ECGR 3180 Data Structures and Algorithms

Algorithm Efficiency

Dr. Mihail Cutitaru Fall 2020

What Is a Good Solution?

- A program incurs a real and tangible cost.
 - Computing time
 - Memory required
 - Difficulties encountered by users
 - Consequences of incorrect actions by program
- A solution is good if ...
 - The total cost incurs ...
 - Over all phases of its life ... is minimal

What Is a Good Solution?

- Important elements of the solution
 - Good structure
 - Good documentation
 - Efficiency
- Be concerned with efficiency when
 - Developing underlying algorithm
 - Choice of objects and design of interaction between those objects

Measuring Efficiency of Algorithms

- Important because
 - Choice of algorithm has significant impact
- Examples
 - Responsive word processors
 - Grocery checkout systems
 - Automatic teller machines
 - Video machines
 - Life support systems

Measuring Efficiency of Algorithms

- Analysis of algorithms
 - The area of computer science that provides tools for contrasting efficiency of different algorithms
 - Comparison of algorithms should focus on significant differences in efficiency
 - We consider comparisons of *algorithms*, not programs

Measuring Efficiency of Algorithms

- Difficulties with comparing programs (instead of algorithms)
 - How are the algorithms coded
 - What computer will be used
 - What data should the program use
- Algorithm analysis should be independent of
 - Specific implementations, computers, and data

The Execution Time of Algorithms

- An algorithm's execution time is related to number of operations it requires.
 - Algorithm's execution time is related to number of operations it requires.
- Example: Towers of Hanoi
 - Solution for n disks required $2^n 1$ moves
 - If each move requires time *m*
 - Solution requires $(2^n 1) \times m$ time units

Algorithm Growth Rates

- Measure an algorithm's time requirement as function of problem size
- Most important thing to learn
 - How quickly algorithm's time requirement grows as a function of problem size

Algorithm A requires time proportional to n^2 Algorithm B requires time proportional to n

Demonstrates contrast in growth rates

Algorithm Growth Rates

• FIGURE 10-1 Time requirements as a function of problem size *n*

- Algorithm A is said to be order f(n),
 - Denoted as O(f(n))
 - Function f(n) called algorithm's growth rate function
 - Notation with capital O denotes order
- Algorithm A of order denoted O(f(n))
 - Constants k and n_0 exist such that
 - A requires no more than $k \times f(n)$ time units
 - For problem of size $n \ge n_0$

• FIGURE 10-2 The graphs of 3 \times n² and n² - 3 \times n + 10

$$O(1) < O(\log_2 n) < O(n) < O(n \times \log_2 n) < O(n)$$

$$(n^2) < O(n^2) < O(n^3) < O(2^n)$$

Order of growth of some common functions

	n A					
	1					
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log ₂ n	3	6	9	13	16	19
n	10	10 ²	10 ³	104	105	10 ⁶
n × log₂n	30	664	9,965	105	10 ⁶	10 ⁷
n^2	10 ²	104	10 ⁶	108	1010	1012
n^3	10 ³	10 ⁶	10 ⁹	1012	1015	1018
2 ⁿ	10 ³	1030	10301	103,01	0 1030,	103 10301,030

• FIGURE 10-3 A comparison of growth-rate functions

• FIGURE 10-4 A comparison of growth-rate functions

- Worst-case analysis
 - Worst case analysis usually considered
 - Easier to calculate, thus more common
- Average-case analysis
 - More difficult to perform
 - Must determine relative probabilities of encountering problems of given size

Keeping Your Perspective

- ADT used makes a difference
 - Array-based **getEntry** is O(1)
 - Link-based getEntry is O(n)
- Choosing implementation of ADT
 - Consider how frequently certain operations will occur
 - Seldom used but critical operations must also be efficient

Keeping Your Perspective

- If problem size is always small
 - Possible to ignore algorithm's efficiency
- Weigh trade-offs between
 - Algorithm's time and memory requirements
- Compare algorithms for style and efficiency

Efficiency of Search Algorithms

Sequential search

- Worst case: O(n)
- Average case: O(n)
- Best case: O(1)

Binary search

- O(log₂n) in worst case
- At same time, maintaining array in sorted order requires overhead cost ... can be substantial