Simple Regression

Anis Rezgui Mathematics Department Carthage University - INSAT Tunis - Tunisia

November 28, 2019

Table of contents

- Introduction
- 2 Least square method
- Interpretation
- 4 Inferential study

Introduction

The problem

Let x and y be two statistical variables:

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 and $y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$.

- The correlation problem, in general, consists of looking for a possible relationship between x and y: y = f(x) + "residual" that makes the residual part the smallest possible.
- The variable x is called "predictor" or the "independent" variable, y
 is called "response" or "dependent" variable.
- The "linear" correlation is when the relationship f is linear.

Introduction

The scattergram

The sattergram or "scatter-plot" is simply the set of points of coordinates

$$\{(x_i,y_i): i=1,\cdots,n\}.$$

It gives a very useful a priori glance:

Introduction

Different types of correlation

anis.rezguii@gmail.com

-540

The least square distance

Our problem can be reformulated as follows:

We look for β and α such that if $y_i^* = \beta x_i + \alpha$ the distance

$$\sum_{i=1}^{n} (y_i^* - y_i)^2$$
 is minimal. (1)

- **1** The line $s = \beta t + \alpha$ is called "least square line" or "regression line".
- 2 β is called "slope" and α the "intercept" of the regression line.

Vectorial formulation

We look for a vector $y^* \in \mathbb{R}^n$ spanned by $\{x, \mathbf{1}\}$ i.e find out β and α such that $y^* = \beta x + \alpha \mathbf{1}$ minimizes the Euclidian norm $||y - y^*||_p^2$.

Theorem

 $||y-y^*||_n^2$ is minimal if and only if

 $y^* = Orthogonal Projection of y on the subspace span{x, 1}.$

ANOVA

Concequences

• $y - y^*$ is orthogonal to y^* .

$$y = y^* \oplus^{\perp} y - y^* \Rightarrow ||y||_n^2 = ||y^*||_n^2 + ||y - y^*||_n^2$$
 (2)

- $\overline{y} = \overline{y^*}$ and (2) $\Rightarrow \|y - \overline{y}\|_n^2 = \|y^* - \overline{y}\|_n^2 + \|y - y^*\|_n^2$
- Total sum of squares (tss) = fitted sum of squares (fss) + residual sum of squares (rss)
- $\Rightarrow s_y^2 = s_{y^*}^2 + s_{y-y^*}^2$ Total variance = Explained variance + Residual variance

Determination of the regression slope and intercept

We look for β and α so that $y - y^*$ is orthogonal to $span\{x, 1\}$ i.e.

On one hand

$$y - y^* \perp x \quad \Rightarrow \quad {}^t x (y - y^*) = 0$$

$$\Rightarrow \quad {}^t x y - \beta^t x x + \alpha n \overline{x} = 0$$

$$\Rightarrow \quad |x|^2 \beta - n \overline{x} \alpha = {}^t x y$$
 (3)

on the other hand

$$y - y^* \perp \mathbf{1} \quad \Rightarrow \quad {}^{t}\mathbf{1}(y - y^*) = 0$$
$$\Rightarrow \quad n\overline{y} - n\beta\overline{x} + n\alpha = 0$$
$$\Rightarrow \quad \alpha = \beta\overline{x} - \overline{y}$$
(4)

Finally

Combining (3) and (4)

$$\begin{cases} \beta = \frac{\overline{x} * \overline{y} - \overline{x} * \overline{y}}{\overline{x^2} - \overline{x}^2} = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} \\ \alpha = \overline{y} - \beta \overline{x} \end{cases}$$

Linear Detrmination coefficient vs Correlation Coefficient

Set the Linear Determination Coefficient as

$$R_{y|x}^2 = \frac{fss}{tss} = \frac{\sum_i (y_i^* - \overline{y})^2}{\sum_i (y_i - \overline{y})^2} \in [0, 1]$$

- 2 It represents the strongness of the linear correlation between y and x.
- It can be read as the the rate of y explained linearly by x.

Linear Detrmination Coefficient vs Correlation Coefficient

Definition

The linear correlation coefficient of the statistical variables x and y is given by

$$r_{xy} = \frac{\operatorname{Cov}(x,y)}{\sqrt{\sum_{i}(x_{i}-\overline{x})^{2}\sum_{i}(y-\overline{y})^{2}}}$$

$$= \frac{\sum_{i}(x_{i}-\overline{x})(y_{i}-\overline{y})}{\sqrt{\sum_{i}(x_{i}-\overline{x})^{2}\sum_{i}(y-\overline{y})^{2}}}$$

$$= \frac{n}{n-1} \frac{\overline{x}*\overline{y}-\overline{x}*\overline{y}}{s_{x}*s_{y}}$$
(5)

$$= \frac{1}{n-1} \frac{1}{s_x * s_y}$$

$$= \frac{\sum_i x_i y_i - \frac{(\sum_i x_i)(\sum_i y_i)}{n}}{\sqrt{\left(\sum_i x_i^2 - \frac{(\sum_i x_i)^2}{n}\right)\left(\sum_i y_i^2 - \frac{(\sum_i y_i)^2}{n}\right)}}$$

anis.rezguii@gmail.com

(8)

Very Important Remark

The linear determination coefficient and the linear correlation coefficient are actually the same! (Why?)

$$r_{xy}^2 = R_{y|x}^2. (9)$$

The linear correlation coefficient can be seen as the cosine of the angle formed by the two vectors of \mathbb{R}^n , $x - \overline{x} * \mathbf{1}$ and $y - \overline{y} * \mathbf{1}$:

$$\cos(x - \overline{x} * \mathbf{1}, y - \overline{y} * \mathbf{1}) = \frac{t(x - \overline{x} * \mathbf{1})(y - \overline{y} * \mathbf{1})}{\|x - \overline{x} * \mathbf{1}\| \|y - \overline{y} * \mathbf{1}\|}$$
$$= \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Very Important Remarks

Since the correlation coefficient is a cosine it satisfies:

$$|r_{xy}| \leq 1$$
.

② If $|r_{xy}| = 1$ it means that we have a perfect linear correlation:

$$y_i = \beta x_i + \alpha$$
, for all $i = 1, \dots, n$.

- If $r_{xy} = 0$ it means that there is no linear relationship between x and у.
- In all cases we have

$$\beta = r_{xy} \times \sqrt{\frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}}$$

So what?

- If $|r_{xy}| \in [0, 25\%[$, there is no linear correlation!
- ② If $|r_{xy}| \in [25\%, 50\%]$, there is a moderate linear correlation.
- If $|r_{xy}| \in [50\%, 75\%]$, there is a fair linear correlation.
- If $|r_{xy}| \in [75\%, 100\%]$, there is good linear correlation.

Suppose that the two statistical series x and y came from two given random variables X and Y and let $\{X_i : i = 1 \cdots n\}$ and $\{Y_i : i = 1 \cdots n\}$ be two random samples of X and Y. Denote by

$$TSS = \sum_{i=1}^{n} (Y_i - \overline{Y})^2, \quad FSS = \sum_{i=1}^{n} (Y_i^* - \overline{Y})^2$$

and

$$RSS = \sum_{i=1}^{n} (Y_i - Y_i^*)^2$$

and consider the following statistic:

$$F = \frac{FSS}{RSS}(n-2).$$

A theoretical result: The linear Gaussian model

Theorem

Suppose that \boldsymbol{X} and \boldsymbol{Y} are normally distributed and that they are independent. Then

$$\frac{FSS}{RSS}(n-2) = \mathcal{F}(1, n-2)$$

where $\mathcal{F}(1, n-2)$ is the Fisher distribution of degrees of freedom 1 and n-2.

Proposition and Definition

If $A \sim \chi_{d_1}^2$ and $B \sim \chi_{d_2}^2$ and are independent then

$$\frac{A/d_1}{B/d_2} \sim \mathcal{F}(d_1, d_2).$$

So what: How to use the latter Theorem?

We consider the test: (H_0) : $\beta = 0$ (which means that there is no linear relationship between X and Y) against (H_1) : $\beta \neq 0$:

• we reject the hypothesis (H_0) and accept (H_1) with a confidence level of 95%, if:

$$F^* = \frac{fss}{rss}(n-2) \ge f_o$$

where f_0 is such that:

$$\mathbb{P}\{\mathcal{F}(1, n-2) \le f_o\} = 95\%$$

• or equivalently we reject H_0 and accept H_1 when

$$p-\mathit{value} = \mathbb{P}\left\{\mathcal{F}(1,n-2) \geq F^* = rac{\mathit{fss}}{\mathit{rss}}(n-2)
ight\} \ll 1$$

Confidence interval for the regression line

Let $T_{n-2,\gamma/2}$ be such that $\mathbb{P}\{|T_{n-2}| > T_{n-2,\gamma/2}\} = \gamma/2$.

1 A confidence interval of level $1 - \gamma$, for B is

$$\beta \pm T_{n-2,\gamma/2} \times \frac{s_y}{\sqrt{ssx}}$$
.

② A confidence interval of level $1 - \gamma$, for A is

$$\alpha \pm T_{n-2,\gamma/2} \times s_y \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{ssx}}$$
.

The prediction interval for a new observation x_0 , of level $1-\gamma$, is

$$\alpha + \beta x_0 \pm T_{n-2,\gamma/2} \times s_y \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{ssx}}.$$

Student Distribution

Definition

Let ${\cal T}$ be a continuous random variable, it follows a t-student distribution with n degree of freedom if its density is given by

$$f(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}.$$

We denote $T \sim T_n$.

Proposition

Let $Z \sim N(0,1)$ and $D \sim \chi_n^2$, suppose more that Z and D are independent. Then

$$T = \frac{Z}{\sqrt{D/n}} \sim \mathcal{T}_n.$$

Checking Gaussian hypothesis

To valid our results we need to check our Gaussian assumption about the residual:

- We need to test if the residue comes from a normal distribution, for this we may use the QQ-plot graphical test.
- We need to test if the residue and the fitted come from independent variables, for this we may use the scatterplot of the residue versus the fitted values as a graphical test.

Non-Gaussian case

- All results above are based on the assumption of normality of the residue.
- One may ask whether we still have the same results if the normality assumption is not any more satisfied?
- This leads to the mathematical investigation of looking at the limit behavior of the distribution when the number of observations goes to infinity.
- The results are still approximately correct!
- What we should do when the model is non-gaussian? A suggestion is:
 - add predictor variable(s).
 - and look for non-linear model.
- This will be the topic of the next chapters.