Math 362: Mathematical Statistics II

Le Chen

le.chen@emory.edu chenle02@gmail.com

> Emory University Atlanta, GA

Last updated on Spring 2021 Last compiled on January 15, 2023

2021 Spring

Creative Commons License (CC By-NC-SA)

Chapter 6. Hypothesis Testing

- § 6.1 Introduction
- § 6.2 The Decision Rule
- § 6.3 Testing Binomial Data $H_0: p = p_0$
- § 6.4 Type I and Type II Errors
- § 6.5 A Notion of Optimality: The Generalized Likelihood Ratio

1

Plan

- § 6.1 Introduction
- § 6.2 The Decision Rule
- § 6.3 Testing Binomial Data $H_0: p = p_0$

§ 6.4 Type I and Type II Errors

§ 6.5 A Notion of Optimality: The Generalized Likelihood Ratio

Chapter 6. Hypothesis Testing

- § 6.1 Introduction
- § 6.2 The Decision Rule
- § 6.3 Testing Binomial Data $H_0: p = p_0$

§ 6.4 Type I and Type II Errors

§ 6.5 A Notion of Optimality: The Generalized Likelihood Ratio

	True State of Nature	
	H_0 is true	H_1 is true
Fail to reject H_0	Correct	Type II error
Reject H ₀	Type I error	Correct

Table of error types		Null hypothesis (H_0) is	
		True	False
Decision about null hypothesis (<i>H</i> ₀)	Don't reject	Correct inference (true negative) (probability = 1 - α)	Type II error (false negative) (probability = β)
	Reject	Type I error (false positive) (probability = α)	Correct inference (true positive) (probability = 1 - β)

Type I error $\sim \alpha$

$$\alpha := \mathbb{P}(\mathsf{Type} \ \mathsf{I} \ \mathsf{error}) = \mathbb{P}(\mathsf{Reject} \ H_0 | H_0 \ \mathsf{is} \ \mathsf{true})$$

By convention, H_0 is always of the form, e.g., $\mu=\mu_0$. So this probability can be exactly determined. It is equal to the level of significance α .

(Simple null test

Type I error $\sim \alpha$

$$\alpha := \mathbb{P}(\mathsf{Type} \ \mathsf{I} \ \mathsf{error}) = \mathbb{P}(\mathsf{Reject} \ H_0 | H_0 \ \mathsf{is} \ \mathsf{true})$$

By convention, H_0 is always of the form, e.g., $\mu = \mu_0$. So this probability can be exactly determined. It is equal to the level of significance α .

(Simple null test)

Type II error $\sim \beta$

$$\beta := \mathbb{P}(\mathsf{Type}\;\mathsf{II}\;\mathsf{error}) = \mathbb{P}(\mathsf{Fail}\;\mathsf{to}\;\mathsf{reject}\;\mathsf{H}_0|\mathsf{H}_1\;\mathsf{is}\;\mathsf{true})$$

In order to compute Type II error, we need to specify a concrete alternative hypothesis.

Figure: One-sided inference $H_1: \mu > \mu_0$

Type II error $\sim \beta$

$$\beta := \mathbb{P}(\mathsf{Type}\;\mathsf{II}\;\mathsf{error}) = \mathbb{P}(\mathsf{Fail}\;\mathsf{to}\;\mathsf{reject}\; H_0|H_1\;\mathsf{is}\;\mathsf{true})$$

In order to compute Type II error, we need to specify a concrete alternative hypothesis.

Figure: One-sided inference $H_1: \mu > \mu_0$

Figure: Two-sided inference $H_1: \mu \neq \mu_0$

Power of test $1 - \beta$

Power of test = $\mathbb{P}(\text{Reject } H_0 | H_1 \text{ is true}) = 1 - \beta$

One online interactive show all α , β and $1 - \beta$: https://rpsychologist.com/d3/NHST/

Two-sided test

One-sided test

Use the **power curves** to select methods (steepest one!)

$$\alpha \uparrow \implies \beta \downarrow \text{ and } (1-\beta) \uparrow$$

E.g. Test $H_0: \mu=100$ v.s. $H_1: \mu>100$ at $\alpha=0.05$ with $\sigma=14$ known. Requirement: $1-\beta=0.60$ when $\mu=103$. Find smallest sample size n.

Remark: Two condisions: $\alpha=0.05$ and $1-\beta=0.60$ Two unknowns: Critical value y^* and sample size r

E.g. Test $H_0: \mu=100$ v.s. $H_1: \mu>100$ at $\alpha=0.05$ with $\sigma=14$ known. Requirement: $1-\beta=0.60$ when $\mu=103$. Find smallest sample size n.

Remark: Two condisions: $\alpha=0.05$ and $1-\beta=0.60$ Two unknowns: Critical value y^* and sample size r

E.g. Test $H_0: \mu=100$ v.s. $H_1: \mu>100$ at $\alpha=0.05$ with $\sigma=14$ known. Requirement: $1-\beta=0.60$ when $\mu=103$. Find smallest sample size n.

Remark: Two condisions: $\alpha=0.05$ and $1-\beta=0.60$ Two unknowns: Critical value y^* and sample size n

Sol.

$$C = \left\{ z : z = \frac{\bar{y} - \mu_0}{\sigma / \sqrt{n}} \ge z_{\alpha} \right\}.$$

$$1 - \beta = \mathbb{P}\left(\frac{\overline{Y} - \mu_0}{\sigma/\sqrt{n}} \ge z_\alpha \middle| \mu_1\right)$$

$$= \mathbb{P}\left(\frac{\overline{Y} - \mu_1}{\sigma/\sqrt{n}} + \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} \ge z_\alpha \middle| \mu_1\right)$$

$$= \mathbb{P}\left(Z \ge -\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} + z_\alpha \middle| \mu_1\right)$$

$$= \Phi\left(\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} - z_\alpha\right)$$

$$\frac{\mu_1 - \mu_0}{\sigma / \sqrt{n}} - z_\alpha = \Phi^{-1}(1 - \beta) \iff n = \left(\sigma \times \frac{\Phi^{-1}(1 - \beta) + z_\alpha}{\mu_1 - \mu_0}\right)$$
$$n = \left[\left(14 \times \frac{0.2533 + 1.645}{103 - 100}\right)^2\right] = \lceil 78.48 \rceil = 79.$$

$$\begin{array}{ccc} & & & & \text{Python} \\ z_{\alpha} = \operatorname{qnorm}(1-\alpha) & & z_{\alpha} = \operatorname{scipy.stats.norm.ppf}(1-\alpha) \\ \Phi^{-1}(1-\beta) = \operatorname{qnorm}(1-\beta) & & \Phi^{-1}(1-\beta) = \operatorname{scipy.stats.norm.ppf}(1-\beta) \end{array}$$

$$1 - \beta = \mathbb{P}\left(\frac{\overline{Y} - \mu_0}{\sigma/\sqrt{n}} \ge z_\alpha \middle| \mu_1\right)$$

$$= \mathbb{P}\left(\frac{\overline{Y} - \mu_1}{\sigma/\sqrt{n}} + \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} \ge z_\alpha \middle| \mu_1\right)$$

$$= \mathbb{P}\left(Z \ge -\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} + z_\alpha \middle| \mu_1\right)$$

$$= \Phi\left(\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} - z_\alpha\right)$$

$$\frac{\mu_1 - \mu_0}{\sigma / \sqrt{n}} - z_\alpha = \Phi^{-1}(1 - \beta) \iff n = \left(\sigma \times \frac{\Phi^{-1}(1 - \beta) + z_\alpha}{\mu_1 - \mu_0}\right)$$
$$n = \left[\left(14 \times \frac{0.2533 + 1.645}{103 - 100}\right)^2\right] = \lceil 78.48 \rceil = 79.$$

$$\begin{array}{ccc} & & & & \text{Python} \\ z_{\alpha} = \operatorname{qnorm}(1-\alpha) & z_{\alpha} = \operatorname{scipy.stats.norm.ppf}(1-\alpha) \\ \Phi^{-1}(1-\beta) = \operatorname{qnorm}(1-\beta) & \Phi^{-1}(1-\beta) = \operatorname{scipy.stats.norm.ppf}(1-\beta) \end{array}$$

$$\begin{split} 1 - \beta &= \mathbb{P}\left(\frac{\overline{Y} - \mu_0}{\sigma/\sqrt{n}} \ge z_\alpha \middle| \mu_1\right) \\ &= \mathbb{P}\left(\frac{\overline{Y} - \mu_1}{\sigma/\sqrt{n}} + \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} \ge z_\alpha \middle| \mu_1\right) \\ &= \mathbb{P}\left(Z \ge -\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} + z_\alpha \middle| \mu_1\right) \\ &= \Phi\left(\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} - z_\alpha\right) \end{split}$$

$$\frac{\mu_1 - \mu_0}{\sigma / \sqrt{n}} - z_\alpha = \Phi^{-1}(1 - \beta) \iff n = \left(\sigma \times \frac{\Phi^{-1}(1 - \beta) + z_\alpha}{\mu_1 - \mu_0}\right)^2$$
$$n = \left[\left(14 \times \frac{0.2533 + 1.645}{103 - 100}\right)^2\right] = \lceil 78.48 \rceil = 79.$$

$$\begin{array}{ccc} & & & \text{Python} \\ z_{\alpha} = \operatorname{qnorm}(1-\alpha) & z_{\alpha} = \operatorname{scipy.stats.norm.ppf}(1-\alpha) \\ \Phi^{-1}(1-\beta) = \operatorname{qnorm}(1-\beta) & \Phi^{-1}(1-\beta) = \operatorname{scipy.stats.norm.ppf}(1-\beta) \end{array}$$

$$\begin{split} 1 - \beta &= \mathbb{P}\left(\frac{\overline{Y} - \mu_0}{\sigma/\sqrt{n}} \ge z_\alpha \middle| \mu_1\right) \\ &= \mathbb{P}\left(\frac{\overline{Y} - \mu_1}{\sigma/\sqrt{n}} + \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} \ge z_\alpha \middle| \mu_1\right) \\ &= \mathbb{P}\left(Z \ge -\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} + z_\alpha \middle| \mu_1\right) \\ &= \Phi\left(\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} - z_\alpha\right) \end{split}$$

$$\frac{\mu_1 - \mu_0}{\sigma / \sqrt{n}} - z_\alpha = \Phi^{-1}(1 - \beta) \iff n = \left(\sigma \times \frac{\Phi^{-1}(1 - \beta) + z_\alpha}{\mu_1 - \mu_0}\right)^2$$
$$n = \left[\left(14 \times \frac{0.2533 + 1.645}{103 - 100}\right)^2\right] = \lceil 78.48 \rceil = 79.$$

$$\begin{array}{ccc} & & & \text{Python} \\ z_{\alpha} = \mathsf{qnorm}(1-\alpha) & z_{\alpha} = \mathsf{scipy.stats.norm.ppf}(1-\alpha) \\ \Phi^{-1}(1-\beta) = \mathsf{qnorm}(1-\beta) & \Phi^{-1}(1-\beta) = \mathsf{scipy.stats.norm.ppf}(1-\beta) \end{array}$$

$$\begin{aligned} 1 - \beta &= \mathbb{P}\left(\frac{\overline{Y} - \mu_0}{\sigma/\sqrt{n}} \ge Z_\alpha \middle| \mu_1\right) \\ &= \mathbb{P}\left(\frac{\overline{Y} - \mu_1}{\sigma/\sqrt{n}} + \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} \ge Z_\alpha \middle| \mu_1\right) \\ &= \mathbb{P}\left(Z \ge -\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} + Z_\alpha \middle| \mu_1\right) \\ &= \Phi\left(\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} - Z_\alpha\right) \end{aligned}$$

$$\frac{\mu_1 - \mu_0}{\sigma / \sqrt{n}} - z_\alpha = \Phi^{-1}(1 - \beta) \iff n = \left(\sigma \times \frac{\Phi^{-1}(1 - \beta) + z_\alpha}{\mu_1 - \mu_0}\right)^{\frac{1}{2}}$$
$$n = \left[\left(14 \times \frac{0.2533 + 1.645}{103 - 100}\right)^2\right] = \lceil 78.48 \rceil = 79.$$

$$\begin{array}{ccc} & & & \text{Python} \\ z_{\alpha} = \mathsf{qnorm}(1-\alpha) & z_{\alpha} = \mathsf{scipy.stats.norm.ppf}(1-\alpha) \\ \Phi^{-1}(1-\beta) = \mathsf{qnorm}(1-\beta) & \Phi^{-1}(1-\beta) = \mathsf{scipy.stats.norm.ppf}(1-\beta) \end{array}$$

$$\begin{split} 1 - \beta &= \mathbb{P}\left(\frac{\overline{Y} - \mu_0}{\sigma/\sqrt{n}} \ge z_\alpha \,\middle|\, \mu_1\right) \\ &= \mathbb{P}\left(\frac{\overline{Y} - \mu_1}{\sigma/\sqrt{n}} + \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} \ge z_\alpha \,\middle|\, \mu_1\right) \\ &= \mathbb{P}\left(Z \ge -\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} + z_\alpha \,\middle|\, \mu_1\right) \\ &= \Phi\left(\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} - z_\alpha\right) \end{split}$$

$$\frac{\mu_1 - \mu_0}{\sigma / \sqrt{n}} - z_\alpha = \Phi^{-1}(1 - \beta) \iff n = \left(\sigma \times \frac{\Phi^{-1}(1 - \beta) + z_\alpha}{\mu_1 - \mu_0}\right)^2$$

$$n = \left[\left(14 \times \frac{0.2533 + 1.645}{103 - 100}\right)^2\right] = \lceil 78.48 \rceil = 79.$$

$$\begin{array}{ll} & \text{Python} \\ z_{\alpha} = \mathsf{qnorm}(1-\alpha) & z_{\alpha} = \mathsf{scipy.stats.norm.ppf}(1-\alpha) \\ \Phi^{-1}(1-\beta) = \mathsf{qnorm}(1-\beta) & \Phi^{-1}(1-\beta) = \mathsf{scipy.stats.norm.ppf}(1-\beta) \end{array}$$

$$\begin{split} 1 - \beta &= \mathbb{P}\left(\frac{\overline{Y} - \mu_0}{\sigma/\sqrt{n}} \ge z_\alpha \,\middle|\, \mu_1\right) \\ &= \mathbb{P}\left(\frac{\overline{Y} - \mu_1}{\sigma/\sqrt{n}} + \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} \ge z_\alpha \,\middle|\, \mu_1\right) \\ &= \mathbb{P}\left(Z \ge -\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} + z_\alpha \,\middle|\, \mu_1\right) \\ &= \Phi\left(\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} - z_\alpha\right) \end{split}$$

$$\frac{\mu_1 - \mu_0}{\sigma / \sqrt{n}} - z_\alpha = \Phi^{-1}(1 - \beta) \iff n = \left(\sigma \times \frac{\Phi^{-1}(1 - \beta) + z_\alpha}{\mu_1 - \mu_0}\right)^2$$
$$n = \left[\left(14 \times \frac{0.2533 + 1.645}{103 - 100}\right)^2\right] = \lceil 78.48 \rceil = 79.$$

$$\begin{array}{ccc} & & & \text{Python} \\ z_{\alpha} = \mathsf{qnorm}(1-\alpha) & z_{\alpha} = \mathsf{scipy.stats.norm.ppf}(1-\alpha) \\ \Phi^{-1}(1-\beta) = \mathsf{qnorm}(1-\beta) & \Phi^{-1}(1-\beta) = \mathsf{scipy.stats.norm.ppf}(1-\beta) \end{array}$$

Test $H_0: \theta = \theta_0$, with $f_Y(y; \theta)$ is not normal distribution.

Test $H_0: \theta = \theta_0$, with $f_Y(y; \theta)$ is not normal distribution.

1. Identify a sufficient estimator $\widehat{\theta}$ for θ

2. Find the critical region ${\cal C}$: Least compatible with H_0 bust still admissible under H_1

3. Three types of questions: Given $\alpha \to \operatorname{find} C$

Test $H_0: \theta = \theta_0$, with $f_Y(y; \theta)$ is not normal distribution.

1. Identify a sufficient estimator $\widehat{\theta}$ for θ

2. Find the critical region C: Least compatible with H_0 but still admissible under H_1

3. Three types of questions Given $\alpha o \mathsf{find} \ C \to \mathbb{R}_+$

Test $H_0: \theta = \theta_0$, with $f_Y(y; \theta)$ is not normal distribution.

1. Identify a sufficient estimator $\widehat{\theta}$ for θ

2. Find the critical region C: Least compatible with H_0 but still admissible under H_1

3. Three types of questions:

Given $\alpha \rightarrow \text{find } C$

Test $H_0: \theta = \theta_0$, with $f_Y(y; \theta)$ is not normal distribution.

1. Identify a sufficient estimator $\widehat{\theta}$ for θ

2. Find the critical region C: Least compatible with H_0 but still admissible under H_1

3. Three types of questions:

Given $\alpha \to \text{find } C \to \beta, 1 - \beta...$

Test $H_0: \theta = \theta_0$, with $f_Y(y; \theta)$ is not normal distribution.

1. Identify a sufficient estimator $\widehat{\theta}$ for θ

2. Find the critical region C: Least compatible with H_0 but still admissible under H_1

3. Three types of questions:

Given $\alpha \to \text{find } C \to \beta, 1 - \beta...$

Test $H_0: \theta = \theta_0$, with $f_Y(y; \theta)$ is not normal distribution.

1. Identify a sufficient estimator $\widehat{\theta}$ for θ

2. Find the critical region C: Least compatible with H_0 but still admissible under H_1

3. Three types of questions:

Given $\alpha \to \text{find } C \to \beta, 1 - \beta...$

From $C \rightarrow$ determine α

From $\theta_e \rightarrow \text{find } P\text{-value}$

Test $H_0: \theta = \theta_0$, with $f_Y(y; \theta)$ is not normal distribution.

1. Identify a sufficient estimator $\widehat{\theta}$ for θ

2. Find the critical region C: Least compatible with H_0 but still admissible under H_1

3. Three types of questions:

Given $\alpha \to \text{find } C \to \beta, 1 - \beta...$

From $C \rightarrow$ determine α

From $\theta_e \rightarrow \text{find } P\text{-value}$

E.g. 1. A random sample of size n from <u>uniform distr.</u> $f_Y(y;\theta) = 1/\theta, y \in [0,\theta].$ To test

$$H_0: \theta = 2.0$$
 v.s. $H_1: \theta < 2.0$

at the level $\alpha = 0.10$ of significance, one can use the decision rule based on Y_{max} . Find the probability of committing a Type II error when $\theta = 1.7$.

E.g. 1. A random sample of size n from <u>uniform distr.</u> $f_Y(y;\theta) = 1/\theta, y \in [0,\theta].$ To test

$$H_0: \theta = 2.0$$
 v.s. $H_1: \theta < 2.0$

at the level $\alpha = 0.10$ of significance, one can use the decision rule based on Y_{max} . Find the probability of committing a Type II error when $\theta = 1.7$.

E.g. 1. A random sample of size n from <u>uniform distr.</u> $f_Y(y;\theta) = 1/\theta, y \in [0,\theta]$. To test

$$H_0: \theta = 2.0$$
 v.s. $H_1: \theta < 2.0$

at the level $\alpha = 0.10$ of significance, one can use the decision rule based on Y_{max} . Find the probability of committing a Type II error when $\theta = 1.7$.

- Sol. 1) The critical region should has the form: $C = \{y_{max} : y_{max} \le c\}$.
 - 2) We need to use the condition $\alpha = 0.10$ to find c.
 - 3) Find the prob. of Type II error

E.g. 1. A random sample of size n from <u>uniform distr.</u> $f_Y(y;\theta) = 1/\theta, y \in [0,\theta]$. To test

$$H_0: \theta = 2.0$$
 v.s. $H_1: \theta < 2.0$

at the level $\alpha = 0.10$ of significance, one can use the decision rule based on Y_{max} . Find the probability of committing a Type II error when $\theta = 1.7$.

- Sol. 1) The critical region should has the form: $C = \{y_{max} : y_{max} \le c\}$.
 - 2) We need to use the condition $\alpha = 0.10$ to find c.
 - 3) Find the prob. of Type II error

E.g. 1. A random sample of size n from <u>uniform distr.</u> $f_Y(y;\theta) = 1/\theta, y \in [0,\theta]$. To test

$$H_0: \theta = 2.0$$
 v.s. $H_1: \theta < 2.0$

at the level $\alpha = 0.10$ of significance, one can use the decision rule based on Y_{max} . Find the probability of committing a Type II error when $\theta = 1.7$.

- Sol. 1) The critical region should has the form: $C = \{y_{max} : y_{max} \le c\}$.
 - 2) We need to use the condition $\alpha = 0.10$ to find c.
 - 3) Find the prob. of Type II error

E.g. 1. A random sample of size n from <u>uniform distr.</u> $f_Y(y;\theta) = 1/\theta, y \in [0,\theta].$ To test

$$H_0: \theta = 2.0$$
 v.s. $H_1: \theta < 2.0$

at the level $\alpha = 0.10$ of significance, one can use the decision rule based on Y_{max} . Find the probability of committing a Type II error when $\theta = 1.7$.

- Sol. 1) The critical region should has the form: $C = \{y_{max} : y_{max} \le c\}$.
 - 2) We need to use the condition $\alpha = 0.10$ to find c.
 - 3) Find the prob. of Type II error.

 $f_{Y_{max}}(y) = ... = n \frac{y^{n-1}}{n^n} \quad y \in [0, \theta].$

$$\alpha = \int_0^c n \frac{y^{n-1}}{\theta_0^n} dy = \left(\frac{c}{\theta_0}\right)^n \implies c = \theta_0 \alpha^{1/n} \qquad \text{(Under } H_0 : \theta = \theta_0)$$
$$\beta = \int_{\theta_0 = 1/n}^{\theta_1} n \frac{y^{n-1}}{\theta_1^n} dy = 1 - \left(\frac{\theta_0}{\theta_1}\right)^n \alpha \qquad \text{(Under } \theta = \theta_1)$$

Finally, we need only plug in the values $\theta_0 = 2$, $\theta_1 = 1.7$ and $\alpha = 0.10$.

any, we need only play in the values
$$v_0=z, v_1=1.7$$
 and $\alpha=0.10$.

$$H_0: \lambda = 0.8$$
 v.s. $H_1: \lambda > 0.8$.

at the level $\alpha = 0.10$. Find power of test when $\lambda = 1.2$.

$$\overline{X} \sim \mathsf{Poisson}(3.2)$$

$$H_0: \lambda = 0.8$$
 v.s. $H_1: \lambda > 0.8$.

at the level $\alpha = 0.10$. Find power of test when $\lambda = 1.2$.

$$\overline{X} \sim \mathsf{Poisson}(3.2)$$

- 2) $C = \{\bar{k}; \bar{k} \ge c\}.$
- 3) $\alpha = 0.10 \rightarrow c = 6$.
- 4) Alternative $\lambda = 1.2 \rightarrow 1 \beta = 0.35$.

$$H_0: \lambda = 0.8$$
 v.s. $H_1: \lambda > 0.8$.

at the level $\alpha = 0.10$. Find power of test when $\lambda = 1.2$.

$$\overline{X} \sim \mathsf{Poisson}(3.2)$$

- 2) $C = \{\bar{k}; \bar{k} \ge c\}.$
- 3) $\alpha = 0.10 \rightarrow c = 6$.
- 4) Alternative $\lambda = 1.2 \rightarrow 1 \beta = 0.35$.

$$H_0: \lambda = 0.8$$
 v.s. $H_1: \lambda > 0.8$.

at the level $\alpha = 0.10$. Find power of test when $\lambda = 1.2$.

$$\overline{X} \sim \mathsf{Poisson}(3.2)$$

- 2) $C = \{\bar{k}; \bar{k} \geq c\}.$
- 3) $\alpha = 0.10 \rightarrow c = 6$.
- 4) Alternative $\lambda = 1.2 \rightarrow 1 \beta = 0.35$

$$H_0: \lambda = 0.8$$
 v.s. $H_1: \lambda > 0.8$.

at the level $\alpha = 0.10$. Find power of test when $\lambda = 1.2$.

$$\overline{X} \sim \mathsf{Poisson}(3.2)$$

- 2) $C = \{\bar{k}; \bar{k} \geq c\}.$
- 3) $\alpha = 0.10 \rightarrow c = 6$.
- 4) Alternative $\lambda = 1.2 \rightarrow 1 \beta = 0.35$

$$H_0: \lambda = 0.8$$
 v.s. $H_1: \lambda > 0.8$.

at the level $\alpha = 0.10$. Find power of test when $\lambda = 1.2$.

$$\overline{X} \sim \mathsf{Poisson}(3.2)$$

- 2) $C = \{\bar{k}; \bar{k} \geq c\}.$
- 3) $\alpha = 0.10 \rightarrow c = 6$.
- 4) Alternative $\lambda = 1.2 \rightarrow 1 \beta = 0.35$.

Finding critical region						
k	P(X=k)	P(X<= k)	P(X>k)	P(X>=k)		
	0.0408	0.0408	0.9592			
	0.1304	0.1712	0.8288	0.9592		
2	0.2087	0.3799	0.6201	0.8288		
	0.2226	0.6025	0.3975	0.6201		
4	0.1781	0.7806	0.2194	0.3975		
	0.114	0.8946	0.1054	0.2194		
6	0.0608	0.9554	0.0446	0.1054		
	0.0278	0.9832	0.0168	0.0446		
8	0.0111	0.9943	0.0057	0.0168		
9	0.004	0.9982	0.0018	0.0057		
10	0.0013	0.9995	0.0005	0.0018		
11	0.0004	0.9999	0.0001	0.0005		
12	0.0001			0.0001		
13						
14	0			0		
	Poisson lambda= 3.2					

Computing power of test						
k	P(X=k)	P(X<= k)	P(X>k)	P(X>=k)		
	0.0082	0.0082	0.9918			
	0.0395	0.0477	0.9523	0.9918		
	0.0948	0.1425	0.8575	0.9523		
	0.1517	0.2942	0.7058	0.8575		
	0.182	0.4763	0.5237	0.7058		
	0.1747	0.651	0.349	0.5237		
	0.1398	0.7908	0.2092	0.349		
	0.0959	0.8867	0.1133	0.2092		
8	0.0575	0.9442	0.0558	0.1133		
	0.0307	0.9749	0.0251	0.0558		
10	0.0147	0.9896	0.0104	0.0251		
	0.0064	0.996	0.004	0.0104		
12	0.0026	0.9986	0.0014	0.004		
	0.0009	0.9995	0.0005	0.0014		
14	0.0003	0.9999	0.0001	0.0005		
	0.0001			0.0001		
16						
18						
20						

$$1 - \beta = \mathbb{P} \left(\mathsf{Reject} \; H_0 \mid H_1 \; \mathsf{is} \; \mathsf{true} \right) = \mathbb{P}(\overline{X} \geq 6 | \overline{X} \sim \mathit{Poisson}(4.8))$$

 1 > 1-ppois(6-1,4.8)
 1 > 1-scipy.stats.poisson.cdf(6-1,4.8)

 2 [1] 0.3489936
 2 [1] 0.3489935627305083

```
PlotPoissonTable <- function(n=14,lambda=3.2,png filename,TableTitle) {
  library (gridExtra)
  library (grid)
  library (gtable)
  x = seq(1,n,1)
  # gpois(0.90.lambda)
  tb = cbind(x,
             round(dpois(x.lambda).4).
            round(ppois(x,lambda),4),
             round(1-ppois(x,lambda),4),
             round(c(1,(1-ppois(x,lambda))[1:n]),4))
  colnames(tb) \leftarrow c("k", "P(X=k)", "P(X<=k)", "P(X>k)", "P(X>=k)")
  rownames(tb) <-x
  table <- tableGrob(tb.rows = NULL)
  title <- textGrob(TableTitle,gp=gpar(fontsize=12))
  footnote <- textGrob(paste("Poisson lambda=",lambda),
                       x=0, hjust=0, qp=qpar(fontface="italic"))
  padding <- unit(0.2, "line")
  table <- gtable add rows(table, heights = grobHeight(title) + padding.pos = 0)
  table <- gtable add rows(table, heights = grobHeight(footnote)+ padding)
  table <- gtable add grob(table, list (title, footnote),
                           t=c(1, nrow(table)), l=c(1,2), r=ncol(table))
  png(png filename)
  grid.draw(table)
PlotPoissonTable(14,3.2,"Example 6-4-3 1.png", "Finding critical region")
PlotPoissonTable(20,4.8,"Example 6-4-3 2.png","Computing power of test")
```

The R code to produce the previous two Poisson tables.

$$H_0: \theta = 2.0$$
 v.s. $H_1: \theta > 2.0$

Decision rule: Let X be the number of y_i 's that exceed 0.9; Reject H_0 if $X \ge 4$.

Find α .

```
1 > 1-pbinom(3,7,0.271)
2 [1] 0.09157663
```

^{1 &}gt; 1-scipv.stats.binom.cdf(3, 7, 0.271

^{2 [1] 0.09157663095582469}

$$H_0: \theta = 2.0$$
 v.s. $H_1: \theta > 2.0$

Decision rule: Let X be the number of y_i 's that exceed 0.9; Reject H_0 if $X \ge 4$.

Find α .

```
1 > 1-pbinom(3,7,0.271)
2 [1] 0.09157663
```

^{1 &}gt; 1-scipv.stats.binom.cdf(3, 7, 0.271

^{2 [1] 0.09157663095582469}

$$H_0: \theta = 2.0$$
 v.s. $H_1: \theta > 2.0$

Decision rule: Let X be the number of y_i 's that exceed 0.9; Reject H_0 if $X \ge 4$.

Find α .

Sol. 1) $X \sim \text{binomial}(7, p)$.

2) Find *p*:

$$p = \mathbb{P}(Y \ge 0.9 | H_0 \text{ is true})$$

= $\int_{0.9}^{1} 3y^2 dy = 0.271$

3) Compute α :

$$\alpha = \mathbb{P}(X \ge 4 | \theta = 2) = \sum_{k=4}^{7} {7 \choose k} 0.271^{k} 0.729^{7-k} = 0.092.$$

```
1 > 1-pbinom(3.7.0.271)
```

^{1 &}gt; 1-scipy.stats.binom.cdf(3, 7, 0.271

^{2 [1] 0.09157663}

$$H_0: \theta = 2.0$$
 v.s. $H_1: \theta > 2.0$

Decision rule: Let X be the number of y_i 's that exceed 0.9; Reject H_0 if $X \ge 4$.

Find α .

Sol. 1) $X \sim \text{binomial}(7, p)$.

2) Find *p*:

$$p = \mathbb{P}(Y \ge 0.9 | H_0 \text{ is true})$$

= $\int_{0.9}^{1} 3y^2 dy = 0.271$

3) Compute α :

$$\alpha = \mathbb{P}(X \ge 4 | \theta = 2) = \sum_{k=4}^{7} {7 \choose k} 0.271^{k} 0.729^{7-k} = 0.092.$$

```
1 > 1-pbinom(3.7.0.271)
```

^{1 &}gt; 1-scipy.stats.binom.cdf(3, 7, 0.271

^{2 [1] 0.09157663}

$$H_0: \theta = 2.0$$
 v.s. $H_1: \theta > 2.0$

Decision rule: Let X be the number of y_i 's that exceed 0.9; Reject H_0 if $X \ge 4$.

Find α .

- Sol. 1) $X \sim \text{binomial}(7, p)$.
 - 2) Find *p*:

$$p = \mathbb{P}(Y \ge 0.9 | H_0 \text{ is true})$$

$$= \int_{0.9}^{1} 3y^2 \mathrm{d}y = 0.271$$

3) Compute α :

$$\alpha = \mathbb{P}(X \ge 4|\theta = 2) = \sum_{k=4}^{7} {7 \choose k} 0.271^k 0.729^{7-k} = 0.092$$

$$H_0: \theta = 2.0$$
 v.s. $H_1: \theta > 2.0$

Decision rule: Let X be the number of y_i 's that exceed 0.9; Reject H_0 if $X \ge 4$.

Find α .

- Sol. 1) $X \sim \text{binomial}(7, p)$.
 - 2) Find *p*:

$$p = \mathbb{P}(Y \ge 0.9 | H_0 \text{ is true})$$

$$= \int_{0.9}^1 3y^2 \mathrm{d}y = 0.271$$

3) Compute α :

$$\alpha = \mathbb{P}(X \ge 4 | \theta = 2) = \sum_{k=4}^{7} {7 \choose k} 0.271^{k} 0.729^{7-k} = 0.092.$$