Лабораторная работа №7. Объектно-ориентированное программирование

Введение

Объектно-ориентированное программирование на сегодняшний день является самой распространенной парадигмой программирования. Данная лабораторная работа посвящена основам ООП на языке С++, т.е. работе с классами, объектами, конструкторами и деструкторами, а так же наследованием. Все задания выполняются как консольные приложения. Графический интерфейс пользователя базируется на принципах ООП, поэтому после выполнения лаборатор- ных работ несложно перейти к решению задач с использованием GUI.

Вся необходимая информация приведена в практикуме по ООП, авторы Лаптев, Морозов, Бокова.

Индивидуальные задания

В этой лабораторной работе есть только индивидуальные задания. Номер варианта можно узнать у преподавателя. Работы, выполненные по чужому варианту, не принимаются. Номер варианта остается постоянным для всех лабораторных работ в семестре.

Решите следующие задачи:

Классы и объекты. Конструкторы и перегрузка операций

- 1. (2 балла) Используя пример из файла <u>7 Classes.cpp</u>, дополните класс для работы с комплексными числами перегруженными арифметическими операциями (вычитание, умножение, деление), проверкой на неравенство. Создайте метод вычисления модуля комплексного числа и метод для перевода его в тригонометрическую форму.
- 2. (4 балла) Семинар №1 из Практикума по ООП (Лаптев и др.), стр. 22-25. Задачу необходимо выполнить как класс с закрытыми полями, где операции реализуются как методы класса. Обязательно должны быть:
 - Три конструктора (без аргументов, копирования, инициализации).
 Информацию по конструкторам можно посмотреть в семинаре №2.
 - Деструктор.
 - Задания варианта.
 - Функции ввода-вывода оформить как дружественные.
 - Дополнить задачу перегруженными операциями.

Внимание! Созданный класс потребуется далее для выполнения этой и последующей лабораторных работ.

\mathbf{r}	
Ha.	יו ודוופגות
Da	рианты:

Барнанты.								
Вариант	Задача	Вариант	Задача	Вариант	Задача	Вариант	Задача	
1	25	6	35	11	29	16	31	
2	24	7	34	12	27	17	39	
3	33	8	28	13	32	18	23	
4	26	9	30	14	29	19	31	
5	36	10	22	15	39	20	38	

Наследование.

3. (2 балла) Используя пример из файла <u>8_1_Inheritance.cpp</u>, создайте еще один класспотомок класса figure, предназначенный для хранения треугольников. Дополните его соответствующими полями. В конструкторе должна осуществляться проверка, могут

- ли переданные в него три числа быть сторонами треугольника. Используя формулу Герона, переопределите метод вычисления площади.
- 4. (3 балла) Семинар №3 из Практикума по ООП (Лаптев и др.) Стр. 61-63, задания согласно номеру варианта (за исключением варианта №1, которому соответствует задача №21). Необходимо выполнить задачу полностью. Само задание написано вместо задачи 1 (сбита нумерация).

Обработка исключений:

- 5. (2 балла) Семинар №4 из Практикума по ООП (Лаптев и др.) стр. 77-78, задания согласно номеру варианта. Необходимо выполнить задачу с собственно реализованным исключением, которое реализуется как класс (любой из вариантов, рассмотренных в примерах).
- 6. (2 балла) Семинар №4 из Практикума по ООП (Лаптев и др.) стр. 78. Необходимо доработать задание 2 из лабораторной работы №7, используя подходящие стандартные исключения.