Laborbericht - NVS - 5CHIF

Name: Juri Schreib Datum: 2016-12-19

Ziel: Erfüllung der Aufgabenstellung

4.4 Configure and Verify eBGP

Testen

Um zu testen, ob der ISP den Router richtig konfiguriert hat wird er/SP-Entry2 von OtherCo1 angepingt.

```
OtherCo1>en
OtherCo1#ping 1.1.1.9

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.1.1.9, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/8 ms
OtherCo1#
```

Es wird getestet ob ein Gerät in ACME172.16.10.2 anpingen kann. Dies sollte noch nicht funktionieren.

```
Pinging 172.16.10.2 with 32 bytes of data:

Reply from 192.168.0.1: Destination host unreachable.
Reply from 192.168.0.1: Destination host unreachable.
Request timed out.
Reply from 192.168.0.1: Destination host unreachable.
```

Konfiguriern

Konfiguration bei ACME1

```
router bgp 65001
neighbor 1.1.1.1 remote-as 65003
network 192.168.0.0 mask 255.255.255.0
```

```
ACME1(config)#router bgp 65001
ACME1(config-router)#neighbor 1.1.1.1 remote-as 65003
ACME1(config-router)#network 192.168.0.0 mask 255.255.255.0%BGP-5-ADJCHANGE:
neighbor 1.1.1.1 Up

ACME1(config-router)#
```

Konfiguration bei OtherCo1

```
router bgp 65002
neighbor 1.1.1.9 remote-as 65003
network 172.16.10.0 mask 255.255.255.0
```

Kontrolle

```
ACME1#show ip bgp summary
 BGP router identifier 192.168.0.1, local AS number 65001
 BGP table version is 6, main routing table version 6
 5 network entries using 660 bytes of memory
 5 path entries using 260 bytes of memory
 4/3 BGP path/bestpath attribute entries using 644 bytes of memory
 2 BGP AS-PATH entries using 48 bytes of memory
 0 BGP route-map cache entries using 0 bytes of memory
 0 BGP filter-list cache entries using 0 bytes of memory
 Bitfield cache entries: current 1 (at peak 1) using 32 bytes of memory
 BGP using 1644 total bytes of memory
 BGP activity 5/0 prefixes, 5/0 paths, scan interval 60 secs
                       AS MsgRcvd MsgSent
                                             TblVer InQ OutQ Up/Down State/PfxRcd
 Neighbor
                  4 65003
                               13
                                                             0 00:06:33
 1.1.1.1
                                       8
                                                        Θ
 ACME1#
 ACME1#show ip bgp summary
 BGP router identifier 192.168.0.1, local AS number 65001
 BGP table version is 6, main routing table version 6
 5 network entries using 660 bytes of memory
 5 path entries using 260 bytes of memory
 4/3 BGP path/bestpath attribute entries using 644 bytes of memory
 2 BGP AS-PATH entries using 48 bytes of memory
 O BGP route-map cache entries using O bytes of memory
 0 BGP filter-list cache entries using 0 bytes of memory
 Bitfield cache entries: current 1 (at peak 1) using 32 bytes of memory
 BGP using 1644 total bytes of memory
 BGP activity 5/0 prefixes, 5/0 paths, scan interval 60 secs
 Neighbor
                       AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
 1.1.1.1
                  4 65003
 ACME1#
ACME1#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     1.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
        1.1.1.0/30 is directly connected, Serial0/0/0
        1.1.1.2/32 is directly connected, Serial0/0/0
В
        1.1.1.4/30 [20/0] via 1.1.1.1, 01:21:42
        1.1.1.8/30 [20/0] via 1.1.1.1, 01:21:42
     172.16.0.0/24 is subnetted, 1 subnets
В
        172.16.10.0/24 [20/26114560] via 1.1.1.1, 01:21:42
     192.168.0.0/24 is variably subnetted, 2 subnets, 2 masks
        192.168.0.0/24 is directly connected, GigabitEthernet0/0
192.168.0.1/32 is directly connected, GigabitEthernet0/0
С
ACME1#
ACME1#ping 172.16.10.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.10.2, timeout is 2 seconds:
```

4.5 Troubleshooting IPv6 ACLs

Success rate is 100 percent (5/5), round-trip min/avg/max = 3/5/14 ms

Troubleshoot HTTP Access

ACME1#

HTTP Tests bei L0, L1 und L2

Es wird versucht mit den Geräten L0, L1 und L2 eine HTTP Verbindung zu Server1 und Server2 herzustellen:

Erwartetes Ergebnis

L0 sollte sich mit keinem Server verbinden. L1 und L2 mit beiden.

Ergebnis bei L0:

Ergebnis bei L1:

Ergebnis bei L2:

Die durchgeführten Tests sind ident mit dem erwarteten Ergebnis.

####ICMP Test bei L0 Es wird getestet, ob L0 Server1 und Server2 anpingen kann. Das zu erwartende Ergebnis ist Ja.

```
Packet Tracer PC Command Line 1.0
C:\>ping 2001:DB8:CAFE:1::2 with 32 bytes of data:

Reply from 2001:DB8:CAFE:1:: Destination host unreachable.
Reply from 2001:DB8:CAFE::1: Destination host unreachable.

Ping statistics for 2001:DB8:CAFE:1::2:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

C:\>2001:DB8:CAFE:2::2
Invalid Command.

C:\>ping 2001:DB8:CAFE:2::2 with 32 bytes of data:

Reply from 2001:DB8:CAFE::1: Destination host unreachable.
```

Der Ping hat nicht funktioniert.

HTTPS Test bei PC0

Es wird getestet ob PC0 auf die https Diesnte auf Server1 und Server2 zugreifen kann. Das Erwartete Ergebnis ist, es funktioniert.

ACL Konfiguration von R1

```
!
ipv6 access-list G2-ACCESS
permit ipv6 any any
deny tcp 2001:DB8:CAFE:2::/64 any eq 22
ipv6 access-list G0-ACCESS
deny tcp 2001:DB8:CAFE::/64 any eq www
ipv6 access-list G1-ACCESS
deny tcp 2001:DB8:CAFE:1::/64 any eq 22
deny tcp 2001:DB8:CAFE:1::/64 host 2001:DB8:CAFE:2::2 eq ftp
permit ipv6 any any
```

Es fehlt das permit ipv6 any any kommando. Ansonsten wird sämtlicher Traffic von der ACL konfiguration blockiert.

Fehlerbehebung

ipv6 access-list G0-ACCESS permit ipv6 any any

```
R1(config)#ipv6 access-list exte
R1(config)#ipv6 access-list G0-ACCESS
R1(config-ipv6-acl)#permit ipv6 any any
R1(config-ipv6-acl)#exit
```

Troubleshoot FTP Access

Testen

L1 sollte keine Verbindung zum FTP Server herstellen können, die restlichen Geräte schon

L0

```
C:\>ftp 2001:db8:cafe:2::2
Trying to connect...2001:db8:cafe:2::2
Connected to 2001:db8:cafe:2::2
220- Welcome to PT Ftp server
Username:
```

L1

```
C:\>ftp 2001:db8:cafe:2::2
Trying to connect...2001:db8:cafe:2::2
Connected to 2001:db8:cafe:2::2
220- Welcome to PT Ftp server
Username:
```

L2

```
Trying to connect...2001:db8:cafe:2::2
Connected to 2001:db8:cafe:2::2
220- Welcome to PT Ftp server
Username:
```

L1 kann unerwarteter weiße eine FTP verbindung herstellen

Fehlerbehebung

Die ACL G1-ACCESS ist am Interface fälschlicher weiße als outbound und nicht inbound konfiguriert.

```
int g0/1
no ipv6 traffic-filter G1-ACCESS out
ipv6 traffic-filter G1-ACCESS in
```

```
R1(config-ipv6-acl)#int g0/1
R1(config-if)#no ip
R1(config-if)#no ip tra
R1(config-if)#no ip tra?
% Unrecognized command
R1(config-if)#no ?
  arp
                     Set arp type (arpa, probe, snap) or timeout
  bandwidth
                     Set bandwidth informational parameter
  cdp
                    CDP interface subcommands
  channel-group
                     Add this interface to an Etherchannel group
                    Encryption/Decryption commands
  crypto
  custom-queue-list Assign a custom queue list to an interface
  delay
                     Specify interface throughput delay
                    Interface specific description
  description
                    Configure duplex operation.
  duplex
  fair-queue
                    Enable Fair Queuing on an Interface
  hold-queue
                    Set hold queue depth
                     Interface Internet Protocol config commands
  ip
                    IPv6 interface subcommands
  ipv6
  11dp
                    LLDP interface subcommands
  mac-address
                    Manually set interface MAC address
                   Set the interface Maximum Transmission Unit (MTU)
  mtu
 pppoe pppoe interface subcommands
priority-group service-policy Shutdown
Shutdown
Shutdown
Shutdown
  shutdown
                    Shutdown the selected interface
  speed
                     Configure speed operation.
  standby
                     HSRP interface configuration commands
  tx-ring-limit
                    Configure PA level transmit ring limit
R1(config-if)#no ipv
R1(config-if)#no ipv6 traff
R1(config-if)#no ipv6 traffic-filter out
R1(config-if)#no ipv6 traffic-filter ?
  WORD Access-list name
  in
        inbound packets
        outbound packets
R1(config-if)#no ipv6 traffic-filter G1 Acc
R1(config-if)#no ipv6 traffic-filter G1-ACCESS out
R1(config-if)#ipv6 traffic-filter G1-ACCESS in
R1(config-if)#
```

Testen

```
C:\>ftp 2001:db8:cafe:2::2
Trying to connect...2001:db8:cafe:2::2
%Error opening ftp://2001:db8:cafe:2::2/ (Timed out)
```

L1 kann nun keine FTP verbindung mehr zum Server herstellen.

Troubelshoot SSH Access

Schon bei der Inspektion der ACI Konfiguration, ist aufgefallen, dass daspermit ipv6 any any kommando an erster stelle steht und damit sämtlicher Traffic durch dieses ACI durchgelassen wird.

Fehlerbehebung

ipv6 access-list G2-ACCESS no permit ipv6 any any permit ipv6 any any

```
R1(config)#ipv6 access-list G2-ACCESS
R1(config-ipv6-acl)#no permit ipv6 any any
R1(config-ipv6-acl)#permit ipv6 any any
R1(config-ipv6-acl)#exit
```

Testen

PC0

```
Invalid Command.

C:\>ssh -l user01 2001:DB8:CAFE::2

% Connection refused by remote host
C:\>
```

L₀

```
C:\>ssh -l user01 2001:DB8:CAFE::2
% Connection refused by remote host
```

L1

```
C:\>ssh -l user01 2001:DB8:CAFE::2
% Connection refused by remote host
```

L2

```
C:\>ssh -l user01 2001:DB8:CAFE::2

% Connection timed out; remote host not responding
C:\>l
```

Nachdem SSH auf dem Router richtig kongiguriert wird, können die Geräte sich erwatungsweiße mit dem Router verbinden.

nttp://nvs.scnreip.at/ivv5/5CHIF_20161219_Scnreip/	
	_