AN ATMOSPHERE-LAND COUPLING IN TERRSYSMP

SEP 23, 2020

Slavko Brdar, Cunbo Han, Stefan Kollet, Stefan Poll, Ilya Zhukov, Klaus Goergen

OUTLOOK

TerrSysMP (atmo + CLM3.5 + ParFlow)

Coupling ICON + CLM3.5

OUR FOCUS

- Physically-based representation of transport processes of mass, energy and momentum across scales down to sub-km resolutions, explicit feedbacks between compartments (focus: terrestrial hydrological cycle)
- Holistic representation of complex interactions among the compartments in the geo-ecosystem

Development:

Transregional Collaborative Research Centre 32 (TR32, "Patterns in Soil-Vegetation-Atmosphere-Systems")

OPERATIONAL RUNS Scale consistent, Continental integrated terrestrial TerrSysMP scale modeling and data assimilation from the subusrface into atmosphere Regional TerrSysMP scale, **NRW TerrSysMP** Parallel data 150km assimilatio Local scale Ensemble PDAF A updated 100 TerrSvsMP Page 4 20 km

COUPLED SYSTEM

TerrSysMP

Coupling interface: OASIS3 / OASIS3-MCT (driver)

- MPMD execution model
- Suitable for independently developed codes
- Implementation is less code-intrusive
- Component models can have different spatio-temporal resolution
- OASIS3-MCT creates MPI_COMM_WORLD
- Various configuration options (component models standalone and combinations)
- Modular coupling design

Shrestha et al. (2014, Mon. Weather Rev)

USAGE

ESM Frontier Simulations

TerrSysMP in HGF-ESM

- Goal: analyse hydrometeorological extreme events
- EURO-CORDEX
- EUR-11 domain, 0.11° resolution, 436 x 424
- Simulation period: Spinup: 1989-1995 Analysis: 1996-2017

© Carina Furusho, FZJ

Model	Vertical levels	Time-steps	Input data (Keune et al., 2016)
COSMO	50	60 s	ERA-Interim (ECMWF)
CLM	10	900 s	MODIS data
ParFlow	15	900 s	FAO soil types data

USAGE

HD(CP)² project, Cunbo Han

Work package 3: Catchment scale circulations

Goal:

How and to what extent do soil moisture distribution and induced circulation impact ABL development and shallow cumulus clouds

Page 7

WHY ICON?

- Better dynamical core: mass conservation properties, grid elements almost same
- Proven to work on very high resolutions
- Scales very well
- Static mesh refinement with 1-way or 2-way nesting
- ICON will replace current operational model of German weather service

COSMO-DE

2.8 km, 50 vert. levels 9.7 mil. grid cells @ 00, 03, ..., 21: 27 h forecast

© DWD

ICON-EU

6.5 km, 60 vert. levels

42 mil. grid cells

COSMO-EU

7 km, 40 vert. levels 17.5 mil. grid cells @ 00, 06, 12, 18: 3-day forecast

ICON

13 km, 90 vert. levels 265 mil. grid elements

@ 00, 12 UTC: 180 h forecast @ 06, 18 UTC: 120 h forecast

WHY ICON?

ICON for LES simulations:

- Improve understanding of moist processes
- Derive parametrization of moist processes for climate models
- Realistic turbulence profiles match well with observations
- Fairly good agreement with observations in Heinze et al. (2017, QJRMS):

Near-surface temp., humidity, winds Thermodynamical profiles, Energy balance and spectra

SCALING

BlueGene/Q JUQUEEN in Juelich 120m spatial resolution 6.7 billion grid cells

No output

HOW COUPLING WAS DONE...

Unstructured grids of ICON

OASIS3-MCT can handle unstructured □-grids (natively)

Given weight factors between grids, OASIS3-MCT can handle unstructured Δ-grids

Climate Data Operators (CDO) provides the weight factors between grids:

cdo gendis,clmgrid.nc icongrid.nc rmp_gclm_to_gicon_DISTWGT.nc
cdo gendis,icogrid.nc clmgrid.nc rmp_gicon_to_gclm_DISTWGT.nc

HOW COUPLING WAS DONE...

Variables exchanged

- half layer thickness (HLT)
- temperature
- 3. zonal wind
- 4. meridional wind
- 5. water vapor content
- 6. pressure
- 7. dir. short-wave rad.
- dif. short-wave rad.
- 9. long-wave down rad.
- 10. convective precip.
- 11. gridscale precip.

- 1. ground temp.
- 2. ground emission
- 3. direct albedo
- 4. diffuse albedo
- 5. zonal wind shear
- 6. meridional wind shear
- 7. sensible heat flux
- 8. latent heat flux

FIRST TEST CASE

ICON + CLM

ICON setup: Dipankar et al. (2014)

CLM setup: TerrSysMP/ideal300150

Mitglied der Helmholtz-Gemeinschaft

ENERGY BUDGET

Between ICON and CLM

ENERGY BUDGET

SCALING

ICON + CLM

	CLM	ICON	
Time step	15 sec	0.5 sec	
End time	1 hours		
Coupl. step	45 sec		
Vert. levels	10	64	

PERFORMANCE

ICON + CLM + ParFlow

Application Performance Snapshot

Application: icon

Report creation date: 2019-02-22 11:12:56

Number of ranks: 384 Ranks per node: 24 OpenMP threads per rank: 1

HW Platform: Intel(R) Xeon(R) E5/E7 v3 Processor code named Haswell

Logical Core Count per node: 48

Collector type: Driverless Perf system-wide counting

176.17s

Elapsed Time

0.74

(MAX 0.82, MIN 0.00)

MPI Time 45.74% ★ of Elapsed Time MPI Imbalance 0.00% ▶ of Elapsed Time

FOP 5 MPI Functions	%
Waitall	35.43
Send	5.44
Init	1.55
Finalize	0.69
Barrier	0.52

Memory Stalls

60.48% of pipeline slots

Cache Stalls

50.95% of cycles of cycles

DRAM Bandwidth AVG 53.71 GB/s

0.51% of remote accesses

Your application is memory bound.

Current run

Use memory access analysis tools like Intel® VTune™ Amplifier for a detailed metric breakdown by memory hierarchy, memory bandwidth, and correlation by memory objects.

45.74%▶	<10%
60.48%▶	<20%
0.00%	<10%
	60.48%▶

I/O Bound

0.00% (AVG 0.00, PEAK 0.01)

AVG 938.1 KB, MAX 139.5 MB

AVG 1.5 MB, MAX 428.2 MB

Memory Footprint

Resident	PEAK	AVG
Per node:	9026.81 MB	8560.43 MB
Per rank:	585.14 MB	356.68 MB
Virtual	PEAK	AVG

Per node:	13755.06 MB	13633.49 M
Per rank:	712.27 MB	568.06 M

SUMMARY

- TerrSysMP has two atmo models: COSMO and ICON
- Energy conservation at atmo-land interface
- InterVTune, Scalasca/Score-P used on ICON/TerrSysMP

