Московский физико-технический институт

Лабораторная работа по общей физике

5.1 Измерение коэффициента ослабления γ -лучей в веществе и определение их энергий

выполнил студент Б04-852 группы ФЭФМ Яромир Водзяновский

Содержание

1	Цель работы
2	Теория 2.1 Фотоэлектрическое поглощение 2.2 Комптоновское рассеяние 2.3 Генерация электрон-позитронных пар 2.4 Полный коэффициент ослабления
3	Экспериметнальная установка
4	Ход работы
5	Вывод

1 Цель работы

- С помощью сцинтилляционного счетсчика измерить линейные кожффициенты ослабления потока γ лучей в свинце, железе и алюмини
- \bullet По их величине определить энергию γ квантов

2 Теория

Гамма-лучи возникают при переходе возбужденных ядер из одного состояние в другое, более низкое. E_{γ} лежит в значениях от 10 кэВ до 1000 кэВ. При проходе через вещество, пучок ослабляется по закону:

$$I = I_0 e^{-\mu l} \tag{1}$$

$$I = I_0 e^{-\mu' m_1} (2)$$

 $I,\ I_0$ - интенсивности прошедшего и падающего излучений, l - длина пути, m_1 - масса пройденного вещества на единицу площади, μ и μ' - константы, зависящие от вещества. μ' не зависит от плотности вещества. Ослабление потока γ - лучей связано стремя эффетками:

- 1. фотоэлектрическое поглощение
- 2. комптоновское рассеяние
- 3. генерация электрон-позитронных пар

2.1 Фотоэлектрическое поглощение

При столкновении γ - квантов с электронами внутренних атомных оболосчек может происходить поглощение квантов. Энергия кванта передается электрону, а импульс делится между электроном и ионом. Наружные электроны не принимают участия в фотоэлектрическом поглощении, т.к. они почти свободные и слабо связаны с ядром.

Вероятность dP_{Φ} фотоэлектрического поглощения гамма-квантов пропорциональна длине пути dl и плотности электронов в среде:

$$dP_{\Phi} = \sigma_{\Phi} n_1 dl \tag{3}$$

 n_1 - плотность внутренних электронов, σ_{Φ} - поперечное сечение фотожлектрического поглощения, оно характеризует вероятность фотоэффекта, рассчитанную на один электрон.

Найдем связь между коэффициентом поглощения для фотоэффекта μ_{Φ} и сечением σ_{Φ} :

$$\mu_{\Phi} = \sigma_{\Phi} n_1 \tag{4}$$

Эта формула отражает зависимость μ_{Φ} от плотности среды в явном виде.

Пусть в результате фотоэффетка энергия γ -кванта передается электрону на i оболочке, W_i - энергия связи этого электрона. Тогда кинетическая энергия электрона:

$$T_i = \hbar\omega - W_i \tag{5}$$

на вакантное место могут перейти электроны с соседних оболчек, при таких переходах возникает характеристическое рентгеновское излучение, которое, например, в РЭМ используется в режиме рентгеновской спеткроскопии для определения состава образца.

Вероятность фотоэффекта сложно зависит от энергии гамма-лучей и от заряда ядер:

$$\sigma_{\Phi} \propto \frac{Z^5}{(\hbar\omega)^{2,5}} \tag{6}$$

Эта формула отражает такую зависимость (рис. 1)

Рис. 1: Зависимость сечения фотоэффекта от энергии γ-квантов

Вероятность фотоэффекта быстро возрастает при переходе от легких к тяжелым элементам и резко падает с увеличением энергии гамма-квантов. При возрастании энергии сечение скачкообразно возрастает, когда становится возможным выбивание электронов с очередной оболочки. Фотоэффект является доминирующим механизмом поглощения гамма-квантов при не очень высоких энергиях.

2.2 Комптоновское рассеяние

Комптон эффект - упругое столкговение гамма-кванта с электроном. Этот эффект происходит на свободных или слабосвязанных электронах в отличие от фотоэффекта. Роль эффекта Комптона становиться существенной только когда энергия гамма-квантов становится много больше энергии связи электронов в атоме. Атомные электроны можно считать практиески свободными.

Вертоятность Комптон эффекта сложно зависит от энергии гамма-квантов. В случае, когда энергия гамма-кванта много больше энергии покоя электрона:

$$\sigma_k = \pi r^2 \frac{mc^2}{\hbar\omega} \left(\ln \frac{2\hbar\omega}{mc^2} + \frac{1}{2} \right) \tag{7}$$

 $r \approx 2.8 \cdot 10^{-13} \; \mathrm{cm}$ - классический радиус электрона. Следует, что сечение комптон-эффекта с ростом энергии фотонов падает не так резко, как сечение фотоэффекта.

Сечение σ_k относится к одному свободному электрону, а сечение фотоэффекта рассчитано на атом. Значит комптоновское рассеяние становится в Z раз больше.

Комптоновский коэффициент линейного ослабления μ_k связан с сечением σ_k через плотность слабосвязанных электронов n:

$$\mu_k = \sigma_k \cdot n \tag{8}$$

Отметим, что эффект Комптона приводит не к поглащению, а к рассеянию гамма-кватнов.

2.3 Генерация электрон-позитронных пар

При энергиях γ -лучей, превышающих $2mc^2=1.02$ МэВ, становится возможен процесс образования электронпозитронных пар. Рождение пар происходит в эл. поле ядер, вероятность процесса $\sim Z^2$ и сложным образом зависит от энергии фотона.

При энергиях более 1.02 МэВ фотоэффект почти не играет роли даже для самых тяжелых ядер. Вероятность образования пар сравнительна с вероятностью комптоновского рассеяние. Рождение пар существенно только для самых тяжелых элементов. Для свинца вероятность рождения пар сравнивается с вероятностью комптоновского эффекта только при 4.7 МэВ.

2.4 Полный коэффициент ослабления

Полный линейный кожффициент μ равен сумме коэффициентов для всех трех рассмотренных процессов. На рис.

Рис. 2: Полные коэффициенты ослабления потока γ - лучей в алюминии, железе и свинце

E_{γ} , МэВ	Al	Cu	Fe	Pb	Вода	Бетон	NaI
0.1	0,456	4,117	2,928	62,03	0,171	0,397	6,055
0,2	0,329	1,409	1,149	10,68	0,137	0,291	1.196
0,3	0,281	1,000	0,787	4,275	0,119	$0,\!251$	0,602
0,4	0,250	0,839	0,740	2,495	$0,\!106$	0,224	0,428
0,5	0,228	0,745	0,661	1,724	0,0966	0,204	0,343
0,6	0,210	0,679	0,605	1,349	0,0896	0,189	0,298
0,8	0,184	0,588	0,526	0,982	0,0786	0,166	0,246
1,0	0,166	$0,\!526$	0,471	0,798	0,0706	0,149	0,214
1,5	0,135	0,430	0,382	0,581	0,0575	0,121	0,172
2,0	0,117	0,377	0,337	0,518	0,0493	$0,\!105$	0,152
5,0	0,076	0,285	0,246	0,483	0,0301	0,067	0,127

Рис. 3: Полные коэффициенты ослабления потока γ - лучей в разных веществах

Получим формулу (1). Рассмотрим опыты в хорошей геометрии, когда γ - кванты выводит из пучка фотоэлектрическое поглощение, комптоновское рассеяние и генерация пар.

При прохождении через вещество меняется количество, а не энергия квантов в пучке, значит коэффициент μ не зависит от длины пути. Пусть -dN число гамма-квантов, выбывших из пучка на пути dl, это число пропорционально имеющемуся их числу N и пройденному пути dl:

$$-dN = \mu N dl \tag{9}$$

Интегрируем от нулевой толщины до заданной:

$$N = N_0 e^{-\mu l} \tag{10}$$

Получили ф-лу (1).

В плохой геометрии, когда рассеянные под небольшими углами кванты остаются в пучке эта формула не применима, однако, хорошо работает :).

Причина хорошего согласия в том, что гамма-кванты с энергие 1-2 МэВ, потерявшие энергию из-за комптоновского ослабления, быстро выбывают из пучка аз-за резкого увеличения сечений σ_{Φ} и σ_k . В данной работе коэффициент ослабления μ измеряектся в хорошей геометрии:

$$\mu - \frac{1}{l} \ln \frac{N_0}{N} \tag{11}$$

3 Экспериметнальная установка

Схема установки показана на рис. 4 Свинцовый коллиматор выделяет узкий параллельный пучок гамма-квантов, проходящий через набор поглотителей П. Сигналы от счетсчика усиливаются и регистрируются пересчетным приьором ПП.

При недостаточно хорошей геометрии в результате опытов могут быть погрешности. В реальности всегда имеется вероятность, что гамма-квант провзаимодействует в поглатителе несколько раз до того, как попадет в детектор (рис. 5) Чтобы этого избежать сцинтилляционный счетсчик расположен на больом расстоянии от источника гамма-квантов, а полглотители имеют небольшие размеры, также поглотители следует размещать на небольшом расстоянии друг от друга.

Блок-схема установки, используемой для измерения коэффициентов ослабления потока γ -лучей: И — источник γ -лучей; Рb — свинцовый контейнер с коллиматорным каналом; П — набор поглотителей; С — сцинтиллятор — кристалл NaI(Tl); Φ — формирователь-выпрямитель

Рис. 4

Рис. 5: Схема рассеяния гамма-квантов в поглотителе

4 Ход работы

- 1. Включим пересчетный прибор и высоковольтный выпрямитель. Прогреем их.
- 2. Измерим скорость счета с свинцовой пробкой и без, она резко увеличилась как только убрали свинцовую пробку. Данные занесем в таблицу на рис.6

№ Опыта	С заслонкой пустой	Без заслонки
1	193	238075
2	187	232385
3	179	228955
4	194	225600
5	211	224726
6	203	222983
7	204	221243
8	182	
9	168	
Ср. Значение	191	227709,6
Станд. Ошибка	14	5893

Рис. 6: Измернеие с и без свинцовой пробки

3. Исследуем поглощение гамма-лучей в свинце, железе и алюминии, данные занесем в таблицы на рис. $7,\,8,\,9$

№ Опыта	1 алюминий	2 алюминий	3 алюминий	4 алюминий	5 алюминий	6 алюминий	7 алюминий	Толщина, см
1	123319	72217	44432	27325	17681	11347	7651	2
2	124294	73290	44835	27641	17773	11477	7755	2,02
3	123905	73398	44731	27715	17600	11613	7733	2,01
4	124131	73503	45387	27990	17954	11572	7738	1,98
5	125614	73406	45318	28517	17590	11834	7526	2,01
6	123863	74672	45177	27718	17885	11616	7797	2,01
7	123663	74246	45426	28247	17933	11668	7542	2,03
Ср. Значение	124112	73533	45043	27879	17773	11589	7677	2
Станд. Ошибка	733	778	381	402	154	152	107	0,01574

Рис. 7: Алюминий

№ Опыта	1 железо	2 железо	3 железо	4 железо	5 железо	6 железо	7 железо	Толщина, см
1	104168	52081	27021	14763	7884	4319	2332	1,005
2	106817	51931	26895	14713	8054	4274	2412	1,010
3	106068	51798	27726	14619	8225	4379	2458	1,010
4	106574	52201	27724	14542	8105	4419	2388	1,005
5	106176	52053	28043	14834	8189	4448	2442	1,000
6	106712	53340	27629	14893	8190	4449	2362	1,005
7	107323	52943	27732	14902	7982	4416	2404	1,035
Ср. Значение	106262	52335	27538	14752	8090	4386	2399	1
Станд. Ошибка	1014	576	419	137	125	67	44	0,0115

Рис. 8: Железо

№ Опыта	1 свинец	2 свинец	3 свинец	4 свинец	5 свинец	6 Свинец	7 свинец	Толщина, мм
1	108587	52213	27742	15313	8363	4422	2596	4,7
2	107312	53174	27716	15299	8562	4449	2580	4,7
3	107553	52987	27843	15486	8491	4530	2495	4,6
4	108204	52994	28143	15762	8340	4473	2590	4,4
5	108161	53651	27900	15659	8567	4685	2585	4,9
6	107992	53591	27979	15696	8600	4603	2627	5
7	107402	53966	28428	15701	8673	4582	2672	4,9
Ср. Значение	107887	53225	27964	15559	8513	4535	2592	5
Станд. Ошибка	475	578	251	193	123	94	54	0,2070

Рис. 9: Свинец

4. Для каждого вида поглотителей построим зависимость $\ln N(l) = \ln N_0 - l \cdot \mu$ на рис. 10, 11, 12: Откуда получим линейный коэффициент μ как тангенс угла наклона:

$$\mu_{Al} = 0.237 \pm 0.004(\pm 1.7\%) \text{ [cm}^{-1}]$$

$$\mu_{Pb} = 1.272 \pm 0.020(\pm 1.6\%) \text{ [cm}^{-1}]$$

$$\mu_{Fe} = 0.634 \pm 0.008(\pm 1.3\%) \text{ [cm}^{-1}]$$

По линейным коэффициентам рассчитаем коэффициенты μ' по ф-ле (1) следует, что: $\mu' = \frac{\mu \cdot l}{m_1}$

$$\begin{split} \mu'_{Al} &= 0.087 \pm 0.002 (\pm 1.9\%) \; [\text{cm}^2/\text{r}] \\ \mu'_{Pb} &= 0.112 \pm 0.005 (\pm 4.4\%) \; [\text{cm}^2/\text{r}] \\ \mu'_{Fe} &= 0.081 \pm 0.001 (\pm 4.3\%) \; [\text{cm}^2/\text{r}] \end{split}$$

Рис. 10: Зависимость $\ln N(l) = \ln N_0 - l \cdot \mu$ для алюминия

Рис. 11: Зависимость $\ln N(l) = \ln N_0 - l \cdot \mu$ для свинца

Рис. 12: Зависимость $\ln N(l) = \ln N_0 - l \cdot \mu$ для железа

5. Определим среднюю энерегию гамма-квантов по графику с рис. 2 и таблице с рис. 3.

$$\overline{E_{\gamma}} \approx 0.55 \pm 0.06 (\pm 10.5\%) \text{ [MəB]}$$

5 Вывод

В данной работе мы с помощью сцинтилляционного счетсчика измерили линейные коэффициенты ослабления потока γ - лучей в свинце, железе и алюмини; определили среднюю энергию гамма-лучей, излучаемых источником.