SI-2024 Introduction to CubeSat and Satellite Communication

LoRa Basics

2nd July 2024

SiliconTech

LoRa + ESP32

LoRa + ESP32

Potential datapaths (data operation mode dependant)

<u>Continuous mode</u>: each bit transmitted or received is accessed in real time at the DIO2/DATA pin. This mode may be used if adequate external signal processing is available.

Packet mode (recommended): user only provides/retrieves payload bytes to/from the FIFO. The packet is automatically built with preamble, Sync word, and optional CRC and DC-free encoding schemes The reverse operation is performed in reception. The uC processing overhead is hence significantly reduced compared to Continuous mode. Depending on the optional features activated (CRC, etc) the maximum payload length is limited to 255, 2047 bytes or unlimited.

LoRa Transceiver (Radio) Architecture

LoRa Basics: Shannon-Hartley Theorem

Channel Capacity
$$(C) = B \cdot \log_2 \left(1 + \frac{S}{N}\right)$$
 bits/sec

where:

B is the channel bandwidth (B), S is the average signal power (Watts), N: average noise power (watts)

With some algebra and assuming S/N << 1: Channel Capacity $(C) \approx B \cdot \frac{S}{N}$ bits/sec

Therefore, for a give S/N ratio, the channel capacity can be increased by merely increasing the bandwidth of the transmitted signal.

Jusin wt + In sinut | Inv + Inv = 2mb ausinut X 1000 le= Inv 2 lz= Inv 2 mV 8 met 8NR = 20 log (2mV) Novice: un cover let /6+=/1,2+1/2 = /1m2+1,1/2 = 1mV log (A, 1Az) 20 log (<u>Jul</u>) Cop(A) + los(A2) 20 log (2800) SNR = 60 dB = VZ MV

Spread-Spectrum Principles: Modulation/Spreading

Processing Gain
$$(G_P)$$
 = $10 \log \left(\frac{R_C}{R_B}\right)$
where, R_C : $chip\ rate$, R_B : $bit\ rate$

$$\frac{10 \log \left(\frac{\text{Pout}(V)}{\text{Jm}V}\right)}{\log \left(\frac{\text{Put}}{\text{Jm}V}\right)} = 20 \text{ dBn}$$

$$\frac{10 \log \left(\frac{\text{Put}}{\text{Jm}V}\right)}{\log \left(\frac{\text{Put}}{\text{Jm}V}\right)} = 20 \text{ dBn}$$

$$\frac{10 \log \left(\frac{\text{Put}}{\text{Jm}V}\right)}{\log \left(\frac{\text{Put}}{\text{Jm}V}\right)} = 3 \text{ dBn}$$

20 V7

$$\frac{120 \, dh}{500} = 100 \, mW$$

$$\frac{120 \, dh}{500} = 100 \, mW$$

$$\frac{500}{500} = 100 \, mW$$

$$\frac{100 \, x \, 10^{3} \, x \, 50}{2 \, x \, x \, y \, 5}$$

$$= 15 = 2. - V$$

$$\frac{100 \, x \, 10^{3} \, x \, 50}{2 \, x \, x \, y \, 5}$$

$$= 100 \, x \, 10^{3} \, x \, 50$$

$$= 100 \, x \, 10^{3} \, x \, 50$$

$$= 100 \, x \, 10^{3} \, x \, 50$$

$$= 100 \, x \, 10^{3} \, x \, 50$$

$$= 100 \, x \, 10^{3} \, x \, 50$$

$$= 100 \, x \, 10^{3} \, x \, 50$$

$$= 100 \, x \, 10^{3} \, x \, 50$$

$$= 100 \, x \, 10^{3} \, x \, 50$$

$$= 100 \, x \, 10^{3} \, x \, 50$$

$$= 100 \, x \, 10^{3} \, x \, 50$$

$$= 100 \, x \, 10^{3} \, x \, 50$$

$$= 100 \, x \, 10^{3} \, x \, 10^{3} \, x \, 50$$

$$\frac{158 dn}{V_{RX}} = \frac{10^{15} \times 1 \text{ mW}}{50 \text{ L}} = \frac{10^{15} \times 1 \text{ mW}}{50 \text{ L}} = \frac{10^{15} \times 1 \text{ mW}}{50 \times 10^{16}} = \frac{10^{15} \times 1 \text{ m$$

Spread-Spectrum Principles: Modulation/Spreading

Spread-Spectrum Principles: Demodulation/De-spreading

LoRa Spread-Spectrum: Spreading Factor

SpreadingFactor (RegModulationCfg)	Spreading Factor (Chips / symbol)	LoRa Demodulator SNR		
6	64	-5 dB		
7	128	-7.5 dB		
8	256	-10 dB		
9	512	-12.5 dB		
10	1024	-15 dB		
11	2048	-17.5 dB		
12	4096	-20 dB		

Spreading Factor $(SF) = 2^{SF} chips/sym$

LoRa Spread-Spectrum: Modulation Bandwidth

Bandwidth (kHz)	Spreading Factor	Coding rate	Nominal Rb (bps)	
7.8	12	4/5	18	
10.4	12	4/5	24	
15.6	12	4/5	37	
20.8	12	4/5	49	
31.2	12	4/5	73	
41.7	12	4/5	98	
62.5	12	4/5	146	
125	12	4/5	293	
250	12	4/5	586	
500	12	4/5	1172	

$$R_B = SF \frac{1}{2^{SF}/BW}$$
bits/sec

$$R_C = R_B 2^{SF}$$
 chips/sec

LoRa Sensitivity and Rate Calculation

RX Sensitivity at 433 MHz

Spread Factor	SNR (dB)	Sensitivity (dBm)
7	-7	-125
10	-15	-134
12	-20	-141

LoRa™ Rate Calculation Guide

SrNo	BW\SF	6	7	8	9	10	11	12
0	7.8khz	585 bps	341	195	109	60	52	18
1	10.4khz	780	455	260	146	81	69	24
2	15.6khz	1170	682	390	219	121	104	36
3	20.8khz	1562	910	520	292	162	139	49
4	31.2khz	2340	1365	780	438	243	209	73
5	41.6khz	3120	1820	1040	585	325	279	97
6	62.5khz	4688	2734	1562	878	488	419	146
7	125khz	9380	5468	3125	1757	976	839	293
8	250khz	18750	10937	6250	3515	1953	1678	585
9	500khz	37500	21875	12500	7031	3906	3356	1171

RSSI and SNR LoRa Mode in LF Mode (433MHz)

PSSI = 64 dB RSSI pck (dbx) =
$$-164+64 = -100$$
 dbm.
 -10 10 1mV $= \frac{V^2}{50} = |\vec{D}|^{10} \times |\vec{D}|^{3}$
• For SNR > 0:
• RSSI or Packet Strength (dBm) = $-164 + RSSI$ = $\sqrt{50} \times |\vec{D}|^{2} = 2 \cdot \mu V$

- **For SNR < 0:**
 - RSSI or Packet Strength (dBm) = -164 + PacketRSSI + 0.25*PacketSNR

Key Properties of LoRa

Network Trial

Ref.

Α

D

Ε

G

Distance

(m)

80

150

280

330

480

560

1180

1350

1750

-97

-100

-112

-118

Clause O. Chinishaa Unban Danna Tank

SPI Access

The SPI interface gives access to the configuration register via a synchronous full-duplex protocol corresponding to CPOL = 0 and CPHA = 0 in Motorola/Freescale nomenclature. Only the slave side is implementation.

- SINGLE access: an address byte followed by a data byte is sent for a write access whereas an address byte is sent and a read byte is received for the read access. The NSS pin goes low at the beginning of the frame and goes high after the data byte.
- BURST access: the address byte is followed by several data bytes. The address is automatically incremented internally between each data byte. This mode is available for both read and write accesses. The NSS pin goes low at the beginning of the frame and stay low between each byte. It goes high only after the last byte transfer.
- FIFO access: if the address byte corresponds to the address of the FIFO, then succeeding data byte will address the FIFO. The address is not automatically incremented but is memorized and does not need to be sent between each data byte. The NSS pin goes low at the beginning of the frame and stay low between each byte. It goes high only after the last byte transfer