Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3221	К работе допущен	
CTUTOUT DESCUOP II TOUTUODO A		
Студент Рязанов Д. Трутнева А.	Работа выполнена	
Преподаватель Хуснутдинова Н Р	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.14

Изучение колебаний струны

1. Цели работы.

Наблюдение поперечных стоячих волн на тонкой натянутой струне. Экспериментальное определение зависимости собственных частот поперечных колебаний от номера гармоники и силы натяжения струны.

2. Задачи, решаемые при выполнении работы.

Измерить значения резонансных частот колебаний струны в режиме формирования стоячих волн. Рассчитать значения скорости волны и погонной плотности струны при известной силе ее натяжения. Провести прямое измерение массы и длины струны, непосредственно определить ее погонную плотность. Сравнить полученные значения погонных плотностей p_i .

3. Объект исследования.

Стоячие волны на тонкой натянутой струне.

4. Метод экспериментального исследования.

Многократные измерения резонансных частот колебаний струны.

5. Рабочие формулы и исходные данные.

$$p_{l} = \frac{m}{l}$$
 $T = mg$ $\alpha = \frac{4}{l^{2}p_{l}}$ $f_{n} = \frac{\omega_{n}}{2\pi} = \frac{k_{n}u}{2\pi} = \frac{un}{2l}$ $u = \sqrt{\frac{T}{p_{l}}}$ $\Delta p_{l} = p_{l}\sqrt{(\frac{\Delta \alpha}{\alpha})^{2} + (2\frac{\Delta l}{l})^{2}}$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1	Весы	Электронный	0-10 z	0.05 z	
2	Рулетка	Аналоговый	0-200 см	0.02 см	
3	Генератор сигналов	Электронный	0-100 Гц	0.05 Гц	

7. Схема установки (перечень схем, которые составляют Приложение 1).

Экспериментальная установка

Рис. 4. Элементы лабораторной установки

На рисунке 4 показан комплект оборудования, входящий в состав лабораторной установки:

- 1. Механический вибратор
- 2. Генератор гармонических сигналов
- 3. Рулетка

255

48.9

- 4. Эластичная (белая) и неэластичная (зеленая) струны
- 5. Набор грузов и держателей для них
- 6. Струбцины для крепления вибратора и опорного блока
- 7. Опорный блок
- 8. Стержень для крепления вибратора

8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*). $p_l \pm \Delta \, p_l = (4.293 \pm 0.026) \frac{\it c}{\it m} \quad \text{- Фактическая линейная плотность эластичной струны}$

$$p_l \pm \Delta \, p_l = (1.761 \pm 0.011) \frac{2}{M} \,$$
 - Фактическая линейная плотность неэластичной струны

Струна №1 Струна №2
$$m, c$$
 $f, \Gamma q$ $f^2, \Gamma q^2$ T, H m, c $f, \Gamma q$ $f^2, \Gamma q^2$ T, H 55 22.9 524.41 0.5401 55 37.4 1398.76 0.5401 105 31.4 985.96 1.0311 105 50.0 2500 1.0311 155 37.6 1413.76 1.5221 155 59.7 3564.09 1.5221 205 43.8 1918.44 2.0131 205 67.9 4610.41 2.0131

$$p_l \pm \Delta p_l = (3.183 \pm 1.291) \frac{2}{M}$$
 $p_l \pm \Delta p_l = (1.379 \pm 0.238) \frac{2}{M}$

2.5041

2391.21

255

75.2

5655.04

2.5041

По МНК найдем
$$a=\frac{4}{l^2p_l}=\frac{\Sigma(T_i-\overline{T})(f_i^2-\overline{f^2})}{\Sigma(T_i-\overline{T})^2}$$
 $\Delta a=2S_a=2\frac{\Sigma(f_i^2-(b+aT_i))^2}{\Sigma(T_i-\overline{T})^2(n-2)}$ $\overline{T}=1.5221\,H$ $\overline{f_1^2}=1446.756\,\Gamma y$ $\overline{f_2^2}=3545.66\,\Gamma y$ $a_1=950.322\frac{1}{\kappa\varepsilon\,M}$ $\Delta a_1=385.135$ $a_2=2163.538\frac{1}{\kappa\varepsilon\,M}$ $\Delta a_2=373.732$ $p_{l1}=\frac{4}{l^2a_l}=0.003183\,\frac{\kappa\varepsilon}{M}=3.183\,\frac{\varepsilon}{M}$

$$p_{12} = 0.001379 \frac{\kappa c}{M} = 1.379 \frac{c}{M}$$

Таблица 2 для эластичной нити

	$m_1 = 120 e$	$m_2 = 150 e$	$m_3 = 180 e$	$m_4 = 210 e$	$m_5 = 240 e$	$m_6 = 270 e$
	$T_1 = 1.1784 H$	$T_2 = 1.473 H$	$T_3 = 1.7676 H$	$T_4 = 2.0622 H$	$T_5 = 2.3568 H$	$T_6 = 2.6514 H$
n	f_1 , Γ μ	f_2 , Γ ų	f_3 , Γ ų	f_4 , Γ μ	$f_{\scriptscriptstyle 5}$, Γ ц	f_6 , Γ ц
1	8.3	9.2	10.0	10.9	11.5	12.3
2	16.5	18.3	19.9	21.3	22.8	24.2
3	24.4	27.1	28.8	30.8	31.3	39.3
4	33.5	37.1	41.4	42.3	47.7	51.5
5	44.3	46.7	50.7	54.8	59.3	63.9
	$u_1 = 20.47$	$u_2 = 21.574$	$u_3 = 23.667$	$u_4 = 25.024$	$u_5 = 27.715$	$u_6 = 30.015$

По МНК найдем угловой коэффициент $k = \frac{f_n}{n}$ для каждого графика.

Тогда по формуле
$$f_n = \frac{un}{2l} \Rightarrow u = \frac{f_n}{n} * 2l = 2kl$$

$$k_1 = 8.90$$
 $u_1 = 20.470$ $k_2 = 9.38$ $u_2 = 21.574$ $k_3 = 10.29$ $u_3 = 23.667$ $k_4 = 10.88$ $u_4 = 25.024$ $u_5 = 27.715$ $u_6 = 30.015$ $u_6 = 30.015$

По МНК
$$a = 328.147 \frac{M}{\kappa z}$$
 и по формуле $u = \sqrt{\frac{T}{p_l}} \Rightarrow p_l = \frac{1}{a}$ $\Delta a = 114.851$

$$p_l = 0.003047 \frac{\kappa z}{M} = 3.047 \frac{z}{M}$$

Таблица 2 для неэластичной нити

	$m_1 = 120 e$	$m_2 = 150 e$	$m_3 = 180 c$	$m_4 = 210 e$	$m_{5} = 240 e$	$m_6 = 270 c$
	$T_1 = 1.1784 H$	$T_2 = 1.473 H$	$T_3 = 1.7676 H$	$T_4 = 2.0622 H$	$T_5 = 2.3568 H$	$T_6 = 2.6514 H$
n	$f_{\scriptscriptstyle 1}$, Гц	f_2 , Γ ų	f_3 , Γ ц	f_4 , Γ ų	$f_{\scriptscriptstyle 5}$, Гц	f_6 , Γ ц
1	13.1	14.6	16.0	17.2	18.3	19.5
2	25.7	28.4	32.5	34.5	37.4	39.3
3	39.5	45.3	48.4	52.3	56.6	60.4
4	53.3	59.1	65.7	69.7	74.9	79.2
5	66.1	73.8	80.9	87.3	93.7	99.1
	$u_1 = 30.728$	$u_2 = 34.293$	$u_3 = 37.490$	$u_4 = 40.342$	$u_5 = 43.309$	$u_6 = 45.793$

По МНК найдем угловой коэффициент $k = \frac{f_n}{n}$ для каждого графика.

Тогда по формуле
$$f_n = \frac{un}{2l} \Rightarrow u = \frac{f_n}{n} * 2l = 2kl$$

$$k_1 = 13.36$$
 $u_1 = 30.728$ $k_2 = 14.91$ $u_2 = 34.293$ $k_3 = 16.30$ $u_3 = 37.490$ $k_4 = 17.54$ $u_4 = 40.342$ $u_5 = 18.83$ $u_5 = 43.309$ $u_6 = 19.91$ $u_6 = 45.793$ $u_6 = 19.91$ $u_6 = 45.793$

По МНК
$$a = 784.104 \frac{M}{\kappa c}$$
 и по формуле $u = \sqrt{\frac{T}{p_l}} \Rightarrow p_l = \frac{1}{a}$ $\Delta a = 50.431$

$$p_l = 0.00127534 \frac{\kappa c}{M} = 1.275 \frac{c}{M}$$

9.Окончательные результаты.

Значение $p_1, \frac{2}{M}$	Эластичная струна	Неэластичная струна
Прямое измерение	4.293 ± 0.026	1.761 ± 0.011
Через резонансные частоты	3.183 ± 1.291	1.379 ± 0.238
Через скорость	3.047 ± 1.066	1.275 ± 0.082

10. Выводы и анализ результатов работы.

В ходе выполнения данной лабораторной работы были измерены значения резонансных частот упругой и неупругой струн в режиме формирования стоячих волн. Были вычислены значения скорости волны и линейной плотности струн при известной силе натяжения.