Slovenská technická univerzita v Bratislave Fakulta informatiky a informačných technológií

Metodika manažmentu incidentov v spoločnosti Samsgun s.r.o.

Verzia 11/12/2017

Predmet: Manažment v tvorbe softvéru

Študent: Bc. Peter Berta

Cvičiaci: Ing. Jakub Šimko, PhD.

Semester: zimný Rok: 2017/18

1. Dedikácia

1.1. Úvod

Metodika popisuje postupy, ktoré je potrebné dodržiavať v prípade výskytu incidentu pri prevádzke a v projektoch spoločnosti Samsgun s.r.o. Touto metodikou sa musia riadiť všetci zamestnanci firmy, ktorí prídu do styku s incidentom v akomkoľvek rozsahu.

Pri aplikácií postupov tejto metodiky je potrebné konať rýchlo a promptne. Zároveň je ale tiež potrebné dbať na informačnú bezpečnosť zákazníka aj firmy.

Metodika sa primárne zameriava na vzniknuté problémy v prevádzke, ktoré môžu priamo ohroziť používateľa systému.

Súvisiace dokumenty:

- Metodika manažmentu dokumentácie v spoločnosti Samsgun s.r.o.
- Metodika komunikácie a distribúcie informácií v spoločnosti Samsgun s.r.o.
- Metodika manažmentu bezpečnostných incidentov v spoločnosti Samsgun s.r.o.

1.2. Charakteristika spoločnosti

Spoločnosť Samsgun s.r.o. je softvérová spoločnosť, ktorá sa v jednom čase zaoberá viacerými projektami. Projekty majú rôzny charakter, a preto na nich pracujú rôzne tímy. Vývoj softvéru je v rámci tímov vykonávaný agilne. Okrem vývojárskych tímov sú v spoločnosti vyhradené aj oddelenia, ktoré sa zaoberajú konkrétne svojou doménou. Medzi tieto oddelenia patria finančné oddelenie, marketingové oddelenie, účtovnícke oddelenie, bezpečnostné oddelenie a ďalšie menšie oddelenia. Hlavou firmy je generálny riaditeľ (CEO). Jeho rozhodovaniu pri vedení firmy napomáha predstavenstvo, ktoré sa skladá zo zástupcov už spomenutých oddelení.

Primárnym projektom spoločnosti Samsgun s.r.o. je *Crier*. *Crier* je komunikačný nástroj, ktorý je rozšírený nie len v profesionálnom prostredí, ale aj v osobných kruhoch a v rodinách.

2. Roly

2.1. Servisný technik

Procesy: 3.1.1., 3.1.8.

Zodpovednosti: Informovanie o existencii problému, Zber dát z automatizovaných monitorovacích systémov

2.2. Systém

Procesy: 3.1.1., 3.1.8.

Zodpovednosti: Monitorovanie prevádzky, Informovanie o anomáliách

2.3. Analytický tím

Procesy: 3.1.2., 3.1.8., 3.2.1., 3.2.2., 3.2.3., 3.2.6.

Zodpovednosti: Spresnenie zistenej chyby, Návrh riešenia

2.4. Technický projektový manažér

Procesy: 3.1.3., 3.1.6., 3.1.8.

Zodpovednosti: Zabezpečovanie prevádzky, Nasadzovanie novej – funkčnej verzie

2.5. Vývojárske tímy

Procesy: 3.1.4., 3.1.8., 3.2.1., 3.2.2., 3.2.3., 3.2.4., 3.2.6.

Zodpovednosti: Vyriešenie identifikovaného problému a prispôsobenie riešenia na prevádzku, Implementácia zvoleného riešenia, Návrh riešenia

2.6. Vedúci jednotlivých oddelení a tímov

Procesy: 3.1.4., 3.1.8.

Zodpovednosti: Vedenie tímov, Rozdelenie úloh do tímov

2.7. Testovací tím

Procesy: 3.1.5., 3.1.8., 3.2.5., 3.2.6.

Zodpovednosti: Otestovanie potenciálne funkčnej verzie systému, Identifikácia dodatočných

chýb

2.8. Tím sociálnych médií

Procesy: 3.1.7., 3.1.8.

Zodpovednosti: Informovanie verejnosti o obnovení funkcionality

2.9. Manažér plánovania

Procesy: 3.2.2., 3.2.3., 3.2.6.

Zodpovednosti: Návrh riešenia

3. Procesy

Jednotlivé procesy manažmentu incidentov sú rozdelené do dvoch skupín. Prvá skupina procesov je vysoko-úrovňová a je nezávislá od projektu. Táto postupnosť procesov by mala byť dodržaná za každých okolností. Druhá skupina zachytáva postupnosť procesov pri riešení konkrétneho problému na projekte.

3.1. Vysoko-úrovňové procesy

Obr. č. 1: Vysoko-úrovňový procesný diagram

3.1.1. Zistenie problému

Vstup: Informácia o existencii problému

Výstup: Základné informácie o probléme

Účastníci: Servisný technik, Systém

Existuje veľa spôsobov, akými sa môže problém v prevádzke prejaviť. V prípade, že servisný technik obdrží informáciu o existencii problému, ktorý nie je schopný sám odstrániť a taktiež môže ohroziť prevádzku, musí tento podnet posunúť ďalej analytickému tímu. Servisný technik sa o probléme môže dozvedieť prostredníctvom telefonátu od používateľa, ktorý chybu identifikoval. V prípade, že je na systéme nasadený pozorovací softvér, ktorý monitoruje anomálie v prevádzke a teda potenciálne chyby, servisný technik obdrží elektronický mail so základným popisom pozorovania.

3.1.2. Spresnenie zasiahnutej oblasti

Vstup: Zistené informácie o probléme

Výstup: Zasiahnuté oblasti, Informácia o probléme

Účastníci: Analytický tím

Analytický tím analyzuje obdržané informácie o probléme a pokúsi sa identifikovať všetky oblasti systému, ktoré by mohli byť týmto problémom zasiahnuté. Informácia o zasiahnutých oblastiach je posunutá ďalej Technický projektový manažér. Taktiež je informácia o probléme posunutá do procesu "Riešenie problému", kde už konkrétne prebieha riešenie problému.

3.1.3. Zabezpečenie prevádzky

Vstup: Zasiahnuté oblasti

Výstup: Zabezpečená prevádzka

Účastníci: Technický projektový manažér

Technický projektový manažér zabezpečí všetky potenciálne zasiahnuté oblasti a odstaví k nim prístup zo strany používateľov. Takýmto konaním sa pokúša znížiť bezpečnostné riziko v prípade napadnutia. Po úspešnom vykonaní tohto procesu budú ľudia pri pokuse o využitie služby vidieť iba oznam o jej nedostupnosti.

3.1.4. Riešenie problému

Vstup: Informácia o probléme

Výstup: Problém vyriešený

Účastníci: Vývojárske tímy, Vedúci jednotlivých oddelení a tímov

Tento proces slúži ako nad-proces a zastrešuje celý postup pri riešení problému. Postupnosť procesov je ďalej popísaná v kapitole 3.2. Nízko-úrovňové procesy. Výstupom je softvér, ktorý má identifikovanú chybu úplne odstránenú. Výsledná verzia softvéru ďalej pokračuje na testovanie.

3.1.5. Integračné testovanie

Vstup: Problém vyriešený

Výstup: Neúspešný test, Vyriešený problém

Účastníci: Testovací tím

Testovací tím obdrží softvér s už vyriešenou chybou či problémom. Úlohou testovacieho tímu je zistiť, či je možné túto verziu posunúť do prevádzky, alebo je potrebné ešte vykonať nejaké úpravy. V prípade, že chyba nie je dostatočne odstránená, alebo pri riešení vznikol nový problém, je potrebné túto skutočnosť oznámiť späť vývojárskemu tímu. Ak je ale chyba odstránená, môže sa postúpiť k obnovení prevádzky.

3.1.6. Obnovenie prevádzky

Vstup: Vyriešený problém

Výstup: Obnovená funkcionalita

Účastníci: Technický projektový manažér

Technický projektový manažér v tomto procese nasadí nový verziu systému do prevádzky. Informácia o obnovení funkcionality je ďalej posunutá tímu sociálnych médií.

3.1.7. Notifikácia o obnovení prevádzky

Vstup: Obnovená funkcionalita

Výstup: Notifikácia o obnovení funkcionality

Účastníci: Tím sociálnych médií

V momente, keď tím sociálnych médií obdrží informáciu o opravení chybnej funkcionality, prebehne diskusia, či je potrebné o tom upovedomiť aj verejnosť. Ak áno, tak na sociálne médiá tím sociálnych médií uverejní informáciu o obnovení nedostupnej alebo chybnej funkcionality.

3.1.8. Dokumentácia postupu

Vstup: Podniknuté kroky

Výstup: Štruktúrovaná dokumentácia

Účastníci: Servisný technik, Systém, Analytický tím, Technický projektový manažér, Vývojárske tímy, Vedúci jednotlivých oddelení a tímov, Testovací tím, Tím sociálnych médií

V každom procese je potrebné dokumentovať postupnosť vykonávaných krokov. Podrobnosti o tvorbe dokumentácie sú popísané v Metodike manažmentu dokumentácie v spoločnosti Samsgun s.r.o.

3.2. Nízko-úrovňové procesy

Nasledujúce procesy sú pod-procesmi procesu 3.1.4 Riešenie problému.

Obr. č. 2: Nízko-úrovňový procesný diagram

3.2.1. Identifikácia problému

Vstup: Základné informácie o probléme, Identifikovaný problém

Výstup: Špecifikovaný problém

Účastníci: Analytický tím, Vývojárske tímy

Na začiatku procesu riešenia problému je potrebné identifikovať zdroj komplikácií. V tomto bode už vieme nejaké základné informácie, je však potrebné presne určiť, chybné komponenty. V prípade, že už raz prešiel cyklus riešenia problému, ale testovací tím rozhodol o prehodnotení riešenia, je potrebné začať cyklus riešenia problému odznova.

3.2.2. Navrhnutie možných riešení

Vstup: Špecifikovaný problém

Výstup: Viacero dostupných riešení, Jedno dostupné riešenie

Účastníci: Analytický tím, Manažér plánovania, Vývojárske tímy

Proces navrhovania riešení je špecifický pre každú situáciu. Podľa potreby sa taktiež nemusia tohto procesu zúčastňovať všetci definovaní účastníci.

3.2.3. Vol'ba riešenia

Vstup: Viacero dostupných riešení

Výstup: Zvolené riešenie

Účastníci: Analytický tím, Manažér plánovania, Vývojárske tímy

Voľba riešenia sa začína analýzou vhodnosti aplikácie jednotlivých riešení. Po dostatočnej analýze je možné pristúpiť k rozhodovaniu. Tohto procesu sa nemusia zúčastniť všetci definovaní účastníci.

3.2.4. Implementácia riešenia

Vstup: Jedno dostupné riešenie, Zvolené riešenie

Výstup: Opravená chyba

Účastníci: Vývojárske tímy

Implementácia je špecifická podľa charakteru problému. Výstupom procesu je potenciálne opravený systém, vhodný na testovanie.

3.2.5. Testovanie riešenia

Vstup: Opravená chyba

Výstup: Potvrdená opravená chyba, Identifikovaný problém

Účastníci: Testovací tím

Proces testovania sa sústreďuje na overenie riešenia primárne identifikovanej chyby. V prípade neúspešného testu alebo identifikácie novej chyby je potrebné cyklus riešenia problému zopakovať. Ak sú však testy akceptované, je možné ďalej postupovať podľa diagramu na obr. č. 1.

3.2.6. Dokumentácia riešenia

Vstup: Postupnosť krokov

Výstup: Štruktúrovaná dokumentácia

Účastníci: Testovací tím, Vývojárske tímy, Analytický tím, Manažér plánovania

V každom procese je potrebné dokumentovať postupnosť vykonávaných krokov. Podrobnosti o tvorbe dokumentácie sú popísané v Metodike manažmentu dokumentácie v spoločnosti Samsgun s.r.o.