State Prices

Peiliang Guo

January 22, 2017

Exercise 1.

Proof. (i) Follows from $\mathbb{P}(\omega) > 0$ for all ω

(ii)

$$\tilde{\mathbb{E}}\frac{1}{Z} = \sum_{\omega \in \Omega} \frac{\mathbb{P}(\omega)}{\tilde{\mathbb{P}}(\omega)} \tilde{\mathbb{P}}(\omega) = \sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1$$

(iii)

$$\mathbb{E} Y = \sum_{\omega \in \Omega} Y(\omega) \mathbb{P}(\omega) = \sum_{\omega \in \Omega} Y(\omega) \frac{\mathbb{P}(\omega)}{\tilde{\mathbb{P}}(\omega)} \tilde{\mathbb{P}}(\omega) = \sum_{\omega \in \Omega} Y(\omega) \cdot \frac{1}{Z(\omega)} \tilde{\mathbb{P}}(\omega) = \tilde{\mathbb{E}} \left[\frac{1}{Z} \cdot Y \right]$$

Exercise 2.

Proof. (i)

$$\tilde{\mathbb{P}}(\Omega) = \sum_{\omega \in \Omega} \tilde{\mathbb{P}}(\omega) = \sum_{\omega \in \Omega} Z(\omega) \mathbb{P}(\omega) = \mathbb{E}[Z] = 1$$

(ii)

$$\tilde{\mathbb{E}}Y = \sum_{\omega \in \Omega} Y(\omega) \tilde{\mathbb{P}}(\omega) = \sum_{\omega \in \Omega} Y(\omega) Z(\omega) \mathbb{P}(\omega) = \mathbb{E}[YZ]$$

(iii) Since $\mathbb{P}(A) = 0$, then $\mathbb{P}(\omega) = 0$ for all $\omega \in A$.

$$\tilde{\mathbb{P}}(A) = \sum_{\omega \in A} \tilde{\mathbb{P}}(\omega) = \sum_{\omega \in A} Z(\omega) \mathbb{P}(\omega) = 0$$

(iv) Since $\mathbb{P}(Z>0)=1$, $\mathbb{P}(Z=0)=0$, i.e. for all $\omega\in\Omega$ such that $Z(\omega)=0$, $\mathbb{P}(\omega)=0$.

$$0 = \tilde{\mathbb{P}}(A) = \sum_{\omega \in A} Z(\omega) \mathbb{P}(\omega) = \sum_{\omega \in A, Z(\omega) = 0} Z(\omega) \mathbb{P}(\omega) + \sum_{\omega \in A, Z(\omega) > 0} Z(\omega) \mathbb{P}(\omega) = \sum_{\omega \in A, Z(\omega) > 0} Z(\omega) \mathbb{P}(\omega)$$

This forces for all $\omega \in A$ such that $Z(\omega) > 0$, $\mathbb{P}(\omega) = 0$. Therefore,

$$\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\omega) = \sum_{\omega \in A, Z(\omega) > 0} \mathbb{P}(\omega) + \sum_{\omega \in A, Z(\omega) = 0} \mathbb{P}(\omega) = 0$$

(v)
$$\mathbb{P}(A) = 1 \iff \mathbb{P}(A^c) = 0 \iff \tilde{\mathbb{P}}(A^c) = 0 \iff \tilde{\mathbb{P}}(A) = 1$$

(vi) Suppose we have $\mathbb{P}(H)=\frac{1}{2}$ and $\mathbb{P}(T)=\frac{1}{2}$, and if Z(H)=2 and Z(T)=0, then we have $\mathbb{P}(Z\geq 0)=1$ and $\tilde{\mathbb{P}}(H)=2\cdot\frac{1}{2}=1$ and $\tilde{\mathbb{P}}(T)=0\cdot\frac{1}{2}=0$ which is not equivalent to \mathbb{P} .

Exercise 3.

	Α	В	C	D		
1	0.66666667			32		
2	0.33333333			32		
3			16			
4			24			
5		8		8		
6		18		8		
7	4		4			
8	13.5		6			
9		2		2		
10		4.5		2		
11			1			
12			1.5			
13				0.5		
14				0.5		
15						
16	13.5	13.5	13.5	13.5		

Exercise 4.

(i)

$$\zeta_3(HHH) = \frac{1}{(1+\frac{1}{4})^3} \frac{27}{64} = \frac{27}{125}$$

$$\zeta_3(HHT) = \zeta_3(HTH) = \zeta_3(THH) = \frac{1}{(1+\frac{1}{4})^3} \frac{27}{32} = \frac{54}{125}$$

$$\zeta_3(HTT) = \zeta_3(THT) = \zeta_3(TTH) = \frac{1}{(1+\frac{1}{4})^3} \frac{27}{16} = \frac{108}{125}$$

$$\zeta_3(TTT) = \frac{1}{(1+\frac{1}{4})^3} \frac{27}{8} = \frac{216}{125}$$

(ii)
$$V_0 = \sum_{\omega \in \Omega} V_N(\omega) \zeta(\omega) \mathbb{P}(\omega)$$

	Α	В	C	D	E	F	G	H		J	K
1		SO SO	S1	S2	S3	V3	zeta	P	VzP	p	0.66666667
2	ннн	4	8	16	32	11	0.216	0.2962963	0.704	q	0.33333333
3	HHT	4	8	16	8	5	0.432	0.14814815	0.32	r	0.25
4	HTH	4	8	4	8	2	0.432	0.14814815	0.128		
5	THH	4	2	4	8	0.5	0.432	0.14814815	0.032		
6	HTT	4	8	4	2	0.5	0.864	0.07407407	0.032		
7	THT	4	2	4	2	0	0.864	0.07407407	0		
8	TTH	4	2	1	2	0	0.864	0.07407407	0		
9	TTT	4	2	1	0.5	0	1.728	0.03703704	0		
10									1.216		
11	V2(HT)										
12		V3	zeta3	P	VzP	zeta2					
13	HTH	2	0.432	0.66666667	0.576	0.72					
14	HTT	0.5	0.864	0.33333333	0.144						
15						1					
16	V2(TH)										
17		V3	zeta3	P	VzP	zeta2					
18	THH	0.5	0.432	0.66666667	0.144	0.72					
19	THT	0	0.864	0.33333333	0						
20						0.2					
21	1										

(iii)
$$\zeta_2(HT) = \zeta_2(TH) = \frac{1}{(1+r)^2} Z(TH) = \frac{1}{(1+r)^2} Z(HT) = \frac{1}{(1+\frac{1}{4})^2} \frac{9}{8} = \frac{18}{25}$$

$$V_2(HT) = \frac{1}{\zeta_2(HT)} \mathbb{E}_2[\zeta_3 V_3](HT) = \frac{25}{18} \left(\frac{2}{3} \cdot 0.432 \cdot 2 + \frac{1}{3} \cdot 0.864 \cdot 0.5 \right) = 1$$

$$V_2(TH) = 0.2$$

Exercise 5.

(i)

$$Z(HH) = \frac{\tilde{\mathbb{P}}(HH)}{\mathbb{P}(HH)} = \frac{\frac{1}{4}}{\frac{4}{9}} = \frac{9}{16}$$

$$Z(HT) = \frac{\tilde{\mathbb{P}}(HT)}{\mathbb{P}(HT)} = \frac{\frac{1}{4}}{\frac{2}{9}} = \frac{9}{8}$$

$$Z(TH) = \frac{\tilde{\mathbb{P}}(TH)}{\mathbb{P}(TH)} = \frac{\frac{1}{12}}{\frac{2}{9}} = \frac{3}{8}$$

$$Z(TT) = \frac{\tilde{\mathbb{P}}(TT)}{\mathbb{P}(TT)} = \frac{\frac{5}{12}}{\frac{1}{9}} = \frac{15}{4}$$

(ii)

$$Z_1(H) = \mathbb{E}_1[Z](H) = pZ(HH) + qZ(HT) = \frac{2}{3} \cdot \frac{9}{16} + \frac{1}{3} \cdot \frac{9}{8} = \frac{3}{4}$$

$$Z_1(T) = \mathbb{E}_1[Z](T) = pZ(TH) + qZ(TT) = \frac{2}{3} \cdot \frac{3}{8} + \frac{1}{3} \cdot \frac{15}{4} = \frac{3}{2}$$
Note that $Z_0 = pZ(H) + qZ(T) = \frac{2}{3} \cdot \frac{3}{4} + \frac{1}{3} \cdot \frac{3}{2} = 1$

(iii)

$$\begin{split} V_1(H) &= \frac{1+r_0}{Z_1(H)} \mathbb{E}_1 \left[\frac{Z_2}{(1+r_0)(1+r_1)} V_2 \right] (H) \\ &= \frac{1}{Z_1(H)(1+r_1(H))} \mathbb{E}_1[Z_2V_2](H) \\ &= \frac{1}{\frac{3}{4}(1+\frac{1}{4})} \cdot \left(\frac{2}{3} \frac{9}{16} \cdot 5 + \frac{1}{3} \frac{9}{8} \cdot 1 \right) \\ &= \frac{12}{5} \\ V_1(T) &= \frac{1}{Z_1(T)(1+r_1(T))} \mathbb{E}_1[Z_2V_2](T) \\ &= \frac{1}{\frac{3}{2}(1+\frac{1}{2})} \cdot \left(\frac{2}{3} \frac{3}{8} \cdot 1 \right) \\ &= \frac{1}{9} \\ V_0 &= \mathbb{E} \left[\frac{Z_2}{(1+r_0)(1+r_1)} V_2 \right] \\ &= \left(\frac{4}{9} \frac{\frac{9}{16}}{(1+\frac{1}{4})(1+\frac{1}{4})} \cdot 5 \right) + \left(\frac{2}{9} \frac{\frac{9}{8}}{(1+\frac{1}{4})(1+\frac{1}{4})} \cdot 1 \right) + \left(\frac{2}{9} \frac{\frac{3}{8}}{(1+\frac{1}{4})(1+\frac{1}{2})} \cdot 1 \right) \\ &= \frac{236}{225} \end{split}$$