Simplex Solver

October 20, 2023

Problem

Given the following linear system and objective function, find the optimal solution.

```
 \min(x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_10 + x_11 + x_12 + x_13 + x_14 + x_15 + x_16 + x_17 + x_18 +
```

Solution

Add slack variables to turn all inequalities to equalities.

```
\begin{cases} y_1 - y_2 + y_3 - y_4 + y_5 - y_6 + s_1 = 1 \\ 2y_1 - 5y_2 + 2y_3 - 5y_4 + 2y_5 - 5y_6 + s_2 = 1 \\ -y_1 + 2y_2 - y_3 + 2y_4 - y_5 + 2y_6 + s_3 = 1 \\ -y_1 + 3y_2 - y_3 + 3y_4 - y_5 + 3y_6 + s_4 = 1 \end{cases}
10y_1 - 6y_2 + 10y_3 - 6y_4 + 10y_5 - 6y_6 + s_5 = 1 \\ -7y_1 - 7y_2 - 7y_3 - 7y_4 - 7y_5 - 7y_6 + s_6 = 1 \\ -10y_1 + 7y_2 - 10y_3 + 7y_4 - 10y_5 + 7y_6 + s_7 = 1 \\ -2y_1 - 8y_2 - 2y_3 - 8y_4 - 2y_5 - 8y_6 + s_8 = 1 \\ -3y_1 + 8y_2 - 3y_3 + 8y_4 - 3y_5 + 8y_6 + s_9 = 1 \\ -3y_1 + 3y_2 - 3y_3 + 3y_4 - 3y_5 + 3y_6 + s_10 = 1 \\ -9y_1 + 9y_2 - 9y_3 + 9y_4 - 9y_5 + 9y_6 + s_11 = 1 \\ -10y_1 - 10y_2 - 10y_3 - 10y_4 - 10y_5 - 10y_6 + s_12 = 1 \\ -8y_1 + 7y_2 - 8y_3 + 7y_4 - 8y_5 + 7y_6 + s_13 = 1 \\ -4y_1 - 4y_2 - 4y_3 - 4y_4 - 4y_5 - 4y_6 + s_14 = 1 \\ -3y_1 + 10y_2 - 3y_3 + 10y_4 - 3y_5 + 10y_6 + s_15 = 1 \\ 6y_1 + 7y_2 + 6y_3 + 7y_4 + 6y_5 + 7y_6 + s_16 = 1 \end{cases}
```

Create the initial tableau of the new linear system.

_	_																				
	y_1	y_2	y_3	y_4	y_5	y_6	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8	s_9	s_10	s_11	s_12	s_13	s_14	s_1
1	1	-1	1	-1	1	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	2	-5	2	-5	2	-5	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
-	-1	2	-1	2	-1	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
1	-1	3	-1	3	-1	3	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1	10	-6	10	-6	10	-6	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	-7	-7	-7	-7	-7	-7	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	-10	7	-10	7	-10	7	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	-2	-8	-2	-8	-2	-8	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1	-3	8	-3	8	-3	8	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	-3	3	-3	3	-3	3	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	-9	9	-9	9	-9	9	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
1	-10	-10	-10	-10	-10	-10	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1	-8	7	-8	7	-8	7	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
1	-4	-4	-4	-4	-4	-4	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	-3	10	-3	10	-3	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	6	7	6	7	6	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	-1	-1	-3	3	-4	-8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is y_6 and the departing variable is s_15 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

Γ	y_1	y_2	y_3	y_4	y_5	y_6	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8	s_9	s_10	s_11	s_12	s_13	s_1
	7/10	0	7/10	0	7/10	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	1/2	0	1/2	0	1/2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	-2/5	0	-2/5	0	-2/5	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	-1/10	0	-1/10	0	-1/10	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	41/5	0	41/5	0	41/5	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	-91/10	0	-91/10	0	-91/10	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	-79/10	0	-79/10	0	-79/10	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	-22/5	0	-22/5	0	-22/5	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	-3/5	0	-3/5	0	-3/5	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	-21/10	0	-21/10	0	-21/10	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	-63/10	0	-63/10	0	-63/10	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	-13	0	-13	0	-13	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	-59/10	0	-59/10	0	-59/10	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	-26/5	0	-26/5	0	-26/5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	-3/10	1	-3/10	1	-3/10	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	81/10	0	81/10	0	81/10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ĺ	-17/5	7	-27/5	11	-32/5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is y_5 and the departing variable is s_16 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

$\int y_1$	y_2	y_3	y_4	y_5	y_6	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8	s_9	s_10	s_11	s_12	s_13	s_14	s_15	
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	13/81	_
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	44/81	_
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	-19/81	4
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	-25/81	1
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	106/81	-8
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-7/81	9
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	-112/81	79
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	34/81	4^{4}
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	-23/27	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	-13/27	7
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	-13/9	,
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	-10/81	13
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	-98/81	59
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-4/81	5:
0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2/27	1
1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-7/81	10
3	7	1	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20/81	64

There are no negative elements in the bottom row, so we know the solution is optimal. Thus, the solution is:

$$s_1 = \frac{29}{27}, s_10 = \frac{7}{9}, s_11 = \frac{1}{3}, s_12 = \frac{67}{27}, s_13 = \frac{14}{27}, s_14 = \frac{43}{27}, s_15 = 0, s_16 = 0, s_2 = \frac{40}{27}, s_3 = \frac{22}{27}, s_4 = \frac{19}{27}, s_5 = \frac{35}{27}, s_{11} = \frac{1}{27}, s_{12} = \frac{1}{27}, s_{13} = \frac{14}{27}, s_{14} = \frac{43}{27}, s_{15} = 0, s_{16} = 0, s_2 = \frac{40}{27}, s_3 = \frac{22}{27}, s_4 = \frac{19}{27}, s_5 = \frac{35}{27}, s_{15} = \frac{35}{27}, s_{$$