

선형대수학 비대면 강의

6주 1차시 수업

조 성희

Written by CHO SUNGHEE

4.5 기저(basis)와 차원(dimension)

정 의 4.5.1 V 를 체 F 위의 벡터공간이라고 하자. V 의 부분집합 $\mathcal{B} = \{v_1, v_2, ..., v_n\}$ 가다음의 두 조건을 만족할 때. $\mathcal{B} \equiv V$ 의 기저(basis)라고 한다.

(1) $v_1, v_2, ..., v_n$ 이 V 를 생성한다. 즉 $\langle v_1, v_2, ..., v_n \rangle = V$.

(2) $v_1, v_2, ..., v_n$ 는 선형독립이다.

정 리 4.5.1 실수를 성분으로 가지는 $n \times n$ 행렬

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

에 대하여 다음의 세 명제는 동치이다.

(1) $\det A \neq 0$.

(2) A 의 모든 열 벡터들의 집합

$$\mathcal{B}_{c} = \begin{cases} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix}, \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix}, \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{bmatrix}, \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{bmatrix}$$

은 벡터공간 Rⁿ 의 기저이다.

(3) 4 의 모든 행 벡터들의 집합

$$\begin{split} \mathcal{B}_{r} &= \{(a_{11},a_{12},...,a_{1n}),(a_{21},a_{22},...,a_{2n}),...,(a_{n1},a_{n2},...,a_{nn})\}\\ 은 벡터공간 로^n 의 기저이다. \end{split}$$

[증명] 정리 4.3.2의 (2)와 정리 4.4.2의 (2)에 의하여 성립한다. □

보 기 4.5.1 n 차의 항등행렬 L, 에 대하여

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = 1 \neq 0$$

이다. n 개의 행벡터를 각각 다음과 같이 나타내면

$$\boldsymbol{e_1} = (1,0,\dots,0), \boldsymbol{e_2} = (0,1,\dots,0), \boldsymbol{e_n} = (0,0,\dots,1),$$

집합 $\mathcal{B}_s=\{e_1,e_2,...,e_n\}$ 은 벡터공간 \mathbb{R}^n 의 기저이다. 이 기저 \mathcal{B}_s 를 \mathbb{R}^n 의 표준기저 (standard basis)라고 한다.

보 기 4.5.2
$$\mathcal{B}_3 = \{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}$$
은 벡터공간 \mathbb{R}^3 의 표준 기저이다. 또한
$$\begin{bmatrix} 1 & 2 & 0 \end{bmatrix}$$

 $\begin{vmatrix} 1 & 2 & 0 \\ 1 & 5 & -1 \\ -2 & -1 & 1 \end{vmatrix} = 6 \neq 0$

이므로, 모든 행 벡터들의 집합

$$\mathcal{B}_r = \{(1,2,0), (1,5,-1), (-2,-1,1)\}$$

과 모든 열 벡터들의 집합

$$\mathcal{B}_{c} = \left\{ \begin{bmatrix} 1\\1\\-2 \end{bmatrix}, \begin{bmatrix} 2\\5\\-1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \right\}$$

도 R3 의 기저이다. 이외에도 R3 의 기저는 무수히 많이 존재한다.

Written by CHO SUNGHEE

보기 4.5.3 행렬 $E_{ij}\in Mat_{m\times n}(\mathbb{R})$ 를 (i,j) 성분만 1이고 나머지 모든 성분은 0인 행렬이라고 할 때. $m\times n$ 개의 행렬들의 집합

$$\mathcal{B} = \left\{E_{ij} \middle| i=1,2,\ldots,m, j=1,2,\ldots,n\right\}$$

는 벡터공간 $Mat_{m \times n}(\mathbb{R})$ 의 기저이다.

또한 행렬 $E_{11}, E_{22}, E_{33} \in Mat_{3\times 3}(\mathbb{R})$ 에 대하여, 집합

$$\mathcal{B} = \{E_{11}, E_{22}, E_{33}\}$$

는 벡터공간 $DiagMat_{3\times3}(\mathbb{R})$ 의 기저이다.

보기453진한 $B = \{1, x, x^2, ..., x^n\}$ 은 벡터공간 $B_x[x]$ 의 기저이다

위의 몇 가지 보기들을 통하여 앞에서 공부한 벡터공간들에 대한 가장 자명한 기저를 알아 보았다.용론, 각 벡터공간에는 보기에서 언급한 기저 이외에도 수없이 많은 기저들이 존재한 다. 벡터공간에서 유한 개의 벡터로 이루어진 부분집합이 주어졌을 때, 이러한 집합이 벡터 공간의 기저가 되는지를 판단할 수 있어야 할 것이다.

벡터공간 $\mathbb{R}[x]$ 와 $\mathbf{Seq}(\mathbb{R})$ 에는 정의 4.5.1에서 정의한 유한 개의 벡터를 원소로 가지는 기저가 존재하지 않는다. 이 경우에 대해서는 다음에 다시 논하기로 하겠다.

정 리 4.5.3 V 가 체 F 위의 벡터공간 일 때, V 의 부분집합 $\mathcal{B}=\{v_1,v_2,...,v_n\}$ 에 대하여 다음은 동치이다.

- (1) B 는 V의 기저이다.
- (2) 각 벡터 $v \in V \leftarrow v_1, v_2, ..., v_n$ 의 단 한가지 방법의 선형결합으로 나타내어진다.

[증명] (1)⇒(2) $\mathcal{B}=\{v_1,v_2,...,v_n\}$ 를 V의 기저라고 하면, $v_1,v_2,...,v_n$ 이 V를 생성하므로 각 벡터 $v\in V$ 는 $v_1,v_2,...,v_n$ 의 선형결합으로 나타내어진다. 벡터 $v\in V$ 가 다음과 같이 두 가지 선 형결합 표현으로 나타내어진다고 가정하자.

$$\boldsymbol{v} = c_1\boldsymbol{v_1} + c_2\boldsymbol{v_2} + \dots + c_n\boldsymbol{v_n} = d_1\boldsymbol{v_1} + d_2\boldsymbol{v_2} + \dots + d_n\boldsymbol{v_n}$$

그러면 다음의 등식이 설립한다.

$$(c_1v_1 + c_2v_2 + \dots + c_nv_n) - (d_1v_1 + d_2v_2 + \dots + d_nv_n)$$

$$=(c_1-d_1)v_1+(c_2-d_2)v_2+\cdots+(c_n-d_n)v_n=\mathbf{0}-\mathbf{0}=\mathbf{0}$$

여기서, v_1,v_2,\dots,v_n 이 선형독립이므로 모든 $i=1,2,\dots,n$ 에 대하여 $c_i=d_i$ 이다. 따라서 선형결한 표현은 한 가지이다.

(2)⇒(1) 각 벡터 $v \in V$ 가 $v_1, v_2, ..., v_n$ 의 단 한가지 방법의 선황결합으로 나타내어진다고 가정하면, $V = (v_1, v_2, ..., v_n)$ 인 것은 자명하다.

다음으로

$$0v_1+0v_2+\cdots+0v_n=0$$

이고 영벡터의 선형결합 표현은 단 한가지이므로 $v_1, v_2, ..., v_n$ 은 선형독립이다. 그러므로

$$\mathcal{B} = \{v_1, v_2, \dots, v_n\}$$

는 1/의 기저이다.

체 F위의 벡터공간 V의 벡터 $v_1, v_2, ..., v_n$ 이 선형독립(또는 선형종속)일 때, 이들을 모두 모아 놓은 집합 $\{v_1, v_2, ..., v_n\}$ 을 선형독립(또는 선형종속)인 집합이라고 한다.

Written by CHO SUNGHEE

 $m{S}$ 리 4.5.3 체 F위의 벡터공간 V의 부분집합 $\mathcal{S}=\{
u_1, u_2, ..., \nu_n \}$ 이 선형독립인 집합이라고 할 때, 다음의 두 조건은 동치이다.

- (1) S는 V의 기저이다.
- (2) V의 부분집합 \mathcal{S}' 이 $\mathcal{S} \subsetneq \mathcal{S}'$ 이면 \mathcal{S}' 은 선형종속인 집합이다.

[종령] (1)⇒(2) 종률 V의 기저라고 하자. V의 부분집합 δ '이 δ \subseteq δ '이 인, u \in δ '이고 u \in δ 인 벡터 u \in V가 적어도 하나 존재한다. δ 는 V의 기저이므로 u 는 v_1, v_2, \dots, v_n 의 선형결합이다. 정리 4.4.1에 의하여 δ '은 선

(2) \Rightarrow (1) $(v_1, v_2, ..., v_n) = V$ 를 보이도록 하자. 모든 i = 1, 2, ..., n 에 대하여 $v_i \in (v_1, v_2, ..., v_n)$ 얻은 자명 하다. 임익의 벡터 $u \in V$, $u \in \mathcal{S}$ 에 대하여 $\mathcal{S}' = \{v_1, v_2, ..., v_n, u\}$ 라고 하다면 $\mathcal{S} \subseteq \mathcal{S}'$ 이므로 (2)의 가정에 의하여 \mathcal{S}' 은 서행중소인 집합이다. 따라서 아래의 등식을 만족하는

$$c_1 v_1 + c_2 v_2 + \dots + c_n v_n + du = \mathbf{0} - (*)$$

동시에 0 이 아닌 스칼라 $c_1, c_2, \dots, c_n, d \in F$ 가 존재한다.

먼저, $d \neq 0$ 을 보이도록 하자. 만약 d = 0 이라고 가정하면 du = 0 이므로 등식 (*)는

$$c_1v_1+c_2v_2+\cdots+c_nv_n=\mathbf{0}$$

이고, 조건에서 δ 가 선형독립인 집합이라고 했으므로 $c_1=c_2=\cdots=c_n=0$ 이다. 이는 동시에 0 이 아닌 스 칼라 $c_1,c_2,...,c_n$ $d\in F$ 가 존재한다는 사실에 모순이다. 따라서 $d\neq 0$ 임을 알 수 있다.

 $d\neq 0$ 이므로 $d^{-1}\in F$ 가 존재하고 등식 (*)로 부터.

$$u = (-c_1 d^{-1}) v_1 + (-c_2 d^{-1}) v_2 + \dots + (-c_n d^{-1}) v_n \; .$$

즉 $u \in \langle v_1, v_2, \dots, v_n \rangle$ 이다.

정 리 4.5.4 $\mathcal{B}=\{v_1,v_2,...,v_n\}$ 이 체 F 위의 벡터공간 V 일 기거라고 하자. $\mathcal{S}=\{w_1,w_2,...,w_m\}$ 이 V 의 부분집합이고 m>n 이만, \mathcal{S} 는 선형종속인 집합이다.

【증명】등식

$$c_1 w_1 + c_2 w_2 + \dots + c_m w_m = \mathbf{0} - (*)$$

을 만족하는 $c_1, c_2, \dots, c_m \in F$ 에 대하여 알아보자.

 $\mathcal B$ 가 V의 기저이므로 각 벡터 $w_i \in \mathcal S \succeq v_1, v_2, \dots, v_n$ 의 선형결합으로 나타내어진다. 즉 적당한 $a_{ij} \in F$ 가 존재하여

$$\begin{aligned} w_1 &= a_{11}v_1 + a_{21}v_2 + \dots + a_{n1}v_n \\ w_2 &= a_{12}v_1 + a_{22}v_2 + \dots + a_{n2}v_n \\ &\vdots \end{aligned}$$

 $w_m = a_{1m}v_1 + a_{2m}v_2 + \dots + a_{nm}v_n$

이다. 이러한 선형결합들을 등식 (*)에 대입하면

$$\begin{split} c_1(a_{11}\nu_1 + a_{21}\nu_2 + \cdots + a_{n1}\nu_n) + c_2(a_{12}\nu_1 + a_{22}\nu_2 + \cdots + a_{n2}\nu_n) + \\ \cdots + c_m(a_{1m}\nu_1 + a_{2m}\nu_2 + \cdots + a_{nm}\nu_n) = \mathbf{0} \end{split}$$

이고, 이 식을 다시 정리하면

$$\underbrace{(a_{11}c_1 + a_{12}c_2 + \dots + a_{1m}c_m)v_1}_{\cdots + (a_{n1}c_1 + a_{n2}c_2 + \dots + a_{2m}c_m)v_2 + \dots + (a_{n1}c_1 + a_{n2}c_2 + \dots + a_{nm}c_m)v_n = \mathbf{0}$$

이다. 여기서 2 가 기저이므로 $v_1, v_2, ..., v_n$ 은 선형독립이다. 따라서 다음의 제차 연립선형방정식을 얻는다.

$$\begin{cases} a_{11}c_1 & +a_{12}c_2 & +\cdots & +a_{1m}c_m & = 0\\ a_{21}c_1 & +a_{22}c_2 & +\cdots & +a_{2m}c_m & = 0\\ \vdots & & & \vdots\\ a_{n1}c_1 & +a_{n2}c_2 & +\cdots & +a_{nm}c_m & = 0 \end{cases}$$

n(방정식의 개수)<m(미지수의 개수)이므로 위의 제차 연람선형방정식의 해는 무수히 많이 존재한다. 즉 등식 (*)를 만족하는 $c_1, c_2, ..., c_m$ 가 무수히 많이 존재하므로 $w_1, w_2, ..., w_m$ 은 선형중속이다.

Written by CHO SUNGHEE

정 리 4.5.5 두 집합 $\boldsymbol{s}=\{v_1,v_2,...,v_n\}$ 와 $\mathcal{R}=\{u_1,u_2,...,u_m\}$ 을 벡터공건 V 의 기저라고 하면, n=m 이다. 즉, 벡터공간의 모든 기저들은 같은 수의 벡터들로 이루어져 있다.

[증명] 우선 $\mathfrak B$ 는 기저이므로 만약 n< m 이라고 하면 정리 4.5.4에 의하여 $\mathfrak R$ 은 선형중속인 집합이다. 아는 $\mathfrak R$ 이 V 의 기저라는 사실에 모순이다. 따라서 $n\geq m$ 이 성용한다.

반대로 생각하면, \Re 도 기저이므로 만약 n>m 이라고 하면 정리 4.5.4에 의하여 B 는 선형증속인 집합이다. 이는 B 가 기저라는 사실에 모순이다. 따라서 $n\leq m$ 이 성립한다.

위의 두 사실에 의하여 n=m 이다. \Box

 $oldsymbol{S}$ 의 4.5.2 체 F 위의 벡터공간 V가 유한 개의 벡터로 이루아진 기저 $oldsymbol{B} = \{oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_n\}$ 을 가질 때, V 를 체 F 위의 n 자원 벡터공간(n —dimensional vector space over F)라고 하고, 이 때의 n 을 V 의 차원(dimension)이라고 하며 $\dim_F(V)$ 또는 긴단히 $\dim(V)$ 로 나타낸다. 이와 같이 유한 기저를 가지는 벡터공간을 **유한차원 벡터공간**(finite dimensional vector space)라고 한다. 또한, 자명한 벡터공간 V = $\{0\}$ 에 대해서는 $\dim(V)$ = 0 으로 정의하고 V 를 유한차원 벡터공간으로 생각하기로 한다.

한편, 유한차원 벡터공간이 아닌 벡터공간을 **무한차원 벡터공간(infinite** dimensional vector space)이라고 한다.

Written by CHO SUNGHEE