

SAKARYA ÜNİVERSİTESİ 2020-2021 BAHAR DÖNEMİ FİZİK-II LABORATUARI DENEY RAPORU

NUMARASI: 10

ADI :BİR MAKARANIN ÖZ İNDÜKSİYON KATSAYISININ (L) TAYİNİ

AMACI:

1. İndüktans ve lenz kanunu hakkında kısaca bilgi veriniz.

2. Aşağıda verilen bir RL devresinde $R=6~\Omega$ ve $X_L=8~\Omega$ olarak verilmiştir. Devrenin eşdeğer empedansı ne kadardır?

- Şekil 2 AC düzeneği
- Deney düzeneğini şekil 1'deki gibi kurunuz. 1.
- Reostanın değerini değiştirerek üç farklı akım ve fgerilim değeri ölçümü alınız ve Tablo 1'i 2. doldurunuz.
- Deney düzeneğini şekil 2'deki gibi kurup aynı işlemi tekrarlayınız ve Tablo 2'deki gerekli 3. yerleri doldurunuz.

DENEYİN ÖLÇÜM VE HESAPLAMALAR

1.	Denevin ilk kısmında	n elde ettiğiniz	verileri kullanarak	Tablo 1'i doldurunuz.

Tablo 1 Ohmik direnç ölçüm veri tablosu

I(A)	V (V)	R (Ω)		
R _{ort}				

2. Deneyin ikinci kısmından elde edilen verilerle Tablo 2'yi doldurunuz.

Tablo 2 Empedans değeri ölçüm veri tablosu

I (A)	V (V)	$Z\left(\Omega \right)$		
$Z_{ m ort}\!\!=\!$				

3. Tablolardan elde edilen verileri kullanarak $L = \frac{1}{\omega} \sqrt{Z^2 - R^2}$ denklemi yardımı ile L'nin deneysel değerini hesaplayınız.

L_{deneysel}=

4. Bobinin değerlerini kullanarak $L = \mu_o \frac{N^2.A}{l}$ denklemi yardımı ile bobinin teorik özindüksiyon katsayısı değerini hesaplayınız.

 $L_{teorik} =$

5. Deneysel ve teorik özindüksiyon değerleri arasındaki hata payını % olarak hesaplayınız ve yorumlayınız.