TEHNICI DE OPTIMIZARE Curs 5

Andrei Pătrașcu

Departament Informatică Universitatea din București

Cuprins

- Probleme de minimizare cu constrângeri (POC). Condiţii de optimalitate.
- Algoritmi de ordinul I pentru POC
- Convergenţă
- Exemple şi aplicaţii

Probleme de optimizare cu constrângeri (POC)

$$(POC)$$
: $\min_{x \in \mathbb{R}^n} f(x)$ supus la $x \in Q$

Q mulţime fezabilă (convexă, închisă)

Probleme de optimizare cu constrângeri (POC)

$$(POC)$$
: $\min_{x \in \mathbb{R}^n} f(x)$ supus la $x \in Q$

- Q mulţime fezabilă (convexă, închisă)
- se urmăreşte determinarea lui x* ∈ Q care asigură:

$$f(x^*) \le f(x), \qquad \forall x \in Q, ||x - x^*|| \le \epsilon \pmod{f(x^*)} \le f(x), \qquad \forall x \in Q \pmod{global}$$

Probleme de optimizare cu constrângeri (POC)

$$(POC)$$
: $\min_{x \in \mathbb{R}^n} f(x)$ supus la $x \in Q$

- Q mulţime fezabilă (convexă, închisă)
- se urmăreşte determinarea lui x* ∈ Q care asigură:

$$f(x^*) \le f(x), \qquad \forall x \in Q, \|x - x^*\| \le \epsilon \pmod{f(x^*)} \le f(x), \qquad \forall x \in Q \pmod{global}$$

• echivalent:
$$\min_x f(x) + \iota_Q(x)$$
, unde $\iota_Q(x) = \begin{cases} 0 & x \in Q \\ \infty & x \notin Q \end{cases}$

• LP: $min_x c^T x$ s.l. $Ax = b, x \ge 0$

- LP: $min_x c^T x$ s.l. $Ax = b, x \ge 0$
- QP: $\min_{x} \frac{1}{2}x^{T}Hx q^{T}x$ s.l. $Ax \leq b$, Gx = h

- LP: $min_x c^T x$ s.l. Ax = b, x > 0
- QP: $\min_{x} \frac{1}{2} x^T H x q^T x$ s.l. $Ax \le b$, Gx = h
- SOCP: $\min_{x} c^{T}x$ s.l. $||A_{i}x b_{i}|| \leq \beta_{i}$, Gx = h $i = 1, \dots, m$

- LP: $min_x c^T x$ s.l. Ax = b, x > 0
- QP: $min_x \frac{1}{2}x^THx q^Tx$ s.l. $Ax \le b$, Gx = h
- SOCP: $\min_{x} c^{T}x$ s.l. $||A_{i}x b_{i}|| \leq \beta_{i}$, Gx = h $i = 1, \dots, m$
- QCQP: $\min_{x} \frac{1}{2} x^T H x q^T x$ s.l. $||A_i x b_i|| \le \beta_i$, Gx = h $i = 1, \dots, m$

- LP: $min_x c^T x$ s.l. $Ax = b, x \ge 0$
- QP: $\min_{x} \frac{1}{2} x^T H x q^T x$ s.l. $Ax \le b$, Gx = h
- SOCP: $\min_{x} c^{T}x$ s.l. $||A_{i}x b_{i}|| \leq \beta_{i}$, Gx = h $i = 1, \dots, m$
- QCQP: $\min_{x} \frac{1}{2} x^T H x q^T x$ s.l. $||A_i x b_i|| \le \beta_i$, Gx = h $i = 1, \dots, m$
- SDP: $\min_{x} c^{T}x$ s.l. $x_1F_1 + \cdots + x_nF_n + G \leq 0$, Gx = h

Numim mulţimea fezabilă simplă dacă următoarele obiecte pot fi calculate eficient:

- punct fezabil: $x \in Q$
- proiecţia ortogonală: $\pi_Q(y) := \operatorname{argmin}_x \|x y\|$ s.l. $x \in Q$
- oracol liniar: $\phi_Q(y) := \operatorname{argmin}_x \ x^T y \ \text{s.l.} \ x \in Q$
- mulţimi active
- ..

• $\min_{x} x^2$ s.l. $1 \le x \le 2$

• $\min_{x} x^2$ s.l. $1 \le x \le 2$

• $\min_{x} x \log(x)$ s.l. $\ell \le x \le u$

• $\min_{x} x_1^2 + x_2^2$ s.l. $1 \le x_1 \le 2$, $1 \le x_2 \le 2$ (separabilitate)

- $\min_{x} x_1^2 + x_2^2$ s.l. $1 \le x_1 \le 2$, $1 \le x_2 \le 2$ (separabilitate)
- $\min_{x} x_1^2 + x_2^2$ s.l. $x \ge 0, x_1 + x_2 = 1$ (proiecţie)

Problema proiecţiei ortogonale Euclidiene:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||x - y||_2^2$$

s.l. $x \in Q$

Soluţia $\pi_Q(y)$: punctul cel mai apropiat de y, care aparţine mulţimii fezabile Q

Problema proiecţiei ortogonale Euclidiene:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||x - y||_2^2$$

s.l. $x \in Q$

Soluţia $\pi_Q(y)$: punctul cel mai apropiat de y, care aparţine mulţimii fezabile Q

- Dacă Q este închisă atunci $\pi_Q(\cdot)$ există
- $y \in Q \rightarrow \pi_Q(y) = y$
- Condiţii de optimalitate: $(y \pi_Q(y))^T (x \pi_Q(y)) \le 0 \quad \forall x \in Q$.

• bila
$$Q:=B(0,r)=\{x\in\mathbb{R}^n:\ \|x\|\leq r\}\Rightarrow\pi_Q(y)=\left\{1,rac{r}{\|y\|}\right\}y$$

• bila
$$Q := B(0,r) = \{x \in \mathbb{R}^n : \|x\| \le r\} \Rightarrow \pi_Q(y) = \left\{1, \frac{r}{\|y\|}\right\} y$$

 hiperparalelipiped $Q := [I, u]^n = \{x \in \mathbb{R}^n : x \in [I, u]\} \Rightarrow \pi_Q(y)_i = \max\{I_i, \min\{u_i, y_i\}\}$

- bila $Q := B(0, r) = \{x \in \mathbb{R}^n : ||x|| \le r\} \Rightarrow \pi_Q(y) = \{1, \frac{r}{||y||}\} y$
- hiperparalelipiped $Q := [I, u]^n = \{x \in \mathbb{R}^n : x \in [I, u]\} \Rightarrow \pi_Q(y)_i = \max\{I_i, \min\{u_i, y_i\}\}$
- hiperplan $Q := H(a,b) = \{x \in \mathbb{R}^n : a^T x = b\} \Rightarrow \pi_Q(y) = y \frac{a^T y b}{\|\|\mathbf{a}\|\|^2} a$

- bila $Q := B(0,r) = \{x \in \mathbb{R}^n : \|x\| \le r\} \Rightarrow \pi_Q(y) = \left\{1, \frac{r}{\|y\|}\right\} y$
- hiperparalelipiped $Q := [I, u]^n = \{x \in \mathbb{R}^n : x \in [I, u]\} \Rightarrow \pi_Q(y)_i = \max\{I_i, \min\{u_i, y_i\}\}$
- hiperplan $Q:=H(a,b)=\{x\in\mathbb{R}^n:\ a^Tx=b\}\Rightarrow \pi_Q(y)=y-rac{a^Ty-b}{\|a\|_2^2}a$
- semispaţiu $Q:=S(a,b)=\{x\in\mathbb{R}^n:\ a^Tx\leq b\}\Rightarrow \pi_Q(y)=y-rac{\max\{0,a^Ty-b\}}{\|a\|_2^2}a$

Alte proprietăți

Alte proprietăți

$$\bullet \ \ Q = Q_1 \times Q_2 \Rightarrow \pi_Q(X) = \begin{bmatrix} \pi_{Q_1}(X_1) \\ \pi_{Q_2}(X_2) \end{bmatrix}$$

Alte proprietăți

$$\bullet \ \ Q = Q_1 \times Q_2 \times \cdots \times Q_n \Rightarrow \pi_Q(x) = \begin{bmatrix} \pi_{Q_1}(x_1) \\ \vdots \\ \pi_{Q_n}(x_n) \end{bmatrix}$$

•
$$Q = Q_1 \cap Q_2 \cap \cdots \cap Q_n \Rightarrow \pi_Q(x) = ?$$

$$(POC)$$
: $\min_{x \in \mathbb{R}^n} f(x)$
s. l. $x \in Q$.

Reformulare (nediferenţiabilă):

$$(POC): \quad \min_{x \in \mathbb{R}^n} \ f(x) + \iota_Q(x) = \begin{cases} f(x) & x \in Q \\ \infty & x \notin Q. \end{cases}$$

Condiţii de optimalitate?

Reformulare Th. Fermat ($Q = \mathbb{R}^n$):

$$x^* = \arg\min_{x} f(x^*) + \nabla f(x^*)^T (x - x^*) + \frac{1}{2\alpha} ||x - x^*||^2$$

$$x^* = x^* - \alpha \nabla f(x^*)$$

$$0 = \nabla f(x^*).$$

Reformulare Th. Fermat ($Q = \mathbb{R}^n$):

$$x^* = \arg\min_{x} f(x^*) + \nabla f(x^*)^T (x - x^*) + \frac{1}{2\alpha} ||x - x^*||^2$$

$$x^* = x^* - \alpha \nabla f(x^*)$$

$$0 = \nabla f(x^*).$$

Intuiţie în caz constrâns ($Q \subseteq \mathbb{R}^n$):

$$x^* = \arg\min_{x \in Q} f(x^*) + \nabla f(x^*)^T (x - x^*) + \frac{1}{2\alpha} ||x - x^*||^2$$

$$x^* = \pi_Q(x^* - \alpha \nabla f(x^*))$$

$$0 = x^* - \pi_Q(x^* - \alpha \nabla f(x^*)).$$

$$(POC)$$
: $\min_{x \in \mathbb{R}^n} f(x)$
s. l. $x \in Q$.

Dacă $Q = \mathbb{R}^n$ atunci în toate punctele staționare $\nabla f(x^*) = 0$.

Definiție

Fie f diferenţiabilă, $x \in Q$ şi $\alpha > 0$ atunci denumim **operator de gradient** redus peste mulţimea **Q** transformarea:

$$G_Q(x; \alpha) = \frac{1}{\alpha} [x - \pi_Q(x - \alpha \nabla f(x))]$$

Dacă $Q = \mathbb{R}^n$ atunci $\mathcal{G}_Q(x; \alpha) = \nabla f(x)$.

Definiție

Fie f diferenţiabilă, $x \in Q$ şi $\alpha > 0$ atunci denumim operator de gradient redus peste mulţimea Q transformarea:

$$G_Q(x; \alpha) = \frac{1}{\alpha} [x - \pi_Q(x - \alpha \nabla f(x))]$$

•
$$f(x) = \frac{1}{2}||x - y||^2$$

$$G(x; 1) = x - \pi_{Q}(x - (x - y)) = x - \pi_{Q}(y) = x - x^{*}$$

Definiție

Fie f diferenţiabilă, $x \in Q$ şi $\alpha > 0$ atunci denumim operator de gradient redus peste mulţimea Q transformarea:

$$\mathcal{G}_{Q}(x;\alpha) = \frac{1}{\alpha} \left[x - \pi_{Q}(x - \alpha \nabla f(x)) \right]$$

•
$$f(x) = \frac{1}{2}||x - y||^2$$

$$G(x; 1) = x - \pi_Q(x - (x - y)) = x - \pi_Q(y) = x - x^*$$

•
$$f(x) = \frac{1}{2} ||Ax - b||^2$$
, $Q = B(0; 1)$

$$G(x; 1) = x - \pi_{Q}(x - A^{T}(Ax - b)) = x - \pi_{Q}((I - A^{T}A)x + A^{T}b)$$

$$= x - \frac{1}{\|(I - A^{T}A)x + A^{T}b\|}[(I - A^{T}A)x + A^{T}b]$$

$$= (1 - \bar{\alpha})x + \bar{\alpha}\nabla f(x).$$

$$(OPC)$$
: $\min_{x \in \mathbb{R}^n} f(x)$
s. l. $x \in Q$.

Pp. $x \in Q$, $\mathcal{G}(x) \neq 0$ atunci din definiţia lui \mathcal{G} avem:

$$\alpha^{2} \|\mathcal{G}(x; \alpha) - \nabla f(x))\|_{2}^{2} = \|\pi_{Q}(x - \alpha \nabla f(x)) - (x - \alpha \nabla f(x))\|_{2}^{2}$$

$$= \min_{z \in Q} \|z - (x - \alpha \nabla f(x))\|_{2}^{2}$$

$$\leq \|x - (x - \alpha \nabla f(x))\|_{2}^{2} = \alpha^{2} \|\nabla f(x)\|_{2}^{2}.$$

Desfăşurând norma rezultă:

$$\frac{1}{2}\|\mathcal{G}(x;\alpha)\|_2^2 \leq \nabla f(x)^T \mathcal{G}(x;\alpha).$$

$$(OPC)$$
: $\min_{x \in \mathbb{R}^n} f(x)$
s. l. $x \in Q$.

Dacă f diferențiabilă atunci:

$$f(x - \alpha \mathcal{G}(x; \alpha)) = f(x) - \alpha \nabla f(x)^{\mathsf{T}} \mathcal{G}(x; \alpha) + o(-\alpha \mathcal{G}(x; \alpha))$$

$$\leq f(x) - \alpha \frac{1}{2} \|\mathcal{G}(x; \alpha)\|_{2}^{2} + o(-\alpha \mathcal{G}(x; \alpha))$$

$$\leq f(x) - \alpha \|\mathcal{G}(x; \alpha)\|_{2} \left[\frac{1}{2} \|\mathcal{G}(x; \alpha)\|_{2} - \frac{o(-\alpha \mathcal{G}(x; \alpha))}{\alpha \|\mathcal{G}(x; \alpha)\|_{2}} \right].$$

Un pas α suficient de mic asigură: $f(x - \alpha \mathcal{G}(x; \alpha)) < f(x)$, de aceea orice minim x^* satisface $\mathcal{G}(x^*; \alpha) = 0$.

$$(OPC)$$
: $\min_{x \in \mathbb{R}^n} f(x)$
s. l. $x \in Q$.

Teoremă

Fie f diferenţiabilă, Q mulţime convexă închisă şi α o constantă pozitivă. Orice minim x^* al problemei OPC satisface:

$$\mathbf{X}^* = \pi_{\mathbf{Q}}(\mathbf{X}^* - \alpha \nabla f(\mathbf{X}^*)) \Leftrightarrow \mathcal{G}(\mathbf{X}^*; \alpha) = \mathbf{0}$$

Mai mult, dacă f convexă atunci x^* soluția OPC dacă și numai dacă $\mathcal{G}(x^*;\alpha)=0$.

• Analog condiţiilor de ordin I pentru cazul neconstrâns (i.e. $Q = \mathbb{R}^n$)

$$(OPC)$$
: $\min_{x \in \mathbb{R}^n} f(x)$
s. l. $x \in Q$.

Teoremă

Fie f diferențiabilă, Q mulțime convexă închisă și α o constantă pozitivă. Orice minim x^* al problemei OPC satisface:

$$\mathbf{X}^* = \pi_{\mathbf{Q}}(\mathbf{X}^* - \alpha \nabla f(\mathbf{X}^*)) \Leftrightarrow \mathcal{G}(\mathbf{X}^*; \alpha) = \mathbf{0}$$

Mai mult, dacă f convexă atunci x^* soluția OPC dacă și numai dacă $\mathcal{G}(x^*;\alpha)=0$.

- Analog condiţiilor de ordin I pentru cazul neconstrâns (i.e. $Q = \mathbb{R}^n$)
- Condiții necesare în general, dar nec. și suficiente în cazul f convexă

$$(OPC)$$
: $\min_{x \in \mathbb{R}^n} f(x)$
s. l. $x \in Q$.

Teoremă

Fie f diferenţiabilă, Q mulţime convexă închisă şi α o constantă pozitivă. Orice minim x^* al problemei OPC satisface:

$$\mathbf{X}^* = \pi_{\mathbf{Q}}(\mathbf{X}^* - \alpha \nabla f(\mathbf{X}^*)) \Leftrightarrow \mathcal{G}(\mathbf{X}^*; \alpha) = \mathbf{0}$$

Mai mult, dacă f convexă atunci x^* soluția OPC dacă și numai dacă $\mathcal{G}(x^*;\alpha)=0$.

- Analog condițiilor de ordin I pentru cazul neconstrâns (i.e. $Q = \mathbb{R}^n$)
- Condiții necesare în general, dar nec. şi suficiente în cazul f convexă
- Cand π_Q este tractabil, condiția de mai sus este verificabilă!

$$\max_{x} \|Ax\|_{2}^{2} \text{ s.l. } \|x\| \leq 1$$

Condiții necesare (POC)

$$\max_{x} \|Ax\|_{2}^{2} \text{ s.l. } \|x\| \leq 1$$

$$x^* = \pi_Q(x^* - \nabla f(x^*)) = \pi_Q(x^* - A^T A x^*)$$

$$x^* = \frac{1}{\|(I - A^T A) x^*\|} (I - A^T A) x^*$$

$$x^* = \frac{1}{1 - \|(I - A^T A) x^*\|} A^T A x^* = \lambda^* A^T A x^*.$$

Condiții necesare (POC)

$$\max_{x} \|Ax\|_{2}^{2} \text{ s.l. } \|x\| \leq 1$$

$$x^* = \pi_Q(x^* - \nabla f(x^*)) = \pi_Q(x^* - A^T A x^*)$$

$$x^* = \frac{1}{\|(I - A^T A) x^*\|} (I - A^T A) x^*$$

$$x^* = \frac{1}{1 - \|(I - A^T A) x^*\|} A^T A x^* = \lambda^* A^T A x^*.$$

Puncte staţionare: vectorii proprii asociaţi A^TA . Soluţie: vectorul propriu x^* asociat $\lambda_{max}(A^TA)$.

Condiţii necesare şi suficiente (POC)

Condiţia de ordin I:

$$\mathbf{x}^* = \pi_{\mathbf{Q}}(\mathbf{x}^* - \alpha \nabla f(\mathbf{x}^*)) \Leftrightarrow \mathcal{G}(\mathbf{x}^*; \alpha) = \mathbf{0}$$

este echivalentă cu:

$$\nabla f(x^*)^T(x-x^*) \geq 0, \quad \forall x \in Q.$$

Interpretare: Direcţia $-\nabla f(x^*)$ face un unghi obtuz cu direcţiile fezabile

Exemplu curs 1:

min
$$f(x) := (x_1 + x_2)^2$$

s.t. $0 \le x_1 \le 1$
 $0 \le x_2 \le 1$

Exemplu curs 1:

min
$$f(x) := (x_1 + x_2)^2$$

s.t. $0 \le x_1 \le 1$
 $0 \le x_2 \le 1$

$$\begin{aligned} x^* &= \pi_{[0,1]^2}(x^* - \nabla f(x^*)) \\ \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} &= \begin{bmatrix} \pi_{[0,1]}(-x_2^*) \\ \pi_{[0,1]}(-x_1^*) \end{bmatrix} \\ x^* &= 0. \end{aligned}$$

$$\min_{x \in \mathbb{R}^3} \ f(x) = x_1^2 + x_2^2 + x_3^2 + (x_1 + 2x_2 - 4)^2$$
 s.l. $||x|| \le 1$.

Care sunt condițiile de optimalitate de ordin I?

$$\min f(x) := c^T x$$
s.t. $x \in [I, u]$.

min
$$f(x)$$

s.t. $x \in [I, u]$.

$$\min f(x)$$
 s.t. $Ax = b$.

Cuprins

- Probleme de minimizare cu constrângeri (POC). Condiţii de optimalitate.
- Algoritmi de ordinul I pentru POC. Convergenţă
- Exemple şi aplicaţii

Din relaţiile de mai sus, pentru α suficient de mic obţinem descreşterea:

$$f(x - \alpha G(x)) < f(x)$$

care sugerează iteraţia $x^+ = x - \alpha G(x)$.

Calcularea operatorlui $\mathcal{G}(\cdot)$ folosesţe $\pi_{\mathcal{Q}}(\cdot)$, care este tractabil doar în anumite cazuri particulare "simple": bilă, hipercub, hiperplan etc.

Metoda Gradientului Proiectat: iniţial $x^0 \in Q$

$$\mathbf{X}^{k+1} := \mathbf{X}^k - \alpha \mathcal{G}(\mathbf{X}^k) = \pi_{\mathbf{Q}}(\mathbf{X}^k - \alpha \nabla f(\mathbf{X}^k))$$

[Polyak, pg. 234]

Interpretare:

$$x^{k+1} = \underset{z}{\operatorname{argmin}} f(x^k) + \nabla f(x^k)^T (z - x^k) + \frac{1}{2\alpha_k} \|z - x^k\|^2$$
$$= \underset{z}{\operatorname{argmin}} \frac{1}{2} \|z - (x^k - \alpha_k \nabla f(x^k))\|^2 \text{ (exercitiu!)}$$

Algorithm 1: Metoda Gradientului Proiectat (MGP) $(x^0, \epsilon, \{\alpha_k\}_{k>0})$:

```
Data: k := 0

while <u>criteriu oprire = fals</u> do

Calculează: \nabla f(x^k)

x^{k+1} = \pi_Q(x^k - \alpha_k \nabla f(x^k))

k := k + 1
```

Teoremă

5 end

Fie f o funcție diferențiabilă cu gradient Lipschitz și Q mulțimea fezabilă convexă. Pentru pasul $\alpha_k = \alpha \in (0, 2/L)$, șirul MGP satisface:

$$\|\mathcal{G}(x^k)\| \to 0$$
 când $k \to \infty$.

Mai mult, dacă f convexă şi X^* mulţimea optimă POC, atunci $x^k \to x^* \in X^*$.

$$\min_{x\in\mathbb{R}^n}\ \frac{1}{2}\|Ax-b\|^2\ \text{ s.t. }\ I\leq x\leq u.$$

$$\min_{x \in \mathbb{R}^3} f(x) = x_1^2 + x_2^2 + x_3^2 + (x_1 + 2x_2 - 4)^2$$
s.l. $||x|| \le 1$.

Calculaţi prima iteraţie a MGP cu pas constant $\alpha=1/L$, pornind din $x^0=[0\ 0\ 0].$

Convergență

Teoremă (Nesterov, 2014)

Fie f o funcție diferențiabilă cu gradient Lipschitz cu constanta L, tare-convexă cu constanta σ , iar Q convexă şi închisă. Pentru pasul $\alpha \in \left(0, \frac{2}{L+\sigma}\right]$ avem:

$$||x^{k} - x^{*}|| \le \left(1 - \frac{\sigma}{L}\right)^{k} ||x^{0} - x^{*}||$$

- Performanţă similară cu cea a MG
- $x^k \in S_f(f^* + \epsilon)$ după $\mathcal{O}(\kappa \log(1/\epsilon))$ iterații

Metoda Gradientului Condițional

Ipoteza: Este posibilă calcularea eficientă a operatorului cost liniar:

$$\phi_Q(y) := \underset{z \in Q}{\operatorname{argmin}} \ y^T z$$

Metoda Gradientului Condițional

Ipoteza: Este posibilă calcularea eficientă a operatorului cost liniar:

$$\phi_Q(y) := \underset{z \in Q}{\operatorname{argmin}} \ y^T z$$

Metoda Gradientului Condiţional realizează un model aproximativ liniar al costului şi foloseşte soluţia acestuia la fiecare iteraţie k:

$$\phi_Q(x^k) := \underset{z \in Q}{\operatorname{argmin}} \nabla f(x^k)^T z$$
$$x^{k+1} = x^k + \alpha_k (\phi_Q(x^k) - x^k).$$

Metoda Gradientului Condiţional

Metoda Gradientului Condiţional

Algorithm 2: Metoda Gradientului Condiţional (MGC) $(x^0, \epsilon, \{\alpha_k\}_{k>0})$:

```
Data: k := 0

1 while <u>criteriu oprire = fals</u> do

2 | Calculează: \phi_Q(x^k) := \underset{z \in Q}{\operatorname{argmin}} \nabla f(x^k)^T z

3 | x^{k+1} = x^k + \alpha_k(\phi_Q(x^k) - x^k)

4 | k := k+1
```

Teoremă

5 end

Fie f o funcție diferențiabilă cu gradient Lipschitz și Q mulțimea fezabilă convexă. Pentru pasul $\alpha_k = \operatorname{argmin}_{\alpha \in [0,1]} f(x^k + \alpha(\phi_Q(x^k) - x^k))$, șirul MGC satisface:

$$\nabla f(x^k)^T (x^k - \phi_Q(x^k)) \to 0$$
 când $k \to \infty$.

Mai mult, dacă f convexă atunci $f(x^k) - f^* = \mathcal{O}(1/k)$.

Exerciţii

$$\min_{x \in \mathbb{R}^3} f(x) = x_1^2 + x_2^2 + x_3^2 + (x_1 + 2x_2 - 4)^2$$

s.l. $||x|| \le 1$.

Calculaţi prima iteraţie a MGC cu pas constant $\alpha=1/L$, pornind din $x^0=[0\ 0\ 0].$

Exerciţii

Calculați soluția următoarelor probleme:

- $\underset{x \in \mathbb{R}^n}{\min} c^T x$ s.l. $1 \le x \le u$
- $\underset{x \in \mathbb{R}^n}{\operatorname{arg} \min} c^T x \text{ s.l. } ||x|| \leq r$
- $\underset{x \in \mathbb{R}^n}{\min} c^T x$ s.l. $\frac{1}{2} x^T H x q^T x \le \beta (\beta > 0, H > 0)$

Algoritmi de ordinul I acceleraţi

Metoda Gradientului Accelerat (Nesterov): fie $x^0 \in \mathbb{R}^n, y^0 = x^0, \beta = \frac{1-\sqrt{\kappa_f}}{1+\sqrt{\kappa_f}}$

- 2 $y^{k+1} = x^{k+1} + \beta(x^{k+1} x^k)$
 - Accelerare: $\mathcal{O}\left(\sqrt{\kappa_f}\log(1/\epsilon)\right)$ vs $\mathcal{O}\left(\kappa_f\log(1/\epsilon)\right)$ (MG)

Algoritmi de ordinul I acceleraţi

Metoda Gradientului Accelerat (Nesterov): fie $x^0 \in \mathbb{R}^n, y^0 = x^0, \beta = \frac{1-\sqrt{\kappa_f}}{1+\sqrt{\kappa_f}}$

- 2 $y^{k+1} = x^{k+1} + \beta(x^{k+1} x^k)$
 - Accelerare: $\mathcal{O}\left(\sqrt{\kappa_f}\log(1/\epsilon)\right)$ vs $\mathcal{O}\left(\kappa_f\log(1/\epsilon)\right)$ (MG)
 - Iteraţia MGA are acelaşi ordin de complexitate per iteraţie ca MG

Algoritmi de ordinul I accelerati

Metoda Gradientului Accelerat (Nesterov): fie $x^0 \in \mathbb{R}^n$, $y^0 = x^0$, $\beta = \frac{1 - \sqrt{\kappa_t}}{1 + \sqrt{\kappa_t}}$

- 2 $v^{k+1} = x^{k+1} + \beta(x^{k+1} x^k)$
 - **Accelerare**: $\mathcal{O}\left(\sqrt{\kappa_f}\log(1/\epsilon)\right)$ vs $\mathcal{O}\left(\kappa_f\log(1/\epsilon)\right)$ (MG)
 - Iteratia MGA are același ordin de complexitate per iterație ca MG
 - MGA este mai puțin robustă la erori

Alţi algoritmi

- Metoda Newton Projectat
- Metoda Gradienţilor Conjugaţi (cu proiecţie)
- Metode Direcţii Descreştere

