5.2: Diseño de filtros IIR

Un diseño FIR puede resultar en un filtro de orden alto

Un diseño IIR: orden más bajo

- **♦** Transformación bilineal
- **◆** Aproximaciones analógicas
- Distorsión de fase y retardo de grupo
- Comparación diseño FIR / IIR

Transformación bilineal

Requisitos de la transformación bilineal

- ♦ Transformación racional de orden 1: $H(z) = H_a(s)|_{s=f(z)}$
- Correspondencia entre bandas de paso / atenuada discretas y analógicas
- lacktriangle Relación entre la frecuencias analógicas (Ω) y discretas (ω) sin aliasing:

$$\mathbf{s} = \mathbf{f}(\mathbf{z}) \Rightarrow \mathbf{j}\Omega = \mathbf{f}(\mathbf{e}^{\mathbf{j}\omega}) \quad \begin{cases} \Omega : & -\infty \to \infty \\ \omega : & -\pi \to \pi \end{cases}$$

Eje imaginario en s ⇒ circunferencia de radio 1 en z

◆ Conservación de la estabilidad:

Semi-plano izquierdo en s ⇒ Interior de la circunferencia de radio 1 en z

Transformación bilineal

$$s = \frac{1-z^{-1}}{1+z^{-1}}$$
 $z^{-1} = \frac{1-s}{1+s}$

- - $r < 1 \Leftrightarrow Real(s) < 0$ Conservación de la estabilidad

$$ightharpoonup r = 1 (z=e^{j\omega})$$

$$s = \frac{j 2 \operatorname{sen}(\omega)}{2 + 2 \cos(\omega)} = j\Omega$$

$$\Omega = \frac{\operatorname{sen}(\omega)}{1 + \cos(\omega)} = \tan(\frac{\omega}{2})$$

$$\Omega = \tan(\frac{\omega}{2}), \quad \omega = 2\arctan(\Omega)$$

Diseño con transformación bilineal

Especificaciones en ω (discreto)

$$\Omega = \tan(\frac{\omega}{2})$$

$$s = \frac{1 - z^{-1}}{1 + z^{-1}}$$

Filtro discreto

$$H(z) = H \frac{\Omega_{c}}{\frac{1 - z^{-1}}{1 + z^{-1}} + \Omega_{c}}$$

= H tan(
$$\omega_c / 2$$
) $\frac{1 + z^{-1}}{(1 + tan(\omega_c / 2)) + (tan(\omega_c / 2) - 1)z^{-1}}$

Especificaciones en Ω (analógico)

Filtro analógico

$$H_a(s) = H \frac{\Omega_c}{s + \Omega_c}$$

Aproximaciones clásicas (I)

Aproximaciones clásicas (II)

Distorsión de fase: Retardo de grupo (I)

♦ Retardo de grupo:

$$\tau(\omega) = -\frac{\mathsf{d}\varphi(\omega)}{\mathsf{d}\omega}$$

♦ Interpretación:

Therpretacion:

> Filtro paso banda: $\varphi(\omega) \cong \varphi(\omega_0) + \frac{\mathsf{d}\varphi(\omega)}{\mathsf{d}\omega}\Big|_{\omega=\omega_0} (\omega - \omega_0)$ $= \Phi_0 - \tau(\omega_0) (\omega - \omega_0)$

ightharpoonup Filtrado: $x[n] = Señal paso banda = e[n]e^{j\omega_0 n}$

Envolvente : $E(e^{j\omega}) = 0$, $|\omega| > B\omega/2$

Distorsión de fase: Retardo de grupo (II)

Retardo de grupo: Retardo de la envolvente de la señal Retardo de grupo ideal: $\tau(\omega)$ =constante \Rightarrow fase lineal

Aproximaciones y retardo de grupo

	Orden	Distorsión de fase
Comportamiento máx. plano	Alto	Baja
Rizado de amplitud constante	Bajo (óptimo)	Alto

Comparación FIR / IIR

	FIR	IIR
Fase lineal	Si (posible)	No realizable
Estabilidad	Siempre	No siempre (Problemas de precisión numérica)
Orden	Alto	Bajo