Лабораторная работа. 1.3.4 Исследование стационарного потока жидкости в трубе

Павловский Кирилл. Завьялов Артем. Б01-207

Аннотация

В данной работе измеряется скорость течения по методам Пито и Вентури, а также сравниваются результаты со скоростью, определенной по расходу воды. Для этого в работе используется расходомерная установка.

Теоретические сведения

В работе исследуется течение жидкости по трубе постоянного сечения.

Основной целью исследования потока жидкости или газа в трубе является определение скорости движения и расхода, то есть количества среды, — объема или массы, — протекающей в единицу времени. Правильное определение расхода очень важно в прикладных задачах — в газо- и нефтепроводах, а также в водопроводе и при теплоснабжении.

Ввиду важности приложений было разработано много разных способов определения расхода и скорости потока жидкости или газа, но самые простые и в то же время точные основаны на измерении перепада давления, связанного либо с положением приемников — навстречу или вдоль потока (как в трубке Пито), либо вызванного специальным препятствием — типа сужения трубы (как в трубке Вентури) или установкой внутри трубы шайбы — кольца.

Рис. 1. Расходомер Вентури

Расходомер Вентури (рис. 1) представляет собой горизонтальную трубу с плавно меняющимся сечением. В широком (сечение S_1) и узком (сечение S_2) участках сделаны выводы к трубкам водяного манометра M_1 . Высота поднятия воды в трубках манометра определяет давление в соответствующих сечениях.

В силу несжимаемости жидкости $(v_1S_1 = v_2S_2)$ и горизонтальности трубы $(z_1 = z_2)$ из уравнения Бернулли (3.14) получаем скорость потока в сечении S_1 через давления в сечениях S_1 и S_2 :

$$v_1 = \sqrt{\frac{2(p_1 - p_2)}{\rho \left[(S_1/S_2)^2 - 1 \right]}}.$$
 (1)

Расходомер Пито изображен на рис. 2. С исследуемой трубой T соединены две трубки водяного манометра M_2 . Одна из них (1) подведена к стенке трубы T, а другая (2) изогнута и направлена открытым концом навстречу потоку. Перед отверстием трубы 2 жидкость неподвижна, $v_2=0$.

Пусть давления, измеренные манометрическими трубками 1 и 2, равны p_1 и p_2 . Уравнение Бернулли (3.14) дает $p_1 + \rho v_1^2/2 = p_2$, откуда

Рис. 2. Расходомер Пито

$$v_1 = \sqrt{2(p_2 - p_1)/\rho}. (2)$$

Уравнение (2) позволяет связать скорость жидкости с разностью высот в трубках манометра M_2 .

С помощью трубки Пито измеряется локальная скорость потока в месте расположения трубки. Но в методе Вентури измеряется лишь средняя скорость по сечению трубы. Если нужно измерить только расход, то можно применить метод Вентури, в котором расход вычисляется по некоторой усредненной по сечению трубы скорости. Когда требуется определить скорость потока, то нужно использовать трубку Пито. Чаще такая необходимость возникает не при измерениях в трубе, а при исследовании внешнего потока. Трубка Пито применяется в самом широком диапазоне скоростей — от измерений медленных движений в вязком пограничном слое и до измерений сверхзвуковых скоростей на самолетах.

Рис. 3. Схема установки для исследования стационарного потока жидкости в трубе

I - цилиндрический резервуар

II - приёмный резервуар известного объёма

А - водопроводная труба

Т - труба с исследуемой водой

К - кран для регулировки поступающей воды

С - сифон, автоматически выливающий воду по дистижении ей уровня h

Скорость течения, усредненную по сечению трубы, можно определить по расходу, который находится по измеренному времени наполнения резервуара II, объем которого задан. С другой стороны, скорость может быть рассчитана по показаниям манометров. Сопоставление этих скоростей со скоростью, определенной по расходу, позволяет сделать вывод о применимости уравнения Бернулли, роли вязкости, которая, в частности, приводит к изменению скорости поперек потока. Для количественной оценки роли вязкости необходимо проделать следующий эксперимент. Установив уровень жидкости в резервуаре I на определенной высоте z_1 измерить скорость течения жидкости по трубе T с помощью приемного резервуара II (в силу несжимаемости жидкости ее скорость на входе в трубу T и на выходе из нее одинакова). По измеренному значению скорости по формуле Торричелли рассчитать ту высоту z_2 , при которой жидкость вытекала бы с этой же скоростью в отсутствие вязкости

Разность $z_1 - z_2$ характеризует потери на внутреннее трение в жидкости, причем можно считать, что эти потери происходят только в трубе T, так как скорость жидкости в резервуаре I существенно меньше. Влияние вязкости изменяет показания манометра Вентури Δh на величину, которую можно оценить, умножив разность $z_1 - z_2$ на отношение расстояния между входами манометра Δl ко всей длине трубы L. При условии

$$\triangle h \ge (z_1 - z_2) \frac{\triangle l}{L}$$

неидеальностью жидкости в пределах манометра M можно пренебречь. В противном случае ($\triangle h$ сравнимо с z_1-z_2) $\frac{\triangle l}{L}$ в уравнении для расходомера Вентури из p_1-p_2 необходимо вычесть $\triangle z \frac{\triangle l}{L} \rho g$

Это же верно и для расходомера Пито. Кроме этого, для трубки Пито слеудет сделать оценку поправки к его показаниям, вызванную конечностью размеров вставленной в поток частью изогнутой трубки 2. При измерениях очень важно обеспечить стационарность течения жидкости. Это достигается тем, что уровень воды в резервуаре I при каждом измерении помощью крана K должен поддерживаться на одной и той же высоте H.

1 Ход работы

Параметры установки:

 $L = (22.2 \pm 0, 1)$ cm

 $D_v = 1$ см(большой диаметр трубки Вентури)

Отсюда находим площадь этой трубки $S_1 = 0.785 \mathrm{cm}^2$

 $d_v = 0.6$ см(малый диаметр трубки Вентури)

Отсюда получим ее площадь $S_2 = 0.283$ см²

 $\Delta l = 0.02$ м(расстояние между сечениями трубки Вентури)

 $D_p = 1$ см(диаметр трубки Пито)

 $V = (276 \pm 4) \cdot 10^{-5} \text{м}^3$ (объем, который заполняет жидкость в резервуаре II)

Измерим длину и ширину заполняемого резервуара. $l=20\pm0.1$ см и $h=19.7\pm0.1$ см.

Отсюда находим его площадь: $S = 394 cm^2$

 $h = (7 \pm 0, 1)$ см (высота заполнения резервуара)

Проводим измерения времени заполнения резервуара II в зависимости от высоты уровня жидкости H в резервуаре I. Для каждой фиксированной высоты H проводим 2 измерения. Результаты записываем в таблицу (1)

H, cm	t_1, c	t_2, c	$\Delta h_v, cm$	$\Delta h_p, cm$
79	46.98	47.32	19.6	4.5
69	50.78	51.17	16.5	4.4
59	57.06	56.41	13.9	3.5
50	60.21	61.77	12.0	2.9
40	66.01	68.67	9.6	2.2
30	77.8	77.12	7.1	1.7
23	90.3	92.72	5.4	1.2

Таблица 1: Результаты измерения показаний манометров

По среднему времени заполнения резервуара водой вычислим скорость течения воды по расходу $v_p = \frac{V}{tS_1}$. Оценим погрешность определения скорости по формуле $(\frac{\sigma_v}{v})^2 = (\frac{\sigma_t}{t})^2 + (\frac{\sigma_V}{V})^2$, где $\sigma_t = \sqrt{\frac{1}{n(n-1)}\sum_{i=1}^n (t_i - \langle x \rangle)^2}$ - относительная погрешность. Относительную погрешность скорости будем вычислять как сумму относительных погрешностей объема и времени. Также посчитаем значение $h_{theor} = v^2/(2g)$ -высота, расчитанная по формуле Торричелли. Результаты занесём в таблицу (2)

H, m	t, c	σ_t, c	v, m/c	$v^2, m^2/c^2$	$\sigma_v, m/c$	$\sigma_{v^2}, m^2/c^2$	h_{theor}, m
0.79	47.2	0.17	0.75	0.56	0.02	0.04	0.029
0.69	51.0	0.20	0.69	0.48	0.02	0.04	0.024
0.59	56.7	0.33	0.62	0.38	0.02	0.04	0.019
0.50	61.0	0.78	0.58	0.34	0,02	0.04	0.0174
0.40	67.3	1.33	0.53	0.28	0.02	0.04	0.014
0.30	77.5	0.34	0.45	0.20	0.02	0.04	0.010
0.23	91.5	1.21	0.39	0.15	0.02	0.04	0.008

Таблица 2: Расчёт скорости течения по расходу, его погрешность

Исходя из этих результатов посторим график зависимости квадрата скорости от уровня воды в баке и график квадрата скорости от высоты, расчитанной по формуле Торричелли(график 1).

Из графика видно, что практический и теоретический результат сильно сотличаются друг от друга. Это связано с тем, что мы не учитывали вязкость воды при расчете предполагаемой высоты столба. То есть, жидкость неидельана.

Теперь по формулам расходомеров Вентури и Пито вычислим скорость течения без учета потерь и с учетом потерь.

В уравнении для расходомера Вентури из p_1-p_2 необходимо вычесть $\Delta z \frac{\Delta l}{L} \rho g$ Где $\Delta z=z_1-z_2,\ z_1$ - уровень высоты жидкости в резервуаре I, z_2 - высота, измеренная по формуле Торричелли.

Рис. 1: Зависимость $h(v^2)$

Для расходомера Пито проведём следующую оценку Скорость жидкости в центре трубы по формуле Пуазейля:

$$v_0 = \frac{1}{4\nu} \frac{\triangle P}{L} (R^2)$$

Скорость жидкости у края трубки расходомера Пито:

$$v(r) = \frac{1}{4\nu} \frac{\triangle P}{L} (R^2 - r^2)$$

Средняя скорость в трубке Пито:

$$v_P = \frac{1}{4\nu} \frac{\triangle P}{L} (R^2 - \frac{r^2}{2})$$

Тогда

$$\frac{1}{4\nu} \frac{\triangle P}{L} = \frac{v_0}{R^2}$$

Окончательно средняя скорость воды в трубе:

$$v_0 = \frac{v_P R^2}{R^2 - \frac{r^2}{2}}$$

Результаты измерений представлены в таблице (3)

v, m/c	$v_v, m/c$	$v_p, m/c$	$v^*_v, m/c$	$v^*_p, m/c$
0.75	0.76	0.94	0.88	1.15
0.69	0.69	0.93	0.81	1.13
0.62	0.64	0.83	0.75	1.01
0.58	0.59	0.75	0.69	0.92
0.53	0.53	0.66	0.62	0.80
0.45	0.46	0.58	0.53	0.70
0.39	0.40	0.49	0.47	0.59

Таблица 3: Значения скоростей, расчитанных при помощи расходомеров

Представим полученные скорости на одном графике в зависимости от V

Рис. 2: Скорости, найденные по расходомерам

Построим график зависимости скорости течения по расходу от высоты воды в резервуаре I и по этому графику найдем участки ламинарного и турбулентного течений.

Рис. 3: График зависимости скорости течения по расходу от высоты

Вычислим значение числа Рейнольдса для точки, в которой теряется линейный характер графика: при $v=0.39~\rm m/c$ определим число Рейнольдса по формуле $Re=\frac{v_pR\rho}{\eta}=1950\pm60({\rm Вязкость}$ воды $\eta=0.001\cdot c.)$ В справочниках указано, что в трубе круглого сечения переход течения воды при комнатной температуре из ламинарного в турбулентный режим происходит при $Re\approx1800$. Теоретическая скорость, когда течение станет турбулентным: $v=0.36\rm m/c$

Выводы

В ходе работы было исследовано течение жидкости в цилиндрической трубе, изучен принцип работы расходомеров Вентури и Пито, исследован стационарный режимы течения жидкости. Использование уравнения Торричелли для расчёта столба жидкости по скорости её течения неуместна по причине того, что рассматривается реальная, а не идеальная жидкость. Из-за турбулентного характера движения жидкости в резервуаре при его заполнении мы не можем применять формулы для ламинарного етчения жидкости. Были исследованы расходомеры Пито и Вентури, определены поправки для более точного расчёта скорости воды по их показаниям. Выяснилось, что наиболее точным является расходомер Вентури. Расходомер Пито показывает повышенное значение скорости, так как его трубка расположена в центре потока.