





#### ← Go Back to Machine Learning

### **:≡** Course Content

# Summary: GridsearchCV

In the previous lecture video, we have already learned about what is **Pre-Pruning using gridsearchCV** and why do we need to prune our Decision-Tree models. Let's have a look at the key-take aways -

### **GridSearch**

Grid search is a process that identifies the best combination of the hyperparameters from a predefined set of values.

- In Grid search, we create a parameter space (also known as 'search space') using a certain number of hyperparameters
- These hyperparameters are associated with the model and can take fixed values like int, float, or boolean within a specified range.

For example, **max\_depth** defines the maximum depth of the tree and it can take **int values only**. If we provide max\_depth = 3.5 or max\_depth = True, it will make no sense.

Let's see what a parameter space looks like -

Here *criterion* and  $max\_depth$  are the hyperparameters. For each of them, we have given 2 values (*it is not necessary to have a fixed number of parameters*). From this set of hyperparameters, we can get (2\*2) = 4 combinations of them -

```
(citerion = Gini, max_depth = 4), (citerion = Gini, max_depth = 7), (citerion = Entropy, max_depth = 4), (citerion = Entropy, max_depth = 7)
```

Now, the Grid search will check each combination of the hyperparameters and try to find the best combination among them.

## How do we decide which is the best combination of the hyperparameters?

The best combination of hyperparameters is chosen simply based on the performance - which combination of the parameter gives the best performance. Let's see how this performance is obtained -

We know that in Cross-validation, the data will be divided into folds and each fold will be used for training and testing. Suppose, in our case, CV = 5.

Therefore, the data will be split so that each iteration uses 4 folds for training and 1 fold for testing for each combination of the hyperparameters.

For example, for the first combination -



Similarly for the second combination -



and so on.

In this way, the average performance of all possible hyperparameter combinations is assessed, and the combination that results in the best performance is chosen.

Thus, using pre-pruning, we prevent the tree from growing any further and minimize the chance of overfitting.

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

© 2024 All rights reserved

Privacy Terms of service Help