1. **(currently amended):** A colour filter comprising a transparent substrate and a layer comprising from 1 to 75% by weight, preferably from 5 to 50% by weight, with particular preference from 25 to 40% by weight, based on the overall weight of the layer, of a diketopyrrolopyrrole of the general formula (I) dispersed in a high molecular mass organic material:

$$R_2$$
-N N -R₁ N

wherein A and B independently of one another are a group of the formula

$$R_{7}$$
 R_{8} R_{5} , wherein

 R_3 and R_4 independently of one another are hydrogen, halogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, -NR₁₆R₁₇, -CONHR₁₈, -COOR₁₉, -SO₂NH-R₂₀, C_1 - C_{18} alkoxycarbonyl, C_1 - C_{18} alkylaminocarbonyl, -CN, -NO₂, trifluoromethyl, C_5 - C_7 cycloalkyl,

piperazinyl, pyrrolyl, oxazolyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, morpholinyl, piperidinyl or pyrrolidinyl,

G is $-CH_2$ -, $-CH(CH_3)$ -, $-C(CH_3)_2$ -, -CH=N-, -N=N-, -O-, -S-, -SO-, $-SO_2$ -, -CONH- or $-NR_9$ -,

 R_5 and R_6 independently of one another are hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_{18} alkoxy or -CN,

 R_7 and R_8 independently of one another are hydrogen, halogen or C_1 - C_6 alkyl and R_9 is hydrogen or C_1 - C_6 alkyl,

 R_1 and R_2 are independently of each other C_1 - C_{18} alkyl, C_1 - C_{18} alkyl, which is interrupted one or more times by O or S, C_6 - C_{12} aryl, C_7 - C_{12} aralkyl, or a group of the formula -C(O)OR₁₀, wherein R_{10} is C_1 - C_{18} alkyl, C_5 - C_{10} cycloalkyl, C_6 - C_{12} aryl, or C_7 - C_{12} aralkyl, or

a group of the formula

 X_2 is an alkylene, arylene, aralkylene or cycloalkylene spacer containing optionally one or more groups -O-, -S-, -NR₁₄-, -CO-, -CONH-, -CONR₁₅-, or -COO- as linking bridge, X_3 is OH, NH₂, -C(R₁₁)=CH₂, -OC(O)-C(R₁₂)=CH₂, -C(O)-C(R₁₂)=CH₂, C₅-C₇cycloalkenyl,

 $-OC(O)-N-X_4-N-C(O)-O-X_5-O-C(O)-C(R_{12})=CH_2$; wherein

R₁₁ is hydrogen, or C₁-C₄alkyl, or halogen,

R₁₂ is hydrogen, C₁-C₄alkyl, or halogen,

R₁₃ is hydrogen, C₁-C₄alkyl, or C₆-C₁₂aryl,

R₁₄ and R₁₅ are independently of each other hydrogen, C₁-C₈alkyl, or C₆-C₁₂aryl,

 R_{16} , R_{17} , R_{18} and R_{20} are independently of each other hydrogen, C_1 - C_{18} alkyl, C_6 - C_{12} aryl, or C_7 - C_{12} aralkyl,

 R_{19} is C_1 - C_{18} alkyl, C_6 - C_{12} aryl, or C_7 - C_{12} aryl, and

 X_4 and X_5 are independently of each other an alkylene, arylene, aralkylene or cycloalkylene spacer,

R₃, R₄, R₅, R₆, R₇, and R₈ can also be a group of formula

$$-X_1-X_2-X_3$$
 (III), wherein

X₁ is -O-, -S-, -NH-, -CONH-, -COO-, -SO₂-NH-, or -SO₂-O-, and

 X_2 and X_3 are as defined above,

with the proviso that at least one, preferably two, of the groups of the formula (II) and/or (III) is present per molecule.

(currently amended): A colour filter according to claim 1, wherein the <u>diketopyrrolopyrrole is a</u>
 pigment has having the general formula

$$R_2$$
 N N R_4 (IV),

wherein R₁ and R₂ are independently of each other a group of the formula

X₂ is an alkylene, arylene, aralkylene or cycloalkylene spacer containing optionally a group -O-,

-S-, -NR₁₄-, -CO-, -CONH-, -CONR₁₅-, or -COO- as linking bridge,

 X_3 is -OH, -NH₂, -C(R₁₁)=CH₂, -OC(O)-C(R₁₂)=CH₂, -C(O)-C(R₁₂)=CH₂, or

 $-OC(O)-N-X_4-N-C(O)-O-X_5-O-C(O)-C(R_{12})=CH_2$; wherein

R₁₁ is hydrogen, or methyl,

R₁₂ is hydrogen, or methyl,

 R_{14} and R_{15} are independently of each other hydrogen, C_1 - C_8 alkyl, or C_6 - C_{12} aryl, and X_4 and X_5 are as defined in claim 1,

 R_3 and R_4 independently of one another are hydrogen, halogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, -NR₁₆R₁₇, -CONHR₁₈, -COOR₁₉, -SO₂NH-R₂₀, C_1 - C_{18} alkoxycarbonyl, C_1 - C_{18} alkylaminocarbonyl, -CN, -NO₂, trifluoromethyl, C_5 - C_7 cycloalkyl, wherein R₁₆, R₁₇, R₁₈, R₁₉ and R₂₀ are as defined in claim 1.

3. **(currently amended):** A colour filter according to claim 1, wherein the <u>diketopyrrolopyrrole is a</u> pigment has having the general formula

$$R_{23} \longrightarrow 0$$

$$R_{22} - N \longrightarrow N - R_{21}$$

$$O \longrightarrow R_{24}$$

$$(V),$$

in which R_{21} and R_{22} are independently of one another hydrogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is interrupted one or more times by O or S, C_7 - C_{12} aralkyl or a group of the formula

in which R₅ is C₁-C₁₈alkyl,

R₂₃ and R₂₄ independently of one another are a group of formula

X₁ is -O-, -S-, -NH-, -CONH-, -COO-, -SO₂-NH-, or -SO₂-O-,

X₂ is an alkylene, arylene, aralkylene or cycloalkylene spacer containing optionally one or more groups -O-, -S-, -NR₁₄-, -CO-, -CONH-, -CONR₁₅-, or -COO- as linking bridge,

 X_3 is -OH, -NH₂, -C(R₁₁)=CH₂, -OC(O)-C(R₁₂)=CH₂, -C(O)-C(R₁₂)=CH₂, or

 $-OC(O)-N-X_4-N-C(O)-O-X_5-O-C(O)-C(R_{12})=CH_2$; wherein

R₁₁ is hydrogen, or methyl,

R₁₂ is hydrogen, or methyl,

 R_{14} and R_{15} are independently of each other hydrogen, C_1 - C_8 alkyl, or C_6 - C_{12} aryl, and X_4 and X_5 are as defined in claim 1.

4. (currently amended): A diketopyrrolopyrrole of the general formula

$$R_{2}$$
 N
 N
 R_{1}
 N
 R_{4}
 N

wherein R₁ and R₂ are independently of each other a group of the formula

X₂ is an alkylene, arylene, aralkylene or cycloalkylene spacer containing optionally one or more groups -O-, -S-, -NR₁₄-, -CO-, -CONH-, -CONR₁₅-, or -COO- as linking bridge,

 X_3 is OH, NH₂, -C(R₁₁)=CH₂, -OC(O)-C(R₁₂)=CH₂, -C(O)-C(R₁₂)=CH₂, or

 $-OC(O)-N-X_4-N-C(O)-O-X_5-O-C(O)-C(R_{12})=CH_2$; wherein

R₁₁ is hydrogen, or methyl,

R₁₂ is hydrogen, or methyl,

 R_{14} and R_{15} are independently of each other hydrogen, C_1 - C_8 alkyl, or C_6 - C_{12} aryl, and X_4 and X_5 are as defined in claim 1,

 R_3 and R_4 independently of one another are C_1 - C_{18} alkyl, $\underline{C_1}$ - $\underline{C_{18}}$ alkylmercapto, C_1 - C_{18} alkoxy, -NR₁₆R₁₇, -CONHR₁₈, COOR₁₉, -SO₂NH-R₂₀, C₁-C₁₈alkoxycarbonyl, C₁-C₁₈alkylaminocarbonyl, wherein R₁₆, R₁₇, R₁₈, R₁₉ and R₂₀ are C₁-C₁₈alkyl.

5. **(original):** A diketopyrrolopyrrole according to claim 4, wherein R₁ and R₂ are independently of each other a radical of the formula

X₂ is C₁-C₁₈alkylene and

 X_3 is -NH₂, -OH, -CH=CH₂, -C(CH₃)=CH₂, -CO-CH=CH₂, -CO-C(CH₃)=CH₂, -CO-CH=CH₂ or -CO-C(CH₃)=CH₂.

6. **(currently amended):** A diketopyrrolopyrrole according to claim 4-or 5, wherein R₃ and R₄ are independently of each other C₁-C₁₈alkylmercapto, C₁-C₁₈alkoxy, or -NR₁₆R₁₇, wherein one of the groups R₁₆ and R₁₇ is hydrogen and the other is C₁-C₁₈alkyl or both groups R₁₆ and R₁₇ are independently of each other C₁-C₁₈alkyl.

7. (original): A diketopyrrolopyrrole of the general formula

$$R_{23} \longrightarrow 0$$

$$R_{22} - N \longrightarrow N - R_{21}$$

$$0$$

$$R_{24}$$

$$(V),$$

in which R_{21} and R_{22} are independently of one another hydrogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is interrupted one or more times by O or S, C_7 - C_{12} aralkyl or a group of the formula

in which R₅ is C₁-C₁₈alkyl,

 R_{23} and R_{24} independently of one another are a group of formula

X₁ is -O-, -S-, -NH-, -CONH-, -COO-, -SO₂-NH-, or -SO₂-O-,.

X₂ is an alkylene, arylene, aralkylene or cycloalkylene spacer containing optionally one or more groups -O-, -S-, -NR₁₄-, -CO-, -CONH-, -CONR₁₅-, or -COO- as linking bridge,

 X_3 is -OH, -NH₂, -C(R₁₁)=CH₂, -OC(O)-C(R₁₂)=CH₂, -C(O)-C(R₁₂)=CH₂, or

 $-OC(O)-N-X_4-N-C(O)-O-X_5-O-C(O)-C(R_{12})=CH_2$; wherein

R₁₁ is hydrogen, or methyl,

R₁₂ is hydrogen, or methyl,

 R_{14} and R_{15} are independently of each other hydrogen, C_1 - C_8 alkyl, or C_6 - C_{12} aryl, C_1 - C_4 alkyl, or C_6 - C_{12} aryl, and

 X_4 and X_5 are independently of each other an an alkylene, arylene, aralkylene or cycloalkylene spacer.

8. **(original):** A diketopyrrolopyrrole according to claim 7, wherein R₂₃ and R₂₄ independently of one another are a group of formula

X₁ is -S-, -SO₂NH- or -NH-,

 X_2 is a C_1 - C_{18} alkylene group, and X_3 is -OH, -NH₂, -CH=CH₂, -C(CH₃)=CH₂, -CO-CH=CH₂, -CO-C(CH₃)=CH₂, -CO-CH=CH₂, or -CO-C(CH₃)=CH₂.

- 9. (currently amended): A diketopyrrolopyrrole according to claim 7-or-8, wherein R₂₁ and R₂₂ independently of one another are hydrogen, or C₁-C₁₈alkyl.
- 10. **(original):** A polymer, obtainable by polyreacting a mixture consisting of
 - (A) from 0.5 to 20, preferably from 1 to 10 % by weight, based on the sum of the components
 - (A) and (B), of a diketopyrrolopyrrole IV or V, and
 - (B) from 99.5 to 80, preferably from 99 to 90 % by weight, based on the sum of the components
 - (A) and (B), of a monomer which is copolymerisable with the diketopyrrolopyrroles IV and V, the sums of (A) and (B) making up 100 % by weight.
- 11. (new): A colour filter according to claim 1 comprising a transparent substrate and a layer comprising from 5 to 50% by weight, based on the overall weight of the layer, of a diketopyrrolopyrrole of the general formula (I) dispersed in a high molecular mass organic material.
- 12. **(new):** A colour filter according to claim 1 comprising a transparent substrate and a layer comprising from 25 to 40% by weight, based on the overall weight of the layer, of a diketopyrrolopyrrole of the general formula (I) dispersed in a high molecular mass organic material.
- 13. **(new):** A diketopyrrolopyrrole according to claim 5, wherein R₃ and R₄ are independently of each other C₁-C₁₈alkylmercapto, C₁-C₁₈alkoxy, or -NR₁₆R₁₇, wherein one of the groups R₁₆ and R₁₇ is hydrogen and the other is C₁-C₁₈alkyl or both groups R₁₆ and R₁₇ are independently of each other C₁-C₁₈alkyl.
- 14. **(new):** A diketopyrrolopyrrole according to claim 8, wherein R₂₁ and R₂₂ independently of one another are hydrogen, or C₁-C₁₈alkyl.