Azospirillum속 질소고정균의 액체배양을 위한 재료의 탐색

주 수 한

액체배양은 질소고정균비료생산에서 매우 중요한 공정의 하나로서 미생물비료의 질적특성에 큰 영향을 미친다. 지금까지 Azospirillum속 세균의 액체배양에는 유기 및 무기시약을 리용하는 합성배지가 널리 리용되여왔다.[2, 3, 6] 특히 Azospirillum속 세균의 탄소원으로 사과산을 비롯한 유기산들이 쓰이기때문에 다량배양에서 시약의 제한을 받게 된다. 또한 여러가지 첨가제들을 리용하여 미생물의 배양효과를 높이기 위한 연구들은 진행[1]되였으나 값눅은 원료에 의거한 배양방법을 제기한것은 없다.

우리는 여러가지 천연기질과 버림물의 조성상특성에 기초하여 *Azospirillum*속 질소고 정균의 액체배양재료를 탐색하기 위한 연구를 하였다.

재료 및 방법

액체배양재료로는 감자, 두부순물, 각종 쌀씻음액들을 리용하였으며 균주로는 Azospirillum brasilence 371과 A. lipoferum 695를 리용하였다.

액체배양물속의 Azospirillum의 수와 기타 다른 세균 및 효모의 수는 피알계산판을 리용하여 현미경하에서 세포수를 세는 방법으로 측정하였으며 방선균과 균실의 증체량은 균실의 질량을 측정하여 평가하였다.

결과 및 론의

1) 감자우림액에 의한 배양

균의 증식을 위한 액체배지로는 *Azospirillum*의 생산용배지[2]와 20% 감자우림물배지, 통강냉이와 물을 1:3(질량)비로 섞어 삶아낸 물로 만든 배지를 리용하였다.

각이한 배지에서 Azospirillum lipoferum과 A. bransilense의 증식속도는 그림 1과 2와 같다.

그림 1. 각이한 배지에서 *Azopririllum*의 정치배양속도 ¬) *A. lipoferum*, ∟) *A. brasilense*; 1—합성배지, 2—강냉이배지, 3—감자배지; 배양온도 30°C

그림 1과 2에서 보는바와 같이 진탕배양때 A. lipoferum의 증식속도는 정치배양때보다약 20배정도 더 높았으며 증식효과가 높은 배지는 정치배양은 물론이고 진탕배양때에도 감자배지였다.

A. lipoferum과 마찬가지로 A. brasilense의 배양에서도 감자배지가 효과적이였다.

감자배지의 이러한 우월성을 리용하면서 A. lipoferum이 비오틴을 비롯한 생장요소들에 대한 요구성이 높다는 선행연구자료[3, 4]에 기초하여 감자배지에 압착효모를 첨가하는 방법으로 정치배양하여 A. lipoferum의 중식효과를 높이도록 하였다.(표 1)

그림 2. 각이한 배지에서 *A. lipoferum*의 진탕배양속도 1-합성배지, 2-강냉이배지, 3-감자배지; 배양온도 30℃

표 1. 감자배양액에 효모첨가때 A. lipoferum의 정치배양속도

효모첨가	바양시간에 따르는 A. lipoferum의 수/(·10 ⁸ CFU·mL ⁻¹)							
량/%	12h	24h	36h	48h	60h	72h	84h	96h
0.10	5.8	12.8	20.8	34.4	35.6	52.8	37.8	37.236.4
0.25	2.9	18.0	31.6	32.8	40.4	34.4	13.6	13.3
0.50	3.7	13.2	19.6	34.4	44.8	43.2	37.2	37.2

배양온도 30℃, 배양액량 250mL들이 삼각플라스크에 100mL

표 1에서 보는바와 같이 효모첨가량이 0.1%일 때 72h만에 감자배양액으로 진탕배양할때와 거의 같은 수준으로 A. lipoferum이 증식하였으며 효모첨가량을 그이상 높이면 증식효과가 떨어졌다. 그러나 A. brasilense의 경우에는 A. lipoferum과 달리 효모첨가효과가 거의나타나지 않았다.(표 2)

표 2. 감자배지와 효모첨가배지에서 A. brasilense의 증식속도비교

배양시간 _		A. brasilense수/(·	$10^8 \mathrm{CFU} \cdot \mathrm{mL}^{-1})$		
	정	치배양	진탕배양		
/h —	감자배지	감자배지+효모	감자배지	감자배지+효모	
8	0.28	0.28	0.6	0.42	
16	0.44	0.52	2.04	2.42	
24	0.54	0.54	2.20	3.24	
32	0.84	0.99	2.64	4.12	
40	1.20	1.26	3.52	4.76	
48	2.12	1.40	_	_	
56	3.68	1.68	5.04	7.32	
64	3.76	2.32	6.36	8.36	
72	3.82	1.55	7.60	7.68	

측정못함, 배양온도 30°C

표 2에서 보는바와 같이 A. brasilence는 정치배양때에는 물론 진탕배양때에도 효모침 가에 의한 균수의 증가효과가 나타나지 않았는데 이것은 A. lipoferum과 대조되는 A. brasilense의 특성과 관련된다고 본다. 즉 A. brasilense는 비오틴을 비롯한 생장촉진물질을 요구하지 않기때문에 효모침가에 반응하지 않은것이다. 따라서 A. brasilense는 A. lipoferum 의 배양과는 다른 방법으로 정치배양효과를 높여야 한다는것을 알수 있다.

선행연구[5]에서 제기한 Azospirillum의 산소에 대한 낮은 요구성으로부터 출발하여 감 자배지에 우무를 넣고 반고체화하여 시험하였다.(표 3)

표 3. 정치배양때 반고체감자배지에서 Azospirillum의 증식속도

	1	
배양시간	A. brasilense	A. lipoferum
/h	$/(\cdot 10^9 \text{CFU} \cdot \text{mL}^{-1})$	$/(\cdot 10^9 \text{CFU} \cdot \text{mL}^{-1})$
12	0.48	0.60
24	2.56	3.00
36	3.76	3.64
48	5.60	3.76
60	5.65	3.96

배양온도 30℃, 우무첨가량 0.2%

표 3에서 보는바와 같이 감자배지에서 A. brasilense의 정치배양은 반고체화하는것 이 효과적이며 A. lipoferum의 경우에도 반 고체배지를 리용하는것이 좋았다.

이상의 결과를 통하여 감자배지를 Azospirillum용 액체배양재료로 쓸수 있으며 액체진탕배양에 소모되는 에네르기문제는 _ 몇가지 첨가제를 리용하여 해결할수 있다 고 본다.

2) 버림물을 리용한 배양

먼저 쌀씻음액에서 Azospirillum의 배양효과를 보았다.(표 4)

표 4에서 보는바와 같이 쌀씻음 액도 Azospirillum의 좋은 배양재료 로 될수 있다. 그런데 흰쌀씻음액보 다 밀쌀씻음액의 배양효과가 더 높 _ 았는데 이로부터 씻음액의 종류에 따라 차이가 크다는것을 알수 있다.

또한 쌀씻음액의 방치도 배양균 증식에 좋은 영향을 주었다.(표 5)

표 4. 쌀씻음액(1:1)에서 A. brasilense의 정치배양속도

구분	A. bi	rasilense수/	(·10 ⁸ CFU · r	nL^{-1})
, -	24h	48h	72h	96h
흰쌀씻음액	1.4	10.0	10.4	13.6
밀쌀씻음액	5.0	27.3	26.0	19.2

배양온도 30℃

표 5. 목쌀씻음액(1:1)의 배양효과

구분	A. brasilense $/(\cdot 10^9 \text{CFU} \cdot \text{mL}^{-1})$	A. lipoferum $/(\cdot 10^9 \text{CFU} \cdot \text{mL}^{-1})$	
방치하지 않고 배양	2.7	2.1	
1d동안 방치하고 배양	4.6	2.7	

정치배양, 배양시간 72h, 배양온도 30℃

뀨 5에서 보는바와 같이 Azospirillum의 배양에 옥쌀씻음액도 밀쌀씻음액에 못지 않았으며 방치 - 후 배양효과는 더 좋았다. 그것은 옥쌀씻음액의 방치과정에 유기산 · 이 생성되는것으로 해석할수 있다. 다음으로 식료공장에서 나오

는 페수의 일종인 두부생산버림물(두부순물)을 Azospirillum의 액체배지로 리용하기 위한 시험을 하였다.(표 6)

두부순물은 표 6에서 보는바와 같이 감자우림물보다 A. brasilense의 증식에 더 _ 좋은 영향을 주었다.

두부순물에서 미생물의 증식속도가 -빠른 원인은 거기에 당을 비롯한 여러가 지 영양물질이 많기때문이다. 자료에 의하 면 기름뺀 콩으로 만드는 두부순물에는 조

표 6. A. brasilense의 증식에 미치는 감자우림물과 두부순물의 영향비교

배지종류 _	$A. brasilense$ $\stackrel{\triangle}{+}$ /(·10 9 CFU·mL $^{-1}$)				
, 10 ii <u>-</u>	24h	48h	72h	94h	108h
감자우림물	4.4	10.4	14.0	49.2	44.6
두부순물	5.8	13.6	22.4	90.0	79.8

배양조건 30℃에서 정치배양

단백질 0.28g/100mL, 총당질 0.29g/100mL, 비타민 B₁ 48.8y/100mL 들어있어 영양가치가 있다.

맺 는 말

- 1) 감자우림물을 Azospirillum속 질소고정균의 액체배양에 효과적으로 리용할수 있으며 거기에 압착효모와 우무를 첨가하는 방법으로 그 효과를 더 높일수 있다.
- 2) 두부순물과 쌀씻음액을 리용하여 Azospirillum속 질소고정균을 배양하는것은 버림물을 리용하는 측면에서도 좋고 그 효과도 매우 높다.

참고문 헌

- [1] 김일성종합대학학보(자연과학), 55, 7, 162, 주체98(2009).
- [2] J. Dobereiner et al.; Can. J. Microbial., 22, 1464, 1976.
- [3] M. Lakshmi et al.; Curr. Sci., 49, 438, 1980.
- [4] Y. Oken et al.; J. Bacterial., 127, 1248, 1976.
- [5] Y. Oken et al.; Appl. Environ. Microbial., 33, 85, 1977.
- [6] S. B. Patricia et al.; Current Biology, 24, 652, 2014.

주체106(2017)년 10월 5일 원고접수

Search of Material for Liquid Culture of Nitrogen Fixing Bacteria in *Azospirillum*

Ju Su Han

Potato extract can be used effectually for liquid culture of *Azospirillum* and it is more effective with pressed yeast and agar being added.

It is effective to culture Azospirillum by using bean curd extract and rice bran liquid.

Key words: nitrogen fixing bacteria, liquid culture