#### ЛАБОРАТОРНАЯ РАБОТА 50

### СНЯТИЕ ХАРАКТЕРИСТИК И ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ФОТОЭЛЕМЕНТА

| Выполнил студент гр                        | Ф.И.О |  |  |  |  |
|--------------------------------------------|-------|--|--|--|--|
| Подпись преподавателя                      | дата  |  |  |  |  |
| (обязательна после окончания эксперимента) |       |  |  |  |  |

<u>Цель работы</u>: ознакомиться с явлением внешнего фотоэффекта и работой фотоэлемента, определить чувствительность фотоэлемента.

#### Описание установки

Источник света (1) освещает фотоэлемент (3) и фоторезистор (2), величина тока в котором пропорциональна освещенности, измеряемой в люксах. Величину освещенности, которую показывает люксметр (4), можно менять регулятором  $R_1$ . Микроамперметр (5) и вольтметр (6) измеряют величину фототока и напряжение на фотоэлементе, которое изменяют регулятором R.

## Порядок выполнения работы

- 1. Разобраться в назначении и расположении приборов и регуляторов на установке. Определить цену деления всех измерительных приборов.
- 2. Тумблер S поставить в положение "Выкл", выключая источник освещенности и располагая его на максимальном удалении от фотоэлемента, для чего регулятор освещенности  $R_1$  надо повернуть впра-
- максимальном удалении от фотоэлемента, для чего регулятор освещенности  $R_1$  надо повернуть вправо до упора.
  - 3. Ручку потенциометра R повернуть против часовой стрелки до упора.
  - 4. Включить установку в сеть "220 В".
- 5. Изменяя напряжение U потенциометром (реостатом) R, снять зависимость величины фонового фототока I от напряжения, подаваемого на фотоэлемент, при освещенности E=0 Лк.
- 6. Тумблером S включить источник света и измерить зависимость фототока I от прилагаемого к фотоэлементу напряжения U при различных значениях освещенности, устанавливаемых регулятором  $R_1$ . Рекомендуемые значения освещенности E приведены на установке. Данные измерений занести в таблицу.

| Е, лк | U, B | 0                | 10 |   |   |              |   |    |     |   |     | $I_{\mathrm{H}}$ , A |
|-------|------|------------------|----|---|---|--------------|---|----|-----|---|-----|----------------------|
| 0     | I, A |                  |    |   |   |              |   |    |     |   |     |                      |
|       | I, A |                  |    |   |   |              |   |    |     |   |     |                      |
|       | I, A |                  |    |   |   |              |   |    |     |   |     |                      |
|       | I, A |                  |    |   |   |              |   |    |     |   |     |                      |
|       | I, A |                  |    |   |   |              |   |    |     |   |     |                      |
|       | I, A |                  |    |   |   |              |   |    |     |   |     |                      |
|       | Δ    | I <sub>H</sub> = | A  | ; | Δ | Δ <i>E</i> = | Л | к; | k = | A | /лк |                      |

- 7. По полученным данным построить вольт-амперные характеристики I = f(U) при E = const (семейство кривых строить на одном листе, как показано на рисунке).
- 8. По построенным графикам определить величины тока насыщения  $I_{\rm H}$  при каждом значении освещенности E, занести их в таблицу и построить график зависимости тока насыщения  $I_{\rm H}$  от освещенности E.





9. По этому графику определить величины  $\Delta I_{\rm H}$  и  $\Delta E$  (см. рисунок). Определить чувствительность фотоэлемента  $k=\Delta I_{\rm H}/\Delta E$  . Результаты занести в таблицу.



Зависимость  $I_{\rm H} = f(E)$ 



Зависимость I = f(U)

# Контрольные вопросы к лабораторной работе № 50

- 1. В чем заключается явление внешнего фотоэффекта?
- 2. По каким причинам объяснить явление фотоэффекта можно только с помощью квантовой теории?
- 3. Что называют фотоном? Каковы его энергия и импульс?
- 4. Какую величину называют работой выхода электрона из металла?
- 5. Запишите и объясните уравнение Эйнштейна для фотоэффекта.
- 6. Что называется красной границей фотоэффекта? Почему фотоэффект невозможен при малой частоте падающего на металл света?
- 7. Что из себя представляет фотоэлемент, используемый в работе? С помощью рисунка установки объясните схему эксперимента.
- 8. Что называют задерживающим напряжением и как определить его величину?
- 9. Почему величина фототока перестаёт расти с увеличением прямого напряжения? От чего зависит величина фототока насыщения  $I_{\rm H}$ ? Почему величина  $I_{\rm H}$  пропорциональна освещенности?
- 10. Объясните принцип измерения освещенности света люксметром.
- 11. Что называется чувствительностью фотоэлемента?
- 12. Докажите невозможность поглощения фотона свободным электроном.
- 13. Почему величина фототока не равна нулю при подаче обратного напряжения? Почему эта величина возрастает не скачком, а постепенно?

Теоретические сведения к данной работе можно найти в учебных пособиях:

- 1. Савельев И.В. Курс общей физики в 3-х тт. СПб., М., Краснодар: Лань, 2008. : Т. 3: §§8-9.
- 2. Колмаков Ю.Н., Пекар Ю.А., Лежнева Л.С., Семин В.А. Основы квантовой теории и атомной физики, изд. ТулГУ. 2010, гл.2 §1.