DATA VISUALIZAION

Lab 4

Utkarsh Bhangale 2020802124

```
from sklearn.datasets import load_iris
iris= load_iris()
import pandas as pd

df = pd.read_csv("/content/Iris.csv")
```

Basic Analysis

```
print(iris.feature_names)
    ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

df.head()
```

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

df.shape

(150, 6)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

	20.00 00200000 (00000		0 00=00)			
	#	Column	Non-Null Count	Dtype		
	0	Id	150 non-null	int64		
	1	SepalLengthCm	150 non-null	float64		
	2	SepalWidthCm	150 non-null	float64		
	3	PetalLengthCm	150 non-null	float64		
	4	PetalWidthCm	150 non-null	float64		
	5	Species	150 non-null	object		
<pre>dtypes: float64(4),</pre>		es: float64(4),	<pre>int64(1), object(1)</pre>			

memory usage: 7.2+ KB

df.describe()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

df.value_counts("Species")

Species

plt.show()

Iris-setosa 50

Iris-versicolor 50

Iris-virginica 50

dtype: int64

DATA VISUALIZATION

```
# importing packages
import seaborn as sns
import matplotlib.pyplot as plt
sns.countplot(x='Species', data=df, )
```

Bi-variate Analysis

Histograms

```
# importing packages
import seaborn as sns
import matplotlib.pyplot as plt

fig, axes = plt.subplots(2, 2, figsize=(10,10))

axes[0,0].set_title("Sepal Length")
axes[0,0].hist(df['SepalLengthCm'], bins=7)

axes[0,1].set_title("Sepal Width")
axes[0,1].hist(df['SepalWidthCm'], bins=5);

axes[1,0].set_title("Petal Length")
axes[1,0].hist(df['PetalLengthCm'], bins=6);

axes[1,1].set_title("Petal Width")
axes[1,1].hist(df['PetalWidthCm'], bins=6);
```


plt.show()


```
# Importing
import sklearn
import pandas as pd
import seaborn as sns
import numpy as np
# Load the dataset
df = pd.read csv('Iris.csv')
# IQR
Q1 = np.percentile(df['SepalWidthCm'], 25,
                interpolation = 'midpoint')
Q3 = np.percentile(df['SepalWidthCm'], 75,
                interpolation = 'midpoint')
IQR = Q3 - Q1
print("Old Shape: ", df.shape)
# Upper bound
upper = np.where(df['SepalWidthCm'] >= (Q3+1.5*IQR))
# Lower bound
lower = np.where(df['SepalWidthCm'] <= (Q1-1.5*IQR))</pre>
# Removing the Outliers
df.drop(upper[0], inplace = True)
df.drop(lower[0], inplace = True)
print("New Shape: ", df.shape)
```

sns.boxplot(x='SepalWidthCm', data=df)

```
Old Shape: (150, 6)
      New Shape: (146, 6)
      <ipython-input-45-46d5a6bf15b0>:11: DeprecationWarning: the `interpolation=` argument to percentile was re
      Users of the modes 'nearest', 'lower', 'higher', or 'midpoint' are encouraged to review the method they us
        Q1 = np.percentile(df['SepalWidthCm'], 25,
      <ipython-input-45-46d5a6bf15b0>:14: DeprecationWarning: the `interpolation=` argument to percentile was re
      Users of the modes 'nearest', 'lower', 'higher', or 'midpoint' are encouraged to review the method they us
        Q3 = np.percentile(df['SepalWidthCm'], 75,
      <Axes: xlabel='SepalWidthCm'>
Sepal Length
  # Load the dataset
  df = pd.read_csv('Iris.csv')
  # IQR
  Q1 = np.percentile(df['SepalLengthCm'], 25,
                      interpolation = 'midpoint')
  Q3 = np.percentile(df['SepalLengthCm'], 75,
                      interpolation = 'midpoint')
  IQR = Q3 - Q1
  print("Old Shape: ", df.shape)
  # Upper bound
  upper = np.where(df['SepalLengthCm'] >= (Q3+1.5*IQR))
  # Lower bound
  lower = np.where(df['SepalLengthCm'] <= (Q1-1.5*IQR))</pre>
```

Removing the Outliers

df.drop(upper[0], inplace = True)
df.drop(lower[0], inplace = True)

sns.boxplot(x='SepalLengthCm', data=df)

print("New Shape: ", df.shape)

```
Old Shape: (150, 6)
      New Shape: (150, 6)
      <ipython-input-47-31803aa77bb5>:11: DeprecationWarning: the `interpolation=` argument to percentile was re
      Users of the modes 'nearest', 'lower', 'higher', or 'midpoint' are encouraged to review the method they us
        Q1 = np.percentile(df['SepalLengthCm'], 25,
      <ipython-input-47-31803aa77bb5>:14: DeprecationWarning: the `interpolation=` argument to percentile was re
      Users of the modes 'nearest', 'lower', 'higher', or 'midpoint' are encouraged to review the method they us
        Q3 = np.percentile(df['SepalLengthCm'], 75,
      <Axes: xlabel='SepalLengthCm'>
Petal Length
       I I
  # Importing
  import sklearn
  import pandas as pd
  import seaborn as sns
  import numpy as np
  # Load the dataset
  df = pd.read csv('Iris.csv')
  # IQR
  Q1 = np.percentile(df['PetalLengthCm'], 25,
                     interpolation = 'midpoint')
  Q3 = np.percentile(df['PetalLengthCm'], 75,
                     interpolation = 'midpoint')
  IQR = Q3 - Q1
  print("Old Shape: ", df.shape)
  # Upper bound
  upper = np.where(df['PetalLengthCm'] >= (Q3+1.5*IQR))
  # Lower bound
  lower = np.where(df['PetalLengthCm'] <= (Q1-1.5*IQR))</pre>
  # Removing the Outliers
  df.drop(upper[0], inplace = True)
  df.drop(lower[0], inplace = True)
  print("New Shape: ", df.shape)
```

sns.boxplot(x='PetalLengthCm', data=df)

Old Shape: (150, 6) New Shape: (150, 6)

<ipython-input-48-397f8315ca90>:11: DeprecationWarning: the `interpolation=` argument to percentile was re
Users of the modes 'nearest', 'lower', 'higher', or 'midpoint' are encouraged to review the method they us
Q1 = np.percentile(df['PetalLengthCm'], 25,

<ipython-input-48-397f8315ca90>:14: DeprecationWarning: the `interpolation=` argument to percentile was re
Users of the modes 'nearest', 'lower', 'higher', or 'midpoint' are encouraged to review the method they us
Q3 = np.percentile(df['PetalLengthCm'], 75,

<Axes: xlabel='PetalLengthCm'>

Petal Width

```
# Importing
import sklearn
import pandas as pd
import seaborn as sns
import numpy as np
# Load the dataset
df = pd.read csv('Iris.csv')
# IQR
Q1 = np.percentile(df['PetalWidthCm'], 25,
                interpolation = 'midpoint')
Q3 = np.percentile(df['PetalWidthCm'], 75,
                interpolation = 'midpoint')
IQR = Q3 - Q1
print("Old Shape: ", df.shape)
# Upper bound
upper = np.where(df['PetalWidthCm'] >= (Q3+1.5*IQR))
# Lower bound
lower = np.where(df['PetalWidthCm'] <= (Q1-1.5*IQR))</pre>
# Removing the Outliers
df.drop(upper[0], inplace = True)
df.drop(lower[0], inplace = True)
print("New Shape: ", df.shape)
```

sns.boxplot(x='PetalWidthCm', data=df)

Old Shape: (150, 6)