STAT3009 Recommender Systems

Lec1: Overview of Recommender Systems

by Ben Dai (The Chinese University of Hong Kong)
on Department of Statistics

» Big Picture: Recommender Systems

Netflix, YouTube, Taobao and Amazon are all examples of recommender systems (RSs) in use. The systems recommend users with relevant items (suggestions) based on users' historical data.

Source¹

¹thedatascientist.com/right-way-recommender-system-startup

» Big Picture: Recommender Systems

Source²

 $^{^{2} \\ \}text{medium.com/voice-tech-podcast/a-simple-way-to-explain-the-recommendation-engine-in-ain-ain-engine-in-ai$

» Advantages: Recommender Systems

- Revenue Increase. The successful recommendation systems lead to the 29% annual sales increase for Amazon³.
- * **User Satisfaction Increase.** A good RS could offer the personalized suggestions and understand the users' needs.
- * Other Application. Financial products, medicine recommender systems, ...

That's why the RS is one of the **most valuable** applications of Machine Learning (ML).

https://azati.ai/recommendation-systems-benefits-and-issues/

» Example: Netflix Prize

- Netflix Prize Competition: 51051 contestants on 41305 teams from 186 different countries
- * \$1 million prize for 10% improvement on Netflix
- * Competition Structure

Source⁴

 $^{^{4} \\ \}text{https://pantelis.github.io/cs301/docs/common/lectures/recommenders/netflix/}$

» Dataset: Netflix Prize

- Netflix Prize Competition
- * Training dataset⁵: [MovieIDs, CustomerIDs, Ratings]
 - * MovieIDs range from 1 to 17770 sequentially.
 - * CustomerIDs range from 1 to 2649429, with gaps. There are 480189 users.
 - * 100 million Ratings are on a five star (integral) scale from 1 to 5.
 - * InClass demo: load Netflix dataset via Python
- * Testing dataset: [MovieIDs, CustomerIDs]
- * **Evaluation:** The root mean squared error (RMSE)

We need a **formal mathematical model** to formulate a RS problem.

⁵https://www.kaggle.com/netflix-inc/netflix-prize-data

» Data: Recommender Systems

	Gladiator	Space Jam	Pitch Perfect	Life of Pi	Dear Basketball
Rajon	?	?	3	?	?
James	5	5	?	?	5
Davis	?	?	?	4	5
Dwight	?	?	4	?	5
Bryant	?	?	5	4	5

* Goal: Can you predict the rating with question mark?

» Formal Model: Recommender Systems

- * **User:** $u = 1, \dots, n$ with n is number of users
- * **Item:** $i = 1, \dots, m$ with m is number of items
- * **Rating:** r_{ui} is the *u*-th user rating in the *i*-th item.
- * **Obs Index set:** $(u,i) \in \Omega$ if the rating for (u,i) pair is observed.
- * ML Map. input \rightarrow output
- * **Evaluation:** Given a testing index set Ω^{te} (set of user-item pairs we want to predict),

$$\textit{RMSE} = \left(\frac{1}{|\Omega^{\mathsf{te}}|} \sum_{(u,i) \in \Omega^{\mathsf{te}}} \left(\hat{r}_{ui} - r_{ui} \right)^2 \right)^{1/2}.$$

* **Goal:** Learn map, predict ratings $(\hat{r}_{ui})_{(u,i)\in\Omega^{\text{te}}}$ to minimizes RMSE

InClass demo: Data demonstration of RS datasets

» Methods: Netflix Prize

* We will cover all methods in this course.

» Global Average Method

- Global Average Method that predicts new ratings by taking the average over all observed ratings.
- F The global average rating is calculated as:

$$\bar{r} = \frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} r_{ui}$$

where Ω is the set of all observed user-item ratings.

» Global Average Method: Example Calculation

Suppose we have the following ratings:

User ID	Item ID	Rating
1	1	4
1	2	3
1	3	5
2	1	2
2	2	4
2	3	3
3	1	3
3	2	2
3	3	4

The global average rating is:

$$\bar{r} = \frac{4+3+5+2+4+3+3+2+4}{9} = 3.44$$

» Global Average Method: Predictions

- P Now, if we want to predict the rating of user 1 for a new item 4, we would predict:
- * The global average rating is calculated as:

$$\hat{r}_{ui} = \bar{r} = 3.44$$

This method ignores user and item differences and provides a single average rating for all users and items.

» Implementation in Python: Rough Workflow

- Load the rating data into a Pandas DataFrame with columns for user ID, item ID, and rating.
- 2. Calculate the global average rating by taking the mean of the rating column.
- Define a function that takes in a user ID and item ID, and returns the global average rating as the predicted rating.
- 4. Use this function to make predictions for a test set of user-item pairs.

» Global Average Method: Advantages and Disadvantages

Advantages

- * Extremely simple to implement
- * Fast computation
- Can be used as a baseline for more complex models

Disadvantages

- * Ignores user and item differences
- * Can be biased towards the majority of ratings
- Does not provide personalized recommendations

InClass demo: global-average-method

» User Average Method

- User baseline method that predicts new ratings by taking the average of a user's past ratings.
- * This method assumes that a user's past behavior is a good representation of their future preferences.
- F The user average rating is calculated as:

$$\bar{r}_u = \frac{1}{|I_u|} \sum_{i \in I_u} r_{ui}$$

where I_u is the set of items rated by user u.

» User Average Method: Example Calculation

Suppose we have the following ratings for multiple users:

User ID	Item ID	Rating
1	1	4
1	2	3
1	3	5
2	1	2
2	2	4
2	3	3
3	1	3
3	2	2
3	3	4

The user average ratings are:

$$\bar{r}_1 = \frac{4+3+5}{3} = 4$$
, $\bar{r}_2 = \frac{2+4+3}{3} = 3.67$, $\bar{r}_3 = \frac{3+2+4}{3} = 3$

» User Average Method: Predictions

Now, if we want to predict the rating of user 1 for a new item 4, we would predict:

$$\hat{r}_{1.4} = \bar{r}_1 = 4$$

Similarly, if we want to predict the rating of user 2 for a new item 4, we would predict:

$$\hat{r}_{2,4} = \bar{r}_2 = 3$$

This method takes into account a user's past behavior, but ignores item differences.

» Implementation in Python: Rough Workflow

- Load the rating data into a Pandas DataFrame with columns for user ID, item ID, and rating.
- 2. Calculate the user average rating for each user by taking the mean of their ratings.
- Define a function that takes in a user ID and item ID, and returns the user average rating as the predicted rating.
- 4. Use this function to make predictions for a test set of user-item pairs.

» User Average Method: Advantages and Disadvantages

Advantages

- * Simple to implement
- * Fast computation
- * Takes into account a user's past behavior

Disadvantages

- * Ignores item differences
- * Can be biased towards a user's past ratings
- Does not provide personalized recommendations for new users (Cold-Start Users)

InClass demo: user average

» Cold-Start Problems in Recommender Systems

Cold-start problem

A cold-start problem occurs when RS is unable to provide good recommendations to a user/item due to a lack of user/item historical data.

- * New user problem: no ratings from new users
- * New item problem: no ratings for new items

Importance

Cold-start problems can significantly impact the effectiveness and user experience of recommender systems.

 Illustrate what's the prediction for user-average method for cold-start users.

InClass demo: cold-start problems in user-average method

» Item Average Method

- * Item baseline method that predicts new ratings by taking the average of an item's observed ratings.
- * This method assumes that an item's past ratings are a good representation of its future ratings.
- F The item average rating is calculated as:

$$ar{r}_i = rac{1}{|\mathcal{U}_i|} \sum_{u \in \mathcal{U}_i} r_{ui}, ext{ for } i = 1, \cdots, m$$

where $U_i = \{u : (u, i) \in \Omega\}$ is the index set for observed ratings of the *i*-th item.

» Item Average Method: Example Calculation

Suppose we have the following ratings for multiple items:

User ID	Item ID	Rating
1	1	4
2	1	3
3	1	5
1	2	2
2	2	4
3	2	3

The item average ratings are:

$$\bar{r}_1 = \frac{4+3+5}{3} = 4$$
, $\bar{r}_2 = \frac{2+4+3}{3} = 3$

» Item Average Method: Predictions

Now, if we want to predict the rating of user 1 for item 2, we would predict:

$$\hat{r}_{1.2} = \bar{r}_2 = 3$$

This method takes into account an item's past ratings, but ignores user differences.

» Implementation in Python: Rough Workflow

- Load the rating data into a Pandas DataFrame with columns for user ID, item ID, and rating.
- 2. Calculate the item average rating for each item by taking the mean of its ratings.
- Define a function that takes in a user ID and item ID, and returns the item average rating as the predicted rating.
- 4. Use this function to make predictions for a test set of user-item pairs.

» Item Average Method: Advantages and Disadvantages

Advantages

- * Simple to implement
- * Fast computation
- * Takes into account an item's past ratings

Disadvantages

- Ignores user differences
- Can be biased towards an item's past ratings
- Does not provide personalized recommendations for new items (cold-start items)

» User-Item Average Method

- * User-Item hybrid method that combines the user average and item average methods to predict new ratings.
- * This method takes into account both a user's past behavior and an item's past ratings.

» User-Item Average Method: Formula

The predicted rating is calculated as:

$$\hat{r}_{ui} = \bar{r} + \mu_u + \mu_i$$

where:

$$\mu_{u} = \frac{1}{|I_{u}|} \sum_{i \in I_{u}} (r_{ui} - \bar{r})$$

and:

$$\mu_i = \frac{1}{|\mathcal{U}_i|} \sum_{u \in \mathcal{U}_i} (r_{ui} - \bar{r} - \mu_u)$$

» User-Item Average Method: Interpretation

The user-item average method can be interpreted as a multi-stage prediction process:

- 1. First, the global average rating is calculated.
- 2. Then, the user and item deviations from the global average are calculated.
- 3. Finally, the predicted rating is calculated by adding the global average and the user and item deviations.

» Implementation in Python: Rough Workflow

- Load the rating data into a Pandas DataFrame with columns for user ID, item ID, and rating.
- 2. Calculate the global average rating.
- 3. Calculate the user deviations from the global average.
- Calculate the item deviations from the global and user average.
- 5. Define a function that takes in a user ID and item ID, and returns the predicted rating.
- 6. Use this function to make predictions for a test set of user-item pairs.

» User-Item Average Method: Advantages and Disadvantages

Advantages

- Takes into account both a user's past behavior and an item's past ratings
- Can provide more accurate predictions than the user average or item average methods

Disadvantages

- * Can be computationally expensive
- May not perform well for users or items with few ratings

We have now covered the basics of recommender systems, including:

- * The global average method
- * The user average method
- * The item average method
- The user-item average method

These methods are simple to implement and can provide a good baseline for more complex models.

Thank you!