Adaptive Dynamic Model Averaging for House Price Forecasting

A. Yusupova and N.G. Pavlidis and E.G. Pavlidis

Lancaster University Management School

June 18 2019

Introduction

Dynamic Model Averaging (DMA)

- Dynamic Linear Model: Time-variation in coefficients
- Adaptive model combination: Time-variation in model specification

DMA gained increased popularity in recent years for forecasting:

- inflation [Koop and Korobilis, 2012, Catania and Nonejad, 2018]
- carbon prices [Koop and Tole, 2013]
- exchange rates [Byrne et al., 2018]
- equity returns [Dangl and Halling, 2012]
- property price growth [Bork and Møller, 2015]

Dynamic Linear Models with Forgetting

Dynamic Linear Model (Kalman Filter)

$$\theta_t^{(k)} = \theta_{t-1}^{(k)} + \omega_t^{(k)}, \qquad \omega_t^{(k)} \sim \mathcal{N}\left(0, W_t^{(k)}\right)$$
$$y_t = x_t^{(k)\top} \theta_t^{(k)} + \varepsilon_t^{(k)}, \quad \varepsilon_t^{(k)} \sim \mathcal{N}\left(0, V_t^{(k)}\right)$$

Estimation of $W_t^{(k)}$ poses computational problem (large d, large K)

Forgetting factor approach:

$$W_t^{(k)} = \frac{1-\lambda}{\lambda} C_{t-1}^{(k)}, \quad \lambda \in (0,1]$$

Coefficient uncertainty associated with high coefficient variability Choice of λ **critically** affects forecasting performance

Central Idea:

$$\lambda^{\star} = \operatorname*{arg\,min}_{\lambda \in (0,1]} \mathbb{E}_{Y,X} \left[\frac{1}{2} (y_{t+1} - \hat{y}_{t+1})^2 \right]$$

Function $\mathbb{E}_{Y,X}\left[\frac{1}{2}(y_{t+1}-\hat{y}_{t+1})^2\right]$ not observed (unfortunately) Instead realisations we observe

$$J_{t+1} = \frac{1}{2} \left(y_{t+1} - \hat{y}_{t+1} \right)^2$$

Stochastic optimisation: Use gradient $\frac{\partial J_{t+1}}{\partial \lambda}$ as approximation of gradient of expectation of squared forecast error

$$\frac{\partial J_{t+1}}{\partial \lambda} = \frac{\partial J_{\hat{\theta}_t}}{\partial \lambda} \frac{\partial \hat{\theta}_t}{\partial \lambda} = -(y_{t+1} - \hat{y}_{t+1}) x_{t+1}^{\top} \frac{\partial \hat{\theta}_t}{\partial \lambda}$$

(a) Median and IQR of stochastic gradient descent (SGD) estimates of λ_t

(b) Median and IQR of $\hat{\theta}_t$

Figure: Static Environment, $\theta_t = \theta_0$

5/12

Figure: Median and IQR estimates of λ_t through SGD for data simulated from a DLM with forgetting with $\lambda \in \{0.99, 0.97, 0.95\}$

(a) Median and IQR of SGD estimates of λ_t

(b) Evolution of θ_t and median and IQR of $\hat{\theta}_t$

Figure: Coefficient vector subject to abrupt changes of different magnitute

No fixed value of λ is appropriate for entire length of this time-series

Model Combination

Inspired from Bayesian Model Average (BMA)

$$\begin{split} p(M_i|\mathcal{F}_t) &\propto \underbrace{p(y_t|M_i,\mathcal{F}_{t-1})}_{\text{likelihood}} \left(\underbrace{\frac{p(M_i|\mathcal{F}_{t-1})^{\alpha}}{(\text{prior of }M_i)^{\alpha}}} + c\right) \\ &\propto p(M_i|\mathcal{F}_0)^{\alpha^t} \prod_{j=1}^t p(y_j|M_i,\mathcal{F}_{j-1})^{\alpha^{t-i}}, \quad \text{for } c = 0 \end{split}$$

 α : Forgetting factor for model combination stage

lpha is either 1 or very close to that (e.g. lpha=0.99)

Only Raftery et al. [2010] mention c

Forgetting in Model Averaging can Fail

Forgetting in Model Averaging can Fail

Normal densities

c = 0

Fails to adapt to 2nd change point for all α

 $c=10^{-20}$ Speed of adaptation depends critically on lpha

Forgetting in Model Averaging can Fail

c=0 Fails to adapt to 2nd change point for all lpha

 $c=10^{-3}/K$ Adaptation for all lpha at cost of variability

c > 0 at least as important as α

Prediction with Expert Advice

Online Learning Problem

Predict y_{t+1} based on experts' forecasts $\hat{y}_{t+1} = \sum_{k=1}^{K} w_{t,k} \, \hat{y}_{t+1}^{(k)}$

No assumptions on time-series or forecasters

Assumptions on loss function ℓ (typically ℓ is bounded)

Objective: Design weight updates to minimise **regret** w.r.t. best sequence of M experts (each optimal in a subset of the series)

$$R_T = \sum_{t=1}^T \ell(y_t, \hat{y}_t) - \sum_{m=1}^{M-1} \min_{k \in K} \left\{ \sum_{t=t(m)}^{t(m+1)-1} \ell(y_t, \hat{y}_t^{(k)}) \right\},$$

where $1 = t(1) < \cdots < t(M-1) < t(M) = T$ and M are **unknown**

ConfHedge

(2017) First algorithm with bound on R_T for finite T and **unbounded** ℓ ConfHedge algoritm involves **no** parameters

Empirical Results (I)

Region	AR(1)	ADMA	eDMA	DMA ^{0.99}	DMA ^{0.95}	ВМА	TVP
East Anglia	101.05	0.80	0.92	1.03	1.24	1.32	1.54
East Midlands	70.74	0.80	0.78	0.84	0.83	0.79	1.55
Greater London	117.29	0.74	0.78	0.79	0.77	0.73	0.76
Northern Ireland	292.44	0.89	0.99	0.92	1.00	1.02	1.06
North	167.39	0.72	0.71	0.78	0.74	0.69	0.89
North West	64.59	0.93	0.94	1.02	0.94	0.94	1.13
Outer Metropolitan	54.51	0.95	0.96	1.14	0.96	0.95	1.27
Outer South East	61.84	0.92	0.92	1.06	1.05	1.06	1.42
Scotland	78.18	0.94	0.88	0.99	1.03	0.96	1.05
South West	60.25	0.99	0.91	0.98	1.15	1.13	1.75
West Midlands	53.34	0.85	0.90	0.95	0.94	0.94	1.55
Wales	148.29	0.81	0.79	0.90	0.80	0.80	0.87
Yorkshire & Humber	91.75	0.78	0.79	0.88	0.80	0.79	0.82

Empirical Results (II)

Region	eDMA	DMA ^{0.99}	$DMA^{0.95}$	ВМА	TVP
East Anglia	0.88	0.79	0.66	0.61	0.52
East Midlands	1.03	0.96	0.97	1.02	0.52
Greater London	0.96	0.93	0.96	1.01	0.98
Northern Ireland	0.90	0.95	0.87	0.88	0.84
North	1.02	0.91	0.97	1.03	0.81
North West	0.99	0.91	0.99	0.99	0.82
Outer Metropolitan	0.99	0.84	0.99	1.00	0.75
Outer South East	0.99	0.87	0.89	0.86	0.64
Scotland	1.06	0.95	0.91	0.98	0.89
South West	1.09	1.01	0.86	0.88	0.57
West Midlands	0.94	0.89	0.89	0.89	0.54
Wales	1.03	0.89	1.00	1.01	0.93
Yorkshire & Humber	0.99	0.89	0.98	0.99	0.96

Ratios of MSFEs of ADMA relative to other forecasting models

Uncertainty Index

Key Findings

- Variable importance differs across regions and changes over time
- House Price Uncertainty: Constructed by text analysis of articles of 5 major newspapers obtained from LexisNexis
 - One of very few variables found important across all regions
 - HPU Movements coincide with recessions, and events such as the Brexit referendum and the negotiations of the withdrawal aggreement

Summary

- ADMA: stochastic approximation to adapt λ , and ConfHedge algorithm for setting model weights
- ADMA: more accurate forecasts than AR(1) and all competing DMA specications
- No single predictive variable stands out as being the most important
- House Price Uncertainty index plays important role on the eve of 2008:Q3 price collapse and ahead of the EU Referendum