Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms

 $p_0 \wedge p_1 \wedge \ldots \wedge p_{n-1} \to q$

$$p_0 \wedge p_1 \wedge \ldots \wedge p_{n-1} \to q$$

$$\vDash p_0 \land p_1 \land \ldots \land p_{n-1} \to q$$

$$\vDash p_0 \land p_1 \land \ldots \land p_{n-1} \to q$$

Notation:

$$p_0, p_1, \ldots, p_{n-1} \vDash q$$

$$\vDash p_0 \land p_1 \land \ldots \land p_{n-1} \to q$$

Notation:

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$.

$$\vDash p_0 \land p_1 \land \ldots \land p_{n-1} \to q$$

Notation:

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i)=T$, then $\nu(q)=T$

$$\vDash p_0 \land p_1 \land \ldots \land p_{n-1} \to q$$

Notation:

$$p_0, p_1, \ldots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Example
$$P \rightarrow Q, P \vDash Q$$

$$\vDash p_0 \land p_1 \land \ldots \land p_{n-1} \to q$$

Notation:

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i)=T$, then $\nu(q)=T$

Example
$$P \to Q, P \vDash Q$$

To show, $\vDash ((P \to Q) \land P) \to Q$

Notation:

$$p_0, p_1, \ldots, p_{n-1} \vDash q$$

 $\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$

Equivalently, if there is a valuation ν , so that $\nu(p_i)=T$, then $\nu(q)=T$

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms

forms

 $p_0, p_1, \ldots, p_{n-1}$ logically implies q if

$$\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$$

Notation:

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i)=T$, then $\nu(q)=T$

Proof: Exercise using truth tables!

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

forms

 $p_0, p_1, \ldots, p_{n-1}$ logically implies q if

$$\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$$

Notation:

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i)=T$, then $\nu(q)=T$

Example
$$P \to Q, P \vDash Q$$

To show, $\vDash ((P \to Q) \land P) \to Q$

To show, $\vDash ((P \to Q) \land P) \to Q$ *Proof:* Exercise using truth tables!

Troot. Exercise using truth tables:

Definition p_0, p_1, \dots, p_{n-1} and q are propositional forms

forms $p_0, p_1, \ldots, p_{n-1}$ logically implies q if

$$\vDash p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$$

Notation:

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i)=T$, then $\nu(q)=T$

Proof: Exercise using truth tables!

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms

forms

 p_0, p_1, \dots, p_{n-1} logically implies q if

$$\vDash p_0 \land p_1 \land \ldots \land p_{n-1} \to q$$

Notation:

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i)=T$, then $\nu(q)=T$

Proof: Exercise using truth tables!

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

forms

 p_0, p_1, \dots, p_{n-1} logically implies q if

$$\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$$

Notation:

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i)=T$, then $\nu(q)=T$

Example
$$P \rightarrow Q, P \models Q$$

To show, $\vDash ((P \to Q) \land P) \to Q$ *Proof:* Exercise using truth tables!

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

forms

 $p_0, p_1, \ldots, p_{n-1}$ logically implies q if

$$\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$$

Notation:

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i)=T$, then $\nu(q)=T$

Example
$$P \to Q, P \vDash Q$$
 To show, $\vDash ((P \to Q) \land P) \to Q$

Proof: Exercise using truth tables!

i.e. strings in our language (with no meaning attached),

Axioms

 $p_0, p_1, \ldots, p_{n-1}$ logically implies q if

$$\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$$

Notation:

forms

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

Proof: Exercise using truth tables!

We will have a starting point of assertions that we accept without proof

Axioms and inference rules

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $p_0, p_1, \ldots, p_{n-1}$ logically implies q if $\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$

Notation:

forms

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Example $P \rightarrow Q, P \models Q$ To show, $\models ((P \rightarrow Q) \land P) \rightarrow Q$ *Proof:* Exercise using truth tables!

and syntactic rules to derive assertions from those axioms

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ logically implies q if

$$\vDash p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$$

Notation:

$$p_0, p_1, \ldots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Example $P \rightarrow Q, P \models Q$ To show, $\models ((P \rightarrow Q) \land P) \rightarrow Q$

Proof: Exercise using truth tables!

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional $p_0, p_1, \ldots, p_{n-1}$ logically implies q if

 $\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$

Notation:

forms

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Example $P \rightarrow Q, P \models Q$ To show, $\models ((P \rightarrow Q) \land P) \rightarrow Q$ *Proof:* Exercise using truth tables!

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ logically implies q if

$$\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$$

Notation:

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Example
$$P \to Q, P \vDash Q$$

To show, $\vDash ((P \to Q) \land P) \to Q$
Proof: Exercise using truth tables!

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ logically implies q if

$$\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$$

Notation:

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Example
$$P \to Q, P \vDash Q$$

To show, $\vDash ((P \to Q) \land P) \to Q$
Proof: Exercise using truth tables!

Definition
$$p_0, p_1, \ldots, p_{n-1}$$
 and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ logically implies q if

$$\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$$

$$p_0, p_1, \ldots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Example
$$P \to Q, P \vDash Q$$

To show, $\vDash ((P \to Q) \land P) \to Q$

Proof: Exercise using truth tables!

Examples of inference rules:

Axioms and inference rules

Let us first look at an example of an inference rule

Syntax

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

Axioms and inference rules

Notation:

forms

$$p_0, p_1, \ldots, p_{n-1} \models q$$

 $\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

 $p_0, p_1, \ldots, p_{n-1}$ logically implies q if

Example
$$P \to Q, P \vDash Q$$

To show, $\vDash ((P \to Q) \land P) \to Q$

Proof: Exercise using truth tables!

1. $p \rightarrow q, p \implies q$

Examples of inference rules:

$$\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$$

Notation:

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Example
$$P \to Q, P \vDash Q$$

To show, $\vDash ((P \to Q) \land P) \to Q$

Proof: Exercise using truth tables!

Syntax

Axioms and inference rules

Examples of inference rules:

1. $p \rightarrow q, p \implies q$ (Modus Ponens)

Definition
$$p_0, p_1, \ldots, p_{n-1}$$
 and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ logically implies q if

$$\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$$

$$p_0, p_1, \ldots, p_{n-1} \models q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Example
$$P \rightarrow Q$$
, $P \models C$

Example
$$P \rightarrow Q, P \vDash Q$$

To show, $\vDash ((P \rightarrow Q) \land P) \rightarrow Q$
Proof: Exercise using truth tables!

1.
$$p \rightarrow q, p \implies q$$
 (Modus Ponens)

Example application:
$$(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R)$$

Examples of inference rules:

Syntax

Definition
$$p_0,p_1,\dots,p_{n-1}$$
 and q are propositional forms p_0,p_1,\dots,p_{n-1} logically implies q if

$$\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$$

$$p_0, p_1, \ldots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Example
$$P \to Q, P \vDash Q$$
To show. $\vDash ((P \to Q) \land P) \to$

To show. $\models ((P \rightarrow Q) \land P) \rightarrow Q$ *Proof:* Exercise using truth tables!

Syntax

Axioms and inference rules

1. $p \rightarrow q, p \implies q$ (Modus Ponens)

Example application: $(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R)$

Definition
$$p_0, p_1, \dots, p_{n-1}$$
 and q are propositional forms p_0, p_1, \dots, p_{n-1} logically implies q if

$$\vDash p_0 \land p_1 \land \ldots \land p_{n-1} \to q$$

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Example
$$P \to Q, P \vDash Q$$

To show, $\vDash ((P \to Q) \land P) \to Q$

Proof: Exercise using truth tables!

Syntax

Examples of inference rules:

Axioms and inference rules

1.
$$p \rightarrow q, p \implies q$$
 (Modus Ponens)

$$(P \land Q \to R) \to (R \land S), (P \land Q \to R)$$

Definition
$$p_0, p_1, \ldots, p_{n-1}$$
 and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ logically implies q if

$$\vDash p_0 \land p_1 \land \ldots \land p_{n-1} \to q$$

$$p_0, p_1, \dots, p_{n-1} \models q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Proof: Exercise using truth tables!

Examples of inference rules:

Axioms and inference rules

1. $p \rightarrow q, p \implies q$ (Modus Ponens)

Example application:

Syntax

$$(P \land Q \to R) \to (R \land S), (P \land Q \to R) \implies (R \land S)$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T, \text{ then } \nu(q) = T$ $\text{Example } P \to Q, P \vDash Q$ $\text{To show, } \vDash ((P \to Q) \land P) \to Q$ Proof: Exercise using truth tables! Examples of inference rules: $1. \ p \to q, p \implies q \text{ (Modus Ponens)}$

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $\models p_0 \land p_1 \land \ldots \land p_{n-1} \rightarrow q$

 $p_0, p_1, \ldots, p_{n-1} \models q$

 $p_0, p_1, \ldots, p_{n-1}$ logically implies q if

forms

Notation:

Syntax

forms

Rules of this kind are the building blocks of a proof

Axioms and inference rules

Example application:

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$

Definition
$$p_0, p_1, \ldots, p_{n-1}$$
 and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ **logically implies** q if
$$\models p_0 \wedge p_1 \wedge \ldots \wedge p_{n-1} \rightarrow q$$
 Notation:

Notation:
$$n_0, n_1, \dots, n_{r-1} \models$$

$$p_0, p_1, \dots, p_{n-1} \vDash q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Example
$$P \rightarrow Q, P \models Q$$
To show $\models ((P \rightarrow Q) \land P)$

To show. $\models ((P \rightarrow Q) \land P) \rightarrow Q$ *Proof:* Exercise using truth tables!

$$\models Q$$

Syntax

forms p_0, p_1, \dots, p_{n-1} infer a if

1. $p \rightarrow q, p \implies q$ (Modus Ponens)

Example application:
$$(P \land Q \to R) \to (R \land S), (P \land Q \to R) \implies (R \land S)$$

$$\vDash p_0 \land p_1 \land \ldots \land p_{n-1} \to q$$

Notation:

$$p_0, p_1, \dots, p_{n-1} \models q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Example $P \rightarrow Q, P \models Q$

$$Q,P \vDash Q$$

 $P \to Q) \land P) \to Q$

To show. $\models ((P \rightarrow Q) \land P) \rightarrow Q$ *Proof:* Exercise using truth tables! **Definition** $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

Syntax

forms $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever $p_0, p_1, \ldots, p_{n-1}$ can be written.

Axioms, and inference rules

1. $p \rightarrow q, p \implies q$ (Modus Ponens)

Example application:
$$(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$$

$$\vDash p_0 \land p_1 \land \ldots \land p_{n-1} \to q$$

Notation:

$$p_0, p_1, \ldots, p_{n-1} \models q$$

Equivalently, if there is a valuation ν , so that $\nu(p_i) = T$, then $\nu(q) = T$

Example
$$P \to Q, P \vDash Q$$

To show, $\vDash ((P \to Q) \land P) \to Q$

Proof: Exercise using truth tables!

Syntax

Axioms, and inference rules

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever $p_0, p_1, \ldots, p_{n-1}$ can be written.

Notation:

$$p_0, p_1, \dots, p_{n-1} \implies q$$

Examples of inference rules:

1. $p \rightarrow q, p \implies q$ (Modus Ponens)

$$(P \land Q \to R) \to (R \land S), (P \land Q \to R) \implies (R \land S)$$

Axioms and inference rules

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever $p_0, p_1, \ldots, p_{n-1}$ can be written.

Notation:

$$p_0, p_1, \dots, p_{n-1} \implies q$$

Examples of inference rules:

1.
$$p \rightarrow q, p \implies q$$
 (Modus Ponens)

Example application:
$$(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$$

Axioms and inference rules

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ **infer** q if q can be written whenever $p_0, p_1, \ldots, p_{n-1}$ can be written.

Notation:

$$p_0, p_1, \ldots, p_{n-1} \implies q$$

Examples of inference rules:

1.
$$p \rightarrow q, p \implies q$$
 (Modus Ponens)

$$(P \land Q \to R) \to (R \land S), (P \land Q \to R) \implies (R \land S)$$

A formal	proof	of	the	propositional	form	q	from
propostional	forms	n_0	n ₁ .	n_m 1			

Syntax

Axioms and inference rules

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever $p_0, p_1, \ldots, p_{n-1}$ can be written.

Notation:

$$p_0, p_1, \dots, p_{n-1} \implies q$$

Examples of inference rules:

1.
$$p \rightarrow q, p \implies q$$
 (Modus Ponens)

Example application:

Example application:
$$(P \land Q \to R) \to (R \land S), (P \land Q \to R) \implies (R \land S)$$

Syntax

Axioms and inference rules

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever $p_0, p_1, \ldots, p_{n-1}$ can be written.

Notation:

$$p_0, p_1, \dots, p_{n-1} \implies q$$

Examples of inference rules:

1.
$$p \rightarrow q, p \implies q$$
 (Modus Ponens)

Example application:

$$(P \land Q \to R) \to (R \land S), (P \land Q \to R) \implies (R \land S)$$

A proof involves some intermediate steps q_i

$$p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{m-1}$$

. . .

Axioms and inference rules

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms

 $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever $p_0, p_1, \ldots, p_{n-1}$ can be written.

Notation:

Syntax

Examples of inference rules:

1. $p \rightarrow q, p \implies q$ (Modus Ponens)

 $p_0, p_1, \ldots, p_{n-1} \implies q$

 $(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$

Example application:

that connects the hypotheses to the conclusion

$$p_0, p_1, \ldots, p_{n-1}, q_0, q_1, \ldots, q_{m-1}$$

such that $q_{m-1} = q$,

Axioms and inference rules

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever $p_0, p_1, \ldots, p_{n-1}$ can be written.

Notation:

$$p_0, p_1, \dots, p_{n-1} \implies q$$

Examples of inference rules:

1.
$$p \rightarrow q, p \implies q$$
 (Modus Ponens)

Example application:

Example application:
$$(P \land Q \to R) \to (R \land S), (P \land Q \to R) \implies (R \land S)$$

$$p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{m-1}$$

such that $q_{m-1}=q$, and each q_i is either an axiom

Syntax

Axioms and inference rules

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever $p_0, p_1, \ldots, p_{n-1}$ can be written.

Notation:

$$p_0, p_1, \dots, p_{n-1} \implies q$$

Examples of inference rules:

1.
$$p \rightarrow q, p \implies q$$
 (Modus Ponens)

Example application:

$$(P \land Q \to R) \to (R \land S), (P \land Q \to R) \implies (R \land S)$$

$$p_0, p_1, \dots p_{n-1}, q_0, q_1, \dots, q_{m-1}$$

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{m-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms

 $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever $p_0, p_1, \ldots, p_{n-1}$ can be written.

Notation:

Syntax

$$p_0, p_1, \dots, p_{n-1} \implies q$$

Examples of inference rules:

Example application:

1.
$$p \rightarrow q, p \implies q$$
 (Modus Ponens)

,

 $(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$

$$p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{m-1}$$

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \Longrightarrow q_i$

Notation:

$$p_0, p_1, \dots, p_{n-1} \vdash q$$

Syntax

Axioms and inference rules

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ **infer** q if q can be written whenever $p_0, p_1, \ldots, p_{n-1}$ can be written.

 $p_0, p_1, \ldots, p_{n-1} \implies q$

 $(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$

Notation:

Examples of inference rules:

1.
$$p \rightarrow q, p \implies q$$
 (Modus Ponens)

Example application:

$$p_0, p_1, \dots p_{n-1}, q_0, q_1, \dots, q_{m-1}$$

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

Notation:

$p_0, p_1, \ldots, p_{n-1} \vdash q$

Example $P \lor Q \to Q \land R.P \vdash$

$$\wedge R, P \vdash$$

Examples of inference rules:

Syntax

forms

Notation:

1. $p \rightarrow q, p \implies q$ (Modus Ponens)

Axioms and inference rules

 $p_0, p_1, \ldots, p_{n-1}$ can be written.

Example application:

Here is an example of statement in logic which we will prove formally

 $(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever

 $p_0, p_1, \ldots, p_{n-1} \implies q$

1. $p \rightarrow q, p \implies q$ (Modus Ponens)

Example application:

 $(P \land Q \to R) \to (R \land S), (P \land Q \to R) \implies (R \land S)$

$$p_0, p_1, \dots p_{n-1}, q_0, q_1, \dots, q_{m-1}$$

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

Notation:

 $p_0, p_1, \ldots, p_{n-1} \vdash q$

Example $P \vee Q \rightarrow Q \wedge R$, $P \vdash Q$

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms

Syntax

$p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever $p_0, p_1, \ldots, p_{n-1}$ can be written.

Notation:

 $p_0, p_1, \ldots, p_{n-1} \implies q$

Examples of inference rules:

Axioms and inference rules

1. $p \rightarrow q, p \implies q$ (Modus Ponens)

Example application:

 $(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$

$$p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{m-1}$$

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

Notation:

 $p_0, p_1, \ldots, p_{n-1} \vdash q$

Example $P \vee Q \rightarrow Q \wedge R$, $P \vdash Q$

Syntax

forms

Notation:

 $p_0, p_1, \ldots, p_{n-1} \implies q$

Axioms and inference rules

 $p_0, p_1, \ldots, p_{n-1}$ can be written.

Examples of inference rules:

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever

1.
$$p \to q, p \implies q$$
 (Modus Ponens)

Example application:
$$(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$$

We want to show this by using an proof system alone

$$p_0, p_1, \dots p_{n-1}, q_0, q_1, \dots, q_{m-1}$$

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{m-1}, q_0, q_1, \dots, q_{i-1} \Longrightarrow q_i$

Notation:

$$p_0, p_1, \ldots, p_{n-1} \vdash q$$

Example $P \lor Q \to Q \land R, P \vdash Q$ $p_0 = P \lor Q \to Q \land R$ Syntax

Axioms and inference rules

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ **infer** q if q can be written whenever $p_0, p_1, \ldots, p_{n-1}$ can be written.

Notation:

$$p_0, p_1, \dots, p_{n-1} \implies q$$

Examples of inference rules:

1. $p \rightarrow q, p \implies q$ (Modus Ponens)

Example application: $(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$

that
$$a_{m-1} = a$$
 and each a_i is either an

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

Notation:

Example $P \vee Q \rightarrow Q \wedge R$, $P \vdash Q$ $p_0 = P \vee Q \rightarrow Q \wedge R$ $p_1 = P$

$p_0, p_1, \ldots, p_{n-1} \vdash q$

Syntax

forms

Notation:

Examples of inference rules:

Axioms and inference rules

 $p_0, p_1, \ldots, p_{n-1}$ can be written.

1. $p \rightarrow q, p \implies q$ (Modus Ponens)

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever

 $p_0, p_1, \ldots, p_{n-1} \implies q$

Example application: $(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$

that
$$a_{--} = a$$
 and each a_i is either a

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

Notation:

 $p_0, p_1, \ldots, p_{n-1} \vdash q$

Example $P \vee Q \rightarrow Q \wedge R$, $P \vdash Q$

$p_0 = P \vee Q \rightarrow Q \wedge R$ $p_1 = P$

We now need to come up with a sequence of steps leading to the conclusion

Examples 1.
$$p \rightarrow$$

Example application:

Notation:

Syntax

forms

 $p_0, p_1, \ldots, p_{n-1}$ can be written.

Axioms and inference rules

$$p_0, p_1,$$
erence

$$\dots, p_{n-1} \implies q$$

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever

 $(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$

$$\dots, p_{n-1} \longrightarrow q$$

- 1. $p \rightarrow q, p \implies q$ (Modus Ponens)

- $p_0, p_1, \ldots, p_{n-1} \implies q$

$$p_0, p_1, \dots p_{n-1}, q_0, q_1, \dots, q_{m-1}$$

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

Notation:

 $p_0, p_1, \ldots, p_{n-1} \vdash q$

Example $P \vee Q \rightarrow Q \wedge R$, $P \vdash Q$ $p_0 = P \vee Q \rightarrow Q \wedge R$

$p_1 = P$

Example application: $(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever

Notation:

 $p_0, p_1, \ldots, p_{n-1}$ can be written.

Axioms and inference rules

Syntax

forms

 $p_0, p_1, \ldots, p_{n-1} \implies q$

Examples of inference rules:

1. $p \rightarrow q, p \implies q$ (Modus Ponens)

We are not yet ready to use Modus Ponens

$$p_0, p_1, \dots p_{n-1}, q_0, q_1, \dots, q_{m-1}$$

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

Notation:

$$p_0, p_1, \dots, p_{n-1} \vdash q$$

Example
$$P \lor Q \to Q \land R, P \vdash Q$$

 $p_0 = P \lor Q \to Q \land R$

$$p_0 = P \lor Q \to Q \land R$$
$$p_1 = P$$

$$p_0 = P \lor Q \to Q \land R$$

$$p_1 = P$$

$$p_1 = P$$
$$q_0 = P \lor Q$$

Syntax

forms

Notation:

Examples of inference rules:
 1.
$$p \rightarrow q, p \implies q$$
 (Modus Ponens)

Axioms and inference rules

 $p_0, p_1, \ldots, p_{n-1}$ can be written.

Example application:
$$(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$$

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever

 $p_0, p_1, \ldots, p_{n-1} \implies q$

But we intuitively know that
$$p \lor q$$
 must imply p

$$p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{m-1}$$

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

Notation:

$$p_0, p_1, \ldots, p_{n-1} \vdash q$$

Example $P \vee Q \rightarrow Q \wedge R$, $P \vdash Q$

$$p_0 = P \vee Q \to Q \wedge R$$

$$p_0 = P \lor Q \to Q \land p_1 = P$$

$p_1 = P$ $a_0 = P \vee Q$

Syntax

forms

Notation:

Examples of inference rules:
1.
$$p \rightarrow q$$
, $p \implies q$ (Modus Ponens)

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever

 $p_0, p_1, \ldots, p_{n-1} \implies q$

1.
$$p \to q, p \longrightarrow q$$
 (IVIC

Axioms and inference rules

 $p_0, p_1, \ldots, p_{n-1}$ can be written.

Example application:
$$(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$$

$$p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{m-1}$$

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

Notation:

$$p_0, p_1, \ldots, p_{n-1} \vdash q$$

Example $P \vee Q \rightarrow Q \wedge R$, $P \vdash Q$ $p_0 = P \vee Q \rightarrow Q \wedge R$

$$p_0 = P \lor Q \to Q \land R$$
$$p_1 = P$$

$$p_1 = I$$
$$q_0 = P \vee Q$$

$p_0, p_1, \ldots, p_{n-1}$ can be written.

Axioms and inference rules

$p_0, p_1, \ldots, p_{n-1} \implies q$

Syntax

forms

Notation:

- 1. $p \rightarrow q, p \implies q$ (Modus Ponens)
 - 2. $p \implies p \lor q$ (Addition)

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever

 $(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$

Example application:

A **formal proof** of the propositional form q from propostional forms $p_0, p_1, \dots p_{n-1}$ is a sequence of propositional forms. $p_0, p_1, \ldots, p_{n-1}, q_0, q_1, \ldots, q_{m-1}$ such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

$$p_0, p_1, \ldots p_{n-1}, q_0,$$

Notation:

$$p_0, p_1, \ldots, p_{n-1} \vdash q$$

$$\wedge R$$

 $p_1 = P$ $q_0 = P \vee Q$ (by Addition rule)

Example
$$P \lor Q \to Q \land R, P \vdash Q$$

 $p_0 = P \lor Q \to Q \land R$

Notation:

Syntax

forms

 $p_0, p_1, \ldots, p_{n-1}$ can be written.

Axioms and inference rules

$$\Rightarrow q$$

$$\Rightarrow q$$

$$\Rightarrow q$$

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever

$$p_0, p_1, \dots, p_{n-1} \implies q$$

1.
$$p o q, p \implies q$$
 (Modus Ponens)
2. $p \implies p \lor q$ (Addition)

Example application:
$$(P \land Q \to R) \to (R \land S), (P \land Q \to R) \implies (R \land S)$$

ich that
$$a_{m-1} = a_i$$
 and each a_i is either a

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

Notation:

$$p_0, p_1, \ldots, p_{n-1} \vdash q$$

Example
$$P \lor Q \to Q \land R, P \vdash Q$$

$$Q \wedge R$$

$$p_0 = P \lor Q \to Q \land R$$

$$p_1 = P$$

$$p_1 = P$$
 $q_0 = P \lor Q \text{ (by Addis)}$

$$p_1 = P$$

 $q_0 = P \lor Q$ (by Addition r

$$p_1 = P$$
 $q_0 = P \lor Q$ (by Addition reference)

$$q_0 = P \lor Q$$
 (by Addition rule)_ $q_1 = Q \land R$

$$P = P$$

= $P \lor Q$ (by Addition rule)______

$$Q \wedge R$$

Syntax

forms

Notation:

$$p_0, p_1, \dots, p_{n-1} \implies q$$

 $p_0, p_1, \ldots, p_{n-1}$ can be written.

Axioms and inference rules

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever

$$1. \ p \rightarrow q, p \implies q \ \ \text{(Modus Ponens)}$$

Example application:
$$(P \land O \rightarrow R) \rightarrow (R \land S), (P \land O \rightarrow R) \implies (R \land S)$$

A **formal proof** of the propositional form q from propostional forms $p_0, p_1, \dots p_{n-1}$ is a sequence of propositional forms. $p_0, p_1, \ldots, p_{n-1}, q_0, q_1, \ldots, q_{m-1}$ such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

 $p_0, p_1, \ldots, p_{n-1} \vdash q$

$$p_1,\ldots,p_{n-1}\vdash q$$

$$,\ldots,p_{n-1}\vdash q$$

Example
$$P \lor Q \to Q \land R, P \vdash Q$$

 $p_0 = P \lor Q \to Q \land R$
 $p_1 = P$

 $q_0 = P \vee Q$ (by Addition rule) $a_1 = Q \wedge R$ (by Modus Ponens)

 $p_1 = P$

Example application:

Syntax

$$q, p \Longrightarrow q$$

 $\Rightarrow p \lor q \text{ (Add)}$

$$\Rightarrow q$$
 (q (Add

Examples of inference rules:
$$1 \rightarrow p \rightarrow q, p \implies q \pmod{\text{Modus Ponens}}$$

 $(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$

$$q \longrightarrow q$$

$$\rho_{n-1} \implies q$$

$$p_{n-1} \implies q$$

$$a \longrightarrow a$$

ation:
$$p_0, p_1, \ldots, p_{n-1} =$$

$$p_0, p_1, \dots, p_{n-1} \implies q$$

Notation:
$$p_0, p_1, \dots, p_{n-1} \implies q$$

$$p_1,\ldots,p_{n-1}$$
 can be written.

$p_0, p_1, \ldots, p_{n-1}$ can be written.

Axioms and inference rules

$$0, p_1, \dots, p_{n-1}$$
 infer q if q can be written whene $0, p_1, \dots, p_{n-1}$ can be written.

Definition
$$p_0, p_1, \ldots, p_{n-1}$$
 and q are propositional forms

orms
$$p(p,p)$$
 infer $p(p,p)$ if $p(p,p)$ in $p(p,p)$

rms
$$p_1, \dots, p_{n-1}$$
 infer q if q can be written whenever

prims
$$p_0, p_1, \dots, p_{n-1}$$
 infer q if q can be written whenever

forms
$$p_0, p_1, \dots, p_{n-1}$$
 infer q if q can be written whenever

$$p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{m-1}$$

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

 $p_1 = P$

 $q_2 = R$

 $p_0, p_1, \ldots, p_{n-1} \vdash q$

Example
$$P \lor Q \to Q \land R.P \vdash Q$$

$$p_0 = P \lor Q \to Q \land R$$

$$q_0 = P \vee Q$$
 (by Addition rule).

$$q_0 = P \vee Q$$
 (by Addition rule)_ $q_1 = Q \wedge R$ (by Modus Ponens)

$$q_0 = P \lor Q$$
 (by Addition rule)_
 $q_1 = Q \land R$ (by Modus Ponens)

$p_0, p_1, \ldots, p_{n-1}$ can be written.

Syntax

forms

Axioms and inference rules

 $p_0, p_1, \ldots, p_{n-1} \implies q$

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever

$$1.p \to q, p \implies q \text{ (Modus Ponens)}$$

$$2 \rightarrow p \implies p \lor q$$
 (Addition)

Example application:
$$(P \land O \rightarrow R) \rightarrow (R \land S), (P \land O \rightarrow R) \implies (R \land S)$$

such that
$$q_{m-1}=q$$
, and each q_i is either an axiom or $p_0,p_1,\dots p_{n-1},q_0,q_1,\dots,q_{i-1}\implies q_i$

Notation:

 $q_2 = R$

$$p_0, p_1, \ldots, p_{n-1} \vdash q$$

Example
$$P \lor Q \to Q \land R, P \vdash Q$$

 $p_0 = P \lor Q \to Q \land R$

$$p_1 = P$$
 $q_0 = P \lor Q$ (by Addition rule)___

 $q_1 = Q \wedge R$ (by Modus Ponens)

$$q_0 = P \lor Q$$
 (by Addition rule)_ $q_1 = Q \land R$ (by Modus Ponens)

 $p_0 = P \vee Q \rightarrow Q \wedge R$

Syntax

forms

$$p_0, p_1,$$

Axioms and inference rules

 $p_0, p_1, \ldots, p_{n-1}$ can be written.

$$p_0, p_1, \dots, p_{n-1} \implies q$$

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever

$$1 \rightarrow p \rightarrow q, p \implies q \pmod{\text{Modus Ponens}}$$

$$\begin{array}{ccc}
1 & p \to q, p \implies q \text{ (Modus Ponens)} \\
2 & p \implies p \lor q \text{ (Addition)}
\end{array}$$

$$(P \land Q \to R) \to (R \land S), (P \land Q \to R) \implies (R \land S)$$

Once again while we can check with the truth table, we want to separate the syntactic from the semantic

$$p_0, p_1, \dots p_{n-1}, q_0, q_1, \dots, q_{m-1}$$

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

Notation:

 $p_0, p_1, \ldots, p_{n-1} \vdash q$

Example
$$P \lor Q \to Q \land R, P \vdash Q$$

$$p_0 = P \lor Q \to Q \land R$$
$$p_1 = P$$

$$p_1 = P$$
 $q_0 = P \vee Q$ (by Addition rule)

$$q_0 = P \vee Q$$
 (by Addition rule)

$$q_0 = P \lor Q$$
 (by Addition rule)_
 $q_1 = Q \land R$ (by Modus Ponens)

$$q_0 = I \lor Q$$
 (by Addition Tale)=
 $q_1 = Q \land R$ (by Modus Ponens)

$$q_0 = P \lor Q$$
 (by Addition rule)... $q_1 = Q \land R$ (by Modus Ponens)... $q_2 = R$

Axioms and inference rules

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional forms $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever $p_0, p_1, \ldots, p_{n-1}$ can be written.

Notation:

Syntax

$$p_0, p_1, \dots, p_{n-1} \implies q$$

Examples of inference rules:

$$1 \rightarrow p \rightarrow q, p \implies q \text{ (Modus Ponens)}$$

$$2 \rightarrow p \implies p \lor q \text{ (Addition)}$$

3.
$$p \wedge q \implies q$$
 (Simplification)

Example application:
$$(P \land Q \rightarrow R) \rightarrow (R \land S), (P \land Q \rightarrow R) \implies (R \land S)$$

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

 $p_0, p_1, \ldots, p_{n-1} \vdash q$

Notation:

 $p_1 = P$

 $p_0 = P \vee Q \rightarrow Q \wedge R$

 $q_2 = R$ (by Simplification)_

Notation:

Syntax

forms

Example
$$P \lor Q \to Q \land R, P \vdash Q$$

 $p_0 = P \lor Q \to Q \land R$

$$q_0 = P ee Q$$
 (by Addition rule)_

$$q_0 = P \lor Q$$
 (by Addition rule)
 $q_1 = Q \land R$ (by Modus Ponens)

and quote it here

$$\begin{array}{ccc}
1 & p \rightarrow q, p \implies q \text{ (Modus)} \\
2 & p \implies p \lor q \text{ (Addition)}
\end{array}$$

$$p, p \Longrightarrow p \lor q$$

Example application:

$$\implies q$$

$$1 \rightarrow p \rightarrow q, p \implies q \text{ (Modus Ponens)}$$

$$\Rightarrow q$$

$$\Rightarrow q$$

$$\Rightarrow q$$

$$\Rightarrow q$$

$$\begin{array}{ccc}
 & p \rightarrow q, p \longrightarrow q & \text{(Nodus Form} \\
 & 2 \rightarrow p \Longrightarrow p \lor q & \text{(Addition)} \\
 & 3 \rightarrow p \land q \Longrightarrow q & \text{(Simplification)}
\end{array}$$

$$\Rightarrow \epsilon$$

$$\Rightarrow q$$

$$\Rightarrow q$$

$$\Longrightarrow$$

$$p_0, p_1, \dots, p_{n-1} \implies q$$

$$p_0, p_1, \ldots, p_{n-1}$$
 can be written.

$$_{-1}$$
 and q ar

Definition
$$p_0, p_1, \ldots, p_{n-1}$$
 and q are propositional forms

on
$$p_0, p_1, \ldots, p_{n-1}$$
 a

Axioms and inference rules

$$p_0, p_1, \ldots, p_{n-1}$$
 infer q if q can be written whenever

 $(P \land Q \to R) \to (R \land S), (P \land Q \to R) \implies (R \land S)$

such that
$$a_{m-1} = a$$
 and each a_i is either a

such that $q_{m-1} = q$, and each q_i is either an axiom or $p_0, p_1, \dots, p_{n-1}, q_0, q_1, \dots, q_{i-1} \implies q_i$

 $p_0, p_1, \ldots, p_{n-1} \vdash q$

 $p_1 = P$

 $p_0 = P \vee Q \rightarrow Q \wedge R$

 $a_1 = Q \wedge R$ (by Modus Ponens)

 $q_2 = R$ (by Simplification)_

Example
$$P \lor Q \to Q \land R, P \vdash Q$$

$$q_0 = P ee Q$$
 (by Addition rule)_

Syntax

forms

Example application:

$$p_0, p_1$$

 $p_0, p_1, \ldots, p_{n-1}$ can be written.

Axioms and inference rules

$$p_0, p_1, \dots, p_{n-1} \implies q$$

Definition $p_0, p_1, \ldots, p_{n-1}$ and q are propositional

 $p_0, p_1, \ldots, p_{n-1}$ infer q if q can be written whenever

$$1 \rightarrow p \rightarrow q, p \implies q \text{ (Modus Ponens)}$$

$$2 \rightarrow p \implies p \lor q \text{ (Addition)}$$

$$2 \rightarrow p \implies p \lor q \text{ (Addition)}$$

$$3 \rightarrow p \land q \implies q \text{ (Simplification)}$$

$$(P \land Q \to R) \to (R \land S), (P \land Q \to R) \implies (R \land S)$$

Now we need to ensure that there finitely many such inference rules are enough