(19) 日本国特許庁 (JP)

① 特許出願公開

⑫ 公開特許公報 (A)

昭59—192946

60Int. Cl.3 G 01 N 23/225 H 01 J 37/252 識別記号

庁内整理番号 2122-2G 7129-5C

昭和59年(1984)11月1日 **個公開**

2 発明の数 審査請求 有

(全 6 頁)

砂絶縁試料のイオン分析方法および装置

20特 昭59-3729

昭59(1984)1月13日 22出 爢

優先権主張 図1983年1月14日③フランス

(FR) \$38300538

明 ジョルジユ・スロジイアン @発 者

フランス国92330ソー・リユ・

ベルリオーズ15

マルセル・シヤントロー 勿発 明 者

フランス国91940レ・ジユリ・

ゴメ・ル・シヤテル・アブニユ ・ド・ラ・フリルーズ29

ロジエ・ドウネブイ 明

> フランス国91470リムール・レ ・ゾー・デユ・パルク・アレ・

デユ・セテイエ・ダングラン4

⑪出 願 人 カメカ

フランス国92400クールブボワ ・ブールバール・サン・ドニ10

個代 理 人 弁理士 猪股清

外3名

明

1. 発明の名称 絶縁試料のイオン分析方法お よが装置

2. 特許請求の範囲

1. 分析対象である試料表面のターゲットを、イ オンビーム装備によりポンパードすることによ り前記試料を与えられた負の電位に励起し、前 記ポンパードされたターゲットから放出された 負のイオンを用いて前記試料のイオンイメージ を作る型の絶縁試料のイオン分析方法において、 法線速度成分が前記ターゲットの表面位置で ちようど打ち消されるような電子線を、前記タ ーゲットに対して垂直な方向から照射すること

2. 与えられた負の電位にほぼ等しい単位にまで 励起されたフィラメントによつて電子線を発生 させることを特徴とする特許請求の範囲第1項 記載の絶縁試料のイオン分析方法。

を特徴とする絶縁試料のイオン分析方法。

- 3. 発生後の電子線を磁気プリズムにより屈折さ せ、ターゲットから放出された負のイオンピー ムの光軸に一致する方向に向けることを特徴と する特許請求の範囲第1項または第2項のいず れかに記載の絶縁試料のイオン分析方法。
- 4. 光軸に沿つてタータツトから向かつてくる鼈 子を用いて、試料の電子イメージを得ることを 特徴とする特許請求の範囲第3項記載の絶縁試 料のイオン分析方法。
- 5. 分析対象である試料表面のターゲットに向け てイオンのポンパードを行なうイオン源と、こ の装置の光軸上に置かれ、前記ポンパードされ たターゲツトから放出された負のイオンを用い て前記試料のイオンイメージを作る質量分光器 と、を有し、前記試料を与えられた負の單位に 励起する型の絶縁試料分析装置において、

前記試料とほぼ等しい鼈位に励起され、電子 線を発生させる電子線源と、前記電子線を前記 ターダットに向けて、ポンパードされた表面に 対して垂直な方向を向くように屈折させる屈折

装置と、を有することを特徴とする絶縁試料の イオン分析装置。

6. 屈折装置が磁気プリズムと、ターゲットから 放出された負のイオンの行路が前記磁気プリズ ムによつて屈折させられるのを補償するための 磁気補償装置と、を有することを特徴とする特 許請求の範囲第5項記載の絶縁試料のイオン分 析装備。

7. 磁気プリメムが二連磁気プリメムで、光軸に沿つてターゲットから向かつてくる電子を屈折させるようにし、試料の電子イメージを得るための関連した分析装置に入力させるようにしたことを特徴とする特許請求の範囲第6項記載の 絶縁試料のイオン分析装置。

3. 発明の詳細な説明

[発明の技術分野]

本発明は、絶縁試料のイオン分析方法および装置に関する。

一次イオンのポンパード状態に基づいてそのイメージを形成するところの二次イオンの行路をゆがめる。更にこの電位により発生する電界は局所的に非常に強いものとなり、いくつかの元素を移動させることになる。この現象は特に、半導体のシリコン層に注入あるいは拡散を行なつた場合の断面に見られる。

この問題は、ターゲットから放出される正のイオンを取り除くために、試料表面に金属のグリッドを設けて消散させることによつて一部分解決されてきている。試料の絶縁領域には、一次イオンビームに加えて、グリッドの網目から放出された低エネルギニ次電子と、誘引電極で発生した高エネルギ電子とが照射される。従つて、試料の表面電位は、一次ポンパード密度を適当に調節することにより制御できる。

また、負の二次イオンの問題に関しては、一方では、誘引電極で発生した電子は試料によつて押し戻され、他方では、試料表面から放出された二次電子は同時に静電場によつて誘引される。二次

〔 発明の技術的背景とその問題点〕

分析すべき試料の表面をターゲットとして、一次イオンのピームをポンパードすることは、分光学の分野において従来から行なわれている。ターゲットから放出された負の二次イオンは分析装置によつて集められ、試料表面に存在する元素の分布パターンが得られる。

この技術は十分な 導電性をもつた試料 については 何ら間類がない。

しかしながら、このようなイオン分析装置によって分析が行なわれる試料の多くは絶縁体である。例えば、岩石の研磨した部分、歯や骨の一部分、生体の組織、含有酸化物、酸化物の層、不動態層等である。これら絶縁試料の分析では、電荷移動度が悪いために問題が生じる。即ち、たとえ受け取つた電荷と、放出および散逸した電荷との出入りの間で、低い導電率ながら均衡が成立している場合でさえも、過剰な電荷あるいは欠陥としての電荷が部分的に存在し電位が発生する。この電位は、二次イオンのエネルギ分布にゆらぎを与え、

電子放出の強度は、イオン放出の強度に比べ非常に大きいので、一次ポンパードイオンの極性がどちらであつても、試料表面には常に正の電荷が現われる。 Cs + , K + によるポンパード、あるいはCs 蒸気噴射によつて仕事関数が下げられたときには、この二次電子放出は更に増加する。また、異成分からなる試料では、各部分から放出される二次電子強度によつて、局在電荷の量がそのでよって異なって、局在電荷の量がそのでよって異なってくる。このような局在正電荷があると、従来の方法では負の二次イオンによるとのようなイオンの徴視的観察も不可能であることが経験上知られている。

[発明の概要]

本発明の目的は、前述の電荷による影像を効果 的に抑制するための方法を提供し、前述の不可能 を克服することにある。

この目的を達成するために、本発明ではターゲットに対して垂直に、かつ、ターゲットの表面で その法線速度成分がちようど打ち消されるように 電子線を照射している。これによつて、ターゲッ ト表面に発生するいかなる正の電荷も直ちに中和させることができる。しかも電子の速度は遅いため、ターゲット表面がわずかでも負になると、電子は押し戻されてしまい、負の電荷がターゲット表面に過剰に残るおそれもない。本発明のもう1つの主たる利点は、試料の分子構造に何ら害となる作用を与えることなしに試料表面に電子を供給できる点である。(あまり高いエネルギをもつた電子線を照射した場合には、いくつかの元素が拡散したり、試料に欠陥が生じたりする問題が起こる。)

電子線を発生するためのフィラメントは、試料とは低同程度の負の電位にすることが好ましい。

発生させた電子線は、磁気プリズムによつて旭 折させ、ターグットから放出された負のイオンピームの光軸に一致した行路に向けることが好まし

イオンピームの光軸に沿つてターゲットから向かつてくる電子は、試料の電子イメージを得るために用いるのが好ましい。

[発明の実施例]

第1図で、イオン源1は10KVのポテンシャルのポンパードにより、一次イオンを発生する。発生したイオンはイオンビーム2として試料3の表面のターゲツトに照射され、試料を-4500Vの電位にまで高める。

ターゲットから放出された負の二次イオンビームは、接地電位1の誘引電極4によつて加速され、集イオン光学系5を通り、集束位置に置かれたダイヤフラム6を通る。光軸7と同軸上には質量分光器8が置かれる。この質量分光器8は本発明には関係しない。

本発明は、電荷の影響を抑制するためにダイヤフラム6と質量分光器8との間に挿入された装置11に関するものである。この装置11は、光軸7とある角度(第1図では90°)をもつで交差する軸13上に置かれた電子線源12を有する。フィラメントによつて供給される電子は-4500Vの電位にまで高められ、0電位の誘引電極により加速され、通常の集束装置14を通される。更にこれらの電子

本発明は、また、与えられた負の電位に絶縁試料を励起してイオン分析を行なうための装置であって、分析すべき試料表面のターゲットに向けられたポンパードイオン源と、この装塡の光軸上に設けられた質量分光器と、を有する装塡を提供する。

本発明に係る前記装置は、また、試料のポテンシャルとはぼ同じ電位に励起された電子線源と、これから放出される電子線をターゲットのボンバード面に対して垂直に向ける屈折装置とを有する。前記屈折装置は、磁気プリズムを有し、ターゲットから放出された負のイオンの行路がこの磁気プリズムによつて屈折するのを補償する磁気補償装置を設けるようにするのが好ましい。

前記プリズムに二連磁気プリズムを用い、光軸に沿つてターゲットから向かつてくる電子を屈折させるようにし、試料の電子イメージを与えるための第2の分析装置を設けるようにすることが好ましい。

は磁気プリメム15 によつて屈折され、光軸7の方向へ向けられる。プリズム15から出力されるこの電子線はダイヤフラム6の中の、イオンビームとこの電子線との共通集束位置を通り、光学系5を通り、試料3と誘引電極4との間の領域に到達する。この領域で電子線は試料表面から放出された負粒子を加速させる働きをする電場を抑制させる。この電場は電子を減速させるので、これらの電子のエネルギは徐々に減少し、試料表面の位置ではほぼ打ち消されることになる。

集イオン光学系 5 は、負のイオンに対しての働きと同様の働きを電子に対しても行なう。従つて試料表面に達した電子は、側方速度成分は非常に小さく、試料表面での法線速度成分は 0 かあるいはほぼ 0 となる(従つていずれにせよ試料に対して有害な作用を及ぼすことはない。)。試料表面を中和させるために用いられなかつた電子は、試料表面から放出された二次電子(および、当然ながら負のイオン)とともにもとの行路を戻ることになる。放出された電子を90° 屈折させるのに用

いた磁気プリズム15は二連にすることが好ましい。即ち、ターゲットから戻つてきた電子を電子線源12に対して反対の方向に屈折させるようにし、散乱して戻つてきた電子、即ち反射電子から形成される電子のイメージの観測を可能にさせる。また、一次イオンボンバードまたは電子線照射の衝撃によつて発生した二次電子から形成されるイメージの観測も可能となる。この観測を行なうために、本来別個の装置として知られている分析装置が反射電子線16の行路上に設けられる。この装置は選択プレート17、静電集束器18、再加速光学装置19、光学投影装置20、およびスクリーン21から成る。

プリズム15が光軸7上に設けられたことにより、 二次イオンの行路もわずかな角度 0 だけ屈折する。 従つてこの二次イオンの質量がどんなものであれ、 この行路のずれを補正できるように磁気補償装置 22が付加的に設けられる。

第2A図は、本発明に係る装置のようなイオン のフィルタを用いない従来からのイオンポンパー ドによるイオン消滅によつて形成されたイオンイ メージを示す。図の黒点は、非常に電気伝導度の 悪い小さなアルミナ凝結物(個々の大きさは10~ 20 μm 程度)の存在によつて、二次イオン放出が 妨害された部分に対応する。

第2B図は、第2A図と同一のポンパード条件で得られたイオンイメージであるが、本発明に係る低エネルギ電子線(<10eV)を同時に照射した場合のイメージを示す。この図では、アルミナ 凝結物のイメージは十分認識しうる程度になつて おり、これら凝結物の実際の大きさについての情報を得ることができるとともに、これらの1つ1つについて存在する内部構造まで認識できる。

第3A図は前述した従来からのイオンボンバードにおいて、絶縁体であるアルミナ凝結物を多く有する金属である鉄をターゲットとしたイオンイメージである。

第3B図は、第3A図と同一の試料を本発明に 係る装置を用いて観測したものであるが、この場 合、低エネルギ線を試料の右側のアルミナ凝結物 に局所的に照射して観測を行なつた。電子線照射

による効果は、イメージ中央のアルミナ機結物と 右側のアルミナ機結物とを別々に比較してみると はつきりする。静電荷を中和するための上述した 装 懺の特長の1つはそれ自身で調整可能な点であ る。

本発明に係る装置を、従来からのイオン分析装置に適用して絶縁試料を放電させてやることにより、従来不可能とされていた絶縁材料から放出する負に帯電した酸素イオンの分析が可能になる。 従って酸素、酸化物、シリコン等の多くの化合物の分析が可能となる。また、天体物理学において、隕石の鉱物圏や宇宙盛といった対象物中の元素の同位体構造の微細な分析も可能になる。

更に本発明に係る方法は、試料分析においてその物理的あるいは化学的性質を決して変えることはないので、非破壊検査を主目的とする各種分析に用いることができる。

4. 図面の簡単な説明

第1図は本発明に係るイオン分析装置の一実施例の説明図、第2A図および第2B図はともに同一試料のイオンイメージを現わす写真で、第2A図は従来のイオン分析装置によるもの、第2B図は本発明に係るイオン分析装置によるもの、第3A図および第3B図も別な同一試料を用いた同様の例である。

1 …イオン源、2 …イオンビーム、3 …試料、4 …誘引電極、5 …集イオン光学系、6 …ダイヤフラム、7 …光軸、8 …質量分光器、11 …本発明に係る装置、12…電子線源、13…電子線軸、14… 集束装置、15…磁気プリズム、16…反射電子線、17 …選択プレート、18…静電集束器、19…再加速光学装置、20…光学投影装置、21…スクリーン、22 …磁気補償装置。

出願人代理人 猪 股

特開昭59-192946(5)

等統 補 正 鬱(方 式)

昭和59年5月24日

特 許 庁 長 官 若 杉 和 夫 殿

1 事件の表示

昭和59年 特許 願 第3729号

2 発明の名称

絶縁試料のイオン分析方法および装置

3 補正をする者

事件との関係 特許出願人

カーメーカ

4 代 理 人

東京都千代田区丸の内三丁目2番3号電話東京 (211)2321大代表

4230 弁理士 猪 服

7

5 補正命令の目付

昭和 59年 4 月 4 日

(発送日 昭和5号年 4 月24日)

- 7 補正の対象

明和書の「図面の簡単な説明」の欄。

8 補正の内容

(1) 明細書第14頁第4行「イオンイメージを 現わす写真」とあるのを、「鉱物組織のイオン線 写真」と訂正する。

ill rii d

(2) 明細選第14頁第7行および第8行「同様の例」とあるのを、「鉱物組織のイオン線写真」 と訂正する。