数学建模算法与实践

微分方程数值解应用案例3 多层高温作业专业服装设计问题

HY Deng dhy0826@126.com

内容提要

- ① 微分方程Matlab解析解
- 2 微分方程Matlab数值解
- 3 案例1: 火箭升空问题
- 4 案例2: 嫦娥三号软着陆轨道设计子问题
- 5 案例3: 多层高温作业专业服装设计问题
- 6 案例4: 高压油管的压力控制问题

2018年A题 高温作业专用服装设计

在高温环境下工作时,人们需要穿着专用服装以避免灼伤。专用服装通常由三层织物材料构成,记为I、II、III层,其中I层与外界环境接触,III层与皮肤之间还存在空隙,将此空隙记为IV层。

为设计专用服装,将体内温度控制在37℃的假人放置在实验室的高温环境中,测量假人皮肤外侧的温度。为了降低研发成本、缩短研发周期,请你们利用数学模型来确定假人皮肤外侧的温度变化情况,并解决以下问题:

附件1. 专用服装材料的参数值				
分层	密度	比热	热传导率	厚度
	(kg/m^3)	(J/(kg • °C))	$(W/(m \cdot {}^{\circ}C))$	(mm)
I层	300	1377	0.082	0.6
II层	862	2100	0. 37	0.6-25
III层	74. 2	1726	0.045	3. 6
IV层	1. 18	1005	0. 028	0. 6-6. 4

□(1)专用服装材料的某些参数值由附件1给出,对环境 温度为75℃、II层厚度为6 mm、IV层厚度为5 mm、工作 时间为90分钟的情形开展实验,测量得到假人皮肤外侧 的温度(见附件2)。建立数学模型,计算温度分布, 并生成温度分布的Excel文件(文件名为problem1.xlsx)。 □(2) 当环境温度为65°C、IV层的厚度为5.5 mm时,确 定II层的最优厚度,确保工作60分钟时,假人皮肤外侧 温度不超过47°C, 且超过44°C的时间不超过5分钟。 □(3) 当环境温度为80 时,确定II层和IV层的最优厚度, 确保工作30分钟时, 假人皮肤外侧温度不超过47°C, 且

超过44°C的时间不超过5分钟。

2018年A题 高温作业专用服装设计

1	附件2. 假人皮肤外侧的测量温度		
2	时间 (s)	温度 (℃)	
3	0	37. 00	
4	1	37. 00	
5	2	37. 00	
6	3	37. 00	
7	4	37. 00	
8	5	37. 00	
9	6	37. 00	
10	7	37. 00	
11	8	37. 00	
12	9	37. 00	
13	10	37. 00	
14	11	37. 00	
15	12	37. 00	
16	13	37. 00	
17	14	37. 00	
18	15	37. 00	
19	16	37. 01	
20	17	37. 01	

5384	48. 08
5385	48. 08
5386	48. 08
5387	48. 08
5388	48. 08
5389	48. 08
5390	48. 08
5391	48. 08
5392	48. 08
5393	48. 08
5394	48. 08
5395	48. 08
5396	48. 08
5397	48. 08
5398	48. 08
5399	48. 08
5400	48.08
	5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5395 5396 5397 5398 5399

模型准备:模型简化和假设

- □假设: 只考虑热传导,不考虑热辐射、热对流等对热传递过程的影响
- □不考虑组织内部水分对热传递的影响
- □简化: 不考虑纵向的热温度分布差异, 抽象为一维热

传导问题

模型准备:模型简化和假设

- □假设: 只考虑热传导,不考虑热辐射、热对流等对热传递过程的影响
- □不考虑组织内部水分对热传递的影响
- □简化: 不考虑纵向的热温度分布差异, 抽象为一维热

传导问题

模型建立: 热传导方程

- □热传导: 物体内各点的温度不同,则热量将从高温点流向低温点
- □假设:
- □1. 物体内部没有热源
- □2. 物体热传导率 λ 为常数(各向同性)
- □3. 物体密度 ρ 和比热c (单位质量物体升高单位温度所需热量) 为常数

- □考察一根均匀细杆内热量传播的过程
- $\bigcup \partial u(x,t)$ 表示细杆在x 点位置和时刻 t时的温度

面积A

$$x \quad x + \Delta x$$

- □引起温度变化所吸收的热量△Q=流入的热量△Q′
- □在时间 Δt 内微元段 $[x, x + \Delta x]$ 的温度升高为

$$\triangle u = u(x, t + \triangle t) - u(x, t) = u_t \triangle t$$

□温度升高所需要的热量为

$$\Delta Q = c(\rho A \triangle x)(\triangle u) = c\rho A u_t \triangle x \triangle t$$
面积A
$$x \quad x + \Delta x$$

- □热传导Fourier实验定律:单位时间通过单位面积所传
- 递的热量与温度差(温度梯度)成正比
- $\Box x$ 处流入的热量:

$$\triangle Q_1 = -\lambda u_x(x, t) A \triangle t$$

 $\Box x + \triangle x$ 流出的热量:

$$\triangle Q_2 = -\lambda u_x(x + \triangle x, t) A \triangle t$$

□留在微元段 $[x, x + \triangle x]$ 内的热量:

$$\triangle Q = \triangle Q_1 - \triangle Q_2$$

面积A

□留在微元段 $[x,x+\triangle x]$ 内的热量:

$$\triangle Q = \triangle Q_1 - \triangle Q_2$$

$$= \lambda A \left[u_x(x + \triangle x) - u_x(x, t) \right] \triangle t$$

= $\lambda A u_{xx}(x, t) \triangle x \triangle t$

□结合温度升高所需要的热量:

$$\triangle Q = c(\rho A \triangle x)(\triangle u) = c\rho A u_t \triangle x \triangle t$$

□则有热传导方程

$$\lambda u_{xx}(x,t) = c\rho u_t \Longrightarrow$$

可热传导方程
$$\frac{\partial u}{\partial u_{xx}(x,t) = c\rho u_t} \Longrightarrow \frac{\partial u}{\partial t} = \frac{\lambda}{c\rho} \frac{\partial^2 u}{\partial x^2} \triangleq a^2 \frac{\partial^2 u}{\partial x^2}$$

□热扩散率k:

$$k = \frac{\lambda}{c\rho} = a^2$$

多层服装第一层

□第一层:

$$\frac{\partial u}{\partial t} = a_1^2 \frac{\partial^2 u}{\partial x^2}$$

□入流第三类边界条件:

$$\left. \frac{\partial u}{\partial x} \right|_{x=0} = \sigma_1(u - 75)$$

□第一层和第二层的耦合:
$$k_1 \frac{\partial u}{\partial x}\Big|_{\Gamma_1^-} = k_2 \frac{\partial u}{\partial x}_{\Gamma_1^+}$$

□初始条件: $u(x,0) = u_0, x \in (0,x_1)$

多层系统: 热传导方程组

□多层服装构成一个系统,构成热传导方程组,中间层处为耦合条件,边界处为第3类边界

$$\begin{cases} \frac{\partial u}{\partial t} = a_n^2 \frac{\partial^2 u}{\partial x^2}, x \in \Omega_n, n = 1, 2, 3, 4, \\ k_n \frac{\partial u}{\partial x} \Big|_{\Gamma_n^-} = k_{n+1} \frac{\partial u}{\partial x}_{\Gamma_n^+}, n = 1, 2, 3 \\ \frac{\partial u}{\partial x} \Big|_{x=0} = \sigma_1(u - 75), \\ \frac{\partial u}{\partial x} \Big|_{x=L} = \sigma_2(37 - u) \\ u(x, 0) = u_0, x \in (0, L) \end{cases}$$

离散差分法求解

□下面对主方程、耦合条件、边界条件分别离散进行数

值求解

$$u_i^k = u(x_i, t_k)$$

$$\left. \frac{\partial u}{\partial t} \right|_{(x_i, t_k)} = a_n^2 \left. \frac{\partial^2 u}{\partial x^2} \right|_{(x_i, t_k)}$$

热传导方程组离散

$$\left. \frac{\partial u}{\partial t} \right|_{(x_i, t_k)} = a_n^2 \left. \frac{\partial^2 u}{\partial x^2} \right|_{(x_i, t_k)}$$

$$\frac{u(x_i, t_{k+1}) - u(x_i, t_k)}{t_{k+1} - t_k} \approx a_n^2 \frac{u(x_{i+1}, t_k) - 2u(x_i, t_k) + u(x_{i-1}, t_k)}{\triangle x_n^2}$$

$$\frac{u_i^{k+1} - u_i^k}{\triangle t} = a_n^2 \frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{\triangle x_n^2}$$

$$u_i^{k+1} = u_i^k + a_n^2 \frac{\triangle t}{\triangle x_n^2} (u_{i+1}^k - 2u_i^k + u_{i-1}^k)$$

$$t_k$$

耦合条件离散

$$\left. k_n \frac{\partial u}{\partial x} \right|_{\Gamma_n^-} = k_{n+1} \frac{\partial u}{\partial x_{\Gamma_n^+}} \Longrightarrow \left| k_n \frac{u_i^k - u_{i-1}^k}{\triangle x_n} = k_{n+1} \frac{u_{i+1}^k - u_i^k}{\triangle x_{n+1}} \right|$$

第三类边界条件离散

$$\left. \frac{\partial u}{\partial x} \right|_{x=0} = \sigma_1(u - 75) \Longrightarrow$$

$$\left. \frac{\partial u}{\partial x} \right|_{x=0} = \sigma_1(u - 75) \Longrightarrow \qquad \left| \frac{u_1^k - u_0^k}{\triangle x_1} \right| = \sigma_1(u_0^k - 75)$$

$$u_0^k = \frac{u_1^k + \sigma_1 \triangle x_1 \times 75}{1 + \sigma_1 \triangle x_1}$$

第三类边界条件离散

$$\frac{\partial u}{\partial x}\Big|_{x=L} = \sigma_2(37 - u) \Longrightarrow$$

$$\left. \frac{\partial u}{\partial x} \right|_{x=L} = \sigma_2(37 - u) \Longrightarrow \left[\frac{u_N^k - u_{N-1}^k}{\triangle x_4} = \sigma_2(37 - u_N^k) \right]$$

$$u_N^k = \frac{u_{N-1}^k + \sigma_2 \triangle x_4 \times 37}{1 + \sigma_2 \triangle x_4}$$

耦合系统求解过程示意图

研究思路整理

- □研究思路:模型已经建立和离散,再回看问题,哪些是已知的,哪些是未知的,问题的研究思路是什么?
- □□和未知:根据附件1给定的参数,物体热传导率 λ 为常数(各向同性),物体密度 ρ 和比热c为常数,则热扩散率 $k = \frac{\lambda}{c\rho} = a^2$ 为已知。目前只剩下第三类边界条件的参数 σ_1, σ_2 未知,利用附件2给出的数据来最小二乘拟合出最优参数 σ_1, σ_2 ,一旦识别这两个参数,整个系统只要给定服装所处的环境温度和体表问题的要求,就能设计给定要求的高温专业服装了

```
function Cumcm2018A1(lambda1, lambda2)
         data=[300
                     1377
                             0.082
                     2100 0.37
              862
              74. 2 1726 0. 045
 4
5
              1. 18 1005 0. 028];
         density=data(:,1);
         specific_heat=data(:, 2);
         conductivity=data(:, 3);
         coefficient=conductivity./density./specific_heat;
         A1=coefficient(1);
10
         A2=coefficient(2):
11 -
         A3=coefficient(3);
12
         A4=coefficient(4);
13
         width1=0.6/1000; %unit:米, m
14 -
15 -
        width2=6/1000:
        width3=3.6/1000;
16 -
        width4=5.0/1000;
17 -
         num1=5:
18 -
19 -
         num2=10;
20
         num3=10:
         num4=15;
```

```
23 -
        delta_x1=width1/num1;
        delta_x2=width2/num2;
24 -
        delta_x3=width3/num3;
25
        delta_x4=width4/num4;
26
        outer temperature=75;%外空间温度
27 -
        inner temperature=37;%内空间温度
28
        initial_temperature=37;%各层内部空间初始温度
29 -
30
        T=5400;%总时间90分钟,5400秒
31 -
32 -
        dt=0.002
        M=T/dt+1;%总的时间层数量
33 -
        N=num1+num2+num3+num4;%总的空间点数量
34 -
35
        position=[0 (1:num1)*delta_x1 width1+(1:num2)*delta_x2 ...
36 -
            width1+width2+(1:num3)*delta_x3 width1+width2+width3+...
37
            (1:num4)*delta x4]*1000:
38
```

```
Temperature=zeros(T, N+1):
39 -
         Temperature (1, 2:N) = ones (1, N-1) * initial temperature:%初始条件
40 -
         Temperature (1,1)= (Temperature (1, 2) +outer temperature*lambda1*delta x1)...
41 -
              /(1+lambdal*delta_x1); %outer boundary
42
         Temperature (1 N+1) = (Temperature (1, end-1) + inner_temperature *lambda2*delta_x4)...
43 -
              /(1+lambda2*delta x4):%inner boundary
44
45 -
         Temperature0=Temperature(1,:):
         Temperature1=zeros(1, N+1):
46 -
         k=1 ·
         time=[0]:
48
        for i=2:M %时间推进
49 -
50 -
             for j=2:num1
                  Temperature1(j)=Temperature0(j)+dt*A1/delta x1^2*...
51 -
                       (Temperature 0 (j-1)-2*Temperature 0 (j) + Temperature 0 (j+1)):
52
53 -
              end
              Temperature 1(1) \neq (\text{Temperature } 1(2) + \text{outer temperature} * \dots)
54 -
                  lambdal*delta x1)/(1+lambdal*delta x1);
55
56 -
              for j=num1+2:num1+num2
                  Temperature1(j)=Temperature0(j)+dt*A2/delta x2^2*...
57 -
                       (Temperature 0 (j-1)-2*Temperature 0 (j) + Temperature 0 (j+1));
58
59 -
              end
              Temperature1 (num1+1) = (conductivity(1)*Temperature1 (num1)/...
60 -
                  delta_x1+conductivity(2)*Temperature1(num1+2)/delta_x2)/...
61
                  (conductivity(1)/delta x1+conductivity(2)/delta x2);
62
```

```
63
64 -
             for i=num1+num2+2:num1+num2+num3
                  Temperature1(j) + Temperature0(j) + dt * A3/delta_x3^2 * . . .
65 -
                      (TemperatureO(j-1)-2*TemperatureO(j)+TemperatureO(j+1)
66
67 -
             end
             Temperature1 (num1+num2+1) = (conductivity(2)*Temperature (num1+num2)
68 -
                  delta x2+conductivity(3)*Temperature1 (num1+num2+2)/delta x3)/...
69
                  (conductivity(2)/delta x2+conductivity(3)/delta x3):
70
71
72 -
             for j=num1+num2+num3+2:num1+num2+num3+num4
                 Temperature1(j)=Temperature0(j)+dt*A4/delta x4^2*...
73 -
                      (Temperature 0 (j-1)-2*Temperature 0 (j)+Temperature 0 (j+1));
74
75 -
             end
             Temperature1 (num1+num2+num3+1) = (conductivity(3)*Temperature1 (num1+num2+num3)/...
76 -
                  delta x3+conductivity(4)*Temperature1(num1+num2+num3+2)/delta x4)/...
77
78
                  (conductivity(3)/delta x3+conductivity(4)/delta x4);
79
             Temperature1 (num1+num2+num3+num4+1) = (Temperature1 (num1+num2+num3+num4) + ...
80 -
                  inner temperature*lambda2*delta x4)/(1+lambda2*delta x4);
81
             Temperature0=Temperature1:
82 -
```

```
if rem(i, round(1/dt)) == 0
                  time=[time:i*dt]:
 84 -
 85 -
                  k=k+1:
                  Temperature(k,:)=Temperature1;
 86
 87 -
              end
 88 -
         end
          save result1 Temperature time position
 89 -
 90
         figure(1)
 91 -
 92 -
          [POSITION, Time] = meshgrid (position, time):
         mesh (Time, POSITION, Temperature)
 93 -
         xlabel('时间(秒)')
 94 -
        vlabel('位置(毫米)')
 95 -
         xlswrite('problem.xlsw',data)
 96 -
         zlabel('温度')
 97 -
         figure(2)
 98 -
         plot(time, Temperature(:, end), 'r', 'Linewidth', 2)
99 -
         load x %附件1的假人体表测量温度数据
100 -
101 -
         load v
102 -
         hold on
         plot(x, y, 'b--', 'Linewidth', 2)
103 -
         xlabel('时间(秒)')
104 -
        ylabel('温度')
105 -
         legend('模型结果','假人测量温度数据')
106 -
         axis([0 5800 35 50])
107 -
```

模型参数拟合效果

温度时空分布

热传导方程组离散方法2:隐格式

$$\left. \frac{\partial u}{\partial t} \right|_{(x_i, t_k)} = a_n^2 \left. \frac{\partial^2 u}{\partial x^2} \right|_{(x_i, t_k)}$$

$$\frac{u(x_i, t_k) - u(x_i, t_{k-1})}{t_{k+1} - t_k} \approx a_n^2 \frac{u(x_{i+1}, t_k) - 2u(x_i, t_k) + u(x_{i-1}, t_k)}{\triangle x_n^2}$$

$$\frac{u_i^k - u_i^{k-1}}{\triangle t} = a_n^2 \frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{\triangle x_n^2}$$

耦合条件离散:隐格式

$$\left. k_n \frac{\partial u}{\partial x} \right|_{\Gamma_n^-} = k_{n+1} \frac{\partial u}{\partial x_{\Gamma_n^+}} \Longrightarrow \left| k_n \frac{u_i^k - u_{i-1}^k}{\triangle x_n} = k_{n+1} \frac{u_{i+1}^k - u_i^k}{\triangle x_{n+1}} \right|$$

$$-\frac{k_n}{\Delta x_n} u_{i-1}^k + \left(\frac{k_n}{\Delta x_n} + \frac{k_{n+1}}{\Delta x_{n+1}}\right) u_i^k - \frac{k_{n+1}}{\Delta x_{n+1}} u_{i+1}^k = 0$$

第三类边界条件离散:隐格式

$$\left. \frac{\partial u}{\partial x} \right|_{x=0} = \sigma_1(u - 75) \Longrightarrow \frac{u_1^k - u_0^k}{\Delta x_1} = \sigma_1(u_0^k - 75)$$

$$(1 + \sigma_1 \triangle x_1)u_0^k - u_1^k = 75\sigma_1 \triangle x_1$$

第三类边界条件离散:隐格式

$$\left. \frac{\partial u}{\partial x} \right|_{x=L} = \sigma_2(37 - u) \Longrightarrow \left[\frac{u_N^k - u_{N-1}^k}{\triangle x_4} = \sigma_2(37 - u_N^k) \right]$$

$$\frac{u_N^k - u_{N-1}^k}{\triangle x_4} = \sigma_2(37 - u_N^k)$$

$$-u_{N-1}^k + (1 + \sigma_2 \triangle x_4) u_N^k = 37\sigma_2 \triangle x_4$$

隐格式对应的方程组

□隐格式整体格式

$$A = \begin{pmatrix} 1 + \sigma_1 \triangle x_1 & -1 \\ -r_1 & 1 + 2r_1 & -r_1 \\ & \cdots & \cdots & \cdots \\ & 1 & -r_1 & 1 + 2r_1 & -r_1 \\ & -\frac{k_1}{\triangle x_1} & \frac{k_1}{\triangle x_1} + \frac{k_2}{\triangle x_2} & -\frac{k_2}{\triangle x_2} \\ & & -r_2 & 1 + 2r_2 & -r_2 \\ & \cdots & \cdots & \cdots \\ & & -r_4 & 1 + 2r_4 & -r_4 \\ & & & -1 & 1 + \sigma_2 \triangle x_4 \end{pmatrix}$$

隐格式对应的方程组

□隐格式整体格式

$$AU^{(k)} = B^{(k-1)} \Longrightarrow U^{(k)} = A^{-1}B^{(k-1)}$$

$$U^{(k)} = \begin{pmatrix} u_0^k \\ u_1^k \\ u_2^k \\ \cdots \\ u_{i-1}^k \\ u_i^k \\ u_{i+1}^k \\ \cdots \\ u_N^k \\ u_N^{k-1} \\ u_N^k \end{pmatrix}, \qquad B^{(k-1)} = \begin{pmatrix} 75\sigma_1 \triangle x_1 \\ u_1^{k-1} \\ u_2^{k-1} \\ \cdots \\ u_{i-1}^{k-1} \\ 0 \\ u_{i+1}^{k-1} \\ \cdots \\ u_{N-1}^{k-1} \\ 37\sigma_2 \triangle x_4 \end{pmatrix}$$

隐格式编程实现

```
%% 第一问对温度分布曲线的拟合
       load data0 data0
       a = [1.98499E-07 2.04397E-07 3.51373E-07 2.36108E-05]; %系数A 从1到4层
       h2=6:
       d = [0.6 h2 3.6 5.5]*1e-3; %材料厚度
       K=[0.082 0.37 0.045 0.028]:
       error=[0];
       time0=data0(:,1);
       wendu0=data0(:, 2):
     for s2=290:5:320
10
          for s1=1630:5:1650
11
12
              load data0
13
              N1=20:
              N2=N1+30:
14 -
15
              N3=N2+30:
              N4=N3+30: %距离轴划分
16 -
              h1=d(1)/N1; %距离步长
17
              h2=d(2)/(N2-N1);
18
              h3=d(3)/(N3-N2);
19 -
              h4=d(4)/(N4-N3);
20 -
              h=[h1 h2 h3 h4]:
21 -
```

隐格式编程实现

```
dt=0.05: %时间步长
23 -
                r1=a(1)*dt/h1^2:
24
                r2=a(2)*dt/h2^2:
25
                r3=a(3)*dt/h3^2:
26
                r4=a(4)*dt/h4^2;
27 -
28
29 -
                A=zeros (N4+1):
                A(1, 1:2) = [1+h1*s1 -1]:
30
                for i=2:N1
31
32
                    A(i, i-1:i+1) = [-r1 (1+2*r1) -r1];
33
                end
                A(N1+1, N1:N1+2) = [-K(1)/h1 K(1)/h1+K(2)/h2 -K(2)/h2];
34
35
                for i=N1+2:N2
                    A(i, i-1:i+1) = [-r2 (1+2*r2) -r2]:
36
37
                end
                A(N2+1, N2:N2+2) = [-K(2)/h2 - K(2)/h2+K(3)/h3 - K(3)/h3]
38
39
40
                for i=N2+2:N3
                    A(i, i-1:i+1) = [-r3 (1+2*r3) -r3];
41
                end
                A(N3+1, N3:N3+2) = [-K(3)/h3 - K(3)/h3+K(4)/h4 - K(4)/h4]:
43
44
45
                for i=N3+2:N4
                    A(i, i-1:i+1) = [-r4 (1+2*r4) -r4]
                end
```

```
A(N4+1, N4:N4+1)=[-1 1+h4*s2]: % 生成稀疏矩阵
48 -
                b=zeros(N4+1, 1):
                tem in=75; % 环境温度
50 -
                tem_out=37; % 人体温度
51 -
                T0=ones(1, N4+1)*tem out:
52 -
                T0(1) = (T0(2) + tem_in*h1*s1) / (1+h1*s1);
53 -
                T0 (end) = (T0 (end-1) + tem_out*h4*s2) / (1+h4*s2);
54 -
55
                Time=5400:
                T=zeros(1, N4+1);
56 -
                T(1) = tem in:
57 -
58 -
                T(end)=tem out:
                time=0:
59 -
                result=T0(end):
60 -
                for k=1:Time/dt
61 -
62
                       b(2) = TO(1):
                           b(N4) = T0 (end-1):
63
                     b(2:end-1)=T0(2:end-1)';
64 -
                     b(N1+1)=0:
65 -
                     b(N2+1)=0;
66 -
                     b(N3+1)=0:
67 -
                     b(1) = tem_in*h1*s1;
68 -
                     b(N4+1)=tem_out*h4*s2;
69 -
                     T=inv(A)*b:
70 -
```

```
T0=T:
                     time=[time;k*dt];
72 -
                     result=[result;
73
                         T0 (end) ]:
74
75 -
                end
                dn=round(1/dt);
76
                time_select0=time0(2001:1:5000);
77
                wendu_select0=wendu0(2001:1:5000);
78 -
                time_select=time(2001:dn:dn*5000);
79 -
                wendu_select=result(2001:dn:2000+dn*(5000-2000));
80 -
                error=[error, sqrt(sum((wendu_select-wendu_select0).^2))];
81 -
82 -
            end
83 -
        end
```

□拟合效果

□温度的时空分布

□稳态状态

建模方法2:虚构第5层

更多讨论

更多讨论

□不同时刻的各层温度分布

更多讨论

- □误差分析
- □稳定性分析: CFL条件
- □参数对结果的敏感性分析
- □更优的服装设计方案

其它问题

- □核废物处理问题
- □地中海鲨鱼问题
- □战争模型
- □药物中毒急救问题

□待续: 详见微分方程数值解part4

Thanks!