Algebra 2R

Na podstawie wykładów

Prof. Newelskiego

w semestrze letnim 2022/2023

 \sim

as long as algebra is taught in school, there will be prayer in school

Spis treści

Teoria r	ównań algebraicznych	3
1.1 1.2	Rozwiązywanie układów równań	3 5
Ciała sk	ończone i pierwiastki z jedności	9
2.1	·	10
Ciała pr	oste, pierwiastki z jedności	12
3.1		12
3.2	Pierwiastki z jedności	12
3.3	Ciała skończone	14
Rozszer		15
4.1	Wymiar przestrzeni liniowej	15
		20
5.1	- /	20
5.2	Domknięcia algebraiczne	23
Wstęp c	lo teorii Galois	26
6.1		26
6.2	O	26
6.3	Rozszerzenia rozdzielcze	28
Rozszer	zenia radykalne (czysty Bangladesz)	31
7.1	Stopień rozdzielczy, radykalny ciała	33
Przeksz		35
8.1	Norma, ślad	35
8.2	Rozszerzenia Galois	36
Rozszer	zenia abelowe	٠0
9.1	Rozszerzenia abelowe	4 0
9.2	Rozwiązywalne rozszerzenia ciał i rozszerzenia przez pierwiastki	41
		47
10.1	Własności	47
Moduły		49
10.1	Moduły wprowadzenie	49
10.2	Cel: zrozumieć moduły	51
11.3	Suma prosta modułów	52
		53
		56
11.6	Moduły skończenie generowane	57
Iloczyn	tensorowy modułów 6	50
11.1	Funkcja dwuliniowa 6	50
12.2	Konstrukcja produktu tensorowego	50
Własno	ści produktu tensorowego 6	53
	•	55
13.2	Iloczyny zewnętrzne	56

Wykład 1: Teoria równań algebraicznych

Przez R, S będziemy oznaczać pierścienie przemienne z 1 \neq 0, natomiast K, L będziemy rezerwować dla oznaczeń ciał.

1.1 Rozwiązywanie układów równań

Rozważmy funkcje $f_1, ..., f_m \in R[X_1, ..., X_n]$. Dla wygody będziemy oznaczać krotki przez \overline{X} , czyli $R[X_1, ..., X_n] = R[\overline{X}]$. Pojawia się problem: czy istnieje rozszerzenie pierścieni z jednością $R \subseteq S$ takie, że układ $U: f_1(\overline{X}) = ... = f_m(\overline{X}) = 0$ ma rozwiązanie w pierścieniu S?

Fakt 1.1. $\overline{a} = (a_1, ..., a_n) \subseteq S$, gdzie S jest rozszerzeniem pierścienia R, jest rozwiązaniem układu równań $U \iff g(\overline{a}) = 0$ dla każdego wielomianu $g \in (f_1, ..., f_m) \triangleleft R[X]$.

Dowód. \Leftarrow Implikacja jest dość trywialna, jeśli każdy wielomian z (f_1 , ..., f_m), czyli wytworzony za pomocą sumy i produktu wielomianów f_1 , ..., f_m zeruje się na \overline{a} , to musi zerować się też na każdym z tych wielomianów.

- ⇒ Rozważamy dwa przypadki:
 - 1. $(f_1, ..., f_m) \ni b \neq 0 i b \in R$.

To znaczy w $(f_1, ..., f_m)$ mamy pewien niezerowy wyraz wolny. Wtedy mamy wielomian $g \in (f_1, ..., f_m)$ taki, że $g(\overline{a}) \neq 0$. Ale przecież g jest kombinacką wielomianów $f_1, ..., f_m$, która na \overline{a} przyjmują wartość 0. W takim razie dostajemy układ sprzeczny i przypadek jest do odrzucenia.

2. 2. $(f_1, ..., f_m) \cap R = \{0\}$. (nie ma wyrazów wolnych różnych od 0)

Teraz wiemy, że układ U jest niesprzeczny, a więc możemy skonstruować pierścień z 1 S będący rozszerzeniem R $[S \supseteq R]$ oraz rozwiązanie $\overline{a} \subseteq S$ spełniające nasz układ równań.

Niech S = $R[\overline{X}]/(f_1, ..., f_m)$ i rozważmy

$$j: R[\overline{X}] \rightarrow S = R[\overline{X}]/(f_1, ..., f_m)$$

nazywane przekształceniem ilorazowym . Po pierwsze, zauważmy, że j ↑ R jest 1 – 1, bo

$$ker(j \upharpoonright R) = ker(j) \cap R = (f_1, ..., f_m) \cap R = \{0\}$$

i dlatego

$$j \upharpoonright R : R \xrightarrow{\cong} j[R] \subseteq S.$$

Z uwagi na ten izomorfizm, będziemy utożsamiać R, j[R]. W takim razie, S jest rozszerzeniem pierścienia R. Czyli mamy rozszerzenie pierścienia R.

Niech

$$\overline{a} = (a_1, ..., a_m) = (j(X_1), ..., j(X_n)) \subseteq S,$$

czyli jako potencjalne rozwiązanie rozważamy zbiór obrazów wielomianów stopnia 1 przez wcześniej zdefiniowaną funkcję $j:R[\overline{X}]\to S$. Tak zdefiniowane \overline{a} jest rozwiązaniem układu U w pierścieniu S, bo dla funkcji wielomianowej (czyli zapisywalnej jako wielomian) $\widehat{f_i}\in (f_1,...,f_m)$ mamy

$$\widehat{f_i}(\overline{a}) = \widehat{f_i}(j(X_1), ..., j(X_m)) = j(\widehat{f_i}(X_1, ..., X_m)) = j(f_i) = 0.$$

Uwaga 1.2. Skonstruowane powyżej rozwiązanie ā układu U ma następującą własność uniwersalności:

(⑤) Jeżeli S' \supseteq R jest rozszerzeniem pierścienia z 1 i \overline{a}' = $(a'_1, ..., a'_m) \subseteq S$ jest rozwiązaniem U w S', to istnieje jedyny homomorfizm

$$h: R[\overline{a}] \to R[\overline{a}']$$

taki, że h \upharpoonright R jest identycznością na R i h(\overline{a}) = \overline{a}' . Wszystkie rozwiązania układów są homomorficzne.

Tutaj $R[\overline{a}] \subseteq S$ jest podpierścieniem generowanym przez $R \cup \{\overline{a}\}$, czyli zbiór:

$$R[\overline{a}] = \{f(\overline{a}) : f(\overline{X}) \in R[\overline{X}]\} \subseteq S$$

Dowód. Niech I = $\{g \in R[\overline{X}] : g(\overline{a}') = 0\} \subseteq S'$. Oczywiście mamy, że I $\triangleleft R[\overline{X}]$, a więc

$$(f_1, ..., f_m) \subseteq I$$
.

Z twierdzenia o faktoryzacji wie

Homomorfizm $\phi: R[\overline{X}] \to R[\overline{a}']$ określamy wzorem

$$\phi(w) = w(\overline{a}),$$

a homomorfizm j jest jak wyżej odwzorowaniem ilorazowym. Widzimy, że

$$I = ker(\phi)$$

$$ker(j) = (f_1, ..., f_m).$$

Z twierdzenia o homomorfizmie pierścieni dostajemy jedyny homomorfizm

$$h: R[X]/(f_1,...,f_m) \rightarrow R[\overline{a}]$$

taki, że
$$h(\overline{a}) = \overline{a}'$$
.

Uwaga 1.3. Jeśli I = $(f_1, ..., f_m)$, to h : $R[\overline{a}] \xrightarrow{\cong} R[\overline{a}']$.

Wtedy mamy $\ker \phi = \ker j$, czyli $\ker (h \circ j) = \ker \phi = \ker j$, no a z tego wynika, że $\ker h$ jest trywialne, czyli h jest apimorfizmem (1-1). Z drugiej strony, $\operatorname{Im} \phi = \operatorname{Im}(h \circ j)$, a ϕ jest epimorfizmem ("na"), więc również h musi być "na".

Załóżmy, że S \supseteq R jest rozszerzeniem pierścienia oraz $\overline{a} \in S^n$. Wtedy:

1. ideał a nad R definiujemy jako

$$I(\overline{a}/R) = \{g \in R[\overline{X}] : g(\overline{a}) = 0\}$$

2. a nazywamy rozwiązaniem ogólnym układu U, jeśli ideał

$$I(\overline{a}/R) = (f_1, ..., f_m).$$

Uwaga 1.4. W sytuacji jak z definicji wyżej, gdy U jest układem niesprzecznym, wtedy \bar{a} jest rozwiązaniem ogólnym układu U \iff zachodzi warunek (\bigcirc).

Dowód. Ćwiczenia.

1.2 Rozszerzanie ciał

Dla K \subseteq L ciał i $\overline{a} \subseteq$ L definiujemy ideał \overline{a} nad K jako:

$$I(\overline{a}/L) := \{f(X_1, ..., X_n) \in K[\overline{X}] : f(\overline{a}) = 0\},$$

to znaczy generujemy ideał w wielomianach nad K zawierający wszystkie wielomiany (niekoniecznie tylko jednej zmiennej) zerujące się w ā.

Przykład:

Dla K = \mathbb{Q} , L = \mathbb{R} , n = 1, $a_1 = \sqrt{2}$ mamy

$$I(\sqrt{2}/\mathbb{Q}) = \{f(x^2 - 2) : f \in \mathbb{Q}[X]\} = (x^2 - 2) \triangleleft \mathbb{Q}[X]$$

Dalej, definiujemy

$$K[\overline{a}] := \{f(\overline{a}) : f \in K[X]\}$$

czyli **podpierścień** L **generowany przez** $K \cup \{\overline{a}\}$ oraz $K(\overline{a})$, **czyli podciało** L generowane przez $K \cup \{\overline{a}\}$:

$$K(\overline{a}) := \{f(\overline{a}) : f \in K(X_1, ..., X_n) | f(\overline{a}) \text{ dobrze określone} \}.$$

Tutaj $K(X_1, ..., X_n)$ to ciało ułamków pierścienia $K[\overline{a}]$ w ciele L (czyli najmniejsze ciało, że pierścień może być w nim zanurzony). Czasami oznaczamy to przez $K[\overline{a}]_0$.

Uwaga 1.5. Niech $K \subseteq L_1$, $K \subseteq L_2$ będą ciałami. Wybieramy $\overline{a}_1 \in L_1$ i $\overline{a}_2 \in L_2$, $|\overline{a}_1| = |\overline{a}_2| = n$. Wtedy następujące warunki są równoważne:

- 1. istnieje izomorfizm $\phi: K[\overline{a}_1] \to K[\overline{a}_2]$ taki, że $\phi \upharpoonright K = id_K$ oraz $\phi(\overline{a}_1) = \overline{a}_2$.
- 2. $I(\bar{a}_1/K) = I(\bar{a}_2/K)$.

Dowód.

 $1 \implies 2$

Implikacja jest jasna, bo dla $g(\overline{X}) \in K[\overline{X}]$ mamy $g(\overline{a}_1) = 0$ w $K[\overline{a}_1] \iff g(\phi(\overline{a}_1)) = 0$, a $\phi(\overline{a}_1) = \overline{a}_2$, czyli $g(\overline{a}_2) = 0$. Stąd $g \in I(\overline{a}_1/K) \iff g \in I(\overline{a}_2/K)$.

1 ← 2

Zwróćmy uwagę na odwzorowanie ewaluacji a1

$$\phi_{\overline{\mathbf{a}}_1} : \mathsf{K}[\overline{\mathsf{X}}] \xrightarrow{"\mathsf{na"}} \mathsf{K}[\mathsf{a}_1]$$

zadane wzorem

$$\phi(w(\overline{X})) = w(\overline{a}_1).$$

Mamy

$$\ker(\phi_{\overline{a}_1}) = I(\overline{a}_1/K).$$

Tak samo dla \overline{a}_2 możemy określić analogicznie odwzorowanie ewaluacyjne $\phi_{\overline{a}_2}: K[\overline{X}] \to K[\overline{a}_2]$. Wtedy

$$I(\overline{a}_2/K) = \ker(\phi_{\overline{a}_2}),$$

ale ponieważ $I(\overline{a}_1/K) = I(\overline{a}_2/K)$, to $\ker(\phi_{\overline{a}_1}) = \ker(\phi_{\overline{a}_2})$. Oznaczmy $I = I(\overline{a}_1/K) = I(\overline{a}_2/K)$. Widzimy, że $\phi_{\overline{a}_i} \upharpoonright K = \mathrm{id}_k$ (wielomiany mające tylko wyraz stały nie zmieniają wartości po podstawieniu x).

Z twierdzenia o izomorfizmie wiemy, że istnieją izomorfizmy

$$\mathsf{f}_{\mathsf{i}}:\mathsf{K}[\overline{\mathsf{X}}]/\mathsf{ker}(\phi_{\overline{\mathsf{a}}_{\mathsf{i}}})=\mathsf{K}[\overline{\mathsf{X}}]/\mathsf{I}(\overline{\mathsf{a}}_{\mathsf{i}}/\mathsf{K})=\mathsf{K}[\overline{\mathsf{X}}]/\mathsf{I} \xrightarrow{\cong} \mathsf{Im}(\phi_{\overline{\mathsf{a}}_{\mathsf{i}}})=\mathsf{K}[\overline{\mathsf{a}}_{\mathsf{i}}]$$

Niech f = $f_2f_1^{-1}$: $K[\overline{a}_1] \rightarrow K[\overline{a}_2]$. Jako złożenie dwóch izomorfizmów f również jest izomorfizmem. Pozostaje sprawdzić, czy $f(\overline{a}_1) = \overline{a}_2$.

 $f(\overline{a}_1) = f_2(f_1^{-1}(\overline{a}_1))$ i zauważmy, że $f_1^{-1}(\overline{a}_1) = w(\overline{X}) \in K[\overline{X}]/I$, gdzie $w(\overline{X}) = \overline{X}$. Idąc po kolei wynika to z tego, że $f_1 \circ j = \phi_{\overline{a}_1}$.

Gdy włożymy w lewą stronę $w(\overline{X}) = \overline{X}$ dostajemy $f_1 \circ j(w) = f_1(\overline{X})$ (gdy oczywiście $\overline{a}_i \neq 0$), a z kolei po włożeniu tego do prawej strony wychodzi $\phi_{\overline{a}_1}(w) = w(\overline{a}_1) = \overline{a}_1$ i mamy, że $f_1(w) = \overline{a}_1 \implies f_1^{-1}(\overline{a}_1) = w$.

$$f(\overline{a}_1) = f_2(f_1^{-1}(\overline{a}_1)) = f_2(w) = w(\overline{a}_2) = \overline{a}_2$$

Uwaga. Niech $I \triangleleft K[\overline{X}]$ noetherowskiego pierścienia $K[\overline{X}]$. Niech $I = (f_1, ..., f_m)$ dla pewnych $f_i \in K[\overline{X}]$. Wtedy istnieje rozszerzenie pierścienia $S \supseteq K$ oraz $\overline{a} \subseteq S$ - rozwiązanie ogólne układu $f_1(\overline{X}) = ... = f_m(\overline{X}) = 0$ takie, że $I(\overline{a}/K) = I$.

Dowód. Uwaga 1.4.

Twierdzenie 1.6. Niech $I \triangleleft K[\overline{X}]$. Wtedy istnieje ciało $L \supseteq K$ oraz $\overline{a} = (a_1, ..., a_n) \subseteq L$ takie, że $f(\overline{a}) = 0$ dla każdego $f \in I$.

Dowód. Niech $I \subseteq M \triangleleft K[\overline{X}]$ będzie ideałem maksymalnym. Niech $L = K[\overline{X}]/M$ i określmy przekształcenie ilorazowe

$$j: K[\overline{X}]/M \rightarrow L = K[\overline{X}]/M$$
.

Ponieważ M \cap K = {0} (bo inaczej w ideale byłby wielomian odwracalny), to j \uparrow K : K \rightarrow L jest funkcją 1 – 1, czyli

$$j \upharpoonright K : K \xrightarrow{1-1} j[K] \subseteq L.$$

Możemy utożsamić K z j[K], czyli K \subseteq L. Niech \overline{a} = $(a_1, ..., a_n)$ takie, że dla każdego $i \in [n]$

$$a_i = j(X_i) \in L$$
.

Wtedy $g(\overline{a}) = 0$ dla każdego $g(\overline{X}) \in M \supseteq I$ (bo inaczej mielibyśmy wyrazy wolne).

Wniosek 1.7. Niech $f \in K[X]$ stopnia > 0. Wtedy istnieje ciało $L \supseteq K$ rozszerzające ciało K takie, że f ma pierwiastek w ciele L.

Przykłady:

1. 1. Rozpatrzmy ciało K = \mathbb{Q} i f(X) = X – 2. Wtedy I = (f) $\triangleleft \mathbb{Q}[X]$ jest ideałem maksymalnym, bo jest on pierwszy (w tym wypadku nierozkładalny). Równanie f = 0 ma rozwiązanie ogólne w pierścieniu ilorazowym

$$\mathbb{Q}[X]/I \cong \mathbb{Q}.$$

Czyli nie zawsze musimy rozszerzać ciało do czegoś nowego.

2. 2. $\mathbb{C} = \mathbb{R}[i] = \mathbb{R}(i) = \mathbb{R}[z]$ dla każdego $z \in \mathbb{C} \setminus \mathbb{R}$, co jest na liście zadań.

Załóżmy, że $K \subseteq L_1$, $K \subseteq L_2$ są rozszerzeniami ciała. Wtedy mówimy, że L_1 **jest izomorficzne z** L_2 nad $K [L_1 \cong_K L_2] \iff$ istnieje izomorfizm $f : L_1 \to L_2$ taki, że $f \upharpoonright K = \mathrm{id}_K$.

Fakt 1.8.

- 1. Załóżmy, że $f(X) \in K[X]$ jest nierozkładalny. Niech $L_1 = K(a_1)$, $L_2 = K(a_2)$ i $f(a_i) = 0$ w L_i . Wtedy $L_1 \cong_K L_2$.
- 2. Ogółniej: załóżmy, że $\phi: K_1 \to K_2$ jest izomorfizmem i $f_1 \in K_1[X], f_2 \in K_2[X], \phi(f_1) = f_2, f_i$ jest nierozkładalne. Dodatkowo załóżmy, że $L_1 = K_1(a_1)$ i $L_2 = K_2(a_2)$, gdzie $f_i(a_i) = 0$ w L_i . Wtedy istnieje izomorfizm $\phi \in \psi: L_1 \to L_2$ taki, że $\psi(a_1) = a_2$.

Dowód.

- 1. 1. $I(a_1/K) = (f) = I(a_2/K)$, stąd na mocy 1.5 mamy $K(a_1) \cong_K K(a_2)$. Po dowodzie przypadku 2. możemy uzasadniać, że jest to szczególny przypadek tego ogólniejszego stwierdzenia właśnie.
- 2. 2. Zacznijmy od rozrysowania tej sytuacji:

Izomorfizm $\phi: K_1[X] \xrightarrow{\cong} K_2[X]$ indukuje nam przekształcenie

$$K_1[X]/(f_1) \xrightarrow{\cong} K_2[X]/(f_2),$$

bo $\phi(f_1)$ = f_2 . Wiemy, że f_i jest nierozkładalne, czyli

$$I(a_i/K_i) = (f_i) \triangleleft K_i[X]$$

jest ideałem maksymalnym. Mamy

₩

Wykład 2: Ciała skończone i pierwiastki z jedności

Ciało L \supseteq K nazywamy **ciałem rozkładu nad** K wielomianu f \in K[X], gdy spełnione są warunki:

- 1. f rozkłada się w pierścieniu L[X] na czynniki liniowe (stopnia 1)
- 2. Ciało L jest rozszerzeniem ciała K o elementy $a_1, ..., a_n$, gdzie $a_1, ..., a_n$ to wszystkie pierwiastki f w L.

Przykład: Jeżeli deg(f) = 0, to nie istnieje ciało rozkładu f.

Wniosek 2.1. Załóżmy, że $f \in K[X]$ jest wielomianem stopnia > 0. Wtedy

- 1. istnieje L: ciało rozkładu f nad K,
- to ciało jest jedyne z dokładnością do izomorfizmy nad K.

Dowód.

1. Dowód przez indukcje względem stopnia f

Jako przypadek bazowy rozważmy f takie, że deg(f) = 1. Wtedy L = K i wszystko wniosek jest spełniony.

Załóżmy teraz, że stopień wielomianu f jest > 1 i tez zachodzi dla wszystkich wielomianów stopnia < deg(f) i wszystkich ciał K'. Teraz z 1.7 wiemy, że istnieje rozszerzenie ciała L \supseteq K takie, że f ma pierwiastek w L. Nazwijmy ten pierwiastek a $_0$ i niech

$$K' = K(a_0).$$

Ponieważ K'[X] wielomian f ma pierwiastek a_0 , to możemy zapisać

$$f = (x - a_0)f_1$$

dla pewnego $f_1 \in K'[X]$ i $deg(f_1) < deg(f)$. Z założenia indukcyjnego dla f_a istnieje $L' = K'(a_1, ..., a_r)$ - ciało rozkładu wielomianu f_1 nad K'. Wtedy

$$L = K(a_0, ..., a_r)$$

jest ciałem rozkładu f nad K.

2. Udowodnimy wersję ogólniejszą:

(**) Jeśli $\phi: K_1 \xrightarrow{\cong} K_2$ jest izomorfizmem nad ciałem i $f_i \in K_i[X]$ jest wielomianem stopnia > 0, $\phi(f_1) = f_2$, to wtedy istnieje $\psi: L_1 \xrightarrow{\cong} L_2$ izomorfizm nad ciałami rozkładu f_i w K_i rozszerzający izomorfizm ϕ (to znaczy $\phi \subset \psi$).

Wykorzystamy indukcję po deg(f). W przypadku bazowym mamy deg(f) = 1, czyli L₁ = K₁, L₂ = K₂ i ϕ = ψ .

Teraz niech deg(f) > 1 i załóżmy, że dla wszystkich ciał K' oraz wielomianów stopnia < deg(f) jest to prawdą. Niech

$$f_i = f_i' \cdot g_i$$

gdzie $f_i', g_i \in K_i[X]$ i g_i jest wielomianem nierozkładalnym w K. Wiemy już, że istnieje $a_i \in L_i$ będące pierwiastkiem wielomianu g_i .

Z faktu 1.8:(2), wiemy, że istnieje wtedy izomorfizm

$$\psi_0: \mathsf{K}_1(\mathsf{a}_1) \overset{\cong}{\longrightarrow} \mathsf{K}_2(\mathsf{a}_2)$$

taki, że $\psi_0(a_1) = a_2 i \phi \subseteq \psi_0$.

Z założenia wiemy, że L_i to ciało rozkładu f_i' nad K_i . W takim razie z założenia indukcyjnego istnieje izomorfizm

$$\psi_1: L_1 \xrightarrow{\cong} L_2$$

taki, że $\psi \subseteq \psi_0$ i to już jest koniec.

Wniosek 2.2. Jeśli $f_1 \in K_1[X]$ i $f_2 \in K_2[X]$ są nierozkładalnymi wielomianami, $\phi : K_1 \xrightarrow{\cong} K_2$ izomorfizmem i $\phi(f_1) = f_2$, a L_1, L_2 to ciała rozkładu f_1, f_2 odpowiednio nad K_1 i K_2 , $a_i \in L_i$ to pierwiastek f_i , to wtedy istnieje $\psi : L_1 \xrightarrow{\cong} L_2$ takie, że $\psi(a_1) = a_2$.

Dowód. Wynika z dowodu stwierdzenia (----).

2.1 Algebraiczne domknięcie ciała

Ciało L jest algebraicznie domknięte \iff dla każdego $f \in L[X]$ o stopniu > 0 istnieje pierwiastek f w L. To znaczy każdy wielomian rozkłada się na czynniki liniowe nad L.

Przykład:

- C jest algebraicznie domknięte.
- \mathbb{R} nie jest algebraicznie domknięte, gdyż x^2 + 1 nie ma pierwiastka rzeczywistego.
- $\mathbb{Q}[i]$ nie jest algebraicznie domknięte, bo x^2 2 nie ma pierwiastka.

Twierdzenie 2.3. Każde ciało K zawiera się w pewnym ciele algebraicznie domkniętym.

Dowód. Jak mamy wielomian nad ciałem, to istnieje rozszerzenie ciała do tego wielomianu. I dalej leci kombinatoryka.

Lemat: Dla każdego ciała K istnieje L \supseteq K takie, że (\forall f \in K[X]) stopnia > 0, f ma pierwiastek w L. Rozważmy dobry porządek na zbiorze wielomianów z K[X] stopnia > 0

$$\{f \in K[X] : deg(f) > 0\} = \{f_{\alpha} : \alpha < \kappa\}.$$

Tutaj α , κ to liczby porządkowe, niekoniecznie skończone. Skonstruujmy rosnący ciąg rozszerzeń ciał $\{K_\alpha:\alpha<\kappa\}$ taki, że

- $K \subseteq K_{\alpha} \subseteq K_{\beta}$ dla $\alpha < \beta < \kappa$
- f_{α} ma pierwiastek w $K_{\alpha+1}$.

Dowód przez indukcję pozaskończoną. Dla $K_0 = K$.

Załóżmy, że $\alpha < \kappa$ i mamy $\{K_{\beta} : \beta < \alpha\}$ spełniają warunki powyżej. Niech $K' = \bigcup_{\beta < \alpha} K_{\beta}$. Musimy pokazać, że K' jest ciałem.

1. 1. α to liczba graniczna. Definiujemy K' = $\bigcup_{\beta < \alpha} K_{\beta}$ jako zbiór.

Musimy określić działania w K'. Niech x, y \in K', wtedy istnieje β < α takie, że x, y \in K $_{\beta}$. Czyli x + y \in K $_{\beta}$ \subseteq K' i xy \in K $_{\beta}$ \subseteq K'. W takim razie K' jest rozszerzeniem ciała K $_{\beta}$.

Teraz definiujemy K_{α} = K' i otrzymujemy pożądane rozszerzenie ciała.

2. 2. $\alpha = \beta + 1$ to następnik, wtedy K' = K $_{\beta}$.

Wielomian f_{α} jest wielomianem nad $K \subseteq K'$. Z wniosku 1.7 wiemy, że istnieje rozszerzenie $K_{\alpha} \supseteq K$ takie, że f_{α} ma pierwiastek w K_{α} .

L definiujemy jako sumę po wyżej udowodnionej konstrukcji:

$$\mathsf{L} = \bigcup_{\alpha \le \kappa} \mathsf{K}_{\alpha}$$

i to ciało spełnia nasz lemat.

Wracamy teraz do dowodu twierdzenia 2.3 i niech (L_n , $n < \omega$) będzie rosnącym ciągiem ciał takim, że

- $L_0 = K$
- $L_{n+1} \supseteq L_n$, gdzie L_{n+1} dane jest przez lemat, to znaczy ($\forall \ f \in L_n[X]$) f ma pierwiastek w L_{n+1} .

Niech

$$L_{\infty} = \bigcup_{n<\omega} L_n \supseteq K.$$

Jest to ciało, ponieważ suma rosnącego ciągu ciał jest ciałem. Dalej mamy, że jest to ciało algebraicznie domknięte, gdy dowolny $f \in L_{\infty}[X]$ ma stopień skończony > 0, czyli istnieje n takie, że $f \in L_n[X]$. A więc f ma wszystkie pierwiastki w $L_{n+1} \subseteq L_{\infty}$.

Wykład 3: Ciała proste, pierwiastki z jedności

3.1 Ciała proste

Uwaga 3.0. Załóżmy, że mamy ciała $K \subseteq L$. Wtedy

- char(K) = char(L)
- $0_{K} = 0_{L}$ oraz $1_{K} = 1_{L}$
- $K^* = K \setminus \{0\} < L^* = L \setminus \{0\}$ oraz dla $x \in K -x w K$ jest równe -x w L.

K jest ciałem prostym wtedy i tylko wtedy, gdy K nie zawierza żadnego właściwego podciała.

Przykład:

- \mathbb{Q} , gdzie char(\mathbb{Q}) = 0 to ciało proste nieskończone.
- Ciałem prostym skończonym jest na przykład \mathbb{Z}_p dla liczby pierwszej p, wtedy char (\mathbb{Z}_p) = p.

Uwaga 3.1.

- 1. Każde ciało zawiera jedyne podciało proste
- 2. Z dokładnościa do $\cong \mathbb{Q}$, \mathbb{Z}_{D} to wszystkie ciała proste.

Przykład: Załóżmy, że K jest skończone. Wtedy K* też jest skończone rzędu $|K^*| = n < \infty$. Później dowiemy się, że $|K| = p^k$, a więc $|K^*| = p^k - 1$. Wiemy, że dla każdego $x \in K^*$ zachodzi $x^n = 1$.

3.2 Pierwiastki z jedności

Niech R będzie pierścieniem przemiennym z 1 ≠ 0. Mamy następujące definicje:

- 1. $a \in R$ jest pierwiastkiem z 1 stopnia $n > 0 \iff a^n = 1$
- 2. $\mu_n(R) = \{a \in R : a^n = 1\}$ jest grupą pierwiastków z 1 stopnia n
- 3. $\mu(R) = \{a \in R : (\exists n) a^n = 1\} = \bigcup_{n>0} \mu_n(R) \text{ jest grupą pierwiastków z 1}$
- 4. a jest **pierwiastkiem pierwotnym** [primitive root] stopnia n z 1 \iff a $\in \mu_n(R)$ oraz dla każdego k < n a $\notin \mu_k(R)$.

Uwaga 3.2.

- 1. $\mu_n(R) \triangleleft R^*$ jest grupą jednostek pierścienia
- 2. $\mu(R) \triangleleft R^*$
- 3. $\mu(R)$ jest torsyjną grupą abelową (każdy element jest pierwiastkiem z 1).

Przykłady

- 1. $\mu(\mathbb{C}) = \bigcup_{n>0} \mu_n(\mathbb{C}) \lneq (\{z \in \mathbb{C} : |z| = 1\}, \cdot) < \mathbb{C}^* = C \setminus \{0\}$ jest nieskończona.
- 2. $\mu(\mathbb{C}) \cong (\mathbb{Q}, +)/(\mathbb{Z}, +)$, bo $f: \mathbb{Q} \xrightarrow{\text{"na"}} \mu(\mathbb{C})$ taki, że $f(w) = \cos(w2\pi) + i\sin(w2\pi)$ ma jądro $\ker(f) = \mathbb{Z}$.
- 3. $\mu(\mathbb{R}) = \{\pm 1\}$
- 4. $\mu_n(K) = \{ \text{zera wielomianu } x^n 1 \}$. Ten wielomian będziemy oznaczali $w_n(x) = x^n 1$.

Uwaga 3.3.

1. Jeśli char(K) = 0, to $w_n(x) = x^n - 1$ ma tylko pierwiastki jednokrotne w K [simple roots]

2. Jeśli char(K) = p > 0 i $n = p^l n_1$ takie, że $p \nmid n_1$, to wszystkie pierwiastki $w_n(x) = x^n - 1$ mają krotność p^l w K.

Dowód:

1. Niech $a \in K$ takie, że $w_n(a) = 0$. Z twierdzenia Bezouta mamy, że

$$w_n(x) = x^n - 1 = x^n - a^n = (x - a)(x^{n-1} + ax^{n-2} + ... + a^{n-2}x + a^{n-1}) = (x - a)v_n(x)$$

gdzie $v_n(x) = x^{n-1} + ax^{n-2} + ... + a^{n-2}x + a^{n-1}$.

Z tego, że char(K) = 0 wynika, że $v_n(a) = na^{n-1} \neq 0$, skąd wynika, że a jest jednokrotnym pierwiastkiem $w_n(x)$.

2. Jesteśmy w ciele K o char(K) = p. Niech n = $p^l n_1$. Rozważmy wielomian

$$w_n(X) = X^n - 1 = (X^{n_1})^{p^l} - 1^{p^l} = (X^n - 1)^{p^l} = w_{n_1}(X)^{p^l}.$$

Czyli $\mu_n(K) = \mu_{n_1}(K)$. Załóżmy, że a \in K to pierwiastek wielomianu $w_n(X)$. Wtedy a jest też pierwiastkiem wielomianu w_{n_1} w ciele K. Wtedy

$$w_{n_1}(X) = (X - a)v_{n_1}(X),$$

v_{n₁} jak w przypadku wyżej. Wówczas

$$v_{n_1}(a) = n_1 a^{n_1 - 1} \neq 0$$

bo p \nmid n₁. Jeśli a jest 1-krotnym pierwiastkiem $w_{n_1}(X)$, to jest on p^l -krotnym pierwiastkiem $w_n(X)$.

Twierdzenie 3.4. Niech G < μ (K) i G jest podgrupą skończoną o |G| = n. Wtedy

- 1. $G = \mu_n(K)$
- 2. G jest cykliczna
- 3. Jeśli char(K) = p > 0, to $p \nmid n$.

Dowód.

- 1. 1. Jeśli |G| = n, to dla każdego $x \in G$ mamy $x^n = 1$. Z tego wynika, że $G \subseteq \mu_n(K)$, ale $|\mu_n(K)| \le n$, czyli $G = \mu_n(K)$.
- 2. 2. Chcemy pokazać, że dla wielomianu $w_n(X)$ mamy n różnych pierwiastków. Wystarczy pokazać, że istnieje $x \in G$ taki, że ord(x) = n.

Załóżmy nie wprost, że dla każdego $x \in G$ ord(x) < n. Niech

$$k = max\{ord(x) : x \in G\}.$$

Niech $x_0 \in G$ takie, że ord $(x_0) = k$. Wtedy

$$(\forall v \in G) \text{ ord}(v) \mid k.$$

Gdyby tak nie było, to istniałby $y \in G$, ord $(y) \nmid k$. Czyli istnieje liczba pierwsza p taka, że l jest podzielne przez wyższą potęgę p niż k. To oznacza, że $l = p^{\alpha}l'$ i $k = p^{\beta}k'$, gdzie $p \nmid l'$ i $\alpha > \beta$. Rozważmy $y' = y^{l'}$. Skoro y ma rząd l, to ord $(y') = p^{\alpha}$, a dla $x'_0 = x_0^{p^{\beta}}$ mamy ord(x') = k'. Wobec tego ord $(x'_0y') = p^{\alpha} \cdot k'$, ale to jest większe od k i dostajemy sprzeczność.

3. 3. Wiemy, że wszystkie pierwiastki $w_n = x^n - 1$ są jednokrotne, bo jest ich w tym przypadku dokładnie n (z poprzedniego punktu). Z uwagi 3.3, że jeśli $n = p^l n_1$, to pierwiastki wielomianu $w_n(x)$ mają krotność p^l . Ale w tym przypadku pierwiastki mają krotność jeden, czyli $p^l = 1$ i $n = 1 \cdot n_1$, gdzie $p \nmid n_1$.

Wniosek 3.5. Jeśli $a \in \mu_n(K)$ jest pierwiastkiem pierwotnym z 1 stopnia n > 1, to a generuje $\mu_n(K)$.

Dowód. $\mu_n(K) \supseteq \langle a \rangle = \mu_k(K)$ dla pewnego $k \in \mathbb{N}$. Ale ponieważ a było pierwiastkiem pierwotnym z 1, to musimy mieć n = k.

3.3 Ciała skończone

Twierdzenie 3.6. Niech K będzie ciałem skończonym. Wtedy

- 1. $char(K) = p \implies |K| = p^n dla pewnego n \in \mathbb{N}$
- 2. Dla każdego n > 0 istnieje dokładnie jedno ciało K takie, że $|K| = p^n z$ dokładnością do izomorfizmu.

Ciało mocy p^n będziemy oznaczać $F(p^n)$.

Dowód. 1. Skoro char(K) = p, to $\mathbb{Z}_p \subseteq K$ jest najmniejszym podciałem prostym ciała K. W takim razie, K jest skończoną przestrzenią liniową nad \mathbb{Z}_p . Jeśli n = $\dim_{\mathbb{Z}_p}(K)$, to K jest izomorficzne z \mathbb{Z}_p^n , jako przestrzenie liniowe nad \mathbb{Z}_p . W takim razie $|K| = p^n$.

2.

Istnienie:

Niech n > 0. Rozważmy

$$w_{p^{n}-1}(x) = x^{p^{n}-1} \in \mathbb{Z}_{p}[X].$$

Niech L $\supseteq \mathbb{Z}_p$ będzie ciałem rozkładu wielomianu w_{p^n-1} , a K = $\{0\} \cup \{$ pierwiastki $w_{p^n-1}\}$. Wtedy

$$|K| = 1 + p^n - 1 = p^n$$
.

czyli mamy potencjalne ciało rzędu pⁿ. Wystarczy więc pokazać, że K jest ciałem.

Niech $f:L\xrightarrow{1-1}L$ będzie funkcją Frobeniusa $x\mapsto x^p$. Teraz niech $f^n=f\circ ...\circ f$, $f^n(x)=x^{p^n}$. Jest to monomorfizm, bo składamy ze sobą n takich samych funkcji 1 – 1. Dla $a\in L$ mamy

$$(a^{p^n-1}=1 \ \lor \ a=0) \iff a \in K.$$

Co więcej, $a^{p^n-1}=1 \iff a^{p^n}=a \iff f^n(a)=a$, czyli K = $\{a\in L: f^n(a)=a\}$ jest zbiorem punktów stałych morfizmu f^n , czyli jest ciałem, czego dowód jest pozostawiony na ćwiczenia.

Jedyność K:

Ciało K stworzone jak wyżej jest ciałem rozkładu $w_{p^n-1}(x)$ nad \mathbb{Z}_p .

Załóżmy nie wprost, że K' to inne ciało mocy p^n . Bes straty ogólności $\mathbb{Z}_p\subseteq K'$. Niech $x\in K'$. wiemy, że x=0 lub $x^{p^n-1}=1$. W takim razie w_{p^n-1} rozkłada się nad K' na czynniki liniowe. Zatem K' jest również ciałem rozkładu w_{p^n-1} nad \mathbb{Z}_p .

Z wniosku 2.1.(2) mamy, że dwa ciała rozkładu nad jednym wielomianem są izomorficzne i K \cong K' nad \mathbb{Z}_p i mamy sprzeczność.

Wykład 4: Rozszerzenia ciał

Definicja 4.1. Niech $K \subseteq L$ będą ciałami i $a \in L \setminus K$.

- Jeżeli a jest algebraiczny nad K , to istnieje $f \in K[X]$ stopnia > 0 i f(a) = 0
- a jest przestępny nad K [transcendental] ← a nie jest algebraiczny.
- Rozszerzenie $L \supseteq K$ jest algebraiczne \iff dla każdego $a \in L$ a jest algebraiczny nad K.
- Rozszerzenie jest przestępne \iff nie jest algebraiczne.
- Niech $a \in \mathbb{C}$. Wtedy a jest algebraiczna, gdy a jest algebraiczna nad \mathbb{Q} .

Przykłady:

- 1. W \mathbb{C} na i jest pierwiastkiem algebraicznym wielomianu $x^2 + 1$, a $\sqrt[n]{d}$ jest pierwiastkiem $x^n d$.
- 2. Ciało $F(p^n)$ ma charakterystykę p i $F(p) \subseteq F(p^n)$ jest rozszerzeniem ciał, które jest algebraiczne. Dla dowolnego $a \in F(p^n)$ to jest ono pierwiastkiem wielomianu $X^{p^n} X$, czyli a jest algebraiczne nad F(p).
- 3. Pierwiastki przestępne to na przykład e, π , E^{π} , aczkolwiek nie jesteśmy pewni tego ostatniego [doczytać w S. Lang, Algebra].
- 4. Rozważamy $K \subseteq L = K(X)$, czyli pierścień ułamków. Weźmy $x \in K(X)$ przestępny nad K. Załóżmy, że istnieje wielomian $f \in K[X]$ rózny od 0. I załóżmy, że $0 = \widehat{f}(X)$ to funkcja wielomianowa.

$$0 = \widehat{f}(X) = f \neq 0$$

i jest to sprzeczność.

Uwaga 4.2. Niech a jak wyżej. Wtedy a jest algebraiczny nad $K \iff I(a/K) \neq \{0\}$ jako ideał K[X].

4.1 Wymiar przestrzeni liniowej

Niech K \subseteq L będzie rozszerzeniem ciała K. Wtedy L jest **przestrzenią liniową nad** K. Definiujemy stopień rozszerzenia [coś innego jak indeks przy grupach]

$$[L:K]:=dim_K(L)$$

jako wymiar przestrzeni liniowej nad K.

Uwaga 4.3. Niech $a \in L \setminus K$. Następujące warunki są równoważne:

- 1. a jest algebraiczny nad K
- 2. K[a] = K(a), to znaczy K[a] jest ciałem (usuwanie niewymierności z mianownika)
- 3. $[K(a) : K] = dim_K(a) < \infty$

Dowód. $1 \implies 2$

Wystarczy pokazać, że K[a] jest ciałem. Rozważamy $I(a/K) \triangleleft K[X]$. Wiemy, że K[X] jest PID, więc potrzebujemy, aby I(a/K) było ideałem pierwszym.

$$f \cdot g \in I(a/K) \iff 0 = \widehat{f \cdot g}(a)$$

gdzie daszek oznacza homomorfizm ewaluacji, który jest również homomorfizmem w punkcie. Czyli

$$\widehat{f \cdot g}(a) = \widehat{f}(a)\widehat{g}(a) = 0 \iff \widehat{f}(a) = 0 \lor \widehat{g}(a) = 0.$$

Czyli I(a/K) jest ideałem pierwszym w pierścieniu PID, więc jest ideałem maksymalnym. Mamy więc, że

jest ciałem, więc jest izomorficzne z K(a), bo K[a] to najmniejszy pierścień generowany przez K \cup {a} (tutaj pierścień), a K(a) to najmniejsze ciało generowane przez K \cup {a}.

$$2 \implies 3$$

Załóżmy, że a \neq 0. Wtedy $a^{-1} \in K[a]$, czyli istnieje wielomian $f \in K[X]$

$$f(x) = \sum_{i=1}^{n} b_i x^i, \quad b_n \neq 0$$

taki, $\dot{z}e a^{-1} = f(a)$. Wobec tego mamy

$$1 = f(a) \cdot a$$

$$0 = f(a)a - 1 = b_n a^{n+1} + b_a a^2 + ... + b_0 a - 1$$

stąd mamy, że

$$a^{n+1} = -\frac{1}{b_n}(b_{n-1}a^n + ... + b_0a - 1) \in Lin_K(1, a, ..., a^n)$$

jest w domknięciu liniowym (1, a, ..., aⁿ). Indukcyjnie pokazujemy, że

$$(\forall m \geq 0) a^m \in Lin_K(1, a, ..., a^n).$$

- 1. m = 0, ..., n + 1 bo one są już w $Lin_k(1, a, ..., a^n)$.
- 2. Zakładamy teraz, że dla m mamy

$$a^{m} = \sum_{i=0}^{n} c_{i} a^{i}$$

i pokazujemy dla m + 1.

$$a^{m+1} = a \cdot a^m = a \sum_{i=0}^n c_i a^i = \sum_{i=0}^n c_i a^{i+1} \in Lim_K(1, a, ..., a^n),$$

bo $a^{n+1} \in Lim_K(1, a, ..., a^m)$.

Czyli

$$K[a] = K(a) = Lin_K(1, a, ..., a^n),$$

co daje, że $[K(a):K] \leq n < \infty$.

3 ⇒ 1

 $[K(a):K] < \infty$, z czego wynika, że

$$\{1, a, ..., a^n,\} = \{a^t : t \in \mathbb{N}\} \subset K(a)$$

jest zbiorem liniowo zależnym. Z liniowej zależności wiemy, że

$$(\exists n \in \mathbb{N})(\exists b_{n-1},...,b_0) a^n = b_{n-1}a^{n-1} + ... + b_1a + b_0.$$

Stad dla $f \in K[X]$ zadanego wzorem

$$f(x) = b_{n-1}x^{n-1} + ... + b_0 - x^n$$

mamy f(a) = 0, zatem a jest algebraiczny nad K.

Definicja 4.4. Niech $a \in L \supseteq K$ będzie algebraicznym pierwiastkiem nad K, $I(a/K) = \{w \in K[X] : w(a) = 0\} = (f), f \neq 0, f \in K[X], f unormowany (ang. monic)$

- f jest nazywany wielomianem minimalnym a nad K (wyznaczony jednoznacznie)
- stopień a nad K jest definiowany jako deg(f).

Uwaga 4.5. Załóżmy, że I(a/K) = (f) i f jest unormowany. Wówczas:

- 1. f jest unormowanym wielomianem minimalnego stopnia takim, że f(a) = 0
- 2. deg(f) = [K(a) : K], czyli stopień tego wielomianu jest równy stopniu przestrzeni liniowej K(a) nad K.

Dowód.

- 1. Oczywiste. f jest wielomianem nieredukowalnym, stąd jeśli istniałby g taki, że g(a) = 0 oraz deg(g) < deg(f), to wtedy f byłby podzielny przez g, co daje sprzeczność z nieredukowalnością f.
- 2. Niech n = deg(f),

$$f(x) = x^n + \sum_{k < n} b_k x^k$$

Z tego, $\dot{z}e$ f(a) = 0 mamy, $\dot{z}e$

$$a^n = -\sum_{k \le n} b_k x^k \in \text{Lin}_K (\textbf{1},\textbf{a},...,\textbf{a}^{n-1}) \subseteq \textbf{L}.$$

Czyli K(a) = $\operatorname{Lin}_K(1, a, ..., a^{n-1})$ i wystarczy zobaczyć, że $\{1, ..., a^{n-1}\}$ jest liniowo niezależny. W przeciwnym przypadku dla pewnego $0 < r < m \ a^r \in \operatorname{Lim}_K(1, a, ..., a^{t-1})$, czyli istnieje wielomian taki, że a jest jego pierwiastkiem, a stopień jest nie większy niż r < n i to daje sprzeczność.

Czyli $\lim_{K}(1, a, ..., a^n)$ jest bazą K(a) nad K i koniec.

Przykład:

- 1. $\sqrt{2} \in \mathbb{R} \supseteq \mathbb{Q}$, wtedy f(x) = $x^2 2$ jest wielomianem minimalnym $\sqrt{2}$ nad \mathbb{Q} i stopień $\sqrt{2}$ nad \mathbb{Q} jest równy 2.
- 2. $\pi \in \mathbb{R}$ nie ma stopnia, bo π nie jest liczbą algebraiczną nad \mathbb{Q}
- 3. $\sqrt[7]{7+\sqrt[3]{3}} \sqrt[6]{6} \in \mathbb{R}$, czy jest to algebraiczne nad \mathbb{Q} ? Tak i ma stopień 126.

Jeśli K \subseteq L \ni a jest algebraiczny, to deg(a/K) = n, to

$$K(a) = K[a] = \{\sum_{i=0}^{n-1} b_i a^i : b_i \in K\}$$

Fakt 4.6. Niech $K \subseteq L \subseteq M$ będą rozszerzeniami ciał. Wtedy

$$[M : K] = [M : L] \cdot [L : K]$$

Dowód. Niech $\{e_i : i \in I\}$ będzie bazą L nad K, a $\{f_j : j \in J\}$ będzie bazą M nad L. Stąd |I| = [L : K] i |J| = [M : L].

Chcemy za pomocą tych dwóch zbiorków zrobić bazę M nad K. Rozważmy zbiór

$$X = \{e_i \cdot f_j \ : \ i \in I, j \in J\}.$$

Musimy pokazać, że

- 1. X jest liniowo niezależny
- 2. X jest baza M nad K
- 3. $|X| = |I| \cdot |J|$

Czyli X jest bazą M nad K (1.,2.) i ma odpowiednią moc (3.).

1. Załóżmy nie wprost, że X nie jest lnz, czyli istnieją $k_{ii} \in K$ takie, że

$$\sum_{i \in I} \sum_{i \in I} k_{ij} e_i f_j = 0,$$

ale $\sum_{i} k_{i} j e_{i} = l_{j}$ są elementami L, czyli

$$\sum_{j \in J} l_j f_j = 0$$

więc f_i są liniowo zależne, a przecież były bazowe, w takim razie

$$0 = l_j = \sum_{i \in I} k_{ij} e_i,$$

e_i ≠ 0, czyli k_{ii} = 0 i koniec.

2. X generuje M nad K, bo dla $m \in M$ mam

$$m = \sum l_j f_j = \sum \left(\sum a_{ij} e_i\right) f_j = \sum \sum a_{ij} e_i f_j = \sum \sum k_{ij} e_i f_j$$

3. Załóżmy, nie wprost, że dla i \neq i' i j \neq j' i $e_i f_i = e_{i'} f_{i'}$. Czyli

$$e_i f_j - e_{i'} f_{i'} = 0$$
,

czyli f_j , $f_{j'}$ są liniowo zależne nad L, czyli mamy, że $f_j = f_{j'}$ i

$$0 = e_i f_j - e_{i'} f_j = (e_i - e_{i'}) f_j \implies e_i - e_{i'} = 0 \implies i = i'$$

Z tego wynika, że [M : K] = |X| = |I||J| = [L : K][M : L].

Wniosek 4.7. Niech K \subseteq L będzie rozszerzeniem skończonego ciała. Niech

$$K_{alg}(L) = \{a \in L \ : \ a \ \textit{jest algebraiczny nad } K\}.$$

Okazuje się, że K_{alg} jest podciałem.

Dowód. Weźmy a, $b \in K_{alg}$. Wiemy, że [K(a):K] i [K(b):K] są skończone. Mamy, że

$$K \subseteq K(a) \subseteq K(a, b)$$

Z faktu 4.6 wiemy, że

$$[K(a, b) : K] = [K(a, b) : K(a)] \cdot [K(a) : K]$$

czyli również K(a, b) jest skończone. Zatem dla $x \in K(a, b)$ mamy

$$[K(x):K] \leq [K(a,b):K]$$

też jest skończone, zatem x jest algebraiczny nad K.

Dla $x \in K(a, b)$ mamy $[K(x) : K] \le [K(a) : K]$, czyli również jest skończone. W takim razie, x jest algebraiczny nad K i należy do K_{alg} .

Definicja 4.8.

- 1. $K_{alg}(L)$ nazywamy algebraicznym domknięciem K w L.
- 2. K jest relatywnie algebraicznie domknięte w L \iff $K_{alg}(L) = K$.

Przykłady:

- 1. $\mathbb{Q}_{alg}(\mathbb{C}) := \mathbb{Q} = \mathbb{Q}^{alg}$ jest to tak zwane ciało liczb algebraicznych . \mathbb{Q} jest przeliczalne, bo $\mathbb{Q}[x]$ jest przeliczalne, więc jest mnóstwo liczb przestępnych (zespolonych, które nie są algebraiczne, ale nie potrafimy żadnej wskazać).
- 2. K jest algebraicznie domknięte w K(X)
- 3. $\frac{1}{\sqrt[3]{2}+\sqrt{3}}\in\mathbb{Q}[\sqrt{3},\sqrt[3]{2}]$, bo $\mathbb{Q}[\sqrt{3},\sqrt[3]{2}]$ jest ciałem

$$\begin{split} \mathsf{L} = \underbrace{\mathbb{Q}[\sqrt[3]{2},\sqrt{2}]}_{\subseteq\mathbb{C}} = \underbrace{\mathbb{Q}[\sqrt[3]{2}][\sqrt{3}]}_{\text{ciato}} \mathbb{Q} = \{\mathsf{a} + \mathsf{b}\sqrt[3]{2} + \mathsf{c}\sqrt[3]{2} \ : \ \mathsf{a},\mathsf{b},\mathsf{c} \in \mathbb{Q}(\sqrt{3})\} \\ \underbrace{\sqrt[3]{2}\mathsf{alg.w}}_{\sqrt[3]{2} + \sqrt{3}} \in \mathsf{L} \implies \frac{1}{\sqrt[3]{2} + \sqrt{3}} \in \mathsf{L} \end{split}$$

Wykład 5: Wielomiany koła, domknięcia algebraiczne

Uwaga 5.1. Niech $K \subseteq L \subseteq M$ będą rozszerzeniami ciał. $K \subseteq M$ jest algebraiczne $\iff K \subseteq L$ i $L \subseteq M$ są algebraiczne

Dowód.

 \implies OK

 \leftarrow

Weźmy dowolny $m \in M$. $L \subseteq M$ jest algebraiczny, co oznacza f(m) = 0, gdzie $f \in L[X]$

$$f = \sum_{i=0}^{n} a_n x^i, \quad a_n \neq 0$$

W takim razie m jest algebraiczne nad ciałek $K(a_0,, a_n)$. Ale teraz

$$[K(m): K] \leq [K(a_0, ..., a_m, m): K]^{4.6} [K(a_0, ..., a_n, m): K(a_0, ..., a_n)][K(a_0, ..., a_n): K] < \infty$$

bo m jest algebraiczny $K(\overline{a})$. Czyli

$$[K(m):K]<\infty$$

więc m jest algebraiczny nad K (uwaga 4.3).

Uwaga 5.2. $K_{alg}(L)$ jest relatywnie algebraicznie domknięty w L. To znaczy $(K_{alg}(L))_{alg}(L) = K_{alg}(L)$.

Dowód. Ćwiczenia.

5.1 Wielomian rozkładu koła [cyclotomic polynomials]

Rozważamy wielomian

$$w_m(x) = x^m - 1$$

dla m $\in \mathbb{N}$. Wiemy, że

- pierwiastki w_m w $\mathbb C$ są jednokrotne
- $\mu_{\mathsf{m}}(\mathbb{C})$ jest grupą cykliczną
- $a \in \mu_m(\mathbb{C})$ jest generatorem $\mu_m(\mathbb{C})$ = $\{a^i : 0 \le i \le m\} \cong (\mathbb{Z}_m, +)$
- a^k generuje $\mu_m(\mathbb{C}) \iff NWD(k, m) = 1$

Funkcja Eulera:

$$\phi(m) = |\{k \in \mathbb{N} : 0 \le k < m. NWD(k, m) = 1\}|$$

 $\mu_{\mathsf{m}}(\mathbb{C})$ ma $\phi(\mathsf{m})$ generatorów.

Niech

$$\{k \in \mathbb{N} \ : \ 0 < k < m, \text{NWD}(k,m) = 1\} = \{m_1,...,m_{\phi(n)}\}$$

i zdefiniujmy

$$F_m(x) := (x - a^{m_1})...(x - a^m \phi(n)) \in \mathbb{C}[X]$$

F_m to m-ty wielomian cyklotoniczny.

Uwaga 5.3.

1.
$$w_m(x) = x^m - 1 = F_m(x) \cdot v_m(x) = F_m(x) \cdot \prod_{\substack{d < m \\ d \mid m}} F_d(x)$$

2. $F_m(x) \in \mathbb{Z}[X]$

Dowód:

1. Wiemy, że wielomian w_m ma m pierwiastków na płaszczyźnie Gaussa, więc jest iloczynem dwumianów x - b, $b \in \mu_m(\mathbb{C})$, czyli

$$\alpha \in \mu_{\mathbf{m}}(\mathbb{C}) \implies \alpha^{\mathbf{d}} - 1 \quad \mathbf{d} = \operatorname{ord}(\alpha), \ \mathbf{d} \mid \mathbf{m}$$

Wtedy α jest pierwiastkiem pierwotnym z 1 stopnia d. Wobec tego

$$F_d(x) = \prod_{\substack{\alpha \in \mu_m(\mathbb{C}) \\ \text{ord}(\alpha) = d}} (x - \alpha) \implies \text{(teza)}$$

2. Dowód przez indukcję względem m. Dla m = 1 mamy $F_m(x) = x - 1 \in \mathbb{Z}[X]$.

Teraz zakładamy, że dla wszystkich 0 < d < m jest $F_d(x) \in \mathbb{Z}[X]$. Z punktu (1) wiemy, że

$$x^{m} - 1 = w_{m}(x) = F_{m}(x)v_{m}(x)$$

z założenia indukcyjnego $v_m(x)\in\mathbb{Z}[X]$, bo jest iloczynem $\prod_{\substack{\alpha\in\mu_m(\mathbb{C})\\ \mathrm{ord}(\alpha)=d}}(x-\alpha)$

 $w_m(x)$ w $\mathbb{Z}[X]$ jest podzielny przez v_m i dostajemy:

$$w_m(x) = v_m(x) \cdot L(x)$$

ale w $\mathbb{C}[X] \supseteq \mathbb{Z}[X]$ było

$$W_m(x) = V_m(x) \cdot F_m(x)$$

czyli $F_m = L \in \mathbb{Z}[X]$.

Uwaga 5.4. [Lemat Gaussa] $F_m(x)$ jest wielomianem nierozkładalnym w $\mathbb{Q}[X]$ (równoważnie w $\mathbb{Z}[X]$).

Dowód:

Po pierwsze zauważmy, że F_m jest nierozkładalny w $\mathbb{Q}[X] \iff$ nierozkładalny w $\mathbb{Z}[X]$.

Załóżmy nie wprost, że

$$F_m(x) = G_1(x) \cdot G_2(x)$$

dla $G_1, G_2 \in \mathbb{Z}[X]$. Możemy założyć, że $G_1(x)$ jest dalej nierozkładalny w $\mathbb{Z}[X]$ oraz $0 < \deg(G_1) < \deg(F_m) = \phi(m)$

Lemat: Istnieje ε' -pierwiastek G_1 oraz liczba pierwsza p taka, że p \nmid m i $G_1(b) = G_2(b^p) = 0$.

Dowód lematu:

Niech ε będzie jakimś pierwiastkiem G_1 , a τ będzie jakimś pierwiastkiem G_2 . W takim razie

$$\tau, \varepsilon \in \mu_{\mathsf{m}}(\mathbb{C}) \implies \tau = \varepsilon^{\mathsf{l}}$$

dla pewnego l takiego, że NWD(l, m) = 1.

Niech $l = p_1 \cdot ...p_s$ będzie rozkładem na liczby pierwsze. Wtedy mamy ciąg różnych liczb

pierwiastem
$$G_1 = \varepsilon$$
, ε^{p_1} , $\varepsilon^{p_1p_2}$, ..., $\varepsilon^{p_1,...,p_s} = \tau$ pierwiastek G_2

które są pierwiastkami pierwotnymi stopnia m. Z tego wynika, że każda z tych liczb jest pierwiastkiem G₁ lub G₂, czyli istnieje taka pozycja i, że

$$G_1(\varepsilon^{p_1...p_i}) = 0$$
,

$$G_2(\varepsilon^{p_1\dots p_{i+1}}) = 0$$

wtedy $\varepsilon' := \varepsilon^{p_1 \dots p_i}$ oraz $p = p_{i+1}$ i lemat jest spełniony.

Wimy już, że $G_1(\varepsilon)=0$ i $G_1\in\mathbb{Z}[X]$ jest wielomianem nierozkładalnym. Niech p będzie liczbą pierwszą z lematu. Rozważmy

$$G_3(x) = G_2(x^p).$$

Wtedy $G_2(\varepsilon^p) = G_3(\varepsilon) = 0$, ale stąd wynika, że $G_1(x)$ dzieli $G_3(x)$. Niech więc

$$G_3(x) = G_1(x)H(x) \in \mathbb{Z}[X].$$

Rozważmy homomorfizm

$$f: \mathbb{Z} \to \mathbb{Z}_p \mathbb{Z}/p\mathbb{Z}$$
 =

i indukowany przez niego epimorfizm pierścieni

$$\bar{f}: \mathbb{Z}[X] \to \mathbb{Z}_p[X].$$

Z założenia $F_m = G_1G_2$ mamy, że

$$\bar{f}(F_m) = \bar{f}(G_1)\bar{f}(G_2)$$

a z rozumowania powyżej ($G_3 = G_1H$)

$$\overline{f}(G_3) = \overline{f}(G_1)\overline{f}(H)$$

ale

$$\overline{f}(G_3(x)) = \overline{f}(G_2(x^p)) = \overline{f}(G_2(x))^p$$

bo współczynniki $f(G_2(x^p))$ są w \mathbb{Z}_p , a $(\sum c_i x^i)^p = \sum c_i x^{pi}$, bo $c_i^{kp} = c_i^k$ dla $c_i \in \mathbb{Z}_p$.

Stąd wiemy, że

$$f(G_2(x))^p = \overline{f}(G_1)\overline{f}(H)$$
.

Pierścień $\mathbb{Z}_p[X]$ jest UFD, więc $\bar{f}(G_1)$ i $\bar{f}(G_2)$ mają wspólny dzielnik w $\mathbb{Z}_p[X]$, stopnia co najmniej 1. Zatem z

$$\overline{f}(F_m) = \overline{f}(G_1)\overline{f}(G_2)$$

$$\bar{f}(F_m)|\bar{f}(w_m) = x^m - 1.$$

Zatem w pewnym rozszerzeniu $L \supseteq \mathbb{Z}_p$ w_m ma pierwiastek wielokrotny co daje sprzeczność.

Uwaga 5.5. Jeżeli $\varepsilon \in \mathbb{C}$ jest pierwiastkiem pierwotnym z 1 stopnia m, to $[\mathbb{Q}(\varepsilon) : \mathbb{Q}] = \phi(m)$.

Dowód: $F_m(x) \in \mathbb{Q}[X]$ jest nierozkładalny, a ε jest jego pierwiastkiem. To znaczy, że $F_n(x)$ jest wielomianem minimalnym dla ε nad \mathbb{Q} . Mamy, że $[\mathbb{Q}(b):\mathbb{Q}]$ = deg F_m = $\phi(m)$.

Lemat 5.6. [lemat Liouville'a o aproksymacji diofantycznej]: Jeżeli a $\in \mathbb{R}$ jest liczbą algebraiczną stopnia N > 1, to istnieje c = c(a) $\in \mathbb{R}_+$ takie, że dla każdego r = $\frac{p}{q} \in \mathbb{Q}$ zachodzi

$$\left|a - \frac{p}{q}\right| \ge \frac{c}{q^N}$$

Lemat Liouville'a mówi o cesze. Jeżeli liczba nie spełnia tego lematu, to jest liczbą przestępną.

Dowód. Niech N > 1 i a $\in \mathbb{Q}$. Niech f $\in \mathbb{Z}[X]$ taki, że f(a) = 0 i deg(f) = deg(a/ \mathbb{Q}). Teraz zauważmy, że na f patrzymy jako na funkcję wielomianową. To znaczy, dla każdego x $\in \mathbb{R}$ patrząc na

$$\widehat{f}(x) = \widehat{f}(x) - \underbrace{\widehat{f}(a)}_{=0}$$

ale funkcje wielomianowe są różniczkowalne. Dlatego możemy skorzystać z theoremierdzenia o wartości średniej. To znaczy

$$\widehat{f}(x) - \widehat{f}(a) = \widehat{f}'(x - a)$$

My wiemy, że a jest pierwiastkiem jednokrotnym wielomianu f(x). Niech $\varepsilon > 0$ takie, że $a \in (a-\varepsilon, a+\varepsilon)$ jest jedynym pierwiastkiem f(x) w tym przedziale. Oczywiście,

$$deg(\widehat{f}'(x)) < deg(\widehat{f}(x)) \implies \widehat{f}'(a) \neq 0.$$

Bez straty ogólności $\hat{f}'(a) > 0$. Niech i $d = \sup_{x \in I} \hat{f}'(x)$.

$$c = c(a) = min(\varepsilon, \frac{1}{d}).$$

Udowodnimy, że c jest dobrze określona. Niech r = $\frac{p}{q}\in\mathbb{Q}$ i p, q $\in\mathbb{Z}$, q > 0.

$$f(x) = \sum_{k=0}^{N} a_k x^k, \quad a_k \in \mathbb{Z}, a_N \neq 0$$

Rozważamy przypadki:

1.
$$f \notin I$$
. Wtedy $\left| a - \frac{p}{q} \right| \ge \varepsilon \ge \frac{\varepsilon}{q^N} \ge \frac{c}{q^n}$

2. $f \in I$. Wtedy $\left| a - \frac{p}{q} \right|$ i $\frac{p}{q}$ może być naszym x. Czyli

$$\left|a-\frac{p}{q}\right|=\frac{|f(\frac{p}{q})|}{|f(f'(t))|}\geq \frac{|f(\frac{p}{q})|}{d}\geq \frac{c}{q^N}$$

bo
$$c \le \frac{1}{d}$$

$$0 \neq |f(\frac{p}{q})| = \left|\sum_{k=0}^N a_k \frac{p^k}{q^k}\right| = \frac{\left|\sum\limits_{k=0}^N a_k p^k q^{N-k}\right|}{q^N} \geq \frac{1}{q^N}$$

5.2 Domknięcia algebraiczne

Definicja 5.7. Ciało L ⊇ K jest **algebraicznym domknięciem** K wtedy i tylko wtedy, gdy:

- 1. L jest algebraicznie domkniete
- 2. L \supseteq K jest rozszerzeniem algebraicznym, to znaczy dla każdego a \in L a jest pierwiastkiem algebraicznym nad K

Takie L oznaczamy przez \hat{K} , K^{alg} .

Uwaga 5.8. Dla każdego K istnieje algebraiczne domknięcie \widehat{K} .

Dowód. Rozważmy $K_{\infty} \supseteq K$ - ciało algebraicznie domknięte (theoremierdzenie z początku wykładu). Pokażemy, że

$$\widehat{K}$$
 = $K_{alg}(K_{\infty})$ = $\{a \in K_{\infty} \ : \ a \ algebraiczny \ nad \ K\}$

- 1. \hat{K} jest algebraicznie domknięte:
 - Jeżeli $f \in \widehat{K}[X]$, to f ma pierwiastek w K, ale $\widehat{K} \subseteq K_{\infty}$, to znaczy, że $a \in \widehat{K}$ jest algebraiczne nad K.
- 2. $K \subseteq \widehat{K}$ jest rozszerzeniem algebraicznym:

 $K\subseteq \widehat{K}$ = $K_{alg}(K_{\infty})$ z definicji jest rozszerzeniem algebraicznym.

Twierdzenie 5.9. \widehat{K} jest jedyne z dokładnością do izomorfizmu nad K.

Dowód. Można użyć indukcji pozaskończonej, a można też użyć lematu Zorna. My zrobimy to drugie.

Niech

$$\mathfrak{K} = \{(\mathsf{k}',\mathsf{f}') : \mathsf{K} \subseteq \mathsf{K}' \subseteq \mathsf{L}_1,\mathsf{f}' : \mathsf{K}' \xrightarrow{\mathsf{1-1}} \mathsf{L}_2, \mathsf{f}' \upharpoonright \mathsf{K} = \mathsf{id}_k\}$$

Oczywiście, $\Re \neq \emptyset$, bo (K, id_K) $\in \Re$. W \Re definiujemy relację porządku w naturalny sposób, to znaczy

$$(K',f')<(K'',f'')\iff K'\subseteq K''\ \land\ f''\upharpoonright K'=f''.$$

Wtedy (\mathfrak{K}, \leq) jest zbiorem częściowo uporządkowanym i niepustym (bo jest $(K, id_K) \in \mathfrak{K}$). Ponadto każdy wstępujący łańcuch (\mathfrak{K}, \leq) ma ograniczenie górne. Na mocy lematu Kuratowskiego-Zorna w tej rodzinie istnieje element maksymalny, nazwijmy go (K_1, f_1) . Pokażemy, że $K_1 = L_1$.

Załóżmy nie wprost, że istnieje a \in L₁ \ K₁. Niech w(x) \in K₁[X] będzie wielomianem minimalnym elementu a nad K₁. Niech

$$K_2 = f_1[K_1]$$

$$v(x) = f_1(a_0) + f_1(a_1)x + ... + f_1(a_n)x^n \in K_2[X].$$

v(x) też jest nierozkładalny nad K_2 , bo w(x) był nierozkładalny nad K_1 . Niech $b \in L_2$ będzie pierwiastkiem wielomianu v.

Zauważmy, że $K_1(a) = K_1[a]$, bo w(x) jest nierozkładalny nad K_1 , ale

$$K_1[a] \simeq K_1[X]/(w) \simeq K_2[X]/(v) \simeq K_2[b] \simeq K_2(b).$$

Czyli $K_1(a) \simeq K_2(b)$ i $f_2: K_1(a) \stackrel{\cong}{\longrightarrow} K_2(b)$ jest izomorfizmem rozszerzającym f_1 . Wtedy mamy $(K_1, f_1) \lneq (K_1(a), f_2)$, co daje sprzeczność z maksymalnością (K_1, f_1) . Zatem $L_1 = K_2$.

Zrobimy sprytnie wprost: $K_1 = L_1$, $K \subseteq K_2 \subseteq L_2$ i $K_1 \cong_K K_2$. K_1 jest aglebraicznie domknięte, więc K_2 też takie musi być. Czyli $K \subseteq K_2 \subseteq L_2$ jest algebraiczne, więc $K_2 = L_2$, bo założyliśmy, że $b \in L_2 \setminus K_2$ i wtedy wielomina minimalny $f_b(x) \in K_2[X]$ ma pierwiastek $c \in K_2$, czyli $(x - c)|f_n(x)$ a więc $x - c = f_b(x)$ jest nierozkładalny i b = c.

Wniosek 5.10. Jeśli K \cong L, to $\widehat{K} \cong \widehat{L}$. Dokładniej, jeżeli $f_0: LK \to L$ jest izomorfizmem ciał, to istnieje izomorfizm $f: \widehat{K} \to \widehat{L}$ taki, że $f \upharpoonright K = f_0$.

Dowód. Ćwiczenia

Uwaga 5.11. Jeśli $K \subseteq L$ jest algebraicznym rozszerzeniem ciał, to istnieje monomorfizm $f: L \to \widehat{K}$ taki, że $f \upharpoonright K = id_K$.

Dowód. Ćwiczenie

Wykład 6: Wstęp do teorii Galois

6.1 Grupy Galois

Niech K będzie ciałem, \widehat{K} jego algebraicznym domknięciem. Niech K \subseteq L będzie rozszerzeniem algebraicznym ciał [BSO: L \subseteq \widehat{K}]. **Grupą Galois** rozszerzenia K \subseteq L nazywamy

$$G(L/K) = Gal(L/K) = \{f \in Aut(L) : f \upharpoonright K = id_k\} = Aut(L/K)$$

ze składaniem jako działaniem. Jest to jednocześnie podgrupa wszystkich automorfizmów.

Przykład:

- 1. Niech K będzie ciałem prostym (\cong z \mathbb{Q} lub z \mathbb{Z}_p). Wtedy Gal(L/K) = Aut(L), bo
 - Niech char(K) = char(L) = p > 0 i niech $f \in Aut(L)$. Wtedy f(1) = 1, $f(\underbrace{1 + + 1}_{k}) = \underbrace{1 + + 1}_{k}$, a ponieważ $K = \{\underbrace{1 + + 1}_{k} : k \in \{1, ..., p\}\}$, zatem $f \upharpoonright K = id_{K}$, czyli $f \in Gal(L/K)$.
 - Niech char(K) = char(L) = 0, wtedy K $\cong \mathbb{Q}$. Niech $f \in Aut(L)$. Wtedy f(0) = 0, f(1) = 1, a dla dowolnego $k \in \mathbb{N}$ $f\underbrace{1+....+1}_{k} = \underbrace{1+....+1}_{k}$, stąd dostajemy, że f(n) = n dla $n \in \mathbb{Z}$, a z własności \mathbb{Q} dostajemy, że $f(\frac{m}{n}) = \frac{m}{n}$, zatem $f \upharpoonright K = id_K$.
- 2. $Gal(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) = Aut(\mathbb{Q}(\sqrt{2})) = \{f_0, f_1\} \cong \mathbb{Z}$, bo $\sqrt{2}$ może przejść na siebie albo na $-\sqrt{2}$. Wtedy $f_0 = id$, a $f_1(-\sqrt{2})$

Grupę Galois $Gal(\widehat{K}/K)$ nazywamy absolutną grupą Galois ciała K.

Czy każda grupa skończona jest izomorficzna z $Gal(L/\mathbb{Q})$ dla pewnego $\mathbb{Q}\subseteq L$? Jest to otwarty problem teorii Galois.

Uwaga 6.1. a, b $\in \widehat{K}$, takie, $\dot{z}e\ I(a/K) = I(b/K)$, to wtedy istnieje $f \in Gal(\widehat{K}/K)$ takie, $\dot{z}e\ f(a) = b$.

Dowód.

$$\begin{array}{ccc} \text{K[a]} & \xrightarrow{\cong} & \text{K[b]} \\ & \downarrow \subseteq & & \downarrow \subseteq \\ \\ \text{K[a]}^{\text{alg}} = \widehat{K} & \xrightarrow{\exists \ f'} & \widehat{K} = \text{K[b]}^{\text{alg}} \end{array}$$

Co jest wnioskiem z wniosku 5.10.

6.2 Rozszerzenia algebraiczne normalne

 \widehat{K} jest największym algebraicznym rozszerzeniem K tzn. K \subseteq L oznacza, że istnieje f : L \to \widehat{K} monomorfizm ciał taki, że f \upharpoonright K = id_K. (\clubsuit)

Mówmy, że rozszerzenie algebraiczne $K\subseteq L$ jest **normalne**, gdy w (\clubsuit) $f[L]\subseteq \widehat{K}$ dla wszystkich $f:L\to K$.

Przykład Rozszerzenie $K \subset \widehat{K}$ jest normalne.

Uwaga 6.2. Załóżmy, że $K \subseteq L \subseteq \widehat{K}$. Wtedy rozszerzenie $K \subseteq L$ jest normalne \iff dla każdego $f \in Gal(\widehat{K}/K)$ f[L] = L.

Dowód. \implies z definicji, bo id_K[L] = L. \iff z definicji.

Czyli K \subseteq L₁ \subseteq L i K \subseteq L jest normalna, to L₁ \subseteq L(\subseteq \widehat{K}), wiec Gal($\widehat{L_1}/L_1$) \le Gal(\widehat{K}/K).

Twierdzenie 6.3. Dla $K \subseteq L$ algebraicznego rozszerzenia jest normalne \iff dla każdego $b \in L$ wielomian minimalny $f \in K[X]$ rozkłada się w L[X] na iloczyn czynników liniowych.

Dowód. Bez straty ogólności rozważamy $L \subseteq \widehat{K}$.

 \Longrightarrow

Dowód nie wprost, to znaczy załóżmy, że istnieje $b \in L$ takie, że $w_b(x)$ ma pierwiastek $a \in \widehat{K} \setminus L$. Ale wtedy z Uwagi 6.1. na jednorodność \widehat{K} istnieje $f \in Gal(\widehat{K}/K)$ takie, że f(b) = a, więc f[L] = L co jest sprzeczne z 6.2.

 \leftarrow

Załóżmy nie wprost, że na mocy 6.2. istnieje $f \in Gal(\widehat{K}/K)$ takie, że $f[L] \neq L$. Ale L i f[L] są wzajemnie sprzężone, więc wybierzmy $a \in L \setminus f[L]$. Symetrycznie, $a' \in f[L] \setminus L$, $f' : f[L] \xrightarrow{\cong} L$ spełnia warunek $(\underline{\clubsuit})$.

Niech $w_a(x)$ jest wielomianem minimalnym a nad K. Wtedy $w_a(X) = f(w_a(x))$, bo $f \upharpoonright K = id_K$. Czyli w_a jest wielomianem minimalnym dla b = f(a)/K. Czyli $L \cong_K f[L]$. $Z (\clubsuit)$ wiemy, że $w_a(x)$ rozkłada się nad L na czynniki liniowe. Czyli $w_a(x)$f[L]..., co daje nam sprzeczność, bo a jest pierwiastkiem $w_a(X)$, ale $a \notin f[L]$.

Rozszerzenie ciał K \subseteq L jest **skończone**, jeśli [L : K] < ∞ .

Twierdzenie 6.4. Niech K ⊆ L będą rozszerzeniami ciał. Wtedy następujące warunki są równoważne:

- 1. rozszerzenie $K \subset L$ jest skończone i normalne
- 2. L jest ciałem rozkładu pewnego wielomianu

Dowód. Bez straty ogólności załóżmy, że $K \subset L \subset \widehat{K}$.

$$(2) \implies (1)$$

Załóżmy, że L jest ciałem rozkłądu pewnego wielomianu. Wtedy L = $K(a_1, ..., a_n)$, gdzie $a_1, ..., a_n$ to wszystkie pierwiastki wielomianu w(x) w \widehat{K} .

Niech $f \in Gal(\widehat{K}/K)$, wtedy $f(a_1, ..., f(a_n)$ to też wszystkie pierwiastki wielomianu w(x). Stąd

$$f[L] = K(f(a_1), ..., f(a_n)) = K(a_1, ..., a_n) = L,$$

zatem rozszerzenie $K \subseteq L$ jest normalne i skończone.

$$(1) \implies (2)$$

Niech K \subseteq L będzie skończone i normalne. Wtedy L = K(a₁,...,a_n) dla pewnych a₁,...,a_n \in L i {a₁,...,a_n} będzie bazą L nad K. Wtedy wiemy, że dla każdego i istnieje w_i \in K[X] \ {0} taki, że w_(ai) = 0 i w_i rozkłada się na czynniki liniowe (bo K \subseteq L normalne). Niech więc w(x) = \prod w_i(x). Zachodzi w(a_i) = 0 dla każdego i i w rozkłada się na czynniki liniowe w L, bo każdy w_i się rozkładał. Zatem

$$L \supseteq \{ \text{ pierwiastki w} \} \supseteq \{a_1, ..., a_n \}$$

i L jest ciałem rozkładu $w \in K[X]$.

Przykłady:

- 1. Niech K \subseteq L będą ciałami skończonymi, wtedy K \subseteq L jest ciałem normalnym, bo |L| = pⁿ, $w_{p^n-1}(x) = x^{p^n-1} 1$ i L jest ciałem rozkładu w nad K.
- 2. $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2})$ to rozszerzenie skończone, ale nie normalne. Jest tak, bo
 - $x^3 2$ jest nierozkładalny nad \mathbb{Q} (kryterium Eisteina)
 - W ciele \mathbb{C} x^3 2 ma 3 pierwiastki, z których tylko jeden jest w $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{R}$ a

Uwaga 6.5. Niech $K \subseteq L \subseteq \widehat{K}$ i niech L_1 będzie ciałem generowanym przez $\bigcup \{f[L]: f \in Gal(\widehat{K}/K)\}$. Wtedy L_1 to normalne domknięcie ciała L w \widehat{K} . Wtedy

- 1. Rozszerzenie $K \subseteq L_1$ jest normalne
- 2. Jeśli $K \subseteq L_2$ i $L \subseteq L_2$ są normalne, to istnieje monomorfizm $L_1 \to L_2$ taki, że $f \upharpoonright K = id$.

Dowód. (1) Z 6.2

(2)

Bez straty ogólności załóżmy, że K \subseteq L \subseteq L $_2$ \subseteq \widehat{K} i K \subseteq L \subseteq L $_2$ \subseteq \widehat{K} . Niech $f \in Gal(\widehat{K}/K)$, $f[L] \subseteq L_2$. W takim razkie $\bigcup \{f[L] : f \in Gal(\widehat{K}/K)\} \subseteq L_2$, z czego wynika, że L $_1 \subseteq L_2$.

6.3 Rozszerzenia rozdzielcze

- Niech K będzie ciałem i $a \in \widehat{K}$. Mówimy, że a jest **rozdzielczy nad** K, gdy wielomian minimalny a, $w_a(x) \in K[X]$ ma tylko pierwiastki jednokrotne w \widehat{K} .
- Algebraiczne rozszerzenie K ⊆ L jest rozszerzeniem rozdzielczym, gdy dla każdego a ∈ L a jest rozdzielcze nad K.
- Wielomian $w(x) \in K[X]$ jest **rozdzielczy**, gdy w ma tylko pierwiastki jednokrotne w \widehat{K} .

Uwaga 6.6. Załóżmy, że $w(x) \in K[X]$ jest wielomianem nierozkładalnym stopnia > 0. Wtedy

- 1. w(x) jest rozdzielczy $\iff w(x)$ i w'(x) są względnie pierwsze
- 2. Jeśli char(K) = 0, to w jest rozdzielczy
- 3. Jeśli char(K) = p > 0, to w jest nierozdzielczy \iff w(x) \in K[X^p], to znaczy w(x) = v(x^p dla pewnego v(x) \in K[X]).

Dowód. Dowód zadanie z listy 4

Przykłady:

- 1. Niech $K \subseteq L$ będzie rozdzielcze i $K \subseteq L_1 \subseteq L$. Wtedy $L_1 \subseteq L$ też jest rozdzielcze [ćwiczenia]
- 2. Jeśli char(K) = 0, to każde rozszerzenie algebraiczne ciała K jest rozdzielcze.
- 3. Niech K \subseteq L będą ciałami skończonymi. Wtedy K \subseteq L jest rozdzielcze. Ciał L rozkładu wielomianu x^{p^n} x o pierwiastkach jednokrotnych.

4. Rozszerzeni nierozdzielnicze: niech K = $F_p(X) \subseteq L = K(\sqrt[p]{x})$. Niech $w_a(T) = T^p - x \in K[T]$ będzie wielomianem minimalnym a = $\sqrt[p]{x}$. Wtedy $w_a' = 0$, czyli w ciele L istnieje p-krotny pierwiastek w_a : $w_a(T) = (t-a)^p$.a

Lemat 6.7.

- 1. Jeśli $a \in \widehat{K}$, to $|\{f(a) : f \in Gal(\widehat{K}/K)\}| < stopień a nad K$
- 2. a jest rozdzielczy nad K \iff w podpunkcie (1) jest równość.

Dowód.

 $\{f(a):\ f\in Gal(\widehat{K}/K)\}\stackrel{6.1}{=}\{pierwiastki\ wielomianu\ minimalnego\ w_a\in K[X]\ nad\ K\}$ czyli $deg(a/K)=deg(w_a).$

Element $a \in L$ nazywamy elementem pierwotnym rozszerzenia $K \subseteq L$, gdy L = K(a).

Twierdzenie 6.8. Niech $K \subseteq L$ będzie rozszerzeniem skończonym, $L = K(a_1, ..., a_n)$ i $a_1, ..., a_n$ rozdzielcze nad K. Wtedy istnieje $a^* \in L$ rozdzielczy nad K taki, że $L = K(a^*)$.

Dowód. Bez starty ogólności załóżmy, że $K \subseteq L \subseteq \widehat{K}$. Rozważmy dwa przypadki:

- 1. K jest skończone. Wtedy L także jest skończone, a L* jest cykliczna. Niech więc a* ∈ L* będzie generatorem L*. Wtedy L = K(a*).
- 2. K jest nieskończone.

Dowód przez indukcję względem n. Dla n = 1 jest oczywiste. Robimy więc krok indukcyjny $(n-1) \implies n$:

$$K(a_1, ..., a_{n-1}) = K(b)$$

 $K(a_1, ..., a_{n-1}, a_n) = K(b, a_n)$

Niech teraz k będzie stopniem b nad K, a m - stopniem a_n nad K(b). Z lematu 6.7 wiemy, że istnieją $f_1,...,f_k\in Gal(\widehat{K}/K)$ takie, że $f_1(b),...,v_k(b)$ są parami różne. Niech więc $f_{1,1},...,f_{1,m}\in G(\widehat{K}/K(b))$ takie, że $f_{1,1}(a),...,f_{1,m}(a)$ są parami różne.

Dla i = 1, ..., k, j = 1, ..., m niech $f_{i,i}$ = $f_i \circ f_{1,i} \in Gal(\widehat{K}/K)$.

Zauważmy, że

$$\langle i,j \rangle \neq \langle i',j' \rangle \implies \langle f_{i,j}(a),f_{i,j}(b) \rangle \neq \langle f_{i',i'}(a),f_{i',i'}(b) \rangle,$$

bo są dwie możliwości:

- $i \neq i'$, wtedy $f_{i,j} = f_i(b) \neq f_{i'}(b) = f_{i',i'}(b)$
- $\bullet \ \ i = i' \ \land \ \ j \neq j', \ \text{wtedy} \ f_{ij}(a) = f_i(f_{1,j}(a)) \neq f_{i'}(f_{1,j}(a)) = f_{i'j'}(a), \ \text{bo} \ f'_{1,j}(a) \neq f'_{1,j'}(a).$

Skoro K było nieskończone, to istnieje $c \in K$ takie, że dla $\langle i,j \rangle \neq \langle i',j' \rangle$ mamy

$$f_{i,j}(b) + f_{i,j}(a) \cdot c \neq f_{i',j'}(b) + f_{i',j'}(a) \cdot c$$

bo

$$F(x) = \prod_{\langle i,j \rangle \neq \langle i',j' \rangle} [f_{i,j}(b) + f_{ij}(a)x - (f_{i'j'}(b) + f_{i'j'}(a)x)]$$

i c po prostu nie jest pierwiastkiem F.

Postulujemy, że $K(b, a_n) = K(a^*)$, gdzie $a^* = b + a_n c$ jest elementem pierwotnym.

⊇ jest jasne

 $\subseteq f_{jj}(a^*)\text{, }1 \leq i \leq k\text{, }1 \leq j \leq m \text{ parami r\'ożne.}$

Wiemy, że $deg(a^*/K) \ge k \cdot m$, z drugiej strony

$$k \cdot m \le [K(a^*) : K] \le [K(a_h, b) : K] = [K(b) : K][K(a_n, b) : K(b)] = km$$

czyli wszędzie wyżej są równości i mamy $K(a^*) = K(a_n, b)$.

Wniosek 6.9.

- 1. Jeśli L = $K(a_1, ..., a_n)$ i a_i są rozdzielcze nad K, to $L \supseteq K$ też jest rozdzielcze.
- 2. $K \subseteq L$ jest rozdzielcze i $L \subseteq M$ jest rozdzielcze, to $K \subseteq M$ też jest rozdzielcze.

Dowód. 1. Niech L = K(a) i a jest rozdzielczy nad K. Załóżmy, że b ∈ L nie jest rozdzielczy nad K. Wtedy L = K(b, a).

Wybierzmy teraz $g \in K[X]$ takie, że g(a) = b. Wtedy

$$n \cdot m = |\{f(a) : f \in Gal(\widehat{K}/K)\}| = (\star),$$

bo a jest rozdzielczy nad K. Dalej,

$$(\star) = |\{(f(b), f(a)) : f \in Gal(\widehat{K}/K)\}| = (\star\star),$$

bo f(b) ma k < n możliwości, gdyż b nie jest rozdzielczy nad K i korzystamy z 6.7. Przy ustalonym f(b) skakać po f(a) możemy na co najwyżej m sposobów, bo deg(a/K(b)) = m = deg(f(a)/K(f(b)). Czyli koniec końców

$$(\star\star) \leq k \cdot m < n \cdot m$$

co daje sprzeczność.

2. Podobny dowód zostawiony studentowi do pokiwania głową, że rozumie a w duszy płacz bo co się dzieje?

<u>س</u>

Wykład 7: Rozszerzenia radykalne (czysty Bangladesz)

Niech $K \subseteq L \subseteq \widehat{K}$ jak zwykle. Wtedy

 $a \in L$ jest czysto nierozdzielczy nad K, czyli radykalny, gdy wielomian minimalny a nad K, $w_a(x) \in K[X]$, ma tylko jeden pierwiastek w \widehat{K} .

 $K \subseteq L$ jest **rozszerzeniem radykalnym** (czysto nierozdzielczym), gdy dla każdego a \in L a jest radykalne nad K.

Uwaga 7.1.

- 1. Jeśli char(K) = 0, to a nad K jest czysto nierozdzielczy \iff a \in K.
- 2. a jest radykalne nad K \iff dla każdego f \in Gal(\widehat{K}/K) f(a) = a
- 3. Jeśli char(K) = p, to a jest radykalne nad K \iff istnieje $n \ge 0$ $a^{p^n} \in K$.

Dowód.

- 1. $w_a(x)$ ma tylko pierwiastki jednokrotne, gdy char(K) = 0
- 2. Oczywiste *
- 3. \leftarrow oczywiste: $w_a(x) \in K[X]$ dzieli $x^{p^n} a^{p^n} = (x a)^{p^n} \in K[X]$

 \implies Dowodzimy indukcją po n = deg(a/K). Niech $w_a(x) = (x-a)^n \in K[X]i \ w_a'(x) = n(x-a)^{n-1} \in K[X]i \ w_a' \in I(a/K)$ gdy n > 1, czyli $w_a'(x) = 0$, więc p|n. Niech więc n = p · n₁ i wtedy $w_a(x) = (x^p - a^p)^{n_1}$ i a^p jest radykalny nad K, bo deg(a^p/K) $\le n_1 < n$. Z założenia indukcyjnego istnieje $k \ge 0$ takie, że $(a^p)^{p^k} = a^{p^{k+1}} \in K$ i to jest to, czego szukaliśmy.

S

Niech $K \subseteq L$ będzie rozszerzeniem algebraicznym. Definiujemy

- 1. rozdzielcze domknięcie K w L: $sep_{I}(K) = \{a \in L : a radykalne nad K\}$
- radykalne domknięcie (czysto nierozdzielcze) K w L: rad_L(K) = {a ∈ L a radykalny nad K}

Wniosek 7.2. $K \subseteq \text{sep}_{L}(K)$ $i \text{ rad}_{L}(K) \subseteq L \subseteq \widehat{K}$ to ciała takie, że $\text{sep}_{L}(K) \cap \text{rad}_{L}(K) = K$.

Dowód. Fakt, że $sep_L(K)$ jest ciałem wynika z 6.9. Natomiast to, że $rad_L(K)$ jest ciałem wynika z tego, że

$$rad_L(K) = L \cap \bigcap_{f \in Gal(\widehat{K}/K)} Fix(f) = \{a \in \widehat{K} : f(a) = a\}$$

Dalej, dla $a \in sep_L(K) \cap rad_L(K)$ mamy $w_a(x) = x - a$ jest wielomianem minimalnym a nad K.

 $\Re \widehat{K}^r = \operatorname{rad}_{\widehat{K}}(K)$ jest radykalnym domknięciem K.

Uwaga 7.3.

- 1. Gdy $K \subseteq L \subseteq \widehat{K}$, to $sep_L(K) = \widehat{K}^S \cap L$, $rad_L(K = \widehat{K}^T \cap L)$
- 2. Załóżmy, że K \subseteq L \subseteq M \subseteq \widehat{K} , wtedy K \subseteq L \subseteq M \iff K \subseteq M rad
- 3. $Jeśli \, char(K) = 0$, $to \, sep_L(K) = K^{alg}(L) \, i \, rad_L(K) = K$, $oraz \, \widehat{K}^S = \widehat{K}$, $\widehat{K}^r = K$.

Fakt 7.4. Załóżmy, że $K \subseteq L \subseteq \widehat{K}$, $K_S = \text{sep}_L(K)$, $K_r = \text{rad}_L(K)$, $L' = K_S \cdot K_r$ i niech $L' = K_S \cdot K_r$ będzie złożeniem ciał K_S i K_r w L (tzn. ciało generowane w L przez $K_S \cup K_r$: $L' = K_S(K_r) = K_r(K_S)$). Wtedy:

- 1. $[L':K] = [K_S:K] \cdot [K_r:K]$
- 2. Gdy $K \subseteq L$ jest rozszerzeniem normalnym, to $K_S \cdot K_r = L$
- 3. $K_s \subseteq L$ jest radykalne, a $K_r \subseteq L'$ rozdzielcze

Dowód. Jeśli chark(K) = 0, to problem jest trywialny, bo $K_r = K$, $K_S = L$ i L' = L. Załóżmy więc, że char(K) = p > 0.

1. $L' = K_r(K_s) \supseteq K_r \supseteq K$, wiec:

$$[L':K] = [K_r(K_S):K_r][K_r:K]$$

Wystarczy pokazać, że $[K_S : K] = [K_r(K_S) : K_r]$.

Zadanie z listy 4: Załóżmy, że K \subseteq L, M \subseteq \widehat{K} są rozszerzeniami ciała takie, że L \cap M = K. Jeśli dla wszystkich L₀, M₀ takich, że K \subseteq L₀ \subseteq L i K \subseteq M₀ \subseteq M są skończone i [L₀(M₀) : L₀] = [M₀ : K], to [L(M) : L] = [M : K].

W takim razie wystarczy, że pokażemy

$$[K_r(K_s) : K] = [K_s : K]$$

korzystając z zadania 4 (wyżej). Niech K \subseteq K $_r^0 \subseteq$ K $_r$ i K \subseteq K $_s^0 \subseteq$ K $_s$, pierwsze rozszerzenia są skończone. Na mocy twierdzenia Abela możemy wybrać a \in K $_s^0$ takie, że K $_s^0$ = K(a). Wtedy również

$$K_r^0(K_s^0) = K_r^0(a)$$

i $[K_s^0 : K]$ = stopień a nad $K_r^0(a) : K_r^0$ = stopień a nad K_r^0 . Wystarczy pokazać, że oba te stopnie się zgadzają.

Niech n = [K(a): K] = stopień a nad K. Wtedy

to baza liniowa K(a) nad K. Przez to, że a jest rozdzielczy nad K i p = char(K), to K(a) = K(a^p) [zad. 7 lista 4], czyli dla każdego l > 0

też jest bazą K(a) nad K.

Pokażemy, że 1, a, ..., a^{n-1} jest bazą liniową $K_r^0(a)$ nad K_r^0 :

· liniowa niezależność:

$$\sum k_i a^i \text{ = 0, } k_i \in K^0_r$$

Niech l będzie takie, że $k_i^{p^l} \in K$ dla wszystkich i, wtedy

$$\sum k_i^{p^l} a^{ip^l} = 0 \implies (\forall i) k_i = 0$$

Czyli $[K_r^0(a):K_r^0] \le [K(a):K] = n i 1, a, ..., a^{n-1} jest bazą <math>K_r^0(a)/K_r^0$.

2. Bez straty ogólności załóżmy, że [L : K] < ∞ , bo

$$L = \bigcup \{L_0 : K \subseteq \atop \mathsf{skon}.\mathsf{norm} L_0 \subseteq L\}$$

(a) Niech $a \in L \supseteq K_r$, postulujemy, że a jest rozdzielczy nad K_r . Niech $a = a_1, a_2, ..., a_n$ będą wszystkimi pierwiastkami wielomianu $w_a(X) \in K[X]$ i niech

$$v(x) = \prod_{i=1}^{n} (x - a_i).$$

Wtedy dla $f \in Gal(\widehat{K}/K)$ mamy f[L] = L, więc f permutuje $\{a_1, ..., a_n\}$. Stąd f(v(x)) = v(x), czyli f zachowuje współczynniki v(x). To onzacza, że $v(x) \in K_r[X]$ i mamy, że a jest rozdzielczy nad K_r .

(b) $L \supseteq K_S$ jest radykalne: z uwagi 6.6(3) wiemy, że jeśli $a \in L$ to dla pewnego l mamy a^{p^l} jest rozdzielcze nad K. Czyli $a^{p^l} \in K_S$, więc a jest radykalny nad K_S .

Z podpunktów wyżej wiemy, że $L\subseteq K_r\cdot K_s$ jest rozszerzeniem rozdzielczym i radykalnym, więc $L=K_r\cdot K_s$.

3. L \supseteq K_s jest radykalne w sposób analogiczny do rozumowania wyżej. L' \supseteq K_r jest rozdzielcze, bo L' = K_r[K_s].

7.1 Stopień rozdzielczy, radykalny ciała

$$K\subseteq L\subseteq \widehat{K}$$

Definiujemy $[L:K]_S = [sep_L(K):K]$ jako **stopień rozdzielczy** ciała L nad K oraz $[L:K]_r = [L:sep_L(K)]$ jako **stopień radykalny** L nad K.

Z wyników wyżej dostajemy

$$[L:K] = [L:K]_S \cdot [L:K]_r$$

bo $K \subseteq \text{sep}_L(K)$ jest rozdzielcze, a $\text{sep}_L(K) \subseteq L$ jest radykalne.

Uwaga 7.5. $K \subseteq L \subseteq \widehat{K}$

- 1. Jeśli $K \subseteq L$ jest rozdzielcze, to $[L:K] = |\{f \upharpoonright L : f \in Gal(\widehat{K}/K)\}| = |\{f:L \to \widehat{K} : f \upharpoonright K = id\}|$
- 2. Ogólnie, $[L:K]_S = |\{f \mid L: f \in Gal(\widehat{K}/K)\}|$ (jak wyżej)

Dowód. Rozważamy [L:K] < ∞ . Przypadek ogólny [L:K] można zredukować do przypadku skończonego, co jest ćwiczeniem na liście [wskazówka: rozważyć odpowiednią bazę liniową L nad K]

- 1. Z twierdzenia Abela L = K(a) i dla f \in Gal(\widehat{K}/K), f \uparrow L jest wyznaczone jednoznacznie przez f(a). Wiemy, że f(a) \in {pierwiastki w_a(x)}, których jest n = [L : K].
- 2. $l \supseteq K_S$ to rozszerzenie radykalne, więc $f \upharpoonright L$ jest wyznaczone przez $f \upharpoonright K_S$. Dlatego:

$$|\{f \upharpoonright L : f \in Gal(\widehat{K}/K)\}| = |\{f \upharpoonright K_S : f \in Gal(\widehat{K}/K)\}| = [K_S : K] = [L : K_S]$$

$$\underset{sep_1(K)}{\overset{\Pi}{\bowtie}}$$

Uwaga. Jeśli char(K) = p i [L : K]_r < ∞ , to [L : K]_r jest potęgą p.

Dowód. Indukcja względem $[L:K]_r = [L:K_s]$. Bez starty ogólności załóżmy, że $K = K_s$. Niech $a \in L \setminus K$, wtedy a jest radykalne nad K, czyli istnieje minimalne I takie, że $a^{p^l} \in K$.

Niech $a' = a^{p^{l-1}}$, wtedy $a' \in L \setminus K$ i $(a')^p \in K$, dlatego $w_{a'}(x) = x^p - (a')^p$ i $K \subseteq K(a') \subseteq L$, pierwsze rozszerzenie ma stopień p, a drugie jest radykalne.

Mamy [L: K(a')] < [L: K], więc z założenia indukcyjnego [L: K(a')] = $p^r \implies [L:K] = p^{r+1}$

Wykład 8: Przekształcenia liniowe

Od teraz K \subseteq L to będzie skończone rozszerzenie ciała, L będzie przestrzenią liniową nad K o wymiarze dim_KL = [L : K]. Dla a \in L będziemy opisywać homomorfizm

$$f_a:L \rightarrow L$$

$$f_a(z) = a \cdot z$$

będący K-liniowym przekształceniem.

8.1 Norma, ślad

 $N_{I/K}(a) = det(f_a)$ jest normą homomorfizmu f_a

 $rac{1}{2}$ Tr_{L/K}(a) = Tr(f_a) jest śladem f_a.

Fakt 8.1. Niech $\{f_1, ..., f_k\} = \{f : L \to \widehat{K} : f \upharpoonright K = id\}, k = [L : K]_s i a \in L$. Wtedy

1.
$$N_{L/K}(a) = \left[\prod_{i=1}^{k} f_i(a)\right]^{[L:K]_r}$$

2.
$$Tr_{L/K}(a) = [L : K]_r \cdot \sum_{i=1}^{k} f_i(a)$$
.

Rozważmy najpierw przypadek, gdy $L_K(a)$ i a jest rozdzielczy nad K. Niech $w_a(x) = x^k + a_{k-1}x^{k-1} + ... + a_1x + a_0 \in K[X]$ będzie wielomianem minimalnym dla a nad K.Niech $b_1 = a, ..., b_n \in \widehat{K}$ będą pierwiastkami w_a i możemy założyć bez straty ogólności, że $b_i = f_i(a)$. W takim razie, jeśli popatrzymy na w_a w \widehat{K} , to mamy

$$w_a = \prod (x - b_i)$$

$$a_{k-1} = -\sum b_i$$

$$a_0 = (-1)^k \prod b_i$$

Na mocy zadania 4 z listy 5 dostajemy więc

$$egin{aligned} N_{L/K}(a) &= (-a)^k a_0 = \prod f_i(a) \ Tr_{L/K}(a) &= -a_{k-1} = \sum f_i(a) \end{aligned}$$

Dowód.

1. Niech $a \in L$. Wtedy

$$[L:K_S] = [L:sep_l(K)] = [L:K]_r = p^l \stackrel{zad}{\Longrightarrow} a^{p^l} \in K_S.$$

Mamy wiec

$$[\mathsf{N}_{\mathsf{L}/\mathsf{K}}(\mathsf{a})]^{\mathsf{p}^{\mathsf{l}}} = \mathsf{N}_{\mathsf{L}/\mathsf{K}}(\mathsf{a}^{\mathsf{p}^{\mathsf{l}}}_{\in \mathsf{K}_{\mathsf{S}}}) \overset{\mathsf{zad}}{=} [\mathsf{N}_{\mathsf{K}_{\mathsf{S}}/\mathsf{K}}(\mathsf{a}^{\mathsf{p}^{\mathsf{l}}})]^{[\mathsf{L}:\mathsf{K}_{\mathsf{S}}]} = [\mathsf{N}_{\mathsf{K}_{\mathsf{S}}/\mathsf{K}}(\mathsf{a}^{\mathsf{p}^{\mathsf{l}}})]^{\mathsf{p}^{\mathsf{l}}}.$$

Niech b = a^{p^l} , wtedy

$$N_{K_s/K}(b) \stackrel{\text{zad}}{=} [N_{K(b)/K}(b)]^{[K_s:K(b)]} \stackrel{\text{zad}}{=} \prod_{i=1}^k f_i(b)$$

Tutaj $f_i,...,f_k:L\to \widehat{K}$ są parami różne, więc $f_1\upharpoonright K_s,...,f_k\upharpoonright K_s:K_s\to \widehat{K}$ również są parami różne.

Dlatego zachodzi

$$N_{L/K}(a) = N_{K_s/K}(b) = \prod_{i \le k} f_i(a_{=b}^{p^l}) = \left[\prod_{i \le k} f_i(a)\right]^{p^l}$$

2. • Jeśli [L : K]_r \neq 1, to [L : K]_r = p^l dla l \geq 1 i T_r(a) = 0

(a)
$$a \in K_S$$
, to $tr_{L/K}(a) = [L : K_S] \cdot Tr_{K_S/K}(a) = 0$

(b) a
$$\notin$$
 K_S, wtedy w_a(x) \in K[X] nie jest rozdzielczy na mocy 6.6(4). Czyli K[X^p] \ni w_a(x) = $x^{tp} + a_{(t-1)p}x^{(t-1)p} +$ Stąd $a_{tp-1} = 0 = Tr_{L/K}(a) = [L:K(a)]\underbrace{Tr_{K(a)/K}(a)}_{=0}$

- Jeśli [L : K]_r = 1, to L = K_s i K \subseteq L jest rozdzielcze. Patrzymy na ciąg

$$K \subseteq K(a) \subseteq L$$

mamy

$$Tr_{L/K}(a) = [L : K(a)] \cdot Tr_{K(a)/K}(a)$$

Możemy wziąc b takie, że K(a, b) = L. Teraz liczymy homomorfizmy L $\underset{K}{\rightarrow}$ \widehat{K} i dostajemy:

$$[L:K(a)\cdot Tr_{K(a)/K}(a)=\sum_{i\leq k}f_i(a)$$

8.2 Rozszerzenia Galois

 $K\subseteq L\subseteq \widehat{K}$

Mówimy, że rozszerzenie algebraiczne jest **Galois**, gdy dla każdego $a \in L \setminus K$ istnieje $f \in Gal(L/K)$ takie, że $f(a) \neq a$.

Niech $G \leq Aut(L)$. Wtedy **ciałem punktów stałych** grupy G nazywamy

$$L^G = \{a \in L : (\forall f \in G) f(a) = a\} = \bigcap_{f \in G} Fix(f)$$

 $\textbf{Uwaga:} \text{ Jeśli } K \subseteq L \text{ jest algebraiczne, to } K \subseteq L \text{ jest Galois } \iff K = L^{G(L/K)} \text{ [\'ewiczenia]}.$

Przykłady:

- 1. L = K(a) i a jest algebraiczne nad K. w_a jest wielomianem minimalnym dla a i a = a_1 , ..., a_k są wszystkie pierwiastki w_a w L. Wtedy $G(L/K) \ni F$ jest wyznaczone przez $f(a) \in \{a_1, ..., a_k\}$. Stąd też $|Gal(L/K)| \le k \le [L:K]$.
- 2. L = K(a₁, ..., a_k) \supseteq K jest ciałem rozkładu wielomianu w(x) \in K[X] (a₁, ..., a_k to wszystkie pierwiastki w w L). Gal(L/K) \ni f jest wyznaczone przez f \upharpoonright {a₁, ..., a_n} \in Sum({a₁, ..., a_n}) i istnieje monomorfizm G(L/K) \rightarrow Sum({a₁, ..., a_n}) taki, że f \mapsto f \upharpoonright {a₁, ..., a_n}.
- 3. $\zeta_a \in \mathbb{C}$ jest pierwiastkiem pierwotnym z 1 sotpnia m. Wtedy $[\mathbb{Q}[\eta_1]:\mathbb{Q}] = \phi(m)$ i $\eta_1 \in \{\zeta_1,...,\zeta_{\phi(m)}\subseteq\mathbb{C}$ to wszystkie pierwiastki pierwotne stopnia m z 1 w \mathbb{C} . Dowolny $\mathrm{Gal}(\mathbb{Q}[\zeta_1]/\mathbb{Q})\ni \mathrm{f}$ jest wyznaczony przez $\mathrm{f}(\zeta_1)$ (może być dowolny ζ_i , $1\leq i\leq m$), bo $\mathrm{Gal}(\mathbb{Q}[\zeta_1]/\mathbb{Q})=\mathbb{Q}(\zeta_i)$. Czyli $\mathrm{f}(\zeta_1)=\zeta_1^{\mathrm{l}_f}$ dla pewnego $\mathrm{got}(0)=\mathrm{l}_f$ 0 takiego, że $\mathrm{gcd}(0)=\mathrm{l}_f$ 1. Czyli $\mathrm{Gal}(\mathbb{Q}(\zeta_1)/\mathbb{Q})\cong\mathbb{Z}_m^{\mathrm{k}}$ takie, że $\mathrm{f}\mapsto \mathrm{l}_\mathrm{f}$ 1.

Twierdzenie 8.2. Niech $K \subseteq L$ będzie algebraiczne. Wtedy $K \subseteq L$ jest Galois $\iff K \subseteq L$ jest rozdzielcze i normalne.

Dowód. Bez starty ogólności niech $L \subseteq \widehat{K}$

 \implies Niech $a \in L \setminus K$ i niech $a = a_1, ..., a_n \in L$, wszystkie parami różne, będą pierwiastkami $w_a(x) \in K[X]$ w L.

Niech $v(x) = (x - a_1)(x - a_2)...(x - a_n) \in L[X]$, wtedy $v(x)|w_a(x)$ i v(x) jest niezmienniczy względem Gal(L/K) [f permutuje $a_1, ..., a_n$]. Czyli $v(x) \in L^{Gal(L/K)}[X] = K[X]$, bo $K \subseteq L$ jest Galois. Stąd $w_a|v$, więc v = w jest rozdzielczy i rozkłada się nad L na czynniki liniowe. Stąd wynika, że $K \subseteq L$ jest rozdzielcze i normalne.

 \leftarrow

Weźmy $a \in L \setminus K$ i niech $w_a(x)$ będzie wielomianem minimalnym [rozdzielczym]. Istnieje $a \neq a' \in L$ będące innym pierwiastkiem w_a w L (bo L normalne). Istnieje $f \in Gal(\widehat{K}/K)$ takie, że f(a) = a'. Ponieważ $K \subseteq L$ było normalne, to f[L] = L i mamy $f \upharpoonright L \in Gal(L/K)$, $f \upharpoonright L(a) \neq a$, czyli z uwagi wcześniej $K \subseteq L$ jest Galois.

Wniosek 8.3. Załóżmy, że mamy $K \subseteq L \subseteq M \subseteq K$. $K \subseteq M$ jest rozszerzeniem Galois $\iff L \subseteq M$ jest Galois.

Twierdzenie 8.4. Twierdzenie Artina: niech $G \le Aut(L)$, wtedy $L^G \subseteq L$ jest rozszerzeniem Galois i $[L:L^G] = |G|$.

Dowód. Niech $G \leq Gal(L/L^G)$, wtedy:

- dla każdego $x \in L \setminus L^G$ istnieje $f \in Gal(L/L^G)$ takie, że f(x) = x
- $L^G \subseteq L$ jest algebraiczne:

Niech $a \in L \setminus L^G$, $\{a = a_0, ..., a_l\} = G(a)$ będzie orbitą a w L. Niech $w(x) = (x - a_0)(x - a_1)...(x - a_n) \in L[X]$. Wtedy dla każdego $g \in G$ mamy g(w(x)) = w(x) i $w \in L^G[X] \implies$ a jest algebraiczny nad L^g .

Ponieważ deg(w) \leq |G|, to [L^G(a): L^g] \leq |G|. L^g jest rozdzielczym rozszerzeniem L, co razem z twierdzeniem Abela daje nam [L: L^G] \leq |G| i L = L^G(a) dla pewnego a. Czyli $w_a(x) \in L^G[X]$ jest wielomianem minimalnym a nad L^G, więc deg(w_a) \leq |G|.

 $L^g\subseteq L$ jest rozdzielcze i normalne. Czyli $|Gal(L^G/L)|=deg(w_a)=[L:L^G]\leq |G|$. Ponieważ $G\leq Gal(L/L^G)$, to $G=Gal(L/L^G)$ i $[L:L^g]=|G|$

Wniosek 8.5. Niech $K \subseteq L$ będzie skończonym rozszerzeniem Galois. Wtedy [L : K] = |Gal(L/K)|

Dowód. Niech G = Gal(L/K), wtedy K = L^G i G jest skończona i z twierdzenia Artina [L : K] = [L : L^G] = |G|

 $K\subseteq L\subseteq \widehat{K}.$ Definiujemy $\mathscr{L}=\{L'\ :\ K\subseteq L'\subseteq L\}$ $\mathscr{G}=\{H:H\leq Gal(L/K)\}$

Od razu pojawiają nam się naturalne homomorfizmy:

$$\Gamma: \mathscr{L} \to \mathscr{G}$$

$$\mathsf{L}' \mapsto \mathsf{Gal}(\mathsf{L}/\mathsf{L}') < \mathsf{Gal}(\mathsf{L}/\mathsf{K})$$

$$\begin{split} & \Lambda: \mathscr{G} \to \mathscr{L} \\ & \mathsf{G} \mapsto [\mathsf{K} \subseteq] \mathsf{L}^\mathsf{G} \subseteq \mathsf{L} \end{split}$$

Twierdzenie 8.6. Załóżmy, że K \subseteq L jest skończonym rozszerzeniem Galois Wtedy Γ jest bijekcją $i \Lambda = \Gamma^{-1}$.

Dowód.

$$\mathscr{L} \ni \mathsf{L}' \stackrel{\Gamma}{\mapsto} \mathsf{Gal}(\mathsf{L}/\mathsf{L}') \stackrel{\Lambda}{\mapsto} \mathsf{L}^{\mathsf{Gal}(\mathsf{L}/\mathsf{L}')} = \mathsf{L}',$$

bo $L' \subseteq L$ jest Galois i używamy 8.3.

Czyli $\Lambda \circ \Gamma$ = od $_{\mathscr{L}}$. Tak samo w drugą stronę:

$$\mathscr{G} \ni \mathsf{H} \stackrel{\Lambda}{\mapsto} \mathsf{L}^\mathsf{H} \subseteq \mathsf{K} \stackrel{\Gamma}{\mapsto} \mathsf{Gal}(\mathsf{L}/\mathsf{L}^\mathsf{H}) = \mathsf{H}$$

Wniosek 8.9. Załóżmy, że $K \subseteq L$ jest skończone i Galois. Dla $H \le Gal(L/K)$ mamy $H \triangleleft Gal(L/K) \iff K \subseteq L^H(= \Lambda(H))$ jest normalne (tzn. tutaj Galois).

Ponadto wtedy $Gal(L^H/K) \cong Gal(L/K)/H$

Przed dowodem ćwiczenie, które pojawi się na liście zadań:

Niech K \subseteq L' \subseteq L \subseteq \widehat{K} takie, że K \subseteq L jest normalne (może być też skończone). Wtedy K \subseteq L' jest normalne \iff dla każdej f \in Gal(L/K) f[L'] = L' [ćwiczenia].

Dowód. Mocno rysunkowy (teoria modeli). Niestety, twórca notatek nie miał nigdy wcześniej styczności z teorią modeli.

Weźmy $f \in Gal(L/K)$

Mamy strukturę 2-sortową:

$$(L, Gal(L/K), \star),$$

gdzie L to struktura ciała, Gal(L/K) daje strukturę grupy, a ⋆ jest działaniem Gal(L/K) na L.

Przekształcenie f : $L \xrightarrow{\cong} L$ indukuje izomorfizm

$$\widehat{f}: Aut(L) \xrightarrow{\cong} Aut(L)$$

$$\widehat{f}(\phi) = f \circ \phi \circ f^{-1}$$
.

to znaczy $\widehat{f} = j_f \in Inn(Aut(L))$, gdzie Inn(G) to automorfizmy powstałe przez sprzężanie f z ϕ . Ponieważ $f \upharpoonright K = id_K$, to f indukuje również $\widehat{f} : Gal(L/K) \to Gal(L/K)$, czyli

$$\hat{f} = j_f \in Inn(Gal(L/K))$$

Mamy więc izomorfizm

$$f \cup \widehat{f} : (L, Gal(L/K), \star) \xrightarrow{\cong} (L, Gal(L/K), \star).$$

Czyli

$$\mathsf{L}^\mathsf{H} = \bigcap_{g \in \mathsf{H}} \mathsf{Fix}(g) \implies \mathsf{f}[\mathsf{L}^\mathsf{H}] = \bigcap_{g \in \widehat{\mathsf{f}}[\mathsf{H}]} \mathsf{Fix}(g) = \mathsf{L}^\mathsf{H} = \mathsf{L}^{\widehat{\mathsf{f}}[\mathsf{H}]}$$

Dowód. Wersja bardziej zrozumiała dla zwykłych śmiertelników.

Pierwszą obserwację jest:

$$\mathsf{H} \triangleleft \mathsf{Gal}(\mathsf{L}/\mathsf{K}) \iff (\forall \ f \in \mathsf{Gal}(\mathsf{L}/\mathsf{K})) \ \widehat{\mathsf{f}}[\mathsf{H}] = \mathsf{fHf}^{-1} = \mathsf{H} \iff \mathsf{L}^{\widehat{\mathsf{f}}[\mathsf{H}]} = \mathsf{L}^{\mathsf{fHf}^{-1}} = \mathsf{L}^{\mathsf{H}}$$

$$\begin{split} L^{\widehat{f}[H]} &= L^{fH}f^{-1} = \{a \in L \ : \ (\forall \ g \in H) \ f(g(f^{-1}(a))) = a\} = \\ &= f[\{f^{-1}(a) \ : \ (\forall \ g \in H) \ g(f^{-1}(a)) = f^{-1}(a)\}] = f[L^H] \end{split}$$

Czyli mamy $f[L^H] = L^{\widehat{f}[L]} = L^H$, co jest możliwe $\iff K \subseteq L^H$ jest rozszerzeniem normalnym.

Załóżmy, że H \triangleleft Gal(L/K), tzn. K \subseteq L^H jest rozszerzeniem Galois z poprzedniej części dowodu. Mamy wtedy

$$\phi : Gal(L/K) \rightarrow Gal(L^H/K)$$

czyli obcięcie identyczności do L^H. Jądro tego przekształcenia to:

$$\ker(\phi) = \{ f \in Gal(L/K) : f \upharpoonright L^H = id_{H} \} = Gal(L/L^H) = H$$

tak jak w twierdzeniu Artina 8.4. Dlatego, na mocy twierdzenia o izomorfizmie grup, istnieje izomomrfizm

$$Gal(L^H/K) \cong Gal(L/K)/H$$

Wykład 9: Rozszerzenia abelowe

9.1 Rozszerzenia abelowe

Załóżmy, że $K \subseteq L$ jest skończonym rozszerzeniem Galois. Wtedy rozszerzenie $K \subseteq L$ jest abelowe (cykliczne) gdy Gal(L/K) jest abelowe (cykliczne).

Twierdzenie 9.3. Założmy, że K \subseteq L₁ \subseteq L to rozszerzenia ciał. Jeśli K \subseteq L jest abelowe (cykliczne), to K \subseteq L₁ i L₁ \subseteq L też takie są.

Dowód. Z tego, że $Gal(L/L_1) \triangleleft Gal(L/K)$ wynika, że $K \subseteq L_1$ i $L_1 \subseteq L$ jest rozszerzeniem Galois i $Gal(L_1/K) \cong Gal(L/K)/Gal(L/L_1)$. Dlatego mamy $Gal(L/L_1)$ i $Gal(L_1/K)$ są abelowe (cykliczne).

Przykłady:

1. Niech K $\subseteq \widehat{K}$ i $\zeta \in \widehat{K}$ będzie pierwiastkiem pierwotnym stopnia n z 1.

$$\begin{array}{ccc} \text{Gal}(\textbf{K}(\zeta)/\textbf{K}) & \longleftarrow & \mathbb{Z}_n^* \\ & & & & \cup \\ & & & & f & \longmapsto & l_f \end{array}$$

 l_f wybieramy tak, żeby $f(\zeta)=\zeta^{l_f}$ 0 < l_f < n. Gdy char(K) = 0, to homomorfizm wyżej jest izomofrizmem, wpp nie musi być to prawdą. Natomiast mamy pewność, że K(ζ) \supseteq K jest rozszerzeniem abelowym.

2. Niech char(K) = p i p \nmid n. Wybierzmy a \in K takie, że $\sqrt[n]{a} \notin$ K. Załóżmy, że $\zeta \in$ K jest pierwiastkiem pierwotnym z 1 stopnia n.

W takim przypadku, L = K($\sqrt[n]{a}$) \supseteq K jest rozszerzeniem Galois i niech w(x) = xⁿ – a (niekoniecznie nierozkładalny). Pierwiastki w(a) w L mają postać $\zeta^i \sqrt[n]{a}$ dla i = 0, ..., n – 1.

Niech $f \in Gal(L/K)$ będzie wyznaczony przez $f(\sqrt[n]{a}) = \zeta^{l_f} \sqrt[n]{a}$ dla $0 \le l_f < n$. Wtedy funkcja jak wyżej, tzn.

$$Fal(L/K) \ni f \mapsto l_f \in \mathbb{Z}_n^*$$

jest monomorfizmem, ponieważ

$$\begin{aligned} \text{Gal}(L/K) \ni f \mapsto l_f \\ \text{Fal}(L/K) \ni g \mapsto l_g \\ (g \circ f)(\sqrt[n]{a}) = g(\zeta^{l_f}\sqrt[n]{a}) = \zeta^{l_f}g(\sqrt[n]{a}) = \zeta^{l_f}\zeta^{l_g}\sqrt[n]{a} = \zeta^{l_f+l_g}\sqrt[n]{a}, \end{aligned}$$

więc $l_{g \circ f} = l_g +_n l_f$. Z tego powodu, Gal(L/K) jest grupą cykliczną.

Twierdzenie 9.4. Załóżmy, że $K \subseteq L$ jest rozszerzeniem cykliczny takim, że [L : K] = n. Niech $\zeta \in K$ będzie pierwiastkiem pierwotnym z 1 stopnia n (czyli p \nmid n gdy char(K) = p). Wtedy $(\exists a \in K) L = K(\sqrt[n]{a})$.

Dowód. Niech $\gamma \in Gal(L/K)$ będzie generatorem rozszerzenia L rzędu n. Dla b \in L niech

$$c(b) = b + \zeta \gamma(b) + ... + \zeta^{n-1} \gamma^{n-1}(b)$$

$$\gamma(c(b)) = \gamma(b) + \zeta \gamma^{2}(b) + ... + \zeta^{n-1} \underbrace{\gamma^{n}(b)}_{=b} = \zeta^{-1}c(b)$$

$$\gamma^{i}(c(b)) = \zeta^{-a}c(b), i = 0, 1, 2, ...$$

Jeżeli c(b) \neq 0 [założenie ad hoc], to

$$\{\gamma^{0}(c(b)), \gamma(c(b)), ..., \gamma^{n-1}(c(b))\}$$

jest n-elementowym zbiorem pierwiastków wielomianu $w_{c(h)}(x) \in K[X]$, czyli

$$[K(c(b):K] \ge n \implies K(c(b)) = L,$$

bo $K(c(b)) \subseteq L$.

Mamy $c(b)^n \in K$, bo

$$\gamma^{\mathsf{i}}(\mathsf{c}(\mathsf{b})^{\mathsf{n}}) = \left\lceil \gamma^{\mathsf{i}}(\mathsf{c}(\mathsf{b})) \right\rceil^{\mathsf{n}} = \left[\zeta^{-\mathsf{i}} \mathsf{c}(\mathsf{b}) \right]^{\mathsf{n}} = \zeta^{-\mathsf{i}\mathsf{n}} \mathsf{c}(\mathsf{b})^{\mathsf{n}} = \mathsf{c}(\mathsf{b})^{\mathsf{n}}$$

dla wszystkich i = 0, 1, ..., n – 1. Dlatego c(b) = $\sqrt[n]{a}$ dla a = c(b)ⁿ \in K i L = K($\sqrt[n]{a}$).

Wszystko to zachodzi pod warunkiem, że c(b) \neq 0, ale wiemy, że istnieje b \in L takie, że c(b) \neq 0, bo:

Twierdzenie 9.5. Załóżmy, że α_1 , ..., $\alpha_n \in Aut(L)$, a_1 , ..., $a_n \in L$ i każdy jest $\neq 0$. Wtedy

$$(\exists \ c \in L) (\sum a_i \alpha_i)(c) \neq 0$$

Innymi słowy: $\alpha_1,...,\alpha_n$ są liniowo niezależne w przestrzeni L^L nad L.

Dowód. Indukcja względem n. Dla n = 1 jest to oczywiste. c = 1 : $a_1\alpha_1(1) = a_1 \neq 0$.

Krok indukcyjny:

Załóżmy nie prosty, że ($\forall \ x \in L$) $\sum^{n+1} a_i \alpha_i(x) = 0$. Niech $a \in L$ dowolne różne od zera. Wtedy

$$(\forall \ x \in L) \ \sum_{n+1}^{n+1} a_i \alpha_i(ax) = 0$$

$$\sum_{n+1}^{n+1} (a_i \alpha_i(a)) \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} a_i \alpha_i(a) [\alpha_{n+1}(a)]^{-1} \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} a_i \alpha_i(x) - \sum_{n+1}^{n+1} a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \cdot \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

$$\sum_{n+1}^{n+1} \left[a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} \right] \alpha_i(x) = 0$$

Z założenia indukcyjnego wiemy, że cała ta suma nie jest zerem, więc zerem musi być 1 – α_{n+1} , czyli każdy poziom sumy po wymnożeniu jest zerem i:

$$a_i - a_i \alpha_i(a) \alpha_{n+1}(a)^{-1} = 0$$
,

czyli $\alpha_i(a) = \alpha_{n+1}(a)$ gdy $a_i \neq 0$. Z tego wynika, że dla każdego $a \in L$ jest $\alpha_i(a) = \alpha_{n+1}(a)$ i w takim razie $\alpha_i = \alpha_n$, co daje sprzeczność, bo α_i były parami różne.

9.2 Rozwiązywalne rozszerzenia ciał i rozszerzenia przez pierwiastki

Załóżmy, że $K \subseteq L$ jest skończonym rozszerzeniem ciał.

- K ⊆ L jest rozszerzeniem rozwiązywalnym, gdy K ⊆ L jest Galois i Gal(L/K) jest grupą rozwiązywalną.
- 2. K ⊆ L jest **rozszerzeniem ciała przez pierwiastki** [radicals], gdy istnieje k oraz

$$L \subseteq L_0 \supseteq L_1 \supseteq ... \supseteq L_k = K$$

takie, że dla każdego i < k L; jest ciałem rozkładu wielomianu

- $x^{n_i} b_i$, $b_i \in L_{i+1}$ nad L_{i+1} ($p \nmid n_i$ jeśli char(K) = p
- lub $x^p x b_i$ dla L_{i+1} nad L_{i+1}

Twierdzenie 9.6. Załóżmy, że $K \subseteq L$ jest rozszerzeniem skończonym ciał. Wtedy $K \subseteq L$ jest rozszerzeniem przez pierwiastki \iff istnieje $L' \supseteq L$ takie, że $K \subseteq L'$ jest rozwiązalne.

Dowód. ⇒

Możemy założyć, że $K \subseteq L_0$ jest rozszerzeniem Galois (przez rozszerzenie ciąg), wtedy mamy ciąg normalny grup [ćwiczenie].

$$Gal(L_0/L_k) \triangleright Gal(L_0/L_{k-1}) \triangleright Gal(L_0/L_{k-1}) \triangleright ... \triangleright Gal(L_0/L_1) \triangleright \{e\}$$

faktorami tego ciągu są $Gal(L_i/L_{i+1})$. Wystarczy pokazać, że $L_i \supseteq L_{i+1}$ jest rozwiązywalna [wtedy można rozdrobić ciąg wyżej tak, by miał faktory abelowe].

Alternatywnie: H ⊲ G, jeśli H jest rozwiązywalna i G/H jest rozwiązywalna, to G jest rozwiązywalna [ćwiczenie].

Rozważamy przypadki wielomianów z definicji wyżej:

xⁿi - bi

Niech $a_i = \sqrt[n_i]{b_i} \in L_i$. Wtedy $L_i = L_{i+1}(\zeta_{n_i}, a_i)$, ζ_{n_i} jest pierwiastkiem pierwotnym z 1 stopnia n_i .

$$L_{i} = L_{i+1}(\zeta_{n_{i}}, a_{i}) \stackrel{(\clubsuit)}{\supseteq} L_{i+1}(\zeta_{n_{i}}) \supseteq L_{i+1}$$

Ponieważ $L_{i+1} \supseteq L_i$ jest rozszerzeniem Galois, to takie jest również rozszerzenie (*) i L_i

$$\operatorname{Gal}(L_{i+1}(\zeta_{n_i}, a_i)/L_{i+1}(\zeta_{n_i})) \cong \mathbb{Z}_{n_i}^*$$
 jest cykliczna i abelowa.

Również rozszerzenie $L_{i+1}\subseteq L_{i+1}(\zeta_{n_i})$ jest Galois i grupa $Gal(L_{i+1}(\zeta_{n_i})/L_{i+1})$ jest abelowa.

Stąd

$$Gal(L_i/L_{i+1}) \stackrel{(\mathfrak{D})}{\triangleright} Gal(L_i/L_{i+1}(\zeta_{n_i}) \triangleright \{e\}$$

i faktor w ($\mathfrak D$) jest izomorficzny do abelowej grupy $\operatorname{Gal}(L_i(\zeta_{n_i})/L_{i+1})$. Czy $\operatorname{Gal}(L_i/L_{i+1})$ jest rozwiązywalna stopnia ≤ 2 .

• $x^{p} - x - b_{i}$

Niech $a \in L_i$ będzie peirwiastkiem wielomianu wyżej. Wtedy a + 1 jest również pierwiastkiem, bo

$$(a + 1)^p - (a + 1) - b_i = a^p + 1^p - a - 1 - b_i = a^p - a - b_i = 0$$

Dlatego a, a + 1, ..., $a_i(p-1) \in L_i$ i wszystkie są pierwiastkami wielomianu wyżej. Stąd $L_i = L_{i+1}(a)$.

Niech $f \in Gal(L_i/L_{i+1})$ będzie wielomianem wyznaczanym przez $f(a) = a + l_f$. Przekształcanie

$$\text{Fal}(L_i/L_{i+1})\ni f\mapsto l_f\in\mathbb{Z}_p^*$$

daje $Gal(L_i/L_{i+1}) \hookrightarrow \mathbb{Z}_p^*$ (w istocie jest tutaj \cong). Więc $l_i \supseteq L_{i+1}$ jest rozszerzeniem cyklicznym, czyli rozwiązywalny,

 \leftarrow

Niech K \subseteq L będzie rozszerzeniem rozwiązywalnym. Pokażemy, że jest też rozszerzeniem pierwiastkowym.

Niech

$$Gal(L/K) \triangleright G_{k-1} \triangleright G_{k-2} \triangleright ... \triangleright G_0 = \{e\}$$

będzie ciągiem normalnym podgrup o faktorach abelowych i bez straty ogólności cyklicznych, prostych, tzn. $\cong \mathbb{Z}_q$, q - liczba pierwsza. Wtedy

jest ciągiem rozszerzeń cyklicznych, prostych.

Claim: Wystarczy teraz pokazać, że jeśli K \subseteq L jest cykliczne, L \subseteq \widehat{K} i Gal(L/K) jest prosta, to K \subseteq L jest pierwiastkowe.

Dowód na boczku: Niech [L : K] = n, $Gal(L/K) \cong \mathbb{Z}_n^*$, a n jest liczbą pierwszą. Rozważamy przypadki charakterystyk ciał:

• $carh(K) = p \neq n \ lub \ char(K) = 0$

Niech $\zeta \in \widehat{K}$ będzie pierwiastkiem pierwotnym z 1 stopnia n. Mamy, że $K \subseteq K(\zeta)$ i $K(\zeta) \subseteq L(\zeta)$ jest rozszerzeniem Galois. Dalej, $[L(\zeta):K(\zeta)]|[L:K]$, bo $Gal(L(\zeta)/K(\zeta)) \hookrightarrow Gal(L/K) \cong \mathbb{Z}_n^*$. Niech $m = [L(\zeta):K(\zeta_1, \text{czyli } m = 1 \text{ lub } m = n. \text{ Z twierdzenia 9.4 dostajemy}$

$$L(\zeta) = K(\zeta)(\sqrt[n]{a}), a \in K(\zeta)$$

gdy m = n. Gdy m = 1 jest trywialne.

char(K) = p = n

Niech $\gamma \in Gal(L/K)$ będzie generatorem. Z twierdzenia Dedekinda (9.5) wiemy, że istneiej b \in L takie, że

$$\mathsf{K} \in \mathsf{Tr}_{\mathsf{L}/\mathsf{K}}(\mathsf{b}) = \sum_{\mathsf{i}=\mathsf{0}}^{\mathsf{p}-\mathsf{1}} \gamma^{\mathsf{i}}(\mathsf{b}) \not= \mathsf{0}$$

Dla b' = $\frac{1}{1}$ b mamy Tr_{1/K}(b') = 1.

Niech a = $\gamma(b')$ + $2\gamma^2(b')$ + ... + $(p-1)\gamma^{p-1}(b')$. Wtedy

$$\gamma(a) = \gamma^2(b') + 2\gamma^3(b') + ... + \underbrace{(p-1)\gamma^p(b')}_{=b'} = a - Tr_{L/K}(b') = a - 1,$$

ale

$$\gamma(a^p - a) = \gamma(a)^p - \gamma(a) = (a - 1)^p - (a - 1) = a^p - a$$

więc $a^p - a \in Fix(\gamma) = K$. Niech $c = a^p - a$. Stąd a jest pierwiastkiem $x^p - x - v$ oraz L to ciało rozkładu $x^p - x - c$ nad K, więc $K \subseteq L$ jest pierwiastkowe.

Przykłady:

1. Niech $S_n := Sym(\{x_1, ..., x_n\})$ będzie grupą funkcji symetrycznych o n zmiennych, $L = K(x_1, ..., x_n)$ i $M = K(x_1, ..., x_n)^{S_n}$. Wiemy, że $S_n < Aut(L)$. Z twierdzenia Artina wiemy, że $S_n < L$ jest rozszerzeniem Galois oraz $S_n = Gal(L/M)$.

W przypadku, gdy $n \geq 5$ S_n nie jest rozwiązalna, więc $M \subseteq L$ też takie nie jest. L jest ciałem rozkładu wielomianu

$$\begin{split} \mathsf{M}[\mathsf{T}] \ni \mathsf{w}(\mathsf{T}) = & (\mathsf{T} - \mathsf{x}_1)(\mathsf{T} - \mathsf{x}_2)...(\mathsf{T} - \mathsf{x}_n) = \\ & = \mathsf{T}^n - \sigma_1(\overline{\mathsf{x}})\mathsf{T}^{n-1} + \sigma_2(\overline{\mathsf{x}})\mathsf{T}^{n-2} + ... + (-1)^{n-1}\sigma_{n-1}(\overline{\mathsf{x}})\mathsf{T} + (-1)^n\sigma_n(\overline{\mathsf{x}}) \end{split}$$

gdzie $\sigma_i(\overline{x}) = \sum_{1 \leq j_1 < ... < j_i \leq n} x_{j_1} x_{j_2} ... x_{j_n}$ to bazowe funkcje symetryczne (wzory Viete'a). Mamy $\sigma_i(\overline{x}) \in M = L^{S_n}$.

2. Gdy K ⊆ L jest rozszerzeniem ciał oraz L jest ciałem rozkładu nad K wielomianu w(x) stopnia co najwyżej 4, to Gal(L/K) wkłada się w S₄, a S₄ jest grupą rozwiązywalną. Podgrupa grupy rozwiązywalnej jest nadal rozwiązywalna, więc równanie

$$w(x) = 0$$

jest rozwiązywalne przez pierwiastki.

Niech M = $L^{Gal(L/K)}$. Wtedy z twierdzenia Artina wiemy, że K \subseteq M jest radykalne, a M \subseteq L jest Galois (fakt 7.4.). $Gal(L/K) \implies M \subseteq L$ jest rozszerzeniem pierwiastkowym, tzn:

$$L \subseteq L_0 \supseteq L_1 \supseteq ... \supseteq L_k$$
 = M,

wszystkie rozszerzenia $L_i \supseteq L_{i+1}$ są rozszerzeniami o pierwiastki, więc wszystkie pierwiastki w(x) dają się wyrazić nad K poprzez stosowanie działań ciała (włączając dzielenie, odejmowanie) oraz "pierwiastkowanie" tj. branie rozwiązań wielomianów x^n – a lub x^p – x – a.

Gdy z kolei wielomian w(x) jest stopnia 5 to nie musi być to prawdą [ćwiczenie: czy dla 6,7 powyższe zachodzi?]

Fakt
$$K(\sigma_1, ..., \sigma_n) = K(x_1, ..., x_n)^{S_n}$$

Dowód. ⊆ jasne

 \supseteq

$$\begin{split} \mathsf{K}(\vec{\sigma}) \subseteq \mathsf{K}(\overline{\mathsf{x}})^{\mathsf{S}_{\mathsf{N}}} \subseteq \mathsf{K}(\overline{\mathsf{x}}) \\ \mathsf{n}! &= [\mathsf{K}(\overline{\mathsf{x}}) : \mathsf{K}(\overline{\mathsf{x}})^{\mathsf{S}_{\mathsf{N}}}] \leq [\mathsf{K}(\overline{\mathsf{x}}) : \mathsf{K}(\vec{\sigma})] \leq \mathsf{n}!, \end{split}$$

z czego ostatnia nierówność zachodzi, bo $K(\overline{x})$ jest ciałem rozkładu wielomianu

$$w(T) = (T - x_1)...(T - x_n)$$

nad K(σ). Czyli mamy

$$[K(\overline{x}):K(\overline{x})^{S_n}]=[K(\overline{x}):K(\vec{\sigma})]]$$

i zawieranie $K(\vec{\sigma}) \subseteq K(\bar{x})^{S_n}$ jest tak naprawdę równością.

Można też pokazać, że $K[\sigma_1, ..., \sigma_n] = K[x_1, ..., x_n]^{S_n}$, co jest **podstawowym twierdzeniem o wielomi-anach symetrycznych**.

Zastosowania: czyli konstrukcje przy pomocy cyrkla i linijki. Dane są punkty A eq B \in \mathbb{R}^2 .

cyrkiel

Mamy okrąg
$$\{ \begin{pmatrix} x \\ y \end{pmatrix} : (x - a)^2 + (y - b)^2 = r^2 \}$$
:

czyli r =
$$\sqrt{(a'-a)^2 + (b'-b)^2}$$

linijka

Rozważamy prostą L przechodzącą przez punkty A i B, czyli o równaniu

$$\begin{vmatrix} x - a & a' - a \\ y - b & b' - b \end{vmatrix} = 0$$

Niech $(a_1,b_1),...,(a_n,b_n)\in\mathbb{R}^2$. Punkt $(a,b)\in\mathbb{R}^2$ jest konstruowany przy pomocy cyrkla i linijki na płaszczyźnie \mathbb{R}^2 z punktów $(a_1,b_1),...,(a_n,b_n)$ i punktów $(0,1),(1,0)\iff$ rozszerzenie ciał $K\subseteq K(a,b)$ jest rozszerzeniem przez pierwiastki stopnia ≤ 2 . Tutaj oczywiście $K=\mathbb{Q}(a_1,b_1,...,a_n,b_n)$.

· Kwadratura koła:

Dane jest koło o promieniu 1 i punkt (0, 1). Szukamy kwadratu o polu π . Równoważnie problem można wyrazić jako szukanie punktu (0, $\sqrt{\pi}$). Ale π jest liczbą przestępną, więc $\sqrt{\pi}$ też takie jest i rozwiązanie jest niemożliwe.

· Trysekcja kąta:

Dany jest kąt $0 < \theta < \pi$ i naszym celem jest skonstruować kąt $\frac{1}{3}\theta$.

a jest algebraiczne nad b, bo

$$4a^3 - 3a - b = 0$$
.

Cel jest niemożliwy, gdyż $[\mathbb{Q}(a,b):\mathbb{Q}(b)]$ = 3.

Podwojenie sześcianu o krawędzi jednostkowej, równoważnie skonstruowanie (0, a), gdzie s³ = 2.
 Również jest to niemożliwe.

Wykład 10: Rozszerzenia przestępne ciał

 $K \subset L$ to rozszerzenie ciał.

K \subseteq L jest **przestępne**, gdy istnieje a \in L takie, że a jest przestępne nad K (tzn. I(a/K) = 0).

 $K \subseteq L$ jest czysto przestępne, gdy każde $a \in L$ jest przestępne nad K.

Uwaga 10.1. a jest przestępne nad K \iff K(a) \cong K(x).

Dowód. Ćwiczenia

Niech U = \widehat{U} będzie (dużym) ciałem oraz K \subseteq U będzie podciałem. Niech F \subseteq K będzie podciałem prostym.

acl $_K: P(U) \to P(U)$ to operator algebraicznego domknięcia nad K taki, że dla A \subseteq A acl $_K(A) = K(A)^{alg} \subseteq U$.

 $A \subseteq U$ jest algebraicznie domknięte nad K, gdy $A = cl_K(A)$.

10.1 Własności

- 1. $\operatorname{acl}_{K}(\emptyset) = \widehat{K}$
- 2. (a) $A \subseteq B \implies cl_K(A) \subseteq (B)$ monotoniczność
 - (b) $A \subseteq \operatorname{acl}_{K}(A)$
 - (c) $\operatorname{acl}_K(\operatorname{acl}_K(A)) = \operatorname{acl}_K(A)$ idempotetność, tzn: acl_K jest operatorem domknięcia.
- 3. $\operatorname{acl}_{K}(A) = \bigcup_{\substack{A_0 \subseteq A \\ sk.}} \operatorname{acl}_{K}(A_0)$ skończony charakter
- 4. własność wymiany

$$a \in \operatorname{acl}_K(A \cup \{b\} \setminus \operatorname{acl}_K(A) \implies b \in \operatorname{acl}_K(A \cup \{a\})$$

Dowód.

3. $[\operatorname{acl}_{K}(A) =]K(A)^{\operatorname{alg}} = \bigcup_{A_0 \subseteq A} K(A_0)^{\operatorname{alg}}$

 \subset

Weźmy $b \in K(A)^{alg}$. Wtedy istnieje $w(x) \in K(A)[X]$ takie, że w(b) = 0 i w $\neq 0$. w ma współczynniki w $K(A_0)$ dla pewnego skończonego $A_0 \subseteq A$, więc $b \in K(A_0)^{alg}$.

4. Jeśli a $\notin \underbrace{(K(A)^{alg})}_{=L}$, to wtedy b $\notin K(A)^{alg}$, tzn. b jest przestępny nad L i L(b) \cong L[Y]. Jest tak, bo

$$b \in K(A)^{alg} \implies a \in K(A, b)^{alg} = K(A)^{alg}$$

Niech teraz $a \in K(A, b)^{alg}$ i dla wygody oznaczmy $L = K(A)^{alg}$. Wtedy $K(A, b)^{alg} = L(b)^{alg}$. Wtedy istnieje $w(x) \in L[X]$, w(a) = 0 i stopień w jest niezerowy.

Bez straty ogólności: $w(x) \in L[b][X]$ (bo L(b) jest ciałem ułamków pierścienia L[b]).

$$w(x) = c_n x^n + ... + c_1 x + c_0$$

$$c_i \in L[b]$$
, tzn. $c_i = v_i(b)$ i $v_i \in L[Y]$. Niech

$$v(y) = v_n(y) \cdot a^n + ... + v_1(y) \cdot a + v_0(y).$$

 $\in L[a][y]$

$$\left. \begin{array}{l} v(b) = 0 \\ v \neq 0 [\acute{c}wiczenia] \end{array} \right\} \implies b \in acl_K(A \cup \{a\}) = L(a)^{alg}$$

Równoważnie: dla każdego n i dla wszystkich $a_1,...,a_n\in A$ parami różnych, dla każdego $w(x_1,...,x_n)\in K[\overline{X}]$ $w(\overline{a})\neq 0$.

- A jest bazą przestępną zbioru $B \subseteq U$ nad K, gdy A jest algebraicznie niezależny nad K i $A \subseteq B \subseteq \operatorname{acl}_K(A)$.
- wymiar przestępny B nad K trdeg_K(B) to moc jakiejkolwiek bazy przestępnej zbioru B nad K.
- Gdy K = F jest ciałem prostym, to pomijamy je w acl_K, trdeg_K. Jest to uzasadnione przez następujące twierdzenie.

Twierdzenie 10.2.

- 1. Jeśli $A \subseteq B \subseteq U$ i A jest algebraicznie niezależny nad K, to istnieje A', $A \subseteq A' \subseteq B$, czyli baza przestępna B nad K.
- 2. Każde dwie bazy przestępne zbioru B nad K są równoliczne.

Dowód. Ćwiczenia (patrz: dowód dla operatora Lin w przestrzeni liniowej)

Przykład

- 1. Niech K będzie ciałem, x_i , $i \in I$ zmiennymi oraz $U = K(x_i : i \in I)^{alg}$. Wtedy $\{x_i : i \in I\} \subseteq U$ jest algebraicznie niezależne nad K i trdeg_K(U) = |I|.
- 2. Jeśli K \subseteq L \subseteq U oraz $\{a_i: i \in I\}$ jest bazą przestępną L nad K, to

$$K(a_i : i \in I) \cong_K K(x_i : i \in I)$$

$$K \subseteq K(a_i : i \in I) \subseteq L$$

z czego pierwsze rozszerzenie jest czysto przestepne, a drugie - algebraiczne.

Wykład 11: Moduły

10.1 Moduły wprowadzenie

Przestrzenie liniowe nad pierścieniami

Definicja 10.3. Niech R będzie pierścieniem z 1, niekoniecznie przemienny. $(M, +, r)_r \in R$ jest modułem nad R, gdy spełnia aksjomaty przestrzeni liniowej nad R.

Moduł może być:

lewostronny, wtedy $M \ni x \mapsto rx$ dla każdego r, x jest w M

prawostronny (analogicznie, $xr \in M$).

Łączność mnożenia w modułach:

 $\begin{array}{ll} lewostronna & prawostronna \\ r_1(r_2m) = (r_1r_2)m & (mr_1)r_2 = m(r_1r_2) \end{array}$

mieszana jeśli jesteśmy w lewostronnym module: (mr₂)r₁ = m(r₂r₁) i nie to samo co przy prawostronnym

Przykłady:

- 1. R = K to ciała, K-moduł to przestrzeń liniowa nad K
- 2. G jest grupą abelową, wtedy G jest \mathbb{Z} -modułem
- 3. G jest grupą abelową, wtedy End(G) są pierścieniem z jednością (id_G) i działaniami zdefiniowanymi dla $f,g \in End(G)$:

$$(f + g)(x) = f(x) + g(x)$$

 $(f \cdot g)(x) = f(g(x)).$

Grupa G może być traktowana jako moduł nad End(G) z działaniem zadanym przez $f \cdot x = f(x)$ dla $f \in End(G)$ i $x \in G$.

- 4. Załóżmy, że j : R \rightarrow End(G) jest homomorfizmem pierścieni z 1. Wtedy j wyznacza na G strukturę R-modułu poprzez działanie: $r \cdot x = j(r) \cdot x$ dla $r \in R$ i $x \in G$.
- 5. Gdy $R_1 \subseteq R$ jest podpierścieniem z 1, to R jest modułem nad R_1 .
- 6. Gdy $j: R_1 \to R$ jest homomorfizmem pierścieni z jednością i $M = (M, +, r)_{r \in R}$ jest R-modułem, to M jest R_1 -modułem z dzialaniem indukowanym przez j. To znaczy, dla $r_1 \in R_1$ oraz $x \in M$ mamy $r_1 \cdot x := j(r_1) \cdot x$.
- 7. R jest pierścieniem z jednością i $I \subseteq R$ jest ideałem lewostronnym. Wtedy I jest R-modułem.

Definicja 10.4. Załóżmy, że M jest R-modułem oraz N ⊆ M. Wtedy N jest R-podmodułem M, gdy N jest modułem względem działam z M, to znaczy:

$$\bowtie$$
 $(N, +) \leq (M, +)$

 \mathbb{R} N jest zamkniety względem mnożenia przez skalary $r \in R$ w M.

Uwaga 10.5. Niech M będzie R-modułem, wtedy

- 1. $0 \cdot m = 0 \in M$
- 2. $r \cdot 0 = 0$
- 3. (-1)m = -m

Dowód.

1.
$$0 \cdot m = (0 + 0) \cdot m = 0m + 0m \implies 0m = 0$$

2.
$$r \cdot 0 = r(0 + 0) = r0 + r0 \implies r0 = 0$$

3.
$$(-1)m + 1m = (-1 + 1)m = 0m = 0 \implies (-1)m = -m$$

Uwaga 10.6. Przekrój dowolnej niepustej rodziny podmodułów M jest podmodułem M.

Przykład:

 $\{0\} \subseteq M$ jest podmodułem zerowym.

Wniosek 10.6. Niech $A \subseteq M$. Wtedy istnieje najmniejszy podmoduł (ze względu na zawieranie) $N \subseteq M$ taki, że $A \subseteq M$. Jest to **podmoduł generowany przez** A

$$N = \{ \sum r_i a_i \ : \ r_i \in R \text{, } a_i \in A \} \cup \{0\}$$

- 1. Jeśli $N_1, N_2 \subseteq M$ są podmodułami, to $N_1 + N_2$ też jest podmodułem. To samo, jeśli weźmiemy n takich podmodułów.
- 2. Produkt R-modułów M, N, czyli M \times N, też jest R-modułem
- 3. $M = N_1 \oplus ... \oplus N_k$ jest modułem dla $N_1, ..., N_k$ podmodułów M. Dodatkowo, dla każdego $m \in M$ istnieją jedyne $n_1, ..., n_k$ takie, że $m = n_1 + ... + n_k$.

Homomorfizm modułów $h: M \to N$ działa tak samo jak zwykle. Nazwy izo-, endo-, auto-, mononadal są applicable.

Niech h: M \rightarrow N będzie homomorfizmem R-modułów. Dla N' \subseteq N podmodułu h⁻¹[N'] jest podmodułem M. Dla M' \subseteq M podmodułem jest h[M'] \subseteq N.

O odwzorowaniu $F: M_1 \times ... \times M_n \to M$ mówimy, że jest n-liniowym odwzorowaniem R-modułów, gdy jest liniowe na każdej współrzędnej.

Dla $M' \subseteq M$ podmodułu definiujemy **moduł ilorazowy** jako $M/M' = \{m + M' : m \in M\}$. Warstwy działają tutaj tak samo jak w grupach czy pierścieniach ilorazowych.

Twierdzenie 10.7. Zasadnicze twierdzenie o homomorfizmie R-modułów. Niech M, N będą modułami. Wtedy dla każdego f : M \rightarrow N istnieje dokładnie jeden \bar{f} taki, że

$$\begin{array}{c}
M \longrightarrow f \\
\downarrow \text{iloraz} \\
M/\text{ker(F)}
\end{array}$$

Twierdzenie 10.8. Niech $f: M \to N$ i $g: M \to U$ będą homomorfizmami R-modułów. Wtedy $h: U \to N$ istnieje $\iff \ker(g) \subseteq \ker(g)$.

$$\begin{array}{ccc}
M & \xrightarrow{f} & N \\
\downarrow g & \stackrel{\nearrow}{\exists} & h \iff \ker(f) \supseteq \ker(g)
\end{array}$$

Zbiór wszystkich homomorfizmów między modułem M i N oznaczamy

 $Hom_R(M, N) = \{h : M \to N : h \text{ jest homomorfizmem } R\text{-modulów}\}.$

Tak jak w przypadku homomorfizmów między grupami czy pierścieniami, mamy $h: M \to N$ jest różnowartościowe $\iff \ker(h) = \{0\}.$

Dla R będącego przemiennym pierścieniem $Hom_R(M, N)$ można traktować jako R-moduł definiując działania dla $m \in M$ przez:

$$(h_1 + h_2)(m) = h_1(m) + h_2(m)$$
 $h_1, h_2 \in Hom_R(M, N)$
 $(rh)(m) = r \cdot h(m)$ $r \in R$

10.2 Cel: zrozumieć moduły

Dany jest R-moduł M. Gdy M = $\bigoplus_i M_i$, gdzie $M_i \subseteq M$ jest małymi podmodułami o zrozumiałej strukturze, to struktura M też jest zrozumiała.

Definicja 10.9. Mówimy, że R-moduł M jest **prosty**, gdy M \neq 0 i dla każdego N \subseteq M podmodułu, N = 0.

Pierścień enodmorfizmów R-modułu M definiujemy jako

$$End_{\mathbb{R}}(M) = \{h : M \to M : h - homomorfizm modułów\}.$$

Jest to podpierścień pierścienia End(M, +), który traktuje M jako grupę względem dodawania.

Lemat 10.10. Lemat Schura: jeśli M jest R-modułem prostym, to $End_R(M)$ jest pierścieniem z dzieleniem (prawie ciało, poza tym, że nie musi być przemienny).

Dowód. Niech $0 \neq f \in End_R(M)$. Wtedy Im(f) = M, bo jest to niezerowy podmoduł M, a M przecież było modułem prostym. Stąd właśnie Im jest całością. $ker(f) = \{0\}$, czyli f jest 1 - 1 i "na".

Załóżmy, że M jest R-modułem oraz K = $\operatorname{End}_R(M)$ jest pierścieniem z dzieleniem ("ciało nieprzemienne"). Uwaga! nie zakładamy prostości M (ale możliwe że to wyniknie z K-pierścień z dzieleniem). Wtedy o M możemy myśleć jako o K-module. Załóżmy, że n = $\dim_K(M) < \infty$. Wtedy $\operatorname{End}_K(M) \cong \operatorname{M}_{n \times n}(K)$.

Wybierzmy $r \in R$ i niech $\phi_r : M \to M$ takie, że $\phi_r(m) = r \cdot m$. Wtedy $\phi_r \in End_K(M)$ (? gdy R-przemienny ? - zadanie)

$$r \longmapsto m(\phi_r) \in M_{n \times n}(K)$$

Ψ

$$\begin{array}{c} \text{homomorfizm pierścieni z 1} \\ R & \longrightarrow & M_{n \times n}(K) \end{array}$$

Powyższe jest rozwinięte jako teoria reprezentacji pierścieni

Niech R będzie pierścieniem z 1 ≠ 0 i M będzie R-modułem.

 \hookrightarrow Układ $\{m_i\}\subseteq M$ jest **liniowo niezależny**, gdy

$$(\forall \; \{r_i\} \subseteq R) \; \sum r_i m_i = 0 \implies (\forall \; i) \; r_i = 0$$

Liniowa zależność jest zaprzeczeniem

 $S \subseteq M$ jest liniowo niezależny, gdy układ $\{m_i\} = S$ (bez powtórzeń)

 \Rightarrow B \subset M jest baza, gdy:

- jest liniowo niezależny
- generuje M jako R-moduł
- $Lin_R(B) = M$.

Przykład:

- 1. $\{0\} \subseteq M$ jest liniowo niezależny, natomiast układ (m_0, m_0) jest liniowo zależny, bo $1 \cdot m_0 + (-1) \cdot m_0 = 0$.
- 2. \mathbb{Q} jako \mathbb{Z} -moduł (a, b) jest liniowo zależny dla wszystkich a, b $\in \mathbb{Q}$.

Bez straty ogólności a, b \neq 0 i a \neq b. a = $\frac{m}{n}$, b = $\frac{p}{q}$, czyli

$$(np) \cdot a - (qm) \cdot b = pm - mp = 0$$

W takim razie, \mathbb{Q} nie ma bazy jako \mathbb{Z} -moduł.

11.3 Suma prosta modułów

(Abstrakcyjna) suma prosta rodziny modułów (koprodukt) to

$$\bigsqcup M_i = \bigoplus M_i = \{f \in \prod M_i \ : \ \{i \in I \ : \ f(i) \neq 0\} \ \text{jest skończony}\}$$

Innymi słowy, elementy sumy prostej to krotki (m₁, ..., m_n, ...) takie, że tylko dla skończenie wielu i mamy m_i \neq 0. Dla każdego j istnieje naturalne włożenie f_j : M_j $\rightarrow \bigsqcup$ M_i zdefiniowane przez f_i(m) = (0, ..., 0, m, 0, ...), gdzie m występuje na j-tej pozycji.

Najprostszy przypadek sumy prostej to suma dwóch modułów: $M \oplus N$. Działania w tym module definiujemy przez:

$$\begin{array}{ll} (m_1 \oplus n_1) + (m_2 \oplus n_2) = (m_1 + m_2) \oplus (n_1 + n_2) & m_i \in M, \ n_i \in N \\ r(m \oplus n) = (rm) \oplus (rn) & r \in R, \ m \in M, \ n \in N. \end{array}$$

Przyjęło się uznawać za naturalne przekształcenie $h: \bigoplus M_i \to M$ zadane przez

$$h(m_1,...,m_n,...) = \sum m_i \in M.$$

Stąd elementu $\bigoplus M_i$ czasem oznacza się przez $\sum m_i$.

Uwaga 11.1. Jeśli dla każdego $i \in I$ istnieje $M_i \to M$ to istnieje dokładnie jeden $h: \bigsqcup M_i \to M$ taki, że dla każdego i_0

$$\begin{array}{c} M_{i_0} \xrightarrow{g_{i_0}} M \\ \downarrow^{f_{i_0}} & \exists ! \ h \end{array}$$

$$\bigsqcup M_i$$

Jest to nazywane własnością uniwersalności.

Dowód. Ćwiczenia

Uwaga 11.2. $M = M_1 \oplus M_2$ dla podmodułów $M_1, M_2 \subseteq M$. Wtedy dla

$$g_i = id_{M_i} : M_i \rightarrow M$$

oraz h jak z uwagi 11.1

$$h: M_1 \sqcup M_2 \to M$$

jest izomorfizm modułów.

Dowód. Ćwiczenie, łatwy.

11.4 Baza modułu

Definicja 11.3. M jest wolnym R-modułem, gdy M ma bazę.

Przykłady:

- 1. R jest wolnym R-modułem z bazą {1}.
- 2. \mathbb{Q} nie jest wolnym \mathbb{Z} -modułem
- 3. $\{M_i\}$ są rodziną wolnych R-modułów, wtedy $\bigsqcup M_i$ jest wolnym R-modułem.

Dowód. Niech $B_i \subseteq M_i$ będą bazami. Wtedy

$$f_{i_0}: M_{i_0} \xrightarrow{\cong} f_{i_0}[M_{i_0}] \subseteq \bigsqcup M_i$$

$$\bigcup f_i[B_i]$$

jest bazą ∐ M_i.

Uwaga 11.4. Niech R będzie pierścieniem z jednością, a M R-modułem. Niech A = $\{a_i : i \in i\} \subseteq M$ będzie podzbiorem bez powtórzeń. Następujące warunki są równoważne:

- 1. A jest baza
- 2. dla każdego m \in M istnieją jedyne $r_i \in R$ takie, że m = $\sum r_i a_i$ i jest ich skończenie wiele
- 3. dla każdego N R-modułu dla każdej funkcji $g:A\to N$ istnieje jedyna funkcja $g':M\to N$ indukowana przez g.

Dowód. (1) \iff (2) jak w algebrze liniowej.

$$(2) \implies (3)$$

Weźmy dowolny $m \in M$, wtedy

$$g'(m) = \sum r_i g(a_i)$$

jest jedyną dobrą definicją.

$$(3) \implies (1)$$

• A generuje M:

Niech M' = $\langle A \rangle \subseteq M$. Rozważmy

 $g = j \upharpoonright A = 0 \upharpoonright A = 0$, wiec na mocy (3)

$$\begin{array}{ccc}
A & \xrightarrow{g=0} & M/M' \\
& & & & \\
& & & & \\
M & & & &
\end{array}$$

• A jest liniowo niezależne:

Załóżmy, że istnieje $\sum {\bf r_{i_k} a_{i_k}}$ = 0, ${\bf r_{i_k}} \neq$ 0. Niech g : A \rightarrow R takie, że

$$g(a_0) = \begin{cases} 0 & i \neq i_0 \\ 1 & i = i_0 \end{cases}.$$

Na mocy (3) wiemy, że istnieje dokładnie jedno $g':M\to R$ takie, że

$$0 = g'(0) = g'(\sum r_i a_i) = \sum r_i g(a_i) = r_{i_0} \cdot 1 = r_{i_0} \neq 0$$

co daje sprzeczność.

Uwaga 11.5.

- 1. Jeśli A = $\{a_i\}_{i\in I}$ jest bazą M to wtedy
 - (a) Ra; jest podmodułem M
 - (b) $M = \bigoplus Ra_i$
- 2. Jeśli A jest dowolnym zbiorem, to istnieje R-moduł M o bazie A. Wtedy

$$M = \bigsqcup_{a \in A} R_a$$

i wtedy $R_a \cong R$

Przykład: \mathbb{Z} jest modułem wolnym (wolna grupa abelowa).

Twierdzenie 11.6. Załóżmy, że R jest przemienny. Wtedy każde dwie bazy R-modułu M są równoliczne.

Dowód. Problem redukujemy do algebry liniowej. Niech I \triangleleft R będzie maksymalnym ideałem i niech $M' = IM \subseteq M$ będzie podmodułem generowanym przez

$$\{im : i \in I, m \in M\}.$$

Wtedy, jeśli popatrzymy na M/M', to ma on naturalną strukturę modułu nad R/I. Dla (m + M') i (r + I) definiujemy

$$(r + I)(m + M') = (rm + M')$$

oraz dodawanie jak w grupie ilorazowej.

Niech B_1 , $B_2 \subseteq M$ będą bazami M. Ustalmy ilorazowe homomorfizmy

$$j:M\to M/M'$$

$$l: R \rightarrow R/I$$
.

Chcemy pokazać, że $j[B_1]$, $j[B_2]$ są bazami M/M' jako R/I-modułu.

· generowanie:

$$M\ni m=\sum r_ib_i \implies j(m)=\sum j(r_ib_i)=\sum [r_ib_i+M']=\sum (r_i+I)(m_i+M')=\sum l(r_i)j(b_i)$$

· liniowa niezależność:

Naszym celem jest pokazać, że jeśli

$$\sum l(r_i)j(b_i) = 0 \implies l(r_i) = 0$$

to wtedy

$$j(\sum r_i b_i) = 0.$$

Wiemy, że $\sum r_i b_i \in IM = M'$. Dalej:

$$\sum r_i b_i = \sum r'_i m'_i$$

dla $r_i' \in I$ oraz $m_i' \in M$. Niech więc $m_j' = \sum s_{ij} b_i$ dla $s_{ij} \in R$ oraz $b_i \in B_1$. Wtedy

$$\sum_{j} r'_{j} m'_{j} = \sum_{i,j} r'_{j} s_{ij} b_{i} = \sum_{i} \left[\sum_{j} r'_{j} s_{ij} \right] b_{i} = \sum_{i} r_{i} b_{i}$$

Sokoro dla każdego i mamy $r_i = \sum_j r_j' s_{ij} \in I$, to dla każdego i $l(r_i) = 0$ w R/I. Więc j $[B_1]$ jest liniowo niezależny w M/M' jako układ. Ponieważ możemy ustalić

$$j: B_1 \xrightarrow[na]{1-1} j[B_1]$$

to $B_1 \sim j[B_1]$ oraz $B_2 \sum j[B_2]$. Ale R/I jest ciałem, więc M/M' jest przestrzenią liniowa nad R/I, więc ponieważ $j[B_i]$ są bazami tej przestrzeni liniowej, to

$$j[B_1] \sim j[B_2]$$

$$B_1 \sim B_2\,$$

Uwaga 11.7. Każdy R-moduł M jest homomorficznym obrazem R-modułu wolnego.

Dowód. Taki sam jak dla:

- grupy wolnej
- · wolnej grupy abelowej
- algebry wolnej w rozmaitości algebraicznej

Niech N = $\bigsqcup_{m \in M}$ Rm będzie R-modułem wolnym o bazie M. Równie dobrze możemy wziąć N = $\bigsqcup_{a \in A}$ Ra, gdzie A generuje M.

Z uwagi 11.4(3) f istnieje i jest epimorfizmem.

Fakt 11.8. Załóżmy, że M, N są R-modułami, N jest wolny i $f: M \to N$ jest epimorfizmem. Wtedy $M \cong \ker(f) \oplus N$. Więcej: istnieje $N' \cong N$ taki, że $M = \ker(f) \oplus N'$.

Dowód. Niech $B \subseteq N$ będzie bazą modułu N.

Dla $b \in B$ ustalamy $b' \in M$ takie, że f(b') = b. Niech $g : B \to M$ takie, że g(b) = b'. Z uwagi 11.4(3) wiemy, że istnieje jedyne $g' : N \to M$ R-liniowe takie, że g' rozszerza g.

Wtedy $f \circ g' : N \to N$ i $(f \circ g') \upharpoonright B = id_B$, czyli z uwagi 11.4 $f \circ g' = id_N$. Stąd g' jest 1 – 1. Czyli $N \cong g'[N] \subseteq M$.

Pokażemy teraz, że M = $ker(f) \oplus g'[N]$. Weźmy dowolny m \in M. Wtedy

$$m = \underbrace{(m - (g'f)(m))}_{ker(f)} + \underbrace{(g'f)(m)}_{g'[N]}$$

bo

$$f(m - (g'f)(m)) = f(m) - (fg')f(m) - f(m) = 0.$$

Pozostaje nam pokazać, że $ker(f) \cap g'[N] = 0$. Niech $m \in ker(f) \cap g'[N]$. Wtedy m = g'(n). Ale wtedy 0 = f(m) = (fg')(n) = n. Wobec tego n = 0, więc m = g'(n) = g'(0) = 0.

11.5 Moduły projektywne, cykliczne, torsyjne

Definicja 11.9.

R-moduł N jest **projektywny**, jeśli dla każdego M i każdego epimorfizmu $f: M \to N$ mamy $M = \ker(f) \oplus M'$ dla pewnych podmodułów $M' \subseteq M$.

Jest to równoważne [ćwiczenia] istnieniu g : N \rightarrow M takiego, że f \circ g = id_N.

$$\begin{array}{c}
M \\
\exists g \\
\downarrow \forall f \\
N \xrightarrow{id} N
\end{array}$$

to znaczy, że f rozszczepia się.

R-moduł M jest **injektywny** wtedy, gdy dla każdego N i każdego monomorfizmu g : M \hookrightarrow N istnieje N' \subseteq N taki, że N = Im(g) \oplus N'. To znaczy, obraz g jest *składnikiem prostym* N.

Przykłady:

1. Moduł wolny jest projektywny

2. W przypadku, gdy R jest ciałem, to każdy R-modul jest projektywny i injektywny.

Definicja 11.10. Załóżmy, że R jest pierścieniem przemiennym z jednością. Mówimy, że M jest R-modułem cyklicznym, gdy jest generowany przez pojedynczy element. To znaczy, że istnieje $a \in M$ takie, że

M = Ra.

Przykłady:

- 1. R = R1 jest modułem cyklicznym
- 2. M jest R-modułem. i a \in M, to wtedy Ra \subseteq M jest podmodułem cyklicznym.

Uwaga 11.11. M jest modułem cyklicznym \iff M \cong R/I jako R-moduły dla pewnego I \triangleright R.

Dowód. ← R/I jest generowany przez 1 + I i to jest koniec.

 \Longrightarrow

M = aR, wtedy f : R \rightarrow M, r \mapsto ra, jest epimorfizmem R-modułów. Czyli jeśli I = ker(f), to R/I \cong M.

Definicja 11.12.

- Dla $a \in M \mid_a = \{r \in R : ra = 0\} \triangleright R \text{ jest torsja}$ elementu a.
- \Rightarrow a jest torsyjny, gdy $I_a \neq 0$. W przeciwnym przypadku mówimy, że a jest beztorsyjny.
- Mówimy, że M jest modułem torsyjnym, gdy każdy jego element jest torsyjny. M jest beztorsyjny, gdy każdy niezerowy element jest beztorsyjny.
- $M_t = \{a \in M : a \text{ jest torsyjny}\}$ nazywamy częścią torsyjną modułu M

Uwaga 11.13.

- 1. M_t jest podmodułem M
- 2. M/M_t jest beztorsyjny.

Dowód.

- 1. ćwiczenie
- 2. Załóżmy, że m + M_t jest torsyjny. Czyli r(m + M_t) = 0 + M_t dla pewnego r ≠ 0. Ale to oznacza, że rm ∈ M_t. To znaczy, że r'(rm) = 0 dla pewnego r' ≠ 0. Ale wtedy (r'r)m = 0 i r'r ≠ 0, bo R jest dziedziną. Czyli m jest torsyjny i m ∈ M_t. W takim razie m + M_t = 0

Przykłady: grupy abelowe torsyjne/beztorsyjne (jako \mathbb{Z} -moduły)

11.6 Moduły skończenie generowane

Twierdzenie 11.14. R jest pierścieniem przemiennym z 1 \neq 0. Niech M, N będą R-modułami oraz f : M \rightarrow N jest epimorfizmem. Niech M' = ker(f), N \cong M/M'.

- 1. N, M' są skończenie generowane, to M też jest skończenie generowane
- 2. M jest skończenie generowany, to wtedy N też taki jest

Dowód.

1. Niech $\{n_1,...,n_k\}\subseteq N$ i $\{m_1,...,m_l\}\subseteq M'$ będą zbiorami generatorów. Weźmy $n_1',...,n_k'\in M$ takie, że $f(n_i')=n_i$.

W takim razie, $\{n_1',...,n_k',m_1,...,m_l\}$ generują M, bo dla dowolnego $x\in M$ mamy $f(x)\in N$, więc $f(x)=\sum r_in_i$ dla $f_i\in R$. Niech więc $M\ni x'=\sum r_in_i'$. Wtedy $f(x')=\sum r_in_i$, czyli f(x-x')=0 i mamy $x-x'\in M'=\ker(f)$. Więc $M'\ni x-x'$, z czego dostajemy $x-x'=\sum r_j'm_j$ dla $r_j'\in R$ i $x=x'+(x-x')=\sum r_in_i'+\sum r_j'm_j$.

2. Ćwiczenie, łatwe. A \subseteq M \implies f[A] generuje N, gdzie A jest zbiorem generatorów M.

Wniosek 11.15. Załóżmy, że R jest pierścieniem przemiennym. Wtedy następujące warunki są równoważne:

- 1. R jest pierścieniem noetherowskim
- 2. Jeśli M jest skończenie generowanym R-modułem i N \subseteq M jest jego podmodułem, to N też jest skończenie generowany.

Dowód.

- (2) ⇒ (1) Niech I ⊲ R. Zauważmy, że R = R · 1 jest skończenie generowanym R-modułem cyklicznym. Z tego względu, I ⊆ R również jest skończenie generowanym R-modułem. W takim razie, każdy ideał I ⊲ R jest skończenie generowany i R jest pierścieniem noetherowskim.
- (1) \Longrightarrow (2) Weźmy R-moduł M generowany przez $\{m_1, ..., m_l\}$. Niech W = $Rm_1 \oplus ... \oplus Rm_l$ będzie R-modułem wolnym o bazie $\{m_1, ..., m_l\}$.

Rozważmy epimorfizm $\phi: W \to M$ zadany przez $\phi(m_i) = m_i$ oraz podmoduł $N \subseteq M$:

$$\mathbf{W} \xrightarrow{\phi} \mathbf{M}$$

$$\cup \mathbf{I} \qquad \qquad \cup \mathbf{I}$$

$$\mathbf{N}' = \phi^{-1}[\mathbf{N}] \qquad \mathbf{N}$$

Wystarczy pokazać, że N' jest skończenie generowanym podmodułem W (bo baza N będzie \leq niż baza N' przez fakt, że ϕ jest surjekcją).

Indukcja względem ilości elementów bazy M:

l = 1 Wtedy W \cong R. Niech $\psi: W \xrightarrow{\cong} R$ oraz N" = $\psi[N']$ będzie podmoudłem R. Podmoduły pierścienia to jego ideały. Z noetherowskości R mamy, że N" = $\psi[N']$ jest skończenie generowanym ideałem. W takim razie N' również jest skończenie generowany, gdyż ψ było izomorfizmem.

l > 1 Załóżmy, że teza zachodzi dla wszystkich l' < l. Niech $\pi:W\to R$ będzie rzutem na l-tą współrzędną (czyli ostatnią).

$$\begin{array}{ccc} \mathbf{W} & \stackrel{\pi}{\longrightarrow} & \mathbf{R} \\ & \cup \mathbf{I} & & \cup \mathbf{I} \\ & \mathbf{N}' & \stackrel{\phi_{\uparrow \mathbf{N}'}}{\longrightarrow} & \pi[\mathbf{N}'] \end{array}$$

 $\pi[N']$ jest podmodułem pierścienia R, więc działa jak ideał. Ideały w pierścieniu noetherowskim są skończenie generowane, czyli $\pi[N']$ jest skończenie generowany.

Sprawdźmy teraz $\ker(\phi_{\restriction \mathsf{N}'})\subseteq \underbrace{\mathsf{R}\times ...\times \mathsf{R}}_{\mathsf{l}-\mathsf{1}}\times \{0\}\cong \underbrace{\mathsf{R}\times ...\times \mathsf{R}}_{\mathsf{l}-\mathsf{1}}$ jest podmodułem modułu o bazie z (l – 1) elementami, czyli na mocy założenia indukcyjnego $\ker(\phi_{\restriction \mathsf{N}'})$

ułu o bazie z (l – 1) elementami, czyli na mocy założenia indukcyjnego ker $(\phi_{\upharpoonright N'})$ jest skończenie generowane. Na mocy twierdzenia 11.14(1) N' jest więc skończenie generowany $(\pi_{\upharpoonright N'}:N'\to .\pi[N']$ jest homomorfizmem, ker $(\pi_{\upharpoonright N'})$ jest skończenie generowany i $\pi[N']\cong N'/\ker(\pi_{\upharpoonright N'})$ również jest skończenie generowany).

Wykład 12: Iloczyn tensorowy modułów

11.1 Funkcja dwuliniowa

Definicja 11.16. Niech R będzie pierścieniem przemiennym z 1, a M_1 , M_2 , N będą R-modułami. Mówimy wówczas, że $f: M_1 \times M_2 \to N$ jest R-dwuliniowe, gdy f jest R-liniowe na każdej współrzędnej, to znaczy

$$f(m_1 + m'_1, m_2) = f(m_1, m_2) + f(m'_1, m_2)$$

 $f(m_1, m_2 + m'_2) = f(m_1, m_2) + f(m_1, m'_2)$
 $f(rm_1, m_2) = rf(m_1, m_2) = f(m_1, rm_2)$

Uwaga 11.17. Zazwyczaj f jak w definicji wyżej nie jest R-liniowe.

$$f(m_1 + m'_1, m_2 + m'_2) = f(m_1, m_2 + m'_2) + f(m'_1, m_2 + m'_2) =$$

$$= f(m_1, m_2) + f(m_1, m'_2) + f(m'_1, m_2) + f(m'_1, m'_2) \neq f(m_1, m_2) + f(m'_1, m'_2)$$

Zazwyczaj również $Im(f) = f[M_1 \times M_2] \subseteq N$ nie jest podmodułem, ale generuje podmoduł $[Im(f)] \subseteq N$.

Chcemy znaleźć funkcję $f: M_1 \times M_2 \to coś$ dwuliniową taką, że to "coś" jest R-modułem generowanym przez Im(f) i to "coś" jest tak duże jak to tylko możliwe.

Niech X będzie R-modułem wolnym o bazie $\{\langle m_1,m_2\rangle : m_1\in M_1,m_2\in M_2\}$

Niech $f_0: M_1 \times M_2 \rightarrow X$ będzie funkcją zadaną przez

$$f_0(m_1, m_2) = \langle m_1, m_2 \rangle$$
.

Taka funkcja nie jest 2-liniowa, czyli musimy utożsamić w X pewne elementy tak, aby f_0 stało się 2-liniowe. Innymi słowy, chcemy znaleźć najmniejszy podmoduł $L\subseteq X$ taki, że

$$f = j \circ f_0$$

jest R-dwuliniowe, gdzie j : $X \rightarrow X/L$ jest odwzorowaniem ilorazowym.

12.2 Konstrukcja produktu tensorowego

Fakt 12.1. Odwzorowanie $f: M_1 \times M_2 \to X/L$ jest R-dwuliniowe \iff dla wszystkich $m_1, m_1' \in M$ i $m_2, m_2' \in M_2$ oraz $r \in R$ mamy:

- $\langle m_1$ + m_1' , $m_2 \rangle$ $[\langle m_1, m_2 \rangle$ + $\langle m_1', m_2 \rangle] \in L$
- $r\langle m_1, m_2 \rangle \langle rm_1, m_2 \rangle \in L$
- $\langle m_1, m_2 + m_2' \rangle [\langle m_1, m_2 \rangle + \langle m_1, m_2' \rangle] \in L$
- $r\langle m_1, m_2 \rangle \langle m_1, rm_2 \rangle \in L$

Dowód. Łatwy [można przeczytać w "Commutative Algebra" \sim M. Atiyah].

Definicja 12.2. Produkt tensorowy modułów M₁ i M₂ to funkcja

$$f: M_1 \times M_2 \rightarrow X/L$$

gdzie X/L jak wyżej zwykle oznaczamy przez $M_1 \otimes M_2$. Element produktu tensorowego, czyli $f(m_1, m_2)$, oznaczamy przez $m_1 \otimes m_2$.

Analogicznie, dla $M_1, ..., M_k$ R-modułów, odwzorowanie R-k-liniowe $f(m_1, ..., m_k) := m_1 \otimes ... \otimes m_k$ też jest produktem tensorowym.

Tensory proste $m_1 \otimes m_2$ ($m_1 \otimes ... \otimes m_k$) generują $M_1 \otimes M_2$ ($M_1 \otimes ... \otimes M_k$). Pozostałe elementy to tensory złożone i są to R-liniowe kombinacje tensorów prostych.

Uwaga 12.3. Niech $f: M_1 \times M_2 \to M_1 \otimes M_2$ zdefiniowane jako $f(m_1, m_2) = m_1 \otimes m_2$. Jest to odwzorowanie R-dwuliniowe, często oznaczane po prostu przez \otimes . Wtedy dla każdego $g: M_1 \times M_2 \to N$ R-dwuliniowego istnieje dokładnie jedno $h: M_1 \otimes M_2 \to N$ R-liniowe takie, że diagram

komutuje. Warunek wyżej jest nazywany warunkiem uniwersalności

Dowód. Przyjrzyjmy się diagramowi:

Warunek na funkcję l wyznacza ją jednoznacznie, gdyż X jest modułem wolnym, a my wyznaczyliśmy na co przechodzą elementy jego bazy.

Jeśli funkcja g = $f \circ f_0$ jest dwuliniowa, to $\underbrace{\ker(l) \supseteq L}_{\nwarrow}$, bo:

$$\begin{split} g(m_1+m_1',m_2) &= g(m_1,m_2) + g(m_1',m_2) \implies \\ l(\langle m_1+m_1',m_2\rangle) &= l(\langle m_1,m_2\rangle) + l(\langle m_1',m_2\rangle) \implies \\ 0 &= l(\langle m_1+m_1',m_2\rangle) - [l(\langle m_1,m_2\rangle) + l(\langle m_1',m_2\rangle)] = \\ &= l(\underbrace{\langle m_1+m_1',m_2\rangle - [\langle m_1,m_2\rangle + \langle m_1',m_2\rangle]}) = 0 \end{split}$$

Analogicznie dla pozostałych generatorów L. W takim raize,

$$\{\text{generatory L}\} \subseteq \text{ker(l)} \implies \underbrace{L}_{\text{ker(j)}} \subseteq \text{ker(l)}.$$

Z twierdzenia o faktoryzacji R-homomorfizmów istnieje dokładnie jedno h : $M_1 \otimes M_2 \to N$ takie, że diagram

komutuje. Udowodnienie jedyności h zostawiamy jako ćwiczenie.

Uwaga 12.4. Warunek \circlearrowleft z uwagi 12.3 wyznacza $M_1 \otimes M_2$ z dokładnością do \cong .

Dowód. Przy użyciu toerii kategorii.

 $\text{Załóżmy, że } M_1 \times M_2 \xrightarrow{f'} M_1 \otimes' M_2 \text{ jest } R\text{-dwuliniowe i spełnia warunek } \textcircled{\$}.$

gdzie istnienie h i h' wynika z warunku \bigcirc .

Załóżmy, że $h' \circ h = id_{M_1 \otimes M_2}$, wtedy h jest izomorfizmem R-modułów. Wiemy, że diagram wyżej komutuje, więc $h' \circ h = h'$, więc $id_{M_1 \otimes M_2} = h'$, czyli id = h', gdyż h' było jedyne. W takim razie $M_1 \otimes' M_2 \cong M_1 \otimes M_2$.

Z tego powodu $M_1 \otimes M_2$, jak i bardziej ogólnie $M_1 \otimes ... \otimes M_k$ możemy definiować "abstrakcyjnie" przez kategoryjny warunek uniwersalności.

Wykład 13: Własności produktu tensorowego

Przykład: po pierwsze zauważmy, że R[X] i R[Y] to R-moduły. Możemy powiedzieć, że R[X] \otimes R[Y] \cong R[X, Y] w tym sensie, że

$$R[X] \times R[Y] \xrightarrow{\otimes} R[X,Y]$$

dane przez W(X) \otimes V(Y) = W(X) \cdot V(Y). Odwzorowanie to spełnia warunek $\stackrel{\frown}{\otimes}$:

a więc homomorfizm h musi spełniać warunek

$$h(W(X) \cdot V(Y)) = g(W(X), V(Y))$$

dla wszystkich $W(X) \in R[X]$ oraz $V(Y) \in R[Y]$. Ten warunek wraz z R-liniowością g wyznacza h na całym R[X,Y] w sposób jednoznaczny na diagramie wyżej. Nie trudno też sprawdzić, że $h \circ \otimes = g$, co daje komutowanie diagramu.

Dlaczego jednak h istnieje? Rozpocznijmy od jednomianów $\{X^nY^m\}_{n,m>0}$ jako bazy R[X,Y]. Mamy

$$h(X^nY^m) = g(X^n, Y^m)$$

jest dobrze zdefiniowane. Dla wielomianu $W(X,Y) \in R[X,Y]$ takiego, że

$$W(X,Y) = \sum_{n,m} r_{n,m} X^n Y^m$$

a więc

$$h(W) = h(\sum_{n,m} r_{n,m} X^n Y^m) = \sum_{n,m} r_{n,m} h(X^n Y^m) = \sum_{n,m} r_{n,m} g(X^n, Y^m).$$

Czyli funkcja h działa na wszystkich wielomianach z R[X, Y].

Wniosek. W takim razie, jeśli M_n jest wolnym R-modułem wymiaru n o bazie $\{b_1, ..., b_n\}$ a M_m jest wolnym R-modułem wymiaru m o bazie $\{c_1, ..., c_m\}$, to $M_n \otimes M_m$ jest R-modułem o bazie $\{b_i \otimes c_j\}_{\substack{i \leq n \\ j \leq m}}$ i wymiarze $n \cdot m$.

Dowód. $M_n \cong R_{\leq n}[X]$, gdzie $R_{\leq n}[X]$ jest modułem wielomianów stopnia $\leq n$. Wtedy

$$M_n \otimes M_m \cong R_{\leq n}[X] \otimes R_{\leq m}[Y] \cong R_{\leq n \leq m}[X, Y]$$

gdzie $R_{< n < m}[X, Y]$ to moduł wielomianów W(X, Y) takich, że $\deg_X(W) < n$ oraz $\deg_Y(W) < m$. Dalszy ciąg dowodu podąża za rozumowaniem z przykładu wyżej.

Własności iloczynu tensorowego:

- 1. $M_1 \otimes M_2 \cong M_2 \otimes M_1$
- 2. $(M_1 \otimes M_2) \otimes M_3 \cong M_1 \otimes (M_2 \otimes M_3) \cong M_1 \otimes M_2 \otimes M_3$
- 3. $R \otimes M \cong M$

Dowód.

1. Ćwiczenie

- 2. Ćwiczenie
- 3. Niech $f: R \times M \rightarrow M$ będzie R-dwuliniowym odwzorowaniem zadanym przez

$$f(r, m) = r \cdot m$$
.

Wystarczy teraz pokazać, że f spełnia warunek 🕒:

Funkcja h zdefiniowana przez

$$h(m) = h(f(1, m)) = g(1, m)$$

jest jedyna ze względu na jedyność g. Jest też R-homomorfizmem, bo g jest R-liniowe na drugiej współrzędnej.

Diagram komutuje, bo g jest R-liniowe na obu współrzędnych, a więc

$$(h \circ f)(r, m) = h(rm) = g(1, rm) = r \cdot g(1, m) = g(r, m)$$

Uwaga 13.1.

- 1. Jeśli $A \subseteq M$ i $B \subseteq N$ są zbiorami generującymi te moduły, to $A \otimes B = \{a \otimes b : a \in A, b \in B\}$ jest generatorem $M \otimes N$.
- 2. Załóżmy, $\dot{z}e~f:M\to M'~i~g:N\to N'~sq~R$ -liniowe. Wtedy istnieje dokładnie jedno R-liniowe

$$h: M \otimes N \to M' \otimes N'$$

zdefiniowane przez

$$h(m \otimes n) = f(m) \otimes g(n)$$

Dowód.

Gdzie $h(m \otimes n) = f(m) \otimes g(n)$.

Funkcja $\otimes \circ$ (f \times g) jest dwuliniowa, bo

$$\otimes \circ (f \times g)(x + y, n) = \otimes (f(x) + f(y), g(n)) = (f(x) + f(y)) \otimes g(n) =$$

$$= f(x) \otimes g(n) + f(y) \otimes g(n) =$$

$$= \otimes \circ (f \times g)(x, n) + \otimes \circ (f \times g)(y, n)$$

R-liniowość h, jego jedyność oraz komutowanie diagramu wyżej pokazujemy tak jak w dowodach wcześniejszych uwag.

13.1 Iloczyn tensorowych funkcji

Definicja 13.2. $f \otimes g = h$ jak z uwagi 13.1 nazywamy iloczynem tensorowym f i g

Uwaga 13.3.

1.

[dowód: wystarczy sprawdzić $X = (f' \otimes g') \circ (f \otimes g) = (f' \circ f) \otimes (g' \circ g)$]

- 2. $id_M \otimes id_N = id_{M \otimes N}$
- 3. ϕ : Hom(M, M')×Hom(N, N') \rightarrow Hom(M \otimes M', N \otimes N') zadane przez ϕ (f, g) = f \otimes g jest R-dwuliniowe.

Uwaga 13.4. Dla R-modułu M oraz R-modułów $\{N_i\}_{i\in I}$ istnieje izomorfizm

$$\psi: \mathsf{M} \otimes (\bigoplus_{\mathsf{i} \in \mathsf{I}} \mathsf{N}_{\mathsf{i}}) \xrightarrow{\cong} \bigoplus_{\mathsf{i} \in \mathsf{I}} (\mathsf{M} \otimes \mathsf{N}_{\mathsf{i}})$$

zadany przez

$$\psi(\mathsf{m} \otimes \sum \mathsf{n_i}) = \sum_{\mathsf{i}} \mathsf{m} \otimes \mathsf{n_i}$$

Dowód. Rozważmy diagram

Musimy pokazać istnienie i jedyność h oraz komutowanie diagramu (ostatnie jest trywialne).

istnienie h pokażemy najpierw dla dowolnego i, a następnie korzystając z własności uniwersalności ⊕_i przeniesiemy na całą sumę prostą.

$$\begin{array}{c|c} M\times N_i & \xrightarrow{\otimes} & M\otimes N_i \\ \hline g \upharpoonright M\times N_i & & \exists ! \ h_i \end{array}$$

h; definiujemy wtedy jako

$$h_i(m \otimes n_i) = g(m, n_i)$$

a jego istnienie oraz jedyność udowadniamy tak jak wcześniej.

Ponieważ dla każdego i istnieje dokładnie jedna funkcja h_i , to z własności uniwersalności \bigoplus możemy stwierdzić, że dla każdego i istnieje $\exists ! \ h : \bigoplus (M \otimes N_i) \to N$ takie, że

to znaczy

$$h(m \otimes n_i) = h_i(m \otimes n_i) = g(m, n_i),$$

czyli

$$h(\sum_i m \otimes n_i) = \sum_i h_i(m \otimes n_i) = \sum_i g(m, n_i) = g(m, \sum n_i).$$

Dla N = M \otimes (\bigoplus N_i) dostajemy h-izomorfizm oraz h(\sum m \otimes n_i) = m \otimes \sum n_i.

jedyność h sprawdzamy dla elementów $\sum m \otimes n_i$, gdyż generują one $\bigoplus (M \otimes N_i)$:

$$(\mathsf{h} \circ \psi)(\mathsf{m} \otimes \sum \mathsf{n_i}) = \mathsf{h}(\sum_{\mathsf{i}} \mathsf{m} \otimes \mathsf{n_i}) = \mathsf{g}(\mathsf{m_i} \sum_{\mathsf{i}} \mathsf{n_i})$$

i od razu widać, że diagram jak wyżej komutuje.

13.2 Iloczyny zewnętrzne

Niech R = K będzie ciałem, a V będzie przestrzenią liniową nad K. Zdefiniujmy

$$V^{\otimes n} = \underbrace{V \otimes ... \otimes V}_{n}.$$

Zdefiniujmy działanie $\sigma \in S_n$ działa na $V \otimes ... \otimes V$ przez permutowanie współrzędnych w tensorach prostych, tzn.

$$\sigma(\mathsf{v}_1 \otimes ... \otimes \mathsf{v}_n) = \mathsf{v}_{\sigma(1)} \otimes ... \otimes \mathsf{v}_{\sigma(n)}$$

Definicja 13.5. Niech $x \in V^{\otimes n}$. Mówimy, że

- x jest symetryczny, jeśli dla każdego $\sigma \in S_n$ mamy $\sigma(x) = x$
- x jest antysymetryczny, jeśli dla każdego $\sigma \in S_n \ \sigma(x) = sgn(\sigma) \cdot x$.

Dalej, definiujemy zbiory

$$\Lambda^n V = \{x \in V^{\otimes n} : x \text{ antysymetryczny}\}$$

$$S^nV = \{x \in V^{\otimes n} : x \text{ symetryczny}\}$$

Jeśli char(K) = 0, to wówczas $\Lambda^n V$, $S^n V < V^{\otimes n}$.

Gdy n = 2, to mamy $V \otimes V = \Lambda^2 V \oplus S^2 V$ rozumiane jako

$$V \otimes V \ni x = \frac{1}{2}(x + \sigma(x)) + \frac{1}{2}(x - \sigma(x)) \in \Lambda^2 V \oplus S^2 V$$

gdzie σ = (1, 2) \in S $_2$ (bo drugi element S $_2$ to identyczność). Widzimy, że S 2 V \cap Λ^2 V = {0}.

O n-liniowej funkcji f : $\underbrace{V \times ... \times V}_{n} \rightarrow W$ mówimy, że jest

- symetryczna , gdy dla każdego $\sigma \in S_n$ mamy $f(v_{\sigma(1)},...,v_{\sigma(n)})$ = $f(v_1,...,v_n)$
- antysymetryczna , gdy dla każdego $\sigma \in S_n$ mamy $f(v_{\sigma(1)},...,v_{\sigma(n)}) = sgn(\sigma) \cdot f(v_1,...,v_n)$

Przykład: funkcja det : $K^n \times ...K^n \to K$ jest antysymetryczna.

Dla $x \in V^{\otimes n}$ definiujemy

•
$$x_s = \frac{1}{n!} \sum_{\sigma \in S_n} \sigma(x) \in S^n V \leq V^{\otimes n}$$

•
$$x_a = \frac{1}{n!} \sum_{\sigma \in S_n} sgn(\sigma) \cdot \sigma(x) \in \Lambda^n V \leq V^{\otimes n}$$
.

Wtedy funkcja f zadana przez

$$f(v_1, ..., v_n) = v_1 \wedge ... \wedge v_n = (v_1 \otimes ... \otimes v_n)_a$$

jest n-liniowa antysymetryczna, a diagram

komutuje.

Uwaga 13.6. Niech K będzie ciałem takim, że char(K) \neq 2 i niech $\{e_1, ..., e_n\} \subseteq V$ będzie bazą V nad K. Wtedy

$$\{e_{i_1} \wedge ... \wedge e_{i_n} \ : \ 1 \leq i_1 < i_2 < ... < i_n \leq k\}$$

jest bazą $\Lambda^n V$.

Stąd też gdy n < k

$$\dim(\Lambda^n V) = \binom{k}{n}$$

$$dim(\Lambda^k V) = 1$$

 $i dla n : k dim(\Lambda^n V) = 0.$

Przykłady:

- 1. Mamy $v \wedge v = -v \wedge v = 0$, gdyż $\{v, v\}$ i $\{v, -v\}$ nie są zbiorami liniowo niezależnymi.
- 2. Dla $v_1, v_2 \in V$ liniowo niezależnych nad K mamy

$$v_1 \wedge v_2 = r \cdot w_1 \wedge w_2$$

dla r \neq 0 wtedy i tylko wtedy, gdy

$$Lin(v_1, v_2) = Lin(w_1, w_2)$$

3. Poprzedni przykład możemy uogólnić dla $v_1,...,v_n \in V$ liniowo niezależnych. Wtedy dla $w_1,...,w_n \in V$ mamy

$$(\exists r \neq 0) v_1 \wedge ... \wedge v_n = r \cdot w_1 \wedge ... \wedge w_n \iff Lin(v_1, ..., v_n) = Lin(w_1, ..., w_n)$$

- 4. $(V \otimes W)^* \cong V^* \otimes W^* i \Lambda^n V^* \cong (\Lambda^n V)^*$
- 5. więcej przykładów w analizie wielowymiarowej, geometrii różniczkowej, formach różniczkowych etc.