Sample Midterm: Natural Language Processing

This material is ©Anoop Sarkar 2014.

Only students registered for this course are allowed to download this material.

Use of this material for "tutoring" is prohibited.

(1) Language Modeling

Consider a language model over character sequences that computes the probability of a word based on the characters in that word, so if word $w = c_0, c_1, \ldots, c_n$ then $P(w) = P(c_0, \ldots, c_n)$. Let us assume that the language model is defined as a bigram character model $P(c_i \mid c_{i-1})$ where

$$P(c_0, ..., c_n) = \prod_{i=1,2,...,n} P(c_i \mid c_{i-1})$$

Katz backoff smoothing is defined as follows:

$$P_{katz}(c_i \mid c_{i-1}) = \begin{cases} \frac{r^*(c_{i-1}, c_i)}{r(c_{i-1})} & \text{if } r(c_{i-1}, c_i) > 0\\ \alpha(c_{i-1}) P_{katz}(c_i) & \text{otherwise} \end{cases}$$

where $r(\cdot)$ provides the (unsmoothed) frequency from training data and $r^*(\cdot)$ is the Good-Turing estimate of the frequency r.

Provide the equation for $\alpha(c_{i-1})$ that ensures that $P_{katz}(c_i \mid c_{i-1})$ is a proper probability.

(2) **Hidden Markov Models**:

The probability model $P(t_i \mid t_{i-2}, t_{i-1})$ is provided below where each t_i is a part of speech tag, e.g. the sixth row of the left table below corresponds to $P(D \mid N, V) = \frac{1}{3}$. Also provided is $P(w_i \mid t_i)$ that a word w_i has a part of speech tag t_i , e.g. the seventh line of the right table below corresponds to $P(\text{flies} \mid V) = \frac{1}{2}$.

$P(t_i \mid t_{i-2}, t_{i-1})$	t_{i-2}	t_{i-1}	t_i
1	bos	bos	N
$\frac{1}{2}$	bos	N	N
$\frac{1}{2}$	bos	N	V
$\frac{1}{2}$	N	N	V
$\frac{1}{2}$	N	N	P
$\frac{1}{3}$	N	V	D
$\frac{1}{3}$	N	V	V
$\frac{3}{\frac{1}{3}}$	N	V	P
1	V	D	N
1	V	V	D
1	N	P	D
1	V	P	D
1	P	D	N
1	D	N	eos

$P(w_i \mid t_i)$	t_i	w_i	
1	D	an	
$\frac{2}{5}$	N	time	
$\frac{2}{5}$	N	arrow	
$\frac{1}{5}$	N	flies	
1	P	like	
$\frac{1}{2}$	V	like	
$\frac{1}{2}$	V	flies	
1	eos	eos	
1	bos	bos	

The part of speech tag definitions are: bos (begin sentence marker), N (noun), V (verb), D (determiner), P (preposition), eos (end of sentence marker).

a. Provide a Hidden Markov Model (hmm) that uses the trigram part of speech probability $P(t_i \mid t_{i-2}, t_{i-1})$ as the transition probability $P_{hmm}(s_j \mid s_k)$ and the probability $P(w_i \mid t_i)$ as the emission probability $P_{hmm}(w_i \mid s_i)$.

Important: Provide the *hmm* in the form of two tables as shown below. The first table contains transitions between states in the *hmm* and the transition probabilities and the second table contains the

words emitted at each state and the emission probabilities. Do not provide entries with zero probability.

from-state s_k	to-state s_j	$P(s_j \mid s_k)$	state s_j	emission w	$P(w \mid s_j)$

Hint: In your *hmm* the state $\langle N, eos \rangle$ will have emission of word eos with probability 1 and will not have transitions to any other states.

b. Based on your *hmm* constructed in 2a. what is the state sequence with the highest probability for the following observation sequence:

bos bos time flies like an arrow eos

(3) Part-of-speech Tagging:

Consider the task of assigning the most likely part of speech tag to each word in an input sentence. We want to get the best (or most likely) tag sequence as defined by the equation:

$$T^* = \arg \max_{t_0,...,t_n} P(t_0,...,t_n \mid w_0,...,w_n)$$

- a. Write down the equation for computing the probability $P(t_0, ..., t_n \mid w_0, ..., w_n)$ using Bayes Rule and a trigram probability model over part of speech tags.
- b. We realize that we can get better tagging accuracy if we can condition the current tag on the previous tag and the next tag, i.e. if we can use $P(t_i \mid t_{i-1}, t_{i+1})$. Thus, we define the best (or most likely) tag sequence as follows:

$$T^* = \arg \max_{t_0, \dots, t_n} P(t_0, \dots, t_n \mid w_0, \dots, w_n)$$

$$\approx \arg \max_{t_0, \dots, t_n} \prod_{i=0}^{n+1} P(w_i \mid t_i) \times P(t_i \mid t_{i-1}, t_{i+1}) \text{ where } t_{-1} = t_{n+1} = \text{none}$$

Explain why the Viterbi algorithm cannot be directly used to find T^* for the above equation.

c. BestScore is the score for the maximum probability tag sequence for a given input word sequence.

BestScore =
$$\max_{t_0,\dots,t_n} P(t_0,\dots,t_n \mid w_0,\dots,w_n)$$

It is a bit simpler to compute than Viterbi since it does not compute the best sequence of tags (no back pointer is required). For the standard trigram model $P(t_i | t_{i-2}, t_{i-1})$:

BestScore =
$$\max_{t_0,...,t_n} \prod_{i=0}^{n+1} P(w_i \mid t_i) \times P(t_i \mid t_{i-2}, t_{i-1})$$

Assuming that $t_{-1} = t_{-2} = t_{n+1} = \text{none}$, we can compute BestScore recursively from left to right as follows:

$$\begin{aligned} \operatorname{BestScore}[i+1,t_{i+1},t_i] &= \max_{t_{i-1},t_i} \left(\operatorname{BestScore}[i,t_{i-1},t_i] \times P(w_{i+1} \mid t_{i+1}) \times P(t_{i+1} \mid t_{i-1},t_i) \right) \\ & \quad \text{for all } -1 \leq i \leq n \\ \operatorname{BestScore} &= \max_{\langle t, \operatorname{none} \rangle} \operatorname{BestScore}[n+1,\langle t, \operatorname{none} \rangle] \end{aligned}$$

This algorithm for computing BestScore is simply the recursive forward algorithm for HMMs but with the sum replaced by max.

Provide an algorithm in order to compute BestScore for the improved trigram model $P(t_i \mid t_{i-1}, t_{i+1})$:

BestScore =
$$\max_{t_0,...,t_n} \prod_{i=0}^{n+1} P(w_i \mid t_i) \times P(t_i \mid t_{i-1}, t_{i+1})$$
 where $t_{-1} = t_{n+1} = \text{none}$

As before assume that: $P(t_0 \mid t_{-1} = \text{none}, t_1) \approx P(t_0 \mid t_1)$ and $P(t_n \mid t_{n-1}, t_{n+1} = \text{none}) \approx P(t_n \mid t_{n-1})$

You can provide either pseudo code, a recursive definition of the algorithm, or a recurrence relation.

Hint: The first step would be to extend the recursive BestScore algorithm given above to read the input from right to left.