Google @ UVic | Fall 2022

Building Your Technical Career:

- Learn how to make the most of your degree
- Prepare for a career in software engineering

Interview Prep Workshop:

- Watch a mock interview
- Solve sample problems as a group

STEP Resume Workshop (Tech):

- Learn about Google's STEP internship for 1st/2nd year students
- Get resume tips on how to best present your skills

Hosted by Google Software Engineers Ian Sutton and Faesal Murad

Google @ UVic | Fall 2022

Tuesday, October 18th

• Building Your Technical Career: ECS 660 | 5pm - 6:30pm

Wednesday, October 19th

• Office hours for 1st/2nd year students: ECS 223 & ECS 227 | 1pm - 3pm

Thursday, October 20th

- Interview Prep Workshop: ECS 660 | 12pm 1pm
- STEP Resume Workshop (Tech): ECS 660 | 5:30pm 6:30pm

Friday October 21st:

• Virtual office hours: Online | 12pm - 1pm

Please RSVP at https://goo.gle/UVictoriaFall2022Events

Check out more career-related content online at https://careersonair.withgoogle.com/

Computer Networks

TCP Congestion Control

Jianping Pan Fall 2022

Review: TCP mechanisms

- Connection management
 - packet handshake
- Flow control
 - sliding variable window
- Error control
 - error detection
 - error recovery

Why congestion control?

- Flow control
 - coordinate sender and receiver (buffer)
- Network congestion
 - coordination between the sender and network
 - avoid a sender to overflow a router
 - coordination among many senders
 - traffic aggregation from many senders
 - congestion syndrome
 - increasing queuing delay, packet drop

Flow vs congestion control

10/21/22

Congestion control approaches

- End-to-end approach
 - congestion indicators for the endpoint
 - packet loss
 - also can be caused by transmission error
 - increasing round-trip time
 - also can be caused by alternative routes
- Network-assisted approach
 - ICMP source quenching
 - explicit congestion notification (ECN)

0/21/22 CSc 361 7

Load-gain curve

- Gain: ~ throughput/delay
- Load-gain curve
 - low load
 - medium load gain
 - high load
- Congestion
 - low throughput
 - high delay
 - very low gain

Congestion control principles

- Principle: packet conservation in steady state
 - acknowledgment self-clocking

TCP congestion control

- Changes at sender only
 - an add-on to TCP flow control
- Sender variables
 - congestion window (cwnd)
 - sender window = min {..., ..., cwnd}
 - initially, cwnd = 1 MSS (maximal segment size)
 - slow-start threshold (ssthresh)
 - initial ssthresh

Slow start

- Slow start
 - when cwnd < ssthresh</p>
 - on each new ack
 - cwnd += 1 MSS
 - effectively, doubling cwnd every RTT
 - "start small, but grow really fast"
 - Q: why?

Congestion avoidance

- Congestion avoidance
 - when cwnd > ssthresh
 - on each new ack
 - cwnd += MSS²/cwnd
 - effectively, cwnd += 1 MSS every RTT
 - linear increment

CSc 361

Q: why increase cwnd to "avoid" congestion?

Network congestion

- cwnd is always increased in slow-start and congestion avoidance
 - network congestion is inevitable
- Network congestion indicator
 - TCP treats packet loss as network congestion
- Packet loss indicators
 - acknowledgment timeout
 - 3 duplicate acknowledgments

Timeout retransmit

CSc 361

- Timeout
 - -RTO = d (SRTT + c RTTV)
- Congestion control
 - ssthresh = cwnd / 2
 - cwnd = 1 MSS
 - followed by slow-start
- Error control
 - retransmit packet
 - backoff timer

Q: how to calculate SRTT and RTTV?

Congestion window

- Slow-start
- Congestion avoidance
- Timeout retransmission
 - TCP timeout is quite conservative
 - pay attention to how ssthresh is adjusted!

10/21/22

CSc 361

Fast retransmit

- Duplicate acknowledgment
 - example
 - rcv: [0, 499], [500, 999], [1500, 1999], [2000, 2499], [2500, 2999]
 - ack: 500, 1000, 1000, 1000, 1000 (3rd dupack)
- Congestion control (fast retransmit)
 - on 3rd dupack: ssthresh=cwnd/2; cwnd=1 MSS
 - followed by slow start
- Error control
 - retransmit: [1000,1499]

Q: dupack == loss?

Fast retransmit: cwnd

10/21/22

Q: why "fast" retransmit?

Fast recovery

- Duplicate acknowledgment
 - example
 - rcv: [0, 499], [500, 999], [1500, 1999], [2000, 2499], [2500, 2999]
 - ack: 500, 1000, 1000, 1000, 1000 (3rd dupack)
- Congestion control (fast recovery)
 - on 3rd dupack: cwnd=ssthresh=cwnd/2
 - followed by congestion avoidance
- Error control
 - retransmit: [1000,1499]

10/21/22

CSc 361

Fast recovery: cwnd

Q: why fast recovery?

TCP congestion control

- Tahoe (packet loss as congestion signal)
 - slow start, cong avoid, timeout, fast retransmit
- Reno (packet loss)
 - slow start, cong avoid, timeout, fast recovery
- Vegas (packet delay): react earlier than loss
- NewReno (widely used): cwnd inflation
- SACK (selective ack): more info on holes
- CUBIC in the current Linux, MacOS, Win

10/21/22 CSc 361

This lecture

- Congestion control
 - purpose and approach
 - TCP congestion control
 - slow-start, congestion avoidance
 - timeout retransmit
 - fast retransmit, fast recovery
- Explore further
 - TCP congestion control [RFC2581]
 - http://www.cs.uvic.ca/~pan/csc485

Next chapter

- Network layer: IP addressing and routing
 - K&R4: Computer Networking
 - Chapter 4 (except 4.3 and 4.7)
 - · if you have a newer edition, it has been split into Chapter 4 (Data Plane) and 5 (Control Plane)
- Next Wednesday (Oct 26)
 - Guest lecture
 - Dr Kaiyang Liu: TCP CUBIC/BBR
 - * UVic visiting PhD, 2016–2018
 - * IEEE TCCLD Best PhD Thesis
 - * UVic Postdoc, since 2019

