Projeto Final - Definição e Lista de Materiais

Capacitação em Sistemas Embarcados - Embarcatech

Miguel Carvalho de Medeiros e Thiago Carrijo Rufino Rabelo

Nome: Tracking-Trilha

1. Descrição do Problema

Atletas amadores e profissionais (corredores, ciclistas e alpinistas) enfrentam desafios relacionados ao monitoramento em tempo real de sinais vitais, condições ambientais e ocorrência de eventos críticos (quedas, acidentes). Ferramentas atuais muitas vezes são fragmentadas, exigindo múltiplos dispositivos ou aplicativos desconectados. O objetivo deste projeto é integrar, em um único sistema embarcado (Raspberry Pi Pico W), a coleta, registro e alerta de parâmetros de saúde e performance esportiva, além de indicadores ambientais que influenciam a segurança e o rendimento.

2. Requisitos Funcionais

1. Aquisição de Sinais Vitais

- 2. Medir frequência cardíaca e saturação de oxigênio (SpO₂) com o sensor MAX30100 via I²C.
- 3. Posicionamento e Trajeto
- 4. Obter coordenadas GPS (latitude, longitude, altitude) com o módulo GY-NEO6MV2 via UART.
- 5. Calcular rota, distância percorrida e velocidade média.

6. Condições Ambientais

- 7. Registrar temperatura e pressão com o BMP280 via I²C.
- 8. Medir umidade relativa com o AHT10 via I²C.
- 9. Determinar índice UV com o sensor GUVA-S12SD via I²C.
- 10. Avaliar qualidade do ar (NH₃, NOx e VOCs) com o MQ135 analógico.

11. Movimento e Orientação

- 12. Capturar aceleração e taxa de giro nos três eixos com o MPU-6050 via I²C.
- 13. Determinar direção absoluta com o HMC5883L via I²C.

14. Detecção de Eventos Críticos

15. Reconhecer quedas ou impactos anormais combinando dados de aceleração, giro e ausência de movimento subsequente.

16. Armazenamento e Interface

- 17. Gravar dados em cartão SD (>8 GB) via SPI com timestamp.
- 18. Exibir métricas e alertas em display OLED SSD1306 via I²C.
- 19. Controlar navegação de menus e configuração por botões, teclado matricial e indicar status com LEDs.

20. Alertas e Feedback

21. Emitir sinais sonoros com buzzer piezoelétrico e visuais com LEDs para limites críticos (batimento, SpO₂, UV, qualidade do ar e detecção de queda).

22. Interação do Usuário

23. Utilizar teclado matricial 4×4 para iniciar/parar registros, selecionar perfis e ajustar limites de alerta.

3. Requisitos Não Funcionais

- **Autonomia**: duração mínima de 8 horas de coleta contínua usando bateria Li-Ion 18650 de 3 800 mAh.
- Robustez: invólucro com proteção IP54; resistência a quedas de até 1 m.
- · Precisão e Faixas:
- GPS GY-NEO6MV2: precisão típica de 2,5 m em céu aberto.
- MAX30100: ±2% SpO₂, ±3 bpm.
- BMP280: ±1 °C; ±1 hPa.
- AHT10: ±3% RH.
- GUVA-S12SD: faixa 240–370 nm, sensibilidade calibrada para índice UV.
- MQ135: sensibilidade a NH₃, NOx, VOCs; calibração periódica recomendada.
- Latência: atualização de interface e alertas em até 500 ms após leitura.
- Capacidade de Expansão: pinos GPIO livres para futuros módulos (ex.: LoRa).
- **Peso e Ergonomia**: equipamento completo abaixo de 150 g e formato adaptado ao pulso ou quidão. Reguisitos Não Funcionais
- Autonomia: duração mínima de 4 horas de coleta contínua com bateria recarregável.
- **Robustez**: proteção contra poeira e respingos (mínimo IP54); resistente a quedas de até 1 m.
- Precisão:
- GPS: erro máxima de 15 m.
- Oxímetro: precisão de ±2% SpO₂, ±3 bpm.
- Ambiental: erro máximo de ±0,5 °C (temperatura), ±3% RH, ±1 hPa.
- Latência: atualização de tela e alertas em <500 ms após captura.
- Capacidade de Expansão: cabeamento e pinos reservados para futuros módulos (Ex.: LoRa, câmeras).
- **Peso e Ergonomia**: pacote compacto (<150 g sem bateria) e formato adaptável ao pulso ou guidão.

4. Lista Inicial de Componentes

Categoria	Item	Quantidade	Observações
Placa de Controle	Raspberry Pi Pico W	1	Módulo Wi-Fi integrado
Sinais Vitais	Sensor de oxímetro (MAX30100: SpO ₂ + batimentos)	1	I ² C
Navegação	Módulo GPS (GY-NEO6MV2)	1	UART
Ambiental	Sensor BMP280 (Temperatura, Pressão)	1	I ² C
	Sensor AHT10 (Umidade)	1	I ² C
	Sensor UV (Guva-S12SD)	1	Índice UV calculado
	Sensor de qualidade do ar (MQ135)	1	Detecta NH₃, NOx, VOCs; requer calibração periódica
Inércia	Sensor acelerômetro e giroscópio (MPU-6050)	1	I ² C
Orientação	Sensor magnetômetro (HMC5883L ou LSM303)	1	I ² C
Armazenamento	Leitor de cartão SD + SD Card (>8 GB)	1	SPI
Interface	Display OLED (SSD1306: 128×64)	1	I ² C
	Buzzer piezoelétrico	1-2	Tonalidades ajustáveis
	LEDs indicadores	3–5	RGB ou single-color
	Botões táteis	3–5	Modo, seleção e confirmação
	Teclado matricial 4×4	1	Navegação e configuração
Energia	Bateria Li-Ion 18650 (3 800 mAh, 3,7 V)	1	Gerenciador de carga integrado
Conectividade	Jumpers, barra de pinos e PCB	_	Para montagem

Observação: Quantidades e modelos podem variar conforme disponibilidade e ajustes de design.