Path Planning Challenge

Magicc Lab, Summer 2023

June 8, 2023

Abstract

Convex optimization challenge for summer 2023.

1 Introduction

The convex optimization challenge will use the VTOL example from [1], which is describe below for convenience.

In this design study we will explore the control design for a simplified planar version of a quadrotor following a ground target. In particular, we will constrain the dynamics to be in two a dimensional plane. In Cartesian space, the position of the VTOL can be defined by a variable describing the vertical position, one describing the horizontal position, and one angular variable describing the orientation, as shown in 1. The planar vertical take-off and landing (VTOL) system is comprised of a center pod of mass m_c and inertia J_c , a right motor/rotor that is modeled as a point mass m_r that exerts a force f_r at a distance d from the center of mass, and a left motor/rotor that is modeled as a point mass m_{ℓ} that exerts a force f_{ℓ} at a distance -d from the center of mass. The position of the center of mass of the planar VTOL system is given by horizontal position z_v and altitude h. The airflow through the rotor creates a change in the direction of flow of air and causes what is called "momentum drag." Momentum drag can be modeled as a viscous drag force that is proportional to the horizontal velocity \dot{z}_v . In other words, the drag force is $F_{\rm drag} = -\mu \dot{z}_v$. The target on the ground will be modeled as an object with position z_t and altitude h=0. We will not explicitly model the dynamics of the target.

Use the following physical parameters: $m_c = 1$ kg, $J_c = 0.0042$ kg m², $m_r = 0.25$ kg, $m_\ell = 0.25$ kg, d = 0.3 m, $\mu = 0.1$ kg/s, g = 9.81 m/s².

2 Dynamics

The dynamics are given by

$$\begin{pmatrix} m_c + 2m_r & 0 & 0 \\ 0 & m_c + 2m_r & 0 \\ 0 & 0 & J_c + 2m_r d^2 \end{pmatrix} \begin{pmatrix} \ddot{z} \\ \ddot{h} \\ \ddot{\theta} \end{pmatrix} = \begin{pmatrix} -(f_r + f_\ell)\sin\theta - \mu\dot{z} \\ -(m_c + 2m_r)g + (f_r + f_\ell)\cos\theta \\ d(f_r - f_\ell) \end{pmatrix}.$$
(1)

Figure 1: Planar vertical take-off and landing (VTOL)

We will assume that the right and left rotor forces are constrained as follows

$$0 \le f_r, f_\ell \le 0.75(m_c + 2m_r)g. \tag{2}$$

If the thrust was limited to $0.5(m_c + 2m_r)g$, then at full throttle, the VTOL could just hover. Therefore, the limit allows some additional control authority, but is somewhat constraining.

3 Trajectory Following

We will assume that a state-space controller with integrator is designed for the system as described in Chapter 12 of [1], and that a disturbance observer is used to estimate the states as described in Chapter 14 of [1]. The input to the system is the desired forward position $z^r(t)$ and the desired altitude $h^r(t)$.

References

 R. W. Beard, T. W. McLain, C. Peterson, and M. Killpack, Introduction to Feedback Control Using Design Studies. Amazon, 2016.