EPREUVE FINALE

Exercice 1

- Soient E et F deux espaces vectoriels de même dimension finie n sur un même corps K, et f ∈ L(E, F).
 Montrer l'équivalence "f est surjective ⇔ f est injective".
- 2. Soit $f : \mathbb{R}[X] \to \mathbb{R}[X]$ telle que f(P(X)) = P'(X). Montrer que f est un endomorphisme surjective mais non injective. Que peut-on en déduire ? (Comparer avec le résultat précédent.)

Exercice 2 On considère l'application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$f(x, y, z) = (x + y + 3z, 2x + 3y + z, x + 2y - 2z)$$

- 1. Donner une base de Im f. L'application f est-elle surjective?
- 2. Montrer que le vecteur v = (-8, 5, 1) appartient à Ker f. En déduire une base de Ker f.
- 3. Les sous-espaces Im f et Ker f sont-ils supplémentaires?

Exercice 3 Soient $\mathbb{R}_2[X]$ l'espace des polynômes de degré inférieur ou égal à 2 et $E = \{P \in \mathbb{R}_2[X]; P + 2P' = 0\}.$

- 1. Donner la base canonique de $\mathbb{R}_2[X]$.
- 2. Montrer que E est un sous espace vectoriel de $\mathbb{R}_2[X]$.
- 3. Soit l'application $f: \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$, définie par f(P) = P + 2P'. Montrer que f est linéaire et déterminer son noyau Ker f.
- 4. Donner la matrice de f relativement à la base canonique de $\mathbb{R}_2[X]$. Cette matrice est-elle inversible?

Exercice 4 Soit $m \in \mathbb{R}$. On considère le système linéaire :

$$(S_m) \begin{cases} x+y+(1-m)z & = m+2\\ (1+m)x-y+2z & = 0\\ 2x-my+3z & = m+2 \end{cases}$$

- 1. En échelonnant la matrice A_m du système (S_m) , déterminer les valeurs de m pour lesquelles le système (S_m) admet une solution unique.
- 2. Montrer que A_1 est inversible et déterminer son inverse A_1^{-1} .
- 3. Résoudre le système (S_1) .
- 4. Résoudre les systèmes (S_2) et (S_{-2}) .

...... Bonne Chance!