Chapter 3

Mobile Radio Propagation

Adapted from class notes by
Prof. Leszek T. Lilien, CS, Western Michigan University
and

Prof. Dharma P. Agrawal & Qing-An Zeng, University of Cincinnati

Most slides based on publisher's slides for 1st and 2nd edition of: *Introduction to Wireless and Mobile Systems* by Agrawal & Zeng © 2016, Dharma P. Agrawal and Qing-An Zeng. All rights reserved.

Outline of Chapter 3

- Introduction
- Types of Waves
 - Speed, Wavelength, Frequency
- Radio Frequency Bands
- Propagation Mechanisms
- Radio Propagation Effects
- Free-Space Propagation
- Land Propagation
- Path Loss
- Fading: Slow Fading / Fast Fading
- Delay Spread
- Doppler Shift
- Co-Channel Interference
- The Near-Far Problem
- Digital Wireless Communication System
- Analog and Digital Signals
- Modulation Techniques

Copyright © 2016, Dharma P. Agrawal and Qing-An Zeng. All rights reserved

3.1. Introduction

- This section covers the distinguishing features of mobile radio propagation
- Model of wireless mobile channel
 - Time-varying communication path between 2 terminals
 - Fixed BS and mobile MS
 - Mobility introduces new challenges into radio propagation

Speed, Wavelength, Frequency

Light speed (V) = Wavelength x Frequency = 2.998 x 10⁸ m/s = 3 x 10⁸ m/s = 300,000 km/s

System	Frequency (f)	Wavelength (∕2)
AC current	60 Hz	5,000 km
FM radio	100 MHz	3 m
	(88-99, 100-108)	
Cellular (original)	800 MHz	37.5 cm
Ka band satellite	20 GHz	15 mm
Ultraviolet light	10 ¹⁵ Hz	10 ⁻⁷ m

Copyright © 2016, Dharma P. Agrawal and Qing-An Zeng. All rights reserved

7 /	. •	
1\/ 4	1171/C	`
IVI	etrics	3

1000 ⁿ	10 ⁿ	Prefix	Symbol
1000 ⁸	10 ²⁴	yotta	Υ
1000 ⁷	10 ²¹	zetta	Z
1000 ⁶	10 ¹⁸	exa	E
1000 ⁵	10 ¹⁵	peta	P
1000 ⁴	10 ¹²	tera	Т
1000 ³	10 ⁹	giga	G
1000 ²	10 ⁶	mega	М
1000 ¹	10 ³	kilo	k
1000 ^{2/3}	10 ²	hecto	h
1000 ^{1/3}	10 ¹	deca, deka	da

1000-1/3	10 ⁻¹	deci	d
1000 ^{-2/3}	10 ⁻²	centi	С
1000 ⁻¹	10 ⁻³	milli	m
1000 ⁻²	10 ⁻⁶	micro	μ (u)
1000 ⁻³	10 ⁻⁹	nano	n
1000-4	10 ⁻¹²	pico	р
1000 ⁻⁵	10 ⁻¹⁵	femto	f
1000 ⁻⁶	10 ⁻¹⁸	atto	а
1000 ⁻⁷	10 ⁻²¹	zepto	Z
1000 ⁻⁸	10 ⁻²⁴	yocto	У

	Radi	o Frequency	Bands	p. 58
Classification Band	Initials	Frequency Range	Characteristics	(頁64) Table 3.1
Extremely low	ELF	< 300 Hz		
Infra low	ILF	300 Hz - 3 kHz	Ground wave	
Very low	VLF	3 kHz - 30 kHz		
Low	LF	30 kHz - 300 kHz		AM long wave
Medium	MF	300 kHz - 3 MHz	Ground/Sky wave	AM med. wave
High	HF	3 MHz - 30 MHz	Sky wave	AM short wave
Very high	VHF	30 MHz - 300 MHz		FM, TV
Ultra high	UHF	300 MHz - 3 GHz		TV, cellphones
Super high	SHF	3 GHz - 30 GHz	Space wave	WLAN
Extremely high	EHF	30 GHz - 300 GHz]	
Tremendously high	THF	300 GHz - 3000 GHz		
世界各國家SW短波電台頻率表 Copyright © 2016, Dharma P. Agrawal and Qing-An Zeng. All rights reserved				

3.3. Propagation Mechanisms

- Ideal propagation in free space (no obstacles)
- Radio signals can penetrate simple walls to some extent
 Large structure, a hill difficult to pass through
- Propagation effects due to obstacles
 - Reflection (反射)
 - Propagation wave impinges on an object which is large as compared to wavelength
 - E.g., the surface of the Earth, buildings, walls, etc.
 - Diffraction (繞射)
 - Radio path between transmitter and receiver obstructed by surface with sharp irregular edges
 - Waves bend around the obstacle, even when LOS (line of sight) does not exist
 - Scattering (散射)
 - Objects smaller than the wavelength of the propagation wave
 - E.g. foliage, street signs, lamp posts

Copyright © 2016, Dharma P. Agrawal and Qing-An Zeng. All rights reserved

- Direct propagation is the best
- Reflection is 2nd best
- Diffraction is 3rd best
- Scattering is 4th best

If no direct-path waves (LOS waves) can reach receiver
 mainly by reflection or diffraction

Copyright © 2016, Dharma P. Agrawal and Oing-An Zeng, All rights reserved

Power Control

-2 dB / 次

基礎通訊原理

- 訊號(signal)強度?
- Power (功率)?
- Watt (瓦特)?
- dB (分貝)?
- dBm?

Review

■ 功: J=F*d 1 joule(焦耳) = 1 newton * 1 m

■ 功率(Power): P = J/t 表示作功快慢程度的物理量 1 watt = 1 joule / 1 s = 1 W = 1000 mW

測量的單位

■ 焦耳(Joule)

國際單位制中功、能量和熱量的計量單位。

- 1 cal = 4.186 joule
- 功率(Power)

單位時間內所做的功,或功對於時間的變化率。功率單位"瓦特"(W; Watt)表示在1秒內完成1焦耳功所需的功率。

- 1 watt也可以指電壓為1伏特(V; volt)的1安培(A, ampere)電流。 P=VI=I²R
- 一般的夜燈功率大約是7 watts。
- FCC規定2.4 GHz點對多點的WLAN所使用的天線功率 不能超過4 watts。

Source: 顏春煌,行動與無線通訊,金禾。

日期:2019/01/25

22

釣竿誤觸台鐵高壓電線 婦人皮開肉綻燒傷送醫

■ 苗栗縣1位婦人,拿釣竿在鐵軌旁移動時,不 慎碰觸到台鐵高達2萬5千伏特的電車線,送醫 急救。

Source: https://tw.appledaily.com/recommend/real time/20190125/1507485

23

- 1000瓦特・時(1000*60*60焦耳)代表連續作功 或耗能量1000 W達一小時。通常1000瓦時又 稱一"度"電。每度電價約為2~3元,
- 電器功率:
 - 抽濕機 100-300瓦特 電燈泡 15 - 100 瓦特
 - 20 100 瓦特 - 冷氣機 1000 - 3000瓦特 收音機
 - 電視機 40 - 200 瓦特 - 電暖爐 1000 - 3000瓦特
 - 電熱水爐1500 3000瓦特 雪櫃 400 - 1000 瓦特
 - 吸塵機 300 1000瓦特 - 洗衣機 500 - 3000瓦特

 - 洗碗碟機2000 3000瓦特 電熨斗 400 - 1000瓦特 多士爐 100 - 300瓦特 - 電爐 1000 - 5000瓦特
 - 電風扇 20-60瓦特
 - 電飯煲 500 2000瓦特 - 手機

2瓦特

基礎通訊原理

- 數學背景
 - $\log_2 = \lg$
 - $\log_{\rm e} = \ln$
 - $\log_{10} = \log$

eg. log(10) = 1

 $\log(1) = 0$

log(0.1) = -1

 $\log(10^2) = 2$

■ 倍數的表示法:dB eg. 1000倍 = 30 dB

算法: 10 log(1000) = 30 dB

基礎通訊原理(cont.)

Exercises

log 2 = 0.30103
log 3 = 0.47712
log 5 = 0.69897
$$1$$
倍 = $10 \log(I) = 10 (0) = 0 \text{ dB}$
 2 倍 = $10 \log(2) = 10 (0.3) = 3 \text{ dB}$
 20 倍 = $10 \log(2*10) = 10 (\log 2 + \log 10)$
= $10 (0.3 + 1) = 13 \text{ dB}$
 0.5 倍 = $10 \log(5/10) = 10 (\log 5 - \log 10)$
= $10 (0.7 - 1) = -3 \text{ dB}$
 50 倍 = $10 \log(5*10) = 10 (\log 5 + \log 10)$
= $10 (0.7 + 1) = 17 \text{ dB}$

基礎通訊原理(cont.)

- 數學背景
 - 倍數的表示法: dB (Decibel)

$$x$$
倍 = y dB $y = 10 \log(x)$ dB y dB = x 倍 $x = 10^{\frac{y}{10}}$ 倍 y dBm = 1 mW的 y dB = 1 mW的 x 倍 $= 1$ mW的 $10^{\frac{y}{10}}$ 倍 $= 10^{\frac{y}{10}} * 1$ mW $= 10^{\frac{y}{10}}$ mW

 $t \, \mathbf{mW} = 10 \, \log(t) \, \mathbf{dBm}$

電波強度(功率)

• 1 watt = 1 W = 1000 mW

- 以1mW為基準值,實際功率值對基準值的倍數用dB做表示,記為dBm
- $1 \text{ W} = 1000*1\text{mW} = 10 \log(1000) \text{ dBm} = 30 \text{ dBm}$
- \bullet 50 W = ? dBm
- 40 dBm = ? W
- 功率增強一倍→即變為兩倍
 10 log(2*P) = 10 log2 + 10 logP = (3 + 10logP) dB

•

_ .

訊號(signal)強度(cont.)

倍數
$$\begin{cases} x$$
倍 = $10 \log(x) \text{ dB} \\ y \text{ dB} = 10^{\frac{y}{10}} \end{cases}$ 倍 $\begin{cases} y \text{ dBm} = y \text{ dB} \times 1 \text{mW} = 10^{\frac{y}{10}} \end{cases}$ 倍 $\times 1 \text{mW} = 10^{\frac{y}{10}} \text{ mW} \end{cases}$ $t \text{ mW} = t \times 1 \text{mW} = t \text{ fe} \times 1 \text{mW} = 10 \log(t) \text{ dB} \times 1 \text{mW} = 10 \log(t) \text{ dBm}$ $10 \text{ dBm} = 10 \text{ dB} \times 1 \text{ mW} = 10 \text{ fe} \times 1 \text{ mW} = 10 \text{ mW}$ $20 \text{ dBm} = 20 \text{ dB} \times 1 \text{ mW} = 100 \text{ fe} \times 1 \text{ mW} = 100 \text{ mW}$ $20 \text{ mW} = 20 \text{ fe} \times 1 \text{ mW} = 13 \text{ dB} \times 1 \text{ mW} = 13 \text{ dBm}$ $3 \text{ W} = 3000 \text{ mW} = 3000 \text{ fe} \times 1 \text{ mW} = 34.8 \text{ dB} \times 1 \text{ mW} = 34.8 \text{ dBm}$

```
基礎通訊原理(cont.)
   Exercises
                     \log 3 = 0.48
                                    \log 5 = 0.7
        \log 2 = 0.3
         30倍=
                     dB
        150倍=
                     dB
         30 dB =
                     倍
         40 \, dB =
                     倍
        10 \text{ dBm} =
                     mW
        20 \text{ dBm} =
                     mW
        13 dBm =
                     mW
        20 \text{ mW} =
                     dBm
         3W =
                     dBm
```


行動通訊系統

- 依天線(antenna)型式可分為:
 - Omnidirectional Cell:全方向性微細胞(基地台的天線向四面八方發射),常用於鄉村地區。
 - Sectored Cell:基地台天線具備方向性,通常將訊號的發射分為3個方向(角度為120度),一個基地台的週遭包括三個Sectored微細胞。

Free-space Path Loss
Path Loss vs. Signal Strength
$$S = \frac{P_r}{P}$$

• Definition of path loss L_f :

$$S_{dB} = 10 \log_{10} \frac{P_r}{P_r}$$

$$L_f = \frac{P_t}{P}$$

Definition of path loss
$$L_f$$
:
$$L_f = \frac{P_t}{P_r}, \quad P_t \text{ is } \frac{\text{transmitted signal power}}{\text{received signal power}} = 10 \log_{10} \frac{P_r}{P_t}$$

$$P_t \text{ is } \frac{\text{transmitted signal power}}{\text{received signal power}}$$
When $G_t = G_r = 1$, $L_f = \left(\frac{4\pi d}{\lambda}\right)^2 = \left(\frac{4\pi f_c d}{c}\right)^2$

$$L_f(dB) = 10\log\left(\frac{4\pi f_c d}{c}\right)^2 = 20\log\left(\frac{4\pi f_c d}{c}\right)$$

Path loss in free space (no obstacles):

$$L_f(dB) = 32.45 + 20\log_{10} f_c(\underline{MHz}) + 20\log_{10} d(\underline{km}),$$

where f_c is the carrier frequency

The greater the f_c , the higher is the loss (see next slide)

Received Signal Strength

■ 接收訊號越來越弱: 訊號衰減(Attenuation)

都普勒效應(Doppler effect)

http://www.119-999.com.tw/images/0006.jpg

Copyright © 2016, Dharma P. Agrawal and Oing-An Zeng, All rights reserved

3.9. Doppler Effect (Doppler Shift)

- Doppler effect occurs when a wave source and a receiver are moving towards or away from each other
 - When they are moving toward each other, the frequency of the received signal is higher than the source frequency
 - When they are moving away from each other, the frequency is lower than the source frequency
- $\qquad \text{Received signal frequency is} \quad f_r = f_c f_d$ where: f_c - source frequency,

 f_d - the Doppler shift in frequency Doppler shift is

where: ν - the moving speed

Moving direction of the receiver Signal from source

p.72(頁81)Fig. 3.14 λ - the wavelength of the carrier of the source signal

Homework #1 (Due in 2 weeks)-1:

P1.1為何當有線基礎建設已普遍存在,仍需要無線服務?

P1.6無基礎架構網路和蜂巢式網路有何差異?

P1.13在無線網路使用大小不同的細胞有何優 缺點?

P1.16手機與衛星電話有何差異?

P3.4發送功率是40W,在自由空間傳播模型下,

(a)請問以dbm為單位之發送功率為何? (b)接收端位於1000m遠,請問其接收功率為何?假設載波頻率為f(c)=900MHz與G(t)=G(r)=0dB。 (c)以分貝表示自由空間路徑衰減。 (free space path loss: $L_f = P_t/P_r$)

105

Homework #1 (Due in 2 weeks)-2:

P3.12請問快速衰落與慢速衰落的差異? P3.14有一基地台具有900MHz的發送端,以及有一車輛50mph的速度在移動。計算車輛下列移動方向的接收載波頻率。(a)往基地台方向移動(b)往基地台反方向移動(c)往發送信號呈60度角方向移動。 (mph=mile per hour; 1 mile=1.6093 km).

- (前四題每題10分,後三題每題20分)
- Questions?
- Thank you!

End of Chapter 3

06