

Digitaltechnik Grundlagen (dtbasics)

Bit manipulationen - not, and, or, xor

- Da die binär Werte 0 und 1 die Kernwerte sind, wie Computer Daten kodieren, speichern und manipulieren, hat die Boolsche Algebra eine gewisse Bedeutung
- Die Boolsche Algebra definiert Operationen, die mit Werten von 0 und 1 arbeiten, z.B.

	NOT	AND	OR	XOR (excl. or)
Funktions gleichung	$y = \overline{x1}$	$y = x1 \wedge x2$	$y = x1 \lor x2$	$y=x1\oplus x2$
C bit-level	y= ~x1;	y= x1 & x2;	y= x1 x2;	$y = x1 \wedge x2;$
Wahrheitstabelle	x1 y 0 1 1 0	$\begin{array}{c cccc} x_2 & x_1 & y \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ \hline 1 & 1 & 1 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} x_2 & x_1 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 0 \\ \end{array}$

Bit manipulationen - not, and, or, xor - logische Operationen

■ Logical operations = z.B: Verknüpfung von Bedingungen in if-abfragen

	Not \overline{x}	And $x \wedge y$	Or $x \vee y$	Xor (excl. or) $x \oplus y$
C logical (0=false; 1=true)	z= !x;	z= x && y;	z= x y;	
Truth table describing the function	$egin{array}{c ccc} x_1 & y & \\ 0 & 1 & \\ \hline 1 & 0 & \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} x_2 & x_1 & y \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 1 \\ \end{array}$	$\begin{array}{c cccc} x_2 & x_1 & y \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 0 \\ \end{array}$

Boolsche Algebra - Motivation

- Mit den Beziehungen UND/AND (∧), ODER/OR (∨) und NICHT/NOT () lassen sich ALLE BELIEBIGEN Funktionen von zweiwertigen Variablen ausdrücken.
- Unter diesen Bedingungen spricht man von einer Algebra
- Diese Algebra wird auch als Schaltalgebra bezeichnet, die dazugehörigen Funktionen als Schaltfunktionen
 - Der Begriff Schaltalgebra bzw. Schaltfunktionen kommt von der ersten technischen Anwendung dieser zweiwertigen Boole'schen Algebra
 - 1938 wendete Claude E. Shannon die Algebra auf Serien- und Parallelschaltungen von Schaltern und Relais an
 - 0 bezeichnet einen offenen Schalter, 1 Bezeichnet einen geschlossenen Schalter
 - Sie ist ein Spezialfall einer Booleschen Algebra mit Booleschen Funktionen. Häufig werden die Begriffe aber auch synonym verwendet

Boolsche Algebra - Schaltfunktion - Beispiel AND

Reihenschaltung von zwei Schaltern

x_2	x_1	У
0	0	0
0	- 1	0
- 1	0	0
- 1	- 1	1

- Die Lampe brennt, wenn der erste Schalter geschlossen ist $(x_1 = 1)$ UND wenn der zweite Schalter geschlossen ist $(x_2 = 1)$
- Man bezeichnet dies als UND (AND) Verknüpfung und schreibt:

$$y = x_1 \wedge x_2$$

 Diese Verknüpfung ist eine Schaltfunktion. Sie wird durch eine Wahrheitstabelle vollständig beschrieben

Boolsche Algebra - Schaltfunktion - Beispiel OR

Reihenschaltung von zwei Schaltern

x_2	x_1	У
0	0	0
0	- 1	1
- 1	0	1
- 1	- 1	1

- Die Lampe brennt, wenn der erste Schalter geschlossen ist $(x_1 = 1)$ ODER wenn der zweite Schalter geschlossen ist $(x_2 = 1)$
- Man bezeichnet dies als ODER (OR) Verknüpfung und schreibt:

$$y = x_1 \vee x_2$$

Boolsche Algebra - Schaltfunktion - Beispiel NOT

Kurzschluss der Lampe über einen Schalter

x_1	У
0	1
1	0

- Die Lampe brennt, wenn der Schalter geöffnet ist $(x_1 = 0)$.
- Man bezeichnet dies als Negation (NOT) und schreibt:

$$y = \overline{x_1}$$

Boolesche Algebra - Unterschiedliche Schreibweisen

- Oft Verwendung anderer Operatorsymbole:
 - and/und: statt ∧ auch * oder (,,mal" oder Punkt) oder &&
 - or/oder: statt v auch + oder ||
 - not/nicht: statt ¬ auch ¬ (,,Überstrich") oder ' (,,Strich"), oder!
 - Beispiel: es ist also: $\neg x$ dasselbe wie x' oder \overline{x} oder !x

Boolsche Algebra - Verkürzte Schreibweise

Obwohl AND und OR der Booleschen Algebra auf das arithmetische MAL und PLUS nicht vollständig übertragbar sind, wird häufig eine verkürzte Schreibweise verwendet:

$$a \wedge b \rightarrow ab$$

- Dies erleichtert das Lesen / Schreiben längerer Boolescher Ausdrücke enorm
- Beachten Sie aber stets den Unterschied zu den arithmetischen Operationen Addition und Multiplikation!

Boolsche Algebra - Rechenregeln

	٨	V
Kommutativgesetz	$a \wedge b = b \wedge a$	$a \lor b = b \lor a$
Assoziativgesetz	$(a \wedge b) \wedge c = a \wedge (b \wedge c)$	$(a \lor b) \lor c = a \lor (b \lor c)$
Distributivgesetz	$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$	$a \lor (b \land c) = (a \lor b) \land (a \lor c)$
Idempotenz	$a \wedge a = a$	$a \lor a = a$
Neutralität	$a \wedge 1 = a$	$a \lor 0 = a$
Extremalgesetz	$a \wedge 0 = 0$	$a \lor 1 = 1$
Komplement	$a \wedge \overline{a} = 0$	$a \vee \overline{a} = 1$
Absorptionsgesetz	$a \lor (a \land b) = a$	$a \wedge (a \vee b) = a$
de Morgansche Regeln	$\overline{a \wedge b} = \overline{a} \vee \overline{b}$	$\overline{a \vee b} = \overline{a} \wedge \overline{b}$

■ Bindungsregeln: *not* vor *and* vor *or*

Realisierung Schaltfunktionen mit Gattern -Zusammenfassung

	- 4.5 5 4.1.19			
	NOT	AND	OR	XOR (excl. or)
Prinzipschaltung	ul	u l × × × × × × × × × × × × × × × × × ×	\$ \(\frac{\fir}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}{\frac{\	
Funktions gleichung	$y = \overline{x1}$	$\mathbf{y} = x1 \wedge x2$	$y = x1 \lor x2$	$y=x1\oplus x2$
Wahrheitstabelle	x1 y 0 1 1 0	$\begin{array}{c cccc} x_2 & x_1 & y \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ \hline 1 & 1 & 1 \\ \end{array}$	$\begin{array}{c cccc} x_2 & x_1 & y \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 1 \\ \end{array}$	$\begin{array}{c cccc} x_2 & x_1 & y \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 0 \\ \end{array}$
Schaltzeichen	1	&&	≥1	=1

Realisierung Schaltfunktionen mit Gattern - Übersicht Schaltzeichen

Logiksymbole der Boole'schen Algebra nach DIN EN 60617 (links) und ANSI/IEEE Std 91a-1991 (rechts)

Realisierung Schaltfunktionen mit Gattern - Übersicht Schaltzeichen -erweiterte Darstellung 1/2 Negationskreis

 Zwecks kompakter Schreibweise wird die Darstellung so erweitert, dass invertierende Ein- oder Ausgänge durch einen Kreis gezeichnet werden, z.B.:

Realisierung Schaltfunktionen mit Gattern - Übersicht Schaltzeichen - erweiterte Darstellung 2/2 - Basisglieder mit mehreren Eingängen

- Zusätzlich arbeitet man zur Vereinfachung in komplexen Anwendungen mit n-stelligen Gattern, z.B.:
 - AND mit n Eingängen:

■ OR mit n Eingängen :

Realisierung Schaltungsfunktionen aus Basisgattern

- Aus den Basiselementen NOT, AND und OR kann jede beliebige Schaltfunktion aufgebaut werden
- Beispiel 1:

■ Beispiel 2:

XOR:
$$y = (x_1 \wedge \overline{x_2}) \vee (\overline{x_1} \wedge x_2) = (x_1 \overline{x_2}) \vee (\overline{x_1} x_2)$$

//2x NOT, 2x AND, 1x OR

Schaltungsentwurf

- Allgemeines Vorgehen:
 - 1. Exakte Funktionsbeschreibung der gesuchten Schaltung
 - 2. Festlegung der Eingangs- und Ausgangsvariablen
 - 3. Aufstellen der Wahrheitstabelle
 - 4. Bestimmung des schaltalgebraischen Terms
 - 5. Vereinfachung und ggf. Umformung des Terms
 - 6. Aufbau der Schaltung aus Gattern gemäß dem Term
- Optimierung nötig (Ressourcenverbrauch, Berechnungszeit, ...)

Spezifikation und Wahrheitstabelle

- Beispiel Aufzugsteuerung
 - Aufzugsteuerung mit 3 Etagen, wobei die oberen beiden exklusiv genutzt werden sollen, d.h. wenn eine der oberen beiden angefragt werden, dann wird eine gleichzeitige Anfrage der untersten Etage verboten.
 - Aufgabe: Baue Schaltung, die gedrückte Knöpfe (x3,x2,x1) auf Korrektheit prüft
 - Spezifikation: Funktion f liefert auf der Ausgabe y= "Eingabe_ok" eine 1, wenn entweder Knopf x2 oder Knopf x1 und nicht Knopf x3 gedrückt wurde.

Nr	х3	x2	x1	у
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	C
4	1	0	0	0
5	1	0	-1	0
6	1	1	0	0
7	1	1	1	0

Aufstellen der Wahrheitstabelle - Übung

Nr	x4	х3	X2	x1	У
0	0	0	0	0	
1	0	0	0	-1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	-1	0	0	0	
9	1	0	0	-1	
10	-1	0	1	0	
11	-1	0	1	-1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	
15	1	1	1	-1	

Termbestimmung - Normalformen 1/4 - DNF

- Von besonderer technischer und mathematischer Bedeutung sind sog. Normalformen boolescher Ausdrücke:
- Disjunktive Normalform (DNF)
 - ODER Verknüpfung von **Mintermen**: $y = \bigvee m_i$
 - Minterm ist eine UND-Verknüpfung von Eingangsvariablen, die das Ergebnis "1" haben : $m_i = \bigwedge x_k{'}$
 - $\bullet x_k' \in \{x_k, \overline{x_k}\}$
 - Bsp:
 - $\mathbf{m}_0 = \overline{x_3} \wedge \overline{x_2} \wedge \overline{x_1}$
 - $\blacksquare m_1 = \overline{x_3} \wedge \overline{x_2} \wedge x_1$
 - $\blacksquare m_2 = \overline{x_3} \wedge x_2 \wedge \overline{x_1}$
 - $\mathbf{m}_3 = \overline{x_3} \wedge x_2 \wedge x_1$
 - $\blacksquare \dots m_7 = x_3 \wedge x_2 \wedge x_1$

Termbestimmung - Normalformen 2/4 - Beispiel DNF Suchen der Normalformen aus Wahrheitstabelle

DNF:

■ y =
$$(x_4 \land \overline{x_3} \land x_2 \land x_1) \lor$$

 $(x_4 \land x_3 \land \overline{x_2} \land \overline{x_1}) \lor$
 $(x_4 \land x_3 \land \overline{x_2} \land x_1) \lor$
 $(x_4 \land x_3 \land x_2 \land \overline{x_1}) \lor$
 $(x_4 \land x_3 \land x_2 \land \overline{x_1}) \lor$
 $(x_4 \land x_3 \land x_2 \land x_1)$
= $m_{11} \lor m_{12} \lor m_{13} \lor m_{14} \lor m_{15}$

Nr	x4	х3	x2	x1	у
0	0	0	0	0	0
1	0	0	0	-1	0
2	0	0	-1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	-1	-1	0	0
7	0	1	-1	-1	0
8	1	0	0	0	0
9	-1	0	0	-1	0
10	1	0	-1	0	0
11	-1	0	-1	-1	1
12	1	1	0	0	1
13	1	1	0	-1	1
14	1	1	1	0	1
15	1	1	1	1	1

Termbestimmung - Normalformen - DNF - Übung

Nr	х3	x2	x 1	y
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	-1	0	0	0
5	-1	0	1	0
6	-1	1	0	0
7	1	1	1	0

■ DNF:

y=

Termbestimmung - Normalformen 3/4 - KNF

- Konjunktive Normalform (KNF)
 - ■UND Verknüpfung von *Maxtermen*: $y = \bigwedge M_i$
 - Maxterm ist eine ODER Verknüpfung von Eingangsvariablen, das Ergebnis "0" haben : $M_i = \bigvee x_k$ "
 - $\bullet x_k' \in \{x_k, \overline{x_k}\}$
 - ■Bsp:
 - $\blacksquare M_7 = \overline{x_3} \lor \overline{x_2} \lor \overline{x_1}$
 - $\blacksquare M_6 = \overline{x_3} \lor \overline{x_2} \lor x_1$
 - $\blacksquare M_5 = \overline{x_3} \lor x_2 \lor \overline{x_1}$
 - $\blacksquare M_4 = \overline{x_3} \vee x_2 \vee x_1$
 - ... $M_0 = x_3 \lor x_2 \lor x_1$

Termbestimmung - Normalformen 4/4 - Beispiel KNF Suchen der Normalformen aus Wahrheitstabelle

KNF:

■
$$y = (x_4 \lor x_3 \lor x_2 \lor x_1) \land (x_4 \lor x_3 \lor \overline{x_2} \lor x_1) ...$$

... $\land (x_4 \lor \overline{x_3} \lor x_2 \lor \overline{x_1})$
= $M_0 \land M_1 \land M_2 \land M_3 \land M_4 \land M_5$
 $\land M_6 \land M_7 \land M_8 \land M_9 \land M_{10}$

Nr	x4	х3	x2	x 1	у
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	-1	0	0	0	0
9	1	0	0	1	0
10	-1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

Optimierung

- Die Normalform beschreibt zwar die Funktion einer Schaltung, ist aber nicht der kürzest mögliche Term
- -> DMF (Disjunktive Minimal Form) aus Minimierung der DNF
- Dafür gibt es mehrere Verfahren:
 - Karnaugh Veitch Diagramme (Graphisches Verfahren)
 - Quine-McCluskey Verfahren
 - Binary Decision Diagramme (BDD)
 - Robinson Verfahren (Erweiterung von Quine-McCluskey)

Optimierung - KV Diagramme - Prinzip 1/2

- KV Diagramm = die graphische Darstellung der DNF
- Ziel ist die DMF zu erreichen
- Idee:
 - ■Betrachtung von möglichst großen Teilfunktionen (Blöcken), die die min-Terme mit ,1'er umfassen
 - •Untersuchung dieser Teilfunktionen, ob diese eine Eingangsvariable in positiver Form und negierter Form enthalten -> wenn ja, kann diese Variable weggelassen werden (vgl. Komplementsgesetz x1x1'=0)
 - ■Die einzelnen minimierten Teilfunktionen (Blöcke) werden OR-verknüpft (vgl. Basis ist ja die DNF)

Optimierung - KV-Diagramme - Prinzip 2/2

- Algorithmus
- 1. Zeichne KV-Diagramm und füge alle "1" der Minterme der Ergebnisvariablen (y) ein
- 2. Fasse benachbarte "1" zu möglichst großen 2er-Potenz Blöcken zusammen
 - Starte mit dem größten Block
 - Überdeckungen sind erlaubt
 - Alle Einsen müssen abgedeckt werden

1

x1'

Optimierung - KV-Diagramme - Beispiel 2 vars

$$-> y = x^2 + x^1$$

Mögliche Pakete zum Zusammenfassen:

- -2er senkrecht, 2er waagrecht
- -4er Block

Optimierung - KV-Diagramme - Beispiel 3 vars

Nr	х3	x2	x 1	у
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	0

$$-> y=x3'x2+x2'x1'$$

Mögliche Pakete zum Zusammenfassen:

- -2er senkrecht, 2er waagrecht
- -4er waagrecht, 4er Block
- -8er Block
- -! Achtung 3vars: über die seitlichen Grenzen hinweg darf zusammengefasst werden (aber nicht über die Grenzen oben/unten)
- --Vorstellung. Zylinder

Optimierung - KV-Diagramme - Beispiel 4 vars

Nr	x4	х3	x2	x 1	у
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	-1	0
6	0	1	1	0	0
7	0	1	1	-1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	0
12	1	-1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

-> y=x2'x1'

Mögliche Pakete zum Zusammenfassen:

- -2er senkrecht, 2er waagrecht
- -4er waagrecht, 4er senkrecht, 4er Block
- -8er waagrecht, 8er senkrecht
- -16er Block
- -! Achtung 4vars: über die seitlichen UND oben/unten Grenzen hinweg darf

zusammengefasst werden

--Vorstellung Kugel

Optimierung - KV-Diagramme - 4 vars - Übung

y:	x4		x4'	
x3				x1'
				x1
x3'				x1'
	x2'	x2	x2'	

- KV-Diagramme - Beispiel 5 vars

Mögliche Pakete zum Zusammenfassen:

- -2er, 4er, 8er, 16er, 32er Blöcke
- -! Achtung 5vars: über die seitlichen und oben/unten Grenzen hinweg UND auch von Ebene zu Ebene darf zusammengefasst werden
- --Vorstellung Quader mit zwei Ebenen

Optimierung - KV-Diagramme - mit "don't care" Werten 1/2

- "don't care" Werte:
 - Es kann vorkommen, dass bei bestimmten Anwendungen nicht für alle Kombinationen von Eingangsvariablen die Ausgangsvariable definiert ist
 - Grund:
 - Diese Kombinationen kommen nie vor
 - Es ist irrelevant, ob sie auf 0 oder 1 abgebildet werden
- Dies hat Auswirkungen auf die Optimierung:
- Beispiel: Nr x3 x2 x1 y
 0 0 0 0 0 0
 1 0 0 1 1
 2 0 1 0 0
 - 3
 0
 1
 1
 0

 4
 1
 0
 0
 1

 5
 1
 0
 1
 1
 - 6 1 1 0 7 1 1 1

Optimierung - KV-Diagramme - mit "don't care" Werten 2/2

- Vorgehen für die Optimierung mit KV-Diagramm
 - Wenn in einer Wertetabelle irrelevante Ausgabewerte (oft als "x" oder "-" markiert) vorhanden sind, können diese für das KV-Diagramm wahlweise mit einer 1 oder 0 (leer) belegt werden
 - Man wählt die Belegung so, dass sich die größten 1er Blöcke ergeben

Eine var gespart!

Optimierung - KV-Diagramme - mit mehrwertigen Funktionen

- Wertetabellen können Werte für mehr als eine Ausgangsvariable haben
- Die Optimierungsverfahren funktionieren aber nur für eine Ausgangsvariable
- -> Anwenden der Optimierung pro Ausgangsvariable;
 d.h. pro Ausgangsvariable 1 KV-Diagramm

Nr	х3	x2	x 1	y1	y2
0	0	0	0	0	0
1	0	0	-1	1	0
2	0	1	0	0	0
3	0	1	1	0	0
4	-1	0	0	1	0
5	-1	0	-1	1	0
6	-1	1	0	0	1
7	-1	-1	-1	0	1

-> 1 KV für y1, 1 KV für y2

Schaltungsaufbau

Schaltungsaufbau - Übung

y=x4x3+x4x2x1 -> Gatterschaltplan?

 $y= x5'x4'x2+x4'x3x2 \rightarrow Gatterschaltplan?$

(Erweiterte) Schaltsymbole - Motivation

- Neben den bereits vorgestellten Schaltsymbolen gibt es noch erweiterte Schaltsymbole, die in der IEC 60617 / DIN EN 60617 / DIN 40900 definiert sind
- Da diese Symbole häufig in Schaltplänen verwendet werden, soll die Systematik hier kurz vorgestellt werden

(Erweiterte) Schaltsymbole - Generelles Prinzip I/II

Symbol zur Beschreibung der Ein- und Ausgänge

- Oben befindet sich die eigentliche Funktion (&, >=1, =1, 1, ...)
- Eingänge sind in der Regel links, Ausgänge rechts
- Die rechteckig hervorgehobenen Bereiche können zusätzliche Angaben über die Eingänge und Ausgänge haben
- Die äußeren Bereiche wirken außen (z.B.: Negationskreis)
- Die inneren Rechteckbereiche wirken auf den inneren Zustand der Schaltung

(Erweiterte) Schaltsymbole - Generelles Prinzip II/II

 Daneben kann es eine gemeinsamen Kontrollblock sowie gemeinsamen Ausgangsblockgeben

(Erweiterte) Schaltsymbole - Abhängigkeitsnotation

- Die Abhängigkeitsnotation beschreibt den Einfluss eines Eingangs (oder Ausgangs) auf andere Ein- und Ausgänge durch einen Buchstaben, der die Art des Einflusses näher beschreibt
- Dem Buchstaben folgt eine Zahl zur Identifikation
- Die gleiche Zahl findet man bei den Ein- und Ausgängen, auf die dieser Einfluss ausgeübt wird

(Erweiterte) Schaltsymbole - Abhängigkeitsnotation - UND-Abhängigkeit (G)

- Ein "G" bezeichnet eine UND-Abhängigkeit
- Beispiel Eingang abhängig von Eingang:

- x1 legt eine G-Abhängigkeit fest, die sich auf x0 und x2 auswirkt
- Beispiel Eingang abhängig vom Ausgang:

(Erweiterte) Schaltsymbole - Abhängigkeitsnotation - ODER-Abhängigkeit (V)

- Ein "V" Bezeichnet eine ODER-Abhängigkeit
 - Wenn ein V<n>-Eingang bzw. Ausgang eine ,1' hat, so haben alle Einund Ausgänge mit der Kennzeichnung <n> den Wert ,1'
 - Wenn ein V<n>- Eingang bzw. Ausgang den Wert ,0' hat, so haben die davon abhängen Ein- und Ausgänge den normalen Wert
- Beispiel: a) Ausgang abhängig von Eingang;
 - b) Ausgang abhängig von Ausgang

(Erweiterte) Schaltsymbole - Abhängigkeitsnotation - XOR-Abhängigkeit (N)

- Wenn ein N<n>-Eingang bzw. Ausgang eine ,1' hat, so haben alle Ein- und Ausgänge mit der Kennzeichnung <n> den negierten Wert
- Wenn ein N<n>-Eingang bzw. Ausgang den Wert ,0' hat, so haben die davon abhängen Ein- und Ausgänge den normalen Wert

Erweiterte) Schaltsymbole - Abhängigkeitsnotation - Übung

-> Äquivalenter Schaltplan?, äquivalente boolsche Gleichung für e?