Over-fitting in Linear Regression

- Input: x; Output: y
 Observations: (x₁, y₁), (x₂, y₂), ..., (x_N, y_N)
- Use these observations as training examples. Task: Given a new input \tilde{x} , predict the output \tilde{y} .

• For example, $x \in [0, 1)$, N = 10

X	У	
0.884644066199	-0.864791215635069	
0.793349886821	-1.32738612014193	
0.735440841558	-1.18222466237236	
0.421871764847	0.304255805886633	
0.0118832729931	0.101594120287724	
0.226770188973	1.13377458999431	
0.978530671629	-0.147028527196347	
0.0431076970157	0.247622971933151	
0.890003286931	-0.605625802202937	
0.888362799625	-0.649537521948140	

- It does not look like a line.
- Fit the data using a polynomial

$$y(x, \mathbf{w}) = w_1 x^k + w_2 x^{k-1} + \cdots + w_k x + w_{k+1},$$

where
$$\mathbf{w} = [w_1, ..., w_k, w_{k+1}]^{\top}$$
.

Introduce the following matrices

$$X = \begin{bmatrix} x_1^k & \cdots & x_1 & 1 \\ x_2^k & \cdots & x_2 & 1 \\ \vdots & \vdots & & \vdots \\ x_N^k & \cdots & x_N & 1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_k \\ w_{k+1} \end{bmatrix}, \quad \text{and } \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}.$$

Consider

$$E(\mathbf{w}) = \|X\mathbf{w} - \mathbf{y}\|^2.$$

Polynomial Regression Linear Regression

• Recall
$$\nabla E(\mathbf{w}) = 2X^{\top}(X\mathbf{w} - \mathbf{y})$$

We have

$$| \boldsymbol{w} = (X^{\top}X)^{-1}X^{\top}\boldsymbol{y} |.$$

W	k = 1	k = 3	k = 6	k = 9
<i>W</i> ₁	-1.41	25.37	43.45	-69519.92
<i>W</i> ₂	0.53	-37.18	-210.56	214844.27
W ₃		12.21	339.78	-189181.01
<i>W</i> ₄		-0.10	-211.33	-61808.88
₩ 5			34.15	210688.85
<i>w</i> ₆			4.49	-141666.70
<i>W</i> ₇			0.03	41628.04
₩ 8				-5191.34
W 9				200.18
<i>w</i> ₁₀				-1.61

- The case k = 9 is over-fitting.
- In order to avoid over-fitting, we can use regularization.
- Ridge regression

$$\widetilde{E}(\mathbf{w}) = \|X\mathbf{w} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|^2.$$

This can be considered as a result of Bayesian Learning.

Lasso regression

$$\widetilde{E}(\boldsymbol{w}) = \|X\boldsymbol{w} - \boldsymbol{y}\|^2 + \lambda \sum_{n=1}^{k+1} |w_n|.$$

Bayesian Linear Regression

- Bayesian linear regression avoids the over-fitting problem of maximum likelihood.
- Input: x; Output: y
 Observations: (x₁, y₁), (x₂, y₂),..., (x_N, y_N)
- Basic Assumption:

Given x, the corresponding value of y has a normal distribution with a mean equal to the value $y_*(x, \mathbf{w})$ of the polynomial curve

$$y_*(x, \mathbf{w}) = w_1 x^k + w_2 x^{k-1} + \cdots + w_k x + w_{k+1},$$

where
$$\mathbf{w} = [w_1, ..., w_k, w_{k+1}]^{\top}$$
.

Write

$$y = y_*(x, \mathbf{w}) + \epsilon,$$

where ϵ is a Gaussian noise. Then

$$p(y|x, \mathbf{w}, \beta) = \mathcal{N}(y|y_*(x, \mathbf{w}), \beta^{-1}),$$

where β is a parameter corresponding to the inverse variance, called the precision.

- Assume that each observation is independent, and that the variance β^{-1} is all the same.
- Then we have

$$p(\mathbf{y}|\mathbf{x},\mathbf{w},\beta) = \prod_{n=1}^{N} \mathcal{N}(y_n|y_*(x_n,\mathbf{w}),\beta^{-1}).$$

This is our probabilistic model.

It is easy to see

$$-\ln p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{w},\beta) = \frac{\beta}{2} \sum_{n=1}^{N} (y_n - y_*(x_n,\boldsymbol{w}))^2 + (\text{constant})$$
$$= \frac{\beta}{2} \|\boldsymbol{y} - X\boldsymbol{w}\|^2 + (\text{constant}).$$

- Next we need to choose a prior.
- D-dimensional Gaussian distribution:

$$\mathcal{N}(oldsymbol{x}|oldsymbol{\mu}, \Sigma) = rac{1}{(2\pi)^{D/2}} rac{1}{|\Sigma|^{1/2}} \exp\left\{-rac{1}{2}(oldsymbol{x}-oldsymbol{\mu})^{ op} \Sigma^{-1}(oldsymbol{x}-oldsymbol{\mu})
ight\}$$

where the *D*-dimensional vector μ is the mean, the $D \times D$ matrix Σ is the covariance, and $|\Sigma|$ is the determinant of Σ .

• Choose a prior distribution for w:

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|0, \alpha^{-1}I).$$

We have

$$-\ln p(\mathbf{w}|\alpha) = \frac{\alpha}{2}\mathbf{w}^{\top}\mathbf{w} + (\text{constant}) = \frac{\alpha}{2}\|\mathbf{w}\|^2 + (\text{constant}).$$

Bayes' Theorem gives the posterior

$$p(\mathbf{w}|\mathbf{x},\mathbf{y},\alpha,\beta) \propto p(\mathbf{y}|\mathbf{x},\mathbf{w},\beta) p(\mathbf{w}|\alpha).$$

<u>Task</u>: Determine **w** so that the posterior is maximized.

This process is called a maximum a posteriori (MAP) estimation.

Take the negative logarithm of the posterior

$$E(\mathbf{w}) = -\ln p(\mathbf{w}|\mathbf{x}, \mathbf{y}, \alpha, \beta)$$

$$= -\ln [p(\mathbf{y}|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\alpha)] + (constant)$$

$$= \frac{\beta}{2} ||\mathbf{y} - X\mathbf{w}||^2 + \frac{\alpha}{2} ||\mathbf{w}||^2 + (constant)$$

The maximum of the posterior is given by the minimum of

$$|\tilde{E}(\mathbf{w}) = \frac{\beta}{2} ||\mathbf{y} - X\mathbf{w}||^2 + \frac{\alpha}{2} ||\mathbf{w}||^2$$

Thus maximizing the posterior distribution is equivalent to minimizing the regularized sum-of-square error function.

• We can compute w explicitly:

$$\tilde{E}(\mathbf{w}) = \frac{\beta}{2} \|X\mathbf{w} - \mathbf{y}\|^2 + \frac{\alpha}{2} \|\mathbf{w}\|^2,$$

and

$$\nabla \tilde{E}(\mathbf{w}) = \beta \mathbf{X}^{\top} (\mathbf{X} \mathbf{w} - \mathbf{y}) + \alpha \mathbf{w} = \mathbf{0}.$$

Thus

$$\mathbf{w} = \beta \mathbf{S} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$
 with $\mathbf{S}^{-1} = \alpha \mathbf{I} + \beta \mathbf{X}^{\mathsf{T}} \mathbf{X}$.

N=9, $\alpha=0.01$ and $\beta=1000$

Recall the maximum likelihood gave us

- The posterior can be computed explicitly, since the prior and the likelihood are all Gaussian.
- Indeed, we obtain

$$p(\mathbf{w}|\mathbf{y}) = \mathcal{N}(\mathbf{w}|\mathbf{m}, \mathcal{S})$$

where

$$\mathbf{m} = \beta \mathbf{S} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$
 with $\mathbf{S}^{-1} = \alpha \mathbf{I} + \beta \mathbf{X}^{\mathsf{T}} \mathbf{X}$.