Álgebra Lineal - Clase 18

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- Producto interno.
- Norma y distancia.
- Ortogonalidad.
- Matriz de un producto interno.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 8.

Producto interno

En \mathbb{R}^n , tenemos el producto escalar o producto interno canónico:

$$(x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = x_1y_1 + x_2y_2 + \cdots + x_ny_n$$

Nociones geométricas asociadas:

- ▶ Ortogonalidad: $v, w \in \mathbb{R}^n$ son ortogonales si $v \cdot w = 0$
- ▶ Distancia: dados P y Q en \mathbb{R}^n , $d(P,Q) = ||Q P|| = \sqrt{(Q P) \cdot (Q P)}$.

Objetivo: generalizarlo a otros espacios vectoriales sobre $\mathbb R$ o $\mathbb C.$

En todo lo que sigue, V será un e.v. sobre $\mathbb R$ o sobre $\mathbb C$.

Definición.

Un producto interno sobre V es una función $\Phi: V \times V \to \mathbb{R}$ (respectivamente \mathbb{C}) que cumple:

- i) $\forall \alpha \in \mathbb{R}$ (resp. \mathbb{C}), y $v, w, z \in V$

 - $\Phi(\alpha.v,z) = \alpha.\Phi(v,z)$
- ii) $\Phi(v, w) = \overline{\Phi(w, v)} \quad \forall v, w \in V.$ $(\Rightarrow \forall v \in V, \Phi(v, v) = \overline{\Phi(v, v)}, \text{ es decir, } \Phi(v, v) \in \mathbb{R}.)$
- iii) $\Phi(v, v) > 0$ si $v \neq 0$.

A un espacio vectorial real (resp. complejo) provisto de un producto interno se lo llama un espacio euclídeo (resp. espacio unitario).

De i) y ii) se deduce que $\forall \alpha \in \mathbb{R}$ (resp. \mathbb{C}), y $v, w, z \in V$ vale:

- $\Phi(v, w + z) = \overline{\Phi(w + z, v)} = \overline{\Phi(w, v) + \Phi(z, v)} = \overline{\Phi(w, v) + \Phi(z, v)} = \overline{\Phi(w, v) + \Phi(z, v)} = \Phi(v, w) + \Phi(v, z).$
- $\Phi(v,\alpha.w) = \overline{\alpha}.\Phi(v,w).$

Ejemplos.

Producto interno canónico en \mathbb{R}^n :

onico en
$$\mathbb R$$

$$\Phi((x_1,\ldots,x_n),(y_1,\ldots,y_n))=$$

Producto interno canónico en Cⁿ:

$$\Phi((x_1,\ldots,x_n),(y_1,\ldots,y_n))=x_1y_1+\cdots+x_ny_n.$$

en
$$\mathbb{R}^n$$
:

$$) = x_1 y_1 + \cdots +$$

 $\Phi((x_1,\ldots,x_n),(y_1,\ldots,y_n))=x_1\overline{y}_1+\cdots+x_n\overline{y}_n.$

 $ightharpoonup \Phi: \mathbb{C}^{m\times n} \times \mathbb{C}^{m\times n} \to \mathbb{C}, \ \Phi(A,B) = \operatorname{tr}(A.B^*),$ donde $B^* \in \mathbb{C}^{n \times m}$ es la matriz transpuesta conjugada de B,

es decir, $(B^*)_{ii} = \overline{B_{ii}}$.

▶ Si $a < b \in \mathbb{R}$ y $C[a, b] = \{f : [a, b] \rightarrow \mathbb{R} / f \text{ continua}\}$,

 $\Phi: C[a,b] \times C[a,b] \to \mathbb{R}, \ \Phi(f,g) = \int_a^b f(x)g(x) \ dx.$

$$\Phi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \Phi((x_1, x_2), (y_1, y_2)) = x_1 y_1 - x_1 y_2 - x_2 y_1 + k. x_2 y_2$$

es un producto interno $\iff k > 1$.

i) y ii) valen $\forall k \in \mathbb{R}$. Veamos cuándo vale iii).

$$\Phi((x_1, x_2), (x_1, x_2)) = x_1^2 - 2x_1x_2 + kx_2^2
= x_1^2 - 2x_1x_2 + x_2^2 + (k-1)x_2^2
= \underbrace{(x_1 - x_2)^2}_{\geq 0} + (k-1)\underbrace{x_2^2}_{\geq 0}$$

Si
$$k > 1$$
, $\Phi(v, v) \ge 0 \ \forall v \in \mathbb{R}^2$, y vale $\Phi(v, v) = 0 \iff x_1 - x_2 = 0 \ y \ x_2 = 0 \iff x_1 = x_2 = 0$. $\Rightarrow \Phi(v, v) > 0 \ \forall v \ne 0$.

Si
$$k \le 1$$
, para $v = (1,1)$ vale $\Phi(v,v) = k-1 \le 0$
 $\Rightarrow \Phi$ no es un producto interno.

Notación.

Si Φ es un producto interno en un \mathbb{R} ó \mathbb{C} -e.v. V, escribiremos $\Phi(v,w)=\langle v,w\rangle$ y diremos que (V,\langle,\rangle) es un e.v. con producto interno.

Norma de un vector

Definición.

Sea (V, \langle, \rangle) un e.v. con producto interno y sea $v \in V$. Se define la norma de v asociada a \langle, \rangle como $||v|| = \langle v, v \rangle^{\frac{1}{2}}$.

Propiedades de la norma.

- i) $\forall v \in V$, $||v|| \ge 0$, y vale ||v|| = 0 si y sólo si v = 0.
- ii) $\forall \alpha \in \mathbb{R} \text{ (resp. } \mathbb{C}) \text{ y } v \in V, \|\alpha.v\| = |\alpha|.\|v\|.$
- iii) Desigualdad de Cauchy-Schwartz: $\forall v, w \in V, |\langle v, w \rangle| \leq ||v||. ||w||.$
- iv) Designaldad triangular: $\forall v, w \in V, \|v + w\| \le \|v\| + \|w\|.$

Demostración.

- i) Por la propiedad iii) de p.i.
- ii) $\|\alpha \cdot v\|^2 = \langle \alpha \cdot v, \alpha \cdot v \rangle = \alpha \cdot \overline{\alpha} \cdot \langle v, v \rangle = |\alpha|^2 \|v\|^2$.

iii) Desigualdad de Cauchy-Schwartz:

 $\forall v, w \in V, |\langle v, w \rangle| < ||v||. ||w||.$

Si w = 0 \checkmark . Si $w \neq 0$.

$$0 \leq \left\langle v - \frac{\langle v, w \rangle}{\|w\|^2} w, v - \frac{\langle v, w \rangle}{\|w\|^2} w \right\rangle$$

$$= \left\langle v, v - \frac{\langle v, w \rangle}{\|w\|^2} w \right\rangle - \frac{\langle v, w \rangle}{\|w\|^2} \left\langle w, v - \frac{\langle v, w \rangle}{\|w\|^2} w \right\rangle$$

$$=\underbrace{\langle v,v\rangle}_{=\|v\|^2} - \frac{\overline{\langle v,w\rangle}}{\|w\|^2} \langle v,w\rangle - \frac{\langle v,w\rangle}{\|w\|^2} \underbrace{\langle w,v\rangle}_{=\overline{\langle v,w\rangle}} + \frac{\langle v,w\rangle}{\|w\|^2} \frac{\overline{\langle v,w\rangle}}{\|w\|^2} \underbrace{\langle w,w\rangle}_{=\|w\|^2}$$

$$= \|v\|^2 - \frac{|\langle v, w \rangle|^2}{\|w\|^2}$$

$$\Rightarrow |\langle v, w \rangle|^2 \leq ||v||^2 ||w||^2$$
.

iv) Designaldad triangular: $\forall v, w \in V$, $||v + w|| \le ||v|| + ||w||$.

$$||v + w||^{2} = \langle v + w, v + w \rangle$$

$$= \langle v, v \rangle + \langle v, w \rangle + \overline{\langle v, w \rangle} + \langle w, w \rangle$$

$$= ||v||^{2} + 2 \operatorname{Re}\langle v, w \rangle + ||w||^{2}$$

$$\leq ||v||^{2} + 2 ||\langle v, w \rangle| + ||w||^{2}$$

$$\leq ||v||^{2} + 2 ||v|| ||w|| + ||w||^{2}$$

$$= (||v|| + ||w||)^{2}.$$

$$\Rightarrow ||v + w|| \leq ||v|| + ||w||.$$

Identidades de polarización.

- i) Si (V, \langle, \rangle) es un \mathbb{R} -e.v. con p.i., $\forall v, w \in V$, $\langle v, w \rangle = \frac{1}{4} \|v + w\|^2 \frac{1}{4} \|v w\|^2$.
- ii) Si (V, \langle, \rangle) es un \mathbb{C} -e.v. con p.i., $\forall v, w \in V$, $\langle v, w \rangle = \frac{1}{4} \|v + w\|^2 \frac{1}{4} \|v w\|^2 + \frac{i}{4} \|v + iw\|^2 \frac{i}{4} \|v iw\|^2$.

Distancia

Definición.

Sea (V, \langle, \rangle) un \mathbb{R} -(o \mathbb{C} -) e.v. con p.i. Se define $d: V \times V \to \mathbb{R}$ como d(v, w) = ||v - w||.

Dados $v, w \in V$ se dice que d(v, w) es la distancia entre v y w.

Propiedades.

- i) $d(v, w) \ge 0 \ \forall v, w \in V$.
- ii) $d(v, w) = 0 \iff v = w$.
- iii) $d(v, w) = d(w, v) \forall v, w \in V$.
- iv) $d(v,z) \leq d(v,w) + d(w,z) \ \forall v,w,z \in V.$

Ángulo y ortogonalidad

Sea (V, \langle, \rangle) un espacio euclídeo y sean $v, w \in V$ no nulos. $|\langle v, w \rangle| \leq ||v||.||w||$ (Cauchy-Schwartz) $\Rightarrow -1 \leq \frac{\langle v, w \rangle}{||v||.||w||} \leq 1$.

Definición.

Se define el ángulo entre v y w no nulos como el único $\alpha \in [0,\pi]$ tal que $\cos(\alpha) = \frac{\langle v,w \rangle}{\|v\|.\|w\|}$.

Teorema del coseno: si α es el ángulo entre v y w, entonces

$$||v + w||^2 = \langle v + w, v + w \rangle = ||v||^2 + 2\langle v, w \rangle + ||w||^2$$

= $||v||^2 + 2\cos(\alpha)||v||||w|| + ||w||^2$.

Definición.

Sea (V,\langle,\rangle) un $\mathbb R$ o $\mathbb C$ -e.v. con p.i.

 $v,w\in V$ se dicen ortogonales (o perpendiculares) si $\langle v,w\rangle=0$.

 $v, w \in V$ ortogonales $\Rightarrow \|v + w\|^2 = \|v\|^2 + \|w\|^2$ (Pitágoras).

Matriz de un producto interno

Definición.

Sea (V, \langle, \rangle) un \mathbb{R} -(ó \mathbb{C} -) e.v. de dimensión finita con p.i. y sea $B = \{v_1, \dots, v_n\}$ una base de V.

Se define la matriz del producto interno \langle,\rangle en la base B como la matriz $|\langle,\rangle|_B\in\mathbb{R}^{n\times n}$ (resp. $\mathbb{C}^{n\times n}$) tal que

$$(|\langle,\rangle|_B)_{ij} = \langle v_i,v_j\rangle \ \forall 1 \leq i,j \leq n.$$

Ejemplos.

- ▶ Si \langle , \rangle es el p.i. canónico en \mathbb{R}^n (ó \mathbb{C}^n) y E es la base canónica, $|\langle , \rangle|_E = I_n$.
- Para el p.i. definido en \mathbb{R}^2 por $\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 x_1 y_2 x_2 y_1 + k x_2 y_2$ (k > 1), $|\langle , \rangle|_E = \begin{pmatrix} 1 & -1 \\ -1 & k \end{pmatrix}.$

Observación.

Si A es la matriz de un producto interno, entonces $A_{ij} = \overline{A_{ji}} \ \forall i,j.$

No vale la vuelta: $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ cumple que $A_{ij} = \overline{A}_{ji} \ \forall i,j.$

Si fuera la matriz de un producto interno en una base $B = \{v, w\}$, entonces $\langle v, v \rangle = A_{11} = 0$. Abs!

Proposición.

Sea (V, \langle, \rangle) un \mathbb{R} o \mathbb{C} -e.v. de dimensión finita con p.i. Sea B una base de V. Para cada $v, w \in V$, $\langle v, w \rangle = (v)_B$, $|\langle, \rangle|_B$, $\overline{(w)_B^t}$.

Demostración.

Si $B = \{v_1, ..., v_n\}, (v)_B = (\alpha_1, ..., \alpha_n), (w)_B = (\beta_1, ..., \beta_n),$

$$\langle v, w \rangle = \left\langle \sum_{i=1}^{n} \alpha_{i} v_{i}, \sum_{i=1}^{n} \beta_{j} v_{j} \right\rangle = \sum_{i=1}^{n} \alpha_{i} \left\langle v_{i}, \sum_{i=1}^{n} \beta_{j} v_{j} \right\rangle = \sum_{i=1}^{n} \alpha_{i} \left(\sum_{i=1}^{n} \overline{\beta_{j}} \langle v_{i}, v_{j} \rangle \right).$$

$$(v)_{B}. |\langle,\rangle|_{B}. \overline{(w)_{B}^{t}} = \sum_{i=1}^{n} \alpha_{i} \left(|\langle,\rangle|_{B} \overline{(w)_{B}^{t}} \right)_{i1} = \sum_{i=1}^{n} \alpha_{i} \left(\sum_{i=1}^{n} \langle v_{i}, v_{j} \rangle \overline{\beta_{j}} \right).$$

$$\Rightarrow \langle v, w \rangle = (v)_B \cdot |\langle, \rangle|_B \cdot \overline{(w)_B^t}.$$

Conjuntos ortogonales y ortonormales

Definición.

Sea (V, \langle, \rangle) un e.v. con p.i. Se dice que $\{v_1, \ldots, v_r\} \subseteq V$ es un conjunto ortogonal si $\langle v_i, v_j \rangle = 0 \ \forall i \neq j$. El conjunto se dice ortonormal si es ortogonal y $\|v_i\| = 1 \ \forall 1 \leq i \leq r$.

Ejemplos.

- 1. En \mathbb{R}^n (o \mathbb{C}^n) con el p.i. canónico, la base canónica es un conjunto ortonormal:
 - $ightharpoonup \langle e_i, e_i \rangle = 0 \text{ si } i \neq j.$
 - $\|e_i\|^2 = \langle e_i, e_i \rangle = 1 \ \forall 1 \leq i \leq n.$
- 2. En \mathbb{R}^2 con el p.i. canónico, $\{(1,1),(1,-1)\}$ es un conjunto ortogonal, pero no es ortonormal:
 - $\langle (1,1), (1,-1) \rangle = 0.$
 - $\|(1,1)\| = \sqrt{2} \neq 1 \text{ y } \|(1,-1)\| = \sqrt{2} \neq 1.$

Normalizando los vectores, obtenemos un conjunto ortonormal: $\left\{\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}}\right)\right\}$.

Observación.

Si (V, \langle, \rangle) es un e.v. de dimensión n con p.i. y B una base de V,

- ▶ B base ortogonal de V para $\langle , \rangle \iff |\langle , \rangle|_B$ diagonal.
- ▶ B base ortonormal de V para $\langle , \rangle \iff |\langle , \rangle|_B = I_n$.

Si $B = \{v_1, \dots, v_n\}$ es una base ortonormal (bon) de V,

$$v = \sum_{i=1}^{n} \alpha_i v_i$$
 y $w = \sum_{i=1}^{n} \beta_i v_i$, entonces:

$$\langle v, w \rangle = \sum_{i=1}^{n} \frac{\alpha_i}{\alpha_i} \overline{\beta_i}$$
 y $||v|| = \left(\sum_{i=1}^{n} |\alpha_i|^2\right)^{\frac{1}{2}}$.

Proposición.

Sea (V, \langle, \rangle) un e.v. con p.i. Si $\{v_1, \ldots, v_r\} \subset V$ es ortogonal y $v_i \neq 0 \ \forall 1 \leq i \leq r$, entonces $\{v_1, \ldots, v_r\}$ es l.i.

Demostración.

Supongamos que $\sum_{i=1}^{r} \alpha_i v_i = 0$. Para cada $1 \leq j \leq r$,

$$0 = \langle 0, v_j \rangle = \left\langle \sum_{i=1}^r \alpha_i v_i, v_j \right\rangle = \sum_{i=1}^r \alpha_i \langle v_i, v_j \rangle = \alpha_j. \|v_j\|^2$$

$$v_i \neq 0 \Rightarrow \|v_i\| \neq 0 \Rightarrow \alpha_i = 0.$$

Proposición.

Sea (V, \langle, \rangle) un e.v. con p.i.

Si
$$\{v_1, \ldots, v_r\} \subseteq V$$
 es un conjunto ortogonal tal que $v_i \neq 0$

$$\forall 1 \leq i \leq r \text{ y } v \in \langle v_1, \dots, v_r \rangle$$
, entonces $v = \sum_{i=1}^r \frac{\langle v, v_i \rangle}{\|v_i\|^2} \cdot v_i$.

En particular, si $\{v_1, \ldots, v_r\}$ es un conjunto ortonormal y $v \in \langle v_1, \ldots, v_r \rangle$, entonces $v = \sum_{i=1}^r \langle v, v_j \rangle . v_j$.

Demostración.

Si
$$v = \sum_{i=1}^{r} \alpha_i v_i$$
, para cada $1 \le j \le r$,

$$\langle \mathbf{v}, \mathbf{v}_j \rangle = \left\langle \sum_{i=1}^r \alpha_i \mathbf{v}_i, \mathbf{v}_j \right\rangle = \sum_{i=1}^r \alpha_i \langle \mathbf{v}_i, \mathbf{v}_j \rangle = \alpha_j \langle \mathbf{v}_j, \mathbf{v}_j \rangle = \alpha_j \|\mathbf{v}_j\|^2$$

$$v_j \neq 0 \Rightarrow \alpha_j = \frac{\langle v, v_j \rangle}{\|v_i\|^2}.$$

Corolario.

Sea (V, \langle , \rangle) un e.v. con p.i. de dimensión n y sea

$$B = \{v_1, \dots, v_n\} \subset V.$$

▶ Si B es una base ortogonal de V, entonces $\forall v \in V$,

Si B es una base ortogonal de V, entonces
$$\forall v \in V$$
, $(v)_B = \left(\frac{\langle v, v_1 \rangle}{\|v_1\|^2}, \dots, \frac{\langle v, v_n \rangle}{\|v_n\|^2}\right)$.

Entonces,
$$\forall v, w \in V$$
, $\langle v, w \rangle = \sum_{i=1}^{n} \frac{\langle v, v_i \rangle . \overline{\langle w, v_i \rangle}}{\|v_i\|^2}$.

▶ Si B es una base ortonormal de V, entonces $\forall v \in V$, $(v)_B = (\langle v, v_1 \rangle, \dots, \langle v, v_n \rangle).$

$$(v)_B = (\langle v, v_1 \rangle, \dots, \langle v, v_n \rangle).$$

Entonces, $\forall v, w \in V$, $\langle v, w \rangle = \sum_{i=1}^n \langle v, v_i \rangle. \overline{\langle w, v_i \rangle}.$

$$\begin{array}{l} (V)_B = (\langle V, V_1 \rangle, \ldots, \langle V, V_n \rangle). \\ \\ \text{Entonces, } \forall v, w \in V, \ \langle v, w \rangle = \sum_{i=1}^n \langle v, v_i \rangle. \overline{\langle w, v_i \rangle}. \end{array}$$