

DLS Lab annual seminar

Octavio Villarreal March 16, 2017

Istituto Italiano di Tecnologia

Outline

- 1. Introduction
- 2. Master thesis: "Dynamic control of 3D directional drilling systems using state estimation"
- 3. Research proposal: "Locomotion control of HyQ using max-plus algebra linear systems"

Introduction

About me

Octavio Antonio Villarreal Magaña

- MSc. Mechanical Engineering, track Control Engineering (TUDelft, The Netherlands)
- BSc. Mechatronic Engineering (UNAM, Mexico)
- Research interests:
 - Control Methods for Robotics
 - Robust Control

Master thesis: "Dynamic control of 3D directional drilling systems

using state estimation"

Dynamic control of 3D directional drilling systems

• Challenging dynamic system

• Interesting robustness problem (not addressed here)

 Collaboration between researchers of TU Delft, TU Eindhoven and the University of Minnesota

Applications of directional drilling

Extract oil, mineral and thermal energy resources

- Reach targets that need complex geometries such as:
 - Under a city or an ecosystem
 - Far from the drill rig
 - Relief for hazardous situations

General description of the system

BHA: Bottom hole assembly

Context and challenges

[Sugiura 2009]

• State-of-practice: constant RSS force (open loop)

Negative effects: kinking, rippling and spiraling

Consequences of negative effects: reduced penetration rate and accuracy

Research goal

Develop a control strategy for a 3D directional drilling system, that allows to drill boreholes with complex geometries, while avoiding undesired behaviors.

Mathematical model charateristics

- Function of borehole length (ξ)
- Model form: nonlinearly coupled delay differential equations (delays: drillstring should fit in already drilled borehole)
- States: borehole inclination (Θ) and azimuth (Φ) at the bit
- Inputs: RSS actuator forces $(\Gamma_{\Theta} \text{ and } \Gamma_{\Phi})$
- No access to measurements of the states (output equations y_⊕ and y_Φ)

Available measurements

Control objectives

- Track a desired reference trajectory corresponding to a complex borehole geometry
- The response of the system should have favorable transient behavior (avoid kinking, rippling and spiraling)
- Rely only on local measurements

Output-feedback strategy

 $e_i := i_r - i \qquad \delta_i := i - \check{i}_i \quad \text{ for } i = \Theta, \Phi$

 Focus of the research: Implement observer-based control strategy

Challenges

- Nonlinear coupling between states while $\Theta \neq \check{\Theta}$
- Controller and observer gain design

Controller synthesis

- Define isolated systems e_{Θ} , δ_{Θ} , e_{Φ} and δ_{Φ}
- Synthesize controller and observer gains for each isolated system separately
- Favorable transient performance

Controller synthesis

- Infinite number of poles in delay systems (no pole-placement)
- Spectral approach [Michiels and Niculescu 2007]
- Optimize location of right-most pole over K_i (state-feedback gains) and L_i (observer-feedback gains)

Simulation results

Research proposal: "Locomotion control of HyQ using max-plus

algebra linear systems"

Motivation

• Provide versatility to the types of gaits that the robot can perform

 Have a unified and systematic way to generate motions of the legs according to the scenario

Can be applied to other legged systems

General picture

General picture

Supervisory controller

Main goal

Decide **geometrical** and **time** gait parameters, based on sensory data, to overcome the scenario that the robot is facing.

Geometrical parameters

 Not necessarily the same for all four legs

- Examples of trajectory parameters:
 - Oscillator shape parameters
 [Barasuol et.al. 2013]
 - Control points of a Bézier (spline) curve [Hyun et.al. 2014]

Supervisory controller (continue)

Time parameters:

• Duty factor D_f

• Step frequency S_f

• Gait parameterization G (e.g., $G_{trot} = \{1, 4\} \prec \{2, 3\}$)

ullet Time difference vector Δ

Max-plus gait scheduler

Main goal

Using the **time**-related gait parameters provided by the supervisory controller, generate the times that each leg has to touch or leave the ground.

Max-plus gait scheduler (continue)

k	$g_1(k)$	$g_2(k)$	$g_3(k)$	$g_4(k)$	$I_1(k)$	$l_2(k)$	$I_3(k)$	$I_4(k)$
0	0	0	0	0	0	0	0	0
1	2.4	3.6	3.6	2.4,	1.4	2.6	2.6	1.4
2	4.8	6	6	4.8	3.8	5	5	3.8
3	7.2	8.4	8.4	7.2	6.2	7.4	7.4	6.2
4	9.6	10.8	10.8	9.6	8.6	9.8	9.8	8.6
5	12	13.2	13.2	12	11	12.2	12.2	11

Max-plus gait scheduler (continue)

- Systematic coordinated gait generation
- Total cycle time analysis (max-plus linear systems theory)
- Coupling time analysis ("settling time")
- Not computationally expensive

Continuous reference generator

Main goal

Making use of the **touchdown** and **lift-off** times of the max-plus gait scheduler, provide a reference trajectory for each of the legs.

Simulation

Change of parameters every 20 seconds

Thank you. Questions or comments?

Group members:

- Claudio Semini
- Alex Oleg Posatskiy
- Yannick Berdou
- Yifu Gao
- Michele Focchi
- Victor Barasuol
- Romeo Orsolino
- Andreea Radulescu
- Carlos Mastalli
- Marco Camurri
- Marco Frigerio
- Roy Featherstone
- Josephus Driessen
- Antonios Gkikakis
- Roodra P. Singh B.