JEEM - 6Sep2020 - Shift1 - 16-30

ai24btech11030 - Shiven Bajpai

a) is equal to 1 b) is equal to $\frac{1}{2}$ c) does not exist d) is equal to $\frac{-1}{2}$

2) If $\sum_{i=1}^{n} (x_i - a) = n$ and $\sum_{i=1}^{n} (x_i - a)^2 = na$, (n, a > 1) then the standard deviation of

b) v(na - 1) c) a - 1

(6 Sep 2020 - S1)

(6 Sep 2020 - S1)

d) v(a-1)

1) $\lim_{x\to 1} \left(\frac{\int_0^{(x-1)^2} t \cos(t^2) dt}{(x-1)\sin(x-1)} \right)$

a) nv(a-1)

n observations $x_1, x_2, x_3 \dots x_n$ is:

3) If
$$\alpha$$
 and β be two roots of the equation $x^2 - 64x + 256 = 0$. Then the value of $(\frac{\alpha^3}{\beta^2})^{\frac{1}{8}} + (\frac{\beta^2}{\sigma^2})^{\frac{1}{8}}$ is: (6 Sep 2020 - S1) a) 1 b) 3 c) 2 d) 4

4) The position of a moving car at time t is given by $f(t) = at^2 + bt + c, t > 0$, where a, b and c are real numbers greater than 1. Then the average speed of the car over the time interval $[t_1, t_2]$ is attained at the point (6 Sep 2020 - S1) a) $\frac{(t_1+t_2)}{2}$ b) $2a(t_1+t_2)+b$ c) $\frac{(t_2-t_1)}{2}$ d) $a(t_2-t_1)+b$

5) If $I_1 = \int_0^1 (1-x^{50})^{100} dx$ and $I_2 = \int_0^1 (1-x^{50})^{101} dx$ such that $I_2 = \alpha I_1$ then α equals to (6 Sep 2020 - S1) a) $\frac{5050}{5049}$ b) $\frac{5050}{5051}$ c) $\frac{5051}{5050}$ d) $\frac{5049}{5050}$

6) If \mathbf{a} and \mathbf{b} are unit vectors, then the greatest value of $\sqrt{3} |\mathbf{a} + \mathbf{b}| + |\mathbf{a} - \mathbf{b}|$ is (6 Sep 2020 - S1)

7) Let AD and BC be two vertical poles at A and B respectively on a horizontal ground. If $AD = 8m$, $BC = 11m$ and $AB = 10m$; then the distance (in meters) of a point M on AB from the point A such that $MD^2 + MC^2$ is minimum is (6 Sep 2020 - S1)

8) Let $f: \mathcal{R} \to \mathcal{R}$ be defined as $f(x) = \begin{cases} x^5 \sin(\frac{1}{x}) + 5x^2, & x < 0 \\ 0, & x = 0 \\ x^5 \cos(\frac{1}{x}) + \lambda x^2, & x > 0 \end{cases}$

The value of λ for which $f''(0)$ exists, is (6 Sep 2020 - S1)

passing through the foot of the hill is found to be 45°. After walking a distance of

80 meters towards the top, up a slope inclined at an angle of 30° to the horizontal plane, the angle of elevation of the top of the hill becomes 75° . Then the height of the hill (in meters) is (6 Sep 2020 - S1)

10) Set A has m elements and set B has n elements. If the total number of subsets of A is 112 more than the total number of subsets of B, then the value of $m \times n$ is (6 Sep 2020 - S1)