(Lecture 8) Amortized Analysis

CSE 548: Analysis of Algorithms

Lecture 8 (Amortized Analysis)

Rezaul A. Chowdhury **Department of Computer Science SUNY Stony Brook** Fall 2019

A Binary Counter								
counter value	counter	#bit flips	#bit resets $(1\rightarrow 0)$					
0	00000000				-			
1	00000001	1	0	1				
2	00000010	2	1	1				
3	00000011	1	0	1				
4	00000100	3	2	1				
5	00000101	1	0	1				
6	0 0 0 0 0 1 1 0	2	1	1				
7	0 0 0 0 0 1 1 1	1	0	1				
8	00001000	4	3	1				
9	00001001	1	0	1				
10	0 0 0 0 1 0 1 0	2	1	1				
11	0 0 0 0 1 0 1 1	1	0	1				
12	0 0 0 0 1 1 0 0	3	2	1				
13	00001101	1	0	1				
14	0 0 0 0 1 1 1 0	2	1	1				
15	0 0 0 0 1 1 1 1	1	0	1				
16	00010000	5	4	1				

A Binary Counter

Consider a k-bit counter initialized to 0 (i.e., all bits are 0's). Suppose we increment the counter n times.

and cost of an increment = #bits flipped

Question: What is the worst-case total cost of *n* increments?

Worst-case cost of a single increment:

#bit sets (
$$0 \to 1$$
), $b_1 \le 1$
#bit resets ($1 \to 0$), $b_0 \le k - b_1$
#bit flips
$$= b_1 + b_0 \le k$$

Worst-case cost of *n* increments:

#bit flips < nk

This turns out to be a very loose upper bound!

Aggregate Analysis

A better upper bound can be obtained as follows.

Each increment sets ($0 \rightarrow 1$) at most one bit, i.e., $b_1 \le 1$ So, total number of bits set by n increments, $B_1 = b_1 n \le n$

Since at most n bits are set, there cannot be more than n bit resets $(1 \to 0)$, i.e., $B_0 \le B_1 \le n$

So, total number of bit flips = $B_1 + B_0 \le n + n = 2n$

Thus worst-case cost of a sequence of n increments, $T(n) \le 2n$

Hence, in the worst case, average cost of an increment $=\frac{T(n)}{n} \le 2$

This worst-case average cost is called the amortized cost of an increment in a sequence of n increments.

(Lecture 8) Amortized Analysis

A Binary Counter							
counter value	counter	#bit flips	#bit resets $(1 \rightarrow 0)$	#bit sets ($0 \rightarrow 1$)			
0	0000000						
1	00000001	1	0	1	1		
2	00000010	2	1	1	3		
3	00000011	1	0	1	4		
4	00000100	3	2	1	7		
5	00000101	1	0	1	8		
6	0 0 0 0 0 1 1 0	2	1	1	10		
7	0 0 0 0 0 1 1 1	1	0	1	11		
8	00001000	4	3	1	15		
9	00001001	1	0	1	16		
10	0 0 0 0 1 0 1 0	2	1	1	18		
11	00001011	1	0	1	19		
12	00001100	3	2	1	22		
13	00001101	1	0	1	23		
14	0 0 0 0 1 1 1 0	2	1	1	25		
15	0 0 0 0 1 1 1 1	1	0	1	26		
16	00010000	5	4	1	31		

- often obtains a tighter worst-case upper bound on the cost of a sequence of operations on a data structure by reasoning about the interactions among those operations
- the actual cost of any given operation may be very high, but that operation may change the state of the data structure in such a way that similar high-cost operations cannot appear for a while
- tries to show that there must be enough low-cost operations in the sequence to average out the impact of high-cost operations
- unlike average case analysis proves a worst-case upper bound on the total cost of the sequence of operations
- unlike expected case analysis no probabilities are involved

Accounting Method (Banker's View)

Consider a k-bit counter initialized to 0 (i.e., all bits are 0's).

Worst-case cost of a single increment:

#bit sets ($0 \rightarrow 1$), $b_1 \leq 1$ #bit resets ($1 \rightarrow 0$), $b_0 \le k - b_1$ #bit flips $= b_1 + b_0 \le k$

Thus each increment is paying for the bit it sets (fair). But also paying for resetting bits set by prior increments (unfair)!

A fairer cost accounting for each increment:

- (1) Pay for the bit it sets.
- (2) Pay in advance for resetting this bit (by some other increment) in the future. Store this advanced payment as a credit associated with that bit position.
- (3) When resetting a bit use the credit stored in that bit position.

② ② 2 (overcharged)

16

≤ 18

Accounting Method (Banker's View)

counter value	counter	$\begin{array}{c} \text{actual} \\ \text{cost (} c_i \text{)} \end{array}$	amortiz cost (<i>ĉ</i>		$\sum c_i$	≤ 2	$\sum \hat{c}_i$	
0	00000000							
1	00000001	1	2	(overcharged)	1	≤	2	
2	0000010	2	3 2		3	≤	4	
3	00000011	1	3 2	(overcharged)	4	≤	6	
4	00000100	3	3 2	(undercharged)	7	≤	8	

Total credits remaining after n increments, $\Delta_n = \sum_{i=1}^n \hat{c}_i - \sum_{i=1}^n c_i$

We must make sure that for all n, $\Delta_n \geq 0$

$$\Rightarrow \sum_{i=1}^n \hat{c}_i \ge \sum_{i=1}^n c_i$$

This will ensure that the total amortized cost is always an upper bound on the total actual cost.

Potential Method (Physicist's View)

Banker's View: Store prepaid work as credit with specific objects in the data structure.

Physicist's View: Represent total remaining credit in the data structure as a single potential function.

Suppose: state of the initial data structure = D_0 state of the data structure after the i-th operation = D_i potential associated with D_i is = $\Phi(D_i)$

Then amortized cost of the i-th operation,

$$\hat{c}_i$$
 = actual cost + potential change due to that operation
= $c_i + \Phi(D_i) - \Phi(D_{i-1})$

Potential Method (Physicist's View)

Then amortized cost of the *i*-th operation,

 \hat{c}_i = actual cost + potential change due to that operation = $c_i + \Phi(D_i) - \Phi(D_{i-1})$

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1})) = \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)$$

Since we do not know n in advance, if we make sure that for all n, $\Phi(D_n) \geq \Phi(D_0)$, we ensure that always $\sum_{i=1}^n \hat{c}_i \geq \sum_{i=1}^n c_i$.

In other words, in that case, the total amortized cost will always be an upper bound on the total actual cost.

One way of achieving that is to find a Φ such that $\Phi(D_0)=0$ and for all n, $\Phi(D_n)\geq 0$.

Potential Method (Physicist's View)

For the binary counter,

 $\Phi(D_i)$ = number of set bits (i.e., 1 bits) after the *i*-th operation

counter value	counter	actual cost (c_i) $\Phi(D_i)$	amortized cost (\hat{c}_i)	$\sum c_i$	≤	$\sum \hat{c}_i$
0	0000000					
1	00000001	1 1	<pre> ② ② 2 (overcharged) </pre>	1	≤	2
2	00000010	2 1	● 2	3	≤	4
3	00000011	1 2	<pre> ② ② 2 (overcharged) </pre>	4	≤	6
4	00000100	3 1	● ② (undercharged)	7	≤	8
5	00000101	1 2	<pre> ② ② 2 (overcharged) </pre>	8	≤	10
6	00000110	2 2		10	≤	12
7	00000111	1 3	<pre> ② ② 2 (overcharged)</pre>	11	≤	14
8	00001000	4	•• 2 (undercharged)	15	<	16

