Data Wrangling and Exploration on Toronto's Pedestrian collisions and Injured Persons Data

Dr. Eric Asare

2023-01-08

1. Background

A bad data set which has errors is more likely to produce unreliable insights. This exercise is grouped into two main sections, which are data wrangling and data exploration. The goal is to produce a reliable dataset which can be used to produce reliable insights for the Minitry of Transportation. SmartEDA is the main R package that will be used to wrangle and explore the raw data.

1.1 Data Wrangling

In this section, a) I will familiarize myself with the data (data discovery), b) clean the data by removing potential outliers, drop missing/empty information or replace them using imputation, and identify row and column duplicates, and c) validate the data by ensuring that columns contain consistent, accurate and expected range of values.

A. Data Discovery

The number of rows and columns of the collisions data are 504,069 and 12, respectively. Eight of the variables are non-numeric as expected. The involved persons data, which focuses pedestrian collisions, has 16,045 rows and 15 columns or variables. Most of the columns both data have significant amounts of missing (NA) or empty information (Table 1).

A.1. Collisions Data

##		Index	Variable_Name	Variable_Type	Sample_n	Missing_Count	Per_of_Missing
##	1:	1	collision_no	integer	504069	0	0.000
##	2:	2	accdate	IDate:Date	504069	0	0.000
##	3:	3	district	character	464331	39738	0.079
##	4:	4	latitude	numeric	504056	13	0.000
##	5:	5	longitude	numeric	504056	13	0.000
##	6:	6	impact_type	character	503793	276	0.001
##	7:	7	light	character	503688	381	0.001
##	8:	8	location_class	character	287130	216939	0.430
##	9:	9	<pre>road_surface_cond</pre>	character	503743	326	0.001
##	10:	10	road_class	character	469358	34711	0.069
##	11:	11	traffic_control	character	502505	1564	0.003
##	12:	12	visibility	character	500376	3693	0.007
##	No_of_distinct_values						

##	1:	504069
##	2:	3653
##	3:	6
##	4:	118094
##	5:	125454
##	6:	11
##	7:	10
##	8:	13
##	9:	11
##	10:	15
##	11:	13
##	12:	9

A.2. Injured Persons Data

##		Index	Variable_Name	e Vari	able_Type	Sample_n	Missing_Count
##	1	1	collision_no)	integer	16045	0
##	2	2	rec_io	l	integer	16045	0
##	3	3	accdate	POSIX	ct:POSIXt	16045	0
##	4	4	actual_speed	l	integer	1215	14830
##	5	5	driver_condition	ı	character	175	15870
##	6	6	$impact_location$	ı	character	11853	4192
##	7	7	involved_injury_class	3	character	16039	6
##	8	8	involved_age	9	integer	15661	384
##	9	9	involved_class	3	character	16045	0
##	10	10	manoeuvei	.	character	539	15506
##	11	11	pedestrian_action	1	character	14919	1126
##	12	12	pedestrian_condition	1	character	15876	169
##	13	13	<pre>pedestrian_collision_type</pre>	9	character	14590	1455
##	14	14	posted_speed	l	integer	1935	14110
##	15	15	vehicle_class	3	character	3673	12372
##		Per_of	_Missing No_of_distinct_v	alues			
##	1		0.000	15178			
##	2		0.000	16045			
##	3		0.000	3445			
##	4		0.924	36			
##	5		0.989	4			
##	6		0.261	14			
##			0.000	6			
##			0.024	100			
##			0.000	1			
##			0.966	13			
##			0.070	16			
##			0.011	11			
##			0.091	17			
##			0.879	12			
##	15		0.771	17			

or this project, data wrangling encompasses activities such as:

who rely on such information for policy recommendations could lose lots of resources, including money,

^{*} unordered list + sub-item 1 + sub-item 2 - sub-sub-item 1

^{*} It is a problem because institutions

^{*} hhh

unreliable information from data analytics Unreliable insights from This data exercise will be grouped into data wrangling and data exploration. When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
##
        speed
                          dist
##
            : 4.0
                               2.00
    Min.
                    Min.
                            :
##
    1st Qu.:12.0
                    1st Qu.: 26.00
    Median:15.0
                    Median : 36.00
##
            :15.4
##
    Mean
                    Mean
                            : 42.98
##
    3rd Qu.:19.0
                    3rd Qu.: 56.00
                            :120.00
##
    Max.
            :25.0
                    Max.
```

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.