Regularized Regression Models

Linear regression fitting example

Logistic regression fitting example

Overfitting

Overfitting when.....

 Complex model, too many features, not enough training samples.

How to address overfitting??

- Go through each features to decide which to keep.
- Use model selection algorithm to automatically choose features.

Idea of Regularization

- Keep all the features, but reducing their magnitude of parameter effects in model.
- Shrink θ_j parameters

Regularized regression intuition

• Goal: To minimize cost function θ_i

$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + 1000 \theta_{3} + 1000 \theta_{4}$$

• Suppose we penalize and make θ_3 and θ_4 very small

Regularization

- Two common types of regularization in linear regression
- L2 regularization (a.k.a ridge regression)

$$\sum_{j=1}^{N} (y_{j} - \sum_{i=0}^{d} \theta_{i} \cdot x_{i})^{2} + \lambda \sum_{i=1}^{d} \theta_{i}^{2}$$

• L1 regularization (a.k.a lasso regression)

$$\sum_{j=1}^{N} (y_{j} - \sum_{i=0}^{d} \theta_{i} \cdot x_{i})^{2} + \lambda \sum_{i=1}^{d} |\theta_{i}|$$

Regularized-Ridge regression

Regularization by shrink θ_j smaller values, as a result

- "less complex" hypothesis function without eliminating features
- More protection from overfitting.

L2: Ridge regression
$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^n \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

Regularized-Ridge regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$
$$\min_{\theta} J(\theta)$$

- Goal 1: find the best fit
- Goal 2: keep parameter θ_j small
- λ is regularization parameter to controls a trade off

Regularized-Ridge regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$
$$\min_{\theta} J(\theta)$$

- If λ is too large, θ_j become too small, as if features have no effect in predicting response.
- If λ is too small, θ_j are not regularized.

Questions?

