Johnny Basurto Rosales

Physics 31415

Professor Cottrell

Grover's Algorithm Project

Introduction

Any video on quantum computers will explain that quantum can be more powerful that a classical computer. Famously, a quantum computer has 2ⁿ states to work with while a classical computer only n. A misconception that I had about this is that all 2ⁿ qubits can be observed, but that is not true –you'll notice this in the quantum circuits -only n measurements can be made. Therefore, the true power of a quantum computer lies in superposition, interference and entanglement.

This paper will attempt to showcase an application of superposition, interference, and entanglement on the following problem: given records of data with assigned keys (0,1,2...N-1), find key y. This problem can be solved using the Grover's algorithm.

Grover's Search Algorithm

In short, Grover's algorithm initializes a superposition of equally likely states, $|w\rangle$, and applies unitary operations so that the desired state, $|y\rangle$, has a greater probability than the rest of the states. Since the total probability is constrained to 1, the probabilities of the undesired states in $|w\rangle$ are decreased.

This can be understood by first noting that the vector perpendicular to $|y\rangle$ can be derived from $|w\rangle$. In the following demonstration, it is a given that $|w\rangle$ can be expressed in the $|y\rangle$, $|y\rangle$, perpendicular basis. Additionally, we look at an arbitrary state $|\phi\rangle$ that can be interpreted as the $|w\rangle$ state to whom the unitary operations have been applied at least once.

The first part shows a geometric understanding of what the unitary operations do to the state $|\phi\rangle$. The second part shows explicitly the effect the unitary operations have on $|\phi\rangle$. Finally, the third part shows the unitary operations applied n times to $|\phi\rangle$ and ends with an example involving 2 qubits. All parts are numbered on the upper right corner.

I have shown that applying - Molly to an arbitrary state 10's votates it closer to the target state 1ys.

Sturting with 18> = cosply=>+singly>

0

$$U_{\gamma}: \begin{pmatrix} 1 & 6 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} | Y^{+} \rangle = \begin{pmatrix} \cos \varphi \\ -\sin \varphi \end{pmatrix}$$

Now we're going to reflect over 140. This can be done by reflecting over 140+3 and negating. We first transform 143 into the 143,14+3 hasis.

 $\begin{array}{c|c}
\hline
O & (\cos \theta + \sin \theta) & (\cos \theta) & (\cos \theta \cos \theta + \sin \theta \sin \theta) \\
\hline
\sin \theta & (\cos \theta) & (\sin \theta) & (\sin \theta \cos \theta + \cos \theta \sin \theta)
\end{array}$

Now we reflect over 1200, Ho:

 $0 \left(-1 \ 0\right) \left(\cos\theta\cos\theta - \sin\theta\sin\theta\right) = \left(-\cos\theta\cos\theta + \sin\theta\sin\theta\right)$ $\left(\sin\theta\cos\theta + \cos\theta\sin\theta\right) = \left(\sin\theta\cos\theta + \cos\theta\sin\theta\right)$

Now we return to (yt, y) basis to see the effect!

(3) (cos & sind) (-cos & cos & + sin & sin &)
(sin & -cos &) (sin & cos & + cos & sin &)

= (-1050 cos Ø + cos Ø sin Ø sin Ø + sin O cos Ø + sin O cos Ø sin Ø)

- sin O cos Ø cos Ø + sin Ø sin Ø - cos Ø sin O cos Ø - cos Ø sin Ø)

= (-(1050-5120) cos Ø + 25,h0costsin Ø) (-(1050-5120) SIN Ø - 25m0 cost cos Ø)

- (0s(20))(0)(0) + sin(20) sin(0) - (0s(0+20)) - (-sin(0+20)) ~ - (0) (0+20) ty+) - g.n (0+20) ly> Now we multiply by - I to essentially reflect over Iws. -> (U) (0+20) /4-) - sin (0-20) /y) In sum! - NoVy 105 = cos(0+20)1y=5+51n(0+20)1ys (cos 0 sino) (-1 0) (cos 0 sino) (1 0) (cos 0)

sin 0 - cos 0) (0 1) (sin 0 - cos 0) (0 -1) (sin 0) Ux - Mo diffusive operator blackbox

Applying - Moly in times results in:

(05/0+2n8) 1y2) + sin (0+2n0)1/2

How many times was -Moly applical?

We Push let &= O. That is, we start off at 1w) and apply - Molly in times:

(-Molly) 16) = cos (0+2n0)1y+>+ sin (0+2n0)1y>

We can use this in another equation given by:

<y/w> = = sind = 0

where the small-angle approximation was used because

Finally: 1 = [(1) = [(n) = [] = []

where n>>1.

For a quhits (N=4) we need $n \approx \frac{14}{2} = 1$ applications of -Molly $\frac{1}{14} = \sin \theta \rightarrow \theta = \sin^2(\frac{1}{6}) = \frac{\pi}{6}$ $\cos(\frac{\pi}{6} + a(\frac{\pi}{6})) = 0$ $\sin(\frac{\pi}{6} + a(\frac{\pi}{6})) = 1$

How to pick the gates for the quantum circuit?

For the black box, it easy to show the logic behind the gates I chose. The reflection over |y,perpendicular> is the same thing as applying a negative phase to the target state because |y,perp> is |w> that is not |y>. So for N qubits, we have to find any combination of gates that result in the target's phase to be flipped.

I was not able to find a similar idea for the diffusive operator. As part 2 of the calculations show, we can explicitly find the unitary operations that are to be applied on the space spanned by $\{|y\rangle, |y,perp\rangle\}$. But how that is to be translated to the quantum circuit and generalized to N qubits I failed to realize. At minimum, I can find a black box for 2 qubits and apply the quantum circuit given in lecture unto Qiskit and search for $|11\rangle$ and $|10\rangle$.

Grover's Algorithm Data

The Quantum Circuit for the search for 11:

Figure 1 Quantum circuit used to search for |11>.

Results from IBM_Santiago:

Figure 2 Final states after running the quantum circuit.

Results from a classical simulation:

Figure 3 States measured by a classical simulation where quantum errors cannot be simulated.

The Quantum Circuit for the search of 10:

Figure 4 Quantum circuit used to search for |10>.

Results from IBM_Santiago:

Figure 5 States measured from a quantum computer calculation.

Where the black box is defined as:

As both quantum searches show, there is a small probability of measuring undesired states. We have shown at the end of part 3 that this should theoretically be impossible so these results emphasize that quantum computers are still prone to phase errors. For the search of 10, there is a probability less than .1 of finding undesired states. In other words, for 1000 measurements in the 10 search you are likely to find 53 measurements resulting in the 11 state.

Quantum Teleportation

The following is a classical simulation of quantum teleportation. I used it to learn about the relevant commands in python.^[1] Qubit 0's state was transferred to qubit 2!

Figure 6 Quantum circuit for Quantum Teleportation

Figure 7 Final states measured. The 3rd qubit is the bottom most number on the x-axis.

1.	Qiskit. "Quantum Teleportation Algorithm — Programming on Quantum Computers Season 1Ep 5." YouTube, 30 Aug. 2019, www.youtube.com/watch?v=mMwovHK2NrE.