### 先端人工知能論I

東京大学 大学院情報理工学系研究科 牛久 祥孝

# 第9回~第11回の内容と目標

#### • 基礎:

系列データの理解/生成に用いられる Recurrent Neural Networks (RNNs) の理解

#### • 応用:

自然言語処理や画像+言語融合分野の理解

Chap. 9 RNN

Chap. 10 Long Short-Term Memory (LSTM) 自然言語処理 (NLP)

### Chap. 11 NLPと画像理解

# 第11回の内容と目標

- 1. 座学 NLPと画像理解
  - LSTMとword2vec (SGNS)の復習
  - 二ユーラル機械翻訳とアテンション
  - 画像キャプション生成
- 2. 演習 アテンションを用いた機械翻訳 モデルの実装
- 3. 演習 アテンションを用いたキャプション 生成モデルの実装
- 4. 座学 NLPと画像理解の発展
  - 画像キャプション生成やその他の課題へ

# NLPと画像理解

# Long Short-Term Memory (LSTM)

[Hochreiter+Schmidhuber, 1997]



# LSTMは一見複雑



### 1ステップずつ理解 すれば怖くない!

- 1. 長期記憶の更新
  - 1. 忘却
  - 2. 追加
- 2. 短期記憶の更新

#### 表の見方

tanh

活性化関数

W

線形変換



ベクトルの直列



ベクトルの要素ごとの和



ベクトルの要素ごとの積

### もつとも単純な方法

- One-hot ベクトル
  - 1-of-K ベクトルともいう
  - 単語の種類の数(語彙数)と同じ次元
  - ある単語が対応する次元だけ1、他は0
- 例: "Language", "Natural", "Processing" という言葉しかない世界では...

**Natural Language Processing** 

→ "Natural", "Language", "Processing"

$$\rightarrow \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
,  $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ ,  $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$  Hatural の次元 Processing の次元

### 分散表現

# 数百次元と低次元で、単語間の類似度が埋め込まれた空間内での、各単語のベクトル表現

- 深層学習による分散表現
- 深層学習によらない分散表現
  - "Word2vec" [Mikolov+, NIPS 2014]
     (Skip-gram with Negative Sampling; SGNS)
  - GloVe [Pennington+, EMNLP 2015]



### **Neural Machine Translation (NMT)**

EncoderとDecoderからなる系列変換モデルを 利用した機械翻訳手法

2011 音声認識で深層学習がSOTA

2012 画像認識で深層学習がSOTA

2014 sequence2sequenceモデル提案

2015 機械翻訳で深層学習がSOTA

→NMTの隆盛

**XSOTA** = state-of-the-art

### sequence2sequence

[Sutskever+, NIPS 2014]

- Encoderに単語を一つずつ入力して隠れ変数*h*を 計算する
- 隠れ変数をh としたDecoderに<EOS>を入力して 1単語目を獲得
- <EOS>が出るまで、n-1番目の単語を入力して n単語目を獲得



### sequence2sequence

[Sutskever+, NIPS 2014]

- Encoderに単語を一つずつ入力して隠れ変数*h*を 計算する
- 隠れ変数をh としたDecoderに<EOS>を入力して 1単語目を獲得
- <EOS>が出るまで、n-1番目の単語を入力して n単語目を獲得



- ただし…
  - 2つの異なるLSTMが同じように並んでいるので注意
  - 入力文の単語を逆から入れる (順方向で入れると、LSTMでも文頭を忘れてしまう)

# アテンションを用いた機械翻訳

- seqence2seqenceは...
  - 一旦EncodeしたらあとはDecoderに任せる
  - 長い文は扱えないのでは

- アテンションの利用 [Bahdanau+, ICLR 2015]
  - アテンションとは...
    - 「t番目の単語を出力する時に、 入力文のどこを翻訳すればよいか」
    - 入力文の単語数Tと同じ数のベクトル  $a_t$ を計算
  - 隠れ変数 $h_t$ の重みづけ和を計算
  - →LSTMへ入力



# sequence2seqence with attention

[Luong+, EMNLP 2015]

- 2つのアテンションモデルを提案(後述)
  - 局所的アテンション(発展的、より高性能)
  - 大域的アテンション(本講義の演習で採用)
- Input-feeding
  - 一個前の単語だけではなく隠れ変数hも入力
  - 定性的には:直前にアテンションをあてた位置を知らせる
- ソースコード公開済み
  - seq2seq-attn
  - OpenNMT



# sequence2seqence with attention

[Luong+, EMNLP 2015]

#### • 大域的アテンション

- -t番目の隠れ変数を仮決め  $h_t = \text{LSTM}(h_{t-1})$
- 入力文のどこにアテンションをあてるかを計算

$$a_t(s) = \operatorname{align}(\boldsymbol{h}_t, \overline{\boldsymbol{h}}_s) = \frac{\exp(\boldsymbol{h}_t^{\mathsf{T}} W_a \overline{\boldsymbol{h}}_s)}{\sum_{s'} \exp(\boldsymbol{h}_t^{\mathsf{T}} W_a \overline{\boldsymbol{h}}_{s'})}$$

– コンテキストを求める

$$\boldsymbol{c}_t = \sum_{S} \boldsymbol{a}_t(S) \overline{\boldsymbol{h}}_S$$

- 最終的な隠れ変数

$$\widetilde{\boldsymbol{h}}_t = \tanh(W_c[\boldsymbol{c}_t; \boldsymbol{h}_t])$$

学習するべきパラメータ



# sequence2seqence with attention

[Luong+, EMNLP 2015]

#### • 局所的アテンション

- 隠れ変数 $m{h}_t$ から、アテンションをあてる位置 $m{p}_t$  を計算



### Every picture tells a story [Farhadi+, ECCV 2010]

データセット:

画像 + <object, action, scene>+キャプション

1. 画像の<object, action, scene>をMRFで推定



<object, action, scene>が同じキャプションを検索して利用

# Every picture tells a story [Farhadi+, ECCV 2010]

| 120 120 120                                                                               | 500 PS00 PS00 PS00 PS00 PS00 PS00 PS00 P                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (pet, sleep, ground) (dog, sleep, ground) (animal, sleep, ground) (animal, stand, ground) | see something unexpected. Cow in the grassfield. Beautiful scenery surrounds a fluffly sheep. Dog hearding sheep in open terrain.                                                                                                                                                                                                                                                                                                                             |
|                                                                                           | Cattle feeding at a trough.  Refrigerator almost empty. Foods and utensils. Eatables in the refrigerator.                                                                                                                                                                                                                                                                                                                                                     |
| (bottle, place, table)<br>(display, place, table)                                         | The inside of a refrigerator apples, cottage cheese, tupperwares and lunch bags. Squash apenny white store with a hand statue, picnic tables in front of the building.                                                                                                                                                                                                                                                                                        |
|                                                                                           | A man stands next to a train on a cloudy day A backpacker stands beside a green train This is a picture of a man standing next to a green train  There are two men standing on a rocky beach, smiling at the camera. This is a person laying down in the grass next to their bike in front of a strange white building.                                                                                                                                       |
|                                                                                           | This is a lot of technology. Somebody's screensaver of a pumpkin A black laptop is connected to a black Dell monitor This is a dual monitor setup Old school Computer monitor with way to many stickers on it                                                                                                                                                                                                                                                 |
|                                                                                           | (dog, sleep, ground) (animal, sleep, ground) (animal, stand, ground) (goat, stand, ground) (furniture, place, furniture) (furniture, place, room) (furniture, place, home) (bottle, place, table) (display, place, table)  (transportation, move, track) (bike, ride, track) (transportation, move, road) (pet, sleep, ground) (bike, ride, road)  (display, place, table) (furniture, place, furniture) (furniture, place, furniture) (bottle, place, table) |

入力



データセット



A small white dog wearing a flannel warmer.



A small gray dog on a leash.



A black dog standing in grassy area.

• 再利用

- 新規生成
  - テンプレート主語+動詞の文を生成しよう
  - 非テンプレート

入力



データセット



A small white dog wearing a flannel warmer.



A small gray dog on a leash.



A black dog standing in grassy area.



– A small gray dog on a leash.

#### • 新規生成

- テンプレート主語+動詞の文を生成しよう
- 非テンプレート

入力



データセット



A small white dog wearing a flannel warmer.



A small gray dog on a leash.



A black dog standing in

grassy area.

### 再利用

A small gray dog on a leash.

#### • 新規生成

- テンプレート  $dog + stand \Rightarrow A dog stands.$
- 非テンプレート

入力



データセット



A small white dog wearing a flannel warmer.



A small gray dog on a leash.



A black dog standing in grassy area.

#### 再利用

A small gray dog on a leash.

#### • 新規生成

- テンプレート dog+stand ⇒ A dog stands.
- 非テンプレート A small white dog standing on a leash.

# マルチキーフレーズ推定アプローチ

[Ushiku+, ACM MM 2012]

当時の問題=使用候補であるフレーズの精度が悪い

### 仮説: 画像の内容は少数の主要なフレーズで特定可能 あとは文法モデルで繋げばよい!







Output Sentence

A man bites
a white dog
in his arms

キーフレーズを独立なラベルとして扱うと…

マルチキーフレーズの推定=一般画像認識

文生成は[Ushiku+, ACM MM 2011]と同じ

#### Input Image Keyphrases

Sentence



field EOS in front a black tracks EOS

front of A black and white cow in front of a man.



and sitting on a woman in front front of

Front of a woman in front of people sitting on.



a brown water EOS field EOS a horse

Sandy field with a brwon brown horse horse stainding in a horse.

# Deep Learning の恩恵 (再掲)

- 深層学習による画像認識の精緻化 [Krizhevsky+, NIPS 2012]
- 機械翻訳でも深層学習が登場 [Sutskever+, NIPS 2014]
  - RNNで問題になっていた勾配の消失をLSTM
     [Hochreiter+Schmidhuber, 1997] で解決
     →文中の離れた単語間での関係を扱えるように



– LSTMを4層つなぎ、end-to-endで機械学習 →state-of-the-art並み(英仏翻訳)

CNN/RNNなどの共通技術が台頭

画像認識や機械翻訳の参入障壁が低下

# Google NIC [Vinyals+, CVPR 2015]

### Googleで開発された

- GoogLeNet [Szegedy+, CVPR 2015]
- LSTM [Sutskever+, NIPS 2014] を直列させて文生成する。

画像Iへの文(単語列) $S_0 ... S_N$ は  $S_0$ : スタートを**意味する単語**  $S_1 = \text{LSTM}(\text{CNN}(I))$   $S_t = \text{LSTM}(S_{t-1}), t = 2 ... N - 1$   $S_N$ : ストップ**を意味する単語** 



# 生成された説明文の例

A person on a beach flying a kite.



# A black and white photo of a train on a train track.



# [Ushiku+, ACM MM 2012]と比べると



[Ushiku+, ACM MM 2012]では: Fisher Vector + 線形分類オンライン学習

CVPR 2015 の各論文では: CNN(オンライン学習なのは一緒) 文法モデルを利用して繋ぎ、説明文に

[Ushiku+, ACM MM 2012]では: キーフレーズと文法モデル、 ビームサーチで文をつなぐ

CVPR 2015 の各論文では: RNNとビームサーチで文をつなぐ

- いずれも画像+キャプションのみから学習可能
- 全体の流れは非常に似ている

# 一番大きく違うところは…?

• 深層学習以前の新規キャプション生成



何らかの語句に変換してから文生成器へ

• 深層学習による新規キャプション生成



画像特徴量を直接文生成器へ

# ところが最近では...

- CNNで事物の認識まで済ませてRNNで文生 成[Wu+, CVPR 2016][You+, CVPR 2016]
  - →画像特徴量の段階でRNNに渡すより高性能!



[Wu+, CVPR 2016]



[You+, CVPR 2016]

• 深層学習以前のアプローチとより類似

# 画像認識分野とNLPとの融合

#### • 2分野が融合して新たに生まれたものの例:

- アテンションモデルの利用 [Xu+, ICML 2015]



A woman is throwing a frisbee in a park.



A dog is standing on a hardwood floor.

#### - 画像+キャプションから注視モデルも学習!





















water

# NLPと画像理解の発展

# 現在の展開:精度の発展

#### • 画像認識

InceptionモデルやResNetなど、より高精度なCNN

#### • 自然言語処理

画像認識側が完璧になったと仮定した文生成 [Gupta+Mannem, ICONIP 2012][Elliott+Keller, EMNLP 2013][Yatskar+, \*Sem 2014][Yao+, ICLR workshop 2016]

#### • 機械学習

変分自己符号化器の利用 [Pu+, NIPS 2017]



# 現在の展開:問題の発展

#### より細かいキャプション生成

[Lin+, BMVC 2015] [Johnson+, CVPR 2016]



# 現在の展開:問題の発展

#### アルバムのような系列画像にキャプション生成

[Park+Kim, NIPS 2015][Huang+, NAACL 2016]



The family got together for delicious a cookout.



They had a lot of food.



The dog was happy to be there. on the



They had a great time beach.



They even had a swim in the water.

# 現在の展開:問題の発展

#### 感性語Sentiment Termを重視したキャプション生成

[Mathews+, AAAI 2016][Andrew+, BMVC 2016]←Ours!

ニュートラルな文



This is a dog resting on a computer.

A white shaggy beautiful dog laying its head on top of a computer keyboard.

ポジティブな文 (生成した例)

A motorcycle parked behind a truck on a green field.

A beat up, rusty motorcycle on unmowed grass by a truck and trailer.



# 動画キャプション生成

[Andrew+, ICIP 2016]



A man is holding a box of doughnuts. Then he and a woman are standing next each other. Then she is holding a plate of food.

# 他言語化・キャプション翻訳

[Hitschler+, ACL 2016]





A pole with two lights for drivers. (英語)

Ein Masten mit zwei Ampeln fur Autofahrer. (独語)

# キャプションからの画像生成

[Zhang+, 2016]

This bird is blue with white and has a very short beak.

(この鳥は白の入った青色 で、とても短いくちばし をもっています。)

This flower is white and yellow in color, with petals that are wavy and smooth.

(この花は白と黄色で、波 打った滑らかな花びらを もっています。)



# ビジュアル質問応答









What vegetable is the dog chewing on?
MCB: carrot

MCB: carrot GT: carrot

What kind of dog is this? MCB: husky GT: husky

What kind of flooring does the room have?
MCB: carpet





GT: carpet

What color is the traffic light?

MCB: green GT: green

Is this an urban area?
MCB: yes
GT: yes

Where are the buildings? MCB: in background GT: on left

# 第11回の内容と目標

- 1. 座学 NLPと画像理解
  - LSTMとword2vec (SGNS)の復習
  - 二ユーラル機械翻訳とアテンション
  - 画像キャプション生成
- 2. 演習 アテンションを用いた機械翻訳 モデルの実装
- 3. 演習 アテンションを用いたキャプション 生成モデルの実装
- 4. 座学 NLPと画像理解の発展
  - 画像キャプション生成やその他の課題へ

# 第9回~第11回の内容と目標

#### • 基礎:

系列データの理解/生成に用いられる Recurrent Neural Networks (RNNs) の理解

#### • 応用:

自然言語処理や画像+言語融合分野の理解

Chap. 9 RNN

Chap. 10 Long Short-Term Memory (LSTM) 自然言語処理 (NLP)

Chap. 11 NLPと画像理解