

ACM Asia Conference on Computer and Communications Security (ASIA CCS '25)

BranchGauge: Modeling and Quantifying Side-Channel Leakage in Randomization-Based Secure Branch Predictors

Quancheng Wang, Ming Tang, Ke Xu, Han Wang

School of Cyber Science and Engineering

Wuhan University

August 27, 2025

Background: Timing and Speculative Attacks

- > The design philosophy of modern CPU is faster speeds and greater efficiency
- > Branch prediction unit (BPU) play a critical role in addressing control hazards

> However, inherent sharing characteristic introduces side-channel attack surfaces

Spectre v1 Spectre v2 2019

NetSpectre **SGXPectre SMotherSpectre** 2020

Bluethunder BlindSide SpectreRewind 2021

SPEAR Speculative Interference BranchSpectre

BHI RetBleed

2022

2023--now

ITS

SpecHammer GhostRace **PACMAN** InSpectre TikTag

Background: Secure Branch Prediction Designs

- > Researchers have proposed secure speculation schemes and branch predictors
- > Randomization-based approaches stand out as more promising
 - > make attacks significantly more challenging and effectively reduce leakage risks
 - > maintain relatively low performance overhead compared to flush/partition techniques

Background: Side-Channel Evaluation Methods

- > However, these randomized approaches often fail to guarantee absolute security
 - > shared states between attacker and victim threads still exist
- > Existing evaluation methods cannot accurately quantify leakage in such designs
 - > CaSA, Metior, CacheFX, ...

Challenge

> How to build a leakage quantification framework for rand branch predictors?

Modeling: Defining Components and Workflow

- > Our model integrates index and content randomization functions: IRF and CRF
- > IRF combines the branch instruction address with a randomization key K
- > CRF randomizes PHT counter or BTB content using a randomization key K
- > To further enhance security, distinct keys are assigned to different domains S

Modeling: Constructing Timing Observations

> We define a timing observation model to capture timing and speculative attacks

Comp onents	Prediction State	Output Timing	Description						
РНТ	valid	hit	prediction matches the actual direction						
	mispredict	miss	prediction differs the actual direction						
втв	valid	hit	prediction matches the actual target						
	mispredict	miss	prediction differs the actual target						
	invalid	miss	no matching is found in the target BTB set						

- > We instantiate 6 randomization-based secure branch predictor designs
- > We associate S and K with the security domain and the corresponding private keys
- > Our implementation incorporates IRF for PHT/BTB, CRF for PHT/BTB src/BTB dest

Branch Predictor	Reference	PH	łT	ВТВ						
	Reference	IRF	CRF	IRF	CRF (Src)	CRF (Dest)				
BSUP	TACO'20	XOR/Key0	LLBC/Key0	XOR/Key0	Sim	LLBC/Key0				
XOR-BP	DAC'21		XOR/Key0		XOR/Key0	XOR/Key0				
Noisy-XOR-BP	DAC'21	XOR/Key0	XOR/Key1	XOR/Key0	XOR/Key1	XOR/Key1				
LS-BP	ASP-DAC'22	XOR/PID+Key0		XOR/PID+Key0	1 January and State of the Control o					
STBPU	DSN'22	Hash/Key0	XOR/Key1	Hash/Key0	Hash/Key0	XOR/Key1				
НуВР	HPCA'22	QARMA/Key0	XOR/Key1	QARMA/Key0	QARMA/Key0	XOR/Key1				

Fomulating: Reuse-Based PHT/BTB Attacks

> Attacker and victim

> Attacker: App, OS, VM, etc.

➤ Victim: App, OS, VM, TEE, etc.

Timing Leakage or Speculative Leak Attacker Victim

> Attacker's strategy

- > Find the proper branch instruction to mispredict specific PHT/BTB entry
- > Probe timing differences of the target branch instruction

> High-level of reuse-based attacks (timing leakage)

Fomulating: Reuse-Based PHT/BTB Attacks

> Attacker and victim

> Attacker: App, OS, VM, etc.

➤ Victim: App, OS, VM, TEE, etc.

> Attacker's strategy

- > Find the proper branch instruction to mispredict specific PHT/BTB entry
- > Probe timing differences of covert channels due to speculative execution

> High-level of reuse-based attacks (speculative leakage)

Fomulating: Prune-Based BTB Attacks

> Attacker's strategy

- ➤ Construct eviction set for specific BTB set
- > Probe timing differences of branch instructions

> High-level of prune-based attacks

Fomulating: Occupancy-Based PHT/BTB Attacks

> Attacker's strategy

- > Filling the PHT/BTB branch predictor
- > Probe timing differences of branch instructions
- > High-level of occupancy-based attacks

Evaluation: Leakage Quantification Metrics

- > Branch Accesses N: The total number of branch accesses required to achieve the attack
 - > Encompassing accesses in both the attacker's space and the victim's space

Branch Accesses N Calculation Formula

$$N[\mathbb{G}, \mathbb{V}] = \sum_{i=1}^{|\mathbb{G}|} N[\mathbb{G}_i] + \sum_{j=1}^{|\mathbb{V}|} N[\mathbb{V}_j]$$

- > Collision Probability Pr: The probability of a collision between the attacker and victim
 - > The leakage of sensitive information across repeated trials

Collision Probability Pr Calculation Formula

$$\Pr[s|\mathbb{G}, \mathbb{V}] = \frac{1}{|R|} \sum_{i=1}^{|R|} (s = [\mathbb{V} \to \mathbb{G}])$$

- > Maximal Leakage L_{max}: The maximum amount of information that can be leaked
 - > A relative measure of leakage by comparing the actual leakage to random guessing

Maximal Leakage L_{max} Calculation Formula

$$L_{\max}[\mathbb{V} \to \mathbb{G}] = \log_2 \left(\sum_{s \in \mathbb{S}} \max_{\mathbb{G}} \left[\Pr[s | \mathbb{G}, \mathbb{V}] \right] \right)$$

Evaluation: Leakage Quantification Methodology

- > We develop a software simulator with the following implementation strategy
 - > Component structure: define vector variables, lookup functions and update functions
 - > Timing observation: set return values of lookup functions, hit (1) or miss (0)
 - > IRF and CRF functions: implement get tag/counter for PHT, get set/tag/dest for BTB
 - > Attack algorithms: collect statistics on branch accesses and timing observations
 - > Leakage calculation: use the collected data and the previously defined formulas

Evaluation: Reuse-Based Attacks

- > IRF increases the complexity but the attacker can still generate branch conflicts
- > The CRF security relies on bit width, making encrypted BTB more secure than PHT
- > PHT reuse attacks (both timing and speculative) remain a major challenge

Branch Accesses N Reuse-Based Collision Probability Pr Reuse-Based

Evaluation: Prune-Based Attacks

- > The goal of IRF randomization is making eviction set construction difficult
- > Pruning-based strategies allow attackers to construct eviction sets
- > With a reasonable number of branch accesses for all existing randomized BTBs

Branch Accesses N Prune-Based Collision Probability Pr Prune-Based

Evaluation: Occupancy-Based Attacks

- > The effectiveness of randomization appears to vanish when relaxing constraints
- > Despite different designs employing various random mapping or encryption
- > The attacker can easily construct occupancy sets that avoid self-conflicts

Branch Accesses N
PHT Occupancy

Branch Accesses N BTB Occupancy

Evaluation: Maximal Leakage

- > Multi-bit leakage: covert channel attacks based on occupancy strategies
- > PHT maximum leakage reaches 1.81/1.56 for 2-bit/3-bit saturating counter (4 iters)
- > BTB maximum leakage reaches 0.74 (1 iter), 1.22 (2 iters) and 1.87 (4 iters)
- > All existing designs remain vulnerable to PHT/BTB occupancy attack vectors

Design	1 Iteration		2 Iterations		4 Iterations		tions	Design	1 Iteration		2 Iterations			4 Iterations					
	10^4 1	10^{5}	5×10^5	10^{4}	10^{5}	5×10^5	10^{4}	10^{5}	5×10^5	Design	10^{4}	10^{5}	2×10^5	10^4	10^{5}	2×10^5	10^4	10^5	2×10^5
BSUP	0.01 0	0.01	0.39	0.08	0.14	0.89	0.29	0.64	1.56	BSUP	0.00	0.71	0.74	0.09	1.19	1.22	0.37	1.85	1.87
XOR	0.000	0.00	0.66	0.10	0.26	1.15	0.39	0.90	1.81	XOR	0.01	0.71	0.74	0.11	1.19	1.22	0.39	1.85	1.87
Noisy-XOR	0.000	0.00	0.66	0.11	0.27	1.15	0.38	0.90	1.81	Noisy-XOR	0.01	0.70	0.74	0.10	1.19	1.22	0.38	1.84	1.87
LS-BP	$0.01 \ 0$	0.01	0.66	0.10	0.27	1.15	0.37	0.91	1.81	LS-BP	0.01	0.71	0.74	0.11	1.19	1.22	0.39	1.85	1.87
STBPU	0.000	0.00	0.65	0.11	0.25	1.14	0.38	0.89	1.80	STBPU	0.00	0.70	0.74	0.09	1.19	1.22	0.38	1.84	1.87
HyBP	0.000	0.00	0.66	0.12	0.25	1.15	0.39	0.88	1.81	HyBP	0.01	0.70	0.74	0.10	1.19	1.22	0.39	1.84	1.87

Maximal Leakage L_{max} PHT Occupancy Maximal Leakage L_{max} BTB Occupancy

Discussion: Future Directions

> Developing more effective countermeasures

- > Hybrid designs: SassCache (S&P'23)
- ➤ Non-deterministic designs: PhantomCache (NDSS'20)

> Taking more attention on PHT security issues

- > Remain the weakest link in current secure designs
- > Particularly vulnerable to Spectre attacks

SassCache Architecture Giner et al. S&P'23

PHT Security Issues

PhantomCache Architecture Tan et al. NDSS'20

Conclusion

> Modeling: Components and Workflow of Randomized Secure Branch Predictors

- > Develop a PHT and BTB branch predictor model focused on side-channel security
- > Integrate indexing randomization and content randomization mechanisms
- > Incorporate timing observation mechanisms of timing and speculative attacks

> Fomulating: Reuse-Based, Prune-Based and Occupancy-Based Attack Strategies

- Describe microarchitectural attacks targeting PHT entries, BTB entries, and BTB sets
- Define reuse-based, prune-based, and occupancy-based attack strategies
- Effectively evaluate the side-channel security properties within our framework

> Evaluation: Leakage Quantification Metrics and Empirical Side-Channel Analysis

- > Define branch access number, collision probability and maximal leakage metrics
- > Demonstrate the effectiveness of our framework in quantifying side-channel leakage

Underscore the necessity for stronger countermeasures against side-channel attacks

Q&A

ASIA CCS'25 21