A Deep Reinforcement Learning Approach to Stock Portfolio Optimization

Undergraduate Research Project

Pavanpreet Singh Gandhi Mahidol University (MUIC)

Table of contents

Background: Reinforcement Learning

Everleaf

- **Background: Reinforcement Learning**
- 2 **Background: Portfolio Optimization**
- 3 **Problem Statement**
- 4 Results

What is Reinforcement Learning?

Gverleaf

- Reinforcement learning is a framework for learning how to interact with a complex environment from experience.
- Reinforcement learning is a data science problem, also known as self-supervised learning.
- Reinforcement learning can be used to solve sequential decision-making problems.

© Pavanpreet Singh Gandhi

Markov Decision Processes

Everleaf

Example Reward Sequence

$$s_0 \rightarrow a_1 \rightarrow s_1 \rightarrow a_2 \rightarrow s_2 \rightarrow a_3 \rightarrow s_3 \rightarrow r_3 \rightarrow a_4 \rightarrow s_4 \dots$$
 (1)

Policy/Value/Quality Functions

Everleaf

Policy functions map state-action pairs to probabilities.

$$\pi(s, a) = \Pr(\text{action} = a \mid \text{state} = s)$$
 (2)

Value functions map states to expected reward values.

$$V_{\pi}(s) = \mathbb{E}\left(\sum_{t} \gamma^{t} r_{t} \mid s_{0} = s\right)$$
 (3)

Quality functions map state-action pairs to expected reward values.

$$Q_{\pi}(s,a) = \mathbb{E}\left(\sum_{t} \gamma^{t} r_{t} \mid s_{0} = s, a_{0} = a\right)$$

$$\tag{4}$$

Taxonomy of Reinforcement Learning

Everleaf

Background: Reinforcement Learning

000 000000000

Value Iteration

Background: Reinforcement Learning

0000000000000

Gverleaf

Value iteration was the first ever reinforcement learning algorithm [1].

Start by assuming we know the state transition probabilities

$$P(s' | s, a) = Pr(s_{t+1} = s' | s_t = s, a_t = a)$$
 (5)

and the reward structure

$$R(s', s, a) = \Pr(r_{t+1} \mid s_{t+1} = s', s_t = s, a_t = a)$$
 (6)

These become our models for the reward and next state - hence value iteration is **model based**.

Problem Statement

Background: Reinforcement Learning

0000000000000

Define the optimal value function as

$$V_{\star}(s) = \max_{\pi} V_{\pi}(s) = \max_{\pi} \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0} = s\right), \forall s$$
 (7)

Bellman showed that we could write this recursively as

$$V_{\star}(s) = \max_{\pi} \mathbb{E}\left(r + \sum_{t=1}^{\infty} \gamma^{k} r_{t} \mid s_{1} = s'\right) = \max_{\pi} \mathbb{E}\left(r + \gamma V_{\star}(s')\right)$$
(8)

This is known as the **Bellman optimality equation**.

Value Iteration

Background: Reinforcement Learning

0000000000000

Överleaf

Just change the **equality to an assignment**. Bellman [1] showed that this would eventually converge to the optimal value function.

$$V(s) \leftarrow \max_{a} \sum_{s'} P(s' \mid s, a) \left(R(s', s, a) + \gamma V(s') \right) \tag{9}$$

We can extract the optimal policy from the optimal value function by taking the action that results in the most valuble state.

Q-Learning

0000000000000

Background: Reinforcement Learning

Gverleaf

Q-learning was the first ever model-free algorithm [14].

In a similar manner to 7, write the optimal quality function recursively as

$$Q_{\star}(s,a) = \max_{\pi} \mathbb{E}\left(r + \gamma \max_{a'} Q_{\star}(s',a')\right). \tag{10}$$

Define the **TD-target estimate** as

$$R_{\Sigma} = r + \gamma \max_{a'} Q(s', a') \tag{11}$$

This is what we expect Q(s, a) to be given some r, s'.

Q-Learning

The Q-learning algorithm just iterates through the MDP, collects **experience tuples** (s, a, r, s'), and updates the Q-values based on the following update equation

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R_{\Sigma} - Q(s,a)). \tag{12}$$

where α is some learning rate.

Watkins et al. [14] showed this process will eventually converge to the optimal Q-function.

Q-Learning

0000000000000

Background: Reinforcement Learning

Gverleaf

But how do we select the action when collecting experience tuples (s, a, r, s')?

- SARSA [10]: Select the best action always ← On-policy
- Q-Learning [14]: Occasionally explore ← Off-policy

Deep Q-Learning

Background: Reinforcement Learning

000000000000

Everleaf

Problem: Sometimes it is impossible to enumerate the Q-values for all the state-action pairs.

Solution: Use a neural network as a functional approximator of the Q-function.

$$Q(s,a)\approx Q(s,a;\theta) \tag{13}$$

where θ is a vector representing the parameters of the Q-network.

Deep Q-Learning

Background: Reinforcement Learning

00000000000

The loss function is derived from Q-learning 12

$$\mathcal{L} = \left[Q(s, a; \theta) - (r + \gamma \max_{a'} Q(s', a'; \theta)) \right]^{2}$$
 (14)

and the network parameters are adjusted using backpropagation and experience replay¹.

@ Pavanpreet Singh Gandhi

¹In practice since deep Q-learning is off-policy, the training data set can be created on the go by playing the game and collecting experience tuples of the form (s, a, r, s'). We then randomly sample mini-batches of experience tuples for training and perform back-propagation on entire batches at a time. Simultaneously, we add new experience tuples based on our current Q-network and exploration strategy. This mechanism is called experience replay.

Finance Terminology

Gverleaf

- A **security** is something that can be traded e.g stocks, bonds, options, futures, crypto, index funds, etc.
- A portfolio is a basket of tradeable securities. Investors hold portfolios with the hope that they will grow in value over time.
- The rate of return on an investment is the percentage change in price for the given unit of time, for example the daily rate of return.

$$r_t = \left(\frac{p_1 - p_0}{p_0}\right) \tag{15}$$

Risk and Return of a Security

Gverleaf

Investing in a security for *n* days results in a sequence of daily returns.

$$\{r_1, r_2, r_3, \dots, r_n\}$$
 (16)

The annualized mean historical return is

$$\mu = \frac{252}{n} \sum_{i=1}^{n} r_i \tag{17}$$

and the annualized historical risk (or standard deviation) is

$$\sigma = \sqrt{\frac{252}{n}} \sum_{i=1}^{n} (\mu - r_i)^2$$
 (18)

where there are 252 trading days in a year.

Risk and Return of a Portfolio

Gverleaf

Suppose an investor holds a portfolio of *k* securities for *n* days. Each security will have its own sequence of daily returns.

The portfolio can be characterized by a sequence of weights.

$$\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\} \tag{19}$$

The annualized mean historical return of the portfolio is

$$\mu_{\text{port}} = \sum_{i=1}^{K} w_i \cdot \mu_i \tag{20}$$

and the annualized historical risk of the portfolio is

$$\sigma_{\text{port}} = \sqrt{\sum_{i=1}^{k} \sum_{j=1}^{k} w_i \cdot w_j \cdot \sigma_{ij}}$$
 (21)

where σ_{ij} is the covariance between the returns of securities i and j.

Mean-Variance Optimization

Everleaf

In 1952, Harry Markowitz proposed a systematic approach to constructing portfolios using **mean-variance analysis** [7], which involves solving the following **nonlinear bi-objective optimization problem**.

$$\max \sum_{i=1}^{k} w_i \cdot \mu_i$$

$$\min \sqrt{\sum_{i=1}^{k} \sum_{j=1}^{k} w_i \cdot w_j \cdot \sigma_{ij}}$$
(22)

subject to

$$\sum_{i=1}^k w_i = 1$$

Sharpe Ratio Optimization

Background: Reinforcement Learning

Everleaf

The **Sharpe ratio** is a metric introduced by William F Sharpe to evaluate the performance of mutual funds according to their expected risk and return [11].

$$\max\left(\frac{\sum_{i=1}^{k}w_{i}\cdot\mu_{i}-R_{f}}{\sqrt{\sum_{i=1}^{k}\sum_{j=1}^{k}w_{i}\cdot w_{j}\cdot\sigma_{ij}}}\right)$$
 subject to
$$\sum_{i=1}^{k}w_{i}=1$$

$$0\leq w_{1}\leq1$$

Maximum Sharpe Portfolio Visualized

Everleaf

Data

Everleaf

- Ten stocks² from the **Dow Jones Industrial Average** were arbitrarily selected.
- Price data was downloaded from Yahoo Finance and technical analysis-inspired features were generated e.g daily returns, rolling returns, rolling standard deviations, volume percent changes, etc.
- Data was split into training, validation, and test sets.

Figure: Visualization of features for one stock over one year

Environment Details

State and Observation

- The state is the current market situation.
- The **observation** is a 10 day history of the features.

Action

Actions change portfolio weights. There are 2 actions per stock - **buy or sell** - and a hold action which does nothing. Buying and selling occur in **10**% **increments**.

© Pavanpreet Singh Gandhi

Reward Structure

Background: Reinforcement Learning

A good **reward structure** is essential for success since we want to reinforce the right behavior.

- 1. Return of the portfolio X
- 2. Cumulative return of the portfolio X
- 3. Weighted cumulative return of the portfolio ✓

24

Model

Background: Reinforcement Learning

- Deep Q-learning model with experience replay.
- Default hyper-parameters³.
- Default network architecture (2 hidden layers, each with 64 nodes).
- Trained over 3,000,000 time-steps.

³except for learning rate being set to 0.0003 and the batch size being set to 64

@ Pavanpreet Singh Gandhi

Performance on Training Data

Everleaf

Background: Reinforcement Learning

Performance on Validation Data

Everleaf

Problem Statement

Performance on Test Data

Everleaf

Problem Statement

Performance

Training Data	Mean Return	Risk	Sharpe Ratio
DJIA	0.103	0.141	0.730
Max Sharpe	0.191	0.170	1.129
Deep Q-Network	0.206	0.216	0.951

Validation Data	Mean Return	Risk	Sharpe Ratio
DJIA	0.121	0.277	0.438
Max Sharpe	0.318	0.319	0.996
Deep Q-Network	0.278	0.333	0.835

Test Data	Mean Return	Risk	Sharpe Ratio
DJIA	-0.079	0.202	-0.389
Max Sharpe	-0.037	0.196	-0.189
Deep Q-Network	0.082	0.172	0.474

© Pavanpreet Singh Gandhi 28

Limitations and Future Work

Gverleaf

- Hyper-parameter tuning
- · Verify with different underlying securities
- More informative features (e.g market sentiment, news headlines)
- Different model (e.g Actor-Critic, DDPG)
- Different network architecture (e.g LSTM)

References I

Everleaf

- [1] R. Bellman.
 - A markovian decision process.

Journal of mathematics and mechanics, pages 679–684, 1957.

- [2] S. L. Brunton and J. N. Kutz.
 - Data-driven science and engineering: Machine learning, dynamical systems, and control.

Cambridge University Press, 2022.

- [3] H. Hasselt.
 - Double q-learning.

Advances in neural information processing systems, 23, 2010.

- [4] R. A. Howard.
 - Dynamic programming and markov processes.

1960.

References II

Gverleaf

- V. Konda and J. Tsitsiklis.
 Actor-critic algorithms.
 Advances in neural information processing systems, 12, 1999.
- [6] D. Lee, H. Seo, and M. W. Jung. Neural basis of reinforcement learning and decision making. Annual review of neuroscience, 35:287–308, 2012.
- [7] H. Markowitz.

 Portfolio selection the journal of finance, vol. 7, no. 1, 1952.
- [8] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
 Playing atari with deep reinforcement learning.
 arXiv preprint arXiv:1312.5602, 2013.

References III

Everleaf

- [9] G. V. Pai.
 - Metaheuristics for portfolio optimization: an introduction using MATLAB.

John Wiley & Sons, 2017.

- [10] G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems, volume 37. University of Cambridge, Department of Engineering Cambridge, UK, 1994.
- [11] W. F. Sharpe.
 The sharpe ratio.
 Streetwise—the Best of the Journal of Portfolio Management, 3:169–185, 1998
- [12] R. S. Sutton and A. G. Barto.

 Reinforcement learning: An introduction.

 MIT press, 2018.

References IV

[13] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour.

Policy gradient methods for reinforcement learning with function approximation.

Advances in neural information processing systems, 12, 1999.

[14] C. J. Watkins and P. Dayan.
Q-learning.

Machine learning, 8:279-292, 1992.