SdI30 LABORATORIUM 01

Zestaw zadań W01 Wybrane rozkłady typu dyskretnego i ich zastosowania

1. Dokonać przeglądu dostępnych rozkładów typu dyskretnego w Matlabie, R, Octave, Excelu lub innych programach i opracować jeden z nich podając przykład zastosowania.

Rozkłady typu dyskretnego w Matlabie

http://www.mathworks.com/help/stats/discrete-distributions.html

• Binomial Distribution

Fit parameters of the binomial distribution to data, evaluate the distribution or its inverse, generate pseudorandom samples.

• Geometric Distribution

Evaluate the geometric distribution or its inverse, generate pseudorandom samples.

• Hypergeometric Distribution

Evaluate the hypergeometric distribution or its inverse, generate pseudorandom samples.

• Multinomial Distribution

Evaluate the multinomial distribution, generate pseudorandom samples.

• Negative Binomial Distribution

Fit parameters of the negative binomial distribution to data, evaluate the distribution or its inverse, generate pseudorandom samples.

• Poisson Distribution

Fit parameters of the Poisson distribution to data, evaluate the distribution or its inverse, generate pseudorandom samples.

• Uniform Distribution (Discrete)

Evaluate the discrete uniform distribution or its inverse, generate pseudorandom samples.

Geometric Distribution – Functions

geocdf	Geometric cumulative distribution function
geopdf	Geometric probability density function
geoinv	Geometric inverse cumulative distribution function
geostat	Geometric mean and variance
geornd	Geometric random numbers
random	Random numbers

geocdf – Geometric cumulative distribution function **Syntax**

y = geocdf(x,p)

y = geocdf(x,p,'upper')

Description

y = geocdf(x,p) returns the cumulative distribution function (cdf) of the geometric distribution at each value in x using the corresponding probabilities in p. x and p can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a

constant array with the same dimensions as the other input. The parameters in p must lie on the interval [0,1].

y = geocdf(x,p,'upper') returns the complement of the geometric distribution cdf at each value in x, using an algorithm that more accurately computes the extreme upper tail probabilities.

Przykład. Compute Geometric Distribution cdf

Suppose you toss a fair coin repeatedly, and a "success" occurs when the coin lands with heads facing up. What is the probability of observing three or fewer tails ("failures") before tossing a heads?

To solve, determine the value of the cumulative distribution function (cdf) for the geometric distribution at x equal to 3. The probability of success (tossing a heads) p in any given trial is 0.5.

```
x = 3;
p = 0.5;
y = geocdf(x,p)
y =
0.9375
```

The returned value of y indicates that the probability of observing three or fewer tails before tossing a heads is 0.9375.

Geometric Distribution cdf

The cumulative distribution function (cdf) of the geometric distribution is

$$y = F_{geo}(x|p) = 1 - (1-p)^{x+1}; x = 0, 1, 2, ...,$$

where p is the probability of success, and x is the number of failures before the first success. The result y is the probability of observing up to x trials before a success, when the probability of success in any given trial is p.

- 2. (*Bułeczka z rodzynkami*). Ile średnio powinno przypadać rodzynków na bułeczkę, aby prawd., że w bułeczce znajdzie się choćby jeden rodzynek, było nie mniejsze niż 0,99?
- 3. (*Nocny dyżur lekarza*). Lekarz pełniący dyżur w pewnym szpitalu wzywany jest do pacjentów średnio 3 razy w ciągu nocy. Można przyjąć, że liczba wezwań podlega rozkładowi Poissona. Jakie jest prawd., że noc upłynie lekarzowi spokojnie?

Odp.: 0,0498.

- 4. (*O skuteczności leku*). Firma farmaceutyczna wyraża pogląd, iż lek "*supera*" jest skuteczny dla 50% osób cierpiących na pewną chorobę. Stowarzyszenie konsumentów wyraża pogląd, że lek ten skuteczny jest tylko dla 5% chorych. Test laboratoryjny niezależnego stowarzyszenia wykazał, że lek ten był skuteczny dla 3 spośród 10 osób cierpiących na tę chorobę.
- a) Czy wynik badań laboratoryjnych może być wykorzystany przez stowarzyszenie konsumentów jako argument dla podważenia poglądów firmy?
- b) Czy wynik badań laboratoryjnych może być wykorzystany przez firmę dla zakwestionowania zarzutów stowarzyszenia konsumentów?
- c) Przeanalizuj podpunkty a i b, gdyby w teście laboratoryjnym lek działał na 2 spośród 10 osób.
- d) Przeanalizuj podpunkty *a* i *b*, gdyby w teście laboratoryjnym lek działał na 6 spośród 20 osób.
- e) Rozwiń problem skuteczności leku na większą próbę.