# Implementing Dimensionality Reduction Using Restricted Boltzmann Machines in scikit-learn



Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

# Overview

Introducing Restricted Boltzmann Machines (RBMs)

Using RBMs for dimensionality reduction

RBMs as pre-processing step during classification

# Neural Networks in scikit-learn

Supervised Unsupervised

# Neural Networks in scikit-learn

Multi-layer Perceptrons (MLP)

Restricted Boltzmann Machines (RBM)

# Neural Networks in scikit-learn

Multi-layer Perceptrons (MLP)

Restricted Boltzmann Machines (RBM)

# Perform dimensionality reduction in an unsupervised manner by trying to reconstruct the input

# Restricted Boltzmann Machines (RBMs) for Dimensionality Reduction



Two layers of a neural network



Visible layer



Hidden layer



Smaller than the visible layer into which inputs are fed, produces lower dimensionality outputs



Every neuron is connected only to neurons in other layers



There is no intra-layer communication - this is the restriction



Each node processes the input and makes stochastic decisions about whether to transmit the input or not



All interconnections are associated with weights



A bias is added to the weighted input



The final output is passed through an activation function



All inputs from all visible nodes are fed to hidden nodes - this is a symmetric bipartite graph

# Bipartite Graph

Graph whose vertices can be divided into two disjoint and independent sets U and V such that each edge connects a vertex in U to a vertex in V.



RBMs learn latent factors by reconstructing data by themselves in an unsupervised manner



The output generated by the forward pass is sent back into the RBM



The backward pass tries to reconstruct the input



The weights of the RBM are adjusted to improve the reconstruction of the input



Multiple forward and backward passes improve the reconstruction of the input



The final lower dimensionality hidden output represents latent features in the input



This dimensionality reduction is often used as a pre-processing step in building ML models

RBMs are an older concept and have been replaced by newer models such as autoencoders

# Autoencoder



Hidden layer learns latent factors which the output uses to reconstruct the input

# Restricted Boltzmann Machines (RBMs) - a Brief History

## Evolution of RBMs

#### Hopfield Networks (1974)

Early form of RNN - had memory

Quite inefficient - huge networks needed

#### Restricted Boltzmann Machines (1986)

Became quite popular in the mid-2000s

Impose constraints on Boltzmann machines to ease training

#### **Boltzmann Machines (1985)**

"Stochastic Hopfield net with hidden units"

Not possible to train efficiently

#### Deep Belief Nets (2009)

Compose (stack) RBM or autoencoder layers

Generative - like GANs. e.g. caption generation

## Evolution of RBMs

#### Hopfield Networks (1974)

Early form of RNN - had memory

Quite inefficient - huge networks needed

#### Restricted Boltzmann Machines (1986)

Became quite popular in the mid-2000s

Impose constraints on Boltzmann machines to ease training

#### **Boltzmann Machines (1985)**

"Stochastic Hopfield net with hidden units"

Not possible to train efficiently

#### Deep Belief Nets (2009)

Compose (stack) RBM or autoencoder layers

Generative - like GANs. e.g. caption generation

# Boltzmann Machines



Fully connected neural networks
Visible and hidden layers
Use special type of neuron
Stochastic Neuron

# Boltzmann Machines



Output is probabilistic rather than deterministic

Neurons output 1 or 0 with specific probabilities

Rely on Boltzmann probability distribution

Hence the name

Used to model the distribution of the input at the output to help reconstruct the input

# Boltzmann Machines



Very hard to train efficiently

Tweaks proposed to enable practical use

Impose restrictions on architecture of Boltzmann machine

# Evolution of RBMs

#### Hopfield Networks (1974)

Early form of RNN - had memory

Quite inefficient - huge networks needed

#### Restricted Boltzmann Machines (1986)

Became quite popular in the mid-2000s

Impose constraints on Boltzmann machines to ease training

#### Boltzmann Machines (1985)

"Stochastic Hopfield net with hidden units"

Not possible to train efficiently

#### Deep Belief Nets (2009)

Compose (stack) RBM or autoencoder layers

Generative - like GANs. e.g. caption generation



#### No connections allowed

- between two visible neurons
- between two hidden neurons

#### Only connections allowed

 between visible and hidden neurons

**Network forms Bipartite Graph** 

# Contrastive Divergence Algorithm

# Efficient training used for training RBMs Similar to backpropagation, but differs in some important aspects

- Gibbs Sampling: Monte Carlo-based technique to generate sample sequence
- Employ likelihood approximation called pseudolikelihood

### Demo

Performing dimensionality reduction using Restricted Boltzmann Machines

Using lower dimensionality data to train a classifier model

# Summary

Introducing Restricted Boltzmann Machines (RBMs)

Using RBMs for dimensionality reduction

RBMs as pre-processing step during classification

# Related Courses



**Building Clustering Models with scikit-learn** 

**Employing Ensemble Methods with scikit-learn**