

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(11) DE 3245615 A1

(51) Int. Cl. 3:
C03C 3/16
C 03 C 3/30
G 02 B 1/00

(30) Unionspriorität: (32) (33) (31)
25.01.82 JP P8991-82

(71) Anmelder:
Hoya Corp., Tokyo, JP

(74) Vertreter:
Eitle, W., Dipl.-Ing.; Hoffmann, K., Dipl.-Ing.
Dr.rer.nat.; Lehn, W., Dipl.-Ing.; Füchsle, K.,
Dipl.-Ing.; Hansen, B., Dipl.-Chem. Dr.rer.nat.,
Pat.-Anw., 8000 München

(72) Erfinder:
Tajima, Hidemi, Tokyo, JP

Beförderungseigentum

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Optisches Glas

Optisches Glas, dadurch gekennzeichnet, daß es in Gew.-% enthält:
18 bis 38 % P_2O_5 ;
3 bis 30 % Na_2O + K_2O ,
mit dem Proviso 0 bis 30 % Na_2O und
0 bis 30 % K_2O ;
8 bis 65 % PbO ;
1 bis 45 % Ta_2O_5 ;
0 bis 20 % Nb_2O_5 ;
0 bis 15 % TiO_2 + WO_3 ;
0 bis 25 % BaO + CaO + ZnO + SrO + MgO ,
mit dem Proviso 0 bis 25 % BaO ,
0 bis 5 % CaO ,
0 bis 25 % ZnO ,
0 bis 20 % SrO , und
0 bis 10 % MgO ;

0 bis 15 % B_2O_3 ;
0 bis 3 % Li_2O ;
0 bis 3 % Al_2O_3 ;
0 bis 3 % ZrO_2 ;
0 bis 3 % Y_2O_3 ;
0 bis 3 % Gd_2O_3 ; und
0 bis 3 % La_2O_3 .

Figur

3245615

HOFFMANN · EITLE & PARTNER
PATENTANWÄLTE

DR. ING. E. HOFFMANN (1930-1976) · DIPLO.-ING. W. EITLE · DR. RER. NAT. K. HOFFMANN · DIPLO.-ING. W. LEHN ·
DIPLO.-ING. K. FUCHSLE · DR. RER. NAT. B. HANSEN
ARABELLASTRASSE 4 · D-8000 MÜNCHEN 81 · TELEFON (089) 911087 · TELEX 05-29619 (PATHE)

37 863 o/wa

- 1 -

HOYA CORPORATION, TOKYO/JAPAN

Optisches Glas

P A T E N T A N S P R U C H

Optisches Glas, dadurch gekennzeichnet,
dass es in Gew.% enthält:

18 bis 38 % P_2O_5 ;

5 3 bis 30 % $Na_2O + K_2O$,

mit dem Proviso 0 bis 30 % Na_2O und

0 bis 30 % K_2O ;

10 8 bis 65 % PbO ;

1 bis 45 % Ta_2O_5 ;

0 bis 20 % Nb_2O_5 ;

0 bis 15 % $TiO_2 + WO_3$;

- 2 -

0 bis 25 % BaO + CaO + ZnO + SrO + MgO,

mit dem Proviso 0 bis 25 % BaO,
5 0 bis 5 % CaO,
 0 bis 25 % ZnO,
 0 bis 20 % SrO und
 0 bis 10 % MgO;

10 0 bis 15 % B_2O_3 ;
 0 bis 3 % Li_2O ;
 0 bis 3 % Al_2O_3 ;
 0 bis 3 % ZrO_2 ;
 0 bis 3 % Y_2O_3 ;
 0 bis 3 % Gd_2O_3 ; und
15 0 bis 3 % La_2O_3 .

20

25

30

- 3 -

HOYA CORPORATION, TOKYO/JAPAN

Optisches Glas

Die Erfindung betrifft ein optisches Glas mit spezifischen optischen Konstanten, ausgedrückt durch einen Brechungsindex (n_d) von 1,58 bis 1,91 und einer Abbe-Zahl (ν_d) von 20 bis 45, das auch eine ausgezeichnete Durchlässigkeit aufweist.

SiO₂-R₂O-PbO- oder SiO₂-R₂O-TiO-Silikatgläser sind dafür bekannt, dass sie einen hohen Brechungsindex haben und ein Glas mit einer hohen optischen Streuung, welches 10 optische Konstanten innerhalb des obigen Bereiches aufweist, werden beispielsweise in der japanischen Patentveröffentlichung 8394/1967 beschrieben. Diese Gläser neigen jedoch zu einer Färbung und haben schlechte Durchlässigkeitseigenschaften im Bereich des ultravioletten Lichtes bis zum sichtbaren Licht und dies stellt 15

BAD ORIGINAL

bei der Herstellung von optischen Linsen einen Nachteil dar.

Zur Herstellung von Gläsern mit hoher Durchlässigkeit
5 im ultravioletten Bereich, sind Phosphatgläser im Ver-
gleich zu einem Silikatglas oder einem Boratglas aus
den oben erwähnten Gründen vorteilhafter. Phosphatglä-
ser weisen eine ausgezeichnete Durchlässigkeit im Be-
reich des ultravioletten Lichtes bis zum sichtbaren
10 Licht im Vergleich zu einem Silikatglas oder Boratglas
auf. Darüber hinaus kann man ein Phosphatglas schon
bei niedrigen Temperaturen erschmelzen und dadurch kann
man Verunreinigungen aus dem Schmelzriegel vermeiden.

15 Andererseits hat Phosphorsäure eine stärktere Reduk-
tionswirkung als andere Glasbildungsmaterialien und
infolgedessen verfärbt sich ein solches Glas, in Ab-
hängigkeit von den Komponenten, der Glaszusammensetzung,
der Atmosphäre, usw.. Beispielsweise werden TiO_2 , WO_3
20 und Nb_2O_5 üblicherweise verwendet, um ein Glas mit ho-
hem Brechungsindex zu ergeben und um die chemische Be-
ständigkeit des Glases zu verbessern, wobei diese Kom-
ponenten jedoch eine Verfärbung des Glases bewirken,
wenn man sie reduziert. Im Gegensatz hierzu wird
25 Ta_2O_5 nicht reduziert und zeigt eine geringere Absorp-
tion im Bereich des ultravioletten Lichtes bis zum sicht-
baren Licht. Deshalb bevorzugt man Ta_2O_5 als Komponente,
die einem Glas einen hohen Brechungsindex verleiht und
die chemische Beständigkeit des Glases verbessert.

30 Untersuchungen über den Glasbildungsbereich, bei welchem

- 5 -

man mit einem Ta_2O_5 enthaltenden Phosphatglas die vor-
erwähnten guten Eigenschaften erzielt, haben ergeben,
dass in den Drei-Komponenten-Systemen $P_2O_5-R_2O-Ta_2O_5$
und $P_2O_5-PbO-Ta_2O_5$ eine Glasbildung nicht eintritt,
wenn die Menge an P_2O_5 38 Gew.% oder weniger beträgt,
dass man aber in einem Vier-Komponenten-System aus
 $P_2O_5-R_2O-PbO-Ta_2O_5$ ein stabiles Glas erhalten kann,
auch wenn die Menge an P_2O_5 35 Gew.% oder weniger be-
trägt.

10

Ziel der Erfindung ist es somit, ein Vier-Komponenten-
Glas aus $P_2O_5, R_2O-PbO-Ta_2O_5$ zur Verfügung zu stellen.
Verbunden mit diesem Ziel ist die Aufgabe, ein opti-
sches Glas zur Verfügung zu stellen, das spezifische
15 optische Konstanten aufweist und eine ausgezeichnete
Durchlässigkeit im Bereich des ultravioletten Lichtes
bis zum sichtbaren Licht hat.

15

20

Die Erfindung betrifft ein optisches Glas, das in
Gew.% enthält:

18 bis 38 % P_2O_5 ;
3 bis 30 % $Na_2O + K_2O$,

25

mit dem Proviso 0 bis 30 % Na_2O und
 0 bis 30 % K_2O ;

8 bis 65 % PbO ;
1 bis 45 % Ta_2O_5 ;
30 0 bis 20 % Nb_2O_5 ;
0 bis 15 % $TiO_2 + WO_3$;

- 6 -

0 bis 25 % BaO + CaO + ZnO + SrO + MgO,

mit dem Proviso 0 bis 25 % BaO,
 0 bis 5 % CaO,
 5 0 bis 25 % ZnO,
 0 bis 20 % SrO und
 0 bis 10 % MgO;

0 bis 15 % B₂O₃;
 10 0 bis 3 % Li₂O;
 0 bis 3 % Al₂O₃;
 0 bis 3 % ZrO₂;
 0 bis 3 % Y₂O₃;
 0 bis 3 % Gd₂O₃; und
 15 0 bis 3 % La₂O₃.

Die Figur ist eine grafische Darstellung der Durchlässigkeitskurve eines erfindungsgemässen Glases im Vergleich zu einem üblichen SF₄-Glas.

20 Die kritischen Mengen der oben erwähnten Glaskomponenten werden nachfolgend diskutiert. Dabei sind alle Prozentangaben auf das Gewicht bezogen.

25 P₂O₅ ist ein glasbildendes Material. Liegt die Menge an P₂O₅ bei weniger als 18 %, so erhöht sich die Neigung des Glases zur Entglasung. Ist die Menge an P₂O₅ grösser als 38 %, so kann man nicht das gewünschte Glas mit dem hohen Brechungsindex erhalten.

30 Na₂O und K₂O müssen in einer Gesamtmenge von 3 bis 30 %

BAD ORIGINAL

vorliegen. Liegt die Menge ausserhalb des Bereiches, so erhöht sich die Neigung des Glases zur Entglasung. Na_2O und K_2O müssen jedoch nicht notwendigerweise zusammen vorliegen.

5

PbO muss in einer Menge von 8 % oder mehr vorliegen, um einen hohen Brechungsindex zu erzielen und um das Glas stabil zu machen. Übersteigt die Menge an PbO 65 %, so nimmt die Neigung des Glases zur Entglasung merklich zu.

10

Ta_2O_5 hat die schon vorher erwähnten Eigenschaften. Ta_2O_5 muss in einer Menge von 1 % oder mehr vorhanden sein, um diese Eigenschaften zu entwickeln: Übersteigt 15 die Menge an Ta_2O_5 jedoch 45 %, so erhöht sich die Neigung des Glases, zu entglasen.

15

Nb_2O_5 kann in Mengen von bis zu 20 % zugegeben werden, um die optischen Konstanten einzustellen. Übersteigt jedoch die Menge an Nb_2O_5 20 %, so verschlechtern sich 20 die Durchlässigkeitseigenschaften des Glases.

20

TiO_2 und WO_3 kann man zur Einstellung der optischen Konstanten zugeben. Übersteigt die Gesamtmenge an TiO_2 25 und WO_3 15 %, so tritt eine Verfärbung des Glases ein und dadurch werden die Durchlässigkeitseigenschaften des Glases verschlechtert.

25

BaO , ZnO , SrO , MgO und CaO können als zweiwertige Komponenten zur Einstellung der optischen Konstanten des Glases zugegeben werden. Übersteigen die Mengen an BaO , 30

- 8 -

ZnO, SrO, MgO und CaO 25 %, 25 %, 20 %, 10 % bzw. 5 % oder falls die Gesamtmenge der zweiseitigen Komponenten 25 % übersteigt, so erhöht sich die Neigung des Glases zu entglasen.

5

B_2O_3 kann in einer Menge von bis zu 15 Gew.% zugegeben werden, ohne dass die Stabilität des Glases verschlechtert wird.

10 Li_2O , Al_2O_3 , ZrO_2 , Y_2O_3 , Gd_2O_3 und La_2O_3 kann man jeweils in Mengen von bis zu 3,0 % als Komponente zur Einstellung der optischen Konstanten des Glases zugeben.

15 Beispiele für erfindungsgemäße Gläser und deren Eigenschaften werden in den nachfolgenden Tabellen 1 und 2 gezeigt. Dabei wird die Zusammensetzung der jeweiligen Gläser jeweils in Gew.% ausgedrückt.

20

25

30

BAD ORIGINAL

Tabelle 1

Komponente	Beispiel Nr.							
	1	2	3	4	5	6	7	8
P ₂ O ₅	20,0	25,0	22,0	37,0	30,0	20,0	20,0	35,0
Na ₂ O	----	----	----	----	20,0	----	----	----
K ₂ O	5,0	15,0	10,0	13,0	----	5,0	5,0	25,0
PbO	55,0	20,0	43,0	47,0	25,0	55,0	50,0	15,0
Ta ₂ O ₅	20,0	40,0	25,0	3,0	25,0	10,0	10,0	15,0
WO ₃	----	----	----	----	10,0	----	----	----
Nb ₂ O ₅	----	----	----	----	----	15,0	----	----
TiO ₂	----	----	----	----	----	10,0	----	----
nd	1,856	1,711	1,775	1,651	1,646	1,861	1,891	1,663
vd	26,6	31,7	28,8	37,8	35,9	25,7	24,1	28,6

- 10 -

Tabelle 2

Komponente	Beispiel Nr.			
	9	10	11	12
	13	14		
P ₂ O ₅	35,0	30,0	35,0	30,0
K ₂ O	25,0	15,0	15,0	15,0
PbO	15,0	20,0	15,0	20,0
Ta ₂ O ₅	20,0	15,0	15,0	20,0
BaO	----	17,0	----	----
CaO	----	3,0	----	----
ZnO	----	----	20,0	----
SrO	----	----	----	15,0
MgO	5,0	----	----	----
B ₂ O ₃	----	----	----	10,0
Al ₂ O ₃	----	----	----	3,0
nd	1,589	1,633	1,628	1,647
vd	43,2	40,5	39,4	39,7
				37,8
				34,5

BAD ORIGINAL

- 11 -

Die optischen Gläser gemäss der Erfindung, einschliesslich der in den Beispielen gezeigten, kann man erhalten, indem man gleichmässig die Ausgangsmaterialien, wie Orthophosphorsäure, eine Phosphatverbindung, Kaliumkarbonat, Natriumkarbonat, Bleioxid, Bleinitrat, Tantaloxid, etc., knetet, die Mischung in einem Tiegel bei 1.000 bis 1.200°C schmilzt und die Schmelze dann zum Homogenisieren und zur Entfernung von Blasen röhrt und anschliessend die Schmelze dann in eine auf eine geeignete Temperatur vorerwärmte Form giesst und dort abkühlen lässt.

In der Zeichnung wird die Durchlässigkeitskurve für das Glas gemäss Beispiel 3 gemäss der Erfindung sowie für ein übliches $\text{SiO}_2\text{-PbO}$ -Glas (SF_4 , ein Produkt, das in Fig. 2 der japanischen Patentveröffentlichung 28 448/1978 gezeigt wird) mit optischen Konstanten, die nahezu identisch denen sind, die das Glas gemäss Beispiel 3 der vorliegenden Erfindung aufweist, gezeigt.

Aus der Zeichnung geht hervor, dass das erfindungsgemässse Glas eine ausgezeichnete Durchlässigkeit im Bereich des ultravioletten Lichtes bis zum sichtbaren Licht aufweist und sich dadurch von dem Glas des Standes der Technik unterscheidet.

BEST AVAILABLE COPY

-12-
Leerseite

3245615

1/1

3245615

C03 C 3/16

9. Dezember 1982

11. August 1983

-13-

BEST AVAILABLE COPY