# Regression or classification? Automated Essay Scoring for Norwegian

Stig Johan Berggren, Taraka Rama, Lilja Øvrelid

University of Oslo, Norway ( $\{stigjbj-taraka.kasi\}$ @gmail.com, liljao@ifi.uio.no)



### In short

First results for the task of Automated Essay Scoring for Norwegian learner language. We analyze a number of properties of this task experimentally and assess

- (i) the formulation of the task as either regression or classification,
- (ii) the use of various non-neural and neural machine learning architectures with various types of input representations, and
- applying multi-task learning for joint prediction of essay scoring and native language identification.

We find that a GRU-based attention model trained in a single-task setting performs best at the AES task.

### The ASK corpus

Norwegian learner essays from two different language tests which test proficiency at the B1 and B2 levels.

| First language                | AL test | IL test | Total |
|-------------------------------|---------|---------|-------|
| English                       | 100     | 100     | 200   |
| Polish                        | 100     | 100     | 200   |
| Russian                       | 100     | 100     | 200   |
| Somali                        | 7       | 100     | 107   |
| Spanish                       | 100     | 100     | 200   |
| German                        | 100     | 100     | 200   |
| Vietnamese                    | 5       | 100     | 105   |
| Subtotal (included languages) | 512     | 700     | 1212  |
| (Albanian)                    | 24      | 100     | 124   |
| (Bosnian-Croatian-Serbian)    | 100     | 100     | 200   |
| (Dutch)                       | 100     | 100     | 200   |
| (Norwegian nynorsk)           | 21      | 11      | 32    |
| (Norwegian bokmål)            | 79      | 89      | 168   |
| Subtotal (excluded languages) | 324     | 400     | 724   |
| Total (all languages)         | 836     | 1100    | 1936  |

### Models

- Linear models: Regression, Classification
- Neural: CNNs, RNNs, Attention
- Multi-tasking model: NLI as auxiliary task

# **AES:** Linear

|             | All labels           |              | Collapsed labels     |              |
|-------------|----------------------|--------------|----------------------|--------------|
| Model       | Macro F <sub>1</sub> | $Micro\;F_1$ | Macro F <sub>1</sub> | $Micro\;F_1$ |
| Majority    | 0.040                | 0.163        | 0.127                | 0.341        |
| LogReg BOW  | 0.199                | 0.317        | 0.384                | 0.626        |
| LogReg Char | 0.221                | 0.317        | 0.399                | 0.602        |
| LogReg POS  | 0.190                | 0.301        | 0.312                | 0.569        |
| LogReg Mix  | 0.213                | 0.341        | 0.337                | 0.577        |
| SVC BOW     | 0.210                | 0.317        | 0.391                | 0.610        |
| SVC Char    | 0.189                | 0.293        | 0.347                | 0.537        |
| SVC POS     | 0.157                | 0.244        | 0.336                | 0.618        |
| SVC Mix     | 0.215                | 0.350        | 0.319                | 0.585        |
| SVR BOW     | 0.444                | 0.415        | 0.429                | 0.659        |
| SVR Char    | 0.252                | 0.317        | 0.440                | 0.602        |
| SVR POS     | 0.334                | 0.358        | 0.476                | 0.593        |
| SVR Mix     | 0.312                | 0.350        | 0.441                | 0.659        |

### **AES:** RNNs

|                                 | All labels         |              | Collapse     | Collapsed labels     |  |
|---------------------------------|--------------------|--------------|--------------|----------------------|--|
| Model                           | $Macro\;F_1$       | $Micro\;F_1$ | $Macro\;F_1$ | Micro F <sub>1</sub> |  |
| Random init, unidirectional GRU |                    |              |              |                      |  |
| Mean                            | 0.264              | 0.374        | 0.455        | 0.675                |  |
| Max                             | 0.219              | 0.325        | 0.487        | 0.683                |  |
| Attn                            | 0.434              | 0.431        | 0.806        | 0.805                |  |
| $+POS\ Mean$                    | 0.348              | 0.398        | 0.450        | 0.642                |  |
| +POS Max                        | 0.230              | 0.374        | 0.500        | 0.748                |  |
| +POS Attn                       | 0.434              | 0.423        | 0.718        | 0.813                |  |
| Mix Mean                        | 0.225              | 0.333        | 0.388        | 0.634                |  |
| Mix Max                         | 0.200              | 0.398        | 0.398        | 0.756                |  |
| Mix Attn                        | 0.302              | 0.455        | 0.509        | 0.780                |  |
|                                 | Random init, BiGRU |              |              |                      |  |
| Mean                            | 0.314              | 0.333        | 0.444        | 0.667                |  |
| Max                             | 0.160              | 0.325        | 0.460        | 0.691                |  |
| Attn                            | 0.459              | 0.447        | 0.805        | 0.805                |  |
| $+POS\ Mean$                    | 0.373              | 0.333        | 0.425        | 0.683                |  |
| +POS Max                        | 0.175              | 0.309        | 0.503        | 0.748                |  |
| $+POS\ Attn$                    | 0.460              | 0.447        | 0.687        | 0.821                |  |
| Mix Mean                        | 0.231              | 0.350        | 0.395        | 0.642                |  |
| Mix Max                         | 0.200              | 0.382        | 0.405        | 0.764                |  |
| Mix Attn                        | 0.275              | 0.455        | 0.617        | 0.707                |  |
| Pre-trained, unidirectional GRU |                    |              |              |                      |  |
| Mean                            | 0.274              | 0.366        | 0.463        | 0.715                |  |
| Max                             | 0.185              | 0.350        | 0.401        | 0.756                |  |
| Attn                            | 0.414              | 0.431        | 0.678        | 0.797                |  |
| + POS Mean                      | 0.282              | 0.382        | 0.477        | 0.699                |  |
| +POS Max                        | 0.193              | 0.382        | 0.405        | 0.764                |  |
| $+POS\ Attn$                    | 0.409              | 0.423        | 0.746        | 0.789                |  |
| Pre-trained, BiGRU              |                    |              |              |                      |  |
| Mean                            | 0.266              | 0.390        | 0.435        | 0.707                |  |
| Max                             | 0.187              | 0.398        | 0.393        | 0.740                |  |
| Attn                            | 0.454              | 0.447        | 0.773        | 0.797                |  |
| $+POS\ Mean$                    | 0.281              | 0.382        | 0.480        | 0.724                |  |
| +POS Max                        | 0.183              | 0.341        | 0.397        | 0.748                |  |
| $+POS\ Attn$                    | 0.433              | 0.439        | 0.758        | 0.805                |  |
|                                 |                    |              |              |                      |  |

### **Attention visualization**

Oppgave A | Din helsetilstand har mye å si om hvordan du opplever dit livskvalitet . Det er mange moter å ta være på sin egen helse og UNK viser at mange mennesker lever lenger enn tidligere på grunn av ny kunnskap og utvikling innenfor medisin og teknologi . Spørsmålet er : hvordan kan vi ta være på vår helse og er det greit å oppnå en høy alder ? Det er flere moter at du kan ta være på din egen helse . Først kan du passe på det du spiser . Alle vet nå at fett er usunt , men hvor mange leser UNK for å vite om UNK av maten de spiser ? Å bli kjent med kunstige UNK er også viktig . Noen av disse midler er ikke farlig men , på den andre siden , er andre UNK . Annen kan du lærer om de tingene du trenger for å bli sterk og sunt i kroppen . Mye er skrevet i det siste om , f.eks. vitaminer og god og skadelig kolesterol . Les ! Hvis du tar være på kroppen din , skal du kanskje oppnå en høy alder . Men , er dette nødvendigvis en god ting ? Jeg synes det har mye å si for samfunnet . For det første , å ha eldre mennesker som en del av samfunnet er bra for samfunnet når det gjelder livserfaring . Vi har , eller kan , lære mye fra de eldre . På den andre siden , er det en stor belastning for samfunnet (på grunn av bekostningen til helsevesen) å ha så mange eldre mennesker. Ofte trenger eldre mennesker mye omsorg senere i livet og mange opplever langvarig opphold i sykehus eller i UNK For de eldre selv er

### Essay by English native speaker

Oppgave A | I dag bor vi i en fantastisk tid . Man får masse muligheter . Vi har mye av det som besteforeldrene våre kunne bare drømme om . Det er helt utrolig å tenke på hva vi har oppnådd Men samtidig har vi fått mange problemer . En av de problemene er vår egen helse . I dag har vi et godt utviklet UNK og mange forskjellige UNK . Men alt dette hjelper neppe så mye hvis hvert enkeltmenneske ikke tenker på sin egen helse . Vi må huske at livet er en gave og en god helse hjeper veldig mye for å nytte livet . Derfor er det viktig å tenke på den måten vi lever på . Først og fremst bør man tenke på hva man spiser . Undersøkelser viser at folk har færre UNK i de landene hvor man spiser mye grønnsaker og frukt . Å ha UNK UNK til middag UNK for brus er også veldig sunt . Ikke minst viktig er det å ha litt mosjon og trim . I dag bruker man mye transport . Vi kjører veldig mye selv om vi ikke trenger det . Jeg var veldig overasket da jeg kom første gang til Norge og oppdaget at mennesker bruker bil for å komme Mange har sånn jobb som at de trenger å sitte hele arbeidsdag. Da må man begynne å bli bekymret for sin kropp. Det er best å gå på tur eller sykle. Noen trener på sportklub eller svømmer i UNK . Godt UNK er også en av de viktigste momentene Vi forlenger livet når vi smiler eller tenker positivt . Det virker veldig UNK å ha en god helse og leve lengre. Livet er spent. Man kommer i verden,

Essay by Russian native speaker

# Multi-task Learning: Best settings

RNN2 RNN1 Hyperparameter Word embeddings Dynamic Embedding size RNN cell GRU Pooling method Attention Yes Bidirectional Embedding init Random Pre-trained Input representation Tokens+UPOS Tokens

### Multi-task Learning: Loss curves



### Held-out set results

|            | All labels |       | Collapse | ed labels |
|------------|------------|-------|----------|-----------|
| Model      | Macro      | Micro | Macro    | Micro     |
| Majority   | 0.045      | 0.187 | 0.127    | 0.341     |
| SVR BOW    | 0.231      | 0.285 | 0.420    | 0.602     |
| SVR POS    | 0.271      | 0.350 | 0.422    | 0.602     |
| RNN1       | 0.291      | 0.439 | 0.478    | 0.724     |
| RNN2       | 0.388      | 0.480 | 0.511    | 0.724     |
| Multi-RNN1 | 0.266      | 0.398 | 0.509    | 0.707     |
| Multi-RNN2 | 0.356      | 0.447 | 0.443    | 0.724     |

## **Error Analysis**



### NLI

| Model        | Macro F <sub>1</sub> | Micro F <sub>1</sub> |
|--------------|----------------------|----------------------|
| Mean         | 0.520                | $\overline{0.537}$   |
| Max          | 0.401                | 0.390                |
| Attn         | 0.447                | 0.480                |
| $+POS\ Mean$ | 0.467                | 0.480                |
| +POS Max     | 0.406                | 0.431                |
| +POS Attn    | 0.454                | 0.463                |

### Conclusion

- ► AES task is best modeled as regression for ASK corpus.
- mean-over-time BiGRU model performed the best at NLI task.
- Auxiliary loss weight of 0.1 is best suited for joint modeling of AES and NLI tasks.
- Pretrained embeddings achieve the best results.