1. Définition

Un système de numération se définit par deux éléments:

- a. La base du système,
- b. Les symboles du système.

En informatique, les systèmes les plus utilisés sont les suivants:

Système	Base	Symboles	Nbre de symbole
Décimal	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9.	10
Binaire	2	0, 1.	2
Octal	8	0, 1, 2, 3, 4, 5, 6, 7.	8
Hexadécimal	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.	16

2. Notation

Soit N un nombre quelconque exprimé dans une base b.

N sera noté comme suit:

$$N = (a_{n-1} a_{n-2} a_{n-3} ... a_0)_b$$

Tel que:

b: base du système de numération.

 a_i : symbole du système, i = 0, ..., n-1. avec $a_i < b$

Présenté par : Mme BESSEDIK. I

Module d'Informatique Chapitre 2 :

Les systèmes de numération

Exemples:

• $N_1 = (19017)_{10}$

En Décimal, avec: a_4 = 1, a_3 = 9, a_2 = 0, a_1 = 1, a_0 = 7. On remarque que les a_i sont tous inférieurs à la base 10. $(a_i < 10)$.

• $N_2 = (1011101)_2$

En Binaire, avec: $a_6=1$, $a_5=0$, $a_4=1$, $a_3=1$, $a_2=1$, $a_1=0$, $a_0=1$.

• $N_3 = (1370)_8$

En Octal, avec: $a_3 = 1$, $a_2 = 3$, $a_1 = 7$, $a_0 = 0$.

• $N_4 = (A9120)_{16}$

En Hexadécimal, avec: $a_4 = A$, $a_3 = 9$, $a_2 = 1$, $a_1 = 2$, $a_0 = 0$.

• $N_5 = (18095)_8$

La notation $N_5 = (18095)_8$ n'est pas correcte, car tous les chiffres doivent être inférieurs à 8 ce qui n'est pas le cas pour le $2^{i\`{e}me}$ chiffre et aussi pour le $4^{i\`{e}me}$ ($a_1 = 9 > 8$) et ($a_3 = 8$).

3. Le système binaire

C'est la base utilisée en informatique pour la représentation des informations au niveau machine. Ce système possède deux chiffres: 0 et 1. Ces deux états sont les seuls que la machine peut assimiler.

4. Le système décimal

C'est le système usuel dans la vie quotidienne. La base du système décimal est la base 10 et ses symboles sont les dix chiffres: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Cela veut dire qu'en décimal, les dix chiffres précédents sont suffisants pour exprimer n'importe quel nombre.

Seulement, la machine ne pouvant assimiler que les deux valeurs 0 et 1, il serait important de savoir comment exprimer les nombres décimaux en binaires et comment effectuer l'opération inverse et on parle de conversion de base.

5. Le système octal

La base du système octal est 8.

En octal, les nombres sont représentés sous forme de combinaisons de chiffres parmi les suivants: 0, 1, 2, 3, 4, 5, 6, et 7.

Présenté par : Mme BESSEDIK. I Page 2

6. Le système hexadécimal

Le système **hexadécimal** (**base 16**) utilise 16 chiffres pour la représentation des nombres, à savoir:

- les chiffres du système décimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
- les six (6) premières lettres de l'alphabet: A, B, C, D, E, F.

Le tableau suivant donne l'équivalent décimal d'un chiffre hexadécimal:

Hexadécimal	Décimal
О	О
1	1
2,	2
9	9
A	10
В	11
С	12
D	13
E	14
F	15

7. Passage de la base 2, 8, 16 à la base 10

L'exemple suivant illustre la méthode de **conversion**, en **décimal**, d'un nombre exprimé dans une **base b quelconque**.

Exemple:

Soit
$$N = (a_{n-1} a_{n-2} a_{n-3} ... a_0)_b$$

Pour avoir la représentation en décimal du nombre **N** exprimé dans une base **b quelconque**, il suffit d'effectuer le calcul suivant:

$$(N)_b = a_{n-1} * b^{n-1} + ... + a_1 * b^1 + a_0 * b^0$$

La formule générale s'écrit comme suit:

$$\begin{array}{c}
 \mathbf{n-1} \\
 \mathbf{(N)_{10}} = \sum_{i=0}^{n} \mathbf{ai} * \mathbf{b}^{i} \\
 \mathbf{i=0}
 \end{array}$$

i étant le poids du chiffre ai.

Exemple

- On considère le nombre: $N = (1023)_4$
 - on commence par définir le poids de chaque chiffre et cela en les numérotant de droite à gauche et on commençant la numérotation à partir de 0.

 \square Puis, on multiplie chaque chiffre a_p de poids p par la base b élevée à la puissance p. $(a_p * b^p)$

$$N = 1*43 + 0*42 + 2*41 + 3*40$$
$$= 64 + 0 + 8 + 3$$
$$= 75.$$

Ainsi, nous avons: $N = (1023)_4 = (75)_{10}$

- La conversion en décimal d'un nombre exprimé en binaire s'effectue suivant le même procédé:
- o Soit à convertir en décimal, le nombre N exprimé en binaire comme suit:

$$N = (10111001)_2$$

• Les poids des chiffres:

• ainsi, le nombre N en décimal est calculé comme suit:

$$N = 1*27 + 0*26 + 1*25 + 1*24 + 1*23 + 0*22 + 0*21 + 1*20$$

$$= 128 + 0 + 32 + 16 + 8 + 0 + 0 + 1$$

$$= 185.$$

• D'où $N = (185)_{10}$

Soit à convertir en décimal le Nombre $X = (175)_8$.

$$(X)_{10} = 1*8^2 + 7*8^1 + 5*8^0$$

= 64 + 56 +5
= 125.

• Ainsi, $(175)_8 = (125)_{10}$

Soit à convertir en décimal le Nombre $X = (A24)_H$.

$$(X)_{10} = A*16^2 + 2*16^1 + 4*16^0$$

Le tableau précédent (cours) nous donne l'équivalent de la lettre A en décimal:

$$= 10*16^2 + 2*16^1 + 4*16^0$$
$$= 2596.$$

• Ainsi, $(A24)_H = (2596)_{10}$

8. Passage de la base 10 à la base 2, 8, 16

• Pour exprimer en binaire, un nombre exprimé dans une base b, on dispose d'une méthode par divisions successives.

Conversion par division successives

- Soit X un nombre exprimé dans la base 10. Pour l'exprimer dans une autre base b, il suffit d'effectuer des divisions successives sur b jusqu'à l'obtention d'un résultat nul.
- les étapes à suivre sont les suivantes:

soit **Xi**: le résultat de la division.

ri: le reste de la division n°i.

1) Effectuer la division $X / b = X_0$ et le reste r_0

si
$$X0 = 0$$
 alors aller à 3)
sinon aller à 2)

2) Effectuer la division $Xi / b = X_{i+1}$ et le reste r_{i+1}

```
si Xi+1 = 0 alors aller à 3)
sinon aller à 2)
```

3) Arrêter la division. Le résultat est $(X)_{10} = (r_m r_{m-1} \dots r_1 r_0)_2$

Exemple:

Soit le nombre $Y = (115)_{10}$, convertir ce nombre en binaire:

• Le passage de la base 10 à la base 8 s'effectue de la même manière que le passage de la base 10 à la base 2.

Exemple

Soit à convertir en Octal le nombre $X = (125)_{10}$.

• Pour cela, on va effectuer les divisions successives de X sur 8. Les restes de ces divisions vont constituer les chiffres de X exprimé en Octal.

Exemple

Exemple

- L'arithmétique de l'ordinateur est fondée sur le système binaire, c'est pourquoi il faut connaître comment passer de l'octal (ou de hexadécimal) au binaire et inversement.
- Pour convertir un nombre octal en binaire, il faut passer par une base intermédiaire qui est la base 10.

Exemple

- 1) Soit le nombre $Y = (175)_8 = (?)_2$.
 - a. Passage de l'octal à la base 10

$$Y = (175)_8 = 1*8^2 + 7*8^1 + 5*8^0 = (125)_{10}$$

b. Passage du décimal au binaire

$$Y = (125)_{10} = (11111101)_2$$

Conclusion

$$Y = (175)_8 = (1111101)_2$$

Exemple

- 1) Soit le nombre $Y = (A24)_H = (?)_2$.
 - a. Passage de l'hexadécimal à la base 10

$$Y = (A24)_H = (2596)_{10}$$

b. Passage du décimal au binaire

$$Y = (2596)_{10} = (101000100100)_2$$

Conclusion

$$Y = (A24)_H = (101000100100)_2$$

Remarques

- 1) L'orsqu'une base est une puissance d'une autre base, le passage de l'une à l'autre devient très facile et ne nécessite pas une base intermédiaire.
- 2) Ainsi, le passage de la base 8 (2³) ou 16 (2⁴) à la base 2 peut s'effectuer sans passer par la base 10.

9. Passage de l'octal au binaire

- ☐ La base 8 est une puissance de la base 2. Pour convertir un nombre octal en binaire, on possède comme suit:
 - \checkmark on a $8 = 2^3$ cela veut dire que pour représenter un seul chiffre octal en binaire, il faut utiliser 3bits.
 - ✓ ainsi, la représentation des chiffres de la base 8 en binaire est la suivante:

Chiffre octal	Chiffre binaire équivalent				
0	000				
1	001				
2	010				
3	011				
4	100				
5	101				
6	110				
7	111				

Présenté par : Mme BESSEDIK. I Page 8

Module d'Informatique

<u>Chapitre 2 :</u>

Les systèmes de numération

Application 1

- □ Soit le nombre $Y = (175)_8 = (?)_2$.
 - ✓ Pour trouver l'équivalent binaire de ce nombre octal, il suffit de trouver l'équivalent binaire de chaque chiffre octal.

Octal		1			7		5			
Binaire	O	0	1	1	1	1	1	O	1	

$$Y = (175)_8 = (1111101)_2$$

Application 2

- \square Soit le nombre binaire $Y = (1111101)_2 = (?)_8$.
 - ✓ Pour trouver l'équivalent octal de ce nombre binaire, il suffit de regrouper les bits du nombre binaire en groupes de 3 bits en partant de la droite. Si le dernier groupe ne contient pas trois bits, ajoutez des zéros. Ainsi, trouver l'équivalent octal de chaque groupe de 3 bits.

Binaire	О	O	1	1	1	1	1	O	1
Octal		1			7			5	

 $Y = (1111101)_2 = (175)_8$

10. Passage de l'hexadécimal au binaire

- ☐ La base 16 est une puissance de la base 2. Pour convertir un nombre hexadécimal en binaire, on possède comme suit:
 - \checkmark on a $16 = 2^4$ cela veut dire que pour représenter un seul chiffre hexadécimal en binaire, il faut utiliser 4bits.
 - ✓ ainsi, la représentation des chiffres de la base 16 en binaire est la suivante:

Chiffre hexadécimal	Chiffre binaire équivalent					
o	0000					
1	0001					
2	0010					
3	0011					
4	0100					
5	0101					
6	0110					
7	0111					
8	1000					
9	1001					
A	1010					
В	1011					
С	1100					
D	1101					
E	1110					
F	1111					

Application 1

- \Box Soit le nombre $Y = (A24)_H = (?)_2$.
 - ✓ Pour trouver l'équivalent binaire de ce nombre hexadécimal, il suffit de trouver l'équivalent binaire de chaque chiffre hexadécimal.

Hexa		A				2				4			
Binaire	1	O	1	O	O	O	1	O	O	1	O	О	

 $Y = (A24)_H = (101000100100)_2$

Application 2

- □ Soit le nombre binaire $Y = (101000100100)_2 = (?)_H$.
 - ✓ Pour trouver l'équivalent hexa de ce nombre binaire, il suffit de regrouper les bits du nombre binaire en groupes de 4 bits en partant de la droite. Si le dernier groupe ne contient pas trois bits, ajoutez des zéros. Ainsi, trouver l'équivalent hexa de chaque groupe de 4 bits.

Binaire	1	o	1	O	O	O	1	o	O	1	O	O
Неха	A					2	2			_	1	

 $Y = (101000100100)_2 = (A24)_H$