Recall: A group G acts on a set X by the following properties:

The orbit of an element x ∈ X is:

Likewise, x~y iff yeOrb(x) is an equivalence relation on X.

<u>Definition</u>: Let G act on X. The <u>stabilizer</u> of xEX is:

<u>Definition</u>: Let G aut on X. The <u>fixed points</u> of geG are:

Example: Let G act on X. We will show that $\operatorname{Stab}_{G}(x) \leq G$. Let $g \in \operatorname{Stab}_{G}(x)$. We have that g.x = x, so:

$$\Rightarrow$$
 $(g^{-1}g).x = g^{-1}.x$

$$\Rightarrow e_{G.} \propto = g^{-1}. \propto$$

$$\Rightarrow \alpha = g^{-1}.\infty$$
.

Hence if g ∈ Stabg(x), then g-1 ∈ Stabg(x). Let g,h ∈ Stubg(x). Then:

$$(gh).x = g.(h.x)$$

= g.x
= x

Thus Stabg(x) is a subgroup of G.

Theorem: (Orbit-Stabilizer Theorem) Let G be a finite group that acts on X. Then:

1 0rb(x) = 1G1/1Stabg(x)

Proof. We will prove the equality by showing there exists a bijection. Define $\varphi: G/\operatorname{Stab}_G(x) \longrightarrow \operatorname{Orb}(x)$ by $g\operatorname{Stab}_G(x) \longmapsto g.x$. We must sirst show our mapping is well-defined. Suppose $g,\operatorname{Stab}_G(x)=g_2\operatorname{Stab}_G(x)$. We can write $g_1=g_2h$, where $h\in\operatorname{Stab}_G(x)$. Observe that:

$$\varphi(g_1 \operatorname{Stab}_{G}(x)) = g_1 x$$

$$= (g_2 h) . x$$

$$g_2 g_1 = h$$

$$g_1 x = g_2 . (h.x)$$

$$= g_2 . x \qquad \text{Since he Stab}_{G}(x).$$

$$= (e \operatorname{C} g_2 \operatorname{Stab}_{G}(x)).$$

Thus Q is well-defined. It remains to show that Q is a bijection. Let q_1 Stab(x), q_2 Stab(x) \in G/Stab $_G(x)$ with $Q(q_1$ Stab $(x)) = Q(q_2$ Stab(x).

So $q_1 \cdot x = q_2 \cdot x$, which is equivalent to $q_2^{-1}(q_1 \cdot x) = x$, i.e., $(q_2^{-1}q_1) \cdot x = x$. Thus $q_2^{-1}q_1 \in S$ tab $_G(x)$, so q_1 Stab $_G(x) = q_2$ Stab $_G(x)$.

Let $q_1 \cdot x \in O$ rb(x). We have $Q(q_1 \cdot x) \in Q(x)$. Thus $Q(x) \in Q(x)$. Hence $Q(x) \in Q(x)$ is surjective. Hence $Q(x) \in Q(x)$ is bijective and we have that $Q(x) \in Q(x)$. From Lagrange's Theorem, $Q(x) \in Q(x)$.

Lemma: (Bornside's Lemma) Let G be a finite group acting on a finite set X. Wc have:

Proof. Note that:

#orbits =
$$\frac{1}{|G|} = \frac{1}{|G|} = \frac{1}{|$$

Example: Let G be finite and acts on itself by conjugation. Note than that:

Stab(h) =
$$\begin{cases} g \in G, & g \cdot h = h \end{cases}$$
 (1)
= $\begin{cases} g \in G, & g \cdot hg^{-1} = h \end{cases}$

From (1), this is called the <u>centralizer</u> of h, denoted $C_G(h)$. If G acts on X, $|X| = \sum_{\substack{i \in S \\ \text{crib}}} |Orb(ax)|$. From our conjugation action, we will get $\frac{dist}{dist}$.

IGI on the left hand side. The center of h, denoted Zg(h), is defined as:

If $x \in Z_G(g)$, then $gxg^{-1} = x \, \forall g \in G$. Hence $Orb(x) = \{x\}$, we have that:

$$|G| = \sum_{\substack{\text{off} \\ \text{off}}} |Orb(x)|$$

$$= \sum_{\substack{\text{off} \\ \text{off} \\ \text{off}}} |x| + \sum_{\substack{\text{off} \\ \text{off} \\ \text{off} \\ \text{off}}} |Orb(x)|$$

Let $x_1,...,x_n$ be representatives for the distinct orbits not overlapping Z(G). Then:

$$|G| = |Z(G)| + \sum_{i=1}^{n} |Orb(x_i)|$$

$$= |Z(G)| + \sum_{i=1}^{n} \frac{|G|}{|StabG(x_i)|}$$

$$= |Z(G)| + \sum_{i=1}^{n} \frac{|G|}{|C_G(x_i)|}.$$
 (2)

Equation (2) is defined as The Class Equation

INKU	G	has	QΛ	ele w	ent	οf	ord	ec 0 i	i.e.	a	Sub	Cho15	૦ િ	orde	¯ ₽.	
Theor Then				•	- ,,,	•			,		00.0	J. a	•		•	