ISTANBUL TECHNICAL UNIVERSITY

COMPUTER ENGINERING DEPARTMENT

BLG 527E MACHINE LEARNING

CRN: 13817

Instructor: Zehra Çataltepe

Homework #2

November 6, 2017

Tuğrul Yatağan

504161551

Running Code

q1.r and q2.r R files can be directly run. They search "optdigits.tra" and "optdigits.tes.txt" files in the same directory. If R files and data files are different directory, "trainingFile" and "testFile" variables must be set accordingly. It took about 30 minutes for q1.r and about 5 minutes for q2.r to run.

Answers

Q1a-b)

Steps for multivariate analysis:

- 1- Eliminate feature column in training data set if whole column is 0 or fixed value to be sure within-class scatter matrix is invertible.
- 2- Calculate d-dimensional mean vectors per class. Create mean_{ii} matrix.

$$m_i = \begin{bmatrix} \mu_{w_i(feature~1)} \\ \mu_{w_i(feature~2)} \\ \vdots \\ \mu_{w_i(feature~64)} \end{bmatrix} \text{, with i = 0,1,2,3,...,9}$$

3- Calculate common variance matrix

$$S = \sum_{i} P(C_i) S_i$$

where covariance matrix S_{ij}

$$S_{ij} = \frac{\sum_{t=1}^{N} (x_i^t - m_i)(x_j^t - m_j)}{N}$$

- 4- Get diagonal elements of common variance matrix as vector s
 - a. Use vector s as it is if common covariance matrix and Σ is diagonal
 - b. Use square root mean of s if common covariance matrix) and $\Sigma = s^2 I$ for some s>0
- 5- Discriminant function:

$$g_i(x) = -\frac{1}{2} \sum_{j=1}^d \left(\frac{x_j^t - m_{ij}}{s_j} \right)^2 + \log P(C_i)$$

- 6- Run discriminant function for dataset and get prediction results.
- 7- Create k X k confusion matrix.

Q1c)

1- Training error of Q1a:

8.579649 %

2- Test error of Q1a:

10.68447 %

3- Training error of Q1b:

8.16113 %

4- Test error of Q1b:

10.62883 %

- 5- Test error for each class for Q1a: 1.117, 22.413, 13.812, 5.389, 6.077, 5.494, 3.333, 7.978, 19.883, 21.134
- 6- Test error for each class for Q1b: 1.129, 22.285, 10.285, 5.263, 6.250, 7.065, 3.846, 8.602, 16.867, 23.414
- 7- Confusion matrix of the Q1a:

truth											
prediction		0	1	2	3	4	5	6	7	8	9
	0	177	0	1	0	0	0	1	0	0	0
	1	0	135	6	0	4	0	5	0	21	3
	2	0	21	156	2	0	0	0	0	1	1
	3	0	0	0	158	0	1	0	0	1	7
	4	1	0	1	0	170	1	0	3	0	5
	5	0	1	0	3	0	172	0	0	2	4
	6	0	4	0	0	0	1	174	0	1	0
	7	0	0	1	7	3	0	0	173	1	3
	8	0	8	10	6	3	0	1	2	137	4
	9	0	13	2	7	1	7	0	1	10	153

8- Confusion matrix of the Q1b:

truth

prediction		0	1	2	3	4	5	6	7	8	9
	0	175	0	1	0	0	0	1	0	0	0
	1	0	136	6	0	8	0	3	0	19	3
	2	0	16	157	1	0	0	0	0	1	0
	3	0	1	2	162	0	0	0	0	1	5
	4	2	0	0	0	165	1	0	3	0	5

 5
 1
 1
 0
 2
 0
 171
 0
 2
 3
 4

 6
 0
 5
 0
 0
 0
 1
 175
 0
 1
 0

 7
 0
 0
 2
 7
 3
 0
 0
 170
 1
 3

 8
 0
 7
 5
 5
 4
 0
 2
 2
 138
 3

 9
 0
 16
 4
 6
 1
 9
 0
 2
 10
 157

Training data sets gives better error than test sets as expected. Q1b ($\Sigma i = \Sigma$ (common covariance matrix) and Σ =s2I for some s>0) assumption gives best test error.

Classes (1 & 2) and (1 & 8) have confused each other most.

Q2a)

- 1- Eliminate feature column in training data set if whole column is 0 or fixed value to be sure within-class scatter matrix is invertible.
- 2- Calculate d-dimensional mean vectors per class. Create mean_{ij} matrix.

$$m_i = \begin{bmatrix} \mu_{w_i(feature\ 1)} \\ \mu_{w_i(feature\ 2)} \\ \vdots \\ \mu_{w_i(feature\ 64)} \end{bmatrix} \text{, with i = 0,1,2,3,...,9}$$

- 3- Calculate scatter matrices
 - a. Calculate within-class scatter matrix S_W

$$S_W = \sum_{i=1}^{c} S_i$$

$$S_i = \sum_{x \in D_i}^{n} (x - m_i)(x - m_i)^T$$

b. Calculate between-class scatter matrix S_B

$$S_B = \sum_{i=1}^{c} N_i (x - m_i) (x - m_i)^T$$

4- Solving the generalized eigenvalue problem for the matrix

$$S_W^{-1}S_B$$

- 5- Choosing 2 eigenvectors with the largest eigenvalues
- 6- Transforming the samples onto the new subspace for training and test data set by calculated eigenvectors from training data set.

$$Y = X \times W$$

- 7- Visualize training data set and test data set LDA results.
 - a. Training data result:

b. Test data result:

Q3)

LDA gives better for dimensionality reduction over PCA since, PCA doesn't use class information to reduce dimension.

We are interested in the matrix W that maximizes:

$$J(W) = \frac{|W^T S_B W|}{|W^T S_W W|}$$

The largest eigenvectors $S_W^{-1}S_B$ is the solution, and PCA within-class scatter matrix S_W gives bigger value over LDA which leads to worse dimension reduction.