

=====

Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2008; month=3; day=4; hr=11; min=14; sec=33; ms=744;]

=====

Reviewer Comments:

<210> 6

<211> 633

<212> DNA

<213> SR alpha promoter

<400> 6

Invalid response for <213>, It can be either Artificial, Unknown or Genus species.

Please check for the similar errors in subsequent sequences.

<210> 3

<211> 677

<212> DNA

<213> SV40 Poly A

<400> 3

Please do not insert extra information in <213>, Per Sequence Rules It can be only Genus and Species.

Application No: 09370453 Version No: 2.0

Input Set:

Output Set:

Started: 2008-02-20 18:53:47.191
Finished: 2008-02-20 18:53:49.241
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 50 ms
Total Warnings: 66
Total Errors: 0
No. of SeqIDs Defined: 77
Actual SeqID Count: 77

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 402	Undefined organism found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 402	Undefined organism found in <213> in SEQ ID (6)
W 402	Undefined organism found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)
W 213	Artificial or Unknown found in <213> in SEQ ID (21)
W 213	Artificial or Unknown found in <213> in SEQ ID (22)
W 213	Artificial or Unknown found in <213> in SEQ ID (23)
W 213	Artificial or Unknown found in <213> in SEQ ID (24)
W 213	Artificial or Unknown found in <213> in SEQ ID (25)
W 213	Artificial or Unknown found in <213> in SEQ ID (26)

Input Set:

Output Set:

Started: 2008-02-20 18:53:47.191
Finished: 2008-02-20 18:53:49.241
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 50 ms
Total Warnings: 66
Total Errors: 0
No. of SeqIDs Defined: 77
Actual SeqID Count: 77

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (27)
W 213	Artificial or Unknown found in <213> in SEQ ID (28)
W 213	Artificial or Unknown found in <213> in SEQ ID (29) This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> Denney, Jr., Dan W.

<120> Vaccines for Treatment of Lymphoma and Leukemia

<130> GENITOPE-03849

<140> 09370453

<141> 2008-02-20

<160> 77

<170> PatentIn version 3.2

<210> 1

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 1

tctagagcgg ccgcggaggc cgaattcg 28

<210> 2

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 2

gatccgaatt cggcctccgc ggccgctta gatgca 36

<210> 3

<211> 677

<212> DNA

<213> SV40 Poly A

<400> 3

ggatccagac atgataagat acattgatga gtttggacaa accacaacta gaatgcagtg 60

aaaaaaaaatgc tttatgttgaaatgtga tgctattgtcttatttgtaa ccattataag 120

ctgcaataaaa caagtaaca acaacaattt cattcatttt atgtttcagg ttcaaggggga 180

ggtgtggag gtttttaaa gcaagtaaaa cctctacaaa tgtggatgg ctgattatga 240

tcatgaacag actgtgagga ctgaggggcc tgaaatgagc cttggactg tgaatcaatg 300

cctgtttcat gccctgagtc ttccatgttc ttctccccac catcttcatt tttatcagca 360

tttcctggc tgtcttcatc atcatcatca ctgtttctta gccaatctaa aactccaatt 420
cccatagcca cattaaacctt catttttga tacactgaca aactaaactc tttgtccaat 480
ctctcttcc actccacaat tctgctctga atacttgag caaactcagc cacaggtctg 540
taccaaatta acataagaag caaagcaatg ccactttgaa ttattctttt ttctaacaaa 600
aactcaactgc gttccaggca atgctttaaa taatctttgg gcctaaaatc tatttgttt 660
acaaatctgg cctgcag 677

<210> 4
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 4
ctagaattca cgcgtaggcc tccgcggccg cgcgcatgc 39

<210> 5
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 5
aattgcatgc gcgcggccgc ggaggcctac gcgtgaatt 39

<210> 6
<211> 633
<212> DNA
<213> SR alpha promoter

<400> 6
caagcttgct gtggaatgtg tgtcagttag ggtgtggaaa gtccccaggc tccccagcag 60
gcagaagtat gcaaagcatg catctcaatt agtcagcaac caggtgtgga aagtccccag 120
gctccccagc aggcagaagt atgcaaagca tgcatactcaa ttagtcagca accatagtcc 180
cgccccataac tccgcccatac ccgccccataa ctccgcccag ttccgcccata tctccgcccc 240
atggctgact aattttttt atttatgcag aggccgaggc cgccctggcc tctgagctat 300
tccagaagta gtgaggaggc tttttggag gcctaggctt ttgcaaaaag ctccctcgagc 360
tcgcatactct cttcacgcg cccggccccc tacctgaggc cgccatccac gccgggtttag 420

tcgcgttctg ccgcctcccg cctgtggtgc ctccctgaact gcgtccgccc tctaggtaag 480
tttagagctc aggtcgagac cgggccttg tccggcgctc ccttggagcc tacctagact 540
cagccggctc tccacgctt gcctgaccct gcttgctcaa ctctacgtct ttgtttcggt 600
ttctgttctg cgccgttaca gatcgctcg agg 633

<210> 7
<211> 635
<212> DNA
<213> Moloney LTR virus

<400> 7
caagcttgcg attagtccaa ttgtttaaag acaggatatc agtggtccag gctctagttt 60
tgactcaaca atatcaccag ctgaaggcta tagagtacga gccatagata aaataaaaaga 120
tttatattag tctccagaaa aaggggggaa tgaaagaccc cacctgttagg ttggcaagc 180
tagcttaagt aacgccattt tgcaaggcat ggaaaaatac ataactgaga atagagaagt 240
tcagatcaag gttaggaaca gatggaacag ctgaatatgg gccaaacagg atatctgtgg 300
taaggcgttc ctgccccggc tcagggccaa gaacagatgg aacagctgaa tatgggccaa 360
acaggatatc tgtggtaaagc agttcctgcc ccggctcagg gccaaagaaca gatggtcccc 420
agatgcggc cagccctcag cagtttctag agaaccatca gatgtttcca gggtgcccc 480
aggacctgaa atgaccctgt gccttatttg aactaaccaa tcagttcgct tctcgcttct 540
gttcgcgcgc ttctgctccc cgagctcaat aaaagagccc acaacccctc actcggggcg 600
ccagtcctcc gattgactga gtcgccccct cgagg 635

<210> 8
<211> 483
<212> DNA
<213> Homo sapiens

<400> 8
aagctttgga gctaagccag caatggtaga gggaaagattc tgcacgtccc ttccaggcgg 60
cctccccgtc accacccccc ccaacccgccc ccgaccggag ctgagagtaga ttcatacaaa 120
aggactcgcc cctgccttgg ggaatcccag ggaccgtcgt taaactccca ctaacgtaga 180
acccagagat cgctgcgttc ccggccccc acccgccccgc tctcgtcattc actgaggtagg 240
agaagagcat gcgtgaggct ccggtgcccc tcagtgggca gagcgcacat cgccccacagt 300
ccccgagaag ttggggggag gggtcgccaa ttgaaccggcgt gcctagagaa ggtggcgcgg 360

ggttaactgg	gaaagtatcg	tctgtactg	gctccgcctt	tttcccagg	gtggggaga	420
accgtatata	agtgcagtag	tgcgcgtgaa	cgttctttt	cgaacgggt	ttgcgcctc	480
gag						483
<210> 9						
<211> 24						
<212> DNA						
<213> Artificial Sequence						
<220>						
<223> Synthetic						
<400> 9						
aagctttgga	gctaagccag	caat				24
<210> 10						
<211> 23						
<212> DNA						
<213> Artificial Sequence						
<220>						
<223> Synthetic						
<400> 10						
ctcgaggcgg	caaaccggtt	gcg				23
<210> 11						
<211> 1451						
<212> DNA						
<213> Homo sapiens						
<400> 11						
aagctttgga	gctaagccag	caatggtaga	gggaagattc	tgcacgtccc	ttccaggcgg	60
cctccccgtc	accacccccc	ccaacccgcc	ccgaccggag	ctgagagtaga	ttcataacaaa	120
aggactcgcc	cctgccttgg	ggaatcccag	ggaccgtcgt	taaactccca	ctaacgtaga	180
acccagagat	cgctgcgttc	ccgccccctc	acccgcccgc	tctcgatc	actgaggtagg	240
agaagagcca	tgcgtgaggc	tccggtgccc	gtcagtgggc	agagcgcaca	tcgcccacag	300
tccccgagaa	gttgggggga	ggggtcggca	attgaaccgg	tgcctagaga	aggtggcgcg	360
gggttaactg	ggaaagtatcg	gtcgtgtact	ggctccgcct	tttcccagg	ggtgggggag	420
aaccgtata	taagtgcagt	agtgcgcgtg	aacgttcttt	ttcgcaacgg	gtttgcgcgc	480
agaacacagg	taagtgcgt	gtgtggttcc	cgcgggcctg	gccttttac	gggttatggc	540
cttgcgtgc	cttgaattac	ttccacgccc	ctggctgcag	tacgtgattc	ttgatcccga	600

gcttcgggtt	ggaagtgggt	gggagagttc	gaggccttgc	gcttaaggag	ccccttcgcc	660
tcgtgcttga	gttgaggcct	ggcctgggcg	ctggggcccc	cgcgtgcgaa	tctggtggca	720
ccttcgcgcc	tgtctcgctg	cttcgataa	gtctctagcc	ataaaaattt	tttcatgacc	780
tgctgcgacg	cttttttct	ggcaagatag	tcttgtaaat	gcgggccaag	atctgcacac	840
tggtatttcg	gttttgggg	ccgcgggcgg	cgacggggcc	cgtgcgtccc	agcgcacatg	900
ttcggcgagg	cggggcctgc	gagcgcggcc	accgagaatc	ggacgggggt	agtctcaagc	960
tggccggcct	gtcttgtgc	ctggcctcgc	gccgcgtgt	atcgccccgc	cctggggcggc	1020
aaggctggcc	cggtcggcac	cagttgcgtg	agcggaaaga	tggccgcttc	ccggccctgc	1080
tgcagggagc	tcaaaatgga	ggacgcggcg	ctcggagag	cggcgggtg	agtcacccac	1140
acaaggaaaa	agggctttc	cgtcctcagc	cgtcgcttca	tgtgactcca	cgagataccg	1200
ggcgccgtcc	aggcacctcg	atagttctc	gagctttgg	agtacgtcgt	cttaggttg	1260
gggggaggggg	tttatgcga	tggagttcc	ccacactgag	tgggtggaga	ctgaagttag	1320
gccagcttgg	cacttgatgt	aattctcctt	ggaatttgcc	cttttgagt	ttggatcttg	1380
gttcattctc	aagcctcaga	cagtggttca	aagttttt	cttccatttc	aggtgtcgtg	1440
aaaactctag a						1451

<210> 12
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic

 <400> 12
 tctagagttt tcacgacacc tga

23

<210> 13
 <211> 1289
 <212> DNA
 <213> Mus musculus

<220>
 <221> CDS
 <222> (88) .. (741)

 <400> 13
 ttacctcaact gcttccgga gcggtagcac ctccctccgc ggcttccccc tcagaccgct

60

ttttgccgcg agccgaccgg tccccgtc atg ccg acc cgc agt ccc agc gtc gtg

114

gccagtaaaa ttagcaggtg ttcttagtcct gtggccatct gcctagtaaa gcttttgca	851
tgaaccttct atgaatgtta ctgttttatt tttagaaatg tcagttgctg cgtccccaga	911
ctttgattt gcactatgag cctataggcc agcctaccct ctggtagatt gtcgcttatac	971
ttgtaagaaa aacaaatctc ttaaattacc acttttaat aataatactg agattgtatc	1031
tgttaagaagg atttaaagag aagctatatt agtttttaa ttggtagttt aattttata	1091
tattcaggag agaaagatgt gattgatatt gttaatttag acgagtctga agctctcgat	1151
ttcctatcatc taacagcatc taagaggttt tgctcagtg aataaacatg tttcagcagt	1211
gttggctgta tttcccaact ttcagtaaat cgttgtcaac agttcctttt aaatgcaaat	1271
aaataaaattc taaaaatt	1289

<210> 14
 <211> 218
 <212> PRT
 <213> Mus musculus

<400> 14

Met Pro Thr Arg Ser Pro Ser Val Val Ile Ser Asp Asp Glu Pro Gly			
1	5	10	15

Tyr Asp Leu Asp Leu Phe Cys Ile Pro Asn His Tyr Ala Glu Asp Leu			
20	25	30	

Glu Lys Val Phe Ile Pro His Gly Leu Ile Met Asp Arg Thr Glu Arg			
35	40	45	

Leu Ala Arg Asp Val Met Lys Glu Met Gly Gly His His Ile Val Ala			
50	55	60	

Leu Cys Val Leu Lys Gly Gly Tyr Lys Phe Phe Ala Asp Leu Leu Asp			
65	70	75	80

Tyr Ile Lys Ala Leu Asn Arg Asn Ser Asp Arg Ser Ile Pro Met Thr			
85	90	95	

Val Asp Phe Ile Arg Leu Lys Ser Tyr Cys Asn Asp Gln Ser Thr Gly			
100	105	110	

Asp Ile Lys Val Ile Gly Gly Asp Asp Leu Ser Thr Leu Thr Gly Lys

115

120

125

Asn Val Leu Ile Val Glu Asp Ile Ile Asp Thr Gly Lys Thr Met Gln
130 135 140

Thr Leu Leu Ser Leu Val Lys Gln Tyr Ser Pro Lys Met Val Lys Val
145 150 155 160

Ala Ser Leu Leu Val Lys Arg Thr Ser Arg Ser Val Gly Tyr Arg Pro
165 170 175

Asp Phe Val Gly Phe Glu Ile Pro Asp Lys Phe Val Val Gly Tyr Ala
180 185 190

Leu Asp Tyr Asn Glu Tyr Phe Arg Asn Leu Asn His Val Cys Val Ile
195 200 205

Ser Glu Thr Gly Lys Ala Lys Tyr Lys Ala
210 215

<210> 15

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 15

gcatgcgcgc ggccgcggag gctttttttt tttttttttt

40

<210> 16

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 16

cggcaacgcg tgccatcatg gttcgac

27

<210> 17

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 17

cggcagcggc cgcatagatc taaagccagc

30

<210> 18

<211> 671

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (13) .. (573)

<400> 18

acgcgtgcc tc atg gtt cga cca ttg aac tgc atc gtc gcc gtg tcc caa
Met Val Arg Pro Leu Asn Cys Ile Val Ala Val Ser Gln
1 5 10

51

aat atg ggg att ggc aag aac gga gac cta ccc tgg cct ccg ctc agg
Asn Met Gly Ile Gly Lys Asn Gly Asp Leu Pro Trp Pro Pro Leu Arg
15 20 25

99

aac gag ttc aag tac ttc caa aga atg acc aca acc tct tca gtg gaa
Asn Glu Phe Lys Tyr Phe Gln Arg Met Thr Thr Ser Ser Val Glu
30 35 40 45

147

ggt aaa cag aat ctg gtg att atg ggt agg aaa acc tgg ttc tcc att
Gly Lys Gln Asn Leu Val Ile Met Gly Arg Lys Thr Trp Phe Ser Ile
50 55 60

195

cct gag aag aat cga cct tta aag gac aga att aat ata gtt ctc agt
Pro Glu Lys Asn Arg Pro Leu Lys Asp Arg Ile Asn Ile Val Leu Ser
65 70 75

243

aga gaa ctc aaa gaa cca cca cga gga gct cat ttt ctt gcc aaa agt
Arg Glu Leu Lys Glu Pro Pro Arg Gly Ala His Phe Leu Ala Lys Ser
80 85 90

291

ttg gat gat gcc tta aga ctt att gaa caa ccg gaa ttg gca agt aaa
Leu Asp Asp Ala Leu Arg Leu Ile Glu Gln Pro Glu Leu Ala Ser Lys
95 100 105

339

gta gac atg gtt tgg ata gtc gga ggc agt tct gtt tac cag gaa gcc
Val Asp Met Val Trp Ile Val Gly Gly Ser Ser Val Tyr Gln Glu Ala
110 115 120 125

387

atg aat caa cca ggc cac ctt aga ctc ttt gtg aca agg atc atg cag
Met Asn Gln Pro Gly His Leu Arg Leu Phe Val Thr Arg Ile Met Gln
130 135 140

435

gaa ttt gaa agt gac acg ttt ttc cca gaa att gat ttg ggg aaa tat
Glu Phe Glu Ser Asp Thr Phe Phe Pro Glu Ile Asp Leu Gly Lys Tyr
145 150 155

483

aaa ctt ctc cca gaa tac cca ggc gtc ctc tct gag gtc cag gag gaa 531
Lys Leu Leu Pro Glu Tyr Pro Gly Val Leu Ser Glu Val Gln Glu Glu
160 165 170

aaa ggc atc aag tat aag ttt gaa gtc tac gag aag aaa gac 573
Lys Gly Ile Lys Tyr Lys Phe Glu Val Tyr Glu Lys Lys Asp
175 180 185

taaacaggaag atgcttcaa gttctctgct cccctcctaa agctatgcat ttttataaga 633

ccatggact ttgcgtggct ttagatctat gcggccgc 671

<210> 19
<211> 187
<212> PRT
<213> Mus musculus

<400> 19

Met Val Arg Pro Leu Asn Cys Ile Val Ala Val Ser Gln Asn Met Gly
1 5 10 15

Ile Gly Lys Asn Gly Asp Leu Pro Trp Pro Pro Leu Arg Asn Glu Phe
20 25 30

Lys Tyr Phe Gln Arg Met Thr Thr Ser Ser Val Glu Gly Lys Gln
35 40 45

Asn Leu Val Ile Met Gly Arg Lys Thr Trp Phe Ser Ile Pro Glu Lys
50 55 60

Asn Arg Pro Leu Lys Asp Arg Ile Asn Ile Val Leu Ser Arg Glu Leu
65 70 75 80

Lys Glu Pro Pro Arg Gly Ala His Phe Leu Ala Lys Ser Leu Asp Asp
85 90 95

Ala Leu Arg Leu Ile Glu Gln Pro Glu Leu Ala Ser Lys Val Asp Met
100