NASA TM X-55804

THE INFLUENCE OF TRACKING STATION LOCATION UNCERTAINTIES ON SATELLITE ORBIT ERRORS

CFSTI PRICE(S) \$		
Har sopy (HC) 3-00 Microfiche (MF)65		
ff 653 July 65	D. W. KOCH	
N 67-2	8747 ON NUMBER) (THRU)	_

TM-X-55804

APRIL 5, 1967

GPO PRICE

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

THE INFLUENCE OF TRACKING STATION LOCATION UNCERTAINTIES ON SATELLITE ORBIT ERRORS

By D. W. Koch

April 5, 1967

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland

ABSTRACT

Results of a study to investigate the effect of varying station location uncertainties upon RMS errors in spacecraft position and velocity are presented. RMS errors in the state vector are evaluated for four different sets of earth orbits using five different station location uncertainties. A comparison of the RMS errors in the state vector with and without station location uncertainties is then made. In addition, the effect of different orbital eccentricity, perigee height, and inclination upon RMS errors is studied.

FROM THE PROPERTY OF MALE

TABLE OF CONTENTS

		Page
ABSTRACT		 iii
INTRODUCTION	• •	 1
TEXT		 1
CONCLUSION		 5
ACKNOWLEDGMENTS		 5
REFERENCES		 5

LIST OF ILLUSTRATIONS

Figure		Page
1	Tracking Coverage for the Three Trajectories of Set 1	6
2	RMS Errors in Position for the Trajectories of Set 1	7
3	RMS Errors in Velocity for the Trajectories of Set $1 \dots$	8
4	RMS Errors in Position for the Trajectories of Set 2	9
5	RMS Errors in Velocity for the Trajectories of Set 2	10
6	RMS Errors in Position for the Trajectories of Set 3	11
7	RMS Errors in Velocity for the Trajectories of Set 3	12
8	RMS Errors in Position for the Trajectories of Set 4	13
9	RMS Errors in Velocity for the Trajectories of Set 4	14
10	RMS Errors in Position for Trajectory 1 of Sets 1 and 3	15
11	RMS Errors in Velocity for Trajectory 1 of Sets 1 and 3	16
	LIST OF TABLES	
	LIST OF TABLES	
<u>Table</u>		Page
1	RMS Errors vs Total Station Location Uncertainties for the First Trajectory of Set 1	3
2	RMS Errors vs Total Station Location Uncertainties for the First Trajectory of Set 2	3
3	RMS Errors vs Total Station Location Uncertainties for the First Trajectory of Set 3	4
4	RMS Errors vs Total Station Location Uncertainties for the First Trajectory of Set 4	4

THE INFLUENCE OF TRACKING STATION LOCATION UNCERTAINTIES ON SATELLITE ORBIT ERRORS

INTRODUCTION

A study is made of the influence of station location uncertainties on RMS errors in the state vector for a representative sample of earth orbits, varying in eccentricity, perigee height, and inclination. It was initiated to estimate how well tracking systems of the GSFC Satellite Tracking and Data Acquisition Network (STADAN) can determine the orbit of a spacecraft. In this study, the RMS errors in the state vector are evaluated at an arbitrarily selected point five hours after epoch. Only measurement noise, measurement bias errors, and station location uncertainties are considered as error sources. The influence of the uncertainty in the earth's gravitational constant μ and the effects of time synchronization errors are neglected. Bias errors are considered but not solved for, resulting in a conservative estimate of the RMS errors in the state vector. Solving for the bias errors would result in an optimistic estimate of the RMS errors in the state vector. Thus, by not solving for the bias errors, a margin of safety is introduced into the results obtained in this study. Values for measurement noise and bias errors are consistent with those found in ANWG Technical Report No. AN-1.1 (Reference 3). A linear error analysis computer program employing a patched conic nominal trajectory and a weighted least squares filter is used.

TEXT

Error analysis studies are made for the following four sets of geocentric orbits. Each set consists of three trajectories with the same eccentricity and perigee height but different inclinations.

SET 1		SET 2	
eccentricity: perigee height: inclination:	0.2 600 km 30°, 60°, 90°	eccentricity: perigee height: inclination:	0.2 1000 km 30°, 60°, 90°
SET 3		SET 4	
eccentricity: perigee height: inclination:	0.8 600 km 30°, 60°, 90°	eccentricity: perigee height: inclination:	0.8 1000 km 30°, 60°, 90°

For each set, a study of RMS errors in the state vector versus station location uncertainties for various inclinations is made. Thus, the mutual influence of station location uncertainties and inclination upon RMS errors in the state vector is evaluated. Comparison between sets indicates the effect upon RMS errors in the state vector of eccentricity, perigee height, and inclination which are varied over the entire range of different station location uncertainties.

The RMS errors in the state vector are evaluated for five different values of total station location uncertainties ranging from 0 to 160 meters. The RMS error in the state vector not incorporating the effect of station location uncertainties is considered the standard for comparison.

Tracking is simulated by five tracking systems of the STADAN network, each system measuring range and range rate. Tracker-vehicle geometry prevents simultaneous tracking by all stations and during a given tracking period usually only one station can track. Tracking coverage for the three trajectories of Set 1 is given in Figure 1. Data from 3 to 3-1/4 hours of tracking are processed during each trajectory. Figures 2 through 9 show the distribution of RMS errors in spacecraft position and velocity versus total station location uncertainties for the trajectories of Sets 1 through 4. Each of the three curves includes the effect of measurement noise and measurement bias errors. No prior knowledge of the state vector at epoch is assumed. The RMS errors in the state vector steadily increase with increasing station location uncertainties regardless of how orbital eccentricity, perigee height, and inclination are varied. This indicates that station location uncertainties are the dominant influence upon RMS errors in the state vector. Tables 1 through 4 present RMS errors in position and velocity versus total station location uncertainties for the first trajectory of Sets 1 through 4.

Inspection of Tables 1 and 2 reveals that RMS errors in spacecraft position and velocity evaluated at a total station location uncertainty of 160 meters are increased by as much as a factor of 26 from the standard.* Comparison of Tables 1 with 2 and 3 with 4 indicates that perigee height has an insignificant effect upon RMS errors in spacecraft position and velocity. It is known (see Reference 2, Chapter 3.0, for the influence of station location uncertainties and bias errors in tracking by the Atlantic Ship) that station location uncertainties and bias errors have a significant effect upon RMS errors in spacecraft position and velocity. An additional investigation (Reference 5) shows the former to have the greater effect after several stations have tracked. Thus, results obtained in this study are consistent with previous investigations.

^{*}The RMS errors in the state vector not incorporating the effect of station location uncertainties.

It is evident that eccentricity has a great effect upon RMS errors in space-craft position and velocity by comparing Tables 1 with 3 and 2 with 4. Indeed, increases in RMS errors in spacecraft position by a factor of 7 occur for certain values of station location uncertainties. Figures 10 and 11 show RMS errors in spacecraft position and velocity for Trajectory 1 of Sets 1 and 3.

Table 1

RMS Errors vs Total Station Location Uncertainties for the First Trajectory of Set 1

Total Station Location Uncertainty	RMS Error in Position	RMS Error in Velocity
(m)	(m)	(cm/s)
0	8.94*	0.60*
40	41.1	4.00
80	80.7	8.00
120	120.6	12.00
160	160.6	15.90

Table 2

RMS Errors vs Total Station Location Uncertainties for the First Trajectory of Set 2

Total Station Location Uncertainty	RMS Error in Position	RMS Error in Velocity
(m)	(m)	(cm/s)
0	8.59*	1.6*
40	56.6	5.5
80	112.3	10.6
120	168.1	15.9
160	224.1	21.1

^{*}Standard for comparison

Table 3

RMS Errors vs Total Station Location Uncertainties for the First Trajectory of Set 3

Total Station Location Uncertainty	RMS Error in Position	RMS Error in Velocity
(m)	(m)	(cm/s)
0	208.2*	1.00*
40	356.6	2.40
80	619.9	4.50
120	900.2	6.60
160	1,186.2	8.80

Table 4

RMS Errors vs Total Station Location Uncertainties for the First Trajectory of Set 4

Total Station Location Uncertainty	RMS Error in Position	RMS Error in Velocity
(m)	(m)	(cm/s)
0	213.4*	1.1*
40	377.6	2.6
80	658.7	5.0
120	958.7	7.4
160	1,264.0	9.8

^{*}Standard for comparison

CONCLUSION

Station location uncertainties are the dominant influence upon RMS errors in the state vector regardless of variation in orbital eccentricity, perigee height or inclination during earth orbits. The largest value of total station location uncertainty considered (160 m) increases RMS errors in spacecraft position and velocity by a factor of 26 from the standard* in some instances. The influence of station location uncertainties is especially great during orbits of low eccentricity (e = 0.2). Orbital eccentricity increases RMS errors in spacecraft position by factors of 5 to 7 while decreasing RMS errors in spacecraft velocity by a factor of 2. Perigee height and orbital inclination have a negligible effect upon RMS errors in the state vector at low (0.2) or high (0.8) eccentricity.

ACKNOWLEDGMENTS

The author expresses his appreciation to Mrs. A. Marlow, J. L. Cooley, and W. D. Kahn for their assistance in reviewing this report.

REFERENCES

- 1. MSC-GSFC, ANWG Report No. 65-AN-1.0, "Apollo Missions and Navigation Systems Characteristics," February 5, 1965.
- 2. MSC-GSFC, ANWG Report No. 65-AN-2.0, "Apollo Navigation, Ground and Onboard Capabilities," September 1, 1965.
- 3. MSC-GSFC, ANWG Report No. AN-1.1, "Apollo Missions and Navigation Systems Characteristics," April 4, 1966.
- 4. Kahn, W. D., "Tracking Studies for Project Apollo," Proceedings of the Apollo Unified S-Band Technical Conference (NASA SP-87), GSFC, July 14-15, 1965, pp. 13-20.
- 5. Cooley, J. L., "Comparison of the Effects of Station Location Uncertainty and Measurement Bias During One Earth Parking Orbit," GSFC Report (to be published).

^{*}The RMS errors in the state vector not incorporating the effect of station location uncertainties.

_	RBITAL PARAMETE	RS O ^H TRAJECTORY 2	TRAJECTORY 2		$\frac{HORIZON}{\epsilon \geq 5^{\circ}}$
Ú	8722.7063 0.2	8722.7063 0.2 60.0 145.0111 33.43395 0.0	8722.7063 0.2 90.0 163.2799 28.5000 0.0	KM. DEG. DEG. DEG. DEG.	SAMPLING RATE 1 MEAS/6 SEC
Ţ	TRACKER LOCATIO	ons .			TRACKER UNCERTAINTIES
	CARNARVON FAIRBANKS ROSMAN SANTIAGO TANANARIVE	LATITUDE -24.897356° 64.871830° 35.200000° -33.149473° -19.020152°	289,330910°	HT(m) 64 187 882 680 1390	NOISE BIAS $\delta_r = 30 \text{ FT} \qquad \Delta_r = 60 \text{ FT}$ $\delta_r^2 = .02 \text{ FT/S} \qquad \Delta_{r}^2 = .03 \text{ FT/S}$
10	000	i = 90.	000		i = 60.0°
tms position error, η _{ρος} , (m)	10	= 30.0°			
lσ R		1	l		
ı	.0	40	80	120	160 200 ERTAINTY (m)

Figure 2. RMS Errors in Position for the Trajectories of Set 1

ORBITAL PARAMETERS **HORIZON** €≥5^o T = MAY 26, 1966TRAJECTORY 1 TRAJECTORY 2 TRAJECTORY 3 SAMPLING RATE 8722.7063 8722.7063 8722.7063 KM. 1 MEAS/6 SEC 0.2 0.2 0.2 e 30.0 60.0 90.0 DEG. 93.15656 145.0111 163.2799 DEG. Λ 72.61479 33.43395 28.5000 DEG. 0.0 0.0 0.0 DEG. TRACKER LOCATIONS TRACKER UNCERTAINTIES **LATITUDE** LONGITUDE HT(m) NOISE BIAS CARNARVON -24.897356° 113.716066° $\delta_r = 30 \text{ FT}$ $\Delta_r = 60 \text{ FT}$ -147.836840° 64.871830° 187 $\delta_r = .02 \text{ FT/S} \quad \Delta_r = .03 \text{ FT/S}$ FAIRBANKS 35.200000° -33.149473° - 82.883339° ROSMAN 882 289.330910° 47.269833° SANTIAGO 680 -19.020152° TANANARIVE 1390 $i = 30.0^{\circ}$ $i = 90.0^{\circ}$ 10 i = 60.0° 1σ RMS VELOCITY ERROR, $\eta_{\rm vel}$, $({\rm cm/s})$ 1.0 0.1 40 80 120 160 200

Figure 3. RMS Errors in Velocity for the Trajectories of Set 1

TOTAL STATION LOCATION UNCERTAINTY (m)

ORBITAL PARAMETE T = MAY 26, 1966	RS O ^H			HORIZON €≥5°
·	TRAJECTORY 2	TRAJECTORY 3		SAMPLING RATE
a 9222.7063 e 0.2	9222.7063 0.2	9222.7063 0.2	KM.	1 MEAS/6 SEC
i 30.0 Ω 93.15656 ω 72.61479 M 0.0	60.0 145.0111 33.43395 0.0	90.0 163.2799 28.5000 0.0	DEG. DEG. DEG. DEG.	
TRACKER LOCATIO	NS .			TRACKER UNCERTAINTIES
	LATITUDE	LONGITUDE	HT(m)	NOISE BIAS
CARNARVON FAIRBANKS ROSMAN SANTIAGO TANANARIVE	-24.897356° 64.871830° 35.200000° -33.149473° -19.020152°	-147.836840° - 82.883339° 289.330910°	64 187 882 680 1390	$\delta_r = 30 \text{ FT} \qquad \Delta_r = 60 \text{ FT}$ $\delta_r = .02 \text{ FT/S} \qquad \Delta_r = .03 \text{ FT/S}$
100	i = 30.0°			i = 90.0°
MAS POSITION ERROR, 17 pos. (m)				i = 60.0°
10 Z				
				1

Figure 4. RMS Errors in Position for the Trajectories of Set 2

Figure 5. RMS Errors in Velocity for the Trajectories of Set 2

Figure 6. RMS Errors in Position for the Trajectories of Set 3

Figure 7. RMS Errors in Velocity for the Trajectories of Set 3

Figure 8. RMS Errors in Position for the Trajectories of Set 4

Figure 9. RMS Errors in Velocity for the Trajectories of Set 4

	OH		HORIZON €≥5°
TRAJECTORY 1 a 8722.7063 e 0.2 i 30.0 Ω 93.15656 ω 72.61479 M 0.0	OF SET 1 TRAJECTORY 1 C 34890.825 0.8 30.0 93.15656 72.61479 0.0	DEG. DEG. DEG. DEG. DEG.	SAMPLING RATE 1 MEAS/6 SEC
TRACKER LOCATIO	<u>ns</u> Latitude Longitu	DE HT(m)	TRACKER UNCERTAINTIES NOISE BIAS
CARNARVON FAIRBANKS ROSMAN SANTIAGO TANANARIVE	-24.897356° 113.71606 64.871830° -147.83686 35.200000° - 82.88333 -33.149473° 289.3309 -19.020152° 47.26983	66° 64 40° 187 39° 882 10° 680	$\delta_r = 30 \text{ FT}$ $\Delta_r = 60 \text{ FT}$ $\delta_r = .02 \text{ FT/S}$ $\Delta_{\hat{r}} = .03 \text{ FT/S}$
1,000			TRAJECTORY 1 OF SET 3 (e = 0.8)
RMS POSITION ERROR, η_{pos} , (a)			TRAJECTORY 1 OF SET 1 (e = 0.2)
10	40 80	120 OCATION	160 200 UNCERTAINTY (m)

Figure 10. RMS Errors in Position for Trajectory 1 of Sets 1 and 3

T = MAY 26,		- TO A IF CT ODY 1 - C	NE	HORIZON €≥5°
TRAJECTO a 8722.706 e 0.2 i 30.0 Ω 93.156 ω 72.614 M 0.0	53 556	34890.825 0.8 30.0 93.15656 72.61479 0.0	KM. DEG. DEG. DEG. DEG.	SAMPLING RATE 1 MEAS/6 SEC
CARNARY FAIRBANI ROSMAN SANTIAG TANANA	LAT VON -24. KS 64. 1 35. 30 -33.	1TUDE LONGITU 897356° 113.7160 871830° -147.8368 200000° - 82.8833 149473° 289.3309 020152° 47.2698	66° 64 40° 187 39° 882 10° 680	TRACKER UNCERTAINTIES NOISE BIAS $\delta_r = 30 \text{ FT} \qquad \Delta_r = 60 \text{ FT}$ $\delta_r = .02 \text{ FT/S} \qquad \Delta_r = .03 \text{ FT/}$
.0				TRAJECTORY OF SET 1 (e = 0.2) TRAJECTORY OF SET 3 (e = 0.8)
i				

Figure 11. RMS Errors in Velocity for Trajectory 1 of Sets 1 and 3