ENG EK 307: Electric Circuits, Fall 2025 Problem Set 4 Due Wednesday 10/01/2025 by 11:59pm

Reading: Alexander and Sadiku (AS), Sections 4.1-4.6, 4.8, 4.10, 4.11

1. **[10 points]** Find the Thevenin equivalent circuit seen by R_L . Find the power p_L delivered to the load when $R_L = 50 \text{ k}\Omega$ and $200 \text{ k}\Omega$.

- 2. [10 points] For the circuit shown find the value of R_L that will result in
- (a) maximum voltage. What is that voltage?
- (b) maximum current. What is that current?
- (c) maximum power. What is that power?

- 3. **[10 points]** The resistance R is adjusted until maximum power is delivered to the load consisting of R and the 12 k Ω resistor in parallel.
- (a) Find the required value of R
- (b) How much power is delivered to the load?

4. [15 points]

Find the Thevenin equivalent at terminals a-b of the circuit.

5. **[15 points]** For the transistor model, obtain the Thevenin equivalent at terminals *a-b*.

6. [20 points] Determine v_0 in the circuit using the superposition principle.

7. **[20 points]**

Use Norton's theorem to find V_o in the circuit below.

