ICMP

Protocolo de Mensagens de Controle da Internet é um protocolo usado por roteadores para diagnosticar problemas em comunicação de rede verificando se os dados chegaram ao seu ponto de destino e verificar se esses pacotes de dados tem tamanho excedente, sendo de grande importância para relatórios e testes.

PING e TRACEROUTE /TRACERT

São utilitários que utilizam o protocolo ICMP para operar. O Ping verificar a conectividade a velocidade entre dois dispositivos em rede, desse modo, ele envia pacotes para um ponto de destino e recebe o mesmo pacote enviado, e demonstra o resultado dessa latência, fornecendo o endereço de ip de destino, quantos bytes enviados, tempo de resposta por pacote e time to live(TTL). O traceroute/tracert determina o caminho de roteamento do pacote para seu destino, retornando o salto que seria a estrada entre um roteador e outro.

ARP

Protocolo de Resolução de Endereço. As máquinas em rede possui um endereço físico de rede definido na sua fábrica porém a rede utiliza um endereço lógico(IP) para fazer essa comunicação, desse modo o protocolo ARP faz uma correspondência entre logico e fisico através do solicitações desse endereços físicos as máquinas de rede para tabelar em correspondência aos endereços lógicos.

PADRÃO ETHERNET E SUAS VELOCIDADES e NOMENCLATURAS

É um padrão de transmissão de dados onde todos os computadores dessa rede estão conectados pela mesma linha de transmissão constituída por cabos cilíndricos e feita pelo protocolo CSMA/CD. A ethernet possui diversas séries de subdivisão, como por exemplo nomenclatura, velocidade, tipo de cabo.

Sigla	Denominação	Cabo	Cone ctor	Débito	Alca nce
10Base2	Ethernet fina (thin Ethernet)	Cabo coaxial (50 Ohms) de diâmetro fino	BNC	10 Mb/s	185 m
10Base5	Ethernet espessa (thick Ethernet)	Cabo coaxial de diâmetro espesso (0.4 avanços lento)	BNC	10Mb/s	500 m
10Base- T	Ethernet padrão	Par trançado (categoria 3)	RJ-45	10 Mb/s	100 m
100Base -TX	Ethernet rápida (Fast Ethernet)	Duplo par trançado (categoria 5)	RJ-45	100 Mb/s	100 m
100Base -FX	Ethernet rápida (Fast Ethernet)	Fibra ótica multimodo (tipo 62.5/125)		100 Mb/s	2 km
1000Ba se-T	Ethernet Gigabit	Duplo par trançado (categoria 5)	RJ-45	1000 Mb/s	100 m
1000Ba se-LX	Ethernet Gigabit	Fibra ótica monomodo ou multimodo		1000 Mb/s	550 m
1000Ba se-SX	Ethernet Gigabit	Fibra ótica multimodo		1000 Mbit/s	550 m
10GBas e-SR	Ethernet de 10 Gigabits	Fibra ótica multimodo		10 Gbit/s	500 m
10GBas e-LX4	Ethernet de 10 Gigabits	Fibra ótica multimodo		10 Gbit/s	500 m

APIPA e DHCP

Automatic Private IP Addressing é um recurso de um sistema operacional para que as máquinas configurem um endereço de ip e uma máscara de sub rede quando o servidor DHCP não estiver conectado. O Dynamic Host Configuration Protocol é um protocolo de Cliente/Servidor que permite que os computadores obtenham um ip automaticamente além de máscaras de rede e endereços de servidor DNS.

DNS

Domain Name System que convertem o nome de domínios em linguagem Humana em endereço de ip, controlando qual destino do servidor final o usuário irá selecionar

TOPOLOGIA ESTRELA, BARRA E ANEL

Tipologia é a forma como a rede de computadores está estruturada é a disposição das máquinas entre elas mesmas e os elementos que as conectam(switches, hub)

Anel conecta os dispositivos em um mesmo circuito Circular onde o fluxo desses dados é unidirecional é eficiente na transmissão de dados sem erro mas a falha em um único dispositivo pode atrapalhar

Estrela recebe esse nome pela sua organização semelhante ao formato de uma estrela que as conexões partem de uma área central, facilita a identificação de problemas e uma falha isolada não afetaria a estrutura completa, mas sofre da dependência exclusiva onde o central pode derrubar a rede inteira .

Barramento onde os dados fluem unidirecionais por um único cabo, é uma das estratégias de tipologia mais simples, versátil e econômica, porém é mais difícil encontrar e relatar problemas na rede .

IANA, IETF, IEEE

Autoridade para a atribuição de números para internet é responsável por gerenciar a zona primária do DNS, coordenar atribuição global de endereço de IP e gerenciar a numeração de IP.

A Internet Engineering Task Force é um grupo de pessoas que visam melhorar tecnicamente a arquitetura e a evolução da internet e de tecnologias correlacionadas, através de soluções operacionais e técnicas para Internet, especificando desenvolvimento, utilização e padronização de protocolos e arquitetura para solucionar tais problemas.

Instituto de Engenheiros Eletricistas e Eletrônicos colabora para o desenvolvimento, criação de tecnologias e elétricas e da informação ligado o benefícios para os humanos e profissões

RFCs ENVOLVENDO ALGUM PADRÃO OU PROTOCOLO ESPECÍFICO

Protocolo	RFC		
ARP	826		
DHCP	2131		
DNS	1034 e 1035		
FTP	959		
HTTP	1945		
ICMP	792		
IP	791		
IPv8	2460		
MD5	1321		
NAT	3022		
POP3	1939		
SMTP	5321		
SSH	4251		
TCP	793		
UDP	768		

LPRM. **O Protocolo ICMP**, Universidade Federal do Espírito Santo. Disponível em: http://www.inf.ufes.br/~zegonc/material/Redes_de_Computadores/O%20Protocolo%20ICMP.pdf Acesso em: 13 set 2022.

LPRM. **Rede de Computadores**, Universidade Federal do Espírito Santo. Disponível em: http://www.inf.ufes.br/~zegonc/material/Redes_de_Computadores/ Acesso em: 13 set 2022.

IANA, Los Angeles. Disponível em:https://www.iana.org/ Acesso em: 13 set 2022.

Pedro Remoaldo, **ISOC - Internet Society**, 1998. Disponível em: https://web.fe.up.pt/~mgi97018/entidades.html Acesso em: 13 set 2022.

IETF, **An Introduction to the IETF,** 2005. Disponível em: https://www.ietfjournal.org/an-introduction-to-the-ietf/ Acesso em: 13 set 2022