TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐHQG-HCM KHOA CÔNG NGHÊ THÔNG TIN

THỰC HÀNH

MÃ HÓA MẬT MÃ

Đồ án vấn đáp: Bảo mật Cơ sở dữ liệu

 $Sinh\ vi\ensuremath{\hat{e}} n\colon$ 21120107 - Nguyễn Minh Nhật

Giảng viên: PGS. TS. Nguyễn Đình Thúc Th
S. Nguyễn Văn Quang Huy

Mục lục

1	Trìi	nh bày bài toán	2				
2	Trìn	nh bày ý tưởng	3				
	2.1	Pha mã hóa	3				
	2.2	Pha giải mã	3				
3	Coc	le	4				
	3.1	Code mã hóa	4				
	3.2	Code giải mã	5				
4	Thu	rc thi chương trình	7				
	4.1	Mã hóa	7				
	4.2	Giải mã	7				
5	Kết	quả chương trình	8				
6	Thách thức & Mở rộng 9						
	6.1	Thách thức	9				
	6.2	Mở rộng	9				
		6.2.1 Vấn đề	9				
		6.2.2 Ý tưởng	9				
		6.2.3 Code	10				
		6.2.4 Kết quả	11				
7	Tha	um khảo	13				

1 Trình bày bài toán

$$D = \{f_1, ..., f_n\}$$
$$f_i : \text{file/record/row} \to \text{Item}$$

- Cơ sở dữ liệu trong ngữ cảnh này được định nghĩa là một tập hợp các tệp tin, dòng dữ liệu. Một tệp f_i chứa các trường thông tin.
- Bảo mật cơ sở dữ liệu là công việc đòi hỏi thiết kế kỹ lưỡng. Trong quá trình sử dụng cơ sở dữ liệu, nhu cầu **tìm kiếm thông tin** phải được cân bằng với nhu cầu **bảo vệ thông tin** trên cơ sở dữ liệu.
- Ví dụ:

MSSV	Họ tên	Trung Bình
21120107	Tony	6.9
21120350	Steve	1.1
21120507	Bruce	7.5

- Khi đó item/attribute là các lựa chọn để mình bảo mật
- Chẳng hạn cần bảo mật điểm, thì ta cần chọn bảo mật giữa:
 - * MSSV
 - $\ast\,$ Họ tên
 - * Trung bình

2 Trình bày ý tưởng

2.1 Pha mã hóa

- 1. Đọc database (dạng đuôi .csv) theo vị trí cột cần mã hóa.
- 2. Tạo khóa độ dài 256 bit để mã hóa và giải mã.
- 3. Thực hiện mã hóa:
 - Chia dữ liệu thành các block 256 bit.
 - Sử dụng mã hóa ChaCha20, thuật toán mã hóa đối xứng Stream Cipher được đánh giá là nhanh và rất bảo mật [1].
- 4. Sử dụng định lý đồng dư Trung Hoa

$$\begin{cases}
C \equiv f_1 \pmod{p_1} \\
C \equiv f_2 \pmod{p_2} \\
\vdots \\
C \equiv f_n \pmod{p_n}
\end{cases}$$

5. Lưu lại cơ sở dữ liệu sau khi mã hóa được thay bằng các số nguyên tố p_i .

2.2 Pha giải mã

- 1. Đọc vào database, kèm vị trí cột, hàng và số nguyên tố p (khóa người dùng).
- 2. Kiểm tra khóa p có khớp với khóa tại hàng và cột được cung cấp.
- 3. Nếu khớp, chia đoạn mã hóa thành các block và giải mã bằng thuật toán ChaCha20.
- 4. Trả ra kết quả.

3 Code

3.1 Code mã hóa

1. Luồng điều khiển chính của mã hóa:

- 2. Hàm read_csv() đọc file csv theo đường dẫn và cột quy định.
- 3. Hàm gen_key() sinh khóa random 256 bit.
- 4. Hàm encrypt_column() mã hóa dữ liệu theo từng dòng, mỗi dòng gọi hàm encrypt_data để mã hóa:

```
block_bytes = block
  ciphertext_block = chacha20_encrypt(key, block_bytes)
  ciphertext_blocks.append(ciphertext_block)

# Combine the encryption blocks into a complete encryption string
ciphertext = b"".join(ciphertext_blocks)

# Convert the encoded string to hex format
ciphertext_hex = binascii.hexlify(ciphertext).decode("utf-8")

return ciphertext_hex
```

- Kích thước mỗi block là 32 byte.
- Thêm phần nonce kích thước 8 byte thì phần sau khi mã có thể tới 40 byte.
- Nối tất cả các block thành 1 xâu mã hóa hoàn chỉnh và chuyển về dạng hex.
- 5. Hàm generate_prime() sinh ra ngẫu nhiên số nguyên tố có số bit lớn hơn từ 1 đến 7 bit xâu sau khi mã hóa.
- 6. Hàm chinese_remainder_theorem() tính số C.
- 7. Lưu kết quả sau khi mã hóa, bằng các số nguyên tố.

3.2 Code giải mã

1. Luồng hoạt động chính của giải mã:

- 2. Hàm read_csv() đọc file csv theo đường dẫn và cột quy định.
- 3. Hàm decrypt_row() giải mã dữ liệu tại cột và khóa tương ứng.

```
def decrypt_row(encrypted_column, encrypted_hex):
   with open("../Key/key.txt", "rb") as file:
       key = file.read()
   with open("../Key/CRT.txt", "rb") as file:
       crt = file.read()
   block_size = 32
   encrypted_value = mod_hex(crt, encrypted_hex)
   if len(encrypted_value) % 2 != 0:
       encrypted_value = '0' + encrypted_value
   # Decode the encrypted string
   ciphertext_bytes = binascii.unhexlify(encrypted_value)
   decrypted_text_blocks = []
   for i in range(0, len(ciphertext_bytes), block_size+8):
       ciphertext_block = ciphertext_bytes[i:i+block_size+8]
       decrypted_block = chacha20_decrypt(key, ciphertext_block)
       decrypted_text_blocks.append(decrypted_block)
   # Combine decoding blocks into a complete text string
   decrypted_text = b"".join(decrypted_text_blocks).decode("utf-8")
   return decrypted_text
```

- 4. Lấy C mod cho số nguyên tố là khóa đầu vào để lấy xâu mã hóa.
- 5. Ngược lại với việc mã hóa, ta phân nhỏ xâu mã hóa thành các block con để giải mã.
- 6. Lưu ý một block con sẽ có kích thước 40 byte (block size + nonce size).
- 7. Hợp các xâu sau khi giải mã và trả kết quả.

4 Thực thi chương trình

4.1 Mã hóa

python main_enc.py <file_path_csv> <column_index>

- <file_path_csv> là đường dẫn đến file dữ liệu, lưu trữ ở dạng csv.
- <column_index> là vị trí cột cần được mã hóa.

4.2 Giải mã

python main_dec.py <file_path_csv> <column_index> <row_index> <pass>

- <file_path_csv> là đường dẫn đến file dữ liệu, lưu trữ ở dạng csv.
- <column_index> là vị trí cột cần được giải mã.
- <row_index> là vị trí hàng cần được giải mã.
- <pass> là khóa cần được xác thực.

5 Kết quả chương trình

• Kết quả thời gian chạy mã hóa từng pha:

```
Thời gian chạy: 0.015001058578491211 giây

----- Encode Database Successfully! -----
Thời gian chạy: 0.026014089584350586 giây

----- Generate Prime Successfully! -----
Thời gian chạy: 23.066437244415283 giây

----- Calculate CRT Successfully! -----
Thời gian chạy: 4.044047832489014 giây

----- Update File CSV Successfully! -----
Thời gian chạy: 0.059999704360961914 giây
```

Hình 1: Kết quả mã hóa cho dữ liệu 3407 dòng

• Kết quả thời gian giải mã:

```
----- Read File CSV Successfully! ------
Truy cập thành công!
Kết quả: Q. Bình Thạnh
Thời gian chạy: 0.00301361083984375 giây
```

Hình 2: Thời gian cho giải mã thành công

6 Thách thức & Mở rộng

6.1 Thách thức

• Kích thước cho CRT tương đối lớn khi lượng dữ liệu tăng lên:

Số dòng	Kích thước CRT	Thời gian mã hóa	Thời gian giải mã
58	2230 byte	0.716	0.002
260	7481 byte	2.224	0.001
3406	122902 byte	27.212	0.003

6.2 Mở rộng

6.2.1 Vấn đề

Phần mở rộng dưới đây để cố gắng giải quyết vấn đề CRT sinh ra tương đối lớn, chiếm không gian lưu trữ.

6.2.2 Ý tưởng

- Dựa trên ý tưởng cũ, giữ nguyên các thuật toán CRT, mã hóa ChaCha20, sinh số nguyên tố.
- Chia dữ liệu có n dòng thành \sqrt{n} nhóm, mỗi nhóm có \sqrt{n} hàng.
- Thực hiện mã hóa hai tầng:
 - Tầng mã hóa cho từng nhóm: dùng thuật toán CRT để có được số C_i đại diên cho nhóm i.
 - Tầng mã hóa cho các số C_i đại diện nhóm:
 - 1. Đặt $m = \sqrt{n}$, ta có:

$$X = \{x_1, x_2, ..., x_m\}, Y = \{y_1, y_2, ..., y_m\}$$
$$CRT = \{C_1, C_2, ..., C_m\}$$

2. Khi đó, định nghĩa:

$$X_{pow} \times CRT = Y$$

Với:

$$X_{pow} = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{m-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \dots & x_m^{m-1} \end{bmatrix}$$

$$CRT = \begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ C_m \end{bmatrix}, Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

- 3. Ý nghĩa của phép nhân ma trận là: ánh xạ dãy CRT sang một tập X sinh ngẫu nhiên (khác nhau từng đôi một).
- 4. Nhờ vậy, nếu X là tập các số thực tương đối nhỏ, thì kích thước lưu trữ sẽ ít hơn nhiều (trên lý thuyết là vậy).
- 5. Cuối cùng là thực hiện CRT lần nữa cho tập X.
- \bullet Để kiểm chứng suy nghĩ, em đã thực hiện code cho tập X là số nguyên nhỏ hơn 1000.

6.2.3 Code

- Quá trình mã hóa:
 - 1. Luồng điều khiển chính của mã hóa:

```
# Install the library...
if __name__ == "__main__":
   # ...
   # Load database
   col = read_csv(file_path, column_index)
   # Generate key
   gen_key()
   # Encode
   en_c = encrypt_column(col)
   # CRT
   crt_c = generate_prime(en_c)
   crts = chinese_remainder_theorem_step1(en_c, crt_c)
   # Mapping through set x
   x_hex = gen_x(crts)
   prime_x = generate_prime(x_hex)
   with open("../Key/prime_s2.txt", "w") as file:
       for p in prime_x:
           file.write(p + "\n")
   crt_x = chinese_remainder_theorem_step2(x_hex, prime_x)
   # Update database
   output_file = file_path.replace('.csv', '_encode.csv')
   update_csv(file_path, column_index, crt_c, output_file)
```

- 2. Hàm chinese_remainder_theorem_step1() được sử dụng lại từ trước để thực hiện CRT trên các nhóm nhỏ.
- 3. Hàm $gen_x()$ thực hiện ánh xạ các số CRT qua tập X bằng nhân ma trân.
- 4. Tiếp tục thực hiện CRT lần 2 cho tập các số X.
- 5. Lưu kết quả mã hóa.

• Quá trình giải mã:

1. Luồng hoạt động chính của giải mã:

```
# Install the library...
if __name__ == "__main__":
    # ...

# Load database
col = read_csv(file_path, column_index)

# Return results
if pass_user != col[row_index - 1]:
    print("Access failed!")
else:
    print("Accessed successfully!")
    print(f"Result: {decrypt_row(len(col), row_index, pass_user)}")
```

2. Hàm decrypt_row() thực hiện giải mã hai lớp.

6.2.4 Kết quả

• Thời gian thực hiện mã hóa:

```
Thời gian chạy: 0.047682762145996094 giây

----- Encode Database Successfully! -----
Thời gian chạy: 0.10107564926147461 giây

----- Generate Prime Successfully! ----
Thời gian chạy: 29.531025171279907 giây

---- Calculate CRT Step 1 Successfully! ----
Thời gian chạy: 0.1249992847442627 giây

----- Generate Prime Successfully! ----
Thời gian chạy: 1.3480188846588135 giây

----- Update File CSV Successfully! ----
Thời gian chạy: 0.11299324035644531 giây
```

Hình 3: Thời gian cho mã hóa dữ liệu 3406 dòng

• Thời gian thực hiện giải mã:

```
----- Read File CSV Successfully! ------
Truy cập thành công!
Kết quả: Q. Bình Thạnh
Thời gian chạy: 16.35087752342224 giây
```

Hình 4: Thời gian cho giải mã dữ liệu thành công

7 Tham khảo

Tài liệu

[1] Karthikeyan Nagaraj. Understanding ChaCha20 Encryption: A Secure and Fast Algorithm for Data Protection | 2023. https://cyberwlng.medium.com/understanding-chacha20-encryption-a-secure-and-fast-algorithm-for-data-protection-2023-a80c208c1401. Jan. 2023.