Super-Pixels Compte Rendu 2

Vaillant Hugo Souvignet Nathan

Mars 2025

1 Algorithme SNIC

Nous avons implémenté SNIC comme algorithme de superpixels. Il s'agit d'une variante de SLIC, réputée plus rapide et efficace. Nous envisageons d'implémenter également SLIC à l'avenir afin de comparer les performances.

1.1 Principe de fonctionnement

SNIC repose sur une **file de priorité** (priority queue) plutôt que sur un processus itératif comme SLIC, qui affine les frontières des superpixels à chaque itération.

- 1. Conversion des couleurs : chaque pixel est converti de l'espace RGB vers l'espace CIELAB.
- 2. Stockage des informations : pour chaque pixel, on conserve :
 - sa position (x, y),
 - sa distance au superpixel le plus proche,
 - l'identifiant du superpixel le plus proche,
 - sa couleur en CIELAB.
- 3. **Initialisation** : la file de priorité est initialisée avec les représentants des superpixels, situés au centre de chaque région.
- 4. Propagation des superpixels : pour chaque élément de la file :
 - On extrait le pixel de la file.
 - Si le pixel n'est pas encore associé à un superpixel, on lui assigne l'ID du plus proche et on l'ajoute à la liste des pixels de ce superpixel.
 - Ses voisins sont alors examinés :
 - Si un voisin n'a pas encore de superpixel assigné, ou s'il est plus proche du superpixel en cours de traitement, on met à jour son association.

- Si le voisin n'avait aucun superpixel assigné, il est ajouté à la file de priorité.
- 5. **Finalisation** : lorsque la file de priorité est vide, l'algorithme est terminé. Chaque pixel est alors colorié avec la couleur moyenne de son superpixel.

1.2 Calcul de la distance

La distance entre un pixel et un centroïde est définie par :

$$D = \sqrt{\frac{(xy_A - xy_B)^2}{s} + \frac{(lab_A - lab_B)^2}{m}}$$
 (1)

Où:

- xy représente les coordonnées spatiales du pixel,
- $\bullet \ lab$ représente la valeur en CIELAB,
- ullet m est le facteur de compacité :
 - une valeur faible permet de mieux respecter les contours et les couleurs,
 - une valeur élevée assure une meilleure homogénéité des superpixels.
- \bullet s est la taille du superpixel, définie comme :

$$s = \sqrt{\frac{n}{k}} \tag{2}$$

avec n le nombre total de pixels et k le nombre de superpixels.