

Generating YARA Rules by Classifying Malicious Byte Sequences

Andrew Davis

bio

- andrew davis / @gradientjanitor
- principal data scientist at elastic
- teaching computers to detect malware since 2014

intro & motivation

intro & motivation

- yara: great first line of defense against malware
- deep learning: effective, but decisions are usually incomprehensible
- but model architectures are really really flexible!
- set up the model so it is interpretable from the get-go, perhaps at the expense of model performance
- wouldn't it be neat if we turned this interpretability into a yara rule generator?

related work

Raff et al, <u>Automatic Yara Rule Generation Using Biclustering</u>

Automatic Yara Rule Generation Using Biclustering

Richard Zak Edward Raff Gary Lopez Munoz Laboratory for Physical Sciences Laboratory for Physical Sciences Laboratory for Physical Sciences Booz Allen Hamilton Booz Allen Hamilton Booz Allen Hamilton edraff@lps.umd.edu rzak@lps.umd.edu dlmgarv@lps.umd.edu William Fleming Hyrum S. Anderson* Bobby Filar U.S. Navy Microsoft Elastic NV william.r.fleming1@navy.mil hvruma@microsoft.com robert.filar@elastic.co Charles Nicholas James Holt Univ. of Maryland, Baltimore County Laboratory for Physical Sciences nicholas@umbc.edu holt@lps.umd.edu

Marcelli & Squillero, <u>YaYaGen</u>

Joshua Saxe, <u>YaraML</u>

```
rule Generic Powershell Detector
$s4 = "DownloadFile"
                           fullword // weight: 3.257
$$5 = "WOW64"
                           fullword // weight: 3.232
                           fullword // weight: 3.021
$s6 = "bypass"
                           fullword // weight: 2.68
$s8 = "obJEct"
                           fullword // weight: 2.679
                            fullword // weight: 2.592
$s11 = "sanratashok"
                            fullword // weight: 2.548
((#s0 * 5.567) + (#s1 * 4.122) + (#s2 * 3.904) + (#s3 * 3.820) +
(#s4 * 3.257) + (#s5 * 3.232) + (#s6 * 3.021) + (#s7 * 2.680) +
(#s8 * 2.679) + (#s9 * 2.659) + (#s10 * 2.592) + (#s11 * 2.548) +
```


making an interpretable model

- deep learning models look at the whole of the sample to get a score
- what if we set up the model so we get a score for any contiguous series of bytes?
- we could feed in malicious samples and get exactly what ranges of bytes the model considered to be malicious
- then, we can create yara rules based on the byte sequences the model thought were malicious

```
f("you\ have\ been\ pwned") = 0.99 f("!This\ program\ cannot\ be\ run\ in\ DOS\ mode.") = 0.00
```


convolutional neural networks: a primer

convolution

• sweep over chunks of contiguous bytes, applying the same function each time

stacking convolutions

more depth: wider receptive field

how the model works

- just stacks of convolution/nonlinearity. we don't want to reduce dimensionality
- we want each sequence of input bytes to eventually get a score
- ullet deeper architecture o larger receptive field o longer strings for yara rules
- feed-forward 1000 bytes \rightarrow get (1000 receptive field size) scores

training the model

model training - finding needles in a haystack

- "malicious" string: a string seen ONLY in malicious samples
- "benign" string: a string that can be seen in either malicious or benign samples
- use direct interpretability of output scores to assess benignness/maliciousness
- how to get the model to output zeros for almost everything except for strings associated with maliciousness?

model training - top-k selection

• when training the model, select the top-k valued scores to update

 allows malicious samples to have sparse outputs while avoiding updating garbage back through "benign" strings

model training - top-k selection

• when updating the model, select the top-k valued scores to backpropagate through

- allows malicious samples to have sparse outputs while avoiding backpropagating garbage to "benign" strings
- while also forcing benign sample outputs to be very close to zero

training the model - fitting onto a gpu

- gpus only have so much memory need to be sparing
- break each sample into 64kb segments
- for each sample:
 - feed each segment through the model
 - keep the segment associated with the max seen score and discard everything else

training the model - reducing FPs

- neural nets work very hard to find shortcuts that solve the problem in unexpected ways
- without correction, the model fixates on strings seen infrequently in benign samples, but frequently in malicious samples
- keep a rolling buffer of FPs from the last ~10 minutes to throw into each training minibatch
- sample FPs with more malicious scores more frequently than FPs with less malicious scores

signature generation

signature generation

per sample

in bulk

signature generation - sample by sample

terminal time

signature generation - in bulk

- run model over a corpus of malicious and benign samples
- dump out signature associated with the max score for each sample
- banish signatures from benign samples with high scores
- sort signatures by prevalence
- cluster signatures together based on hamming distance
- replace differing bytes of signatures in a cluster with wildcards to increase signature generality

```
      d2
      48
      8b
      05
      04
      73
      21
      00
      48
      8b

      d2
      48
      8b
      05
      04
      46
      21
      00
      48
      8b

      d2
      48
      8b
      05
      04
      75
      21
      00
      48
      8b

      d2
      48
      8b
      05
      04
      9f
      21
      00
      48
      8b

      d2
      48
      8b
      05
      04
      33
      21
      00
      48
      8b

      d2
      48
      8b
      05
      04
      9a
      21
      00
      48
      8b

      d2
      48
      8b
      05
      04
      87
      21
      00
      48
      8b

      d2
      48
      8b
      05
      04
      21
      21
      00
      48
      8b

      d2
      48
      8b
      05
      04
      58
      21
      00
      48
      8b

      d2
      48
      8b
      05
      04
      4a
      21
      00
      48
      8b

      d2
      48
```


signature efficacy

	ELF	Macho	PE
Collection Date	2017-2021	20xx-2021	2020-2021
Sample Breakdown	84k bad, 5.5mil good (4.5mil Ubuntu, 1mil VT)	1mil bad, 9mil good	10mil bad, 10mil good
TPR/FPR	81.6% TPR / 0% FPR (Ubuntu) / 0.15% FPR (VT)	90% TPR / 0.01% FPR	79.9% TPR / 0.07% FPR
Rule Count	950 rulesules	11 rules (!!)	700 rules

future work

- utilizing more yara functionality:
 - string offset
 - string count
 - complex combinations of strings and logical statements in yara rules
- model-driven string wildcarding
 - use input sensitivity to determine bytes the model doesn't care about
- integrate tool with parsing libraries
 - provide context with section, surrounding opcodes, ...

thank you!!