In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.naive_bayes import MultinomialNB as MB
from sklearn.naive_bayes import GaussianNB as GB
from sklearn.model_selection import train_test_split
executed in 58.8s, finished 15:56:29 2022-01-05
```

In [2]:

```
salary_train=pd.read_csv("SalaryData_Train.csv")
salary_test=pd.read_csv("SalaryData_Test.csv")
executed in 235ms, finished 15:56:32 2022-01-05
```

In [3]:

```
salary_train.head()
executed in 68ms, finished 23:32:51 2021-11-26
```

Out[3]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	s
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Ma
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Ma
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Ma
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Ma
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Fema
4									•

In [4]:

salary_test.head()

executed in 54ms, finished 23:33:04 2021-11-26

Out[4]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	Black	Male
1	38	Private	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	Male
2	28	Local-gov	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	Male
3	44	Private	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	Male
4	34	Private	10th	6	Never- married	Other- service	Not-in-family	White	Male
4									•

In [5]:

sns.pairplot(salary_train)

executed in 12.2s, finished 23:34:15 2021-11-26

Out[5]:

<seaborn.axisgrid.PairGrid at 0x1b151e72af0>

In [6]:

sns.pairplot(salary_test)

executed in 12.2s, finished 23:34:45 2021-11-26

Out[6]:

<seaborn.axisgrid.PairGrid at 0x1b154b83d30>

In [7]:

```
string_columns=["workclass","maritalstatus","occupation","relationship","education","race"] executed in 10ms, finished 23:35:01 2021-11-26
```

In [8]:

```
le=LabelEncoder()
executed in 14ms, finished 23:35:15 2021-11-26
```

In [9]:

```
for i in string_columns:
    salary_train[i]=le.fit_transform(salary_train[i])
    salary_test[i]=le.fit_transform(salary_test[i])
executed in 222ms, finished 23:35:27 2021-11-26
```

In [10]:

```
x_train=salary_train.iloc[:,0:12]
y_train=salary_train.iloc[:,13]
x_test=salary_test.iloc[:,0:12]
y_test=salary_test.iloc[:,13]
executed in 29ms, finished 23:35:39 2021-11-26
```

In [11]:

```
classifiers_mb=MB()
classifiers_mb.fit(x_train,y_train)
train_pred_mb=classifiers_mb.predict(x_train)
train_accu_mb=np.mean(train_pred_mb==y_train)
pd.crosstab(train_pred_mb,y_train)
executed in 320ms, finished 23:35:51 2021-11-26
```

Out[11]:

```
salary <=50K >50K
row_0
<=50K 21717 5913
>50K 936 1595
```

In [12]:

```
test_pred_mb=classifiers_mb.predict(x_test)
test_accu_mb=np.mean(test_pred_mb==y_test)
pd.crosstab(test_pred_mb,y_test)
executed in 101ms, finished 23:36:02 2021-11-26
```

Out[12]:

```
        Salary
        <=50K</th>
        >50K

        row_0

        2920

        >50K
        469
        780
```

```
In [13]:
```

```
test_pred_mb
executed in 18ms, finished 23:36:12 2021-11-26
```

```
Out[13]:
```

```
array([' <=50K', ' <=50K', ' <=50K', ' >50K', ' <=50K'], dtype='<U6')
```

In [14]:

```
test_accu_mb
executed in 15ms, finished 23:36:22 2021-11-26
```

Out[14]:

0.7749667994687915

In [15]:

```
classifiers_gb=GB()
classifiers_gb.fit(x_train,y_train)
train_pred_gb=classifiers_gb.predict(x_train)
train_accu_gb=np.mean(train_pred_gb==y_train)
pd.crosstab(train_pred_gb,y_train)
executed in 187ms, finished 23:36:37 2021-11-26
```

Out[15]:

```
      Salary
      <=50K</th>
      >50K

      row_0

      5040

      >50K
      1147
      2468
```

In [16]:

```
test_pred_gb=classifiers_gb.predict(x_test)
test_accu_gb=np.mean(test_pred_gb==y_test)
executed in 46ms, finished 23:36:52 2021-11-26
```

In [17]:

```
test_pred_gb
executed in 31ms, finished 23:37:04 2021-11-26
```

Out[17]:

```
array([' <=50K', ' <=50K', ' <=50K', ' >50K', ' <=50K'], dtype='<U6')
```

In [18]:

```
test_accu_gb
executed in 16ms, finished 23:37:15 2021-11-26
```

Out[18]:

0.7942895086321381