Практична робота 5. Семантичні терми № 3

```
    Вхідні дані: X=3
    Програма:
    begin

            R := 1;
            while X > 0 do
            begin
                 R := R * 3;
                 X := X - 1
                 end
```

• 3^x

4. Побудувати семантичний терм програми

end) =

$$sem_S(S1; S2) = sem_S(S1) \cdot sem_S(S2)$$

= $sem_S(R := 1) \cdot sem_S(while X > 0 do begin R := R * 3; X := X - 1 end) =$
 $sem_S(x := a) = AS^x (sem_A(a))$

= $AS^R (sem_A(1)) \cdot sem_S(while X > 0 do begin R := R * 3; X := X - 1 end) =$
 $sem_S(while b do S) = WH(sem_B(b), sem_S(S))$

= $AS^R (sem_A(1)) \cdot WH(sem_B(X > 0), sem_S(begin R := R * 3; X := X - 1 end)) =$
 $sem_B(a1 > a2) = S^2(gr, sem_A(a1), sem_A(a2))$

= $AS^R (sem_A(1)) \cdot WH(S^2(gr, sem_A(X), sem_A(X))$

= $AS^R (sem_A(1)) \cdot WH(S^2(Gr, sem_A(X), sem_A(X))$
 $sem_S(begin R := R * 3; X := X - 1$

X := X - 1

end)) =

$$sem_{A}(x) = x \Rightarrow , sem_{A}(n) = n$$
 $= AS^{R}(\overline{1}) \cdot WH(S^{2}(gr, X \Rightarrow, \overline{0}), sem_{S}(begin R := R * 3; X := X - 1 end)) =$
 $sem_{S}(begin S end) = (sem_{S}(S))$
 $= AS^{R}(\overline{1}) \cdot WH(S^{2}(gr, X \Rightarrow, \overline{0}), sem_{S}(R := R * 3; X := X - 1)) =$
 $sem_{S}(S1; S2) = sem_{S}(S1) \cdot sem_{S}(S2)$
 $= AS^{R}(\overline{1}) \cdot WH(S^{2}(gr, X \Rightarrow, \overline{0}), sem_{S}(R := R * 3) \cdot sem_{S}(X := X - 1) =$
 $sem_{S}(x := a) = AS^{x}(sem_{A}(a))$
 $= AS^{R}(\overline{1}) \cdot WH(S^{2}(gr, X \Rightarrow, \overline{0}), AS^{R}(sem_{A}(R * 3)) \cdot AS^{x}(sem_{A}(X - 1)) =$
 $sem_{A}(a1 * a2) = S^{2}(sub, sem_{A}(a1), sem_{A}(a2))$
 $sem_{A}(a1 - a2) = S^{2}(sub, sem_{A}(a1), sem_{A}(a2))$
 $= AS^{R}(\overline{1}) \cdot WH(S^{2}(gr, X \Rightarrow, \overline{0}), AS^{R}(S^{2}(mult, sem_{A}(a2)))$
 $sem_{A}(a1 * a2) = S^{2}(sub, sem_{A}(a1), sem_{A}(a2))$
 $= AS^{R}(\overline{1}) \cdot WH(S^{2}(gr, X \Rightarrow, \overline{0}), AS^{R}(S^{2}(mult, sem_{A}(R), sem_{A}(R))$

 $sem_A(x) = x \Rightarrow$, $sem_A(n) = \overline{n}$

=
$$AS^{R}(\overline{1}) \bullet WH(S^{2}(gr, X \Rightarrow, \overline{0}), AS^{R}(S^{2}(mult, R \Rightarrow, \overline{3})) \bullet AS^{x}(S^{2}(sub, X \Rightarrow, \overline{1}))$$

Відповідь:

$$AS^{R}(\overline{1}) \bullet WH(S^{2}(gr, X \Rightarrow, \overline{0}), AS^{R}(S^{2}(mult, R \Rightarrow, \overline{3})) \bullet AS^{x}(S^{2}(sub, X \Rightarrow, \overline{1})))$$

5. Перевірити синтаксичну правильність програми

$$st = [X -> 3]$$

$$AS^{R}(\overline{1}) \bullet WH(S^{2}(gr, X \Rightarrow, \overline{0}), AS^{R}(S^{2}(mult, R \Rightarrow, \overline{3})) \bullet AS^{x}(S^{2}(sub, X \Rightarrow, \overline{1})))$$
 (st) = Послідовне виконання = WH($S^{2}(gr, X \Rightarrow, \overline{0}), AS^{R}(S^{2}(mult, R \Rightarrow, \overline{3})) \bullet AS^{x}(S^{2}(sub, X \Rightarrow, \overline{1})))$ ($AS^{R}(\overline{1})$ (st))

$$AS^{R}(\overline{1})$$
 (st) = Присвоювання = st ∇ [R -> $\overline{1}$ (st)] = st ∇ [R -> 1] = [X -> 3, R -> 1] = \underline{st}

st` = [X -> 3, R -> 1]

Обчислимо WH($S^2(gr, X \Rightarrow, \overline{0})$, $AS^R(S^2(mult, R \Rightarrow, \overline{3})) \cdot AS^R(S^2(sub, X \Rightarrow, \overline{1}))$) (st`)

Умова: $S^2(gr, X \Rightarrow, \overline{0})(st') =$ **Суперпозиція** = $gr(X \Rightarrow (st'))$, $\overline{0}(st')) = gr(3, 0) =$ true - звідси робимо висновок, що цикл виконується принаймні один раз.

• st1 = $AS^R(S^2(\text{mult}, R \Rightarrow, \overline{3}))$ • $AS^x(S^2(\text{sub}, X \Rightarrow, \overline{1}))$ (st`) = Послідовне виконання = $AS^x(S^2(\text{sub}, X \Rightarrow, \overline{1}))$ ($AS^R(S^2(\text{mult}, R \Rightarrow, \overline{3}))$ (st`))

 $AS^{R}(S^{2}(\text{mult}, R \Rightarrow, \overline{3}))(\text{st}^{*}) = \Pi$ рисвоювання = st * $\nabla[R - S^{2}(\text{mult}, R \Rightarrow, \overline{3})(\text{st}^{*})] = \mathbf{Cyперпозиція} = \text{st}^{*}$ $\nabla[R - \text{mult}(R \Rightarrow (\text{st}^{*}), \overline{3}(\text{st}^{*})) = \text{st}^{*}$ $\nabla[R - \text{mult}(1, 3)] = \text{st}^{*}$ $\nabla[R - \text{st}] = [X - \text{st}] = [X - \text{st}]$ -> 3] = st *

$st^* = [X -> 3, R -> 3]$

 $AS^{x}(S^{2}(\text{sub}, X \Rightarrow, \overline{1}))$ (st``) = Присвоювання = st`` ∇ [X -> $S^{2}(\text{sub}, X \Rightarrow, \overline{1})(\text{st}``)]$ = Суперпозиція = st`` ∇ [X ->sub(X \Rightarrow (st``), $\overline{1}(\text{st}``))]$ = st`` ∇ [X ->sub(3, 1)] = st`` ∇ [X ->2] = [X -> 2, R -> 3] = st1

st1 = [X -> 2, R -> 3]

Перевіряємо умову:

$$S^2(gr, X \Rightarrow, \overline{0})(st1) = Cуперпозиція = gr(X \Rightarrow (st1), \overline{0}(st1))$$
 = gr(2, 0) = true

• st2 = $AS^R(S^2(\text{mult}, R \Rightarrow, \overline{3}))$ • $AS^x(S^2(\text{sub}, X \Rightarrow, \overline{1}))$ (st1) = Послідовне виконання = $AS^x(S^2(\text{sub}, X \Rightarrow, \overline{1}))$ ($AS^R(S^2(\text{mult}, R \Rightarrow, \overline{3}))$)(st1))

 $AS^{R}(S^{2}(\text{mult}, R \Rightarrow, \overline{3}))(\text{st1}) = Присвоювання = st1 <math>\nabla[R \rightarrow S^{2}(\text{mult}, R \Rightarrow, \overline{3})(\text{st1})] =$ **Суперпозиція** = st1 $\nabla[R \rightarrow \text{mult}(R \Rightarrow (\text{st1}), \overline{3}(\text{st1})) = \text{st1} \nabla[R \rightarrow \text{mult}(3, 3)] = \text{st1} \nabla[R \rightarrow 9] = [X \rightarrow 2, R \rightarrow 9] =$ **st1**`

st1 = [X -> 2, R -> 9]

 $AS^{x}(S^{2}(\text{sub}, X \Rightarrow, \overline{1}))$ (st1`) = Присвоювання = st1` ∇ [X -> $S^{2}(\text{sub}, X \Rightarrow, \overline{1})(\text{st1}`)$] = Суперпозиція = st1` ∇ [X ->sub(X \Rightarrow (st1`), $\overline{1}(\text{st1}`)$)] = st1` ∇ [X ->sub(2, 1)] = st1` ∇ [X ->1] = [X -> 1, R -> 9] = st2

st2 = [X -> 1, R -> 9]

Перевіряємо умову:

$$S^2$$
(gr, X \Rightarrow , $\overline{0}$)(st2) = Суперпозиція = gr(X \Rightarrow (st2), $\overline{0}$ (st2)) = gr(1, 0) = true

• st3 = $AS^R(S^2(\text{mult}, R \Rightarrow, \overline{3}))$ • $AS^x(S^2(\text{sub}, X \Rightarrow, \overline{1}))$ (st2) = Послідовне виконання = $AS^x(S^2(\text{sub}, X \Rightarrow, \overline{1}))$ ($AS^R(S^2(\text{mult}, R \Rightarrow, \overline{3}))$ (st2))

 $AS^{R}(S^{2}(\text{mult}, R \Rightarrow, \overline{3}))(\text{st2}) = Присвоювання = st2 <math>\nabla[R \rightarrow S^{2}(\text{mult}, R \Rightarrow, \overline{3})(\text{st2})] =$ **Суперпозиція =** st2 $\nabla[R \rightarrow \text{mult}(R \Rightarrow (\text{st2}), \overline{3}(\text{st2})) = \text{st2} \nabla[R \rightarrow \text{mult}(9, 3)] = \text{st2} \nabla[R \rightarrow 27] = [X \rightarrow 1, R \rightarrow 27] =$ st2`

st2 = [X -> 1, R -> 27]

 $AS^{x}(S^{2}(\text{sub}, X \Rightarrow, \overline{1}))$ (st2`) = Присвоювання = st2` ∇ [X -> $S^{2}(\text{sub}, X \Rightarrow, \overline{1})(\text{st2`})$] = Суперпозиція = st2` ∇ [X ->sub(X \Rightarrow (st2`), $\overline{1}(\text{st2`})$)] = st2` ∇ [X ->sub(1, 1)] = st2` ∇ [X ->0, R -> 27] = st3

st3 = [X -> 0, R -> 27]

Перевіряємо умову:

$$S^2$$
(gr, X \Rightarrow , 0)(st3) = Суперпозиція = gr(X \Rightarrow (st3), 0 (st3)) = gr(0, 0) = false

Результат: st3 = [X -> 0, R -> 27].

У змінній R записано результат виконання програми 3^x для значення x=3, отже протестована функція вірна на вхідних даних.