INFORME de Negocios

PARTE 1: CASO DE NEGOCIO A RESOLVER

El banco estima que **retener a un cliente** tiene un costo promedio de **40 USD** por campaña de retención, mientras que **adquirir uno nuevo** cuesta en promedio **200 USD**.

Además, un **cliente activo** con tarjeta genera en promedio **120 USD** de margen anual.

Datos:

Clientes iniciales: 20,000 Cada año se adquiere +5% (200 USD / nuevo)

Cada año se van -2% (churn)

Objetivo del proyecto a 10 años:

Diseñar un sistema de predicción de fuga por cliente con rendimiento objetivo de precisión ≈ 70%.

2) Preguntas clave que un modelo de predicción debería responder

PROBABILIDAD DE FUGA ANUALIZADA

¿Cuál es la probabilidad de abandono en cada año 1–10?

EVOLUCIÓN DE VARIABLES PREDICTORAS

¿Cómo cambian demográficas, transaccionales y de comportamiento a lo largo del tiempo y su impacto en la fuga?

IMPACTO DE INTERVENCIÓN AÑO A AÑO

¿Cuánto reduce la intervención de retención la probabilidad de fuga en cada año, considerando el costo de \$40 y el beneficio esperado?

PUNTAJE DE RIESGO

¿Qué clientes presentan alto riesgo acumulado de fuga a lo largo de la década?

VENTANAS DE OBSERVACIÓN COMPARABLES

¿Qué rendimiento se obtiene al usar historiales de 3, 6 y 12 meses para actualizar predicciones anuales?

COSTOS Y BENEFICIOS A LARGO PLAZO

- ROI anual y acumulado de campañas de retención.
- VPN/LTV descontado al año 0, con y sin intervención, usando tasas de descuento del 3% al 10%.

INCORPORACIÓN DE NUEVOS PRODUCTOS

¿Cómo afecta la adición de productos al CLV y a la probabilidad de fuga?

SEGURIDAD Y SESGOS A LARGO PLAZO

¿Mantiene equidad entre segmentos (género, edad, región) durante 10 años? ¿Cómo mitigar sesgos de forma continua?

ROBUSTEZ ANTE CAMBIOS DE NEGOCIO

¿Cómo se adapta el modelo ante cambios regulatorios, tasas de interés o comisiones?

3) Impacto esperado de un sistema de predicción de fuga en los indicadores del banco

Como hoy:

- Ingreso bruto/año: 2.4M
- Costo por adquisiciones (20% de 20k = 4,000 clientes × 200):
 USD 800k/año
- Neto/año: USD 1.6M → usas 33.3% del ingreso bruto solo en CAC
- Neto acumulado 10y (sin descuento): USD 16.0M

Implementación:

- Ingreso bruto/año: 2.4M (mantienes tamaño estable)
- Costo de retención (contactas ≈ 4,000/año): USD 160k/año
- CAC residual (repones 1,200/año): USD 240k/año
- Costos totales/año: USD 400k → 16.7% del ingreso bruto
- Neto/año: USD 2.0M (+25% vs Escenario A)
- Neto acumulado 10y (sin descuento): USD 20.0M

No haces nada:

- Ingreso 10y acumulado (por decaimiento 20%): USD 10.71M
- Neto/año: decreciente; sin costos (ni CAC ni retención)
- % vs "ideal sin fuga" (24.0M): 44.6% (pierdes 55.4%)

Metricas de implementación

- Retención:70%
- Gasto de equipo x 10 años: 200k
- Ingreso esperado 10 años:422k
- Margen 10 años: 222k
- ROI: 110%

PARTE 2 : ANÁLISIS DE LOS DATOS PARA POSIBLE EXPLOTACIÓN

DISTRIBUCIÓN FUGA

La variable objetivo está desbalanceada, lo que puede afectar el rendimiento de los modelos de clasificación.

MULTIVARIADO CUANTITATIVAS VS CUANTITATIVAS

No existen correlaciones significativas entre las variables numéricas; todos los coeficientes están muy cercanos a 0.

MULTIVARIADO CUANTITATIVAS VS CUALITATIVAS

MULTIVARIADO CUALITATIVA VS CUALITATIVA

Fuga	0	1
Pagos_Atrasados		
0	81.3	18.7
1	82.3	17.7
2	82.3	17.7
3	78.0	22.0
4	63.1	36.9
5	82.6	17.4
6	50.0	50.0

Fuga	0	1
Productos_Adicionales		
0	79.6	20.4
1	81.9	18.1
2	83.4	16.6
3	83.1	16.9
4	84.5	15.5
5	86.2	13.8
6	86.7	13.3
7	73.1	26.9
8	84.6	15.4

MÉTRICAS BASE LOGIT DATA CRUDA, WEIGHT='BALANCED', LBGFS

necaracy i or i	01/2 13333030	J, 1		
	precision	recall	f1-score	support
0	0.84	0.45	0.58	3100
1	0.21	0.64	0.31	703
accuracy			0.48	3803
macro avg	0.53	0.54	0.45	3803
weighted avg	0.73	0.48	0.53	3803

FEATURE ENGINEERING

```
gasto_mensual
spend_income
ingreso_residual
  tenure_bin
    ing_bin
   util_band
```

Flags respecto a atrasos

ESCALADO Y TRANSFORMACIONES

transformaciones logaritmicas Robust Scaler Clipping

ESTRATEGIAS DE REGULARIZACIÓN LOGIT

Strategy	Precision	Recall	F1	Avg Precision	Non-zero Coefs
Current (L2, C=1.0)	0.245602	0.516358	0.332875	0.229720	60
Stronger L2 (C=0.1)	0.245065	0.512091	0.331492	0.230178	60
Stronger L2 (C=0.01)	0.250534	0.500711	0.333966	0.233236	60
L1 Lasso (C=1.0)	0.245935	0.516358	0.333180	0.229899	52
L1 Lasso (C=0.1)	0.249473	0.504979	0.333960	0.231037	39
<pre>ElasticNet (C=0.1)</pre>	0.249307	0.512091	0.335352	0.231129	43
Best by Average Preci	sion:				
Strategy Str	onger L2 (0	C=0.01)			
Precision	0.	250534			
Recall	0.	500711			
F1	0.	333966			
Avg Precision	0.	233236			
Non-zero Coefs		60			

FEATURE SELECTION

- Manual (VIF, CORR)
- Lasso
- L2 fuerte

Escogimos Manual

ROC PR CURVES LOGISTIC

CURVES EASYENSEMBLE

ROC CURVES EASYENSEMBLE

CONFUSION MATRICES EASYENSEMBLE

El modelo detecta una parte razonable de los clientes que sí se van (496), pero genera **muchos falsos positivos** (1836), es decir, marca a muchos clientes fieles como posibles fugas.

Modelo más conservador, que reduce falsas alarmas a costa de no detectar algunas fugas reales. Al reducir de 46 a 32 features, el modelo pierde algo de capacidad discriminativa, aunque sigue siendo competitivo y más eficiente

CONFUSION MATRICES LOGISTIC REGRESSION

PERFORMANCE LOGISTIC BARCHART

PERFORMANCE METRICS BARCHAR

MUCHAS GRACIAS