

Calor e Temperatura: Entendendo a Dilatação Térmica

Nesta aula, vamos entender as diferenças entre **calor e temperatura**, e como a variação de temperatura provoca **dilatação térmica** em sólidos, líquidos e gases.

por Rafael Augusto

Calor x Temperatura

Temperatura

Medida do grau de agitação das partículas (Média).

Calor

Energia em trânsito, transferida devido à diferença de temperatura

A transferência de calor

Condução, convecção e radiação.

Sentido do Calor

Corpo Quente

Maior agitação molecular

Transferência

Calor flui do quente para o frio

Corpo Frio

Menor agitação molecular

Equilíbrio Térmico

Mesma temperatura final

Made with **GAMMA**

Unidades de Calor e Temperatura

Grandeza	Unidades	Observações
Temperatura	Celsius (°C), Kelvin (K)	0 K = -273,15°C (zero absoluto)
Calor	Joule (J), caloria (cal)	1 cal = 4,18 J

O que é Dilatação Térmica?

Definição

Variação do volume ou comprimento de um corpo quando sua temperatura muda.

Nível Molecular

Átomos vibram mais e se afastam com o aumento da temperatura.

Resultado

O corpo aumenta de tamanho ao ser aquecido.

Dilatação dos Sólidos

Dilatação Linear

Aumento de comprimento, como em trilhos de trem que precisam de juntas de dilatação.

$$\Delta L = L \cdot \alpha \cdot \Delta \theta$$

ΔL = Dilatação linear

L = Comprimento inicial

 α = Constante de proporcionalidade

 $\Delta\theta$ = Variação da temperatura

Dilatação Superficial

Aumento de área, como em placas metálicas expostas ao calor.

$$\Delta A = A_0.\beta.\Delta\theta$$

ΔA = Variação da área

A0 = Área inicial

 β = Coeficiente de dilatação superficial

Δθ = Variação da temperatura

Dilatação Volumétrica

Aumento de volume, como em blocos cúbicos quando aquecidos.

$$\Delta V = Vo y \Delta T$$

Onde:

- ΔV é a variação do volume.
- Vo é o volume inicial do corpo.
- γ é o coeficiente de dilatação volumétrica, uma característica própria de cada material.
- ΔT é a variação da temperatura.

Dilatação dos Líquidos

Características

Os líquidos dilatam principalmente em volume, sem forma definida.

A dilatação é mais perceptível que nos sólidos, mas menor que nos gases.

Aplicação prática: termômetros de líquido funcionam por este princípio.

Um termômetro com álcool demonstra a dilatação volumétrica dos líquidos quando aquecidos.

Outro exemplo comum: garrafas de refrigerante estufando no calor.

Dilatação dos Gases

Gases dilatam mais facilmente, pois suas moléculas estão mais afastadas. Um balão no sol pode estourar devido à dilatação do ar.

Atividade de Fixação

1

Questão

Um corpo recebe calor e sua temperatura aumenta. Isso significa que:

C

Resposta Correta

As partículas estão mais agitadas

2

Questão

Qual exemplo mostra dilatação dos gases?

C

Resposta Correta

Balão estourando no sol

Made with **GAMMA**

Revisando a Aula

