Notes of Deep Learning [1]

Introduction (chapter 1)

- > Challenge to artificial intelligence:
 - Solving the tasks that are easy for people to perform but hard for people to describe formally.
- Solutions with deep learning:
 - Learn from experience and understand the world in terms of a hierarchy of concepts, with each concept defined in terms of its relation to simpler concepts.

disentangle

- > Perspectives of deep learning:
 - Learning the right representation.
 - Depth allows the computer to learn a multi-step computer program:
 - > Each layer of the representation can be thought of as the state of the computer's memory after executing another set of instructions in parallel.
 - > Not all of the information in a layer's activations necessarily encodes factors of variation that explain the input.
 - > The representation also stores state information that helps to execute a program that can make sense of the input.

- > Depth of a model
 - Depth of the computational graph:
 - > Number of sequential instructions that must be executed to evaluate the architecture.
 - Depth of the probabilistic modeling graph:
 - > Depth of the graph describing how concepts are related to each other.
 - Compare with 'shallow' model:
 - > The study of models that either involve a greater amount of composition of learned functions or learned concepts than traditional machine learning does.
 - But it is still a technique that allows computer systems to improve with experience and data.

> Relation between different AI disciplines

Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning, which is in turn a kind of machine learning, which is used for many but not all approaches to AI. Each section of the Venn diagram includes an example of an AI technology.

Figure 1.5: Flowcharts showing how the different parts of an AI system relate to each other within different AI disciplines. Shaded boxes indicate components that are able to learn from data.

> Organization

Figure 1.6: The high-level organization of the book. An arrow from one chapter to another indicates that the former chapter is prerequisite material for understanding the latter.

- > Neural perspective on deep learning:
 - To reverse engineer the computational principles behind the brain and duplicate its functionality.
 - To understand the brain and the principles that underlie human intelligence apart from their ability to solve engineering applications.
 - Deep Learning ≠ Neuroscience

> Deep learning vs Neuroscience:

- > Connectionism:
 - A large number of simple computational units can achieve intelligent behavior when networked together:
 - Distributed representation*:
 - > Each input represented by many features, each feature involved in the representation of many possible inputs.
 - Back-propagation

- > Changes:
 - Increasing dataset sizes
 - Increasing model sizes
 - Increasing accuracy, complexity and real-world impact

