STAT302: Time Series Analysis

Chapter 2. Time Series Basics

Sangbum Choi, Ph.D

Department of Statistics, Korea University

Outline

Stationary Processes

Examples of Stationary Processes

Properties of Summary Measures

Linear Processes

Fundamental features of time series

- A fundamental feature of time series is that values X_t at different times tend to be related in certain ways.
- That is, they tend not to be independent.
- Time series analysis is aimed at studying and characterizing the nature of relationship in X_t 's over time.

Time series as stochastic process

- Univariate time series single time series.
- Bivariate, multivariate time series two or more time series.
- A discrete time series $\{X_1, X_2, \dots, X_T\}$ is a sequence of random variables (RVs), which has a joint probability distribution.
- The joint probability distribution may be represented by a joint distribution function

$$F(x_1, x_2, ..., x_T) = P(X_1 \le x_1, X_2 \le x_2, ..., X_T \le x_T)$$

Time series as stochastic process

- In a statistical setting, we obtain a sample realization (denoted by X_1, X_2, \ldots, X_T) from the stochastic process (denoted by X_1, X_2, \ldots, X_T) and then use the sample to estimate/infer some of the probability characteristics of the stochastic process.
- It is impossible to obtain "accurate" estimate of the complete joint probability distribution of X_1, X_2, \ldots, X_T , unless we make very strong assumptions.
- One approach is to restrict interest to certain summary measures of the joint probability distribution.

Summary measures

• Mean function:

$$\mu_t = E(X_t) = \int_{-\infty}^{\infty} x_t f_t(x_t) \, dx_t$$

for t = ..., -1, 0, 1, ...

Variance function:

$$\sigma_t^2 = E[(X_t - \mu_t)^2] = \int_{-\infty}^{\infty} (x_t - \mu_t)^2 f_t(x_t) dx_t$$

Summary measures

Covariance function:

$$\gamma(t_1, t_2) = \mathsf{Cov}(X_{t_1}, X_{t_2}) = E[(X_{t_1} - \mu_{t_1})(X_{t_2} - \mu_{t_2})]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_{t_1} - \mu_{t_1})(x_{t_2} - \mu_{t_2})f(x_{t_1}, x_{t_2}) dx_{t_1} dx_{t_2}$$

Correlation function:

$$\rho(t_1, t_2) = \mathsf{Cor}(X_{t_1}, X_{t_2}) = \frac{\mathsf{Cov}(X_{t_1}, X_{t_2})}{\sqrt{\mathsf{Var}(X_{t_1})}\sqrt{\mathsf{Var}(X_{t_2})}} \\
= \frac{\gamma(t_1, t_2)}{\sigma_{t_1}\sigma_{t_2}}$$

is always between -1 and 1 and provides a measure of extent of linear relation between the RVs X_{t_1} and X_{t_2} .

Weak stationarity

A process $\{X_t\}$ is weakly (or second-order) stationary if it satisfies,

- (1) $E(X_t) = \mu$ does not depend on t.
- (2) $Var(X_t) = \gamma(0)$ does not depend on t.
- (3) $Cov(X_t, X_{t+k}) = \gamma(k)$ depends only on lag k, not on t.

Strict stationarity

Consider finite time indices

$$t_1, t_2, \dots t_k$$
 and $t_1 + h, t_2 + h, \dots, t_k + h, (h > 0).$

• For all $(t_1, t_2, \dots t_k)$ and for all h > 0, if

$$P(X_{t_1} \le x_1, X_{t_2} \le x_2, \cdots, X_{t_k} \le x_k)$$

= $P(X_{t_1+h} \le x_1, X_{t_2+h} \le x_2, \cdots, X_{t_k+h} \le x_k)$

then $\{X_t\}$ is said to be **strictly (or strongly) stationary**.

Gaussian processes

- A process $\{X_t\}$ is Gaussian, if the joint probability distributions of all finite sets of RV $\boldsymbol{X}_{n\times 1}=(X_{t_1},X_{t_2},\ldots,X_{t_n})'$ are mulitvariate normal distributions.
- Recall that a random vector $\mathbf{X}_{n\times 1}$ has multivariate normal distribution with mean vector $\boldsymbol{\mu}_{n\times 1}$, covariance matrix $\boldsymbol{\Gamma}_{n\times n}$ if its joint pdf is

$$f(\mathbf{x}) = rac{1}{(2\pi)^{n/2} |\Gamma|^{1/2}} \exp\Big\{ -rac{1}{2} (\mathbf{x} - m{\mu})^{'} \Gamma^{-1} (\mathbf{x} - m{\mu}) \Big\}.$$

• Note that if the process $\{X_t\}$ is weakly stationary and is Gaussian, then it is strictly stationary. [Why?]

Stationary and nonstationary processes

library(tidyverse)
AirPassengers %>% log %>% decompose %>% plot

Autocorrelation function (ACF)

• For a stationary process $\{X_t\}$,

$$\rho(k) = \text{Cor}(X_t, X_{t+k}) = \frac{\gamma(k)}{\gamma(0)}, k = 0, \pm 1, \pm 2, \dots$$

is the autocorrelation function (ACF).

• The ACF $\rho(k)$ is of prime interest in the study of stationary process, because it gives a summary of relations between values at different time lags.

Basic properties of autocorrelation function

- 1. $-1 \le \rho(k) \le 1$ for all k with $\rho(0) = 1$.
- 2. $\gamma(k)$ and $\rho(k)$ are even functions. That is, $\gamma(-k) = \gamma(k)$, $\rho(-k) = \rho(k)$. [Why?]
- 3. $\{\gamma(k)\}$ and $\{\rho(k)\}$ are positive-(semi)definite sequences in that they satisfy, for every n, times t_1, t_2, \ldots, t_n , and constants c_1, c_2, \ldots, c_n ,

$$\sum_{i=1}^n \sum_{j=1}^n c_i c_j \gamma(i-j) > 0.$$

[Why?]

Outline

Stationary Processes

Examples of Stationary Processes

Properties of Summary Measures

Linear Processes

Mean and covariance formulas

Let X_1, X_2, \ldots, X_n be RVs, c_1, c_2, \ldots, c_n be constants. Then

$$E\left(\sum_{i=1}^{n} c_{i}X_{i}\right) = \sum_{i=1}^{n} c_{i}E(X_{i})$$

$$Var\left(\sum_{i=1}^{n} c_{i}X_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j}Cov(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} c_{i}^{2}Var(X_{i}) + 2\sum_{i < j} c_{i}c_{j}Cov(X_{i}, X_{j})$$

$$\mathsf{Cov}\left(\sum_{i=1}^n c_i X_i, \sum_{j=1}^n d_j X_j\right) = \sum_{i=1}^n \sum_{j=1}^n c_i d_j \mathsf{Cov}(X_i, X_j)$$

Mean and covariance formulas

• If X_i are independent RVs, then $Cov(X_i, X_j) = 0$ for $i \neq j$. Thus

$$\operatorname{Var}\left(\sum_{i=1}^{n} c_{i} X_{i}\right) = \sum_{i=1}^{n} c_{i}^{2} \operatorname{Var}(X_{i})$$

$$\operatorname{Cov}\left(\sum_{i=1}^{n} c_{i} X_{i}, \sum_{j=1}^{n} d_{j} X_{j}\right) = \sum_{i=1}^{n} c_{i} d_{i} \operatorname{Var}(X_{i})$$

White noise (WN):

- Suppose $\epsilon_0, \epsilon_1, \dots, \epsilon_t, \dots$ is a sequence of independent RVs with common mean $E(\epsilon_t) = 0$, common variance $Var(\epsilon_t) = \sigma^2$ for all t.
- Then $\{\epsilon_t\}$ is a (weakly) stationary process and is called a white noise process.

- $E(\epsilon_t) = 0$ does not depend on t.
- $Var(\epsilon_t) = \sigma^2$ does not depend on t.
- The autocovariance function is

$$Cov(\epsilon_t, \epsilon_{t+k}) = \gamma(k) = \begin{cases} \sigma^2 & \text{if } k = 0 \\ 0 & \text{if } k \neq 0 \end{cases}$$

depends only on k, not on t.

• The ACF of a white noise process is

$$\rho(k) = \operatorname{Cor}(\epsilon_t, \epsilon_{t+k}) = \begin{cases} 1 & \text{if } k = 0 \\ 0 & \text{if } k \neq 0 \end{cases}$$

• How does the ACF plot of a white noise process look like?

acf(rnorm(100))

Series rnorm(100)

Let $\{\epsilon_t\}$ denote a white noise process. Define a process

$$X_t = \mu + \epsilon_t + \epsilon_{t-1}, \ t = \dots, -1, 0, 1, \dots,$$

where μ is a constant.

- $\{X_t\}$ is a stationary process.
- $E(X_t) = \mu$

The autocovariance function is

$$Cov(X_t, X_{t+k}) = \gamma(k) = \begin{cases} 2\sigma^2 & \text{if } k = 0\\ \sigma^2 & \text{if } k = 1\\ 0 & \text{if } k > 1 \end{cases}$$

depends only on k, not on t.

• The ACF is

$$\rho(k) = \text{Cor}(X_t, X_{t+k}) = \begin{cases} 1 & \text{if } k = 0 \\ 1/2 & \text{if } k = 1 \\ 0 & \text{if } k > 1 \end{cases}$$

• Now how does ACF plot look like?

```
y = eps = rnorm(100)
for (i in 2:100) y[i] = 2 + eps[i] + eps[i-1]
par(mfrow=c(1,2))
ts.plot(y, col=4); acf(y,main="")
                                             0.8
                                             9.0
                                             0.4
                                             0.2
                                             0.0
                                             0.2
                               80
                                   100
                                                           10
                                                                15
                                                                      20
                        Time
                                                          Lag
```

Let $\{\epsilon_t\}$ denote a white noise process. Define a process

$$X_t = \mu + \epsilon_t - \epsilon_{t-1}, \quad t = \dots, -1, 0, 1, \dots,$$

where μ is a constant.

- $\{X_t\}$ is a stationary process.
- $E(X_t) = \mu$

The autocovariance function is

$$\mathsf{Cov}(X_t, X_{t+k}) = \gamma(k) = \begin{cases} 2\sigma^2 & \text{if } k = 0 \\ -\sigma^2 & \text{if } k = 1 \\ 0 & \text{if } k > 1 \end{cases}$$

depends only on k, not on t.

• The ACF is

$$\rho(k) = \text{Cor}(X_t, X_{t+k}) = \begin{cases} 1 & \text{if } k = 0 \\ -1/2 & \text{if } k = 1 \\ 0 & \text{if } k > 1 \end{cases}$$

• Now how does ACF plot look like?

```
y = eps = rnorm(100)
for (i in 2:100) y[i] = 2 + eps[i] - eps[i-1]
par(mfrow=c(1,2))
ts.plot(y, col=4); acf(y,main="")
                                       ACF
                                           0.0
          0
                                           -0.5
                              80
                                  100
                                                         10
                                                              15
                                                                   20
                       Time
                                                        Lag
```

• Suppose $\{\epsilon_t\}$ denote a white noise process. Define a process

$$X_t = \mu + \epsilon_t + \psi_1 \epsilon_{t-1} + \psi_2 \epsilon_{t-2} + \ldots + \psi_q \epsilon_{t-q},$$

where $\mu, \psi_1, \psi_2, \dots, \psi_q$ are constants.

- Note that X_t is called an MA(q) process.
- For example, let q = 2, i.e., when the model is MA(2),

$$X_t = \epsilon_t + \psi_1 \epsilon_{t-1} + \psi_2 \epsilon_{t-2}, \ \epsilon_t \sim \mathsf{WN}(0, \sigma_{\epsilon}^2)$$

• Show that $\{X_t\}$ is weakly stationary.

Let $\{\epsilon_t\}$ denote a white noise process. Define a process $\{X_t\}$ by recursive equation

$$X_t = X_{t-1} + \delta + \epsilon_t, \quad t = 1, 2, \dots,$$

where

- \bullet δ is a constant.
- $X_0 = 0$ (or some other assumption is needed)

Then $\{X_t\}$ is nonstationary.

What are the means, variances, covariances, etc of the process $\{X_t\}$? Express X_t explicitly in terms of the white noise process ϵ_t

$$X_{t} = X_{t-1} + \delta + \epsilon_{t}$$

$$= X_{t-2} + \delta + \epsilon_{t-1} + \delta + \epsilon_{t}$$

$$= X_{t-2} + 2\delta + \epsilon_{t-1} + \epsilon_{t}$$

$$= X_{t-3} + \delta + \epsilon_{t-2} + 2\delta + \epsilon_{t-1} + \epsilon_{t}$$

$$= X_{t-3} + 3\delta + \epsilon_{t-2} + \epsilon_{t-1} + \epsilon_{t}$$

$$= \dots$$

$$= X_{0} + t\delta + \epsilon_{1} + \epsilon_{2} + \dots + \epsilon_{t-1} + \epsilon_{t}$$

$$= X_{0} + t\delta + \sum_{i=0}^{t-1} \epsilon_{t-i}$$

$$= X_{0} + t\delta + \sum_{i=1}^{t} \epsilon_{j}$$

Thus,

$$E(X_t) = E\left(X_0 + t\delta + \sum_{i=0}^{t-1} \epsilon_{t-i}\right)$$

$$= t\delta + \sum_{i=0}^{t-1} E(\epsilon_{t-i}) = t\delta$$

$$Var(X_t) = Var\left(X_0 + t\delta + \sum_{i=0}^{t-1} \epsilon_{t-i}\right)$$

$$= \sum_{i=0}^{t-1} Var(\epsilon_{t-i}) = t\sigma^2$$

• Note that both mean and variance depend on time t. This means that the mean and variance become explosive as $t \to \infty$.

• Also for k > 0,

$$X_{t+k} = X_0 + (t+k)\delta + \sum_{i=0}^{t+k-1} \epsilon_{t+k-i}$$

$$Cov(X_t, X_{t+k}) = Cov\left(\sum_{i=0}^{t-1} \epsilon_{t-i}, \sum_{i=0}^{t+k-1} \epsilon_{t+k-i}\right)$$

$$= \sum_{i=0}^{t-1} Cov(\epsilon_{t-i}, \epsilon_{t-i}) = t\sigma^2$$

• Thus, note that, for k > 0,

$$Cor(X_t, X_{t+k}) = \frac{Cov(X_t, X_{t+k})}{\sqrt{Var(X_t)}\sqrt{Var(X_{t+k})}}$$
$$= \frac{t\sigma^2}{\sqrt{t\sigma^2}\sqrt{(t+k)\sigma^2}}$$
$$= \frac{t}{\sqrt{t(t+k)}},$$

which is approximately 1 when k is small relative to t.

• Notice that the correlation tends to 1 as $t \to \infty$ as long as k is finite.

 A RW process is not stationary. Now how does ACF plot look like? Notice that the difference of RW becomes stationary.

```
y = cumsum(rnorm(100)) # RW
par(mfrow=c(1,3))
ts.plot(y, col=4); acf(y,main=""); ts.plot(diff(y), col=4)
```


- Nearby values of a random walk process tend to be very highly positively correlated.
- This leads to very smooth behavior over time in the process.
- If $\delta=0$, $E(X_t)=0$. If $\delta>0$, there is a linear trend $E(X_t)=\delta t$.
- ullet The constant δ is a drift parameter.
- There is a simple relation to a stationary process by considering the first differences of $\{X_t\}$ with

$$W_t = X_t - X_{t-1} = \delta + \epsilon_t$$

which is stationary.

• Thus the first differences are a stationary process.

Homogeneous nonstationary process

- The random walk process above will be later referred to as a homogeneous nonstationary process.
- Such processes are also referred to as integrated processes.
- Define a more general integrated process as

$$W_t = X_t - X_{t-1}$$

where W_t is a stationary process (i.e. not necessarily white noise).

• Thus we can represent X_t as

$$X_t = X_0 + W_1 + \cdots + W_t$$

where $W_1 + \cdots + W_t$ is integration (or sum) of a stationary process $\{W_t\}$

Deterministic mean/trend function

- Suppose $\{Z_t\}$ is a stationary process with mean 0.
- Define

$$X_t = \mu_t + Z_t$$

where μ_t is a nonrandom function of t.

For example,

$$\mu_t = \alpha + \delta t$$

is a linear trend function of t.

- Since $E(X_t) = \mu_t$ depends on t, the process $\{X_t\}$ is not stationary.
- However, by assumption, the deviations $Z_t = X_t \mu_t$ is stationary.

Analysis of nonstationary processes

- Thus analysis of such a series $\{X_t\}$ would typically involve both methods of regression analysis to model the linear function and (stationary) time series methods to model the "noise" $\{Z_t\}$.
- For the linear trend example, consider the first differences of $\{X_t\}$.

$$W_T = X_t - X_{t-1} = [\alpha + \delta t + Z_t] - [\alpha + \delta (t-1) + Z_{t-1}]$$

= $\delta + Z_t - Z_{t-1}$

- ullet Here the process $\{W_t\}$ forms a stationary time series. [Why?]
- We may say that the first differencing "removes" a linear trend component or "reduces" the series to stationarity.

Analysis of nonstationary processes

- We also will study processes that have nonstationary behavior in a "seasonal sense".
- For example, for a monthly time series that exhibits annual seasonal behavior, we may analyze the series by considering the seasonal differences.
- Consider

$$X_t = \mu + \beta_1 \cos(2\pi t/12) + \beta_2 \sin(2\pi t/12) + Z_t$$

which has a period of 12.

Take the seasonal difference

$$W_t = X_t - X_{t-12} = Z_t - Z_{t-12}$$

which forms a stationary time series. [Why?]

Deterministic vs. stochastic trends

Deterministic and stochastic trends are different in data generation.

```
time = 1:100
y1 = 0.5 * time + 10*rnorm(100) # deterministic trend
y2 = cumsum(rnorm(100)) # stochastic trend
par(mfrow=c(1,2))
ts.plot(y1, col=4); ts.plot(y2, col=4)
           9
           20
           4
           8
           20
            9
           0
            -19
                                        0
                  20
                                100
                                                             100
```

Time

Time

Deterministic vs. stochastic trends

How we can detend deterministic and stochastic trends?

```
eps1 = lm(y \sim time)$residual
eps2 = diff(y2)
par(mfrow=c(1,2))
ts.plot(eps1, col=4); ts.plot(eps2, col=4)
      eps1
                                            ကု
                 20
                              80
                                  100
                                                   20
                                                                80
                                                                    100
                       Time
                                                         Time
```

Example: S&P 500 index

library(MASS); library(forecast)
checkresiduals(SP500)

Outline

Stationary Processes

Examples of Stationary Processes

Properties of Summary Measures

Linear Processes

Summary measures for stationary process

Let X_1, X_2, \dots, X_T denote a stationary process with

Mean

$$\mu = E(X_t)$$

Autocovariance

$$\gamma(k) = \mathsf{Cov}(X_t, X_{t+k}) = E[(X_t - \mu)(X_{t+k} - \mu)]$$

ACF

$$\rho(k) = \operatorname{Cor}(X_t, X_{t+k}) = \frac{\gamma(k)}{\gamma(0)}$$

Estimation of summary measures

• Sample mean

$$\hat{\mu} = \bar{Y} = \frac{1}{T} \sum_{t=1}^{T} X_t$$

Sample autocovariance

$$\hat{\gamma}(k) = \frac{1}{T} \sum_{t=1}^{T-k} (X_t - \bar{Y})(X_{t+k} - \bar{Y})$$

is an estimate of $\gamma(k)$ for $k=0,1,2,\ldots,K$, and usually K is small relative to T.

Estimation of summary measures

In particular, sample variance

$$\hat{\gamma}(0) = \frac{1}{T} \sum_{t=1}^{T} (X_t - \bar{Y})^2$$

is an estimate of $\gamma(0)$.

Sample ACF

$$\hat{\rho}(k) = \frac{\hat{\gamma}(k)}{\hat{\gamma}(0)} = \frac{\sum_{t=1}^{T-k} (X_t - \bar{Y})(X_{t+k} - \bar{Y})}{\sum_{t=1}^{T} (X_t - \bar{Y})^2}$$

is an estimate of $\rho(k)$ for $k=0,1,2,\ldots,K$, and usually K is small relative to T.

Sample ACF

- Asymptotic properties of $\hat{\rho}(k)$ can be derived. In general they are too complicated for practical use, but special cases are useful.
- Consider a white noise process. Then it can be shown that

$$E(\hat{
ho}(k))pprox
ho(k)=0$$
 and $Var(\hat{
ho}(k))pproxrac{1}{T}$ $\hat{
ho}(k)pprox N\left(0,rac{1}{T}
ight)$

for all k = 1, 2, ...

In fact,

$$\hat{
ho}(1),\ldots,\hat{
ho}(K)\sim \mathsf{approx}\;\mathsf{iid}\; N\left(0,rac{1}{T}
ight)$$

Sample ACF

• An approximate 95% confidence interval for $\rho(k)$ is

$$\hat{\rho}(k) \pm 1.96 \frac{1}{\sqrt{T}}$$

- It is a common practice to use $\pm \frac{2}{\sqrt{T}}$ as limits to assess the significance of $\rho(k)$ in terms of deviation from 0.
- For example, when T=100, the limits are ± 0.2 . Suppose $\hat{\rho}(1)=0.45$. Then the time series is not compatible with the white noise assumption.

Jointly stationary processes

• Two time series, X_t and Y_t , are said to be **jointly stationary** if they are each stationary, and the **cross-covariance function**

$$\gamma_{XY}(h) = \text{Cov}(X_{t+h}, Y_t) = E[(X_{t+h} - \mu_X)(Y_t - \mu_Y)]$$

is a function only of lag h.

• The cross-correlation function (CCF) of jointly stationary time series X_t and Y_t is defined as

$$\rho_{XY}(h) = \frac{\gamma_{XY}(h)}{\sqrt{\gamma_X(0)\gamma_Y(0)}}$$

• Note that $\rho_{XY}(h) = \rho_{YX}(-h)$.

Jointly stationary processes

• For example, let

$$X_t = \epsilon_t + \epsilon_{t-1}, \quad Y_t = \epsilon_t - \epsilon_{t-1},$$

where $\epsilon_t \sim \text{WN}(0, \sigma_\epsilon^2)$.

It can be shown that

$$\rho_{XY}(h) = \begin{cases} 0 & h = 0, \\ 1/2 & h = 1, \\ -1/2 & h = -1, \\ 0 & |h| \ge 2. \end{cases}$$

• Clearly, the CCF depends only on the lag separation *h*, so the series are jointly stationary.

Outline

Stationary Processes

Examples of Stationary Processes

Properties of Summary Measures

Linear Processes

Linear filter

• A (time invariant) linear filter is a linear operation applied to a series $\{X_t\}$ to produce a new series $\{Y_t\}$, as

$$Y_t = \sum_{j=-\infty}^{\infty} \psi_j X_{t-j},$$

where t = ..., -1, 0, 1, ...

- $\{\psi_i\}$ are coefficients of the linear filter.
- X_t and Y_t can be thought of as the input and output, respectively.

Linear filter

- Note that the filter is time-invariant, in that the coefficients $\{\psi_i\}$ do not depend on t.
- The filter is stable if $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$ (i.e. $\{\psi\}$ are absolutely summable).
- The filter is one-sided, phisically realizable, or causable, or causal if $\psi_j=0$ for j<0 so that

$$Y_t = \sum_{j=0}^{\infty} \psi_j X_{t-j}.$$

51 / 59

Linear filter: Two main contexts

- 1. Given a single time series $\{X_t\}$, we choose a linear filter and apply $\{X_t\}$ to obtain a new series $\{Y_t\}$. The purpose is to obtain a new series with desired characteristics. For example,
 - $Y_t = \frac{1}{3}(X_{t-1} + X_t + X_{t+1})$ can be thought of as an averaging filter or smoothing filter.
 - $Y_t = X_t X_{t-1}$ is the first difference.
- 2. Two distinct series $\{X_t\}$ and $\{Y_t\}$ are in a dynamic system where X_t is input and Y_t is output. The linear filter could be viewed as a model to represent the relationship between Y_t and X_t . Then the filter is unknown and can be modeled as

$$Y_t = \sum_{j=0}^{\infty} \psi_j X_{t-j} + \textit{noise}$$

Backshift and linear filter operator

ullet A backshift operator B operates on $\{Y_t\}$ such that

$$BX_t = X_{t-1}, \ B^2X_t = X_{t-2}, ...$$

• Thus for t = ..., -1, 0, 1, ...,

$$Y_t = \sum_{j=0}^{\infty} \psi_j X_{t-j} = \sum_{j=0}^{\infty} \psi_j B^j X_t = \left(\sum_{j=0}^{\infty} \psi_j B^j\right) X_t = \psi(B) X_t$$

where

$$\psi(B) = \sum_{j=0}^{\infty} \psi_j B^j$$

is the linear filter operator.

Theorem (on linear filter and stationarity)

If $\{X_t\}$ is a stationary series with mean μ_x and autocovariance γ_x and $\{Y_t\}$ is the output of a time-invariant, absolutely summable, and causal linear filter with $\{X_t\}$ as input, i.e.,

$$Y_t = \sum_{j=0}^{\infty} \psi_j X_{t-j},$$

where $\sum_{j=0}^{\infty} |\psi_j| < \infty$, then the output $\{Y_t\}$ is a **stationary** process with

$$\mu_Y = E(Y_t) = \mu_X \sum_{j=0}^{\infty} \psi_j$$

$$\gamma_Y(k) = \text{Cov}(Y_t, Y_{t+k}) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \psi_i \psi_j \gamma_X (i - j + k)$$

Linear processes

• A process $\{Y_t\}$ is a **linear process** if it is representable as

$$Y_t = \mu + \sum_{j=0}^{\infty} \psi_j \epsilon_{t-j} = \mu + \psi(B) \epsilon_t$$

where $\{\epsilon_t\}$ is a white noise process (i.e. ϵ_t are independent RVs with mean 0 and variance σ^2 for all t) and $\sum_{j=0}^{\infty} |\psi_j| < \infty$.

Linear processes

- FACT: If $\{Y_t\}$ is a linear process, then $\{Y_t\}$ is stationary.
- ullet The autocovariances of $\{Y_t\}$ are

$$\gamma(k) = \text{Cov}(Y_t, Y_{t+k}) = \sigma^2 \sum_{i=0}^{\infty} \psi_i \psi_{k+i}, \ k = 0, 1, 2, ...$$

In particular,

$$\gamma(0) = \operatorname{Var}(Y_t) = \sigma^2 \sum_{i=0}^{\infty} \psi^2$$

Example of linear processes

• Consider a process $\{Y_t\}$:

$$Y_t = \mu + \sum_{j=0}^{\infty} \phi^j \epsilon_{t-j}$$

where ϕ is a constant.

- If $|\phi| < 1$, then the process $\{Y_t\}$ is stationary.
- \bullet The condition $|\phi|<1$ will be called the stationarity condition.
- If $\phi = 1$, what is the process $\{Y_t\}$?

Example of linear processes

Note that

$$\sum_{j=0}^{\infty} |\phi^j| = \frac{1}{1 - |\phi|} < \infty$$

if and only if $|\phi| < 1$.

• If $|\phi| < 1$, the autocovariances of $\{Y_t\}$ are

$$\gamma(0) = \operatorname{Var}(Y_t) = \sigma^2 \left(\frac{1}{1 - \phi^2}\right)$$

$$\gamma(k) = \operatorname{Cov}(Y_t, Y_{t+k}) = \sigma^2 \left(\frac{\phi^k}{1 - \phi^2}\right), \quad k = 0, 1, 2, \dots$$

Example of linear processes

ullet Thus, if $|\phi| < 1$, the ACF of $\{Y_t\}$ is

$$\rho(k) = \text{Cor}(Y_t, Y_{t+k}) = \frac{\gamma(k)}{\gamma(0)} = \phi^k, \ k = 0, 1, 2, ...$$

- That is, the ACF has the form of simple exponential decay.
- ullet The process $\{Y_t\}$ as defined satisfies the equation

$$Y_t = \phi Y_{t-1} + \delta + \epsilon_t$$

where $\delta = \mu(1 - \phi)$.

• The process $\{Y_t\}$ is called a first-order autoregressive (i.e., AR(1)) process and is stationary if $|\phi| < 1$.