EET/CPE 1140 - Homework # 2

Chapter 2

3. How many coulombs of charge do 50×10^{31} electrons possess?

$$Q = \frac{number\ of\ electrons}{6.25*10^{18}} = \text{(number\ of\ electrons)}\ *1.6\ *\ 10^{-19}$$

$$Q = 50*10^{31}*1.6*10^{-19} = 8*10^{13} coulombs$$

I have found that (number of electrons)* $(1.6*10^{-19})$ has the same output might be a better equation because of lesser memorization.

17. How many coulombs pass a point in 0.1 s when the current is 1.5 A?

$$I = \frac{Q}{T}$$

I (Amperes A)	current
Q (coulombs C)	charge
T (Seconds S)	time

Algebra rearrangement for coulombs of charge by multiplying both sides by T.

$$1.5*10^{-1}$$

0.15 coulombs

- 21. Determine the resistance values and tolerance for the following 4-band resistors:
 - a. red, violet, orange, gold
 - b. brown, gray, red, silver
 - c. brown, red, brown, gold
 - d. orange, blue, red, silver

0	Black
1	Brown
2	Red
3	Orange
4	Yellow
5	Green
6	Blue
7	Purple
8	Grey
9	White

I have associated the wavelengths of the visible light spectrum to the color codes of the resistor ascending frequency of light is a higher number. Exemptions are at the beginning and the end. Black and brown for no light or all pigments. The high-end grey then white. White is all visible wavelengths.

33. Trace the current path in Figure 2–68(a) 🛄 with the switch in position 2.

Figure 2-68

(a)