On The Complexity Of Computing Gröbner Bases For Weighted Homogeneous Systems

Jean-Charles Faugère¹ Mohab Safey El Din^{1,2}

Thibaut Verron¹

¹Université Pierre et Marie Curie, Paris 6, France INRIA Paris-Rocquencourt, Équipe POLSYS Laboratoire d'Informatique de Paris 6, UMR CNRS 7606

²Institut Universitaire de France

12 september 2014

Finding the relations between 50 monomials of degree 2 in 25 variables

$X_{15}X_{25}-T_1$	$X_{21}X_{22}-T_{11}$	$X_{12}X_{14}-T_{21}$	$X_3X_{21}-T_{31}$	$X_1X_{12}-T_{41}$
$X_2X_4-T_2$	$X_4X_{12}-T_{12}$	$X_4X_{16}-T_{22}$	$X_6X_{24}-T_{32}$	$X_5X_{12}-T_{42}$
$X_8X_{15}-T_3$	$X_{12}^2 - T_{13}$	$X_6X_8-T_{23}$	$X_{15}X_{25}-T_{33}$	$X_{16}X_{19}-T_{43}$
$X_6X_8-T_4$	$X_1X_2 - T_{14}$	$X_{14}^2 - T_{24}$	$X_{13}X_{20}-T_{34}$	$X_{12}X_{18}-T_{44}$
$X_5X_{12}-T_5$	$X_{25}^2 - T_{15}$	$X_8X_{21}-T_{25}$	$X_6X_{19}-T_{35}$	$X_7X_{11}-T_{45}$
$X_6X_{12}-T_6$	$X_5X_{10}-T_{16}$	$X_{16}X_{23}-T_{26}$	$X_9X_{15}-T_{36}$	$X_9X_{20}-T_{46}$
$X_9X_{19}-T_7$	$X_1X_{10}-T_{17}$	$X_3X_{13}-T_{27}$	$X_2X_{13}-T_{37}$	$X_4X_{21}-T_{47}$
$X_6X_{10}-T_8$	$X_{20}X_{23}-T_{18}$	$X_{11}X_{20}-T_{28}$	$X_{10}X_{23}-T_{38}$	$X_7X_{23}-T_{48}$
$X_8X_{18}-T_9$	$X_2X_{23}-T_{19}$	$X_{14}X_{22}-T_{29}$	$X_3X_7 - T_{39}$	$X_{14}X_{22}-T_{49}$
$X_5X_8 - T_{10}$	$X_3X_{14}-T_{20}$	$X_{16}X_{23}-T_{30}$	$X_{10}X_{19}-T_{40}$	$X_5X_7 - T_{50}$

Finding the relations between 50 monomials of degree 2 in 25 variables

$X_{15}X_{25}-T_1$	$X_{21}X_{22}-T_{11}$	$X_{12}X_{14}-T_{21}$	$X_3X_{21}-T_{31}$	$X_1X_{12} - T_{41}$
$X_2X_4-T_2$	$X_4X_{12}-T_{12}$	$X_4X_{16}-T_{22}$	$X_6X_{24}-T_{32}$	$X_5X_{12}-T_{42}$
$X_8X_{15}-T_3$	$X_{12}^2 - T_{13}$	$X_6X_8-T_{23}$	$X_{15}X_{25}-T_{33}$	$X_{16}X_{19}-T_{43}$
$X_6X_8-T_4$	$X_1X_2 - T_{14}$	$X_{14}^2 - T_{24}$	$X_{13}X_{20}-T_{34}$	$X_{12}X_{18}-T_{44}$
$X_5X_{12}-T_5$	$X_{25}^2 - T_{15}$	$X_8X_{21}-T_{25}$	$X_6X_{19}-T_{35}$	$X_7X_{11}-T_{45}$
$X_6X_{12}-T_6$	$X_5X_{10}-T_{16}$	$X_{16}X_{23}-T_{26}$	$X_9X_{15}-T_{36}$	$X_9X_{20}-T_{46}$
$X_9X_{19}-T_7$	$X_1X_{10}-T_{17}$	$X_3X_{13}-T_{27}$	$X_2X_{13}-T_{37}$	$X_4X_{21}-T_{47}$
$X_6X_{10}-T_8$	$X_{20}X_{23}-T_{18}$	$X_{11}X_{20}-T_{28}$	$X_{10}X_{23}-T_{38}$	$X_7X_{23}-T_{48}$
$X_8X_{18}-T_9$	$X_2X_{23}-T_{19}$	$X_{14}X_{22}-T_{29}$	$X_3X_7-T_{39}$	$X_{14}X_{22}-T_{49}$
$X_5X_8-T_{10}$	$X_3X_{14}-T_{20}$	$X_{16}X_{23}-T_{30}$	$X_{10}X_{19}-T_{40}$	$X_5X_7-T_{50}$

Description of the system

- ▶ 50 equations, 75 variables
- ▶ Polynomials m_i − T_i with m_i degree 2 monomial

Tool: Gröbner bases

Total degree grading

- difficult (~8h with Magma, intermediate basis in 4h)
- irregular behavior (highest deg. components not indep.

Weighted degree grading

- ightharpoonup Weight(T_i) = Degree(m_i) = 2
- easier (~4h with Magma, intermediate basis in 0.1s
- regular behavior

Finding the relations between 50 monomials of degree 2 in 25 variables

$X_{15}X_{25}-T_1$	$X_{21}X_{22}-T_{11}$	$X_{12}X_{14} - T_{21}$	$X_3X_{21}-T_{31}$	$X_1X_{12} - T_{41}$
$X_2X_4-T_2$	$X_4X_{12} - T_{12}$	$X_4X_{16}-T_{22}$	$X_6X_{24}-T_{32}$	$X_5X_{12}-T_{42}$
$X_8X_{15}-T_3$	$X_{12}^2 - T_{13}$	$X_6X_8 - T_{23}$	$X_{15}X_{25}-T_{33}$	$X_{16}X_{19}-T_{43}$
$X_6X_8 - T_4$	$X_1X_2 - T_{14}$	$X_{14}^2 - T_{24}$	$X_{13}X_{20}-T_{34}$	$X_{12}X_{18}-T_{44}$
$X_5X_{12}-T_5$	$X_{25}^2 - T_{15}$	$X_8X_{21}-T_{25}$	$X_6X_{19}-T_{35}$	$X_7X_{11}-T_{45}$
$X_6X_{12} - T_6$	$X_5X_{10}-T_{16}$	$X_{16}X_{23}-T_{26}$	$X_9X_{15}-T_{36}$	$X_9X_{20}-T_{46}$
$X_9X_{19}-T_7$	$X_1X_{10} - T_{17}$	$X_3X_{13}-T_{27}$	$X_2X_{13}-T_{37}$	$X_4X_{21} - T_{47}$
$X_6X_{10}-T_8$	$X_{20}X_{23}-T_{18}$	$X_{11}X_{20}-T_{28}$	$X_{10}X_{23} - T_{38}$	$X_7X_{23} - T_{48}$
$X_8X_{18}-T_9$	$X_2X_{23} - T_{19}$	$X_{14}X_{22} - T_{29}$	$X_3X_7 - T_{39}$	$X_{14}X_{22} - T_{49}$
$X_5X_8 - T_{10}$	$X_3X_{14}-T_{20}$	$X_{16}X_{23}-T_{30}$	$X_{10}X_{19}-T_{40}$	$X_5X_7 - T_{50}$

Description of the system

- ▶ 50 equations, 75 variables
- ▶ Polynomials m_i − T_i with m_i degree 2 monomial

Tool: Gröbner bases

Total degree grading

- difficult (~8h with Magma, intermediate basis in 4h)
- irregular behavior (highest deg. components not indep.)

Weighted degree grading

- ightharpoonup Weight(T_i) = Degree(m_i) = 2
- easier (~4h with Magma, intermediate basis in 0.1s
- regular behavior

Finding the relations between 50 monomials of degree 2 in 25 variables

$X_{15}X_{25}-T_1$	$X_{21}X_{22}-T_{11}$	$X_{12}X_{14}-T_{21}$	$X_3X_{21}-T_{31}$	$X_1X_{12}-T_{41}$
$X_2X_4-T_2$	$X_4X_{12}-T_{12}$	$X_4X_{16}-T_{22}$	$X_6X_{24}-T_{32}$	$X_5X_{12}-T_{42}$
$X_8X_{15}-T_3$	$X_{12}^2 - T_{13}$	$X_6X_8-T_{23}$	$X_{15}X_{25}-T_{33}$	$X_{16}X_{19}-T_{43}$
$X_6X_8-T_4$	$X_1X_2 - T_{14}$	$X_{14}^2 - T_{24}$	$X_{13}X_{20}-T_{34}$	$X_{12}X_{18}-T_{44}$
$X_5X_{12}-T_5$	$X_{25}^2-T_{15}$	$X_8X_{21}-T_{25}$	$X_6X_{19}-T_{35}$	$X_7X_{11}-T_{45}$
$X_6X_{12}-T_6$	$X_5X_{10}-T_{16}$	$X_{16}X_{23}-T_{26}$	$X_9X_{15}-T_{36}$	$X_9X_{20}-T_{46}$
$X_9X_{19}-T_7$	$X_1X_{10}-T_{17}$	$X_3X_{13}-T_{27}$	$X_2X_{13}-T_{37}$	$X_4X_{21}-T_{47}$
$X_6X_{10}-T_8$	$X_{20}X_{23}-T_{18}$	$X_{11}X_{20}-T_{28}$	$X_{10}X_{23}-T_{38}$	$X_7X_{23}-T_{48}$
$X_8X_{18}-T_9$	$X_2X_{23}-T_{19}$	$X_{14}X_{22}-T_{29}$	$X_3X_7-T_{39}$	$X_{14}X_{22}-T_{49}$
$X_5X_8 - T_{10}$	$X_3X_{14}-T_{20}$	$X_{16}X_{23}-T_{30}$	$X_{10}X_{19}-T_{40}$	$X_5X_7 - T_{50}$

Description of the system

- ▶ 50 equations, 75 variables
- ▶ Polynomials m_i − T_i with m_i degree 2 monomial
- ► Goal: find all relations between the m_i \iff find all polynomials $P(T_j)$ in the ideal

Tool: Gröbner bases

Total degree grading

- difficult (~8h with Magma, intermediate basis in 4h)
- irregular behavior (highest deg. components not indep.)

Weighted degree grading

- Weight(T_i) = Degree(m_i) = 2
- easier (~4h with Magma, intermediate basis in 0.1s)
- regular behavior

A run of F₄ on the example

Ideal of relations between 50 monomials of degree 2 in 25 variables

- ▶ 50 equations of (W-)degree 2 in 75 variables
- GREVLEX ordering (e.g. for a 2-step strategy)
- ▶ Without weights: 3.9 h (34 steps reaching degree 22)
- ▶ With weights: 0.1 s (5 steps reaching W-degree 6)

Gröbner bases and structured systems

Polynomial system

$$\begin{cases} f: X^2 + 2XY + Y^2 + X &= 0 \\ g: X^2 - XY + Y^2 &+ Y - 1 = 0 \end{cases}$$

Gröbner basis

$$\begin{cases} Y^3 + Y^2 - \frac{4}{9}X - \frac{2}{9}Y - \frac{4}{9} \\ X^2 + Y^2 + \frac{1}{3}X + \frac{2}{3}Y - \frac{2}{3} \\ XY + \frac{1}{3}X - \frac{1}{3}Y + \frac{1}{3} \end{cases}$$

Problematic

Structured systems

→ Can we exploit it?

Successfully studied structures

- Bihomogeneous (Dickenstein, Emiris, Faugère, Safey, Spaenlehauer...)
- Group symmetries (Colin, Faugère, Gatermann, Rahmany, Svartz...)
- Weighted homo. / Quasi-homo. ([Traverso 1996], [FSV 2013]...)

Weighted homogeneous systems: definitions

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

System of weights: $W = (w_1, ..., w_n) \in \mathbb{N}^n$

Weighted degree (or W-degree): $\deg_W(X_1^{\alpha_1} \dots X_n^{\alpha_n}) = \sum_{i=1}^n w_i \alpha_i$

Weighted homogeneous polynomial: poly. with monomials of same W-degree

→ Example: physical systems: Volume = Area × Height

↑

Weight 3 Weight 2 Weight 1

Given a general (not weighted homogeneous) system and a system of weights

Computational strategy: weighted-homogenize it as in the homogeneous case Complexity estimates: consider the highest *W*-degree components of the system

Enough to study weighted homogeneous systems

Weighted homogeneous systems: definitions

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

System of weights: $W = (w_1, ..., w_n) \in \mathbb{N}^n$

Weighted degree (or *W*-degree): $\deg_W(X_1^{\alpha_1} \dots X_n^{\alpha_n}) = \sum_{i=1}^n w_i \alpha_i$

Weighted homogeneous polynomial: poly. with monomials of same W-degree

→ Example: physical systems: Volume = Area × Height

↑

Weight 3 Weight 2 Weight 1

Given a general (not weighted homogeneous) system and a system of weights

Computational strategy: weighted-homogenize it as in the homogeneous case Complexity estimates: consider the highest W-degree components of the system

► Enough to study weighted homogeneous systems

Complexity for generic homogeneous systems

Complexity for generic homogeneous systems

Computational strategy for weighted homogeneous systems

Algorithms: from weighted homogeneous to homogeneous

Transformation morphism

$$\begin{array}{cccc} \mathsf{hom}_W : & (\mathbb{K}[\mathbf{X}], W\text{-deg}) & \to & (\mathbb{K}[\mathbf{X}], \mathsf{deg}) \\ & f & \mapsto & f(X_1^{w_1}, \dots, X_n^{w_n}) \end{array}$$

- Graded injective morphism
- Sends regular ("independent") sequences on regular sequences
- ightharpoonup S-Pol(hom_W(f), hom_W(g)) = hom_W (S-Pol(f, g))
 - --- Good behavior w.r.t Gröbner bases

Size of the Macaulay matrices

Counting the monomials

- ▶ $hom_W(F)$ lies in an algebra with a lot of useless monomials
- ► Count them: combinatorial object named Sylvester denumerants
- ▶ Result¹: asymptotically $N_d \sim \frac{\# \text{Monomials of total degree } d}{\prod_{i=1}^n w_i}$

¹Geir Agnarsson (2002). 'On the Sylvester denumerants for general restricted partitions'

State of the art: complexity results [FSV 2013]

Main results: lifted hypotheses and sharper bound

Regular sequences

Definition

$$F = (f_1, \dots, f_m)$$
 W-homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff
$$\begin{cases} \langle F \rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ \forall i, f_i \text{ is no zero-divisor in } \mathbb{K}[\mathbf{X}]/\langle f_1, \dots, f_{i-1} \rangle \end{cases}$$

Regular sequences

Definition

$$F = (f_1, \dots, f_m)$$
 W-homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff
$$\begin{cases} \langle F \rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ orall i, f_i ext{ is no zero-divisor in } \mathbb{K}[\mathbf{X}]/\langle f_1, \dots, f_{i-1} \rangle \end{cases}$$

Property [FSV 2013]

Regular sequences of *W*-homo. polynomials

Generic if $\neq \emptyset$

Good properties F₅-criterion Hilbert series

Properties of regular sequences

Hilbert series

$$HS_{A/I}(T) = \sum_{d=0}^{\infty} (\text{rank defect of the } F_5 \text{ matrix at } W\text{-degree } d) \cdot T^d$$

Properties

For regular sequences of W-homogeneous polynomials of W-degree d_i :

$$HS_{A/I}(T) = \frac{(1 - T^{d_1}) \cdots (1 - T^{d_m})}{(1 - T^{w_1}) \cdots (1 - T^{w_n})}$$

In dimension zero (m = n):

- ▶ Bézout bound on the degree: $D = \frac{\prod_{i=1}^{n} d_i}{\prod_{i=1}^{n} w_i}$
- ► Macaulay bound on d_{reg} [FSV 2013] : $d_{\text{reg}} \leq \sum_{i=1}^{n} (d_i w_i) + \max\{w_j\}$

Can we do better? Yes, but not with the regularity alone.

Positive dimension (m < n)

- Need to know what variables matter to the system
- Information not available from regularity
 - → (Simultaneous) Noether position

Dimension 0 (m = n)

- Macaulay's bound on d_{reg} is not sharp
- $ightharpoonup d_{reg}$ depends on the order of the variables:

W	W-degree	Macaulay's bound	d_{reg}	F ₄ DRL time
(20, 5, 5, 1)	(60, 60, 60, 60)	229	210	471s
(1,5,5,20)	(60, 60, 60, 60)	229	220	916s

---- Simultaneous Noether position

Overdetermined systems (m > n)

No regular sequence → Semi-regularity

Noether position

Noether position

$$F = (f_1, \ldots, f_m) \in \mathbb{K}[X_1, \ldots, X_n], m \leq n$$

- Noether position: (F, X_{m+1}, \dots, X_n) regular
- ▶ simultaneous Noether position: $(f_1, ..., f_i)$ in NP for all j's

Properties

- Generic if not empty
- Valid under generic change of coordinates for "nice" systems of weights
- Relevant property for fine-grained complexity (structure lemma [Bardet 2004])
- ► For a *W*-homogeneous sequence in simultaneous Noether position:

$$d_{\text{reg}} \leq \sum_{i=1}^{m} (d_i - w_i) + \frac{w_m}{w_m}$$
 (sharp if $w_m = 1$)

Semi-regular sequences

Semi-regular sequences

- ▶ If m > n, reductions to zero cannot be eliminated.
- Semi-regular sequence: all reductions to zero are at high degrees
- Hilbert series of a semi-regular homogeneous sequence:

$$HS_{A/I}(T) = \left| \frac{(1 - T^{d_1}) \cdots (1 - T^{d_m})}{(1 - T)^n} \right|$$
 (series truncated to the first coefficient ≤ 0)

- For W-homogeneous systems, only true for "nice" systems of weights
- Main consequence: asymptotic estimate of the degree of regularity [Bardet 2004]

Fröberg's conjecture

Semi-regular sequences are generic.

Proved for:

- $\rightarrow n=2$
 - n = 3 for large fields
 - m = n + 1 in characteristic 0

Semi-regular sequences

Semi-regular sequences

- If m > n, reductions to zero cannot be eliminated.
- Semi-regular sequence: all reductions to zero are at high degrees
- ► Hilbert series of a semi-regular W-homogeneous sequence:

$$\mathsf{HS}_{A/I}(T) = \left| \frac{(1 - T^{d_1}) \cdots (1 - T^{d_m})}{(1 - T^{\mathbf{w}_1}) \cdots (1 - T^{\mathbf{w}_n})} \right| \text{ (series truncated to the first coefficient } \leq 0)$$

- ► For W-homogeneous systems, only true for "nice" systems of weights
- ▶ Main consequence: asymptotic estimate of the degree of regularity [Bardet 2004]

Fröberg's conjecture

Semi-regular sequences are generic.

Proved for:

$$\rightarrow n=2$$

- ▶ n = 3 for large fields
- m = n + 1 in characteristic 0

Complexity

Input

- $V = (w_1, \ldots, w_n)$
- ▶ $F = (f_1, ..., f_m) \in \mathbb{K}[X_1, ..., X_n]$ generic W-homogeneous

Complexity of F₅

$$\left(\frac{1}{\prod_{i=1}^{n} w_i}\right)^3 \begin{pmatrix} n + d_{\text{reg}} - 1 \\ d_{\text{reg}} \end{pmatrix}^3$$

- Asymptotic gain from the size of the matrices
- Practical gain from the weighted Macaulay bound (dreg)

Complexity of FGLM (m = n)

$$\left(\frac{1}{\prod_{i=1}^{n} w_i}\right)^3 n \left(\prod_{i=1}^{n} d_i\right)^3$$

 Asymptotic gain from the weighted Bézout bound (number of solutions)

Benchmarking

F: 0-dim. affine system with a weighted homogeneous structure

$$f_i = \sum_{\alpha} c_{\alpha} m_{\alpha}$$
 with $\deg_W(m_{\alpha}) \leq d_i$

Assumption: the highest W-degree components are regular (e.g. if F is generic)

Benchmarks for generic systems

- Number of solutions: 2^{n+2}
- $\blacktriangleright \ \, \text{Benchmarks obtained with FGb} : \left\{ \begin{aligned} F_5 \ [\text{Faugère 2002}] \\ \text{SparseFGLM [Faugère and Mou 2013]} \end{aligned} \right.$

The story is not over...

Sometimes, "normally" faster...

- ► Generic complete intersection (GREVLEX): 13 min. vs. 1h45 (speed-up: 8)
- ► Relations between monomials (elim.): 4h vs 8h (speed-up: 2)
 - Relations between 14 invariants of the cyclic-5 group (elim.): 40 min. vs 10h (speed-up: 16)

... sometimes, faster than that...

▶ Relations between monomials (GREvLEx): 0.1s vs 4h (speed-up: 144 000)

... and sometimes, same speed.

- Relations between monomials (elim. from GREVLEX)
 - ► Elimination on generic systems (elim.)

Conclusion and perspectives

What we have done

- ▶ Theoretical results for *W*-homogeneous systems under generic assumptions
- Complexity results for F₅ for positive-dim. systems and overdetermined systems
 - Bound on the maximal degree reached by the F₅ algorithm
 - ► Complexity overall divided by $(\prod w_i)^3$

Consequences

Wide range of potential applications:

- Polynomial inversion, implicitization (positive dimension)
- Cryptography (overdetermined)

Perspectives

- Timings still not completely understood
- Affine systems: find the most appropriate system of weights
- Additional structure: W-homo. for several systems of weights, weights $\leq 0...$

Conclusion and perspectives

What we have done

- ▶ Theoretical results for *W*-homogeneous systems under generic assumptions
- ▶ Complexity results for F₅ for positive-dim. systems and overdetermined systems
 - Bound on the maximal degree reached by the F₅ algorithm
 - ► Complexity overall divided by $(\prod w_i)^3$

Consequences

Wide range of potential applications:

- Polynomial inversion, implicitization (positive dimension)
- Cryptography (overdetermined)

Perspectives

- Timings still not completely understood
- Affine systems: find the most appropriate system of weights
- Additional structure: W-homo. for several systems of weights, weights $\leq 0...$

One last word

Thank you for your attention!