Advanced Quantitative Research Methodology, Lecture Notes: Theories of Inference¹

Gary King GKing.Harvard.Edu

February 19, 2016

1. Probability:

$$P(y|M) = P(known|unknown)$$

1. Probability:

$$P(y|M) = P(known|unknown)$$

2. The goal of inverse probability:

$$P(M|y) = P(unknown|known)$$

1. Probability:

$$P(y|M) = P(known|unknown)$$

2. The goal of inverse probability:

$$P(M|y) = P(unknown|known)$$

3. A more reasonable, limited goal. Let $M = \{M^*, \theta\}$, where M^* is assumed & θ is to be estimated:

$$P(\theta|y, M^*) \equiv P(\theta|y)$$

4. Bayes Theorem (no additional assumptions, so its true!):

4. Bayes Theorem (no additional assumptions, so its true!):

$$P(\theta|y) = \frac{P(\theta,y)}{P(y)}$$

[Defn. of conditional probability]

Bayes Theorem (no additional assumptions, so its true!):

$$P(\theta|y) = \frac{P(\theta, y)}{P(y)}$$
$$= \frac{P(\theta)P(y|\theta)}{P(y)}$$

[Defn. of conditional probability]

$$[P(AB) = P(B)P(A|B)]$$

4. Bayes Theorem (no additional assumptions, so its true!):

$$P(\theta|y) = \frac{P(\theta, y)}{P(y)}$$
 [Defn. of conditional probability]

$$= \frac{P(\theta)P(y|\theta)}{P(y)}$$
 [P(AB) = P(B)P(A|B)]

$$= \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta}$$
 [P(A) = $\int P(AB)dB$]

4. Bayes Theorem (no additional assumptions, so its true!):

$$P(\theta|y) = \frac{P(\theta,y)}{P(y)}$$
 [Defn. of conditional probability]

$$= \frac{P(\theta)P(y|\theta)}{P(y)}$$
 [P(AB) = P(B)P(A|B)]

$$= \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta}$$
 [P(A) = $\int P(AB)dB$]

5. If we knew the right side, we could compute the inverse probability.

4. Bayes Theorem (no additional assumptions, so its true!):

$$P(\theta|y) = \frac{P(\theta,y)}{P(y)}$$
 [Defn. of conditional probability]

$$= \frac{P(\theta)P(y|\theta)}{P(y)}$$
 [P(AB) = P(B)P(A|B)]

$$= \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta}$$
 [P(A) = $\int P(AB)dB$]

- 5. If we knew the right side, we could compute the inverse probability.
- 6. 2 theories of inference arose to interpret this result: <u>likelihood</u> and Bayesian

4. Bayes Theorem (no additional assumptions, so its true!):

$$P(\theta|y) = \frac{P(\theta,y)}{P(y)}$$
 [Defn. of conditional probability]

$$= \frac{P(\theta)P(y|\theta)}{P(y)}$$
 [P(AB) = P(B)P(A|B)]

$$= \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta}$$
 [P(A) = $\int P(AB)dB$]

- 5. If we knew the right side, we could compute the inverse probability.
- 2 theories of inference arose to interpret this result: <u>likelihood</u> and Bayesian
- 7. In both, $P(y|\theta)$ is a traditional probability density

Bayes Theorem (no additional assumptions, so its true!):

$$P(\theta|y) = \frac{P(\theta,y)}{P(y)}$$
 [Defn. of conditional probability]

$$= \frac{P(\theta)P(y|\theta)}{P(y)}$$
 [P(AB) = P(B)P(A|B)]

$$= \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta}$$
 [P(A) = $\int P(AB)dB$]

- 5. If we knew the right side, we could compute the inverse probability.
- 6. 2 theories of inference arose to interpret this result: <u>likelihood</u> and Bayesian
- 7. In both, $P(y|\theta)$ is a traditional probability density
- 8. The two differ on the rest

1. R.A. Fisher's idea

- 1. R.A. Fisher's idea
- 2. θ is fixed and y is random

- 1. R.A. Fisher's idea
- 2. θ is fixed and y is random
- 3. Let:

$$k(y) \equiv \frac{P(\theta)}{\int P(\theta)P(y|\theta)d\theta} \implies P(\theta|y) = \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta} = k(y)P(y|\theta)$$

- 1. R.A. Fisher's idea
- 2. θ is fixed and y is random
- 3. Let:

$$k(y) \equiv \frac{P(\theta)}{\int P(\theta)P(y|\theta)d\theta} \implies P(\theta|y) = \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta} = k(y)P(y|\theta)$$

4. Define K(y) as an unknown function of y with θ fixed at its true value

- 1. R.A. Fisher's idea
- 2. θ is fixed and y is random
- 3. Let:

$$k(y) \equiv \frac{P(\theta)}{\int P(\theta)P(y|\theta)d\theta} \implies P(\theta|y) = \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta} = k(y)P(y|\theta)$$

- 4. Define K(y) as an unknown function of y with θ fixed at its true value
- 5. → the likelihood theory of inference has four axioms: the 3 probability axioms plus the likelihood axiom:

- 1. R.A. Fisher's idea
- 2. θ is fixed and y is random
- 3. Let:

$$k(y) \equiv \frac{P(\theta)}{\int P(\theta)P(y|\theta)d\theta} \implies P(\theta|y) = \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta} = k(y)P(y|\theta)$$

- 4. Define K(y) as an unknown function of y with θ fixed at its true value
- 5. \rightsquigarrow the likelihood theory of inference has four axioms: the 3 probability axioms plus the likelihood axiom:

$$L(\theta|y) \equiv k(y)P(y|\theta)$$

- 1. R.A. Fisher's idea
- 2. θ is fixed and y is random
- 3. Let:

$$k(y) \equiv \frac{P(\theta)}{\int P(\theta)P(y|\theta)d\theta} \implies P(\theta|y) = \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta} = k(y)P(y|\theta)$$

- 4. Define K(y) as an unknown function of y with θ fixed at its true value
- 5. \rightsquigarrow the likelihood theory of inference has four axioms: the 3 probability axioms plus the likelihood axiom:

$$\frac{L(\theta|y)}{\propto P(y|\theta)}$$

- 1. R.A. Fisher's idea
- 2. θ is fixed and y is random
- 3. Let:

$$k(y) \equiv \frac{P(\theta)}{\int P(\theta)P(y|\theta)d\theta} \implies P(\theta|y) = \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta} = k(y)P(y|\theta)$$

- 4. Define K(y) as an unknown function of y with θ fixed at its true value
- 5. \rightsquigarrow the likelihood theory of inference has four axioms: the 3 probability axioms plus the likelihood axiom:

$$\frac{L(\theta|y)}{\propto P(y|\theta)}$$

6. $L(\theta|y)$ is a function: for y fixed at the observed values, it gives the "likelihood" of any value of θ .

7. Likelihood: a relative measure of uncertainty, changing with the data

- 7. Likelihood: a relative measure of uncertainty, changing with the data
- 8. Comparing the value of $L(\theta|y)$ for different θ values in one data set y is meaningful.

- 7. Likelihood: a relative measure of uncertainty, changing with the data
- 8. Comparing the value of $L(\theta|y)$ for different θ values in one data set y is meaningful.
- 9. Comparing values of $L(\theta|y)$ across data sets is meaningless. (just as you can't compare R^2 values across equations with different dependent variables.)

- 7. Likelihood: a relative measure of uncertainty, changing with the data
- 8. Comparing the value of $L(\theta|y)$ for different θ values in one data set y is meaningful.
- 9. Comparing values of $L(\theta|y)$ across data sets is meaningless. (just as you can't compare R^2 values across equations with different dependent variables.)
- 10. The likelihood principle: the data only affect inferences through the likelihood function

• For algebraic simplicity and numerical stability, we use the log-likelihood (the shape changes, but the max is in the same place)

- For algebraic simplicity and numerical stability, we use the log-likelihood (the shape changes, but the max is in the same place)
- If θ has one element, we can plot:

- For algebraic simplicity and numerical stability, we use the log-likelihood (the shape changes, but the max is in the same place)
- If θ has one element, we can plot:

 The full likelihood curve is a Summary Estimator. The likelihood principle means that once this is plotted, we can discard the data (if the model is correct!).

- For algebraic simplicity and numerical stability, we use the log-likelihood (the shape changes, but the max is in the same place)
- If θ has one element, we can plot:

- The full likelihood curve is a Summary Estimator. The likelihood principle means that once this is plotted, we can discard the data (if the model is correct!).
- A one-point summary at the maximum is the MLE

- For algebraic simplicity and numerical stability, we use the log-likelihood (the shape changes, but the max is in the same place)
- If θ has one element, we can plot:

- The full likelihood curve is a Summary Estimator. The likelihood principle means that once this is plotted, we can discard the data (if the model is correct!).
- A one-point summary at the maximum is the MLE
- Uncertainty of point estimate: curvature at the maximum

• Rev. Thomas Bayes' unpublished idea, and later rediscovered.

- Rev. Thomas Bayes' unpublished idea, and later rediscovered.
- Recall:

- Rev. Thomas Bayes' unpublished idea, and later rediscovered.
- Recall:

$$P(\theta|y) = \frac{P(\theta,y)}{P(y)}$$

 $[{\sf Defn.}\ of\ conditional\ probability}]$

- Rev. Thomas Bayes' unpublished idea, and later rediscovered.
- Recall:

$$P(\theta|y) = \frac{P(\theta, y)}{P(y)}$$
$$= \frac{P(\theta)P(y|\theta)}{P(y)}$$

[Defn. of conditional probability]

$$[\mathsf{P}(AB)=\mathsf{P}(B)\mathsf{P}(A|B)]$$

- Rev. Thomas Bayes' unpublished idea, and later rediscovered.
- Recall:

$$P(\theta|y) = \frac{P(\theta, y)}{P(y)}$$

$$= \frac{P(\theta)P(y|\theta)}{P(y)}$$

$$= \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta}$$

[Defn. of conditional probability]

$$[P(AB) = P(B)P(A|B)]$$

$$[P(A) = \int P(AB)dB]$$

- Rev. Thomas Bayes' unpublished idea, and later rediscovered.
- Recall:

$$P(\theta|y) = \frac{P(\theta, y)}{P(y)}$$

$$= \frac{P(\theta)P(y|\theta)}{P(y)}$$

$$= \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta}$$

$$\propto P(\theta)P(y|\theta)$$

[Defn. of conditional probability]

$$[P(AB) = P(B)P(A|B)]$$

$$[P(A) = \int P(AB)dB]$$

- Rev. Thomas Bayes' unpublished idea, and later rediscovered.
- Recall:

$$P(\theta|y) = \frac{P(\theta, y)}{P(y)}$$

$$= \frac{P(\theta)P(y|\theta)}{P(y)}$$

$$= \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta}$$

$$\propto P(\theta)P(y|\theta)$$

[Defn. of conditional probability]

$$[P(AB) = P(B)P(A|B)]$$

$$[P(A) = \int P(AB)dB]$$

• $P(\theta|y)$ the posterior density

- Rev. Thomas Bayes' unpublished idea, and later rediscovered.
- Recall:

$$P(\theta|y) = \frac{P(\theta,y)}{P(y)}$$
 [Defn. of conditional probability]

$$= \frac{P(\theta)P(y|\theta)}{P(y)}$$
 [P(AB) = P(B)P(A|B)]

$$= \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta}$$
 [P(A) = $\int P(AB)dB$]

$$\propto P(\theta)P(y|\theta)$$

- $P(\theta|y)$ the posterior density
- $P(y|\theta)$ the traditional probability (\propto likelihood)

- Rev. Thomas Bayes' unpublished idea, and later rediscovered.
- Recall:

$$\begin{aligned}
\mathsf{P}(\theta|y) &= \frac{\mathsf{P}(\theta,y)}{\mathsf{P}(y)} \\
&= \frac{\mathsf{P}(\theta)\mathsf{P}(y|\theta)}{\mathsf{P}(y)} \\
&= \frac{\mathsf{P}(\theta)\mathsf{P}(y|\theta)}{\mathsf{P}(y)} \\
&= \frac{\mathsf{P}(\theta)\mathsf{P}(y|\theta)}{\int \mathsf{P}(\theta)\mathsf{P}(y|\theta)d\theta} \\
&\propto \mathsf{P}(\theta)\mathsf{P}(y|\theta)
\end{aligned} \qquad \qquad [\mathsf{P}(A) = \int \mathsf{P}(AB)dB]$$

- $P(\theta|y)$ the posterior density
- $P(y|\theta)$ the traditional probability (\propto likelihood)
- \bullet P(y) a constant, easily computed

- Rev. Thomas Bayes' unpublished idea, and later rediscovered.
- Recall:

$$P(\theta|y) = \frac{P(\theta, y)}{P(y)}$$
 [Defn. of conditional probability]

$$= \frac{P(\theta)P(y|\theta)}{P(y)}$$
 [P(AB) = P(B)P(A|B)]

$$= \frac{P(\theta)P(y|\theta)}{\int P(\theta)P(y|\theta)d\theta}$$
 [P(A) = $\int P(AB)dB$]

$$\propto P(\theta)P(y|\theta)$$

- $P(\theta|y)$ the posterior density
- $P(y|\theta)$ the traditional probability (\propto likelihood)
- \bullet P(y) a constant, easily computed
- \bullet P(θ), the prior density the way Bayes differs from likelihood

1. A probability density that represents all prior evidence about θ .

- 1. A probability density that represents all prior evidence about θ .
- 2. An opportunity: a way of getting other information outside the data set into the model

- 1. A probability density that represents all prior evidence about θ .
- 2. An opportunity: a way of getting other information outside the data set into the model
- 3. An annoyance: the "other information" is required

- 1. A probability density that represents all prior evidence about θ .
- 2. An opportunity: a way of getting other information outside the data set into the model
- 3. An annoyance: the "other information" is required
- 4. A philosophical assumption that nonsample information should matter (as it always does) and be formalized and included in all inferences.

1. All unknown quantities (θ, Y) are treated as random variables and have a joint probability distribution.

- 1. All unknown quantities (θ, Y) are treated as random variables and have a joint probability distribution.
- 2. All known quantities (y) are treated as fixed.

- 1. All unknown quantities (θ, Y) are treated as random variables and have a joint probability distribution.
- 2. All known quantities (y) are treated as fixed.
- 3. If we have observed variable B and unobserved variable A, then we are usually interested in the conditional distribution of A, given B:

$$P(A|B) = P(A,B)/P(B)$$

- 1. All unknown quantities (θ, Y) are treated as random variables and have a joint probability distribution.
- 2. All known quantities (y) are treated as fixed.
- 3. If we have observed variable B and unobserved variable A, then we are usually interested in the conditional distribution of A, given B: P(A|B) = P(A,B)/P(B)
- 4. If variables A and B are both unknown, then the distribution of A alone is $P(A) = \int P(A, B) dB = \int P(A|B) P(B) dB$.

• Like L, it's a summary estimator

- Like L, it's a summary estimator
- Unlike *L*, it's a real probability density, from which we can derive probabilistic statements (via integration)

- Like L, it's a summary estimator
- Unlike *L*, it's a real probability density, from which we can derive probabilistic statements (via integration)
- To compare across applications or data sets, you may need different priors. So, the posterior is also relative, just like likelihood.

- Like L, it's a summary estimator
- Unlike L, it's a real probability density, from which we can derive probabilistic statements (via integration)
- To compare across applications or data sets, you may need different priors. So, the posterior is also relative, just like likelihood.
- Bayesian inference obeys the likelihood principle: the data set only affects inferences through the likelihood function

• Like L, it's a summary estimator

Gary King (Harvard, IQSS)

- Unlike L, it's a real probability density, from which we can derive probabilistic statements (via integration)
- To compare across applications or data sets, you may need different priors. So, the posterior is also relative, just like likelihood.
- Bayesian inference obeys the likelihood principle: the data set only affects inferences through the likelihood function
- If $P(\theta) = 1$, i.e., is uniform in the relevant region, then $L(\theta|y) = P(\theta|y)$.

• If $P(\theta)$ is *diffuse*, differences from likelihood are minor, but numerical stability (and "identification") is improved (your programs will run better!).

- If $P(\theta)$ is diffuse, differences from likelihood are minor, but numerical stability (and "identification") is improved (your programs will run better!).
- Philosophical differences from likelihood: Huge

- If $P(\theta)$ is diffuse, differences from likelihood are minor, but numerical stability (and "identification") is improved (your programs will run better!).
- Philosophical differences from likelihood: Huge
- Practical differences when we can compute both: Minor (unless the prior matters)

- If $P(\theta)$ is diffuse, differences from likelihood are minor, but numerical stability (and "identification") is improved (your programs will run better!).
- Philosophical differences from likelihood: Huge
- Practical differences when we can compute both: Minor (unless the prior matters)
- Advantages: more information produces more efficiency; MCMC algorithms are easier with Bayes.

- If $P(\theta)$ is diffuse, differences from likelihood are minor, but numerical stability (and "identification") is improved (your programs will run better!).
- Philosophical differences from likelihood: Huge
- Practical differences when we can compute both: Minor (unless the prior matters)
- Advantages: more information produces more efficiency; MCMC algorithms are easier with Bayes.
- Few fights now between Bayesians and likelihoodists

• Huge fights between these folks and the {Bayesians, Likelihoodists}

- Huge fights between these folks and the {Bayesians, Likelihoodists}
- ② Strict but arbitrary distinction: null H_0 vs alternative H_1 hypotheses

- Huge fights between these folks and the {Bayesians, Likelihoodists}
- ② Strict but arbitrary distinction: null H_0 vs alternative H_1 hypotheses
- 3 All tests are "under" (i.e., assuming) H_0

- Huge fights between these folks and the {Bayesians, Likelihoodists}
- ② Strict but arbitrary distinction: null H_0 vs alternative H_1 hypotheses
- \odot All tests are "under" (i.e., assuming) H_0

For example, is $\beta = 0$ in $E(Y) = \beta_0 + \beta X$?

- Huge fights between these folks and the {Bayesians, Likelihoodists}
- ② Strict but arbitrary distinction: null H_0 vs alternative H_1 hypotheses
- \odot All tests are "under" (i.e., assuming) H_0

For example, is $\beta = 0$ in $E(Y) = \beta_0 + \beta X$?

• H_0 : $\beta = 0$ vs. H_1 : $\beta > 0$

- Huge fights between these folks and the {Bayesians, Likelihoodists}
- ② Strict but arbitrary distinction: null H_0 vs alternative H_1 hypotheses
- \odot All tests are "under" (i.e., assuming) H_0

For example, is $\beta = 0$ in $E(Y) = \beta_0 + \beta X$?

- H_0 : $\beta = 0$ vs. H_1 : $\beta > 0$
- Choose Type I error, probability of deciding H_1 is right when H_0 is really true: say $\alpha=0.05$

- Huge fights between these folks and the {Bayesians, Likelihoodists}
- ② Strict but arbitrary distinction: null H_0 vs alternative H_1 hypotheses
- \odot All tests are "under" (i.e., assuming) H_0

- H_0 : $\beta = 0$ vs. H_1 : $\beta > 0$
- Choose Type I error, probability of deciding H_1 is right when H_0 is really true: say $\alpha=0.05$
- (Type II error, the power to detect H_1 if it is true, is a consequence of choosing an estimator, not an ex ante decision like choosing α .)

- Huge fights between these folks and the {Bayesians, Likelihoodists}
- ② Strict but arbitrary distinction: null H_0 vs alternative H_1 hypotheses
- \odot All tests are "under" (i.e., assuming) H_0

- H_0 : $\beta = 0$ vs. H_1 : $\beta > 0$
- Choose Type I error, probability of deciding H_1 is right when H_0 is really true: say $\alpha=0.05$
- (Type II error, the power to detect H_1 if it is true, is a consequence of choosing an estimator, not an ex ante decision like choosing α .)
- Assume n is large enough for the CLT to kick in

- Huge fights between these folks and the {Bayesians, Likelihoodists}
- ② Strict but arbitrary distinction: null H_0 vs alternative H_1 hypotheses
- \odot All tests are "under" (i.e., assuming) H_0

- H_0 : $\beta = 0$ vs. H_1 : $\beta > 0$
- Choose Type I error, probability of deciding H_1 is right when H_0 is really true: say $\alpha=0.05$
- (Type II error, the power to detect H_1 if it is true, is a consequence of choosing an estimator, not an ex ante decision like choosing α .)
- Assume n is large enough for the CLT to kick in
- Then $b|(\beta=0) \sim N(0,\sigma_b^2)$

- Huge fights between these folks and the {Bayesians, Likelihoodists}
- ② Strict but arbitrary distinction: null H_0 vs alternative H_1 hypotheses
- \odot All tests are "under" (i.e., assuming) H_0

- H_0 : $\beta = 0$ vs. H_1 : $\beta > 0$
- Choose Type I error, probability of deciding H_1 is right when H_0 is really true: say $\alpha=0.05$
- (Type II error, the power to detect H_1 if it is true, is a consequence of choosing an estimator, not an ex ante decision like choosing α .)
- Assume n is large enough for the CLT to kick in
- Then $b|(\beta=0) \sim N(0,\sigma_b^2)$
- or

$$(TS)_{\beta}|(\beta=0)\equiv \frac{b-\beta}{\hat{\sigma}_b}\equiv \frac{b}{\hat{\sigma}_b}\sim N(0,1).$$

• Derive critical value, CV, e.g., the right tail:

$$\int_{(CV)}^{\infty} N(b|0,\sigma_b^2)db = \alpha$$

• Derive critical value, CV, e.g., the right tail:

$$\int_{(CV)}^{\infty} N(b|0,\sigma_b^2)db = \alpha$$

 This means, in educational psychology and other fields, write your prospectus, plan your experiment, report the CV, and write your concluding chapter:

• Derive critical value, CV, e.g., the right tail:

$$\int_{(CV)}^{\infty} N(b|0,\sigma_b^2)db = \alpha$$

 This means, in educational psychology and other fields, write your prospectus, plan your experiment, report the CV, and write your concluding chapter:

Decision =

• Derive critical value, CV, e.g., the right tail:

$$\int_{(CV)}^{\infty} N(b|0,\sigma_b^2)db = \alpha$$

 This means, in educational psychology and other fields, write your prospectus, plan your experiment, report the CV, and write your concluding chapter:

Decision =
$$\begin{cases} \beta > 0 \text{ (I was right)} & \text{if } (TS) > (CV) \\ \beta = 0 \text{ (I was wrong)} & \text{if } (TS) \leq (CV) \end{cases}$$

• Derive critical value, CV, e.g., the right tail:

$$\int_{(CV)}^{\infty} N(b|0,\sigma_b^2)db = \alpha$$

 This means, in educational psychology and other fields, write your prospectus, plan your experiment, report the CV, and write your concluding chapter:

Decision =
$$\begin{cases} \beta > 0 \text{ (I was right)} & \text{if } (TS) > (CV) \\ \beta = 0 \text{ (I was wrong)} & \text{if } (TS) \leq (CV) \end{cases}$$

And then first collect your data. You may not revise your hypothesis or your theory.

• In this example, (TS) < (CV) and so we conclude that $\beta = 0$.

- ullet In this example, (TS)<(CV) and so we conclude that eta=0.
- Decision will be wrong 5% of the time; what about this time?

- In this example, (TS)<(CV) and so we conclude that eta=0.
- Decision will be wrong 5% of the time; what about this time?
- What about when *n* is large or under control of the investigator?

- In this example, (TS) < (CV) and so we conclude that $\beta = 0$.
- Decision will be wrong 5% of the time; what about this time?
- What about when n is large or under control of the investigator?
- In practice, hypothesis testing is used with *p*-values:

- In this example, (TS) < (CV) and so we conclude that $\beta = 0$.
- Decision will be wrong 5% of the time; what about this time?
- What about when n is large or under control of the investigator?
- In practice, hypothesis testing is used with *p*-values: The probability under the null of getting a value as weird or weirder than the value we got the area to the right of the realized value of (*TS*).

- In this example, (TS) < (CV) and so we conclude that $\beta = 0$.
- Decision will be wrong 5% of the time; what about this time?
- What about when *n* is large or under control of the investigator?
- In practice, hypothesis testing is used with *p*-values: The probability under the null of getting a value as weird or weirder than the value we got the area to the right of the realized value of (*TS*).
- Star-gazing is usually silly; what's the quantity of interest?

- In this example, (TS) < (CV) and so we conclude that $\beta = 0$.
- Decision will be wrong 5% of the time; what about this time?
- What about when *n* is large or under control of the investigator?
- In practice, hypothesis testing is used with *p*-values: The probability under the null of getting a value as weird or weirder than the value we got the area to the right of the realized value of (*TS*).
- Star-gazing is usually silly; what's the quantity of interest?
- We can use likelihood to compute hypothesis tests and p-values.

1. Likelihood?

1. Likelihood? Bayes?

1. Likelihood? Bayes? Neyman-Pearson?

1. Likelihood? Bayes? Neyman-Pearson? Criteria estimators?

1. Likelihood? Bayes? Neyman-Pearson? Criteria estimators? Finite or asymptotic based theory?

1. Likelihood? Bayes? Neyman-Pearson? Criteria estimators? Finite or asymptotic based theory? Decision theory?

1. Likelihood? Bayes? Neyman-Pearson? Criteria estimators? Finite or asymptotic based theory? Decision theory? Nonparametrics?

 Likelihood? Bayes? Neyman-Pearson? Criteria estimators? Finite or asymptotic based theory? Decision theory? Nonparametrics? Semiparametrics?

 Likelihood? Bayes? Neyman-Pearson? Criteria estimators? Finite or asymptotic based theory? Decision theory? Nonparametrics? Semiparametrics? Conditional inference?

 Likelihood? Bayes? Neyman-Pearson? Criteria estimators? Finite or asymptotic based theory? Decision theory? Nonparametrics? Semiparametrics? Conditional inference? Superpopulation-based inference?

 Likelihood? Bayes? Neyman-Pearson? Criteria estimators? Finite or asymptotic based theory? Decision theory? Nonparametrics? Semiparametrics? Conditional inference? Superpopulation-based inference? etc.

- Likelihood? Bayes? Neyman-Pearson? Criteria estimators? Finite or asymptotic based theory? Decision theory? Nonparametrics? Semiparametrics? Conditional inference? Superpopulation-based inference? etc.
- 2. No

- Likelihood? Bayes? Neyman-Pearson? Criteria estimators? Finite or asymptotic based theory? Decision theory? Nonparametrics? Semiparametrics? Conditional inference? Superpopulation-based inference? etc.
- 2. None

- Likelihood? Bayes? Neyman-Pearson? Criteria estimators? Finite or asymptotic based theory? Decision theory? Nonparametrics? Semiparametrics? Conditional inference? Superpopulation-based inference? etc.
- 2. None of

- Likelihood? Bayes? Neyman-Pearson? Criteria estimators? Finite or asymptotic based theory? Decision theory? Nonparametrics? Semiparametrics? Conditional inference? Superpopulation-based inference? etc.
- 2. None of these.

- Likelihood? Bayes? Neyman-Pearson? Criteria estimators? Finite or asymptotic based theory? Decision theory? Nonparametrics? Semiparametrics? Conditional inference? Superpopulation-based inference? etc.
- 2. None of these.
- 3. The right theory of inference:

What is the right theory of inference?

- Likelihood? Bayes? Neyman-Pearson? Criteria estimators? Finite or asymptotic based theory? Decision theory? Nonparametrics? Semiparametrics? Conditional inference? Superpopulation-based inference? etc.
- 2. None of these.
- 3. The right theory of inference: utilitarianism

What is the right theory of inference?

- Likelihood? Bayes? Neyman-Pearson? Criteria estimators? Finite or asymptotic based theory? Decision theory? Nonparametrics? Semiparametrics? Conditional inference? Superpopulation-based inference? etc.
- 2. None of these.
- 3. The right theory of inference: utilitarianism
- 4. Methods for applied researchers: either useful or irrelevant

• Can't bank on agreement on normative issues!

- Can't bank on agreement on normative issues!
- Even if there is agreement, it won't hold or shouldn't

- Can't bank on agreement on normative issues!
- Even if there is agreement, it won't hold or shouldn't
- Alternative convergence is occuring: different methods giving the same result.

- Can't bank on agreement on normative issues!
- Even if there is agreement, it won't hold or shouldn't
- Alternative convergence is occuring: different methods giving the same result.
 - Likelihood or Bayes with careful goodness of fit checks

- Can't bank on agreement on normative issues!
- Even if there is agreement, it won't hold or shouldn't
- Alternative convergence is occuring: different methods giving the same result.
 - Likelihood or Bayes with careful goodness of fit checks
 - Various types of robust or semi-parametric methods

- Can't bank on agreement on normative issues!
- Even if there is agreement, it won't hold or shouldn't
- Alternative convergence is occuring: different methods giving the same result.
 - Likelihood or Bayes with careful goodness of fit checks
 - Various types of robust or semi-parametric methods
 - Matching for use as preprocessing for parametric analysis

- Can't bank on agreement on normative issues!
- Even if there is agreement, it won't hold or shouldn't
- Alternative convergence is occuring: different methods giving the same result.
 - Likelihood or Bayes with careful goodness of fit checks
 - Various types of robust or semi-parametric methods
 - Matching for use as preprocessing for parametric analysis
 - Bayesian model averaging, with a large enough class of models to average over

- Can't bank on agreement on normative issues!
- Even if there is agreement, it won't hold or shouldn't
- Alternative convergence is occuring: different methods giving the same result.
 - Likelihood or Bayes with careful goodness of fit checks
 - Various types of robust or semi-parametric methods
 - Matching for use as preprocessing for parametric analysis
 - Bayesian model averaging, with a large enough class of models to average over
 - Committee methods, mixture of experts models

- Can't bank on agreement on normative issues!
- Even if there is agreement, it won't hold or shouldn't
- Alternative convergence is occuring: different methods giving the same result.
 - Likelihood or Bayes with careful goodness of fit checks
 - Various types of robust or semi-parametric methods
 - Matching for use as preprocessing for parametric analysis
 - Bayesian model averaging, with a large enough class of models to average over
 - Committee methods, mixture of experts models
 - Some models with highly flexible functional forms

- Can't bank on agreement on normative issues!
- Even if there is agreement, it won't hold or shouldn't
- Alternative convergence is occuring: different methods giving the same result.
 - Likelihood or Bayes with careful goodness of fit checks
 - Various types of robust or semi-parametric methods
 - Matching for use as preprocessing for parametric analysis
 - Bayesian model averaging, with a large enough class of models to average over
 - Committee methods, mixture of experts models
 - Some models with highly flexible functional forms
- The key: No assumptions can be trusted; all theories of inference condition on assumptions and so data analysts always struggle trying to understand and get around them

The model:

The model:

1. $Y_i \sim f_{\sf stn}(y_i|\mu_i)$, normal stochastic component

The model:

- 1. $Y_i \sim f_{\sf stn}(y_i|\mu_i)$, normal stochastic component
- 2. $\mu_i = \beta$, a constant systematic component (no covariates)

The model:

- 1. $Y_i \sim f_{\sf stn}(y_i|\mu_i)$, normal stochastic component
- 2. $\mu_i = \beta$, a constant systematic component (no covariates)
- 3. Y_i and Y_j are independent $\forall i \neq j$.

The model:

- 1. $Y_i \sim f_{\sf stn}(y_i|\mu_i)$, normal stochastic component
- 2. $\mu_i = \beta$, a constant systematic component (no covariates)
- 3. Y_i and Y_i are independent $\forall i \neq j$.

Derive the full probability density of all observations, P(data|model) (Recall: if A and B are independent, P(AB) = P(A)P(B)):

The model:

- 1. $Y_i \sim f_{\sf stn}(y_i|\mu_i)$, normal stochastic component
- 2. $\mu_i = \beta$, a constant systematic component (no covariates)
- 3. Y_i and Y_i are independent $\forall i \neq j$.

Derive the full probability density of all observations, Pr(data|model) (Recall: if A and B are independent, P(AB) = P(A)P(B)):

$$\mathsf{P}(y|\mu) \equiv \mathsf{P}(y_1,\ldots,y_n|\mu_1,\ldots,\mu_n) = \prod_{i=1}^n f_{\mathsf{stn}}(y_i|\mu_i)$$

The model:

- 1. $Y_i \sim f_{\sf stn}(y_i|\mu_i)$, normal stochastic component
- 2. $\mu_i = \beta$, a constant systematic component (no covariates)
- 3. Y_i and Y_i are independent $\forall i \neq j$.

Derive the full probability density of all observations, Pr(data|model) (Recall: if A and B are independent, P(AB) = P(A)P(B)):

$$P(y|\mu) \equiv P(y_1, \dots, y_n | \mu_1, \dots, \mu_n) = \prod_{i=1}^n f_{stn}(y_i | \mu_i)$$
$$= \prod_{i=1}^n (2\pi)^{-1/2} \exp\left(\frac{-(y_i - \mu_i)^2}{2}\right)$$

The model:

- 1. $Y_i \sim f_{\sf stn}(y_i|\mu_i)$, normal stochastic component
- 2. $\mu_i = \beta$, a constant systematic component (no covariates)
- 3. Y_i and Y_i are independent $\forall i \neq j$.

Derive the full probability density of all observations, Pr(data|model) (Recall: if A and B are independent, P(AB) = P(A)P(B)):

$$P(y|\mu) \equiv P(y_1, \dots, y_n | \mu_1, \dots, \mu_n) = \prod_{i=1}^n f_{stn}(y_i | \mu_i)$$
$$= \prod_{i=1}^n (2\pi)^{-1/2} \exp\left(\frac{-(y_i - \mu_i)^2}{2}\right)$$

reparameterizing with $\mu_i = \beta$:

The model:

- 1. $Y_i \sim f_{\sf stn}(y_i|\mu_i)$, normal stochastic component
- 2. $\mu_i = \beta$, a constant systematic component (no covariates)
- 3. Y_i and Y_i are independent $\forall i \neq j$.

Derive the full probability density of all observations, Pr(data|model) (Recall: if A and B are independent, P(AB) = P(A)P(B)):

$$P(y|\mu) \equiv P(y_1, \dots, y_n | \mu_1, \dots, \mu_n) = \prod_{i=1}^n f_{stn}(y_i | \mu_i)$$
$$= \prod_{i=1}^n (2\pi)^{-1/2} \exp\left(\frac{-(y_i - \mu_i)^2}{2}\right)$$

reparameterizing with $\mu_i = \beta$:

$$P(y|\beta) \equiv P(y_1, \dots, y_n|\beta) = \prod_{i=1}^{n} (2\pi)^{-1/2} \exp\left(\frac{-(y_i - \beta)^2}{2}\right)$$

The model:

- 1. $Y_i \sim f_{\sf stn}(y_i|\mu_i)$, normal stochastic component
- 2. $\mu_i = \beta$, a constant systematic component (no covariates)
- 3. Y_i and Y_i are independent $\forall i \neq j$.

Derive the full probability density of all observations, Pr(data|model) (Recall: if A and B are independent, P(AB) = P(A)P(B)):

$$P(y|\mu) \equiv P(y_1, \dots, y_n | \mu_1, \dots, \mu_n) = \prod_{i=1}^n f_{stn}(y_i | \mu_i)$$
$$= \prod_{i=1}^n (2\pi)^{-1/2} \exp\left(\frac{-(y_i - \mu_i)^2}{2}\right)$$

reparameterizing with $\mu_i = \beta$:

$$\mathsf{P}(y|\beta) \equiv \mathsf{P}(y_1,\ldots,y_n|\beta) = \prod_{i=1}^n (2\pi)^{-1/2} \exp\left(\frac{-(y_i - \beta)^2}{2}\right)$$

• What can you do with this probability density?

$$L(\beta|y) = k(y) \prod_{i=1}^{n} f_{\mathsf{stn}}(y_i|\beta)$$

$$L(\beta|y) = k(y) \prod_{i=1}^{n} f_{\mathsf{stn}}(y_i|\beta) \propto \prod_{i=1}^{n} f_{\mathsf{stn}}(y_i|\beta)$$

$$L(\beta|y) = k(y) \prod_{i=1}^{n} f_{\mathsf{stn}}(y_i|\beta) \propto \prod_{i=1}^{n} f_{\mathsf{stn}}(y_i|\beta)$$
$$= \prod_{i=1}^{n} (2\pi)^{-1/2} \exp\left(\frac{-(y_i - \beta)^2}{2}\right)$$

The likelihood of β (conditional on the model) having generated the data we observe.

$$L(\beta|y) = k(y) \prod_{i=1}^{n} f_{\mathsf{stn}}(y_i|\beta) \propto \prod_{i=1}^{n} f_{\mathsf{stn}}(y_i|\beta)$$
$$= \prod_{i=1}^{n} (2\pi)^{-1/2} \exp\left(\frac{-(y_i - \beta)^2}{2}\right)$$

The likelihood of β (conditional on the model) having generated the data we observe.

$$L(\beta|y) = k(y) \prod_{i=1}^{n} f_{\mathsf{stn}}(y_i|\beta) \propto \prod_{i=1}^{n} f_{\mathsf{stn}}(y_i|\beta)$$
$$= \prod_{i=1}^{n} (2\pi)^{-1/2} \exp\left(\frac{-(y_i - \beta)^2}{2}\right)$$

$$\ln L(\beta|y) = \ln[k(y)] + \sum_{i=1}^{n} \ln f_{\mathsf{stn}}(y_i|\beta)$$

The likelihood of β (conditional on the model) having generated the data we observe.

$$L(\beta|y) = k(y) \prod_{i=1}^{n} f_{\mathsf{stn}}(y_i|\beta) \propto \prod_{i=1}^{n} f_{\mathsf{stn}}(y_i|\beta)$$
$$= \prod_{i=1}^{n} (2\pi)^{-1/2} \exp\left(\frac{-(y_i - \beta)^2}{2}\right)$$

$$\ln L(\beta|y) = \ln[k(y)] + \sum_{i=1}^{n} \ln f_{stn}(y_i|\beta)$$

$$= \ln[k(y)] + \sum_{i=1}^{n} \ln[(2\pi)^{-1/2}] - \sum_{i=1}^{n} \frac{1}{2} (y_i - \beta)^2$$

The likelihood of β (conditional on the model) having generated the data we observe.

$$L(\beta|y) = k(y) \prod_{i=1}^{n} f_{\mathsf{stn}}(y_i|\beta) \propto \prod_{i=1}^{n} f_{\mathsf{stn}}(y_i|\beta)$$
$$= \prod_{i=1}^{n} (2\pi)^{-1/2} \exp\left(\frac{-(y_i - \beta)^2}{2}\right)$$

$$\ln L(\beta|y) = \ln[k(y)] + \sum_{i=1}^{n} \ln f_{stn}(y_i|\beta)$$

$$= \ln[k(y)] + \sum_{i=1}^{n} \ln[(2\pi)^{-1/2}] - \sum_{i=1}^{n} \frac{1}{2}(y_i - \beta)^2$$

$$\stackrel{\cdot}{=} \sum_{i=1}^{n} -\frac{1}{2}(y_i - \beta)^2$$

The likelihood of β (conditional on the model) having generated the data we observe.

$$L(\beta|y) = k(y) \prod_{i=1}^{n} f_{\mathsf{stn}}(y_i|\beta) \propto \prod_{i=1}^{n} f_{\mathsf{stn}}(y_i|\beta)$$
$$= \prod_{i=1}^{n} (2\pi)^{-1/2} \exp\left(\frac{-(y_i - \beta)^2}{2}\right)$$

$$\ln L(\beta|y) = \ln[k(y)] + \sum_{i=1}^{n} \ln f_{stn}(y_i|\beta)$$

$$= \ln[k(y)] + \sum_{i=1}^{n} \ln[(2\pi)^{-1/2}] - \sum_{i=1}^{n} \frac{1}{2}(y_i - \beta)^2$$

$$= \sum_{i=1}^{n} -\frac{1}{2}(y_i - \beta)^2 = -\frac{1}{2}\sum_{i=1}^{n} (y_i - \beta)^2$$

Log-likelihood interpretation

Log-likelihood interpretation

1. The log-likelihood is quadratic

- 1. The log-likelihood is quadratic
- 2. This curve summarizes all information the data gives about β , assuming the model.

- 1. The log-likelihood is quadratic
- 2. This curve summarizes all information the data gives about β , assuming the model.
- 3. The MLE is at the same point as the MVLUE

- 1. The log-likelihood is quadratic
- 2. This curve summarizes all information the data gives about β , assuming the model.
- 3. The MLE is at the same point as the MVLUE
- 4. The maximum is at the same point as the least squares point

- 1. The log-likelihood is quadratic
- 2. This curve summarizes all information the data gives about β , assuming the model.
- 3. The MLE is at the same point as the MVLUE
- 4. The maximum is at the same point as the least squares point
- 5. No reason to summarize this curve with only the MLE

• The problem of Flatland

- The problem of Flatland
- Graphs

- The problem of Flatland
- Graphs
- The curse of dimensionality

- The problem of Flatland
- Graphs
- The curse of dimensionality
- Maximum

- The problem of Flatland
- Graphs
- The curse of dimensionality
- Maximum
- The curvature at the maximum (standard errors, about which more shortly)

Goal: Find the value of $\theta \equiv \{\theta_1, \dots, \theta_k\}$ that maximizes $L(\theta|y)$

Analytically — often impossible or too hard

- Analytically often impossible or too hard
 - Take the derivative of $\ln L(\theta|y)$ w.r.t. θ

- Analytically often impossible or too hard
 - Take the derivative of $\ln L(\theta|y)$ w.r.t. θ
 - Set to 0, substituting $\hat{\theta}$ for $\hat{\theta}$

- Analytically often impossible or too hard
 - Take the derivative of $\ln L(\theta|y)$ w.r.t. θ
 - Set to 0, substituting $\hat{\theta}$ for θ

$$\left| \frac{\partial \ln L(\theta|y)}{\partial \theta} \right|_{\theta = \hat{\theta}} = 0$$

Goal: Find the value of $\theta \equiv \{\theta_1, \dots, \theta_k\}$ that maximizes $L(\theta|y)$

- Analytically often impossible or too hard
 - Take the derivative of $\ln L(\theta|y)$ w.r.t. θ
 - Set to 0, substituting $\hat{\theta}$ for θ

$$\left| \frac{\partial \ln L(\theta|y)}{\partial \theta} \right|_{\theta = \hat{\theta}} = 0$$

• If possible, solve for θ , and label it $\hat{\theta}$

- Analytically often impossible or too hard
 - Take the derivative of $\ln L(\theta|y)$ w.r.t. θ
 - Set to 0, substituting $\hat{\theta}$ for θ

$$\left| \frac{\partial \ln L(\theta|y)}{\partial \theta} \right|_{\theta = \hat{\theta}} = 0$$

- If possible, solve for θ , and label it $\hat{\theta}$
- Check the second order condition: see if the second derivative w.r.t. θ is negative (so its a maximum rather than a minimum)

- Analytically often impossible or too hard
 - Take the derivative of $\ln L(\theta|y)$ w.r.t. θ
 - Set to 0, substituting $\hat{\theta}$ for θ

$$\left| \frac{\partial \ln L(\theta|y)}{\partial \theta} \right|_{\theta = \hat{\theta}} = 0$$

- If possible, solve for θ , and label it $\hat{\theta}$
- Check the second order condition: see if the second derivative w.r.t. θ is negative (so its a maximum rather than a minimum)
- Numerically let the computer do the work for you

- Analytically often impossible or too hard
 - Take the derivative of $\ln L(\theta|y)$ w.r.t. θ
 - Set to 0, substituting $\hat{\theta}$ for θ

$$\left| \frac{\partial \ln L(\theta|y)}{\partial \theta} \right|_{\theta = \hat{\theta}} = 0$$

- If possible, solve for θ , and label it $\hat{\theta}$
- Check the second order condition: see if the second derivative w.r.t. θ is negative (so its a maximum rather than a minimum)
- Numerically let the computer do the work for you
 - We'll show you how

Minimum variance unbiased estimator (MVUE)

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$ • Example: $E(\bar{Y}) = \theta$

4 D > 4 A > 4 B > 4 B > B = 900

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\overline{Y}) = E(\frac{1}{n}\sum_{i=1}^{n} Y_i) =$

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\overline{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) =$

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(Y) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu$

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\tilde{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\vec{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\tilde{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")
 - Variance to be minimized: $V(\hat{ heta})$

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\bar{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")
 - Variance to be minimized: $V(\hat{\theta})$
 - Example: $V(\bar{Y}) =$

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\bar{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")
 - Variance to be minimized: $V(\hat{\theta})$
 - Example: $V(\bar{Y}) = V(\frac{1}{n}\sum_{i=1}^{n}Y_i) =$

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\vec{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")
 - Variance to be minimized: $V(\hat{\theta})$
 - Example: $V(\bar{Y}) = V(\frac{1}{n}\sum_{i=1}^{n} Y_i) = \frac{1}{n^2}\sum_{i=1}^{n} V(Y_i) =$

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\bar{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")
 - Variance to be minimized: $V(\hat{\theta})$
 - Example: $V(\bar{Y}) = V(\frac{1}{n} \sum_{i=1}^{n} Y_i) = \frac{1}{n^2} \sum_{i=1}^{n} V(Y_i) = \frac{1}{n^2} n \sigma^2 =$

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(Y) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")
 - Variance to be minimized: $V(\hat{\theta})$
 - Example: $V(\bar{Y}) = V(\frac{1}{n}\sum_{i=1}^{n} Y_i) = \frac{1}{n^2}\sum_{i=1}^{n} V(Y_i) = \frac{1}{n^2}n\sigma^2 = \sigma^2/n$

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(Y) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")
 - Variance to be minimized: $V(\hat{\theta})$
 - Example: $V(\bar{Y}) = V(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n^2}\sum_{i=1}^{n}V(Y_i) = \frac{1}{n^2}n\sigma^2 = \sigma^2/n$
 - Efficiency: Define $\hat{\theta}$ such that $V(\hat{\theta})$ is minimized, s.t. $E(\hat{\theta}) = \theta$

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\bar{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")
 - Variance to be minimized: $V(\hat{\theta})$
 - Example: $V(\bar{Y}) = V(\frac{1}{n} \sum_{i=1}^{n} Y_i) = \frac{1}{n^2} \sum_{i=1}^{n} V(Y_i) = \frac{1}{n^2} n\sigma^2 = \sigma^2/n$
 - Efficiency: Define $\hat{\theta}$ such that $V(\hat{\theta})$ is minimized, s.t. $E(\hat{\theta}) = \theta$
 - If there is a MVUE, ML will find it

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\bar{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")
 - Variance to be minimized: $V(\hat{\theta})$
 - Example: $V(\bar{Y}) = V(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n^2}\sum_{i=1}^{n}V(Y_i) = \frac{1}{n^2}n\sigma^2 = \sigma^2/n$
 - Efficiency: Define $\hat{\theta}$ such that $V(\hat{\theta})$ is minimized, s.t. $E(\hat{\theta}) = \theta$
 - If there is a MVUE, ML will find it
 - If there isn't one, ML will still usually find a good estimator

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\bar{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")
 - Variance to be minimized: $V(\hat{\theta})$
 - Example: $V(\bar{Y}) = V(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n^2}\sum_{i=1}^{n}V(Y_i) = \frac{1}{n^2}n\sigma^2 = \sigma^2/n$
 - Efficiency: Define $\hat{\theta}$ such that $V(\hat{\theta})$ is minimized, s.t. $E(\hat{\theta}) = \theta$
 - If there is a MVUE, ML will find it
 - If there isn't one, ML will still usually find a good estimator
- Invariance to Reparameterization

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\bar{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")
 - Variance to be minimized: $V(\hat{\theta})$
 - Example: $V(\bar{Y}) = V(\frac{1}{n} \sum_{i=1}^{n} Y_i) = \frac{1}{n^2} \sum_{i=1}^{n} V(Y_i) = \frac{1}{n^2} n\sigma^2 = \sigma^2/n$
 - Efficiency: Define $\hat{\theta}$ such that $V(\hat{\theta})$ is minimized, s.t. $E(\hat{\theta}) = \theta$
 - If there is a MVUE, ML will find it
 - If there isn't one, ML will still usually find a good estimator
- Invariance to Reparameterization
 - Estimate σ with $\hat{\sigma}$ and calculate $\hat{\sigma}^2$ or estimate $\hat{\sigma}^2$: both are MLEs

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\bar{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")
 - Variance to be minimized: $V(\hat{\theta})$
 - Example: $V(\bar{Y}) = V(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n^2}\sum_{i=1}^{n}V(Y_i) = \frac{1}{n^2}n\sigma^2 = \sigma^2/n$
 - Efficiency: Define $\hat{\theta}$ such that $V(\hat{\theta})$ is minimized, s.t. $E(\hat{\theta}) = \theta$
 - If there is a MVUE, ML will find it
 - If there isn't one, ML will still usually find a good estimator
- Invariance to Reparameterization
 - Estimate σ with $\hat{\sigma}$ and calculate $\hat{\sigma}^2$ or estimate $\hat{\sigma}^2$: both are MLEs
 - Not true for other methods of inference: e.g. \bar{y} is an unbiased estimate of μ . What is an unbiased estimate of $1/\mu$? $E(1/\bar{y}) \neq 1/E(\bar{y})$.

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\bar{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")
 - Variance to be minimized: $V(\hat{\theta})$
 - Example: $V(\bar{Y}) = V(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n^2}\sum_{i=1}^{n}V(Y_i) = \frac{1}{n^2}n\sigma^2 = \sigma^2/n$
 - Efficiency: Define $\hat{\theta}$ such that $V(\hat{\theta})$ is minimized, s.t. $E(\hat{\theta}) = \theta$
 - If there is a MVUE, ML will find it
 - If there isn't one, ML will still usually find a good estimator
- Invariance to Reparameterization
 - Estimate σ with $\hat{\sigma}$ and calculate $\hat{\sigma}^2$ or estimate $\hat{\sigma}^2$: both are MLEs
 - Not true for other methods of inference: e.g. \bar{y} is an unbiased estimate of μ . What is an unbiased estimate of $1/\mu$? $E(1/\bar{y}) \neq 1/E(\bar{y})$.
- Invariance to sampling plans

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\tilde{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")
 - Variance to be minimized: $V(\hat{\theta})$
 - Example: $V(\bar{Y}) = V(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n^2}\sum_{i=1}^{n}V(Y_i) = \frac{1}{n^2}n\sigma^2 = \sigma^2/n$
 - Efficiency: Define $\hat{\theta}$ such that $V(\hat{\theta})$ is minimized, s.t. $E(\hat{\theta}) = \theta$
 - If there is a MVUE, ML will find it
 - If there isn't one, ML will still usually find a good estimator
- Invariance to Reparameterization
 - Estimate σ with $\hat{\sigma}$ and calculate $\hat{\sigma}^2$ or estimate $\hat{\sigma}^2$: both are MLEs
 - Not true for other methods of inference: e.g. \bar{y} is an unbiased estimate of μ . What is an unbiased estimate of $1/\mu$? $E(1/\bar{y}) \neq 1/E(\bar{y})$.
- Invariance to sampling plans
 - OK to look at results while deciding how much data to collect

- Minimum variance unbiased estimator (MVUE)
 - Unbiasedness:
 - Definition: $E(\hat{\theta}) = \theta$
 - Example: $E(\bar{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}n\mu = \mu$
 - Minimum variance ("efficiency")
 - Variance to be minimized: $V(\hat{\theta})$
 - Example: $V(\bar{Y}) = V(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n^2}\sum_{i=1}^{n}V(Y_i) = \frac{1}{n^2}n\sigma^2 = \sigma^2/n$
 - Efficiency: Define $\hat{\theta}$ such that $V(\hat{\theta})$ is minimized, s.t. $E(\hat{\theta}) = \theta$
 - If there is a MVUE, ML will find it
 - If there isn't one, ML will still usually find a good estimator
- Invariance to Reparameterization
 - Estimate σ with $\hat{\sigma}$ and calculate $\hat{\sigma}^2$ or estimate $\hat{\sigma}^2$: both are MLEs
 - Not true for other methods of inference: e.g. \bar{y} is an unbiased estimate of μ . What is an unbiased estimate of $1/\mu$? $E(1/\bar{y}) \neq 1/E(\bar{y})$.
- Invariance to sampling plans
 - OK to look at results while deciding how much data to collect
 - In fact, it's a great idea!

① Consistency (from the Law of Large Numbers). As $n \to \infty$, the sampling distribution of the MLE collapses to a spike over the parameter value

- **1** Consistency (from the Law of Large Numbers). As $n \to \infty$, the sampling distribution of the MLE collapses to a spike over the parameter value
- Asymptotic normality (from the central limit theorem):

- **1** Consistency (from the Law of Large Numbers). As $n \to \infty$, the sampling distribution of the MLE collapses to a spike over the parameter value
- Asymptotic normality (from the central limit theorem):
 - As $n \to \infty$, the distribution of MLE/se(MLE) converges to a Normal.

- **1** Consistency (from the Law of Large Numbers). As $n \to \infty$, the sampling distribution of the MLE collapses to a spike over the parameter value
- Asymptotic normality (from the central limit theorem):
 - As $n \to \infty$, the distribution of MLE/se(MLE) converges to a Normal.
 - Why do we care? If N is large enough, the asymptotic distribution is a good approximation in finite samples

- **1** Consistency (from the Law of Large Numbers). As $n \to \infty$, the sampling distribution of the MLE collapses to a spike over the parameter value
- Asymptotic normality (from the central limit theorem):
 - As $n \to \infty$, the distribution of MLE/se(MLE) converges to a Normal.
 - ullet Why do we care? If N is large enough, the asymptotic distribution is a good approximation in finite samples
 - Do the LLN and CLT (the 2 most important theorems in statistics) contradict each other?

- **Onsistency** (from the Law of Large Numbers). As $n \to \infty$, the sampling distribution of the MLE collapses to a spike over the parameter value
- Asymptotic normality (from the central limit theorem):
 - As $n \to \infty$, the distribution of MLE/se(MLE) converges to a Normal.
 - ullet Why do we care? If N is large enough, the asymptotic distribution is a good approximation in finite samples
 - Do the LLN and CLT (the 2 most important theorems in statistics) contradict each other?
- Asymptotic efficiency. The MLE contains as much information as can be packed into a point estimator.

Sampling distributions of the MLE: CLT vs LLN

• L* is the likelihood value for the unrestricted model

- L* is the likelihood value for the unrestricted model
- L_R^* is the likelihood value for the (nested) restricted model

- L* is the likelihood value for the unrestricted model
- ullet L_R^* is the likelihood value for the (nested) restricted model
- $\bullet \implies L^* \ge L_R^* \implies \frac{L_R^*}{L^*} \le 1$

• Substantively, its the ratio of 2 traditional probabilities:

• Substantively, its the ratio of 2 traditional probabilities:

$$L(\theta_1|y) \propto k(y) P(y|\theta_1)$$

Substantively, its the ratio of 2 traditional probabilities:

$$L(\theta_1|y) \propto k(y)P(y|\theta_1)$$

 $L(\theta_2|y) \propto k(y)P(y|\theta_2)$

• Substantively, its the ratio of 2 traditional probabilities:

$$L(\theta_1|y) \propto k(y)P(y|\theta_1)$$

$$L(\theta_2|y) \propto k(y)P(y|\theta_2)$$

$$\frac{L(\theta_1|y)}{L(\theta_2|y)} = \frac{k(y)}{k(y)} \frac{P(y|\theta_1)}{P(y|\theta_2)}$$

• Substantively, its the ratio of 2 traditional probabilities:

$$L(\theta_1|y) \propto k(y)P(y|\theta_1)$$

$$L(\theta_2|y) \propto k(y)P(y|\theta_2)$$

$$\frac{L(\theta_1|y)}{L(\theta_2|y)} = \frac{k(y)}{k(y)} \frac{P(y|\theta_1)}{P(y|\theta_2)}$$

$$= \frac{P(y|\theta_1)}{P(y|\theta_2)}$$

• Substantively, its the ratio of 2 traditional probabilities:

$$L(\theta_1|y) \propto k(y)P(y|\theta_1)$$

$$L(\theta_2|y) \propto k(y)P(y|\theta_2)$$

$$\frac{L(\theta_1|y)}{L(\theta_2|y)} = \frac{k(y)}{k(y)} \frac{P(y|\theta_1)}{P(y|\theta_2)}$$

$$= \frac{P(y|\theta_1)}{P(y|\theta_2)}$$

Interpreted as a risk ratio.

• Substantively, its the ratio of 2 traditional probabilities:

$$L(\theta_1|y) \propto k(y)P(y|\theta_1)$$

$$L(\theta_2|y) \propto k(y)P(y|\theta_2)$$

$$\frac{L(\theta_1|y)}{L(\theta_2|y)} = \frac{k(y)}{k(y)} \frac{P(y|\theta_1)}{P(y|\theta_2)}$$

$$= \frac{P(y|\theta_1)}{P(y|\theta_2)}$$

Interpreted as a *risk ratio*.

 Statistically (from the Neyman-Pearson Hypothesis Testing viewpoint), let

Substantively, its the ratio of 2 traditional probabilities:

$$L(\theta_1|y) \propto k(y)P(y|\theta_1)$$

$$L(\theta_2|y) \propto k(y)P(y|\theta_2)$$

$$\frac{L(\theta_1|y)}{L(\theta_2|y)} = \frac{k(y)}{k(y)} \frac{P(y|\theta_1)}{P(y|\theta_2)}$$

$$= \frac{P(y|\theta_1)}{P(y|\theta_2)}$$

Interpreted as a *risk ratio*.

 Statistically (from the Neyman-Pearson Hypothesis Testing viewpoint), let

$$R = -2 \ln \left(\frac{L_R^*}{L^*} \right) = 2 (\ln L^* - \ln L_R^*)$$

• Substantively, its the ratio of 2 traditional probabilities:

$$L(\theta_1|y) \propto k(y)P(y|\theta_1)$$

$$L(\theta_2|y) \propto k(y)P(y|\theta_2)$$

$$\frac{L(\theta_1|y)}{L(\theta_2|y)} = \frac{k(y)}{k(y)} \frac{P(y|\theta_1)}{P(y|\theta_2)}$$

$$= \frac{P(y|\theta_1)}{P(y|\theta_2)}$$

Interpreted as a *risk ratio*.

 Statistically (from the Neyman-Pearson Hypothesis Testing viewpoint), let

$$R = -2\ln\left(\frac{L_R^*}{L^*}\right) = 2(\ln L^* - \ln L_R^*)$$

Then, under the null of no difference between the 2 models,

Substantively, its the ratio of 2 traditional probabilities:

$$L(\theta_1|y) \propto k(y)P(y|\theta_1)$$

$$L(\theta_2|y) \propto k(y)P(y|\theta_2)$$

$$\frac{L(\theta_1|y)}{L(\theta_2|y)} = \frac{k(y)}{k(y)} \frac{P(y|\theta_1)}{P(y|\theta_2)}$$

$$= \frac{P(y|\theta_1)}{P(y|\theta_2)}$$

Interpreted as a *risk ratio*.

 Statistically (from the Neyman-Pearson Hypothesis Testing viewpoint), let

$$R = -2\ln\left(\frac{L_R^*}{L^*}\right) = 2(\ln L^* - \ln L_R^*)$$

Then, under the null of no difference between the 2 models,

$$R \sim f_{\chi^2}(r|m)$$

Substantively, its the ratio of 2 traditional probabilities:

$$L(\theta_1|y) \propto k(y)P(y|\theta_1)$$

$$L(\theta_2|y) \propto k(y)P(y|\theta_2)$$

$$\frac{L(\theta_1|y)}{L(\theta_2|y)} = \frac{k(y)}{k(y)} \frac{P(y|\theta_1)}{P(y|\theta_2)}$$

$$= \frac{P(y|\theta_1)}{P(y|\theta_2)}$$

Interpreted as a *risk ratio*.

 Statistically (from the Neyman-Pearson Hypothesis Testing viewpoint), let

$$R = -2\ln\left(\frac{L_R^*}{L^*}\right) = 2(\ln L^* - \ln L_R^*)$$

Then, under the null of no difference between the 2 models,

$$R \sim f_{\chi^2}(r|m)$$

• If restrictions have no effect, E(R) = m.

Meaning of the likelihood ratio

- If restrictions have no effect, E(R) = m.
- So only if r >> m will the test parameters be clearly different from zero.

Meaning of the likelihood ratio

- If restrictions have no effect, E(R) = m.
- So only if r >> m will the test parameters be clearly different from zero.
- Disadvantage: Too many likelihood ratio tests may be required to test all points of interest

 Instead of (a) plotting the entire likelihood hyper-surface or (b) computing numerous likelihood ratio tests, we can summarize the all info about the curvature near the maximum with one number

- Instead of (a) plotting the entire likelihood hyper-surface or (b) computing numerous likelihood ratio tests, we can summarize the all info about the curvature near the maximum with one number
- 2. We will use the normal likelihood to approximate all likelihoods

- Instead of (a) plotting the entire likelihood hyper-surface or (b) computing numerous likelihood ratio tests, we can summarize the all info about the curvature near the maximum with one number
- 2. We will use the normal likelihood to approximate all likelihoods
- 3. (one justification) as $n \to \infty$, likelihoods become normal.

- Instead of (a) plotting the entire likelihood hyper-surface or (b) computing numerous likelihood ratio tests, we can summarize the all info about the curvature near the maximum with one number
- 2. We will use the normal likelihood to approximate all likelihoods
- 3. (one justification) as $n \to \infty$, likelihoods become normal.
- 4. Reformulate the normal (not stylized) likelihood with $E(Y) = \mu_i = \beta$:

- Instead of (a) plotting the entire likelihood hyper-surface or (b) computing numerous likelihood ratio tests, we can summarize the all info about the curvature near the maximum with one number
- 2. We will use the normal likelihood to approximate all likelihoods
- 3. (one justification) as $n \to \infty$, likelihoods become normal.
- 4. Reformulate the normal (not stylized) likelihood with $E(Y) = \mu_i = \beta$:

$$L(\beta|y) \propto N(y_i|\mu_i,\sigma^2)$$

- Instead of (a) plotting the entire likelihood hyper-surface or (b) computing numerous likelihood ratio tests, we can summarize the all info about the curvature near the maximum with one number
- 2. We will use the normal likelihood to approximate all likelihoods
- 3. (one justification) as $n \to \infty$, likelihoods become normal.
- 4. Reformulate the normal (not stylized) likelihood with $E(Y) = \mu_i = \beta$:

$$\begin{split} \textit{L}(\beta|\textit{y}) &\propto \textit{N}(\textit{y}_i|\mu_i,\sigma^2) \\ &= (2\pi\sigma^2)^{-1/2} \exp\left(\frac{-(\textit{y}_i - \pmb{\mu}_i)^2}{2\sigma^2}\right) \end{split}$$

- Instead of (a) plotting the entire likelihood hyper-surface or (b) computing numerous likelihood ratio tests, we can summarize the all info about the curvature near the maximum with one number
- 2. We will use the normal likelihood to approximate all likelihoods
- 3. (one justification) as $n \to \infty$, likelihoods become normal.
- 4. Reformulate the normal (not stylized) likelihood with $E(Y) = \mu_i = \beta$:

$$\begin{split} L(\beta|y) &\propto \textit{N}(y_i|\mu_i,\sigma^2) \\ &= (2\pi\sigma^2)^{-1/2} \exp\left(\frac{-(y_i - \mu_i)^2}{2\sigma^2}\right) \\ &= (2\pi\sigma^2)^{-1/2} \exp\left(\frac{-(y_i - \beta)^2}{2\sigma^2}\right) \end{split}$$

$$\ln L(\beta|y) = -\frac{n}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(y_i - \beta)^2$$

$$\ln L(\beta|y) = -\frac{n}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \beta)^2$$
$$= -\frac{n}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n (y_i^2 - 2y_i\beta + \beta^2)$$

$$\begin{aligned} \ln L(\beta|y) &= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta)^2 \\ &= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i^2 - 2y_i\beta + \beta^2) \\ &= \left(-\frac{n}{2} \ln(2\pi\sigma^2) - \frac{\sum_{i=1}^n y_i^2}{2\sigma^2} \right) + \left(\frac{\sum_{i=1}^n y_i}{\sigma^2} \right) \beta + \left(\frac{-n}{2\sigma^2} \right) \beta^2 \end{aligned}$$

$$\ln L(\beta|y) = -\frac{n}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n(y_i - \beta)^2$$

$$= -\frac{n}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n(y_i^2 - 2y_i\beta + \beta^2)$$

$$= \left(-\frac{n}{2}\ln(2\pi\sigma^2) - \frac{\sum_{i=1}^n y_i^2}{2\sigma^2}\right) + \left(\frac{\sum_{i=1}^n y_i}{\sigma^2}\right)\beta + \left(\frac{-n}{2\sigma^2}\right)\beta^2$$

$$= a + b\beta + c\beta^2, \qquad \text{A quadratic equation}$$

$$\ln L(\beta|y) = -\frac{n}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n(y_i - \beta)^2$$

$$= -\frac{n}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n(y_i^2 - 2y_i\beta + \beta^2)$$

$$= \left(-\frac{n}{2}\ln(2\pi\sigma^2) - \frac{\sum_{i=1}^n y_i^2}{2\sigma^2}\right) + \left(\frac{\sum_{i=1}^n y_i}{\sigma^2}\right)\beta + \left(\frac{-n}{2\sigma^2}\right)\beta^2$$

$$= a + b\beta + c\beta^2, \quad \text{A quadratic equation}$$

5. $\left(\frac{-n}{2\sigma^2}\right)$ is the degree of curvature. Curvature is larger when:

$$\begin{aligned} \ln L(\beta|y) &= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta)^2 \\ &= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i^2 - 2y_i\beta + \beta^2) \\ &= \left(-\frac{n}{2} \ln(2\pi\sigma^2) - \frac{\sum_{i=1}^n y_i^2}{2\sigma^2} \right) + \left(\frac{\sum_{i=1}^n y_i}{\sigma^2} \right) \beta + \left(\frac{-n}{2\sigma^2} \right) \beta^2 \\ &= a + b\beta + c\beta^2, \qquad \text{A quadratic equation} \end{aligned}$$

- 5. $\left(\frac{-n}{2\sigma^2}\right)$ is the degree of curvature. Curvature is larger when:
 - n is large

$$\begin{split} \ln L(\beta|y) &= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta)^2 \\ &= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i^2 - 2y_i\beta + \beta^2) \\ &= \left(-\frac{n}{2} \ln(2\pi\sigma^2) - \frac{\sum_{i=1}^{n} y_i^2}{2\sigma^2} \right) + \left(\frac{\sum_{i=1}^{n} y_i}{\sigma^2} \right) \beta + \left(\frac{-n}{2\sigma^2} \right) \beta^2 \\ &= a + b\beta + c\beta^2, \qquad \text{A quadratic equation} \end{split}$$

- 5. $\left(\frac{-n}{2\sigma^2}\right)$ is the degree of curvature. Curvature is larger when:
 - n is large
 - σ^2 is small

$$\begin{aligned} \ln L(\beta|y) &= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta)^2 \\ &= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i^2 - 2y_i\beta + \beta^2) \\ &= \left(-\frac{n}{2} \ln(2\pi\sigma^2) - \frac{\sum_{i=1}^{n} y_i^2}{2\sigma^2} \right) + \left(\frac{\sum_{i=1}^{n} y_i}{\sigma^2} \right) \beta + \left(\frac{-n}{2\sigma^2} \right) \beta^2 \\ &= a + b\beta + c\beta^2, \qquad \text{A quadratic equation} \end{aligned}$$

- 5. $\left(\frac{-n}{2\sigma^2}\right)$ is the degree of curvature. Curvature is larger when:
 - n is large
 - σ^2 is small
- 6. For normal likelihood, $\left(\frac{-n}{2\sigma^2}\right)$ is a summary. The bigger the (negative) number...

$$\begin{split} \ln L(\beta|y) &= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta)^2 \\ &= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i^2 - 2y_i\beta + \beta^2) \\ &= \left(-\frac{n}{2} \ln(2\pi\sigma^2) - \frac{\sum_{i=1}^n y_i^2}{2\sigma^2} \right) + \left(\frac{\sum_{i=1}^n y_i}{\sigma^2} \right) \beta + \left(\frac{-n}{2\sigma^2} \right) \beta^2 \\ &= a + b\beta + c\beta^2, \qquad \text{A quadratic equation} \end{split}$$

- 5. $\left(\frac{-n}{2\sigma^2}\right)$ is the degree of curvature. Curvature is larger when:
 - n is large
 - σ^2 is small
- 6. For normal likelihood, $\left(\frac{-n}{2\sigma^2}\right)$ is a summary. The bigger the (negative) number...
 - the better

$$\begin{split} \ln L(\beta|y) &= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta)^2 \\ &= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i^2 - 2y_i\beta + \beta^2) \\ &= \left(-\frac{n}{2} \ln(2\pi\sigma^2) - \frac{\sum_{i=1}^n y_i^2}{2\sigma^2} \right) + \left(\frac{\sum_{i=1}^n y_i}{\sigma^2} \right) \beta + \left(\frac{-n}{2\sigma^2} \right) \beta^2 \\ &= a + b\beta + \frac{c}{2\sigma^2}, \qquad \text{A quadratic equation} \end{split}$$

- 5. $\left(\frac{-n}{2\sigma^2}\right)$ is the degree of curvature. Curvature is larger when:
 - n is large
 - σ^2 is small
- 6. For normal likelihood, $\left(\frac{-n}{2\sigma^2}\right)$ is a summary. The bigger the (negative) number...
 - the better
 - the more information exists in the MLE

$$\begin{split} \ln L(\beta|y) &= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta)^2 \\ &= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i^2 - 2y_i\beta + \beta^2) \\ &= \left(-\frac{n}{2} \ln(2\pi\sigma^2) - \frac{\sum_{i=1}^n y_i^2}{2\sigma^2} \right) + \left(\frac{\sum_{i=1}^n y_i}{\sigma^2} \right) \beta + \left(\frac{-n}{2\sigma^2} \right) \beta^2 \\ &= a + b\beta + c\beta^2, \qquad \text{A quadratic equation} \end{split}$$

- 5. $\left(\frac{-n}{2\sigma^2}\right)$ is the degree of curvature. Curvature is larger when:
 - n is large
 - σ^2 is small
- 6. For normal likelihood, $\left(\frac{-n}{2\sigma^2}\right)$ is a summary. The bigger the (negative) number...
 - the better
 - the more information exists in the MLE
 - the larger the likelihood ratio would be in comparing the MLE with any other parameter value.

7. When the log-likelihood is not normal, we'll use the best quadratic approximation to it. Under the normal,

7. When the log-likelihood is not normal, we'll use the best quadratic approximation to it. Under the normal,

$$\frac{\partial^2 \ln L(\beta|y)}{\partial \beta \partial \beta'} = \frac{-n}{\sigma^2}$$

7. When the log-likelihood is not normal, we'll use the best quadratic approximation to it. Under the normal,

$$\frac{\partial^2 \ln L(\beta|y)}{\partial \beta \partial \beta'} = \frac{-n}{\sigma^2}$$

More generally, this second derivative will give us a way to compute the coefficient on the squared term.

7. When the log-likelihood is not normal, we'll use the best quadratic approximation to it. Under the normal,

$$\frac{\partial^2 \ln L(\beta|y)}{\partial \beta \partial \beta'} = \frac{-n}{\sigma^2}$$

More generally, this second derivative will give us a way to compute the coefficient on the squared term.

7. When the log-likelihood is not normal, we'll use the best quadratic approximation to it. Under the normal,

$$\frac{\partial^2 \ln L(\beta|y)}{\partial \beta \partial \beta'} = \frac{-n}{\sigma^2}$$

More generally, this second derivative will give us a way to compute the coefficient on the squared term.

$$\hat{V}(\hat{\theta}) = \left[-\frac{\partial^2 \ln L(\theta|y)}{\partial \theta \partial \theta'} \right]_{\theta=\hat{\theta}}^{-1} = \begin{pmatrix} \hat{\sigma}_1^2 & \hat{\sigma}_{12} & \dots \\ \hat{\sigma}_{21} & \hat{\sigma}_2^2 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

7. When the log-likelihood is not normal, we'll use the best quadratic approximation to it. Under the normal,

$$\frac{\partial^2 \ln L(\beta|y)}{\partial \beta \partial \beta'} = \frac{-n}{\sigma^2}$$

More generally, this second derivative will give us a way to compute the coefficient on the squared term.

8. We invert the curvature to provide a statistical interpretation:

$$\hat{V}(\hat{\theta}) = \left[-\frac{\partial^2 \ln L(\theta|y)}{\partial \theta \partial \theta'} \right]_{\theta=\hat{\theta}}^{-1} = \begin{pmatrix} \hat{\sigma}_1^2 & \hat{\sigma}_{12} & \dots \\ \hat{\sigma}_{21} & \hat{\sigma}_2^2 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

• Statistical interpretation: variance and covariance across repeated samples

7. When the log-likelihood is not normal, we'll use the best quadratic approximation to it. Under the normal,

$$\frac{\partial^2 \ln L(\beta|y)}{\partial \beta \partial \beta'} = \frac{-n}{\sigma^2}$$

More generally, this second derivative will give us a way to compute the coefficient on the squared term.

$$\hat{V}(\hat{\theta}) = \left[-\frac{\partial^2 \ln L(\theta|y)}{\partial \theta \partial \theta'} \right]_{\theta=\hat{\theta}}^{-1} = \begin{pmatrix} \hat{\sigma}_1^2 & \hat{\sigma}_{12} & \dots \\ \hat{\sigma}_{21} & \hat{\sigma}_2^2 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

- Statistical interpretation: variance and covariance across repeated samples
- Works in general for a k-dimensional θ vector

7. When the log-likelihood is not normal, we'll use the best quadratic approximation to it. Under the normal,

$$\frac{\partial^2 \ln L(\beta|y)}{\partial \beta \partial \beta'} = \frac{-n}{\sigma^2}$$

More generally, this second derivative will give us a way to compute the coefficient on the squared term.

$$\hat{V}(\hat{\theta}) = \left[-\frac{\partial^2 \ln L(\theta|y)}{\partial \theta \partial \theta'} \right]_{\theta=\hat{\theta}}^{-1} = \begin{pmatrix} \hat{\sigma}_1^2 & \hat{\sigma}_{12} & \dots \\ \hat{\sigma}_{21} & \hat{\sigma}_2^2 & \dots \\ \vdots & \vdots & \dots \end{pmatrix}$$

- Statistical interpretation: variance and covariance across repeated samples
- ullet Works in general for a k-dimensional heta vector
- Can be computed numerically

7. When the log-likelihood is not normal, we'll use the best quadratic approximation to it. Under the normal,

$$\frac{\partial^2 \ln L(\beta|y)}{\partial \beta \partial \beta'} = \frac{-n}{\sigma^2}$$

More generally, this second derivative will give us a way to compute the coefficient on the squared term.

$$\hat{V}(\hat{\theta}) = \left[-\frac{\partial^2 \ln L(\theta|y)}{\partial \theta \partial \theta'} \right]_{\theta=\hat{\theta}}^{-1} = \begin{pmatrix} \hat{\sigma}_1^2 & \hat{\sigma}_{12} & \dots \\ \hat{\sigma}_{21} & \hat{\sigma}_2^2 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

- Statistical interpretation: variance and covariance across repeated samples
- ullet Works in general for a k-dimensional heta vector
- Can be computed numerically
- Known as the variance matrix, or variance-covariance matrix, or covariance matrix

7. When the log-likelihood is not normal, we'll use the best quadratic approximation to it. Under the normal,

$$\frac{\partial^2 \ln L(\beta|y)}{\partial \beta \partial \beta'} = \frac{-n}{\sigma^2}$$

More generally, this second derivative will give us a way to compute the coefficient on the squared term.

$$\hat{V}(\hat{\theta}) = \left[-\frac{\partial^2 \ln L(\theta|y)}{\partial \theta \partial \theta'} \right]_{\theta=\hat{\theta}}^{-1} = \begin{pmatrix} \hat{\sigma}_1^2 & \hat{\sigma}_{12} & \dots \\ \hat{\sigma}_{21} & \hat{\sigma}_2^2 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

- Statistical interpretation: variance and covariance across repeated samples
- ullet Works in general for a k-dimensional heta vector
- Can be computed numerically
- Known as the variance matrix, or variance-covariance matrix, or covariance matrix
- 9. This is an estimate of a quadratic approximation to the log-likelihood.

• If the model is correct, a consistent point estimate of θ is the MLE, $\hat{\theta}$.

- If the model is correct, a consistent point estimate of θ is the MLE, $\hat{\theta}$.
- True variance of the sampling distribution of $\hat{\theta}$: $V(\hat{\theta})$

- If the model is correct, a consistent point estimate of θ is the MLE, $\hat{\theta}$.
- True variance of the sampling distribution of $\hat{\theta}$: $V(\hat{\theta})$
- Estimate of $V(\hat{\theta})$: $\hat{V}(\hat{\theta})$, the inverse of the negative of the matrix of second derivatives of $\ln L(\theta|y)$, evaluated at $\hat{\theta}$.

- If the model is correct, a consistent point estimate of θ is the MLE, $\hat{\theta}$.
- True variance of the sampling distribution of $\hat{\theta}$: $V(\hat{\theta})$
- Estimate of $V(\hat{\theta})$: $\hat{V}(\hat{\theta})$, the inverse of the negative of the matrix of second derivatives of $\ln L(\theta|y)$, evaluated at $\hat{\theta}$.
- As n gets large,

- If the model is correct, a consistent point estimate of θ is the MLE, $\hat{\theta}$.
- True variance of the sampling distribution of $\hat{\theta}$: $V(\hat{\theta})$
- Estimate of $V(\hat{\theta})$: $\hat{V}(\hat{\theta})$, the inverse of the negative of the matrix of second derivatives of $\ln L(\theta|y)$, evaluated at $\hat{\theta}$.
- As n gets large,
 - ullet The standardized sampling distribution of $\hat{ heta}$ becomes normal.

- If the model is correct, a consistent point estimate of θ is the MLE, $\hat{\theta}$.
- True variance of the sampling distribution of $\hat{\theta}$: $V(\hat{\theta})$
- Estimate of $V(\hat{\theta})$: $\hat{V}(\hat{\theta})$, the inverse of the negative of the matrix of second derivatives of $\ln L(\theta|y)$, evaluated at $\hat{\theta}$.
- As n gets large,
 - ullet The standardized sampling distribution of $\hat{ heta}$ becomes normal.
 - the quadratic approximation implied (from the second derivative of the log-likelihood) improves

- If the model is correct, a consistent point estimate of θ is the MLE, $\hat{\theta}$.
- True variance of the sampling distribution of $\hat{\theta}$: $V(\hat{\theta})$
- Estimate of $V(\hat{\theta})$: $\hat{V}(\hat{\theta})$, the inverse of the negative of the matrix of second derivatives of $\ln L(\theta|y)$, evaluated at $\hat{\theta}$.
- As n gets large,
 - ullet The standardized sampling distribution of $\hat{ heta}$ becomes normal.
 - the quadratic approximation implied (from the second derivative of the log-likelihood) improves
- To simulate θ ,

- If the model is correct, a consistent point estimate of θ is the MLE, $\hat{\theta}$.
- True variance of the sampling distribution of $\hat{\theta}$: $V(\hat{\theta})$
- Estimate of $V(\hat{\theta})$: $\hat{V}(\hat{\theta})$, the inverse of the negative of the matrix of second derivatives of $\ln L(\theta|y)$, evaluated at $\hat{\theta}$.
- As n gets large,
 - ullet The standardized sampling distribution of $\hat{ heta}$ becomes normal.
 - the quadratic approximation implied (from the second derivative of the log-likelihood) improves
- To simulate θ ,
 - ullet we'll draw from the multivariate normal: $ilde{ heta} \sim \mathcal{N}\left(\hat{ heta}, \hat{\mathcal{V}}(\hat{ heta})
 ight)$

- If the model is correct, a consistent point estimate of θ is the MLE, $\hat{\theta}$.
- True variance of the sampling distribution of $\hat{\theta}$: $V(\hat{\theta})$
- Estimate of $V(\hat{\theta})$: $\hat{V}(\hat{\theta})$, the inverse of the negative of the matrix of second derivatives of $\ln L(\theta|y)$, evaluated at $\hat{\theta}$.
- As n gets large,
 - ullet The standardized sampling distribution of $\hat{ heta}$ becomes normal.
 - the quadratic approximation implied (from the second derivative of the log-likelihood) improves
- To simulate θ ,
 - ullet we'll draw from the multivariate normal: $ilde{ heta} \sim extstyle N\left(\hat{ heta}, \hat{V}(\hat{ heta})
 ight)$
 - This is an asymptotic approximation and can be wrong sometimes.

- If the model is correct, a consistent point estimate of θ is the MLE, $\hat{\theta}$.
- True variance of the sampling distribution of $\hat{\theta}$: $V(\hat{\theta})$
- Estimate of $V(\hat{\theta})$: $\hat{V}(\hat{\theta})$, the inverse of the negative of the matrix of second derivatives of $\ln L(\theta|y)$, evaluated at $\hat{\theta}$.
- As n gets large,
 - ullet The standardized sampling distribution of $\hat{ heta}$ becomes normal.
 - the quadratic approximation implied (from the second derivative of the log-likelihood) improves
- To simulate θ ,
 - ullet we'll draw from the multivariate normal: $ilde{ heta} \sim \mathcal{N}\left(\hat{ heta}, \hat{\mathcal{V}}(\hat{ heta})
 ight)$
 - This is an asymptotic approximation and can be wrong sometimes.
 - We'll discuss later how how to improve the approximation.

Forecasting Presidential Elections.

The Data

The Data *i* U.S. state, for
$$i = 1, ..., 50$$

```
The Data i U.S. state, for i = 1, ..., 50 t election year, for t = 1948, 1952, ..., 2012
```

```
The Data i U.S. state, for i=1,\ldots,50 t election year, for t=1948,1952,\ldots,2012 y_{it} Democratic fraction of the two-party vote
```

Forecasting Presidential Elections.

The Data

```
i U.S. state, for i = 1, \ldots, 50
```

t election year, for $t = 1948, 1952, \dots, 2012$

 y_{it} Democratic fraction of the two-party vote

 X_{it} a list of covariates (economic conditions, polls, home state, etc)

Forecasting Presidential Elections.

```
The Data
```

```
i U.S. state, for i = 1, \ldots, 50
```

t election year, for t = 1948, 1952, ..., 2012

 y_{it} Democratic fraction of the two-party vote

 X_{it} a list of covariates (economic conditions, polls, home state, etc)

 $X_{i,2016}$ the same covariates as X_{it} but measured in 2016

Forecasting Presidential Elections.

```
The Data
```

```
U.S. state, for i = 1, ..., 50
         election year, for t = 1948, 1952, ..., 2012
          Democratic fraction of the two-party vote
Yit
X_{it}
         a list of covariates (economic conditions, polls, home state, etc)
X_{i,2016}
         the same covariates as X_{it} but measured in 2016
```

Εi The number of electoral college votes for each state in 2016

1. $Y_{it} \sim N(\mu_{it}, \sigma^2)$.

- 1. $Y_{it} \sim N(\mu_{it}, \sigma^2)$.
- 2. $\mu_{it} = x_{it}\beta$, where x_{it} is a vector of explanatory variables and a constant

- 1. $Y_{it} \sim N(\mu_{it}, \sigma^2)$.
- 2. $\mu_{it} = x_{it}\beta$, where x_{it} is a vector of explanatory variables and a constant
- 3. Y_{it} and $Y_{i't'}$ are independent $\forall i \neq i'$ and $t \neq t'$, conditional on X.

- 1. $Y_{it} \sim N(\mu_{it}, \sigma^2)$.
- 2. $\mu_{it} = x_{it}\beta$, where x_{it} is a vector of explanatory variables and a constant
- 3. Y_{it} and $Y_{i't'}$ are independent $\forall i \neq i'$ and $t \neq t'$, conditional on X.

The Likelihood Model for the *i*th observation

- 1. $Y_{it} \sim N(\mu_{it}, \sigma^2)$.
- 2. $\mu_{it} = x_{it}\beta$, where x_{it} is a vector of explanatory variables and a constant
- 3. Y_{it} and $Y_{i't'}$ are independent $\forall i \neq i'$ and $t \neq t'$, conditional on X.

The Likelihood Model for the ith observation

$$L(\mu_{it}, \sigma | y_{it}) \propto N(y_{it} | \mu_{it}, \sigma^2)$$

- 1. $Y_{it} \sim N(\mu_{it}, \sigma^2)$.
- 2. $\mu_{it} = x_{it}\beta$, where x_{it} is a vector of explanatory variables and a constant
- 3. Y_{it} and $Y_{i't'}$ are independent $\forall i \neq i'$ and $t \neq t'$, conditional on X.

The Likelihood Model for the *i*th observation

$$L(\mu_{it}, \sigma | y_{it}) \propto N(y_{it} | \mu_{it}, \sigma^2)$$
$$= (2\pi\sigma^2)^{-1/2} e^{\frac{-(y_{it} - \mu_{it})^2}{2\sigma^2}}$$

$$L(\beta, \sigma^2|y) = \prod_{i=1}^n \prod_{t=1}^T L(y_{it}|\mu_{it}, \sigma^2)$$

$$L(\beta, \sigma^2 | y) = \prod_{i=1}^n \prod_{t=1}^T L(y_{it} | \mu_{it}, \sigma^2)$$
$$\ln L(\beta, \sigma^2 | y) = \sum_{i=1}^n \sum_{t=1}^T \ln L(y_{it} | \mu_{it}, \sigma^2)$$

$$\begin{split} L(\beta, \sigma^2 | y) &= \prod_{i=1}^n \prod_{t=1}^T L(y_{it} | \mu_{it}, \sigma^2) \\ \ln L(\beta, \sigma^2 | y) &= \sum_{i=1}^n \sum_{t=1}^T \ln L(y_{it} | \mu_{it}, \sigma^2) \\ &= \sum_{i=1}^n \sum_{t=1}^T \left\{ -\frac{1}{2} \ln(2\pi\sigma^2) - \frac{(y_{it} - \mu_{it})^2}{2\sigma^2} \right\} \end{split}$$

$$\begin{split} L(\beta, \sigma^2 | y) &= \prod_{i=1}^n \prod_{t=1}^T L(y_{it} | \mu_{it}, \sigma^2) \\ \ln L(\beta, \sigma^2 | y) &= \sum_{i=1}^n \sum_{t=1}^T \ln L(y_{it} | \mu_{it}, \sigma^2) \\ &= \sum_{i=1}^n \sum_{t=1}^T \left\{ -\frac{1}{2} \ln(2\pi\sigma^2) - \frac{(y_{it} - \mu_{it})^2}{2\sigma^2} \right\} \\ &= \sum_{i=1}^n \sum_{t=1}^T -\frac{1}{2} \ln(2\pi) + \sum_{i=1}^n \sum_{t=1}^T -\frac{1}{2} \left[\ln \sigma^2 + \frac{(y_{it} - \mu_{it})^2}{\sigma^2} \right] \end{split}$$

$$\begin{split} L(\beta, \sigma^2 | y) &= \prod_{i=1}^n \prod_{t=1}^T L(y_{it} | \mu_{it}, \sigma^2) \\ \ln L(\beta, \sigma^2 | y) &= \sum_{i=1}^n \sum_{t=1}^T \ln L(y_{it} | \mu_{it}, \sigma^2) \\ &= \sum_{i=1}^n \sum_{t=1}^T \left\{ -\frac{1}{2} \ln(2\pi\sigma^2) - \frac{(y_{it} - \mu_{it})^2}{2\sigma^2} \right\} \\ &= \sum_{i=1}^n \sum_{t=1}^T -\frac{1}{2} \ln(2\pi) + \sum_{i=1}^n \sum_{t=1}^T -\frac{1}{2} \left[\ln \sigma^2 + \frac{(y_{it} - \mu_{it})^2}{\sigma^2} \right] \\ &\doteq \sum_{i=1}^n \sum_{t=1}^T -\frac{1}{2} \left[\ln \sigma^2 + \frac{(y_{it} - \mu_{it})^2}{\sigma^2} \right] \end{split}$$

$$\begin{split} L(\beta, \sigma^2 | y) &= \prod_{i=1}^n \prod_{t=1}^T L(y_{it} | \mu_{it}, \sigma^2) \\ \ln L(\beta, \sigma^2 | y) &= \sum_{i=1}^n \sum_{t=1}^T \ln L(y_{it} | \mu_{it}, \sigma^2) \\ &= \sum_{i=1}^n \sum_{t=1}^T \left\{ -\frac{1}{2} \ln(2\pi\sigma^2) - \frac{(y_{it} - \mu_{it})^2}{2\sigma^2} \right\} \\ &= \sum_{i=1}^n \sum_{t=1}^T -\frac{1}{2} \ln(2\pi) + \sum_{i=1}^n \sum_{t=1}^T -\frac{1}{2} \left[\ln \sigma^2 + \frac{(y_{it} - \mu_{it})^2}{\sigma^2} \right] \\ &= \sum_{i=1}^n \sum_{t=1}^T -\frac{1}{2} \left[\ln \sigma^2 + \frac{(y_{it} - \mu_{it})^2}{\sigma^2} \right] \\ &= \sum_{i=1}^n \sum_{t=1}^T -\frac{1}{2} \left[\ln \sigma^2 + \frac{(y_{it} - \chi_{it}\beta)^2}{\sigma^2} \right] \end{split}$$

• k: number of explanatory variables

- k: number of explanatory variables
- ullet Reparameterize on the unbounded scale; use: $\sigma=e^{\gamma}$

- k: number of explanatory variables
- Reparameterize on the unbounded scale; use: $\sigma = e^{\gamma}$
- Let $\theta = \{\beta, \gamma\}$, a $k + 2 \times 1$ vector.

- k: number of explanatory variables
- Reparameterize on the unbounded scale; use: $\sigma = e^{\gamma}$
- Let $\theta = \{\beta, \gamma\}$, a $k + 2 \times 1$ vector.
- Maximize the likelihood; save $\hat{\theta} = \{\hat{\beta}, \hat{\gamma}\}.$

- k: number of explanatory variables
- Reparameterize on the unbounded scale; use: $\sigma = e^{\gamma}$
- Let $\theta = \{\beta, \gamma\}$, a $k + 2 \times 1$ vector.
- Maximize the likelihood; save $\hat{\theta} = \{\hat{\beta}, \hat{\gamma}\}.$
- Compute and save $\hat{V}(\hat{\theta})$, which is $k+2 \times k+2$

• Mathematical Form:

$$\ln L(\beta, \sigma^2 | y) = \sum_{i=1}^n \sum_{t=1}^T -\frac{1}{2} \left[\ln \sigma^2 + \frac{(y_{it} - X_{it}\beta)^2}{\sigma^2} \right]$$

Mathematical Form:

$$\ln L(\beta, \sigma^{2}|y) = \sum_{i=1}^{n} \sum_{t=1}^{T} -\frac{1}{2} \left[\ln \sigma^{2} + \frac{(y_{it} - X_{it}\beta)^{2}}{\sigma^{2}} \right]$$

• An R function:

```
11.normal <- function(par, X, Y) {
X <- as.matrix(cbind(1, X))
beta <- par[1:ncol(X)]
sigma2 <- exp(par[ncol(X) + 1])
-1/2 * sum( log(sigma2) + ((Y - X %*% beta)^2)/sigma2 )
}</pre>
```

Mathematical Form:

$$\ln L(\beta, \sigma^{2}|y) = \sum_{i=1}^{n} \sum_{t=1}^{T} -\frac{1}{2} \left[\ln \sigma^{2} + \frac{(y_{it} - X_{it}\beta)^{2}}{\sigma^{2}} \right]$$

• An R function:

```
11.normal <- function(par, X, Y) {
X <- as.matrix(cbind(1, X))
beta <- par[1:ncol(X)]
sigma2 <- exp(par[ncol(X) + 1])
-1/2 * sum( log(sigma2) + ((Y - X %*% beta)^2)/sigma2 )
}</pre>
```

• Calling it:

```
ll.normal(c(2,1,2,1,33,4,3.2),x,y)
ll.normal(c(2,1,2,1,33,4,3.7),x,y)
ll.normal(c(2,1,2,1,33,4,3.5),x,y)
```

• (Reasons we care about the regression coefficients:

• (Reasons we care about the regression coefficients: N

• (Reasons we care about the regression coefficients: No)

• (Reasons we care about the regression coefficients: Non)

• (Reasons we care about the regression coefficients: None)

- (Reasons we care about the regression coefficients: None)
- The posterior distribution of electoral college delegates for the Democrat.

- (Reasons we care about the regression coefficients: None)
- The posterior distribution of electoral college delegates for the Democrat.
- Expected number of electoral college delegates for the Democrat.

- (Reasons we care about the regression coefficients: None)
- The posterior distribution of electoral college delegates for the Democrat.
- Expected number of electoral college delegates for the Democrat.
- Probability that the Democratic candidate gets more than $\sum_{i=1}^{n} E_i/n > 0.5$ proportion of electoral college delegates.

• Goal: Simulations of E_i in each state

- Goal: Simulations of E_i in each state
- Should we allocate E_i using the point estimate $\hat{y}_{i,2016}$ winner in each state?

• Goal: Simulations of E_i in each state

- Goal: Simulations of E_i in each state
- Draw many simulations of $y_{i,2016}$ ($\tilde{y}_{i,2016}$) from its posterior distribution for U.S. state i, $P(y_{i,2016}|y_{it},t<2016;X_{it'},t'\leq2016)$, i.e. P(unknown|data). (Details shortly.)

- Goal: Simulations of E_i in each state
- Draw many simulations of $y_{i,2016}$ ($\tilde{y}_{i,2016}$) from its posterior distribution for U.S. state i, $P(y_{i,2016}|y_{it},t<2016;X_{it'},t'\leq2016)$, i.e. P(unknown|data). (Details shortly.)
- For each simulation of state i, if $y_{i,2016} > 0.5$ the Democrat "wins" \tilde{E}_i electoral college delegates; otherwise, the Democrat gets 0.

- Goal: Simulations of E_i in each state
- Draw many simulations of $y_{i,2016}$ ($\tilde{y}_{i,2016}$) from its posterior distribution for U.S. state i, $P(y_{i,2016}|y_{it},t<2016;X_{it'},t'\leq2016)$, i.e. P(unknown|data). (Details shortly.)
- For each simulation of state i, if $y_{i,2016} > 0.5$ the Democrat "wins" \tilde{E}_i electoral college delegates; otherwise, the Democrat gets 0.
- Add the number of electoral college delegates the Democrat wins in the entire country by adding simulated winnings from each state.

- Goal: Simulations of E_i in each state
- Draw many simulations of $y_{i,2016}$ ($\tilde{y}_{i,2016}$) from its posterior distribution for U.S. state i, $P(y_{i,2016}|y_{it},t<2016;X_{it'},t'\leq2016)$, i.e. P(unknown|data). (Details shortly.)
- For each simulation of state i, if $y_{i,2016} > 0.5$ the Democrat "wins" \tilde{E}_i electoral college delegates; otherwise, the Democrat gets 0.
- Add the number of electoral college delegates the Democrat wins in the entire country by adding simulated winnings from each state.
- Repeat Steps 1–3 M=1,000 times, and plot a histogram of the results.

1. Choose values of explanatory variables. In this case, $X_{i,2016}$

- 1. Choose values of explanatory variables. In this case, $X_{i,2016}$
- 2. Simulate estimation uncertainty:

- 1. Choose values of explanatory variables. In this case, $X_{i,2016}$
- 2. Simulate estimation uncertainty:
 - Draw θ from its sampling distribution, $N(\hat{\theta}, \hat{V}(\hat{\theta}))$. Label the random draw $\tilde{\theta} = \{\tilde{\beta}, \tilde{\gamma}\}$.

- 1. Choose values of explanatory variables. In this case, $X_{i,2016}$
- 2. Simulate estimation uncertainty:
 - Draw θ from its sampling distribution, $N(\hat{\theta}, \hat{V}(\hat{\theta}))$. Label the random draw $\tilde{\theta} = \{\tilde{\beta}, \tilde{\gamma}\}$.
 - Pull out $\tilde{\beta}$ and save.

- 1. Choose values of explanatory variables. In this case, $X_{i,2016}$
- 2. Simulate estimation uncertainty:
 - Draw θ from its sampling distribution, $N(\hat{\theta}, \hat{V}(\hat{\theta}))$. Label the random draw $\tilde{\theta} = \{\tilde{\beta}, \tilde{\gamma}\}$.
 - Pull out $\tilde{\beta}$ and save.
 - ullet Pull out $ilde{\gamma}$, "un-reparameterize", and save $ilde{\sigma}=e^{ ilde{\gamma}}$

- 1. Choose values of explanatory variables. In this case, $X_{i,2016}$
- 2. Simulate estimation uncertainty:
 - Draw θ from its sampling distribution, $N(\hat{\theta}, \hat{V}(\hat{\theta}))$. Label the random draw $\tilde{\theta} = \{\tilde{\beta}, \tilde{\gamma}\}$.
 - Pull out $\tilde{\beta}$ and save.
 - ullet Pull out $ilde{\gamma}$, "un-reparameterize", and save $ilde{\sigma}=e^{ ilde{\gamma}}$
- 3. Compute the simulated systematic component:

- 1. Choose values of explanatory variables. In this case, $X_{i,2016}$
- 2. Simulate estimation uncertainty:
 - Draw θ from its sampling distribution, $N(\hat{\theta}, \hat{V}(\hat{\theta}))$. Label the random draw $\tilde{\theta} = \{\tilde{\beta}, \tilde{\gamma}\}$.
 - Pull out $\tilde{\beta}$ and save.
 - ullet Pull out $ilde{\gamma}$, "un-reparameterize", and save $ilde{\sigma}=e^{ ilde{\gamma}}$
- 3. Compute the simulated systematic component: $\tilde{\mu}_{it} = X_{i,2016} \tilde{\beta}$

- 1. Choose values of explanatory variables. In this case, $X_{i,2016}$
- 2. Simulate estimation uncertainty:
 - Draw θ from its sampling distribution, $N(\hat{\theta}, \hat{V}(\hat{\theta}))$. Label the random draw $\tilde{\theta} = \{\tilde{\beta}, \tilde{\gamma}\}$.
 - Pull out $\tilde{\beta}$ and save.
 - ullet Pull out $ilde{\gamma}$, "un-reparameterize", and save $ilde{\sigma}=e^{ ilde{\gamma}}$
- 3. Compute the simulated systematic component: $\tilde{\mu}_{it} = X_{i,2016} \tilde{\beta}$
- 4. Add fundamental uncertainty: draw $\tilde{y}_{i,2016} \sim N(\tilde{\mu}_{i,2016}, \tilde{\sigma}^2)$

1. Run LS regression of y_{it} on X_{it} and get $\hat{\beta}$ and $V(\hat{\beta})$

- 1. Run LS regression of y_{it} on X_{it} and get $\hat{\beta}$ and $V(\hat{\beta})$
- 2. Draw β randomly from its posterior distribution (i.e., its sampling distribution), $N(\beta|\hat{\beta}, V(\hat{\beta}))$. Label the random draw $\tilde{\beta}$.

- 1. Run LS regression of y_{it} on X_{it} and get $\hat{\beta}$ and $V(\hat{\beta})$
- 2. Draw β randomly from its posterior distribution (i.e., its sampling distribution), $N(\beta|\hat{\beta}, V(\hat{\beta}))$. Label the random draw $\tilde{\beta}$.
- 3. Draw σ^2 from its posterior (or sampling) distribution, $1/\chi^2(\hat{\sigma}^2, N-k)$, labeling it $\tilde{\sigma}^2$

- 1. Run LS regression of y_{it} on X_{it} and get $\hat{\beta}$ and $V(\hat{\beta})$
- 2. Draw β randomly from its posterior distribution (i.e., its sampling distribution), $N(\beta|\hat{\beta}, V(\hat{\beta}))$. Label the random draw $\tilde{\beta}$.
- 3. Draw σ^2 from its posterior (or sampling) distribution, $1/\chi^2(\hat{\sigma}^2, N-k)$, labeling it $\tilde{\sigma}^2$
- 4. Either:

How to do it with a LS Regression Program

- 1. Run LS regression of y_{it} on X_{it} and get $\hat{\beta}$ and $V(\hat{\beta})$
- 2. Draw β randomly from its posterior distribution (i.e., its sampling distribution), $N(\beta|\hat{\beta}, V(\hat{\beta}))$. Label the random draw $\tilde{\beta}$.
- 3. Draw σ^2 from its posterior (or sampling) distribution, $1/\chi^2(\hat{\sigma}^2, N-k)$, labeling it $\tilde{\sigma}^2$
- 4. Either:
 - Draw ϵ_{it} from $N(0, \tilde{\sigma}^2)$, label it $\tilde{\epsilon}_{it}$ and compute: $\tilde{y}_{i,2016} = \tilde{X}_{i,2016} \tilde{\beta} + \tilde{\epsilon}_{it}$

How to do it with a LS Regression Program

- 1. Run LS regression of y_{it} on X_{it} and get $\hat{\beta}$ and $V(\hat{\beta})$
- 2. Draw β randomly from its posterior distribution (i.e., its sampling distribution), $N(\beta|\hat{\beta}, V(\hat{\beta}))$. Label the random draw $\tilde{\beta}$.
- 3. Draw σ^2 from its posterior (or sampling) distribution, $1/\chi^2(\hat{\sigma}^2, N-k)$, labeling it $\tilde{\sigma}^2$
- 4. Either:
 - Draw ϵ_{it} from $N(0, \tilde{\sigma}^2)$, label it $\tilde{\epsilon}_{it}$ and compute: $\tilde{y}_{i,2016} = \tilde{X}_{i,2016} \tilde{\beta} + \tilde{\epsilon}_{it}$
 - Or, in our preferred notation, draw $\tilde{y}_{i,2016}$ from $N(X_{i,2016}\tilde{\beta},\tilde{\sigma}^2)$

Actual Results (calculated before the election) for 1992

Actual Results (calculated before the election) for 1992

1.
$$Y_{it} \sim N(y_{it}|\mu_{it}, \frac{\sigma_{it}^2}{\sigma_{it}^2})$$

- 1. $Y_{it} \sim N(y_{it}|\mu_{it}, \sigma_{it}^2)$
- 2. $\mu_{it} = x_{it}\beta$, where x_{it} is a vector of explanatory variables and a constant

- 1. $Y_{it} \sim N(y_{it}|\mu_{it}, \sigma_{it}^2)$
- 2. $\mu_{it} = x_{it}\beta$, where x_{it} is a vector of explanatory variables and a constant
- 3. $\sigma_{it}^2 = \exp(z_{it}\gamma)$, where z_{it} is a vector of explanatory variables possibly overlapping x_{it}

- 1. $Y_{it} \sim N(y_{it}|\mu_{it}, \sigma_{it}^2)$
- 2. $\mu_{it} = x_{it}\beta$, where x_{it} is a vector of explanatory variables and a constant
- 3. $\sigma_{it}^2 = \exp(z_{it}\gamma)$, where z_{it} is a vector of explanatory variables possibly overlapping x_{it}
- 4. Y_{it} and $Y_{i't'}$ are independent $\forall i \neq i'$ and $t \neq t'$, conditional on X and Z.

- 1. $Y_{it} \sim N(y_{it}|\mu_{it}, \sigma_{it}^2)$
- 2. $\mu_{it} = x_{it}\beta$, where x_{it} is a vector of explanatory variables and a constant
- 3. $\sigma_{it}^2 = \exp(z_{it}\gamma)$, where z_{it} is a vector of explanatory variables possibly overlapping x_{it}
- 4. Y_{it} and $Y_{i't'}$ are independent $\forall i \neq i'$ and $t \neq t'$, conditional on X and Z.

The log-likelihood:

- 1. $Y_{it} \sim N(y_{it}|\mu_{it}, \frac{\sigma_{it}^2}{\sigma_{it}^2})$
- 2. $\mu_{it} = x_{it}\beta$, where x_{it} is a vector of explanatory variables and a constant
- 3. $\sigma_{it}^2 = \exp(z_{it}\gamma)$, where z_{it} is a vector of explanatory variables possibly overlapping x_{it}
- 4. Y_{it} and $Y_{i't'}$ are independent $\forall i \neq i'$ and $t \neq t'$, conditional on X and Z.

The log-likelihood:

$$\ln L(\beta, \sigma^{2}|y) = \sum_{i=1}^{n} \sum_{t=1}^{T} -\frac{1}{2} \left[\ln \sigma^{2} + \frac{(y_{it} - X_{it}\beta)^{2}}{\sigma^{2}} \right]$$

- 1. $Y_{it} \sim N(y_{it}|\mu_{it}, \sigma_{it}^2)$
- 2. $\mu_{it} = x_{it}\beta$, where x_{it} is a vector of explanatory variables and a constant
- 3. $\sigma_{it}^2 = \exp(z_{it}\gamma)$, where z_{it} is a vector of explanatory variables possibly overlapping x_{it}
- 4. Y_{it} and $Y_{i't'}$ are independent $\forall i \neq i'$ and $t \neq t'$, conditional on X and Z.

The log-likelihood:

$$\ln L(\beta, \sigma^{2}|y) = \sum_{i=1}^{n} \sum_{t=1}^{T} -\frac{1}{2} \left[\ln \sigma^{2} + \frac{(y_{it} - X_{it}\beta)^{2}}{\sigma^{2}} \right]$$
$$= \sum_{i=1}^{n} \sum_{t=1}^{T} -\frac{1}{2} \left[z_{it}\gamma + \frac{(y_{it} - X_{it}\beta)^{2}}{\exp(z_{it}\gamma)} \right]$$

- 1. $Y_{it} \sim N(y_{it}|\mu_{it}, \sigma_{it}^2)$
- 2. $\mu_{it} = x_{it}\beta$, where x_{it} is a vector of explanatory variables and a constant
- 3. $\sigma_{it}^2 = \exp(z_{it}\gamma)$, where z_{it} is a vector of explanatory variables possibly overlapping x_{it}
- 4. Y_{it} and $Y_{i't'}$ are independent $\forall i \neq i'$ and $t \neq t'$, conditional on X and Z.

The log-likelihood:

$$\ln L(\beta, \sigma^{2}|y) = \sum_{i=1}^{n} \sum_{t=1}^{T} -\frac{1}{2} \left[\ln \sigma^{2} + \frac{(y_{it} - X_{it}\beta)^{2}}{\sigma^{2}} \right]$$
$$= \sum_{i=1}^{n} \sum_{t=1}^{T} -\frac{1}{2} \left[z_{it}\gamma + \frac{(y_{it} - X_{it}\beta)^{2}}{\exp(z_{it}\gamma)} \right]$$

• For what applications would this model be informative?

1. These figures are always wild simplifications.

- 1. These figures are always wild simplifications.
- 2. Items are roughly in order.

- 1. These figures are always wild simplifications.
- 2. Items are roughly in order.
- 3. You can start at any point.

- 1. These figures are always wild simplifications.
- 2. Items are roughly in order.
- 3. You can start at any point.
- 4. A formal theory is often a useful addition, but not always necessary.

- 1. These figures are always wild simplifications.
- 2. Items are roughly in order.
- 3. You can start at any point.
- 4. A formal theory is often a useful addition, but not always necessary.
- 5. Don't miss any parts.