

Universität Freiburg Institut für Informatik Georges-Köhler Allee, Geb. 51 D-79110 Freiburg

Fang Wei-Kleiner

fwei@informatik.uni-freiburg.de

Advanced Databases and Information Systems Summerterm 2019

Discussion on 27/06/2019

10. Sheet: Conjunctive Queries

Exercise 1 (Evaluation of conjunctive queries)

Consider the following sample instantiation \mathcal{I} of a database.

Sales	PName	SNar	ne	CName	Part	: PName	Tune
	Audi A7 Audi A8 Audi A8 Suzuki 0	S Auto	chaus Wenz chaus Klein chaus Wenz corsport AG	Meier Meier Smith Hofmann	Pari	Audi A8 Audi A7 Suzuki GSX	Auto Auto Motorrad
	Cust	CName	CAddr		Supp	SName	SAddr
		Meier	Freiburg	_		Autohaus Wenz	Freiburg
		Smith	Freiburg			Autohaus Klein	Mannheim
		Hofmann	Mannheim			Motorsport AG	Mannheim

Compute the evaluation result of the following queries on instance \mathcal{I} and informally describe their meaning. Note that constants inside the queries are distinguished by italic font.

a) q_1 : ans(C) \leftarrow Sales(P,S,C), Cust(C,Freiburg), Supp(S,Freiburg)

Die Anfrage gibt die Namen aller Kunden aus Freiburg zurück die mindestens ein Produkt bei einem Lieferanten aus Freiburg eingekauft haben. Für die obige Instanz ergibt sich die Lösung $q_1(\mathcal{I})$

ans	\sim
	Meier
	Smith

b) q_2 : ans(S,P) \leftarrow Sales(P,S,Meier), Supp(S,Mannheim), Part(P,Auto)

Die Anfrage gibt den Zulieferernamen und das zugehörige Produkt aller Auto-Käufe von Herrn Meier von einem Zulieferer aus Mannheim zurück. Für die obige Instanz ergibt sich die Lösung $q_2(\mathcal{I})$

c) q_3 : ans(S,P) \leftarrow Sales(P,S,Meier), Supp(S,Mannheim), Part(P2,Auto)

Die Anfrage gibt den Zulieferernamen und das zugehörige Produkt aller Käufe von Herrn Meier von einem Zulieferer aus Mannheim zurück, vorausgesetzt dass mindestens ein Auto in der Datenbank (in der Part-Relation) eingetragen ist. Für die obige Instanz ergibt sich die Lösung $q_3(\mathcal{I})$

ans	S	Р
	Authohaus Klein	Audi A8

d) q_4 : ans(C1,C2) \leftarrow Cust(C1,Freiburg), Cust(C2,Freiburg), Sales(P1,S1,C1), Sales(P2,S2,C2), Supp(S1,X), Supp(S2,X)

Die Anfrage berechnet alle Paare von Freiburger Personen, die Produkte von Zulieferern aus dem selben Ort gekauft haben. Für die obige Instanz ergibt sich die Lösung $q_4(\mathcal{I})$

ans	C1	C2
	Meier	Meier
	Meier	Smith
	Smith	Meier
	Smith	Smith

Exercise 2 (Containment)

Consider the following pairs of Conjunctive Queries and decide for each pair q_i , q_i' if $q_i \sqsubseteq q_i'$, $q_i' \sqsubseteq q_i$, and $q_i \equiv q_i'$ holds. If such relationships hold provide the corresponding containment mappings. Otherwise, show that no such mapping exists.

- a) q_1 : ans(X,Y) \leftarrow R(X,Z), R(Z,T), S(T,Y) und q'_1 : ans(X,Z) \leftarrow R(X,X), S(X,Z)
 - q_1 ist nicht enthalten in q'_1 , weil es keine Enthaltensein-Abbildung von q'_1 nach q_1 gibt. Das Teilziel R(X,X) aus q'_1 muss entweder auf R(X,Z) oder auf R(Z,T) abgebildet werden. Da in beiden Fällen X auf zwei verschiedene Variablen abgebildet werden muss, existiert diese Abbildung nicht. Umgekehrt ist q'_1 enthalten in q_1 mit der Enthaltensein-Abbildung $\theta = \{X \to X, Y \to Z, Z \to X, T \to X\}$ von q_1 nach q'_1 . Da nur eine der beiden Enthaltensein-Beziehungen gilt sind die Anfragen nicht äquivalent.
- b) q_2 : ans(X) \leftarrow R(X,Y), S(Y,Z), S(Y',Z') und q_2' : ans(Y) \leftarrow S(A,B), R(Y,A), R(Y',A) Es gilt $q_2 \equiv q_2'$. Das Containment Mapping von q_2 nach q_2' ist $\theta_1 = \{X \mapsto Y, Y \mapsto A, Z \mapsto B, Y' \mapsto A, Z' \mapsto B\}$, folglich gilt $q_2' \sqsubseteq q_2$. In der umgekehrten Richtung existiert das Containment-Mapping $\theta_2 = \{Y \mapsto X, A \mapsto Y, B \mapsto Z, Y' \mapsto X\}$ von q_2' nach q_2 , also gilt auch $q_2 \sqsubseteq q_2'$.
- c) q_3 : ans(U,Z) \leftarrow R(U,V), R(X,Y), S(Y,Z), S(V,X) und q_3' : ans(U,V) \leftarrow R(Y,U), R(U,X), S(U,V), S(X,Y) Es gilt $q_3 \not\sqsubseteq q_3'$: wegen dem Kopfprädikat ans muss U nach U und V nach Z abgebildet werden. Somit bilder auch das Rumpfprädikat S(U,V) aus q_3' nach S(U,Z) ab, welches nicht in q_3 enthalten ist. Umgekehrt gilt $q_3' \sqsubseteq q_3$. Das Containment-Mapping von q_3 nach q_3' ist $\theta = \{U \mapsto U, Z \mapsto V, V \mapsto X, X \mapsto Y, Y \mapsto U\}$.

Exercise 3 (Containment)

Consider the following pairs of Conjunctive Queries and decide if $q_i \sqsubseteq q_i'$, $q_i' \sqsubseteq q_i$, and $q_i \equiv q_i'$ hold using the method of the canonical instance.

- a) q_1 : ans(X) $\leftarrow R(X,Y,X)$, R(X,Z,Y), S(Y,X) und q'_1 : ans(X) $\leftarrow R(X,Y,Z)$, S(Y,Z)
 - Es gilt $q_1 \sqsubseteq q_1'$, $q_1' \not\sqsubseteq q_1$ und folglich $q_1 \not\equiv q_1'$. Um $q_1 \sqsubseteq q_1'$ zu zeigen verwenden wir die Methode der kanonischen Instanz. Die kanonische DB von q_1 ist $D = \{R(0,1,0), R(0,2,1), S(1,0)\}$. Da der Kopf von q_1 , $\operatorname{ans}(0)$, in $q_1'(D) = \{\operatorname{ans}(0)\}$ enthalten ist, ist q_1 in q_1' enthalten. Die kanonische Substitution, die dies zeigt, ist $\theta = \{X \mapsto 0, Y \mapsto 1, Z \mapsto 0\}$. Um $q_1' \not\sqsubseteq q_1$ zu zeigen betrachten wir das erste Literal R(X,Y,X). Dieses Literal müsste auf R(X,Y,X) in q_1' abgebildet werden, was offensichtlich nicht möglich ist, da X nur auf einen Wert abgebildet werden kann.
- b) q_2 : ans(X) \leftarrow R(X,Y), R(Y,Z), R(Z,X) und q_2' : ans(X) \leftarrow R(X,Y), R(Y,Z), R(Z,U), R(U,V) Es gilt $q_2' \not\sqsubseteq q_2$, wie man beispielsweise an der Datenbankinstanz $\mathcal{I} = \{R(0,1), R(1,2), R(2,3), R(3,4)\}$: auf dieser Instanz liefer q_2' eine Lösung, während q_2 keine Lösung liefert. Die umgekehrte Richtung lösen wir mit Hilfe der kanonischen Instanz. Im ersten Schritt weisen wir Konstanten für q_2 zu und erhalten q_2 : ans(a):- R(a,b), R(b,c), R(c,a) und $D(q_2)$ - $\{R(a,b), R(b,c), R(c,a)\}$. Die gesuchte Abbildung ist $X \mapsto a, Y \mapsto b, Z \mapsto b, U \mapsto a, V \mapsto b$; folglich gilt $q_2 \sqsubseteq q_2'$.

Exercise 4 (NP-Completeness)

Prove the Conjunctive Query Containment problem is NP-Complete. To show NP-Hardness, you need to find an NP-Complete problem and make a reduction to the containment problem.

The 3-Colorability Problem

Definition (3-Colorability of Graphs)

Instance: A graph G = (V, E)

Question: Can G be colored with the three colors $\{r, g, b\}$ in such a way

that two adjacent vertices have a distinct color?

The 3-colorability problem is NP-complete

A graph G is 3-colourable if and only if there is a graph homomorphism from G to the simplex S_3 , which consists of three vertices that are connected to each other

Reducing 3-Colorability to Evaluation

Theorem (Reduction)

There is a database instance \mathbf{I}_{3col} such that for every finite graph G one can compute in linear time a relational conjunctive query $Q_G():=L$ such that

G is 3-colorable G if and only if $Q_G(\mathbf{I}_{3col}) = \{(i)\}$

Remark (Boolean Queries)

- A query without distinguished variables is called a boolean query
- Over an instance, a boolean query returns the empty tuple (), or nothing

This shows NP-hardness of the combined complexity of conjunctive query evaluation

The Reduction

Given graph
$$G=(V,E)$$
, where
$$V=\{v_1,\ldots,v_n\} \text{ and }$$

$$E=\{(v_{i_l},v_{j_l})\mid i_l< j_l,\ 1\leq l\leq m\}$$

We construct \mathbf{I}_{3col} and Q_G as follows

$$\begin{split} \mathbf{I}_{3col} &= \{ \mathsf{e}(r,b),\, \mathsf{e}(b,r),\, \mathsf{e}(r,g),\, \mathsf{e}(g,r),\, \mathsf{e}(b,g),\, \mathsf{e}(g,b) \} \\ Q_G() &:= \mathsf{e}(y_{i_1},y_{j_1}), \ldots, \mathsf{e}(y_{i_m},y_{j_m}) \\ &\quad \text{where } y_1,\ldots,y_n \text{ are new variables and} \\ &\quad \text{there is one atom } \mathsf{e}(y_{i_l},y_{j_l}) \text{ for each edge } (v_{i_l},v_{j_l}) \in E \end{split}$$

Clearly, there is an $\alpha \colon \{y_1, \dots, y_n\} \to \{r, g, b\}$ satisfying Q_G over \mathbf{I}_{3col} iff there is a graph homomorphism from G to S_3