AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

. 1

1

2

3

1	1. (Currently amended) A method that facilitates one or more of minimum
2	spacing and width control during an optical proximity correction operation for a
3	mask that is used in manufacturing an integrated circuit, the method comprising:
4	considering a target edge of a first feature on the mask;
5	identifying a set of interacting edges in proximity to the target edge; and
6	performing the optical proximity correction operation, wherein performing
7	the optical proximity correction operation involves applying a first edge bias to
8	the target edge to compensate for optical effects in a resulting image of the target
9	edge;
10	wherein applying the first edge bias to the target edge involves:
11	calculating an available bias based on minimum spacing
12	requirements and/or minimum width requirements, and
13	allocating an-the available bias between the first edge bias
14	for the target edge and a second edge bias for at least one edge in
15	the set of interacting edges; and
16	wherein the available bias is allocated based on relative weights assigned
17	to the target edge and the second edge.

2. (Original) The method of claim 1, wherein applying the first edge bias can involve adding a positive edge bias that increases the size of the first feature or adding a negative edge bias that decreases the size of the first feature.

1	3. (Original) The method of claim 1,
2	wherein the second edge belongs to a second feature so that the distance
3	between the target edge and the second edge defines a distance between the first
4	feature and the second feature;
5	wherein applying the first edge bias to the target edge involves satisfying a
6	minimum spacing requirement between the target edge and the second edge.
1	4. (Original) The method of claim 3, wherein applying the first edge bias
2	to the target edge additionally involves satisfying a minimum width requirement
3	between the target edge and an opposing edge of the first feature.
1	5. (Original) The method of claim 1, wherein the second edge is also an
2	edge of the first feature so that a distance between the target edge and the second
3	edge defines a distance across a gap between portions of the first feature.
1	6. (Original) The method of claim 1,
2	wherein the second edge is an opposing edge of the first feature so that a
3	distance between the target edge and the opposing edge defines a width of the first
4	feature; and
5	wherein applying the first edge bias to the target edge involves satisfying a
6	minimum width requirement for the first feature between the target edge and the
7	second edge.

7. (Original) The method of claim 1, wherein applying the first edge bias

1

2

3

1	8. (Original) The method of claim 1, wherein allocating the available bias
2	between the target edge and the second edge involves ensuring that the first edge
3	bias of the target edge satisfies a minimum spacing requirement between the
1	target edge and each edge in the set of interacting edges

- 9. (Original) The method of claim 1, wherein allocating the available bias between the target edge and the second edge involves ensuring that the first edge bias of the target edge satisfies a minimum width requirement between the target edge and each edge in the set of interacting edges.
 - 10. (Canceled).

1

2

3

4

1

1

2

3

4

5

- 1 11. (Original) The method of claim 1, wherein allocating the available bias 2 involves iteratively updating bias allocated to the target edge and the second edge 3 in a manner that satisfies minimum spacing requirements or minimum width 4 requirements.
 - 12. (Currently amended) A computer-readable storage medium storing instructions that when executed by a computer cause the computer to perform a method that facilitates one or more of minimum spacing and width control during an optical proximity correction operation for a mask that is used in manufacturing an integrated circuit, the method comprising:
- considering a target edge of a first feature on the mask;

 identifying a set of interacting edges in proximity to the target edge; and

 performing the optical proximity correction operation, wherein performing

 the optical proximity correction operation involves applying a first edge bias to

 the target edge to compensate for optical effects in a resulting image of the target

 edge;

12	wherein applying the first edge bias to the target edge involves:
13	calculating an available bias based on minimum spacing
14	requirements and/or minimum width requirements, and
15	allocating an the available bias between the first edge bias
16	for the target edge and a second edge bias for at least one edge in
17	the set of interacting edges; and
18	wherein the available bias is allocated based on relative weights assigned
19	to the target edge and the second edge.
	l.
1	13. (Original) The computer-readable storage medium of claim 12,
2	wherein applying the first edge bias can involve adding a positive edge bias that
3	increases the size of the first feature or adding a negative edge bias that decreases
4	the size of the first feature.
1	14. (Original) The computer-readable storage medium of claim 12,
2	wherein the second edge belongs to a second feature so that the distance
3	between the target edge and the second edge defines a distance between the first
4	feature and the second feature;
5	wherein applying the first edge bias to the target edge involves satisfying a
6	minimum spacing requirement between the target edge and the second edge.
1	15. (Original) The computer-readable storage medium of claim 14,
2	wherein applying the first edge bias to the target edge additionally involves
3	satisfying a minimum width requirement between the target edge and an opposing
4	edge of the first feature.
1	16. (Original) The computer-readable storage medium of claim 12,
2	wherein the second edge is also an edge of the first feature so that a distance

- 3 between the target edge and the second edge defines a distance across a gap
- 4 between portions of the first feature.
- 1 17. (Original) The computer-readable storage medium of claim 12,
- wherein the second edge is an opposing edge of the first feature so that a
- distance between the target edge and the opposing edge defines a width of the first
- 4 feature; and
- 5 wherein applying the first edge bias to the target edge involves satisfying a
- 6 minimum width requirement for the first feature between the target edge and the
- 7 second edge.
- 1 18. (Original) The computer-readable storage medium of claim 12,
- 2 wherein applying the first edge bias to the target edge involves considering an
- 3 edge type of the target edge and considering an edge type of the second edge.
- 1 19. (Original) The computer-readable storage medium of claim 12,
- 2 wherein allocating the available bias between the target edge and the second edge
- 3 involves ensuring that the first edge bias of the target edge satisfies a minimum
- 4 spacing requirement between the target edge and the second edge.
- 1 20. (Original) The computer-readable storage medium of claim 12,
- 2 wherein allocating the available bias between the target edge and the second edge
- 3 involves ensuring that the first edge bias of the target edge satisfies a minimum
- 4 width requirement between the target edge and each edge in the set of interacting
- 5 edges.
- 1 21. (Canceled).

2	wherein allocating the available bias involves iteratively updating bias allocated to
3	the target edge and the second edge in a manner that satisfies minimum spacing
4	requirements or minimum width requirements.
1	23. (Currently amended) An apparatus that facilitates minimum spacing or
2	width control during an optical proximity correction operation for a mask that is
3	used in manufacturing an integrated circuit, the apparatus comprising:
4	an identification mechanism that is configured to identify a set of
5	interacting edges in proximity to a target edge of a first feature; and
6	an optical proximity correction mechanism that is configured to perform
7	the optical proximity correction operation, wherein the optical proximity
8	correction mechanism is configured to add a first edge bias to the target edge to
9	compensate for optical effects in a resulting image of the target edge;
10	wherein applying the first edge bias to the target edge involves calculating
11	an available bias based on minimum spacing requirements and/or minimum width
12	requirements;
13	wherein the optical proximity correction mechanism is
14	configured to allocate an the available bias between the first edge
15	bias for the target edge and a second edge bias for at least one edge
16	in the set of interacting edges; and
17	wherein the available bias is allocated based on relative weights assigned
18	to the target edge and the second edge.
1	24. (Original) The apparatus of claim 23, wherein applying the first edge
2	bias can involve adding a positive edge bias that increases the size of the first
3	feature or adding a negative edge bias that decreases the size of the first feature.

22. (Original) The computer-readable storage medium of claim 12,

1

1	25. (O	riginal)	The apparatus	of claim 23,
-	(

- 2 wherein the second edge belongs to a second feature so that the distance
- 3 between the target edge and the second edge defines a distance between the first
- 4 feature and the second feature;
- 5 wherein while adding the first edge bias, the optical proximity correction
- 6 mechanism is configured to satisfy a minimum spacing requirement between the
- 7 target edge and the second edge.
- 1 26. (Original) The apparatus of claim 25, wherein while adding the first
- 2 edge bias to the target edge, the optical proximity correction mechanism is
- 3 configured to satisfy a minimum width requirement between the target edge and
- 4 an opposing edge of the first feature.
- 1 27. (Original) The apparatus of claim 23, wherein the second edge is also
- 2 an edge of the first feature so that a distance between the target edge and the
- 3 second edge defines a distance across a gap between portions of the first feature.
- 1 28. (Original) The apparatus of claim 23,
- wherein the second edge is an opposing edge of the first feature so that a
- 3 distance between the target edge and the opposing edge defines a width of the first
- 4 feature; and
- 5 wherein while adding the first edge bias, the optical proximity correction
- 6 mechanism is configured to satisfy a minimum width requirement for the first
- 7 feature between the target edge and the second edge.
- 1 29. (Original) The apparatus of claim 23, wherein while adding the first
- 2 edge bias, the optical proximity correction mechanism is configured to consider
- an edge type of the target edge and to consider an edge type of the second edge.

1	30. (Original) The apparatus of claim 23, wherein while adding the first
2	edge bias, the optical proximity correction mechanism is configured to ensure that
3	the first edge bias of the target edge satisfies a minimum spacing requirement
4	between the target edge and the second edge.
1	31. (Original) The apparatus of claim 23, wherein while adding the first
2	edge bias, the optical proximity correction mechanism is configured to ensure that
3	the first edge bias of the target edge satisfies a minimum width requirement
4	between the target edge and each edge in the set of interacting edges.
1	32. (Canceled).
1	33. (Original) The apparatus of claim 23, wherein while allocating the
2	available bias, the optical proximity correction mechanism is configured to
3	iteratively update bias allocated to the target edge and the second edge in a

34. (Currently amended) A means for facilitating minimum spacing or 1 width control during an optical proximity correction operation for a mask that is 2. used in manufacturing an integrated circuit, comprising: 3

manner that satisfies minimum spacing requirements or minimum width

- an identification means that is configured to identify a set of interacting edges in proximity to the target edge of a first feature; and
- an optical proximity correction means for performing the optical proximity 6 correction operation, wherein performing the optical proximity correction 7 operation involves applying a first edge bias to the target edge to compensate for 8 optical effects in a resulting image of the target edge;

3

4

5

4

5

requirements.

10	wherein while applying the first edge bias to the target edge, the optical		
11	proximity correction means is configured to:		
12	calculate an available bias based on minimum spacing		
13	requirements and/or minimum width requirements, and		
14	allocate an-the available bias between the first edge bias for		
15	the target edge and a second edge bias for at least one edge in the		
16	set of interacting edges; and		
17	wherein the available bias is allocated based on relative weights assigned		
18	to the target edge and the second edge.		
1	35. (Currently amended) A method of manufacturing an integrated circuit		
2	product that facilitates minimum spacing or width control during an optical		
3	proximity correction operation for a mask used in manufacturing the integrated		
4	circuit, the method comprising:		
5	considering a target edge of a first feature on the mask;		
6	identifying a set of interacting edges in proximity to the target edge; and		
7	performing the optical proximity correction operation, wherein performing		
8	the optical proximity correction operation involves applying a first edge bias to		
9	the target edge to compensate for optical effects in a resulting image of the target		
10	edge;		
11	wherein applying the first edge bias to the target edge involves:		
12	calculating an available bias based on minimum spacing		
13	requirements and/or minimum width requirements, and		
14	allocating an the available bias between the first edge bias		
15	for the target edge and a second edge bias for at least one edge in		
16	the set of interacting edges; and		
17	wherein the available bias is allocated based on relative weights assigned		
18	to the target edge and the second edge.		

1	36. (Currently amended) A mask used in fabricating an integrated circuit,
2	wherein the mask is created through a method that facilitates minimum spacing or
3	width control during an optical an proximity correction operation for the mask,
4	the method comprising:
5	considering a target edge of a first feature on the mask;
6	identifying a set of interacting edges in proximity to the target edge; and
7	performing the optical proximity correction operation, wherein performing
8	the optical proximity correction operation involves applying a first edge bias to
9	the target edge to compensate for optical effects in a resulting image of the target
0	edge;
1	wherein applying the first edge bias to the target edge involves:
2	calculating an available bias based on minimum spacing
3	requirements and/or minimum width requirements, and
4	allocating an the available bias between the first edge bias
5	for the target edge and a second edge bias for at least one edge in
6	the set of interacting edges; and
7	wherein the available bias is allocated based on relative weights assigned
8	to the target edge and the second edge.