

NAME UND GRUPPENNUMMER NICHT VERGESSEN!

6. April 2020

Aufgaben (I)

Vorlesung Mathematik für Informatiker II (19 IN-B, 19 MI-B)

1. Aufgabe

Bestimmen Sie mit Hilfe der L'Hospitalschen Regel(n) den Funktionenlimes

a)
$$\lim_{x\to 1} \frac{1-x+\ln(x)}{x^3-3x+2}$$
, b) $\lim_{x\to 0} \frac{\sin(x^2)}{[\sin(x)]^2}$,

2. Aufgabe

Bestimmen Sie mit Hilfe der L'Hospitalschen Regel(n) den Funktionenlimes

a)
$$\lim_{x\to 0, x>0} x^x$$
, b) $\lim_{x\to \infty} (x^2+4)^{\frac{1}{x}}$.

3. Aufgabe

Bestimmen Sie für die Funktion $f(x)=\frac{1}{\sqrt{x}}$, x>0, das Taylor-Polynom zweiter Ordnung um den Entwicklungspunkt $x_0=1$ und geben Sie das zugehörige Restglied $R_2(x)$ an. Welche Aussage kann über die im Restglied auftretende Zwischenstelle ξ gemacht werden?

4. Aufgabe

Schreiben Sie für die Funktion $f(x)=\sqrt{1+x^2}$, $x\in[0,1]$, die Taylorsche Formel mit dem Entwicklungspunkt $x_0=\frac{1}{4}$ dem Hauptteil zweiter Ordnung und dem Lagrangeschen Restglied hin. Kann das Restglied R_3 den Wert Null annehmen (Begründung!)?

5. Aufgabe

Bestimmen Sie für die Funktion $f\left(x\right)=\left(1+x\right)^3+e^{-2x}$, $x\in[-1,1]$, das Taylor-Polynom zweiter Ordnung um den Entwicklungspunkt $x_0=0$. Geben Sie das zugehörige Restglied $R_2\left(x\right)$ an und führen Sie für $R_2\left(x\right)$, $x\in[-1,1]$ eine Fehlerabschätzung durch.

ABGABE: bis spätestens 17. April 2020, 22 Uhr Laden Sie Ihre Lösungen als pdf-Dokument in OPAL im Kursbaustein "Aufgabe" hoch.