DIFERENSIAL (Turunan)

Ira Prasetyanigrum

Turunan Fungsi Aljabar

Definisi: Jika y = f(x) adalah suatu fungsi variable x, dan jika

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
, berarti:

$$\mathbf{f}^{\mathbf{x}}(\mathbf{x}) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \text{ ada dan terbatas}$$

Maka limit tersebut dinamakan turunan dari y terhadap x dan f(x) dikatakan fungsi dari x yang dapat diturunkan (differentiable).

Secara Geometri

P(x0,y0) dan Q(x1,y1) terletak di y = f(x)

$$x_1 = x_0 + \Delta x$$

$$\overline{PR} : \Delta x = x_1 - x_0$$

$$y_1 = y_0 + \Delta y$$

$$\overrightarrow{QR} : \Delta y = y_1 - y_0$$

Tanjakan (koefisien arah/slope) : garis yang menghubungkan titik P dan Q :

$$\frac{y_1 - y_0}{x_1 - x_0} = \frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Untuk $\Delta x \rightarrow 0$:

$$\lim_{Q \to P} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Turunan Baku

y = f(x)	$y' = \frac{dy}{dx}$	y = f(x)	$y' = \frac{dy}{dx}$
x ⁿ	nx^{n-1}	cos x	$-\sin x$
e*	e ^x	tan <i>x</i>	sec²x
e ^{kx}	ke ^{kx}	cot x	$-c \sec^2 x$
a×	$a^{x} \ln a$	sec x	sec x tan x
ln a	1/x	c sec x	- c sec x cot x
log z	$\frac{1}{x} \ln a$	sinh x	cosh x
sin x	cos x	cosh x	sinh x

Fungsi dari Suatu Fungsi

Pandang: $y = \cos(5x-4)$, y adalah fungsi sudut (5x-4)

dan (5x - 4) adalah fungsi dari x.

Maka
$$\frac{dy}{dx} = \dots$$

Misalkan u = 5x - 4

Jadi y = cos u
$$\rightarrow \frac{dy}{du} = -\sin u = -\sin(5x - 4)$$

Gunakan hubungan : $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

Jika u =
$$5x - 4 \Rightarrow \frac{du}{dx} = 5$$

Sehingga:
$$\frac{d}{dx} \{\cos(5x-4)\} = -\sin(5x-4)(5) = -5\sin(5x-4)$$

Perkalian & Pembagian

Jika y = u.v, dengan u dan v adalah fungsi x.

Maka:
$$\frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}$$

Jika $y = \frac{u}{v}$, dengan u dan v adalah fungsi x.

Maka:
$$\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}$$

Contoh

1.
$$y = x^3 \sin 3x$$

$$\frac{dy}{dx} = x^3 (3\cos 3x) + 3x^2 (\sin 3x) = 3x^2 (x\cos 3x + \sin 3x)$$

2.
$$y = e^{2x} \ln 5x$$

$$\frac{dy}{dx} = e^{2x} (\frac{1}{5x})(5) + 2e^{2x} \ln 5x = e^{2x} (\frac{1}{x} + 2\ln 5x)$$

$$3. \ \ y = \frac{\ln x}{e^{2x}}$$

$$\frac{dy}{dx} = \frac{e^{2x} \left(\frac{1}{x}\right) - \ln x (2e^{2x})}{e^{4x}} = e^{-2x} \left(\frac{1}{x} - 2\ln x\right)$$

4.
$$y = \frac{\sin 3x}{x+1}$$
$$\frac{dy}{dx} = \frac{(x+1)(3\cos 3x) - \sin 3x(1)}{(x+1)^2} = \frac{3(x+1)\cos 3x - \sin 3x}{(x+1)^2}$$

- Bagaimana jika fungsinya lebih dari dua?
- Contoh:
 - -y = uvw
 - -y = uv/w
 - -y = u/vw
 - -y = tu/vw
 - DII.
 - di mana t, u, v, w adalah fungsi dalam x.
- Solusi : memakai turunan logaritmik (natural)

Contoh

$$y = \frac{x^2 \sin x}{\cos 2x}$$

 $\ln y = \ln x^2 + \ln \sin x - \ln \cos 2x$

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{x^2}(2x) + \frac{1}{\sin x}(\cos x) - \frac{1}{\cos 2x}(-2\sin 2x)$$

$$\frac{dy}{dx} = \frac{x^2 \sin x}{\cos 2x} \left\{ \frac{2}{x} + c \tan x + 2 \tan 2x \right\}$$

Soal-soal:

1.
$$y = x^4 e^{3x} \tan x$$

3.
$$y = \frac{e^{4x}}{x^3 \cosh 2x}$$

2.
$$y = \frac{e^{4x}}{x^3 \cosh 2x}$$

4.
$$y = x^3 \sin 2x \cos 4x$$

Soal-soal Terapan

- Persamaan lintasan suatu partikel : S = 2t² + 3t + 5, s (cm) dan t (detik)
 Hitung kecepatan rata-rata dalam interval t = 1 s/d 5.
- 2. Jika S = t³ 9t² + 15t -7 Tentukan harga S dan V jika a = 0. Untuk harga-harga t yang manakah v < 0?</p>
- 3. Sebuah tangki minyak akan dikosongkan isinya. Q menyatakan banyaknya minyak dalam tangki (gallon) pada saat t (menit) dan Q = 67500 – 9000t + 300t2. Berapa gallon per menit kecepatan minyak mengalir keluar pada saat t = 0ada saat 1 menit sebelum minyak dalam tangki habis.

Fungsi Implisit

- Jika y terdefinisi sepenuhnya oleh x maka y disebut fungsi eksplisit dari x.
 - Contoh:
 - $y = x^4 3x^2 + 1$
 - $Y = 3x^2 + \cos x$
- Kadang tidak dapat/tidak perlu y dipisah sendiri, maka y disebut fungsi implisit dari x.
 - Contoh :
 - $y = xy + \sin y 2$
 - $x^2 + 2xy + 3y^2 = 4$

Contoh:

1. Cari $\frac{dy}{dx}$ dari $x^2 + y^2 = 25$

Bentuk tersebut dideferensialkan terhadap x:

$$2x + 2y\frac{dy}{dx} = 0$$

$$2y\frac{dy}{dx} = -2x$$

$$2x + 2y\frac{dy}{dx} = 0 2y\frac{dy}{dx} = -2x \frac{dy}{dx} = \frac{-2x}{2y} = \frac{-x}{y}$$

2. Cari $\frac{dy}{dx}$ dari $x^2 + 2xy + 3y^2 = 4$

$$2x + 2x\frac{dy}{dx} + 2y + 6y\frac{dy}{dx} = 0$$

$$(2x+6y)\frac{dy}{dx} = -(2x+2y)$$

$$\frac{dy}{dx} = \frac{-(2x+2y)}{(2x+6y)} = \frac{-(x+y)}{(x+3y)}$$

Soal-soal Campuran

- Turunkan terhadap x :
 - \underline{a} . $\ln(\sec x + \tan x)$
- b. $\sin^4 x \cos^3 x$
- 2. Tentukan $\frac{dy}{dx}$ jika :

$$\underbrace{a.}_{x} y = \frac{x \sin x}{1 + \cos x}$$

b.
$$y = \ln \left\{ \frac{1 - x^2}{1 + x^2} \right\}$$

- 3. Jika $(x-y)^3 = A(x+y)$, buktikan $(2x+y)\frac{dy}{dx} = x+2y$
- 4. Jika $x^2 xy + y^2 = 7$, tentukan $\frac{dy}{dx}$ dan $\frac{d^2y}{dx^2}$ di titik (4,5).
- 5. Jika $x = \ln tg \frac{\theta}{2}$, $y = tg\theta \theta$. Buktikan : $\frac{d^2y}{dx^2} = \tan^2 \theta \sin \theta (\cos \theta + 2\sec \theta)$

Titik Balik (maks/Min)

- Macam-macam :
 - Titik maksimum
 - Titik minimum
 - Titik belok
- Titik balik : turunan pertama = nol
- Turunan kedua :
 - Negatif → titik maksimum
 - Positif → titik minimum
 - Nol → titik belok

Ilustrasi

Titik Balik:
$$\frac{dy}{dx} = 0$$

 $x^2 - 25 = 0 \implies (x+5)(x-5)$
 $x = -5$ atau $x = 5$ (titik balik)

Di titik tersebut maksimum/minimum/belok?

$$\frac{d^2y}{dx^2}_{(x=-5)} = 2x = 2(-5) = -10 \implies \text{titik maksimum}$$

$$\frac{d^2y}{dx^2}_{(x=-5)} = 2x = 2(5) = 10 \implies \text{titik minimum}$$

Soal cerita

- 1. Jangkauan sinyal suatu kabel bawah laut sebanding dengan $r^2 \ln \left(\frac{1}{r}\right)$ dengan r adalah perbandingan jari-jari konduktor dengan jari-jari kabel. Tentukan r agar jangkauan maksimum.
- 2. Daya yang disalurkan oleh ban kemudi sebanding dengan $Tv \frac{wv^3}{g}$ dengan v adalah laju ban, T adalah tegangan sisi kemudi, dan w adalah berat tiap satuan panjang ban. Tentukan laju ban agar daya yang disalurkan maksimum.
- Suatu kerucut lingkaran tegak memiliki luas selimut permukaan tertentu, A. Tunjukkan jika volume maksimum, maka perbandingan tinggi dengan jari-jari lingkaran alas √2 : 1.
- 4. Kecepatan (v) suatu piston berhubungan dengan kecepatan sudut (ω) suatu pemutar melalui persamaan $v = ar \left\{ \sin \theta + \frac{r}{2l} \sin 2\theta \right\}$

r = panjang pemutar

1 : panjang batang penghubung

Untuk 1 = 4r, tentukan harga θ positif pertama yang memberikan Vmaks.

Turunan Parsial

- Misal $z = f(x,y) = x^2-4xy+y^3$
 - Variabel x dan y merupakan fungsi dari variabel z
 - Variabel z bergantung pada variabel x dan y
 - Variabel z dipengaruhi oleh variabel x dan y
- Bagaimana perubahan z terhadap x jika y konstan?

$$\frac{\partial z}{\partial x} = 2x - 4y$$

Bagaimana perubahan z terhadap y jika x konstan? $\frac{\partial z}{\partial x} = -4x + 3y^{2}$

$$\frac{\partial z}{\partial y} = -4x + 3y^2$$

Bagaimana perubahan z thd y, kemudian thd x $\frac{\partial}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \right) = \frac{\partial}{\partial x} \left(-4x + 3y^2 \right) = -4$

Soal-soal

• Tentukan $\frac{\partial w}{\partial x}$, $\frac{\partial w}{\partial y}$, $\frac{\partial w}{\partial z}$, $\frac{d^2 w}{\partial x \partial y}$, $\frac{\partial^2 w}{\partial y \partial x}$, $\frac{d^3 w}{\partial x \partial y \partial z}$

$$w = \frac{(x^{2} - 4xy)}{z^{3}}$$

$$w = \frac{(x^{2} - 4xy^{2})^{3}}{(x^{2} - 4xy^{2})^{3}}$$

$$w = \frac{(x^{2} - 4xy^{2})^{3}}{z^{3}}$$

 Tentukan nilai a dan b berdasarkan informasi data sampel berpasangan (x,y).

$$E = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$