Grado en Ingeniería del Software Doble Grado en Matemática Computacional e Ingeniería del Software Doble Grado en Física Computacional e Ingeniería del Software

Redes de Ordenadores Tema 6

Dr. Constantino Malagón Luque Dr. Rafael Socas Gutiérrez

Septiembre 2024

Redes Inalámbricas y Redes Móviles

Desarrollo de la asignatura

Redes Inalámbricas: Diferentes Estándares

Redes Inalámbricas: Efectos en los Enlaces Radio

Canales con Ruido

Obstáculos

Desvanecimiento (fading)

Redes Inalámbricas: Redes WiFi vs. Redes Celulares

Centraremos nuestro estudio en dos tipos especiales de redes Inalámbricas:

WiFi: 802.11 Wireless LAN

Redes Móviles/Celulares: 3G, 4G y 5G

Evolución y Prestaciones Redes WiFi

Estándar IEEE	Frecuencia	Velocidad	Com	patibilid	ad			
802.11b (WiFi-1)	2,4 GHz	11 Mbps						
802.11a (WiFi-2)	$5~\mathrm{GHz}$	54 Mbps						
802.11g (WiFi-3)	$2,4~\mathrm{GHz}$	54 Mbps		802.11b				
802.11n (WiFi 4)	2,4 y 5 GHz	600 Mbps	809	2.11a/b/g				
802.11ac (WiFi 5)	$5~\mathrm{GHz}$	6,9 Gbps	802	.11a/b/g/	n			2019 9,6 Gbps
802.11ax (WiFi 6)	2,4 y 5 GHz	9,6 Gbps	802.1	1a/b/g/n	/ac		/ '	
							2014 6,9 Gbps	
			_			2009		
			1999	1999	2003	600 Mbps		
			11 Mbps	54 Mbps	54 Mbps			
			Wi-Fi 1	Wi-Fi 2	Wi-Fi 3	Wi-Fi 4	Wi-Fi 5	Wi-Fi 6
			IEEE802.11b	IEEE802.11a	IEEE802.11g	IEEE802.11n	IEEE802.11ac	IEEE802.11a

Evolución y Prestaciones Redes Móviles/ Celulares

Redes Inalámbricas: Redes WiFi vs. Móviles/Celulares

Principales diferencias

Característica	WiFi 802.11	Redes Móviles/Celulares 3G/4G/5G	
Cobertura	Limitada	Mundial	
Prestaciones	En función de la versión	En función de la generación	
Seguridad	Seguras	Más Seguras	
Control Interferencias	Mala	Buena	
Evolución	Continua	Continua	
Administración	Privada	Pública	
Inversiones Necesarias	Pocas (usa las redes públicas)	Muchas (en nodos de red y espectro)	

Redes WiFi 802.11: Arquitectura LAN

Elementos

- BSS (Basic Service Set): Un BSS contiene una o más estaciones inalámbricas y una estación base, conocida como punto de acceso (AP) en el lenguaje 802.11.
- BSSID (Basic Service Set Identifier): Al igual que con los dispositivos Ethernet, cada estación inalámbrica 802.11 tiene una MAC de 6 bytes. Cada AP también tiene una dirección MAC en su interfaz inalámbrica.
- SSID (Identificador de conjunto de servicios): Cuando un administrador de red instala un dispositivo AP, el administrador asigna un SSID al punto de acceso.

Redes WiFi 802.11: Ejemplo con WiFi Analyser (Windows)

Redes WiFi 802.11: Selección del AP por parte del Host

- El estándar 802.11 no especifica un algoritmo para seleccionar cuál de los AP disponibles para asociarse; ese algoritmo se deja a los diseñadores del firmware 802.11 y del software del host inalámbrico. Típicamente, el host elige el AP cuya trama de la baliza (beacom frame) se recibe con la mayor intensidad de señal.
- El proceso de escaneo de canales y escucha de tramas de baliza se conoce como **escaneo pasivo**. Un host inalámbrico también puede realizar un **escaneo activo**, mediante la difusión de una trama de sonda que será recibida por todos los AP dentro de la red inalámbrica rango del host.

a. Passive scanning

- 1. Beacon frames sent from APs
- 2. Association Request frame sent: H1 to selected AP
- 3. Association Response frame sent: Selected AP to H1

a. Active scanning

- 1. Probe Request frame broadcast from H1
- 2. Probes Response frame sent from APs
- 3. Association Request frame sent: H1 to selected AP
- Association Response frame sent: Selected AP to H1

Redes WiFi 802.11: Envío/Recepción de Tramas

- Una vez que una estación inalámbrica está asociada con un AP, puede comenzar a enviar y recibir tramas de datos hacia y desde el punto de acceso. Pero debido a que varias estaciones pueden querer transmitir tramas al mismo tiempo a través del mismo canal, se necesita un protocolo de acceso múltiple (MAC protocol) para coordinar las transmisiones.
- Generalmente son tres las clases de protocolos de acceso múltiple: partición de canales (tiempo, frecuencia y código p.e. CDMA), acceso aleatorio y o por turnos (token).
- Inspirado en el enorme éxito de Ethernet (802.3) y su protocolo de acceso aleatorio CSMA/CD, los diseñadores de 802.11 eligieron un protocolo de acceso aleatorio para LAN inalámbricas 802.11. Este protocolo de acceso aleatorio se conoce como CSMA/CA (prevención de colisiones). Al igual que con Ethernet cada estación detecta el canal antes de transmitir, y se abstiene de transmitir cuando el canal se encuentra ocupado. Además, este protocolo informa de cuánto tiempo estará ocupado el canal para evitar colisiones.

CSMA/CD - 802.3 Ethernet

Un nodo que desea transmitir espera a que el canal esté libre, una vez sucede esto, empieza la transmisión. Si otro nodo empezara a transmitir en este instante se produciría colisión, por lo tanto, se detiene la transmisión y se retransmite tras un retraso aleatorio.

CSMA/CA – 802.11 WiFi

Una estación que quiere transmitir comprueba que el canal radio está libre, y si no se detecta actividad, la estación espera un tiempo adicional, seleccionado aleatoriamente y entonces transmite si el medio continúa libre. Antes de transmitir se indica cuando tiempo estará el canal ocupado para evitar colisiones.

Redes WiFi 802.11: Ejemplo de CSMA/CA

- 1. La estación N1 Informa que quiere transmitir mediante la trama RTS (Request To Send). Además, indica cuando tiempo (DURATION) necesita para hacerlo.
- 2. El AP indica que puede hacerlo con la trama **CTS** (Clear To Send). Al mismo tiempo, el AP informa al resto de estaciones que durante un tiempo DURATION el canal estará ocupado.
- 3. El resto de las estaciones, N2, N3, etc. quedan esperando un tiempo DURATION.
- 4. N1 envía su información mediante la trama **DATA**.
- Se confirma la recepción de la información mediante la trama ACK.

Redes WiFi 802.11: Trama Ethernet 802.3 (recordatorio)

Comunicación entre HA y R (p.e)

Redes WiFi 802.11: Trama WiFi 802.11

Trama WiFi: 802.11

Frame (numbers indicate field length in bytes):

2	2	6	6	6	2	6	0-2312	4	
Frame control	Duration	Address 1	Address 2	Address 3	Seq control	Address 4	Payload	CRC	

Frame control field expanded (numbers indicate field length in bits):

2	2	4	1	1	1	1	1	1	1	1
Protocol version	Туре	Subtype	To DS	From DS	More frag	Retry	Power mgt	More data	WEP	Rsvd

Significado de Address 1 4

Los campos Address1 hasta Address4 tienen un significado en función de los flags To DS y From DS (DS Distribution System).

To DS	From DS	Address1	Address2	Address3	Address4
0	0	DA	SA	BSSID	N/A
0	1	DA	BSSID	SA	N/A
1	0	BSSID	SA DA		N/A
1	1	RA	TA	DA	SA

SA: Source Address.

DA: Destination Address (Wireless Node).

TA: Transmiter Address (Wireless Node).

RA: Receiver Address.

BSSID: dirección MAC del AP.

Redes WiFi 802.11: Ejemplo de Comunicación 802.11

Significado Campo Address

- DA: MAC Destino.
- SA: MAC Origen.
- RA: Elemento Inalámbrico que recibe la trama.
- TA: Elemento Inalámbrico que transmite la trama.

Redes WiFi 802.11: Ejemplo en 802.11 en Wireshark


```
SA→ 00:14:a5:cb:6e:1a

TA→ 00:14:a5:cb:6e:1a

RA→ 00:14:a5:cd:74:7b

DA→ 00:01:02:27:f9:b2

BSSID → 00:14:a5:cd:74:7b
```

```
> Frame 9: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits)
> PPI version 0, 84 bytes

▼ 802.11 radio information

     PHY type: 802.11n (HT) (7)
     MCS index: 15
     Bandwidth: 40 MHz (1)
     Short GI: True
     Greenfield: False
     Number of extension spatial streams: 2
     Data rate: 300,0 Mb/s
     Channel: 3
     Frequency: 2422MHz
     Signal strength (dBm): -58dBm
     Noise level (dBm): -96dBm
     Signal/noise ratio (dB): 38dB
     TSF timestamp: 4090536914
  > [Duration: 52µs]
✓ IEEE 802.11 QoS Data, Flags: .....TC
     Type/Subtype: QoS Data (0x0028)

✓ Frame Control Field: 0x8801

        .... ..00 = Version: 0
        .... 10.. = Type: Data frame (2)
        1000 .... = Subtype: 8

✓ Flags: 0x01
          .... ..01 = DS status: Frame from STA to DS via an AP (To DS: 1 From DS: 0) (0x1)
          .... .0.. = More Fragments: This is the last fragment
          .... 0... = Retry: Frame is not being retransmitted
           ...0 .... = PWR MGT: STA will stay up
           ..0. .... = More Data: No data buffered
          .0.. .... = Protected flag: Data is not protected
          0... = Order flag: Not strictly ordered
     .000 0000 0010 1100 = Duration: 44 microseconds
    Receiver address: GemtekTe_cd:74:7b (00:14:a5:cd:74:7b)
    Transmitter address: GemtekTe_cb:6e:1a (00:14:a5:cb:6e:1a)
    Destination address: 3Com 27:f9:b2 (00:01:02:27:f9:b2)
    Source address: GemtekTe cb:6e:1a (00:14:a5:cb:6e:1a)
    BSS Id: GemtekTe_cd:74:7b (00:14:a5:cd:74:7b)
    STA address: GemtekTe cb:6e:1a (00:14:a5:cb:6e:1a)
```

Redes WiFi 802.11: Ampliar Área de Cobertura WiFi

Hipótesis: H1 continua en la misma subnet (la IP no cambia)

But what specifically happens when H1 moves from BSS1 to BSS2?:

- 1. As H1 wanders away from AP1, H1 detects a weakening signal from AP1 and starts to scan for a stronger signal.
- 2. H1 receives beacon frames from AP2 (which in many corporateand university settings will have the same SSID as AP1).
- 3. H1 then disassociates with AP1 and associates with AP2, while keeping its IP address and maintaining its ongoing TCP sessions.

Aunque resuelve el problema a pequeña escala <u>no es una solución escalable.</u>
SOLUCION: Redes Móviles Celulares

Redes Móviles/Celulares 3G, 4G y 5G: Introducción

- Hemos visto cómo un host inalámbrico puede acceder a Internet cuando está dentro de la cobertura de un punto de acceso WiFi 802.11. Pero la mayoría de los APs WiFi tienen un área de cobertura pequeña de entre 10 y 100 metros de diámetro.
- ¿Qué hacemos entonces cuándo necesitamos acceso inalámbrico a Internet y no podemos acceder a un punto de acceso WiFi?

Solución: Redes Móviles/Celulares

Redes Móviles/Celulares: Evolución del 1G al 4G

Redes Móviles/Celulares: Arquitectura 3G

Redes Móviles/Celulares: Red 3G Servicio de Voz

Se trata de una red de Conmutación de Circuitos no óptima para tráfico de Internet.

Redes Móviles/Celulares: Red 3G Servicio de Datos

Red Específica para Trasporte de Datos a Internet. BAM Banda Ancha Móvil

Redes Móviles/Celulares: Red 3G Evolución

Redes Móviles/Celulares: Red 4G vs 3G

Desaparición de:

Redes Móviles/Celulares: Red 4G Arquitectura

Redes Móviles/Celulares: Red 4G Sesiones de Datos

- Especie de «circuito virtual» con QoS entre móvil y red externa (SGi)
 - Similar a contexto PDP de GPRS/UMTS
 - Establecimiento previo vía señalización (gestión de sesiones)
 - Reconfigurables en caso de movilidad (gestión de movilidad)
 - Hasta once portadoras EPS establecidas simultáneamente

Redes Móviles/Celulares: Red 5G, El Futuro

Redes Móviles/Celulares: Red 5G, Principales Servicios

Redes Móviles/Celulares: Red 5G, Prestaciones

Comparativa WiFi 6 vs. 5G

Comparativa

Specifications	Wi-Fi 6	5G
Technology	WLAN	Cellular
Standard	IEEE 802.11ax	3GPP Rel. 15 and beyond
Modulation	1024QAM	256QAM
MIMO	8T8R/12T12R-8 streams	Indoor: 4T4R-4 streams Outdoor: 64T64R-16 streams
Spectrum	Unlicensed	Licensed
Terminal Types	Various enterprise terminals (PCs, projectors, monitoring devices, etc.)	Mainly mobile terminals, few enterprise devices embedded with SIM cards
Security	5G cellular connections are more secure compare to unknown wifi connections. 5G will be as secure as 4G LTE today. 5G supports multiple authentication and key management features.	WiFi 6 supports WPA3 security protocols to provide high security.
Management	Enterprise management personnel	Carriers
Cost of deployment	Cheaper	Expensive
Application	Indoors	Outdoors

Pros & Cons.

	Wi-Fi 6	5G
Pros	Mainstream enterprise wireless solution.(spectrum, terminals, easy and flexible deployment, better management, expenses.)	Leading wireless technology. (MIMO, service latency, mobile roaming, outdoor coverage)
Cons	Not perform well in large-scale outdoor coverage scenarios. Cannot meet the ultra-low latency requirements (< 10 ms).	Higher costs for indoor deployments. Weak terminal compatibility. Carriers must participate in 5G deployment.

Fuente: https://community.fs.com/blog/wifi-6-vs-5g.html

Calle Playa de Liencres, 2 bis (entrada por calle Rozabella) Parque Europa Empresarial Edificio Madrid 28290 Las Rozas, Madrid

SOLICITA MÁS INFORMACIÓN

CENTRO ADSCRITO A:

PROYECTO COFINANCIADO POR:

