | ATOM | 556        | CA  | TYR | 62        | 57.764 28.114 | 49.866 | 1.00 | 31.76 AAAA        |
| 5  | ATOM | 557        | CB  | TYR | 62        | 56.460 27.342 | 49.626 | 1.00 | 31.61 AAAA        |
|    | ATOM | 558        | CG  | TYR | 62        | 55.310 27.834 | 50.461 | 1.00 | 26.21 AAAA        |
|    | ATOM | 559        | CD1 | TYR | 62        | 54.761 29.088 | 50.222 | 1.00 | 30.35 AAAA        |
|    | ATOM | 560        | CE1 | TYR | 62        | 53.856 29.659 | 51.106 | 1.00 | 29.55 AAAA        |
|    | ATOM | 561        | CD2 | TYR | 62        | 54.905 27.144 | 51.600 | 1.00 | <b>25.46 AAAA</b> |
| 10 | ATOM | 562        | CE2 | TYR | 62        | 54.001 27.710 | 52.501 | 1.00 | <b>25.74 AAAA</b> |
|    | ATOM | 563        | CZ  | TYR | 62        | 53.488 28.967 | 52.243 | 1.00 | 26.36 AAAA        |
|    | ATOM | 564        | OH  | TYR | 62        | 52.641 29.589 | 53.116 | 1.00 | 26.54 AAAA        |
|    | ATOM | 565        | HH  | TYR | 62        | 52.044 30.083 | 52.548 | 1.00 | 0.00 AAAA         |
|    | ATOM | 566        | C   | TYR | 62        | 58.059 28.190 | 51.372 | 1.00 | <b>30.10 AAAA</b> |
| 15 | ATOM | 567        | 0   | TYR | 62        | 58.032 29.266 | 51.976 | 1.00 | 31.64 AAAA        |
|    | ATOM | 568        | N   | GLU | 63        | 58.434 27.054 | 51.946 | 1.00 | 31.85 AAAA        |
|    | ATOM | 569        | H   | GLU | 63        | 58.606 26.285 | 51.371 | 1.00 | 0.00 AAAA         |
|    | ATOM | 570        | CA  | GLU | 63        | 58.638 26.941 | 53.387 | 1.00 | 34.36 AAAA        |
|    | ATOM | 571        | CB  | GLU | 63        | 58.892 25.488 | 53.770 | 1.00 | 35.57 AAAA        |
| 20 | ATOM | 572        | CG  | GLU | 63        | 57.659 24.624 | 53.771 | 1.00 | 36.98 AAAA        |
|    | ATOM | 573        | CD  | GLU | 63        | 56.658 25.070 | 54.806 | 1.00 | 38.63 AAAA        |
|    | ATOM | 574        | 0E1 | GLU | 63        | 55.884 26.008 | 54.529 | 1.00 | 38.48 AAAA        |
|    | ATOM | 575        | 0E2 | GLU | 63        | 56.652 24.479 | 55.900 | 1.00 | 41.70 AAAA        |
|    | ATOM | 576        | C   | GLU | 63        | 59.759 27.814 | 53.960 | 1.00 | 35.89 AAAA        |
| 25 | ATOM | 577        | 0   | GLU | 63        | 59.650 28.290 | 55.099 | 1.00 | 35.16 AAAA        |
|    | ATOM | 578        | N   | VAL | 64        | 60.835 28.035 | 53.207 | 1.00 | <b>34.07 AAAA</b> |
|    | ATOM | 579        | Н   | VAL | 64        | 60.904 27.569 | 52.341 | 1.00 | O.OO AAAA         |
|    | ATOM | 580        | CA  | VAL | 64        | 61.879 28.901 | 53.744 | 1.00 | 32.48 AAAA        |
|    | ATOM | 581        | CB  | VAL | 64        | 63.282 28.790 | 52.994 | 1.00 | <b>34.25 AAAA</b> |
| 30 | ATOM | 582        | CG1 | VAL | 64        | 63.535 27.365 | 52.550 | 1.00 | <b>30.44 AAAA</b> |
|    | ATOM | 583        | CG2 | VAL | 64        | 63.400 29.793 | 51.831 | 1.00 | <b>32.48 AAAA</b> |
|    | ATOM | 584        | C   | VAL | 64        | 61.373 30.339 | 53.768 | 1.00 | 30.07 AAAA        |
|    | ATOM | 585        | 0   | VAL | 64        | 61.497 31.023 | 54.794 | 1.00 | <b>30.66 AAAA</b> |
|    | ATOM | 586        | N   | PHE | 65        | 60.649 30.739 | 52.728 | 1.00 | <b>25.14 AAAA</b> |
| 35 | ATOM | 587        | Н   | PHE | 65        | 60.486 30.125 | 51.980 | 1.00 | <b>0.00</b> AAAA  |
|    | ATOM | 588        | CA  | PHE | 65        | 60.092 32.077 | 52.726 | 1.00 | 27.03 AAAA        |
|    | ATOM | 589        | CB  | PHE | <b>65</b> | 59.362 32.379 | 51.424 | 1.00 | 28.76 AAAA        |
|    | MOTA | 590        | CG  | PHE | 65        | 58.726 33.738 | 51.403 | 1.00 | <b>30.67 AAAA</b> |
|    | ATOM | 591        | CD1 | PHE | 65        | 59.449 34.847 | 50.985 | 1.00 | 31.43 AAAA        |
| 40 | ATOM | <b>592</b> | CD2 | PHE | 65        | 57.462 33.930 | 51.945 | 1.00 | 31.83 AAAA        |
|    | ATOM | 593        | CE1 | PHE | 65        | 58.933 36.127 | 51.122 | 1.00 | <b>33.66 AAAA</b> |
|    | ATOM | 594        | CE2 | PHE | 65        | 56.940 35.203 | 52.090 | 1.00 | 31.50 AAAA        |
|    | ATOM | 595        | CZ  | PHE | 65        | 57.677 36.306 | 51.681 | 1.00 | <b>34.79 AAAA</b> |
|    |      |            |     |     |           |               |        |      |                   |

|    | ATOM | 596 | C           | PHE | 65 | 59.127 32.255 | 53.898         | 1.00 | 27.51 | AAAA |
|----|------|-----|-------------|-----|----|---------------|----------------|------|-------|------|
|    | ATOM | 597 | 0           | PHE | 65 | 59.178 33.253 | 54.602         | 1.00 | 28.94 | AAAA |
|    | ATOM | 598 | N           | ARG | 66 | 58.233 31.294 | 54.087         | 1.00 | 29.57 | AAAA |
|    | ATOM | 599 | Н           | ARG | 66 | 58.211 30.557 | 53.439         | 1.00 | 0.00  | AAAA |
| 5  | ATOM | 600 | CA          | ARG | 66 | 57.277 31.358 | 55.189         | 1.00 | 28.53 | AAAA |
|    | ATOM | 601 | CB          | ARG | 66 | 56.409 30.103 | 55.210         | 1.00 | 28.27 | AAAA |
|    | ATOM | 602 | CG          | ARG | 66 | 55.210 30.274 | 56.099         | 1.00 | 30.07 | AAAA |
|    | MOTA | 603 | CD          | ARG | 66 | 54.586 28.967 | 56.414         | 1.00 | 34.44 | AAAA |
|    | ATOM | 604 | NE          | ARG | 66 | 55.118 28.447 | 57.657         | 1.00 | 43.87 | AAAA |
| 10 | ATOM | 605 | HE          | ARG | 66 | 55.420 29.082 | 58.336         | 1.00 | 0.00  | AAAA |
|    | ATOM | 606 | CZ          | ARG | 66 | 55.251 27.159 | 57.915         | 1.00 | 47.87 | AAAA |
|    | ATOM | 607 | NH1         | ARG | 66 | 55.743 26.760 | 59.077         | 1.00 | 56.13 | AAAA |
|    | MOTA | 608 | <b>HH11</b> | ARG | 66 | 55.911 27.432 | 59.798         | 1.00 | 0.00  | AAAA |
|    | MOTA | 609 | <b>HH12</b> | ARG | 66 | 55.849 25.785 | 59.271         | 1.00 | 0.00  | AAAA |
| 15 | ATOM | 610 | NH2         | ARG | 66 | 54.831 26.267 | 57.034         | 1.00 | 54.07 | AAAA |
|    | MOTA | 611 | <b>HH21</b> | ARG | 66 | 54.902 25.291 | 57.249         | 1.00 | 0.00  | AAAA |
|    | ATOM | 612 | <b>HH22</b> | ARG | 66 | 54.365 26.557 | <b>56.20</b> 0 | 1.00 | 0.00  | AAAA |
|    | ATOM | 613 | C           | ARG | 66 | 57.923 31.562 | 56.574         | 1.00 | 28.57 | AAAA |
|    | ATOM | 614 | 0           | ARG | 66 | 57.495 32.431 | 57.349         | 1.00 | 26.47 | AAAA |
| 20 | ATOM | 615 | N           | THR | 67 | 58.993 30.817 | 56.856         | 1.00 | 28.49 |      |
|    | MOTA | 616 | H           | THR | 67 | 59.242 30.128 | 56.207         | 1.00 | 0.00  | AAAA |
|    | ATOM | 617 | CA          | THR | 67 | 59.711 30.970 | 58.127         | 1.00 | 26.81 |      |
|    | ATOM | 618 | CB          | THR | 67 | 60.732 29.895 | 58.333         | 1.00 |       | AAAA |
|    | ATOM | 619 | 0G1         | THR | 67 | 60.144 28.631 | 58.024         | 1.00 |       | AAAA |
| 25 | ATOM | 620 | HG1         | THR | 67 | 60.091 28.441 | 57.077         | 1.00 | 0.00  | AAAA |
|    | ATOM | 621 | CG2         | THR | 67 | 61.157 29.879 | 59.784         | 1.00 |       | AAAA |
|    | ATOM | 622 | C           | THR | 67 | 60.425 32.297 | 58.270         | 1.00 |       | AAAA |
|    | ATOM | 623 | 0           | THR | 67 | 60.343 32.931 | 59.316         | 1.00 |       | AAAA |
|    | ATOM | 624 | N           | GLU | 68 | 61.016 32.776 | 57.180         | 1.00 |       | AAAA |
| 30 | ATOM | 625 | H           | GLU | 68 | 61.054 32.210 | 56.386         | 1.00 | 0.00  | AAAA |
|    | ATOM | 626 | CA          | GLU | 68 | 61.576 34.117 | 57.165         | 1.00 |       | AAAA |
|    | ATOM | 627 | CB          | GLU | 68 | 62.239 34.391 | 55.817         | 1.00 |       | AAAA |
|    | ATOM | 628 | CG          | GLU | 68 | 63.442 33.483 |                | 1.00 |       | AAAA |
|    | ATOM | 629 | CD          | GLU | 68 | 64.410 33.971 | 54.528         | 1.00 |       | AAAA |
| 35 | ATOM | 630 | 0E1         | GLU | 68 | 64.606 35.207 |                | 1.00 |       | AAAA |
|    | ATOM | 631 | 0E2         | GLU | 68 | 65.006 33.097 | 53.862         | 1.00 |       | AAAA |
|    | ATOM | 632 | C           | GLU | 68 | 60.509 35.174 | <b>57.451</b>  | 1.00 |       | AAAA |
|    | ATOM | 633 | 0           | GLU | 68 | 60.692 36.049 | 58.309         | 1.00 |       | AAAA |
|    | ATOM | 634 | N           | GLU | 69 | 59.368 35.048 |                | 1.00 |       | AAAA |
| 40 | ATOM | 635 | H           | GLU | 69 | 59.312 34.308 |                | 1.00 | 0.00  | AAAA |
|    | ATOM | 636 | CA          | GLU | 69 | 58.241 35.966 |                | 1.00 |       | AAAA |
|    | ATOM | 637 | CB          | GLU | 69 | 57.096 35.565 |                | 1.00 |       | AAAA |
|    | ATOM | 638 | CG          | GLU | 69 | 55.847 36.368 | 56.196         | 1.00 | 22.11 | AAAA |
|    |      |     |             |     |    |               |                |      |       |      |

|    | MOTA | 639         | CD  | GLU | 69 | 54.705 35.813 | 55.380 | 1.00 | 25.45 | AAAA                           |
|----|------|-------------|-----|-----|----|---------------|--------|------|-------|--------------------------------|
|    | ATOM | 640         | 0E1 | GLU | 69 | 54.228 34.710 | 55.713 | 1.00 | 23.09 | AAAA                           |
|    | ATOM | 641         | 0E2 | GLU | 69 | 54.296 36.476 | 54.404 | 1.00 | 26.44 | AAAA                           |
|    | ATOM | 642         | C   | GLU | 69 | 57.754 35.984 | 58.404 | 1.00 | 21.08 | AAAA                           |
| 5  | MOTA | 643         | 0   | GLU | 69 | 57.476 37.041 | 58.959 | 1.00 | 20.51 | AAAA                           |
|    | MOTA | 644         | N   | GLU | 70 | 57.714 34.814 | 59.028 | 1.00 | 19.93 | AAAA                           |
|    | MOTA | 645         | H   | GLU | 70 | 57.946 34.008 | 58.528 | 1.00 | 0.00  | AAAA                           |
|    | ATOM | 646         | CA  | GLU | 70 | 57.309 34.721 | 60.419 | 1.00 | 24.42 | AAAA                           |
|    | ATOM | 647         | CB  | GLU | 70 | 57.136 33.256 | 60.815 | 1.00 | 24.09 | AAAA                           |
| 10 | ATOM | 648         | CG  | GLU | 70 | 56.382 33.079 | 62.114 | 1.00 | 25.29 | AAAA                           |
|    | ATOM | 649         | CD  | GLU | 70 | 56.333 31.650 | 62.584 | 1.00 | 24.10 | AAAA                           |
|    | ATOM | 650         | 0E1 | GLU | 70 | 56.101 30.753 | 61.745 | 1.00 | 25.29 | ${\bf A}{\bf A}{\bf A}{\bf A}$ |
|    | ATOM | 651         | 0E2 | GLU | 70 | 56.489 31.431 | 63.806 | 1.00 | 26.77 | AAAA                           |
|    | MOTA | 652         | C   | GLU | 70 | 58.325 35.387 | 61.354 | 1.00 | 26.36 | AAAA                           |
| 15 | ATOM | 653         | 0   | GLU | 70 | 57.959 36.181 | 62.222 | 1.00 | 27.60 | AAAA                           |
|    | ATOM | 654         | N   | GLU | 71 | 59.605 35.153 | 61.091 | 1.00 | 28.74 | AAAA                           |
|    | MOTA | 655         | Н   | GLU | 71 | 59.819 34.531 | 60.361 | 1.00 | 0.00  | AAAA                           |
|    | ATOM | 656         | CA  | GLU | 71 | 60.684 35.764 | 61.873 | 1.00 | 31.06 | AAAA                           |
|    | ATOM | 657         | CB  | GLU | 71 | 62.027 35.154 | 61.463 | 1.00 | 34.77 | AAAA                           |
| 20 | MOTA | 658         | CG  | GLU | 71 | 62.138 33.657 | 61.762 | 1.00 | 45.41 | AAAA                           |
|    | ATOM | 659         | CD  | GLU | 71 | 63.521 33.074 | 61.448 | 1.00 | 56.76 | AAAA                           |
|    | ATOM | 660         | 0E1 | GLU | 71 | 64.276 33.686 | 60.642 | 1.00 |       | AAAA                           |
|    | ATOM | 661         | 0E2 | GLU | 71 | 63.846 31.993 | 62.008 | 1.00 | 59.87 | AAAA                           |
|    | ATOM | 662         | C   | GLU | 71 | 60.724 37.289 | 61.717 | 1.00 | 27.50 | AAAA                           |
| 25 | ATOM | 663         | 0   | GLU | 71 | 60.776 38.029 | 62.706 | 1.00 | 26.56 | AAAA                           |
|    | MOTA | 664         | N   | LYS | 72 | 60.557 37.752 | 60.485 | 1.00 | 24.83 | AAAA                           |
|    | ATOM | 665         | Н   | LYS | 72 | 60.474 37.104 | 59.763 | 1.00 | 0.00  | AAAA                           |
|    | MOTA | 666         | CA  | LYS | 72 | 60.517 39.184 | 60.216 | 1.00 |       | AAAA                           |
|    | ATOM | 667         | CB  | LYS | 72 | 60.501 39.444 | 58.704 | 1.00 |       | AAAA                           |
| 30 | ATOM | 668         | CG  | LYS | 72 | 60.634 40.917 | 58.346 | 1.00 |       | AAAA                           |
|    | ATOM | 669         | CD  | LYS | 72 | 60.541 41.141 | 56.849 | 1.00 | 45.30 | AAAA                           |
|    | ATOM | <b>6</b> 70 | CE  | LYS | 72 | 59.768 42.427 | 56.528 | 1.00 |       | AAAA                           |
|    | ATOM | 671         | NZ  | LYS | 72 | 58.357 42.379 | 57.040 | 1.00 |       | AAAA                           |
|    | ATOM | 672         | HZ1 | LYS | 72 | 58.363 42.253 | 58.072 | 1.00 | 0.00  | AAAA                           |
| 35 | ATOM | 673         | HZ2 | LYS | 72 | 57.867 41.574 | 56.600 | 1.00 | 0.00  | AAAA                           |
|    | ATOM | 674         | HZ3 | LYS | 72 | 57.864 43.263 | 56.803 | 1.00 | 0.00  | AAAA                           |
|    | ATOM | 675         | C   | LYS | 72 | 59.336 39.904 | 60.898 | 1.00 |       | AAAA                           |
|    | ATOM | 676         | 0   | LYS | 72 | 59.505 40.990 | 61.453 | 1.00 |       | AAAA                           |
|    | ATOM | 677         | N   | ILE | 73 | 58.163 39.269 | 60.925 | 1.00 |       | AAAA                           |
| 40 | ATOM | 678         | H   | ILE | 73 | 58.085 38.402 | 60.469 | 1.00 | 0.00  | AAAA                           |
|    | ATOM | 679         | CA  | ILE | 73 | 57.014 39.870 | 61.586 | 1.00 |       | AAAA                           |
|    | ATOM | 680         | CB  | ILE | 73 | 55.678 39.221 | 61.117 | 1.00 |       | AAAA                           |
|    | ATOM | 681         | CG2 | ILE | 73 | 54.518 39.615 | 62.075 | 1.00 | 28.61 | AAAA                           |
|    |      |             |     |     |    |               |        |      |       |                                |

|    |             |     |             |     |            | •             |          |      |       |       |
|----|-------------|-----|-------------|-----|------------|---------------|----------|------|-------|-------|
|    | ATOM        | 682 | CG1         | ILE | 73         | 55.362 39.68  | 1 59.683 | 1.00 | 30.18 | AAAA  |
|    | ATOM        | 683 | CD          | ILE | 73         | 54.303 38.839 | 58.964   | 1.00 | 28.53 | AAAA  |
|    | MOTA        | 684 | C           | ILE | 73         | 57.117 39.813 | 3 63.117 | 1.00 | 32.56 | AAAA. |
|    | ATOM        | 685 | 0           | ILE | 73         | 56.658 40.710 | 6 63.817 | 1.00 | 31.86 | AAAA  |
| 5  | ATOM        | 686 | N           | LYS | 74         | 57.758 38.778 | 8 63.637 | 1.00 | 34.68 | AAAA  |
|    | ATOM        | 687 | Н           | LYS | 74         | 58.046 38.050 | 0 63.047 | 1.00 | 0.00  | AAAA  |
|    | ATOM        | 688 | CA          | LYS | 74         | 57.996 38.703 | 3 65.070 | 1.00 | 38.56 | AAAA  |
|    | ATOM        | 689 | CB          | LYS | 74         | 58.455 37.292 | 2 65.439 | 1.00 | 41.67 | AAAA  |
|    | ATOM        | 690 | CG          | LYS | 74         | 57.374 36.22  | 1 65.241 | 1.00 | 44.95 | AAAA  |
| 10 | ATOM        | 691 | CD          | LYS | 74         | 57.997 34.832 | 2 65.096 | 1.00 | 49.48 | AAAA  |
|    | ATOM        | 692 | CE          | LYS | 74         | 57.330 33.81  | 1 66.003 | 1.00 | 50.67 | AAAA  |
|    | ATOM        | 693 | NZ          | LYS | 74         | 55.898 33.58  | 5 65.661 | 1.00 | 53.91 | AAAA  |
|    | ATOM        | 694 | HZ1         | LYS | 74         | 55.817 32.980 | 6 64.817 | 1.00 | 0.00  | AAAA  |
|    | ATOM        | 695 |             | LYS | 74         | 55.437 34.499 | 9 65.477 | 1.00 | 0.00  | AAAA  |
| 15 | ATOM        | 696 | HZ3         | LYS | 74         | 55.431 33.113 | 7 66.465 | 1.00 | 0.00  | AAAA  |
|    | MOTA        | 697 | C           | LYS | 74         | 59.014 39.76  | 4 65.542 | 1.00 | 40.96 | AAAA  |
|    | ATOM        | 698 | 0           | LYS | 74         | 58.880 40.32  | 7 66.627 | 1.00 | 41.57 | AAAA  |
|    | ATOM        | 699 | N           | SER | <b>75</b>  | 59.955 40.12  | 2 64.675 | 1.00 | 41.35 | AAAA  |
|    | ATOM        | 700 | Н           | SER | <b>75</b>  | 60.035 39.59  | 5 63.850 | 1.00 | 0.00  | AAAA  |
| 20 | ATOM        | 701 | CA          | SER | <b>75</b>  | 60.878 41.219 | 9 64.969 | 1.00 | 43.19 | AAAA  |
|    | ATOM        | 702 | CB          | SER | <b>75</b>  | 62.102 41.163 | 3 64.046 | 1.00 | 44.46 | AAAA  |
|    | ATOM        | 703 | OG          | SER | <b>75</b>  | 62.467 42.45  | 3 63.571 | 1.00 | 46.60 | AAAA  |
|    | ATOM        | 704 | HG          | SER | 75         | 62.724 43.05  | 4 64.265 | 1.00 | 0.00  | AAAA  |
|    | ATOM        | 705 | C           | SER | 75         | 60.217 42.58  | 7 64.828 | 1.00 | 44.73 | AAAA  |
| 25 | ATOM        | 706 | 0           | SER | 75         | 60.382 43.46  | 3 65.685 | 1.00 | 48.52 | AAAA  |
|    | ATOM        | 707 | N .         | GLN | 76         | 59.518 42.78  | 5 63.715 | 1.00 | 41.15 | AAAA  |
|    | MOTA        | 708 | Н           | GLN | 76         | 59.362 42.01  | 9 63.126 | 1.00 | 0.00  | AAAA  |
|    | ATOM        | 709 | CA          | GLN | 76         | 59.108 44.11  | 7 63.303 | 1.00 | 38.47 | AAAA  |
|    | ATOM        | 710 | CB          | GLN | 76         | 59.590 44.35  | 0 61.875 | 1.00 | 41.98 | AAAA  |
| 30 | ATOM        | 711 | CG          | GLN | 76         | 58.516 44.51  | 5 60.824 | 1.00 | 43.50 | AAAA  |
|    | MOTA        | 712 | CD          | GLN | 76         | 59.007 45.32  | 5 59.660 | 1.00 | 44.41 | AAAA  |
|    | <b>ATOM</b> | 713 | 0E1         | GLN | 76         | 60.119 45.84  | 1 59.675 | 1.00 | 43.52 | AAAA  |
|    | MOTA        | 714 | NE2         | GLN | 76         | 58.182 45.44  | 9 58.644 | 1.00 | 48.56 | AAAA  |
|    | ATOM        | 715 | <b>HE21</b> | GLN | 76         | 57.294 45.04  | 0 58.703 | 1.00 | 0.00  | AAAA  |
| 35 | ATOM        | 716 | HE22        | GLN | 76         | 58.569 45.96  | 3 57.911 | 1.00 | 0.00  | AAAA  |
|    | MOTA        | 717 | C           | GLN | 76         | 57.606 44.41  | 1 63.444 | 1.00 | 35.54 | AAAA  |
|    | MOTA        | 718 | 0           | GLN | 76         | 57.170 45.56  | 4 63.305 | 1.00 | 33.94 | AAAA  |
|    | ATOM        | 719 | N           | GLY | 77         | 56.852 43.40  | 0 63.867 | 1.00 | 31.89 | AAAA  |
|    | MOTA        | 720 | Н           | GLY | <b>7</b> 7 | 57.272 42.52  | 9 63.999 | 1.00 | 0.00  | AAAA  |
| 40 | ATOM        | 721 | CA          | GLY | 77         | 55.429 43.57  | 3 64.095 | 1.00 | 29.13 | AAAA  |
|    | MOTA        | 722 | C           | GLY | 77         | 54.617 43.81  | 6 62.833 | 1.00 | 26.74 | AAAA  |
|    | ATOM        |     | 0           | GLY | <b>7</b> 7 | 55.167 44.01  | 6 61.743 | 1.00 | 25.60 | AAAA  |
|    | ATOM        |     | N           | GLN | 78         | 53.297 43.80  | 4 62.985 | 1.00 | 24.43 | AAAA  |
|    |             |     |             |     |            |               |          |      |       |       |

|    | ATOM | 725        | Н    | GLN | 78              | 52.921 43.5 | 551   | 63.845 | 1.00 | 0.00  | AAAA |
|----|------|------------|------|-----|-----------------|-------------|-------|--------|------|-------|------|
|    | ATOM | 726        | CA   | GLN | 78              | 52.385 44.1 | 167   | 61.900 | 1.00 | 22.99 | AAAA |
|    | ATOM | 727        | CB   | GLN | 78              | 52.217 42.9 | 990   | 60.942 | 1.00 | 23.16 | AAAA |
|    | ATOM | 728        | CG   | GLN | 78              | 51.534 41.7 | 796   | 61.602 | 1.00 | 23.53 | AAAA |
| 5  | ATOM | 729        | CD   | GLN | 78              | 51.099 40.7 | 730   | 60.627 | 1.00 | 17.76 | AAAA |
|    | ATOM | 730        | OE1  | GLN | 78              | 51.185 40.9 | 900 ! | 59.408 | 1.00 | 16.41 | AAAA |
|    | ATOM | 731        | NE2  | GLN | 78              | 50.685 39.5 | 597   | 61.160 | 1.00 | 15.76 | AAAA |
|    | ATOM | 732        | HE21 | GLN | 78              | 50.651 39.5 | 510   | 62.138 | 1.00 | 0.00  | AAAA |
|    | ATOM | 733        | HE22 | GLN | 78              | 50.447 38.9 | 904   | 60.516 | 1.00 | 0.00  | AAAA |
| 10 | ATOM | 734        | C    | GLN | 78              | 51.032 44.4 | 498   | 62.540 | 1.00 | 25.68 | AAAA |
|    | ATOM | 735        | 0    | GLN | 78              | 50.757 44.0 | 098   | 63.676 | 1.00 | 26.20 | AAAA |
|    | ATOM | 736        | N    | ASP | 79              | 50.185 45.2 | 223   | 61.826 | 1.00 | 23.31 | AAAA |
|    | ATOM | 737        | Н    | ASP | 79 <sup>*</sup> | 50.483 45.4 | 471   | 60.932 | 1.00 | 0.00  | AAAA |
|    | MOTA | 738        | CA   | ASP | 79              | 48.838 45.4 | 466   | 62.326 | 1.00 | 25.37 | AAAA |
| 15 | ATOM | 739        | CB   | ASP | 79              | 48.386 46.8 | B80 ( | 61.962 | 1.00 | 24.45 | AAAA |
|    | ATOM | 740        | CG   | ASP | 79              | 49.211 47.9 | 959 ( | 62.672 | 1.00 | 28.21 | AAAA |
|    | ATOM | 741        | 0D1  | ASP | 79              | 50.071 47.5 | 598   | 63.516 | 1.00 | 26.57 | AAAA |
|    | ATOM | 742        | OD2  | ASP | 79              | 49.018 49.1 | 158   | 62.360 |      | 28.96 |      |
|    | ATOM | 743        | C    | ASP | 79              | 47.824 44.4 | 428   | 61.824 | 1.00 | 27.86 | AAAA |
| 20 | ATOM | 744        | 0    | ASP | 79              | 47.821 44.0 |       | 60.638 |      | 26.79 |      |
|    | MOTA | 745        | N    | VAL | 80              | 47.133 43.7 | 784   | 62.770 |      | 27.61 |      |
|    | ATOM | 746        | Н    | VAL | 80              | 47.439 43.8 |       | 63.690 | 1.00 |       | AAAA |
|    | ATOM | 747        | CA   | VAL | 80              | 45.971 42.9 |       | 62.457 | 1.00 | 25.15 |      |
|    | MOTA | 748        | CB   | VAL | 80              | 46.207 41.4 | 477   | 62.840 | 1.00 | 23.30 |      |
| 25 | ATOM | 749        | CG1  | VAL | 80              | 45.007 40.6 |       | 62.450 | 1.00 | 25.36 |      |
|    | ATOM | <b>750</b> | CG2  | VAL | 80              | 47.438 40.9 |       | 62.141 | 1.00 | 22.16 |      |
|    | ATOM | 751        | C    | VAL | 80              | 44.739 43.4 |       | 63.201 | 1.00 | 24.57 |      |
|    | ATOM | 752        | 0    | VAL | 80              | 44.644 43.2 |       | 64.413 | 1.00 | 22.28 |      |
|    | MOTA | <b>753</b> | N    | THR | 81              | 43.813 44.0 |       | 62.474 | 1.00 | 24.26 |      |
| 30 | ATOM | 754        | Н    | THR | 81              | 44.032 44.  |       | 61.520 | 1.00 |       | AAAA |
|    | ATOM | 755        | CA   | THR | 81              | 42.571 44.  |       | 63.078 | 1.00 | 27.38 |      |
|    | ATOM | 756        | CB   | THR | 81              | 41.646 45.2 |       | 62.002 | 1.00 | 28.45 |      |
|    | ATOM |            | 0G1  | THR | 81              | 40.486 45.3 |       | 62.625 | 1.00 | 39.19 |      |
|    | ATOM |            | HG1  | THR | 81              | 40.319 46.  |       | 62.180 | 1.00 |       | AAAA |
| 35 | ATOM | 759        | CG2  | THR | 81              | 41.194 44.2 |       | 60.995 | 1.00 | 31.37 |      |
|    | ATOM |            | C    | THR | 81              | 41.806 43.4 |       | 63.857 | 1.00 | 27.08 |      |
|    | ATOM |            | 0    | THR | 81              | 41.840 42.3 |       | 63.503 | 1.00 | 25.09 |      |
|    | ATOM |            | N    | SER | 82              | 41.203 43.  |       | 64.978 | 1.00 | 26.66 |      |
|    | ATOM |            | H    | SER | 82              | 41.296 44.8 |       | 65.280 | 1.00 | 0.00  |      |
| 40 | ATOM | 764        | CA   | SER | 82              | 40.425 42.9 |       | 65.764 | 1.00 | 27.37 |      |
|    | ATOM |            | CB   | SER | 82              | 39.992 43.  |       | 67.113 | 1.00 | 27.54 |      |
|    | ATOM |            | OG   | SER | 82              | 39.073 44.  |       | 66.929 | 1.00 | 32.64 |      |
|    | ATOM | 767        | HG   | SER | 82              | 38.160 44.3 | 228   | 66.813 | 1.00 | 0.00  | AAAA |
|    |      |            |      |     |                 |             |       |        |      |       |      |

|    | ATOM | 768 | C          | SER | 82 | 39.192 42.404 | 65.014 | 1.00 | 23.10 A        | AAA  |
|----|------|-----|------------|-----|----|---------------|--------|------|----------------|------|
|    | ATOM | 769 | 0          | SER | 82 | 38.628 41.385 | 65.374 | 1.00 | 24.03 A        | AAA  |
|    | ATOM | 770 | N          | SER | 83 | 38.790 43.105 | 63.962 | 1.00 | 25.20 A        | AAA  |
|    | ATOM | 771 | Н          | SER | 83 | 39.201 43.984 | 63.811 | 1.00 | 0.00 A         | AAA  |
| 5  | ATOM | 772 | CA         | SER | 83 | 37.682 42.640 | 63.126 | 1.00 | 27.82 A        | AAA  |
| -  | ATOM | 773 | CB         | SER | 83 | 37.339 43.671 | 62.046 | 1.00 | 31.00 A        | AAA  |
|    | ATOM | 774 | OG         | SER | 83 | 37.002 44.929 | 62.602 | 1.00 | 44.02 A        | AAA  |
|    | ATOM | 775 | HG         | SER | 83 | 37.201 45.629 | 61.989 | 1.00 | 0.00 A         | AAA  |
|    | ATOM | 776 | C          | SER | 83 | 38.014 41.315 | 62.432 | 1.00 | 27.88 A        | AAA  |
| 10 | ATOM | 777 | 0          | SER | 83 | 37.114 40.593 | 61.985 | 1.00 | 29.20 A        | AAA  |
|    | ATOM | 778 | . <b>N</b> | VAL | 84 | 39.303 41.087 | 62.191 | 1.00 | 23.83 A        | AAA  |
|    | ATOM | 779 | Н          | VAL | 84 | 39.969 41.681 | 62.581 | 1.00 | 0.00 A         | AAA  |
|    | ATOM | 780 | CA         | VAL | 84 | 39.723 39.940 | 61.402 | 1.00 | 20.73 A        | AAA  |
|    | ATOM | 781 | CB         | VAL | 84 | 41.231 39.971 | 61.120 | 1.00 | 20.85 A        | AAA  |
| 15 | MOTA | 782 | CG1        | VAL | 84 | 41.681 38.634 | 60.533 | 1.00 | 21.87 A        | AAA  |
|    | MOTA | 783 | CG2        | VAL | 84 | 41.536 41.072 | 60.152 | 1.00 | 20.91 A        | AAA  |
|    | ATOM | 784 | C          | VAL | 84 | 39.383 38.619 | 62.064 | 1.00 | 19.51 <i>A</i> |      |
|    | ATOM | 785 | 0          | VAL | 84 | 39.745 38.379 | 63.206 | 1.00 | 20.68 A        |      |
|    | ATOM | 786 | N          | TYR | 85 | 38.640 37.780 | 61.352 | 1.00 | 19.17 <i>F</i> |      |
| 20 | ATOM | 787 | H          | TYR | 85 | 38.292 38.118 | 60.502 | 1.00 |                | AAAA |
|    | ATOM | 788 | CA         | TYR | 85 | 38.314 36.450 | 61.837 | 1.00 | 18.54          |      |
|    | ATOM | 789 | CB         | TYR | 85 | 36.921 36.008 | 61.331 | 1.00 | 18.00 /        |      |
|    | ATOM | 790 | CG         | TYR | 85 | 36.466 34.641 | 61.825 | 1.00 | 15.07          |      |
|    | ATOM | 791 | CD1        | TYR | 85 | 35.489 34.517 | 62.828 | 1.00 | 18.67 <i>l</i> |      |
| 25 | ATOM | 792 | CE1        | TYR | 85 | 35.074 33.258 | 63.284 | 1.00 | 13.74          |      |
|    | ATOM | 793 | CD2        | TYR | 85 | 37.012 33.469 | 61.299 | 1.00 | 14.59 /        |      |
|    | ATOM | 794 | CE2        | TYR | 85 | 36.619 32.219 | 61.754 | 1.00 | 14.12          |      |
|    | ATOM | 795 | CZ         | TYR | 85 | 35.637 32.122 | 62.741 | 1.00 | 15.13 /        |      |
|    | MOTA | 796 | OH         | TYR | 85 | 35.201 30.885 | 63.110 | 1.00 | 15.74          |      |
| 30 | ATOM | 797 | НН         | TYR | 85 | 34.434 30.990 | 63.679 | 1.00 |                | AAAA |
|    | ATOM | 798 | C          | TYR | 85 | 39.388 35.494 | 61.339 | 1.00 | 18.88          |      |
|    | ATOM | 799 | 0          | TYR | 85 | 39.503 35.234 | 60.137 | 1.00 | 17.70          |      |
|    | ATOM |     | N          | PHE | 86 | 40.173 34.976 | 62.269 | 1.00 | 17.16          |      |
|    | ATOM | 801 | Н          | PHE | 86 | 40.037 35.264 | 63.201 | 1.00 | 0.00           |      |
| 35 | ATOM | 802 | CA         | PHE | 86 | 41.227 34.031 | 61.938 | 1.00 | 17.14          |      |
|    | ATOM | 803 | CB         | PHE | 86 | 42.609 34.633 | 62.294 | 1.00 | 18.81          |      |
|    | ATOM | 804 | CG         | PHE | 86 | 43.792 33.771 | 61.884 | 1.00 | 17.09          |      |
|    | ATOM | 805 | CD1        | PHE | 86 | 43.981 33.389 | 60.551 | 1.00 | 12.60          |      |
|    | ATOM |     | CD2        |     | 86 | 44.690 33.306 | 62.854 | 1.00 | 16.07          |      |
| 40 | ATOM | 807 | CE1        | PHE | 86 | 45.016 32.547 | 60.198 | 1.00 | 14.83          |      |
|    | ATOM |     | CE2        | PHE | 86 | 45.725 32.467 | 62.520 | 1.00 | 14.81          |      |
|    | ATOM |     | CZ         | PHE | 86 | 45.892 32.070 | 61.188 | 1.00 | 17.97          |      |
|    | ATOM | 810 | C          | PHE | 86 | 41.002 32.701 | 62.650 | 1.00 | 15.56          | AAAA |
|    |      |     |            |     |    |               |        |      |                |      |

|    | ATOM | 811 | 0    | PHE | 86          | 40.664 32.654 | 63.837 | 1.00 | 17.84 | AAAA |
|----|------|-----|------|-----|-------------|---------------|--------|------|-------|------|
|    | ATOM | 812 | N    | MET | 87          | 41.296 31.626 | 61.931 | 1.00 | 13.32 | AAAA |
|    | MOTA | 813 | Н    | MET | 87          | 41.818 31.793 | 61.129 | 1.00 | 0.00  | AAAA |
|    | ATOM | 814 | CA   | MET | 87          | 41.169 30.274 | 62.428 | 1.00 | 14.74 | AAAA |
| 5  | ATOM | 815 | CB   | MET | <b>87</b> . | 39.993 29.606 | 61.716 | 1.00 | 16.52 | AAAA |
|    | ATOM | 816 | CG   | MET | 87          | 39.985 28.110 | 61.685 | 1.00 | 22.12 | AAAA |
|    | ATOM | 817 | SD   | MET | 87          | 38.551 27.590 | 60.704 | 1.00 | 27.94 | AAAA |
|    | ATOM | 818 | CE   | MET | 87          | 37.291 27.521 | 61.947 | 1.00 | 28.36 | AAAA |
|    | MOTA | 819 | C    | MET | 87          | 42.462 29.523 | 62.118 | 1.00 | 18.15 | AAAA |
| 10 | ATOM | 820 | 0    | MET | 87          | 42.961 29.560 | 60.983 | 1.00 | 16.50 | AAAA |
|    | ATOM | 821 | N    | LYS | 88          | 42.988 28.824 | 63.115 | 1.00 | 17.57 | AAAA |
|    | MOTA | 822 | Н    | LYS | 88          | 42.584 28.893 | 64.004 | 1.00 | 0.00  | AAAA |
|    | ATOM | 823 | CA   | LYS | 88          | 44.121 27.929 | 62.896 | 1.00 | 18.62 |      |
|    | ATOM | 824 | CB   | LYS | 88          | 44.778 27.577 | 64.237 | 1.00 | 19.52 |      |
| 15 | ATOM | 825 | CG   | LYS | 88          | 45.534 28.739 | 64.872 | 1.00 | 24.91 |      |
|    | ATOM | 826 | CD   | LYS | 88          | 46.825 29.043 | 64.112 | 1.00 | 24.92 |      |
|    | MOTA | 827 | CE   | LYS | 88          | 47.815 27.882 | 64.223 | 1.00 | 24.92 |      |
|    | MOTA | 828 | NZ   | LYS | 88          | 48.821 27.887 | 63.118 | 1.00 | 25.56 |      |
|    | ATOM | 829 | HZ1  | LYS | 88          | 49.214 28.843 | 63.013 | 1.00 | 0.00  | AAAA |
| 20 | MOTA | 830 | HZ2  | LYS | 88          | 48.349 27.612 | 62.237 | 1.00 | 0.00  | AAAA |
|    | ATOM | 831 | HZ3  | LYS | 88          | 49.584 27.213 | 63.330 | 1.00 | 0.00  | AAAA |
|    | ATOM | 832 | C    | LYS | 88          | 43.749 26.644 | 62.146 | 1.00 |       | AAAA |
|    | ATOM | 833 | 0    | LYS | 88          | 42.616 26.158 | 62.220 | 1.00 | 21.43 |      |
|    | ATOM | 834 | N    | GLN | 89          | 44.728 26.082 | 61.450 | 1.00 | 16.58 |      |
| 25 | ATOM | 835 | Н    | GLN | 89          | 45.585 26.556 | 61.420 | 1.00 | 0.00  | AAAA |
|    | ATOM | 836 | CA   | GLN | 89          | 44.599 24.779 | 60.819 | 1.00 |       | AAAA |
|    | ATOM | 837 | CB   | GLN | 89          | 45.271 24.813 | 59.456 | 1.00 |       | AAAA |
|    | ATOM | 838 | CG   | GLN | 89          | 45.350 23.485 | 58.760 | 1.00 |       | AAAA |
|    | ATOM | 839 | CD   | GLN | 89          | 45.853 23.651 | 57.355 | 1.00 |       | AAAA |
| 30 | ATOM |     | 0E1  | GLN | 89          | 45.367 24.502 | 56.594 | 1.00 |       | AAAA |
|    | ATOM |     | NE2  |     | 89          | 46.881 22.904 | 57.017 | 1.00 |       | AAAA |
|    | ATOM |     | HE21 |     | 89          | 47.154 22.895 | 56.079 | 1.00 | 0.00  | AAAA |
|    | MOTA |     | HE22 |     | 89          | 47.349 22.434 | 57.721 | 1.00 | 0.00  | AAAA |
|    | ATOM |     | C    | GLN | 89          | 45.241 23.691 | 61.658 | 1.00 |       | AAAA |
| 35 | ATOM |     | 0    | GLN | 89          | 46.413 23.781 | 61.998 | 1.00 |       | AAAA |
|    | ATOM |     | N    | THR | 90          | 44.517 22.603 | 61.869 | 1.00 |       | AAAA |
|    | ATOM |     | Н    | THR | 90          | 43.585 22.629 | 61.598 | 1.00 | 0.00  | AAAA |
|    | ATOM |     | CA   | THR | 90          | 45.072 21.439 | 62.550 | 1.00 |       | AAAA |
| •  | ATOM |     | CB   | THR | 90          | 44.283 21.115 | 63.812 | 1.00 |       | AAAA |
| 40 | MOTA |     | 0G1  | THR | 90          | 42.924 20.794 | 63.464 | 1.00 |       | AAAA |
|    | ATOM |     | HG1  | THR | 90          | 42.428 21.483 | 62.994 | 1.00 |       | AAAA |
|    | ATOM |     |      | THR | 90          | 44.301 22.312 | 64.752 | 1.00 |       | AAAA |
|    | ATOM | 853 | C    | THR | 90          | 45.102 20.191 | 61.676 | 1.00 | 24.4/ | AAAA |
|    |      |     |      |     |             |               |        |      |       |      |

|    | ATOM        | 854 | 0    | THR | 90 | 45.846 19.252 | 61.956 | 1.00 | 28.80 | AAAA |
|----|-------------|-----|------|-----|----|---------------|--------|------|-------|------|
|    | ATOM        | 855 | N    | ILE | 91 | 44.271 20.171 | 60.632 | 1.00 | 22.87 | AAAA |
|    | ATOM        | 856 | Н    | ILE | 91 | 43.593 20.871 | 60.590 | 1.00 | 0.00  | AAAA |
| -  | ATOM        | 857 | CA   | ILE | 91 | 44.258 19.096 | 59.633 | 1.00 | 22.19 | AAAA |
| 5  | ATOM        | 858 | CB   | ILE | 91 | 42.921 18.326 | 59.639 | 1.00 | 22.46 | AAAA |
|    | ATOM        | 859 | CG2  | ILE | 91 | 42.989 17.157 | 58.695 | 1.00 | 18.95 | AAAA |
|    | ATOM        | 860 | CG1  | ILE | 91 | 42.591 17.837 | 61.050 | 1.00 | 24.03 | AAAA |
|    | MOTA        | 861 | CD   | ILE | 91 | 41.259 17.099 | 61.123 | 1.00 | 24.83 | AAAA |
|    | ATOM        | 862 | C    | ILE | 91 | 44.422 19.717 | 58.245 | 1.00 | 23.19 | AAAA |
| 10 | ATOM        | 863 | 0    | ILE | 91 | 43.626 20.562 | 57.846 | 1.00 | 23.87 | AAAA |
|    | ATOM        | 864 | N    | SER | 92 | 45.413 19.266 | 57.487 | 1.00 | 23.54 | AAAA |
|    | ATOM        | 865 | H    | SER | 92 | 45.791 18.403 | 57.734 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 866 | CA   | SER | 92 | 45.793 19.943 | 56.248 | 1.00 | 23.64 | AAAA |
|    | ATOM        | 867 | CB   | SER | 92 | 47.119 19.387 | 55.737 | 1.00 | 25.35 | AAAA |
| 15 | ATOM        | 868 | OG   | SER | 92 | 46.993 18.012 | 55.412 | 1.00 | 35.43 | AAAA |
|    | ATOM        | 869 | HG   | SER | 92 | 46.797 17.917 | 54.451 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 870 | C    | SER | 92 | 44.735 19.799 | 55.165 | 1.00 | 22.11 |      |
|    | <b>ATOM</b> | 871 | 0    | SER | 92 | 44.459 20.730 | 54.423 | 1.00 | 22.66 |      |
|    | ATOM        | 872 | N    | ASN | 93 | 44.099 18.644 | 55.117 | 1.00 | 21.74 |      |
| 20 | ATOM        | 873 | Н    | ASN | 93 | 44.414 17.915 | 55.705 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 874 | CA   | ASN | 93 | 43.007 18.434 | 54.183 | 1.00 | 27.91 |      |
|    | ATOM        | 875 | CB   | ASN | 93 | 42.571 16.979 | 54.207 | 1.00 | 35.85 |      |
|    | ATOM        | 876 | CG   | ASN | 93 | 43.673 16.057 | 53.764 | 1.00 | 47.97 |      |
|    | ATOM        | 877 | 0D1  | ASN | 93 | 44.253 16.233 | 52.684 | 1.00 | 52.33 |      |
| 25 | ATOM        | 878 | ND2  | ASN | 93 | 44.076 15.160 | 54.652 | 1.00 | 54.60 |      |
|    | ATOM        | 879 | HD21 | ASN | 93 | 43.681 15.126 | 55.548 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 880 | HD22 | ASN | 93 | 44.780 14.587 | 54.290 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 881 | C    | ASN | 93 | 41.793 19.323 | 54.428 | 1.00 |       | AAAA |
|    | ATOM        | 882 | 0    | ASN | 93 | 40.897 19.373 | 53.585 | 1.00 | 24.44 |      |
| 30 | ATOM        | 883 | N    | ALA | 94 | 41.760 19.994 | 55.583 | 1.00 |       | AAAA |
|    | ATOM        | 884 | Н    | ALA | 94 | 42.454 19.832 | 56.247 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 885 | CA   | ALA | 94 | 40.690 20.934 | 55.921 | 1.00 |       | AAAA |
|    | ATOM        | 886 | CB   | ALA | 94 | 40.516 21.022 |        | 1.00 |       | AAAA |
|    | <b>ATOM</b> | 887 | C    | ALA | 94 | 40.940 22.325 | 55.354 | 1.00 |       | AAAA |
| 35 | ATOM        | 888 | 0    | ALA | 94 | 40.089 23.195 | 55.464 | 1.00 |       | AAAA |
|    | ATOM        | 889 | N    | CYS | 95 | 42.103 22.544 | 54.744 | 1.00 |       | AAAA |
|    | ATOM        | 890 | H    | CYS | 95 | 42.699 21.784 | 54.585 | 1.00 |       | AAAA |
|    | ATOM        | 891 | CA   | CYS | 95 | 42.480 23.899 | 54.322 | 1.00 |       | AAAA |
|    | ATOM        | 892 | CB   | CYS | 95 | 43.908 23.905 | 53.752 | 1.00 |       | AAAA |
| 40 | ATOM        | 893 | SG   | CYS | 95 | 44.087 23.036 | 52.185 | 1.00 |       | AAAA |
|    | ATOM        | 894 | C    | CYS | 95 | 41.503 24.581 | 53.325 | 1.00 |       | AAAA |
|    | ATOM        | 895 | 0    | CYS | 95 | 41.304 25.792 | 53.388 | 1.00 |       | AAAA |
|    | ATOM        | 896 | N    | GLY | 96 | 40.878 23.808 | 52.439 | 1.00 | 16.10 | AAAA |

|    | ATOM | 897 | Н   | GLY | 96  | 41.029 22.839 | 52.444 | 1.00 | 0.00  | AAAA |
|----|------|-----|-----|-----|-----|---------------|--------|------|-------|------|
|    | ATOM | 898 | CA  | GLY | 96  | 39.900 24.384 | 51.525 | 1.00 | 14.24 | AAAA |
|    | ATOM | 899 | C   | GLY | 96  | 38.660 24.858 | 52.274 | 1.00 | 13.81 | AAAA |
| •  | MOTA | 900 | 0   | GLY | 96  | 38.220 25.996 | 52.109 | 1.00 | 12.17 | AAAA |
| 5  | ATOM | 901 | N   | THR | 97  | 38.141 24.009 | 53.164 | 1.00 | 13.86 | AAAA |
|    | ATOM | 902 | Н   | THR | 97  | 38.518 23.101 | 53.219 | 1.00 | 0.00  | AAAA |
|    | MOTA | 903 | CA  | THR | 97  | 37.033 24.406 | 54.037 | 1.00 | 14.26 | AAAA |
|    | ATOM | 904 | CB  | THR | 97  | 36.597 23.257 | 54.922 | 1.00 | 14.44 | AAAA |
|    | ATOM | 905 | 0G1 | THR | 97  | 36.020 22.234 | 54.099 | 1.00 | 17.53 | AAAA |
| 10 | ATOM | 906 | HG1 | THR | 97  | 35.307 21.820 | 54.623 | 1.00 | 0.00  | AAAA |
|    | ATOM | 907 | CG2 | THR | 97  | 35.580 23.736 | 55.981 | 1.00 | 16.30 | AAAA |
|    | ATOM | 908 | C   | THR | 97  | 37.383 25.596 | 54.927 | 1.00 | 14.53 | AAAA |
|    | ATOM | 909 | 0   | THR | 97  | 36.600 26.539 | 55.051 | 1.00 | 13.21 | AAAA |
|    | ATOM | 910 | N   | ILE | 98  | 38.603 25.614 | 55.455 | 1.00 | 14.07 | AAAA |
| 15 | ATOM | 911 | Н   | ILE | 98  | 39.176 24.833 | 55.314 | 1.00 | 0.00  | AAAA |
|    | ATOM | 912 | CA  | ILE | 98  | 39.058 26.755 | 56.242 | 1.00 | 13.22 | AAAA |
|    | ATOM | 913 | CB  | ILE | 98  | 40.417 26.468 | 56.920 | 1.00 | 12.18 | AAAA |
|    | ATOM | 914 | CG2 | ILE | 98  | 40.910 27.704 | 57.610 | 1.00 | 11.29 | AAAA |
|    | ATOM | 915 | CG1 | ILE | 98  | 40.260 25.356 | 57.946 | 1.00 | 12.23 | AAAA |
| 20 | ATOM | 916 | CD  | ILE | 98  | 41.556 24.629 | 58.268 | 1.00 |       | AAAA |
|    | ATOM | 917 | C   | ILE | 98  | 39.156 28.017 | 55.404 | 1.00 | 11.49 | AAAA |
|    | ATOM | 918 | 0   | ILE | 98  | 38.755 29.093 | 55.853 | 1.00 | 12.87 | AAAA |
|    | ATOM | 919 | N   | GLY | 99  | 39.597 27.885 | 54.157 | 1.00 | 11.22 | AAAA |
|    | ATOM | 920 | Н   | GLY | 99  | 39.875 27.007 | 53.832 | 1.00 | 0.00  | AAAA |
| 25 | ATOM | 921 | CA  | GLY | 99  | 39.628 29.044 | 53.281 | 1.00 | 9.85  | AAAA |
|    | ATOM | 922 | C   | GLY | 99  | 38.244 29.632 | 53.007 | 1.00 | 9.08  | AAAA |
|    | ATOM | 923 | 0   | GLY | 99  | 38.036 30.835 | 53.040 | 1.00 | 9.42  | AAAA |
|    | ATOM | 924 | N   | LEU | 100 | 37.277 28.747 | 52.841 | 1.00 |       | AAAA |
|    | MOTA | 925 | Н   | LEU | 100 | 37.522 27.794 | 52.840 | 1.00 | 0.00  | AAAA |
| 30 | ATOM | 926 | CA  | LEU | 100 | 35.900 29.148 | 52.602 | 1.00 | 15.16 | AAAA |
|    | ATOM | 927 | CB  | LEU | 100 | 35.078 27.891 | 52.267 | 1.00 |       | AAAA |
|    | ATOM | 928 | CG  | LEU | 100 | 33.723 28.022 | 51.575 | 1.00 |       | AAAA |
|    | ATOM | 929 | CD1 | LEU | 100 | 33.831 29.058 | 50.465 | 1.00 |       | AAAA |
|    | ATOM | 930 | CD2 | LEU | 100 | 33.289 26.660 | 51.015 | 1.00 |       | AAAA |
| 35 | ATOM | 931 | C   | LEU | 100 | 35.347 29.870 | 53.838 | 1.00 |       | AAAA |
|    | ATOM | 932 | 0   | LEU | 100 | 34.837 30.980 | 53.740 | 1.00 |       | AAAA |
|    | ATOM | 933 | N   | ILE | 101 | 35.598 29.300 | 55.013 | 1.00 |       | AAAA |
|    | ATOM | 934 | Н   | ILE | 101 | 36.051 28.431 | 55.000 | 1.00 |       | AAAA |
|    | ATOM | 935 | CA  | ILE | 101 | 35.205 29.911 | 56.281 | 1.00 |       | AAAA |
| 40 | ATOM | 936 | CB  | ILE | 101 | 35.571 28.996 | 57.462 | 1.00 |       | AAAA |
|    | ATOM | 937 | CG2 | ILE | 101 | 35.402 29.734 | 58.786 | 1.00 |       | AAAA |
|    | ATOM | 938 | CG1 | ILE | 101 | 34.697 27.732 | 57.405 | 1.00 |       | AAAA |
|    | ATOM | 939 | CD  | ILE | 101 | 34.958 26.730 | 58.500 | 1.00 | 16.30 | AAAA |
|    |      |     |     |     |     |               |        |      |       |      |

|    | MOTA        | 940 | C   | İLE | 101 | 35.829 31.283 | 56.483 | 1.00 | 14.03 | AAAA |
|----|-------------|-----|-----|-----|-----|---------------|--------|------|-------|------|
|    | ATOM        | 941 | 0   | ILE | 101 | 35.126 32.245 | 56.782 | 1.00 | 12.42 | AAAA |
|    | ATOM        | 942 | N   | HIS | 102 | 37.120 31.421 | 56.177 | 1.00 | 13.04 | AAAA |
|    | ATOM        | 943 | Н   | HIS | 102 | 37.593 30.615 | 55.893 | 1.00 | 0.00  | AAAA |
| 5  | ATOM        | 944 | CA  | HIS | 102 | 37.769 32.738 | 56.239 | 1.00 | 10.47 | AAAA |
|    | ATOM        | 945 | CB  | HIS | 102 | 39.265 32.613 | 55.897 | 1.00 | 13.05 | AAAA |
|    | ATOM        | 946 | CG  | HIS | 102 | 40.107 32.125 | 57.030 | 1.00 | 10.70 | AAAA |
|    | ATOM        | 947 | CD2 | HIS | 102 | 40.153 32.499 | 58.332 | 1.00 | 13.91 | AAAA |
|    | ATOM        | 948 | ND1 | HIS | 102 | 41.088 31.168 | 56.877 | 1.00 | 11.81 | AAAA |
| 10 | ATOM        | 949 | HD1 | HIS | 102 | 41.295 30.682 | 56.041 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 950 | CE1 | HIS | 102 | 41.708 30.974 | 58.028 | 1.00 | 11.88 | AAAA |
|    | MOTA        | 951 | NE2 | HIS | 102 | 41.162 31.778 | 58.927 | 1.00 | 15.13 | AAAA |
|    | ATOM        | 952 | HE2 | HIS | 102 | 41.468 31.860 | 59.843 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 953 | C   | HIS | 102 | 37.125 33.757 | 55.291 | 1.00 | 11.19 | AAAA |
| 15 | ATOM        | 954 | 0   | HIS | 102 | 36.969 34.935 | 55.640 | 1.00 | 12.51 | AAAA |
|    | ATOM        | 955 | N   | ALA | 103 | 36.844 33.328 | 54.055 | 1.00 | 13.10 | AAAA |
|    | ATOM        | 956 | Н   | ALA | 103 | 37.020 32.394 | 53.814 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 957 | CA  | ALA | 103 | 36.264 34.227 | 53.056 | 1.00 | 10.96 | AAAA |
|    | ATOM        | 958 | CB  | ALA | 103 | 36.140 33.504 | 51.703 | 1.00 | 9.09  | AAAA |
| 20 | ATOM        | 959 | C   | ALA | 103 | 34.881 34.712 | 53.531 | 1.00 | 15.64 | AAAA |
|    | ATOM        | 960 | 0   | ALA | 103 | 34.558 35.899 | 53.440 | 1.00 |       | AAAA |
|    | ATOM        | 961 | N   | ILE | 104 | 34.073 33.787 | 54.047 | 1.00 |       | AAAA |
|    | <b>ATOM</b> | 962 | Н   | ILE | 104 | 34.402 32.864 | 54.115 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 963 | CA  | ILE | 104 | 32.701 34.118 | 54.460 | 1.00 | 15.42 | AAAA |
| 25 | ATOM        | 964 | CB  | ILE | 104 | 31.813 32.829 | 54.537 | 1.00 |       | AAAA |
|    | <b>ATOM</b> | 965 | CG2 | ILE | 104 | 30.365 33.200 | 54.915 | 1.00 |       | AAAA |
|    | ATOM        | 966 | CG1 | ILE | 104 | 31.822 32.081 | 53.204 | 1.00 |       | AAAA |
|    | ATOM        | 967 | CD  | ILE | 104 | 31.510 32.966 | 51.997 | 1.00 |       | AAAA |
|    | MOTA        | 968 | C   | ILE | 104 | 32.677 34.862 | 55.822 | 1.00 |       | AAAA |
| 30 | <b>ATOM</b> | 969 | 0   | ILE | 104 | 32.051 35.922 | 55.942 | 1.00 | 16.92 | AAAA |
|    | ATOM        | 970 | N   | ALA | 105 | 33.411 34.345 | 56.813 | 1.00 |       | AAAA |
|    | ATOM        | 971 | Н   | ALA | 105 | 33.832 33.486 | 56.631 | 1.00 |       | AAAA |
|    | ATOM        | 972 | CA  | ALA | 105 | 33.529 34.998 | 58.121 | 1.00 |       | AAAA |
|    | ATOM        | 973 | CB  | ALA | 105 | 34.492 34.239 | 59.022 | 1.00 |       | AAAA |
| 35 | ATOM        | 974 | C   | ALA | 105 | 33.963 36.448 | 58.039 | 1.00 |       | AAAA |
|    | ATOM        | 975 | 0   | ALA | 105 | 33.452 37.298 | 58.776 | 1.00 |       | AAAA |
|    | ATOM        | 976 | N   | ASN | 106 | 34.869 36.760 | 57.117 | 1.00 |       | AAAA |
|    | ATOM        | 977 | Н   | ASN | 106 | 35.225 36.046 | 56.549 | 1.00 |       | AAAA |
|    | ATOM        | 978 | CA  | ASN | 106 | 35.347 38.132 | 57.002 | 1.00 |       | AAAA |
| 40 | ATOM        | 979 | CB  | ASN | 106 | 36.825 38.128 | 56.611 | 1.00 |       | AAAA |
|    | ATOM        | 980 | CG  | ASN | 106 | 37.707 37.690 | 57.755 | 1.00 |       | AAAA |
|    | ATOM        | 981 | 0D1 | ASN | 106 | 37.977 38.463 | 58.655 | 1.00 |       | AAAA |
|    | ATOM        | 982 | ND2 | ASN | 106 | 38.042 36.415 | 57.795 | 1.00 | 14.28 | AAAA |
|    |             |     |     |     |     |               |        |      |       |      |

|    | ATOM        | 983  | HD21 | ASN | 106 | 37.713 35.831 | 57.096 | 1.00 | 0.00  | AAAA |
|----|-------------|------|------|-----|-----|---------------|--------|------|-------|------|
|    | ATOM        | 984  | HD22 | ASN | 106 | 38.611 36.181 | 58.571 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 985  | C    | ASN | 106 | 34.522 39.008 | 56.048 | 1.00 | 19.28 | AAAA |
| _  | ATOM        | 986  | 0    | ASN | 106 | 34.898 40.129 | 55.748 | 1.00 | 17.22 | AAAA |
| 5  | ATOM        | 987  | N    | ASN | 107 | 33.389 38.478 | 55.584 | 1.00 | 21.43 | AAAA |
|    | ATOM        | 988  | Н    | ASN | 107 | 33.219 37.539 | 55.782 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 989  | CA   | ASN | 107 | 32.445 39.213 | 54.739 | 1.00 | 21.54 | AAAA |
|    | ATOM        | 990  | CB   | ASN | 107 | 32.611 38.786 | 53.296 | 1.00 | 18.81 | AAAA |
|    | ATOM        | 991  | CG   | ASN | 107 | 33.897 39.275 | 52.710 | 1.00 | 21.63 | AAAA |
| 10 | ATOM        | 992  | 0D1  | ASN | 107 | 34.079 40.472 | 52.495 | 1.00 | 22.45 | AAAA |
|    | ATOM        | 993  | ND2  | ASN | 107 | 34.833 38.368 | 52.514 | 1.00 | 17.35 | AAAA |
|    | ATOM        | 994  | HD21 | ASN | 107 | 34.605 37.441 | 52.622 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 995  | HD22 | ASN | 107 | 35.709 38.734 | 52.238 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 996  | C    | ASN | 107 | 31.006 38.927 | 55.177 | 1.00 | 25.95 | AAAA |
| 15 | ATOM        | 997  | 0    | ASN | 107 | 30.073 39.091 | 54.399 | 1.00 | 26.08 | AAAA |
|    | ATOM        | 998  | N    | LYS | 108 | 30.856 38.514 | 56.435 | 1.00 | 27.04 | AAAA |
|    | ATOM        | 999  | Н    | LYS | 108 | 31.660 38.510 | 56.994 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1000 | CA   | LYS | 108 | 29.611 37.983 | 56.984 | 1.00 | 30.55 | AAAA |
|    | ATOM        | 1001 | CB   | LYS | 108 | 29.821 37.766 | 58.483 | 1.00 | 31.98 | AAAA |
| 20 | ATOM        | 1002 | CG   | LYS | 108 | 28.880 36.783 | 59.136 | 1.00 | 39.13 | AAAA |
|    | ATOM        | 1003 | CD   | LYS | 108 | 29.420 36.324 | 60.493 | 1.00 | 44.06 | AAAA |
|    | ATOM        | 1004 | CE   | LYS | 108 | 29.708 37.491 | 61.442 | 1.00 | 45.91 | AAAA |
|    | ATOM        | 1005 | NZ   | LYS | 108 | 29.833 37.023 | 62.849 | 1.00 | 46.37 | AAAA |
|    | ATOM        | 1006 | HZ1  | LYS | 108 | 30.640 36.383 | 62.912 | 1.00 | 0.00  | AAAA |
| 25 | ATOM        | 1007 | HZ2  | LYS | 108 | 28.963 36.525 | 63.134 | 1.00 | 0.00  | AAAA |
|    | <b>ATOM</b> | 1008 | HZ3  | LYS | 108 | 29.992 37.838 | 63.478 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1009 | C    | LYS | 108 | 28.400 38.907 | 56.732 | 1.00 | 30.21 | AAAA |
|    | ATOM        | 1010 | 0    | LYS | 108 | 27.330 38.462 | 56.309 | 1.00 | 28.80 | AAAA |
|    | <b>ATOM</b> | 1011 | N    | ASP | 109 | 28.647 40.206 | 56.792 | 1.00 | 31.65 | AAAA |
| 30 | ATOM        | 1012 | Н    | ASP | 109 | 29.573 40.464 | 56.950 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1013 | CA   | ASP | 109 | 27.601 41.191 | 56.575 | 1.00 | 34.09 | AAAA |
|    | <b>ATOM</b> | 1014 | CB   | ASP | 109 | 27.982 42.501 | 57.274 | 1.00 | 38.39 | AAAA |
|    | ATOM        | 1015 | CG   | ASP | 109 | 28.062 42.354 | 58.800 | 1.00 | 43.78 | AAAA |
|    | ATOM        | 1016 | 0D1  | ASP | 109 | 28.880 43.070 | 59.420 | 1.00 |       | AAAA |
| 35 | ATOM        | 1017 | OD2  | ASP | 109 | 27.300 41.549 | 59.384 | 1.00 | 47.42 | AAAA |
|    | ATOM        | 1018 | C    | ASP | 109 | 27.247 41.456 | 55.109 | 1.00 |       | AAAA |
|    | ATOM        | 1019 | 0    | ASP | 109 | 26.350 42.237 | 54.827 | 1.00 | 37.51 | AAAA |
|    | ATOM        | 1020 | N    | LYS | 110 | 27.966 40.836 | 54.176 | 1.00 | 30.81 | AAAA |
|    | ATOM        | 1021 | Н    | LYS | 110 | 28.781 40.371 | 54.456 | 1.00 | 0.00  | AAAA |
| 40 | ATOM        | 1022 | CA   | LYS | 110 | 27.619 40.913 | 52.747 | 1.00 |       | AAAA |
|    | ATOM        | 1023 | CB   | LYS | 110 | 28.877 40.922 | 51.873 | 1.00 | 26.19 | AAAA |
|    | ATOM        | 1024 | CG   | LYS | 110 | 29.898 41.966 | 52.267 | 1.00 | 31.88 | AAAA |
|    | ATOM        | 1025 | CD   | LYS | 110 | 31.034 42.039 | 51.252 | 1.00 | 35.86 | AAAA |
|    |             |      |      |     |     |               |        |      |       |      |

|    | ATOM        | 1026 | CE  | LYS | 110 | 32.009 43.165 | 51.577 | 1.00 | 35.07 | AAAA |
|----|-------------|------|-----|-----|-----|---------------|--------|------|-------|------|
|    | ATOM        | 1027 | NZ  | LYS | 110 | 32.734 42.922 | 52.858 | 1.00 | 40.57 | AAAA |
|    | <b>ATOM</b> | 1028 | HZ1 | LYS | 110 | 33.276 42.042 | 52.794 | 1.00 | 0.00  | AAAA |
|    | <b>ATOM</b> | 1029 | HZ2 | LYS | 110 | 32.047 42.849 | 53.637 | 1.00 | 0.00  | AAAA |
| 5  | <b>ATOM</b> | 1030 | HZ3 | LYS | 110 | 33.388 43.708 | 53.047 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1031 | C   | LYS | 110 | 26.772 39.722 | 52.335 | 1.00 | 23.39 | AAAA |
|    | ATOM        | 1032 | 0   | LYS | 110 | 26.329 39.623 | 51.190 | 1.00 | 23.47 | AAAA |
|    | ATOM        | 1033 | N   | MET | 111 | 26.727 38.729 | 53.210 | 1.00 | 24.31 | AAAA |
|    | ATOM        | 1034 | Н   | MET | 111 | 27.069 38.886 | 54.106 | 1.00 | 0.00  | AAAA |
| 10 | ATOM        | 1035 | CA  | MET | 111 | 26.133 37.439 | 52.884 | 1.00 | 24.62 | AAAA |
|    | <b>MOTA</b> | 1036 | CB  | MET | 111 | 26.875 36.314 | 53.595 | 1.00 | 25.74 | AAAA |
|    | <b>ATOM</b> | 1037 | CG  | MET | 111 | 28.355 36.281 | 53.307 | 1.00 | 27.29 | AAAA |
|    | MOTA        | 1038 | SD  | MET | 111 | 28.669 35.921 | 51.605 | 1.00 | 28.33 | AAAA |
|    | <b>ATOM</b> | 1039 | CE  | MET | 111 | 29.842 37.263 | 51.197 | 1.00 | 22.52 | AAAA |
| 15 | ATOM        | 1040 | С   | MET | 111 | 24.684 37.388 | 53.313 | 1.00 | 25.26 | AAAA |
|    | ATOM        | 1041 | 0   | MET | 111 | 24.304 37.974 | 54.325 | 1.00 | 24.63 | AAAA |
|    | ATOM        | 1042 | N   | HIS | 112 | 23.947 36.513 | 52.656 | 1.00 | 25.79 | AAAA |
|    | ATOM        | 1043 | H   | HIS | 112 | 24.366 36.111 | 51.894 | 1.00 | 0.00  | AAAA |
|    | MOTA        | 1044 | CA  | HIS | 112 | 22.548 36.291 | 52.965 | 1.00 | 27.47 | AAAA |
| 20 | ATOM        | 1045 | CB  | HIS | 112 | 21.683 36.549 | 51.723 | 1.00 | 35.41 | AAAA |
|    | MOTA        | 1046 | CG  | HIS | 112 | 20.209 36.375 | 51.954 | 1.00 | 42.70 | AAAA |
|    | <b>MOTA</b> | 1047 | CD2 | HIS | 112 | 19.494 36.271 | 53.103 | 1.00 | 43.97 | AAAA |
|    | ATOM        | 1048 | ND1 | HIS | 112 | 19.300 36.261 | 50.924 | 1.00 | 44.16 |      |
|    | ATOM        | 1049 | HD1 | HIS | 112 | 19.465 36.489 | 49.979 | 1.00 | 0.00  | AAAA |
| 25 | MOTA        | 1050 | CE1 | HIS | 112 | 18.090 36.100 | 51.426 | 1.00 | 46.54 |      |
|    | ATOM        | 1051 | NE2 | HIS | 112 | 18.180 36.091 | 52.742 | 1.00 | 46.27 |      |
|    | ATOM        | 1052 | HE2 | HIS | 112 | 17.442 36.197 | 53.384 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1053 | C   | HIS | 112 | 22.391 34.867 | 53.431 | 1.00 | 24.85 |      |
|    | ATOM        | 1054 | 0   | HIS | 112 | 22.325 33.931 | 52.618 | 1.00 | 23.17 |      |
| 30 | ATOM        | 1055 | N   | PHE | 113 | 22.357 34.714 | 54.748 | 1.00 |       | AAAA |
|    | ATOM        | 1056 | Н   | PHE | 113 | 22.542 35.493 | 55.300 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1057 | CA  | PHE | 113 | 22.154 33.414 | 55.374 | 1.00 | 29.11 |      |
|    | MOTA        | 1058 | CB  | PHE | 113 | 22.758 33.401 | 56.794 | 1.00 |       | AAAA |
|    | MOTA        | 1059 | CG  | PHE | 113 | 24.247 33.637 | 56.832 | 1.00 | 24.66 |      |
| 35 | ATOM        | 1060 | CD1 | PHE | 113 | 24.753 34.910 | 57.086 | 1.00 | 23.03 |      |
|    | ATOM        | 1061 | CD2 | PHE | 113 | 25.141 32.586 | 56.598 | 1.00 | 25.31 |      |
|    | MOTA        | 1062 | CE1 | PHE | 113 | 26.133 35.146 | 57.096 | 1.00 | 27.19 |      |
|    | ATOM        | 1063 | CE2 | PHE | 113 | 26.520 32.814 | 56.608 | 1.00 | 24.97 |      |
|    | ATOM        | 1064 | CZ  | PHE | 113 | 27.014 34.100 | 56.858 | 1.00 |       | AAAA |
| 40 | ATOM        | 1065 | C   | PHE | 113 | 20.670 33.008 | 55.449 | 1.00 |       | AAAA |
|    | ATOM        | 1066 | 0   | PHE | 113 | 19.790 33.848 | 55.686 | 1.00 |       | AAAA |
|    |             | 1067 | N   | GLU | 114 | 20.402 31.772 | 55.043 | 1.00 |       | AAAA |
|    | ATOM        | 1068 | Н   | GLU | 114 | 21.111 31.342 | 54.547 | 1.00 | 0.00  | AAAA |
|    |             |      |     |     |     |               |        |      |       |      |

|    | ATOM        | 1069 | CA  | GLU | 114 | 19.173 31.085 | 55.391        | 1.00  | 29.30 AAAA |
|----|-------------|------|-----|-----|-----|---------------|---------------|-------|------------|
|    | ATOM        | 1070 | CB  | GLU | 114 | 19.167 29.712 | 54.748        | 1.00  | 30.12 AAAA |
|    | ATOM        | 1071 | CG  | GLU | 114 | 19.228 29.750 | 53.232        | 1.00  | 32.89 AAAA |
|    | ATOM        | 1072 | CD  | GLU | 114 | 19.340 28.379 | 52.624        | 1.00  | 34.82 AAAA |
| 5  | ATOM        | 1073 | 0E1 | GLU | 114 | 19.097 27.384 | 53.338        | 1.00  | 37.36 AAAA |
|    | ATOM        | 1074 | 0E2 | GLU | 114 | 19.713 28.293 | 51.437        | 1.00  | 43.01 AAAA |
|    | <b>ATOM</b> | 1075 | C   | GLU | 114 | 19.067 30.927 | 56.903        | 1.00  | 32.03 AAAA |
|    | <b>ATOM</b> | 1076 | 0   | GLU | 114 | 20.080 30.731 | 57.575        | 1.00  | 30.35 AAAA |
|    | <b>ATOM</b> | 1077 | N   | SER | 115 | 17.836 30.830 | 57.403        | 1.00  | 32.06 AAAA |
| 10 | ATOM        | 1078 | Н   | SER | 115 | 17.081 30.845 | 56.781        | 1.00  | 0.00 AAAA  |
|    | ATOM        | 1079 | CA  | SER | 115 | 17.596 30.797 | 58.849        | 1.00  | 34.83 AAAA |
|    | ATOM        | 1080 | CB  | SER | 115 | 16.098 30.682 | 59.157        | 1.00  | 37.46 AAAA |
|    | ATOM        | 1081 | OG  | SER | 115 | 15.337 31.576 | 58.368        | 1.00  | 40.20 AAAA |
|    | ATOM        | 1082 | HG  | SER | 115 | 15.254 31.197 | 57.494        | 1.00  | 0.00 AAAA  |
| 15 | ATOM        | 1083 | C   | SER | 115 | 18.324 29.642 | 59.522        | 1.00  | 32.68 AAAA |
|    | ATOM        | 1084 | 0   | SER | 115 | 18.964 29.820 | 60.551        | 1.00  | 34.71 AAAA |
|    | MOTA        | 1085 | N   | GLY | 116 | 18.230 28.461 | 58.931        | 1.00  | 28.08 AAAA |
|    | <b>MOTA</b> | 1086 | Н   | GLY | 116 | 17.723 28.386 | 58.104        | 1.00  | 0.00 AAAA  |
|    | ATOM        | 1087 | CA  | GLY | 116 | 18.890 27.314 | 59.525        | .1.00 | 30.75 AAAA |
| 20 | ATOM        | 1088 | C   | GLY | 116 | 20.331 27.077 | 59.087        | 1.00  | 29.04 AAAA |
|    | MOTA        | 1089 | 0   | GLY | 116 | 20.821 25.954 | 59.221        | 1.00  | 27.89 AAAA |
|    | ATOM        | 1090 | N   | SER | 117 | 21.011 28.123 | 58.601        | 1.00  | 28.86 AAAA |
|    | ATOM        | 1091 | Н   | SER | 117 | 20.613 29.011 | 58.704        | 1.00  | 0.00 AAAA  |
|    | ATOM        | 1092 | CA  | SER | 117 | 22.365 28.000 | 58.017        | 1.00  | 25.44 AAAA |
| 25 | ATOM        | 1093 | CB  | SER | 117 | 22.867 29.378 | 57.561        | 1.00  | 23.69 AAAA |
|    | MOTA        | 1094 | OG  | SER | 117 | 24.260 29.369 | 57.281        | 1.00  | 21.52 AAAA |
|    | MOTA        | 1095 | HG  | SER | 117 | 24.415 28.790 | <b>56.527</b> | 1.00  | 0.00 AAAA  |
|    | ATOM        | 1096 | C   | SER | 117 | 23.352 27.412 | 59.027        | 1.00  | 24.07 AAA  |
|    | MOTA        | 1097 | 0   | SER | 117 | 23.536 27.980 | 60.107        | 1.00  | 23.98 AAAA |
| 30 | ATOM        | 1098 | N   | THR | 118 | 23.959 26.271 | 58.701        | 1.00  | 22.14 AAAA |
|    | ATOM        |      | Н   | THR | 118 | 23.711 25.878 | 57.836        | 1.00  | 0.00 AAAA  |
|    | ATOM        | 1100 | CA  | THR | 118 | 24.950 25.660 | 59.593        | 1.00  | 23.25 AAA  |
|    | ATOM        |      | CB  | THR | 118 | 25.389 24.266 | 59.128        | 1.00  | 26.09 AAA  |
|    | ATOM        | 1102 | 0G1 | THR | 118 | 25.837 24.326 | 57.771        | 1.00  | 26.52 AAAA |
| 35 | ATOM        | 1103 | HG1 | THR | 118 | 25.089 24.335 | 57.150        | 1.00  | 0.00 AAA   |
|    | MOTA        | 1104 | CG2 | THR | 118 | 24.255 23.298 | 59.235        | 1.00  | 28.30 AAA  |
|    | MOTA        | 1105 | C   | THR | 118 | 26.219 26.506 | 59.721        | 1.00  | 25.21 AAA  |
|    | MOTA        | 1106 | 0   | THR | 118 | 26.783 26.627 | 60.806        | 1.00  | 23.40 AAA  |
|    | ATOM        | 1107 | N   | LEU | 119 | 26.662 27.117 | 58.623        | 1.00  | 24.77 AAA  |
| 40 | ATOM        | 1108 | Н   | LEU | 119 | 26.247 26.892 | 57.763        | 1.00  | 0.00 AAA   |
|    | ATOM        |      | CA  | LEU | 119 | 27.793 28.025 | 58.711        | 1.00  | 21.55 AAA  |
|    | ATOM        | 1110 | CB  | LEU | 119 | 28.278 28.446 | 57.317        | 1.00  | 21.35 AAA  |
|    | ATOM        | 1111 | CG  | LEU | 119 | 29.527 29.346 | 57.292        | 1.00  | 22.12 AAA  |
|    |             |      |     |     |     |               |               |       |            |

|    | ATOM        | 1112 | CD1 | LEU | 119 | 30.675 28.670   | 58.031 | 1.00 | 21.90 | AAAA |
|----|-------------|------|-----|-----|-----|-----------------|--------|------|-------|------|
|    | ATOM        | 1113 | CD2 | LEU | 119 | 29.938 29.618   | 55.852 | 1.00 | 25.56 | AAAA |
|    | ATOM        | 1114 | C   | LEU | 119 | 27.447 29.257   | 59.547 | 1.00 | 22.56 | AAAA |
|    | ATOM        | 1115 | 0   | LEU | 119 | 28.249 29.680   | 60.377 | 1.00 | 21.20 | AAAA |
| 5  | ATOM        | 1116 | N   | LYS | 120 | 26.240 29.800   | 59.384 | 1.00 | 19.77 | AAAA |
|    | ATOM        | 1117 | Н   | LYS | 120 | 25.624 29.429   | 58.719 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1118 | CA  | LYS | 120 | 25.847 30.974   | 60.164 | 1.00 | 20.58 | AAAA |
|    | ATOM        | 1119 | CB  | LYS | 120 | 24.408 31.368   | 59.844 | 1.00 | 27.26 | AAAA |
|    | ATOM        | 1120 | CG  | LYS | 120 | 23.917 32.629   | 60.548 | 1.00 | 31.17 | AAAA |
| 10 | ATOM        | 1121 | CD  | LYS | 120 | 22.398 32.703   | 60.494 | 1.00 | 37.84 | AAAA |
|    | ATOM        | 1122 | CE. | LYS | 120 | 21.870 33.951   | 61.161 | 1.00 | 41.70 | AAAA |
|    | ATOM        | 1123 | NZ  | LYS | 120 | 22.115 33.910   | 62.630 | 1.00 | 46.53 | AAAA |
|    | ATOM        | 1124 | HZ1 | LYS | 120 | 23.142 33.971   | 62.791 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1125 | HZ2 | LYS | 120 | 21.749 33.022   | 63.030 | 1.00 | 0.00  | AAAA |
| 15 | ATOM        | 1126 | HZ3 | LYS | 120 | 21.652 34.725   | 63.081 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1127 | C   | LYS | 120 | 25.978 30.687   | 61.659 | 1.00 | 21.21 | AAAA |
|    | ATOM        | 1128 | 0   | LYS | 120 | 26.554 31.485   | 62.406 | 1.00 | 21.15 | AAAA |
|    | ATOM        | 1129 | N   | LYS | 121 | 25.509 29.511   | 62.066 | 1.00 | 21.91 | AAAA |
|    | ATOM        | 1130 | Н   | LYS | 121 | 25.104 28.933   | 61.385 | 1.00 | 0.00  | AAAA |
| 20 | ATOM        | 1131 | CA  | LYS | 121 | 25.564 29.109   | 63.460 | 1.00 |       | AAAA |
|    | ATOM        | 1132 | CB  | LYS | 121 | 24.764 27.828   | 63.710 | 1.00 |       | AAAA |
|    | <b>MOTA</b> | 1133 | CG  | LYS | 121 | 24.645 27.532   | 65.204 | 1.00 |       | AAAA |
|    | ATOM        | 1134 | CD  | LYS | 121 | 24.221 26.114   | 65.506 | 1.00 |       | AAAA |
|    | ATOM        | 1135 | CE  | LYS | 121 | 24.099 25.911   | 67.019 | 1.00 |       | AAAA |
| 25 | ATOM        | 1136 | NZ  | LYS | 121 | 23.937 24.481   | 67.402 | 1.00 |       | AAAA |
|    | ATOM        | 1137 | HZ1 | LYS | 121 | 24.516 23.891   | 66.772 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1138 | HZ2 | LYS | 121 | . 22.943 24.188 | 67.309 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1139 | HZ3 | LYS | 121 | 24.240 24.348   | 68.384 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1140 | C   | LYS | 121 | 26.994 28.898   | 63.946 | 1.00 |       | AAAA |
| 30 | ATOM        | 1141 | 0   | LYS | 121 | 27.315 29.236   | 65.088 | 1.00 |       | AAAA |
|    | ATOM        | 1142 | N   | PHE | 122 | 27.834 28.301   | 63.104 | 1.00 |       | AAAA |
|    | ATOM        | 1143 | Н   | PHE | 122 | 27.476 27.916   | 62.273 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1144 | CA  | PHE | 122 | 29.258 28.160   | 63.437 | 1.00 |       | AAAA |
|    | ATOM        | 1145 | CB  | PHE | 122 | 30.001 27.412   | 62.333 | 1.00 |       | AAAA |
| 35 | ATOM        | 1146 | CG  | PHE | 122 | 31.468 27.264   | 62.599 | 1.00 |       | AAAA |
|    | ATOM        | 1147 | CD1 | PHE | 122 | 31.950 26.174   | 63.324 | 1.00 |       | AAAA |
|    | ATOM        | 1148 | CD2 | PHE | 122 | 32.369 28.255   | 62.192 | 1.00 |       | AAAA |
|    | ATOM        | 1149 | CE1 | PHE | 122 | 33.314 26.065   | 63.644 | 1.00 |       | AAAA |
|    | ATOM        | 1150 | CE2 | PHE | 122 | 33.727 28.158   | 62.515 | 1.00 |       | AAAA |
| 40 | ATOM        | 1151 | CZ  | PHE | 122 | 34.192 27.058   | 63.239 | 1.00 |       | AAAA |
|    | ATOM        | 1152 | C   | PHE | 122 | 29.934 29.514   | 63.670 | 1.00 |       | AAAA |
|    | ATOM        | 1153 | 0   | PHE | 122 | 30.666 29.699   | 64.647 | 1.00 |       | AAAA |
|    | ATOM        | 1154 | N   | LEU | 123 | 29.646 30.471   | 62.800 | 1.00 | 16.51 | AAAA |
|    |             |      |     |     |     |                 |        |      |       |      |

|    | ATOM | 1155 | Н   | LEU | 123 | 29.032 30.251 | 62.069 | 1.00 | 0.00 AAAA         |
|----|------|------|-----|-----|-----|---------------|--------|------|-------------------|
|    | ATOM | 1156 | CA  | LEU | 123 | 30.224 31.793 | 62.905 | 1.00 | 19.43 AAAA        |
|    | ATOM | 1157 | CB  | LEU | 123 | 29.913 32.592 | 61.645 | 1.00 | 16.02 AAAA        |
| -  | MOTA | 1158 | CG  | LEU | 123 | 30.559 32.020 | 60.383 | 1.00 | 15.88 AAAA        |
| 5  | ATOM | 1159 | CD1 | LEU | 123 | 30.139 32.849 | 59.185 | 1.00 | 16.91 AAAA        |
|    | ATOM | 1160 | CD2 | LEU | 123 | 32.097 32.005 | 60.562 | 1.00 | 17.98 AAAA        |
|    | ATOM | 1161 | C   | LEU | 123 | 29.777 32.574 | 64.137 | 1.00 | 23.21 AAAA        |
|    | ATOM | 1162 | 0   | LEU | 123 | 30.581 33.249 | 64.777 | 1.00 | 22.18 AAAA        |
|    | ATOM | 1163 | N   | GLU | 124 | 28.492 32.499 | 64.469 | 1.00 | 24.39 AAAA        |
| 10 | ATOM | 1164 | Н   | GLU | 124 | 27.889 31.989 | 63.882 | 1.00 | 0.00 AAAA         |
|    | ATOM | 1165 | CA  | GLU | 124 | 28.003 33.237 | 65.628 | 1.00 | <b>25.74 AAAA</b> |
|    | ATOM | 1166 | CB  | GLU | 124 | 26.474 33.412 | 65.587 | 1.00 | 29.50 AAAA        |
|    | ATOM | 1167 | CG  | GLU | 124 | 25.678 32.166 | 65.281 | 1.00 | 36.33 AAAA        |
|    | ATOM | 1168 | CD  | GLU | 124 | 24.262 32.483 | 64.795 | 1.00 | 42.27 AAAA        |
| 15 | ATOM | 1169 | 0E1 | GLU | 124 | 23.941 33.685 | 64.630 | 1.00 | 43.67 AAAA        |
|    | ATOM | 1170 | 0E2 | GLU | 124 | 23.474 31.531 | 64.578 | 1.00 | 42.51 AAAA        |
|    | ATOM | 1171 | C   | GLU | 124 | 28.439 32.576 | 66.924 | 1.00 | 21.63 AAAA        |
|    | ATOM | 1172 | 0   | GLU | 124 | 28.850 33.260 | 67.850 | 1.00 | <b>25.47 AAAA</b> |
|    | ATOM | 1173 | N   | GLU | 125 | 28.531 31.256 | 66.928 | 1.00 | 20.31 AAAA        |
| 20 | ATOM | 1174 | Н   | GLU | 125 | 28.213 30.752 | 66.151 | 1.00 | O.OO AAAA         |
|    | ATOM | 1175 | CA  | GLU | 125 | 29.072 30.570 | 68.091 | 1.00 | 24.49 AAAA        |
|    | ATOM | 1176 | CB  | GLU | 125 | 28.836 29.061 | 68.010 | 1.00 | 29.56 AAAA        |
|    | ATOM | 1177 | CG  | GLU | 125 | 27.352 28.625 | 68.085 | 1.00 | 35.07 AAAA        |
|    | ATOM | 1178 | CD  | GLU | 125 | 26.599 29.184 | 69.303 | 1.00 | 40.25 AAAA        |
| 25 | ATOM | 1179 | 0E1 | GLU | 125 | 27.239 29.516 | 70.334 | 1.00 | 38.36 AAAA        |
|    | ATOM | 1180 | 0E2 | GLU | 125 | 25.353 29.280 | 69.224 | 1.00 | <b>40.90 AAAA</b> |
|    | ATOM | 1181 | C   | GLU | 125 | 30.558 30.832 | 68.290 | 1.00 | 25.02 AAAA        |
|    | ATOM | 1182 | 0   | GLU | 125 | 31.037 30.829 | 69.426 | 1.00 | 27.15 AAAA        |
|    | ATOM | 1183 | N   | SER | 126 | 31.291 31.034 | 67.194 | 1.00 | 24.83 AAAA        |
| 30 | ATOM | 1184 | Н   | SER | 126 | 30.820 31.102 | 66.338 | 1.00 | O.OO AAAA         |
|    | ATOM | 1185 | CA  | SER | 126 | 32.759 31.135 | 67.256 | 1.00 | 22.04 AAAA        |
|    |      | 1186 | CB  | SER | 126 | 33.406 30.320 | 66.130 | 1.00 | 19.89 AAAA        |
|    | ATOM | 1187 | OG  | SER | 126 | 33.126 30.932 | 64.880 | 1.00 | 18.20 AAAA        |
|    |      | 1188 | HG  | SER | 126 | 32.193 30.782 | 64.685 | 1.00 | 0.00 AAAA         |
| 35 | ATOM | 1189 | C   | SER | 126 | 33.294 32.562 | 67.200 | 1.00 | 23.67 AAAA        |
|    |      | 1190 | 0   | SER | 126 | 34.507 32.768 | 67.080 | 1.00 | 25.05 AAAA        |
|    | ATOM | 1191 | N   | VAL | 127 | 32.422 33.533 | 67.456 | 1.00 | 22.04 AAAA        |
|    |      | 1192 | Н   | VAL | 127 | 31.518 33.298 | 67.748 | 1.00 | O.OO AAAA         |
|    | ATOM | 1193 | CA  | VAL | 127 | 32.757 34.942 | 67.278 | 1.00 | 24.22 AAAA        |
| 40 | ATOM | 1194 | CB  | VAL | 127 | 31.479 35.822 | 67.390 | 1.00 | 25.46 AAAA        |
|    | ATOM | 1195 | CG1 | VAL | 127 | 31.117 36.056 | 68.842 | 1.00 | 27.14 AAAA        |
|    | ATOM | 1196 |     | VAL | 127 | 31.667 37.136 | 66.669 | 1.00 | 29.08 AAAA        |
|    | ATOM | 1197 | C   | VAL | 127 | 33.817 35.436 | 68.274 | 1.00 | 25.27 AAAA        |
|    |      |      |     |     |     |               |        |      |                   |

|    | ATOM | 1198 | 0   | VAL | 127 | 34.596 36.339 | 67.977 | 1.00 | 26.45 AAAA        |
|----|------|------|-----|-----|-----|---------------|--------|------|-------------------|
|    | ATOM | 1199 | N   | SER | 128 | 33.872 34.807 | 69.440 | 1.00 | 25.75 AAAA        |
|    | ATOM | 1200 | Н   | SER | 128 | 33.200 34.110 | 69.594 | 1.00 | O.OO AAAA         |
| •  | ATOM | 1201 | CA  | SER | 128 | 34.781 35.242 | 70.497 | 1.00 | 26.71 AAAA        |
| 5  | ATOM | 1202 | CB  | SER | 128 | 33.983 35.692 | 71.723 | 1.00 | 26.97 AAAA        |
|    | ATOM | 1203 | OG  | SER | 128 | 33.345 36.937 | 71.487 | 1.00 | 32.77 AAAA        |
|    | ATOM | 1204 | HG  | SER | 128 | 33.932 37.594 | 71.090 | 1.00 | O.OO AAAA         |
|    | ATOM | 1205 | C   | SER | 128 | 35.786 34.166 | 70.909 | 1.00 | 27.80 AAAA        |
|    | ATOM | 1206 | 0   | SER | 128 | 36.560 34.351 | 71.857 | 1.00 | 29.12 AAAA        |
| 10 | ATOM | 1207 | N   | MET | 129 | 35.807 33.056 | 70.180 | 1.00 | 22.86 AAAA        |
|    | ATOM | 1208 | Н   | MET | 129 | 35.182 33.002 | 69.438 | 1.00 | 0.00 AAAA         |
|    | ATOM | 1209 | CA  | MET | 129 | 36.810 32.030 | 70.416 | 1.00 | 20.85 AAAA        |
|    | ATOM | 1210 | CB  | MET | 129 | 36.426 30.738 | 69.710 | 1.00 | 21.01 AAAA        |
|    | ATOM | 1211 | CG  | MET | 129 | 35.109 30.156 | 70.115 | 1.00 | 21.58 AAAA        |
| 15 | MOTA | 1212 | SD  | MET | 129 | 34.770 28.650 | 69.190 | 1.00 | 24.74 AAAA        |
|    | ATOM | 1213 | CE  | MET | 129 | 33.164 28.188 | 69.880 | 1.00 | 20.30 AAAA        |
|    | ATOM | 1214 | C   | MET | 129 | 38.166 32.500 | 69.875 | 1.00 | 21.66 AAAA        |
|    | ATOM | 1215 | 0   | MET | 129 | 38.238 33.329 | 68.961 | 1.00 | 19.22 AAAA        |
|    | ATOM | 1216 | N   | SER | 130 | 39.232 31.880 | 70.361 | 1.00 | 20.89 AAAA        |
| 20 | ATOM | 1217 | Н   | SER | 130 | 39.092 31.193 | 71.016 | 1.00 | 0.00 AAAA         |
|    | ATOM | 1218 | CA  | SER | 130 | 40.568 32.109 | 69.800 | 1.00 | 21.92 AAAA        |
|    | ATOM | 1219 | CB  | SER | 130 | 41.633 31.625 | 70.783 | 1.00 | 13.02 AAAA        |
|    | ATOM | 1220 | OG  | SER | 130 | 41.639 30.219 | 70.811 | 1.00 | 14.33 AAAA        |
|    | MOTA | 1221 | HG  | SER | 130 | 42.205 29.949 | 71.540 | 1.00 | 0.00 AAAA         |
| 25 | ATOM | 1222 | C   | SER | 130 | 40.726 31.351 | 68.464 | 1.00 | 20.98 AAAA        |
|    | MOTA | 1223 | 0   | SER | 130 | 40.168 30.269 | 68.293 | 1.00 | 22.57 AAAA        |
|    | ATOM | 1224 | N   | PRO | 131 | 41.686 31.774 | 67.624 | 1.00 | 21.58 AAAA        |
|    | MOTA | 1225 | CD  | PRO | 131 | 42.485 33.009 | 67.725 | 1.00 | 18.87 AAAA        |
|    | ATOM | 1226 | CA  | PRO | 131 | 42.056 30.997 | 66.431 | 1.00 | 19.82 AAAA        |
| 30 | MOTA | 1227 | CB  | PRO | 131 | 43.341 31.675 | 65.975 | 1.00 | 18.16 AAAA        |
|    | MOTA | 1228 | CG  | PRO | 131 | 43.131 33.097 | 66.364 | 1.00 | 18.91 AAAA        |
|    | ATOM | 1229 | C   | PRO | 131 | 42.256 29.503 | 66.685 | 1.00 | 18.54 AAAA        |
|    | MOTA | 1230 | 0   | PRO | 131 | 41.773 28.660 | 65.939 | 1.00 | 19.61 AAAA        |
|    | ATOM | 1231 | N   | GLU | 132 | 42.866 29.180 | 67.811 | 1.00 | 17.68 AAAA        |
| 35 | ATOM | 1232 | Н   | GLU | 132 | 43.096 29.935 | 68.378 | 1.00 | 0.00 AAAA         |
|    | ATOM | 1233 | CA  | GLU | 132 | 43.061 27.789 | 68.210 | 1.00 | 20.89 AAAA        |
|    | ATOM | 1234 | CB  | GLU | 132 | 44.060 27.717 | 69.377 | 1.00 | 21.09 AAAA        |
|    | ATOM | 1235 | CG  | GLU | 132 | 45.413 28.416 | 69.127 | 1.00 | <b>32.04 AAAA</b> |
|    | ATOM | 1236 | CD  | GLU | 132 | 45.333 29.949 | 69.017 | 1.00 | 36.37 AAAA        |
| 40 | ATOM | 1237 | 0E1 | GLU | 132 | 44.489 30.566 | 69.701 | 1.00 | 37.91 AAAA        |
|    | ATOM | 1238 | 0E2 | GLU | 132 | 46.148 30.546 | 68.269 | 1.00 | 42.82 AAAA        |
|    | ATOM | 1239 | C   | GLU | 132 | 41.727 27.114 | 68.620 | 1.00 | 17.56 AAAA        |
|    | ATOM | 1240 | 0   | GLU | 132 | 41.441 25.973 | 68.252 | 1.00 | 18.36 AAAA        |
|    |      |      |     |     |     |               |        |      |                   |

|    | MOTA   | 1241 | N    | GLU | 133 | 40.913 27.830 | 69.380 | 1.00 | 20.52 | AAAA |
|----|--------|------|------|-----|-----|---------------|--------|------|-------|------|
|    | ATOM   | 1242 | Н    | GLU | 133 | 41.184 28.735 | 69.645 | 1.00 | 0.00  | AAAA |
|    | ATOM   | 1243 | CA   | GLU | 133 | 39.625 27.290 | 69.796 | 1.00 | 20.73 | AAAA |
|    | - ATOM | 1244 | CB   | GLU | 133 | 38.943 28.259 | 70.762 | 1.00 | 23.60 | AAAA |
| 5  | MOTA   | 1245 | CG   | GLU | 133 | 39.479 28.128 | 72.198 | 1.00 | 24.26 | AAAA |
| _  | ATOM   | 1246 | CD   | GLU | 133 | 39.027 29.241 | 73.118 | 1.00 | 25.00 | AAAA |
|    | MOTA   | 1247 | 0E1  | GLU | 133 | 38.859 30.389 | 72.659 | 1.00 | 25.09 | AAAA |
|    | ATOM   | 1248 | 0E2  | GLU | 133 | 38.907 28.977 | 74.331 | 1.00 | 28.62 | AAAA |
|    | ATOM   | 1249 | C    | GLU | 133 | 38.730 27.019 | 68.597 | 1.00 | 18.69 | AAAA |
| 10 | ATOM   | 1250 | 0    | GLU | 133 | 38.093 25.967 | 68.514 | 1.00 | 19.64 | AAAA |
|    | ATOM   | 1251 | N    | ARG | 134 | 38.800 27.908 | 67.612 | 1.00 | 20.05 | AAAA |
|    | ATOM   | 1252 | Н    | ARG | 134 | 39.396 28.673 | 67.722 | 1.00 | 0.00  | AAAA |
|    | ATOM   | 1253 | CA   | ARG | 134 | 37.986 27.786 | 66.391 | 1.00 | 18.25 | AAAA |
|    | ATOM   | 1254 | CB   | ARG | 134 | 38.135 29.038 | 65.543 | 1.00 | 13.07 | AAAA |
| 15 | ATOM   | 1255 | CG   | ARG | 134 | 37.576 30.266 | 66.200 | 1.00 | 12.02 | AAAA |
|    | ATOM   | 1256 | CD   | ARG | 134 | 37.921 31.498 | 65.435 | 1.00 | 14.57 |      |
|    | ATOM   | 1257 | NE   | ARG | 134 | 37.128 32.629 | 65.891 | 1.00 | 14.70 |      |
|    | ATOM   | 1258 | HE   | ARG | 134 | 36.251 32.439 | 66.282 | 1.00 | 0.00  | AAAA |
|    | ATOM   | 1259 | CZ   | ARG | 134 | 37.518 33.894 | 65.804 | 1.00 | 17.08 |      |
| 20 | ATOM   | 1260 | NH1  | ARG | 134 | 36.702 34.867 | 66.202 | 1.00 |       | AAAA |
|    | ATOM   | 1261 | HH11 | ARG | 134 | 37.003 35.819 | 66.165 | 1.00 | 0.00  | AAAA |
|    | ATOM   | 1262 | HH12 | ARG | 134 | 35.791 34.643 | 66.549 | 1.00 | 0.00  | AAAA |
|    | ATOM   | 1263 | NH2  | ARG | 134 | 38.697 34.191 | 65.267 | 1.00 |       | AAAA |
|    | ATOM   | 1264 | HH21 | ARG | 134 | 39.284 33.466 | 64.908 | 1.00 | 0.00  | AAAA |
| 25 | MOTA   | 1265 | HH22 | ARG | 134 | 38.996 35.145 | 65.226 | 1.00 | 0.00  | AAAA |
|    | MOTA   | 1266 | C    | ARG | 134 | 38.311 26.543 | 65.566 | 1.00 |       | AAAA |
|    | ATOM   | 1267 | 0    | ARG | 134 | 37.406 25.854 | 65.078 | 1.00 |       | AAAA |
|    | ATOM   | 1268 | N    | ALA | 135 | 39.585 26.156 | 65.568 | 1.00 |       | AAAA |
|    | MOTA   | 1269 | Н    | ALA | 135 | 40.235 26.734 | 66.017 | 1.00 | 0.00  | AAAA |
| 30 | ATOM   | 1270 | CA   | ALA | 135 | 40.009 24.934 | 64.905 | 1.00 |       | AAAA |
|    | ATOM   | 1271 | CB   | ALA | 135 | 41.538 24.867 | 64.833 | 1.00 |       | AAAA |
|    | MOTA   | 1272 | C    | ALA | 135 | 39.462 23.712 | 65.635 | 1.00 |       | AAAA |
|    | ATOM   | 1273 | 0    | ALA | 135 | 39.029 22.744 | 65.010 | 1.00 |       | AAAA |
|    | ATOM   | 1274 | N    | ARG | 136 | 39.476 23.762 | 66.963 | 1.00 |       | AAAA |
| 35 | ATOM   | 1275 | Н    | ARG | 136 | 39.873 24.554 | 67.393 | 1.00 |       | AAAA |
|    | ATOM   | 1276 | CA   | ARG | 136 | 38.935 22.677 | 67.785 | 1.00 |       | AAAA |
|    | ATOM   | 1277 | CB   | ARG | 136 | 39.268 22.948 | 69.255 | 1.00 |       | AAAA |
|    | ATOM   | 1278 | CG   | ARG | 136 | 39.719 21.737 | 70.028 | 1.00 |       | AAAA |
|    | MOTA   | 1279 | CD   | ARG | 136 | 40.153 22.137 | 71.432 | 0.00 |       | AAAA |
| 40 | MOTA   | 1280 | NE   | ARG | 136 | 40.848 21.059 | 72.132 | 0.00 |       | AAAA |
|    | MOTA   |      | HE   | ARG | 136 | 41.821 20.997 | 72.030 | 0.00 | 0.00  | AAAA |
|    | MOTA   | 1282 |      | ARG | 136 |               | 72.908 | 0.00 |       | AAAA |
|    | ATOM   | 1283 | NH1  | ARG | 136 | 40.975 19.250 | 73.546 | 0.00 | 26.25 | AAAA |
|    |        |      | •    |     |     |               |        |      |       |      |

|    | ATOM        | 1284 | <b>HH11</b> | ARG | 136 | 41.972 19.258 | 73.462 | 1.00 | 0.00  | AAAA |
|----|-------------|------|-------------|-----|-----|---------------|--------|------|-------|------|
|    | <b>MOTA</b> | 1285 | <b>HH12</b> | ARG | 136 | 40.527 18.592 | 74.150 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1286 | NH2         | ARG | 136 | 38.930 20.142 | 73.022 | 0.00 | 26.23 | AAAA |
|    | ATOM        | 1287 | <b>HH21</b> | ARG | 136 | 38.372 20.799 | 72.513 | 1.00 | 0.00  | AAAA |
| 5  | ATOM        | 1288 | <b>HH22</b> | ARG | 136 | 38.488 19.468 | 73.613 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1289 | C           | ARG | 136 | 37.400 22.548 | 67.608 | 1.00 | 20.95 | AAAA |
|    | ATOM        | 1290 | 0           | ARG | 136 | 36.854 21.445 | 67.486 | 1.00 | 20.97 | AAAA |
|    | ATOM        | 1291 | N           | TYR | 137 | 36.717 23.684 | 67.612 | 1.00 | 17.84 | AAAA |
|    | ATOM        | 1292 | Н           | TYR | 137 | 37.205 24.511 | 67.800 | 1.00 | 0.00  | AAAA |
| 10 | ATOM        | 1293 | CA          | TYR | 137 | 35.289 23.702 | 67.369 | 1.00 |       | AAAA |
|    | ATOM        | 1294 | CB          | TYR | 137 | 34.772 25.129 | 67.536 | 1.00 | 18.25 | AAAA |
|    | MOTA        | 1295 | CG          | TYR | 137 | 33.262 25.292 | 67.445 | 1.00 | 21.44 | AAAA |
|    | ATOM        | 1296 | CD1         | TYR | 137 | 32.388 24.288 | 67.867 | 1.00 | 22.83 | AAAA |
|    | ATOM        | 1297 | CE1         | TYR | 137 | 30.989 24.460 | 67.767 | 1.00 |       | AAAA |
| 15 | ATOM        | 1298 | CD2         | TYR | 137 | 32.712 26.467 | 66.931 | 1.00 |       | AAAA |
|    | ATOM        | 1299 | CE2         | TYR | 137 | 31.336 26.645 | 66.837 | 1.00 |       | AAAA |
|    | ATOM        | 1300 | CZ          | TYR | 137 | 30.481 25.645 | 67.253 | 1.00 |       | AAAA |
|    | ATOM        | 1301 | OH          | TYR | 137 | 29.124 25.869 | 67.158 | 1.00 |       | AAAA |
|    | ATOM        | 1302 | HH          | TYR | 137 | 28.634 25.119 | 67.487 | 1.00 | 0.00  | AAAA |
| 20 | MOTA        | 1303 | C           | TYR | 137 | 34.982 23.136 | 65.969 | 1.00 |       | AAAA |
|    | ATOM        | 1304 | 0           | TYR | 137 | 34.284 22.126 | 65.862 | 1.00 |       | AAAA |
|    | ATOM        | 1305 | N           | LEU | 138 | 35.682 23.621 | 64.939 | 1.00 |       | AAAA |
|    | MOTA        | 1306 | Н           | LEU | 138 | 36.295 24.357 | 65.103 | 1.00 | 0.00  | AAAA |
|    | ATOM        | 1307 | CA          | LEU | 138 | 35.518 23.068 | 63.582 | 1.00 |       | AAAA |
| 25 | ATOM        | 1308 | CB          | LEU | 138 | 36.472 23.730 | 62.586 | 1.00 |       | AAAA |
|    | ATOM        | 1309 | CG          | LEU | 138 | 36.270 23.242 | 61.144 | 1.00 |       | AAAA |
|    | ATOM        | 1310 | CD1         | LEU | 138 | 34.887 23.658 | 60.627 | 1.00 |       | AAAA |
|    | ATOM        | 1311 | CD2         | LEU | 138 | 37.357 23.808 | 60.262 | 1.00 |       | AAAA |
|    | ATOM        | 1312 | C           | LEU | 138 | 35.679 21.547 | 63.480 | 1.00 |       | AAAA |
| 30 | ATOM        | 1313 | 0           | LEU | 138 | 34.883 20.888 | 62.811 | 1.00 |       | AAAA |
|    | MOTA        | 1314 | N           | GLU | 139 | 36.717 21.001 | 64.115 | 1.00 |       | AAAA |
|    | ATOM        |      | Н           | GLU | 139 | 37.378 21.603 | 64.525 | 1.00 |       | AAAA |
|    | ATOM        | 1316 | CA          | GLU | 139 | 36.884 19.555 | 64.225 | 1.00 |       | AAAA |
|    | ATOM        | 1317 | CB          | GLU | 139 | 38.111 19.221 |        | 1.00 |       | AAAA |
| 35 | ATOM        | 1318 | CG          | GLU | 139 | 39.429 19.788 | 64.559 | 1.00 |       | AAAA |
| •  | ATOM        | 1319 | CD          | GLU | 139 | 40.623 19.513 | 65.491 | 1.00 |       | AAAA |
|    | ATOM        | 1320 | OE1         | GLU | 139 | 41.176 18.390 | 65.443 | 1.00 |       | AAAA |
|    | ATOM        | 1321 | 0E2         | GLU | 139 | 41.027 20.429 | 66.245 | 1.00 |       | AAAA |
|    | ATOM        | 1322 | C           | GLU | 139 | 35.639 18.897 | 64.842 | 1.00 |       | AAAA |
| 40 | ATOM        | 1323 | 0           | GLU | 139 | 35.147 17.903 | 64.318 | 1.00 |       | AAAA |
|    | ATOM        | 1324 | N           | ASN | 140 | 35.090 19.484 | 65.904 | 1.00 |       | AAAA |
|    | ATOM        |      | Н           | ASN | 140 | 35.529 20.277 | 66.280 | 1.00 |       | AAAA |
|    | ATOM        | 1326 | CA          | ASN | 140 | 33.884 18.922 | 66.545 | 1.00 | 30.15 | AAAA |
|    |             |      |             |     |     |               |        |      |       |      |

|    | ATOM | 1327 | CB   | ASN   | 140 | 33.647 19.558 | 67.922 | 1.00 | 32.80        | AAAA |
|----|------|------|------|-------|-----|---------------|--------|------|--------------|------|
|    | ATOM | 1328 | CG   | ASN   | 140 | 34.831 19.416 | 68.854 | 1.00 | 35.71        | AAAA |
|    | ATOM | 1329 | 0D1  | ASN   | 140 | 35.740 18.621 | 68.634 | 1.00 | 37.11        | AAAA |
| -  | ATOM | 1330 | ND2  | ASN   | 140 | 34.828 20.210 | 69.906 | 1.00 | 38.04        | AAAA |
| 5  | ATOM | 1331 | HD21 | ASN   | 140 | 34.054 20.795 | 70.059 | 1.00 | 0.00         | AAAA |
|    | MOTA | 1332 | HD22 | 2 ASN | 140 | 35.627 20.136 | 70.454 | 1.00 | 0.00         | AAAA |
|    | MOTA | 1333 | C    | ASN   | 140 | 32.601 19.106 | 65.720 | 1.00 | 30.97        | AAAA |
|    | MOTA | 1334 | 0    | ASN   | 140 | 31.654 18.317 | 65.819 | 1.00 | 33.89        | AAAA |
|    | ATOM | 1335 | N    | TYR   | 141 | 32.524 20.242 | 65.041 | 1.00 | 29.95        | AAAA |
| 10 | ATOM | 1336 | Н    | TYR   | 141 | 33.363 20.717 | 64.917 | 1.00 | 0.00         | AAAA |
|    | ATOM | 1337 | CA   | TYR   | 141 | 31.299 20.738 | 64.430 | 1.00 | 28.02        | AAAA |
|    | ATOM | 1338 | CB   | TYR   | 141 | 31.466 22.222 | 64.099 | 1.00 | <b>25.30</b> | AAAA |
|    | ATOM | 1339 | CG   | TYR   | 141 | 30.191 22.921 | 63.727 | 1.00 | 23.02        | AAAA |
|    | ATOM | 1340 | CD1  | TYR   | 141 | 29.318 23.352 | 64.711 | 1.00 | 24.68        | AAAA |
| 15 | ATOM | 1341 | CE1  | TYR   | 141 | 28.155 24.034 | 64.396 | 1.00 | 23.87        | AAAA |
|    | ATOM | 1342 | CD2  | TYR   | 141 | 29.878 23.186 | 62.400 | 1.00 | 17.67        | AAAA |
|    | ATOM | 1343 | CE2  | TYR   | 141 | 28.722 23.874 | 62.073 | 1.00 | 26.80        | AAAA |
|    | ATOM | 1344 | CZ   | TYR   | 141 | 27.863 24.298 | 63.083 | 1.00 | 25.22        | AAAA |
|    | ATOM | 1345 | OH   | TYR   | 141 | 26.738 25.024 | 62.790 | 1.00 | 27.16        | AAAA |
| 20 | ATOM | 1346 | HH   | TYR   | 141 | 26.724 25.168 | 61.847 | 1.00 | 0.00         | AAAA |
|    | ATOM | 1347 | C    | TYR   | 141 | 30.968 19.958 | 63.162 | 1.00 | 29.46        | AAAA |
|    | ATOM | 1348 | 0    | TYR   | 141 | 31.220 20.422 | 62.047 | 1.00 | 28.34        | AAAA |
|    | ATOM | 1349 | N    | ASP   | 142 | 30.217 18.882 | 63.349 | 1.00 | 30.05        | AAAA |
|    | ATOM | 1350 | Н    | ASP   | 142 | 29.913 18.788 | 64.276 | 1.00 | 0.00         | AAAA |
| 25 | ATOM | 1351 | CA   | ASP   | 142 | 29.980 17.888 | 62.311 | 1.00 | 33.85        | AAAA |
|    | ATOM | 1352 | CB   | ASP   | 142 | 29.123 16.750 | 62.880 | 1.00 | 42.00        | AAAA |
|    | ATOM | 1353 | CG   | ASP   | 142 | 29.400 16.473 | 64.361 | 1.00 | 49.95        |      |
|    | ATOM | 1354 | 0D1  | ASP   | 142 | 28.696 17.052 | 65.230 | 1.00 | 48.78        | AAAA |
|    | ATOM | 1355 | 0D2  | ASP   | 142 | 30.288 15.633 | 64.648 | 1.00 | 53.91        |      |
| 30 | ATOM | 1356 | C    | ASP   | 142 | 29.308 18.452 | 61.047 | 1.00 | 32.97        | AAAA |
|    | ATOM | 1357 | 0    | ASP   | 142 | 29.589 18.017 | 59.926 | 1.00 | 31.12        | AAAA |
|    | ATOM | 1358 | N    | ALA   | 143 | 28.443 19.442 | 61.243 | 1.00 | 30.82        | AAAA |
|    | ATOM | 1359 | H    | ALA   | 143 | 28.396 19.832 | 62.132 | 1.00 | 0.00         | AAAA |
|    | ATOM | 1360 | CA   | ALA   | 143 | 27.622 19.997 | 60.176 | 1.00 | 31.33        | AAAA |
| 35 | ATOM | 1361 | CB   | ALA   | 143 | 26.685 21.056 | 60.747 | 1.00 | 30.92        | AAAA |
|    | ATOM | 1362 | C    | ALA   | 143 | 28.407 20.577 | 58.989 | 1.00 |              | AAAA |
|    | ATOM | 1363 | 0    | ALA   | 143 | 27.900 20.600 | 57.869 | 1.00 | 37.58        | AAAA |
|    | ATOM | 1364 | N    | ·ILE  | 144 | 29.628 21.061 | 59.215 | 1.00 | 29.28        |      |
|    | ATOM | 1365 | Н    | ILE   | 144 | 30.015 21.012 | 60.119 | 1.00 | 0.00         |      |
| 40 | MOTA | 1366 | CA   | ILE   | 144 | 30.416 21.591 | 58.107 | 1.00 | 27.01        | AAAA |
|    | ATOM | 1367 | CB   | ILE   | 144 | 31.344 22.736 | 58.568 | 1.00 | 27.54        | AAAA |
|    |      | 1368 |      | ILE   | 144 | 32.231 23.223 | 57.416 | 1.00 |              | AAAA |
|    | ATOM | 1369 | CG1  | ILE   | 144 | 30.485 23.919 | 59.024 | 1.00 | 25.26        | AAAA |
|    |      |      |      |       |     |               |        |      |              |      |

|    | ATOM | 1370 | CD          | ILE | 144 | 31.254 2        | 5.121  | 59.464 | 1.00 | 24.22 | AAAA |
|----|------|------|-------------|-----|-----|-----------------|--------|--------|------|-------|------|
|    | ATOM | 1371 | C           | ILE | 144 | 31.177 2        | 0.463  | 57.420 | 1.00 | 29.24 | AAAA |
|    | ATOM | 1372 | 0           | ILE | 144 | 32.313 2        | 0.126  | 57.774 | 1.00 | 30.95 | AAAA |
| •  | ATOM | 1373 | N           | ARG | 145 | 30.454 1        | 9.795  | 56.524 | 1,00 | 28.91 | AAAA |
| 5  | ATOM | 1374 | Н           | ARG | 145 | 29.547 2        | 0.114  | 56.340 | 1.00 | 0.00  | AAAA |
|    | ATOM | 1375 | CA          | ARG | 145 | 30.895 1        | 8.579  | 55.834 | 1.00 | 29.33 | AAAA |
|    | ATOM | 1376 | CB          | ARG | 145 | 30.311 1        | 7.342  | 56.539 | 1.00 | 30.28 | AAAA |
|    | ATOM | 1377 | CG          | ARG | 145 | 29.988 1        | 6.150  | 55.646 | 0.00 | 29.38 | AAAA |
|    | ATOM | 1378 | CD          | ARG | 145 | 31.078 1        | 5.091  | 55.690 | 0.00 | 29.04 | AAAA |
| 10 | ATOM | 1379 | NE          | ARG | 145 | 31.399 1        | 4.683  | 57.056 | 0.00 | 28.60 | AAAA |
|    | ATOM | 1380 | HE          | ARG | 145 | 31.308 1        | 5.336  | 57.782 | 0.00 | 0.00  | AAAA |
|    | ATOM | 1381 | CZ          | ARG | 145 | 31.833 1        | 3.473  | 57.396 | 0.00 | 28.42 | AAAA |
|    | ATOM | 1382 | NH1         | ARG | 145 | 32.122 1        | 3.208  | 58.663 | 0.00 | 28.25 | AAAA |
|    | ATOM | 1383 | <b>HH11</b> | ARG | 145 | 32.021 1        | 3.923  | 59.354 | 1.00 | 0.00  | AAAA |
| 15 | ATOM | 1384 | <b>HH12</b> | ARG | 145 | 32.454 1        | 2.300  | 58.923 | 1.00 | 0.00  | AAAA |
|    | ATOM | 1385 | NH2         | ARG | 145 | 31.974 1        | 2.524  | 56.479 | 0.00 | 28.30 | AAAA |
|    | ATOM | 1386 | <b>HH21</b> | ARG | 145 | 32.314 1        | 1.623  | 56.749 | 1.00 | 0.00  | AAAA |
|    | ATOM | 1387 | HH22        | ARG | 145 | 31.721 1        | 2.696  | 55.526 | 1.00 | 0.00  | AAAA |
|    | ATOM | 1388 | C           | ARG | 145 | 30.355 1        | 8.676  | 54.415 | 1.00 |       | AAAA |
| 20 | ATOM | 1389 | 0           | ARG | 145 | 29.256 1        |        | 54.236 | 1.00 |       | AAAA |
|    | ATOM | 1390 | N           | VAL | 146 | <b>31.187</b> 1 | 18.416 | 53.415 | 1.00 |       | AAAA |
|    | ATOM | 1391 | Н           | VAL | 146 | 32.098 1        |        | 53.593 | 1.00 | 0.00  | AAAA |
|    | ATOM | 1392 | CA          | VAL | 146 | 30.698 1        | 18.434 | 52.042 | 1.00 |       | AAAA |
|    | ATOM | 1393 | CB          | VAL | 146 | 31.845          | 8.531  | 50.978 | 1.00 |       | AAAA |
| 25 | ATOM | 1394 | CG1         | VAL | 146 | 32.686          | 19.774 | 51.208 | 1.00 |       | AAAA |
|    | ATOM | 1395 | CG2         | VAL | 146 | 32.717          | 17.285 | 50.996 | 1.00 |       | AAAA |
|    | ATOM | 1396 | C           | VAL | 146 | 29.899          |        | 51.815 | 1.00 |       | AAAA |
|    | ATOM | 1397 | 0T1         | VAL | 146 | 30.301          |        | 52.395 | 1.00 |       | AAAA |
|    | ATOM | 1398 | OT2         | VAL | 146 | 28.808          |        | 51.203 | 1.00 |       | AAAA |
| 30 | ATOM | 1399 | CB          | ASP | 167 | 51.716          | 18.609 | 47.898 | 1.00 |       | BBBB |
|    | ATOM | 1400 | CG          | ASP | 167 | 53.148          |        | 47.435 | 1.00 |       | BBBB |
|    | ATOM | 1401 | 0D1         | ASP | 167 |                 |        | 47.033 | 1.00 |       | BBBB |
|    | ATOM | 1402 | 0D2         | ASP | 167 | 53.560 2        |        | 47.426 | 1.00 |       | BBBB |
|    | MOTA | 1403 | C           | ASP | 167 | 50.546          |        | 48.673 | 1.00 |       | BBBB |
| 35 | ATOM | 1404 | 0           | ASP | 167 | 51.079          |        | 48.786 | 1.00 |       | BBBB |
|    | ATOM | 1405 | HT1         | ASP | 167 | 49.531          |        | 49.508 | 1.00 | 0.00  | BBBB |
|    | ATOM | 1406 | HT2         | ASP | 167 | 50.055          |        | 50.836 | 1.00 | 0.00  | BBBB |
|    | ATOM | 1407 | N           | ASP | 167 | 50.385          |        | 50.034 | 1.00 |       | BBBB |
|    | ATOM | 1408 | HT3         | ASP | 167 | 50.902          |        | 50.403 | 1.00 | 0.00  | BBBB |
| 40 | ATOM |      | CA          | ASP | 167 | 51.272          |        | 49.130 | 1.00 |       | BBBB |
|    | ATOM | 1410 | N           | LEU | 168 | 49.330          |        | 48.152 | 1.00 |       | BBBB |
|    | ATOM |      | H           | LEU | 168 | 48.993          |        | 47.910 | 1.00 | 0.00  | BBBB |
|    | ATOM | 1412 | CA          | LEU | 168 | 48.483          | 21.649 | 47.735 | 1.00 | 30.48 | BBBB |
|    |      |      |             |     |     |                 |        |        |      |       |      |

|    | ATOM | 1413 | CB  | LEU | 168 | 47.434 21.174 | 46.711 | 1.00 | 29.61 | BBBB |
|----|------|------|-----|-----|-----|---------------|--------|------|-------|------|
|    | ATOM | 1414 | CG  | LEU | 168 | 47.519 21.629 | 45.234 | 1.00 | 34.32 | BBBB |
|    | ATOM | 1415 | CD1 | LEU | 168 | 48.957 21.832 | 44.759 | 1.00 | 27.65 | BBBB |
| -  | ATOM | 1416 | CD2 | LEU | 168 | 46.800 20.592 | 44.368 | 1.00 | 27.35 | BBBB |
| 5  | ATOM | 1417 | C   | LEU | 168 | 47.786 22.321 | 48.937 | 1.00 | 27.15 | BBBB |
|    | ATOM | 1418 | 0   | LEU | 168 | 47.365 21.644 | 49.867 | 1.00 | 28.57 | BBBB |
|    | MOTA | 1419 | N   | HIS | 169 | 47.712 23.649 | 48.927 | 1.00 | 22.41 | BBBB |
|    | MOTA | 1420 | Н   | HIS | 169 | 47.989 24.120 | 48.109 | 1.00 | 0.00  | BBBB |
|    | MOTA | 1421 | CA  | HIS | 169 | 47.223 24.415 | 50.068 | 1.00 | 16.79 | BBBB |
| 10 | MOTA | 1422 | CB  | HIS | 169 | 48.425 24.912 | 50.889 | 1.00 | 15.93 | BBBB |
|    | MOTA | 1423 | CG  | HIS | 169 | 48.067 25.462 | 52.235 | 1.00 | 13.63 | BBBB |
|    | MOTA | 1424 | CD2 | HIS | 169 | 48.301 26.674 | 52.792 | 1.00 | 13.31 | BBBB |
|    | ATOM | 1425 | ND1 | HIS | 169 | 47.275 24.780 | 53.135 | 1.00 | 19.04 | BBBB |
|    | ATOM | 1426 | HD1 | HIS | 169 | 46.915 23.885 | 53.069 | 1.00 | 0.00  | BBBB |
| 15 | ATOM | 1427 | CE1 | HIS | 169 | 47.024 25.550 | 54.177 | 1.00 | 15.56 |      |
|    | MOTA | 1428 | NE2 | HIS | 169 | 47.641 26.704 | 53.996 | 1.00 | 14.61 |      |
|    | MOTA | 1429 | HE2 | HIS | 169 | 47.457 27.477 | 54.543 | 1.00 |       | BBBB |
|    | ATOM | 1430 | C   | HIS | 169 | 46.378 25.605 | 49.589 | 1.00 | 15.63 |      |
|    | ATOM | 1431 | 0   | HIS | 169 | 46.655 26.195 | 48.551 | 1.00 | 15.56 |      |
| 20 | MOTA | 1432 | N   | PHE | 170 | 45.336 25.936 | 50.347 | 1.00 | 11.37 |      |
|    | ATOM | 1433 | Н   | PHE | 170 | 45.080 25.342 | 51.078 | 1.00 | 0.00  | BBBB |
|    | ATOM | 1434 | CA  | PHE | 170 | 44.529 27.119 | 50.091 | 1.00 | 13.04 |      |
|    | ATOM | 1435 | CB  | PHE | 170 | 43.034 26.820 | 50.263 | 1.00 | 15.00 |      |
|    | ATOM | 1436 | CG  | PHE | 170 | 42.363 26.294 | 49.024 | 1.00 | 13.40 |      |
| 25 | MOTA | 1437 | CD1 | PHE | 170 | 42.008 24.954 | 48.930 | 1.00 | 16.80 |      |
|    | ATOM | 1438 | CD2 | PHE | 170 | 41.975 27.160 | 48.016 | 1.00 | 17.90 |      |
|    | ATOM | 1439 | CE1 | PHE | 170 | 41.253 24.481 | 47.862 | 1.00 | 15.73 |      |
|    | ATOM | 1440 | CE2 | PHE | 170 | 41.216 26.692 | 46.931 | 1.00 | 19.11 |      |
|    | ATOM | 1441 | CZ  | PHE | 170 | 40.856 25.352 | 46.866 | 1.00 | 14.95 |      |
| 30 | ATOM | 1442 | C   | PHE | 170 | 44.870 28.218 | 51.068 | 1.00 |       | BBBB |
|    | ATOM |      | 0   | PHE | 170 | 45.009 27.977 | 52.273 | 1.00 |       | BBBB |
|    | ATOM |      | N   | ILE | 171 | 44.908 29.438 | 50.562 | 1.00 |       | BBBB |
|    | ATOM |      | Н   | ILE | 171 | 44.992 29.531 | 49.589 | 1.00 |       | BBBB |
|    | MOTA |      | CA  | ILE | 171 | 44.790 30.602 | 51.423 | 1.00 |       | BBBB |
| 35 | ATOM |      | CB  | ILE | 171 | 46.115 31.418 | 51.506 | 1.00 |       | BBBB |
|    | MOTA |      | CG2 | ILE | 171 | 47.216 30.540 | 52.100 | 1.00 |       | BBBB |
|    | ATOM |      | CG1 | ILE | 171 | 46.520 31.954 | 50.133 | 1.00 |       | BBBB |
|    | ATOM | 1450 | CD  | ILE | 171 | 47.653 32.960 | 50.180 | 1.00 |       | BBBB |
|    | ATOM |      | C   | ILE | 171 | 43.646 31.499 | 50.942 | 1.00 |       | BBBB |
| 40 |      | 1452 | 0   | ILE | 171 | 43.136 31.317 | 49.826 | 1.00 |       | BBBB |
|    | ATOM |      | N   | ALA |     | 43.153 32.332 | 51.855 | 1.00 |       | BBBB |
|    |      | 1454 | Н   | ALA |     | 43.513 32.279 | 52.767 | 1.00 | 0.00  | BBBB |
|    | ATOM | 1455 | CA  | ALA | 172 | 42.126 33.309 | 51.554 | 1.00 | 11.34 | BBBB |
|    |      |      |     |     |     |               |        |      |       |      |

|    | ATOM | 1456 | CB  | ·ALA | 172 | 40.961 33.159 | 52.534 | 1.00 | 12.21 | BBBB        |
|----|------|------|-----|------|-----|---------------|--------|------|-------|-------------|
|    | ATOM | 1457 | C   | ALA  | 172 | 42.715 34.705 | 51.626 | 1.00 | 13.20 | BBBB        |
|    | ATOM | 1458 | 0   | ALA  | 172 | 43.537 35.009 | 52.500 | 1.00 | 13.74 | BBBB        |
| -  | ATOM | 1459 | N   | LEU  | 173 | 42.324 35.544 | 50.670 | 1.00 | 14.10 | BBBB        |
| 5  | ATOM | 1460 | Н   | LEU  | 173 | 41.732 35.187 | 49.978 | 1.00 | 0.00  | <b>BBBB</b> |
|    | ATOM | 1461 | CA  | LEU  | 173 | 42.744 36.942 | 50.630 | 1.00 | 13.28 | <b>BBBB</b> |
|    | ATOM | 1462 | CB  | LEU  | 173 | 43.535 37.208 | 49.345 | 1.00 | 14.89 | <b>BBBB</b> |
|    | ATOM | 1463 | CG  | LEU  | 173 | 44.958 36.611 | 49.358 | 1.00 | 17.25 | <b>BBBB</b> |
|    | MOTA | 1464 | CD1 | LEU  | 173 | 45.526 36.424 | 47.940 | 1.00 | 14.54 | <b>BBBB</b> |
| 10 | MOTA | 1465 | CD2 | LEU  | 173 | 45.847 37.539 | 50.191 | 1.00 | 15.04 | <b>BBBB</b> |
|    | ATOM | 1466 | C   | LEU  | 173 | 41.502 37.827 | 50.688 | 1.00 | 16.11 | BBBB        |
|    | ATOM | 1467 | 0   | LEU  | 173 | 40.568 37.637 | 49.907 | 1.00 | 16.45 | <b>BBBB</b> |
|    | ATOM | 1468 | N   | VAL  | 174 | 41.425 38.646 | 51.736 | 1.00 | 16.31 | BBBB        |
|    | ATOM | 1469 | H   | VAL  | 174 | 42.209 38.693 | 52.325 | 1.00 | 0.00  | BBBB        |
| 15 | ATOM | 1470 | CA  | VAL  | 174 | 40.237 39.448 | 52.028 | 1.00 | 17.92 | BBBB        |
|    | ATOM | 1471 | CB  | VAL  | 174 | 39.351 38.822 | 53.157 | 1.00 | 17.86 | BBBB        |
|    | ATOM | 1472 | CG1 | VAL  | 174 | 38.869 37.422 | 52.764 | 1.00 | 15.30 | BBBB        |
|    | ATOM | 1473 | CG2 | VAL  | 174 | 40.130 38.787 | 54.480 | 1.00 | 16.97 | BBBB        |
|    | ATOM | 1474 | C   | VAL  | 174 | 40.588 40.865 | 52.459 | 1.00 | 18.53 |             |
| 20 | ATOM | 1475 | 0   | VAL  | 174 | 41.690 41.149 | 52.931 | 1.00 | 17.41 | BBBB        |
|    | MOTA | 1476 | N   | HIS  | 175 | 39.623 41.751 | 52.294 | 1.00 | 18.01 |             |
|    | MOTA | 1477 | Н   | HIS  | 175 | 38.768 41.427 | 51.928 | 1.00 | 0.00  | BBBB        |
|    | ATOM | 1478 | CA  | HIS  | 175 | 39.784 43.137 | 52.667 | 1.00 | 22.89 |             |
|    | ATOM | 1479 | CB  | HIS  | 175 | 39.178 44.038 | 51.590 | 1.00 | 24.46 |             |
| 25 | ATOM | 1480 | CG  | HIS  | 175 | 38.940 45.443 | 52.047 | 1.00 | 28.42 |             |
|    | ATOM | 1481 | CD2 | HIS  | 175 | 39.797 46.404 | 52.459 | 1.00 | 29.90 |             |
|    | ATOM | 1482 | ND1 | HIS  | 175 | 37.680 45.987 | 52.146 | 1.00 | 29.90 |             |
|    | ATOM | 1483 | HD1 | HIS  | 175 | 36.868 45.469 | 51.941 | 1.00 | 0.00  | BBBB        |
|    | ATOM | 1484 | CE1 | HIS  | 175 | 37.769 47.222 | 52.596 | 1.00 | 30.93 |             |
| 30 | ATOM | 1485 | NE2 | HIS  | 175 | 39.044 47.499 | 52.797 | 1.00 | 31.81 | BBBB        |
|    | MOTA | 1486 | HE2 | HIS  | 175 | 39.397 48.399 | 52.952 | 1.00 | 0.00  | BBBB        |
|    | ATOM |      | C   | HIS  | 175 | 39.090 43.373 | 53.994 | 1.00 | 23.68 |             |
|    | MOTA |      | 0   | HIS  | 175 | 37.890 43.165 | 54.103 | 1.00 | 23.93 |             |
|    | ATOM |      | N   | VAL  | 176 | 39.852 43.761 | 55.011 | 1.00 | 24.25 |             |
| 35 | ATOM | 1490 | Н   | VAL  | 176 | 40.832 43.727 | 54.897 | 1.00 | 0.00  | BBBB        |
|    | ATOM |      | CA  | VAL  | 176 | 39.259 44.145 | 56.291 | 1.00 | 25.87 |             |
|    | ATOM | 1492 | CB  | VAL  | 176 | 39.486 43.065 | 57.389 | 1.00 | 26.10 |             |
|    | ATOM | 1493 | CG1 | VAL  | 176 | 38.747 43.442 | 58.658 | 1.00 | 23.79 |             |
|    | ATOM | 1494 | CG2 | VAL  | 176 | 39.012 41.709 | 56.905 | 1.00 | 23.00 |             |
| 40 |      | 1495 | C   | VAL  | 176 | 39.844 45.471 | 56.765 | 1.00 | 26.17 |             |
|    |      | 1496 | 0   | VAL  | 176 | 41.061 45.661 | 56.745 | 1.00 | 25.83 |             |
|    |      | 1497 | N   | ASP  | 177 | 38.961 46.423 | 57.064 | 1.00 | 30.10 |             |
|    | ATOM | 1498 | Н   | ASP  | 177 | 38.013 46.197 | 56.991 | 1.00 | 0.00  | BBBB        |
|    |      |      |     |      |     |               |        |      |       |             |

|    | 4.7014 | 4.400 |     |     |     |               |        |      | ~ ~ ~ ~ |      |
|----|--------|-------|-----|-----|-----|---------------|--------|------|---------|------|
|    | ATOM   | 1499  | CA  | ASP | 177 | 39.348 47.735 | 57.593 | 1.00 | 31.23   | BBBB |
|    | MOTA   | 1500  | CB  | ASP | 177 | 39.656 47.634 | 59.088 | 1.00 | 37.10   | BBBB |
|    | MOTA   | 1501  | CG  | ASP | 177 | 38.434 47.241 | 59.924 | 1.00 | 43.92   | BBBB |
| •  | ATOM   | 1502  | 0D1 | ASP | 177 | 38.610 46.901 | 61.115 | 1.00 | 45.60   | BBBB |
| 5  | ATOM   | 1503  | 0D2 | ASP | 177 | 37.299 47.249 | 59.388 | 1.00 | 48.64   | BBBB |
|    | ATOM   | 1504  | C   | ASP | 177 | 40.540 48.339 | 56.864 | 1.00 | 30.72   | BBBB |
|    | ATOM   | 1505  | 0   | ASP | 177 | 41.580 48.596 | 57.472 | 1.00 | 31.89   | BBBB |
|    | ATOM   | 1506  | N   | GLY | 178 | 40.456 48.339 | 55.535 | 1.00 | 29.77   | BBBB |
|    | ATOM   | 1507  | Н   | GLY | 178 | 39.689 47.869 | 55.161 | 1.00 | 0.00    | BBBB |
| 10 | ATOM   | 1508  | CA  | GLY | 178 | 41.435 49.035 | 54.715 | 1.00 | 30.17   | BBBB |
|    | MOTA   | 1509  | C   | GLY | 178 | 42.725 48.298 | 54.407 | 1.00 | 28.13   |      |
|    | MOTA   | 1510  | 0   | GLY | 178 | 43.607 48.833 | 53.738 | 1.00 | 28.30   | BBBB |
|    | MOTA   | 1511  | N   | HIS | 179 | 42.842 47.061 | 54.877 | 1.00 | 27.85   | BBBB |
|    | MOTA   | 1512  | Н   | HIS | 179 | 42.131 46.661 | 55.410 | 1.00 |         | BBBB |
| 15 | ATOM   | 1513  | CA  | HIS | 179 | 44.031 46.272 | 54.588 | 1.00 | 27.46   |      |
| •  | ATOM   | 1514  | CB  | HIS | 179 | 44.917 46.186 | 55.822 | 1.00 | 31.40   |      |
|    | ATOM   | 1515  | CG  | HIS | 179 | 45.299 47.526 | 56.364 | 1.00 | 39.75   |      |
|    | ATOM   | 1516  | CD2 | HIS | 179 | 46.221 48.424 | 55.942 | 1.00 | 39.28   |      |
|    | ATOM   | 1517  | ND1 | HIS | 179 | 44.541 48.174 | 57.317 | 1.00 | 39.91   |      |
| 20 | ATOM   | 1518  | HD1 | HIS | 179 | 43.819 47.792 | 57.859 | 1.00 |         | BBBB |
|    | ATOM   | 1519  | CE1 | HIS | 179 | 44.971 49.417 | 57.448 | 1.00 | 42.46   |      |
|    | ATOM   | 1520  | NE2 | HIS | 179 | 45.990 49.592 | 56.624 | 1.00 | 43.86   |      |
|    | ATOM   | 1521  | HE2 | HIS | 179 | 46.444 50.449 | 56.500 | 1.00 | 0.00    | BBBB |
|    | ATOM   | 1522  | C   | HIS | 179 | 43.726 44.885 | 54.074 | 1.00 | 26.07   |      |
| 25 | ATOM   | 1523  | 0   | HIS | 179 | 42.624 44.362 | 54.290 | 1.00 | 24.18   |      |
|    | ATOM   | 1524  | N   | LEU | 180 | 44.642 44.397 | 53.238 | 1.00 | 23.29   |      |
|    | ATOM   | 1525  | Н   | LEU | 180 | 45.398 44.952 | 52.987 | 1.00 | 0.00    | BBBB |
|    | ATOM   | 1526  | ÇA  | LEU | 180 | 44.582 43.062 | 52.646 | 1.00 | 23.82   |      |
|    | ATOM   | 1527  | CB  | LEU | 180 | 45.308 43.066 | 51.299 | 1.00 | 22.59   |      |
| 30 | ATOM   | 1528  | CG  | LEU | 180 | 45.434 41.775 | 50.491 | 1.00 | 22.52   |      |
|    | ATOM   | 1529  | CD1 |     | 180 | 44.070 41.212 | 50.147 | 1.00 | 22.19   |      |
|    | ATOM   | 1530  |     | LEU | 180 | 46.206 42.094 | 49.223 | 1.00 | 24.25   |      |
|    | ATOM   | 1531  | C   | LEU | 180 | 45.208 42.006 | 53.560 | 1.00 | 22.99   |      |
|    | ATOM   | 1532  | 0   | LEU | 180 | 46.402 42.059 | 53.876 | 1.00 | 23.65   |      |
| 35 | ATOM   | 1533  | N   | TYR | 181 | 44.395 41.055 | 53.994 | 1.00 | 20.53   |      |
|    | ATOM   |       | H   | TYR | 181 | 43.466 41.057 | 53.679 | 1.00 | 0.00    | BBBB |
|    | ATOM   |       | CA  | TYR | 181 | 44.867 40.015 | 54.896 | 1.00 |         | BBBB |
|    | ATOM   | 1536  | CB  | TYR | 181 | 43.975 39.921 | 56.143 | 1.00 |         | BBBB |
|    | MOTA   |       | CG  | TYR | 181 | 44.141 41.097 | 57.092 | 1.00 |         | BBBB |
| 40 | ATOM   |       | CD1 | TYR | 181 | 43.303 42.210 | 57.001 | 1.00 | 21.59   |      |
|    | ATOM   | 1539  | CE1 | TYR | 181 | 43.493 43.329 | 57.820 | 1.00 |         | BBBB |
|    | ATOM   |       | CD2 | TYR | 181 | 45.172 41.126 | 58.034 | 1.00 |         | BBBB |
|    | ATOM   | 1541  | CE2 | TYR | 181 | 45.361 42.236 | 58.863 | 1.00 | 20.75   | BBBB |

|    | ATOM | 1542 | CZ  | TYR | 181 | 44.515 43.332 | 58.751 | 1.00 | 21.81 | BBBB |
|----|------|------|-----|-----|-----|---------------|--------|------|-------|------|
|    | ATOM | 1543 | ОН  | TYR | 181 | 44.643 44.415 | 59.594 | 1.00 | 21.78 | BBBB |
|    | ATOM | 1544 | HH  | TYR | 181 | 44.032 45.113 | 59.325 | 1.00 | 0.00  | BBBB |
| -  | MOTA | 1545 | C   | TYR | 181 | 44.903 38.688 | 54.188 | 1.00 | 17.40 | BBBB |
| 5  | ATOM | 1546 | 0   | TYR | 181 | 44.002 38.360 | 53.412 | 1.00 | 16.63 | BBBB |
|    | ATOM | 1547 | N   | GLU | 182 | 46.057 38.049 | 54.272 | 1.00 | 15.21 | BBBB |
|    | ATOM | 1548 | H   | GLU | 182 | 46.791 38.531 | 54.688 | 1.00 | 0.00  | BBBB |
|    | ATOM | 1549 | CA  | GLU | 182 | 46.195 36.674 | 53.845 | 1.00 | 13.51 | BBBB |
|    | ATOM | 1550 | CB  | GLU | 182 | 47.642 36.373 | 53.429 | 1.00 | 11.85 |      |
| 10 | ATOM | 1551 | CG  | GLU | 182 | 47.980 34.891 | 53.391 | 1.00 | 11.30 | BBBB |
|    | ATOM | 1552 | CD  | GLU | 182 | 49.468 34.613 | 53.230 | 1.00 | 14.98 | BBBB |
|    | ATOM | 1553 | 0E1 | GLU | 182 | 50.230 35.561 | 52.970 | 1.00 | 15.00 | BBBB |
|    | ATOM | 1554 | 0E2 | GLU | 182 | 49.865 33.441 | 53.342 | 1.00 | 14.93 | BBBB |
|    | MOTA | 1555 | C   | GLU | 182 | 45.847 35.874 | 55.071 | 1.00 | 14.99 |      |
| 15 | ATOM | 1556 | 0.  | GLU | 182 | 46.449 36.065 | 56.140 | 1.00 | 15.11 |      |
|    | MOTA | 1557 | N   | LEU | 183 | 44.835 35.028 | 54.934 | 1.00 | 12.67 |      |
|    | ATOM | 1558 | Н   | LEU | 183 | 44.349 35.063 | 54.090 | 1.00 |       | BBBB |
|    | ATOM | 1559 | CA  | LEU | 183 | 44.445 34.127 | 56.002 | 1.00 | 12.90 |      |
|    | ATOM | 1560 | CB  | LEU | 183 | 42.942 34.265 | 56.275 | 1.00 | 15.03 |      |
| 20 | ATOM | 1561 | CG  | LEU | 183 | 42.456 35.701 | 56.541 | 1.00 | 15.56 |      |
|    | ATOM | 1562 | CD1 | LEU | 183 | 40.936 35.730 | 56.613 | 1.00 | 15.32 |      |
|    | ATOM | 1563 | CD2 | LEU | 183 | 43.039 36.234 | 57.858 | 1.00 | 16.89 |      |
|    | ATOM | 1564 | C   | LEU | 183 | 44.829 32.687 | 55.682 | 1.00 | 11.08 |      |
|    | ATOM | 1565 | 0   | LEU | 183 | 44.329 32.073 | 54.757 | 1.00 | 10.71 |      |
| 25 | ATOM | 1566 | N   | ASP | 184 | 45.836 32.203 | 56.387 | 1.00 | 13.16 |      |
|    | ATOM | 1567 | Н   | ASP | 184 | 46.219 32.837 | 57.037 | 1.00 | 0.00  | BBBB |
|    | ATOM | 1568 | CA  | ASP | 184 | 46.376 30.859 | 56.192 | 1.00 | 14.34 |      |
|    | MOTA | 1569 | CB  | ASP | 184 | 47.759 30.964 | 55.527 | 1.00 | 14.33 |      |
|    | ATOM | 1570 | CG  | ASP | 184 | 48.432 29.613 | 55.334 | 1.00 | 15.44 |      |
| 30 | MOTA | 1571 | OD1 | ASP | 184 | 49.409 29.556 | 54.558 | 1.00 | 16.13 |      |
|    | MOTA | 1572 | OD2 | ASP | 184 | 47.999 28.611 | 55.936 | 1.00 | 14.97 |      |
|    | ATOM | 1573 | C   | ASP | 184 |               | 57.570 | 1.00 | 16.33 |      |
|    | MOTA | 1574 | 0   | ASP | 184 |               | 58.356 | 1.00 | 16.05 |      |
|    | ATOM | 1575 | N   | GLY | 185 | 45.728 29.185 | 57.850 | 1.00 | 16.42 |      |
| 35 | ATOM | 1576 | Н   | GLY | 185 | 45.154 28.820 | 57.141 | 1.00 | 0.00  | BBBB |
|    | ATOM | 1577 | CA  | GLY | 185 | 45.700 28.623 | 59.199 | 1.00 | 17.67 |      |
|    | ATOM | 1578 | C   | GLY | 185 | 46.987 27.929 | 59.618 | 1.00 | 18.28 |      |
|    | ATOM | 1579 | 0   | GLY | 185 | 47.130 27.512 | 60.762 | 1.00 | 18.70 |      |
|    | ATOM | 1580 | N   | ARG | 186 | 47.867 27.685 | 58.650 | 1.00 | 19.25 |      |
| 40 | ATOM | 1581 | Н   | ARG | 186 | 47.535 27.821 | 57.748 | 1.00 | 0.00  | BBBB |
|    | ATOM | 1582 | CA  | ARG | 186 | 49.198 27.155 | 58.937 | 1.00 | 19.66 |      |
|    | ATOM | 1583 | CB  | ARG | 186 |               | 57.644 | 1.00 |       | BBBB |
|    | ATOM | 1584 | CG  | ARG | 186 | 49.340 25.429 | 57.048 | 1.00 | 21.14 | BBBB |
|    |      |      |     |     |     |               |        |      |       |      |

|    | ATOM        | 1585 | CD          | ARG        | 186 | 50.144 24.967 | 55.843 | 1.00 | 24.27 | BBBB |
|----|-------------|------|-------------|------------|-----|---------------|--------|------|-------|------|
|    | ATOM        | 1586 | NE          | ARG        | 186 | 51.324 24.196 | 56.228 | 1.00 | 28.78 | BBBB |
|    | ATOM        | 1587 | HE          | ARG        | 186 | 51.195 23.379 | 56.760 | 1.00 | 0.00  | BBBB |
|    | ATOM        | 1588 | CZ          | ARG        | 186 | 52.575 24.524 | 55.907 | 1.00 | 29.73 | BBBB |
| 5  | ATOM        | 1589 | NH1         | ARG        | 186 | 53.569 23.710 | 56.236 | 1.00 | 28.20 | BBBB |
|    | ATOM        | 1590 | <b>HH11</b> | ARG        | 186 | 54.505 23.980 | 56.016 | 1.00 | 0.00  | BBBB |
|    | ATOM        | 1591 | <b>HH12</b> | ARG        | 186 | 53.390 22.890 | 56.781 | 1.00 | 0.00  | BBBB |
|    | ATOM        | 1592 | NH2         | ARG        | 186 | 52.836 25.644 | 55.239 | 1.00 | 27.79 | BBBB |
|    | ATOM        | 1593 | <b>HH21</b> | ARG        | 186 | 52.060 26.225 | 55.039 | 1.00 | 0.00  | BBBB |
| 10 | ATOM        | 1594 | HH22        | ARG        | 186 | 53.769 25.882 | 54.957 | 1.00 | 0.00  | BBBB |
|    | ATOM        | 1595 | C           | ARG        | 186 | 50.068 28.189 | 59.644 | 1.00 | 18.52 | BBBB |
|    | ATOM        | 1596 | 0           | ARG        | 186 | 51.114 27.871 | 60.187 | 1.00 | 23.14 | BBBB |
|    | ATOM        | 1597 | N           | LYS        | 187 | 49.713 29.450 | 59.504 | 1.00 | 16.47 | BBBB |
|    | ATOM        | 1598 | Н           | LYS        | 187 | 48.842 29.675 | 59.124 | 1.00 | 0.00  | BBBB |
| 15 | ATOM        | 1599 | CA          | LYS        | 187 | 50.543 30.506 | 60.036 | 1.00 | 17.08 | BBBB |
|    | ATOM        | 1600 | CB          | LYS        | 187 | 50.565 31.671 | 59.049 | 1.00 | 13.37 | BBBB |
|    | ATOM        | 1601 | CG          | LYS        | 187 | 51.244 31.276 | 57.737 | 1.00 | 11.69 | BBBB |
|    | ATOM        | 1602 | CD          | LYS        | 187 | 51.391 32.462 | 56.792 | 1.00 | 12.40 | BBBB |
|    | ATOM        | 1603 | CE          | LYS        | 187 | 52.035 32.009 | 55.491 | 1.00 | 12.88 | BBBB |
| 20 | ATOM        | 1604 | NZ          | LYS        | 187 | 52.331 33.162 | 54.604 | 1.00 | 12.97 | BBBB |
|    | MOTA        | 1605 | HZ1         | LYS        | 187 | 52.773 33.902 | 55.169 | 1.00 | 0.00  | BBBB |
|    | ATOM        | 1606 | HZ2         | LYS        | 187 | 51.461 33.563 | 54.210 | 1.00 | 0.00  | BBBB |
|    | ATOM        | 1607 | HZ3         | LYS        | 187 | 52.951 32.823 | 53.846 | 1.00 | 0.00  | BBBB |
|    | ATOM        | 1608 | C           | LYS        | 187 | 50.068 30.931 | 61.426 | 1.00 | 20.11 | BBBB |
| 25 | ATOM        | 1609 | 0           | LYS        | 187 | 48.968 30.575 | 61.849 | 1.00 | 18.37 | BBBB |
|    | <b>MOTA</b> | 1610 | N           | PR0        | 188 | 50.942 31.591 | 62.199 | 1.00 | 19.32 | BBBB |
|    | MOTA        | 1611 | CD          | PRO        | 188 | 52.404 31.644 | 62.017 | 1.00 | 19.27 | BBBB |
|    | MOTA        | 1612 | CA          | PRO        | 188 | 50.522 31.951 | 63.565 | 1.00 | 20.87 | BBBB |
|    | ATOM        | 1613 | CB          | PR0        | 188 | 51.831 32.398 | 64.248 | 1.00 | 20.84 | BBBB |
| 30 | ATOM        | 1614 | CG          | PR0        | 188 | 52.852 32.527 | 63.125 | 1.00 | 20.92 | BBBB |
|    | ATOM        | 1615 | C           | <b>PRO</b> | 188 | 49.442 33.047 | 63.618 | 1.00 | 18.51 | BBBB |
|    | MOTA        | 1616 | 0           | PR0        | 188 | 48.838 33.303 | 64.661 | 1.00 | 18.14 | BBBB |
|    | MOTA        | 1617 | N           | PHE        | 189 | 49.258 33.744 | 62.506 | 1.00 | 16.00 | BBBB |
|    | ATOM        | 1618 | Н           | PHE        | 189 | 49.673 33.425 | 61.681 | 1.00 | 0.00  | BBBB |
| 35 | ATOM        | 1619 | CA          | PHE        | 189 | 48.441 34.954 | 62.474 | 1.00 | 14.73 | BBBB |
|    | ATOM        | 1620 | CB          | PHE        | 189 | 49.161 36.151 | 63.126 | 1.00 | 19.72 | BBBB |
|    | ATOM        | 1621 | CG          | PHE        | 189 | 50.668 36.158 | 62.952 | 1.00 | 18.33 | BBBB |
|    | ATOM        | 1622 | CD1         | PHE        | 189 | 51.248 36.237 | 61.693 | 1.00 | 19.90 | BBBB |
|    | ATOM        | 1623 | CD2         | PHE        | 189 | 51.502 36.056 | 64.061 | 1.00 | 24.46 | BBBB |
| 40 | ATOM        | 1624 | CE1         | PHE        | 189 | 52.632 36.200 | 61.537 | 1.00 | 18.74 | BBBB |
|    | ATOM        | 1625 | CE2         | PHE        | 189 | 52.891 36.026 | 63.913 | 1.00 | 23.39 | BBBB |
|    | ATOM        | 1626 | CZ          | PHE        | 189 | 53.449 36.090 | 62.650 | 1.00 | 20.37 | BBBB |
|    | ATOM        | 1627 | C           | PHE        | 189 | 48.102 35.292 | 61.035 | 1.00 | 14.51 | BBBB |
|    |             |      |             |            |     |               |        |      |       |      |

|    | ATOM | 1628 | 0    | PHE | 189 | 48.654 34.694 | 60.113 | 1.00 | 14.41 | BBBB        |
|----|------|------|------|-----|-----|---------------|--------|------|-------|-------------|
|    | ATOM | 1629 | N    | PRO | 190 | 47.090 36.150 | 60.829 | 1.00 | 18.27 | BBBB        |
|    | ATOM | 1630 | CD   | PR0 | 190 | 46.101 36.625 | 61.817 | 1.00 | 16.54 | BBBB        |
| -  | ATOM | 1631 | CA   | PRO | 190 | 46.885 36.773 | 59.516 | 1.00 | 15.88 | BBBB        |
| 5  | ATOM | 1632 | CB   | PRO | 190 | 45.744 37.757 | 59.764 | 1.00 | 14.74 | BBBB        |
|    | ATOM | 1633 | CG   | PRO | 190 | 45.020 37.200 | 60.949 | 1.00 | 13.70 | BBBB        |
|    | ATOM | 1634 | C    | PRO | 190 | 48.155 37.495 | 59.086 | 1.00 | 18.93 | BBBB        |
|    | ATOM | 1635 | 0    | PRO | 190 | 48.944 37.917 | 59.937 | 1.00 | 18.46 | BBBB        |
|    | ATOM | 1636 | N    | ILE | 191 | 48.385 37.566 | 57.781 | 1.00 | 16.14 | BBBB        |
| 10 | MOTA | 1637 | Н    | ILE | 191 | 47.811 37.011 | 57.212 | 1.00 | 0.00  | <b>BBBB</b> |
| •  | MOTA | 1638 | CA   | ILE | 191 | 49.478 38.380 | 57.235 | 1.00 | 18.56 | BBBB        |
|    | ATOM | 1639 | CB   | ILE | 191 | 50.307 37.590 | 56.177 | 1.00 | 15.52 | BBBB        |
|    | ATOM | 1640 | CG2  | ILE | 191 | 51.435 38.471 | 55.632 | 1.00 | 15.36 | BBBB        |
|    | ATOM | 1641 | CG1  | ILE | 191 | 50.814 36.270 | 56.771 | 1.00 | 14.75 | BBBB        |
| 15 | ATOM | 1642 | CD   | ILE | 191 | 51.668 36.421 | 58.031 | 1.00 | 14.66 | BBBB        |
|    | ATOM | 1643 | C    | ILE | 191 | 48.922 39.646 | 56.584 | 1.00 | 19.70 | BBBB        |
|    | ATOM | 1644 | 0    | ILE | 191 | 48.062 39.578 | 55.691 | 1.00 | 17.72 | BBBB        |
|    | ATOM | 1645 | N    | ASN | 192 | 49.352 40.799 | 57.091 | 1.00 | 19.71 | BBBB        |
|    | ATOM | 1646 | Н    | ASN | 192 | 49.955 40.764 | 57.864 | 1.00 | 0.00  | BBBB        |
| 20 | MOTA | 1647 | CA   | ASN | 192 | 48.901 42.083 | 56.564 | 1.00 | 22.28 | BBBB        |
|    | ATOM | 1648 | CB   | ASN | 192 | 49.056 43.189 | 57.615 | 1.00 | 22.85 | BBBB        |
|    | ATOM | 1649 | CG   | ASN | 192 | 48.416 44.496 | 57.183 | 1.00 | 20.68 | BBBB        |
|    | ATOM | 1650 | 0D1  | ASN | 192 | 48.436 44.855 | 56.012 | 1.00 | 26.53 | BBBB        |
|    | MOTA | 1651 | ND2  | ASN | 192 | 47.814 45.191 | 58.122 | 1.00 | 19.89 | BBBB        |
| 25 | ATOM | 1652 | HD21 | ASN | 192 | 47.456 46.053 | 57.850 | 1.00 | 0.00  | BBBB        |
|    | ATOM | 1653 | HD22 | ASN | 192 | 47.775 44.794 | 59.012 | 1.00 | 0.00  | BBBB        |
|    | ATOM | 1654 | C    | ASN | 192 | 49.725 42.422 | 55.327 | 1.00 | 23.91 | BBBB        |
|    | ATOM | 1655 | 0    | ASN | 192 | 50.945 42.513 | 55.405 | 1.00 | 24.94 | BBBB        |
|    | MOTA | 1656 | N    | HIS | 193 | 49.070 42.470 | 54.169 | 1.00 | 20.91 | BBBB        |
| 30 | MOTA | 1657 | Н    | HIS | 193 | 48.105 42.354 | 54.248 | 1.00 | 0.00  | BBBB        |
|    | ATOM | 1658 | CA   | HIS | 193 | 49.767 42.707 | 52.912 | 1.00 | 20.25 | BBBB        |
|    | MOTA | 1659 | CB   | HIS | 193 | 49.263 41.761 | 51.834 | 1.00 | 20.01 | BBBB        |
|    | MOTA | 1660 | CG   | HIS | 193 | 49.789 40.375 | 51.968 | 1.00 | 17.79 | BBBB        |
|    | ATOM | 1661 | CD2  | HIS | 193 | 49.220 39.255 | 52.470 | 1.00 | 16.56 | BBBB        |
| 35 | ATOM | 1662 | ND1  | HIS | 193 | 51.053 40.007 | 51.553 | 1.00 | 18.33 | BBBB        |
|    | ATOM | 1663 | HD1  | HIS | 193 | 51.743 40.596 | 51.162 | 1.00 | 0.00  | BBBB        |
|    | ATOM | 1664 | CE1  | HIS | 193 | 51.234 38.723 | 51.776 | 1.00 | 20.03 | BBBB        |
|    | MOTA | 1665 | NE2  | HIS | 193 | 50.135 38.237 | 52.335 | 1.00 | 19.35 | BBBB        |
|    | ATOM | 1666 | HE2  | HIS | 193 | 49.908 37.313 | 52.494 | 1.00 | 0.00  | BBBB        |
| 40 | ATOM | 1667 | C    | HIS | 193 | 49.639 44.132 | 52.422 | 1.00 | 22.80 | BBBB        |
|    | ATOM | 1668 | 0    | HIS | 193 | 49.923 44.426 | 51.253 | 1.00 | 29.84 | BBBB        |
|    | ATOM | 1669 | N    | GLY | 194 | 49.166 45.005 | 53.296 | 1.00 | 20.96 | BBBB        |
|    | ATOM | 1670 | Н    | GLY | 194 | 48.902 44.693 | 54.183 | 1.00 | 0.00  | BBBB        |
|    |      |      |      |     |     |               |        |      |       |             |

|    | ATOM | 1671 | CA  | GLY | 194 | 49.081 46.400 | 52.948 | 1.00 | 24.33 | BBBB        |
|----|------|------|-----|-----|-----|---------------|--------|------|-------|-------------|
|    | ATOM | 1672 | C   | GLY | 194 | 47.666 46.870 | 52.713 | 1.00 | 26.93 | BBBB        |
|    | ATOM | 1673 | 0   | GLY | 194 | 46.698 46.192 | 53.033 | 1.00 | 26.69 | BBBB        |
| -  | ATOM | 1674 | N   | GLU | 195 | 47.552 48.092 | 52.226 | 1.00 | 29.16 | <b>BBBB</b> |
| 5  | ATOM | 1675 | Н   | GLU | 195 | 48.399 48.549 | 52.034 | 1.00 | 0.00  | <b>BBBB</b> |
|    | ATOM | 1676 | CA  | GLU | 195 | 46.259 48.704 | 52.028 | 1.00 | 33.78 | <b>BBBB</b> |
|    | ATOM | 1677 | CB  | GLU | 195 | 46.428 50.216 | 51.875 | 1.00 | 39.83 | <b>BBBB</b> |
|    | ATOM | 1678 | CG  | GLU | 195 | 47.130 50.868 | 53.070 | 1.00 | 50.66 | <b>BBBB</b> |
|    | ATOM | 1679 | CD  | GLU | 195 | 46.813 52.348 | 53.202 | 1.00 | 57.04 | BBBB        |
| 10 | ATOM | 1680 | 0E1 | GLU | 195 | 46.101 52.716 | 54.167 | 1.00 | 59.34 | <b>BBBB</b> |
|    | ATOM | 1681 | OE2 | GLU | 195 | 47.273 53.138 | 52.344 | 1.00 | 59.02 | BBBB        |
|    | ATOM | 1682 | C   | GLU | 195 | 45.509 48.121 | 50.830 | 1.00 | 33.75 | BBBB        |
|    | ATOM | 1683 | 0   | GLU | 195 | 46.112 47.615 | 49.876 | 1.00 | 32.74 | BBBB        |
|    | ATOM | 1684 | N   | THR | 196 | 44.185 48.102 | 50.947 | 1.00 | 34.10 | BBBB        |
| 15 | ATOM | 1685 | Н   | THR | 196 | 43.806 48.428 | 51.792 | 1.00 | 0.00  | BBBB        |
|    | ATOM | 1686 | CA  | THR | 196 | 43.301 47.694 | 49.860 | 1.00 | 31.68 | BBBB        |
|    | ATOM | 1687 | CB  | THR | 196 | 43.282 46.156 | 49.687 | 1.00 | 29.60 | BBBB        |
|    | ATOM | 1688 | 0G1 | THR | 196 | 42.575 45.819 | 48.494 | 1.00 | 29.82 | <b>BBBB</b> |
|    | ATOM | 1689 | HG1 | THR | 196 | 43.221 45.594 | 47.824 | 1.00 | 0.00  | BBBB        |
| 20 | ATOM | 1690 | CG2 | THR | 196 | 42.599 45.489 | 50.864 | 1.00 | 28.59 | BBBB        |
|    | ATOM | 1691 | C   | THR | 196 | 41.882 48.182 | 50.156 | 1.00 | 35.53 | BBBB        |
|    | ATOM | 1692 | 0   | THR | 196 | 41.587 48.676 | 51.258 | 1.00 | 37.07 |             |
|    | ATOM | 1693 | N   | SER | 197 | 40.978 47.955 | 49.210 | 1.00 | 34.92 |             |
|    | ATOM | 1694 | Н   | SER | 197 | 41.230 47.386 | 48.452 | 1.00 | 0.00  | BBBB        |
| 25 | ATOM | 1695 | CA  | SER | 197 | 39.614 48.467 | 49.318 | 1.00 | 35.94 |             |
|    | ATOM | 1696 | CB  | SER | 197 | 39.469 49.780 | 48.532 | 1.00 | 35.57 |             |
|    | ATOM | 1697 | OG  | SER | 197 | 39.576 49.545 | 47.140 | 1.00 | 38.66 |             |
|    | ATOM | 1698 | HG  | SER | 197 | 40.504 49.351 | 46.898 | 1.00 | 0.00  | BBBB        |
|    | ATOM | 1699 | C   | SER | 197 | 38.645 47.453 | 48.752 | 1.00 | 34.85 |             |
| 30 | ATOM | 1700 | 0   | SER | 197 | 39.049 46.547 | 48.023 | 1.00 | 35.33 |             |
|    | ATOM |      | N   | ASP | 198 | 37.357 47.688 | 48.978 | 1.00 | 35.50 |             |
|    | ATOM |      | Н   | ASP | 198 | 37.148 48.444 | 49.563 | 1.00 | 0.00  | BBBB        |
|    | ATOM |      | CA  | ASP | 198 | 36.314 46.892 | 48.341 | 1.00 | 34.12 |             |
|    | ATOM |      | CB  | ASP | 198 | 34.941 47.470 | 48.669 | 1.00 | 38.91 |             |
| 35 | ATOM |      | CG  | ASP | 198 | 34.511 47.206 | 50.096 | 1.00 | 42.65 |             |
|    | ATOM |      | 0D1 | ASP | 198 | 35.030 46.260 | 50.727 | 1.00 | 41.80 |             |
|    | ATOM |      | OD2 | ASP | 198 | 33.596 47.923 | 50.565 | 1.00 | 48.05 |             |
|    | ATOM |      | C   | ASP | 198 | 36.490 46.878 | 46.821 | 1.00 | 32.19 |             |
|    | ATOM |      | 0   | ASP | 198 | 36.313 45.851 | 46.159 | 1.00 | 30.03 |             |
| 40 | ATOM |      | N   | GLU | 199 | 36.900 48.018 | 46.283 | 1.00 | 31.22 |             |
|    | ATOM |      | Н   | GLU | 199 | 37.225 48.737 | 46.860 | 1.00 |       | BBBB        |
|    | ATOM |      | CA  | GLU | 199 | 36.906 48.216 | 44.845 | 1.00 | 32.54 |             |
|    | ATOM | 1713 | CB  | GLU | 199 | 36.896 49.714 | 44.535 | 1.00 | 35.99 | BBBB        |

|    | ATOM   | 1714 | CG  | GLU   | 199 | 36.693 50.048 | 43.064 | 0.00 | 35.94 | BBBB |
|----|--------|------|-----|-------|-----|---------------|--------|------|-------|------|
|    | ATOM   | 1715 | CD  | GLU   | 199 | 36.794 51.537 | 42.786 | 0.00 | 36.71 | BBBB |
|    | ATOM   | 1716 | 0E1 | GLU   | 199 | 35.736 52.191 | 42.663 | 0.00 | 36.92 | BBBB |
|    | - ATOM | 1717 | 0E2 | GLU   | 199 | 37.927 52.049 | 42.678 | 0.00 | 36.88 | BBBB |
| 5  | ATOM   | 1718 | C   | GLU · | 199 | 38.102 47.549 | 44.182 | 1.00 | 33.23 | BBBB |
|    | ATOM   | 1719 | 0   | GLU   | 199 | 38.022 47.094 | 43.042 | 1.00 | 35.95 | BBBB |
|    | ATOM   | 1720 | N   | THR   | 200 | 39.211 47.466 | 44.900 | 1.00 | 31.19 | BBBB |
|    | ATOM   | 1721 | Н   | THR   | 200 | 39.195 47.740 | 45.842 | 1.00 | 0.00  | BBBB |
|    | MOTA   | 1722 | CA  | THR   | 200 | 40.448 47.014 | 44.286 | 1.00 | 29.88 | BBBB |
| 10 | ATOM   | 1723 | CB  | THR   | 200 | 41.550 48.032 | 44.504 | 1.00 | 30.21 | BBBB |
|    | ATOM   | 1724 | 0G1 | THR   | 200 | 41.741 48.226 | 45.912 | 1.00 | 33.62 | BBBB |
|    | ATOM   | 1725 | HG1 | THR   | 200 | 42.647 47.966 | 46.081 | 1.00 | 0.00  | BBBB |
|    | ATOM   | 1726 | CG2 | THR   | 200 | 41.169 49.349 | 43.883 | 1.00 | 32.46 | BBBB |
|    | ATOM   | 1727 | C   | THR   | 200 | 40.929 45.671 | 44.820 | 1.00 | 29.23 | BBBB |
| 15 | ATOM   | 1728 | 0   | THR   | 200 | 42.026 45.222 | 44.478 | 1.00 | 29.48 | BBBB |
|    | MOTA   | 1729 | N   | LEU   | 201 | 40.112 45.022 | 45.645 | 1.00 | 26.09 | BBBB |
|    | MOTA   | 1730 | H   | LEU   | 201 | 39.262 45.438 | 45.894 | 1.00 |       | BBBB |
|    | ATOM   | 1731 | CA  | LEU   | 201 | 40.495 43.741 | 46.234 | 1.00 | 24.40 | BBBB |
|    | MOTA   | 1732 | CB  | LEU   | 201 | 39.347 43.148 | 47.081 | 1.00 | 23.41 | BBBB |
| 20 | MOTA   | 1733 | CG  | LEU   | 201 | 39.696 41.793 | 47.723 | 1.00 | 22.38 |      |
|    | MOTA   | 1734 | CD1 | LEU   | 201 | 40.856 41.971 | 48.697 | 1.00 | 19.43 |      |
|    | MOTA   | 1735 | CD2 | LEU   | 201 | 38.518 41.208 | 48.436 | 1.00 | 20.99 |      |
|    | MOTA   | 1736 | C   | LEU   | 201 | 41.004 42.699 | 45.222 | 1.00 | 24.10 |      |
|    | ATOM   | 1737 | 0   | LEU   | 201 | 42.039 42.067 | 45.458 | 1.00 | 21.46 |      |
| 25 | MOTA   | 1738 | N   | LEU   | 202 | 40.311 42.538 | 44.092 | 1.00 | 23.29 |      |
|    | ATOM   | 1739 | Н   | LEU   | 202 | 39.506 43.062 | 43.967 | 1.00 | 0.00  | BBBB |
|    | MOTA   | 1740 | CA  | LEU   | 202 | 40.734 41.578 | 43.076 | 1.00 | 23.58 |      |
|    | MOTA   | 1741 | CB  | LEU   | 202 | 39.769 41.570 | 41.881 | 1.00 | 22.67 |      |
|    | MOTA   | 1742 | CG  | LEU   | 202 | 40.123 40.532 | 40.796 | 1.00 |       | BBBB |
| 30 | MOTA   | 1743 | CD1 | LEU   | 202 | 40.060 39.135 | 41.378 | 1.00 | 23.97 |      |
|    | MOTA   | 1744 | CD2 | LEU   | 202 | 39.184 40.629 | 39.609 | 1.00 |       | BBBB |
|    | MOTA   | 1745 | C   | LEU   | 202 | 42.167 41.851 | 42.583 | 1.00 | 24.21 |      |
|    | MOTA   | 1746 | 0   | LEU   | 202 | 43.008 40.966 | 42.636 | 1.00 | 25.26 |      |
|    | ATOM   | 1747 | N   | GLU   | 203 | 42.466 43.102 | 42.246 | 1.00 |       | BBBB |
| 3  | ATOM   | 1748 | Н   | GLU   | 203 | 41.743 43.756 | 42.344 | 1.00 | 0.00  |      |
|    | ATOM   | 1749 | CA  | GLU   | 203 | 43.797 43.484 | 41.769 | 1.00 |       | BBBB |
|    | ATOM   | 1750 | CB  | GLU   | 203 | 43.822 44.942 | 41.347 | 1.00 |       | BBBB |
|    | ATOM   | 1751 | CG  | GLU   | 203 | 43.153 45.233 | 40.052 | 1.00 |       | BBBB |
|    | ATOM   | 1752 | CD  | GLU   | 203 | 41.698 44.838 | 40.070 | 1.00 |       | BBBB |
| 4  | ) ATOM | 1753 | 0E1 | GLU   | 203 | 40.954 45.332 | 40.954 | 1.00 |       | BBBB |
|    | ATOM   | 1754 | 0E2 | GLU   | 203 | 41.329 43.967 | 39.245 | 1.00 |       | BBBB |
|    | ATOM   | 1755 | C   | GLU   | 203 | 44.853 43.314 | 42.844 | 1.00 |       | BBBB |
|    | ATOM   | 1756 | 0   | GLU   | 203 | 45.928 42.792 | 42.585 | 1.00 | 26.26 | BBBB |
|    |        |      |     |       |     |               |        |      |       |      |

|    | ATORA        | 1757 | N       | ASP        | 204        | 44.567 43.846                  | 44.027           | 1.00         | 24.51 BBBB               |
|----|--------------|------|---------|------------|------------|--------------------------------|------------------|--------------|--------------------------|
|    | ATOM<br>ATOM | 1758 | Н       | ASP        | 204        | 43.705 44.302                  | 44.116           | 1.00         | 0.00 BBBB                |
|    | ATOM         | 1759 | CA      | ASP        | 204        | 45.501 43.796                  | 45.156           | 1.00         | 26.31 BBBB               |
| _  | ATOM         | 1760 | CB      | ASP        | 204        | 44.968 44.665                  | 46.303           | 1.00         | 24.27 BBBB               |
| 5  | ATOM         | 1761 | CG      | ASP        | 204        | 44.849 46.143                  | 45.911           | 1.00         | 30.80 BBBB               |
| 3  | ATOM         | 1762 | 0D1     | ASP        | 204        | 45.337 46.520                  | 44.820           | 1.00         | 31.50 BBBB               |
|    | ATOM         | 1763 | OD2     | ASP        | 204        | 44.263 46.935                  | 46.682           | 1.00         | 30.67 BBBB               |
|    | ATOM         | 1764 | C       | ASP        | 204        | 45.807 42.370                  | 45.646           | 1.00         | 25.41 BBBB               |
|    | ATOM         | 1765 | 0       | ASP        | 204        | 46.962 42.039                  | 45.946           | 1.00         | 25.28 BBBB               |
| 10 | ATOM         | 1766 | N       | ALA        | 205        | 44.800 41.501                  | 45.617           | 1.00         | 21.59 BBBB               |
| 10 | ATOM         | 1767 | H       | ALA        | 205        | 43.910 41.827                  | 45.372           | 1.00         | 0.00 BBBB                |
|    | ATOM         | 1768 | CA      | ALA        | 205        | 44.993 40.103                  | 45.971           | 1.00         | 20.94 BBBB               |
|    | ATOM         | 1769 | CB      | ALA        | 205        | 43.635 39.417                  | 46.210           | 1.00         | 19.51 BBBB               |
|    | ATOM         | 1770 | C       | ALA        | 205        | 45.792 39.335                  | 44.919           | 1.00         | 23.38 BBBB               |
| 15 | ATOM         | 1771 | 0       | ALA        | 205        | 46.581 38.449                  | 45.245           | 1.00         | 23.30 BBBB               |
|    | ATOM         | 1772 | N       | ILE        | 206        | 45.561 39.641                  | 43.648           | 1.00         | 24.50 BBBB               |
|    | ATOM         | 1773 | Н       | ILE        | 206        | 44.861 40.303                  | 43.440           | 1.00         | 0.00 BBBB                |
|    | ATOM         | 1774 | CA      | ILE        | 206        | 46.316 38.996                  | 42.577           | 1.00         | 23.48 BBBB               |
|    | ATOM         | 1775 | CB      | ILE        | 206        | 45.614 39.219                  | 41.198           | 1.00         | 25.93 BBBB               |
| 20 | ATOM         | 1776 | CG2     | ILE        | 206        | 46.548 38.880                  | 40.046           | 1.00         | 28.83 BBBB               |
|    | ATOM         | 1777 | CG1     | ILE        | 206        | 44.306 38.403                  | 41.140           | 1.00         | 24.14 BBBB               |
|    | ATOM         | 1778 | CD      | ILE        | 206        | 44.460 36.916                  | 41.168           | 1.00         | 22.80 BBBB               |
|    | MOTA         | 1779 | C       | ILE        | 206        | 47.794 39.462                  | 42.556           | 1.00         | 21.88 BBBB               |
|    | ATOM         | 1780 | 0       | ILE        | 206        | 48.690 38.647                  | 42.356           | 1.00         | 22.55 BBBB               |
| 25 | ATOM         | 1781 | N       | GLU        | 207        | 48.053 40.704                  | 42.952           | 1.00         | 23.56 BBBB               |
|    | MOTA         | 1782 | H       | GLU        | 207        | 47.305 41.330                  | 43.060           | 1.00         | 0.00 BBBB                |
|    | ATOM         | 1783 | CA      | GLU        | 207        | 49.433 41.154                  | 43.183           | 1.00         | 24.83 BBBB               |
|    | ATOM         | 1784 | CB      | GLU        | 207        | 49.462 42.580                  | 43.716           | 1.00         | 28.57 BBBB               |
|    | ATOM         | 1785 | CG      | GLU        | 207        | 48.898 43.637                  | 42.782           | 1.00         | 38.93 BBBB<br>46.17 BBBB |
| 30 | ATOM         | 1786 | CD      | GLU        | 207        | 49.151 43.327                  | 41.327           | 1.00         | 46.17 BBBB<br>46.72 BBBB |
|    | ATOM         |      | 0E1     | GLU        | 207        | 50.338 43.204                  | 40.949           | 1.00         | 53.27 BBBB               |
|    | ATOM         |      | 0E2     | GLU        | 207        | 48.157 43.174                  | 40.573<br>44.176 | 1.00<br>1.00 | 26.10 BBBB               |
|    | ATOM         |      | C       | GLU        | 207        | 50.150 40.256<br>51.250 39.775 | 43.910           | 1.00         | 24.31 BBBB               |
|    |              | 1790 | 0       | GLU        | 207        | 49.502 39.990                  | 45.311           | 1.00         | 26.00 BBBB               |
| 35 | ATOM         |      | N       | VAL        | 208        | 48.670 40.493                  | 45.482           | 1.00         | 0.00 BBBB                |
|    | ATOM         |      | H       | VAL        | 208        | 50.015 39.009                  | 46.273           | 1.00         | 24.95 BBBB               |
|    | ATOM         |      | CA      | VAL        | 208        |                                | 47.549           | 1.00         | 24.26 BBBB               |
|    |              | 1794 | CB      | VAL        | 208        | 49.129 38.946<br>49.612 37.844 | 48.496           | 1.00         | 23.70 BBBB               |
|    | ATOM         |      | CG1     |            | 208        |                                | 48.244           | 1.00         | 21.67 BBBB               |
| 40 | ATOM         |      | CG2     |            | 208<br>208 |                                | 45.674           | 1.00         | 26.78 BBBB               |
|    | ATOM         |      | C       | VAL        | 208        |                                | 45.916           | 1.00         | 29.35 BBBB               |
|    | ATOM         |      | 0<br>al | VAL<br>Cys | 200        |                                | 44.863           | 1.00         | 22.50 BBBB               |
|    | AIUM         | 1799 | N       | 619        | 203        | 45.103 37.171                  | TT.000           | 1.00         | VV DDDD                  |

|    | ATOM        | 1800 | H   | CYS | 209 | 48.377 37.730 | 44.776 | 1.00 | 0.00  | BBBB   |
|----|-------------|------|-----|-----|-----|---------------|--------|------|-------|--------|
|    | ATOM        | 1801 | CA  | CYS | 209 | 49.296 35.871 | 44.203 | 1.00 | 25.82 |        |
|    | ATOM        | 1802 | CB  | CYS | 209 | 48.036 35.546 | 43.395 | 1.00 | 26.60 |        |
|    | ATOM        | 1803 | SG  | CYS | 209 | 46.543 35.387 | 44.399 | 1.00 | 28.29 |        |
| 5  | ATOM        | 1804 | C   | CYS | 209 | 50.518 35.796 | 43.277 | 1.00 | 26.91 | BBBB   |
|    | ATOM        | 1805 | 0   | CYS | 209 | 51.212 34.772 | 43.229 | 1.00 | 25.85 | BBBB   |
|    | <b>ATOM</b> | 1806 | N   | LYS | 210 | 50.766 36.875 | 42.537 | 1.00 | 29.99 |        |
|    | ATOM        | 1807 | Н   | LYS | 210 | 50.179 37.646 | 42.629 | 1.00 | 0.00  | BBBB   |
|    | ATOM        | 1808 | CA  | LYS | 210 | 51.919 36.947 | 41.631 | 1.00 | 34.45 |        |
| 10 | ATOM        | 1809 | CB  | LYS | 210 | 51.820 38.188 | 40.737 | 1.00 | 33.88 | BBBB   |
|    | <b>MOTA</b> | 1810 | CG  | LYS | 210 | 50.789 38.051 | 39.625 | 1.00 | 39.79 | BBBB   |
|    | ATOM        | 1811 | CD  | LYS | 210 | 50.793 39.254 | 38.687 | 1.00 | 40.27 | BBBB   |
|    | ATOM        | 1812 | CE  | LYS | 210 | 49.886 40.351 | 39.183 | 1.00 | 37.63 | BBBB   |
|    | ATOM        | 1813 | NZ  | LYS | 210 | 50.066 41.602 | 38.404 | 1.00 | 42.21 | BBBB   |
| 15 | ATOM        | 1814 | HZ1 | LYS | 210 | 49.737 41.477 | 37.425 | 1.00 | 0.00  | BBBB   |
|    | ATOM        | 1815 | HZ2 | LYS | 210 | 51.073 41.858 | 38.408 | 1.00 | 0.00  | BBBB   |
|    | ATOM        | 1816 | HZ3 | LYS | 210 | 49.517 42.363 | 38.853 | 1.00 | 0.00  | BBBB   |
|    | ATOM        | 1817 | C   | LYS | 210 | 53.255 36.951 | 42.395 | 1.00 | 35.34 | BBBB   |
|    | ATOM        | 1818 | 0   | LYS | 210 | 54.226 36.338 | 41.956 | 1.00 |       | BBBB   |
| 20 | <b>MOTA</b> | 1819 | N   | LYS | 211 | 53.252 37.513 | 43.601 | 1.00 |       | BBBB   |
|    | MOTA        | 1820 | Н   | LYS | 211 | 52.463 38.041 | 43.867 | 1.00 | 0.00  | BBBB   |
|    | ATOM        | 1821 | CA  | LYS | 211 | 54.402 37.428 | 44.485 | 1.00 |       | BBBB   |
|    | <b>MOTA</b> | 1822 | CB  | LYS | 211 | 54.171 38.308 | 45.710 | 1.00 |       | BBBB . |
|    | <b>MOTA</b> | 1823 | CG  | LYS | 211 | 54.711 39.721 | 45.563 | 1.00 | 43.42 | BBBB   |
| 25 | ATOM        | 1824 | CD  | LYS | 211 | 54.109 40.692 | 46.592 | 1.00 |       | BBBB   |
|    | MOTA        | 1825 | CE  | LYS | 211 | 53.933 40.053 | 47.968 | 1.00 |       | BBBB   |
|    | MOTA        | 1826 | NZ  | LYS | 211 | 53.323 41.004 | 48.941 | 1.00 |       | BBBB   |
|    | MOTA        | 1827 | HZ1 | LYS | 211 | 52.474 41.435 | 48.539 | 1.00 | 0.00  | BBBB   |
|    | ATOM        | 1828 | HZ2 | LYS | 211 | 54.006 41.758 | 49.162 | 1.00 | 0.00  | BBBB   |
| 30 | MOTA        | 1829 | HZ3 | LYS | 211 | 53.063 40.507 | 49.815 | 1.00 | 0.00  | BBBB   |
|    | MOTA        | 1830 | C   | LYS | 211 | 54.693 35.984 | 44.917 | 1.00 |       | BBBB   |
|    | ATOM        | 1831 | 0   | LYS | 211 | 55.852 35.548 | 44.921 | 1.00 |       | BBBB   |
|    | ATOM        | 1832 | N   | PHE | 212 | 53.643 35.231 | 45.243 | 1.00 | 29.19 | BBBB   |
|    | ATOM        | 1833 | H   | PHE | 212 | 52.776 35.679 | 45.325 | 1.00 | 0.00  | BBBB   |
| 35 | ATOM        | 1834 | CA  | PHE | 212 | 53.775 33.795 | 45.490 | 1.00 |       | BBBB   |
|    | ATOM        | 1835 | CB  | PHE | 212 | 52.394 33.176 | 45.751 | 1.00 |       | BBBB   |
|    | ATOM        | 1836 | CG  | PHE | 212 | 51.936 33.288 | 47.180 | 1.00 |       | BBBB   |
|    | ATOM        | 1837 | CD1 | PHE | 212 | 51.766 34.545 | 47.774 | 1.00 | 19.39 | BBBB   |
|    | ATOM        | 1838 | CD2 | PHE | 212 | 51.759 32.137 | 47.950 | 1.00 |       | BBBB   |
| 40 | ATOM        | 1839 | CE1 | PHE | 212 | 51.434 34.655 | 49.131 | 1.00 |       | BBBB   |
|    | ATOM        | 1840 | CE2 | PHE | 212 | 51.426 32.226 | 49.303 | 1.00 |       | BBBB   |
|    | ATOM        | 1841 | CZ  | PHE | 212 | 51.266 33.497 | 49.896 | 1.00 |       | BBBB   |
|    | ATOM        | 1842 | C   | PHE | 212 | 54.438 33.069 | 44.308 | 1.00 | 27.94 | BBBB   |
|    |             |      |     |     |     |               |        |      |       |        |

|    | MOTA | 1843 | 0    | PHE | 212 | 55.379 32.289 | 44.469 | 1.00 | 29.82 | BBBB         |
|----|------|------|------|-----|-----|---------------|--------|------|-------|--------------|
|    | ATOM | 1844 | N    | MET | 213 | 53.942 33.347 | 43.114 | 1.00 | 28.49 | BBBB         |
|    | ATOM | 1845 | Н    | MET | 213 | 53.195 33.982 | 43.073 | 1.00 | 0.00  | BBBB         |
|    | ATOM | 1846 | CA   | MET | 213 | 54.439 32.709 | 41.909 | 1.00 | 31.13 | BBBB         |
| 5  | ATOM | 1847 | CB   | MET | 213 | 53.534 33.080 | 40.748 | 1.00 | 31.76 | ${\tt BBBB}$ |
| •  | ATOM | 1848 | CG   | MET | 213 | 52.139 32.540 | 40.911 | 1.00 | 32.92 | BBBB         |
|    | ATOM | 1849 | SD   | MET | 213 | 51.144 32.918 | 39.495 | 1.00 | 39.38 | BBBB         |
|    | ATOM | 1850 | CE   | MET | 213 | 51.471 31.457 | 38.429 | 1.00 | 35.56 | BBBB         |
|    | ATOM | 1851 | C    | MET | 213 | 55.888 33.089 | 41.596 | 1.00 | 32.08 | BBBB         |
| 10 | ATOM | 1852 | 0    | MET | 213 | 56.729 32.220 | 41.400 | 1.00 | 30.06 | BBBB         |
|    | ATOM | 1853 | N    | GLU | 214 | 56.192 34.380 | 41.688 | 1.00 | 36.22 | BBBB         |
|    | MOTA | 1854 | Н    | GLU | 214 | 55.459 34.995 | 41.879 | 1.00 | 0.00  | BBBB         |
| •  | MOTA | 1855 | CA   | GLU | 214 | 57.558 34.879 | 41.512 | 1.00 | 42.62 | BBBB         |
|    | ATOM | 1856 | CB   | GLU | 214 | 57.613 36.380 | 41.817 | 1.00 | 45.96 | BBBB         |
| 15 | ATOM | 1857 | CG   | GLU | 214 | 57.738 37.265 | 40.579 | 1.00 | 54.19 | BBBB         |
|    | ATOM | 1858 | CD   | GLU | 214 | 56.753 38.427 | 40.570 | 1.00 | 59.49 | BBBB         |
|    | MOTA | 1859 | 0E1  | GLU | 214 | 56.618 39.120 | 41.609 | 1.00 | 62.81 | BBBB         |
|    | ATOM | 1860 | 0E2  | GLU | 214 | 56.119 38.648 | 39.513 | 1.00 | 61.93 | BBBB         |
|    | ATOM | 1861 | C    | GLU | 214 | 58.572 34.144 | 42.392 | 1.00 | 44.13 | BBBB         |
| 20 | ATOM | 1862 | 0    | GLU | 214 | 59.653 33.783 | 41.938 | 1.00 | 46.23 | BBBB         |
|    | ATOM | 1863 | N    | ARG | 215 | 58.188 33.867 | 43.633 | 1.00 | 44.81 | BBBB         |
|    | MOTA | 1864 | Н    | ARG | 215 | 57.295 34.167 | 43.910 | 1.00 | 0.00  | BBBB         |
|    | ATOM | 1865 | CA   | ARG | 215 | 59.052 33.164 | 44.573 | 1.00 | 47.12 |              |
|    | ATOM | 1866 | CB   | ARG | 215 | 58.419 33.174 | 45.959 | 1.00 | 49.23 |              |
| 25 | ATOM | 1867 | CG   | ARG | 215 | 58.442 34.512 | 46.634 | 1.00 | 54.62 |              |
|    | ATOM | 1868 | CD   | ARG | 215 | 57.749 34.429 | 47.970 | 1.00 | 59.28 |              |
|    | ATOM | 1869 | NE   | ARG | 215 | 57.032 35.662 | 48.269 | 1.00 | 63.64 |              |
|    | ATOM | 1870 | HE   | ARG | 215 | 57.427 36.515 | 47.986 | 1.00 | 0.00  | BBBB         |
|    | ATOM | 1871 | CZ   | ARG | 215 | 55.866 35.700 | 48.902 | 1.00 | 66.38 |              |
| 30 | ATOM | 1872 | NH1  | ARG | 215 | 55.281 36.866 | 49.147 | 1.00 | 69.59 |              |
|    | ATOM | 1873 | HH11 |     | 215 | 55.682 37.708 | 48.788 | 1.00 | 0.00  | BBBB         |
|    | ATOM | 1874 | HH12 | ARG | 215 | 54.403 36.895 | 49.629 | 1.00 | 0.00  | BBBB         |
|    | ATOM |      | NH2  |     | 215 | 55.298 34.569 | 49.314 | 1.00 | 66.82 |              |
|    | MOTA | 1876 | HH21 | ARG | 215 | 54.426 34.601 | 49.803 | 1.00 | 0.00  | BBBB         |
| 35 | ATOM | 1877 | HH22 | ARG | 215 | 55.711 33.685 | 49.101 | 1.00 | 0.00  | BBBB         |
|    | MOTA | 1878 | C    | ARG | 215 | 59.321 31.719 | 44.166 | 1.00 | 48.10 |              |
|    | MOTA | 1879 | 0    | ARG | 215 | 60.245 31.077 | 44.670 | 1.00 | 49.48 | BBBB         |
|    | ATOM | 1880 | N    | ASP | 216 | 58.422 31.164 | 43.369 | 1.00 | 47.98 | BBBB         |
|    | ATOM | 1881 | Н    | ASP | 216 | 57.679 31.721 | 43.049 | 1.00 | 0.00  | BBBB         |
| 40 | ATOM | 1882 | CA   | ASP | 216 | 58.530 29.771 | 42.972 | 1.00 | 47.13 |              |
|    | ATOM | 1883 | CB   | ASP | 216 | 57.473 28.944 | 43.711 | 1.00 | 47.78 |              |
|    | ATOM | 1884 | CG   | ASP | 216 | 57.963 27.553 | 44.093 | 1.00 |       | BBBB         |
|    | ATOM | 1885 | 0D1  | ASP | 216 | 58.843 26.996 | 43.395 | 1.00 | 51.39 | BBBB         |
|    |      |      |      |     |     |               |        |      |       |              |

|    | ATOM | 1886 | <b>OD2</b> | ASP | 216 | 57.431 26.985 | 45.072 | 1.00 | 48.92 BBBB |
|----|------|------|------------|-----|-----|---------------|--------|------|------------|
|    | ATOM | 1887 | C          | ASP | 216 | 58.355 29.651 | 41.458 | 1.00 | 47.63 BBBB |
|    | MOTA | 1888 | 0          | ASP | 216 | 57.382 29.067 | 40.979 | 1.00 | 48.75 BBBB |
| •  | ATOM | 1889 | N          | PRO | 217 | 59.337 30.147 | 40.685 | 1.00 | 47.00 BBBB |
| 5  | ATOM | 1890 | CD         | PR0 | 217 | 60.664 30.580 | 41.150 | 1.00 | 46.27 BBBB |
|    | ATOM | 1891 | CA         | PR0 | 217 | 59.102 30.558 | 39.299 | 1.00 | 46.24 BBBB |
|    | ATOM | 1892 | CB         | PR0 | 217 | 60.344 31.373 | 38.953 | 1.00 | 45.55 BBBB |
|    | ATOM | 1893 | CG         | PR0 | 217 | 60.942 31.740 | 40.263 | 1.00 | 45.13 BBBB |
|    | ATOM | 1894 | C          | PRO | 217 | 58.910 29.393 | 38.335 | 1.00 | 47.66 BBBB |
| 10 | ATOM | 1895 | 0          | PR0 | 217 | 58.407 29.573 | 37.230 | 1.00 | 50.76 BBBB |
|    | ATOM | 1896 | N          | ASP | 218 | 59.325 28.200 | 38.742 | 1.00 | 48.45 BBBB |
|    | ATOM | 1897 | Н          | ASP | 218 | 59.857 28.156 | 39.563 | 1.00 | 0.00 BBBB  |
|    | MOTA | 1898 | CA         | ASP | 218 | 59.133 27.016 | 37.912 | 1.00 | 53.00 BBBB |
|    | ATOM | 1899 | CB         | ASP | 218 | 60.313 26.054 | 38.073 | 1.00 | 59.27 BBBB |
| 15 | MOTA | 1900 | CG         | ASP | 218 | 61.401 26.286 | 37.038 | 1.00 | 62.24 BBBB |
|    | ATOM | 1901 | 0D1        | ASP | 218 | 62.264 27.163 | 37.278 | 1.00 | 61.84 BBBB |
|    | MOTA | 1902 | OD2        | ASP | 218 | 61.384 25.592 | 35.990 | 1.00 | 64.66 BBBB |
|    | ATOM | 1903 | C          | ASP | 218 | 57.847 26.266 | 38.214 | 1.00 | 54.01 BBBB |
|    | ATOM | 1904 | 0          | ASP | 218 | 57.470 25.352 | 37.476 | 1.00 | 55.95 BBBB |
| 20 | ATOM | 1905 | N          | GLU | 219 | 57.221 26.606 | 39.339 | 1.00 | 54.49 BBBB |
|    | ATOM | 1906 | Н          | GLU | 219 | 57.552 27.392 | 39.808 | 1.00 | 0.00 BBBB  |
|    | ATOM | 1907 | CA         | GLU | 219 | 55.990 25.951 | 39.789 | 1.00 | 53.25 BBBB |
|    | ATOM | 1908 | CB         | GLU | 219 | 55.744 26.201 | 41.285 | 1.00 | 52.75 BBBB |
|    | ATOM | 1909 | CG         | GLU | 219 | 56.022 25.007 | 42.175 | 1.00 | 53.61 BBBB |
| 25 | ATOM | 1910 | CD         | GLU | 219 | 55.203 23.766 | 41.812 | 1.00 | 58.48 BBBB |
|    | ATOM | 1911 | 0E1        | GLU | 219 | 54.269 23.854 | 40.975 | 1.00 | 58.85 BBBB |
|    | MOTA | 1912 | 0E2        | GLU | 219 | 55.486 22.689 | 42.389 | 1.00 | 59.45 BBBB |
|    | ATOM | 1913 | C          | GLU | 219 | 54.766 26.393 | 39.001 | 1.00 | 51.04 BBBB |
|    | ATOM | 1914 | 0          | GLU | 219 | 54.415 27.573 | 38.987 | 1.00 | 49.15 BBBB |
| 30 | MOTA | 1915 | N          | LEU | 220 | 54.077 25.419 | 38.421 | 1.00 | 50.75 BBBB |
|    | ATOM | 1916 | Н          | LEU | 220 | 54.442 24.515 | 38.500 | 1.00 | 0.00 BBBB  |
|    | ATOM | 1917 | CA         | LEU | 220 | 52.915 25.686 | 37.578 | 1.00 | 51.68 BBBB |
|    | ATOM | 1918 | СВ         | LEU | 220 | 52.817 24.622 | 36.484 | 1.00 | 54.60 BBBB |
|    | ATOM | 1919 | CG         | LEU | 220 | 53.302 24.997 | 35.084 | 1.00 | 58.03 BBBB |
| 35 | ATOM | 1920 | CD1        | LEU | 220 | 52.102 25.048 | 34.146 | 1.00 | 59.62 BBBB |
|    | ATOM | 1921 | CD2        | LEU | 220 | 54.038 26.341 | 35.107 | 1.00 | 60.10 BBBB |
|    | ATOM | 1922 | C          | LEU | 220 | 51.600 25.726 | 38.357 | 1.00 | 49.77 BBBB |
|    | ATOM | 1923 | 0          | LEU | 220 | 50.638 26.363 | 37.929 | 1.00 | 48.89 BBBB |
|    | ATOM | 1924 | N          | ARG | 221 | 51.605 25.116 | 39.540 | 1.00 | 47.79 BBBB |
| 40 | ATOM |      | Н          | ARG | 221 | 52.470 25.007 | 39.968 | 1.00 | 0.00 BBBB  |
|    | ATOM |      | CA         | ARG | 221 | 50.377 24.679 | 40.217 | 1.00 | 45.16 BBBB |
|    | ATOM |      | CB         | ARG | 221 | 50.680 23.414 | 41.049 | 1.00 | 48.94 BBBB |
|    | ATOM | 1928 | CG         | ARG | 221 | 51.461 22.326 | 40.282 | 1.00 | 51.97 BBBB |

|    | ATOM | 1929 | CD          | ARG | 221 | 52.261 21.403 | 41.202 | 1.00 | 59.14 | BBBB        |
|----|------|------|-------------|-----|-----|---------------|--------|------|-------|-------------|
|    | ATOM | 1930 | NE          | ARG | 221 | 51.422 20.383 | 41.840 | 1.00 | 71.38 | BBBB        |
|    | ATOM | 1931 | HE          | ARG | 221 | 50.867 20.658 | 42.597 | 1.00 | 20.00 | <b>BBBB</b> |
|    | ATOM | 1932 | CZ          | ARG | 221 | 51.331 19.109 | 41.447 | 1.00 | 75.94 | BBBB        |
| 5  | ATOM | 1933 | NH1         | ARG | 221 | 50.486 18.279 | 42.061 | 1.00 | 75.00 | BBBB        |
|    | ATOM | 1934 | HH11        | ARG | 221 | 49.905 18.611 | 42.804 | 1.00 | 0.00  | BBBB        |
|    | ATOM | 1935 | <b>HH12</b> | ARG | 221 | 50.417 17.331 | 41.752 | 1.00 | 0.00  | BBBB        |
|    | ATOM | 1936 | NH2         | ARG | 221 | 52.093 18.651 | 40.453 | 1.00 | 77.87 | BBBB        |
|    | ATOM | 1937 | <b>HH21</b> | ARG | 221 | 52.745 19.258 | 39.998 | 1.00 | 0.00  | BBBB        |
| 10 | ATOM | 1938 | <b>HH22</b> | ARG | 221 | 52.024 17.696 | 40.164 | 1.00 | 0.00  | BBBB        |
|    | ATOM | 1939 | C           | ARG | 221 | 49.715 25.774 | 41.085 | 1.00 | 38.76 | BBBB        |
|    | ATOM | 1940 | 0           | ARG | 221 | 49.451 25.580 | 42.271 | 1.00 | 33.96 | BBBB        |
|    | ATOM | 1941 | N           | PHE | 222 | 49.467 26.925 | 40.469 | 1.00 | 32.85 | BBBB        |
|    | ATOM | 1942 | Н           | PHE | 222 | 49.676 27.003 | 39.511 | 1.00 | 0.00  | BBBB        |
| 15 | ATOM | 1943 | CA          | PHE | 222 | 48.830 28.062 | 41.123 | 1.00 | 31.95 | BBBB        |
|    | MOTA | 1944 | CB          | PHE | 222 | 49.698 29.321 | 40.980 | 1.00 | 35.29 | BBBB        |
|    | MOTA | 1945 | CG          | PHE | 222 | 50.951 29.306 | 41.830 | 1.00 | 40.24 | BBBB        |
|    | ATOM | 1946 | CD1         | PHE | 222 | 52.100 28.634 | 41.394 | 1.00 | 39.81 | BBBB        |
|    | MOTA | 1947 | CD2         | PHE | 222 | 50.958 29.904 | 43.095 | 1.00 | 38.34 | BBBB        |
| 20 | ATOM | 1948 | CE1         | PHE | 222 | 53.234 28.540 | 42.212 | 1.00 | 42.53 | BBBB        |
|    | MOTA | 1949 | CE2         | PHE | 222 | 52.087 29.818 | 43.927 | 1.00 | 40.72 | BBBB        |
|    | MOTA | 1950 | CZ          | PHE | 222 | 53.229 29.131 | 43.485 | 1.00 | 41.46 | BBBB        |
|    | MOTA | 1951 | C           | PHE | 222 | 47.485 28.312 | 40.440 | 1.00 | 31.88 | BBBB        |
|    | ATOM | 1952 | 0           | PHE | 222 | 47.438 28.497 | 39.233 | 1.00 | 30.41 | BBBB        |
| 25 | ATOM | 1953 | N           | ASN | 223 | 46.393 28.244 | 41.195 | 1.00 | 25.46 | BBBB        |
|    | MOTA | 1954 | H           | ASN | 223 | 46.518 28.097 | 42.159 | 1.00 | 0.00  | BBBB        |
|    | MOTA | 1955 | CA          | ASN | 223 | 45.057 28.452 | 40.632 | 1.00 | 22.95 | BBBB        |
|    | MOTA | 1956 | CB          | ASN | 223 | 44.389 27.109 | 40.377 | 1.00 | 22.96 | BBBB        |
|    | ATOM | 1957 | CG          | ASN | 223 | 45.190 26.234 | 39.440 | 1.00 | 30.10 | BBBB        |
| 30 | ATOM | 1958 | 0D1         | ASN | 223 | 44.896 26.142 | 38.249 | 1.00 | 39.00 | BBBB        |
|    | ATOM | 1959 | ND2         | ASN | 223 | 46.227 25.602 | 39.965 | 1.00 | 34.21 | BBBB        |
|    | MOTA | 1960 | HD21        | ASN | 223 | 46.685 24.977 | 39.365 | 1.00 | 0.00  | BBBB        |
|    | MOTA | 1961 | HD22        | ASN | 223 | 46.478 25.799 | 40.881 | 1.00 | 0.00  | BBBB        |
|    | ATOM | 1962 | C           | ASN | 223 | 44.211 29.248 | 41.608 | 1.00 | 20.90 | BBBB        |
| 35 | ATOM | 1963 | 0           | ASN | 223 | 44.150 28.908 | 42.784 | 1.00 | 24.24 | BBBB        |
|    | ATOM | 1964 | N           | ALA | 224 | 43.598 30.324 | 41.148 | 1.00 | 19.58 | BBBB        |
|    | ATOM | 1965 | Н           | ALA | 224 | 43.709 30.554 | 40.197 | 1.00 | 0.00  | BBBB        |
|    | ATOM | 1966 | CA          | ALA | 224 | 42.785 31.162 | 42.030 | 1.00 | 20.81 | BBBB        |
|    | ATOM | 1967 | CB          | ALA | 224 | 43.349 32.588 | 42.086 | 1.00 | 17.03 | BBBB        |
| 40 | ATOM | 1968 | C           | ALA | 224 | 41.292 31.199 | 41.651 | 1.00 | 22.36 | BBBB        |
|    | ATOM | 1969 | 0           | ALA | 224 | 40.917 30.985 | 40.490 | 1.00 | 23.63 | BBBB        |
|    | ATOM | 1970 | N           | ILE | 225 | 40.443 31.332 | 42.667 | 1.00 | 19.57 | BBBB        |
|    | ATOM | 1971 | Н           | ILE | 225 | 40.814 31.262 | 43.573 | 1.00 | 0.00  | BBBB        |

|    | ATOM | 1972 | CA  | ILE | 225          | 39.022 31.595 | 42.456 | 1.00 | 18.02 | BBBB         |
|----|------|------|-----|-----|--------------|---------------|--------|------|-------|--------------|
|    | ATOM | 1973 | CB  | ILE | 225          | 38.139 30.383 | 42.880 | 1.00 | 17.65 | ${\tt BBBB}$ |
|    | ATOM | 1974 | CG2 | ILE | 225          | 38.420 29.200 | 41.962 | 1.00 | 18.13 | BBBB         |
| -  | ATOM | 1975 | CG1 | ILE | 225          | 38.371 30.016 | 44.361 | 1.00 | 16.24 | BBBB         |
| 5  | ATOM | 1976 | CD  | ILE | 225          | 37.619 28.785 | 44.847 | 1.00 | 14.44 | ${\tt BBBB}$ |
|    | ATOM | 1977 | C   | ILE | 225          | 38.605 32.846 | 43.220 | 1.00 | 19.24 | ${\tt BBBB}$ |
|    | ATOM | 1978 | 0   | ILE | 225          | 39.239 33.210 | 44.219 | 1.00 | 20.04 | BBBB         |
|    | ATOM | 1979 | N   | ALA | 226          | 37.665 33.593 | 42.648 | 1.00 | 16.66 | BBBB         |
|    | ATOM | 1980 | Н   | ALA | 226          | 37.258 33.255 | 41.826 | 1.00 | 0.00  | BBBB         |
| 10 | ATOM | 1981 | CA  | ALA | 226          | 37.224 34.869 | 43.209 | 1.00 | 15.95 | BBBB         |
|    | ATOM | 1982 | CB  | ALA | 226          | 37.347 35.958 | 42.154 | 1.00 | 12.73 | BBBB         |
|    | ATOM | 1983 | C   | ALA | 226          | 35.775 34.757 | 43.679 | 1.00 | 18.07 | BBBB         |
|    | ATOM | 1984 | 0   | ALA | 226          | 34.971 34.086 | 43.019 | 1.00 | 18.08 | BBBB         |
|    | ATOM | 1985 | N   | LEU | <b>227</b> . | 35.492 35.237 | 44.894 | 1.00 | 18.46 | BBBB         |
| 15 | ATOM | 1986 | Н   | LEU | 227          | 36.235 35.501 | 45.449 | 1.00 | 0.00  | BBBB         |
|    | ATOM | 1987 | CA  | LEU | 227          | 34.105 35.292 | 45.382 | 1.00 | 18.63 | BBBB         |
|    | MOTA | 1988 | CB  | LEU | 227          | 34.034 35.223 | 46.910 | 1.00 | 17.78 | BBBB         |
|    | ATOM | 1989 | CG  | LEU | 227          | 32.630 35.026 | 47.507 | 1.00 | 15.56 | BBBB         |
|    | ATOM | 1990 | CD1 | LEU | 227          | 31.934 33.818 | 46.849 | 1.00 | 11.24 | BBBB         |
| 20 | ATOM | 1991 | CD2 | LEU | 227          | 32.728 34.824 | 49.026 | 1.00 | 16.41 | BBBB         |
|    | ATOM | 1992 | C   | LEU | 227          | 33.421 36.564 | 44.889 | 1.00 | 18.62 | BBBB         |
|    | ATOM | 1993 | 0   | LEU | 227          | 33.644 37.662 | 45.423 | 1.00 | 22.19 | BBBB         |
|    | ATOM | 1994 | N   | SER | 228          | 32.617 36.409 | 43.841 | 1.00 | 21.18 | BBBB         |
|    | ATOM | 1995 | Н   | SER | 228          | 32.389 35.506 | 43.551 | 1.00 | 0.00  | BBBB         |
| 25 | ATOM | 1996 | CA  | SER | 228          | 32.101 37.547 | 43.082 | 1.00 | 23.05 | BBBB         |
|    | ATOM | 1997 | CB  | SER | 228          | 32.340 37.337 | 41.583 | 1.00 | 21.38 | BBBB         |
|    | ATOM | 1998 | OG  | SER | 228          | 33.717 37.354 | 41.256 | 1.00 | 27.97 | BBBB         |
|    | ATOM | 1999 | HG  | SER | 228          | 33.938 38.255 | 40.993 | 1.00 | 0.00  | BBBB         |
|    | ATOM | 2000 | C   | SER | 228          | 30.611 37.740 | 43.319 | 1.00 | 22.96 | BBBB         |
| 30 | ATOM | 2001 | 0   | SER | 228          | 29.879 36.774 | 43.537 | 1.00 | 22.70 | BBBB         |
|    | ATOM | 2002 | N   | ALA | 229          | 30.175 38.994 | 43.240 | 1.00 | 25.88 | BBBB         |
|    | ATOM | 2003 | Н   | ALA | 229          | 30.865 39.687 | 43.183 | 1.00 | 0.00  | BBBB         |
|    | ATOM | 2004 | CA  | ALA | 229          | 28.755 39.339 | 43.272 | 1.00 | 27.79 | BBBB         |
|    | ATOM | 2005 | CB  | ALA | 229          | 28.576 40.816 | 43.037 | 1.00 | 26.67 | BBBB         |
| 35 | ATOM | 2006 | C   | ALA | 229          | 27.947 38.557 | 42.253 | 1.00 | 30.41 | BBBB         |
|    | ATOM | 2007 | 0   | ALA | 229          | 28.343 38.421 | 41.091 | 1.00 | 28.94 | BBBB         |
|    | ATOM | 2008 | N   | ALA | 230          | 26.875 37.943 | 42.727 | 1.00 | 34.26 | BBBB         |
|    | ATOM | 2009 | Н   | ALA | 230          | 26.619 38.098 | 43.649 | 1.00 | 0.00  | BBBB         |
|    | ATOM | 2010 | CA  | ALA | 230          | 25.932 37.264 | 41.850 | 1.00 | 39.79 | BBBB         |
| 40 | ATOM | 2011 | CB  | ALA | 230          | 26.227 35.769 | 41.806 | 1.00 | 36.23 | BBBB         |
|    | ATOM | 2012 | C   | ALA | 230          | 24.515 37.521 | 42.353 | 1.00 | 43.03 | BBBB         |
|    | ATOM | 2013 | 0T1 | ALA | 230          | 24.317 38.529 | 43.082 | 1.00 | 45.31 | BBBB         |
|    | ATOM | 2014 | OT2 | ALA | 230          | 23.610 36.739 | 41.986 | 1.00 | 51.60 | BBBB         |
|    |      |      |     |     |              |               |        |      |       |              |

|    | ATOM | 2015<br>CCCC | 0H2 | WAT | W          | 1 | 51.481 | 27.762 | 54.626 | 1.00 | 18.55 |
|----|------|--------------|-----|-----|------------|---|--------|--------|--------|------|-------|
|    | ATOM | 2016<br>CCCC | H1  | WAT | W          | 1 | 50.686 | 28.045 | 55.047 | 1.00 | 0.00  |
| 5  | ATOM | 2017<br>CCCC | H2  | WAT | W          | 1 | 51.852 | 28.563 | 54.263 | 1.00 | 0.00  |
|    | MOTA | 2018<br>CCCC | 0H2 | WAT | W          | 2 | 39.370 | 21.410 | 52.578 | 1.00 | 15.77 |
| 10 | ATOM | 2019<br>CCCC | H1  | WAT | W          | 2 | 39.781 | 20.538 | 52.650 | 1.00 | 0.00  |
|    | ATOM | 2020<br>CCCC | H2  | WAT | W          | 2 | 38.930 | 21.344 | 51.730 | 1.00 | 0.00  |
|    | ATOM | 2021<br>CCCC | 0H2 | WAT | <b>W</b> . | 3 | 35.144 | 43.822 | 54.730 | 1.00 | 48.43 |
| 15 | ATOM | 2022<br>CCCC | H1  | WAT | W          | 3 | 35.076 | 42.857 | 54.802 | 1.00 | 0.00  |
|    | ATOM | 2023<br>CCCC | H2  | WAT | W          | 3 | 36.016 | 43.867 | 54.331 | 1.00 | 0.00  |
| 20 | ATOM | 2024<br>CCCC | 0H2 | WAT | W          | 4 | 39.532 | 35.665 | 68.967 | 1.00 | 39.36 |
|    | ATOM | 2025<br>CCCC | H1  | WAT | W          | 4 | 38.850 | 35.846 | 69.610 | 1.00 | 0.00  |
|    | ATOM | 2026<br>CCCC | H2  | WAT | W          | 4 | 39.154 | 34.910 | 68.494 | 1.00 | 0.00  |
| 25 | ATOM | 2027<br>CCCC | OH2 | WAT | W          | 5 | 52.778 | 35.754 | 52.431 | 1.00 | 19.08 |
|    | ATOM | 2028<br>CCCC | H1  | WAT | W          | 5 | 52.330 | 35.766 | 53.277 | 1.00 | 0.00  |
| 30 | ATOM | 2029<br>CCCC | H2  | WAT | W          | 5 | 53.715 | 35.839 | 52.604 | 1.00 | 0.00  |
|    | ATOM | 2030<br>CCCC | OH2 | WAT | W          | 6 | 40.635 | 36.308 | 64.686 |      |       |
|    | ATOM | 2031<br>CCCC | H1  | WAT | W          | 6 | 40.363 | 37.194 | 64.430 |      | 0.00  |
| 35 | ATOM | 2032<br>CCCC | H2  | WAT | W          | 6 | 40.869 | 36.450 | 65.613 | 1.00 | 0.00  |
|    | ATOM | 2033<br>CCCC | OH2 | WAT | W          | 7 | 44.431 | 27.177 | 56.600 | 1.00 | 19.80 |
| 40 | ATOM |              | H1  | WAT | W          | 7 | 44.407 | 26.205 | 56.639 | 1.00 | 0.00  |
|    | ATOM |              | H2  | WAT | W          | 7 | 43.481 | 27.377 | 56.604 | 1.00 | 0.00  |

|    | ATOM | 2036<br>CCCC | 0H2 | WAT | W | 8  | 42.402 | 30.227 | 54.711 | 1.00 | 11.84 |
|----|------|--------------|-----|-----|---|----|--------|--------|--------|------|-------|
| -  | ATOM |              | H1  | WAT | W | 8  | 43.286 | 30.482 | 54.423 | 1.00 | 0.00  |
| 5  | ATOM |              | H2  | WAT | W | 8  | 42.346 | 29.333 | 54.345 | 1.00 | 0.00  |
|    | ATOM |              | 0H2 | WAT | W | 9  | 40.731 | 28.824 | 38.939 | 1.00 | 28.73 |
| 10 | ATOM |              | H1  | WAT | W | 9  | 40.795 | 27.981 | 38.482 | 1.00 | 0.00  |
|    | ATOM | 2041<br>CCCC | H2  | WAT | W | 9  | 39.802 | 28.985 | 39.058 | 1.00 | 0.00  |
|    | ATOM | 2042<br>CCCC | 0H2 | WAT | W | 10 | 25.085 | 35.294 | 50.522 | 1.00 | 30.46 |
| 15 | ATOM | 2043<br>CCCC | H1  | WAT | W | 10 | 25.848 | 35.145 | 51.097 | 1.00 | 0.00  |
|    | MOTA | 2044<br>CCCC | H2  | WAT | W | 10 | 25.073 | 34.478 | 50.005 | 1.00 | 0.00  |
| 20 | ATOM | 2045<br>CCCC | OH2 | WAT | W | 11 | 43.212 | 27.747 | 54.339 | 1.00 | 16.77 |
|    | ATOM | 2046<br>CCCC | H1  | WAT | W | 11 | 42.735 | 27.129 | 53.765 | 1.00 | 0.00  |
|    | ATOM | 2047<br>CCCC | H2  | WAT | W | 11 | 43.973 | 27.993 | 53.794 | 1.00 | 0.00  |
| 25 | ATOM | 2048<br>CCCC | OH2 | WAT | W | 12 | 25.873 | 28.833 | 46.097 | 1.00 | 25.93 |
|    |      | 2049<br>CCCC | H1  | WAT | W | 12 | 26.045 | 28.055 | 46.634 | 1.00 | 0.00  |
| 30 | ATOM | 2050<br>CCCC | H2  | WAT | W | 12 | 25.143 | 29.291 | 46.521 | 1.00 | 0.00  |
|    | ATOM | CCCC         | OH2 |     | W | 13 | 47.247 | 22.287 |        | 1.00 |       |
|    | ATOM | CCCC         | H1  | WAT | W | 13 | 47.397 | 21.925 |        | 1.00 | 0.00  |
| 35 | ATOM | 2053<br>CCCC | H2  | WAT | W | 13 | 46.502 | 21.777 | 53.977 | 1.00 | 0.00  |
|    | ATOM | 2054<br>CCCC | OH2 | WAT | W | 14 | 32.315 | 33.010 | 70.814 | 1.00 | 30.92 |
| 40 | ATOM | 2055<br>CCCC | H1  | WAT | W | 14 | 31.764 | 32.247 | 70.559 | 1.00 | 0.00  |
|    | ATOM | 2056<br>CCCC | H2  | WAT | W | 14 | 32.482 | 32.806 | 71.743 | 1.00 | 0.00  |

|    | ATOM | 2057<br>CCCC | 0H2 | WAT | W          | 15 | 27.439 | 20.370 | 63.661 | 1.00 | 35.31 |
|----|------|--------------|-----|-----|------------|----|--------|--------|--------|------|-------|
|    | ATOM | 2058<br>CCCC | H1  | WAT | W          | 15 | 27.577 | 19.523 | 64.085 | 1.00 | 0.00  |
| 5  | ATOM | 2059<br>CCCC | H2  | WAT | W          | 15 | 26.570 | 20.639 | 64.000 | 1.00 | 0.00  |
|    | ATOM |              | 0H2 | WAT | W          | 16 | 36.688 | 34.815 | 35.452 | 1.00 | 26.31 |
| 10 | ATOM |              | H1  | WAT | W          | 16 | 37.119 | 33.999 | 35.736 | 1.00 | 0.00  |
| 10 | ATOM | 2062<br>CCCC | H2  | WAT | W          | 16 | 36.741 | 34.794 | 34.493 | 1.00 | 0.00  |
|    | ATOM | 2063<br>CCCC | OH2 | WAT | <b>W</b> . | 17 | 55.000 | 30.105 | 39.281 | 1.00 | 40.98 |
| 15 | ATOM |              | H1  | WAT | W          | 17 | 55.681 | 29.609 | 39.748 | 1.00 | 0.00  |
|    | ATOM | 2065<br>CCCC | H2  | WAT | W          | 17 | 54.462 | 29.407 | 38.898 | 1.00 | 0.00  |
| 20 | ATOM |              | 0H2 | WAT | W          | 18 | 43.052 | 23.709 | 40.956 | 1.00 | 40.59 |
| 20 | ATOM |              | H1  | WAT | W          | 18 | 42.643 | 24.247 | 40.269 | 1.00 | 0.00  |
|    | ATOM | 2068<br>CCCC | H2  | WAT | W          | 18 | 43.936 | 23.558 | 40.602 | 1.00 | 0.00  |
| 25 | ATOM | 2069<br>CCCC | 0H2 | WAT | W          | 19 | 54.909 | 33.171 | 58.012 | 1.00 | 19.53 |
|    | ATOM | 2070<br>CCCC | H1  | WAT | W          | 19 | 54.343 | 33.687 | 57.452 | 1.00 | 0.00  |
| 30 | ATOM |              | H2  | WAT | W          | 19 | 55.741 | 33.098 | 57.532 | 1.00 | 0.00  |
|    | ATOM |              | 0H2 | WAT | W          | 20 | 40.237 | 17.628 | 51.003 | 1.00 | 33.94 |
|    | ATOM | 2073<br>CCCC | H1  | WAT | W          | 20 | 39.951 | 18.550 | 51.077 | 1.00 | 0.00  |
| 35 | ATOM | 2074<br>CCCC | H2  | WAT | W          | 20 | 40.823 | 17.557 | 51.766 | 1.00 | 0.00  |
|    | ATOM |              | OH2 | WAT | W          | 21 | 50.618 | 31.128 | 52.585 | 1.00 | 18.87 |
| 40 | ATOM |              | H1  | WAT | W          | 21 | 51.070 | 31.770 | 53.133 | 1.00 | 0.00  |
|    | ATOM |              | H2  | WAT | W          | 21 | 49.874 | 31.595 | 52.195 | 1.00 | 0.00  |
|    |      |              |     |     |            |    |        |        |        |      |       |

|    | ATOM | 2078<br>CCCC | 0H2 | WAT | W | 22 | 47.828 | 33.973 | 57.688 | 1.00 | 12.70 |
|----|------|--------------|-----|-----|---|----|--------|--------|--------|------|-------|
|    | ATOM | 2079<br>CCCC | H1  | WAT | W | 22 | 48.249 | 33.962 | 58.551 | 1.00 | 0.00  |
| 5  | ATOM | 2080<br>CCCC | H2  | WAT | W | 22 | 48.064 | 33.104 | 57.362 | 1.00 | 0.00  |
|    | ATOM |              | 0H2 | WAT | W | 23 | 42.063 | 39.807 | 64.625 | 1.00 | 30.20 |
| 10 | ATOM |              | H1  | WAT | W | 23 | 41.289 | 39.678 | 64.069 | 1.00 | 0.00  |
| 10 | ATOM |              | H2  | WAT | W | 23 | 42.289 | 40.734 | 64.486 | 1.00 | 0.00  |
|    | ATOM |              | 0H2 | WAT | W | 24 | 33.765 | 20.863 | 55.211 | 1.00 | 29.13 |
| 15 | ATOM |              | H1  | WAT | W | 24 | 33.127 | 20.926 | 55.939 | 1.00 | 0.00  |
|    | ATOM |              | H2  | WAT | W | 24 | 33.724 | 19.909 | 55.040 | 1.00 | 0.00  |
| 20 | ATOM |              | 0H2 | WAT | W | 25 | 36.791 | 41.478 | 51.569 | 1.00 | 21.42 |
|    | ATOM |              | H1  | WAT | W | 25 | 36.666 | 42.072 | 52.329 | 1.00 | 0.00  |
|    | ATOM | 2089<br>CCCC | H2  | WAT | W | 25 | 36.015 | 40.915 | 51.732 | 1.00 | 0.00  |
| 25 | ATOM |              | OH2 | WAT | W | 26 | 22.888 | 33.170 | 41.709 | 1.00 | 36.61 |
|    | ATOM | 2091<br>CCCC | H1  | WAT | W | 26 | 22.945 | 34.011 | 41.225 | 1.00 | 0.00  |
| 30 | ATOM |              | H2  | WAT | W | 26 | 23.300 | 33.483 | 42.535 | 1.00 | 0.00  |
|    | ATOM | 2093<br>CCCC | OH2 | WAT | W | 27 | 55.171 | 39.105 | 53.741 | 1.00 | 42.20 |
|    | ATOM |              | H1  | WAT | W | 27 | 55.663 | 39.042 | 54.569 | 1.00 | 0.00  |
| 35 | ATOM | 2095<br>CCCC | H2  | WAT | W | 27 | 54.806 | 38.247 | 53.609 | 1.00 | 0.00  |
|    | ATOM | 2096<br>CCCC | OH2 | WAT | W | 28 | 28.321 | 27.402 | 40.210 | 1.00 | 30.51 |
| 40 | ATOM |              | H1  | WAT | W | 28 | 28.268 | 26.785 | 39.486 | 1.00 | 0.00  |
| 70 | ATOM | 2098<br>CCCC | H2  | WAT | W | 28 | 27.404 | 27.641 | 40.409 | 1.00 | 0.00  |

|    | ATOM | 2099<br>CCCC | 0H2 | WAT | W | 29 | 40.852 | 16.628 | 47.914 | 1.00 | 34.70 |
|----|------|--------------|-----|-----|---|----|--------|--------|--------|------|-------|
| •  | ATOM |              | H1  | WAT | W | 29 | 41.261 | 15.764 | 48.057 | 1.00 | 0.00  |
| 5  | ATOM |              | H2  | WAT | W | 29 | 40.593 | 16.863 | 43.822 | 1.00 | 0.00  |
|    | ATOM |              | 0H2 | WAT | W | 30 | 39.338 | 35.289 | 34.944 | 1.00 | 21.05 |
| 10 | ATOM |              | H1  | WAT | W | 30 | 38.678 | 35.160 | 35.647 | 1.00 | 0.00  |
|    | ATOM |              | H2  | WAT | W | 30 | 39.284 | 36.252 | 34.809 | 1.00 | 0.00  |
|    | MOTA |              | 0H2 | WAT | W | 31 | 33.019 | 43.572 | 48.633 | 1.00 | 37.54 |
| 15 | ATOM |              | H1  | WAT | W | 31 | 32.798 | 44.226 | 49.297 | 1.00 | 0.00  |
|    | ATOM | 2107<br>CCCC | H2  | WAT | W | 31 | 33.948 | 43.674 | 48.472 | 1.00 | 0.00  |
| 20 | ATOM | 2108<br>CCCC | 0H2 | WAT | W | 32 | 47.579 | 20.217 | 52.081 | 1.00 | 37.78 |
|    | ATOM |              | H1  | WAT | W | 32 | 46.890 | 20.151 | 52.764 | 1.00 | 0.00  |
|    | ATOM | 2110<br>CCCC | H2  | WAT | W | 32 | 47.134 | 20.719 | 51.380 | 1.00 | 0.00  |
| 25 | ATOM | 2111<br>CCCC | 0H2 | WAT | W | 33 | 35.901 | 43.755 | 50.596 | 1.00 | 26.42 |
|    | ATOM | 2112<br>CCCC | H1  | WAT | W | 33 | 35.376 | 44.062 | 49.857 | 1.00 | 0.00  |
| 30 | ATOM | 2113<br>CCCC | H2  | WAT | W | 33 | 36.097 | 42.838 | 50.344 | 1.00 | 0.00  |
|    | MOTA | 2114<br>CCCC | 0H2 | WAT | W | 34 | 42.104 | 46.370 | 66.356 | 1.00 | 30.52 |
|    | ATOM | 2115<br>CCCC | H1  | WAT | W | 34 | 41.961 | 46.330 | 67.306 | 1.00 | 0.00  |
| 35 | ATOM | 2116<br>CCCC | H2  | WAT | W | 34 | 42.851 | 46.966 | 66.269 | 1.00 | 0.00  |
|    | ATOM | 2117<br>CCCC | OH2 | WAT | W | 35 | 46.131 | 17.969 | 52.630 | 1.00 | 35.74 |
| 40 | ATOM | 2118<br>CCCC | H1  | WAT | W | 35 | 45.557 | 17.546 | 51.952 | 1.00 | 0.00  |
|    | ATOM | 2119<br>CCCC | H2  | WAT | W | 35 | 46.805 | 18.440 | 52.129 | 1.00 | 0.00  |
|    |      |              |     |     |   |    |        |        |        |      |       |

|    | ATOM | 2120<br>CCCC | 0H2 | WAT | W          | 36 | 52.356 | 28.587 | 62.695 | 1.00 | 31.73 |
|----|------|--------------|-----|-----|------------|----|--------|--------|--------|------|-------|
| _  | ATOM |              | H1  | WAT | W          | 36 | 52.236 | 28.111 | 61.849 | 1.00 | 0.00  |
| 5  | ATOM |              | H2  | WAT | W          | 36 | 53.107 | 28.128 | 63.068 | 1.00 | 0.00  |
|    | ATOM |              | 0H2 | WAT | W          | 37 | 53.928 | 32.954 | 52.385 | 1.00 | 34.97 |
| 10 | ATOM |              | H1  | WAT | W          | 37 | 54.027 | 33.054 | 51.433 | 1.00 | 0.00  |
|    | ATOM |              | H2  | WAT | W          | 37 | 54.168 | 33.807 | 52.721 | 1.00 | 0.00  |
|    | MOTA |              | OH2 | WAT | <b>W</b> . | 38 | 54.246 | 30.819 | 59.312 | 1.00 | 24.90 |
| 15 | ATOM | 2127<br>CCCC | H1  | WAT | W          | 38 | 54.899 | 31.330 | 58.817 | 1.00 | 0.00  |
|    | ATOM | 2128<br>CCCC | H2  | WAT | W          | 38 | 54.625 | 30.713 | 60.178 | 1.00 | 0.00  |
| 20 | ATOM | 2129<br>CCCC | 0H2 | WAT | W          | 39 | 52.917 | 41.940 | 57.637 | 1.00 | 31.49 |
|    | ATOM | 2130<br>CCCC | H1  | WAT | W          | 39 | 52.509 | 42.286 | 56.832 | 1.00 | 0.00  |
|    | ATOM | 2131<br>CCCC | H2  | WAT | W          | 39 | 52.166 | 41.650 | 58.142 | 1.00 | 0.00  |
| 25 | ATOM | 2132<br>CCCC | 0H2 | WAT | W          | 40 | 22.703 | 25.095 | 56.301 | 1.00 | 26.37 |
|    | ATOM | 2133<br>CCCC | H1  | WAT | W          | 40 | 22.608 | 24.325 | 55.722 | 1.00 | 0.00  |
| 30 | ATOM | 2134<br>CCCC | H2  | WAT | W          | 40 | 21.849 | 25.138 |        |      | 0.00  |
|    | ATOM | 2135<br>CCCC | OH2 | WAT | W          | 41 | 30.795 | 30.259 | 38.753 | 1.00 | 31.81 |
|    | ATOM | 2136<br>CCCC | H1  | WAT | W          | 41 | 31.181 | 30.659 | 39.538 | 1.00 | 0.00  |
| 35 | ATOM | 2137<br>CCCC | H2  | WAT | W          | 41 | 30.536 | 30.996 | 38.213 | 1.00 | 0.00  |
|    | ATOM | 2138<br>CCCC | OH2 | WAT | W          | 42 | 27.059 | 32.642 | 48.470 | 1.00 | 29.12 |
| 40 | ATOM |              | H1  | WAT | W          | 42 | 26.179 | 32.491 | 48.826 | 1.00 | 0.00  |
|    | ATOM |              | H2  | WAT | W          | 42 | 26.887 | 32.882 | 47.561 | 1.00 | 0.00  |

|    | ATOM | 2141<br>CCCC | OH2 | WAT | W | 43 . | 31.741 | 35.155 | 63.468 | 1.00 | 34.61 |
|----|------|--------------|-----|-----|---|------|--------|--------|--------|------|-------|
|    | ATOM |              | H1  | WAT | W | 43   | 32.424 | 35.645 | 62.988 | 1.00 | 0.00  |
| 5  | ATOM |              | H2  | WAT | W | 43   | 32.162 | 34.352 | 63.777 | 1.00 | 0.00  |
|    | ATOM | 2144         | OH2 | WAT | W | 44   | 29.727 | 30.243 | 71.731 | 1.00 | 31.51 |
| 10 | ATOM |              | H1  | WAT | W | 44   | 28.793 | 30.072 | 71.838 | 1.00 | 0.00  |
| 10 | ATOM |              | H2  | WAT | W | 44   | 29.847 | 30.411 | 70.803 | 1.00 | 0.00  |
|    | ATOM |              | OH2 | WAT | W | 45   | 36.050 | 33.785 | 74.656 | 1.00 | 35.20 |
| 15 | ATOM |              | H1  | WAT | W | 45   | 36.659 | 33.064 | 74.675 | 1.00 | 0.00  |
|    | ATOM |              | H2  | WAT | W | 45   | 36.197 | 34.091 | 73.746 | 1.00 | 0.00  |
|    | ATOM |              | OH2 | WAT | W | 46   | 39.267 | 26.175 | 75.132 | 1.00 | 43.10 |
| 20 | ATOM | CCCC<br>2151 | H1  | WAT | W | 46   | 38.838 | 26.792 | 74.559 | 1.00 | 0.00  |
|    | ATOM | CCCC<br>2152 | H2  | WAT | W | 46   | 38.723 | 26.196 | 75.918 | 1.00 | 0.00  |
| 25 | ATOM | CCCC<br>2153 | OH2 | WAT | W | 47   | 54.676 | 27.697 | 46.296 | 1.00 | 31.80 |
|    | ATOM | CCCC<br>2154 | H1  | WAT | W | 47   | 54.334 | 28.563 | 46.038 | 1.00 | 0.00  |
|    | ATOM | CCCC<br>2155 | Н2  | WAT | W | 47   | 55.478 | 27.593 | 45.804 | 1.00 | 0.00  |
| 30 | ATOM | CCCC         |     | WAT | w | 48   | 43.162 | 29.556 | 72.942 | 1.00 | 30.66 |
|    | ATOM | CCCC         | H1  | WAT | w | 48   | 42.388 | 29.317 |        | 1.00 | 0.00  |
| 25 |      | CCCC         |     | WAT | w | 48   |        | 29.297 |        | 1.00 | 0.00  |
| 35 | ATOM | CCCC         | H2  |     |   |      | 43.883 |        |        |      |       |
|    | ATOM | CCCC         |     | WAT | W | 49   | 21.891 | 36.820 |        | 1.00 | 47.38 |
| 40 | ATOM | CCCC         | H1  | WAT | W | 49   | 22.570 | 37.512 |        | 1.00 | 0.00  |
|    | ATOM | 2161<br>CCCC | H2  | WAT | W | 49   | 21.504 | 36.758 | 57.185 | 1.00 | 0.00  |

-71-

|      | ATOM | 2162<br>CCCC | 0H2 | WAT | W | 50 | 21.789 | 29.233  | 61.759 | 1.00 | 31.36         |
|------|------|--------------|-----|-----|---|----|--------|---------|--------|------|---------------|
|      | ATOM |              | Н1  | WAT | W | 50 | 22.579 | 28.751  | 61.504 | 1.00 | 0.00          |
| 5    | ATOM |              | H2  | WAT | W | 50 | 21.888 | 29.397  | 62.696 | 1.00 | 0.00          |
|      | ATOM |              | 0H2 | WAT | W | 51 | 24.553 | 38.700  | 56.934 | 1.00 | 33.19         |
| 10   | ATOM | 2166<br>CCCC | H1  | WAT | W | 51 | 25.457 | 38.781  | 57.260 | 1.00 | 0.00          |
|      | ATOM | 2167<br>CCCC | H2  | WAT | W | 51 | 24.725 | 38.492  | 56.006 | 1.00 | 0.00          |
|      | ATOM | 2168<br>CCCC | OH2 | WAT | W | 52 | 37.071 | 21.855  | 45.561 | 1.00 | 31.91         |
| 15   | ATOM | 2169<br>CCCC | H1  | WAT | W | 52 | 37.534 | 21.483  | 46.320 | 1.00 | 0.00          |
|      | ATOM | 2170<br>CCCC | H2  | WAT | W | 52 | 36.195 | 21.465  | 45.599 | 1.00 | 0.00          |
| 20   | ATOM | CCCC         |     | WAT | W | 53 | 36.340 | 41.156  | 54.064 | 1.00 |               |
|      | ATOM | CCCC         | H1  | WAT | W | 53 | 36.279 | 41.345  |        | 1.00 | 0.00          |
|      | ATOM | CCCC         | H2  | WAT | W | 53 | 35.608 | 40.534  | 53.971 | 1.00 | 0.00          |
| 25   | ATOM | CCCC         |     | WAT | W | 54 | 38.081 | 43.889  |        | 1.00 | 36.97         |
|      | ATOM | CCCC         | H1  | WAT | W | 54 | 37.336 | 43.702  |        |      | 0.00          |
| 30   | ATOM | CCCC         | H2  | WAT | W | 54 | 37.896 |         | 43.010 |      |               |
|      | ATOM | CCCC         |     | WAT |   | 55 |        |         | 43.828 |      |               |
| 25   | ATOM | CCCC         | H1  | WAT | W | 55 |        |         | 44.737 |      |               |
| 35   | ATOM | CCCC         | H2  | WAT | W | 55 |        | 45.220  |        | 1.00 | 0.00<br>38.31 |
|      | ATOM | CCCC         |     | WAT | W | 56 |        | 49.730  |        | 1.00 |               |
| 40 . | ATOM | CCCC         | H1  | WAT | W | 56 |        | 49.253  |        | 1.00 | 0.00          |
|      | ATOM | CCCC         | H2  | WAT | W | 56 | 30.221 | 1 60.00 | 50.872 | 1.00 | 0.00          |

|    | ATOM | 2183<br>CCCC | 0H2 | WAT | W          | 57 | 47.923 | 21.229 | 58.848 | 1.00 | 36.53 |
|----|------|--------------|-----|-----|------------|----|--------|--------|--------|------|-------|
| -  | ATOM |              | H1  | WAT | W          | 57 | 47.602 | 21.346 | 59.752 | 1.00 | 0.00  |
| 5  | ATOM |              | H2  | WAT | W          | 57 | 47.861 | 20.309 | 58.628 | 1.00 | 0.00  |
|    | ATOM |              | 0H2 | WAT | W          | 58 | 50.570 | 39.535 | 64.284 | 1.00 | 25.23 |
| 10 | ATOM |              | H1  | WAT | W          | 58 | 50.813 | 40.161 | 64.972 | 1.00 | 0.00  |
|    | ATOM | 2188<br>CCCC | H2  | WAT | W          | 58 | 50.606 | 38.686 | 64.732 | 1.00 | 0.00  |
|    | ATOM | 2189<br>CCCC | 0H2 | WAT | <b>W</b> . | 59 | 37.290 | 16.000 | 50.508 | 1.00 | 40.28 |
| 15 | ATOM | 2190<br>CCCC | H1  | WAT | W          | 59 | 38.133 | 15.923 | 50.048 | 1.00 | 0.00  |
|    | ATOM | 2191<br>CCCC | H2  | WAT | W          | 59 | 37.169 | 16.957 | 50.545 | 1.00 | 0.00  |
| 20 | MOTA | 2192<br>CCCC | OH2 | WAT | W          | 60 | 42.786 | 46.386 | 58.648 | 1.00 | 42.06 |
|    | ATOM | 2193<br>CCCC | H1  | WAT | W          | 60 | 42.214 | 47.140 | 58.450 | 1.00 | 0.00  |
|    | ATOM | 2194<br>CCCC | H2  | WAT | W          | 60 | 42.290 | 45.678 | 58.198 | 1.00 | 0.00  |
| 25 | ATOM | 2195<br>CCCC | OH2 | WAT | W          | 61 | 45.484 | 16.421 | 56.551 | 1.00 | 31.57 |
|    | ATOM | 2196<br>CCCC | H1  | WAT | W          | 61 | 45.506 | 16.256 | 55.607 | 1.00 | 0.00  |
| 30 | ATOM | CCCC         | H2  | WAT | W          | 61 | 46.388 | 16.730 | 56.637 | 1.00 | 0.00  |
|    | ATOM | CCCC         |     | WAT | W          | 62 |        | 16.050 |        |      |       |
|    | ATOM | CCCC         |     | WAT | W          | 62 | 31.924 |        | 67.675 | 1.00 |       |
| 35 | ATOM | CCCC         | H2  | WAT | W          | 62 | 31.297 |        | 66.357 | 1.00 |       |
|    | ATOM | 2201<br>CCCC | 0H2 | WAT | W          | 63 | 25.531 |        | 47.998 | 1.00 |       |
| 40 | ATOM | 2202<br>CCCC | H1  | WAT | W          | 63 | 25.137 |        | 48.585 | 1.00 | 0.00  |
|    | ATOM | 2203<br>CCCC | H2  | WAT | W          | 63 | 26.353 | 30.264 | 47.682 | 1.00 | 0.00  |

|    | ATOM | 2204<br>CCCC  | 0H2 | WAT | W | 64 | 34.733 | 30.790 | 35.948 | 1.00 | 30.50 |
|----|------|---------------|-----|-----|---|----|--------|--------|--------|------|-------|
|    | ATOM |               | H1  | WAT | W | 64 | 35.036 | 29.917 | 36.213 | 1.00 | 0.00  |
| 5  | ATOM |               | H2  | WAT | W | 64 | 34.052 | 31.003 | 36.592 | 1.00 | 0.00  |
|    | ATOM |               | 0H2 | WAT | W | 65 | 35.632 | 43.962 | 48.122 | 1.00 | 39.10 |
| 10 | ATOM | 2208          | H1  | WAT | W | 65 | 35.906 | 44.347 | 47.268 | 1.00 | 0.00  |
| 10 | ATOM |               | H2  | WAT | W | 65 | 35.638 | 43.021 | 47.836 | 1.00 | 0.00  |
|    | ATOM |               | 0H2 | WAT | W | 66 | 41.405 | 29.179 | 35.736 | 1.00 | 55.14 |
| 15 | ATOM |               | H1  | WAT | W | 66 | 40.685 | 28.791 | 36.221 | 1.00 | 0.00  |
|    | ATOM |               | H2  | WAT | W | 66 | 41.628 | 29.970 | 36.248 | 1.00 | 0.00  |
| 20 | ATOM |               | 0H2 | WAT | W | 67 | 47.648 | 45.349 | 48.932 | 1.00 | 33.82 |
| 20 | ATOM | 2214<br>CCCC  | H1  | WAT | W | 67 | 47.167 | 46.150 | 49.188 | 1.00 | 0.00  |
|    | ATOM |               | H2  | WAT | W | 67 | 47.436 | 45.253 | 47.995 | 1.00 | 0.00  |
| 25 | ATOM |               | 0H2 | WAT | W | 68 | 44.618 | 17.410 | 45.691 | 1.00 | 53.27 |
|    | ATOM |               | H1  | WAT | W | 68 | 43.969 | 16.949 | 45.154 | 1.00 | 0.00  |
| 30 | ATOM |               | H2  | WAT | W | 68 | 44.364 | 18.336 | 45.569 | 1.00 | 0.00  |
| 30 | ATOM |               | 0H2 | WAT | W | 69 | 27.329 | 25.288 | 41.675 | 1.00 | 38.34 |
|    | ATOM |               | H1  | WAT | W | 69 | 27.449 | 25.214 | 40.731 | 1.00 | 0.00  |
| 35 | ATOM |               | H2  | WAT | W | 69 | 28.180 | 25.002 | 42.032 | 1.00 | 0.00  |
|    | ATOM | 2222<br>CCCC  | 0H2 | WAT | W | 70 | 27.444 | 23.990 | 68.137 | 1.00 | 30.31 |
| 40 | ATOM |               | H1  | WAT | W | 70 | 27.833 | 24.141 | 69.000 | 1.00 | 0.00  |
| 40 | ATOM | 2224<br>CCCC. | H2  | WAT | W | 70 | 26.670 | 23.444 | 68.324 | 1.00 | 0.00  |
|    |      |               |     |     |   |    |        |        |        |      |       |

-74-

|    | ATOM | 2225<br>CCCC | 0H2 | WAT | W | 71 | 48.599 | 44.086 | 46.923 | 1.00 | 27.72 |
|----|------|--------------|-----|-----|---|----|--------|--------|--------|------|-------|
| -  | ATOM | 2226<br>CCCC | H1  | WAT | W | 71 | 49.053 | 44.453 | 47.702 | 1.00 | 0.00  |
| 5  | ATOM | 2227<br>CCCC | H2  | WAT | W | 71 | 48.172 | 43.287 | 47.257 | 1.00 | 0.00  |
|    | ATOM | 2228<br>CCCC | OH2 | WAT | W | 72 | 36.454 | 19.649 | 44.328 | 1.00 | 44.87 |
| 10 | ATOM | 2229<br>CCCC | H1  | WAT | W | 72 | 37.251 | 19.129 | 44.245 | 1.00 | 0.00  |
|    | ATOM | 2230<br>CCCC | H2  | WAT | W | 72 | 36.454 | 20.184 | 43.535 | 1.00 | 0.00  |
|    | ATOM | 2231<br>CCCC | 0H2 | WAT | W | 73 | 32.924 | 36.639 | 61.406 | 1.00 | 49.32 |
| 15 | ATOM | 2232<br>CCCC | H1  | WAT | W | 73 | 32.799 | 36.561 | 60.455 | 1.00 | 0.00  |
|    | ATOM | 2233<br>CCCC | H2  | WAT | W | 73 | 33.399 | 37.476 | 61.457 | 1.00 | 0.00  |
| 20 | ATOM | CCCC         | OH2 | WAT | W | 74 | 34.350 | 46.549 | 42.555 | 1.00 | 37.93 |
|    | ATOM | CCCC         | H1  | WAT | W | 74 | 34.920 | 46.905 | 41.855 | 1.00 | 0.00  |
|    | ATOM | 2236<br>CCCC | H2  | WAT | W | 74 | 33.481 | 46.561 | 42.137 | 1.00 | 0.00  |
| 25 | ATOM | CCCC         |     | WAT | W | 75 | 41.866 | 22.222 | 61.197 | 1.00 | 23.90 |
|    | ATOM | CCCC         | H1  | WAT | W | 75 | 41.267 |        | 60.474 | 1.00 | 0.00  |
| 30 | ATOM | CCCC         |     | WAT | W | 75 | 41.725 | 23.181 | 61.165 | 1.00 |       |
|    | ATOM | CCCC         |     |     | W | 76 |        | 24.476 |        | 1.00 | 26.60 |
|    | ATOM | CCCC         | H1  | WAT | W | 76 | 40.035 |        | 62.178 | 1.00 | 0.00  |
| 35 | ATOM | CCCC         |     | WAT | W | 76 | 41.129 | 25.098 | 62.053 | 1.00 | 0.00  |
|    | ATOM | 2243<br>CCCC | OH2 | WAT | W | 77 | 37.587 | 42.214 | 37.006 | 1.00 | 27.49 |
| 40 | ATOM | 2244<br>CCCC | H1  | WAT | W | 77 | 36.716 | 41.799 | 37.094 | 1.00 | 0.00  |
|    | ATOM | 2245<br>CCCC | H2  | WAT | W | 77 | 38.120 | 41.519 | 36.628 | 1.00 | 0.00  |

|     | ATOM |              | 0H2 | WAT | W | 78         | 37.491 | 37.774 | 65.510 | 1.00 | 33.68 |
|-----|------|--------------|-----|-----|---|------------|--------|--------|--------|------|-------|
|     | ATOM |              | Н1  | WAT | W | 78         | 37.311 | 38.514 | 66.088 | 1.00 | 0.00  |
| 5   | ATOM | 2248         | H2  | WAT | W | 78         | 38.196 | 38.100 | 64.942 | 1.00 | 0.00  |
|     | ATOM |              | 0H2 | WAT | W | <b>7</b> 9 | 30.893 | 42.450 | 55.672 | 1.00 | 37.91 |
| 10. | ATOM | 2250<br>CCCC | H1  | WAT | W | 79         | 31.383 | 43.287 | 55.656 | 1.00 | 0.00  |
| 10  | ATOM |              | H2  | WAT | W | 79         | 30.446 | 42.490 | 56.512 | 1.00 | 0.00  |
|     | ATOM |              | 0H2 | WAT | W | 80         | 41.590 | 26.364 | 75.819 | 1.00 | 44.98 |
| 15  | ATOM | 2253<br>CCCC | H1  | WAT | W | 80         | 40.945 | 26.762 | 75.228 | 1.00 | 0.00  |
|     | ATOM | 2254<br>CCCC | H2  | WAT | W | 80         | 40.977 | 25.829 | 76.331 | 1.00 | 0.00  |
| 20  | ATOM | 2255<br>CCCC | 0H2 | WAT | W | 81         | 31.551 | 16.644 | 69.763 | 1.00 | 40.28 |
| 20  | ATOM |              | H1  | WAT | W | 81         | 30.876 | 16.454 | 69.097 | 1.00 | 0.00  |
|     | ATOM |              | H2  | WAT | W | 81         | 31.289 | 16.065 | 70.482 | 1.00 | 0.00  |
| 25  | ATOM |              | OH2 | WAT | W | 82         | 37.407 | 25.467 | 44.875 | 1.00 | 41.83 |
|     | MOTA |              | H1  | WAT | W | 82         | 38.074 | 24.748 | 44.931 | 1.00 | 0.00  |
| 30  | ATOM |              | H2  | WAT | W | 82         | 36.624 | 24.959 | 45.163 | 1.00 | 0.00  |
|     | ATOM |              | OH2 | WAT | W | 83         | 36.050 | 44.143 | 66.742 | 1.00 | 47.55 |
|     | ATOM | 2262<br>CCCC | H1  | WAT | W | 83         | 35.853 | 45.034 | 67.047 | 1.00 | 0.00  |
| 35  | ATOM | 2263<br>CCCC | H2  | WAT | W | 83         | 35.202 | 43.808 | 66.440 | 1.00 | 0.00  |
|     | ATOM | 2264<br>CCCC | OH2 | WAT | W | 84         | 55.079 | 30.486 | 46.914 | 1.00 | 33.99 |
| 40  | ATOM |              | H1  | WAT | W | 84         | 55.533 | 29.662 | 47.105 | 1.00 | 0.00  |
|     | ATOM | 2266<br>CCCC | Н2  | WAT | W | 84         | 55.427 | 30.802 | 46.067 | 1.00 | 0.00  |

|    | ATOM | 2267<br>CCCC | 0H2 | WAT | W     | 85   | 19.795 | 23.892 | 60.011 | 1.00 | 45.91 |
|----|------|--------------|-----|-----|-------|------|--------|--------|--------|------|-------|
|    | ATOM | 2268<br>CCCC | H1  | WAT | W     | 85   | 20.565 | 24.394 | 60.299 | 1.00 | 0.00  |
| 5  | MOTA | 2269<br>CCCC | H2  | WAT | W     | 85   | 19.513 | 24.429 | 59.269 | 1.00 | 0.00  |
|    | ATOM | 2270<br>CCCC | 0H2 | WAT | W     | 86   | 25.526 | 25.281 | 69.586 | 1.00 | 50.15 |
| 10 | ATOM | 2271<br>CCCC | H1  | WAT | W     | 86   | 26.156 | 25.419 | 68.861 | 1.00 | 0.00  |
|    | ATOM | 2272<br>CCCC | H2  | WAT | W     | 86   | 25.078 | 26.130 | 69.601 | 1.00 | 0.00  |
|    | ATOM | 2273<br>CCCC | OH2 | WAT | W     | 87   | 33.162 | 15.779 | 64.852 | 1.00 | 52.39 |
| 15 | ATOM | 2274<br>CCCC | H1  | WAT | W     | 87   | 32.401 | 16.289 | 64.587 | 1.00 | 0.00  |
|    | ATOM | 2275<br>CCCC | H2  | WAT | W     | 87   | 32.842 | 14.948 | 65.194 | 1.00 | 0.00  |
| 20 | ATOM | CCCC         |     | WAT | W     | 88   | 51.078 | 46.719 | 59.813 | 1.00 | 45.28 |
|    | MOTA | CCCC         | H1  | WAT | W     | 88   | 51.110 |        | 58.964 | 1.00 | 0.00  |
|    | ATOM | CCCC         | H2  | WAT | W     | 88   | 50.807 | 47.444 | 60.384 | 1.00 | 0.00  |
| 25 | ATOM | CCCC         |     | WAT | W     | 89   | 29.000 | 40.539 | 39.389 | 1.00 | 37.09 |
|    | ATOM | CCCC         | H1  | WAT | W     | 89   | 28.599 | 39.760 | 39.809 | 1.00 | 0.00  |
| 30 | ATOM | CCCC         | H2  | WAT | W<br> | 89   | 29.294 | 41.057 | 40.144 | 1.00 | 0.00  |
|    | ATOM | CCCC         |     | WAT | W     | 90   |        | 24.721 |        |      |       |
|    | ATOM | CCCC         | H1  |     | W     | 90   |        | 24.591 |        |      |       |
| 35 | ATOM | CCCC         | H2  | WAT | W     | 90 . |        |        | 42.760 |      | 0.00  |
|    | ATOM | CCCC         |     | WAT | W     | 91   | 44.324 |        | 38.366 |      |       |
| 40 | ATOM | CCCC         | H1  | WAT | W     | 91   | 44.569 |        | 37.778 |      |       |
|    | ATOM | 2287<br>CCCC | H2  | WAT | W     | 91   | 43.5/0 | 31.159 | 37.888 | 1.00 | U.UU  |

|    | ATOM | 2288<br>CCCC | OH2 | WAT | W | 92 | 49.852 | 49.467 | 51.199 | 1.00 | 42.65 |
|----|------|--------------|-----|-----|---|----|--------|--------|--------|------|-------|
|    | ATOM |              | H1  | WAT | W | 92 | 49.178 | 50.143 | 51.105 | 1.00 | 0.00  |
| 5  | ATOM | 2290<br>CCCC | H2  | WAT | W | 92 | 49.580 | 48.789 | 50.564 | 1.00 | 0.00  |
|    | MOTA | 2291<br>CCCC | 0H2 | WAT | W | 93 | 34.519 | 38.964 | 70.014 | 1.00 | 48.33 |
| 10 | ATOM | 2292         | H1  | WAT | W | 93 | 34.947 | 39.776 | 69.730 | 1.00 | 0.00  |
| 10 | ATOM |              | H2  | WAT | W | 93 | 34.689 | 38.364 | 69.262 | 1.00 | 0.00  |
|    | ATOM |              | OH2 | WAT | W | 94 | 42.967 | 50.912 | 67.215 | 1.00 | 39.91 |
| 15 | ATOM |              | H1  | WAT | W | 94 | 43.243 | 51.292 | 66.379 | 1.00 | 0.00  |
|    | ATOM | 2296         | H2  | WAT | W | 94 | 43.165 | 51.598 | 67.856 | 1.00 | 0.00  |
|    | ATOM |              | 0H2 | WAT | W | 95 | 47.936 | 18.190 | 48.416 | 1.00 | 51.10 |
| 20 | ATOM |              | H1  | WAT | W | 95 | 47.199 | 18.806 | 48.599 | 1.00 | 0.00  |
|    | ATOM | 2299         | H2  | WAT | W | 95 | 47.397 | 17.492 | 47.973 | 1.00 | 0.00  |
| 25 | ATOM |              | OH2 | WAT | W | 96 | 54.886 | 28.124 | 62.758 | 1.00 | 43.49 |
|    | ATOM |              | H1  | WAT | W | 96 | 55.089 | 28.298 | 63.676 | 1.00 | 0.00  |
|    | ATOM |              | H2  | WAT | W | 96 | 55.256 | 28.857 | 62.269 | 1.00 | 0.00  |
| 30 | MOTA |              | OH2 | WAT | W | 97 | 29.053 | 34.319 | 38.220 | 1.00 | 39.58 |
|    | ATOM |              | H1  | WAT | W | 97 | 28.737 | 33.944 | 37.383 | 1.00 | 0.00  |
| 35 | ATOM |              | H2  | WAT | W | 97 | 29.432 | 33.555 | 38.594 | 1.00 | 0.00  |
|    | ATOM |              | 0H2 | WAT | W | 98 | 29.173 | 36.014 | 40.224 | 1.00 | 41.00 |
|    | ATOM |              | H1  | WAT | W | 98 | 28.640 | 36.738 | 39.874 | 1.00 | 0.00  |
| 40 | ATOM | 2308<br>CCCC | H2  | WAT | W | 98 | 29.292 | 35.366 | 39.527 | 1.00 | 0.00  |
|    |      |              |     |     |   |    |        |        |        |      |       |

|    | ATOM | 2309<br>CCCC        | 0H2 | WAT | W          | 99  | 51.721 | 42.553 | 47.389 | 1.00 | 41.76 |
|----|------|---------------------|-----|-----|------------|-----|--------|--------|--------|------|-------|
|    | ATOM |                     | H1  | WAT | - <b>W</b> | 99  | 51.081 | 42.890 | 48.009 | 1.00 | 0.00  |
| 5  | ATOM |                     | H2  | WAT | W          | 99  | 51.195 | 42.024 | 46.779 | 1.00 | 0.00  |
|    | ATOM |                     | 0H2 | WAT | W          | 100 | 20.643 | 35.624 | 58.943 | 1.00 | 43.37 |
| 10 | ATOM | 2313<br>CCCC        | H1  | WAT | W          | 100 | 20.409 | 35.144 | 58.139 | 1.00 | 0.00  |
|    | ATOM | 2314<br>CCCC        | H2  | WAT | W          | 100 | 20.545 | 36.550 | 58.745 | 1.00 | 0.00  |
|    | ATOM | 2315<br>CCCC        | 0H2 | WAT | W          | 101 | 20.439 | 26.085 | 55.577 | 1.00 | 39.03 |
| 15 | ATOM | CCCC                | H1  | WAT | W          | 101 | 19.883 | 26.619 | 55.020 | 1.00 | 0.00  |
|    | ATOM | CCCC                | H2  | WAT | W          | 101 | 20.888 | 25.519 | 54.938 | 1.00 | 0.00  |
| 20 | ATOM | CCCC                |     | WAT | W          | 102 | 59.643 | 24.389 | 43.849 | 1.00 | 39.53 |
|    | ATOM | CCCC                | H1  | WAT | W          | 102 | 58.961 | 24.708 | 44.432 | 1.00 | 0.00  |
|    | ATOM | CCCC                | H2  | WAT | W          | 102 | 59.793 | 25.086 | 43.222 | 1.00 | 0.00  |
| 25 | ATOM | CCCC                |     | WAT | W<br>      | 103 | 60.566 | 27.542 | 41.229 | 1.00 | 46.40 |
|    | ATOM | CCCC                | H1  | WAT | W          | 103 | 59.682 | 27.689 | 41.545 | 1.00 | 0.00  |
| 30 | ATOM | CCCC                | H2  | WAT | W          | 103 | 60.987 | 27.015 | 41.915 | 1.00 | 0.00  |
|    | ATOM | CCCC                |     | WAT | W          | 104 |        | 30.295 |        |      |       |
| 25 | ATOM | CCCC                | H1  | WAT | W          | 104 | 14.606 | 30.439 | 55.676 | 1.00 | 0.00  |
| 35 | ATOM | 2326<br>CCCC<br>END | Н2  | WAT | W          | 104 | 15.858 | 29.940 | 55.028 | 1.00 | 0.00  |

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by

10

15

20

25

30

the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

#### **Structure Determination**

Crystals of native and selenomethione-substituted UCH-L3 were grown in space group P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> (a=48.6 Å, b=60.8 Å, c=81.4 Å). There is one molecule in the asymmetric unit and the solvent content is 48%. The structure of selenomethione-substituted UCH-L3 was determined at 2.35 Å resolution by the method of multiwavelength anomalous dispersion (MAD) (FIG. 2). The native structure was subsequently refined against 1.8 Å data to an Rvalue of 23.0% (free Rvalue = 28.6%) with good stereochemistry (RMSD bonds = 0.010 Å). The current refined UCH-L3 model contains 205 of the 230 residues. Three regions of UCH-L3 lack defined electron density and have been omitted from the model (residues 1-4, 147-166 and 218). The side chains of Arg-145 and Glu-203 also lack defined density and have been included in the model with occupancy of zero.

#### Structure of UCH-L3

UCH-L3 has overall dimensions of 43 Å  $\times$  32 Å  $\times$  37 Å. The structure is organized around a central six-stranded antiparallel  $\beta$ -sheet and two long  $\alpha$ -helices. His-169 and Asp-184, which have both been implicated in catalysis, are located at the amino and carboxyl-terminal ends of strands 3 and strand 4 respectively. The right lobe includes a long buried  $\alpha$ -helix (helix 4) which contains the active site nucleophile Cys-95, and a cluster of smaller helices. Helix 4 makes predominantly hydrophobic interactions with the  $\beta$ -sheet, several helices, and an extended segment. The active site of UCH-L3 is located between the molecule's two lobes, within a long cleft that appears to be closed in this unliganded structure. As discussed below, the catalytic nucleophile Cys-95, the general base His-169, and Asp-184, form a catalytic triad

10

15

20

25

30

that, along with other structural features, resembles the well known family of papainlike cysteine proteases (see FIG. 4).

A predicted secondary structure assignment was recently proposed for UCH-L3 and other UCH isozymes (Larsen *et al.*, 1996) using the neural network program of the PredictProtein server (Rost and Sander, 1993). This analysis predicted 34%  $\alpha$ -helical content and 17%  $\beta$ -sheet for UCH-L3, which is similar to the observation of 37%  $\alpha$ -helix and 20%  $\beta$ -sheet in the crystal structure. The PredictProtein server correctly predicted 5 out of 7 helices, and 3 out of 6 strands. However, a number of important secondary structural elements in the crystal structure are misidentified by the prediction, including helix 4, which contains the active site nucleophile, Cys-95, and strand 4, which terminates one residue before Asp-184, the third member of the catalytic triad.

### **Comparison with Other Structures**

Although several well characterized classes of enzymes are known to have active site triads that apparently function to orient and activate either cysteine or serine nucleophiles, comparisons show that the papain family of cysteine proteases (Rawlings and Barrett, 1994), has great similarity with UCH-L3. The present inventors compared 21 papain-like structures that have been deposited in the Brookhaven database to UCH-L3 (FIG. 4 and FIG. 5). Of the papain-like structures, 3 are free enzyme, 4 have the active Cys bound either to oxygen atoms, 2-mercaptoethanol or metal ion, and 14 are inhibitor complexes; 13 are of papain, 4 cathepsin B, 3 actinidin, and 1 glycyl endopeptidase. Of the papain-like enzymes, cathepsin B has the structure with greatest overall similarity to UCH-L3 as indicated by a search performed with the Dali algorithm (Holm and Sander, 1993).

Overlap of the UCH-L3 active site triad (Cys-95, His-169, Asp-184) with the active site Cys, His, and Asn of the papain-like enzymes yields RMSD values on the three  $C^{\alpha}$  atoms of between 0.07 Å and 0.32 Å for 21 papain-like structures in the

Brookhaven protein data base (FIG. 4). In addition, UCH-L3 Gln-89 is structurally equivalent to Gln-19 of papain, which participates in the formation of a catalytically important structure known as the oxyanion hole (Drenth *et al.*, 1976; Ménard *et al.*, 1991; Schröder *et al.*, 1993). Overlap of all four of these UCH-L3 active site residues on the papain-like enzymes yields RMSD values that range from 0.59 Å to 0.79 Å for C<sup>α</sup> atoms, and from 0.84 Å to 1.2 Å for all atoms. Interestingly, the structural similarity extends to three buried water molecules of UCH-L3 that are located between the two lobes of the protein below the active site Cys and His. Two of these water molecules are also found in the papain-like enzymes, with the third site occupied by a serine side chain. It is possible that these conserved water molecules serve architectural roles to allow juxtaposition of the two lobes of the enzyme. It is also possible that they function in catalysis, either by facilitating conformational change (Rashin *et al.*, 1986) or substrate binding (Meyer *et al.*, 1988).

15

20

10

5

Structural similarity at the active sites suggests that the catalytic mechanism of UCHs will resemble that of the papain-like enzymes (Storer and Ménard, 1994). Thus, it is likely that UCH-L3 Cys-95 and His-169 form a thiolate/imidazolium ion pair, Asp-184 functions to orient the enzyme active site and perhaps to stabilize the protonated form of His-169, and Gln-89 contributes to the oxyanion hole. These roles in catalysis are consistent with mutagenesis data for the Cys, His, and Asp residues of UCH-L1 (Larsen *et al.*, 1996). In the unliganded structure, it appears unlikely that the Cys-95 side chain is deprotonated because the carbonyl oxygen atom of Ser-92 is positioned to form a linear 3.2 Å hydrogen bond with the Cys-95 thiol. It is likely that the thiolate ion will form after displacement of Ser-92, which, as discussed below, is expected to undergo conformational change upon substrate binding.

25

30

Starting from overlap on the active-site tetrad  $C^{\alpha}$  atoms, optimal  $C^{\alpha}$  superpositions of UCH-L3 with the papain-like enzymes were obtained using the program LSQMAN (Kleywegt and Jones, 1994). The best overlays were obtained with cathepsin B (Turk *et al.*, 1995) which shows 53 equivalent  $C^{\alpha}$  atoms with a RMSD of 1.6 Å. The second best agreement is found with papain (Kamphuis *et al.*,

1984), which shows 39 equivalent  $C^{\alpha}$  atoms and an RMSD of 1.2 Å. Superposition of UCH-L3 with papain on the 53  $C^{\alpha}$  atoms of the optimal UCH-L3/cathepsin B overlap resulted in an RMSD of 2.45 Å.

5

Segments of UCH-L3 that have structural equivalents in papain-like enzymes include most of the central antiparallel  $\beta$ -sheet, helix 4 (which contains the active site Cys), and an extended  $\beta$ -like segment adjacent to helix 4 (FIG. 5). The major difference between these structures is that the active site helix precedes the  $\beta$ -sheet in papain, while the active site helix is formed from the sequence following the second  $\beta$ -strand of the sheet in UCH-L3. This may have important functional consequences because it allows the positioning of a disordered loop of 20 residues over the active site of UCH-L3. As discussed below, this loop may play a role in substrate selection by the UCH enzymes.

15

20

10

A likely mode of substrate binding to UCH-L3 is suggested by analogy with complexes of papain-like enzymes, in which bound inhibitors occupy either the S or S' sites (FIG. 6). (Substrate residues amino- and carboxyl-terminal to the scissile bond are designated P and P' respectively, and the corresponding binding sites on the enzyme designated S and S') (Schechter and Berger, 1967). The corresponding putative active-site cleft of UCH-L3 is closed by two short segments of the enzyme, which as described below, suggests a location to allow substrate binding. This proposed location for the UCH active site cleft is supported by the clustering of invariant surface-exposed residues in the region of the S site inhibitors of papain-like enzymes (FIG. 6C). This pattern of conserved residues is consistent with the very high specificity of UCH enzymes for ubiquitin, which is expected to bind to the proposed S sites, and the lack of selection for residues following ubiquitin, which are expected to bind in the proposed S' sites.

25

30

Further insight on substrate binding is provided by the observation that UCH-L3 binds to ubiquitin with a micromolar dissociation constant and that this interaction has a significant electrostatic component (Larsen *et al.*, 1996). It is likely that the

10

15

20

positively charged basic face of ubiquitin (Wilkinson, 1988) will bind to UCH enzymes. Consistent with this idea, UCH-L3 has a molecular surface of almost entirely negative electrostatic potential (Nicholls *et al.*, 1991), including three invariant carboxylates (Glu-10, Glu-14, and Asp-33) at the putative S sites. As shown in FIG. 7, the present invention shows crudely docked ubiquitin against the proposed S sites of UCH-L3 so that electrostatic interactions appear favorable and the flexible C-terminal residues of ubiquitin are positioned analogously to the S site inhibitor of papain-like enzymes, with the ubiquitin C-terminus adjacent to the active site nucleophile, Cys-95. Hydrophobic surfaces on ubiquitin and UCH-L3 are also likely to contribute to the binding interaction.

# **Substrate Induced Conformational Changes**

Comparison with ligand-bound complexes of papain-like enzymes suggests that the specificity of UCH enzymes for ubiquitin adducts may result, in part, from maintenance of an inactive enzyme conformation in the absence of a bound ubiquitin moiety. In the absence of a binding partner, the UCH-L3 active-site cleft appears to be closed by two loops (FIG. 8). The first of these loops includes Leu-9 and Glu-10, which are in van der Waals contact with groups on the opposite side of the cleft, and are in positions incompatible with the placement of papain-like enzyme inhibitors after least squares overlap on active site residues. It also seems likely that residues 11 and 12 will have to move in order to accommodate substrate. Interestingly, Glu-10 is one of the few surface exposed UCH residues that is invariant, and it is possible that binding of positively charged groups on ubiquitin to Glu-10 initiates opening of the UCH active site cleft.

25

30

The second loop that appears to block the active site, residues 90-94, spans the catalytic residues Gln-89 and Cys-95, and adopts a conformation that differs from the equivalent region of papain-like structures by displacements of more that 4 Å for the  $C^{\alpha}$  atoms of residues 92 and 93. Consequently, the carbonyl oxygen of UCH-L3 Ser-92 is buried into the oxygnion hole in a position analogous to the oxygen atom of

10

15

20

25

inhibitors seen in the cysteine protease inhibitor/complex structures. The Ser-92 hydroxyl forms hydrogen bonding interactions with both the thiol and main chain amide of Cys-95. Because the adjacent residue, Asn-93, is both highly exposed and invariant, it is likely that this side chain may participate in substrate binding, thereby providing a mechanism to open the active site. Conformational change in both of the loops that appear to block the active site may be coupled since van der Waals contacts are observed from residue 9 to 93 and from 6 to 93 and 94.

Access to the active site appears to be further restricted by a 20 residue disordered loop consisting of residues 147 to 166 which spans the active site cleft. This loop may exist in several different conformations, and as discussed below, it is likely that it functions in the definition of substrate specificity. The observation of van der Waals contact between residues 7 and 146, and a hydrogen bonding interaction between residues 5 and 146 in the UCH-L3 crystal structure suggests the possibility of a coordinated conformational change upon substrate binding that includes the disordered loop.

Masking of the UCH active site in the absence of bound substrate may function to limit non-specific cleavages by these cytoplasmic proteases. An analogous conformational change probably does not occur for the papain-like enzymes. Inspection of the liganded and unliganded structures in the Brookhaven database shows no significant conformational changes in the enzyme S sites upon binding inhibitor. The papain-like enzymes, which are generally secreted or lysosomal, employ an alternative strategy to limit inappropriate reactions. Inhibitory N-terminal propeptide extensions are cleaved only after import into the lysosome (Carmona et al., 1996; Coulombe et al., 1996; Cygler et al., 1996; Karrer et al., 1993; Turk et al., 1996).

### **Substrate Specificity**

Although UCH-L3 has high specificity for ubiquitin N-terminal to the scissile bond, it is permissive for the residues following ubiquitin provided the adduct is small and unstructured. One possible rationale for the lack of activity against larger folded C-terminal ubiquitin fusions is that only highly extended substrates can be accommodated in a deep narrow groove of UCH S' sites. The UCH-L3 crystal structure does not appear to possess such a groove, however, and thus the ordered protein visible in the crystal structure does not obviously explain the preference of UCH enzymes for small unfolded substrates. Although it is possible that a deep S' site substrate cleft could be formed by conformation change upon binding to a substrate, the very low discrimination shown across a broad rage of sequences that are cleaved from the ubiquitin C-terminus argues against this possibility.

## **Specific UCH Active Site Modifications**

15

5

10

More subtle modifications and changes may be made in the structure of the encoded UCH-L3 polypeptides of the present invention and still obtain a molecule that encodes a protein or peptide with characteristics of the natural UCH-L3 polypeptides, including the variants described above. The following is a discussion based upon changing the amino acids of a protein to create an equivalent, or even an improved, second-generation molecule. The amino acid changes may be achieved by changing the codons of the DNA sequence, according to the following codon table, Table A:

20

Table A

| Amino Ac<br>Abbr | id Name |   |     |     | C   | odons |   |
|------------------|---------|---|-----|-----|-----|-------|---|
| Alanine          | Ala     | Α | GCA | GCC | GCG | GCU   | - |
| Cysteine         | Cys     | C | UGC | UGU |     |       |   |
| Aspartic acid    | Asp     | D | GAC | GAU |     |       |   |
| Glutamic acid    | Glu     | E | GAA | GAG |     |       |   |

10

Table A (continued)

| Phenylalanine | Phe | F          | UUC | UUU |      |     |     |     |
|---------------|-----|------------|-----|-----|------|-----|-----|-----|
| Glycine       | Gly | G          | GGA | GGC | GGG  | GGU |     |     |
| Histidine     | His | Н          | CAC | CAU |      |     |     |     |
| Isoleucine    | Ile | I          | AUA | AUC | AUU  |     |     |     |
| Lysine        | Lys | K          | AAA | AAG |      |     |     |     |
| Leucine       | Leu | L          | UUA | UUG | CUA  | CUC | CUG | CUU |
| Methionine    | Met | M          | AUG |     |      |     |     |     |
| Asparagine    | Asn | N          | AAC | AAU |      |     |     |     |
| Proline       | Pro | <b>P</b> . | CCA | CCC | CCG  | CCU |     |     |
| Glutamine     | Gln | Q          | CAA | CAG |      |     |     |     |
| Arginine      | Arg | R          | AGA | AGG | CGA  | CGC | CGG | CGU |
| Serine        | Ser | S          | AGC | AGU | UCA- | UCC | UCG | UCU |
| Threonine     | Thr | T          | ACA | ACC | ACG  | ACU |     |     |
| Valine        | Val | V          | GUA | GUC | GUG  | GUU |     |     |
| Tryptophan    | Trp | W          | UGG |     |      |     |     |     |
| Tyrosine      | Tyr | Y          | UAC | UAU |      |     |     |     |

It is known that certain amino acids may be substituted for other amino acids in a protein structure in order to modify or improve its antigenicity or activity (e.g., Kyte and Doolittle, 1982; Hopp, U.S. Patent 4,554,101). For example, through the substitution of alternative amino acids, small conformational changes may be conferred upon a polypeptide which result in increased activity or stability. Alternatively, amino acid substitutions in certain polypeptides may be utilized to provide residues which may then be linked to other molecules to provide peptidemolecule conjugates which retain enough antigenicity of the starting peptide to be useful for other purposes. For example, a selected UCH-L3 peptide bound to a solid support might be constructed which would have particular advantages in diagnostic embodiments.

10

The importance of the hydropathic index of amino acids in conferring interactive biological function on a protein has been discussed generally by Kyte and Doolittle (1982), wherein it is found that certain amino acids may be substituted for other amino acids having a similar hydropathic index or core and still retain a similar biological activity. As displayed in Table B below, amino acids are assigned a hydropathic index on the basis of their hydrophobicity and charge characteristics. It is believed that the relative hydropathic character of the amino acid determines the secondary structure of the resultant protein, which in turn defines the interaction of the protein with substrate molecules. Preferred substitutions which result in an antigenically equivalent peptide or protein will generally involve amino acids having index scores within ±2 units of one another, and more preferably within ±1 unit, and even more preferably, within ±0.5 units.

Table B

| 1 anic 1         | ,                 |
|------------------|-------------------|
| Amino Acid       | Hydropathic Index |
| Isoleucine       | 4.5               |
| Valine           | 4.2               |
| Leucine          | 3.8               |
| Phenylalanine    | 2.8               |
| Cysteine/cystine | 2.5               |
| Methionine       | 1.9               |
| Alanine          | 1.8               |
| Glycine          | -0.4              |
| Threonine        | -0.7              |
| Tryptophan       | -0.9              |
| Serine           | -0.8              |
| Tyrosine         | -1.3              |
| Proline          | -1.6              |
| Histidine        | -3.2              |
| Glutamic Acid    | -3.5              |
| Glutamine        | -3.5              |
|                  |                   |

### Table B (continued)

| -3.5 |
|------|
| -3.5 |
| -3.9 |
| -4.5 |
|      |

Thus, for example, isoleucine, which has a hydropathic index of +4.5, will preferably be exchanged with an amino acid such as valine (+ 4.2) or leucine (+ 3.8). Alternatively, at the other end of the scale, lysine (- 3.9) will preferably be substituted for arginine (-4.5), and so on.

Substitution of like amino acids may also be made on the basis of hydrophilicity, particularly where the biological functional equivalent protein or peptide thereby created is intended for use in immunological embodiments. U.S. Patent 4,554,101, incorporated herein by reference, states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigenicity, *i.e.* with an important biological property of the protein.

15

10

5

As detailed in U.S. Patent 4,554,101, each amino acid has also been assigned a hydrophilicity value. These values are detailed below in Table C.

Table C

| Amino Acid | Hydrophilic Index |
|------------|-------------------|
| arginine   | +3.0              |
| lysine     | +3.0              |
| aspartate  | $+3.0 \pm 1$      |
| glutamate  | $+3.0 \pm 1$      |
| serine     | +0.3              |
| asparagine | +0.2              |

## Table C (continued)

| glutamine     | +0.2         |
|---------------|--------------|
| glycine       | 0            |
| threonine     | -0.4         |
| alanine       | -0.5         |
| histidine     | -0.5         |
| proline       | $-0.5 \pm 1$ |
| cysteine      | -1.0         |
| methionine    | -1.3         |
| valine        | -1.5         |
| leucine       | -1.8         |
| isoleucine    | -1.8         |
| tyrosine      | -2.3         |
| phenylalanine | -2.5         |
|               |              |

It is understood that one amino acid can be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent, and in particular, an immunologically equivalent protein. In such changes, the substitution of amino acids whose hydrophilicity values are within  $\pm 2$  is preferred, those which are within  $\pm 1$  are particularly preferred, and those within  $\pm 0.5$  are even more particularly preferred.

10

15

5

Accordingly, these amino acid substitutions are generally based on the relative similarity of R-group substituents, for example, in terms of size, electrophilic character, charge, and the like. In general, preferred substitutions which take various of the foregoing characteristics into consideration will be known to those of skill in the art and include, for example, the following combinations: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.

As outlined above, amino acid substitutions are generally therefore based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions which take various of the foregoing characteristics into consideration are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine (See Table D, below). The present invention thus contemplates functional or biological equivalents of an UCH-L3 or variant UCH-L3 polypeptide as set forth above.

10

5

| Table D          |                         |
|------------------|-------------------------|
| Original Residue | Exemplary Substitutions |
| Ala              | Gly; Ser                |
| Arg              | Lys                     |
| Asn              | Gln; His                |
| Asp              | Glu                     |
| Cys              | Ser                     |
| Gln              | Asn                     |
| Glu              | Asp                     |
| Gly              | Ala                     |
| His              | Asn; Gln                |
| Ile              | Leu; Val                |
| Leu              | Ile; Val                |
| Lys              | Arg                     |
| Met              | Met; Leu; Tyr           |
| Ser              | Thr                     |
| Thr              | Ser .                   |
| Ттр              | Туг                     |
| Tyr              | Trp; Phe                |
| Val              | Ile; Leu                |

10

15

20

25

30

Biological or functional equivalents of a polypeptide can also be prepared using site-specific mutagenesis. Site-specific mutagenesis is a technique useful in the preparation of second generation polypeptides, or biologically functional equivalent polypeptides or peptides, derived from the sequences thereof, through specific mutagenesis of the underlying DNA. As noted above, such changes can be desirable where amino acid substitutions are desirable. The technique further provides a ready ability to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the DNA. Site-specific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed. Typically, a primer of about 17 to 25 nucleotides in length is preferred, with about 5 to 10 residues on both sides of the junction of the sequence being altered.

In general, the technique of site-specific mutagenesis is well known in the art, as exemplified by Adelman, et al. (1983). As will be appreciated, the technique typically employs a phage vector which can exist in both a single stranded and double stranded form. Typical vectors useful in site-directed mutagenesis include vectors such as the M13 phage (Messing, et al., 1981). These phage are commercially available and their use is generally known to those of skill in the art.

In general, site-directed mutagenesis in accordance herewith is performed by first obtaining a single-stranded vector which includes within its sequence a DNA sequence which encodes all or a portion of the UCH-L3 or variant UCH-L3 enzyme polypeptide sequence selected. An oligonucleotide primer bearing the desired mutated sequence is prepared, generally synthetically, for example, by the method of Crea et al. (1978). This primer is then annealed to the singled-stranded vector, and extended by the use of enzymes such as E. coli polymerase I Klenow fragment, in order to complete the synthesis of the mutation-bearing strand. Thus, a heteroduplex

is formed wherein one strand encodes the original non-mutated sequence and the second strand bears the desired mutation. This heteroduplex vector is then used to transform appropriate cells such as *E. coli* cells and clones are selected which include recombinant vectors bearing the mutation. Commercially available kits come with all the reagents necessary, except the oligonucleotide primers.

In addition, peptides derived from these polypeptides, including peptides of at least about 6 consecutive amino acids from these sequences, are contemplated. Alternatively, such peptides may comprise about 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 or 60 consecutive residues. For example, a peptide that comprises 6 consecutive amino acid residues may comprise residues 1 to 6, 2 to 7, 3 to 8 and so on of the UCH-L3 protein. Such peptides may be represented by the formula

15

5

10

x to (x + n) = 5' to 3' the positions of the first and last consecutive residues

20

where x is equal to any number from 1 to the full length of the UCH-L3 protein and n is equal to the length of the peptide minus 1. Where the peptide is 10 residues long (n = 10-1), the formula represents every 10-mer possible for each antigen. For example, where x is equal to 1 the peptide would comprise residues 1 to (1 + [10-1]), or 1 to 10. Where x is equal to 2, the peptide would comprise residues 2 to (2 + [10-2]), or 2 to 11, and so on.

25

Syntheses of peptides are readily achieved using conventional synthetic techniques such as the solid phase method (e.g., through the use of a commercially available peptide synthesizer such as an Applied Biosystems Model 430A Peptide Synthesizer). Peptides synthesized in this manner may then be aliquoted in predetermined amounts and stored in conventional manners, such as in aqueous solutions or, even more preferably, in a powder or lyophilized state pending use.

30

In general, due to the relative stability of peptides, they may be readily stored in aqueous solutions for fairly long periods of time if desired, e.g., up to six months or more, in virtually any aqueous solution without appreciable degradation or loss of antigenic activity. However, where extended aqueous storage is contemplated it will generally be desirable to include agents including buffers such as Tris or phosphate buffers to maintain a pH of 7.0 to 7.5. Moreover, it may be desirable to include agents which will inhibit microbial growth, such as sodium azide or Merthiolate. For extended storage in an aqueous state it will be desirable to store the solutions at 4°C, or more preferably, frozen. Of course, where the peptide(s) are stored in a lyophilized or powdered state, they may be stored virtually indefinitely, e.g., in metered aliquots that may be rehydrated with a predetermined amount of water (preferably distilled, deionized) or buffer prior to use.

15

5

10

20

25

30

Of particular interest are peptides that represent antigenic epitopes that lie within the UCH-L3 polypeptides of the present invention. An "epitope" is a region of a molecule that stimulates a response from a T-cell or B-cell, and hence, elicits an immune response from these cells. An epitopic core sequence, as used herein, is a relatively short stretch of amino acids that is structurally "complementary" to, and therefore will bind to, binding sites on antibodies or T-cell receptors. It will be understood that, in the context of the present disclosure, the term "complementary" refers to amino acids or peptides that exhibit an attractive force towards each other. Thus, certain epitopic core sequences of the present invention may be operationally defined in terms of their ability to compete with or perhaps displace the binding of the corresponding UCH-L3 antigen to the corresponding UCH-L3 -directed antisera.

The identification of epitopic core sequences is known to those of skill in the art. For example U.S. Patent 4,554,101 teaches identification and preparation of epitopes from amino acid sequences on the basis of hydrophilicity, and by Chou-Fasman analyses. Numerous computer programs are available for use in predicting antigenic portions of proteins, examples of which include those programs based upon Jameson-Wolf analyses (Jameson and Wolf, 1988; Wolf et al., 1988), the program

PepPlot® (Brutlag et al., 1990; Weinberger et al., 1985), and other new programs for protein tertiary structure prediction (Fetrow and Bryant, 1993) that can be used in conjunction with computerized peptide sequence analysis programs.

5

In general, the size of the polypeptide antigen is not believed to be particularly crucial, so long as it is at least large enough to carry the identified core sequence or sequences. The smallest useful core sequence expected by the present disclosure would be on the order of about 6 amino acids in length. Thus, this size will generally correspond to the smallest peptide antigens prepared in accordance with the invention. However, the size of the antigen may be larger where desired, so long as it contains a basic epitopic core sequence.

10

### Small Molecule Inhibitors of UCH-L3 Variant Proteins

15

The present invention provides methods for screening and identifying small molecule inhibitors of UCH-L3 proteins and identifies such inhibitors. The rationale behind the design of the small molecule UCH-L3 protein inhibitors is that the structural differences between UCH-L3 proteins, caused by the deviations in the interatomic distances of the amino acid residues in the active site of the protein, will be exploited to design chemical ligands that bind to the active site of the different variant proteins to yield complexes with sufficient thermodynamic stability to effectively inhibit the functional activity of the protein. The inhibited UCH-L3 protein is thus unable to protect the tumor cell against the toxic action of the anticancer agent used to treat it. To obtain appropriate ligands that bind to the active sites of different UCH-L3 variant proteins, the inventors utilize the technique of forcefield docking of chemical fragments from both commercially available chemical fragment libraries, as well as in-house generated libraries, into the active electrophilebinding (H-) site in the derived crystal structure of each variant protein. The docked fragments will be energy-minimized and the binding energies computed and used to select candidate ligands.

25

30

20

## Generation of UCH-L3 Inhibitors

Generation of inhibitors is accomplished by a rational drug development strategy involving force field docking and energy-minimization of chemical fragments and compounds into the active site of the variant UCH-L3 proteins. The compounds and chemical fragments can be drawn from chemical fragment libraries, such as that available in the Leapfrog database. Additional chemical libraries will be generated as necessary. The active site and other structural components of the variant UCH-L3 proteins will be derived from the published crystal structure of the UCH-L3 encoded protein.

10

15

5

One potential substitution that confers a functional change to the UCH-L3 protein is to replace cysteine 95 with a serine that, in context with other such changes, results in a protein that is more chemically stable and resistant to oxidation and heat. Other proposed changes in this context include substituting aspartic acid 184 for asparagine. Moreover, it is recognized that leucine may be substituted for methionine, or a serine or alanine may be substituted for cystine to result in increased stability. Increased protein stability also results from the addition of disulfide bonds and the creation of more hydrophobic interactions within the protein structure.

20

Based on the resultant DDH values obtained after energy minimization of chemical fragments/compounds, candidate inhibitors are selected and/or newly constructed from chemical fragments for synthesis and further analyses for their inhibitory or other action on the variant UCH-L3 proteins. Selection criteria for inhibitors for synthesis and further analysis includes lipophilicity, chemical stability and availability or ease of synthesis.

25

Candidate inhibitors of the present invention may include such molecules as substituted, heterocyclic aromatic compounds, sugar-linked aromatic compounds and other aromatic compounds.

10

15

20

25

30

The substituted groups may vary between the different compounds and result in significant changes in binding energies of the compounds in the active site pocket of the UCH-L3 protein. For example, R<sub>1</sub> substitutions of either NH<sub>2</sub> or OH, cause changes in binding energies of almost 10 kcals/mol. Other important substitutions are the alkyl or aminoalkyl substitutions of R<sub>3</sub>, and the alkyl, phenyl or 2-pyridyl substitutions of R<sub>4</sub>, some of which result in changes in binding energies of greater than 10 kcals/mol.

However it is conceivable that any of the R groups of the substituted isoxazoles may be a phenyl group, a benzyl group, an aryl group, an alkyl group, an aryl group linked to another aryl group through an ester linkage, an aryl group linked to an alkyl group with an ester linkage, an aryl group linked to another aryl group through an ether linkage and aryl group linked to an alkyl group with a thiolester linkage, an alkyl group linked to another alkyl group through an ester linkage, an alkyl group linked to another alkyl group through an ether linkage, an alkyl to alkyl linked through an amino group, an aryl to alkyl linked through an amino group. an alkyl group through a disulphide group, an aryl linked to an alkyl group through a disulphide group, an aryl linked to another aryl group through a disulphide group, an alkyl linked to another alkyl group through a thioester linkage, an aryl linked to an alkyl group through a polyester linkage, an aryl group linked to another aryl through a polyester linkage, an alkyl group linked to another alkyl group through a polyamine linkage, an aryl linked to an alkyl group through a polyamine linkage, an aryl group linked to another aryl through a polyamine linkage, an alkyl group linked to another alkyl group through a polythioester linkage, an aryl linked to an alkyl group through a polythioester linkage, an aryl group linked to another aryl through a polythioester linkage.

An individual skilled in the art of organic synthesis in light of the present disclosure is able to prepare or identify a large variety of substituted isoxazoles which would be expected to have UCH-L3 inhibitory effects in the light of the present disclosure.

10

15

20

25

#### Screening for Modulators of UCH-L3.

Within certain embodiments of the invention, methods are provided for screening for modulators of UCH-L3 protein activity. Such methods may use labeled UCH-L3 proteins or analogs, anti-UCH-L3 proteins or anti-UCH-L3 antibodies and the like as reagents to screen small molecule and peptide libraries to identify modulators of UCH-L3 protein activity. Within one example, a modulator screening assay is performed in which cells expressing UCH-L3 proteins are exposed to a test substance under suitable conditions and for a time sufficient to permit the agent to effect activity of UCH-L3 proteins.

## Assay for Ubiquitin Carboxy Terminal Hydrolase Activity

To perform the assay, purified UCH-L3 or variant UCH-L3 peptide is diluted into 10 mM dithiothreitol (DTT) and allowed to preincubate on ice for 1 h. The standard assay contains 12 μM UbOEt (ubiquitin carboxy-terminal ethyl ester), 100 mM potassium phosphate, pH 7.2 (37°C), 10 mM dithiothreitol, 0.2 mM EDTA, and enzyme diluted to a final concentration of 0.4 mIU/ml. The reaction is incubated at 37°C and aliquots containing 1-2 g total ester plus hydrolysis product are withdrawn at ten minute intervals and immediately injected onto an HPLC column (C-8, 5 micron, 4 mm × 250 mm; Altech Associates, Deerfield, IL), flow rate of 1 ml/min in a solvent comprising 25 mM sodium Perchlorate and 0.07% (v/v) perchloric acid in 49% HPLC grade acetonitrile. The absorbance at 205 nm is monitored and the resulting peaks are quantitated by manual integration of the areas.

## Measurement of Deconjugating Activity

<sup>125</sup> I-ubiquitin was synthesized by the chloramine-T method (Ciechanover *et al.* 1978, Biochem. Biophys. Res. Comm. 81, 1100-1104). <sup>125</sup> I-ubiquitin was conjugated to the proteins of reticulocyte fractions by incubating the following in a final volume of 0.8 ml: 2 mg/ml of proteins, 3  $\mu$ g/ml <sup>125</sup> I-ubiquitin (1.2 × 10<sup>6</sup>)

10

15

20

25

cpm/μg), 50 mM Tris HCl, pH 7.6, 1 mM magnesium chloride, 0.4 mM ATP, 0.4 mM DTT, 2 mM phosphocreatine, 3 units creatine phosphokinase, and 0.1 mM hemin. After incubating 2 h at 37°C, iodoacetamide was added to a final concentration of 10 mM, and was allowed to react for 30 min. at 37°C. Dithiothreitol was then added to a concentration of 50 mM to quench the alkylating agent, and the mixture was chromatographed on a Sephadex G-50 column (1.5 cm × 60 cm) equilibrated with 50 mM ammonium acetate. The fractions containing <sup>125</sup> I-ubiquitin were located by gamma counting, and the counts in the exclusion volume are pooled. The percentage of ubiquitin incorporated into high molecular weight complexes is about 10%, and this fraction is utilized in deconjugation assays.

To measure deconjugation, the <sup>125</sup> I-ubiquitin conjugates are incubated with 0.01U of the UCH fraction in 50 mM Tris HCl pH 8.0, 0.1 mM EDTA, and 10 mM DTT. After 30 min. or 2 h, the reaction is terminated by the addition of two parts reaction mixture to one part 9% SDS, 15% glycerol, 0.2 M Tris Hcl, pH 6.8, and 3 mM EDTA. The samples are then subjected to SDS-PAGE according to standard techniques. The resulting gels dried and sliced into strips. The molecular weight distribution of <sup>125</sup> I-ubiquitin is determined by gamma counting of the gel slices. Rates of deconjugation is calculated by the fraction of counts appearing in the sub-10 kD region relative to the entire lane.

Generally the test substance is added in the form of a purified agent, however it is also contemplated that test substances useful within the invention may include substances present throughout the handling of test sample components, for example host cell factors that are present in a cell lysate used for generating the test sample. Such endogenous factors may be segregated between the test and control samples for example by using different cell types for preparing lysates, where the cell type used for preparing the test sample expresses a putative test substance that is not expressed by the cell type used in preparing the control sample.

The active compounds may include fragments or parts of naturally-occurring compounds or may be only found as active combinations of known compounds which are otherwise inactive. However, prior to testing of such compounds in humans or animal models, it may be necessary to test a variety of candidates to determine which have potential.

Accordingly, in screening assays to identify agents which alter the activity of UCH-L3 proteins in for example cancer cells, it is proposed that compounds isolated from natural sources, such as animals, bacteria, fungi, plant sources, including leaves and bark, and marine samples may be assayed as candidates for the presence of potentially useful pharmaceutical agents. It will be understood that the pharmaceutical agents to be screened could also be derived or synthesized from chemical compositions or man-made compounds.

15

10

5

In these embodiments, the present invention is directed to a method for determining the ability of a candidate substance to decrease the UCH-L3 activity of cancer cells, the method including generally the steps of:

- (a) obtaining a cell with UCH-L3 activity;
- 20

25

30

- (b) admixing a candidate substance with the cell; and
- (c) determining the ability of the candidate substance to inhibit the UCH-L3 activity of the cell.

To identify a candidate substance as being capable of decreasing UCH-L3 activity, one would measure or determine the basal UCH-L3 status of for example a cancer cell prior to any additions or manipulation. One would then add the candidate substance to the cell and re-determine the UCH-L3 activity in the presence of the candidate substance. A candidate substance which decreases the UCH-L3 activity relative to the composition in its absence is indicative of a candidate substance being an inhibitor of UCH-L3.

The candidate screening assay is quite simple to set up and perform, and is related in many ways to the assay discussed above for determining UCH-L3 content.

"Effective amounts", in certain circumstances, are those amounts effective at reproducibly decrease UCH-L3 activity in an assay in comparison to their normal levels. Compounds that achieve significant appropriate changes in activity will be used. If desired, a battery of compounds may be screened *in vitro* to identify other agents for use in the present invention.

10

5

A significant decreases in UCH-L3 activity, are represented by a decrease in UCH-L3 protein activity levels of at least about 30%-40%, and most preferably, by decreases of at least about 50%, with higher values of course being possible. Assays that measure UCH-L3 activity in cells are well known in the art and may be conducted *in vitro* or *in vivo*, and have been described elsewhere in the specification.

15

Quantitative *in vitro* testing of the UCH-L3 inhibitors is not a requirement of the invention as it is generally envisioned that the agents will often be selected on the basis of their known properties or by structural and/or functional comparison to those agents already demonstrated to be effective. Therefore, the effective amounts will often be those amounts proposed to be safe for administration to animals in another context.

20

# EXAMPLE 1: SMALL MOLECULE INHIBITORS OF UCH-L3 AND UCH-L3 VARIANTS

25

30

### 1. Materials and Methods

Generation of UCH-L3 inhibitors. Generation of inhibitors is accomplished by a rational drug development strategy involving force field docking and energy-minimization of chemical fragments and compounds into the active site of the variant UCH-L3 proteins. The compounds and chemical fragments can be drawn from chemical fragment libraries, such as that available in the Leapfrog database.

Additional chemical libraries will be generated as necessary. The active site and other structural components of the variant UCH-L3 proteins will be derived from the published crystal structure of the UCH-L3 encoded protein. Selection criteria for inhibitors for synthesis and further analysis includes lipophilicity, chemical stability and availability or ease of synthesis.

Synthesis of UCH-L3 Inhibitors. If the identified and/or newly constructed potential inhibitors are not commercially available, then they will be synthesized using standard organic synthetic methodology, including heterocyclic ring construction and functionalization, and electrophilic and nucleophilic substitution reactions. Reaction mixtures will be separated by thin layer, flash silica gel column and high performance liquid chromatography (TLC, CC and HPLC). The compounds will be purified using standard techniques modified as necessary. Characterization of synthetic products will be done by melting point determination, Fourier transform infrared (FT-1R), ultraviolet (UV) and high resolution nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. Compounds for biological testing will be purified by preparative HPLC. The purity of compounds will be determined by elemental analysis and HPLC.

20

5

10

15

Source of variant UCH-L3 proteins. To examine the ability of the inhibitors selected from the rational design described above to inhibit the variant UCH-L3 proteins, the present invention will utilize recombinant UCH-L3 proteins expressed in E. coli transfected with expression vectors containing the corresponding cDNAs. These vectors have been described elsewhere in this application. The UCH-L3 proteins will be purified by GSH-affinity chromatography on S-hexyl glutathione linked to epoxy-activated sepharose 6B, and then used for enzyme kinetic analysis.

25

30

It is also recognized that one may employ a ubiquitin affinity column to purify the UCH-L3 proteins and their variants. In this method, UCH-L3 and or variant UCH-L3 is contacted with activated CH-Sepharose 4B to which ubiquitin is bound. The enzyme forms a thiol ester linkage to the bound ubiquitin in the presence of ATP and is eluted with AMP plus inorganic pyrophosphate. The amount of functional enzyme is determined from the counts of (<sup>3</sup>H)ATP made acid insoluble by formation of 1 enzyme equivalent of (<sup>3</sup>H)AMP-ubiquitin. Treatment of the activating enzyme with iodoacetamide renders it unable to form E<sub>S-ubiquitin</sub> but has no effect on formation of E-AMP-ubiquitin (Ross and Warms, *Biochemistry*, 22:4234-4237 (1983).

Analysis of inhibitors for UCH-L3 inhibitory activity. These studies will be performed using standard enzyme kinetic methodologies. The purified variant UCH-L3 proteins will be mixed with increasing inhibitor concentrations and at different time points, residual deubiquitinating activity will be determined as set forth above.

Synthesis of Isoxazoles. Using the techniques described above, potential UCH-L3 inhibitors such as isoxazoles have been identified. In the synthetic strategy for obtaining isoxazole deubiquitinating inhibitors, the ring system can be achieved by the usual approach of cyclization between hyroxylamine and three-carbon atom component such as 1,3-diketone or an a,b-unsaturated ketone or by a 1,3-dipolar cycloaddition reaction involving nitride oxides with alkenes or an alkyne (Glichrist, 1992).

20

25

5

10

15

The first class of compounds are substituted isoxazoles, with the general structure shown in structures 1-3. The substituted groups in the different compounds are represented by R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, and R<sub>4</sub>. The substituted groups vary between the different compounds and result in significant changes in binding energies of the compounds in the active site pocket of the UCH-L3 protein. For example, R<sub>1</sub> substitutions of either NH<sub>2</sub> or OH, cause changes in binding energies of almost 10 kcals/mol. Other important substitutions are the alkyl or aminoalkyl substitutions of R<sub>3</sub>, and the alkyl, phenyl or 2-pyridyl substitutions of R<sub>4</sub>, some of which result in changes in binding energies of greater than 10 kcals/mol.

30

Another group of potential variant UCH-L3 protein inhibitors identified by the strategy described in this invention are the heterocyclic aromatic compounds. The

binding energies range from -34 to -94 kcal/mol, depending upon the type of compound or substitution.

#### Antibodies

5

10

Antibodies to UCH-L3 or UCH-L3 variant peptides or polypeptides may be readily prepared through use of well-known techniques, such as those exemplified in U.S. Patent 4,196,265. Typically, this technique involves immunizing a suitable animal with a selected immunogen composition, *e.g.*, purified or partially purified protein, synthetic protein or fragments thereof, as discussed in the section on polypeptides. Animals to be immunized are mammals such as cats, dogs and horses, although there is no limitation other than that the subject be capable of mounting an immune response of some kind. The immunizing composition is administered in a manner effective to stimulate antibody producing cells. Rodents such as mice and rats are preferred animals, however, the use of rabbit, sheep or frog cells is possible. The use of rats may provide certain advantages, but mice are preferred, with the BALB/c mouse being most preferred as the most routinely used animal and one that generally gives a higher percentage of stable fusions.

20

15

For generation of monoclonal antibodies (MAbs), following immunization, somatic cells with the potential for producing antibodies, specifically  $\beta$  lymphocytes ( $\beta$  cells), are selected for use in the MAb generating protocol. These cells may be obtained from biopsied spleens, tonsils or lymph nodes, or from a peripheral blood sample. Spleen cells and peripheral blood cells are preferred, the former because they are a rich source of antibody-producing cells that are in the dividing plasmablast stage, and the latter because peripheral blood is easily accessible. Often, a panel of animals will have been immunized and the spleen of the animal with the highest antibody titer removed. Spleen lymphocytes are obtained by homogenizing the spleen with a syringe. Typically, a spleen from an immunized mouse contains approximately  $5 \times 10^7$  to  $2 \times 10^8$  lymphocytes.

30

25

The antibody-producing B cells from the immunized animal are then fused with cells of an immortal myeloma cell line, generally one of the same species as the animal that was immunized. Myeloma cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency and enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells, called "hybridomas."

Any one of a number of myeloma cells may be used and these are known to those of skill in the art. For example, where the immunized animal is a mouse, one may use P3-X63/Ag8, X63-Ag8.653, NS1/1.Ag 41, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XX0 Bul; for rats, one may use R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210; and U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6 are all useful in connection with human cell fusions.

15

10

5

One preferred murine myeloma cell line is the NS-1 myeloma cell line (also termed P3-NS-1-Ag4-1), which is readily available from the NIGMS Human Genetic Mutant Cell Repository by requesting cell line repository number GM3573. Another mouse myeloma cell line that may be used is the 8-azaguanine-resistant mouse murine myeloma SP2/0 non-producer cell line.

20

Methods for generating hybrids of antibody-producing spleen or lymph node cells and myeloma cells usually comprise mixing somatic cells with myeloma cells in a 2:1 proportion, though the proportion may vary from about 20:1 to about 1:1, respectively, in the presence of an agent or agents (chemical or electrical) that promote the fusion of cell membranes. Fusion methods using Sendai virus have been described by Kohler and Milstein (1975; 1976), and those using polyethylene glycol (PEG), such as 37% (v/v) PEG, by Gefter et al. (1977). The use of electrically induced fusion methods is also appropriate.

25

10

15

20

25

30

Fusion procedures usually produce viable hybrids at low frequencies, from about  $1 \times 10^{-6}$  to  $1 \times 10^{-8}$ . This does not pose a problem, however, as the viable, fused hybrids are differentiated from the parental, unfused cells (particularly the unfused myeloma cells that would normally continue to divide indefinitely) by culture in a selective medium. The selective medium generally is one that contains an agent that blocks the *de novo* synthesis of nucleotides in the tissue culture media. Exemplary and preferred agents are aminopterin, methotrexate and azaserine. Aminopterin and methotrexate block *de novo* synthesis of both purines and pyrimidines, whereas azaserine blocks only purine synthesis. Where aminopterin or methotrexate is used, the media is supplemented with hypoxanthine and thymidine as a source of nucleotides (HAT medium). Where azaserine is used, the media is supplemented with hypoxanthine.

The preferred selection medium is HAT. Only cells capable of operating nucleotide salvage pathways are able to survive in HAT medium. The myeloma cells are defective in key enzymes of the salvage pathway, e.g., hypoxanthine phosphoribosyl transferase (HPRT), and they cannot survive. The B cells can operate this pathway, but they have a limited life span in culture and generally die within about two weeks. Therefore, the only cells that can survive in the selective media are those hybrids formed from myeloma and B cells.

This culturing provides a population of hybridomas from which specific hybridomas are selected. Typically, selection of hybridomas is performed by single-clone dilution in microtiter plates, followed by testing the individual clonal supernatants (after about two to three weeks) for the desired reactivity. The assay should be sensitive, simple and rapid, such as radioimmunoassays, enzyme immunoassays, cytotoxicity assays, plaque assays, dot immunobinding assays, and the like.

The selected hybridomas are then serially diluted and cloned into individual antibody-producing cell lines, which clones can then be propagated indefinitely to

10

15

20

provide MAbs. The cell lines may be exploited for MAb production in two basic ways. A sample of the hybridoma can be injected, usually in the peritoneal cavity, into a histocompatible animal of the type that was used to provide the somatic and myeloma cells for the original fusion. The injected animal develops tumors secreting the specific monoclonal antibody produced by the fused cell hybrid. The body fluids of the animal, such as serum or ascites fluid, can then be tapped to provide MAbs in high concentration. The individual cell lines could also be cultured *in vitro*, where the MAbs are naturally secreted into the culture medium from which they can be readily obtained in high concentrations. MAbs produced by either means may be further purified, if desired, using filtration, centrifugation and various chromatographic methods such as HPLC or affinity chromatography.

Monoclonal antibodies of the present invention also include anti-idiotypic antibodies produced by methods well-known in the art. Monoclonal antibodies according to the present invention also may be monoclonal heteroconjugates, *i.e.*, hybrids of two or more antibody molecules. In another embodiment, monoclonal antibodies according to the invention are chimeric monoclonal antibodies. In one approach, the chimeric monoclonal antibody is engineered by cloning recombinant DNA containing the promoter, leader, and variable-region sequences from a mouse antibody producing cell and the constant-region exons from a human antibody gene. The antibody encoded by such a recombinant gene is a mouse-human chimera. Its antibody specificity is determined by the variable region derived from mouse sequences. Its isotype, which is determined by the constant region, is derived from

25

30

human DNA.

In another embodiment, monoclonal antibodies according to the present invention is a "humanized" monoclonal antibody, produced by techniques well-known in the art. That is, mouse complementary determining regions ("CDRs") are transferred from heavy and light V-chains of the mouse Ig into a human V-domain, followed by the replacement of some human residues in the framework regions of their murine counterparts. "Humanized" monoclonal antibodies in accordance with

10

15

20

25

30

this invention are especially suitable for use in *in vivo* diagnostic and therapeutic methods for treating *Moroxella* infections.

As stated above, the monoclonal antibodies and fragments thereof according to this invention can be multiplied according to in vitro and in vivo methods well-known in the art. Multiplication in vitro is carried out in suitable culture media such as Dulbecco's modified Eagle medium or RPMI 1640 medium, optionally replenished by a mammalian serum such as fetal calf serum or trace elements and growth-sustaining supplements, e.g., feeder cells, such as normal mouse peritoneal exudate cells, spleen cells, bone marrow macrophages or the like. In vitro production provides relatively pure antibody preparations and allows scale-up to give large amounts of the desired antibodies. Techniques for large scale hybridoma cultivation under tissue culture conditions are known in the art and include homogenous suspension culture, e.g., in an airlift reactor or in a continuous stirrer reactor or immobilized or entrapped cell culture.

Large amounts of the monoclonal antibody of the present invention also may be obtained by multiplying hybridoma cells *in vivo*. Cell clones are injected into mammals which are histocompatible with the parent cells, *e.g.*, syngeneic mice, to cause growth of antibody-producing tumors. Optionally, the animals are primed with a hydrocarbon, especially oils such as Pristane (tetramethylpentadecane) prior to injection.

In accordance with the present invention, fragments of the monoclonal antibody of the invention can be obtained from monoclonal antibodies produced as described above, by methods which include digestion with enzymes such as pepsin or papain and/or cleavage of disulfide bonds by chemical reduction. Alternatively, monoclonal antibody fragments encompassed by the present invention can be synthesized using an automated peptide synthesizer, or they may be produced manually using techniques well known in the art.

The monoclonal conjugates of the present invention are prepared by methods known in the art, e.g., by reacting a monoclonal antibody prepared as described above with, for instance, an enzyme in the presence of a coupling agent such as glutaraldehyde or periodate. Conjugates with fluorescein markers are prepared in the presence of these coupling agents, or by reaction with an isothiocyanate. Conjugates with metal chelates are similarly produced. Other moieties to which antibodies may be conjugated include radionuclides such as <sup>3</sup>H, <sup>125</sup>I, <sup>131</sup>I <sup>32</sup>P, <sup>35</sup>S, <sup>14</sup>C, <sup>51</sup>Cr, <sup>36</sup>Cl, <sup>57</sup>Co, <sup>58</sup>Co, <sup>59</sup>Fe, <sup>75</sup>Se, <sup>152</sup>Eu, and <sup>99</sup>mTc, are other useful labels which can be conjugated to antibodies. Radioactively labeled monoclonal antibodies of the present invention are produced according to well-known methods in the art. For instance, monoclonal antibodies can be iodinated by contact with sodium or potassium iodide and a chemical oxidizing agent such as sodium hypochlorite, or an enzymatic oxidizing agent, such as lactoperoxidase. Monoclonal antibodies according to the invention may be labeled with technetium-99 m by ligand exchange process, for example, by reducing pertechnate with stannous solution, chelating the reduced technetium onto a Sephadex column and applying the antibody to this column or by direct labeling techniques, e.g., by incubating pertechnate, a reducing agent such as SNCl2, a buffer solution such as sodium-potassium phthalate solution, and the antibody.

20

15

5

10

The present invention contemplates that the exclusion of large ubiquitin fusions from the UCH-L3 active site results from the 20 residue loop between Thr-147 and Val-166 that is disordered in the instant crystals. This loop is topologically distinct from the papain-like enzymes. The ends of the loop are anchored 20 Å apart on opposite sides of the active site Cys-95 and three different classes of conformations can be envisioned for the loop with respect to the proposed UCH-substrate interaction geometry (FIG. 9).

30

25

The loop may be sandwiched between the body of UCH-L3 and the ubiquitin moiety of a substrate (red conformation in FIG. 9). This arrangement seems unlikely, however, in light of the probable ubiquitin binding surface on UCH-L3 (see above). Furthermore, the loop sequence is not well conserved, and thus seems poorly suited to

10

15

20

25

30

mediate interactions with ubiquitin, for which all UCH enzymes that have been characterized exhibit high specificity.

A second possible conformation places the loop over the active site, with residues C-terminal to the scissile bond passing through the loop (blue in FIG. 9). When modeled in a maximally open conformation the loop has an internal diameter of approximately 15 Å, which is suitable for passage of an unfolded extended polypeptide chain, although it is expected to limit passage of even a small folded structure such as an  $\alpha$ -helix. A problem with this model is that the *D. melanogaster* UCH is able to cleave ubiquitin from conjugates with the large substrate  $I\kappa B\alpha$  (Roff et al., 1996), and that the *S. cerevisiae* UCH cleaves conjugates from cytochrome c (Cohen).

Alternatively, the disordered loop may fold completely away from the proposed ubiquitin-binding surface (magenta in FIG. 9). This conformation would be analogous to the occluding loop of cathepsin B, which is also located along the S' sites and defines the exopeptidase specificity of cathepsin B by making specific interactions with the substrate carboxyl terminus two residues beyond the scissile bond (Turk et al., 1995). An important topological distinction is that, unlike the disordered loop of UCH-L3, the cathepsin B occluding loop does not straddle the active cleft site (in FIG. 5A the occluding loop partially obscures the active site Gln, Cys, and His of cathepsin B).

The present invention contemplates changing the topology of the UCH-L3 protein to make it more papain-like in structure, such that the resulting protein is capable of cleaving peptides as well as larger proteins from ubiquitin. In constructing such a molecule, the disordered loop that straddles the active site is reduced or eliminated, thus opening the active site.

It is possible that upon binding of ubiquitin adducts, the disordered loop will remain mobile, fluctuating between the extreme magenta and blue conformations of FIG. 9. Thus, the loop will impede active site access for a wide range of larger substrates, which may eventually attain a productive complex by using either the blue or magenta conformations. It is also possible that the disordered loop plays a more active role in the selection of substrates *in vivo*, perhaps even becoming ordered and contributing directly to binding of some physiological substrates. This model suggests the intriguing possibility that the disordered loops of the different UCH enzymes, which are of similar length but relatively dissimilar sequence identities, function as modular units to confer different substrate specificity on the various UCH isozymes.

10

5

Regulating protein degradation by regulating protein deubiquitination can be stimulating or inhibiting degradation. Where protein degradation is to be stimulated a protein whose degradation is ubiquitin-dependent is exposed to a UCH-L3 or mutant UCH-L3 enzyme of the present invention.

15

Where protein degradation is to be inhibited, a protein whose degradation is ubiquitin-dependent is exposed to a mutant deubiquitinating enzyme of the present invention, which mutant does not catalyze the deubiquitination of proteins.

20

Exposing can be accomplished *in vitro* or *in vivo*. *In vitro* deubiquitinating processes have application in the industrial bulk production of proteins such as enzymes. A deubiquitinating enzyme of the present invention can be used in such processes to remove ubiquitin from the produced protein or to direct the removal of selected terminal amino acid residues. The use of deubiquitinating enzymes for generating desired amino-terminal residues of proteins is described in United States Patent No. 5,093,242, the disclosure of which is incorporated herein by reference.

25

30

Where exposing is accomplished in vivo, cells lacking an endogenous deubiquitinating system or cells having a mutation or deficiency in a deubiquitinating enzyme are transfected with a polynucleotide comprising a DNA sequence that encodes a deubiquitinating enzyme. Alternatively, a cell can be transfected with an

expression vector comprising a DNA sequence that encodes a mutant UCH-L3 such that the natural protein degradation pathway for a protein is inhibited.

Processes for destabilizing proteins in vivo, producing proteins using ubiquitin fusion and the in vitro cleavage of ubiquitin fusion proteins are well known in the art. Descriptions of such processes can be found in United States Patent Nos. 5,122,463, 5,132,213 and 5,196,321, the disclosures of which are incorporated herein by reference. In addition, the nucleotide and amino acid residue sequences of ubiquitin-specific proteases can be found in United States Patent No. 5,212,058, the disclosure of which is incorporated herein by reference.

## EXAMPLE 2: SPECIFICITY AND IN VIVO ROLES OF UCH ISOZYMES

To further define the specificity and the *in vivo* roles of UCH isozymes, the present inventors tested natural and semi-synthetic ubiquitin derivatives as substrates, with specific emphasis on their potential role in ubiquitin proprotein and polyubiquitin processing. The results suggest that human UCH isozymes L1 and L3 are apparently involved in processing of proubiquitin gene products and small molecular weight ubiquitin adducts, but not larger derivatives of ubiquitin.

20

25

15

5

10

## **Procedures**

#### Materials

Ubiquitin C-terminal hydrolases were prepared as described previously (Larsen *et al.*, 1996). All chemicals were reagent grade or better. Restriction endonucleases and DNA modification enzymes were from New England Biolabs, Beverly, MA. Recombinant human ubiquitin was expressed in *E. coli* and purified as described below.

## Subcloning of proprotein genes

The human UbCEP52 and UbCEP80 and the *S. cerevisiae ubi4* proubiquitin genes were excised from pSP72 cloning vector (Monia *et al.*, 1989) by digestion with *Eco*RV and *KpnI*. The cassette was ligated to a 5' *NdeI* site (Klenow polymerase blunted) and the 3' *KpnI* site of the prokaryotic expression vector pRSET B (Invitrogen) with T4 DNA ligase. After transformation of the ligation mixture to Top 10 F' competent *E. coli* (Invitrogen), clones were grown for DNA miniprep and assayed by restriction digestion with *ScaI* and *XhoI* (UbCEP52) or *ScaI* and *BamHI* (UbCEP80). Correct recombinant plasmids were amplified and stored at -20°C in TE buffer (Sambrook *et al.*, 1989). The yeast proubiquitin gene was similarly inserted into the Klenow-blunted pRSET using *Eco*RV and *HindIII*, and colonies were screened with by *XhoI* restriction digests of the isolated plasmids. These ubiquitin proprotein expression plasmids were named pRSUb52, pRSUb80, or pRSyUb5, respectively.

15

20

25

10

5

### Purification of ubiquitin proproteins

The *E. coli* host strain BL21(DE3) (Invitrogen) was transformed with the appropriate expression vectors described above. For Ub-CEP proteins, the strain BL21(DE3)pLysE was used. Individual colonies were inoculated into 200 ml LB media (Sambrook *et al.*, 1989) supplemented with ampicillin (50 µg/ml) and grown overnight at 37°C. This culture was used to inoculate 2 or 12 liters of LB media. When the optical density (600 nm) of the cultures reached 0.45 (UbCEP) or 0.6 (yUb5), IPTG was added to 0.3 mM, and the cultures were grown for an additional 3 h. The cells were pelleted at 4000 RPM in an RC-3 rotor. Lysozyme was added to 0.1 mg/ml, and the bacteria were incubated for thirty minutes at 37°C, sonicated, and recentrifuged as above. UbCEP52 was purified from the supernatant as described previously (Monia *et al.*, 1989), with additional purification over a 300 ml sephadex G-75SF gel filtration column and MonoS FPLC (Pharmacia)

10

15

20

25

Recombinant yeast proubiquitin was expressed in *E. coli* and purified by a modification of Jonnalagadda *et al.* (1987). The bacteria were harvested by centrifugation, suspended in 50 mM Tris-Cl, pH 7.8, 1 mM EDTA, and sonicated (Heat Systems). After centrifugation for thirty minutes at 15,000 × g, the supernatant was raised to 65°C for five minutes, and centrifuged again as above. The resulting heat stable supernatant was made 85% saturated in ammonium sulfate, stirred gently overnight at 4°C, and was centrifuged for thirty minutes at 10,000 × g in a GSA rotor. The pellet was resolubilized in a minimal volume of water, and after lowering its pH to 4.6 with 1 M acetic acid, was applied to an FPLC Mono S 5/5 column (Pharmacia) in 50 mM NaOAc pH 4.5. Ubiquitin oligomers were eluted in a linear gradient of 0 to 550 mM NaCl. Oligomers which cross reacted with anti-ubiquitin polyclonal antibodies (Accurate Scientific) eluted at 150, 200, 290, 350, and 400 mM NaCl (n= 1 to 5 ubiquitins respectively). The pooled fractions were dialyzed against 10 mM Tris-Cl, pH 7.6, concentrated by ultrafiltration. The preparation was homogeneous as judged by coomassie-stained SDS-PAGE.

# Purification of truncated ubiquitin gene products

To study P' specificity, the truncated ubiquitin gene products, Ub-CEP52<sup>1-10</sup>, Ub-CEP80<sup>1-10</sup>, and Ub-Ub<sup>1-10</sup> were prepared. Vectors encoding ubiquitin fused to the first ten residues of CEP52 (Ub-IIEPSLRQLA) (SEQ ID NO:1), CEP80 (Ub-GKKRKKKVYT) (SEQ ID NO:2), or Ub (Ub-MQIFVKTLTG) (SEQ ID NO:3). Bacteria harboring the expression plasmids were grown to an  $A_{600}$  of 0.6, and induced for protein production with 0.5 mM IPTG. Supernatants were made as above, but with 10 mM DTT in the buffer. The supernatants containing Ub-CEP52<sup>1-10</sup> or the Ub-CEP80<sup>1-10</sup> were heat treated at 86°C for five minutes, cooled to 4°C, and centrifuged at  $3,500 \times g$  for 15 min. In most cases, the supernatant was chromatographed on a 1 liter column of G-100 superfine (Pharmacia). The supernatant containing Ub-Ub<sup>1-10</sup> was pretreated with 2.5% perchloric acid and centrifuged. The acid-soluble supernatant was subjected to gel filtration as above. In

all cases, the fusion proteins obtained were homogeneous as judged by Coomassiestained SDS-PAGE.

#### Preparation of Ub-amino acid extension proteins

5

10

15

A vector library encoding a variety of single amino acids C-terminal to ubiquitin was constructed using the polymerase chain reaction. To create this amino acid library at position 77, the coding region of the pRSUb80 vector (see above) was amplified with a degenerate 3' primer which contained all possible codons followed by a stop codon and a HindIII site. The primer sequences were: 5'-ATCCATATGCAGATCTTCG-3' (SEQ ID NO:4), and 5'-CAAGCTTCTANNNACCACCACGAAGTC-3' (SEQ ID NO:5). The PCRTM products from this reaction were subcloned en masse into pCRII (Invitrogen, San Diego, CA), and 40 minipreps were prepared. Inserts were present in 25 of the 40 minipreps and these inserts were sequenced (Sanger et al., 1977). Clones were identified which encoded D, H, K, P, S, or T at the C-terminus. These were subcloned into pRSET using their NdeI and HindIII sites. Proteins were expressed and purified by heat denaturation and gel filtration, as described above. One additional clone was recovered due to a deletion in the PCR<sup>TM</sup> product. This frameshift resulted in a vector encoding Nα-ubiquitinyl-PRSLDSC, which was also expressed and purified.

20 Co-translational processing

25

The kanamycin resistance gene was incorporated into plasmids encoding UCH-L1 or UCH-L3 by insertion of a DNA cassette from pUC4K (Pharmacia). pRSUCH plasmids were digested with *EcoRI* and calf intestinal phosphatase. The kan<sup>T</sup> gene cassette was excised from pUC4K with *EcoRI*. After gel purification of the insert and vector fragments, they were ligated and plated onto LB-kanamycin agar plates. The correct transformants were identified by the presence of a unique *ScaI* site in the kan<sup>T</sup> cassette, and the amp<sup>T</sup> gene was subsequently disabled by excision of an AvaII fragment in its center, followed by religation.

To co-express enzymes and putative substrates in the same cell, BL21(DE3) cells harboring either the pRSyUb5, the pRSUb52, or the pRSUb80 plasmid (amp<sup>r</sup>) were transformed with a pRSUCH plasmid (kan<sup>r</sup>) and plated on LB agar containing both kanamycin and ampicillin to select for co-transformants. Induction with IPTG resulted in co-expression of the selected UCH isozyme along with a putative substrate. Processing was assessed by adding SDS-PAGE sample buffer directly to cell pellets and analyzed by Western blotting using antibodies specific for each substrate.

10

5

#### Other substrates

A plasmid encoding a Ub-R-β-galactosidase fusion protein was obtained from Dr. Alex Varshavsky (pKKUbRβGal). Synthesis of Ub-R-β-gal was induced as described previously, and the fusion protein was purified as described for UCH, except that the anion exchange resin was eluted with 50 mM Tris-HCl, pH 7.5 and containing 150 mM NaCl. This resulted in significantly purified protein preparation (>80% homogeneous) which was used in gel and HPLC assays of fusion protein processing.

20

25

30

15

K48-linked diubiquitin (Nε-Ubiquitinyl-<sup>K48</sup>Ub) was synthesized *in vitro* by incubation of human recombinant or bovine ubiquitin (Sigma, St. Louis, MO) with the activating and conjugating enzymes of the ubiquitin system (Chen and Pickart, 1990). Incubations contained 50 mM Tris-Cl pH 8.0, 2 mM ATP, 5 mM MgCl<sub>2</sub>, 5 mM phosphocreatine, 0.3 units/ml phosphocreatine kinase, 0.3 U/ml inorganic pyrophosphatase, 10 μg/ml ovalbumin, 30 μM E2-25k (plasmid obtained from Cecile Pickart), 0.1 μM E1 from rabbit liver (A. L. Haas), and 5 to 10 mg/ml ubiquitin. Reaction mixtures were incubated at 37°C for 40 min. The E1 and E2 enzymes were removed by passing the reaction mixture over a Mono Q anion exchange column (Pharmacia) at pH 7.6. Polyubiquitin chains were purified by chromatography on Mono S FPLC (Pharmacia) as described above for proubiquitin.

As used herein, the term "polyubiquitin chains" or "polymeric ubiquitin derivatives" are named as follows. The polyprotein ubiquitin gene product (UBI4p in yeast) is referred to as proubiquitin. The products of the UBI1, 2 and 3 genes in yeast are referred to as ubiquitin C-terminal extension proteins (UbCEP). The length of the CEP can be added as a suffix; *i.e.* UbCEP52 or UbCEP76 in yeast. When the C-terminal carboxyl group of ubiquitin is involved in an amide bond, it is referred to as the ubiquitinyl group (Ub). The amino component of this amide bond can be contributed by either the amino terminus of a peptide (Nα-ubiquitinyl-peptide) or the ε-amino group of lysine (Nε-ubiquitinyl-lysine). Where known, the number of the specific lysine in a peptide can be specified as a superscript prefix. Thus, a K48 linked ubiquitin dimer is referred to as Nε-ubiquitinyl- K48 Ub. A larger polymer of ε-linked ubiquitin is referred to as polyubiquitin, with the identity of the specific lysine involved specified as a superscript prefix (*i.e.* K48 polyubiquitin, K63 polyubiquitin, etc.).

15

20

5

10

Also, as used herein, the nomenclature referring to amino acids of the substrate, from the N-terminus, amino acids of the substrate are abbreviated as ....P3-P2-P1-P1'-P2'-P3'.... The scissile bond is that between the P1 and the P1' residue. The corresponding sites on the enzyme are labeled ...S3-S2-S1-S1'-S2'-S3' etc. Other abbreviations are: UBP, ubiquitin-specific processing protease; UCH, ubiquitin C-terminal hydrolase; and SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis.

25

30

An ε-linked ubiquitin dimer missing the C-terminal glycylglycine (Nε-ubiquitinyl-<sup>K48</sup>Ub<sup>1-74</sup>) was synthesized as described above for Nε-ubiquitinyl-<sup>K48</sup>Ub, except that 6 mg/ml of des-glygly-ubiquitin was reacted with 2 mg/ml of native ubiquitin. The reaction was incubated at 37°C overnight. Progress of the synthesis was assayed with HPLC, and terminated by the method outlined above. Under these conditions, polyubiquitin chains are <97% terminated with des-glygly-Ub. The reaction products were separated on Mono S FPLC (Pharmacia).

15

20

25

Nε-Ubiquitinyl-L-lysine and Nε-ubiquitinyl- K48 Ub-L-lysine derivatives were synthesized as above except that the reactions included 200 mM to 500 mM concentration of the particular lysine derivative: either Nα-acetyl-L-lysine (500 mM), Nε-acetyl-L-lysine (500 mM), L-lysine (200 mM), or Nα-acetyl-L-lysine-N-methyl amide (200 mM). These reactions were allowed to incubate overnight at 37°C to assure maximal lysine conjugation. C-8 Reverse phase HPLC was used to monitor these reactions, and the reactions were terminated as described above.

## 10 Hydrolysis studies

Hydrolysis rates were measured by incubating the above substrates with homogeneous UCH-L1 or L3. Conditions for assay were essentially as described previously (Wilkinson *et al.*, 1986). Incubation of UCH was performed at 37°C in 50 mM Tris-Cl, pH 7.6, with 5 mM DTT and 50 μg/ml ovalbumin, for varying amounts of time. Substrate concentrations were 15 μM, approximately 20-fold higher than the K<sub>m</sub> for ubiquitin ethyl ester. Values are reported as the mean and the standard error of the mean for between 6 and 30 determinations. In cases where no catalysis was observed, the substrate was raised to its highest possible concentration.

#### Results

#### P1' specificity

Removal of a single amino acid or small peptide from the C-terminus of ubiquitin must occur during processing of ubiquitin precursors and metabolites (see Table 4). As ubiquitin ethyl ester (Wilkinson *et al.*, 1986) and Ub-DTT (Rose and Warms, 1983) are both rapidly hydrolyzed by UCH isozymes, it was of interest to determine if these enzymes exerted any specificity for residues at the P1' position of ubiquitin fusion proteins<sup>2</sup>. Such specificity might manifest itself in differential rates of cleavage of  $\alpha$ -linked amino acid extensions. FIG. 1 shows the hydrolysis rates obtained with UCH-L1 and -L3 isozymes for Ub-pro, Ub-lys, Ub-his, and Ub-asp,

WO 99/01567 PCT/US98/13776

-118-

relative to ubiquitin ethyl ester, the inventors' generic reference substrate. The data show that neither UCH isozyme exhibited a strong preference for the P1' residue (1) immediately following ubiquitin, except when it was proline. Ub-amino acid extensions were hydrolyzed by both UCH isozymes at rates only 1 to 2 orders of magnitude more slowly than UbOEt, whereas Ub-Pro was hydrolyzed at about 3 or 5 orders of magnitude more slowly than UbOEt (Table 3). These rates were determined at 15 µM substrates and probably represent Vmax values. Thus, these UCH isozymes are not selective with respect to the charge or size of residues at the P1' position when the ubiquitin extension is a single non-proline amino acid residue.

5

Table 3: Rates of hydrolysis of ubiquitin derivatives by UCH-L1 and UCH-L3

|     | Substrate                                     | UCH-L1 Activity (μmoles/min/mg) |                        | UCH-L3 Activity<br>(μmoles/min/mg) |                       |
|-----|-----------------------------------------------|---------------------------------|------------------------|------------------------------------|-----------------------|
|     |                                               | 1 <sub>Mean</sub>               | 1 <sub>SEM</sub>       | 1 <sub>Mean</sub>                  | 1 <sub>SEM</sub>      |
| 1.  | Ub-[OEt]                                      | 30                              | 6.0                    | 110                                | 22                    |
| 2.  | $N\alpha$ -Ub-[L-histidine]                   | 6.0                             | 0.9                    | 26                                 | 2.6                   |
| 3.  | Nα-Ub-[L-lysine]                              | 7.2                             | 0.7                    | 20                                 | 4.0                   |
| 4.  | Nε-Ub-[L-lysine]                              | 3.7                             | 1.4                    | 23                                 | 4.0                   |
| 5.  | $N\epsilon$ -Ub-[ $N\alpha$ -acetyl-L-lysine] | 6.3                             | 1.3                    | 13                                 | 2.6                   |
| 6.  | $N\alpha$ -(Ub- <sup>K48</sup> Ub)-[L-lysine] | 4.7 ·                           | 0.3                    | 9.9                                | 2.2                   |
| 7.  | Nε-(Ub- $^{K48}$ Ub)-[Nα-acetyl-L-            | 5.0                             | 1.0                    | 10                                 | 2.0                   |
|     | lysine]                                       |                                 |                        |                                    |                       |
| 8.  | Nα-Ub-[L-aspartate]                           | 9.9 x10 <sup>-1</sup>           | 9.0 x10 <sup>-1</sup>  | 15                                 | 2.4                   |
| 9.  | Nα-Ub-[MQIFVRPR]                              | 1.5 x10 <sup>-1</sup>           | 6.3 x10 <sup>-2</sup>  | 79                                 | 8.8                   |
| 10. | $N\alpha$ -Ub-[MQIFVKTLTG]                    | $6.0 \times 10^{-3}$            | $1.9 \times 10^{-3}$   | 8.8                                | 1.7                   |
| 11. | Nα-Ub-[IIEPSLRQLA]                            | 1.4 x10 <sup>-4</sup>           | 6.6 x 10 <sup>-5</sup> | 8.5                                | 0.9                   |
| 12. | Nα-Ub-[CEP52]                                 | 2.1 x10 <sup>-4</sup>           | 4.8 x10 <sup>-4</sup>  | 8.4                                | 5.9                   |
| 13. | Nα-Ub-[L-proline]                             | 3.9 x10 <sup>-4</sup>           | 2.5 x10 <sup>-3</sup>  | 1.3 x10 <sup>-1</sup>              | 8.8 X10 <sup>-2</sup> |
| 14. | Nα-Ub-[UB]                                    | <1 x10 <sup>-5</sup>            | -                      | <1 x10 <sup>-5</sup>               | -                     |
| 15. | Nα-Ub-[PRSLDSC]                               | <1 x10 <sup>-5</sup>            | -                      | <1 x 10 <sup>-5</sup>              | -                     |

Rates of hydrolysis of the indicated substrates are shown. The leaving group is bracketed. The detection limit in this assay is about  $1 \times 10^{-5} \, \mu \text{moles/min/mg}$ . <sup>1</sup>The mean and the standard error of the mean were derived from between 6 and 30 replicate measurements.

Table 4: Illustrative C-terminal Extensions of the Proubiquitin Gene Product in Various Organisms

| Extension | Organism (# Ub repeats)          |  |
|-----------|----------------------------------|--|
| -AF       | Acetabularia cliftonii (9)       |  |
| -C        | Bos taurus (4), Homo sapiens (3) |  |

| Organism (# Ub repeats)                                   |  |
|-----------------------------------------------------------|--|
| Caenorhabditis elegans (11)                               |  |
| Petroselinum crispum (6)                                  |  |
| Geodia cyndonium (6), Nicotiniana sylvestris (6), Pisum   |  |
| sativum (5), Arabidopsis thaliana (5), Glycine max (4),   |  |
| Antirhinium majus (>3), Sus scrofa (>3), Candida albicans |  |
| (3), Euplotes eurystomus (3),                             |  |
| Drosophila melanogaster (3)                               |  |
| Hordeum vulgare (>2)                                      |  |
| Dictyostelium discoideum (5 and 3), Trypanosoma brucei    |  |
| brucei (1)                                                |  |
| Aglaothamnion neglectum (6)                               |  |
|                                                           |  |

## Table 4 (continued)

| -N              | Dictyostelium discoideum (7 and 5), Gallus gallus (3).      |
|-----------------|-------------------------------------------------------------|
|                 | Phytophtora infestans (3)                                   |
| -Q              | Strongylocentrotus purpuratus (10), Zea mays (7), Oryza     |
|                 | sativa (6), Tetrahymena pyriformis (5), Avena fatua (4),    |
|                 | Neurospora crassa (4)                                       |
| -TQTSGKTFMTELTL | Artemius nauplius (>2)                                      |
| -VYASPIF        | Cavia porcellus (4)                                         |
| -V              | Homo sapiens (9)                                            |
| -Y .            | Cricetulus griseus (5), Gallus gallus (4), Mus musculus (4) |

The proubiquitin genes of most organisms encode head-to-tail repeats of the ubiquitin coding sequence with an additional amino acid or peptide at the C-terminus. A wide variety of residues must be cleaved from the polyubiquitin gene containing a variable number of ubiquitin repeats. Hence, the activity responsible for this cleavage are expected to show little P1' specificity. Note the absence of proline at the junction.

# Comparison of peptidase and isopeptidase activities

Because ubiquitin is also conjugated to proteins through an isopeptide bond (i.e. through the ε-amino group of lysine), it was of interest to examine whether UCH isozymes could cleave Ub-ε-amino lysine derivatives. It has been shown that UCH-L3 can hydrolyze both types of bonds (Pickart and Rose, 1985), although absolute rates were not determined. As a model isopeptidase substrate, the inventors synthesized Nε-ubiquitinyl lysine by incubation of ubiquitin and lysine with the E1 activating enzyme, the E2-25K conjugating enzyme and ATP. In this synthesis, the excess lysine nucleophile captures the thiolesterified ubiquitin from the transient E2-Ub intermediate, forming exclusively the Nε-ubiquitinyl lysine product and halting further synthesis of polyubiquitin by E2-25k. Both UCH isozymes rapidly hydrolyzed Nε-linked lysine (FIG. 10). Additionally, the rates were essentially identical to those obtained with Nα-linked lysine (Table 2).

10

5

15

20

-122-

Table 2. Refinement Statistics

| Resolution Range (Å)                        | 6.0 - 1.8   |  |
|---------------------------------------------|-------------|--|
| High resolution shell (Å)                   | (1.88-1.80) |  |
| Rvalue (%) <sup>a</sup>                     | 23.0        |  |
|                                             | (36.9)      |  |
| Rfree (%) <sup>b</sup>                      | 28.6        |  |
|                                             | (36.4)      |  |
| rmsd(bonds) (Å) <sup>c</sup>                | 0.010       |  |
| rmsd(angles) (°) <sup>c</sup>               | 1.867       |  |
| #Residues included (total)                  | 205 (230)   |  |
| #Atoms with occupancy - 0.0 <sup>d</sup>    | 10          |  |
| #Water molecules                            | 121         |  |
| <b> (Ų) Protein/Water</b>                   | 27.9 / 36.6 |  |
| # φ/φ angles (%): Most Favored <sup>d</sup> | 92.8        |  |
| Additional                                  | 6.7         |  |
| Generous                                    | 0.6         |  |
| Forbidden                                   | 0           |  |

Rvalue =  $100 * \Sigma(||Fp(obs)|| - |Fp(calc)|| = \Sigma|Fp(obs)|$ 

Rfree = Rvalue for a randomly selected subset (5%) of the data that were not used for minimization of the crystallographic residual (Brünger, 1992a).

Stereochemistry was analyzed with PROCHECK (Laskowski *et al.*, 1993).

Non-hydrogen atoms only. Atoms of the Arg-145 and Glu-203 side chains were assigned an occupancy of zero because they lack defined electron density.

10

15

5

A more relevant  $\epsilon$ -linked substrate might be an N $\epsilon$ -ubiquitinated peptide similar to the degradation remnants expected to be generated by the action of the proteasome on ubiquitinated proteins. To more closely mimic a peptide bond at the  $\alpha$  amino group of an N $\epsilon$ -linked lysine, the inventors synthesized and tested N $\epsilon$ -ubiquitinyl-(N-a-acetyl)lysine as a substrate. The addition of an acetyl functionality to the  $\alpha$ -amino group did not affect the hydrolysis rate of N $\epsilon$ -ubiquitinyl-lysine

(FIG. 10). Both isozymes cleaved acetylated and unacetylated substrates at a rate roughly 8 to 10 fold slower than the rate of cleavage of ubiquitin ethyl ester. Subsequent studies showed that there was also no effect of amidating the carboxyl group of lysine with N-methyl amine.

5

10

#### Polyubiquitin processing

Because Nε-ubiquitinyl-lysine was a good UCH substrate, the inventors sought to determine if an Nε-diubiquitinyl lysine derivatives were good UCH substrate. If these enzymes function in the removal of a K48-linked remnant peptide from polyubiquitin, they should process lysine derivatives at the C-terminus of polyubiquitin chains. As a model substrate, the inventors synthesized Nε-(Ub-K48Ub)-lysine and Nε-(Ub-K48Ub)-(N-α-acetyl)lysine. The lysine is removed from these polyubiquitin derivatives at rates identical to the simpler Nε-Ub-lysine derivatives, regardless of the presence of a second ubiquitin (FIG. 1). Neither UCH is able to hydrolyze the K48 isopeptide bond. Neither Ub-K48Ub, nor Ub-K48Ub(desglygly) is cleaved, even at a four-fold molar excess of enzyme for two hours at 37°C. This hydrolysis rate is therefore more than eight orders of magnitude slower than the ubiquitin esterase rate of either enzyme. This suggests that the ubiquitin binding site on UCH isozymes recognizes a face of ubiquitin distant from the K48 linkage site, and suggests that UCH could function in generating a free C-terminus on polyubiquitin chains by the removal of small peptides and/or cellular nucleophiles.

20

15

#### Fusion peptide processing

25

It has been postulated that Ubiquitin C-terminal hydrolases could participate in the processing of ubiquitin gene products. It is unlikely that a protein as small as UCH could exhibit specificity for ubiquitin and also a significant portion of the C-terminal extension. Thus, if UCH activity were responsible for processing ubiquitin gene products, then these enzymes would be expected to exhibit specificity for the peptide sequences at the junction between ubiquitin and the C-terminal extension. Model substrates synthesized to test this hypothesis consisted of ubiquitin

30

10

15

20

25

30

followed by the first ten amino acids of the C-terminal extensions; *i.e.*, Ub-CEP52<sup>1-10</sup> (substrate 11, FIG. 10) and Ub-Ub<sup>1-10</sup> (substrate 10, FIG. 10).

FIG. 10 shows that isozyme L3 exhibited little selectivity for any of the peptide extensions, cleaving them nearly as rapidly as it cleaves single amino acid extensions. This is also consistent with data which suggests that UCH-L3 has no difficulty cleaving a wide variety of peptide substrates from ubiquitin if the peptides are less than about twenty residues. Interestingly, UCH-L1 exhibited considerably more specificity, showing rates of hydrolysis of these substrates that are over two orders of magnitude slower than the rates of L3-catalyzed hydrolysis (Table 3). Still, UCH-L1 exhibits notable selectivity; the Ub-Ub<sup>1-10</sup> substrate is hydrolyzed over forty fold faster than the Ub-CEP<sup>1-10</sup> substrates by this enzyme.

Aside from the natural peptide sequences at the C-terminus of ubiquitin, one other substrate was created. Ub-PRSLDSC, a ubiquitin-peptide fusion with proline at the P' cleavage junction was created by a PCR<sup>TM</sup> error that resulted in the read-through of the reading frame into the vector multicloning site. Neither enzyme was able to cleave this fusion peptide at a measurable rate, in spite of the fact that UCH-L3 is able to cleave Ub-pro. The hydrolysis rate of these peptide fusions was more than seven orders of magnitude slower than that for UbOEt.

#### Ubiquitin proprotein processing

Because model substrates containing the first ten residues of ubiquitin proproteins were hydrolyzed by UCH isozymes, the inventors determined the rate of cleavage of full-length ubiquitin gene products by these enzymes. Purified α-linked Ub oligomers were very slow substrates for UCH-L1, and were not cleaved at all by UCH-L3 (FIG. 10). Micromolar UCH-L1 was able to cleave Nα-diubiquitin at 37°C in vitro with a half-life of thirty minutes. This corresponds to a rate of at least 6 orders of magnitude slower than for UbOEt. UCH-L1 is reported to exist at 1-2 % of total soluble brain protein (Day, 1990).

The zinC-finger fusion proteins UbCEP52 and UbCEP80 are the two other natural ubiquitin proprotein substrates studied. High amounts (100 mU) of either recombinant UCH added to bacterial expression lysates for two hours failed to hydrolyze UbCEP52 or UbCEP80 to their monomeric components, based on immunoblotting of the expression lysates. Because UbCEP52 was more highly expressed than UbCEP80, and because the antibodies to CEP52 had a higher titer and were more specific than the anti-CEP80 antibodies, the UCH-catalyzed hydrolysis of the UbCEP52 protein was further characterized.

10

15

5

Surprisingly, purified UbCEP52 was hydrolyzed by both enzymes, though the L3 isozyme catalyzed the reaction much more rapidly (FIG. 10 and FIG. 11). The rate of processing of UbCEP52 by UCH-L3 approaches the rate of hydrolysis of the Ubamino acid extensions, about 200 min<sup>-1</sup>. To confirm the specificity of this reaction, SDS-PAGE and immunoblotting were used to identify the products (FIG. 11. The appearance of ubiquitin and CEP52 detected by SDS-PAGE is consistent with the rates measured by HPLC. UCH-L1 also hydrolyzed the substrate to a measurable degree, but the rate was  $2.1 \times 10^{-4}$  µmoles/min/mg, or about  $10^{-5}$  the rate of ester hydrolysis.

20

The above results suggest that the bacterial lysates contain something which interferes with UbCEP52 hydrolysis, but not with UbOEt hydrolysis. UbCEP52 possesses a C<sub>2</sub>H<sub>2</sub> zinC-finger binding motif, so it was determined whether binding of zinc could inhibit the UCH-L3 hydrolysis of UbCEP52. Zn(OAc)<sub>2</sub> (10 mM) did not inhibit UbCEP52 hydrolysis by either enzyme. Whether the zinC-finger motif binds metal *in vivo* remains to be elucidated, however, addition of excess metal ion does not inhibit the processing of the proprotein by UCH.

30

25

The presence of a zinc finger motif in a ribosomal protein is presumptive evidence of nucleic acid binding. To test if binding of nucleic acid inhibited processing, assays were performed in the presence of nucleic acids. *In vitro* addition

10

15

20

25

of 50 µg/ml of either plasmid DNA, or a double stranded 26-base pair DNA cassette inhibited the hydrolysis of UbCEP52 by 50%, whereas a single stranded 42-base pair oligodeoxynucleotide at the same concentration was only minimally effective (FIG. 12). Whole yeast RNA was even better at inhibiting processing, showing 60 to 80% inhibition. Phenol/chloroform extraction of this RNA did not improve the processing, suggesting that the inhibition was not due to other contaminating proteins in the RNA preparation. Also, preincubation of the RNA with RNAseA restored the UbCEP hydrolysis rate back to control rates. These results imply that the nascent proprotein can only be cleaved by UCH before nucleic acids are bound to the fusion peptide, and that assembly into the ribosomal subunit would probably prevent processing.

UCH isozymes can co-translationally process ubiquitin proproteins.

Ubiquitin proproteins are very rapidly processed *in vivo* (Finley *et al.*, 1989; Baker *et al.*, 1992). The UCH isozymes appear to be very efficient at processing peptides from the C-terminus of ubiquitin, but not if the C-terminal extension has a chance to fold into a tight, globular domain (see above). Further, only UCH-L1 is able to rapidly process the proubiquitin precursor, and this isozyme is present at low levels in most tissues. These observations suggest that processing of some ubiquitin gene products may occur before folding or subunit assembly is completed. To test the idea that UCH isozymes can process UbCEPs co-translationally, the inventors co-transformed cells with vectors expressing UCH and Ub proproteins in various combinations. UCH-L1 was found to hydrolyze polyubiquitin (60%) and UbCEP80 (50%), but not the UbCEP52 (>5%) (FIG. 13). This data is consistent with the above data from peptide hydrolysis, in that UCH-L1 prefers to hydrolyze ubiquitin-like peptides and also hydrolyzes the complete proubiquitin, albeit slowly. In contrast, UCH-L3 was found to hydrolyze both Ub-CEP fusions, but not proubiquitin (FIG. 13).

The present invention describes attributes relating to the substrate specificity of two closely related UCH isozymes, UCH-L1 and -L3. The hydrolysis rates reported herein were determined at 15 µM substrates, approximately the same concentration as that of total ubiquitin in the cell. The Km for hydrolysis of ubiquitin ethyl ester is approximately 1 µM and is identical to the ubiquitin binding constant (Larsen et al., 1996). Thus, in the absence of unfavorable interactions between the enzyme and the leaving groups, the measured rates would reflect Vmax values. With some of the poorer substrates however, the slower observed rates of hydrolysis may be due to higher Km values for these substrates. Irrespective of the reasons for the slower rates of hydrolysis, it is clear that these differences are manifest at concentrations that are many times that observed in a cell and that the rates reported may overestimate the relative rates of hydrolysis that would pertain in vivo.

## Ubiquitin binding to the S site(s)

15

20

25

30

5

10

The available evidence suggests that the S sites form an extensive binding site for intact ubiquitin. The only demonstrated activity of UCH isozymes is for cleavage of amide and ester bonds at the C-terminus of ubiquitin. There is little or no affinity for small peptides at the C-terminus of ubiquitin (such as glycylglycine) but ubiquitin is bound with a micromolar binding constant (Larsen et al., 1996). Ubiquitin aldehyde is a tightly-bound inhibitor of these enzymes. Further, NMR measurements have confirmed an extensive area of contact between ubiquitin and UCH-L3; encompassing over 20% of the surface residues on ubiquitin (Wand and Wilkinson) including the C-terminus. This contact surface cannot include the N-terminus of ubiquitin, as a hexahistidine tag at the N-terminus has little or no effect on the rates of hydrolysis. In agreement with this result, it has been shown that these enzymes bind to immobilized (his)6 ubiquitin (Beers and Callis, 1993). The surface of ubiquitin containing K48 is also not in the S1 recognition site on ubiquitin, as Ne-Ub- K48Ub derivatives are good substrates for cleavage of the leaving group from the free C-terminus (FIG. 10 and Table 3). Ne-Ub- K48Ub does not appear to be a substrate. probably because the leaving group ubiquitin is tightly folded against the C-terminal

face of the distal ubiquitin. Finally, the interactions between ubiquitin and UCH-L3 are predominantly ionic, as evidenced by the previously observed inhibition of binding and activity by salt (Larsen *et al.*, 1996).

## S1' Specificity

Many different amino acids and peptides are found as natural extensions of ubiquitin genes in eukaryotes (Table 4). Putative processing enzymes would have to either have broad specificity at the P1' site or exhibit significant sequence variability from species to species in order to accommodate their respective species-specific leaving groups. In fact, UCH sequences are very similar across species, with rat, human and bovine UCH-L1 being over 98% identical. The inventors' results show that UCH isozymes exhibit very little specificity for the P1' residue of ubiquitin substrates (FIG. 10) with essentially identical rates with acidic, basic or neutral leaving groups. If UCH isozymes were responsible for processing the amino acid extensions of ubiquitin gene products, they would exert little selective pressure on the nature of that leaving group. This may be why there seems to be little selective pressure to maintain the identity of this extension amino acid (see Table 4).

20

25

5

10

15

As both  $\alpha$ -, and  $\epsilon$ -linked derivatives have to be processed from the C-terminus of ubiquitin, the selectivity for cleavage of these two types of amide bonds was examined. These enzymes exhibited little or no discrimination based on the identity of the amide bond to lysine ( $\alpha$  vs.  $\epsilon$ ), the charge at the other amine (free amine vs. N-acetyl), or the charge at the carboxyl group (carboxyl vs. N-methyl amide). Further, the same derivatives can be efficiently processed from the C-terminus of the polyubiquitin chain. Thus, at least with small leaving groups, these enzymes could be involved in processing both the amino acid and small peptide extensions of various gene products, as well as the N $\epsilon$ -(poly)ubiquitinyl lysine expected to be generated by the action of the proteasome on polyubiquitinated protein substrates.

10

15

20

25

30

## The S site(s) Will Not Bind Larger Protein Domains

FIG. 10 demonstrates that UCH-L3 is generally able to hydrolyze a variety of small peptide fusions at the C-terminus of ubiquitin. To examine if there was any selectivity based upon P' sequences, the inventors have also measured the rates of processing of the ubiquitin gene products and short model substrates consisting of ubiquitin fused to the first ten amino acids of the C-terminal domains.

UCH isozymes exhibit significant selectivity in the processing of the ubiquitin gene products. UCH-L3 is able to efficiently process the Ub-CEP52 gene product, but not the Ub-CEP80 or proubiquitin gene products. Isozyme L1 is only able to slowly process the proubiquitin gene product *in vitro* and *in vivo*. It has been reported that the yeast homolog, YUH1, also exhibits a similar selectivity in that small fusion proteins can be efficiently processed, but not larger fusions (Miller *et al.*, 1989). The drosophila homolog has been reported to be able to process α-ubiquitinyl-IκBα (314 amino acids), but not larger fusions (Roff *et al.*, 1996).

Interestingly, nucleic acid binding to Ub-CEP52 likely prevented its processing by UCH-L3 (FIG. 12). The addition of nucleic acid to UbOEt had no effect on its hydrolysis, suggesting that the nucleic acid was directly binding to Ub-CEP52 and causing a conformational change which prevented processing. The binding of nucleic acid by Ub-CEP52 is not unexpected; the CEP domain contains a zinC-finger motif, the protein is a ribosomal subunit, and mutants in this gene are defective in rRNA processing.

The above results suggest that the selectivity of the S' sites may be based on factors other than size. One factor could be the accessibility of the peptide bond at the C-terminus of ubiquitin. It might be expected that ubiquitin fusion proteins with significant mobility and flexibility at the junction could be good substrates while those that are more constrained (proline) and/or sterically restricted (large) would be poor substrates. This is consistent with the ligand-induced inhibition described above

10

15

20

25

30

(i.e. binding of nucleic acid may cause a less mobile conformation around the Ub-CEP52 junction) as well as the restricted nature of the substrate binding cleft observed in the UCH-L3 crystal structure (Johnston et al., 1997).

## Substrate Specificity Based on the P' Peptide Sequence

An alternative explanation for the observed selectivity in processing of ubiquitin gene products is that the enzymes may exhibit significant selectivity based on the amino acid sequences binding to the S' sites. To examine the contribution of the P' residues to the observed selectivity, the inventors have used model substrates consisting of ubiquitin fused to small peptides, including the first ten amino acids of each ubiquitin gene product. FIG. 10 demonstrates that UCH-L3 is not very selective for the P' residues, processing every small peptide tested except those containing proline at the scissile bond. This specificity is similar to that reported for the yeast UCH; i.e. ubiquitin extended by E, C, D, G, T, or M (but not P) was hydrolyzed efficiently (Miller et al., 1989). This may be because the secondary amine of the proline has a somewhat higher pKa than the primary amino group in the peptide bond of most amino acids, or it may reflect a steric constraint imposed at the scissile bond. UCH-L3 is unable to process at proline in the Ub-PRSLDSC peptide fusion. It is likely that the presence of proline at the P1' position "kinks" the peptide such that it can not be accommodated in the active site cleft. The presence of a proline at position P4' (Ub-CEP52<sup>1-10</sup>, substrate 11) or P7' (Ub-Ub<sup>1-5</sup>-RPR, substrate 9) has little effect on the rate of peptide processing by UCH-L3, suggesting that the cleft may be considerably less restricted at that distance from the active site nucleophile. The Ub-Ub<sup>1-10</sup> construct is processed very effectively by UCH-L3, but the Ub-Ub fusion protein is not cleaved at all, reinforcing the conclusion that a tightly folded domain at the C-terminus of ubiquitin is not generally a substrate for these enzymes.

In contrast to the permissiveness of UCH-L3 processing, the processing by UCH-L1 is more selective, with ubiquitin related peptide fusions being reasonable substrates and Ub-CEP52<sup>1-10</sup> being a poor substrate. While it is not clear whether this

selectivity is due to subsite specificity at P1'-P3', or the presence of proline in sites P4'-P7', it is clear that this is a much more selective enzyme. This specificity may be related to interactions with an occluding loop which is postulated to form part of the S' sites on the UCH family of enzymes.

5

10

15

20

25

30

#### Co-translational Processing

These results demonstrate that there is considerable selectivity in the processing of ubiquitin gene products by these UCH isozymes. UCH-L3 appears to prefer processing of Ub-CEP gene products, while UCH-L1 is very selective for the proubiquitin gene product. There is, however, some question as to the physiological significance of these processing events, especially those catalyzed by UCH-L1 which occur at an extremely slow rate. This led the inventors to ask if these enzymes might be involved in co-translational processing. Normal processing is known to be extremely efficient, with no evidence for accumulation of intermediates in the process. Further, if these enzymes are involved in processing, they must act before significant assembly into ribosomal subunits, and/or folding of stable domains C-terminal to ubiquitin. When enzyme and substrate were co-expressed in E. coli, the efficiency of processing was high and the selectivity was similar to that observed above. UCH-L1 was able to process over 80% of the proubiquitin gene product, and little of the Ub-CEP gene products, while UCH-L3 was most efficient in processing the Ub-CEP fusion proteins (> 50% processed). Thus, it appears that processing is much more efficient if the enzyme is present during the synthesis of the substrate. Confirmation of this phenomenon was attempted by demonstrating the association of UCH-L3 with polyribosomes synthesizing the substrates. When an in vitro transcription/translation system is supplemented with DNA encoding the substrate, endogenous UCH activity is found exclusively in the soluble fractions. Even upon addition of exogenous UCH isozymes, little or no UCH activity can be found stably associated with the ribosomes. It may be that the association is only fleeting and unstable, or it may be that processing occurs after release of the substrate polyprotein from the ribosome but before folding of the complete protein.

## Molecular Basis of Specificity

As shown above, the x-ray crystal structure of UCH-L3 has a core catalytic structure that strongly resembles cathepsin B, a papain-like protease. The active site groove is occluded by two loops, and it is postulated that a substrate-induced conformational change is required to clear the cleft and allow access to the active-site cysteine. Thus, only ubiquitin derivatives are substrates because only they can form the extensive interactions with the S' site required to trigger the necessary conformational change generating the active conformation of the enzyme.

10

15

5

Specificity for P' residues must be determined by the residues lining the corresponding S' sites on the UCH enzymes. The sequence of these proteins varies widely in several areas, including a region just N-terminal to the active site histidine. This sequence is disordered in the UCH-L3 structure, but may be positioned to form a significant contact region with the P' residues of substrates (Johnston *et al.*, 1997). Thus, it is likely that this hypervariable region is important in determining substrate selectivity and the somewhat shorter loop near the active site cysteine in UCH-L1 restricts the possible substrates by conferring a narrower or more restricted active site cleft. These predictions could be tested by obtaining the structure of UCH-L1 and/or using site directed mutagenesis and domain swapping approaches.

20

25

30

## Potential Physiological Roles for UCH Isozymes

The possible physiological roles for UCH isozymes are limited by the temporal and spatial patterns of expression of the enzymes and putative substrates, as well as by restrictions imposed by the substrate specificity examined here. With respect to the former, there is a marked tissue specificity to the expression of UCH isozymes, with UCH-L1 being expressed at very high levels in neural and diffuse neuroendocrine tissues, and UCH-L3 being expressed primarily in hematopoetic tissues (Wilkinson *et al.*, 1992). There is little evidence of temporal regulation, as these enzymes seem to be present in all stages of the cell cycle and both early and late

in development. A third isozyme, UCH-L2 has been reported to be widely distributed, albeit at lower levels than either of the two isozymes studied here (Wilkinson et al., 1992).

5

10

The distribution of putative substrates is more difficult to assess, although the results discussed above suggest that substrates will include the ubiquitin proproteins and small molecule adducts of ubiquitin. The latter are expected to be widely distributed, as there is extensive activation and conjugation of ubiquitin in all tissues examined. All of the intermediates in the enzymatic activation of the C-terminus of ubiquitin are thiol esters and they are effectively trapped by reaction with small molecular weight thiols and amines. There is a much more specific expression of ubiquitin pro-proteins. Rapidly growing cells have been shown to express high levels of ubiquitin-ribosomal fusion proteins, while more differentiated cells (such as neurons), express ubiquitin primarily from the proubiquitin locus.

15

20

25

These considerations suggest that UCH-L1, the neuronal specific isozyme, may be more efficient at cleaving the proubiquitin precursor, while the hematopoetic specific UCH-L3 might prefer ubiquitin ribosomal fusion proteins as substrates. These predictions are borne out using ubiquitin fusion peptides as substrates. UCH-L1 is found at high levels only in neurons and diffuse neuroendocrine tissues, and it cleaves the proubiquitin model substrate (Ub-Ub<sup>1-10</sup>, substrate 10) much faster than it cleaves the ubiquitin ribosomal fusion protein model substrate Ub-CEP52<sup>1-10</sup> (substrate 11). UCH-L3 on the other hand can cleave all the model substrates at a significant rate. The specificity of co-translational cleavage of the full length gene products reflects the results with small peptide fusions, implying that a portion of the UCH specificity derives from interactions with P' residues. Large, tightly folded leaving groups are not substrates for this class of enzyme, although there are differences in the selectivity demonstrated by each enzyme.

30

These results support the idea that UCH enzymes are responsible for cotranslational processing of the polymeric ubiquitin gene products and/or salvage of

10

15

20

25

30

ubiquitin from small molecular weight adducts. Only ubiquitin derivatives will be substrates, probably because of the obligatory substrate-induced conformational change required to generate the active enzyme. Isozymic differences may be due to sequence differences in the hypervariable loop region and presumably reflect the metabolic flux of the tissues wherein these isozymes are expressed, although confirmation of this role awaits identification of mutations in these loci or development of transgenic animal models.

# EXAMPLE 3 - SUBSTRATE BINDING AND CATALYSIS BY UBIQUITIN C-TERMINAL HYDROLASES

There are several polymeric ubiquitin structures which contribute to the biology of ubiquitin. Ubiquitin is post-translationally conjugated to a variety of proteins present in the cell. Proteins can be multiubiquitinated by the addition of ubiquitin to several surface lysines or polyubiquitinated by the addition of ubiquitin to one surface lysine followed by the addition of another ubiquitin to K48 of the first ubiquitin. Long polymeric chains can thus be assembled by the conjugation of ubiquitin to the distal end of this chain. These polyubiquitinated proteins are then degraded by the 26S proteasome to yield free amino acids and the polyubiquitin chain (Eytan et al., 1989; Hough et al., 1987). The ubiquitin isopeptide bond linking these subunits must be hydrolyzed by the action of specific proteases. This hydrolysis is necessary to salvage ubiquitin for conjugation as well as to prevent the accumulation of free polyubiquitin chains which are known to bind to the 26S proteasome and inhibit proteolysis (Deveraux et al., 1994). The inventors have recently shown that this reaction is catalyzed by a 93 kDa protein termed isopeptidase T (Wilkinson et al., 1995).

In addition to isopeptide-linked polymeric ubiquitin, the cell must also proteolytically process polymeric ubiquitin linked by peptide bonds. Ubiquitin is always translated from mRNA as a fusion protein, either with additional copies of ubiquitin itself or with one of two different zinc fingers (Ozkaynak *et al.*, 1987). The proubiquitin gene product consists of multiple copies of ubiquitin, is induced by

10

15

20

25

30

stress, and must be processed to monomeric ubiquitin by the action of a processing protease (Finley et al., 1987. Similarly, two ubiquitin-zinc finger fusion proteins arc synthesized in rapidly growing cells. They must be accurately processed to free ubiquitin and the zinc finger CEP52 arid CEP80, which are ribosomal proteins (Finley et al. 1989).

The proteolytic processing of both  $\alpha$ - and  $\in$ -amide linked ubiquitin occurs at the carboxyl group of glycine 76, suggesting that such processing proteases might have specificity for binding the ubiquitin monomer. Several proteases with these properties have been described, including those known as ubiquitin C-terminal hydrolases (Pickart and Rose, 1985), ubiquitin specific proteases (Tobias and Varshavsky, 1991; Baker et al., 1992), or isopeptidases (Matsui et al., 1982). These proteases can be grouped into two families. The ubiquitin-specific protease family (UBP) consists of several distantly-related proteases of 50-300 kDa which show several homologies around an active site thiol and a putative active site histidine. (Abbreviations used: CD, circular dichroism; DTT, DL-dithiothreitol; EDTA. ethylenediaminetetraacetic acid; IPTG, isopropyl β-D-thiogalactopyranoside; MES. 2-[N-morpholino]ethanesulfonic acid; PAGE, polyacrylamide gel electrophoresis; PCR™, polymerase chain reaction; PMSF, phenylmethylsulfonyl fluoride; SDS. sodium dodecyl sulfate; Tris, tris(hydroxymethyl)aminomethane; Ub, ubiquitin; UbOEt, ubiquitin ethyl ester (Wilkinson et al., 1986); UBP, ubiquitin specific proteases (Baker et al., 1992); UCH, ubiquitin carboxyl-terminal hydrolase (Wilkinson et al., 1989). This family is also known as UCH family 2 and includes at least 11 members in yeast with other known homologues in mammals and Drosophila (Papa and Hochstrasser, 1993; Wilkinson et al., 1995). They are thought to be involved with processing various ubiquitin-protein fusions expressed in eukaryotic cells and/or the polyubiquitin degradation signal (Tobias and Varshavsky, 1991; Baker et al., 1992, Wilkinson et al., 1995). The ubiquitin carboxyl-terminal hydrolase (UCH) family is a group of small, closely-related thiol proteases consisting of three mammalian isozymes (Wilkinson et al., 1989) and with close homologues in Saccharomyces cerevisae (Liu et al., 1989) and Drosophila melanogaster (Zhang et

al., 1993). They exhibit no apparent homology to the UBP family, and this dissimilarity implies two functionally convergent ancestral genes. The presence of multiple, tissue specific UCH isozymes (Wilkinson et al., 1992) suggests that the metabolism of ubiquitin may also be tissue specific. These enzymes prefer small leaving groups and/or extended peptide chains at the C-terminus of ubiquitin. It is postulated that they are involved in the co-translational processing of the proubiquitin and ubiquitin-zinc finger fusion proteins which are the ubiquitin gene products. It is not clear how any of these processing proteases distinguish among the several types of polymeric ubiquitin or achieve hydrolytic specificity. Since many, if not all of them, bind ubiquitin, their hydrolytic specificities and in vivo rates may depend on the specific recognition of leaving group peptides, side chains, or proteins in the non-ubiquitin portion of the substrate the P' site according to the nomenclature of Schechter and Berger (1967).

15

20

25

30

10

5

The UCH class of proteases is unique in several ways. Firstly, they appear to represent a new family of thiol proteases, as there is no apparent sequence homology to any other proteases. As such, the structure and function of these proteins is of general interest. Secondly, they are extremely specific, cleaving only after the C-terminal glycine of ubiquitin. Recombinant UCH's can be expressed in high amounts in Escherichia coli, do not form inclusion bodies, and are nontoxic to the This is consistent with the enzymes having a very narrow spectrum of proteolytic specificity. In contrast with members of the papain super-family, which exhibit broad P site specificity (Fox et al., 1995), UCH's show strict and narrow P site specificities for the RGG C-terminus of Ub. Finally, these enzymes are mechanistically unique in that binding of ubiquitin results in a finite equilibrium of thiol ester between the C-terminus and the active site thiol of the protease. Thus, the enzyme- substrate complex (ubiquitin + UCH-L3) can be reduced by borohydride to give the thiohemiacetal of the protease and ubiquitin aldehyde (Pickart and Rose, 1986). The energy required to form even a small amount of intermediate thiol ester must result from extensive binding interactions between ubiquitin and the protease. For these reasons, a more detailed structural analysis of the UCH family is of interest.

10

15

20

The inventors previously reported four UCH activities from bovine thymus with specificity for cleavage of the C-terminal ethyl ester of ubiquitin (Mayer and Wilkinson, 1989). Three of these enzymes are approximately 25 kDa in size, while the fourth activity is of higher molecular weight and is less well understood. These ~25 kDa activities are named UCH-L1, UCH-L3 and UCH-L3 on the basis of their order of elution from a DE-52 anion exchange matrix, and the inventors have found UCH-L1 to be identical to the protein PGP 9.5 (Wilkinson et al., 1989). This hydrolase is most highly expressed in neuronal and neurosecretory tissues. Additionally, it is selectively accumulated (along with ubiquitin conjugates) in the plaques of Alzheimer's disease as well as in lesions of other neurodegenerative diseases (Lowe et al., 1990). In the present work, UCH-L1 was cloned and mutagenized, and three important residues were identified, including the active site cysteine and histidine. Various spectral characterizations demonstrate that UCH contains  $\alpha/\beta$  folding motifs and that the UCH mutants studied demonstrate normal parameters of thermal denaturation. Thus, these residues appear to be unimportant for protein folding or stability. As UCH-L1 is insoluble above 1.5 mg/mL, the physical characteristics of a more tractable isozyme, UCH-L3, were studied. The inventors find that ubiquitin binding to this isozyme is stoichiometric and inhibited by salt. These data provide the first detailed analysis of the binding of ubiquitin with one of its adjunct enzymes, and so provides additional insights into the nature of the ubiquitin UCH protein-protein binding interactions.

#### **PROCEDURES**

25

30

UCH Cloning and Subcloning. The cDNA encoding UCH-L3 from the plasmid pBHA (Wilkinson et al., 1989) was subcloned into the T7 expression vector pRSET (Invitrogen, San Diego, CA). Plasmids pBHA and pRSET were digested with Ndel and EcoRI (New England Biolabs, Beverly, MA). The 780 bp UCH-3 insert and the 2810 bp vector were gel-purified and ligated, and the resultant plasmid was used to transform Top 10 F' E. coli (Invitrogen). Colony minipreps were screened, and

several which were linearized by NdeI to give a 3.5 kb linear fragment were selected. An insert from a positive clone was sequenced to verify the integrity of the plasmid . ("pRS-UCHL3") and was used to transform the E. coli expression host BL21(DE3) (Novagen). On IPTG induction, cells with this plasmid overexpressed a 25 kDa protein which cross-reacted with anti-human UCH-L3 polyclonal antibodies. Cytosol from the sonicated cells showed significant enzymatic activity in cleaving ubiquitin ethyl ester (Wilkinson et al., 1986). Human UCH-L1 was cloned via reverse transcriptase-mediated polymerase chain reaction (RT-PCR™, Perkin-Elmer Cetus) from a human fetal brain poly-A RNA library (obtained from Dr. Stephen T. Warren) using primers to the known human PGP9.5 sequence (Day et al., 1990). It was subcloned by the dideoxy method (Sanger et al., 1977), subcloned into pRSET to give pRSL1, and transformed into BL21 E. coli as described above. Sequencing revealed two apparent PCR™ errors affecting the codons for residues 73 and 200. Since the change at codon 200 was silent, it was not corrected. The codon at position 73 was repaired as follows. A rat PGP9.5 (UCH-L1) fragment (Kajimoto et al., 1992) was amplified by PCRTM to generate a new silent 5' BssHII site. The resulting BssHII/DraIII cassette codes for identical residues in the rat and the human sequences and so was inserted into pRSL1 in place of the human gene fragment. The construct was sequenced and shown to have the correct predicted amino acid sequence.

20

25

30

5

10

15

UCH Purification. The inventors cloned, expressed, and purified recombinant UCH-L1 and UCH-L3 to study their physical and enzymatic properties. With the exceptions noted, the purification of all UCH isozymes and mutants was similar. A single colony of BL21(DE3) carrying the pRSET-UCH L3 plasmid was inoculated into 2 L of LB media (Sambrook *et al.*, 1986) and grown at 37°C to an absorbance of 0.8 at 600 nm. IPTG (Sigma, St. Louis, MO) was added at 0.4 mM, and the cells were incubated for an additional 1.5 h before the bacteria were centrifuged at 4000g and the pellets were collected. After induction, UCH levels reached an average of 15% of the soluble *E. coli* protein. The cell paste (16 g) was resuspended in 100 mL of lysis buffer (50 mM Tris-HCl, pH 7.5, 10 mM DTT, 50 μM PMSF, 1 mM EDTA, 10 mM MgCl<sub>2</sub>). Lysozyme was added to 10 000 units/mL for 30 min, and the

10

15

20

25

30

suspension was sonicated (Heat Systems, Inc.). The debris was removed by centrifugation at 10 000g for 40 min. The supernatant was concentrated to 50 mL by ultrafiltration (Amicon, YM-10) and applied to a 200 mL Fast Flow O-Sepharose column equilibrated with buffer A (50 mM TriseHCl, pH 7.6; 0.5 mM EDTA: 5 mM DTT). The column was eluted with a 300 mL linear gradient to 0.5 M NaCl in buffer A. Fractions with ubiquitin esterase activity eluted at 265 mM NaCl and contained the 25 kDa protein as determined on SDS-PAGE. Enzymatically active fractions from ion exchange were pooled and concentrated to 30 mL and applied to a 1 L Sephadex G-100 Superfine gel filtration column (Pharmacia) in buffer A. Active fractions were pooled again and shown to be >98% pure by Coomassie-stained SDS-PAGE. These detailed enzymes have been used for kinetic studies and for the CD and UV spectroscopy, but for Raman spectra the enzymes were further purified on Mono O FPLC anion exchange, using the same buffers and gradient as in the ion exchange step described above. The homogeneous fractions were pooled and concentrated by ultrafiltration. Purifications of UCH-L1 were similar to that for UCH-L3, except that the anion exchange salt gradients were 1-300 mM NaCl, with UCH-L1 eluting at 110 mM. Homogeneous UCH-L1 is obtained in two steps, due to slightly higher expression levels and weaker binding to Q-Sepharose. The inventors find the specific activities of homogeneous recombinant UCH-L1 and UCH-L3 are 30 and 110 umol/min/mg, respectively, using ubiquitin ethyl ester as the substrate. comparison, UCH-L1 from bovine brain has a specific activity of 25/µmol/min/ mg. and UCH-L3 purified from calf thymus exhibits a specific activity of approximately half the recombinant value. These enzymes are therefore fully active and has been shown to bind one mole of substrate per mole of enzyme (see below), suggesting that they are fully functional as purified.

Mutagenesis. Mutagenesis of UCH-L1 was performed using a combination of M13-based (Kunkel, 1985), cassette subcloning, and PCR™ methods. In M13 mutagenesis, UCH-L1 was excised from pRSET with XbaI and HinDIII (New England Biolabs, Beverly, MA) and inserted into M13mp18 at the same sites. Annealing, T7 polymerase extension (T7 Sequenase, USB), and ligation of primers

(containing a new, silent *HpaI* site 5' to the mutation) with purified uracil-containing single-stranded M13 DNA generated the UCH-L1 H161D and H161Y mutants. These mutants were identified by screening plaque minipreps (Sambrook *et al.*, 1986) for susceptibility to *HpaI* digestion. The new *HpaI* site was then used to create the mutations H161Q, H161N, and H161K: degenerate cassettes produced by PCR™ were inserted by their *HpaI* and *KpnI* sites into pRSL1 and sequenced. Lastly, C90S and D176N mutant PCR™ cassettes were made and inserted into the *BssHII* and *DraIII* (C90S) or *BssHII* and *BsmI* sites (D176N). In all cases, the cassettes were always smaller than 400 base pairs and were sequenced after insertion into the expression vector to verify the absence of Taq poly-merase-induced mutations. All isozymes and mutants were expressed in BL21(DE3) cells, and the supernatants from lysozyme lysis were assayed. In most cases, the mutants were purified as above and their catalytic velocities and Michaelis constants were determined (Wilkinson *et al.*, 1986).

15

20

10

5

UV-Vis, CD, and  $Raman\ Spectroscopy$ . UV-visible spectra from 190 to 800 nm were acquired on a CARY 219 dual-beam spectrophotometer. CD spectra were obtained on an Aviv Associates 62DS, using 10 or 1 mm path length quartz cuvettes (Hellma, Forest Hills, NY) at  $25.0 \pm 0.1^{\circ}$ C. Each spectrum was the average of five scan repetitions. CD spectra of the native protein were collected at 0.95 mg of protein/mL (40  $\mu$ M) with 1 or 10 mm path length cells. To monitor ubiquitin binding by CD spectroscopy, ubiquitin and UCH-L3 (1 mL, 4  $\mu$ M) were placed in separate compartments of a dual-compartment 9 mm cell, and the spectrum was recorded. The contents of the compartments were then mixed, and the spectrum was again recorded. The former spectrum was subtracted from the latter to give the difference binding spectrum. A similar procedure was used for determining the effects of ubiquitin binding on the UV absorbance spectra, but with UCH-L3 and ubiquitin at 20  $\mu$ M.

30

25

Circular dichroic spectroscopy was used to monitor the thermal denaturation of UCH at protein concentrations of 0.1 g/L (4  $\mu$ M) in 1 mm path length cells, or at 0. 1 g/L in 10 mm path length cells. The latter conditions were used for the H161K and

H161Y mutants, which aggregated at higher concentrations. The temperature was controlled with a Hewlett Packard 89100A temperature controller equipped with an immersible temperature probe. The temperature scan rate was varied over a 4-fold range to confirm that measure-merits were made at equilibrium. Scans in both directions (heating and cooling) confirmed that the transitions measured were reversible. The fraction of native protein present at each temperature was calculated assuming a two-state transition between the initial and final spectra obtained, *i.e.*, at any temperature the fraction of native species = (final ellipticity - observed ellipticity)/(final ellipticity - initial ellipticity). Thermodynamic parameters were calculated from plots of  $\ln K_{eq}$  vs 1/T or by curve fitting in Sigma Plot 4.16 for Macintosh. Equilibrium constants were used to calculate thermodynamic state functions according to  $K_{eq} = \min + ((\max - \min)/(1 + 1/\exp(s - h/x)))$  where x = T,  $s = \partial H/8.314$  J/K mol and  $h = \partial H/8.314$  J/mol.

15

10

5

Nonresonance Raman spectra were recorded using the 488 nm emission line of an argon laser (Spectra Physics model 165). Light scattered from the sample at 90° to the incident laser beam was dispersed by a holographic diffraction grating in a 0.6 m triple monochromator (Triplemate, Spex Industries, Metuchen, NJ) and detected by an intensified photo-diode array detector (Princeton Instruments, Trenton, NJ). Power at the sample was less than 100 mW. The known Raman lines of toluene calibrated the system for each measurement, making the measured frequencies accurate to ±1 cm<sup>-1</sup>.

25

30

20

Equilibrium Gel Filtration. Equilibrium gel filtration measurements were performed as described (Hummel and Dreyer, 1962) with the following modifications. Tandem Superose 6 and 12 columns (0.5 × 30 cm, Pharmacia) were equilibrated with running buffer (30 mM Tris•HCl, pH 7.5; 5 mM DTT) containing 50  $\mu$ g of ubiquitin/mL. After equilibration with three column volumes, the ubiquitin concentration in the effluent was identical to that in the applied buffer. Purified UCH-L3 (100  $\mu$ L, 5.8  $\mu$ M) was supplemented with ubiquitin to a final concentration of 50  $\mu$ g/mL (5.8  $\mu$ M) and applied to this column. The concentration of ligand (ubiquitin) in the effluent was determined in triplicate by HPLC using a Waters WISP

710 B autoinjector and a Gilson HPLC equipped with a Spectra Physics SP4290 integrator (Wilkinson *et al.*, 1986). To determine the effect of salt on ubiquitin binding, the studies were repeated in the presence of 0.5 M NaCl.

## RESULTS AND DISCUSSION

UCH Isozyme Family. Ubiquitin C-terminal hydrolases comprise a small, newly defined, and novel family of thiol proteases. Among these, UCH-L3 is the best-characterized member. Human (Wilkinson et al., 1989) Drosophila (Zhang et al., 1993), and yeast (Liu et al., 1989) homologues have been described. These known UCH sequences are aligned in FIG. 14, where only residues found in at least three sequences are highlighted. All of these enzymes have slightly acidic isoelectric points (pI  $\sim 5.0$ ) and molecular weights between 24 and 27 kDa. The numbering system used here corresponds to the human UCH-L1 residues. A number of areas in the sequence show a high degree of identity, most notably at positions 88-102 (the amino acid numbering system refers to the UCH-L1 sequence) (containing a conserved cysteine), 109-118, and 161-178 (containing a conserved histidine and an ELDGR sequence. Many of the positions in the aligned sequences are identical in all four sequences (44/249) or are similar in all four (52/249).

20

25

30

5

10

15

This degree of similarity in primary sequence and physical properties is usually taken as evidence of similar secondary and tertiary structure. In support of this assumption, all four UCH sequences give essentially identical plots of Kyte-Doolittle hydropathy. This suggests that the structural properties of these isozymes may be similar. The high homology also implies that the differential enzymatic specificity of each is a consequence of a few sequence differences at the substrate recognition site. A basal collection of UCH residues is probably necessary for proper folding and ubiquitin binding. These binding residues are expected to be on the surface of the protein and in regions that show significant sequence homology in the alignments shown in FIG. 14. Additionally, catalytic residues are expected to be near the surface but are generally at the bottom of a cleft or invagination of the protein

surface. To examine these relationships and make predictions about which residues to mutate, the secondary structure for this protein family has been predicted by submitting the aligned sequences shown in FIG. 14 to the PredictProtein server (PredictProtein@EMBL-Heidelberg,DE). This method of prediction uses a neural net and preserves the information content of the aligned sequences, as well as that of surrounding residues rather than using only a single consensus residue at each position (Rost and Sander, 1993). These predictions (with an 82% level of confidence) are given in the last row of FIG. 14 and are consistent with analyses by the Raman and circular dichroic spectroscopies discussed below.

10

15

20

5

Interestingly, the putative active site cysteine at position 90 in UCH-L1 (see below) is flanked by two putative hydrophobic  $\beta$ -sheet regions. These two regions of  $\beta$ -sheet may span from the surface of the molecule to a more protected site deeper in the molecule and position the active site thiol in the expected catalytic cleft. The cysteine is juxtaposed between the very small residues, alaine and glycine. They may allow the approach of a scissile peptide bond to form the tetrahedral intermediate. If the inventors presume the mechanism of this protease to be papain-like, then there must also be a conserved histidine which can act as a catalytic base, polarizing the sulfhydryl and enhancing its nucleophilicity. Two positions in the UCH family have conserved histidines, these being positions 97 and 161 in UCH-L I. H97 is unlikely to be involved since it is only seven residues removed from the active site and at the opposite end of the predicted  $\beta$ -sheet. In contrast to papain and the serine proteases, thiol proteases of the interleukin-converting enzyme (ICE) family do not position a third residue to hydrogen bond to the catalytic histidine (Walker *et al.*, 1994). Thus, it is not known if a "catalytic triad" is involved in catalysis by the UCH gene family.

25

30

UCH Expression and Purification. Recombinant proteins were expressed in E. coli using a modified pRSET vector (Invitrogen). The modification removed the coding region for the oligohistidine leader sequence present in the parent vector. Expression in this system is driven by a T7 RNA polymerase promoter, with induction of the polymerase by IPFG. Upon induction, the UCH isozymes and

mutants were expressed at 15%-30% of the soluble protein. The enzymes were expressed, purified (see Experimental Procedures), and assayed for kinetic parameters.

To identify the active site residues involved in UCH catalysis, the inventors have mutagenized the wild type UCH-L1 cDNA. The vector encoding this UCH isozyme is more tractable for mutagenesis (compared to UCH-L3) because of its greater number of useful restriction sites. Several mutants were made whose properties are summarized in Table 5. In every case, UCH-L1 mutant proteins were produced in amounts equal to the wild type enzyme, based on SDS-PAGE analysis of expression lysates. The inventors assayed each expression lysate for activity, and active mutants were purified as described.

TABLE 5:
Mutagenesis and Kinetics of UCH-L1 Mutants<sup>a</sup>

|           | Relative Rate         |                        |              |  |  |
|-----------|-----------------------|------------------------|--------------|--|--|
| Mutant    | Codon Change          | (Velocity/wt Velocity) | $K_m(\mu M)$ |  |  |
| wild type |                       | 1.00                   | 1.20         |  |  |
| C90S      | $TGT \rightarrow TCT$ | <1 x 10 <sup>-7</sup>  | nd           |  |  |
| H97Q      | $CAC \rightarrow CAA$ | 0.85                   | 0.65         |  |  |
| H97N      | $CAC \rightarrow AAC$ | 0.87                   | 0.60         |  |  |
| HI61D     | $CAT \rightarrow GAC$ | $8.5 \times 10^{-5}$   | 1.50         |  |  |
| H161K     | $CAT \rightarrow AAA$ | <1 × 10 <sup>-7</sup>  | nd           |  |  |
| H161N     | $CAT \rightarrow AAC$ | <1 × 10 <sup>-7</sup>  | nd           |  |  |
| H161Q     | $CAT \rightarrow CAA$ | $<1 \times 10^{-7}$    | nd           |  |  |
| H161Y     | $CAT \rightarrow TAC$ | $<1 \times 10^{-7}$    | nd           |  |  |
| D176N     | $GAT \rightarrow AAT$ | 0.025                  | 7.40         |  |  |
| Q73R      | $CAA \rightarrow CGA$ | 0.97                   | 1.10         |  |  |

<sup>&</sup>lt;sup>a</sup>Active mutants were purified as described for the wild type enzyme (see Experimental Procedures). Hydrolysis rates are the average of two determinations at 15 μM UbOEt, or were Michaelis constants determined according to Wilkinson *et al.* (1986). Wild type UCH-L1 velocity is

10

10

15

20

25

30

25 μmol/min/mg vs ubiquitin ethyl ester (nd: not determined).

Identification of the Active Site Cysteine. The inventors examined the effect of changing the putative active site thiol (C90) to a serine. This cysteine residue is conserved among all UCH's and was suspected to be involved in catalysis, though direct proof of this residues role in catalysis has not yet been shown. The inventors generated a UCH-L1-C90S mutant (see Procedures). Assay of the bacterial lysate expressing UCH-L1-C90S showed no detectable activity. To quantitatively assess the upper limit of this activity, the C905 mutant was purified and assayed. Even at equimolar enzyme to substrate ratio (17 μM), the half-life of the substrate is over 4.5 h. Because serine is isoelectronic with cysteine, it is likely that this abrogation of activity is a direct effect and not the result of a structural change. In support of this, the C905 mutant exhibits a thermal denaturation profile with thermodynamic parameters nearly identical to the native enzyme (see below). Therefore, cysteine 90 is directly involved in catalysis, probably as the active site nucleophile.

Identification of an Active Site Histidine. The inventors next sought to identify the active site histidine. Two positions in the alignment have a conserved histidine, corresponding to H97 and H161 in UCH-L1. To determine if these were important to catalytic function, the inventors conservatively mutated H97 to a glutamine or asparagine. These carboxamide residues cannot provide a general base for catalytic function, but could provide hydrogen bonding similar to the N1 or N3 imidazole nitrogens and hence could provide a structural replacement. Purified UCH-L1 H97Q and H97N catalytic velocities are approximately 85% as rapid as the wild type enzyme (Table 5 and Experimental Procedures). This suggests that H97 is not involved in catalysis.

The inventors then mutated the other fully conserved histidine at position 161. In short, all H161 mutants were either catalytically inactive or very significantly impaired. H161Q, H161N, H161Y, and H161K possess no measurable esterase

activity down to the detection limit of the inventors' assay. These mutants are minimally seven orders of magnitude slower than the wild type hydrolase. Individual H161 mutations could be expected to supply an adequate structural replacement for positive electrostatic charge (lysine), hydrogen bonding by the imidazoie  $\pi$ (asparagine) and τ (glutamine) nitrogens (Vaaler and Snell, 1989), or aromaticity and steric volume (tyrosine). Interestingly, UCH-L1 H161D shows detectable activity, about 4 orders of magnitude less than that of native enzyme. Determination of the  $K_m$ of this purified mutant showed that only the reaction rate was altered and that the  $K_m$ was unchanged (Table 5). In this context a carboxylate may function as a general base or a hydrogen bond acceptor. Either interaction would abstract proton density from the nearby cysteine thiol and enhance its nucleophilicity. Since neither H161N nor H161Q can support this level of catalysis, but could hydrogen bond, the inventors favor a direct role for D161 as a general base. This would be the first example of a functional cys—asp dyad in a protease, though the velocity of catalysis is small. UCH-L1 H161D shows CD spectra typical of native UCH-L1 (described below). suggesting that this residue is not important for the gross enzyme structure. The inventors' data therefore indicate that histidine 161 is intimately involved in catalysis, probably as an active site general base.

20

25

30

15

5

10

Mutation of the ELDGR Box. Because the binding of ubiquitin to UCH is primarily electrostatic (shown below), and since acid residues may be involved in catalysis, the inventors mutated a universally conserved aspartate in the most conserved area of the UCH sequence, the ELDGR box. D176 was changed to an asparagine, resulting in a sterically unaltered charge mutant in a highly conserved region. This mutant shows a significant, measurable activity of 2.5% wild type. To determine if the drop in catalytic rate was due to an effect on binding strength, the  $K_m$  was determined (Wilkinson et al., 1986). Progress curve kinetics (Wilkinson et al., 1986; Orsi and Tipton, 1979) show this mutant to have a  $K_m = 7.4 \mu M$ , approximately 6-fold weaker than that of the native enzyme. The inventors find that the calculated specificity constant  $V_m/K_m$  is 250-fold lower than the wild type L1. Catalytic efficiency is thus lowered dramatically, but is not obliterated, and this might be

expected for a residue not directly involved in catalysis. The ELDGR box may therefore be involved in the formation of a binding site or the orientation of the substrate.

5

10

Mutation of Q73. The amplification of the UCH-L1 coding sequence by RT-PCR<sup>TM</sup> resulted in two errors. One of these changes, a G to C transversion affecting V20O, was silent and was not repaired. Another G to A transition generated the mutant Q73R. The inventors repaired the R73 mutation by replacing the defective region with a fragment from the rat UCH-L1 cDNA. Both rat and human proteins have identical sequences in this region (Kajimoto et al., 1992; Day et al., 1990), and the swap thus repaired the original PCR<sup>TM</sup> mutation (Experimental Procedures). Residue 73 is 17 residues N-terminal to the active site cysteine. It is predicted to be at the surface of the enzyme, possibly as part of a turn at the opposite end of the β-sheet anchoring the active site cysteine. Since all known UCH sequences have a Q in this region (equivalent to either position 73 or 74 in UCH-L1), it was of interest to examine the catalytic activity of this mutant. Table 1 shows that mutation of this position to the positively charged R residue had no effect on the activity of the

20

enzyme or its affinity for substrate.

15

Structural Effects of These Mutations. To ensure that the lack of activity in these mutants was not due to gross structural misfolding of the enzymes, the inventors analyzed selected mutants by circular dichroism. UCH-L1 mutants Q73R, H161D, D176N, and C90S all show CD spectra typical of UCH-L1 (described below), suggesting that these residues are not important for the gross enzyme structure. All of these mutants were expressed at levels similar to the wild type, again suggesting that folding and solubility were not problems with these specific mutations.

25

30

Binding of Ubiquitin to UCH-L3. To characterize the ubiquitin binding site and to identify any structural changes and/or perturbation of the environment of amino acid side chains associated with the binding of ubiquitin to UCH, the inventors have studied the spectral properties of the more soluble isozyme, UCH-L3, upon binding of

ubiquitin. Circular dichroism has previously been used to monitor protein-protein interactions accompanied by conformational changes, as well as to examine the environment of aromatic residues (Beltramini et al., 1992; Blazy et al., 1992; Grobler et al., 1994; Vuillemier et al., 1993). The inventors purified UCH-L3 (Experimental Procedures) and used it to study substrate binding by various approaches. The inventors were unable to detect any changes of ellipticity in CD difference spectra upon binding of ubiquitin and UCH-L3. This suggests that the structure of the two proteins are not altered by binding, such that no gross "induced fit" conformational changes are detectable.

10

15

5

To examine if aromatic residues were perturbed by substrate binding, the UV spectra of Ub and UCH-L3 were recorded in dual-compartment cells. After the compartment contents were mixed to initiate binding, no significant spectral change was seen relative to the unmixed control. The data from UV and CD spectra cannot distinguish minor tertiary structure alterations in UCH, and the inventors cannot comment on this possibility solely on their basis. The data do suggest that the electronic environments of the aromatic side chains are not radically altered by ubiquitin binding. Above 340 nm, the lack of UV absorption is consistent with the absence of chromophoric prosthetic groups in the enzyme. The spectra of UCH-L3 yield a Beer-Lambert extinction coefficient of 21 000 L/tool cm at 280 nm. UCH-L1 exhibits similar spectral characteristics, with an extinction of 15 600 L/tool cm. These data are consistent with the expected extinction based on the aromatic content of the polypeptides.

25

30

20

Binding of ubiquitin to UCH-L3 was not detectable by any of the spectral methods used above. Nonetheless, kinetic evidence predicts a sub-micromolar binding constant (Wilkinson et al., 1986). Additionally, it is known that the enzyme is specifically bound to and eluted from a ubiquitin affinity column (Duerksen-Hughes et al., 1989; Pickart and Rose, 1985). The kinetically obtained  $K_{\rm m}$  must not be interpreted as a substrate dissociation constant, and the ubiquitin affinity column cannot be used to quantify the binding strength. Thus a direct gel filtration

approach was used to monitor this binding. In these studies, the column buffer is equilibrated with ligand ubiquitin and the enzyme sample is supplemented with an equal concentration of ligand. If binding occurs, one expects to observe a peak of ligand at the elution position of the enzyme and a depressed level of ligand at the included volume of the column. FIG. 15A shows that purified UCH-L3 is 91% occupied by ubiquitin when chromatographed in the presence of 5  $\mu$ M ubiquitin-containing buffer. Integration of the peak area shows that 3.45 nmol of ubiquitin was bound to the 3.80 nmol of UCH-L3 applied. An apparent binding constant of 0.5  $\mu$ M can be calculated from these data. This is similar to the  $K_{\rm m}$  for UbOEt (Wilkinson *et al.*, 1986) and implies that most of the binding energy is due to ubiquitin alone and not the ester functionality. These data demonstrate that UCH-L3 possesses only one binding site with a micromolar  $K_{\rm d}$  and that the stoichiometry of binding is 1:1.

15

20

10

5

The above data demonstrate the binding of ubiquitin to UGH-L3 and suggest that there are few gross structural changes associated with this binding. Further, the environment of aromatic residues is not greatly perturbed. This suggests that polar interactions may be important for the binding. Indeed, the inventors have noted that increased ionic strength inhibits hydrolysis of ubiquitin ethyl ester. This inhibition is virtually complete at 10 µM substrate and 0.40 M NaCl. To examine if the inhibition by ionic strength was due to decreased substrate binding, or to a change in the catalytic properties of the protein, the inventors have repeated these binding studies in the presence of inhibitory levels of salt. Ubiquitin binding is completely abrogated in the presence of 0.5 M NaCl (FIG. 15B). The structure of the enzyme is not grossly perturbed by the presence of salt, as the CD spectra of UCH-L3 in 0 and 0.5 M NaCl are virtually identical. These data suggest that the binding interactions of the enzyme and substrate are primarily electrostatic and not hydrophobic.

30

25

Spectroscopic: Analysis of UCH-L3. Circular dichroism spectroscopy was used to estimate the amount of secondary structure motifs in UCH isozymes and mutants (FIG. 16) and to evaluate the effects of mutation on the folded protein

10

15

20

25

30

structure. The CD spectra show an absolute minima at 222 nm, characteristic of the presence of  $\alpha$ -helices. This is also confirmed by the relative minima at 208 nm and absolute maxima at 202 nm (Johnson, 1988). Calculating the mean residue ellipticity, at 208 and 222 nm, the inventors obtain values of 12 090 and 9160 deg cm²/dmol, respectively. Using the sum of structures constraint (Greenfield and Fasman, 1969) these values predict  $\alpha$ -helix contents of 31.2% and 32.4%. Also shown in FIG. 16 is the near-UV dichroism due to the chiral environment of the aromatic residues (curve labeled  $\times$  100). As is typical, this region shows much less ellipticity (~60 deg cm²/dmol), but since this region might serve as an environmentally sensitive reporter for the aromatic residues the inventors have shown it.

Finally, classical nonresonance laser Raman spectroscopy was also used as a structural probe. FIG. 16 shows the Raman spectra of UCH-L3 from 400 to 1750 cm 1. The inventors used two methods to calculate the amounts of structural motifs which are based on the conformationally sensitive nature of the peptide carbonyl stretch absorbance. The spectral bandwidth, intensity, and position of this amide I Stokes emission were used to estimate quantities of four generic secondary structures: helix, β-sheet, turn, and random (Alix et al., 1981). This method suggests 48% helical content, 25% \( \beta\)-sheet, 16% turn, and 11% "other". Another method (Lippert et al., 1976) uses the spectral characteristics (1240, 1632, and 1660 cm<sup>-1</sup> transitions) of pure helix, \beta-sheet, and random forms of poly L-lysine to calculate the secondary structure content. The inventors' data predict 40% helix, 43% β-sheet, and 17% random coil when analyzed in this way, but this method cannot distinguish between \u03b3-turn and β-sheet motifs. These predictions therefore concur generally with predictions based on Alix et al. (1988) and also with the CD data presented above. Weighting the Raman, CD, and prediction algorithms equally, approximate averages of 38% helix, 22% β-sheet, 18% turn or loop, and 19% "nonordered" secondary structures are obtained. Minor discrepancies between the methods may arise as a consequence of the "sum of structure" constraints or from the nature of the model compounds used as the basis for the various computations described above.

The inventors' data show that UCH isozymes possess both helix and  $\beta$ -sheet motifs, similar to the papain family of thiol proteases. To date, the solution crystal structures of five thiol proteases have been solved. Three of these, papain, calotropin D1, and actinidin, are from plant sources; two others, liver cathepsin B and the interleukin 1- $\beta$ -converting enzyme "ICE", are from mammalian sources [reviewed by Walker *et al.* (1994). These enzymes differ from the all- $\beta$ -chymotrypsin class of serine proteases in both catalytic residues and overall structure. ICE and subtilisin both possess helical content, however, and exhibit an antiparallel  $\beta$ -sheet core domain. While UCH enzymes resemble the papain family members in size and secondary structure content, sequence comparison with the papain family suggests that the UCH family should be classified as a distinct gene family. The solution of a UCH crystal structure would provide a valuable addition to the small collection of  $\alpha/\beta$ -proteases, and these studies are ongoing.

15

20

25

30

10

5

Thermal Denaturation. The above results demonstrate that the recombinant enzymes and mutants display normal spectroscopic properties at room temperature. This suggests that all mutants tested fold correctly and are soluble under these conditions. However, the temperature of the enzymatic assay and normal physiological environment of these enzymes is 37°C. To demonstrate that the loss of activity was due to a direct effect and not irreversible unfolding of the enzymes at assay temperature, the inventors have conducted thermal denaturation studies monitoring the 222 nm circular dichroism signal. Using this technique, the thermodynamics of protein denaturation have been studied for several enzymes Alexander et al., 1992; reviewed by Privalov and Gill (1988). This method provides a powerful, general tool for assessing the structural stability of enzymes and mutants. FIG. 17 shows the temperature-dependent changes in the 222 nm CD signal of UCH-L1. As can be seen, there is a thermal transition at approximately 52°C resulting in a 45% diminishment in this conformationally sensitive signal. UCH-L3 is also subject to the same transition, though the loss of ellipticity is slightly less. Cooling the sample results in the restoration of the original spectra, and wavelength scans at 65°C are typical of proteins with high random coil content. Also, the

10

15

transition is fully reversible if the protein concentration is less than  $100 \,\mu\text{g/mL}$  (10  $\,\mu\text{g/mL}$  for H161K and H161Y) and if the protein is not allowed to remain denatured for more than 5 min before the temperature is lowered.

These data can be analyzed according to a two-state model, and the relevant thermodynamic parameters can be calculated. The inset to FIG. 17 shows the Arrhenius plot of the data. As obtained from the replot, this transition is characterized by values of  $\Delta H = 1.56$  kJ/mol of residue,  $\Delta S = 4.80$  J/K mol of residue, and  $\Delta G = 28.6$  kJ/mol of UCH-L1 at 25°C. It is assumed that this transition is the reversible denaturation of UCH. The rather modest stability, of this protein is consistent with the reversible folding of a single domain protein. Many small globular proteins exhibit folded states stabilized by only 20-60 kJ/mol of Gibbs free energy (Privalov, 1979).

TABLE 6
Thermodynamics of Denaturation of UCH's"

| ·            |                                     |                      |                 |                          |  |  |
|--------------|-------------------------------------|----------------------|-----------------|--------------------------|--|--|
|              | Melting Point                       | Enthalpy, $\Delta H$ | Entropy, ΔS     | Gibbs Energy, $\Delta G$ |  |  |
| Enzyme       | $(T_{\rm m},\pm 0.2^{\circ}{ m C})$ | (kJ/mol of aa)       | (J/K mol of aa) | (kJ/mol of UCH)          |  |  |
| UCH-L3       | 50.9                                | 1.15                 | 3.52            | 21.7                     |  |  |
| UCH-L1       | 51.8                                | 1.56                 | 4.80            | 28.6                     |  |  |
| UCH-L1 C90S  | 51.5                                | 1.55                 | 4.78            | 27.7                     |  |  |
| UCH-L1 H161D | 49.9                                | 1.50                 | 4.69            | 22.6                     |  |  |
| UCH-L1 H161K | 52.7                                | 1.07                 | 3.30            | 19.1                     |  |  |
| UCH-L1 H161Y | 52.7                                | 1.10                 | 3.40            | 19.2                     |  |  |
|              |                                     |                      |                 |                          |  |  |

<sup>a</sup>Melting points are derived from the primary denaturation data. Thermodynamic values for denaturation are calculated as described in the text, where  $\Delta H = kJ/mol$  of amino acid residue,  $\Delta S = J/K$  mol of amino acid residue, and  $\Delta G = kJ/mol$  of UCH at 25°. Conventions are according to Privalov (1979).

20

The inventors also performed this thermodynamic analysis for the UGH-L3 isozyme and the L1 isozyme mutants C90S, H161D, H161K, and H161Y. In general

the wild-type and mutant enzymes have virtually indistinguishable circular dichroism spectra and only slightly differing denaturation curves. All denature at 50-53°C, where the melting point is defined as that point in the thermal denaturation curve where  $K_{eq} = 1$ , i.e., the midpoint. Thermodynamic values thus derived are shown in Table 6. By comparison, the neuron specific UCH-L1 appears slightly more stable than its hemopoeitic homologue, UCH-L3. Wild type L1 and the isoelectronic mutant C90S both show virtually identical melting points and thermodynamic stabilities per residue (Privalov and Gill, 1988) with  $\Delta G$ : 28.6 and 27.7 kJ/mol at 25°C, respectively. Mutations at the catalytic histidine were only slightly destabilizing. as determined by a melting point depression (H161D) or unfavorably altered thermodynamic state functions (H161K and H161Y). On the basis of these data, the inventors conclude that the inactivity of the C90 and H161 mutants is due to the loss of important catalytic residues and not due to misfolding or a decreased stability of the folded form.

15

10

Given the above observations, the present invention also contemplates constructing columns containing a matrix material that has immobilized enzyme bound to its surface. Such a column may be constructed such that it is much more likely than not that the immobilized enzyme, whether UCH-L1, UCH-L3, or variants thereof, shows greater catalytic activity as opposed to unbound enzyme. Also contemplated is protecting the face of the enzyme utilizing a cross-linked ubiquitin-protein or ubiquitin-peptide complex. The binding of such a complex to the enzyme is generally tight and specific, and if cross linked, the complex serves as a protector of the active site. To activate the enzyme, one may disassociate the ubiquitin with, for example, a high salt concentration. Such columns will find use in catalytically cleaving and then separating ubiquitin from the peptides and small proteins that are part of the fusion protein. Conversely, if one wanted to further purify the enzyme, one could employ a column having ubiquitin bound to its matrix, and more preferably, ubiquitin that has been cross linked.

15

20

25

30

10

5

The inventors have presented data to demonstrate that cysteine 90 and histidine 161 are the active site nucleophile and general base involved in UCH-L1 catalysis. These data assist in crystalographic model building, as the two residues must be juxtaposed in the tertiary structure and will define the active site. It can also be safely assumed that the other isozymes of the UCH family possess the same catalytic chemistry and residues, for reasons described above. The electronic nature of the binding suggests that one of two faces of ubiquitin is involved in an extensive interaction with this enzyme. One face has been defined as an "acidic face" with many such clustered on the surface of the α-helix from residues 20 to 34. Many of the basic residues are clustered on the opposite face of the molecule. It is not immediately obvious which face is contacting the surface of the enzyme, although there are several approaches which could be pursued to further define this. It is interesting to note that the majority of amino acid substitutions across species occur in the "acidic" face of ubiquitin (Wostmann et al., 1992), and for this reason, the inventors assume that the "basic" face is involved in these binding interactions. Data from Burch and Haas (1994) suggest that R42 of ubiquitin is involved in recognition

by UCH-L3. Also, the aspartate in the conserved ELDGR box may be involved in the binding. The effect of the D176N mutation on the Michaelis constant for ubiquitin shows that this residue may participate in an ionic interaction with ubiquitin or provide minor "orienting" effects for the fine tuning of substrate positioning. Rose and Warms (1983) have also shown that the two C-terminal glycine residues are necessary for effective inhibition of UCH-L3 by ubiquitin. The inventors find that the attachment of a hexahistidine motif to the N-terminus of ubiquitin does not affect hydrolysis rates to any measurable extent.

10

15

5

In summary, the inventors' data suggest that UCH isozymes (a) utilize cysteine 90 as the nucleophile, (b) use histidine 161 as the general base catalyst, (c) bind ubiquitin electrostatically, (d) bind the intact ubiquitin C-terminus, (e) may possess a carboxylate P3 binding pocket for arginine, (f) do not bind the amino terminus of ubiquitin, (g) bind other basic residues in ubiquitin, and (h) utilize several of UCH's acidic residues in binding. These studies are useful in building models of the enzyme for crystallographic and structural studies, for defining the enzyme-substrate interaction, and in site-directed mutagenesis studies designed to alter recognition and specificity of these enzymes.

20

25

30

All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

PAGE INTENTIONALLY LEFT BLANK

10

20

## **REFERENCES**

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

- Bacon and Anderson, "A fast algorithm for rendering space-filling molecule pictures,"

  J. Molec. Graphics, 6:219-220, 1988.
- Baker, Tobias, Varshavsky, "Ubiquitin-specific proteases of Saccharomyces cerevisiae: cloning of UBP2 and UBP3, and functional analysis of the UBP gene family," *J. Biol. Chem.*, 267:23364-23375, 1992.
- Beers and Callis, J. Biol. Chem., 268:21645-21649, 1993.
- Bradbury, "Reversible histone modifications and the chromosome cell cycle," *Bioessays*, 14:9-16, 1992.
- Brünger, "Free R value: a novel statistical quantity for assessing the accuracy of crystal structures," *Nature*, 355:472-475, 1992a.
  - Brünger, "X-PLOR version 3.1, a system for X-ray crystallography and NMR," New Haven, CT: Yale University Press, 1992b.
  - Carmona, Dufour, Plouffe, Takebe, Mason, Mort, Menard, "Potency and selectivity of the cathepsin L propeptide as an inhibitor of cysteine proteases," *Biochem.*, 35:8149-8157, 1996.
  - CCP4, The CCP4 suite: programs for protein crystallography," *Acta Cryst.*, 50(D):760-763, 1994.
- Chau, Tobias, Bachmair, Marriott, Ecker, Gonda, Varshavsky, "A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein," *Science*, 243:1576-1583, 1989.
  - Chen and Pickart, J. Biol. Chem., 265:21835-21842, 1990.
  - Chen, Parent, Maniatis, "Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity," *Cell*, 84:853-862, 1996.

20

- Ciechanover and Schwartz, "The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins," FASEB J., 8:182-191, 1994.
- Coulombe, Grochulski, Sivaraman, Ménard, Mort, Cygler, "Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment," *EMBO J.*, 15:5492-5503, 1996.
- Cowtan, 'dm': "An automated procedure for phase improvement by density modification," Joint CCP4 and ESF-EACBM newsletter on protein crystallography, 31:34-38, 1994.
- Cygler, Sivaraman, Grochulski, Coulombe, Storer, Mort, "Structure of rat procathepsin B. Model for inhibition of cysteine protease activity by the proregion," *Structrue*, 4:405-416, 1996.
  - Drenth, Kalk, Swen, "Binding of chloromethyl ketone substrate analogues to crystalline papain," *Biochem.*, 15:3731-3738, 1976.
- 15 Finley, Bartel, Varshavsky, *Nature*, 338:394-401, 1989.
  - Glichrist, In: Heterocyclic Chemistry, 2nd Ed., John Wiley & Sons, New York, Ch. 8, pp 314-316, 1992.
  - Gregori, Poosch, Cousins, Chau, "A uniform isopeptide-linked multikbiquitin chain is sufficient to target substarte for degradation in ubiquitin-mediated protolysis," J. Biol. Chem., 265:8354-8357, 1990.
  - Haas, Katzung, Reback, Guarino, "Functional characterization of the ubiquitin variant encoded by the baculovirus Autographa californica," *Biochem.*, 35:5385-5394, 1996.
  - Henchoz, De Rubertis, Pauli, Spierer, "The dose of a putative ubiquitin-specific protease affects position-effect variegation in Drosophila melanogaster," *Mol. Cell. Biol.*, 16:5717-5725, 1996.
    - Hershko and Ciechanover, "The Ubiquitin System for Protein Degradation," Annu. Rev. Biochem., 61:761-807, 1992.
- Hicke and Riezman, "Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis," *Cell*, 84:277-287, 1996.

25

- Holm and Sander, "Protein structure comparison by alignment of distance matrices," J. Mol. Biol., 233:123-138, 1993.
- Huang, Baker, Fischer-Vize, "Control of cell fate by a deubiquitinating enzyme encoded by the fat facets gene," Science, 270:1828-1831, 1995.
- 5 Hutchinson and Thornton, "PROMOTIF A program to identify and analyze structural motifs in proteins," *Prot. Sci.*, 5:212-220, 1996.
  - Jentsch, "Ubiquitin-dependent protein degradation: a cellular perspective," *Trend. Cell Biol.*, 2:98-103, 1992.
  - Johnston, Larsen, Cook, Wilkinson, Hill, EMBO J., 16:3787-3796, 1997.
- Jones, Zou, Cowan, Kjeldgaard, "Improved methods for building protein models in electron density maps and location of errors in these models," *Acta Cryst.*, 47(A):110-119, 1991.
  - Jonnalagadda, Butt, Marsh, Sternberg, Mirabelli, Ecker, Crooke, J. Biol. Chem., 262:17750-17756, 1987.
- 15 Kamphuis, Kalk, Swarte, Drenth, "Structure of papain refined at 1.65 Å resolution," *J. Mol. Biol.*, 179:233-256, 1984.
  - Karrer, Peiffer, DiTomas, "Two distinct gene subfamilies within the family of cysteine protease genes," *Proc. Natl. Acad. Sci. USA*, 90:3063-3067, 1993.
  - Kleywegt and Jones, "A super position," Joint CCP4 and ESF-EACBM newsletter on protein crystallography, 31:9-14, 1994.
  - Kraulis, "Molscript: a program to produce both detailed and schematic plots of protein structures," J. Appl. Cryst., 24:946-950, 1991.
  - Larsen, Price, Wilkinson, "Substrate binding and catalysis by ubiquitin C-terminal hydrolases: Identification of two active site residues," *Biochem.*, 35:6735-6744, 1996.
  - Laskowski, MacArthur, Moss, Thornton, "PROCHECK: a program to check the stereochemical quality of protein structures," *J. Appl. Cryst.*, 26:283-291, 1993.
  - Liu, Miller, Kohr Jr., Silber, "Purification of a ubiquitin protein peptidase from yeast with effecient in vitro assays," J. Biol. Chem., 264:20331-20338, 1989.
  - Matthews, "Solvent content of protein crystals," J. Mol. Biol., 33:491-497, 1968.

10

- Matunis, Coutavas, Blobel, "A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex," *J. Cell. Biol.*, 135:1457-1470, 1995.
- McRee, "A visual protein crystallographic software system for X11/XView," J. Molec. Graph., 10:44-46, 1992.
- Ménard, Carrière, Laflamme, Plouffe, Khouri, Vernet, Tessier, Thomas, Storer, "Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain," *Biochem.*, 30:8924-8928, 1991.
- Meyer, Cole, Radhakrishnan, Epp, "Structure of native porcine pancreatic elastase at 1.65 Å resolution," *Acta Crystallogr.*, 44(B):26-55, 1988.
- Miller, Henzel, Ridgeway, Kuang, Chisholm, Liu, "Cloning and expression of a yeast ubiquitin-protein cleaving activity in *E. coli*," *Biotech.*, 7:698-704, 1989.
- Moazed and Johnson, "A deubiquinating enzyme interacts with SIR4 and regulates silencing in S. cerevisiae," *Cell*, 86:667-677, 1996.
- Monia, Ecker, Jonnalagadda, Marsh, Gotlib, Butt, Crooke, J. Biol. Chem., 264:4093-4103, 1989.
  - Narasimhan, Potter, Haas, "Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin," *J. Biol. Chem.*, 271:324-330, 1996.
  - Nicholls, Sharp, Honig, "Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons," *PROTEINS, Structure, Function and Genetics*, 11:281-296, 1991.
  - O'Hara, Hemmings, Buttle, Pearl, "Crystal structure of glycyl endopeptidase from carica papaya: A cysteine endopeptidase of unusual substrate specificity," *Biochem.*, 34:13190-13195, 1995.
- Olvera and Wool, "The carboxyl extension of a ubiquitin-like protein in rat ribosomal protein S30," *J. Biol. Chem.*, 268:17967-17974, 1993.
  - Otwinowski, "Maximum likelihood refinement of heavy atom parameters," In:

    Isomorphous replacement and anomalous scattering, (ed.) Evans. Leslie,

    (Daresbury Lab.: Warrington WA4 4AD, England), pp. 80-86, 1991.

20

25

- Otwinowski, "Oscillation data reduction program," In: Data collection and processing, (ed.) Sawyer, Isaacs, Bailey, (SERC Daresbury Laboratory: Warrington WA4 4AD, England), pp. 56-62, 1993.
- Özkaynak, Finley, Solomon, Varshavsky, "The yeast ubiquitin genes: a family of natural gene fusions," *EMBO J.*, 6:1429-1439, 1987.
- Papa and Hochstrasser, "The yeast DOA4 gene encodes a deubiquinating enzyme related to product of the human *tre-2* oncogene," *Nature*, 366:313-319, 1993.
- Pickart and Rose, "Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides," *J. Biol. Chem.*, 260:7903-7910, 1985.
- Pickart and Rose, "Mechanism of ubiquitin carboxyl-terminal hydrolase: borohydride and hydroxylamine inactivate in the presence of ubiquitin," *J. Biol. Chem.*, 261:10210-10217, 1986.
  - Ramakrishnan and Biou, "Treatment of MAD as a special case of MIR," *Method. Enzymol.*, 1997 (IN PRESS).
- Rashin, Iofin, Honig, "Internal cavities and buried waters in globular proteins," Biochem., 25:3619-3625, 1986.
  - Rawlings and Barrett, "Families of cysteine peptidases," *In: Method Enzymol.*, Barrett (Ed.), Academic Press, San Diego, 244:461-486, 1994.
  - Roff, Thompson, Rodriguez, Jacque, Baleux, Arenzana-Seisdedos, Hay, "Role of IκBα ubiquitination in signal-induced activation of NG-κB in vivo," J. Biol. Chem., 271:7844-7850, 1996.
  - Rose and Warms, Biochemistry, 22:4234-4237, 1983.
  - Rost and Sander, "Improved prediction of protein secondary structure by use of sequence profiles and neural networks," *Proc. Natl. Acad. Sci. U.S.A.*, 90:7558-7562, 1993.
  - Sambrook, Fritsch, Maniatis, *In: Molecular Cloning: A Laboratory Manual*, Cold Springs Harbor Press, Cold Springs Harbor, pp ?, 1989.
  - Sanger, Nicklen, Coulson, Proc. Natl. Acad. Sci. USA, 74:5463-5467, 1977.
  - Schechter and Berger, "On the size of the active site of proteases," *Biochem. Biophys. Res. Commun.*, 27:157-162, 1967.

10

15

30

- Schröder, Phillips, Garmen, Harlos, Crawford, "X-ray crystallographic structure of a papain-leupetin complex," *FEBS Lett.*, 315:38-42, 1993.
- Storer and Ménard, "Catalytic mechanism in papain family of cysteine peptidases. *In: Method. Enzymol.*, Barrett (Ed.), Academic Press, San Diego, 244:486-500, 1994.
- Studier and Moffatt, "Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes," *J. Molec. Biol.*, 189:113-130, 1986.
- Tobias and Varshovsky, "Cloning and functional analysis of the ubiquitin-specific protease gene Ubpl of Saccharomyces cerevisiae," *J. Biol. Chem.*, 266:12021-12028, 1991.
- Turk, Podobnik, Kuhelj, Dolinar, Turk, "Crystal structures of human procathepsin B at 3.2 and 3.3 Å resolution reveal an interaction motif between a papain-like cysteine protease and its propeptide," FEBS Lett., 384:211-214, 1996.
- Turk, Podobnik, Popovic, Katunuma, Bod., Huber, Turk, "Crystal structure of cathepsin B inhibited with CA030 at 2.0 Å resolution: A basis for the design of specific epoxysuccinyl inhibitors," *Biochem.*, 34:4791-4797, 1995.
- Vijay-Kumar, Bugg, Cook, "Structure of ubiquitin refined at 1.8Å resolution," J. Molec. Biol., 194:531-544, 1987.

## Wand and Wilkinson, INCOMPLETE CITE

- Weber, Gittis, Mullen, Abeygunawardana, Lattmann, Mildvan, "NMR docking of a substrate into the X-ray structure of staphylococcal nuclease," Proteins: Structure, Function, and Genetics, 13:275-287, 1992.
  - Wilkinson, "Purification and structural properties of ubiquitin. *In: Ubiquitin*, Rechsteiner (Ed.), Plenum Press, New York, pp 5-38, 1988.
- Wilkinson, "Ubiquitin carboxyl-terminal hydrolase. *In: A Handbook of Proteolytic Enzymes*, Barrett and Rawlings (Ed.), Academic Press, San Diego, pp?, 1997, (IN PRESS).
  - Wilkinson, Cox, Mayer, Frey, "Synthesis and characterization of ubiquitin ethyl ester, a new substrate for ubiquitin carboxyl-terminal hydrolase," *Biochem.*, 25:6644-6649, 1986.

- Wilkinson, Deshpande, Larsen, "Comparisons of neuronal (PGP 9.5) and non-neuronal ubiquitin C-terminal hydrolases," *Biochem. Sec. Trans.*, 20:631-637, 1992.
- Wilkinson, Lee, Deshpande, Duerksen-Hughes, Boss, Pohl, "The neuron-specific protein PGP9.5 is a ubiquitin carboxyl-terminal hydrolase," *Science*, 246:670-673, 1989.
- Wilkinson, Tashayev, O'Connor, Larsen, Kasperek, Pickart, "Metabolism of the polyubiquitin degradation signal: Structure, mechanism and role and isopeptidase T," *Biochem.*, 34:14535-14546, 1995.
- Zhu, Carroll, Papa, Hochstrasser, D'Andrea, "DUB-1, a deubiquinating enzyme with growth-suppressing activity," *Proc. Natl. Acad. Sci. USA*, 93:3274-3279, 1996.

10

15

20

25

## WHAT IS CLAIMED IS:

- 1. A method of preparing a molecule that binds to a UCH-L3 protein but does not substantially bind to a variant UCH-L3 protein, comprising determining a three-dimensional structure of a UCH-L3 or variant UCH-L3 protein and designing a molecule that binds to a UCH-L3 protein, but that does not bind substantially to a variant UCH-L3 protein.
- 2. The method of claim 1, further comprising testing the designed molecule for binding to said UCH-L3 protein.
  - 3. A method for the identification of a candidate inhibitor substance that inhibits UCH-L3 activity comprising the steps of:
- a) contacting a cell expressing a UCH-L3 protein with a candidate inhibitor substance; and
  - comparing the properties of said cell with the growth of said cell in the absence of said candidate inhibitor substance;
  - wherein a change in the properties is indicative of said substance being an inhibitor of UCH-L3 activity.
  - 4. The method of claim 3, wherein said UCH-L3 protein expressed is a variant UCH-L3 protein
    - 5. The method of claim 3, wherein said candidate substance is a small molecule inhibitor.
- 30 6. The method of claim 5, wherein the small molecule inhibitor is a substituted isoxazole, heterocyclic aromatic compound; or a sugar-linked aromatic compound.

- 7. A method for the identification of a candidate inhibitor substance that inhibits UCH-L3 expression comprising the steps of:
  - a) contacting a cell expressing a UCH-L3 protein with a candidate inhibitor substance; and
  - comparing the expression of UCH-L3 of said cell with the expression of UCH-L3 of said cell in the absence of said candidate inhibitor substance;

wherein a decrease in the expression of UCH-L3 is indicative of said substance being an inhibitor of UCH-L3 expression.

WO 99/01567

5

15

25

- 8. The method of claim 7, wherein said candidate substance is a small molecule inhibitor.
- 9. The method of claim 8, wherein the small molecule inhibitor is a substituted isoxazole, heterocyclic aromatic compound; or a sugar-linked aromatic compound.
- 20 10. A method of preparing a molecule that binds to a UCH-L3 protein, comprising determining a three-dimensional structure of a UCH-L3 protein and designing a molecule that binds to a UCH-L3 protein.
  - 11. The method of claim 10, wherein the molecule increases the stability of the UCH-L3 protein.
  - 12. The method of claim 10, wherein the molecule decreases the stability of the UCH-L3 protein.
  - 13. A variant UCH-L3 molecule having the properties of increased stability.

- 14. A process of regulating protein deubiquitination comprising exposing said protein to a deubiquitinating enzyme or a mutant deubiquitinating enzyme, which mutant does not catalyze the deubiquitination of said protein.
- 5 15. A variant UCH-L3 molecule having the properties of papain-like activity and deubiquitinating activity.











Cathepsin B

















Fig. 9





FIG. 10



FIG. 11



FIG. 12



FIG. 13



FIG. 14

Ubiquitin C-Terminal Hydrolases



**FIG. 15A** 



**FIG. 15B** 



FIG. 16



FIG. 17

-1-

```
SEQUENCE LISTING
```

<120> METHODS AND COMPOSITIONS FOR A DEUBIQUITINATING ENZYME
10 AND VARIANTS THEREOF

<130> UTAH:006

<140> Unknown

15 <141> 1998-07-01

<150> 60/051,437 <151> 1997-07-01

20 <160> 5

<170> PatentIn Ver. 2.0

<220>

 $3\dot{0}$  <223> Attached to the amino terminus of Ubiquitin

<400> 1

Ile Ile Glu Pro Ser Leu Arg Gln Leu Ala 1 5 10

35

<210> 2 <211> 10 <212> PRT

40 <213> Escherichia coli

<220>

<223> Attached to the amino terminus of Ubiquitin

45 <400> 2
Gly Lys Lys Arg Lys Lys Lys Val Tyr Thr
1 5 10

50 <210> 3 <211> 10 <212> PRT <213> Escherichia coli

55 <220>
 <223> Attached to the amino terminus of Ubiquitin

WO 99/01567

-2-

|     | <400> 3                                 |    |
|-----|-----------------------------------------|----|
|     | Met Gln Ile Phe Val Lys Thr Leu Thr Gly |    |
|     | 1 5 10                                  |    |
| 5 - |                                         |    |
|     | <210> 4                                 |    |
|     |                                         |    |
|     | <211> 19                                |    |
|     | <212> DNA                               |    |
| 10  | <213> Escherichia coli                  |    |
|     | <400> 4                                 |    |
|     | atccatatgc agatcttcg                    | 19 |
| 15  | <210> 5                                 |    |
|     | <211> 27                                |    |
|     | <212> DNA                               |    |
|     | <213> Escherichia coli                  |    |
| 20  | <400> 5                                 |    |
|     | caagetteta nnnaceacea egaagte           | 27 |

#### SEQUENCE LISTING

```
<110> Hill, Christopher P.
    Wilkinson, Keith D.
    Johnston, Steven C.
    Larsen, Christopher N.
    Cook, William J.
```

- <120> METHODS AND COMPOSITIONS FOR A DEUBIQUITINATING ENZYME AND VARIANTS THEREOF
- <130> UTAH:006
- <140> Unknown
- <141> 1998-07-01
- <150> 60/051,437
- <151> 1997-07-01
- <160> 5
- <170> PatentIn Ver. 2.0
- <210> 1
- <211> 10
- <212> PRT
- <213> Escherichia coli
- <220>
- <223> Attached to the amino terminus of Ubiquitin
- -400> 1
- Ile Ile Glu Pro Ser Leu Arg Gln Leu Ala 1 5 10
- <210> 2
- <211> 10
- <212> PRT
- <213> Escherichia coli
- <220>
- <223> Attached to the amino terminus of Ubiquitin
- <400> 2
- Gly Lys Lys Arg Lys Lys Lys Val Tyr Thr 1 5 10
- <210> 3
- <211> 10
- <212> PRT
- <213> Escherichia coli

WO 99/01567

<213> Escherichia coli

caagetteta nnnaceacea egaagte

<400> 5

PCT/US98/13776

27

## **PCT**

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) International Patent Classification <sup>6</sup> :                                                                                                                                                                                                                                                           |                                        | (11) International Publication Number: WO 99/01567                                                                                   |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| C12Q 1/00, 1/44, C12N 9/18, G01N 33/53                                                                                                                                                                                                                                                                            | A3                                     | (43) International Publication Date: 14 January 1999 (14.01.99)                                                                      |  |  |
| (21) International Application Number: PCT/US                                                                                                                                                                                                                                                                     | 98/137                                 | (US). COOK, William, J. [-/US]; 1322 Badham Drive, Birmingham, AL 35216 (US).                                                        |  |  |
| 22) International Filing Date: 1 July 1998 (01.07.98)                                                                                                                                                                                                                                                             |                                        | 8) (74) Agent: SERTICH, Gary, J.; Arnold, White & Durkee, P.O. Box 4433, Houston, TX 77210 (US).                                     |  |  |
| (30) Priority Data: 60/051,437 1 July 1997 (01.07.97)  (63) Related by Continuation (CON) or Continuation-in (CIP) to Earlier Application                                                                                                                                                                         |                                        | JS (81) Designated States: CA, JP, KR, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). |  |  |
| is 60/051,4                                                                                                                                                                                                                                                                                                       |                                        | P) Published With international search report.                                                                                       |  |  |
| (71) Applicants (for all designated States except US): THE UNI-<br>VERSITY OF UTAH [US/US]; 229 Wintro, Salt Lake<br>City, UT 84132 (US). EMORY UNIVERSITY [-/US]; 1510<br>Clifton Road, Atlanta, GA 30322 (US).                                                                                                  |                                        | ke 1 April 1999 (01.04.99)                                                                                                           |  |  |
| (72) Inventors; and (75) Inventors/Applicants (for US only): HILL, Christ [-/US]; 465 3rd Avenue, Salt Lake City, U (US). WILKINSON, Keith, D. [-/US]; 2633 Apa Lilburn, GA 30247 (US). JOHNSTON, Steven, C 1554 East Bryan, Salt Lake City, UT 84105 (US). I Christopher, N. [-/US]; 30 Blain Street, Allston, M | TT 841<br>che Lar<br>C. [-/U:<br>LARSE | 03   ne,   S];   N,                                                                                                                  |  |  |
| (54) Title: METHODS AND COMPOSITIONS FOR A DEUBIOUITINATING ENZYME AND VARIANTS THEREOF                                                                                                                                                                                                                           |                                        |                                                                                                                                      |  |  |

## (54) Title: METHODS AND COMPOSITIONS FOR A DEUBIQUITINATING ENZYME AND VARIANTS THEREOF

#### (57) Abstract

The present invention relates to methods for the identification of candidate inhibitor substances that inhibit deubiquitinating activity based on the x-ray crystallographic structure of the active site of the enzyme. Changes in the properties of the enzyme are useful in identifying such substances. Also disclosed are variants of the enzyme that are useful in deubiquitinating proteins and small peptides.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL | Albania                  | ES | Spain               | LS | Lesotho               | SI | Slovenia                |
|----|--------------------------|----|---------------------|----|-----------------------|----|-------------------------|
| AM | Armenia                  | FI | Finland             | LT | Lithuania             | SK | Slovakia                |
| AT | Austria                  | FR | France              | LU | Luxembourg            | SN | Senegal                 |
| AU | Australia                | GA | Gabon               | LV | Latvia                | SZ | Swaziland               |
| AZ | Azerbaijan               | GB | United Kingdom      | MC | Monaco                | TD | Chad                    |
| BA | Bosnia and Herzegovina   | GE | Georgia             | MD | Republic of Moldova   | TG | Togo                    |
| вв | Barbados                 | GH | Ghana               | MG | Madagascar            | TJ | Tajikistan              |
| BE | Belgium                  | GN | Guinea              | MK | The former Yugoslav   | TM | Turkmenistan            |
| BF | Burkina Faso             | GR | Greece              |    | Republic of Macedonia | TR | Turkey                  |
| BG | Bulgaria                 | HU | Hungary             | ML | Mali                  | TT | Trinidad and Tobago     |
| BJ | Benin                    | IE | Ireland             | MN | Mongolia              | UA | Ukraine                 |
| BR | Brazil                   | IL | Israel              | MR | Mauritania            | UG | Uganda                  |
| BY | Belarus                  | IS | Iceland             | MW | Malawi                | US | United States of Americ |
| CA | Canada                   | П  | Italy               | MX | Mexico                | UZ | Uzbekistan              |
| CF | Central African Republic | JP | Japan               | NE | Niger                 | VN | Viet Nam                |
| CG | Congo                    | KE | Kenya               | NL | Netherlands           | YU | Yugoslavia              |
| CH | Switzerland              | KG | Kyrgyzstan          | NO | Norway                | ZW | Zimbabwe                |
| CI | Côte d'Ivoire            | KP | Democratic People's | NZ | New Zealand           |    |                         |
| CM | Cameroon                 |    | Republic of Korea   | PL | Poland                |    |                         |
| CN | China                    | KR | Republic of Korea   | PT | Portugal              |    |                         |
| CU | Cuba                     | KZ | Kazakstan           | RO | Romania               |    |                         |
| CZ | Czech Republic           | LC | Saint Lucia         | RU | Russian Federation    |    |                         |
| DE | Germany                  | LI | Liechtenstein       | SD | Sudan                 |    |                         |
| DK | Denmark                  | LK | Sri Lanka           | SE | Sweden                |    |                         |
| EE | Estonia                  | LR | Liberia             | SG | Singapore             |    |                         |

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/13776

| A. CLASSIFICATION OF SUBJECT MATTER                                           |                                                                                                                                                                                            |                                                                                                           |                                 |  |  |  |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|
|                                                                               | IPC(6) :C12Q 1/00, 1/44; C12N 9/18; G01N 33/53 US CL :435/4, 7.6, 19, 197                                                                                                                  |                                                                                                           |                                 |  |  |  |
|                                                                               | International Patent Classification (IPC) or to both na                                                                                                                                    | tional classification and IPC                                                                             |                                 |  |  |  |
|                                                                               | DS SEARCHED                                                                                                                                                                                |                                                                                                           |                                 |  |  |  |
| Minimum do                                                                    | ocumentation searched (classification system followed l                                                                                                                                    | by classification symbols)                                                                                |                                 |  |  |  |
| U.S. : 4                                                                      | 135/4, 7.6, 19, 197                                                                                                                                                                        |                                                                                                           |                                 |  |  |  |
| Documentati                                                                   | on searched other than minimum documentation to the e                                                                                                                                      | extent that such documents are included                                                                   | in the fields searched          |  |  |  |
|                                                                               | -                                                                                                                                                                                          |                                                                                                           |                                 |  |  |  |
| Flectronic d                                                                  | ata base consulted during the international search (nam                                                                                                                                    | ne of data base and, where practicable.                                                                   | search terms used)              |  |  |  |
|                                                                               | STN (Bioscience and Patents Indexes): ubiquitin C-terr                                                                                                                                     |                                                                                                           |                                 |  |  |  |
|                                                                               | (3.00.00.00.00.00.00.00.00.00.00.00.00.00                                                                                                                                                  |                                                                                                           |                                 |  |  |  |
|                                                                               |                                                                                                                                                                                            | <del></del>                                                                                               |                                 |  |  |  |
| C. DOC                                                                        | UMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                           |                                                                                                           |                                 |  |  |  |
| Category*                                                                     | Citation of document, with indication, where appr                                                                                                                                          | ropriate, of the relevant passages                                                                        | Relevant to claim No.           |  |  |  |
| Y                                                                             | US 5,585,466 A (CARTER) 17 Decemb                                                                                                                                                          | per 1996, col. 3, lines 11-57.                                                                            | 1, 2, 10-12                     |  |  |  |
| Y,E                                                                           | US 5,834,228 A (BECKER ET AL.)                                                                                                                                                             | 10 November 1998, col. 6,                                                                                 | 1, 2, 10-12                     |  |  |  |
|                                                                               | lines 14-46.                                                                                                                                                                               |                                                                                                           |                                 |  |  |  |
| Y                                                                             | LARSEN ET AL. Substrate Binding an                                                                                                                                                         | d Catalysis by Ubiquitin C-                                                                               | 1, 2, 10-13, 15                 |  |  |  |
|                                                                               | Terminal Hydrolases: Identification of                                                                                                                                                     |                                                                                                           |                                 |  |  |  |
|                                                                               | Biochemistry. May 1996. Vol. 35. pag                                                                                                                                                       | es 6735-6744.                                                                                             |                                 |  |  |  |
|                                                                               |                                                                                                                                                                                            |                                                                                                           |                                 |  |  |  |
| İ                                                                             |                                                                                                                                                                                            |                                                                                                           |                                 |  |  |  |
|                                                                               |                                                                                                                                                                                            |                                                                                                           |                                 |  |  |  |
|                                                                               |                                                                                                                                                                                            |                                                                                                           |                                 |  |  |  |
|                                                                               |                                                                                                                                                                                            |                                                                                                           |                                 |  |  |  |
|                                                                               |                                                                                                                                                                                            | •                                                                                                         |                                 |  |  |  |
|                                                                               |                                                                                                                                                                                            |                                                                                                           |                                 |  |  |  |
|                                                                               |                                                                                                                                                                                            |                                                                                                           |                                 |  |  |  |
|                                                                               |                                                                                                                                                                                            |                                                                                                           | <u> </u>                        |  |  |  |
| Furt                                                                          | Further documents are listed in the continuation of Box C. See patent family annex.                                                                                                        |                                                                                                           |                                 |  |  |  |
| 1                                                                             | Special categories of cited documents:  "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand |                                                                                                           |                                 |  |  |  |
| •                                                                             | A' document defining the general state of the art which is not considered to be of particular relevance to be of particular relevance; the claimed invention cannot be                     |                                                                                                           |                                 |  |  |  |
|                                                                               | E' earlier document published on or after the internstional lining case considered novel or cannot be considered to involve an inventive step                                              |                                                                                                           |                                 |  |  |  |
|                                                                               | cited to establish the publication date of another citation or other  "Y"  document of particular relevance; the claimed invention cannot be                                               |                                                                                                           |                                 |  |  |  |
| •0•                                                                           | locument referring to an oral disclosure, use, exhibition or other nears                                                                                                                   | considered to involve an inventive combined with one or more other subeing obvious to a person skilled in | ich documents, such combination |  |  |  |
|                                                                               | document published prior to the international filing date but later than -g. document member of the same patent family the priority date claimed                                           |                                                                                                           |                                 |  |  |  |
| Date of th                                                                    | Date of the actual completion of the international search  Date of mailing of the international search report                                                                              |                                                                                                           |                                 |  |  |  |
| 18 NOV                                                                        | EMBER 1998                                                                                                                                                                                 | 1 3 JAN 1999                                                                                              | <u>^</u>                        |  |  |  |
| Name and mailing address of the ISA/US Commissioner of Patents and Trademarks |                                                                                                                                                                                            | Authorized officer                                                                                        |                                 |  |  |  |
| Box PCT                                                                       | ton, D.C. 20231                                                                                                                                                                            | LISA J. HOBBS, PH.D.                                                                                      | $\overline{\gamma}$             |  |  |  |
| Fassimile No. (703) 305-3230                                                  |                                                                                                                                                                                            | Telephone No. (703) 308-0196                                                                              | //                              |  |  |  |

### INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/13776

| Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)                                                                                                                        |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:                                                                                              |  |  |  |
| 1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                                   |  |  |  |
| Claims Nos.:     because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: |  |  |  |
| Claims Nos.:     because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                       |  |  |  |
| Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)                                                                                                                                |  |  |  |
| This International Searching Authority found multiple inventions in this international application, as follows:                                                                                                                |  |  |  |
| Please See Extra Sheet.                                                                                                                                                                                                        |  |  |  |
|                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                |  |  |  |
| 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.                                                                                    |  |  |  |
| 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                        |  |  |  |
| 3. X As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:  1, 2, 10-13 and 15  |  |  |  |
|                                                                                                                                                                                                                                |  |  |  |
| 4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:            |  |  |  |
| Remark on Protest X The additional search fees were accompanied by the applicant's protest.                                                                                                                                    |  |  |  |
| No protest accompanied the payment of additional search fees.                                                                                                                                                                  |  |  |  |

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)★

#### INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/13776

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claims 1, 2, 10-12, drawn to methods of preparing a molecule which selectively binds.

Group II, claims 3-6, drawn to methods of identification of inhibitors of enzyme activity.

Group III, claims 7-9, drawn to methods of identification of inhibitors of gene expression.

Group IV, claims 13, 15, variant UCH-L3 enzymes.

Group V, claim 14, drawn to a process of regulating deubiquitination.

The inventions listed as Groups I-V do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the methods of Group I have the special technical feature of the binding molecule, which is not present in Groups II-V; the methods of Group II have the special technical feature of identifying enzyme inhibitors, which is not present in Groups I and II-V; the methods of Group III have the special technical feature of identifying gene expression inhibitors, which is not present in Groups I-II and IV-V; the product of Group IV has the special technical feature of the enzyme, which is not present in Groups I-III and V; the process of Group V has the special technical feature of regulating deubiquitination, which is not present in Groups I-IV.