Online Variants of Value Iteration and Approximation Via State Aggregation

Daniel Russo

March 23, 2020

Columbia University

Table of Contents

Preview of value function approximation

Fitted value iteration with state aggregation

An online algorithm provides a better state-relevance weighting

Real time value iteration and optimistic exploration

Convergence analysis of real time value iteration

Real-time value iteration with state-aggregation

Where are we heading? Value function approximation

- State $s \in \{0,1\}^{10 \times 20}$ is a board configuration.
- One approach is to fit a linear approximation:
 J*(s) ≈ J_θ(s) := φ(s)^T θ.
- $\phi(s)$ encodes features. E.g. column heights, inter-column height differences, max height etc.
- Greedy action under J_{θ} is simple: move the piece to the position with minimal estimated cost-to-go.

Fitted Value Iteration (FVI)

Regression based approximation to Bellman updates.

- Define the weighted norm $||J||_{2,\nu} = \sqrt{\mathbb{E}_{s \sim \nu}[J(s)^2]}$.
- Fitted value iteration is the scheme: for $k = 1, 2, \cdots$

$$\theta_{k+1} \in \operatorname*{argmin}_{\theta \in \Theta} \|J_{\theta} - TJ_{\theta_k}\|_{2,\nu}$$

Equivalently, this can be viewed as a projected value iteration:

$$J_{k+1} = \Pi_{\mathcal{F},\nu} T J_k$$

where $\mathcal{F}=\{J_{\theta}\mid \theta\in\Theta\}$ is the space of value functions approximations and $\Pi_{\mathcal{F},\nu}J=\mathrm{argmin}_{f\in\mathcal{F}}\|f-J\|_{2,\nu}$ projects onto \mathcal{F} in a weighted norm.

4

Sample based approximations to FVI

In practice, we typically approximate expectations by random sampling.

- 1. Sample *n* states $s_1, \dots, s_n \sim \rho(\cdot)$.
- 2. For each state s_i , and each control $u \in U(s)$, draw m samples of the successor states $s_{i,u}^{(1)}, \dots, s_{i,u}^{(m)} \sim P_{s_i,\cdot}(u)$,
- 3. For $k = 0, 1, 2, \cdot$

$$\theta_{k+1} \in \operatorname*{argmin}_{\theta} \frac{1}{n} \sum_{i=1}^{n} \left(J_{\theta}(s_i) - \underbrace{\left(\min_{u} g(s_i, u) + \gamma \frac{1}{m} \sum_{j=1}^{m} J_{\theta_k}(s_{i, u}^{(j)}) \right)}_{\text{sample approx. to } TJ_{\theta_k}(s_i)} \right)$$

Comments:

- (a) If state transitions are very sparse, TJ(s) can be computed exactly.
- (b) Statistical learning theory bounds the error from random sampling.

Fitted Q-iteration

It is simpler to approximate Bellman updates to Q-functions.

Define the state-action value function:

$$Q^*(s,u) = g(s,u) + \alpha \sum_{s' \in S} P_{ss'}(u) J^*(s')$$

• Obeys the Bellman $Q^* = FQ^*$ where

$$FQ(s,u) := g(s,u) + \alpha \sum_{s' \in S} P_{ss'}(u) \min_{u'} Q(s',u')$$

• Fitted Q iteration is the scheme: for $k = 1, 2, \cdots$

$$\theta_{k+1} \in \operatorname*{argmin}_{\theta \in \Theta} \|Q_{\theta} - FQ_{\theta_k}\|_{2,\nu} \tag{1}$$

where ν is a distribution over state, control pairs.

The Q-learning algorithm essentially makes a stochastic gradient updates rather than solving (1) exactly.

Does this work?

- 1. Convergence to a fixed point $\widehat{J} = \prod_{\rho,\mathcal{F}} T \widehat{J}$?
- 2. Does it produce an accurate approximation if J^* is "close to" the function class \mathcal{F} ?
- 3. Is the resulting policy near optimal?
- 4. How should we set the state-importance-weights ν ?

Unfortunately . . . this procedure does not converge in general. Existing guarantees on typically performance require extremely strong assumptions.

Plan for today

- 1. State-aggregation: a simple case of value function approximation with which fitted-value-iteration is convergent.
- 2. Understanding the state-importance-weights and how this should be adapted over time.

State-Aggregation (a.k.a state abstraction)

- We believe $J^*(s) \approx J^*(\tilde{s})$ if s and \tilde{s} are "similar."
- More formally, take $\phi: \mathcal{S} \to \mathcal{S}$ to a be a mapping that associates $s \in \mathcal{S}$ with a representative state $\phi(s) \in \mathcal{S}$.
 - Simple case is $\mathcal{S}=[0,1]$ and ϕ maps $s\in[0,.01)$ to $\phi(s)=.005,\ s\in[.01,.02)$ to $\phi(s)=.015$ and so on.
- State aggregated value functions are

$$\mathcal{F}_{\phi} = \{ f | f(s) = f(\phi(s)) \, \forall s \}
= \{ f | f(s) = f(\tilde{s}) \text{ if } \phi(s) = \phi(\tilde{s}) \}$$

- In the simple case described above, $J \in \mathcal{F}_{\phi}$ is defined by the 99 values $J(.005), J(.015), \cdots, J(.995)$.
- $\Phi = \{\phi(s) : s \in \mathcal{S}\} = \{1, \dots, m\}. \text{ (...w.l.o.g)}$ Set $\mathcal{S}_i = \{s \in \mathcal{S} : \phi(s) = i\} \text{ for } i = 1, \dots, m.$

Table of Contents

Preview of value function approximation

Fitted value iteration with state aggregation

An online algorithm provides a better state-relevance weighting

Real time value iteration and optimistic exploration

Convergence analysis of real time value iteration

Real-time value iteration with state-aggregation

Convergence of FVI with state-aggregation

Theorem

Consider the iteration

$$J_{k+1} = \Pi_{\mathcal{F}_{\phi}, \nu} T J_k \quad k = 0, 1, \cdots$$

where $\nu(s) > 0$ for all $s \in \mathcal{S}$. Then,

$$||J_k - \widehat{J}||_{\infty} \le \alpha^k ||J_0 - \widehat{J}||_{\infty}$$

where \widehat{J} solves the projected Bellman equation

$$\widehat{J} = \prod_{\mathcal{F}_{\phi}, \nu} T \widehat{J}.$$

Convergence proof

<u>Crucial fact</u>: $\Pi_{\mathcal{F}_{\phi},\nu}$ is a non-expansion in $\|\cdot\|_{\infty}$.

Proof.

$$\Pi_{\mathcal{F}_{\phi},\nu}J\in\mathop{\rm argmin}_{\widehat{J}\in\mathcal{F}_{\phi}}\mathbb{E}_{s\sim\nu}\left[\left(\widehat{J}(s)-J(s)\right)^{2}\right]$$

It is solved by the conditional mean

$$\widehat{J}(i) = \mathbb{E}_{s \sim \nu} \left[J(s) \mid s \in \mathcal{S}_i \right]$$

Another fact: $\Pi_{\mathcal{F}_{\phi},\nu}$ is linear.

12

Convergence proof

We show the projected Bellman update is a max-norm contraction. The convergence result follows immediately.

<u>Lemma</u> $\Pi_{\mathcal{F}_{\phi},\nu}T$ is a contraction w.r.t $\|\cdot\|_{\infty}$ with modulus of contraction α .

Proof.

$$\|\Pi_{\mathcal{F}_{\phi},\nu}TJ - \Pi_{\mathcal{F}_{\phi},\nu}T\bar{J}\|_{\infty} = \|\Pi_{\mathcal{F}_{\phi},\nu}\left(TJ - T\bar{J}\right)\|_{\infty}$$

$$\leq \|TJ - T\bar{J}\|_{\infty}$$

$$\leq \alpha \|J - \bar{J}\|_{\infty}$$

Approximation error bound

Is \hat{J} an effective approximation to J^* ? We compare its quality to the best possible approximation possible with state-aggregation.

Theorem

Set $\epsilon = \|\Pi_{\mathcal{F}_{\phi},\nu}J^* - J^*\|_{\infty}$. Then

$$\|\widehat{J} - J^*\|_{\infty} \le \frac{\epsilon}{1 - \alpha}$$

Proof.

$$\begin{split} \|\widehat{J} - J^*\|_{\infty} &\leq \|\widehat{J} - \Pi_{\mathcal{F}_{\phi},\nu} J^*\|_{\infty} + \|\Pi_{\mathcal{F}_{\phi},\nu} J^* - J^*\|_{\infty} \\ &= \|\Pi_{\mathcal{F}_{\phi},\nu} T \widehat{J} - \Pi_{\mathcal{F}_{\phi},\nu} T J^*\|_{\infty} + \epsilon \\ &\leq \alpha \|\widehat{J} - J^*\|_{\infty} + \epsilon. \end{split}$$

Comment: We can't directly compute the projection of J^* , since we don't know it. We instead solve a projected version of Bellman's equation, which leads the error bound to expand by $1/(1-\alpha)$.

Performance loss bound

How effective is the greedy policy computed with respect to \widehat{J} ?

Theorem

Let $\mu \in G(\widehat{J})$ and $\epsilon = \|\Pi_{\mathcal{F}_{\phi}, \nu} J^* - J^*\|_{\infty}$. Then,

$$||J_{\mu} - J^*||_{\infty} \le \frac{\alpha ||\widehat{J} - J||_{\infty}}{1 - \alpha} \le \frac{\alpha \epsilon}{(1 - \alpha)^2}$$

Proof.

The first inequality was shown last class.

Tightness of the Approximation Error Bound

The dependence on $1/(1-\alpha)^2$ is highly problematic. Unfortunately, it is tight due to an example discussed in detail in Van Roy (2006).

Table of Contents

Preview of value function approximation

Fitted value iteration with state aggregation

An online algorithm provides a better state-relevance weighting

Real time value iteration and optimistic exploration

Convergence analysis of real time value iteration

Real-time value iteration with state-aggregation

Reducing performance loss via state-relevance weighting

Recall the discounted state occupancy measure

$$d_{\infty}^{\mu} = (1 - \alpha) \sum_{t=0}^{\infty} \alpha^t d_0 P_{\mu}^t.$$

We will show a natural online algorithm converges toward a fixed point

$$\widehat{J} = \Pi_{\mathcal{F}_{\phi}, d_{\infty}^{\mu}} T \widehat{J} \qquad \mu \in G(\widehat{J}).$$

This satisfies the performance loss bound

$$\mathbb{E}_{s \sim d_0} \left[J_{\mu}(s) - J^*(s) \right] \leq \frac{\epsilon}{1-lpha}$$

Comments:

- Saves a factor of $1/(1-\alpha)$ in the worst-case.
- The state-relevance-weighting is the fraction of time spent in a given state under the selected policy.
- This is a fixed point in {the space of cost-to-functions} × {the space of policies}.

Table of Contents

Preview of value function approximation

Fitted value iteration with state aggregation

An online algorithm provides a better state-relevance weighting

Real time value iteration and optimistic exploration

Convergence analysis of real time value iteration

Real-time value iteration with state-aggregation

Real time value iteration

Real Time Value Iteration

- Input J_0
- For episode $k = 0, 1, \cdots$
 - 1. Select greedy policy $\mu_k \in G(J_k)$
 - 2. Draw random initial state $s_0^{(k)} \sim d_0$.
 - 3. Sample episode length $\tau \sim \operatorname{Geom}(1-\alpha)$
 - 4. Sample $(s_0^{(k)}, \dots, s_{\tau}^{(k)})$ by applying μ_k for τ timesteps.
 - 5. Make Bellman update at $s_{\tau}^{(k)}$ (... Or at all visited states)

$$J_{k+1}(s) \leftarrow \begin{cases} TJ_k(s) & \text{if } s = s_{\tau}^{(k)} \\ J_k(s) & \text{if } s \neq s_{\tau}^{(k)} \end{cases}$$

Real time value iteration with Q functions

 Closer to what is used in RL, since no knowledge of the environment is required to compute a greedy policy w.r.t Q.

Real Time Value Iteration with Q functions

- Input Q₀
- For episode $k = 0, 1, \cdots$
 - 1. Select greedy policy $\mu_k \in G(Q_k)$
 - 2. Draw random initial state $s_0^{(k)} \sim d_0$.
 - 3. Sample episode length $\tau \sim \text{Geom}(1-\alpha)$
 - 4. Sample $(s_0^{(k)}, \dots, s_{\tau}^{(k)})$ by applying μ_k for τ timesteps.
 - 5. Make Bellman update at $s_{\tau}^{(k)}$ (...Or at all visited states)

$$Q_{k+1}(s, u) \leftarrow egin{cases} FQ_k(s, u) & ext{if } s = s_{\tau}^{(k)}, u = \mu_k(s_{\tau}^{(k)}) \\ Q_k(s, u) & ext{if otherwise} \end{cases}$$

Q-learning

Dropping the k superscripts for ease of notation

Q-learning with greedy exploration

- Input initial Q
- For episode $k = 0, 1, \cdots$
 - 1. Select greedy policy $\mu \in G(Q)$
 - 2. Draw random initial state $s_0 \sim d_0$.
 - 3. Sample episode length $\tau \sim \text{Geom}(1-\alpha)$
 - 4. Sample $(s_0, \dots, s_{\tau}, s_{\tau+1})$ by applying μ for τ timesteps.
 - 5. Define $u_t = \mu(s_t)$ for $t = 0, \dots, \tau + 1$.
 - 6. Make soft noisy Bellman update at s_{τ} (... Or $s_0 \cdots s_{\tau}$)

$$Q(s_{\tau}, \mu(s_{\tau})) \leftarrow (1 - \beta_k)Q(s_{\tau}, \mu(s_{\tau})) + \beta_k \underbrace{\left[g(s_{\tau}, u_{\tau}) + \gamma \min_{u} Q(s_{\tau+1}, u)\right]}_{\text{Unbiased obsrvation of } FQ(s_{\tau}, u_{\tau})$$

Convergence of Real-time Value Iteration?

- Suppose the initial state is always L ($d_0 = (1,0)$).
- Suppose $J = (1,2)/(1-\alpha)$,
 - Greedy policy $\mu \in G(J)$ satisfies $\mu(s_L) = L$.
 - The system always stays in state L
 - Also $TJ(s_L) = J(s_L)$.
- Suppose $J(s_R) \leq 0$. [... Optimism in the face of uncertainty]
 - If G(J) = (R, R) then the induced policy is optimal.
 - Otherwise, we must have $J(s_L) < J^*(s_L)$. Real-time VI increases the estimate $J(s_L)$.

Table of Contents

Preview of value function approximation

Fitted value iteration with state aggregation

An online algorithm provides a better state-relevance weighting

Real time value iteration and optimistic exploration

Convergence analysis of real time value iteration

Real-time value iteration with state-aggregation

Error bounds depend on the state distribution

Notation: Define $J(d) = \sum_{s \in \mathcal{S}} d(s)J(s)$. **Lemma from last class.** For any $J \in \mathbb{R}^n$ and policy μ' ,

$$J - J_{\mu'} = (I - \alpha P_{\mu'})^{-1} (J - T_{\mu'} J)$$
$$J(d_0) - J_{\mu'}(d_0) = \frac{1}{1 - \alpha} (J - T_{\mu'} J) (d_{\infty}^{\mu'})$$

Performance loss bounds that depend on the state distribution

<u>Lemma:</u> For any $J \in \mathbb{R}^n$, $\mu \in G(J)$ and optimal policy μ^* ,

$$0 \leq J_{\mu} - J^* \leq \left[(I - \alpha P_{\mu^*})^{-1} - (I - \alpha P_{\mu})^{-1} \right] (J - TJ)$$
$$0 \leq J_{\mu}(d_0) - J^*(d_0) \leq (J - TJ)(d_{\infty}^{\mu^*}) - (J - TJ)(d_{\infty}^{\mu})$$

Proof.

Applying the earlier Lemma with $\mu' = \mu^*$ gives

$$J - J^* = (I - \alpha P_{\mu^*})^{-1} (J - T_{\mu^*} J) \leq (I - \alpha P_{\mu^*})^{-1} (J - TJ)$$

Since $\mu \in G(J)$, we also have

$$J - J_{\mu} = (I - \alpha P_{\mu})^{-1} (J - T_{\mu} J) = (I - \alpha P_{\mu})^{-1} (J - T J)$$

Subtracting yields the result.

Comment: For our current purposes, the dependence on μ^* is problematic, as it's unknown.

Optimism to the rescue

Performance loss is bounded by on policy Bellman errors.

<u>Lemma:</u> If $J \leq J^*$, $\mu \in G(J)$,

$$0 \leq J_{\mu} - J^* \leq (I - \alpha P_{\mu})^{-1} (TJ - J)$$
$$0 \leq J_{\mu}(d_0) - J^*(d_0) \leq (TJ - J)(d_{\infty}^{\mu})$$

Proof.

$$J_{\mu} - J^* \leq J_{\mu} - J = (I - \alpha P_{\mu})^{-1} (TJ - J).$$

Regret Style Analysis of RTVI

Assumption: Optimistic initiation $J_0 = \frac{-M}{1-\alpha}$. (Recall $M = \|g\|_{\infty}$) Keys to analysis:

• On policy sampling: The state $s_{\tau}^{(k)}$ is sampled from $d_{\infty}^{\mu_k}$.

$$\mathbb{P}(s_{\tau}^{(k)} = s) = \mathbb{E}\left[\mathbb{P}(s_{\tau}^{(k)} = s \mid \tau)\right] = \mathbb{E}\left[(d_0 P_{\mu_k}^{\tau})(s)\right]$$
$$= (1 - \alpha) \sum_{t=0}^{\infty} \alpha^t (d_0 P_{\mu_k}^t(s)).$$

• **Monotonicity**: Since $J_0 \leq TJ_0$, we have

$$J_0 \leq TJ_0 \leq T^2J_0 \leq \cdots \leq J^*$$

and one can similarly show the iterates of RTVI are monotone:

$$J_0 \leq J_1 \leq J_2 \cdots$$

Regret Style Analysis of RTVI

Set $Sum(J) = \sum_{s \in S} J(s)$. By our earlier Lemma,

$$(1-lpha)(J_{\mu_0}(d_0)-J^*(d_0)) \leq (TJ_0-J_0)(d_\infty^{\mu_0}) = \mathbb{E}\left[(TJ_0-J_0)(s_ au^{(0)})
ight] \ = \mathbb{E}\left[(J_1-J_0)(s_ au^{(0)})
ight]$$

Applying this for each episode k, and using the tower property:

 $< (1-\alpha)^{-1} \text{Sum}(J_0 - J^*)$

$$\operatorname{Regret}(K) := \mathbb{E}\left[\sum_{k=1}^{K} J_k(d_0) - J^*(d_0)\right]$$

$$\leq (1 - \alpha)^{-1} \mathbb{E}\left[\sum_{k=0}^{K} \left(\operatorname{Sum}(J_k) - \operatorname{Sum}(J_{K+1})\right)\right]$$

$$= (1 - \alpha)^{-1} \operatorname{Sum}(J_0) - \operatorname{Sum}(J_{k+1})$$

 $\leq \frac{2M|\mathcal{S}|}{(1-\alpha)^2}.$

 $= \mathbb{E} \left[\operatorname{Sum}(J_1) - \operatorname{Sum}(J_0) \right]$

Sketch of asymptotic analysis of RTVI

We converge to a cost-to-go function satisfying Bellman's equation at all states visited with positive probability.

Optimism implies optimality.

- Since $\{J_k\}$ is a monotone sequence, it has a limit $J_{\infty} \leq J^*$.
- Let $\mu_{\infty} \in G(J_{\infty})$ be the corresponding policy, and assume it's unique so $\mu_k = \mu_{\infty}$ for sufficiently large k.
- Since the limit exists, we must have

$$\|J_k - J_{k+1}\|_{\infty} \to 0$$

This implies

$$J_k(s) - TJ_k(s) \rightarrow 0$$

for s visited with positive probability $(d_{\infty}^{\mu_{\infty}}(s)>0).$ So

$$J_{\mu_{\infty}}(d_0)-J^*(d_0)\leq \left(TJ_{\infty}-J_{\infty}\right)\left(d_{\infty}^{\mu_{\infty}}\right)=0.$$

Table of Contents

Preview of value function approximation

Fitted value iteration with state aggregation

An online algorithm provides a better state-relevance weighting

Real time value iteration and optimistic exploration

Convergence analysis of real time value iteration

Real-time value iteration with state-aggregation

Which algorithm attains this performance bound?

We use require $\epsilon = \sup_{s} ||J^*(\phi(s)) - J^*(s)||$.

Real Time Value Iteration with State Aggregation

- Input J_0 with $J_0(s) = \frac{-M}{1-\alpha} \ \forall s$. (... Recall $M = \|g\|_{\infty}$)
- For $k = 0, 1, \cdots$
 - 1. Sample $s_k \sim d_{\infty}^{\mu_k}$ where $\mu_k \in G(J_k)$
 - 2. Make a conservative update to the representative state $\phi(s_k)$:

$$J_{k+1}(s) \leftarrow \begin{cases} TJ_k(s_k) - \epsilon & \text{if } \phi(s) = \phi(s_k) \\ J_k(s) & \text{if } \phi(s) \neq \phi(s_k) \end{cases}$$

Comments:

- Step 1 can be executed by simulating a state trajectory under a greedy policy with respect to J_k , as shown before.
- An efficient implementation only needs to store the value at the representative state.
- With Q-function variants it is easier to apply a greedy policy.

Regret style analysis of RTVI with state-aggregation

<u>Notation:</u> Representative states: $\Phi = \{\phi(s) : s \in \mathcal{S}\}\$ Sum $(J) := \sum_{s \in \Phi} J(s)$.

The next result establishes optimism for the iterates J_k of RTVI. **Lemma** (Optimism): $J_k \leq J^*$ for each k.

Proof.

We have $J_0 \leq J^*$ by definition.

For every s with $\phi(s) = \phi(s_0)$ (...the states we update ...),

$$J_1(s) = TJ_0(s_0) - 2\epsilon \le TJ^*(s_0) - 2\epsilon \le J^*(s)$$

where the inequality used that

$$TJ^*(s) = J^*(s) \le J^*(s_0) + |J^*(s) - J^*(\phi(s_k))| + |J^*(s_0) - J^*(\phi(s_k))|.$$

Regret style analysis of RTVI with state-aggregation (continued)

As before, we have the bound in each episode:

$$(1 - \alpha) [J_{\mu_0}(d_0) - J^*(d_0)] \leq (TJ_0 - J_0) (d_{\infty}^{\mu_0})$$

$$= \mathbb{E} [(TJ_0 - J_0) (s_0)]$$

$$\stackrel{(*)}{=} \mathbb{E} [(J_1 - J_0) (\phi(s_0))] + \epsilon$$

$$= \mathbb{E} [\text{Sum}(J_1) - \text{Sum}(J_0)] + \epsilon$$

The equality (*) uses that by the definition of the algorithm

$$J_1(\phi(s_0)) = TJ_0(s_0) - \epsilon.$$

Regret style analysis sof RTVI (continued)

Applying this for each episode k, and using the tower property:

$$\operatorname{Regret}(K) := \mathbb{E}\left[\sum_{k=1}^{K} J_{\mu_{k}}(d_{0}) - J^{*}(d_{0})\right]$$

$$\leq \frac{1}{1-\alpha} \mathbb{E}\left[\sum_{k=0}^{K} \left(\operatorname{Sum}(J_{k+1}) - \operatorname{Sum}(J_{K})\right)\right] + \frac{K\epsilon}{1-\alpha}$$

$$= \frac{\operatorname{Sum}(J_{k+1}) - \operatorname{Sum}(J_{0})}{1-\alpha} + \frac{K\epsilon}{1-\alpha}$$

$$\leq \frac{\operatorname{Sum}(J^{*} - J_{0})}{1-\alpha} + \frac{K\epsilon}{1-\alpha}$$

$$\leq \frac{2M|\Phi|}{(1-\alpha)^{2}} + \frac{K\epsilon}{1-\alpha}.$$

We see that average regret scales as

$$\limsup_{K \to \infty} \frac{\operatorname{Regret}(K)}{K} \leq \frac{\epsilon}{1-\alpha}$$