

DIT: SCALABLE DIFFUSION MODELS WITH TRANSFORMERS

2023 IEEE / CVF International Conference on Computer Vision

William Peebles (uc Berkeley) Saining Xie (NYU)

Presentation by: Maryam Rezaee & Mahshid Dehghani

TABLE OF CONTENTS

01

Setting the Stage

- Core Idea
- Related Work

02

Inside DiT

- Key Preliminaries
- Final Architecture

03

Testing Grounds

- Experimental Setup
- Results & Analysis
- Inference in Practice

04

Looking Ahead

- Applications
- Limitations & Future Work

01

Setting the Stage

1.1 Core Idea

- ML Renaissance
- DiT Proposal

1.2 Related Work

- Key Themes
- Vision Transformer

- Core Idea
- Related Work

Inside Dil

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

1.1 Core Idea

ML Renaissance

- <u>Transformers</u> have revolutionized ML but mostly remain in the autoregressive fields.
- <u>Diffusion</u> models (integral to image generation advances) mainly use U-Net (convolutional) despite attention addition.
- U-Net is effective, but the inductive bias is not needed;
 transformers could replace it for architecture unification.

- Core Idea
- Related Work

Inside Dil

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

1.1 Core Idea

DiT Proposal

- Use <u>Vision Transformer</u> (ViT) principles but for diffusion.
- Keep diffusion model <u>quality</u> and <u>robustness</u> while benefiting from transformer <u>scalability</u> and <u>efficiency</u>.
- Step closer to standardized architecture for more possibilities.
- Achieve <u>state-of-the-art</u> performance!
- How? Take LDMs' VAE latent space & use Transformer inside!

- Core Idea
- Related Work

Inside Di

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

1.2 Related Work

Key Themes

- Transformers: Autoregressive and generative tasks, including ViTs, autoregressive pixel models, and CLIP image embeddings.
- Denoising Diffusion Probabilistic Models: State-of-the-art in image generation; improvements include sampling, <u>classifier-free</u> <u>guidance</u>, and multi-resolution pipelines.
- **Architecture Complexity:** Works in both <u>FLOPs</u> and parameter counts; <u>UNet in DM</u> has already been studied via FLOPs.

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

1.2 Related Work

Vision Transformer (ViT)

Figure 1. ViT Architecture

- Core Idea
- Related Work

Inside Dil

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

1.2 Related Work

Vision Transformer (ViT)

(cont.)

- Key features include:
 - Global attention capable of learning relationships between distant parts of the image (difficult for CNNs, needs many layers).
 - Scalability, less computational cost, less prone to overfitting than
 CNNs when scaled up and benefits more from large datasets.
 - No inductive biases, can learn any patterns in data without limits. However, this also makes ViT more reliant on large datasets to learn patterns effectively.

02

Inside DiT

2.1 Key Preliminaries

- Diffusion Formulation
- Classifier-Free Guidance
- Latent Diffusion Models

2.2 Final Architecture

- Design Overview
- Input Structure
- Block Details

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

2.1 Key Preliminaries

Diffusion Formulation

(reminder)

- <u>Forward</u> Process:
 - o add noise to real data

$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t}x_0, (1 - \bar{\alpha}_t)I)$$

o sample (reparam. trick)

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, I)$$

<u>Reverse</u> Process:

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$
$$x_{t_{\text{max}}} \sim \mathcal{N}(0, I) \qquad x_{t-1} \sim p_{\theta}(x_{t-1}|x_t)$$

o full training loss (for Σ_{θ})

$$L(\theta) = -p(x_0|x_1) + \sum_{t} D_{KL}(q(x_{t-1}|x_t, x_0) || p_{\theta}(x_{t-1}|x_t))$$

 \circ simplified loss (for ϵ_{θ})

$$L_{\text{simple}}(\theta) = \|\epsilon_{\theta}(x_t) - \epsilon_t\|_2^2$$

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

2.1 Key Preliminaries

Classifier-Free Guidance

• Conditional Diffusion Models:

$$p_{\theta}(x_{t-1}|x_t,c)$$

- ullet Classifier-Free Guidance: need p(c|x) so align with high p(x|c)
 - Why? Bayes' Rule! $abla_x \log p(c|x) \propto
 abla_x \log p(x|c)
 abla_x \log p(x)$
 - Final formula? $\hat{\epsilon}_{\theta}(x_t,c) = \epsilon_{\theta}(x_t,\varnothing) + s \cdot (\epsilon_{\theta}(x_t,c) \epsilon_{\theta}(x_t,\varnothing))$
 - Training?
 - Randomly drop some c for <u>null embedding</u> to learn w/ and w/out c.
 - 2. If s > 1 then stronger focus on condition.
 - 3. if s=1 then no guidance.

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

2.1 Key Preliminaries

Figure 2. LDM

- Motivation: Pixel-space diffusion is <u>expensive</u>.
- Solution: <u>LDMs!</u>
 - Learn an <u>autoencoder</u> (VAE) for images x:

$$z = E(x)$$

- Train a diffusion model in the smaller <u>latent space</u> z.
- Sample z from the diffusion model.
- <u>Decode</u> *z* to an image with the decoder:

$$x = D(z)$$

• Note: *E* and *D* are pretrained and frozen!

- Core Ideo
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

2.2 Final Architecture

Design Overview

- Faithful to <u>ViT</u>s for its benefits!
- Process:
 - Take <u>noised latent</u> from VAE
 - Extract <u>patches</u> as tokens
 - Linearly <u>embed tokens</u> into *d*
 - Add sine-cosine <u>pos embedding</u>
 - Also process condition (time, label, etc.))
 - Pass through <u>DiT block</u> (more later)
 - Apply layer norm (can be adaptive)
 - \circ Use <u>linear decoder</u> for $\epsilon \& Σ$

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

2.2 Final Architecture

Input Structure

- VAE's z shape: $I \times I \times C$
- Patch shape: $p \times p \times C$
- Patch count: $T = (I/p)^2$ (tokens)
- Input shape: $T \times d$

Note:

p does not affect <u>parameter count</u>, but it affects <u>transformer compute</u>.

 \Rightarrow smaller p, increased compute.

Figure 4. Input Specification for DiT

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

2.2 Final Architecture

Figure 5. Details of DiT Block Architecture

- Core Ideo
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

2.2 Final Architecture

Block Details

(cont.)

In-Context Conditioning Block | Design 1

Process:

- Append conditional info (timestep *t* or label *c*) to the input sequence as regular tokens.
- Proceed with ViT as before.
- o Remove conditional tokens at the end of block.

Pros & Cons:

- Simple, low overhead, and compatible with ViT.
- Little flexibility or sophistication in processing.

DIT Block with In-Context Conditioning

Figure 5.1

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

2.2 Final Architecture

Block Details

(cont.)

<u>Cross-Attention Block</u> | **Design 2**

Process:

- Create separate sequence for conditional info (timestep t or label c).
- Use cross-attention to attend to every image token via the conditional tokens.

Pros & Cons:

- More sophisticated and interactive.
- Large computational overhead.

DiT Block with Cross-Attention

Figure 5.2

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

2.2 Final Architecture

Block Details

(cont.)

adaLN-Zero Block | Design 3

- Formula:
 - \circ Standard LayerNorm: $\hat{x} = \frac{x \mu}{\sigma} \cdot \gamma + \beta$
 - o adaLN:
- $\beta, \gamma = \text{MLP}(t+c)$
 - o adaLN-Zero:

Output =
$$x + \alpha \cdot f(\hat{x})$$

$$\alpha, \beta, \gamma = MLP(t+c)$$
 all $0 - init$

- Pros & Cons:
 - Better adaptation, almost no overhead, faster.
 - More restricted (same norm on all tokens).

DIT Block with adaLN-Zero

Figure 5.3

03

Testing Grounds

3.1 Experimental Setup

- Complexity Metrics
- Design Space
- Other Settings

3.2 Results & Analysis

- Conditioning Strategies
- Model Scaling

3.3 Inference in Practice

Images and Notebook

- Core Ideo
- Related Work

Inside Dil

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

3.1 Experimental Setup

Model Complexity Metrics

- Parameter Count
 - Total number of <u>trainable parameters</u> in a model.
 - Used as proxy for model complexity.
 - Does not account for <u>image resolution!</u>
- GFLOPS (Giga Floating-Point Operation Per Second)
 - Floating point calculation during one forward pass.
 - Matrix multiplication
 - Addition
 - Transformation of data
 - o Accounts for both <u>parameter utilization</u> and <u>image resolution!</u>

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

3.1 Experimental Setup

Model Design Space

- Hyperparameters of test design space in Table 1.
- Additionally, <u>patch</u> sizes considered:

$$p = 2, 4, 8$$

Model	Layers N	Hidden size d	Heads	Gflops (<i>I</i> =32, <i>p</i> =4)
DiT-S	12	384	6	1.4
DiT-B	12	768	12	5.6
DiT-L	24	1024	16	19.7
DiT-XL	28	1152	16	29.1

Table 1. Details of DiT Model Designs

- Core Idea
- Related Work

Inside Dil

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

3.1 Experimental Setup

Other Settings

- Data:
 - ImageNet Datasets: 256×256 and 512×512
 - o Only augmentation used: <u>horizontal flip</u>
- Optimization:
 - AdamW:

$$LR = 10e - 4$$

- No weight decay!
- <u>EMA</u> (Exponential Moving Average) maintained like all gen. lit. and hyperparameters retained from <u>ADM</u> (Adversarial Diffusion Model)

- Core Idea
- Related Work

Inside Dil

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

3.1 Experimental Setup

Other Settings

(cont.)

VAE from Stable Diffusion:

$$x_{shape} = 256 \times 256 \times 3 \quad \xrightarrow{z=E(x)} \quad z_{shape} = 32 \times 32 \times 3$$

- Evaluation Metrics:
 - FID (Fréchet Inception Distance)
 - IS (Inception Score)
 - Precision/Recall

Compute:

- Implemented in JAX
- Trained at <u>5.7 itr/s</u> on <u>TPU v3-256</u>

$$(5.7 itr/s \times 800,000 itr) \times 2$$
 \approx 2,500 \\$

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

3.2 Results & Analysis

Conditioning Strategies

Based on Transformer Complexity $O(T^2d)$, DiT blocks' compute equals:

DiT Block Type	GFLOPS Overhead	GFLOPS
In-Context Conditioning Block	Negligible	119.4
Cross-Attention Block	~15% increase	137.6
AdaLN Block	Minimal	118.6
AdaLN-Zero Block	Minimal	118.6

Table 2. Details of DiT Model Designs

- Core Ideo
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

3.2 Results & Analysis

Comparing different conditioning strategies

(DiT Block Types)

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

3.2 Results & Analysis

ImageNet generation with Diffusion Transformers (DiTs)

Figure 7. Overall FID on ImageNet

- Core Ideo
- Related Work

Inside Dil

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

3.2 Results & Analysis

Scaling the DiT model improves FID at all stages of training

Figure 8. Model Scaling Effects

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

3.2 Results & Analysis

Increasing transformer forward pass Gflops increases sample quality

Figure 9. Model Scaling Effects

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

3.2 Results & Analysis

Transformer Gflops are strongly correlated with FID

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

3.2 Results & Analysis

Benchmarking class-conditional generation on ImageNet

Class-Conditional ImageNet 256×256					
Model	FID↓	sFID↓	IS↑	Precision [†]	Recall↑
BigGAN-deep [2]	6.95	7.36	171.4	0.87	0.28
StyleGAN-XL [53]	2.30	4.02	265.12	0.78	0.53
ADM [9]	10.94	6.02	100.98	0.69	0.63
ADM-U	7.49	5.13	127.49	0.72	0.63
ADM-G	4.59	5.25	186.70	0.82	0.52
ADM-G, ADM-U	3.94	6.14	215.84	0.83	0.53
CDM [20]	4.88	-	158.71	-	-
LDM-8 [48]	15.51	-	79.03	0.65	0.63
LDM-8-G	7.76	=0	209.52	0.84	0.35
LDM-4	10.56	-	103.49	0.71	0.62
LDM-4-G (cfg=1.25)	3.95	-	178.22	0.81	0.55
LDM-4-G (cfg=1.50)	3.60	-	247.67	0.87	0.48
DiT-XL/2	9.62	6.85	121.50	0.67	0.67
DiT-XL/2-G (cfg=1.25)	3.22	5.28	201.77	0.76	0.62
DiT-XL/2-G (cfg=1.50)	2.27	4.60	278.24	0.83	0.57

Class-Conditional ImageNet 512×512					
Model	FID↓	sFID↓	IS↑	Precision [†]	Recall↑
BigGAN-deep [2]	8.43	8.13	177.90	0.88	0.29
StyleGAN-XL [53]	2.41	4.06	267.75	0.77	0.52
ADM [9]	23.24	10.19	58.06	0.73	0.60
ADM-U	9.96	5.62	121.78	0.75	0.64
ADM-G	7.72	6.57	172.71	0.87	0.42
ADM-G, ADM-U	3.85	5.86	221.72	0.84	0.53
DiT-XL/2	12.03	7.12	105.25	0.75	0.64
DiT-XL/2-G (cfg=1.25)	4.64	5.77	174.77	0.81	0.57
DiT-XL/2-G (cfg=1.50)	3.04	5.02	240.82	0.84	0.54

Table 3. Vs State-of-the-art Methods

- Core Ideo
- Related Work

Inside Dil

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

3.2 Results & Analysis

Scaled-up sampling compute does not compensate for a lack of model compute

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

3.3 Inference in Practice

Let's take a look at some code!

inference time < 1 min

04

Looking Ahead

4.1 Applications

- OpenAl Sora
- Other Models

4.2 Enhancements

- Limitations
- Future Work

- Core Idea
- Related Work

Inside Dil

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

4.1 Applications

Sora: A Diffusion Transformer

Scaling transformers for video generation

Sora is a diffusion model^{21, 22, 23, 24, 25}; given input noisy patches (and conditioning information like text prompts), it's trained to predict the original "clean" patches. Importantly, Sora is a diffusion *transformer*. ²⁸ Transformers have demonstrated remarkable scaling properties across a variety of domains, including language modeling, ^{13, 14} computer vision, ^{15, 16, 17, 18} and image generation. ^{27, 28, 29}

Figure 13. Sora Page at OpenAI

- Core Idea
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

4.1 Applications

Sora: A Diffusion Transformer

(cont.)

OpenAl's Sora has a DiT <u>architecture</u>:

Figure 14. Sora Architecture

- Core Idea
- Related Work

Inside Dil

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

4.1 Applications

Other Models Include:

- DeepMind's <u>Veo2</u> Al
- NVIDIA's <u>Cosmos World Foundation Model</u> For Physical AI

Figure 15. NVIDIA's Cosmos WFM

- Core Ideo
- Related Work

Inside DiT

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

4.2 Enhancement

Limitations

- Computational Inefficiency
 - Training Cost
 - Inference Latency
- High Memory Usage
- Limited Adaptability
 - Task-Specific Fine-Tuning
 - Adaptation to Non-Image Data
- Sensitive to HyperParameter Settings
- Quality of Results

- Core Idea
- Related Work

Inside Dil

- Preliminaries
- Architecture

Testing Grounds

- Setup
- Results
- Inference

Looking Ahead

- Applications
- Enhancement

4.2 Enhancement

Future Works

- Enhancing Training Efficiency
 - Optimization Algorithms
 - Regularization Methods
 - Loss Function
 - Sparse Attention
- Accelerating Inference
 - Sampling Algorithms
 - Cache Mechanisms
 - Dynamic Architecture
 - o Token Pruning

- Improving Scalability
 - Hybrid Architectures
 - Multi-Scale Tokenization
- Expanding Modality
 - Cross-Modal Learning
 - 3D Applications
 - Audio
- Reduce Model Size
 - Quantization
 - Pruning

REFERENCES

- 1. [LINK] Peebles, W., & Xie, S. (2023). Scalable Diffusion Models with Transformers. 2023 IEEE/CVF International Conference on Computer Vision (ICCV)
- 2. [LINK] Dosovitskiy, A., et al. (2021). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. International Conference on Learning Representations (ICLR)
- 3. [LINK] Fu, C., et al. (2023). A Latent Diffusion Model for Protein Structure Generation. Second Learning on Graphs Conference (LoG 2023)
- 4. [LINK] Liu, Y., et al. (2024). Sora: A Review on Background, Technology, Limitations, and Opportunities of Large Vision Models. arXiv:2402.17177 [cs.CV]
- 5. [LINK] Video generation models as world simulator: Sora (2024). OpenAl. openal.com
- 6. [LINK] Veo 2. (2024). Google DeepMind. deepmind.google
- 7. [LINK] NVIDIA: Agarwal, N., et al. (2025). Cosmos World Foundation Model Platform for Physical AI. arXiv:2501.03575 [cs.CV]

THANKS!

Any questions?

Maryam Rezaee & Mahshid Dehghani

TGML Lab | Sharif University of Technology

Under the supervision of

Dr. Fatemeh SeyyedSalehi