Due: Jan 16th

- 1. Do Exercise 0.1.E in the background chapter. That is, Which of the following statements is true? For those that are false, write down the negation of the statement.
 - (a) For every $n \in \mathbb{N}$, there is an $m \in \mathbb{N}$ so that m > n.
 - (b) For every $m \in \mathbf{N}$, there is an $n \in \mathbf{N}$ so that m > n.
 - (c) There is an $m \in \mathbf{N}$ so that for every $n \in \mathbf{N}$, $m \ge n$.
 - (d) There is an $n \in \mathbb{N}$ so that for every $m \in \mathbb{N}$, $m \ge n$.
- 2. Do Exercise 0.2.A, (d)-(h) in the background chapter. That is, Which of the following statements is true? Prove or give a counterexample.
 - (d) $A \backslash B = B \backslash A$
 - (e) $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$
 - (f) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - (g) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (h) If $(A \cap C) \subset (B \cap C)$, then $(A \cup C) \subset (B \cup C)$.
- 3. Do Exercise 0.2.H, in the background chapter. That is, Suppose that f, g, h are functions from \mathbb{R} into \mathbb{R} . Prove or give a counterexample to each of the following statements. HINT: Only one is true.
 - (a) $f \circ g = g \circ f$
 - (b) $f \circ (g+h) = f \circ g + f \circ h$
 - (c) $(f+g) \circ h = f \circ h + g \circ h$
- 4. Do Exercise 0.2.I in the background chapter. That is, Suppose that $f: A \to B$ and $g: B \to A$ satisfy $g \circ f = \mathrm{id}_A$. Show that f is one-to-one and g is onto.