Zadania programistyczne Z MATEMATYCZNYCH METOD GRAFIKI KOMPUTEROWEJ

Zestaw **P1** 3 marca 2014 r.

Termin realizacji: 30 marca 2014 r.

Punktacja (podana przy każdym zadaniu): 8, 10 albo 12 punktów

Każde z zadań może być wybrane najwyżej przez trzy osoby.

- **P1.1.** 8 punktów Niech dana będzie krzywa G(t) $(t \in [a,b])$. Proszę wykorzystać interpolację wielomianową do rekonstrukcji tej krzywej: dla danego $n \in \mathbb{N}$ oraz układu węzłów $a \le t_0 < t_1 < \ldots < t_n \le b$ wyznaczyć krzywą $L_n(t)$ o własności $L_n(t_i) = G(t_i)$ dla $i = 0, 1, \ldots, n$. Program powinien rysować, na jednym wykresie, krzywe G i L_n . Wykonać eksperymenty m.in. dla krzywych: $G(t) = [r_1 \cos t, r_2 \sin t]$ $(t \in [0, 2\pi])$, $G(t) = [\sin t, \cos 3t]$ $(t \in [0, 2\pi])$, $G(t) = [t \cos t, t \sin t]$ $(t \in [0, 10\pi])$.
- **P1.2.** 10 punktów Dla danej krzywej P(t) i węzłów t_0, t_1, \ldots, t_n , opracować metodę wyznaczania punktu na krzywej wielomianowej $R_n(t)$ stopnia n, spełniającej warunki $R_n(t_i) = P(t_i)$ $(i = 0, 1, \ldots, n)$, korzystając z wzoru rekurencyjnego

(1)
$$R_n(t) = \frac{(t-t_0)Q_{n-1}(t) - (t-t_n)R_{n-1}(t)}{t_n - t_0},$$

gdzie $Q_{n-1}(t)$ i $R_{n-1}(t)$ interpolują P(t) odpowiednio w węzłach t_1, t_2, \ldots, t_n i $t_0, t_1, \ldots, t_{n-1}$. Sprawozdanie powinno zawierać opis opracowanej metody wraz z dowodem wzoru (1). Jaka jest złożoność obliczeniowa i pamięciowa metody? Wykonać eksperymenty dla kilku przykładowych krzywych.

P1.3. 10 punktów Niech g będzie funkcją okresową, o okresie R: g(x+R)=g(x). Po zamianie zmiennej $t=2\pi\,x/R$ dostaniemy funkcję okresową $f(t):=g\left(\frac{Rx}{2\pi}\right)$, o okresie 2π . Funkcję

(2)
$$S_n(t) := \sum_{k=0}^n (a_k \cos kt + b_k \sin kt)$$

nazywamy wielomianem trygonometrycznym co najwyżej stopnia n. Można wykazać, że istnieje dokładnie jeden taki wielomian trygonometryczny postaci (2), że

(3)
$$S_n(t_i) = f(t_i), \text{ gdzie } t_i := \frac{2i\pi}{2n+1} \qquad (i = 0, 1, \dots, 2n),$$

o współczynnikach a_k i b_k zależnych w prosty sposób od wartości $f(t_i)$. Zobacz np. J.M. Jankowscy, Przegląd metod i algorytmów numerycznych, str. 66.

Dla danej krzywej zamkniętej G(t) $(t \in [0, 2\pi]; G(0) = G(2\pi))$ i danego $n \in \mathbb{N}$ skonstruować krzywą interpolacyjną trygonometryczną $S^*(t)$, o własności $S^*(t_i) = G(t_i)$, gdzie $t_i := \frac{2i\pi}{2n+1}$, $(i=0,1,\ldots,2n)$. Program powinien rysować, na jednym wykresie, krzywe G i S^* . Wykonaj eksperymenty dla różnych krzywych, w tym dla: okręgu, elipsy, "znaku nieskończoności" $G(t) = [\cos t, \sin 2t]$ $(t \in [0, 2\pi])$ oraz krzywej Lissajous $G(t) = [\sin 2t, \cos 3t]$ $(t \in [0, 2\pi])$.

MMGK: Zestaw P1 2

P1.4. 10 punktów Dla danej krzywej otwartej G(t) $(t \in [a,b])$, danego $n \in \mathbb{N}$ oraz układu węzłów $a = t_0 < t_1 < \ldots < t_n = b$ skonstruować następującą krzywą sklejaną interpolacyjną S, o własnościach:

- a) w każdym z podprzedziałów $[t_{k-1}, t_k]$ (k = 1, 2, ..., n) krzywa S jest identyczna z pewną krzywą wielomianową P_k stopnia co najwyżej trzeciego;
- b) $S(t_k) = G(t_k) \ (k = 0, 1, ..., n);$
- c) S''(a) = S''(b) = 0.

Program powinien rysować, na jednym wykresie, krzywe G i S. Wykonać eksperymenty dla różnych krzywych, w tym dla cykloidy wydłużonej: $G(t) = [pt - q \sin t, p - q \cos t] \ (q > p; \ t \in (-5\pi, 5\pi]).$

- **P1.5.** 10 punktów Dla danej krzywej zamkniętej G(t) $(t \in [a,b]; G(a) = G(b))$, danego $n \in \mathbb{N}$ oraz układu węzłów $a = t_0 < t_1 < \ldots < t_n = b$ skonstruować następującą zamkniętą krzywą sklejaną interpolacyjną $\widetilde{S}(t)$, o własnościach:
 - a) w każdym z podprzedziałów $[t_{k-1},\,t_k]$ $(k=1,2,\ldots,n)$ krzywa \widetilde{S} jest identyczna z pewną krzywą wielomianową \widetilde{P}_k stopnia co najwyżej trzeciego;
 - b) $\widetilde{S}(t_k) = G(t_k) \ (k = 0, 1, \dots, n);$
 - c) $\widetilde{S}'(a) = \widetilde{S}'(b)$, $\widetilde{S}''(a) = \widetilde{S}''(b)$.

Program powinien rysować, na jednym wykresie, krzywe G i \widetilde{S} . Wykonaj eksperymenty dla różnych krzywych, w tym dla: okręgu, elipsy, "znaku nieskończoności" $G(t) = [\cos t, \sin 2t]$ $(t \in [0, 2\pi])$ oraz krzywej Lissajous $G(t) = [\sin 2t, \cos 3t]$ $(t \in [0, 2\pi])$.

- **P1.6.** 10 punktów Dla danej krzywej otwartej G(t) $(t \in [a,b])$, danego $n \in \mathbb{N}$ oraz układu węzłów $a = t_0 < t_1 < \ldots < t_n = b$ skonstruować następującą krzywą sklejaną interpolacyjną \hat{S} , o własnościach:
 - a) w każdym z podprzedziałów $[t_{k-1}, t_k]$ (k = 1, 2, ..., n) krzywa \hat{S} jest identyczna z pewną krzywą wielomianową P_k stopnia co najwyżej trzeciego;
 - b) $\hat{S}(t_k) = G(t_k) \ (k = 0, 1, ..., n);$
 - c) $\hat{S}'(a) = \mathbf{s}_0$, $\hat{S}'(b) = \mathbf{s}_1$ dla danych wektorów \mathbf{s}_0 i \mathbf{s}_1 .

Program powinien rysować, na jednym wykresie, krzywe G i \hat{S} . Wykonać eksperymenty dla różnych krzywych, w tym dla cykloidy wydłużonej: $G(t) = [pt - q \sin t, p - q \cos t] \ (q > p; \ t \in (-5\pi, 5\pi])$.

P1.7. 10 punktów Niech będą dane: liczba naturalna n, węzły t_1, t_2, \ldots, t_n $(a = t_1 < t_2 < \ldots < t_n = b)$ oraz funkcja f określona w przedziałe [a, b]. Punkty

$$\tau_0 := t_1, \qquad \tau_i := \frac{1}{2}(t_i + t_{i+1}) \qquad (1 \le i \le n-1), \qquad \tau_n := t_n$$

nazywamy przegubami. Dowodzi się, że istnieje dokładnie jedna taka funkcja $\sigma \in C^1[a,b]$, że

- a) w każdym podprzedziale $[t_i, t_{i+1}]$ $(1 \le i \le n-1)$ σ jest identyczna z pewnym wielomianem $q_i \in \Pi_2$;
- b) $\sigma(\tau_k) = f(\tau_k) \quad (k = 0, 1, ..., n).$

Dla $x \in [t_i, t_{i+1}]$ $(1 \le i \le n-1)$ funkcja σ wyraża się wzorem

$$\sigma(x) = f(\tau_i) + \frac{1}{2}(m_{i+1} + m_i)(x - \tau_i) + \frac{1}{2h_i}(m_{i+1} - m_i)(x - \tau_i)^2,$$

gdzie $h_i:=t_{i+1}-t_i$, a wielkości $m_i:=\sigma'(t_i)$ $(i=1,2,\ldots,n)$ są rozwiązaniem układu rownań

$$h_{i-1}m_{i-1} + 3(h_{i-1} + h_i)m_i + h_i m_{i+1} = 8(f(\tau_i) - f(\tau_{i-1}))$$
 $(1 \le i \le n),$

gdzie przyjmujemy, że $h_0 := h_n := m_0 := m_{n+1} := 0$.

Wykorzystać opisaną wyżej metodę interpolacji do rekonstrukcji krzywej parametrycznej $G(t) = [g_x(t), g_y(t)]$ $(t \in [a, b])$, tzn. znaleźć dla węzłów t_1, t_2, \ldots, t_n funkcje sklejane II-go stopnia σ_x , σ_y interpolujące funkcje g_x i g_y , odpowiednio. Poszukiwana krzywa ma parametryzację $S(t) := [\sigma_x(t), \sigma_y(t)]$ $(t \in [a, b])$. Program powinien rysować, na jednym wykresie, krzywe G i S. Wykonać eksperymenty dla różnych krzywych (patrz np. zadania **P1.1–P1.3**).

MMGK: Zestaw P1 3

P1.8. 10 punktów Dla danej liczby naturalnej n, danych węzłów t_0, t_1, \ldots, t_n ($a = t_0 < t_1 < \ldots < t_n = b$), danej liczby rzeczywistej τ i danej funkcji f istnieje dokładnie jedna taka funkcja S_{τ} , zwana funkcją sklejaną hiperboliczną, że

$$1^o \ S_{\tau} \in C^2[a,b],$$

$$2^{\circ} S_{\tau}(t_k) = f(t_k) \ (k = 0, 1, \dots, n);$$

 3^o w każdym z podprzedziałów (t_k, t_{k+1}) (k = 0, 1, ..., n-1) funkcja S_{τ} spełnia warunek $S_{\tau}^{(4)}(t) - \tau^2 S_{\tau}''(t) = 0$;

$$4^{\circ} S_{\tau}''(a) = S_{\tau}''(b) = 0.$$

Zrealizować algorytm konstrukcji funkcji sklejanej hiperbolicznej, podany w książce D. Kincaida i W. Cheneya, Analiza numeryczna, WNT, 2005, s. 333–335. Sprawdzić doświadczalnie wpływ parametru τ na rozwiązanie.

Wykorzystać opisaną wyżej metodę interpolacji do konstrukcji krzywej sklejanej hiperbolicznej $S_{\tau}(t)$ ($t \in [a,b]$), o własności $S_{\tau}(t_i) = W_i$ ($i = 0,1,\ldots,n$), gdzie W_i są danymi punktami (np. leżącymi na pewnej krzywej G(t)). Program powinien rysować, na jednym wykresie, krzywe G i S_{τ} . Wykonać eksperymenty dla różnych krzywych (patrz np. zadania **P1.1–P1.3**).

P1.9. 10 punktów Postać Hermite'a krzywej wielomianowej trzeciego stopnia jest określona przez dwa punkty końcowe P_0 , P_1 i wartości pochodnych s_0 , s_1 w końcach przedziału parametryzacji. Należy znaleźć takie wielomiany $h_i \in \Pi_3$ ($0 \le i \le 3$), żeby krzywa

$$H(t) = P_0 h_0(t) + s_0 h_1(t) + s_1 h_2(t) + P_1 h_3(t),$$

spełniała następujące warunki:

$$H(0) = P_0,$$
 $H'(0) = s_0,$
 $H(1) = P_1,$ $H'(1) = s_1.$

Jakie własności mają wielomiany h_i ? Jak znaleźć postać Béziera krzywej P(t)? Opracować analogiczne metody wyznaczania krzywej wielomianowej stopnia piątego, dopasowanej do danych z wartościami pochodnych drugiego i trzeciego rzędu w końcach przedziału [0,1]. Program powinien umożliwiać wygodną modyfikację krzywej Hermite'a, tzn. dawać możliwość przeciągania punktów skrajnych oraz pozwalać na zmianę wektorów stycznych w tych punktach poprzez przeciąganie strzałek.

Stanisław Lewanowicz