#### Jakub Radoszewski, Wojciech Rytter

Treść zadania, Opracowanie

Paweł Parys Program

Dostępna pamięć: 64 MB.

OI, Etap I, 20.10-17.11.2008

# Słonie

W Bajtockim Zoo ma się za chwilę odbyć parada, w której uczestniczyć będą wszystkie znajdujące się w nim słonie. Pracownicy zoo zachęcili już zwierzęta do ustawienia się w jednym rzędzie, ądyż zgodnie z zarządzeniem dyrektora zoo taka powinna być początkowa figura parady.

Niestety, na miejsce przybył sam dyrektor i zupełnie nie spodobała mu się wybrana przez pracowników kolejność słoni. Dyrektor zaproponował kolejność, w której według niego zwierzęta będą się najlepiej prezentować, i wydał pracownikom polecenie poprzestawiania słoni zgodnie z tą propozycją.

Aby uniknąć nadmiernego chaosu tuż przed paradą, pracownicy postanowili przestawiać słonie, zamieniając miejscami kolejno pewne pary słoni. Przestawiane zwierzęta nie muszą sąsiadować ze sobą w rzędzie. Wysiłek potrzebny do nakłonienia słonia do ruszenia się z miejsca jest wprost proporcjonalny do jego masy, a zatem wysiłek związany z zamianą miejscami dwóch słoni o masach  $m_1$  oraz  $m_2$  można oszacować przez  $m_1 + m_2$ . Jakim minimalnym wysiłkiem pracownicy mogą poprzestawiać słonie tak, aby usatysfakcjonować dyrektora?

Napisz program, który:

- wczyta ze standardowego wejścia masy wszystkich słoni z zoo oraz aktualną i docelową kolejność słoni w rzędzie,
- wyznaczy taki sposób poprzestawiania słoni, który prowadzi od kolejności początkowej do docelowej i minimalizuje sumę wysiłków związanych ze wszystkimi wykonanymi zamianami pozycji słoni,
- wypisze sume wartości tych wysilków na standardowe wyjście.

#### Wejście

Pierwszy wiersz wejścia zawiera jedną liczbę całkowitą n ( $2 \le n \le 1\,000\,000$ ), oznaczającą liczbę słoni w Bajtockim Zoo. Dla uproszczenia zakładamy, że słonie są ponumerowane od 1 do n. Drugi wiersz zawiera n liczb całkowitych  $m_i$  ( $100 \le m_i \le 6\,500$  dla  $1 \le i \le n$ ), pooddzielanych pojedynczymi odstępami i oznaczających masy poszczególnych słoni (wyrażone m kilogramach).

Trzeci wiersz wejścia zawiera n różnych liczb całkowitych  $a_i$   $(1 \leqslant a_i \leqslant n)$ , pooddzielanych pojedynczymi odstępami i oznaczających numery kolejnych słoni w aktualnym ustawieniu. Czwarty wiersz zawiera n różnych liczb całkowitych  $b_i$   $(1 \leqslant b_i \leqslant n)$ , pooddzielanych pojedynczymi odstępami i oznaczających numery kolejnych słoni w ustawieniu proponowanym przez dyrektora zoo. Możesz założyć, że ustawienia reprezentowane przez ciągi  $(a_i)$  oraz  $(b_i)$  są różne.

#### Wyjście

Pierwszy i jedyny wiersz wyjścia powinien zawierać jedną liczbę całkowitą, oznaczającą minimalny łączny wysiłek związany z poprzestawianiem słoni, w wyniku którego z ustawienia reprezentowanego przez  $(a_i)$  uzyskuje się ustawienie  $(b_i)$ .

### Przykład

Dla danych wejściowych:
6
2400 2000 1200 2400 1600 4000
1 4 5 3 6 2
5 3 2 4 6 1
poprawnym wynikiem jest:
11200

Jeden z najlepszych sposobów poprzestawiania słoni uzyskujemy, zamieniając miejscami kolejno pary słoni:

- 2 i 5 wysilek związany z zamianą to 2 000 + 1 600 = 3 600, a uzyskane ustawienie to 1 4 2 3 6 5.
- 3 i 4 wysilek to 1200 + 2400 = 3600, a uzyskane ustawienie to 1 3 2 4 6 5,
- 1 i 5 wysilek to 2 400 + 1 600 = 4 000, a uzyskane ustawienie to 5 3 2 4 6 1, czyli ustawienie docelowe.

## Rozwiązanie

#### Wstęp

Aby łatwiej wyobrazić sobie zadanie, jakie przed pracownikami zoo postawił dyrektor, spróbujemy przedstawić je graficznie. W tym celu zdefiniujemy funkcję  $p:\{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$  w następujący sposób:

$$p(b_1) = a_1, \quad p(b_2) = a_2, \quad \dots, \quad p(b_n) = a_n.$$

Zauważmy, że wówczas p(x) = y będzie oznaczało, że słoń o numerze x powinien znaleźć się w końcowym ustawieniu w miejscu, które jest aktualnie zajmowane przez słonia o numerze y. Wszystkie liczby  $b_i$  są różne, zatem p jest poprawnie zdefiniowaną funkcją, a ponieważ wszystkie liczby  $a_i$  są różne, p jest permutacjq zbioru  $\{1,2,\ldots,n\}$ . Sytuację z zadania możemy zatem przedstawić w postaci grafu skierowanego, w którym wierzchołkami są numery  $1,2,\ldots,n$  słoni, krawędziami natomiast wartości funkcji p (patrz rys. 1).

Dalej, jak każdą permutację, funkcję p można rozłożyć na tak zwane *cykle proste*  $C_1, C_2, \ldots, C_c$ . W tym celu należy wystartować z dowolnego wierzchołka grafu i podążać po krawędziach, aż dojdzie się z powrotem do tego wierzchołka (dlaczego zawsze trafia

się w końcu w wierzchołek początkowy trasy?), po czym usunąć znaleziony cykl z grafu i kontynuować proces aż do wyczerpania wszystkich wierzchołków — patrz rys. 2.



Rys. 1: Graf wyznaczony przez funkcję *p* dla przykładu z treści zadania. Wierzchołki grafu reprezentują numery słoni, natomiast strzałka z *x* do *y* obrazuje relację "słoń *x* powinien zająć miejsce słonia *y*".



Rys. 2: Rozkład grafu z rys. 1 na cykle proste: trójelementowy, dwuelementowy i jednoelementowy.

Zastanówmy się teraz, jak na tle opisanego rozkładu na cykle proste wygląda operacja zamiany miejscami słoni o numerach e oraz f. Koszt takiej zamiany to  $m_e + m_f$ . Jeżeli słonie e oraz f znajdują się w tym samym cyklu, to następuje wówczas podział tego cyklu na dwa rozłączne, z których jeden zawiera jednego z tych słoni, a drugi drugiego — patrz rys. 3.



Rys. 3: Zamiana miejscami trzeciego i szóstego słonia w cyklu prowadzi do powstania dwóch cykli trójelementowych.

W szczególności, w wyniku zamiany miejscami dwóch słoni, które sąsiadują na cyklu, jeden z powstałych cykli jest jednoelementowy, co oznacza dokładnie tyle, że po tej zamianie jeden ze słoni znajduje się na swojej pozycji docelowej (rys. 4).



Rys. 4: Zamiana miejscami pierwszego i drugiego słonia w cyklu powoduje, że pierwszy słoń trafia na właściwą pozycję.

#### **74** Słonie

Z kolei jeżeli słonie e oraz f należą do różnych cykli, to zamiana ich miejscami powoduje sklejenie tych cykli w jeden (rys. 5).



Rys. 5: Zamiana miejscami słoni należących do różnych cykli.

### Rozwiązanie wzorcowe<sup>1</sup>

Przyjmijmy następujące oznaczenia:

- |C| długość cyklu C, czyli liczba wierzchołków grafu w nim zawartych
- suma(C) suma mas słoni należących do cyklu C
- min(C) masa najlżejszego słonia na cyklu C
- min masa najlżejszego słonia w ogóle.

Naszym celem jest sprowadzenie układu cykli reprezentowanego przez permutację p do takiego, który będzie złożony wyłącznie z cykli jednoelementowych. W rozwiązaniu wzorcowym każdy cykl C rozpatrujemy osobno, a wspomniane przekształcenie realizujemy, stosując do C jedną z następujących metod przestawiania słoni.

**Metoda 1.** Porządkujemy cały cykl pojedynczymi zamianami sąsiednich słoni (jak na rys. 4). Za każdym razem zamieniamy najlżejszego słonia z całego cyklu (min(C)) z jego poprzednikiem na cyklu, w wyniku czego poprzednik ten trafia na właściwe miejsce (patrz rys. 6). W ten sposób najlżejszego słonia przemieszczamy łącznie |C|-1 razy, natomiast każdego z pozostałych słoni z cyklu — dokładnie raz. Łączny koszt porządkowania cyklu tą metodą wynosi zatem:

$$metoda_1(C) = suma(C) + (|C| - 2) \cdot min(C). \tag{1}$$

**Metoda 2.** Tym razem postępujemy bardzo podobnie, jednakże do obsłużenia całego cyklu wykorzystujemy globalnie najlżejszego słonia (min). W tym celu zamieniamy go z najlżejszym słoniem cyklu (min(C)), a następnie za jego pomocą przestawiamy kolejno wszystkie słonie z cyklu C (poza min(C)) jak poprzednio, po czym z powrotem zamieniamy min z min(C). Na ten ciąg zamian można też spojrzeć jak na sklejenie C z cyklem zawierającym min, po którym następuje ustawienie wszystkich słoni z C na właściwych miejscach za pomocą pojedynczych zamian ze słoniem min. W ten sposób najlżejszy słoń w całym zoo zostaje przemieszczony |C|+1 razy, najlżejszy w cyklu — 2 razy, a każdy z pozostałych słoni tego cyklu — dokładnie raz. Łączny koszt wszystkich przestawień to wówczas:

$$metoda_2(C) = suma(C) + min(C) + (|C| + 1) \cdot min.$$
 (2)

<sup>&</sup>lt;sup>1</sup>Duża część opisu rozwiązania wzorcowego została zaczerpnięta z pracy [37].



Rys. 6: Porządkowanie czteroelementowego cyklu za pomocą pierwszej metody. Zakładamy, że najlżejszy słoń ma numer 1.

Okazuje się, że w całym rozwiązaniu wystarczy wziąć pod uwagę jedynie dwie opisane metody i dla każdego cyklu w rozkładzie do uporządkowania użyć korzystniejszej z nich<sup>2</sup>. Ostatecznie otrzymujemy następujący minimalny koszt poprzestawiania słoni:

$$\sum_{i=1}^{c} \min(\text{metoda}_1(C_i), \text{ metoda}_2(C_i)). \tag{3}$$

#### Implementacja

Jako podsumowanie słownego opisu rozwiązania wzorcowego umieszczamy poniższy jego pseudokod. Łatwo sprawdzić, że cały algorytm ma złożoność czasową O(n). Konkretne implementacje tego algorytmu można znaleźć w plikach slo.cpp, slol.java oraz slol.pas.

```
1: { Konstrukcja permutacji p. }
2: for i := 1 to n do p[b_i] := a_i;
3:
4: { Rozkład p na cykle proste. }
5: odw: array[1..n] := (false, false, ..., false);
6: c := 0;
7: for i := 1 to n do
8: if not odw[i] then begin
9: c := c + 1; x := i;
```

 $<sup>^2</sup>$ Dodajmy tylko, że dla niektórych cykli zachodzi min(C) = min, i wówczas druga metoda traci sens, jednakże nie trzeba się tym faktem przejmować, gdyż wówczas i tak metoda $_1(C)$ .

```
while not odw[x] do begin
10:
11:
            odw[x] := true;
            C_c := C_c \cup \{x\};
12:
            x := p[x];
13:
         end
14:
15:
16:
    { Wyznaczenie parametrów cykli. }
17:
    min := \infty;
    for i := 1 to c do begin
19:
       suma(C_i) := 0; min(C_i) := \infty;
20:
       for all e \in C_i do begin
21:
22:
         suma(C_i) := suma(C_i) + m_e;
         min(C_i) := min(min(C_i), m_e);
23:
24.
       min := min(min, min(C_i));
25:
26:
27:
   { Obliczenie wyniku. }
28:
29: w := 0;
30: for i := 1 to c do begin
       metoda_1(C_i) := suma(C_i) + (|C_i| - 2) \cdot min(C_i);
31:
       metoda_2(C_i) := suma(C_i) + min(C_i) + (|C_i| + 1) \cdot min;
32:
       w := w + \min(\text{metoda}_1(C_i), \text{metoda}_2(C_i));
34: end
35: return w;
```

#### Uzasadnienie poprawności

Na sam koniec opisu rozwiązania wzorcowego pozostawiliśmy jego dowód poprawności. Jest on, niestety, trochę skomplikowany, jednakże jest to jedyna niezawodna metoda sprawdzenia tego, czy w rozwiązaniu nie zapomnieliśmy o żadnym z przypadków.

Jeżeli C jest cyklem, to przez

```
koszt(C) = min(metoda_1(C), metoda_2(C))
```

oznaczmy koszt uporządkowania tego cyklu w rozwiązaniu wzorcowym. Niech dalej OPT(p) oznacza najmniejszy możliwy koszt poprzestawiania wszystkich słoni zgodnie z zarządzeniem dyrektora. Aby wykazać poprawność rozwiązania wzorcowego, wystarczy udowodnić, że

$$OPT(p) \geqslant \sum_{i=1}^{c} \operatorname{koszt}(C_i).$$
 (4)

Nierówność (4) udowodnimy przez indukcję względem liczby zamian wykonywanych w rozwiązaniu optymalnym. Przypadek zerowej liczby zamian jest trywialny. Załóżmy

więc, że (4) zachodzi dla wszystkich permutacji, dla których algorytm optymalny wykonuje k-1 zamian, i niech p będzie dowolną permutacją, do której uporządkowania algorytm ten potrzebuje k zamian. Musimy udowodnić, że (4) zachodzi także dla p.

Przyjrzyjmy się pierwszemu krokowi rozwiązania optymalnego "OPT" uruchomionego dla p. Załóżmy, że są w nim zamieniane słonie e oraz f. Permutację po ich zamianie oznaczmy przez p' — uporządkowanie jej przez algorytm optymalny wymaga k-1 zamian, więc wiadomo, że nierówność (4) zachodzi dla p'. W zależności od wzajemnego położenia e oraz f wyróżniamy teraz kilka przypadków.

**Przypadek 1:** e **i** f **należą do tego samego cyklu w** p. Dla ustalenia uwagi niech  $e, f \in C_1$ . Po zamianie słoni cykl  $C_1$  rozpada się na dwa mniejsze cykle (patrz rys. 3). Oznaczmy te cykle przez A i B oraz niech  $e \in A$  i  $f \in B$ . Wówczas rozkład p' na cykle proste wygląda tak:  $\{A, B, C_2, C_3, \ldots, C_c\}$ , a stąd i z (4) dla p' mamy:

$$OPT(p) = OPT(p') + m_e + m_f \geqslant \text{koszt}(A) + \text{koszt}(B) + \sum_{i=2}^{c} \text{koszt}(C_i) + m_e + m_f.$$

Aby pokazać (4) dla p, wystarczy zatem udowodnić, że:

$$koszt(A) + koszt(B) + m_e + m_f \geqslant koszt(C_1).$$
 (5)

Dalsze uzasadnienie możemy podzielić na trzy podprzypadki:

**Przypadek 1.1:**  $koszt(A) = metoda_1(A)$  i  $koszt(B) = metoda_1(B)$ . Korzystając z faktu, że zbiór słoni zawartych w cyklu  $C_1$  jest sumą zbiorów słoni odpowiadających A oraz B, oraz z tego, że każda z wartości min(A), min(B),  $m_e$ ,  $m_f$  jest nie mniejsza niż  $min(C_1)$ , mamy:

$$metoda_1(A) + metoda_1(B) + m_e + m_f =$$

$$= suma(A) + (|A| - 2) \cdot min(A) + suma(B) + (|B| - 2) \cdot min(B) + m_e + m_f \geqslant$$

$$\geqslant suma(C_1) + (|C_1| - 2) \cdot min(C_1) = metoda_1(C_1) \geqslant koszt(C_1).$$

Intuicyjnie, pokazaliśmy, że zamiast rozbijać cykl  $C_1$  na cykle A i B (za pomocą zamiany e z f) i każdy z nich porządkować za pomocą pierwszej metody, można równie dobrze od razu uporządkować cały cykl  $C_1$  za pomocą tej metody.

**Przypadek 1.2:**  $koszt(A) = metoda_1(A)$  i  $koszt(B) = metoda_2(B)$  (**lub odwrotnie**). Podobnie jak poprzednio, w poniższej nierówności liczba składników nie zmienia się, a jedynie zastępujemy cięższe słonie przez  $min(C_1)$  lub min:

$$\begin{split} \operatorname{metoda}_1(A) + \operatorname{metoda}_2(B) + m_e + m_f &= \\ &= \operatorname{suma}(A) + \left(|A| - 2\right) \cdot \min(A) + \operatorname{suma}(B) + \min(B) + \left(|B| + 1\right) \cdot \min + m_e + m_f \geqslant \\ &\geqslant \operatorname{suma}(C_1) + \min(C_1) + \left(|C_1| + 1\right) \cdot \min = \operatorname{metoda}_2(C_1) \geqslant \operatorname{koszt}(C_1). \end{split}$$

Tym razem intuicja stojąca za powyższym ciągiem przekształceń jest taka, że zamiast wprowadzać najlżejszego słonia tylko do cyklu B, można go wprowadzić od razu do całego  $C_1$ , co nie przynosi żadnej straty, a może się dodatkowo opłacić przy porządkowaniu fragmentu  $C_1$  odpowiadającego cyklowi A.