目录

	过程及其应用	_
1.1	更新过程	1
	1.1.1 定义和性质	1
	1.1.2 更新方程	1
1.2	长程极限行为	1
	1.2.1 基本更新定理	1
	1.2.2 中心极限定理	1
1.3	更新过程的应用	2
	1.3.1 随机游动的爬升时间	2
	1.3.2 更新累积过程	2

1 更新过程及其应用

1.1 更新过程

1.1.1 定义和性质

Definition 1. 设 $\{\xi_n : n \geq 1\}$ 是非负独立同分布随机变量序列。设 F 是它们共同的的分布函数。假设 $F(0) = \mathbb{P}(\xi_n = 0) < 1$ 。则 $\mu := \mathbb{E}(\xi_n) > 0$ 。令 $S_n := \sum_{k=1}^n \xi_k$ 。由大数定律可得 $\lim_{n \to \infty} \frac{S_n}{n} = \mu$ 。令 $N(t) := \sum_{n=1}^\infty \mathbb{1}_{\{S_n \leq t\}} = \sup\{n \geq 0 : S_n \leq t\}$ 。称 $(N(t) : t \geq 0)$ 为**更新过程**。称 $(\xi_n : n \geq 1)$ 为**更新间隔时间**。

Theorem 1. 几乎必然有 $N(\infty) = \infty$ 。证明见教材 p74

1.1.2 更新方程

Definition 2. 称 $m(t) := \mathbb{E}(N(t))$ 为更新过程 $(N(t):t\geq 0)$ 的**更新函数**。计算可得 $m(t) = \sum_{n=1}^{\infty} \mathbb{P}(N(t)\geq n) = \sum_{n=1}^{\infty} \mathbb{P}(S_n\leq t) = \sum_{n=1}^{\infty} F^{*n}(t)$ 。

Theorem 2. 对于 $t \ge 0$ 有 $m(t) < \infty$ 。证明见教材 p%

Definition 3. 设 H 为 $[0,\infty)$ 上的右连续的有界变差函数,而 F 为 $[0,\infty)$ 上的概率分布函数。称关于 K 的方程 $K(t)=H(t)+K*F(t),t\geq 0$ 为**更新方程**。更新方程的积分形式为 $K(t)=H(t)+\int_0^t K(t-x)\,\mathrm{d}F(x))$ 。

Theorem 3. 更新方程存在唯一右连续有界变差函数解 K,且该解具有表达式 K(t) = H(t) + H * m(t)。证明见教材 p76

Theorem 4. 对于 $0 \le s \le t$,有 $\mathbb{P}(S_{N(t)} \le s) = 1 - F(t) + \int_0^s 1 - F(t-x) \, \mathrm{d}m(x)$ 。证明见教材 p77

Theorem 5 (瓦尔德恒等式). 设 $\{\xi_n: n \geq 1\}$ 为独立同分布的随机变量序列, \mathcal{F}_n 为其自然 σ-代数流。设 $\mathbb{E}(\xi_1)$ 存在。设 τ 为一个停时。则有 $\mathbb{E}(\sum_{k=1}^{\tau} \xi_k) = \mathbb{E}(\tau)\mathbb{E}(\xi_1)$ 。

Theorem 6. 对于 t, x > 0,有 $\mathbb{P}(W(t) > x) = 1 - F(t+x) + \int_0^t 1 - F(t+x-y) \, \mathrm{d}m(y)$,其中 $W(T) := S_{N(t)+1} - t$ 为**待更新时**间。证明见教材 p78

1.2 长程极限行为

1.2.1 基本更新定理

Theorem 7. 几乎必然的有 $\lim_{t\to\infty} \frac{N(t)}{t} = \frac{1}{\mu}$ 。证明见教材 p80

Theorem 8 (基本更新定理). 有 $\lim_{t \to \infty} \frac{m(t)}{t} = \frac{1}{\mu}$ 。证明见教材 p81

1.2.2 中心极限定理

Theorem 9 (中心极限定理). 假设 $\mathbb{D}(\xi_1) < \infty$, 记 $\mu = \mathbb{E}(\xi_1), \sigma^2 = \mathbb{D}(\xi_1)$ 。对于 $x \in \mathbb{R}$,有

$$\lim_{t \to \infty} \mathbb{P}\left(\frac{N(t) - \frac{t}{\mu}}{\sqrt{\frac{t\sigma^2}{\mu^3}}} \le x\right) = \Phi(x) \tag{1}$$

其中 $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} dy$ 为正态分布的分布函数。证明见教材 p82

1.3 更新过程的应用

1.3.1 随机游动的爬升时间

Definition 4. 设 $(\xi_n : n \ge 1)$ 是独立同分布的可积随机变量序列且满足 $\mathbb{E}(\xi_1) > 0$ 。令 $(W_n : n \ge 0)$ 是以 $(\xi_n : n \ge 1)$ 为跳幅的随机游动,其中 $W_0 = 0$ 。易知 $W_n \to +\infty$ 。令 $S_0 = 0$,递归地定义停时 S_n ,令 $S_n = \inf\{k \ge S_{n-1} : W_k > W_{S_{n-1}}\}$ 。称每个 S_n 为 (W_n) 的**爬升时间**。

Theorem 10. 对于 $n \ge 1$, 令 $\eta_n = S_n - S_{n-1}$ 。则 (η_n) 是独立同分布的非负随机变量序列。证明见教材 p85

Theorem 11. 我们有 $\mathbb{P}(\forall n \geq 1, W_n > 0) = \frac{1}{\mathbb{E}(S_1)}$ 。证明见教材 p86

1.3.2 更新累积过程

Definition 5. 设 $((\xi_n, \eta_n): n \ge 1)$ 为独立同分布的二维随机变量序列,且 $\xi_n \ge 0$ 。令 N(t) 为以 ξ_n 为更新间隔时间的更新过程。令 $A(t) = \sum_{n=1}^{N(t)} \eta_n$ 。称 $(A(t): t \ge 0)$ 为**更新累积过程**。

Theorem 12. 设 $0 < \mathbb{E}(\xi_1) < \infty$, $\mathbb{E}(|\eta_1|) < \infty$ 。则几乎必然有 $\lim_{t \to \infty} \frac{A(t)}{t} = \frac{\mathbb{E}(\eta_1)}{\mathbb{E}(\xi_1)}$ 。且有 $\lim_{t \to \infty} \frac{\mathbb{E}(A(t))}{t} = \frac{\mathbb{E}(\eta_1)}{\xi_1}$ 。证明见教材 p87

待	更新	相	间,	1

更新方程,1

更新过程,1

更新函数,1

更新间隔时间,1

更新累积过程,2

更新累积过程的大数定律, 2

基本更新定理,1

爬升时间,2

爬升时间的差, 2

随机游动恒正的概率, 2

跳幅, see 步列 2

W(t), 1

瓦尔德恒等式,1

中心极限定理,1