MÓDULO – 2

AMBIENTE DO DATACENTER

PROFESSIONAL Módulo 2: Ambiente do datacenter

Ao completar este módulo você estará apto à:

- Descrever os principais elementos de um datacenter
- Descrever a virtualização no aplicativo e na camada do host
- Descrever os componentes e o desempenho do drive do disco
- Descrever o acesso do host ao armazenamento através do DAS
- Descrever o funcionamento e os benefícios dos flash drives

Módulo 2: Ambiente do datacenter

Aula 1: Aplicativo, DBMS e host (processamento)

Os seguintes tópicos serão apresentados nesta aula:

- Aplicativo e virtualização do aplicativo
- DBMS –Sistema de gerenciamento da base de dados
- Componentes do sistema do host
- Virtualização do processamento e da memória

Aplicativo

- Um programa de software que proporciona operações de processamento lógico
- Aplicativos normalmente implantados em um datacenter
 - Aplicativos de negócios e-mail, ERP-enterprise resource planning,
 DSS-decision support system
 - Aplicativos de gerenciamento gerenciamento de recursos, ajuste de desempenho, virtualização
 - Aplicativos de proteção de dados backup, replicação
 - Aplicativos de segurança autenticação, antivírus
- As principais características de I/O de um aplicativo
 - Leitura intensa vs. Gravação intensa
 - Sequencial vs. aleatório
 - Tamanho do I/O

Virtualização do aplicativo

Virtualização do aplicativo

É uma técnica para apresentar um aplicativo ao usuário final sem a necessidade de instalação, integração ou dependência de uma plataforma de processamento subjacente.

- Permite que o aplicativo seja entregue em um ambiente isolado
 - Agrega os recursos do sistema operacional (SO) e dos aplicativos em um container virtual
 - Assegura a integridade do sistema operacional (SO) e dos aplicativos
 - Evita o conflito entre os diferentes aplicativos ou as versões diferentes de um mesmo aplicativo

Sistema de gerenciamento do banco de dados (DBMS)

- O banco de dados é uma forma estruturada para armazenar dados em tabelas organizadas logicamente que estão interligadas
 - Ajuda a otimizar o armazenamento e a recuperação de dados
- O sistema de gerenciamento do banco de dados controla a criação, a manutenção e o uso do banco de dados
 - Processa o pedido de dados por um aplicativo
 - Instrui o SO a recuperar os dados apropriados do armazenamento
- Os exemplos mais conhecidos de sistema de gerenciamento do banco de dados são MySQL, Oracle RDBMS, SQL Server, etc.

Host

- Recurso que roda os aplicativos com a ajuda de componentes computacionais subjacentes
 - Exemplos: servidores, mainframes, laptop, computadores de mesa, tablets, conjunto de servidores, etc.
- Formado por componentes de hardware e software
- Componentes de Hardware
 - Inclui CPU, memória, e dispositivos I/O
- Componentes de Software
 - Inclui OS, dispositivos de driver, file system, gerenciador de volume, etc.

Sistema operacional e dispositivo de driver

- Em um ambiente tradicional o SO fica entre os aplicativos e o hardware
 - É responsável por controlar o ambiente
- Em um ambiente virtual a camada virtual trabalha entre o SO e o hardware
 - A camada virtual controla o ambiente
 - O SO trabalha como coadjuvante e controla somente o ambiente do aplicativo
 - Em algumas implementações o SO é modificado para comunicar com a camada virtual
- O dispositivo do driver é um software que permite o SO reconhecer um dispositivo específico

Virtualização da memória

- É uma característica do SO que apresenta ao aplicativo uma memória maior do que a memória disponível fisicamente
 - O espaço adicional da memória vem do armazenamento do disco
 - O espaço usado para a memória virtual no disco é chamado de "espaço de troca/ arquivo de troca ou arquivo de página"
 - As páginas inativas de memória são movidas da memória física para o arquivo de troca
 - Ela proporciona o uso eficiente da memória física disponível
 - O acesso aos dados a partir do arquivo de troca é mais lento – o uso de flash drivers para os espaços de troca possibilita um desempenho melhor

disco

Gerenciador de volumes lógicos (LVM –logical volume manager)

- É responsável por criar e controlar o nível lógico de armazenamento do host
 - A visão física do armazenamento é convertida para uma visão lógica
 - Os blocos de dados lógicos são mapeados para blocos de dados físicos
- Um ou mais volumes físicos formam o grupo de volume
 - LVM o gerenciador de volumes lógicos gerencia o grupo de volumes como uma entidade única
- Os volumes lógicos são criados a partir de um grupo de volume

Exemplo de LVM: particionamento e concatenação

File System

Virtualização computacional

Virtualização Computacional

É uma técnica de camuflar ou abstrair o hardware físico e permitir que vários sistemas operacionais (SOs) sejam executados simultaneamente em uma máquina física simples ou em máquinas agrupadas.

- Permite a criação de várias máquinas virtuais (VMs), cada uma executando um SO e aplicativos
 - VM é uma entidade lógica que se parece e atua como uma máquina física
- A camada de virtualização fica entre o hardware e os VMs
 - É também conhecida como hipervisor
- Os VMs são fornecidos com os recursos padrões do hardware

A necessidade de virtualização computacional

Antes da virtualização

- Executa somente um sistema operacional (SO) por vez por máquina
- Conecta firmemente s/w e h/w
- Pode criar conflitos quando vários aplicativos são executados na mesma máquina
- Subutiliza os recursos
- É inflexível e caro

Depois da virtualização

- Executa vários sistemas operacionais (SOs) por máquina física simultaneamente
- Torna o SO e os aplicativos h/w independentes
- Isola cada uma dos VM, consequentemente, não há conflito
- Melhora o uso dos recursos
- Oferece uma infraestrutura flexível de baixo custo

Virtualização da área de trabalho

VirTualização da área de trabalho

Tecnologia que permite a separação do estado de usuário, do Sistema Operacional (SO) e dos aplicativos dos dispositivos finais.

- Permite que as empresas hospedem e gerenciem as áreas de trabalho de forma centralizada
 - As áreas de trabalho são executadas como máquinas virtuais dentro de um data center e são acessadas através da rede de trabalho
- Os benefícios da virtualização da área de trabalho
 - Flexibilidade de acesso devido a capacitação dos clients thin
 - Melhora na segurança de dados
 - Backup de dados e manutenção do PC simplificados

PCs e clients thin

Módulo 2: Ambiente do datacenter

Aula 2: Conectividade

Os seguintes tópicos serão abordados nesta aula:

- Os componentes físicos da conectividade
- Protocolos de conectividade de armazenamento

Conectividade

- Interconexão entre os hosts ou entre o host e os dispositivos periféricos, como o armazenamento
- Os componentes físicos de conectividade são:
 - Cartão interface do host, portas, e cabo
- Protocolo = um formato definido para a comunicação entre os dispositivos de recepção e transmissão
 - Protocolos de interface de armazenamento populares: IDE/ATA e SCSI

IDE/ATA e Serial ATA

- Integrated device electronics (IDE)/advanced technology attachment (ATA)
 - Interface popular utilizada para conectar os discos rígidos ou os drives de CD-ROM
 - Disponíveis em vários padrões e com vários nomes
- Serial advanced technology attachment (SATA)
 - Versão de série da especificação do IDE/ATA que substitui o ATA paralelo
 - Interconexão de armazenamento de baixo custo, normalmente utilizado para a conectividade interna
 - Proporciona a transferência de dados a uma taxa de variação de até 6 Gb/s (padrão é de 3.0)

SCSI and SAS

- Small computer system interface (SCSI) paralela
 - Padrão popular para conexão entre o host e os dispositivos periféricos
 - Normalmente utilizado para a conectividade de armazenamento em servidores
 - Custo mais alto do que IDE/ATA, portanto não é comum em ambiente de computadores pessoais
 - Disponível em grande variedade de tecnologias e padrões relacionados
 - Suporta até 16 dispositivos em um único barramento
 - A versão Ultra-640 proporciona uma velocidade de transferência de dados de até o 640 MB/s
- Serial Attached SCSI (SAS)
 - Protocolo serial de ponto-a-ponto substitui o SCSI paralelo
 - Suporta uma taxa de transferência de dados de até 6 Gb/s (SAS 2.0)

Fibre Channel e IP

- Fibre Channel (FC)
 - Protocolo amplamente utilizado para comunicação em alta velocidade para dispositivo de armazenamento
 - Oferece uma transmissão serial de dados operados através de fios de cobre e/ou fibra ótica
 - A versão mais recente do interface FC '16FC' permite transferência de dados até 16 Gb/s
- Protocolo de Internet (IP)
 - Tradicionalmente utilizado para a transferência de tráfego entre hosts
 - Oferece a oportunidade de alavancar a rede em um IP existente para a comunicação de armazenamento
 - Exemplos: Protocolos iSCSI e FCIP

Módulo 2: Ambiente do data center

Aula 3: Armazenamento

Durante esta aula os seguintes tópicos serão abordados:

- Várias opções de armazenamento
- Componentes do drive de disco, endereçamento e desempenho
- Flash drives empresariais
- Acesso do host ao armazenamento e ao armazenamento de conexão direta

Opções de armazenamento

- Fita magnética
 - Solução de baixo custo para armazenamento de dados à longo prazo
 - Opção preferida para backups no passado
 - Limitações
 - Acesso aos dados de maneira sequencial
 - Acesso a um único aplicativo por vez
 - Desgaste físico
 - Sobrecarga no armazenamento/ recuperação

Opções de armazenamento (cont.)

- Discos ópticos
 - Popularmente utilizados como mídias de distribuição em ambientes computacionais pequenos e de um único usuário
 - Capacidade e velocidade limitados
 - Gravado uma vez e lido muitas vezes (WORM): CD-ROM, DVD-ROM
 - Outras variações: CD-RW, discos Blu-ray
- Drive de disco
 - Mídia de armazenamento mais conhecido
 - Grande capacidade de armazenamento
 - Leitura aleatória/ acesso escrito
- Flash drives
 - Utiliza mídia semicondutora
 - Oferece alto desempenho e baixo consumo de energia

Componentes do drive de disco

Estrutura física do disco

Endereçamento lógico de bloco

Endereço físico= CHS

Endereço lógico do bloco= Block#

Desempenho do drive de disco

- Dispositivo eletromecânico
 - Impacta o desempenho geral do sistema de armazenamento
- Tempo de serviço do disco
 - O tempo que o disco leva para completar um pedido de I/O, depende de:
 - Tempo de busca
 - Tempo rotacional de resposta
 - >> Taxa de transferência de dados

Tempo de serviço do disco = tempo de busca + tempo rotacional de resposta + tempo de transferência de dados

Tempo de busca

Tempo gasto para posicionar a cabeça de leitura/gravação

Quanto menor o tempo de busca, mais rápida a operação de I/O

As especificações do tempo de busca incluem:

- Full stroke
- Média
- Track-to-track

O tempo de busca de um disco é especificado pelo fabricante do drive

Latência rotacional

- O tempo gasto pelo platter para girar e posicionar os dados sob a cabeça de leitura/gravação
- Depende da velocidade de rotação do eixo
- Tempo médio rotacional
 - Metade do tempo gasto para uma volta completa
 - Para "X rpm, o tempo do drive é calculado em milionésimo de segundos

$$=\frac{1/2}{(X/60)}$$

Taxa de transferência de dados

- A quantidade média de dados por unidade que o drive pode entregar ao HBA
 - Taxa de transferência interna: velocidade em que os dados se movimentam da superfície do platter para o buffer interno do disco
 - Taxa de transferência externa: taxa em que os dados se movem através da interface do HBA

Uso da controladora de I/O vs. tempo de resposta

Baseado nas leis fundamentais de desempenho do drive do disco:

$$Av.Response\ Time = \frac{Service\ Time}{(1 - Utilization)}$$

- O tempo de serviço é o tempo gasto pela controladora para servir a um I/O
- Para aplicativos de desempenho sensível os discos são normalmente utilizados abaixo de 70% de sua capacidade de serviço I/O

Design de armazenamento baseado na necessidade do aplicativo e no desempenho do drive de disco

Discos necessários para atender a capacidade exigida pelo aplicativo (D_c):

$$D_{C} = \frac{Total\ capacity\ required}{Capacity\ of\ a\ single\ disk}$$

Discos necessários para atender o desempenho exigido pelo aplicativo (D_P):

$$D_{P} = \frac{\textit{IOPS generated by an application at peak workload}}{\textit{IOPS serviced by single disk}}$$

IOPS atendidos pelo disco (S) depende do tempo de serviço do disco (T_s):

$$T_S = Seek \ time + \frac{0.5}{(Disk \ rpm/60)} + \frac{Data \ block \ size}{Data \ transfer \ rate}$$

- T_{ς} é o tempo gasto para um I/O terminar, portanto o IOPS atendido por um disco (S) é igual a $(1/T_s)$
 - ▶ Para aplicativos com desempenho sensíveis (S)=

Disco necessário para um aplicativo = $max (D_C, D_P)$

Flash drives empresariais

Hard drives convencionais	Flash drives
Demora mecânica devido ao tempo de busca e da latência rotacional	Maior rendimento possível por drive devido à falta de movimento mecânico
Desempenho e capacidade de serviço do I/O limitados	Latência bem baixa por I/O e desempenho consistente de I/O
Maior consumo de energia por causa das operações mecânicas	 Alta eficiência de energia Menor exigência de energia por GB Menor exigência de energia por IOPS
Tempo médio baixo entre as falhas (MTBF)	Alta confiabilidade devido a falta de peças móveis
TCO mais alto devido ao maior número de discos, energia, refrigeração e custos de gerenciamento	No geral, menos TCO

Acesso do host ao armazenamento

Direct-Attached Storage (DAS)

Conexão direta interna

Módulo 2: Ambiente do data center

O conceito na prática

VMware ESXi

VMware ESXi

- O hipervisor líder de mercado
 - Permite a virtualização de plataformas x86
- A máquina física que hospeda ESXi é chamada de ESXi host
 - O host ESXi abstrai os recursos computacionais físicos para executar vários VMs ao mesmo tempo no mesmo servidor físico
- Dois componentes
 - VMKernel
 - Trabalha semelhante ao SO responsável pelo processo criativo, agendamento de recursos, etc.
 - Monitor da máquina virtual
 - Executa a tradução binária para as instruções privilegiadas de SO que não podem ser virtualizadas

Módulo 2: resumo

Pontos importantes apresentados neste módulo:

- Os principais elementos do datacenter
- Aplicativos e virtualização computacional
- Componentes e desempenho do drive de disco
- Flash drives empresariais
- Acesso do host ao armazenamento