2012/09/24(Mon.)

1 分解群 (および惰性群) の計算

さまざまな $\mathbb Q$ の拡大体について、そのガロア群、分解群 (場合により惰性群、Frobenius 写像) を計算する. ここで、分解群、惰性群、Frobenius 写像の定義について確認する.

体の拡大 L/K と,L 上の素イデアル w,K 上の素イデアル v, が定義されているものとし, w は v の上にあるとする.

このとき、分解群 (Decomposition Group) D(L/K, w) は以下のように定義できる.

$$D(L/K, w) = \{ \sigma \in \operatorname{Gal}(L/K) : \sigma(w) = w \}$$

また素イデアルv,wに対する有限群をそれぞれ GF_v,GF_w とおくと、自然な全射

$$D(L/K, w) \longrightarrow Gal(GF_w/GF_v), \sigma \mapsto (x \in GF_w \mapsto \sigma(x) \in GF_w)$$

が定義できる (D(L/K, w) の定義より σ では GF_q は変わらない).

この全単射の写像の核を**惰性群** (Inertia Group) といい,I(L/K, w) と表す. 準同型定理より,

$$D(L/K, w)/I(L/K, w) \simeq Gal(GF_w/GF_v)$$

である. また直接的には,

$$I(L/K, w) = \{ \sigma \in D(L/K, w) : \forall a \in \mathbb{Z}_L, \sigma(a) \equiv a \pmod{w} \}$$

である.

また、 $Gal(GF_w/GF_v)$ は巡回群であるが、その生成元の一つであり、

$$\sigma \in \operatorname{Gal}(\operatorname{GF}_w/\operatorname{GF}_v), \forall a \in \mathbb{Z}_L, \sigma(a) \equiv a^{|\operatorname{GF}_w|} \pmod{w}$$

を満たす σ をwの(数論的)**Frobenius** 置換/写像といい,

$$\left\lceil \frac{L/K}{w} \right\rceil$$

と表記する.

この定義からわかるように、アーベル拡大でない場合は、分解群、惰性群、Frobenius 写像はwの取り方によって異なる場合がある。また、ガロア群 $\operatorname{Gal}(L/K)$ の正規部分群になっているとは限らない。

Gal(L/K) の部分群 D(L/K, w), I(L/K, w) に対応する L の部分体をそれぞれ L_D , L_I とすると,

$$\{1\} \subset I(L/K, w) \subset D(L/K, w) \subset \operatorname{Gal}(L/K)$$

なので,

$$L\supset L_I\supset L_D\supset K$$

である (それぞれの拡大はガロア拡大である保証はない).

またwの相対次数とは, $\operatorname{GF}_w/\operatorname{GF}_v$ の拡大次数, つまり $\log_{|\operatorname{GF}_w|}|\operatorname{GF}_w|$ を表す.

以下で素イデアルwの分岐の仕方を示す.(正の整数e, f, gを使う)

 $(i)L_D/K(q 次)$

 $v=P_0P_1\cdots$ という形に素イデアル分解できる (各 P_i は互いに共役であるとは限らない). このとき w が P_0 の上にあるとしてよい. そうすると $w=P_0^e$ が成り立っている. またこのとき P_0 の相対次数は 1 である. (ii) $L_I/L_D(f$ 次)

 P_0 は分解されない. そのため相対次数は 1 から f になる.

 $(iii)L/L_I(e 次) P_0$ は分岐し、w になる. 相対次数は f のままである.

以上からわかることだが,|Gal(L/K)| = [L:K] = efg である.

この文書の目的はあくまでも計算であるため、詳しい解説は該当する文書に委ねよう.

1.1 $\mathbb{Q}(\zeta_8)/\mathbb{Q}$

 $L = \mathbb{Q}(\zeta_8)$ とおく. また, ζ_8 は,1 の 8 乗根のうち, 偏角が正で最小のものとする.(つまり

$$\zeta_8 = \frac{1 + \sqrt{-1}}{\sqrt{2}}$$

である.)

 ζ_8 の最小多項式 f(x) は、

$$f(x) = (x^8 - 1)/(x^4 - 1) = x^4 + 1$$

である. この拡大は円分拡大 (cyclotomic extension) と呼ばれている (1 のべき乗根を添加しているため). またこの拡大はガロア拡大であり、そのガロア群は

$$Gal(L/\mathbb{Q}) = \{1, \sigma, \tau, \sigma\tau\}$$

(ただし,

$$\sigma: \zeta_8 \mapsto \zeta_8^3, \sqrt{2} \mapsto -\sqrt{2}, \sqrt{-1} \mapsto -\sqrt{-1}$$
$$\tau: \zeta_8 \mapsto \zeta_8^5, \sqrt{2} \mapsto -\sqrt{2}, \sqrt{-1} \mapsto \sqrt{-1}$$

である.)

円分拡大であるため、また位数が 4(有理素数の 2 乗) であるため、 $\operatorname{Gal}(L/\mathbb{Q})$ は可換群になる.

L の整数環を \mathbb{Z}_L と書くと、(計算省略) $\mathbb{Z}_L = \mathbb{Z}[\zeta_8]$ なので、任意の(有理)素数 p に対して $p \not | (\mathbb{Z}_L : \mathbb{Z}[\zeta_8])$ (= 1) が成立する。よってすべての(有理)素数 p に対して、多項式の modp での因数分解によってイデアル $p\mathbb{Z}[\zeta_8]$ の分解ができる。

1.1.1 p=2 の場合

$$x^4 + 1 \equiv (x+1)^4 \pmod{2}$$

より,

$$(2) = (2, \zeta_8 + 1)^4$$

と分解できる.($\mathfrak{P}_0 = (2, \zeta_8 + 1)$ とおく)

これからわかるように、(2) の上にある素イデアルは \mathfrak{P}_0 しかないため、共役はすべて \mathfrak{P}_0 に一致する. よって

$$D(L/\mathbb{Q},\mathfrak{P}_0) = \operatorname{Gal}(L/\mathbb{Q})$$

である. また

$$GF(\mathfrak{P}_0) \simeq GF(2) \simeq \mathbb{Z}/2\mathbb{Z}$$

であるため、 \mathfrak{P}_0 の相対次数は1である. よって

$$I(L/\mathbb{Q},\mathfrak{P}_0) = D(L/\mathbb{Q},\mathfrak{P}_0)$$

である. Frobenius 写像は単位元1以外にはありえない.

1.1.2 p = 5 のとき

$$x^4 + 1 \equiv (x^2 + 2)(x^2 + 3) \pmod{5}$$

より,

$$(2) = (5, \zeta_8^2 + 2)(5, \zeta_8^2 + 3)$$

と分解できる.($\mathfrak{P}_1=(5,\zeta_8^2+2),\mathfrak{P}_2=(5,\zeta_8^2+3)$ とおく) σ,τ による作用は

$$\sigma(\mathfrak{P}_1) = (5, -\zeta_8^2 + 2) = (5, \zeta_8^2 + 3) = \mathfrak{P}_2$$

$$\sigma(\mathfrak{P}_2) = (5, -\zeta_8^2 + 3) = (5, \zeta_8^2 + 2) = \mathfrak{P}_1$$

$$\tau(\mathfrak{P}_1) = \mathfrak{P}_1$$

$$\tau(\mathfrak{P}_2) = \mathfrak{P}_2$$

よって、 \mathfrak{P}_1 ないし \mathfrak{P}_2 (アーベル拡大なのでどちらでも同じ) の分解群は

$$D(L/\mathbb{Q},\mathfrak{P}_1) = \{1,\tau\} = \langle \tau \rangle$$

それに対応する中間体は

$$L_D = \mathbb{Q}(i)$$

事実,(5) は $L_D = \mathbb{Q}(i)$ で,

$$(5) = (i+2)(i-2)$$

レ分解する

 \mathfrak{P}_1 の指数は 1 なので, L/L_I の拡大次数も 1, よって $L_I=L$ である. $(I=\{1\}$ である.) Frobenius 写像は τ である.

1.2 $\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q}$

$$\begin{split} L := \mathbb{Q}(\sqrt[3]{2}, \omega), M := \mathbb{Q}(\sqrt[3]{2}) \ \text{とおく}. \\ p = 5 \ \text{を} \ M \ \text{上で素イデアル分解する}. \\ x^3 - 2 \equiv (x+2)(x^2 - 2x + 4) \ (\text{mod } 5) \ \text{より}, \end{split}$$

$$5\mathbb{Z}_M = (5, \sqrt[3]{2} + 2)(5, \sqrt[3]{4} - 2\sqrt[3]{2} + 4)$$

である.($\mathfrak{p}_0 = (5, \sqrt[3]{2} + 2), \mathfrak{p}_1 = (5, \sqrt[3]{4} - 2\sqrt[3]{2} + 4)$ とおく)

 \mathfrak{p}_0 と共役なイデアルは M 内には \mathfrak{p}_0 しか存在しないことに注意せよ.

今度はL上で考える.

$$\theta = \sqrt[3]{2} - \omega$$

とおくと、 θ の最小多項式は

$$q(x) = x^6 - 3x^5 + 6x^4 - 11x^3 + 12x^2 + 3x + 1$$

である. $(\mathbb{Z}_L:\mathbb{Z}[\theta])=3^5$ より,p=5 は多項式の因数分解によって素イデアル分解ができる. 詳しい計算は後で行うが、

$$g(x) \equiv (x^2 - 2x - 2)(x^2 + 2x - 2)(x^2 + 2x - 1) \pmod{5}$$

なので.

$$5\mathbb{Z}_L = (5, \theta^2 - 2\theta - 2)(5, \theta^2 + 2\theta - 2)(5, \theta^2 + 2\theta - 1)$$

である.(

$$\mathfrak{P}_2 = (5, \theta^2 - 2\theta - 2), \mathfrak{P}_3 = (5, \theta^2 + 2\theta - 2), \mathfrak{P}_4 = (5, \theta^2 + 2\theta - 1)$$

とおく.)

 \mathfrak{P}_2 は \mathfrak{p}_0 の上にあり, $\mathfrak{p}_0 = \mathfrak{P}_2 \cap M$ が成り立っている.

ここで, L/\mathbb{Q} のガロア群を求めると,

$$Gal(L/\mathbb{Q}) = \{1, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau\}$$

となる (ただし

$$\sigma: \sqrt[3]{2} \mapsto \sqrt[3]{2}\omega, \omega \mapsto \omega,$$
$$\tau: \sqrt[3]{2} \mapsto \sqrt[3]{2}, \omega \mapsto \omega^2$$

である). \mathfrak{P}_2 は τ で不変なので, また $1,\tau$ 以外の置換は \mathfrak{P}_2 を不変に保たないため,

$$D(L/\mathbb{Q}, \mathfrak{P}_2) = \{1, \tau\}, L_D = \mathbb{Q}(\sqrt[3]{2}) = M$$

(ここで, $D(L/\mathbb{Q},\mathfrak{P}_2)$ は $\mathrm{Gal}(L/\mathbb{Q})$ の正規部分群になっていないことに注意すること.) $\mathrm{Gal}(L/\mathbb{Q})$ の位数 2 の部分群は

$$\{1,\tau\},\{1,\sigma\tau\},\{1,\sigma^2\tau\}$$

の 3 個あるため、素イデアル $\mathfrak{P}_2,\mathfrak{P}_3.\mathfrak{P}_4$ 、および中間体 $\mathbb{Q}(\sqrt[3]{2}),\mathbb{Q}(\sqrt[3]{2}\omega),\mathbb{Q}(\sqrt[3]{2}\omega^2)$ に (順不同で) 対応していることが推測できる.

なお、どの場合についても惰性群は $\{1\}$ である. また、Frobenius 写像はそれぞれの群に含まれる 1 以外の元 $(\tau,\sigma\tau,\sigma^2\tau)$ 以外にはありえない.