Clustering standard errors and individual-level treatments

Mizuhiro Suzuki

2021-08-25

```
# Install and load packages -----
packages <- c(
    "tidyverse",
    "estimatr",
    "fastmatch",
    "magrittr",
    "kableExtra",
    "fixest"
)

# Change to install = TRUE to install the required packages
pacman::p_load(packages, character.only = TRUE, install = FALSE)</pre>
```

Function for simulation

```
sim func <- function(</pre>
 ind_fe,
 hetero_te,
  ind_assignment
  ) {
  set.seed(450166)
  # Number of people (population, not sample)
 NC <- 100000
  # Number of simulations
 num_sim <- 10000
  # Sample size
  sample_size = NC * 0.01
  # Treatment assignment probability
  mu <- 1/2 # mean assignment
  if (ind_assignment == TRUE) {
    max_sigma <- 1/4 # variability of assignment probability across individuals
  } else {
    max_sigma <- 0 # variability of assignment probability across individuals</pre>
  # treatment probability for everyone in the population
  prob = runif(NC, min = mu - 2 * max_sigma, max = mu + 2 * max_sigma)
```

```
# individual fixed effects
 eta_i = (ind_fe == TRUE) * rnorm(NC)
 # treatment effect (can be individual-specific)
 tau_i = (hetero_te == TRUE) * (c(rep(1, NC / 2), rep(-1, NC / 2)))
 ind_df <- map_df(</pre>
   c(1, 2),
   ~ tibble(
      # individual index
     C = seq(NC),
      # random treatment
     W = rbinom(NC, 1, prob),
      # error term
      epsilon = rnorm(NC),
      # outcome
     Y = tau_i * W + eta_i + epsilon,
     # time
     period = .
   )
 ) %>%
   bind_rows() %>%
   select(Y, W, period, C)
 pval_robust <- rep(0, num_sim)</pre>
 pval_cluster <- rep(0, num_sim)</pre>
 pval_robust_fe <- rep(0, num_sim)</pre>
 pval_cluster_fe <- rep(0, num_sim)</pre>
 for (i in seq(num_sim)) {
    sample_ind <- sample(seq(NC), sample_size, replace = FALSE)</pre>
   df_sample <- ind_df[ind_df$C %in% sample_ind,]</pre>
   res <- feols(
      Y \sim -1 + W, data = df_sample
   pval_cluster[i] <- pvalue(res, cluster = "C")</pre>
   pval_robust[i] <- pvalue(res, se = "hetero")</pre>
   res <- feols(
      Y \sim -1 + W \mid C, data = df_sample
   pval_cluster_fe[i] <- pvalue(res, cluster = "C")</pre>
   pval_robust_fe[i] <- pvalue(res, se = "hetero")</pre>
 }
 return(
   list(
      mean(pval_cluster < 0.05),</pre>
      mean(pval_robust < 0.05),</pre>
      mean(pval_cluster_fe < 0.05),</pre>
      mean(pval_robust_fe < 0.05)</pre>
```

```
)
)
}
```

Baseline

```
res_1 <- sim_func(</pre>
  ind_fe = FALSE,
  hetero_te = FALSE,
  ind_assignment = FALSE
  )
bind_cols(
  se_labels = c(
    "Cluster robust SE",
    "Heteroskedasticity robust SE",
    "Cluster robust SE, individual FE included in reg",
    "Heteroskedasticity robust SE, individual FE included in reg"
    share_p = unlist(res_1)
    ) %>%
    set_colnames(c(" ", "share of p-val < 0.05")) %>%
  kbl(caption = "Baseline", booktabs = T) %>%
  kable_styling(latex_options = "hold_position")
```

Table 1: Baseline

	share of p-val < 0.05
Cluster robust SE	0.0519
Heteroskedasticity robust SE	0.0528
Cluster robust SE, individual FE included in reg	0.0486
Heteroskedasticity robust SE, individual FE included in reg	0.0486

Individual fixed effects (uncorrelated with treatments)

```
res_2 <- sim_func(
  ind_fe = TRUE,
  hetero_te = FALSE,
  ind_assignment = FALSE
)

bind_cols(
  se_labels = c(
    "Cluster robust SE",
    "Heteroskedasticity robust SE",
    "Cluster robust SE, individual FE included in reg",
    "Heteroskedasticity robust SE, individual FE included in reg"
),</pre>
```

```
share_p = unlist(res_2)
) %>%
set_colnames(c(" ", "share of p-val < 0.05")) %>%
kbl(caption = "Individual fixed effects (uncorrelated with treatments)", booktabs = T) %>%
kable_styling(latex_options = "hold_position")
```

Table 2: Individual fixed effects (uncorrelated with treatments)

	share of p-val < 0.05
Cluster robust SE	0.0478
Heteroskedasticity robust SE	0.0773
Cluster robust SE, individual FE included in reg	0.0486
Heteroskedasticity robust SE, individual FE included in reg	0.0486

Heterogeneous (= individual-specific) treatment effects

```
res_3 <- sim_func(</pre>
 ind_fe = FALSE,
 hetero te = TRUE,
  ind assignment = FALSE
  )
bind_cols(
  se_labels = c(
    "Cluster robust SE",
    "Heteroskedasticity robust SE",
    "Cluster robust SE, individual FE included in reg",
    "Heteroskedasticity robust SE, individual FE included in reg"
    share_p = unlist(res_3)
    ) %>%
    set_colnames(c(" ", "share of p-val < 0.05")) %>%
  kbl(caption = "Heterogeneous (= individual-specific) treatment effects", booktabs = T) %>%
  kable_styling(latex_options = "hold_position")
```

Table 3: Heterogeneous (= individual-specific) treatment effects

	share of p-val < 0.05
Cluster robust SE	0.0522
Heteroskedasticity robust SE	0.0823
Cluster robust SE, individual FE included in reg	0.0463
Heteroskedasticity robust SE, individual FE included in reg	0.0464

Within-individual serially correlated treatments

```
res_4 <- sim_func(
  ind_fe = FALSE,</pre>
```

```
hetero_te = FALSE,
  ind_assignment = TRUE
)

bind_cols(
  se_labels = c(
    "Cluster robust SE",
    "Heteroskedasticity robust SE",
    "Cluster robust SE, individual FE included in reg",
    "Heteroskedasticity robust SE, individual FE included in reg"
    ),
    share_p = unlist(res_4)
    ) %>%
    set_colnames(c(" ", "share of p-val < 0.05")) %>%
    kbl(caption = "Within-individual serially correlated treatments", booktabs = T) %>%
    kable_styling(latex_options = "hold_position")
```

Table 4: Within-individual serially correlated treatments

	share of p-val < 0.05
Cluster robust SE	0.0501
Heteroskedasticity robust SE	0.0506
Cluster robust SE, individual FE included in reg	0.0491
Heteroskedasticity robust SE, individual FE included in reg	0.0492