

EDA Tool Tutorial

Oct 17, 2024

양자영, 김태환 교수 ECE Dept. Seoul National University

Outline

Introduction

Introduction

Given a placement, a netlist and technology information,

- determine the necessary wiring, e.g., net topologies and specific routing segments, to connect these cells
- while respecting constraints, e.g., design rules and routing resource capacities, and
- optimizing routing objectives, e.g., minimizing total wirelength and maximizing timing slack.

Introduction

Placement Nets

Global & Detailed Routing

A net to be connected

Post-route

Global & Detailed Routing

Global Routing

n

- Partitions the routing region into global routing cells (gcells)
- Plans routes as sequences of gcells
- Minimizes total length of routes and, possibly, routed congestio

Detailed Routing

- Seeks to implement each global route as a sequence of track segments

7

Terminology

Track(M2 Layer)

Track(M3 Layer)

Flow for Modern Global Routers

General flow for modern global routers, where each router uses a unique set of optimizations:

^{*} Reference: VLSI Physical Design: From Graph Partitioning to Timing Closure

Net Decomposition

Net Topology – Background

Source ■ Sink ■ Critical sink

Pins on grid

Case 1

Net with non-critical pins

Case 2

Net with critical pins

Net Topology – Background

Source ■ Sink ■ Critical sink

Net Topology – Motivation

Source ■ Sink ■ Critical sink

Proposed

Minimal WL

Short PL to critical pins

Robust timing w/ minimal WL increase

Net Topology – Experimental Results

200

- Integrated our methodology into OpenROAD(C++)
- Net Topology Construction: FLUTE(RSMT), PD-II(RSSLT), Ours

Example

Delay to the critical pin: $64.6ps \rightarrow 21.7ps$

Comparison of results for the post-route final designs

WNS: -18.28%

TNS: -53.37%

Power: -0.06%

Reference: Jayoung Yang and Taewhan Kim, "Improving Timing Quality Through Net Topology Optimization in Global Routing" IEEE International System-on-Chip Conference (SOCC) 2024

Pattern Routing

Pattern Routing

- Searches through a small number of route patterns to im prove runtime
- Topologies commonly used in pattern routing: L-shapes,
 Z-shapes, U-shapes

Pattern Routing

Negotiated-Congestion Routing

capacity(e): Edge e를 지나갈 수 있는 최대 track 수 (주로 $\frac{gcell_tile_size}{track_pitch}$ 로 계산)

demand(e): Edge e에서 routing에 사용된 track 수

The edge cost **cost(e)** is increased according to the edge congestion

Cost function of CUGR 2.0

[LAB1] Objective - Random Sensitivity Analysis

Random exploration can be used to identify potential improvements over default flow

Ex) Random-ordered Cell Placement → Placement metric change

S. -Y. Lee, et al., "RL-Legalizer: Reinforcement Learning-based Cell Priority Optimization in Mixed-Height Standard Cell Legalization," 2023 DATE

Ex) Random Steiner Point Disturbance → Timing metric change

S. Liu, Z. et al., "Concurrent Sign-off Timing Optimization via Deep Steiner Points Refinement," 2023 DAC

Distribution of sign-off TNS ratio of the updated solution with random Steiner point disturbance to the original one

[LAB1] Adjustable parameters in Routing (Innovus)

```
setAttribute -net <net_name> -avoid_detour {true|false} -weight <integer> ...
```

Attaches attributes to nets and subnets. Attaching the attributes allows the NanoRoute routing commands to route the nets following specific requirements.

Parameters

-avoid_detour {true | false}

Avoids detours of roughly more than a few gcell grids on the specified nets. This attribute affects global routing only. (Default: false)

Note: Cadence recommends that you use caution with this attribute, as it adds congestion to the design.

-weight <integer>

Specifies a relative weight for routing nets. In each switch box, the NanoRoute router routes nets with the highest weight first, then the next highest weight, and so on. Specify a value higher than 2 to ensure a net is routed before other nets. (Default: 2)

[LAB1-1] Download LAB Materials


```
Terminal
File Edit View Terminal Tabs Help
bash-4.4$ cd ~
<u>bash-4.4$ git clone</u> https://github.com/jayoung-official/GLOBAL ROUTE LAB.git
Cloning into 'GLOBAL ROUTE LAB'...
remote: Enumerating objects: 100, done.
remote: Counting objects: 100% (53/53), done.
remote: Compressing objects: 100% (41/41), done.
remote: Total 100 (delta 13), reused 36 (delta 9), pack-reused 47 (from 1)
Receiving objects: 100% (100/100), 58.25 MiB | 15.01 MiB/s, done.
Resolving deltas: 100% (30/30), done.
bash-4.4$ cd GLOBAL ROUTE LAB
bash-4.4$
```

```
cd ~
git clone https://github.com/jayoung-official/GLOBAL_ROUTE_LAB.git
cd GLOBAL_ROUTE_LAB
```

