		Tipo de Prova Teste 1	Ano letivo 2016/2017	Data 07-04-2017
P.PORTO	SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Segurança Informática de Redes de	Hora 13:10	
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno: ____

Nottie								
Questão	1	2	3	4	5	6	7	TOTAL
Cotação	1,4+1,4+1,4	1,6	1,2	1,6	1,4+1,4	1,6+1,6+1+0,9+1	2,5	20

- **1.** Considere o conjunto $A = \{x, \{\emptyset\}, \{y\}\}, \text{com } x, y \in \mathbb{N}.$
 - a) Determine $\mathcal{P}(A)$ e $\#\mathcal{P}(\mathcal{P}(A))$.
 - b) Complete os espaço por forma a obter afirmações verdadeiras:

$$\emptyset$$
 $\mathcal{P}(A)$ $\{\emptyset, y\}$ $\mathcal{P}(A)$ $\{x, \{y\}\}$ A $\{\{y\}\}$ $\mathcal{P}(A)$

c) Diga, justificando, se a função $f: \{x, \{y\}\} \longrightarrow \mathcal{P}(A)$, tal que $f(a) = \{a\} \cap \{\emptyset, a\}$ é injetiva, sobrejetiva ou bijetiva.

2. Considere o conjunto universo $U = \{x \in \mathbb{Z}^+ : [x+0,1] < 12\}$ e os seus subconjuntos: $A = \{x \in U : 4 \le x^3 \le 10\}, \ B = \{x \in U : x \text{ \'e divisor de 3}\}$ e $C = \{x : x \text{ \'e positivo e } x \text{ m\'ultiplo de 4}\}.$ Determine $C \times \overline{A \cap B}$ e $A \oplus (B \cup C)$.

3. Determine:

$$\sum_{k=0}^{2} \left(\prod_{j=10}^{11} (-1)^{j} \times k \right) - \sum_{i=21}^{501} 3$$

ESTG-PR05-Mod013V2 Página 1 de4

		Tipo de Prova Teste 1	Ano letivo 2016/2017	Data 07-04-2017
P.PORTO		^{Curso} Licenciatura em Segurança Informática de R Computadores	edes de	Hora 13:10
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

4. Considere a fórmula de recorrência dada por:

$$\begin{cases} G(1) = 2 \\ G(n) = 5 G(n-1) + 1, & n > 1 \end{cases}$$

Recorrendo ao algoritmo EGV (Expand, Guess, Verify), encontre a fórmula fechada.

5. Considere as seguintes relações binárias definidas sobre $\{a, b, c, d\}$:

$$R = \{(b,b),(a,c),(b,d)\} \in S = \{(a,a),(b,b),(c,c),(c,a),(a,c),(a,d),(d,d),(d,a)\}.$$

a) Determine, caso seja possível $(R^{-1} \cap S) \circ S$ e reflexivo(R).

b) Justifique se alguma das relações, *R* ou *S*, é de equivalência e indique a classe de equivalência do elemento *d*.

ESTG-PR05-Mod013V2 Página 2

	Tipo de Prova Teste 1 Ano letivo 2016/2017		Data 07-04-2017
P. PORTO ESCOLA SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Segurança Informática de R Computadores	edes de	Hora 13:10
E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno:	Nome:			
---------------	-------	--	--	--

6.	Considere	os grafos	seguintes:

 $G_1: V(G_1) = \{1, 2, 3, 4, 5\} \in E(G_1) = \{(1, 2), (1, 4), (1, 5), (2, 3), (3, 4)\}$

 \vec{G}_2 : V (\vec{G}_2) = {A, B, C, D, E} e E(\vec{G}_2) = {(A, B), (B, C), (B, E), (C, B), (C, C), (C, D), (D, E), (E, E), (E, D), (E, A)} a) Represente-os graficamente e indique as suas matrizes de adjacências.

b) Usando a matriz de adjacências determinada na alínea anterior, calcule os graus de cada vértice.

c) Para o grafo \vec{G}_2 calcule o número de caminhos de comprimento 4 do segundo para o primeiro vértice.

d) Algum dos grafos é fortemente conexo? Justifique.

e) O grafo G_1 é semi-Euleriano? Justifique.

ESTG-PR05-Mod013V2 Página 3

		Tipo de Prova Teste 1	Ano letivo 2016/2017	Data 07-04-2017
P. PORTO ESCOLA SUPERIOR DE TECNOL	SUPERIOR DE TECNOLOGIA	Licenciatura em Segurança informatica de Redes de		Hora 13:10
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

Iteração	Vértice	Caminhos / Custo	Caminhos mínimos

Bom Trabalho Eliana Costa e Silva