MTH 302: Linear Algebra and Differential Equations

Review of Week 3 + Linear independence

31 January 2023

Housekeeping

- Miniproject 1 initial deadline is this Sunday.
 - To use k+1 as a subscript: Put it in curly braces. So, U_{k+1} produces U_{k+1}
 - Remember to hit "Submit" once the link is put in
 - Submit a complete, good-faith effort by Sunday; then no deadlines on revisions if needed.

Goals

- Use Theorems 1.5.1 and 1.5.2 to draw conclusions about systems using partial information about their matrices.
- Determine whether a set of vectors is linearly independent or linearly dependent.
- Add an item to Theorems 1.5.1 and 1.5.2 to link linear independence to earlier concepts.

These notes are posted as a Jupyter notebook on the Resource Page. Also a PDF of the slides.

Q&A from Class Prep

- If a set of vectors is linearly independent then does that automatically mean that those vectors call (span?) all of \mathbb{R}^2 ?
- How does linear dependence connect to span? Like if a (set of vectors) is linearly independent does that mean it always spans all of \mathbb{R}^2 (or \mathbb{R}^3)? What is the span of a linearly dependent set? -is it just those vectors?
- Is it possible to just set every set as a homogeneous equation to find out if the set is dependent or independent?

Theorem 1.5.1

Let **A** be an $m \times n$ matrix. Let **b** be a vector in \mathbb{R}^m . So, $\mathbf{A}\mathbf{x} = \mathbf{b}$ represents a system of m linear equations in n variables. Then the following are equivalent:

- 1. The system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent.
- 2. The vector \mathbf{b} is a linear combination of the columns of \mathbf{A} .
- 3. The vector \mathbf{b} is in the span of the columns of \mathbf{A} .
- 4. When the augmented matrix $[\mathbf{A} \ \mathbf{b}]$ is row-reduced, there are no rows where the first n entries are zero but the last entry is nonzero.

Theorem 1.5.2

Let **A** be an $m \times n$ matrix. Then the following are equivalent:

- 1. The system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^m$.
- 2. Every vector \mathbf{b} is a linear combination of the columns of \mathbf{A} .
- 3. The span of the columns of **A** is all of \mathbb{R}^m .
- 4. A has a pivot position in every row. That is, when A is row-reduced, there are no rows of all zeros.

Polling: Using these two theorems

Go to http://pollev.com/talbert

After polling: Go to Activity for January 31, Part 1.

Break time!

Linear independence

Intuitive idea: A set of vectors is *linearly dependent*, if one of the vectors is a linear combination of the others. The dependent vector is "redundant". If none of the vectors is a linear combination of the others then the set is *linearly independent*.

Formal definition: Given a set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^m , the set is *linearly dependent* if there is a nontrivial (nonzero) solution to the equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_k\mathbf{v}_k = \mathbf{0}$$

If the only solution to this equation is the trivial (all-zeroes) solution then S is linearly independent.

Why the intuitive idea = formal definition

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$. Let's suppose that \mathbf{v}_k is a linear combination of all the others. This means there are weights x_1, \dots, x_{k-1} so that:

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_{k-1}\mathbf{v}_{k-1} = \mathbf{v}_k$$

Subtract the \mathbf{v}_k over to get:

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_{k-1}\mathbf{v}_{k-1} - \mathbf{v}_k = \mathbf{0}$$

Now $x_1 = 0, x_2 = 0, \dots, x_{k-1} = 0, x_k = -1$ is a nozero solution.

To determine if $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly dependent or independent:

- 1. Solve $x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \cdots + x_k \mathbf{v}_k = \mathbf{0}$.
- 2. This is the same thing as the homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$ where the columns of \mathbf{A} are the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ and the vector \mathbf{x} holds the weights.
- 3. Is there a nonzero solution?
- 4. Yes \rightarrow The set of vectors is linearly dependent

5. No (only the trivial solution) \rightarrow The set of vectors is linearly independent

Example

Randomly generate 5 vectors in \mathbb{R}^5 . Is the set linearly dependent, or linearly independent?

```
In [ ]: from sympy import *
    init_printing()
    S = randMatrix(5,5,-20,20)
S
In [ ]: # The zero vector in R5
    z = Matrix([0,0,0,0,0])
    # Augment S with this vector to set up the system Sx = 0
    system = S.col_insert(5,z)
    system
In [ ]: system.rref(pivots=False)
```

- ullet Exactly one solution and it's the zero vector o Linearly independent
- Otherwise linearly dependent

Example

What if it were *four* vectors in \mathbb{R}^5 ?

Your turn

Go to Activity for January 31, Part 2.

Work in groups and use technology to do all the computations. Debrief later.

A bigger and better theorem

(Theorem 1.6.2) Let **A** be an $m \times n$ matrix. The following are equivalent:

- 1. The columns of **A** are linearly independent.
- 2. A has a pivot position in every column.
- 3. The equation $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution.

It gets better if A is square

(Theorem 1.6.3) Let **A** be an $n \times n$ matrix. The following are equivalent:

- 1. The columns of **A** are linearly independent.
- 2. The columns of **A** span all of \mathbb{R}^n .
- 3. A has a pivot position in every column.
- 4. A has a pivot position in every row.
- 5. The equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has exactly one solution for every $\mathbf{b} \in \mathbb{R}^n$.

True or false? (from Class Prep quiz)

Any set of vectors that include the zero vector, is automatically linearly dependent.

If a set of vectors is linearly dependent, then one of the vectors is a scalar multiple of one of the others.

Next Time

- Matrix arithmetic and intro to matrix inverses
- Class Prep due Wednesday 11:59pm
- Skill Quiz 3: LA.1 final appearance; LA.2 second attempt; new LA.3 ("I can determine if a collection of vectors is linearly independent.")