Homework 1 solutions

1. Suppose an 802.11b station is configured to always reserve the channel with RTS/CTS sequence. Suppose this station suddenly wants to transmit 1,200 bytes of data, the transmission rate is 11Mbps and all other stations are idle at this time. As a function of SIFS and DIFS, and ignoring propagation delay and assuming no bit errors, calculate the time required to transmit the frame and receive the acknowledgement

A frame without data is 34 bytes long. Assuming a transmission rate of 11 Mbps, the time to transmit a control frame (such as an RTS frame, a CTS frame, or an ACK frame) is (272bits)/(11 Mbps) = 24.7 usec. The time required to transmit the data frame is (9872bits)/(11 Mbps) = 897.5

- 2. Consider the network shown below. Give global distance-vector tables of each node when the nodes receive update information from their neighbors. Assume that
- a) each node initially knows its cost to its neighbors
- b) each node has reported the information it had in the preceding step to its immediate neighbors

Optimum 1-hop paths

Ta	ble for	A	Table for B			Table for C			Table for D			Table for E			Table for F		
Dest	Cost	Hop	Dest	Cost	Hop	Dest	Cost	Hop	Dest	Cost	HoNp	Dest	Cost	Hop	Dest	Cost	Hop
A	0	A	A	¥	_	A	3	A	A	4	A	A	¥	-	A	¥	-
В	¥	-	В	0	В	В	¥	-	В	¥	1	В	2	В	В	¥	-
C	3	C	C	¥	-	C	0	C	C	¥	1	C	1	C	C	2	C
D	4	D	D	¥	-	D	¥	-	D	0	D	D	2	D	D	¥	-
E	¥	-	E	2	Е	Е	1	Е	Е	2	Е	Е	0	Е	E	¥	-
F	¥	-	F	¥	_	F	2	F	F	¥	_	F	¥	_	F	0	F

Optimum 2-hop paths

Table	for A		Table for B			Table for C			Table for D			Table for E			Table for F		
Dest	Cost	Hop	Dest	Cost	Hop	Dest	Cost	Hop	Dest	Cost	Hop	Dest	Cost	Hop	Dest	Cost	Hop
A	0	Α	A	¥	-	A	3	A	A	4	Α	A	4	C	A	5	C
В	¥	-	В	0	В	В	3	Е	В	4	Е	В	2	В	В	¥	-
С	3	C	C	3	Е	C	0	C	С	3	Е	C	1	C	C	2	С
D	4	D	D	4	E	D	3	E	D	0	D	D	2	D	D	¥	-
Е	4	C	E	2	Е	Е	1	Е	Е	2	Е	Е	0	Е	Е	3	C
F	5	C	F	¥	-	F	2	F	F	¥	-	F	3	C	F	0	F

Optimum 3-hop paths

Table	for A		Table for B			Table for C			Table for D			Table for E			Table for F		
Dest	Cost	Hop	Dest	Cost	Hop	Dest	Cost	Hop	Dest	Cost	Hop	Dest	Cost	Hop	Dest	Cost	Hop
A	0	Α	A	6	E	A	3	Α	A	4	Α	A	4	C	A	5	C
В	6	C	В	0	В	В	3	Е	В	4	Е	В	2	В	В	5	C
C	3	C	C	3	Е	C	0	C	C	3	Е	C	1	C	C	2	C
D	4	D	D	4	Е	D	3	Е	D	0	D	D	2	D	D	5	C
E	4	C	E	2	Е	E	1	Е	E	2	Е	E	0	Е	E	3	C
F	5	F	F	5	Е	F	2	F	F	5	E	F	3	C	F	0	F

3. (link state routing) For the network given below, show how the link-state algorithm builds the routing table for node x. (note: you need to give the detailed steps)

Step	N'	D(u),p(u)	D(y),p(y)	D(v),p(v)	D(w),p(w)	D(z),p(z)
0	X	1,x	3,x	4,x	5,x	-
1	x,u		3,x	4,x	5,x	
2	x,u,y			4,x	5,x	4,y
3	x,u,y,v				5,x	4,y
4	x,u,y,v,z				5,x	
5	x,u,y,v,z,w					

Resulting forwarding table in X:

Destination	Link
u	(x,u)
V	(x,v)
W	(x,w)
y	(x,y)
Z	(x,y)

- 4. Consider the network topology given in the following diagram.
- a) Suppose the dark blue lines indicate the shortest path from A to all other nodes. If A broadcasts a packet, please describe in detail how the nodes route the packet using RPF? Note: you need provide the information about which packets from which link should be forwarded or not.

- 1) A broadcasts the packet to B, C. C Discards it.
- 2) B broadcasts the packet from A to D and H. H discords it.
- 3) D broadcasts the packet from B to C and E.
- 4) C broadcasts the packet from D to A and F. Both discard it
- 5) E broadcasts the packet from D to H and F.
- 6) F broadcasts it to C and G. C discards it. G broadcasts it to H. H discards it
- 7) H broadcasts it to B and G. Both discard it.
- b) Suppose E is selected as the center node, please describe in detail how to construct a spanning tree using center based approach.

Note: you need to make assumptions as needed.

- 1. D sends a join message to E. DE becomes a branch of the tree
- 2. A sends a message to E. Assume the shortest path from A to E is through B. ABD becomes a branch of the tree
- 3. C sends a join message to E. CD becomes a branch of the tree
- 4. G sends a message to E. Assume the shortest path from G to E is through F. GFE becomes a branch of the tree
- 5. H sends a join message to E. HE becomes a branch of the tree

- c) Based on the spanning tree constructed in b), if E broadcasts a packet, how do the nodes route the packet?
- 1). E sends it to D, H and F
- 2). D sends it to B and C, B sends it A.
- 3). F sends it to G
- 5. Consider the network in the above diagram. Suppose routers C and G don't have group numbers and A is the sender. Describe in detail how RPF with pruning works?

- 1) A sends a packet to B, C
- 2) B sends the packet to D
- 3) D sends the packet to E and C
- 4) E sends the packet from F and H
- 5) F sends the packet to G
- 7) G sends a prune message to F
- 8) F sends a prune message to E. E won't send data to F.
- 9) C sends a prune message to D. D won't send data to C.
- 6. Consider the topology given in the following diagram. Simulate DSR protocol for path establishment from node 2 to node 11.

Selected path

7. AODV protocol is used in the following MANET. Node G needs to send a packet to node C. Since G doesn't have a route to C, so G sends a RREQ

<source address, source seq#, broadcast id, destination address, destination seq#, hop count>

 $= \langle G, 120, 30, C, 20, 0 \rangle$

a) Suppose tables in nodes A, G, and B are empty, describe how each node sets up the reverse path along the path

G-A-B-C. Give content of the table in each node.

Suppose C receives RREQ from B first

b) Now, C receive the RREQ and replies with a RREP with a new desi_sequence number 40, describe how each node sets up a forward path. Give the content of the table in each node along the path.

RREP: <Source_Addr, Dest_Addr, Dest_Seq#, Hop_Count, Lifetime>

c) Suppose the table in F is empty and the table in E has one entry <C, D, 2, 50, --,-->, how the RREQ is processed along the path G-F-E-D-C. Note: you don't need to give the table information at each node.

When E receives the RREQ, it sends back a RREP to G.

d) Suppose the table in F is empty and the table in E has one entry <C, D, 2, 10, --,-->, how the RREQ is processed along the path G-F-E-D-C. Note: you don't need to give the table information at each node.

E broadcasts the RREQ to D and D broadcasts it to C.

6 of 6