CHAP5. Linear Solver. K2 = E.
の Gaussian elimination. せいいいとう対対 から サキュー からいっている。 カート ミュー のと 到今 ~、 $0(\frac{n^3}{3})$
Di Gaussian elimination with Cholesky decomposition
n 0 $\frac{1}{6}$ $\frac{1}{6}$
n = p x+y+y
Cholesky Decomposition.
If symmetric K , $K = U^TU = \frac{2}{2} \frac{2}{3} \frac{1}{3} \frac{1}{3}$. (Cholesky decomposition)
U = upper triangular matrix
= UII UIZ UI3 UIN 0 UZZ UZZ UZZ 0 0 U33 U37
q uij=0 if i>j
$U^{T} = transpose$ of U

morning glory

$$U^{T}U_{3} = E \qquad (1)$$

set
$$U_{g} = Y$$
 (2)

식(3)은 yi부터 차례로 yn 까지 계산 가능 (Forward Substitution)

gn 早日 計划至 g, 까지 계산 가능

backward substitution

				0.00	•
777	2	-> \	Lı	1 1 1	1-1
() =	5	78	-	0	4
	6-	- 7//	-		-
~		V			

1	Un	0	0	0	Tun	UIZ	U13	- ·· Un
	U12	UZZ	0	0	0	U22	U23	Uzn
	U13	U23	U33	0	0	0	U ₃₃	U3n
	•		31			Ÿ.	1	,
	Uin	Uzn	Uzn	Unn	0	0	0	Unn

@ 1st now.

$$u_{11}u_{11} = k_{11} \longrightarrow u_{11} = \sqrt{k_{11}}$$

@ 2nd row.

$$U_{12}U_{13} + U_{22}U_{23} = K_{23} \rightarrow U_{23} = (K_{23} - U_{12}U_{13})/U_{22}$$

Therefore,

diagonal term.

$$u_{ii} = \int_{1}^{\infty} K_{ii} - \sum_{k=1}^{i-1} u_{ki}^{2} \qquad i=1 \sim n$$

$$1 = \int_{1}^{\infty} K_{ii} - \sum_{k=1}^{i} u_{ki}^{2} \qquad i=1 \sim n$$

off-diagonal term

$$u_{ij} = \frac{1}{u_{ii}} \left(K_{ij} - \sum_{k=1}^{i-1} u_{ki} u_{kj} \right), j = i+1 \sim n$$

(NOTE) global K matrix & sparse matrix

population density (= K etall nonzero termel

りえ) の サイ 生意 30% for Z-D 5-10% for 3-D.

memory 鲁适叶 州也 八七号 型字部 长의

sparsity = विकेटा

(a) Maximum bandwidth scheme.

max bandwidth of 35 ste 21th, oft.

(b) Skyline method

K의 각 column 아타 첫번째 nonzero 항부터 diagonal 항까지 건장, variable bandwidth 바바의 약종

outer profile.

skyline profile 내부에 아직 많은 zero terms or "windows" 가 있을, medium to large scale 문제에

(c) Hypermatrix scheme

= }

large scale 문제에 적다 morning glory 💝

	K = UTU out UI hypermatrix
	$U = \begin{bmatrix} U_{11} & U_{12} & \cdots & U_{1N} \\ U_{21} & U_{2N} & \cdots & U_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ U_{NN} & \vdots & \vdots \\ U_{NN} & \vdots $
	Submatrix level out cholesky decomposition.
	for i=1 to N.
	for j = i+1 to N.
	Un Un = (Kin - Zi Du Uni)
F	forward substitution of Uij
	진 은 구한 뒤 submatrix 라위이너 forward substitution,
00/1/06	backward substitution stol the 70th.

(d)) substructure (or subelement) Technique.
	6
	Substructure 1
**	Substructure 1 - 8LB.
	구조북을 작은 단의의
	21,1
	Substructure 3 4 to.
	$S\pi = \sum_{i=1}^{N} S\pi_{i}$
	i = Substructure number.
	N = total number of substructu -re
	large scale figural zight.
Si	et gi, I = substructure i = up dof vector
	gi, B = substructure i = 75×1101 g/z dof vector.
	19: - 19:4-1
	Fi = Bint (Bib)
	(Jub).
7	Then STI = SgiT (Ki gi - Fi)
	= LSgi, I Sgi, B (KII KIB) (gi, I) - (Fi, I) KBI KBB (gi, B) (Fi, B)
	ANH KBI = (KIB) T
	~.

Since Sgi, I St Sgi, B > Polity, K_{IJ} $g_{i,I} + K_{IB}$ $g_{i,B} - F_{i,I} = 0$ KBÎ gi, I + KBB gi, B - Fi, B = 0. (6) 9 (a) out gi, I = (KI) (Fi, I - KIB gi, B) (c) 식(0)를 (6)에 대입 (KBB - KBI KII KIB) girb = (Fib - KBI KII FiI) 4 (d) = assemble stop global stiffness & load vector for BB 是 刊也辛 4 (c) 可以 gi, I 对处 식(d)의 Size는 원래 문제보다 작음 問題 利此可 警告

(e) Iterative (Indirect) Equation Solver K & = E 014 residual OF = E - Kg if g is exact solution, then of =0 if & is initially guessed solution, $\Delta E' = E - K2'$ K 08 = AE' -> solve for Ag' $2^2 = 2^1 + 22^1$ $K\Delta \S^2 = \Delta F^2 = F - K 9^2$ -> solve for 102 83 = 82 + x82 repeat unitil $e = \frac{(gk)^T \Delta E^k}{(gk)^T E}$ < tolerance. = work done by residual force work done by applied force * Similar to modified Newton - Raphson method (constant stiffness) * Ill. - conditioned equations converges slowly

Modified Version of iterative solver. K&=E gi = initial quess of gi (ex) g = 0 ($i = 1, \dots n$) 81 = (F1 - K/2 S2 - K/3 S3)/K11 82 = (F2 - K21 g1 - K23 g3)/K22 93 = (F3 - K3) \$1 - K32 \2)/ K33 9 K = (F1 - K12 92 - K13 83)/K11 9k = (F2 - K21 gk - K23 g3)/K22 9x = (F3 - K31 g1K - K32 g2K)/K33 Gauss - Seidel Iteration Introduce overrelaxation factor B $g_{ik}^{k} \Rightarrow g_{ik}^{k} + (1-\beta)g_{ik}^{k-1}$ = 9 K-1 + B (9 K - 8 K-1)

Then in general form. $g_{i}^{K} = g_{i}^{K-1} + \frac{3}{Kii} \left(F_{i} - \sum_{j=1}^{N} K_{ij} g_{j}^{K} - \sum_{j=1}^{N} K_{ij} g_{j}^{K} \right)$ residual force If K is positive definite and Stable structure, converges when office. If (=1, same as CD) Gauss-Soidel iteration If B>1, then SOR (Successive overrelaxation) Optimum value & 2 1.6 (problem dependent) Iterative method advantages 1. easy to program 2. 825/57 3021 of CCH 7541127 (few iteration) 3. nonlinear 521 Sty of Sty Stylon 721 (good initial solution) disad vantages ill - condition fall; fill -2、用化化之间等的可含是

	3. Symmetric 长의 なるの 切音 (direct method の时
-	Sym K & Mertol & Choleskian decomposition)
-	
	Ill-conditioned problem due to truncation error
	$ K_1 - K_1 u P $
	$- \zeta_1 u_1 + \zeta_2 u_2 _{0}$ - $\zeta_1 u_1 + \zeta_1 + \zeta_2 u_2 = 0$ (2)
	P - K1 2 K2
	Uz if Ki≪Kz Uz if Ki≫Kz, ill-condition
	well-condition truncated
	(ः न्द्रेन्रा रास्त)
	July Wi
	enoct
	(1) + (2) $[(K_1 + K_2) - K_1] U_2 = P$ (3)
	analytically correct result = kzuz=P
	if K1 > K2, K1 = 1.000000 , K2 = 4.44444 ×10=6
Č	f 7 digits is stored
	$4(3) \Rightarrow 1.000004 - 1.000000 = 4 \times 10^{-6}$
1	5 6 digits is stored 4(3) ⇒ 1.00000 = 1.00000 = 0 rigid body motion
(in	i) ill-conditioned singular prob.
	rigid body supported by flexible region
	MOOKEUK