Particle spectrograph

Wave operator and propagator

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	$\frac{i\sqrt{2} k(t_1+4t_3)}{3(1+2k^2)^2 t_1 t_3}$	0	$\frac{2k^2(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{+}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{3(1+2k^2)t_1t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	0	$\frac{2ikt_{1}-4ikt_{3}}{3t_{1}t_{3}+6k^{2}t_{1}t_{3}}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_1^{\#1}{}_+^{lphaeta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha^{\beta}$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\sigma_{1}^{\#2}\dagger^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

$f_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{1}{3}$ \bar{l} k $(t_1 - 2t_3)$	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}k(t_1-2t_3)\left -\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)\right 0$
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}ik(t_1-2t_3)$
$f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}_{+}\omega_{1}^{\#2}\omega_{1}^{\#2}_{+}f_{1}^{\#1}_{+}lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	- <u>t1</u>	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#_2^2} +^{\alpha\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^-}^{\#1} \dagger^\alpha$	$f_1^{\#2} +^{lpha}$

Quadratic (free) Lagrangian density
$-rac{1}{3}t_1\;\omega_{'}^{\;\alpha'}\;\omega_{\kappalpha}^{\;\;\kappa}+rac{2}{3}t_3\;\omega_{'}^{\;lpha'}\;\omega_{\kappalpha}^{\;\;\kappa'}-t_1\;\omega_{'}^{\;\;\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;\prime}+$
$f^{\alpha\beta} \ \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + \tfrac{2}{3} r_2 \partial^\beta \omega^{\theta\alpha}_{\ \ \ \ \ \ \ \ \beta} \omega_{\alpha\beta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\frac{2}{3}r_2\partial_\theta\omega_{\alpha\beta}^{\kappa}\partial_\kappa\omega^{\theta\alpha\beta} - \frac{1}{2}t_1\partial^\alpha f_{\beta}^{\kappa}\partial^\kappa f_{\alpha}^{\theta} - \frac{1}{2}t_1\partial^\alpha f_{\kappa\theta}^{\theta}\partial^\kappa f_{\alpha}^{\theta} - \frac{1}{2}t_1\partial^\alpha f^{\kappa}^{\theta}\partial^\kappa f_{\lambda}^{\theta} +$
$rac{1}{3}t_{1}\;\omega_{\kappa\alpha}^{\;$
$\frac{2}{3}t_1\partial^\alpha f_{\kappa\alpha}\partial^\kappa f'_{\ \prime}-\frac{4}{3}t_3\partial^\alpha f_{\kappa\alpha}\partial^\kappa f'_{\ \prime}-\frac{1}{3}t_1\partial_\kappa f^\lambda_{\ \lambda}\partial^\kappa f'_{\ \prime}+\frac{2}{3}t_3\partial_\kappa f^\lambda_{\ \lambda}\partial^\kappa f'_{\ \prime}+$
$2t_{1} \omega_{ik\theta} \partial^{k} f^{i\theta} - \frac{1}{3} t_{1} \omega_{i\alpha}^{\alpha} \partial^{k} f^{\prime}_{k} + \frac{2}{3} t_{3} \omega_{i\alpha}^{\alpha} \partial^{k} f^{\prime}_{k} - \frac{1}{3} t_{1} \omega_{i\lambda}^{\lambda} \partial^{k} f^{\prime}_{k} +$
$\frac{2}{3}t_3\;\omega_{_{I}\lambda}^{\lambda}\;\partial^{\kappa}f_{}}+\frac{1}{2}t_1\;\partial^{\alpha}f_{}\lambda}^{}\lambda}+\frac{1}{2}t_1\;\partial_{\kappa}f_{}\lambda}^{}\lambda}\partial^{\kappa}f_{}\lambda}^{}}+\frac{1}{2}t_1\;\partial_{\kappa}f_{}\lambda}^{}\lambda}\partial^{\kappa}f_{}\lambda}^{}\lambda}+\frac{1}{2}t_1\;\partial_{\kappa}f_{}\lambda}^{}\lambda}\partial^{\kappa}f_{}\lambda}^{}\lambda}-\frac{1}{2}t_1\;\partial_{\kappa}f_{}\lambda}^{}\lambda}\partial^{\kappa}f_{}\lambda}^{}\lambda}\partial^{\kappa}f_{}\lambda}^{}\lambda}-\frac{1}{2}t_1\;\partial_{\kappa}f_{}\lambda}^{}\lambda}\partial^{\kappa}f_{}\lambda}^{}\lambda}\partial^{\kappa}f_{}\lambda}^{}\lambda}-\frac{1}{2}t_1\;\partial_{\kappa}f_{}\lambda}^{}\lambda}\partial^{\kappa}f_{_{$
$rac{1}{3}t_1\partial^{lpha}f^{\lambda}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\frac{2}{3}r_2\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta}$ - $\frac{2}{3}r_2\partial^\beta\omega_{\alpha}^{\ \alpha\lambda}\partial_\lambda\omega_{\alpha\beta}^{\ \ \prime}$ + $\frac{2}{3}r_2\partial^\beta\omega_{\alpha}^{\ \lambda\alpha}\partial_\lambda\omega_{\alpha\beta}^{\ \ \prime}$

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 - t_1}$	$\sigma_{2^{-}}^{\#1} \alpha eta_{\chi}$	0	0	$\frac{2}{t_1}$
$\tau_0^{\#2}$	0	0	0	0		t ₁	,1 1	
$\tau_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
		(1)			β	$\frac{2}{t_1}$	$\frac{k}{2t_1}$	
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0	$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	0
		(1+			•	-αβ	-αβ	χβχ
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_0^{\#2} +$	$\sigma_{0^-}^{\#1} \dagger$		$\sigma_{2}^{\#1} + \alpha^{\beta}$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2^-}^{\#1} + ^{lphaeta\chi}$
erators	cities							

 $\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} = 0$

 $\frac{\tau_0^{\#2} == 0}{\tau_0^{\#1} - 2 \, i \, k \, \sigma_0^{\#1} == 0}$

 $\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$ Total constraints:

$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$								
$\omega_{\scriptscriptstyle 2}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0					
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0					
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2					

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\sharp 1}\dagger$	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}\dagger$	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 - t_1$

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $\frac{t_1}{r_2} > 0$
Spin: 0
Parity: Odd

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$