PHYS 172: Modern Mechanics

Spring 2012

Lecture 13 – Internal Energy

TODAY

- Path-Independence of Potential Energy
- Temperature and Energy
- Heat Capacity
- Power
- Open and Closed Systems
- Volume and Temperature

Path independence of potential energy

In a round trip the potential energy does not change

 $\mathbf{A} \overset{\vec{v}_i}{\longrightarrow} \overset{\vec{g}}{\longrightarrow} \overset{\mathbf{C}}{\sim} \mathbf{C}$

At which point is the gravitational potential energy the largest?

Temperature and energy: the connection

5

Heat capacity: amount of energy required to heat up a unit of mass by a unit of temperature

Specific heat capacity

Specific heat capacity *C*: amount of energy required to heat up a unit of mass by a unit of temperature

$$\Delta E_{thermal} = Cm\Delta T$$

$$C \equiv \frac{\Delta E_{thermal}}{m\Delta T}$$

Usually expressed *per gram:* J/(g·K)

Demo: fire syringe

Convert mechanical (kinetic) energy into heat

Example: heat capacity

Niagara Falls – what is the rise in water temperature due to gravity if there were no losses of energy?

Solution: $Cm\Delta T = mgh$

$$C_{water} = 4.186 \text{ J/(K·g)}$$

 $h = 50 \text{ m}$

$$\Delta T = gh/C$$

$$= \frac{(9.8 \text{ N/kg})(50 \text{ m})}{(4.186 \text{ J/(K} \cdot \text{g}))}$$

$$= 117 \frac{\text{N} \cdot \text{m} \cdot \text{K} \cdot \text{g}}{\text{J} \cdot \text{kg}}$$

$$= 117 \frac{\text{N} \cdot \text{m} \cdot \text{K} \cdot \text{g}}{\text{N} \cdot \text{m} \cdot \text{kg}}$$

$$= 117 \frac{\text{K} \cdot \text{g}}{1000 \text{ g}}$$

$$= 0.117 \text{ K}$$

Thermal energy

$$E = \sum_{i} \left(m_{i}c^{2} + \frac{m_{i}v_{i}^{2}}{2} + \frac{1}{2}k_{s,i}s_{i}^{2} \right)$$

Sum over every atom!

1° K ≈ 10⁻²³ J/molecule

Thermal energy transfer:

Joules?

Degrees?

Thermal transfer of energy

A process in which energy moves between a system and surroundings with which it is in contact, due to a temperature difference

Reserve the word *heat* specifically to denote thermal energy transferred from one object to another

Flow of electromagnetic radiation can also change the energy

Sign of Q: "+" Transfer *into* system "-" Transfer *out of* system

Example: heat

A perfectly insulated house has a volume of 500 m³ (~1500 ft² house) and air temperature 0°C. You bring in a closed bucket of water (10 L) of temperature 100°C. What will the temperature be in the house after equilibration?

Solution:

$$\Delta E_w + \Delta E_a = 0$$

$$C_{w}m_{w}\left(T_{f}-T_{wi}\right)+C_{a}m_{a}\left(T_{f}-T_{ai}\right)=0$$

$$(C_{w}m_{w} + C_{a}m_{a})T_{f} = C_{w}m_{w}T_{wi} + C_{a}m_{a}T_{ai}$$

$$T_f = \frac{C_w m_w T_{wi} + C_a m_a T_{ai}}{C_w m_w + C_a m_a}$$
 $m_a = 615 \text{ kg}$

$$T_f = 279.4 \text{ K} = 5.4 \, ^{\circ}\text{C}$$

Ignored: walls, yourself, heat capacity dependence on T

Power (P)

Energy per unit time

$$P = \frac{dE}{dt}$$
 Unit: Watt, 1 W = 1 J/s

Power associated with work:
$$P = \frac{dW}{dt} = \frac{d(\vec{F} \cdot \vec{r})}{dt} = \vec{F} \cdot \frac{d\vec{r}}{dt} = \vec{F} \cdot \vec{v}$$

$$P = \frac{dW}{dt} = \vec{F} \cdot \vec{v}$$

Open and closed system

SYSTEM

$$\Delta E_{\rm sys} = 0$$

Closed system:

there is *no* energy flow between the system and surroundings

$$\Delta E_{\rm sys} = 0$$

Open system:

there *is* energy flow between the system and surroundings

$$\Delta E_{\rm sys} \neq 0$$

Volume and temperature

When energy rises the average distance between atoms in general must also increase leading to an increase in volume.

The spring law does not explain:

- volume changes with temperature!
- breaking

Interatomic Morse potential energy between two atoms

When energy rises the average distance between atoms in general increases leading to increase in volume.

Thermometers based on expansion

The choice of system and energy

 $\Delta E_{sys} = \Delta K + \Delta U_{g} = 0$

$$\Delta K + (-mgh) = 0$$

HOME READING: 7.9

Analyze this statement:

"The Earth exerts a force *mg* through a distance *h* and does work *mgh*, and there is also a decrease in the potential energy -mgh, so the kinetic energy increases by 2*mgh*". $\Delta E_{sys} = \Delta K + (-mgh) = +mgh$ **WRONG!**

WHAT WE DID TODAY

- Path-Independence of Potential Energy
- Temperature and Energy
- Heat Capacity
- Power
- Open and Closed Systems
- Volume and Temperature