Denotaremos siempre la derivada T de f en \mathbf{x}_0 mediante $\mathbf{D}f(\mathbf{x}_0)$, aunque en algunos textos se expresa mediante $df(\mathbf{x}_0)$ y se denomina diferencial de f. En el caso de m=1, la matriz T es simplemente el vector fila

$$\left[\frac{\partial f}{\partial x_1}(\mathbf{x}_0) \quad \cdots \quad \frac{\partial f}{\partial x_n}(\mathbf{x}_0)\right].$$

(En ocasiones, cuando haya posibilidad de confusión, separaremos los elementos con comas). Además, si n=2 e introducimos este resultado en la Ecuación (4), comprobamos que las condiciones (2) y (4) coinciden. Por tanto, si hacemos $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$, una función con valores reales f de n variables es diferenciable en un punto \mathbf{x}_0 si

$$\lim_{\mathbf{h}\to 0} \frac{1}{\|\mathbf{h}\|} \left| f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - \sum_{j=1}^n \frac{\partial f}{\partial x_j}(\mathbf{x}_0) h_j \right| = 0,$$

ya que

$$\mathbf{Th} = \sum_{j=1}^{n} h_j \frac{\partial f}{\partial x_j}(\mathbf{x}_0).$$

Para el caso general en el que f está definida sobre un subconjunto de \mathbb{R}^n y tiene valores en \mathbb{R}^m , la derivada es la matriz $m \times n$ dada por

$$\mathbf{D}f(\mathbf{x}_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix},$$

donde $\partial f_i/\partial x_j$ se evalúa en \mathbf{x}_0 . La matriz $\mathbf{D}f(\mathbf{x}_0)$ se denomina, apropiadamente, matriz de derivadas parciales de f en \mathbf{x}_0 .

Ejemplo 6

Calcular las matrices de derivadas parciales para las funciones.

(a)
$$f(x,y) = (e^{x+y} + y, y^2x)$$

(b)
$$f(x, y) = (x^2 + \cos y, ye^x)$$

(c)
$$f(x, y, z) = (ze^x, -ye^z)$$

Solución (a) Aquí $f: \mathbb{R}^2 \to \mathbb{R}^2$ se define mediante $f_1(x,y) = e^{x+y} + y$ y $f_2(x,y) = y^2x$. Por tanto, $\mathbf{D}f(x,y)$ es la matriz 2×2

$$\mathbf{D}f(x,y) = \begin{bmatrix} e^{x+y} & e^{x+y} + 1 \\ y^2 & 2xy \end{bmatrix}.$$

(b) Tenemos que

$$\mathbf{D}f(x,y) = \begin{bmatrix} 2x & -\sin y \\ ye^x & e^x \end{bmatrix}.$$