Lecture 12: Sampling Distributions & Standard Errors

Chapter 4.1

1/18

Goals for Today

Chapter 4: Arguably the most important chapter as it goes to the heart of statistical inference. Three important definitions:

- 1. point estimate
- 2. sampling distribution
- 3. standard error

3/18

Behavior of Point Estimates

Ex: Say we draw samples of size n=100 from a large population with $\mu=5$ and $\sigma=2$.

Two Important Questions:

- 1. Is \overline{x} going to be exactly 5?
- 2. Say we get $\overline{x}=5.025.$ If we repeat this procedure, will we get $\overline{x}=5.025$ again?

We need to characterize the random error.

Behavior of Point Estimates

Let's repeat this procedure, say, 1000 times:

 $\begin{array}{lll} \text{1st time} & \quad \text{We get } \overline{x} = 4.831 \\ \text{2nd time} & \quad \text{We get } \overline{x} = 5.104 \\ \text{3rd time} & \quad \text{We get } \overline{x} = 4.965 \end{array}$

1000th time We get $\overline{x} = 4.957$

5/18

Sampling Distribution

This histogram is the 1000 instances of \overline{x} i.e. the sampling distribution of \overline{x} :

6/18

Sampling Distributions

7/18

Sampling Distributions

We can define the sampling distributions for any point estimate, not just \overline{x} :

- ▶ S
- ▶ the sample median
- etc

We will only focus on sample means, including the sample proportion $\widehat{\rho}.$

Measure of Spread

What about spread? [4.6, 5.4] contains roughly 95% of the data.

9/18

Standard Errors

Standard Error of \overline{x}

11 / 18

Back to Histogram

Samples were of size n=100 with $\sigma=2.$ We estimated that the SD was 0.2.

Using the formula:

$$SE = \frac{\sigma}{\sqrt{n}} = \frac{2}{\sqrt{100}} = \frac{2}{10} = 0.2$$

Standard Error of the Sample Mean \overline{x}

Compare 1000 instances of \overline{x} when

►
$$n = 100$$
. $SE = \frac{2}{\sqrt{100}} = 0.2$

$$n = 1000$$
. $SE = \frac{2}{\sqrt{1000}} = 0.0632$. Smaller!

Both are "accurate", but estimates on the right are "more precise."

13 / 18

Repeated Sampling

Standard Error of the Sample Mean	
	15 / 18
Population Distribution vs Sampling Distribution	

Recap

- ▶ Point estimates are based on a sample $x_1, ..., x_n$ and are used to estimate population parameters.
- The sampling distribution characterizes the (random) behavior of point estimates.
- The standard deviation of a sampling distribution is the standard error: it quantifies the uncertainty/variability of point estimates.

17 / 18

Next Time

- Confidence Intervals
- When quoting survey results, what does: "the results of this survey are estimated to be accurate within 3.1 percentage points, 19 times out of 20" mean?
- ▶ Big One: Central Limit Theorem