<u>Dashboard</u> / My cou	rses / PH100 / General / Mid-semester Online 1 (CE 15%)
	Thursday, 24 December 2020, 5:59 PM
	Finished
	Thursday, 24 December 2020, 6:27 PM
	27 mins 51 secs
	6.75/8.00
Grade	8.44 out of 10.00 (84 %)
Question 1	
Correct	
Mark 1.00 out of 1.00	
approximate value.	o remember approximate value for the number of seconds in a year is \pi times 10^7. Determine the percent error in this (There are 365.24 days in one year.)
Answer: 0.45%	Y
The correct answer	is: 0.45%
Question 2	
Correct	
Mark 1.00 out of 1.00	
The position of the Find its acceleration Answer: -38.4	front bumper of a test car under microprocessor control is given by: $x(t)=(2.17 \text{ m})+(4.80 \text{ m/s}^2)t^2-(0.100 \text{ m/s}^6)t^6$. • at $t=2$ seconds.
The correct answer	is: -38.4
Question 3	
Incorrect	
Mark 0.00 out of 1.00	
Vectors A and B have Answer: tan^-1(-	ve scalar product -7.00, and their vector product has magnitude +9.00. What is the angle between these vectors?

The correct answer is: 127

Question 4
Correct
Mark 1.00 out of 1.00
A particle moves outward along a spiral. Its trajectory is given by $r = A \theta$, where A is a constant. $A = (1/pi) m/rad$. θ increases in time according to $\theta = k t^2/2$, where k is a constant. At what angles do the radial acceleration is zero?
○ 1/(\square root 3)
1/(\square root 2)
○ \pi/4
○ \pi/2
Your answer is correct.
The correct answer is: 1/(\square root 2)
Question 5
Correct Mark 1.00 out of 1.00
You are lost at night in a large, open field. Your GPS tells you that you are 122.0 meters from your truck, in a direction 58.0 degree east of
south. You walk 72.0 meters due west along a ditch. How much farther, and in what direction, must you walk to reach your truck?
a. 61.1 degree North of East
○ b. 65.1 degree South of West
○ c. 65.1 degree North of West
O d. 64.1 degree South of East
○ e. 60.1 degree South of West
○ f. 61.1 degree North of East
■ g. 64.1 degree North of West ✓
○ h. 65.1 degree North of East
Your answer is correct.
The correct answer is: 64.1 degree North of West

A particle moves in a plane with constant radial velocity 4 m/s. The angular velocity is constant and has magnitude 2 rad/s. When the particle is 3 m from the origin, find the magnitude of the acceleration.

Answer:	20	~

The correct answer is: 20

Match with appropriate one.

Your answer is partially correct.

You have correctly selected 3.

The correct answer is:

Coriolis acceleration → towards positive tangential direction,

Linear tangential acceleration points → towards positive tangential direction,

Centripetal acceleration → towards negative radial direction,

Linear radial acceleration points → towards positive radial direction

Jump to...

Two blocks are in contact on a horizontal table. A horizontal force is applied to one of the blocks, as shown in the drawing. If $m_1 = 4 \, kg$, $m_2 =$

PH100_Mid-Semester (10% weightage) ►