	$\alpha_1 R_1$ +	+	$\alpha_r R_r$	$\beta_1 P_1$ +	+	$\beta_p P_p$
initial	n_{10}		n_{r0}	m_{10}		m_{p0}
ultérieur mol ultérieur (mol.L ⁻¹)	$n_{10} - \alpha_1 \xi$ $C_{10} - \alpha_1 x_{\nu}$		$n_{r0} - \alpha_r \xi$ $C_{r0} - \alpha_r x_v$	$m_{10} + \beta_1 \xi$ $D_{10} + \beta_1 x_v$		$m_{p0} + \beta_p \xi$ $D_{p0} + \beta_p x_v$

	$\alpha_1 R_1$ +	+	$\alpha_r R_r \rightleftharpoons$	$\beta_1 P_1$ +	+	$\beta_p P_p$
initial	$\alpha_1 C$		$\alpha_r C$	0		0
ultérieur	$\alpha_1 C(1-\tau)$		$\alpha_r C(1-\tau)$	$\beta_1 C \tau$		$\beta_p C \tau$

Définition : Vitesses d'apparition/disparition

On nomme vitesse d'apparition, notée V_{fi} (resp. de disparition, notée V_{di}) d'une espèce chimique X_i dont la quantité dans le système est n_i la quantité :

$$\frac{\mathrm{d}n_i}{\mathrm{d}t} = V_{fi} \ (resp. - \frac{\mathrm{d}n_i}{\mathrm{d}t} = V_{di}).$$

Définition : Vitesse globale de réaction

On nomme vitesse globale de la réaction la dérivée temporelle de l'avancement ξ :

$$\mathcal{V} = \frac{\mathrm{d}\xi}{\mathrm{d}t} = \frac{1}{v_i} \mathcal{V}_{fi} = -\frac{1}{v_i} \mathcal{V}_{di}.$$

Définition : Vitesse volumique

On définit la vitesse volumique d'une réaction, (ou simplement vitesse par abus de langage) dans un système de volume V, notée v, par

$$v = \frac{1}{V}\mathcal{V} = \frac{1}{V}\frac{\mathrm{d}\xi}{\mathrm{d}t},$$

Système isochore

Un système est dit **isochore** si son volume V est constant. On a alors, pour des espèces dissoutes :

$$v_{fi} = \frac{1}{V} \frac{\mathrm{d}n_i}{\mathrm{d}t} = \frac{\mathrm{d}n_i/V}{\mathrm{d}t} = \frac{\mathrm{d}[X_i]}{\mathrm{d}t} \quad \text{et donc} \quad v = \frac{1}{v_i} \frac{\mathrm{d}[X_i]}{\mathrm{d}t} = \frac{\mathrm{d}x_v}{\mathrm{d}t}.$$

Exercice : Cas d'un mélange de gaz parfaits

- 1. Rappeler la relation liant la pression partielle P_i d'une espèce gazeuse X_i à son nombre de moles n_i , au volume V et à la température T du système, et à la constante des gaz parfaits R.
- 2. En déduire l'expression de la vitesse volumique de réaction v en fonction de v_i , R, T et $\frac{\mathrm{d}P_i}{\mathrm{d}t}$, puis la vitesse $\frac{\mathrm{d}P}{\mathrm{d}t}$ d'évolution de la pression totale en fonction de v, R, T et des v_i :

Fréquence des chocs moléculaires

Une réaction chimique nécessite des chocs quasi-ponctuels entre les réactifs. Leur fréquence croît quand :

- la température T croît, car elle augmente la vitesse des molécules,
- la concentration des réactifs croît car alors la distance entre molécules décroît.

Pour être **efficace**, *ie* conduire à une modification de structure chimique, l'énergie cinétique, et donc la vitesse des molécules, doit être élevée. Les chocs seront donc d'autant plus efficaces que la température est élevée.

Définition : Ordre d'une réaction chimique

On dit qu'une réaction chimique **admet un ordre** si sa vitesse volumique ν peut se mettre sous la forme :

$$v = k[R_1]^{u_1} \dots [R_r]^{u_r} [C_1]^{w_1} \dots [C_q]^{w_q}.$$

- Les u_i , w_i sont les **ordres partiels** par rapport aux réactifs R_i et aux autres espèces chimiques C_i , produits ou autres (catalyseurs).
- Le nombre $u = \sum_i u_i + \sum_j w_j$ est l'**ordre** (global).
- La constante k, toujours > 0 est la **constante de vitesse**, ou **constante cinétique**. Elle ne dépend que de la température.

Définition : Ordres courant et initial

- L'ordre courant d'une réaction est son ordre (global) à chaque instant t.
- L'ordre initial d'une réaction est son ordre (global) à l'instant initial, quand aucun produit n'est présent dans le système.

Exercice L'étude expérimentale de la réaction de bromation du méthane $CH_4 + Br_2 \Longrightarrow CH_3Br + HBr$ a permis de déterminer que sa vitesse se met sous la forme $\nu = k \frac{|CH_4| \sqrt{|BF_2|}}{1 + k' \frac{|BB_7|}{1 + k$

- 1. La réaction admet-elle un ordre courant?
- 2. Montrer qu'elle admet un ordre initial qu'on déterminera, ainsi que les ordres initiaux partiels par rapport aux réactifs et aux produits.
- 3. Dans quel autre régime admet-elle un ordre courant? Quels sont alors les ordres partiels et l'ordre global? On supposera que BR₂ n'est pas en excès.

Loi d'Arrhenius

Selon la **loi d'Arrhenius**^a, k dépend de la température T exprimée en K selon :

$$\frac{\mathrm{d} \ln k}{\mathrm{d} T} = \frac{E_a}{RT^2}$$
, avec R la constante des gaz parfaits.

où $E_a > 0$ est nommée énergie d'activation de la réaction.

• Si de plus E_a est indépendante de la température, on a alors :

$$k = Ae^{-E_a/(RT)}.$$

où A > 0 est une constante nommée facteur préexponentiel.

^aS.A. Arrhenius, chimiste suédois (1859–1927), Nobel en 1903.

Définition : catalyseur

On nomme **catalyseur** une espèce chimique qui accélère une réaction chimique sans intervenir dans le bilan. La catalyse est :

- homogène si le catalyseur est dans la même phase que les réactifs,
- hétérogène s'il appartient à une autre phase.

Pression P en phase gazeuse

liée à v par :

$$v = \frac{1}{RT\sum_{ig} v_i} \frac{\mathrm{d}P}{\mathrm{d}t},$$

Conductivité σ en phase aqueuse

liée à v par :

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \sum_{i} |z_{i}| \lambda_{i}^{\circ} \left(\frac{1}{z_{i}} X_{i}^{z_{i}}\right) v_{i} \frac{\mathrm{d}x_{v}}{\mathrm{d}t} = v \left(\sum_{i} v_{i} |z_{i}| \lambda_{i}^{\circ} \left(\frac{1}{z_{i}} X_{i}^{z_{i}}\right)\right),$$

avec $\lambda_i^{\circ}\left(\frac{1}{z_i}X_i^{z_i}\right)$ la conductivité ionique molaire limite de l'espèce $X_i^{z_i}$, de charge z_i .

Absorbance A en phase aqueuse ou gazeuse

liée à v par :

$$\frac{\mathrm{d}A}{\mathrm{d}t} = \nu \left(l \sum_{i} \varepsilon_{i}(\lambda) \nu_{i} \right),\,$$

avec $\varepsilon_i(\lambda)$ le coefficient d'absorption molaire à la longueur d'onde λ de l'espèce i, et l la longueur de la cuve.

Exercice: Dismutation des ions hypochlorite

On considère une solution aqueuse d'hypochlorite de sodium NaClO (composé actif de l'eau de Javel) entièrement dissous.

On étudie la réaction :

$$CIO^- \longrightarrow \frac{1}{3}CIO_3^- + \frac{2}{3}CI^-$$

La courbe ci-contre représente l'évolution de la concentration [ClO¬] en fonction du temps. Les concentrations des produits sont initialement nulles.

- (a) Lire sur la courbe la vitesse de disparition de ClO⁻ à l'instant initial et quand sa concentration a diminué de moitié.
 - (b) En déduire l'ordre partiel de la vitesse de la réaction par rapport à CIO⁻ en admettant qu'il existe, est un entier, et que la vitesse de la réaction ne dépend pas des concentrations des produits.
 - (c) En déduire sous ces hypothèses la constante cinétique de la réaction et préciser sa dimension.
 - (d) Les mesures ont été réalisées à $\theta = 70$ °C. Quel sera le temps de demi-réaction, noté $\tau_{1/2}$, à $\theta = 140$ °C si on suppose que la loi d'Arrhenius est vérifiée ?

Exercice: Dismutation des ions hypochlorite

- (a) Établir et résoudre l'équation différentielle vérifiée par la concentration [CIO⁻]. On notera C₀ sa valeur initiale et k la constante cinétique.
 - (b) En déduire les expressions des concentrations $[ClO_3]$ et [Cl], puis celle de la conductivité, notée σ , de la solution (on fera intervenir les conductivités ioniques molaires des différentes espèces).
 - (c) Tracer l'allure de la courbe représentative de σ . Quelle sera la valeur σ à $t=\tau_{1/2}$. Dépend-elle de la température ?

Mélange stœchiométrique

En *proportions stæchiométriques*, la vitesse de la réaction se met, pour tout i, sous la forme $v = -\frac{1}{\alpha_i} \frac{\mathrm{d}[R_i]}{\mathrm{d}t} = k_i'[R_i]^u$ où u est l'ordre global de la réaction et k_i' une **constante** de vitesse apparente.

Méthode d'isolement d'Ostwald

Quand un réactif est en grand excès, sa concentration n'évolue pratiquement pas : son ordre partiel n'intervient alors plus dans l'ordre global apparent. On dit qu'il y a **dégénérescence de l'ordre** de ce réactif. Quand tous les réactifs sauf un, dont note l'indice i_0 , sont en grand excès, l'ordre global apparent est celui du seul réactif limitant, R_{i0} . C'est la **méthode d'isolement d'Ostwald**^a. On a alors :

$$v = -\frac{1}{\alpha_{i0}} \frac{d[R_{i_0}]}{dt} = k'_{i_0} [R_{i_0}]^{u_{i_0}}$$
 et $\Delta[R_i] \ll [R_i]$ pour $i \neq i_0$,

avec k'_{i_0} une constante de vitesse **apparente**.

^aF.W. Ostwald, chimiste germano-letton (1853–1932).

Méthode différentielle

On représente le logarithme de la vitesse en fonction des concentrations. Comme $\ln v = \ln k + u \ln[R]$, la courbe de $\ln v$ en fonction de $\ln[R]$ est une *droite de pente u*.

Méthode des vitesses initiales

On représente le logarithme de la vitesse initiale v_0 obtenue pour différentes concentrations initiales $[R]_0$. Comme $\ln v_0 = \ln k + u \ln [R]_0$, la courbe de $\ln v_0$ en fonction de $\ln [R]_0$ est également une *droite de pente u*.

Méthode du temps de $\frac{1}{2}$ réaction

On nomme **temps de demi-réaction** la durée $\tau_{\frac{1}{2}}$ pour laquelle la concentration du réactif limitant R_l a été divisée par $2: [R_l](\tau_{1/2}) = [R_l]_0/2$.

Sa dépendance avec la concentration initiale $[R_l]_0$ du réactif limitant est caractéristique de l'ordre de la réaction.

Méthode intégrale

On recherche une fonction de [R](t) linéaire en t, dont la pente donnera la valeur de la constante de vitesse k.

Ordre 0

Une cinétique d'ordre 0 est caractérisée par :

- une variation linéaire de la *concentration* en fonction du temps,
- un temps de demi-réaction *proportionnel à la concentration* initiale en réactif.

Ordre 2

Une cinétique d'ordre 1 est caractérisée par :

- une variation linéaire du *logarithme de la concentration* en fonction du temps,
- un temps de demi-réaction *indépendant de la concentration* initiale en réactif.

Ordre 2 Une cinétique d'ordre 2 est caractérisée par :

- une variation linéaire de l'inverse de la concentration en fonction du temps,
- un temps de demi-réaction inversement proportionnel à la concentration initiale en réactif.

Évolution de la concentration [R] d'une espèce chimique suivant trois lois de vitesse :

ordre 0 en pointillés,

ordre 1 en trait plein,

ordre 2 en traits interrompus courts.

L'échelle des temps est adimensionnée par le temps de 1/2-réaction, dont l'expression est différente pour chacune des lois de vitesse.

Réactions opposées et lien avec les équilibres

On considère les réactions opposées : $\begin{cases} R \longrightarrow P & \text{d'ordre 1 par rapport à } R, k \\ P \longrightarrow R & \text{d'ordre 1 par rapport à } P, k' \end{cases}$

- 1. Déterminer les équations d'évolutions de [R] et [P]. En déduire à quelles conditions sur [R] et [P] un équilibre chimique est possible.
- 2. Découpler le système d'équations différentielles en déterminant les équations d'évolution des combinaisons linéaires [S] = [R] + [P] et [D] = k[R] k'[P]. Montrer que le système tend vers l'équilibre précédemment déterminé.

Indispensable

- Écriture d'un bilan de matière, tableau d'avancement,
- définitions des vitesses, et des ordres,
- loi Arrhenius,
- but et principe de la méthode d'isolement d'Ostwald,
- carte d'identité de chaque loi de vitesse.

Traditionnelle		Formule Systématique
ion ammonium	NH ₄ ⁺	ion ammonium
ion bicarbonate	HCO_3^-	ion hydrogénotrioxocarbonate
ion bichromate	$\mathrm{Cr}_2\mathrm{O}_7^{2-}$	ion heptaoxodichromate
ion borate	BO_3^{3-}	ion trioxoborate
ion bromate	BrO_3^-	ion trioxobromate
ion carbonate	CO_{3}^{2-}	ion trioxocarbonate
ion chlorate	ClO_3^-	ion trioxochlorate
ion chlorite	ClO_2^-	ion dioxochlorate
ion chromate	${ m CrO_4^{2-}}$	ion tétraoxochromate
ion cyanure	CN^{-}	ion cyanure
ion dithionate	${ m S}_{4}{ m O}_{6}^{2-}$	ion hexaoxotétrasulfate
ion hypobromite	BrO_3^-	ion oxobromate
ion hypochlorite	CIO^{-}	ion oxochlorate
ion hypoiodite	_OI	ion oxoiodate
ion iodate	10^{-}_{3}	ion trioxoiodate
ion nitrate	NO_3^-	ion trioxonitrate
ion nitrite	NO_2^-	ion dioxonitrate
ion perchlorate	${ m CIO_4^-}$	ion tétraoxochlorate
ion periodate	10_4^-	ion tétraoxoiodate
ion permanganate	$\mathrm{MnO_4}^-$	ion heptaoxomanganate
ion peroxosulfate	$\mathrm{S_2O_8^{2-}}$	ion octaoxodisulfate
ion phosphate	PO_4^{3-}	ion tétraoxophosphate
ion hydrogénophosphite	HPO_{3}^{2-}	ion hydrogénotrioxophosphate
ion sulfate	SO_4^{2-}	ion tétraoxosulfate
ion sulfite	SO_3^{2-}	ion trioxosulfate
ion thiosulfate	$S_2O_3^{2-}$	ion trioxodisulfate