

HEXFET® Power MOSFET

Applications

- Zero Voltage Switching SMPS
- Uninterruptible Power Supplies
- Motor Control applications

V_{DSS}	R _{DS(on)} typ.	Trr typ.	I _D
500V	1.05Ω	92ns	6.0A

Features and Benefits

- Fast body diode eliminates the need for external diodes in ZVS applications.
- Lower Gate charge results in simpler drive requirements.
- Higher Gate voltage threshold offers improved noise immunity.

Absolute Maximum Ratings

	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	6.0	
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	3.9	A
I _{DM}	Pulsed Drain Current ①	24	
$P_D @ T_C = 25^{\circ}C$	Power Dissipation	119	W
	Linear Derating Factor	1.0	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery dv/dt 3	9.9	V/ns
T_J	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			6.0		MOSFET symbol
	(Body Diode)			6.0	Α	showing the
I _{SM}	Pulsed Source Current			24		integral reverse
	(Body Diode) ①			24		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C, I_S = 6.0A, V_{GS} = 0V $ ④
t _{rr}	Reverse Recovery Time		92	138	ns	$T_J = 25^{\circ}C, I_F = 6.0A$
			152	228		T _J = 125°C, di/dt = 100A/μs ^④
Q _{rr}	Reverse Recovery Charge		167	251		$T_J = 25^{\circ}C$, $I_S = 6.0A$, $V_{GS} = 0V$ ④
			292	438		T _J = 125°C, di/dt = 100A/μs ④
						$T_J = 25^{\circ}C$, $I_S = 6.0A$, $V_{GS} = 0V$
I _{RRM}	Reverse Recovery Current		3.6	5.4	Α	di/dt = 100A/µs ^④
t _{on}	Forward Turn-On Time	Intrins	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)			

Notes ① through ② are on page 2 www.irf.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	500			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.33		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.05	1.3	Ω	$V_{GS} = 10V, I_D = 3.7A$ @
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.0	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			25	μΑ	$V_{DS} = 500V, V_{GS} = 0V$
				2.0	mΑ	$V_{DS} = 400V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100		$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -20V$

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	7.5			S	$V_{DS} = 50V, I_D = 3.7A$
Q_g	Total Gate Charge			34		$I_{D} = 6.0A$
Q_{gs}	Gate-to-Source Charge			11	nC	$V_{DS} = 400V$
Q_{gd}	Gate-to-Drain ("Miller") Charge			14]	V _{GS} = 10V, See Fig.14a &14b ⊕
t _{d(on)}	Turn-On Delay Time		8.5			$V_{DD} = 250V$
t _r	Rise Time		25		ns	$I_{D} = 6.0A$
t _{d(off)}	Turn-Off Delay Time		30			$R_G = 7.5\Omega$
t _f	Fall Time		20]	V _{GS} = 10V, See Fig. 15a & 15b ④
C _{iss}	Input Capacitance		1346			$V_{GS} = 0V$
C _{oss}	Output Capacitance		76]	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		15			f = 1.0KHz, See Fig. 5
C _{oss}	Output Capacitance		1231		pF	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		25			$V_{GS} = 0V, V_{DS} = 400V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		51			
C _{oss} eff. (ER)	Effective Output Capacitance		40			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 400V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	(Energy Related)		43			

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ^②	_	178	mJ
I _{AR}	Avalanche Current ①		3	Α
E _{AR}	Repetitive Avalanche Energy ①	_	11.9	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case®		1.05	
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) ♡		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient		110	

Notes:

- ① Repetitive rating; pulse width limited by max.
- junction temperature. (See Fig. 11)

 ② Starting $T_J = 25^{\circ}C$, L = 40 mH, $R_G = 25\Omega$, $I_{AS} = 3.0 \text{A}$. (See Figure 13).
- $\label{eq:ISD} \mbox{$\stackrel{<}{$}$} \mbox{I_{SD}} = 6.0\mbox{A}, \mbox{di/dt} \leq 416\mbox{A/μs}, \mbox{V_{DD}} \mbox{$V_{(BR)DSS}$}, \mbox{T_J} \leq 150\mbox{$^{\circ}$} \mbox{C}.$
- ④ Pulse width ≤ 300 μ s; duty cycle ≤ 2%.
- $C_{oss}\,\text{while}\,\,V_{DS}\,\text{is}$ rising from 0 to 80% $V_{DSS}.\,\,C_{oss}\,\text{eff.(ER)}$ is a fixed capacitance that stores the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.

 (a) R₀ is measured at T_J approximately 90°C
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniquea refer to applocation note # AN- 994 echniques refer to application note #AN-994.

International TOR Rectifier

IRFR825TRPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International

TOR Rectifier

625 | Id = 1mA | 600 | 600 | 575 | 525 | 525 | 60 -40 -20 0 20 40 60 80 100 120 140 160 | T_J, Temperature (°C)

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typ. Breadown Voltage vs. Temperature

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 9. Typical Rdson Vs. Drain Current

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International

TOR Rectifier

Fig 12. Maximum Safe Operating Area

Fig 13a. Unclamped Inductive Test Circuit

Fig 14a. Gate Charge Test Circuit

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 13b. Unclamped Inductive Waveforms

Fig 14b. Gate Charge Waveform www.irf.com

International TOR Rectifier

IRFR825TRPbF

Fig 15a. Switching Time Test Circuit

Fig 15b. Switching Time Waveforms

Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14,5M-1994

- 2.— DIMENSION UNCONTROLLED IN LS.

 \$\rightarrow\text{LEAD DIMENSION UNCONTROLLED IN LS.}

 DIMENSION DI, EI, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.- SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN ,005 AND 0.10 [0.13 AND 0.26] FROM THE LEAD TIP.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .006 [0.13] PER SIDE, THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY,
- DIMENSION 61 & c1 APPLIED TO BASE METAL ONLY.
- DATUM A & B TO BE DETERMINED AT DATUM PLANE H. OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

S		DIMEN	ISIONS		N	
Во	MILLIM	ETERS	INC	HES	Į.	
L	MIN.	MAX.	MIN.	MAX.	E S	
Α	2.18	2.39	.086	.094		
A1	-	0.13	-	.005		
ь	0.64	0.89	.025	.035		
ь1	0.65	0.79	.025	.031	7	
b2	0.76	1,14	.030	.045		
b3	4.95	5.46	.195	.215	4	
С	0,46	0,61	.018	.024		
c1	0.41	0.56	.016	.022	7	
c2	0.46	0.89	.018	,035		
D	5.97	6.22	.235	.245	6	
D1	5.21	-	.205	-	4	
Ε	6,35	6,73	.250	.265	6	
E1	4.32	-	.170	-	4	
e	2.29	BSC	.090	BSC		
н	9,40	10,41	.370	,410		
L	1.40	1.78	.055	.070		
L1	2.74	BSC	.108	REF.		
L2	0.51	BSC	.020	BSC		
L3	0.89	1.27	.035	.050	4	
L4	-	1.02	-	.040		
L5	1,14	1.52	.045	,060	3	
ø	0,	10*	0,	10*		
ø1	0.	15*	0.	15*		
ø2	25*	35*	25"	35*		

LEAD ASSIGNMENTS

HEXFET

IGBT & CoPAK

1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

D-Pak (TO-252AA) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481.

Data and specifications subject to change without notice.

This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

9

IR WORLD HEADQUARTERS: 101N.Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.12/2012

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.