Crowdflower Competition Analysis

Result

Mikhail Trofimov

Stanislav Semenov

Dmitry Altukhov

In the money		■ Gold ■ Silver ■ Bronze			
#	△pub	Team Name	Score ?	Entries	Last
1	<u>^</u> 2	Chenglong Chen	0.72189	160	2y
2	▲ 4	Mikhail & Stanislav & Dmi	0.71871	83	2y
3	▼ 2	Quartet	0.71861	279	2y
4	▲1	Shize & Shail & Phil	0.71802	252	2y
5	8	l love Phở Bò	0.71700	48	2y
6	▼ 2	Gzs_iceberg	0.71681	122	2y
7	▲1	YDM	0.71374	283	2y
8	▲ 10	A & A & G	0.71297	229	2y
9	▲ 7	ë	0.71265	96	2y
10	4	Alexander D'yakonov (PZ	0.71262	93	2y

Agenda

We will discuss:

- Problem formulation
- Data
- Metric
- Basic solution
- Advanced features and tricks

Problem formulation

https://www.kaggle.com/c/crowdflower-search-relevance

Assessors' UI

How well does this result match the query?

Off Topic

Acceptable

- · The intent of the query was not matched
- · The results are irrelevant to the search query

- · The intent of the query is poorly matched
- · The result is somewhat related to the guery, but it not a good match

Good

- · Matches most of the query intent or the most important part of the query.
- · Technically, all parts of the intent are satisfied but result doesn't provide a full, clear and complete answer to the search.

Excellent

- · The query intent is clearly satisfied. This is exactly the product I was looking for
- · Result is high quality
- · Specifics of the Query appear in the Result

Data

pd.read_csv('./data/train.csv')[:4]

	id	query	product_title	product_description	median_relevance	relevance_variance
0	1	bridal shower decorations	Accent Pillow with Heart Design - Red/Black	Red satin accent pillow embroidered with a hea	1	0.000
1	2	led christmas lights	Set of 10 Battery Operated Multi LED Train Chr	Set of 10 Battery Operated Train Christmas Lig	4	0.000
2	4	projector	ViewSonic Pro8200 DLP Multimedia Projector	NaN	4	0.471
3	5	wine rack	Concept Housewares WR-44526 Solid-Wood Ceiling	Like a silent and sturdy tree, the Southern En	4	0.000

Metric

- Quadratic weighted kappa
- Typical value range: from 0 (random) to 1 (complete agreement)
- May go below 0

In order to understand this metric, let's see how to calculate it.

Quadratic Weighted Kappa: C

Normalized Confusion Matrix, C

0.07	0.00	0.01	0.00
0.01	0.12	0.01	0.01
0.01	0.01	0.15	0.01
0.04	0.03	0.04	0.50

Ratings have N=4 possible values

Quadratic Weighted Kappa: E

0.08 0.14 0.17 0.61

Predictions Histogram

Expectation Matrix, E

0.01	0.01	0.02	0.04
0.02	0.02	0.03	0.07
0.02	0.03	0.03	0.09
0.08	0.10	0.12	0.31

Quadratic Weighted Kappa: W

Wight Matrix, W

0.00	0.11	0.44	1.00
0.11	0.00	0.11	0.44
0.44	0.11	0.00	0.11
1.00	0.44	0.11	0.00

$$W_{i,j} = \frac{(i-j)^2}{(N-1)^2}$$

Quadratic Weighted Kappa

Normalized Confusion Matrix, C

0.07	0.00	0.01	0.00
0.01	0.12	0.01	0.01
0.01	0.01	0.15	0.01
0.04	0.03	0.04	0.50

Expectation Matrix, E

0.01	0.01	0.02	0.04
0.02	0.02	0.03	0.07
0.02	0.03	0.03	0.09
0.08	0.10	0.12	0.31

Wight Matrix, W

Miatrix, W				
0.00	0.11	0.44	1.00	
0.11	0.00	0.11	0.44	
0.44	0.11	0.00	0.11	
1.00	0.44	0.11	0.00	

$$k = 1 - \frac{\sum_{i,j} (\mathbf{W_{i,j}} * \mathbf{C_{i,j}})}{\sum_{i,j} (\mathbf{W_{i,j}} * \mathbf{E_{i,j}})}$$

Our solution

Main points:

- Text features
- Extending of queries
- Per-query models
- Sample weighting
- Bumper features
- Ensemble
- Kappa optimization

Text features: similarities

We have 3 text fields - a query, a title and a description.

That is, for (query, title) and (query, description) pairs we calculated:

- The number of matching words,
- Cosine distance between TF-IDF representations
- Distance between the average word2vec vectors
- Levenshtein distance

Text features: symbolic n-grams

text: Once upon a time

Once upon a time 'Once_'

Once upon a time 'nce_u'

Once upon a time 'ce_up'

Once upon a time 'e_upo'

and so on...

3 important points about data

- Queries are very short
- Number of unique queries is 261
- Queries are the same in train and test

Extending of queries

data[['query_original', 'query_extended']]

	query_original	query_extended
0	bridal shower decorations	shower bridal banner person decor mr 192 30 36 new
1	led christmas lights	light led christma white wire set green warm multi foot
2	projector	projector led home hdmi theater hd dlp lcd 1080p multimedia
3	wine rack	wine rack bottl wood wall black storag glass mount metal
4	light bulb	light bulb led pack watt white ge 4 a19 great
5	oakley polarized radar	oakley polar radar sunglass s path men len pitch replac
6	boyfriend jeans	boyfriend jean s women crop mossimo destroy distress fade glori
7	screen protector samsung	screen samsung protector galaxi insten note glass zagg s4 temper
8	pots and pans set	set cookwar piec pot pan cook stainless steel 10 non
9	waffle maker	waffl maker belgian black oster classic rotari sandwich duraceram chef
10	oakley radar	oakley radar iridium replac size pitch lens rang len vr28

Per-query models

```
train_df['query'].nunique()

261

test_df['query'].nunique()

261

len(set(train_df['query'].unique()).intersection(\
    set(train_df['query'].unique())))

261
```

Sets of queries in the train and the test are the same! We can split our model into 261 subtasks.

- We are given variance of scores for each (query, product) pair
- Large variance means low confidence about label

- We are given variance of scores for each (query, product) pair
- Large variance means low confidence about label
- 1. Simple heuristic: $w = \frac{1}{1 + \text{var}}$

- We are given variance of scores for each (query, product) pair
- Large variance means low confidence about label
- 1. Simple heuristic: $w = \frac{1}{1 + \text{var}}$
- 2. Restore individual scores using median and variance statistics:
 - It's possible to restore scores assuming that there are 3 raters. Example: if median=3.0 and variance=0.66 then scores probably are [2,3,4]

- We are given variance of scores for each (query, product) pair
- Large variance means low confidence about label
- 1. Simple heuristic: $w = \frac{1}{1 + \text{var}}$ Worked quite good in this case
- Restore individual scores using median and variance statistics:
 - It's possible to restore scores assuming that there are 3 raters. Example: if median=3.0 and variance=0.66 then scores probably are [2,3,4]

3x data, slow down training, almost no gain

Bumper features

3 artificially created binary tasks used as features:

"Is it true that the target class number greater than 1?"

1	2	3	4

"Is it true that the target class number greater than 2?"

"Is it true that the target class number greater than 3?"

1	2	3	4
---	---	---	---

Ensemble

Ensemble

Kappa optimization

- Metric has properties of both classification and regression
- We consider task as regression
- Needed a way to turn real-valued predictions into classes
- We varied thresholds for every class and select the best ones

This significantly increased our score.

Conclusion

- Most important points of our solution:
- Symbolic n-grams
- Expansion of queries
- Optimization of thresholds for Kappa