Lecture 12

§24 Functions

- A relation f is called a function provided $(a, b) \in f$ and $(a, c) \in f$ imply b = c. If f is a function, and $(a, b) \in f$. Then we write f(a) = b. a is called an input (of f), and b is called the output (of f at a).
- Let f be a function. The set of all possible first elements of the ordered pairs in f is called the *domain* of f and is denoted dom f. The set of all possible second elements of the ordered pairs in f is called the *image* of f and is denoted im f.
 - Let A, B be sets and f be a function. We say f is a function/mapping from A to B provided dom f=A and im $f \subseteq B$. The notations are $f:A \to B$.
- A function is called *one-to-one* provided that, whenever $(x,b),(y,b) \in f$, we must have x=y.
 - Let f be a function. The inverse relation f^{-1} is a function if and only if f is one-to-one. Let f be a function and suppose f^{-1} is also a function. Then dom $f = \text{im } f^{-1}$ and im $f = \text{dom } f^{-1}$.
- Let $f: A \to B$. We say that f is *onto* B provided that for every $b \in B$ there is an a such that f(a) = b. In other words, im f = B.
- Let $f: A \to B$. We call f a bijection provided it is both one-to-one and onto.

§26 Composition

• Let A, B and C be sets and let $f: A \to B$ and $g: B \to C$. Then the function $g \circ f$ is a function from A to C defined by

$$(g \circ f)(a) = g[f(a)]$$

where $a \in A$. The function $g \circ f$ is called the *composition* of g and f.

• Let A, B, C and D be sets and let $f: A \to B, g: B \to C$, and $h: C \to D$. Then

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

• Let A be a set. The *identity function* on A is the function id_A whose domain is A, and for all $a \in A$, $id_A(a) = a$. In other words, $id_A = \{(a, a) : a \in A\}$.

Let $f: A \to B$. Then $f \circ id_A = id_B \circ f = f$.

Let f be a bijection from A to B. Then $f \circ f^{-1} = \mathrm{id}_B$ and $f^{-1} \circ f = \mathrm{id}_A$.

- Examples
 - (1) Which of the following are functions?
 - (a) $f = \{(1,1), (2,1), (3,4), (4,-1), (5,0)\}$
 - (b) $g = \{(1, -3), (5, 8), (-3, 4), (1, 5), (-1, 2)\}$
 - (2) Is the relation $\{(a,b): a,b \in \mathbb{N}, a|b\}$ a function?
 - (3) Let $A = \{0, 1, 2, 3, 4\}$ and $B = \{-3, -2, -1, 0, 1, 2, 3\}$. Let $f = \{(0, -1), (1, -2), (2, -3), (3, 3), (4, 0)\}$. Is f a function from B to A?
 - (4) Find an example of a pair of functions f and g such that $f \circ g$ and $g \circ f$ are both well defined but $f \circ g \neq g \circ f$.

- (5) Let $f: \mathbb{Z} \to \mathbb{Z}$ according to the rule f(x) = 2x + 3 and $g: \mathbb{Z} \to \mathbb{Z}$ according to the rule $g(x) = x^2 + 4$.
 - (a) Find f(g(2)).
 - (b) Find g(f(0)).
 - (c) Find a rule for $f \circ g(x)$ and $g \circ f(x)$.
- (6) A Mobius transformation is a function $\phi: \mathbb{C} \to \mathbb{C}$ of the form

$$\phi(z) = \frac{az+b}{cz+d}, \quad \forall z \in \mathbb{C},$$

where a,b,c,d are complex numbers. Show that if ϕ and ψ are Mobius transformations, then so is $\phi \circ \psi$.

(7) Let A,B,C be sets and suppose $f:A\to B$ and $g:B\to C$ are both bijections. Prove $g\circ f$ is also a bijection.

HW6(b) (Due 3/28/2016)

- Exercise 24.6 (a), (f)
- Exercise 24.14 (c), (d)
- Exercise 26.1 (b), (f), (i)