

R -data grasping and wrangling

October 3, 2018

Descriptive statistics

Acquire a data culture

A typical Data Science project

Your opinion on...

Why and how to describe, visualise and summarise datasets?

What is your strategy when you deal with a new dataset?

How much time should you spend on these operations?

At least 2 components:

At least 2 components:

• columns : variable, either discrete/continuous variable. They can be either predictors or outcomes

At least 2 components:

- columns : variable, either discrete/continuous variable. They can be either predictors or outcomes
- rows: observations, statistical units

At least 2 components:

- columns : variable, either discrete/continuous variable. They can be either predictors or outcomes
- rows: observations, statistical units

Definition of a statistical unit (INSEE's definition)

"A statistical unit is a unit of observation or measurement for which data are collected or derived. The statistical unit is therefore the basic element for compiling and tabulating statistical data."

At least 2 components:

- columns : variable, either discrete/continuous variable. They can be either predictors or outcomes
- rows: observations, statistical units

Definition of a statistical unit (INSEE's definition)

"A statistical unit is a unit of observation or measurement for which data are collected or derived. The statistical unit is therefore the basic element for compiling and tabulating statistical data."

A 3rd component might be :

• a reasoned approach when collecting the data (using experimental design, choosing exhaustiveness, real-time data...)

Let's imagine you'd like to test the efficiency of an e-mail marketing campaign. How could/should the analysed dataset look like?

Let's imagine you'd like to test the efficiency of an e-mail marketing campaign. How could/should the analysed dataset look like?

Homework: please read this blogpost

https://rtask.thinkr.fr/blog/the-ten-commandments-for-a-well-formatted-database/

Why describing datasets?

Because of...

Let's dive into data and get our hands dirty!

These are the graduate school admission figures to university of California, Berkeley for the fall of 1973.

	Ме	n	Women	
	Applicants Admitted Applicants A		Admitted	
Total	8442	44%	4321	35%

Let's dive into data and get our hands dirty!

These are the graduate school admission figures to university of California, Berkeley for the fall of 1973.

	Men		Women	
	Applicants Admitted		Applicants	Admitted
Total	8442	44%	4321	35%

1. Is it a tidy dataset? What is the statistical unit?

Let's dive into data and get our hands dirty!

These are the graduate school admission figures to university of California, Berkeley for the fall of 1973.

	Me	n	Women	
	Applicants Admitted		Applicants	Admitted
Total	8442	44%	4321	35%

- 1. Is it a tidy dataset? What is the statistical unit?
- 2. Any comments?

Did you said gender bias? What about this table:

Did you said gender bias? What about this table:

Department	Ме	n	Women	
Department	Applicants	Admitted	Applicants	Admitted
Α	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	373	6%	341	7%

Did you said gender bias? What about this table:

Department	Ме	n	Women	
	Applicants	Admitted	Applicants	Admitted
Α	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	373	6%	341	7%

- 1. What have we done here?
- 2. Is it a tidy dataset? What is the statistical unit?
- 3. Any comments?

In fact, when exposing new variables, we conclude to a counter-intuitive statement: data show a bias in favor of women

Simpson's paradox, or the Yule–Simpson effect, is a phenomenon in probability and statistics, in which a trend appears in several different groups of data but disappears or reverses when these groups are combined. It is sometimes given the descriptive title reversal paradox or amalgamation paradox

Here is another example:

https://dabblingwithdata.wordpress.com/2016/03/10/simpsons-paradox-and-theimportance-of-segmentation/

And a video: https://www.youtube.com/watch?v=ebEkn-BiW5k

Why describing datasets?

Because of...

Correlation is not causality

Nicolas Cage is responsible for swimming pool drownings:

Inside your toolbox

Differentness

- range: range()
- variance: var()
- standard deviation : sd()

Pay attention: all these functions eat vectors

Sameness

- mean: mean()
- median: median()

Inside your toolbox:

```
library(tidyverse)
library(pander)
library(knitr)
library(skimr)
library(DT)
library(arsenal)
```

Try in a new Rmd file:

```
```{r results='asis'}
skim(iris) %>% pander()
```

### Inside your toolbox:

```
library(tidyverse)
library(pander)
library(knitr)
library(skimr)
library(DT)
library(arsenal)
```

### Try in a new Rmd file:

```
```{r results='asis'}
skim(iris) %>% pander()
```{r results='asis'}
skim(iris) %>% kable()
. . .
```

```
```{r}
skim_to_wide(iris) %>% datatable()
```

```
```{r}
skim_to_wide(iris) %>% datatable()
```{r results='asis'}
 cross_tab <- table(sample(c("nord", "sud"), replace=TRUE, size=100),</pre>
 sample(c("yes", "no"), replace=TRUE, size=100)
 cross_tab %>%
  arsenal::freqlist() %>%
  summary()
```

Why visualising data?

Because of dinosaurs:

The Anscombe quartet

The Anscombe quartet are 4 x/y datasets. They were constructed in 1973 by the statistician Francis Anscombe to demonstrate both the importance of graphing data before analyzing it.

anscombe

```
x1 x2 x3 x4
#>
                   y1
                        y2
                              vЗ
                                    y4
     10 10 10
                                 6.58
                 8.04 9.14
                            7.46
               8 6.95 8.14 6.77 5.76
                                 7.71
     13 13 13
               8 7.58 8.74 12.74
         9 9
               8 8.81 8.77
                                 8.84
#> 4
                           7.11
               8 8.33 9.26 7.81 8.47
     11 11 11
     14 14 14
                 9.96 8.10 8.84
                                 7.04
#> 7
                  7.24 6.13 6.08
                                 5.25
           4 19
                  4.26 3.10 5.39 12.50
                                 5.56
               8 10.84 9.13 8.15
#> 10
                  4.82 7.26 6.42
                                 7.91
#> 11 5 5 5 8 5.68 4.74 5.73 6.89
```

The Anscombe quartet

The Anscombe quartet

Set	mean_of_x	mean_of_y	variance_of_x	variance_of_y	correlation_x_y
1	9	7.500909	11	4.127269	0.8164205
2	9	7.500909	11	4.127629	0.8162365
3	9	7.500000	11	4.122620	0.8162867
4	9	7.500909	11	4.123249	0.8165214

Surprising, isn't it?

But wait, what about dinosaurs?

https://www.autodeskresearch.com/publications/samestats

"...make both calculations and graphs. Both sorts of output should be studied; each will contribute to understanding" Anscombe, 1973

see dynamic version online

Other powers of datavisualising things

Correlation between random deviates from uniform distribution across four sample sizes. All values sampled from a uniform distribution. (source: https://crumplab.github.io/statistics/ - feel free to read the book)

see dynamic version online

What kind of plot?

Another ressource: https://www.data-to-viz.com/

Do's and don't of data visualisation

Please do add...

- a title,
- labelled axes,
- a graduated scale that makes sense,
- a legend,
- the source of the data,
- and the units of measurement used

to your graphs.

Possibly, add

- a subtitle
- and annotations.

Be careful when choosing colors: https://hbr.org/2014/04/the-right-colors-make-data-

assiar to road

Do's and don't of data visualisation

Please, do not plot

- pie charts (also called the **bubble plague** draw barplot instead)
- barbarplot (draw density or histogram instead)

Friends don't let friends make bar plots.

tidyverse & tidy data

Put your data in order

class: slide

What is the {tidyverse}?

The {tidyverse} also contains ...

Import

- {readxl}
- {haven}
- {feather}
- {httr}
- {jsonlite}
- {rvest}
- {xml2}

Wrangle

- {stringr}
- {lubridate}
- {forcats}
- {hms}
- {blob}

Program

- {rlang}
- {magrittr}
- {glue}

Model

- {modelr}
- {broom}

install.packages("tidyverse")

The packages of {tidyverse}

```
library(tidyverse)
#> -- Attaching packages ----- tidyverse
1.2.1 --
#> v ggplot2 3.0.0 v purrr 0.2.5
#> v tibble 1.4.2 v dplyr 0.7.6
#> v tidyr 0.8.1 v stringr 1.3.1
#> v readr 1.1.1 v forcats 0.3.0
#> -- Conflicts -----
tidyverse conflicts() --
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
```

{tidyverse}, Tidy == clean

All happy families are alike; each unhappy family is unhappy in its own way.

Léon Tolstoï, _Anna Karénine_

And in data manipulation?

Like families, tidy datasets are all alike but every messy dataset is messy in its own way

• In an ordered dataset, individuals/observations are in rows, and variables in columns

cf The Ten Commandments for a well-formatted database

```
age \leftarrow c(25, 45, 31, 10,23,43,45,12)
sex <- c( "man", "man", "woman", "man", "man", "man", "woman", "man")</pre>
tbl <- tibble("age" = age, "sex" = sex)
tbl
```

```
#> # A tibble: 8 x 2
      age sex
    <dbl> <chr>
#>
#> 1
    25 man
#> 2 45 man
#> 3 31 woman
#> 4 10 man
#> 5 23 man
#> 6
    43 man
```

"non-tidy data"

"non-tidy data"

A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S
	Consommation finale grande industrie (GWh)						Consommation finale PMI/PME (GWh)											
Région																		
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2006	2007	2008	2009	2010	2011	2
Auvergne Rhône-Alpes	23 268	26 215	26 939	26 007	26 464	19 564	14 461	11 548	12 170	13 116	13 257	22 637	22 698	22 942	22 246	23 220	22 781	23 06
Bourgogne France-Comté	3 940	3 866	3 768	3 300	3 508	3 569	3 411	3 331	3 277	3 351	3 259	7 858	7 887	7 739	7 483	7 762	7 645	7 72
Bretagne	959	940	912	772	798	801	757	730	714	714	717	8 343	8 564	8 816	8 694	9 039	8 904	9 03
Centre-Val de Loire	1 485	1 486	1 398	1 394	1 384	1 447	1 453	1 402	1 386	1 341	1 261	7 334	7 236	7 301	6 981	7 212	7 173	7 09
Corse	-	-	-	-	-	-	-	-	-	-	-	447	456	480	499	504	518	52
Grand Est	12 224	12 052	11 611	9 050	9 800	9 834	9 057	8 643	8 580	8 323	8 278	18 557	18 573	18 536	17 475	17 993	17 218	17 00
Hauts de France	17 449	17 210	16 619	14 994	16 179	15 961	16 070	15 696	15 556	15 242	15 060	16 594	16 474	16 687	15 739	16 306	16 166	16 26
Ile-de-France	7 502	7 445	7 392	7 251	7 191	7 114	7 257	7 221	7 098	7 096	7 016	29 622	29 806	30 685	31 191	32 063	30 507	31 19
Normandie	6 355	6 376	6 293	6 062	5 944	5 832	5 545	5 596	5 560	5 632	5 441	9 445	9 553	9 531	9 298	9 599	9 258	9 33
Nouvelle Aquitaine	5 437	5 530	5 434	4 930	4 983	4 994	4 765	4 625	4 479	4 362	4 402	13 077	13 227	13 644	13 127	13 631	13 395	13 85
Occitanie	3 193	3 086	2 778	2 370	2 515	2 547	2 504	2 463	2 532	2 481	2 584	10 823	10 949	11 225	10 719	11 052	11 517	11 76
Pays de la Loire	2 226	2 213	2 210	2 036	2 079	2 103	2 118	2 086	2 156	2 185	2 180	9 684	9 810	10 106	9 893	10 380	10 107	10 26
Provence-Alpes-Côte d'Azur	8 996	8 974	8 988	8 225	8 409	8 613	8 062	8 151	8 214	8 051	8 392	10 638	10 632	10 944	11 032	11 238	10 777	11 02
France	93 034	95 393	94 342	86 391	89 254	82 381	75 460	71 492	71 722	71 894	71 846	165 059	165 865	168 636	164 377	169 999	165 966	168 14
																- Co		
		Auvergne Rhône-Alpes																
	Consommation finale grande industrie hors Eurodiff et CERN (GWh)																	
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016							
	12 629	12 465	12 321	10 234	11 035	11 336	10 930	10 706	11 070	11 455	11 723							

Notion of statistical unit

- **Population** = all the objects studied
- **Sample** = subpopulation of these same objects
- **Variable** = characteristic measured on each object
- **Statistical unit** = observations on objects for all variables

Datasets for statistical analysis reflect the notion of the statistical unit and must be constructed accordingly:

Statistical unit in line and variables in column

So.

- If the information is available somewhere, it should be included in the table.
- All data are grouped in a single table.
- The data is not broken down in multiple Excel tabs.
- Several tables must not be grouped together in the same workbook.

Tidying a messy dataset

What is a messy data set?

- The column headings are values/modalities.
- Several variables are stored in a single column.
- The variables are stored in rows AND columns.
- An observation is stored in several data tables.
- ... (non-exhaustive list)...

Often, it's a 'clever' combination of all.

{tidyverse} : About the "tibble" class

dataframes that are returned by one of the tidyverse import functions (read_excel, read csv) are applied an additional class, they become tbl.

```
library(tibble)
iris tbl <- as tibble(iris)</pre>
class(iris)# [1] "data.frame"
#> [1] "data.frame"
class(iris_tbl) #[1] "tbl_df" "tbl" "data.frame "
                              "data.frame"
#> [1] "tbl df" "tbl"
```

The display of these dataset is improved, only the first rows are displayed, an optimal number of columns is presented and the type of each variable is indicated.

About the "tibble" class

With tbl, when selecting a single column, the output keeps being a tbl object (no longer a vector like with r-base). No need to use drop = FALSE.

```
class(iris[,1]) # "numeric"
#> [1] "numeric"
class(iris[,1,drop = FALSE]) # "data.frame"
#> [1] "data.frame"
class(iris tbl[,1])# "tbl df" "data.frame"
#> [1] "tbl df" "tbl" "data.frame"
```

However, not all R functions can support them yet, it is thus possible to delete the tbl class thanks to:

```
as.data.frame(iris_tbl)
```

About the "tibble" class

The tribble function allows to create tibbles in the other way:

```
df <- tribble(</pre>
  ~ x, ~ y, ~ z,
  1, 2, 3,
 4, 5, 6
df
```

```
#> # A tibble: 2 x 3
#> x y z
#> <dbl> <dbl> <dbl>
#> 1 1 2 3
#> 2 4 5 6
```

Import/Export data

Read and write data for analysis

Import data from flat files (1)

- Flat files are «text-oriented» databases (.txt and .csv extensions)
- They can be read in a simple text-editor (e.g. notepad)
- Each line in the file is a future row in the dataset.
- They are structured with a field separator and a decimal separator
- In tidyverse, the {readr} package contains the set of necessary functions for this kind of import (and more)
- To import a file with this csv type, you need to use read_delim or, for convenience, read_csv or read_csv2
- The syntax looks like:

```
library(readr)
dataset <- read delim(file = "filename.txt", delim = ";", col names =</pre>
TRUE)
```

Import data from flat files (2)

- read_csv will use delim=","
- read_csv2 will use delim=";"
- read_tsv will use delim="\t" (tabulation)

By default the function is intelligent and tries to guess the types of the columns (number, date, factor...). Parameter col_type allows to define them manually if necessary (see vignette ("column-types")).

Exercise

<pre>Import titanic_train.csv from /data directory using read_csv() function, assign it to titanic_train</pre>
Show a summary of the dataset
Find the number of lines and columns
Find variables names

Import Excel .xls or .xlsx files (1)

• Package {readxl}:

```
library(readxl)
excel_sheets("Data_FE_CPU_messages.xlsx")
read_excel("Data_FE_CPU_messages.xlsx", sheet = 3)
read_excel("Data_FE_CPU_messages.xlsx", sheet = "FE1")
```

Import files from other statistical softwares

Packages {foreign} and {haven} should cover 99% of your needs

```
ls("package:haven", pattern = "^read")
"read dta" "read por" "read sas" "read sav" "read spss"
"read stata"
"read xpt"
ls("package:foreign", pattern = "^read")
"read.arff" "read.dbf"
                            "read.dta"
                                          "read.epiinfo" "read.mtp"
"read.octave" "read.S"
                            "read.spss"
                                          "read.ssd" "read.systat"
"read.xport"
```

Import data from SQL databases

Importing tables from a database requires 3 steps:

- 1. Establish a connexion with the database (handle)
- 2. List the tables in the database
- 3. Import the table you need (using SQL queries for example)

Several packages are available ({RODBC}, {RMySQL}, {dbplyr}, {DBI}, ...)

Export R objects (1)

write_delim() (and potentially variations like write_csv()) are used to export flat files

It's syntax is:

```
write_delim(
  objectname, #dataset to export
 path = "output.csv", #Destination
  delim = ";"
```

Export Robjects (2)

R objects may be exported into R binaries files in order to load them quicker later on. They are stored in:

- .RData (serialized and deserialized using functions save () and load ())
- .RDS (serialized and deserialized using functions write_rds() et read_rds())

The main differences are:

- save () saves a bunch of objects, or the entirety of objects in the environment with save.image().
- /!\ It's not possible to choose the name of the object using the load() function (can overwrite existing objects) /!\
- write_rds() saves a unique object and read_rds() allows the user to choose the name of what is loaded.

Tip: Several objects to save? Store them in a list and use list2env() to unlist them in the global environment . Global Env

```
list2env(dframe, envir = .GlobalEnv)
```

Export R objects (3)

```
an_object <- "character"
an_object
save(an_object, file =
"my_work.Rdata")
an_object <- 2
load("my_work.Rdata")
an_object
```

```
an_object <- "character"</pre>
write_rds(an_object, path =
"my work.RDS")
an_object <- 2
another_object <-
read_rds("my_work.RDS")
an_object
another_object
a_list <- list (my = 2, fair = 5,
lady = 6)
a list
list2env(a list, envir =
.GlobalEnv)
```

Export R objects (4)

The duet dput () and dget () writes and reads R instructions that builds R objects. It is the privileged way to submit small pieces of objects on Stackoverflow:

```
my_list <- list (my = 2, fair = 5, lady = 6)
dput (my_list, file = "myfile.dput")
dput (my_list)
my_other_list <- dget("myfile.dput")</pre>
dput(iris[,5])
```

Data Manipulation with {dplyr} in the tidyverse

What is {dplyr}?

- A package by Hadley Wickham
- An efficient «grammar» of data manipulation...
- …made lisible with the «pipe» (%>%)…
- ···to produce pretty, fast and elegant code.

Loading the package

```
library(tidyverse) # loads all the tidyverse
#> -- Attaching packages ----- tidyverse
1.2.1 --
#> v ggplot2 3.0.0 v purrr 0.2.5
#> v tibble 1.4.2 v dplyr 0.7.6
#> v tidyr 0.8.1 v stringr 1.3.1
#> v readr 1.1.1 v forcats 0.3.0
#> -- Conflicts ------
tidyverse conflicts() --
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
library(dplyr) # loads only dplyr
```

The main verbs of the {dplyr} grammar

Verbs dedicated to observation manipulation (rows):

- arrange()
- filter()

Verbs dedicated to variables manipulation (column):

- select()
- mutate()

Verbs for combined operations on rows and columns:

- summarise
- group_by

Each verb takes in first argument the dataset on which the action should be done

arrange () arranges the observations...

arrange () arranges the observations...

- in ascending order,
- or in descending order with desc(),
- combining several arranging criteria

```
arrange (the_data_frame, arranging_criteria_1, arranging_criteria_2)
```

Example:

```
data(iris)
arrange(iris, Sepal.Length)
arrange(iris, desc(Sepal.Length), Petal.Length)
```

Write code like a narrative thread for you data: %>%

Let's digress for a moment

• keyboard shortcut : "Ctrl + Shift + M"

It's all about grammar...

verb(subject , object, ...)

Thus,

```
data(iris)
arrange(iris, Sepal.Length)
arrange(iris, desc(Sepal.Length), Petal.Length)
```

is equivalent to:

```
iris %>% arrange( Sepal.Length )
iris %>% arrange( desc(Sepal.Length), Petal.Length )
```

But also...

```
iris %>% head()
iris %>% names()
iris %>% dim()
iris %>% View()
iris %>% summary()
```

End of digression...

filter() reduces the height of the dataset

lignes	А	В	С
1			
2			
3			
4			

lignes	А	В	С
1			
3			

filter() reduces the height of the dataset

filter operations are made with logical and boolean observations: >, <,<=, >=, %in%,
 &, | , !...

```
iris %>% filter( Species == "virginica" )
iris %>% filter( Species == "virginica", Petal.Width < 3 )</pre>
```

means 'OR'

```
iris %>% filter( Species == "virginica" | Petal.Width > 1.3 )
#>
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1
         7.0
            3.2 4.7 1.4 versicolor
#> 2
         6.4 3.2 4.5 1.5 versicolor
#> 3
   6.9 3.1 4.9 1.5 versicolor
#> 4
  6.5 2.8 4.6 1.5 versicolor
      6.3 3.3
#> 5
                      4.7
                              1.6 versicolor
   5.2 2.7 3.9 1.4 versicolor
#> 6
#> 7
    5.9 3.0 4.2 1.5 versicolor
         6.1 2.9
                       4.7
#> 8
                             1.4 versicolor
#> 9
         6.7
              3.1
                         4.4
                             1.4 versicolor
                        45 15 versicolor
```

[🔂] Data Manipulation with {dplyr} in the tidyverse - First step to master the tiMsceData Science for Business - https://thinkr.fr 59/146

How to use %in%?

```
iris %>% filter( Species %in% c("virginica", "setosa") )
```

is equivalent to:

```
iris %>% filter( Species == "virginica" | Species == "setosa" )
```

Chain operations with %>%

Second digression...

%>% avoids temporary objects, you can see it like a "then" in the narrative thread happening to your data

```
iris %>%
  arrange( Petal.Length ) %>%
  filter( Species == "setosa" ) %>%
  head()
#>
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
```

```
#> 1
        4.6
               3.6
                       1.0
                              0.2 setosa
#> 2
        4.3
               3.0
                       1.1
                              0.1 setosa
#> 3
        5.8 4.0
                     1.2
                              0.2 setosa
#> 4
   5.0 3.2
                    1.2
                              0.2 setosa
#> 5
     4.7 3.2
                    1.3
                              0.2 setosa
     5.4
#> 6
            3.9
                     1.3
                              0.4 setosa
```

Reduce the dataset's width: select()

Reduce the dataset's width: select()

```
data(iris)
iris_tbl <- as.tbl( iris ) # transforms iris in a tibble</pre>
iris_tbl %>% select( Species, Sepal.Width, Petal.Width )
\#> \# A \text{ tibble: } 150 \times 3
    Species Sepal. Width Petal. Width
#>
   <fct> <dbl>
#>
                       <dbl>
#>
  1 setosa 3.5
                      0.2
  2 setosa 3 0.2
#>
  3 setosa 3.2 0.2
#>
#> 4 setosa 3.1 0.2
#> 5 setosa 3.6 0.2
                   0.4
#> 6 setosa 3.9
#> 7 setosa 3.4 0.3
#> 8 setosa 3.4 0.2
#> 9 setosa 2.9 0.2
#> 10 setosa 3.1 0.1
#> # ... with 140 more rows
```

"helpers" to select variables

starts_with() • ends_with() • contains() • matches()

Selection is simplified by "helpers" (1)

```
iris_tbl %>% select( -Petal.Length, -Petal.Width )
\#> \# A \text{ tibble: } 150 \times 3
#>
     Sepal.Length Sepal.Width Species
          <dbl> <dbl> <fct>
#>
            5.1
                3.5 setosa
#>
  1
#>
          4.9 3 setosa
#>
            4.7
                 3.2 setosa
#> 4
            4.6
                 3.1 setosa
#> 5
           5
                    3.6 setosa
          5.4
                   3.9 setosa
#> 6
#> 7
            4.6
                3.4 setosa
#> 8
                    3.4 setosa
          4.4
#>
  9
                2.9 setosa
#> 10
         4.9
                    3.1 setosa
#> # ... with 140 more rows
```

Selection is simplified by "helpers" (2)

```
iris_tbl %>% select( starts_with("Petal") )
#> # A tibble: 150 x 2
#>
    Petal.Length Petal.Width
          <dbl>
                    <dbl>
#>
                0.2
            1.4
#>
#>
          1.4
                0.2
#>
           1.3
                   0.2
#>
        1.5
                0.2
          1.4
                   0.2
#>
           1.7
                   0.4
#>
#>
        1.4
                0.3
#>
           1.5
                    0.2
          1.4
#>
   9
                   0.2
#> 10
         1.5
                     0.1
#> # ... with 140 more rows
```

Selection is simplified by "helpers" (3)

```
iris_tbl %>% select( -starts_with("Petal") )
\#> \# A \text{ tibble: } 150 \times 3
#>
     Sepal.Length Sepal.Width Species
           <dbl> <dbl> <fct>
#>
            5.1
                 3.5 setosa
#>
   1
#>
          4.9 3 setosa
#>
            4.7
                 3.2 setosa
#> 4
            4.6
                  3.1 setosa
#>
            5
                    3.6 setosa
          5.4
                    3.9 setosa
#> 6
#> 7
            4.6
                  3.4 setosa
#>
                    3.4 setosa
          4.4
#>
  9
                 2.9 setosa
#> 10
          4.9
                    3.1 setosa
#> # ... with 140 more rows
```

Selection is simplified by "helpers" (4)

```
iris_tbl %>% select( -ends_with("Width") )
\#> \# A \text{ tibble: } 150 \times 3
#>
      Sepal.Length Petal.Length Species
            <dbl>
                        <dbl> <fct>
#>
              5.1
                        1.4 setosa
#>
   1
#>
            4.9
                           1.4 setosa
#>
              4.7
                           1.3 setosa
#>
              4.6
                           1.5 setosa
#>
              5
                           1.4 setosa
            5.4
#>
                           1.7 setosa
#> 7
              4.6
                           1.4 setosa
#>
                           1.5 setosa
            4.4
#>
   9
                           1.4 setosa
#> 10
           4.9
                           1.5 setosa
#> # ... with 140 more rows
```

Selection is simplified by "helpers" (5)

```
iris tbl %>% select( -contains("etal") )
\#> \# A \text{ tibble: } 150 \times 3
#>
     Sepal.Length Sepal.Width Species
           <dbl> <dbl> <fct>
#>
             5.1
                  3.5 setosa
#>
   1
#>
             4.9
                 3 setosa
#>
             4.7
                    3.2 setosa
#>
             4.6
                     3.1 setosa
#>
             5
                     3.6 setosa
           5.4
#>
                     3.9 setosa
#>
             4.6
                     3.4 setosa
#>
                     3.4 setosa
          4.4
#>
   9
                     2.9 setosa
#> 10
          4.9
                     3.1 setosa
#> # ... with 140 more rows
```

Selection is simplified by "helpers" (6)

```
iris_tbl %>% select( Sepal.Width:Petal.Width )
#> # A tibble: 150 x 3
#>
    Sepal.Width Petal.Length Petal.Width
         <dbl>
                    <dbl>
                              <dbl>
#>
                   1.4
           3.5
                                0.2
#>
   1
#>
                     1.4
                             0.2
#>
           3.2
                     1.3
                             0.2
#>
           3.1
                1.5
                           0.2
           3.6
#>
                     1.4
                             0.2
           3.9
                     1.7
                               0.4
#>
#>
       3.4 1.4
                           0.3
#>
          3.4
                     1.5
                             0.2
           2.9
                     1.4
                             0.2
#>
   9
#> 10
           3.1
                     1.5
                                0.1
#> # ... with 140 more rows
```

mutate() to modify and create variables

mutate() add columns (and extend the dataset's width) or modifies existing columns

fonctions de transformation

mutate() to modify and create variables

```
dataset %>% mutate( new variable = dummy operations(),
                    my_variable = other_operations(my_variable),
```

Example:

```
iris tbl %>%
 mutate( Sepal.Length = Sepal.Length / 10,
        ratio_Sepal = Sepal.Length / Sepal.Width,
        ratio Petal = Petal.Length / Petal.Width ) %>%
 head(2)
\#>\# A tibble: 2 x 7
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species ratio_Sepal
#>
   <dbl>
                <dbl> <dbl> <dbl> <fct> <dbl>
#>
#> 1 0.51 3.5 1.4 0.2 setosa 0.146
#> 2 0.49 3 1.4 0.2 setosa 0.163
#> # ... with 1 more variable: ratio Petal <dbl>
```

Vectorized windows functions to be used with mutate

Vectorized functions take vectors as input and return vectors of the same length as output

Some useful vectorized functions

- offsets: lag() (+1), lead() (-1)
- cumulative aggregates: cumsum(), cumprod()...
- ranks: dense_rank(), min_rank()...
- arithmetic operations and logical comparisons : +, -, *, and >, <,<=, >=

Summary functions: summarise()

Summary functions take vectors as input but they return one (and only one) value

Some useful summary functions:

- Position parameters: mean(), median()
- Counts: n() without any parameter, only available inside summarise
- Spread parameters: var(), sd(), IQR()
- Ranks: quantile(), min(), max()

Summary functions: summarise()

fonction de résumé

Summary functions: summarise()

An example of summarise ()

```
iris %>% summarise(
          average = mean( Sepal.Length ),
          variance = var( Sepal.Length ),
          count = n()
```

```
average variance count
#>
#> 1 5.843333 0.6856935 150
```

The adverb group_by()

An adverbial phrase is a group of words operating adverbially, meaning that their syntactic function is to modify a verb, an adjective, or an adverb

Wikipedia

In other words, we're going to modify the conditions in which the verb operates.

The split - apply - combine strategy

17	spl	it	apply	
į	Facteur	Valeur		
i I	Groupe 1	3	4.5	
١;	Groupe 1	6	1 4.0	-
i				1
	Facteur	Valeur		
1	Groupe 2	5	3.5	
1	Groupe 2	2]
1 1 1				
į	Facteur	Valeur		
į	Groupe 3	2	5	'
į	Groupe 3	8		

Facteur	Calcul	
Groupe 1	4.5	
Groupe 2	3.5	
Groupe 3	5	

combine

The split - apply - combine strategy

The split-apply-combine, {dplyr} like...

... is a combination of group_by() + summarise()

```
iris %>%
  group_by( Species ) %>%
  summarise( average_Sepal.Length = mean( Sepal.Length ),
             variance_Sepal.Length = var( Sepal.Length ),
             count = n()
```

```
\#>\# A tibble: 3 x 4
    Species average Sepal.Length variance Sepal.Length count
    <fct>
                              <dbl>
                                                   <dbl> <int>
                               5.01
                                                   0.124
#> 1 setosa
                                                            50
#> 2 versicolor
                               5.94
                                                   0.266 50
                               6.59
                                                   0.404
#> 3 virginica
                                                            50
```

group_by() operates the «split» and summarise() operates the summarising to each subset

Example of data flow

#>	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	surface_totale
#> 1	4.5	2.3	1.3	0.3	1074
#> 2	4.3	3.0	1.1	0.1	1301
#> 3	4.4	2.9	1.4	0.2	1304
#> 4	4.4	3.0	1.3	0.2	1346
#> 5	4.4	3.2	1.3	0.2	1434
#> 6	4.8	3.0	1.4	0.1	1454
#> 7	4.6	3.1	1.5	0.2	1456
#> 8	4.8	3.0	1.4	0.3	1482
#> 9	4.9	3.0	1.4	0.2	1498

Tale Manipulation with deliverse - First step to master the tiMsceData Science for Business - https://thinkr.fr 80/146

Some particular filters: distinct()

... removes duplicates from a dataset

```
iris_tbl %>% distinct()
\#> \# A \text{ tibble: } 149 \times 5
#>
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
           <dbl>
                      <dbl>
                                 <dbl>
                                            <dbl> <fct>
#>
             5.1
                       3.5
                                   1.4
                                             0.2 setosa
#>
   1
             4.9
                                   1.4
#>
                       3
                                          0.2 setosa
#>
             4.7
                  3.2
                                   1.3
                                           0.2 setosa
             4.6
#>
                    3.1
                                1.5
                                       0.2 setosa
             5
                       3.6
#>
                                1.4
                                           0.2 setosa
             5.4
#>
                     3.9
                                   1.7
                                           0.4 setosa
             4.6
#>
                    3.4
                               1.4
                                        0.3 setosa
#>
             5
                      3.4
                                 1.5
                                          0.2 setosa
#>
             4.4
                     2.9
                                   1.4
                                           0.2 setosa
#> 10
           4.9
                                  1.5
                       3.1
                                             0.1 setosa
#> # ... with 139 more rows
```

Some particular filters: distinct()

... removes duplicates from a dataset

```
iris_tbl %>% distinct( Species )
#> # A tibble: 3 x 1
    Species
    <fct>
#> 1 setosa
#> 2 versicolor
#> 3 virginica
```

Some particular filters: sample_n()

...randomly select a number of rows

```
iris_tbl %>% dim()
#> [1] 150 5
iris_tbl %>% sample_n( size = 60 )
\#>\# A tibble: 60 x 5
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>
         <dbl>
                  <dbl>
                           <dbl> <dbl> <fct>
#>
          6.9
                3.1
                             4.9
                                   1.5 versicolor
#>
  1
#> 2
          6.4
              3.2 4.5 1.5 versicolor
#>
         4.7
              3.2
                           1.3 0.2 setosa
        5.6
                           4.5
                                     1.5 versicolor
#> 4
                 3
#> 5
      6.4
              2.9 4.3
                                 1.3 versicolor
#> 6
          4.4
              2.9
                           1 . 4
                                   0.2 setosa
        4.9
#> 7
              2.5
                          4.5
                                     1.7 virginica
          5.1
              3.7 1.5 0.4 setosa
#>
#>
          5.3
                  3.7
                             1.5
                                   0.2 setosa
          5.5
#> 10
                 2.3
                             4
                                     1.3 versicolor
```

^{#&}gt; # ... With 50 More rows

...and sample_frac()

...randomly select a fraction of rows

```
iris_tbl %>% sample_frac( size = 0.7 ) # select 70% of rows
\#> \# A \text{ tibble: } 105 \times 5
#>
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
          <dbl>
                   <dbl>
                              <dbl>
                                       <dbl> <fct>
#>
           5
                     2.3
                               3.3
                                         1 versicolor
#>
  1
               3.4 1.9 0.2 setosa
#>
           4.8
#>
           5.4
               3.4
                             1.7
                                      0.2 setosa
         4.8
#>
                            1.4 0.1 setosa
          4.8
                            1.6
#>
               3.4
                                      0.2 setosa
           6.3
#> 6
                  3.3
                               6
                                        2.5 virginica
       6.9
               3.1
                         5.4 2.1 virginica
#>
#>
           5.7
               2.5
                               5
                                         2 virginica
                                      1.2 versicolor
#>
           5.8
                  2.6
                               4
      6.2
                               4.3
#> 10
                     2.9
                                      1.3 versicolor
#> # ... with 95 more rows
```

Some particular filters: slice ()

...select rows by position

it is better to avoid working like this and give priority to the filter verb

```
iris %>% slice( 25:32 )
#>
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1
           4.8
                    3.4
                              1.9
                                        0.2 setosa
#> 2
          5.0
                    3.0
                              1.6
                                        0.2 setosa
#> 3
          5.0
                3.4
                            1.6
                                        0.4 setosa
#> 4
          5.2
                 3.5
                             1.5
                                       0.2 setosa
        5.2
                            1.4
#> 5
                 3.4
                                       0.2 setosa
      4.7 3.2 1.6
#> 6
                                       0.2 setosa
          4.8
#> 7
                  3.1
                            1.6
                                       0.2 setosa
        5.4
#> 8
                 3.4
                            1.5
                                       0.4 setosa
```

Get the top:top_n()

...selects the n maximum observations for a variable. (tie is kept)

```
iris %>% top_n(2, Sepal.Length)
   Sepal.Length Sepal.Width Petal.Length Petal.Width
#>
                                      Species
#> 1
         7.7
                 3.8
                          6.7
                                 2.2 virginica
                 2.6
#> 2
         7.7
                      6.9 2.3 virginica
   7.7 2.8 6.7 2.0 virginica
#> 3
#> 4
   7.9 3.8 6.4 2.0 virginica
#> 5
      7.7 3.0
                     6.1
                                  2.3 virginica
```

Rename variables: rename ()

```
data.frame %>% rename( new_name = old_name )
```

Example:

Rename variables: rename ()

```
data.frame %>% rename( new name = old name )
```

Example:

```
iris_tbl %>% rename( petal_length = Petal.Length )
\#> \# A \text{ tibble: } 150 \times 5
#>
    Sepal.Length Sepal.Width petal_length Petal.Width Species
         <dbl>
                   <dbl>
                             <dbl>
                                      <dbl> <fct>
#>
                            1.4 0.2 setosa
#>
           5.1 3.5
  1
#>
           4.9
               3
                            1.4
                                     0.2 setosa
           4.7
#>
               3.2
                           1.3 0.2 setosa
#>
           4.6
                  3.1
                            1.5
                                     0.2 setosa
           5
                  3.6
                           1.4
#> 5
                                     0.2 setosa
      5.4
#> 6
               3.9
                         1.7
                                  0.4 setosa
#> 7
           4.6
                  3.4
                            1.4
                                     0.3 setosa
                  3.4
#> 8
           5
                           1.5
                                     0.2 setosa
#>
           4.4
                  2.9
                           1.4 0.2 setosa
#> 10
           4.9
                  3.1
                             1.5
                                     0.1 setosa
#> # ... with 140 more rows
```


Deeper in dplyr

mastering the tidyverse

Variants of mutate () like weapons of "mass construction"

When a transformation must be done on a batch of variables, some variants of mutate() can be useful:

- mutate_all()
- mutate_at()
- mutate if()

mutate_if()

Use a condition to define which variables will be modified

```
iris_tbl %>% mutate_if( is.numeric, scale ) %>% head(3)
\#>\# A tibble: 3 x 5
#>
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>
       <dbl>
              <dbl>
                     #> 1 -0.898 1.02 -1.34 -1.31 setosa
#> 2 -1.14 -0.132 -1.34 -1.31 setosa
\#> 3 -1.38 0.327 -1.39 -1.31 setosa
```

mutate_if()

Use with funs () to create new variables (and not to overwrite the existing one):

```
iris_tbl %>% mutate_if( is.numeric, funs( new = scale ) )%>% head(3)
\#>\# A tibble: 3 x 9
#>
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
        <dbl> <dbl> <dbl> <dbl> <fct>
#>
        5.1 3.5 1.4 0.2 setosa
#> 1
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> # ... with 4 more variables: Sepal.Length new <dbl>,
#> # Sepal.Width new <dbl>, Petal.Length new <dbl>, Petal.Width new <dbl>
```

Examples of mutate_if()

```
#> # A tibble: 6 x 5
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>
       #>
                       <dbl> <dbl> <fct>
#> 1
                                         0 setosa
                     4
#> 2
                                         0 setosa
#> 3
                                         0 setosa
#> 4
                               2 0 setosa
#> 5
                               1 0 setosa
#> 6
                                  0 setosa
```

iris_tbl %>% mutate_if(is.numeric, round, digits = 0) %>% head()

mutate_at()

Use variable names as quoted characters to define which variables will be modified

```
iris %>%
 mutate_at( c("Sepal.Length", "Petal.Length"), as.factor ) %>%
 summary()
   Sepal.Length Sepal.Width Petal.Length Petal.Width
#>
              Min. :2.000 1.4 :13
#>
         :10
                                       Min. :0.100
  5.1 : 9 1st Qu.:2.800 1.5 :13 1st Qu.:0.300
#> 6.3 : 9 Median : 3.000 4.5 : 8 Median : 1.300
#>
  5.7 : 8 Mean :3.057 5.1 : 8 Mean :1.199
#> 6.7 : 8 3rd Qu.:3.300 1.3 : 7
                                       3rd Qu.:1.800
#>
  5.5
      : 7 Max. :4.400 1.6 : 7
                                       Max. :2.500
  (Other):99
#>
                           (Other):94
        Species
#>
   setosa :50
#> versicolor:50
#>
   virginica :50
#>
#>
#>
```

mutate_at()

Use helpers of select () with vars ()

```
iris %>%
 mutate_at( vars( starts_with( "Petal" ) ), as.factor ) %>%
  summary()
    Sepal.Length
               Sepal.Width Petal.Length Petal.Width
#>
   Min. :4.300
                    :2.000
                             1.4
                                                :29
               Min.
                                    :13
                                          0.2
   1st Qu.:5.100 1st Qu.:2.800
                             1.5
                                    :13
                                          1.3 :13
#>
                             4.5 : 8 1.5 :12
   Median :5.800
                Median :3.000
  Mean :5.843
               Mean :3.057 5.1 : 8
                                          1.8 :12
#>
                3rd Qu.:3.300 1.3 : 7 1.4 : 8
#>
   3rd Qu.:6.400
   Max. :7.900
                Max. :4.400
                             1.6
                                    : 7
                                          2.3 : 8
#>
#>
                              (Other):94 (Other):68
        Species
#>
   setosa :50
#>
#>
   versicolor:50
#>
   virginica :50
#>
#>
#>
```

About case_when

Rather than using ifelse embedded in a mutate, you can use case_when. The sequences are read in order. And are written as condition ~ result.

```
iris %>%
 mutate(
    new = case when(
      Sepal.Length > 6 & Petal.Length > 3.1 ~ "long",
      Sepal.Width > 2.3 & Petal.Width > 1.8 ~ "wide",
                                             ~ "usual"
      TRUE
   ),
    new = as.factor(new)
  ) 응>응
  select(new) %>%
  summary()
```

```
new
#> long :61
#> usual:84
#> wide : 5
```

Variants of summarise () like weapons of mass "summarizing"

- summarise_all()
- summarise_at()
- summarise_if()

summarise_at & summarise_if

```
iris %>% summarise_at( vars( Sepal.Length:Petal.Width ), mean )
    Sepal.Length Sepal.Width Petal.Length Petal.Width
#>
        5.843333 3.057333 3.758 1.199333
#> 1
iris %>% summarise_at( vars( starts_with( "Sepal" ) ), var )
    Sepal.Length Sepal.Width
#>
#> 1 0.6856935 0.1899794
```

summarise_at & summarise if

```
iris %>% summarise at( vars( Sepal.Length:Petal.Width ), mean )
    Sepal.Length Sepal.Width Petal.Length Petal.Width
#>
#> 1
        5.843333 3.057333 3.758 1.199333
iris %>% summarise_at( vars( starts_with( "Sepal" ) ), var )
#>
    Sepal.Length Sepal.Width
#> 1 0.6856935 0.1899794
```

In order to apply several functions to the same vars:

```
iris %>% summarise_at( vars( starts_with( "Sepal" ) ), funs(var, mean) )
    Sepal.Length var Sepal.Width var Sepal.Length mean Sepal.Width mean
#>
#> 1 0.6856935 0.1899794 5.843333 3.057333
```

summarise_at & summarise if

```
iris %>% summarise if( is.numeric, mean )
    Sepal.Length Sepal.Width Petal.Length Petal.Width
#>
#> 1
        5.843333 3.057333 3.758 1.199333
iris %>% summarise_if( is.numeric, funs(mean, var, max) )
#>
    Sepal.Length_mean Sepal.Width_mean Petal.Length_mean Petal.Width_mean
#> 1
            5.843333 3.057333
                                             3.758 1.199333
    Sepal.Length_var Sepal.Width_var Petal.Length_var Petal.Width_var
#>
#> 1
    0.6856935
                        0.1899794
                                       3.116278 0.5810063
#> Sepal.Length max Sepal.Width max Petal.Length max Petal.Width max
#> 1
               7.9
                        4.4
                                       6.9
                                                           2.5
iris %>% summarise_if( is.factor, nlevels )
#>
    Species
#> 1
```

Example of data flow

```
iris %>%
    mutate( classe = cut( Sepal.Length, breaks = 3,
                         labels=c("small", "medium", "large") ) ) %>%
  group_by( classe ) %>%
  summarise_if( is.numeric, funs( min, max, mean ) )
\#> \# A \text{ tibble: } 3 \times 13
#> classe Sepal.Length min Sepal.Width min Petal.Length min Petal.Width min
  <fct>
                   <dbl>
                                   <dbl>
                                                                   <dbl>
                                                    <dbl>
#>
#> 1 small
                     4.3
                                                      1
                                                                     0.1
#> 2 medium
                     5.6
                                   2.2
                                                      1.2
                                                                    0.2
                    6.8
                              2..6
                                                  4.7
#> 3 large
                                                                    1.4
#> # ... with 8 more variables: Sepal.Length max <dbl>,
#> # Sepal.Width max <dbl>, Petal.Length max <dbl>, Petal.Width max <dbl>,
#> # Sepal.Length mean <dbl>, Sepal.Width mean <dbl>,
#> # Petal.Length mean <dbl>, Petal.Width mean <dbl>
```

Mutating join with dplyr

join one table to columns from another

Common minimal example

```
A <- data.frame(id = LETTERS[1:10], var1 = 1:10)
B <- data.frame(id = LETTERS[5:14], var2 = sample(1:10))
library(dplyr)
```

Let's illustrate our words with this minimal example:

Α

id var1 #> #> 1 #> 2 #> 3 #> 4 #> 5 #> 6 #> 7 #> 8 #> 9 #> 10 J 10

В

```
id var2
#>
#> 1
#> 2
#> 3
         4
#> 4
           10
            2
       Т
             6
     K
            1
       T.
#> 9
       M
#> 10 N
            3
```

INNER JOIN – Retain only rows with matches


```
A \gg \approx inner_join(B, by = "id")
```

```
id var1 var2
#> 4 H 8 10
#> 5 I 9 2
#> 6 J 10 5
```

LEFT JOIN – matching values from B to A


```
A %>% left_join(B, by = "id")
```

```
id var1 var2
                NA
                NA
                NA
                NA
     Н
                10
#> 9
      I
#> 10
           10
                 5
```

RIGHT JOIN – matching values from A to B


```
A \gg  right_join(B, by = "id")
```

```
id var1 var2
                 10
           10
           NA
           NA
                  1
#> 9
       M
           NA
#> 10
                  3
           NA
```

FULL JOIN – retains all values and all rows

A %>% $full_join(B, by = "id")$

```
id var1 var2
                NA
               NA
                NA
                NA
     Н
                10
#> 9
      I
#> 10
           10
#> 11
          NA
#> 12 L
           NA
#> 13 M
          NA
#> 14 N
          NA
                 3
```

ANTI JOIN – anti-matches values from B to A

matches rows in A that are not in B

```
A \gg \approx anti_join(B, by = "id")
     id var1
```

ANTI JOIN example

anti_join() is very useful when separating a dataset in train and test datasets

```
train <- iris %>% sample_frac( 0.7 )
test <- iris %>% anti_join( train )
dim(train)
#> [1] 105
dim(test)
#> [1] 44 5
```

ANTI JOIN example

anti_join() is very useful when separating a dataset in train and test datasets

```
train <- iris %>% sample_frac( 0.7 )
test <- iris %>% anti_join( train )
dim(train)
#> [1] 105 5
dim(test)
#> [1] 44 5
```

It's even possible to respect a stratification in the sample:

```
train <- iris %>% group_by( Species ) %>% sample_frac( 0.7 )
test <- iris %>% anti join( train )
dim(train)
#> [1] 105 5
```

dim (test)

Tidy your data

What are tidy data?

- **Population** = wholeness of the objects we'd like to study
- **Sample** = subset of the population
- **Variable** = feature of an observation
- **Observation** = series of measures on a population object

In a tidy dataset,

Each variable is in its own column. Each observation is in its own row

- If some data are available somewhere, it should be in the dataset
- All the data on observations must be in a single dataset
- Data must not be spread in several spreadsheets or workbook

When should I tidy my dataset?

- Headers are levels of a variable
- Several variables are stored in one column
- Variables are stored in rows AND columns
- A same observation is stored in several tables
- ···(this is not an exhaustive list)···

fill() completes unappropriate missing values

id	Année	Mois
1	2014	Janvier
2		Février
3		Mars
4	2015	Janvier
5		Février
6		Mars

id	Année	Mois
1	2014	Janvier
2	2014	Février
3	2014	Mars
4	2015	Janvier
5	2015	Février
6	2015	Mars

```
library(tidyr)
dataset <- data.frame(id = 1:6,
annee = c("2014", NA, NA, "2015", NA, NA))
dataset %>% fill(annee)
```

separate() separates a column in multiple others

id	tension
1	12/8
2	12/7
3	14/4
4	18/10
5	13/8
6	12/8


```
dataset <- data.frame(id = 1:6, tension =
    c("12/8","12/7","14/4","18/10","13/8","12/8"))
    dataset %>%
    separate(tension,into = c("PAS","DAS"),sep = "/",remove = TRUE)
```

unite() gathers several columns into one

id	PAS	PAD
1	12	8
2	12	7
3	14	4
4	18	10
5	13	8
6	12	8

id	tension
1	12/8
2	12/7
3	14/4
4	18/10
5	13/8
6	12/8

extract () extracts informations in a column

id	var
1	Q1_2014
2	Q2_2014
3	Q3_2014
4	Q1_2015
5	Q2_2015
6	Q3_2015

id	année
1	2014
2	2014
3	2014
4	2015
5	2015
6	2015

```
dataset <- data.frame(id = 1:6,
    var = c("Q1_2014","Q2_2014","Q3_2014","Q1_2015","Q2_2015","Q3_2015"))
dataset %>% extract(var,into = "année",regex = ".+_([[0-9]]+)")
dataset %>% extract(var,into = c("quarter","year"),regex = "(.+)_([[0-9]]+)")
```

complete() expands missing combinations of variables

id	année	mois	temp
1	2012	Jan	12
2	2012	Mar	11
3	2013	Feb	15
4	2014	Jan	16
5	2014	Feb	18
6	2014	Mar	10

id	année	mois	temp
	2012	Feb	
1	2012	Jan	12
2	2012	Mar	11
3	2013	Feb	15
	2013	Jan	
	2013	Mar	
4	2014	Jan	16
5	2014	Feb	18
6	2014	Mar	10

```
dataset <- data.frame(id = 1:6,
annee = c("2012","2012","2013","2014","2014","2014"),
mois = month.abb[c(1,3,2,1,2,3)],temp = c(12,11,15,16,18,10))
dataset %>% complete(annee, mois)
```

Reshape your data

from long to large, from large to long

Tidy your data from "long" to "large"

Ville	Mois	Température
Amsterdam	01_Janvier	2.9
Amsterdam	02_Février	2.5
Amsterdam	03_Mars	5.7
Lisbonne	01_Janvier	10.5
Lisbonne	02_Février	11.3
Lisbonne	03_Mars	12.8

Ville	01_Janvier	02_Février	03_Mars
Amsterdam	2.9	2.5	5.7
Lisbonne	10.5	11.3	12.8

Tidy your data from "long" to "large"

```
temp_europ <- data.frame(</pre>
Ville = c(rep("Amsterdam", 3), rep("Lisbonne", 3)),
Mois = c(rep(c("Janvier", "Février", "Mars"),2)),
Temperature = c(2.9, 2.5, 5.7, 10.5, 11.3, 12.8)
library(tidyr)
temp europ %>%
  spread( key = Mois, value = Temperature )
```

Tidy your data from "large" to "long"

id	sexe	contrôle	traitement
1	F	7.9	12.3
2	М	6.3	10.6
3	М	9.5	13.1
4	F	11.5	13.4

id	sexe	condition	glycémie
1	F	contrôle	7.9
2	М	contrôle	6.3
3	М	contrôle	9.5
4	F	contrôle	11.5
1	F	traitement	12.3
2	М	traitement	10.6
3	М	traitement	13.1
4	F	traitement	13.4

Tidy your data from "large" to "long"

```
experience \leftarrow data.frame(id = c(1,2,3,4), sexe = c("F","M","M","F"),
                          control = c(7.9, 6.3, 9.5, 11.5),
                          treatment = c(12.3, 10.6, 13.1, 13.4)
library(tidyr)
experience %>%
  gather( key = condition, value = glycemia, control:treatment )
```

Summary

Data wrangling with {dplyr}

Dataset

data frame Ortibble:

- Statistical unit in row
- Variables in colums

=> Warning: the *dplyr* grammar does not apply to all the objects existing in R.

For now:

- Data manipulation : all *tidyverse* functions
- Statistical analyses : base and *tidyverse* functions
- Handling of models results : *often* base functions (see {broom})

Dataset

data.frame Ortibble:

```
col1
      co12
                     co13
   1
       "a"
           "01-01-2018"
       "b"
           "02-01-2018"
           "03-01-2018"
       " C "
```

- x %>% filter (conditions) filters the lines for which the conditions are TRUE
- x %>% select (col1) selects the column named "col1".
- x %>% mutate(new = col1 * 2) add a new column named "new".
- x %>% group_by(col2) %>% summarise(n = n()) applies a function (number of lines here) for each group identified in column "col2".

Graphics with {ggplot2}

The ultimate graphic design tool

What is {ggplot2}?

{ggplot2} is one of the most popular graphics package because:

- · Code is compact.
- Rendering is pretty.
- Usage is intuitive.

How does it looks like?

Example:

```
library(ggplot2)
ggplot ( data = iris ) +
 aes(x = Sepal.Length, y = Sepal.Width, color = Species) +
 geom_point()
```


How to build a ggplot?

In {ggplot2}, graphics are layers, superimposed using +:

- data
- aesthetics
- geometric layer: geom_XXX (ex : geom_point(); geom_line()...)
- statistics layer: stat_XXX (ex: stat_smooth()...)
- scale layer: scale_XXX (ex:scale_x_log10()...)
- facetting layer: facet_XXX (ex: facet_grid(); facet_wrap() ...)
- coordinate layer: coord_XXX (ex:coord_flip()...)
- theme layer: theme_(ex:theme_mininal()...)

The ggplot2 paradigm:

The gaplot () function

ggplot function may include 2 parameters:

- data: the dataset containing data to plot (a dataframe)
- aesthetic mapping (describing how variables in the data are mapped to visual properties, and must be includes in aes ()).

```
p <- ggplot(data = iris) +</pre>
  aes(x = Sepal.Length, y = Sepal.Width, color = Species)
  р
```


p doesn't draw data: layers must be added!

geom_*()

geom are layers that materialize the plot. Some common geoms:

- "histogram": histogram (default if 1 dimension)
- "point" : scatterplot (default if 2 dimensions)
- "smooth": adds a smoothed density estimates
- "boxplot"
- "freqpoly": frequency polygon
- "density"
- "bar" : barcharts, counts frenquencies of x
- "col": barcharts, frenquencies are provided by the user on y axis
- "text" : adds some text

Link to available geoms

geom()

Feel free to combine multiple geom_*:

```
library(ggplot2)
ggplot (data = iris) +
  aes(x = Sepal.Length, y = Sepal.Width) +
  geom_point() +
  geom_smooth()
```


...with colors:

• color argument in aes()

```
ggplot (data = iris) +
  aes(x = Sepal.Length, y = Sepal.Width, color = Species) +
  geom_point()
```


...with colors:

• fill argument in aes()

```
ggplot (data = iris,
       aes(x = Sepal.Length, y = Sepal.Width, fill = Species)) +
  geom_col()
```


...with shapes:

• shape argument in aes ()

```
ggplot (data = iris) +
  aes(x = Sepal.Length, y = Sepal.Width, shape = Species) +
  geom_point()
```


...with size:

• size argument in aes()

```
ggplot (data = iris) +
  aes(x = Sepal.Length, y = Sepal.Width, size = Petal.Length) +
  geom_point()
```


Statistical smoothing

```
ggplot(data = iris) +
  aes(x = Sepal.Length, y = Sepal.Width, color = Species) +
  geom_point() +
  geom_smooth (method = "lm")
```


Scale layer

This layer operates transformations on the scales of the graphics: scale_x_*, scale_y_*, scale_fill_*, scale_color_*...

```
ggplot(data = iris) +
  aes(x = Sepal.Length, y = Sepal.Width, color = Species) +
 geom_point() +
 geom_smooth (method = "lm") +
  scale_colour_brewer(palette = 3) +
  scale_x_reverse()
```


Facetting

This layer "slices" the plot into several plots. Two functions will do the job:

- facet_grid: forms a matrix of panels defined by row and column
- facet_wrap: wraps a 1d sequence of panels into 2d

```
ggplot (data = iris) +
  aes(x = Sepal.Length, y = Sepal.Width, color = Species) +
  geom_point() +
  geom_smooth (method = "lm") +
  scale_colour_brewer(palette = 4) +
  scale x reverse() +
  facet_grid(Species ~ .)
```

Facetting

This layer "slices" the plot into several plots. 2 functions will do the job:

- facet_grid: forms a matrix of panels defined by row and column
- facet_wrap: wraps a 1d sequence of panels into 2d

Coordinates

This layer manages the coordinates of the plot

• coord_flip: switches x and y.

```
ggplot(data = iris) +
  aes(x = Sepal.Length, y = Sepal.Width, color = Species) +
 geom_point() +
 geom_smooth (method = "lm") +
  scale_colour_brewer() +
  scale_x_reverse() +
  facet_grid(Species ~ .) +
  coord_flip()
```

Coordinates

This layer manages the coordinates of the plot.

• coord_flip:switches x and y.

 $^{3.5}$ MSc Data Science for Business-https://thinkr.fr $\,$ 141/146

Theme

Manages the cosmetic aspect of the ggplot. You can design yours or use {ggtheme} one's:

```
library(ggthemes)
ggplot(data = iris) +
  aes(x = Sepal.Length, y = Sepal.Width, color = Species) +
 geom_point() +
 geom_smooth (method = "lm") +
  scale_x_reverse() +
 facet_grid(Species ~ .) +
  coord_flip() +
 theme_wsj()
```

Theme

Themes manage the cosmetic aspect of the ggplot. You can design yours or use one of {ggtheme}'S:

Save graphs from {ggplot2}

```
ggsave( filename = "mongraph.png", dpi = 96 ) # dpi is the resolution.
Default to 300.
```

...and find some help:

- http://docs.ggplot2.org/current/index.html
- http://docs.ggplot2.org/current/index.html
- https://stackoverflow.com/questions/tagged/ggplot2

Going further

Numerous extensions to ggplot exists:

- {ggiraph}, {gganimate} : dynamic graph
- {ggTimeSeries} : to plot time series
- http://www.ggplot2-exts.org/

Diane Beldame

diane@thinkr.fr

06 23 83 10 61

