

### : eescale Semiconductor

Technical Data

# **RF Power LDMOS Transistor**

# N-Channel Enhancement-Mode Lateral MOSFET

Designed primarily for CW large-signal output and driver applications with frequencies up to 450 MHz. Device is unmatched and is suitable for use in aerospace and defense applications.

 Typical CW Performance at 220 MHz: V<sub>DD</sub> = 50 Vdc, I<sub>DQ</sub> = 30 mA, P<sub>out</sub> = 10 W Power Gain — 23.9 dB

Drain Efficiency — 62%

 Capable of Handling 10:1 VSWR @ 50 Vdc, 220 MHz, 10 W CW Output Power

#### **Features**

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Qualified Up to a Maximum of 50 V<sub>DD</sub> Operation
- · Integrated ESD Protection
- 225°C Capable Plastic Package
- In Tape and Reel. R1 Suffix = 500 Units, 24 mm Tape Width, 13-inch Reel.

# Table 1. Maximum Ratings

| Rating                               | Symbol           | Value        | Unit |
|--------------------------------------|------------------|--------------|------|
| Drain-Source Voltage                 | V <sub>DSS</sub> | -0.5, +120   | Vdc  |
| Gate-Source Voltage                  | $V_{GS}$         | -0.5, +10    | Vdc  |
| Storage Temperature Range            | T <sub>stg</sub> | - 65 to +150 | °C   |
| Case Operating Temperature           | T <sub>C</sub>   | 150          | °C   |
| Operating Junction Temperature (1,2) | TJ               | 225          | °C   |

## Document Number: MMRF1012N Rev. 0, 7/2014

**VRoHS** 

# **MMRF1012NR1**

10-450 MHz, 10 W, 50 V BROADBAND RF POWER MOSFET





**Table 2. Thermal Characteristics** 

| Characteristic                                                      |                | Value (2,3) | Unit |
|---------------------------------------------------------------------|----------------|-------------|------|
| Thermal Resistance, Junction to Case Case Temperature 81°C, 10 W CW | $R_{	heta JC}$ | 3.0         | °C/W |

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at <a href="http://www.freescale.com/rf">http://www.freescale.com/rf</a>. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- 3. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to <a href="http://www.freescale.com/rf">http://www.freescale.com/rf</a>. Select Documentation/Application Notes AN1955.





### **Table 3. ESD Protection Characteristics**

| Test Methodology                      | Class |
|---------------------------------------|-------|
| Human Body Model (per JESD22-A114)    | 2     |
| Machine Model (per EIA/JESD22-A115)   | A     |
| Charge Device Model (per JESD22-C101) | IV    |

### **Table 4. Moisture Sensitivity Level**

| Test Methodology                     | Rating | Package Peak Temperature | Unit |
|--------------------------------------|--------|--------------------------|------|
| Per JESD22-A113, IPC/JEDEC J-STD-020 | 3      | 260                      | °C   |

#### Table 5. Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic                                                                                              | Symbol                       | Min                       | Тур           | Max   | Unit |
|-------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------|---------------|-------|------|
| Off Characteristics                                                                                         |                              |                           | •             | •     |      |
| Gate-Source Leakage Current<br>(V <sub>GS</sub> = 5 Vdc, V <sub>DS</sub> = 0 Vdc)                           | I <sub>GSS</sub>             | _                         | _             | 10    | μAdc |
| Drain-Source Breakdown Voltage (I <sub>D</sub> = 5 mA, V <sub>GS</sub> = 0 Vdc)                             | V <sub>(BR)DSS</sub>         | 120                       | _             | _     | Vdc  |
| Zero Gate Voltage Drain Leakage Current (V <sub>DS</sub> = 50 Vdc, V <sub>GS</sub> = 0 Vdc)                 | I <sub>DSS</sub>             | _                         | _             | 50    | μAdc |
| Zero Gate Voltage Drain Leakage Current (V <sub>DS</sub> = 100 Vdc, V <sub>GS</sub> = 0 Vdc)                | I <sub>DSS</sub>             | _                         | _             | 2.5   | mA   |
| On Characteristics                                                                                          |                              |                           | •             | •     |      |
| Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 28 \mu\text{Adc})$                                  | V <sub>GS(th)</sub>          | 1                         | 1.68          | 3     | Vdc  |
| Gate Quiescent Voltage<br>(V <sub>DD</sub> = 50 Vdc, I <sub>D</sub> = 30 mAdc, Measured in Functional Test) | V <sub>GS(Q)</sub>           | 1.5                       | 2.68          | 3.5   | Vdc  |
| Drain-Source On-Voltage<br>(V <sub>GS</sub> = 10 Vdc, I <sub>D</sub> = 70 mAdc)                             | V <sub>DS(on)</sub>          | _                         | 0.26          | _     | Vdc  |
| Oynamic Characteristics                                                                                     |                              |                           | •             | •     |      |
| Reverse Transfer Capacitance<br>(V <sub>DS</sub> = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V <sub>GS</sub> = 0 Vdc)  | C <sub>rss</sub>             | _                         | 0.13          | _     | pF   |
| Output Capacitance<br>(V <sub>DS</sub> = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V <sub>GS</sub> = 0 Vdc)            | C <sub>oss</sub>             | _                         | 7.3           | _     | pF   |
| Input Capacitance (V <sub>DS</sub> = 50 Vdc, V <sub>GS</sub> = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)                | C <sub>iss</sub>             | _                         | 16.3          | _     | pF   |
| Functional Tests (In Freescale Test Fixture, 50 ohm system) V <sub>DD</sub> = 50                            | Vdc, I <sub>DQ</sub> = 30 mA | , P <sub>out</sub> = 10 W | /, f = 220 MH | z, CW |      |
| Power Gain                                                                                                  | G <sub>ps</sub>              | 22.5                      | 23.9          | 25.5  | dB   |
| Drain Efficiency                                                                                            | η <sub>D</sub>               | 58                        | 62            | _     | %    |
| Input Return Loss                                                                                           | IRL                          | _                         | -14           | -9    | dB   |



ATTENTION: The MMRF1012N is a high power device and special considerations must be followed in board design and mounting. Incorrect mounting can lead to internal temperatures which exceed the maximum allowable operating junction temperature. Refer to Freescale Application Note AN1907 (for solder reflow mounting) **PRIOR TO STARTING SYSTEM DESIGN** to ensure proper mounting of this device.





Figure 2. MMRF1012NR1 Test Circuit Schematic

Table 6. MMRF1012NR1 Test Circuit Component Designations and Values

| Part             | Description                             | Part Number        | Manufacturer     |
|------------------|-----------------------------------------|--------------------|------------------|
| B1, B2           | 95 Ω, 100 MHz Long Ferrite Beads        | 2743021447         | Fair-Rite        |
| C1, C8, C11, C18 | 1000 pF Chip Capacitors                 | ATC100B102JT50XT   | ATC              |
| C2               | 10 μF, 35 V Tantalum Capacitor          | T491D106K035AT     | Kemet            |
| C3               | 22 μF, 35 V Tantalum Capacitor          | T491X226K035AT     | Kemet            |
| C4, C13          | 39 K pF Chip Capacitors                 | ATC200B393KT50XT   | ATC              |
| C5, C14          | 22 K pF Chip Capacitors                 | ATC200B223KT50XT   | ATC              |
| C6, C15          | 0.1 μF Chip Capacitors                  | CDR33BX104AKYS     | Kemet            |
| C7, C12          | 2.2 μF, 50 V Chip Capacitors            | C1825C225J5RAC     | Kemet            |
| C9               | 0.6-4.5 pF Variable Capacitor, Gigatrim | 27271SL            | Johanson         |
| C10              | 12 pF Chip Capacitor                    | ATC100B120JT500XT  | ATC              |
| C16              | 470 μF, 63 V Electrolytic Capacitor     | ESMG630ELL471MK205 | United Chemi-Con |
| C17              | 27 pF Chip Capacitor                    | ATC100B270JT500XT  | ATC              |
| L1               | 17.5 nH Inductor                        | B06T               | CoilCraft        |
| L2, L3           | 82 nH Inductors                         | 1812SMS-82NJ       | CoilCraft        |
| R1               | 120 Ω, 1/4 W Chip Resistor              | CRCW1206120RFKEA   | Vishay           |





Figure 3. MMRF1012NR1 Test Circuit Component Layout



### **TYPICAL CHARACTERISTICS**



Figure 4. Capacitance versus Drain-Source Voltage



Figure 6. DC Drain Current versus Drain Voltage



Figure 8. Third Order Intermodulation Distortion versus Output Power



Figure 5. DC Safe Operating Area



Figure 7. CW Power Gain versus Output Power



Figure 9. CW Output Power versus Input Power



### **TYPICAL CHARACTERISTICS**



Figure 10. Power Gain versus Output Power



Figure 11. Power Output versus Power Input



Figure 12. Power Gain and Drain Efficiency versus CW Output Power



Figure 13. Power Gain and Drain Efficiency versus CW Output Power



This above graph displays calculated MTTF in hours when the device is operated at V\_DD = 50 Vdc, P\_out = 10 W CW, and  $\eta_D$  = 62%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 14. MTTF versus Junction Temperature — CW





 $V_{DD}$  = 50 Vdc,  $I_{DQ}$  = 30 mA,  $P_{out}$  = 10 W CW

| f   | Z <sub>source</sub> | Z <sub>load</sub> |
|-----|---------------------|-------------------|
| MHz | Ω                   | Ω                 |
| 220 | 20 + j25            |                   |

 $Z_{source} \ = \ Test \ circuit \ impedance \ as \ measured \ from \\ gate \ to \ ground.$ 

Z<sub>load</sub> = Test circuit impedance as measured from drain to ground.



Figure 15. Series Equivalent Source and Load Impedance





Figure 16. MMRF1012NR1 Test Circuit Component Layout — 130 MHz

Table 7. MMRF1012NR1 Test Circuit Component Designations and Values — 130 MHz

| Part             | Description Part Number                                 |                         | Manufacturer |
|------------------|---------------------------------------------------------|-------------------------|--------------|
| B1, B2           | 95 $\Omega$ , 100 MHz Long Ferrite Beads, Surface Mount | 2743021447              | Fair-Rite    |
| C1, C5, C18, C19 | 1000 pF Chip Capacitors                                 | ATC100B102JT50XT        | ATC          |
| C2, C12          | 0.6-4.5 pF Variable Capacitors, Gigatrim                | 27271SL                 | Johanson     |
| C3               | 27 pF Chip Capacitor                                    | ATC100B270JT500XT       | ATC          |
| C4, C13          | 2.2 μF, 50 V Chip Capacitors                            | C1825C225J5RAC          | Kemet        |
| C6, C14          | 0.1 μF, 50 V Chip Capacitors                            | CDR33BX104AKYM          | Kemet        |
| C7, C15          | 22K pF Chip Capacitors                                  | ATC200B223KT50XT        | ATC          |
| C8, C16          | 39K pF Chip Capacitors                                  | ATC200B393KT50XT        | ATC          |
| C9               | 22 μF, 35 V Tantalum Capacitor                          | T491X226K035AT          | Kemet        |
| C10              | 10 μF, 35 V Tantalum Capacitor                          | T491D106K035AT          | Kemet        |
| C11              | 16 pF Chip Capacitor                                    | ATC100B160JT500XT       | ATC          |
| C17              | 330 μF, 63 V Electrolytic Capacitor                     | MCRH63V337M13X21-RH     | Multicomp    |
| L1               | 17.5 nH Inductor                                        | B06T                    | CoilCraft    |
| L2, L5           | 82 nH Inductors                                         | 1812SMS-82NJ            | CoilCraft    |
| L3               | 35.5 nH Inductor                                        | B09T                    | CoilCraft    |
| L4               | 43 nH Inductor                                          | B10T                    | CoilCraft    |
| R1               | 100 Ω, 1/4 W Chip Resistor                              | CRCW1206100RFKEA        | Vishay       |
| PCB              | $0.030''$ , $\epsilon_r = 2.55$                         | CuClad 250GX-0300-55-22 | Arlon        |





Figure 17. MMRF1012NR1 Test Circuit Component Layout — 450 MHz

Table 8. MMRF1012NR1 Test Circuit Component Designations and Values — 450 MHz

| Part             | Description Part Number                                 |                         | Manufacturer |
|------------------|---------------------------------------------------------|-------------------------|--------------|
| B1, B2           | 95 $\Omega$ , 100 MHz Long Ferrite Beads, Surface Mount | 2743021447              | Fair-Rite    |
| C1, C5, C12, C15 | 240 pF Chip Capacitors                                  | ATC100B241JT200XT       | ATC          |
| C2, C3           | 10 pF Chip Capacitors                                   | ATC100B100JT500XT       | ATC          |
| C4, C11          | 2.2 μF, 50 V Chip Capacitors                            | C1825C225J5RAC          | Kemet        |
| C6, C16          | 0.1 uF 50V Chip Capacitors                              | CDR33BX104AKYM          | Kemet        |
| C7, C17          | 22K pF Chip Capacitors                                  | ATC200B223KT50XT        | ATC          |
| C8, C18          | 39K pF Chip Capacitors                                  | ATC200B393KT50XT        | ATC          |
| C9               | 22 μF, 35 V Tantalum Capacitor                          | T491X226K035AT          | Kemet        |
| C10              | 10 μF, 35 V Tantalum Capacitor                          | T491D106K035AT          | Kemet        |
| C13, C14         | 6.2 pF Chip Capacitors                                  | ATC100B6R2BT500XT       | ATC          |
| C19              | 470 μF, 63 V Electrolytic Capacitor                     | MCGPR63V477M13X26-RH    | Multicomp    |
| C20              | 47 μF, 50 V Electrolytic Capacitor                      | 476KXM050M              | Illinois Cap |
| L1               | 17.5 nH Inductor                                        | B06T                    | CoilCraft    |
| L2, L4           | 82 nH Inductors                                         | 1812SMS-82NJ            | CoilCraft    |
| L3               | 5.0 nH Inductor                                         | A02T                    | CoilCraft    |
| R1               | 120 Ω, 1/4 W Chip Resistor                              | CRCW1206120RFKEA        | Vishay       |
| PCB              | $0.030''$ , $\epsilon_r = 2.55$                         | CuClad 250GX-0300-55-22 | Arlon        |





Figure 18. MMRF1012NR1 Test Circuit Component Layout — 64 MHz

Table 9. MMRF1012NR1 Test Circuit Component Designations and Values — 64 MHz

| Part             | Description                                             | Part Number             | Manufacturer |
|------------------|---------------------------------------------------------|-------------------------|--------------|
| B1, B2           | 95 $\Omega$ , 100 MHz Long Ferrite Beads, Surface Mount | 2743021447              | Fair-Rite    |
| C1, C5, C15, C17 | 1000 pF Chip Capacitors                                 | ATC100B102JT50XT        | ATC          |
| C2               | 91 pF Chip Capacitor                                    | ATC100B910JT500XT       | ATC          |
| C3, C14          | 22 pF Chip Capacitors                                   | ATC100B220JT500XT       | ATC          |
| C4, C16          | 2.2 μF, 50 V Chip Capacitors                            | C1825C225J5RAC          | Kemet        |
| C6               | 220 nF, 50 V Chip Capacitor                             | C1812C224J5RAC          | Kemet        |
| C7, C18          | 0.1 μF, 50 V Chip Capacitors                            | CDR33BX104AKYM          | Kemet        |
| C8, C19          | 100K pF Chip Capacitors                                 | ATC200B104KT50XT        | ATC          |
| C9, C20          | 22K pF Chip Capacitors                                  | ATC200B223KT50XT        | ATC          |
| C10              | 22 μF, 35 V Tantalum Capacitor                          | T491X226K035AT          | Kemet        |
| C11              | 10 μF, 35 V Tantalum Capacitor                          | T491D106K035AT          | Kemet        |
| C12              | 68 pF Chip Capacitor                                    | ATC100B680JT500XT       | ATC          |
| C13              | 27 pF Chip Capacitor                                    | ATC100B270JT500XT       | ATC          |
| C21              | 330 μF, 63 V Electrolytic Capacitor                     | MCRH63V337M13X21-RH     | Multicomp    |
| L1               | 17.5 nH Inductor                                        | B06T                    | CoilCraft    |
| L2               | 43 nH Inductor                                          | B10T                    | CoilCraft    |
| L3, L4, L5, L6   | 82 nH Inductors                                         | 1812SMS-82NJ            | CoilCraft    |
| R1               | 180 Ω, 1/4 W Chip Resistor                              | CRCW1206180RFKEA        | Vishay       |
| PCB              | $0.030''$ , $\varepsilon_r = 2.55$                      | CuClad 250GX-0300-55-22 | Arlon        |





 $V_{DD}$  = 50 Vdc,  $I_{DQ}$  = 30 mA,  $P_{out}$  = 10 W CW

| f<br>MHz | Z <sub>source</sub><br>Ω | Z <sub>load</sub><br>Ω |
|----------|--------------------------|------------------------|
| 64       | 37.5 + j15.1             | 94.5 + j16.7           |
| 130      | 26.7 + j21.3             | 83.8 + j35.0           |
| 220      | 20.0 + j25.4             | 75.0 + j44.0           |
| 450      | 7.70 + j21.0             | 43.0 + j49.0           |

Z<sub>source</sub> = Test circuit impedance as measured from gate to ground.

Z<sub>load</sub> = Test circuit impedance as measured from drain to ground.



Figure 19. Series Equivalent Source and Load Impedance



# **50 OHM TYPICAL CHARACTERISTICS**

**Table 10. Common Source S-Parameters** ( $V_{DD}$  = 50 V,  $I_{DQ}$  = 30 mA,  $T_A$  = 25°C, 50 Ohm System)

| f   | s               | 11         | S               | 21    | S               | 12         | S               | 22         |
|-----|-----------------|------------|-----------------|-------|-----------------|------------|-----------------|------------|
| MHz | S <sub>11</sub> | ∠ <b>φ</b> | S <sub>21</sub> | ∠ φ   | S <sub>12</sub> | ∠ <b>φ</b> | S <sub>22</sub> | ∠ <b>φ</b> |
| 10  | 0.997           | -5.0       | 11.520          | 175.6 | 0.000790        | 84.6       | 0.960           | -0.8       |
| 20  | 0.994           | -9.5       | 11.419          | 171.6 | 0.00157         | 84.3       | 0.962           | -3.5       |
| 30  | 0.992           | -14.5      | 11.356          | 167.9 | 0.00232         | 78.1       | 0.963           | -5.5       |
| 40  | 0.987           | -19.3      | 11.278          | 164.1 | 0.00307         | 74.6       | 0.964           | -7.7       |
| 50  | 0.981           | -24.0      | 11.187          | 160.1 | 0.00380         | 71.0       | 0.964           | -9.9       |
| 60  | 0.974           | -28.6      | 11.042          | 156.1 | 0.00449         | 67.4       | 0.963           | -12.1      |
| 70  | 0.965           | -33.0      | 10.848          | 152.1 | 0.00513         | 63.8       | 0.961           | -14.2      |
| 80  | 0.955           | -37.4      | 10.636          | 148.2 | 0.00574         | 60.4       | 0.958           | -16.3      |
| 90  | 0.944           | -41.6      | 10.405          | 144.5 | 0.00631         | 57.0       | 0.955           | -18.4      |
| 100 | 0.933           | -45.7      | 10.147          | 140.8 | 0.00683         | 53.8       | 0.951           | -20.4      |
| 120 | 0.912           | -53.3      | 9.603           | 134.2 | 0.00776         | 47.9       | 0.944           | -24.2      |
| 140 | 0.892           | -60.4      | 9.061           | 127.9 | 0.00851         | 42.4       | 0.936           | -27.9      |
| 160 | 0.873           | -66.7      | 8.516           | 122.2 | 0.00914         | 37.6       | 0.929           | -31.3      |
| 180 | 0.856           | -72.7      | 7.993           | 116.9 | 0.00967         | 32.9       | 0.923           | -34.6      |
| 200 | 0.841           | -78.1      | 7.497           | 112.1 | 0.0101          | 28.7       | 0.918           | -37.9      |
| 220 | 0.828           | -83.0      | 7.040           | 107.5 | 0.0104          | 24.9       | 0.914           | -41.1      |
| 240 | 0.819           | -87.5      | 6.612           | 103.3 | 0.0107          | 21.3       | 0.912           | -44.2      |
| 260 | 0.810           | -91.7      | 6.214           | 99.3  | 0.0109          | 18.0       | 0.909           | -47.2      |
| 280 | 0.804           | -95.5      | 5.845           | 95.7  | 0.0110          | 15.0       | 0.908           | -50.2      |
| 300 | 0.799           | -99.0      | 5.507           | 92.2  | 0.0112          | 11.9       | 0.907           | -53.0      |
| 320 | 0.796           | -102.2     | 5.192           | 88.8  | 0.0112          | 9.1        | 0.906           | -55.9      |
| 340 | 0.794           | -105.1     | 4.901           | 85.7  | 0.0113          | 6.5        | 0.906           | -58.6      |
| 360 | 0.793           | -107.8     | 4.630           | 82.8  | 0.0112          | 4.1        | 0.906           | -61.4      |
| 380 | 0.793           | -110.4     | 4.382           | 79.9  | 0.0112          | 2.0        | 0.906           | -64.1      |
| 400 | 0.794           | -112.7     | 4.152           | 77.2  | 0.0112          | -0.3       | 0.906           | -66.7      |
| 420 | 0.796           | -114.9     | 3.937           | 74.6  | 0.0112          | -2.5       | 0.907           | -69.3      |
| 440 | 0.798           | -116.9     | 3.733           | 72.2  | 0.0111          | -4.4       | 0.907           | -71.8      |
| 460 | 0.800           | -118.8     | 3.547           | 69.8  | 0.0110          | -6.5       | 0.908           | -74.2      |
| 480 | 0.803           | -120.5     | 3.372           | 67.6  | 0.0109          | -8.5       | 0.908           | -76.7      |
| 500 | 0.807           | -122.2     | 3.213           | 65.4  | 0.0108          | -10.0      | 0.909           | -79.0      |
| 520 | 0.810           | -123.8     | 3.061           | 63.3  | 0.0107          | -11.9      | 0.910           | -81.3      |
| 540 | 0.814           | -125.4     | 2.919           | 61.2  | 0.0105          | -13.5      | 0.911           | -83.6      |
| 560 | 0.817           | -126.8     | 2.784           | 59.3  | 0.0104          | -14.9      | 0.912           | -85.8      |
| 580 | 0.821           | -128.1     | 2.661           | 57.5  | 0.0103          | -16.6      | 0.914           | -87.9      |
| 600 | 0.825           | -129.3     | 2.545           | 55.7  | 0.0101          | -18.1      | 0.915           | -90.0      |
| 620 | 0.829           | -130.5     | 2.436           | 53.9  | 0.00996         | -19.6      | 0.917           | -92.1      |
| 640 | 0.833           | -131.6     | 2.334           | 52.2  | 0.00981         | -21.0      | 0.918           | -94.1      |
| 660 | 0.837           | -132.7     | 2.237           | 50.5  | 0.00963         | -22.4      | 0.920           | -96.0      |
| 680 | 0.840           | -133.8     | 2.144           | 48.9  | 0.00946         | -23.7      | 0.921           | -97.9      |
| 700 | 0.843           | -134.8     | 2.058           | 47.3  | 0.00928         | -25.0      | 0.923           | -99.7      |
| 720 | 0.847           | -135.8     | 1.977           | 45.8  | 0.00910         | -26.1      | 0.924           | -101.4     |
| 740 | 0.850           | -136.8     | 1.900           | 44.4  | 0.00894         | -27.3      | 0.926           | -103.0     |
| 760 | 0.854           | -137.8     | 1.828           | 43.0  | 0.00876         | -28.6      | 0.928           | -104.7     |
| 780 | 0.857           | -138.7     | 1.760           | 41.6  | 0.00859         | -29.7      | 0.930           | -106.2     |

(continued)



# **50 OHM TYPICAL CHARACTERISTICS**

 $\textbf{Table 10. Common Source S-Parameters ($V_{DD}=50$ V, $I_{DQ}=30$ mA, $T_{A}=25^{\circ}C$, 50 Ohm System) (continued)} \\$ 

| f   | S <sub>11</sub> |        | S <sub>21</sub> |      | S <sub>12</sub> |       | S <sub>22</sub> |        |
|-----|-----------------|--------|-----------------|------|-----------------|-------|-----------------|--------|
| MHz | S <sub>11</sub> | ∠ φ    | S <sub>21</sub> | ∠ φ  | S <sub>12</sub> | ∠ φ   | S <sub>22</sub> | ∠ ¢    |
| 800 | 0.858           | -139.7 | 1.697           | 40.2 | 0.00839         | -31.1 | 0.932           | -107.6 |
| 820 | 0.861           | -140.7 | 1.636           | 38.9 | 0.00818         | -32.1 | 0.934           | -109.0 |
| 840 | 0.864           | -141.6 | 1.578           | 37.6 | 0.00798         | -33.1 | 0.935           | -110.4 |
| 860 | 0.867           | -142.6 | 1.523           | 36.4 | 0.00781         | -33.8 | 0.936           | -111.7 |
| 880 | 0.870           | -143.5 | 1.471           | 35.1 | 0.00763         | -34.8 | 0.938           | -112.9 |
| 900 | 0.873           | -144.5 | 1.421           | 33.9 | 0.00745         | -35.9 | 0.939           | -114.1 |



# **PACKAGE DIMENSIONS**



| © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICAL OUTLINE |         | PRINT VERSION NOT TO SCALE |          |  |
|------------------------------------------------------|--------------------|---------|----------------------------|----------|--|
| TITLE:                                               |                    | DOCUME  | NT NO: 98ASH98117A         | REV: P   |  |
| TO-270-2                                             |                    | STANDAF | RD: NON-JEDEC              |          |  |
|                                                      |                    |         | 02                         | JUN 2014 |  |





BOTTOM VIEW

| © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICAL OUTLINE |         | PRINT VERSION NOT  | TO SCALE    |
|------------------------------------------------------|--------------------|---------|--------------------|-------------|
| TITLE:                                               |                    | DOCUME  | NT NO: 98ASH98117A | REV: P      |
| TO-270-2                                             |                    | STANDAF | RD: NON-JEDEC      |             |
|                                                      |                    |         | (                  | 02 JUN 2014 |



### NOTES:

- 1. CONTROLLING DIMENSION: INCH
- INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE H IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4.

DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 INCH (0.15 MM) PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.



DIMENSION 61 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 INCH (0.13 MM) TOTAL IN EXCESS OF THE 61 DIMENSION AT MAXIMUM MATERIAL CONDITION.

- 6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H.
- **/**7.\

DIMENSION A2 APPLIES WITHIN ZONE J ONLY.

- 8. DIMENSIONS DD AND E2 DO NOT INCLUDE MOLD PROTRUSION. OVERALL LENGTH INCLUDING MOLD PROTRUSION SHOULD NOT EXCEED 0.430 INCH (10.92 MM) FOR DIMENSION DD AND 0.080 INCH (2.03 MM) FOR DIMENSION E2. DIMENSIONS DD AND E2 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE D.
- <u>/9.</u>

THESE SURFACES OF THE HEAT SLUG ARE NOT PART OF THE SOLDERABLE SURFACES AND MAY REMAIN UNPLATED.

10.

HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. DIMENSIONS D2 AND E3 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF THE HEAT SLUG.

|     | INCH          |             | MILL  | IMETER | INCH |          | NCH  | MILLIMETER |      |
|-----|---------------|-------------|-------|--------|------|----------|------|------------|------|
| DIM | MIN           | MAX         | MIN   | MAX    | DIM  | MIN      | MAX  | MIN        | MAX  |
| AA  | .078          | .082        | 1.98  | 2.08   | E4   | .058     | .066 | 1.47       | 1.68 |
| A1  | .039          | .043        | 0.99  | 1.09   | E5   | .231     | .235 | 5.87       | 5.97 |
| A2  | .040          | .042        | 1.02  | 1.07   | F    | .025 BSC |      | 0.64 BSC   |      |
| DD  | .416          | .424        | 10.57 | 10.77  | b1   | .193     | .199 | 4.90       | 5.06 |
| D1  | .378          | .382        | 9.60  | 9.70   | c1   | .007     | .011 | 0.18       | 0.28 |
| D2  | .290          |             | 7.37  |        | aaa  | .004     |      | 0.10       |      |
| D3  | .016          | .024        | 0.41  | 0.61   | bbb  | .008     |      | 0.         | 20   |
| E   | .436          | .444        | 11.07 | 11.28  |      |          |      |            |      |
| E1  | .238          | .242        | 6.04  | 6.15   |      |          |      |            |      |
| E2  | .066          | .074        | 1.68  | 1.88   |      |          |      |            |      |
| E3  | .150          |             | 3.81  |        |      |          |      |            |      |
|     | EDEESCALE SEI | MICONDUCTOR | TNC   |        |      |          |      |            |      |

© FREESCALE SEMICONDUCTOR, INC.

MECHANICAL OUTLINE PRINT VERSION NOT TO SCALE

DOCUMENT NO: 98ASH98117A REV: P

STANDARD: NON-JEDEC

02 JUN 2014



### PRODUCT DOCUMENTATION AND SOFTWARE

Refer to the following resources to aid your design process.

### **Application Notes**

- · AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

### **Engineering Bulletins**

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

### Software

• Electromigration MTTF Calculator

For Software, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

### **REVISION HISTORY**

The following table summarizes revisions to this document.

| Revision | Date      | Description                   |  |  |  |  |
|----------|-----------|-------------------------------|--|--|--|--|
| 0        | July 2014 | Initial Release of Data Sheet |  |  |  |  |



# How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.



Document Number: MMRF1012N

Rev. 0, 7/2014