ioRīgas Tehniskā Universitāte

Datorzinātnes un Informācijas Tehnoloģijas fakultāte

Automātika un datortehnika

Risinājumu algoritmizācija un programmēšana (1. daļa)

Laboratorijas darbs#6(a) Divdimensiju masīva apstrāde

DITF RDBF0 1. kurss 9. grupa Viktorija Ovčiņņikova studenta apl. nr. 101RDB131

	Darba izpildes grafiks						
	Protokola sagatave	Darbs ar datoru	Ieskaite				
Pēc plāna (nod.)	_						
Faktiski (nod.)							

1. Darba uzdevums

Izstrādāt programmu, kas divdimensiju masīvā aizpilda norādātos elementus (skat. 1. attēlu) ar vērtībām 1, 2, 3, 4, 5. . . . pa vertikāli.

1. att. Masīva aizpildījums

3. Algoritma izstrāde

Lai aizpildītu norādīto masīva daļu ar uzdotām vērtībām vispirms ir nepieciešams noteikt aizpildīšanas shēmu.

Izvēlēsimies izstrādātajā fragmentā izmantojamo mainīgo (identifikatoru) vārdus:

is – masīva aizpildāmās rindas sākuma indekss;

ib – masīva aizpildāmās rindas beigu indekss;

js – masīva aizpildāmās kolonnas sākuma indekss;

jb – masīva aizpildāmās kolonnas beigu indekss;

i – analizējamā elementa numurs;

k – masīva aizpildāmās rindas indekss;

Tā kā aizpildīšana notiek pa vertikāli, tad loģiski ir rīkoties pēc sekojoša algoritma (2. att.):

- 1) nosakām no kuras (**js**) un līdz kurai (**jb**) kolonnai notiks masīva aizpildīšana;
- 2) katrai izvēlētai kolonnai (*j*) noteiksim no kura (*is*) līdz un līdz kuram (*ib*) elementam notiek kolonnas aizpildīšana;

No 2. attēla analīzes redzams, ka:

- 1) is vērtība, uzdotai kolonnai j ir aprēķināma sekojoši:
 - a) is = 3:
 - b) ja js < 4, tad k = 4 + j;
 - c) ja $js \ge 4$ un $js \le 8$, tad k = 3 + j; ja $k \ge 10$, tad k = 10;
 - d) ja js>8, tad k=18-j;
- 2) $ib \le k$.

			j		→						
		1	2	3	4	5	6	7	8	9	10
	1										
	2										
	3	3, 1	3,	3,	3,	3, 5	3,	3,7	3,8	3, 9	3,10
₩	4	4, 1	4, 2	4,	4, 4	4, 5	4, 6	4,7	4,8	4, 9	4,10
	5	5, 1	5, 2	5, 3	5, 4	5, 5	5, 6	5,7	5,8	9 5, 9	5,10
	6		6, 2	6, 3	6, 4	6, 5	6, 6	6,7	6,8	6, 9	6,10
	7			7, 3	7, 4	7, 5	7, 6	7,7	7,8	7, 9	7,10
	8					8	8	8.7	8.8	8	8 10
						5	6	^ -	0.0	9	
	9						9, 6	9,7	9,8	9, 9	
	1 0							10, 7	10,		
		is=3; ib=5	is=3; ib=6	is=3; ib=7	is=3; ib=7	is=3; ib=8	is=3; ib=9	is=3; ib=10	is=3; ib=10	is=3; ib=9	is=3; ib=8

i

2. att. Masīva aizpildīšanas shēma

Sagatave satur mums līdzīga uzdevuma risinājumu un līdzekļus programmas testēšanai. Tāpēc ir nepieciešams izstrādāt tikai augstāk apskatīto masīva aizpildīšanu.

4. Algoritma blokshēma

3. att. Izstrādātā algoritma shēma

5. Testpiemēru kopa

Uzdevuma izpildes rezultāta masīva aizpildījuma izvadam uz ekrāna jāatbilst 1. attēlā dotajam masīva attēlojumam.

6. Programmas fragmenta pirmteksts

```
wrk:=1;
for j:=1 to num do
begin
    i:=3;
    If (j<4) then k:=4+j;
    If ((j>=4) and (j<=8)) then begin
        k:=3+j;    If (k>10) then k:=10;
    End;
    If (j>8)then k:=18-j;
    while(i <= k) do
    begin
        ms[i,j]:=wrk;
        wrk:=wrk+1;
        i:=i+1
    end;
end;</pre>
```

7. Secinājumi

Tika izstrādāta programma, kas nodrošina divdimensiju masīva uzdotā apgabala aizpildīšanu ar skaitliskām vērtībām, izveidota darba atskaite. Dotā laboratorijas darba sagatavošanai ir patērētas 4 stundas laika. Daudz laika aizņēma sagatavē dotā programmas pirmteksta izpratnes iegūšana. Izprasto sagataves uzdevumu pielāgot individuālā uzdevuma vajadzībām sevišķas grūtības nesagādāja.