Computational techniques for problems in civil engineering: Finite Volumes

Jithin D. George

Dept. Of Applied Mathematics, University of Washington

August 10, 2017

Outline

Introduction

Finite differences
The Riemann problem
Advection equation
System of equations

Shallow water equations

Shallow water equations
Shallow water equations with bathymetry
How to actually implement Finite Volumes

For students

Areas of active research in engineering and mathematics Resources

Finite differences

The problem:

$$\frac{dx}{dt} = f(x, t)$$

The approximation:

$$\frac{dx(t)}{dt} = \frac{x(t + \Delta t) - x(t)}{\Delta t}$$

Solution:

$$x(t + \Delta t) = x(t) + \Delta t \frac{dx}{dt} = x(t) + \Delta t f(t)$$

Projectile motion

$$\frac{d^2x}{dt^2} = -g$$

$$\frac{d}{dt} \begin{bmatrix} x \\ v \end{bmatrix} = \begin{bmatrix} v \\ -g \end{bmatrix}$$

Projectile motion

```
thetas = [np.pi/6, np.pi/4, np.pi/3];
a=np.array([[0,-9.81]]) #acceleration
x=np.zeros([60,2]) #initial position
u=30 #initial velocity magnitude
for theta in thetas:
    v=np.zeros([60,2])
    v[0,:]=[u*np.cos(theta),u*np.sin(theta)]
    h = 0.1
    for i in range (1,60):
       x[i,:]=x[i-1,:] +h*v[i-1,:]
       v[i,:]=v[i-1,:] +h*a
    py.plot(x[:,0],x[:,1])
```

Projectile motion

The Riemann problem

The Riemann problem

Advection equation

The advection equation:

$$\frac{\partial q}{\partial t} = c \frac{\partial q}{\partial x}$$

A solution is of the form f(x + ct) satisfies this.

$$\frac{\partial f(x+ct)}{\partial t} = f'(x+ct)c, \frac{\partial f(x+ct)}{\partial x} = f'(x+ct)$$

Here, the function is $e^{-(x+t)^2}$

System of equations

$$\frac{\partial q}{\partial t} = A \frac{\partial q}{\partial x}$$

If A has real eigenvalues, the system is hyperbolic.

$$Av = \lambda v$$

Linear acoustics equation

$$\frac{\partial}{\partial t} \left[\begin{array}{c} p \\ u \end{array} \right] + \left[\begin{array}{cc} 0 & K \\ \frac{1}{\rho} & 0 \end{array} \right] \frac{\partial}{\partial x} \left[\begin{array}{c} p \\ u \end{array} \right] = 0$$

The eigenvalues are $\sqrt{\frac{K}{\rho}}$ and $-\sqrt{\frac{K}{\rho}}$

Linear acoustics

Figure 2: Time = 1

Linear acoustics

Gas – P₄, T₄, V₄, γ

Gas – P₁, T₁,V₁, γ

Outline

Introduction

Finite differences
The Riemann problem
Advection equation
System of equations

Shallow water equations

Shallow water equations Shallow water equations with bathymetry How to actually implement Finite Volumes

For students

Areas of active research in engineering and mathematics Resources

$$\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} = 0$$

$$\frac{\partial (hu)}{\partial t} + \frac{\partial (hu^2 + \frac{1}{2}gh^2)}{\partial x} = 0$$

$$\frac{\partial}{\partial t} \begin{bmatrix} h \\ hu \end{bmatrix} + \frac{\partial}{\partial x} \begin{bmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 \end{bmatrix} = 0$$

$$\frac{\partial}{\partial t} \begin{bmatrix} h \\ hu \\ hv \end{bmatrix} + \frac{\partial}{\partial x} \begin{bmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 \\ huv \end{bmatrix} + \frac{\partial}{\partial y} \begin{bmatrix} 0 \\ huv \\ hv^2 + \frac{1}{2}gh^2 \end{bmatrix} = 0$$

2D Shallow water equations

2D Shallow water equations

$$\frac{\partial}{\partial t} \begin{bmatrix} h \\ hu \end{bmatrix} + \frac{\partial}{\partial x} \begin{bmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 \end{bmatrix} = \begin{bmatrix} 0 \\ -ghb_x \end{bmatrix}$$

PDE:

$$\frac{\partial q}{\partial t} + \frac{\partial f}{\partial x} = 0$$

Conservation form:

$$\frac{\partial}{\partial t} \int q(x,t) dx = f(q(x_{left},t)) - f(q(x_{right},t))$$

We use cell averages instead of pointwise values.

$$Q = \int q(x,t)dx$$

Figure 3: Start values

Figure 4: Estimate flow (flux) in timestep

Figure 5: Update values

Outline

Introduction

Finite differences
The Riemann problem
Advection equation
System of equations

Shallow water equations

Shallow water equations
Shallow water equations with bathymetry
How to actually implement Finite Volumes

For students

Areas of active research in engineering and mathematics Resources

Areas of active research in engineering and mathematics

(a) MEMS and Nanoscale devices

(b) Deep Learning

Figure 7: Singular Value Decomposition(SVD/PCA)

Resources

- General
 - www.udacity.com
 - www.coursera.com
- Scientific Computing
 - http://courses.washington.edu/am301/
 - http://faculty.washington.edu/kutz/page5/page23/
 - Spectral Methods in Matlab, Lloyd N. Trefethen
- Finite Volumes
 - ► Finite Volume Methods for Hyperbolic Problems, R.J. Leveque
 - Clawpack