Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №5

по дисциплине 'ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА'

Вариант №18

Выполнил: Студент группы Р3213 Хафизов Булат Ленарович Преподаватель: Малышева Татьяна Алексеевна

Санкт-Петербург, 2022

Цель работы

Изучить методы интерполяции функции и реализовать два из них средствами программирования. Понять их сходства и различия.

Ход работы

X	y
0,50	1,5320
0,55	2,5356
0,60	3,5406
0,65	4,5462
0,70	5,5504
0,75	6,5559
0,80	7,5594

\mathbf{X}_{1}	X_2		
0,545	0,627		

Xi	y i	$\Delta \mathbf{y_i}$	$\Delta^2 \mathbf{y_i}$	Δ^3 y i	$\Delta^4 \mathbf{y_i}$	$\Delta^5 \mathbf{y_i}$	$\Delta^6 \mathbf{y_i}$
0,50	1,5320	1,0036	0,0014	-0,0008	-0,0012	0,0059	-0,0166
0,55	2,5356	1,0050	0,0006	-0,0020	0,0047	-0,0107	
0,60	3,5406	1,0056	-0,0014	0,0027	-0,0060		
0,65	4,5462	1,0042	0,0013	-0,0033			
0,70	5,5504	1,0055	-0,0020				
0,75	6,5559	1,0035					
0,80	7,5594						

Вычисление Х₁. Первая интерполяционная формула Ньютона.

$$t = (x - x_0)/h = \frac{0.545 - 0.5}{0.05} = 0.9$$

$$y(0.545) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!} \Delta^2 y_0 + \frac{t(t-1)(t-2)}{3!} \Delta^3 y_0 + \frac{t(t-1)(t-2)(t-3)}{4!} \Delta^4 y_0 + \frac{t(t-1)(t-2)(t-3)(t-4)}{5!} \Delta^5 y_0 + \frac{t(t-1)(t-2)(t-3)(t-4)(t-5)}{6!} \Delta^6 y_0 = 2.4353$$

Вычисление Х2. Первая интерполяционная формула Ньютона.

$$t = (x - x_2)/h = \frac{0,627 - 0,6}{0,05} = 0,54$$

$$y(0,627) = y_2 + t\Delta y_2 + \frac{t(t-1)}{2!}\Delta^2 y_2 + \frac{t(t-1)(t-2)}{3!}\Delta^3 y_2 + \frac{t(t-1)(t-2)(t-3)}{4!}\Delta^4 y_2 = 4,0842$$

Xi	y i	$\Delta \mathbf{y_i}$	$\Delta^2 \mathbf{y_i}$	Δ^3 y i	$\Delta^4 \mathbf{y_i}$	$\Delta^5 \mathbf{y_i}$	$\Delta^6 \mathbf{y_i}$
x-3=0,50	1,5320	1,0036	0,0014	-0,0008	-0,0012	0,0059	-0,0166
$x_{-2}=0,55$	2,5356	1,0050	0,0006	-0,0020	0,0047	-0,0107	
$x_{-1}=0,60$	3,5406	1,0056	-0,0014	0,0027	-0,0060		
$x_0 = 0.65$	4,5462	1,0042	0,0013	-0,0033			
$x_1 = 0.70$	5,5504	1,0055	-0,0020				
$x_2=0,75$	6,5559	1,0035					
$x_3 = 0.80$	7,5594						

Вычисление Х₁. Первая формула Гаусса.

$$t = (x - x_0)/h = \frac{0,545 - 0,65}{0,05} = -2,1$$

$$y(0,545) = y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!} \Delta^2 y_{-1} + \frac{t(t+1)(t-1)}{3!} \Delta^3 y_{-2} + \frac{t(t+1)(t-1)(t+2)}{4!} \Delta^4 y_{-2} + \frac{t(t+1)(t-1)(t+2)(t-2)}{5!} \Delta^5 y_{-3} + \frac{t(t+1)(t-1)(t+2)(t-2)(t+3)}{6!} \Delta^6 y_{-3} = 2,4376$$

Вычисление X_2 . Первая формула Гаусса.

$$t = (x - x_0)/h = \frac{0,627 - 0,65}{0,05} = -0,46$$

$$y(0,627) = y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!} \Delta^2 y_{-1} + \frac{t(t+1)(t-1)}{3!} \Delta^3 y_{-2} + \frac{t(t+1)(t-1)(t+2)}{4!} \Delta^4 y_{-2} + \frac{t(t+1)(t-1)(t+2)(t-2)}{5!} \Delta^5 y_{-3} + \frac{t(t+1)(t-1)(t+2)(t-2)(t+3)}{6!} \Delta^6 y_{-3} = 4,0835$$

Блок-схемы используемых методов

Рисунок 1 - Блок-схема многочлена Лагранжа

Рисунок 2 - Блок-схема многочлена Ньютона

Листинг программы

import numpy as np import matplotlib.pyplot as plt

```
def lagrange(dots, x):
def newton(dots, x):
                nsform=ax.get yaxis transform(), clip_on=False)
```

```
def getfunc(func_type):
   dots.append((a, f(a)))
      dots.append((x, y))
```

```
main()
```

Результаты выполнения программы


```
Вариант №18
Интерполяция функций
Выберите метод интерполяции.
1 — Многочлен Лагранжа
2 — Многочлен Ньютона с конечными разностями
Метод решения: 1
Выберите способ ввода исходных данных.
1 — Набор точек
2 — Функция
Способ ввода: 1
Вводите координаты через пробел, каждая точка с новой строки.
Чтобы закончить, введите 'END'.
Введите значение аргумента для интерполирования.
Значение аргумента: 0.15
Результаты вычисления.
Приближенное значение функции: 1.7833593749999992
```

Вывод

В результате выполнения данной лабораторной работой я познакомился с методами интерполяции функции и реализовал метод с использованием многочлена Лагранжа и метод с использованием многочлена Ньютона с конечными разностями на языке программирования Python, закрепив знания.