

E. T. S. I. Informática Estructuras Algebraicas para la Computación

7 de septiembre de 2016

Apellidos y Nombre:			Grupo:
DNI:	Titulación:	Firma	u:

- Se deben **justificar** adecuadamente las respuestas. Para que un ejercicio se considere resuelto correctamente se debe indicar claramente el modelo matemático usado en la resolución y la justificación de su adecuación. No se valorará la mera coincidencia del resultado propuesto.
- No usar lápiz, se debe escribir con bolígrafo azul o negro.
- No se puede utilizar ningún dispositivo electrónico.

Al responder cada pregunta, define cada uno de los conceptos que aparecen en negrita.

- 1. (0.5 pt.) Justifica si es posible encontrar un alfabeto finito Σ tal que $\mathcal{P}(\Sigma^*)$ sea un conjunto numerable.
- 2. (0.75 pt.) Sea D_{675} el conjunto de todos los divisores de 675 con la **relación de orden** divisibilidad.
 - a) Dibuja su diagrama de Hasse.
 - b) Dado el subconjunto $B = \{9, 15, 75, 225\}$, halla (si existen) minimales, maximales, mínimo, máximo, cotas superiores, cotas inferiores, mínima cota superior y máxima cota inferior.
 - c) Justifica que D_{675} es un **retículo algebraico** y estudia si es **retículo complementado**.
- 3. (1,25 pt.) Sea \mathbb{B} el **álgebra de Boole** binaria y sea $\mathcal{F}(\mathbb{B}^3,\mathbb{B})$ el álgebra de Boole de las funciones booleanas de tres variables.
 - a) Da una lista de los **átomos** y otra lista de los **superátomos** de $\mathcal{F}(\mathbb{B}^3, \mathbb{B})$.
 - b) Da un ejemplo de una función booleana de tres variables que no esté en las listas anteriores y exprésala en función de los átomos y de los superátomos.
 - c) ¿Existe un conjunto S tal que $\mathcal{P}(S)$ y $\mathcal{F}(\mathbb{B}^3,\mathbb{B})$ son álgebras de Boole isomorfas? En caso afirmativo, define un **isomorfismo**.
- 4. (0,75 pt.) La matriz de verificación de paridad de un cierto código de grupo es

$$\mathcal{H} = \left(\begin{array}{ccccc} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

a) Determina el mensaje que se enviará para comunicar E A C usando la equivalencia:

 $111\ M\quad 110\ E\quad 101\ T\quad 100\ R\quad 011\ C\quad 010\ I\quad 001\ A\quad 000\ S$

- b) Halla cuatro palabras que tengan el mismo síndrome que 0101010.
- c) Halla cuatro palabras que se decodifiquen igual que 1101011.

5. (1 p.) En el **anillo** de matrices $(\mathcal{M}_{2\times 2}(\mathbb{R}),+,\cdot)$ se consideran los subconjuntos

$$\mathcal{A} = \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right), \ a, b \in \mathbb{R} \right\}, \qquad \qquad \mathcal{M}(\mathbb{Z}) = \left\{ M = \left(\begin{array}{cc} 1 & z \\ 0 & 1 \end{array} \right), \ z \in \mathbb{Z} \right\}$$

Justifica que:

- a) $(A, +, \cdot)$ es cuerpo.
- b) Para cualesquiera A, B y $C \in \mathcal{A}$, (con $A \neq 0$), siempre que $A \cdot B = A \cdot C$ se verifica B = C.
- c) $(\mathcal{M}(\mathbb{Z}), \cdot)$ es grupo abeliano.
- d) $(\mathcal{M}(\mathbb{Z}), +, \cdot)$ no es **anillo**.
- 6. (2 pt) Sean el subespacio vectorial $W=\{(x,y,z)\in\mathbb{R}^3\,:\,x+y+z=0\}\,$ y la matriz

$$A = \left(\begin{array}{rrr} -1 & 0 & 1\\ 2 & 1 & -2\\ -1 & -1 & 1 \end{array}\right)$$

Razone si son verdaderas o falsas las siguientes afirmaciones:

- a) $\mathcal{L}\{(-1,2,-1),(0,1,-1),(1,-2,1)\}=W$
- b) El sistema $A\vec{x} = \vec{b}$ con $\vec{b} = (1, 1, 1)$ es incompatible.
- c) El sistema de ecuaciones lineales $A\vec{x} = \vec{b}$ es compatible para todo $\vec{b} \in W$.
- 7. (3,75 pt.) De una aplicación lineal $f: \mathbb{R}^4 \to \mathbb{R}^4$ sabemos que tiene dos **valores propios** distintos, -1 y 2 y que sus **subespacios propios** son

$$U_{-1} = \mathcal{L}\{(1,1,0,1), (1,-1,2,0), (0,2,1,-2)\}$$

 $U_{2} = \mathcal{L}\{(-3,1,2,2)\}$

- a) Halla f(0, 2, 1, -2).
- b) ; $\vec{v} = (1, 5, -1, 0)$ es un **vector propio** de f asociado al valor propio -1 ?
- c) Estudia si U_2 es un **subespacio ortogonal** al subespacio U_{-1} .
- d) Halla la matriz asociada a la aplicación lineal en la base

$$\mathcal{B} = \{(1,1,0,1), (1,-1,2,0), (0,2,1,-2), (-3,1,2,2)\}$$

- e) Halla la matriz $\,A\,$ asociada a la aplicación lineal $\,f\,$ en las bases canónicas.
- f) Justifica si f es **diagonalizable ortogonalmente** y, en caso afirmativo, determina una matriz de paso Q tal que Q^t A Q = D, siendo D = diag(-1, -1, -1, 2).
- g) Halla una base \mathcal{B}_1 del subespacio \mathcal{U}_{-1} , y otra base \mathcal{B}_2 del subespacio \mathcal{U}_2 tales que $\mathcal{B}' = \mathcal{B}_1 \cup \mathcal{B}_2$ sea una base ortonormal de \mathbb{R}^4 .
- h) Calcula las coordenadas del vector $\vec{v} = (1, 2, 1, 6)$ respecto a la base \mathcal{B}' .