作业7

(数值算法与案例分析)

李维杰

2024年 10 月 30 日

题目1. 设 $(\hat{\lambda}, \hat{x})$ 是 $A \in \mathbb{C}^{n \times n}$ 的一个近似特征对,并设残差 $r = A\hat{x} - \hat{x}\hat{\lambda}$. 假设 $\|x\|_2 = 1$.证明存在一个满足 $\|E\|_2 \leq \|r\|_2$ 的矩阵 $E \in \mathbb{C}^{n \times n}$,使得

$$(A+E)\hat{x} = \hat{x}\hat{\lambda}.$$

解答. 构造 $E = -r\hat{x}^*$,则满足

$$\begin{split} \|E\|_2 &= \|r\hat{x}^*\|_2 \\ &\leq \|r\|_2 \|\hat{x}\|_2 \\ &= \|r\|_2 \end{split}$$

且有

$$(A + E)\hat{x} = (A - r\hat{x}^*)\hat{x}$$
$$= A\hat{x} - r||x||_2^2$$
$$= A\hat{x} - r$$
$$= \hat{x}\hat{\lambda}.$$

题目2. 设 $A_0 \in \mathbb{C}^{n \times n}$,以及 $\mu_0, \mu_1, ..., \mu_m \in \mathbb{C}$. 通过下列递归定义 $A_1, A_2, ..., A_{m+1}$

$$\begin{cases} A_k - \mu_k I = Q_k R_k \\ A_{k+1} = R_k Q_k + \mu_k I \end{cases},$$

其中 Q_k 是正交阵.证明

$$\prod_{k=0}^{m} (A_0 - \mu_k I) = (\prod_{k=0}^{m} Q_k) (\prod_{k=0}^{m} R_{m-k})$$
(1)

解答. 对m采用数学归纳法,当m=0时,有

$$A_0 - \mu_0 I = Q_0 R_0,$$

显然符合(1)式.

假设当 $m = m_0$ 时,(1)式成立,即可推得

$$\prod_{k=1}^{m_0+1} (A_1 - \mu_k I) = (\prod_{k=1}^{m_0+1} Q_k) (\prod_{k=1}^{m_0+1} R_{m_0+2-k}).$$

下面考虑当 $m = m_0 + 1$ 的情况下(1)式是否成立.由于

$$Q_0(A_1 - \mu_k I)Q_0^* = Q_0(R_0Q_0 + (\mu_0 - \mu_k)I)Q_0^*$$
$$= Q_0R_0 + (\mu_0 - \mu_k)I$$
$$= A_0 - \mu_k I.$$

于是有

$$\prod_{k=0}^{m_0+1} (A_0 - \mu_k I) = (\prod_{k=1}^{m_0+1} (A_0 - \mu_k I))(A_0 - \mu_0 I)$$

$$= Q_0 (\prod_{k=1}^{m_0+1} (A_1 - \mu_k I))Q_0^* (A_0 - \mu_0 I)$$

$$= (\prod_{k=1}^{m_0+1} Q_k)(\prod_{k=1}^{m_0+1} R_{m_0+2-k})Q_0^* (A_0 - \mu_0 I)Q_0$$

$$= (\prod_{k=1}^{m_0+1} Q_k)(\prod_{k=1}^{m_0+1} R_{m_0+2-k})Q_0^* Q_0 R_0$$

$$= (\prod_{k=0}^{m_0+1} Q_k)(\prod_{k=0}^{m_0+1} R_{m_0+1-k}).$$

于是原命题得证.

题目3. 随机生成一个1000 × 1000的正元素矩阵A. 使用power method计算 $\rho(A)$. 可视化收敛过程.

解答. (代码见Problem3.m)

图 1: 收敛过程(以 $\|\hat{x} - x\|_2$ 衡量收敛程度)

题目4. 设A是一个 200×200 的Hilbert矩阵(满足 $a_{ij} = (i+j-1)^{-1}$).分别使用inverse iteration和Rayleigh quotient iteration计算A最接近1的特征值. 可视化收敛过程并指出算法的耗时(最好附带详细的分析)

解答. (代码见Problem4.m)

对于inverse iteration, 算法在预处理中即先求出了(A-I)的LU分解,这一处理的时间复杂度为 $O(n^3)$. 在每一步迭代中,均需要进行两步解三角线性方程组,单次迭代的时间复杂度为 $O(n^2)$.设迭代次数为m,则此算法的总时间复杂度为 $O(n^3)+O(mn^2)$.

对于Rayleigh quotient iteration, 算法在每一步迭代中均需要解一个线性方程组,这一操作的时间复杂度为 $O(n^3)$,同时每一步操作均需要计算一次Rayleigh商,这一操作的时间复杂度为O(n). 设迭代次数为m,则此算法的总时间复杂度为 $O(mn^3)$.

图 2: 两种算法的收敛速度和消耗时间

题目5. 写一个程序来计算一个拥有不同对角元素的上三角阵的所有特征值.并把程序得到的结果与MATLAB自带的**eig**函数得到的结果做比较.

解答. (代码见Problem5.m)

图 3: 程序结果与标准函数库结果的差异情况