INDEX

Note: Page numbers followed by f indicate figures, and t indicate tables.

A	Attitude coordinated controller design,
Active debris removal (ADR)	223–226
description, 1	Attitude dynamic model, 188–189,
manipulator, 2–7	219–220, 278–279
multi-space tethers, 10-13	design of mechanism, 217-219
single space tether, 8–10	task description, 222-223
tentacles, 2	Autonomous rendezvous and docking
Adaptive and robust target capture	(ARVD), 75
controller (ARTC)	Aviospace, 2
capture component, 258	Azimuth angles, calculation theory, 105-106
error function, 257	
Lyapunov function, 259	В
NN, 257	Bead model, 27
system parameters, 256	anchor point motion, 32
tracking errors, 256	bead mass, 32
trajectory tracking, 262, 263f	configuration, 29f
Aerospace Dual-Arm Manipulator	C–W equations, 29–31
(ADAM), 7	Hook's law, 30–31
Algebraic Riccati equation, 215	mass point motion, 30-31
Approach control	platform coordinate system, 29-30,
actuator assignment, 169t	30–31 <i>f</i>
actuator configuration, 167-168,	tether deployment, 31
168 <i>f</i>	Bias momentum approach, 245-246
attitude controller, 177-178	Body frame, 148
attitude model, 168-169	Boundary control, 215
bead model, 166, 166f	
close-loop adaptive controller, 175-177	C
noncooperative target detection and	Camera coordinate system (CCS),
tracking, 165–166	105, 106 <i>f</i>
numerical simulation, 178-181	Capstan, 45-46, 46f, 61-62
open-loop optimal trajectory, 172-175	Carnot energy loss term (CELT), 61-64
rendezvous control, 165-166, 167f	Chebyschev polynomial, 183-184
scheme, 172, 173f	Circular object detection method
trajectory model, 170-171	arc support region, 102-104
Approach trajectory model, 172	circle equation and parameters, 104-105
ASTRO, 5	Classical string theory, 148-149
Attitude controller. See also Coordinated	Closed-loop control law, 158-159
orbit and attitude control method	Closed-loop control system, 158-159
approach stage, 177-178	tracking errors, 162-163, 162f
design, 131-134	Close-loop adaptive controller, 175-177
stability, 134–136	Close-range detectors, 77
Attitude control model, 168–169	Continuum model, 146

Control force optimal approaching trajectory, 234 <i>f</i> in tether coordinate frame, 211 <i>f</i> thrustors, 211, 213 <i>f</i> , 237 <i>f</i>	Coordinated tracking controller design, 226–232 Coupling dynamics modeling attitude model, 188–189
thrusters, 211–213f, 237f Controller. See Coordinated controllerOptimal coordinated controller	body frame, 148 Hamiltonian theory, 149–152 inertial frame, 147
Control torque releasing motor, 210 <i>f</i> tethers, 242 <i>f</i> thrusters, 242 <i>f</i> Coordinated controller	mathematical discretization, 152–157 orbital frame, 148 releasing model, 184–187 6-DOF model, 192–193 TSR system, 147, 148 <i>f</i>
attitude control fuel consumption, 243 <i>f</i> attitude coordinated, 223–226 block diagram of, 232 <i>f</i> , 288, 288 <i>f</i> configuration of mechanism, 234 <i>t</i> coordinated tracking, 226–232 fuel consumption, 294–296, 296 <i>f</i> numerical simulation, 233–243 orbit control fuel consumption, 238 <i>f</i> parameter identification, 283–284 parameter optimization, 287–288 switching conditions, 287 tether tension, 284–285 thruster controller design, 285–287 tracking control of position, 235 <i>f</i>	C–W equations, 29–31 D Deutsche Orbital Servicing Mission (DEOS), 6–7 sensor arrangements, 75 Dynamics model, 193–194. See also Coupling dynamics modeling of target, 252 of TSR, 248–252 Dynamic template strategy, 111 E Energy entired performance index, 126
tracking errors of position, 235f Coordinated control mechanism, 217–218 gripper, 218f tether reel mechanism, 218f Coordinated coupling control strategy, 193 attitude control torque, 208f control diagram, 198f	Energy optimal performance index, 126 Engineering Test Satellite VII (ETS-VII), 3–5, 5f Euler angle, 279 Oxyz, 249 of target attitude during capture, 272f of three-axis attitude, 292, 292f
operation robot, thrusters layout of, 197 optimal trajectory planning, 193–197 Coordinated orbit and attitude control method attitude control torque, 143f control diagram, 127, 127f Fuzzy PD control force, 140, 141f orbit control force, 128–131 PD controller, 131 process steps, 127–128 reaction wheels angular velocity, 143f relative attitude angle, 142f thruster force comparison, 138–140, 139–140f	F Far-range detectors, 77 Fault-tolerant nonlinear control design, 215–216 FREND, 5–6 Fuzzy decision-making method, 183 Fuzzy PD controller, 131 G Gauss numerical integration method, 71 Gauss pseudospectral method, 122, 125, 131, 174–175 German ROTEX, 3, 4f

Global polynomial, 121, 174–175, 183–184	Hp-adaptive pseudospectral method,
Greedy Snake algorithm, 82, 88, 94, 96, 101	146–147, 158
Gripper 170 181 1806	Hybrid unit method
approach stage, 179–181, 180 <i>f</i>	deployment point, 36–37
control torque, 241f	disadvantages, 36
coordinated control mechanism, 218f	Hook's law, 37–38
Euler attitude tracking result, 239f	hybrid point, 38
Hertz model, 253–254	motion equations, 37
initial parameters, 234 <i>t</i>	stress boundary condition, 37
optimal approaching trajectory, 233f	•
orbit dynamics model, 226	1
PBIC for, 254, 256 <i>f</i>	Image sensor's imaging model, 106f
tether tension, 223	Impact forces, 262–270, 268–270f
trajectory planning, 232–233	Inertial frame, 147
TSR, 252–253, 253f	Inline angle, 79, 79f
velocity, 236f	Interferential torque, 128, 130, 141f
н	J
Hamiltonian method, 28	Japanese ETS-VII, 3-5, 5f
deployment motion equation, 64-65	Japanese Space Research Centre, 189–190
deployment/retrieval mechanism, 61–62, 62 <i>f</i>	Japan's Aerospace Dual-Arm Manipulator (ADAM), 7
dynamics modeling, 149–152	(
Gauss numerical integration, 71	K
implicit differential equations, 72	Kelvin-Voigt expression, 62
integration range, 68f	Kevlar tether, 277
interpolation function, 69, 69f	KLT algorithm, 81, 86-87
iteration equations, 73	
Kelvin–Voigt expression, 62	L
kinetic energy, 63	Lagrange's equations, 251
matrix assembly process, 71, 72f	Least square integrated predictor, 109–111
motion equation, 64	Legendre polynomial, 183–184
nondimensional variable, 68	Line-support region, 102
potential energy, 63	Long-distance optimal trajectory planning,
retrieval motion equation, 66	183–184
stress-strain equation, 62–63	Lumped mass model, 146
system configuration, 60–61, 61f	Lyapunov function, 201, 224, 259, 286
TSRS motion, 67	Lyapunov stability theory, 201
Hertz model, 253–254	Dyapanov stability theory, 201
Hessian matrix, 80, 83	M
Hill equation, 221	Mobile tether attachment points
orbit dynamic model, 280	attitude dynamics model, 216–223
trajectory model, 171	boundary control, 215
Hook's law	coordinated controller, 223–232
bead model, 30–31	numerical simulation, 232–243
hybrid unit method, 37–38	off-set control strategy, 215
Ritz method, 33f	orbit dynamic model, 217–219, 221
1012 memou, 33j	0101t dynamic model, 217 217, 221

Mobile tether attachment points (Continued)	node deletion, 60f
position of, 240f	orbit coordinate system, 39-40f
trajectory of, 240f	STRS discretization, 53-55
Modified Rodrigues parameter (MRP), 219,	terminal device, force analysis, 42, 42f
222–223	tether motion, 48–49, 48f
Monocular real-time robust feature tracking	tether segments, 56–57, 56f
(MRRFT)	trapezoid formula, 51
adaptive features updating strategy, 89-91	Nonlinear programming (NLP), 194–195,
detector-descriptor scheme, 80	227–229
DOF motion platform, 92–93, 93f	Normalized SAD (NSAD), 107
feature extraction, 82–86	, , ,
feature matching algorithm, 86-88	
object precise location, 88–89	
performance, 95, 95f	0
point detectors and descriptors, 80-81	OctArm, 2
qualitative analysis, 99–101	Off-set control strategy, 14–16, 215, 245
quantitative comparisons, 95–99	On-orbit service (OOS), 2–3, 145, 183
satellite model, 92, 92f	Open-loop optimal trajectory
SIFT vs. SURF, 79–80	control inputs, 179f
target precise location, 94, 94f	gripper attitude, 172
tracking sequences, 94–95, 94f	objectives, 174
tracking types, 80	optimal control problem, 174–175
Multiple impedance control (MIC)	pseudospectral method, 174–175
algorithm, 246–247	TSR approach trajectory, 172
Multi-space tethers	Operation robot, 183
attitude control, 12	angular velocity, 209f
description, 10-11	angular velocity vector, 131–132
dynamics and control, 11–12	attitude angle, 207f
structure and configuration, 12–13	attitude angular velocity, 208f
	attitude dynamic equation, 132
	in-plane angle, 204f
N	optimization parameters, 137t
Newton-Euler method, 28	out-of-plane angle, 205f
capstan, 45–46, 46f	relative attitude quaternion kinematics
deployment and retrieval equations, 45,	equation, 131–132
47	relative trajectory, 204f
deployment and retrieval mechanisms,	releasing trajectory, 203f
44–45, 45 <i>f</i>	thrusters layout, 197, 197f
discretization of mathematical model,	trajectory comparison, 138f
58–59	Optimal approaching trajectory, 193–197
flexible tether, 40–41	control force, 234f
ill-conditioned characteristic, 49	TSR, 183–184, 227–228, 233
infinitesimal segment, force analysis,	Optimal coordinated controller
41–42, 41 <i>f</i>	classical methods, 146
integration equation, 50-51	closed-loop controller, 158–159
linear interpolation, 51, 51f	hp-adaptive pseudospectral method, 158
mathematical model, 41–44	minimum-fuel problem, 157
node insertion, 59, 59f	numerical simulation, 159–163

Optimal trajectory tracking. See Trajectory optimization method	motion equations, 33–34 numerical integration, 35
Orbital frame, 148	tension force projection, 33
Orbit control method. See Coordinated	Robotic sensing system
orbit and attitude control method	inline angle, 79, 79f
Orbit coordinate system, 39–40f	measurement information, $78t$
Orbit dynamic model, 221	sensor types, 76
design of mechanism, 217–219	task flow, visual perception system,
	78–79, 79 <i>f</i>
postcapture attitude control, 280 OXYZ, 40, 247–248	vision-based measurements, 76
Euler angle, 249	visual perception system construction, 77, 77f
_	Robot Technology Experiment (ROTEX),
P	
Phoenix program, 6	3, 4 <i>f</i> Rod model, 146
P-KLT algorithm, 87–88	Rod model, 140
Position-based impedance control (PBIC),	
254–255, 256 <i>f</i>	S
Postcapture attitude control	Scale-invariant feature transform (SIFT), 80,
attitude dynamics model, 278–279	83, 84 <i>f</i>
coordinated controllers, block diagram of,	SEDS project, 189–190
288, 288f	Servoing control system
dynamic analysis, 280–281	design, 113
numerical simulation, 289–298	experimental set-up, 113
orbit dynamic model, 280	qualitative analysis, 113–114
parameter identification, 283-284	quantitative comparisons, 114–117
parameter optimization, 287-288	SIFT. See Scale-invariant feature transform
switching conditions, 287	(SIFT)
tether tension, 284–285	Single space tether
thruster controller design, 285–287	artificial gravity, 8
Potential energy, 63, 250	attitude stabilization, 9–10
Pseudospectral method, 121, 125, 183-184,	space transportation, 8–9
233. See also Gauss pseudospectral	6-DOF coupled dynamics model, 192, 198
method	Sliding mode controller, 286
control law, 161f	Sliding mode control method, 224, 230
open-loop optimal trajectory, 174–175	SNOPT optimization algorithm, 196–197, 229
R	Spacecraft for the Universal Modification of
Reel	Orbits (SUMO), 5–6, 6 <i>f</i>
motor mechanism, 189–190	Space debris micro-remover (SDMR), 7
rotating angle, 206f	Space free-flying robots (SFFR), 246–247
rotating angular velocity, 207f	Space manipulator, 2–7
Releasing dynamic model, 184–187	Space tentacles, 2
Retinal coordinate system (RCS), 105–106	Space tether
Ritz method	control force, 138f
differential equations, 34–35	endpoint, 28
element acceleration, 32–33, 33f	interferential torque, 141 <i>f</i>
Hook's law, 33f	kinetic energy of, 250

Space tether (Continued)	capture and post-capture phase, 17
PD controller, 201	coordinate frame, 185f
releasing length, 205f	coupled dynamics model, 198
releasing mechanism, 190f	deorbiting phase, 17
tension force, 209f	MRP attitude tracking, 238f
velocity comparison, 206f	operational robot, 18–19, 18f
SUMO. See Spacecraft for the Universal	optimal approaching trajectory, 227–228
Modification of Orbits (SUMO)	
SURF, 80	optimal trajectory planning, 183–184
comparative diagram, 83, 84 <i>f</i>	orbit design, 19–21
description, 83–85	release and retrieval phase, 14–17 releasing dynamic model, 184–185
modified, 85–86	
Switching conditions, 287	6-DOF coupled dynamics model, 192
optimal values of, 289, 290t	target approaching phase, 217f
Т	target capture, 276–277, 277f
-	Tethered space satellite system (TSS), 165–166
Tait-Bryan angle derivation, 169	
Target attitude, 271, 272f	Tethered subsystem, 184
Target capture control	Tether force, 237 <i>f</i>
adaptive and robust control law, 257	Tether reeling model, 130–131
attitude of TSR, 262, 264 <i>f</i>	Tether releasing mechanism
capture component, 253, 253 <i>f</i> dynamic collision process, 246–247	coordinated coupling control strategy, 193–201
dynamic modeling, 247–254, 248f	coupling dynamic models, 184-193
error function, 262, 267f	model of, 189–192
Euler angle, 271, 272f	numerical simulation, 201-212
impact forces, 262-270, 268-270f	operation robot, 183
impact torques, 270–271, 270f	Tethers
impedance control, 254–255	attitude interference torque, 210f
numerical simulation, 261–272	control torque, 242f
parameters, 261, 262 <i>t</i>	lengths of, 241f
position change of target, 271, 273f	multi-space, 10–13
space tether, 262, 265–266f	single space, 8–10
target attitude, 271, 272f	Tether tension, 223, 226, 280, 296f
TC vs. ARTC, 262, 263f	coordinated controller, 282, 284-285
tracking errors, 262, 264–266f	linear velocity changes, 296-298, 297f
TSR's gripper, 252–253, 253f	pitch and yaw angles, 284–285
Target Collaborativize (TAKO), 2	position changes, 296–298, 297f
Target tracking system. See also Monocular	torques of, 294, 295f
real-time robust feature tracking	Tether vector, 281
(MRRFT)	Three-axis angular velocity, 292, 293f
flow diagram, 91f	Three-axis attitude, 290–292, 291–292f
Taylor's expansion formula, 250	Thruster, 233
Template matching, 107–109	control commands, for coordinated
Tentacles, 2	control, 294, 294 <i>f</i>
Tethered space robot (TSR), 13–14, 14f	control force, 237f
angular velocity. 239f	controller design, 285–287

control torque, 242f
Tracking errors, 262, 264f
Trajectory model, approach stage, 170–171
Trajectory optimization method, 183
description, 121
energy optimal performance index, 126
fuel saving, 122–123
Gauss quadrature, 125–126
Lagrange interpolation, 125
numerical simulation, 136–143
path constraints, 124
performance index, 124
PID, 122–123
reference frames, 123–124, 123f

relative dynamics, 126 thruster force comparison, 138–140, 139–140*f* Transformation matrix, 278–279, 281 TSR. *See* Tethered space robot (TSR)

٧

Visual servoing controller, 112–113

W

World coordinate system (WCS), 105-106

Υ

YES2 project, 189-190