Mathematik III für Informatiker WS 2020/21

Übung 10

Otto-von-Guericke Universität Magdeburg Dr. Michael Höding

Aufgabe 10.1 Gegeben sei das folgende Gleichungssystem $A\mathbf{x} = \mathbf{b}$ mit

$$A = \begin{bmatrix} \frac{1}{3} & -\frac{1}{6} & \frac{1}{3} \\ 0 & \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{2} & 0 & \frac{1}{6} \end{bmatrix} \quad und \quad \mathbf{b} = \begin{pmatrix} \frac{1}{2} \\ 1 \\ -1 \end{pmatrix}.$$

- (a) Führen Sie eine LU-Faktorisierung der Matrix A durch.
- (b) Bestimmen Sie die Lösung ${\bf x}$ des Gleichungssystems mithilfe der LU-Faktorisierung.

Aufgabe 10.2 Gegeben sei das folgende Gleichungssystem $A\mathbf{x} = \mathbf{b}$ mit

$$A = \begin{bmatrix} \epsilon & 1 \\ 1 & \epsilon \end{bmatrix} \text{ und } \mathbf{b} \in \mathbb{R}^2 \text{ beliebig.}$$

- (a) Führen Sie eine LU-Faktorisierung der Matrix A durch.
- (b) Setzen Sie $x_1^* = x_2$ und $x_2^* = x_1$ und führen Sie eine LU-Faktorisierung der Matrix A^* durch, die durch vertauschen der Zeilen aus der Matrix A entsteht.
- (c) Untersuchen Sie das Grenzwertverhalten der beiden LU-Faktorisierungen für $\epsilon \to 0$.

Aufgabe 10.3 Gegeben sei das folgende Gleichungssystem $A\mathbf{x} = \mathbf{b}$ mit

$$A = \begin{bmatrix} 4 & 2 & 0 \\ 2 & 5 & 2 \\ 0 & 2 & 5 \end{bmatrix} \ und \ \mathbf{b} = \begin{bmatrix} 4 \\ 8 \\ 9 \end{bmatrix}.$$

- (a) Zeigen Sie, dass auf die Matrix A eine Cholesky-Zerlegung anwendbar ist.
- (b) Bestimmen Sie die Lösung des Gleichungssystems mithilfe der Cholesky-Zerlegung.

Aufgabe 10.4 Gegeben sei das folgende Gleichungssystem $A\mathbf{x} = \mathbf{b}$ mit

$$A = \begin{bmatrix} \frac{1}{2}\sqrt{2} & -1\\ \frac{1}{2}\sqrt{2} & 3 \end{bmatrix} \quad und \quad \mathbf{b} = \begin{pmatrix} \sqrt{2} - 1\\ \sqrt{2} + 3 \end{pmatrix}.$$

- (a) Führen Sie eine QR-Faktorisierung der Matrix A durch.
- (b) Bestimmen Sie die Lösung \mathbf{x} des Gleichungssystems mithilfe der QR-Faktorisierung.

Aufgabe 10.5 Das Problem $\min_{\mathbf{x} \in \mathbb{R}^n} \|A\mathbf{x} - b\|$ wird als Ausgleichsproblems bezeichnet. Es kann gezeigt werden, dass die Lösung des Ausgleichsproblems mit der Lösung von $R\mathbf{x} = Q^T b$ übereinstimmt. Gegeben sei das folgende Ausgleichsproblem mit

$$A = \begin{pmatrix} 0 & 1 \\ -\sqrt{2} & 0 \\ \sqrt{2} & 1 \end{pmatrix} \quad und \quad b = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

- (a) Bestimmen Sie eine QR-Faktorisierung der Matrix A.
- (b) Finden Sie die Lösung des Ausgleichsproblems $\min_{\mathbf{x} \in \mathbb{R}^2} \|A\mathbf{x} b\|$ mit Hilfe der QR-Faktorisierung.

Votierungswoche: 11.01. - 15.01.2021

Otto-von-Guericke Universität Magdeburg Dr. Michael Höding

Aufgabe 9.1 Gegeben sei die Gleichung $f(x) = 3x^2 - e^x = 0$.

- (a) Bestimmen Sie Intervalle, in denen die 3 Lösungen der Gleichung liegen.
- (b) Ermitteln Sie mit dem Newton-Verfahrens Näherungslösungen dieser 3 Lösungen mit einer Genauigkeit von 3 Stellen nach dem Komma.

Aufgabe 9.2 Gegeben sei die Gleichung $f(x) = 3x^2 - e^x = 0$ aus Aufgabe 10.1.

- (a) Bestimmen Sie eine geeignete Iterationsfunktion $\Phi_1(x_n)$ zur Ermittlung der kleinsten Lösung und ermitteln Sie eine Näherunglösung mithilfe der Iteration $x_{n+1} = \Phi_1(x_n)$ und einer Genauigkeit von 3 Stellen nach dem Komma.
- (b) Bestimmen Sie eine geeignete Iterationsfunktion $\Phi_2(x_n)$ zur Ermittlung der grösten Lösung und ermitteln Sie eine Näherunglösung mithilfe der Iteration $x_{n+1} = \Phi_2(x_n)$ und einer Genauigkeit von 3 Stellen nach dem Komma.
- (c) Vergleichen Sie Ihre Ergebnisse mit den Ergebnissen aus Aufgabe 10.1 (b).

Aufgabe 9.3 Gegeben sei die Funktion $f: \mathbb{R}_{>0} \to \mathbb{R}$ mit $f(x) = \frac{1}{2}x - \sin x$.

- (a) Bestimmen Sie ein Intervall [a,b] in dem die Nullstelle der Funktion f(x) liegt.
- (b) Bestimmen Sie einen Näherungswert für die Nullstelle mithilfe des Newton-Verfahrens und führen Sie zwei Iterationsschritte durch.
- (c) Bestimmen Sie eine Näherung für die Nullstelle mithilfe des Sekanten-Verfahrens (Regula Falsi) und führen Sie wiederum zwei Iterationsschritte durch.
- (d) Vergleichen Sie die unter (a) und (b) erhaltenen Werte hinsichtlich ihrer Genauigkeit.

Aufgabe~9.4~ Gegeben sei das lineare Gleichungssystem $A\mathbf{x} = \mathbf{b}~$ mit

$$A = \begin{pmatrix} 10 & -4 & -2 \\ -4 & 10 & -4 \\ -6 & -2 & 12 \end{pmatrix} \ und \ \mathbf{b} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}.$$

- (a) Prüfen Sie die Diagonaldominanz der Matrix A.
- (b) Führen Sie drei Iterationsschritte des Jacobi-Verfahrens mit dem Startvektor $x = (0,0,0)^T$ durch.

Aufgabe 9.5 Gegeben sei das lineare Gleichungssystem $A\mathbf{x} = \mathbf{b}$ aus Aufgabe 10.4. mit

$$A = \begin{pmatrix} 10 & -4 & -2 \\ -4 & 10 & -4 \\ -6 & -2 & 12 \end{pmatrix} \ und \ \mathbf{b} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}.$$

- (a) Führen Sie drei Iterationsschritte des Gauß-Seidel-Verfahrens mit dem Startvektor $x = (0,0,0)^T$ durch.
- (b) Vergleichen Sie das Ergebnis aus (a) mit dem Ergebnis aus Aufgabe 10.4(b).

Votierungswoche: 04.01.- 08.01.2020

Otto-von-Guericke Universität Magdeburg Dr. Michael Höding

Aufgabe 8.1 Gegeben sei die Funktion $f : \mathbb{R} \to \mathbb{R}$ mit $f(x) = x - e^{-x}$. Der folgenden Tabelle sind gerundete Werte von f an den Stellen x_i zu entnehmen:

i	0	1	2	3
x_i	0,3	0, 4	0, 5	0,6
$f(x_i)$	-0,4418	-0,270	-0,107	0,051

- (a) Bestimmen Sie mithilfe der Inversen Interpolation eine Näherung für die inverse Funktion f^{-1} .
- (b) Bestimmen Sie näherungsweise die Nullstelle x_N mit $f(x_N) = 0$ mithilfe des unter (a) berechneten Inversen Interpolationspolynom.

Aufgabe 8.2 Berechnen Sie die Koeffizienten der Newton-Cotes-Formeln für n = 3 ($\frac{3}{8}$ -Regel) und n = 4 (Milne-Regel).

Aufgabe 8.3 Bestimmen Sie je eine Näherung für $\ln 4 = \int_{1}^{4} \frac{dx}{x}$ für eine äquidistante Unterteilung des Intervalls [1, 4] nach den folgenden Regeln

- (a) der Rechteckregel,
- (b) der Trapezregel,
- (c) der Simsonregel

und vergleichen Sie diese mit dem Rechnerwert für ln 4.

Aufgabe 8.4 Berechnen Sie eine Näherung für $\int_{0}^{1} e^{-\frac{1}{2}x^{2}} dx$ nach der $\frac{3}{8}$ -Regel (Siehe Aufgabe 9.2!). Schätzen Sie den Fehler ab.

Aufgabe 8.5 Leiten Sie unter Anwendung der Simpson-Regel auf die Teilintervalle einer geeigneten Zerlegung des Intervalls [a,b] in n Teilintervalle folgende Formel zur näherungsweisen Berechnung bestimmter Integrale her (zusammengesetzte Simpson-Regel): $\int\limits_a^b f(x)dx \approx S(h)$ mit $h=\frac{b-a}{2n}$ und $S(h)=\frac{h}{3}[f(a)+2(f(a+2h)+\ldots+f(b-2h))+4(f(a+h)+\ldots+f(b-h))+f(b)].$

Votierungswoche: 21.12. - 30.12.2020

Mathematik III für Informatiker WS 2020/21

Übung 7

Otto-von-Guericke Universität Magdeburg Dr. Michael Höding

Aufgabe 7.1 Die Funktion

$$f(x) = \frac{6}{x - 2}$$

ist für $2 < x < \infty$ durch ein Interpolationspolynom 2. Grades bei Verwendung der Stützstellen (3, f(3)), (4, f(4)) und (5, f(5)) zu approximieren.

- (a) Bestimmen Sie das Interpolationspolynom $P_2(x)$ Methode von Lagrange und Newton.
- (b) Benutzen Sie $P_2(x)$, um f(x) an der Stelle x = 3, 5 näherungsweise zu berechnen und geben Sie den absoluten und relativen Fehler an.

Aufgabe 7.2 Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = \frac{1}{2-x}$.

- (a) Bestimmen Sie ein Interpolationspolynom bezüglich der Stützstellen (-1, f(-1)), (0, f(0)) und (1, f(1)).
- (b) Geben Sie eine Näherung für $\int_{-1}^{1} f(x) dx$ mithilfe des Interpolationspolynoms an und vergleichen Sie mit dem wirklichen Wert des Integrals, indem Sie $\int_{-1}^{1} f(x) dx$ bestimmen.

Aufgabe 7.3 Sei die Funktion $f: D \to \mathbb{R}$ mit $f(x) = \tan(\pi x)$ an den Stützstellen $(0, f(0)), (\frac{1}{6}, f(\frac{1}{6}))$ und $(\frac{1}{4}, f(\frac{1}{4}))$ gegeben.

- (a) Bestimmen Sie das Interpolationspolynom $p_2(x) = a_0 + a_1x + a_2x^2$.
- (b) Benutzen Sie zur Interpolation $Q(x) = b_0 + b_1 x + b_2 \frac{1}{x \frac{1}{2}}$, d. h. berechnen Sie die Konstanten b_0, b_1 und b_2 von Q(x).
- (c) Welche Näherungen ergeben sich aus (a) und (b) für $\tan(20^\circ)$?

Aufgabe 7.4 Gegeben sei die Funktion $f: \mathbb{R}_{>10} \to \mathbb{R}$ mit $f(x) = \ln(x+10)$.

(a) Ermitteln Sie einen Näherungswert für $\ln 11, 1$ mithilfe der Polynominterpolation an den Stützstellen (0, f(0)), (1, f(1)) und (2, f(2)).

- (b) Schätzen Sie den Interpolationsfehler für ln 11, 1 ab.
- (c) Wie hängt das Vorzeichen des Interpolationsfehlers von x ab?

Aufgabe 7.5 Gegeben sei die Funktion $f: D \to [-1, 1]$ mit $f(x) = \sin \frac{\pi}{4}x$.

- (a) Bestimmen Sie eine Näherung für das bestimmte Integral $I = \int_{0}^{\frac{\pi}{2}} \sin \frac{\pi}{4} x \, dx$, indem Sie das Interpolationspolynom $P_2(x)$ an den Stützstellen (0, f(0)), (1, f(1)) und (2, f(2)) der Funktion f(x) benutzen.
- (b) Bestimmen Sie eine weitere Näherung für das Integral I, indem Sie als Näherung für f(x) das Taylorpolynom an der Stelle $x^* = 1$ benutzen.
- (c) Vergleichen Sie die unter (a) und (b) erhaltenen Näherungswerte mit einem Wert aus dem Taschenrechner.

Votierungswoche: 14.12. - 19.12.2020