Tutorial 5 – Design analysis of the TMS robot

This homework is based on the preliminaries of tutorial 6. It deals with the dimensioning of the TMS robot.

Questions

Onsidering the equality of the mechanical actions work, prove that in quasi static conditions (small motions, slow velocities, no acceleration) the following relationship holds:

$$\tau = J^T f$$

with f the forces and torques applied at the end effector, and τ the joint forces and torques.

1 In every point of this grid, propose a method to compute the joint torques which are necessary to compensate for the weight of the TMS coil. Compute these joint torques:

- for
$$s_1 = s_2 = \frac{\pi}{2}$$

- and then for $s_1 = \frac{2\pi}{3}, s_2 = \frac{\pi}{3}$.

The coil mass is 3 kg.

2 Determine the maximum torque required at each joint for the previous arc lengths.

 $\underline{\mathbf{3}}$ Adapt the codes used in the professor illustration of manipulability, in order to compute the minimum and mean value of the manipulability index w_5 over the same space for the same two sets of parameters:

- for
$$s_1 = s_2 = \frac{\pi}{2}$$

- and then for $s_1 = \frac{\pi}{2}, s_2 = \frac{\pi}{3}$.

TI Santé, DTMI, master IRIV Bernard Bayle