

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

FEBRUARY/MARCH/FEBRUARIE/MAART 2016

MEMORANDUM

MARKS: 150 *PUNTE: 150*

This memorandum consists of 21 pages./ Hierdie memorandum bestaan uit 21 bladsye.

NOTE:

- If a candidate answers a question TWICE, mark only the FIRST attempt.
- If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- Indien 'n kandidaat 'n antwoord doodgetrek en nie oorgedoen het nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die memorandum toegepas. Hou op nasien by die tweede berekeningsfout.
- Om antwoorde/waardes om 'n probleem op te los, te veronderstel, word NIE toegelaat NIE.

1.1	The data is skewed to the left/ <i>Die data is skeef na links</i> . OR/OF							ref na l	inks.		✓ answ/antw
	The data is negatively skewed/ <i>Die data is negatief skeef</i> .					\checkmark answ/antw (1)					
1.2	Range/Omvang = 80 – 20 = 60				$\sqrt{\max\min.}$ $\sqrt{\operatorname{answ}/\operatorname{antw}}$ (2)						
1.3	25%	of the	learners	s faile	d/van d	die lee	rders h	et gedi	ruip		✓ answ/antw (2)
1.4	$54 = \frac{445 + T_4}{9}$ $T_4 = 41$						✓ 20 ✓ ✓ 41 ✓ 62				
		20	28	36	41	62	69	75	75	80	√ 75 √ 80
											(6) [11]

2.1	Mean/Gemiddelde = $\frac{2(15) + 8(25) +2(85)}{60} = \frac{3080}{60}$ = 51,33 messages per day/boodskappe per dag	$\begin{array}{c} \checkmark \ 3 \ 080 \\ \checkmark \ \frac{3080}{60} \\ \checkmark \ \text{answ/antw} \end{array} $
2.2	OGIVE/OGIEF 70 65 9i 60	✓ grounding at (10; 0) ✓ plotting at upper limits ✓ plotting. cumulative f ✓ smooth shape of curve ✓ geanker by (10; 0) ✓ stip by boonste limiete ✓ plot kumulatiewe f ✓ gladde vorm van kurwe (4)
2.3	Number of days/ $Getal\ dae = 60 - 46$ (see on graph above/ $sien\ op\ grafiek\ hierbo$) $= 14\ days/dae$ OR/OF Number of days/ $Getal\ dae = 2 + 3 + \frac{1}{2} \times 18 = 14\ days/dae$	✓46 (accept 45 – 49) ✓answ/antw (accept 11 – 15) (2) ✓add correct values/tel korrekte waardes by ✓answ/antw (2) [9]

3.1	$m_{PQ} = \frac{1 - (-2)}{1 - 0}$ = 3	✓subst (1; 1) & (0; -2) ✓answ/antw
		(2)
3.2	$m_{PQ} \times m_{QR} = 3 \times -\frac{1}{3}$ $= -1$	$\checkmark m_{\rm QR} = -\frac{1}{3}$ $\checkmark m_{\rm PQ} \times m_{\rm QR} = -1$
	$\therefore PQ \perp QR \qquad \therefore P\hat{Q}R = 90^{\circ}$	(2)

		T
3.3	$-\frac{1}{3}x - 2 = -x + 2$	✓ equating/gelyk stel
	$\frac{2}{3}x = 4$	
] 3	
	x = 6	✓x-value/waarde
	y = -4	✓y-value/waarde
	\therefore R(6;-4)	(3)
3.4	$PR = \sqrt{(1-6)^2 + (1-(-4))^2}$	✓ subst into/in
	$=\sqrt{50} = 5\sqrt{2}$	distance formula/
	$-\sqrt{30-3\sqrt{2}}$	afstandsformule ✓ answ/antw in
	OR/OF	surd form/
	ONOT	wortelvorm
		(2)
	$PR^{2} = (1-6)^{2} + (1-(-4))^{2}$	✓ subst into/in
	= 50	distance formula/
		afstandsformule
	$\therefore PR = \sqrt{50} = 5\sqrt{2}$	✓answ/antw in
		surd form/
		wortelvorm
3.5	DD:1:	(2) ✓✓S
3.3	PR is a diameter/'n middellyn [chord subtends/kd onderspan 90°]	V V S
	Centre of circle/Midpt v sirkel: $\left(\frac{1+6}{2}; \frac{1-4}{2}\right)$	
	$=\left(3\frac{1}{2};-1\frac{1}{2}\right)$	$\checkmark \checkmark \left(3\frac{1}{2};-1\frac{1}{2}\right)$
	$\begin{pmatrix} 2 & 1 & 2 \end{pmatrix}$	(2, 2)
	$r = \frac{\sqrt{50}}{2}$ OR $\frac{5\sqrt{2}}{2}$ OR 3,54	✓r-value/waarde
	$\therefore \left(x - \frac{7}{2}\right)^2 + \left(y + \frac{3}{2}\right)^2 = \frac{50}{4} \text{ OR } \frac{25}{2} \text{ OR } 12,5$	✓answ/antw
		(6)
3.6	m of/van radius = -1	/ C+ / 11
	:.m of/van tangent/Val van raakhyn:	\sqrt{m} of tang/ rkl
	Equation of tangent/ <i>Vgl van raaklyn</i> : $y - y_1 = (x - x_1)$ $y = x + c$	✓ subst <i>m</i> &
		P(1; 1) into/in
	y-1 = x-1 OR / OF $1 = 1+c$	eq of line/vgl v
	$\therefore y = x \qquad \qquad y = x$	lyn
		✓answ/antw
2.5		(3)
3.7	$\tan P\hat{N}T = m_{PR} = -1$	$\checkmark \tan P\hat{N}T = -1$
	$\therefore \hat{PNT} = 135^{\circ}$	✓ PNT = 135°
	$\tan P \hat{M} T = m_{PQ} = 3$	
	$\therefore \hat{PMT} = 71,57^{\circ}$	$\checkmark \hat{PMT} = 71,57^{\circ}$
	$\hat{P} = 63.43^{\circ}$ [ext \angle of \triangle /buite $\angle v \triangle$]	$\checkmark \hat{P} = 63,43^{\circ}$
	$\therefore \theta = 26,57^{\circ} \qquad [\text{sum of } \angle \text{s in } \Delta/\text{som } v \angle e \text{ in } \Delta]$	✓answ/antw
	-	(5)
	OR/OF	

Extrapolation of RQ to S/Verlenging van RQ na S:

$$\tan P\hat{N}T = m_{PR} = -1$$

$$\therefore \hat{SNR} = 135^{\circ}$$

$$\tan N\hat{S}R = m_{RS} = -\frac{1}{3}$$

$$\therefore$$
 NŜR = 18,43°

$$\theta = 180^{\circ} - (135^{\circ} + 18,43^{\circ})$$

[sum of \angle s in \triangle /som $v \angle e$ in \triangle]

 $\checkmark \tan P\hat{N}T = -1$

$$\checkmark \hat{SNR} = 135^{\circ}$$

$$\checkmark \tan N\hat{S}R = -\frac{1}{3}$$

$$\checkmark$$
 NŜR = 18,43°

✓answ/antw

(5)

OR/OF

$$PQ^2 = 1^2 + 3^2 = 10$$

$$PQ = \sqrt{10}$$

$$\therefore \sin \theta = \frac{PQ}{PR} = \frac{\sqrt{10}}{\sqrt{50}} = \frac{1}{\sqrt{5}}$$

$$\theta = 26,57^{\circ}$$

OR/OF

$$QR^2 = 6^2 + 2^2 = 40$$

$$QR = 2\sqrt{10}$$

$$\therefore \cos \theta = \frac{2\sqrt{10}}{\sqrt{50}} = \frac{2}{\sqrt{5}}$$

$$\theta = 26,57^{\circ}$$

OR/OF

✓ subst into/in distance formula/ afstandsformule

✓ distance/afst PQ

✓ correct trig ratio/ korrekte trig vh

✓ correct trig eq/

korrekte trig vgl

√answ/antw

(5)

✓ subst into/in distance formula/ afstandsformule

✓ distance/afst PQ

✓ correct trig ratio/ korrekte trig vh

✓ correct trig eq/ korrekte trig vgl

√answ/antw

(5)

$$\tan \theta = \frac{m_{\text{RQ}} - m_{\text{PR}}}{1 + m_{\text{RQ}} \cdot m_{\text{PR}}}$$

$$= \frac{-\frac{1}{3} - (-1)}{1 + (-\frac{1}{3})(-1)}$$

$$= \frac{1}{2}$$

$$\therefore \theta = 26.57^{\circ}$$

✓ correct formula/ korrekte formule

$$\checkmark m_{\rm RQ} = -\frac{1}{3}$$

✓ correct subst/
subst korrek

$$\checkmark \tan \theta = \frac{1}{2}$$

$$\checkmark \theta = 26,57^{\circ}$$

(5)

tangent OP goes through the origin/raakl OP gaan deur oorsprong

$$\hat{POM} = 45^{\circ}$$

$$\hat{OPM} = \theta = \hat{P}$$
 [tan-chord theorem/raakl-kdst]

 $\tan P \hat{M} T = m_{PQ} = 3$

$$\therefore \theta + 45^{\circ} = 71,57^{\circ} \quad [\text{ext } \angle \text{ of } \Delta/\text{buite-} \angle v \Delta]$$

$$\theta = 26,57^{\circ}$$

$$\checkmark P\hat{O}M = 45^{\circ}$$

$$\checkmark \hat{PMT} = 71,57^{\circ}$$

$$V P W \Pi = I$$

$$\checkmark \theta = 26,57^{\circ}$$

(5) **[23]**

4.1	$OR \perp TR$	[radius \perp tangent/raakl]	✓S/R
	$\therefore m_{\rm TR} \times m_{\rm OR} = -1$		
	$\therefore m_{\rm OR} = -2$		✓m of/van OR
	$\therefore y = -2x$		✓equation/vgl
			(3)
4.2	$x^2 + (-2x)^2 = 20$		✓ subst eq of OR
	$x^2 + 4x^2 = 20$		into circle eq/ subst vgl OR in
	$5x^2 - 20 = 0$		sirkelvgl
	$x^2 - 4 = 0$		✓st. form/st. vorm
	(x+2)(x-2) = 0		
	$\therefore x = 2$		✓x-value/waarde
	y = -2(2) = -4 ∴ R(2; -4)		$\checkmark y$ -value/waarde (4)

4.3	Subst R(2; -4) into the equation of/in vgl van PRS:	
	$-4 = \frac{1}{2}(2) + k$	✓ correct subst/
	_	korrekte subst
	$k = -5$ $\therefore OT = 5$	✓ value of k
	∴ O1 = 5	
	. 1 .	$\checkmark y = 0$
	$0 = \frac{1}{2}x - 5$	$\sqrt{y} = 0$ \sqrt{x} -intercept/afsnit
	x = 10	mooreeps agenti
	\therefore OS = 10	
	1	
	Area/ $Oppervlakte = \frac{1}{2}OS \cdot OT$	✓ correct subst
	- 1 (10)(5)	into area form/
	$=\frac{1}{2}(10)(5)$	subst korrek in
	= 25 sq units/vk eenh	opp-formule
		$\sqrt{\text{answ}/antw}$ (6)
4.4	$x_{y} + 2$ $y_{y} - 4$	(0)
	$0 = \frac{x_V + 2}{2}$ and $en = 0 = \frac{y_V - 4}{2}$	
	∴ V(-2; 4)	✓ x-value/waardeV
	∴ V(-2; 4) T(0; -5) from/van 4.3	✓y-value/waardeV
	$VT = \sqrt{(-2-0)^2 + (4-(-5))^2}$	✓ subst of points V
	$=\sqrt{4+81}$	and T into
	$=\sqrt{85}$	distance formula/
	- γο <i>3</i>	subst punte V en T in afst-form
		✓ answ/antw
		(4)
		[17]

5.1.1	$\tan\theta = -\frac{3}{\sqrt{7}}$	✓answ/antw	(1)
5.1.2	$\sin(-\theta) = -\sin\theta$ $OP^{2} = \left(-\sqrt{7}\right)^{2} + 3^{2}$	✓ reduction/ reduksie	
	$OP^2 = 16$ $OP = 4$	✓ OP = 4	
	$\sin\left(-\theta\right) = -\frac{3}{4}$	✓answ/antw	(3)
5.1.3	$\frac{a}{6} = \cos 2\theta$	✓trig ratio/verh	
	$a = 6(1 - 2\sin^2\theta)$	✓ expansion/ uitbreiding	
	$=6-12\left(\frac{3}{4}\right)^2$	$\sqrt{\sin\theta} = \frac{3}{4}$	
	$=\frac{24}{4}-\frac{27}{4}$		
	$=-\frac{3}{4}$	✓answ/antw	
	OR/OF		(4)
	$\frac{a}{6} = \cos 2\theta$		
	$\begin{vmatrix} 6 \\ a = 6(2\cos^2\theta - 1) \end{vmatrix}$	✓ trig ratio/verh	
	$=12\left(\frac{-\sqrt{7}}{4}\right)^2 - 6$	✓ expansion/ uitbreiding	
		$\checkmark \cos \theta = \frac{-\sqrt{7}}{4}$	
	$=\frac{21}{4}-\frac{24}{4}$		
	$=-\frac{3}{4}$	✓answ/antw	(4)
	OR/OF		(1)

	NSC/NSC – Memorandum	1
	$\frac{a}{6} = \cos 2\theta$ $a = 6(\cos^2 \theta - \sin^2 \theta)$ $= 6\left[\left(\frac{-\sqrt{7}}{4}\right)^2 - \left(\frac{3}{4}\right)^2\right]$	✓ trig ratio/verh ✓ expansion/ uitbreiding ✓ $cos θ = \frac{-\sqrt{7}}{4} &$
	$= 6\left(-\frac{2}{16}\right)$ $= -\frac{3}{4}$	$\sin \theta = \frac{3}{4}$ $\sqrt{\text{answ/}antw}$
5.2.1	$\frac{4\sin x \cdot \cos x}{2\sin^2 x - 1} = \frac{2(2\sin x \cdot \cos x)}{-(1 - 2\sin^2 x)}$	(4)
	$=\frac{2\sin 2x}{-\cos 2x}$	$\checkmark 2\sin 2x$ $\checkmark -\cos 2x$
	$=-2\tan 2x$	✓ answ/antw
5.2.2	$\frac{4\sin 15^{\circ}\cos 15^{\circ}}{2\sin^{2} 15^{\circ} - 1} = -2\tan 2(15^{\circ})$ $= -2\tan 30^{\circ}$ $= -2\left(\frac{1}{\sqrt{3}}\right)$	(3) √ - 2 tan 2(15°)
	$= -\frac{2}{\sqrt{3}} \mathbf{OR}/\mathbf{OF} -\frac{2\sqrt{3}}{3}$	✓ answ/ <i>antw</i> (2) [13]

6.1	$\sin(x + 60^{\circ}) + 2\cos x = 0$ $\sin x \cos 60^{\circ} + \cos x \sin 60^{\circ} + 2\cos x = 0$	✓ expansion/ <i>uitbreiding</i>
		· expansion/unoretuing
	$\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x + 2\cos x = 0$	✓ special angle values/
	-	spesiale ∠-waardes
	$\frac{1}{2}\sin x = -2\cos x - \frac{\sqrt{3}}{2}\cos x$	
	$\sin x = -4\cos x - \sqrt{3}\cos x$	√simpl/vereenv
	$\sin x = \cos x(-4 - \sqrt{3})$	$\sin x = \cos x(-4 - \sqrt{3})$
	$\frac{\sin x}{\sin x} = \frac{\cos x(-4 - \sqrt{3})}{\cos x}$	$\sin x = \cos x(-4 - \sqrt{3})$
	$\cos x \qquad \cos x$	
	$\therefore \tan x = -4 - \sqrt{3}$	(4)
6.2	$\tan x = -4 - \sqrt{3}$	
	$\tan x = -(4 + \sqrt{3})$	
	$ref \angle = 80,10^{\circ}$	√80,10°
	$x = -80.1^{\circ} \text{ or/} of 99.9^{\circ}$	√99,90°
		√-80,1° (3)
(21		(3)
6.3.1		√(30°; 1)
		√(-60°; 0)
		√shape/vorm
	-120° -60° 0° 60° 120° 180° 240°	
		(2)
		(3)
6.3.2	$\therefore \sin\left(x + 60^{\circ}\right) > -2\cos x$	
	$x \in (-80,10^{\circ}; 99,90^{\circ}) \text{ OR/}OF -80,10^{\circ} < x < 99,90^{\circ}$	✓✓ critical values/
		<i>kritiese waardes</i> ✓ notation/ <i>notasie</i>
		\checkmark notation/notaste (3)
		[13]
1		

7.1.1	Area of/ <i>Oppervlakte van</i> $\Delta PQR = \frac{1}{2} PQ.QR.\sin \hat{Q}$	
	$= \frac{1}{2}x(20 - 4x)(\sin 60^{\circ})$ $= 10x - 2x^{2} \left(\frac{\sqrt{3}}{2}\right)$ $= 5\sqrt{3}x - \sqrt{3}x^{2}$	✓ subst into area rule/ subst in opp-reël ✓ subst & simpl/ subst en vereenv (2)
7.1.2	For maximum area/Vir maksimum opp: $(Area \Delta PQR)^{\prime} = 0$	\checkmark (Area $\triangle PQR$) $' = 0$
	$5\sqrt{3} - 2\sqrt{3}x = 0$	$\checkmark 5\sqrt{3} - 2\sqrt{3}x$
	$2\sqrt{3}x = 5\sqrt{3}$	
	$\therefore x_{\text{max}} = \frac{5}{2} \text{ or } 2\frac{1}{2} \text{ or/} of 2,5$ OR/ <i>OF</i>	✓answ/antw (3)
	$x_{\text{max}} = -\frac{b}{2a}$ $= -\frac{5\sqrt{3}}{2(-\sqrt{3})} = \frac{5}{2} \text{ or } 2\frac{1}{2} \text{ or } 2,5$	✓ formula/e ✓ subst ✓ answ/antw (3)
	OR/OF	
	$5\sqrt{3}x - \sqrt{3}x^2 = 0$	
	$\sqrt{3}x(5-x) = 0$ $\therefore x = 0 \text{ or } 5$ $\therefore x_{\text{max}} = \frac{0+5}{2} = \frac{5}{2} \text{ or/of } 2,5$	✓ x-intercepts/ x-afsnitte ✓ subst ✓ answ/antw
7.1.3	$\mathbf{p}\mathbf{p}^2$ $\mathbf{o}\mathbf{p}^2$ $\mathbf{o}\mathbf{p}^2$ $\mathbf{o}\mathbf{p}$	(3)
/.1.3	$RP^{2} = QP^{2} + QR^{2} - 2.QP.QR.\cos Q$ $= 10^{2} + 2.5^{2} - 2(10)(2.5)\cos 60^{\circ}$ $= 81.25$	✓ subst into cosine rule/in cos-reël ✓ simpl/vereenv
	$\therefore RP = 9,01$	✓answ/antw (3)

	Ţ
In $\triangle ABC$: $\sin \beta = \frac{h}{AB}$	
$\therefore AB = \frac{h}{\sin \beta}$	✓ AB ito h and/ en β
In $\triangle ABD$: $AB = BD$ and en $A\hat{D}B = 90^{\circ} - \beta$ [$\angle s \text{ of/} v \triangle = 180^{\circ}$]	\checkmark ADB = 90° – β
$\frac{\sin 2\beta}{\text{AD}} = \frac{\sin(90^\circ - \beta)}{\text{AB}}$ $\text{AD} = \frac{\text{AB.} \sin 2\beta}{\sin(90^\circ - \beta)}$ $= \frac{h}{\sin \beta} \times \frac{2\sin \beta \cdot \cos \beta}{\cos \beta}$	✓ correct subst into cosine rule/subst korrek in cos-reël ✓ AD as subject/onderwerp ✓ expansion/uitbrei
= 2h	$\sqrt{\sin (90^{\circ} - \beta)}$ $= \cos \beta$ $\sqrt{\text{answer ito } h}$ (7)
OR/OF	
In $\triangle ABC$: $\sin \beta = \frac{h}{AB}$	
$\therefore AB = \frac{h}{\sin \beta}$	✓ AB ito h and/ en β
In $\triangle ABD$: $AB = BD$ $AD^2 = AB^2 + AB^2 - 2AB.AB.\cos 2\beta$	
$= \left(\frac{h}{\sin \beta}\right)^2 + \left(\frac{h}{\sin \beta}\right)^2 - 2\left(\frac{h}{\sin \beta}\right)^2 \cdot \cos 2\beta$	✓ correct subst into cosine rule/subst
$= \left(\frac{h}{\sin \beta}\right)^2 + \left(\frac{h}{\sin \beta}\right)^2 - 2\left(\frac{h}{\sin \beta}\right)^2 (1 - 2\sin^2 \beta)$	korrek in cos-reël ✓ expansion/uitbrei
$= \left(\frac{h}{\sin \beta}\right)^2 + \left(\frac{h}{\sin \beta}\right)^2 - 2\left(\frac{h}{\sin \beta}\right)^2 + 4h^2$	✓ multiplication/ vermenigv
$= 4h^2$ $\therefore AD = 2h$	✓ simpl/vereenv ✓ answer ito h
OR/OF	(7)
Split isosceles triangle ABQ into two congruent triangles AEB and DEB. Then \triangle ABC \equiv \triangle BAE (AB = AC, ABE = BÂC = β , h) \therefore AE = ED = BC = h	
$\therefore AD = 2h$	(7)
	[15]

8.1.1	$\hat{K}_2 = \hat{M}_2 = 40^{\circ}$	[tan chord theorem/raakl-kdst]	✓ _S ✓ _R	
				(2)
8.1.2	$\hat{N}_1 = \hat{K}_1$	$[\angle s \text{ in the same seg}/\angle e \text{ in dies segm}]$	✓S ✓ R	
	$\hat{K}_1 = 84^{\circ} - 40^{\circ} = 44^{\circ}$			
	$\hat{N}_1 = 44^{\circ}$		√S	
	-			(3)
8.1.3	$\hat{T} = \hat{N}_1 = 44^{\circ}$	[alt/verw ∠s/e; KT NM]	✓S ✓ R	
				(2)
8.1.4	$\hat{L}_2 = \hat{K}_2 + \hat{T}$	[ext \angle of \triangle /buite $\angle v \triangle$]	✓R	
	$=40^{\circ}+44^{\circ}$		✓S	
	= 84°		5	(2)
8.1.5	In ΔKLM:			
	$44^{\circ} + 84^{\circ} + 40^{\circ} + \hat{L}_{1}$	= 180° [\angle s sum in Δ / \angle e som in Δ]		
	$\therefore \hat{L}_1 = 12^{\circ}$	-	√S	
				(1)

8.	.2	$\hat{C} = 108^{\circ}$ $2x + 40^{\circ} + 108^{\circ} = 180^{\circ}$ $2x = 32^{\circ}$	[opp \angle s of m/tos \angle e v m] [opp \angle s of cyc quad/tos \angle e v kdvh]	✓ _S ✓ _R ✓ _S ✓ _R	
		$x = 16^{\circ}$		√answ/ <i>antw</i>	(5)
			OR/OF		(5)
		$\hat{C} = 180^{\circ} - (2x + 40^{\circ})$ $180^{\circ} - (2x + 40^{\circ}) = 108^{\circ}$ $2x = 32^{\circ}$	[opp \angle s of cyc quad/tos \angle e v kdvh] [opp \angle s of m/tos \angle e v m]	✓S ✓R ✓S ✓R	
		<i>x</i> = 16°		√answ/antw	(5)
					(5) [15]

9.1	ABCD is a m	[diags of quad bisect each other/ hoekl v vh halveer mekaar]	✓ R	(1)
9.2	$\frac{ED}{DB} = \frac{FE}{AF}$	[Prop Th/Eweredigh st; DF BA]	✓ _S ✓ R	
	$\frac{ED}{DB} = \frac{GE}{CG}$	[Prop Th/Eweredigh st; DG BC]	$\checkmark_{S} \checkmark_{R}$	(4)
9.3	$\frac{FE}{AF} = \frac{GE}{CG}$	[proved/bewys]	√ _S	\
	∴AC FG	[line divides two sides of Δ in prop/	✓ S ✓R	
	âŝ	lyn verdeel 2 sye van Δ eweredig]	✓S	
	$\hat{\mathbf{C}}_2 = \hat{\mathbf{F}}_2$	[alt/verw ∠s/e; AC FG]	✓ S	
	$\hat{\mathbf{A}}_1 = \hat{\mathbf{C}}_2$	[alt/ <i>verw</i> ∠s/e; AB CD]		(5)
0.4	$\therefore \hat{\mathbf{A}}_1 = \hat{\mathbf{F}}_2$			
9.4	$\hat{\mathbf{A}}_1 = \hat{\mathbf{A}}_2$	[diags of rhombus/hoekl v ruit]	√S	
	$\hat{\mathbf{A}}_2 = \hat{\mathbf{F}}_2$	$[\hat{\mathbf{A}}_1 = \hat{\mathbf{F}}_2]$	✓ S	
	\therefore ACGF = cyc quad/kdvh [\angle s in the same seg =/		√R	
		∠e in dies segm =]		(3)
		OR/OF		
	$\hat{\mathbf{C}}_2 = \hat{\mathbf{A}}_2$ $\hat{\mathbf{A}}_2 = \hat{\mathbf{G}}_2$	[∠s opp equal sides of rhombus/ ∠e to gelyke sye v ruit]	√ _S	
	$\hat{\mathbf{A}}_2 = \hat{\mathbf{G}}_2$ $\therefore \hat{\mathbf{C}}_2 = \hat{\mathbf{G}}_2$	[alt/verw-∠s/e; AC FG]	✓ S	
		e quad/ $kdvh$ [\angle s in the same seg =/ $\angle e$ in dies segm =]	√R	(2)
				(3) [13]
				[13]

10.1.1	In \triangle ADE and/en \triangle PQR:			
	AD = PQ	[construction/konstr]	✓all/al 3 S's/e	
	$\hat{A} = \hat{P}$	[given/gegee]		
	AE = PR	[construction/konstr]		
	$\therefore \Delta ADE \equiv \Delta PQR$	[S∠S]	✓ reason/ <i>rede</i>	
				(2)
10.1.2	$\hat{ADE} = \hat{Q}$	$[\Delta s \equiv \therefore corres/ooreenk \angle s/e =]$	✓ ADE = Q	
	But $\hat{B} = \hat{Q}$	[given/gegee]		
	$\therefore \hat{ADE} = \hat{B}$		$\checkmark A\hat{D}E = \hat{B}$	
	∴ DE BC	[corres/ooreenk \angle s/e =]	✓ reason/ <i>rede</i>	
				(3)
10.1.3	AB _ AC			
	${AD} - {AE}$	[Prop Th/ <i>Eweredigh st</i> ; DE BC]	✓S/R	
	But/Maar AD = PQ and/en AE = PR [construction/konstr]		√S	
	AB - AC			
	$\therefore \overline{PQ}^{-}\overline{PR}$			(2)

10.2.1	line from centre to midpt of chord	✓answ/ <i>antw</i>	
	koord		(1)
10.2.2	OP VS [Midpt	Theorem/ <i>Midpt-stelling</i>]	√S √R
	In \triangle ROP and/en \triangle RVS:		
	$\hat{R} = \hat{R}$ [commo	on/gemeen]	√S
	$\hat{O}_2 = \hat{V}$ [corresp	o/ooreenk ∠s/e; OP VS]	✓S & ∠;∠;∠
	$\therefore \Delta ROP \mid \mid \mid \Delta RVS \lceil \angle, \angle, \angle \rceil$		OR/OF
		.1	3 angles/hoeke
			(4)
	OR/		
	In \triangle ROP and/ en \triangle RVS:		
	$\hat{P}_2 = V\hat{S}R$ [corresponding $\angle s$ / ooreenkomstige \angle 'e]		\checkmark S \checkmark R
	_	n/gemeen]	\sqrt{S}
	$:: \Delta ROP \mid \mid \mid \Delta RVS [\angle, \angle, \angle]$		✓S & ∠;∠;∠
			OR/OF
			3 angles/hoeke
			(4)

10.2.3	R is common/gemeen	[∠ in semi-circle/∠ in halfsirkel]	✓S ✓ R ✓S & ∠;∠;∠
	$ \hat{V} = T\hat{S}R $ $ \therefore \Delta RVS \mid \Delta RST $	$[\angle, \angle, \angle]$	OR/OF 3 angles/hoeke
10.0.4			(3)
10.2.4	In \triangle RTS and/en \triangle STV:		✓ ∆RTS & ∆STV
	$R\hat{T}S = V\hat{T}S = 90^{\circ}$	$[\angle$ s on straight line/ \angle e op rt lyn]	√S
	$\hat{R} = 90^{\circ} - T\hat{S}R$		✓S
	$= T\hat{S}V$		✓S (with
	$T\hat{S}R = \hat{V}$ $\therefore \Delta RTS \mid \Delta STV$	$[\angle, \angle, \angle]$	justification/met motivering)
	$\therefore \frac{RT}{ST} = \frac{TS}{VT}$		√∆RTS ∆STV
	$\therefore ST^2 = VT.TR$		✓ratio/verh
			(6)
			[21]

TOTAL/TOTAAL: 150