Polynomial Approximation and Sequences

Nhan Trong

July 4, 2016

Part I

Polynomial Approximation

Keywords. Taylor's Theorem, Taylor polynomial, error / remainder term, Cauchy, Lagrange, integral form.

Theorem 1 (Taylor's Theorem). If $f', \ldots, f^{(n+1)}$ are defined on [a, x], then

$$f(x) = f(a) + f'(a)(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)$$

where $R_n(x) = \frac{f^{(n+1)}(t)}{(n+1)!}(x-a)^{n+1}$ for some t in (a,x).

Note 2. The Mean Value Theorem is a special case of Taylor's Theorem:

$$f(b) = f(a) + f'(c)(b - a)$$

for some c between a and b.

Part II

Sequences

Keywords. Point-wise, uniform convergence, metric space, Cauchy criterion, Koch snowflake, Weierstrass function, uniformly distributed / equidistributed sequence.

Theorem 3 (Uniform Limit Theorem). *Uniform convergence of functions preserves continuity, i.e. if* f_n *are continuous and approach* f *uniformly, then* f *is continuous.*

Proposition 4. The uniform limit of uniformly continuous functions is uniformly continuous.

Question 5. What about differentiability, i.e. if f_n are differentiable and approach f uniformly, is f always differentiable, and is $\lim f'_n = f'$?

Example 6. No to the second question: the functions $f_n(x) = \frac{1}{n}\sin(nx)$ converge uniformly to the zero function, which *is* differentiable. But, the limit of the derivatives don't exist. What about just differentiability?

Example 7. Still No, e.g. the functions $f_n(x) = \sqrt{x^2 + 1/n}$ converge uniformly to f = |x|, which is not differentiable at zero.

Example 8 (Weierstrass function). The Weierstrass function

$$f(x) = \sum_{k=0}^{\infty} a^k \cos(b^k \pi x),$$

for appropriate values a and b, is the uniform limit of

$$f_n = \sum_{k=0}^n a^k \cos(b^k \pi x),$$

but is nowhere differentiable.

Question 9. Is the Koch snowflake nowhere differentiable?

Yes. Proof?

Definition 10. Let $\{a_n\}$ be a sequence, and $0 \le a < b \le 1$. Let N(n;a,b) be the number of integers $j \le n$ s.t. $a_j \in [a,b]$. A sequence $\{a_n\}$ of numbers in [0,1] is called uniformly distributed in [0,1] if

$$\lim_{n \to \infty} \frac{N(n; a, b)}{n} = b - a$$

for all a, b, s.t. $0 \le a < b \le 1$.

Proposition 11. If s is a step function on [0,1], and $\{a_n\}$ is uniformly distributed in [0,1], then

$$\int_0^1 s = \lim_{n \to \infty} \frac{s(a_1) + \dots + s(a_n)}{n}.$$

Proof. Let $\Delta_1, \ldots, \Delta_m$ be a partition of [0,1] corresponding to the steps in s. Then (with a

slight abuse of notation) we have

$$\int_{0}^{1} s = \sum_{i=1}^{m} s(\Delta_{i}) \Delta_{i}$$

$$= \sum_{i=1}^{m} s(\Delta_{i}) \lim_{n \to \infty} \frac{1}{n} N(n; \Delta_{i})$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{m} s(\Delta_{i}) N(n; \Delta_{i})$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} s(a_{i}).$$

Proposition 12. If f is integrable on [0,1], and $\{a_n\}$ is uniformly distributed in [0,1], then

$$\int_0^1 f = \lim_{n \to \infty} \frac{f(a_1) + \dots + f(a_n)}{n}.$$

Sketch. Since f is integrable, there is a step function s such that $\int_0^1 f$ is close to $\int_0^1 s$, which is close to $\frac{s(a_1)+\dots+s(a_n)}{n}$, which is close to $\frac{f(a_1)+\dots+f(a_n)}{n}$.