日本国特許

23.08.01

JAPAN PATENT OFFICE

WIFO POT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2000年 7月24日

出 願 番 号 Application Number:

特願2000-227577

出 願 人 Applicant(s):

トヨタ自動車株式会社

Please Scar Foreign Priority papers

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2001年 9月14日

特許庁長官 Commissioner, Japan Patent Office 及川耕

出証番号 出証特2001-3084972

特2000-227577

【書類名】

特許願

【整理番号】

1004160

【提出日】

平成12年 7月24日

【あて先】

特許庁長官 及川 耕造 殿

【国際特許分類】

B01D 53/94

B01D 39/20

F01N 3/02

【発明の名称】

パティキュレート浄化触媒

【請求項の数】

4

【発明者】

【住所又は居所】

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

【氏名】

竹島 伸一

【発明者】

【住所又は居所】

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

【氏名】

山下 哲也

【特許出願人】

【識別番号】

000003207

【氏名又は名称】

トヨタ自動車株式会社

【代理人】

【識別番号】

100077517

【弁理士】

【氏名又は名称】

石田 敬

【電話番号】

03-5470-1900

【選任した代理人】

【識別番号】

100092624

【弁理士】

【氏名又は名称】 鶴田 準一

【選任した代理人】

【識別番号】

100087871

【弁理士】

【氏名又は名称】 福本 積

【選任した代理人】

【識別番号】 1

100082898

【弁理士】

【氏名又は名称】 西山 雅也

【手数料の表示】

【予納台帳番号】 008268

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9709208

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 パティキュレート浄化触媒

【特許請求の範囲】

【請求項1】 触媒成分が酸性質の第1担体に担持されてなるNO酸化触媒、及び触媒成分が第2担体に担持されてなるNO2 分解触媒、を含んでなることを特徴とするパティキュレート燃焼触媒。

【請求項2】 前記NO酸化触媒が、白金、金、ルテニウム、ロジウム、イリジウム、パラジウム、及びこれらの混合物からなる群より選択された触媒成分が、シリカ、シリカーアルミナ、 SiO_2 / AI_2O_3 比が4O以上のゼオライト、タングステン酸/ジルコニア、アンチモン酸/アルミナ、及びこれらの混合物からなる群より選択された酸性質の第1担体に担持されてなる請求項1に記載のパティキュレート燃焼触媒。

【請求項3】 前記NO₂ 分解触媒が、遷移金属の群から選択された触媒成分が、チタニア、ジルコニア、チタニアージルコニア、アルミナ、シリカ、及びこれらの混合物からなる群より選択された第2担体に担持されてなる請求項1又は2に記載のパティキュレート燃焼触媒。

【請求項4】 前記NO₂ 分解触媒が、アルカリ金属とアルカリ土類から選択された少なくとも1種の金属と、白金、金、ルテニウム、ロジウム、イリジウム、パラジウム、及びこれらの混合物からなる群より選択された触媒成分が、チタニア、ジルコニア、チタニアージルコニア、アルミナ、シリカ、及びこれらの混合物からなる群より選択された第2担体に担持されてなる請求項1又は2に記載のパティキュレート燃焼触媒。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、ディーゼルエンジン等の内燃機関から排出される排気ガスに含まれるスス状のパティキュレート (炭素質微粒子) を燃焼除去するための触媒に関する。

[0002]

【従来の技術】

ディーゼル機関から排出する排気ガスは、パティキュレートを含んでおり、局所大気汚染の主な原因の1つである。このパティキュレートの排出量の削減は、 環境問題において早期に解決すべき重要な課題の1つとされている。

[0003]

このパティキュレートの排出量の削減のため、デーゼル機関の排気通路内にパティキュレートフィルタを配置して排気ガス中のパティキュレートを一旦捕集し、この捕集されたパティキュレートを着火・燃焼させる方式が鋭意検討されている。ところが、パティキュレートフィルタ上に捕集されたパティキュレートは、約600℃以上の高温にならないと着火せず、これに対して、ディーゼル機関の排気ガス温度は、通常600℃よりもかなり低く、したがって、排気ガスの流れの中でパティキュレートを燃焼除去するには、パティキュレートの着火温度を低くする必要がある。

[0004]

ところで、従来より、パティキュレートフィルタ上に触媒を担持すればパティキュレートの着火温度が低下することが知られており、例えば、特公平7-106290号公報に、パティキュレートフィルタ上に白金族金属及びアルカリ土類金属酸化物の混合物を担持させたパティキュレートフィルタが開示されている。このパティキュレートフィルタでは、約350℃~400℃の比較的低温でパティキュレートが着火され、次いで連続的に燃焼せしめられる。

[0005]

【発明が解決しようとする課題】

しかしながら、ディーゼル機関の実運転下の排気ガス温度は、350℃を下回る場合が多く、かかる約350℃~400℃の着火温度では、パティキュレートが完全には燃焼除去されず、フィルタを通過する排気ガスの圧力損失が高くなり、燃費低下ひいては運転不能の障害が生じる。さらに、多量に残存したパティキュレートが一度に燃焼すると、約800℃を上回る温度にパティキュレートフィルタが曝され、パティキュレートフィルタが早期に劣化するという問題が生じる

[0006]

したがって、本発明は、パティキュレートフィルタ上に捕集されたパティキュレートを従来よりも格段に低い温度で容易に酸化させることができるパティキュレート浄化触媒を提供することを目的とする。

[0007]

【課題を解決するための手段】

上記目的は、触媒成分が酸性質の第1担体に担持されてなるNO酸化触媒、及び触媒成分が第2担体に担持されてなるNO $_2$ 分解触媒、を含んでなることを特徴とするパティキュレート浄化触媒によって達成される。

即ち、本発明は、NO酸化触媒とNO₂ 分解触媒が共存する触媒であって、NO酸化とNO₂ 分解の双方の触媒作用が組み合わされてパティキュレートの酸化を促進する触媒である。

[8000]

本発明の触媒の作用機構は、次のように考えられる。

NO酸化触媒は次の反応を促進する。

$$NO+1/2O_2 \rightarrow NO_2$$
 (1)

NO2 分解触媒は次の反応を促進し、活性酸素 (O*) を放出する。

$$NO_2 \rightarrow NO + O^*$$
 (2)

この活性酸素は、パティキュレートを酸化する活性が極めて高い。

[0009]

ここで、活性酸素は、下記の O_2 解離反応によっても生じる。

$$O_2 \rightarrow 2O^* \tag{3}$$

しかし、この(3) 式の反応速度は、約300℃を下回る温度では上記(2) 式の 反応速度に比較して格段に小さい。したがって、ディーゼル機関の排気ガス中の NOはO₂ に比べて微少濃度であるものの、上記(1) と(2) の反応を促進するこ とが、パティキュレートの燃焼を促進するのに効果的である。

[0010]

本発明の白金等の触媒成分が酸性質担体に担持されて構成されるNO酸化触媒は、上記(1)の反応を著しく促進させることができる。この理由は、触媒成分が

酸性質担体の上に存在するためであり、即ち、酸性質担体の作用により白金等の触媒成分が酸性条件に曝されるため、酸化されて生じた酸性の NO_2 が、触媒成分から脱離することが容易なためと考えられる。

[0011]

したがって、NO酸化触媒から反応(1) によって多量のNO₂ が供給され、次いでNO₂ 分解触媒触媒が反応(2) によってNO₂ から活性酸素を生成させることで、排気ガスの含まれるNOから効率的に多量の活性酸素を供給することができ、約300℃を下回る排気ガス温度であっても、パティキュレートを高い速度で酸化させることが可能となる。

[0012]

なお、本発明者は、パティキュレートの酸化機構について次のように考える。 パティキュレートの構造は、平面六角形のグラファイト構造であり、この端の部分は炭素結合数が減少するため、結合のπ電子密度が平面部分よりも高くなる。 このため、親電子性の活性酸素 O* は、電子密度の高い部分に引き寄せられて炭素結合を攻撃し、酸化していくものと考えられる。即ち、グラファイト構造を有するパティキュレートは、本質的に親電子性の活性酸素による酸化を受けやすく、したがって、活性酸素を多量に生成することが低温でのパティキュレート酸化を促進するものと考えられる。

[0013]

【発明の実施の形態】

本発明のパティキュレート浄化触媒の一方を構成するNO酸化触媒は、酸性質の担体の上に、自金、金、ルテニウム、ロジウム、イリジウム、パラジウム等のNO酸化性能を有する触媒成分が担持されてなる。この酸性質担体には、シリカ、シリカーアルミナ、及び SiO_2 / AI_2O_3 比が4O以上のゼオライトのような均一成分の粒子からなる粉末が挙げられる。

[0014]

また、この酸性質担体は、ジルコニアやアルミナのような弱酸性又は両性の粒子に酸性物質のタングステン酸やアンチモン酸を被覆等によって担持したタングステン酸/ジルコニア、アンチモン酸/アルミナ等であることもできる。これら

は、例えば、タングステン酸の前駆体のメタタングステン酸アンモニウム水溶液やアンチモン酸の前駆体の硫酸アンチモン水溶液に、ジルコニアやアルミナを浸し、蒸発乾固させた後焼成することによって得ることができる。

そして、このような酸性質担体上に、白金等の触媒成分を、蒸発乾固法、沈殿 法、吸着法、イオン交換法、還元析出法等によって担持することができる。

[0015]

本発明のパティキュレート浄化触媒の他方を構成するNO₂ 分解触媒は、触媒成分が第2担体に担持されてなる。この触媒成分は、遷移金属の群から任意に選択されることができ、鉄、マンガン、コバルト、銅、ニッケル、バナジウム、イットリウム、亜鉛、ニオブ、モリブデン等が挙げられる。

また、NO₂ 分解触媒の触媒成分は、アルカリ金属とアルカリ土類金属から選択された少なくとも1種の金属であることができ、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、パリウム等から任意に選択されることができる。

[0016]

ここで、NO₂ 分解触媒の触媒成分としてアルカリ金属又はアルカリ土類金属を使用する場合、白金、金、ルテニウム、ロジウム、イリジウム、パラジウム、及びこれらの混合物からなる群より選択された貴金属が併せて担持されることより、NO₂ 分解が一層促進されることが見出されている。

NO₂ 分解触媒の触媒成分が担持される第2担体は、特に限定する必要はないが、好ましくは、チタニア、ジルコニア、チタニアージルコニア、アルミナ、シリカ等の弱酸性又は両性のものから選択される。

[0017]

NO₂ 分解触媒の触媒成分を第2担体に担持するには、NO酸化触媒と同様に、例えば、触媒成分の溶液を用い、蒸発乾固法、沈殿法、吸着法、イオン交換法、還元析出法によって行うことができる。

[0018]

本発明のパティキュレート浄化触媒を構成する成分の割合としては、限定されるものではないが、重量割合で、 $NO酸化触媒/NO_2$ 分解触媒の比は $1/6\sim$

6/1、好ましくは $1/3\sim3/1$ である。また、NO酸化触媒に含まれる触媒成分は、酸性質担体の100質量部あたり $0.5\sim10$ 質量部が好ましく、より好ましくは $1.5\sim3$ 質量部である。また、NO $_2$ 分解触媒に含まれる触媒成分は、第2担体の100質量部あたり $1\sim40$ 質量部が好ましく、より好ましくは $2\sim10$ 質量部である。

[0019]

こうした本発明のパティキュレート酸化触媒は、パティキュレートフィルタ上 に担持され、パティキュレートフィルタ上に捕集されたパティキュレートの連続 的酸化を促進することができる。

このパティキュレートフィルタは、例えば、コージェライト製のモノリスフィルタであることができ、図1に本発明の触媒が使用される態様を示している。

[0020]

この態様において、本発明のNO酸化触媒とNO₂ 分解触媒は、モノリスフィルタの壁柱を被覆するコート層として存在する。このコート層の中で、NO酸化触媒とNO₂ 分解触媒は、図2(a) に示したように、ランダムに混在した状態で存在することができ、あるいは、図2(b) に示したように、それぞれが層を形成した状態で存在することもできる。

[0021]

【実施例】

-NO酸化性能の担体による効果-

[0022]

ここで、 WO_3 / Z r O_2 は下記の実施例1の方法により作成したN O酸化触

媒の担体である。また、B a $/\gamma$ - γ - γ ν γ + γ +

これらの触媒に、下記の組成のガスを流し、200 Cと 250 Cのガス温度における $NO \rightarrow NO_2$ の酸化率を測定した。その結果を表1 に示す。

ガス組成: NO250ppm+SO₂1ppm+H₂O5%+CO₂6%+O₂6% (残余: 窒素)

[0023]

【表1】

表 1. N O 酸化性能の比較

触媒担体	NO酸化率(%)	
	200℃	250℃
WO ₃ /ZrO ₂	6 4	9 3
シリカ	4 5	9 2
シリカーアルミナ	3 4	9 2
MFIゼオライト	6 6	9 2
Y型ゼオライト	6 2	9 3
<u>γーアルミナ</u>	1 5	9 0
ジルコニア	1 7	9 0
Ba/γーアルミナ	8.5	2 0

触媒成分:Pt2g/1Lモノリス

[0024]

表1に示した結果より、酸性質担体のWO3/ZrO2、シリカ、シリカーアルミナ、MFI型ゼオライト、脱アルミY型ゼオライトは、アーアルミナ(両性)、ジルコニア(弱酸性)、Ba/アーアルミナ(塩基性)に比較して、200 でにおけるNO酸化率が顕著に高いことが分かる。ここで、Ba/アーアルミナのNO酸化率が極めて低い理由は、塩基性のBaがPtの酸化能を阻害するためと考えられる。

[0025]

実施例1

水酸化ジルコニウム粉末91質量部にWO3 換算濃度で50質量%のメタタン

グステン酸アンモニウム水溶液を20質量部加え、混合した後、終夜にわたって80℃で乾燥し、次いで650℃で2時間焼成して、タングステン酸/ジルコニア(WO3/ZrO2)粉末を得た。

一方、γ-アルミナ粉末100質量部に、40質量%の酢酸パリウム水溶液8 5質量部を加え、混合した後、終夜にわたって80℃で乾燥し、次いで500℃で1時間焼成して、Ba/γ-アルミナ粉末を得た。

[0026]

これらのWO₃ / ZrO₂ 粉末100質量部、Ba/γ-アルミナ粉末100 質量部に、濃度40質量%の硝酸アルミニウム溶液60質量部、セリアージルコニア粉末40質量部、及び水200質量部を添加し、8時間にわたってボールミル中で混合した。

得られたスラリーをモノリス基材上に塗布し、乾燥した後、650で1時間にわたって焼成し、モノリス基材上に WO_3 / ZrO_2 粉末とBa / γ - アルミナ粉末を含む層を形成した。

次いで、この層にジニトロンジアンミンPt水溶液を含浸し、さらに、硝酸Rh水溶液を含浸して、500℃で1時間にわたって焼成し、モノリス基材1リットルあたり2gのPtと0.1gのRhを担持した本発明の触媒を得た。

[0027]

実施例2

実施例1と同様にしてWO3 /ZrO2 粉末を得た。

一方、 γ - アルミナ粉末100質量部に対してFeとして5質量部を含浸した 後、終夜にわたって80℃で乾燥し、次いで500℃で1時間焼成して、Fe/ γ-アルミナ粉末を得た。

これらのWO3/ZrO2粉末100質量部、Fe/γーアルミナ粉末100質量部に、実施例1と同様にして、硝酸アルミニウム溶液60質量部、セリアージルコニア粉末40質量部、及び水200質量部を添加し、8時間にわたってボールミル中で混合した。

[0028]

得られたスラリーをモノリス基材上に塗布し、乾燥した後、650℃で1時間

にわたって焼成し、モノリス基材上に WO_3 / ZrO_2 粉末とFe/ γ -Pルミナ粉末を含む層を形成した。

次いで、実施例1と同様にして、ジニトロンジアンミンPt水溶液と硝酸Rh 水溶液を含浸して、500℃で1時間にわたって焼成し、モノリス基材1リット ルあたり2gのPtと0.1gのRhを担持した本発明の触媒を得た。

[0029]

比較例1

γ-アルミナ粉末100質量部に、40質量%の酢酸バリウム水溶液85質量 部を加え、混合した後、終夜にわたって80℃で乾燥し、次いで500℃で1時 間焼成して、Ba/γ-アルミナ粉末を得た。

このBa/γ-アルミナ粉末100質量部に、濃度40質量%の硝酸アルミニウム溶液30質量部、セリアージルコニア粉末20質量部、及び水100質量部を添加し、8時間にわたってボールミル中で混合した。

得られたスラリーをモノリス基材上に塗布し、乾燥した後、650℃で1時間 にわたって焼成し、Ba/γ-アルミナ粉末を含む層を形成した。

[0030]

次いで、この層にジニトロンジアンミンPt水溶液を含浸し、さらに、硝酸Rh水溶液を含浸して、500℃で1時間にわたって焼成し、モノリス基材1リットルあたり2gのPtと0.1gのRhを担持した比較例の触媒を得た。

[0031]

比較例2

シリカ粉末100質量部に、濃度40質量%の硝酸アルミニウム溶液30質量部、セリアージルコニア粉末20質量部、及び水100質量部を添加し、8時間にわたってボールミル中で混合した。

得られたスラリーをモノリス基材上に塗布し、乾燥した後、650℃で1時間 にわたって焼成し、シリカ粉末を含む層を形成した。

[0032]

次いで、この層にジニトロンジアンミンPt水溶液を含浸し、さらに、硝酸R h水溶液を含浸して、500℃で1時間にわたって焼成し、モノリス基材1リッ トルあたり2gのPtと0.1gのRhを担持した比較例の触媒を得た。

なお、この酸性質担体シリカの上にPtとRhが担持された触媒は、NO酸化にL による NO_2 生成をL 流側で行い、下流側でパティキュレートを燃焼させる方式を比較試験するためのものでる。

[0033]

-NO2 分解性能の比較-

上記の実施例 $1\sim 2$ と比較例 $1\sim 2$ の触媒について NO_2 が NO に分解される 割合を、ディーゼルエンジンの排気ガスを用いて測定した。運転条件は、リーン (空燃比=30) とリッチ (空燃比=14) をそれぞれ 3 の秒間と 1 秒間の時間で繰り返す条件とし、 NO_2 分解率はリーン条件下の下記排気ガス組成で測定した。その結果を表 2 に示す。ここで、比較例 2 の触媒は、その触媒の下流にパティキュレートが堆積したモノリスフィルタ (触媒なし)を設けて、そのモノリスフィルタの出口で NO_2 分解率を測定した。

ガス組成: NO250ppm+SO₂1ppm+H₂O5%+CO₂6% +O₂6% (残余: 窒素)

[0034]

【表2】

表2.NO,分解性能の比較

	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		NO、分解形	% %
	NO酸化触媒	NO。分解触媒	၁ 0 0	2502
実施例 1	Pt/WO; /ZrO;	Pt/Ba/ァーアルミナ	യയ	9 4
実施例 2	Pt/WO; /ZrO;	Fe/ァーアルミナ	ഹയ	
比較倒1	アセ/Ba/ァー	アルミナ	78	8 °
比較例2	上消P t/シリカ	+モノリスフィルタ	2.1	8 °

[0035]

表2に示した結果より、本発明の触媒は、300℃を下回る温度でも、非常に

触媒成分: (Pt2g+Rh0.1g)/1Lモノリス

高い NO_2 分解性能を示すことが分かる。一方、 γ -アルミナ担体上にPtとBa が共存する比較例 1では、本発明の触媒を若干下回る NO_2 分解性能している。また、比較例 2の触媒は、 NO_2 分解性能は殆ど皆無である。この理由は、モノリスフィルタに触媒が担持されていない構造のためと考えられる。

[0036]

ーパティキュレートの酸化速度の比較ー

上記の実施例1~2と比較例1~2の触媒についてパティキュレートの酸化速度を、ディーゼルエンジンの排気ガスを用いて測定した。運転条件はリーン(空燃比=30)の連続条件とし、パティキュレートを含む下記の排気ガスを触媒を担持したパティキュレートフィルタに導き、フィルタの圧力損失が平衡になる条件のパティキュレート供給速度よりパティキュレートの燃焼速度を求めた。その結果を表3に示す。

ガス組成: NO250ppm+SO₂1ppm+H₂O5%+CO₂6%+O₂6% (残余: 窒素)

[0037]

【表3】

表3. パティキュレート(PM)の燃焼速度の比較

P M 燃焼速度 (mg/sec/L)	0 0 <u>0</u>	a/ァーアルミナ 0.04 0.12 -アルミナ 0.04 0.11	0.012 0.0
和	Pt/WO, /Zro, Pt/B	P t / B a / ァーアルドナー浴D + / シリカ+H / リス	
		東諸國1 東諸國2	开数窗口

[0038]

表3に示した結果より、本発明の触媒は、比較例1の触媒よりも顕著にパティ

触媒成分: (Pt2g+Rh0.1g)/1Lモノリス

キュレート酸化速度が高く、NO酸化触媒とNO2 分解触媒が共存する本発明の 触媒のパティキュレート酸化に及ぼす効果は明らかである。また、比較例1の触 媒は、表2に示すようにNO2 分解性能は高いが、パティキュレート酸化速度は 本発明の触媒に対して低い。このことは、表1に示したNO酸化能力が、低温に おける活性酸素生成の1つの因子となっており、パティキュレートの酸化にとっ て重要であることを示していると考えられる。

また、比較例2は、極めて低い酸化速度を呈しているが、この理由は、単に上流側からNO2を供給しても、NO2分解触媒が存在しないことから活性酸素が放出されず、NO2とパティキュレートの反応性によってのみ酸化が進行しているためと考えられる。本発明では、NOの酸化とNO2の分解が触媒内で繰り返し進行することにより、低温で多量の活性酸素が生成されるため、パティキュレートの酸化速度が著じるしく向上したものと考えられる。

[0039]

【発明の効果】

ディーゼル機関のから排出されるパティキュレートを従来よりも格段に低い温 度で燃焼させることができる。

【図面の簡単な説明】

【図1】

本発明の触媒が担持されたモノリスフィルタの模式図である。

[図2]

本発明の触媒が担持された状態を示す模式図である。

【書類名】 図面【図1】

図 1

モノリスフィルタの模式図

.(a) 壁の断面図

(b) モノリスフィルタ断面図

【図2】

図 2

【書類名】

要約書

【要約】

【課題】 ディーゼル車のパティキュレートフィルタ上に捕集されたパティキュレートを従来よりも格段に低い温度で容易に燃焼させることができるパティキュレート燃焼触媒を提供する。

【解決手段】 触媒成分が酸性質の第1担体に担持されてなるNO酸化触媒、及び触媒成分が第2担体に担持されてなるNO2 分解触媒を含んでなることを特徴とするパティキュレート燃焼触媒である。好ましくは、NO酸化触媒は、白金等の貴金属がタングステン酸/ジルコニアのような酸性質の第1担体に担持されてなり、NO2 分解触媒は、遷移金属の群から選択された触媒成分が、チタニア等の第2担体に担持されてなり、あるいは、NO2 分解触媒は、アルカリ金属とアルカリ土類から選択された少なくとも1種の金属と、白金等の貴金属がチタニア等の第2担体に担持されてなる。

【選択図】 図2

出願人履歴情報

識別番号

[000003207]

1. 変更年月日

1990年 8月27日

[変更理由]

新規登録

住 所

愛知県豊田市トヨタ町1番地

氏 名

トヨタ自動車株式会社