Circuiti Sequenziali

Fri, 18 Mar

I circuiti sequenzali sono quei circuiti in grado di calcoalre funzioni che dipendono sia da un input che da uno stato, ovvero da informazioni memorizzate in elementi di memoria interni.

Clock

Il segnale di clock è fondamentale per le reti sequenziali.

È definito come un segnale a onda quadra con un periodo predeterminato e costante ed è caratterizzato da:

Periodo (o ciclo) di clock [T]

Il segnale di clock è fondamentale per le reti sequenziali. È definito come un segnale a onda quadra con un periodo predeterminato e costante ed è caratterizzato da:

Periodo (o ciclo) di clock [T]

Periodo (o ciclo) di clock [1]

Frequenza [F]
Misuratain i hertz, indica il numero di cicli che avvengono in un secondo. F = 1/T

Esistono due famiglie di circuiti digitali sequenzali:

▼ Sincroni

Necessitano un segnale di clock (Flip-Flop)

▼ Asincroni

Non utilizzano un segnale di clock (S-R Latch)

Un circuito sequenziale è tipicamente costituito da:

▼ Elementi di memoria

Memorizzano gli stati

▼ Reti combinatorie

Elaborano gli input

Esistono due **metodologie** di lavoro con un segnale di clock:

▼ Level-triggered

Le operazioni vengono effettuate in base allo stato del clock.

▼ Edge-triggered

Le operazioni vengono effettuate al fronte di salita (o di discesa) del clock.

S-R Latch

L'S-R Latch è un circuito composto da due porte NOR concatenate.

Riceve due input:

▼ Set [S]

Imposta lo stato a 1

▼ Reset [R]

Resetta lo stato a 0

Genera due output:

- Il dato memorizzato [Q]
- Il complemento del dato memorizzato [!Q]
- ▼ Tabella di verità

s	R	Old Q	Q	!Q
0	0	0	0	1
0	0	1	1	0
0	1	1/0	0	1
1	0	1/0	1	0
1	1	1/0	0	0

D Latch

Il **D** Latch è un S-R Latch *sincronizzato* con un **clock** (tramite la metodologia **level-triggered**), in modo da garantire che il latch cambi *stato* solo in *determinati momenti*.

Tramite un ulteriore input **D**, messo in *AND* con il segnale di *clock* due volte di cui una *negato*, si evita di dare in *input* a un S-R Latch lo *stato irregolare* S=1 R=1.

Con D=1 si indica il setting, con D=0 si indica il resetting. Il valore Q si stabilizza quando il segnale di clock torna basso.

D deve essere un segnale **stabile** e **corretto** almeno nei momenti in cui il segnale di *clock* rimane *alzato* per evitare **glitch**. Per questo motivo è necessario determinare un **tempo** di *clock* abbastanza lungo, tenendo in conto i **ritardi** presenti in un circuito *reale*.

Flip-Flop di tipo D

Un **Flip-Flop** (*di tipo D*) è composto da due circuiti *D Latch* in *sequenza* tra loro, uno dei quali riceve il *segnale* di *clock*, mentre l'altro lo riceve *negato*. È un tipo di circuito che sfrutta la *metodologia* **edge-triggered**.

↑ Circuiti Sequenzial

Clock

Il segnale di **clock** è fondamentale per le **reti sequenziali**.

È definito come un segnale a onda quadra con un periodo predeterminato e costante ed è caratterizzato da:

- Periodo (o ciclo) di clock [T]
- ▼ Frequenza [F]

Misurata in Hertz, indica il numero di cicli che avvengono in un secondo. F = 1/T