Algebra Exam 1 Note Sheets

1.2 Binary Operations

Definitions:

Binary Operation: A binary operation * on set S is a function from $S \times S$ to

S. We denote an output as a*b. Big Idea: Take 2 elements

from S, (a,b) and the operation gives a*b, which is an

element of S.

Commutative: If a * b = b * a for all $a, b \in S$.

Associative: If (a * b) * c = a * (b * c) for all $a, b, c \in S$.

Closed: Suppose * is a binary operation on S and $H \subset S$. We say

H is closed under * if for all $a, b \in H$, $a * b \in H$.

Identity: There exists $e \in G$ such that for all $a \in G$, a * e = e * a = a.

Inverse: For all $a \in G$, there exists $a' \in G$ such that a*a' = a'*a = e.

Examples:

1. Let $L = \{n^2 \mid n \in \mathbb{N}\}$. Is L closed under +? No: $16 + 4 \notin L$.

2. Is L closed under \cdot ? Yes. Let $a,b\in L$. There exists $n,m\in L$ such that $a=n^2$ and $b=m^2$. Then $a\cdot b=n^2\cdot m^2\implies a\cdot b=(nm)^2$. Since $n,m\in\mathbb{N}$, $a,b\in L$. Therefore, L is closed under \cdot .

3. For tables, calculations are made from the column element to the row element. Commutativity and associativity can be checked by testing all possible combinations.

4. Suppose that * is an associative and commutative binary operation on a set S. Show that $H = \{a \in S \mid a * a = a\}$ is closed under *. (The elements of H are **idempotents** of the binary operation *.)

Solution. Suppose that * is an associative and commutative binary operation on set S. Let $a,b \in H$ and consider the following:

$$(a*b)*(a*b) = (b*a)*(a*b)$$
 commutative property,
 $= b*(a*a)*b$ associative property,
 $= b*a*b$ definition of H ,
 $= b*b*a$ commutative property,
 $= (b*b)*a$ associative property,
 $= b*a$ property of H ,
 $= a*b$ commutativity property.

Therefore, H is closed because $a*b \in H$.

1.3 Isomorphisms

Definitions:

Isomorphism: Let $\langle G, * \rangle$ and $\langle G', *' \rangle$ be 2 binary structures. We say they are isomorphic if there exists an function $\phi : G \to G'$ such

are isomorphic if there exists an function ϕ : C

1. ϕ is a bijection

2. ϕ preserves the operation $(\forall a,b \in G, \phi(a*b) =$

 $\phi(a) *' \phi(b)$.

One-to-One: If f(a) = f(b), then a = b.

Onto: Let $f: X \to Y$. f is onto if for every $y \in Y$, there exists

at least one $x \in X$ such that f(x) = y.

Examples:

1. $\langle \mathbb{Z}, + \rangle$ with $\phi : \mathbb{Z} \to 2\mathbb{Z}$ and $\langle 2\mathbb{Z}, + \rangle$ with $\phi(x) : 2x$. This is one-to-one (just draw a diagram and line them up to each other), and onto because every element in y has an x that is mapped to it. It's a homomorphism because $\phi(a+b) = 2(a+b) = 2a + 2b = \phi(a) + \phi(b)$.

To prove that two groups are not isomorphic, you must rely on *structural properties*. Consider the following examples to demonstrate structural property differences:

- 2. The sets \mathbb{Z} and \mathbb{Z}^+ both have cardinality \aleph_0 , and there are lots of one-to-one functions mapping \mathbb{Z} onto \mathbb{Z}^+ . However, the binary structures $\langle \mathbb{Z}, \cdot \rangle$ and $\langle \mathbb{Z}^+, \cdot \rangle$, where \cdot is the usual multiplication, are not isomorphic. In $\langle \mathbb{Z}, \cdot \rangle$, there are two elements x such that $x \cdot x = x$, namely 0 and 1. However, in $\langle \mathbb{Z}^+, \cdot \rangle$, there is only the single element 1.
- 3. The binary structures $\langle \mathbb{C}, \cdot \rangle$ and $\langle \mathbb{R}, \cdot \rangle$ under the usual multiplication are not isomorphic. (It can be shown that \mathbb{C} and \mathbb{R} have the same cardinality.) The equation $x \cdot x = c$ has a solution x for all $c \in \mathbb{C}$, but $x \cdot x = -1$ has no solution in \mathbb{R} .

These are a list of possible structural and nonstructural properties:

Structural Properites

Nonstructural Properties

- 1. The set has 4 elements.
- 2. The operation is commutative.
- 3. x * x = x for all $x \in S$.
- 4. The equation a*x = b has a solution x in S for all $a, b \in S$
- 1. The number 4 is an element.
- 2. The operation is called "addition."
- 3. The elements of S are matrices.
- 4. S is a subset of \mathbb{C} .

1.4 Groups

Definitions:

Group: A group $\langle G, * \rangle$ is a set G closed under a binary operation * such that there is an inverse, an identity element, and the associative property is upheld.

Examples:

Let * be defined on \mathbb{Q}^+ as $a*b=\frac{ab}{2}$. Show this is a group:

- Associativity: Let $a, b, c \in \mathbb{Q}^+$. $(a*b)*c = \frac{ab}{2}*c = \frac{abc}{4} = \frac{2(bc/2)}{2} = a*\frac{bc}{2} = a*(b*c)$.
- Identity: $a * e = a \implies e = 2$.
- Inverses: $a*a'=2 \implies \frac{aa'}{2}=2 \implies aa'=4 \implies a'=\frac{4}{a} \implies a*\frac{4}{a}=\frac{a(4/a)}{2}=2$. So, the identity is $a'=\frac{4}{a}$, and this exists in the group.

1.5 Subgroups

Definitions:

Subgroup: Let G be a group, where $H \subseteq G$. H is called a subgroup of G if:

- 1. H is closed under the operation.
- 2. Identity element belongs to H.
- 3. Each element of H must have its inverse in H.

Note: For finding subgroups of some modulo integer set, just use the divisors of the set.

Examples:

1. Determine whether the group consisting of the $n \times n$ matrices with determinant -1 or 1 is a subgroup of $GL(n, \mathbb{R})$.

Let H be the set of all $n \times n$ matrices with determinant -1 or 1. We will show that H is a subgroup of $GL(n,\mathbb{R})$ by verifying the subgroup criterion:

- **Identity:** The identity matrix I_n has a determinant of 1, so $I_n \in H$.
- Closure: Let $A, B \in H$. Then $\det(A) = \pm 1$ and $\det(B) = \pm 1$. The determinant of the product AB is given by $\det(AB) = \det(A) \det(B) = (\pm 1)(\pm 1) = \pm 1$. Thus, $AB \in H$.
- Inverses: Let $A \in H$. Then $\det(A) = \pm 1$. The determinant of the inverse A^{-1} is given by $\det(A^{-1}) = \frac{1}{\det(A)} = \pm 1$.. Thus, $A^{-1} \in H$.

1.6 Cyclic Groups

Definitions:

Cyclic: A group is cyclic if there exists an element $a \in G$ such that

 $G = \{a^n \mid n \in \mathbb{Z}\} = \langle a \rangle$. We call the element $a \in G$ a

generator.

Order: For any $b \in G$, $\langle b \rangle$ is a cyclic subgroup. The order of ele-

ment b is the cardinality of b.

Relatively Prime: If two integers are relatively prime, then their gcd(r, s) = 1.

Thus, there exists $n, m \in \mathbb{Z}$ such that nr + ms = 1.

The Division Algorithm for \mathbb{Z} : Let m be a positive integer, and n be any integer. Then there exists unique q and r such that $n = m \cdot q + r$ with $0 \le r < m$ (where q is the quotient, r is the remainder). Idea: n = 42, m = 8, 42 = 8(5) + 2 and n = -42, m = 8, -42 = 8(-6) + 6.

Proof. On a number line where we have 0, m, 2m, etc. n is either a multiple of m or it falls between two multiples of m. Let q be the largest integer such that $qm \le n$. Then r = n - qm. Hence, $0 \le r < m$.

Theorems:

Theorem 1: Every subgroup of a cyclic group is cyclic.

Theorem 2: Let G be a cyclic subgroup. If G is infinite, then $G \simeq \mathbb{Z}$. If G is

finite, with order n, then $G \simeq \mathbb{Z}_n$. (\simeq is equivalence relation.)

Theorem 3: Let G be a cyclic group with n elements with generator a and

 $b = a^s$. Then b generates a cyclic subgroup of G of which contains $\frac{n}{d}$ elements where $d = \gcd(s, n)$. Also $\langle a^s \rangle = \langle a^t \rangle \iff$

 $\gcd(s, n) = \gcd(t, n).$

1.7 Generating Sets

Properties of Cayley Digraphs:

- 1. The graph is always connected.
- 2. At most, 1 arc can go from 1 vertex to another.
- 3. Each vertex has exactly 1 type of each arc starting at the vertex and ending at the vertex.
- 4. If two sequences of arc types starting at one vertex end at the same place, then the same two sequences starting at a common vertex will end at the same place.

Any digraph that has these properties is a group.