Exercise sheet 12: (Co)limits of infinity-categories and Joyal extension

1 (Transitivity property of pushout squares) Let C be an ∞ -category. Suppose given a map $\sigma: \Delta^2 \times \Delta^1 \to C$. We can depict this as a diagram

$$\begin{array}{ccc} X \longrightarrow Y \longrightarrow Z \\ \downarrow & \downarrow & \downarrow \\ X' \longrightarrow Y' \longrightarrow Z'. \end{array}$$

This is slightly misleading: what is not depicted here? Nevertheless, for every subset A of $\{x, y, z, x', y', z'\}$, write X(A) for the full ∞ -subcategory of $X = \Delta^2 \times \Delta^1$ spanned by A and $\sigma(A)$ for the restriction of σ to X(A). We assume that the left square is a pushout in C. The goal of the exercise is to show that the right square is a pushout iff the outer square is a pushout, following [HTT, Lemma 4.4.2.1].

- Show that the natural map $C_{\sigma(x,y,x',y')/} \to C_{\sigma(x,y,x')/}$ is a trivial fibration. (Hint: this is where the assumption is used.)
- Show that the map $C_{\sigma(x,y,z,x',y')/} \to C_{\sigma(x,z,x')/}$ is the composite of $C_{\sigma(x,y,z,x')/} \to C_{\sigma(x,z,x')/}$ with a pullback of the map from the previous question. Deduce that it is also a trivial fibration.
- Show that the map $X(z, y', z') \to X(x, y, z, x', y')$ is left anodyne. Deduce that $C_{\sigma(x, y, z, x', y')/} \to C_{\sigma(z, y', z')/}$ is a trivial fibration.
- Recall from exercise sheet 11, exercise 3 that if $F: C \to D$ is a trivial fibration of ∞ -categories, then if D has an initial object, so does C. Prove that the converse is true as well: if C has an initial object c, then F(c) is an initial object of D.
- Prove that the right square is a pushout iff the outer square is a pushout.
- **2** Let $F: X \to K$ be a left or right fibration of simplicial sets. Assume that K is a Kan complex.
 - Prove that X is an ∞ -groupoid (hint: left/right fibrations are inner fibrations, and are conservative), hence (by a result we will see first thing next lecture) a Kan complex.
 - Deduce from the Joyal lifting theorem that F admits the right lifting property with respect to horn inclusions $\Lambda_k^n \to \Delta^n$ with $n \ge 2$ and $0 \le k \le n$.
 - Show that F also has the right lifting property with respect to $\Lambda_k^1 \to \Delta^1$ with k = 0, 1. (Hint: left/right fibrations are isofibrations).
 - \bullet Deduce that F is a Kan fibration.
- **3** Let C be an ∞ -category which admits an initial object \emptyset and a terminal object *. Prove that C is a pointed ∞ -category iff there exists a morphism $* \to \emptyset$. (Hint: you can use the fact that any object isomorphism to an initial object is initial; see Rezk, Proposition 30.9).