

QUALIDADE DAS ÁGUAS SUPERFICIAIS DE SETE CANAIS PERTENCENTES À BACIA DO UNA EM BELÉM (PA)

Robson COSTA (1); Luiza MACHADO (2); Márcia Valéria CUNHA (3); Maria do Socorro LOPES (4); Ilka Sueli SERRA (5)

 $(1) \ CEFET-PA, \ Rua\ s\~{ao}\ jos\'e\ n°236. \ Cep:\ 66630165. \ Bengui-Bel\'em-Par\'a.\ Tel.:\ (91)88313906. \ E-mail:\ (91)88313906.$

robsrcc@yahoo.com.br

(2) UFPA, e-mail: lugirard@ufpa.br
(3) CEFET-PA, e-mail: mv_cunhas@yahoo.com.br
(4) CEFET-PA, e-mail: soclopes@yahoo.com.br
(5) CEFET-PA, e-mail: ildiserra@yahoo.com.br

RESUMO

O Município de Belém apresenta em sua área urbana uma ocupação desordenada sem a menor infraestrutura de saneamento, onde a população lança seus esgotos domésticos em canais artificiais e naturais, integrantes da rede de bacias hidrográficas que caracterizam a cidade. A presente pesquisa experimental objetiva caracterizar as águas dos principais canais da Bacia do Una, através de parâmetros físico-químicos, a saber: turbidez, pH, TDS, OD e DBO₅. Os pontos de coletas de amostras foram georeferenciados e as coletas foram manuais. Os valores dos parâmetros físico-químicos obtidos são: pH de 6,0 a 7,1, enquadrando-se na classe 2; TDS com maior média de 213,1 mg/L inferior ao limite de 500 mg/L; Turbidez: 49 UT abaixo do limite máximo de 100 UT; OD com média de 1,4 mg/L(2005) e 0,8 mg/L (2006); DBO₅ com média temporal superior 5 mg/L. Os valores de OD e DBO₅ mostraram-se fora dos limites estabelecidos (5 mg/L), comprovando a contaminação proveniente de carga orgânica, assim como a falta de implantação do sistema de esgotamento sanitário em áreas periféricas na região metropolitana de Belém.

Palavras-chave: águas superficiais, caracterização, canais.

1. INTRODUÇÃO E OBJETIVO DO TRABALHO

O Brasil encontra-se em posição de destaque em relação à disponibilidade de recursos hídricos. O país comporta 8% de toda a água doce do mundo e a região amazônica concentra grande parte desse montante, que necessita de medidas concretas para sua preservação. Diante deste panorama, se faz necessário o estudo dos poluentes que atingem os recursos hídricos para identificar suas origens, evitando que cheguem até os cursos d'água, ou realizar o acompanhamento da qualidade dos mesmos para avaliar a sua capacidade de autodepuração e prever a falência da vida neles (Bezerra e Lopes, 2001).

A questão da degradação do meio ambiente, especialmente a de corpos hídricos, é agravada pelo crescimento urbano desordenado nas cidades, sobretudo nas grandes metrópoles, devido à ausência de planejamento, carência de recursos, serviços e de infra-estrutura nos espaços construídos.

O Município de Belém não contraria tais aspectos, uma vez que grande parte da área urbana foi ocupada de forma desordenada e sem a menor infra-estrutura de saneamento, o que resultou em áreas periféricas, onde a população lança seus esgotos domésticos, direta ou indiretamente, em canais artificiais e naturais (rios, furos, igarapés, paranás e lagos), integrantes da extensa rede de bacias hidrográficas que caracterizam a cidade. Esgotos industriais e de áreas comerciais, também são lançados no interior desses canais (LIMA; NASCIMENTO; SOUSA, 2003).

De acordo com os dados do IBGE (2000), Belém conta com uma população de aproximadamente 1.280.614 habitantes, distribuída em 14 bacias hidrográficas, sendo que a área de estudo compreende a bacia do Una, a maior bacia de drenagem da cidade e que apresenta significativa importância por atravessar diversos bairros da capital. (FADESP/SESAN, 1997).

O presente trabalho objetiva caracterizar, preliminarmente, as águas dos principais canais da Bacia do Una, através de parâmetros físico-químicos, a saber: cor aparente, turbidez, condutividade, pH, TDS, OD e DBO₅. Os resultados foram avaliados em função da Resolução 357/05-Conama (Conselho Nacional de Meio Ambiente), que normatiza o enquadramento dos recursos hídricos em função da qualidade de suas águas.

2. MATERIAIS E MÉTODOS

A localização georeferenciada dos pontos de coleta de amostras de água proveniente dos canais da Bacia do Una (figura 1) está descrita na Tabela 1.

O monitoramento da qualidade da água da bacia do Una vem sendo realizado ao longo de três anos, especificamente de 2004 a 2006. O procedimento de coleta foi manual. Nesse procedimento, recipientes de polipropileno com capacidade de armazenamento de 1000 mL foram utilizados para as determinações das seguintes análises: cor aparente, turbidez, condutividade, pH, TDS (sólidos totais dissolvidos), OD (oxigênio dissolvido) e DBO₅ (demanda química de oxigênio). As amostras foram acondicionadas em caixas isotérmicas e mantidas sob refrigeração (<10°C). Os métodos analíticos empregados para a determinação dessas variáveis obedeceram aos procedimentos e recomendações descritas no Standard Methods for Examination of Water and Wastewater (APHA/ AWWA/WEF, 1998).

Figura 1 – Pontos de amostragem de coleta de água.

Tabela 1 - Descrição dos locais de coleta de amostras nos canais da Bacia do UNA.

IDENTIFICAÇÃO	DESCRIÇÃO DOS LOCAIS DE COLETA			
	Nome do Canal	Localização Geográfica		
		(DATUM-WGS84)		
P01	Canal do UNA	01°25'5.47''S		
		48°29'33.53''W		
P02	Canal São Joaquim	01°24'56.15''S		
		48°28'59.59''W		
P03	Canal Água Cristal	01°24′9.09′′S		
		48°27'58.43''W		
P04	Canal do Galo	01°25'11.94''S		
		48°29'0.72''W		
P05	Canal da Pirajá	01°25'19.15''S		
		48°28'1.82''W		
P06	Canal da 3 de Maio	01°26'22.32''S		

		48°28'32.88''W
P07	Canal do Antonio Baena	01°26'22.25''S
		48°28'24.13''W

3. RESULTADOS E DISCUSSÃO

A discussão dos resultados será realizada com base na Resolução N° 357/2005 do Conselho Nacional de Meio Ambiente (CONAMA) que é o instrumento responsável pela definição, quantificação e aplicação de padrões de qualidade da água nas bacias hidrográficas brasileiras.

Os valores de pH variaram de 6,0 a 7,1 (Tabela 2), aos quais são coerentes com a realidade amazônica, cujas águas apresentam valores de pH levemente ácidos (± 6,0). Não ocorreram variações significativas dos valores obtidos tanto espacialmente, quanto temporalmente, tendo média de 6,6, com amplitude aproximada de 0,6. Todos os valores encontrados estão de acordo com a faixa de pH estabelecida para classe 2 (6,0 a 9,0), da Resolução CONAMA Nº 357/2005.

pН	30.Nov.2004	04.Dez.2005	12.Jul.2006	Média
P1	6,3	6,6	6,6	6,4
P2	6,0	6,9	6,8	6,7
Р3	6,2	6,7	6,8	6,7
P4	6,1	7,1	6,6	6,7
P5	6,5	6,7	6,3	6,5
P6	6,6	6,8	6,7	6,7
P7	6,8	6,8	6,6	6,8
Média	6,4	6,8	6,6	

Tabela 2 – Valores de pH

Os valores da temperatura da água apresentaram-se próximos ao da temperatura média anual do ar (30 °C). O menor valor registrado foi de 26,5 °C e o máximo de 30,6 °C, sendo a média global igual a 28,5 °C. Comparando-se o resultado espacialmente, verificou-se que os mesmos variam apenas nas casas decimais entorno da média (28 °C \pm 0,1). Para análise temporal, verifica-se que os maiores valores de temperatura ocorreram em 23/05, com mais 1,3 em relação à média, e os menores com menos 1,5 °C.

Em uma análise espacial verifica-se que a condutividade média, manteve-se estável para os quatro primeiros pontos (P1 a P4), cujas médias variaram de 343,7 μ S/cm (P4) a 352 μ S/cm (P3), bem próximos à média global. Já em P5 a média reduz para 283 μ S/cm para depois se elevar para 379,7 μ S/cm e 399,3 μ S/cm em P6 e P7 respectivamente, bem superiores a média global de 350,8 μ S/cm. Caracterizando, desse modo, em P6 e P7, possíveis lançamento de efluentes industriais.

Os valores de TDS (tabela 3) apresentaram-se de acordo com o limite de 500 mg/L estabelecido na Resolução CONAMA Nº 357/2005, com P3 apresentando a menor média (143,2 mg/L), e P6 sofrendo um

acréscimo de 17 % em relação a média global. Observa-se um valor anômalo de 49,8 mg/L em P1, no dia 23/05, enquanto no dia 04/12 apresentou TDS igual a 266 mg/L.

Tabela 3 – Valores de TDS.

TDS* mg/L	30.Nov.2004	23.Mai.2005	04.Dez.2005	12.Jul.2006	Média
P1	213	49,8	217	133,3	153,3
P2	205	153,6	182	135	168,9
Р3	163	160	119	130,6	143,2
P4	176	169,8	240	133,2	179,8
P5	134	110,6	222	116,3	145,7
P6	237	210	246	134,9	207,0
P7	220	183,8	266	134	201,0
Média	192,6	148,2	213,1	131,0	

Na determinação dos valores de turbidez, os pontos P3 a P5 apresentaram-se abaixo da média global (24, 9 UT), os pontos P1 e P6 já mostraram valores cerca de 50% superiores a média, que é de 24,9 UT. Todos os valores estão de acordo com o limite máximo de 100 UT preconizado pela Resolução CONAMA Nº 357/2005.

Tabela 4 - Valores de UT.

Turbidez UT	30.Nov.2004	23.Mai.2005	04.Dez.2005	12.Jul.2006	Média
P1	17,6	43,5	49	36,2	36,6
P2	18,3	22,2	36	29,8	26,6
P3	15,6	22,2	24	16,4	19,6
P4	14,8	23,2	20	15,6	18,4
P5	12,7	14,7	28	14,1	17,4
P6	39,8	31,5	33	25,5	32,5
P7	27,2	23,6	17	26	23,5
Média	20,9	25,8	29,6	23,4	

^{*} Sólidos Totais Dissolvidos.

Os valores de OD obtidos se mostraram uniformes com média de 1,4 mg/L em 2005 e 0,8 mg/L em 2006. Observa-se que esses valores são muito inferiores ao limite de 5 mg/L, estabelecido pela Resolução CONAMA Nº 357/2005, o que se deve a carga orgânica que atinge esses canais por meio de ligações clandestinas de esgoto à rede de drenagem.

Tabela 5 - Valores de OD.

OD mg/L	23.Mai.2005	12.Jul.2006	Média
P1	2,9	0,9	1,9
P2	0,79	0,6	0,7
Р3	1,36	1,2	1,3
P4	1,07	0,7	0,9
P5	1,59	1	1,3
P6	0,82	0,5	0,35
P7	1	0,4	0,7
Média	1,4	0,8	

Os valores obtidos para DBO₅ (tabela 6) apresentaram média temporal superior a média global de 25,9 mg/L, apenas a média da coleta realizada em 30/11/2004 (12,7 mg/L) ficou abaixo do valor média global. Verifica-se que os valores encontrados são superiores ao padrão estabelecido pela Resolução CONAMA Nº 357/2005, que é de 5 mg/L, estando em consonância com os baixos valores de OD encontrados nas águas dos canais da Bacia do Una.

Tabela 6 - Valores de DBO₅

DBO ₅ mg/L	30.Nov.2004	04.Dez.2005	12.Jul.2006	Média
P1	18	40	28	41,5
P2	13	22	36	47,8
Р3	13	18	34	46,3
P4	10	23	36	42,3
P5	5	30	18	35,8
P6	16	32	68	56,5
P7	14	37	32	48,3
Média	12,7	28,9	36,0	

4. CONCLUSÕES

As variáveis turbidez, pH e TDS apresentaram valores em conformidade com a Resolução CONAMA Nº 357/2005. A temperatura também está coerente com as águas amazônicas, sem alterações significativas em seus valores, denotando ausência de lançamento com carga térmica.

Os valores de OD e DBO₅ obtidos estão fora dos limites estabelecidos pela referida resolução, o que comprova a contaminação proveniente do lançamento de cargas orgânicas ao longo do curso d'água. Constata-se, desse modo, a falta de implantação de sistema de coleta e tratamento de esgoto em áreas periféricas da região metropolitana de Belém.

REFERÊNCIAS

AMERICAN PUBLIC HEALTH ASSOCIATION. Standard methods for the examination of water and wastewater. 19. ed. Washington, APHA, 1998. 1100p.

Bezerra, M.S.M & Lopes, D. F. **Avaliação dos níveis de contaminação do igarapé tucunduba – evolução histórica e atuais perspectivas**. Belém: 2001. Trabalho de conclusão de curso (TCC). Apresentado ao Departamento de Hidráulica e Saneamento/CT/UFPA. 2001

Fundação de Amparo ao Desenvolvimento da Pesquisa / Secretaria Municipal de Saneamento – FADESP/SESAN. **Projeto de dragagem e revestimento do canal tucunduba.** Belém, junho a setembro, 1997, FADESP/SESAN.

LIMA, Rosete Ferreira de; NASCIMENTO, Renata Martins do; SOUSA, Letícia Ataíde de. Caracterização preliminar das águas dos principais canais das bacias hidrográficas que deságuam na baía de guajará. Trabalho de conclusão de curso (TCC). Departamento de Hidráulica e saneamento, Universidade Federal do Pará, Belém, 2003.

Ministério do Meio Ambiente/Conselho Nacional de Meio Ambiente. **Resolução nº 357 de 17 de março de 2005**. Disponível em: http://www.mma.gov.br/conama/res/res05/res35705.pdf> Acesso em: 10 de agosto de 2006.