Теортест-1 (Вариант 65)

Тема – определенный интеграл

Задача 1

Выберите все верные утверждения (тела А и В имеют объем):

- 1. объем $A \cup B$ равен сумме объемов A и B;
- 2. если $A \subset B$, то объем A меньше объема B;
- 3. объем любого сечения тела A равен нулю;
- 4. объем A всегда положителен;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;\ s_{\tau},\ S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все верные утверждения:

- 1. $\forall \tau \ \exists \xi \colon S_{\tau} = \sigma_{\tau}(\xi);$
- 2. $\forall \tau, \xi : s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 3. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi \colon \sigma_{\tau}(\xi) > S_{\tau} \varepsilon;$
- 4. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) > S_{\tau} + \varepsilon;$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Выберите все верные утверждения:

- 1. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;
- 2. Кусочно-гладкая кривая спрямляема;
- 3. Гладкая кривая это кривая, все параметризации которой гладкие;
- 4. Любая кривая имеет бесконечно много различных параметризаций;
- 5. Длина кривой зависит от параметризации;

Задача 4

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x^2+1}{x^5}$;
- $2. \frac{x^2-1}{x^2+1};$
- 3. $\frac{x^3-3(x-1)^2}{(x-1)^3}$;
- 4. $\frac{x^4}{x^2-1}$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

- 1. $\int f'(x)e^x dx = e^x f(x) \int f(x)e^x dx;$
- 2. $\int f(x) \sin x dx = \cos x \cdot f(x) \int f'(x) \cos x dx$;
- 3. $2 \int f'(x) \sqrt{x} dx = 2\sqrt{x} f(x) \int \frac{f(x)}{\sqrt{x}} dx;$
- 4. $\int \frac{f'(x)}{x^2} dx = \frac{f(x)}{x^2} + \int \frac{f(x)}{x} dx;$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Функция $f\in R[0,10]$ и $-1\le f(x)\le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_{-\ln 2}^0 \frac{f(x)}{e^x} dx$:

- 1. [-0.25; 10];
- 2. [-2; 10];
- 3. [-1; 5];
- 4. [-1; 10];

Задача 7

Пусть f интегрируема и $f\geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x)dx>0$:

- 1. f > 0 на [a, b];
- 2. f непрерывна в точке a и f(b) = 1;
- 3. f(a) = f(b) = 1;
- 4. f(a) > 0, f(b) > 0;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть $f \in R[a,b], a < b$. Выберите все верные утверждения:

- 1. Если $\left| \int_a^b f(x) dx \right| < A$, то $\int_a^b |f(x)| dx < A$;
- 2. Если f > 0 на [a, b], то $\int_a^b f(x) dx > 0$;
- 3. Если $\int_a^b |f(x)| dx < A$, то $\left| \int_a^b f(x) dx \right| < A$;
- 4. Если $\int_a^b |f(x)| dx = 0$, то $f(x) \equiv 0$ на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F имеет разрывы в точках разрыва функции f;
- 2. $\int_a^b f(x)dx = F(b) F(a);$
- 3. Если f кусочно-непрерывна на [a,b], то F обобщенная первообразная для f на [a,b];
- 4. F непрерывна на [a, b];

Задача 10

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. u = v' + C;
- 2. vdt = du;
- 3. u = v';
- 4. v = u' + C;