Inżynieria oprogramowania Projektowanie systemów informatycznych cz. 2

Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski www.mimuw.edu.pl/~dabrowski

Abstrakcja i dekompozycja

Przypomnienie

- "Managing complexity in software development"
 czyli
- Jak radzić sobie z dużymi / złożonymi systemami?

Podejście

- Abstrakcja
 - uprość i uogólnij
- Dekompozycja
 - podziel i zwycięż

Abstrakcja

- Wnioskowanie na temat problemu
 - upraszcza problem
 - nie rozwiązuje problemu

- Dobra abstrakcja
 - ukrywa/ignoruje niepotrzebne szczegóły
 - upraszcza analizę
 - znajduj analogie pomiędzy różnymi bytami

Dekompozycja

- Rozwiązywanie dużych problemów
 - metoda dziel i zwyciężaj
- Dobra dekompozycja
 - każdy podproblem jest podobnej wielkości
 - podproblemy można rozwiązywać niezależnie
 - z rozwiązań podproblemów można uzyskać rozwiązanie całości

SUA

Abstrakcja i dekompozycja: zalety i wady

Zalety

- można przypisać podzadania różnym osobom
- podzadania można rozwiązywać równolegle
- łatwo utrzymywać system w przyszłości
- można ukryć nieistotne szczegóły

Wady

- scalanie podrozwiązań może stanowić problem
- problem źle zrozumiany nie da się dobrze zdekomponować
- ukrywanie szczegółów nie rozwiązuje problemu

Podejście obiektowe

- Wspiera ideę abstrakcji i dekompozycji
- Zaleta modeli wizualnych
 - Języki programowania nie są na wystarczająco wysokim poziomie abstrakcji, by dało się w nich projektować duże systemy
- UML (Unified Modelling Language)
 - Notacja graficzna
 - Oparta na pojedynczym metamodelu
 - Głównie zalecana przy projektowaniu obiektowym

- Historia UML
 - pojawił się 1997
 - ujednolicenie wielu notacji graficznych
 - lata 1980' i wczesne lata 1990'
 - standard (dość) otwarty
 - kontrolowany przez Object Management Group (OMG)
 - otwarte konsorcjum firm
 - utrzymuje między innymi standardy CORBA
 - Common Object Request Broker Architecture
- Mity na temat UML
 - "No Silver Bullet"
 - "Death by UML Fever"

SITATO LA SOLUTION DE LA SOLUTION DE

Podejście obiektowe: świat rzeczywisty

Podejście obiektowe: abstrakcja i dekompozycja

Jeden SYSTEM – różne PERSPEKTYWY

Przypadki użycia

Przypadki użycia

Buy a Product

Main Success Scenario:

- Customer browses catalog and selects items to buy
- 2. Customer goes to check out
- Customer fills in shipping information (address; next-day or 3-day delivery)
- 4. System presents full pricing information, including shipping
- Customer fills in credit card information
- System authorizes purchase
- System confirms sale immediately
- System sends confirming e-mail to customer

Extensions:

- 3a: Customer is regular customer
 - .1: System displays current shipping, pricing, and billing information
 - .2: Customer may accept or override these defaults, returns to MSS at step 6
- 6a: System fails to authorize credit purchase
 - .1: Customer may reenter credit card information or may cancel

NAME OF THE PARTY OF THE PARTY

Przypadki użycia

Przypadki użycia

NAME OF THE PARTY OF THE PARTY

Maszyny stanowe

Maszyny stanowe

Maszyny stanowe

USITATO PER SON

Aktywności / algorytmy

NEW CONTRACTOR OF THE PARTY OF

Aktywności / algorytmy

SITA SON

SULATION

NAME OF THE PROPERTY OF THE PR

NATURAL DESCRIPTION OF THE PROPERTY OF THE PRO

Interakcje – centralizacja

SSITATUS PASSION PASSI

Interakcje – delegowanie

GENTANO PARAMETER STATE OF THE PARAMETER STAT

Interakcje – centralizacja

ASOV ASOV

Interakcje – delegowanie

Interakcje – konstruktory i destruktory

SITAN SITAN PARAMETERS NAME OF THE PARAMETERS

Interakcje – pętle i warunki

- procedure dispatch
 - foreach (lineitem)
 - if (product.value > \$10K)
 - careful.dispatch
 - else
 - regular.dispatch
 - end if
 - end for
 - if (needsConfirmation)
 - messenger.confirm
- end procedure

RESULTATION OF THE PROPERTY OF

NAME OF THE PARTY OF THE PARTY

SITA SITA NO.

SITAY DE SOU

SITA/ SITA/ PASOV

SITA LASON

SITA SITA PARTICIPATION OF THE PARTICIPATION OF THE

ASOV ASOV

Podsumowanie – warstwy

GUI windows reports UI (AKA Presentation, View) speech interface HTML, XML, XSLT, JSP, Javascript, ... more app handles presentation layer requests specific workflow Application session state (AKA Workflow, Process, window/page transitions Mediation, App Controller) consolidation/transformation of disparate data for presentation handles application layer requests implementation of domain rules **Domain** domain services (POS, Inventory) (AKA Business, - services may be used by just one Application Logic, Model) application, but there is also the possibility of multi-application services very general low-level business services **Business Infrastructure** used in many business domains (AKA Low-level Business Services) *CurrencyConverter* (relatively) high-level technical services **Technical Services** and frameworks (AKA Technical Infrastructure, Persistence, Security High-level Technical Services) low-level technical services, utilities, **Foundation** and frameworks (AKA Core Services, Base Services, data structures, threads, math, Low-level Technical Services/Infrastructure) file, DB, and network I/O

Przez analogię: Projekt domu – koncepcja

Projekt domu – perspektywa 1 (wizualizacja wnętrza)

Projekt domu – perspektywa 2 (rzut pionowy)

Projekt domu – perspektywa 2 (rzut pionowy)

Projekt domu – perspektywa 3 (przekrój pionowy)

SITA LESON

Projekt domu – perspektywa 4 (elewacje)

Projekt domu – projekt, kosztorys

Technologia

Fundamenty - beton Ściany zewnętrzne - Protherm Ściany nośne - Porotherm Strop - drewniany/Teriva Więźba dachowa - drewniana Dach - dachówka ceramiczna, cementowa blachodachówka.

Dane techniczne (Wersja B (strop drewniany))

Powierzchnia użytkowa	owa 98.2 m²	
Powierzchnia zabudowy	152.6 m²	
Minimalne wymiary działki		
Wersja B (strop drewniany)	25.4 × 17.4 m	
Wersja A (strop drewniany)	21.8 × 17.4 m	
Wersja C (strop Teriva)	21.8 × 17.4 m	
Wersja D (strop Teriva)	25.4 × 17.4 m	
Wersja E (strop drewniany)	28.4 × 17.4 m	
Wersja F (strop Teriva)	28.4 × 17.4 m	
Powierzchnia dachu	197 m²	
Kąt nachylenia dachu	35°	
Wysokość budynku	6.8 m	
Kubatura	324 m³	
Wysokość pomieszczeń	2.7 m	

OFFICIAL ACCIDIT.

PRIZED ZAMÓWENIEM MATERIALÓW I LOŚCI OKREŚLONE W ZESTAWIENIU MATERIALÓW NALEZY KAZDORAZOWO ZUREY FIKOWAĆ MA BUDOWE KOSTORYS NA LEZY ROZPATRYWAĆ LĄCZNIE Z DOKUMENTACJĄ PROJEKTOWĄ.

Cennik

wersja projektu	garaż	cena projektu	koszt budowy stanu surowego	koszt budowy z wykończeniem
Wersja B (strop drewniany) → <u>Zamów</u>	Tak	1100 zł netto	156.5 tys. zł netto	196.2 tys. zł netto
Wersja A (strop drewniany) → <u>Zamów</u>	Nie	1050 zł netto	135.9 tys. zł netto	171.3 tys. zł netto

AND TO SERVICE AND THE SERVICE

UML – to tylko notacja!

Podsumowanie

- "Obraz jest wart tysiąca słów"
 - Ale sam model może nie wystarczyć
- Przykład:
 - Przypadki użycia a model przypadków użycia
 - Wymagania niefunkcjonalne
 - Tabele
 - Macierze zależności
- Diagramy nie należące do standardu UML
 - Jak najbardziej!
 - Naszym celem czytelność / komunikatywność
 - (a nie zachowywanie "standardu")
- Raz jeszcze: UML to tylko notacja!
 - Ze jej znajomości notacji nie wynika jakość modelu!