Unit No. 6

Trigonometry

Review Exercise No. 6

Question No. 1

(b) $\frac{24}{25}$

(c) $\frac{16}{25}$

	Four options are given against each statement. Encircle the correct one.
(i). T	The value of tan ⁻¹ 2 in radians is:
(a) π	7/2
(b) 3	$\pi/2$
(c) 0	0.4636π
(d) (0.4636
True	e option is NOT given:
` ′	In a right triangle, the hypotenuse is 13 units and one of the angles is θ =30°. The length ne opposite side is:
(a) 6	5.5 units
(b) 7	'.5 units
(c) 6	units
(d) 5	units
	A person standing 50 m away from a building sees the top of the building at an angle of ation of 45°. Height of the building is:
(a) 5	50 m
(b) 2	25 m
(c) 3	5 m
(d) 7	70 m
(iv).	$\sec^2\theta - \tan^2\theta = \underline{\hspace{1cm}}.$
(a) s	${\sf in}^2 heta$
(b) 1	
(c) c	$\mathrm{os}^2 \theta$
(d) c	$\cot^2 \theta$
(v).	If $\sin\theta = \frac{3}{5}$ and θ is an acute angle,
\cos^2	$\theta = \underline{\hspace{1cm}}$.
(a) $\frac{7}{2}$, -

Р	а	σ	Р	1
г	а	×	_	ι т

(4)	4	
(u)	25	

(vi).
$$\frac{5\pi}{24}$$
 rad = _____ degrees.

- (a) 30°
- (b) 37.5°
- (c) 45°
- (d) 52.5°
- (vii). 292.5° = _____ rad.
- (a) $\frac{17\pi}{6}$
- $(b)\, \frac{17\pi}{4}$
- (c) 1.6π
- (d) 1.625π

(viii). Which of the following is a valid identity?

(a)
$$\cos(\frac{\pi}{2} - \theta) = \sin\theta$$

(b)
$$\cos(\frac{\pi}{2} - \theta) = \cos\theta$$

$$(c)\cos(\frac{\pi}{2}-\theta)=\sec\theta$$

$$(d)\cos(\frac{\pi}{2}-\theta) = \csc\theta$$

(ix).
$$\sin 60^{\circ} =$$
____.

- (a) 1
- $(b) \frac{1}{2}$
- $(c)\,\sqrt{(3)^2}$
- (d) $\frac{\sqrt{3}}{2}$
- (x). $\cos^2 100 \pi =$ ____.
- (a) 1
- (b) 2
- (c)3
- (d) 4

Question No. 2

Convert the given angles from:

- (a) degrees to radians giving answer in terms of π :
- (i) 255°

Solution:

Radians =
$$255 \times \frac{\pi}{180}$$

Radians =
$$\frac{255\pi}{180}$$
 π rad

Radians =
$$\frac{17\pi}{12}$$
 rad

(ii) 75° 45'

Solution:

$$=75^{\circ}+\frac{45}{60}^{\circ}$$

$$=75^{\circ}+\frac{3}{4}^{\circ}$$

$$=75\frac{3}{4}$$
°

$$=\frac{303}{4}$$
°

Radians =
$$\frac{303}{4} \times \frac{\pi}{180}$$
 rad

Radians =
$$\frac{303\pi}{720}$$
 π rad

Radians =
$$\frac{101\pi}{240}$$
 rad

(iii) 142.5°

Solution:

Radians =
$$142.5 \times \frac{\pi}{180}$$

Radians =
$$\frac{142.5\pi}{180}$$
 π rad

Radians =
$$\frac{1425\pi}{1800}$$
 π rad

Radians =
$$\frac{19\pi}{24}$$
 rad

(b) radians to degrees giving answer in minutes:

$$(i)\,\frac{17\pi}{24}$$

Solution:

$$=\frac{17\pi}{24}\,\times\,\frac{180}{\pi}$$

$$=\frac{17\times\,15}{2}$$

$$=\frac{255}{2}$$

$$= 127^{\circ} (0.5 \times 60)'$$

(ii)
$$\frac{7\pi}{12}$$

Solution:

$$\frac{7\pi}{12}$$

$$=\frac{7\pi}{12}\,\times\,\frac{180}{\pi}$$

$$= 7 \times 15^{\circ}$$

$$\text{(iii)}\,\frac{11\pi}{16}$$

Solution:

$$\frac{11\pi}{16}$$

$$=\frac{11\pi}{16}\,\times\,\frac{180}{\pi}$$

$$=\frac{11\times\,45}{4}$$

$$=\frac{495}{4}$$

$$= 123^{\circ} (0.75 \times 60)'$$

Question No. 3

Prove the following trigonometric identities:

(i).
$$\frac{\sin\theta}{1-\cos\theta} = \frac{1+\cos\theta}{\sin\theta}$$

Solution:

By Solving L.H.S:

$$=\frac{\sin\theta}{1-\cos\theta}$$

Multiply the numerator and the denominator by $(1 + \sin \theta)$:

$$=\frac{\sin\theta}{1-\cos\theta}\times\frac{(1+\cos\theta)}{(1+\cos\theta)}$$

$$=\frac{sin\theta(1+cos\theta)}{1^2-cos^2\theta}$$

$$=\frac{\sin\theta(1+\cos\theta)}{1+\cos^2\theta}$$

$$=\frac{\sin\theta(1+\cos\theta)}{\sin^2\theta}$$

$$=\frac{(1+\cos\theta)}{\sin\theta}$$

This is equal to the right-hand side.

Therefore, $\frac{\sin\theta}{1-\cos\theta} = \frac{1+\cos\theta}{\sin\theta}$ is proven.

(ii).
$$\sin\theta(\csc\theta - \sin\theta) = \frac{1}{\sec^2\theta}$$

Solution:

$$\sin\theta(\csc\theta - \sin\theta) = \frac{1}{\sec^2\theta}$$

By Solving L.H.S:

$$= \sin\theta(\csc\theta - \sin\theta)$$

$$=\sin\theta\cdot\csc\theta-\sin\theta\cdot\sin\theta$$

We know that $\csc\theta = \frac{1}{\sin \theta}$:

$$=\sin\theta\cdot\frac{1}{\sin\theta}-\sin^2\theta$$

$$=1-\sin^2\theta$$

We know that, $1 - \sin^2 \theta = \cos^2 \theta$:

$$= cos^2\theta$$

$$=\frac{1}{\sec^2\theta}$$

This is equal to the right-hand side.

Therefore, $\sin\theta(\csc\theta - \sin\theta) = \frac{1}{\sec^2\theta}$ is proven.

(iii).
$$\frac{cosec\theta - sec\theta}{cosec\theta + sec\theta} = \frac{1 - tan\theta}{1 + tan\theta}$$

Solution:

$$\frac{cosec\theta - sec\theta}{cosec\theta + sec\theta} = \frac{1 - tan\theta}{1 + tan\theta}$$

By Solving L.H.S:

$$=\frac{cosec\theta-sec\theta}{cosec\theta+sec\theta}$$

$$=(cosec\theta - sec\theta) \div (cosec\theta + sec\theta)$$

$$= \left(\frac{1}{\sin\theta} - \frac{1}{\cos\theta}\right) \div \left(\frac{1}{\sin\theta} + \frac{1}{\cos\theta}\right)$$

$$= \big(\frac{\cos\theta - \sin\theta}{\sin\theta \cdot \cos\theta}\big) \div \big(\frac{\cos\theta + \sin\theta}{\sin\theta \cdot \cos\theta}\big)$$

$$= \left(\frac{\cos\theta - \sin\theta}{\sin\theta \cdot \cos\theta}\right) \times \left(\frac{\sin\theta \cdot \cos\theta}{\cos\theta + \sin\theta}\right)$$

$$=\frac{\cos\theta-\sin\theta}{\cos\theta+\sin\theta}$$

$$=(\cos\theta - \sin\theta) \div (\cos\theta + \sin\theta)$$

Divide by $cos\theta$:

$$= \left(\frac{\cos\theta - \sin\theta}{\cos\theta}\right) \div \left(\frac{\cos\theta + \sin\theta}{\cos\theta}\right)$$

$$= \left(\frac{\cos\theta}{\cos\theta} - \frac{\sin\theta}{\cos\theta}\right) \div \left(\frac{\cos\theta}{\cos\theta} + \frac{\sin\theta}{\cos\theta}\right)$$
$$= (1 - \tan\theta) \div (1 + \tan\theta)$$
$$= \frac{1 - \tan\theta}{1 + \tan\theta}$$

This is equal to the right-hand side.

Therefore, $\sec\theta \tan\theta + \cot\theta = \csc\theta$ is proven.

(iv).
$$\tan\theta + \cot\theta = \frac{1}{\sin\theta\cos\theta}$$

Solution:

$$\tan\theta + \cot\theta = \frac{1}{\sin\theta\cos\theta}$$

By Solving L.H.S:

$$= \tan\theta + \cot\theta$$

Expressing $\tan\theta$ and $\cot\theta$ in terms of $\sin\theta$ and $\cos\theta$:

$$= \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}$$
$$= \frac{\sin^2\theta + \cos^2\theta}{\cos\theta \cdot \sin\theta}$$
$$= \frac{\sin^2\theta + \cos^2\theta}{\cos\theta \cdot \sin\theta}$$

Use the Pythagorean identity

$$\sin^2\theta + \cos^2\theta = 1$$
:

$$= \frac{1}{\cos\theta \cdot \sin\theta}$$

This is equal to the right-hand side.

Therefore, $\tan\theta + \cot\theta = \frac{1}{\sin\theta\cos\theta}$ is proven.

(v).
$$\frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} + \frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} = \frac{2}{1 - 2\sin^2\theta}$$

Solution:

$$\frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} + \frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} = \frac{2}{1 - 2\sin^2\theta}$$

By Solving L.H.S:

$$= \frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} + \frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta}$$

$$(\cos\theta + \sin\theta)^2 + (\cos\theta - \sin\theta)^2$$

$$=\frac{(\cos\theta+\sin\theta)^2+(\cos\theta-\sin\theta)^2}{(\cos\theta-\sin\theta)(\cos\theta+\sin\theta)}$$

$$=\frac{\cos^2\theta+2\cos\theta\sin\theta+\sin^2\theta+\cos^2\theta-2\cos\theta\sin\theta+\sin^2\theta}{\cos^2\theta-\sin^2\theta}$$

$$=\frac{\cos^2\theta+\,\sin^2\theta+\cos^2\theta+\,\sin^2\theta}{\cos^2\theta-\,\sin^2\theta}$$

$$=\frac{2\cos^2\theta+2\sin^2\theta}{\cos^2\theta-\sin^2\theta}$$

Use the Pythagorean identity

$$\cos^2\theta = 1 - \sin^2\theta$$
:

$$=\frac{2(\cos^2\theta+\sin^2\theta)}{1-\sin^2\theta-\sin^2\theta}$$

$$=\frac{2(1)}{1-2sin^2\theta}$$

$$=\frac{2}{1-2sin^2\theta}$$

This is equal to the right-hand side.

Therefore,
$$\frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} + \frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} = \frac{2}{1 - 2\sin^2\theta}$$
 is proven.

(vi).
$$\frac{1+\cos\theta}{1-\cos\theta} = (\csc\theta + \cot\theta)^2$$

Solution:

$$\frac{1+\cos\theta}{1-\cos\theta} = (\csc\theta + \cot\theta)^2$$

By Solving R.H.S:

$$(\csc\theta + \cot\theta)^2$$

Use the Pythagorean identities

i).
$$\csc\theta = \frac{1}{\sin\theta}$$
; ii). $\cot\theta = \frac{\cos\theta}{\sin\theta}$

$$= \left(\frac{1}{\sin\theta} + \frac{\cos\theta}{\sin\theta}\right)^2$$

$$= \left(\frac{1 + \cos\theta}{\sin\theta}\right)^2$$

$$=\frac{(1+\cos\theta)^2}{\sin^2\theta}$$

Use the Pythagorean identity

$$\sin^2\theta = 1 - \cos^2\theta$$
:

$$=\frac{(1+\cos\theta)^2}{1-\cos^2\theta}$$

$$=\frac{(1+\cos\theta)(1+\cos\theta)}{(1+\cos\theta)(1-\cos\theta)}$$

$$=\frac{(1+\cos\theta)}{(1-\cos\theta)}$$

This is equal to the right-hand side.

Therefore,
$$\frac{1 + \cos \theta}{1 - \cos \theta} = (\csc \theta + \cot \theta)^2$$
 is proven.

Question No. 4

If $\tan\theta = \frac{3}{\sqrt{2}}$ then find the remaining trigonometric ratios when θ lies in first quadrant.

Data:

$$Tan\theta = \frac{3}{\sqrt{2}}$$

To Find:

 $Sin\theta$, $Cos\theta$, $Cosec\theta$, $Sec\theta$, $Cot\theta = ?$

Solution:

$$Tan\theta = \frac{P}{B} = \frac{a}{b} = \frac{3}{\sqrt{2}}$$

$$a = 3, b = \sqrt{2}, c = ?$$

Pythagorean theorem:

$$c^2 = a^2 + b^2$$

$$c^2 = (3)^2 + (\sqrt{2})^2$$

$$c^2 = 9 + 2$$

$$c^2 = 11$$

$$c = \sqrt{11}$$

Pictorial Form:

$$\sin \theta = \frac{a}{c} = \frac{3}{\sqrt{11}}$$

$$\sin\theta = \frac{a}{c} = \frac{3}{\sqrt{11}} \qquad , \qquad \csc\theta = \frac{c}{a} = \frac{\sqrt{11}}{3}$$

$$\cos\theta = \frac{b}{c} = \frac{\sqrt{2}}{\sqrt{11}} = \sqrt{\frac{2}{11}} \qquad , \qquad \sec\theta = \frac{c}{b} = \frac{\sqrt{11}}{\sqrt{2}} = \sqrt{\frac{11}{2}}$$

$$\sec \theta = \frac{c}{b} = \frac{\sqrt{11}}{\sqrt{2}} = \sqrt{\frac{11}{2}}$$

$$\tan \theta = \frac{a}{b} = \frac{3}{\sqrt{2}}$$

$$, \qquad \cot \theta = \frac{b}{a} = \frac{\sqrt{2}}{3}$$

Question No. 5

From a point on the ground, the angle of elevation to the top of a 30 m high building is 28°. How far is the point from the base of the building?

Data:

Height of the building = a = 30 m

Angle of elevation = $\theta = 28^{\circ}$

To Find:

Distance from point to building = b = ?

Pictorial Form:

Solution:

$$\tan \theta = \frac{BC}{AB} = \frac{a}{b}$$

$$\tan 28 = \frac{30}{AB}$$

$$AB = \frac{30}{\tan 28}$$

$$AB = \frac{30}{0.5317}$$

$$AB = 56.42 m$$

The point on the ground is approximately 56.42 meters away from the base of the building.

Question No. 6

A ladder leaning against a wall forms an angle of 65° with the ground. If the ladder is 10 m long, how high does it reach on the wall?

Data:

Length of the ladder = c = 10 m

Angle between ladder and ground = $\theta = 65^{\circ}$

To Find:

Height of ladder = a(x) = ?

Pictorial Form:

Solution:

$$\sin\theta = \frac{BC}{AC} = \frac{a}{c}$$

$$\sin 65 = \frac{BC}{10}$$

 $BC = \sin 65 \times 10$

 $BC = 0.9063 \times 10$

BC = 9.063 m

The ladder reaches approximately 9.063 meters high on the wall.