MATH 8090: Stationary processes

Whitney Huang, Clemson University

9/5-9/7/2023

Contents

Examples of i.i.d. Noise
Examples realizations of white noise processes
MA(1) processes
AR(1) processes
Random walk
Examples realizations of Gaussian process
ACF
Box test for temporal independence
Box and Pierce test Box and Pierce (1970)
Ljung-Box Test
References

Examples of i.i.d. Noise

Examples realizations of white noise processes

Note: here we do not require the sequence follow the same distribution.

```
T = 100
t <- 1:T
WN1 <- rnorm(n = T, mean = 2, sd = 2)

par(las = 1, mgp = c(2, 0.5, 0), mar = c(3.6, 3.6, 0.8, 0.6))
plot(t, WN1, type = "l", xlab = "Time", ylab = "i.i.d. N(2, 4) noise")
abline(h = 2, col = "gray")</pre>
```



```
acf(WN1)
points(0:20, c(1, rep(0, 20)), pch = 16, col = "blue")
```



```
WN2 <- rchisq(n = T, df = 2)
plot(t, WN2, type = "l", xlab = "Time", ylab = expression(paste("i.i.d. ", chi[2], " noise")))
abline(h = 2, col = "gray")</pre>
```



```
acf(WN2)
points(0:20, c(1, rep(0, 20)), pch = 16, col = "blue")
```



```
WN3 <- c(WN1, WN2)[sample(1:200)]
plot(1:200, WN3, type = "1", xlab = "Time", ylab = expression(paste("White noise")))
abline(h = 2, col = "gray")</pre>
```



```
acf(WN3)
points(0:23, c(1, rep(0, 23)), pch = 16, col = "blue")
```


MA(1) processes

$$\eta_t = Z_t + \theta Z_{t-1},$$

where $Z \sim WN(0, \sigma^2)$.

```
library(animation)
T = 100
t <- 1:T
z <- rnorm(110)
theta <-c(0.25, 1, -1, -0.25)
saveLatex({
  par(las = 1, mgp = c(2, 0.5, 0), mar = c(3.6, 3.6, 0.8, 0.6),
      mfrow = c(2, 1)
  for (i in 1:4){
    MA1 \leftarrow filter(z, sides = 1, c(1, theta[i]))[-(1:10)]
    plot(t, MA1, type = "l", xlab = "Time", ylab = "MA(1)")
    abline(h = 0, col = "gray")
    legend("topleft", legend = theta[i], title = expression(theta),
           bty = "n")
    acf(MA1)
    points(0:20, c(1, theta[i] / (1 + theta[i]^2), rep(0, 19)),
           pch = 16, col = "blue")
  }
}, img.name = "MA1", ani.opts = "controls, width=0.95\\textwidth",
latex.filename = ifelse(interactive(), "MA1_realizations.tex", ""),
nmax = 4, ani.dev = "pdf", ani.type = "pdf", ani.width = 8,
```

```
## \documentclass{article}
  \usepackage[papersize={8in,6in},margin=0.1in]{geometry}
##
               \usepackage{animate}
##
               \begin{document}
##
               \begin{figure}
##
               \begin{center}
               ##
               \end{center}
##
               \end{figure}
##
               \end{document}
##
##
```

```
##another way to simulate MA(1)
MA1 <- arima.sim(n = 100, list(ma = c(0.5)))
plot(MA1)</pre>
```


acf(MA1)

Series MA1

AR(1) processes

$$\eta_t = \phi \eta_{t-1} + Z_t,$$

where $|\rho| < 1$ is a constant and η_s and Z_t are uncorrelated for all $s < t \Rightarrow$ future noise is uncorrelated with the current value.

```
rho <- c(0.25, 0.9, -0.5)
saveLatex({
  par(las = 1, mgp = c(2, 0.5, 0), mar = c(3.6, 3.6, 0.8, 0.6),
      mfrow = c(2, 1)
 for (i in 1:3){
   AR1 \leftarrow arima.sim(n = 100, list(ar = c(rho[i])))
   plot(t, AR1, type = "l", xlab = "Time",
         ylab = paste("AR(1), rho = ", rho[i]))
    abline(h = 0, col = "gray")
   acf(AR1)
   points(0:20, c(1, rho[i]^(1:20)), pch = 16, col = "blue")
 }
}, img.name = "AR1", ani.opts = "controls, width=0.95\\textwidth",
latex.filename = ifelse(interactive(), "AR1_realizations.tex", ""),
nmax = 3, ani.dev = "pdf", ani.type = "pdf", ani.width = 8,
ani.height = 6,documentclass = paste("\\documentclass{article}",
                                      "\\usepackage[papersize={8in,6in},margin=0.1in]{geometry}",
                                      sep = "\n"))
```

- ## \documentclass{article}
- ## \usepackage[papersize={8in,6in},margin=0.1in]{geometry}

```
##
                    \usepackage{animate}
##
                    \begin{document}
##
                    \begin{figure}
                    \begin{center}
##
##
                    \animategraphics[controls, width=0.95\textwidth]{1}{AR1}{0}{2}
                    \end{center}
##
##
                    \end{figure}
                    \end{document}
##
##
```

Random walk

$$\eta_t = \sum_{s=1}^t Z_s.$$

```
saveLatex({
  par(las = 1, mgp = c(2, 0.5, 0), mar = c(3.6, 3.6, 0.8, 0.6))
  for (i in 1:5){
    z \leftarrow rnorm(500)
    plot(1:500, cumsum(z), type = "1", xlab = "Time",
         ylab = "Random Walk")
    abline(h = 0, col = "gray")
}, img.name = "RW", ani.opts = "controls, width=0.95\\textwidth",
latex.filename = ifelse(interactive(), "RW_realizations.tex", ""),
nmax = 5, ani.dev = "pdf", ani.type = "pdf", ani.width = 8,
ani.height = 4,documentclass = paste("\\documentclass{article}",
                                      "\\usepackage[papersize={8in,4in},margin=0.1in]{geometry}",
                                      sep = "\n"))
## \documentclass{article}
## \usepackage[papersize={8in,4in},margin=0.1in]{geometry}
##
                   \usepackage{animate}
##
                   \begin{document}
                   \begin{figure}
##
                   \begin{center}
##
                   \animategraphics[controls,width=0.95\textwidth]{1}{RW}{0}{4}
##
##
                   \end{center}
##
                   \end{figure}
                   \end{document}
##
##
```

Examples realizations of Gaussian process

```
library(fields)
# Commonly used covariance functions
cov.exp <- function(h, pars) pars[1] * exp(-h / pars[2])
cov.doubleExp <- function(h, pars) pars[1] * exp(-(h / pars[2])^2)
cov.Matern <- function(h, pars) Matern(h, phi = pars[1], range = pars[2], smoothness = pars[3])</pre>
```


ACF

 $Population\ ACF$

$$\rho(h) = \operatorname{Cor}(\eta_t, \eta_{t+h}) = \frac{\operatorname{E}\left[(\eta_t - \mu)(\eta_{t+h} - \mu)\right]}{\sqrt{\operatorname{Var}(\eta_t)\operatorname{Var}(\eta_{t+h})}}$$

 $Sample\ ACF$

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)},$$

where $\hat{\gamma}(h) = \frac{1}{T} \sum_{t=1}^{T-|h|} (\eta_t - \bar{\eta})(\eta_{t+h} - \bar{\eta}).$

```
data(LakeHuron)
par(las = 1, mfrow = c(2, 1), mar = c(4, 4, 0.8, 0.6))
plot(LakeHuron, ylab = "Depth (ft)", xlab = "Year")
points(LakeHuron, cex = 0.8, col = "blue", pch = 16)
acf(LakeHuron)
```


Box test for temporal independence

Box and Pierce test Box and Pierce (1970)

We wish to test:

 $H_0:\{\eta_1,\eta_2,\cdots,\eta_T\}$ is an i.i.d. noise sequence

 $H_1: H_0$ is false

1. Under H_0 ,

$$\hat{\rho}(h) \stackrel{.}{\sim} \mathrm{N}(0, \frac{1}{T}) \stackrel{d}{=} \frac{1}{\sqrt{n}} \mathrm{N}(0, 1)$$

2. Hence

$$Q = T \sum_{i=1}^{k} \hat{\rho}^2(h) \stackrel{\cdot}{\sim} \chi_{df=k}^2$$

3. We reject H_0 if $Q > \chi_k^2(1-\alpha)$, the $1-\alpha$ quatile of the chi-squared distribution with k degrees of freedom

Ljung-Box Test

$$Q_{LB} = T(T-2) \sum_{h=1}^{k} \frac{\hat{\rho}^{2}(h)}{n-h} \stackrel{\cdot}{\sim} \chi_{k}^{2}.$$

The Ljung-Box test Ljung and Box (1978) can be more powerful than the Box and Pierce test

```
Box.test(rnorm(100), 20)
##
##
    Box-Pierce test
##
## data: rnorm(100)
## X-squared = 12.104, df = 20, p-value = 0.9125
Box.test(LakeHuron, 20)
##
##
    Box-Pierce test
##
## data: LakeHuron
## X-squared = 182.43, df = 20, p-value < 2.2e-16
Box.test(LakeHuron, 20, type = "Ljung")
##
##
   Box-Ljung test
##
## data: LakeHuron
## X-squared = 192.6, df = 20, p-value < 2.2e-16
```

References

Box, George EP, and David A Pierce. 1970. "Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models." *Journal of the American Statistical Association* 65 (332): 1509–26.

Ljung, Greta M, and George EP Box. 1978. "On a Measure of Lack of Fit in Time Series Models." *Biometrika* 65 (2): 297–303.