Control Systems Module I: Overview

Control Systems Basics

Explains

- Overview
- Stability
- Performance
- Robustness

Prerequisites

- Linear Algebra
- Fundamentals of modeling and control

Credits

Jacopo Tani – ETHZ – 1st of November 2017

Big picture

Today we are going to talk about control systems

Terminology

- Belief ~ Estimate: $\hat{x}(t)$
- Plan ~ Reference trajectory: r(t) or $y_{ref}(t)$
- Commands ~ (Ideal) Inputs: $u_d(t)$

• External Environment ~ System/Plant: $\dot{x}(t) = f(x, u, t) + \dot{w}(t)$

$$y(t) = h(x, u, t)$$

• Observations ~ Measured Output: $y_m(t) = g(y(t)) + n(t)$

Measurement Noise

Process Noise

Big picture in Control Systems Language

Big picture adult's version

Objectives of a controller

- Stability
 - Things don't blow up
- Performance
 - Track reference signals "well"
 - Load disturbance attenuation
 - Measurement noise attenuation

- Robustness
 - Model uncertainty

Objectives of a controller

- Stability
 - Things don't blow up

- Robustness
 - Model uncertainty

- Performance
 - Track reference signals "well"
 - Load disturbance attenuation
 - Measurement noise attenuation

Stability

TLDR: "Things don't blow up"

Too long, don't read

$$\forall \epsilon > 0, \forall \delta > 0$$
: $||x_0 - x_{eq}|| < \delta \Rightarrow ||x(t) - x_{eq}|| < \epsilon, \forall t \ge 0$

where:

$$\dot{x}(t) = f(x), \quad x(0) = x_0, \quad x \in X \subseteq \mathbb{R}^n$$

 $f: X \to \mathbb{R}^n, \quad f(x_{eq}) = 0$

What starts close (to an equilibrium point), stays close forever

Asymptotic Stability

TLDR: "Things converge to an equilibrium point"

Too long, don't read

$$\forall \delta > 0: ||x_0 - x_{eq}|| < \delta \Rightarrow \lim_{t \to \infty} ||x(t) - x_{eq}|| = 0$$

where:

$$\dot{x}(t) = f(x), \qquad x(0) = x_0, \qquad x \in X \subseteq \mathbb{R}^n$$

 $f: X \to \mathbb{R}^n, \qquad f(x_{eq}) = 0$

 $\dot{x}(t) = f(x), \quad x(0) = x_0, \quad x \in X \subseteq \mathbb{R}^n$ $f: X \to \mathbb{R}^n, \quad f(x_{eq}) = 0$

x(t)

What starts close (to an equilibrium point) eventually reaches the equilibrium point

Exponential Stability

TLDR: "Things converge to an equilibrium point, fast"

Too long, don't read

Lyapunov stability

$$\forall \ \alpha,\beta,\delta>0 \colon ||\ x_0-x_{eq}||<\delta\Rightarrow ||x(t)-x_{eq}||\leq \alpha ||x_0-x_{eq}||e^{-\beta t}$$

where:

$$\dot{x}(t) = f(x), \quad x(0) = x_0, \quad x \in X \subseteq \mathbb{R}^n$$

 $f: X \to \mathbb{R}^n, \quad f(x_{eq}) = 0$

What starts close (to an equilibrium point) eventually reaches the equilibrium point at guaranteed minimum rate

When is a system stable?

A system is (asymptotically) stable when the Jacobian, evaluated at an equilibrium point, is Hurwitz

All eigenvalues have negative real part

• A Jacobian is:
$$J = \partial f/\partial x|_{x=x_{eq}}$$
, $J_{ij} = \partial f_i/\partial x_j|_{x=x_{eq}}$

For linear systems: $f = Ax \Rightarrow J = A$

Another way to check: Lyapunov Stability Criterion

Define a Lyapunov function such that:

$$V(x - x_{eq}) = 0 \iff x = x_{eq}$$

 $V(x - x_{eq}) > 0 \iff x \neq x_{eq}$

$$\dot{V}(\mathbf{x} - \mathbf{x}_{eq}) \le 0, \forall x \ne x_{eq} \rightarrow \text{stability}$$

 $\dot{V}(\mathbf{x} - \mathbf{x}_{eq}) < 0, \forall x \ne x_{eq} \rightarrow \text{asymptotic stability}$

Can all systems be stabilized?

No, only those that are controllable (reachable)

Controllability (reachability) answers the question:

Is it always possible to change the system's states by changing the input sequence?

(For a state variable, does an input sequence exist such that the state can be brought from x_0 to x_1 in a finite time?)

- For linear systems: verify $rank(A) = rank([B, AB, ..., A^{n-1}B]) = n$
- For nonlinear systems: Use Lie derivates to build controllability matrix and check rank

Objectives of a controller

- Stability
 - Things don't blow up
 - tability

- Robustness
 - Model uncertainty

- Performance
 - Track reference signals "well"
 - Load disturbance attenuation
 - Measurement noise attenuation

Performance - Linear Systems

$$X = \frac{P}{1 + PC}D - \frac{PC}{1 + PC}N + \frac{PCF}{1 + PC}R$$

$$Y = \frac{P}{1 + PC}D + \frac{1}{1 + PC}N + \frac{PCF}{1 + PC}R$$

$$U = -\frac{PC}{1 + PC}D - \frac{C}{1 + PC}N + \frac{CF}{1 + PC}R$$

	D	N	R
X	H_{xd}	$H_{\chi n}$	$H_{\chi r}$
Y	H_{yd}	H_{yn}	H_{yr}
U	H_{ud}	H_{un}	H_{ur}

$$X = X(s) = \mathcal{L}[x(t)](s)$$

Performance

The Gang of Six (Four, when F = 1)

- Sensitivity: $H_{yn} = S = \frac{1}{1 + PC}$
- Complimentary Sensitivity: $H_{xn} = H_{ud} = T = \frac{PC}{1+PC} = PCS$
- Load disturbance Sensitivity: $H_{xd} = H_{yd} = \frac{P}{1+PC} = PS$
- Noise Sensitivity: $H_{un} = \frac{C}{1+PC}$

$$X = \frac{P}{1 + PC}D - \frac{PC}{1 + PC}N + \frac{PCF}{1 + PC}R$$

$$Y = \frac{P}{1 + PC}D + \frac{1}{1 + PC}N + \frac{PCF}{1 + PC}R$$

$$U = -\frac{PC}{1 + PC}D - \frac{C}{1 + PC}N + \frac{CF}{1 + PC}R$$

	D	N	R
X	H_{xd}	$H_{\chi n}$	$H_{\chi r}$
Y	H_{yd}	H_{yn}	H_{yr}
U	H_{ud}	H_{un}	H_{ur}

$$X = X(s) = \mathcal{L}[x(t)](s)$$

Performance – Typical Scenario

Performance

- Design spec.
- Track reference (r) signals "well" \rightarrow high magnitude of H_{yr} at low frequencies
- Load disturbance (d) attenuation \rightarrow low PS magnitude at low frequencies
- Measurement noise (n) attenuation \rightarrow low magnitude of H_{un} and S at high frequency

Design constraint: waterbed effect

$$X = \frac{P}{1 + PC}D - \frac{PC}{1 + PC}N + \frac{PCF}{1 + PC}R$$
 • Sensitivity: $H_{yn} = S = \frac{1}{1 + PC}$

$$Y = \frac{P}{1 + PC}D + \frac{1}{1 + PC}N + \frac{PCF}{1 + PC}R$$

$$U = -\frac{PC}{1 + PC}D - \frac{C}{1 + PC}N + \frac{CF}{1 + PC}R$$

• Sensitivity:
$$H_{yn} = S = \frac{1}{1 + PC}$$

• Complimentary Sensitivity:
$$H_{xn} = H_{ud} = T = \frac{PC}{1+PC} = PCS$$

• Load disturbance Sensitivity:
$$H_{xd} = H_{yd} = \frac{P}{1+PC} = PS$$

Noise Sensitivity:
$$H_{un} = \frac{C}{1 + PC}$$

Objectives of a controller

- Stability
 - Things don't blow up

- Robustness
 - Model uncertainty

- Performance
 - Track reference signals "well"
 - Load disturbance attenuation
 - Measurement noise attenuation

Robustness

- How to fight model uncertainty? (Step by step)
- 1. We have a controller that works well for motion tracking applications. I.e., $H_{yr} = T$ is good.
- 2. What is "model uncertainty"? A (bounded) variation in *P*.
- 3. How does H_{yr} change with P, i.e., what is $\frac{dT}{dP}$?

Easy:
$$\frac{dT}{dP} = S \frac{T}{P}$$

Even better: $\frac{d \log T}{d \log P} = S$

The reason for its name..

For a controller to be robust, the magnitude of *S* should be small (at all frequencies)

Robustness – Waterbed effect

• Unfortunately it is **not possible** to shape *S*'s magnitude arbitrarily

Hendrik Wade Bode

Bode's Equation:
$$\int_{0}^{\infty} \log |S(i\omega)| d\omega = constant$$

• Moreover: S + T = 1, so the effect has repercussions on the complementary sensitivity too

Other considerations

On feedback

- Feedback injects measurement noise in the system;
- Real actuators can suffer from (rate) saturation;
- A high open loop gain can provide good tracking, but amplifies noise. Noises are
 typically high frequency, therefore fast variations in the command inputs will follow.
 The actuator rate saturation may clip off the command resulting in unpredicted
 performance.

On the process dynamics

- We looked at continuous time, while implementations are in discrete time.
 Approximations degrade performance.
- Especially in robotics, latencies are a big deal. A system cannot respond faster than it's delay. Non minimum phase zeros (right hand plane) are equivalent to delays. Low zeros, high delays.
- Handling instabilities (poles in the right hand plane) requires fast controllers.

Conclusions

Controllers are design to provide:

Stability Performance Robustness

These requirements often conflict and tradeoffs are required

• There are some fundamental limitations in feedback that stem from:

Measurement noise Actuator saturation Process Dynamics