Robin Genz 30.11.2022

Monitoring

Machine Learning Development and Operations

Inhalte

- 1. Machine Learning Lifecycle
- 2. KI-Verordnung
- 3. Monitoring
- 4. Tools und Plattformen
- 5. Demo

Machine Learning Lifecycle

Machine Learning Lifecycle

KI-Verordnung

KI-Verordnung

Artikel 61, Kapitel 1: Post-market monitoring for high-risk Al systems

Absatz 1:

Anbieter müssen ein System zur Beobachtung nach dem Inverkehrbringen einrichten [...]

Absatz 2:

Mit dem System zur Beobachtung [...] müssen sich die [...] gesammelten Daten [...] über deren gesamte Lebensdauer hinweg aktiv und systematisch erfassen, dokumentieren und analysieren lassen [...]

Verordnung

Monitoring

Monitoring

- Erstellen und Überwachen von Metriken
 - Metriken über die Eingabedaten (Data Monitoring)
 - Metriken über die Ausgabedaten (Prediction Monitoring)
 - Metriken über die System-Performance (System Monitoring)

Metriken

- Quantitative Messwerte
- Verschiedene Arten von Metriken
 - 1. Verteilungsmetriken (Distribution) •
 - 2. Integritätsmetriken (Integrity)
 - 3. Aktivitätsmetriken (Activity)
 - 4. Abweichungsmetriken (Drift) •
 - 5. Leistungsmetriken (Performance)
- Data Monitoring
- Prediction Monitoring

Verteilungsmetriken

Metrik	Kategorisch	Numerisch	Boolean
Anzahl einzigartiger Werte	x		
Durchschnittswert		x	
Verhältnis			Х

Beispiele:

• <u>Durchschnittswert</u> berechnen: $ar{x} = rac{1}{n} \sum_{i=1}^n x_i$

Integritätsmetriken

Metrik	Kategorisch	Numerisch	Boolean
% an fehlenden Werten	Х	x	X
% an Ausreißern		X	

Beispiele:

- % an fehlenden Werten berechnen:
 - IQR = Q3 Q1
 - $g_o = Q3 + 1, 5 * IQR$
 - $g_u = Q1 + 1, 5 * IQR$

Aktivitätsmetriken

Metrik	Kategorisch	Numerisch	Boolean
Anzahl an Vorhersagen	Х	х	Х

Abweichungsmetriken

Metrik	Kategorisch	Numerisch	Boolean
Chi-Quadrat-Test	x		x
Wasserstein-Metrik		X	

Beispiele:

ullet Chi-Quadrat-Test berechnen: $dist(P,Q)=rac{1}{2}\sum_i rac{(P(i)-Q(i))^2}{P(i)+Q(i)}$

Leistungsmetriken

Metrik	Kategorisch	Numerisch	Boolean
F1 Score	x		х
MSE		X	

Beispiele:

$$lacksquare ext{MSE}$$
 berechnen: $l=rac{1}{n}*\sum_{i=1}^n(\hat{y_i}-y_i)^2$

Unstrukturierte Daten

- Problem: Verwendung der üblichen Metriken auf Rohdaten nicht möglich
- Viele verschiedene Ansätze
- 3 Hauptaspekte:
 - 1. **Vektorielle Repräsentation**: Konvertierung der unstrukturierten Daten in eine Vektoreinbettung
 - Dichtemodell: Definition eines Dichtemodell für den Referenzdatensatz
 - Scoring: Scoring neuer Datenpunkte anhand des Referenz-Dichtmodells

Systemanforderungen

Tools und Plattformen

Anbieter

Vergleich

Datenschutz

Anbieter haben Sitz in USA

DSGVO

Artikel 17:

Die betroffene Person hat das Recht, von dem Verantwortlichen zu verlangen, dass sie betreffende personenbezogene Daten unverzüglich gelöscht werden [...]

Artikel 28:

Erfolgt eine Verarbeitung im Auftrag eines Verantwortlichen, so arbeitet dieser nur mit Auftragsverarbeitern, die hinreichend Garantien dafür bieten, [...] dass die Verarbeitung im Einklang mit den Anforderungen dieser Verordnung erfolgt [...]

→ Gemäß dem <u>Patriot Act</u> von 2001 müssen US-Unternehmen personenbezogene Daten auf Verlangen von US-Behörden herausgeben.

Datenschutz

Beispiel: WhyLabs

- Speichert grundsätzlich nur aggregierte Daten
- Verarbeitung durch CLI (Open-Source)
- ABER: Es werden die 128 häufigsten Einträge gespeichert

Demo