

Herramientas Computacionales Taller 7

Profesor: Felipe Gómez Fecha de Publicación: Septiembre 15 de 2015

Instrucciones de Entrega

La solución a este taller debe subirse por SICUA antes de terminar el horario de clase. Primero debe crearse una carpeta de trabajo llamada NombreApellido_hw7 dentro de la cual deben estar los archivos resorte.py y una gráfica. Una vez haya terminado de trabajar, comprimir la carpeta desde la consola con el comando:

zip -r NombreApellido_hw7.zip NombreApellido_hw7

Enviar el archivo comprimido NombreApellido_hw7.zip por SICUA. Es importante realizar estos pasos correctamente, ya que se calificará con un script que asigna la nota 0.0 si los archivos no están correctamente nombrados.

- 1. 50 pt Ley de Hooke I. En este ejercicio estudiaremos el movimiento armónico simple en un sistema masa-resorte. Para eso trabajaremos en el archivo llamado resorte.py donde crearán una clase de objetos llamada masa, esta masa debe tener los siguientes atributos:
 - Posición x
 - Velocidad V_x
 - Aceleración a_x
 - \blacksquare Constante de resorte k

La clase masa debe tener los métodos:

- __init__: Carga las condiciones iniciales del objeto.
- \blacksquare Calcula
Fuerza: Utiliza la ley de Hooke para calcular la fuerza como una función que depende de
 x de la forma F=-kx
- Muevete: Utilizando el método de Euler, actualiza la posición y la velocidad en cada Δt .
- lacktriangle Imprime: Imprime el instante t y la posición x.
- 2. 50 pt Gráfica El script debe iniciarse con una masa de 0.200kg en la posición 0.01m, en reposo y un resorte con constante k=0.5N/m. Debe oscilar durante 5.0s. Los datos pueden redirigirse hacia un archivo trayectoria.dat y estos deben graficarse en un archivo trayectoria.png. También es válido (sólo por esta clase) trabajar en LibreOffice y entregar un archivo trayectoria.ods o trayectoria.xls