JP2242858

Publication Title:

WATER-ABSORBING AGENT AND PRODUCTION THEREOF

Abstract:

PURPOSE:To obtain a water-absorbing agent having water-absorbing property capable of controlling time from contact with an aqueous liquid till start of water absorption and suitable for soil water retaining agent, etc., by coating the surface of a water absorbing resin with thermoplastic resin having gradually water-soluble and/or hydrolyzable properties.

CONSTITUTION:(A) A water soluble resin hydrophilic and having water absorbing power of 10 times, preferably 50-1,000 times the self-weight is blended and dispersed into (B) a melt obtained by melting a thermoplastic resin (e.g. vinyl acetate resin) having m.p. >=40 deg.C at a temperature higher than m.p. and then the resultant melted and dispersed material is sprayed or dropped into an atmosphere of a temperature lower than m.p. of the component B to provide the granular water absorbing agent in which the surface of the component A is coated by the component B. Weight ratio of A:B is 15:85-99.1:0.1.

Data supplied from the esp@cenet database - http://ep.espacenet.com

19 日本国特許庁(JP)

⑪特許出願公開

@ 公 開 特 許 公 報 (A) 平2-242858

1 Int. Cl. 5 識別記号 庁内整理番号 43公開 平成2年(1990)9月27日 7445-4 J 8115-4 F 6779-4 J C 08 L 101/00 LSY 3/12 33/02 1 0 1 08 J 08 L LHR 審査請求 未請求 請求項の数 5 (全6頁)

図発明の名称 吸水剤およびその製造方法

②特 願 平1-64582

②出 願 平1(1989)3月16日

⑫発 明 者 田 中 敬 次 京都府京都市東山区一橋野本町11番地の1 三洋化成工業

株式会社内

②発 明 者 田 中 健 治 京都府京都市東山区一橋野本町11番地の1 三洋化成工業

株式会社内

②出 願 人 三洋化成工業株式会社 京都府京都市東山区一橋野本町11番地の1

明細書

1. 発明の名称

吸水剤およびその製造方法

2. 特許讃求の範囲

- 1.吸水性樹脂(A)の表面が、水徐溶性および/または加水分解性の熱可塑性樹脂(B)で被覆されていることを特徴とする粉粒状吸水剤。
- 2.吸水性樹脂(A)が、 自重の10倍以上の吸水能を有する親水性ポリマーである請求項1記載の吸水剤。
- 3.熱可塑性樹脂(B)が40℃以上の融点を有する樹脂 である請求項1または2記載の吸水剤。
- 4.(A)と(B)との重量比が、 i5: 85~99.1: 0.1である請求項1、 2または3記載の吸水剤。
- 5. 讀求項1~4のいずれか記載の吸水剤を製造するにあたり、熱可塑性樹脂(B)の融点以上の温度の溶融液に(A)を混合分散した後、この溶融分散物を(B)の融点より低い温度の雰囲気中に噴霧あるいは
 満下することを特徴とする吸水剤の製造方法。
- 3. 発明の詳細な説明

[産業上の利用分野]

本発明は、吸水剤およびその製造方法に関する。 さらに詳しくは、特異な吸水特性を有する吸水剤 に関するものである。

[従来の技術]

従来、水性液体に対して吸収能を有する粉粒状吸水剤としては、吸水性樹脂と呼ばれる親水性ポリマーが知られている。 これらの吸水性樹脂としては、デンブン・アクリル酸塩グラフト重合体、アクリル酸 はない でもの地の重量体との共重合体、変性セルロース 誘導体、変性ポリエチレンオキシド、変性ポリビニルアルコール等が知られており、主として紙おむつ、生理用品、土壌保水剤などの吸水・保水剤として使用されてきた。

[発明が解決しようとする課題]

しかしながら、従来の粉粒状吸水性樹脂は水生液体と接触した時にできる限り速やかに吸水機能が発現するように設計されており、新たな工夫即ち水生液体と接触してから実質上吸水を開始する

までの時間を遅くする試みはなされていない。

例えば、粉粒状の吸水性樹脂を疎水性界面活性剤で表面処理する方法、合成樹脂またはゴム類と混練してシート状、板状等に成形する方法等により吸水特性を改質する例が提案されているが、これらは吸水性樹脂が水性液体と接触した時にでマーンを生成するのを防止するか、あるいは単に吸水性樹脂の飽和吸水能に達するまでの時間を延長させただけにすぎない。

[課題を解決するための手段]

本発明者らは、水性液体と接触してから実質上吸水を開始するまでの時間を任意にコントロールして遅延することができ、且つ吸水を開始してからの吸水速度は従来の吸水性樹脂と同等の吸水速度を発現しうる粉粒状の吸水剤について鋭意検討した結果、本発明に到達した。

すなわち、本発明は吸水性樹脂(A)の表面が、水 徐溶性および/または加水分解性の熱可塑性樹脂 (B)で被覆されていることを特徴とする粉粒状吸水 剤;および、簡求項1~4のいずれか記載の吸水剤

特開昭55-133413号公報等に記載の水溶液重合(断 熱重合、薄膜重合、噴霧重合など)により得られ る架構ポリアクリル酸アルカリ塩、 特開昭52-146 89号、 特開昭 52-27455号各公報等に記載のビニル エステルと不飽和カルポン酸またはその誘導体と の共重合体ケン化物、 特開昭58-2312号、 特開昭6 1-36309号公 報等に記載のスルホン酸(塩)基含有 吸水性樹脂、イソブチレンー無水マレイン酸(塩) 共重合体架構物、デンプンーアクリロニトリルグ ラフト重合体の加水分解物、 架構カルポキシメチ ルセルロース、 架構ポリエチレンオキシド、 ポリ ピニルアルコール誘導体架橋物、架橋ポリアクリ ルアミドの部分加水分解物、架構ポリスチレンス ルホン酸塩などが挙げられる。また、上記吸水性 樹脂をポリグリシジルエーテル化合物あるいは多 価金属化合物等の架構剤でさらに表面架構せしめ、 架構勾配をもたせた吸水性樹脂も使用できる。 上 記吸水性樹脂は2種以上併用してもよい。

上記吸水性樹脂は、吸水能として自重の10倍以上であり、好ましくは50~1,000倍である。

を製造するにあたり、熱可塑性樹脂(B)の融点以上の温度の溶融液に(A)を混合分散した後、この溶融分散物を(B)の融点より低い温度の雰囲気中に噴器あるいは滴下することを特徴とする吸水剤の製造方法である。

本発明に用いられる吸水性樹脂(A)としては、通常自重の10倍以上から1500倍程度の吸水能を有する親水性ポリマーであり、 その構成単位にカルボン酸(塩)基 「カルボン酸基および/またはカルボン酸塩基を言う。 以下同様の記載を用いる。」、スルホン酸(塩)基、 第三級 アミン塩基、 第四級 アンモニウム塩基、 水酸基、 ポリエチ 世間であれた 世間の 強い。 本発明に好適に使用しうる吸水性樹脂の例としては、 特公昭 53-46199号、 特公昭 53-46200号 公報等に記載のデンブンアクリル酸アルカリ塩グラフト重合体架構物、 特公昭 54-30710号、 特開昭 56-26309号 各公報等に記載の逆相懸濁重合法による架構あるいは自己架構されたポリアクリル酸アルカリ塩

吸水性樹脂の形状については粉粒状であれば特に制限はなく、微粉末状、粒状、顆粒状、造粒状、フレーク状、パール状などのいずれの形状であってもよい。 好ましくは平均粒径が Imm以下の微粉状、粒状およびパール状であり、特に好ましくは平均粒径が 0.01~0.5mm の微粉状およびパール状である。

本発明において、水涂溶性および/または加水 分解性の無可塑性樹脂樹脂(B)としては、エステル基、アミド基、ニトリル基などの加水分解により 水溶性となる官能基を有した合成樹脂 [例えば、 酢酸ビニル樹脂、エチレンー酢酸 ピニル共重合体、ポリアクリルアミド共重合体系樹脂、ポリカストンス ロニトリル共重合体系樹脂、ポリエステル ポリアシル共重合体系樹脂、ポリエステル ポリアシートリル共産合体系樹脂、ポリカストン系 は、オーシエチレン成分などの親水水 など〕、水酸基、カルポキシル基、スルホン酸基、 リン酸基、オキシエチレン成分などの 類が、オキシエチレン成分などの 類が、オキシエチレン成分などの 類が、オキシエチレン が、カルボキシル を 有合体、エチレンー酸 サロート系 樹脂 に ロキンアルキル(メタ)アクリレンー無水 ポリスチレンのスルホン化物、スチレ レイン酸共重合体、イソブチレンー無水マレイン酸共重合体、エチレンオキサイド成分を含有した熱可塑ウレタン樹脂、マレイン化ポリブタジェン、マレイン化EVA(エチレン一酢酸ビニル共重合体)、ポリビニルアルコールなど〕; 天然樹脂 「例えば、ミツロウ、牛脂等天然ワックス類のエステル化物など〕; 長鎖脂肪酸エステル 「例えば、ネオペンチルポリオールの脂肪酸エステルなど〕等の少なくとも1種が挙げられる。

更に、上記樹脂と疎水性樹脂 [例えば、 低分子量ポリエチレン、 低分子量ポリプロピレン、 塩素化ポリエチレン、 ポリ塩化ビニル樹脂、 ポリスチレン、 バラフィンワックスなど] または ゴム 類 エ の が えば、 ブチルゴム、 イソブレン ン フ タ ジ コム、 クロ ア ア ン ス チレン マ ス ガ ン ン 大 重合 ゴム、 ス チレン マ ス が ゴ ム な で の 合成 ゴム、 あ る 本 発明に 好ましく 使用し 得る。

これらの内で好ましい樹脂(B)は、水性液体と接

法、(2)(B)の溶融物を(A)の表面に噴霧または塗布して、(B)の融点以下の温度で冷却する方法、(3)ハイブリダイゼーション法、コートマイーザー法などの機械的操作によりカブセル化する方法、(4)有機溶剤(アルコール系、ケトン系、脂肪族または芳香族炭化水素系、エステル系等の溶剤、およびこれらの混合溶剤など)に樹脂(B)を溶解し、この溶液中に(A)を浸漬して被覆し、乾燥する方法、(5)上記(B)の有機溶剤液中に(A)を分散し、コアセルベーション法等の通常のカブセル化方法により被覆する方法、(6)上記(B)の有機溶剤液を(A)の表面に噴霧または塗布して乾燥する方法、などが挙げられる。

これらの製造方法の内で好ましい方法は、溶剤を蒸発・乾燥させる必要がない、従って被覆した 樹脂の表面にピンホール等が生成する心配がない という点で、(1)、(2)および(3)の方法である。 特 に好ましい方法は(1)であり、吸水性樹脂の表面全 体に樹脂(B)を均一に被覆することが可能であり、 且つピンホール等の生成もほとんど無い。 樹脂(B)の融点としては通常40℃以上であり、常温で固体の熱可塑性樹脂が好ましい。 融点が40℃より低い場合、 吸水剤の保存中あるいは使用中にブロッキングを起こしたり、 吸水剤同士が融着するという問題を生じる。 ただし、 本発明の吸水剤をより低温で保存あるいは使用する場合には、 保存あるいは使用過度以上であれば、 40℃以下の融点を有する樹脂も使用可能である。

本発明の吸水剤の製造方法としては、 通常のコーティングあるいはカブセル化などの方法により製造することができる。 例えば、 (1)(B)の融点以上の温度で溶融せしめた (B)の溶融液に (k)を混合分散した後、 この溶融分散物を該樹脂 (B)の融点より低い温度の雰囲気中に噴霧あるいは滴下する方

このようにして製造される粉粒状吸水剤の、水性液体と接触してから実質的に吸水を開始するまでの時間は、被覆する樹脂(3)の種類、被覆量、膜厚を変化させること等により任意にコンドの間をして遅延することができる。例えば、遅延時間をしたい場合には、樹脂(B)中の親水性基あるいは加水分解により水溶性となる官能基の合うを、被覆量を多くする、膜厚を厚くする等によりコくする。一方、遅延時間を比較的短くする、場合には、上記と反対に、樹脂(B)中の親水性基あるいは加水分解により水溶性となる官能基の含する、破を多くする、疎水性樹脂の混合量を少なくする、液水性樹脂の混合量を少なくする、液水性樹脂の混合量を少なくする、液水性樹脂の混合量を少なくする、

(A)と(B)との比は、重量換算で通常15: 85~89 .1: 0.1、好ましくは25: 75~93; 1である。(B)の 量が85を越えると、吸水剤が水性液体と接触して から実質上吸水を開始するまでの時間が非常に長 くなり実用上の価値が乏しい。一方(B)の量が0.1 未満では、(A)の表面全体を(B)で被覆することが 難しく、(A)単独の場合との差がほとんど認められ なくなる。

また被覆する樹脂の膜厚は、 平均で通常 0.005~ 0.5mm、 好ましくは平均 0.01~0.2mmである。

本発明において、吸水性樹脂(A)あるいは熱可塑性樹脂(B)に増量剤、添加剤として有機質粉体(例えばパルプ粉末、デンプン誘導体、セルロース誘導体、天然多糖類など)、無機質粉体(例えばパーライト、ゼオライト、シリカ、パーミキュライト、ベントナイト、タルク、活性炭など)等を必要により適量配合することができる。また、酸化防止剤、可塑剤、防カビ剤、界面活性剤、 着色剤、薬効成分、香料なども必要により添加することができる。これら増量剤、添加剤の量は吸水剤の重量に対し通常10重量%以下である。

本発明において、 実質上吸水を開始するまでの時間とは、 吸水剤が水性液体と接触してから任意の時間が経過した後に初めて吸水機能が発現するという狭義の意味のみならず、 一般に言う吸水立

量(St) を測定する。 S を 100とした時の S t の比を吸水率とした。

飽和吸水量(S)=W/Wa

吸水率(%)=(St/S)×100

実施例1

200m1ビーカーに長鎖脂肪酸エステル(日本油脂 蝦製「ユニスターM-9676」、融点56℃)35部および低分子量ポリエチレン(三洋化成工業 | 蝦製「サンワックス171P」、融点105℃)15部を入れ、140 でにて混合溶融し液状化せしめた後、吸水性樹脂 としてデンプン-アクリル酸塩グラフト重合体(三 洋化成工業 | 製「サンウェット IM-1000MPS」)50 部を添加し、混合して溶融分散液(A)を作製した。 この溶融分散液を20℃の雰囲気中に噴霧すること により、球状の本発明の吸水剤(I)を得た。こ のものの飽和吸水量は142g/gであった。吸水率を 経時的に測定した結果を第1表に示した。

実施例2

実施例 1 において、 長鎖脂肪酸エステル 35部に 代えて15部、 低分子量ポリエチレン 15部に代えて ち上がりまでの時間、すなわち吸水性樹脂の飽和 吸水量に対し通常30%、好ましくは10%程度に達 するまでの時間も含まれる。尚、吸水を開始した 後は通常の吸水性樹脂と同等の吸水速度をを示す のが好ましい。

水性液体と接触してから実質上吸水を開始するまでの時間は通常5分~180分、好ましくは10分~120分である。

[実施例]

以下、実施例により本発明を更に説明するが、 本発明はこれに限定されるものではない。 以下に おいて、 都は重量部を示す。

尚、以下の実施例および比較例における吸水率とは次の操作によって求められる値である。即ち、吸水剤約1gを250メッシュのナイロン製ティーバッグに入れ、これを大過剰の水(PH=10)中に3時間浸漬した後引き上げて15分間水切りし、得られた膨潤ポリマーの重量(F)を測定する。この値を初めの吸水剤重量(Fe)で割って、吸水剤の飽和吸水量(S)を求める。同様にして、所定時間浸漬後の吸水

35部を使用する以外は同様にして溶融分散液(B)を作製した。 この溶融分散液を20℃の雰囲気中に噴霧することにより、 球状の本発明の吸水剤 (Ⅱ)を得た。 このものの飽和吸水量は138g/gであった。 吸水率を経時的に測定した結果を第1表に示した。 実施例3

200mlビーカーにポリカブロラクトン系樹脂(ダイセル化学工業機製「プロクセル220」、融点53℃)25部およびパラフィンワックス(融点57℃)25部を入れ、80℃にて混合溶融し液状化せしめた後、吸水性樹脂として50部のサンウェット1M-1000MPSを添加し、混合して溶融分散液(C)を作製した。 この溶融分散液を20℃の雰囲気中に噴霧することにより、球状の本発明の吸水剤(Ⅲ)を得た。このものの飽和吸水量は156g/gであった。吸水率を経時的に測定した結果を第1表に示した。

実施例 4

実施例2で作製した溶融分散液(B)を、 攪 下の 20℃のメタノール中にゆっくりと滴下したところ 球状の吸水剤が沈澱した。 これをろ過し、 乾燥し て本発明の吸水剤(IV)を得た。このものの飽和 吸水量は140g/gであった。吸水率を経時的に測定 した結果を第1表に示した。

実施例 5

実施例1において、吸水性樹脂50部に代えて、同種の吸水性樹脂100部を使用する以外は同様にして本発明の吸水剤(V)を得た。このものの飽和吸水量は188g/gであった。吸水率を経時的に測定した結果を第1表に示した。

実施例6

実施例1において、デンプン-アクリル酸塩グラフト重合体に代えて、酢酸ビニルーメチルアクリレート共重合体ケン化物であるパール状の吸水性樹脂(住友化学工業開製「スミカゲルS-50」)を同量使用する以外は同様にして本発明の吸水剤(VI)を得た。このものの飽和吸水量は98g/gであった。吸水率を経時的に測定した結果を第1表に示した。

比較例1~2

市販の吸水性樹脂である、デンプン-アクリル酸

		水との接触時間(分)				
		0 1	30	60	80	120
実施例	1	0	5	58	98	100
	2	0	0	6	4 1	96
	3	0	4	18	8 2	100
	4	6	3 0	98	100	100
	5	2	2 2	96	100	100
	6	0	8	8 1	100	001
比	1	78	100	100	100	100
較	2	7 1	100	100	100	100
例	3	0	0	0	0	0

第1表 吸水率测定結果

[発明の効果]

本発明の吸水剤およびその製造方法は、次のような効果を奏する。

- (1)水性液体と接触してから実質上吸水膨潤を開始 するまでの時間を任意にコントロールして遅延す ることができる。
- (2)水性液体と接触してもママコを生成することが

塩グラフト重合体および酢酸ビニルーメチルアクリレート共重合体ケン化物をそれぞれ比較吸水剤AおよびBとし、これらの吸水率を経時的に測定した結果を第1表に併記した。

比較例3

実施例1において、 長鎖脂肪酸エステル 30部と低分子量ポリエチレン 15部の混合物に代えて、 疎水性樹脂である低分子量ポリエチレン 50部を使用する以外は同様にして比較吸水剤 C を得た。 このものの吸水率を経時的に測定した結果を第 1 表に併記した

ない。

- (3)高湿度雰囲気下に放置しても、 従来の高吸水性 樹脂の様にプロッキングすることがない。
- (4)樹脂(B)の融点以上の湿度をかけると簡単に出発原料である吸水性樹脂の吸水特性を復元することができ、且つ溶融した樹脂(B)が吸水性樹脂の接着パインダーとしての効果も発揮する。
- (5)上記(4)の作用により、簡単な操作で、比較的吸水能の低い基体(例えば、紙、バルブ、布、線維、不織布、無機物など)に吸水性樹脂を固着させることが可能となる。
- (6)吸水性樹脂を分散させた樹脂(B)の溶融物を、 (B)の融点以下の温度の空気中あるいは溶剤中に噴霧あるいは滴下するという簡単な操作で製造する ことができる。

以上の効果を奏することから、 従来の吸水性樹脂では適用できなかった種々の応用が可能となる。例えば、 本発明の吸水剤を土壌保水剤として使用することにより、 湿潤土壌への混和や雨中での土壌混和が可能となる。 また、ヘドロなど含水汚泥

の固化剤として使用する場合、均一混合のための充分な時間が確保できる。 更に、ドリリング時の逸水防止剤として使用する場合、 泥水中に添加して地盤の奥部にまで注入することが可能となる。 更に、 紙などに吸水性を付与したい場合、 抄紙工程で吸水剤を添加することが可能となる。

その他、他樹脂との混練による止水材、 結び止 材、 包装材としての用途、 アルカリ 電池や保冷剤 などのゲル化剤としての用途、 化粧品、 水性塗料 などの増粘剤としての用途など幅広い応用が考え られる。

4. 図面の簡単な説明

第1 図は横軸に水と接触してからの時間(分)、 縦軸に本発明の吸水剤 I、II、V および比較吸水剤 A の吸収率(%)をブロットし、 経時変化を示したグ ラフである。

特許出願人 三洋化成工業株式会社

第1図 吸水率の経時変化

