

Case study 1: Model selection for clustering

Ke Yuan

Ke.Yuan@glasgow.ac.uk

(Slides from Lucas.Farndale@glasgow.ac.uk)

Overview

- What is Model selection?
- Challenges in model selection for clustering
- Clustering algorithms
- Colorectal Tissue Biopsy and Clustering
- Your task and dataset details
- Expected results
- Summary

Model selection

- Choosing the best model candidate
 - family of algorithms (e.g. Logistic regression, KNN)
 - different hyperparameters (e.g. regularisation strength, number of neighbours)
- What is 'the best model'?
 - Define objective (e.g. accuracy, minimise false positives, etc)
 - Complexity
 - Computability
 - Ease of Implementation

- Group similar objects together
- Constraints on clusters
- Understand the structure of a dataset

The best clustering model will best describe the structure of the data.

Examples of clustering algorithms

Cluster numbers can be explicitly specified:

- 1. K-means
- 2. Gaussian Mixture Model (GMM)

Or inferred:

- 1. Hierarchical clustering
- 2. Louvain Clustering

K-means

- 1. Choose *k* random points
- 2. Partition objects into k subset
- 3. Compute the new *centroids* (mean points) of the clusters
- 4. Repeat steps 2+3 until convergence

K-means

- k-means only considers mean points
- GMM considers mean and (co-)variance
- Fit M Gaussian components by maximising log-likelihood

$$\ell(\theta|\mathbf{x}) = \sum_{i=1}^{N} \log \left(\sum_{m=1}^{M} \alpha_m \phi(x_i | \mu_m, \Sigma_m) \right)$$

x – datapoint

 θ - gaussian parameters $\{(\mu_m, \Sigma_m): 0 \le m \le M\}$

α - mixing coefficient

Φ – probability density function

1st Iteration

2nd Iteration

3rd Iteration

4th Iteration

5th Iteration

6th Iteration...

...20th Iteration

Bio Assay Data

on University

Hierarchical Clustering (HC)

- Consider each data point as separate cluster.
- Consecutively merge clusters until all clusters are connected or specified number of clusters are obtained.

Dendrograms illustrate distance between clusters.

No assumption on number of clusters

Hierarchical Clustering (HC)

DOI: 10.1126/science.abc8169

Graph Theory

Making Sense of Arbitrary Shapes

Graph-based clustering

Modularity ≈ -1 (almost complete network)

Modularity ≈ 0 (random network)

Modularity ≈ 1 (modular network)

Suboptimal Partition M=0.22

Optimal Partition
M=0.41

Louvain Clustering

- Each data point represented as a node
- Similarity between two data points represented by an edge
- Assign nodes to different clusters by Modularity
- Clusters repeatedly combined until no improvement in modularity

Resolution parameter in modularity function determines number of clusters.

What make model selection for clustering challenging?

- No labels
- Outcomes are subjective
- Hard to define model performance (cluster quality)
- Sensitive to different clustering algorithms and different feature spaces

How do we evaluate then?

V-measure

Given ground truth labels: Use them!

- homogeneity: each cluster contains only members of a single class
- completeness: members of a given class are assigned to the same cluster

V-measure is the average (harmonic mean) of the two metrics (a) Homogeneity = 1 Completeness < 1

(c) Completeness = 1 Homogeneity < 1

(b) Homogeneity = 0 Completeness = 1

(d) Completeness = 0 Homogeneity = 1

Silhouette Score

If the ground truth labels are not known:

Evaluate on structure

- -1: incorrect clustering
- ≈0: overlapping clusters.
- +1: highly dense clustering

Higher score means clusters are dense and well separated

$$s=rac{b-a}{max(a,b)}$$

- Mean distance between a sample and all other points in the same class
- b. The mean distance between a sample and all other points in the next nearest cluster

Introduction to digital pathology

- Cancer diagnosed by biopsy
- Removed tissue analysed under digital microscope
- 20Gb on average ~100000x100000 pixels

Image Processing

- Break whole slide images (WSIs) into small patches
- (Dimensionality reduction/feature extraction)
- Cluster tissue patches

Clustering gives statistical summary of visual features

Group similar patches into the same clusters

Your task: model selection for tissue patch clustering

Dataset:

- 5,000 colorectal cancer tissue patches.
- 9 tissue types:
 - Adipose (ADI)
 - background (BACK)
 - debris (DEB)
 - lymphocytes (LYM)
 - mucus (MUC)
 - smooth muscle (MUS)
 - normal colon mucosa (NORM)
 - cancer-associated stroma (STR)
 - colorectal adenocarcinoma epithelium (TUM)

Your task

- Select appropriate clustering algorithms (Kmeans, GMM, HC, and Louvain, or HDBScan, Leiden or any other algorithm)
- Apply to a cancer dataset
- Assess model performance (Silhouette score/V measure)

Feature extraction and preprocessing has been done for you

PathologyGAN:

- state-of-the-art model for tissue images
- Trained on unlabelled data
- ResNet50/InceptionV3/VGG16:
 - Popular CNN classifiers
 - Trained on ImageNet dataset and achieve 74.9%, 77.9%, 71.3% accuracy

Dimensionality reduction methods reduce each representation size to 100

- PCA: the first 100 PCs with highest variance are obtained
- UMAP: 100 umap components

Example of cluster performance report

Measure A				
Representation	Kmeans	GMM	DBScan	Louvain
PathologyGAN	?	?	?	?
ResNet50	?	?	?	?
InceptionV3	?	?	?	?
VGG16	?	?	?	?

Report summary

Objective: test clustering algorithms and evaluate performance on real data Include in your report:

1. Introduction

Clustering/background/data

2. Methodology:

Theory and intuition behind each algorithm and representation

3. Experimental framework:

Parameter searching and evaluation

4. Results

Report and discuss cluster qualities according to both qualitative and quantitative measures

5. Conclusion

Summary of Methods

K-means

- Fast, simple, guaranteed convergence, scales well with dataset size
- Manual number of clusters, sensitive to outliers, scales badly with dimensions

Hierarchical Clustering

- Simple, guaranteed convergence, scales well, no predetermined number of clusters, gives different resolutions of clustering
- Slow, limited meaningful clustering, can infer artificial relationships

Gaussian Mixture Model

- Handles outliers, more informative, guaranteed convergence
- Slow, same issues as k-means, computation time scales badly with dataset size

Louvain Community Detection

- Handles outliers, more informative, scales well with dataset size and dimension, no assumption on shape
- Computationally intensive for small datasets, pre-determined resolution

Summary

Model Selection

- What does best mean?
- Consider what outcomes are most important

Clustering

- Different models give very different results
- Use prior knowledge to select appropriate model
- Evaluate clusters based on structure or labels

Summary and extra hints!

- 1. The objective of this case study is to test different clustering algorithms on 4 different deep neural network-based representations extracted from colorectal tissue patches by reporting the cluster qualities according to both intrinsic and extrinsic measures
- 2. In your report, you are expected to present...
 - Introduction to tasks/backgrounds/data
 - Methodology:

Theory and Intuition behinds each algorithm and representation

Experimental framework:

Parameter searching and evaluation

- Result discussion
- Conclusion

