риант №54 $n := 05$ $m := 05$ $M_{n,m} := 2 n + m$ $M_{n,n} := 3 n + 0.1$ $M = \begin{bmatrix} 0.1 & 1 & 2 & 3 & 4 & 5 \\ 2 & 3.1 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6.1 & 7 & 8 & 9 \\ 6 & 7 & 8 & 9.1 & 10 & 11 \\ 8 & 9 & 10 & 11 & 12.1 & 13 \\ 10 & 11 & 12 & 13 & 14 & 15.1 \end{bmatrix}$ $det(M) = -0.021$ $det(M) = -0.021$ $det(M)^2 = 4.223 \cdot 10^{-4}$ $condi(M) = 1.231 \cdot 10^3$ $< - \text{число обусловленности, основанное на равномерной норме}$ 1 способ: 2 способ: $f(x) := 7 x - 3$ $g(x) := 9 x - 4$	
$\begin{array}{l} m\coloneqq 0 \dots 5 \\ M_{n,m}\coloneqq 2\ n+m \qquad M_{n,n}\coloneqq 3\ n+0.1 \qquad V_n\coloneqq n^3 \\ &\begin{bmatrix} 0.1 & 1 & 2 & 3 & 4 & 5 \\ 2 & 3.1 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6.1 & 7 & 8 & 9 \\ 6 & 7 & 8 & 9.1 & 10 & 11 \\ 8 & 9 & 10 & 11 & 12.1 & 13 \\ 10 & 11 & 12 & 13 & 14 & 15.1 \end{bmatrix} V=\begin{bmatrix} 0 \\ 1 \\ 8 \\ 27 \\ 64 \\ 125 \end{bmatrix} \\ \det(M)=-0.021 \\ \det(M^2)=4.223\cdot 10^{-4} \\ \operatorname{condi}(M)=1.231\cdot 10^3 \qquad <-\mbox{-число обусловленности, основанное на равномерной } \\ 1\ CПОСО6 \colon \qquad 2\ CПОСО6 \colon \end{array}$	
$\begin{array}{l} m\coloneqq 0 \dots 5 \\ M_{n,m}\coloneqq 2\ n+m \qquad M_{n,n}\coloneqq 3\ n+0.1 \qquad V_n\coloneqq n^3 \\ &\begin{bmatrix} 0.1 & 1 & 2 & 3 & 4 & 5 \\ 2 & 3.1 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6.1 & 7 & 8 & 9 \\ 6 & 7 & 8 & 9.1 & 10 & 11 \\ 8 & 9 & 10 & 11 & 12.1 & 13 \\ 10 & 11 & 12 & 13 & 14 & 15.1 \end{bmatrix} V=\begin{bmatrix} 0 \\ 1 \\ 8 \\ 27 \\ 64 \\ 125 \end{bmatrix} \\ \det(M)=-0.021 \\ \det(M^2)=4.223\cdot 10^{-4} \\ \operatorname{condi}(M)=1.231\cdot 10^3 \qquad <-\mbox{-число обусловленности, основанное на равномерной } \\ 1\ CПОСО6 \colon \qquad 2\ CПОСО6 \colon \end{array}$	
$M_{n,m}\coloneqq 2\ n+m$ $M_{n,n}\coloneqq 3\ n+0.1$ $V_{n}\coloneqq n^3$ $M=\begin{bmatrix} 0.1 & 1 & 2 & 3 & 4 & 5 \\ 2 & 3.1 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6.1 & 7 & 8 & 9 \\ 6 & 7 & 8 & 9.1 & 10 & 11 \\ 8 & 9 & 10 & 11 & 12.1 & 13 \\ 10 & 11 & 12 & 13 & 14 & 15.1 \end{bmatrix}$ $V=\begin{bmatrix} 0 \\ 1 \\ 8 \\ 27 \\ 64 \\ 125 \end{bmatrix}$ $\det(M)=-0.021$ $\det(M^2)=4.223\cdot 10^{-4}$ $\cot(M)=1.231\cdot 10^3$ $<$ - число обусловленности, основанное на равномерной норме	
$M = \begin{bmatrix} 0.1 & 1 & 2 & 3 & 4 & 5 \\ 2 & 3.1 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6.1 & 7 & 8 & 9 \\ 6 & 7 & 8 & 9.1 & 10 & 11 \\ 8 & 9 & 10 & 11 & 12.1 & 13 \\ 10 & 11 & 12 & 13 & 14 & 15.1 \end{bmatrix} V = \begin{bmatrix} 0 \\ 1 \\ 8 \\ 27 \\ 64 \\ 125 \end{bmatrix}$ $\det(M) = -0.021$ $\det(M^2) = 4.223 \cdot 10^{-4}$ $\operatorname{condi}(M) = 1.231 \cdot 10^3 \text{$<$- число обусловленности, основанное на равномерной норме}$ $1 \operatorname{спосо6}; \qquad 2 \operatorname{спосо6};$	
$M = \begin{bmatrix} 0.1 & 1 & 2 & 3 & 4 & 5 \\ 2 & 3.1 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6.1 & 7 & 8 & 9 \\ 6 & 7 & 8 & 9.1 & 10 & 11 \\ 8 & 9 & 10 & 11 & 12.1 & 13 \\ 10 & 11 & 12 & 13 & 14 & 15.1 \end{bmatrix} V = \begin{bmatrix} 0 \\ 1 \\ 8 \\ 27 \\ 64 \\ 125 \end{bmatrix}$ $\det(M) = -0.021$ $\det(M^2) = 4.223 \cdot 10^{-4}$ $\operatorname{condi}(M) = 1.231 \cdot 10^3 \text{$<$- число обусловленности, основанное на равномерной норме}$ $1 \operatorname{спосо6}; \qquad 2 \operatorname{спосо6};$	
$\det(M) = -0.021$ $\det(M^2) = 4.223 \cdot 10^{-4}$ $\cot(M) = 1.231 \cdot 10^3$ <- число обусловленности, основанное на равномерной норме	
$\det(M) = -0.021$ $\det(M^2) = 4.223 \cdot 10^{-4}$ $\cot(M) = 1.231 \cdot 10^3$ <- число обусловленности, основанное на равномерной норме	
$\det(M) = -0.021$ $\det(M^2) = 4.223 \cdot 10^{-4}$ $\cot(M) = 1.231 \cdot 10^3$ <- число обусловленности, основанное на равномерной норме	
$\det(M) = -0.021$ $\det(M^2) = 4.223 \cdot 10^{-4}$ $\cot(M) = 1.231 \cdot 10^3$ <- число обусловленности, основанное на равномерной норме	
$\det(M) = -0.021$ $\det(M^2) = 4.223 \cdot 10^{-4}$ $\cot(M) = 1.231 \cdot 10^3$ <- число обусловленности, основанное на равномерной норме	
$\det(M) = -0.021$ $\det(M^2) = 4.223 \cdot 10^{-4}$ $\cot(M) = 1.231 \cdot 10^3$ <- число обусловленности, основанное на равномерной норме	
$\det(M) = -0.021$ $\det(M^2) = 4.223 \cdot 10^{-4}$ $\cot(M) = 1.231 \cdot 10^3$ <- число обусловленности, основанное на равномерной норме	
$\det\left(M^{2}\right)=4.223\cdot10^{-4}$ $\cot\left(M\right)=1.231\cdot10^{3}$ <- число обусловленности, основанное на равномерной норме	
$\det\left(M^{2}\right)=4.223\cdot10^{-4}$ $\cot\left(M\right)=1.231\cdot10^{3}$ <- число обусловленности, основанное на равномерной норме	
${ m condi}(M) = 1.231 \cdot 10^3$ <- число обусловленности, основанное на равномерной норме	
1 способ: 2 способ:	
1 способ: 2 способ: $f(x) \coloneqq 7 \ x - 3$ $g(x) \coloneqq 9 \ x - 4$	
1 способ: 2 способ: $f(x) \coloneqq 7 \ x - 3 \qquad \qquad g(x) \coloneqq 9 \ x - 4$	
$f(x) := 7 \ x - 3$ $g(x) := 9 \ x - 4$	
$J \setminus I = I \cup I \cup$	
$f(x) := 7 \ x - 3$ $q(x) := 9 \ x - 4$ $g(x) := 14 \ x - 6$ $t(x) := 18 \ x - 8$	
$\begin{bmatrix} f(x) \\ g(x) \end{bmatrix} \xrightarrow{solve} \frac{3}{7} \qquad A \coloneqq \begin{bmatrix} 9 \\ 18 \end{bmatrix} B \coloneqq \begin{bmatrix} 4 \\ 8 \end{bmatrix}$	
$\lfloor g(x) \rfloor$ 7 $\lfloor 18 \rfloor$ $\lfloor 8 \rfloor$	
lsolve(A,B) = [0.444]	
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{bmatrix} -3.883 & 6.997 & -2.122 & -1.241 & -0.36 & 0.321 \end{bmatrix}$	
geninv(M) = $\begin{vmatrix} -2.414 & -2.117 & 8.18 & -1.523 & -1.226 & -0.929 \\ 0.044 & 1.221 & 1.518 & 8.105 & 2.003 & 2.28 \end{vmatrix}$	
$u_{\Pi U} M_{OWHO}$ $\begin{bmatrix} -0.944 & -1.231 & -1.318 & 6.193 & -2.093 & -2.36 \end{bmatrix}$	
записать как 0.526 -0.346 -1.217 -2.088 7.041 -3.83	
$\nearrow M \sim -1$ [1.995 0.54 -0.915 -2.37 -3.825 4.72]	

Погрешность :

$$(M \cdot M^{-1}) - identity(6) = \begin{bmatrix} -1.776 \cdot 10^{-15} & -8.882 \cdot 10^{-16} & 8.882 \cdot 10^{-16} & 0 & 1.421 \cdot 10^{-14} & -1.066 \cdot 10^{-14} \\ 1.776 \cdot 10^{-15} & -3.553 \cdot 10^{-15} & 8.882 \cdot 10^{-16} & 3.553 \cdot 10^{-15} & 2.132 \cdot 10^{-14} & -2.132 \cdot 10^{-14} \\ 0 & -4.441 \cdot 10^{-15} & -1.776 \cdot 10^{-15} & 3.553 \cdot 10^{-15} & 3.553 \cdot 10^{-14} & -2.842 \cdot 10^{-14} \\ -1.421 \cdot 10^{-14} & 2.665 \cdot 10^{-15} & -1.776 \cdot 10^{-15} & 7.105 \cdot 10^{-15} & 6.395 \cdot 10^{-14} & -4.974 \cdot 10^{-14} \\ -3.553 \cdot 10^{-15} & -3.553 \cdot 10^{-15} & -5.329 \cdot 10^{-15} & 3.553 \cdot 10^{-15} & 6.395 \cdot 10^{-14} & -5.684 \cdot 10^{-14} \\ 3.553 \cdot 10^{-15} & -1.066 \cdot 10^{-14} & -5.329 \cdot 10^{-15} & 2.842 \cdot 10^{-14} & 7.105 \cdot 10^{-14} & -5.684 \cdot 10^{-14} \end{bmatrix}$$

(5) Погрешность решения системы линейных уравнений:

Погрешность способа №1:

Погрешность способа №2:

$$f\left(\frac{3}{7}\right) = 0$$

$$q(0.444) = -0.004$$

$$\begin{array}{cc}
(6) & t \coloneqq 0 \dots 7 \\
p \coloneqq 0 \dots 7
\end{array}$$

$$w_{t} = t^{4}$$

$$N_{t,p} = 0.4 \ t + 6 \ p$$
 $N_{t,t} = 5 \ t + 3$

$$N = \begin{bmatrix} 3 & 6 & 12 & 18 & 24 & 30 & 36 & 42 \\ 0.4 & 8 & 12.4 & 18.4 & 24.4 & 30.4 & 36.4 & 42.4 \\ 0.8 & 6.8 & 13 & 18.8 & 24.8 & 30.8 & 36.8 & 42.8 \\ 1.2 & 7.2 & 13.2 & 18 & 25.2 & 31.2 & 37.2 & 43.2 \\ 1.6 & 7.6 & 13.6 & 19.6 & 23 & 31.6 & 37.6 & 43.6 \\ 2 & 8 & 14 & 20 & 26 & 28 & 38 & 44 \\ 2.4 & 8.4 & 14.4 & 20.4 & 26.4 & 32.4 & 33 & 44.4 \\ 2.8 & 8.8 & 14.8 & 20.8 & 26.8 & 32.8 & 38.8 & 38 \end{bmatrix}$$

$$w = \begin{vmatrix} 0 \\ 1 \\ 16 \\ 81 \\ 256 \\ 625 \\ 1.296 \cdot 10^{3} \\ 2.401 \cdot 10^{3} \end{vmatrix}$$

$$\det(N) = -7.796 \cdot 10^4$$
 - матрица не вырождена

Формируем расширенную матрицу системы:

 $Ar = \operatorname{augment}(N, w)$

$$Ar = \begin{bmatrix} 3 & 6 & 12 & 18 & 24 & 30 & 36 & 42 & 0 \\ 0.4 & 8 & 12.4 & 18.4 & 24.4 & 30.4 & 36.4 & 42.4 & 1 \\ 0.8 & 6.8 & 13 & 18.8 & 24.8 & 30.8 & 36.8 & 42.8 & 16 \\ 1.2 & 7.2 & 13.2 & 18 & 25.2 & 31.2 & 37.2 & 43.2 & 81 \\ 1.6 & 7.6 & 13.6 & 19.6 & 23 & 31.6 & 37.6 & 43.6 & 256 \\ 2 & 8 & 14 & 20 & 26 & 28 & 38 & 44 & 625 \\ 2.4 & 8.4 & 14.4 & 20.4 & 26.4 & 32.4 & 33 & 44.4 & 1.296 \cdot 10^3 \\ 2.8 & 8.8 & 14.8 & 20.8 & 26.8 & 32.8 & 38.8 & 38 & 2.401 \cdot 10^3 \end{bmatrix}$$

Приводим матрицу к ступенчатому виду:

 $Ag = \operatorname{rref}(Ar)$

$$Ag = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 181.429 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 184.056 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 293.461 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 105.92 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 78.039 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 21.175 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -62.131 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -174.957 \end{bmatrix}$$

Выделяем последний столбец матрицы с решением системы:

 $x = \operatorname{submatrix}(Ag, 0, 7, 8, 8)$

$$x = \begin{bmatrix} 181.429 \\ 184.056 \\ 293.461 \\ 105.92 \\ 78.039 \\ 21.175 \\ -62.131 \\ -174.957 \end{bmatrix} \qquad \begin{array}{c} \textit{Погрешность:} \\ \\ -5.457 \cdot 10^{-12} \\ -6.366 \cdot 10^{-12} \\ -6.366 \cdot 10^{-12} \\ -5.457 \cdot 10^{-12} \\ -8.185 \cdot 10^{-12} \\ -8.185 \cdot 10^{-12} \\ -8.185 \cdot 10^{-12} \\ -8.185 \cdot 10^{-12} \\ -6.366 \cdot 10^{-12} \end{bmatrix}$$

$$(7) \qquad B \coloneqq \text{ln}(N) \\ B \vDash \text{ln}(N)$$

	T 7	1 4	. (,	2.0	(D)	$-\cos(I)$	3)	1 (D	\ 1							
	U	submati		3,0,row	S(B)	$-1, \frac{\cos(R)}{2}$		Δ , cois (B	J — 1 J							
		$[2.8 \ 8.8]$	1	4.8 2	0.8	26.8	32.8	38.8	38	1						
		0 6.7	$43 \ 1$	0.286 1	5.429	9 20.571 2	25.714	$4 \ \ 30.857$	36.9	971						
		0 0		2.234	3.051	1 - 4.068	5.085	6.102	2 8.4	144						
	U=	0 0		0	1.684	3.246	4.807	6.369	14.8	895						
	0 =	0 0		0	0	-2.697 -	-0.195	6 - 0.292	2 1.7	724						
		0 0				0 -										
		0 0		0	0	0										
		$\begin{bmatrix} 0 & 0 \end{bmatrix}$		0	0	0	0	0	17.9	963						
		8 057.10	209	2 620 . 1	0^{210}	$6.220 \cdot 10^{210}$	9 00	7.10^{210}	1 161	1. 10 211	1 /10	10^{211}	1 672	10^{21}	$1.923 \cdot 10^2$	211
8)															$1.923 \cdot 10$ $1.944 \cdot 10^2$	
,																
		$9.148 \cdot 10$	200	$3.716 \cdot 1$	0210	$6.474 \cdot 10^{210}$	9.18	39 • 10 210	1.186	j • 10 ²¹¹	1.45	10211	1.709	• 1021	$1.964 \cdot 10^{2}$	011
	$N^{94} =$	$9.242 \cdot 10$)209	$3.754 \cdot 1$	0^{210} ($6.54 \cdot 10^{210}$	9.28	$33 \cdot 10^{210}$	1.198	$3 \cdot 10^{211}$	1.464	• 10211	1.726	• 1021	$1.984 \cdot 10^{2}$	11
															$^{1} 2.004 \cdot 10^{2}$	
															$2.023 \cdot 10^{2}$	
															$^{1} 2.043 \cdot 10^{2}$	
		$9.601 \cdot 10$	0^{209}	$3.9 \cdot 10^{21}$	10	$6.795 \cdot 10^{210}$	9.64	$44 \cdot 10^{210}$	1.245	$5 \cdot 10^{211}$	1.521	$\cdot 10^{211}$	1.793	• 10^{21}	$^{1} 2.061 \cdot 10^{2}$	211