Linh N. N. Le

+1 (714) 787-9496, lnnle@ucdavis.edu

Department of Biomedical Engineering, University of California, Davis

EDUCATION

University of California, Davis

Davis, California, USA

Ph.D., Biomedical Engineering,

Expected Jun 2025

• Research Interests: Deep learning for advanced imaging to improve diagnosis of Alzheimer's Disease

University of California, San Diego

San Diego, California, USA

B.S., Bioengineering

June 2019

HONORS AND AWARDS

Translational Health Data Science Fellowship	2022
ISMRM New Entrant Stipend Award	2021-2022
University of California, San Diego Provost Honors	2017-2018
Phi Beta Kappa Society	2016

ACADEMIC EXPERIENCE

University of California, Davis, Davis, California, USA

Sept, 2020 – present

Graduate Student Researcher; Advisor: Dr. Audrey Fan

- Analyzing and evaluating quantitative BOLD modeling of functional signals
- Applying advanced machine learning approaches to better understand physiological and structural contributions to neurodegeneration (e.g. Alzheimer's Disease)

Salk Institute of Biological Science - Computational Neurology Lab, San Diego

UCSD Institute of Neural Computation - Computational Neurology Center, San Diego

Undergraduate Research Assistant; Advisor: Dr. David Peterson

July, 2018 – Jan, 2020

- Analyzed and evaluated computerized methods of dystonia severity evaluation using OpenFace, and MATLAB.
- Assessed head tremor with computer vision
- Reviewed patients' videos for protocol compliance
- Annotated essential tremor patients' video for downstream analysis

University of California, San Diego, San Diego, California USA

Data Science Research Intern; Advisor: Dr. Ben Croker

July, 2019 - Oct, 2019

- Examined the state of cell by creating a computational method to quantify the transition of cells
- Developed an interactive app to track the cell death progress based on cell images dataset in R

University of California, San Diego, San Diego, California USA

Bioengineering Research Assistant; Advisor: Dr. Pedro Cabrales

July, 2017 - June, 2019

- Studied about satiety mechanism to improve the diet habit by adjusting the eating speed
- Examined the dataset of patients and background of obesity and overweight to analyze recorded data of 30 participants by MATLAB toolbox
- Designed an application for iPhone users to control eating behavior by Swift and created a database to store users' information for further investigations

PUBLICATION

Vu JP, Cisneros E, Lee HY, Le L, et al. *Head tremor in cervical dystonia: Quantifying severity with computer vision.* Journal of the Neurological Sciences, 2022; 434

Zhu Y, Shamie I, Lee J, Nowell C, Peng W, Angulo S, Le L, et al. *Immune response to intravenous immunoglobulin in patients with Kaweasaki disease and MIS-C.* JCI, 2021;131(20)

PRESENTATIONS

Le L, Wheeler G, Momjian A, Donnay C, Blockley N, Fan A. Oxygen Extraction Fraction using Quantitative BOLD and Cerebral Blood Flow during Vasodilation. Presented at ISMRM; May 2022. London, UK.

Le L, Wheeler G, Christen T, Zaharchuk G, Fan A. *Comparison of Quantitative BOLD and Vascular MRF for Mapping Brain Oxygenation*. Presented at ISMRM; May 2022. London, UK.

Le L, Wheeler G, Fan A. *Brain Oxygen Extraction Measurement during Hypercapnia and Hypoxia using Quantitative BOLD MRI*. Presented at BMEGG Symposium, University of California, Davis; May 2021.

Wheeler G, Le L, Fan A. *Dynamic Vascular Magnetic Resonance Fingerprinting of Cerebral Physiology*. Presented at ISMRM-endorsed Workshop on MRI Acquisition & Reconstruction; September 9, 2021; Virtual conference.

Le L, Wheeler G, Fan A. *Quantitative BOLD Modeling of Brain Oxygenation During Vasodilation*. Presented at ISMRM-endorsed Workshop on MRI Acquisition & Reconstruction; September 9, 2021; Virtual Conference.

CONFERENCE ABSTRACT

Luo W, Le L, Ulug A, Mazhari A, Pinter N, Magda S, Haxton R, Melton R, Airriess C. *Performance Evaluation for Multiple Sclerosis Identification Models Based on MR Imaging and Machine Learning*. ACTRIMS; 2020

Luo W, Mazhari A, Ulug A, Pinter N, Le L, Haxton R, Magda S, Kjonigsen L, and Airriess C. *A Statistical Reference Percentile Chart for Evaluating Brain Atrophy in Multiple Sclerosis*. ECTRIMS; 2019 Sept 11-13; Stockholm, Sweden.

SERVICE AND AFFILIATIONS

- Member, International Society for Magnetic Resonance in Medicine (ISMRM) (2021-2022)
- Admission Committee, Biomedical Engineering Graduate Group, UC Davis (2021)
- Graduate Student Representative (GSA), Biomedical Engineering Student Association (BESA), UC Davis (2020-2021)
- Transfer Prep Program Leader, IDEA Engineering Student Center, UC San Diego (2018)
- Peer mentor, UC San Diego (2017-2018)

PROFESSIONAL EXPERIENCE

Cortechs.ai, San Diego, California USA

Neuroanatomy Imaging Specialist Neuroanatomy Associate Neuroanatomy Imaging Intern Sept, 2019 – Sept, 2020 Nov, 2018 - Sep, 2019

Apr, 2018 - Nov, 2018

- Analyzed and evaluated volumetric MRI brain images and performed subcortical segmentation using MATLAB to improve the algorithm
- Applied image processing techniques for image analysis such as image segmentation and morphological filtering technique to remove noise and enhance the MRI brain images for better quantitative results
- Used statistical methods to validate the results of gradient correction of the MRI brain images
- Examined the changes of structural volumes of patients and comparing with normative dataset

• Conducted research about brain atrophy by using automated segmentation data

TEACHING EXPERIENCE

University of California, Davis, Davis, California, USA

Jan, 2022 – March, 2022

Teaching Assistant | Department of Biomedical Engineering | BIM 289B, Neuroimaging

Grossmont College, San Diego, California USA

Mathematics Tutor Oct, 2014 - June, 2016

- Assisted freshman and sophomore with algebra and calculus in various level
- Developed materials to improve student efficiency in studying and note taking

SKILL

- Programming languages and mathematical packages: Python, MATLAB, Java, R
- Imaging Software: FSL
- Computer aided design/engineering: AutoCAD, 3D Printing
- Unix/Linux, Windows

REFERENCES

Professor Audrey P. Fan
Department of Biomedical Engineering
University of California, Davis
1590 Drew Avenue Unit #100
Davis, CA 95618
530-754-0806
apfan@ucdavis.edu

Dr. David A. Peterson Computational Neurobiology Laboratory, Sal Institute for Biological Studies La Jolla, CA 92093 (858) 534-0795 dp@salk.edu

Professor Ben Croker
Department of Pediatrics,
School of Medicine
University of California, San Diego
9500 Gilman Drive MC 0760
La Jolla, CA 92093-0760
bcroker@health.ucsd.edu