Reconocimiento de Patrones 2018 Práctica de Laboratorio 1: Regresión polinomial

- 1. Implementar una función para la generación de sets de datos $\mathcal{D} = \{(x_i, t_i)\}_{i=1,\dots,N}$ utilizando una función x(t), con t dentro cierto intervalo [a, b] adicionándole ruido independiente a cada valor de t_i . Por ejemplo N = 10, $t = \sin(2\pi x)$ y $t \in [0, 1]$, ruido $\mathcal{N}(0, \sigma^2)$.
- 2. Implementar una función que devuelva el vector de pesos óptimo \mathbf{w}^* para un set de datos \mathcal{D} , un grado de polinomio M y error cuadrático sin término de regularización $E_D(\mathbf{w})$ y con término de regularización $E(\mathbf{w})$ dados por

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y(x_i, \mathbf{w}) - t_i)^2,$$

У

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y(x_i, \mathbf{w}) - t_i)^2 + \frac{\lambda}{2} \sum_{i=0}^{M} |w_j|^2,$$

respectivamente, donde

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j,$$

- 3. Implementar una función que evalúe el error sin regularización $E_{DRMS} = \sqrt{2E_D/N}$ y con regularización $E_{RMS} = \sqrt{2E/N}$, para un set de datos \mathcal{D} .
- 4. Realizar un estudio en el que se grafique la influencia del grado del polinomio sobre el error E_{DRMS} . Para esto, se generarán sets de datos de entrenamiento \mathcal{D}_{tr} y de testeo \mathcal{D}_{test} de igual tamaño N, para valores del grado del polinomio desde M=0 hasta M=N-1. Para cada uno de ellos se evaluará varias veces el error E_{DRMS} y se graficarán el valor medio y la desviación standard muestrales para cada valor de M. Indicar cuál es el mejor rango de valores de M.
- 5. Para el error con término de reguarización, dado por

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y(x_i, \mathbf{w}) - t_i)^2 + \frac{\lambda}{2} \sum_{i=0}^{M} |w_i|^2,$$

se fijará el grado del polinomio M en un valor igual a N-1 y se realizará un estudio en el que se grafique la influencia del grado del polinomio sobre el error E_{RMS} . Para esto, se generarán sets de datos de entrenamiento \mathcal{D}_{tr} y de testeo \mathcal{D}_{test} de igual tamaño N, para diferentes valores de $\ln \lambda$. Para cada uno de ellos se evaluará varias veces el error E_{RMS} y se graficarán el valor medio y la desviación standard muestrales para cada valor de $\ln \lambda$. Indicar cuál es el mejor rango de valores de $\ln \lambda$.