IN THE CLAIMS:

Below is a complete listing of all claims (following entry of the amendment of July 30, 2003), and replaces all prior versions.

1-65. (Canceled).

66 (Currently amended). A compound of Formula (I),

or an enantiomer, diastereomer, tautomer, or pharmaceutically-acceptable salt, or solvate thereof, wherein:

V is chosen from -CHR⁵-, -NR⁵-, -O-, and -S-:

Z is chosen from halogen, alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclyl, substituted heterocyclyl, -SR³, -OR³, and -N(R¹)(R²);

-N(R¹)(R²) taken together may form a heterocyclyl or substituted heterocyclyl; or R¹ is chosen from hydrogen, alkyl and substituted alkyl; and

R² is chosen from hydrogen, alkyl, substituted alkyl, alkoxy, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclyl and substituted heterocyclyl;

R³ is chosen from hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclyl and substituted heterocyclyl;

R⁵ is chosen from hydrogen and alkyl, or when attached to a nitrogen atom, R⁵ taken together with R⁷ may form a fused heterocyclyl or substituted heterocyclyl;

R⁷ is chosen from hydrogen, -N(R³¹)(R³²), halogen, cyano, alkyl, substituted alkyl, alkoxy, and alkylthio, or when V is $-NR^5$, $-R^5$ and R^7 taken together may form a fused heterocyclyl or substituted heterocyclyl;

R⁸ is chosen from hydrogen and halogen;

 R^9 is chosen from $-CO_2(alkyl)$, $-C(O)N(R^{31})(R^{32})$, $-SO_2N(R^{31})(R^{32})$, $-N(R^{33})SO_2R^{34}$, $-C(O)N(R^{33})N(R^{31})(R^{32})$, $-N(R^{33})C(O)R^{34}$, $-CH_2N(R^{33})C(O)R^{34}$, $-N(R^{31})(R^{32})$, $-CH_2OC(O)R^{34}$, $C_{1-6}alkyl$, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heterocyclyl, substituted heterocyclyl, and $-C(O)R^{10}$; provided, however, that when R^9 is CH_3 or NH_2 , then neither R^2 nor R^{14} is para-cyano-phenyl;

or R^8 and R^9 taken together may form $-C(O)N(R^{33})CH_2$ - or $-C(O)N(R^{33})C(O)$ -;

R¹⁰ is chosen from heterocyclyl, substituted heterocyclyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, alkyl, and substituted alkyl;

R³¹ and R³³ are independently chosen from hydrogen, alkyl, and substituted alkyl;

R³² is chosen from hydrogen, alkyl, substituted alkyl, alkoxy, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, aryloxy, heterocyclyl and substituted heterocyclyl;

R³⁴ is chosen from alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclyl and substituted heterocyclyl;

$$R^{11}$$
 is $-N$ CH_3 $-N(R^{12})(R^{13})$;

R¹² is chosen from hydrogen, alkyl, and substituted alkyl; and

 R^{13} is $-(CH_2)_m R^{14}$; or

-N(R¹²)(R¹³) taken together may form a heterocyclyl or substituted heterocyclyl;

m is 0, 1, 2 or 3;

R¹⁴ is chosen from hydrogen, alkyl, substituted alkyl, -C(O)N(R³¹)(R³²),

-N(R³³)C(O)R³⁴, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclyl, substituted heterocyclyl, and

R¹⁵ is chosen from hydrogen, alkyl, substituted alkyl, alkenyl, -C(O)-alkyl, -C(O)-substituted alkyl, -C(O)-aryl, -C(O)-substituted aryl, -C(O)-alkoxy, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclyl and substituted heterocyclyl;

R¹⁶ is chosen hydrogen, alkyl, substituted alkyl, and

R¹⁷ is chosen from hydrogen, alkyl, substituted alkyl, -C(O)-alkyl, -C(O)-substituted alkyl, -C(O)-aryl, and -C(O)-substituted aryl.

67-69 (Canceled).

70. (Currently amended). A compound having the formula,

or an enantiomer, diaster eomer, tautomer, or pharmaceutically-acceptable salt $_{\bar{7}}$ or solvate thereof, wherein:

V is chosen from -CHR⁵-, -NR⁵-, -O-, and -S-;

Z is halogen, alkyl, $-N(R^1)(R^2)$, or alkyl substituted with one to two of $-N(R^{31})(R^{32})$, alkoxy, alkylthio, halogen, cyano, carboxyl, hydroxyl, $-SO_2$ -alkyl, $-CO_2$ -alkyl, -C(O)-alkyl, nitro, cycloalkyl, substituted cycloalkyl, -C(O)- $N(R^{31})(R^{32})$, and/or -NH-C(O)-alkyl;

R¹ is hydrogen or methyl;

R² is alkyl of 1 to 8 carbon atoms;

R³ is chosen from hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclyl and substituted heterocyclyl;

R⁵ is chosen from hydrogen and alkyl of 1 to 4 carbon atoms;

R⁷ is chosen from hydrogen, amino, aminoC₁₋₄alkyl, halogen, cyano, C₁₋₄alkyl, C₁₋₄alkoxy, and alkylthio;

R⁸ is attached to any available carbon atom of the phenyl ring and is chosen from hydrogen and halogen;

 R^9 is chosen from $-C(O)N(R^{31})(R^{32})$, $-SO_2N(R^{31})(R^{32})$, $-N(R^{33})SO_2R^{34}$, $-C(O)N(R^{33})N(R^{31})(R^{32})$, $-N(R^{33})C(O)R^{34}$, $-CH_2N(R^{33})C(O)R^{34}$, $-N(R^{31})(R^{32})$, $-CH_2OC(O)R^{34}$, heterocyclyl, and substituted heterocyclyl; or

R⁸ and R⁹ taken together may form -C(O)N(R³³)CH₂- or -C(O)N(R³³)C(O)-;

R³¹ and R³³ are independently chosen from hydrogen, alkyl, and substituted alkyl;

R³² is chosen from hydrogen, alkyl, substituted alkyl, alkoxy, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, aryloxy, heterocyclyl and substituted heterocyclyl;

R³⁴ is chosen from alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclyl and substituted heterocyclyl;

-N(R¹²)(R¹³) taken together form (i) a monocyclic heterocyclyl or substituted heterocyclyl of 5 to 7 atoms having 1, 2 or 3 additional nitrogen atoms, (ii) -NH-alkyl wherein alkyl is of 1 to 4

-NH—
$$\stackrel{\text{NR}^{15}}{}$$
 carbon atoms, or (iii)

m is 0 1 2 or 3:

 R^{14} is chosen from hydrogen, alkyl, substituted alkyl, $-C(O)N(R^{24})(R^{32})$, $-N(R^{23})C(O)R^{24}$, aryl, substituted aryl, eyeloalkyl, substituted eyeloalkyl, heteroeyelyl, substituted heteroeyelyl and

R¹⁵ and R¹⁶ are independently hydrogen or methyl; and R¹⁷ is chosen from hydrogen, alkyl, substituted alkyl, -C(O)-alkyl, -C(O)-substituted alkyl, -C(O)-aryl, and -C(O)-substituted aryl.

71 (Previously presented). A compound of Claim 70 or a enantiomer, diastereomer, tautomer, or pharmaceutically-acceptable salt, or solvate thereof, having the formula:

72 (Currently amended). The compound of claim 70 or an enantiomer, diastereomer, tautomer, or pharmaceutically-acceptable salt₇ or solvate thereof, wherein:

R⁷ is halogen, methyl, methoxy, halogen, or cyano.

73 (Currently Amended). The compound of claim 70 or an stereoisomer, enantiomer, diastereomer, tautomer, or pharmaceutically-acceptable salt, prodrug, or solvate thereof, wherein: R^9 is $C(=O)NH_2$, $C(=O)NH(CH_3)$, or $C(=O)NHO(CH_3)$.

74 (Currently Amended). The compound of claim 70 or an enantiomer, diastereomer, tautomer, or pharmaceutically-acceptable salt, or solvate thereof,

wherein R⁷ is methyl and R⁹ is C(=O)NH(CH₃) or C(=O)NHO(CH₃).

75 (Currently Amended). A compound of Claim 70 or an enantiomer, diastereomer, tautomer, or pharmaceutically-acceptable salt, or solvate thereof wherein:

R⁹ is chosen from unsubstituted or substituted triazolyl, oxadiazolyl, imidazolyl, thiazolyl and benzimidazolyl.

76 (Currently Amended). A compound of Claim 70 or an enantiomer, diastereomer, tautomer, or pharmaceutically-acceptable salt; or solvate thereof wherein:

R⁹ is chosen from substituted or unsubstituted 1,2,4-triazole; substituted or unsubstituted thiazole connected via a C2, C4, or C5 position; substituted or unsubstituted 1,3,4-oxdiazole connected via a 2 or 5 position; and substituted or unsubstituted imidazole connected via a C2, C4, C5, N1 or N3 position.

77 (Currently Amended). A compound which is selected from (i):

pharmaceutically-acceptable salt₅ or solvate of the compound selected from paragraph (i).

78 (Currently Amended). A pharmaceutical composition comprising as an active ingredient, a compound, or a prodrug or salt thereof, according to claim 70, and a pharmaceutically acceptable carrier.

79 (Previously presented). A pharmaceutical composition according to claim 78, further comprising one or more additional active ingredients.

80 (Previously presented). A pharmaceutical composition according to claim 79, wherein said additional active ingredient is an anti-inflammatory compound or an immunosuppressive agent.

81 (Previously presented. A pharmaceutical composition according to claim 79, wherein said additional active ingredient is chosen from a steroid and an NSAID.

82 (Currently Amended). A method of treating rheumatoid arthritis, the method comprising administering to a mammal in need of such treatment, an effective amount of a composition according to claim 78.

83-84 (Canceled).

85 (Previously presented). The method according to claim 82 wherein said composition according to claim 78 is administered with one or more additional anti-inflammatory or immunospressive agents as a single dose form or as separate dosage forms.

86-87 (Canceled).

88 (Previously presented). A method of inhibiting TNF- α expression in a mammal, the method comprising administering to the mammal an effective amount of a composition according to Claim 78.

89-95 (Canceled).

96 (New). A compound according to claim 66, having the formula,

, or pharmaceutically-acceptable salt or solvate thereof.

97 (New). A compound according to claim 66, having the formula,

or pharmaceutically-acceptable salt or solvate thereof.

98 (New). A compound according to claim 66, wherein R₁₁ is

99 (New). A method of modulating p38 kinase in a mammal comprising administering to the mammal at least one compound having the formula,

or an enantiomer, diastereomer, tautomer, or pharmaceutically-acceptable salt, or solvate thereof, wherein:

V is chosen from -CHR⁵-, -NR⁵-, -O-, and -S-;

Z is chosen from halogen, alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclyl, substituted heterocyclyl, $-SR^3$, $-OR^3$, and $-N(R^1)(R^2)$;

-N(R¹)(R²) taken together may form a heterocyclyl or substituted heterocyclyl; or

R¹ is chosen from hydrogen, alkyl and substituted alkyl; and

R² is chosen from hydrogen, alkyl, substituted alkyl, alkoxy, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclyl and substituted heterocyclyl;

R³ is chosen from hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclyl and substituted heterocyclyl;

R⁵ is chosen from hydrogen and alkyl, or when attached to a nitrogen atom, R⁵ taken together with R⁷ may form a fused heterocyclyl or substituted heterocyclyl;

 R^7 is chosen from hydrogen, $-N(R^{31})(R^{32})$, halogen, cyano, alkyl, substituted alkyl, alkoxy, and alkylthio, or when V is $-NR^5$, $-R^5$ and R^7 taken together may form a fused heterocyclyl or substituted heterocyclyl;

R⁸ is chosen from hydrogen and halogen;

 R^9 is chosen from $-CO_2(alkyl)$, $-C(O)N(R^{31})(R^{32})$, $-SO_2N(R^{31})(R^{32})$, $-N(R^{33})SO_2R^{34}$, $-C(O)N(R^{33})N(R^{31})(R^{32})$, $-N(R^{33})C(O)R^{34}$, $-CH_2N(R^{33})C(O)R^{34}$, $-N(R^{31})(R^{32})$, $-CH_2OC(O)R^{34}$, $C_{1-6}alkyl$, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heterocyclyl, substituted heterocyclyl, and $-C(O)R^{10}$; provided, however, that when R^9 is CH_3 or NH_2 , then neither R^2 nor R^{14} is para-cyano-phenyl;

or \mathbb{R}^8 and \mathbb{R}^9 taken together may form $-\mathbb{C}(O)\mathbb{N}(\mathbb{R}^{33})\mathbb{C}H_2$ - or $-\mathbb{C}(O)\mathbb{N}(\mathbb{R}^{33})\mathbb{C}(O)$ -;

R¹⁰ is chosen from heterocyclyl, substituted heterocyclyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, alkyl, and substituted alkyl;

R³¹ and R³³ are independently chosen from hydrogen, alkyl, and substituted alkyl;

R³² is chosen from hydrogen, alkyl, substituted alkyl, alkoxy, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, aryloxy, heterocyclyl and substituted heterocyclyl;

R³⁴ is chosen from alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclyl and substituted heterocyclyl;

$$R^{11}$$
 is $-N(R^{12})(R^{13})$;

R¹² is chosen from hydrogen, alkyl, and substituted alkyl;

 R^{13} is $-(CH_2)_m R^{14}$; -N(R^{12})(R^{13}) taken together may form a heterocyclyl or substituted heterocyclyl; m is 0, 1, 2 or 3;

 R^{14} is chosen from hydrogen, alkyl, substituted alkyl, $-C(O)N(R^{31})(R^{32})$, $-N(R^{33})C(O)R^{34}$, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclyl, substituted heterocyclyl, and

R¹⁵ is chosen from hydrogen, alkyl, substituted alkyl, alkenyl, -C(O)-alkyl, -C(O)-substituted alkyl, -C(O)-aryl, -C(O)-substituted aryl, -C(O)-alkoxy, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclyl and substituted heterocyclyl;

R¹⁶ is chosen hydrogen, alkyl, substituted alkyl, and

R¹⁷ is chosen from hydrogen, alkyl, substituted alkyl, -C(O)-alkyl, -C(O)-substituted alkyl, -C(O)-aryl, and -C(O)-substituted aryl.