Multi armed bandit

Tor Lattimor's book and other miscellaneous sources

Presenter: Mathilda Nguyen

The name "Bandit"

"one-armed bandit" is an old name for a slot machine in a casino, because it has one arm and it steals your money.

Multi-arm bandit: imagine a casino with many (different) one-arm slot machines.

What is bandit?

Bandit algorithm is a type of learning algorithm which the agent tried to balance out **exploration** (acquire new knowledge) and **exploitation** (optimized their decision based on knowledge) in order to **maximize rewards**.

Bandit provides a simple model of decision making under uncertainty.

What is bandit?

Real life example: exploration vs exploitation (and rewards)

Clinical trials: investigating effectiveness of different treatments while minimizing patient's loses

Ads placement/news recommendation: investigating effectiveness of different ads while maximize user clicking in the ads

Dynamic pricing: finding the best price for a product while maximizing buying potentials

Explore-then-commit (ETC)

Explores by playing each arm a fixed number of times and then exploits by committing to the arm that appeared best during exploration.

ε-Greedy Algorithm

Take the best action most of the time, random exploration occasionally.

"A randomised relative of ETC that in round t plays the empirically best arm with probability $1 - \epsilon$ t and otherwise explores uniformly at random"

ε-Greedy Algorithm

Drawback:

- Choose bad arm if unlucky
- Exploration might not give the correct distribution

Better than ETC (?): no forced exploration (If we keep exploring for too long we are missing opportunities)

Introducing: Optimism

"The Upper Confidence Bound (UCB) algorithm is based on the principle of **optimism in the face of uncertainty**, which states that one should act as if the environment is as nice as plausibly possible."

Assign to each arm a value, called the **upper confidence bound** that (with high probability) is an overestimate of the unknown mean.

Upper Confidence Bound Algorithm

In other word: favor *exploration* of actions with a strong potential to have a optimal value.

https://mwburke.github.io/images/ucb_race_gif.gif

Arm 0: 000 Arm 1: 000 Arm 2: 002 Arm 3: 000 Arm 4: 000 Arm 5: 000

Thompson sampling

Sampling from the posterior and playing the optimal action

Measuring how good our algorithm is doing:

Regret (or *how better things could have been*) is the difference between the learner's action and the best action.

We aim to make the regret meaningful and small.

There exists a policy for which the regret vanishes (zero-regret strategies)

Epsilon-greedy - the regret

https://towardsdatascience.com/bandit-algorithms-34fd7890cb18

UCB - regret

https://towardsdatascience.com/the-upper-confidence-bound-ucb-bandit-algorithm-c05c2bf4c13f

Thompson sampling - regret

Some formalization

Generally, a Bandit Algorithm is one with: limited number of round, agent has to receive some sort of feedback (rewards), and the agent can not peak into the future.

Stochastic bandit: each action corresponds to an IID reward (aka has an underlying distr that it samples from when an action is selected). Mean rewards do not shift (significantly) over time \rightarrow simply need to explore the arm until it can properly get the distr

More:

- Non-stationary: relaxation of the stochastic setting (with a cost)
- Adversarial: we are in the dark. Rewards are worst-case results to throw off a learner. Strategy: randomization is key.
- Contextual: the learner has access to additional information that may help predict the quality of the actions
- Linear: reward is an unknown linear function (stochastic bandit problem can be seen as a special case of the linear bandit problem)
- Gaussian, Rotting, Restless, Dueling, Firing Bandit