

Block cipher

- Plaintext and ciphertext consist of fixed-sized blocks
- Ciphertext obtained from plaintext by iterating a round function
- Input to round function consists of key and output of previous round
- Usually implemented in software

Feistel Cipher

- Type of block cipher not a specific type
- Structure:
 - Text
 - subkeys

Feistel Cipher

- Encryption:
 - Generate subkeys
 - Encode text
 - Split the plaintext into left and right halves: $P = (L_0, R_0)$
 - Make rounds (loop) at each round i = 1, 2, ..., n, compute
 - $L_i = R_{i-1}$
 - $R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$ where F round function make xor
 - Ciphertext is L+R
 - Return ciphertext

- decryption:
 - Split the ciphertext into left and right halves: $P = (L_0, R_0)$
 - Make rounds (loop) at each round $i=n,\,n\text{-}1,\,...,\,1$, compute
 - $L_i = R_{i-1}$
 - $R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$ where F round function make xor
 - plaintext is L+R
 - Return plaintext

DES data encryption standard

Structure

- 8 byte text
- 8 byte key
- Initial permutation IP (text)
- Final or reverse permutation FP (text)
- Expand permutation EP (right half text)
- PC1, PC2 (key)
- S POX permutation (EP result)
- P permutation (S POX result)

DES

Steps:

- Encrypt:
 - Convert text to bits
 - Generate 16 subkey from key
 - Split text to L, R
 - 16 round i: 1 to 16 each round:
 - Feistel to R and subkey I
 - Calc new L,R
 - Combine L, R
 - Return combined result

DES decrypt

Steps:

- Decrypt:
 - Generate 16 subkey from key
 - Split text to L, R
 - 16 round i: 16 to 1 each round:
 - Feistel to R and subkey I
 - Calc new L,R
 - Combine L, R
 - Return combined result