통계학개론2021.03.24김은영

제5장 정규분포

5.1 연속확률변수의 확률모형

(1) 상대도수 히스토그램의 근사적 확률밀도곡선

- (2) 확률밀도함수 f(x)의 성질
- ① 확률밀도곡선 아래의 총면적은 1이다.
- $\bigcirc P[a \le X \le b]$
- $(3) f(x) \ge 0 \ \forall x$
- (3) P[X=x]=0 여기서 x: 연속적 확률변수 P[X=a]=P[X=b]=0 $P[a \le X \le b]=P[a < X \le b]=P[a \le X < b]=P[a < X < b]$
- (4) P[a < X < b] = (b의 왼쪽 면적) (a의 왼쪽 면적)

(5) 확률밀도함수의 평균과 중앙값

5.2 정규분포

- (1) 정규분포는 Pierre Laplace와 Carl Gauss에 의해 발전되었다.
- (2) 정규분포의 확률밀도함수

$$X \sim N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty, \ \pi = 3.1416, \ e = 2.7183$$

(3) 정규분포의 그림

5.3 표준정규분포

(1) 표준정규분포의 정의

$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$

- (2) 표준정규분포의 그림 (p.5)
- (3) 공식

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$P[a \le X \le b] = P\left[\frac{a - \mu}{\sigma} \le Z \le \frac{b - \mu}{\sigma}\right] \quad \text{where } Z \sim \mathcal{N}(0, 1)$$

[예제 5.1]

P[*Z* ≤ 1.37]과 *P*[*Z* > 1.37]은 얼마인가?

[풀이]

 $P[Z \le 1.37] = 0.9147$

 $P[Z\!>1.37]\!=\!1\!-\!P[Z\!\le1.37]\!=\!1\!-\!0.9147\!=\!0.0853$

[예제 5.4]

P[Z>z]=0.025를 만족하는 z를 찾아라.

【풀이】

P[Z < z] = 1 - 0.025 = 0.975

표준정규분포표에서 0.975에 해당하는 주변값을 찾으면 z=1.96이다.

5.4 정규분포의 확률계산

X가 $N(\mu, \sigma^2)$ 를 따르면 표준화된 변수

$$Z = \frac{X - \mu}{\sigma}$$

는 표준정규분포 N(0,1)을 따른다.

[예제 5.6]

X가 정규분포 $N(60,4^2)$ 을 따를 때 $P[55 \le X \le 63]$ 을 구하라.

【풀이】

표준화된 변수:
$$Z = \frac{X - \mu}{\sigma} = \frac{X - 60}{4}$$

$$X=55$$
인 경우: $Z=\frac{X-\mu}{\sigma}=\frac{55-60}{4}=-1.25$

$$X=63$$
인 경우: $Z=\frac{X-\mu}{\sigma}=\frac{63-60}{4}=0.75$

$$P[55 \le X \le 63] = P[-1.25 \le Z \le 0.75]$$

= $P[Z \le 0.75] - P[Z \le -1.25] = 0.7734 - 0.1056 = 0.6678$

X가 $N(\mu, \sigma^2)$ 를 따르면

$$P[a \le X \le b] = P\left[\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right]$$

여기서 Z는 표준정규분포이다.

[예제 5.7]

점심식사로 곁들여 먹는 상추의 칼로리가 평균 200이고 표준편차가 5인 정규분포를 한다고 하자. 다음의 확률은 얼마인가?

(1) 208 칼로리가 넘는다.

【풀이】

$$X$$
: 상추의 칼로리, $Z = \frac{X - \mu}{\sigma} = \frac{X - 200}{5}$

$$X=208$$
인 경우: $Z=\frac{X-\mu}{\sigma}=\frac{208-200}{5}=1.6$

$$P[X > 208] = P[Z > 1.6] = 1 - P[Z \le 1.6] = 1 - 0.9452 = 0.0548$$

(2) 190과 200 칼로리 사이에 있다.

【풀이】

$$X=190$$
인 경우: $Z=\frac{X-\mu}{\sigma}=\frac{190-200}{5}=-2.0$

$$X=200$$
인 경우: $Z=\frac{X-\mu}{\sigma}=\frac{200-200}{5}=0.0$

$$P[190 \le X \le 200] = P[-2.0 \le Z \le 0.0] = 0.5 - P[Z \le -2.0] = 0.5 - 0.0228 = 0.4772$$

5.5 이항분포의 정규근사

np와 n(1-p)가 모두 클 때, 즉 15보다 클 때, 이항분포는 평균=np와 표준편차= $\sqrt{np(1-p)}$ 를 갖는 정규분포에 의해 잘 근사된다. 즉,

$$Z = \frac{X - np}{\sqrt{np(1-p)}}$$

는 근사적으로 N(0,1)을 따른다.

5.6 정규모형가정의 점검

□ 정규점수그림

립 5-18 $\mid n=4$ 일 때 N(0,1) 분포와 정규점수

정규점수	순서화된 표본	80 -			
$m_1 = -0.84$	44	マッカー 10 mm 10		•	
$m_2 = -0.25$	68	ਜ਼ ਜ਼ 60 -			
$m_3 = 0.25$	75	1선기			
$m_4 = 0.84$	82	长 50-	•		
		40 -			
			-1	0	1
			1	정규점수	1

5.7 근사적 정규성을 위한 변환

- lue 1보다 큰 값을 크게 만들기: x^2 , x^3
- \Box 1보다 큰 값을 작게 만들기: \sqrt{x} , $\sqrt[4]{x}$, $\log_e x$, $\frac{1}{x}$

[예제 5.12]

[표 5-3]은 어느 산림에서 수집된 49 지역에 대한 목재의 체적을 조사한 자료 다. 자료를 정규성을 거의 만족하도록 변환하여라.

一五	5-3	목재의 체적(단위	위 : 코드)		
-	39.3	14.8	6.3	0.9	6.5
	3.5	8.3	10.0	1.3	7.15
	6.0	17.1	16.8	0.7	7.9
	2.7	26.2	24.3	17.7	3.2
	7.4	6.6	5.2	8.3	5.9
	3.5	8.3	44.8	8.3	13.4
	19.4	19.0	14.1	1.9	12.0
	19.7	10.3	3.4	16.7	4.3
	1.0	7.6	28.3	26.2	31.7
	8.7	18.9	3.4	10.0	

