

PAPER-1(B.E./B. TECH.)

JEE (Main) 2021

Questions & Solutions

(Reproduced from memory retention)

Date: 24 February, 2021 (SHIFT-2) Time; (3.00 am to 6.00 pm)

Duration: 3 Hours | Max. Marks: 300

SUBJECT: MATHEMATICS

A-10 Road No. 1, IPIA, Kota-324005 (Rajasthan), India

Tel.: + 91-744-2665544 | Website: www.reliablekota.com | E-mail: info@reliablekota.com

MATHEMATICS

1. Find the value of
$$^{n+1}C_2 + 2(^2C_2 + ^3C_2 + \dots + ^nC_2) = ?$$

$$(1) \; \frac{n(n+1)(2n-1)}{6}$$

(2)
$$\frac{n(n+1)(2n+1)}{6}$$

(3)
$$\frac{(n-1)n(n+1)}{6}$$

$$(4) \frac{n(n+1)}{2}$$

Ans. (2)

Sol.
$$S = {}^{2}C_{2} + {}^{3}C_{2} + \dots + {}^{n}C_{2} = {}^{n+1}C_{3}$$

$$\therefore {}^{n+1}C_2 + {}^{n+1}C_3 + {}^{n+1}C_3 = {}^{n+2}C_3 + {}^{n+1}C_3$$

$$= \frac{(n+1)!}{3!(n-1)!} + \frac{(n+1)!}{3!(n-2)!}$$

$$=\frac{(n+2)(n+1)n}{6}\,+\frac{(n+1)(n)(n-1)}{6}\,=\frac{n(n+1)}{6}\,\left(2n+1\right)$$

2. If A and B are subset s of
$$X = \{1,2,3,4,5\}$$
 then find the probability such that $n(A \cap B) = 2$.

(1)
$$\frac{65}{2^7}$$

(2)
$$\frac{65}{2^9}$$

(3)
$$\frac{35}{2^9}$$

(4)
$$\frac{135}{2^9}$$

Ans. (4)

$$=\frac{{}^{5}C_{2}\times3^{3}}{4^{5}}$$

$$=\frac{10\times27}{2^{10}}=\frac{135}{2^9}$$

3. Given
$$f(0) = 1$$
, $f(2) = e^2$ also $f'(x) = f'(2 - x)$, then the value of $\int_0^2 f(x) dx$ is

$$(1) 1 - e^2$$

(1)
$$1 - e^2$$
 (2) $1 + e^2$

$$(4) e^{2}$$

(2) Ans.

Sol.
$$f'(x) = f'(2 - x)$$

On integrating both side f(x) = -f(2 - x) + c

put
$$x = 0$$

$$f(0) + f(2) = c$$

$$f(0) + f(2) = c$$
 \Rightarrow $c = 1 + e^2$

$$\Rightarrow$$
 f(x) + f(2 - x) = 1 + e².....(i)

$$I = \int_{0}^{2} f(x) dx = \int_{0}^{1} \{f(x) + f(2-x)\} dx = (1 + e^{2})$$

A curve y = f(x) passing through the point (1,2) satisfies the differential equation $x \frac{dy}{dx} + y = bx^4$ 4.

such that $\int_{0}^{2} f(y) dy = \frac{62}{5}$. The value of b is

- $(1)\ 10$
- (2) 11
- $(3) \frac{32}{5}$
- $(4) \frac{62}{5}$

Ans. (1)

Sol.
$$\frac{dy}{dx} + \frac{y}{x} = 6x^3$$

$$I.F. = e^{\int \frac{dx}{x}} = x$$

$$\therefore yx = \int bx^4 dx = \frac{bx^5}{5} + C$$

Passes through (1,2), we get

$$2 = \frac{b}{5} + C$$

Also,
$$\int_{1}^{2} \left(\frac{bx^4}{5} + \frac{C}{x} \right) dx = \frac{62}{5}$$

$$\Rightarrow \frac{b}{25} \times 32 + C\ell \, n \, 2 - \frac{b}{25} = \frac{62}{5}$$

$$\Rightarrow$$
 C = 0 & b = 10

- The area of the region defined by $5x^2 \le y \le 2x^2 + 9$ is 5.
 - $(1) 6\sqrt{3}$
- (2) $12\sqrt{3}$
- (3) $18\sqrt{3}$
- $(4) 9\sqrt{3}$

(2) Ans.

Sol.

Required area

$$= 2 \int_{0}^{\sqrt{3}} (2x^{2} + 9 - 5x^{2}) dx$$
$$= 2 \int_{0}^{\sqrt{3}} (9 - 3x^{2}) dx$$

$$=2|9x-x^3|_0^{\sqrt{3}}=12\sqrt{3}$$

- A aeroplane is flying horizontally with speed of 432 km/hr at height h meter from ground. Its 6. angle of elevation from a point on ground is 60°. After 20 sec its angle of elevation from same point is 30° then the height 'h' is equal to
 - (1) $1200\sqrt{3}$
- (2) $600\sqrt{3}$
- (3) $1800\sqrt{3}$
- (4) $1000\sqrt{3}$

Ans. (1)

Sol.

$$v = 432 \times \frac{1000}{60 \times 60}$$
 m/sec = 120 m/sec

Distance AB = $v \times 20 = 2400$ meter

In ΔPAC

$$\tan 60^\circ = \frac{h}{PC} \Rightarrow PC = \frac{h}{\sqrt{3}}$$

In ΔPBD

$$\tan 30^\circ = \frac{h}{PD} \Rightarrow PD = \sqrt{3}h$$

$$PD = PC + CD$$

$$\sqrt{3}h = \frac{h}{\sqrt{3}} + 2400 \Rightarrow \frac{2h}{\sqrt{3}} = 2400$$

 $h = 1200\sqrt{3}$ meter

- A curve $y = ax^2 + bx + c$ passing through the point (1, 2) has slope at origin equal to 1. then 7. ordered triplet (a, b, c) may be
 - (1)(1, 1, 0)
- $(2)\left(\frac{1}{2},1,0\right) \qquad (3)\left(-\frac{1}{2},1,1\right) \qquad (4)(2,-1,0)$

Ans. (1)

Sol.
$$2 = a + b + c$$

$$\frac{dy}{dx} = 2ax + b \Rightarrow \frac{dy}{dx}\Big|_{(0,0)} = 1$$

$$\Rightarrow$$
 b = 1 \Rightarrow a + c = 1

- The value of $\tan \left(\frac{1}{4} \sin^{-1} \frac{\sqrt{63}}{8} \right)$ is 8.
 - (1) $\frac{1}{\sqrt{7}}$ (2) $\frac{1}{\sqrt{5}}$ (3) $\frac{2}{\sqrt{3}}$
- (4) none of these

Ans.

Sol. Let
$$\sin^{-1} \frac{\sqrt{63}}{8} = \theta$$
 \Rightarrow $\sin \theta = \frac{\sqrt{63}}{8}$

$$\tan\left(\frac{1}{4}\sin^{-1}\frac{\sqrt{63}}{8}\right) = \tan\left(\frac{\theta}{4}\right) = \frac{1-\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}} = \frac{1-\sqrt{\frac{1+\cos\theta}{2}}}{\sqrt{\frac{1-\cos\theta}{2}}} = \frac{1-\frac{3}{4}}{\frac{\sqrt{7}}{4}} = \frac{1}{\sqrt{7}}$$

- The value of $\int_{0}^{3} [x^2 2x 2] dx$ ([.] denotes greatest integers function) 9.
- (3) $-1 \sqrt{2} \sqrt{3}$ (4) $1 \sqrt{2} \sqrt{3}$ x 1 = t; dx = dt

Ans.

Sol.
$$I = \int_{1}^{3} -3dx + \int_{1}^{3} [(x-1)^{2}] dx$$

$$x - 1 = t; dx = dt$$

$$I = (-6) + \int_{0}^{2} [t^{2}] dt$$

$$I = -6 + \int_{0}^{1} 0 dt + \int_{1}^{\sqrt{2}} 1 dt + \int_{\sqrt{2}}^{\sqrt{3}} 2 dt + \int_{\sqrt{3}}^{2} 3 dt$$

$$I = -6 + \left(\sqrt{2} - 1\right) + 2\sqrt{3} - 2\sqrt{2} + 6 - 3\sqrt{3}$$

$$I = -1 - \sqrt{2} - \sqrt{3}$$

- Which of the following conic has tangent 'x + $\sqrt{3}$ y $2\sqrt{3}$ ' at point $\left(\frac{3\sqrt{3}}{2}, \frac{1}{2}\right)$? **10.**
- (1) $x^2 + 9y^2 = 9$ (2) $y^2 = \frac{x}{6\sqrt{3}}$ (3) $x^2 9y^2 = 10$ (4) $x^2 = \frac{y}{6\sqrt{3}}$

Ans.

Sol. tangent to
$$x^2 + 9y^2 = a$$
 at point $\left(\frac{3\sqrt{3}}{2}, \frac{1}{2}\right)$ is $x\left(\frac{3\sqrt{3}}{2}\right) + 9y\left(\frac{1}{2}\right) = 9$

 \Rightarrow option (1) is true

11. The negation of the statement $\sim p \land (p \lor q)$ is

(1)
$$p \land \sim q$$

(2)
$$p \lor \sim q$$

$$(3) \sim p \wedge q$$

$$(4) \sim p \lor \sim q$$

Ans. (2)

Sol.
$$\sim (\sim p \land (p \lor q))$$

$$= \sim ((\sim p \land p) \lor (\sim p \land q))$$

$$= \sim (\sim p \land q) = p \lor \sim q$$

12. Equation of plane passing through (1, 0, 2) and line of intersection of planes $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$ and $\vec{r} \cdot (\hat{i} - 2\hat{j}) = -2$ is

(1)
$$\vec{r} \cdot (\hat{i} + 7\hat{j} + 3\hat{k}) = 7$$

(2)
$$\vec{r} \cdot (3\hat{i} + 10\hat{j} + 3\hat{k}) = 7$$

(3)
$$\vec{r} \cdot (\hat{i} + \hat{j} - 3\hat{k}) = 4$$

(4)
$$\vec{r} \cdot (\hat{i} + 4\hat{j} - \hat{k}) = -7$$

Ans. (1

Sol. Plane passing through intersection of plane is

$$\{\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = -1\} + \lambda \{\vec{r} \cdot (\hat{i} - 2\hat{j}) + 2\} = 0$$

Passes through $\hat{i} + 2\hat{k}$, we get

$$(3-1) + \lambda (\lambda + 2) = 0$$

$$\Rightarrow \lambda = -\frac{2}{3}$$

Hence, equation of plane is

$$3\{\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) - 1\} - 2\{\vec{r} \cdot (\hat{i} - 2\hat{j}) + 2\} = 0$$

$$\Rightarrow \vec{r} \cdot (\hat{i} + 7\hat{j} + 3\hat{k}) = 7$$

13. A is 3×3 square matrix and B is 3×3 skew symmetric matrix and X is a 3×1 matrix, then equation $(A^2B^2 - B^2A^2) X = 0$ (Where O is a null matrix) has/have

(1) Infinite solution

(2) No Solution

(3) Exactly one solution

(4) Exactly two solution

Ans. (1)

Sol.
$$A^T = A$$
, $B^T = -B$

Let
$$A^2B^2 - B^2A^2 = P$$

 $P^T = (A^2B^2 - B^2A^2)^T = (A^2B^2)^T - (B^2A^2)^T$
 $= (B^2)^T (A^2)^T - (A^2)^T (B^2)^T$
 $= B^2A^2 - A^2B^2$

⇒ P is skew-symmetric matrix

$$\Rightarrow |P| = 0$$

Hence PX = 0 have infinite solution

14. If
$$\begin{vmatrix} f(x) & f'(x) \\ f'(x) & f''(x) \end{vmatrix} = 0$$
, $f(0) = 1$ and $f'(0) = 2$ then $f(1)$ belongs to interval

- (1) [6, 9]
- (2)[9,12]
- (3) [8, 10]
- (4) [5, 7]

Sol. Given
$$f(x) f''(x) - (f'(x))^2 = 0$$

Let
$$h(x) = \frac{f(x)}{f'(x)}$$

$$\Rightarrow$$
 h'(x) = 0 \Rightarrow h (x) = k

$$\Rightarrow$$
 h (x) = k

$$\Rightarrow \frac{f(x)}{f'(x)} = k$$
 $\Rightarrow f'(x) = k f'(x)$

$$\Rightarrow$$
 f'(x) = k f'(x)

$$\Rightarrow$$
 f(x) = k f'(0)

$$\Rightarrow$$
 f(x) = k f'(0) \Rightarrow 1 = k(2) \Rightarrow k = $\frac{1}{2}$

New
$$f(x) = \frac{1}{2}f'(x) \Rightarrow \int 2dx = \int \frac{f'(x)}{f(x)}dx$$

$$\Rightarrow$$
 2x = $ln |f(x)| + C$

As
$$f(0) = 1 \Rightarrow C = 0$$

$$\Rightarrow 2x = ln |f(x)| \Rightarrow f(x) = \pm e^{2x}$$

As
$$f(0) = 1 \Rightarrow f(x) = e^{2x} \Rightarrow f(1) = e^2$$

- Find a point on the curve $y = x^2 + 4$ which is at shortest distance from the line y = 4x 1. **15.**
 - (1)(2,8)
- (2)(1,5)
- (3)(3,13)
- (4)(-1,5)

Sol.
$$\left. \frac{dy}{dx} \right|_p = 4$$

$$\therefore 2x_1 = 4$$

$$\Rightarrow x_1 = 2$$

 \therefore Point will be (2,8)

16. Let
$$f(x) = \begin{cases} -55x & ; & x < -5 \\ 2x^3 - 3x^2 - 120x & ; & -5 \le x < 4 \\ 2x^3 - 3x^2 - 36x + 10 & ; & x \ge 4 \end{cases}$$

Then interval in which f(x) is monotonically increasing is

$$(1) (-5, -4) \cup (4, \infty)$$

$$(2) (-\infty, -4) \cup (5, \infty)$$

$$(3) (-5, 4) \cup (5, \infty)$$

$$(4) (-5, -4) \cup (3, \infty)$$

Ans. (1)

Sol.
$$f'(x) = \begin{cases} -55 & ; & x < -5 \\ 6(x^2 - x - 20) & ; & -5 < x < 4 \\ 6(x^2 - x - 6) & ; & x > 4 \end{cases}$$

$$f'(x) = \begin{cases} -55 & ; & x < -5 \\ 6(x-5)(x+4) & ; & -5 < x < 4 \\ 6(x-3)(x+2) & ; & x > 4 \end{cases}$$

Hence, f(x) is monotonically increasing is $(-5, -4) \cup (4, \infty)$

- 17. If a, b, c are in A.P. & centroid of the triangle with vertices (a, c), (a, b), (2, b) is $\left(\frac{10}{3}, \frac{7}{3}\right)$ and α , β are roots of the equation $ax^2 + bx + 1 = 0$, then $\alpha^2 + \beta^2 \alpha\beta$ equals
 - $(1) \frac{71}{256}$
- (2) $\frac{71}{256}$
- $(3) \frac{69}{256}$
- $(4) \frac{69}{256}$

Ans. (1)

Sol.
$$2b = a + c$$

$$\frac{2a+2}{3} = \frac{10}{3}$$
 and $\frac{2b+c}{3} = \frac{7}{3}$

$$\Rightarrow a = 4$$

$$2b + c = 7$$
 solving,
$$2b - c = 4$$

$$b = \frac{11}{4} \qquad c = \frac{3}{2}$$

$$\therefore \text{ Quadratic Equation is } 4x^2 + \frac{11}{4}x + 1 = 0$$

:. The value of
$$(\alpha + \beta)^2 - 3\alpha\beta = \frac{121}{256} - \frac{3}{4} = -\frac{71}{256}$$

18. Given
$$a + \alpha = 1$$
, $b + \beta = 2$ and $\alpha f(x) + \alpha f\left(\frac{1}{x}\right) = bx + \frac{\beta}{x}$ then value of $\frac{f(x) + f\left(\frac{1}{x}\right)}{x + \frac{1}{x}}$

Ans. 2

Sol.
$$af(x) + \alpha f\left(\frac{1}{x}\right) = bx + \frac{\beta}{x}$$
(i)

$$x \to \frac{1}{x}$$

$$af\left(\frac{1}{x}\right) + \alpha f(x) = \frac{b}{x} + \beta x \qquad \dots \dots (ii)$$

$$(i) + (ii)$$

$$(a + \alpha) \left\lceil f(x) + f\left(\frac{1}{x}\right) \right\rceil = \left(x + \frac{1}{x}\right)(b + \beta)$$

$$\frac{f(x) + f\left(\frac{1}{x}\right)}{x + \frac{1}{x}} = \frac{2}{1} = 2$$

19. Find the maximum value of 'k' for which the maximum value of variance of 10 elements is 10 in which 9 values are 1 and one value of is k. (Where k is integer)

Ans. 11

Sol.
$$\sigma^2 = \frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2$$

$$\sigma^2 = \frac{(9+k^2)}{10} - \left(\frac{9+k}{10}\right)^2 < 10$$

$$(90 + k^2)10 - (81 + k^2 + 8k) < 1000$$

$$90 + 10k^2 - k^2 - 18k - 81 < 1000$$

$$9k^2 - 18k + 9 < 1000$$

$$(k-1)^2 < \frac{1000}{9} \implies k-1 < \frac{10\sqrt{10}}{3}$$

$$k < \frac{10\sqrt{10}}{3} + 1$$

Maximum integral value of k = 11

- Distance of P(x, y) from (5,0) is thrice as distance of P(x, y) from (-5,0). If locus of P is circle 20. with radius 'r' then final the value of 4r².
- Ans.
- Internal point which divide (5,0) & (-5,0) in the ratio 3:1 is $\left(\frac{-5}{2},0\right)$ External point which divide Sol.

(5,0) & (-5,0) in the ratio 3:1 is (-10,0)

$$2r = \left(\frac{-5}{2} + 10\right) = \frac{15}{2} = 7.5$$

- $(2r)^2 = 56.25$
- Four numbers whose sum is $\frac{65}{12}$ are in G.P. Sum of their reciprocals is $\frac{65}{18}$ and product of first 21. three of them is 1. If third term is α then find value of 2α .
- Ans.
- a, ar, ar^2 , ar^3 Sol.

$$a + ar + ar^2 + ar^3 = \frac{65}{12}$$

$$\frac{1}{a} + \frac{1}{ar} + \frac{1}{ar^2} + \frac{1}{ar^3} = \frac{65}{18}$$

$$\frac{1}{a} \left(\frac{r^3 + r^2 + r + 1}{r^3} \right) = \frac{65}{18}$$

$$\frac{(i)}{(ii)}$$
, $a^2r^3 = \frac{18}{12} = \frac{3}{2}$

$$a^3 r^3 = 1 \Rightarrow a \left(\frac{3}{2}\right) = 1 \Rightarrow a = \frac{2}{3}$$

$$\frac{4}{9}r^3 = \frac{3}{2} \Rightarrow r^3 = \frac{3^3}{2^3} \Rightarrow r = \frac{3}{2}$$

$$\alpha = ar^2 = \frac{2}{3} \cdot \left(\frac{3}{2}\right)^2 = \frac{3}{2}$$

$$2\alpha = 3$$

- There are 10 students S_1 , S_2 , S_{10} . Find the number of ways to form 3 groups G_1 , G_2 , G_3 such 22. that all groups has at least 1 member and group G₃ has almost 3 members
- Ans. 26650

	A	В	С
	1	8	1
	2	7	1
	:	:	:
	6	1	2

Sol.

Ways to distribute in groups = ${}^{10}C_1({}^{9}C_1 + {}^{9}C_8) + {}^{10}C_2({}^{8}C_1 + {}^{8}C_7) + {}^{10}C_3({}^{7}C_1 + {}^{7}C_6)$ = 10(510) + 45(254) + 120(126)= 26650

23. At point P(5, 7) on circle $(x - 2)^2 + (y - 3)^2 = 25$ a tangent and a normal is drawn. The area of triangle formed by this tangent normal with x axis is λ then 24λ is

Ans. 1225

Sol.

equation of normal at P

$$(y-7) = \left(\frac{7-3}{5-2}\right)(x-5)$$

$$3y - 21 = 4x - 20$$

$$\Rightarrow 4x - 3y + 1 = 0$$
 (i)

$$\Rightarrow M\!\!\left(-\frac{1}{4},0\right)$$

equation of tangent at P

$$(y-7) = -\frac{3}{4}(x-5)$$

$$4y - 28 = -3x + 15$$

$$\Rightarrow$$
 3x + 4y = 43 (ii)

$$\Rightarrow N\left(\frac{43}{3},0\right)$$

hence $ar(\Delta PMN) = \frac{1}{2} \times MN \times 7$

$$1 = \frac{1}{2} \times \frac{175}{12} \times 7$$

$$\Rightarrow 24\lambda = 1225$$