

Oblique Projectile Motion

- 41. A ball thrown by one player reaches the other in 2 sec. the maximum height attained by the ball above the point of projection will be about
 - (a) 10 m
- (b) 7.5 m
- (c) 5 m
- (d) 2.5 m
- **42.** In a projectile motion, velocity at maximum height is
 - (a) $\frac{u\cos\theta}{2}$
- (b) $u \cos \theta$
- (c) $\frac{u \sin \theta}{2}$
- (d) None of

these

- 43. If two bodies are projected at 30° and 60° respectively, with the same velocity, then
 - (a) Their ranges are same
 - (b) Their heights are same
 - (c) Their times of flight are same
 - (d) All of these
- 44. A body is thrown with a velocity of 9.8 m/s making an angle of 30° with the horizontal. It will hit the ground after a time
 - (a) 1.5 s
- (b) 1 s
- (c) 3 s
- (d) 2 s

- **45.** The equation of motion of a projectile are given by x = 36 t metre and $2y = 96 t 9.8 t^2$ metre. The angle of projection is
 - (a) $sin^{-1}\left(\frac{4}{5}\right)$
- (b) $sin^{-1}\left(\frac{3}{5}\right)$
- (c) $sin^{-1}\left(\frac{4}{3}\right)$
 - (d) $sin^{-1}\left(\frac{3}{4}\right)$
- **46.** For a given velocity, a projectile has the same range *R* for two angles of projection if t_1 and t_2 are the times of flight in the two cases then
 - (a) $t_1 t_2 \propto R^2$
- (b) $t_1t_2 \propto R$
- (c) $t_1 t_2 \propto \frac{1}{R}$
- (d) $t_1 t_2 \propto \frac{1}{R^2}$
- 47. A body of mass m is thrown upwards at an angle θ with the horizontal with velocity v. While rising up the velocity of the mass after t seconds will be

(a)
$$\sqrt{(v\cos\theta)^2 + (v\sin\theta)^2}$$

(b)
$$\sqrt{(v\cos\theta - v\sin\theta)^2 - gt}$$

(c)
$$\sqrt{v^2 + g^2 t^2 - (2v \sin \theta)gt}$$

(d)
$$\sqrt{v^2 + g^2t^2 - (2v\cos\theta)gt}$$

- 48. A cricketer can throw a ball to a maximum horizontal distance of 100 m. With the same effort, he throws the ball vertically upwards. The maximum height attained by the ball is
 - (a) 100 m
- (b) 80 m
- (c) 60 m
- (d) 50 m
- 49. A cricketer can throw a ball to a maximum horizontal distance of 100 m. The speed with which he throws the ball is (to the nearest integer)
 - (a) 30 ms⁻¹
- (b) 42 ms⁻¹
- (c) 32 ms⁻¹
- (d) 35 ms⁻¹
- **50.** A ball is projected with velocity V_o at an angle of elevation 30°. Mark the correct statement
 - (a) Kinetic energy will be zero at the highest point of the trajectory
 - (b) Vertical component of momentum will be conserved
 - (c) Horizontal component of momentum will be conserved
 - (d) Gravitational potential energy will be minimum at the highest point of the trajectory

- 51. Neglecting the air resistance, the time of flight of a projectile is determined by
 - (a) $U_{vertical}$
 - (b) $U_{horizontal}$

(c)
$$U = U^2_{vertical} + U^2_{horizontal}$$

(d)
$$U = U(U^2_{vertical} +$$

$$U^2_{horizontal})^{1/2}$$

- 52. A ball is thrown from a point with a speed v_o at an angle of projection θ . From the same point and at the same instant a person starts running with a constant speed $v_o/2$ to catch the ball. Will the person be able to catch the ball? If yes, what should be the angle of projection
 - (a) Yes, 60°
- (b) Yes, 30^o
- (c) No
- (d) Yes, 45°
- 53. A stone is thrown at an angle θ to the horizontal reaches a maximum height H. Then the time of flight of stone will be

(a)
$$\sqrt{\frac{2H}{g}}$$

(b)
$$2\sqrt{\frac{2H}{g}}$$

(c)
$$\frac{2\sqrt{2H\sin\theta}}{g}$$

(d)
$$\frac{\sqrt{2H\sin\theta}}{g}$$

IIT-JEE PHYSICS

- **54.** The horizontal range of a projectile is $4\sqrt{3}$ times its maximum height. Its angle of projection will be
 - (a) 45°
- (b) 60^{o}
- (c) 90°
- (d) 30^{o}
- 55. A ball is projected upwards from the top of tower with a velocity 50ms⁻¹ making an angle 30° with the horizontal. The height of tower is 70 m. After how many seconds from the instant of throwing will the ball reach the ground
 - (a) 2 s
- (b) 5 s
- (c)7s
- (d) 9 s
- of 45° and 60°, respectively, with the horizontal. If both bodies attain same vertical height, then the ratio of velocities with which these are thrown is
 - (a) $\sqrt{\frac{2}{3}}$
- (b) $\frac{2}{\sqrt{3}}$

- (c) $\sqrt{\frac{3}{2}}$
- (d) $\frac{\sqrt{3}}{2}$
- 57. At what point of a projectile motion acceleration and velocity are perpendicular to each other

- (a) At the point of projection
- (b) At the point of drop
- (c) At the topmost point
- (d) Any where in between the point of projection and topmost point
- 58. An object is projected at an angle of 45° with the horizontal. The horizontal range and the maximum height reached will be in the ratio.
 - (a) 1:2
- (b) 2:1
- (c) 1:4
- (d) 4:1
- 59. The maximum horizontal range of a projectile is 400 m. The maximum value of height attained by it will be
 - (a) 100 *m*
- (b) 200 m
- (c) 400 m
- (d) 800 m