

w klasycznym ujęciu:

ekstrakcja to metoda pozwalająca na wyodrębnienie substancji (bądź ich grup) poprzez selektywne rozpuszczenie ich w rozpuszczalniku

definicja:

ekstrakcja to proces wymiany masy w układzie wielofazowym i wieloskładnikowym polegający na przeniesieniu jednego lub więcej składników jednej fazy do drugiej, nie mieszającej się z pierwszą.

✓ w przypadku próbek ciekłych proces polega na przejściu substancji rozpuszczonej z jednego do drugiego rozpuszczalnika, przy czym musi być zachowany warunek nie mieszalności wzajemnej obu rozpuszczalników;

ekstrakcja jest stosowana, gdy zmiana określonego rozpuszczalnika następuje na taki, który będzie dogodniejszy (co zazwyczaj prowadzi również do uproszczenia matrycy) lub gdy zachodzi konieczność selektywnego rozdziału mieszaniny;

często stosuje się rozpuszczalniki organiczne

analitycy określają ekstrakcję jako metodę wydzielania składnika lub rozdzielania składników złożonych substancji (mieszanin), opartą na podziale składników mieszaniny pomiędzy dwie niemieszające się ze sobą fazy

Jest ona stosowana w celu:

- 1. izolacji indywiduów chemicznych z ich pierwotnej matrycy,
- 2. usunięcia składników przeszkadzających w analizie końcowej,
- 3. wzbogacania

uzyskania stężenia analitu wyższego od granicy oznaczalności, co pozwalana zastosowanie odpowiedniej techniki instrumentalnej, a tym samym umożliwia ilościowe oznaczenie.

- parametry opisujące proces ilościowo:

stała podziału

- służy do ilościowego opisu ekstrakcji:

$$K_D = [A]_o/[A]_w$$

[A] - stężenie analitu, o - faza organiczna, w - faza wodna

gdy ekstrahujemy z jednej fazy organicznej (fo_1) do drugiej (fo_2):

$$K_D = [A]_{fo_2}/[A]_{fo_1}$$

- parametry opisujące proces ilościowo:

dla roztworów rozcieńczonych

stała podziału Nernsta jest równy ilorazowi stężeń substancji rozpuszczonej w dwóch niemieszających się fazach ciekłych, pozostających w:

- 1. stanie równowagi fazowej,
 - 2. stałej temperaturze.

- parametry opisujące proces ilościowo:

równania opisujące stałą ekstrakcji są słuszne, gdy:

- 1. ciecze nie mieszają się ze sobą (lub mieszają się ograniczenie),
- 2. stężenie substancji rozpuszczonej w obu fazach nie jest duże (roztwory rozcieńczone),
- 3. nie zachodzi dysocjacja ani asocjacja cząsteczek substancji rozpuszczonej w żadnej z faz,
- 4. proces zachodzi w stałej temperaturze.

- parametry opisujące proces ilościowo:

współczynnik ekstrakcji (współczynnik podziału)

 służy do ilościowego opisu procesu ekstrakcji, gdy uwzględnia się szereg innych procesów (np. kompleksowanie, hydrolizę, solwatację):

$$D = \Sigma [A]_{o,i} / \Sigma [A]_{w,j}$$

i oraz j oznaczają różne formy w jakich może występować analit;

jeśli wartość D jest duża (> 10⁴) przyjmuje się, że analit został ilościowo wyekstrahowany lub całkowicie zatrzymany na sorbencie.

- parametry opisujące proces ilościowo:

współczynnik odzysku (odzysk; R)

$$R = (\Sigma [A]_{faza2})/(\Sigma [A]_{faza2} + \Sigma [A]_{faza1})$$

- parametry opisujące proces ilościowo:

procent ekstrakcji (%E) wydajność procesu ekstrakcji

- parametry opisujące proces ilościowo:

współczynnik rozdzielenia składników A i B

(określany również terminem selektywność, $\alpha_{\text{A/B}}$)

$$\alpha_{A/B} = D_A/D_B$$

- ✓ ekstrakcja do fazy organicznej zachodzi, gdy cząsteczki analitu są pozbawione ładunku elektrycznego;
- ✓ ekstrakcję pierwiastków występujących w roztworze wodnym w postaci różnych jonów (np. akwakompleksy) prowadzi się po uprzednim przeprowadzeniu jonów w cząsteczki obojętne, będące zwykle kompleksami zdolnymi do rozpuszczenia się w rozpuszczalnikach organicznych;
- ✓ zazwyczaj niezbędne jest również dobranie właściwego pH.

- charakterystyka analityczna:

- stosunkowo szybka,
- ilościowa (przy odpowiednim doborze warunków prowadzenia procesu),
- mająca zastosowanie zarówno w analityce organicznej jak i nieorganicznej,
- stosowana w analizie śladów (pozwala je zagęszczać) oraz składników głównych,
- pozwalająca na oznaczenie stężeń całkowitych, frakcji oraz form specjacyjnych pierwiastków,
- pozwalająca na automatyzację,
- będąca często jest niezbędnym etapem poprzedzającym analizę chromatograficzną,
- dopuszczalna i wymagana przez dyrektywy i normy (ISO, EPA, FDA).

W przypadku analitu o wyborze techniki ekstrakcji decydują:

- 1. jego rozpuszczalność w ekstrahencie,
- 2. postać fizyczna analitu,
- 3. jego lotność,
- 4. zdolność do sublimacji,
- 5. odporność termiczną,
- 6. odporność na działanie promieniowania UV,
- 7. zdolność do sorpcji na powierzchni.

Właściwości analitu i matrycy trzeba uwzględnić przy doborze takich parametrów jak:

- 1. temperatura,
- 2. rodzaj i moc oddziaływań fizycznych (ciśnienia, ultradźwięków czy promieniowania mikrofalowego),
- 3. intensywności mieszania, itp.

Trzeba również wziąć pod uwagę:

- 1. cel przeprowadzania procesu izolacja jednej substancji czy określonej grupy związków chemicznych,
- 2. skalę analizy wyodrębnianie przeprowadza się na skalę preparatywną czy analityczną,
- 3. poziom stężeń analitu w matrycy,
- 4. cel analizy
 czy analiza jest identyfikacją składników ekstraktu i/lub ilościowym
 oznaczeniem jego składu,
- 5. wymogi techniki analizy końcowej.

Dodatkowe parametry:

"zielona chemia" a ekstrakcja, a w szczególności:

- 1. eliminacja (lub ograniczenie) zużycia odczynników chemicznych, zwłaszcza rozpuszczalników organicznych,
- 2. zmniejszenie emisji par i gazów oraz ilości ścieków i odpadów stałych wytwarzanych w laboratoriach analitycznych,
- 3. eliminacja z toku analiz odczynników o wysokiej toksyczności i/lub ekotoksyczności,
- 4. zmniejszenie praco- i energochłonności przeprowadzanych procedur.

LITERATURA:

- Cygański A., Chemiczne metody analizy ilościowej,
 Wydawnictwa Naukowo-Techniczne WNT, Warszawa, 2005;
- Minczewski J., Marczenko Z., Chemia analityczna, Tom 2: Chemiczne metody analizy ilościowej, Wydawnictwo Naukowe PWN, Warszawa, 2009;
- 3. Skoog D.A., West D.M., Holler F.J. Crouch, S.R., *Podstawy chemii analitycznej Tom 2*, Wydawnictwo Naukowe PWN 2007;
- 4. Witkiewicz Z., Podstawy chromatografii, WNT, Warszawa 1992;
- 5. Namieśnik J., Jamrógiewicz Z., Pilarczyk M., Torres L., *Przygotowanie* próbek środowiskowych do analizy WNT Warszawa, 2000.