Catmull-Clark Subdivision

- Generalization of bi-cubic B-Splines
- Generates C² continuous limit surfaces:
 - C¹ for extraordinary points (valence ≠ 4)
 - C² continuous everywhere else

Catmull-Clark Subdivision

New edge vertices

New face vertices

New position for old vertices (valence k)

Catmull-Clark: Boundary Rules

New boundary edge vertices

New position for old boundary vertices

Note: Special rules for boundary edges and vertices!

Generalized Catmull-Clark

Connect face point to edge-vertex-edge triple (turns all faces into quads)

Generalized Catmull-Clark

New face vertices as centroid of n-gon

$$\mathbf{f} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{v}_i$$

New edge vertices

$$\mathbf{e} = \frac{1}{4} \left(\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{f}_1 + \mathbf{f}_2 \right)$$

New position for old vertices (valence k)

$$\mathbf{v} = \frac{k-2}{k}\mathbf{v} + \frac{1}{k^2} \sum_{i=1}^{k} \mathbf{v}_i + \frac{1}{k^2} \sum_{i=1}^{k} \mathbf{f}_i$$

Catmull-Clark Subdivision

