Oral Qualifying Exam Proposal

Connor H. McCurley Electrical and Computer Engineering University of Florida, Gainesville FL 32611, USA*

August, 2019

Contents

1	Introduction	2	2
2	Background		2
3	Problem Description	2	2
4	Conceptual Approach		2
5	Experimental Design		2
6	Preliminary Work		2
7	Future Tasks		2
8	References		2
		Abstract	
	Wide-band		
	*Put something here		

- 1 Introduction
- 2 Background
- 3 Problem Description
- 4 Conceptual Approach
- 5 Experimental Design
- 6 Preliminary Work
- 7 Future Tasks
- 8 References

Research Questions

Goal: Time-adaptive Multiple-Instance Manifold Learning

1. Manifold learning from imprecise data

- Multiple instance learning for manifold construction
- Extend supervised manifold learning methods to MIL framework
- Best way to construct the manifold (AE, SOM, classical methods, graph-based)
- Outlier/ adversarial robustness
- Time series embedding

2. Multi-sensor fusion using manifolds

- Can we intelligently combine manifolds for classifier/ sensor fusion?
- \bullet Incorporation of context-dependent information
- Fusion using manifolds
- General fusion approaches (HME, Choquet integral, HMM)
- Dissimilarity metrics (Measure similarity of manifolds/ How to determine placement of sample in test)

3. Time-adaptive fusion

- Merging/ stitching (How to merge/when to merge)
- System growing/ pruning
- Model manifolds as Markov states? (Combination of states/ state estimation/ prediction)
- Reinforcement learning for parameter adaptation