Magnétostatique

Introduction en formule

	μ_0 = Permittivité magnétique du vide
$\vec{R}(M) = u \vec{V} \wedge \overrightarrow{PM}$	\vec{V} = Vitesse de la particule
$\vec{B}(M) = \mu_0 \frac{q V \wedge FM}{4\pi P M^3}$	M = Point d'observation
	$\vec{B}(M)$ = Champ magnétique créé par une charge
	en mouvement

Loi de Biot et Savart

$dB(M) = \frac{\mu_0}{4\pi} \frac{I \overrightarrow{dl} \wedge \overrightarrow{PM}}{\overrightarrow{PM}}$	$B(M) = \frac{\mu_0}{4\pi} \oint_{(c)} \frac{I \overrightarrow{dl} \wedge \overrightarrow{PM}}{PM^3}$
---	---

Flux du champ magnétique

	Explication: Toujours autant de pôle sud que de
$\Phi(\vec{B}) = \oint \vec{B}(M). \vec{dS} = 0$	pôle nord
JJ_S	

Théorème d'Ampère (Circulation du champ)

	$\sum I_{traversant}$ = Somme algébrique des intensités
$C(\vec{B}) = \oint_C B(M). dl = \mu_0 \left[\sum_{traversant} I_{traversant} \right]$	des courants enlacés par le contour.