# Correlation

### Major Points - Correlation

- Questions answered by correlation
- Scatterplots
- An example
- The correlation coefficient
- Other kinds of correlations
- Factors affecting correlations
- Testing for significance

### The Question

- Are two variables related?
  - Does one increase as the other increases?
    - e. g. skills and income
  - Does one decrease as the other increases?
    - e. g. health problems and nutrition
- How can we get a numerical measure of the degree of relationship?

### Scatterplots

- AKA scatter diagram or scattergram.
- Graphically depicts the relationship between two variables in two dimensional space.

### Direct Relationship



### Inverse Relationship



## An Example

- Does smoking cigarettes increase systolic blood pressure?
- Plotting number of cigarettes smoked per day against systolic blood pressure
  - Fairly moderate relationship
  - Relationship is positive

### Trend?



## Smoking and BP

- Note relationship is moderate, but real.
- Why do we care about relationship?
  - What would conclude if there were no relationship?
  - What if the relationship were near perfect?
  - What if the relationship were negative?

### Heart Disease and Cigarettes

- Data on heart disease and cigarette smoking in 21 developed countries (Landwehr and Watkins, 1987)
- Data have been rounded for computational convenience.
  - ☐ The results were not affected.

#### The Data

Surprisingly, the U.S. is the first country on the list--the country with the highest consumption and highest mortality.

| Country                    | Cigarettes  | CHD                              |
|----------------------------|-------------|----------------------------------|
| 1                          | 11          | 26                               |
|                            | g           |                                  |
| 2<br>3<br>4<br>5<br>6<br>7 | 9           | 21<br>24<br>21<br>19<br>13<br>19 |
| 4                          | 9           | 21                               |
| 5                          | 8           | 19                               |
| 6                          | 8<br>8      | 13                               |
|                            | 8           | 19                               |
| 8                          | 6           | 11<br>23<br>15                   |
| 9                          | 6           | 23                               |
| 10                         | 6<br>5      | 15                               |
| 11                         | 5<br>5      | 13                               |
| 12                         | 5           | 4                                |
| 13                         |             | 18                               |
| 14                         | 5<br>5      | 12                               |
| 15                         | 5           | 3                                |
| 16                         | 4           | 11                               |
| 17                         |             | 15                               |
| 18                         | 4<br>4      | 18<br>12<br>3<br>11<br>15<br>6   |
| 19                         | 3           | 13                               |
| 20                         | 3<br>3<br>3 | 4                                |
| 21                         | 3           | 14                               |

### Scatterplot of Heart Disease

- CHD Mortality goes on ordinate (Y axis)
  - □ Why?
- Cigarette consumption on abscissa (X axis)
  - □ Why?
- What does each dot represent?
- Best fitting line included for clarity



Cigarette Consumption per Adult per Day

### What Does the Scatterplot Show?

- As smoking increases, so does coronary heart disease mortality.
- Relationship looks strong
- Not all data points on line.
  - ☐ This gives us "residuals" or "errors of prediction"
    - To be discussed later

#### Correlation

- Co-relation
- The relationship between two variables
- Measured with a correlation coefficient
- Most popularly seen correlation coefficient: Pearson Product-Moment Correlation

## Types of Correlation

- Positive correlation
  - High values of X tend to be associated with high values of Y.
  - As X increases, Y increases
- Negative correlation
  - High values of X tend to be associated with low values of Y.
  - As X increases, Y decreases
- No correlation
- No consistent tendency for values on Y to increase or decrease as X increases

#### Correlation Coefficient

- A measure of degree of relationship.
- Between 1 and -1
- Sign refers to direction.
- Based on covariance
  - Measure of degree to which large scores on X go with large scores on Y, and small scores on X go with small scores on Y
  - □ Think of it as variance, but with 2 variables instead of 1 (What does that mean??)

#### Correlation



### Covariance

Remember that variance is:

$$Var_X = \frac{\Sigma (X - \overline{X})^2}{N - 1} = \frac{\Sigma (X - \overline{X})(X - \overline{X})}{N - 1}$$

The formula for co-variance is:

$$Cov_{XY} = \frac{\Sigma(X - \overline{X})(Y - \overline{Y})}{N - 1}$$

- How this works, and why?
- When would  $cov_{XY}$  be large and positive? Large and negative?

| Country | X (Cig.) | Y (CHD) | $(X-\overline{X})$ | $(Y-\overline{Y})$ | $(X-\overline{X})*(Y-\overline{Y})$ |
|---------|----------|---------|--------------------|--------------------|-------------------------------------|
| 1       | 11       | 26      | 5.05               | 11.48              | 57.97                               |
| 2       | 9        | 21      | 3.05               | 6.48               | 19.76                               |
| 3       | 9        | 24      | 3.05               | 9.48               | 28.91                               |
| 4       | 9        | 21      | 3.05               | 6.48               | 19.76                               |
| 5       | 8        | 19      | 2.05               | 4.48               | 9.18                                |
| 6       | 8        | 13      | 2.05               | -1.52              | -3.12                               |
| 7       | 8        | 19      | 2.05               | 4.48               | 9.18                                |
| 8       | 6        | 11      | 0.05               | -3.52              | -0.18                               |
| 9       | 6        | 23      | 0.05               | 8.48               | 0.42                                |
| 10      | 5        | 15      | -0.95              | 0.48               | -0.46                               |
| 11      | 5        | 13      | -0.95              | -1.52              | 1.44                                |
| 12      | 5        | 4       | -0.95              | -10.52             | 9.99                                |
| 13      | 5        | 18      | -0.95              | 3.48               | -3.31                               |
| 14      | 5        | 12      | -0.95              | -2.52              | 2.39                                |
| 15      | 5        | 3       | -0.95              | -11.52             | 10.94                               |
| 16      | 4        | 11      | -1.95              | -3.52              | 6.86                                |
| 17      | 4        | 15      | -1.95              | 0.48               | -0.94                               |
| 18      | 4        | 6       | -1.95              | -8.52              | 16.61                               |
| 19      | 3        | 13      | -2.95              | -1.52              | 4.48                                |
| 20      | 3        | 4       | -2.95              | -10.52             | 31.03                               |
| 21      | 3        | 14      | -2.95              | -0.52              | 1.53                                |

Example

Mean 5.95 14.52 SD 2.33 6.69

Sum 222.44

### Example

$$Cov_{cig.\&CHD} = \frac{\Sigma(X - \overline{X})(Y - \overline{Y})}{N - 1} = \frac{222.44}{21 - 1} = 11.12$$

- What the heck is a covariance?
- I thought we were talking about correlation?

#### Correlation Coefficient

- Pearson's Product Moment Correlation
- Symbolized by r
- Covariance ÷ (product of the 2 SDs)

$$r = \frac{Cov_{XY}}{S_X S_Y}$$

Correlation is a standardized covariance

### Calculation for Example

$$Cov_{XY} = 11.12$$

$$_{\square}$$
  $s_{X} = 2.33$ 

$$_{\rm S} \, {\rm S}_{\rm Y} = 6.69$$

$$r = \frac{\text{cov}_{XY}}{s_X s_Y} = \frac{11.12}{(2.33)(6.69)} = \frac{11.12}{15.59} = .713$$

## Example

- $\Box$  Correlation = .713
- Sign is positive
  - □ Why?
- If sign were negative
  - What would it mean?
  - Would not alter the *degree* of relationship.

### Other calculations

Z-score method

$$r = \frac{\sum z_x z_y}{N - 1}$$

Computational (Raw Score) Method

$$r = \frac{N\sum XY - \sum X\sum Y}{\sqrt{\left[N\sum X^2 - (\sum X)^2\right]\left[N\sum Y^2 - (\sum Y)^2\right]}}$$

## Other Kinds of Correlation

- Spearman Rank-Order Correlation
   Coefficient (r<sub>sp</sub>)
  - used with 2 ranked/ordinal variables
  - uses the same Pearson formula

| <u>Attractiveness</u> | Symmetry |
|-----------------------|----------|
| 3                     | 2        |
| 4                     | 6        |
| 1                     | 1        |
| 2                     | 3        |
| 5                     | 4        |
| 6                     | 5        |

$$r_{sp} = 0.77$$

### Other Kinds of Correlation

- Point biserial correlation coefficient
   (r<sub>pb</sub>)
  - used with one continuous scale and one nominal or ordinal or dichotomous scale.
  - uses the same Pearson formula

```
4 0
1 1
2 1
5 1
6 0
```

$$r_{pb} = -0.49$$

### Other Kinds of Correlation

- Phi coefficient (Φ)
  - used with two dichotomous scales.
  - uses the same Pearson formula

| Attractiveness | Date? |
|----------------|-------|
| 0              | 0     |
| 1              | 0     |
| 1              | 1     |
| 1              | 1     |
| 0              | 0     |
| 1              | 1     |

 $\Phi = 0.71$ 

## Factors Affecting r

- Range restrictions
  - □ Looking at only a small portion of the total scatter plot (looking at a smaller portion of the scores' variability) **decreases** *r*.
  - Reducing variability reduces r
- Nonlinearity
  - ☐ The Pearson r (and its relatives) measure the degree of **linear** relationship between two variables
  - If a strong non-linear relationship exists, r will provide a low, or at least inaccurate measure of the true relationship.

### Factors Affecting r

- Heterogeneous subsamples
  - Everyday examples (e.g. height and weight using both men and women)
- Outliers
  - Overestimate Correlation
  - Underestimate Correlation

### Countries With Low Consumptions

#### Data With Restricted Range

Truncated at 5 Cigarettes Per Day



Cigarette Consumption per Adult per Day

### Truncation



### Non-linearity



### Heterogenous samples



## Outliers



## **Testing Correlations**

- So you have a correlation. Now what?
- In terms of magnitude, how big is big?
  - Small correlations in large samples are "big."
  - Large correlations in small samples aren't always "big."
- Depends upon the magnitude of the correlation coefficient

#### AND

The size of your sample.

## Testing r

- □ Population parameter =  $\rho$
- □ Null hypothesis  $H_0$ :  $\rho = 0$ 
  - Test of linear independence
  - What would a true null mean here?
  - What would a false null mean here?
- Alternative hypothesis  $(H_1)$   $\rho \neq 0$ 
  - Two-tailed

### Tables of Significance

We can convert r to t and test for significance:

$$t = r\sqrt{\frac{N-2}{1-r^2}}$$

 $\square$  Where DF = N-2

## Tables of Significance

□ In our example r was .71

$$N-2 = 21 - 2 = 19$$

$$t = r\sqrt{\frac{N-2}{1-r^2}} = .71*\sqrt{\frac{19}{1-.71^2}} = .71*\sqrt{\frac{19}{.4959}} = 6.90$$

- $\Gamma$  T-crit (19) = 2.09
- Since 6.90 is larger than 2.09 reject  $\rho = 0$ .

### Correlation is significant at the 0.01 level (2-tailed).

| CIGARET | Pearson Correlation | 7       | .713**     |
|---------|---------------------|---------|------------|
|         | Sig. (2-tailed)     | CIGARET | CHD<br>000 |
|         | И                   | 21      | 21         |
| CHD     | Pearson Correlation | .713**  | 1          |
|         | Sig. (2-tailed)     | .000    |            |
|         | И                   | 21      | 21         |
| **      |                     |         |            |

### Correlations

### Printout gives test of significance.

# Computer Printout

| Country | X (Cig.) | Y (CHD) | Y'     | (Y - Y') | $(Y - Y')^2$ | (Y' - Ybar) | (Y - Ybar) |
|---------|----------|---------|--------|----------|--------------|-------------|------------|
| 1       | 11       | 26      | 24.829 | 1.171    | 1.371        | 106.193     | 131.699    |
| 2       | 9        | 21      | 20.745 | 0.255    | 0.065        | 38.701      | 41.939     |
| 3       | 9        | 24      | 20.745 | 3.255    | 10.595       | 38.701      | 89.795     |
| 4       | 9        | 21      | 20.745 | 0.255    | 0.065        | 38.701      | 41.939     |
| 5       | 8        | 19      | 18.703 | 0.297    | 0.088        | 17.464      | 20.035     |
| 6       | 8        | 13      | 18.703 | -5.703   | 32.524       | 17.464      | 2.323      |
| 7       | 8        | 19      | 18.703 | 0.297    | 0.088        | 17.464      | 20.035     |
| 8       | 6        | 11      | 14.619 | -3.619   | 13.097       | 0.009       | 12.419     |
| 9       | 6        | 23      | 14.619 | 8.381    | 70.241       | 0.009       | 71.843     |
| 10      | 5        | 15      | 12.577 | 2.423    | 5.871        | 3.791       | 0.227      |
| 11      | 5        | 13      | 12.577 | 0.423    | 0.179        | 3.791       | 2.323      |
| 12      | 5        | 4       | 12.577 | -8.577   | 73.565       | 3.791       | 110.755    |
| 13      | 5        | 18      | 12.577 | 5.423    | 29.409       | 3.791       | 12.083     |
| 14      | 5        | 12      | 12.577 | -0.577   | 0.333        | 3.791       | 6.371      |
| 15      | 5        | 3       | 12.577 | -9.577   | 91.719       | 3.791       | 132.803    |
| 16      | 4        | 11      | 10.535 | 0.465    | 0.216        | 15.912      | 12.419     |
| 17      | 4        | 15      | 10.535 | 4.465    | 19.936       | 15.912      | 0.227      |
| 18      | 4        | 6       | 10.535 | -4.535   | 20.566       | 15.912      | 72.659     |
| 19      | 3        | 13      | 8.493  | 4.507    | 20.313       | 36.373      | 2.323      |
| 20      | 3        | 4       | 8.493  | -4.493   | 20.187       | 36.373      | 110.755    |
| 21      | 3        | 14      | 8.493  | 5.507    | 30.327       | 36.373      | 0.275      |
| Moon    | 5.052    | 14.524  |        |          |              |             |            |

Example

Mean 5.952 14.524 SD 2.334 6.690 Sum

0.04 440.757 454.307 895.247

Y' = (2.04\*X) + 2.37

### Example

$$SS_{Total} = \sum (Y - \bar{Y})^2 = 895.247; \ df_{total} = 21 - 1 = 20$$

$$SS_{regression} = \sum (\hat{Y} - \bar{Y})^2 = 454.307; \ df_{regression} = 1 \text{ (only 1 predictor)}$$

$$SS_{residual} = \sum (Y - \hat{Y})^2 = 440.757; df_{residual} = 20 - 1 = 19$$

$$s_{total}^2 = \frac{\sum (Y - \overline{Y})^2}{N - 1} = \frac{895.247}{20} = 44.762$$

$$s_{regression}^2 = \frac{\sum (\hat{Y} - \overline{Y})^2}{1} = \frac{454.307}{1} = 454.307$$

$$s_{residual}^2 = \frac{\sum (Y - \hat{Y})^2}{N - 2} = \frac{440.757}{19} = 23.198$$

Note: 
$$\sqrt{s_{residual}^2} = s_{Y-\hat{Y}}$$

### Coefficient of Determination

 It is a measure of the percent of predictable variability

$$r^2$$
 = the correlation squared

or

$$r^2 = \frac{SS_{regression}}{SS_Y}$$

 The percentage of the total variability in Y explained by X

# r<sup>2</sup> for our example

$$r = .713$$

$$r^2 = .713^2 = .508$$

$$r^2 = \frac{SS_{regression}}{SS_Y} = \frac{454.307}{895.247} = .507$$

 Approximately 50% in variability of incidence of CHD mortality is associated with variability in smoking.

### Coefficient of Alienation

■ It is defined as  $1 - r^2$  or

$$1 - r^2 = \frac{SS_{residual}}{SS_Y}$$

Example

$$1 - .508 = .492$$

$$1 - r^2 = \frac{SS_{residual}}{SS_y} = \frac{440.757}{895.247} = .492$$

# $r^2$ , SS and $s_{Y-Y}$ ,

- $r^2 * SS_{total} = SS_{regression}$
- $\Box$  (1  $r^2$ ) \*  $SS_{total} = SS_{residual}$
- We can also use r<sup>2</sup> to calculate the standard error of estimate as:

$$s_{y-\hat{Y}} = s_y \sqrt{(1-r^2)\left(\frac{N-1}{N-2}\right)} = 6.690*\sqrt{(.492)\left(\frac{20}{19}\right)} = 4.816$$

## Testing Overall Model

We can test for the overall prediction of the model by forming the ratio:

the model by forming th
$$\frac{S_{regression}^{2}}{S_{residual}^{2}} = F \text{ statistic}$$

If the calculated F value is larger than a tabled value (F-Table) we have a significant prediction

### Testing Overall Model

Example

$$\frac{s_{regression}^2}{s_{residual}^2} = \frac{454.307}{23.198} = 19.594$$

- F-Table F critical is found using 2 things df regression (numerator) and df df (demoninator)
- F-Table our  $F_{crit}(1,19) = 4.38$
- $_{\square}$  19.594 > 4.38, significant overall
- Should all sound familiar...

b. Predictors: (Constant), CIGARETT

| <u> Moc</u><br>1 | Residual<br>Regression | 440.757<br>Squares<br>354.482 | df 19<br>1 | 23,198<br>Mean Square<br>454,482 | F<br>19.592 | Sig<br>.000a |
|------------------|------------------------|-------------------------------|------------|----------------------------------|-------------|--------------|
| a                | ı.<br>Total            | 895.238                       | 20         |                                  |             |              |

**ANOVA**b

Predictors: (Constant), CIGARETT

| 1          | .713a | .508     | Adjusted | Std. Ehbl 49 |
|------------|-------|----------|----------|--------------|
| a<br>Model | R     | R Square | R Square | the Estimate |

### **Model Summary**

## Testing Slope and Intercept

- The regression coefficients can be tested for significance
- Each coefficient divided by it's standard error equals a t value that can also be looked up in a t-table
- Each coefficient is tested against 0

## Testing the Slope

With only 1 predictor, the standard error for the slope is:

$$se_b = \frac{s_{Y-\hat{Y}}}{s_X \sqrt{N-1}}$$

For our Example:

$$se_b = \frac{4.816}{2.334\sqrt{21-1}} = \frac{4.816}{10.438} = .461$$

### Testing Slope and Intercept

These are given in computer printout as a t test.

#### Coefficients<sup>a</sup>

| Model |                                            | Unstandardized<br>Coefficients |            | Standardi<br>zed<br>Coefficien<br>ts |       |      |
|-------|--------------------------------------------|--------------------------------|------------|--------------------------------------|-------|------|
|       |                                            | В                              | Std. Error | Beta                                 | t     | Sig. |
| 1     | (Constant)                                 | 2.367                          | 2.941      |                                      | .805  | .431 |
|       | Cigarette Consumption<br>per Adult per Day | 2.042                          | .461       | .713                                 | 4.426 | .000 |

a. Dependent Variable: CHD Mortality per 10,000

## Testing

- The *t* values in the second from right column are tests on slope and intercept.
- The associated p values are next to them.
- The slope is significantly different from zero, but not the intercept.
- Why do we care?

## Testing

- What does it mean if slope is not significant?
  - $\square$  How does that relate to test on r?
- What if the intercept is not significant?
- Does significant slope mean we predict quite well?