CC0288 - Inferência Estatística I

Definições - 10/04/2023

Prof. Maurício Mota

Vamos apresentar as principais definições usadas na disciplina Inferência Estatística I.

1. População.

População é o conjunto de todos os elementos ou resultados sob investigação.

2. Amostra.

Amostra é qualquer subconjunto da população.

3. Amostra Aleatória Simples.

Uma amostra aleatória simples de tamanho n de uma variável aleatória X, com uma dada distribuição, é o conjunto de n variáveis aleatórias independentes X_1, X_2, \ldots, X_n , cada uma com a mesma distribuição de X.

Observação 1: A lei de X descreve a nossa população em estudo.

4. Parâmetro.

Um parâmetro é uma medida usada para descrever uma característica da população.

5. Espaço Paramétrico.

É o conjunto Θ em que o(s) parâmetro(s) que descreve(m) a população varia(m).

6. Estatística

Uma estatística é uma característica da amostra, ou seja, uma estatística T é uma função de X_1, X_2, \ldots, X_n que não envolva parâmetro desconhecido

7. Estimador.

Um estimador T do parâmetro θ é qualquer função das observações amostrais, ou seja,

$$T = h(X_1, X_2, \dots, X_n),$$

que não envolva parâmetro(s) desconhecidos.

Assim uma estatística se torna um estimador quando associada a um parâmetro populacional.

8. Estimador Não Viciado.

O estimador T é não viciado para o parâmetro θ se

$$E(T) = \theta, \forall \ \theta \in \Theta.$$

9. Viés do Estimador.

A diferença

$$B(T) = E(T) - \theta$$
,

é chamada de viés de T.

10. Estimativa.

Estimativa é o valor assumido pelo estimador em uma particular amostra.

11. Erro Quadrático Médio

O erro quadrático médio de um estimador T do parâmetro θ é dado por:

$$EQM[T] = E [(T - \theta)]^2 = Var(T) + [E(T) - \theta]^2$$

12. Estimador Assintoticamente Não Viciado.

Uma sequência $\{T_n\}$ de estimadores de θ é dita assintoticamente não viciada para θ se:

$$\lim_{n\to\infty} E(T_n) = \theta.$$

13. Estimador Consistente.

Uma sequência $\{T_n\}$ de estimadores de θ é dita consistente para θ se para todo $\epsilon > 0$:

$$\lim_{n \to \infty} P\left(|T_n - \theta| > \epsilon\right) = 0.$$

Uma outra definição seria: Uma sequência $\{T_n\}$ de estimadores de θ é dita consistente para θ se:

$$\lim_{n \to \infty} E(T_n) = \theta \ e \ \lim_{n \to \infty} Var(T_n) = 0.$$

14. Erro Padrão de um Estimador.

Seja T um estimador do parâmetro θ , chamaremos de erro padrão de T a quantidade

$$EP(T) = \sqrt{Var(T)}.$$

15. Eficiência Entre Dois Estimadores.

Se T_1 e T_2 são dois estimadores de um mesmo parâmetro θ e se tivermos

$$EQM(T_1) \leq EQM(T_2)$$

para todo θ no espaço paramétrico ocorrendo porém a desigualdade estrita para pelo menos um valor de θ .

Se T_1 e T_2 forem não viciados basta comparar suas variâncias.

16. Função Escore.

Seja X uma variável aleatória com função de probabilidade ou função densidade de probabilidade $f(x|\theta)$ com suporte A que não depende de θ . A quantidade

$$V = \frac{\partial \log f(X; \theta)}{\partial \theta}$$

é chamada função escore.

Note que E(V) = 0.

Logo

$$Var(V) = E(V^2).$$

17. Informação de Fisher.

A variância de função escore V é chamada de informação de Fisher.

$$I_F(\theta) = E(V^2) = E\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right)^2.$$

18. Desigualdade da Informação.

Seja T um estimador não viciado de $g(\theta)$.

Então

$$Var(T) \ge \frac{(g'(\theta))^2}{nI_F(\theta)},$$

com as condições de regularidade satisfeitas.

19. Eficiência Geral

Chamamos de eficiência de um estimador T, não viciado para o parâmetro θ , o quociente

$$e(T) = \frac{LI(\theta)}{Var(T)},$$

em que

$$LI = \frac{1}{n \ I_F(\theta)}$$

é o limite inferior da variância dos estimadores não viciados de θ .

Se

$$e(T) = 1$$

T é dito ser eficiente.

20. Distribuição Conjunta da Amostra

$$f(x_1, x_2, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i | \theta).$$

21. Função de Verossimilhança

Basta analisar a distribuição conjunta da Amostra como função do parâmetro θ

$$L(\theta) = \prod_{i=1}^{n} f(x_i|\theta) I_{\Theta}(\theta).$$

22. Critério da Fatoração de Neyman:

Seja X_1, X_2, \ldots, X_n) uma amostra aleatória da distribuição com função de densidade (ou probabilidade) $f(x|\theta)$. Seja $T = T(X_1, X_2, \ldots, X_n)$ uma estatística. Dizemos que T é uma estatística suficiente para θ , se e somente se, a distribuição conjunta da amostra puder ser fatorada da forma:

$$\prod_{i=1}^{n} f(x_i|\theta) = h(x_1, x_2, \dots, x_n) \ g_{\theta} (T(x_1, x_2, \dots, x_n)).$$

23. Estatística Completa.

Uma estatística $T = T(X_1, X_2, \dots, X_n)$ é dita ser completa em relação à família

$$\{f(x|\theta,\theta\in\Theta)\}\$$

se a única função real \mathbf{g} definida no domínio de \mathbf{T} , tal que

$$E[g(T)] = 0, \forall \theta \in \Theta,$$

é a função nula, isto é,

$$G(T) = 0$$
,

com probabilidade um.

24. Rao-Blackwell.

Seja X_1, X_2, \ldots, X_n uma amostra aleatória de X com f.p. ou f.d.p. $f(x|\theta)$. Seja S uma estatística suficiente para θ .

Seja T um estimador não viciado de $g(\theta)$.

Defina

$$T^* = E(T|S).$$

Note que T^* é uma estatística que é função de S. Além disso:

$$E(T^*) = g(\theta)$$
 ; $Var(T^*) \le Var(T)$.

25. Lehmann-Scheffé.

Seja X_1, X_2, \ldots, X_n uma amostra aleatória de X com f.p. ou f.d.p. $f(x|\theta)$. Seja S uma estatística suficiente e completa para θ . Se T = h(S), uma função de S é um estimador não viciado de $g(\theta)$, então T é o melhor estimador não viciado de variância uniformemente mínima (**ENVVUM**) de $g(\theta)$.

26. Família Exponencial.

Dizemos que a distribuição da variável aleatória X pertence 'a família exponencial unidimensional de distribuições se pudermos escrever sua f.p ou f.d.p da forma:

$$\log (f(x|\theta)) = c(\theta) T(x) + d(\theta) + b(x), \ x \in A,$$

em que \mathbf{c} e \mathbf{d} são funções reais de θ e T e b são funções reais de \mathbf{x} e A não depende de θ .

Fato 1: Seja Y = T(X) então

$$E(Y) = E(T(X)) = -\frac{d'(\theta)}{c'(\theta)}.$$

Fato 2: Seja Y = T(X)

então

$$Var(Y) = Var[T(X)] = \frac{c''(\theta) \ d'(\theta) - d''(\theta) \ c'(\theta)}{(c'(\theta))^3}.$$

Fato 3: Seja

$$S = \sum_{i=1}^{n} T(X_i)$$

Então S é uma estatística suficiente e completa para θ .

Além disso

$$E(S) = n E(T(X))$$
 $Var(S) = n Var(T(X)).$

S será usada para a realização do teste de hipóteses bem como para achar a quantidade pivotal para achar um intervalo de confiança.

A função geradora de momentos de S é dada por:

$$M_S(t) = [M_X(t)]^n$$

que será usada para achar a distribuição amostral de S.

Fato 4: Na procura do melhor estimador de variância mínima para $g(\theta)$ basta encontrar uma função de S, h(S), de sorte que

$$E[h(S)] = g(\theta).$$