微分積分学②(火曜4限; O 先生)の講義資料の行間を埋める資料です.

Contents

2	多変	数関数の微分
	2.8	テイラーの定理(2 変数 version)
		2.8.1 連鎖律と数学的帰納法
	2.9	C^2 級の 2 変数関数の極大・極小 \dots
		2.9.1 極値を取るための必要条件
		$2.9.2$ A, B, C と a, b, c の関係性 \ldots
		2.9.3 「 t : 十分小」の意味
		2.9.4 「iii) $A=0$ のとき」の省略された計算
		NA PROME A STATE
3		数関数の積分
	3.2	区分求積法
		3.2.1 区分求積法の成立
	3.4	有界な関数のリーマン積分可能性・不可能性
		3.4.1 すぐに分かること②
		3.4.2 有界閉区間上の連続関数の一様連続性
		3.4.3 リーマンの判定法
	3.5	リーマン積分の基本性質
		3.5.1 リーマン積分の線型性 (1)
		3.5.2 リーマン積分の線型性 (2)

2 多変数関数の微分

2.8 テイラーの定理 (2 変数 version)

2.8.1 連鎖律と数学的帰納法

次の命題は、テイラーの定理(2変数 version)の証明のなかで「同様に連鎖律をくり返し使うことにより…」と議論が省略されている部分です.

行間 1. 自然数 $k = 1, 2, \ldots, n+1$ に対して

$$\varphi^{(k)}(t) = \sum_{i=0}^{k} {}_{k} C_{i} \frac{\partial^{k} f}{\partial x^{k-i} \partial y^{i}} (x(t), y(t)) \cdot (x_{1} - x_{0})^{k-i} (y_{1} - y_{0})^{i}$$
 (1)

が成立する. ただし n, φ, f, x, y は講義資料で定義されたものである.

<u>証明.</u> $\Delta x = x_1 - x_0, \Delta y = y_1 - y_0$ とおく. まず k = 1 に対して eq. (1) は明らかに成立する. つぎに k (= 1, 2, ..., n) を任意にとり, eq. (1) の成立を仮定する.

eq. (1) の両辺をtで微分して次を得る.

$$\varphi^{k+1}(t) = \sum_{i=0}^{k} {}_{k}C_{i} \left\{ \frac{\partial^{k+1}f}{\partial x^{k+1-i}\partial y^{i}}(x(t),y(t))\Delta x^{k+1-i}\Delta y^{i} + \frac{\partial^{k+1}f}{\partial x^{k-i}\partial y^{i+1}}(x(t),y(t))\Delta x^{k-i}\Delta y^{i+1} \right\}$$

$$= \sum_{i=0}^{k} {}_{k}C_{i}\frac{\partial^{k+1}f}{\partial x^{k+1-i}\partial y^{i}}(x(t),y(t))\Delta x^{k+1-i}\Delta y^{i}$$

$$+ \sum_{i=0}^{k} {}_{k}C_{i}\frac{\partial^{k+1}f}{\partial x^{k-i}\partial y^{i+1}}(x(t),y(t))\Delta x^{k-i}\Delta y^{i+1}$$

$$= \sum_{i=0}^{k} {}_{k}C_{i}\frac{\partial^{k+1}f}{\partial x^{k+1-i}\partial y^{i}}(x(t),y(t))\Delta x^{k+1-i}\Delta y^{i}$$

$$+ \sum_{i=1}^{k+1} {}_{k}C_{i-1}\frac{\partial^{k+1}f}{\partial x^{k+1-i}\partial y^{i}}(x(t),y(t))\Delta x^{k+1-i}\Delta y^{i}$$

$$= \frac{\partial^{k+1}f}{\partial x^{k+1}}(x(t),y(t))\Delta x^{k+1} + \frac{\partial^{k+1}f}{\partial y^{k+1}}(x(t),y(t))\Delta y^{k+1}$$

$$+ \sum_{i=1}^{k} {}_{k+1}C_{i}\frac{\partial^{k+1}f}{\partial x^{k+1-i}\partial y^{i}}(x(t),y(t))\Delta x^{k+1-i}\Delta y^{i}$$

$$= \sum_{i=1}^{k+1} {}_{k+1}C_{i}\frac{\partial^{k+1}f}{\partial x^{k+1-i}\partial y^{i}}(x(t),y(t))\Delta x^{k+1-i}\Delta y^{i}$$

したがって k+1 に対しても eq. (1) が成立する. 以上より, 自然数 $k=1,2,\ldots,n+1$ に対して eq. (1) が成立する.

2.9 C^2 級の2変数関数の極大・極小

2.9.1 極値を取るための必要条件

次の命題は「すぐにわかる」ものです.

行間 2. 点 (x_0, y_0) で f が極大, または極小になるならば

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0 \quad \text{to} \quad \frac{\partial f}{\partial y}(x_0, y_0) = 0 \tag{7}$$

である. ただし x_0, y_0, f は講義資料で定義されたものである.

<u>証明</u>. $点(x_0,y_0)$ が f の極大点である場合を示す。極小点の場合も同様である。一変数関数 g,h を $g(x)=f(x,y_0),h(y)=f(x_0,y)$ と定めると,g,h はそれぞれ点 x_0,y_0 で微分可能であって局所的に最大となる。したがって,共通資料第 4 章命題 2 より点 x_0,y_0 はそれぞれ g,h の停留点である。よって

$$\frac{\partial f}{\partial x}(x_0, y_0) = g'(x_0) = 0, \quad \frac{\partial f}{\partial y}(x_0, y_0) = h'(y_0) = 0$$
 (8)

が従う. ■

2.9.2 A, B, C と a, b, c の関係性

次の命題は、A,B,C に関する大小関係がまわりの a,b,c に関しても成立するというものです.

行間 3. (x_0, y_0) に十分近い任意の点 (x, y) に対して

$$A > 0$$
 かつ $AC - B^2 > 0$ ⇒ 常に $a > 0$ かつ $ac - b^2 > 0$ (9)

が成立する. ただし x,y,x_0,y_0,A,B,C,a,b,c は講義資料で定義されたものである.

証明. $(x,y) \to (x_0,y_0)$ で

$$a \to A > 0 \tag{10}$$

$$ac - b^2 \to AC - B^2 > 0 \tag{11}$$

なので、ある $\delta > 0$ が存在して

$$0 < \|(x,y) - (x_0,y_0)\| < \delta \implies a > 0 \text{ } \Rightarrow c - b^2 > 0$$
 (12)

が成立する. ■

2.9.3 「|t|: 十分小」の意味

ところで「 $AC-B^2<0$ の場合」というスライドでは「|t|: 十分小」という制約が登場しますが、これは何のためにあるのか気になりませんか? O 先生に尋ねたところ次のような回答でした。証明はとくにありません。

行間 4. 「|t|: 十分小」という制約は、f が C^2 級である領域の上だけを点 (x_0+t,y_0) が動くように課されている.

2.9.4 「iii) A = 0 のとき」の省略された計算

以下の計算が省略されています.

行間 5. 講義資料のように

$$\varphi(t) = f(x_0 + p_1 t, y_0 + t), \quad \psi(t) = f(x_0 + p_2 t, y_0 + t)$$
(13)

とおくと次が成り立つ.

$$\varphi'(0) = \psi'(0) = 0, \quad \varphi''(0) = 2p_1B + C, \quad \psi''(0) = 2p_2B + C$$
 (14)

ただし x_0, y_0, p_1, p_2, B, C は講義資料で定義されたものである.

<u>証明.</u> φ についてのみ示す. ψ の場合も同様である. f が C^2 級関数であることに注意すれば, φ の導関数は

$$\varphi'(t) = \frac{\partial f}{\partial x}(x_0 + p_1 t, y_0 + t) \cdot p_1 + \frac{\partial f}{\partial y}(x_0 + p_1 t, y_0 + t) \cdot 1 \tag{15}$$

$$\varphi''(t) = \frac{\partial^2 f}{\partial x^2} (x_0 + p_1 t, y_0 + t) \cdot p_1^2$$

$$+2\frac{\partial^{2} f}{\partial x \partial y}(x_{0}+p_{1}t,y_{0}+t)\cdot p_{1}+\frac{\partial^{2} f}{\partial y^{2}}(x_{0}+p_{1}t,y_{0}+t)\cdot 1$$
 (16)

である. 点 (x_0,y_0) は f の停留点なので、eq. (15) より $\varphi'(0)=0$ である. また、A,B,C の定義と A=0 に注意すれば、eq. (16) より

$$\varphi''(0) = 0 \cdot p_1^2 + 2B \cdot p_1 + C \cdot 1 = 2p_1B + C \tag{17}$$

を得る. ■

3 1変数関数の積分

3.2 区分求積法

3.2.1 区分求積法の成立

リーマン積分可能性の定義から区分求積法の成立を導くものです.

行間 6. 関数 $f:[a,b]\to\mathbb{R}$ がリーマン積分可能であるとき, $\lim_{n\to\infty}|\triangle_n|=0$ なる [a,b] の分割の列 $\{\triangle_n\}_{n=1,2,\dots}$ を任意にとり,各 \triangle_n の代表点集合 $\xi_{\mathbf{n}}$ を任意にとれば,

$$\lim_{n \to \infty} R(f: \triangle_n, \xi_{\mathbf{n}}) = \int_a^b f(x) dx \tag{18}$$

が成立する.

<u>証明.</u> $S=\int_a^b f(x)dx$ とおく. 正数 ϵ を任意にとる. f はリーマン積分可能なので,ある正数 δ であって次を満たすものが存在する.

$$\left\{ egin{aligned} |\Delta| < \delta \text{ なる } [a,b] \text{ の任意の分割 } \Delta \\ \Delta \text{ の任意の代表点集合 } \xi \end{aligned} \right.$$
 に対し $\left| R(f:\Delta,\xi) - S \right| < \epsilon$ (19)

このような δ をひとつとる. $\lim_{n\to\infty} |\Delta_n| = 0$ より、ある自然数 N であって次 を満たすものが存在する.

$$n > N \Longrightarrow |\triangle_n| < \delta$$
 (20)

このような N をひとつとる. 自然数 n>N を任意にとる. eq. (20), eq. (19) より

$$|R(f:\Delta_n,\xi_{\mathbf{n}}) - S| < \epsilon \tag{21}$$

が成立する. すなわち

$$\lim_{n \to \infty} R(f : \triangle_n, \xi_{\mathbf{n}}) = S = \int_a^b f(x) dx \tag{22}$$

が成立する.

3.4 有界な関数のリーマン積分可能性・不可能性

3.4.1 すぐに分かること②

次の命題は「簡単なので略」されています.

行間 7. 区間 [a,b] の 2つの分割 \triangle_1 と \triangle_2 について, \triangle_2 が \triangle_1 の細分ならば

$$s(f:\Delta_1) \le s(f:\Delta_2) \le S(f:\Delta_2) \le S(f:\Delta_1) \tag{23}$$

が成立する.

<u>証明</u>. eq. (23) の最も左の不等号についてのみ示す. 分割 \triangle_1 の隣り合う分点 x_{j-1} と x_j の間に分点 x' を追加することを考える. 区間 $[x_{j-1},x_j],[x_{j-1},x'],[x',x_j]$ 上での f の下限をそれぞれ m_j,m'_j,m'_{j+1} とおく.ここで,

$$m_j', m_{j+1}' \ge m_j \tag{24}$$

ゆえに

$$s(f:\Delta_{2}) - s(f:\Delta_{1}) = m'_{j}(x' - x_{j-1}) + m'_{j+1}(x_{j} - x') - m_{j}(x_{j} - x_{j-1})$$
(25)
$$\geq m_{j}(x' - x_{j-1}) + m_{j}(x_{j} - x') - m_{j}(x_{j} - x_{j-1})$$
(26)
$$= 0$$
(27)

が成立する. ■

3.4.2 有界閉区間上の連続関数の一様連続性

証明が解析学基礎に投げられている定理です.

行間 8. 関数 $f: D \to \mathbb{R}$ について,D が \mathbb{R} の有界閉集合かつ f が連続であるならば,f は一様連続である.

証明. 数学 IA 演習 (2014 年度) 第 9 回講義資料¹²の定理 8 で証明されている. ■

3.4.3 リーマンの判定法

「ダルブーの定理」というものが必要です、として証明が省略されていますが、リーマンの判定法の証明のためにはダルブーの定理以外にも色々と補題を準備しておかないといけません.

行間 9. 有界関数 $f:[a,b]\to\mathbb{R}$ について、 $\forall \epsilon>0$ に対し、区間 [a,b] のある分割 \triangle が存在して $S(f:\triangle)-s(f:\triangle)<\epsilon$ となる.

 $\iff f$ が区間 [a,b] 上でリーマン積分可能

<u>証明.</u> 数学 IA 演習 (2014 年度) 第 9 回講義資料 3 で証明されている.以下,講義資料内の定理番号を用いて証明の流れを示す.

行間 9 の主張は直接的には定理 13「積分可能条件 : ϵ - δ バージョン」として証明 されるが,もともとのリーマン積分可能性の定義と定理 13 のいう積分可能条件

https://lecture.ecc.u-tokyo.ac.jp/~nkiyono/14_kami.html

²K 先生の資料は神です

³https://lecture.ecc.u-tokyo.ac.jp/~nkiyono/14_kami.html

との同値性は次のように示される. ただし, 同値記号の下に書き添えてある定理は, その同値性を示すために用いられる定理である.

定理 13 のいう積分可能条件 \iff 定理 12 のいう積分可能条件 $\stackrel{\textstyle \longleftrightarrow}{\Longleftrightarrow}$ 定理 6 のいう積分可能条件 $\stackrel{\textstyle \longleftrightarrow}{\Longleftrightarrow}$ 定理 4 のいう積分可能条件 $\stackrel{\textstyle \longleftrightarrow}{\Longleftrightarrow}$ 定義

3.5 リーマン積分の基本性質

3.5.1 リーマン積分の線型性(1)

行間 10. 関数 $f:[a,b]\to\mathbb{R},\ g:[a,b]\to\mathbb{R}$ がともにリーマン積分可能であるとき, 関数 $f+g:[a,b]\to\mathbb{R}$ $(x\mapsto f(x)+g(x))$ もリーマン積分可能で

$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$
 (28)

<u>証明</u>. 表記の簡略化のため $\alpha = \int_a^b f(x) dx$, $\beta = \int_a^b g(x) dx$ とおく.

正数 ϵ を任意にとる. f,g がリーマン積分可能であることから、ある正数 δ が存在して

$$\begin{cases} |\Delta| < \delta \text{ なる } [a,b] \text{ の任意の分割 } \Delta \\ \Delta \text{ の任意の代表点集合 } \xi \end{cases} \quad \text{に対し} \quad \begin{cases} |R(f:\Delta,\xi) - \alpha| < \epsilon/2 \\ |R(f:\Delta,\xi) - \beta| < \epsilon/2 \end{cases}$$

が成立する. ここで、リーマン和の定義から明らかに

$$R(f+g:\Delta,\xi) = R(f:\Delta,\xi) + R(g:\Delta,\xi) \tag{29}$$

なので

$$|R(f+g:\Delta,\xi) - (\alpha+\beta)| = |R(f:\Delta,\xi) + R(g:\Delta,\xi) - (\alpha+\beta)| \tag{30}$$

$$\leq |R(f:\Delta,\xi) - \alpha| + |R(g:\Delta,\xi) - \beta| \tag{31}$$

$$<\epsilon$$
 (32)

が成立する. したがって eq. (28) が成立する.

3.5.2 リーマン積分の線型性 (2)

行間 11. 関数 $f:[a,b]\to\mathbb{R}$ がリーマン積分可能であるとき、 $\forall c\in\mathbb{R}$ に対し、関数 $cf:[a,b]\to\mathbb{R}$ $(x\mapsto cf(x))$ もリーマン積分可能で

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx \tag{33}$$

証明. 表記の簡略化のため $\alpha = \int_a^b f(x) dx$ とおく.

 $c \in \mathbb{R}$ を任意にとる. 正数 ϵ を任意にとる. f がリーマン積分可能であることから,ある正数 δ が存在して

$$\begin{cases} |\triangle| < \delta \text{ なる } [a,b] \text{ の任意の分割 } \triangle \\ \triangle \text{ の任意の代表点集合 } \xi \end{cases} \quad \text{に対し} \quad |R(f:\triangle,\xi) - \alpha| < \frac{\epsilon}{|c|+2}$$

が成立する. ここで, リーマン和の定義から明らかに

$$R(cf:\Delta,\xi) = cR(f:\Delta,\xi) \tag{34}$$

なので

$$|R(cf:\Delta,\xi) - c\alpha| = |cR(f:\Delta,\xi) - c\alpha| \tag{35}$$

$$= |c||R(f: \triangle, \xi) - \alpha| \tag{36}$$

$$\leq |c| \frac{\epsilon}{|c|+2} \tag{37}$$

$$<\epsilon$$
 (38)

が成立する. したがって eq. (33) が成立する.