MA1200 CALCULUS AND BASIC LINEAR ALGEBRA LECTURE: CG1

REVIEW EXAMPLES ON CHAPTER 6 TO 8

Example 1 (Exam 1617B)

Evaluate the following limits:

(a)
$$\lim_{x \to 0} \frac{1 - \cos(3x)}{x^2}$$

(b)
$$\lim_{x \to \infty} \frac{1 - x^2}{1 + x^2}$$

(c)
$$\lim_{x \to 0^{+}} \left(\frac{1}{x} - \frac{3}{3x + 2x^2} \right)$$

Example 2 (Exam 1314B)

Let
$$f(x) = \begin{cases} \frac{x^3 - 8}{x - 2} & \text{if } x \neq 2 \\ c & \text{if } x = 2 \end{cases}$$
.

Find the value of c for which f(x) is continuous at x = 2. Give your reason.

Dr. Emíly Chan Page 3

Example 3 (Exam 1213A)

Let
$$g(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
. Determine whether $g(x)$ is differentiable at

x = 0, if so, find the value of the first derivative there.

Example 4 (Exam 1617B)

- (a) Prove from first principles that $\frac{d}{dx}(x^3) = 3x^2$.
- (b) Let $F(x) = |\cos x|$, for $x \in \mathbb{R}$. Determine whether F(x) is differentiable at x = 0. Give your reason.

(Hint: You may use $\cos 2\theta = 1 - 2\sin^2 \theta$.)

Find $\frac{dy}{dx}$ for each of the following:

(a)
$$y = \tan^{-1} \left[5 \cosh(x^3 + 2) \right]$$

(b)
$$y = \left(\sqrt{x} + \frac{1}{x}\right)^{x^2}$$

(c)
$$xy^2 + e^{-xy} = 1$$

(d)
$$y = \cos^3(4x) \cdot \ln[\sinh(2x)]$$

(e)
$$y = \frac{(2x+3)^6}{(x^2+1)e^{4x}}$$

Example 6 (Exam 1415A)

A curve has parametric equations

$$x = 2t - \log_e(2t),$$

$$y = t^2 - \log_e(t^2).$$

where t is the parameter and t > 0.

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in terms of t.

Example 7 (Exam 1415A)

Given that $y = e^{\sqrt{3}x}\cos x$, express $\frac{dy}{dx}$ in the form $re^{\sqrt{3}x}\cos(x+\phi)$, where

r > 0 and $0 < \phi < \frac{\pi}{2}$, and state the numerical value of r and ϕ . Express $\frac{d^2y}{dx^2}$

in similar form. (Hint: cos(A+B) = cos A cos B - sin A sin B.)

Example 8 (Exam 1415B)

- (a) Express $\frac{7x+17}{(x-4)(2x+1)}$ in partial fractions.
- (b) If $y = (\alpha x + \beta)^{-1}$, where α and β are non-zero constants, find the general formula for the nth derivative of y with respect to x.
- (c) Using the result in parts (a) and (b), or otherwise, find the sixth derivative of $\frac{7x+17}{(x-4)(2x+1)}$ with respect to x. You need not simplify your answer.

Example 9 (Exam 1617B)

Find the seventh derivative of $(x^2 - x + 3)e^{-2x}$ with respect to x.

Example 10 (Exam 1314B)

$$P\left(2, \frac{2+\sqrt{3}}{2}\right)$$
 is a point on the curve $x^2 + 4y^2 - 6x - 8y + 9 = 0$.

- (a) Find the slope of the tangent to the curve at P.
- (b) Find the equation of the normal to the curve at P.

Evaluate
$$\lim_{x \to 0} \frac{1 + x - e^{\sin x}}{x - \ln(1 + x)}.$$

Example 12 (Exam 1415B)

(a) Starting from the formula $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$, show that

$$\tan 4\theta = \frac{4t(1-t^2)}{1-6t^2+t^4}$$
, where $t = \tan \theta$. Deduce that, when $\theta = \tan^{-1}\left(\frac{1}{5}\right)$,

$$\tan\left(4\theta - \frac{\pi}{4}\right) = \frac{1}{239}.$$

- (b) If $y = \tan^{-1} x$, prove that $(1+x^2)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} = 0$. By repeated differentiation of this result and use the Maclaurin theorem, or otherwise, prove that the first three non-zero terms in the series expansion of $\tan^{-1} x$ are $x \frac{x^3}{3} + \frac{x^5}{5} + \dots$
- (c) Using the results in parts (a) and (b), find an approximation to the value of π , giving 5 decimal places in your answer.

Let P(0,-2) be a turning point of the curve $y = \frac{x^2 + px + q}{x+1}$.

- (a) Find the values of p and q.
- (b) Find all local extrema of the curve.
- (c) Find the largest possible domain and largest possible range of the function $f(x) = \frac{x^2 + px + q}{x + 1}$, where p and q are the values you found in (a).

Let $y = \sinh^{-1} x$. Use implicit differentiation to show that $\frac{dy}{dx} = \frac{1}{\sqrt{1+x^2}}$.

Hence, or otherwise show that

$$(1+x^2)y^{(2)} + xy^{(1)} = 0$$

and that, for $n \ge 0$,

$$(1+x^2)y^{(n+2)} + (2n+1)xy^{(n+1)} + n^2y^{(n)} = 0$$

where $y^{(r)}$ denotes $\frac{d^r y}{dx^r}$.

Hence, or otherwise, find the expansion of $\sinh^{-1} x$ in ascending powers of x as far as the term in x^5 .