Gaussian Process

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

SIMPLE CONTINUOUS DOMAIN ANALYSIS

Continuous Domain Data

- Real-world, many continuous domain
 - Time, Space, Spatio-Temporal....
 - Discrete time vs. Continuous time
- How to analyze such dataset?
 - Estimation on the underlying function (ex, Autoregression)
 - Prediction on the unexplored point (ex, Extrapolation with autoregression)

Underlying Function and Observations

- Simple temporal line does not say much
 - Two cases of different observations from the same temporal line
- An observation dataset can be explained with two temporal functions
 - Function in two continuous domain
 - Under the assumption that the observation's noise is generated from a Gaussian distribution
 - Mean function
 - Variance function, or precision function
- Previously, mean and variance was a value

Simple Analyses without Domain Correlation

- Estimating the mean function without the domain correlation
 - Calculating the mean and the precision of Y with the same X
- Very unlikely in the real world
 - Continuous domain → No multiple observations with the same X
- No utilization of the domain information
 - Yesterday's observations might have some information on today's latent function

Simple Analyses with **Domain Correlation**

- Estimating the mean function with the domain correlation
 - Calculating the mean and the precision of Y with the correlated
- Moving average with time-window $[w_{low}, w_{high}]$ and Dataset, D

$$MA(x) = \frac{1}{N} \sum_{x_i \in W, D} y_i$$

$$W = [x - w_{low}, x + w_{high}], N = |\{x_i | x_i \in W, D\}|$$

Simple moving average because it does not differentiate yesterday and 10 days ago

Simple Analyses with Differentiated Domain Correlation

- Differentiating the domain correlation
 - Distances between the observations impact the correlation
 - Linearly differentiating or exponentially differentiating
 - Squared Exponential : $k(x, x_i) = \exp(-\frac{|x x_i|^2}{L^2})$
- Moving average with time-window $[w_{low}, w_{high}]$ and Dataset, D

$$MA(x) = \frac{1}{\sum_{x_i \in W, D} k(x, x_i)} \sum_{x_i \in W, D} k(x, x_i) y_i, W = [x - w_{low}, x + w_{high}]$$

How to determine such differentiation? Can we make a complex differentiation?

DERIVATION OF GAUSSIAN PROCESS

Detour: Mapping Functions

- Suppose that there are non-linearly separable data sets...
- The non-linear separable case can be linearly separable when we increase the basis space
 - Standard basis: e_1 , e_2 , e_3 ..., $e_n \rightarrow$ Linearly independent and generate \mathbb{R}^n
- Expanding the Basis through Space mapping function $\phi: L \to H$
 - Or, transformation function, etc...
- Any problem????
 - Feature space becomes bigger and bigger....

Linear Regression with Basis Function

- Linear regression : $y(x) = w^T \phi(x)$
 - w : weight vector of M dimension
 - Or, $Y = \Phi w$
 - Φ: called a design matrix revealing the relation of the weight vector and the input vector
 - $\bullet \quad \Phi_{nk} = \phi_k \left(x_n \right)$
- Previously, w is modeled as deterministic values
 - Now, w is considered to be also probabilistically distributed values
 - $P(w) = N(w|0, \alpha^{-1}I)$
 - Normal distribution with zero mean and α precision (or, α^{-1} variance)
- Now, w probability distribution → Y probability distribution
 - $E[Y] = E[\Phi w] = \Phi E[w] = 0$
 - $cov[Y] = E[(Y 0)(Y 0)^T) = E[YY^T]$ = $E[\Phi w w^T \Phi^T] = \Phi E[w w^T] \Phi^T = \frac{1}{\alpha} \Phi \Phi^T$
- $K_{nm} = k(x_n, x_m) = \frac{1}{\alpha} \phi(x_n)^T \phi(x_m)$
 - K: Gram matrix, k: kernel function
- P(Y) = N(Y|0,K)

Detour: Kernel Function

- The kernel calculates the inner product of two vectors in a different space (preferably without explicitly representing the two vectors in the different space)
 - $K(x_i, x_j) = \varphi(x_i) \cdot \varphi(x_j)$
- Some common kernels are following:
 - Polynomial(homogeneous)
 - $k(x_i, x_j) = (x_i \cdot x_j)^d$
 - Polynomial(inhomogeneous)
 - $k(x_i, x_j) = (x_i \cdot x_j + 1)^d$
 - Gaussian kernel function, a.k.a. Radial Basis Function
 - $k(x_i, x_j) = \exp(-\gamma ||x_i x_j||^2)$
 - For $\gamma > 0$. Sometimes parameterized using $\gamma = \frac{1}{2\sigma^2}$
 - Hyperbolic tangent, a.k.a. Sigmoid Function
 - $k(x_i, x_j) = \tanh(\kappa x_i \cdot x_j + c)$
 - For some(not every) $\kappa > 0$ and c < 0

Detour: Polynomial Kernel Function

- Imagine we have
 - $\mathbf{x} = \langle x_1, x_2 \rangle$ and $\mathbf{z} = \langle z_1, z_2 \rangle$
 - Polynomial Kernel Function of degree 1
 - $K(\langle x_1, x_2 \rangle, \langle z_1, z_2 \rangle) = \langle x_1, x_2 \rangle \cdot \langle z_1, z_2 \rangle = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}$
 - Polynomial Kernel Function of degree 2
 - $K(\langle x_1, x_2 \rangle, \langle z_1, z_2 \rangle) = \langle x_1^2, \sqrt{2}x_1x_2, x_2^2 \rangle \cdot \langle z_1^2, \sqrt{2}z_1z_2, z_2^2 \rangle$
 - $=x_1^2z_1^2 + 2x_1x_2z_1z_2 + x_2^2z_2^2 = (x_1z_1 + x_2z_2)^2 = (\mathbf{x} \cdot \mathbf{z})^2$
 - Polynomial Kernel Function of degree 3
 - $K(\langle x_1, x_2 \rangle, \langle z_1, z_2 \rangle) = (\mathbf{x} \cdot \mathbf{z})^3$
 - Polynomial Kernel Function of degree n
 - $K(\langle x_1, x_2 \rangle, \langle z_1, z_2 \rangle) = (\mathbf{x} \cdot \mathbf{z})^n$
- Do we need to express and calculate the transformed coordinate values for x
 and z to know the polynomial kernel of K?
 - Do we need to convert the feature spaces to exploit the linear separation in the high order?
 - Condition: only the inner product is computable with this trick

Modeling Noise with Gaussian Distribution

- P(Y) = N(Y|0,K)
 - $K_{nm} = k(x_n, x_m) = \frac{1}{\alpha} \phi(x_n)^T \phi(x_m)$
- $t_n = y_n + e_n$
 - t_n : Observed value with noise
 - y_n : Latent, error-free value
 - \bullet e_n : Error term distributed by following the Gaussian distribution
- $P(t_n|y_n) = N(t_n|y_n, \beta^{-1})$
 - β : Hyper-parameter of the error precision (or, variance considering the invert)
- $P(T|Y) = N(T|Y, \beta^{-1}I_N)$
 - $T = (t_1, ..., t_N)^T, Y = (y_1, ..., y_N)^T$
 - Assuming that the error terms are independent
- $P(T) = \int P(T|Y)P(Y)dY = \int N(T|Y, \beta^{-1}I_N)N(Y|0, K)dY$

Marginal Gaussian Distribution

•
$$P(T) = \int P(T|Y)P(Y)dY = \int N(T|Y, \beta^{-1}I_N)N(Y|0, K)dY$$

•
$$P(T|Y)P(Y) = P(T,Y) = P(Z)$$

• $lnP(Z) = lnP(Y) + lnP(T|Y)$
 $= -\frac{1}{2}(Y-0)^{T}K^{-1}(Y-0) - \frac{1}{2}(T-Y)^{T}\beta I_{N}(T-Y) + const.$
 $= -\frac{1}{2}Y^{T}K^{-1}Y - \frac{1}{2}(T-Y)^{T}\beta I_{N}(T-Y) + const.$

 $\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1}$

 $= \begin{pmatrix} M & -MBD^{-1} \\ -D^{-1}CM & D^{-1} + D^{-1}CMBD^{-1} \end{pmatrix}$

• Second order term of lnP(Z)

•
$$-\frac{1}{2}Y^{T}K^{-1}Y - \frac{\beta}{2}T^{T}T + \frac{\beta}{2}TY + \frac{\beta}{2}YT - \frac{\beta}{2}Y^{T}Y$$

$$= -\frac{1}{2} {Y \choose T}^{T} {K^{-1} + \beta I_{N} - \beta I_{N} \choose -\beta I_{N}} {Y \choose T} = -\frac{1}{2}Z^{T}RZ$$

R becomes the precision matrix of Z

$$M = (K^{-1} + \beta I_N - \beta I_N (\beta I_N)^{-1} \beta I_N)^{-1} = K$$

•
$$R^{-1} = \begin{pmatrix} K & K\beta I_N(\beta I_N)^{-1} \\ (\beta I_N)^{-1}\beta I_N K & (\beta I_N)^{-1} + (\beta I_N)^{-1}\beta I_N K\beta I_N(\beta I_N)^{-1} \end{pmatrix}$$

= $\begin{pmatrix} K & K \\ K & (\beta I_N)^{-1} + K \end{pmatrix}$

- First order term of $lnP(Z) \rightarrow None$
- $P(Z) = N(Z|0, R^{-1})$

Marginal and Conditional Distribution of P(T)

- $P(T) = \int P(T|Y)P(Y)dY = \int N(T|Y, \beta^{-1}I_N)N(Y|0, K)dY$
 - P(T|Y)P(Y) = P(Y,T) = P(Z)
 - $P(Y,T) = N(Y,T|(0 \ 0), \binom{K}{K} \frac{K}{(\beta I_N)^{-1} + K})$
 - Precision Matrix = $\begin{pmatrix} K^{-1} + \beta I_N & -\beta I_N \\ -\beta I_N & \beta I_N \end{pmatrix}$
- Two theorems on multivariate normal distributions

• Given
$$X = [X_1 \ X_2]^T$$
, $\mu = [\mu_1 \ \mu_2]^T$, $\Sigma = \begin{bmatrix} \Sigma_{11} \ \Sigma_{21} \end{bmatrix}$

- $P(X_1) = N(X_1 | \mu_1, \Sigma_{11})$
- $P(X_1|X_2) = N(X_1|\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(X_2 \mu_2), \Sigma_{11} \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$
- $P(T) = N(T|0, (\beta I_N)^{-1} + K)$
 - $K_{nm} = k(x_n, x_m) = \frac{1}{\alpha} \phi(x_n)^T \phi(x_m)$
 - One example $\rightarrow k(x_n, x_m) = \theta_0 \exp\left(-\frac{\theta_1}{2} \left| |x_n x_m| \right|^2\right) + \theta_2 + \theta_3 x_n^T x_m$
- Our ultimate question as a regression problem is
 - $P(t_{N+1}|T_N) = ? \rightarrow P(T_{N+1}) = !$

Sampling of P(T)

- $P(T) = N(T|0, (\beta I_N)^{-1} + K)$
 - $K_{nm} = k(x_n, x_m) = \theta_0 \exp\left(-\frac{\theta_1}{2}||x_n x_m||^2\right) + \theta_2 + \theta_3 x_n^T x_m$
- Sampling T of 101 dimensions when points
 - when $x_n = [-1, -0.98 ..., 0.98, 1]$ in [-1,1]

Mean and Covariance of $P(t_{N+1}|T_N)$

- $P(T) = N(T|0, (\beta I_N)^{-1} + K)$
 - $K_{nm} = k(x_n, x_m)$
- $P(T_{N+1}) = N(T|0, cov)$

$$cov = \begin{bmatrix} \begin{pmatrix} K_{11} + \beta & K_{12} & \cdots & K_{1N} & K_{1(N+1)} \\ K_{21} & K_{22} + \beta & \cdots & K_{2N} & K_{2(N+1)} \\ \vdots & \ddots & \vdots & & \vdots \\ K_{N1} & K_{N2} & \cdots & K_{NN} + \beta & K_{N(N+1)} \\ K_{(N+1)1} & K_{(N+1)2} & \cdots & K_{(N+1)N} & K_{(N+1)(N+1)} + \beta \end{pmatrix} \end{bmatrix}$$

$$cov_{N+1} = \begin{bmatrix} cov_N & k \\ k^T & c \end{bmatrix}$$

- Future distribution given the past data
 - Remember the theorem introduced earlier

•
$$P(X_1|X_2) = N(X_1|\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(X_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$

•
$$P(t_{N+1}|T_N) = N(t_{N+1}|0 + k^T cov_N^{-1}(T_N - 0), c - k^T cov_N^{-1}k)$$

•
$$\mu_{t_{N+1}} = k^T cov_N^{-1} T_N$$
, $\sigma_{t_{N+1}}^2 = c - k^T cov_N^{-1} k$

Squared Exponential with L=5

Gaussian Process Regression

- $P(t_{N+1}|T_N) = N(t_{N+1}|k^T cov_N^{-1}T_N, c k^T cov_N^{-1}k)$
- Gaussian process regression
 - Models the predictive distribution given the past records, $P(t_{N+1}|T_N)$
 - Mean of the predictive distribution could be the most likely point estimation of the prediction

•
$$K_{nm} = k(x_n, x_m) = \theta_0 \exp\left(-\frac{\theta_1}{2}||x_n - x_m||^2\right) + \theta_2 + \theta_3 x_n^T x_m$$

Random Process

- Random process, a.k.a. stochastic process, is
 - An infinite indexed collection of random variables, $\{X(t)|t\in T\}$
 - Index parameter : t
 - Can be time, space....
 - A function, $X(t, \omega)$, where $t \in T$ and $\omega \in \Omega$
 - Outcome of the underlying random experiment : ω
 - Fixed $t \to X(t, \omega)$ is a random variable over Ω
 - Fixed $\omega \to X(t,\omega)$ is a deterministic function of t, a sample function
- Example of random process
 - Gaussian process

•
$$P(T) = N(T|0, (\beta I_N)^{-1} + K)$$

•
$$K_{nm} = k(x_n, x_m)$$

$$= \theta_0 \exp\left(-\frac{\theta_1}{2} \left| \left| x_n - x_m \right| \right|^2 \right) + \theta_2 + \theta_3 x_n^T x_m$$

- Fixed *t*, a random variable following a Gaussian distribution
- Fixed ω , a deterministic curve of t

Hyper-parameters of Gaussian Process Regression

•
$$K_{nm} = k(x_n, x_m) = \theta_0 \exp\left(-\frac{\theta_1}{2} ||x_n - x_m||^2\right) + \theta_2 + \theta_3 x_n^T x_m$$

- $P(T) = N(T|0, (\beta I_N)^{-1} + K) = N(T|0, C)$
 - Actually, $P(T|\theta)$
 - Need to learn $\theta \rightarrow$ Going back to the linear regression parameter optimization

•
$$P(x|\mu,\Sigma) = (2\pi)^{-k/2} |\Sigma|^{-1/2} \exp(-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu))$$

•
$$\frac{\partial}{\partial \theta_i} \log P(T|\theta) = -\frac{1}{2} Tr \left(C_N^{-1} \frac{\partial C_N}{\partial \theta_i} \right) + \frac{1}{2} T^T C_N^{-1} \frac{\partial C_N}{\partial \theta_i} C_N^{-1} T$$

- Find θ to $\frac{\partial}{\partial \theta_i} P(T|\theta) = 0$
- No closed form solution → Need approximation; and Long derivation...
- Or, we can use a probabilistic programming framework, i.e. Theano, TensorFlow....

Probabilistic Programming for Hyperparameter Learning of GP (1)

- $K_{nm} = k(x_n, x_m) = \theta_0 \exp\left(-\frac{\theta_1}{2} ||x_n x_m||^2\right) + \theta_2 + \theta_3 x_n^T x_m$
- $P(T) = N(T|0, (\beta I_N)^{-1} + K) = N(T|0, C)$

```
def KernelHyperParameterLearning(iteration, learningRate, trainingX, trainingY):
    numDataPoints = len(trainingY)
    numDimension = len(trainingX[0])
    # Input and Output Data Declaration for TensorFlow
                                                                                def KernelFunctionWithTensorFlow(theta0, theta1, theta2, theta3, X1, X2):
    obsX = tf.placeholder(tf.float32, [numDataPoints, numDimension])
                                                                                    insideexp1 = tf.mul(tf.div(theta1, 2.0), np.dot((X1 - X2), (X1 - X2)))
    obsY = tf.placeholder(tf.float32, [numDataPoints, 1])
                                                                                    insideexp2 = theta2
                                                                                    insideexp3 = tf.mul(theta3, np.dot(np.transpose(X1), X2))
                                                                                    insideexp = tf.add(tf.add(insideexpl, insideexp2), insideexp3)
    # Learning Parameter Variable Declaration for TensorFlow
                                                                                    ret = tf.mul(theta0, tf.exp(insideexp))
    theta0 = tf.Variable(1.0)
                                                                                    return ret
    thetal = tf.Variable(1.0)
    theta2 = tf.Variable(1.0)
    theta3 = tf.Variable(1.0)
    beta = tf.Variable(10.0)
    # Kernel building
    matCovarianceLinear = []
    for i in range(numDataPoints):
        for j in range(numDataPoints):
            kernelEvaluationResult = KernelFunctionWithTensorFlow(theta0, theta1, theta2, theta3,
                                                                    tf.slice(obsX, [i, 0], [1, numDimension]),
                                                                    tf.slice(obsX, [j, 0], [1, numDimension]))
            if i != j:
                matCovarianceLinear.append(kernelEvaluationResult)
            if i == j:
                matCovarianceLinear.append(kernelEvaluationResult + tf.div(1.0. beta))
    matCovarianceCombined = tf.pack(matCovarianceLinear)
    matCovariance = tf.reshape(matCovarianceCombined, [numDataPoints, numDataPoints])
    matCovarianceInv = tf.inv(matCovariance)
```

Probabilistic Programming for Hyperparameter Learning of GP (2)

```
• K_{nm} = k(x_n, x_m) = \theta_0 \exp\left(-\frac{\theta_1}{2}||x_n - x_m||^2\right) + \theta_2 + \theta_3 x_n^T x_m
```

```
• P(T) = N(T|0, (\beta I_N)^{-1} + K) = N(T|0, C)

\mu_{t_{N+1}} = k^T cov_N^{-1} T_N, \sigma^2_{t_{N+1}} = c - k^T cov_N^{-1} k
```

```
# Prediction
negloglikelihood = 0.0
for i in range(numDataPoints):
    k = tf.Variable(tf.ones([numDataPoints]))
    for j in range(numDataPoints):
        kernelEvaluationResult = KernelFunctionWithTensorFlow(theta0, theta1, theta2, theta3,
                                                              tf.slice(obsX, [i, 0], [1, numDimension]),
                                                              tf.slice(obsX, [i, 0], [1, numDimension]))
        indices = tf.constant([i])
        tempTensor = tf.Variable(tf.zeros([1]))
        tempTensor = tf.add(tempTensor, kernelEvaluationResult)
        tf.scatter update(k, tf.reshape(indices, [1, 1]), tempTensor)
    c = tf.Variable(tf.zeros([1, 1]))
    kernelEvaluationResult = KernelFunctionWithTensorFlow(theta0, theta1, theta2, theta3,
                                                          tf.slice(obsX, [i, 0], [1, numDimension]),
                                                          tf.slice(obsX, [i, 0], [1, numDimension]))
   c = tf.div(tf.add(tf.add(c, kernelEvaluationResult), 1), beta)
    k = tf.reshape(k, [1, numDataPoints])
   predictionMu = tf.matmul(k, tf.matmul(matCovarianceInv, obsY))
   predictionVar = tf.sub(c, tf.matmul(k, tf.matmul(matCovarianceInv, tf.transpose(k))))
   negloglikelihood = tf.add(negloglikelihood, tf.div(tf.pow(tf.sub(predictionMu, tf.slice(obsY, [i, 0], [1, 1])), 2),tf.scalar_mul(tf.constant(2.0),predictionVar)))
# Training session declaration
training = tf.train.GradientDescentOptimizer(learningRate).minimize(negloglikelihood)
```

Gaussian Process Classifier

- Logistic regression
 - Sigmoid function(logistic function) + linear regression

$$P(y = 1|x) = \frac{1}{1 + e^{-\dot{\theta}^T x}}$$

- Gaussian process classifier
 - Sigmoid function(logistic function) + Gaussian process regression
 - Gaussian process : $f(x; \theta) \rightarrow$ Gaussian process classifier : $y = \sigma(f(x; \theta))$
 - If $t \in \{0,1\}$, then the objective function to optimize

•
$$P(t|\theta) = \sigma(f(x;\theta))^t (1 - \sigma(f(x;\theta)))^{1-t}$$

Bayesian Optimization with Gaussian Process

- Imagine we have a sequence of experiments that we can set the input as we want
 - The experiment result should be maximized
 - We don't know the underlying function generating the experiment results
 - The result and the input are continuous
 - The result have a stochastic element
- Previous approaches include search methods
 - Grid search : no learning of underlying function
 - Fixed sampling inputs
 - Binary search: learning of constraints, not the function
 - Adaptively change sampling inputs
- Integration of learning underlying function and selecting the next sampling input

Acquisition Function: Maximum Probability of Improvement

- Acquisition function
 - Gaussian process provides the predicted mean and the predicted std. on any point
 - Any point → Next sampling
 - Predicted mean → potential optimized value
 - Predicted std. → potential risk of getting a value deviating from the mean
 - Need a policy for sampling, and this policy is the acquisition function
- Maximum probability of improvement
 - Selects a sampling input with the highest probability of improving the current optimized value, y_{max} , with some margin, m

•
$$MPI(x|D) = argmax_x P(y \ge (1+m)y_{max}|x,D), \quad y \sim N(\mu, \sigma^2)$$

$$= argmax_x P\left(\frac{y-\mu}{\sigma} \ge \frac{(1+m)y_{max}-\mu}{\sigma}\right)$$

$$= argmax_x \left\{1 - \Phi\left(\frac{(1+m)y_{max}-\mu}{\sigma}\right)\right\}$$

$$= argmax_x \Phi\left(\frac{\mu - (1+m)y_{max}}{\sigma}\right)$$

Acquisition Function: Maximum Expected Improvement

- Maximum expected improvement
 - A problem of maximum probability of improvement is
 - Introducing another hyperparameter, m
 - Why not take an expectation over the range of m which is from 0 to infinite
- Assumption

•
$$y = f(x)$$
, $y_{max} = \max_{m=1,\dots,n} f(x_m)$, $u = \frac{y_{max} - \mu}{\sigma}$, $v = \frac{y - \mu}{\sigma}$, $\mu = f(x|\mathcal{D})$, $\sigma = K(x|\mathcal{D})$

- $m = \max(0, y y_{max}) = \max(0, (v u)\sigma)$
- $MEI(x|D) = argmax_x \int_0^\infty P(y \ge y_{max} + m) m dm$

•
$$\int_0^\infty P(y \ge y_{max} + m) \, m \, dm = \int_0^\infty p\left(\frac{y - \mu}{\sigma} \ge \frac{y_{max} - \mu + m}{\sigma}\right) m \, dm = \int_0^\infty p\left(v \ge u + \frac{m}{\sigma}\right) m \, dm$$

• =
$$\int_{u}^{\infty} p(v)(v-u)\sigma dv = \sigma \int_{u}^{\infty} p(v)(v-u)dv = \sigma \left(\int_{u}^{\infty} vp(v)dv - \int_{u}^{\infty} up(v)dv \right)$$

$$= \sigma\left(\left[-\phi(v)\right]_{u}^{\infty} - \left[u\Phi(v)\right]_{u}^{\infty}\right) = \sigma\left(\left(0 - \left(-\phi(u)\right)\right) - \left(u - u\Phi(u)\right)\right) = \sigma\left(\phi(u) - u(1 - u)\right)$$

Bayesian Optimization Result

- A case of Bayesian optimization
 - Sampling based upon the maximum expected improvement

