Project 2: Using LLMs for Classification - Report Megha Chakraborty

1. Accuracy and Loss Curves

Plots of training and validation accuracy and loss over epochs show:

- The fine-tuned DistilBERT achieved high accuracy while maintaining low loss.
- Minimal overfitting observed as validation loss aligns closely with training loss.
- Base DistilBERT and Random Forest curves are omitted as they lack iterative training.

2. Confusion Matrices

Fine-tuned DistilBERT:

• Low misclassification rate, with a balanced count of false positives and negatives.

Base DistilBERT:

• **High false negatives**, likely due to difficulty interpreting complex linguistic nuances like sarcasm.

Random Forest:

• Performed decently but had more misclassifications than the fine-tuned DistilBERT.

3. Comparative Tables for Evaluation Metrics

Model	Accuracy	Precision	Recall	F1
Fine-tuned DistilBERT	0.914	0.951	0.912	0.931
Base DistilBERT	0.485	0.380	0.0337	0.062
Random Forest	0.870	0.860	0.858	0.859

4. Answers to Provided Questions

1. Accuracy and Loss Curves

- Fine-tuned DistilBERT's curves indicate strong learning with minimal overfitting.
- Validation and training metrics closely align, highlighting effective training.

2. Fine-tuned vs. Classical ML Model

• Fine-tuned DistilBERT outperforms Random Forest due to its ability to understand contextual semantics. However, transformers demand more computational resources.

3. Insights from Confusion Matrix

- Fine-tuned DistilBERT: Balanced false positives/negatives.
- Base DistilBERT: Struggles with nuanced language, leading to high false negatives.
- Random Forest: Moderate performance, limited by feature engineering.

4. Fine-tuned vs. Base Model

• Fine-tuning allows domain-specific adaptation, enabling superior pattern recognition and significantly better performance than the base model.

5. Deployment Recommendation

- Recommended: Fine-tuned DistilBERT for its superior accuracy and robustness.
 - For resource constraints, efficiency optimizations like model quantization are suggested.

5. Time Complexity

- Fine-tuned DistilBERT: Higher training and inference time due to complex architecture.
- Random Forest: Faster training and inference but inferior accuracy.
- Consider task requirements (real-time needs or budget constraints) for final deployment.