Pointed Sets

December 24, 2023

0072 This chapter contains some foundational material on pointed sets.

Contents

1	Pointed Sets		2
	1.1	Foundations	2
	1.2	Morphisms of Pointed Sets	3
	1.3	The Category of Pointed Sets	3
	1.4	Elementary Properties of Pointed Sets	
2	Limits of Pointed Sets		5
	2.1	Products	5
	2.2	Equalisers	5
	2.3		
3	Colimits of Pointed Sets		6
	3.1	Coproducts	6
	3.2	Pushouts	6
	3.3	Coequalisers	6
4	Coı	nstructions With Pointed Sets	6
	4.1	Internal Homs	6
	4.2	Free Pointed Sets	7
		Wedge Sums of Pointed Sets	
\mathbf{A}	Otł	ner Chapters	11

0073 1 Pointed Sets

- 0074 1.1 Foundations
- 0075 **Definition 1.1.1.1.** A **pointed set**¹ is equivalently
 - An \mathbb{E}_0 -monoid in $(N_{\bullet}(\mathsf{Sets}), \mathsf{pt});$
 - A pointed object in (Sets, pt).
- **Remark 1.1.1.2.** In detail, a **pointed set** is a pair (X, x_0) consisting of
 - The Underlying Set. A set X, called the underlying set of (X, x_0) ;
 - The Basepoint. A morphism

$$[x_0] \colon \mathrm{pt} \to X$$

in Sets, determining an element $x_0 \in X$, called the basepoint of X.

- **Example 1.1.1.3.** The 0-sphere² is the pointed set $(S^0,0)^3$ consisting of
 - The Underlying Set. The set S^0 defined by

$$S^0 \stackrel{\text{def}}{=} \{0, 1\};$$

- The Basepoint. The element 0 of S^0 .
- **Example 1.1.1.4.** The **trivial pointed set** is the pointed set (pt, \star) consisting of
 - The Underlying Set. The punctual set pt $\stackrel{\text{def}}{=} \{ \star \};$
 - The Basepoint. The element \star of pt.
- **Example 1.1.1.5.** The **underlying pointed set** of a semimodule (M, α_M) is the pointed set $(M, 0_M)$.
- **Example 1.1.1.6.** The **underlying pointed set** of a module (M, α_M) is the pointed set $(M, 0_M)$.

¹Further Terminology: Also called an \mathbb{F}_1 -module.

 $^{^2}$ Further Terminology: Also called the **underlying pointed set of the field with one element**.

³ Further Notation: Also denoted (\mathbb{F}_1 , 0).

007B 1.2 Morphisms of Pointed Sets

- 007C Definition 1.2.1.1. A morphism of pointed sets⁴ is equivalently
 - A morphism of \mathbb{E}_0 -monoids in $(N_{\bullet}(\mathsf{Sets}), \mathsf{pt})$.
 - A morphism of pointed objects in (Sets, pt).
- 007D Remark 1.2.1.2. In detail, a morphism of pointed sets $f:(X,x_0) \to (Y,y_0)$ is a morphism of sets $f:X\to Y$ such that the diagram

commutes, i.e. such that

$$f(x_0) = y_0.$$

007E 1.3 The Category of Pointed Sets

- 007F Definition 1.3.1.1. The category of pointed sets is the category Sets_* defined equivalently as
 - The homotopy category of the ∞ -category $\mathsf{Mon}_{\mathbb{E}_0}(N_{\bullet}(\mathsf{Sets}), \mathsf{pt})$ of Monoids in Monoidal ∞ -Categories, $\ref{eq:Monoids}$;
 - The category Sets_{*} of Categories, ??.
- 007G Remark 1.3.1.2. In detail, the category of pointed sets is the category Sets* where
 - Objects. The objects of Sets, are pointed sets;
 - Morphisms. The morphisms of Sets* are morphisms of pointed sets;
 - Identities. For each $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$, the unit map

$$\mathbb{M}^{\mathsf{Sets}_*}_{(X,x_0)} \colon \mathrm{pt} \to \mathsf{Sets}_*((X,x_0),(X,x_0))$$

of Sets_{*} at (X, x_0) is defined by⁵

$$id_{(X,x_0)}^{\mathsf{Sets}_*} \stackrel{\text{def}}{=} id_X;$$

⁴ Further Terminology: Also called a **pointed function** or a **morphism of** \mathbb{F}_1 **-modules**.

⁵Note that id_X is indeed a morphism of pointed sets, as we have $id_X(x_0) = x_0$.

• Composition. For each $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$, the composition map

$$\circ^{\mathsf{Sets}_*}_{(X,x_0),(Y,y_0),(Z,z_0)} \colon \mathsf{Sets}_*((Y,y_0),(Z,z_0)) \times \mathsf{Sets}_*((X,x_0),(Y,y_0)) \to \mathsf{Sets}_*((X,x_0),(Z,z_0))$$

of Sets_{*} at $((X, x_0), (Y, y_0), (Z, z_0))$ is defined by⁶

$$g \circ^{\mathsf{Sets}_*}_{(X,x_0),(Y,y_0),(Z,z_0)} f \stackrel{\text{def}}{=} g \circ f.$$

- 007H 1.4 Elementary Properties of Pointed Sets
- **OO7J** Proposition 1.4.1.1. Let (X, x_0) be a pointed set.
- 007K 1. Completeness. The category Sets_{*} of pointed sets and morphisms between them is complete, having in particular products (Definition 2.1.1.1), pullbacks (Definition 2.3.1.1), and equalisers (Definition 2.2.1.1).
- 2. Cocompleteness. The category Sets_{*} of pointed sets and morphisms between them is cocomplete, having in particular coproducts (Definition 3.1.1.1), pushouts (Definition 3.2.1.1), and coequalisers (Definition 3.3.1.1).
- 3. Failure To Be Cartesian Closed. The category Sets* is not Cartesian closed.
- 4. Relation to Partial Functions. We have an equivalence of categories

$$\mathsf{Sets}_* \overset{\mathrm{eq.}}{\cong} \mathsf{Sets}^{\mathrm{part.}}$$

$$g(f(x_0)) = g(y_0)$$
$$= z_0,$$

or

in terms of diagrams.

7 Warning: This is not an isomorphism of categories, only an equivalence.

 $^{^6}$ Note that the composition of two morphisms of pointed sets is indeed a morphism of pointed sets, as we have

between the category of pointed sets and pointed functions between them and the category of sets and partial functions between them.

Proof. Item 1, Completeness: Omitted.

Item 2, Cocompleteness: Omitted.

Item 3, Failure To Be Cartesian Closed: See [MSE2855868].

Item 4, Relation to Partial Functions: Omitted.

007P 2 Limits of Pointed Sets

0070 2.1 Products

Let (X, x_0) and (Y, y_0) be pointed sets.

Definition 2.1.1.1. The **product of** (X, x_0) **and** (Y, y_0) is the pointed set $(X \times Y, (x_0, y_0))$.

007S 2.2 Equalisers

Let $f, g: (X, x_0) \rightrightarrows (Y, y_0)$ be morphisms of pointed sets.

- **Definition 2.2.1.1.** The **equaliser of** (f, g) is the pointed set $(\text{Eq}_*(f, g), x_0)$ consisting of
 - The Underlying Set. The set $Eq_*(f,g)$ defined by

$$\text{Eq}_*(f,g) \stackrel{\text{def}}{=} \{ x \in X \mid f(x) = y_0 = g(x) \};$$

• The Basepoint. The element x_0 of Eq. (f,g).

007U 2.3 Pullbacks

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets and let $f: (X, x_0) \to (Z, z_0)$ and $g: (Y, y_0) \to (Z, z_0)$ be morphisms of pointed sets.

- 007V Definition 2.3.1.1. The pullback of (X, x_0) and (Y, y_0) over (Z, z_0) along (f, g) is the pointed set $((X, x_0) \times_{(z, z_0)} (Y, y_0), p_0)$ consisting of
 - The Underlying Set. The set $(X, x_0) \times_{(z,z_0)} (Y, y_0)$ defined by

$$(X, x_0) \times_{(z, z_0)} (Y, y_0) \stackrel{\text{def}}{=} \{(x, y) \in X \times Y \mid f(x) = z_0 = g(y)\};$$

• The Basepoint. The element (x_0, y_0) of $(X, x_0) \times_{(z, z_0)} (Y, y_0)$.

007W 3 Colimits of Pointed Sets

007X 3.1 Coproducts

Let (X, x_0) and (Y, y_0) be pointed sets.

- **Definition 3.1.1.1.** The **coproduct of** (X, x_0) **and** (Y, y_0) is their wedge sum $(X \vee Y, p_0)$ of Definition 4.3.1.1.
- **007Z 3.2** Pushouts

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets and let $f: (Z, z_0) \to (X, x_0)$ and $g: (Z, z_0) \to (Y, y_0)$ be morphisms of pointed sets.

- 0080 Definition 3.2.1.1. The pushout of (X, x_0) and (Y, y_0) over (Z, z_0) along (f, g) is the pointed set $(X \coprod_{f, Z, g} Y, p_0)$, where $p_0 = [x_0] = [y_0]$.
- 0081 3.3 Coequalisers

Let $f, g: (X, x_0) \rightrightarrows (Y, y_0)$ be morphisms of pointed sets.

- **Definition 3.3.1.1.** The **coequaliser of** (f, g) is the pointed set $(CoEq(f, g), x_0)$.
- 0083 4 Constructions With Pointed Sets
- 0084 4.1 Internal Homs

Let (X, x_0) and (Y, y_0) be pointed sets.

- O085 Definition 4.1.1.1. The pointed set of morphisms of pointed sets from (X, x_0) to (Y, y_0) is the pointed set $Sets_*(X, Y)$ consisting of
 - The Underlying Set. The set $\mathbf{Sets}_*((X, x_0), (Y, y_0))$ of morphisms of pointed sets from (X, x_0) to (Y, y_0) ;
 - The Basepoint. The element

$$\Delta_{y_0} \colon (X, x_0) \to (Y, y_0)$$

of $Sets_*((X, x_0), (Y, y_0)).$

0086 4.2 Free Pointed Sets

Let X be a set.

- **Definition 4.2.1.1.** The **free pointed set on** X is the pointed set X^+ consisting of
 - The Underlying Set. The set X^+ defined by

$$X^+ \stackrel{\text{def}}{=} X \coprod \text{pt};$$

- The Basepoint. The element \star of X^+ .
- **0088** Proposition 4.2.1.2. Let X be a set.
- 0089 1. Functoriality. The assignment $X \mapsto X^+$ defines a functor

$$(-)^+ \colon \mathsf{Sets} \to \mathsf{Sets}_*,$$

where

• Action on Objects. For each $X \in \text{Obj}(\mathsf{Sets})$, we have

$$[(-)^+](X) \stackrel{\text{def}}{=} X_+,$$

where X_{+} is the pointed set of Definition 4.2.1.1;

• Action on Morphisms. For each morphism $f: X \to Y$ of Sets, the image

$$f_+\colon X_+\to Y_+$$

of f by $(-)^+$ is the map of pointed sets defined by

$$f^+(x) \stackrel{\text{def}}{=} \begin{cases} f(x) & \text{if } x \in X, \\ \star & \text{if } x = \star. \end{cases}$$

008A 2. Adjointness. We have an adjunction

$$((-)^+ \dashv \overline{\approx})$$
: Sets $\underbrace{(-)^+}_{\overline{\approx}}$ Sets_{*},

witnessed by a bijection of sets

$$\mathsf{Sets}_*((X_+,\star),(Y,y_0)) \cong \mathsf{Sets}(X,Y),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $(Y, y_0) \in \text{Obj}(\mathsf{Sets}_*)$.

3. Symmetric Strong Monoidality With Respect to Wedge Sums. The free pointed set functor of Item 1 has a symmetric strong monoidal structure

$$((-)^+,(-)^{+,\coprod},(-)^{+,\coprod}_{\mathbb{H}^+})\colon (\mathsf{Sets},\coprod,\emptyset)\to (\mathsf{Sets}_*,\vee,\mathrm{pt}),$$

being equipped with isomorphisms of pointed sets

$$(-)_{X,Y}^{+,\coprod} \colon X^{+} \vee Y^{+} \xrightarrow{\cong} (X \coprod Y)^{+},$$
$$(-)_{\mathbb{L}}^{+,\coprod} \colon \operatorname{pt} \xrightarrow{\cong} \emptyset^{+},$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

4. Symmetric Strong Monoidality With Respect to Smash Products. The free pointed set functor of Item 1 has a symmetric strong monoidal structure

being equipped with isomorphisms of pointed sets

$$(-)_{X,Y}^{+,\times} \colon X^+ \wedge Y^+ \xrightarrow{\cong} (X \times Y)^+,$$
$$(-)_{\mathbb{K}}^{+,\times} \colon S^0 \xrightarrow{\cong} \mathrm{pt}^+,$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: Clear.

Item 3, Symmetric Strong Monoidality With Respect to Wedge Sums: Omitted.

Item 4, Symmetric Strong Monoidality With Respect to Smash Products: Omitted. □

008D 4.3 Wedge Sums of Pointed Sets

Let (X, x_0) and (Y, y_0) be pointed sets.

Definition 4.3.1.1. The wedge sum of X and Y is the pointed set $(X \vee Y, p_0)$ consisting of

• The Underlying Set. The set $X \vee Y$ defined by⁸

$$(X \lor Y, p_0) \stackrel{\text{def}}{=} (X, x_0) \coprod (Y, y_0) \qquad X \lor Y \longleftarrow Y$$

$$\cong (X \coprod_{\text{pt}} Y, p_0) \qquad \uparrow \qquad \uparrow \qquad \downarrow_{[y_0]}$$

$$\cong (X \coprod Y/\sim, p_0), \qquad X \longleftarrow_{[x_0]} \text{pt},$$

where \sim is the equivalence relation on $X \coprod Y$ given by $x_0 \sim y_0$;

• The Basepoint. The element p_0 of $X \vee Y$ defined by

$$p_0 \stackrel{\text{def}}{=} [x_0]$$
$$= [y_0].$$

- **OURLY** Proposition 4.3.1.2. Let (X, x_0) and (Y, y_0) be pointed sets.
- 008G 1. Functoriality. The assignments $(X, x_0), (Y, y_0), ((X, x_0), (Y, y_0)) \mapsto (X \vee Y, p_0)$ define functors

$$\begin{split} X \lor -\colon \mathsf{Sets}_* &\to \mathsf{Sets}_*, \\ - \lor Y \colon \mathsf{Sets}_* &\to \mathsf{Sets}_*, \\ -_1 \lor -_2 \colon \mathsf{Sets}_* &\times \mathsf{Sets}_* &\to \mathsf{Sets}_*. \end{split}$$

008H 2. Associativity. We have an isomorphism of pointed sets

$$(X \vee Y) \vee Z \cong X \vee (Y \vee Z),$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \mathsf{Sets}_*$.

008J 3. Unitality. We have isomorphisms of pointed sets

$$pt \lor X \cong X,$$
$$X \lor pt \cong X,$$

natural in $(X, x_0) \in \mathsf{Sets}_*$.

4. Commutativity. We have an isomorphism of pointed sets

$$X \vee Y \cong Y \vee X$$
,

natural in $(X, x_0), (Y, y_0) \in \mathsf{Sets}_*$.

⁸Here $(X, x_0) \coprod (Y, y_0)$ is the coproduct of (X, x_0) and (Y, y_0) in Sets_{*}.

- oosl 5. Symmetric Monoidality. The triple $(Sets_*, \vee, pt)$ is a symmetric monoidal category.
- 6. Symmetric Strong Monoidality With Respect to Free Pointed Sets. The free pointed set functor of Item 1 of Proposition 4.2.1.2 has a symmetric strong monoidal structure

$$((-)^+,(-)^{+,\coprod},(-)^{+,\coprod}_{\mathbb{H}^+})\colon(\mathsf{Sets},\coprod,\emptyset)\to(\mathsf{Sets}_*,\vee,\mathrm{pt}),$$

being equipped with isomorphisms of pointed sets

$$(-)_{X,Y}^{+,\coprod} \colon X^{+} \vee Y^{+} \xrightarrow{\cong} (X \coprod Y)^{+},$$
$$(-)_{\mathbb{L}}^{+,\coprod} \colon \operatorname{pt} \xrightarrow{\cong} \emptyset^{+},$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

7. The Fold Map. We have a natural transformation

$$\nabla\colon \vee\circ\Delta^{\mathsf{Cats}}_{\mathsf{Sets}_*}\Longrightarrow \mathrm{id}_{\mathsf{Sets}_*}, \qquad \begin{array}{c} \mathsf{Sets}_*\times\mathsf{Sets}_*\\ \Delta^{\mathsf{Cats}}_{\mathsf{Sets}_*}& & \\ & & \nabla\\ \mathsf{Sets}_*& & \\ & & & \\ \mathsf{Sets}_*& & \\ & & & \\ \mathsf{Sets}_*, \end{array}$$

called the fold map, whose component

$$\nabla_X \colon X \vee X \to X$$

at X is given by the composition

$$X \xrightarrow{\Delta_X} X \times X$$

$$\longrightarrow X \times X/\sim$$

$$\stackrel{\text{def}}{=} X \vee X.$$

Proof. Item 1, Functoriality: Omitted.

Item 2, Associativity: Omitted.

Item 3, Unitality: Omitted.

Item 4, Commutativity: Omitted.

Item 5, Symmetric Monoidality: Omitted.

Item 6, Symmetric Strong Monoidality With Respect to Free Pointed Sets: Omitted.

Item 7, The Fold Map: Omitted.

Appendices

A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets
- 5. Relations
- 6. Spans
- 7. Posets

Indexed and Fibred Sets

- 7. Indexed Sets
- 8. Fibred Sets
- 9. Un/Straightening for Indexed and Fibred Sets

Category Theory

- 11. Categories
- 12. Types of Morphisms in Categories
- 13. Adjunctions and the Yoneda Lemma
- 14. Constructions With Categories
- 15. Kan Extensions

Bicategories

17. Bicategories

18. Internal Adjunctions

Internal Category Theory

19. Internal Categories

Cyclic Stuff

20. The Cycle Category

Cubical Stuff

21. The Cube Category

Globular Stuff

22. The Globe Category

Cellular Stuff

23. The Cell Category

Monoids

- 24. Monoids
- 25. Constructions With Monoids

Monoids With Zero

- 26. Monoids With Zero
- 27. Constructions With Monoids With Zero

Groups

- 28. Groups
- 29. Constructions With Groups

Hyper Algebra

30. Hypermonoids

- 31. Hypergroups
- 32. Hypersemirings and Hyperrings
- 33. Quantales

Near-Rings

- 34. Near-Semirings
- 35. Near-Rings

Real Analysis

- 36. Real Analysis in One Variable
- 37. Real Analysis in Several Variables

Measure Theory

- 38. Measurable Spaces
- 39. Measures and Integration

Probability Theory

39. Probability Theory

Stochastic Analysis

- 40. Stochastic Processes, Martingales, and Brownian Motion
- 41. Itô Calculus
- 42. Stochastic Differential Equations

Differential Geometry

43. Topological and Smooth Manifolds

Schemes

44. Schemes