Teoría de la Medida e Integración 2023

Lista 3

27.febrero.2023

- 1. (a) ¿Cuál es la σ -álgebra de \mathbb{R} generada por los subconjuntos unitarios $\{x\}$, $x \in \mathbb{R}$?
 - (b) Sea (X, A) un espacio mesurable. Demuestre que no puede haber una σ -álgebra A que contiene una cantidad infinita enumerable de miembros.

(Hint: recuerde que $A \in \mathcal{A}$ es un átomo si A no contiene un subconjunto propio $\varnothing \subsetneq B \subsetneq A$, y mostrar que $\#\mathcal{A} = \#\mathbb{N}$ implica que \mathcal{A} tiene una cantidad infinita enumerable de átomos.)

- 2. (i) Dar un ejemplo de dos σ -álgebras \mathcal{A}_1 y \mathcal{A}_2 en X cuya unión no es una σ -álgebra.
 - (ii) Dar un ejemplo de una secuencia $\{A_n\}_n$ estrictamente creciente de σ -álgebras en X, es decir, $A_n \neq A_{n+1}$, cuya unión $A = \bigcup_n A_n$ no es una σ -álgebra.
- 3. Sea X conjunto no vacío, y \mathcal{S} , \mathcal{T} colecciones de subconjuntos de X. Compruebe que la σ -álgebra generada satisface las siguientes propiedades:
 - i) $S \subseteq \sigma(S)$,
 - ii) si $S \subseteq \mathcal{T}$, entonces $\sigma(S) \subseteq \sigma(\mathcal{T})$,
 - iii) $\sigma(\sigma(S)) = \sigma(S)$,
 - iv) si S es una σ -álgebra, entonces $\sigma(S) = S$.
- 4. Probar el Teorema π - λ :

Sea X un conjunto no vacío. Si $\mathcal P$ un π -sistema en X y $\mathcal D$ un λ -sistema en X, con $\mathcal P\subseteq \mathcal D$. Entonces $\sigma(\mathcal P)\subseteq \mathcal D$.

5. Diagramar una jerarquía de relaciones entre las estructuras en un conjunto X: semi-álgebras, álgebras, σ -álgebras, clases monótonas, π -sistemas, λ -sistemas.

Para cada relación válida $(A \Rightarrow B)$, probar su validez. Para cada relación no válida $(A \not\Rightarrow B)$, dar un contraejemplo de una estructura que cumple A pero no B.

6. Sea $X=\mathbb{R}$. ¿Para cuáles σ -álgebras de \mathbb{R} , las siguientes son medidas?

$$(i) \quad \mu(A) = \begin{cases} 0, \quad A = \varnothing; \\ 1, \quad A \neq \varnothing. \end{cases} \qquad (ii) \quad \mu(A) = \begin{cases} 0, \quad A \text{ es finito}; \\ 1, \quad A^c \text{ es finito}. \end{cases}$$

- 7. (a) Encuentre un ejemplo para mostrar que la condición de finitud en las propiedad de continuidad superior ((vii) en las propiedades de medida) es esencial: $B_n \searrow B$ y $\mu(B_1) < \infty \Rightarrow \mu(B) = \lim_n \mu(B_n)$.
 - (b) Hallar una medida μ en $(\mathbb{R}; \mathcal{B}(\mathbb{R}))$ que sea σ -finita, pero que asigne a cada intervalo [a,b), con b-a>2, una masa finita.

- 8. Sea (X, \mathcal{A}, μ) un espacio de medida, y sea $F \in \mathcal{A}$. Muestre que la función $\mu_F : \mathcal{A} \to \mathbb{R}$ dada por $\mu_F(A) = \mu(A \cap F)$ define una medida en \mathcal{A} . μ_F se llama la **medida relativa** de μ respecto de F.
- 9. Sea $(\Omega, \mathcal{A}, \mathbb{P})$ un espacio de probabilidad, y sea $\{A_n\}_{n\geq 1}$ una secuencia de conjuntos tales que $\mathbb{P}(A_n)=1$, para todo $n\geq 1$. Pruebe que

$$\mathbb{P}\Big(\bigcap_{n}A_n\Big)=1.$$

10. Sea (X, \mathcal{A}, μ) un espacio de medida finita, y sean $\{A_n\}_{n\geq 1}$, $\{B_n\}_{n\geq 1}\subseteq \mathcal{A}$ secuencias tales que $B_n\subseteq A_n$, para todo $n\in\mathbb{N}$. Mostrar que

$$\mu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)-\mu\Big(\bigcup_{n\in\mathbb{N}}B_n\Big)\leq \sum_{n\in\mathbb{N}}\mu(A_n-B_n).$$

- 11. Considere el espacio mesurable $(\mathbb{R},\mathcal{B}(\mathbb{R}))$. Determine todos los conjuntos de medida nula en la medida $\delta_{\mathbf{a}} + \delta_{\mathbf{b}}$, con $\mathbf{a},\mathbf{b} \in \mathbb{R}$.
- 12. Sea $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mathbb{P})$ un espacio de probabilidad discreta. Muestre que, como se vio en el aula, la definición de \mathbb{P} como

$$\mathbb{P}(A) = \sum_{n \in A} p_n = \sum_{n \in \mathbb{N}} p_n \, \mathbf{1}_A(n) = \sum_{n \in \mathbb{N}} p_n \, \delta_n(A),$$

define una medida de probabilidad.