Cammini minimi e algoritmo di Dijkstra

Cammini minimi a singola sorgente

Sia G=(V,E,w) un grafo orientato o non orientato cone pesi w reali sugli archi. il costo o lunghezza di un cammino $\pi=< v_0,v_1,v_2,\ldots,v_k>$ è:

$$w(\pi) = \sum_{i=1}^k w(v_{i-1},v_i)$$

Un **Cammino minimo** tra un coppia di vertici x e y è un cammino avente costo minore o uguale a quello di ogni altro cammino tra gli stessi vertici.

Il cammino minimo non è necessariamente unico.

Andiamo a scrivere il costo di un cammino minimo in questo modo:

$$d_G(u,v)$$

Quindi la distanza minima d in G tra u e v.

⚠ Non esiste sempre un cammino minimo tra due nodi

- Se non esiste un cammino da u a v, allora $d(u,v)=+\infty$
- Se c'è un cammino che contiene un ciclo raggiungibile il cui costo è negativo, allora $d(u,v)=-\infty$

Proprietà

Ogni sottocammino di un cammino minimo è un cammino minimo. Inoltre vale la disugualianza triangolare: $\forall u,v,x\in V, d(u,v)\leq d(u,x)+d(x,v)$

Quindi il problema del calcolo dei cammini minimi a singola sorgente lo risolviamo trovando il cammino minio da una sorgente a tutti gli altri nodi del grafo. Esistono due varianti del problema:

- Dato $G = (V, E, w), s \in V$, calcola le distanze di tutti i nodi da s, ovvero $d_G(s, v) \forall v \in V$.
- Dato $G = (V, E, w), s \in V$, calcola l'albero dei cammini minimi di G radicato in s.

Albero dei cammini minimi

T è un **SPT(Shortest Path Tree)** con sorgente s di un grafo G=(V,E,w) se:

- T è un albero radicato in s
- ullet $orall v \in V$ vale $d_T(s,v) = d_G(s,v)$

Per grafi non pesati, SPT radicato in s è uguale all'albero BFS radicato in s.

Algoritmo di Dijkstra

Assunzione

Tutti gli archi hanno peso non negativo.

Spiegazione Algoritmo:

- 1. Manteniamo per ogni nodo v una stima (per eccesso), D_{sv} alla distanza d(s,v). Inizialmente l'unica stima è $D_{ss}=0$.
- 2. Manteniamo un insieme X di nodi per cui le stime sono esatte, e anche un albero T dei cammini minimi verso i nodi in X. Inizialmente X = [s] e T non ha archi.
- 3. Ad ogni passo aggiungiamo a X il nodo u in V-X la cui stima è minima; Aggiungiamo a T uno specifico arco entrante in u.
- 4. Aggiorniamo le stime guardando i nodi adiacenti a u.

I nodi da aggiungere a X e poi T sono manenuti in una coda di priorità, associati ad un unico arco che li connette a T.

La stima per un nodo $y \in V - X$ è $D_{sy} = min[D_{sx} + w(x,y) : (x,y) \in E, x \in X)]$, se y è in coda con un arco (x,y) associato, e se dopo aver aggiunto u a T troviamo un arco (u,y) tale che $D_{su} + w(u,y) < D_{sx} + w(x,y)$ allora rimpiazziamo (x,y) con (u,y) ed aggiorniamo D_{sy}

Pseudocodice:

```
algoritmo Dijkstra(grafo G, vertice s)--> albero
for each (vertice u in G) do D su = +inf
T <-- albero dormato dal solo nodo s
X <-- empty
CodaPrioritaria S
D SS = 0
S.insert(s,0)
while(not S.isempty()) do:
         u <-- S.dekteMin()</pre>
         X \leftarrow X \cup \{u\}
         for each (arco(u,v) in G) do:
                  if(D SV = +inf) then
                           S.insert(v,D_SU + w(u,v))
                          D_SV \leftarrow D_SU + w(u,v)
                           rendi u padre di v in T
                  else if(D_SU + w(u,v) < D_SV) then:
                          S.decreaseKey(v, D_SV - D_SU - w(u,v))
                          D SV \leftarrow D SU + w(u,v)
                           rendi u nuovo padre di v in T
return T
```

Correttezza

// Lemma

Quando il nodo v viene estratto dalla coda con priorità vale:

- $D_{sv} = d(s,v)$ --> Stima esatta
- Il cammino da s a v nell'albero corrente ha costo $d(s,v) \dashrightarrow$ Camm. min in G

Dimostrazione sulle slide.

Analisi della complessità

Se andiamo ad Escludere le operazione sulla coda di priorità abbiamo tempo O(m+n) Il problema della complessità nasce dal tipo di struttura che usiamo per impletare l'algoritmo.

Tempo di esecuzione: Implementazioni elementari

Ricordiamo i costi delle operazioni che ci servono:

	Insert	DelMin	DecKey
Array non ordinato	O(1)	O(n)	O(1)
Array ordinato	O(n)	O(1)	O(n)
Lista non ordinata	O(1)	O(n)	O(1)
Lista ordinata	O(n)	O(1)	O(n)

Quindi:

- $n * O(1) + n * O(n) + O(m) * O(1) = O(n^2)$ con array non ordinati;
- n * O(n) + n * O(1) + O(m) * O(m) = O(m * n) con array ordinati;
- $n * O(1) + n * O(n) + O(m) * O(1) = O(n^2)$ con liste non ordinate;
- n * O(n) + n * O(1) + O(m) * O(n) = O(m * n) con liste ordinate;

Tempo di esecuzione: Implementazioni efficienti

Ricordiamo i costi delle operazioni che ci servono:

	Insert	DelMin	DecKey
Heap binario	O(log(n))	O(log(n))	O(log(n))
Heap Binomiale	O(log(n))	O(log(n))	O(log(n))
Heap di Fibonacci	O(1)	O(log(n))*	O(1)*

Quindi:

- n*O(log(n)) + n*O(log(n)) + O(m)*O(log(n)) = O(m*log(n)) con heap binari o binomiali.
- n * O(1) + n * O(log(n)) * +O(m) * O(1) * = O(m + nlog(n)) con heap di Fibonacci.

La soluzione migliore è quella con l'Heap di Fibonacci, che non sarà mai peggiore delle altre implementazioni e a volte è anche meglio. Quindi la complessità è di:

$$O(m+nlog(n))$$