

✓ Grammer of Graphics

ggplot 이전과 이후로 나뉜다

ggplot2 패키지

chief scientist at R Studio University of Auckland, Stanford University and Rice University.

dplyr reshape2 ggplot2 ggvis rvest

위컴의 책

2009 2014 2015 2016

R Studio

ggplot2 유명한 책

cheatsheat (치트키?) 구글에서 ggplot2 cheatsheat를 검색해 보자

Data Visualization with ggplot2

Cheat Sheet

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system, and geoms-visual marks that represent data points.

To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and v locations.

Complete the template below to build a graph.

ggplot(data = mpg, aes(x = ctv, y = hwv))

b + geom spoke(aes(angle = 1:1155, radius = 1))

One Variable

Continuous

c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

geom area(stat = "bin")

geom_dotplot()

x, y, alpha, color, fill

x, y, alpha, color, fill, linetype, size

geom_density(kernel = "gaussian")

x, y, alpha, color, fill, group, linetype, size, weight

e <- ggplot(mpg, aes(cty, hwy)) e + geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE) x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust + geom_jitter(height = 2, width = 2) x, y, alpha, color, fill, shape, size geom_point() x, y, alpha, color, fill, shape, size, stroke geom quantile() x, y, alpha, color, group, linetype, size, weight geom_rug(sides = "bl") x, y, alpha, color, linetype, size geom_smooth(method = lm) x, y, alpha, color, fill, group, linetype, size, weight + geom text(aes(label = ctv), nudge x = 1, nudge_y = 1, check_overlap = TRUE) x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust Discrete X, Continuous Y f <- ggplot(mpg, aes(class, hwy)) geom_col() x, y, alpha, color, fill, group, linetype, size

geom_boxplot()

stackdir = "center")

x, y, alpha, color, fill, group

geom dotplot(binaxis = "v",

geom_violin(scale = "area")

Discrete X, Discrete Y

x, y, alpha, color, fill, group, linetype, size,

Continuous X. Continuous Y

man <- man_data("state")

② 더 다양한 시각화 http://www.ggplot2-exts.org/gallery/

① 더 다양한 시각화 https://plot.ly/r/

plotly는 Interactive 그래프를 그려주는 라이브러리입니다 Scala, R, Python, Javascript, MATLAB 등에서 사용할 수 있습니다 시각화를 위해 D3.js를 사용하고 있습니다 사용해보면 사용이 쉽고, 세련된 느낌을 받습니다

① 더 다양한 시각화 D3.js (Data-Driven Documents)

https://d3js.org/

http://nvd3.org/examples/index.html

기본 그래픽과 비교

```
# cyl 가 num 으로 되어 있어서 factor mtcars$cyl <- as.factor(mtcars$cyl)

# mpg는 miles per galloon, hp는 horse lot(mpg ~ hp , data=mtcars, col=cyl, pch=c(4,6,8)[mtcars$cyl)

# mpg는 miles per galloon, hp는 horse lot(mpg ~ hp , data=mtcars, col=cyl, pch=c(4,6,8)[mtcars$cyl]

pch = c(4,6,8), col=levels(mtcars$cyl))
```

```
> str(mtcars)
'data.frame': 32 obs. of 11 varia
 $ mpg : num
             21 21 22.8 21.4 18.7
  cyl : num
             6646868446.
  disp: num
             160 160 108 258 360 .
 $ hp : num
             110 110 93 110 175 10
 $ drat: num
             3.9 3.9 3.85 3.08 3.1
 $ wt : num
             2.62 2.88 2.32 3.21 3
 $ qsec: num
             16.5 17 18.6 19.4 17
  vs : num
  am : num
 $ gear: num
             4 4 4 3 3 3 3 4 4 4 .
 $ carb: num
```


기본 그래픽과 비교

```
mtcars
str(mtcars)

# cyl 가 num 으로 되어 있어서 factor 로 바꾸어 준다
mtcars$cyl <- as.factor(mtcars$cyl)

# mpg는 miles per galloon, hp는 horse power
plot(mpg ~ hp , data=mtcars,
        col=cyl, pch=c(4,6,8)[mtcars$cyl], cex=1.2)
legend("topright", legend=levels(mtcars$cyl),
        pch = c(4,6,8),
        col=levels(mtcars$cyl))
```


기본 그래픽과 비교

```
mtcars
str(mtcars)

# cyl 가 num 으로 되어 있어서 factor 로 바꾸어 준다
mtcars$cyl <- as.factor(mtcars$cyl)

# mpg는 miles per galloon, hp는 horse power
plot(mpg ~ hp , data=mtcars,
        col=cyl, pch=c(4,6,8)[mtcars$cyl], cex=1.2)
legend("topright", legend=levels(mtcars$cyl),
        pch = c(4,6,8),
        col=levels(mtcars$cyl))
```


기본 그래픽

ggplot2

```
# ggplot 으로는 이렇게... 참 쉽죠!
library(gqplot2)
ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +
geom_point(size=3)
```


◎ ggplot2 레이어 구조 이해하기

ggplot을 그리는 2+3 단계

1. 평면 세팅

ggplot(data = , aes(x = , y =))

주요 함수

ggplot(data = 데이터 셋명) : 데이터를 불러오는 역할

mapping = aes(x = , y =) : x축, y축의 꾸미기로 사용한다

geom_function(): 어떤 그래프를 그릴지 정하는 함수

mapping = aes(항목1=값1, 항목2=값2)

: geom_function() 의 옵션으로 꾸미기로 사용한다.

position(x, y), color(색상), fill(채우기), shape(모양), linetype(선 형태), size(크기) 등

산점도 - 변수 간 관계 표현하기

```
# ggplot2 패키지 설치하기
install.packages("ggplot2")
library(ggplot2)
```

- 1. R 시각화 패키지인 ggplot2 패키지 설치
- 2. library(ggplot2)로 패키지 로드하기

```
# 1단계 배경설정(축)
ggplot(data=mpg, aes(x = displ, y = hwy))

# 배경에 산점도 추가
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point()

# x축 범위 3~6으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6)

# x축 범위 3~6, y축 범위 10~30으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6) + ylim(10,30)
```

ggplot(diamonds, aes(x = , y =))


```
# ggplot2 패키지 설치하기
install.packages("ggplot2")
library(ggplot2)
                                                         30 -
# 1단계 배경설정(축)
ggplot(data=mpg, aes(x = displ, y = hwy))
                                                         20 -
# 배경에 산점도 추가
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point()
# x축 범위 3~6으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6)
# x축 범위 3~6, y축 범위 10~30으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6) + ylim(10,30)
```

+ geom_point()


```
# ggplot2 패키지 설치하기
install.packages("ggplot2")
library(ggplot2)
# 1단계 배경설정(축)
ggplot(data=mpg, aes(x = displ, y = hwy))
# 배경에 산점도 추가
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point()
# x축 범위 3~6으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6)
# x축 범위 3~6, y축 범위 10~30으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6) + ylim(10,30)
```


💿 산점도 – 변수 간 관계 표현하기

 $ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6) + ylim(10,30)$

 $ggplot(data = , aes(x = , y =)) + geom_points + xlim(,) + ylim(,)$

```
# ggplot2 패키지 설치하기
install.packages("ggplot2")
library(ggplot2)
# 1단계 배경설정(축)
ggplot(data=mpg, aes(x = displ, y = hwy))
# 배경에 산점도 추가
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point()
# x축 범위 3~6으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6)
# x축 범위 3~6, y축 범위 10~30으로 지정
```


산점도 - 변수 간 관계 표현하기

```
# ggplot2 패키지 설치하기
install.packages("ggplot2")
library(ggplot2)
# 1단계 배경설정(축)
ggplot(data=mpg, aes(x = displ, y = hwy))
                                                        15-
# 배경에 산점도 추가
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point()
                                                        10 -
# x축 범위 3~6으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6)
# x축 범위 3~6, y축 범위 10~30으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6) + ylim(10,30)
 ggplot(mpg, aes(displ, hwy))
```



```
str(mpg)
dplyr::glimpse(mpg)
head(mpg)
# 연속형 변수일 때 컬러
ggplot(data = mpg, aes(x = displ, y = hwy, color = cty)) +
 geom_point(size = 2)
# 범주형 변수일 때 컬러
ggplot(data = mpg, aes(x = displ, y = hwy, color = drv)) +
 geom_point(size = 2)
> dplyr::glimpse(mpg)
Observations: 234
Variables: 11
$ displ
              <db1> 1.8, 1.8, 2.0, 2.0, 2.8, 2.8, 3.1,
$ year
              <int> 1999, 1999, 2008, 2008, 1999, 1999
              <int> 4, 4, 4, 4, 6, 6, 6, 4, 4, 4, 4, 6
$ cy1
              <chr> "auto(15)", "manual(m5)", "manual(
$ trans
              <chr> "f", "f", "f", "f", "f", "f", "f",
$ drv
              <int> 18, 21, 20, 21, 16, 18, 18, 18, 16
$ ctv
              <int> 29, 29, 31, 30, 26, 26, 27, 26, 25
$ hwy
              <chr> "p", "p", "p", "p", "p", "p", "p",
$ f1
              <chr> "compact", "compact", "compact", "
$ class
```



```
str(mpg)
dplyr::glimpse(mpg)
head(mpg)
# 연속형 변수일 때 컬러
ggplot(data = mpg, aes( x = displ, y = hwy, color = cty ) ) +
geom_point(size = 2)

# 범주형 변수일 때 컬러
ggplot(data = mpg, aes( x = displ, y = hwy, color = drv ) ) +
geom_point(size = 2)
```



```
str(mpg)
dplyr::glimpse(mpg)
head(mpg)
# 연속형 변수일 때 컬러
ggplot(data = mpg, aes( x = displ, y = hwy, color = cty ) ) +
geom_point(size = 2)
# 범주형 변수일 때 컬러
ggplot(data = mpg, aes( x = displ, y = hwy, color = drv ) ) +
geom_point(size = 2)
```


Geometry

name	description
geom_point	Scatterplot
geom_bar	Bar plot
geom_histogram	Histogram
geom_density	Prabablity distribution plot
geom_boxplot	Box and whiskers plot
geom_text	Textual annotations in a plot
geom_errorbar	Error bars

20 -

2

5

displ

drv

20 -

2

5

displ

drv


```
p2 <- ggplot(data = mpg,</pre>
       aes(x = displ, y = hwy, color = drv, shape = drv)) +
    geom_point(size = 2)
p2
p2 + geom_smooth(method="lm")
p2 + geom_smooth(method="lm") +
  theme dark()
    40 -
                                                                           drv
    20 -
             2
                                               5
                                      displ
```

20 -

10 -


```
p2 <- ggplot(data = mpg,</pre>
       aes(x = displ, y = hwy, color = drv, shape = drv)) +
    geom_point(size = 2)
p2
p2 + geom_smooth(method="lm")
p2 + geom_smooth(method="lm") +
  theme_dark()
    40 -
                                                                        drv
 30
30
```

displ


```
p3 <-
    ggplot(data = mpg,
        aes(x = displ, y = hwy, color = drv, shape = drv)) +
    geom_point(size = 2) +
    geom_smooth(method="lm")

p3 + theme_dark()
    p3 + theme_bw()
    p3 + theme_classic()</pre>
```



```
p3 + labs(title="< 배기량에 따른 고속도로 연비 비교 >", x = "배기량", y = "연비")
```

```
p3 + facet_wrap( ~ drv)
p2 + facet_wrap( ~ class)
```

< 배기량에 따른 고속도로 연비 비교 >

p3 + labs(title="< 배기량에 따른 고속도로 연비 비교 >", x = "배기량", y = "연비")

p3 + facet_wrap(~ drv)

p2 + facet_wrap(~ class)


```
p3 + labs(title="< 배기량에 따른 고속도로 연비 비교 >", x = "배기량", y = "연비")

p3 + facet_wrap( ~ drv)

p2 + facet_wrap( ~ class)
```

