

Dual Operational Amplifier

LM358

Dual Operational Amplifier

General Description

- The LM358 series consists of two independent high gain, internally frequency compensated operational amplifiers.
 It can be operated from a single power supply and also split power supplies.
- The LM358 is available in SOP-8, DIP-8, TSSOP-8 and MSOP-8 packages

Features

- Internally frequency compensated for unity gain
- Wide power supply range 3V 32 V
- Input common-mode voltage range include ground
- Large DC voltage gain: 100dB Typical
- RoHS Compliance

Applications

- Battery Charger
- Cordless Telephone
- Switching Power Supply

Ordering Information

TAITRON COMPONENTS INCORPORATED www.taitroncomponents.com

Rev. A/DX 2007-06-04

Tel: (800)-TAITRON (800)-824-8766 (661)-257-6060 Fax: (800)-TAITFAX (800)-824-8329 (661)-257-6415

Internal Block Diagram

Schematic Diagram

Absolute Maximum Ratings

Symbol	Description		Ratings	Unit	
Vcc	Supply Voltage		±16	V	
VI(DIFF)	Differential Input Voltage		±32	V	
Vı	Input Voltage		-0.3 ~ +32	V	
-	Output Short to Ground		Continuous	-	
PD	Power Dissipation	TSSOP-8	200		
		MSSOP-8	200	mW	
		SOP-8	280		
		Dip-8	500		
TJ	Junction Temperature		125	° C	
Topr	Operating Temperature Range		0 ~ +70	° C	
Тѕтс	Storage Temperature Range		-65~ +150	° C	

Note: Absolute maximum ratings are those beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Electrical Characteristics (Vcc=5.0V, VEE=GND, TA=25°C unless noted otherwise)

Symbol	Description	LM358			Unit	Conditions
Syllibol	Description	Min.	Тур.	Max.	Offic	Conditions
VI(OFF)	Input Offset Voltage	-	2.9	7	mV	VCM=0V to VCC-1.5V VO(P)=1.4V,Rs=0 Ω
VI(CM)	Input Common Mode Voltage	0	-	Vcc-1.5	V	Vcc=30V
VI(DIFF)	Differential Input Voltage	-	-	Vcc	V	-
Vean	Output Voltage Swing	26	-	-	V	Vcc=30V, RL=2K Ω
Vo(H)		27	28	-		Vcc=30V, RL=10KΩ
Vo(L)	- 3	-	5	20	mV	Vcc=5V, RL≥10KΩ
Gv	Large Singnal Voltage Gain	25	100	-	V/mV	Vcc=15V, RL≥2KΩ Vo(P)=1V ~11V

Dual Operational Amplifier

LM358

Symbol	Description	LM358			Unit	Canditions
Symbol	Description	Min.	Тур.	Max.	Unit	Conditions
Icc	Power Supply Current	-	0.8	2.0	mA	RL=∞, Vcc=30V
		-	0.5	1.2		R∟=∞, Full Temperature Range
li(OFF)	Input Offset Current	-	5	50	nA	-
IBIAS	Input Bias Current	-	45	250	nA	-
Isc	Short Circuit Current to Ground	-	40	60	mA	-
ISOURCE	Output Current	10	30	-	mA	V _I (+)=1V, V _I (-)=0V VCC=15V, VO(P)=2V
Isink		10	15	-	mA	VI(+)=0V, VI(-)=1V VCC=15V, VO(P)=2V
		12	100	-	μA	V _{I(+)} =0V, V _{I(-)} =1V Vcc=15V, V _{O(P)} =200mV
CMRR	Common Mode Rejection Ratio	65	80	-	dB	-
PSRR	Power Supply Rejection Ratio	65	100	-	dB	-
cs	Channel Separation	-	120	-	dB	f=1KHZ ~ 20KHZ

Typical Characteristics Curves

TAITRON

Vo - Output Voltage (V)

Output Voltage Gain (Vp-p)

Fig.12- Current Limiting vs Temperature

60

40

20

-50 -25 0 25 50 75 100

Temperature (° C)

Typical Application

lo, Output Source Current (mA)

Fig.13- Battery Charger

Typical Application (Continued)

Fig.14- Power Amplifier

Fig.15- DC Summing Amplifier

Fig.16- AC Coupled Non-Inverting Amplifier

Fig.17- Fixed Current Sources

Typical Application (Continued)

Fig.18- Pulse Generator

Fig.19- DC Coupled Low-Pass Active Filter

Dimensions in inches (mm)

TSSOP-8

How to contact us:

US HEADQUARTERS

28040 WEST HARRISON PARKAWAY, VALENCIA, CA 91355-4162
Tel: (800) TAITRON (800) 824-8766 (661) 257-6060
Fax: (800) TAITFAX (800) 824-8329 (661) 257-6415
Email: taitron@taitroncomponents.com
Http://www.taitroncomponents.com

TAITRON COMPONENTS MEXICO, S.A.DE C.V.

BOULEVARD CENTRAL 5000 INTERIOR 5 PARQUE INDUSTRIAL ATITALAQUIA, HIDALGO C.P. 42970 MEXICO

Tel: +52-55-5560-1519 Fax: +52-55-5560-2190

TAITRON COMPONETS INCORPORATED E REPRESENTAÇÕES DO BRASIL LTDA

RUA DOMINGOS DE MORAIS, 2777, 2.ANDAR, SALA 24 SAÚDE - SÃO PAULO-SP 04035-001 BRAZIL

Tel: +55-11-5574-7949 Fax: +55-11-5572-0052

TAITRON COMPONETS INCORPORATED, SHANGHAI REPRESENTATIVE OFFICE

CROSS REGION PLAZA, 899 LINGLING ROAD, SUITE 18C, SHANGHAI, 200030, CHINA Tel: +86-21-5424-9942

Fax: +86-21-5424-9931

