

## Proximity Measure for Categorical Attributes

- □ Categorical data, also called nominal attributes
  - Example: Color (red, yellow, blue, green), profession, etc.
- ☐ Method 1: Simple matching
  - □ *m*: # of matches, *p*: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- ☐ Method 2: Use a large number of binary attributes
  - Creating a new binary attribute for each of the M nominal states

## **Ordinal Variables**

- An ordinal variable can be discrete or continuous
- □ Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
- Can be treated like interval-scaled
  - □ Replace an ordinal variable value by its rank:  $r_{if} \in \{1,...,M_f\}$
  - Map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

- □ Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
  - $\Box$  Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3
- Compute the dissimilarity using methods for interval-scaled variables

## **Attributes of Mixed Type**

- A dataset may contain all attribute types
  - □ Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
- □ One may use a weighted formula to combine their effects:

$$d(i, j) = \frac{\sum_{f=1}^{p} w_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} w_{ij}^{(f)}}$$

- $lue{}$  If f is numeric: Use the normalized distance
- □ If f is binary or nominal:  $d_{ij}^{(f)} = 0$  if  $x_{if} = x_{jf}$ ; or  $d_{ij}^{(f)} = 1$  otherwise
- $\Box$  If f is ordinal

  - ☐ Treat z<sub>if</sub> as interval-scaled