

| Rodzaj dokumentu:             | Zasady oceniania rozwiązań<br>zadań                                                                                                         |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| Egzamin:                      | Egzamin maturalny                                                                                                                           |  |
| Przedmiot:                    | Matematyka                                                                                                                                  |  |
| Poziom:                       | Poziom podstawowy                                                                                                                           |  |
| Formy arkusza:                | MMAP-P0-100 (wersje arkusza: A i B), MMAP-P0-200, MMAP-P0-300, MMAP-P0-400, MMAP-P0-600, MMAP-P0-700, MMAP-P0-Q00, MMAP-P0-Z00, MMAU-P0-100 |  |
| Termin egzaminu:              | 8 maja 2023 r.                                                                                                                              |  |
| Data publikacji<br>dokumentu: | 28 czerwca 2023 r.                                                                                                                          |  |

### Uwagi ogólne:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający poprawnie rozwiąże zadanie i otrzyma poprawny wynik, lecz w końcowym zapisie przekształca ten wynik i popełnia przy tym błąd, to może uzyskać maksymalną liczbę punktów.
- 3. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

## Zadanie 1. (0-1)

| Wymagania egzaminacyjne 2023 i 2024¹    |                                            |
|-----------------------------------------|--------------------------------------------|
| Wymaganie ogólne                        | Wymaganie szczegółowe                      |
| III. Wykorzystanie i interpretowanie    | Zdający:                                   |
| reprezentacji.                          | I.7) stosuje interpretację geometryczną    |
| 2. Dobieranie i tworzenie modeli        | i algebraiczną wartości bezwzględnej,      |
| matematycznych przy rozwiązywaniu       | rozwiązuje równania i nierówności typu: [] |
| problemów praktycznych i teoretycznych. | $ x+3  \ge 4.$                             |

#### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

#### Rozwiązanie

Wersja A Wersja B D

<sup>&</sup>lt;sup>1</sup> Rozporządzenie Ministra Edukacji i Nauki z dnia 10 czerwca 2022 r. w sprawie wymagań egzaminacyjnych dla egzaminu maturalnego przeprowadzanego w roku szkolnym 2022/2023 i 2023/2024 (Dz.U. 2022, poz.1246).

### Zadanie 2. (0-1)

| Wymagania egzaminacyjne 2023 i 2024    |                                       |  |
|----------------------------------------|---------------------------------------|--|
| Wymaganie ogólne                       | Wymaganie szczegółowe                 |  |
| I. Sprawność rachunkowa.               | Zdający:                              |  |
| Wykonywanie obliczeń na liczbach       | I.4) stosuje związek pierwiastkowania |  |
| rzeczywistych, także przy użyciu       | z potęgowaniem oraz prawa działań na  |  |
| kalkulatora, stosowanie praw działań   | potęgach i pierwiastkach.             |  |
| matematycznych przy przekształcaniu    |                                       |  |
| wyrażeń algebraicznych oraz            |                                       |  |
| wykorzystywanie tych umiejętności przy |                                       |  |
| rozwiązywaniu problemów w kontekstach  |                                       |  |
| rzeczywistych i teoretycznych.         |                                       |  |

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B A B

### Zadanie 3. (0-2)

| Wymagania egzaminacyjne 2023 i 2024     |                                           |
|-----------------------------------------|-------------------------------------------|
| Wymaganie ogólne                        | Wymaganie szczegółowe                     |
| IV. Rozumowanie i argumentacja.         | Zdający:                                  |
| 1. Przeprowadzanie rozumowań, także     | I.2) przeprowadza proste dowody dotyczące |
| kilkuetapowych, podawanie argumentów    | podzielności liczb całkowitych i reszt    |
| uzasadniających poprawność rozumowania, | z dzielenia nie trudniejsze niż dowód     |
| odróżnianie dowodu od przykładu.        | podzielności przez 24 iloczynu czterech   |
|                                         | kolejnych liczb naturalnych.              |

### Zasady oceniania

- 2 pkt przekształcenie wyrażenia  $(2n+1)^2-1$  do postaci iloczynu 4n(n+1) **oraz** stwierdzenie, że iloczyn n(n+1) jest liczbą parzystą lub przekształcenie wyrażenia  $(2n+1)^2-1$  do postaci  $4(n^2+n)$  i uzasadnienie, że suma  $n^2+n$  jest liczbą parzystą ALBO
  - przekształcenie wyrażenia  $(2n+1)^2-1$  do postaci 2n(2n+2) oraz stwierdzenie, że wśród dwóch kolejnych liczb parzystych jedna z nich jest liczbą podzielną przez 4, ALBO



- rozpatrzenie przypadku, gdy n=2l (gdzie  $l\in\mathbb{N}$ ), tj. przekształcenie wyrażenia  $(2n+1)^2-1$  do postaci 8l(2l+1) i zapisanie, że iloczyn l(2l+1) jest liczbą naturalną/całkowitą **oraz** rozpatrzenie przypadku, gdy n=2l+1 (gdzie  $l\in\mathbb{N}$ ), tj. przekształcenie wyrażenia  $(2n+1)^2-1$  do postaci  $8(2l^2+3l+1)$  i zapisanie, że suma  $2l^2+3l+1$  jest liczbą naturalną/całkowitą.
- 1 pkt przekształcenie wyrażenia  $(2n+1)^2-1$  do postaci 4n(n+1) lub  $4(n^2+n)$ , lub 2n(2n+2) ALBO
  - przekształcenie wyrażenia  $(2n+1)^2-1$  do postaci  $4n^2+4n$  i stwierdzenie, że ta suma jest liczbą podzielną przez 4, *ALBO*
  - rozpatrzenie przypadku, gdy n=2l (gdzie  $l\in\mathbb{N}$ ), tj. przekształcenie wyrażenia  $(2n+1)^2-1$  do postaci 8l(2l+1) i zapisanie, że iloczyn l(2l+1) jest liczbą naturalną/całkowitą, *ALBO*
  - rozpatrzenie przypadku, gdy n=2l+1 (gdzie  $l\in\mathbb{N}$ ), tj. przekształcenie wyrażenia  $(2n+1)^2-1$  do postaci  $8(2l^2+3l+1)$  i zapisanie, że suma  $2l^2+3l+1$  jest liczbą naturalną/całkowitą.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

#### Uwaqi:

- **1.** Jeżeli zdający sprawdza prawdziwość tezy tylko dla wybranych wartości n, to otrzymuje **0 punktów** za całe rozwiązanie.
- **2.** Jeżeli zdający przyjmuje np. n=8k+r, gdzie  $k\in\mathbb{N}$  i r jest resztą z dzielenia liczby n przez 8, i przeprowadzi poprawne rozumowanie dla co najmniej połowy przypadków, ale nie przeprowadzi pełnego rozumowania dla wszystkich przypadków, to otrzymuje **1 punkt** za całe rozwiązanie.
- 3. Jeżeli zdający rozpatruje przypadki n=2l oraz n=2l+1 (gdzie  $l\in\mathbb{N}$ ) i przekształca wyrażenie  $(2n+1)^2-1$  do postaci, odpowiednio, 8l(2l+1) oraz  $2l^2+3l+1$ , ale nie zapisze, że 8l(2l+1) oraz  $2l^2+3l+1$  są liczbami naturalnymi/całkowitymi, to otrzymuje **1 punkt** za całe rozwiązanie.

#### Przykładowe pełne rozwiązania

Sposób I

Korzystając z wzoru skróconego mnożenia, zapisujemy liczbę  $(2n+1)^2-1$  w postaci

$$(2n+1)^2 - 1 = 4n^2 + 4n + 1 - 1 = 4n(n+1)$$

Ponieważ liczby n oraz n+1 są kolejnymi liczbami naturalnymi, to jedna z nich jest liczbą parzystą, zatem iloczyn n(n+1) jest liczbą parzystą, więc iloczyn 4n(n+1) jest podzielny przez 8. To należało wykazać.

#### Sposób II

Korzystając z wzoru skróconego mnożenia, zapisujemy liczbę  $(2n+1)^2-1$  w postaci

$$(2n+1)^2 - 1 = 4n^2 + 4n + 1 - 1 = 4(n^2 + n)$$

Gdy n jest liczbą nieparzystą, to liczba  $n^2$  jest liczbą nieparzystą. Zatem  $n^2+n$  jest liczbą parzystą jako suma dwóch liczb nieparzystych.

Gdy n jest liczbą parzystą, to liczba  $n^2$  jest liczbą parzystą. Zatem  $n^2+n$  jest liczbą parzystą jako suma dwóch liczb parzystych.

Stąd  $4(n^2 + n)$  jest liczbą podzielną przez 8. To należało wykazać.

#### Sposób III

Korzystając z wzoru skróconego mnożenia, zapisujemy liczbę  $(2n+1)^2-1$  w postaci

$$(2n+1)^2 - 1 = [(2n+1) - 1] \cdot [(2n+1) + 1] = 2n \cdot (2n+2)$$

Ponieważ liczby 2n oraz 2n+2 są kolejnymi liczbami parzystymi, to jedna z nich jest liczbą podzielną przez 4. Zatem iloczyn 2n(2n+2) jest liczbą podzielną przez  $2\cdot 4$ , czyli przez 8. To należało wykazać.

#### Sposób IV

Rozważmy dwa przypadki: gdy n jest liczbą parzystą oraz gdy n jest liczbą nieparzystą.

Jeśli n jest liczbą parzystą, możemy ją zapisać w postaci n=2l, gdzie  $l\in\mathbb{N}$ . Wówczas badana liczba ma postać

$$(2n+1)^2 - 1 = (2 \cdot 2l + 1)^2 - 1 = 16l^2 + 8l + 1 - 1 = 8l(2l + 1)$$

Ponieważ  $l \in \mathbb{N}$ , to również iloczyn l(2l+1) jest liczbą naturalną. Zatem iloczyn 8l(2l+1) jest podzielny przez 8.

Jeśli liczba n jest nieparzysta, zapisujemy ją w postaci n=2l+1, gdzie  $l\in\mathbb{N}$ . Wówczas badana liczba ma postać

$$(2n+1)^2 - 1 = [2(2l+1)+1]^2 - 1 = [4l+3]^2 - 1 =$$
  
=  $16l^2 + 24l + 9 - 1 = 8(2l^2 + 3l + 1)$ 

Ponieważ  $l \in \mathbb{N}$ , to również  $2l^2+3l+1$  jest liczbą naturalną. Zatem iloczyn  $8(2l^2+3l+1)$  jest podzielny przez 8. To należało wykazać.

## Zadanie 4. (0-1)

| Wymagania egzaminacyjne 2023 i 2024      |                                 |  |
|------------------------------------------|---------------------------------|--|
| Wymaganie ogólne Wymaganie szczegółowe   |                                 |  |
| III. Wykorzystanie i interpretowanie     | Zdający:                        |  |
| reprezentacji.                           | I.1) wykonuje działania ([]     |  |
| 1. Stosowanie obiektów matematycznych    | logarytmowanie) w zbiorze liczb |  |
| i operowanie nimi, interpretowanie pojęć | rzeczywistych.                  |  |
| matematycznych.                          |                                 |  |

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B

D

## Zadanie 5. (0-1)

| Wymagania egzaminacyjne 2023 i 2024                                                                                                                                          |                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Wymaganie ogólne                                                                                                                                                             | Wymaganie szczegółowe                                                                    |
| <ul><li>III. Wykorzystanie i interpretowanie reprezentacji.</li><li>1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.</li></ul> | Zdający: II.1) stosuje wzory skróconego mnożenia na: $(a+b)^2$ , $(a-b)^2$ , $a^2-b^2$ . |

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B A B

## Zadanie 6. (0-1)

| Wymagania egzaminacyjne 2023 i 2024                                                                                                                                          |                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Wymaganie ogólne                                                                                                                                                             | Wymaganie szczegółowe                                                    |
| <ul><li>III. Wykorzystanie i interpretowanie reprezentacji.</li><li>1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.</li></ul> | Zdający:<br>III.3) rozwiązuje nierówności liniowe z jedną<br>niewiadomą. |

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B C A

### Zadanie 7. (0-1)

| Wymagania egzaminacyjne 2023 i 2024      |                                         |
|------------------------------------------|-----------------------------------------|
| Wymaganie ogólne                         | Wymaganie szczegółowe                   |
| III. Wykorzystanie i interpretowanie     | Zdający:                                |
| reprezentacji.                           | III.5) rozwiązuje równania wielomianowe |
| 1. Stosowanie obiektów matematycznych    | postaci $W(x) = 0$ dla wielomianów      |
| i operowanie nimi, interpretowanie pojęć | doprowadzonych do postaci iloczynowej   |
| matematycznych.                          | ri.                                     |

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B D D



### Zadanie 8. (0-1)

| Wymagania egzaminacyjne 2023 i 2024                                         |                                                            |
|-----------------------------------------------------------------------------|------------------------------------------------------------|
| Wymaganie ogólne                                                            | Wymaganie szczegółowe                                      |
| III. Wykorzystanie i interpretowanie                                        | Zdający:                                                   |
| reprezentacji.                                                              | III.6) rozwiązuje równania wymierne postaci                |
| Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć | $\frac{V(x)}{W(x)} = 0$ , gdzie wielomiany $V(x)$ i $W(x)$ |
| matematycznych.                                                             | są zapisane w postaci iloczynowej.                         |

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

Wersja A Wersja B A

## Zadanie 9. (0-3)

| Wymagania egzaminacyjne 2023 i 2024                                                                                             |                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wymaganie ogólne                                                                                                                | Wymaganie szczegółowe                                                                                                                                                  |
| IV. Rozumowanie i argumentacja. 4. Stosowanie i tworzenie strategii przy rozwiązywaniu zadań, również w sytuacjach nietypowych. | Zdający: III.5) rozwiązuje równania wielomianowe postaci $W(x) = 0$ dla wielomianów [] takich, które dają się doprowadzić do postaci iloczynowej [] metodą grupowania. |

#### Zasady oceniania

3 pkt – poprawna metoda rozwiązania równania i obliczenie wszystkich rozwiązań równania:  $(-2), \frac{2}{3}\,,\,2$ 

ALBO

- wyznaczenie wszystkich rozwiązań równania: (-2),  $\frac{2}{3}$ , 2, **oraz** stwierdzenie, że są to jedyne rozwiązania równania.
- 2 pkt przekształcenie lewej strony równania do postaci iloczynu wielomianów stopnia co najwyżej drugiego **oraz** rozwiązanie jednego z równań wynikającego z tego rozkładu,

np. 
$$(3x-2)(x^2-4)=0$$
 i  $x=\frac{2}{3}$ ,  $(3x-2)(x^2-4)=0$  i  $x=-2$  oraz  $x=2$  ALBO

- obliczenie jednego z pierwiastków wielomianu  $\,W\,$  oraz poprawne podzielenie wielomianu  $\,W\,$  przez odpowiedni dwumian, np.

$$x = 2$$
 i  $(3x^3 - 2x^2 - 12x + 8)$ :  $(x - 2) = 3x^2 + 4x - 4$ ,

**ALBO** 

- rozłożenie wielomianu  $W(x)=3x^3-2x^2-12x+8$  na czynniki liniowe, np. W(x)=(3x-2)(x-2)(x+2), ALBO
- przekształcenie równania  $3x^3-2x^2-12x+8=0$  do postaci alternatywy równań i rozwiązanie jednego z nich, np.

$$(3x-2=0 \text{ lub } x^2-4=0) \text{ i } x=2 \text{ oraz } x=-2.$$

- 1 pkt przekształcenie lewej strony równania do postaci iloczynu wielomianów stopnia co najwyżej drugiego, np.  $(3x-2)(x^2-4)=0$  *ALBO* 
  - zapisanie jednego z rozwiązań równania  $3x^3 2x^2 12x + 8 = 0$  (jeśli to rozwiązanie nie zostało otrzymane w wyniku zastosowania błędnej metody), *ALBO*
  - przekształcenie równania  $3x^3 2x^2 12x + 8 = 0$  do postaci alternatywy równań, np. 3x 2 = 0 lub  $x^2 4 = 0$ .
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

#### **Uwagi:**

- 1. Jeżeli zdający uzyska trzy poprawne pierwiastki wielomianu, lecz traktuje równanie jako nierówność (podaje zbiór rozwiązań w postaci przedziału/ sumy przedziałów), to otrzymuje 2 punkty za całe rozwiązanie.
- **2.** Jeżeli zdający przy przekształcaniu lewej strony równania do postaci iloczynu zapisuje czynnik (3x-2) z wykładnikiem 2, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie.

#### Przykładowe pełne rozwiązania

Sposóh

Przekształcamy równanie równoważnie i stosujemy metodę grupowania wyrazów:

$$3x^{3} - 2x^{2} - 12x + 8 = 0$$

$$x^{2}(3x - 2) - 4(3x - 2) = 0$$

$$(3x - 2)(x^{2} - 4) = 0$$

$$(3x - 2)(x - 2)(x + 2) = 0$$

$$3x - 2 = 0 \quad \text{lub} \quad x - 2 = 0 \quad \text{lub} \quad x + 2 = 0$$

$$x = \frac{2}{3} \quad \text{lub} \quad x = 2 \quad \text{lub} \quad x = -2$$

Rozwiązaniami równania są liczby: (-2),  $\frac{2}{3}$ , 2.

#### Sposób II

Przekształcamy równanie równoważnie i stosujemy metodę grupowania wyrazów:

$$3x^3 - 2x^2 - 12x + 8 = 0$$



Egzamin maturalny z matematyki na poziomie podstawowym – termin główny 2023 r.

$$3x(x^{2}-4)-2(x^{2}-4)=0$$

$$(3x-2)(x^{2}-4)=0$$

$$(3x-2)(x-2)(x+2)=0$$

$$3x-2=0 \text{ lub } x-2=0 \text{ lub } x+2=0$$

$$x=\frac{2}{3} \text{ lub } x=2 \text{ lub } x=-2$$

Rozwiązaniami równania są liczby: (-2),  $\frac{2}{3}$ , 2.

#### Sposób III

Obliczamy W(2) = 0 i stwierdzamy, że liczba 2 jest pierwiastkiem wielomianu  $W(x) = 3x^3 - 2x^2 - 12x + 8$ .

Zatem wielomian W jest podzielny przez dwumian x-2. Dzielimy wielomian W przez dwumian x-2 i otrzymujemy

$$(3x^3 - 2x^2 - 12x + 8)$$
:  $(x - 2) = 3x^2 + 4x - 4$ 

Zatem  $W(x) = (x-2)(3x^2 + 4x - 4)$ .

Obliczamy pierwiastki trójmianu  $3x^2 + 4x - 4$ :

$$\Delta = 4^{2} - 4 \cdot 3 \cdot (-4) = 64$$

$$x = \frac{-4 - 8}{2 \cdot 3} = -2 \quad \text{oraz} \quad x = \frac{-4 + 8}{2 \cdot 3} = \frac{2}{3}$$

Rozwiązaniami równania są liczby: (-2),  $\frac{2}{3}$ , 2.

#### Sposób IV

Obliczamy W(2) = 0 i stwierdzamy, że liczba 2 jest pierwiastkiem wielomianu  $W(x) = 3x^3 - 2x^2 - 12x + 8$ .

Obliczamy W(-2)=0 i stwierdzamy, że liczba (-2) jest pierwiastkiem wielomianu  $W(x)=3x^3-2x^2-12x+8$ .

Obliczamy  $W\left(\frac{2}{3}\right)=0$  i stwierdzamy, że liczba  $\frac{2}{3}$  jest pierwiastkiem wielomianu  $W(x)=3x^3-2x^2-12x+8$ .

Ponieważ W jest wielomianem stopnia trzeciego, więc ma co najwyżej trzy pierwiastki rzeczywiste. Oznacza to, że jedynymi rozwiązaniami równania  $3x^3-2x^2-12x+8=0$  są liczby:  $(-2),\frac{2}{3}$ , 2.

## Zadanie 10. (0-1)

| Wymagania egzaminacyjne 2023 i 2024      |                                          |  |
|------------------------------------------|------------------------------------------|--|
| Wymaganie ogólne Wymaganie szczegółowe   |                                          |  |
| III. Wykorzystanie i interpretowanie     | Zdający:                                 |  |
| reprezentacji.                           | IV.1) rozwiązuje układy równań liniowych |  |
| 1. Stosowanie obiektów matematycznych    | z dwiema niewiadomymi, podaje            |  |
| i operowanie nimi, interpretowanie pojęć | interpretację geometryczną układów       |  |
| matematycznych.                          | oznaczonych [].                          |  |

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

Wersja A Wersja B D C

### Zadanie 11. (0-2)

| Wymagania egzaminacyjne 2023 i 2024     |                                 |
|-----------------------------------------|---------------------------------|
| Wymaganie ogólne                        | Wymaganie szczegółowe           |
| III. Wykorzystanie i interpretowanie    | Zdający:                        |
| reprezentacji.                          | IV.2) stosuje układy równań do  |
| 2. Dobieranie i tworzenie modeli        | rozwiązywania zadań tekstowych. |
| matematycznych przy rozwiązywaniu       |                                 |
| problemów praktycznych i teoretycznych. |                                 |

## Zasady oceniania

2 pkt – wybranie dwóch odpowiedzi, z których obie są poprawne.

1 pkt – wybranie jednej lub dwóch odpowiedzi, z których jedna jest poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B CE AD



## Zadanie 12.1. (0-1)

| Wymagania egzaminacyjne 2023 i 2024       |                                             |  |
|-------------------------------------------|---------------------------------------------|--|
| Wymaganie ogólne Wymaganie szczegółowe    |                                             |  |
| II. Wykorzystanie i tworzenie informacji. | Zdający:                                    |  |
| 1. Interpretowanie i operowanie           | V.4) odczytuje z wykresu funkcji: dziedzinę |  |
| informacjami przedstawionymi w tekście,   | [].                                         |  |
| zarówno matematycznym, jak                |                                             |  |
| i popularnonaukowym, a także w formie     |                                             |  |
| wykresów, diagramów, tabel.               |                                             |  |

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B

A C

## Zadanie 12.2. (0-1)

| Wymagania egzaminacyjne 2023 i 2024       |                                         |
|-------------------------------------------|-----------------------------------------|
| Wymaganie ogólne Wymaganie szczegółowe    |                                         |
| II. Wykorzystanie i tworzenie informacji. | Zdający:                                |
| 1. Interpretowanie i operowanie           | V.4) odczytuje z wykresu funkcji: []    |
| informacjami przedstawionymi w tekście,   | największe [] wartości funkcji (o ile   |
| zarówno matematycznym, jak                | istnieją) w danym przedziale domkniętym |
| i popularnonaukowym, a także w formie     | [].                                     |
| wykresów, diagramów, tabel.               |                                         |

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B C B

## Zadanie 12.3. (0-1)

| Wymagania egzaminacyjne 2023 i 2024       |                                      |
|-------------------------------------------|--------------------------------------|
| Wymaganie ogólne                          | Wymaganie szczegółowe                |
| II. Wykorzystanie i tworzenie informacji. | Zdający:                             |
| 1. Interpretowanie i operowanie           | V.4) odczytuje z wykresu funkcji: [] |
| informacjami przedstawionymi w tekście,   | przedziały monotoniczności [].       |
| zarówno matematycznym, jak                |                                      |
| i popularnonaukowym, a także w formie     |                                      |
| wykresów, diagramów, tabel.               |                                      |

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B

D B

## Zadanie 13. (0-1)

| Wymagania egzaminacyjne 2023 i 2024                                                                                                                                          |                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Wymaganie ogólne Wymaganie szczegółowe                                                                                                                                       |                                                                                        |
| <ul><li>III. Wykorzystanie i interpretowanie reprezentacji.</li><li>1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.</li></ul> | Zdający:<br>V.5) interpretuje współczynniki występujące<br>we wzorze funkcji liniowej. |

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B C D



## Zadanie 14. (0-1)

| Wymagania egzaminacyjne 2023 i 2024       |                                         |
|-------------------------------------------|-----------------------------------------|
| Wymaganie ogólne                          | Wymaganie szczegółowe                   |
| II. Wykorzystanie i tworzenie informacji. | Zdający:                                |
| Interpretowanie i operowanie              | V.11) wykorzystuje własności funkcji [] |
| informacjami przedstawionymi w tekście,   | kwadratowej do interpretacji zagadnień  |
| zarówno matematycznym, jak                | geometrycznych [].                      |
| i popularnonaukowym, a także w formie     |                                         |
| wykresów, diagramów, tabel.               |                                         |

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B

A C

## Zadanie 15. (0-1)

| Wymagania egzaminacyjne 2023 i 2024                                                                                                                                          |                                                                       |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Wymaganie ogólne Wymaganie szczegółowe                                                                                                                                       |                                                                       |  |
| <ul><li>III. Wykorzystanie i interpretowanie reprezentacji.</li><li>1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.</li></ul> | Zdający:<br>VI.1) oblicza wyrazy ciągu określonego<br>wzorem ogólnym. |  |

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B

D

### Zadanie 16. (0-1)

| Wymagania egzaminacyjne 2023 i 2024                                                                                                                                                      |                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Wymaganie ogólne Wymaganie szczegółowe                                                                                                                                                   |                                                                                                   |
| <ul><li>III. Wykorzystanie i interpretowanie reprezentacji.</li><li>2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.</li></ul> | Zdający: VI.6) wykorzystuje własności ciągów, w tym [] geometrycznych, do rozwiązywania zadań []. |

#### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

Wersja A Wersja B C B

#### Zadanie 17. (0-2)

| Wymagania egzaminacyjne 2023 i 2024     |                                               |
|-----------------------------------------|-----------------------------------------------|
| Wymaganie ogólne                        | Wymaganie szczegółowe                         |
| III. Wykorzystanie i interpretowanie    | Zdający:                                      |
| reprezentacji.                          | VI.4) stosuje wzór na $n$ -ty wyraz i na sumę |
| 2. Dobieranie i tworzenie modeli        | n początkowych wyrazów ciągu                  |
| matematycznych przy rozwiązywaniu       | arytmetycznego.                               |
| problemów praktycznych i teoretycznych. | a.y.metyozmogo.                               |

### Zasady oceniania

2 pkt – zastosowanie poprawnej metody i obliczenie pierwszej raty: 750 zł.

1 pkt – zastosowanie wzoru na sumę n początkowych wyrazów ciągu arytmetycznego i zapisanie równania z niewiadomą  $a_1$  (pierwszą ratą):

$$\frac{2a_1 + 17 \cdot (-30)}{2} \cdot 18 = 8910$$

ALBO

– zastosowanie wzoru na sumę n początkowych wyrazów ciągu arytmetycznego oraz zapisanie równania z niewiadomą  $a_1$ :

$$\frac{2a_1+17\cdot 30}{2}\cdot 18=8910\;$$
 i zapisanie, że  $\,a_1\,$  jest ostatnią ratą,  $\it ALBO$ 

- zapisanie równania

$$a_1 + (a_1 - 30) + (a_1 - 2 \cdot 30) + (a_1 - 3 \cdot 30) + \dots + (a_1 - 17 \cdot 30) = 8910$$
, gdzie  $a_1$  jest pierwszą ratą, lub równania



$$a_1 + (a_1 + 30) + (a_1 + 2 \cdot 30) + (a_1 + 3 \cdot 30) + \dots + (a_1 + 17 \cdot 30) = 8910$$
 (łącznie z zapisem, że  $a_1$  jest ostatnią ratą), *ALBO*

- zapisanie zależności między pierwszą  $(a_1)$  i ostatnią ratą  $(a_{18})$ , np.  $a_1+a_{18}=8910:9$  albo  $a_{18}=a_1-17\cdot 30$  itp., ALBO
- rozpatrzenie osiemnastowyrazowego ciągu arytmetycznego o różnicy (-30) lub 30 i zapisanie co najmniej pierwszego oraz ostatniego wyrazu tego ciągu, np. (x, x-30, x-60, ..., x-510) dla dowolnego x (np. jak w sposobie V), *ALBO*
- zapisanie układu równań, z którego można obliczyć jedną z rat, np.  $\frac{a_9 + a_{10}}{2} = 495 \; \; \text{i} \; \; a_{10} = a_9 30.$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

### **Uwagi:**

- **1.** Jeżeli zdający myli ciąg arytmetyczny z geometrycznym, to otrzymuje **0 punktów** za całe rozwiązanie, o ile nie nabył prawa do innej liczby punktów.
- 2. Jeżeli zdający zapisze tylko 750 zł, to otrzymuje 1 punkt za całe rozwiązanie.
- **3.** Jeżeli zdający rozważa ciąg arytmetyczny o różnicy r=30, obliczy  $a_1=240$  i nie interpretuje  $a_1$  jako ostatniej raty, to może otrzymać co najwyżej **1 punkt** za całe rozwiązanie.
- **4.** Jeżeli zdający błędnie interpretuje liczbę 8910 jako wyraz ciągu rat, to otrzymuje **0 punktów** za całe rozwiązanie.

#### Przykładowe pełne rozwiązania

#### Sposób I

Kolejne raty tworzą ciąg arytmetyczny, w którym  $S_{18}=8910\,$  i  $\,r=-30.$  Korzystamy ze wzoru na sumę  $\,n\,$  początkowych wyrazów ciągu arytmetycznego i otrzymujemy równanie

$$\frac{2a_1 + 17 \cdot (-30)}{2} \cdot 18 = 8910$$

Przekształcając to równanie równoważnie, otrzymujemy

$$9(2a_1 - 510) = 8910$$
$$2a_1 - 510 = 990$$
$$a_1 = 750$$

Pierwsza rata była równa 750 zł.

#### Sposób II

Przyjmujemy, że kolejne (licząc od końca) raty tworzą ciąg arytmetyczny, w którym  $S_{18}=8910\,$  i r=30. Korzystamy ze wzoru na sumę  $n\,$  początkowych wyrazów ciągu arytmetycznego i otrzymujemy równanie

$$\frac{2a_1 + 17 \cdot 30}{2} \cdot 18 = 8910$$

Przekształcając to równanie równoważnie, otrzymujemy

$$9(2a_1 + 510) = 8910$$
$$2a_1 + 510 = 990$$
$$a_1 = 240$$

Ostatnia rata była równa 240 zł.

Obliczamy wysokość pierwszej raty

$$a_{18} = 240 + 17 \cdot 30 = 750$$

Pierwsza rata była równa 750 zł.

#### Sposób III

Kolejne kwoty, o które pomniejszana jest pierwsza rata, tworzą ciąg arytmetyczny, w którym różnica jest równa 30. Wtedy osiemnasta rata jest mniejsza od pierwszej raty o kwotę  $(18-1)\cdot 30=510$  zł.

Stad

$$a_1 + (a_1 - 30) + (a_1 - 60) + (a_1 - 90) + \dots + (a_1 - 510) = 8910$$
  
$$18a_1 - (30 + 60 + 90 + \dots + 510) = 8910$$

gdzie suma siedemnastu liczb 30 + 60 + 90 + ... + 510 jest równa

$$\frac{30 + 510}{2} \cdot 17 = 4590$$

Zatem

$$18a_1 - 4590 = 8910$$
$$18a_1 = 13500$$
$$a_1 = 750$$

Pierwsza rata była równa 750 zł.

### Sposób IV

Kolejne raty tworzą ciąg arytmetyczny, zatem

$$a_1 + a_{18} = a_2 + a_{17} = a_3 + a_{16} = \dots = a_9 + a_{10}$$

Obliczamy wartość pojedynczej sumy

$$a_1 + a_{18} = 8910:9 = 990$$

Korzystając ze wzoru na *n*-ty wyraz ciągu arytmetycznego, mamy

$$a_1 + a_1 - 17 \cdot 30 = 990$$
$$2a_1 = 990 + 510$$



Egzamin maturalny z matematyki na poziomie podstawowym – termin główny 2023 r.

$$a_1 = 750$$

Pierwsza rata była równa 750 zł.

#### Sposób V

Przyjmujemy, że pierwsza rata była równa 1000 zł. Wtedy kolejne raty są równe:

Suma wszystkich rat jest równa  $\ 13\ 410\ z$ ł i przewyższa kwotę z warunków zadania o  $\ 4500\ z$ ł.

Obliczamy, o ile należy zmniejszyć każdą ratę:

$$4500:18=250$$

$$1000 - 250 = 750$$

Pierwsza rata była równa 750 zł.

#### Sposób VI

Kolejne raty są wyrazami osiemnastowyrazowego ciągu arytmetycznego  $(a_n)$  o różnicy r=-30. Obliczymy dowolną ratę (np. dziewiątą), korzystając z własności tego ciągu:

$$\begin{cases} (a_9 + a_{10}) \cdot 9 = 8910 \\ a_{10} = a_9 - 30 \end{cases} \begin{cases} a_9 + a_{10} = 990 \\ a_9 - a_{10} = 30 \end{cases}$$

$$2a_9 = 1020$$
  $a_9 = 510$ 

Zatem

$$a_1 = a_9 - 8 \cdot (-30) = 510 + 240 = 750$$

Pierwsza rata była równa 750 zł.

## Zadanie 18. (0-1)

| Wymagania egzaminacyjne 2023 i 2024                                                                                                                                          |                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Wymaganie ogólne Wymaganie szczegółowe                                                                                                                                       |                                                                                       |
| <ul><li>III. Wykorzystanie i interpretowanie reprezentacji.</li><li>1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.</li></ul> | Zdający: VII.1) wykorzystuje definicje funkcji [] tangens dla kątów od 0° do 180° []. |

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

Wersja A Wersja B

D

## Zadanie 19. (0-1)

| Wymagania egzaminacyjne 2023 i 2024     |                                          |
|-----------------------------------------|------------------------------------------|
| Wymaganie ogólne                        | Wymaganie szczegółowe                    |
| IV. Rozumowanie i argumentacja.         | Zdający:                                 |
| 1. Przeprowadzanie rozumowań, także     | VII.2) korzysta z wzorów                 |
| kilkuetapowych, podawanie argumentów    | $\sin^2 \alpha + \cos^2 \alpha = 1, [].$ |
| uzasadniających poprawność rozumowania, |                                          |
| odróżnianie dowodu od przykładu.        |                                          |

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B A B



## Zadanie 20. (0-1)

| Wymagania egzaminacyjne 2023 i 2024       |                                    |
|-------------------------------------------|------------------------------------|
| Wymaganie ogólne Wymaganie szczegółowe    |                                    |
| II. Wykorzystanie i tworzenie informacji. | Zdający:                           |
| 1. Interpretowanie i operowanie           | VIII.4) korzysta z własności kątów |
| informacjami przedstawionymi w tekście,   | i przekątnych w [] rombach [].     |
| zarówno matematycznym, jak                |                                    |
| i popularnonaukowym, a także w formie     |                                    |
| wykresów, diagramów, tabel.               |                                    |

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B

В

## Zadanie 21. (0-1)

| Wymagania egzaminacyjne 2023 i 2024                                                                                                                                                |                                                                        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
| Wymaganie ogólne Wymaganie szczegółowe                                                                                                                                             |                                                                        |  |
| IV. Rozumowanie i argumentacja.  1. Przeprowadzanie rozumowań, także kilkuetapowych, podawanie argumentów uzasadniających poprawność rozumowania, odróżnianie dowodu od przykładu. | Zdający:<br>VIII.5) stosuje własności kątów wpisanych<br>i środkowych. |  |

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B

B

#### Zadanie 22. (0-2)

| Wymagania egzaminacyjne 2023 i 2024                                                                                                                                                       |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Wymaganie ogólne Wymaganie szczegółowe                                                                                                                                                    |  |  |  |  |  |
| IV. Rozumowanie i argumentacja. 4. Stosowanie i tworzenie strategii przy rozwiązywaniu zadań, również w sytuacjach nietypowych.  Zdający: VIII.8) korzysta z cech podobieństwa trójkątów. |  |  |  |  |  |

#### Zasady oceniania

2 pkt – poprawna metoda i obliczenie pola trójkąta  $T_2$ :  $P_2 = 120$ .

1 pkt – wykorzystanie podobieństwa trójkątów i zapisanie układu równań/równania pozwalającego obliczyć długości przyprostokątnych trójkąta  $T_2$ , np.

$$\frac{a_2}{b_2} = \frac{12}{5}$$
 i  $a_2^2 + b_2^2 = 26^2$ ,  $(12x)^2 + (5x)^2 = 26^2$ 

- zapisanie stosunku pól trójkątów  $T_1$  i  $T_2$ :  $\frac{P_1}{P_2} = \left(\frac{|BC|}{26}\right)^2$  (lub  $\frac{P_2}{P_1} = \left(\frac{26}{|BC|}\right)^2$ ) oraz obliczenie długości odcinka BC: |BC| = 13, ALBO
- obliczenie/zapisanie skali podobieństwa trójkątów, np.  $k=\frac{|EF|}{|BC|}=2$  (lub  $k=\frac{|BC|}{|EF|}=\frac{1}{2}$ ),
- obliczenie/zapisanie długości przyprostokątnych trójkąta  $T_2:10,\,24,\,$  *ALBO*
- obliczenie długości  $c_1$  przeciwprostokątnej trójkąta  $T_1$  **oraz** zapisanie układu równań pozwalającego obliczyć długości  $a_2$ ,  $b_2$  przyprostokątnych trójkąta  $T_2$ , np.  $c_1=13$  i  $\frac{13}{12}=\frac{26}{a_2}$  i  $\frac{13}{5}=\frac{26}{b_2}$ .

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

### Przykładowe pełne rozwiązania

Sposób I

Długości przyprostokątnych trójkątów  $T_1$  i  $T_2$  oznaczymy odpowiednio jako:  $a_1$ ,  $b_1$  oraz  $a_2$ ,  $b_2$ . Z podobieństwa trójkątów  $T_1$  i  $T_2$  wynika, że stosunki odpowiednich boków są równe:

$$\frac{a_2}{b_2} = \frac{a_1}{b_1}$$
 gdzie  $a_1 = 12$ ,  $b_1 = 5$ 

Zatem

$$\frac{a_2}{b_2} = \frac{12}{5}$$
 wiec  $b_2 = \frac{5}{12}a_2$ 



Z twierdzenia Pitagorasa dla trójkąta  $T_2$  mamy:

$$a_2^2 + b_2^2 = 26^2$$

$$a_2^2 + \left(\frac{5}{12}\right)^2 a_2^2 = 26^2$$

$$\frac{169}{144} a_2^2 = 26^2$$

$$a_2 = \sqrt{\frac{144}{169}} \cdot 26 = 24$$

Zatem  $b_2 = \frac{5}{12} \cdot 24 = 10$ .

Obliczamy pole trójkąta  $T_2$ :

$$P_2 = \frac{1}{2} \cdot a_2 \cdot b_2 = \frac{1}{2} \cdot 24 \cdot 10 = 120$$

### Sposób II

Oznaczamy wierzchołki trójkąta  $T_1$  przez A, B, C, gdzie BC jest przeciwprostokątną tego trójkąta, |AB| = 12 i |AC| = 5. Oznaczamy wierzchołki trójkąta  $T_2$  przez D, E, F, gdzie EF jest przeciwprostokatną tego trójkata.

Z twierdzenia Pitagorasa dla trójkąta  $T_1$  mamy

$$|AB|^{2} + |AC|^{2} = |BC|^{2}$$
  
 $12^{2} + 5^{2} = |BC|^{2}$   
 $|BC|^{2} = 169$   
 $|BC| = 13$ 

Obliczamy skalę podobieństwa trójkąta  $T_2$  do trójkąta  $T_1$ :

$$k = \frac{|EF|}{|BC|} = \frac{26}{13} = 2$$

Obliczamy długości przyprostokątnych trójkąta  $T_2$ :

$$|DE| = 2 \cdot |AB| = 2 \cdot 12 = 24$$
  
 $|DF| = 2 \cdot |AC| = 2 \cdot 5 = 10$ 





$$P_2 = \frac{1}{2} \cdot |DE| \cdot |DF| = \frac{1}{2} \cdot 24 \cdot 10 = 120$$



### Sposób III

Oznaczamy wierzchołki trójkąta  $T_1$  przez A, B, C, gdzie BC jest przeciwprostokątną tego trójkąta, |AB|=12 i |AC|=5. Oznaczamy wierzchołki trójkąta  $T_2$  przez D, E, F, gdzie EF jest przeciwprostokątną tego trójkąta.

Z twierdzenia Pitagorasa dla trójkąta  $T_1$  mamy

$$|AB|^{2} + |AC|^{2} = |BC|^{2}$$
  
 $12^{2} + 5^{2} = |BC|^{2}$   
 $|BC|^{2} = 169$   
 $|BC| = 13$ 



$$k = \frac{|EF|}{|BC|} = \frac{26}{13} = 2$$



$$P_1 = \frac{1}{2} \cdot |AB| \cdot |AC| = \frac{1}{2} \cdot 12 \cdot 5 = 30$$

Korzystając z tego, że stosunek pól figur podobnych jest równy kwadratowi skali podobieństwa, obliczamy pole  $P_2$  trójkąta  $T_2$ :

$$\frac{P_2}{P_1} = k^2$$

Zatem

$$P_2 = k^2 \cdot P_1 = 2^2 \cdot 30 = 120$$



## Zadanie 23. (0-1)

| Wymagania egzaminacyjne 2023 i 2024                                                                                                                                                                 |                                                                                                                                                         |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Wymaganie ogólne                                                                                                                                                                                    | Wymaganie szczegółowe                                                                                                                                   |  |  |  |
| IV. Rozumowanie i argumentacja.                                                                                                                                                                     | Zdający:                                                                                                                                                |  |  |  |
| 3. Dobieranie argumentów do uzasadnienia poprawności rozwiązywania problemów, tworzenie ciągu argumentów, gwarantujących poprawność rozwiązania i skuteczność w poszukiwaniu rozwiązań zagadnienia. | IX.1) rozpoznaje wzajemne położenie prostych na płaszczyźnie na podstawie ich równań, w tym znajduje wspólny punkt dwóch prostych, jeśli taki istnieje. |  |  |  |

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B A2 A3

# Zadanie 24. (0-1)

| Wymagania egzaminacyjne 2023 i 2024                                            |                                          |  |  |  |
|--------------------------------------------------------------------------------|------------------------------------------|--|--|--|
| Wymaganie ogólne Wymaganie szczegółowe                                         |                                          |  |  |  |
| III. Wykorzystanie i interpretowanie                                           | Zdający:                                 |  |  |  |
| reprezentacji.                                                                 | IX.2) posługuje się równaniem prostej na |  |  |  |
| 1. Stosowanie obiektów matematycznych płaszczyźnie w postaci kierunkowej, w ty |                                          |  |  |  |
| i operowanie nimi, interpretowanie pojęć wyznacza równanie prostej o zadanych  |                                          |  |  |  |
| matematycznych.                                                                | własnościach (takich jak na przykład []  |  |  |  |
|                                                                                | równoległość [] do innej prostej []).    |  |  |  |

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B D B

### Zadanie 25. (0-1)

| Wymagania egzaminacyjne 2023 i 2024     |                                              |  |  |  |
|-----------------------------------------|----------------------------------------------|--|--|--|
| Wymaganie ogólne                        | Wymagania szczegółowe                        |  |  |  |
| III. Wykorzystanie i interpretowanie    | Zdający:                                     |  |  |  |
| reprezentacji.                          | X.2) posługuje się pojęciem kąta między      |  |  |  |
| 2. Dobieranie i tworzenie modeli        | prostą a płaszczyzną;                        |  |  |  |
| matematycznych przy rozwiązywaniu       | X.3) rozpoznaje w graniastosłupach []        |  |  |  |
| problemów praktycznych i teoretycznych. | kąty między odcinkami (np. krawędziami,      |  |  |  |
|                                         | krawędziami i przekątnymi) [].               |  |  |  |
|                                         | VII.4) oblicza kąty trójkąta i długości jego |  |  |  |
|                                         | boków przy odpowiednich danych               |  |  |  |
|                                         | (rozwiązuje trójkąty []).                    |  |  |  |

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B B D

### Zadanie 26. (0-4)

| Wymagania egzaminacyjne 2023 i 2024                                            |          |  |  |  |  |
|--------------------------------------------------------------------------------|----------|--|--|--|--|
| Wymaganie ogólne Wymaganie szczegółowe                                         |          |  |  |  |  |
| III. Wykorzystanie i interpretowanie                                           | Zdający: |  |  |  |  |
| reprezentacji. X.4) oblicza objętości i pola powie                             |          |  |  |  |  |
| 3. Tworzenie pomocniczych obiektów ostrosłupów, również z wykorzystaniem       |          |  |  |  |  |
| matematycznych na podstawie istniejących, trygonometrii i poznanych twierdzeń. |          |  |  |  |  |
| w celu przeprowadzenia argumentacji lub                                        |          |  |  |  |  |
| rozwiązania problemu.                                                          |          |  |  |  |  |

### Zasady oceniania

- 4 pkt poprawna metoda obliczenia objętości i pola powierzchni całkowitej ostrosłupa oraz poprawne wyniki: V=108 i  $P_c=108+72\sqrt{3}$ .
- 3 pkt obliczenie objętości ostrosłupa:  $\mathit{V}=108$  ALBO
  - obliczenie pola powierzchni całkowitej ostrosłupa:  $P_c = 108 + 72\sqrt{3}$  oraz obliczenie wysokości ostrosłupa: H = 3.
- 2 pkt obliczenie/zapisanie długości krawędzi podstawy:  $a=6\sqrt{3}~$  oraz obliczenie wysokości ostrosłupa: H=3 ALBO
  - obliczenie pola powierzchni całkowitej ostrosłupa:  $P_c = 108 + 72\sqrt{3}$ .



1 pkt – obliczenie/zapisanie długości krawędzi podstawy:  $a=6\sqrt{3}$  ALBO

– obliczenie wysokości ostrosłupa: H = 3.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

## Uwagi:

- **1.** Jeżeli zdający przyjmuje w rozwiązaniu, że trójkąt *ESO* lub *BSD*, lub jedna ze ścian bocznych ostrosłupa jest trójkątem równobocznym i wykorzystuje to do obliczenia długości krawędzi podstawy, to otrzymuje **0 punktów** za całe rozwiązanie (o ile nie nabył prawa do uzyskania 1 punktu za obliczenie wysokości ostrosłupa).
- 2. Jeżeli jedynym błędem zdającego jest:
  - a) zastosowanie niepoprawnej definicji jednej funkcji trygonometrycznej
  - b) błędne zastosowanie twierdzenia Pitagorasa
  - c) zastosowanie niepoprawnej tożsamości  $\sqrt{x^2 + y^2} = x + y$
  - d) przyjęcie, że wysokość ostrosłupa jest równa  $3\sqrt{3}$  i |OE| = 3,

i rozwiązanie zostanie doprowadzone konsekwentnie do końca, to zdający może otrzymać **2 punkty** za całe rozwiązanie.

Jeżeli zdający popełni więcej niż jeden z wymienionych błędów a)–d), to otrzymuje **0 punktów** za całe rozwiązanie.

### Przykładowe pełne rozwiązanie

Przyjmujemy oznaczenia jak na rysunku: a – długość krawędzi podstawy,

H – wysokość ostrosłupa.

Zauważamy, że a > 0 i H > 0.

Ponieważ O jest punktem przecięcia przekątnych kwadratu, to  $|OE|=\frac{1}{2}~a.$ 

W trójkącie prostokątnym SOE mamy





$$\sin 30^{\circ} = \frac{15}{2}$$

$$\sin 30^\circ = \frac{|SO|}{|SE|} = \frac{H}{6}$$

Zatem

$$H = 6 \cdot \sin 30^{\circ} = 6 \cdot \frac{1}{2} = 3$$

Ponadto

$$\cos 30^\circ = \frac{|OE|}{|SE|} = \frac{\frac{1}{2}a}{6} = \frac{a}{12}$$

Stad

$$a = 12 \cdot \cos 30^{\circ} = 12 \cdot \frac{\sqrt{3}}{2} = 6\sqrt{3}$$

Obliczamy objętość  $\it V$  ostrosłupa:

$$V = \frac{1}{3} \cdot \left(6\sqrt{3}\right)^2 \cdot 3 = 108$$

Obliczamy pole powierzchni całkowitej  $P_c$  ostrosłupa:

$$P_c = (6\sqrt{3})^2 + 4 \cdot \frac{1}{2} \cdot 6\sqrt{3} \cdot 6 = 108 + 72\sqrt{3}$$

## Zadanie 27. (0-1)

| Wymagania egzaminacyjne 2023 i 2024    |                                            |  |  |  |
|----------------------------------------|--------------------------------------------|--|--|--|
| Wymaganie ogólne                       | Wymaganie szczegółowe                      |  |  |  |
| I. Sprawność rachunkowa.               | Zdający:                                   |  |  |  |
| Wykonywanie obliczeń na liczbach       | XI.1) zlicza obiekty w prostych sytuacjach |  |  |  |
| rzeczywistych, także przy użyciu       | kombinatorycznych.                         |  |  |  |
| kalkulatora, stosowanie praw działań   |                                            |  |  |  |
| matematycznych przy przekształcaniu    |                                            |  |  |  |
| wyrażeń algebraicznych oraz            |                                            |  |  |  |
| wykorzystywanie tych umiejętności przy |                                            |  |  |  |
| rozwiązywaniu problemów w kontekstach  |                                            |  |  |  |
| rzeczywistych i teoretycznych.         |                                            |  |  |  |

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B B



## Zadanie 28. (0-1)

| Wymagania egzaminacyjne 2023 i 2024                   |          |  |  |  |  |
|-------------------------------------------------------|----------|--|--|--|--|
| Wymaganie ogólne Wymaganie szczegółowe                |          |  |  |  |  |
| III. Wykorzystanie i interpretowanie                  | Zdający: |  |  |  |  |
| reprezentacji. XI.1) zlicza obiekty w prostych sytua  |          |  |  |  |  |
| Stosowanie obiektów matematycznych kombinatorycznych. |          |  |  |  |  |
| i operowanie nimi, interpretowanie pojęć              |          |  |  |  |  |
| matematycznych.                                       |          |  |  |  |  |

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

Wersja A Wersja B C A

### Zadanie 29. (0-2)

| Wymagania egzaminacyjne 2023 i 2024    |                                          |  |  |  |  |  |
|----------------------------------------|------------------------------------------|--|--|--|--|--|
| Wymaganie ogólne                       | Wymaganie szczegółowe                    |  |  |  |  |  |
| I. Sprawność rachunkowa.               | Zdający:                                 |  |  |  |  |  |
| Wykonywanie obliczeń na liczbach       | XII.2) oblicza średnią arytmetyczną i [] |  |  |  |  |  |
| rzeczywistych, także przy użyciu       | znajduje medianę [].                     |  |  |  |  |  |
| kalkulatora, stosowanie praw działań   |                                          |  |  |  |  |  |
| matematycznych przy przekształcaniu    |                                          |  |  |  |  |  |
| wyrażeń algebraicznych oraz            |                                          |  |  |  |  |  |
| wykorzystywanie tych umiejętności przy |                                          |  |  |  |  |  |
| rozwiązywaniu problemów w kontekstach  |                                          |  |  |  |  |  |
| rzeczywistych i teoretycznych.         |                                          |  |  |  |  |  |

### Zasady oceniania

2 pkt – wybranie dwóch poprawnych odpowiedzi.

1 pkt – wybranie jednej poprawnej odpowiedzi.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

## Rozwiązanie

| Wersja A       | Wersja B       |
|----------------|----------------|
| <b>29.1.</b> C | <b>29.1.</b> B |
| <b>29.2.</b> A | <b>29.2.</b> E |

#### Zadanie 30. (0-2)

| Wymagania egzaminacyjne 2023 i 2024     |                                   |  |  |  |  |
|-----------------------------------------|-----------------------------------|--|--|--|--|
| Wymaganie ogólne Wymaganie szczegółowe  |                                   |  |  |  |  |
| III. Wykorzystanie i interpretowanie    | Zdający:                          |  |  |  |  |
| reprezentacji.                          | XII.1) oblicza prawdopodobieństwo |  |  |  |  |
| 2. Dobieranie i tworzenie modeli        | w modelu klasycznym.              |  |  |  |  |
| matematycznych przy rozwiązywaniu       |                                   |  |  |  |  |
| problemów praktycznych i teoretycznych. |                                   |  |  |  |  |

#### Zasady oceniania

- 2 pkt zastosowanie poprawnej metody obliczenia prawdopodobieństwa zdarzenia A i uzyskanie poprawnego wyniku:  $P(A)=\frac{6}{64}$  .
- 1 pkt wypisanie wszystkich zdarzeń elementarnych lub obliczenie/podanie liczby tych zdarzeń:  $|\Omega|=8\cdot 8$  lub sporządzenie tabeli o 64 polach odpowiadających zdarzeniom elementarnym, z których co najmniej jedno pole jest wypełnione, lub sporządzenie pełnego drzewa stochastycznego ALBO
  - wypisanie (zaznaczenie w tabeli) wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A i niewypisanie żadnego niewłaściwego: (3,5),(5,3),(6,5),(5,6),(5,9),(9,5), ALBO
  - podanie liczby wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A: |A|=6, jeśli nie została otrzymana w wyniku zastosowania błędnej metody, ALBO
  - sporządzenie fragmentu drzewa stochastycznego, które zawiera wszystkie gałęzie sprzyjające zdarzeniu A oraz zapisanie prawdopodobieństwa  $\frac{1}{8}$  na co najmniej jednym odcinku każdego z etapów doświadczenia, ALBO
  - podanie prawdopodobieństwa jednoelementowego zdarzenia (elementarnego):  $\frac{1}{64}$ , *ALBO*
  - zapisanie tylko  $P(A) = \frac{6}{64}$ .

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

#### **Uwaga:**

Jeżeli zdający zapisuje tylko liczby 6 lub 64 i z rozwiązania nie wynika znaczenie tych liczb, to otrzymuje **0 punktów** za całe rozwiązanie.

#### Przykładowe pełne rozwiązania

Sposób I

Zbiór wszystkich zdarzeń elementarnych obrazuje tabela  $8 \times 8$ , co oznacza, że moc zbioru  $\Omega$  jest równa 64.



W tabeli zaznaczamy iloczyny podzielne przez 15.

|   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|
| 2 |   |   |   |   |   |   |   |   |
| 3 |   |   |   | × |   |   |   |   |
| 4 |   |   |   |   |   |   |   |   |
| 5 |   | × |   |   | × |   |   | × |
| 6 |   |   |   | × |   |   |   |   |
| 7 |   |   |   |   |   |   |   |   |
| 8 |   |   |   |   |   |   |   |   |
| 9 |   |   |   | × |   |   |   |   |

Zdarzeń sprzyjających wylosowaniu liczb, których iloczyn jest podzielny przez 15, jest 6. Zatem prawdopodobieństwo zdarzenia polegającego na wylosowaniu liczb, których iloczyn jest podzielny przez 15, jest równe  $\frac{6}{64}$ .

### Sposób II (drzewo stochastyczne)

Rysujemy fragment drzewa stochastycznego rozważanego doświadczenia z uwzględnieniem wszystkich istotnych gałęzi.

Oznaczamy przez A zdarzenie polegające na tym, że iloczyn wylosowanych liczb jest podzielny przez 15.



Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{1}{8} \cdot \frac{1}{8} + \frac{1}{8} \cdot \frac{1}{8} = \frac{6}{64}$$

### Sposób III

Zbiór wszystkich zdarzeń elementarnych  $\Omega$  to zbiór par uporządkowanych elementów ze zbioru 8-elementowego, zatem moc zbioru  $\Omega$  jest równa  $|\Omega| = 8 \cdot 8 = 64$ .

Oznaczamy przez A zdarzenie polegające na tym, że iloczyn wylosowanych liczb jest podzielny przez 15.

Wielokrotności liczby 15, które mogą być iloczynami elementów ze zbioru  $\Omega$ , to 15, 30, 45. Wyznaczamy iloczyny, które spełniają powyższy warunek:

 $15 = 3 \cdot 5 = 5 \cdot 3$  – dwa iloczyny – dwa zdarzenia elementarne: (3,5) oraz (5,3),

 $30 = 6 \cdot 5 = 5 \cdot 6$  – dwa iloczyny – dwa zdarzenia elementarne: (6,5) oraz (5,6),

 $45 = 9 \cdot 5 = 5 \cdot 9$  – dwa iloczyny – dwa zdarzenia elementarne: (9,5) oraz (5,9).

Sprzyjających zdarzeń elementarnych jest 6, więc  $P(A) = \frac{6}{64}$ .

### Zadanie 31.1. (0-1)

| Wymagania egzaminacyjne 2023 i 2024    |                                             |  |  |  |  |
|----------------------------------------|---------------------------------------------|--|--|--|--|
| Wymaganie ogólne                       | Wymagania szczegółowe                       |  |  |  |  |
| I. Sprawność rachunkowa.               | Zdający:                                    |  |  |  |  |
| Wykonywanie obliczeń na liczbach       | V.3) [] interpretuje wartości funkcji       |  |  |  |  |
| rzeczywistych, także przy użyciu       | określonych za pomocą [] wzorów [];         |  |  |  |  |
| kalkulatora, stosowanie praw działań   | V.2) oblicza wartość funkcji zadanej wzorem |  |  |  |  |
| matematycznych przy przekształcaniu    | algebraicznym.                              |  |  |  |  |
| wyrażeń algebraicznych oraz            |                                             |  |  |  |  |
| wykorzystywanie tych umiejętności przy |                                             |  |  |  |  |
| rozwiązywaniu problemów w kontekstach  |                                             |  |  |  |  |
| rzeczywistych i teoretycznych.         |                                             |  |  |  |  |

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

### Rozwiązanie

Wersja A Wersja B FP FP



### Zadanie 31.2. (0-2)

| Wymagania egzaminacyjne 2023 i 2024                                                                                                                                                      |                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Wymaganie ogólne                                                                                                                                                                         | Wymaganie szczegółowe                                                                                  |
| <ul><li>III. Wykorzystanie i interpretowanie reprezentacji.</li><li>2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.</li></ul> | Zdający: XIII) rozwiązuje zadania optymalizacyjne w sytuacjach dających się opisać funkcją kwadratową. |

#### Zasady oceniania

- 2 pkt poprawna metoda rozwiązania zadania oraz poprawne wyniki: 11 i 400.
- 1 pkt wyznaczenie postaci kanonicznej funkcji L:  $L(n) = -(n-11)^2 + 400$  ALBO
  - obliczenie, którego dnia analizowanego okresu w aptece obsłużono największą liczbę klientów lub obliczenie największej liczby klientów: 11 lub 400, ALBO
  - obliczenie pierwszej współrzędnej  $\,p\,$  wierzchołka paraboli z własności  $\,L(k_1)=L(k_2),\,$ gdzie  $\,k_1,\,k_2\,$  są różnymi liczbami takimi, że  $\,|p-k_1|=|p-k_2|$ :

$$p = \frac{k_1 + k_2}{2} = 11$$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

### **Uwagi:**

- Jeżeli zdający błędnie oblicza pierwszą współrzędną wierzchołka paraboli, i konsekwentnie do popełnionego błędu oblicza drugą współrzędną, to może otrzymać
   punkt za całe rozwiązanie (o ile pierwsza współrzędna jest liczbą należącą do dziedziny).
- **2.** Jeżeli zdający nie zapisze, że 11 należy do dziedziny funkcji L, to może otrzymać **2 punkty** za całe rozwiązanie.
- 3. Jeżeli zdający oblicza największą wartość funkcji L, korzystając z rachunku różniczkowego, i nie zapisze przedziałów monotoniczności funkcji, to może otrzymać **2 punkty** za całe rozwiązanie (gdy wyznaczy pochodną funkcji L(x) określoną dla  $x \in [1,30]$ , obliczy miejsce zerowe pochodnej funkcji L(x) i wartość funkcji L w tym punkcie).
- **4.** Jeżeli zdający oblicza  $L(11)=400\,$  i L(11-k)=L(11+k), gdzie  $k\neq 0,$  i wskaże wartość największą, to może otrzymać **2 punkty** za całe rozwiązanie.
- **5.** Jeżeli zdający zapisze tylko L(11) = 400, to otrzymuje **1 punkt**.

#### Przykładowe pełne rozwiązania

Sposób I

Wykresem funkcji  $L(n) = -n^2 + 22n + 279$ , gdzie n jest liczbą naturalną z przedziału [1,30], jest zbiór punktów leżących na paraboli o ramionach skierowanych w dół. Przekształcamy wzór funkcji L do postaci kanonicznej:

$$L(n) = -n^2 + 22n + 279 = -[n^2 - 22n] + 279 = -[(n-11)^2 - 11^2] + 279 =$$

$$= -(n-11)^2 + 121 + 279 = -(n-11)^2 + 400$$

Z postaci kanonicznej odczytujemy współrzędne wierzchołka paraboli: W = (11,400).

Interpretujemy otrzymane wartości: największą liczbę klientów obsłużono jedenastego dnia badanego okresu i było to  $400\,$  osób.

#### Sposób II

Wykresem funkcji  $L(n)=-n^2+22n+279$ , gdzie n jest liczbą naturalną z przedziału [1,30], jest zbiór punktów leżących na paraboli o ramionach skierowanych w dół. Jej największa wartość jest drugą współrzędną wierzchołka paraboli W=(p,q). Stąd

$$p = \frac{-22}{2 \cdot (-1)} = 11, \quad 11 \in \{1, 2, ..., 30\}$$
$$q = L(p) = -11^2 + 22 \cdot 11 + 279 = 400$$

Największą liczbę klientów obsłużono jedenastego dnia badanego okresu i było to  $400\,$  osób.

### Sposób III

Wykorzystamy następującą własność funkcji kwadratowej  $L(x)=-x^2+22x+279$ . Jeśli  $L(k_1)=L(k_2)$ , to liczba

$$\frac{k_1 + k_2}{2}$$

jest pierwszą współrzędną wierzchołka paraboli będącej wykresem funkcji L. Jeśli ponadto współczynnik przy  $x^2$  jest liczbą ujemną, to liczba

$$L\left(\frac{k_1+k_2}{2}\right)$$

jest największą wartością funkcji L.

Wykonujemy obliczenia – szukamy argumentów, dla których funkcja przyjmuje tę samą wartość:

$$L(9) = 396$$
  
 $L(10) = 399$   
 $L(11) = 400$   
 $L(12) = 399$ 

Zauważamy, że L(10) = L(12). Ponieważ

$$\frac{10+12}{2} = 11 \quad \text{oraz} \quad 11 \in \{1, \dots 30\}$$



Egzamin maturalny z matematyki na poziomie podstawowym – termin główny 2023 r.

więc funkcja L przyjmuje wartość największą równą  $400\,$  dla argumentu 11. To oznacza, że największą liczbę klientów obsłużono jedenastego dnia badanego okresu i było to  $400\,$  osób.

#### Ocena prac osób ze stwierdzona dyskalkulia

Obowiązują zasady oceniania stosowane przy sprawdzaniu prac zdających bez stwierdzonej dyskalkulii z dodatkowym uwzględnieniem:

- I. **ogólnych zasad oceniania** zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią (punkty 1.–12.);
- II. dodatkowych **szczegółowych zasad oceniania** zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią egzamin maturalny z matematyki, poziom podstawowy, termin główny 2023.

## Ogólne zasady oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią

- 1. Nie należy traktować jako błędy merytoryczne pomyłek, wynikających z:
  - błędnego przepisania
  - · przestawienia cyfr
  - zapisania innej cyfry, ale o podobnym wyglądzie
  - przestawienia położenia przecinka.
- 2. W przypadku błędów, wynikających ze zmiany znaku liczby, należy w każdym zadaniu oddzielnie przeanalizować, czy zdający opanował inne umiejętności, poza umiejętnościami rachunkowymi, oceniane w zadaniu. W przypadku opanowania badanych umiejętności zdający powinien otrzymać przynajmniej 1 punkt.
- 3. We wszystkich zadaniach otwartych, w których wskazano poprawną metodę rozwiązania, części lub całości zadania, zdającemu należy przyznać przynajmniej 1 punkt, zgodnie z kryteriami do poszczególnych zadań.
- 4. Jeśli zdający przedstawia nieprecyzyjne zapisy, na przykład pomija nawiasy lub zapisuje nawiasy w niewłaściwych miejscach, ale przeprowadza poprawne rozumowanie lub stosuje właściwą strategię, to może otrzymać przynajmniej 1 punkt za rozwiązanie zadania.
- 5. W przypadku zadania wymagającego wyznaczenia pierwiastków trójmianu kwadratowego zdający może otrzymać 1 punkt, jeżeli przedstawi poprawną metodę wyznaczania pierwiastków trójmianu kwadratowego, przy podanych w treści zadania wartościach liczbowych.
- 6. W przypadku zadania wymagającego rozwiązania nierówności kwadratowej zdający może otrzymać 1 punkt, jeżeli stosuje poprawny algorytm rozwiązywania nierówności kwadratowej, przy podanych w treści zadania wartościach liczbowych.
- 7. W przypadku zadania wymagającego stosowania własności funkcji kwadratowej zdający może otrzymać 1 punkt za wykorzystanie konkretnych własności funkcji kwadratowej, istotnych przy poszukiwaniu rozwiązania.
- 8. W przypadku zadania wymagającego zastosowania własności ciągów arytmetycznych lub geometrycznych zdający może otrzymać 1 punkt, jeżeli przedstawi wykorzystanie takiej własności ciągu, która umożliwia znalezienie rozwiązania zadania.



- 9. W przypadku zadania wymagającego analizowania figur geometrycznych na płaszczyźnie kartezjańskiej zdający może otrzymać punkty, jeżeli przy poszukiwaniu rozwiązania przedstawi poprawne rozumowanie, wykorzystujące własności figur geometrycznych lub zapisze zależności, pozwalające rozwiązać zadanie.
- 10. W przypadku zadania z rachunku prawdopodobieństwa zdający może otrzymać przynajmniej 1 punkt, jeśli przy wyznaczaniu liczby zdarzeń elementarnych sprzyjających rozważanemu zdarzeniu przyjmuje określoną regularność lub podaje prawidłową metodę wyznaczenia tej liczby zdarzeń elementarnych.
- 11. W przypadku zadania z geometrii zdający może otrzymać przynajmniej 1 punkt, jeżeli podaje poprawną metodę wyznaczenia długości odcinka potrzebnej do znalezienia rozwiązania.
- 12. W przypadku zadania wymagającego przeprowadzenia dowodu (z zakresu algebry lub geometrii), jeśli w przedstawionym rozwiązaniu zdający powoła się na własność, która wyznacza istotny postęp, prowadzący do przeprowadzenia dowodu, to może otrzymać 1 punkt.
- II. <u>Dodatkowe szczegółowe zasady oceniania</u> zadań otwartych w przypadku arkuszy osób ze stwierdzona dyskalkulią

#### Zadanie 3.

1 pkt – zastosowanie wzoru skróconego mnożenia na kwadrat sumy do wyrażenia  $(2n+1)^2$ .

#### Zadanie 9.

- 2 pkt zapisanie dwóch pierwiastków wielomianu  $3x^3 2x^2 12x + 8$  (o ile nie zostały one uzyskane w wyniku błędnej metody).
- 1 pkt przekształcenie wielomianu  $3x^3-2x^2-12x+8$  do postaci  $3(x^2-4)-2(x^2-4)$  lub  $x^2(3x-2)-4(3x-2)$ .

#### Zadanie 17.

Stosuje się zasady oceniania arkusza standardowego.

#### Zadanie 22.

- 1 pkt obliczenie długości  $c_1$  przeciwprostokątnej trójkąta  $T_1$  oraz wykorzystanie podobieństwa trójkątów i zapisanie związku między długościami przyprostokątnych trójkąta  $T_2:c_1=13$  i  $\frac{a_2}{b_2}=\frac{12}{5}$  ALBO
  - obliczenie długości  $c_1$  przeciwprostokątnej trójkąta  $T_1$  oraz zapisanie równania pozwalającego obliczyć długość jednej z przyprostokątnych trójkąta  $T_2$ , np.

$$c_1 = 13 \text{ i } \frac{13}{12} = \frac{26}{a_2}, \ c_1 = 13 \text{ i } \frac{13}{5} = \frac{26}{b_2}.$$

#### Zadanie 26.

1 pkt – zastosowanie definicji funkcji trygonometrycznej lub związków miarowych w trójkącie o kątach  $30^\circ, 60^\circ, 90^\circ$  i zapisanie równania z jedną niewiadomą (wysokością ostrosłupa lub połową długości krawędzi podstawy), np.  $\frac{|OE|}{6} = \cos 30^\circ, \frac{H}{6} = \frac{1}{2}$ .

#### Zadanie 30.

1 pkt – zapisanie jedynie liczby 64 (należy traktować to jako wyznaczenie liczby wszystkich zdarzeń elementarnych).

#### **Uwagi:**

- 1. W ocenie rozwiązania tego zadania (dla zdających z dyskalkulią) <u>nie stosuje się</u> uwagi ze standardowych zasad oceniania.
- 2. Jeżeli zdający poprawnie wypisze/zaznaczy wszystkie zdarzenia elementarne sprzyjające zdarzeniu A, lecz popełni błąd w ich zliczeniu (|A|=5) i konsekwentnie zapisze wynik  $\frac{5}{64}$ , to otrzymuje **2 punkty**.

#### Zadanie 31.2.

Stosuje się zasady oceniania arkusza standardowego.