PRZEDMIOT: Elementy programowania

KLASA: 1i gr. 1

Lekcja 1,2

Temat: Język niskiego poziomu i wysokiego poziomu. Operacje wejścia/wyjścia.

Język niskiego poziomu (Low-level language)

Definicja:

- Jest bliski językowi maszynowemu, czyli instrukcjom bezpośrednio wykonywanym przez procesor.
- Programista musi znać szczegóły działania sprzętu, takie jak rejestry, adresy pamięci czy operacje bitowe.

Przykłady:

- **Kod maszynowy** (ciąg zer i jedynek)
- Assembler / język asemblera

Cechy:

- Trudny do pisania i czytania dla człowieka
- Bardzo szybki w wykonaniu
- Daje pełną kontrolę nad sprzętem

```
section .data
  znak db 'A'
                 ; jeden znak do wyświetlenia
section .text
  global start
_start:
  mov edx, 1
              ; długość danych = 1 znak
  mov ecx, znak ; adres znaku
                ; stdout
  mov ebx, 1
  mov eax, 4
                 ; syscall: write
  int 0x80
                 ; wywołanie systemowe
  mov eax, 1 ; syscall: exit
  int 0x80
```

Język wysokiego poziomu (High-level language)

Definicja:

- Jest zbliżony do języka naturalnego i abstrakcyjny względem sprzętu.
- Programista nie musi znać szczegółów działania procesora czy pamięci.

Przykłady:

• C, C++, Java, Python, JavaScript, PHP

Cechy:

- Łatwy do nauki i czytania
- Program jest przenośny między różnymi komputerami
- Wydajność może być niższa niż w językach niskiego poziomu (ale kompilatory/interpretery bardzo to optymalizują)

Dlaczego C++ jest językiem wysokiego poziomu:

- Składnia jest czytelna i zbliżona do języka naturalnego (if, for, while, class itp.).
- Programista nie musi znać szczegółów działania procesora, by tworzyć aplikacje.
- Programy są przenośne między różnymi systemami.

Dlaczego ma cechy niskiego poziomu:

- Pozwala na **bezpośrednią manipulację pamięcią** przez wskaźniki.
- Możesz używać instrukcji niskiego poziomu, np. operacje bitowe.
- Nadaje się do tworzenia sterowników, systemów operacyjnych, gier wymagających wydajności.

Operacje wejścia/wyjścia w C++

- Operacje wejścia/wyjścia (I/O) pozwalają programowi odczytywać dane od użytkownika (wejście) lub wyświetlać dane na ekranie (wyjście).
- W C++ realizuje się je głównie za pomocą strumieni z biblioteki <iostream>.

Co zawiera <iostream>

1. Strumienie wejścia/wyjścia:

```
    std::cin - standardowe wejście (klawiatura)
    std::cout - standardowe wyjście (ekran)
    std::cerr - strumień błędów (niebuforowany, na ekran)
    std::clog - strumień logów (buforowany, na ekran)
```

2. Funkcje i operatory związane ze strumieniami:

```
<< – operator wyjścia</li>>> – operator wejścia
```

3. Typy strumieniowe:

```
std::ostream - bazowy typ dla wyjściastd::istream - bazowy typ dla wejścia
```

4. Manipulatory strumieniowe:

```
    std::endl - nowa linia + opróżnienie bufora
    std::flush - opróżnienie bufora strumienia
    std::setw(), std::setprecision() - formatowanie wyjścia (po dołączeniu <iomanip>)
```

using namespace std;

- W C++ std to **standardowy namespace**, czyli przestrzeń nazw dla biblioteki standardowej C++.
- Zawiera wszystko, co pochodzi z <iostream>, <vector>, <string> itd.
- Dzięki temu nie musisz pisać za każdym razem

```
std::cout,std::string,std::vector.
```

Dlaczego main()

1. Punkt wejścia programu

- Kiedy uruchamiasz program, system operacyjny szuka funkcji main() i zaczyna wykonywać kod właśnie stamtąd.
- 2. Zwracanie wartości typu int

- o int main() oznacza, że funkcja zwraca liczbę całkowitą.
- System operacyjny interpretuje tę wartość jako kod zakończenia programu:
 - 0 → program zakończył się sukcesem
 - **■** inna liczba → program zakończył się błędem

3. Alternatywne formy main()

int main(int argc, char* argv[]) – **przyjmuje argumenty z linii poleceń.** Kompilacja programu z funkcją main z argumentami wykonuje się dodanie argumentów u ustawieniach właściwości projektu:

Projekt/Właściwości/Debugowanie w opcji **Argumenty polecenia** należy wpisać przykładowe dane np.: Jan 25

• 1. Typy podstawowe (proste)

Тур	Opis	Przykład wartości
int	Liczby całkowite	0, 10, -5
short	Krótsze liczby całkowite	0, 100
long	Dłuższe liczby całkowite	1000, -5000
long long	Bardzo duże liczby całkowite	100000000
unsigned	Liczby całkowite dodatnie tylko	0, 100
float	Liczby zmiennoprzecinkowe (pojedyncza precyzja, około 7 cyfr znaczących)	3.14, -0.5
double	Liczby zmiennoprzecinkowe (podwójna precyzja, około 15 cyfr znaczących)	3.14159
char	Pojedynczy znak	'a', 'Z', '5'
bool	Wartość logiczna	true, false

• 2. Typy złożone

Тур	Opis	Przykład
array	Tablica elementów tego samego typu	int tab[5];
string (z <string>)</string>	Ciąg znaków	"Hello"

• 3. Typy wskaźnikowe i referencje

Тур	Opis	Przykład
- / -		

int*	Wskaźnik na int	int* ptr = &x
double*	Wskaźnik na double	double* dp;
int&	Referencja (alias) do zmiennej	int $\&$ ref = x ;

4. Typy specjalne

Тур	Opis
void	Brak wartości (funkcja nic nie zwraca)
auto	Automatyczne określenie typu przez kompilator
nullptr	Stała wskaźnikowa oznaczająca "brak adresu"

Różnice między struct a class w C++

1. Domyślny dostęp do pól i metod

- o w struct → domyślnie public
- o w class → domyślnie private

2. Zastosowanie historyczne

- struct kiedyś używane głównie jako prosty "koszyk" danych (np. rekord z polami),
- class do programowania obiektowego (metody, enkapsulacja, dziedziczenie).
 - ightarrow Ale w nowoczesnym C++ oba są prawie tym samym różnica to głównie **domyślny poziom dostępu**.

3. Dziedziczenie

- o w struct → domyślnie publiczne
- o w class → domyślnie prywatne

```
#include <iostream>
using namespace std;
struct Punkt {
  int x;
  int y;
};
class Prostokat {
  int szerokosc;
  int wysokosc;
public:
  Prostokat(int s, int w) {
     szerokosc = s;
     wysokosc = w;
  }
  int pole() {
     return szerokosc * wysokosc;
  }
};
int main() {
  Punkt p1;
  p1.x = 10;
  p1.y = 20;
  cout << "Punkt: (" << p1.x << ", " << p1.y << ")" << endl;
  Prostokat pr(5, 3);
  cout << "Pole prostokata: " << pr.pole() << endl;</pre>
}
```

Lekcja 3

Temat: Instrukcje warunkowe

Instrukcje warunkowe

1. if

Podstawowa instrukcja warunkowa:

```
#include <iostream>
using namespace std;
int main() {
  int x = 10;
  if (x > 5) {
     cout << "x jest większe od 5" << endl;
  }
  return 0;
}</pre>
```

2. if...else

Dodanie alternatywnej ścieżki, jeśli warunek nie jest spełniony:

```
int x = 3;

if (x > 5) {
    cout << "x jest większe od 5" << endl;
} else {
    cout << "x jest mniejsze lub równe 5" << endl;
}</pre>
```

3. if...else if...else

Sprawdzenie wielu warunków:

```
int x = 0;
```

```
if (x > 0) {
    cout << "Liczba dodatnia" << endl;
} else if (x < 0) {
    cout << "Liczba ujemna" << endl;
} else {
    cout << "Liczba równa zero" << endl;
}</pre>
```

4. switch

Instrukcja warunkowa do wyboru jednej z wielu opcji (gdy sprawdzamy wartość jednej zmiennej):

```
int dzien = 3;

switch (dzien) {
    case 1:
        cout << "Poniedziałek" << endl;
        break;
    case 2:
        cout << "Wtorek" << endl;
        break;
    case 3:
        cout << "Środa" << endl;
        break;
    default:
        cout << "Nieznany dzień" << endl;
}</pre>
```

break; zatrzymuje wykonanie dalszych przypadków – bez niego program przechodziłby dalej

5. Operator warunkowy (ternary operator)

```
Skrócona forma if...else:

int x = 7;

string wynik = (x % 2 == 0) ? "Parzysta" : "Nieparzysta";

cout << wynik << endl;
```

6. if z inicjalizacją, co pozwala zdefiniować zmienną w zakresie warunku:

```
if (int x = funkcja(); x > 0) {
   // kod, jeśli x > 0
}
```

1. Inkrementacja

To zwiększenie wartości zmiennej o 1.

- **preinkrementacja** ++x najpierw zwiększa, potem używa wartości,
- **postinkrementacja** x++ najpierw używa wartości, potem zwiększa.

2. Dekrementacja

To zmniejszenie wartości zmiennej o 1

- predekrementacja --x,
- postdekrementacja x--.

```
#include <iostream>
using namespace std;

int main() {
    int a = 5;

    cout << "Preinkrementacja: " << ++a << endl; // najpierw +1 → 6
    cout << "Postinkrementacja: " << a++ << endl; // używa 6, potem +1 →

wyświetli 6, ale a = 7
    cout << "Wartość po: " << a << endl; // 7

int b = 5;
    cout << "Predekrementacja: " << --b << endl; // najpierw -1 → 4
    cout << "Postdekrementacja: " << b-- << endl; // używa 4, potem -1 →

wyświetli 4, ale b = 3
    cout << "Wartość po: " << b << endl; // 3

return 0;
}
```

Lekcja 4

Temat: Petle: For, while, do-while; break, continue; petle zagnieżdżone.

1. Rodzaje pętli

Petla for

• **Opis**: Pętla for jest używana, gdy znamy liczbę iteracji z góry. Składa się z trzech części: inicjalizacji, warunku i aktualizacji.

Składnia:

```
for (inicjalizacja; warunek; aktualizacja) {
    // kod do wykonania
}

Przykład:

#include <iostream>
using namespace std;
```

```
using namespace std;
int main() {
   for (int i = 1; i <= 5; i++) {
      cout << i << " ";
   }
   return 0; // Wypisze: 1 2 3 4 5
}</pre>
```

• Zastosowanie: Iterowanie po sekwencji (np. tablicach, liczenie).

Petla while

• Opis: Pętla while wykonuje kod, dopóki warunek jest prawdziwy. Warunek sprawdzany jest przed każdą iteracją.

Składnia:

```
while (warunek) {
    // kod do wykonania
}

Przykład:

#include <iostream>
using namespace std;
int main() {
    int i = 1;
    while (i <= 5) {
        cout << i << " ";
        i++;
    }
    return 0; // Wypisze: 1 2 3 4 5
}</pre>
```

• **Zastosowanie**: Gdy liczba iteracji nie jest znana z góry (np. wczytywanie danych do momentu wprowadzenia określonej wartości).

Petla do-while

• **Opis**: Podobna do while, ale warunek sprawdzany jest po wykonaniu kodu, co gwarantuje przynajmniej jedno wykonanie pętli.

Składnia:

```
do {
    // kod do wykonania
} while (warunek);

Przykład:

#include <iostream>
using namespace std;
int main() {
    int i = 1;
    do {
        cout << i << " ";
        i++;
    } while (i <= 5);
    return 0; // Wypisze: 1 2 3 4 5</pre>
```

• **Zastosowanie**: Gdy chcemy zapewnić wykonanie kodu przynajmniej raz (np. menu użytkownika).

Instrukcje break i continue

• break: Natychmiast przerywa pętlę i przechodzi do kodu po pętli.

Przykład:

```
for (int i = 1; i <= 10; i++) {
  if (i == 5) break;
  cout << i << " "; // Wypisze: 1 2 3 4
}</pre>
```

• continue: Pomija resztę kodu w bieżącej iteracji i przechodzi do następnej.

Przykład:

```
for (int i = 1; i <= 5; i++) {
  if (i == 3) continue;
  cout << i << " "; // Wypisze: 1 2 4 5
}</pre>
```

Pętle zagnieżdżone

 Opis: Pętla wewnątrz innej pętli. Używana do pracy z danymi wielowymiarowymi (np. tablice 2D) lub generowania wzorców.

Przykład (trójkąt z gwiazdek):

```
#include <iostream>
using namespace std;
int main() {
   for (int i = 1; i <= 5; i++) {
      for (int j = 1; j <= i; j++) {
        cout << "* ";
      }
      cout << endl;
   }
   return 0;</pre>
```

```
/*
Wypisze:

*

* *

* *

* * *

* * *

* * *

* * * *

* * * *

* * * * *

* * * * *
```

• **Zastosowanie**: Przetwarzanie macierzy, generowanie wzorców, iterowanie po złożonych strukturach danych.

Znaczenie zakresu zmiennych lokalnych i globalnych przy pętlach

- Zmienne lokalne:
 - Deklarowane wewnątrz funkcji lub bloku kodu (np. w pętli for).
 - Są widoczne tylko w bloku, w którym zostały zadeklarowane.

Przykład w pętli:

```
for (int i = 0; i < 5; i++) { // i jest lokalne dla petli
  cout << i << " ";
}
// cout << i; // Błąd! i nie jest dostępne poza petlą</pre>
```

 Wpływ na pętle: Zmienne lokalne w pętlach (np. licznik i) są niszczone po zakończeniu pętli, co zapobiega konfliktom w innych częściach programu. W pętlach zagnieżdżonych każda pętla może mieć własne zmienne lokalne o tej samej nazwie bez kolizji.

• Zmienne globalne:

• Deklarowane poza wszystkimi funkcjami, dostępne w całym programie.

Przykład:

```
#include <iostream>
using namespace std;
int counter = 0; // Zmienna globalna
```

```
int main() {
    for (int i = 0; i < 5; i++) {
        counter++;
    }
    cout << counter; // Wypisze: 5
    return 0;
}</pre>
```

- **Wpływ na pętle**: Zmienne globalne mogą być używane w pętlach, ale należy ich unikać, ponieważ:
 - Mogą prowadzić do niezamierzonych zmian w innych częściach programu.
 - Utrudniają debugowanie (np. trudniej znaleźć, gdzie zmienna została zmieniona).
 - Są mniej bezpieczne, bo każda funkcja/pętla może je modyfikować.

• Dobre praktyki:

- Używaj zmiennych lokalnych w pętlach, gdy to możliwe, aby ograniczyć ich zakres i uniknąć błędów.
- Jeśli zmienna ma być używana w wielu pętlach lub funkcjach, zadeklaruj ją w odpowiednim zakresie (np. w main()), ale unikaj globalnych, chyba że są naprawdę potrzebne.
- W pętlach zagnieżdżonych upewnij się, że zmienne liczników mają unikalne nazwy (np. i, j, k), aby uniknąć konfliktów.

Lekcja 5

Temat: Funkcje

Funkcja to nazwany blok kodu, który wykonuje określone zadanie i może być wielokrotnie wywoływany w programie. Funkcje pozwalają na modularność, czytelność i ponowne wykorzystanie kodu. Składają się z:

- Nagłówka (określa nazwę, typ zwracany i parametry).
- Ciała (zawiera instrukcje do wykonania).

Funkcje mogą:

- **Zwracać wartość** (np. int, double, std::string) lub nie zwracać nic (void).
- Przyjmować parametry (dane wejściowe) lub działać bez nich.

Składnia:

```
typ_zwracany nazwa_funkcji(parametry) {
    // Ciało funkcji
    // Kod do wykonania
    return wartość; // Jeśli funkcja zwraca wartość
}

Przykład:

#include <iostream>
int dodaj(int a, int b) {
    return a + b;
}
int main() {
    int wynik = dodaj(3, 4);
    std::cout << "Wynik: " << wynik << std::endl;
    return 0;
}</pre>
```

Przekazywanie parametrów

a) Przekazywanie przez wartość

```
    □ Kopia argumentu jest przekazywana do funkcji.
    □ Zmiany w parametrze wewnątrz funkcji nie wpływają na oryginalną zmienną.
    □ Domyślny sposób przekazywania w C++.
    #include <iostream>
void zwieksz(int x) {
        x++;
        std::cout << "W funkcji: " << x << std::endl;</li>
```

```
}
int main() {
    int a = 5;
    zwieksz(a);
    std::cout << "Poza funkcją: " << a << std::endl;
    return 0;
}

Wynik:

W funkcji: 6
Poza funkcją: 5
</pre>
```

b) Przekazywanie przez referencję

Funkcja operuje	na oryginalne	j zmiennej	poprzez je	j referencję
(alias).				

- ☐ Używa się operatora & w deklaracji parametru.
- ☐ Zmiany w parametrze wpływają na oryginalną zmienną.
- ☐ Przydatne, gdy chcemy zmodyfikować argument lub uniknąć kopiowania dużych danych.

Przykład:

```
#include <iostream>
void zwieksz(int& x) {
    x++;
    std::cout << "W funkcji: " << x << std::endl;
}
int main() {
    int a = 5;
    zwieksz(a);
    std::cout << "Poza funkcją: " << a << std::endl;
    return 0;
}</pre>
```

Wynik:

W funkcji: 6 Poza funkcją: 6

c) Przekazywanie przez wskaźnik (adres pamięci zmiennej)

- ☐ Alternatywa dla referencji, używa wskaźników (*).
- ☐ Również pozwala modyfikować oryginalną zmienną, ale wymaga jawnego zarządzania adresami.

Przykład:

```
#include <iostream>
void zwieksz(int* x) {
    (*x)++;
    std::cout << "W funkcji: " << *x << std::endl;
}
int main() {
    int a = 5;
    zwieksz(&a);
    std::cout << "Poza funkcją: " << a << std::endl;
    return 0;
}
Wynik:
W funkcji: 6</pre>
```

d) Domyślne parametry

Funkcje mogą mieć parametry z wartościami domyślnymi, które są używane, gdy argument nie zostanie podany.

Przykład:

Poza funkcją: 6

```
int pomnoz(int a, int b = 2) {
    return a * b;
}
int main() {
    std::cout << pomnoz(5) << std::endl;
    std::cout << pomnoz(5, 3) << std::endl;
    return 0;
}</pre>
```

Lekcja 6

Temat: Tablice i łańcuchy znaków: Deklaracja tablic, operacje na tablicach, std::string i manipulacja ciągami.

Tablice to zbiór elementów tego samego typu. Każdy element ma swój index, zaczynający się od 0.

Deklaracja tablic:

Określa się: **typ elementów, nazwę tablicy i jej rozmiar** (stały w czasie kompilacji lub dynamiczny).

Składnia:

```
typ nazwa_tablicy[rozmiar];
```

Przykład:

```
int liczby[5]; // Tablica 5 liczb całkowitych double oceny[10]; // Tablica 10 liczb zmiennoprzecinkowych char znaki[3] = {'a', 'b', 'c'}; // Tablica znaków z inicjalizacją int tablica[4] = {1, 2, 3, 4}; // Inicjalizacja wartości
```

Uwagi:

- Rozmiar tablicy statycznej musi być znany w czasie kompilacji (stała liczba lub wyrażenie stałe np.: int liczby[3] = {1, 2, 3};).
- Brak inicjalizacji elementów tablicy powoduje, że zawierają one losowe wartości (dla typów prostych).
- Jeśli nie podasz wszystkich elementów, reszta zostanie zainicjalizowana wartością domyślną ("" dla stringów, 0 dla typów liczbowych).

Podstawowe operacje na tablicy

```
#include <iostream>
int main() {
  int liczby[5] = { 10, 20, 30, 40, 50 };
  liczby[2] = 35;
```

```
for (int i = 0; i < 5; i++) {
    std::cout << "Element " << i << ": " << liczby[i] << std::endl;
}

int suma = 0;
for (int i = 0; i < 5; i++) {
    suma += liczby[i];
}

std::cout << "Suma: " << suma << std::endl;
return 0;
}</pre>
```

Dodawanie i usuwanie elementów jest dostępne tylko w **kontenerach dynamicznych** (np. std::vector, std::list, std::deque).

std::vector - dynamiczna tablica

Najważniejsze operacje w std::vector:

- $push_back(x) \rightarrow dodaje$ element na końcu
- $pop_back() \rightarrow usuwa ostatni element$
- insert(iterator, x) \rightarrow wstawia element w dowolne miejsce
- $\bullet \quad \text{erase(iterator)} \rightarrow \textbf{usuwa element z dowolnego miejsca}$
- clear() → usuwa wszystkie elementy

```
#include <iostream>
#include <vector>

int main() {
    std::vector<int> liczby = {10, 20, 30, 40, 50};

    // Dodawanie elementów
    liczby.push_back(60);
    liczby.insert(liczby.begin() + 2, 15);

    std::cout << "Po dodaniu: ";
    for (int indexD: liczby) std::cout << indexD << " ";
    std::cout << "\n";
}</pre>
```

```
// Usuwanie elementów
liczby.pop_back();
liczby.erase(liczby.begin() + 1);
std::cout << "Po usunięciu: ";
for (int indexU : liczby) std::cout << indexU << " ";
}</pre>
```

std::vector jest kontenerem ogólnym (szablonowym) i w STL (Standard Template Library) wszystkie operacje są zdefiniowane w sposób ujednolicony.

- W C++ nie przyjmuje numeru indeksu jako liczby całkowitej (int), tylko iterator. Iterator działa jak wskaźnik i wskazuje na konkretne miejsce w kolekcji.
- Dzięki temu ta sama składnia działa dla różnych kontenerów (std::vector, std::list, std::deque, itd.), nawet jeśli one nie mają dostępu do elementów po indeksie.

std::list- lista dwukierunkowa (ang. doubly-linked list).

Najważniejsze operacje w std::list:

- push_back(x) → dodaj na końcu
- push_front(x) → dodaj na początku
- insert(iterator, x) → wstaw element w środku
- pop_back() → usuń ostatni element
- pop_front() → usuń pierwszy element
- erase(iterator) → usuń element wskazywany przez iterator
- remove(value) → usuń wszystkie elementy o wartości value
- clear() → usuń wszystkie elementy

```
#include <iostream>
#include <list>

int main() {
    std::list<int> liczby_list = { 10, 20, 30, 40, 50 };

// Dodawanie elementów
    liczby_list.push_back(60);
    liczby_list.push_front(5);
```

```
auto it = liczby_list.begin();
  std::advance(it, 2);
  liczby_list.insert(it, 15);
  std::cout << "Po dodaniu: ";
  for (int inD: liczby_list) std::cout << inD << " ";
  std::cout << "\n";
  // Usuwanie elementów
  liczby list.pop back();
  liczby_list.pop_front();
  it = liczby_list.begin();
  std::advance(it, 2);
  liczby_list.erase(it);
  std::cout << "Po usunieciu: ";
  for (int inU: liczby_list) std::cout << inU << " ";
  std::cout << "\n";
}
std::deque - (double-ended queue – kolejka dwustronna)
#include <iostream>
#include <deque>
int main() {
       std::deque<int> liczby_deque = { 10, 20, 30, 40, 50 };
       liczby_deque.push_back(60);
       liczby_deque.push_front(5);
       std::cout << "Po dodaniu: ";
       for (int i5 : liczby_deque) std::cout << i5 << " ";
       std::cout << "\n";
       liczby_deque.pop_back();
       liczby_deque.pop_front();
       std::cout << "Po usunięciu: ";
       for (int i6 : liczby deque) std::cout << i6 << " ";
       std::cout << "\n";
       auto it2 = liczby_deque.begin();
```

```
std::advance(it2, 2);
it2 = liczby_deque.insert(it2, 99);
liczby_deque.erase(it2);

std::cout << "Po wstawianiu i usuwaniu w środku: ";
for (int i7 : liczby_deque) std::cout << i7 << " ";
std::cout << "\n";
}</pre>
```

★ Najważniejsze operacje w std::deque:

- push_back(x) → dodaje element na końcu
- push_front(x) → dodaje element na początku
- pop_back() → usuwa element z końca
- pop_front() → usuwa element z początku
- insert(iterator, x) → wstawia element w dowolnym miejscu
- erase(iterator) → usuwa element w dowolnym miejscu
- clear() → usuwa wszystkie elementy

Przekazywanie tablicy do funkcji:

```
#include <iostream>
void zwieksz(int* tab, int rozmiar) {
    for (int i = 0; i < rozmiar; i++) {
        tab[i]++; // Modyfikacja elementów
    }
}
int main() {
    int liczby[3] = {1, 2, 3};
    zwieksz(liczby, 3);
    for (int i = 0; i < 3; i++) {
        std::cout << liczby[i] << " ";
    }
    return 0;
}</pre>
```

Uwaga: Przy przekazywaniu tablicy do funkcji należy podać jej rozmiar, bo tablica w funkcji "traci" informacje o swoim rozmiarze.

Tablice dynamiczne

Jeśli rozmiar tablicy nie jest znany w czasie kompilacji, można użyć dynamicznej alokacji pamięci (new i delete).

Przykład

```
#include <iostream>
int main() {
  int rozmiar;
  std::cout << "Podaj rozmiar tablicy: ";
  std::cin >> rozmiar;
  // Alokacja dynamiczna
  int* tab = new int[rozmiar];
  // Wypełnienie tablicy
  for (int i = 0; i < rozmiar; i++) {
     tab[i] = i + 1;
  }
  // Wypisanie
   for (int i = 0; i < rozmiar; i++) {
     std::cout << tab[i] << " ";
  }
  // Zwolnienie pamięci
  delete[] tab;
  return 0;
}
```

Uwaga: Dynamicznie zaalokowaną pamięć trzeba zwolnić (delete[]), aby uniknąć wycieków pamięci.

Łańcuchy znaków

W C++ łańcuchy znaków można reprezentować na dwa sposoby:

- 1. **Tablice znaków w stylu C** (char[]) tradycyjne, zakończone znakiem '\0' (null-terminator).
- 2. Klasa std::string nowoczesny sposób, wygodniejszy i bezpieczniejszy.

Tablice znaków

Deklaracja:

Tablica znaków to tablica typu char, zakończona znakiem '\0', który oznacza koniec ciągu.

```
char tekst[] = "Witaj"; // Automatycznie dodaje '\0'
char tekst2[6] = {'W', 'i', 't', 'a', 'j', '\0'};
```

Operacje:

- Dostęp do znaków: tekst[indeks].
- Modyfikacja: tekst[indeks] = 'x'.
- Funkcje z biblioteki <cstring>:
 - strlen(tekst) długość ciągu.
 - o strcpy(dest, src) kopiowanie ciągu.
 - strcmp(s1, s2) porównywanie ciągów.
 - strcat(dest, src) konkatenacja.

Przykład:

```
#include <iostream>
#include <cstring>
int main() {
    char tekst[] = "Witaj";

    // Długość ciągu
    std::cout << "Długość: " << strlen(tekst) << std::endl; // Wypisze: 5

    // Kopiowanie
    char kopia[10];
    strcpy(kopia, tekst);
    std::cout << "Kopia: " << kopia << std::endl; // Wypisze: Witaj

    // Konkatenacja
    strcat(kopia, "!");
    std::cout << "Po konkatenacji: " << kopia << std::endl; // Wypisze: Witaj!
    return 0;
}</pre>
```

Wady:

- Ryzyko błędów (np. przepełnienie bufora).
- Ręczna obsługa pamięci.
- Konieczność pamiętania o '\0'.

Klasa std::string

Czym jest std::string?

std::string to klasa z biblioteki standardowej (<string>), która ułatwia manipulację ciągami znaków. Jest bezpieczniejsza i bardziej funkcjonalna niż tablice znaków.

Deklaracja:

```
#include <string>
std::string tekst = "Witaj";
std::string tekst2("C++");
```

Podstawowe operacje:

- **Dostęp do znaków**: tekst[indeks] lub tekst.at(indeks) (z sprawdzaniem zakresu).
- **Długość**: tekst.length() lub tekst.size().
- Konkatenacja: Operator + lub +=.
- **Porównywanie**: Operatory ==, !=, <, >, <=, >=.
- **Podciag**: tekst.substr(pozycja, długość).
- **Wyszukiwanie**: tekst.find(ciąg) zwraca pozycję ciągu lub std::string::npos jeśli nie znaleziono.
- **Zamiana**: tekst.replace(pozycja, długość, nowy_ciąg).

Przykład: Manipulacja std::string:

```
#include <iostream>
#include <string>
int main() {
    std::string tekst = "Witaj, C++!";

// Długość
    std::cout << "Długość: " << tekst.length() << std::endl; // Wypisze: 11</pre>
```

```
// Konkatenacja
  tekst += " Jest super!";
  std::cout << "Po konkatenacji: " << tekst << std::endl; // Wypisze: Witaj, C++!
Jest super!
  // Podciąg
  std::string podciag = tekst.substr(7, 3); // Zaczyna od pozycji 7, bierze 3 znaki
  std::cout << "Podciag: " << podciag << std::endl; // Wypisze: C++
  // Wyszukiwanie
  size_t pozycja = tekst.find("C++");
  if (pozycja != std::string::npos) {
     std::cout << "Znaleziono 'C++' na pozycji: " << pozycja << std::endl; //
Wypisze: 7
  }
  // Zamiana
  tekst.replace(7, 3, "Python");
  std::cout << "Po zamianie: " << tekst << std::endl; // Wypisze: Witaj, Python!
Jest super!
  return 0;
}
```

Zalety std::string:

- Automatyczne zarządzanie pamięcią.
- Bezpieczeństwo (brak ryzyka przepełnienia bufora).
- Bogaty zestaw metod do manipulacji.
- Łatwe porównywanie i konkatenacja.

Zastosowania std::string:

- Przetwarzanie tekstu (np. parsowanie danych, formatowanie).
- Wczytywanie danych od użytkownika (np. z std::cin).
- Operacje na danych tekstowych w aplikacjach (np. wyszukiwanie, zamiana).