2010-2011 学年第二学期高等数学期中测试及数学竞赛试卷(2010 级)

(参加竞赛的同学全做,其他同学只做一、二大题)

一、填空题 (10×6分)

- 1. 设 $\bar{a} = (2,1,-2)$, $\bar{b} = (1,-1,-1)$, 则 $(2\bar{a}-3\bar{b})\cdot(\bar{a}+2\bar{b}) = 3$, $(3\bar{a}-5\bar{b})\times(5\bar{a}-8\bar{b}) = (-3,0,-3)$
- 2. 已知平面 π 过直线 $l_1: x=1, y=1+t, z=2+t$,且平面 π 平行另一直线 $l_2: x=y=z$,则平面 π 的方程为 $\mathbf{Y}-\mathbf{y}+\mathbf{l}=\mathbf{0}$
- 3. 设曲面为xOy坐标面上曲线 $\frac{x^2}{4} \frac{y^2}{9} = 1$ 绕y轴一周所得,则曲面名称是3 之事单中双**他**面,曲面的方程是 $\frac{x^2}{4} \frac{y^2}{9} + \frac{3}{4} = 1$ 。
- 5. 设 $z = (1+xy)^y$,则 $\frac{\partial z}{\partial x}\Big|_{(1,1)} = \frac{1}{2(n^2+1)}$ 。(13 5/4) 5)
- 6. 曲线 $x = 1, z = \sqrt{1 + x^2 + y^2}$ 在点 $(1,1,\sqrt{3})$ 处的切线方程为 $y \sqrt{3} + 2 = 0$ 。 (y = 0)
- 7. 设 F 可微, z = z(x,y) 由方程 F(x-z,y-z) = 0 所确定,则 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{1}{2}$.
- 8. f 连续且 $f(x,y) = xy + \iint_D f(x,y) dx dy$, $D: y = 0, y = x^2, x = 1$ 所围, 则 f(x,y) = xy + y + y = xy + y + y = xy + y + y + y = xy + y + y = xy + y + y = xy + y + y + y = xy + y
- 9. 交换积分次序 $\int_{0}^{1} dy \int_{1-\sqrt{1-y^{2}}}^{2-y} f(x,y) dx = \int_{0}^{1} dx \int_{0}^{\sqrt{2x-x^{2}}} f(x,y) dy + \int_{1}^{1} dx \int_{0}^{2-x} f(x,y) dy$
- 10. $\int_{0}^{\frac{1}{\sqrt{2}}} dy \int_{0}^{y} e^{-(x^{2}+y^{2})} dx + \int_{\frac{1}{\sqrt{2}}}^{1} dy \int_{0}^{\sqrt{1-y^{2}}} e^{-(x^{2}+y^{2})} dx = \underbrace{\frac{11}{8} (1-\frac{1}{8})}_{0}$

二、计算题 (4×10分)

1. 设
$$z = f(xy, g(x))$$
, $f = f(xy, g(x))$, $f = f($

$$\Rightarrow \frac{1}{12} + \frac{\alpha}{3} = \alpha \Rightarrow \alpha = \frac{1}{8}$$

2. 求二元函数 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值。 (13 % こ 4)

3. 计算二重积分
$$\iint_D (x+y)^3 dx dy$$
,其中 D 由曲线 $x = \sqrt{1+y^2}$ 与直线 $x + \sqrt{2}y = 0$ 及 $x - \sqrt{2}y = 0$ 围成。 ((15/4) 二 3)

三、教学竞赛加题 (5×20分)

1. 1) 求极限:
$$\lim_{x\to 0} \left(\frac{\ln(1+x)}{x}\right)^{\frac{1}{e^x-1}};$$

$$y = \left(\frac{|w(y+x)|}{x}\right) \frac{1}{e^{x-1}}$$

=
$$\lim_{x\to\infty} \left[\frac{1}{\ln(Hx)} \cdot \frac{1}{Hx} - \frac{1}{x} \right]$$

$$= \frac{x \to 0}{x \cdot (Hx) \left(\frac{x(Hx) \left(\frac{x(Hx)}{x} \right)}{x - (Hx) \left(\frac{x(Hx)}{x} \right)} \right)}$$

=
$$\lim_{x\to 0} \frac{\chi - (Hx) \left(\frac{1}{x}(Hx) \right)}{x^2} = \lim_{x\to 0} \frac{1 - \left(\frac{1}{x}(Hx) - 1\right)}{2x}$$

$$=-\frac{1}{2}$$
 . .. $T_{x}x'=e^{-\frac{1}{2}}$

2. 设
$$f(x) = \begin{cases} \frac{g(x) - e^{-x}}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, 其中 $g(x)$ 具二阶连续导数,且 $g(0) = 1$, $g'(0) = -1$, $g''(0) = 3$,

1) 求 f'(x): 2) 讨论 f'(x)在 $(-\infty,+\infty)$ 内的连续性。

1)
$$x + 0 \text{ M}$$
, $f(x) = \frac{(g(x) + e^{-x}) \cdot x - (g(x) - e^{-x})}{x^2} = \frac{x g'(x) + (x+1) e^{-x} - g(x)}{x^2}$

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{g(x) - e^{-x}}{x^{2}} = \lim_{x \to 0} \frac{g'(x) + e^{-x}}{2x} = \lim_{x \to 0} \frac{g''(x) - e^{-x}}{2}$$

$$= \frac{g''(0) - f}{2} = 1$$

2.
$$f'(x) = \begin{cases} \frac{\chi g'(x) + (\chi+1)e^{-x} - g(x)}{\chi^{2}}, \chi \neq 0 \\ 1, \chi \neq 0 \end{cases}$$

2)
$$\lim_{x\to 0} f'(x) = \lim_{x\to 0} \frac{xg'(x)+(x+1)e^{-x}-g(x)}{x^{2}} = \lim_{x\to 0} \frac{g'(x)+xg''(x)+e^{-x}-(x+1)e^{-x}-g'(x)}{2x}$$

·fixi在X=0处连续,从而fixi在(-10,+10)内连续

 $= (1+t^2) T \left[u (Ht^2) + 1 \right]$

 $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\ln (1+t^2) \cdot 2t}{\frac{2t}{1+t^2}} = (1+t^2) \ln (1+t^2)$

 $\frac{d^{2}y}{dx^{2}} = \frac{\frac{d}{dt}\left(\frac{dx}{dx}\right)}{\frac{dx}{dt}} = \frac{2t\left(k\left(l+t^{2}\right)+\left(l+t^{2}\right)\cdot\frac{2t}{l+t^{2}}\right)}{\frac{2t}{l+t^{2}}}$

3. 计算 1) 设
$$\int xf(x)dx = \arcsin x + C$$
, 求 $\int \frac{1}{f(x)}dx$; 2) $\int_0^{\pi^2} \sqrt{x}\cos\sqrt{x} dx$.

1)
$$xf(x) = (\alpha r c sin x)' = \frac{1}{\sqrt{1-x^2}}$$

$$\therefore \int \frac{dx}{f(x)} = \int x \sqrt{1-x^2} dx$$

$$= -\frac{1}{3} (1-x^2)^{\frac{3}{2}} + C$$

2)
$$\sqrt[3]{x} = t$$

$$\sqrt[3]{y} = \int_0^{\pi} 2t^2 \cos t \, dt$$

$$= \int_0^{\pi} 2t^2 \, d \sin t$$

$$= \left[2t^2 \sin t\right]_0^{\pi} - \int_0^{\pi} 4t \, G \sin t \, dt$$

$$= \int_0^{\pi} 4t \, d \cos t$$

$$= \left[4t \cos t\right]_0^{\pi} - \int_0^{\pi} 4 \cos t \, dt$$

$$= -4\pi$$

4. 设
$$f(x)$$
 在 $[0,1]$ 上具有连续导数,且 $f(0)=0$, $f(1)=\frac{1}{3}$,证明:存在 $\xi \in \left(0,\frac{1}{2}\right)$, $\eta \in \left(\frac{1}{2},1\right)$, 使得

$$f'(\xi) + f'(\eta) = \xi^{2} + \eta^{2}. \quad (14544 = 4)$$

$$\Rightarrow F(x) = f(x) - \frac{1}{3}x^{3}$$

$$124 F(0) = F(1) = 0, \quad F'(x) = f'(x) - \chi^{2}$$

$$\Rightarrow \text{Lagrange} \Rightarrow \text{Thirty},$$

$$3 \Rightarrow e(0, \frac{1}{2}) \text{ s.t. } F(\frac{1}{2}) - F(0) = F'(\frac{1}{2}) \cdot \frac{1}{2} \quad 0$$

$$3 \Rightarrow e(\frac{1}{2}, \frac{1}{2}) \text{ s.t. } F(\frac{1}{2}) - F(\frac{1}{2}) = F'(\frac{1}{2}) \cdot \frac{1}{2} \quad 0$$

由 扫描全能王 扫描创建