1 (Integrability of the Product) Let X be a nonempty set and let μ be a measure on X. Prove that if μ -measurable functions $f, g: X \to [-\infty, \infty]$ are such that f is μ -summable on X and g is bounded on X ($|g(x)| \leq M$ for μ -a.e. $x \in X$), then the product fg is μ -summable and

$$\int_{X} |fg| \, \mathrm{d}\mu \le M \int_{X} |f| \, \mathrm{d}\mu.$$

Proof. First, assume f and g are nonnegative, then their product fg is nonnegative and μ -measurable—therefore μ -integrable. Denote $A = g^{-1}([-M, M])$, which is μ -measurable since g is μ -measurable. Note that $\mu(X \setminus A) = 0$ so $\int_X h \, \mathrm{d}\mu = \int_A h \, \mathrm{d}\mu$ for all μ -integrable functions $h: X \to [-\infty, \infty]$. Then

$$\int_X fg \, \mathrm{d}\mu = \int_A fg \, \mathrm{d}\mu \le \int_A fM \, \mathrm{d}\mu = M \int_A f \, \mathrm{d}\mu = M \int_X f \, \mathrm{d}\mu.$$

Since f is μ -summable and $M < \infty$, we conclude that fg is μ -summable.

For f and g arbitrary write

$$fg = (f^+ - f^-)(g^+ - g^-) = f^+g^+ - f^+g^- - f^-g^+ + f^-g^-.$$

Then each f^{\pm} is μ -summable and each g^{\pm} is bounded μ -a.e. on X by M. An application of the first case tells us each $f^{\pm}g^{\pm}$ is μ -summable with $\int_X f^{\pm}g^{\pm} \,\mathrm{d}\mu \leq M \int_X f^{\pm} \,\mathrm{d}\mu$. It follows that fg is μ -summable as a finite \mathbb{R} -linear combination of μ -summable functions.

Similarly, |f| is μ -summable and |g| is bounded μ -a.e. on X by M, so the first case gives

$$\int_X |fg| \, \mathrm{d}\mu = \int_X |f||g| \, \mathrm{d}\mu \le M \int_X |f| \, \mathrm{d}\mu.$$

2 Let X be a nonempty set and let μ be a measure on X. Assume μ -summable functions $f, f_n : X \to [-\infty, \infty]$ are such that

$$f_n \longrightarrow f \qquad \mu$$
-a.e. in X

and

$$\int_X |f_n| \, \mathrm{d}\mu \longrightarrow \int_X |f| \, \mathrm{d}\mu.$$

Prove that

$$\int_X |f_n - f| \,\mathrm{d}\mu \longrightarrow 0.$$

Proof. For $n \in \mathbb{N}$ define the nonnegative μ -summable function $g_n = |f_n| + |f|$, then define

$$g = \liminf_{n \to \infty} g_n.$$

It follows that g and 2|f| agree μ -a.e. in X. If $A = (g-2|f|)^{-1}(0)$ then $\mu(X \setminus A) = 0$, so

$$\int_X g \, \mathrm{d}\mu = \int_A g \, \mathrm{d}\mu = \int_A 2|f| \, \mathrm{d}\mu = \int_X 2|f| \, \mathrm{d}\mu.$$

For $n \in \mathbb{N}$ consider the nonnegative μ -summable function $g_n - |f_n - f|$. By Fatou's Lemma,

$$\int_X g \, \mathrm{d}\mu = \int_X \liminf_{n \to \infty} (g_n - |f_n - f|) \, \mathrm{d}\mu \le \liminf_{n \to \infty} \int_X (g_n - |f_n - f|) \, \mathrm{d}\mu.$$

Then

$$\int_X \liminf_{n \to \infty} g_n \, \mathrm{d}\mu = \int_X |f| \, \mathrm{d}\mu + \lim_{n \to \infty} \int_X |f_n| \, \mathrm{d}\mu = \int_X 2|f| \, \mathrm{d}\mu.$$

Since f is μ -summable we can subtract the integral of 2|f| from both sides to obtain

$$0 \le -\liminf_{n \to \infty} \int_X |f_n - f| \, \mathrm{d}\mu,$$

or equivalently

$$\limsup_{n \to \infty} \int_X |f_n - f| \, \mathrm{d}\mu \le 0.$$

Hence, $\int_X |f_n - f| d\mu \to 0$.

3 Let X be a topological space and let μ be a finite measure on X, i.e., $\mu(X) < \infty$. A family of μ -measurable functions $f_n : X \to \mathbb{R}$ is called **uniformly integrable** in X if for any $\varepsilon > 0$ there exists M > 0 such that

$$\int_{\{x:|f_n(x)|>M\}} |f_n(x)| \, \mathrm{d}\mu < \varepsilon \qquad \text{for all } n=1,2,\dots.$$

Similarly $\{f_n\}$ is called **uniformly absolutely continuous** if for any $\varepsilon > 0$ there exists $\delta > 0$ such that for any μ -measurable set $A \subseteq X$ with $\mu(A) < \delta$ one has

$$\left| \int_A f_n(x) \, \mathrm{d}\mu \right| < \varepsilon \qquad \text{for all } n = 1, 2, \dots.$$

Lemma 1. If $\{f_n\}$ is uniformly absolutely continuous then so are $\{f_n^+\}$ and $\{f_n^-\}$ (with the same choice of δ).

Proof. Given $\varepsilon > 0$ let $\delta > 0$ be as in the definition. For $n \in \mathbb{N}$ define the set

$$U_n = f_n^{-1}([0, \infty)) = \{x \in X : f_n(x) \ge 0\},\$$

which is μ -measurable since f_n is μ -measurable, so that $f_n^+ = f_n \chi_{U_n}$. Given a μ -measurable set $A \subseteq X$ with $\mu(A) < \delta$ we have

$$\int_A f_n^+ d\mu = \int_A f_n \chi_{U_n} d\mu = \int_{A \cap U_n} f_n d\mu.$$

Then $A \cap U_n$ is μ -measurable with $\mu(A \cap U_n) \leq \mu(A) < \delta$, hence

$$\left| \int_A f_n^+ \, \mathrm{d}\mu \right| = \left| \int_{A \cap U_n} f_n \, \mathrm{d}\mu \right| < \varepsilon.$$

The proof for $\{f^-\}$ is similar with $L_n = f_n^{-1}((-\infty, 0])$ and $f_n^- = -f_n \chi_{L_n}$.

Prove that $\{f_n\}$ is uniformly integrable if and only if

$$\sup_{n} \int_{X} |f_n(x)| \, \mathrm{d}\mu < \infty$$

and $\{f_n\}$ is uniformly absolutely continuous.

Proof. Suppose $\{f_n\}$ is uniformly integrable. Choose $\varepsilon = 1$ and let M > 0 be as in the definition. For $n \in \mathbb{N}$ define the set

$$A_n = f_n^{-1}([-M, M]) = \{x \in X : |f_n(x)| \le M\},\$$

which is μ -measurable since f_n is μ -measurable. We split the integral over X into two parts:

$$\int_X |f_n| \, \mathrm{d}\mu = \int_{A_n} |f_n| \, \mathrm{d}\mu + \int_{X \setminus A_n} |f_n| \, \mathrm{d}\mu.$$

By assumption, we have

$$\int_{X \setminus A_n} |f_n| \, \mathrm{d}\mu < 1.$$

Monotonicity of the μ -integral gives us

$$\int_{A_n} |f_n| \,\mathrm{d}\mu \le \int_{A_n} M \,\mathrm{d}\mu = M \int_X \chi_{A_n} \,\mathrm{d}\mu = M\mu(A_n) \le M\mu(X).$$

Letting $R = M\mu(X) + 1 < \infty$, we deduce that $\int_X |f_n| d\mu < R$ for all $n \in \mathbb{N}$. Passing to the supremum, we obtain

$$\sup_{n} \int_{X} |f_n| \, \mathrm{d}\mu \le R < \infty.$$

For an unknown $\delta > 0$ suppose that $A \subseteq X$ is a μ -measurable set with $\mu(A) < \delta$. Then

$$\left| \int_A f_n \, \mathrm{d}\mu \right| \le \int_A |f_n| \, \mathrm{d}\mu \le \int_A M \, \mathrm{d}\mu = M\mu(A) < M\delta.$$

So given $\varepsilon > 0$ we can choose $\delta \leq \varepsilon/M$, hence $\{f_n\}$ is uniformly absolutely continuous.

We now show the reverse direction—suppose $R = \sup_n \int_X |f_n| d\mu < \infty$ and $\{f_n\}$ is uniformly absolutely continuous. For $n \in \mathbb{N}$ and an unknown M > 0 define the set

$$B_n = X \setminus f_n^{-1}([-M, M]) = \{x \in X : |f_n(x)| > M\},\$$

which is μ -measurable since f_n is μ -measurable. Then

$$\mu(B_n) = \frac{1}{M} \int_{B_n} M \, \mathrm{d}\mu \le \frac{1}{M} \int_{B_n} |f_n| \, \mathrm{d}\mu \le \frac{1}{M} \int_X |f_n| \, \mathrm{d}\mu \le \frac{R}{M}.$$

Let $\varepsilon > 0$ be given. By Lemma 1 we can choose $\delta > 0$ such that for all μ -measurable sets $A \subseteq X$ with $\mu(A) < \delta$ we have

$$\int_A f_n^+ d\mu < \frac{\varepsilon}{2} \quad \text{and} \quad \int_A f_n^- d\mu < \frac{\varepsilon}{2}.$$

Choosing $M > R/\delta$ gives us $\mu(B_n) < \delta$, so

$$\int_{B_n} |f_n| \, \mathrm{d}\mu = \int_{B_n} (f_n^+ + f_n^-) \, \mathrm{d}\mu = \int_{B_n} f_n^+ \, \mathrm{d}\mu + \int_{B_n} f_n^- \, \mathrm{d}\mu < \varepsilon.$$

Hence, $\{f_n\}$ is uniformly integrable.

4 Compute the limit

$$\lim_{n \to \infty} \int_0^n \left(1 - \frac{x}{n} \right)^n \ln \left(2 + \cos \left(\frac{x}{n} \right) \right) \, \mathrm{d}x$$

For $n \in \mathbb{N}$ and $x \in [0, \infty)$ define the function

$$f_n(x) = \begin{cases} \left(1 - \frac{x}{n}\right)^n \ln\left(2 + \cos\left(\frac{x}{n}\right)\right) & \text{if } x \le n, \\ 0 & \text{otherwise.} \end{cases}$$

Then we can write

$$\int_0^n \left(1 - \frac{x}{n}\right)^n \ln\left(2 + \cos\left(\frac{x}{n}\right)\right) dx = \int_0^\infty f_n(x) dx.$$

Note that $\cos x$ is positive and decreasing on $[0, \pi/2]$, so for $n \in \mathbb{N}$ and $x \in [0, n]$ we have

$$\cos\left(\frac{x}{n}\right) \le \frac{x}{n+1}.$$

Since the logarithm is increasing on $(0, \infty)$, we obtain

$$\ln\left(2+\cos\left(\frac{x}{n}\right)\right) \le \ln\left(2+\cos\left(\frac{x}{n+1}\right)\right).$$

Check that $0 \le (1 - \frac{x}{n})^n \le (1 - \frac{x}{n+1})^{n+1}$ for all $n \in \mathbb{N}$ and $x \in [0, n]$.

It follows that $0 \le f_n(x) \le f_{n+1}(x)$ for all $n \in \mathbb{N}$ and $x \in [0, \infty)$. Monotone convergence of the Lebesgue integral gives us

$$\lim_{n \to \infty} \int_0^\infty f_n(x) \, \mathrm{d}x = \int_0^\infty e^{-x} \ln(3 + \cos 0) \, \mathrm{d}x = \ln 3 \int_{-\infty}^0 e^x \, \mathrm{d}x = \ln 3 \cdot e^0 = \ln 3.$$