Lecture 2

1 Theorem 7.1(: (Ostranspis Theorem) Aug cantimed absolute alue on Q is equinalent to ether the usual ales value 1.10 or the p-adic abs. value 1-1, for some pine p. Proof: Case 1: 1.1 is archimedean. We fix b>1 an integer such that 16/21 (exists by benna 7-9). Let a> | be an ulteger and unte b in base a: b" = cm a" + cm - (a" + - - + Co 0 5 C; < a Let B = max (|c|), then re have 0 ≤ c < a (lb") = (m+1) B max ((a1", 1) =) $|b| \leq \frac{\left(\ln(\log_a b) + 1\right)}{3} \operatorname{max}(|a|^{\log_a b}, 1)$ =) |b| = max(|a| logab, () Then la 1>1 and lb 1 = lakeg ba (*) Switching the ides of a and 6, re obtain

(*1+0 *1 =) leased = leased (Us In b=lease

1a1≤ 161 log69 (**)

log Q log D log D $= \lambda \in \mathbb{R}_{>0}$ $= 2 |a| = \alpha^{\lambda} \quad \forall \alpha \in \mathbb{Z} \quad \alpha > 1.$ $= 2 |zc| = |x|_{\infty}^{\lambda} \quad \forall x \in \mathbb{Q}.$ hence $|\cdot|$ equiv. $t \in |\cdot|$ as.

Case 2: 1.1 is non-adminedean.

As in Lemma 7.9, we have $|n| \le 1$ that

Since $|\cdot|$ is non-timed, $\exists n \in \mathbb{Z}_{>1}$ s.t. |n| < 1.

Write $n = p_1^{e_1} \dots p_r^{e_r}$ decomposition into prino $\exists x \in \mathbb{Z}_{>1}$ $\exists x \in \mathbb{Z}_{>1}$ $\exists x \in \mathbb{Z}_{>1}$ $\exists x \in \mathbb{Z}_{>1}$

factors. Then |p| < 1, some $p \in \{p_1, ..., p_n\}$ Suppose $|q_1| < 1$, some prince $|q_1| < q \neq p_n$. Write $|q_1| < 1$, $|q_2| < 1$. Then $|q_1| < 1$.

≤ wax (Irpl, 15q1) < 1 ≈

Thus Ipl=a < 1 and Iql=1 + princes q ≠ p.

=) 1.1 is equivalent to 1.1p.

Therem 7.12: Let (H)be a local field of

mixed clov. Then K is a finite externion of

Qp.

PA. K - - Chark - O

100/ 1- moxen man -1 man 1- -0 =) Q c K. K non-onch. => 1.1/Q - 1.1p for somep price Kcomplete 57 Op = K. Suffices to show Ox fronte as a Zp-module. Let TEOK unif. V vonalised val. Let v(p)=e. 0K/pZ = 0K/n°OK = 110K/t00K2... T1°-0K/ OK/rOK finte => successie quotiente aro funto => Ox/pZ fuito Fr= Z/pZ co Ox/pZ, so Ox/pZ fu. dim Fp. V.S. 4 Let x,..., x, E Ox wet ceps for If planis AOK/pZ. $y \in \emptyset$, $p_{op} \ge .5$ (ii) = $y = \frac{2}{2} / \frac{2}{2} a_{ij} x_{j} p^{i}$ 2 (E a ; pi) x; => Ok finite over Zp.

Example chect 2: K complete authoritean field. Then K= IR or C.

In summary: Kalorul field. Then eville

(1) - 1 - men. (ii) $K \cong \mathbb{F}_{p^r}((t))$ - non-arch. equal chem. (iii) K is a frinte externar of dep-nor ach male der. & Global Felds Definition 8.1 A global field is a field which is cetter: (i) An algebraic number field (1) A global fruction field, i.o. a fruite externors of Fp(+). Lemma 8.2: Let (K, 1.1) be a complete directely valued field, L/k a finto Galas extersion with als. calme 1.12 extending 1.1. Then for x + L and o + Gal (L/K), we hap $|6(x)|_{L} = |x|_{L}$ Proof: Sing x 1-9 10(x) 1 is curliber ales. value on Lextending K, Leimana Johns from imprevois of 1.12. lemma 8.3: (Krasner's Lemma) Let (K, H) a complete dissortely valued tield. Let f(X) & K [X] be a separable

· . . 1 - 1.1. 1 1 - L1. 1. A.

uneaucre phyromas was vous a,..., ant x sep. dosmeti

Suppose $\beta \in \mathbb{R}$ with $|\beta - \alpha_i| < |\beta - \alpha_i|$ for i = 2, ..., n.

Then a, EK(B).

Proof: Let L=K(B), $L'=L(\alpha_1,\ldots,\alpha_n)$ then L'/L is a Galais externion. Let o challe'll We have $|B-6(\alpha_1)|=|o(B-\alpha_1)|$

= | B - Q, | (Lemma 8.2)

=) $\sigma(\alpha_i) = \alpha_i$ an =) $\alpha_i \in K(\beta)$, \square Proposition 8.4; Let $(K_i | I | I)$ be complete directly called field and $f(x) = \sum_{i=0}^{\infty} a_i X^i \in O_K(X_i)$ be a separable ineducible morie polynomial.

Let $\alpha \in K$ be a vol of f. Then $\exists \geq 0$ s.t. for any $g(x) = \sum_{i=0}^{n} b_i X^i \in O_k[X]$ movie with $|\alpha_i - b_i| < \epsilon$, there exists a vol $\beta \land g(X)$ s.t. $K(\alpha) = K(\beta)$.

Proof: Let $\alpha = \alpha_1, \dots, \alpha_n \in \mathbb{F}$ be the lots of which are nec. distint. Then $f'(\alpha) \neq 0$.

We choose & sufficiently small s.t. $|g(\alpha_i)| \leq |f'(\alpha_i)|^2$

and $|f'(\alpha_i) - g'(\alpha_i)| < |f'(\alpha_i)|$ Then we have $|g(\alpha_i)| < |f'(\alpha_i)|^2 = |g'(\alpha_i)|^2$ By Hensel's lemma applied to field $K(\alpha_i)$,
there exists $\beta \in K(\alpha_i)$ s.f. $g(\beta) = 0$ and $|\beta - \alpha_i| < |g'(\alpha_i)|$.

 $|g'(\alpha_i)| = |f'(\alpha_i)| = |f(\alpha_i - \alpha_i)| = |\alpha_i - \alpha_i|$

Use $|\alpha_1 - \alpha_1| \le 1$ since α_i integral) Since $|\beta - \alpha_1| < |g'(\alpha_1)| = |f'(\alpha_1)|$ $\leq |\alpha_1 - \alpha_1| = |\beta - \alpha_1|$ $\equiv |\alpha_1 - \alpha_1| = |\beta - \alpha_1|$ $\equiv |\alpha_1 - \alpha_1| = |\beta - \alpha_1|$

 \neq varier's Lemma => $\alpha \in F(\beta)$ => $F(\alpha) = F(\beta)$.