(Exercise sessions: 20.-21.1.2022) Hand-in due: Tue 25.1.2022 at 23:59

 $\textbf{Fill-in-the-blanks 1.} \ \ \textbf{Complete the following arguments, which exemplify certain}$ expre ter I

essions that <i>do not</i> yield norms. It is simplest to use the labels given in Chap-V of the lecture notes for the conditions required of a norm.
• The formula $ (x,y) = x+y $ does not define a norm for points (x,y) in the plane \mathbb{R}^2 . For example
condition $\left(\underline{}\right)$
does not hold, since by choosing
$x = \underline{\hspace{1cm}}, \qquad y = \underline{\hspace{1cm}}$
we find, contrary to the condition, that
, although
• The formula $ f = f(0) $ does not define a norm in the space $C([-1,1])$ of continuous functions on the interval $[-1,1]$. The reason:
condition $\left(\underline{}\right)$
does not hold, because by choosing
$f(t) = $ for $t \in [-1, 1],$
we find, contrary to the condition, that
The two other conditions are nevertheless satisfied:
Justification of condition ():
Justification of condition ():

Fill-in-the-blanks 2. Complete the following arguments to show that subsequences of a convergent real-number sequence are convergent, and they have the same limit as the original sequence. Recall that a subsequence of a sequence $(x_n)_{n\in\mathbb{N}}$ is a sequence of the form $(x_{\varphi(n)})_{n\in\mathbb{N}}$, where $\varphi\colon\mathbb{N}\to\mathbb{N}$ is a strictly increasing function.

<u>Lemma</u>: If $\varphi \colon \mathbb{N} \to \mathbb{N}$ is a strictly increasing function, then for all $n \in \mathbb{N}$ we have $\varphi(n) > n$.

<u>Proof of lemma</u>: Let $\varphi \colon \mathbb{N} \to \mathbb{N}$ be a strictly increasing function. We prove the claim by induction on n.

For the base case, n = 1, it suffices to note that $\geq \underline{\qquad} \qquad \text{since } \varphi(1) \in \mathbb{N}.$

For the induction step, assume that for a natural number $n \in \mathbb{N}$ we have $\varphi(n) \geq n$. We must prove the corresponding property for n + 1. Since φ is strictly increasing, we have

______,

which implies $\varphi(n+1) \ge \varphi(n) + 1$, since the strict inequality above concerns natural numbers. To conclude the proof, we estimate

 $\varphi(n+1) \geq \varphi(n) + 1 \geq \underline{\hspace{1cm}},$

using _____ in the last step. \Box

<u>Theorem</u>: If $(x_n)_{n\in\mathbb{N}}$ is a sequence of real numbers which converges to $\alpha \in \mathbb{R}$, then any subsequence of it also converges to α .

<u>Proof of theorem</u>: Let $(x_n)_{n\in\mathbb{N}}$ be a sequence such that $\lim_{n\to\infty} x_n = \alpha$, and let $(x_{\varphi(n)})_{n\in\mathbb{N}}$ be a subsequence of it. We must prove

$$\lim_{n \to \infty} \underline{\hspace{1cm}} = \alpha.$$

To prove this from the definition of limit, let $\varepsilon > 0$. From the assumption $\lim_{n\to\infty} x_n = \alpha$ we get that there exists an $N \in \mathbb{N}$

such that for all _____ we have ____

The same N will work for our present goal. So let $n \geq N$. Note that by the lemma we then get $\varphi(n) \geq n \geq N$. In particular from the above, we obtain $|x_{\varphi(n)} - \alpha| < \varepsilon$. This finishes the proof, directly by the definition of a limit.