Presupposition, Provisos, and Probability Daniel Lassiter Stanford Psychology/NYU Linguistics/UoL Institute of Philosophy

lassiter@nyu.edu

Contribution

- New solution to the Proviso Problem.
- Derived from new work on the semantics of connectives and epistemic modals.
- Connects semantics/pragmatics of presupposition with recent Bayesian cognitive science.
- No stipulative strengthening mechanisms or syntactic conditions.

The Proviso Problem

- What is the presupposition of $\phi \to \psi_{\chi}$, with a presupposition in the consequent?
- Satisfaction theories after [H83]: $\phi \rightarrow \chi$. DRT: χ .
- (1) If Bo is away, his dog will be sad.
 - a. → If Bo is away, he has a dog.
 - b. \rightarrow Bo has a dog.

[\(\text{DRT, Ge96} \)]

- If John is a diver, he'll bring his wetsuit.
 - a. → If John is a diver, he has a wetsuit.
 - b. → John has a wetsuit.

 $[\checkmark H83, B01]$

Strengthening Accounts

- Satisfaction theorists have proposed various strengthening accounts, where an extra mechanism strengthens (1a) to (1b) (e.g., [Si07,Sc11]).
- [Ge96] argues that these accounts are ad hoc and empirically problematic.

Presuppositions of Factives

If (1) is strengthened, why not (3) as well? [G96]

- Sam knows that if Bo is away, he has a dog.
 - a. → If Bo is away, he has a dog.
 - b. → Bo has a dog.

Semi-Conditional Presuppositions

How do we get the partial strengthening in (4)?

- If John is a diver and wants to impress his girlfriend, he'll bring his wetsuit.
 - a. \rightsquigarrow If John is a diver and wants to impress his girlfriend, he has a wetsuit.
 - b. → If John is a diver, he has a wetsuit.
 - c. → John has a wetsuit.

Connectives and Information

- [KR10]: Static variant of [H83], where presuppositions and epistemic modals both rely on an information state parameter s [Y07].
- A presupposition must be entailed by the local information state. Connectives shift the value of s:
- $\circ s_{\alpha} = d_f\{w' \in s \mid \llbracket \alpha \rrbracket^{c,s,w'} = 1\}$, the α -subset of s.

 - $\llbracket \phi \land \psi \rrbracket^{c,s,w} = 1$ iff $\llbracket \phi \rrbracket^{c,s,w} = 1$ and $\llbracket \psi \rrbracket^{c,s_{\phi},w} = 1$
 - $[\![\phi \lor \psi]\!]^{c,s,w} = 1$ iff $[\![\phi]\!]^{c,s,w} = 1$ or $[\![\psi]\!]^{c,s_{\neg\phi},w} = 1$
- $\circ \phi \to \psi_{\chi}$ presupposes that $s_{\phi} \subseteq [\![\chi]\!]^{c,s_{\phi},w}$.
- This is equivalent to global ps $\phi \to \chi$.

Realistic Information States

Converging evidence from semantics and cognitive science indicates that information states are not sets of worlds but probability distributions.

- Entailments and degree modification with epistemic modals implicates probability in information states [Y10,L10,L11].
- Learning, reasoning, and decision-making implicate probability in cognition [C06,G08].

An information state s is a **probability measure** on a set of worlds W if and only if $\Phi \subseteq \mathcal{P}(W)$ is an algebra of propositions (sets of worlds), and

- $s: \Phi \to [0,1], W \in \Phi, \text{ and } s(W) = 1;$
- For all A and $B \in \Phi$: if $A \cap B = \emptyset$, then $s(A \cup B) = s(A) + s(B).$

Probabilistic Presuppositions

- We can construct a probabilistic variant of [KR10] by modifying the definition of local satisfaction:
- The probabilistic presupposition of α_{β} is

$$s(\beta) \ge \theta$$

where θ is a high probability threshold.

- In short: high probability instead of certainty.
- Also, redefine s_{α} as conditional probability:

$$s_{\alpha}(\beta) = \frac{s(\alpha \wedge \beta)}{s(\alpha)} = prob(\beta|\alpha)$$

Predictions

- The predicted presupposition for $\phi \rightarrow \psi_{\chi}$ is that the conditional probability $s_{\phi}(\chi)$ is at least θ .
- Possible prior knowledge: either (1) $s_{\phi}(\chi) =$ $s(\chi)$, (2) $s_{\phi}(\chi) < s(\chi)$, or (3) $s_{\phi}(\chi) > s(\chi)$.
- Which of these holds determines the appropriate sentential paraphrase of the probabilistic ps.

Independence & Unconditional Pss

o Consider (1): intuitively, whether Bo is away does not affect the probability that he has a dog. \circ So, ϕ = Bo is away and χ = Bo has a dog are probabilistically independent:

$$s(\chi) = s_{\phi}(\chi)$$

- o If we are in an information state in which this holds, $s_{\phi}(\chi) \ge \theta$ is equivalent to $s(\chi) \ge \theta$.
- \circ $s(\chi) \ge \theta$ is the same ps that Bo's dog is sad has, and is well-paraphrased by Bo has a dog.

Presupposition & Paraphrase

In context, (1) presupposes $s_{\phi}(\chi) \ge \theta$ and $s(\chi) \ge \theta$.

- Why is (1b) a good paraphrase, and (1a) not?
- Conditional sentences carry a strong relevance implicature: (1a) implies that whether Bo is away is relevant to whether he has a dog.
- But it's not independence implies irrelevance!
- (1b) avoids this unwanted inference.

Genuine Conditional Pss

- True conditional pss arise when $s_{\phi}(\chi) > s(\chi)$.
- Knowing for sure that John is a diver makes it more likely that he owns a wetsuit.
- No unconditional inference in this info state:

$$s_{\phi}(\chi) \ge \theta, s_{\phi}(\chi) > s(\chi) \not\models s(\chi) \ge \theta.$$

• Relevance implicature of (2a) unproblematic.

Presuppositions of Factives

- \circ (3) is not a problem unless $s_{\phi}(\chi) = s(if \phi then \chi)$.
- [L76] proved that this equation cannot hold in general without trivializing probability measures.
- Differences between (1) and (3) are expected.

Semi-Conditional Presuppositions

(4) has the form $(\phi \wedge \psi) \rightarrow \chi_{\eta}$, with ϕ, ψ independent. John's diving and wetsuit ownership are related, but neither is relevant to his relationship. Formally, ϕ and η are **jointly independent** of ψ :

$$s(\phi \wedge \eta) = s_{\psi}(\phi \wedge \eta)$$

If this condition is met, the ps of (4) is provably equivalent to $s_{\phi}(\eta) \ge \theta$ — the same ps that (2) has.

Looking Beyond

More issues not dealt with here (see paper):

- Theoretical & empirical advantages over strengthening accounts of Singh & Schlenker which invoke probabilistic independence
- Extension to predicative presuppositions in the scope of a quantifier (expectation)

Conclusions and Future Directions

- The core data in (1-4) illustrate the effect of probabilistic prior knowledge on the perceived form of presuppositions.
- No ad hoc strengthening mechanisms are needed to account for the Proviso Problem — what we needed was a new conception of information.
- Potential for engagement with recent cognitive science, leading to a serious Bayesian pragmatics.

References

[B01] Beaver '01. Presupposition & Assertion in Dynamic Semantics. CSLI.

[C06] Chater et al. '06. Probabilistic models of cognition. TICS.

[H83] Heim '83. On the projection problem for pss. WCCFL.

[Ge96] Geurts '96. Local satisfaction guaranteed. L&P.

[Gr08] Griffiths et al. '08. Bayesian models of cognition. Cambridge Handbook of Computational Psychology.

[KR10] Klinedinst&Rothschild '11. Connectives w/o truth tables. NLS.

[L10] Lassiter '10. Gradable epistemic modals. SALT 20.

[L11] Lassiter '11. Measurement & Modality. Ph.D. Diss., NYU.

[L76] Lewis '76. Probabilities of conditionals & conditional probabilities. Philosophical Review.

[Sc11] Schlenker '11. A note on the Proviso Problem. NLS.

[Si07] Singh '07. Formal alternatives as a solution to the Proviso Problem. *SALT 17.*

[V96] Veltman '96. Defaults in update semantics. J. Phil. Logic.

[Y07] Yalcin '07. Epistemic modals. Mind.