Flower Classification using CNN

UTMIST ML Study Group

Real-World Application - Plant Identification Apps

Steps to Solve this Problem

Dataset - What to Learn

Representing Images as Data

https://miro.medium.com/max/1250/1*15yDvGKV47a0nkf5qLKOOQ.png

Preparing the Data

- Resize images
- One-hot encoded labels
- Training and validation sets

Daisy	Dandelion	Rose	Sunflower	Tulip
10000	01000	00100	00010	00001

CNN Architecture Overview

What is Convolution?

Operation

- Matrix multiplication between kernel and covered area of image
- Extract features for easier processing

Kernel/Filter

- Used in convolution operation
- Same dimension as channel size

Stride

- Step size of each shift

Padding

- Control output dimension

18 St	- 10
200	
3	

Image

Convolved Feature

Pooling

Operation

- Dependent on the type
- Get the max/average of overlapping area

Purpose

- Reduce spatial size
- Extract dominant features
- Decrease computational power

Types

- Max
- Average

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

Fully Connected

- Flattened & converted data now suitable for MLP
- Train to distinguish features

Regularization

- Discourage learning a model that's too complex
- Avoid overfitting

https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76

Data Augmentation

- Regularization technique
- More data!

https://miro.medium.com/max/1750/1*Ukc49J8TzyxiOD30EqOWwQ.png

Evaluation using Confusion Matrix

https://miro.medium.com/max/1000/1*fxiTNIgOyvAombPJx5KGeA.png

DEMO

Thank You!:)