# Efficient Task-Relationship Estimation With Dominant Subnet Structures

Onkar Deshpande, Prateek Varshney, Nikil Ravi

CS330 Project | Mentor: Alex Sun

### Introduction

- ➤ **Objective**: To measure task-similarity efficiently with no end-to-end training.
- Motivation: Task similarity helps us select the best tasks groupings for joint multi-task training. Current methods have high computational requirements.
- ➤ **Hypothesis**: Tasks having strong relationships exhibit similar dominant subnetwork structures
- Solution: Devise metrics to measure subnetwork similarity. If hypothesis is validated, we can use these metrics to efficiently discover task relationships

## Background

- ➤ Dataset: NYUv2 dataset
- Tasks: Semantic Segmentation (seg), Surface Normalization (sn), Depth Prediction (depth)
- ➤ Architecture: DeepLab-ResNet for shared backbone + ASPP for task-specific heads. The model was trained using a multitask loss; training was done for 5000 epochs.



### Technical Methods

- Compute parameter-level importance scores using gradient over multiple batches of each task to determine the "dominant" subnetwork in the shared backbone
- Compute similarity scores for each C(k, 2) pair of tasks using saliency scores
- Correlate with accuracy measures; that is, for tasks A, B & C, does  $Sim(A, B) < Sim(A, C) => Acc(A \mid B) < Acc(A \mid C)$ ?

**Sub-network computation**: We use a SNIP-like pruning criterion with a **freshly-initialized NN** (no training required!) to get importance scores for each parameter; these scores gives us dominant subnetworks.



Figure 1. We obtain a mask/importance scores for task in the shared backbone. In the toy figure above, subnets 1 and 2 are more similar than subnets 1 and 3.

We compute subnetwork similarity using four different metrics. These are computed layer-wise and are averaged across layers.

EPI-Sim
$$(T_1, T_2) = 1 - \frac{1}{L} \sum_{l=1}^{L} w_l \frac{|n_{(1,l)} - n_{(2,l)}|}{n_{(1,l)} + n_{(2,l)}}$$

$$IOU(T_1, T_2) = \frac{1}{L} \sum_{l=1}^{L} w_l \frac{|\operatorname{Mask}(\mathbf{W}_{(1,l)}) \cap \operatorname{Mask}(\mathbf{W}_{(2,l)})|}{|\operatorname{Mask}(\mathbf{W}_{(1,l)}) \cup \operatorname{Mask}(\mathbf{W}_{(2,l)})|}$$

$$CSS(T_1, T_2) = \frac{1}{L} \sum_{l=1}^{L} w_l cosine \Big( Sal(\mathbf{W}_{(1,l)}), Sal(\mathbf{W}_{(2,l)}) \Big)$$

$$\operatorname{MCSS}(T_1, T_2) = \frac{1}{L} \sum_{l=1}^{L} w_l \operatorname{cosine} \left( \operatorname{Mask}(\mathbf{W}_{(1,l)}) * \operatorname{Sal}(\mathbf{W}_{(1,l)}), \operatorname{Mask}(\mathbf{W}_{(2,l)}) * \operatorname{Sal}(\mathbf{W}_{(2,l)}) \right)$$

We experiment with 3 weighted-different averaging schemes: Equal weights, linearly increasing weights, sparsity-level based weights

| Results                      |                        |        |       |       |
|------------------------------|------------------------|--------|-------|-------|
|                              | Metric                 | seg/sn | seg/d | sn/d  |
| Equal<br>weights             | EPI based              | 0.876  | 0.785 | 0.855 |
|                              | IOU                    | 0.782  | 0.711 | 0.750 |
|                              | Saliency (CSS)         | 0.969  | 0.975 | 0.964 |
|                              | Masked saliency (MCSS) | 0.865  | 0.837 | 0.835 |
| Sparsity<br>based<br>weights | EPI based              | 0.799  | 0.668 | 0.782 |
|                              | IOU                    | 0.631  | 0.545 | 0.596 |
|                              | Saliency (CSS)         | 0.959  | 0.960 | 0.938 |
|                              | Masked Saliency (MCSS) | 0.768  | 0.731 | 0.726 |

- MCSS was the most aligned with our taskspecific (co-trained) accuracies.
- Metrics used for accuracy include (depending on task): pixel accuracy, IoU, absolute and relative error. For cotrained models, we have:

Acc(seg | sn) > Acc(seg | depth) Acc(sn | seg) > Acc(sn | depth) Acc(depth | seg) > Acc(depth | sn)

#### References

- [1] Silberman, Hoiem and Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012.
- [2] Sun, Ali, Wang, Huang, and Shi. Disparse:
  Disentangled sparsification for multitask model
  compression. In Proceedings of the IEEE/CVF Conference
  on Computer Vision and Pattern Recognition, pp. 12382–
  12392, 2022.
- [3] Maying Shen, Pavlo Molchanov, Hongxu Yin, and Jose M Alvarez. When to prune? a policy towards early structural pruning. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.