MATEMÁTICA PARA A COMPUTAÇÃO I

Apresentação do Curso

Prof. Anderson Paiva Cruz

https://sigaa.ufrn.br/sigaa/public/docente/portal.jsf?siape=2645969

Como será seu aprendizado e avaliação (conteúdo e assiduidade)

Plano de Curso:

<Sala de aula invertida>

Momentos	O QUE FAREMOS PARA CADA BLOCO DE CONTEÚDO?
10	Estudo do assunto antes e depois da sala de aula
20	Aula presencial para discussão do assunto
30	Exercícios
4°	Prova individual escrita ou oral (a depender da unidade) sobre os exercícios enviados

^{*}Farei a chamada de presença em todas as aulas seguindo a normativa da UFRN.

Photo by <u>bruce mars</u> on <u>Unsplash</u>

Assiduidade e avaliação

- Vide plano de curso
- Avaliação com todo o conteúdo da unidade para compor o restante da Nota da unidade.

AVALIAÇÃO	DATA
1ª AVALIAÇÃO	14/05/2025
2ª AVALIAÇÃO	09/07/2025
3ª AVALIAÇÃO	14/07/2025
REPOSIÇÃO	21/07/2025

Photo by Fredrick Tendong on Unsplash

Do que se trata?

DIM0152 - Matemática para Computação I

- Dados tipo Booleano
 - Definição, operações e propriedades
- Números Naturais
 - Definição, operações e propriedades
 - Relação de ordem sobre os naturais
- Inteiros
 - Definição, operações e propriedades
 - Relação de ordem
 - Relação div e suas propriedades
 - Teorema Fundamental da aritmética
 - Infinidade de primos
 - Algoritmo de Euclides, MMC e aplicações
- Aritmética modular
 - Congruência modular
 - Congruência linear
 - Teoremas e Aplicações

1^a unidade

2^a unidade

Vide o Plano de Curso no Sigaa

Início	Fim	Descrição
17/03/2025	17/03/2025	Apresentação do componente curricular e do plano de curso
19/03/2025	24/03/2025	Introdução às técnicas de demonstração
26/03/2025	31/03/2025	Noções básicas de lógica, dados do tipo booleano e suas propriedades
02/04/2025	02/04/2025	Revisão de conteúdo de matemática básica
07/04/2025	09/04/2025	Números naturais a partir do Sistema de Peano (compreensão da indução matemática e implementação iterativa de operações)
14/04/2025	05/05/2025	Definição e demonstração de propriedades de adição, multiplicação, exponenciação sobre os naturais
07/05/2025	07/05/2025	Ordens sobre os naturais: especificação e verificação de suas propriedades.
12/05/2025	12/05/2025	Unicidade dos naturais (a menos do isomorfismo)
14/05/2025	14/05/2025	Prova
19/05/2025	19/05/2025	Construção dos números inteiros a partir dos naturais, adição de inteiros e suas propriedades
21/05/2025	21/05/2025	Multiplicação e propriedades dos inteiros, Domínio de Integridade e Relação de Divisibilidade
26/05/2025	26/05/2025	A relação de divisibilidade e a verificação de suas principais propriedades
28/05/2025	28/05/2025	Teorema Fundamental da Aritmética
02/06/2025	02/06/2025	Teorema de Euclides sobre infinidade de primos
04/06/2025	04/06/2025	Lema e Algoritmo de Euclides e sua generalização
09/06/2025	09/06/2025	Algoritmo estendido de Euclides, MMC e aplicações
09/06/2025	16/06/2025	Congruência Modular: Definição, Propriedades e aplicações
18/06/2025	25/06/2025	Congruência linear e aplicações
30/06/2025	07/07/2025	Criptografia e aritmética modular e desenvolvimento dos programas
09/07/2025	09/07/2025	Prova 2: Apresentação dos programas
14/07/2025	14/07/2025	Prova 3: Prova oral
21/07/2025	21/07/2025	Reposição (presencial)

Deficiências constatadas

- Matemática básica
- Raciocínio lógico
- Leitura e escrita de português e inglês
- Interpretação e resolução de problemas
- Baixa motivação

Mais matemática aplicada

- A Matemática na pixar
 - https://youtu.be/XzgAhqokAlg?si=t3JmYFHmMaz0kKpD
- Matemática no Brasil
 - https://youtu.be/X_oLsFZ9vCY?si=wit_n9oi5SoYaN2e
 - https://youtu.be/iBx3XOgCFzA?si=UajEPZmBJd2B8cYN
 - https://youtu.be/IBowPUStK5c?si=rIA9_cNVCevdQyS8

Matemática aplicada à computação

Referências

BEDREGAL, B.C., ACIÓLY, B.M. Introdução à Lógica Clássica para a Ciência da Computação. Disponível em http://www.dimap.ufrn.br/~jmarcos/books/BA_Jul07.pdf

P. Gouveia, F.M. Dionísio, J. Marcos. Lógica Computacional. . DMIST. 2000

MENDELSON, Elliott. Introduction to mathematical logic. 4. ed. London, UK: Chapman & Hall, 1997.

LEAN. Disponível em https://lean-lang.org/

GENSLER, Harry. Introduction to Logic. 2.ed. New York: Routledge, 2010. ISBN 978-0-203-85500-3.

HOUSTON, Kevin. How to think like a mathematician: a companion to undergraduate mathematics. New York: Cambridge University Press, c2009. xi, 265 p. ISBN: 9780521719780.

SOLLOW, Daniel. How to read and do proofs: An Introduction to Mathematical Thought, 6.ed. Processes-Wiley, 2013. ISBN: 978-1-118-16402-0.

VELLEMAN, Daniel J. How to Prove It: A Structured Approach. 3.ed. New York: Cambridge University Press, 2019. ISBN 978-1-108-43953-4.

Referências

GENSLER, Harry. Introduction to Logic. 2.ed. New York: Routledge, 2010. ISBN 978-0-203-85500-3.

HOUSTON, Kevin. How to think like a mathematician: a companion to undergraduate mathematics. New York: Cambridge University Press, c2009. xi, 265 p. ISBN: 9780521719780.

SOLLOW, Daniel. How to read and do proofs: An Introduction to Mathematical Thought, 6.ed. Processes-Wiley, 2013. ISBN: 978-1-118-16402-0.

VELLEMAN, Daniel J. How to Prove It: A Structured Approach. 3.ed. New York: Cambridge University Press, 2019. ISBN 978-1-108-43953-4.

BEDREGAL, B.C., ACIÓLY, B.M. Introdução à Lógica Clássica para a Ciência da Computação. Disponível em http://www.dimap.ufrn.br/~jmarcos/books/BA_Jul07.pdf

GENSLER, Harry. Introduction to Logic. 2.ed. New York: Routledge, 2010. ISBN 978-0-203-85500-3.

NAHRA, C., WEBER, H. Através da Lógica, 9.ed., Petrópolis: Vozes. 2015.

MENDELSON, Elliott. Number Systems and the Foundations of Analysis. Estados Unidos, Dover Publications, 2008. | 1ª UNIDADE

EPP, Susanna S. Discrete mathematics with applications. 4th ed. Australia: Brooks, 2011. xxii, 816 p. ISBN: 9780495826163.

ROSEN, Kenneth H. Discrete mathematics and its applications. 7th ed. New York: McGraw-Hill, 2012. xx, 903 p. ISBN: 0073383090. 2ª UNIDADE

GERSTING, Judith L.. Fundamentos matemáticos para a ciência da computação: um tratamento moderno de matemática discreta. 5. ed. Rio de Janeiro: LTC, 2013. xiv, 597p. ISBN: 9788521614227.

LEHMAN, E., LEIGHTON, F.T., MEYER, A.R. **Mathematics for Computer Science.** 2015. Disponível em https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-spring-2015/readings/MIT6_042JS15_textbook.pdf

DRYSDALE, Robert L. et al. Matemática discreta para ciência da computação. São Paulo, SP: Pearson, 2013. xxi, 394 p. ISBN: 97888581437699.

MUNRO, John E. M. **Discrete mathematics for computing**. London: Charman & Hall, 1992. 306p. ISBN: 0412456508. Wadler, Philip, and Bird, Richard. **Introduction to functional programming (Chap. 5)**. Reino Unido, Prentice Hall, 1988.

Conheça seus direitos e deveres

- Use o sigaa!
 - Leia na íntegra o "Plano de curso".
- Como funciona nossa Universidade?
 - Como encontrar resoluções da UFRN?
 - Resolução 016/2023

