Examen del Bloque 2 de Sistemas Inteligentes (tipo B)

ETSINF, UPV, 18 de diciembre de 2017. Puntuación: num aciertos - num errores/3.

- ¿Cuál de las siguientes expresiones es incorrecta?
 - A) $\sum_{x} P(x \mid y) = 1, \ \forall y$

 - B) $\sum_{y} P(x \mid y) = 1$, $\forall x$ C) $\sum_{x} \sum_{y} P(x, y) = 1$ D) $\sum_{x} P(x \mid u) = \sum_{y} P(y \mid w)$, $\forall u, w$
- Se tienen dos almacenes de naranjas: 1 y 2. El 65 % de las naranjas se hallan en el almacén 1 y el resto en el 2. Se sabe que en el almacén 1 hay un 1% de naranjas no aptas para el consumo; y un 3% en el 2. Supóngase que se distribuye una naranja no apta para el consumo. ¿Cuál es la probabilidad P de que provenga del almacén 1?
 - A) 0.00 < P < 0.25
 - B) $0.25 \le P < 0.50$
 - C) $0.50 \le P < 0.75$
 - D) $0.75 \le P$
- Sea $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$ un objeto dado mediante una secuencia de N vectores de características, el cual se quiere clasificar en una de C clases. Indica cuál de los siguientes clasificadores si es de error mínimo $(\mathbf{x}_2^N \text{ denota } \mathbf{x}_2, \dots, \mathbf{x}_N)$:
 - A) $c(\mathbf{x}) = \arg \max \ p(\mathbf{x}_1 \mid c) \ p(\mathbf{x}_2^N \mid \mathbf{x}_1)$ c=1,...,C
 - B) $c(\mathbf{x}) = \arg \max \ p(\mathbf{x}_1 \mid c) p(\mathbf{x}_2^N \mid \mathbf{x}_1, c)$ c=1,...,C
 - C) $c(\mathbf{x}) = \arg \max \ p(\mathbf{x}_1, c) \ p(\mathbf{x}_2^N \mid \mathbf{x}_1)$
 - D) $c(\mathbf{x}) = \arg \max \ p(\mathbf{x}_1, c) \ p(\mathbf{x}_2^N \mid \mathbf{x}_1, c)$
- Sea un clasificador en 3 clases para $\mathbf{x} = (x_1, x_2)^t \in [0, 1]^2$ con las distribuciones de probabilidad dadas a la derecha. ¿Cuál es la probabilidad de error p_e del clasificador?
 - A) $0.65 \le p_e$
 - B) $0.45 \le p_e < 0.65$
 - C) $0.35 \le p_e < 0.45$
 - D) $p_e < 0.35$

x_1	x_2	$p(c=1 \mathbf{x})$	$p(c=2 \mathbf{x})$	$p(c=3 \mathbf{x})$	$p(\mathbf{x})$
0	0	1.0	0.0	0.0	0.1
0	1	0.01	0.01	0.98	0.2
1	0	0.25	0.5	0.25	0.3
1	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0.4

- Sea un problema de clasificación en cuatro clases de objetos en \mathbb{R}^3 . Se tiene un clasificador de funciones discriminantes lineales con vectores de pesos (en notación homogénea): $\mathbf{w}_1 = (-2, 1, 2, 0)^t$, $\mathbf{w}_2 = (0, 2, 2, 0)^t$, $\mathbf{w}_3 = (1, 1, 1, 0)^t$ y $\mathbf{w}_4 = (3,0,0,1)^t$. Indica a qué clase se asignará el objeto $\mathbf{x} = (1,2,2)^t$ (no en notación homógenea).
 - A) 4.
 - B) 3.
 - C) 2.
 - D) 1.
- En la figura se representan frontera y regiones de decisión de un clasificador binario. ¿Cuál de los siguientes pares de vectores de pesos corresponde al clasificador de la figura?

- B) $\mathbf{w}_1 = (1, -1, -2)^t$ y $\mathbf{w}_2 = (0, -2, -1)^t$
- C) $\mathbf{w}_1 = (-1, 1, 2)^t \text{ y } \mathbf{w}_2 = (0, 2, 1)^t$
- D) $\mathbf{w}_1 = (1, 1, 2)^t \text{ y } \mathbf{w}_2 = (1, 2, 1)^t$

- Sea un problema de clasificación en 3 clases, c = 1, 2, 3, para objetos representados mediante vectores de características bidimensionales. Se tienen 3 muestras de entrenamiento representadas en notación homogénea: $\mathbf{x}_1 = (1,1,2)^t$ de la clase $c_1 = 1$, $\mathbf{x}_2 = (1, 2, 3)^t$ de la clase $c_2 = 2$ y $\mathbf{x}_3 = (1, 3, 1)^t$ de la clase $c_3 = 3$. Asimismo, se tiene un clasificador lineal definido por los vectores de pesos: $\mathbf{w}_1 = (w_{10}, w_{11}, w_{12}) = (2, -8, 0)^t$, $\mathbf{w}_2 = (w_{20}, w_{21}, w_{22}) = (-5, -2, -1)^t$ y $\mathbf{w}_3 = (w_{30}, w_{31}, w_{32}) = (-2, 1, -10)^t$. Si aplicamos una iteración del algoritmo Perceptrón a partir de estos vectores de pesos, con factor de aprendizaje $\alpha = 1$ y margen b = 1.5, entonces:
 - A) Se modificarán los vectores de pesos \mathbf{w}_1 y \mathbf{w}_2 .
 - B) Se modificarán los vectores de pesos \mathbf{w}_1 y \mathbf{w}_3 .
 - C) Se modificarán los vectores de pesos \mathbf{w}_2 y \mathbf{w}_3 .
 - D) No se modificará ningún vector de pesos.

 8 En el proceso de entrenamiento de un árbol de clasificación, un nodo interno t tiene un grado d Uno de los "splits" produce un decremento de impureza igual a \(\mathcal{I}(t) \). Indica la afirmación corre A) No es posible lograr ese decremento de impureza. B) Dicho "split" genera dos nodos puros. C) Dicho "split" genera un nodo puro y otro impuro. D) Dicho "split" genera dos nodos impuros. 	. ,
Para un problema de clasificación de datos bidimensionales $\mathbf{x}=(x_1,x_2)$ en dos clases disponciasificación. ¿Qué tipo de fronteras de decisión define el nodo raíz? A) $a \cdot x_1 + b \cdot x_2 + c = 0$ donde $a \neq 0 \land b \neq 0$ B) $a \cdot x_1 + b \cdot x_2 + c = 0$ donde $a = 0 \lor b = 0$ C) $a \cdot x_1 + b \cdot x_2 + c = 0$ donde $a \neq 0 \lor b = 0$ D) $a \cdot x_1 + b \cdot x_2 + c = 0$ donde $a \neq 0 \lor b \neq 0$	emos de un árbol de
Supóngase que estamos aplicando el algoritmo de aprendizaje de árboles de clasificación para un clases: 1, 2, 3 y 4. El algoritmo ha alcanzado un nodo t que incluye un dato de cada clase, el pretende evaluar la calidad de una partición del nodo t mediante un "split" $s=(j,r)$, que dinodos t_1 y t_2 de la siguiente forma: los datos de las clases 1 y 2 quedan en el nodo t_1 y los de 4 quedan en el nodo t_2 . El decremento de impureza $\Delta \mathcal{I}(j,r,t)$ (medida como entropía) para de esta partición es: A) $\Delta \mathcal{I}(j,r,t) < 0.0$. B) $0.0 \leq \Delta \mathcal{I}(j,r,t) < 0.5$. C) $0.5 \leq \Delta \mathcal{I}(j,r,t) < 1.0$. D) $1.0 \leq \Delta \mathcal{I}(j,r,t)$.	sto es, 4 en total. Se vide los datos en dos atos de las clases 3 y
 Indica cual de las siguientes afirmaciones sobre un árbol de clasificación construido media aprendizaje de árboles es incorrecta. A) En cada nodo t la suma para todas las clases de P(c t) es 1. B) En cada nodo t, la probabilidad a posteriori de cualquier clase c, P(c t), es siempre menor de los pesos o probabilidades de decisión de sus dos hijos. C) La impureza de un nodo, medida como entropía, no puede ser menor que 0 ni mayor que l número de clases. D) Si N es el número de datos de aprendizaje, la profundidad del árbol no será mayor o práctica, suele ser proporcional a log₂ N. 	mayor o igual que el e $\log_2 C$, donde C es
En la figura de la derecha se representan 4 muestras de bidimensionales. ¿Cuál es el número de clústers que minimiza la suma de errores cuadráticos para dicho conjunto de muestras? A) 4 B) 3 C) 2 D) 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
La figura a la derecha muestra una partición de 4 puntos bidimensionales en 2 clústers (representados mediante los símbolos • y o). La transferencia del punto $(2,3)^t$ del clúster • al conduce a una variación de la SEC, ΔJ , tal que: A) $-1 \geq \Delta J$. B) $-\frac{1}{2} \geq \Delta J > -1$. C) $0 \geq \Delta J > -\frac{1}{2}$. D) $\Delta J > 0$.	TE
En la figura de la derecha se muestra una partición de 4 puntos bidimensionales de 2 clústers. transferencia del punto $(1,1)^t$ del clúster • al clúster • al clúster • A) produce un decremento en la SEC. B) produce un incremento en la SEC. C) no altera la SEC. D) produce una SEC negativa.	2 1 0 0 1
 Considérese el algoritmo C-medias de Duda y Hart. Indicar cuál de las siguientes afirmaciones A) Cuando un clúster se queda vacío, dicho clúster se elimina. B) Su buena eficacia computational se consigue gracias al cálculo incremental de la variacio los vectores media de clúster. C) Determina el número de clústers que minimiza la suma de errores cuadráticos (SEC). D) Ninguna de las anteriores. 	