NOTES ON ALGEBRAIC TOPOLOGY

VAIBHAV KARVE

These notes were last updated July 5, 2018. They are notes taken from my reading of *Algebraic Topology* by *Allen Hatcher*.

1. Some Underlying Geometric Notions

- (1) Maps between spaces are always assumed to be continuous unless stated otherwise.
- (2) A deformation retraction of a space X onto a subspace A is a family of maps $f_t: X \to X$ for $t \in I$ such that:
 - (a) $f_0 = 1$ (the identity map),
 - (b) $f_1(X) = A$, and
 - (c) $f_t|A = 1$, for all $t \in I$.
- (3) The family f_t should be continuous in the sense that the associated map $F: X \times I \to X$, given by $F(x,t) \mapsto f_t(x)$ is continuous.
- (4) For a map $f: X \to Y$, the mapping cylinder M_f is the quotient space of the disjoint union $(X \times I) \sqcup Y$ obtained by identifying each $(x, 1) \in X \times I$ with $f(x) \in Y$.
- (5) The mapping cylinder M_f deformation retracts to the subspace Y by sliding each point. Not all deformation retractions arise from mapping cylinders though.
- (6) A *homotopy* is a family of maps $f_t: X \to Y$ for $t \in I$ such that the associated map $F: X \times I \to Y$ given by $F(x,t) = f_t(x)$ is continuous.
- (7) Two maps $f_0: X \to Y$ and $f_1: X \to Y$ are *homotopic* if \exists a homotopy f_t connecting them. Then, one writes $f_0 \simeq f_1$.
- (8) A retraction of X onto A is a map $r: X \to X$ such that r(X) = A and r|A = 1. It can also be viewed instead as a map $r: X \to A$ such that r|A = 1. It can also be viewed as a map $r: X \to X$ such that $r^2 = r$. This makes retraction maps the topological analogs of projection operators.
- (9) Hence, a deformation retraction of X onto subspace A is a homotopy from the identity map of X to a retraction of X onto A.

- (10) Not all retractions come from deformation retractions. Any space X can be retracted to any single point $x_0 \in X$ via the constant map sending all of X to x_0 .
- (11) A space X that deformation retracts onto a point must necessarily be path-connected.
- (12) A homotopy $f_t: X \to Y$ whose restriction to a subspace $A \subset X$ is independent of t is a homotopy relative to A. Thus, a deformation retraction of X onto A is a homotopy relative to A from the identity map of X to a retraction of X onto A.
- (13) If a space X deformation retracts onto a subspace A via $f_t: X \to X$, then if $r: X \to A$ denotes the resulting retraction and $i: A \to X$ denotes the inclusion map, then we have ri = 1 (on A) and $ir \simeq 1$ (on X), the latter homotopy being given by f_t .
- (14) A map $f: X \to Y$ is homotopy equivalence if there is a map $g: Y \to X$ such that $fg \simeq \mathbb{1}$ (on Y) and $gf \simeq \mathbb{1}$ (on X). In that case, the spaces X and Y are homotopically equivalent and have the same homotopy type, denoted $X \simeq Y$.
- (15) If subspaces A, B and C are all deformation retractions of the same space X then they are homotopically equivalent. However, they need not be deformation retractions of each other.
- (16) Two spaces X and Y are homotopically equivalent i \exists a third space Z containing both X and Y as deformation retracts. This is proved by choosing $Z = M_f$ for the homotopy equivalence $f: X \to Y$.
- (17) A map is *nullhomotopic* if it is homotopic to a constant map.
- (18) A space having the homotopy type of a point is *contractible*. In this case, the identity map of the space is nullhomotopic.
- (19) An orientable surface M_g of genus g can be constructed from a polygon with 4g sides by identifying pairs of edges.
- (20) Construction of a space X using cell-complexes can be done as follows:
 - (a) Start with a discrete set X^0 , whose points are regarded as 0-cells.
 - (b) Inductively, form the $n\text{-}skeleton\ X^n$ from X^{n-1} by attaching $n\text{-}cells\ e^n$ via maps $\varphi: S^{n-1} \to X^{n-1}$. This means that X^n is the quotient space of the disjoint union $X^{n-1} \sqcup D^n$ that is, of X^{n-1} with a collection of $n\text{-}disks\ D^n$ under the identications $x \sim \varphi$ (x) for $x \in \partial D^n$.
 - (c) One can either stop this inductive process at a nite stage, setting $X=X^n$ for some $n<\infty$, or one can continue inde nitely, setting $X=\bigcup_n X^n$. In the latter case, X is given the weak topology: a set $A\subseteq X$ is open (or closed) i $A\cap X^n$ is open (or closed) in X^n for each n.

A space X constructed this way is a *cell complex* or CW complex.

- (21) The dimension of a cell complex X is the maximum of the dimensions of the cells of X.
- (22) A one-dimensional cell complex is a graph.
- (23) The *Euler characteristic* for a cell complex with nite number of cells is the number of even-dimensional cells minus the number of odd-dimensional cells. Euler characteristic is an invariant of homotopy types.
- (24) The sphere S^n has the structure of a cell complex with two cells : e^0 and e^n , the n-cell being attached by the constant map $S^{n-1} \to e^0$. This is equivalent to regarding S^n as the quotient space $D^n/\partial D^n$.
- (25) Real projective n-space \mathbb{RP}^n is obtained from \mathbb{RP}^{n-1} by attaching an n-cell with the quotient projection $S^{n-1} \to \mathbb{RP}^{n-1}$ as the attaching map. Hence, \mathbb{RP}^n has a cell complex structure $e^0 \cup \cdots \cup e^n$ with one cell e^i in each dimension $i \leq n$.
- (26) $\mathbb{R}P^{7} = \bigcup_{n} \mathbb{R}P^{n}$ becomes a cell complex with one cell in each dimension. Can also be viewed as the space of lines through the origin in $\mathbb{R}^{7} = \bigcup_{n} \mathbb{R}^{n}$.
- (27) Complex projective n-space \mathbb{CP}^n can be obtained form \mathbb{CP}^{n-1} by attaching a cell e^{2n} via the quotient map $S^{2n-1} \to \mathbb{CP}^{n-1}$. Hence, it has cell structure $e^0 \cup e^2 \cup \cdots \cup e^{2n}$ with cells only in even dimensions. Similarly, \mathbb{CP}^1 has a cell structure with one cell in each even dimension.
- (28) Each cell e^n in a cell complex X has a $characteristic map <math>\phi: D^n \to X$ which extends the attaching map φ and is a homeomorphism from the interior of D^n onto e^n . This map tells us which points were identified in the construction of the cell complex of X.
- (29) A subcomplex of a cell complex X is a closed subspace A of X that is a union of cells of X. Subcomplexes $\mathbb{RP}^k \subseteq \mathbb{RP}^n$ and $\mathbb{CP}^k \subseteq \mathbb{CP}^n$ are the only subcomplexes for the real and complex projective spaces.
- (30) A pair (X, A) consisting of a cell complex X and a subcomplex A of X is a $CW\ pair.$
- (31) In general, the closure of each cell, or similarly, the closure of any collection of cells need not be a subcomplex.
- (32) Operations on spaces:
 - (a) **Product:** If X and Y are cell complexes, then $X \times Y$ has the structure of a cell complex with its cells being the products $e^m \times e^n$, where e^m ranges over the cells of X and e^n ranges over the cells of Y.