

Lógica de Programação

Portas Lógicas

Portas Lógicas

Até agora estudamos as funções booleanas descritas algebricamente.

Nos circuitos lógicos, costuma-se indicar tais funções graficamente, de modo a torná-las mais simples.

A representação gráfica das funções booleanas é feita mediante símbolos padronizados por normas internacionais chamados *blocos* ou *portas lógicas*.

Inversor (Negação)

Representação Gráfica Função Booleana

a	х
1	0
0	1

AND (E)

Representação Gráfica

a ______x

Função Booleana

 $x = a \cdot b$

a	b	X
1	1	1
1	0	0
0	1	0
0	0	0

OR (OU)

Representação Gráfica

Função Booleana

$$x = a + b$$

а	b	X
1	1	1
1	0	1
0	1	1
0	0	0

NAND (Negação do E)

Representação Gráfica Função Booleana

x = (a.b)'

a	b	X
1	1	0
1	0	1
0	1	1
0	0	1

NOR (Negação do OU)

Representação Gráfica Função Booleana

$$x = (a + b)'$$

XOR (OU EXCLUSIVO)

Representação Gráfica Função Booleana

 $x = a \oplus b$

a	b	x
1	1	0
1	0	1
0	1	1
0	0	0

XNOR (Negação do OU EXCLUSIVO)

Representação Gráfica

Função Booleana

$$x = (a \oplus b)'$$
ou
 $x = a \leftrightarrow b$

a	b	X
1	1	1
1	0	0
0	1	0
0	0	1

NAND com uma entrada invertida

Representação Gráfica Função Booleana

$$x = (a' \cdot b)'$$

a	b	x
1	1	1
1	0	1
0	1	0
0	0	1

NOR com uma entrada invertida

Representação Gráfica Função Booleana

$$x = (a' + b)'$$

а	b	X
1	1	0
1	0	1
0	1	0
0	0	0

Exemplo 1:

Representar mediante portas lógicas a função x = ab'

ou

Exemplo 2:

Dar o circuito lógico correspondente à função z = ab' + a'b

Exemplo 3:

Determinar a função correspondente ao circuito lógico:

Solução:

$$h = (a + b + c + d) \cdot g \cdot (e + f)$$

Dúvidas?

Bibliografia

Lógica e Álgebra de Boole Jacob Daghlian Ed. Atlas