МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

Кафедра теоретической ядерной физики

На правах рукописи Широков Денис Дмитриевич

«Численные методы решения задач математической физики с использованием локально-адаптивных сеток»

Выпускная квалификационная работа бакалавра Направление подготовки 03.03.01 Прикладные математика и физика

рыпускная квалификационн	ая
работа защищена	
«»2021 г.	
Оценка	
Секретарь ГЭК	Фамилия И.О.
	к.фм.н., доцент

Москва

14 мая 2022 г.

Пояснительная записка

к бакалаврской дипломной работе:

«Численные методы решения задач математической физики с использованием локально-адаптивных сеток»

Студент	Широков Д.Д.
Научный руководитель к.фм.н.	Кучугов П.А.
Соруководитель д.фм.н.	Тишкин В.Ф.
Рецензент к.фм.н.	<u> </u>
Зам. зав. кафедрой к.фм.н.	Муравьев С.Е.

Аннотация

Здесь будет аннотация

Содержание

1	Основные понятия теории разностных схем				
2					
3 Разностные схемы на статических сетках 3.1 Избранные разностные схемы для уравнения теплопроводности					
		3.1.2	Однопараметрическое семейство неявных схем	6	
		3.1.3	Локально-одномерные схемы	6	
	3.2	Прогр	раммный код, примеры расчётов	6	
4	Теория блочных локально-адаптивных сеток				
5	Замечания о программной реализации				
6	Основные результаты			6	
7	Приложения к физике, реальные задачи				
8	Заключение				
\mathbf{C}_{1}	писо	к лите	PDATVDN	7	

1 Введение

Большинство моделей классической физики, таких как гидрогазодинамика, описываются начально-краевыми задачами для дифференциальных уравнений в частных производных второго порядка[1; 2]. Нахождение аналитического решения таких задач в общем случае не представляется возможным. Основной метод численного решения таких задач (то есть представление как исходных данных в задаче, так и её решения в конечном итоге — в виде множества чисел) — метод разностных схем, который подробно описан в разделе 2. Его основа заключается в том, что исходная непрерывная задача в области $G \subset \mathbb{R}^n$ сводится к семейству разностных задач — системам конечного числа линейных (в общем случае — нелинейных) уравнений, которые решаются алгоритмически и тем самым могут быть программно реализованы на современных ЭВМ.

Принципиальная возможность применения тех или иных алгоритмов основывается на вопросе об их сходимости, точности и устойчивости. Так, в работе [3] даётся обширное описание алгоритмов решения задач на *статических* сетках, исследуются вопросы устойчивости и скорости сходимости. Более подробное исследование тех же вопросов в случае неравномерных статических сеток дан в работе [4].

Проблема использования таких сеток ...

Здесь написать про то, что в квазилинейном уравненнии не существует классическо решения, обобщённые решения, разрывы, волновые фронты, ударные волны, все дела. В статьях Самарского там показано это, тыры-пыры. А вот в газовой динамике так вооб жесть. И поэтмоу нужно измелчать, а там слишком мелко то нецелесообразно, все дела, и вот начать вводить в адаптивные сетки, как это круто, они могут спасти ситуацию.

Дальше сформулировать цель работы, и кратко рассказать, в каких section'ах что описывается. Это вроде все планы на введение.

2 Основные понятия теории разностных схем

Ну, тут я пока просто скопировал то, что было написано ранее для себя, всё это будет переформулировываться в более красивой форме, и, конечно же, добавится вода. Формулы тоже нужно переписать, всё было написано и тупо скопировано пока из markdown'a

Основные положения метода конечных разностей

Сетки и сеточные функции Пусть H_0 — некоторое функциональное пространство функций u(x) непрерывного аргумента $x \in G$ с нормой $\|\cdot\|_0$. В методе конечных разностей область \bar{G} изменения аргумента x заменяется сеткой $\bar{\omega}_h$ — конечным множеством точек $x_i \in \bar{G}$, а функциональное пространство H_0 заменяется на H_h — гильбертово пространство сеточных функций $y_h(x)$, определённых на сетке $\bar{\omega}_h$ с нормой $\|\cdot\|_h$. Обычно будем пользоваться нормой $\|y\|_h = \left(\sum_{i=1}^N h y_i^2\right)^{1/2}$ Функции $y_h(x) \in H_h$ — численные решения,

аппроксимации исходных решений $u(x) \in H_0$. Соответственно, основной интерес теории приближённых методов представляет **оценка близости** y_h к u. Эти два вектора являются элементами разных пространств. Их близость описываем следующим образом:

 $\mathcal{P}_h: H_0 \to H_h, \quad u \mapsto u_h: u_h(x) = u(x), x \in \bar{\omega}_h.$ Тогда близость u_h и y_h характеризуется числом $\|y_h - u_h\|_h$.

Условие согласования норм в H_h и H_0 : $\lim_{h\to 0} \|u_h\|_h = \|u\|_0$, или другими словами "норма $\|\cdot\|_h$ аппроксимирует норму $\|\cdot\|_0$ "

Разностная аппроксимация дифференциальных операторов

Пусть L — линейный дифференциальный оператор, $\mathcal{D}(L) = H_0$, $(x) \subset \bar{\omega}_h$ — некоторое множество узлов сетки

Опр. $L_h v_h(x) = L_h v_h(x) = \sum_{\xi \in (x)} A_h(x,\xi) v_n(\xi)$ — разностный оператор, разностная аппроксимация оператора L

Опр. $\psi(x) = L_h v(x) - L v(x)$ — локальная погрешность разностной аппроксимации Lv в точке x.

Опр. L_h аппроксимирует L с порядком m>0 в точке x, если $\psi(x)=L_hv(x)-Lv(x)=O(h^m)$

Опр. Погрешность аппроксимации оператора L разностным оператором L_h — это сеточная функция $\psi_h = L_h v_h - (Lv)_h$, $(Lv)_h = \mathcal{P}_h(Lv)$, $v \in H_0$

Опр. Разностный оператор L_h аппроксимирует дифференциальный оператор L с порядком m>0, если

$$\|\psi_h\| = \|L_h v_h - (Lv)_h\|_h = O(|h|^m)$$

Общее утверждение, касательно аппроксимации дифференциальных операторов разностными таково, что: * погрешность аппроксимации зависит от используемого шаблона, причём можно достичь любого порядка локальной аппроксимации повышением кол-ва узлов шаблона (однако ухудшается качество операторов) * исследование локальной аппроксимации может оказаться недостаточным для суждения о порядке разностной аппроксимации на сетке и тем самым для суждения о качестве разностного оператора * рассмотрение разностной аппроксимации на решении дифференциального уравнения может использоваться для повышения порядка аппроксимации

Постановка разностных задач.

 $G\subset \mathbb{R}^n,\ \partial G=\Gamma,\ L,l$ — линейные дифференциальные операторы, $\mathcal{D}(L)=H_0,\ \mathcal{D}(l)=H_0.$ Исохдной задаче

$$\begin{cases} Lu(x) = f(x), & x \in G \\ lu(x) = \mu(x), & x \in \Gamma \end{cases}$$

ставится в соответствие *семейство разностных задач*, зависящих от параметра h, называемое *разностной схемой*:

$$\left\{ \begin{cases} L_h y_h = \varphi_h, & x \in \omega_h \\ l_h y_h = \chi_h, & x \in \gamma_h \end{cases} \right\}_h$$

Опр. Погрешность разностной схемы $z_h = y_h - u_h$, где y_h — решение разностной задачи, а $u_h = \mathcal{P}_h u$ проекция решения исходной задачи на H_0 .

Опр. Погрешность аппроксимации для уравнения $L_h y_h = \varphi_h$ на решении u(x) уравнения Lu = f:

$$\psi_h = L_h z_h = \varphi_h - L_h u_h$$

погрешность аппроксимации для условия $l_h y_h = \chi_h$ на решении u(x) исходной задачи:

$$\nu_h = l_h z_h = \chi_h - l_h u_h$$

Опр. Решение разностной задачи *сходится к решению исходной задачи*, если

$$||z_h||_h = ||y_h - u_h||_h \to 0 \quad |h| \to 0$$

Опр. Разностная схема *сходится со скоростью* $O(|h|^m)$ (*имеет m-ый порядок точности*), если

$$||z_h||_h = ||y_h - u_h||_h = O(|h|^m), \quad |h| \to 0$$

Опр. Разностная схема обладает n-ым порядком аппроксимации, если

$$\|\psi_h\|_h = O(|h|^n), \quad \|\nu_h\|_h = O(|h|^n)$$

Опр. Разностная схема называется корректной (устойчивой, сходящейся), если $\exists h_0 > 0: \forall h(|h| \leqslant h_0) \Rightarrow 1. \ \forall \varphi \in \tilde{H}_h \ \exists ! y_h - \text{решение}; \ 2. \ \exists M > 0: \forall \varphi_h, \tilde{\varphi}_h \ \|y_h - \tilde{y}_h\| \leqslant M \|\varphi_h - \tilde{\varphi}_h\|$ **Утв.** Если схема устойчива и аппроксимирует исходную, т.е. $\|\psi_h\|_h = O(|h|^n)$, то она сходится, причём порядок сходимости совпадает с порядком аппроксимации.

- 3 Разностные схемы на статических сетках
- 3.1 Избранные разностные схемы для уравнения теплопроводности
- 3.1.1 Явная схема
- 3.1.2 Однопараметрическое семейство неявных схем
- 3.1.3 Локально-одномерные схемы
- 3.2 Программный код, примеры расчётов
- 4 Теория блочных локально-адаптивных сеток
- 5 Замечания о программной реализации
- 6 Основные результаты
- 7 Приложения к физике, реальные задачи
- 8 Заключение

Список литературы

- 1. Тихонов A., Самарский A. Уравнения математической физики.—изд. 8-е, стереотипное. 2007.
- 2. Ландау Л., Лифшиц Е. Теоретическая физика: гидродинамика. 5-е изд., стереот // М.: Физмат-лит. 2001. Т. 5. С. 736.
- 3. *Самарский А. А.* Теория разностных схем. "Наука,"Глав. ред. физико-математической лит-ры, 1989.
- 4. Самарский А. А. Локально-одномерные разностные схемы на неравномерных сетках // Журнал вычислительной математики и математической физики. 1963. Т. 3, № 3. С. 431—466.