Systems Genetics Spring 2025

Lecture 12

Inferring causal relations (mediation test)

Irit Gat-Viks

Department of cell research and Immunology

Tel-Aviv University

Inferring causal relations: mediation test

L - locus

R - gene

C – complex trait

Exploiting Structure in Probability Distributions:

Based on presentation and lecture notes of Nir Friedman, Hebrew University

Basic Probability Definitions

- Product Rule: P(A,B)=P(A | B)*P(B)= P(B | A)*P(A)
- Independence between A and B: P(A,B)=P(A)*P(B), or alternatively: P(A|B)=P(A), P(B|A)=P(B).
- □ Total probability theorem: $\bigcup_{i=1}^{n} B_i = \Omega$, $\forall i \neq j$ $B_i \cap B_j = \phi$

$$P(A) = \sum_{i=1}^{n} P(A, B_i) = \sum_{i=1}^{n} P(B_i) * P(A \mid B_i)$$

Basic Probability Definitions

□ Bayes Rule:

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

$$P(A \mid B, C) = \frac{P(B \mid A, C) \cdot P(A \mid C)}{P(B \mid C)}$$

□ Chain Rule:

$$P(X_{1},...,X_{n}) = P(X_{1} | X_{2},...,X_{n}) \cdot P(X_{2} | X_{3},...,X_{n}) \cdot P(X_{3} | X_{4},...,X_{n}) \cdot ... P(X_{n-1} | X_{n}) \cdot P(X_{n})$$

Exploiting Independence Property

☐ G: whether the woman is pregnant

□ D: whether the doctor's test is positive

The joint distribution representation P(g,d):

G	D	P(G,D)
0	0	0.54
0	1	0.06
1	0	0.02
1	1	0.38

Factorial representation

Using conditional probability: P(g,d)=P(g)*P(d|g).

The distribution of P(g), P(d|g):

Example: P(g0,d1)=0.06 vs. P(g0)*P(d1|g0)=0.6*0.1=0.06

Exploiting Independence Property

☐ H: home test

□ Independence assumption: Ind(H;D|G) (i.e., given G, H is independent of D).

Exploiting Independence Property

	representation of P(d,g,h)		
	joint distribution	factored distribution	
No. of parameters	7	5	
Adding new variable H	changing the distribution entirely	Modularity : reuse the local probability model. (Only new local probability model for H.)	

=> Bayesian networks: Exploiting independence properties of the distribution in order to allow a compact and natural representation.

Outline

- Introduction
- □ Bayesian Networks
 - » Representation & Semantics
 - Inference in Bayesian networks
 - Learning Bayesian networks
 - Conclusion

Representing the Uncertainty Earthquake

- □ A story with five random variables:
 - Burglary, Earthquake, Alarm, Neighbor Call, Radio Announcement
 - □ Specify joint distribution with 2⁵=32 parameters

maybe...

Radio

Burglar

Alarm

- □ An expert system for monitoring intensive care patients
 - Specify joint distribution over 37 variables with (at least) 2³⁷ parameters

no way!!!

Probabilistic Independence: a Key for Representation and Reasoning

□ Recall that if X and Y are **independent** given Z then

$$P(X | Z, Y) = P(X | Y)$$

(Burglai

Alarm

Call

- □ In our story...if
 - burglary and earthquake are independent
 - □ alarm sound and radio are independent given earthquake
- □then instead of 15 parameters we need 8

$$P(A,R,E,B) = P(A|R,E,B) \cdot P(R|E,B) \cdot P(E|B) \cdot P(B)$$
versus

$$P(A,R,E,B) = P(A|E,B) \cdot P(R|E) \cdot P(E) \cdot P(B)$$

Need a language to represent independence statements

Bayesian networks

Efficient representation of probability distributions via conditional independence

Qualitative part: statistical independence statements

Directed acyclic graph (DAG)

 Nodes - random variables of interest (exhaustive and mutually exclusive states)

□ Edges - direct influence

 Quantitative part: Local probability models. Set of conditional probability distributions. **Markov Assumption**

Generalizing:

A child is conditionally independent from its non-descendents, given the value of its parents.

Ind(Xi; NonDescendantXi | PaXi)

It is a natural assumption for many causal processes

Markov Assumption (cont.)

- □ In this example:
 - □ R is independent of A, B, C, given E
 - A is independent of R, given B and E
 - C is independent of B, E, R,given A

- Are other independencies implied by these ones?
- A graph-theoretical criteria identifies all such independencies

Bayesian Network Semantics

Qualitative part

conditional independence statements in BN structure

Quantitative part

local
probability
Models =
(e.g., multinomial,
linear Gaussian)

Unique joint distribution over domain

- □ Compact & efficient representation:
 - □ nodes have $\leq k$ parents $\Rightarrow O(2^k n)$ vs. $O(2^n)$ params
 - parameters pertain to local interactions

$$P(C,A,R,E,B) = P(B)*P(E|B)*P(R|E,B)*P(A|R,B,E)*P(C|A,R,B,E)$$

versus

$$P(C,A,R,E,B) = P(B)*P(E) * P(R|E) * P(A|B,E) * P(C|A)$$

→ In general:
$$P(x_1,...,x_n) = \prod_{i=1}^n P(x_i \mid Pa_{xi})$$

MLE principle for Bayesian networks

- Training data has the form:
- $D = \begin{bmatrix} E[1] & B[1] & A[1] & C[1] \\ . & . & . & . \\ . & . & . & . \\ E[M] & B[M] & A[M] & C[M] \end{bmatrix}$

of network

$$L(\Theta:D) = \prod_{m} P(E[m],B[m],A[m],C[m]:\Theta)$$

E[M] B[M] A[M] C[N

MLE principle for Bayesian networks

Generalizing for any Bayesian network:

$$L(\Theta:D) = \prod_{i} \prod_{m} P(x_{i}[m] | Pa_{i}[m]: \Theta_{i}) = \prod_{i} L_{i}(\Theta_{i}:D)$$

$$L_{i}(\theta_{i}:D) = \prod_{m} P(x_{i}[m] | Pa_{i}[m]:\theta_{i}) = \prod_{pa_{i}} \prod_{m:Pa_{i}[m]=pa_{i}} P(x_{i}[m] | pa_{i}[m];\Theta_{x_{i}|Pa_{i}})$$

$$= \prod_{pa_{i}} P(x_{i} | pa_{i}:\theta_{i})^{N(x_{i,pa_{i}})} = \prod_{pa_{i}} \prod_{x_{i}} \theta_{x_{i}|pa_{i}}^{N(x_{i,pa_{i}})}$$

- The likelihood decomposes according to the network structure.
- Decomposition ⇒ Independent estimation problems (If the parameters for each family are not related)
- For each value pai of the parent of Xi we get independent multinomial problem.

• The MLE is
$$\hat{\theta}_{x_i|pa_i} = \frac{N(x_i, pa_i)}{N(pa_i)}$$

Continuous (Gaussian) variables

Discrete X $Y \rightarrow Y \mid X \sim N(\mu, \sigma^2)$

$$L(\Theta:D) = \prod_{i} P(x_{i}[m] | Pa_{i}[m]: \Theta_{i}) = \prod_{i} L_{i}(\Theta_{i}:D)$$

$$L_{i}(\theta_{i}:D) = \prod_{m} P(x_{i}[m] | Pa_{i}[m]: \theta_{i})$$

$$X_{i} | Pa_{i} \sim N(\mu_{i,Pa_{i}}, \sigma^{2}_{i,Pa_{i}})$$

- The likelihood decomposes according to the network structure.
- Decomposition ⇒ Independent estimation problems (If the parameters for each family are not related)
- For each value pai of the parent of Xi we get independent maximization problem.
- The MLE is

$$\hat{\mu}_{i,Pa_{i}} = \frac{\sum_{m:Pa_{i}[m]=pa_{i}} x_{i}[m]}{N(pa_{i})}$$

$$\hat{\sigma}^{2}_{i,Pa_{i}} = \frac{\sum_{m:Pa_{i}[m]=pa_{i}} (x_{i}[m] - \mu_{i,Pa_{i}})^{2}}{N(pa_{i})}$$

Continuous (Gaussian) variables

$$X \sim N(\mu, \sigma_X^2) \qquad Y \mid X \sim N(ax + b, \sigma^2)$$

$$Pa_i \sim N(\mu_{Pa_i}, \sigma_{Pa_i}^2) \qquad X_i \mid Pa_i \sim N(a \cdot pa_i + b, \sigma^2)$$

$$L(\Theta:D) = \prod_{i} \prod_{m} P(x_{i}[m] | Pa_{i}[m]: \Theta_{i}) = \prod_{i} L_{i}(\Theta_{i}:D)$$

$$L_i(\theta_i:D) = \prod_m P(x_i[m] | Pa_i[m]:\theta_i)$$

The likelihood decomposes ⇒ Independent estimation problems
 The MLE is

$$X_i \mid Pa_i \sim N(a \cdot pa_i + b, \sigma^2)$$

Statistical background - regression

Assume Y = aX + b + Z, where $Z \sim N(0, \sigma_z^2)$, Ind(X, Z).

 σ_x^2 , μ_x are population variance and mean of X.

Thus:

1.
$$\mu_{v} = a\mu_{x} + b$$

2.
$$Y | X \sim N(aX + b, \sigma_z^2)$$
.

Using least - squares estimation of a and b:

$$\stackrel{\wedge}{a}$$
, $\stackrel{\wedge}{b}$ = arg min $\sum_{i} (y_i - (ax_i + b))^2$

Solving max likelihood estimation of $Y \mid X$:

$$\hat{a}, \hat{b} = \arg\max \log L(X|Y|a,b)$$

$$= \arg\max \frac{n}{2} \ln \frac{1}{2\pi\sigma^2} - \sum_{i} (y_i - (ax_i + b))^2$$

$$= \arg\min \sum_{i} (y_i - (ax_i + b))^2$$

Statistical background - regression

$$\hat{a}, \hat{b} = \arg\min \sum_{i} (y_{i} - (ax_{i} + b))^{2}$$

$$\hat{a} = \frac{\operatorname{cov}(X, Y)}{\sigma_{x}^{2}} = \frac{\rho_{xy}\sigma_{x}\sigma_{y}}{\sigma_{x}^{2}} = \frac{\rho_{xy}\sigma_{y}}{\sigma_{x}}$$

$$\hat{b} = \operatorname{E}(Y) - \hat{a}\operatorname{E}(X) = \mu_{y} - \hat{a}\mu_{x}$$

Express Y | X using population parameters $\mu_y \mu_x \sigma_y^2 \sigma_x^2 \rho_{xy}$

$$E(Y|X) = \stackrel{\wedge}{a} X + \stackrel{\wedge}{b} = \stackrel{\wedge}{a} X + \mu_{y} - \stackrel{\wedge}{a} \mu_{x} = \mu_{y} + \stackrel{\wedge}{a} (X - \mu_{x}) = \mu_{y} + \frac{\rho_{xy} \sigma_{y}}{\sigma_{x}} (X - \mu_{x})$$

$$Var(Y|X) = \dots = \sigma_{y}^{2} (1 - \rho_{xy}^{2})$$

Continuous (Gaussian) variables

$$X \sim N(\mu, \sigma_X^2)$$
 $Y \mid X \sim N(ax + b, \sigma^2)$

$$E(Y \mid X) = \mu_y + \frac{\rho_{xy}\sigma_y}{\sigma_x}(X - \mu_x)$$

$$Var(Y \mid X) = \sigma_y^2(1 - \rho_{xy}^2)$$

$$Pa_i \sim N(\mu_{Pa_i}, \sigma_{Pa_i}^2)$$
 $(a \cdot pa_i + b, \sigma^2)$

$$E(X_{i} | Pa_{i}) = \mu_{X_{i}} + \frac{\rho_{Pa_{i}X_{i}}\sigma_{X_{i}}}{\sigma_{Pa_{i}}} (Pa_{i} - \mu_{Pa_{i}})$$

$$Var(X_{i} | Pa_{i}) = \sigma_{X_{i}}^{2} (1 - \rho_{Pa_{i}X_{i}}^{2})$$

Outline

- Introduction
- □ Bayesian Networks
 - □ Representation & Semantics
 - Inference in Bayesian networks
 - Learning Bayesian networks
 - □Parameter Learning
 - »Structure Learning

Learning Structure: Motivation

Adding an arc

Missing an arc

Optimization Problem

Input:

- Training data
- Scoring function (including priors)
- Set of possible structures

Output:

A network (or networks) that maximize the score

Key Property:

Decomposability: the score of a network is a sum of terms.

Scores

For example. The BDE score:

$$Score(G:D) = P(G \mid D) \propto P(D \mid G)P(G)$$
$$= \int P(D \mid G, \theta)P(\theta \mid G)d\theta P(G)$$

When the data is complete, the score is decomposable:

$$Score(G:D) = \sum_{i} Score(X_{i} | Pa_{i}^{G}:D)$$

Heuristic Search (cont.)

Heuristic Search

- We address the problem by using heuristic search
- Traverse the space of possible networks, looking for highscoring structures
- □ Search techniques:
 - Greedy hill-climbing
 - Simulated Annealing
 - □ ...
- □ Need to consider the number of parameters

□ ...

Inferring causal relations – mediation test

M1.
$$P(L,R,C) = P(L) P(R|L) P(C|R)$$

M2.
$$P(L,R,C) = P(L) P(C|L) P(R|C)$$

M3.
$$P(L,R,C) = P(L) P(C|L) P(R|C,L)$$

The likelihood for each model over all individuals in the population of interest are given by:

likelihood function =
$$L(\theta; M) = p(data \mid \theta_M)$$

$$P(L, R, C \mid \theta_{M1}) = \prod_{i=1}^{n} P(L_i) \cdot P(R_i \mid L_i) \cdot P(C_i \mid R_i)$$

$$P(L, R, C \mid \theta_{M2}) = \prod_{i=1}^{n} P(L_i) \cdot P(C_i \mid L_i) \cdot P(R_i \mid C_i)$$

$$P(L, R, C \mid \theta_{M1}) = \prod_{i=1}^{n} P(L_i) \cdot P(R_i \mid L_i) \cdot P(C_i \mid L_i)$$

Joint probability for R|L and C|L

$$R \mid L \sim N(\mu_{R_L}, \sigma_{R_L}^2)$$
 $C \mid L \sim N(\mu_{C_L}, \sigma_{C_L}^2)$

likelihoods for an individual given the joint probabilities given above are:

$$l\left(\theta_{r_i|L}; r_i \mid L\right) = \frac{1}{\sqrt{2\pi}\sigma_{R_L}} \exp\left(-\frac{\left(r_i - \mu_{R_L}\right)^2}{2\sigma_{R_L}^2}\right), \text{ with } \theta_{r_i|L} = \left(\mu_{R_L}, \sigma_{R_L}\right),$$

$$l\left(\theta_{c_{i}|L};c_{i}\mid L\right) = \frac{1}{\sqrt{2\pi}\sigma_{c_{L}}} \exp\left(-\frac{\left(c_{i}-\mu_{c_{L}}\right)^{2}}{2\sigma_{c_{L}}^{2}}\right), \text{ with } \theta_{c_{i}|L} = \left(\mu_{c_{L}},\sigma_{c_{L}}\right),$$

Joint probability for R|C

Assume R = aC + b + Z, where $Z \sim N(0, \sigma_z^2)$, Ind(C, Z). σ_C^2 , μ_C are population variance and mean of C.

$$E(R \mid C) = \mu_R + \frac{\rho \, \sigma_R}{\sigma_C} (C - \mu_C), \quad Var(R \mid C) = \sigma_R^2 (1 - \rho^2)$$

$$R \mid C \sim N(\mu_R + \frac{\rho \, \sigma_R}{\sigma_C} (C - \mu_C), \sigma_R^2 (1 - \rho^2))$$

Statistical background - regression

Assume Y = aX + b + Z, where $Z \sim N(0, \sigma_z^2)$, Ind(X,Z).

 σ_x^2 , μ_x are population variance and mean of X.

Thus:

1.
$$\mu_y = a\mu_x + b$$

2.
$$Y | X \sim N(aX + b, \sigma_z^2)$$
.

Using least - squares estimation of a and b:

$$\stackrel{\wedge}{a}$$
, $\stackrel{\wedge}{b}$ = arg min $\sum_{i} (y_i - (ax_i + b))^2$

Solving max likelihood estimation of Y | X:

$$\hat{a}, \hat{b} = \arg\max \log L(X | Y | a, b)$$

$$= \arg\max \frac{n}{2} \ln \frac{1}{2\pi\sigma^2} - \sum_{i} (y_i - (ax_i + b))^2$$

$$= \arg\min \sum_{i} (y_i - (ax_i + b))^2$$

Statistical background - regression

$$\hat{a}, \hat{b} = \arg\min \sum_{i} (y_{i} - (ax_{i} + b))^{2}$$

$$\hat{a} = \frac{\text{cov}(X, Y)}{\sigma_{x}^{2}} = \frac{\rho_{xy}\sigma_{x}\sigma_{y}}{\sigma_{x}^{2}} = \frac{\rho_{xy}\sigma_{y}}{\sigma_{x}}$$

$$\hat{b} = \text{E}(Y) - \hat{a} \text{E}(X) = \mu_{y} - \hat{a} \mu_{x}$$

Express Y | X using population parameters $\mu_y \mu_x \sigma_y^2 \sigma_x^2 \rho_{xy}$

$$E(Y|X) = \stackrel{\wedge}{a} X + \stackrel{\wedge}{b} = \stackrel{\wedge}{a} X + \mu_{y} - \stackrel{\wedge}{a} \mu_{x} = \mu_{y} + \stackrel{\wedge}{a} (X - \mu_{x}) = \mu_{y} + \frac{\rho_{xy} \sigma_{y}}{\sigma_{x}} (X - \mu_{x})$$

$$Var(Y|X) = \dots = \sigma_{y}^{2} (1 - \rho_{xy}^{2})$$

likelihoods for an individual given the probability distribution of R|C and C|R:

$$l\left(\theta_{c_{i}|r_{i}};c_{i}|r_{i}\right) = \frac{1}{\sqrt{2\pi\sigma_{C}^{2}\left(1-\rho^{2}\right)}} \exp\left[-\frac{\left(c_{i}-\mu_{C}-\rho\frac{\sigma_{C}}{\sigma_{R}}\left(r_{i}-\mu_{R}\right)\right)^{2}}{2\sigma_{C}^{2}\left(1-\rho^{2}\right)}\right],$$

with
$$\theta_{c_i|r_i} = (\mu_R, \mu_C, \sigma_R, \sigma_C, \rho)$$
,

$$l\left(\theta_{r_i|c_i}; r_i \mid c_i\right) = \frac{1}{\sqrt{2\pi\sigma_R^2\left(1-\rho^2\right)}} \exp \left[-\frac{\left(r_i - \mu_R - \rho\frac{\sigma_R}{\sigma_C}\left(c_i - \mu_C\right)\right)^2}{2\sigma_R^2\left(1-\rho^2\right)}\right],$$

with
$$\theta_{r_i|c_i} = (\mu_R, \mu_C, \sigma_R, \sigma_C, \rho)$$
,

Comparing models with a different number of parameters

R - gene

C – complex trait

1.
$$L(\theta_{M_1}; M_1) = \prod_{i=1}^{N} \sum_{j=1}^{3} P(L_j) l(\theta_{r_i | L_j}; r_i | L_j) l(\theta_{c_i | r_i}; c_i | r_i)$$

2.
$$L(\theta_{M_2}; M_2) = \prod_{i=1}^{N} \sum_{j=1}^{3} P(L_j) l(\theta_{c_i|L_j}; c_i | L_j) l(\theta_{r_i|c_i}; r_i | c_i)$$

3.
$$L(\theta_{M_3}; M_3) = \prod_{i=1}^{N} \sum_{j=1}^{3} P(L_j) l(\theta_{r_i|L_j}; r_i | L_j) l(\theta_{c_i|r_i,L_j}; c_i | L_j),$$

Model selection

- The Akaike information criterion is a measure of the relative goodness of fit of a statistical model.
- AIC values provide a means for model selection.

$$AIC = 2k - 2\ln(L)$$

where *k* is the number of parameters in the statistical model, and *L* is the maximized value of the likelihood function for the estimated model.

• Given a set of candidate models for the data, the preferred model is the one with the minimum AIC value.

The likelihood for each model over all individuals in the population of interest are given by:

likelihood function =
$$L(\theta; M) = p(data \mid \theta_M)$$

$$P(L, R, C \mid \theta_{M1}) = \prod_{i=1}^{n} P(L_{i}) \cdot P(R_{i} \mid L_{i}) \cdot P(C_{i} \mid R_{i})$$

$$P(L, R, C \mid \theta_{M2}) = \prod_{i=1}^{n} P(L_{i}) \cdot P(C_{i} \mid L_{i}) \cdot P(R_{i} \mid C_{i})$$

$$P(L, R, C \mid \theta_{M1}) = \prod_{i=1}^{n} P(L_{i}) \cdot P(R_{i} \mid L_{i}) \cdot P(C_{i} \mid L_{i})$$

Model selection test

- H0: M1 and M2 are equally close to the true model
- H1: M1 is better than M2

$$LR_{12} = \ln \frac{\max_{\theta_{M1}} P(L, R, C \mid \theta_{M1})}{\max_{\theta_{M2}} P(L, R, C \mid \theta_{M2})} = \ln \frac{P(L, R, C \mid \hat{\theta}_{M1})}{P(L, R, C \mid \hat{\theta}_{M2})}$$

- Option 1: permutation test
- Option 2: approximated distribution
- The same rationale can be applied to test M1 against M3.
- It is also possible to have a joint test of M1 against Max(M2, M3):
 - H0: M1 no closer to the true model than M2 and M3
 - H1: M1 is closer to the true model than M2 and M3

R - gene

C – complex trait

Faculty of Life Sciences Systems Genetics 2025

Final Project -Causality analysis

Please note: This assignment should be submitted in **pairs**. Each pair should solve the assignment independently, although general discussion between students is allowed. Copying code and solutions is forbidden.

Causality analysis:

- Data: mention the data you're using, and write a short summary of the previous assignments HW2 and HW3 (QTL and eQTL analysis, with combined results).
- Apply the causality test on the results from previous parts. Run causality test on each
 pair of gene and phenotype where both the QTL and the eQTL are located in a nearby
 genomic position (or, of course, have the same position).
- Report the predicted relations among the QTL, associated gene, and phenotype.
- Apply permutation test to get statistical significance for one or a few specific causality hypotheses.
- Run the test on 10 triplets and explain the choice you made and the design of permutation test in detail.

Using mediation analysis to identify causal genes

Inferring causal relations

L - locus

R - gene

C – complex trait

Example

Adipose co-expression subnetwork in mice

Highly enriched in lipid, fatty acid and steroid metabolism

Adipose co-expression subnetwork in mice: relation to T2D phenotype

- The first principal component of the gene expression traits making up this subnetwork:
- explains 45.6% of the expression variation of the subnetwork
- strongly positively correlated with T2D clinical traits in the same mice: number of islets (R= 0.52, p<10⁻⁷⁰), plasma insulin levels (R=0.70, p<10⁻⁷⁰), and plasma glucose levels (R=-0.57, p<10⁻⁴).

eQTL analysis

•Of 159 genes in the adipose subnetwork, 117 have an eQTL at the same region on mouse chromosome 9 (8 in cis)

Adipose co-expression subnetwork in mice: relation to T2D phenotype

Possible (simple) relations:

Inferring causal relations (mediation analysis)

The subnetwork is enriched for type-1 genes, predicted to cause

T2D trait variation

eQTL filtering lead to the identification of Me1

Me1 is predicted to cause T2D trait variation ('type 1')

Me1 was identified with strong cis-eQTL in both human and mouse adipose tissue.

Validation: *Me1-/-* mice fed a high fat diet demonstrate significantly lower insulin levels compared to the controls