Druhá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Druhá přednáška

Program

- sémantika výrokové logiky
- normální formy
- vlastnosti a důsledky teorií

Materiály

Zápisky z přednášky, Sekce 2.2-2.4 z Kapitoly 2

2.2 Sémantika výrokové logiky

Pravdivostní hodnota: příklad

pravdivostní ohodnocení výrokových proměnných jednoznačně určuje pravdivostní hodnotu výroku (vyhodnoť od listů ke kořeni)

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q)))$$

(a) φ platí při ohodnocení p = 0, q = 0, r = 0

(b) φ neplatí při ohodnocení $p=1,\ q=0,\ r=1$

Sémantika logických spojek

р	q	$ \neg p $	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

$$\begin{array}{ll} \frac{0}{1} \frac{1}{0} & f_{\neg}(x) = 1 - x \\ \frac{\begin{vmatrix} 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{vmatrix}}{\begin{vmatrix} 0 & 1 \\ 0 & 1 & 1 \end{vmatrix}} & f_{\wedge}(x, y) = \min(x, y) \\ \frac{\begin{vmatrix} 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix}}{\begin{vmatrix} 0 & 1 \\ 1 & 0 & 1 \end{vmatrix}} & f_{\vee}(x, y) = \max(x, y) \\ \frac{\begin{vmatrix} 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix}}{\begin{vmatrix} 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix}} & f_{\leftrightarrow}(x, y) \\ \frac{\begin{vmatrix} 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix}}{\begin{vmatrix} 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix}} & f_{\leftrightarrow}(x, y) \end{array}$$

Výroky a booleovské funkce

sémantika logických spojek je daná booleovskými funkcemi, každý výrok určuje *složenou* booleovskou funkci, tzv. pravdivostní funkci

např.
$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q))) \text{ v jazyce } \mathbb{P}' = \{p, q, r, s\}$$

$$f_{\varphi, \mathbb{P}'}(x_0, x_1, x_2, x_3) = f_{\leftrightarrow}(f_{\lor}(x_0, f_{\neg}(x_1)), f_{\to}(x_2, f_{\land}(x_0, x_1)))$$

pravdivostní hodnota φ při ohodnocení $p=1,\ q=0,\ r=1,\ s=1$:

$$egin{aligned} f_{arphi,\mathbb{P}'}(1,0,1,1) &= f_{\leftrightarrow}(f_{\lor}(1,f_{\lnot}(0)),f_{\to}(1,f_{\land}(1,0))) \ &= f_{\leftrightarrow}(f_{\lor}(1,1),f_{\to}(1,0)) \ &= f_{\leftrightarrow}(1,0) \ &= 0 \end{aligned}$$

Pravdivostní funkce formálně

Pravdivostní funkce výroku φ v konečném jazyce $\mathbb P$ je funkce $f_{\varphi,\mathbb P}\colon\{0,1\}^{|\mathbb P|}\to\{0,1\}$ definovaná induktivně:

- je-li φ *i*-tý prvovýrok z \mathbb{P} : $f_{\varphi,\mathbb{P}}(x_0,\ldots,x_{n-1})=x_i$
- je-li $\varphi=(\neg\varphi')$: $f_{\varphi,\mathbb{P}}(x_0,\ldots,x_{n-1})=f_{\neg}(f_{\varphi',\mathbb{P}}(x_0,\ldots,x_{n-1}))$
- je-li $(\varphi' \square \varphi'')$ kde $\square \in \{\land, \lor, \to, \leftrightarrow\}$: $f_{\varphi, \mathbb{P}}(x_0, \ldots, x_{n-1}) = f_{\square}(f_{\varphi', \mathbb{P}}(x_0, \ldots, x_{n-1}), f_{\varphi'', \mathbb{P}}(x_0, \ldots, x_{n-1}))$

Poznámka: Pravdivostní funkce $f_{\varphi,\mathbb{P}}$ závisí pouze na proměnných odpovídajících prvovýrokům z $Var(\varphi) \subseteq \mathbb{P}$.

Je-li výrok v *nekonečném* jazyce \mathbb{P} , můžeme se omezit na jazyk $\mathsf{Var}(\varphi)$ (který je konečný) a uvažovat pravdivostní funkci nad ním.

Modely

Pravdivostní ohodnocení reprezentuje 'reálný svět' (systém) v námi zvoleném 'formálním světě', proto mu také říkáme model

Model jazyka \mathbb{P} : libovolné pravdivostní ohodnocení $v \colon \mathbb{P} \to \{0,1\}$ Množina všech modelů: $M_{\mathbb{P}} = \{v \mid v \colon \mathbb{P} \to \{0,1\}\} = \{0,1\}^{\mathbb{P}}$

```
\begin{split} \mathbb{P} &= \{p,q,r\}, \text{ ohodnocení } p \text{ je pravda, } q \text{ nepravda, a } r \text{ pravda:} \\ \text{formálně } \mathbf{v} &= \{(p,1),(q,0),(r,1)\} \text{ ale píšeme}^1 \text{ jen } \mathbf{v} = (1,0,1) \\ \\ \mathsf{M}_{\mathbb{P}} &= \{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\} \end{split}
```

 $^{^1}$ Formálně ztotožňujeme $\{0,1\}^{\mathbb{P}}$ s $\{0,1\}^{|\mathbb{P}|}$, množina \mathbb{P} je uspořádaná.

Platnost

výrok platí v modelu, pokud je jeho pravdivostní hodnota rovna 1 Výrok φ v jazyce \mathbb{P} , model $v \in M_{\mathbb{P}}$. Pokud $f_{\varphi,\mathbb{P}}(v) = 1$, potom říkáme, že φ platí v modelu v, v je modelem φ , a píšeme $v \models \varphi$.

Množina všech modelů resp. $nemodelů \varphi$:

$$\frac{\mathsf{M}_{\mathbb{P}}(\varphi)}{\mathsf{M}_{\mathbb{P}}(\varphi)} = \{ v \in \mathsf{M}_{\mathbb{P}} \mid v \models \varphi \} = f_{\varphi,\mathbb{P}}^{-1}[1]$$
$$\overline{\mathsf{M}_{\mathbb{P}}(\varphi)} = M_{\mathbb{P}} \setminus M_{\mathbb{P}}(\varphi) = \{ v \in \mathsf{M}_{\mathbb{P}} \mid v \not\models \varphi \} = f_{\varphi,\mathbb{P}}^{-1}[0]$$

Je-li jazyk zřejmý z kontextu, můžeme vynechat, ale jinak ne!

$$\begin{split} \mathsf{M}_{\{p,q\}}(p \to q) &= \{(0,0),(0,1),(1,1)\} \\ \mathsf{M}_{\{p,q,r\}}(p \to q) &= \{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,1,0),(1,1,1)\} \end{split}$$

Platnost teorie, model teorie

Teorie T platí v modelu v, pokud každý axiom $\varphi \in T$ platí ve v. Podobně jako pro výrok: v je modelem T, $v \models T$, $v \in M_{\mathbb{P}}(T)$.

Někdy píšeme $M_{\mathbb{P}}(T,\varphi)$ místo $M_{\mathbb{P}}(T \cup \{\varphi\})$, $M_{\mathbb{P}}(\varphi_1,\varphi_2,\ldots,\varphi_n)$ místo $M_{\mathbb{P}}(\{\varphi_1,\varphi_2,\ldots,\varphi_n\})$.

Všimněte si:

- $M_{\mathbb{P}}(T,\varphi) = M_{\mathbb{P}}(T) \cap M_{\mathbb{P}}(\varphi)$
- $M_{\mathbb{P}}(T) = \bigcap_{\varphi \in T} M_{\mathbb{P}}(\varphi)$
- $M_{\mathbb{P}}(\varphi_1) \supseteq M_{\mathbb{P}}(\varphi_1, \varphi_2) \supseteq \cdots \supseteq M_{\mathbb{P}}(\varphi_1, \varphi_2, \dots, \varphi_n)$

Najděme modely
$$T = \{p \lor q \lor r, q \rightarrow r, \neg r\}$$
 (v jazyce $\mathbb{P} = \{p, q, r\}$):

$$\begin{aligned} \mathsf{M}_{\mathbb{P}}(r) &= \{(0,0,0), (0,1,0), (1,0,0), (1,1,0)\} \\ \mathsf{M}_{\mathbb{P}}(r,q \to r) &= \{(0,0,0), (1,0,0)\} \\ \mathsf{M}_{\mathbb{P}}(T) &= \{(1,0,0)\} \end{aligned}$$

Další sémantické pojmy

- výrok φ (nad \mathbb{P}) je pravdivý, tautologie, platí (v logice), $\models \varphi$, pokud platí v každém modelu, $M_{\mathbb{P}}(\varphi) = M_{\mathbb{P}}$
- lživý, sporný, pokud nemá žádný model, M_P(φ) = ∅
 (Být lživý není totéž, co nebýt pravdivý!)
- nezávislý, pokud platí v nějakém modelu a neplatí v nějakém jiném modelu, tj. není pravdivý ani lživý, ∅ ⊊ M_ℙ(φ) ⊊ M_ℙ
- splnitelný, pokud má nějaký model, tj. není lživý, $M_{\mathbb{P}}(\varphi) \neq \emptyset$

výroky φ, ψ (ve stejném jazyce) jsou (logicky) ekvivalentní, $\varphi \sim \psi$, pokud mají stejné modely, tj. $\varphi \sim \psi \Leftrightarrow M_{\mathbb{P}}(\varphi) = M_{\mathbb{P}}(\psi)$

- pravdivé jsou např.: \top , $p \lor q \leftrightarrow q \lor p$
- Iživé: \bot , $(p \lor q) \land (p \lor \neg q) \land \neg p$
- nezávislé a také splnitelné: p, p ∧ q
- ekvivalentní: $p \sim p \lor p$, $p \to q \sim \neg p \lor q$, $\neg p \to (p \to q) \sim \top$

Sémantické pojmy vzhledem k teorii

relativně k dané teorii T (omezíme se na její modely)

- pravdivý/platí v T, důsledek T, $T \models \varphi$ je-li $M_{\mathbb{P}}(T) \subseteq M_{\mathbb{P}}(\varphi)$
- Iživý/sporný v T pokud $M_{\mathbb{P}}(\varphi) \cap M_{\mathbb{P}}(T) = M_{\mathbb{P}}(T, \varphi) = \emptyset$.
- nezávislý v T pokud $\emptyset \subsetneq M_{\mathbb{P}}(T, \varphi) \subsetneq M_{\mathbb{P}}(T)$,
- splnitelný v T, konzistentní s T pokud $M_{\mathbb{P}}(T,\varphi) \neq \emptyset$ (platí v alespoň jednom modelu T)
- φ a ψ jsou ekvivalentní v T, T-ekvivalentní, $\varphi \sim_T \psi$ platí-li v týchž modelech T, tj. $\varphi \sim_T \psi \Leftrightarrow \mathsf{M}_{\mathbb{P}}(T,\varphi) = \mathsf{M}_{\mathbb{P}}(T,\psi)$

např. pro $T = \{p \lor q, \neg r\}$:

- výroky $q \lor p$, $\neg p \lor \neg q \lor \neg r$ jsou pravdivé v T
- výrok $\neg p \lor \neg q \lor r$ je v T lživý
- výroky $p \leftrightarrow q, p \land q$ jsou v T nezávislé, a také splnitelné
- platí $p \sim_T p \vee r$ (ale $p \not\sim p \vee r$)

Univerzálnost logických spojek

množina logických spojek je univerzální, pokud:

- každá booleovská funkce je pravdivostní funkcí nějakého výroku vybudovaného z těchto spojek
- ekvivalentně: každá množina modelů nad konečným jazykem je množinou modelů nějakého výroku

Tvrzení $\{\neg, \land, \lor\}$ a $\{\neg, \rightarrow\}$ jsou univerzální.

[Důkaz na příštím slidu.]

Další zajímavé logické spojky:

Shefferova spojka (NAND, ↑)

 $p \uparrow q \sim \neg (p \land q)$,

Pierceova spojka (NOR, ↓)

 $p\downarrow q\sim \neg(p\vee q),$

Exclusive-OR (XOR, ⊕)

 $p \oplus q \sim (p \vee q) \wedge \neg (p \wedge q)$

např. $\{\uparrow\}$ je univerzální, $\{\land,\lor\}$ není

Důkaz, že $\{\neg, \land, \lor\}$ a $\{\neg, \rightarrow\}$ jsou univerzální

Mějme $f: \{0,1\}^n \to \{0,1\}$, resp. $M = f^{-1}[1] \subseteq \{0,1\}^n$

Pro jediný model: $\varphi_v = \text{'musím být model } v'$

- příklad: $v = (1,0,1,0) \rightsquigarrow \varphi_v = p_1 \wedge \neg p_2 \wedge p_3 \wedge \neg p_4$
- ullet obecně: $v=(v_1,\ldots,v_n)$, použijeme značení $p^1=p$, $p^0=
 eg p$

$$\varphi_{v} = p_{1}^{v_{1}} \wedge p_{2}^{v_{2}} \wedge \cdots \wedge p_{n}^{v_{n}} = \bigwedge_{i=1}^{n} p_{i}^{v(p_{i})} = \bigwedge_{p \in \mathbb{P}} p^{v(p)}$$

Pro více modelů: 'musím být alespoň jeden z modelů z M'

$$\varphi_M = \bigvee_{v \in M} \varphi_v = \bigvee_{v \in M} \bigwedge_{p \in \mathbb{P}} p^{v(p)}$$

Zřejmě $\mathsf{M}(\varphi_M) = M$ neboli $f_{\varphi_M,\mathbb{P}} = f$, a φ_M používá jen $\{\neg, \land, \lor\}$. Protože $p \land q \sim \neg(p \to \neg q)$ a $p \lor q \sim \neg p \to q$, mohli bychom φ_M ekvivalentně vyjádřit i pomocí $\{\neg, \to\}$.

2.3 Normální formy

CNF a DNF

- Literál ℓ je buď prvovýrok p nebo negace prvovýroku $\neg p$. Pro prvovýrok p označme $p^0 = \neg p$ a $p^1 = p$. Je-li ℓ literál, potom $\bar{\ell}$ označuje opačný literál k ℓ . Je-li $\ell = p$ (pozitivní literál), potom $\bar{\ell} = \neg p$, je-li $\ell = \neg p$ (negativní literál), potom $\bar{\ell} = p$
- Klauzule (clause) je disjunkce literálů $C = \ell_1 \vee \ell_2 \vee \cdots \vee \ell_n$. Jednotková klauzule (unit clause) je samotný literál (n = 1) a prázdnou klauzulí (n = 0) myslíme \bot .
- Výrok je v konjunktivní normální formě (v CNF) pokud je konjunkcí klauzulí. Prázdný výrok v CNF je ⊤.
- Elementární konjunkce je konjunkce literálů $E=\ell_1 \wedge \ell_2 \wedge \cdots \wedge \ell_n$. Jednotková elementární konjunkce je samotný literál (n=1). Prázdná elementární konjunkce (n=0) je \top .
- Výrok je v disjunktivní normální formě (v DNF) pokud je disjunkcí elementárních konjunkcí. Prázdný výrok v DNF je ⊥.

2.4 Vlastnosti a důsledky teorií