Môn: Cơ Sở Dữ Liệu

 $\ensuremath{\mathrm{DH}}$ Sư phạm TPHCM

Nội dung

- Bài 1: Các khái niệm của một hệ CSDL
- Bài 2: Các mô hình CSDL
- Bài 3: Mô hình dữ liệu quan hệ (của Codd)
- Bài 4: Ngôn ngữ đại số quan hệ
- Bài 5: Ngôn ngữ SQL
- Bài 6: Ngôn ngữ tân từ
- Bài 7: Ràng buộc toàn vẹn trong một CSDL
- Bài 8: Tối ưu hóa câu hỏi bằng đại số quan hệ

Bài 1: Các khái niệm của một hệ CSDL

ĐH Sư phạm TPHCM

3

Bài 1: Các khái niệm của một hệ CSDL

- 1. Giới thiệu
- 2. Hệ thống tập tin (File System)
- 3. Định nghĩa một CSDL
- 4. Các đối tượng sử dụng CSDL
- 5. Hệ quản trị CSDL
- 6. Các mức của một CSDL

1. Giới thiệu

• Tại sao cần phải có một cơ sở dữ liệu?

ĐH Sư phạm TPHCM

5

2. Hệ thống tập tin

- Là tập hợp các tập tin riêng lẻ phục vụ cho một mục đích của đơn vị sử dụng.
- Ưu điểm:
 - Triển khai ứng dụng nhanh
 - Khả năng đáp ứng nhanh chóng, kịp thời (vì chỉ phục vụ cho mục đích hạn hẹp)
- Khuyết điểm:
 - Trùng lắp dữ liệu →lãng phí, dữ liệu không nhất quán
 - Chi phí cao
 - Chia sẽ dữ liệu kém

3. Cơ sở dữ liệu (1)

• Định nghĩa:

Cơ sở dữ liệu là một hệ thống các thông tin có cấu trúc, được lưu trữ trên các thiết bị lưu trữ nhằm thỏa mãn yêu cầu khai thác thông tin đồng thời của nhiều người sử dụng hay nhiều chương trình ứng dụng với những mục đích khác nhau

ĐH Sư phạm TPHCM

-

3. Cơ sở dữ liệu (2)

• Ưu điểm:

- Giảm trùng lắp thông tin xuống mức thấp nhất, đảm bảo tính nhất quán và toàn vẹn dữ liệu.
- Đảm bảo dữ liệu được truy xuất theo nhiều cách khác nhau.
- Khả năng chia sẽ thông tin cho nhiều người, nhiều ứng dụng khác nhau.

ĐH Sư phạm TPHCM

3. Cơ sở dữ liệu

- Những vấn đề cần giải quyết:
 - Tính chủ quyền dữ liệu.
 - Tính bảo mật và quyền khai thác thông tin của người sử dụng
 - Tranh chấp dữ liệu
 - Đảm bảo dữ liệu khi có sự cố

ĐH Sư phạm TPHCM

(

4. Các đối tượng sử dụng

- Người sử dụng CSDL không chuyên về lĩnh vực tin học và CSDL -> cần công cụ để họ có thể khai thác CSDL khi cần. (End User)
- Chuyên viên tin học xây dựng các ứng dụng để phục vụ cho các mục đích quản lý. (Application User)
- Quản trị CSDL: tổ chức CSDL, bảo mật, cấp quyền, sao lưu, phục hồi dữ liệu, giải quyết các tranh chấp dữ liệu ...(Database Administrator)

ĐH Sư phạm TPHCM

5. Hệ quản trị cơ sở dữ liệu (1)

- Hệ quản trị cơ sở dữ liệu (DBMS DataBase Management System) là hệ thống các phần mềm hỗ trợ tích cực cho các nhà phân tích, thiết kế và khai thác CSDL.
- Các DBMS thông dụng: Visual FoxPro, Microsoft Access, SQL Server, DB2, Oracle ... hầu hết các DBMS hiện nay đều dựa trên mô hình quan hệ.

ĐH Sư phạm TPHCM

11

5. Hệ quản trị cơ sở dữ liệu (2)

- Một DBMS phải có:
 - Ngôn ngữ giao tiếp giữa người sử dụng và CSDL
 - Từ điển dữ liệu (Data Dictionary)
 - Có biện pháp bảo mật khi có yêu cầu
 - Cơ chế giải quyết tranh chấp dữ liệu
 - Có cơ chế sao lưu (backup), phục hồi (restore)
 - Đảm bảo tính độc lập giữa dữ liệu và chương trình

ĐH Sư phạm TPHCM

5. Hệ quản trị cơ sở dữ liệu (3)

Ngôn ngữ giao tiếp:

- Ngôn ngữ mô tả dữ liệu (DDL Data Definition Language): cho phép khai báo cấu trúc CSDL, các mối liên hệ của dữ liệu, các quy định, ràng buộc dữ liệu.
- Ngôn ngữ thao tác dữ liệu (DML Data Manipulation Language): cho phép thực hiện thao tác thêm, xóa, sửa dữ liệu.
- Ngôn ngữ truy vấn có cấu trúc (SQL Structured Query Language): cho phép người khai thác sử dụng để truy vấn thông tin cần thiết.
- Ngôn ngữ quản lý dữ liệu (DCL Data Control Language) cho phép thay đổi cấu trúc bảng, khai báo bảo mật, cấp quyền cho người sử dụng.

ĐH Sư phạm TPHCM

13

6. Các mức biểu diễn 1 CSDL

- **Mức trong**: (mức vật lý Physical) là mức lưu trữ CSDL (cần giải quyết vấn đề gì? Dữ liệu gì? Lưu trữ như thế nào? ở đâu? Cần các chỉ mục gì? Truy xuất tuần tự hay ngẫu nhiên. Dành cho người quản trị và người sử dụng chuyên môn.
- **Mức quan niệm**: (Conception hay Logical) cần phải lưu trữ bao nhiều loại dữ liệu? là dữ liệu gì? mối quan hệ
- **Mức ngoài**: của người sử dụng và các chương trình ứng dụng

ĐH Sư phạm TPHCM

6. Các mức biểu diễn 1 CSDL

Bài tập tình huống.

- Công ty SMX sử dụng phần mềm kế toán EasyAccount của công ty NVS trên nền hệ quản trị cơ sở dữ liệu SQL Server 2000 để quản lý số sách thu chi. Nhân viên kế toán sử dụng phần mềm này để nhập số liệu kế toán và in ấn các báo cáo đưa cho giám đốc xem. Nhân viên IT của SMX có nhiệm vụ quản lý sao lưu, bảo mật CSDL này trên SQL Server 2000. Lập trình viên của NVS thì dùng DOT.NET để viết ra chương trình EasyAccount.
- Cho biết Kế Toán, Giám Đốc, IT của SMX và lập trình viên của NVS là các loại user nào của CSDL kế toán trên?

Bài 2: Các mô hình dữ liệu

ĐH Sư phạm TPHCM

17

Nội dung

- 1. Giới thiệu
- 2. Mô hình dữ liệu mạng
- 3. Mô hình thực thể mối kết hợp

1. Giới thiệu

Mô hình dữ liệu là sự trừu tượng hóa của môi trường thực, biểu diễn dữ liệu ở mức quan niệm. Giới thiệu một số mô hình như:

- Mô hình dữ liệu mạng
- Mô hình dữ liệu phân cấp
- Mô hình dữ liệu thực thể mối kết hợp
- Mô hình dữ liệu quan hệ
- Mô hình dữ liệu hướng đối tượng

ĐH Sư phạm TPHCM

19

2. Mô hình dữ liệu mạng (1)

- Mô hình dữ liệu mạng (Network Data Model) còn gọi tắt là mô hình mạng hoặc mô hình lưới là mô hình được biểu diễn bởi một đồ thị có hướng.
 - Mẫu tin (record)
 - Loại mẫu tin
 - Loại liên hệ (set type)
 - Bản số

ĐH Sư phạm TPHCM

2. Mô hình dữ liệu mạng (2)

- **Mẫu tin**: mô tả 1 đối tượng trong thế giới thực. ('NV001','Nguyen Lam','Nam','10/10/1970','Dong Nai')
- Loại mẫu tin: là 1 tập các mẫu tin có cùng tính chất. Ví dụ: NHANVIEN

- Ký hiệu:

NHANVIEN

CONGVIEC

- Loại liên hệ: mô tả sự liên kết giữa 1 loại mẫu tin chủ và 1 loại mẫu tin thành viên
 - Ký hiệu:

Tham gia

ĐH Sư phạm TPHCM

21

2. Mô hình dữ liệu mạng (3)

- Bản số: chỉ ra số lượng các mẫu tin tham gia trong mối liên hệ
 - (1:1) (one-to-one): mỗi mẫu tin của loại mẫu tin chủ kết hợp với đúng 1 mẫu tin của loại mẫu tin thành viên.
 - (1:n) (one-to-many): mỗi mẫu tin của loại mẫu tin chủ kết hợp với 1 hay nhiều mẫu tin thành viên.
 - (n:1) (many-to-one): nhiều mẫu tin của loại mẫu tin chủ kết hợp với đúng 1 mẫu tin của loại mẫu tin thành viên.
 - (Recursive): một loại mẫu tin chủ cũng có thể đồng thời là loại mẫu tin thành viên với chính nó. Loại liên hệ này là Đệ quy

2. Mô hình dữ liệu mạng (4)

2. Mô hình dữ liệu mạng (5)

- Mô hình dữ liệu mạng:
 - Tương đối đơn giản
 - Dễ sử dụng
 - Không thích hợp biểu diễn CSDL có quy mô lớn
 - Khả năng diễn đạt ngữ nghĩa kém

Tóm lại

- CSDL và hệ quản trị CSDL là gì?
- Các loại người sử dụng CSDL.
- Ngôn ngữ giao tiếp giữa hệ quản trị CSDL và người dùng (DDL, DML, DCL và SQL)
- Mô hình biểu diễn dữ liệu mô hình mạng

Câu hỏi và Ôn tập

- Liệt kê vai trò của các đối tương sử dụng Cơ Sở Dữ Liệu. Theo bạn đối tượng nào có nhiều quyền nhất đối với cơ sở dữ liệu.
- DBMS là gì cho ví dụ một số DBMS thông dụng.

Câu hỏi và Ôn tập

Kết quả khảo sát hiện trạng hệ thống quản lý nhân sự tiền lương tại một doanh nghiệp thu thập được các thông tin sau:

- Mỗi *nhân viên* có một mã nhân viên duy nhất, và có họ tên, ngày tháng năm sinh và được lãnh lương theo hệ bậc lương của mình. Đồng thời một nhân viên thì chỉ thuộc biên chế của một và chỉ một phòng ban. Ví dụ: Nhân viên tên A có mã số NV1 thuộc biên chế phòng Tổng Hợp (với mã phòng TH) sinh năm 1986 lãnh lương chuyên viên chính.
- Thông tin cần quản lý về phòng ban bao gồm: tên phòng ban, mã phòng ban và số lượng nhân viên và người trưởng phòng. Ví dụ: phòng Tổng Hợp có mã TH, số lượng nhân viên là 5 có trưởng phòng là Nhân Viên A.
- *Mức lương* gồm tên, số tiền và mô tả yêu câu công việc. Ví dụ: Mức lương chuyên viên chính là 2,5 triệu VNĐ, cần tối thiểu 5 năm kinh nghiệm.

Vẽ sơ đồ CSDL quản lý Nhân Sự Tiền Lương nói trên theo mô hình mạng

2. Mô hình dữ liệu mạng (6)

• Bài tập về nhà:

Xây dựng mô hình dữ liệu mạng cho cơ sở dữ liệu quản lý bán hàng trong một siêu thị

3. Mô hình thực thể mối kết hợp

- 3.1 Giới thiệu
- 3.2 Loại thực thể, thực thể
- 3.3 Thuộc tính của loại thực thể
- 3.4 Khoá của loại thực thể
- 3.5 Loại mối kết hợp, mối kết hợp
- 3.6 Thuộc tính của loại mối kết hợp
- 3.7 Bản số
- 3.8 Mô hình ER mở rộng

11/17/08 ĐH Sư phạm TPHCM

3.1 Giới thiệu

- Mô hình thực thể mối kết hợp (Entity-Relationship Model viết tắc ER) được CHEN giới thiệu năm 1976.
- Mô hình ER được sử dụng nhiều trong thiết kế dữ liệu ở mức quan niệm.

11/17/08 DH Sur phạm TPHCM 2

3.2 Loại thực thể

- Định nghĩa: loại thực thể (Entity Type) là những loại đối tượng hay sự vật của thế giới thực tồn tại cụ thể cần được quản lý.
- Ví du: HOCVIEN, LOP, MONHOC, ...
- Ký hiệu:

HOCVIEN

LOP

11/17/08 ĐH Sư phạm TPHCM 3

3.2 Thực thể (Entity)

- Định nghĩa: thực thể là một thể hiện của một loại thực thể.
- Ví dụ: Loại thực thể là HOCVIEN có các thực thể:
 - ('HV001', 'Nguyen Minh', '1/2/1987', 'Nam')
 - ('HV002', 'Tran Nam', '13/2/1987', 'Nam')

3.3 Thuộc tính của loại thực thể (Entity Attribute)

- Định nghĩa: thuộc tính là những tính chất đặc trưng của loại thực thể.
- Ví dụ: Loại thực thể HOCVIEN có các thuộc tính: Mã học viên, họ tên, giới tính, ngày sinh, nơi sinh
- Ký hiệu:

11/17/08 ĐH Sư phạm TPHCM

3.3 Các loại thuộc tính (1)

 Đơn trị (Simple): mỗi thực thể chỉ có một giá trị ứng với mỗi thuộc tính.

Ví dụ: Mahv, Hoten

 Đa hợp (Composite): thuộc tính có thể được tạo thành từ nhiều thành phần.

Ví dụ: DCHI(SONHA, DUONG, PHUONG, QUAN) hay thuộc tính HOTEN(HO, TENLOT, TEN).

 Đa trị (Multi-valued): thuộc tính có thể có nhiều giá trị đối với một thực thể.

Ví dụ: BANGCAP ký hiệu {BANGCAP}

11/17/08 DH Sur phạm TPHCM 6

3.3 Các loại thuộc tính (2)

- Tóm lại, các thuộc tính đa hợp và đa trị có thể lồng nhau tùy ý.
 - **Ví dụ**: thuộc tính BANGCAP của HOCVIEN là một thuộc tính đa hợp được ký hiệu bằng

{BANGCAP(TRUONGCAP,NAM,KETQUA, CHUYENNGANH)}

11/17/08 ĐH Sư pham TPHCM

3.4. Khoá của loại thực thể (entity type key)

- Khóa của loại thực thể là thuộc tính nhận diện thực thể.
- Căn cứ vào giá trị của khóa có thế xác định duy nhất một thực thể.
- Ví dụ:
 - Mỗi học viên có một mã số duy nhất => Khoá của loại thực thể HOCVIEN là Mã học viên

11/17/08 DH Str phạm TPHCM

3.5 Loại mối kết hợp (1) (relationship type)

- Định nghĩa: loại mối kết hợp là sự liên kết giữa hai hay nhiều loại thực thể
- Ví dụ: giữa hai loại thực thể HOCVIEN và LOP có loại mối kết hợp THUOC
- Ký hiệu: bằng một hình oval hoặc hình thoi

3.5 Loại mối kết hợp (2)

- Giữa hai loại thực thể có thể tồn tại nhiều hơn một loại mối kết hợp.
- Ví dụ

11/17/08 ĐH Sư phạm TPHCM 10

3.5 Số ngôi của loại mối kết hợp (relationship degree)

- Số ngôi của loại mối kết hợp là số loại thực thể tham gia vào loại mối kết hợp đó.
- Ví dụ 1: Loại mối kết hợp Thuộc kết hợp 2 loại thực thể HOCVIEN và LOP nên có số ngôi là 2.
- Ví dụ 2: Loại mối kết hợp Thi kết hợp 3 loại thực thể LANTHI, HOCVIEN, MONHOC nên có số ngôi là 3.

11/17/08 ĐH Sư phạm TPHCM 11

3.5 Số ngôi của loại mối kết hợp

11/17/08 DH Sur phạm TPHCM 12

3.6 Thuộc tính của loại mối kết hợp (relationship type attribute)

- Thuộc tính của loại mối kết hợp bao gồm các thuộc tính khoá của các loại thực thể tham gia vào loại mối kết hợp đó. Ngoài ra còn có thể có thêm những thuộc tính bổ sung khác.
- Ví dụ: Loại mối kết hợp Thi giữa ba loại thực thể HOCVIEN, MONHOC và LANTHI có các thuộc tính là Mahv, Mamh, Lanthi, ngoài ra còn có thuộc tính riêng là Diem, Ngaythi

11/17/08 ĐH Sư phạm TPHCM 13

11/17/08 ĐH Sư phạm TPHCM 14

3.7 Bản số (relationship cardinality)

- Loại mối kết hợp thể hiện liên kết giữa các thực thể, mỗi liên kết được gọi là một nhánh.
- Định nghĩa: bản số của nhánh là số lượng tối thiểu và số lượng tối đa các thực thể thuộc nhánh đó tham gia vào loại mối kết hợp.
- Ký hiệu: (số lượng tối thiểu, số lượng tối đa)
- Ví dụ: Loại thực thể HOCVIEN và LOP có loại mối kết hợp Thuoc.

11/17/08 ĐH Sư phạm TPHCM 15

ERD

11/17/08 ĐH Sư phạm TPHCM 17

Bài tập tình huống

- Thực thể Sinh Vien có các thuộc tính sau: Mã sinh viên, Tên Tuổi. Thực thể Giang Vien có các thuộc tính Mã giảng viên, tên tuổi. Thực thể Khoa có các thuộc tính Mã Khoa, tên Khoa. Hai thực thể không được phép cùng mã.
- Một sinh viên có thể học nhiều giảng viên và một giảng viên có thể dạy nhiều sinh vien.
- Một Khoa có nhiều sinh viên nhưng một sinh viên chỉ thuộc về một khoa duy nhất.

Vẽ sơ đồ ERD các thực thể và các mối quan hệ giữa chúng

11/17/08

3.7 Mô hình ER mở rộng

- 3.7.1 Chuyên biệt hoá / Tổng quát hóa
- 3.7.2 Mối kết hợp đệ quy
- 3.7.3 Loại thực thể yếu
- 3.7.4 Mối kết hợp mở rộng

11/17/08 ĐH Sư phạm TPHCM 19

3.7.1 Chuyên biệt hóa (tổng quát hóa)

11/17/08 DH Su phạm TPHCM 20

3.7.2 Mối kết hợp đệ quy

- Định nghĩa: là loại mối kết hợp được tạo thành từ cùng một loại thực thể (hay một loại thực thể có loại mối kết hợp với chính nó)
- Ví dụ: Mỗi nhân viên có một người quản lý trực tiếp và người quản lý đó cũng là một nhân viên

21

3.7.3 Loại thực thể yếu

• Định nghĩa:

11/17/08

- Là loại thực thể không có thuộc tính khóa
- Phải tham gia trong một loại mối kết hợp xác định trong đó có một loại thực thể chủ.
- Ký hiệu:

• Ví dụ: loại thực thể THANNHAN là loại thực thể yếu có thuộc tính Stt, Hoten, Ngsinh, Quanhe và tham gia trong loại mối kết hợp Có với loại thực thể NHANVIEN.

11/17/08 DH Sur phạm TPHCM 22

3.7.3 Loại thực thể yếu

11/17/08 ĐH Sư phạm TPHCM 23

3.7.4 Mối kết hợp mở rộng

11/17/08 DH Su phạm TPHCM 24

Bài tập về nhà Xây dựng mô hình ER

- Xây dựng mô hình ER cho CSDL quản lý giáo vụ gồm có các chức năng sau:
 - Lưu trữ thông tin: Học viên, giáo viên, môn học
 - Xếp lớp cho học viên, chọn lớp trưởng cho lớp
 - Phân công giảng dạy: giáo viên dạy lớp nào với môn học gì, ở học kỳ, năm học nào.
 - Lưu trữ kết quả thi: học viên thi môn học nào, lần thi thứ mấy, điểm thi bao nhiêu.

11/17/08 ĐH Sư phạm TPHCM 25

Bài 3: Mô hình dữ liệu quan hệ (Relational Data Model)

Nội dung

- 1. Giới thiệu
- 2. Các khái niệm
 - 2.1 Thuộc tính
 - 2.2 Quan hê
 - 2.3 Bộ giá trị
 - 2.4 Thể hiện của quan hệ
 - 2.5 Tân từ
 - 2.6 Phép chiếu
 - 2.7 Khóa
 - 2.8 Lược đồ quan hệ và lược đồ CSDL
 - 2.9 Hiện thực mô hình ER bằng mô hình dữ liệu quan hệ.

11/17/08 ĐH Sư phạm TPHCM **27**

1. Giới thiệu

- Mô hình Dữ liệu Quan hệ (Relational Data Model) dựa trên khái niệm quan hệ.
- Quan hệ là khái niệm toán học dựa trên nền tảng hình thức về lý thuyết tập hợp.
- Mô hình này do TS. E. F. Codd đưa ra năm 1970.

2.1 Thuộc tính (attribute)

- Thuộc tính:
 - Tên gọi: dãy ký tự (gợi nhớ)
 - Kiểu dữ liệu: Số, Chuỗi, Thời gian, Luận lý, OLE.
 - *Miền giá trị*: tập giá trị mà thuộc tính có thể nhận. Ký hiệu miền giá trị của thuộc tính A là *Dom*(A).
- Ví dụ:GIOITINH kiểu dữ liệu là Chuỗi, miền giá trị Dom(GIOITINH)=('Nam', 'Nu')
- Tại một thời điểm, một thuộc tính không có giá trị hoặc chưa xác định được giá trị => giá trị Null

11/17/08 ĐH Sư pham TPHCM 29

2.2 Quan hệ (relation)

- Định nghĩa: quan hệ là một tập hữu hạn các thuộc tính.
 - **Ký hiệu**: $_{Q(A_1, A_2, ..., A_n)}$
 - Trong đó Q là tên quan hệ $Q^+ = \{A_1, A_2, ..., A_n\}$ là tập các thuộc tính của quan hệ Q
 - Ví dụ:

HOCVIEN (Mahv, Hoten, Ngsinh, Gioitinh, Noisinh, Malop) LOP (Malop, Tenlop, Siso, Trglop, Khoa)

11/17/08 DH Sur phạm TPHCM 30

2.3 Bộ (tuple)

- Định nghĩa: Bộ là các thông tin của một đối tượng thuộc quan hệ, được gọi là mẫu tin (record), dòng.
- Quan hệ là một bảng (table) với các cột là các thuộc tính và mỗi dòng được gọi là bộ.
- Một bộ của quan hệ $Q(A_1, A_2,..., A_n)$ là $q = (a_1, a_2,..., a_n)$ với $\forall a_i \in Dom(A_i)$
- Ví dụ: HOCVIEN(Mahv, Hoten, Ngsinh, Noisinh) có q=(1003,Nguyen Van Lam, 1/1/1987,Dong Nai) nghĩa là học viên có mã số là 1003, họ tên là Nguyen Van Lam, sinh ngày 1/1/1987 ở Dong Nai

11/17/08 ĐH Sư phạm TPHCM 31

2.4 Thể hiện của quan hệ (instance)

- Định nghĩa: thể hiện của một quan hệ là tập hợp các bộ giá trị của quan hệ tại một thời điểm.
- **Ký hiệu:** thể hiện của quan hệ ${f Q}$ là ${m T}_{m Q}$
- Ví dụ: T_{HOCVIEN} là thể hiện của quan hệ HOCVIEN tại thời điểm hiện tại gồm có các bộ như sau:

HOCVIEN						
Mahv	HoTen	Gioitinh	Noisinh	Malop		
K1103	Ha Duy Lap	Nam	Nghe An	K11		
K1102	Tran Ngoc Han	Nu	Kien Giang	K11		
K1104	Tran Ngoc Linh	Nu	Tay Ninh	K11		

DH Sư phạm TPHCM

11/17/08

2.5 Tân từ

- Định nghĩa: tân từ là một quy tắc dùng để mô tả một quan hệ.
- **Ký hiệu**: ||Q||
- Ví dụ: THI (Mahv, Mamh, Lanthi, Diem)
- ||THI||: mỗi học viên được phép thi một môn học nhiều lần, mỗi lần thi lưu trữ học viên nào thi môn gì? lần thi thứ mấy? và điểm là bao nhiêu?

11/17/08 ĐH Sư phạm TPHCM 33

2.6 Phép chiếu (1)

- Phép chiếu: Dùng để trích giá trị của một số thuộc tính trong danh sách các thuộc tính của quan hệ.
- Ký hiệu: phép chiếu của quan hệ R lên tập thuộc tính X
 là R[X] hoặc R.X.
- Ví dụ:

•	hv ₁ =
---	-------------------

hv₂ =

hv₃ =

HOCVIEN							
Mahv	HoTen	Gioitinh	Noisinh	Malop			
K1103	Ha Duy Lap	Nam	Nghe An	K11			
K1102	Tran Ngoc Han	Nu	Kien Giang	K11			
K1104	Trap Ngọc Linh	Nu	Tay Ninh	K11 ₃₄			

11/17/08

2.6 Phép chiếu (2)

 Phép chiếu của quan hệ HOCVIEN lên thuộc tính NoiSinh của quan hệ HOCVIEN:

HOCVIEN[Noisinh] = {'Nghe An','Kien Giang','Tay Ninh'}

HOCVIEN							
Makıv	XHO	Ten	Cioitin	h	Noisinh	Malop	
K1103	Ha Duy	Lap	Nam		Nghe An	K11	
K1102	Tran Ng	oc Han	Nu		Kien Giang	K11	
K1104	Tran Ng	oc L iph	Nu	•	Tay Ninh	K11	

11/17/08

2.6 Phép chiếu (3)

Phép chiếu lên 1 tập thuộc tính
 X={Hoten, Noisinh} của quan hệ HOCVIEN

HOCVIEN[Hoten, Noisinh] = {('Ha Duy Lap', 'Nghe An'),('Tran Ngoc Han', 'Kien Giang'),('Tran Ngoc Linh','Tay Ninh')}

HOCVIEN							
Maliv	HoTen	Gioitinh	Noisinh	Małop			
K1103	Ha Duy Lap	Nam	Nghe An	K11			
K1102	Tran Ngoc Han	Nex	Kien Giang	K11			
K1104	Tran Ngoc Linh	Nu	Tay Ninh	K11			

11/17

2.6 Phép chiếu (4)

- Chiếu của một bộ lên tập thuộc tính: dùng để
 trích chọn các giá trị cụ thể của bộ giá trị đó theo các
 thuộc tính được chỉ ra trong danh sách thuộc tính của
 một quan hệ.
- **Ký hiệu**: chiếu của một bộ giá trị t lên tập thuộc tính X của quan hệ R là $t_R[X]$ hoặc t[X]. Nếu X có 1 thuộc tính t_RX
- **Ví dụ**: cho quan hệ HOCVIEN với tập thuộc tính HOCVIEN⁺={Mahv,Hoten,Gioitinh,Noisinh,Malop}, chứa 3 bộ giá trị hv₁,hv₂ và hv₃

11/17/08 ĐH Sư phạm TPHCM 33

2.6 Phép chiếu (5)

- Phép chiếu 1 bộ lên 1 thuộc tính
 - hv₁[Hoten] = ('Ha Duy Lap')

	HOCVIEN							
hv ₁ =	Mahv	HoTen	Gioitinh	Neisi	nh	Małop		
$hv_2 = hv_3 =$	K1103	Ha Duy Lap	Nam	Nghe Ar	, X	K 1 1		
11v ₃ —	K1102	Tran Ngoc Han	Ne	Klen Gia	ng	K 1 1		
11/17/08	K1104	Tran Ngoc Linh	Nu	Tay Minl		K11		

2.6 Phép chiếu (6)

- Phép chiếu 1 bộ lên 1 tập thuộc tính
 - tập thuộc tính X={Hoten, Gioitinh}
 - hv₂[X] = ('Tran Ngoc Han','Nu')

		HOCVIEN						
• hv ₁ =		Но	Ten	Gioitinh	Noisi	nh 🔀	Malop	
hv₂ =hv₃ =	K1103	Ha Duy	Lap	Nam	Nghe Ar	X	K 11	
11/17/08	K1102	Tran Ng	oc Han	Nu	Kien Gia	ng	K 1 1	
11/1//00	 K1104	TeanAla	nctinh	NN -	Tay Min	L .	 	

Câu hỏi ghi nhớ

- Trong mô hình quan hệ của Codd, quan hệ là gì, bộ là gì, tân từ và thể hiện. Biểu diễn quan hệ, bộ, thể hiện và tân từ cho trường hợp sau:
- Lớp học có mã lớp, tên lớp trưởng, sĩ số, ghi chú. Và hiện tại chỉ có 2 lớp cần quản lý: lớp thứ nhất mã M1, lớp trưởng tên A, sỉ số 61, ghi chú là đi học đều, lớp thứ hai có mã M2, lớp trưởng tên B, sỉ số 69 ghi chú là hay vắng.

11/17/08 40

2.7 Khóa

- 2.7.1 Siêu khóa (super key)
- 2.7.2 Khóa (key)
- 2.7.3 Khóa chính (primary key)
- 2.7.4 Khóa tương đương
- 2.7.5 Khóa ngoại (foreign key)

11/17/08 ĐH Sư pham TPHCM 41

2.7.1 Siêu khóa (super key) (1)

- <u>Siêu khóa</u>: là một tập con các thuộc tính của Q⁺ mà giá trị của chúng có thể phân biệt 2 bộ khác nhau trong cùng một thể hiện T_Q bất kỳ.
 - Nghĩa là: \forall t₁, t₂ \in T_Q , t₁[K] \neq t₂[K] \Leftrightarrow K là siêu khóa của Q.
- Một quan hệ có ít nhất một siêu khóa (Q+) và có thể có nhiều siêu khóa.

2.7.1 Siêu khóa (super key) (2)

 Ví dụ: các siêu khóa của quan hệ HOCVIEN là: {Mahv};{Mahv,Hoten};{Hoten};{Noisinh,Hoten}

. . .

HOCVIEN							
Mahv	HoTen	Gioitinh	Noisinh	Malop			
K1103	Ha Duy Lap	Nam	Nghe An	K11			
K1102	Tran Ngoc Han	Nu	Kien Giang	K11			
K1104	Tran Ngoc Linh	Nu	Tay Ninh	K11			
K1105	Tran Minh Long	Nam	ТрНСМ	K11			
K1106	Le Nhat Minh	Nam	ТрНСМ	K11			

11/17/08 ĐH Sư phạm TPHCM 43

2.7.2 Khóa (key) (1)

Khóa: K là khóa của quan hệ R, thỏa mãn 2 điều kiện:

- K là một siêu khóa.
- K là siêu khóa "nhỏ nhất" (chứa ít thuộc tính nhất và khác rỗng) nghĩa là

 $\neg \exists K_1 \subset K, K_1 \neq \emptyset$ sao cho K_1 là siêu khóa.

• Thuộc tính tham gia vào một khóa gọi là *thuộc tính khóa*, ngược lại là *thuộc tính không khóa*.

2.7.2 Khóa (key) (2)

- Ví dụ: các siêu khóa của quan hệ HOCVIEN là: {Mahv};{Mahv,Hoten};{Hoten};{Hoten,Gioitinh}; {Noisinh,Hoten};{Mahv,Hoten,Gioitinh,Noisinh}...
 => thì khóa của quan hệ HOCVIEN có thể là {Mahv}; {Hoten}
- Ví dụ: khóa của quan hệ GIANGDAY (Malop, Mamh, Magv, HocKy, Nam) là K={Malop,Mamh}. Thuộc tính khóa sẽ là: Mamh,Malop. Thuộc tính không khóa sẽ là Magv, HocKy, Nam.

11/17/08 ĐH Sư phạm TPHCM 45

2.7.3 Khóa chính (primary key)

- Khi cài đặt trên một DBMS cụ thể, nếu quan hệ có nhiều hơn một khóa, ta chỉ được chọn một và gọi là khóa chính
- **Ký hiệu**: các *thuộc tính nằm trong khóa chính* khi liệt kê trong quan hệ phải được gạch dưới.
- Ví dụ:
 - HOCVIEN (Mahy, Hoten, Gioitinh, Noisinh, Malop)
 - GIANGDAY(Mamh, Malop, Magv, Hocky, Nam)

2.7.4 Khóa tương đương

- Các khóa còn lại (không được chọn làm khóa chính) gọi là khóa tương đương.
- **Ví dụ:** trong hai khóa {Mahv},{Hoten} thì khóa chính là {Mahv}, khóa tương đương là {Hoten}

11/17/08 ĐH Sư pham TPHCM 47

2.7.5 Khóa ngoại (1)

- Cho R(U), S(V). $K_1 \subseteq U$ là khóa chính của $R, K_2 \subseteq V$
- Ta nói K₂ là khóa ngoại của S tham chiếu đến khóa chính K₁ của R nếu thỏa các điều kiện sau:
 - K₁ và K₂ có cùng số lượng thuộc tính và ngữ nghĩa của các thuộc tính trong K₁ và K₂ cũng giống nhau.
 - Giữa R và S tồn tại mối quan hệ 1-n trên K_1 và K_2 ,
- $\forall s \in S$, $!\exists r \in R_1 \text{ sao}_{\mathsf{T}} \text{ cho} \quad r.K_1 = s.K_2$

2.7.5 Khóa ngoại (2)

• Ví dụ, cho 2 quan hệ

LOP (Malop, Tenlop, Siso, Khoahoc)

HOCVIEN (Mahv, Hoten, Gioitinh, Noisinh, Malop)

 Thuộc tính Malop trong quan hệ LOP là khóa chính của quan hệ LOP. Thuộc tính Malop trong quan hệ HOCVIEN là khóa ngoại, tham chiếu đến Malop trong quan hệ LOP

11/17/08 ĐH Sư phạm TPHCM 49

2.7.5 Khóa ngoại (3)

HOCVIEN				
Mahv	HoTen	Gioitinh	Noisinh	Malop
K1103	Ha Duy Lap	Nam	Nghe An	K11
K1102	Tran Ngoc Han	Nu	Kien Giang	K11
K1104	Tran Ngoc Linh	Nu	Tay Ninh	K11
K1105	Tran Minh Long	Nam	ТрНСМ	K11
K1106	Le Nhat Minh	Nam	ТрНСМ	K11

↓	LOP			
Malop	Tenlop	Trglop	Siso	Magvcn
K11	Lop 1 khoa 1	K1106	11	GV07
K12	Lop 2 khoa 1	K1205	12	GV09
K13	Lop 3 khoa 1	K1305	12	GV14

11/17/08 ĐH Sư phạm TPHCM

2.8 Lược đồ quan hệ (1)

- Lược đồ quan hệ nhằm mục đích mô tả cấu trúc của một quan hệ và các mối liên hệ giữa các thuộc tính trong quan hệ đó.
- Cấu trúc của một quan hệ là tập thuộc tính hình thành nên quan hệ đó.
- Một lược đồ quan hệ gồm một tập thuộc tính của quan hệ kèm theo một mô tả để xác định ý nghĩa và mối liên hệ giữa các thuộc tính

11/17/08 ĐH Sư phạm TPHCM 51

2.8 Lược đồ quan hệ (2)

- Lược đồ quan hệ được đặc trưng bởi:
 - Một tên phân biệt
 - Một tập hợp hữu hạn các thuộc tính (A1, ..., An)
- Ký hiệu của lược đồ quan hệ Q gồm n thuộc tính $(A_1, A_2, ... A_n)$ là :
 - Q(A1, A2, ..., An)

11/17/08 DH Sur phạm TPHCM 52

2.8 Lược đồ quan hệ (3)

- HOCVIEN(<u>Mahv</u>, Hoten, Gioitinh, Noisinh, Malop
- Tân từ: mỗi học viên có một mã học viên để phân biệt với các học viên khác. Cần lưu trữ họ tên, giới tính, nơi sinh và thuộc lớp nào.

HOCVIEN				
Mahv	HoTen	Gioitinh	Noisinh	Malop
K1103	Ha Duy Lap	Nam	Nghe An	K11
K1102	Tran Ngoc Han	Nu	Kien Giang	K11
K1104	Tran Ngoc Linh	Nu	Tay Ninh	K11
K1105	Tran Minh Long	Nam	ТрНСМ	K11
K1106	Le Nhat Minh	Nam	ТрНСМ	K11

11/17/08

53

2.8 Lược đồ CSDL (1)

 Là tập hợp gồm các lược đồ quan hệ và các mối liên hệ giữa chúng trong cùng một hệ thống quản lý.

11/17/08 ĐH Sư phạm TPHCM 54

Lược đồ CSDL QLSV

HOCVIEN (MAHV, HO, TEN, NGSINH, GIOITINH, NOISINH, MALOP)

Tân từ: mỗi học viên phân biệt với nhau bằng mã học viên, lưu trữ họ tên, ngày sinh, giới tính, nơi sinh, thuộc lớp nào.

LOP (MALOP, TENLOP, TRGLOP, SISO, MAGVCN)

Tân từ: mỗi lớp gồm có mã lớp, tên lớp, học viên làm lớp trưởng của lớp, sỉ số lớp và giáo viên chủ nhiêm.

KHOA (MAKHOA, TENKHOA, NGTLAP, TRGKHOA)

Tân từ: mỗi khoa cần lưu trữ mã khoa, tên khoa, ngày thành lập khoa và trưởng khoa (cũng là một giáo viên thuộc khoa).

MONHOC (MAMH, TENMH, TCLT, TCTH, MAKHOA)

Tân từ: mỗi môn học cần lưu trữ tên môn học, số tín chỉ lý thuyết, số tín chỉ thực hành và khoa nào phụ trách.

DIEUKIEN (MAMH, MAMH TRUOC)

Tân từ: có những môn học học viên phải có kiến thức từ một số môn học trước.

11/17/08 ĐH Sư phạm TPHCM 55

Lược đồ CSDL quản lý thi học kỳ

GIAOVIEN(MAGV, HOTEN, HOCVI, HOCHAM, GIOITINH, NGSINH, NGVL,

HESO, MUCLUONG, MAKHOA)

Tân từ: mã giáo viên để phân biệt giữa các giáo viên, cần lưu trữ họ tên, học vị, học hàm, giới tính, ngày sinh, ngày vào làm, hệ số, mức lương và thuộc một khoa.

GIANGDAY(MALOP, MAMH, MAGV, HOCKY, NAM, TUNGAY, DENNGAY)

Tân từ: mỗi học kỳ của năm học sẽ phân công giảng dạy: lớp nào học môn gì do giáo viên nào phụ trách.

KETQUATHI (MAHV, MAMH, LANTHI, NGTHI, DIEM, KQUA)

Tân từ: lưu trữ kết quả thi của học viên: học viên nào thi môn học gì, lần thi thứ mấy, ngày thi là ngày nào, điểm thi bao nhiêu và kết quả là đạt hay không đạt.

Câu hỏi và Ôn Tập

- Trình bày về các loại Khóa trong cơ sở dữ liệu và cho ví dụ cụ thể.
- Tân từ là gì. Cho một ví dụ.

11/17/08 57

Câu hỏi và Ôn tập

Kết quả khảo sát hiện trạng hệ thống quản lý nhân sự tiền lương tại một doanh nghiệp thu thập được các thông tin sau:

- Mỗi *nhân viên* có một mã nhân viên duy nhất, và có họ tên, ngày tháng năm sinh và được lãnh lương theo hệ bậc lương của mình. Đồng thời một nhân viên thì chỉ thuộc biên chế của một và chỉ một phòng ban. Ví dụ: Nhân viên tên A có mã số NV1 thuộc biên chế phòng Tổng Hợp (với mã phòng TH) sinh năm 1986 lãnh lương chuyên viên chính.
- Thông tin cần quản lý về phòng ban bao gồm: tên phòng ban, mã phòng ban và số lượng nhân viên và người trưởng phòng. Ví dụ: phòng Tổng Hợp có mã TH, số lượng nhân viên là 5 có trưởng phòng là Nhân Viên A.
- *Mức lương* gồm tên, số tiền và mô tả yêu câu công việc. Ví dụ: Mức lương chuyên viên chính là 2,5 triệu VNĐ, cần tối thiểu 5 năm kinh nghiệm.

Vẽ Lược đồ CSDL Nhân Sự Tiền Lương nói trên

11/17/08 58

Bài 4: Ngôn ngữ đại số quan hệ

 $\rm DH~Su$ phạm TPHCM

Nội dung

- 1. Giới thiệu
- 2. Biểu thức đại số quan hệ
- 3. Các phép toán
- 4. Ví dụ

1. Giới thiệu

 Đại số quan hệ (ĐSQH) có nền tảng toán học (cụ thể là lý thuyết tập hợp) để mô hình hóa CSDL quan hệ.
 Đối tượng xử lý là các quan hệ trong cơ sở dữ liệu quan hệ.

• Chức năng:

- Cho phép mô tả các phép toán rút trích dữ liệu từ các quan hệ trong cơ sở dữ liệu quan hệ.
- Cho phép tối ưu quá trình rút trích bằng các phép toán có sẵn của lý thuyết tập hợp.

ĐH Sư phạm TPHCM

3

2. Biểu thức ĐSQH

- Biểu thức ĐSQH là một biểu thức gồm các phép toán ĐSQH.
- Biểu thức ĐSQH được xem như một quan hệ (không có tên).
- Có thể đặt tên cho quan hệ được tạo từ một biểu thức ĐSQH.
- Có thể đổi tên các thuộc tính của quan hệ được tạo từ một biểu thức ĐSQH.

ĐH Sư phạm TPHCM

3. Các phép toán

- 3.1 Giới thiệu
- 3.2 Phép chọn
- 3.3 Phép chiếu
- 3.4 Phép gán
- 3.5 Các phép toán trên tập hợp
- 3.6 Phép kết
- 3.7 Phép chia
- 3.8 Hàm tính toán và gom nhóm

ĐH Sư phạm TPHCM

-

3.1 Giới thiệu (1)

- Có năm phép toán cơ bản:
 - Chọn (σ) hoặc (:)
 - Chiếu (77) hoặc ([])
 - Tích (⋈)
 - Hiệu (**—**)
 - Hội (∪)

ĐH Sư phạm TPHCM

3.1 Giới thiệu (2)

- Các phép toán khác không cơ bản nhưng hữu ích:

 - Kết (▷◁)
 - Chia (÷)
 - Phép bù (□)
 - Đổi tên $(^{
 ho}$)
 - Phép gán (←)
- Kết quả sau khi thực hiện các phép toán là các quan hệ, do đó có thể kết hợp giữa các phép toán để tạo nên phép toán mới.

ĐH Sư phạm TPHCM

7

3.2 Phép chọn (Selection)

- Trích chọn các bộ (dòng) từ quan hệ R. Các bộ được trích chọn phải thỏa mãn điều kiện chọn p.
- Ký hiệu: $\sigma_p(R)$
- Định nghĩa: $\sigma_p(R) = \{t/t \in R, p(t) \not p(t) : thỏa điều kiện p$
- Kết quả trả về là một quan hệ, có cùng danh sách thuộc tính với quan hệ R. Không có kết quả trùng.
- Phép chọn có tính giao hoán

$$\sigma_{p1}(\sigma_{p2}(R)) = \sigma_{p2}(\sigma_{p1}(R)) = \sigma_{(p1 \land p2)}(R)$$

ĐH Sư phạm TPHCM

Lược đồ CSDL quản lý giáo vụ

HOCVIEN (MAHV, HO, TEN, NGSINH, GIOITINH, NOISINH, MALOP)

LOP (MALOP, TENLOP, TRGLOP, SISO, MAGVCN)

KHOA (MAKHOA, TENKHOA, NGTLAP, TRGKHOA)

MONHOC (MAMH, TENMH, TCLT, TCTH, MAKHOA)

DIEUKIEN (MAMH, MAMH TRUOC)

 $\textbf{GIAOVIEN}(\underline{\mathsf{MAGV}}, \mathsf{HOTEN}, \mathsf{HOCVI}, \mathsf{HOCHAM}, \mathsf{GIOITINH}, \mathsf{NGSINH}, \mathsf{NGVL},$

HESO, MUCLUONG, MAKHOA)

GIANGDAY(MALOP, MAMH, MAGV, HOCKY, NAM, TUNGAY, DENNGAY)

KETQUATHI (MAHV, MAMH, LANTHI, NGTHI, DIEM, KQUA)

ĐH Sư phạm TPHCM

C

3.2 Ví dụ phép chọn

 Tìm những học viên "Nam' có nơi sinh ở 'TpHCM' σ_(Gioitinh='Nam') (Noisinh='TpHCM')</sub> (HOCVIEN)

HOCVIEN				
Mahv	HoTen	Gioitinh	Noisinh	Malop
K1103	Ha Duy Lap	Nam	Nghe An	K11
K1102	Tran Ngoc Han	Nu	Kien Giang	K11
K1104	Tran Ngoc Linh	Nu	Tay Ninh	K11
K1105	Tran Minh Long	Nam	ТрНСМ	K11
K1106	Le Nhat Minh	Nam	ТрНСМ	K11

ĐH Sư phạm TPHCM

3.3 Phép chiếu (Project)

- Sử dụng để trích chọn giá trị một vài thuộc tính của quan hệ
- Ký hiệu:

$$\pi_{A_1, A_2, ..., A_k}(R)$$

trong đó A_i là tên các thuộc tính được chiếu.

- Kết quả trả về một quan hệ có k thuộc tính theo thứ tự như liệt kê. Các dòng trùng nhau chỉ lấy một.
- Phép chiếu không có tính giao hoán

ĐH Sư phạm TPHCM

11

3.3 Ví dụ

 Tìm mã số, họ tên những học viên "Nam' có nơi sinh ở 'TpHCM'

$$\pi_{\mathsf{Mahv},\mathsf{Hoten}}\sigma_{(\mathsf{Gioitinh='Nam'})\land(\mathsf{Noisinh='TpHCM'})}(\mathsf{HOCVIEN})$$

HOCVIEN				
Mahv	HoTen	Gioitinh	Noisinh	Malop
K1103	Ha Duy Lap	Nam	Nghe An	K11
K1102	Tran Ngoc Han	Nu	Kien Giang	K11
K1104	Tran Ngoc Linh	Nu	Tay Ninh	K11
K1105	Tran Minh Long	Nam	ТрНСМ	K11
K1106	Le Nhat Minh	Nam	ТрНСМ	K11

ĐH Sư phạm TPHCM

3.4 Phép gán (Assignment)

- Dùng để diễn tả câu truy vấn phức tạp.
- Ký hiệu: A ← B
- Ví dụ:

 $R(HO,TEN,LUONG) \leftarrow \pi_{HONV,TENNV,LUONG}(NHANVIEN)$

 Kết quả bên phải của phép gán được gán cho biến quan hệ nằm bên trái.

ĐH Sư phạm TPHCM

13

3.5 Các phép toán tập hợp

- 3.5.1 Giới thiệu
- 3.5.2 Phép hội
- 3.5.3 Phép trừ
- 3.5.4 Phép giao
- 3.5.5 Phép tích

ĐH Sư phạm TPHCM

3.5.1 Giới thiệu

- Các phép toán thực hiện trên 2 quan hệ xuất phát từ lý thuyết tập hợp của toán học: phép hội (R \cup S), phép giao (R \cap S), phép trừ (R-S), phép tích (R×S).
- Đối với các phép hội, giao, trừ, các quan hệ R và S phải khả hợp:
 - Số lượng thuộc tính của R và S phải bằng nhau: $R(A_1,A_2,...A_n)$ và $S(B_1,B_2,...B_n)$
 - Miền giá trị của thuộc tính phải tương thích $dom(A_i)=dom(B_i)$
- Quan hệ kết quả của phép hội, giao, trừ có cùng tên thuộc tính với quan hệ đầu tiên.

15

3.5.2 Phép hội (Union)

• Ký hiệu: R∪S

Định nghĩa: trong đó R,S là hai quan hệ khả hợp $R \cup S = \{t | t \in R \lor t \in S\}$

• Ví du: Học viên được khen thưởng đợt 1 hoặc đợt 2

DOT1		
Mahv	Hoten	
K1103	Le Van Tam	
K1114	Tran Ngoc Han	
K1203	Le Thanh Hau	
K1308	Nguyen Gia	

DOT2		
Mahv Hoten		
K1101	Le Kieu My	
K1114 Tran Ngoc Han		

Mahv	Hoten
K1101	Le Kieu My
K1103	Le Van Tam
K1114	Tran Ngoc Han
K1203	Le Thanh Hau
K1308	Nguyen Gia

3.5.3 Phép trừ (Set Difference)

• Ký hiệu: R-S

• Định nghĩa: $R-S=\{t|t\in R\lor t\notin S\}$ trong đó R,S là hai quan hệ khả hợp.

• **Ví dụ**: Học viên được khen thưởng đợt 1 nhưng không được khen thường đợt 2

DOT1		
Mahv	Hoten	
K1103	Le Van Tam	
K1114	Tran Ngoc Han	
K1203	Le Thanh Hau	
K1308	Nguyen Gia	

DOT2		
Mahv Hoten		
K1101	Le Kieu My	
K1114	Tran Ngoc Han	

Mahv	Hoten
K1103	Le Van Tam
K1203	Le Thanh Hau

DOT1-DOT2

ĐH Sư phạm TPHCM

17

3.5.4 Phép giao (Set-Intersection)

• Ký hiệu: R∩S

- Định nghĩa: $R \cap S = \{t | t \in R \land t \in S\}$ trong đó R,S là hai quan hệ khả hợp. Hoặc $R \cap S = R (R S)$
- Ví dụ: Học viên được khen thưởng cả hai đợt 1 và 2

KT_D1		
Mahv	Hoten	
K1103	Le Van Tam	
K1114	Tran Ngoc Han	
K1203	Le Thanh Hau	
K1308	Nguyen Gia	

KT_D2		
Mahv Hoten		
K1101 Le Kieu My		
K1114	Tran Ngoc Han	

Mahv	Hoten
K1114	Tran Ngoc Han

DOT1∩ DOT2

ĐH Sư phạm TPHCM

3.5.5 Phép tích (1)

• Ký hiệu: R×S

• Dinh nghĩa: $R \times S = \{t_r t_S / t_r \in R \land t_S \in S\}$

- Nếu R có n bộ và S có m bộ thì kết quả là n*m bộ $KQ(A_1,A_2,...A_m,B_1,B_2,...B_n) \leftarrow R(A_1,A_2,...A_m) \times S(B_1,B_2,...B_n)$
- Phép tích thường dùng kết hợp với các phép chọn để kết hợp các bộ có liên quan từ hai quan hệ.
- Ví dụ: từ hai quan hệ HOCVIEN và MONHOC, có tất cả những trường hợp nào "học viên đăng ký học môn học", giả sử không có bất kỳ điều kiện nào

ĐH Sư phạm TPHCM

19

3.5.5 Phép tích (2)

HOCVIEN		
Mahv Hoten		
K1103	B Le Van Tam	
K1114	Tran Ngoc Han	
K1203	Le Thanh Hau	

MONHOC
Mamh
CTRR
THDC
CTDL

Mahv	Hoten	Mamh
K1103	Le Van Tam	CTRR
K1114	Tran Ngoc Han	CTRR
K1203	Le Thanh Hau	CTRR
K1103	Le Van Tam	THDC
K1114	Tran Ngoc Han	THDC
K1203	Le Thanh Hau	THDC
K1103	Le Van Tam	CTDL
K1114	Tran Ngoc Han	CTDL
K1203	Le Thanh Hau	CTDL

HOCVIEN×**MONHOC**

ĐH Sư phạm TPHCM

3.6 Phép kết

- 3.6.1 Phép kết
- 3.6.2 Phép kết bằng, phép kết tự nhiên
- 3.6.3 Phép kết ngoài

ĐH Sư phạm TPHCM

21

3.6.1 Phép kết (Theta-Join) (1)

- Theta-join (θ): Tương tự như phép tích kết hợp với phép chọn. Điều kiện chọn gọi là điều kiện kết.
- **Ký hiệu**: $R \triangleright ^{\sim} \lhd S$ trong đó R,S là các quan hệ, p là điều kiện kết
- Các bộ có giá trị NULL tại thuộc tính kết nối không xuất hiện trong kết quả của phép kết.
- Phép kết với điều kiện tổng quát gọi là θ-kết với θ là một trong những phép so sánh (≠,=,>,≥,<,≤)

3.6.1 Phép kết (2)

 $\begin{array}{c|cc}
 & R & \\
 & A_1 & A_2 & \\
 & 1 & 2 & \\
 & 1 & 8 & \\
 & 0 & 0 & \\
 & 8 & 4 & \\
 & 0 & 3 & \\
\end{array}$

S			
B ₁	B ₂	B_3	
0	2	8	
7	8	7	
8	0	4	
1	0	7	
2	1	5	

 $R \triangleright \triangleleft S$

A ₁	A ₂	B ₁	B ₂	B ₃
1	2	8	0	4
1	2	1	0	7
1	8	8	0	4
1	8	1	0	7
8	4	0	2	8
8	4	8	0	4
8	4	1	0	7
8	4	2	1	5

ĐH Sư phạm TPHCM

23

3.6.2 Phép kết bằng, kết tự nhiên

• Nếu θ là phép so sánh bằng (=), phép kết gọi là phép kết bằng (equi-join).

<u>Ký hiệu</u>: HOCVIEN → LOP

 Nếu điều kiện của equi-join là các thuộc tính giống nhau thì gọi là phép kết tự nhiên (natural-join). Khi đó kết quả của phép kết loại bỏ bớt 1 cột (bỏ 1 trong 2 cột giống nhau)

<u>Ký hiệu</u>: _{HOCVIEN} ⊳⊲ KETQUATHI

hoặc Mahv

HOCVIEN ** KETQUATHI

3.6.3 Phép kết ngoài (outer join)

- Mở rộng phép kết để tránh mất thông tin
- Thực hiện phép kết và sau đó thêm vào kết quả của phép kết các bộ của quan hệ mà không phù hợp với các bộ trong quan hệ kia.
- Có 3 loại:

− Left outer joinR ⇒

− Right outer joinR S

− Full outer joinR ⇒S

• **Ví dụ**: In ra danh sách tất cả các học viên và điểm số của các môn học mà học viên đó thi (nếu có)

ĐH Sư phạm TPHCM

25

3.6.3 Phép kết ngoài (2)

HOCVIEN mahy KETQUATHI

Mahv	Hoten	Mahv	Mamh	Diem
HV01	Nguyen Van Lan	HV01	CSDL	7.0
HV01	Nguyen Van Lan	HV01	CTRR	8.5
HV02	Tran Hong Son	HV02	CSDL	8.5
HV03	Nguyen Le	HV03	CTRR	9.0
HV04	Le Minh	Null	Null	Null

HOCVIEN		
Mahv Hoten		
HV01	Nguyen Van Lan	
HV02	Tran Hong Son	
HV03	Nguyen Le	
HV04	Le Minh	

KETQUATHI					
Mahv Mamh Diem					
HV01	CSDL	7.0			
HV02	CSDL	8.5			
HV01	CTRR	8.5			
HV03	CTRR	9.0			

ĐH Sư phạm TPHCM

3.7 Phép chia (Division)

- Dinh nghĩa: $Q = R \div S = \{t / \forall s \in S, (t, s) \in R\}$
- R và S là hai quan hệ, R+ và S+ lần lượt là tập thuộc tính của R và S. Điều kiện S⁺≠⊘ là *tập con* không bằng của R⁺. Q là kết quả phép chia giữa R $var{a} S, Q^{+} = R^{+} - S^{+}$
- Có thể diễn đạt bằng phép toán đại số như sau:

$$T_1 \leftarrow \pi_{R^+ - S^+}(R)$$

$$T_2 \leftarrow \pi_{R^+ - S^+}((S \times T_1) - R)$$

$$T \leftarrow T_1 - T_2$$

ĐH Sư phạm TPHCM

27

3.7 Phép chia (2)

KETQUATHI			
Mahv Mamh		Diem	
HV01	CSDL	7.0	
HV02	CSDL	8.5	
HV01	CTRR	8.5	
HV03	CTRR	9.0	
HV01	THDC	7.0	
HV02	THDC	5.0	
HV03	THDC	7.5	
HV03	CSDL	6.0	

KETQUA

MONHOC			Mahv	
Mamh	Tenmh		HV01	
CSDL	Co so du lieu		HV03	
CTRR	Cau truc roi rac	VETOI	T A . N // C	
THDC	Tin hoc dai cuong	KETQU	A÷M	ONHOC

MONHOC

 $KETQUA \leftarrow KETQUATHI [Mahv, Mamh]$ $MONHOC \leftarrow MONHOC [Mamh]$

ĐH Sư phạm TPHCM

3.8 Hàm tính toán và gom nhóm (1)

- Hàm tính toán gồm các hàm: avg(giatri), min(giatri), max(giatri), sum(giatri), count(giatri).
- Phép toán gom nhóm:

$$_{G_1,G_2,...,G_n}$$
 $\mathfrak{I}_{F_1(A_1),F_2(A_2),...,F_n(A_n)}(E)$

- E là biểu thức đại số quan hệ
- G_i là thuộc tính gom nhóm (rỗng, nếu không gom nhóm)
- F_i là hàm tính toán
- A_i là tên thuộc tính

ĐH Sư phạm TPHCM

29

3.8 Hàm tính toán và gom nhóm (2)

• Điểm thi cao nhất, thấp nhất, trung bình của môn CSDL?

$$\mathfrak{I}_{\max(Diem),\min(Diem),agv(Diem)} \sigma_{\mathrm{Mamh='CSDL'}}(\mathit{KETQUATHI})$$

• Điểm thi cao nhất, thấp nhất, trung bình của từng môn ?

$$\mathfrak{I}_{\mathrm{max}(Diem),\mathrm{min}(Diem),avg(Diem)}(\mathit{KETQUATHI})$$

ĐH Sư phạm TPHCM

Bài tập

Lược đồ CSDL quản lý bán hàng gồm có các quan hệ sau:

KHACHHANG (MAKH, HOTEN, DCHI, SODT, NGSINH, DOANHSO, NGDK)

NHANVIEN (MANV, HOTEN, NGVL, SODT)

SANPHAM (MASP, TENSP, DVT, NUOCSX, GIA)

HOADON (SOHD, NGHD, MAKH, MANV, TRIGIA)

CTHD (SOHD, MASP, SL)

ĐH Sư phạm TPHCM

31

Mô tả các câu truy vấn sau bằng

Chiếu (π) hoặc (B) Kết $(^{\triangleright \triangleleft})$ Tích (\times) Chia $(^{+})$ Hiệu (-) Phép bù $(^{\triangleright})$ Đội (\cup) Phép gáp (\leftarrow)

- 1. In ra danh sách các sản phẩm (MASP,TENSP) do "Trung Quốc" sản xuất có giá từ 30.000 đến 40.000
- 2. In ra danh sách các khách hàng (MAKH, HOTEN) đã mua hàng trong ngày 1/1/2007.
- 3. In ra danh sách các sản phẩm (MASP,TENSP) do "Trung Quoc" sản xuất hoặc các sản phẩm được bán ra trong ngày 1/1/2007.
- 4. Tìm các số hóa đơn mua cùng lúc 2 sản phẩm có mã số "BB01" và "BB02".
- 5. In ra danh sách các sản phẩm (MASP,TENSP) do "Trung Quoc" sản xuất không bán được trong năm 2006.
- 6. Tìm số hóa đơn đã mua tất cả các sản phẩm do Singapore sản xuất

ĐH Sư phạm TPHCM

Chọn (a) hoặc (:) Chiếu (π) hoặc ([])	Giao (
Ţích (×)	Chia (÷)
Hiệu (_)	Phép bù (ㄱ_)
Hội (U)	Đổitên (^ơ)
α. (□)	Phép gán (←)

Câu 1

 In ra danh sách các sản phẩm (MASP, TENSP) do "Trung Quốc" sản xuất có giá từ 30.000 đến 40.000.

 $SANPHAM : ((nuocsx = TrungQuoc') \land (30.000 \le gia \le 40.000))[masp, tensp]$

$$\pi_{masp,tensp}\sigma_{(nuocsx='TrungQuoc')\land(30.000\leq gia\leq 40.000)}SANPHAM$$

ĐH Sư phạm TPHCM

33

```
\begin{array}{lll} \textbf{Chon} & ( \ \sigma ) \ \text{hoặc} & ( \ : \ ) & \text{Giao} & ( \ \cap \ ) \\ \textbf{Chiếu} & ( \ \pi ) \ \text{hoặc} & ( \ \Box ) & \text{Kết} & ( \ ^{\triangleright \triangleleft} \ ) \\ \textbf{Tích} & ( \ \times ) & \text{Chia} & ( \ ^{\div} \ ) \\ \textbf{Hiệu} & ( \ - \ ) & \text{Phép bù} & ( \ ^{\triangleright} \ ) \\ \textbf{Hội} & ( \ \cup \ ) & \text{Phép gán} & ( \ \leftarrow \ ) \\ \end{array}
```

Câu 2

 In ra danh sách các khách hàng (MAKH, HOTEN) đã mua hàng trong ngày 1/1/2007.

$$(KHACHHANG) \bowtie HOADON: (nghd = #1/1/2007#)$$
 [makh, hoten]

 $\pi_{masp,hoten}\sigma_{(nghd=\#1/1/2007\#)}(HOADON \bowtie KHACHHANG)$

ĐH Sư phạm TPHCM

$$\begin{array}{lll} \textbf{Chon} & (\ \sigma) & \textbf{hoặc} & (\ : \) & \textbf{Giao} & (\ \cap \) \\ \textbf{Chiếu} & (\ \pi) & \textbf{hoặc} & (\ 0 \) & \textbf{Kết} & (\ ^{\triangleright \triangleleft} \) \\ \textbf{Tích} & (\ \times) & \textbf{Chia} & (\ ^{\div} \) \\ \textbf{Hiệu} & (\ \ \) & \textbf{Phép bù} & (\ \ \ \) \\ \textbf{Hội} & (\ \ \ \ \) & \textbf{Phép gán} & (\ \leftarrow \) \end{array}$$

Câu 3

 In ra danh sách các sản phẩm do "Trung Quoc" sản xuất hoặc các sản phẩm được bán ra trong ngày 1/1/2007.

```
A \leftarrow SANPHAM : (nuocsx = 'TrungQuoc')[masp, tensp]
B \leftarrow (SANPHAM \  \triangleright \triangleleft CTHD \  \triangleright \triangleleft HOADON : (nghd = \#1/1/2007\#))[masp, tensp]
C \leftarrow A \cup B
A \leftarrow \pi_{masp, tensp} \sigma_{nuocsx = 'TrungQuoc'}(SANPHAM)
Hoặc
B \leftarrow \pi_{masp, tensp} ((\sigma_{nghd = \#1/1/2007\#}(HOADON) \  \triangleright \triangleleft CTHD) \  \triangleright \triangleleft SANPHAM)
C \leftarrow A \cup B
DH Surpham TPHCM
35
```

$$\begin{array}{lll} \textbf{Chon} & (\ \sigma) & \textbf{bošc} & (\ : \) & \textbf{Giao} & (\ \cap \) \\ \textbf{Chiếu} & (\ \pi) & \textbf{bošc} & (\ \square) & \textbf{Kết} & (\ ^{\triangleright \triangleleft} \) \\ \textbf{Tích} & (\ \times) & \textbf{Chia} & (\ ^{\div} \) \\ \textbf{Hiệu} & (\ -) & \textbf{Phép bù} & (\ ^{\triangleright} \) \\ \textbf{Hội} & (\ \cup) & \textbf{Phép gán} & (\ \leftarrow) \\ \end{array}$$

Câu 4

 Tìm các số hóa đơn đã mua cùng lúc các sản phẩm có mã số "BB01" và "BB02".

$$A \leftarrow CTHD : (masp = 'BB01')[sohd]$$
 $B \leftarrow CTHD : (masp = 'BB02')[sohd]$
 $C \leftarrow A \cap B$

Hoặc
$$A \leftarrow \pi_{sohd}\sigma_{masp='BB01'}(CTHD)$$

$$B \leftarrow \pi_{sohd}\sigma_{masp='BB02'}(CTHD)$$

$$C \leftarrow A \cap B$$

ĐH Sư phạm TPHCM

Chon (a) hoặc(:)	Giao (
Chiếu (π) hoặc (0)	Kết (▷◁)
Ţich (×)	Chia (÷)
Hiệu (_)	Phép bù (🔼)
Hội (U)	Đổitên ($^{\mathcal{O}}$)
W W 1 - 1	Phép gán (←)

Câu 5

 In ra danh sách các sản phẩm do "TrungQuoc" sản xuất không bán được trong năm 2006.

$$A \leftarrow \pi_{masp,tensp} \sigma_{nuocsx='TrungQuoc'}(SANPHAM)$$

$$B \leftarrow ((SANPHAM \rhd \lhd CTHD) \rhd \lhd HOADON)$$

$$C \leftarrow \pi_{masp,tensp} \sigma_{(nuocsx='TrungQuoc') \land (year(nghd)=2006)}(B)$$

$$D \leftarrow (A-C)$$

ĐH Sư phạm TPHCM

37

$$\begin{array}{lll} \textbf{Chon} & (\ \sigma) \ \text{hoặc} & (\ : \) & \text{Giao} & (\ \cap \) \\ \textbf{Chiếu} & (\ \pi) \ \text{hoặc} & (\ \Box) & \text{Kết} & (\ ^{\triangleright \triangleleft} \) \\ \textbf{Tích} & (\ \times) & \text{Chia} & (\ ^{\div} \) \\ \textbf{Hiệu} & (\ - \) & \text{Phép bù} & (\ ^{\triangleright} \) \\ \textbf{Hội} & (\ \cup \) & \text{Phép gán} & (\ \leftarrow \) \\ \end{array}$$

Câu 6

 Tìm số hóa đơn đã mua tất cả các sản phẩm do Singapore sản xuất

$$A \leftarrow \pi_{masp} \sigma_{nuocsx='Singapore'}(SANPHAM)$$

$$B \leftarrow \pi_{masp,sohd} \sigma_{nuocsx='Singapore'}(SANPHAM \bowtie CTHD)$$

$$C \leftarrow B \div A$$

ĐH Sư phạm TPHCM

Câu hỏi và ôn tập

- Đại số quan hệ là gì?
- Trình bày về các phép toán của đại số quan hệ: ý nghĩa, ký hiệu cho ví dụ.

Bài 5: Ngôn ngữ SQL

Nội dung

- 1. Giới thiệu
- 2. Các ngôn ngữ giao tiếp
- 3. Ngôn ngữ định nghĩa dữ liệu
- 4. Ngôn ngữ thao tác dữ liệu
- 5. Ngôn ngữ truy vấn dữ liệu có cấu trúc
- 6. Ngôn ngữ điều khiển dữ liệu

ĐH Sư phạm TPHCM

2

1. Giới thiệu

- Là ngôn ngữ chuẩn để truy vấn và thao tác trên CSDL quan hệ
- Là ngôn ngữ phi thủ tục
- Khởi nguồn của SQL là SEQUEL Structured English Query Language, năm 1974)
- Các chuẩn SQL
 - SQL89
 - SQL92 (SQL2)
 - SQL99 (SQL3)

ĐH Sư phạm TPHCM

2. Các ngôn ngữ giao tiếp

- Ngôn ngữ định nghĩa dữ liệu (Data Definition Language - DDL): cho phép khai báo cấu trúc bảng, các mối quan hệ và các ràng buộc.
- Ngôn ngữ thao tác dữ liệu (Data Manipulation Language - DML): cho phép thêm, xóa, sửa dữ liệu.
- Ngôn ngữ truy vấn dữ liệu (Structured Query Language – SQL): cho phép truy vấn dữ liệu.
- Ngôn ngữ điều khiển dữ liệu (Data Control Language – DCL): khai báo bảo mật thông tin, cấp quyên và thu hôi quyên khai thác trên cơ sơ dữ liệu.

ĐH Sư phạm TPHCM

4

3. Ngôn ngữ định nghĩa dữ liệu

3.1 Lệnh tạo bảng (CREATE)

- 3.1.1 Cú pháp
- 3.1.2 Một số kiểu dữ liệu

3.2 Lệnh sửa cấu trúc bảng (ALTER)

- 3.2.1 Thêm thuộc tính
- 3.2.2 Sửa kiểu dữ liệu của thuộc tính
- 3.2.3 Xoá thuộc tính
- 3.2.4 Thêm ràng buộc toàn vẹn
- 3.2.5 Xoá ràng buộc toàn vẹn

3.3 Lệnh xóa bảng (DROP)

ĐH Sư phạm TPHCM

3.1 Lệnh tạo bảng

3.1.1 Cú pháp

```
CREATE TABLE <tên_bảng>
(

<tên_cột1> <kiểu_dữ_liệu> [not null],

<tên_cột2> <kiểu_dữ_liệu> [not null],
...

<tên_cột1> <kiểu_dữ_liệu> [not null],
khai báo khóa chính, khóa ngoại, ràng buộc
)
```

ĐH Sư phạm TPHCM

6

3.1 Lệnh tạo bảng (2)

3.1.2 Một số kiểu dữ liệu

Kiểu dữ liệu	SQL Server
Chuỗi ký tự	varchar(n), char(n),nvarchar(n), nchar(n)
Số	tinyint,smallint, int, numeric(m,n), decimal(m,n),float, real, smallmoney, money
Ngày tháng	smalldatetime, datetime
Luận lý	bit

ĐH Sư phạm TPHCM

3.1 Lệnh tạo bảng (3)

Lược đồ CSDL quản lý bán hàng gồm có các quan hệ sau:

KHACHHANG (MAKH, HOTEN, DCHI, SODT, NGSINH, DOANHSO, NGDK, CMND)

NHANVIEN (MANV, HOTEN, NGVL, SODT)

SANPHAM (MASP, TENSP, DVT, NUOCSX, GIA)

HOADON (SOHD, NGHD, MAKH, MANV, TRIGIA)

CTHD (SOHD, MASP, SL)

ĐH Sư phạm TPHCM

9

3.1 Lệnh tạo bảng (4)

```
Create table KHACHHANG
```

(

MAKH char(4) primary key,

HOTEN varchar(40),

DCHI varchar(50),

SODT varchar(20),

NGSINH smalldatetime,

DOANHSO money,

NGDK smalldatetime,

CMND varchar(10)

)

ĐH Sư phạm TPHCM

3.1 Lệnh tạo bảng (5)

```
Create table CTHD

(

SOHD int foreign key
references HOADON(SOHD),

MASP char(4) foreign key
references SANPHAM(MASP),

SL int,
constraint PK_CTHD primary key (SOHD,MASP)
)
```

ĐH Sư phạm TPHCM

10

3.2 Sửa cấu trúc bảng(1)

3.2.1 Thêm thuộc tính

ALTER TABLE tênbảng ADD têncột kiểudữ liệu

- Ví dụ: thêm cột Ghi_chu vào bảng khách hàng
 ALTER TABLE KHACHHANG ADD GHI_CHU varchar(20)
- 3.2.2 Sửa kiểu dữ liệu thuộc tính

 ALTER TABLE tênbảng ALTER COLUMN têncột

 kiểudữliệu_mới
- Lưu ý:

Không phải sửa bất kỳ kiểu dữ liệu nào cũng được

ĐH Sư phạm TPHCM

3.2 Sửa cấu trúc bảng(2)

- Ví dụ: Sửa Cột Ghi_chu thành kiểu dữ liệu varchar(50)
 ALTER TABLE KHACHHANG ALTER COLUMN GHI_CHU varchar(50)
- Nếu sửa kiểu dữ liệu của cột Ghi_chu thành varchar(5),
 mà trước đó đã nhập giá trị cho cột Ghi_chu có độ dài hơn
 5ký tự thì không được phép.
- Hoặc sửa từ kiểu chuỗi ký tự sang kiểu số, ...

3.2.3 Xóa thuộc tính

ALTER TABLE tên_bảng DROP COLUMN tên_cột

Ví dụ: xóa cột Ghi_chu trong bảng KHACHHANG
 ALTER TABLE NHANVIEN DROP COLUMN Ghi_chu

ĐH Sư phạm TPHCM

12

3.2 Sửa cấu trúc bảng(3)

3.2.4 Thêm ràng buộc toàn vẹn

ALTER TABLE <tên_bảng> ADD CONSTRAINT <tên_ràng_buộc> UNIQUE tên_cột

PRIMARY KEY (tên_cột)

FOREIGN KEY (tên_cột)
REFERENCES tên_bảng
(cột_là_khóa_chính) [ON
DELETE CASCADE] [ON
UPDATE CASCADE]

CHECK (tên_cột điều_kiện)

ĐH Sư phạm TPHCM

3.2 Sửa cấu trúc bảng(4)

Ví dụ

- ALTER TABLE NHANVIEN ADD CONSTRAINT PK_NV PRIMARY KEY (MANV)
- ALTER TABLE CTHD ADD CONSTRAINT FK_CT_SP FOREIGN
 KEY (MASP) REFERENCES SANPHAM(MASP)
- ALTER TABLE SANPHAM ADD CONSTRAINT CK_GIA CHECK (GIA >=500)
- ALTER TABLE KHACHHANG ADD CONSTRAINT UQ_KH
 UNIQUE (CMND)

ĐH Sư phạm TPHCM

14

3.2 Sửa cấu trúc bảng(5)

3.2.5 Xóa ràng buộc toàn vẹn

ALTER TABLE tên_bảng DROP CONSTRAINT tên_ràng_buộc

- Ví du:
 - Alter table CTHD drop constraint FK_CT_SP
 - Alter table SANPHAM drop constraint ck_gia
- Lưu ý: đối với ràng buộc khóa chính, muốn xóa ràng buộc này phải xóa hết các ràng buộc khóa ngoại tham chiếu tới nó

ĐH Sư phạm TPHCM

3.3 Lệnh xóa bảng

Cú pháp

DROP TABLE tên_bảng

Ví dụ: xóa bảng KHACHHANG.

DROP TABLE KHACHHANG

 Lưu ý: khi muốn xóa một bảng phải xóa tất cả những khóa ngoại tham chiếu tới bảng đó trước.

ĐH Sư phạm TPHCM

16

4. Ngôn ngữ thao tác dữ liệu

- Gồm các lệnh:
 - 4.1 Lệnh thêm dữ liệu (INSERT)
 - 4.2 Lệnh sửa dữ liệu (UPDATE)
 - 4.3 Lệnh xóa dữ liệu (DELETE)

ĐH Sư phạm TPHCM

4.1 Thêm dữ liệu

Cú pháp

```
INSERT INTO tên_bảng (cột1,...,cộtn) VALUES (giá_tri_1,...., giá_tri_n)
INSERT INTO tên_bảng VALUES (giá_tri_1, giá_tri_2,..., giá_tri_n)
```

Ví dụ:

- insert into SANPHAM values('BC01','But chi', 'cay', 'Singapore', 3000)
- insert into SANPHAM(masp,tensp,dvt,nuocsx,gia)
 values ('BC01','But chi','cay','Singapore',3000)

ĐH Sư phạm TPHCM

18

4.2 Sửa dữ liệu

Cú pháp

```
UPDATE tên_bảng
SET cột_1 = giá_tri_1, cột_2 = giá_tri_2 ....
[WHERE điều kiện]
```

- Lưu ý: cẩn thận với các lệnh xóa và sửa, nếu không có điều kiện ở WHERE nghĩa là xóa hoặc sửa tất cả.
- Ví dụ: Tăng giá 10% đối với những sản phẩm do "Trung Quoc" sản xuất

UPDATE SANPHAM
SET Gia = Gia*1.1
WHERE Nuocsx='Trung Quoc'

ĐH Sư phạm TPHCM

4.3 Xóa dữ liệu

Cú pháp

DELETE FROM tên_bảng [WHERE điều_kiện]

Ví dụ:

- Xóa toàn bộ nhân viên
 DELETE FROM NHANVIEN
- Xóa những sản phẩm do Trung Quốc sản xuất có giá thấp hơn 10000

DELETE FROM SANPHAM WHERE (Gia <10000) and (Nuocsx='Trung Quoc')

ĐH Sư phạm TPHCM

20

Bài tập tình huống

HOCVIEN						
Mahv	HoTen	Gioitinh	Noisinh	Malop		
K1103	Ha Duy Lap	Nam	Nghe An	K11		
K1102	Tran Ngoc Han	Nu	Kien Giang	K11		
K1104	Tran Ngoc Linh	Nu	Tay Ninh	K11		
K1105	Tran Minh Long	Nam	ТрНСМ	K11		
K1106	Le Nhat Minh	Nam	ТрНСМ	K11		

Viết các câu lệnh SQL: tạo bảng, thêm khóa chính khóa ngoại và insert dữ liệu cho CSDL trên. Sau đó viết lệnh sửa giới tính của HOCVIEN K1105. Xóa LOP K12. Xóa lớp K11

	LOP								
M	lalop	Tenlop	Trglop	Siso	Magven				
K	11	Lop 1 khoa 1	K1106	11	GV07				
K	12	Lop 2 khoa 1	K1205	12	GV09				
K	13	Lop 3 khoa 1	K1305	12	GV14				

5. Ngôn ngữ truy vấn dữ liệu có cấu trúc

- 5.1 Câu truy vấn tổng quát
- 5.2 Truy vấn đơn giản
- 5.3 Phép kết
- 5.4 Đặt bí danh, sử dụng *, distinct
- 5.5 Các toán tử
- 5.6 Câu truy vấn con (subquery)
- 5.7 Phép chia
- 5.8 Hàm tính toán, gom nhóm

ĐH Sư phạm TPHCM

22

5.1Câu truy vấn tổng quát

```
SELECT [DISTINCT] * | tên_cột | hàm
FROM bảng
[WHERE điều_kiện]
[GROUP BY tên_cột]
[HAVING điều_kiện]
[ORDER BY tên_cột ASC | DESC]
```

ĐH Sư phạm TPHCM

5.2 Truy vấn đơn giản(1)

- SELECT
 - Tương đương phép chiếu của ĐSQH
 - Liệt kê các thuộc tính cần hiển thị trong kết quả
- WHERE
 - Tương ứng với điều kiện chọn trong ĐSQH
 - Điều kiện liên quan tới thuộc tính, sử dụng các phép nối luận lý AND, OR, NOT, các phép toán so sánh, BETWEEN
- FROM
 - Liệt kê các quan hệ cần thiết, các phép kết

ĐH Sư phạm TPHCM

24

5.2 Truy vấn đơn giản(2)

• Tìm masp, tensp do "Trung Quoc" sản xuất có giá từ 20000 đến 30000

Select masp, tensp

From SANPHAM

Where nuocsx='Trung Quoc'

and gia between 20000 and 30000

ĐH Sư phạm TPHCM

5.3 Phép kết(1)

- Inner Join, Left Join, Right Join, Full Join
- Ví dụ:
 - In ra danh sách các khách hàng (MAKH, HOTEN)
 đã mua hàng trong ngày 1/1/2007.

select KHACHHANG.makh,hoten from KHACHHANG inner join HOADON on KHACHHANG.makh=HOADON.makh where nghd='1/1/2007'

ĐH Sư phạm TPHCM

26

5.3 Phép kết (2)

- Ví dụ: In ra danh sách tất cả các hóa đơn và họ tên của khách hàng mua hóa đơn đó (nếu có)
 - Select sohd, hoten
 From HOADON left join KHACHHANG on HOADON.makh=KHACHHANG.makh
 - Select sohd, hoten

From HOADON, KHACHHANG

where HOADON.makh*=KHACHHANG.makh

ĐH Sư phạm TPHCM

5.4 Đặt bí danh, sử dụng *, distinct

- Đặt bí danh Alias: cho thuộc tính và quan hệ: tên_cũ AS tên_mới
 - Select many, hoten as [ho va ten] From NHANVIEN
- Liệt kê tất cả các thuộc tính của quan hệ:
 - Select * from Nhanvien
 - Select NHANVIEN.* from NHANVIEN
- Distinct: trùng chỉ lấy một lần
 - Select distinct nuocsx from SANPHAM
- Sắp xếp kết quả hiển thị: Order by
 - Select * from SANPHAM order by nuocsx, gia DESC

ĐH Sư phạm TPHCM

28

5.5 Toán tử truy vấn(1)

- Toán tử so sánh: =, >,<,>=,<=,<>
- Toán tử logic: AND, OR, NOT
- Phép toán: +, -,*,/
- BETWEEN AND
- IS NULL, IS NOT NULL
- LIKE (_ %)
- IN, NOT IN
- EXISTS, NOT EXISTS
- SOME, ALL

ĐH Sư phạm TPHCM

5.5 Toán tử truy vấn(2)

IS NULL, IS NOT NULL

- Select sold from HOADON where make is Null
- Select * from HOADON where makh is Not Null

Toán tử so sánh, phép toán

- Select gia*1.1 as [gia ban] from SANPHAM where nuocsx<>'Viet Nam'
- Select * from SANPHAM where (gia between 20000 and 30000) OR (nuocsx='Viet Nam')

Toán tử IN, NOT IN

 Select * from SANPHAM where masp NOT IN ('BB01','BB02','BB03')

ĐH Sư phạm TPHCM

30

5.5 Toán tử so sánh(3)

Toán tử LIKE

- So sánh chuỗi tương đối
- Cú pháp: s LIKE p, p có thể chứa % hoặc _
- %: thay thế một chuỗi ký tự bất kỳ
- _ : thay thế một ký tự bất kỳ
- Ví dụ: Select masp, tensp from SANPHAM where masp like 'B%01'

ĐH Sư phạm TPHCM

5.6 Câu truy vấn con (1)

In hoặc Exists

- Ví dụ: Tìm các số hóa đơn mua cùng lúc 2 sản phẩm có mã số "BB01" và "BB02".
 - select distinct sohd from CTHD where masp='BB01' and sohd IN (select distinct sohd from CTHD where masp='BB02')
 - select distinct A.sohd
 from CTHD A where A.masp='BB01' and
 EXISTS (select * from CTHD B
 where B.masp='BB02' and A.sohd=B.sohd)

ĐH Sư phạm TPHCM

32

5.6 Câu truy vấn con (2)

Not In hoặc Not Exists

- Ví dụ: Tìm các số hóa đơn có mua sản phẩm mã số 'BB01' nhưng không mua sản phẩm mã số 'BB02'.
 - select distinct sohd
 from CTHD where masp='BB01' and sohd NOT IN
 (select distinct sohd from CTHD where masp='BB02')
 - select distinct A.sohd
 from CTHD A where A.masp='BB01' and
 NOT EXITST (select * from CTHD B
 where B.masp='BB02' and A.sohd=B.sohd)

ĐH Sư phạm TPHCM

5.7 Phép chia

Sử dụng NOT EXISTS

- Ví dụ: Tìm số hóa đơn đã mua tất cả những sản phẩm do "Trung Quoc" sản xuất.
- Select sohd from HOADON where not exists (select * from SANPHAM where nuocsx='Trung Quoc' and not exists (select * from CTHD where HOADON.sohd=CTHD.sohd and

ĐH Sư phạm TPHCM

CTHD.masp=SANPHAM.masp))

34

5.8 Các hàm tính toán và gom nhóm (1)

5.8.1 Các hàm tính toán cơ bản

- COUNT: Đếm số bộ dữ liệu của thuộc tính
- MIN: Tính giá trị nhỏ nhất
- MAX: Tính giá trị lớn nhất
- AVG: Tính giá trị trung bình
- SUM: Tính tổng giá trị các bộ dữ liệu

ĐH Sư phạm TPHCM

	NHANVIEN						
MANV	HOTEN	PHAI	MANQL	PHONG	LUONG		
NV001	Nguyễn Ngọc Linh	Nữ	Null	NC	2.800.000		
NV002	Đinh Bá Tiến	Nam	NV002	DH	2.000.000		
NV003	Nguyễn Văn Mạnh	Nam	NV001	NC	2.300.000		
NV004	Trần Thanh Long	Nam	NV002	DH	1.800.000		
NV005	Nguyễn Thị Hồng Vân	Nữ	NV001	NC	2.500.000		
NV006	Nguyễn Minh	Nam	NV002	DH	2.000.000		
NV007	Hà Duy Lập	Nam	NV003	NC	1.800.000		
NV008	Trần Kim Duyên	Nữ	NV003	NC	1.800.000		
NV009	Nguyễn Kim Anh	Nữ	NV003	NC	2.000.000		

ĐH Sư phạm TPHCM

36

Ví du

- 1. Tính lương thấp nhất, cao nhất, trung bình và tổng lương của tất cả các nhân viên.
- 2. Có tất cả bao nhiêu nhân viên
- 3. Bao nhiêu nhân viên có người quản lý
- 4. Bao nhiêu phòng ban có nhân viên trực thuộc
- 5. Tính lương trung bình của các nhân viên
- 6. Tính lương trung bình của các nhân viên theo từng phòng ban

ĐH Sư phạm TPHCM

1. Tính lương thấp nhất, cao nhất, trung bình và tổng lương của tất cả các nhân viên.

SELECT min(luong) as thapnhat,

max(luong) as caonhat, avg(luong) as trungbinh,

sum(luong) as tongluong

FROM NhanVien

ĐH Sư phạm TPHCM

- Có tất cả bao nhiêu nhân viên
 SELECT count(*) FROM NhanVien
- 3. Bao nhiêu nhân viên có người quản lý
 - Select count(*) FROM NhanVien WHERE manql is not null
 - SELECT count(Manql) FROM NhanVien
- 4. Bao nhiêu phòng ban có nhân viên trực thuộc SELECT count(distinct phong) FROM NhanVien

5.8 Các hàm tính toán và gom nhóm (2)

5.8.2 Gom nhóm: mệnh đề GROUP BY

- Sử dụng hàm gom nhóm trên các bộ trong quan hệ.
- Mỗi nhóm bộ bao gồm tập hợp các bộ có cùng giá trị trên các thuộc tính gom nhóm
- Hàm gom nhóm áp dụng trên mỗi bộ độc lập nhau.
- SQL có mệnh đề GROUP BY để chỉ ra các thuộc tính gom nhóm, các thuộc tính này phải xuất hiện trong mệnh đề SELECT

ĐH Sư phạm TPHCM

40

5. Tính lương trung bình của các nhân viên

SELECT avg(LUONG) as LUONGTB

FROM NhanVien

6. Tính lương trung bình của các nhân viên theo từng phòng ban.

SELECT phong, avg(LUONG) as LUONGTB

FROM NhanVien

GROUP BY phong

ĐH Sư phạm TPHCM

5.8 Các hàm tính toán và gom nhóm (3)

5.8.3 Điều kiện sau gom nhóm: mệnh đề HAVING

- Lọc kết quả theo điều kiện, sau khi đã gom nhóm
- Điều kiện ở HAVING được thực hiện sau khi gom nhóm,
 các điều kiện có liên quan đến thuộc tính Group By
- Ví dụ: tìm phòng có số lượng nhân viên "Nữ" trên 5 người

SELECT phong

FROM NhanVien

WHERE phai = 'Nữ'

GROUP BY phong

HAVING count(manv) > 5

ĐH Sư phạm TPHCM

42

Câu hỏi ôn tập

- Liệt kê ghi rõ cú pháp các lệnh của ngôn ngữ DDL cho ví dụ và giải thích ý nghĩa.
- Liệt kê ghi rõ cú pháp các lệnh của ngôn ngữ
 DML cho ví dụ và giải thích ý nghĩa.
- Liệt kê ghi rõ cú pháp các lệnh của ngôn ngữ
 SQL cho ví dụ và giải thích ý nghĩa.

Bài 6: Ngôn ngữ tân từ

ĐH Sư phạm TPHCM

.

Nội dung

- 1. Giới thiệu
- 2. Cú pháp
- 3. Các định nghĩa
- 4. Diễn giải của một công thức
- 5. Quy tắc lượng giá công thức
- 6. Ngôn ngữ tân từ có biến là n bộ
- 7. Ngôn ngữ tân từ có biến là miền giá trị

1. Giới thiệu

 Ngôn ngữ tân từ là ngôn ngữ truy vấn hình thức do Codd để nghị (1972-1973) được Lacroit, Proix và Ullman phát triển, cài đặt trong một số ngôn ngữ như QBE, ALPHA..

• Đặc điểm:

- Ngôn ngữ phi thủ tục
- Rút trích cái gì chứ không phải rút trích như thế nào
- Khả năng diễn đạt tương đương với đại số quan hệ

• Có hai loại:

- Có biến là n bộ
- Có biến là miền giá trị

ÐH Sư phạm TPHCM

3

2. Cú pháp

- (): biểu thức trong ngoặc
- Biến: dùng chữ thường ở cuối bộ ký tự: x,y,z,t,s...
- Hằng: dùng chữ thường ở đầu bộ ký tự: a,b,c,...
- Hàm: là một ánh xạ từ một miền giá trị vào tập hợp gồm 2 giá trị: đúng hoặc sai. Thường dùng chữ thường ở giữa bộ ký tự: h,g,f,...
- Tân từ: là một biểu thức được xây dựng dựa trên biểu thức logic. Dùng chữ in hoa ở giữa bộ ký tự P,Q,R...
- Các phép toán logic: phủ định (¬), kéo theo (⇒), và (∧), hoặc (∨).
- Các lượng từ: với mọi (∀), tồn tại (∃)

3. Các định nghĩa (1)

• Định nghĩa 1: Tân từ 1 ngôi

- Tân từ 1 ngôi được định nghĩa trên tập X và biến x có giá trị chạy trên các phần tử của X.
- Với mỗi giá trị của x, tân từ P(x) là một mệnh đề logic, tức là nó có giá trị đúng (Đ) hoặc sai (S)
- Ví dụ
 - P(x), x là biến chạy trên X, là một tân từ
 - P(gt), gt∈ X là một mệnh đề, X = {Nguyen Van A, Tran Thi B}
 - Với tân từ NỮ(x) được xác định: "x là người nữ". Khi đó
 - Mệnh đề NỮ (Nguyen Van A): cho kết quả Sai
 - NỮ (Tran Thi B): cho kết quả Đúng

ĐH Sư phạm TPHCM

5

3. Các định nghĩa (2)

Định nghĩa 2: Tân từ n ngôi

- Tân từ n ngôi được định nghĩa trên các tập X_1 , X_2 , ..., X_n và n biến x_1 , x_2 , ..., x_n lấy giá trị trên các tập X_i tương ứng.
- Với mỗi giá trị a_i ∈ X_i , x_i = a_i . Tân từ n ngôi là một mệnh đề.
- Ký hiệu: P(x₁, x₂, ..., x_n)
- Ví dụ: CHA(x_1,x_2): " x_1 là CHA của x_2 "
- Chú ý:
 - Các X_i không nhất thiết phải là rời nhau
 - Với x_i=a_i, P(x₁, x₂, ..., a_i, ..., x_n) là tân từ n-1 ngôi

ĐH Sư phạm TPHCM

3. Các định nghĩa (3)

• Định nghĩa 3: Từ

- Từ là một hằng hay là một biến
- Nếu f(t₁, t₂, ..., t_n) là hàm n ngôi thì f là một từ

Định nghĩa 4: Công thức

- Công thức nguyên tố: $P(t_1, t_2, ..., t_n)$, t_i là các từ
- Nếu F_1 , F_2 là các công thức thì các biểu thức sau cũng là các công thức: $F_1 \lor F_2$, $F_1 \land F_2$, $F_1 = \gt F_2$, $\neg F_1$
- Nếu F_1 là một công thức thì \forall : F_1 , ∃x: F_1 cũng là các công thức
- Nếu F_1 là công thức thì (F_1) cũng là một công thức

ĐH Sư phạm TPHCM

7

3. Các định nghĩa (4)

• Định nghĩa 4:

- Công thức đóng là công thức nếu mọi biến đều có kèm với lượng từ. (khẳng định Đ, S)
- Công thức mở là công thức tồn tại 1 biến không kèm lượng từ. (tìm kiếm thông tin)

Ví dụ:

- C_1 : $\forall x \exists t \forall y (P(x,y,a) \Rightarrow \exists z (Q(y,z,t) \land R(x,t))$ là công thức đóng vì các biến x,y,z,t đều có kèm lượng từ \forall , \exists
- $-C_2$: $\forall x \exists t (P(x,y,a) \Rightarrow \exists z (Q(y,z,t) \land R(x,t)) | là công thức mở vì biến y không có lượng từ <math>\forall$,∃

ĐH Sư phạm TPHCM

4. Diễn giải của một công thức

Gồm 4 phần:

- Miền giá trị của các biến của công thức (ký hiệu là tập M)
- Sử dụng các hằng, các tân từ (ý nghĩa tân từ, xác định được quan hệ n ngôi)
- Ý nghĩa của công thức
- Xác định 1 quan hệ n ngôi trên tập Mⁿ

ĐH Sư phạm TPHCM

(

5. Quy tắc lượng giá công thức

 Lượng giá tân từ: xét tân từ bậc n: P(x₁,x₂,...x_n) và liên kết với quan hệ R, n ngôi.

$$P(a_1,a_2,...,a_n): D \Leftrightarrow (a_1,a_2,...,a_n) \in R$$

 $P(a_1,a_2,...,a_n): S \Leftrightarrow (a_1,a_2,...,a_n) \notin R$

- Các phép toán ∧,∨,¬,⇒ dùng bảng chân trị
- Lượng từ ∃: gọi x là biến. Công thức ∃x F(x) là đúng khi có ít nhất một a;∈ M/F(a;):Đ

$$M = \{a_1, a_2, ..., a_n\} \equiv \vee F(a_i), a_i \in M$$

• Lượng từ \forall : x là biến, \forall x F(x): Đ với \forall $a_i \in M/F(a_i)$:Đ

$$M = \{a_1, a_2, ..., a_n\} \equiv \land F(a_i), a_i \in M$$

6. Ngôn ngữ tân từ có biến là n bộ

- 6.1 Qui tắc
- 6.2 Định nghĩa
- 6.3 Công thức an toàn
- 6.4 Biểu diễn các phép toán

ÐH Sư phạm TPHCM

11

6.1 Quy tắc (1)

- 1. Biến là 1 bộ của quan hệ
- Từ: hằng, biến hoặc biểu thức có dạng s[C], s: biến, C: tập các thuộc tính của quan hệ được gọi là từ chiếu.
- 3. Công thức:
 - Rs (R là quan hệ, s là biến) được gọi là từ. Miền giá trị sẽ định nghĩa miền biến thiên của s.
 - $t_1\theta$ a , $t_1\theta$ t_2 ở đây t_1 , t_2 là các từ chiếu, còn a là một hằng, θ là toán tử so sánh dược gọi là công thức nguyên tố

6.1 Quy tắc (2)

- 4. Một công thức nguyên tố là một công thức
- 5. F_1 và F_2 là công thức: $F_1 \lor F_2$, $F_1 \land F_2$, $F_1 \Longrightarrow F_2$, $\neg F_1$ là công thức
- 6. F là công thức , s là biến ∃sF, ∀sF là công thức
- 7. F là công thức, (F) là công thức

ĐH Sư phạm TPHCM

13

6.2 Định nghĩa

- Một câu hỏi trong ngôn ngữ tân từ có biến là n bộ được biểu diễn như sau: {s | F}. Trong đó s là biến n bộ, F là một công thức chỉ có một biến tự do là s.
- Ví dụ: BIENGIOI(nuoc, tinhtp). Phép toán quan hệ BIENGIOI[nuoc] được chuyển thành câu hỏi trong ngôn ngữ tân từ có biến là bộ: {s[nuoc] | BIENGIOI s}

ĐH Sư phạm TPHCM

6.3 Công thức an toàn

F là công thức an toàn: nếu nó thoả mãn 3 điều kiện sau:

 i) Nếu s là bộ n thỏa: F(s) là đúng thì mọi thành phần của s là phần tử của DOM(F):

$$(F_s:D\acute{u}ng) \rightarrow s \in DOM(F)$$

ii) F' là công thức con của F:

$$\exists sF'_{S}, F'_{S}: D\acute{u}ng \rightarrow s \in DOM(F')$$

iii) $\forall sF'_{S}, F'_{S}: D\acute{u}ng \rightarrow s \notin DOM(F')$

ÐH Sư phạm TPHCM

15

6.4 Biểu diễn các phép toán (1)

• 1. Phép hội

- Q₁,Q₂ là các quan hệ n chiều
- $-F_1$, F_2 là các công thức ứng với Q_1 , Q_2
- Công thức của $Q = Q_1 \cup Q_2$
- $-F_s=F_{1s}\lor F_{2s}$

• 2. Phép trừ

- $-Q_1,Q_2$ là các quan hệ n chiều
- $-F_1$, F_2 là các công thức ứng với Q_1 , Q_2
- Công thức của $Q = Q_1 Q_2$
- $-F_s=F_1 \land \neg F_{2s}$

6.4 Biểu diễn các phép toán (2)

• 3. Phép tích

- $-Q_1(x_1,...,x_m), Q_2(y_1,...,y_n)$
- $-F_1$, F_2 là các công thức ứng với Q_1 , Q_2
- Công thức của $Q = Q_1 \times Q_2$

$$F_{s}: s(x_{1},...,x_{m}, y_{1},...,y_{n})$$

$$F_{s}=(\exists v) (\exists p) (F_{1v} \land F_{2p} \land s_{1}=v_{1} \land ...s_{m}=v_{m} \land s_{m+1}=p_{1} \land ...s_{m+n}=p_{n})$$

ÐH Sư phạm TPHCM

17

6.4 Biểu diễn các phép toán (3)

4. Phép chiếu

- $-Q_1(x_1,...,x_n)$, F_1 là các công thức ứng với Q_1
- Công thức của Q= $Q_1[x_{i1}, x_{i2},...,x_{ik}]$ $F_s = (\exists v) (F_{1v} \land s_1 = v_{i1} \land s_2 = v_{i2} \land ... s_k = v_{ik})$

• 5. Phép chọn

- Q_1 là quan hệ n chiều, F_1 là công thức ứng với Q_1
- Công thức $Q=Q_1$:điều kiện ĐK (ĐK: $x_i\theta x_j$ hoặc $x_i\theta a$) $F_s=F_{1s} \wedge s_i \theta s_i$ hoặc $F_{1s} \wedge s_i \theta a$ (1≤i, j ≤ n, i≠j)

ĐH Sư phạm TPHCM

7. Ngôn ngữ tân từ có biến là miền giá trị

- 7.1 Quy tắc
- 7.2 Biểu diễn câu hỏi
- 7.3 Công thức an toàn
- 7.4 Biểu diễn các phép toán

ĐH Sư phạm TPHCM

19

7.1 Quy tắc

- 1. Từ: là hằng hoặc biến
- 2. Công thức nguyên tố
 - Q($t_1, t_2, ..., t_n$): t_i là các từ, Q là quan hệ
 - $t_i\theta$ t_i , $t_i\theta$ a với t_i là từ, a là một hằng, θ là phép toán
- 3. Một công thức nguyên tố là một công thức
- 4. F_1 và F_2 là công thức: $F_1 \lor F_2$, $F_1 \land F_2$, $F_1 \Longrightarrow F_2$, $\neg F_1$ là công thức
- 5. F là công thức , t:biến tự do, ∃sF,∀sF cũng công thức
- 6. F là công thức, (F) là công thức

ÐH Sư phạm TPHCM

7.2 Biểu diễn câu hỏi

$$\{(x_1,x_2,...,x_n) \mid F(x_1,x_2,...,x_n)\}$$

- x_i là các biến tự do của F
- Q= $\{(x_1, x_2, ..., x_n) \mid F(x_1, x_2, ..., x_n)\}$ nên $(x_1, x_2, ..., x_n) \in Q \Rightarrow F(x_1, x_2, ..., x_n)$: Đúng

ĐH Sư phạm TPHCM

21

7.3 Công thức an toàn

F là công thức an toàn: nếu nó thoả mãn 3 điều kiện sau:

i) Nếu s là bộ n thỏa: F(s) là đúng thì mọi thành phần của s
 là phần tử của DOM(F):

$$(F(x_1,...,x_n):D\acute{u}ng) \rightarrow x_i \in DOM(F), i=1,...,n$$

ii) F' là công thức con của F:

$$\exists xF': D\acute{u}ng \rightarrow x \in DOM(F')$$

iii)
$$\forall x F': D\acute{u}ng \rightarrow \exists x \notin DOM(F')$$

 $(F(x_1,...,x_n): D\acute{u}ng) \rightarrow \exists x \notin DOM(F), i=1,...,n$

ĐH Sư phạm TPHCM

7.4 Biểu diễn các phép toán (1)

• 1. Phép hội

- Q₁,Q₂ là các quan hệ n chiều
- $-F_1$, F_2 là các công thức ứng với Q_1 , Q_2
- Công thức của $Q = Q_1 \cup Q_2$
- $F=F_1 \lor F_2$

• 2. Phép trừ

- Q₁,Q₂ là các quan hệ n chiều
- $-F_1$, F_2 là các công thức ứng với Q_1 , Q_2
- Công thức của Q= Q₁-Q₂
- $-F=F_1 \land \neg F_2$

ĐH Sư phạm TPHCM

23

7.4 Biểu diễn các phép toán (2)

• 3. Phép tích

- $-Q_1(x_1,...,x_m), Q_2(y_1,...,y_n)$
- $-F_1$, F_2 là các công thức ứng với Q_1 , Q_2
- Công thức của $Q = Q_1 \times Q_2$

$$F(x_1,...,x_m, y_1,...,y_n) = F_1(x_1,...,x_m) \land F_2(y_1,...,y_n)$$

ĐH Sư phạm TPHCM

7.4 Biểu diễn các phép toán (3)

• 4. Phép chiếu

- $-Q_1(x_1,...,x_n)$, $F_1(x_1,...,x_n)$ là các công thức ứng với Q_1
- Công thức của Q= Q₁ [x_{i1} , x_{i2} ,..., x_{ik}] $F_s(x_{i1}, x_{i2},...,x_{ik}) = (\exists x_{ji})(\exists x_{jz})...(\exists x_{jn-k})(F_1(x_1,...,x_n))$ trong đó $(x_{i1}, x_{i2},...,x_{ik}) \cup (x_{j1}, x_{j2},...,x_{jn-k}) = (x_1, x_2,...,x_n)$

• 5. Phép chọn

- $-Q_1(x_1,...,x_n)$, $F_1(x_1,...,x_n)$ là các công thức ứng với Q_1
- Công thức Q=Q₁:điều kiện ĐK (ĐK: $x_i\theta x_j$ hoặc $x_i\theta a$) $F_1(x_1,...,x_n) = F_1(x_1,...,x_n) \wedge x_i \theta x_j \text{ hoặc}$ $= F_1(x_1,...,x_n) \wedge x_i \theta a$

ÐH Sư phạm TPHCM

25

Bài 7: Ràng buộc toàn vẹn

ĐH Sư pham TPHCM

Nội dung chính

- 1. Giới thiệu ràng buộc toàn vẹn (RBTV)
- 2. Các đặc trưng của một RBTV
- 3. Phân loại RBTV
- 4. Bảng tầm ảnh hưởng tống hợp

ĐH Sư phạm TPHCM

2

1. Giới thiệu

- Ràng buộc toàn vẹn là các quy định, điều kiện từ ứng dụng thực tế, các điều kiện này là bất biến.
 - ⇒Vì thế phải luôn đảm bảo cơ sở dữ liệu thoả ràng buộc toàn vẹn sau mỗi thao tác làm thay đổi tình trạng của cơ sở dữ liệu.

2. Các đặc trưng của một RBTV

- 2.1 Nội dung
- 2.2 Bối cảnh
- 2.3 Bảng tầm ảnh hưởng

ĐH Sư phạm TPHCM

,

2.1 Nội dung

- Mô tả chặt chẽ ý nghĩa của ràng buộc toàn vẹn.
- Nội dung được phát biểu bằng ngôn ngữ tự nhiên hoặc bằng ngôn ngữ hình thức (ngôn ngữ tân từ, đại số quan hệ, mã giả,...)
 - Ngôn ngữ tự nhiên: dễ hiểu nhưng không chặt chẽ, logic.
 - Ngôn ngữ hình thức: chặt chẽ, cô đọng

ĐH Sư pham TPHCM

2.2 Bối cảnh

- Là tập các quan hệ khi thao tác trên những quan hệ đó có khả năng làm cho ràng buộc bị vi phạm.
- Đó là những quan hệ có thể vi phạm ràng buộc toàn vẹn khi thực hiện các thao tác thêm, xoá, sửa.

ĐH Sư phạm TPHCM

6

2.3 Bảng tầm ảnh hưởng (1)

- Nhằm xác định khi nào tiến hành kiểm tra ràng buộc toàn vẹn. Thao tác nào thực hiện có thể làm vi phạm ràng buộc toàn vẹn.
- Phạm vi ảnh hưởng của một ràng buộc toàn vẹn được biểu diễn bằng một bảng 2 chiều gọi là bảng tầm ảnh hưởng.

2.3 Bảng tầm ảnh hưởng (2)

Một số quy định

- Những thuộc tính khoá (những thuộc tính nằm trong khoá chính của quan hệ) không được phép sửa giá trị
- Thao tác thêm và xoá xét trên một bộ của quan hệ.
 Thao tác sửa xét sửa từng thuộc tính trên bộ của quan hệ
- Trước khi xét thao tác thực hiện có thể làm vi phạm ràng buộc hay không thì CSDL phải thoả ràng buộc toàn ven trước.

ĐH Sư phạm TPHCM

Q

2.3 Bảng tầm ảnh hưởng (3)

Bảng tầm ảnh hưởng của một ràng buộc

Ràng buộc Ri	Thêm	Xóa	Sửa
Quan hệ 1			
Quan hệ n			

+ : thực hiện thao tác có thể làm vi phạm RBTV

- : thực hiện thao tác không thể làm vi phạm RBTV

+(A): có thể làm vi phạm RBTV khi sửa trên thuộc tính A

-(*): không vi phạm RBTV do thao tác không thực hiện được

ĐH Sư phạm TPHCM

3. Phân loại

- 3.1 RBTV có bối cảnh trên 1 quan hệ
- 3.2 RBTV có bối cảnh trên nhiều quan hệ
- 3.3 Phụ thuộc hàm (functional dependency)

ĐH Sư phạm TPHCM

10

3.1 RBTV có bối cảnh 1 quan hệ

- 3.1.1 RBTV miền giá trị.
- 3.1.2 RBTV liên thuộc tính
- 3.1.3 RBTV liên bộ

Lược đồ CSDL quản lý giáo vụ

HOCVIEN (MAHV, HO, TEN, NGSINH, GIOITINH, NOISINH, MALOP)

LOP (MALOP, TENLOP, TRGLOP, SISO, MAGVCN)

KHOA (MAKHOA, TENKHOA, NGTLAP, TRGKHOA)

MONHOC (MAMH, TENMH, TCLT, TCTH, MAKHOA)

DIEUKIEN (MAMH, MAMH TRUOC)

GIAOVIEN(MAGV, HOTEN, HOCVI, HOCHAM, GIOITINH, NGSINH, NGVL, HESO, MUCLUONG, MAKHOA)

GIANGDAY(MALOP, MAMH, MAGV, HOCKY, NAM, TUNGAY, DENNGAY)

KETQUATHI (MAHV, MAMH, LANTHI, NGTHI, DIEM, KQUA)

ĐH Sư phạm TPHCM

12

3.1.1 Ràng buộc miền giá trị

- Là tập giá trị mà một thuộc tính có thể nhận.
- R1: Giới tính của học viên chỉ là Nam hoặc Nữ
 - Nội dung:

 $\forall hv \in HOCVIEN: hv.Gioitinh \in \{'Nam','N\tilde{u}'\}$

- Bối cảnh: quan hệ HOCVIEN
- Bảng tầm ảnh hưởng:

R1	Thêm	Xóa	Sửa
HOCVIEN	+	-	+(Gioitinh)

ĐH Sư pham TPHCM

3.1.2 Ràng buộc liên thuộc tính

- Là ràng buộc giữa các thuộc tính với nhau trên 1 bộ của quan hệ
- R2:Ngày bắt đầu (TUNGAY) giảng dạy một môn học cho một lớp luôn nhỏ hơn ngày kết thúc (DENNGAY)
 - Nội dung:

 $\forall gd \in GIANGDAY: gd.TUNGAY < gd.DENNGAY$

Bối cảnh : GIANGDAY

- Bảng tầm ảnh hưởng:

R2	Thêm	Xóa	Sửa
GIANGDAY	+	-	+(Tungay, Denngay)

ĐH Sư phạm TPHCM

14

3.1.3 Ràng buộc liên bộ (1)

- Là ràng buộc giữa các bộ trên cùng một quan hệ (có thế liên quan đến nhiều thuộc tính).
- R3: Tất cả các học viên phải có mã số phân biệt với nhau
 - Nội dung:

 $\forall h_1, h_2 \in HOCVIEN: N\acute{e}u h_1 \neq h_2 thì h_1. Mahv \neq h_2. Mahv$

- Bối cảnh: quan hệ HOCVIEN
- Bảng tầm ảnh hưởng:

R3	Thêm	Xóa	Sửa
HOCVIEN	+	•	_(*)

ĐH Sư pham TPHCM

3.1.3 Ràng buộc liên bộ (2)

- R4: Các giáo viên có cùng học vị, cùng hệ số lương thì mức lương sẽ bằng nhau
 - Nội dung:

 $\forall gv_1, gv_2 \in GIAOVIEN$: $N\acute{e}u (gv_1.Hocvi=gv_2.Hocvi) \land (gv_1.Heso=gv_2.Heso) thì$ gv.Mucluong=gv.Mucluong

- <u>Bối cảnh</u>: quan hệ GIAOVIEN
- Bảng tầm ảnh hưởng:

R4	Thêm	Xóa	Sửa
GIAOVIEN	+	-	+(Hocvi, Heso, Mucluong)

ĐH Sư phạm TPHCM

16

3.2 RBTV có bối cảnh nhiều quan hệ

- 3.2.1 RBTV tham chiếu (khoá ngoại, phụ thuộc tồn tại)
- 3.2.2 RBTV liên thuộc tính
- 3.2.3 RBTV do thuộc tính tổng hợp
- 3.2.4 RBTV do chu trình trong lược đồ biểu diễn quan hệ

ĐH Sư pham TPHCM

3.2.1 Ràng buộc tham chiếu (1)

- Là ràng buộc quy định giá trị thuộc tính trong một bộ của quan hệ R (tập thuộc tính này gọi là khoá ngoại), phải phụ thuộc vào sự tôn tại của một bộ trong quan hệ S (tập thuộc tính này là khoá chính trong quan hệ S).
- RBTV tham chiếu còn gọi là ràng buộc phụ thuộc tồn tại hay ràng buộc khóa ngoại

ĐH Sư phạm TPHCM

18

3.2.1 Ràng buộc tham chiếu (2)

- R5: Học viên thi một môn học nào đó thì môn học đó phải có trong danh sách các môn học
 - Nội dung:
 - $\forall k \in KETQUATHI, \exists m \in MONHOC: k.Mamh = m.Mamh$
 - Hoặc: KETQUATHI[Mamh] ⊆ MONHOC[Mamh]
 - Bối cảnh: quan hệ KETQUATHI, MONHOC
 - Bảng tầm ảnh hưởng:

R5	Thêm	Xóa	Sửa
KETQUATHI	+	-	-(*)
MONHOC	-	+	-(*)

ĐH Sư pham TPHCM

3.2.2 Ràng buộc liên thuộc tính (1)

- Là ràng buộc giữa các thuộc tính trên những quan hệ khác nhau
- R6: Ngày giáo viên giảng dạy một môn học phải lớn hơn hoặc bằng ngày giáo viên đó vào làm.
 - Nội dung: $\forall gd \in GIANGDAY$ Nếu $\exists gv \in GIAOVIEN$: gd.Magv = gv.Magv thì $gv.NGVL \leq gd.TUNGAY$
 - Bối cảnh: GIANGDAY, GIAOVIEN
 - Bảng tầm ảnh hưởng:

R6	Thêm	Xóa	Sửa
GIANGDAY	+	-	+(Tungay)
GIAOVIEN	-	-	+(Ngvl)

ĐH Sư phạm TPHCM

20

3.2.2 Ràng buộc liên thuộc tính (2)

- R7: Ngày thi một môn học phải lớn hơn ngày kết thúc học môn học đó.
 - Nội dung:

```
∀kq ∈ KETQUATHI
Nếu ∃gd ∈ GIANGDAY, ∃hv ∈ HOCVIEN:
(gd.Malop=hv.Malop)∧(kq.Mamh=gd.Mamh) thì
gd.Denngay < kq.Ngthi
```

- Bối cảnh: GIANGDAY, HOCVIEN, KETQUATHI

3.2.2 Ràng buộc liên thuộc tính (3)

- Bảng tầm ảnh hưởng:

R7	Thêm	Xóa	Sửa
HOCVIEN	-	-	+(Malop)
GIANGDAY	-	-	+(Denngay)
KETQUATHI	+	-	+(Ngthi)

ĐH Sư pham TPHCM

22

3.2.3 RBTV do thuộc tính tổng hợp (1)

- Là ràng buộc giữa các thuộc tính, các bộ trên những quan hệ khác nhau.
- Thuộc tính tổng hợp là thuộc tính được tính toán từ giá trị của các thuộc tính khác, các bộ khác.
- Ví dụ: SANPHAM(Masp, Tensp, Nuocsx, Gia)
 KHACHHANG(Makh, Hoten, Doanhso)
 HOADON(Sohd, Nghd, Makh, Trigia)
 CTHD(Sohd, Masp, Soluong, Gia)
 - Trị giá của một hoá đơn bằng tổng thành tiền của các chi tiết thuộc hoá đơn đó

ĐH Sư pham TPHCM

3.2.3 RBTV do thuộc tính tổng hợp (2)

- Doanh số của một khách hàng bằng tổng trị giá các hoá đơn mà khách hàng đó đã mua
 - Nội dung:

 $\forall kh \in KHACHHANG,$ $kh.Doanhso = \sum_{(hd \in HOADON: hd.Makh=kh.Makh)} (hd.Trigia)$

- Bối cảnh: KHACHHANG, HOADON
- Bảng tầm ảnh hưởng:

	Thêm	Xóa	Sửa
KHACHHANG	+	-	+(Doanhso)
HOADON	+	+	+(Makh)

ĐH Sư phạm TPHCM

24

3.2.3 RBTV do thuộc tính tổng hợp (3)

- R8: Sỉ số của một lớp là số lượng học viên thuộc lớp đó
 - Nội dung:

 $\forall I \in LOP$,

I.Siso = $Count_{(hv \in HOCVIEN: hv.Malop = lp.Malop)}(*)$

- Bối cảnh: quan hệ LOP, HOCVIEN
- Bảng tầm ảnh hưởng:

R8	Thêm	Xóa	Sửa
LOP	+	-	+(Siso)
HOCVIEN	+	+	+(Malop)

3.2.4 Do hiện diện của chu trình (1)

Biểu diễn lược đồ quan hệ dưới dạng đồ thị:

- Quan hệ được biểu diễn bằng nút tròn rỗng to
- Thuộc tính được biểu diễn bằng nút tròn đặc nhỏ
- Tất cả các nút đều được chỉ rõ bằng tên của quan hệ hoặc thuộc tính. Thuộc tính thuộc một quan hệ được biểu diễn bởi một cung nối giữa nút tròn to và nút tròn nhỏ
- Nếu đồ thị biểu diễn xuất hiện một đường khép kín
 - => lược đồ CSDL có sử hiện diện của chu trình.

3.2.4 Do hiện diện của chu trình (2)

3.2.4 Do hiện diện của chu trình (3)

- X = GIANGDAY[Magv, Mamh]
 Makhoa
- Y = (GIAOVIEN ⋈ MONHOC) [Magv, Mamh]
- Ý nghĩa:
 - X: giáo viên và những môn học đã được phân công cho giáo viên đó giảng dạy
 - Y: giáo viên và những môn học thuộc khoa giáo viên đó phụ trách
- Mối quan hệ giữa X và Y trong các ràng buộc sau:

ĐH Sư phạm TPHCM

28

3.2.4 Do hiện diện của chu trình (4)

- Ràng buộc 1: giáo viên chỉ được phân công giảng dạy những môn thuộc khoa giáo viên đó phụ trách X⊆Y
- Ràng buộc 2: giáo viên phải được phân công giảng dạy tất cả những môn thuộc khoa giáo viên đó phụ trách X=Y
- Ràng buộc 3: có thể phân công giáo viên giảng dạy bất kỳ môn học nào X ≠ Y

3.2.4 Do hiện diện của chu trình (4)

 R9: giáo viên chỉ được phân công giảng dạy những môn thuộc khoa giáo viên đó phụ trách X⊆Y

R9	Thêm	Xóa	Sửa
MONHOC	-	-	+(Makhoa)
GIAOVIEN	-	-	+(Makhoa)
GIANGDAY	+	-	+(Magv)

ĐH Sư phạm TPHCM

30

3.3 Phụ thuộc hàm (1)

Cho quan hệ Q(A, B, C). Phụ thuộc hàm A xác định B.
 Ký hiệu A → B nếu:

 $\forall q_1, q_2 \in Q$: Nếu $q_1.A = q_2.A$ thì $q_1.B = q_2.B$

- A → B được gọi là phụ thuộc hàm hiến nhiên nếu
 B⊆A
- A → B được gọi là phụ thuộc hàm nguyên tố nếu
 ¬∃A'⊂A, A'≠A sao cho A'→ B

3.3 Phụ thuộc hàm (2)

- Mỗi quan hệ đều có ít nhất một phụ thuộc hàm
- Ràng buộc khoá cũng là một phụ thuộc hàm
 Mamh → Tenmh, Tclt, Tcth, Makhoa
- R4: Các giáo viên có cùng học vị, cùng hệ số lương thì mức lương sẽ bằng nhau. Ràng buộc này có thể biểu diễn bằng phụ thuộc hàm như sau:

Hocvi, Heso → Mucluong

ĐH Sư phạm TPHCM

32

4. Bảng tầm ảnh hưởng tổng hợp (1)

• Bảng tầm ảnh hưởng tổng hợp của m ràng buộc trên n quan hệ bối cảnh

		QH	1		QH	2	•••		n	
	Т	X	S	Т	X	S	•••	T	X	S
R1										
R2										
•••										
Rm										

4. Bảng tầm ảnh hưởng tổng hợp (2)

	HOCVIEN		EN	GIAOVIEN			LOP			MONHOC			GIANGDAY			KETQUA THI		
	T	X	S	T	X	S	T	X	S	T	X	S	T	X	S	Т	X	S
R1	+	-	+															
R2													+	-	+			
R3	+	-	-*															
R4				+	-	+												
R5										-	+	_*				+	-	_*
R6				-	-	+							+	-	+			
R7	-	-	+										_	_	+	+	-	+
R8	+	+	+				+	-	+									
R9				-	ı	+				-	-	+	+	-	+			

ĐH Sư phạm TPHCM

34

Bài 8: Tối ưu hóa câu hỏi

ĐH Sư phạm TPHCM

Nội dung

- 1. Giới thiệu
- 2. Các nguyên tắc tổng quát để tối ưu hóa câu hỏi
 - 2.1 Biểu thức tương đương
 - 2.1.1 Định nghĩa
 - 2.1.2 Tính chất của phép kết và phép tích
 - 2.2 Nguyên tắc tổng quát
 - 2.3 Các phép biến đổi tương đương
- 3. Một số kỹ thuật tối ưu hóa câu hỏi bằng ĐSQH
 - 3.1 Kỹ thuật (dãy phép chọn, phép chiếu, hoán vị ...)
 - 3.2 Thuật giải tối ưu hoá câu hỏi trong.

ĐH Sư phạm TPHCM

-

1. Giới thiệu (1)

- Mục đích:
 - Giảm thời gian xử lý câu hỏi, giảm khối lượng dữ liệu trung gian.
 - Kết hợp giữa các phép tích, phép kết với phép chọn với phép chiếu.
- Ví dụ:

$$+((Q_1 \triangleright \triangleleft Q_2) : A = a_0)[C]$$

$$+\left((Q_1:A=a_0) \rhd \lhd Q_2)[C]$$

1. Giới thiệu (2)

• Ký hiệu:

ĐH Sư phạm TPHCM

4

1. Giới thiệu (3)

• Ví dụ

$$((Q_1 \triangleright \triangleleft Q_2) : A = a_0)[C]$$

$$((Q_1:A=a_0) \rhd \lhd Q_2)[C]$$

2.1 Tính tương đương (1)

- 2.1.1 Định nghĩa: hai biểu thức A, B là tương đương nếu có cùng một tình trạng CSDL thì đều cho một kết quả.
- 2.1.2 Tính chất của phép kết và phép tích
 - Phép kết

• Giao hoán $Q_1 \triangleright \triangleleft Q_2 = Q_2 \triangleright \triangleleft Q_1$

• Kết hợp $Q_1 \bowtie (Q_2 \bowtie Q_3) = (Q_1 \bowtie Q_2) \bowtie Q_3$

Phép tích

• Giao hoán: $Q_1 \times Q_2 = Q_2 \times Q_1$

• Kết hợp:

 $Q_1 \times (Q_2 \times Q_3) = (Q_1 \times Q_2) \times Q_3$

ĐH Sư phạm TPHCM

6

2.1 Tính tương đương (2)

2.1.3 Các phép biến đổi tương đương

1.
$$Q_1(A,B) \triangleright \triangleleft Q_2(B,C) \equiv (Q_1 \times Q_2 : Q_1[B] = Q_2[B])$$

 $B\theta D$

2.
$$Q_1(A,B) \triangleright \triangleleft Q_2(C,D) \equiv (Q_1 \times Q_2 : B\theta D)$$

3.
$$Q_1 \cap Q_2 \equiv \neg((\neg Q_1) \cup (\neg Q_2))$$

4.
$$\neg Q(X_1,...,X_n) \equiv (Q[X_1] \times Q[X_2] \times ... \times Q[X_n]) - Q(X_1,...,X_n)$$

5.
$$Q_1(A,B) \cap Q_2(A,B) \equiv Q_1[B] - ((Q_1[B] \times Q_2[A] - Q_1(A,B))[B]$$

ĐH Sư phạm TPHCM

2.2 Nguyên tắc tổng quát

- 1. Thực hiện phép chiếu, phép chọn càng sớm càng tốt
- Gom các phép chọn và chiếu cùng quan hệ để thực hiện cùng lúc
- Biến phép tích thành phép kết tự nhiên hay theta kết
- 4. Tìm các biểu thức con chung trong một biểu thức
- 5. Tiền xử lý các quan hệ: lập chỉ mục
- 6. Đánh giá trước khi thực hiên tính toán

ĐH Sư phạm TPHCM

5

3.1 Các kỹ thuật tối ưu (1)

- 1. Dãy các phép chọn
- Dãy các phép chiếu
- 3. Hoán vị giữa phép chiếu và phép chọn
- 4. Hoán vị giữa phép chọn và phép tích
- 5. Hoán vị giữa phép hợp và phép chọn
- 6. Hoán vị giữa phép chọn và phép trừ
- 7. Hoán vị giữa phép chiếu và phép hội
- 8. Hoán vị giữa phép chiếu và phép tích

ĐH Sư phạm TPHCM

3.1 Các kỹ thuật tối ưu (2)

1. Dãy các phép chọn

 $(((Q:dk1):dk2)...:dkn) \equiv Q:dk1 \wedge dk2 \wedge ...dkn$

2. Dãy phép chiếu

Ví dụ:
$$(Q[Y])[Z] \equiv Q[Z], Z \subseteq Y$$

 $Cho \quad Q(A,B,C,D)$
 $(Q[A,C,D])[AD] \equiv Q[AD]$

ĐH Sư phạm TPHCM

10

3.1 Các kỹ thuật tối ưu (3)

3. Hoán vị giữa phép chiếu và phép chọn

- Nếu

$$X\subseteq Y$$

$$-\operatorname{N\acute{e}u} \ (Q:dk(X))[Y]\equiv (Q[Y]):dk(X)$$

$$X \not\subset Y$$

 $(Q:dk(X))[Y] \equiv (Q[X \cup Y]):dk(X)$

3.1 Các kỹ thuật tối ưu (4)

4. Hoán vị giữa phép chọn và phép tích:

- Điều kiện dk xác lập trên các thuộc tính của X
- Nếu $dk = dk1 \wedge dk2$, dk1 xác lập trên các thuộc tính của X, dk2 xác lập trên các thuộc tính của Y.

$$(Q_1(X)): dk\left(X\right) \times Q_2(Y) \equiv (Q_1(X) \times Q_2(Y)): dk$$

Nếu dk1 xác lập trên các thuộc tính của X và dk2
 xác lập trên các thuộc tính của X∪Y

$$\begin{split} ((Q_{1}(X) \times Q_{2}(Y)) : dk \, 1(X) \wedge dk \, 2(Y) &\equiv ((Q_{1}(X) : dk \, 1) \times (Q_{2}(Y) : dk \, 2) \\ ((Q_{1}(X) \times Q_{2}(Y)) : dk \, 1(X) \wedge dk \, 2(X \cup Y) &\equiv \\ ((Q_{1}(X) : dk \, 1) \times (Q_{2}(Y)) : dk \, 2(X \cup Y)) \\ &\xrightarrow{\text{DH Sur pham TPHCM}} \end{split}$$

3.1 Các kỹ thuật tối ưu (5)

5. Hoán vị giữa phép hội và phép chọn

$$(Q_1 \cup Q_2) : dk \equiv (Q_1 : dk) \cup (Q_2 : dk)$$

6. Hoán vị giữa phép chọn và phép trừ

$$(Q_1 - Q_2) : dk \equiv (Q_1 : dk) - (Q_2 : dk)$$

7. Hoán vị giữa phép chiếu và phép hội

$$(Q_1 \cup Q_2)[Z] \equiv (Q_1[Z]) \cup (Q_2[Z])$$

8. Hoán vị giữa phép chiếu và phép tích

$$(Q_1(X)\times Q_2(Y))[Z] \equiv (Q_1[Y\cap Z])\times (Q_2[Y\cap Z]), \quad Z\in X\cup Y$$

ÐH Sư phạm TPHCM

3.2 Thuật toán

- Bước 1: Áp dụng các phép biển đổi tương đương
- **Bước 2**: Áp dụng (1)
- **Bước 3**: Đối với các phép chọn áp dụng (3), (4), (5), (6) nhằm đưa phép chọn càng sâu càng tốt
- **Bước 4**: Đối với các phép chiếu áp dụng (2), (3), (7), (8) nhằm đưa phép chiếu càng sâu càng tốt
- Bước 5:
 - Tập trung các phép chọn để áp dụng (1)
 - Kết hợp phép tích và phép chọn để chuyển thành phép kết

ĐH Sư phạm TPHCM