mpi* - lycée montaigne informatique

DM₃

Un $alphabet \Sigma$ est un ensemble fini d'éléments appelés lettres. Un mot sur Σ est une suite finie, éventuellement vide, de lettres de Σ . La longueur d'un mot u est le nombre de lettres composant u et est notée |u|. Le mot de longueur nulle est noté ε . On note par Σ^* l'ensemble de tous les mots sur Σ . Un langage sur Σ est une partie de Σ^* . Si u un mot sur l'alphabet Σ , pour toute lettre x de Σ , on note $|u|_x$ le nombre d'occurrences de la lettre x dans le mot u.

Dans tout l'exercice, l'alphabet est $\Sigma = \{a, b\}.$

Soit f une application quelconque définie sur $\mathbb N$ et à valeurs dans $\mathbb N$. On note $\mathcal L(f)$ l'ensemble des mots u appartenant à Σ^* vérifiant l'égalité $|u|_a=f(|u|_b)$.

Question 1. On considère la fonction f_1 définie pour tout entier naturel n par $f_1(n)=2$. Dessiner un automate reconnaissant le langage $\mathcal{L}(f_1)$.

Question 2. On considère la fonction f_2 définie par :

$$\forall n \in \mathbb{N}, \quad f_2(n) = \begin{cases} 1 & \text{si } n \text{ est pair} \\ 0 & \text{sinon} \end{cases}$$

Décrire $\mathcal{L}(f_2)$ par une expression régulière de la forme $\alpha(bab|a|b)\beta$, où α et β sont des expressions régulières à déterminer. Justifier la réponse.

Question 3. Dessiner un automate non nécessairement déterministe reconnaissant le langage décrit par l'expression régulière bab|a|b. Cet automate devra nécessairement posséder un seul état initial et un seul état final.

Question 4. En s'appuyant sur l'expression régulière obtenue à la question , compléter l'automate obtenu à la question précédente pour obtenir un automate non déterministe reconnaissant le langage $\mathcal{L}(f_2)$. Cet automate devra nécessairement posséder un seul état initial et un seul état final.

Question 5. Déterminiser l'automate obtenu à la question précédente. On utilisera un algorithme vu en cours et on ne fera apparaître que les états accessibles depuis l'état initial.

Question 6. Montrer que si f n'est pas majorée par une constante alors $\mathcal{L}(f)$ n'est pas régulier.

Question 7. On considère le langage $L_=$ sur Σ défini par $L_==\{u\in\Sigma^* \text{ vérifiant } |u|_a=|u|_b\}$. Le langage $L_=$ est-il régulier?

Question 8. On considère le langage L_{\leqslant} sur Σ défini par $L_{\leqslant}=\{u\in\Sigma^* \text{ avec } |u|_a\leqslant |u|_b\}$. Le langage L_{\leqslant} est-il régulier? On utilisera le résultat de la question précédente.

Question 9. On considère le langage $L_>$ sur Σ défini par $L_>=\{u\in\Sigma^* \text{ avec } |u|_a>|u|_b\}$. Le langage $L_>$ est-il régulier? On utilisera le résultat de la question précédente.

Question 10. Montrer que la réciproque de la proposition énoncée dans la question 6 est fausse.

Indication: on pourra admettre que le langage P des mots de la forme b^n où b est une lettre et n est un entier premier n'est pas régulier.