算法设计与分析

> LECTURE 5

Outline

Lecture 5

查找

- □ 折半查找
- □ 平衡二叉搜索树
- □ 并查集
- □ 哈希表
- □ 平摊分析

查找问题

- □ 查找问题
 - > 在一组键值中找指定的键值
- □ 期望查找代价
 - ➤ 蛮力方法: *O*(*n*)
 - ▶ 理想代价: *O*(1)
 - ▶ 合理期待: O(log n)

查找问题

□ 关键要素:

- > 如何组织数据进行有效查找
- ➤ log n 查找
 - ◆ 每次将搜索空间折半
 - ◆ 如何组织数据保证 log n 查找?

□ log n 查找

- > 折半查找
- ➤ 平衡二叉搜索树(BST)
 - ◆ 红黑树

折半查找

- □ 例子: 查找 "24"
 - > 有序数组,常数时间寻址
 - > 折半搜索空间

折半查找—应用

- □ 山峰数组的顶部
 - > 单峰数组
- □ 不在数组里的最小元素
 - > 排序好的自然数
- \Box A[i]=i
 - > 排序好的整数

Outline

Lecture 5

平衡二叉搜索树

- □ 二叉搜索树
 - > 定义和基本操作
- □ 红黑树定义
- □ 红黑树基本操作
 - > 插入
 - > 删除

二叉搜索树

好的平衡 $O(\log n)$

如何构建平衡的二叉树?

Node group

Rotation

红黑树

- □ 红黑树(Red-Black Tree)是一棵二叉搜索树,且满足:
 - ▶ 颜色限制:红色父节点没有红色子节点
 - 黑色高度限制:以任意节点为根的子树中,所以外部节点的黑色深度相等。
 - 根节点为黑色,所有外部节点为黑色。
- □ 准红黑树(Almost-red-black tree, ARB tree)
 - 根节点是红色,满足其他限制

红黑树递归定义

- \square 唯一一个外部节点(同时也是根节点)构成一棵黑色高度为0的 红黑树 RB_0
- □ 对于 $h \ge 1$,一棵二叉树为准红黑树 ARB_h ,如果它的根节点为红色,且其左右子树均为 RB_{h-1}
- □ 对于 $h \ge 1$,一棵二叉树为红黑树 RB_h ,如果它的根节点为黑色,且其左右子树分别为一棵 RB_{h-1} 或者 ARB_h

红黑树与准红黑树

6个节点的红黑树

红黑树的平衡性

- □ 假设 T 为一棵 RB_h ,则:
 - ightharpoonup T 有不少于 $2^h 1$ 个内部黑色节点
 - ightharpoonup T 有不超过 $4^h 1$ 个内部节点
 - 任何黑色节点的普通高度至多是其黑色高度的2倍

- □ 假设 T 为一棵 ARB_h , 则:
 - ightharpoonup T 有不少于 $2^h 2$ 个内部黑色节点
 - ightharpoonup T有不超过 $\frac{1}{2}4^h-1$ 个内部节点
 - 任何黑色节点的普通高度至多是其黑色高度的2倍

红黑树平衡性

□ 定理: 假设T为一个有 n 个内部节点的红黑树,则红黑树的普通高度不超过 $2\log(n+1)$,基于红黑树的查找代价为 $O(\log n)$

Outline

Lecture 5

平衡二叉搜索树

- □ 红黑树基本操作
 - > 插入
 - > 删除

Black-depth

红黑树的插入

- □ 黑色高度限制:
 - > 如果插入红色节点,无破坏

红黑树的插入

红黑树—逻辑和结构删除

红黑树的删除

红黑树的删除—propagation

红黑树的删除—without propagation

扩展阅读

- □ 彻底理解红黑树(二)之插入
- □_彻底理解红黑树(三)之 删除

Outline

Lecture 5

哈希表

- □ 哈希表
- □ 冲突消解技术
 - > 封闭寻址
 - > 开放寻址
- □ 平摊分析

查找代价

- □ 蛮力方法: *O*(*n*)
- □ 平衡二叉搜索树: $O(\log n)$
- □ 哈希查找,近似线性时间:
 - $\triangleright 0(1+\alpha)$

查找—蛮力方法

□ 直接寻址表

哈希表

- □ 哈希表(Hash Table,也叫散列表),是根据键(Key)而直接访问在内存存储位置的数据结构。
- □ 哈希表通过计算一个**关于键值的函数**,将所需查询的数据映射到表中一个位置来访问记录,这加快了查找速度。
- □ 这个映射函数称做哈希函数,存放记录的数组称做哈希表。

哈希表

封闭寻址冲突消解

封闭寻址分析

- □ 假设:简单均匀哈希
 - > n 个元素等概率地被哈希到所有可能的m个位置之一
 - ▶ 对于 j=0,1,2,...,m-1, 链表平均长度 E[j] 是 n/m
 - ightharpoonup 负载因子 $\alpha = \frac{n}{m}$,反映了哈希表的"拥挤"程度
- □ 一次不成功查找的期望代价:
 - > 计算哈希值
 - > 遍历整个链表,没有找到
 - ▶ 总代价: O(1+n/m)

封闭寻址分析

- \square 对于一次成功的查找(假设 x_i 是第 i 个插入到哈希表的元素)
- □ 对于元素 x_i , 被查找的概率是 1/n
- \square 查找代价主要受与 x_i 在同一链表且在它前面的元素的影响
 - $> x_i$ 后面的元素有 1/m 的概率被哈希到 x_i 所在的链表
 - \rightarrow 插入在 x_i 前面元素个数的期望值: $\sum_{j=i+1}^n 1/m$

封闭寻址分析

 \square 对于封闭寻址冲突消解,一次成功查找的平均情况代价为 $\Theta(1+\alpha)$

$$\begin{split} \mathbf{E}\Big[\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}X_{ij}\right)\Big] &= \frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}\mathbf{E}[X_{ij}]\right) \qquad (歯期望的线性性) \\ &= \frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}\frac{1}{m}\right) = 1+\frac{1}{mn}\sum_{i=1}^{n}\left(n-i\right) \\ &= 1+\frac{1}{mn}\Big(\sum_{i=1}^{n}n-\sum_{i=1}^{n}i\Big) = 1+\frac{1}{mn}\Big(n^2-\frac{n(n+1)}{2}\Big) \\ &= 1+\frac{n-1}{2m} = 1+\frac{\alpha}{2}-\frac{\alpha}{2n} \end{split}$$

开放寻址

- □ 所有元素存放在哈希表中
 - > 没有使用链表
 - ▶ 负载因子不大于1
- □ 冲突通过 "rehashing" 解决
 - > 反复哈希,成功查找或者探测到一个空位
- □ 每次查找对应一个探测序列
 - ➤ 哈希表所有m个位置的一个排列

开放寻址分析

- □ 假设: 每个键值的探测序列均匀等概率地对应到所有可能 m! 种排列中的某一个
- □ 一次不成功的平均探测代价:
 - ▶ 首先分析探测次数不少于 i 的概率, 等价于前 i-1 次探测都探测到非空的位置
 - ightharpoonup 根据均匀等概率假设,第一次探测到一个非空位置的概率为 $\frac{n}{m}$,第二次探测到一个非空位置的概率为 $\frac{n-1}{m-1}$
 - ➤ 探测次数不少于 $i(i \ge 2)$ 的概率是:

$$\frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \frac{n-2}{m-2} \cdots \frac{n-i+2}{m-i+2} \le \left(\frac{n}{m}\right)^{i-1} = \alpha^{i-1}$$

开放寻址分析

□ 探测次数的期望值满足:

$$\mathrm{E}[X] = \sum_{i=1}^{\infty} \Pr\{X \geqslant i\} \leqslant \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i} = \frac{1}{1-\alpha}$$

 $1/(1-\alpha)=1+\alpha+\alpha^2+\alpha^3+\cdots$ 的这个界有一个直观的解释。无论如何,总要进行第一次探查。第一次探查发现的是一个已占用的槽时,必须要进行第二次探查,进行第二次探查的概率大约为 α 。前两次探查所发现的槽均是已占用时,需要进行第三次探查,进行第三次探查的概率大约为 α^2 ,等等。

开放寻址分析

- □ 一次成功的查找:
 - ▶ 每个元素被查找的概率为 1/n
 - \triangleright 成功查找到 x_{i+1} ,相当于查找一个有 i 个元素的表,并且查找失败
 - ightharpoonup 代价是 $\frac{1}{1-\frac{i}{m}} = \frac{m}{m-i}$
- □ 成功查找代价的期望值:

$$\frac{1}{n} \sum_{i=0}^{m-1} \frac{m}{m-i} = \frac{m}{n} \sum_{i=0}^{m-1} \frac{1}{m-i} = \frac{1}{\alpha} \sum_{k=m-m+1}^{m} \frac{1}{k} \leqslant \frac{1}{\alpha} \int_{m-n}^{m} (1/x) dx$$
$$= \frac{1}{\alpha} \ln \frac{m}{m-n} = \frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$

Outline

Lecture 5

平摊分析

□ 平摊分析

- ➤ MultiPop 栈
- > 二进制计数器
- > 数组扩充

平摊分析

- □ 对于哈希表的n次插入操作,单个操作的代价最高是 O(n),所以总代价的上界是 $O(n^2)$
- □ 更紧的上界,数组的扩充只会发生在数组大小为2的幂时,因而代价满足:

$$W(n) = \sum_{i=1}^n c_i$$
 $\leq \underbrace{n}_{ au au au au au} + \sum_{j=0}^{\log n} 2^j$ $= 3n$

平摊分析

□ 发现"廉价"操作和"昂贵"操作之间的内在联系,并通过这一联系将 昂贵操作的代价"分摊"到廉价操作之上,进而得到一个更紧的上界。

□ 实际代价 C_{act} :

每个操作实际的执行代价。一般根据操作的实际代价将它们分为昂贵操作和廉价操作。

□ 记账代价 C_{acc} :

对于廉价操作,为其计算一个正的记账代价;对于昂贵操作,为其计算一个负的记账代价。

□ 平摊代价 C_{amo} :

 $\succ C_{amo} = C_{act} + C_{acc}$

平摊分析

- □ 廉价操作的记账代价设计:设计一个正的记账代价,其原理是预先多计算一点代价。
- □ 昂贵操作的记账代价设计:设计一个负的记账代价,其原理是前面已经 攒了一些钱(记账代价),此时使用攒好的钱。
- □ 保证分析的上界是正确的: 所以操作的记账代价的总和必须永远是非负的。

MultiPop 栈

□ PUSH: 将一个元素压倒栈中。

□ POP-ALL: 将栈中所以元素全部出栈。

操作	C_{amo}	C_{act}	C_{acc}
PUSH	2	1	1
POP-ALL	0	k	-k

□ 任意n个栈操作的序列的代价总是不超过 2n= O(n)

二进制计数器

计数器值	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	总代价
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	201	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	133	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0		16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26
16	0	0	0	1	0	0	0	0	31

二进制计数器

□ 有进位的增1和无进位的增1

$$C_{acc}($$
有进位增 $1)=$ $-k + 1$ 1 $k \wedge 1 \odot ext{ $k \circ 1 \odot ext{ $k \circ 0} \circ ext{ $k \circ 1 \odot ext{ $k \circ 1} \circ ext{ $k \circ 1} \circ ext{ $k \circ 1 \circ ext{ $k \circ 1} \circ ext{ $k \circ 1 \circ ext{ $k \circ 1} \circ ext{ $k \circ 1 \circ ext{ $k \circ 1 \circ ext{ $k \circ 1} \circ ext{ $k \circ 1 \circ ext{ } } ext{ $k \circ 1 \circ ext{ $k \circ 1 \circ ext{ } } ext{ $k \circ 1 \circ ext{ $k \circ 1 \circ ext{ } ext{ } ext{ $k \circ 1 \circ ext{ } ext{ } ext{ } ext{ } ext{ $k \circ 1 \circ ext{ } ext{ }$$$

操作	C_{amo}	C_{act}	C_{acc}
无进位的增1	2	1	1
有进位的增1	2	k+1	-k+1

□ 只针对比特位的操作:

操作	C_{amo}	C_{act}	C_{acc}
置1	2	1	1
置0	0	1	-1

数组扩充

- ① 插入元素d的代价
- ② 挪动元素d的代价
- ③ 挪动元素d的伙伴(元素b)的代价

再挪入新空间

数组扩充

操作	C_{amo}	C_{act}	C_{acc}
普通插入	3	1	2
扩充插入	3	k+1	-k+2

数组扩充的平摊分析

Outline

Lecture 5

并查集

- □ 动态等价关系
- □ 并查集
 - ▶ 普通并+普通查
 - ▶ 加权并+普通查
 - ▶ 加权并+路径压缩查

动态等价关系

- □ Kruskal 算法, 贪心策略:
 - > 新加入一条最小权重的边
 - > 判断是否成环
- □ 是否成环等价于判断节点间(在局部最小生成树)的连通关系
- □ 节点间的连通关系是一个等价关系
- 在节点间等价关系动态变化的同时,高效地判断两个元素之间是否具有等价关系。

动态等价关系

- □ 等价关系具有自反、对称、传递的二元关系的性质。
- □ 设 R 是集合 A 上的一个二元关系, 若R满足:
 - ▶ 自反性: ∀a ∈A, => (a, a) ∈ R
 - 対称性: (a, b) ∈R ∧ a ≠ b => (b, a) ∈R
 - ▶ 传递性: (a, b)∈R,(b, c)∈R =>(a, c)∈R

动态等价关系

- □ 考虑 n 个元素 $a_1, a_2, ..., a_n$,在某种等价关系下被分为若干个等价类
- □ 初始时,每个元素单独成为一个等价类
- □ 两类操作:
 - ightharpoonup FIND(a_i): 返回 a_i 所在的等价类
 - ightharpoonup UNION(a_i, a_j): 将 a_i, a_j 所在的等价类合并成一个等价类

Kruskal—基于并查集的实现

- □ 判断加入边uv是否成环,只需判断点 u 和 v 是否在同一个等价类。
- □ 如果是,则加入 uv 必然成环
- □ 否则必然不成环,加入uv之后,需要将这两个点所在的等价类合并成一个。
- □ 两种朴素的实现方法
 - \triangleright 基于矩阵: 布尔矩阵表示二元关系,空间开销 $\Theta(n^2)$, 最坏情况时间复杂度 O(nl)
 - \triangleright 基于数组:每个位置存放元素所在等价类的代表元,空间开销 $\Theta(n)$,最坏情况时间复杂度 O(nl)

基于根树的实现

- □ 根节点为等价类的代表元
- □ 每棵子树的所有节点对应于一个等价类

图:并查集的基础实现

加权"并"+普通"查"

□ 加权并:将节点数更少的树挂到节点数更多的树的根节点。

图:加权并的实现

加权"并"+普通"查"

□引理:初始时,每个元素成为一个等价类。基于加权并来实现并查集的并时,包含k个节点的树,它的高度至多不超过 $\lfloor \log k \rfloor$

- □ 证明: 数学归纳法
 - base case: k=1, the height is 0.
 - by inductive hypothesis:
 - $h_1 \leq \lfloor \lg k_1 \rfloor$, $h_2 \leq \lfloor \lg k_2 \rfloor$
 - o h=max(h1, h2+1), k=k1+k2
 - if $h=h_1$, $h \le \lfloor \lg k_1 \rfloor \le \lfloor \lg k \rfloor$
 - if $h=h_2+1$, note: $k_2 \le k/2$ so, $h_2+1 \le \lfloor \lg k_2 \rfloor + 1 \le \lfloor \lg k \rfloor$

加权"并"+普通"查"

□ 定理: 采用加权"并"和普通"查",对于 n 个元素的并查集与长度 l 的并查程序,最坏情况下代价为 $O(n + l \log n)$

- □ 初始代价: **O**(**n**)
- □ UNION 操作: **O**(**n**)
- □ FIND 代价: O(l log n)

加权"并"+路径压缩"查"

加权"并"+路径压缩"查"

- □ 压缩过的节点后续被频繁查找,则路径压缩就能有效改进并查集的效率。
- □ 定理:采用加权"并"和路径压缩"查",对于 n 个元素的并查集与长度l 的并查程序,最坏情况下代价为 $O((n+l)log^*n) \approx O(n+l)$
- \Box O(ln) => O(l log n) => O(n+l)

Thanks