

OF

AD A070956

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A

THIS DOCUMENT IS BEST QUALITY PRACTICABLE OF THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REFRODUCE LEGIBLY.

This document has been approved for public release and sale; its distribution is unlimited.

DDC FILE COPY

79 06 14 008

P. O. Box 2019 2600 Garden Road Monterey, CA 93940 (408) 649-3880

11 1 April 1979

Technical Report No. BDM/M-008-79

ONR No. NO0014-78-C-0204 100

Work Order No. 086412

This document has been approved for public release and sale; its distribution is unlimited.

9 TECHNICAL REPORT

AIRCRAFT MEASUREMENTS OF MICROMETEOROLOGICAL PARAMETERS AT PANAMA CITY, FLORIDA, IN 1978

bv

10 CHRISTOPHER W. FAIRALL Project Engineer

410 162

JOB

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

FOREWORD

This report was prepared under Work Order No. 086412 of Contract No. N00014-78-C-0204 in support of a U.S. Naval Postgraduate School research project sponsored by the Naval Air Systems Command, AIR 370 and Naval Avionics Center, Indianapolis. The report contains an analysis of aircraft measurements of micrometeorological parameters made at Panama City, Florida in 1978.

Distribution Availability Codes Availability codes Available Special	TIS G	RA&I	V	
Availand/or	mannou	nced	n	<u>]</u>
Availand/or				
lavall mid/or	Dist 1	<u>ut101</u>	1 Code	- 5
	VAST,	Avail	und/or	
	И	12	M.	

TABLE OF CONTENTS

	PAGE
FOREWORD	111
LIST OF FIGURES	vii
LIST OF TABLES	ix
ABSTRACT	xi
A. INTRODUCTION	1
B. INSTRUMENTATION	1
 Description Data Acquisition 	1 6
C. THEORETICAL FRAMEWORK	7
 Surface Layer Scaling Methods Above the Surface Layer 	7 8 9
D. DATA COMPARISON	10
 Stage I (Calspan) - Aircraft Comparison Wet-Dry Bulb to Aircraft Comparison 	10 13
E. RESULTS	16
 Interpretation Ladder Profiles 	16 16
APPENDIX A - WET-DRY BULB DATA AND COMPARISON WITH OTHER AIRCRAFT INSTRUMENTS	A-1
APPENDIX B - FLIGHT DATA TIME SERIES PRINTOUT FOR PC II	B-1
APPENDIX C - LADDER PROFILE DATA FOR PC II	C-1
BIBLIOGRAPHY	19
INITIAL DISTRIBUTION LIST	20

LIST OF FIGURES

FIGURE NUMBER		PAGE
0.01	Locations of Ladder Profiles for PC II	14
2	Profile #1 on 11/26 at 1252 Local Time with	
	L = -125	17
B-1	Flight 1 Flight Track	B-3
B-2	Flight 2 Flight Track	B-15
B-3	Flight 3 Flight Track	B-21
B-4	Flight 4 Flight Track	B-35
B-5	Flight 5 Flight Track	B-45
B-6	Flight 6 Flight Track	B-55
B-7	Not included	
B-8	Flight 8 Flight Track	B-67
B-9	Flight 9 Flight Track	B-83
B-10	Not included	
B-11	Flight 11 Flight Track	B-91
B-12	Flight 12 Flight Track	B-105
B-13	Flight 13 Flight Track	B-111
B-14	Flight 14 Flight Track	B-115
C-1	Ladder Profile #1	C-2
C-2	Ladder Profile #2	C-4
C-3	Ladder Profile #3	C-6
C-4	Ladder Profile #4	C-8
C-5	Ladder Profile #5	C-10
C-6	Ladder Profile #6	C-12
C-7	Ladder Profile #7	C-14
C-8	Ladder Profile #8	C-16
C-9	Ladder Profile #9	C-18
C-10	Ladder Profile #10	C-20
C-11	Ladder Profile #11	C-22
C-12	Ladder Profile #12	C-24
C-13	Ladder Profile #13	C-26
C-14	Ladder Profile #14	C-28
C-15	Ladder Profile #15	C-30

LIST OF FIGURES (Continued)

FIGURE NUMBER		PAGE
C-16	Ladder Profile #16	C-32
C-17	Ladder Profile #17	C-34
C-18	Ladder Profile #18	C-36
C-19	Ladder Profile #19	C-38
C-20	Ladder Profile #20	C-40
C-21	Ladder Profile #21	C-42

LIST OF TABLES

TABLE NUMBER		PAGE
I	Aircraft Instrumentation and Data Acquisition Channels	2
11	Calspan Stage I Data with Bulk Calculations of MOS Parameters	11
III	Comparison of Calspan Stage I Data with Aircraft Data	12
IV	Summary of Wet-Dry Bulb Data Compared with Air- craft Air Temperature and Refractivity Values	13
٧	Ladder Profile MOS Scaling Data for PC II	15

ABSTRACT

BDM, for the Naval Postgraduate School (NPS), with the cooperation of Airborne Research Associates (ARA), specifically the excellent support of Dr. Ralph Markson and Mr. Jan Sedlacek, obtained a series of aircraft measurements of atmospheric properties in conjunction with a NAVAIR-sponsored joint environmental field investigation at Panama City, Florida in November and December of 1978. The joint field experiment was coordinated by Naval Avionics Center (NAC). Funding for ARA participation and partial funding for NPS participation was provided by NAC. This program is concerned with aerosols and fog in the marine boundary layer. This report provides an analysis of the aircraft data and is intended as a guidebook for other groups. Calibration, data reduction, flight techniques and intercomparisons of certain instruments are discussed. Very careful measurements of the boundary layer, including the near surface layer, are emphasized along with the application of Monin-Obukhov similarity theory.

A. INTRODUCTION

This document is a preliminary analysis and listing of micrometeorological data obtained from aircraft measurements during the 2nd NAVAIR-sponsored Marine Fog and Boundary Layer field experiment at Panama City, Florida (hereby designated PC II). This was a joint field experiment coordinated by the Naval Avionics Facility (NAC). The measurements were made from a Bellanca Turbo Viking aircraft operated by Airborne Research Associates. The Naval Postgraduate School Environmental Physics Group provided additional instrumentation and data acquisition equipment.

15 given

Thirteen flights were made on ten different days from 26 November 1978 to 13 December 1978. The typical flight duration was approximately three hours. Three types of flight pattern were employed for specific environmental characterization: low-level, constant altitude runs for sea surface temperature maps, spiral ascents and descents for surface-to-altitude profiles, and "ladder" profiles obtained from level runs of two minutes duration at successively increasing altitudes for marine boundary layer turbulence structure. A printout of the primary variables of interest for each flight is presented as a time series (32 second average), in Appendix B. A Similar printout for each ladder profile (a series of two minute averages at constant altitude) is presented in Appendix C. Since a full data scan is recorded on the cassette at 3.2 second intervals, finer time resolution can be obtained if necessary.

The primary purpose of this report is to provide a catalogue of the atmospheric data to the other participants as quickly as possible. Considerable effort has been directed toward comparing aircraft measurements with Stage I data and examining the reliability of various instruments.

B. INSTRUMENTATION

Description

The primary measurements are summarized in Table I, followed by a more detailed description. The instruments are listed in order of their assigned channels on the data acquisition system.

TABLE I. AIRCRAFT INSTRUMENTATION AND DATA ACQUISITION CHANNELS

CHANNEL NUMBER	DATA	NAME	ТҮРЕ
1	P	Air pressure	Solid state
2	T	Air temperature	Platinum resistor
3	Td	Dew point	Aluminum oxide
4	Ts	Sea surface T	Infrared radiometer
5	E	Electric field	Radioactive probes
6	C _T , AC	Temperature structure	Microthermal, AC bridge
7	ε, low	Dissipation rate	Hot-wire, $f_{\ell} = 10 \text{ Hz}$
8	V	Hot-wire voltage	Constant T anemometer
9	ε, hi	Dissipation rate	Hot-wire, fg = 50 Hz
10	CT, DC	Temperature structure	Microthermal, DC bridge
11	T	Air temperature	Thermistor
12	N	Air refractivity	Microwave cavity

In addition to this data, certain information was occasionally logged by hand from other aircraft instruments such as: altitude, position, air speed, and weather observations. Direct measurements of dew point were made by holding a wet-dry bulb psychrometer out the window.

The calibration of the instruments appears as a mathematical relationship between the physical value, X, and the actual voltage, Y

$$X = F(V)$$

For instance, in the case of atmospheric pressure, 10 volts corresponds to 1000 mb, hence

$$P = 100 V, mb$$

The following is a channel-by-channel rundown of the data:

(1) Air pressure: This is a solid state device (National Semiconductor) provided and calibrated by NAC.

$$P = 100 V, mb$$

(2) Air temperature: A platinum resistor (Rosemount Instruments) with a nominal 50Ω resistance, designed for aircraft use. The device was calibrated against a high precision mercury-glass thermometer.

$$T = (V - 0.07)/0.0187, ^{\circ}C$$

(3) Dew point temperature: An aluminum oxide conductivity device (Panametrics), it has a somewhat variable calibration curve. This device malfunctioned for most of the experiments.

$$T_d = B^{-1} \log \left(\frac{V - V_0}{A} \right)$$
, °C

Typical values for the calibration parameters are

$$V_0 = 0.03$$

$$A = 0.22$$

$$B = 0.024$$

(4) Sea surface temperature: Infrared radiometer (Barnes PRT-5).

$$Ts = 10(V - 1), °C$$

(5) Electric field: Ralph Markson's radioactive probe electric field device. This device was not properly balanced during the first part of the experiment. The situation was corrected at 1020 on December 11 during flight #9. Prior to this, the E values tended to be about a factor of two too large.

$$E = 795 \text{ V/1.21, V/m}$$

(6) Temperature structure function: AC bridge measurement of CT using paired microthermal tungsten probes.

$$C_T^2 = (V^2 - G^2 V_N^2) / [\alpha G B d^{1/3} R_0 (1 + \beta T)]^2$$

 V_N^2 = noise level, (0.001 volts)² + velocity contribution

 $\alpha = 0.0026, \circ C^{-1}$

B = bridge sensitivity, $14.7 \text{ V}/\Omega$

d = probe separation, .85m

R_o = probe ice point resistance

T = ambient temperature

 $\beta = 0.004, \circ c^{-1}$

Note: the velocity contribution to ${\rm V_N}^2$ is due to the sensitivity of the microthermal temperature sensors to velocity fluctuations. Given the large current to the sensor (10 ma) this can be a large effect in some circumstances.

(7) Rate of dissipation of turbulent kinetic energy (ϵ): This quantity is obtained from analyzing the fluctuations in velocity in a frequency band determined by filters set at lower (f_{ℓ}) and upper (f_{u}) frequency limits. The velocity fluctuations are sensed by hot tungsten wires (4.5 μ dia.) operated with a constant temperature anemometer bridge (Thermo Systems, Inc.) set for a 50% overheat on the ground. If we

define

$$X = (f_{\ell}^{-2/3} - f_{u}^{-2/3})^{-3/2}$$

$$Y = B (P/1013)^{\frac{1}{2}} (288/(T + 273))^{\frac{1}{4}} (\frac{165-T}{150})$$

then

$$\varepsilon = 619 \text{ U}^{\frac{1}{2}} \text{ X } (\frac{\sqrt{V}}{\text{YG}})^3$$

where

 f_{ℓ} = lower frequency limit, usually 10 Hz

fu - upper frequency limit, 500 Hz

B = hot wire sensitivity, typically 1.0 $V^2/(m/sec)^{\frac{1}{2}}$

P = pressure, mb

T = temperature, °C

U = relative air speed, m/sec

 \overline{V} = mean hot-wire DC level, V (channel 8)

G = gain, typically 1000

Note that the data recorded on channel 9 is essentially the same except f_{ℓ} is set at the <u>higher</u> value of 50 Hz. Thus, the designation of channel 7 as ϵ , lo and channel 9 as ϵ , hi.

(8) Mean hot-wire voltage: This is the mean DC voltage level of the hot-wire system. This quantity is used because the sensitivity of the hot-wire is a function of the air speed, temperature and pressure in a manner that is partly indicated simply in \overline{V} . The characteristics of the hot-wire are expressed by

$$V^2 = V_0^2 + B\sqrt{U}$$

where V_0^2 is typically 2.7 volt² and B is typically 1.0 $V^2/(m/sec)^{+\frac{1}{2}}$ at standard one atmosphere conditions.

- (9) Similar to 7 except f_{ℓ} = 50 Hz. This is the channel actually used for ϵ given in the tables.
- (10) Temperature structure function: DC bridge measurement of C_T using the same probes as 6 (AC system). In this case the current to the sensors was 5 ma. The $C_T^{\ 2}$ calculation is the same as 6, with the

following system parameters

 $V_{N}^{2} = (.0015 \text{ volt})^{2} + \text{velocity contribution}$

 $\alpha = 0.0026$, °c⁻¹

G = gain, typically 100

 $B = 20 V/\Omega$

d = .85 m

 $\beta = 0.004, \, ^{\circ}C^{-1}$

(11) Air temperature: Thermistor mounted just forward of the microwave refractometer cavity.

$$T = -10 V + 0.8$$
, °C

(12) Air refractivity: NAC microwave refractometer. We have calculated N from this device using

$$N = 50 V - N_0$$

with N_0 = 53.5. More accurate values of N can be obtained by correcting for temperature, thermal time constant and air speed effects.

2. Data Acquisition

The data scanning system was controlled by an HP9825 (Hewlett-Packard) desktop computer using an IEEE 488-1975 interface bus (HP-IB). Each scan of all 12 variables required 3.2 seconds and is defined as a <u>line</u> of data. The computer accumulated 50 lines of data, defined as a <u>file</u>, which were recorded on the computer's magnetic tape cassette at 2.7 minute intervals as a split precision string array named R $\{I\}$, where I=1 to 50. The local time corresponding to I=1 was also recorded as a string I, where I = "mm:dd:hh:nn:ss" or month:day:hour:minute:second. The cassette contains two tracks $\{0,1\}$ with 54 files per track for a maximum of nearly five hours of data.

The following short program illustrates the reading and decoding of the raw voltages.

dim T\$[14], R\$[50,48], R 50,12]

ent "track - 0,1", T

ent "file#", F

trk T; 1df F, T\$, R\$

for I = 1 to 50

for J = 1 to 12

stf (R\$[I, 4(J - 1) + 1, 4J]) + R[I,J] next J next I

At this point, R[I,J] contains the voltages read, where I=1 to 50 (line #) and J=1 to 12 (channel #). Note that this process requires the String/Adv Prog. ROM.

C. THEORETICAL FRAMEWORK

1. Surface Layer Scaling

Although this is primarily a data report, a considerable amount of the more advanced stages of analysis is expressed in concepts and quantities developed in atmospheric boundary layer theory. In view of this, we will sketch out those parts of the theory required to at least define the quantities that appear in the analysis. Those interested in a more complete treatment should refer to the AMS Workshop edited by Haugen (1973) or the recent paper by Kaimal, et al. (1976). This theory is usually called Monin-Obukhov Similarity (MOS).

The boundary layer is that part of the atmosphere where friction with and heating by the surface play an important part in the generation of turbulence. Near the surface the turbulence properties can be scaled in terms of the Reynolds stress, τ_0 , and the surface sensible temperature flux, Q_0 , using Monin-Obukhov Similarity, where departures from neutral equilibrium are parameterized by Z/L. The velocity and temperature are scaled by U_\star and T_\star and stability, L,

$$\tau_0 = \rho U_{\star}^2 \tag{1a}$$

$$Q_0 = -u_* T_* \tag{1b}$$

$$L = \frac{T U_{\star}^{2}}{\kappa g T_{V^{\star}}}$$
 (1c)

where ρ is the density of air, Q_0 is the surface sensible temperature flux, T is the absolute temperature, T_V the virtual potential temperature, g the acceleration of gravity, and κ is von Karman's constant (we have used κ = 0.35). T_{V*} is related to the water vapor mixing ratio scaling parameter, q_* ,

by
$$T_{V*} = T_* + 6.1 \times 10^{-4} T q_*$$
 (2)

The mean wind speed (U) and virtual potential temperature can be represented by the following height dependent gradients

$$\partial U/\partial Z = \frac{U_{+}}{\kappa Z} \phi_{m} (\xi) \tag{3a}$$

$$\partial T_{V}/\partial Z = \frac{T_{V^{*}}}{\alpha \kappa Z} \phi_{H} (\xi)$$
 (3b)

where ξ = Z/L, α = 1.35 and $\phi_{\rm m}$ and $\phi_{\rm H}$ are stability correction functions.

The turbulence of the atmosphere manifests itself as fluctuations in wind velocity, temperature, and other properties. In the inertial subrange of locally isotropic turbulence (the so-called "5/3 region") the one-dimensional fourier power spectrum of fluctuations of wavenumber k can be represented as

$$S_{U}(k) = 0.52 e^{2/3} k^{-5/3}$$
 (4a)

$$S_{T}(k) = 0.25 C_{T}^{2} k^{-5/3}$$
 (4b)

where ϵ is the rate of dissipation of turbulent kinetic energe and C_T^2 is the temperature structure function parameter. Near the surface, ϵ and C_T^2 can be scaled by MOS

$$\varepsilon = \frac{U_{*}^{3}}{\kappa Z} f_{\varepsilon} (\xi)$$
 (5a)

$$c_T^2 = T_*^2 Z^{-2/3} f_T(\xi)$$
 (5b)

Methods

The utility of MOS is that, for instance, given T_{\star} and L, one can predict C_{T}^{2} at any height Z within the surface layer. One problem immediately becomes obvious - how does one obtain the scaling parameters? Another major problem - to be discussed later - is the determination of the upper limits of the validity of the surface layer expressions.

We have used two methods of obtaining the scaling parameters for the PC II data which we designate the "turbulence" method and the "bulk" method. The turbulence method is based upon the utilization of Eq. 5 with turbulence data very near the surface (Z/L << 1). In this limit, the $f(\xi) \equiv 1$, permitting a simple calculation of U_{\star} and T_{\star} . From Eq. 1c we can now evaluate L. A few iterations of this process result in self-consistent values for the various parameters.

The bulk method is based upon calculation of the scaling parameters from mean quantities only. Their relationship is obtained by integrating Eq. 3 from the surface to some reference height Z (usually 10 meters)

$$U = \frac{U_{+}}{\kappa} \left(\ln Z/Z_{0} - \psi_{1}(\xi) \right) \tag{6a}$$

$$T_{V} - T_{VO} = \frac{T_{V*}}{\alpha \kappa} \left(\ln Z/Z_{OT} - \psi_{2}(\xi) \right) \tag{6b}$$

where Z_0 and Z_{oT} are the roughness lengths for U and T, T_{VO} is the sea surface virtual potential temperature, and $\Psi(\xi)$ are stability correction functions. Since the details of this method are covered elsewhere (Davidson, et al., 1978 and Fairall, et al., 1978) we shall refrain from elaboration but will point out that U_* and T_* could be calculated from Eq. 6. Note that the atmospheric stability can also be expressed as

$$\xi = Z/L = \frac{\kappa g Z}{T} \frac{[\Delta \theta + .18 \Delta q]}{U^2} \frac{C_{TN}^{\frac{1}{2}}}{C_{DN}} H(\xi)$$
 (7)

where C_{TN} and C_{DN} are neutral stability drag coefficients and

$$H(\xi) = \frac{\left[1 - \kappa^{-1} C_{DN}^{\frac{1}{2}} \psi_{1}(\xi)\right]^{2}}{\left[1 - (\alpha \kappa)^{-1} C_{TN}^{\frac{1}{2}} \psi_{2}(\xi)\right]}$$
(8)

3. Above the Surface Layer

The MOS expressions are not valid throughout the entire boundary layer. Although the upper limits of validity are typically quoted as $Z \lesssim 50$ m, in fact, this limit is very dependent on stability, inversion height,

and probably other factors. It also appears that Eq. 5 can be valid to much greater heights than Eq. 3. This is a vital area of research in marine boundary layer dynamics and was the primary motivation for making the ladder profiles. Presumably this data can form part of a data set that can be used to investigate this problem.

D. DATA COMPARISON

The initial data analysis was conducted using the relationships and calibration factors described in Section II. After the results were output, selected measurements from the aircraft could be compared with surface measurements (courtesy of Calspan on Stage I) or in flight wet-dry bulb measurements. The actual value of these comparisons is contained more in their ability to illustrate confidence levels than in absolute standards since it is not obvious, a priori, which of the measurements is the "correct" one.

Stage I (Calspan) - Aircraft Comparison

For those flights requiring the aircraft to be in the vicinity of Stage I, a fly-by data comparison was arranged. The Calspan people would specifically record readings from their instruments when the low level fly-by occurred. The data was relayed later by telephone. This data is summarized in Table II with appropriate bulk calculations of the MOS scaling parameters (assuming a level height of 27 meters).

Measurements of air temperature, sea surface temperature and friction velocity from Stage I were compared with those of the aircraft (Table III). The sea surface temperatures agree quite well whereas the aircraft air temperatures are systematically about 1°C higher than Calspan's. Given the uncertainty in the aircraft values due to variations in line voltage, one would assume that the Calspan measurements are more accurate (however, one should note the wet-dry bulb comparisons). The aircraft measurements of U_{\star} are obtained directly from the ε data, while the Stage I values are obtained from bulk calculations and are determined primarily by the wind speed.

	<u>ا</u> (آ	-280	- 50	400	110	- 3.8	- 50	165	- 15	1.1
TERS	9* (9/kg)	12	18	08	01	50	18	0	46	57
OF MOS PARAMETERS	, ().)	10	12	.02	40.	31	03	.03	47	61
CULATIONS	U* (m/sec)	.40	.30	.23	.21	.13	.19	.26	.32	.12
WITH BULK CALCULATIONS	U (m/sec)	=	80	7	7	3.5	5.5	80	80	3
I DATA WI	н (%)	99	88	84	95	46	75	96	20	49
CALSPAN STAGE	1 (3.)	22.0	19.2	22.9	23.6	14.4	20.4	22.8	8.0	7.3
TABLE 11. (7 (0°)	22.5	22.7	22.4	22.6	21.8	21.6	22.0	20.5	20.9
TABL	Time	1250	1423	1054	1443	1500	1636	1600	1520	1020
	Date	11/26	12/02	12/04	12/04	12/05	12/06	12/07	12/10	12/11

TABLE III. COMPARISON OF CALSPAN STAGE I DATA WITH AIRCRAFT DATA

חשוב	SI SI	Date Ts Ts SI Air	٧	T IS	T Air	۵	U*	U* Air	•
1/26	22.5	22.4	1		23.2	6.	.40	.40	
12/02	21.7	22.6	6.	18.7	20.3	1.6	.30	.24	1.25
12/04	22.5	22.2	3		23.8	6.	.23	.24	
12/05	21.8	22.8	1.0		16.2	1.8	.13	.24	
12/06	21.6	22.2	9.		21.4	1.0			
12/07	22.0	21.8	2		23.8	1.0	.26	.23	
12/10	20.5	22.1	9.		9.1	1.1	.32	.34	.94
12/11	20.9	21.0	-		9.6	1.3	.12	.28	
Average			.3 + .6			1.2 + .3			+ 06.

٣.

The agreement for U_{\star} is excellent except on 12/05 and 12/11. Since the winds were light and from a direction with possible tower influence, we suspect that the tower wind speeds were slightly low, although there are other possibilities (such as wave influence or inadequacies of the bulk model).

2. Wet-Dry Bulb to Aircraft Comparison

A complete listing of all in-flight wet-dry bulb measurements during PC II with corresponding values from the aircraft platinum temperature sensor and the NAC refractometer is given in Appendix A. Let us define the wet-dry bulb data as follows.

D = dry bulb temperature

e = measured value of water vapor pressure

N = value of N calculated from e

Let us also define the aircraft data as follows:

T = Pt air temperature

N = measured refractivity

e = water vapor calculated from N

The following table summarizes the comparison of these data.

TABLE IV. SUMMARY OF WET-DRY BULB DATA COMPARED WITH AIRCRAFT AIR TEMPERATURE AND REFRACTIVITY VALUES

	T - D, °C	N - N _C	e _c - e, mb
Average	-0.1	3.8	1.0
σ	0.9	3.3	0.8

The immediate conclusion one reaches from these results is that N_0 (Section IIA) should be increased to 57.3. This is consistent with the correction of 3.2 N units that one would expect due to the ram-air effect on the measurements at flight speed (the value of N_0 = 53.5 was determined on the ground).

NOTE: The X and circled X represent Stage II and Stage I respectively. The numbers are the profile number designations.

Figure 1. Locations of Ladder Profiles for PC II

TABLE V. LADDER PROFILE MOS SCALING DATA FOR PC II. ALSO GIVEN ARE THE HEIGHT OF THE INVERSION (OR BOUNDARY LAYER THICKNESS), Z;, AND THE NUMBER OF POINTS, N, IN THE PROFILE

Profile	Date	Time	u*	'₽#	q*	L	Zi	, i
*			(m/s)	(C)	(gm/kg)	(m)	(m)	
1	11/26	1252	0.400	-0.082	-0.16ò	-125	850	14
2	11/26	1436	0.290	-0.095	-0.160	-56	JUU	14
3	12/02	1405	0.240	-0.135	-0.180	-29	230	13
4	12/03	1108	0.290	0.030	0.000	233	2,11	11
5	12/03	1201	0.240	0.015	-0.013	420	60	10
6	12/03	1232	0.180	0.024	-0.009	120	60	9
7	12/03	1339	0.340	0.031	-0.040	403	120	11
8	12/05	1532	0.240	-0.260	-0.410	-15	700	10
9	12/05	1624	0.260	-0.270	-0.400	-16	700	13
10	12/07	1511	0.250	0.015	-0.007	390	7.5	12
11	12/07	1601	0.235	0.025	0.010	171	100	11
12	12/10	1259	0.530	-0.440	0.000	-53	760	10
13	12/10	1324	0.380	-0.350	0.000	-34	760	
14	12/10	1410	0.320	-0.490	-0.490	-15	700	15
15	12/10	1523	U.340	-0.400	-0.470	-17	820	14
16	12/10	1637	0.340	-0.490	-0.500	-15	930	14_
17	12/11	1021	0.280	-0.440	-0.430	-13	700	12
18	12/12	1642	0.280	-0.180	-0.500	-24	800	13
19	12/13	1154	0.190	-0.210	-U.470	-10	600	17
20	12/13	1459	0.170	-0.20u	-0.420	-9	550	14
21	12/13	1721	0.140	-0.120	-0.440	-5	450	17

E. RESULTS

1. <u>Interpretation</u>

The time series printouts (Appendix B) are intended as reasonable representations of the relevant data for each flight. The following are not included:

- (1) Flight, 7 and 10, which were equipment test flights.
- (2) Data from the beginning and end of the flight, which were overland and greatly contaminated with radio traffic.
- (3) Redundant or non-functional instruments.

No attempt has been made to eliminate data affected by RFI since some instruments were relatively uninfluenced. The data most severely affected by RFI were $C_T^{\ 2}$, ε , E, N and e. The presence of RFI is most easily detected by looking for sudden, dramatic (even incredible) changes in these parameters. For instance, on Flight 1 at 1248:19, ε changed from 10⁻⁴ (a reasonable value) to 10^2 (totally unreasonable) while e actually went negative - a sure indication that the pilot was using the radio.

2. Ladder Profiles

The ladder profiles provide a picture of the boundary layer and the regions of validity of the surface layer scaling. The MOS scaling data for each profile are given in Table V. The locations of the profiles are shown in Figure 1 according to profile number. An example of a ladder profile (Figure 2) is shown for illustration and explanation. The left hand part of the graph shows the mean data (virtual potential temperature and dew point), the right hand side shows the turbulence data (C_T^2 and ε). The extreme left hand side is a "blow-up" of the virtual potential temperature on a 1°C scale. The lines on the turbulence graph represent the MOS expressions (Eq. 5) where the values of U_\star and T_\star have been selected to force the MOS expressions to fit the lowest two or three data points. The value of q_\star was obtained simply from $q_\star = -.36$ ($q_s - q$) where q_s is the sea surface value and q is the value at Z = 10 meters. In this example, the boundary layer is approximately 800 meters thick as indicated by the strong peak in C_T^2 and the sharp drop off in the dew point.

The data points plotted are virtual potential temperature (+), dew point (*), c_T^2 (x), and ϵ (o). The solid line is the MOS for c_T^2 and the long-dash line is the MOS expression for ε . The extreme left hand side of the graph shown an expanded scale plot of virtual potential temperature. NOTE:

Figure 2. Profile #1 on 11/26 at 1252 Local Time with L = -125

APPENDICES

PRECEDING PAGE BLANK

APPENDIX A

WET-DRY BULB DATA AND COMPARISON WITH OTHER AIRCRAFT INSTRUMENTS

- Z, altitude
- P, pressure
- W, wet bulb temperature
- D, dry bulb temperature
- e, partial pressure of water vapor
- H, relative humidity
- ${\rm N_{_{\rm C}}}$, resultant calculation of N from e
- T, Rosemount temperature
- N, microwave refractometer value of N
- e, resultant from N

$$N = \frac{77.6 \text{ P}}{(T + 273)} \qquad \frac{3.73 \times 10^5 \text{ e}}{(T + 273)^2}$$

a c	19.2 19.4 17.2 4.6 3.5	19.9 20.8 27.7 28.4 16.9	8.6 1.3 2.1 13.5 14.4
	5 5 7 4	18 2 2 2	2 2 2 3
Z	343 346 322 213 225	355 343 382 382 316	309 250 333 321 315 209
٦°	21.4 23.2 17.1 12.0 15.2	20.2 19.2 23.9 24.8 21.9	15.3 16.1 17.6 21.6 18.8 18.8
×°	321 343 343 314 206 226	350 329 374 373 307	303 248 231 320 315 206
Σ 34	80 75 62 77 22 23	81 18 87 83 56	44 10 51 77
a &	16.9 19.1 18.5 15.2 3.1 3.8	18.8 17.8 1.3 25.7 26.2 14.7	7.3 0.8 1.9 1.1 14.3 1.5
ე	18.3 21.4 23.9 17.2 11.9	20.0 20.0 2.8 23.9 25.0 21.9	15.0 16.9 17.2 21.7 16.4
₃ °	16.1 18.3 18.9 14.7 2.8 5.0	17.8 17.8 -4.7 22.2 22.8 16.1	8.7 4.4 5.0 15.3 13.9 0.8
a ₽	940 988 1007 920 705	1015 945 600 1013 1008 925	1003 910 835 1002 948 729
Z ft	2000 700 120 2500 9500 7000	100 2000 14000 150 150 2500	3000 5000 5000 2000 9000
Time	1237 1247 1306 1329 1344 1445	1424 1446 1527 1122 1234 1259	1650 1706 1716 1605 1654 1713
Time	1235 1245 1303 1328 1342 1443	1421 1445 1523 1120 1232 1256	1648 1701 1714 1601 1651 1710
Date	11/26	12/02	12/05
Fit #	-	∾ ∾ A-2	4 rv

	FIt	Date	Time	Time	7	۵	3	O	Ð	Ξ	≥,	_	z	م ر
	•		start	end	£	æ	ပ္စ	ာ့	£	26	,	ာ့		a
	9	12/07	1450	1451	3500	895	15.6	21.7	14.0	54	596	21.3		
			1453	1455	2000	850	13.9	19.2	12.9	28	283	18.3	290	13.4
			1543	1545	2000	940	18.3	23.2	17.9	63	324	23.3	329	18.9
			1629	1631	2000	946	18.1	23.6	17.2	69	320	23.7	325	18.4
	00	12/10	1423	1426	2000	860	0.3	7.2	2.3	22	251	2.6	249	5.0
			1431	1433	2500	937	-0.3	4.4	3.0	36	279	2.0	287	4.3
A-			1441	1444	1000	066	9.0	9.6	3.1	34	291	5.3	297	4.5
3			1500	1503	100	1025	2.8	8.3	3.7	34	300	8.5	305	5.1
			1600	1603	4000	890	0.3	7.2	2.1	12	250	9.6	257	2.0
	6	12/11	1030	1033	40	1031	3.9	8.9	4.6	41	306	8.6	313	6.2
			1059	1100	2000	829	9.0	10.0	6.0	00	240	9.4	240	1.2
	12	12/13	1215	1219	200	1024	8.3	14.4	6.8	4	307	14.4	307	7.0
			1235	1237	2000	960	3.9	11.1	3.5	56	278	1.1	281	4.1
	13	12/13	1523	1525	250	1000	7.8	13.9	6.5	4	300	14.0	302	7.1

APPENDIX B

FLIGHT DATA TIME SERIES PRINTOUT FOR PC II

This appendix contains flight data time series printout (about 32 second average time) for PC II. Figures B-1 through B-14 illustrate the flight path for the subsequent printout. The following symbols are used for the printouts:

- Alt, altitude
- T, temperature (Pt resistor)
- T_c, Barnes IR sea surface temperature
- N, microwave refractivity
- e, partial pressure of water vapor (from N)
- E, electric field
- Eps, rate of dissipation of turbulent kinetic energy (ε)
- C_T², temperature structure function parameter
- P, atmospheric pressure

NOTE: Numbers give time in Central Standard Time

Figure B-1. Flight 1 Flight Track

26N0V78

FLIGHT#

E Eps CT2/m ⁻ 2/3 mb m ⁻ 2/s ⁻ 3 C ⁻ 2/m ⁻ 2/3 mb m ⁻ 2/s ⁻ 3 C ⁻ 2/m ⁻ 2/3 mb m ⁻ 2/s ⁻ 4 C ⁻ 2/m ⁻ 2/3 mb m ⁻ 2/s ⁻ 4 G ⁻ 4
E EPS 2 3.07E 01 9 4 4 9.90E-04 1 1 1.67E-03 3 1 1.8E-03 1 2 2.06E-04 1 2 3.07E 01 9 3 1.8E-03 1 3 2.06E-03 1 1 1.8E-03 1 3 3.30E 01 2 4 4.8E-02 1 3 3.78E-02 1 3 4.48E-02 6 5 5 6 6 6 6 0 2 6 5 7 6 6 6 0 2 6 6 15 6 0 2 7 2 5 7 6 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 6 1 5 6 0 2 8 7 8 7 8 6 1 5 6 0 2 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
E EPS
VE 4444 LE 0 20 C C C C C C C C C C C C C C C C C
ର୍ଷ୍ୟର୍ଷ୍ୟ ପ୍ରହ୍ୟ ପ
Be 1199 1199 1199 1199 1199 1199 1199 11
Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Cent 23 38 23 38 21 16 22 13 33 38 21 18 22 19 38 22 19 38 22 19 38 22 19 28 22 19 28 22 19 28 22 19 28 22 19 28 22 19 28 22 19 22 1
119. 220. 220. 220. 220. 220. 220. 220. 22
At t t t t t t t t t t t t t t t t t t
Time Value

	-						-																										1
4	-	1008.3					-			-	•		-				•					•				•		•	•				
CT2 C'2/m'2/3	3.49E-03	1.796-03	1.67E-03	2.10E-03	1.92E-03	2.15E-03	9.20E-04	1.17E-03	1.45E-03	1,21E-03	1.42E-03	1.24E-03	1,19E-03	9.65E-04	8.73E-04	6.94E-04	7.35E-04	9.31E-04	8.89E-04	6.98E-04	4.99E-04	7.73E-04	8.51E-04	3.64E-04	3.75E-04	3.61E-04	2.21E-04	6.43E-02	1.08E-01	3.09E-03	2.00E-04	9.60E-05	1.41E-04
Eps m^2/s^3	1.18E-02	5.08E-03	5.51E-03	5.50E-03	4.68E-03	2.45E-03	2.69E-03	3.45E-03	3.69E-03	4.21E-03	2.52E-03	4.46E-03	2.65E-03	2.96E-03	2.29E-03	2.70E-03	3.27E-03	2.64E-03	1.75E-03	1,68E-03	1.28E-03	2.51E-03	1.66E-03	1.526-03	1.52E-03	1.01E-03	3.59E-04	3.30E 02	2,09E 02	7.73E-04	5.61E-04	5.18E-04	7.47E-04
V/m	24	421.5	28	16	28	63	40	12	91	7	53	8	=	0	5	2	16	2	4	60	36	2	3	53	45	35	2	4	25	16	3	50	3
a E		19.71											-	•																			
Z	47.	347.6	46	47	45	44.	45.	4	45.	45	46.	46.	48.	47.	48.	50.	49.	49.	50.	49	48	48.	47.	46.	45.	45	43.	39.	77.	42.	42.	43.	42
Ts Cent		21.03		•						•		•				•		•	•		•	•	•	•		•	•	•	•			•	
-	23.32	23.24	23.21	23.22	23.28	23.06	23.22	23.20	23.19	23.13	22.99	23.12	23.10	22.94	22.99	23.04	23.03	23.16	23.04	22.94	22.96	22.91	22.45	22.23	22.04	22.20	22.24	20.64	20.74	21.41	21.40	21.47	21.50
Alt ft	0.9	11	78	92	06	2	-	121	2	m	9	0	7	3	6	3	0	9	4	9	4	9	0	2	-	3	2	7	9	-	3	-	9
Time h/m/s		1 6								- 3																							
	~	13 1	~	~	~	~	2	2	3	~	2	3	~	~	3	3	~	3	3	~	3	3	~	3	3	~	3	~	~	3	3		

۵	P	5	m	2	3	2	8	-	2	9	8	1	3	3	-	3	a	8	8	0	N	4	2	N	4	9	4	N	N	-	N	0	828.5	8	3
CT2	C'2/m'2/3	.63E-0	.14E-0	.60E-0	.97E-0	.45E-0	.77E-0	.91E-0	.11E-0	.58E-0	.13E-0	.48E-0	.71E-0	.78E-0	.03E-0	.74E-0	. 33E-0	. 53E-0	.11E-0	.68E-0	.92E-0	.53E-0	.10E-0	.61E-0	.19E-0	. 50 E-0	.41E-0	.14E-0	. 93E-0	.60E-0	.29E-0	.31E-0	4 E-	.69E-0	.54E-0
Eps	m^2/s^3	. 20E-0	.136-0	.90E-0	.80E-0	.63E-0	.25E-0	. 27E-0	.82E-0	.19E-0	.06E-0	.57E-0	.34E-0	.33E-0	.98E-0	.81E-0	.51E-0	.49E-0	.84E-0	.99E-0	.75E-0	.55E-0	.65E-0	.29E-0	.19E-0	. 4 3E-0	.36E-0	.10E-0	.69E-0	.14E-U	.61E-0	.60E-0	9.69E-05	.75E-0	.10E-0
ш	m/N	07.	15.	27.	22.	22.	05.	70.	70.	1.	73.	42.	29.	23.	23.	.90	84.	68.	. 69	72.	78.	49.	.66	9	-	. 9	9.	8	5	3.	.9	4.	45.6	9.	4
Ð	æ	9.3	9.5	9.5	9.3	9.4	9.4	9.3	9.2		9.5	8.9	8.4	8.6	8.4	7.4	7.2	7.0	7.1	7.2	7.3	5.3	3,6	2.1	2.6	3.9	0.5	9.8	3.8	3.7	4.5	3	8.38	9.	5
z		41.	41.	42.	41.	41.	40.	37.	37.	38.	38.	34.	30.	31.	30.	24.	22.	21.	21.	22.	23.	12.	03.	96.	97.	04.	86.	80.	96	93.	95.	78.	261.6	51.	43.
Ts	Cent	1.2	1.2	1.3	1.3	1.2	1.3	1.1	1.0	1.2	1.2	1.1	0.9	1.0	1.1	1.0	0.9	7.0	0.6	9.0	6.0	6.0	9.0	9.0	0.8	1.0	0.8	0.7	9.0	0.5	0.5	0.5	20.38	0.2	0.1
-	ŭ	0.6	0.5	8.0	0.7	0.8	0.4	9.6	9.5	8.6	9.7	9.0	8.4	6.5	8.4	7.9	7.2	6.9	7.1	7.1	7.2	7.0	4.9	6.5	7.0	6.8	6.7	6.4	5.8	5.0	4.3	4.2	14.16	3.9	3.6
Alt	¥	9	90	00	01	00	21	54	59	49	51	84	90	90	11	37	58	69	72	89	58	34	11	18	12	10	45	80	14	47	75	15	5553	89	23
Time	h/m/s	3 18 4	3 19 1	3 19 4	3 20 1	3 20 4	3 21 2	3 21 5	3 22 2	3 22 5	3 23 2	3 24 0	3 24 3	3 25 4	3 25 3	3 26 8	3 26 3	3 27 1	3 27 4	3 28 1	3 28 4	3 29 1	3 29 5	3 30 2	3 30 5	3 31 2	3 31 5	3 32 3	3 33 3	3 33 3	3 34 7	3 34 3	13 35 11	3 35 4	3 36 1
																							1												

	1						-			-			1			1			1			1			-			. !							
a e	3	-	8	8	3	0	8	0	3	4	-	5	~	705.1	-	-	~	4	Q	3	2	0	5	2	a	m	2	1	0	3	8	0	3	-	.0
CT2 C'2/m'2/3	.72E	.54E	.36E	.41E	.53E	•	.36E-0		.35E-0	.37E-0	.05E-0	. 10E		3.37E-04	.79E	33E	.49E	•	. 09 E	.70E	.44E-0	-23E-0	. 19E-0	.61E	.17E-U		.84E-0	-86E	•	•		.97E-0		.49E-0	5
Eps m^2/s^3	21E-0	.18E-0	40E-0	60E-0	.05E-0	.46E-0	, 22E-0	.00E-0	.15E-0	35E-0	96E-0	68E-0	07E-U	3.68E-04	,18E-0	.84E-0	.54E	.61E	88 F	.87E	.61E	.16E	٦.	.16E	.09E	.19E	.97E	30E	. 60E	.32E	.98E	.57E	.08E	.62E	61E
V/m	3	9	4	N	-	3	3	11.6	3	5	7.2	1.1	8.8	7.3	-	-	14.6	~	0	3	0	-	12.0	2	5	3	-	8.4	6.3	5.5	4.2	5.1	5.5	4.9	5.0
۰ę	4.06	5.49	5.61	5.47	3.90	3,63	3.64	3.87	4.29	4.25	4.68	4.75	4.69	4.45	4.12	4.01	4.11	4.19	4.18	3.02	3.95	3.91	4.00	-0.64	4.13	4.09	4.30	4.06	4.08	3.82	3.79	3.74	3.74	3.60	-0.00
z	234.3	238.5	237.0	233.9	223.7	220.1	217.3	216.0	215.8	213.7	213.9	213.6	212.9	212.4	210.2	207.7	206.1	204.7	203.1	196.9	199.7	198.4	197.9	174.9	195.8	194.2	193.4	190.5	188.9	186.1	184.7	182.9	181.9	180.2	161.1
٦ ع د	0.03	0.04	0.12	9.83	9.70	9.74	9.58	9.48	9.40	9.43	9.57	18.6	9.95	19.87	9.94	9.88	9.68	9.41	9.29	69.9	9.29	9.61	7.67	8.59	0.83	69.0	9.34	9.71	0.52	9.88	0.54	09.0	0.37	90.0	8.40
T Cent	3.7	3.0	2.5	2.3	2.8	2.8	2.4	2.7	2.7	2.0	1.9	2.1	2.0	11.81	1.5	4.0	9.6	~	30	-		30	.5	20	٦.	4.	9.	7	5	0.	9	30	4.	0	5
f t	6570	6359	7255	7599	7932	8239	8658	8949	9218	9266	9821	9686	1966	1066	10031	10429	10776	11092	11377	11555	11825	12090	12246	12456	12828	13115	13474	13791	14119	14413	14632	14972	15181	15387	15611
Time 1/m/s	36	37	37	38	38	39	39	40	41	41	42	42	43	43 42	44	44	45	45	46	46	47	47	48	49	43	20	20	21	21	25	52	53	23	54	54
-	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13

THE BDM CORPORATION

	α		-	. 5	6.	0	7.	.2	17	6.	.5	.2	.5	.7	8	٦.	4.	٦.	.5	4.	.5	.5	6.	4.	1	8	.5	0.	8	.3	.2	.2	8	.5	.7	0
_ €	2,66		755	250	546	541	535	528	521	516	511	506	501	4 96	490	486	481	475	471	468	465	463	4 54	4 50	446	441	437	433	428	425	422	422	419	422	424	427
C'2/m'2/3	1 386-02																																		3.25E-04	
Eps m^2/s^3	405 0		TOE	39E-0	52E-0	01E-0	.74E-0	82E-0	.31E-0	038-0	06E-0	56E-0	.27E-0	.9 5E-U	27E-0	78E-0	.34E-0	. 26 E-0	.35E-0	.21E-0	.29E 0	45E 0	.22E-0	.05E-0	.46E-0	.84E-0	.12E-0	70E-0	.38E-0	. 0 5E -0	. 53E -0	.15E 0	.95E-0	.16E-0	1.81E-04	JAP-0
٨"		1	0	2	œ	ó	\neg	$\overline{}$	-	10.1	9	6.8	5.0	~	-3.3	~	0	7.9	7.0	7.1	6.4	8.9	8.5	11.0	5.7	1.2	0.6	7.5	9.9	6.4	∞	m	0	31	-0.3	~
e e	9		4	٦.	0	3	2	٦.	7	9		7		9	9	S	4	~		~	4	41	٦.	٠.	7	٠.	8					0	u i	~	3.16	-
2	ď	1 6	.70	73.	72.	70.	. 69	67.	. 99	68.	67.	99	65.	63.	62.	61.	59.	57.	57.	44.	56.	18.	57.	56.	56.	54.	52.	50.	49.	49.	48.	27.	46.	46.	145.4	7 5
Cent	0			2.0	1.6	0.7	9.6	9.6	8	9.6	4.0	0.1	6.0	1.4	0.1	0.7	0.9	1.0	1.7	9.3	9.8	8.3	9.8	8.7	8.8	6.8	9.3	9.3	3.2	9.1	9.1	9.9	4.7	9.9	19.87	,
-	3			~	4	2.9	4	1	~	S	7	5.7	6.2	3	7.7	7	8.7	.5	8	10.6	1.2	1.8	2.0	2.5	13.0	3.1	3.6	4.0	4.7	5.2	5.6	5.7	5.9	15.5	-15.14	7
t t			ğ	3	8	15	3	35	7	0	9	2	55	39	5	3	27	39	8	34	6	50	90	30	53	17	7	97	40	69	36	36	20	35	22727	V
h/m/s		1	3 55 5	3 56 2	3 57 0	3 57 3	3 58 4	3 58 3	3 59 8	3 59 4	4 0 1	4 0 4	4 1	4 1 4	4 2 1	4 2 5	4 3 2	4 3 5	4 4 2	4 4 5	4 5 3	4 6 3	4 6 3	477	4 7 3	48 1	484	4 9 1	4 9 4	4 10 1	4 10 5	4 11 2	4 11 5	4 12 2	14 12 58	112 2

	-			-			-			1			-			1			-			-			-									
a a	-			-			-		492.0	-			-			-	•		-			-			•			•	-			642.0	650.2	660.1
C.2/m.2/3	1.26E-03		25		•	•			1.66E-04	9	•	•	•			9	.24E-0	38-0	1.61E-04	3E-0	6.12E-04	5E-0	2.28 E-04	1.93E-04	2.25E-04	2.06E-04	2.00E-04	1.30E-04	1.09E-04	•	9	2.38E-04		5
Eps m^2/s^3	3.96E-02	.70E-0	.00E-0	.72E-0	1.45E-03	.02E-0	.00E-0	.16E-0	1.20E-04	.85E	396	.701	. 47E	.124	160.	.421	2.56E-03	.73E	. 71E	.32E	.15E	. 10E	. 4 3E	.6 7E	. 10E	.73E	.42E	. 64E	. 54E	. 4 1E	.54	32E	9	5
N/m	2	-13.4	3				-1.6		-2.6		-1.1	1.8	5.5	3.5	-1.4	-6.4	-9.1	-8.5		-8.5	-10.1	6.6-	1.0	4.6	-		3.6	3.2	-0.7	-6.5	-8.2	6.6-		
e e	3.05	2.86	2.61	2.54	2.26	1.98	1.37	1.19	1.16	1.29	1.45	1.41	1.33	1.20	0.99	0.63	0.47	0.50	0.70	0.51	0.76	1.04	1.05	1.00	0.97	0.95	0.96	0.99	1.06	1.33	1.41	1.40	1.33	1 17
=	146.7	148.1	148.9	149.9	149.7	-	4	4	149.2	10	153.4	10	2	10	·n	155.8	.90	2	0	19	10	10	10	169.9	-	-	173.9			180.4	182.2	183.9		
Cent IS	10.02	19.57	20.26	20.43	20.53	20.54	20.56	20.57	20.52	20.34	20.59	19.75	20.34	20.13	20.92	20.93	20.49	19.83	21.08	21.16	21.17	21.33	21.28	21.28	21.35	21.45	21.22			1.	21.54	9		20 00
-	3.7	11.8	0.5	10.1	9.6	9.2	7.9	7	-6.46	20	7	7	7	4	u,	3		90.0-	-0.04		2	4		3.12	4.07	9	S	5.94	7.	4	-	7.74	8.43	~
t t	220	153	860	990	041	015	975	942	19133	884	854	819	790	759	726	107	671	646	617	591	560	529	495	466	433	408	377	353	323	295	268	236	203	164
h/m/s	4	4	5 5	5 3	6 9	6 4	7	7 4	18 17	8 4	9 2	9 5	0 2	0 5	1 2	2 1	2 3	3 6	3 3	4 1	4 4	5 1	5 4	9	6 5	7 2	7 5	8 2	8	9 3	0	0	7	_
- >	4	4	4	4	4	4	4	4	14 1	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	_

THE BDM CORPORATION

				-			-			1			-						1			-			.			-						1		
<u>.</u> 4	7	8	-	3	2.	0	9	7.	5	4	7.	1.	1	.9	0	5	2	5	-	786.6	2	3	8	1	9	5	3	2	2	779.8	N	0	30	10	774.9	774.8
CT2 C'2/m'2/3	4E-	3,13E-03	-30	13E-0	.77E	17E	.47E	.71E-0	3.61E-05	.62E-0	.88E-U	65E	359	.54E	7.26E-04	.56E	. 21E	. 8 9E	12E	8.11E-05	. 86 E	.67E	.75E	. 00E	.64E	. 2 3E	.95E	.50E	.538	. 88E	.76E	. 86 E	.88E	.85E	SE	.57E
Eps m ² /s ³	. 51E-0	.54E 0	.18E 0	.23E D	.73E-0	.63E-0	.82E-0	.10E-0	.37E-0	.04E-0	.54E-0	.22E-0	.30E-U	.80E-0	. 19E-0	.66E-U	.01E-0	.43E-0	.30E-0	1.24E-05	.45E 0	.51e-u	.21E-0	.19E-U	.6 UE-U	.918-0	. 08E-0	.10E-0	.00E-0	.08E-0	.06E-U	.15E-0	.15E-0	.28E-0	E-0	.19E-0
E V/m						7	5	5	4	.9	. 9	. 9	1.	8	7.	.9	8	5	0	23.9	4	. 9	8	5	.0	3	1	2.	7	m.	2	9	. 9	9	0	3.
• ૄ	1.31	1.42	-2.35	2.14	2.12	1.83	1.78	1.74	1.83	2.00	2.24	2.49	2.57	1.01	2.79	3.29	3.48	3.73	3.67	5.05	-0.46	3.20	3.31	3.47	3.53	3.58	3.05	3.91	3.83	4.16	4.41	4.23	3.64	3.45	3.43	3.45
z																				235.0																
t Ts	0.	4.	4		9.	.5	2	2	8	4	3.	9.	1.	.2	4	7	.3		7.	22.21	7	3	2.	0.	7.	7.	7.	6.	7.	0.	3	נים	.7	.0		
T Cent	8	0.1	1.0	1.3	1.3	2.5	2.5	3.9	4.2	3.8	3.2	3.1	3.3	3.7	4.1	4.1	4.5	4.5	5.2	14.49	4.1	5.7	5.2	5.1	5.0	4.6	4.6	4.7	5.1	4.4	4.0	4.8	5.3	5.2	5.0	0.0
¥ t	12	90	043	032	00	696	47	90	17	45	3	33	20	02	87	70	56	36	17	9969	87	10	24	29	32	35	44	45	36	20	12	18	25	34	37	37
Time h/m/s	4 32	4 32 4	4 33 1	4 33 4	4 34 1	4 34 4	4 35 2	4 35 5	4 36 2	4 36 5	4 37 2	4 38 1	4 38 3	4 39 5	4 39 3	4 40 9	4 40 4	4 41 1	4 41 4	4 42 16	4 42 4	4 43 2	4 43 5	4 44 2	4 44 5	4 45 2	4 46 0	4 46 3	4 47 4	4 47 3	4 48 8	4 48 4	4 49 1	4 49 4	4 50	4 50 4
	-	-	-	-	_	7	-	7	7	-	-	-	-	7	7	-	-	7	-	-	7	-	7	-	-	7	-	-	-	7	-	-	-	7	-	-

		_				_		_			_	_	_			~	_																_	
a	178.1	3	9	9	780.5	2	9	9	9	9	3	0	7	3	9	9	9	3	-		0	3	4	0	9	3	4	2	-	3	9	3	0	0
C'2/m'2/3	3	.23E-0	.43E	. 34 E	4 E-0	.01E	.29E	. 04 E	2.45E-04	.8 3E					.93E	2.26E-04		. 00E-0	. 36E-0		.36E-0	.37E-0	.12E-0	9.66E-05	.02E-0	.09E-0	.07E-0	.57E-0	. 43E-0	.58E-0	.86E-0	•	.30	36
m^2/s^3	.16E-	-380.	.06E-	.14E-	1.18E-05	. 52E-	.29E=	.26E-	. 51E	.72E	. 23E-	.02E	.61E	-71E-	.14E-	.78E-	-380.	.77E-	.65E-	-38E-	-36E-	.07E-	-44E-	-360.	.15E-	-30L-	.26E-	.31E-	. 58 E-	-87E-	. 28 E-	.30E-	.93E-	150
N/m	5	. 9	. 9	5	31.3	1.	1	3.	3.	1.	5.	4.	-	5	3.	3.	7.	0	5.	7	0	1.	-	0	5	3	0	4.	1.	. 9	7.	8	1	
e e	3.72	.5	8	9.	3.82	4.	4.	4.		7	4.	9.	3	4	9.	4	.7	9.	4.	1	0.		۳.	9.	9.	2	2	7.	.2	0.	.5		3	
•	.57	25.	27.	25.	226.9	24.	23.	24.	07.	58.	23.	93.	45.	37.	51.	62.	17.	71.	.69	71.	73.	26.	44.	88.	91.	95.	00.	96.	02.	17.	11.	24.	17	
:	9.7	2.5	2.3	4.7	22.45	7.4	4.7	2.4	1.8	8.7	4.7	0.1	4.4	2.4	1.7	7.8	7.8	5.0	2.5	7.6	7.7	7.8	3.0	3.3	3.0	3.4	3.3	3.1	3.7	4.0	4.2	3.9	4.0	
Cent	3	S	3	5	15.47	5	:0	S	5	5	5	5	5	3	5	4	4	4	4	4	4	3	3	1	-	1	-	-	3	Ø	2	8	V	
: #	24	N	19	22	7178	21	31	33	33	31	41	19	92	73	30	3	52	51	59	58	49	90	69	19	69	48	43	48	7.7	84	16	89	64	
s/m/s					53 27																													
- F	4	4	4	4	14	4	4	4	4	4	4	4	4	4	4	4	4	2	2	2	2	2	3	2	2	2	2	2	2	S	2	2	2	

	1	ت	Cent		æ	W/m	m-2/s-3	C'2/m'2/3	e
26	2072	0.5	3.	2,			9	5.34E-04	•
58	1849	21.08	23.79	328.8	18.36	255.2	8E-0	.68E	947.0
	1573	1.9	3.8	32.			. 34E	9E	
	1589	1.6	3.8	34.		i	.6 d E-0	7	-
	1591	1.5	3.7	33.		~	.93E-0	.99E	
	1635	1.3	3.6	35.	•	-	.0 3E-	07E	
	1404	2.2	3.5	35.	•	~	. 06E-0	.55E	
	1132	3.1	3.6	36.		~	.83E-0		
	05	3.2	3.5	35.		-	.196-0		
	0.7	3.0	3.4	38.		_:	99E-U	2	
	1126	2.8	3.2	37.		~	.86E-0		
	10	2.8	3.2	37.		-	38	2.71E-04	
	16	3.6	3.4	38		*	.27E-0	7	•
	881	3.6	3.4	39.		~	.81E-0		
	881	3.5	3.2	10.		~	.11E-0		
	889	3.4	3.2	39.		-	13E-0	.66E	
	689	4.3	3.2	10.		-		5.55E-04	
	551	4.6	3.3	13.		7	.42E-0	. 21E	
	584	4.4	3.1	13.		-	. U2E-U	.70E	-
	630	4.2	2.9	13.			.09E-0	.14E	
	421	5.0	3.1	17.			. 27E-0		986
	211	5.5	3.4	19		-	.49E-0	.30E-0	
	450	8.	3.3	4.			7	5.63E-04	
	419	6.4	3.2	13.		-	.94E-0	9.01E-04	
	432	6.1	7.	15.		~:	91E-U	7.30E-04	-
	432	8.4	3.2	5.		-	36E-0		
	334	5.2	3.2	. 9			43E-0	5.91E-04	
	322	5.2	3.2	0		-	10E-0		
	347	5.0	3.2	8			, 20E-0		
	287	5.3	3.2	17.		-	62E-0	2	0
	224	5.5	3.2	.91		:	17E-0	•	1003.
	231	3.4	7	5			66E-0	6	1002.
	210	5.5	3.1	8		-	40E-0	. 14	3.
	213	5.4	3.0	7		:	17E-0	•	
	172	5.6	3.1	.7	-	-	40E-0	.52	4
28 4	172	5.5	1.1	7.		-	.27	E	1004.9
	107		11	•			4		

h/m/s		#	ප -	Cent		ę	N/m	m-2/s-3	C'2/m'2/3	. 2
5 2	1	20	5.4	3.0	25		11.	. 23E-0	2.87E-03	4
15 29	39	184	25,35	23.06	352.9	21.95	378.6	3.41E-03	8 E-0	1004.5
5 3	11	8	5.3	3.0	53		62.	.00E-0	.82E	4.
5 3	43	0	5.4	3.0	53		33.	.31E=0	.11E-0	5
5 3	15	0	5.3	3.0	54		04.	.86E-0	.11E-0	2
5 3	47	0	5.3	5.7	53		54.	.01E-0	.12E-0	1005.2
53	-16	5	5.3	5.9	52		22.	.37E-0	4.00E-03	1005
5 3	51	4	5.4	6.7	53		99.	.01E-0	5.82E-03	1005.
5 3	23	4	5.3	5.9	52	•	23.	.48E-0	4.96E-03	1005.
5 3	55	-	5.3	4.9	54		16	.03E-0	6.22E-U3	1005.
5 3	97	3	5.3	3.0	54		70.	.13E-0	6.96E-03	1006.
5 3	58	N	5.4	3.1	55		14.	.52E-0	9.78E-03	1006.
5 3	30	-	5.4	3.5	56		.09	15E-0	1.418-02	1006
5 3	7	-	5.5	3.1	54		84.	.42E-0	1.35E-02	1006.
5 3	34	-	5.5	3.2	55		58.	.97E-0	1.19E-02	1007.
5 3	9	N	5.4	3.1	54		19.	.04E-0	1.47E-02	1006
5 3	38	0	5.1	3.1	49		99.	.0 SE-0	4.01E-03	1003.
5 3	10	-	5.3	3.3	48		22.	.77E-0	2.74E-03	1003.
5 3	42	N	5.2	3.2	46		60.	.44E-0	2.04E-03	1003
5 3	14	-	5.3	3.2	53		45.	.93E-0	3.5yE-03	1003.
5 3	46	7	5.5	3.2	53		89.	.06E-0	2.02E-03	1004.
5 4	18	0	0.9	3.5	50		48.	.93E-0	2,38E-U3	1003
5 4	20	0	6.2	3.2	51		93.	.86E-0	2.14E-03	1003.
5 4	22	-	6.1	3.3	20		92.	.30E-0	2.49E-03	1003.
5 4	54	O	5.6	3.3	50		81.	.14E-0	2.44E-03	1003.
4	25	-	5.4	3.3	49		80.	.66E-0	2.63E-03	1003
5 4	21	4	5.5	3.1	25		04.	.48E-0	3.08E-03	1002.
5 4	29	0	4.8	3.0	52		61.	. 27E-U	1.59E-03	1000
5 4	1	3	4.9	3.0	52		74.	.56E-0	1.98E-03	1000.
5 4	33	-	4.9	3.1	49		47.	. 26E-0	8.18E-04	1001
5 4	2	3	6.4	3.1	52		90.	.44E-0	3.01E-03	1000
5 4	37	n	4.1	3.1	49		53.	.98E-0	9.21E-04	993
5 4	6	m	4.1	3.1	47		29.	.64E-0	.77	
5 4	41	-	4.3	3.3	49		39.	.14E-0	.20	m
5 4	13	N	4.3	3.4	46		03.	.25E	.44	992.6
5 4	45	01	2.7	3,3	41		72.	.09E-0	.60	
5 4	17	10	1.5	4.8	37		52.	0	4	
5 4	49	98	0.1	2.5	42		23.	.61E-0	.63	
2		-	100							

				1			1				1			1			-			1			1			-			1			1			-	
~ 2	918.0	902.9			•	17.	34	52.	974.2	95.	06.	1007.9	08		7		•			9	7.	7.	1	1006.7	è	3	5		4	1005.0	004.	005.	1006.7	1003.1	1004.6	1005.3
CT2 C'2/m'2/3		9.76E-04		9	.98E	2		3.31E-04	.18E-0	2.80E-04	2.35E-03	3.63E-03	4.02E-03	4.66E-03	5.41E-03	3.80E-03	.64E-0	.68E-0		128-0	.49E-0	•	.88E-0	2.19E-03	.68E-0	.09E-U	•	.59E-U	.57E-U	.67E-U	.53E-0	.41E-0	.53E-U	1.986-03	.84E-0	.45E-0
Eps m ⁻ 2/s ⁻³	.46E-0	.05E-	. 22E-0	29E-0	.98E-0	•	.37E=0	-	2.67E-04	.50E-0	.88E-0	.08E-0	. 24E-0	.36E-0	.66E-U	.61E-0	.50E-0	.38E-0	.84E-0	.938-0	.78E-U	2E-0	.89E-0		.41E-0	.11E-0	44E-0	.40E-0	.76E=0	.92E-0	.92E-0	.20E-0	.53E-0	E-0	E-0	78E-0
V/m	200.5	106.4			15.	75.	32.	37.	237.2	.89	70.	21.	87.	85.	83.	92.	65.	91	53.	63.	78.	71.	59.	394.9	43.	24.	93.	9	64.	513.3	3	9	.7	-146.3		
e e	7.8	2.8	0.4	3.1	3.8	7.5	4.6	0.2	20.24	9.0	1.8	2.1	2.0	9.1	2.1	1.8	1.3	1.9	1.8	2.0	2.0	1.9	1.6	1.8	1.4	1.3	1.9	1.7	1.4	1.0	1.7	1.0	1.4	21.45-	L. 4	-
z	3	7	2	5	1.	-	7	8	341.9	8	4	. 9	. 9	3	. 9	5	3	5	5	i		5	4	5	3.	3	9	4.	3.	2	0	7	4.	3.	3	5
Ts Tt																																	7.	21.07	1.1	U. 9
T Cent			•		•	•			22.58	•		•			•	•	•	•	•		•	•	•			•	•	•		•	•	•	•			•
Alt	7.1	18	57	19	18	74	21	69	1050	44	-	8	19	78	89	89	71	87	66	-	7	0	-	120	4	2	4	4	-	9	8	· n	2	7	2	9
Time h/m/s	5 49 5	5 50	5 50 5	5 51 2	5 52 0	5 52 3	5 53 4	5.53 3	5 54 8	5 54 4	5 55 1	5 55 4	5 56 1	5 56 4	5 57 2	5 57 5	5 58 2	5 58 5	5 59 2	0 0 9	6 0 3	6 1 3	6 1 3	6 2	6 2 3	6 3 1	0 3 4	6 4 1	6 4 4	6 5 1	6 5 5	9 9	9 9 9	7 19	6 7 5	8 3
	_	' -	-	7	7	7	7	1	7	7	7	7	_	7	7	_	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	-

NOTE: Numbers give time in Central Standard Time

Figure B-2. Flight 2 Flight Track

FLIGHT#

a qu	8.7		7.7	8	8.1	8	7	7.	7.	7.	7.5	7.5	7	9	.9	.0	4.	4.7	2	. 9	1.	7	7.6	7.	4	.9	9	9		5.6	5.1	5.7		5.4	4.8	
2/3	04	10	-02 101		-02 101		1	-02 101				_		101	101	101		-02 101	1	101	-03 101	101	-02 101	-03 101	-03 101	3 10	3 10	3	-03 101	-03 101	03 101	03	03	~	03	
CT2 C^2/m^2/3	1 1	.55E	.12E	.02E	.07E	.26E	.96 L	.96E	. 32E	.07E	.65E	2.25E-	35E	.65E	-	O1E	.51E	2.15E-	.27E	3.158-	. 26E	. 00E	1.11E-	.86E	4 . 92E-	.92E	87E	41E	.31E	4.40E-		.14E-	. 28 E-	1.81E-U		
Eps m^2/s^3	. 37E-U	35E	.71E-0	. 01E-0	. 21E-0	.35E-0	7	.97E-U	.38E-0	. 39E-0	JE-0	.25E-0	.22E-0	.42E-0	.06E-0	.24E-0	.18E-0	. 78E-U	.99E-0	.98€-0	. 55E-0	. 70E-0	~	.78E-U	.52E-U	938-0	.12E-0	.36E-U	108-0	.90E-0	.30E-U	0-	158-0	Lag-u	53E-0	1
E V/m	8-109.	3-112.	4-113.	9-113.	6-114.	3-114.	2-114.	-113.	-114.	4-114.	5-114.	-114.	-114.	-114.	5-114.	7-114.	2-113.	-113.	-113.	-114.	2-115.	-114.	1-1	3-114.	6-114.	7-114.	21-114.7	-114.	29-115.0	16-113.8	4-113.4	11-113.4	6-113.8	9-114.0	14.8	
× e €	1.6 19.7	4 20	0	19.	.8 19.9	20.	1	20.	0 20.	0 20.	20.	20.	20.	•	19	19	19.	3		8	3.		9	9.61 6.	4 19.9	4 19.		6 20.	5 20.	3 20.	e. el 6.	.4 20.0	19.7	8.21 7.		
Ts	35	32 356	35	35	7 355	4 35	35	55	1 357	4 35	355	56	355	354	354	353	352	51	1 3	~	3	35	9 35	6 3	2 35	355	2 35	455 0	356	355	~	355	5 35	50 354	3	
T Cent	21.	5 21.	5 21.	6 21.	1 21.	3 21.	1 21.	2 21.	0 21.	6 21.	4 21.	3 21.	2 21.	3 21.	5 21.	1 21.	5 21.	21.	4 21.	1 21.	4	9	1 21.	1 21.	8 21.	6 21.	1 21.	0 21.	2 21.	7	7 21.	2:	0 21.	5 21.	5 21.	
±	7 19.4							6 20.3	20.	20.	20.		20.	20.	20.	20.	20			20.		20.		20.	20.	20.	70.	20.	20.	20.			;	3 20.2	;	
44	56	1 11	1		3		7	2															67 6								א	5 7	ā	1 7	7	, ,
Time h/m/s		5 37																					16 43													
	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	*

B-16

				•		243	710	
N/m/s	=		Cent		m/A qu	m.2/s.3	C 2/m 2/3	2
16	171			54.	11-44.	a	2.44E-03	
48	16	20.32	21.21		55	3.19E-0	?	1014.6
26	1			51.	. 27-113.	6.84E	.05E	1013.6
2	7			52.	.43-114.	2.02E-0	.21E-0	1013.9
24	1			51.	. 26-114.	1.71E-0	.01E-0	~
99	12			51.	.30-114.	1.33E-0	1.24E-03	1013.7
28	16			50.	27-115	1.365-0	7.04E-04	~
0	24			49.	.11-113	1.06E-0	.27E-0	1009.4
32	29			50.	.14-111	1.66E-0	7.378-04	1007.8
-	27		•	50.	.26-111	1.546-0	7.43E-04	1008.3
36	28			50.	19.28-111.0	1.55E-0	5.03E-04	1008.1
8	27		•	51.	19.43-111.0	1.94E-0	4	1008.4
40	377	19.43	21.27	52.	19.63-109.9	-	96 E-U	1004.7
12	49		21.25	51.	19.67-107.6	1.46E-0		1000.
44	48		21.43	52.	19.77-107.9	1.11E-0	.19E-0	1001.0
16	48		21.48	52.	19.77-107.0	1.01E-0		000
48	47		21,54	52.	19.02-107.4	1.03E-0	.08E-U	1001
20	54	5	21.38	53.	20.11-107.1	1.32E-0		998.
5	73		21.20	49.	19.67-105.4	.96E-0	. 80E-0	-
24	75		21,38	48.	19.54-107.0	. 86 E-0	.76E-0	-
5	74	•	21.51	48.	19.63-108.4	2.33E-0	.43E-0	991.8
20	75	7	21.46	48.	19.46-107.3	1.538-0	.58E-0	991.
0	78	0.	21.42	48.	49-107	1.83E-0	.98E-0	.066
3	96	2	21.17	48.	.41-113	6.56E-U	.33E-U	3
3	98	1.	21.16	46.	.97-113	5.32E-0	.10E-0	983.1
35	104	3	21,10	42.	.27-114	2.42E-0	. 24E-0	981.0
1	66	.5	21.16	47.	.23-115	0.64E-0	.70E-0	982.8
35	100	. 2	21.19	45.	.69-113	1.51E-0	.53E-0	N
7	108	0.0	21.07	43.	. 5U-112	8.37E-0	. 25E-0	3
4	136	0.0	20.80	46.	.63-112	4.98E-0	.27E-0	0
15	152	0.1	20.73	45.	.87-113	2.86E-U	.33E-0	4
4		0.3	20.91	45.	.86-114	2. 22E-0	. 89E-0	965.3
13	14	20.40	21.08	45.	.83-11	3.21E-0	.36	-
51		19.78	21.09	45.	.62-111	2.96E-U	.19E-0	960.5
7	14		21.18	46.	.57-108	4.50E-U	. 31E-0	0
5	16							

Mark
1,000
Number N
h/m/s ft cent is m
h/m/s ft Cent 4 3 27 1896 19.43 20.95 344. 4 43 27 1896 19.42 20.72 343. 4 44 31 2112 19.42 20.75 343. 4 45 3 2093 19.29 20.75 343. 4 46 3 20093 19.29 20.75 342. 4 46 3 20066 19.19 21 02 342. 4 46 3 20066 19.19 21 02 342. 4 47 11 2329 18.85 20.75 338. 4 48 47 2539 18.65 20.75 338. 4 48 47 2539 18.65 20.70 335. 4 48 47 2539 18.65 20.75 338. 4 50 23 2786 18.86 20.75 338. 4 50 23 2786 18.96 20.05 334. 4 51 27 3039 17.96 20.12 328. 4 52 31 2968 18.10 20.29 328. 4 51 27 3039 17.96 20.12 328. 4 52 31 2968 18.10 20.29 328. 4 53 3 3045 18.16 20.16 30.36 328. 4 53 3 3 463 17.56 19.93 329. 4 54 7 3 3089 18.05 20.13 36.36 328. 4 55 11 3798 18.10 20.26 334. 4 55 13 35 2982 18.44 20.26 33. 4 55 13 35 2982 18.44 30.36 329. 4 55 13 35 2982 18.44 30.36 329. 4 55 13 37 14.40 14.55 298. 4 55 23 1 14.40 14.22 15.42 293. 4 55 28 24 14.40 14.22 15.42 293. 4 59 26 5317 14.37 10.29 326. 5 5 5 6 6 18 13.54 15.00 30. 5 6
h/m/s h/
4 43 27 1896 19.43 4 43 27 1896 19.43 4 44 31 2112 19.42 4 45 35 2093 19.29 4 46 39 2066 19.19 4 46 39 2066 19.19 4 47 11 2329 18.85 4 47 43 2534 18.66 4 48 15 2521 18.69 4 48 47 2519 18.72 4 48 47 2519 18.72 4 50 23 2786 18.39 4 50 23 2786 18.39 4 51 27 3039 17.96 4 51 27 3039 17.96 4 51 27 3039 17.96 4 51 27 3039 17.96 4 52 31 2968 18.10 4 54 39 3463 17.16 5 5 43 3463 17.14 5 5 43 4180 16.68 4 56 47 4821 15.20 4 56 47 4821 15.20 4 56 47 4821 15.20 4 57 51 5070 14.70 4 58 54 5337 14.40 4 59 58 5614 13.54 5 1 3 6226 13.08 5 1 3 6226 13.08 5 1 3 6226 13.08
h/m/s 4 43 27 189 4 44 31 27 189 4 44 31 27 189 4 45 35 199 4 46 39 206 4 47 11 232 4 48 47 251 4 49 51 27 4 49 51 27 4 50 23 278 4 51 27 303 4 52 31 296 4 54 39 346 5 6 47 482 5 6 15 482 6 6 47 482 6 6 47 682 7 8 8 54 8 682 7 8 8 54 8 682 8 8 54 8 58 8 612 8 8 6 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4444444444444444444444444444

		-			1			1			1			-			1			1			1			-			1		
~ €	800.4	790.0	786.3	84.	7	•	0		755.5	0.90.		744.9	735.9	727.0	717.5	710.0	701.8	7007	700.2	7.007	6.669	692.0		676.9	0.609		650.0			644.0	4
CT2 C^2/m^2/3	S	10	6.74E-03	4.06E-03	1.26 E-02	.52E-U	.16E-0	0-388°	1.20E-03	.52E-0	.278-0	. 35E-0	.102-0	53E-U	.03E-0	.39E-0	0-3E9	1.07E-02	.86E-0	.87E-U	.238-0	4.65E-03	.55E-0		.75E-J	151E-U	.23E-0	. 81E-0	54E-0	•	0-30
Eps m^2/s^3	•	•		.75E-0	.58E-0	.57E-0	•	.40E-0	. 59E-0	.81E-U	.14E-0	•	.32E-0	.138-0	.45E-U		.10E-0	2.56E-U4	.01E-0	.94E-0	-6 9E-	•	.75E	6.60E-04	.038-0	. 37E=0		.30E-0	.71E-0	0-	.66E-0
V/m	~	V	9	5	a	6.99-	62	3	9	4	0	52	0	~	-37.4	3	-	-41.1	-44.5	-44.1	9	-46.4	6.06-	-46.2		'n			5	-42.8	•
• e	13.08								11.43									4.76	•					2.73						•	•
Z	0	3	3	3	-	3	9	-	0	-	N	5	7	27	9	4	2	216.7	2	3	-	4	Q	2	11	25		94	46	73	193.1
Ts Cent			~	0	4	13.57	0	~	10.94	9.88	10.86	7.43	~	9	2	0	7	,		3.2	5.4		3.4	4.1	9.	7	9.	7	3	6.45	. 2
-	12.84	11.95	11.74	11.40	11.69	11.88	10.82	10.41	9.71	9.52	9.86	9.08	8.30	7.41	6.60	6.77	6.24	6.98	7.68	7.64	8.08	8.08	7.90	8.04						5.97	
At	25	7	6	1	Z	~	5	3	9	7	9	4	9	0	2	2	7	5	1	5	30	8	3	11055	9	2	3	27	32	12348	~
Time h/m/s	7	4	7	4	7	5	7	5		2	30	7																		18 37	
	2	2	2	2	2	5	2	2		2		2	2	2	2	2	2	5	2	2	2	2	2	2	2	2	2	2	2	15 1	2
	2	13	12	5.0	13	77	77			27	211	11			12	75	70	11	73	22	-	77	1		37	12	77	118	32	9	2 7

NOTE: Numbers give time in Central Standard Time

Figure B-3. Flight 3 Flight Track

3DEC78

3

FL IGHT#

		1			1			1			1			-	1			1			1			1			1			1			1			-	
a €	1014.4	1017.3	1017.5	1017.4	1017.4	1016.6	1016.9	1016.9	1017.2	1017.0	1016,9	1017.1	1017.3	1016.6	1015.9	1016.2	1016.3	1016.3	1015.7	1014.7	1015.4	1015.2	1015.2	1015.1	1013.2	1013.2	1013.6	1013.8	1011.9	1010.4	1011.2	1013.5	1009.0	1006.5	1006.9	1008.1	1008.3
C.2/m.2/3	1.01E-03	2.11E-03	2.05E-03	1.85E-03	1.60E-03	1.338-03	1.25E-03	1.54E-U3	1.35E-03	1.88E-03	2.078-03	2.22E-03	2.88E-03	3-286-03	2.18E-03	2.26E-03	1.78E-03	2.06E-03	2.00E-03	1.40E-03	1.86 E-03	2.90E-03	2.42E-03	2.21E=03	1.69E-03	1.65E-03	3.84E-03	5.44E-03	5.28E-03	5.03E-03	5.16E-03	5.12E-03	6.11E-03	5.46E-03	6.03E-03	5.70E=03	5.68E-03
Eps m^2/s^3	. 56 E-0	.38E-0	.33E-0	.78E-0	. U8E-U	.30E-0	.14E-0	. 528-U	.66E-0	.55E-U	.49E-0	.84E-U	. 55E-0	.8 2E-U	.12E-0	.36E-U	. 26 E-U	.00E=0	.97E-0	.32E-0	.39E-0	.60E-0	.85E-0	.73E-0	. 63E-0	. 59E-0	.34E-U	.40E-0	.72E-0	.77E=0	.636-0	.32E-0	.89 E-0	1.38E-03	.36E-0	. 34E-0	.74E-0
V/m	0.0	0.0		•	•		•			0.0												0.0												0.0	0.0	•	•
e e	27.83	47.59	27.53	27.50	27.49	27.63	27.58	27.57	27.58	27.61	27.63	27.57	27.55	27.64	27.55	27.54	27.62	27.58	27.69	27.69	27.60	27.66	27.62	27.63	27.75	27.75	27.73	27.71	27.48	24.12	28.08	27.85	27.92	28.04	28.02	27.83	27.87
z	3	~	2	2	N	2	N	V	~	3	N	.7	~	~	-	~	7	~	~	3	~	~	1	1	-	-	-	-	N	1	3	3	-	361.3	-	-	-
Ts tr	20.83	21.00	21.16	21.18	21.26	21.06	21.06	21.24	21.13	20.87	20.85	20.95	21.02	20.76	20.66	20.88	20.98	20.86	20.93	20.78	20.70	20.82	20.82	20.81	20.68	20.84	20.87	20.87	20.85	20.90	20.92		2	21.09	2		
i.	3.6	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.4	3.4	3.5	3.6	3.7	3.6	3.8	3.7	3.6	3.6	3.6	3.7	3.6	3.7	3.8	3.8	3.8	3.9	3.9	3.9	3.7	3.7	3.8	3.8	3.7	23.91	4.0	3.7	3.7
Alt	16	-13	5	11	10	34	97	24	18	22	26	77	14	33	53	44	42	41	09	87	. 68	73	73	75	129	129	119	111	106	209	186	122	248	320	307	273	267
Time h/m/s		. 8 38			0	10	11	11	12	12	13	13	14	15	15	16	91	17	11	18	18	19	19	20	20	21	77	22	23					. 25 41			
	11	4 11	11	" 11	11		. 11	48 11	. 11	11	3 11	11	11	11	11	, 11	11	, 11	11	11	11	11	11	11	11	" 11	11	11	" 11	11	11	11	11	11	11	11	z 11

		1						1			1			1			-			1						1			1	1			1		
. 8	1004.9	897.3	996.4	996.3	8.36.6	992.9	985.4	981.9	983.1	943.7	983.7	980.3	972.6	971.1	960.9	963.5		972.3				4	48.	1.	48	948.3	38.	930.9	23	34.	927.3	927.1	957.6	924.8	925.6
C'2/m'2/3	6.20E-03	.57E-0	.09E-0	.6 UE-0	.14E=U	1.06E-02	.338-0	.82E-0	3.34E-04	.25E-0	3.078-04	.60E-0	.64E-0	728-0	1.75E-02	.76E-0	-78E-U	.36E-0	.09E-0	.01E-0	.56E-U	.33E-0	78 E-0	.66E-U	.69E-0	. 29E-0	.78E-0	4.28E-03	2.938-03	5.948-03	8.34E-04	1.036-04		.16E-0	
Eps m^2/s^3		.138-0	.42E-U	.66E-U	.70K-0	. 51E-0	. 49 E-0	.71E-0		.06E-0	.17E=0	.30E-0	.66E-0	.36E-0	038-0	. 38E-U	.85E-0	.21E 0	.40E-0	.47E-0	.ule-u	. 36E-0	.85E-0	.32E-0	.98E-0	.70E-0	.496-0	. 24E-U	.coE-U	.75E-U	. 21E-U	.158-0	4	2.32E-05	. 21E-0
/m //m	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		o.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
e e	0.		4.	. 7					25.35					•	•											•	17.30	8.91	10.19	7.8	2	16.28		16.27	16.11
=	380.7	377.0	310.2	375.2	375.5	372.0	367.0	364.5	364.2	365.6	360.0	367.6	350.0	313.7	341.7	342.6	343.0	273.8	344.0	343.9	335.7	326.0	324.3	329.0	329.9	266.9	319.8	242.5	312.9	246.3	311.8	313.0	313.9	312.7	312.2
Cent						20.51	9.		O		0	9.	9.	~			3										20.70	0	3	a	7.	21.18	21.19	œ.	20.72
-	3.9		3.8	3.9	7.	.5	0.	3.4	23.60	3.0	3.6	3.5	3.3	3.6	23.46	3.6	3.6	3.7	3.6	3.5	3.4	3.1	3.5	7.8	7.8	2.7	7.7	4.3	7.4	2.4	7.7	2.3	N	5.0	7
t F	364	582	109	610	625	706	923	1025	066	972	972	1011	1294	1338	1636	1561	1541	1303	1428	1474	1729	1971	1953	2008	1966	1970	5766	2485	2543	2498	2599	2606	2592	5676	2652
h/m/s									7 4																										
5	-	-	-	-	-	-	-	-	1 32	-	-	-	-	-	-	-	-	-	-	-	_	7	_	_	_	-	-	-	-	-	-	7	-	-	

			1									1						1						1						1			-		
1	.71	12.	11:	11:	10.	98	8	5	49	54	45	\$	49	42	54	59	20	3	16	10	52	40	99	7	92	98	#	15	91	16	91	1015.7	15	15	15
C. 2/m 2/3	3/6	12E-	*	386	18	7	1.31E-04	285	76E-	1.41E-04	-308	1.518-04	4.42E-04	1.95E-04	1.578-04	1.86E-04	2.02E-04	1.388-04	6.95E-05	1.878-04	1.93E-04	7.69E-05	6.96E-05	2.84E-04	5.25E-U3	2.55E-03	5.03E-04	5.26E-04	7.80E-04	3.47E-04	4.58E-04	4.34E-04	3.92E-04	3.72E-04	5.85E-04
m.2/s.3	2E-0	.38E-U	.34E-U	. 40E-0	.138-0	. 89E-0	.00E-0	6E-0	.25E-0	.44E-0	.80E-0	. 27E-0	.35E-U	.39E-0	.138-0	.68 E-0	.09E-0	.72E-0	.57E-0	.00E-0	.ale-o	.52E-0	.37E-0	.87E-0	.61E-U	.32E-0	. 22E-U	.01E-0	.35E-0	.16E-U	.37E-0	1.14E-02	. ddE-U	.49E-0	.14E-0
N/m	0.0	•			•	•	0.0	0.0	0.0					•			•			0.0								0.0						0.0	
e e	S	0.0	9.9	6.3	0	5.9	9	41	41	u	4,	4	4	4	4,	4	4		.7.1	41	9	w	9	4		,	-	~		D	œ	28.24	D	-	1
	19	2	=	2	08	05	05	300.6	36	96	76	4	32	32	43	92	94	63	02	07	14	97	37	58	09	16	70	85	84	84	83	383.5	92	82	8
Cent 15	œ.	,	-	-	-	-	,	0	0	0	0	0	0	0	5	0	1:	4	0			1.	-		0	-	-	-	-	-	-	21.82	-	-	1.7
-	-	1:	-	-	-	0	0.	2	8	1.	7.	. 9	1.	7.	7.	8	6	6		-	-	5	7	3	3.	3.	4	4	4.	4	4	24.56	4	4	4
##	2688	3064	3088	3071	3108	3474	3806	4212	4554	4886	5180	5138	5048	5032	4994	4732	4360	3888	3509	3103	7668	2208	1111	1227	C 89	493	137	12	1	30		16			
m/s						-1																										3 30			
2	-		-	-	-	_	1	7	-	-	-	-	1	1	-	-	7	-	1	7	-	-	-	-	7	7	7	7	7	7	7	7	7	7	7

			-			1			1	1			1			1			!			1			1			1			1			1		
▲ 쥩	1014.7	1014.8	1014.8	1014.9	1013.5	1013.5	1013.5	1013.4	1014.5	1016.0	1015.9	1011.9	1011.0	1011.4	1011.3	1011.4	1006.8	1005.6	1005.2	1005.1	1002.6	991.6	982.6	980.4	980.1	919.5	0.616	968.6	956.8	952.8	952.2	952.0	952.3	950.7	938.0	929.3
CT2 C^2/m^2/3	6.62E-04	1.16E-U3	1.008-03	7.37E-04	1.07E-03	1.448-03	1.63E-03	2.47E-03	1.60E-03	9.20E-04	1.20E-03	1.62E-03	1.716-03	1.85E-03	1.50E-03	1.29E-03	8.74E-04	5.64E-04	5.55E-U4	4.83E-04	3.28E-04	4.85E-04	4.04E-04	3.13E-04	6.63E-04	8.13E-04	4.46E-04	6.18E-04	6.92E-04	5.72E-04	1.226-03	2.41E-03	9.41E-04	6.238-04	1.45E-04	1.05E-04
Eps m^2/s^3	.48E-0	5.70E-03	. 44E-0	.50E-0	.88E-0	.86E-0	.55E-0	.22E-0	.71E-0	.93E-0	.75E-0	.54E-0	.74E-U	.9 5E-0	.87E-0	.4 5E-0	.32E-0	.42E-0	. 0 5E-0	.86E-0	.51E-0	.44E-0	.12E-0	.21E-0	BIE-U	.28E-0	.48E-0	. 26E-0	.75E-U	.64E-0	.44E-U	. 23E-0	. 64E-0	.82E-0	STO.	4 E-0
. w/w	0.0	0.0		•			•	0.0	0.0			•											•	•										0.0		0.0
₽	-	27.73	-	-	-	4	8	8	D	-	သ	∞	20	∞	သ	œ	∞	D	∞	8	-	1	9	O	9	9	0	5	1	N	3	~	0	1	B	-
z	3	341.5	4	82	82	82	37	32	32	82	82	82	8	82	82	82	S	3	19	13	18	73	69	68	99	19	19	62	43	34	39	44	39	34	57	20
Ts Cent	4	21,39	3	m	m	N	7	7	4	ď.	'n	~	~	~	7	4	S	S	'n	4	3	7	7	~	7	~	~	-	0	3	y	0	7	0	4	7
L Ge	4.		e.	۳.	e.	۳.		4.		٣.	٣.	.5	.0		8	8		8	6.	6.	.7	0.	.5	4.	4.	.3	.3	4	2.	0	5	0.	4	.0	· 3	2
Alt	46	42						82	- 51	6	11	2	5	3	4	3	9	0	-	-	8	0	9	0	03	05	90	37	11	33	85	85	84	1897	17	53
Time h/m/s	2 6 1	12 6 41	27 1	27 4	28 1	2-8-4	2 9 2	2 9 5	2 10 2	2 10 5	2 11 2	2 12 0	2 12 3	2 13 4	2 13 3	2 14 8	2 14 4	2 15 1	2 15 4	2 16 1	2 16 4	2 17 2	2 17 5	2 18 2	2 18 5	2 19 2	2 19 5	2 20 3	2 21 3	2 21 3	2 22 7	2 22 3	2 23 1	23 4	24 1	24 4
			69	93					155	-	-					16	91	= :	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2 3	la :	2 :		100							0 1		,		

- q	17.9	7.1	8.9	5.8	18.3	9.51	6.5	17.2	17.3	6.3	18.4	11.8	1.6	1.6	1.61	8.8	8.5	9.8	1.5	1.5	1013.2	3.6	3.5	3.5	9.6	5.0	12.1	9.51	3.9	3.5	15.5	15.2	15.1	5.3	4.0
3	126				6 3	66		1 95																								1		101	101
CT2 C'2/m'2/3	1.408-04	1.41E-04	3.08E-04	5.55E-03	7E	1.90E-02	中	48	OE	8 1B	4.89 E-04	2.18E-04	1.536-0	2.29E-0.	1.94E-0.	1.518-0	1.27E-0	1.08E-03	9.08E-04	8.67E-04	1.06E-03	7.99E-0	8.22E-04	9.29E-04	1.64E-0	1.748-0	1.19E-0	1.10E-0	9.54E-04	7.55E-04	1.36E-0	1.01E-0	7.19E-04	64E-	6.00E-04
Eps m ² /s ³		3.96E-05	3.96E-05	1.34E UI	1.75E 02	6.54E-03	5.20E-05	7.838-05	5.83E-05	1.43E-04	2.98E-04	5.45E-04	6.20E-03	5.35E-03	4.93E-03	3.57E-03	3.558-03	3.07E-03	1.27E-03	1.27E-03	2.09E-03	2.36E-03	2.538-03	3.60E-03	5.52E-03	5.60E-03	4.48E-03	4.65E-03	4.78E-U3	4.62E-03	6.95E-03	6.42E-03	44	0.	5.32E-US
V/m		0.0				0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
• e	17.62	17.66	16.63	17.72	-23.63	18.31	18.29	23.07	24.43	25.32	26.26	27.23	27.75	28.00	28.39	28.48	28.53	28.49	26.97	28.25	28.17	28.20	28.20	28.29	28.23	20.27	28.29	28.27	28.72	28.10	28.16	28.13	28.22	28.15	20.05
z	2	3	3	Ð	S	~	5	3	-	S	X	4	D	-	7	~	N	N	3	-	381.9	CN	2	~	N	N	.7	~	-	0	381.6	-	381.9	381.5	380.0
Cent Ts		20.38	20.43	20.25	19.01	20.53	20.00	20.86	21.28	21.20	21.20	21.20	21.10	21.02	20.80	20.65	20.70	20.09	20.92	20.97	21.10	21.17	21.34	21.37	21.03	21.63	21.75	21.70	21.57	21.64	21.09	21.67	21.72	21.75	21.77
-	-	_	D	-	_	~	N	CA	~	(1)	4	S	·U	4	4	4	4	4	4	4	24.93	4	4	n	4	S	n	S	5	S	13	S	S	S	n
t t	58	09	19	99	56	5	14	70	40	14	19	-	9	3	8	-	7		4	3	88														
Time h/m/s	5 1	5 5	6 2	9	7 2	7 5	9	9 3	9 3	0 7	0 3	1 1	1 4	2 1	2 4	3-1	3 5	4 2	4 5	5 2	35 5B	6 3	7 2	7 3	8	8 3	9 1	9 4	0 1	0 4	1 1	1 4	2 2	2 5	3 2
	~		7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	~	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7

		1			1			1			-			1			1			1			1			1			1			1			1
₽	1014.3	1014.3	1013.5	1012.1	1012.2	1012.4	1012.1	1005.4	1004.8	1004.2			991.7	981.9	980.1	978.5	979.8	976.9	969.4	958.1	949.3	541.3	932.8	927.8	923.2	924.1	925.3				956.8	1.	964.4	571.1	978.5
CT2 C^2/m^2/3	3.21E-04	. 68 E-0	2.94E-04	•	3.99E-04	4.22E-04	3.82E-04	3.30E-04	4.51E-04	2.6 UE -04	2.06E-04	1.84E-04	1.26E-04	1.73E-04	4.64E-05	3.63E-04	9.14E-04	1.51E-03	3.84E-04	4.71E-04	1.05E-03	3.64E-04	1.59E-04	1.60E-	3.39E-	2.606-	2.50E-		1.25E-	1.12E-03	3.59E-04	2.58E-04	.79E-U	73E-	.14E-0
Eps m^2/s^3	.638	. 40E-U	.37E-0	.39E-U	2.22E-03	2.48E-03	2.158-03	7.81E-04	1.58E-03	5.70E-04	6.45E-04	2.77E-04	1.49E-04	3.05E-05	6.98E-05	1.538-04	2.74E-04	3.38E-04	7.74E-05	1.24E-04	2.09E-04	4.32E-05	4.94E-05	6.20E-05	2.81E-05	3.10E-05	2.435-05	2.84E-05	3.24E-US	. 57E-0	.61E-0	.65E-U	.40E-0	50E-	.76E-0
E V/m	0.0		•	0.0			0.0	0.0	0.0	0.0			•						0.0														0.0		0.0
₽	28.33			•		•			•	•			•						•			•					•	•	•						•
z	342.0	N	~	-	-	-	-	-	-	-	O	9	3	5	2	4	2	3	-	3	S	0	(7)	-	10	10	-	0	0	4	3	-	~	359.2	365.0
Ts Cent	21.96	?	0.		·	1.		1.	0										21.20									•						21.50	
_ ⊢	25.43	S	S	2	2	·O	S	S	4	4	4	4	4	3	(~	4		1	~	~	2		-	-	-	-	~	13	~	O	~	V	3	3
Alt	57	96	80	118	117	111	119	309	326	343	314	0	9	3	*	2	4	2	4	10	-	5	0	5	9	-	3	-	N	4	a	0	10	1268	10
Time h/m/s	2 4	2 45	2 45	2 46	2 46	2 47	2 47 4	2 48 1	2 48 4	2 49 1	2 49 4	2 50 2	2 50 5	2 51 2	2 51 5	2 52 2	2 53 0	2 53 3	2 54	2 54 3	2 55 8	2 55 4	2 56 1	2 56 4	2 57 1	2 57 5	2 58 2	2 58 5	2 58 2	2 59 5	30 2	3 1 1	3 1	3 2	3 2
	7	1	7	-	-	7	7		7	7	Jac.	7		La como and					7					-					1	1	1	0,0	0 1	<i>a</i> 1	1

			1			1	1			-			1			1			1			-			-			1			1			1		
a €	986	994	1004		1014	1015.1	1015.1		1015.1	1014.9	1014.7	1014.9	1014.5	1014.4	1013.8	1013.9	1013.7	1013.7	1012.3	1012.0	1012.3	1011.5	1010.8	1010.0	1.	1004.9	9.8001	1003.6	1009.0		10	1008.2		1011.4		1014.4
CT2 C'2/m'2/3	7.55E-06	1.99E-04	4.80E-04	4.63E-04	6.29E-04	.31	5.978-04	5.20E-04	5.63E-04	0.08E-04	5.78E-04	4.71E-04	6.258-04	4.14E-04	4.16E-04	4.22E-04	4.21E-04	3.55E-04	3.25E-04	2.36E-04	2.85E-04	2.52E-04	4.43E-04	2.62E-04	2.90E-04	1.09E-04	1.11E-04	9.60E-05	1.09E-04	•	1.478-04	1.81E-04	8	21E	.93E	4.32E-04
Eps m ⁻ 2/s ⁻ 3	.39E-U5	8E-04	.85E-U4	.79E-03	.02E-03	.19E-0	. U 3E-03	.72E-03	.95E-03	.89E-03	.29E-03	.80E-03	.49E-03	. 56E-03	74E-03	.USE-03	.32E-03	.19E-03	.74E-03-		.14E-03	1			1	1.01E-03	.27E-0	.82E-U	.17E-0	2.62E-03	.40E-0	.76E-U	SE-U	.24	27E-0	0
K W/m		0.0		•	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0		0.0		0.0	0.0	0.0		0.	0.	0.0	0.		0.0		0.0	•	0.0	0.0	0.0	0.0	0.0	0.0
• @	25.96	26.40	27.13	27.66	27.99	28.07	24.09	58.09	28.09	28.09	28.05	28.00	27.90	27.87	27.84	27.36	27.83	27.78	27.62	27.61	27.77	27.88	27.74	27.75	27.78	20.03	28.03	1.8	1.7	7.6	7.5	7.5	7.4		0.0	1.9
z	67	370.0	14	78	81	BI	81	301.7	381.7	381.5	381.2	380.9	380.3	380.1	379.3	379.9	379.7	379.5	378.4	378.3	378.9	379.2	378.5	378.5	373.5	379.0	374.5	316.1	378.2	377.6	377.4	317.4	370.8		381.0	
Ts Cent	.5	21.62	10	0	.7	1.	8	21.88	21.90	21.32	21.85	21.94	21.86	21.83	21.81	21.84	21.94	21.92	21.89	21.81	28.17	21.83	21.83	21.76	21.00	21.84	41.39	21.96	21.93	21.95	21.93	21.83	26.12	21.86	21.91	21.81
-	24.05	24.72	25.17	25.24	25.03	25.01	25.08	25.15	25.18	25.25	25.30	25.37	25.43	25.44	25.49	25.50	25.49	25.49	25.50	25.54	25.58	25.57	25.53	25.48	25.41	25.34	25.31	25.30	25.39	25.47	25.45	25.40	25.49	25.65	25.41	25.39
Alt	834	584	316	109	23	2	2	4	2	11	17	12	22	27	41	38	44	45	85	94	86	107	128	143	170	180	190	188	178	187	178	201	193	109	14	50
Time h/m/s		3 3	3 4	3.4	3 5	3 5	3 6	3 6	37	3 7	3 8	3 9	3 9	3 10	13 10 36	3 11	3 11	3 12	3 12	3 13	3 13	3 14	3 14	3 15	3 15	3 16	3 16							13 20 43		
	3	- 3	١	2	75	12							1 18	2 :		L			2 4		. 2		9	711	11	72	7:	35	177	30				311	7	- 1

	1			-			1			1			1			1			1			1	1			1			1			-			1		
<u>a</u> 2	1011.8	1004.8	997.1	986.7	976.9	966.5	957.2	948.8	939.4	932.1	922.0	912.3	903.0	892.0	880.9	870.0	859.9	852.0	844.3	844.9	844.5	840.2	839.9	840.6	844.0	850.2	858.1	865.0	879.3	893.8	908.0	918.6	928.9	928.1	927.6	950.6	26.
CT2 C'2/m'2/3	4.59E-04	5.758-04	5.74E-04	8.34E-04	8.02E-04	5.11E-04	8.81E-04	5.12E-04	1.47E-04	4.38E-04	1.14E-03	5.19E-04	1.018-04	7.74E-05	3.12E-05	4.09E-05	1.69E-04	1.578-05	1.60E-04	1.76E-U2	8.69E-02	5.738-03	8.94E-05	2.29E-06	-1.94E-06	8.90E-05	2.55E-05	1.67E-04	5.77E-05	-1.64E-06	6.67E-U5	1.16E-03	6.24E-04	4.86E-04	2.34E-03	8.30E-04	.98E
Eps m^2/s^3	.86 E	.46E	.578	.40E	.67E	1.96E-04	.178	.42E	.118	.50	.09E	.372	152	. 26 E	.92E	.42E	.06E	1.46E-04	ote.	. 50 E	. 98E	. 86 €	.17E	.99E	acu.	. 56E	.66E	.93E	.91E	. 20E	. 0 7E	. 53E	.7dE	3.638-05	. 40E	3.54E-U5	1.138-04
E//m						0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0
e e	1.		.7.		24.70	24.01	23.62	22.68	22.63	21.75	18.23	14.85	12.18	10.61	13.03	12.60	12.15	12, 32	12.24	-7.96	-10.85	12.10	11.81	11.60	11.12	10.69	10.38	10.66	12.44	11.32	10.45	15.93	19.00	18.27	17.16	17.71	16.53
z	379.1	376.9	374.7	369.4	360.6	356.2	353.2	347.6	345.8	340.7	322.9	304.7	290.4	281.1	249.3	285.3	241.4	280.7	279.1	190.4	111.7	277.3	275.8	275.0	273.7	272.8	272.8	275.4	286.2	284.0	283.3	316.6	328.2	324.4	319.1	321.5	310.0
Ts Cent	-	-	-	-	-	-	-	-:	-	-	-	-	5	-	-	5	-		5	p	2	-	0	-	-	-	-	-	-	-	-	-	-	21.71	1.	-	-
-	5.4	ů.	4	S.	3	5	-	1	,	0	0	0	4		,	9	6	8	1	7.	1.	1	7.	8	8	8	2	9.	0	-	7	. 9	0	20.37	0.	o.	5
Alt	66	296	919	817	1101	1404	1678	1926	2203	2427	2734	3031	3317	3661	4010	4355	4681	4935	5188	5165	5179	5322	5331	5268	5158	4955	4699	4478	4021	3565	3123	2798	2486	2509	2526	2554	5259
Time h/m/s	22 18	22 50	23 22	23 54	24 26	24 58	25 30	26 2	26 34	27 6	27 38	28 10	28 42	29 14	29 46	30 18	30 50	31 22	31 53	32 25	32 57	33 78	34 1	34 33	35 5	35 37	36 9	36 41	37 13	37 45	38 17	38 49	39 21	39 53	40 25	40 57	41 29
	3	3	3	~	3	~	~	~	3	3	2	3	3	3	3	3	3	3	3	3	~	3	3	2	3	2	3	~	3	~	~	9	3	13	3		
	1	. 12	12	70	. 5	. 2					3	9	-	31	4	100	- 3	- 2	7	- 55	T.	135				1			III.	11	74	To lo	- 2	-	Is and	11	12

- =	/s	f t	-	Cent 15	E	e @	/w //m	Eps m^2/s^3	C'2/m'2/3	. 2
~	1	N	1.01	8	25.	8.6		390	.53E-0	
	32	2	1.0	2.0	43.	1.9		.61	3.70E-04	
	4	5002	21.03	21.87	341.9	21.63	0.0	.74	.79E-0	942.8
	36	2	6.0	1.7	43.	1.9		.04	.17E-0	1 .
		9	1.7	1.8	54.	3.9	•	7	.81E-0	
	40	9	2.5	5.0	58.	4.5		.90	.49E-0	
	12	1358	5.6	2.2	59.	4.9		. 23	.64E-U	
	44	1328	2.7	2.7	57.	4.4		.05	.72E-0	
	16	1373	2.5	2.3	57.	4.4		.83	.20E-0	
	48	2	2.9	4.4	61.	5.0		.70	.44E-U	
	70	2	3.6	1.7	62.	5.1		. 37	.63E-0	
	52	3	3.4	3.0	65.	5.7	•	. 34	.77E-0	
	24	3	3.4	3.0	64.	5.4		1	.49E-0	
	99	9	3.5	5.9	64.	5.4	•	.72	.42E-0	
	28	3	5.2	3.0	71.	6.7		.40	.03E-0	
-	0	19	6.2	3.3	11.	7.7		.5	.66E-0	
	32	11	6.1	3.1	17.	1.6	•	.0.	. 86 E-0	
	4	6	6.1	3.1	17.	7.5	•	19.	.06E-0	
	36	8	6.0	3.1	78.	7.8		.04	.23E-0	
	00	16	6.0	3.1	17.	7.4		. 54	.34E-U	
	40	28	0.9	5.3	17.	7.6	•	96.	.44E-0	
-	11	27	6.0	2.8	74.	1.6		. 28	.19E-0	
-	43	53	5.9	2.8	78.	7.6		.34	. 28 E-0	
	15	37	5.9	7.8	78.	1.1	•	.04	.87E-0	•
-	47	11	5.8	5.8	18.	1.7		0	.8 3E-0	
	19	65	5.9	2.8	78.	7.7		.06	.77E-0	
	51	61	5.9	7.8	78.	7.8		33	8.85E-04	
	23	09	5.3	2.8	78.	7.8		.63	.42E-0	
	25	73	5.3	3.0	78.	7.8	•	7.	.64E-0	
-	27	7	5.6	5.3	17.	1.7		99.	.19E-0	
~	65	-	5.7	8.7	78.	1.9		.48		
3	31	_	5.7	5.3	78.	1.1		.12	.87E-0	
-	3	125	5.6	4.3	17.	1.6	•	.57	.62E-0	
~	35	0	5.4	1.7	76.	7.5		.92		1 .
	1	0	5.3	1.7	76.	1.4		.95	•	
	39	-	5.4	2.7	10	7.5		43	•	
_	10	d	7 7							

	1			1			1			1			1			1			1			1			1			1			1			1	
<u>~</u> €	1004.7	1000.2					1.		1006.0				1 .					8 8 9 9 . 3						844.1	845.1	843.2	844.1	845.9		44.	1 -	44.	4	63.	78.
CT2 C'2/m'2/3	1.	32E	.176	.09E	.17E	2.46E-04			3.24E-04	3.19E-04	5.17E-04	9.67E-04	1.43E-03	6.68E-04	1.75E-04	2.08E-04	1.54E-04	4.39E-05	9.22E-05	4.53E-05	5.04E-U5	2.56E-U5	1.23E-04	6.35E-05	5.00E-05	4.86E-05	2.18E-04	9.29E-05	2.04E-04	.40E-0	6.38E-05	0-309°	2E-0	BIE	. 28 E-
Eps m ² /s ³	. 4 SE -0	.44E-0	.20E-0	.69E-0	.92E-0	. 25E-0	.35E-0	.83E-0	.92E-0	.07E-0	.19E-0	.29E-0	.57E-0	.65E-0	. 29E-0	.88E-0	. 55E-0	.05E-0	.51E-0	.62E-U	.87E-0	.51E-0	.82E-0	.35E-0	.01E-0	.34E-0	. 37E-U	.16E-0	.24E-0	.56E-0	.88E-0	.97E-0	3E	.52E-0	.51E-0
E V/m		0.0	•			•		•	0.0			0.0		•	0.0	•	•	0.0		•	•	•	•	•		•	•		•	0.0	•	•		0.0	•
e e	7.5	7.3	7.3	7.2	7.4	27.42	1.	1.	7.	7.	7.		6			3	4	3	2.	-	9.	0	0		0.							•	9.62		
z	376.6	375.3	375.3	374.8	375.5	375.3	376.4	377.0	377.4	317.2	373.7	365.9	337.3	318.0	313.3	305.8	301.3	294.6	286.5	278.3	270.3	270.0	271.4	209.7	7.697	266.0	265.2	266.2	207.3		268.4		267.4		
t Ts	.7	.6		.7	.5	5	0	9.	0	.0	5		7	٥.	J.	8	9.	9	.7			1.	.0	.2		.3	T.	. 2		9	4.	4.		0	9
T Cent	25.31	24.82	25.07	25.01	25.06	25.15	25.68	25.61	25.61	25.45	24.34	23.33	23.31	23.92	23.50	23.09	22.50	22.01	21.50	20.95	20.22	19.33	18.66	18.60	18.73	18.52	19.05	19.18	19.09	18.49	18.34	18.44	18.79	20.27	21.05
Alt	.9	3	5	-	-	359	-	3	N	N	2	12	50	82	23	65	04	39	16	14	50	85	12	15	12	18	15	60	08	13	13	14	5035	54	01
Time h/m/s		7	7	3	٣	4	1		2		1	1	8	00	ת	6	10	10	11	11	12	12	13	13	14	15	15	16	16	17	17	18	4 18 44	13	19
										1	1	1	1	7	1	1	1	1	I	1	1	1	1	1	1	1	1	-	1	1	1	7	s 14	1	1

h/m/s	,.	t		Cent		æ	W/W	m-2/s-3	C'2/m'2/3	a
0	20	41	1.90	1.7	90.	0		.45E-0	1.238-04	
	52	2775	22.87	21.94	300.2	14.02	0.0	2.638-05	1.47E-04	917.8
	24	57	3.4	7.7	00.	.5	0.0	.39E-0	9.11E-05	
	99	69	3.7	7.0	.57	7	•	.74E-0	2.34E-04	
	27	07	3.4	2.0	61.	0.		.32E-0	3.08E-04	
	65	54	4.5	1.9	70.	4.		. 27E-0	5.14E-04	
	31	O	5.2	1.9	75.	.2		.68E-0	3.36E-04	
	3		5.4	1.7	78.	9.		.19E-0	2.16E-04	
	35		5.4	1.9	78.	9.		.97E-0	4.66E-04	
	1	15	5.5	1.9	78.	.5		.66E-0	4.98E-04	
	39		5.5	2.0	77.	.5		.41E-0	4.95E-04	
	11	6	5.5	2.1	78.	.5		.61E-0	4.77E-04	
	43	1	5.6	2.1	17.	.5		.88E-0	5.55E-04	
	15	9	5.6	2.0	77.	4.		.9 5E-0	6.25E-04	1.
	47		5.6	1.9	17.	.5		. 74E-0	4.60E-04	-
	19		5.5	1.9	17.	4.	•	.88E-0	4.53E-04	
	51	19	5.4	1.8	78.	.5	0.0	0-39 6°	4.36E-04	
	23		5.4	1.8	78.	9.		.03E-0	4.19E-04	
	55		5.4	1.7	78.	9.		.81E-0	4.10E-04	
	56		5.3	1.5	78.	.5		.23E-0	4.81E-04	1010.9
	28		5.2	1.4	78.	9.		. 28E-0	7.00E-04	
	30		5.2	1.3	78.	.5		. 28 E-0	6.22E-04	
	7		5.1	1.4	78.			.07E-0	4.73E-04	
	34		5.0	1.4	78.	9.		.17E-0	4.02E-04	
	9		4.9	1.4	74.	9.		.34E-0	4.59E-04	
	38		5.0	1.4	78.		0.0	.44E-0	3.27E-04	
	10		4.9	1.4	78.	9.		.39E-0	2.73E-04	
	42		4.3	1.4	78.	1.		.25E-0	2.83E-04	
	14	-	4.7	1.3	78.	9.		.038-0	1.98E-04	
	45	2	4.9	1.4	17.	. 5		.0 3E-0	2.86E-04	
	11	0	8.4	1.5	17.	.5		.78E-0	2.64E-04	-
	49	5	4.3	1.5	17.	.5	•	.81E-0	2.47E-04	1006.7
	21	0	4.9	1.3	17.	3		. 40E-0	2.87E-04	
37	53	0	4.9	1.2	17.	.0		.12E-0	3.17E-04	
	25		3.4	1.1	77.	.5	0.0	. 60E-0	4.22E-04	
	6.3							日本の日本 日の日の日 一日日 一本	And in case of second in case of the case	

- 3	/m/	. 4		-	Cont 13	•	D 4	٨/٣	Lps	C. 21m. 2/2	. 1
1	2			3	311		2	= /.	1/2	C 71 11 7 2	1
~			-	4.8	1.1	17.	7.		. 48E-0	. 8 SE	.90
4			3	4.9	1:1	77.	7		. 51E-U	.94E	07.
4		13 1	.55	4.8	1.0	77.	7.	•	.21E-0	.18E	.90
4			0	4.7	6.0	11.	1.		.83E-0	.94E	04.
4			2	4.6	6.0	17.	-		.69E-0	.01E	04.
4			20	4.4	6.0	77.	7.		.12E-0	. 04 E	02.
4			9	4.5	6.0	77.	7		.51E-0	.47E	02.
4			-	4.9	4.0	19.	1		.72E-0	. 53E	. 60
4		4	0-	4.7	1.2	80.	7		.09E-0	.6 6E	12.
4		91	55	4.5	6.0	80.	-		.69E-0	. 60E	10.
4		8	69	4.4	6.0	80.	1		.85E-0	. 228	69.
4		0;	52	4.4	6.0	80.	7		3		10.
4			2	4.4	8.0	. 61	7	•	.01E-0	. 89E	06.
4			2	3,4	1.9	31.	9	•	. 9 LE 0	. 27E	96
4			3	3.7	4.0	70.			.44E-0	.59E	86.
4			9	5.3	0.4	60.	-		.40E 0	.198	78.
4		7	8	2.8	0.2	57.	4		.27E-0	.86E	67.
4		7	9	2.7	0.2	48.	7		.46E-0	399°	61.
4		7	5	2.2	0.2	39.	-	•	. 24 E-0	.67E	50.
4		7	110	2.0	3.5	97	7		.30E 0	.79E	46.
2		7	-	2.5	9.7	40.	-		.00E 0	.49E	51.
S		7	59	2.4	0.0	30.	8	•	.73E 0	.36E	51.
S		7	4	2.5	0.7	01.	-		.82E 0	. 66 E	58.
3		7	0	7.6	3.3	53.	3		.21E-0	.14E-0	64.
5		7	2	2.5	3.2	59.	4	•	.07E-0	.72E-0	68.
u		٦	~	2.7	1.7	.19	4		.22E-0	.57E-U	72.
S	53]	19 9	110	23.24	19,19	367.7	26.17	0.0	84E	36E-	980.4
5			O	3.4	9.0	53.	3		9	.56E-0	91.

NOTE: Numbers give time in Central Standard Time

Figure B-4. Flight 4 Flight Track

5DEC78

FLIGHT# 4

45 671 14.19 22.43 304.9 9.22 126.4 1.19E-0.3 49 70 14.71 22.44 308.8 8.91 158.7 1.55E-0.3 262 15.26 22.33 311.4 9.28 161.4 2.39E-0.3 50 15.76 22.18 313.3 9.33 153.4 2.83E-0.3 25 42 15.61 21.29 313.3 9.42 167.3 1.05E-0.2 25 96 15.78 22.03 313.5 9.41 213.3 1.05E-0.3 39 94 15.70 22.03 313.5 9.42 167.3 1.05E-0.3 39 94 15.70 22.03 313.5 9.41 213.3 3.99E-0.3 39 94 15.70 22.03 313.5 9.41 213.3 3.99E-0.3 39 95 15.69 22.06 313.3 9.35 204.4 4.17E-0.3 39 95 15.69 22.06 313.3 9.35 204.4 2.62E-0.3 39 95 15.69 22.06 313.3 9.35 204.4 2.62E-0.3 39 95 15.69 22.06 313.3 9.35 204.4 2.62E-0.3 39 15.76 22.05 313.3 9.35 204.4 2.62E-0.3 39 15.76 22.25 313.3 9.37 165.2 3.78E-0.3 39 15.76 22.20 314.6 9.58 203.5 5.06E-0.3 39 15.70 22.20 314.6 9.58 203.5 5.06E-0.3 30 12.62 11.74 21.31 303.0 9.00 89.7 7.12E-0.3 313 12.62 21.02 29.9 9.7 1.35 2.96E-0.5 31 22.5 10.93 20.94 27.9.2 5.10 7.1 3.65E-0.5 31 38.94 13.77 11.07 20.76 259.3 2.76 64.7 3.65E-0.5 31 38.91 12.62 21.02 263.6 2.76 64.7 3.65E-0.5 31 38.91 12.62 21.09 25.6.6 2.76 64.7 3.32E-0.5 31 38.91 12.95 21.09 25.6.6 2.76 64.7 3.32E-0.5 31 36.9 13.67 20.72 249.7 2.16 48.7 3.33E-0.5 31 36.9 13.67 20.72 249.7 2.16 48.7 3.33E-0.5 31 31 31 2.62 21.09 23.5.2 1.76 44.7 5.30E-0.5 31 39.7 16.52 20.09 23.5.2 1.78 41.6 5.30E-0.5 31 39.7 16.52 20.09 23.5.2 1.78 41.6 5.30E-0.5 31 39.7 16.52 20.09 23.5.2 1.78 41.6 5.30E-0.5 31 31 31 32.52 32.33 33.3 32.3 32.3 32.3 32.3 32		-	S/W/C		1	-	Cent		<u>۽</u>	\ \ \	m^2/s^3	C'2/m'2/3	. 2
5 4 17 470 14.71 22.46 308.8 8.91 156.7 1.55e-03 1.23E-03 5 4 49 262 15.20 22.33 311.8 9.28 161.4 2.39E-03 7.29E-03 7.29E-03 7.50E-02 2.55e-02 15.50 22.53 131.8 9.32 153.4 2.83E-03 7.29E-03 7.29E-03 7.29E-03 7.29E-03 7.29E-03 7.29E-03 7.20E-03 7.				45	7	-	4.7	Š		~	.13E-0	6.57E-04	2
5 4 9 262 15.20 22.33 311.8 9.28 161.4 2.39E-03 3.29E-03 5.52 22.29E-03 2.29E-03 2.39E-03 2.29E-03 2.29E-03 2.39E-03 2.39E-03 2.39E-03 2.39E-03 2.39E-03 2.56 2.5 42 15.69 22.25 314.3 9.47 187.5 7.08E-03 2.77E-02 2.56 2.77E-02 2.56 2.77E-02 2.56 2.77E-02 2.77E-02 2.77E-02 2.77E-03 2.77E			4	17	-	4.7	4.7	03	•		. 55E-0	.23E-U	0.766
5 21 94 15.01 21.99 313.3 9.33 153.4 2.838-03 7.398-03 5.56-02 5.56-02 2.56-02 2.56-02 2.56-02 2.56-02 2.56-02 2.56-02 2.56-03 313.9 9.42 107.3 1.086-02 2.56-03 3.14.5 9.55-146.7 2.276-03 3.14.6 2.56-03 3.14.6 2.56-13 3.148-03 3.48 <t< td=""><td></td><td></td><td>4</td><td>49</td><td>9</td><td>5.2</td><td>2.3</td><td>=</td><td></td><td>-</td><td>.39E-0</td><td>.29E-0</td><td>4</td></t<>			4	49	9	5.2	2.3	=		-	.39E-0	.29E-0	4
5 5 53 50 15.76 22.18 313.9 9.42 167.3 1.05E-02 2.56E-02 5 6 5 7 111 15.14 212.2 314.3 9.47 187.5 7.08E-03 2.77E-02 5 6 5 7 131 15.14 212.2 314.3 9.47 187.5 7.08E-03 1.14E-02 2.77E-03 1.14E-03 313.5 9.41 213.3 4.58E-03 1.14E-03 1.14E-03 3.3 9.0 15.73 22.03 313.5 9.41 213.3 4.58E-03 9.68E-03 5 8 3 94 15.70 21.95 313.0 9.29 202.5 3.94E-03 1.05E-02 2.08 313.0 9.42 202.5 3.94E-03 1.05E-02 2.08 313.3 9.35 204.4 2.02E-03 7.84E-03 5.0 9 9 9 15.69 22.08 313.3 9.35 204.4 2.02E-03 7.84E-03 5.10 9 82 15.91 22.08 313.3 9.35 204.4 2.02E-03 7.84E-03 5.10 9 82 15.91 22.02 313.3 9.37 165.2 3.78E-03 9.78E-03 5.10 9 9 15.70 22.21 314.7 9.71 209.0 5.40E-03 7.84E-03 5.11 45 46 16.16 22.21 314.7 9.71 209.0 5.40E-03 1.12E-02 5.11 45 46 16.10 22.21 314.5 9.64 201.7 9.15E-03 9.78E-03 5.12 49 13.77 21.95 313.3 9.37 165.2 2.51E-03 4.97E-03 5.13 5.3 894 13.17 21.05 310.1 9.69 95.7 1.31E-03 7.39E-04 5.18 5.3 894 13.17 21.05 310.1 9.69 95.7 1.31E-03 7.39E-04 5.18 5.3 894 13.17 21.05 310.1 9.69 95.7 1.31E-03 7.39E-04 5.18 5.18 5.18 5.18 5.25 1.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5			2	21	2	5.0	1.3	13		~	, 83E-0	.39E-0	0
5 6 25 42 15.69 22.25 314.3 9.47 187.5 7.64E-0.3 2.77E-0.2 5 6 57 131 15.14 21.72 314.5 9.55 186.7 2.27E-0.3 1.14E-0.2 5 6 7 131 15.14 21.72 314.5 9.45 186.7 2.27E-0.3 1.14E-0.2 9 6 15.59 21.08 313.5 9.41 213.3 4 4.58E-0.3 9.68E-0.3 5 8 33 94 15.70 21.95 313.0 9.29 202.5 3.99E-0.3 1.05E-0.2 5 9 5 15.69 22.08 314.7 9.67 197.6 3.56E-0.3 7.84E-0.3 5 10.9 82 15.69 22.06 313.3 9.35 204.4 2.62E-0.3 7.84E-0.3 5 10.9 82 15.91 22.12 314.7 9.71 204.0 2.62E-0.3 7.84E-0.3 5 10.9 82 15.91 22.12 314.7 9.71 204.0 2.60E-0.3 3.78E-0.3 9.70E-0.3 1.05E-0.2 5 11 45 46 16.16 22.21 314.6 9.37 165.2 3.77E-0.3 9.74E-0.3 5 12 12 49 15.91 22.22 314.4 9.58 203.5 5.60E-0.3 2.72E-0.2 5 12 49 2 15.31 22.22 314.6 9.58 203.5 5.60E-0.3 2.72E-0.3 8.74E-0.3 5 12 49 2 15.31 22.22 314.6 9.58 203.5 5.60E-0.3 2.72E-0.3 8.74E-0.3 5 12 49 2 15.31 22.22 314.6 9.50 14.93 12.50 2.51E-0.3 4.97E-0.3 5 12 49 2 15.31 21.05 21.05 312.1 9.33 125.0 2.51E-0.3 4.97E-0.3 5 12 49 2 11.74 21.33 303.0 9.00 89.7 7.52E-0.4 1.32E-0.4 1.33E-0.4 1.33E-0.4 1.34E-0.4 1.34E-			2	53	50	5.7	7.7	13	•	7.	.05E-0	. 56E-0	2.
5 57 131 15.14 21.72 314.5 9.55 186.7 2.27E-03 1.14E-02 5 8 1 29 96 15.59 21.84 315.1 9.74 204.4 4.17E-03 9.45E-03 5 8 1 90 15.59 21.84 315.1 9.74 204.4 4.17E-03 9.45E-03 5 8 1 90 15.70 21.95 313.5 9.42 202.5 3.59E-03 1.05E-02 5 9 3 9 35 15.69 22.06 313.5 9.45 204.4 2.62E-03 7.84E-03 7.84E-03 5 10 9 82 15.93 22.06 313.3 9.45 204.4 2.62E-03 7.84E-03 5 10 9 82 15.93 22.06 313.3 9.45 204.4 2.62E-03 7.86E-03 7.86E-03 5 10 9 82 15.91 21.96 311.8 9.10 193.3 378E-03 9.20E-03 1.0E-02 5 11 45 46 16.16 22.21 314.5 9.64 201.7 9.15E-03 9.20E-03 1.0E-03 5 11 45 46 16.16 22.21 314.5 9.64 201.7 9.15E-03 2.61E-02 5 12 27 25 15.41 22.26 314.6 9.58 203.5 5.60E-03 2.61E-02 5 12 27 25 15.41 22.20 311.3 9.50 10.63 1.90E-03 1.00E-03 1.			9	25	42	5.6	2.2	14	•	1.	.68E-0	. 77E-0	2
5 7 29 96 15.59 21.88 315.1 9.74 204.4 4.17E-03 9.45E-03 3.68E-03 3.			9	57	131	5.1	1.7	14	•		. 27E-0	.14E-0	2
5 8 1 90 15.73 22.03 313.5 9.41 213.3 4.58E-03 9.68E-03 5 8 33 94 15.70 21.95 313.0 9.29 202.5 3.99E-03 1.05E-02 2 9.5 15.69 22.08 314.7 9.65 19.6 3.99E-03 7.84E-03 7.84E-03 3.99E-03 1.569 22.08 314.7 9.65 19.0 9.3 7.65E-03 7.84E-03 7.84E-03 3.9 15.91 21.95 311.8 9.10 193.3 3.78E-03 1.12E-02 1.0 9.9 15.91 21.96 311.8 9.10 193.3 3.78E-03 9.20E-03 1.12E-02 1.0 9.9 15.91 21.96 311.8 9.10 193.3 3.78E-03 9.20E-03 1.12E-02 1.0 9.9 15.91 21.95 313.3 9.37 165.2 3.77E-03 9.20E-03 1.10E-02 1.0 9.9 15.91 21.95 313.3 9.37 165.2 3.77E-03 9.20E-03 1.0 9.5 1.0 193.3 3.78E-03 9.20E-03 1.0 9.5 1.0 193.3 3.78E-03 9.20E-03 1.0 9.5 1.0 193.3 3.78E-03 9.20E-03 1.0 9.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			1	53	96	5.5	1.8	15		4	.17E-0	.45E-0	0
5 9 33 94 15.70 21.95 313.0 9.29 202.5 3.99E-03 1.05E-02 5 9 5 9 4 15.69 22.08 314.7 9.67 197.8 3.56E-03 7.84E-03 5 9 37 95 15.69 22.06 313.3 9.35 204.4 2.62E-03 7.84E-03 5 10 9 82 15.99 22.06 313.3 9.35 204.4 2.62E-03 7.84E-03 5 10 9 82 15.99 12.196 311.8 9.10 193.3 3.78E-03 9.20E-03 5 11 13 93 15.76 21.95 313.3 9.37 165.2 3.77E-03 9.78E-03 5 11 145 46 16.16 22.21 314.5 9.64 201.7 9.15E-03 9.20E-03 5 12 14 54 15.35 21.95 312.1 9.35 165.2 3.77E-03 8.74E-03 5 12 14 54 15.35 21.92 312.1 9.35 165.0 3.77E-03 8.74E-03 5 13 21 590 14.09 21.52 312.1 9.59 106.9 13.16E-03 1.00E-03 5 14 57 1492 11.74 21.05 310.1 9.69 95.7 1.31E-03 7.39E-04 5 15 29 17.77 11.36 21.20 29.9 60 84.9 2.57E-03 8.92E-04 5 16 33 22.25 10.93 20.94 279.2 5.13 75.6 1.55E-04 1.56E-04 5 16 33 22.25 10.93 20.94 279.2 5.13 75.6 1.55E-04 1.56E-04 5 18 41 3401 12.95 21.09 256.3 2.76 64.7 3.65E-05 3.31E-04 5 18 41 3401 12.95 21.09 256.6 2.76 51.2 2.64E-05 3.31E-04 5 19 13 3669 13.67 20.72 249.7 2.16 48.7 3.33E-05 3.35E-04 5 19 45 3957 16.62 20.67 249.7 2.16 48.7 3.33E-04 3.97E-03 5 10 49 4439 19.40 21.00 236.2 1.79 6.17 0.17 20.00 2.94E-05 5 10 49 4439 19.40 21.00 236.2 1.79 6.73 2.30E-05 1.91E-05 5 10 49 4439 19.40 21.00 236.2 1.79 6.17 3.32E-05 1.91E-05 5 10 49 4439 19.40 21.00 236.2 1.79 6.17 3.20E-05 1.91E-05 5 1.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2			00	7	90	5.7	2.0	13	•	3	.58E-0	.68E-0	
5 9 5 93 15.69 22.08 314.7 9.67 197.8 3.56E-03 7.84E-03 5 9 37 95 15.69 22.06 313.3 9.35 204.4 2.62E-03 7.84E-03 5 10 9 82 15.99 22.16 313.3 9.35 204.4 2.62E-03 7.86E-03 5 10 9 82 15.91 22.12 314.7 9.71 19.31 3.78E-03 3.78E-03 3.78E-02 5 11 13 93 15.76 21.95 311.8 9.10 193.3 3.78E-03 3.78E-03 9.20E-02 5 11 13 93 15.76 21.95 313.3 9.30 165.2 3.77E-03 3.78E-03 9.20E-02 5 12 17 52 15.41 22.25 314.6 9.58 203.5 5.60E-03 2.61E-02 5 12 49 246 15.35 21.92 312.1 9.33 125.0 2.51E-03 4.74E-03 5 13 53 894 13.17 21.05 310.1 9.59 995.7 1.31E-03 7.39E-04 5 14 25 12.19 310.5 9.60 84.9 2.51E-03 7.39E-04 5 14 25 12.19 310.5 9.60 84.9 2.51E-03 7.39E-04 5 16 1 10.93 20.94 27.7 7.52E-04 1.32E-03 6.11E-04 5 17 37 2855 12.71 12.00 2.99.9 8.71 85.0 5.80E-05 6.11E-04 5 17 37 2855 12.71 2.10 2.99.9 8.71 85.0 5.80E-05 6.11E-04 5 17 37 2855 12.71 2.10 2.55.6 2.76 64.7 3.65E-05 5.38E-04 5 18 41 3401 12.95 21.09 255.6 2.76 64.7 3.65E-05 5.38E-04 5 18 41 3401 12.95 21.09 255.6 2.76 51.0 2.91E-05 5.38E-04 5 18 41 3401 12.95 21.09 255.6 2.76 51.0 2.91E-05 5.38E-04 5 18 41 3401 12.95 21.09 255.6 2.76 51.0 2.91E-05 5.38E-04 5 18 41 3401 12.95 21.09 255.6 2.76 51.0 2.91E-05 5.38E-04 5 18 41 3401 12.95 21.09 255.6 2.76 51.0 2.91E-05 5.38E-05 5.39E-05 5.			0	33	94	5.7	1.9	13	•	7	.99E-0	.05E-0	
5 9 37 95 15.69 22.06 313.3 9.35 204.4 2.62E-03 7.86E-03 5 10 9 82 15.93 22.12 314.7 9.71 209.0 5.40E-03 1.12E-02 5 10 41 99 15.91 21.96 311.8 9.10 193.3 3.78E-03 9.20E-03 1.12E-02 5 11 13 93 15.76 21.95 313.3 9.37 165.2 3.77E-03 9.20E-03 5 11 13 93 15.76 21.95 313.3 9.37 165.2 3.77E-03 9.20E-03 5 12 17 52 15.41 22.22 314.6 9.58 203.5 5.60E-03 2.61E-02 5 12 17 52 15.41 22.25 314.6 9.58 203.5 5.60E-03 2.61E-02 5 13 53 894 13.17 21.05 310.1 9.69 95.7 1.31E-03 7.39E-04 5 14 25 1236 12.19 21.09 304.5 9.50 84.9 2.57E-03 8.92E-04 5 15 29 1727 11.36 21.20 2.99.9 8.71 7.52E-04 1.32E-03 1.00E-03 1.00 1.00 12.95 21.02 2.99.9 8.71 85.0 5.80E-05 6.78E-04 5 17 5 2550 12.55 21.02 2.99.9 8.71 2.5E-04 1.56E-04 1.56E-04 5 17 5 2550 12.55 21.02 2.99.9 8.71 2.5E-04 1.56E-04 1.56E-04 5 17 5 2550 12.55 21.02 2.99.9 8.71 2.5E-04 1.56E-04 1.56E-04 5 17 5 2550 12.55 21.02 2.99.9 8.71 2.5E-04 1.56E-04 1.56E-04 2.99.9 8.71 2.5E-04 1.56E-04 1.56E-04 2.99.9 8.71 2.5E-04 1.56E-04 2.90E-04			7	5	93	5.0	2.0	14	•	7.	.56E-0	.84E-0	0
5 10 9 82 15.93 22.12 314.7 9.71 209.0 5.40E-03 1.12E-02 5 10 41 99 15.91 21.96 311.8 9.10 193.3 3.78E-03 9.20B-03 5 11 13 93 15.76 21.95 313.3 9.37 165.2 3.77E-03 9.74E-03 5 11 45 14.6 9.58 203.5 5.60E-03 2.61E-02 5 12 15 21.92 314.6 9.58 203.5 5.60E-03 2.72E-02 5 12 15 21.92 314.1 9.58 203.5 5.60E-03 2.72E-02 5 13 17 21.05 310.1 9.59 106.9 1.30E-03 1.30E-03 5 13 23 24.05 13.12E-03 1.30E-03 1.30E-03 5 14 25 10 3.00 8.71 1.30E-03 1.30E-03 <t< td=""><td></td><td></td><td>5</td><td>37</td><td>95</td><td>5.6</td><td>2.0</td><td>13</td><td>•</td><td>4</td><td>.62E-0</td><td>.86E-U</td><td>-</td></t<>			5	37	95	5.6	2.0	13	•	4	.62E-0	.86E-U	-
5 10 41 99 15.91 21.96 311.8 9.10 193.3 3.78E-03 9.20E-03 5.11 13 93 15.76 21.95 313.3 9.37 165.2 3.77E-03 8.74E-03 5.11 45 46 16.16 22.21 314.5 9.64 201.7 9.15E-03 2.61E-02 2.12 17 52 15.41 22.26 314.6 9.58 203.5 5.60E-03 2.72E-02 2.12 17 22.25 314.1 9.33 125.6 2.51E-03 4.97E-03 4.97E-03 8.94 13.17 21.05 310.1 9.69 95.7 1.31E-03 7.39E-04 2.14 25 12.36 12.19 21.03 308.5 9.69 95.7 1.31E-03 7.39E-04 2.14 25 12.26 11.74 21.31 303.0 9.00 89.7 7.52E-04 1.30E-04 2.15 11.07 20.76 293.4 7.67 77.1 2.78E-04 9.96E-04 2.16 1 1947 11.07 20.76 293.4 7.67 77.1 2.78E-04 9.96E-04 5.16 1 22.25 10.93 20.94 279.2 5.13 75.6 1.55E-04 1.56E-03 3.51E-04 2.17 3.13 12.62 21.19 256.3 2.34 56.0 2.91E-05 5.38E-04 2.17 3.3659 13.67 20.72 249.7 2.16 48.7 3.35E-05 5.38E-04 2.17 3.35E-04 2.17 2.16 48.7 3.33E-05 3.31E-04 2.17 2.16 48.7 3.33E-05 3.31E-03 3.35E-04 2.27 2.17 2.17 2.18 41 3.31 2.62 21.19 256.3 2.76 57.6 2.91E-05 5.31E-04 2.91E-05 5.31E-04 2.91E-05 2.14E-05 5.38E-04 2.91E-05 2.14E-05 2.14E-0			10	5	82	5.9	4.1	14	•		. 4 UE-U	.12E-0	-
5 11 13 93 15.76 21.95 313.3 9.37 165.2 3.77E-03 6.74E-03 5 11 45 46 16.16 22.21 314.5 9.64 201.7 9.15E-03 2.61E-02 5 12 17 52 15.41 22.2c 314.6 9.58 203.5 5.60E-03 2.72E-02 5 12 17 24 246 15.35 21.92 312.1 9.59 12.5 c 2.51E-03 4.97E-03 5 13 21 590 14.09 21.52 311.3 9.69 95.7 1.31E-03 7.39E-04 5 14 25 1236 12.19 21.09 316.5 9.60 89.7 1.31E-03 7.39E-04 5 15 29 1727 11.36 21.20 299.9 8.71 85.0 5.80E-05 6.11E-04 5 16 1 1947 11.07 20.76 293.4 7.67 77.1 2.78E-04 9.96E-04 5 16 33 22.25 10.93 20.94 279.2 5.13 75.6 1.55E-04 1.56E-03 5 17 37 2855 12.71 21.04 259.3 2.45 57.6 2.96E-05 3.51E-04 5 18 41 3401 12.95 21.09 255.6 2.76 64.7 3.65E-05 6.78E-04 5 18 41 3401 12.95 21.09 255.6 2.76 31.2 2.64E-05 5.38E-04 5 19 45 3957 16.62 20.67 249.7 2.16 44.7 3.33E-05 3.97E-03 5 20 17 4202 19.10 20.92 239.5 1.98 47.6 1.20E-04 2.44E-03 5 20 49 4439 19.49 21.00 236.2 1.70 41.4 5.30E-05 1.91E-04			10	41	20	5.9	1.9	7	•	3	.78E-0	.20E-0	0
5 11 45 46 16.16 22.21 314.5 9.64 201.7 9.15E-03 2.61E-02 5 12 17 52 15.41 22.26 314.6 9.58 203.5 5.60E-03 2.72E-02 5 12 49 244 15.35 21.92 312.1 9.33 125.0 2.51E-03 4.97E-03 5 13 21 590 14.09 21.52 311.3 9.50 10d.9 1.96E-03 1.00E-03 5 14 25 12.6 12.19 21.09 30d.5 9.50 1.31E-03 1.00E-03 5 14 25 12.6 12.19 21.09 30d.5 9.00 89.7 7.52E-04 1.32E-03 5 15 29 17.7 11.36 21.20 299.9 8.71 85.0 5.80E-05 6.11E-04 5 16 1 1947 11.07 20.78 293.4 7.67 77.1 2.78E-04 1.56E-04 5 16 3 22.5 10.93 20.94 279.2 5.13 64.7 3.65E-04 1.56E-04 5 17 5 22.5 12.55 21.02 253.6 2.76 64.7 3.65E-04 1.56E-04 5 18 41 34.0 12.55 21.09 255.6 2.76 64.7 3.65E-05 6.78E-04 5 18 41 34.0 12.55 21.09 255.6 2.76 64.7 3.36E-04 1.56E-04 5 18 41 34.0 12.95 21.09 255.6 2.76 64.7 3.36E-05 2.14E-04 5 18 42 3957 16.5 2 20.07 2 249.4 2.57 50.6 2.91E-05 2.14E-05 5 20 17 4202 19.10 20.92 239.5 1.76 41.4			11	13	93	5.7	1.9	13	•		.77E-0	.74E-0	
5 12 17 52 15.81 22.26 314.6 9.58 203.5 5.60E-03 2.72E-02 5 12 49 248 15.35 21.92 312.1 9.33 125.0 2.51E-03 4.97E-03 5 12 49 248 15.35 21.92 312.1 9.59 106.9 1.90E-03 4.97E-03 5 13 21 590 14.09 21.52 311.3 9.69 95.7 1.31E-03 7.39E-04 5 14 25 1236 12.19 21.09 306.5 9.60 84.9 2.57E-03 8.92E-04 5 14 25 1236 12.19 21.09 306.5 9.60 84.9 2.57E-03 8.92E-04 5 14 57 11.36 21.20 299.9 8.71 85.0 5.80E-05 6.11E-04 5 16 1 1947 11.07 20.78 293.4 7.67 77.1 2.78E-04 9.96E-04 5 16 3 2225 10.93 20.94 27.5 5.6 64.7 3.65E-04 1.56E-05 5.18E-04 5 17 5 2550 12.55 21.02 263.6 2.76 64.7 3.65E-05 6.78E-04 5 18 9 3133 12.62 21.19 256.3 2.34 56.0 2.91E-05 5.38E-04 5 18 9 3133 12.62 21.19 255.6 2.74 51.0 2.91E-05 5.38E-04 5 18 9 3 3957 16.62 20.67 246.4 2.57 50.4 7.24E-05 5.38E-04 5 20 17 4202 19.10 20.92 239.5 1.96 37.3 2.88E-05 1.91E-04 5.20 49 4439 19.49 21.00 236.2 1.76 41.4 5.30E-05 1.91E-04			7	45	46	6.1	2.2	14	•	-	.158-0	. 61E-0	?
5 12 49 248 15.35 21.92 312.1 9.33 125.0 2.51E-03 4.97E-03 5 13 21 59 14.09 21.52 311.3 9.50 104.9 1.96E-03 1.00E-03 5 13 53 894 13.17 21.05 310.1 9.69 95.7 1.31E-03 7.39E-04 5 14 25 1236 12.19 21.09 308.5 9.80 84.9 2.57E-03 8.92E-04 5 15 29 1727 11.36 21.20 299.9 8.71 85.0 5.80E-05 6.11E-04 1.32E-03 5 16 1 1947 11.07 20.78 293.4 7.67 77.1 2.78E-04 9.96E-04 5 16 1 1947 11.07 20.74 279.2 5.13 75.6 1.55E-04 1.56E-05 5 17 5 2550 12.55 21.02 .263.6 2.76 64.7 3.65E-05 6.78E-04 5 18 41 3401 12.95 21.09 2556.3 2.34 56.0 2.91E-05 3.51E-04 5 18 41 3401 12.95 21.09 2556.3 2.34 56.0 2.91E-05 5.38E-04 5 18 41 3401 12.95 21.09 2556.3 2.34 56.0 2.91E-05 5.38E-04 5 18 41 3401 12.95 21.09 2556.3 2.76 51.0 2.91E-05 5.38E-04 5 19 45 3957 16.62 20.67 249.7 2.16 48.7 3.31E-04 3.97E-03 5.00 17 4202 19.10 20.92 239.5 1.98 47.6 1.20E-04 2.44E-03 5.0 49 4439 19.49 21.00 236.2 1.76 37.3 2.88E-05 1.91E-05 1			12	11	55	5.8	7.7	14	•	3.	. 60E-0	.72E-0	5.
5 13 21 590 14.09 21.52 311.3 9.50 104.9 1.906-03 1.006-03 5 13 53 894 13.17 21.05 310.1 9.69 95.7 1.316-03 7.396-04 5 14 25 1236 12.19 21.09 303.5 9.60 84.9 2.576-03 8.926-04 5 14 57 1492 11.74 21.31 303.0 9.00 89.7 7.526-04 1.326-03 5 15 29 1727 11.36 21.20 299.9 8.71 85.0 5.806-05 6.116-04 5 16 1 1947 11.07 20.76 293.4 7.67 77.1 2.786-04 9.96e-04 5 16 3 2225 10.93 20.94 279.2 5.13 75.6 1.556-04 9.96e-04 5 16 3 2255 12.02 263.6 2.76 64.7 3.656-05 6.786-04 5 17 3 2855 12.02 224.19 256.3 2.34 56.0 2.946-05 5.346-05			12	49	4	5.3	1.9	17	•	2	.51E-0	.97E-0	5
5 13 53 894 13.17 21.05 310.1 9.69 95.7 1.31E-03 7.39E-04 5 14 25 1236 12.19 21.09 308.5 9.80 84.9 2.57E-03 8.92E-04 5 14 57 1492 11.74 21.31 303.0 9.00 89.7 7.52E-04 1.32E-03 5 15 29 1727 11.36 21.20 299.9 8.71 85.0 2.5E-04 1.32E-04 5 16 1 1947 11.07 20.78 293.4 7.67 77.1 2.78E-04 9.80E-04 5 16 1 33 22.55 10.94 279.2 5.13 75.6 1.55E-04 11.6E-04 5 17 3 255.0 12.73 2.145 2.76 64.7 3.65E-04 1.56E-03 5 18 4 3133 12.62 21.19 256.3 2.76 64.7 3.65E-04 1.4E-04 5 18 4 3133 12.62 21.19 256.3 2.76 51.2 2.64E-05 3.85E-04 <td>-</td> <td></td> <td>13</td> <td>21</td> <td>3</td> <td>4.0</td> <td>1.5</td> <td>1</td> <td>•</td> <td>9</td> <td>. 96E-0</td> <td>. 00E-0</td> <td>2</td>	-		13	21	3	4.0	1.5	1	•	9	. 96E-0	. 00E-0	2
5 14 25 1236 12.19 21.09 308.5 9.80 84.9 2.57E-03 8.92E-04 5.14 57 1492 11.74 21.31 303.0 9.00 89.7 7.52E-04 1.32E-03 1.32E-03 1.727 11.36 21.20 299.9 8.71 85.0 5.80E-05 6.11E-04 5.16 1 1947 11.07 20.76 293.4 7.67 77.1 2.78E-04 9.96E-04 5.16 1 1947 11.07 20.74 279.2 5.13 75.6 1.55E-04 1.56E-03 5.15 10 33 22.25 10.93 20.94 279.2 5.13 75.6 1.55E-04 1.56E-03 5.17 5 2550 12.55 21.02 263.6 2.76 64.7 3.65E-05 6.78E-04 5.17 5 2855 12.71 21.04 259.3 2.45 57.6 2.96E-05 6.78E-04 5.18 9 3133 12.62 21.19 256.3 2.34 56.0 2.91E-05 5.38E-04 5.18 9 3133 12.62 21.09 255.6 2.74 51.2 2.64E-05 5.38E-04 5.19 13 3669 13.67 20.72 249.7 2.16 48.7 3.33E-05 3.35E-04 5.00 17 4202 19.10 20.92 239.5 1.98 47.6 1.20E-04 2.44E-03 5.20 49 4439 19.49 21.00 236.2 1.76 41.4 5.30E-05 7.93E-04 5.12 1 2.12 1 4700 19.03 20.68 235.3 1.96 37.3 2.88E-05 1.91E-04			13	53	2	3.1	1.0	2		3	.31E-0	.39E-0	-
5 14 57 1492 11.74 21.31 303.0 9.00 89.7 7.52E-04 1.32E-03 5 15 29 1727 11.36 21.20 299.9 8.71 85.0 5.80E-05 6.11E-04 5 16 1 1947 11.07 20.78 293.4 7.67 77.1 2.78E-04 9.96E-04 5 16 1 1947 11.07 20.78 293.4 7.67 77.1 2.78E-04 9.96E-04 5 16 33 2225 10.93 20.94 279.2 5.13 75.6 1.55E-04 1.56E-03 5 17 5 2550 12.55 21.02 .263.6 2.76 64.7 3.65E-05 6.78E-04 5 17 37 2855 12.71 21.04 259.3 2.45 57.6 2.96E-05 3.51E-04 5 18 41 3401 12.95 21.19 256.3 2.34 56.0 2.91E-05 2.14E-04 5 18 41 3401 12.95 21.09 255.6 2.76 51.2 2.64E-05 5.38E-04 5 19 13 3669 13.67 20.72 249.7 2.16 48.7 3.33E-05 3.85E-04 5 19 45 3957 16.62 20.67 246.4 2.57 50.4 7.24E-04 3.97E-03 5 20 17 4202 19.10 20.92 239.5 1.98 47.6 1.20E-04 3.97E-03 5 20 49 4439 19.49 21.00 236.2 1.70 41.4 5.30E-05 1.91E-04 5 21 21 21 4700 19.03 20.68 235.3 1.96 37.3 2.88E-05 1.91E-04			14	57	23	2.1	1.0	08	•	4	.57E-U	.92E-0	5
5 15 29 1727 11.36 21.20 299.9 8.71 85.0 5.80E-05 6.11E-04 5.16 1 1947 11.07 20.76 293.4 7.67 77.1 2.78E-04 9.96E-04 5.16 1 1947 11.07 20.76 293.4 7.67 77.1 2.78E-04 9.96E-04 5.16 1.55E-04 1.55E-04 1.56E-03 2.225 10.93 20.94 279.2 5.13 75.6 1.55E-04 1.56E-03 5.17 5. 2550 12.55 21.02 .263.6 2.76 64.7 3.65E-05 6.78E-04 5.17 37 2855 12.71 21.04 259.3 2.34 56.0 2.96E-05 3.51E-04 5.18 9 3133 12.62 21.19 256.3 2.34 56.0 2.91E-05 5.38E-04 5.18 9 13.67 20.72 249.7 2.16 48.7 3.33E-05 5.38E-04 5.19 13 3669 13.67 20.72 249.7 2.16 48.7 3.33E-05 5.38E-04 5.00 7.24E-04 3.97E-03 5.20 17 4202 19.10 20.92 239.5 1.98 47.6 1.20E-04 2.44E-03 5.20 49 4439 19.49 21.00 236.2 1.76 41.4 5.30E-05 7.93E-04 5.21 21 4700 19.03 20.66 235.3 1.96 37.3 2.88E-05 1.91E-04	1		14	57	49	1.7	1.3	03	•	2.	.52E-J	. 32E-0	
5 16 1 1947 11.07 20.78 293.4 7.67 77.1 2.78E-04 9.96E-04 5 16 33 2225 10.93 20.94 279.2 5.13 75.6 1.55E-04 1.56E-03 5 17 5 2550 12.55 21.02 263.6 2.76 64.7 3.65E-05 6.78E-04 5 17 37 2855 12.71 21.04 259.3 2.45 57.0 2.96E-05 3.51E-04 5 18 9 3133 12.62 21.19 256.3 2.34 56.0 2.91E-05 2.14E-04 5 18 41 3401 12.95 21.09 255.6 2.78 51.2 2.64E-05 5.38E-04 5 19 13 3669 13.67 20.72 249.7 2.16 48.7 3.33E-05 3.85E-04 5 19 45 3957 16.52 20.67 246.4 2.57 50.3 7.24E-04 3.97E-03 5 20 17 4202 19.10 20.92 239.5 1.98 47.0 1.20E-04 2.44E-03 5 20 49 4439 19.49 21.00 236.2 1.70 41.4 5.30E-05 7.93E-04 5 21 21 4700 19.03 20.68 235.3 1.96 37.3 2.88E-05 1.91E-04			15	53	12	1.3	1.2	33	•	5	.80E-0	.11E-0	2.
5 16 33 2225 10.93 20.94 279.2 5.13 75.6 1.55E-04 1.56E-03 5 17 5 2550 12.55 21.02 263.6 2.76 64.7 3.65E-05 6.78E-04 5 17 37 2855 12.71 21.04 259.3 2.45 57.6 2.96E-05 3.51E-04 5 18 9 3133 12.62 21.19 256.3 2.34 56.0 2.91E-05 2.14E-04 5 18 41 3401 12.95 21.09 255.6 2.74 51.2 2.64E-05 5.38E-04 5 19 13 3669 13.67 20.72 249.7 2.16 48.7 3.33E-05 3.85E-04 5 19 45 3957 16.62 20.67 246.4 2.57 50.4 7.24E-04 3.97E-03 5 20 17 4202 19.10 20.92 239.5 1.98 47.6 1.20E-04 2.44E-03 5 20 49 4439 19.49 21.00 236.2 1.70 41.4 5.30E-05 7.93E-04 5 21 21 4700 19.03 20.66 235.3 1.96 37.3 2.88E-05 1.91E-04			16	7	94	1.0	1.0	33	•	1.	.78E-U	.96E-0	4.
5 17 5 2550 12.55 21.02 .263.6 2.76 64.7 3.65E-05 6.78E-04 5 17 37 2855 12.71 21.04 259.3 2.45 57.6 2.96E-05 3.51E-04 5 18 9 3133 12.62 21.19 256.3 2.34 56.0 2.91E-05 2.14E-04 5 18 41 3401 12.95 21.09 255.6 2.74 51.2 2.64E-05 5.38E-04 5 19 13 3669 13.67 20.72 249.7 2.16 48.7 3.33E-05 5.38E-04 5 19 45 3957 16.62 20.67 249.4 2.57 50.4 7.24E-04 3.97E-03 5 20 17 4202 19.10 20.92 239.5 1.98 47.6 1.20E-04 2.44E-03 5 20 49 4439 19.49 21.00 236.2 1.70 41.4 5.30E-05 7.93E-04 5 21 21 4700 19.03 20.68 235.3 1.96 37.3 2.88E-05 1.91E-04			16	33	77	6.0	4.0	3	•	5	. 55E-U	. 56 E-U	
5 17 37 2855 12.71 21.04 259.3 2.45 57.6 2.96E-05 3.51E-04 5 18 9 3133 12.62 21.19 256.3 2.34 56.0 2.91E-05 2.14E-04 5 18 41 3401 12.95 21.09 255.6 2.76 51.2 2.64E-05 5.38E-04 5 19 13 3669 13.67 20.72 249.7 2.16 48.7 3.33E-05 5.38E-04 5 19 45 3957 16.62 20.67 246.4 2.57 50.4 7.24E-04 3.97E-03 5 20 17 4202 19.10 20.92 239.5 1.98 47.6 1.20E-04 2.44E-03 5 20 49 4439 19.49 21.00 236.2 1.70 41.4 5.30E-05 7.93E-04 5 21 21 4700 19.03 20.68 235.3 1.96 37.3 2.88E-05 1.91E-04			17	2	55	2.5	1.0	63		4.	.65E-U	.78E-U	4.
5 18 9 3133 12.62 21.19 256.3 2.34 56.0 2.91E-05 2.14E-04 5 18 41 3401 12.95 21.09 255.6 2.76 51.2 2.64E-05 5.38E-04 5 19 13 3669 13.67 20.72 249.7 2.16 48.7 3.33E-05 3.85E-04 5 19 45 3957 16.62 20.67 246.4 2.57 50.4 7.24E-04 3.97E-03 5 20 17 4202 19.10 20.92 239.5 1.98 47.6 1.20E-04 2.44E-03 5 20 49 4439 19.49 21.00 236.2 1.70 41.4 5.30E-05 7.93E-04 5 21 21 4700 19.03 20.68 235.3 1.96 37.3 2.88E-05 1.91E-04			17	37	85	2.7	1.0	59	•	1.	.96E-0	.51E-0	
5 18 41 3401 12.95 21.09 255.6 2.74 51.2 2.64E-05 5.38E-04 5 19 13 3669 13.67 20.72 249.7 2.16 48.7 3.33E-05 3.85E-04 5 19 45 3957 16.62 20.67 246.4 2.57 50.4 7.24E-04 3.97E-03 5 20 17 4202 19.10 20.92 239.5 1.98 47.6 1.20E-04 2.44E-03 5 20 49 4439 19.49 21.00 236.2 1.70 41.4 5.30E-05 7.93E-04 5 21 21 4700 19.03 20.68 235.3 1.96 37.3 2.88E-05 1.91E-04			18	2	13	7.6	1:1	56			.9 IE-0	. 14 E-0	
5 19 13 3669 13.67 20.72 249.7 2.16 48.7 3.33E-05 3.85E-04 5 19 45 3957 16.62 20.67 246.4 2.57 50.4 7.24E-04 3.97E-03 5 20 17 4202 19.10 20.92 239.5 1.98 47.8 1.20E-04 2.44E-03 5 20 49 4439 19.49 21.00 236.2 1.70 41.4 5.30E-05 7.93E-04 5 21 21 4700 19.03 20.68 235.3 1.96 37.3 2.88E-05 1.91E-04			18	41	40	2.3	1.0	55	•	1.	.64E-0	.38E-0	5
5 19 45 3957 16.62 20.67 246.4 2.57 50.4 7.24E-04 3.97E-03 5 20 17 4202 19.10 20.92 239.5 1.98 47.6 1.20E-04 2.44E-03 5 20 49 4439 19.49 21.00 236.2 1.76 41.4 5.30E-05 7.93E-04 5 21 21 4700 19.03 20.68 235.3 1.96 37.3 2.88E-05 1.91E-04			19	13	99	3.6	0.7	43	•	5	.338-0	.85E-U	7.
5 20 17 4202 19.10 20.92 239.5 1.98 47.6 1.20E-04 2.44E-03 5 20 49 4439 19.49 21.00 236.2 1.76 41.4 5.30E-05 7.93E-04 5 21 21 4700 19.03 20.68 235.3 1.96 37.3 2.88E-05 1.91E-04			19	45	35	0.9	9.0	40			. 24E-0	.97E-0	1.
5 20 49 4439 19.49 21.00 236.2 1.76 41.4 5.30E-05 7.93E-04 5.21 21 4700 19.03 20.68 235.3 1.96 37.3 2.88E-05 1.91E-04			20	11	20	9.1	6.0	33		7.	.20E-0	.44E-0	6
5 21 21 4700 19.03 20.68 235.3 1.96 37.3 2.88E-05 1.91E-04			20	49	43	4.	1.0	36			. 30E-0	.93E-0	?
			21	77	70	0.	0.0	35		-	.88E-0	31E-0	3

~ €	3 1011.7	3 1011	3 1011.	3 1011.	3 1010.	3 1010.	3 1010.	3 1010	3 1010.	3 1010.	3 1010.	3 1008.	3 1008.	3 1008	3 1008.	1007.	1003.	1003.	1003.	1003.	997.	986	986	. 966	986	986	.966	966	1 996	1 996	997.	1	3 1011.	3 1011	
CT2 C^2/m^2/3	30E-0	9.95E-0	. 27E	8	4.	.2	7	.74E-0	22E-0	.96E-0	. 28 E-U	1E-0	. 8 9E -0	.37E-0	2E-0	222	9.68E-04	•				7	5.46E-0	•	- 1			9	30E-0	4.	7	9	. 43E	8	-
Eps m^2/s^3	.36E-0	4.70E-03	.29E-0	.47E-0	.73E-0	.54E-0	.47E-0	.93E-0	.47E-0	. 56E-0	.62E-0	.46E-0	.95E-0	.26E-0	.32E-0	.96E-0	.65E-0	.69E-0	.83 E=0	.82E-0	.80E-0	.54E-0	.31E-0	.74E-0	.04E-0	.606-0	.77E-0	.71E-0	. 55E-0	.74E-0	13E-0	. 22E-0	.6 3E-0	. 55E-0	
E/m/	181.	-	155.	121.	172.	173.	183.	196.	174.	174.	172.	173.	173.	171.	170.	162.	149.	140.	148.	151.	143.	144.	135.	138.	131.	140.	138.	139.	150.	151.	160.	174.	212.	225.	
۰ę	•	9.84	•	•		•	•		•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
z	314.3	315.8	313.3	314.9	314.6	316.9	316.7	315.2	315.7	315.0	315.3	314.0	314.7	314.8	313.0	313.1	311.7	310.8	311.1	310.9	309.5	309.2	308.0	308.4	307.9	306.1	307.8	309.0	308.7	310.1	309.0	308.1	309.0	309.4	
Ts Cent		21.55																																	
ب ع	5.4	15.55	5.4	5.5	5.7	5.2	5.3	5.3	5.4	5.5	5.6	5.2	5.3	5.4	5.5	5.5	5.1	5.2	5.4	5.5	4.8	8.4	4.9	4.9	8.4	4.9	4.8	4.7	4.8	4.7	5.1	6.1	6.5	6.2	
At	65	76	85	86	68	16	96	101	100	96	103	157	165	191	157	171	787	297	296	284	454	489	491	484	436	483	483	485	488	477	447	216	11	73	: 1
0 40	2	37	6	41	13	45	11	49	21	53	24	99	28	0	32	4	36	œ	40	12	44	16	48	50	52	24	99	28	0	32	4	36	8	40	
Time h/m/s	4		4	4	4	4	4	4	4	4	4	4	4	48	4	4	4	S	S	5	3	S	n	5	5	5	5	5	5	3	ın	5:	5	S	3
		15																																	

		h/m/s	2 4	t t	- -	Cent		u - E	٧, ۳	Eps.	C.2/m.2/3	£
	,	•			000	-)		0 000		1
	10			0	7.0	7.7		•		. 03E-U	. ULE	5.1101
	16				c. 9	1.4	•	•	14.	-30E-0	-4/E	-
	16			9	6.3	1.5	•	•	. 97	. 10E-0	. 38E	13.
	16			2	6.4	1.6	•	•	27.	. 236 -0	.92E	13.
	16			2	6.0	1.5		•	50.	. 39E-0	13E	7
	16		99	11	6.4	1.4			68.	.91E-0	.84E	3.
	16			0	5.2	1.0			36.	.20E-0	. 30E	03.
	16	1		a	4.3	0.9			64.	.02E-0	.75E	92.
	16		32	901	3.4		•	•	2	.00E-U	8.77E-04	1.
	16			198	2.3	3.8	•	•	47.	.37E 0	.06E	5.
	16			886	1.7	6.1	•		38.	.93E O	359°	2
	16		8	S	6.0	7.2			02.	.43E 0	.70E	6
	10		40	3	2.0	6.5			m	.95E 0	. 27E	8
-	16		12	∞	2.4	4.6	•			.22E 0	.29E	8
	16		43	30	2.8	8.0			-	.22E 0	.25E	7.
	16		15	0	7.6	5.1		4	7.	.21E 0	.64E	8
	16		47	-	3.3	1.1			2	. o 1E-0	118	3
	16	0	19	1404	13.36	20.90	293.7	7.23	98.6	1.06E-03	5.05E-03	963.4
	16		51	0	4.0	1.0		•	29.	.81E-0	.90E	4.
-	16	-	23	695	5.3	1.2	•	•	48.	.77E-0	.03E	8
	10	7	55	474	5.7	1.4			61.	.01E-0	. 92E	6.
	10	-	27	460	5.2	1.5	•		42.	. 6 3E -0		. 0
	16	7	53	482	5.0	1.3			56.	. 23E -0	.44E-U	9
	16	7	31	479	4.9	1.3		•	.09	.01E-0	.17E-0	. 9
	16	7	3	486	4.9	1.2			55.	.40E-0	.53E-0	. 9
	16	-	35	488	5.0	1.3			48.	.72E-0	.98E-0	5
	16	7	1	454	5.1	1.4			50.	.38E-0	. 90E-0	1.
	16	7	39	468	4.6	1.5			57.	.13E-0	.7.	. 9
	16	-	11	445	4.6	1.5			61.	.31E-0	46	7.
	16	-	43	247	5.2	1.6			65.	.54E-U	.45E-U	. 400
	16	7	15	134	5.6	1.5			28.	.68E-0	.89E	008.
	16	-	47	75	5.7	1.5			07.	. 28E-0	.08E-0	010
	16		13	31	5.5	1.3				.74E-U	00E-0	
	10	-	51	37	5.5	1.2			. 87	.14E-0	۳.	012.
	16	-	23	57	5.3	1.2			20.	.13E-0	.36E	011
	, ,		1000									

h/m/s	S	ft		Cent		qu	M/W	m^2/s^3	C.2/m.2/3	qu
	27		5.56				00	.13E-0	.01E-0	11.
13	59	52	15.61	21.27	305.1	7.44	239.7	4.08E-03	7.29E-03	1011.7
	31	6-	5.8	1.7		•	10.	.02E-0	.79E-0	3.
	3	16	5.7	1.5	•	•	16.	.92E-0	•	3.
	35	55	5.5	1.3	•	•	.57	.88E-0	. 03E-U	1
	1	70	5.5	1.5			15.	.6 9E-0	.78E-0	1.
	39	11	5.8	1.4			97.	.59E-0	.03E-0	
	11	89	5.5	7	•		20.	. U SE -U	.18E-0	-
	43	16	5.7	1.3			19.	.16E-0	.46E-0	0
	15	65	5.9	1.5	•	•	96.	.55E-0	.43E-U	1.
	47	78	5.8	1.5	•		99.	. 89E-0	.27E	9
. 1	19	80	5.8	1.6			85.	.13E-0	.97E-0	9
	51	82	0.9	1.5			76.	.65E-0	.48E	
	23	55	6.2	1.5		•	.69	. 30 E-0	.81E	1.
	55	20	6.5	1.8			17.	.23E-0	-24E	4
	27	2	6.5	1.9			67.	.24E-0	. 20E	3.
	69	20	9.9	1.9			67.	.40E-0	.25E	3.
	31	9	9.9	1.8			62.	.24E-0	42E	2
	7	10	6.7	1.1	•	•	57.	.46E-0	•	3.
	34	23	9.9	1.5		•	53.	.01E-0	.03E	5.
	9	25	6.5	1.6			56.	. 76 E-0	.71E	7
	38	32	9.9	1.8			51.	. 58E-0	.68E	5.
	10	34	6.5	1.7			47.	.49E-0	.26E	5
	42	30	9.9	1.4			45.	.02E-U	.92E	7
	14	30	6.5	1.5		•	44	.74E-0	. 43E	5
	46	35	6.7	1.5		•	47.	OOE-0	. 18E	2.
	18	19	7.0	1.7			45.	.72E-U	.95E	5
	20	10	6.9	1.9			40.	.94E-0	.03E	3.
	22	10	7.1	1.9			37.	.40E-0	.92E	3.
	54	5	7.0	1.9			46.	.92E-0	85E	3
	26		8.9	1.7	307.4	•	38.	. 23E -U	.46E-0	3.
	28	4.5	6.0	1.4		•	.99	.13E-0	0-368·	2.
	30		6.5	1.5			57.	. 23E -0	.19E-0	3
	7	Œ	9.9	1.7	313.9	4.	50.	0E-0	6 2E-	3.
	34	9	6.5	1.5			56.	.01E-0	.53E-0	3.
	3	101	4	1 3		9		161.0		

2	h/m/s		ft	Cent	t		q	N/m	m-2/s-3	C.2/m.2/3	ą
		0	29	6.1	0	315.5	9.88	0	.87E-0	.39E	
91	39 1	10	4	16.49	21.47	316.0	10.02	145.0	1.978-02	6.675-02	1013.5
		7	9	7.0	.0	317.6	10.31	100.0	.258-0	37E	
		4	7	6.3		317.7	10.36	164.0	9 E-0	6.39E-02	
		9	m	6.3	0	316.3	10.05	44	8 E-0	.25€	•
		10	25	6.1	3	313.8	9.49	-	83E-0	398	
		0	34	2.9	4	312.8	9.30	O	4.	1.938-02	
		7	29	6.3	5	313.1	9.36	-	?	1.97E-02	•
	7	4	57	6.4	4.	303.6	6.61	3	.42E-U	1.92E-02	
	~	9	36	6.4	3	310.4	8.81	0	6.51E-03	1.94E-02	
	m	00	19	6.1	£.	310.2	8.73	57	4.68E-03	8.49E-03	
	4	0	71	6.1	3	309.9	8.72	3	3,978-03	8,64E-03	
10			64	6.3		310.6	8.89	04	4.72E-03	0.00E 00	1011.3
	5	*	56	6.2	3.	306.8		177	2.73E-03	0.00E 00	•
	9		0	0.9		306.9		77	.028-0	00 300.0	
	9	0	m	6.0	.2	307.8		1	.18E-0	0.00E 00	•
	1	0	~	9		308.3		1	2.71E-03	0.00E 00	
	1	7	*	0.9	7.	308.3		-	. 38E-0	0.00E 00	
	o	4	188	0	.1	308.6	8.57	153.2	.12E-0		1006.7
	o	0	1	5.2	0	308.7		0	9		
	~	ø	Cr	5.2	\$	306.6		34	0-316°		
	7	0	3	5.2	20.61			39	9	0.00E 00	
	0	1	7	5.1	9.	307.4	4.50	45	2.17E-03		
	0	3	3	6.4	di	305.7	8.09	4	1.52E-03	001	
	1	2	3	4.4	. 2	300.4	8.37	7	1.988-03	0.00E 00	
	-	1	O	4.7	1.3	305.3	8.21	141.0	9.68E-04		
	7	•	3	.5	21.25	305.9	6.39	3	,308-0	1	
	m		3	14.80	.2	305.4	8.27	1	.24E-0	0.00E 00	
	m	3	7	14.82	1.0	307.7	6.83	140.1	1.218-03	. 00E	994.6
	4		-	2	J	300.4		7	.00E-0	300°	4
	7	1	-	3	9	274.9		-	31E-0	1	1
	5		0	15.91		272.7		65.9	3.82E-05	0.00E 00	
	'n	1	-	1.	E.	273.4		10	078-0	.00E	5.
	0	2	0	.0	3.	275.1		.0	.42E-0	.00E	2
	0	0	-	-	3	205.6		600	0.35E-04	0.00E 00	963.0
		-	0								

THE BDM CORPORATION

-	/m/		#		Cent		ą	N/m	m-2/s-3	C'2/m'2/3	đ
9		43	~	4	20.10	44.	7	94.3	9.uuE-04	0.00E 00	
16	58	21	1495		17.81	9.987	5.76	84.6	4.16£ 01	300.	960.2
9		53	4	0	.2	17.	0.	•	.35E-0		55.
9		25	0	7	9	63.	.03		.94E 0	.00E	5
9		57	J	7.	4.	.69	.7			0.00E 00	936.
1		67	10	1.	3	58.	٠.	•	.6 9E-0	.00E	7.
1		1	.7	3	3	52.	4		u-ana.	100	4
-		33	m	7	.2	49.	1.21	56.5	.08E-0	.00E	911.0
1		2	9	2	7	49.			.38E.		
1		37	N	7	7	51.			.54E	OOE	8
1		5	S	٦.	.2	52.	•		.93E	.00E	0.
1		41	0	9.	4.	51.	•		24E	0.00E 00	903.
1		13	m	7	7	49.			. 22E	.00E	
1		45	-	2	.2	48.			.09E	.00E	
1		11	-	0.	7	47.			.12E	0.00E 00	
1		49	3	00	9.	47.			.82E	.00E	
-		71	0	.2	2.	47.	•		.93E	0.00E 00	
1		53	-	1.	. 2	47.			. 19E	. 00E	
1		25	S	33	7	43.			.73E	-UUE	
-		21	-	.7		37.	1.42	52.1	1.96E-04		873.2
1		53	0	7.	7	35.		•	.42E	.00E	
1		0	in	7	7	33.		•	.6.0E	.00E	
1		32	10	7.	7.	32.			.73E	300°	•
1		4	10	.6	٦.	30.	•		.37E	. 00E	
1		36	7	4.	7	30.			.31E	. UUE	
1		20	2	.2	7	30.	•		.158		
1		40	-	4	٦.	30.			8 E	.00E	
1		12	4	7	7	30.			UE	.00E	
1		44	9	9.	3.	31.		30.5	38	.00E	
1		91	10	9.	9.	31.			4 E	.00	829.7
1		48	3	3	3	31.			38	.00E	
1		70	N	2	5	32.			19E	.00E	
1		52	0	.5		232.7		35.8	SE	.00	837.5
1		24	~	17.37	9	232.1		30.4	4 UE	.00E	
-		1									

<u>a</u> 2	837.3	1			
CT2 C'2/m'2/3	3.87E-04 0.00E 00	0.008 00	0.00E 00	0.00E 00	00 400 0
Eps m^2/s^3	3.87E-04	3.638-01	6.63E-04	3.54E 01	1 578-04
E V/m	-10	41.5	52.2	58.4	60.3
e e	2.04	1.88	1.87	0.99	1 45
z	232.4	234.6	235.9	233.7	240.1
Ts Cent	20.00	19.71	15.88	18.31	17.96
-	17.67	18.19	16.42	18.43	14.69
At t	5207	4811	4621	4427	4149
Time h/m/s	17 16 28	11	18	18	19
				-	

NOTE: Numbers give time in Central Standard Time

Figure B-5. Flight 5 Flight Track

	-			1			-			1						1						1			1			1			-			1		
⊾ €	977.5	9.616	987.4	2.966	1005.3	1015.0	1016.2	1018.5	1018.5	1018.6	1018.6	1018.5	1010.5	1018.5	1018.6	1018.2	1018.0	1018.0	1018.0	1017.8	1017.3	1016.8	1016.7	1016.9	toto:8	1016.8	1015.1	1013.9	1015.6	1015.0	1007.3	997.4	83	1-	4	010.
CT2 C^2/m^2/3	9.81E-05	3.08E-04	2.56E-04	1.80E-04	1.08E-04	2.23E-04	1.764-03	4.87E-03	4.69E-03	5.61E-03	6.13E-03	5.16E-03	5.48E-03	3.97E-03	3.48E-03	3.148-03	2.60E-03	2.09E-03	2.54E-03	2.34E-03	2.73E-03	7.25E-04	1.20E-03	1.116-03	9.278-04	1.24E-03	1.78E-03	2.778-03	2.22E-03	1.14E-03	7.178-04	8.46E-04	4.77E-04	1.128-03	1.09E-03	8.73E-04
Eps m^2/s^3	. 10E-0	.57E-0	.40E-0	0360.	.45E-U	.10E-0	. 40E-0	.52E-0	. 21E-0	-36E-0	.39E-0	.01E-0	.07E-0	.53E-0	.65E-0	12E-0	.89E-0	.19E-0	. 28 E-0	.83E-0	.68E-0	.0 3E -0	.39E-0	. 6 6 E-0	.29E-0	.47E-0	.47E-0	. 65E-0	.45E-0	.32E-0	.31E-0	.97E-0	9.01E-05	. 14E-0	.06E-0	.49E-0
K V/m	3	52	58	46	24	39	16	25	13	26	90	44	16	03	33	17	48	94	59	70	58	39	10	35	25	14	55	58	57	253.1	39	10	182.6	158.4	158.9	229.9
●쇹		13,68	13.44	13.28	13.47	13.87	15.16	15.68	15.41	15.87	15.67	15.47	15,36	15.22	15.53	16.00	15,93	16.10	15.87	16.19	16.10	16.13	16.09	16.15	15.94	16,01	16.16	16.89	16.50	16.09	15.01	13.09	12.89	13.66	14.99	~
z	18.	13	18.	5	21.	24.	31.	34.	33.	35.	35.	34.	33.	33.	34.	37.	36.	37.	36.	37.	37.	37.	30.	37.	36.	36.	37.	33	38.	36.	30.	20.	318.1	5.7	29.	32.
Ts Cent	6.0	0.7	6.0	6.0	6.0	1.2	1.4	1.3	1.2	1.2	1.2	1.2	1.3	1.2	1.2	1:1	1.1	1.1	TI	1.0	6.0	6:0	6.0	8.0	1.0	8.0	9.0	9.0	0.0	0.7	1.1	7.0		6.0	3.0	6.0
-	9.5	9.6	9.0	1.4	2.1	2.9	2.6	2.3	2.0	1.9	1.8	1.6	1.6	1.6	1.5	1.4	1.4	1.6	1.6	1.5	1.4	1.4	1.4	1.4	1:1	1.2	1.3	1.2	1.2	1.1	0.7	4.0	19.88	0.5	0.7	0.9
Alt	16	1106	m	3	-		17	9	80	5	9	5	1	7	7	17	21	23	22	28	41	57	58	53	55	57	103	136	68	107	375	601	815	645	407	241
Time h/m/s	4 55 1	4 55	4 56 1	4 56 5	4 57 2	4 57 5	4 58 2	4 58 5	4 59 3	5 0 3	5 0 3	517	5 1 3	5 2 1	5 2 4	5 3 1	5 3 4	5 4	5 4 5	5 5 2	5 5 5	5 6 2	5 6 5	57 3	5 8 Z	5 8	59 6	5 9 3	5 10 1	5 10 4	5 11 1	5 11 4	15 12 18	5 12 5	5 13 2	5 13 5
	,				2	= :	"	2	-		16		0		2 :],							4.		100	; 6	3 8] 2		2 38	1		2 2	"		

				1			-			1			1	1			1			1			1			1			-			1				
a 2	1014.9	1017.1	1017.3	1017.2	1016.9	1016.0	1013.4	1013.2	1013.5	1013.6	1013.5	1013.1	lutt.6	1010.1	1009.9	1009.9	10101	1010.0	1006.9	1002.2	1002.4	1002.4	1002.6	1002.3	993.8	133.1	732.3	993.0	6.266	~	992.5	#	584.9	90	943.6	
CT2 C^2/m^2/3	9.53E-04	1.30E-03	1.57E-03	1.048-03	9.48 E-04	7.65E-04	5.49E-04	4.71E-04	6.51E-04	5.36E-04	9.02E-04	6.80E-04	3.342-04	6.75E-U4	3.28E-04	3.61E-04	3.208-04	3.43E-04	7.84E-04	6.338-04	2.71E-04	1.90E-04	1.156-04	2.66E-03	3.75E-04	7.578-05	8.67E-US	8.33E-05		2	3.	5.72E-04		-	.531	2
Eps m^2/s^3	1.158-03	. 59E-03	.94E-03	.31E-03	.94E-04	.82E-04	.51E-04	.17E-04		.18E-04-	.27E-03	.038-03	.42E-04-	.07E-04	.9 LE-04	. 50E-04	-	.24E-04	.60E-04	.93E-04	.48E-04		.90E-04		.52E-05	.10E-05-		. 37E-04				9.95E-05-		735 01	JE 02	00 BEO
E//m	2.11.7	255.6	7.997	267.6	270.9	282.1	291.8	289.3	274.5	317.6	336.9	334.9	337.2	326.8	371.4	387.2	407.7	379.1	285.0	190.4	220.7	241.4	218.5	159.7	172.4	108.7	173.6	120.0	120.9	130.7	130.1	135.2	5	159.0	107.2	170.4
• €	00.	.03	. 93	13	. 65	. 93	40	28	. 22	37	64	91	97.	88	. 92	83	.70	.71	.13	12.	.15	66.	69	.37	. 22	. 54	14	44	69	.72	7.0	64	.72	.70	-21.62	3.79
z	36	36	36	35	34	35	33	32	32	32	33	31	31	30	30	29	329.4	28	52	52	77	23	77	77	14	15	-	15	10	316.3	10	315.9	4.018		169.0	70
Ts Cent	16.07	20.84	20.76	20.71	20.90	21.00	21.00	21.00	21.20	21.24	21.18	21.06	21.05	20.95	20.90	20.86	20.60	20.75	20.83	20.93	20.87	06.07	20.95	20.97	20.70	20.02	20.02	20.45	20.10	20.12	20.26	20.23	20.04	17.12	12.40	
-	21.33	21.49	21.55	21.58	21.54	21.58	21.46	21.65	21.71	21.64	21.72	21.84	21.50	21.38	21.42	21.53	21.55	21.65	21.51	21.33	71.60	21.12	21.41	21.76	21.34	21.33	21.43	21.45	41.30	21.37	21.22	21.14	20.35	20.01	71.07	20.47
A t	109	48	42	44	52	78	150	155	148	144	146	158	200	243	247	249	243	247	334	464	458	460	454	462	702	722	720	726	140	726	738	700	957	010	615	808
Time h/m/s	5 14	5 14	5 15	5 16	91 9	5 17	5 17	5 18	5 18	5 19	5 19	9 20	07 9	5 21	5 21	5 22	77 9	5 23	5 24	5 24	5 25	57 5	97 5	97 5	5 27	5 27	5 26	5 26	67 5	5 29	5 30	5 30	5 31	15 32 1	25 5	5 33
				1								. 3	1 32	-			4	,		1	2	10	17			77						74				-

		1			1			1						1			1			1			-			1			-	-			-			-
<u>a</u> 2	993.1	987.2	984.6	984.4	994.6	984.8	984.4	985.9	935.0	1001.3	1005.1	1001.9	1002.1	1001.9	1002.0	1002.3	9966	8.186	932.4	736.7	985.2	375.5	975.0	959.9	948.5	940.0	932.4	923.4	115.7	916.6	906.5	-	30.	04	13.	25.
CT2 C'2/m'2/3	0.	-2.46E-03	5.52E-U4	5.49E-04	4.20E-04	1.46E-04	6.10E-05	4.07E-US	7.17E-05	4.29E-05	9.90E-04	8.10E-04	7.90E-04	1.328-03	1.266-03	1.64E-03	4.84E-04	1.57E-04	-8.42E-03	8.778-03	2.50E-04	-7.99E-03	9.89E-04	1.01E-04	9.93E-04	3.39E-03		.13E	. 16		. 38	•	. 21E	75E	. 24E	. 02E
Eps m^2/s^3	2	1.16E 01	2.72E-04	3.53E-04	2.72E-04-	1.538-04	6.59E-05	5.72E-05	7.83E-05	5.75E-05	1.236-03-	5.89E-04	7.58E-04	1.476-03	9.96E-04	1.00E-03	1.35E-04	1.20E-34	2.738 01	2.648 01	8.78E-05	3.918 01	2.57E-04	4.738-05	1.016-03	1.578-03	5. 60 E-04	1.34E-04	2.27E UU	6.29E 01	2.57E 01	1.18E-03	C.	.94E-0		9
E//m	172.1	58	40	32	23	73	32	23	20	36	52	71	41	54	09	55	90	20	22	11	153.5	90	17	52	11	-	4	0	~	3	80.4	~	-	81.1	96.1	2
a e	-14.97	12.50	7	2.7	2.3	11.84	1.9	2.0	(1	(1			4.1	4	-3	7		6.01	9	1.11	12.20	2	V	(A		4	13	CO	3	, D	ui	10.78	10.70	17.33	-	17.11
z	197.0	314.6	15	7	2	3	1	工	14	9	7	77	7	5	17	5	7	8	35	4	312.9	7	7	3	2	7	07	325.2	7	1	3	1	-	91	~	~
Ts Cent		0.																			20.80	•						•					0.	20.16	7.	7.
-	20.47	20.57	20.05	20.72	20.88	21.15	21.05	21.18	22.21	22.00	22.16	21.98	21.89	21.59	21.35	21.27	21.20	20.02	20.39	20.49	20.86	20.72	20.10	16.07	17.89	17.74	14.21	18.46	18.13	17.42	17.35		18.25	18.44	18.54	18.95
At	743	691	904	971	096	959	696	928	609	490	467	473	467	472	470	463	SAS	872	742	904	940	654	~	0	3	2	4	-	7	V	~	-	in	3332		-
Time h/m/s	5 33	5 34	5 34	5 35	5 35	5 36	5 36	5 37	5 37	5 38	5 38	5 39	5 40	5 40	5 41	5 41	5 42	5 42	5 43	5 43	15 44 16	5 44	5 45	5 45	5 46	5 46	5 47	5 48	2 48	5 43	5 49	5 50	5 50	5 51	19 9	5 52
																				-										,						

						1												1			1			-			-			-			-			1
a e	933.3	933.5	1.656	945.9	955.8	964.0	974.3	986.2	995.3	1001.8	1001.6	1002.1	1002.0	1002.3	1001.6	1001.8	1001.9	1001	1001	999.0	8.666	1001.2	1004.3	1002.4	1001.7	1002.0	1002.2	1002.2	1002.9	1007.4	1010.0	10101	1010.0	0	0	+
CT2 C^2/m^2/3	~	.78E-03	. SIE-US	.83E-03	.04E-04	·068-05	.03E-04	.81E-04	.35E-U4	.91E-03	1.34E-03	.68E-03	.01E-03	.49E-03	.06E-03	.92E-04	.70E-04	.031-04	.64E-04	.10E-05	.02E-04	.89E-04	.91E-04	.78 E-04	.53E-04	.61E-04	.57E-04	.14E-04	.64E-04	.33E-04	2		118	2.27E-04	.76	.34
Eps m^2/s/3	2.30E-04	3.92E-04	9.12E-04	1.27E-04	1.798-05	1.758-05	3.70E-05	3.52E-04	5.178-04	6.71E-04	2.61E-04	9.07E-04	1.02E-03	2.77E-03	2.19E-03	9.236-05	3.07E-04	4.90E-04	1.36E-04	6.62E-US	4.52E-04	5.88E-04	7.86E-04	6.88E-04	4.956-04	2.19E-04	1.032-04	1.10E-04	1.41E-04	3.54E-04	2.8 LE-04	3.09E-04	5.10E-04	.94E	9.	.02E-0
E V/m	104.3	113	110	137	104	95	188	172	144	153	137	136	101	175	196	148	146	163	138	142	170	206	503	507	203	203	186	142	135	131	134	133	114	133	180	263
a de	15.66	15.29	15.36	12,35	11.24	11.42	11.84	13.14	15.18	15.48	14.18	14:19	15.14	15.29	15.09	12.29	13.00	13.49	13.13	13.48	13.93	14.05	14.31	13.63	13.07	13.50	13.10	12.88	12.77	12.94	12.71	12.82	13.09	13.67	14.19	14.29
Z	316.9	315.9	316.4	306.3	303.5	305.9	309.5	317.5	328.7	331.2	325.0	328.0	379.3	329.8	3.46.6	315.7	318.8	321.1	319.7	320.7	323.0	373.9	375.6	322.4	319.5	321.3	319.6	318.7	318.2	319.5	319.2	319.7	320.9	323.3	325.8	3.028
Ts		•				10					20.71			•						•	•		•													
-	18.54	∞	က	သ	3	2	2	0	\mathbf{D}	-	21.21	-	$\overline{}$	$\overline{}$	-	~	~	-	-	-	-	-	-	-	_	$\overline{}$	-	-	1	N	~	N	~	N	22.48	27. 56
A t	9	45	40	60	13	55	26	92	3	1	482	9	9	9	2	-	-	-	2	2	3	9	0	2	-	-	9	9	4	-	4	4	4	9	2	S
Time h/m/s	5 5	5 53	5 53	5 54	5 54	5 55	5 55	5 56	5.57	5 57	15 58 7	5 58	5 59	65 5	0 0	0 9	0 1	6 1	6 2	7 9	6 3	6 3	6 4	0 0	6 5	0 9	9 9	1 9	1 9	6 8	p 9	6 9	0.0	01 9	01 9	11 9
		2	13]	2 1				2 2			1	-			1			1		- 13	7 15			11/10	. 34	1 %	-		7	_		2	1

							1			1	1			1			1			1			1			-			1						1		
•	ą	-	1013.9	3	3	1013.3	5	1016.8	1016.7	1010.6	1016.0	1005.0	992.5	985.8	986.0	986.2	986.4	986.6	985.1	904.3	983.9	983.7	987.8	995.5		2		1001.7	1001.8	1002.0	1001.8	1001.6	1002.4	1005.3	1010.1	1009.6	1009.4
CT2	C^2/m^2/3	5E-0	•	.04E-U	.95E-0	4.95E-04	-189.	.22E-0	•		1.	•	.66E-U			. •	1.		1.85E-04	1.408-04	1.90E-04	5.28E-04	7.498-04	6.63E-04	5.53E-04	4.738-04	.71E-0	4.48 E-04	3.11E-04	3.65E-04	.5	1.	.51E-0		.87E-0	6.22E-04	.22E-U
Eps	m^2/s^3	. 58 E-0	43E-0	.71E-U	.25E-0	.00E-0	.20E-0	.02E-0	7	.24E-U	12E-0	.31E-U	. 76E-0	.29E-U	.39E-0	.45 E-0	.72E-0	.41E-0	.11E-0	. 8 3E -0	. 99E-0	. 228-0	. 36E-U	.436-0	.77E-J	. y4E-U	.02E-0	.10	. 73E-0	. 26 E-U	.75E-0	. 07E-U	.39E-0	.63E-0	.29E-0	75	.40E-0
ч	N/m	16.	243.5	17.	89.	59.	34	401.7	404.3	408.5	425.6	229.3	115.5	127.6	134.6	144.7	148.7	167.2	177.7	175.4	167.2	178.6	181.6					226.3							187.8	168.4	161.7
a	ą	4.1		3.3	4.7	4.9	5.5	4	S	3	3	4	~	3	3	3	3	3	4	~	~	4	4	4	4	4	4		S	5	S	7	4	S	3	15.84	5.7
Z		.0	327.7		-	-	4:	-		:	-		-	1	*		-																			333.7	
Ts	Cent		20.69																20.38									21.19								20.88	8
-	3	2.4	5	2.5	2.1	2.0	2.2	2.2	2.2	2.1	7	1		5	0	6	2	2		2	5	7	9.	0	ı.	-	1.	0	1.0	1.0	1.1	1.2	1.3	1.4	1.8		1.5
Alt	#	140	137	151	160	154	- 79	54	57	61	-61	386	740	676	924	917	914	906	950	972	983	066	872	659	471	467	467	480	477	470	475	482	460	379	244	258	261
Time	h/m/s	0 11	6 12	6 13	6 13	6 14	6 14	6 15	6 15	91 9	91 9	6 17	6 17	91 9	91 9	619	6 19	07 0	17 9	17 0	27 9	77 9	6.23	6 23	6 24	6 74	6 25	6 25	97 9	0 26	17 9	17 9	6 28	6 7 9	67 9	16 30 4	0
				100	9	. 5	70	. 5		1 11	1						1	9		1	-	-	100	2 2			9	3 8			36	1	2 8	107	11		

	-			1			1			1						1			1			1			-	1						1				
<u>م</u> ۾	1010.0	1011.8	1013.3	1013.5	1013.2	1012.7	1013.3	1013.7	1013.9	1013.5	1013.5	1013.1	1015.4	1016.4	1016.2	1017.0	1018.0	1017.0	1016.1	1016.2	1016.0	1015.7	1016.0	1015.7	1015.2	1014.3	1014.6	1014.5	1017.2	1018.9	1018.8	1014.3	1001.4	992.3	983.5	973.3
CT2 C^2/m^2/3	6.22E-04	4.52E-04	4.73E-04	2.30 E-04	1.82E-04	5.33E-04	7.90E-04	3.95E-04	5.83E-04	6.44E-04	1.18E-03	6.55E-04	1.42E-03	1.83E-03	2.05E-03	2.908-03	6.81E-03	5.15E-03	2.058-03	2.27E-03	2.12E-03	1.57E-03	1.91E-03	1.32E-03	1.11E-03	1.20E-U3	1.27E-03	1.73E-03	3.01E-03	.951	.10	.41E	~	.74		. 33E
Eps m ⁻² /s ⁻³	.32E-04	5.82E-04	5.36E-04	5.5yE-04	8.358-04	9.57E-04	7.83E-04	4.77E-04	7.06E-04	1.128-03	1.05E-03	9.17E-04	1.038-03	1.36E-03	1.23E-03	7.69E-04	4.67E-03	9.05E-04	1.74E-U3	1.54E-03	9.56E-04	1.14E-03	1.17E-03	1.01E-03	9.0dE-04	6.74E-04	1.02E-03	8.94E-04	2.05E-03	5. 83E-03	8.02E-03	1.51E-03	5.628-04	6.00E-04	6.83E-04	2.11E-04
E W/m	172.1	183.3	132.4	188.1	7.607	252.7	234.1	205.4	150.6	207.6	187.0	203.3	297.5	302.3	8.667	275.7	2.98.2	282.9	282.4	287.8	202.9	215.9	250.5	149.7	156.1	188.6	411.7	200.0	230.4	253.7	268.6	228.6	142.9	130.0	125.2	116.0
a e	10.04	15,95	15,45	15.60	16.10	16.77	10.35	16.95	16.01	17.36	17.72	17.72	17.95	17.50	18.32	17.67	17.87	18.09	18.26	18.38	18.28	18.35	18.21	18.13	18.19	17.75	17.93	18.09	18.39	18.62	18.78	17.97	17.56	17.60	17.24	14.17
z	334.9	334.8	332.7	333.4	335.7	338.5	336.7	339.4	338.8	341.3	342.9	342.8	344.1	342.3	346.0	343.2	344.0	344.9	345.7	346.2	345.7	346.2	345.3	344.6	344.9	342.9	343.6	344.4	346.0	347.3	347.9	343.9	340.0	338.8	335.7	319.8
t Ts	20.75	20.80	20.04	20.57	20.52	20.70	20.53	20.63	20.57	20.41	20.44	20.36	20.32	20.40	20.45	20.41	20.58	20.57	20.45	20.36	20.36	20.40	20.40	20.49	20.55	20.05	20.71	20.73	20.70	20.86	20.96	20.70	20.54	20.46	20.30	20.45
T Cent	21.43	21.60	21.88	21.80	21.64	21.64	21.74	21.69	21.82	21.57	21.57	21.55	21.74	21.81	21.69	21.83	22.07	21.30	21.69	21.73	21.12	21.58	21.80	21.95	26.17	21.81	21.88	21.81	22.09	22.14	22.23	21.73	20.00	20.17	19.55	19.44
Alt	4	2	152	4	5	9	5	4	3	4	4	5	2	89	73	49	22	20	16	71	78	95	19	88	66	7	118	-	44	-2	1	7	8	4	966	30
Time h/m/s	6 31	6 31 4	6 32 1	6 32 4	6 33 1	6 33 4	6 34 2	6 34 5	6 35 2	6 35 5	6 36 2	6 36 5	6 37 3	6 38 3	6 38 3	6 39 7	6 39 3	6 40 1	6 40 4	6 41 1	6 41	6 42 1	6 42 5	6 43 2	6 43 5	6 44 2	6 44 5	6 45 3	6 46 3	6 46 3	6 47 6	6 47 3	0 48 1	6 43 4	16 49 14	6 49 4
		= 8	3 8					4 0	2 7	7			100	, ,	1 1		2 3	. 5		- 5		63	. 55	-	W.],			,		-	1	17		- 17	-

									1																												
<u>a</u> 1	_			1.		6		1.	8	8	1.	0	3	3	4	3.	3	2	1		6	2	-	2	3	3	3	4	2	. 0	2		Ŀ	3	735.5		1.
	c/m c/3	. 8 9E	-16E-	.49E-0	.85E	.83E	.46E-U	6.37E-04	.09E-0	.84E	.51E-0	. 25 E-0	. 08 E	.91E-0	.24E-0	.71E-0	.50E-U	.06E-0	.43E-0	•	OIE-0	. 58 E-0	.79E-0	.45E-0	.49E-0	1.	.05E-0	. 53 E-0	. BlE-U	.63E	.95E-0	.77E-0	.43E	.17E	1.87E-U3	.05E	. 35E
Eps 276.3	5/2	.76E	.3 9E	. U 5E	. 4 1E	. 14E	.46E	.03E	.06E	.88E	11	.8 JE	. 51E	.96E	. 0 3E	. 70E	.92E	. 84E	.72E	4.43E-05	.82E	.30E	. 42E	.48E	. 54E	. 34E	.09E	.70E	.12E	.22E	. 06 E	. 25E			2.54E-04	4.30E-U5	8-0
, E					.60															63.2						•									46.8		
a 4	€ 4	7	3	æ,	3	4	4	4	4	4	4	9	1.	8	8	æ	-	7	-		5	5	ů.	5	4	3	3	7	2	3	-	-	0		3.29		
z		17.	13.	13.	13.	15	14.	14.	15.	14.	15.	20.	24.	26.	24.	20.	16.	14.	11.	2	To	97.	96.	95.	90.	0	16.	15.	70.	67.	. 40	62.	56.	39.	215.7	10	60
Ts +c		5.5	0.5	0.4	0.0	0.0	0.4	0.3	0.4	4.0	0.1	0.2	0.2	0.2	0.2	0.1	9.9	8.6	9.6	2	9.5	9.4	9.2	9.1	4.1	3.2	9.0	8.3	4.7	B. B	8.8	4.7	3.	6.5	18.32	8	2
T		19.13	8.7	8.8	8.9	8.9	8.8	8.8	8.8	8.7	8.8	8.9	8.7	8.5	8.2	7.9	7.8	7.4	6.9	16.62	6.1	5.3	4.0	4.1	3.7	3.7	3.1	2.4	1.8	7.	2.	9.	7.	1.	11.42	4.	.3
Alt t	. !	N	0	2	3	8	5	m	2	0	3	3	5	00	4	9	-	-	30	4	4	0	-	-	4	4	3	-	30	-	-	-	-	-	8951	0	V
Time /m/s	, '	0	0 5	1 2	1 5	2 2	2 5	~	4 I	4 3	5 5	5 3	6 9	6 4	7 1	7 4	8 1	8 4	9 2	2	7	2	7	0	~	4		B	4	7	4	7	4	7	7 52	7	S
•	=	7	T	7	7	I	7	7	Ţ	1	1	1	1	7	1	7	7	1	1	1	1	7	1	1	7	7	1	1	7	7	7	7	1	7	17	1	7

		1							1																					-				
a e	728.2	123.6	129.9	727.6	729.1	729.2	729.0	731.3	738.8	749.7	764.5	7.611	801.5	827.9	853.4	869.6	8 54 . 4	977.0	953.5	978.3	994.0	1001.8	8.666	933.5	939.9	1000.4	1000.0	1000.5	1002.7	1010.5	1012.2		2	7
CT2 C^2/m^2/3	1.04E-03	1.03E-03	2.48E-04	•		5.	5.39E-04	4.09E-04	8.88E-04	8.89E-04	3.03E-04	5.37E-04	4.558-04	1.28E-03	2.02E-04	2.66E-04	1.26E-04	3.34E-04	1.718-03	7.85E-04	1.49E-03	6.96E-04	8.37E-04	1.95E-03	1.05E-03	1.06E-03	.15E-0	3.	.51E	.78E-0	.41E	1.79E-U3	. 31E-0	.22E-0
Eps m^2/s^3	.01E-0	. 93E	. 32t	2.71E-05	. 60E	.10E	. 02E	.83 E	. 37E	. 01E	4.48E-05	.391	. d 2E	.42E	.6 ZE	.491	.67E	.01E	.07E	3.71E-04	. 40E	. 36E	.6 JE	.00E	.0 4E	8.74E-04	.11e-	6.43E-04	.76E	7.35E-04	1.29E-03	OLE	1.46E-03	20 E
E W/m	24.0	24.8	23.8	73.4	23.7	24.3	23.8	24.1	24.5	29.3	33.4	37.4	37.2	20.7	73.1	98.6	94.0	102.5	113.6	139.6	165.4	156.7	1001	101.2	174.7	187.2	180.0	173.1	177.8	207.8	6.542	247.6	262.4	293.5
۰ę	. 38	.13	.23	. 33	. 01	.31	. 69	05.	.88	.74	. 20	.44	. 59	11.	. 04	.05	. 85	. 03	.41	.10	.00	99.	.85	.30	.63	15.12	15.06	14.76	99.	.32	.13	30	.37	. 59
z	209.4	203.3	202.3	-	210.6	211.7	211.5	2117	219.1	255.9	200.8	-	~	-	in	~	-	m	~	319.3	_	~	337.2	_	326.4	320.0	324.7	327.7	N	326.8	3.028	327.4	328.0	324.0
Ts Cent	16.59	17.99	16.30	18.56	18.05	13.06	18.73	10.88	18.47	17.58	16.71	19.61	19.55	19.78	20.33	20.42	20.75	20.92	21.41	21.27	21.52	21.01	21.57	21.48	21.51	21.53	21.61	21.69	21.55	21.59	21.52	21.38	21.36	21.32
۲	1.5	1.	-	11.56	11.67	11.49	10.90	11.08	11.70	9.55	10.69	12.03	14.26	15,39	16.73	17.41	18.86	19.98	19.69	70.07	20.84	21.37	20.97	21.12	21.31	21.16	21.00	20.88	21.52	22,13	77.77	-	21.77	-;
Alt	~	$\overline{}$	_	~	_	-	_	-	∞	4	7918	4	0	-	3	4	9	-	∞	_	693	477	533	540	573	516	526	512	450	231	184	183	173	114
Time h/m/s	7	10	10	11	1	12	12	13	13	14	14	15	15	10	16	11	13	18	13	13	70	20	77	77	7.7	7.7	23	53	74	74	57	1/ 26 0	56	17
	- 53	75	2	3	27			. 2	-	100	-	10	1.5	7.4	-		-2	47	73	12	151	77	737	N. F.	2	1 k	25	26	31			2	17	14

~ €	1015.2 1015.2 1014.9 1015.0 1015.1 1013.0 1000.7 989.7	
CT2 C^2/m^2/3	4.65E-03 4.70E-03 4.24E-03 4.83E-03 7.00E-03 6.02E-03 1.05E-03 2.25E-04	
Eps m^2/s^3	3.73E-03 3.10E-03 2.36E-03 1.88E-03 4.40E-03 2.13E-03 1.25E-03 4.37E-04 2.75E-05	
K V/m	327.8 340.4 343.2 353.2 377.5 140.4 175.7	
۰ę	15.30 14.97 15.09 14.76 14.75 12.08 11.66	
Z	332.6 331.6 332.2 331.0 332.6 331.7 329.1 314.3	
Ts Cent	21.27 21.35 21.21 21.21 21.20 20.99 20.73 20.73	
-	21.80 21.37 21.37 21.28 20.94 19.80 19.80	
At	100 101 109 106 102 162 508 819 1062	
ime m/s	27 36 26 6 28 40 29 12 29 43 30 15 31 19 31 51	
->	17 27 17 24 17 29 17 29 17 30 17 31 17 31	
		* * * * * 3 5

NOTE: Numbers give time in Central Standard Time

Figure B-6. Flight 6 Flight Track

				1			-			-			-			-						1			-			1						-	
~ €	973.4	981.5	988.5	992.4	8.666	1008.2	1015.7	1019.0	1012.6	1005.4	1003.2	1001.8	995.5	6.166	991.2	493.9	1002.3	1003.8	1003.3	1002.1	1003.4	1003.2	1003.4	1003.1	1003.4	1003.3	1003.1	1003.1	1003.2	1003.1	1003.2	1003.1	1003.3	1003.0	1003.4
CT2 C'2/m'2/3	9.648-04	9		.21e o	B-0	. 28 E-0	95-0		.87E-0	6.468-04	7	1.98E-04	2.00E-04	1.858-04	1.438-04	8.308-05	.73E-0	3.63E-04	.45E-0	.90E-0	.88E-0	1.32E-03	4.58E-04	.33	2.735-04		5.67E-04	7.	9.75E-04	3.68E-U4				.60	
Eps m ⁻ 2/s ⁻³	1.08E-05	. 53E-0	1.06E-05	.6 le-0	.17E-0	4.	.94E-0	9.98E-03	.04E-0	.32E-0	.138-0	.80E-0	6.46E-05	.51R-0	2E-0	.21E-0	.09E-0		.40E-U	.29E-0	38-0		8.44E-05	8	1.16E-04	2.38E-04	2	1.168-03	3	1.	2.25E-04	.33	1.07E-03		4.938-04
E V/m	150.9	109.7	135.0	194.6	160.3	193.4		532.8	28	186.	153.	132.	127.	118.	-	169.	. 94	262.3	53.	49.	194.2	41.	3	230.4	240.3	264.0	274.7	254.4		257.4	256.0	255.7	268.0	280.0	267.0
۰ę			•			27.29		26.59			•	27.62								*	27.81	27.70	27.71	27.58	27.50	27.55	27.44	4.	27.38	27.40	47.50		27.18	27.08	27.00
=	360.5	364.2	364.5	370.7	374.9	317.4	377.7	378.4	379.5	379.1	378.7	377.3	312.9	370.6	369.4	372.3	378.2	378.6	377.0	376.5	378.1	578.1	377.7	377.0						76.	75.	75.	375.5	75.	15.
Ts Cent	14.51	5.	•	6.	8	0	0	2.	2	19.61	v	19.54	13.57	19.65	19.65	19.73	15.41	20.00	20.14	20.20			20.12		-		7		20.52	20.53		20.43	20.40	20.36	78.07
- გ	3	4.2	4.5	4.3	4.7	4.6	4.2	3.9	4.3	4.5	4.4	24.52	4.3	4	4	4	4	24.63	4	4	4	4	24.82	4	4	4	4	4	24.59	4	4	4	24.72	24.60	24.62
##	1311	1076	877	703	552	315	103	12	192	395	457	495	675	779	798	722	481	438	453	487	451	457	450	460	450	454	460	458	457	458	450	459	454	463	451
Time h/m/s	12	4 13	4 13	4 14	4 14	4 15	4 15	4 16	4 16	4 17	4 17	4 18	4 19	4 19	4 20	4 20	4 21	17 5	77 4	4 22	4 23	4 23	57 5	4 54	4 25	4 25	4 26	17 5	4 27	P7 +	97 6	4 23	4	4 30	4 30
			-	1			L				2	× 1		0		1	7	3 3		3 7	0 :					1 6	7 1	2	7	2			4 1		

					1						-				1						1												1		
~ ₽	1003.1	1002.9	1003.2	1003.4	1003.2	1003.6	1003.3	1003.2	1003.2	1003.1	1003.6	1003.1	1002.7	1003.0	1002.9	1002.9	1003.0	10001	1014.0	1019.6	1013.8	1004.5	6. 466	0.126	7.086	970.1	959.4	952.4	944.1					00	. 46
CT2 C^2/m^2/3	1.428-04	.12E-0	1.17E-04			9.26E-05	1.15E-04	2.00E-04	2.39E-04	-1.66E-03	1.598-04	1.68E-04	5.78E-04	3.90E-04	3.72£-04	4.70E-04	4.58E-04	6.77E-04	4.68E-04	4.19E-03	2.82E-03		3.07E-04	2.12E-04	1.46E-04		5.276-04	8	. 7	7:	4.	2.71E-04	80	7.	2.29E-04
Eps m^2/s^3	.94	.46	•	.15	7.		1.55E-04	2.88E-04	4.06E-04	2.08E 00 -	1.11E-03	9.62E-04	6.61E-04	0.48E-04	4.99E-04	1.20E-03	1.05E-03	9.54E-04	1.65E-03	1.37E-02	1.82E-03	7.30E-04	2.62E-04	1.028-05	1.39E-05	1.32E-05	8.975-06	4.98E-06	.07E	.37E	.72E-0	.0 3E	.6 UE-0	.86E-0	3.18E-06
E V/m	307.4	311.4	307.8	9.867	9. 467	4.997	287.8	303.5	302.0	274.3	282.5	278.4	294.7	267.1	302.7	314.6	338.6	332.2	277.7	400.6	301.9	234.1	194.9	185.2	227.8	200.5	74.7					62.2	3.	0	3
• ₽	10.72	56.92	27.04	27.05	26.88	26.80	26.78	26.73	26.78	26.94	26.88	26.92	26.95	26.95	27.67	27.18	27.22	27.30	27.30	27.06	27.43	27.24	26.43	25.97	25.45	23.08	19.50	19.50	18.65	18.41	17.60	17.33	17.58	15.60	15.52
z	374.9	374.5	375.1	375.2	374.4	374.1	373.9	313.7	374.0	374.9	374.6	374.8	374.8	374.8	375.4	376.0	376.4	317.3	378.9	379.1	379.3	376.7	371.0	367.0	364.2	352.0	333.2	331.3	320.1	323.3	318.1		314.9	304.2	302.3
Ts Cent	20.32	.2		20.33	7.	19.65	3	19.93	19.95	20.04	19.88	19.91	19.99	19.98	20.00	20.04	20.07	20.02	20.08	20.32	20.07	19.94	20.04	20.02	20.02	20.00	19.00	19.83	20.03	20.13	20.06	19.93	20.06	10.07	2.
-	4.0	4.7	4.6	4	4.6	4.6	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	3	~	3	3	~	3	N	7	22.05	-	-	-
Alt	2	0	2	2	5	4	5	0	457	S	4	5	9	9	9	9	9	-	2	1	2	7	5	31	10	40	12	85	17	44	69	2956	20	48	19
Time h/m/s	4 31	4 31	4 32	4 32	4 33	4 33	4 34	4 35	4 35	4 36	4 36	4 37	4 37	4 38	4 38	4 39	4 39	4 40	4 40	4 41	4 41	4 42	4 43	4 43	4 44	4 44	4 45	4 45	9 4 4	4 46	4 47	14 47 48	4 48	4 48	6 4 4
	¥ :	, ,	,	3 .	10	g :	/*		4	8 :	-	4 :	2 3	40	1									111		- 0			- 2	- 1		1 2	1		70

교열	96.	82.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	56.	869.9 877.3 885.5 891.8 891.6 899.0 907.4 915.9	45. 67. 74. 88. 99.
CT2 C'2/m'2/3	.56			E-100/2019 - 100/2019 - 100/2019 - 100/2019 - 100/2019 - 100/2019 - 100/2019 - 100/2019 - 100/2019 - 100/2019	2.23E-04 1.40E-04 1.51E-04 1.30E-04 2.65E-04 2.41E-04 6.29E-05 1.59E-05	
Eps m^2/s^3	.92E.21E.15E	.29E .07E	.70E .21E .21E .88E .99E	.16E .35E .72E .33E .51E	2.16E-06 3.03E-06 2.68E-06 2.46E-06 5.72E-06 3.75E-06 3.52E-06 2.56E-06	. 35 E
K/m	72.8 62.8 54.2	2000	0 10 10 CC CC	70000	2.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	シューカットレ
۰ę	5.0	044	2 10 10 10 4 W	20.426	13.34 13.68 14.88 14.52 14.64 15.90 17.02	L 2 1 4 5 9 9
z	10.	9000	8 4 4 4 5	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	288.9 291.8 298.6 298.2 300.0 307.2 313.2 315.3	541. 541. 771.
Ts Cent	37.0	0.0	× × × × × × × × × × × × × × × × × × ×	0.00	20.23 20.40 20.58 20.58 20.58 20.61 20.63	0.00000
⊢	1.32	: מתכ	7000000	πασασαπ	19.30 19.79 20.25 20.67 21.19 21.73 22.12 22.74	2422444
At	3669 3626 3786	4063 4400 4710	5006 5170 5201 5208 5126 5112	5062 5067 5086 5081 4854 4665	4456 4221 3964 3767 3541 3023 2712	2125 1793 1492 1147 872 563 356
Time h/m/s	49 50 51	1222	25.44.23	327288	59 31 2 2 2 3 3 3 3 3 4 3 4 3 4 4 4 4 4 4 4 4	440000
				74444	4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	

	-			1						-			-			-						-						1						1		
~ €	1012.5	1016.9	1018.1	1011.1		999.1	996.9	1001.0	1002.3	1002.7			1010.3	1010.4	1012.2	1017.6	1019.3	1019	1019	1019.1	1018	1018.9	1018.9	1018.8	1017.		1018.3	1018.4	1018.3	1016.9	6	1016.7	1016.7	b	1015.9	
C.2/m.2/3	JCK.	2.14E-03	3.08E-03	1.186-03	2.75E-04	1.72E-04	3.175-04	3.44E-04	4.83E-04	5.198-04	1.09E-03	1.13E - 03	8. U3E-04	1.75E-03	2.10E-03	9.47E-04	9.16E-04	4.06E-04	4.75E-04	4.52E-04	3.85E-04	1.276-03	1.03E-03	7.77E-04	1.146-03	-	1.10E-03	α	_	2	-	.0	03E-0	15	.92E-U	
Eps m^2/s^3	. 17E-U		7.78E-03	4.	7	7.		30	7.55E-04	9.	2.60E-03	2	:	2.14E-03	0	Τ.		1.31E-02	4	1.74E-02	1.236-02	1. bug-02-	1.18E-02	1.336-02	v.		1.09E-02	-	7	Ξ.			7.018-03		4	
V/m	10	398.7	53	398.3	20	37	6. 697	45	350.7	30.	329.5	74	03	08	OC	533.6	601.3	601.1	-	0	596.5	593.8	577.3	552.0	25	50	567.8	587.9	573.3	5/3.3		560.9		417.4	415.6	
e e	27.14	26.95	56.93	27.14	26.78	26.20	26.32	26.77	26.77	26.99	27.24	27.49	27.45	17.47	27.41	27.05	27.08	27.18	27.14	27.27	27.30	27.31	27.35	54.17	27.51	27.36	27.30	27.33	21.20		1.	1.	27.31	1.	27.42	
z	317.7	378.4	379.1	377.9	374.1		370.5	373.3	373.8	374.9	370.2	378.7	379.3	379.7	379.8	379.6	384.3	380.2	381.1	381.3	381.3	381.4	-		-	-	-	-	-	381.1	351.2	361.1		381.4	341.3	
Cent IS	2	4	3	7.	.2	7.	17	4	20.59	J.	0	9.	0	0	0	20.75	2	2		3	20.18	20.76	20.02	20.00	3	0	20.61	0	40.59	3.	40.41	20.39	20.37	20.42	20.35	
-	4 . B	4.5	4.	4.0	4	4	4	4	24.59	4	4	4	4	4	4	4	4	4	4	3	23.98	4	4.0	41.47	4.0	3.3	3.3	3.3	3	3.8	3.7	3.8	7	3.7	23.37	
##	193	70	35	234	454	573	636	519	483	472	460	291	255	254	202	50	3	3	9	7	15	15	14	13	4 7	25	31	22	31	70	7.3	74	76	46	116	
/m/s																					18 41															
- 2	2	2	2	5	2	2	2	5	2	2	S	2	'n	in	2	5	2	2	'n	S	15 1	2	0	2	'n	'n	2	2	in	5	0	2	5	5	5	

				1			-			1				1						1						1						1				
<u>~</u> €	1016.0	1015.8	1014.9	1014.4	1014.4	1014.3	1014.3	1012.0	1010.8	1010.8	1011.0	1010.8			100	-	1 -	-	9.866				1 -		950.1	1			946.4		649.7	1 -		948.0	1 -	
CT2 C'2/m'2/3			3.13E-03	1.		4	. 20E-D	.33E-0		138-0	.15E-0	.68E-0	1.				4.39E-04		7.44E-04			1.008-01			7.31E-04				. 94E	.05	.2	.19		E-0		.68E-0
Eps m ² /s ³			6.69E-03		•	•			•		•	•	•		•	•			9.158-04					•	-		•	4 .0 3E-06		•			.938-0	E-0		.196-0
E V/m	52	510.1	490.7	443.4	446.0	470.0	470.0	359.2	343.7	376.0	386.4	393.4	343.3	302.8	290.7	267.7	275.5	289.6	243.5	187.3	273.3	296.3	154.3	82.0	64.5	41.8	53.3	3	_	~	2	54.2	0	52.3	-	
₽	~	45	27.51	99	25	12	13	91.	14	18	60	. 62	69	19	58	. 53	.57	44	86.	19	.33	98	.45	84	. 92	. 65	.57	18.65	19.18	7	-	19.31	19.14		18.82	
z	381.1	381.3	381.4	381.6	381.1	341.2	381.4	381.4	381.0	31	30	30	20	73	11	10	11	16	374.2	11	90	65	21	33	20	26	97	97	23	30	333.8	53	329.3	328.2	27	331.9
Ts Cent			20.48																											•			2	20.00	20.10	20.32
- 3	3.6		23.05	44	-		44	~	~	-	4	~	77	a.	4	~	4	4	4	14.3		1	10	.,		(-)		23.57	3.4	3.4	23.15	23.27	23.15	23.18	23.35	23.66
Alt	96	101	125	140	140	144	144	207	241	243	235	242	707	478	504	511	511	909	586	803	1094	1426	1573	1798	1995	2045	2050	2061	2105	2049	1930	2000	2070	2039	2044	1930
Time h/m/s	5 27	17 5	15 24 16	5 28	67 5	15 29	15 30	15 30	5 31	15 32	15 32	15 33	5 33	5 34	5 34	5 35	5 35	5 36	5 36	5 37	5 37	5 38	5 38	5 39	5 39	5 40	5 41	5 41	5 42	5 42	5 43	5 43	5 44	5 44	5 45	5 45

		1						1						1						1			1			1			-				-			1
<u>م</u> و	960.1	8.196	8.916	984.6	990.4	998.7	1007.2	600	008	-	1008.6				1008.6			1008.9			•	5	1.		1015.8	2.			UIB.	013.	018.	-	.810	1018.0	-	1013.2
CT2 C'2/m'2/3	3.04E-04	.78E	98E-0	.18E-0	.42E-0	1.03E-03	.23E-0	.68E-0	. 46E-0	. 20E -0	.50E-0	.84E-0	2.34E-03	.32E-0	.94E-U	.18E-0	.50E-0	.26E-0	.47E-0	.82E-0	3.78E-02	.05E-0	.62E-0	.05E-0		3.61E-03	.36E-0	.88E-0	.42E-0	. 49E-U	53E-0	.01E-0	28E-0	3.65E-03	08E-0	13
Eps m^2/s^3	9	. 23E-0	.66E-U	. U7E-U	.42E-0	.45E-J	.08E-0	.07E-0	.73E-0	. 55E-0	.00E-0	.66E-0	. 54E-0	. 50E-0	.74E-0	.36E-0	. U6E-U	.436-0	. BUE-0	.4 IE-0	. 21E-0	. 10E-0	.51E-0	.02E-0	5.35E-03	.06E-0	. 936-0	.44E-U	.37E-0	. 32E-0	. 20E-0	.27E	.27E-0	24E-0	. 24	-399·
E V/m	113.1	1	83.	53.	52.	15.	47.	40.	81.	87.	97.	65.	75.	73.	71.	95.	15.	72.	58.	33.	.76	64.	10.	19.	58.	18	70.	75.	00.	03.	71.	40.	78.	538.9	79.	31.
e e	23.43	24.64	25.77	26.50	26.85	27.29	27.35	27.50	27.55	27.64	27.68	27.72	27.77	27.79	27.90	28.00	27.96	27.85	27.80	27.70	27.74	27.83	27.74	27.59	27.74	27.80	27.76	27.75	27.51	27.49	27.39	27.35	27.36	27.43	27.42	27.41
z	-	358.6	2	2	N	2	2	3	9	0	2	2	0	0	-	-	-	-	-	-	-	~	~	-	-	-	-	-	81	81.	340.9	30.	380.9	381.6	381.0	380.9
Ts	20.20	0.	2.	0.	7.	3	0.	7.	7.	0.	6.	.2		.2	.3	9	7.	2.	.2	.3	.3		3	. 7	20.45	7		7.	3.	9.	3	1.	20.64	5	20.48	4.
_ გ	?		3	3	3	4	4	4	4	3	3.	3	ä	3.	3	4	4	4	4	4	4.	4	4	4.	24.45	4	4	-	4	4	4	4	4	4	24.36	4.3
Alt	89	1459	19	971	805	995	325	273	281	569	287	293	285	291	286	264	275	279	134	95	74	82	46	0	85						50	1	12	23	1.9	18
Time /m/s	46 22																																	3 56		
_	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	n	15	10	10	0	9	9	0	0	16	0	0

																																				-
<u>م</u> و	017.	1.	17.	17.	17,	F.	17.	16.	16.	16.	.9	15.	15.	15.	15.	15.	1015.	1014.	1013.	1013.	1013.	1012.	1008.	1008.	1008.	1006.	1001.	1000	1000.	1000.	997.				991.0	1.
CT2 C^2/m^2/3	-	.93E	3.18E-03	4.58E-03	-	3.78E-03	-	-	-	-	3.32E-03	_	-	_	-	-	7.21E-04	8.44E-04	. 97E-	.01E-	. 76E-	.82E-	1.01E-03	-799·	-300·	.11E-	-900·	.36E-	-36E-	.31E-	-67E-	.06E-0	.92E-0	.17E-0	13E	.00E-0
Eps m^2/s^3	.24E-0	.808-0	. 19E-0	.38E-0	.31E-0	.18E-0	.82E-0	.14E-0	.70E-0	.00E-0	. 27E-0	.12E-0	. 28 E-0	.65E-0	.64E-0	.25E-0	.63E-0	.37E-0	.58E-0	.116-0	. 70E-0	. 25E-0	.08E-0	.37E-0	.77E-0	.70E-0	. 54E-0	.00E-0	. 55E-0	. 4 UE-0	.17E-0	. 02E-0	.32E-0	.36E-0	-	.63E-0
E V/m	0.9	31	10	14	17	23	84	27	48	49	46	15	44	47	45	50	51	21	70	31	46	28	37	17	12	32	96	28	3	45	43	15	73	84	296.6	21
e e	7.4	7.5	7.5	7.5	7.6	7.5	7.5	7.6	7.6	7.6	7.6	1.1	7.6	7.6	7.7	7.6	7.5	7.5	7.6	7.5	7.5	7.5	7.7	7.7	7.6	7.6	7.6	7.4	7.5	7.5	7.1	6.5	6.3	6.5	76.68	9.9
z	41.	381.2	81.	81.																															371.2	
Ts Cent	3.	20.55	.0	.5	.5	.5	9.	4.	.3	7.	٦.	7.	3.	0.	2.	7.	4.	4	.0	4.	4.	.3		.3			7		.3	3		.3	3	7.	20.13	0.
-	4.4	24.48	4.4	4.4	4.4	4.5	4.4	4.4	4.4	4.3	4.3	4.3	4.4	4.3	4.3	4.3	4.3	4.2	4.3	4.3	4.2	4.1	4.1	4.3	4.3	4.1	4.2	4.5	4.5	4.4	4.3	4.0	4.2	4.2	24.14	3.8
At	26	40			37	31	36	7.5	7.0	80	78	100	47	95	98	84	97	121	140	138	136	168	280	292	278	335	485	517	512	521	609	781	781	191	788	900
Time 1/m/s	31																																		23 37	
- 5	9	0	0	9	16 7	9	0	9	9	0	9	9	9	9	9	0	9	9	9	0	9	9	0	9	9	9	9	9	9	9	0	9	9	9	16 2	9
	2	77	101		- 22	1 29	11		la la	73	211	17	17	7.8	127	77	17	1		17	11	12	10	312		15	77	73	-	3	(4)		10	- 32	6	44

							1										1																			
<u>a</u> 1	2	963.5																		992.	002.	008		008.	008.	010.	011.	012.	012.	011.	012.	011.	015.	011.	012.	011.
CT2	c /2 m/2 1	5		.4	-	o.		4.	9.		3		u1			0.			۳.	1.35E-02		7.		4	4			(4)	۳,						۳,	4.
Eps	m 2/5.3	4.69E-05	7.	2	3			2		3	4.		.,	4.	2				2	1.84E-04		31	7.	31			9			2	4		.0	٦.	3	•
w 5	m/A	253.3	00	32.	41.	30.	02.	72.		7.	-	2	. 9	3.	2	2	05.	91.	63.	291.3	95.	27.	40.	54.	57.	.09	.09	. 99	25.	69	61.	49.	28.	05.	15.	04
a 4	2	26.24			2		10	3		3	8	8	8	*	8	8	-		9	76.93	-	7	1.	-	-	-	-	-	2	8	3	*	*	2	*	
z		. 29	.00	67.	. 09	. 69	61.	52.	32.	28.	26.	25.	26.	25.	25.	24.	41.	62.	68.	372.3	17.	79.	du.	RO.	go.	81.	81.	82.	42.	82.	87.	85.	85	3	70	70
TS TS	Ju C	19.96	•					•					•							20.46		•	•	•							•		•		20.00	20.85
, -	3	7	3	7	3.	3	3	7	7	3.	3	3	ë,	3	3	3	3.	3	e,	24.38	4.	4	4.	4	4	4	4	4	4	4	4	4	4	4	4	4
Alt	2	00	02	01	00	N	30	99	90	90	14	14	10	07	07	03	83	36	99	740	0	a.	2	7	7	4	3	0	3	3	3	3	3	7	n	7
Time	s/m/u	6 24	6 25	6 25	6 26	97 9	6 27	6 27	87 9	6 28	6 7 9	6 30	6 30	6 31	6 31	6 32	6 32	6 33	6 33	16 34 18	6 34	6 35	6 35	95 9	95 9	6 37	98 9	6 38	65 9	6 33	0 7 9	6 40	6 41	6 41	6 42	6 42
		4	13	92	3	5	2		3	123		**	-3		53	4	2	=	10	3	3	=2		7	12	E	97	7	2			12	12	27		

		-																																		
۵	qu	011.	012.	011.	011.	012.	011.	011.	011.	1	011.	011.	014.	018.	.600	996	37.	. 61	70.	53.	. 4 .	44.	36.	24.	17.	38.	. 66	.05	19.	.60	58.	50.	848.0	45.	5.	36.
CT2	C^2/m^2/3	. 34 E-U	.36E-0	.38E-0	.35E-0	.31E-0	.29E-0	.39E-U	.41E-0	.62E-0	.57E-0	.50 E-0	.48E-0	.45 E-0	.44E-0	.34E-0	.32E-0	.34E-0	.34E-0	.35E-0	.33E-U	.34E-0	.39E-U	.37E-0	. 38 E-0	. 36 E-0	.40E-0	.45E-0	.42E-0	.41E-U	.40E-0	.37E-U	1.44E-02	.53E-U	.11E-0	.23E-U
Eps	m^2/s^3	.12E-0	.20E-0	.14E-0	.28E-0	.64E-0	. 63 E-0	.17E-0	.02E-0	.84E-0	.44E-0	.6 2E-0	.21E-0	. 10E-0	. 58 E-U	.67E-0	.99E-0	.31E-0	.24E-0	. 30 E-0	.97E-0	.04E-0	. 70E-0	.6 JE-U	. 58 E-0	. 57E0	.80E-0	.49E-0	. 52E-U	.07E-0	.51E-0	.04E-0	6.61E-06	. 20E-U	.19t-U	. 25E-0
ш	M/W	30.	48.	61.	61.	.80	56.	29.	41.	7.	43.	64.	.17	63.	95.	74.	55.	26.	18.	0	7.	7.	7		7	7.	3.	3.	1.	9	+	7.	48.9	0	1.	
a	ą	•1			•		•	•					•	•															•				12.91			•
z		82.	82.	82.	81.	82.	42.	42.	81.	81.	41.	81.	81.	82.	80.	14.	. 69	62.	53.	39.	36.	35.	76.	18.	17.	15.	.60	04.	73.	35.	.90	63.	262.3	63.	4	3
Ts	Cent	2.	.7		5	.5	7.	4	7	4	3		4.	0	.5	2.	7	7.	٦.	7	7.	2	0	0	2	0.	.7	٦.	2		8	3.	19.91	3	5	. 7
-	చ	.2	2	7	7	4.2	4.1	4.2	4.3	1.2	4.3	4.2	4.3	7.	1.6	4.3	3.9	3.8	3.9	4.0	3.8	3.1	3.0	7.0	4.3	1.7	1.1	0.6	0.0	3.5	7.1	.5	18.37	6.3	Τ.	17.94
Alt	#	193	188	203	193	180	508	196	201	193	203	199	112	16	270	645	968	-	~	5	3	-	~	1	2	2	2	-	_	4	-	3	5142	1	N	$\overline{}$
æ	s/w/																																25	73	55	17
Ţ	h/m	6 4	0 4	6 4	6 4	6 4	6 4	6 4	6 4	6 4	6 4	6 4	7 9	6 4	6 5	6 5	6 5	6 5	0 5	6 5	0 0	0 5	6 5	6 5	5 9	6 5	0 5	6 9	c J	0 5	0	0 5	0 5	1	1	-
										1																	7	-	,	,	-	7	7	-	-	1

2,E	.57E 0	.41E 01	.39E-05 2	.638-05 2.2	.07E-U5 7.90	.04E-05 1.01	.42E-05 2,49E	.63E-05 3.73E-	.99E-US 2.50E-	.08E-05 1.01E-0	.53E-05 3.86E-0	.03E-05 1.78E-0	.70E-05 1.39E-0	.12E-05 3.62E-0	.41E-05 2.72E-0	.09E-05 2.04E-04	.03E-05 4.25E-04	.37E-05 5.98E-04 9	.30E-05 6.41E-05 9	.13E-05 8.31E-05 9	.98E-05 1.02E-04	.16E-05 2.35E-04	.63E-05 4.52E-04 9	.16E-05 2.96E-04	.69E-05 1.81E-04	5.88E-05 1.22E-04 97	678-04 1.42E-04 10	.8UE-U3 1.60E-U3 10	.98E-03 4.48E-03 1	.28E-03 2.86E-03
>	41.6	55.0	58.4	55.3	50.8	53.1	56.2	56.1	53.5	46.3	49.5	53.6	56.1	58.3	64.1	63.4	62.7	64.8	65.3	71.4	73.9	85.6	136.7	173.6	180.9	2 210.7	371.7	371.9	522.0	438.9
a e	3.2 6.6	7.7 13.9	6.8 13.8	4.3 13.3	4.1 13.2	4.9 13.4	6.0 13.5	8.8 14.1	2.0 14.8	0.1 14.4	3.8 15.1	0.1 15.4	2.4 14.3	6.9 15.0	4.3 16.4	2.4 15.6	7.1 16.3	U.8 16.9	4.4 17.4	6.4 17.4	9.1 17.7	4.9 18.7	9.0 21.4	9.6 23.3	5.5 24.1	- 0	4.8 27.1	0.9 26.9	7.7 26.6	8.4 27.1
	4.82 2	7.64 2	9.29 2	9.43 2	9.62 2	9.59 2	9.03 2	9.59 2	9.54 2	9.30 2	9.37 2	9.58 2	9.68 2	9.73 2	9.63 3	9.61 3	9.65 3	5 66. 3	9.81 3	9.78 3	9.65 3	y.06 3	9.75 3	3.70 3	9.82 3	19.68 30	9.72 3	y. 53 3	3.60 3	9.46 3
-	20	5.	.7	2	0.	ω,	7.9	7.7	7.4	7.0	7.7	8.1	8.0	4.6	9.6	0.1	4.0	1.0	1.4	7.1	7.4	2.8	2.7	7.0	3.0	23.61	4	4 0	4.1	4.3
Alt	49	51	51	51	51	51	51	51	51	51	50	48	46	43	41	38	36	34	32	29	26	24	21	18	15		N (C	1		7
Time h/m/s	1 1	1 2	7 3	7 3	7 4	7 4	7 5	7 5	9 1	7 0	11	11	7 8	7 3	6 1	7 9	0T L	7 11	11 /	7 12	7 12	7 13	7 13	7 14	7 14	17 15 18	7 16	7 16	7 17	117

NOTE: Numbers give time in Central Standard Time

Figure B-8. Flight 8 Flight Track

10DEC78

œ

FLIGHT#

989
2/3 9E-04 9
9.39E-0
.14E-04 .4LE-03 .28E-04
124
96 223. 91 237. 68 254.
4.8.4
302.0 302.7 301.8 302.7
17.68 18.94 19.23 18.75
3.91 4.44 1.51 1.92 1.56
861 861 805 690 686
57 229 1 333
12 54 5 12 55 2 12 56 1 12 56 3

Time At T 15	Cent S		1																						1													
Time	Mar	1	003.	000	000	001.	000	99.	92.	95.	91.	93.	91.	17.	75.	75.	74.	17.	981.	.900	020	021.	022.	021.	021.	021.	021.	026.	026.	023.	022.	025.	025.	020.	018.	024.	024.	ACO
Time	Name Alt Is Name Alt Is Name Alt Is Cent Alt	C'2/m'2/3	*72E-0	.01E-0	.58E-0	.27E-0	.28E-0	.62E-U	. 70E-0	. 50 E-0	.15E-0	.33E-0	. 32 E-0	.04E-0	47E-0	.976-0	.19E-0	.10E-0	·05E-0	.06E-0	.38E-0	. 29E-0	.34E-0	.02E-0	.8 dE-0	.73E-0	.72E-0	.85E-0	.18E-0	.16E-0	.61E-0	.08E-0	.33E-0	.06E-U	.33E-0	. 84E-0	. 84 E-U	856-11
Mine	13me	2/5	.82E-0	.55E-0	. 51E-0	.99E-0	.79E-0	.73E-0	. 0 2E-0	.94E-0	.18E-0	.09E-0	.77E-0	.88E-0	. 22E-0	. 39E-U	.15E-0	.84E-0	.69E-0	.516-0	.07E-0	.19E-0	.48E-0	. JZE-0	.13E-U	.35E-0	.57E-0	.37E-0	.09E-0	.94E-0	.02E-0	. 93E-0	.976-0	.736-0	.78E-0	.50E-0	. 10E-U	425-0
Nime	h/m/s ft Cent	w/w	90	85	68	75	19	46	57	54	9	73	73	13	67	77	30	33	59	3	13	52	33	7.5	55	7.7	34	10	30	13	15	44	41	34	70	10	7 7	AC
N/m/s Alt T Ts N h/m/s ft Cent T Ts N h/m/s ft Cent Cent Ts N 14 42 669 5.12 13.90 301. 15 14 686 4.88 12.80 302. 15 14 686 4.88 12.80 302. 16 18 690 5.12 13.90 301. 16 18 690 5.13 12.80 302. 17 22 896 4.36 12.10 301. 17 24 905 4.37 10.19 300. 18 26 913 4.44 15.78 300. 18 26 913 4.44 15.78 300. 19 30 4.37 10.19 300. 19 30 4.27 12.40 300. 20 34 4.27 12.40 300. 21 33 3.02 13.70 298. 22 45 <td>h/m/s ft Cent Island Nucleon 3 14 10</td> <td>e e</td> <td></td> <td>9.</td> <td></td> <td>S</td> <td></td> <td>9.</td> <td>.7</td> <td></td> <td></td> <td>.7</td> <td></td> <td>0.</td> <td>5</td> <td>8</td> <td>.6</td> <td>9.</td> <td>0</td> <td>.5</td> <td>5</td> <td>7.</td> <td>.3</td> <td>7.</td> <td>7</td> <td>.2</td> <td>.,</td> <td>4</td> <td></td> <td>.7</td> <td>.5</td> <td>.0</td> <td>4.</td> <td>5.</td> <td></td> <td></td> <td></td> <td>*</td>	h/m/s ft Cent Island Nucleon 3 14 10	e e		9.		S		9.	.7			.7		0.	5	8	.6	9.	0	.5	5	7.	.3	7.	7	.2	.,	4		.7	.5	.0	4.	5.				*
N/m/s Alt T Table T Table T T Ts T Ts T Ts T Ts	1 me		02.	01.	05.	01.	01.	01.	00	00.	00.	00	00.	99.	98.	97.	96.	. 16	97.	01.	04.	02.	03.	02.	02.	03.	03.	04.	.70	05.	04.	00.	04.	04.	04.	00.	0.5	
1 me	Mm/s h/m/s		3.7	3.9	7.8	3.2	2.1	2.8	3.3	6.1	5.7	2.4	2.1	2.3	7.5	2.8	3.7	2.9	7.7	3.7	3.8	3.9	7.6	3.6	4.0	5.4	4.1	4.1	4.2	5.6	4.5	3.8	3.9	5.0	4.7	3.0	3.1	2
Ame	Ma/s Ma/s	-	0.	7.	8	1.	٦.	٦.	~	.3	4.	7.	0.	0.	3	0.	0.	2.	.0	8.	9.	0.	3.	3.	00		0.	4.	3.	.7	1.		.7	1.	.5	1.	٦.	-
44441111111111111111111111111111111111	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	600	699	686	654	069	702	876	905	913	886	938	1302	1362	1373	1393	1333	1210	524	162	118	114	125	124	138	127	7	11	81	115	20	91	161	223	53	25	4.0
£ 1000 1000 1000 1000 1000 1000 1000 10		n N	10	42	14	46	18	20	77	54	56	58	30	7	34	9	38	10	42	14	46	18	20	22	24	20	59	31	~	35	1	33	11	43	15	15	13	
		h/m/																																				

																																	-			
a q	021.	023.	023.	024.	020.	017.	020.	021.	020.	020.	015.	016.	015.	014.	015.	011.	004.	04.	003.	005.	004.	98.	85.	68.	58.	.95	59.	57.	52.	54.	48.	49.	50.	49.	947.8	49.
CT2 C'2/m'2/3	.11E-0	.04E-0	.87E-0	.95E-0	.82E-0	.21 E-0	, 31E-0	.05E-0	.95E-0	.64E-0	.14E-U	.09E-0	.07E-U	.19E-0	.98E-0	.53E-U	.14E-0	.17E-0	.57E-0	.03E-0	.62E-0	.04 E-0	. 4 LE-U	. 70E-U	.75E-0	.74E-U	.63E-0	.84E-0	.10E 0	.12E-0	. 00E-0	.15E-0	.28E-0	.95E-0	3.18E-03	. 63E-0
Eps m^2/s^3	.90E-0	.54E-0	.51E-0	.39E-0	. 038-0	.83E-0	.06E-0	.17E-0	.14E-0	.18E-0	.21E-0	.77E-0	.02E-0	.34E-0	.51E-0	. 4 LE -0	. ó 8 E-0	4E-0	.49E-0	.34E-0	. 6 UE-U	.17E-0	. 38E-0	.938-0	.30E-0	.178 0	.04E 0	. 0 3E U	.21E 0	.40E 0	.6 OE-0	.71E-U	. J7E-0	.17E-0	1.34E-03	.21E 0
V/m	89.	01.	41.	59.	53.	69.	46.	58.	57.	47.	33.	28.	43.	24.	19.	65.	87.	92.	39.	99.	94.	99.	53.	31.	14.	.70	17.	18.	13.	10.	12	43.	37.	10.	187.8	70.
e e	4	3	5	4	4	0	3	4	9	3	4	4	5	5	3	5	3		-	1	3	7	-	2	0	4.8	5	9.9	4	4	5	4	3	4		9
z	03.	04.	04.	04.	03.	04.	03.	03.	04.	03.	02.	03.	03.	03.	03.	02.	02.	02.	02.	02.	01.	01.	98.	96.	95.	.96	94.	36.	91.	44.	90.	68	89.	90	249.6	54.
ıt İs	3.2	2.5	4.0	4.7	5.2	4.3	4.8	3.6	2.5	2.3	2.0	2.5	2.5	3.5	4.0	3.8	3.5	.5	3.6	7.0	2.1	2.1	2.7	3.0	2.1	9.4	.7	0.	1	5.9	3.0	1.8	1.8	0.7	12.45	2.4
T Cent	7.	7	4.		.7.	9.	2	0	0	0.	0	4.	9.	4	4	2.	9.	.5	4.	8	.5	0.	7	9.	2	5	2	7.	.2	7.	.5	1.	0.	9.	1.69	2
t t	144	œ	74	62	4	2	2	4	4	2	0	-	3	0	20	2	3	-	2	9	2	2	10	56	84	91	82	88	01	95	12	11	10	10	2146	00
me /s	7	2	7	5	~	~	~	1	3	7	4	٦	4	٦	n	7	2	~	3	~	3	3	7	~	7	4	7	4	-	5	7	2	~		3	
Time h/m/s	m	~	m	~	~	~	~	m	~	~	m	~	~	3	~	m	~	~	3	3	3	~	~	~	m	~	~	3	~	3	~	~	~	~	13 51	~
	177	111	22		?	11	32	73	75	2	2	34	12	8	2	45	47	2		45	24	11	15	0	20.	22	3				+		· ·	,		20

2 OF

AD A070956

MICROCOPY RESOLUTION TEST CHAR NATIONAL BURGAL OF STANDARDS 1963 A

BDM CORPORATION

THE B

			-						1			1			1			-			-			-			-			1			-			1
~ €	43.	33.	27.	24.	24.	21.	22.	23.	23.	24.	22.	22.	20.	13.	98.	87.	76.	63.	55.	55.	50.	58.	57.	69	88.	05.	22.	39.	54.	66.	.61	95.	009.	1018.1	024.	026.
C^2/m^2/3	.09E-0	.76E-0	LBE-0	.28E 0	.15E-0	-08E-0	.65E-U	.48E-0	15E-U	.91E-0	.80E-0	-28E-U	.96E-0	.75E-U	0.38-0	.78E-0	.34E-U	.53E-0	.50E-0	.38E-U	.83E-U	.91E-0	.51E-0	. 04 E-0	.17E-0	.55E-0	218-0	.33E-0	.90E-0	736-0	.20E-0	.32E-0	.44E-U	5.53E-03	.65E-U	.67E-U
Eps m^2/s^3	.32E 0	.73E 0	.14E 0	.40E 0	.08E 0	.19E 0	.92E-0	.27E-0	.74E-0	.90E-0	.41E-0	.73E-U	. 27E-0	.32E-0	.40E-0	. 56 E-0	.23E-0	0-H19.	.56E-0	.47E-0	.78E-0	.82E-0	.31E-0	.26E-0	.58E-0	. BUE-U	.30E-U	. 01E-0	.29E-0	. b 6 E-0	. 54E-U	.50E-0	.70E-0	YE	.92E-0	.02E-0
V/m												4	•	•					•		•				•	•			30.	74.	.90	37.	.70	273.4	96.	.07
e e	7.7	1.	3.9	5.7	2.2	4.5	4	.5	2	9.	9.	3	.5	.5	7	7.	-	9	0.	3	7	2	0.	9	7.		9.	e.	4.	9.	4.	7	7.	4.03		•
z	. 60	14.	33.	32.	48.	36.	71.	71.	14.	12.	12.	11	71.	. pc	61.	.80	. 40	50.	48.	47.	48.	49.	49.	52.	. 90	. 40	12.	37.	91.	14.	.96	38.	10.	301.5	.20	12.
Ts Cent	1.3	.5	4.3	.0.	4.0	1.6	1.5	1.1	1.2	1.0	1.9	1:1	1.9	2.2	0.1	1.2	0.7	0.4	0.0	1.5	1.5	1.0	6.0	0.7	1.0	6.0	1.0	1.3	2.7	7.0	1.3	4.0	1.0	10.04	0.0	2.0
-	~		7	.6	9.	2	0.	0.	~	9.		4.	3	3	.7	2.	2.	7	2.	2.	3	2.	.9	.6	2	5	3	0.		8	.7	.0	2.	09.9	4.	.0
Alt	27	55	12	80	81	90	87	84	83	81	85	87	93	11	55	90	2.7	62	84	98	81	16	13	42	5	37	98	36	16	19	25	-	4	220	64	20-
Time h/m/s	3 52	3 53 7	3 53 3	3 54 1	3 54 4	3 55 1	3 55 4	3 56 1	3 56 5	3 57 2	3 57 5	3 58 2	3 58 5	3 59 3	4 0 3	40 3	4 1 7	4 1 3	4 2 1	4 2 4	43 1	4 3 4	4 4 1	4 4 5	4 5	4 5 5	4 6 2	4 6 5	4 7 3	4 8 3	ဘ	7 7	4	4 10 11	10 4	11 1
							1 1																		1 1		-				1 9	. 1	* 1	7	7	0

	1			1			1						-						1			1				1			1			1			-	
<u>م</u> و	920.0	992.0	992.7	988.9	990.0	330.5	-	1001.6	1000.5		1002.6	1005.3	1008.6	1009.4	1009.7	1008.0	1018.3	1028.5	1028.7	1028.3	1029.0	1028.9	1028.5	1028.7	1028.7	1028.4	1027.3	1027.8	1027.9	1028.1	1027.8		.970	1026.9	027.	026.
CT2 C^2/m^2/3	7	8.97E-04		-	•	3.10E-03		1.84E-03	3.69E-03			1.958-03	5.04E-03	1.32E-03	3.838-03	2.94E-03	1.61E-02	2.08E-01	2.88E-U1	2.81E-01	2.96E-01		1.07E-01	1.868-01	1.205-11	1	5.87E-02	. 20E		0.	6.91E-02	-54E	35	.64E	E=0	. 02E-0
Eps m ² /s ³	•	5.77E-04	1.20E-03	1. 07E-03	2.70E-03	1.148-03	1.72E-03	9.02E-04	1.89E-03	5.81E-04	7.76E-04	1.68E-03	1.90E-03	2.17E-04	2.51E-03	1.02E-03	3.31E-03	4.00E-02	4.54E-02	4.76E-U2	5.42E-02	3.17E-02	1.448-02	2.55E-02	1.785-02	1.46E-02	6.58E-03	1.17E-02	9.198-03	1.36E-02	6.73E-03	9.15E-u3	5.31E-03	3	4 . d5E-U3	6.04E-03
E V/m	1.167	303.0	294.9	7.687	267.3	293.4	302.9	319.0	300.6	288.4	319.4	252.3	243.2	328.7	323.4	315.3	351.8	370.0	378.5	368.1	367.9	359.8	335.0	377.4	334.7	354.8	254.7	27	90.	71.	5	.0	3	54.	389.3	390.0
e e	4.44	4.21	•	4.52	4.54	4.47	4.41	4.31	4.33	4.18	4.18	4.62	4.46	4.11	4.43	4.44	4.65	4.75	5.00	4.94	5.26	5.26	5.17	5.16	4.87	5.14	4.72	4.98	5.13	4.89	4.89	N	4.76	•	4.31	.0
z	297.0	296.9	1.762	437.2	297.4	297.5	238.3	298.3	298.6	298.1	298.4	301.1	300.0	299.3	300.7	300.6	303.0	305.3	300.2	305.7	307.4	307.7	307.3	307.5	305.9	306.8	305.2	300.4	307.3	306.1	306.2	306.4	305.5	304.7	305.7	305.7
Ts Cent		21.26	21.21	20.92	20.94	21.03	21.01	21.32	21.04	20.87	20.73	20.28	20.35	50.64	20.64	20.68	21.05	21.65	21.60	21.48	21.43	27.77	20.94	20.97	20.97	20.74	20.52	0.	1.	20.88	3	00	0	20.74	58.07	1.
-		5.12								•		6.33	6.74	6.77		6.67	•	98.8	9.03		•	6.82	0.31	40.0	0.70	9.03	8.45	8.58			4		6.31		8.34	0.40
Alt	N	990	1	7	-	3	N	m	10	2	-	m	-11	~	-	10	2	-		9		4	13		7	15	46	33	30	23	31	43	57	10	53	55
Time h/m/s	4 41 3	14 42 11	4 45 4	4 43 1	4 43 4	4 44 1	4 44 5	4 45 2	4 45 5	4 46 2	4 46 5	4 47 3	4 46 3	4 48 3	4 49 7	4 49 3	4 50 1	4 50 4	4 51 1	4 51 4	4 52 1	4 52 5	4 53 2	4 53 5	4 54 2	4 54 5	4 55 3	4 56 3	4 56 3	4 57 7	4 57 3	1 58 1	4 50 4	4 59 1	4 59 4	50 1
	R	a	H	8	*	34	2	37	13	£;	2	78	2	0	*	*	g	42	3	9	Įt.	75	(N			-		,x	3				2	11	-	7

		1			-			-			-			1			-			1			1			1			-			1			1
<u>.</u> ₽	1026.6	1025.6	1024.9	1024.0	1023.0	1022.7	1023.6	1022,1	1022.3	1021.5	1021.0	1021.4	1018.3	1017.6	1018.0	1017.9	1015.5	1015.9	1015.9	1013.7	1013.7	1015.0	1022.5	1021.7	1021.4	1020,8	1020.9	1021.6	1021.9	1022.7	1022.3	1021.9	1021.2	1022.5	1024.7
CT2 C'2/m'2/3	4.45E-02	0.00	7	21E-0	-1	-	2.53E-02	1,438-02	6.47E-U3	1.39E-02	1.216-02	1.01E-02	5.82E-03	5.578-03	6.88E-03	1.19E-02	2.66E-02	1.14E-02	5.65E-03	2,69 E-03	2.40E-03	2.53E-03	4.70E-03	7.47E-03	5.33E-03	6,82E=03	1.738-02	1.71E-02	1.106-02	2,376-02	1.116-02	1,06E-02	2.10E-U2	1.62E-02	3.036-02
Eps m^2/s^3	. 8 3E	.39E-0	.80E-0	. 6 1E-0	.92E-0	.20E-0	. 59 E-0	-23 E-03	01E-03	. 296-03	.05E-03	.40E-03	. 24E-03	.96E-03	.37E-03	. 66E-03	.51E-03	.70E-03	.27E-03	.04E=03	.236-03	.16E-04	.62E-03	.68E-03	.13E-03	.55E-03	.90E-03	.50E-03	.59E-03	. 28E-03	.82E-03	.16E-03-	.80E-03	.53E-03	.64E-03
E V/m	403.2	336.6	365.2	385.5	390.3	389.3	368.0	224.5	361.6	375.8	396.4	376.3	360.6	369.4	346.2	345.8	6.597	341.2	350.3	327.2	330.3	349.5	59.6	344.9	346.0	349.4	302.9	378.4	388.0	401.5	404.9	394.1	392.6	400.7	7.5
• 🕯		.82	.70	.85	10.	.82	.57	46	.39		.73	.55		.70	.74	.74	.64	. 68	.55	.46		.17	. 23	.40	.34	.43	.59	.47					4.98		
z	305,3	٠	304.7	304.8	305.1	304.2	303.4	302.6	302.4	302.9	304.0	303.2	302.8	303.3	303.5	303.7	303.6	303.0	302.3	301.1	300.8	299.9	301.6	302.1	301.6	301.9	302.4	302.1	303.0	304.0			304.5		
Ts Cent	9.	20.53		7.	7	0.	0	3	20.18	5.	.5	9.	.5	9.	æ	1.	3	4.	4.	1.	7.	0	4.	3	7.	5	3		£.	4.	4	3	4.	4.	2.
<u>ფ</u> ⊢	4.	3	. 2	.5	1.	.7	.5	4		7.	7.	0.	ω.	1	0		.5	4.	.5			æ	4.	.5	0	.5	0	3	1.	0.	0	9.		9.	1.
At	64	20	103	133	159	165	144	164	176	198	192	201	282	302	292	294	358	347	348	421	423	388	187	209	217	233	230	212	504	183	194	203	777	187	130
Time h/m/s	9 0	5 1	5 1	5 2	7 9	5 3	5 4	5 4	15 5 7	5 5 3	1 0 C	5 6 4	5 7	57 4	58 1	5 8 5	5 9 2	5 9 5	5 10 2	5 11	5 11	5 12	21 9	5 13	5 13	5 14	5 14	5 15	5 15	91 9	5 16	5 17	5 17	5 18	5 19
	N	12	1 9	, ,	7	7			1 1		1	7	1	1	,	1	1		1 1	-		7		-					1	7	1	1	1	7	1

			1			1	1			1			1			1			1			1			1			-			1			-		
a 2	1025.1	1024.2	m	m	4	-	23	1	3	7	0	3	1029.4	1028.7	1028.4	1028.6	1028.7	1028.7	1028.5	1028.8	1027.9	1027.7	1028.0	1027.8	1027.8	1026.5				1027.0				1025.5		1023.8
CT2 C'2/m'2/3	.42E	.32E	36E	1.29E-U2	.53E	-06E	62E	7.90E-02	.95E	386			3,388-01	1.68E-01	S	3	1.618-01	32E	1,30E-01	1.06E-01	8.976-02	8.07E-02	8.29E-02				-		-	-	4	.71	.44	19	.70E-0	.13E-0
Eps m^2/s^3	.12E	.00E-0	.078-0	.83E-0	.4 LE-0	-989·	.498-0	27E-0	.06E-0	.57E=0	.77E-0	.31E-0	.138-0	.85E-0	. 26E-0	0-3KP.	.776-0	.86E-0	.61E=0	. 69E-0	.17E-0	.12E-0	.128-0	.33E-0	.258-0	.55E-0	.75E-0	. 62E-0	.126-0	.19E-0	.14E-0	.538-0	.25E-0	E-0	.09E-0	.66E-0
E V/m	372.1	3	. 47	323.8	5.	344.1	53	3	56	38	2	35	33	-	04	4	05	3	1	03	8	4	416.6	38	31	-	34	20	415.0	3	0	7	.2	377.6	4	5
e €	5.27	9.	.2	2		1	7	3	9.	.5	.6			•		•				•	•	•		•		•	•		•					5.03		•
z	306.9	303.2	306.3	305.1	306.3	308.7	306.6	308.3	309.1	308.4	309.0	310.8	309.0	313.2	308.3	311.4	313.5	310.9	313.9	314.5	310.3	309.4	310.4	310.7	310.0	312.5	310.5	311.1	309.4	315.2	307.5	307.1	307.1	305.8	307.9	305.0
Ts Cent	21.13	20.94	41.02	21.00	20.96	20.91	20.92	20.94	21.11	21.16	20.99	21.01	21.02	20.78	20.88	21.05	21.07	21.07	21.11	21.14	21.09	21.15	21.17	21.20	21.15	21.07	21.28	21.22	21.15	21.03	20.88	0	0	20.84	9.0	0
-			•		•			9.14							•	•			•	•		•	•		•	•	•	•	•	•	•	•		8.74	•	0.52
A t	118	143	167	152	148	129	161	53	22	11	1	1	4	24	32	26	25	24	57	22	44	47	42	47	46	81	69	11	71	69	69	105	114	103	108	154
Time h/m/s	5 19	5 20	5 20	5 21	5 21	5 22	5. 22	5 23	5 23	5 24	5 24	5 25	5 25	5 26	2 5 7	5 27	5 28	5 28	5 29	5 29	5 30	5 30	5 31	5 31	5 32	5 32	5 33	5 33	5 34	5 35	5 35	5 36	5 36	15 37 3	5 37	5 38
		2		7	,			4	. *		,		6	22	11	17	2		161	N.	17	10	-		711				2	75	1			4	14	7

	-			-			1			-			1			1			1			-	1			1			1			1			-	
~€	1022.6		1021.7	1022.2	1023.0	1019.3	1017.7	1018.3	1016.8	1018.0	1011.3	1012.2	1011-3	1008.0	1006.9	1005.7	1007.3	1002.2	1001	1002.4	1002.0	1001.3	994.3	993.0	995.6	993.2	892. ₩	984.6	965.4	958.0	957.2	957.2	957.4		925.8	~
CT2 C'2/m'2/3	1,066-02	1.57E-02	1.63E-02	1.558-02	9.14E-03	9.51E-03	1,26E-02	5.37E-03	1.01E-02	8,418-03	5.21E-03	6.75E-03	3,568-03	5.16E-03	3.02E-03	2,858-03	5.398-03	2.11E-03	1,476-03	5.238-03	2.97E-03	1.96E-03	2.10E-03	1.13E-03	1.53E-03	1.44E-03	5.46E-04	8.07E-04	1.78E-03	2.19E-03	7.74E-04	1.118-03	1,14E-03	5.69E-03	5.09E-03	1.538-03
Eps m-2/s-3	74E-03	0E-03	00E-03	24E-03	85E-03	538-03	878-03	798-03	71E-03	216-03	87E-03	04E-03	0 2E=04	47E-03	76E-04	658-03	10E-03	34E-04	018-03	4 1E-03	10E-03	.788-03	. 038-63		.71E-03	.50E-04	.01E-03	. 43E-04	.31E-04	136-03	158-03	.31E-03	.07E-03	E-03	-06E-05	.458-05
E V/m	5		4	~	2	9	2	-	0	3	-	2	in	3	4	3	9	-	5	4	3	1	9	in	5	N	7	22	11	195.9	96	00	02	21	-	5
• @	5.27	5.09	5.33	5.02	5.23	5.02	5.43	5.36	5.11	4.90	5.19	5.14	5.03	5.14	5.30	5.30	4.93	4.75	5.08	5.21	4.99	5.16	5.17	5.03	5.15	5.24	4.97	4.84	4 . 95	5.43	5.60	5.45	5.34		2.78	2.49
z	306.5	305.4										304.0																						286.2		
Ts Cent	1	00	3	J.	.7	.7	9.	.7	.9	9.	0.	7.	9	2.	3	3.	7	2	9	2	6.	3	1.		6.	7		2	1.	20.47	5	4	0.7	20.66	0.3	0.1
-	4.	4.	S.	5	.5	7	3	٣.	7.	7.		9.	3		.7	4.	.5		9.	9	3	1.	2	80	0.	7.	0.	5.	7	. 2	7.	. 2	4.	3.27	9.	4.67
##	185	503	509	196	174	272	315	599	339	308	486	461	485	573	604	637	592	730	092	725	736	755	944	980	686	972	984	20	73	94	96	96	96	2337	92	66
Time h/m/s	5 38	5 39	5 39	5 40	5 40	5 41	5 41	5 42	5 43	5 43	5 44	5 44	5 45	5 45	5 46	5 46	5 47	5 47	5 48	5 43	5 49	5 49	5 50	5 51	5 51	5 52	5 52	5 53	5 53	5 54	5 54	5 55	5 55	15 56 21	95 5	5 57
	1,-	77	ra .	7	7	34	A	3	4	Ų	7	7	3	ş	· ·	3	8	3	3			3	,	*					7.	4				2 1		

NN	
-	60 26
V	17 71.
0	79 27
4	. 59 26
8	.10 26
0	. 98 25
3	.40 25
57	.48 257
57	.66 257
57	.85 257
57	.79 257
52	.53 252
48	.34 248
45	.39 245
4	.47 245
45	.38 245
46	.20 246
45	.26 245
44	.70 244
43	.84 243
43	.78 243
43	.99 243
43	.10 243
43	.13 243
43	.12 243
43	.30 243
44	.88 244
44	. 92 244
44	.16 244
43	.07 243
43	. 22 . 243
4	.16 24
4	.27 24
4	.35 2

CT2 P C'2/m'2/3 mb	JE-03 858.2	358	658	961	861	857	653	874	896	1987	544	974	1000	101	1022	1028	1028	1028	1028	1028	1028	1028	1028	1027	1027	1027	1027	1027	1020	966	984	1.468-03 964.9	948	14E-04 930.5	
Eps m^2/s^3 C	.90E-06	.16E-05	.77E-06	.45E 00-	.23E 00	.71E-02	. 52E-06	.94E-06	.06E-05	.85E-04	.93E-04	.73E-04	.21e-03	.82E-04	.92E-03	.71E-02	. 29E-02	. 65E-02	.24E-02	.48 E-02	.85E-02	.34E-02	.59E-02	.31E-02	.45E-02	.84E-02	.46E-02	.92E-02	.14E-03	.06E-03	. U 3E-03	.38E-03	.77E-04	36-03	V 0 - 35 V
e E mp v/m	.39 50.	.42 5	.31 47.	.23 42.	.96 39.	.36 4	.47 47.	.90 46	.30 40	. 25 68	.52 152	.36 212	.03 273	.11 314	.39 346	.61 366	.14 344	.19 366	.71 359	.69 356	. 20 376	.12 347	.86 351	.51 347	. 24 366	.34 358	.21 35	. 25 370	.27 351	.02 245	. 69 265	.07 222.	.54 198.	7.89 150.5	16 114
z	243	243	243	218	206	243	243	251	261	543	295	3:10	303	306	310	311	314	313	316	311	313	313	312	315	312	314	313	314	313		308	307	301.	300	
T Ts	22.	.25 22.56	37 22	1.3	61 7	71 20	19 22	92 22	05 22	96 22	09 23	58 23	5.3	07 23	92 23	61 - 23	83 23	30 23	23	23	23	9 23	3 23	7 23	3 23	4 23	99 23	96 23	24 23	2 23	30 23	80 22	52 22	84 22.06	23
Alt	836 %	4832 8.	830 8	750 6	728 5	7 098	8 3 8	336 6	686 5	082 2	319 4	475 6	53 8	6 09	11 9	1 10	1 10	9 11	9 1	6	4 11	5 10	7 11	3 10	0 11	4 11	4 1	46 10.	31 10	12 8	187 7	731	181 4	2701 2.	106
Time h/m/s	16	11	11	18	18	19	13	20	20	21	21	22	23	23	24	54	52	25	56	97	27	17	23	28	53	53	30	31	31	32	32	33	33	16 34 12	17

	-			1			-			1			-			1			1	1			1			1			-			-			
1	683.7	868.0	855.6	856.0	856.2	855.4	654.5	861.2	877.7	691.9	8 90.7	891.4	889.4	891.3	8.068	1968			10							•									
C'2/m'2/3	T.	8.036-04	5.80E-04	8.03E-04	8.57E-04	1.49E-03	5.612-04	1.06E-03	8.89E-04	7.046-01	6.78E-02	1.87E-03	1.316-03	6.06E-04	9.97E-04	9.28E-03	8.93E-03	3.34E-03	5.29E-03	2.15E-03	1.57E-03	1.038-03	1,31E-03	1.22E-03	8.07E-04	1.60E-03	.84	•	.88	77E	. 52	.92	.84		
Eps m^2/s^3	-47E-	.32E-	4 0E-	. 56 E-	.82E-	-30E-	.16E-	.59E-	.95E-	.86E	. 25E-	.10E-	.46E-	.40E-	-30S.	-960.	.37E-	.49E-	.37E-	- 556-	-919.	.42E-	.03E-	.50E-	.72E-	-42E-	. 20E-	-60E-	.74E-	.42E-	.91E-	. 22E-	1.35E-03	-40E-	
V/m	44.1																						10	04	30	82	11	7	33	98	56	49	237.9	40	
a a	.5		2.62	5	.2	2.	2.	9	.7	7.											•	•				•	•	•					6.91		
=																										•							303.1		
Cent 15	4.	7.	2	0	2.	5	2	8	7	9	7	7	1.	1.	7	.3	3	4	4.	5	1.	1	1.	.0	1.	7	7.	c.	5	1.	00	6	22.97	~	
-	.5	. 3	4.	4.	. 2	٦.	4	3	9.	9.	.3	0.	£.	9.	4.	9.	4.	0.	1.		.0	۳.	4.	٦.	.3	7.	.3	7.	3.	5.18	.3	6.	6.19	. 7	200
¥±	4067	4540	4918	4907	4900	4924	4950	4747	4248	3823	3860	3838	3499	3843	3857	3691	3410	3262	3301	3005	2916	2934	2380	5906	2566	2035	1920	1965	1895	1909	1619	1446	1464	1452	1,71
h/m/s	6 35 4	6 36 2	98 9	6 37 2	6 37 5	6 38 2	0 68 9	6 39 3	6 40 4	6 40 3	6 41 8	6 41 4	6 42 1	6 42 4	6 43 1	6 43 4	6 44 2	6 44	6 45 2	6 47 0	6 47 3	6 48 4	6 40 3	6 49 8	6 49 4	6 50 1	6 50 4	6 51 1	6 51 4	6 52 2	6 52 5	6 53 2	6 53 56	6 54 2	0000
	1									-										1	,	1	7	1	7				+	1			1		

		ent		1	N/m	m 2/5 3	C'2/m'2/3	2
842		3.2	10	0.	82	.01E-0	. 08E	3
	6.0	3.4	11	2.	30	.32E-0	.63E	N
	1.7	3.4	13	7	37	.32E-U	128	0
	11.50	23.31	315.3	7.58	341.8	4.89E-02	2.48E-01	1028.8
	1.5	5.3	13	7	39	.50E-0	.44E	2
	1.9	3.2	17		9+	.18E-0	360	CA
	1.4	3.1	14	4.	45	.84E-0	.59E	N
	1.3	3.0	18	7	51	.16E-0	.52E	N
	1.3	2.9	91	1	37	.358-0	28E	C
	0.9	2.9	15		41	.54E-0	.74E	2
	1.1	3.1	16	.7	41	.14E-0	,02E	2
	1.3	3.2	15	3.	55	. 278-0	.97E	3
200	1.1	3.2	16	. 6	36	.17E-0	.09E	O
-	1.0	3.1	15	4.	88	.35E-0	.96E	N
-	1.2	3.0	16	7	29	.07R-0	36E	3
_	0.9	3.0	14	.2	47	.66E-0	. 50E	7
-	6.0	2.8	13	7.	52	.58E-0	.69E	2
-	3.0	2.6	15	5	37	.22E-0	318	~
-	0.8	2.7	16	8	63	.52E-0	. 88E	N
-	1.1	7.6	14		55	0-360°	.378	N
-	6.0	7.7	15	9.	26	. 59E-0	718	a
_	0.7	2.7	16		48	.36E-U	.76E	2
_	0.6	2.5	15	5.	38	.22E-0	.39E	2
-	0.9	2.5	15		47	.118-0	.02E	C
_	0.9	2.7	14	£.	45	.48E-0	.91E	N
_	0.5	7.4	12	7	38	.25E-0	.76E	N
-	0.0	2.2	12	. 2	26	.49E-0	395	-
	8	2.3	14	5	12	.338-0	.48E	-
	7	9.7	15	9.	23	.588-0	.46E	-
_	7	5.6	13		57	.896-0	-54E	-
	30	9.7	13		22	.25e-0	. 90E	-
		2.3	13	5	13	.17E-0	. 06E	-
	0	2.2	12	r.	36	0-390	.748	0
		2.3	12	3	03	.398-0	.138	0
	17	4.7	12	a.	38	.86 8-0	. 77E	0
	(*	13.64	C. 1 O.		Ç

THE BOM CORPORATION

	1						1			-			-			-			1			-			1			1			-			-			-	
a e	1006.4	75	3.5	46	91	93	4	19	22	33	21	22	23	22	22	21	21	21	33	21	21	33	21	1021.2	23	22	21	2	21	21	12	22	21	50	22	20	21	21
CT2 C'2/m'2/3	2.658-03	1.95E-02	1.65E-02	2.34E-03	2.33E-03	1.69E-03	6.44E-03	2.03E-02	1.56E-02	1.35E-02	1.37E-02	1.59E-02	1.09E-02	1.00E-02	1.66E-02	1.52E-02	7.62E-03	2.64E-02	1.348-02	1.56E-02	1.47E-02	7.838-03	1.80E-02	1.29E-02	1.62E-02	1.12E-02	2.06E-02	1.58E-02	1.30E-02	1.21E-02	1.60E-02	1.17E-02	1.07E-02	7.998-03	1.75E-02	1.31E-02	7.60E-03	1.30E-02
Eps m^2/s^3	.118-0	.15E-U	.14E-0	.07E-0	.08E-0	.76E-0	.69E-0	.19E-0	.24E-U	.64E-0	. 21E-0	.24E-0	.34E-0	. 83E-U	.36E-0	.14E-0	.30E-0	.42E-0	.72E-0	.508-0	. 26 E-0	.96E-U	.51E-0	2.81E-03	. 89E-0	.02E-0	.78E-U	. 43E-0	.06E-0	. 38E-0	. 48 E-0	.70E-0	.15E-0	.44E-0	.698-0	. 53E-U	.948-0	·63E-0
. w/w	3	63.	67	73.	69	71.	14.	10.	34.	27.	26.	20.	27.	32.	29.	30.	13.	12.	20.	12.	20.	19.	28.	332,7	35.	19.	16.	21.	23.	16.	24.	25.	30.	21.	14.	22.	27.	~
۰ę		.5		9.	4.	۳.		0.	7	0.	2.		8	.7	0.	.6	.6	.7	9.	.8	4.	8		6.72	1.	9.	9.			.5	.5	1.	5.	.7.		7.	2.	0.
z	08.	. 60	.80	10.	. 60	03.	. 60	11.	12.	12.	11.	10.	10.	10.	11.	10.	10.	. 60	. 60	10.	UB.	10.	. 60	310.0	10.	10.	. 60	10.	10.	. 60	. 60	10.	.60	08.	08,	0	00	307.4
Ts Cent	2.5	2.3	2.5	2.3	7.5	2.3	2.5	2.8	2.7	2.7	7.7	2.9	5.9	3.0	3.0	3.0	3.0	3.0	3.1	5.3	3.0	3.9	2.9	22.97	5.8	5.3	5.3	3.0	2.8	2.8	3.0	3.0	3.0	23.03	7	2.8	7	3.0
-	9	~	x.	3.	. 7	0.	0.	9.0	0.0	9.0	9.0	0.	8.0	0.9	1.0	1.0	8.0	1.1	1.0	0.8	6.0	0.3	1.0	10.87	1.1	3.0	0.8	6.0	0.7	0	6.0	1.1	0.8	9.	3	10.59	9.	3
¥ ‡	-	0	8	N	-	96	3	9	2	3	-	2	3	5	3	-	0	N	3	0	0	2	-	216	9	8	~	D	-	0	-	20	57	4	2	N	-	0
Time h/m/s	7 14 4	7 15 1	7 15 4	7 16 1	7 16 5	7 17 2	7 17 5	7 18 2	7 18 5	7 19 3	7 20 3	7 20 3	7 21 7	7 21 3	7 22 1	7 22 4	7 23 1	7 23 4	7 24 1	7 24 5	7 25 2	7 25 5	7 26 2	17 26 59	7 27 3	7 28 3	7 28 3	1 53 7	7 29 3	7 30 1	7 30 4	7 31 1	7 31 4	7 32 1	7 32 5	7 33 2	7 33 5	7 34 2
	1901	w .	-	5	-	3	in I	ň	77	×	2	-	2	2	2	- m	-	1	-	a :		: 1	3 2	9 6			5	-	1 1	7 5	1	. ,	2 3	4		4 7	25	

Figure B-9. Flight 9 Flight Track

	-			1			1			1			-			1			1			1						1			1			-		
a @	7	861.1	55	869.3	883.7	904.5	920,3	928.8	928.9	927.8	928.5	958.6	931.7	929.5	926.9	926.1	925.1	925.3	927.0	925.8	935.6	954.7	961.9	961.4	10		6.096							961.4	961.4	6 6.
CT2 C^2/m^2/3	3.358-05	8.45E-05	9.12E-05	1.845-04	1.05E-04	5.64E-04	-1.97E-U4	4.65E-04	1.06E-04	1.24E-04	1.41E-04	1.51E-04	1.17E-04	1.34E-04	1.79E-04	1.038-04	2.98E-04	1.758-04	8.8 2E-05	4.02E-05	4.07E-04	6.39E-04	1.60E-03	2.656-03	-5.24E-03-	6.33E-04	8.28E-04	2.268-03	5.49E-03	5.39E-03	2.78E-03	2.04E-03	4.46E-03	2.99E-03	3.59E-03	3.536-03
Eps m^2/s^3	.748-0	.02E-0	.72E-0	. 59E-0	. 561-0	. 49E-0	.458-U	.45E-0	.51E-0	.238-0	.74E-0	.09E-0	. 03E-U	.45E-0	.438-0	.338-0	.26E-0	. 37E-0	. 216-U	.058-0	.33E-0	. 45B-0	.32E-U	.018-0	.726-0	.236-0	.69E-0	. 56E-0	. 65E-0	.04E-0	. 86 E-U	9.28E-05	.63E-0	.49E-0	.40E-0	.38E-0
K,m	42.3	25.1	32.6	43.5	46.7	43.5	52.6	44.8	41.1	428.2	525.7	6.755	527.0	510.6	520.5	563.4	515.6	253.9	402.7	457.8	305.0	587.1	042.6	415.0	101.1	50.9	21.9	68 . 2	109.0	74.5	8.69	37.9	52.7	72.5	9.99	30.8
e e	tt.	69 .	. 68	61.	69.	.75	. 92	. 01	.17	60.	.17	.25	.21	.23	.14	-10	.00	00.	. 93	.89	.12	. 54	.031	.15	.39	00.	.19	. 25	.54	. 23	.30	4.07	60.	97 .	.07	. 84
z	46.	45.	45.	48	51.	57.	63	. 99	67.	67.	67.	68.	68	68	67.	65	050	.50	.56	65.	69	63.	68.	38.	90.	87.	69	6.8	90.	96.	89.	268.3	88	89.	38.	93
Ts Cent	-	-	-	-	-	$\overline{}$.71	1.7	-	-	0	0.0	7.6	9.7	9.6	4.4	9.6	9.3	4.4	9.6	9.7	0.1	0.1	0.0	0.0	9.6	3.5	4.9	9.8	7.0	4.8	19.27	9.6	0.0	0.0	9.9
-	.5	9.	3	3	2	. 2	1.	2	0	30	2	0	1	.5	3	4.	2.	. 2	٦.		٦.	٦.	0	.5	.5		.2	7.	٠.	. 2	7.	4.18	7.	1.		.5
Alt	N	4	3	9	9	5	A	4	4	~	5	N	(2	N	0	N	5	4	3	3	2	-	-	2	7	2	4	2	-	2	-	1968	2	N	2	3
Time h/m/s	9.58 1	9 58 4	9 59 1	9 59 4	0 0 2	0 0 5	0 1 2	0 1	0 2 2	0 2 5	0 3 2	0 4 0	0 4	0 5 4	0 5	5 9 0	9 0	6 1 0	0 7 4	0 8 1	0 8 4	0.9 1	0 9 4	0 10 2	0 10 5	0 11 2	0 11	0 12 2	0 13	0 13	0 14 4	10 14 36	0 15 8	0 15	0 16 1	0 16 4
	, _	~		_	2	=	2	2	<u> </u>	15	2	2	2	11-	3	311	77	-	7	77	37	17		17	7	,	7	77	7	2 ,	9	- ;	22	177	9 :	2 :

	-			1			-			1							-			-									-						
- 1	966.3	964.8	978.3	1000.3	1022.6	1031.7	1032.0	1032.1	1032.2	1032.4	1032.4	1032.4	1031.7	1032.2	1032.0	1032.2	1032.2	1032.2	1032.2	1031.4	1031.4	1031.8	1031.7	1031.6	1031.8	1031.7	1030,8	1031.0	1028.7	1027.6	1030.3	1030.7	1029.7	1029.1	1110
C'2/m'2/3	69	03	.03	03	0.3	0.5	0.5	0.5	0.5	05	0.5	75	62	-20	.03	.03	.03	-05	.02	1	-03	03	0.3	03	3	63	03	.03	0.3	.03	.03	03	03	03	-64
m^2/s^3	0-30	536-0	.52E-0	66E-0	. 26 E-0	.46E-0	.17E-U	. 56 E-0	.90E-0	148-0	.81E-0	. 79E-0	198-0	.02E-0	. 22E-0	.15E-U	.67E-0	.33E-0	.70E-0	.36e-0	.70E-0	.85E-0	.35E-U	.40E-0	6.776-03	0.28-0	.27E-U	.92E-0	.76E-U	.69E-0	.26E-0	.88E-U	.30E-0	.88E-0	
N/m	56.2	0	-	1	2	2	4	-	-	1	3	2	N	-	~	3	-	7	9	5		-	N	-	225.6	r	-	-	4	m	47	-	2	3	
4	5.51		-				1.			10	•				•	•					•	•		•	6.65			•	•						
•	297.5					-		-	-	1	-	172						•						•	•										
Cent	06.	60.	.21	.32	.30	.42	. 20	.17	60.	10	.04	.02	.55	.76	.81	.84	. 64	.62	.64	.50	.43	.48	.46	.16	19.11	00.	.02	00.	.73	.49	.61	.76	.31	.31	
•	2.	1.	8	9.	3	3	0	30	8	9.	œ.	5.	3	8		æ.	7.	6.		9.	. b	.7	·.	6.	9.01	Φ.	9.	.5	3.	9.	.7	5	.3	4.	•
£ #	~	83	46	98	267	7	16	15	14		8	7	25	12	19	14	14	13	14	- 26	35	24	25	29	23	56	49	~	105	3	63	. 52	78	94	
h/m/s	16	4	7	2	7	2	~	7	3	2		9	4	7	4	-	4	7	2	7	5	7	-	3		m	6	4	-	4	7	4		5	0
2																				1					30										
	10	1(7	1	1	1	10	10	10	16	1	7	16	16	7	ĭ	1(1	7	16	1	1(1(1	10	1	7	1	ī	ĭ	7	1	7	1(11

			i			-			1						1						1			-			1				1			-	
۵.		1029.8	1.		1026.4				1024.7	1022.7	1021.7	1022.2	1021.7	1016.8	1015.2	1016.3	1015.2	1014.1	1006.9	1005.4	1005.5	1005.5	1001.9	6.966	998.1	997.3	8.566	993.2	982.4		978.0		978.3	1.700	954.0
CT2 C'2/m'2/3	1.938-03	1.36E-03	1.672-03	1.83E-03	1.55E-03	7.14E-04	.04E-0	. 23E	.62	. 04 E	2.74E-04	. 17E	. 78E	.41E	.94	.47E	1.34E-04	.621	.19E	.11E	.83E	. 03E	1.02E-04	.85E	. 40E	5.40E-05	. 36E	.39E	. OUE	1.11E-03	181:	. 81E	9.603-04	1.30E-03	30
Eps m^2/s^3	3.08E-03	2.26E-03	2.398-03	2.04E-03	2.37E-03	1.43E-03	2.19E-03	1.518-03	1.19E-03	7.64E-04	1.28E-03	2.01E-03	1.09E-03	8.118-04	4.81E-04	6.07E-04	6.59E-04	4 .87E-04	7.50E-04	1.08E-03	6.058-04	5.61E-04	9.62E-04	1.10E-03	3.76E-04	5.158-04	4.56E-04	5.00E-04	4.30E-04	3.39E-04	6.368-04	.31E	.76E	.47	.96E
E K	210.9		220.0	210.9	209.5	200.8	1,961	198.4	197.8	194.2	187.8	191.9	186.3	167.6	169.9	168.9	109.4	174.8	162.7	160.5	157.5	157.3	156.1	143.9	145.1	144.6	139.8	135.9	114.9	113.5	112.7	116.4	118.9	101.0	64.9
e @	5.72	6.14	.13	.27	.48	.26	.49	. 27	. 46	. 21	. 35	. 41	.16	.01	.85	. 94	.88	.87	00.	.90	.72	.76	. 91	.86	. 48	.76	.93	90.	. 28	. 03	.83	.17	.78	12.	. 02
z	310.5	312.4		313.1		312.4	313.3	312.3	312.8	311.5	311.9	312.0	311.0	309.4	308.4	309.0	308.6	308.3	307.7	306.8	306.1	306.2	306.4	305.3	303.7		305.5	304.6	299.8	302.3	301.6	303.1	300.6	299.0	
Ts	1004		3	20	2	8	8	8	8	æ	8	8	8	3	8	æ	8	7.	1.	7.	7.	1.	7.	•								•	17.53	•	
-	.58	8.65		.5	.5	4.	.5	.5	E.	0.	6.	.2	0.	9.	4.	S.	4.			9.	10	9.	.3	8		00	.0	.5	1.	4	4.	.6	5.13	0	00
Alt	73	75	74	72	166	147	158	150	210	264	291	277	289	420	463	433	463	492	685	726	722	723	819	953	922	944	983	0.5	34	44	46	46	1462	15	13
Time h/m/s	35	10 36 29	37	37	38	38	33	33	40	40	41	41	42	42	43	43	44	45	45	46	46	47	47	48	48	49	43	20	20	21	51	52	53	53	54
	-	1 2	- 1	1 3		12	. 2	1 13]	. 10	: 4	-	. 15				0	4	12	- 5	1		12	*	-	- 53	J		35	-					

		1						1						-						1						-						-				
a a	945.4	934.1	924.4	914.7	904.0	894.3	884.5	874.1	363.6	858.5	6.858	852.9	845.8	832.1	320.1	810.3	800.3	794.6	789.0	780.2	771.9	765.1	757.3	748.3	738.9	730.3	722.2	714.1	705.8	9.669	694.1	686.4	630.7	675.4		59
C72 C2/m2/3	4,16E-03	P		~		.34E-0		1.	•						•	1.01E-03				1.	•	•	•				•	•		•	•	1.	•	8.51E-04		.44E-0
Eps m^2/s^3	7.		7.		Τ.	9	~			Τ.		.0	•	7.		3.96E-04	3	3	Ξ.	٠.	-	•	•	3,	9.		3	.68E-0	.13E-U	.04E 0	.68E 0	.781	.15E-0	57	.69E-0	. 57e-o
√m //m	,0	D	1	-	x	2	25.9	3	9	7	-	4	~	-	8	7.2	8.3	9.8	8.0	7.3	6.3	6.3	5.4	4.4	3.8									2.7		
e e			•						•	•			•						•		•	•	•	•		•	•	•		•	•	•		2.23	.3	4.
Z	276.0			260.1		252.9	249.7	246.5	243.5	241.5	241.5	240.9	239.3	234.8	233.7	232.1	229.5	225.7	222.8	219.9	217.5	215.4	213.7	211.8	209.3	208.3	207.0					200.7		198.7	197.3	196.2
Ts Cent	7	2.	8		1.	3	18.84	18.85	18.95	18.81	18.53	18.03	18.41	18.23	18.18	18.16	18.07	18.23	18.24	18.15	18.15	17.96	18.05	18.14	18,13	18.08	18.17			14.36				19.05	0.	٦.
-																8.55						6.	1.	9.	67.6	30	٣.	6.	*	.6	7	-	1.	5.53	æ	7
t Ait	37	69	16	25	99	85	14	45	17	92	71	60	40	74	11	43	73	33	12	40	99	90	15	47	80	09	38	99	36	018	038	990	087	11067	137	165
Time h/m/s	0 54	9 55	0 55 4	0 56 1	0 56 4	0 57 1	15 0	0 58 2	0 58 5	0 59 2	0 59 5	10 2	111	1 1 3	1 2 5	1 2	13 9	13 4	14 1	1 4 4	151	15 4	7 9 1	165	17 2	17 5	182	19 1	1 9	1 10	1 10	1 11 9	1 11 4	11 12 13	1 12 4	1 13 1
	-																																		Ĺ	

		1			1			1			1	1			-			1			1			1						1						1
<u>.</u> 1	653,3	646.8	641.3	634.6	629.6	622.8	616.5	610.6	603.2	596.7	589.8	583.9	578.9	573.0	568.0	563.0	557.1	550.9	543.8	538.1	530.3	525.9	520.8	519.6	515.9	510.6	505.8	501.5	496.7			481.9			472.3	472.3
CT2 C'2/m'2/3	9.27E-04	2.012-03	2.28E-03	2.73E-03	9.84E-04	6.32E-04	.25E	.20E	.61E	1.73E-03	316:	.15E	.54E	1.83E-03	.65E	.54E	2.26E-03	.96E	. 63E	1.79E-03	.28E	.19E	9.68E-03	. 06E	.30E	. 21E	.94E	.01E	. 00E	. 26E-0	.81E-0	3.898-03	.73E-0	.168-0	3.40E-03	4.73E-03
Eps m^2/s^3	.04E-0		.48E-0	.66E-0	. 69E-0	.89E-0	.338-0	.76E-0	.84E-0	3.	.196-0	.91E-0	.50E-0	.47E-0	.61E-0	.05E-0	7.42E-04	.62E-0	.84E-0	.43E-0	. 63E-0	. 28E-0	30	.34E-0	.63E-0	.21E-0	m.	.54E-0	.138-0	.90	. 82E	.05E-0	.67E-0	00.	.00E 0	00
E W/W															0		-1.2			3	4.		3	2.				5	9	6	-6.5		5		-3.9	
• @	2.43	3.66	2.47	2.55	2.60	2.59	2.75	2.74	2.17	2.78	2.75	2.74	2.95	3.26	3.22	3.01	2.75	2.71	2.70	2.17	5.96	2.98	3.16	3.07	3.39	3.19	3.55	3.62	3.73	3.89	4.02	4.27	4.40	4.29		4.10
z	3	94	7	7	3	83	88	18	85	84	28	31	81	18	79	17	174.8	73	71	10	69	68	19	19	99	99	10	99	. 99	99	65.	165.1	165.7	64	164.0	62
Ts Cent	2	2	-	18.89	8.8	x	∞	D	9	19.37	3	9	2	∞	00	3	18.67	∞	∞	2	3	2	0	2	. 2	2	∞	3	00	8	S	20	x	00	∞	3
-	.0	3.16	.7	0.		-	S	9	5	.2	1.7	2.3	2.6	9.	3.2		-4.05	3	3	5.0	.2	5.8	0.	6.9	7.6	0.8	S.	9.0	4.6	10.0	10.8	11.4	11.5	12.1	-12.53	-
Alt	189	214	235	261	281	308	333	356	386	413	441	465	487	511	533	554	15797	909	637	663	869	718	741	746	763	188	810	831	853	8770	9026	9249	9449	1696	9718	9722
Time h/m/s	13 4	14 2	14 5	15 2	15 5	16 2	17 1	17 3	18 5	18 3	19 9	19 4	20 1	20 4	21 1	21 4	11 22 20	22 5	23 2	23 5	24 2	25 0	25 3	26 4	26 3	27 8	27 4	28 1	28 4	29 1	29 4	30 2	30 5	31 2	31	32 2
	-			4		. 0	7 7			1 3	- 5	1.			_			1		2	101	17	12	14	11	=======================================	161	R	8	11			121	14	100	4

						1												1						
<u>م</u> و	472.7	472.2	472.7	473.6	474.4	479.1	488.3	495.6	502.1	511.9	522.8	533.3	546.5	562.4	579.7	594.3	607.2	623.0	650.4	673.5	6.969	721.6	751.2	776.4
C.2/m.2/3	2.138-02	8.32E-03	4.06E-03	3.43E-03	3.596-03	3.06E-01	.47E-	.00E	300.	300.	0.00E 00	.00E	0.00E 00	.00E	300.	300°		.00E			0.00 0000	0.00E 00	0.00E u0	0.00E 00
Eps m^2/s^3	0.00 00.0										0.00E 00	1						1						0.00E 00
E V/m	6.8-	-8.5	-8.2	6.8-	4.6-	-10.0	1.6-	0.6-	0.6-	0.6-	-8.8	-8.2	-8.2	-7.6	-7.1	-7.0	-7.5	-8.2	-7.5	-6.2	-5.2	-3.2	-1.9	-0.3
٩ę	3.95	3.84	3.73	3.65	3.61		•	2.62		•	0.91	0.95	0.52	0.74	0.21	0.12	-0.00	-0.31	-0.54	-0.69	-0.89	-1,01	-0.94	-0.72
z	162.1	161.3	160.7	160.3	160.3	160.7	161.4	159.5	150.5	157.5	156.3	159.2	160.1	165.1	167.0	169.9	172.3	175.2	178.9	183.5	188.1	193.4	201.1	208.8
T Ts Cent	19.12	19.27	19.32	19.34	19.64	19.76	20.05	20.07	18.23	16.97	16.65	17.69	17.04	19.20	19.81	19.83	20.19	20.26	20.50	20.61	20.71	20.60	20.40	20.38
-	-12.13	-12.02	-11.79	-11.57	-11.47	-10.73	-9.62	66.8-	-8.15	-6.73	-5.58	-4.66	-3.72	-2.68	-2.00	-0.72	0.28	2.63	4.80	6.51	8.09	9.48	10.56	10.76
Alt	19703	19728	19701	19656	19615	19386	18940	18589	18281	17823	17321	16824	16260	15572	14834	14223	13706	12876	12009	111137	10279	9401	4379	7532
Time h/m/s	33	33	34	34	35	35	36	36	37	37	38	33	39	33	40	40	41	42	45	43	43	44	11 44 43	45
	0.0	15	37	13	13	1	4		10	N.	B		13	0		**	9	177	7		0		22	5.

Figure B-11. Flight 11 Flight Track

													1												1						-			1		
- 2	024.	1024.3	028.	025.	020.	027.	022.	021.	022.	025.	029.	029.	029.	029.	029.	029.	029.	029.	029.	028.	028.	028.	028.	027.	027.	027.	027.	027.	027.	027.	027.	026.	027.	026.	026.	024.
CT2 C^2/m^2/3	.00E	0.00E 00	.00E	.00E	.00E	.00E	300.	. 00E	.00E	.00E	.00E	. 00E	. 00E	.00E	.00E	.00E	.00E	. 00E	.00E	.00E	.00E	. 00E	. 00E	.00E	.00E	.00E	300°	. 00E	.00E	.00E	•	.00E	. 00E	.00E	.00E	•
Eps m^2/s^3	.061-0	2.57E-03	.47E-0	.99E-0	.40E-0	.69E-0	.02E-0	.18E-0	.59E-0	.53E-0	.21E-U	.92E-0	.17E-0	.48E-0	.79E-0	.35E-0	.51E-0	.46E-0	. 4 lE -0	.89E-0	.98E-0	.28E-0	.11E-0	.18E-0	.70E-0	.99E-0	.28E-0	.76E-0	.016-0	.42E-0	.32E-0	.50E-0	. 58E-0	.36E-U	.956-0	.23E-0
K. V,m	00	170.3	83	69	54	43	53	58	50	11	62	78	02	98	07	60	01	04	91	98	03	73	0.1	82	69	44	85	85	36	16	3.9	38	96	-	-	7
۰ę	0	4.99	.5	1.	2.	∞	3.	2.	2	.3	9.	.2	5	4.	.5	4	0.	۲.	1	8	.5	9.	0.	9	6.	.5	2	5	3		9 .	.5	.5	2.	30	.5
z	93.	298.5	01.	97.	97.	97.	97.	97.	97.	.00	01.	04.	.50	05.	. 90	05.	03.	03.	02.	02.	01.	01.	03.	01.	112.	01.	02.	01.	02.	01.	01.	01.	01.	04.	00.	00.
nt Ts	0.1	20.15	0.7	9.0	9.0	8.0	8.0	0.7	0.7	0.4	9.0	1.2	1.3	1.5	1.7	1.8	2.0	2.1	7.0	1.9	1.6	1.7	1.6	1.4	1,3	1.3	1.4	1.4	1.5	1.5	1.5	1.5	1.6	1.5	1.4	1.3
T Cent	4.7	14.76	5.6	5.0	4.5	4.8	4.9	4.9	4.8	4.9	5.6	5.8	5.8	5.7	5.4	5.7	5.7	5.9	5.3	5.5	5.7	5.6	5.7	5.6	5.5	5.4	5.6	5.5	5.6	. 5	4.	.3	.2	4.		
Alt	4	156	3	_	4	3	0	227	-	-	-	8	10	20	15	25	24	21	24	47	39	37	41	58	80	99	99	9,9	0.9	67	67	9.0	82	93	93	163
Time h/m/s	6 36 5	16 37 29	6 38 1	6 38	6 39 5	0 39 3	6 40 9	6 40 4	6 41 1	6 41 4	6 42 1	6 42 4	6 43 2	6 43 5	6 44 2	6 44 5	6 45 2	6 46 0	6 46 3	6 47 4	6 47 3	6 48 8	6 48 4	6 49 1	6 49 4	6 50 L	6 50 4	6 51 2	6 51 5	6 52 2	6 52	6 53 2	6 54 0	6 54	6 55 4	9 25
	v		~3	6	02	=	2	12	=	2	10	22	29	5	457	n u	a	.7	1.7	25	3.6	11	22		3	77	77	H	-	2	a	22	13	75		

							1																												
~ €	22	53	22	21	19	19	18	18	17	13	11	12	I	1011.6	11	03	02	98	10	00	0.5	96	34	93	93	92	35	76	10	2	36	74	91	59	59
CT2 C'2/m'2/3	. 00E	300°	300.	300.	.00E	. 00E	. 00E	300°	.00E	.00E	300 ·	. 00E	.00E	0.00E 00	.00E	.00E	300·	.00E	.00E	300°	.00E	300.	. UOE	.00E	. 00E	.00E	300°	.00E	.00E	. 00E	300°	.00E	.00E	.00E	0.00E 00
Eps m^2/s^3	.35E-U	.41E-0	. 58 E-0	.858-0	.36E-0	. 22E-0	. 4 LE-0	.15E-0	.11E-0	.6 0E-0	. 516-0	.00E-0	.59E-0	2.45E-03	.82E-0	.81E-0	.25E-0	.90E-0	. 50E-0	.73E-0	.31E-0	.67E-U	. u 5e-0	.89E-0	. 29E-0	.38E-0	.19E-0	.76E-0	.48E-J	. 23E-0	.96 E-0	.73E-0	.61E-0	.60E-0	.08E-0
E V/m	91.	84.	03.	89.	71.	71.	70.	82.	00.	59.	73.	61.	56.	163.1	60.	49.	50.	59.	51.	59.	61.	55.	50.	44.	48.	43.	22.	20.	25.	29.	26.	21.			
a ē	.0	30	.7	0	7.	~	5	9.	8	4.	9.	5		5.40	.5	.5	3	2	3.	00	2	2	0	9.	.5	8	2	3	1.	3	6.	00	7	9.	9.
z										•1		•	•	298.0		•	•																	0.067	290.0
Ts Cent	1.1	6.0	9.0	0,5	0.3	1.1	0.0	0.0	6.6	0.0	6.6	9.6	9.6	20.14	0.3	0.2	0.3	9.6	6.0	1.2	4.6	6.1	9.6	6.0	6.0	6.1	1.1	1.5	0.0	1.0	6.1	1.0	1.1	3.8	6.6
-	5.0	5.0	5.1	5,1	4.5	4.5	4.4	4.7	4.5	3.8	3.8	3.7	3.7	13.79	3.7	2.9	3.1	2.9	3.2	3.0	2.3	2.5	2.1	1.9	6.1	8	5.	0	9	3	0	0	9.	4	4
At	0	00	0	2	3	3	N	0	3	9	0	9	7	200	+1	3	5	4	7	-	10	N	0	0	0	4	-	S	3	3	-	3	2	.0	10
Time h/m/s	95 9	95 9	6 57	6 57	6 58	85 9	65 9	65 9	0 6	0 1	7 1	12	7 7	17 3 4	7 3	7 4	7 4	1 5	1 5	9 1	9 1	11	11	7 8	7 8	6 /	7 10	7 10	7 11	7 11	7 12	7 12	1 13	7 13	7 14
	2	12	7	3	.4	7	9	X 4	23	5	75			-	1.		4	Lynn	1-2	- 1,0	0	11	12	2	12	-2	17	11	13	12	17	11		E.	

<u>.</u> 1	58.	59.	58.	45.	47.	42.	40.	41.	42.	34.	24.	24.	24.	23.	23.	12.	.66	92.	89.	88.	88.	90.	80.	.99	53.	44.	36.	27.	28.	28.	828.8	28.	26.	24.
CT2 C'2/m'2/3	300.	300·	.00E	.00E	200.	300·	300°	300.	.00E	300°	.00E	. 00E	300.	300°	300.	300.	.00E	.00E	300.	300.	300 ·	300.	300.	300°	.00E	300.	300.	300·	.00E	.00E		. 00E		.00E
Eps m^2/s^3	.39E-0	.458-0	.92E-0	.32E-0	.81E 0	.556-0	.01g-0	.74E-0	.87E-0	.46E-0	.20E-0	. 798-0	.15g-0	.62E-0	.89E-0	. 438-0	. 26E-0	.06E-0	.41E-0	.60E-0	. 53g-0	.60E-0	. 538-0	. 77E-0	. 35E-0	.36E U	.67E 0	.39E-0	. 538-0	.468-0	2,226-05	.898-0	.318-0	.35E-0
۲ //۳	w	4	3	30	0	0	n,	3	~	3	4	~	8.6	9	2	3	7.9	7.9	6.5	8.0	7.6	8.0	8.2	4.9	6.1	4.8	2.4	4.3	2.9	-0.8	6.7	6.7	3.9	6.5
• e			•		•																										0.48			
z	39	90	88	85	82	41	8	44	90	16	71	71	11	69	69	63	56	53	53	51	51	51	43	42	37	34	20	1	27	V	227.4	1	7	~
Ts Cent	8	8	3.	7	9	0	6	8	8	9.	4	9.		00	2	0	4	3	3	1.	8	3	83			4.	2	7.	4	20	20,63	1	0	13
ē ⊐	.5	5	9.	0	0.	.7	9	9	~	0.		9.52	4	9.	9		9.64	.6	8	0.	7.6	8	9.	0.6	1.2	1.0	1.3	2.2	2.2	2.1	12,32	2.5	2.6	2.7
¥ ¥	98	96	93	35	44	44	50	47	44	69	96	95	96	66	00	32	70	91	99	05	04	86	1.7	71	13	41	67	93	93	93	9065	16	16	03
Time h/m/s	7 14 4	7 15 1	7 15 5	7 16 2	7 16 5	7 17 2	7 17 5	7 18 3	7 19 3	7 19 3	7 20 7	7 20 3	7 21 1	7 21 4	7 22 1	7 22 4	7 23 1	7 23 5	7 24 2	7 24 5	7 25 2	7 25 5	7 26 3	7 27 3	7 27 3	7 28 7	7 28 3	7 29 1	7 23 4	7 30 1	17 30 47	7 31 1	7 31 5	7 32 2
																															1			

THE BOM CORPORATION

			-			-			1						-						-			-			1						-		
~ ¶	813.9	303.0	794.0	786.4	778.7	770.9	767.8	766.8	769.0	768.7	768.1	763.8	758.2	752.5	742.2	732.2	724.1	716.2	712.8	710.9	7.807	708.8	709.4	711.4	711.4	712.6	710.6	710.6	710.9	710.7	711.3	711.2	711.1	710.8	710.7
CT2 C'2/m'2/3	.00E	.00E	-00E	300.	.00E	.00E	.00E	.00E	JUE.	.00E	300°	ODE	. 00E	.00E	-00E	30C.	. 00E	300°	300°	300°	-00E	.00E	.00E	.00E	.00E	.00E	.00E	300.	.00E	-00E	.00E	.00E	9	300°	.00E
Eps m-2/s-3	.75E	.70E-0	.25E-0	.19E-0	.19E-0	.45E-0	.15E-0	.51E-0	.63E-0	. 79E-0	.26E-0	.46E 0	.74E-0	.50E-0	.99E-0	.31E-0	.54E-0	.32E-0	7.	.27E-0	.37E-0	.516-0	. 56 E-0	.05E-0	.88E 0	.27E 0	.31E 0	.23E-0	.76E-0	.238 0	.05E 0	.80E-0	9.056 01	.97E.	.39E-
E W/W	4.3	•	•			•	•			1.5			•												3		4						-1.3		
e e		•	•	•	•						•	•			•	•	•									•		•	•				0.93	•	•
z	224.8	223.1	221.5	219.5	217.5	215.4	214.4	213.8	213.7	213.6	213.7	213.2	212.4	210.7	208.5	207.8	206.9	205.9	205.4	205.0	204.4	204.0	203.6	203.3	203.3	199.3	202.7	203.3	203.3	203.2	203.0	203.3	201.1	203.4	203.5
nt Ts	0.3	0.2	0.1	0.1	0.2	0.1	0.2	0.2	0.2	9.6	9.4	7.7	6.8	8.9	9.0	8.8	8.7	7.8	8.7	9.0	9.2	9.4	3.00	0.0	4.1	4.5	0.2	0.4	0.5	0.2	2.7	0.3	10.78	6.0	9.9
T Cent	9.	7.	2	6.	2.		.5	.5	8	8	.7	.5	7	.2	9	7	4.	.7		0.	α,	0.	.2	5	7	3.	4.	7	7	7	4	.2	7.30	.7	
At	~	-	-	a	10	_	~	10	m	3	_	10	10	10	_	10	10	~	10	m		0	23	_	-	10	m	m	~	m	_	-	9 92 1	m	m
Time h/m/s	32	33	33	34	35	35	36	36	37	37	38	38	39	39	40	40	41	41	42	43	43	44	44	45	45	46	46	47	47	48	48	49	17 49 58	50	51
	-		6	25	4	17	101	-	2	19	11	12	-	A		TI.	25 Y 2	21	2	12	11	22	E2	77	=	77	1	77	3.	4	11	3	11	197	275

THE BDM CORPORATION

	-			-			-			-			-				-			1			-			-			-					
~ €		710.9			710.1	709.9	709.6	708.8	708.5	708.2	707.9			708.1	709.3	717.6	730.5	744.4	761.1	779.0	796.1	16	35	54	9	78.	88.	66	10	20.	31.	35.	943.7	52.
CT2 C'2/m'2/3	0.00E 00	-	300°	.00E	300.	.00E	300.	.00E	0.00E 00	300.	•	.00E	DOE	0.00E 00	JOO.	0.00E 00	300.	.00E	.00E	.00E	0.00E 00	300.	-00E	.00E	.00E	.00E	.00E	.00E	300.	.00E	.00E	.00E	0.00E 00	.00
Eps m ⁻ 2/s ⁻³	5.07E-05	4.39E-05	9.18E-05	5.31E-05	4.658-05	6.638-05	1.03E-04	1.12E-04	9.38E-05	1.55E-04	1.99E-04	1.32E-04	1.08E-04	7.02E-05	7.59E-05	1.10E-04	6.358-05	8.46E-05	4.94E-05	1.73E-05	2.03E-05	1.66E-05	1.718-05	1,158-05	2.89E-05	2.958-05	1.16E-05	1.68E-05	1.68 E-05	1.178-05	3.53E-03	1.94E-03	4.19E-03	2.518 01
r V/m					2.3						•															•	•			3	7	9	75.3	4
e e	n,	1.57	.5	5	. 5	.5	5	.5	9.	9	.6	.5	5	9	3	4.	0.	9.	.1	9	3	.3	7	3	ω.	6.	0.	5	47	9.	0.	7	6.04	2.
z	m	3	3.	3	203.6	3.	3	3	3					•																			288.5	
Ts Cent	5	6	5	5	19.86																												20.87	
-	2	9.	2	8	7.79	0	00	1.	9.	9.	9.	9.	9.	1	3	.7	0.0	1.4	2.9	3.3	.5	2.7	2.5	1.9	9.0	0.	1.	0	2	0.	6.	7		4.47
Alt	7	2	a	031	12	3	3	-	-		0				3	O	C	-	-	5	-	~	10	-	-	~	0	-	~	-	-	10	2390	-
Time h/m/s	7 51	7 52	7 52	7 53	7 53	7 54	7 54	7 55	7 55	7 56	7 56	7 57	7 57	7 58	7 59	7 59	0 8	8 0	8 1	8 1	8 2	8 2	3 3	. 8	8 4	8 4	8 5	3	9	8 7	8 7	8 8	18 8 37	, 3
	17	0	*	2	3	7	5		99	57	13	7	27	-	-	-		7	0.8	-	2	100	25	-3	*	2	74	11	27	2	197	100	1	2

3	h/m/s	#		Cent		e	N/m	m-2/s-3	C'2/m'2/3	4
	4	193	9.50		290.7	5.86	•	1	0.00E 00	959.5
	0 1	167	10.23	21.00	292.3	5.82	114.3	1.36E-03	.00E	6.896
	0 4	138	1.	21.04	293.9	5.79		.60E	0.00E 00	979.1
1	77	113	1	21.29		.67		138	DOE	987.8
	1 4	84	2	21.48		. 21		.63E-0	.00E	
	2 2	99	3.	21.46	296.6	. 24		34E	0.00E 00	1008.6
1	2 5	20	4	21.43		89		.21E	00E	1
	3 2	1	5	21.72		.79	218.2	.26E-0	300.	8
	3 5		5	21.73		00.		00B-0	00 BOO.0	
	4 2	-	3	21.68	304.4	30		60E-0	SOO	1029.0
	5 0		5	21.63	301.6	99.		.33E-0	.00E	
	5 3		5	21.40	301.6	19.	9	7.54E-03		1029.1
1	6 4	2	5	20.98	302.3	79	2	.45E-0	00E	-
	6 3	2	5	20.40	301.7	. 65	201.7	5.72E-03	300 ·	1917.
	7 8	7	5	20.31	301.9	89.	1.	.83E-0	0.00E 00	1028.9
1	7 4		5	20.42		00	5	5.01E-03	BOO.	
	8 1	2	5	20.43	304.0	.24	1.	1.02E-02	•	
	8 4	3	5.	20.58	303.2	. 04	4	.44E-0	. 00E	1028.1
-	9 1	3	5	20.78		.05	2	45E-0	300	1
	9 4	7	3	21.01	303.2	66.	2	5.98E-03	300	1028.5
	0 2	7	5	21.11	303.2	. 97	-	.58E-0	.00E	1028.6
1	0 5	4	2	21.00	301.2	.53	4	.47E-0	BOOL	2.2
	1 2	5	15.31	21.07	301.3	. 57	204.3	.01E-0	.00E	1027.5
	1 5	4	5	21.04	304.2	.22	C	.18E-0	300 ·	-
	2 2	4	5	21.11	300.4	33	~	.32E-0	300	7
	3 0	9	5	20.81	300.8	41	-	3.16E-03		1.
	3 3	8	2	20.73	301.6	. 62	2	.19E-0	0.00E 00	1026.3
	4 3	9	5.	20.73	302.1	69	2	92E-0	DOE	1027.0
	4 3	6	5.	20.70	302.3	.81	N	5.81E-03	.00E	1026.0
	5 7	6		20.78	303.7	.12	1.	0.		1025.8
- 1	5 3	25		20.74	301.7	18.	178.4	.43E-0	- 00E	1019.8
8 2	11 9	297	14.40	20.80	300.7	2		4.368-03	0.00E 00	1018.4
	6 4	19	14.94	21.00	300.3	10.	207.0	3.95E-03	300.	1022.2
	7 1	15	14.85	21.03	300.5	. 50	196.1	~	0.00E 00	1023.7
	1 4	17	14.75	21.15	300.1		188.7	3.59E-03	00.	1022.9
1										

(3 E	1020	1018	1018	1018	1018	1012	101	1012	101	1011	1002	1003	1002	1002	1002	1002	994	686	666	00 993,6	266	994	994	990	979	978	976	975	974	974	965	986	957	959	959
C.2/m.2/	100	0.00E	٠.	•	•	100	46.4		1.	•	•				1 .	•	•		•	0.00E		•	•			•		•	•					0.00E	•
Eps m^2/s^3	.20E-0	.15E-0	.51E-U	.76E-0	.94E-0	.25E-0	.15E-0	.83E-0	.415-0	.45E-0	.60E-0	.21E-0	.16E-0	.28E-0	.75E-0	.21E-0	.17E-0	.75E-0	.35E-0	2.47E-03	.30E-0	.94E-0	.30E-0	.86E-0	.02E-0	.81E-0	.50E-0	.35E-U	.86E-0	.42E-0	.638-0	.51E-0	.72E-0	.68E-0	.06E-0
V/m	85.	75.	77.	11.	16.	11.	67.	71.	73.	65.	52.	57.	59.	51.	56.	57.	44.	35.	46.	144.7	46.	48.	44.	41.	26.	18.	19.	16.	13.	18.	8	3.	2.	7.	3.
e e	10	.5	1.	9.	9.	6.	0.	2.	7.	0.	0.	0.	7	0.	6.	7	4.	7.	0.	6.17	6.	0.	0.	6	0.		r.	·.	·.	1.	.2	.00	7:	7.	٣.
z	300.6	300.0	300.8	299.8	300.2	3000	300.7	301.4	301.3	300.6	298.8	2.667	299.3	298.9	293.1	299.7	298.8	296.8	297.6	297.9	296.9	297.4	297.5	296.3	294.8	296.3	295.8	295.4	295.1	292.4	293.2	290.2	291.2	291.6	292.4
Ts Cent	1.4	1.1	1.4	1.5	1.4	1.2	1.2	1.3	1.4	1.4	1.4	1:3	1.4	1.5	1.5	1.5	1.4	1.3	1.6	21.52	1.5	1.5	1.5	1.4	1.2	1.2	1.3	1.3	1.5	1.6	1.4	1.4	1.6	1.8	1.8
_ _	4.6	4.4	4.4	4.6	4.6	4. I	3.9	4.1	1.2	4.1	3.2	3.4	3.4	3.5	3.5	3.5	2.9	2.5	2.8	12.63	7:1	2.8	2.6	2.5	1.4	1.2	E	1.1	1:1	1.2	0.2	9.4		3.	2.
ft	232	291	293	290	288	456	200	466	461	481	738	708	740	730	733	723	996	1081	94	980	116	950	95	90	38	41	46	43	25	20	16	01	66	1941	34
Time /m/s	8 5	6	9 5	0 2	0 5	1 3	2 3	2 3	37	3 3	4 1	4 4	5 1	5 4	1 9	9	7 2	1 5	8 2	8 59	9 3	0 3	0	17	1 3	7 7	2 4	3 1	3 4	4 1	4 5	5 2	5 5	6 2	9
	8	20	8	ဆ	ж	8	8	8	8	8	8	8	8	8	8	20	8	8	00	18 3	8	8	æ	3	8	8	8	æ	n	8	9	8	80	8	8

h/m/		; ; ;	Cont	2 +		1 2 2	٨/٣	m.2/c.3	C.2/m.2/3	1
	,	2000	r		3	•			0 00 00	
	35	2020	2.0	21.40	287.6	60.0	× 6×	2.30E-03	0.00 00	920.0
1	-	2470	1 10	20.98	86	. 6	• •		100	•
	39	2500	9.	21.19	98	8		•	. 00 E	
-	12	2478	8	21.39	4	.5	•		.00 E	
Lane.	44	2479	8	21.43	99	6.		100.00	300.	
	16	2500	9.	21.43	88	.2			.00E	•
	48	2806	~	21.10	80	0.			.00E	
1.	20	2942	T.	21.01	2	4.			ODE.	81 a
	25	2937		21.10	73	9	•	•	. 00E	
-	24	2942	٥.	21.24	12	8		•	.00E	
2000	26	2958	.2	21.30	70	4				
1.	28	2662	7.	72.12	53	4.			OOE.	
-	0	2983	9.	21.31	99			•	. 00 E	
-	32	3240	9.	21.18	64	8		•	.00E	
-	4	3619	0.	21.04	28	7.			.00E	
1500	36	4019		20.98	2	.7		30.00	.00E	
-	&	4451	6.0	20.85	44	7				•
1	40	4815	2.2	20.80	3	10	1 .		OOE.	
	12	4898	2.4	21.13	35	7.		•	. 00 E	
	44	4934	4	21.18	34	7		•	.00E	
-	16	4926	2.4	21.25	34	7:			.00E	
-	48	4915	2.4	21.35	34	7			. 00 E	
	20	4827	1.8	9.57	35	7		· · · · · · · · · · · · · · · · · · ·	300	
1	25	4773	1.6	14.08	36	r:			OUE.	
-	24	4683		21.30	38	4		•	.00E	
	99	4243	0.2	21.03	47	4.	•	•	.00E	
1	28	3955	r.	21.04	53	0			. 00E	
	0	3481	7	21.15	63	2.			OOE	
	31	2964		21.38	3	4.			. 00E	
1	3	2493	8.8	21.62	34	9.		, •	OOE	
	35	1942	0.2	21.71	30	2		•	.00E	
	7	1323	-	22.03	3	. 5		•	. 00E	
1	39	803	3.5	22.00	35	4.	21.		300	
	11	296		21 02	10	•			1	

Cent Cent mb Cent cont cont cont cont cont cont cont co
Cent mb cont mb cont cont cont cont cont cont cont cont
Cent 15.62 21.96 298 15.37 21.95 298 15.47 21.95 298 15.47 21.93 299 15.47 21.95 299 15.56 21.96 299 15.56 21.96 299 15.59 21.96 299 15.59 21.96 299 15.33 21.91 390 15.49 21.93 300 15.49 21.93 300 15.49 21.93 300 15.40 21.93 300 15.36 21.91 299 15.37 21.93 300 15.38 21.93 300 15.36 21.75 301 15.37 21.87 300 15.38 21.87 300 15.38 21.93 300 15.30 21.49 300 15.11 21.75 301 15.11 21.75 301 15.11 21.75 301 15.11 21.79 300 15.11 21.79 300 15.11 21.93 300 15.11 21.93 300 15.11 21.93 300 15.11 21.93 301
15.62 15.62 15.62 15.33

						1						1						1						1						1			1			1
교월	1023.9	1021.9	1022.4	1021.9	1019.9	1019.6	1021.6	1022.6	1021.9	1022.0	1022.9	1022.3	1022.5	1022.5	1022.6	1022.2	1022.7	1023.1	1021.2	1021.0	1020.5	1022.1	1021.9	1022.1	1021.3	1021.8	1022.3	1021.8	1023.6	1022.4	1022.3	1022.7	1022.7	1023.4	1022.6	1022.4
CT2 C^2/m^2/3		0.00E 00	.00E	.00E	.00E	.OUE	. 00 E	.00E	.00E	300°	0.00E 00	OOE.	. 00E	. 00E	.00E	0.00E 00	. 00E	.00E	.00E	.00E	.00E	.00E	.00E	.00E	0.00E 00	. 00E	. OUE	.00E	.00E	JOD.	.00E	.00E	OOE.	0.00 8 00	.00E	00:
Eps m^2/s^3	7	.02E-0	. 00 E-0	.13E-0	.14E-0	.432-0	.32E-0	.80E-0	.51E-0	.95E-0	.64E-0	.88E-0	.78E-0	.48 E-0	.80E-0	.09€-0	·61E-0	. 4 6E-D	.00E-0	.858-0	.34E-0	.38E-0	.46E-0	.11E-0		.83E-0	.27E-0	. 2 3E-0	. 98E-U	.10E-0	.87E-0	.10E-0	.28E-0	.938-0	.55E-0	. UZE-0
√m /∖m	7	0	0		6	0	3.	4	-	5	2	3	Į.	4.	4.	2	7.	· ·	0	5	3.	7.	0.	0	189.5	2	0.	0	.0	0	4.	3.	1.	. 9	1.	3.
۰ę	3	.5	2.	1.	.5	3	. 5	.0		1.	9.	.00	3.	0	9.	9.	3.	2	0	. 7	9.	8	9.		5.91	3		5.		. 7	.0		9.	9.	~	7
Z					300.4						301,3	301.3	302.3	301.3	301.4	301.3	302.6	302.7	302.0	301.5	301.0	302.0	300.8	301.4	302.2	301.9	301.3	302.1	301.8	301.3	301.4	303.8	301.6	301.7	304.7	303.9
Ts Cent	٦.	7.	7.	7.	7.	6.	.5	.5	4.	7.		0.	7.	7.	7.	7.	0.	2		5.	3	33	1.	.5	19.54	5	0.	5.	0.	.0	4	٦.	0.	3.	0.	2
-	2.	4.7	4.7	4.7	4.2	4.4	4.7	4.7	4.5	4.5	4.0	4.0	4.6	4.5	4.5	4.4	4.6	4.6	4.4	4.3	4.3	4.5	4.6	4.4	14.45	4.4	4.4	4.5	4.6	4.3	4.3	4.3	4.3	4.3	4.2	4.2
At t	150	202	190	202	257	265	212	185	202	201	176	192	136	186	183	195	181	171	221	226	240	198	203	197	219	502	191	206	156	190	192	180	181	162	184	190
Time h/m/s	19 25 54	50	20	27	28	87	53	53	30	30	31	31	32	32	33	33	34	34	35	36	36	37	37	38	38	39	39	40	40	41	41	45	75	43	44	44
																														-						

.≥	/m/s	#		Cent		a	M/W	m-2/5-3	C'2/m'2/3	2
		210	4.1	0.0		9.	18.	. 44E	0.00E 00	_
		717	4.1	18.41	302.7	3	72.	.25E	. 00E	~
		111	3.9	8.3		7	38.	.92E	0.00E 00	~
		151	4.1	8.2		7	11.	.138	.00E	~
		188	4.1	1.7			20.	. 93E	.00E	~
		175	4.2	1.	1 .	.3	01.	136	.00E	
		111	4.2	7.		ν.	01.	.46E	.00E	~
		185	4.2			2.	63.	. 96E	.00E	~
9 49	21	199	14.30	17,72	302.5	5.89	152.4	3.06E-03	0.00E 00	1022.0
		200	4.3			9.	07.	. 69E	.UUE	-
		194	4.3			2.	48.	. 43E	. 00 E	~
		201	4.3			æ.	64.	. 88 E	.00E	~
		264	4.2	4		8	56.	.26€	.00 E	
		543	3.3	8		2.	15.	.03E	.00E	-
		823	2.2	9		9.	47.	.77E	.00E	-
		1092	1.4	8		.3	03.	. 55E	.00E	
		1388	0.6	8		.3	5.	.23E	300°	-
		1730	9.6	20		٠.	2.	. 32 E	. 00 E	10
		2058		8		.3	2.	.02E	.00E	10
		2358	.2	8		2.	4.	.16E	.00E	-
		2627	m.	8		9.	. 9	.80E	.00E	
		2861	C.	8		3.	2.	.78E	OOE.	-
		3213	.7	8		.5		.77E	300.	
		3516	0.2	3		.5	•	.83E	.00E	-
		3836	0.3	8		a.	•	. 01E	.00 E	-
		4116	0.3	8		4		.62E	. 00E	10
		4421	0.3	8		.5		.61E	.00E	
		4757	1.6	1.				.56E	OOE.	
		5076	2.0	7.		.5.		.14€	.00E	-
		5420	3.5	1		٣.		.47E	.00E	~
		5702	4.2	7.		2.		.40E	300.	-
		6909	4.4	7.		2.		.432	.00E	~1
		6537	3.3	7.		~		. 30E	0.00E 00	-
20 2		6836	10				-1.4	.46F	.00 E	-
		200								

THE BDM CORPORATION

					1		
⋴ ૄ	776.8	765.2	753.0	744.0	733.1	724.4	715.3
CT2 C^2/m^2/3				0.00E UO			
Eps m^2/s^3	3.52E-05	5.968-05	5.298-05	6.756-05	5.56E-05	3.81E-05	4.42E-05
E V/m	0.4	0.3	-1.1	-1.0	-1.3	-1.4	-2.6
a de	0.48	0.55	0.79	1.04	1.31	1.53	1.72
z	212.5	209.9	208.3	207.4	206.6	205.7	204.8
Ts Cent	17,30	17.22	17.42	17.46	17.39	17.52	17.52
-	13.43	13.11	12,32	11.71	10.54	9.87	8.97
Alt	7608	8003	8426	8737	9124	9435	9763
Time 1/m/s	4.4	10	48	20	5.5	24	50
-	20 3	50 4	20 4	20 5	20 5	30 0	9 03

Figure B-12. Flight 12 Flight Track

13DEC78

12

FL IGHT#

7.2 C72		1			1			1			1			1			1			1			1	•		1			1			-			1	
Time Alt T Cent mb Vm m·2/s-3 h/m/s ft Cent mb Vm m·2/s-3 Fig. 104 14.34 20.94 308.2 6.89 233.3 2.88E=03 4 154 50 14.47 21.17 307.9 6.76 237.5 2.18E=03 6 14.87 21.95 309.8 6.76 237.5 5.11E=03 6 14.87 21.95 309.8 6.78 247.5 5.11E=03 6 14.87 21.95 309.8 6.95 247.5 5.11E=03 6 14.87 21.99 306.8 6.87 229.2 4.66E=03 6 15.06 22.2 13 307.9 6.78 249.7 6.88E=03 6 15.06 22.19 306.8 6.87 229.2 4.66E=03 6 15.06 22.19 306.8 6.87 229.2 4.66E=03 6 15.06 22.19 306.8 6.87 229.2 4.66E=03 6 15.06 22.2 1.95 308.8 6.95 249.9 2.67E=03 6 15.9 14.95 22.33 308.6 6.95 249.9 2.67E=03 6 15.9 14.96 22.33 308.6 6.95 249.9 2.67E=03 6 15.9 14.96 22.33 308.6 6.95 249.9 2.67E=03 6 14.96 22.33 308.6 6.95 249.9 2.67E=03 6 14.94 22.11 309.7 7.27 258.0 2.28E=03 6 14.96 21.95 308.9 7.08 277.1 2.71E=03 6 12.95 30.8 2.2 1.0 2.0 1.0 3.64E=03 6 12.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	<u>a</u> e	26.	28.	30.	30.	30.	30.	29.	29	30.	30	29.	29.	29.	29.	29.	29.	28.	28.	28.	28.	28.	29	30.	30.	30	30.	29.	29.	29.	29.	29	29.	29.	29.	0 9001
Time Alt T Ts N e E Fps h/m/s ft Cent mb V/m m²5s-3 2.286-0 1 53 46 104 14.34 20.94 308.2 6.86.8237.5 2.286-0 1 54 50 6 14.87 21.95 309.8 7.18 40.48-0 1 55 20 9 14.87 21.95 309.8 7.18 8.48.1 6.048-0 1 55 20 9 14.87 22.13 309.8 7.18 24.18 6.048-0 1 55 22 18 14.94 22.13 309.0 7.08 6.87 24.5 6.886-0 1 56 28 18 14.94 22.13 309.0 7.06 22.18 6.95 24.5 6.886-0 1 59 5 3 18 14.99 22.13 309.0 7.06 22.2 6.886-0 1.058-0 1 59 5 3 14.98 22.2 3.309.0 7.06 22.2 1.240 22	CT2 C^2/m^2/3	.31E-U	.59E-0	.14E-0	.69E-0	.76E-0	.91E-0	.39E-0	.07E-0	.48E-0	-06E-0	.51E-0	.77E-0	37E-0	.05E-0	.24E-0	.06E-0	.11E-0	.11E-0	0-356	.69E-0	.24E-0	60E-0	.59E-0	.98E-0	.79E-0	.79E-0	.87E-0	.34E-0	.69E-0	.69E-0	18E-0	.02E-0	.35E-0	.24E-0	0 E-0
Time Alt T Table Alt T Tent Mode Mode Alt Alt </td <td>Eps 2/s</td> <td>.88E-0</td> <td>.71E-0</td> <td>.04E-0</td> <td>.11E-0</td> <td>.83E-0</td> <td>.80E-0</td> <td>.05E-0</td> <td>.66E-0</td> <td>.62E-0</td> <td>.62E-0</td> <td>.05E-0</td> <td>.23E-0</td> <td>67E-0</td> <td>.74E-0</td> <td>.46E-0</td> <td>.00E-0</td> <td>.33E-0</td> <td>. 28 E-0</td> <td>. 54E=0</td> <td>.71E-0</td> <td>.71E-0</td> <td>.12E-0</td> <td>.72E-0</td> <td>.13E-0</td> <td>.09E-0</td> <td>.97E-0</td> <td>. 32E-0</td> <td>.63E-0</td> <td>.70E-0</td> <td>. 57E-0</td> <td>. 25E-0</td> <td>.08E-0</td> <td>.27E-0</td> <td>.28E-0</td> <td>640-0</td>	Eps 2/s	.88E-0	.71E-0	.04E-0	.11E-0	.83E-0	.80E-0	.05E-0	.66E-0	.62E-0	.62E-0	.05E-0	.23E-0	67E-0	.74E-0	.46E-0	.00E-0	.33E-0	. 28 E-0	. 54E=0	.71E-0	.71E-0	.12E-0	.72E-0	.13E-0	.09E-0	.97E-0	. 32E-0	.63E-0	.70E-0	. 57E-0	. 25E-0	.08E-0	.27E-0	.28E-0	640-0
Time Alt T Ts N e 1 54 18 ft Cent mb <	V/m	33.	37.	48.	47.	42.	44.	22.	29.	22.	19.	52.	49.	49.	32.	57.	47.	55.	58.	81.	77.	73.	87.	97.	31.	47.	30.	02.	81.	37.	48.	13.	01.	01.	34.	0
N/m/s Alt T Ts N h/m/s ft Cent Cent 1 53 46 104 14.34 20.94 308. 1 54 18 59 14.47 21.17 307. 1 54 20 6 14.87 21.19 309. 1 55 22 9 14.87 21.19 309. 1 55 22 9 14.87 21.19 309. 1 56 26 7 15.08 22.13 307. 1 56 58 18 14.99 21.97 308. 1 58 2 17 14.96 21.97 308. 2 0 41 36 14.85 22.33 309. 2 0 41 36 14.98 22.33 308. 2 0 41 36 14.98 22.33 308. 2 1 36 14.94 22.01 310. 2 2 49 62 14.83 22.33 308. 2 3 14.95 22.33 308. 22 34.96 21.33 308. 2 4 5 7 30 14.98 22.31 309. 23 14.96 21.36 310. 2 4 5 7 30 14.98 22.31 309. 2 3 14.96 21.96 309. 2 4 5 7 30 14.98 22.31 309. 2 5 14.86 21.96 309. 2 5 1 4 .86 21.85 310. 2 5 14.86 21.95 309. 2 5 29 7 7 15.30 21.75 309. 2 5 14.86 21.95 309. 2 6 33 10 15.00 21.37 308. 2 5 14.86 21.95 309. 2 8 41 22 15.01 21.02 31.37 308.	a e	8	1.	7	2	1.	8	5	8	0	q		7	6	2	2	7		. 2	3	0	4.	4	.2	7	.5	3	0.	9	2	œ.	7	. 2	1.	0	1
Time Alt T Alt Cent (a) h/m/s ft Cent (a) 1 53 46 104 14.34 20.9 1 54 18 59 14.47 21.9 1 55 22 9 14.87 21.9 1 55 24 9 14.87 21.9 1 55 24 9 14.94 22.1 1 56 26 7 15.08 22.1 1 56 26 1 8 12.08 22.1 1 56 26 1 8 14.94 22.1 1 58 34 1 7 14.96 22.1 1 59 37 32 14.98 22.3 2 0 41 36 14.98 22.3 2 0 41 36 14.98 22.3 2 1 3 36 14.98 22.3 2 2 17 60 14.94 22.0 2 2 49 62 14.93 22.1 2 2 49 62 14.93 22.1 2 3 21 36 14.98 22.3 2 4 36 14.98 22.3 2 5 2 49 62 14.83 22.1 2 6 1 9 15.26 21.6 2 6 1 9 15.26 21.6 2 7 37 33 15.03 21.3 2 8 41 25.0 1 15.06 21.5 2 6 1 9 15.26 21.6 2 7 37 33 15.03 21.3 2 8 41 22.1 22 15.07 21.2 2 9 45 21 22.0 3 10 17 21.3 <td>Z</td> <td>OB.</td> <td>07.</td> <td>. 60</td> <td>08.</td> <td>07.</td> <td>08.</td> <td>. 90</td> <td>08.</td> <td>. 60</td> <td>08.</td> <td>10.</td> <td>. 60</td> <td>08.</td> <td>08.</td> <td>. 60</td> <td>.60</td> <td>10.</td> <td>. 60</td> <td>10</td> <td>08.</td> <td>10.</td> <td>60</td> <td>. 60</td> <td>.60</td> <td>11.</td> <td>10.</td> <td>08.</td> <td>08.</td> <td>08.</td> <td>08.</td> <td>03.</td> <td>. 60</td> <td>10</td> <td>08</td> <td></td>	Z	OB.	07.	. 60	08.	07.	08.	. 90	08.	. 60	08.	10.	. 60	08.	08.	. 60	.60	10.	. 60	10	08.	10.	60	. 60	.60	11.	10.	08.	08.	08.	08.	03.	. 60	10	08	
Time Alt T h/m/s ft ft 1 54 18 59 14.47 15.08 1 55 22 9 14.87 15.08 1 56 26 7 15.08 15.08 1 56 26 7 15.08 15.08 1 57 30 22 14.98 16.88 2 0 41 36 14.98 17.02 2 0 41 36 14.98 17.02 2 1 13 36 14.98 18.85 2 1 13 36 14.98 18.85 2 2 1 1 30 14.94 14.94 2 3 2 1 4.95 14.94 14.94 2 4 3 5 37 36 14.98 14.94 2 4 5 5 14.96 14.94 14.94 2 5 2 1 4.95 14.95 14.94 2 6 1 3 2 14.95 14.96 2 7 2 3 3 3 14.95 16.00		0.9	1.1	1.9	1.9	2.1	2.1	1.9	1.9	2.0	1.9	2.2	2.3	2.3	2.3	2.3	2.1	2.0	2.1	2.0	1.9	1.8	1.9	1.7	1.6	1.6	1.5	1.3	1.1	1.4	1.3	1.5	1.7	1.6	1.7	
h/m/s	-	4.3	4.4	4.8	4.8	4.9	5.0	4.9	4.9	5.0	4.9	5.0	4.9	4.8	4.8	4.9	4.9	4.9	4.8	6.4	4.8	4.8	4.9	5.3	5.2	5.2	5.0	5.0	4.8	5.0	5.0	5,1	5.1	5.0	5.0	1
7	t t	9	5	9	6	6	7																													
- 2000000000000000000000000000000000000	m/s	4	7	2	~	5	7	5	m	~	m			6	41	13	45	17	43	21	53	25	57	53	1	33	S	37	6	41	13	45	0 17	0 49	1 21	
	Ē	1 5	1 5	1 5	1 5	1 5	1 5	1 5	1 5	1 5	1 5	1 5	1 5	7	7	7	7	~	7	~	7	7	7	7	7	7	~	7	7	7	7	7	7	7	7	

2	s/m/	#		Cent		4	N/m	m.2/s.3	C'2/m'2/3	a
~		33	4	2	309.7	•	75.	.438-0	.25E-0	029
~		92	4	3			57.	. 86 E-U	35E-0	270
7		83	4.	8		•	61.	3E-0	3.99E-03	1027.5
7		88	4	1.		•	37.	.95E-0	.11E-0	-
7		81	4.	.8			38.	.44E-0	.77E-0	2
7		16	4	8			36.	.24E-0	.66E-0	-
7		157	4				. 97	.49E-0	381	4
7		189	4	7			30.	.77E-0	23E-0	~
7		199	4	.6			23.	.72E-0	1.64E-03	3
7		196	4	0			33.	.71E-0	.50E-0	~
~		285	4	5			45.	.34E-0	.34E-0	-
2		262	4	7			15.	. 198-0	.74E-0	-
7		208	4	.2			54.	.196-0	.57E-0	2
7		228	4	7			60.	.25E-0	598-0	N
2 19	52	301	13,95	20.82	306.9	6.95	249.0	0	7.10E-04	1019.5
7		292	4				51.	.24E-0	.23E-0	3
7		309	3				51.	.49E-0	.14E-0	3
2		310	3	1			55.	.158-0	.34E-0	ON
7		413	3.				55.	.92E-0	.80E-0	C
7		502	3.	S		•	46.	. 558-0	.22E-0	N
7		525	3	9			68	. 52E-0	-34E-0	-
7		535	3	0			73.	.776-0	.68E-U	-
7		497	3.	.6			69.	.326-0	. 80E-0	CV
7		653	3	~			30.	.49E-0	.78E-0	10
7		191	7	3		•	14.	7E-0	.09E-0	N
7		760	2.	1.		•	23.	.14E-0	.49E-0	N
		161	7	0			26.	.25E-0	.12E-0	~
7		759	5		303.4		24.	. 69E-0	•	N
~		797	2	6.	302.3	•	16.	.21E-0	•	001
7		920	2	8	301.5	•		.39E-0	9	4
7		1012	2	2.	302.0			.03E-0	•	963.5
~		1004	2	0.	301.5	•		.24E-0		3
7		066	3	4	301.5	•		.02E-0	. 50E-0	4
7		1014	7.	0	302.3	•	•	.328-0		993.5
~		1101		•						

h/m/s	#	-	Cent 15	-	9 @	/w /	Eps m-2/5-3	C'2/m'2/3	1
	142	23	21.30	299.0	33	30.	7	5.77E-04	978.9
	35 1517	10.59	21.14	300.3	7.24	111.4	1.518-03		975.5
	151		21.53	299.0		26.	7	7	975.6
	9 147	8	21.56	299.5	0	33.			•
	1 146	8	21.67	300.0	7.	25.	٦.	•	
	3 156	9.	21.43	299.0	9.	18.	30	0.	
	5 184	0.	21.30	293.8	7	~		4	
-	7 202	.0	21.42	291.2	7		7	0	
	9 205	9.	21.51	242.0	4.	~	æ		
	1 198	~	21.68	289.1	1		7	"	
100	3 196	11.28	21.60	279.5	8		.,	2	
48 7	5 205	10.91	21.43	281.2	£.	·	2	4	
	7 204	11.03	20.97	281.1	4	2	4	.74E-0	
	9 201	11.13	21.23	278.1	9.	2	٦.		
	1 233	11.29	20.96	272.9	7	7.	4		
	273	11.56	20.82	264.2	7	7.	7		
	5 297	11.71	20.55	259.7		.0	8	•	924.6
	294	11.91	20.75	259.1	.5	1	٦.	.46E-0	
	9 297	11.72	20.58	259.0	in	-		.04E-0	
	1 300	11.70	20.60	258.8	1.56	-		5.97E-05	
	2 300	12.34	20.66	257.9	4.			.08E-0	
	4 328	13.08	20.69	253.1	7	-	9	30E-0	
	6 373	12.87	20.25	247.2	.7	-	4	•	
	8 412	12.35	20.18	244.2	0.75	8	9.	.38E-0	
	0 417	12.02	20.28	241.9	3	0	4	.82E-U	
	2 484	13.00	20.50	237.9	8.	1.		11E-0	
-	4 495	12.79	20.56	236.5	0.81	2.			
	6 493	12.69	20.71	236.3	9	5	8	.61E-0	
	3 495	12.76	20.73	236.3	9.		0	5.10E-04	
	0 499	12.72	20.69	236.3	-	3.	0		
. 4	504	12.81	20.89	236.0	1	3.			
	4 53	12.35	21.08	235.0	0		4	1,10E-04	847.5
-	551	12.14	21.25		1.18	12.6			
N	8 541	12.21	21.30		6.	14.4		0	844.6
	0 520	10.96	12.39			9.1		2.298-02	
	2 471	12.56	17.65	160.0	-16.51	15.9	4	.42E-0	867.0

				1			1			-			1			1			1			1			1			-			1		
~ €	889.7	927.9	955.0	986.0	1008.2	1020.0	1024.6	1023.5	.1021.6	1020.8	1020.2	1023.1	1025.2	1028.1	1028.5	1028.1	1028.3	1028.3	1025.6	1026.1	1027.4	1016.6	1008.5	995.5		980.4	9.616		971.9		1.916	984.3	930.8
CT2 C'2/m'2/3	4.21E-03	.2	8.47E-04	6.05E-04	2.56E-04	6.34E-04	2,006-03	1.97E-03	1.35E-03	1.418-03	1.36E-03	1.57E-03	3,548-03	1.06E-02	1.24E-02	1.186-02	7.20E-03	9.09E-03	3.348-03	4.22E-03	7.90E-03	1.936-02	5.338-03	1.65E-02	5.798-04	8 6	2	78-0	1.21E-04	5	50	3	1.425-03
Eps m^2/s^3	7.038-04	038-0	2.19E-04	6.028-04	8.36E-04	9.798-04	1.748-03	1.126-03	1.90E-03	1.02E-03	1.02E-03	2.28E-03	1.94E-03	2.87E-03	2.996-03	3.32E-03	3.12E-03	3.07E-03	1.908-03	2.698-03	2.446-03	8.27E 00	1.188-03	3.358-01	1.008-03	5.47E-04	108	.24E	1.12E-04	2	138	6.22E 01	2.398 01
e W/m	19.8		39.0	135.8	200.4	230.5	278.5	270.1	9.697	250.7	248.4	262.4	266.6	249.8	241.0	231.7	222.0	226.0	250.8	221.9	216.6	191.4	170.4	143.2	127.1	121.8	102.1	96.0	93.6	115.7	114.3	116.5	129.5
a ē		14	. 01	.65	.40	.39	.59	13	05.	.36	.34	.73	.40	.78	. 52	69	.72	. 98	. 60	19.	.52		21	.64	6.40	6.48	07.	5.		7	4.	-3.05	
z	243.2	262.4	283.5	296.2	301.3	303.7	305.4	303.5	304.4	304.1	303.9	306.0	304.7	306.9	306.0	306.3	307.1	308.1	305.8	306.3	305.6	276.5	297.6	300.3	247.2	296.6	295.3	257.5	235.9	287.9	204.0	253.3	248.8
Ts	21.69	21.59	21.63	21.94	22.34	21.93	21.69	21.46	21.37	21.31	21.27	21.29	21.28	21.39	21.30	20.59	20.49	20.28	20.10	20.23	20.33	17.02	19.92			19.62	19.61	19.78		19,39	9.75	7.	22.17
۲	13.28	. 2	11.31	4	0.	.6	0	œ	14.56	14,45	14.42	14.76	15.07	15.30	٦.	7	15.01	7.	·.	5	. 2	2.		00	-	20	-	~	11.95	4.	4.	12.67	14.03
Alt	4018	2882	2097	1223	109	287	163	193	242	264	280	202	146	69	57	99	19	63	134	123	98	325	601	959	U.	~	4	4	10	S	4	1269	3
Time h/m/s	12 50 14	2 51 1	2 51 5	2 52 2	2 52 5	2 53 2	2 53 5	2 54 2	2 55 1	2 55	2 56	5 56	2.57	2 57	2 58	2 58	2 59	2 59	3 0	3 0	3 1	3.1	3 2	3 3	3 3	3 4	3 4	3.5	3 5	3 6	3 6	3 7	3 7
	4 0			3			-			-	9	3																			*		

	T Ts	=	• •	E//m	Eps m ⁻ 2/s ⁻³	CT2 C'2/m'2/3	~ €
	30.53	248.8	4.55		1.468 02	-6.614-03	1
	14.96	289.9	4.70		5.15E-03	3.108-03	9.35.4
	15.87	291.1	4.71		2.22E-04	2.238-04	1001
	4.87	291.9	4.84		1.808-04	1.618-04	1002 6
13.90 1	4.43	259.4	-2.60	118.9	2.83€ 01	3.546-03	1003.2
	9.84	295.5	5.44		2.32E-03	1.336-03	1004.6
	1.14	297.3	5.23		5.296-03	2.046-03	1016.2
	4.42	299.9	5.44		6.618-02	8.79E-02	1028.4
	7.55	298.8	5.00		4.32E 00	1.61E-01	1028.4
	15.91	244.2	5 22		1 200-00	1 170-01	10001

Figure B-13. Flight 13 Flight Track

13DEC78

FLIGHT# 13

4	-	Cent		a e	\/m	Eps m^2/s^3	C'2/m'2/3	₽
-	4 14.4	19.8	239.6		(1)	.538-0	.35	
:-	2 15.	20.	304.4	7.43	142.2	8.01E-04	9.16E-04	1007.1
-	3 15.8	20.1			181.7	.99E-0	.86	
	0 15.6	20.0			6	.45E-0	.53	
_	2 15.5	20.1			0	.09E-0	.68	
	3 15.7	20.3			193.4	.23E-0	.94	
	9 15.6	20.4		•	91	.25E-0	.47	
	1 15.5	20.4			2	. 656-0	.34	
	6 15.7	20.3			0	.47E-0	.12	
	6 15.1	20.3			4	.46E-0	.20	
	0 14.9	20.8			~	.08E-0	. 23	
	8 15.1	20.9		•	55	.37E-0	.02	
	1 14.6	20.9		•	46	.97E-0	.03	
-	9 14.1	20.6			46	.38E-0	.39	
	2 14.0	20.6			43	.06E-0	.54	
•	6 13.9	20.9			46	. 52E-0	.68	
	8 13.4	20.8	303.7	•	142.4	.06E-0	.02	
-	6 13.1	20.7		•	33	.718-0	.52	
-	4 12.7	20.8		•	42	.41E-0	.70	• 1
-	0 12.9	21.1		•	41	. 29E-0	.88	
	3 12.7	21.1		•	39	.85E-0	.46	
-	2 12.8	21.2		•	44	.48E-0	17.	
	6 14.0	21.4		•	0	.66E-0	.84	
11	6 15.8	21.6		•	98	.92E-0	.17	
	7 15.9	21.6		•	54	.54E-0	.57	
	15.9	21.5		•	38	. 138 -0	.49	
	15.9	21,3			99	. 8 3E-0	.04	
	15.9	21.0			37	.16E-0	.48	
	15.9	20.8		•	67	.00E-0	.41	
	15.9	20.3		•	5.2	.218-0	.46	
	15.9	20.7			43	.94E-0	.34	
-	16.0	20.7		•	28	.62E-0	.41	
-48	4 15.8	20.4		•	41	.38E-0	. 38	
	15.9	20.5		•	54	.93E-0	.81	
	1 16.0	20.5			74	.35E-0	.06	
3		-						

																													-					
₽	026	2	025	026	025	025	025	024	025	025	022	021	-	1021.1	21	16	17	17	11	17	14	0.9	10	10	60	03	00	97	36	66	94	-	74	12
CT2 C^2/m^2/3	.45E-0	.68E-0	.52E-0	.90E-0	.60E-0	.32E-0	.84E-0	.77E-0	.22E-0	.45E-0	.47E-0	.13E-0	.64E-0	1.67E-03	.05E-0	.84E-0	. 00E-U	.92E-0	.03E-0	.21E-0	.09E-0	.22E-0	. 80E-U	.79E-0	.92E-0	.09E-0	.45E-0	.48E-U	.09E-0	.11E-0	.77E-0	.95E-0	.29E-U	.01E-U
Eps m^2/s^3	.58E-0	.18E-0	.68E-0	.37E-0	.15E-0	.59E-0	.25E-U	.48E-0	.66E-0	.528-0	.41E-0	.51E-0	.02E-0	1.496-03	.338-0	.25E-0	.69E-0	.36E-0	.21E-0	.90E-0	.40E-0	. 63E-0	.09E-0	.05E-0	.60E-0	. 22E-0	.136-0	.058-0	.84E-0	.46E-0	.85E 0	.16E 0	.47E 0	. 50E 0
V/m														218.9																				
e e	. 28	.97	.13	. 93	. 61	.36	. 23	12.	.31	.19	.37	.41	.30	7.46	.42	. 21	.35	.41	. 27	. 25	. 29	44	.40	. 20	.31	.14	.45	67.	.01	. 23	. 35	. 27	13.31	18.04
z														308.0																				
Ts Cent	0.1	0.1	0.2	0.4	0.4	0.5	0.4	0.5	9.0	6.0	0.8	0.3	1.2	21.21	1.2	1.1	1,1	1.2	1.2	1.0	3.0	0.3	0.5	0.4	0.3	0.1	4.9	9.8	6.6	9.8	7.1	5.8	0.6	8.7
-	6.1	0.9	6.1	6.0	6.0	5.9	5.9	5.7	5.8	5.8	5.5	5.3	5.4	15.39	5.4	4.9	5.1	5.1	5.1	5.0	4.8	4.4	4.6	4.6	4.6	4.2	3.9	4.1	4.2	3.9	3.6	2.9	2.5	2.2
t t	54	71	61	56	59	69	78	93	81	78	153	188	173	1,88	181	304	284	281	277	273	379	909	471	479	497	664	743	827	812	792	910	1294	1431	1541
Time \\/\/\/\/s	6 9	5 9	5 10	5 11	5 11	5 12	5 12	5 13	5 13	5 14	5 14	5 15	5 15	15 16 23	5 16	5 17	5 17	5 18	5 19	5 19	5 20	5 20	5 21	5 21	5 22	5 22	5 23	5 23	5 24	5 24	5 25	5 25	5 26	5 27
			*	-	1			-	.3								,												*	-	-2			-

							-									1															
~ 2	72.	75.	74.	75.	75.	69	58.	57.	53.	58.	58.	57.	45	29.	23.	24.	23.	23.	19	02.	88	76.	65.	57.	57.	59.	59.	58.	859.2	60.	
CT2 C^2/m^2/3	"	.24E-0	. 57E-0	-36E-0	3.54E-03	.45E-0	.35E-0	.42E-0	.27E-0	.22E-0	.15E-U	.83E-0	.21E-0	.00E-0	.05E-0	.12E-0	.58 E-U	.03E-0	.11E-0	.06E-0	.95E-0	.74E-0	.72E-0	.96E-0	.64E-0	.68E-0	.13E-0	. 20E-0	1.54E-03	.85E-0	
Eps m^2/s^3	166.	.32E	.68E	.06E	.49E	.32E	. 55E	. 57E	.77E	.72E	. 16E	. 23E	.37E	.22E	.35E	. 77E	.00E	.081	.74E	. 60E	.74E	. 34E	. 52E	.27E	. 4 OE	.56E	.38E	, 27E	6.40E-05	.51E	
E V/m	9	.0	2	0	5.	4.	7	8	0.	1	2.	3.	3	4	7.	9	7.	æ	5	9	7.	7.	7.	5	5	5	4.	~	12.5	1.	
e e						•																							1.22		
z	88	88	88.	91.	92.	87.	81.	82.	82.	82.	59.	55.	74.	60.	58.	57.	56.	56.	54.	47.	46.	44.	39.	28.	36.	36.	37.	37.	237.4	20.	
Ts Cent	0.1	0.3	0.3	0.3	0.3	0.2	0.0	0.4	9.0	6.0	9.1	5.1	0.7	0.4	0.3	0.5	9.0	1.7	0.7	9.0	0.3	0.1	9.9	5.8	6.6	0.0	0.0	9.6	19.73	9.6	
-	3,0	3.2	3.0	2.6	2.3	2.5	2,3	2.0	2.0	1,9	1.9	1.4	2.1	3.4	3.0	3.3	3.2	3.3	3.6	3.9	3.7	3.8	4.2	4.3	4.6	4.6	4.2	4.3	14.24	3.8	
At	52	45	48	45	45	62	93	95	94	92	93	96	31	17	93	90	93	95	05	58	00	36	63	93	94	89	89	91	4893	34	
Time h/m/s	5 27 3	5 28 6	5 28 3	5 29 1	5 29	5 30 1	5 30 4	5 31 1	5 31 4	5 32 2	5 32 5	5 33 2	5 33 5	5 34 2	5 35 1	5 35 3	5 36 5	5 36 3	5 37 9	5 37 4	5 38 1	5 38 4	5 39 1	5 39 4	5 40 2	5 40 5	5 41 2	5 41 5	15 42 28	5 43	
	=	22	22	7.	.0	A	3	=	=======================================	.3	S.	12	27	30	28	8	-2	=	27	13	#	12	75	77	40		3	3	27		

Figure B-14. Flight 14 Flight Track

FLIGHT# 14

										-			1						1			1			1			1			1			1		
~ €	913.0	928.4	940.4	947.0	950.1	958.3	966,3	974.0	983.6	994.9	1006.1	1008.1	1008.2	1009.0	1008.6	1017.5	1025.3	1025.7	1025.6	1025.7	1025.7	1025.4	1025.2	1025.4	1025.3	1023.6	1023.6	1024.7	1024.9	1025.1	1025.0	1024.1	1023.9	1024.2	1023.9	1022.4
CT2 C^2/m^2/3	.00E	0.00E 00	.00E	.00E	.00E	.00E	. 00E	300°	.00E	.00E	.00E	.00E	300.	.00E		.00E	300°	. 00E	-00E	.00E	.00E	.00E	. 00E	.00E	.00E	.00E	•	.00E	.00E	.00E	•	.00E		9	•	•
Eps m^2/s^3	. 60E-0	3.54E-05	.87E-0	. 12E-0	.85E-0	.63E-0	.35E-0	.25E-0	. 20E-0	.65E-0	.07E-0	.46E-0	.11E-0	.75E-0	.60E-0	.36E-0	.45E-0	.34E-0	. 44E-U	.73E-0	. 58 E-0	. 47E-0	.61E-0	.14E-0	.27E-0	.32E-0	.72E-0	. 59E-0	.16E-0	.73E-0	.57E-0	.52E-0	.61E-0	.79E-0	.04E-0	.21E-0
K V/m		23.1	9	1.	.9	7.	7.	00.	.90	14.	37.	41.	42.	43.	.60	35.	83.	85.	86.	86.	86.	95.	57.	61.	.80	86.	84.	70.	41.	43.	90		84.	84.	71.	. 19
۰ę	~	3.11	.2	4	4.	4.	0	.5	7	2	7.	0.	3	-:	4.	9.	4.	2.	8	8	4.	. 7				9.	.5	3	~	.3	.7	.5		8	2.	. 3
z	~	266.2	0	2	5	4.	6	3	1.	0	2	2	3	3	4	9	7.	2	8	8	7.	8	. 9	8	-	1.	. 0	.0	5	.0	8	7.	8	*	9	. 9
Ts ent	9.5	19.90	0.1	0.3	0.5	1.0	1,2	1.2	1.3	1.2	1.4	1.2	6.0	1.0	8.0	0.9	1.3	1.4	1.5	1.6	1.5	1.7	1.4	1.5	1.5	1.3	1.4	1,5	1.4	1.1	1.0	6.0	0.9	1,0	1.0	6.0
-	3.7	12.68	2,1	2,3	2.4	3.2	3.4	3.8	4.3	5.1	5.9	5.8	5.6	5.6	5.6	6.7	7.3	7.3	7.3	7.2	7.3	7.2	7.1	7.2	7.2	7.0	7.3	7.2	7.2	7.1	7.1	7.0	7.1	7.2	7.2	6.9
##	19	2744	39	20	11	88	65	43	16	85	4	8	0	9	1	3	-	80	11	80	9	17	20	17	13	9	64	36	30	26	28	52	99	49	99	96
Time h/m/s	7 12	17 13 2	7 13	7 14	7 14	7 15	7 15	7 16	91 /	7 17	7 17	7 18	7 18	7 19	7 19	7 20	7 21	7 21	7 22	7 22	7 23	7 23	7 24	7 24	7 25	7 25	7 26	7 26	7 27	7 27	7 28	7 29	7 29	7 30	7 30	7 31
	*2	1		6	10	=	13	1	7	15	65	A	182	2	R	22	11		11	12		n			14	п	-	В	7	**		37	13	4	0	12

1,
Mark Mark
Mark
Cent Cent
Mark
Aft Cent
h/m/s ft Cent 31 40 99 16.96 20 32 44 101 16.96 20 33 48 197 16.82 20 34 20 184 16.73 20 35 24 185 16.82 20 35 24 186 16.82 20 35 24 186 16.82 20 35 24 185 16.82 20 35 24 185 16.82 20 36 27 288 16.36 20 37 31 305 16.18 20 38 35 297 16.32 20 38 35 297 16.32 20 38 35 297 16.32 20 39 3 460 15.82 20 40 43 305 16.36 20 7 40 43 508 16.36 20 7 41 47 677 15.24 20 7 42 19 734 14.25 20 7 44 59 994 14.23 20 7 44 59 994 14.23 20 7 45 3 19.39 <t< td=""></t<>
h/m/s AL 7 31 40 99 16.96 7 32 44 101 16.96 7 33 48 197 16.96 7 34 20 184 16.73 7 35 24 185 16.87 7 35 24 186 16.63 7 35 24 185 16.64 7 35 24 185 16.63 7 36 27 288 16.32 7 38 3 297 16.32 7 38 3 284 16.32 7 39 7 36 59 7 38 3 284 16.32 7 39 3 284 16.32 7 39 3 284 16.32 7 40 11 482 15.66 7 40 43 508 16.36 7 41 47 677 15.24 7 42 51 734 14.95 7 44 59 734 14.95 7 45 31 734 14.95 7 45 31 994 14.23 7 45 39 994 14.23 7 45 39 1210 13.94 7 47 39 1210 13.94 7 46 43 14.77 13.28 7 47 49 15 14.35 7 48 13 13.37
h/m/s f 7 31 40 9 7 32 12 8 7 32 14 10 7 32 44 10 7 34 52 18 7 35 24 18 7 35 24 18 7 36 27 28 7 36 27 28 7 38 3 2 7 38 3 2 7 40 11 4 7 41 47 4 7 42 51 7 7 42 51 7 7 45 33 7 7 45 35 9 7 47 39 9 7 47 39 121 7 46 43 9 7 47 39 9 7 47 39 9 7 46 43 121 7 47 39 121 7 46 43 14 7 46 43 14 7 46 43 14 7 46 43 14 7 47 39 12 7 48 15 14 7 48 15 14
10000000000000000000000000000000000000

THE BDM CORPORATION

		1			-						1			1						1			-			1			-	-			-			-	
a e	960.1	956.9	54	955.6	5,5	52	39	50	24	921.4	7	22	22	-	4	5	in	884.5	2	3	3	1	1	5	0	9	9.958	20	836.1	824.1	15		7.95.7			777.6	717.2
CT2 C'2/m'2/3	00 300.0	.00E	300·			.00E		.00E	.00E	300·	0,000 00	0.00E 00	0.00E 00	ODE	306.	. 00E				.00E	. 00E	.00E		300	.00E	DOE	.00E		0.00E 00	0.00E 00	•	.00E	ODE	.00E	0.00E 00	9	0.30E 00
Eps . m^2/s^3	.27	.936-0	.42E-U	.05E-0	.48E-0	. 28E-0	.51E-0	.632-0	.68E-J	. 53E-0	.22E-0	28 E	.63E-0	.14E-0	•	.252	.061	.31E-	.126	46	.276	.118	.626	.166	. 14€	.12E-0	.93E-0	.756-0	.028-0	. 48 E-U	.958-0	.548-0	. 236-0	.32E-0		.11E-0	.30€.
E V/m		6.89		01.	5	93.6	1.	7	4	•	. 0		13.7	Ď.	4.	N	10		14.0	4	7	12.3	10.7	0	11.9		1.6	5.1	4.6	7.0	•	•	7.8	•	4.7	7.0	8.9
a e				•	•					•		1.91			•						•	•			•		1.39	1.43	1.37	1.58	1.75	1.50	2.02	1.97	2.04	2.00	1.95
z	285.0	283.9	7	÷		284.8	3	2	-	2	T	259.4	7	77	-	~	-	-	10	m	-	3	~	-	-	7	-	10	V	229.7	22	17	57	23.	-	1	1
Ts Cent	20.73	1	1	5.	0.		1.	5	3		.7		1.	9	30	0.	9	19.66	3	4	4.	. 3	0	4.	19.42	4	3		19.00	•	•	•	19.40	19.24	19.18	19.37	19.00
-	2.7	2.5	2.5	2.6	7.4	12.16	1.1	2.3	2.4	2.3	2.3	5	2.4	2.0	1.3	2.4	2.5	12.63	2	3		3	13.33		14.11	14.10	14.03	13.63	14.11	14.14	13.67	13.06	-	•	11.26	11.03	10.59
##	3	2	3	10	4	4	-	-	5	5	*	-	m	T	10	3	-	in	N	m	N	~	-	5	-	_	0	3	O	5	3	~	4	~	7454	3	2
Time h/m/s	7 50	7.51	7 51	7 52	7 52	7 53	1 54	7 54	7 55	7 55	7 56	7 56	7 57	7 57	7 58	7 58	1 59	7 59	0 8	9 6	8 1	2 8	8 2	8 3	8 3	6 4	4 9	6 5	 	9 8	0 0	1 8	1 2	8	18 6 56	2 2	01 9
		-		*			C.	0		-7	,	M		5		72	0				-7		-		9		17	7					*				- 12

a 2		778.3	778.1	779.3	780.0	779.5	775.0	753.7	751.6	742.8	731.9	721.0	712.0	707.8	707.5	8 707
CT2 C'2/m'2/3	0.00E 00	0.001.00	-	-	0.00E 00	0.00E 00						0.00 000	0.00E 00	0.00E 00		0 00 5 00
Eps m^2/s^3	8.50E-05	8.18E-05	2.39E-05	5.16E-06	7.72E-06	1.32E-05	2.30E-05	2.01E-05	5.89E 00	3.88E 01	6.08E 00	1.09E-05	1.48E-05	2.43E-05	1.46E-05	5 338-116
A/m	6.3	Ď.	7.6	7.3	6.5	5.7	2	-0-	-0.1	0	2.	4.6	4	5.1	4.6	4 4
• e	1.93	1.84	1.78	1.72	1.68	1.68	1.82	2.05	2.03	-6.25	0.49	2.30	2.39	2.39	2.34	2 25
z	221.2	220.8	220.6	220.5	220.5	220.4	219.7	218.2	215.6		203.6	209.8	208.4	207.6	207.4	207 0
Ts Cent			19.69											•	19.08	
-	11.11		11,16						9.75	8.53	9.00	8.01	7.22	69.9	6.59	55 9
¥ ¥	7445	7462	7470	7430	7405	7422	7575	7961	8379	8684	1706	9459	9785	9939	9951	4437
Time h/m/s	10 32	11 4	11 36												17 59	
	18	18	18	18	10	18	18	18	18	14	18	16	10	13	18	×

THE BDM CORPORATION

APPENDIX C

LADDER PROFILE DATA FOR PC II

Ladder profile data for PC II consisting of a graph (Figures C-1 through C-21) and tabular printout for each profile. The profile locations are given in Figure 1 and the MOS scaling data is given in Table V in the body of this report. These symbols are used in the following printouts.

Time, hhmmss

Alt, altitude in ft and m

VT, virtual potential temperature

T, temperature

Td, dew point temperature

N, microwave refractivity

e, partial pressure of water vapor (from N)

E, electric field

Eps, rate of dissipation of turbulent kinetic energy (ε)

C_T temperature structure function parameter

P, pressure

NOTE: The data points plotted are virtual potential temperature (+), dew point temperature (*), CT² (x), and $\varepsilon(o)$. The solid line is the MOS expression for CT², and the long dash line is the MOS expression for ε . The extreme left-hand side of the graph shows an expanded scale plot of virtual potential temperature. The date, time, and Monin-Obukhov stability length, L, are given in the lower center of the graph.

Figure C-1. Ladder Profile #1

				Profile#	le# 1	-	11/26				
rime.	Alt	Alt	3.7	4,	53.	*	0	d	503	C#2	9
	(H)	(ft)		(cent)			(dm)	(w/w)	(m2/83)	(C2/m.67)	(am)
125245	3	10	25.66	23.29	18.01	351.7	20.6	369.1	7.378-02	1.088-02	1010.7
125600	9	26	25.86	23.46	17.93	350.8	20.4	424.8	2.86E-02	5.66E-03	1009.9
25820	15	20	25.69	23.27	17.46	348.3	19.8	384.0	1.34E-02	3.94E-03	1009.0
30045	23	75	25.70	23.23	17.30	347.3	19.6	429.5	6,32E-03	1,96E-03	1008 2
30335	37	120	25.74	23.14	17.27	346.5	19.0	400.1	3.93E-03	1.418-03	1005.2
30715	55	180	25.88	23.02		349.1	20.3	412.0	2.86E-03	8.44E-04	1004.1
30955	16	250	26.03	22,94	17,82	348.9	20,3	398.1	2,18E-03	7.428-04	1002 0
131240	153	200	25.92	22.15	17.26	344.8	19.6	345.7	1.08E-03	3.63E-04	993.3
31540	523	750	25.97	21.45	17.17	342.8	19.5	336.0	6.36E-04	3.28E-04	983.7
31825	305	1000	25.97	20.68	17.16	341.5	19.5	320.2	1,05E-03	2.09E-04	974.9
32120	458	1500	26.49	19.68	17.06	337.8	19.3	273.3	7.28E-04	4.77E-06	957.4
32400	610	2000	26.70	18.47	16.38	331.3	18.5	226.6	1.508-05	4.72E-05	939.6
32600	763	2500	26.71	17.11	15.15	321.6	17.1	173.5	1.47g=05	1,578-03	919.5
132900	915	3000	27.32	16.69	11.13	300.8	13.2	96.0	1.48E-05	1.37E-03	905.3

NOIE: The data points plotted are virtual potential temperature (+), dew point temperature (*), $C_{\rm T}^2$ (x), and ε (o). The solid line is the MOS expression for $C_{\rm T}^2$, and the long dash line is the C_7^2 (x), and ϵ (o). The solid line is the MOS expression for C_7^2 , and the long dash line is the MOS expression for ϵ . The extreme left-hand side of the graph shows an expanded scale plot of virtual potential temperature. The date, time and Monin-Obukhov stability length, L, are given in the lower center of the graph.

Figure C-2. Ladder Profile #2

				Profile#	ile# 2	17	11/26				
Time	Alt (m)	A1t (ft)	r,	T (cent)	ŢĠ	z	e (mb)	E (V/m)	Eps (m2/53)	CT2 (C2/m,67)	P (mb)
143650	2440	8 000	37.56	13.22	-12.40	213.2	2.3	16.3	4.02E-05	1.90E-04	747.5
150100	1617	5300	32.15	14.81	8.09	271.4	10.7	61.4	3.02E-05	1.97E-03	828.4
150415	1007	3300	29.26	17.57	11.47	297.9	13.5	108.6	1.30E-03	2.44E-03	893.9
150630	763	2500	28.51	18.90	15.06	318.3	17.0	168.3	1.808-03	5.608-03	917.8
151000	458	1500	28.42	21.62	16.92	333.8	19.2	237.8	7.45E-04	4.34E-04	955.5
151300	305	1000	28.46	23.18	17.01	336.9	19.3	265.7	5.42E-04	3.89E-04	973.7
151545	229	750	28.12		17.34	339.7	19.7	291.6	6.78E-04	2.47E-04	980.0
151745	153	900	28.34	24.48	17.74	343.2	20.2	315.4	9.65E-04	5.00E-04	990.2
152050	92	300	28.18	24.89	17.94	345.1	20.5	343.5	1.00E-03	7.77E-04	995.7
152450	31	100	28.25	25.53	18.25	347.7	20.9	387.4	3.13E-03	2.21E-03	1002.9
152750	18	09	28.17	25.47	18.88	351.7	21.7	383.9	6.10E-03	3.658-03	1004.4
153000	12	40	28.06	25.39	19.15	353.6	22.1	359.5	6.48E-03	4.10E-03	1005.2
153230	0	20	28.03	25.41	19.18	353.9	22.1	403.3	1.01E-02	6.80E-03	1006.0
153500	3	10	28.12	25.50	19.39	355.2	27.4	407.7	2.48E-02	1.47E-02	1006.9
		to the same or the same of	the state of the s	the street street was a second street of	And the same of the same of the same	The second secon	And again to before the papers of the papers	Commence of the Control of the Contr			

virtual potential temperature. The date, time, and Monin-Obukhov stability length, L, are given NOTE: The data points plotted are virtual potential temperature (+), dew point temperature (*), CT^2 (x), and $\varepsilon(o)$. The solid line is the MOS expression for CT^2 , and the long dash line is the MOS expression for ε . The extreme left-hand side of the graph shows an expanded scale plot of in the lower center of the graph.

Figure C-3. Ladder Profile #3

-

					Profile# 3	•	70/71				
Time	Alt	Alt	VT	T	Id	Z	9	82	Eps	CT2	a
	(m)	(ft)		(cent)			(mp)	(m/n)	(m2/s3)	(C2/m.67)	(qm)
140550		10	2.4	20.19		56		0.0	1 .		1018.1
140845		20	2.6	20.33		99			•	.63E-	1017.5
141520	1	40	2.6	20.33		53			•	7.39E-03	1017.5
141750		09	22.73	20.28	17.69	356.0	20.1	0.0	0-36	-395.	1016.5
142050	3	100	2.7	20.25		54			.50E-0	.75E-	1014.4
142500	4	150	2.9	20.29		51				1.12E-03	1013.8
142805	6	300	2.8	19.76		50			. 61E-0	.21E-	1008.2
143045	15	200	2.8	19.06		52				2.54E-04	1000.9
143340	22	750	3.6	19.10		48			•	5.00E-03	991.4
143630	30	1000	5.5	20.32		44				.04E	982.3
144025	2	1500	8.9	19.92		45					9.996
443	610	2000	7.9	19.35		43		0.0	2,33E-05	1.55E-04	945.3
144745	0	2500	8.6	18.65		35			, .		929.9
145040	-	3000	9.4	18.06		28			•	•	914.3
145815	61	5300	2.6	14.63		98					
150345	3	7000	4.4	11.66	10.52	7.1				8.30E-03	783.5
150650	44	8000	5.3	9.70		19					
151130	05	10000	8.1	7.50		12					700.4

NOTE: The data points plotted are virtual potential temperature (+), dew point temperature (*), CT^2 (x), and $\varepsilon(o)$. The solid line is the MOS expression for CT^2 , and the long dash line is the MOS expression for ε . The extreme left-hand side of the graph shows an expanded scale plot of virtual potential temperature. The date, time, and Monin-Obukhov stability length, L, are given in the lower center of the graph.

Figure C-4. Ladder Profile #4

Time Alt A (m) (f										
	A1t (ft)	TV	T (cent)	Lq	Z	e (mb)	(V/m)	Eps (m2/s3)	CT2 (C2/m.67)	(dm)
3	10	26.70	23.53	22.75	382.7	27.5	0.0	2.15E-02	2.23E-U3	1017.5
	20	26.73	23.51	22.78	382.9	27.6	0.0	1.58E-02 1.19E-02	1.96E-03 2.23E-03	1017.0
24	80	27.18	23.77	22.80	382.1	27.6	0.0	7.84E-03	2.64E-03	1015.2
46	150	27.56	23.92	22.87	381.9	27.7	0.0	4.31E-03	3.41E-03	1013.4
92	300	28.00	23.87	22.99	381.3	27.9	0.0	1.70E-03	6.28E-03	1007.5
183	200	21.51	16.90	20.92	375.6	24.6	0.0	8.79E-05	9.49E-03	996.1
305	000	29.59	23.58	21.47	364.9	25.5	0.0	9.29E-05	3.52E-04	982.9
793	200	32.01	22.20	14.32	312.7	16.2	0.0	2.26E-05	2.09E-04	926.4
915	000	32.34	21.28	14.50	310.9	16.4	0.0	2.39E-05	1.55E-04	911.7
1525	000	34.25	17.28	12.94	292.3	14.8	0.0	2.33E-05	2.50E-04	848.5

potential temperature. The date, time, and Monin-Obukhov stability length, L, are given The data points plotted are virtual potential temperature (+), dew point temperature (*), and $\epsilon(o)$. The solid line is the MOS expression for C_T^2 , and the long dash line is the pression for ϵ . The extreme left-hand side of the graph shows an expanded scale plot of virtual potential temperature. In the lower center of the graph. MOS expression for ε.

Figure C-5. Ladder Profile #5

				LI OI II E	c tar	7	12/03				
Time	Alt (m)	Alt (ft)	VT.	T (cent)	Td.	2	e (III)	E (V/m)	Eps (m2/s3)	CT2 (C2/m.67)	P (mb)
120115	3	10		24.	23.22	384.2	28.3	0.0	1.27E-02	5.52E-04	1016.0
120325	9	20		24.	22.99	382.1	27.9	0.0	7.51E-03	5.56E-04	1015.4
120545	12	40		24.	22.91	381.7	27.8	0.0	5.18E-03	1.01E-03	1014.8
120800	24	80	27.82	24.35	23.03	382.3	28.0	0.0	3.59E-03	1.99E-03	1013.5
121025	3	10		24.	23.02	382.9	28.0	0.0	6.23E-03	1.15E-03	
121155	46	150	-	24.	23.17	382.0	28.2	0.0	76	1.75E-03	1011.3
121440	92	300		24.			28.0	0.0		5.76E-04	1005.2
121745	305	1000		23.		367.8	26.3	0.0	4.98E-04	5.98E-04	980.1
122120	549	1800	- 1	22.			21.2	0.0	1.83E-04	1.46E-03	952.2
122440	763	2500			15.40		17.4	0.0	3.70E-05	2.28E-04	927.4

virtual potential temperature. The date, time, and Monin-Obukhov stability length, L, are given in the lower center of the graph. NOTE: The data points plotted are virtual potential temperature (+), dew point temperature (*) CT^2 (x), and $\varepsilon(o)$. The solid line is the NOS expression for CT^2 , and the long dash line is the MOS expression for ε . The extreme left-hand side of the graph shows an expanded scale plot of

Figure C-6. Ladder Profile #6

Time	Alt	Alt	LA	4	Td	Z	•	63	8DS	CT2	
	(m)	(ft)		(cent)			(qw)	(w/v)	(m2/s3)	(C2/m.67)	(qm)
123200	46	150	1	24	23.26	382.3	28.4	0.0	2.94E-03	1.45E-03	1009.8
123525	24	80		24	23.14	382.1	28.2	0.0	2.63E-03	1.00E-03	1013.4
123745	3	10		25	23.18	382.8	28.3	0.0	5.05E-03	1.55E-03	1015.7
124100	9	20		25	23.12	381.6	28.2	0.0	6.62E-03	9.73E-04	1015.2
124315	12	40		25	23.19	381.9	28.3	0.0	4.338-03	3.77E-04	1014.2
124540	31	100		25	23.18	381.5	28.3	0.0	2.34E-03	4.13E-04	1012.2
124800	92	300		24	22.84	377.7	27.7	0.0	8.64E-04	3.32E-04	1004.9
125125	305	1000		23	21.54	364.7		0.0	2.00E-04	7.89E-04	978.9
125620	763	2500	31.47	21.85	15.12	316.7	17.1	0.0	3.11E-05	7.76E-05	925.9

virtual potential temperature. The date, time, and Monin-Obukhov stability length, L, are given NOTE: The data points plotted are virtual potential temperature (+), dew point temperature (*), CT^2 (x), and $\varepsilon(o)$. The solid line is the MOS expression for CT^2 , and the long dash line is the MOS expression for ε . The extreme left-hand side of the graph shows an expanded scale plot of in the lower center of the graph.

Figure C-7. Ladder Profile #7

Time	Alt (m)	Alt (ft)	VT.	T (cent)	rd	Z	(mb)	E (V/m)	Bps (m2/s3)	CT2 (C2/m.67)	P (qm)
133900	763	2500	30.18	20.51	15.59		17.6	0.0	7.06E-05	1.37E-03	927.5
134420	427	1400	29.77	22.62	20.90	358.4	24.6	0.0		9.49E-04	966.8
34700	305	1000	5				25.5	0.0	S3354		9.676
134940	3	10	29.34				27.7	0.0	3.48E-02	2.29E-03	1013.5
135210	9	20	2				27.7	0.0	200000		1012.9
135425	15	50	29.29				27.9		1.23E-02	1.13E-03	1011.6
135700	31	100	~		•		27.8		7.27E-03	8.87E-04	1009.7
135915	19	200	~			•	27,5	0.0	5.28E-03	8.60E-04	1006.7
140145	107	350	2	25.02			27.4	0.0	.48E-0	5.44E-04	1000.8
141320	1525	2000	35.01	•			8.6		4.38E-05	1.438-04	844.7

The data points plotted are virtual potential temperature (+), dew point temperature (*), and $\varepsilon(o)$. The solid line is the MOS expression for C_T^2 , and the long dash line is the potential temperature. The date, time, and Monin-Obukhov stability length, L, are given The extreme left-hand side of the graph shows an expanded scale plot of in the lower center of the graph. CT^2 (x), and ε (o). MOS expression for virtual

Figure C-8. Ladder Profile #8

THE BDM CORPORATION

				Profile#	le# 8	12	12/05				
Time	Alt (m)	Alt (ft)	VT.	T (cent)	Td	z	e (mb)	E (V/m)	Eps (m2/s3)	CF2 (C2/m.67.)	(dm)
153225	9	20	10	16.19		314.3		201.5	1.07E-02	. •	1013.4
153540	12	40	9			316.1			6.30E-03	2.40E-02	1013.1
153900	24	80	8			5.		177.9	3.70E-03	9.86E-03	1011.8
154400	37	120	0			315.6		200.40	2.87E-03	5.	
154645	55	180	0			4			.01E-0	9	1008.3
154915	92	300	3			311.1		B. A. L.		.17	
155150	153	500	17.40	14.91	5.35	308.3	8.9	137.2	1.72E-03	5.11E-04	996.3
155350	153	200	3			308.4		100	1.64E-03	7.59E-04	9.966
155800	31	100	m	16.15		309.1		2	2.57E-03	5.19E-03	1011.4
160055	3	10	4	CONTRACTOR	4.36	308.4	•	242.0	6.83E-03	3,28E-02	1013.9

virtual potential temperature. The date, time, and Monin-Obukhov stability length, L, are given NOTE: The data points plotted are virtual potential temperature (+), dew point temperature (*), CT^2 (x), and $\varepsilon(o)$. The solid line is the MOS expression for CT^2 , and the long dash line is the MOS expression for ε . The extreme left-hand side of the graph shows an expanded scale plot of in the lower center of the graph.

Figure C-9. Ladder Profile #9

					1			١		_	1		385	
		(dill)	1010.7	1013.3	1012.5	1013.3	1013.4	1013.5	1012.6	1011.2	1008.B	1001.6	996.2	908.3
		CT2 (C2/m,67)	5.62E-03	4.74E-02	2.75E-02	7.98E-02	7.42E-02		2.13E-02		•	. 00E	0.00E 00	.00E
		Eps (m2/s3)	.05E-0	1.34E-02	.31E-0	. 23B-0	1.83E-02	. 68E-0		4.14E-03	3.17E-03	2.41E-03	1.838-03	1.93E-05
		E (V/m)		163.6	4		154.8		168.9	159.8	154.7	139.0	141,7	47.7
	12/05	e (amb)		8.0	•			4	•	•	•		4.8	1.5
	1	Z	301.2		302.0		317.0	-	311.6	309.4	307.9	308.3	306.5	250.5
	ofile# 9	Td		3.78	-			-	5.63	•	4.47	4.96	4.53	-17.72
100 mg/s	Profi	T (cent)			4			4			4			15.92
		TA)		17.51	•			•	7.		7		9	25.10
		Alt (ft)	100	10	40	10	10	10	40	80	150	300	200	3000
		Alt (m)	31	٣	12	3	3	~	12	24	46	92	153	915
		Time	52400	97100	52925	53315	53700	53850	54115	54330	54545	54830	52045	170140

NOTE: The data points plotted are virtual potential temperature (+), dew point temperature (*), CT^2 (x), and $\varepsilon(o)$. The solid line is the MOS expression for CT^2 , and the long dash line is the MOS expression for ε . The extreme left-hand side of the graph shows an expanded scale plot of virtual potential temperature. The date, time, and Monin-Obukhov stability length, L, are given in the lower center of the graph.

Figure C-10. Ladder Profile #10

Time	Alt (m)	Alt (ft)	VT (T (cent)	Id	Z	e (mb)	E (V/m)	Eps (m2/s3)	CT2 (C2/m.67)	(dm)
51120	153	500	29.23	24.61	22.29	373.7		352.7	7.20E-04	4.95E-04	1002.0
51345	92	300	28.24		22.71	379.5		404.4	1.31E-03	1.39E-03	1010.
51600	3	10	27.19	24.05	22.54	380.8		605.6	1.41E-02	6.33E-04	1019.2
51810	9	20	27.22			381.5		590.4	1.35E-02	9.54E-04	
52050	12	40	27.17			381.4		578.6			1018.
52305	24	80	27.15			381.1		560.1	111111	2.90E-03	1016.8
52550	31	100	27.29	23.85	22.66	381.2		507.7	5.78E-03	3.12E-03	1015.9
52815	46	150	27.71	•		381.3	•	458.6	8.81E-03	3.62E-03	1014.
53110	16	250	28.11	•	•	380.7			8.81E-03	6.96E-03	1010.
153405	153	200	29.17	24.47	22.74	376.9	27.5	286.5	3.03E-04	7.10E-04	1001.4
54000	610	2000	31.90			327.1		-	3.63E-06	3.16E-04	947.1
54320	610	2000	31.54			328.6		-	7.26E-06	2.87E-04	947.

NOTE: The data points plotted are virtual potential temperature (+), dew point temperature (*), CT^2 (x), and ε (o). The solid line is the MOS expression for CT^2 , and the long dash line is the MOS expression for ε . The extreme left-hand side of the graph shows an expanded scale plot of virtual potential temperature. The date, time, and Monin-Obukhov stability length, L, are given in the lower center of the graph.

Figure C-11. Ladder Profile #11

				Profi	Profile# 11	17	12/07				
Time	Alt (m)	Alt (ft)	r,	T (cent)	p.g.	Z	(qu)	(v/m)	Eps (m2/s3)	CT2 (C2/m,67)	(dm)
160105	3	10	27.62	24.45	22.67	380.9	27.4	574.9	1.33E-02	1.44E-03	1018.5
160315	9	20	27.58	4.	22.68	381.0	_	585.3	8.32E-03		1018.1
160600	12	40	27.76	4		381.3	1	529.1	6.88E-03	8.65E-04	1017.7
160845	24	80	27.79	4	22.81	381.4	27.6	549.9		8.70E-04	1016.1
161145	31	100	27.80	4		381.4		546.1	3.71E-03	8.89E-04	1015.5
161435	46	150	27.93	24.31		380.5		534.2	88336	1.18E-03	1013.9
161650	92	300	28.38	24.29	22.84		27.7	412.0	1.94E-03	1.55E-03	1008.7
161910	153	200	29.22	24.51	22.76	376.8	27.0	339.0	7.19E-04	7.34E-04	1000.5
102135	229	750	29.53		22.14		26.5	285.5	2.91E-05	5.76E-05	941.1
162515	305	1000	29.77	23.72	21.71	366.4	25.8	237.6	4	2000	
162835	610	2000	31.90	23.61		326.5		61,3	3.80E-06	3.40E-05	945.5

NOTE: The data points plotted are virtual potential temperature (+), dew point temperature (*), CT^2 (x), and $\varepsilon(o)$. The solid line is the MOS expression for CT^2 , and the long dash line is the MOS expression for ε . The extreme left-hand side of the graph shows an expanded scale plot of potential temperature. The date, time, and Monin-Obukhov stability length, L, are given in the lower center of the graph. virtual

Figure C-12. Ladder Profile #12

				Profi	Profile# 12	12	12/10				
Time	A1t (m)	Alt (ft)	TA TA	T (cent)	Td	z	e (mb)	E (V/m)	Eps (m2/s3)	CT2 (C2/m.67)	P (mb)
125900	31	100	7.71		-4.08	304.9	4.5	316.3		4.48E-02	1023.7
130215	5	15	8.37	7.84	-3.65	305.1	•	266.1	7.98E-02	1.59E-01	1025.7
130300	15	50	8.03	7.41	-4.09	304.7	4.5	327.0			1024.9
130420	46	150	7.92	6.97	-3.43	305	4.7	328.8	1.98E-02		1022.2
130635	61	200	7.64	6.56	-3.81			322.2	1.02E-02	5E-	90.3
130855	92	300	7.80						3335a	-50E-	2,900
131130	153	200	7.75	5.76		303.4	•		•	5.75E-03	1009.8
131415	229	750	7.70		-3.54	301.7	4.7	270.6	2.23E-03	3.23E-03	-
131700	305	1000	7.84	4.33	-3.36	300.4	4.7	264.8	4	1.53E-03	992.4
132000	458	1500	8.03	3.01	-3.30	297.4	4.8	230.4	1.02E-03	1.01E-03	975.7
		-		The second secon							

NOTE: The data points plotted are virtual potential temperature (+), dew point temperature (*), CT^2 (x), and $\varepsilon(o)$. The solid line is the MOS expression for C_1 , and the long dash line is the MOS expression for ε . The extreme left-hand side of the graph shows an expanded scale plot of virtual potential temperature. The date, time, and Monin-Obukhov stability length, L, are given in the lower center of the graph.

Figure C-13. Ladder Profile #13

Time	(E)	(ft)	5	(cent)	g.	Z	(mb)	(v/m)	Eps (m2/83)	(C2/m.67)	(amp
32410	31	100	7.61	6.87	-4.94	303.1	4.2	352.1	5.05E-03	1.47E-02	1021.8
32700	3	10	8.25	7.72	-3.14	306.2	4.8	322.5	5.59E-02	1.71E-01	1026.
32905	9	20	8.30	7.74	-3.49	305.5	4.7	343.1	2.95E-02	1.01E-01	1025.7
33125	15	20	7.81	7.17	-3.57	305.7	4.7	338.3	1.09E-02	3.75E-02	1024.
33330	21	20	8.02	7.34	-4.01	304.5	4.5	348.7	1.038-02	2.55E-02	1023.
133610	46	150	7.95	7.04	-4.15	303.9	4.5	357.2	3.79E-03	1.32E-02	1020.8
33830	26	300	7.87	6.43	-3.98	303.3	4.5	321.4	2.14E-03	4.58E-03	1015.4
34145	183	009	7.88	5.58	-3.35	302.4	4.7	291.9	1.24E-03	1.77E-03	1004.
134945	671	2200	8.83	1.73	-4.20	289.8	4.4	192.0	1.29E-03	1.92E-03	949.
35520	915	3000	12.21	2.91	-11.02	272.2	2.6	51.4	8.23E-04	1.17E-02	.776
40230	1525	2000	20.26	5.01	-14.40	248.7	2.0	44.6	2.22E-05	1.47E-04	857.

NOTE: The data points plotted are virtual potential temperature (+), dew point temperature (*), CT^2 (x), and $\varepsilon(o)$. The solid line is the MOS expression for C_T^2 , and the long dash line is the MOS expression for ε . The extreme left-hand side of the graph shows an expanded scale plot of virtual potential temperature. The date, time, and Monin-Obukhov stability length, L, are given in the lower center of the graph.

Figure C-14. Ladder Profile #14

Time	(E)	(ft)		(cent)			(qw)	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Eps (m2/s3)	(C2/m.67)	(ap
141055	15	50	8.37	7.81	-5.96	301.9	3.9	337.4	1.05E-02	4.25E-02	1026.8
142330	1525	2000	20.88	5.62	-13.93	249.2	2.1	44.8	2.32E-06	2.32E-04	859.7
143230	763	2500	10.20	2.26	-5.78	243.3	3.9	128.8	7.41E-04	1.05E-02	936.8
143530	610	2000	9.23	2.73	-3.83	292.0	4.6	217.7	8.896-04	1.21E-03	958.6
143900	458	1500	8.84	3.85	-4.20	294.6	4.4	249.1	1.37E-03	1.18E-03	974.8
144200	305	1000	8.87	5.38	-4.12	297.5	4.5	291.6	1.51E-03	4.23E-03	6.066
144530	229	750	8.90	6.20	-4.82	298.5	4.2	302.2	9.98E-04	1.68E-03	1001.4
144735	153	200	8:79	6.83	-4.48	300.3	4.4	318.5	1.36E-03	2.95E-03	1009.0
145020	٣	10	9.12	9.15	-2.38	300.6	5.1	364.8	4.88E-02	2.36E-01	1028.8
145250	9	20	9.41	8.81	-2.29	307.1	5.1	386.2	1.90g-02	1.138-01	1028.6
145530	12	40	9.22	8.57	-2.64	306.6	5.0	382.8	1.03E-02	7.28E-02	1027.9
145830	77	70	9.07	8.36	-3.30	305.4	4.8	386.2	5.37E-03	4.15E-02	1027.0
150051	31	100	9.38	8.57	-3.10	304.7	4.8	385.7	3.22E-03	2.24E-02	1024.0
150430	19	200	9.30	8.22	-3.94	303.1	4.5	378.4	1.61E-03	8.91E-03	1021.9
150650	92	300	9.15	7.75	-3.49	303.3	4.7	355.7	1.61E-03	6.51E-03	1018.0

Profile# 14

NOTE: The data points plotted are virtual potential temperature (+), dew point temperature (*), CT^2 (x), and $\varepsilon(o)$. The solid line is the MOS expression for C_T^2 , and the long dash line is the MOS expression for ε . The extreme left-hand side of the graph shows an expanded scale plot of potential temperature. The date, time, and Monin-Obukhov stability length, L, are given in the lower center of the graph.

Figure C-15. Ladder Profile #15

T1 .F	2211	CORP	004	TION
	- I I I I I	,,,,,,,	,,,,	1 11 11/1

	Eps CT2 P [m2/s3] (C2/m.67) (mb)
	Eps (m2/63)
	(v/m)
01/71	e (g
	Z
	Td
	T (cent)
	TV (C
	A1t (ft)
	Alt (m) (
	Time

, dew point temperature (*), id the long dash line is the The data points plotted are virtual MOS expression for c. The extreme in the lower center of the graph. potential temperature.

Figure C-16. Ladder Profile #16

Time	Alt	Alt	J.A	T	Td	Z	9	8 3	Eps	CT2	a . [
	(E)	(11)		cent)			(urp)	(M/M)	(M2/S3)	(C7/m, 6/)	(qu)
3700	1525	5000	23.45	8.58	-13.22	245.9	2.2	31.3	9.62E-06	7.65E-04	855.6
4130	1220	4000	17.73	5.45	-12.37	259.3	7.4	42.3	1.14E-05	8.06E-04	890.
4500	1037	3400	12.67	1.71	0	289,3	6.5	82.0	6.91E-04	2.78E-03	411.2
4730	915	3000	12.15	2.33	7	295.3	7.2	6.86	1.16E-03	9.90E-04	923.8
5030	610	2000	12.03	5.24		301.0	7.0	189.6	1.22E-03	1.62E-03	958.
5300	458	1500	12.09	6.84	7	303.1	6.9	241.7	1.11R-03	1.34E-03	
165720	3	10	12.47	11.60	3.	316.6		346.7	4.34E-02	2.38E-01	1029.
5940	9	20	12.06	11.19	3.17	315.8	7.0	348.4	2.33E-02	1.54E-01	1028.5
170200	12	40	11.94	11,03	2.81	314.9	7.4	331.7	7.84E-03	5.62E-02	1027
70415	21	70	12.00	10.98	3.	315.5	7.6	355,1	6.12E-03	4.11E-02	1026.
170630	31	100	11.92	10.82	2.96	315.0	7.5	344.5		3.12E-02	1025.
70910	92	300	11.75	10.04	3	314.2	7.6	320.4	2.30E-03	7.03E-03	1017
171220	183	009	11.67	9.07	2.76	311.4	7.4	299.1	1.75E-03	2.91E-03	1006.8
1515	305	1000	11.72	7.91	2.82	309.3	7.4	271.3	1.20E-02	1.64E-03	993.

MOS expression for ϵ . The extreme left-hand side of the graph shows an expanded scale plot of virtual potential temperature. The date, time, and Monin-Obukhov stability length, L, are given NOTE: The data points plotted are virtual potential temperature (+), dew point temperature (*) CT^2 (x), and $\varepsilon(0)$. The solid line is the MOS expression for CT^2 , and the long dash line is the in the lower center of the graph.

Figure C-17. Ladder Profile #17

-

Alt Alt VT T T'rd N e E Eps (m2/83) (Cent) (m5) (V/m) (m2/83)					Pror	Follier 1/	77	17/71				
(m) (ft) (cent) (m) (ft) (v/m) (m2/83) (v/m) (ft) (v/m) (m2/83) (v/m) (v/m) (m2/83) (v/m) (v/m) (m2/83) (v/m) (v/m) (m2/83) (v/m) (v/m		Alt	Alt		T	pJ.	Z	o i	3	Eps	Cr2	4
3 10 9.40 8.73 0.27 313.2 6.2 209.6 2.31E-02 0. 6 2.0 9.66 8.95 0.45 313.3 6.3 216.9 1.52E-02 1. 52E-02 1. 52 6.6 220.0 5.84E-03 5. 6.1 200 9.78 8.97 1.06 314.5 6.6 220.0 5.84E-03 5. 31 100 9.56 8.63 -0.17 311.7 6.0 214.1 2.43E-03 2. 61 200 9.79 8.52 0.65 312.7 6.4 201.3 1.89E-03 1. 89E-03 1. 89		Ē	(ft)	-	cent)			(din)	(m/A)	(m2/83)	(C6/m.67)	(QW)
6 20 9.66 8.95 0.45 313.3 6.3 216.9 1.52E-02 1. 12 40 9.78 8.97 1.06 314.5 6.6 220.0 5.84E-03 5. 21 70 9.46 8.61 0.18 312.4 6.2 212.2 2.90E-03 2. 31 100 9.56 8.63 -0.17 311.7 6.0 214.1 2.43E-03 2. 61 200 9.79 8.52 0.65 312.7 6.4 201.3 1.89E-03 1.89E-0	2100	3	10	4.	8.73					31E	0.00E 00	1032.
12 40 9.78 8.97 1.06 314.5 6.6 220.0 5.84E-03 5. 21 70 9.46 8.61 0.18 312.4 6.2 212.2 2.90E-03 2. 31 100 9.56 8.63 -0.17 311.7 6.0 214.1 2.43E-03 2. 61 200 9.79 8.52 0.65 312.7 6.4 201.3 1.89E-03 1. 92 300 9.62 8.05 0.49 311.6 6.3 190.4 1.27E-03 5. 153 500 9.57 7.45 -0.46 308.6 5.9 169.8 5.37E-04 1. 229 750 9.52 6.65 -0.57 306.5 5.8 158.6 7.19E-04 1.	2335	9	20	9.		0.45		•	216.9	1.52E-02	•	1032.2
21 70 9.46 8.61 0.18 312.4 6.2 212.2 2.908-03 2. 31 100 9.56 8.63 -0.17 311.7 6.0 214.1 2.438-03 2. 61 200 9.79 8.52 0.65 312.7 6.4 201.3 1.898-03 1. 92 300 9.62 8.05 0.49 311.6 6.3 190.4 1.27E-03 5. 153 500 9.57 7.45 -0.46 308.6 5.9 169.8 5.37E-04 1. 229 750 9.52 6.65 -0.57 306.5 5.8 158.6 7.19E-04 1. 365 1000 9.55 6.65 -0.57 306.5 5.8 158.6 7.19E-04 1.		12	40	1		1.06		•	220.0	5.84E-03	- 20	1031.
31 100 9.56 8.63 -0.17 311.7 6.0 214.1 2.43E-03 2.61 200 9.79 8.52 0.65 312.7 6.4 201.3 1.89E-03 1.92 300 9.62 8.05 0.49 311.6 6.3 190.4 1.27E-03 5.153 500 9.57 7.45 -0.46 308.6 5.9 169.8 5.37E-04 1.229 750 9.52 6.65 -0.57 306.5 5.8 158.6 7.19E-04 1.365 1.000 9.52 6.65 -0.57 306.5 5.8 158.6 7.19E-04 1.365 1.000 9.52 6.65 -0.57 306.5 5.8 158.6 7.19E-04 1.365 1.000 9.52 6.65 -0.57 306.5 5.8 158.6 7.19E-04 1.365 1.000 9.52 6.65 -0.57 306.5 5.8 158.6 7.19E-04 1.365 1.000 9.52 6.65 -0.57 306.5 5.8 158.6 7.19E-04 1.365 1.000 9.52 6.65 -0.57 306.5 5.8 158.6 7.19E-04 1.365 1.36		21	70	4.		0.18			212.2	2.90B-03		1029.
61 200 9.79 8.52 0.65 312.7 6.4 201.3 1.898-03 1. 92 300 9.62 8.05 0.49 311.6 6.3 190.4 1.278-03 5. 153 500 9.57 7.45 -0.46 308.6 5.9 169.8 5.378-04 1. 229 750 9.52 6.65 -0.57 306.5 5.8 158.6 7.198-04 1.		31	100	.5		-0.17			214.1	2.438-03		1029.
92 300 9.62 8.05 0.49 311.6 6.3 190.4 1.27E-03 5. 153 500 9.57 7.45 -0.46 308.6 5.9 169.8 5.37E-04 1. 229 750 9.52 6.65 -0.57 306.5 5.8 158.6 7.19E-04 1.		19	200	.7		0.65			201.3	1.898-03		1026.
153 500 9.57 7.45 -0.46 308.6 5.9 169.8 5.37E-04 1. 229 750 9.52 6.65 -0.57 306.5 5.8 158.6 7.19E-04 1.		92	300	.6		64.0			190.4	•	•	1022.1
229 750 9.52 6.65 -0.57 306.5 5.8 158.6 7.19E-04 1.		153	200	.5		-0.46	•	•	169.8	5.37E-04	•	1015.
305 1000 3 A5 5 83 -0 74 304 8 5 7 143 7 5 948-04 8		229	750	J.		-0.57	•		158.6		1.27E-03	1005.5
TO TOO TOOK TOOK TOOK TOOK TOOK TOOK TO		305	1000	4		-0.74			143.7	5.94E-04	8.60E-04	997.
1500 9.80 4.65 -0.27 302.0 6.0 115.4 4.56k-04 1.		458	1500	30		-0.27						978.
5000 24.64 9.49 -19.96 241.5 1.2 25.2 8.368-05 7.		525	5000	4.6		-19.96						858

NOTE: The data points plotted are virtual potential temperature (+), dew point temperature (*), CT^2 (x), and $\varepsilon(o)$. The solid line is the MOS expression for CT^2 , and the long dash line is the MOS expression for ε . The extreme left-hand side of the graph shows an expanded scale plot of virtual potential temperature. The date, time, and Monin-Obukhov stability length, L, are given in the lower center of the graph.

Figure C-18. Ladder Profile #18

			The same of the sa				-				
Tine	Alt	Alt	I.A	L	Td	z	a	3	Eps	CT2	
	(w)	(ft)		(cent)			(dm)	(N/m)	(E2/83)	(C2/m.67)	(qm)
64210	7	10	16.46	15.74	0.76	305.2	6.4	192.8	1.90E-02	0.00E 00	1029.8
64430	9	70	16.50	15.79	-0.03	303.4	6.1	202.1	1.42E-02		1029.2
04040	12	40	16.45	1	-0.55	302.4	5.8	133.6	7,658-03	00 300 0	1028.6
65015	21	70	16.39	15.56	-0.79	301.8	5.7	192.7	5.858-03	0.00E 00	1027.7
65305	31	100	16,30	15.	-0.67	302.0	5.8	202.1	5.15E-03		1026.8
65530	61	200	16.32	15,10	-0.75	301.1	5.7	192,7	3,40g-03	0.00E 00	1022.9
65805	9.5	300	16.07	14.57	-1.23	299.7	5.5	176.9	2.32E-03	0.00E 00	1018.9
70100	153	200	15.89	13.80	-1.41	298.5	5.5	162.7	2.44E-03	0.00E 00	1012.2
70420	539	750	15.95	1	61.0-	298.6	0.0	157.4	2,618-03	0.000.0	1000.8
70720	305	1000	15.65	12.01	-0.78	296.6	5.7	147.1	2.17E-03		993.6
71025	458	1500	15.84		-0.77	293.4	5.7	126.5	1.478-03	0.00E 00	976.4
71320	610	2000	16.17	9.53	-0.95	289.7	5.7	98.1	2,09E-03		959
171730	763	2500	16.59	6.43	-2.05	283.9	5.5	63.5	2.92E-03	0.00E 00	941.4
72000	915	3000	18.93	9	-6.87	270.6	3.6	12.7	2.87E-05	0.00E 00	924.2
72350	1220	4000	22.00	7.80	-15.61	252.0	1.6	7.4	1.798-05	00 800.0	0.688
72930	1830	0009	30.46	12.40	-30.28	227.2	0.5	4.8	1.92E-05	0.00E 00	827.5
73600	2440	8000	35.89		-22.67	213.7	1.0	6.0	7.62E-04	0.00E 00	768.2
74225	3050	10000	38.37	8.10	-15.84	204.1	1.8	1.4	1.618-04	0,008 00	709

virtual potential temperature. The date, time, and Monin-Obukhov stability length, L, are given in the lower center of the graph. . The data points plotted are virtual potential temperature (+), dew point temperature (*), (x), and $\varepsilon(o)$. The solid line is the MOS expression for C_1^2 , and the long dash line is the MÓS expression for s. The extreme left-hand side of the graph shows an expanded scale plot of

Figure C-19. Ladder Profile #19

Time Alt Alt VT (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)								
3 10 15. 21 70 15. 21 70 15. 3 10 16. 6 20 15. 12 40 15. 31 100 15. 92 300 15. 153 500 15. 229 750 15. 453 1500 16.	T (cent)	Pd	द	(amb)	E (V/m)	Eps (m2/s3)	CT2 (C2/m.67)	(dm)
6 20 15. 21 70 15. 21 70 15. 3 10 16. 12 40 15. 31 100 15. 61 200 15. 92 300 15. 153 500 15. 305 1000 15.	3 14.70		308.3	6.9	241.6	5.23E-U3	2.33E-02	1029.4
21 70 15. 3 10 16. 6 20 15. 31 100 15. 31 200 15. 92 300 15. 153 500 15. 305 1000 15.	15.	2.21	309.3	7.1	232.8	5.09E-03	2.53E-02	
3 10 16. 12 40 15. 31 100 15. 31 200 15. 92 300 15. 153 500 15. 229 750 15. 453 1500 15.	14.	2.04	308.8	7.3	240.2	2.96E-U3	1.13E-02	1029.2
6 20 15. 31 100 15. 31 200 15. 92 300 15. 153 500 15. 229 750 15. 305 1000 15.	15.19	2.50	309.8	7.3	327.1	6.29E-03	3.28E-02	1030.2
12 40 15. 31 100 15. 61 200 15. 92 300 15. 153 500 15. 229 750 15. 305 1000 15.	15.		308.8	7.0	325.3	4.63E-03	2.12E-02	1029.8
31 100 15. 92 300 15. 153 500 15. 229 750 15. 305 1000 15.	7		308.7	7.0	284.0	3.41E-03	1.43E-02	1029.2
61 200 15. 92 300 15. 153 500 15. 229 750 15. 305 1000 15.	14.	. 2.10	308.7	7.1	245.5	2.46E-U3	4.32E-03	1027.5
92 300 15. 153 500 15. 229 750 15. 305 1000 15.	14.40	2.10	307.6	7,1	241,0	1.78E-03	2.12E-03	1022.4
153 500 15. 229 750 15. 305 1000 15. 453 1500 16.	13.	1.61	306.3	8.9	252.2	1.90E-03	1.29E-03	1019.4
305 1000 15. 453 1500 16.	13.	1.21	303.9	0.9	265.2	1.54E-03	6.66E-04	1011.6
305 1000 15. 453 1500 16.	5 12.78	1,46	302.9	6.7	223.9	1.18E-03	2.86E-04	1002.7
453 1500	12.	1.66	301.7	6.9	175.2	1.16E-U3	3.04E-04	993.9
0000	1 10.78	2.16	299.7	7.1	125.5	8.30E-04	7.45E-04	916.6
0007 010	1 10.89	-4.11	232.3	4.5	32.1	5.19E-04	6.07E-03	958.0
915 3000 20.9	11.	-17.27	259.0	1.6	19.2	5.48E-06	8.77E-05	924.7
4430 1525 5000	2 12.73	-26.30	236.4	0.7	14.3	2.20E-05	3.43E-04	859.1

NOTE: The data points plotted are virtual potential temperature (+), dew point temperature (*), CT (x), and $\varepsilon(o)$. The solid line is the MOS expression for CT2, and the long dash line is the MOS expression for ε . The extreme left-hand side of the graph shows an expanded scale plot of virtual potential temperature. The date, time, and Monin-Obukhov stability length, L, are given in the lower center of the graph.

Figure C-20. Ladder Profile #20

Trime Alt Alt Vr T T Td N e E E Eps CT2 P (Ma) (Maj/83) (C2/M.67) (mb) (Maj/83) (C2/M.67) (mb) (Maj/83) (C2/M.67) (mb) (Maj/83) (Maj/83) (C2/M.67) (mb) (Maj/83) (Maj/83) (C2/M.67) (mb) (Maj/83) (Maj/83					Prof	Profile# 20	1	12/13				
305 1000 16.66 12.82 3.05 303.5 7.6 142.3 8.08E-04 3.04E-04 3.04E-04 16.80 15.95 3.06 309.6 7.6 246.0 5.31E-03 2.89E-02 1 2 1 16.80 15.95 3.06 309.6 7.6 246.0 5.31E-03 2.89E-02 1 2 40 16.96 16.05 2.57 308.0 7.3 245.2 2.43E-03 1.54E-02 1 2 1 10.0 16.92 15.84 2.44 307.5 7.2 239.1 1.96E-03 8.43E-03 1.28E-03 1 10.0 16.92 15.84 2.44 307.5 7.2 236.9 1.47E-03 3.40E-03 1.28E-03 1.28E-03 1.28E-03 1.28E-03 1.28E-03 1.28E-03 1.28E-03 1.28E-03 1.28E-04 1.20 16.90 14.60 2.62 305.4 7.3 188.8 1.03E-03 3.95E-04 1.22 750 17.13 14.09 2.32 302.2 7.2 156.1 1.08E-03 5.96E-04 3.42E-03 1.28E-03	rime	Alt (m)	A1t (ft)		T cent)		Z	e (mb)	E (V/m)	Eps (m2/63)	CT2 (C2/m.67)	P (dm)
3 10 16.80 15.95 3.06 309.6 7.6 246.0 5.31E-03 2.89E-02 1 6 20 16.84 15.98 2.77 398.7 7.4 245.7 3.01E-03 1.54E-02 1 12 40 16.96 16.05 2.57 308.0 7.3 245.2 2.43E-03 1.54E-02 1 21 70 17.08 16.09 2.42 307.4 7.2 239.1 1.96E-03 8.43E-03 1 21 100 16.92 15.84 2.44 307.5 7.2 236.9 1.47E-03 3.40E-03 1 22 300 16.92 15.84 2.75 307.8 7.4 217.4 1.35E-03 1.28E-03 1 23 300 16.90 14.60 2.59 306.7 7.3 200.6 1.20E-03 9.38E-04 1 229 750 17.13 14.09 2.32 302.2 7.2 156.1 1.08E-03 5.96E-04 1 229 750 17.13 14.09 2.32 302.2 7.2 156.1 1.08E-03 5.96E-04 1.16E-03 1 259 500 2.62 305.4 7.3 188.8 1.03E-05 7.12E-05 915 3000 22.47 13.29 -17.80 257.1 1.5 17.5 1.23E-05 7.12E-05 915 3000 22.47 13.29 -17.80 231.7 -1.5 18.6 6.50E-06 8.70E-04	145930	305	1000	16.66	12.82	3.	303.5	7.6	142.3	8.08E-04	3.04E-04	991.5
6 20 16.84 15.98 2.77 308.7 7.4 245.7 3.01E-03 1.54E-02 1 12 40 16.96 16.05 2.57 308.0 7.3 245.2 2.43E-03 8.43E-03 1 21 70 17.08 16.09 2.42 307.4 7.2 239.1 1.96E-03 6.83E-03 1 31 100 16.92 15.84 2.44 307.5 7.2 236.9 1.47E-03 3.40E-03 1 61 200 16.92 15.84 2.45 307.8 7.4 217.4 1.35E-03 1.28E-03 1 62 300 16.82 15.12 2.59 306.7 7.3 200.6 1.20E-03 9.38E-04 1 153 500 16.90 14.60 2.62 305.4 7.3 188.8 1.03E-03 3.95E-04 1 229 750 17.13 14.09 2.32 302.2 7.2 156.1 1.08E-03 5.96E-04 4 454 1500 17.94 12.40 -0.85 290.6 5.7 197.2 9.09E-04 3.42E-03 610 2000 18.54 12.01 -3.51 282.1 4.7 141.0 1.50E-04 1.16E-03 915 3000 22.47 13.29 -17.40 257.1 1.5 17.5 1.23E-05 7.12E-05 915 3000 22.60 13.84 -35.00 231.7 -1.5 18.6 6.50E-06 8.70E-04	150230	3	10	16.80	15.95	3.00	309.0	1.6	246.0		2.89E-02	1027.8
12 40 16.96 16.05 2.57 308.0 7.3 245.2 2.43E-03 8.43E-03 1 21 70 17.08 16.09 2.42 307.4 7.2 239.1 1.96E-03 6.83E-03 1 31 100 16.92 15.84 2.44 307.5 7.2 236.9 1.47E-03 3.40E-03 1 31 100 16.92 15.84 2.44 307.5 7.2 236.9 1.47E-03 3.40E-03 1 201 16.92 15.84 2.45 307.8 7.4 217.4 1.35E-03 1.28E-03 1.28E-03 1 200 16.82 15.12 2.59 306.7 7.3 200.6 1.20E-03 9.38E-04 1 229 750 17.13 14.09 2.32 305.4 7.3 188.8 1.03E-03 3.95E-04 1 229 750 17.13 14.09 2.32 302.2 7.2 156.1 1.08E-03 5.96E-04 3.42E-03 610 2000 18.54 12.01 -3.51 282.1 4.7 141.0 1.50E-04 1.16E-03 915 3000 22.47 13.29 -17.80 257.1 1.5 17.5 1.23E-05 7.12E-05 915 3000 22.65 13.84 -35.00 231.7 -1.5 18.6 6.50E-06 8.70E-04	150445	9	20	16,84	15.98	2.77	308.7	7.4	245.7	3.01E-03	1.54E-02	1027.4
21 70 17.08 16.09 2.42 307.4 7.2 239.1 1.96E-03 6.83E-03 1 31 100 16.92 15.84 2.44 307.5 7.2 236.9 1.47E-03 3.40E-03 1 1 100 16.92 15.84 2.45 307.5 7.2 236.9 1.47E-03 3.40E-03 1 1 200 16.79 15.38 2.75 307.8 7.4 217.4 1.35E-03 1.28E-03 1.28E-03 1 153 500 16.82 15.12 2.59 306.7 7.3 200.6 1.20E-03 9.38E-04 1 1 153 500 16.90 14.60 2.62 305.4 7.3 188.8 1.03E-03 3.95E-04 1 2 2 2 750 17.13 14.09 2.32 302.2 7.2 156.1 1.08E-03 5.96E-04 3.42E-03 454 15.00 17.94 12.40 -0.85 290.6 5.7 197.2 9.09E-04 3.42E-03 610 2000 18.54 12.01 -3.51 282.1 4.7 141.0 1.50E-04 1.16E-03 915 3000 22.47 13.29 -17.80 257.1 1.5 17.5 1.23E-05 7.12E-05 915 3000 22.60 13.84 -35.00 231.7 -1.5 18.6 6.50E-06 8.70E-04	150700	12	40	16.96	16.05	2.57	308.0	7.3	245.2	2.438-03		1026.8
31 100 16.92 15.84 2.44 307.5 7.2 236.9 1.47E-03 3.40E-03 1 6.1 200 16.79 15.38 2.75 307.8 7.4 217.4 1.35E-03 1.28E-03 1.28E-03 1 1.28E-03 1.28E-03 1 1.28E-03 1 1.28E-03 1 1.28E-03 1 1.28E-03 1 1.28E-03 1 1.28E-04 1 1 1.28E-03 1 1.28E-03 1 1.28E-04 1 1 1.28E-03 1 1 1.28E-03 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	150950	21	70	17.08	16.09	2.42	307.4	7.2	239.1	1.96E-03		1026.0
61 200 16.79 15.38 2.75 307.8 7.4 217.4 1.35E-03 1.28E-03 1 2	151210	31	100	16,92	15.84	2.44	307.5	7.2	236.9	1.47E-03	3.40E-03	1025.0
92 300 16.82 15.12 2.59 306.7 7.3 200.6 1.20E-03 9.38E-04 1 153 500 16.90 14.60 2.62 305.4 7.3 188.8 1.03E-03 3.95E-04 1 229 750 17.13 14.09 2.32 302.2 7.2 156.1 1.08E-03 5.96E-04 458 1500 17.94 12.80 -0.85 290.6 5.7 197.2 9.09E-04 3.42E-03 610 2000 18.54 12.01 -3.51 282.1 4.7 141.0 1.50E-04 1.16E-03 915 3000 22.47 13.29 -17.80 257.1 1.5 17.5 1.23E-05 7.12E-05 915 3000 22.66 13.84 -35.00 231.7 -1.5 18.6 6.50E-06 8.70E-04	151445	61	200	16.79	15.38	2.75	307.8	7.4	217.4	1.35E-03	1.28E-03	1021.3
153 500 16.90 14.60 2.62 305.4 7.3 188.8 1.03E-03 3.95E-04 1 229 750 17.13 14.09 2.32 302.2 7.2 156.1 1.08E-03 5.96E-04 458 1500 17.94 12.80 -0.85 290.6 5.7 197.2 9.09E-04 3.42E-03 610 2000 18.54 12.01 -3.51 282.1 4.7 141.0 1.50E-04 1.16E-03 915 3000 22.47 13.29 -17.80 257.1 1.5 17.5 1.23E-05 7.12E-05 915 3000 22.66 13.84 -35.00 231.7 -1.5 18.6 6.50E-06 8.70E-04	151740	92	300	16.82	15.12	2.59	306.7	7.3	200.6	1.20E-03	9.38E-04	1017.8
229 750 17.13 14.09 2.32 302.2 7.2 156.1 1.08E-03 5.96E-04 454 1500 17.94 12.30 -0.85 290.6 5.7 197.2 9.09E-04 3.42E-03 610 2000 18.54 12.01 -3.51 282.1 4.7 141.0 1.50E-04 1.16E-03 915 3000 22.47 13.29 -17.40 257.1 1.5 17.5 1.23E-05 7.12E-05 915 3000 22.66 13.84 -35.00 231.7 -1.5 18.6 6.50E-06 8.70E-04	152015	153	500	16.90	14.60	2.02	305.4	7.3	188.8	1.03E-03	3.95E-04	1010.2
45d 1500 17.94 12.d0 -0.85 290.6 5.7 197.2 9.09E-04 3.42E-03 610 2000 18.54 12.01 -3.51 282.1 4.7 141.0 1.50E-04 1.16E-03 915 3000 22.47 13.29 -17.d0 257.1 1.5 17.5 1.23E-05 7.12E-05 915 3000 22.66 13.84 -35.00 231.7 -1.5 18.6 6.50E-06 8.70E-04	152300	229	750	17.13	14.09	2.32	302.2	7.2	156.1	1.08E-03	5.96E-04	998.9
610 2000 18.54 12.01 -3.51 282.1 4.7 141.0 1.50E-04 1.16E-03 915 3000 22.47 13.29 -17.40 257.1 1.5 17.5 1.23E-05 7.12E-05 915 3000 22.66 13.84 -35.00 231.7 -1.5 18.6 6.50E-06 8.70E-04	152745	458	1500	17.94	12.80	-0.85	290.6	5.7	197.2	9.09E-04	3.42E-03	975.0
915 3000 22.47 13.29 -17.80 257.1 1.5 17.5 1.23E-05 7.12E-05 915 3000 22.66 13.84 -35.00 231.7 -1.5 18.6 6.50E-06 8.70E-04	153040	610	2000	18.54	12.01	-3.51	282.1	4.7	141.0	1.50E-04	1.16E-03	958.1
915 3000 22.66 13.84 -35.00 231.7 -1.5 18.6 6.50E-06 8.70E-04	153435	915	3000	22.47	13.29	-17.80	257.1	1.5	17.5	1.23E-05	7.12E-05	923.9
	154015	915	3000	22.66	13.84	-35.00	231.7	-1.5	18.6	6.50E-U6	8.70E-04	882.1

MOS expression for ε. The extreme left-hand side of the graph shows an expanded scale plot of virtual potential temperature. The date, time, and Monin-Obukhov stability length, L, are given The data points plotted are virtual potential temperature (+), dew point temperature (*), (x), and $\varepsilon(0)$. The solid line is the MOS expression for CT^2 , and the long dash line is the in the lower center of the graph.

Figure C-21. Ladder Profile #21

				Profi	Profile# 21	7	12/13				•
Time	Alt (m)	Alt (ft)	TV.	T (cent)	Ta	2	e (mp)	E (V/m)	Eps (m2/s3)	CF2 (C2/m.67)	a (QW)
72100	3	10	18.20	17.32	3.56	308.6	7.8	186.9	3.09E-03	0.00E 00	1025.7
72320	9	20	18.12	17.22		308.4	7.8	179.3	2.51E-03	0.00E 00	1025.3
72620	12	40	18.12	17.19		300.5	7.4	153,2	1.79E-03	0.00E 00	1024.9
72840	21	70	18.22	17.16	3.	308.0	7.8	180.0	1.80E-03	0.00 00	1024.1
73055	31	100	18.11	16.97		307.5	7.7	174.0	1.32E-03	0.00E 00	1022.4
73355	61	200	18.12	16.67	3.	307.3	7.7	167.0	1.32E-03	U.00E 00	1019.3
173615	92	300	16.01	16.30		305.1	7.4	132.9	9.55E-04	0.00E 00	1015.4
73918	153	200	16.12	15.77	3.27	304.9	7.7	126.8	1.26E-03		1007.9
74150	229	750	18.15	15.04	3,35	303.7	7.7	123.9	8.24E-04	0.00E 00	999.4
74500	305	1000	18.25	14.43		300.4	7.4	106.9	1.26E-03	300	990.3
74800	458	1500	18.59	13,39	0.26	291.7	6.2	86.0	1.45E-03	BOOE	973.4
75110	610	2000	19.14			283.6	5.3	97.2	3.00E-05	0.00E 00	955.4
75520	915	3000	21.55		-14.93	259.3	1.9	15.4	1.32E-04	00E	921.9
180145	1525	5000	29.17	13.98	-13.10	238.1	1.5	11.2	4.73E-06	0.00E 00	856.7
130840	2248	7500	33.67	11.10	-14.62	221.3	2.0	6.8	5.00E-05	0 00E 00	111.1
131110	2288	7500	34.02	11.29		220.5	1.7	6.7	1.02E-05	00 300°O	779.4
81710	3050	10000	36.90	6.62	-12.91	207.0	2.5	4.1	1.03E-05		707.8

BIBLIOGRAPHY

Davidson, K. L., T. M. Houlihan, C. W. Fairall, and G. E. Schacher (1978): "Observations of the Temperature Structure Function Parameter, C_T^2 , Over the Ocean", Naval Postgraduate School Report, NPS 63-78-005.

Fairall, C. W., G. E. Schacher, K. L. Davidson, and T. M. Houlihan (1978): "Atmospheric Marine Boundary Layer Measurements in the Vicinity of San Nicolas Island During CEWCOM-78", Naval Postgraduate School Report, NPS 61-78-007.

Haugen, D. A. - Editor (1973): <u>Workshop in Micrometeorology</u>, American Meteorological Society (Science Press, Ephrate, PA).

Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Cote, and Y. Izumi (1976): "Turbulence Structure in the Convective Boundary Layer", J. Atmos. Sci. <u>33</u>, 1152 - 1169.

INITIAL DISTRIBUTION LIST

		DODAAD Code	No. of Copies
1.	Defense Documentation Center Cameron Station, Building 5 Alexandria, Virginia 22314	\$47031	12
2.	Library, Code 0212 Naval Postgraduate School Monterey, California 93940		2
3.	Dean of Research, Code 012 Naval Postgraduate School Monterey, California 93940	N62271	Ovrodel selo 1999 Selver Spiling, He
4.	C. W. Fairall, The BDM Corporatio Naval Postgraduate School Monterey, California 93940	n	5
5.	Professor K. E. Woehler, Code 61W Naval Postgraduate School Monterey, California 93940	h	Code 10000 Teval Remarch La Rest Indone (ACL)
6.	Dr. Ralph Markson Airborne Research Associates 46 Kendal Common Road Weston, Massachusetts 02193		5
7.	Assoc. Professor K. L. Davidson, Naval Postgraduate School Monterey, California 93940	Code 63Ds	. 5
8.	Assoc. Professor T. Houlihan, Cod Naval Postgraduate School Monterey, California 93940	e 69Hm	19.0 SQ 201e014A 1500A 1884XI 55 3 000A
9.	Assoc. Professor G. Schacher, Cod Naval Postgraduate School Monterey, California 93940	e 61Sq	5
10.	Mr. Murray Schefer Code Air-3706 Naval Air Systems Command Washington, D.C. 20360		To the tentral A of the set th
11.	LT Michelle Hughes PM-22/PMS 405 Naval Sea Systems Command Washington, D.C. 20362		27502 (24) (76) 25403 (35) 838730 26404 (36) 83873

12.	Dr. Stuart Gathman Code 8326 Naval Research Laboratory Washington, D.C. 20375		1
13.	Dr. Lothar Ruhnke Code 8320 Naval Research Laboratory Washington, D.C. 20375		rase sales
14.	Dr. Barry Katz Code 231 Naval Surface Weapons Center White Oak Laboratory Silver Spring, Maryland 20910		1
15.	Eugene J. Mack Calspan Corporation Buffalo, New York 14221	mortanomica POS est aco	2
16.	Theodore V. Blanc Code 8322B Naval Research Laboratory Washington, D.C. 20375		1 .3 102.80 To .03 1271-30
17.	Dr. J. H. Richter Code 813 Submarine Systems Division Communications Systems and Techn Department Naval Oceans Systems Center San Diego, California 92152	nology	1
18.	Jim Russell D-910 Naval Avionics Center 6000 E. 21 Street Indianapolis, Indiana 46218		5
19.	Dr. Andreas Goroch Naval Environmental Prediction F Monterey, California 93940	Facility	1
20.	Dr. A. Weinstein Director of Research Naval Environmental Prediction F Monterey, California 93940	Research Facility	1
21.	Dr. Phil Surra Office of Naval Research 1030 East Green Street Pasadena. California 91106	N62887	1

22.	Director, Naval Research Laboratory, Attn: Code 2627 Washington, D.C. 20375	N00173	6
23.	Office of Naval Research Branch Office 1030 East Green Street Pasadena, California 91106	N62879	1