Soluções dos exercícios da Folha 4

Ex 4.1 Antes da reparação:

 $\Phi Re^2 = 1.65 \times 10^9$; no gráfico vem Re = 1x10⁶; Gv= 0.084 m³ s⁻¹;

Durante a reparação:

1° tubo: v = 2.67 m/s; Re = 7.48x10⁵; no gráfico vem Φ 1 = 0.0016; hat = 1.63 m

 2° tubo: v = 10.7 m/s; Re = 1.5×10^{6} ; no gráfico vem $\Phi 1 = 0.0014$; hat = 32.7 m

hbomba = (1.627+32.7)m = 34.33 m

 Δ Pbomba nova situação = 2.36x10⁵ Pa < Δ P bomba disponível= 350 kN/m² pode-se continuar a usar a bomba

Ex 4.2

Antes das incrustações: $v = 2.83 \text{ m s}^{-1}$; $Re = 4.24 \text{ x } 10^{5}$; $\Phi = 0.0033$; no gráfico vem $e = 4.5 \text{ x} 10^{-4} \text{ m}$

Depois das incrustações: $e = 4.5 \times 10^{-3} \, \text{m}$; $\Phi . \text{Re}^2 = 5.94 \times 10^8$; no gráfico vem $\text{Re} = 3 \times 10^5$; $v = 2 \, \text{m s}^{-1}$; $\text{Gv} = 0.0353 \, \text{m}^3 \, \text{s}^{-1}$

% dimuição de caudal = 30%

Ex 4.3

Gv, total = $0.0598 \text{ m}^3 \text{ s}^{-1}$; $\Phi.\text{Re2} = 1.56 \text{ x} 10^6$; tubos lisos; no gráfico vem Re = $2.1 \text{ x} 10^4$; v = 0.84 m s^{-1} ; no mínimo de tubos ~145

Ex 4.4 dh_{médio} = 4 seção recta/perímetro molhado = D2-D1=0,01 m

Ex 4.5

a) na caixa (exterior dos tubos)

área de passagem = 0.007854 m^{2} ; vcaixa = 1.75 m s^{-1} ; Re = 5×10^{4} ; t. Lisos vem $\Phi = 0.0025$ (-ΔPat) caixa= 1600.6 Pa;

b) nos tubos:

 Φ .Re² = 5 x10⁶; e/D = 0.008 e no gráfico vem Re = 3.1 x 10⁴ V tubo = 0.775 m s⁻¹; Gv= 0.00342 m³ s⁻¹