

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»		
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»		

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ по курсу «Моделирование»

«Генерация случайных чисел»

Студент:	ИУ7-73Б		М. Д. Маслова
	(группа)	(подпись, дата)	(И. О. Фамилия)
Преподаватели	:		И. В. Рудаков
		(подпись, дата)	(И. О. Фамилия)

СОДЕРЖАНИЕ

1	Зада	ание	4					
2	Теоретическая часть							
	2.1	Методы получения последовательности случайных чисел	5					
		2.1.1 Алгоритмический способ	5					
		2.1.2 Табличный способ	5					
	2.2	Критерий случайности	6					
3		актическая часть						
	3.1	Текст программы	-					
	3 2	Полученный пезультат	-					

1 Задание

Разработать программное обеспечение, предоставляющее возможность генерации последовательности случайных чисел алгоритмическим и табличным спобом, а также возможность расчета коэффициента критерия случайности по полученным последовательностям.

Реализовать графический интерфейс, позволяющий пользователю ввести последовательность для проверки ее случайности.

2 Теоретическая часть

2.1 Методы получения последовательности случайных чисел

Для генерации случайных чисел может применяться один из следующих способов:

- аппаратный, в основе которого лежит какой-либо физический эффект (не реализуется в данной работе);
- табличный, при использовании которого заранее полученные и проверенные случайные числа оформлены в виде таблице в памяти ЭВМ;
- алгоритмический, с помощью которого формируются детерминированные последовательности чисел, где каждое число зависит от предыдущего, но для стороннего наблюдателя такие последовательности выглядят случайными, из-за чего называются псевдослучайными.

2.1.1 Алгоритмический способ

В данной работе реализуется квадратичный когруэнтный метод, в котором последовательность чисел формируется следующим образом:

$$y_{n+1} = (Ay_n^2 + By_n + C) \bmod m,$$
 (2.1)

где $m = 2^{l}$.

Если $l \geq 2$, то наибольшее значение периода квадратического конгруэнтного датчика составляет $T_{\max} = 2^l$, что достигается при четном A, нечетном C и если нечетное B удовлетворяется условию $B \mod 4 = (A+1) \mod 4$.

2.1.2 Табличный способ

В данной работе для генерации случайных чисел табличным способом используются цифры из части таблицы «A Million Random Digits with 100,000 Normal Deviates», опубликованной в 1955 году.

Данная таблица сохранена в виде текстового файла. Для генерации чисел выбирается начальная позиция в файле, читаются следущие n цифр, где n — количество разрядов в генерируемом числе, и из стороковая последовательность преобразуется в число. Для генерации следующиего числа происходит переход к следующей строке таблице с сохранением номера столбца. При

невозможности перейти к следующей строке в связи с окончанием файла позиция переводится на первую строку, а номер столбца увеличивается на единицу. Если цифр в строке не хватает для формирования числа, они берутся из начала следующей строки.

2.2 Критерий случайности

Для оценки случайности был использован критерий на основе углов между векторами, координаты начала и конца которых составляются из двух соседних пар последовательности с одним общим числом.

- 3 Практическая часть
- 3.1 Текст программы
- 3.2 Полученный результат