

ROTEIRO DE AULA PRÁTICA NOME DA DISCIPLINA: Biologia molecular e biotecnologia

Unidade 2 Seção 4

OBJETIVOS

Definição dos objetivos da aula prática:

Compreender diferentes técnicas de coloração não radioativas para detecção de ácidos nucleicos e proteínas.

INFRAESTRUTURA

Instalações:

Laboratório Multidisciplinar.

Materiais de consumo:

_				~	
רו	es		rı	Ca	0
\boldsymbol{L}	CJ	u		Ça	U

Descrição	
Procedimento	Quantidade
Becker 1000 ml	1 por grupo
Bico de Bunsen	1 por grupo
Tubos de ensaios	10 por grupo
Solução NaOH 10%	300 mL
Solução de sulfato cúprico	5 mL
Solução de ninidrina	1 mL
Água destilada	1,5 L
NaOH	180 g
CuSO45H2O	2,5 g
Tartarato duplo de potássio (KNaC4H4O6 . 4H2O)	6 g
lodeto de potássio (KI)	1 g
NH4OH concentrado (±15 M)	50 mL
Solução aquosa com 10 mg/mL de soroalbumina bovina fração V	10 mL
Estante para tubo de ensaios	2
Cubetas para espectrofotômetro	10
Espectrofotômetro	1
Tela de amianto	1
Solução de Cistina-L 1%	20 mL

Software:

Sim () Não (X)

Em caso afirmativo, qual?

Pago () Não Pago ()

Tipo de Licença: NSA.

Descrição do software:

NSA

Equipamento de Proteção Individual (EPI):

- Jaleco (com manga longa, comprimento até o joelho);
- Calça comprida.
- Calçado fechado.
- Para as mulheres cabelos presos, brincos pequenos e se possível evitar o uso de pulseiras e anéis que possam enroscar ou machucar.
- Luvas de látex e luvas tipo Kevlar para materiais quentes.

PROCEDIMENTOS PRÁTICOS

Neste momento você deve ajudar o professor por meio da descrição de todas as etapas que deverão ser realizadas para a execução dos procedimentos práticos. Considerando a carga horária da aula prática, você pode replicar a caixa de procedimento/atividade quantas vezes for necessário.

Procedimento/Atividade n.1

Atividade proposta:

Teste do biureto-dosagem de proteinas

Procedimentos para a realização da atividade:

Essa aula terá duas partes. Na primeira parte será fornecido aos grupos 2 soluções desconhecidas (solução 1 e 2) que deverão ser submetidas a 2 reações características das proteínas e aminoácidos. Ao final dessa parte o aluno deverá sugerir os componentes das soluções desconhecidas (aminoácidos ou proteínas) e realizar a segunda arte da aula (dosagem de proteína) utilizando somente a solução proteica identificada.

Em primeiro lugar coloque aproximadamente 200 ml de água em um becker de 1000ml e coloque para ferver em um bico de Bunsen. Execute agora as reações abaixo com a solução 1 e 2.

Parte 1 – Identificação de aminoácidos e proteínas

- 1. Colocar 2 mL de cada uma das soluções em diferentes tubos de ensaio marcados de 1 e 2, em um terceiro tubo colocar 2 ml de água. Aquecer os tubos em banho-maria de água fervente por 5 minutos. Observar o resultado e anotar o que ocorreu.
- 2. Colocar 2 mL de cada uma das soluções em diferentes tubos de ensaio marcados de 1 e 2, em um terceiro tubo colocar 2 ml de água. Adicionar a cada tubo 5 gotas da solução de NaOH 2,5N e, depois, cuidadosamente, gota a gota, a solução de sulfato cúprico, agitando o tubo após a adição de cada gota, até que a solução tome cor violeta. Anote quais os tubos deram reação positiva (violeta) para essa reação (Reação de Biureto).
- 3. Colocar 5 mL de cada uma das soluções em diferentes tubos de ensaio marcados de 1 e 2, em um terceiro tubo colocar 5 ml de água. Adicionar nos tubos 0,5 mL da solução de ninidrina e ferver por 2 minutos em banho fervente. Se o teste for positivo, desenvolver-seá uma cor violeta (Reação de Ninidrina).

Resultados e Discussão: Descrever os resultados em uma tabela e determinar qual é a solução de proteína justificando sua resposta considerando o princípio de cada reação utilizada.

Parte 2 – Dosagem de proteínas (BIURETO) Sensibilidade: 1 a 10 mg/mL

A. SOLUÇÕES

- a) Reagente de biureto
- Dissolva 1,5g de sulfato de cobre (CuSO4 . 5H2O) e 6,0g de tartarato duplo de sódio e potássio (KNaC4H4O6 . 4H2O) em 500 mL de água destilada.
- Adicione, sob agitação constante, 300 mL de solução de NaOH 10%.
- Adicione 1g de iodeto de potássio (KI).
- Complete o volume para 1L com água destilada e guarde o reagente em frasco âmbar.
- Esse reagente conserva-se por tempo indefinido.
- b) Solução de soroalbumina reta padrão Solução aquosa com 10 mg/mL de soroalbumina bovina fração

B. PROCEDIMENTO

Montar o seguinte protocolo em tubos numerados de 1 a 8.

TUBO	H ₂ O (ml)	Soroalbumina		Reagente (ml)	Absorbância
		mL	mg	,,,,	(540nm)
1	1,0	0	0	4	zero
2	0,9	0,1	1	4	
3	0,8	0,2	2	4	
4	0.6	0,4	4	4	
5	0,4	0,6	6	4	
6	0,2	0,8	8	4	
7	-	1,0	10	4	
8	0,5	0,5 sol proteina		4	

Solução de proteína determinada na parte 1 da aula pratica

Esperar 15 minutos a temperatura ambiente e ler a absorbância a 540 nm

C. ANÁLISE DOS RESULTADOS

a) Solução Gráfica

Utilização papel milimetrado, colocar na forma de gráfico os dados de quantidade de proteína (mg) na abcissa e da absorbância a 540 nm na ordenada. Através do gráfico determinar a concentração de proteína na solução desconhecida.

b) Solução Matemática

Utilizando os valores do teor de proteína padrão e os valores da absorbância, determine a equação da reta que melhor represente os resultados obtidos usando o método de ajuste de dados dos quadrados mínimos.

Reta: y=ax + b, onde:

$$a = \frac{\Sigma(x) \Sigma(y) - n \Sigma(xy)}{(\Sigma x)^2 - n \Sigma(x^2)}$$

$$b = \frac{\Sigma(x) \Sigma(xy) - \Sigma(x^2) \Sigma(y)}{(\Sigma x)^2 - n \Sigma(x^2)}$$

$$(\Sigma x)^2 - n \Sigma(x^2)$$

A partir da equação da reta, determine a concentração da proteína na solução desconhecida (mg/mL).

Compare o resultado observado entre as duas formas de análise de dados e discuta sobre elas.

Reações Colorimétricas para proteínas

Reação de ninidrina - A ninidrina (2,2-diidroxi-hidrindeno-1,3-diona) é um produto químico utilizado para a detecção de aminas primárias, particularmentede aminoácidos. Ao reagir com essas aminas livres, uma cor azul escura ou roxa, conhecida como púrpura de Ruhemann é produzida.

Reação de Biureto - O reagente de biureto é um reagente analítico feito de hidróxido de potássio (ou de sódio) e sulfato de cobre (II) (CuSO4), junto com tartarato de sódio e potássio (KNaC4H4O6·4H2O).

Este reagente de coloração azul torna-se violeta na presença de proteínas e peptídeos com três ou mais resíduos de aminoácidos. A reação é também positiva para as substâncias que contém 2 grupos carbamínicos (-CO-NH2) ligados diretamente ou através de um único átomo de carbono ou nitrogênio.

O hidróxido de potássio ou sódio não participa na reação, mas meramente provê um meio alcalino no qual a reação ocorre.

O reagente é comumente usado em um ensaio colorimétrico para a determinação de concentração de proteínas—tal como a espectroscopia UV/ visível no comprimento de onda de 540 nm (para a detecção do íon Cu2+).

Checklist:

- Certifique-se que todos os reagentes e soluções estão de acordo com a necessidade da prática.
- Certifique-se que os alunos estejam usando todos os EPIs necessários.

RESULTADOS

Resultados da aula prática:

A avaliação determina a importância da detecção de proteínas e interpretá-las com relação a curva padrão de proteínas. Isso irá favorecer o entendimento da maioria das funções biológicas das proteínas, seus constituintes e sua estrutura tridimensional. Nesse texto pode explicar ainda como os aminoácidos estão classificados, o que é uma ligação peptídica e quais as forças que mantém cada nível estrutural de uma proteína.