1) Row multiplied by scalar.

$$A = \begin{cases} a & b \\ c & d \end{cases} = 1A1 = ad-bc$$

$$\begin{vmatrix} a & b \end{vmatrix} = Kad - kbc = K(ad-bc) = K |A|$$
 $kc | kd |$

$$| Ka Kb | = K^2ad - K^2bc = K^2(ad-bc) = K^2/A1$$

$$A = \begin{cases} a & b & c \\ d & e & p \\ -+- & g & h & p \end{cases} \Rightarrow |A| = -d/bc/+e/ge/+f/gh$$

A'=
$$\begin{cases} a & b & c \\ kd & ke & kf \\ g & h & p \end{cases}$$
 = $\begin{cases} A' = -kd \begin{vmatrix} bc \\ hi \end{vmatrix} - ke \begin{vmatrix} ac \\ g & h \end{vmatrix} = -kf \begin{cases} de \\ gh \end{cases}$

$$\det(A) = k \geq (-1)^{e+j} \operatorname{ag} \operatorname{Agg}.$$

$$det(KA) = K^n \frac{det(A)}{det(A)} = n^{2} \cdot n^$$

*) When now is added.

let
$$X = \begin{bmatrix} a & b \\ x_1 & x_2 \end{bmatrix}$$
 $Y = \begin{bmatrix} a & b \\ Y_1 & Y_2 \end{bmatrix}$ $Z = \begin{bmatrix} a & b \\ x_1 + y_1 & x_2 + y_2 \end{bmatrix}$

$$|X| = ax_2 - bx_2; |Y| = ay_2 - by_1; |Z| = a(x_2 + y_2) - b(x_1 + y_1)$$

$$= ax_2 + ay_2 - bx_1 - by_1$$

$$= ax_2 - bx_1 + ay_2 - by_1$$

$$\begin{vmatrix} c & d \end{vmatrix} = cb-ad = -(ad-bc) = -|A|$$

5) After now operations

$$A = \begin{bmatrix} \vec{s_3} \\ \vec{s_2} \end{bmatrix}, B = \begin{bmatrix} \vec{s_1} \\ \vec{s_3} - c\vec{s_2} \end{bmatrix}$$

$$, B = \begin{bmatrix} \widehat{s}_1 \\ \widehat{s}_2 - \widehat{c}_1 \end{bmatrix}$$

$$det(B) = \left| \begin{array}{c} \overline{3}_{1} \\ \overline{5}_{2} \end{array} \right| + \left| \begin{array}{c} \overline{3}_{1} \\ -\overline{c}_{2} \end{array} \right|$$

$$= \left| A \right| + \left(-c \right) \left| \begin{array}{c} \overline{3}_{1} \\ \overline{3}_{1} \end{array} \right| \rightarrow dupleate sow (pop 3)$$

6) Upper-treangular dond lower-brangular

Note: Whenever we have larger nxn mutolexy first do ried to get the fin the form of apper treangular matrix than the product of deagonal elements to get the determinant.

Properties of matrex inverses

y I ps enverteble and $I^{-1} = I$ Sence $I \circ I = I$

- 2) If A Ps enverteble than A^{-1} Ps also envertible and $(A^{-1})^{-1} = A$ sence $AA^{-1} = A^{-1}A = I$
- 3) If A and B are envestible then AB is also invertible, and $(AB)^{-1} = B^{-1}A^{-1}$

Since $(AB)(B^{1}A^{1}) = A(BB^{1})A^{1} = AIA^{1} = AA^{1}=I$ $(B^{1}A^{1})(AB) = B^{1}(A^{1}A)B = B^{1}IB = B^{1}B = I$

4) If A Ps Priverteble then λA Ps also Priverteble $\forall \lambda \in \mathbb{R} | \{63\}$ and $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$

sence $\left(\frac{1}{2}A^{2}\right)(AA) = \left(\frac{1}{2}A\right)A^{2}A = 1.9 = 9$

and $(\hat{x}A)(\frac{1}{\lambda}A^2) = (\hat{x}\frac{1}{\lambda})AA^2 = 1.T = I$

5) If A PS Enverteble, the AT Ps also Privesteble and

 $(AT)^{-1} = (A^{-1})^{T}$ $(A, \overline{A})^{-1} = (C)^{T}$ $(A, \overline{A})^{T} = (C)^{T}$ $(A, \overline{A})^{T} = (C)^{T}$ $(A, \overline{A})^{T} = (C)^{T}$

since $(AT)(A^2)T = (A^2A)T = IT = I$ $(A^2)^T(A)! = 2^T$

and $(A^{-1})^T(A^T) = (AA^{-1})^T = I^T = I$

6) If A & enverteble then A^k is also enverteble V $k \in \mathbb{N}$.

and $A^{k} = (A^1 + 1)^{-1} = (A^1 + 1)^{-1} = A^{-1}(A^1)^{-1}$ $(A^{n+1})^{-1} = (A^1 + 1)^{-1} = A^{-1}(A^1)^{-1}$ $(A^{-2})^{n+1} \leftarrow A^{-1}(A^2)^{n+1}$

Bod (ABT) $g = (AB)gp = \Xi(A)gk(B)kp = \Xi(AT)kg(BT)pk$ $\Xi(AT)kg(BT)pk$ $\Xi(AT)kg(BT)pk$ $\Xi(AT)kg(BT)pk$ $\Xi(AT)kg(BT)pk$