

Universidad Nacional Autónoma de México

FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN

Estudio demográfico de Chihuahua y consecuencias de los homicidios

Demografía Matemática

López Hernández Alejandro Montoya Franco Luis Angel

> Profesor Ramos López Aram Isai

3 de noviembre de 2017

Resumen

El objetivo de este proyecto es usar datos poblacionales del estado de Chihauhua para analizarlos y a partir del analisis poder corregirlos y estudiar la estructura poblacional, posteriormente usando las defunciones durante el año 2015 en Chihuahua causadas por agresiones, estimar el efecto que tienen sobre nuestra población $({}_uAV_i)$.

Introducción

El estudio de la población humana resulta de gran ayuda para poder mejorar la calidad de vida, por ejemplo, puede mostrarnos zonas geográficas donde la tasa de mortalidad es mayor, y a su vez podría deberse a una enfermedad que afecta a esa localidad. Por esta razón y entre otras es importante conocer la población y todos los factores que la afectan. Por consiguiente el propósito de este proyecto es analizar la población del estado de Chihuahua y determinar como los homicidios que ocurren en este han afectado la esperanza de vida de sus habitantes.

Distribución de la población por grupos etarios

Desegregacion y preferencia al declarar edades

Impacto de los homicidios en la esperanza de vida

Como bien se sabe se tiene un gran problema de homicidios en el estado de Chihuahua, durante el año 2015 se reportaron[3] 1535 homicidios en total, estos en su mayoría en Juarez (440), por la gran extensión del estado de Chihuahua, los homicidios se concentran en zonas muy particulares como se muestra en el siguiente mapa:

Figura 1: Muertes por agresiones en Chihuahua distribuidas por municipio

Como se esperaría el numero de homicidios es mayor en los hombres en edades principalmente de 15 a 50 años, mientras que en las mujeres ocurren principalmente en edades de 20 a 45 años, la información se encuentra detallada en la siguiente tabla y gráfica:

Edad	Hombres	Mujeres
0	2	1
1-4	8	2
5-9	4	2
10-14	11	6
15-19	136	9
20-24	213	20
25-29	227	26
30-34	173	19
35-39	185	14
40-44	162	19
45-49	102	6
50-54	61	3
55-59	38	7
60-64	28	2
65-69	17	3
70-74	13	1
75-79	10	1
80-84	5	1

Cuadro 1: Muertes por agresiones en Chihuahua durante 2015

Figura 2: Histograma de homicidios separado por hombres y mujeres

Para poder cuantificar el efecto que tuvieron exclusivamente estos homicidios utilizaremos el indice ${}_{0}AP_{j}$ (Años de vida perdidos por la causa de defunción j desde la edad 0) propuesto por Arriaga[2] donde se supone lo siguiente:

- a) Suponer que la mortalidad debería ser nula entre dos edades elegidas para el análisis. Vaie decir, aquellos que mueren deberían haber vivido hasta la edad superior del intervalo de edades donde se analiza la mortalidad.
- b) Suponer que entre las dos edades elegidas para el análisis, aquellos que mueren a una edad determinada, de no haber muerto, deberían haber vivido tantos años como el promedio que vive la población que no muere a dicha edad.
- c) No limitar la edad superior del análisis, y suponer que aquellos que fallecen a una edad determinada, si no hubieran muerto, habrían vivido tantos años como el resto de la población que queda viva a esa misma edad.

Para realizar los cálculos requerimos de la tabla de mortalidad ajustada con nuestros grupos etarios de los que tenemos registros de defunciones por la causa j, en este caso los homicidios. Como se requiere de la tabla de mortalidad se deben de conocer el numero total de defunciones en cada periodo por lo que conocemos ${}_{n}D_{x}$, así podemos calcular

$$_{n}d_{x,j} = _{n}d_{x} \left(\frac{_{n}D_{x,j}}{_{n}D_{x}} \right)$$

donde ${}_{n}D_{x,j}$ son las muertes por homicidios de edad [x,x+n] dividida entre la población expuesta. Entonces podemos calcular los años de vida perdidos en el intervalo

$$_{0,n}AP_{x,j} = {}_{n}d_{x,j}[v - {}_{n}a_{x} - x]$$

y para conocer en promedio cuantos años se perdieron se divide entre la población inicial $l_a=l_0$, es decir

$$_{0,n}ap_{x,j} = \frac{_{0,n}AP_{x,j}}{l_0}$$

y para calcular el efecto total en nuestra población solo basta sumar el índice de cada año y ver el numero de años que se perdieron en la esperanza de vida a causa de los homicidios.

$$_{0}AP_{j} = \sum_{x=0}^{v} {}_{0,n}ap_{x,j}$$

Haciendo todos estos cálculos llegamos al siguiente par de valores tomando la población de hombres y mujeres por separado.

$$_{0}AP_{j}^{H} = 1,694$$
 $_{0}AP_{j}^{M} = 0,209$

La tabla de mortalidad completa se muestra a continuación

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n	nm_x	$_{n}q_{x}$							$_{n}d_{x,j}$	x	/0	$_{n}avpp_{x,j}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0.015	0.015	0.985	100,000	1,516	98,620.064	7,038,132.581	70.381	7	0	476.009	0.005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	0.001	0.003	0.997	98,484	261	393,283.120	6,939,512.517	70.463	24	1	1,611.160	0.016
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.000	0.001	0.999	98,223	131	490,785.892	6,546,229.397	66.647	10	5	614.193	0.006
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.000	0.002	0.998	98,092	171	490,031.990	6,055,443.504	61.732	30	10	1,729.897	0.017
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.002	0.009	0.991	97,921	880	487,404.730	5,565,411.515	56.836	393	15	20,760.595	0.208
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.003	0.014	0.986	97,041	1,380	481,754.378	5,078,006.784	52.329	659	20	31,547.812	0.315
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.003	0.016	0.984	95,661	1,524	474,493.966	4,596,252.407	48.047	774	25	33,176.444	0.332
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.003	0.017	0.983	94,137	1,614	466,648.851	4,121,758.441	43.785	616	30	23,316.764	0.233
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.004	0.020	0.980	92,523	1,824	458,055.667	3,655,109.589	39.505	653	35	21,487.922	0.215
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.005	0.025	0.975	90,699	2,262	447,842.199	3,197,053.922	35.249	578	40	16,118.200	0.161
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.006	0.031	0.969	88,438	2,766	435,271.516	2,749,211.723	31.086	391	45	8,953.457	0.090
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.009	0.043	0.957	85,671	3,707	419,087.136	2,313,940.207	27.010	276	50	4,942.867	0.049
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.013	0.061	0.939	81,964	4,976	397,377.808	' '	23.118	212	55	2,732.322	0.027
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.018	0.085	0.915	76,987	6,516	368,645.435	1,497,475.262	19.451	190	60	1,494.997	0.015
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.028	0.129	0.871	70,471	9,121	329,551.243	1,128,829.827	16.018	140	65	402.440	0.004
5 0.091 0.370 0.630 36,742 13,605 149,695.165 304,100.304 8.277 57 80 - 5 0.127 0.482 0.518 23,136 11,152 87,801.459 154,405.139 6.674 0 85 - 5 0.168 0.592 0.408 11,984 7,091 42,194.309 66,603.679 5.558 0 90 - 5 0.201 0.669 0.331 4,894 3,276 16,278.598 24,409.371 4.988 0 95 -	5	0.041	0.185	0.815	61,350	11,360	278,349.166	799,278.584	13.028	125	70	-	-
5 0.127 0.482 0.518 23,136 11,152 87,801.459 154,405.139 6.674 0 85 - 5 0.168 0.592 0.408 11,984 7,091 42,194.309 66,603.679 5.558 0 90 - 5 0.201 0.669 0.331 4,894 3,276 16,278.598 24,409.371 4.988 0 95 -	5	0.061	0.265	0.735	49,990	13,248	216,829.114	520,929.417	10.421	101	75	-	-
5 0.168 0.592 0.408 11,984 7,091 42,194.309 66,603.679 5.558 0 90 - 5 0.201 0.669 0.331 4,894 3,276 16,278.598 24,409.371 4.988 0 95 -	5	0.091	0.370	0.630	36,742	13,605	149,695.165	304,100.304	8.277	57	80	-	-
5 0.201 0.669 0.331 4,894 3,276 16,278.598 24,409.371 4.988 0 95 -	5	0.127	0.482	0.518	23,136	11,152	87,801.459	154,405.139	6.674	0	85	-	-
	5	0.168	0.592	0.408	11,984	7,091	42,194.309	66,603.679	5.558	0	90	-	-
0.100 1.000 0.000 1.618 1.618 8.130.773 8.130.773 5.036 0.100	5	0.201	0.669	0.331	4,894	3,276	16,278.598	24,409.371	4.988	0	95	-	-
0.199 1.000 0.000 1,018 0,150.773 0,150.775 5.020 0 100 -		0.199	1.000	0.000	1,618	1,618	8,130.773	8,130.773	5.026	0	100	-	-
169,365.079												169,365.079	1.694

Cuadro 2: Tabla de mortalidad de hombres

							_					
n	$_{n}m_{x}$	$_nq_x$	$_{n}p_{x}$	l_x	$_{n}d_{x}$	$_{n}L_{x}$	$_{n}T_{x}$	\mathring{e}_x	$_{n}d_{x,j}$	x	$_{n}AEVP_{x,j}$	$_{n}avpp_{x,j}$
1	0.012	0.012	0.988	100,000	1,208	98,900.591	7,719,204.928	77.192	3	0	228.260	0.002
4	0.001	0.003	0.997	98,792	296	394,430.340	7,620,304.337	77.135	6	1	444.652	0.004
5	0.000	0.001	0.999	98,497	103	$492,\!224.785$	7,225,873.997	73.362	6	5	439.090	0.004
5	0.000	0.002	0.998	98,393	165	491,553.191	6,733,649.213	68.436	16	10	1,029.846	0.010
5	0.001	0.003	0.997	98,228	294	490,405.344	6,242,096.021	63.547	26	15	1,555.727	0.016
5	0.001	0.004	0.996	97,934	394	488,685.271	5,751,690.677	58.730	61	20	3,328.193	0.033
5	0.001	0.004	0.996	97,540	381	486,747.058	5,263,005.406	53.957	88	25	4,376.106	0.044
5	0.001	0.005	0.995	97,159	533	484,463.108	4,776,258.348	49.159	65	30	2,883.861	0.029
5	0.001	0.007	0.993	96,626	640	481,532.888	4,291,795.240	44.416	49	35	1,958.205	0.020
5	0.002	0.010	0.990	95,987	943	477,575.555	3,810,262.352	39.696	66	40	2,295.943	0.023
5	0.003	0.014	0.986	95,043	1,334	471,882.909	3,332,686.797	35.065	21	45	635.524	0.006
5	0.005	0.023	0.977	93,710	2,121	463,245.712	2,860,803.888	30.528	15	50	379.081	0.004
5	0.008	0.037	0.963	91,589	3,428	449,371.914	2,397,558.176	26.177	38	55	742.316	0.007
5	0.013	0.061	0.939	88,160	5,374	427,366.268	1,948,186.262	22.098	16	60	231.116	0.002
5	0.019	0.092	0.908	82,786	7,606	394,916.520	1,520,819.994	18.370	29	65	281.627	0.003
5	0.030	0.139	0.861	75,180	10,471	349,724.062	1,125,903.474	14.976	11	70	53.823	0.001
5	0.045	0.203	0.797	64,709	13,116	290,756.722	776,179.412	11.995	14	75	-	-
5	0.071	0.301	0.699	51,593	15,522	219,163.067	485,422.690	9.409	16	80	-	-
5	0.112	0.439	0.561	36,072	15,825	140,796.583	266,259.623	7.381	0	85	-	-
5	0.148	0.540	0.460	20,247	10,926	73,919.839	125,463.040	6.197	0	90	=	-
5	0.175	0.609	0.391	9,321	5,677	32,414.363	51,543.201	5.530	0	95	-	-
	0.191	1.000	0.000	3,645	3,645	19,128.839	19,128.839	5.249	0	100	-	=
											20,863.370	0.209

Cuadro 3: Tabal de mortalidad de Mujeres

De este resultado se pueden concluir varias cosas

Conclusiones

Referencias

- [1] JACOB S. SIEGEL y DAVID A. SWANSON, *The Methods And Materials Of Demography*, Segunda edición, Elsevier Academic Press, USA, 2004.
- [2] Eduardo E. Arriaga Los Años Vida Perdidos: Su Utilización Para Medir El Nivel y Cambio de la Mortalidad, U.S. Bureau of the Census
- [3] Defunciones registradas durante el año 2015 (Consultado el 29 de Octubre de 2017) https://datos.gob.mx/busca/dataset/estadistica-de-defunciones-registradas/resource/c346a78b-d91c-431c-8d2b-2f0831d3163c Consultado el 29 de Octubre de 2017
- [4] Datos poblacionales de la encuesta intercensal 2015 (Consultado el 29 de Octubre de 2017) http://www.beta.inegi.org.mx/proyectos/enchogares/especiales/intercensal/
- [5] Proyecciones de población de la CONAPO (Consultado el 31 de Octubre de 2017) http://www.conapo.gob.mx/es/CONAPO/Proyecciones
- [6] Repositorio en GitHub con todos los procedimientos usados en este documento https://github.com/aleespa/Demografia