Supernetting and CIDR

Internetworking Lecture 5

IP Addresses & Subnets

- Comparison of:
 - Classless Subnetting
 - VLSM (Classless)
- Variable Length Subnet Mask VLSM
- Classless Inter-Domain Routing CIDR
- Supernetting

Let's start with a task...

IP Address: 192.168.1.0

The above network requires the creation of 5 subnets:

- Marketing: 25 <u>usable</u> host addresses (total 27)
- Research: 30 <u>usable</u> host addresses (total 32)
- Records: 12 <u>usable</u> host addresses (total 14)
- WAN link A C: 2 usable host addresses (total 4)
- WAN link B C: 2 <u>usable</u> host addresses (total 4)

Classful vs Classless (VLSM)

Research:

192.168.1.0 -192.168.1.31 /27

Marketing:

192.168.1.32 - 192.168.1.63 /27

Records

192.168.1.64 - 192.168.1.95 /27

Link A-C

192.168.1.96 - 192.168.1.127 /27

Link B-C

192.168.1.128 - 192.168.1.159 /27

- 192.168.1.160 192.168.1.191 /27
- 192.168.1.192 192.168.1.223 /27
- 192.168.1.224 192.168.1.255 /27

Research:

192.168.1.0 - 192.168.1.31 /27 Marketing:

192.168.1.32 - 192.168.1.63 /27 Records:

192.168.1.64 - 192.168.1.79 /28 Link A-C:

192.168.1.80 - 192.168.1.83 /30 Link B-C

192.168.1.84 - 192.168.1.87 /30

- 192.168.1.88 192.168.1.95 /29
- 192.168.1.96 192.168.1.127 /27
- 192.168.1.128 192.168.1.255 /25

Classful - 8 equally sized subnets

VLSM – 8 variable sized subnets

Utilisation of addressing space

Research

32/32 → 100%

Marketing

27/32 → 84%

Records

14/32 **→** 44%

Link A-C

4/32 → 13%

Link B-C

4/32 → 13%

Total addresses reserved:

160/256 **→** 62.5%

Research:

32/32 → 100%

Marketing

27/32 **→** 84%

Records:

 $14/16 \rightarrow 88\%$

Link A-C

4/4 → 100%

Link B-C:

4/4 → 100%

Total addresses reserved:

88/256 **→** 34.4%

Classful approach

Classless approach

Variable Length Subnet Mask

- Allows more than one subnet mask in the same network
 - Efficient use of an organisation's IP address space
 - Create subnets significantly different in size
 - Consider a 4 host network with mask 255.255.255.0
 → it wastes 250 IP addresses
 - Allows route aggregation -> less routing information
- VLSM needs to be supported by the routing protocol (RIPv2, OSPF, EIGRP, BGP)

Requirements for VLSM

- Nouting table → need to specify the extended network prefix information (subnet mask) for every entry.
- ▶ Routing protocol → must carry extended network prefix information with each route advertisement
 - 131.175.192.0 = 10000011.10101111.11000000.00000000
 - ∘ Prefix /27 →
 - 255.255.250.224 = 11111111111111111111111111111111100000
- VLSM is usually compatible with more complex routing protocols such as OSPF even for small networks

Requirements for VLSM

- "Longest Match" forwarding algorithm
 - When you have two or more matching entries in your routing table for a specific destination -> select the longest match!
 - → "Longest Match" Forwarding Algorithm

Route aggregation - VLSM

VLSM allows to hide the detailed structure of routing

information for one subnet group from other routers Reduces the size of the routing table!

Classless Inter-Domain Routing

- CIDR was officially developed in September 1993
- CIDR is also called Supernetting
- It was considered a fundamental solution for the routing table problem
- It was a temporary solution to Internet address space depletion.
 - IPv4 = 32 bits → quickly proved to be inadequate
 - Internet grew exponentially
 - Billions interconnected devices
 - Inefficient address assignment in early days
 - Ultimate solution was soon implemented
 - IPv6!

Routing table problem - CIDR

- Introduced to replace the classful IP addressing method.
- Class C addresses
 - Not enough hosts?
- Class B addresses
 - Too many hosts?
- N*class C
 - Not wise, exponential growth of routing tables
- Class B addresses → the only feasible option → quickly exhausted!

Classless Inter-Domain Routing

- Follows a classless approach
 - The classful concept completely abandoned
- Requires to specify the network prefix
 - Routers do not identify IP classes.
 - Network prefix is needed to identify the division point between the net_id and host_id
 - Prefix needs to be supported by the routing protocol
- CIDR is similar to VLSM but applies to the whole Internet.

Classless addresses (CIDR)

- 10.23.64.0/25 = 00001010.00010111.01000000.0000000
- \rightarrow 130.5.10.0/25 = 10000010.00000101.00000110.00000000
- > 200.7.128.0/25 = 11001000.00000111.10000000.0000000
- What is the difference between these <u>network addresses</u>?
 - None! They are similar as they all have 126 <u>usable</u> hosts available.

CIDR - Supernetting

- Supernetting is combining several small (class C) networks into a big one to create a large range of addresses.
 - Example: An organisation is assigned a range of 2^n class C addresses
 - The range is contiguous
 - Addressing: Reserve network bits for use by host_id
 - The opposite of subnetting!

Supernetting - Addressing

- You have been assigned 4 contiguous network addresses:
 - \circ 213.2.96.0 \rightarrow 11010101.00000010.01100000.00000000
 - \circ 213.2.97.0 \rightarrow 11010101.00000010.01100001.00000000
 - \circ 213.2.98.0 \rightarrow 11010101.00000010.01100010.00000000
 - \circ 213.2.99.0 \rightarrow 11010101.00000010.01100011.00000000
 - Two bits reserved → 2² class C networks included into the new supernet
- Supernet mask:
 - 255.255.252.0
- Supernet address:
 - 213.2.96.0/22
 - · 11010101.00000010.011000 00.00000000

Routing table problem - solved

11010101 . 00000010 . 011000 <mark>00 . 00000000</mark>

CIDR - Example

- An ISP has been allocated the network address 192.10.64.0/19.
- What is the network mask
- What are the first and last host addresses in the range?
- How many (usable) host addresses can the ISP allocate?

CIDR - Example

- Network mask
 - Can be calculated by setting the network ID to all 1s
- Network address:
 - Class C address: 192.10.64.0/19
 - Default mask = 24 bits
 - · 11111111.111111111.11111111.00000000
 - New mask = 19 bits
 - · 111111111111111111111100000.000000000
 - 255.255.224.0
 - The BLUE bits are the bits we borrowed from the default net_ID
 - 11000000.00001010.010|00000.00000000
 - 192.10.64.0/19

CIDR - Example

- The network address is:
- The first network host address is:
 - \circ 192.10.64.1 \rightarrow 11000000.00001010.010|00000.0000001
- The broadcast address for the network is:
- The last host address for the network is:
 - \circ 192.10.95.254 \rightarrow 11000000.00001010.010|1111111111110
- Number of addresses the ISP allocate:
 - There are 13 host_id bits available \rightarrow 2¹³ = 8192
 - 8192-2 = 8190 usable IP addresses

CIDR & large networks

- ightharpoonup Organisation assigned 2^n class C addresses
- May arbitrarily deploy subnetworks with more than 254 hosts
 - Previously impossible with classful IP assignment
 - Default netmask = /24 (bits)
- ALL subnet hosts need to accept netmasks larger than the default ones - software permitted
 - Software might not allow to use netmask
 255.255.252.0 for host address 193.28.33.52

CIDR - Requirements

- The same as VLSM
 - But on a worldwide scale
- Routing protocol must carry network prefix information for every advertised route
- Routers must implement a consistent forwarding algorithm based on the "longest match"
- Route aggregation can happen only if topologically significant addresses are assigned (see next slide)

CIDR allocation

Topological allocation of ex class C addresses

Multi regional	192.0.0.0 - 193.255.255.255
Europe	194.0.0.0 - 195.255.255.255
Others	196.0.0.0 - 197.255.255.255
North America	198.0.0.0 - 199.255.255.255
Central-South America	200.0.0.0 - 201.255.255.255
Pacific Rim	202.0.0.0 - 203.255.255.255
Others	204.0.0.0 - 205.255.255.255
Others	206.0.0.0 - 207.255.255.255
IANA reserved	208.0.0.0 - 223.255.255.255

All are class C blocks, since class B blocks are no more allocated...

Next Week

- Dynamic Routing
 - Distance Vector
 - Link State
 - Metrics used
 - Autonomous systems