§1.7: LIMITS, CONTINUITY, AND DIFFERENTIABILITY

Dr. Mike Janssen

February 1, 2021

PREVIEW ACTIVITY DISCUSSION

LEFT/RIGHTHAND LIMITS

One way a limit can fail to exist at a point is if the function seems to approach two different numbers depending on the side we're coming from.

LEFT/RIGHTHAND LIMITS

One way a limit can fail to exist at a point is if the function seems to approach two different numbers depending on the side we're coming from.

Definition

We say that f has limit L_1 as x approaches a from the left and write

$$\lim_{x\to a^-}f(x)=L_1$$

provided we can make the value of f(x) as close as we like to L_1 by taking x sufficiently close to a while always having x < a. We call L_1 the **left-hand limit** of f as x approaches a.

LEFT/RIGHTHAND LIMITS

One way a limit can fail to exist at a point is if the function seems to approach two different numbers depending on the side we're coming from.

Definition

We say that f has limit L_1 as x approaches a from the left and write

$$\lim_{x\to a^-}f(x)=L_1$$

provided we can make the value of f(x) as close as we like to L_1 by taking x sufficiently close to a while always having x < a. We call L_1 the **left-hand limit** of f as x approaches a. Similarly, we say that L_2 is the **right-hand limit** of f as x approaches a and write

$$\lim_{x\to a^+}f(x)=L_2.$$

EXAMPLE/BIG IMPORTANT FACT

Example:

110 110 (-100,-100)(100,100) (-100,-100)

EXAMPLE/BIG IMPORTANT FACT

Example:

Fact:
$$\lim_{x\to a} f(x) = L$$
 if and only if $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) = L$

ACTIVITY 1.7.2

125 125 (-100,-100)(100,100) (-100,-100)

CONTINUITY

Definition

A function f is **continuous at** x = a provided that

- 1. f has a limit as $x \rightarrow a$,
- 2. f is defined at x = a, and
- $3. \lim_{x \to a} f(x) = f(a)$

CONTINUITY

Definition

A function f is **continuous at** x = a provided that

- 1. f has a limit as $x \rightarrow a$,
- 2. f is defined at x = a, and
- $3. \lim_{x \to a} f(x) = f(a)$

What does this mean?

cont. implies lim = fcn

ACTIVITY 1.7.3

THE RELATIONSHIP BETWEEN DIFFERENTIABILITY AND CONTINUITY

Fact: We have seen that a function f(x) can be continuous at x = a but fail to have f'(a) exist. That is, a function can be continuous without being differentiable.

What was that function f(x)?

THE RELATIONSHIP BETWEEN DIFFERENTIABILITY AND CONTINUITY

Fact: We have seen that a function f(x) can be continuous at x = a but fail to have f'(a) exist. That is, a function can be continuous without being differentiable.

What was that function f(x)?

Question: Can a function be differentiable without being continuous?

THE RELATIONSHIP BETWEEN DIFFERENTIABILITY AND CONTINUITY

Fact: We have seen that a function f(x) can be continuous at x = a but fail to have f'(a) exist. That is, a function can be continuous without being differentiable.

What was that function f(x)?

Question: Can a function be differentiable without being continuous?

No.

ACTIVITY 1.7.4

REMINDERS

•