Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm *arrayMax*(A, n)
Input array A of n integers
Output maximum element of A

 $currentMax \leftarrow A[0]$ $for i \leftarrow 1 to n - 1 do$ if A[i] > currentMax then $currentMax \leftarrow A[i]$ return currentMax

Primitive Operations In This Course

- Performing an arithmetic operation (+, *, etc)
- Comparing two numbers
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method
- Following an object reference

Counting PrimitiveOperations

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

Algorithm $arrayMax(A, n)$	# operations
$currentMax \leftarrow A[0]$	2
$m \leftarrow n-1$	2
for $i \leftarrow 1$ to m do	1+n
//one assignment and $m+1$ comparisons ($i = 1$,	~ 4 ~ ~ ~ * ~ ~ ~ 4 ~ 4 ~ ~ ~ ~ 4 ~ ~ ~ 4 ~ ~ ~ 4 ~ ~ ~ ~ ~ ~ ~ 4 ~ ~ ~ ~ ~ ~ 4 ~ ~ ~ ~ ~ ~ 4 ~ ~ ~ ~ ~ ~ 4 ~ ~ 4 ~ ~ ~ ~ ~ ~ ~ 4 ~
//Note $m + 1 = n$. Thus, Thus 1 assignment and	n coparisons.
if $A[i] > currentMax$ then	2(n-1)
$currentMax \leftarrow A[i]$	2(n-1)
{ increment counter i }	2(n-1)
return currentMax	1
	Total 7 <i>n</i>

Estimating Running Time

- Algorithm arrayMax executes 7n primitive operations in the worst case. Define:
 - a = Time taken by the fastest primitive operation
 - b =Time taken by the slowest primitive operation
- Let T(n) be worst-case time of arrayMax. Then $a*(7n) \le T(n) \le b*(7n)$
- lacktriangle Hence, the running time T(n) is bounded by two linear functions

Growth Rates

- Growth rates of functions:
 - Linear $\approx n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
- The graph of the cubic begins as the slowest but eventually overtakes the quadratic and linear graphs
- Important factor for growth rates is the behavior as n gets large

Constant Factors & Lower-order Terms

- The growth rate is not affected by
 - constant factors or
 - lower-order terms
- Example
 - Compare 200*n with 0.5n*n
 - Quadratic growth rate must eventually dominate linear growth

Big-Oh Notation (§ 1.2)

- Given functions f(n) and g(n) defined on non-negative integers n, we say that f(n) is O(g(n)) (or "f(n) belongs to O(g(n))") if there are positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n \ge n_0$
- Example: 2n + 10 is O(n)

$$f(n) = 2n + 10$$

If g(n) = n, 3g(n) will eventually get bigger than f(n). We look for n_0 , the point where the two graphs meet:

$$3n = 2n + 10$$

 $n = 10$
It follows that for all $n \ge 10$, $f(n) \le 3g(n)$

Big-Oh Example

• Example: n^2 is not O(n)

Proof

For each c and n_0 , we need to find an $n \ge n_0$ such that $n^2 > cn$.

Can do this by letting n be any integer bigger than both n_0 and c. Then

$$n^2 = n * n > c * n$$

More Big-Oh Examples

- n is O(2n+1)
- nlog n + n is O(nlog n)
- Fact (for students who are familiar with "limits"):

If

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}$$

exists and is finite then

$$f$$
 is $O(g)$.

• Example:

$$3n^2 + 1$$
 is $O(2n^2 + n)$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- ◆ Example: Neither of the functions 2n nor 2n²
 grows any faster (asymptotically) than n². Therefore,
 both functions belong to O(n²)

Standard Complexity Classes

The most common complexity classes used in analysis of algorithms are, in increasing order of growth rate:

$$O(1)$$
, $O(\log n)$, $O(n^{1/k})$, $O(n)$, $O(n\log n)$, $O(n^k)$ $(k > 1)$,

$$O(2^n), O(n!), O(n^n)$$

- Functions that belong to classes in the first row are known as polynomial time bounded.
- Verification of the relationships between these classes can be done most easily using limits, sometimes with L' Hopital's Rule

L'Hopital's Rule. Suppose f and g have derivates (at least when x is large) and their limits as $x \to \infty$ are either both 0 or both infinite. Then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

as long as these limits exist.

Big-Oh Rules

- If is f(n) a polynomial of degree d, say, $f(n) = a_0 + a_1 n + ... + a_d n^d$, then f(n) is $O(n^d)$
 - 1. Drop lower-order terms (those of degree less than *d*)
 - 2. Drop constant factors (in this case, a_d)
 - 3. See first example on previous slide

Guidelines:

- Use the smallest possible class of functions
- E.g. Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
- E.g. Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the (worst-case) asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We determined that algorithm arrayMax executes at most 7n primitive operations
 - Since 7n is O(n), we say that algorithm arrayMax "runs in O(n) time"

Basic Rules For Computing Asymptotic Running Times

Rule-1: For Loops

The running time of a for loop is at most the running time of the statements inside the loop (including tests) times the number of iterations (see *arrayMax*)

Rule-2: Nested Loops

Analyze from inside out. The total running time of a statement inside a group of nested loops is the running time of the statement times the sizes of all the loops

```
\begin{array}{c} \textbf{for} \ i \leftarrow \ 0 \ to \ n-1 \ \textbf{do} \\ \textbf{for} \ j \leftarrow \ 0 \ to \ n-1 \ \textbf{do} \\ k \leftarrow \ i + j \\ (\text{Runs in } O(n^2) \ ) \end{array}
```

(continued)

Rule-3: Consecutive Statements

Running times of consecutive statements should be added in order to compute running time of the whole

```
for i ← 0 to n-1 do

a[i] \leftarrow 0
for i ← 0 to n-1 do

for j ← 0 to i do

a[i] \leftarrow a[i] + i + j
```

(Running time is $O(n) + O(n^2)$. By an exercise, this is $O(n^2)$)

(continued)

Rule-4: If/Else

For the fragment

if condition then

S1

else

S2

the running time is never more than the running time of the *condition* plus the larger of the running times of S1 and S2.

Example: Removing Duplicates From An Array

The problem: Given an array of n integers that lie in the range 0..2n - 1, return an array in which all duplicates have been removed.

Remove Dups, Algorithm #1

```
Algorithm removeDups1(A,n)
     Input: An array A with n > 0 integers in the
     range 0..2n-1
     Output. An array B with all duplicates in A removed
     for i \leftarrow A.length-1 to 0 do
          for j \leftarrow A.length -1 to i + 1 do
               if A[j] = A[i] then
                    A \leftarrow removeLast(A, A[i])
Algorithm removeLast(A,a)
     Input. An array A of integers and an array element a
     Output: The array A modified by removing last occurrence of a
     pos \leftarrow -1
     k ← A.length
     B \leftarrow \text{new Array}(k-1)
     i ← k - 1
     while pos < 0 do //must eventually terminate
          if a = A[i] then pos \leftarrow i
          else i \leftarrow i - 1
     for j \leftarrow 0 to k-2 do
          if j < pos then B[j] \leftarrow A[j]
          else B[j] \leftarrow A[j+1]
     return B
```

Analysis

 T_{rl} = running time of removeLast T_{rd} = running time of removeDups1

- $T_{rl}(k)$ is O(2k) = O(k)
- T_{rd}(n) is O(n³)

Therefore, the running time of Algorithm #1 is O(n³)

One way to improve: Insert non-dups into an auxiliary array.

Remove Dups, Algorithm #2

```
Algorithm removeDups2(A,n)
     Input: An array A with n > 0 integers in the
     range 0..2n-1
     Output: An array B with all duplicates in A removed
     B \leftarrow \text{new Array(n)} //assume initialized with 0's
     index \leftarrow 0
     for i \leftarrow 0 to n-1 do
          dupFound ← false
          for j \leftarrow 0 to j-1 do
              if A[j] = A[i] then
                  dupFound ← true
                  break //exit to outer loop
          //if no dup found up to i, add A[i] to new array
          if !dupFound then
              B[index] \leftarrow A[i]
              index \leftarrow index + 1
     //end outer for loop
     //next: eliminate extra 0's at the end
     C ← new Array(index)
     for j \leftarrow 0 to index do
          C[i] \leftarrow B[j]
     return C
```

Analysis

```
T = running time of removeDups2

O(n) initialization +
   nested for loops bound to n +
   O(n) copy operation

=>

T(n) is O(n) + O(n<sup>2</sup>) + O(n)
   = O(n<sup>2</sup>)
```

Therefore, the running time of Algorithm #2 is O(n²)

One way to improve: Use bookkeeping device to keep track of duplicates and eliminate inner loop

Remove Dups, Algorithm #3

```
Algorithm removeDups3(A,n)
     Input: An array A with n > 0 integers in the
     range 0..2n-1
     Output: An array with all duplicates in A
    removed
    W ← new Array(2n) //for bookkeeping
    B \leftarrow \text{new Array(n)} //assume both initialized
    with 0's
    index \leftarrow 0
    for i \leftarrow 0 to n-1 do
         u \leftarrow A[i]
         if W[u] = 0 then //means a new value
               B[index] \leftarrow A[i]
               index \leftarrow index + 1
               W[u] \leftarrow 1
    //next: eliminate extra 0s at the end
    C \leftarrow \text{new Array(index)}
    for i \leftarrow 0 to index do
         C[i] ← B[i]
     return C
```

Analysis

Algorithm #3 is O(n)

```
T = running time of removeDups3

O(n) initialization +
    single for loop of size n +
    O(n) copy operation

=>

T(n) is 3 * O(n) = O(n)

Therefore, the running time of
```

Relatives of Big-Oh

- big-Omega
 - f(n) is $\Omega(g(n))$ if g(n) is O(f(n)).
- big-Theta
 - f(n) is $\Theta(g(n))$ if f(n) is both O(g(n)) and $\Omega(g(n))$.
- little-oh
 - f(n) is o(g(n)) if, for any constant c > 0, there is an integer constant $n_0 \ge 0$ such that $f(n) \le cg(n)$ for all $n \ge n_0$
 - In case lim_n(f(n)/g(n)) exists,
 - f(n) is o(g(n)) if and only if the limit = 0.
 - f(n) is $\omega(g(n))$ if and only if the limit $= \infty$.
 - f(n) is $\Theta(g(n))$ if and only if the limit = c, a non-zero constant

Intuition for Asymptotic Notation

big-Oh

f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega

• f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)

big-Theta

• f(n) is $\Theta(g(n))$ if f(n) is **asymptotically equal** to g(n)

little-oh

■ f(n) is o(g(n)) if f(n) is **asymptotically strictly less** than g(n)

little-omega

• f(n) is $\omega(g(n))$ if f(n) is **asymptotically strictly greater** than g(n)

Intuition for Asymptotic Notation

A story for you. Today I went to Walmart and bought FIVE items.

Item	Price
1	7.89
2	9.99
3	6.29
4	8.56
5	9.21

Let us call the prices p1, p2, p3, p4 and p5.

We want to estimate amountSpent = p1 + p2 + p3 + p4 + p5

Case 1: Upper estimate

Case 2: Lower estimate

$$p1 >= 7$$
. $p2 >= 9$. $p3 >= 6$. $p4 >= 8$. $p5 >= 9$. amountSpent = $p1 + p2 + p3 + p4 + p5 >= 7 + 9 + 6 + 8 + 9 = 39$. This a lower estimate. This is what we do in the case of Big-Omega,

Examples of the Relatives of Big-Oh

■ $5n^2$ is $\Omega(n^2)$ and therefore, $5n^2$ is $\Theta(n^2)$

f(n) is $\Omega(g(n))$ iff g(n) is O(f(n)) iff there is a constant c>0 and an integer constant $n_0 \ge 1$ such that $g(n) \le c \cdot f(n)$ for all $n \ge n_0$

So $5n^2$ is $\Omega(n^2)$ iff n^2 is $O(5n^2)$, which is obviously true.

To show $5n^2$ is $\Theta(n^2)$, must show also that $5n^2$ is also $O(n^2)$ – this is also obvious.

Therefore $5n^2$ is $\Theta(n^2)$

■ $5n \text{ is } o(n^2) \text{ but } 5n \text{ is not } o(n)$

Need to show that for any positive c, $5n \le cn^2$ for large enough n.

This inequality holds whenever $n \ge 5/c$.

Therefore, to prove that 5n is $o(n^2)$, given any positive c, pick n_0 bigger than 5/c. Then for all $n \ge n_0$, $5n \le cn^2$

To show 5n is not o(n), we must find positive c so that for every choice of n_0 , there is an $n \ge n_0$ for which 5n > cn.

This is obviously true: let c = 1, and given n_0 , choose $n = n_0$.

Running Time of Recursive Algorithms

Problem: Given an array of integers in sorted order, is it possible to perform a search for an element in such a way that no more than half the elements of the array are examined? (Assume the array has 8 or more elements.)

Binary Search

Algorithm search(A,x)

Input: An already sorted array A with n elements and search value x

Output: true or false

return binSearch(A, x, 0, A.length-1)

(continued)

Algorithm binSearch(A, x, lower, upper)

Input: Already sorted array A of size n, value x to be searched for in array section A[lower]..A[upper]

Output: true or false

if lower > upper then return false
mid ← (upper + lower)/2
if x = A[mid] then return true
if x < A[mid] then
 return binSearch(A, x, lower, mid - 1)
else
 return binSearch(A, x, mid + 1, upper)</pre>

For the worst case (x is above all elements of A and n a power of 2), running time is given by the *Recurrence Relation:* (In this case, right half is always half the size of the original.)

$$T(1) = d; T(n) = c + T(n/2)$$

The Divide and Conquer Algorithm Strategy

The binary search algorithm is an example of a "Divide And Conquer" algorithm, which is typical strategy when recursion is used.

The method:

- <u>Divide</u> the problem into subproblems (divide input array into left and right halves)
- <u>Conquer</u> the subproblems by solving them recursively (search recursively in whichever half could potentially contain target element)
- <u>Combine</u> the solutions to the subproblems into a solution to the problem (return value found or indicate not found)

Analysis of Algorithms

Another Technique To Solve Recurrences: Counting Self-Calls

- To determine the running time of a recursive algorithm, another often-used technique is *counting self-calls*.
- Often, processing time in a recursion, apart from self-calls, is constant. In such cases, running time is proportional to the number of self-calls.

Example of Counting Self-Calls: The Fib Algorithm

- The Fibonacci numbers are defined recursively by: F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2)
- This is a recursive algorithm for computing the nth Fibonacci number:

Algorithm fib(n)

Input: a natural number n

Output: F(n)

if (n = 0 || n = 1) then return n

return fib(n-1) + fib(n-2)

(continued)

Lemma. For n>1, the number S(n) of self-calls in fib(n) is $\geq F(n)$ **Proof**. By (strong) induction on n.

Base Cases:

n=2. In this case $S(2) = 2 \ge 1 = F(2)$. Thus $S(n) \ge F(n)$.

n=3. In this case $S(3) = 4 \ge 2 = F(3)$. Thus $S(n) \ge F(n)$.

Induction Hypothesis:

Assume the result for all values of n in the interval [2, m].

Thus $S(n) \ge F(n)$ for $2 \le n \le m$.

In particular, $S(m) \ge F(m)$ and $S(m-1) \ge F(m-1)$.

Induction Step:

$$S(m+1)= 2 + S(m) + S(m-1)$$

 $\geq 2 + F(m) + F(m-1)$ (by Induction Hypothesis)
 $\geq F(m+1)$

Lemma. For all n > 4, $F(n) > (4/3)^n$ **Proof**. Exercise!

Therefore, the running time of the fib algorithm is $\Omega(r^n)$ for some r > 1. In other words, fib is an *exponentially slow* algorithm!

The Master Formula

For recurrences that arise from Divide-And-Conquer algorithms (like Binary Search), there is a general formula that can be used.

Theorem. Suppose T(n) satisfies

$$T(n) = \begin{cases} d & \text{if } n = 1\\ aT(\lceil \frac{n}{b} \rceil) + cn^k & \text{otherwise} \end{cases}$$

where k is a nonnegative integer and a, b, c, d are constants with $a > 0, b > 1, c > 0, d \ge 0$. Then

$$T(n) = \begin{cases} \Theta(n^k) & \text{if } a < b^k \\ \Theta(n^k \log n) & \text{if } a = b^k \\ \Theta(n^{\log_b a}) & \text{if } a > b^k \end{cases}$$

Master Formula (continued)

Notes.

- (1) The result holds if $\lceil \frac{n}{b} \rceil$ is replaced by $\lfloor \frac{n}{b} \rfloor$.
- (2) Whenever T satisfies this "divide-and-conquer" recurrence, it can be shown that the conclusion of the theorem holds for all natural number inputs, not just to powers of b.

Master Formula (continued)

Example. A particular divide and conquer algorithm has running time T that satisfies:

$$T(1) = d \quad (d > 0)$$
$$T(n) = 2T(n/3) + 2n$$

Find the asymptotic running time for T.

Master Formula (continued)

Solution. The recurrence has the required form for the Master Formula to be applied. Here,

$$a=2$$

$$b = 3$$

$$c=2$$

$$k = 1$$

$$b^{k} = 3$$

Therefore, since $a < b^k$, we conclude by the Master Formula that

$$T(n) = \Theta(n)$$
.