Développements limités

- Introduction
- Le polynôme de Taylor
- Voisinages
- Fonctions négligeables
- Développements limités
- Unicité
- Fonctions n-fois dérivables
- Fonctions \mathcal{C}^{∞}
- Fonctions équivalentes
- Développements limités des fonctions usuelles
- Opérations sur les développements limités
- Développements limités des fonctions usuelles suite...
- Opération sur les développements limités suite...
- Développements limités des fonctions usuelles fin
- Quelques exemples

Un vieux souvenir....

Un vieux souvenir....

$$\forall x \in]-1, 1[$$
 $\lim_{n \to \infty} \sum_{p=0}^{n} x^{p} = \frac{1}{1-x}$

1

$$1+x$$

$$1 + x + x^2$$

$$1 + x + x^2 + x^3$$

$$1 + x + x^2 + x^3 + x^4 + x^5$$

$$f(x) = \frac{1}{1-x}$$
 et $P_n(x) = 1 + x + x^2 + \dots + x^n = \sum_{p=0}^n x^p$

Mathématiques et calcul 1

$$f(x) = \frac{1}{1-x} \quad \text{et} \quad P_n(x) = 1 + x + x^2 + \dots + x^n = \sum_{p=0}^n x^p$$
$$f(x) - P_n(x) = \frac{1}{1-x} - \frac{1-x^{n+1}}{1-x} = \frac{x^{n+1}}{1-x}$$

$$f(x) = \frac{1}{1-x} \quad \text{et} \quad P_n(x) = 1 + x + x^2 + \dots + x^n = \sum_{p=0}^n x^p$$
$$f(x) - P_n(x) = \frac{1}{1-x} - \frac{1-x^{n+1}}{1-x} = \frac{x^{n+1}}{1-x}$$

Au voisinage de 0, si x = 0, 1 (par exemple) :

$$f(0,1) - P_6(0,1) = \frac{(10^{-1})^7}{0.9} \le 10^{-6}$$

Mathématiques et calcul 1

$$f(x) = (1-x)^{-1}$$

$$f(0) = 1$$

$$f(x) = (1-x)^{-1}$$

 $f'(x) = (1-x)^{-2}$

$$f(0) = 1$$

$$f'(0) = 1$$

Mathématiques et calcul 1

$$f(x) = (1-x)^{-1}$$

 $f'(x) = (1-x)^{-2}$
 $f''(x) = 2(1-x)^{-3}$

$$f(0) = 1$$

 $f'(0) = 1$
 $f''(0) = 2$

$$f''(0) = 2$$

$$f(x) = (1-x)^{-1}$$
 $f(0)$
 $f'(x) = (1-x)^{-2}$ $f'(0)$
 $f''(x) = 2(1-x)^{-3}$ $f''(0)$
 $f'''(x) = 2 \times 3(1-x)^{-4}$ $f'''(0)$

$$f(0) = 1$$

 $f'(0) = 1$
 $f''(0) = 2$

$$f(x) = (1-x)^{-1}$$
 $f(0) = 1$
 $f'(x) = (1-x)^{-2}$ $f'(0) = 1$
 $f''(x) = 2(1-x)^{-3}$ $f''(0) = 2$
 $f'''(x) = 2 \times 3(1-x)^{-4}$ $f'''(0) = 2 \times 3$
 $f^{iv}(x) = 2 \times 3 \times 4(1-x)^{-5}$ $f^{iv}(0) = 2 \times 3 \times 4$

$$f(x) = (1-x)^{-1} f(0) = 1$$

$$f'(x) = (1-x)^{-2} f'(0) = 1$$

$$f''(x) = 2(1-x)^{-3} f''(0) = 2$$

$$f'''(x) = 2 \times 3(1-x)^{-4} f'''(0) = 2 \times 3$$

$$f^{iv}(x) = 2 \times 3 \times 4(1-x)^{-5} f^{iv}(0) = 2 \times 3 \times 4$$

$$f(x) = (1-x)^{-1} f(0) = 1$$

$$f'(x) = (1-x)^{-2} f'(0) = 1$$

$$f''(x) = 2(1-x)^{-3} f''(0) = 2$$

$$f'''(x) = 2 \times 3(1-x)^{-4} f'''(0) = 2 \times 3$$

$$f^{iv}(x) = 2 \times 3 \times 4(1-x)^{-5} f^{iv}(0) = 2 \times 3 \times 4$$

$$\dots \dots \dots \dots \dots$$

$$f^{(n)}(x) = 2 \times \dots \times n(1-x)^{-(n+1)} f^{(n)}(0) = n!$$

$$f(x) = (1-x)^{-1} f(0) = 1$$

$$f'(x) = (1-x)^{-2} f'(0) = 1$$

$$f''(x) = 2(1-x)^{-3} f''(0) = 2$$

$$f'''(x) = 2 \times 3(1-x)^{-4} f'''(0) = 2 \times 3$$

$$f^{iv}(x) = 2 \times 3 \times 4(1-x)^{-5} f^{iv}(0) = 2 \times 3 \times 4$$

$$\dots \dots \dots \dots \dots$$

$$f^{(n)}(x) = 2 \times \dots \times n(1-x)^{-(n+1)} f^{(n)}(0) = n!$$

$$P_n(x) = f(0) + \frac{f'(0)}{1}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \frac{f^{iv}(0)}{4!}x^4 + \dots + \frac{f^{(n)}(0)}{n!}x^n$$

On suppose que f est (n-1)-fois dérivable sur I et que $f^{(n)}(a)$ existe.

Mathématiques et calcul 1

On suppose que f est (n-1)-fois dérivable sur I et que $f^{(n)}(a)$ existe.

On appelle polynôme de Taylor d'ordre *n* en *a* de *f*, le polynôme :

$$P_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

On suppose que f est (n-1)-fois dérivable sur I et que $f^{(n)}(a)$ existe.

On appelle polynôme de Taylor d'ordre *n* en *a* de *f*, le polynôme :

$$P_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

On appelle reste de Taylor d'ordre n de f en a, la fonction R_n , définie par :

$$R_n(x) = f(x) - P_n(x)$$

On note : V_a un voisinage de a.

On note : V_a un voisinage de a.

Définition 2 : On appelle voisinage pointé de *a*, un voisinage de *a* privé du point *a*.

On note : V_a un voisinage de a.

Définition 2 : On appelle voisinage pointé de *a*, un voisinage de *a* privé du point *a*.

On note V_a^* un voisinage pointé de a.

On note : V_a un voisinage de a.

Définition 2 : On appelle voisinage pointé de *a*, un voisinage de *a* privé du point *a*.

On note V_a^* un voisinage pointé de a.

On a :
$$V_a^* = V_a \setminus \{a\}$$
.

Définition : Soit f et g deux fonctions définies sur un voisinage pointé de a, $a \in \mathbb{R}$.

On dit que f est négligeable devant g si :

$$\forall \varepsilon > 0, \ \forall x \in V_a^* : |f(x)| \le \varepsilon |g(x)|$$

Définition : Soit f et g deux fonctions définies sur un voisinage pointé de a, $a \in \mathbb{R}$.

On dit que f est négligeable devant g si :

$$\forall \varepsilon > 0, \ \forall x \in V_a^* : |f(x)| \le \varepsilon |g(x)|$$

On note : f(x) = o(g)

Définition : Soit f et g deux fonctions définies sur un voisinage pointé de a, $a \in \mathbb{R}$.

On dit que f est négligeable devant g si :

$$\forall \varepsilon > 0, \ \forall x \in V_a^* : |f(x)| \le \varepsilon |g(x)|$$

On note : f(x) = o(g)

Si g ne s'annule pas sur V_a^* :

$$f(x) = \circ(g) \quad \Leftrightarrow \quad \lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

Définition : Soit $n \in \mathbb{N}$. Soit f une fonction définie sur un voisinage pointé de $a \in \mathbb{R}$.

Définition : Soit $n \in \mathbb{N}$. Soit f une fonction définie sur un voisinage pointé de $a \in \mathbb{R}$.

 $R_n(x) = f(x) - P_n(x)$ soit négligeable devant $(x - a)^n$.

On dit que f admet un développement limité d'ordre n en a, s'il existe un polynôme P_n , de degré n, tel que le reste :

Définition : Soit $n \in \mathbb{N}$. Soit f une fonction définie sur un voisinage pointé de $a \in \mathbb{R}$.

On dit que f admet un développement limité d'ordre n en a, s'il existe un polynôme P_n , de degré n, tel que le reste :

$$R_n(x) = f(x) - P_n(x)$$
 soit négligeable devant $(x - a)^n$.

$$R_n(x) = f(x) - P_n(x) = o((x-a)^n)$$

Définition : Soit $n \in \mathbb{N}$. Soit f une fonction définie sur un voisinage pointé de $a \in \mathbb{R}$.

On dit que f admet un développement limité d'ordre n en a, s'il existe un polynôme P_n , de degré n, tel que le reste :

$$R_n(x) = f(x) - P_n(x)$$
 soit négligeable devant $(x - a)^n$.

$$R_n(x) = f(x) - P_n(x) = o((x-a)^n)$$

Remarque : Si on pose : x = a + h et g(h) = f(a + h)

$$f(x) = P_n(x) + o((x-a)^n) \iff g(h) = f(a+h) = P_n(a+h) + o(h)^n$$

Définition : Soit $n \in \mathbb{N}$. Soit f une fonction définie sur un voisinage pointé de $a \in \mathbb{R}$.

On dit que f admet un développement limité d'ordre n en a, s'il existe un polynôme P_n , de degré n, tel que le reste : $R_n(x) = f(x) - P_n(x)$ soit négligeable devant $(x - a)^n$.

$$R_n(x) = f(x) - P_n(x) = o((x-a)^n)$$

Remarque : Si on pose : x = a + h et g(h) = f(a + h)

$$f(x) = P_n(x) + o((x-a)^n) \iff g(h) = f(a+h) = P_n(a+h) + o(h)^n$$

L'étude des développements limités en 0 est suffisante

Mathématiques et calcul 1

Supposons :
$$f(x) = P_n(x) + o(x^n) = Q_n(x) + o(x^n)$$

Supposons :
$$f(x) = P_n(x) + o(x^n) = Q_n(x) + o(x^n)$$

Alors:
$$\lim_{x\to 0} \frac{P_n(x) - Q_n(x)}{x^n} = 0$$

Supposons :
$$f(x) = P_n(x) + o(x^n) = Q_n(x) + o(x^n)$$

Alors : $\lim_{x \to 0} \frac{P_n(x) - Q_n(x)}{x^n} = 0$
 $\forall \varepsilon > 0, \exists \alpha > 0 \quad |x| \le \alpha, \quad |P_n(x) - Q_n(x)| \le \varepsilon |x^n|$

Supposons :
$$f(x) = P_n(x) + o(x^n) = Q_n(x) + o(x^n)$$

Alors : $\lim_{x \to 0} \frac{P_n(x) - Q_n(x)}{x^n} = 0$
 $\forall \varepsilon > 0, \exists \alpha > 0 \quad |x| \le \alpha, \quad |P_n(x) - Q_n(x)| \le \varepsilon |x^n| \quad \Rightarrow \quad P_n(0) - Q_n(0) = 0$

Supposons: $f(x) = P_n(x) + o(x^n) = Q_n(x) + o(x^n)$

Proposition : Si une fonction f, définie sur un voisinage pointé de 0, admet un développement limité d'ordre n en 0, ce développement est unique.

Alors:
$$\lim_{x \to 0} \frac{P_n(x) - Q_n(x)}{x^n} = 0$$

 $\forall \varepsilon > 0, \exists \alpha > 0 \quad |x| \le \alpha, \quad |P_n(x) - Q_n(x)| \le \varepsilon |x^n| \quad \Rightarrow \quad P_n(0) - Q_n(0) = 0$

Par récurrence, tous les coefficients de $P_n - Q_n$ sont nuls et $P_n = Q_n$.

Théorème : Soit n un entier et V_0 un voisinage de 0. Soit f une fonction n-1-fois dérivable sur V_0 dont la dérivée n-ième existe en 0.

Théorème : Soit n un entier et V_0 un voisinage de 0.

Soit f une fonction n-1-fois dérivable sur V_0 dont la dérivée n-ième existe en 0.

Le reste de Taylor de f en 0 :

$$R_n(x) = f(x) - \left(\frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n\right)$$

est négligeable devant x^n

Théorème : Soit n un entier et V_0 un voisinage de 0.

Soit f une fonction n-1-fois dérivable sur V_0 dont la dérivée n-ième existe en 0.

Le reste de Taylor de f en 0 :

$$R_n(x) = f(x) - \left(\frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n\right)$$

est négligeable devant x^n :

$$R_n(x) = \circ(x^n)$$

Par récurrence :

Rappel

Pour $h \in \mathbb{R}$, on pose : $\begin{cases} \alpha(h) = \frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0) \\ \alpha(0) = 0 \end{cases}$

$$f(x_0 + h) = f(x_0) + hf'(x_0) + h\alpha(h)$$

Donc : si f est dérivable en x_0 , il existe une fonction α , continue en 0, telle que :

$$f(x_0 + h) = f(x_0) + hf'(x_0) + h\alpha(h)$$

Et : $\lim_{h \to 0} \alpha(h) = 0$

Par récurrence :

1. Pour n = 1:

$$\lim_{x \to 0} \frac{f(x) - f(0) - xf'(0)}{x} = 0$$

Par récurrence :

1. Pour n = 1:

$$\lim_{x \to 0} \frac{f(x) - f(0) - xf'(0)}{x} = 0$$

Soit:

$$f(x) - f(0) - xf'(0) = R_1(x) = o(x)$$

2. Supposons que le résultat est vrai à l'ordre n-1 (H.R.)

2. Supposons que le résultat est vrai à l'ordre n-1 (H.R.)

$$R_{n-1}(x) = \circ(x^{n-1})$$

Mathématiques et calcul 1

2. Supposons que le résultat est vrai à l'ordre n-1 (H.R.) Si f vérifie les hypothèses à l'ordre n

2. Supposons que le résultat est vrai à l'ordre n-1 (H.R.) Si f vérifie les hypothèses à l'ordre n

(Soit n un entier et V_0 un voisinage de 0.

Soit f une fonction n-1-fois dérivable sur V_0 dont la dérivée n-ième existe en 0.)

2. Supposons que le résultat est vrai à l'ordre n-1 (H.R.) Si f vérifie les hypothèses à l'ordre n

Alors f' vérifie les hypothèses à l'ordre n-1 et le polynôme de Taylor de f' est la dérivée du polynôme de Taylor de f :

$$(f(0) + \frac{f'(0)}{1!}X + \frac{f''(0)}{2!}X^2 + \dots + \frac{f^{(n)}(0)}{n!}X^n)' = f'(0) + \frac{(f')'(0)}{1!}X + \frac{(f')''(0)}{2!}X^2 + \dots + \frac{(f')^{(n-1)}(0)}{(n-1)!}X^{n-1}$$

2. Supposons que le résultat est vrai à l'ordre n-1 (H.R.) Si f vérifie les hypothèses à l'ordre n

Alors f' vérifie les hypothèses à l'ordre n-1 et le polynôme de Taylor de f' est la dérivée du polynôme de Taylor de f :

$$\left(f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n \right)' = f'(0) + \frac{(f')'(0)}{1!} x + \frac{(f')''(0)}{2!} x^2 + \dots + \frac{(f')^{(n-1)}(0)}{(n-1)!} x^{n-1}$$

H.R.:

$$R'_n(x) = f'(x) - P'_n(x) = o(x^{n-1})$$

3.
$$\lim_{x\to 0} \frac{R'_n(x)}{x^{n-1}} = 0 \quad \Leftrightarrow \quad \forall \varepsilon > 0, \ \exists \alpha > 0, \quad |x| \le \alpha \Rightarrow \left| \frac{R'_n(x)}{x^{n-1}} \right| \le \varepsilon$$

3.
$$\lim_{x\to 0} \frac{R'_n(x)}{x^{n-1}} = 0 \iff \forall \varepsilon > 0, \exists \alpha > 0, |x| \le \alpha \Rightarrow \left| \frac{R'_n(x)}{x^{n-1}} \right| \le \varepsilon$$

Soit $x \in]0, \alpha]$, le T.A.F. sur $[0, x]$ appliqué à $R_n(x)$:

$$\exists c \in]0, x[\frac{R_n(x)}{x} = R'_n(c)$$

3.
$$\lim_{x\to 0} \frac{R'_n(x)}{x^{n-1}} = 0 \iff \forall \varepsilon > 0, \exists \alpha > 0, |x| \le \alpha \Rightarrow \left| \frac{R'_n(x)}{x^{n-1}} \right| \le \varepsilon$$

Soit $x \in]0, \alpha]$, le T.A.F. sur [0, x] appliqué à $R_n(x)$:

$$\exists c \in]0, x[\frac{R_n(x)}{x} = R'_n(c)$$

$$\left|\frac{R_n(x)}{x^n}\right| = \left|\frac{R'_n(c)}{x^{n-1}}\right| \le \left|\frac{R'_n(c)}{c^{n-1}}\right| \le \varepsilon$$

3.
$$\lim_{x\to 0} \frac{R'_n(x)}{x^{n-1}} = 0 \iff \forall \varepsilon > 0, \exists \alpha > 0, |x| \le \alpha \Rightarrow \left| \frac{R'_n(x)}{x^{n-1}} \right| \le \varepsilon$$

Soit $x \in]0, \alpha]$, le T.A.F. sur [0, x] appliqué à $R_n(x)$:

$$\exists c \in]0, x[\frac{R_n(x)}{x} = R'_n(c)$$

$$\left|\frac{R_n(x)}{x^n}\right| = \left|\frac{R'_n(c)}{x^{n-1}}\right| \le \left|\frac{R'_n(c)}{c^{n-1}}\right| \le \varepsilon \quad \Longleftrightarrow \quad R_n(x) = \circ(x^n)$$

3.
$$\lim_{x\to 0} \frac{R'_n(x)}{x^{n-1}} = 0 \iff \forall \varepsilon > 0, \exists \alpha > 0, |x| \le \alpha \Rightarrow \left| \frac{R'_n(x)}{x^{n-1}} \right| \le \varepsilon$$

Soit $x \in]0, \alpha]$, le T.A.F. sur [0, x] appliqué à $R_n(x)$:

$$\exists c \in]0, x[\frac{R_n(x)}{x} = R'_n(c)$$

$$\left|\frac{R_n(x)}{x^n}\right| = \left|\frac{R'_n(c)}{x^{n-1}}\right| \le \left|\frac{R'_n(c)}{c^{n-1}}\right| \le \varepsilon \quad \Longleftrightarrow \quad R_n(x) = \circ(x^n)$$

Le raisonnement est le même si $x \in [-\alpha, 0[$.

Mathématiques et calcul 1

Théorème : Soit n un entier et V_0 un voisinage de 0.

Soit f une fonction n-1-fois dérivable sur V_0 dont la dérivée n-ième existe en 0.

Le reste de Taylor de f en 0 :

$$R_n(x) = f(x) - \left(\frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n\right)$$

est négligeable devant x^n :

$$R_n(x) = \circ(x^n)$$

Corollaire : Soit f une fonction indéfiniment dérivable sur un voisinage V_0 de 0.

Corollaire : Soit f une fonction indéfiniment dérivable sur un voisinage V_0 de 0.

Pour tout $n \in \mathbb{N}$, f admet un développement limité d'ordre n en 0.

Définition : Soit f et g deux fonctions définies au voisinage V_a d'un point a.

On dit que f est équivalente à g au voisinage de a si, et seulement si : f - g est négligeable devant g.

Définition : Soit f et g deux fonctions définies au voisinage V_a d'un point a.

On dit que f est équivalente à g au voisinage de a si, et seulement si : f - g est négligeable devant g.

Notation : $f \sim_{a} g$

Définition : Soit f et g deux fonctions définies au voisinage V_a d'un point a.

On dit que f est équivalente à g au voisinage de a si, et seulement si : f - g est négligeable devant g.

Notation : $f \sim_{a} g$

$$f \sim g \iff f - g = \circ(g)$$

Proposition : Si la fonction $\frac{f}{g}$ est définie dans un voisinage pointé de a et si g ne s'annule pas sur V_a , alors $f \sim g$ si, et seulement si :

$$\lim_{x\to a}\frac{f(x)}{g(x)}=1$$

Proposition : Soit f une fonction admettant un développement limité d'ordre n au voisinage de 0 :

$$f(x) = a_p x^p + a_{p+1} x^{p+1} + \dots + a_n x^n + o(x^n)$$
 avec $a_p \neq 0$

Alors:
$$f(x) \sim a_p x^p$$

$$f(x) = (1-x)^{-1}$$

$$f(x) = (1-x)^{-1} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + x^5 + o(x^5)$$

$$f(x) = (1-x)^{-1} = 1 + x + x^2 + \cdots + x^n + o(x^n)$$

$$f(x) = (1+x)^{\alpha}$$

$$f(x) = (1-x)^{-1} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

►
$$f(x) = (1+x)^{\alpha}$$

$$f(x) = (1-x)^{-1} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

$$f(x) = (1+x)^{\alpha}$$

$$= 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^{n} + o(x^{n})$$

$$f(x) = (1-x)^{-1} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

$$f(x) = (1+x)^{\alpha}$$

$$= 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^{n} + o(x^{n})$$

$$f(x) = e^x$$

$$f(x) = (1-x)^{-1} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

$$f(x) = (1+x)^{\alpha}$$

$$= 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^{n} + o(x^{n})$$

 $f(x) = e^x$

$$f'(x) = e^x \implies f^{(n)}(x) = e^x \implies \forall n, \ f^{(n)}(0) = 1$$

$$f(x) = (1-x)^{-1} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

$$f(x) = (1+x)^{\alpha}$$

$$= 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^{n} + o(x^{n})$$

•
$$f(x) = e^{x} = 1 + x + \frac{x^{2}}{2!} + \cdots + \frac{x^{n}}{n!} + o(x^{n})$$

$$f'(x) = e^x \implies f^{(n)}(x) = e^x \implies \forall n, \ f^{(n)}(0) = 1$$

1

$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!}$$

$$f(x) = \sin x$$

$$f(x) = \sin x$$

$$\sin' x = \cos x$$
 $\sin'' x = -\sin x$ $\sin''' x = -\cos x$
 $\sin^{(4)} x = \sin x$...

$$f(x) = \sin x$$

$$\sin' x = \cos x$$
 $\sin'' x = -\sin x$ $\sin''' x = -\cos x$
 $\sin^{(4)} x = \sin x$...

La période de dérivation du sinus est donc 4

$$f(x) = \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$\sin' x = \cos x \quad \sin'' x = -\sin x \quad \sin''' x = -\cos x$$

 $\sin^{(4)} x = \sin x \quad \cdots$

La période de dérivation du sinus est donc 4

$$\sin^{(n)}(0) = \begin{cases} 0 & \text{si} \quad n = 4k \\ 1 & \text{si} \quad n = 4k+1 \\ 0 & \text{si} \quad n = 4k+2 \\ -1 & \text{si} \quad n = 4k+3 \end{cases}$$

$$x-\frac{x^3}{3!}+\frac{x^5}{5!}$$

$$X - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!}$$

$$sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \frac{x^{11}}{11!} + o(x^{11})$$

$$f(x) = \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$f(x) = \cos x$$

$$f(x) = \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

 $f(x) = \cos x$

$$\cos' x = -\sin x \quad \cos'' x = -\cos x \quad \cos''' x = \sin x$$

 $\cos^{(4)} x = -\sin x \quad \cdots$

$$f(x) = \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

 $f(x) = \cos x$

$$\cos' x = -\sin x \quad \cos'' x = -\cos x \quad \cos''' x = \sin x$$

 $\cos^{(4)} x = -\sin x \quad \cdots$

La période de dérivation du cosinus est donc 4

$$f(x) = \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$f(x) = \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

$$\cos' x = -\sin x \quad \cos'' x = -\cos x \quad \cos''' x = \sin x$$

 $\cos^{(4)} x = -\sin x \quad \cdots$

La période de dérivation du cosinus est donc 4

$$\cos^{(n)}(0) = \begin{cases} 1 & \text{si} \quad n = 4k \\ 0 & \text{si} \quad n = 4k+1 \\ -1 & \text{si} \quad n = 4k+2 \\ 0 & \text{si} \quad n = 4k+3 \end{cases}$$

1

2012 - 2013

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!}$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + o(x^{10})$$

Opérations sur les développements limités

$$f(x) = P_n(x) + \circ(x^n)$$
 $g(x) = Q_n(x) + \circ(x^n)$

$$f(x) = P_n(x) + \circ(x^n)$$
 $g(x) = Q_n(x) + \circ(x^n)$

Somme : f+g admet un développement limité d'ordre n en 0 dont le polynôme de Taylor est le somme de ceux de f et g.

$$f(x) = P_n(x) + \circ(x^n)$$
 $g(x) = Q_n(x) + \circ(x^n)$

Somme : f + g admet un développement limité d'ordre n en 0 dont le polynôme de Taylor est le somme de ceux de f et g.

Produit : fg admet un développement limité d'ordre n en 0 dont le polynôme de Taylor est constitué des termes de degrés inférieurs ou égaux à n dans le produit P_nQ_n .

$$f(x) = P_n(x) + \circ(x^n)$$
 $g(x) = Q_n(x) + \circ(x^n)$

Somme : f+g admet un développement limité d'ordre n en 0 dont le polynôme de Taylor est le somme de ceux de f et g.

Produit : fg admet un développement limité d'ordre n en 0 dont le polynôme de Taylor est constitué des termes de degrés inférieurs ou égaux à n dans le produit P_nQ_n .

Composition : si g(0) = 0, $f \circ g$ admet un développement limité en 0, dont le polynôme de Taylor est constitué des termes de degrés inférieurs ou égaux à n dans le polynôme composé $P_n \circ Q_n$.

Somme:

$$\lim_{x \to 0} \frac{f(x) - P_n(x) + g(x) - Q_n(x)}{x^n} = \lim_{x \to 0} \frac{f(x) - P_n(x)}{x^n} + \lim_{x \to 0} \frac{g(x) - Q_n(x)}{x^n} = 0$$

Somme:

$$\lim_{x \to 0} \frac{f(x) - P_n(x) + g(x) - Q_n(x)}{x^n} = \lim_{x \to 0} \frac{f(x) - P_n(x)}{x^n} + \lim_{x \to 0} \frac{g(x) - Q_n(x)}{x^n} = 0$$

Donc:

$$f(x) + g(x) = P_n(x) + Q_n(x) + o(x^n)$$

Produit:

Produit:

Proposition : Si φ est une fonction bornée au voisinage de 0 et ψ une fonction négligeable devant x^n en 0, la fonction produit : $\varphi\psi$ est négligeable devant x^n en 0.

▶ φ bornée au voisinage de 0 $\exists M, \forall x \in I \ni 0 | |\varphi(x)| \leq M$

Produit:

- ▶ φ bornée au voisinage de 0 $\exists M, \forall x \in I \ni 0 |\varphi(x)| \leq M$
- ψ négligeable devant x^n en 0 $\lim_{x\to 0} \frac{\psi(x)}{x^n} = 0$

Produit:

- ▶ φ bornée au voisinage de 0 $\exists M, \forall x \in I \ni 0 |\varphi(x)| \leq M$
- ψ négligeable devant x^n en 0 $\lim_{x\to 0} \frac{\psi(x)}{x^n} = 0$
- $\frac{|\varphi(x)\psi(x)|}{|x^n|}$

Produit:

- ▶ φ bornée au voisinage de 0 $\exists M, \forall x \in I \ni 0 |\varphi(x)| \leq M$
- ψ négligeable devant x^n en 0 $\lim_{x\to 0} \frac{\psi(x)}{x^n} = 0$
- $\qquad \qquad |\frac{\varphi(x)\psi(x)|}{|x^n|} \le M \frac{|\psi(x)|}{|x^n|}$

Produit:

- ▶ φ bornée au voisinage de 0 $\exists M, \forall x \in I \ni 0 |\varphi(x)| \leq M$
- ψ négligeable devant x^n en 0 $\lim_{x\to 0} \frac{\psi(x)}{x^n} = 0$

$$f(x) = P_n(x) + \circ(x^n)$$
 $g(x) = Q_n(x) + \circ(x^n)$

$$f(x) = P_n(x) + o(x^n) \qquad g(x) = Q_n(x) + o(x^n)$$

$$f(x)g(x) = (P_n(x) + o(x^n))(Q_n(x) + o(x^n))$$

$$= P_n(x)Q_n(x) + (P_n(x) + Q_n(x))(o(x^n)) + (o(x^n))(o(x^n))$$

Produit:

$$f(x) = P_n(x) + o(x^n) \qquad g(x) = Q_n(x) + o(x^n)$$

$$f(x)g(x) = (P_n(x) + o(x^n))(Q_n(x) + o(x^n))$$

$$= P_n(x)Q_n(x) + (P_n(x) + Q_n(x))(o(x^n)) + (o(x^n))(o(x^n))$$

 $P_n(x) + Q_n(x)$ est borné au voisinage de 0 :

$$\begin{split} f(x) &= P_n(x) + \circ(x^n) \qquad g(x) = Q_n(x) + \circ(x^n) \\ f(x)g(x) &= \left(P_n(x) + \circ(x^n)\right) \left(Q_n(x) + \circ(x^n)\right) \\ &= P_n(x)Q_n(x) + \left(P_n(x) + Q_n(x)\right) \left(\circ(x^n)\right) + \left(\circ(x^n)\right) \left(\circ(x^n)\right) \\ P_n(x) + Q_n(x) \text{ est born\'e au voisinage de 0} : \qquad \left(P_n(x) + Q_n(x)\right) \left(\circ(x^n)\right) = \circ(x^n) \end{split}$$

$$f(x) = P_n(x) + \circ(x^n) \qquad g(x) = Q_n(x) + \circ(x^n)$$

$$f(x)g(x) = \left(P_n(x) + \circ(x^n)\right) \left(Q_n(x) + \circ(x^n)\right)$$

$$= P_n(x)Q_n(x) + \left(P_n(x) + Q_n(x)\right) \left(\circ(x^n)\right) + \left(\circ(x^n)\right) \left(\circ(x^n)\right)$$

$$P_n(x) + Q_n(x) \text{ est born\'e au voisinage de 0} : \left(P_n(x) + Q_n(x)\right) \left(\circ(x^n)\right) = \circ(x^n)$$

$$d^{\circ}\left(P_n(x)Q_n(x)\right) = 2n \quad \Rightarrow \quad P_n(x)Q_n(x) = H_n(x) + x^{n+1}(a_{n+1} + \dots + a_{2n}x^{2n-n-1})$$

$$\begin{split} f(x) &= P_n(x) + \circ(x^n) \qquad g(x) = Q_n(x) + \circ(x^n) \\ f(x)g(x) &= \left(P_n(x) + \circ(x^n)\right) \left(Q_n(x) + \circ(x^n)\right) \\ &= P_n(x)Q_n(x) + \left(P_n(x) + Q_n(x)\right) \left(\circ(x^n)\right) + \left(\circ(x^n)\right) \left(\circ(x^n)\right) \\ P_n(x) + Q_n(x) \text{ est born\'e au voisinage de } 0: \qquad \left(P_n(x) + Q_n(x)\right) \left(\circ(x^n)\right) = \circ(x^n) \\ d^{\circ}\left(P_n(x)Q_n(x)\right) &= 2n \qquad \Rightarrow \qquad P_n(x)Q_n(x) = H_n(x) + x^{n+1}(a_{n+1} + \dots + a_{2n}x^{2n-n-1}) \\ \lim_{x \to 0} \frac{x^{n+1}(a_{n+1} + \dots + a_{2n}x^{2n-n-1})}{x^n} &= 0 \end{split}$$

$$\begin{split} f(x) &= P_n(x) + \circ(x^n) \qquad g(x) = Q_n(x) + \circ(x^n) \\ f(x)g(x) &= \left(P_n(x) + \circ(x^n)\right) \left(Q_n(x) + \circ(x^n)\right) \\ &= P_n(x)Q_n(x) + \left(P_n(x) + Q_n(x)\right) \left(\circ(x^n)\right) + \left(\circ(x^n)\right) \left(\circ(x^n)\right) \\ P_n(x) + Q_n(x) \text{ est born\'e au voisinage de } 0: \qquad \left(P_n(x) + Q_n(x)\right) \left(\circ(x^n)\right) = \circ(x^n) \\ d^{\circ}\left(P_n(x)Q_n(x)\right) &= 2n \qquad \Rightarrow \qquad P_n(x)Q_n(x) = H_n(x) + x^{n+1}(a_{n+1} + \dots + a_{2n}x^{2n-n-1}) \\ \lim_{x \to 0} \frac{x^{n+1}(a_{n+1} + \dots + a_{2n}x^{2n-n-1})}{x^n} &= 0 \qquad \Rightarrow \qquad x^{n+1}(a_{n+1} + \dots + a_{2n}x^{2n-n-1}) = \circ(x^n) \end{split}$$

Produit:

$$\begin{split} f(x) &= P_n(x) + \circ(x^n) \qquad g(x) = Q_n(x) + \circ(x^n) \\ f(x)g(x) &= \left(P_n(x) + \circ(x^n)\right) \left(Q_n(x) + \circ(x^n)\right) \\ &= P_n(x)Q_n(x) + \left(P_n(x) + Q_n(x)\right) \left(\circ(x^n)\right) + \left(\circ(x^n)\right) \left(\circ(x^n)\right) \\ P_n(x) + Q_n(x) \text{ est born\'e au voisinage de } 0: \qquad \left(P_n(x) + Q_n(x)\right) \left(\circ(x^n)\right) = \circ(x^n) \\ d^{\circ}\left(P_n(x)Q_n(x)\right) &= 2n \quad \Rightarrow \quad P_n(x)Q_n(x) = H_n(x) + x^{n+1}(a_{n+1} + \dots + a_{2n}x^{2n-n-1}) \\ \lim_{x \to 0} \frac{x^{n+1}(a_{n+1} + \dots + a_{2n}x^{2n-n-1})}{x^n} &= 0 \quad \Rightarrow \quad x^{n+1}(a_{n+1} + \dots + a_{2n}x^{2n-n-1}) = \circ(x^n) \end{split}$$

Donc:

$$f(x)g(x) = H_n(x) + \circ(x^n)$$

$$f(x) = P_n(x) + \circ(x^n)$$
 $g(x) = Q_n(x) + \circ(x^n)$

Somme : f+g admet un développement limité d'ordre n en 0 dont le polynôme de Taylor est le somme de ceux de f et g.

Produit : fg admet un développement limité d'ordre n en 0 dont le polynôme de Taylor est constitué des termes de degrés inférieurs ou égaux à n dans le produit P_nQ_n .

Composition : si g(0) = 0, $f \circ g$ admet un développement limité en 0, dont le polynôme de Taylor est constitué des termes de degrés inférieurs ou égaux à n dans le polynôme composé $P_n \circ Q_n$.

$$bch(x) = \frac{e^x + e^{-x}}{2}$$

$$ch(x) = \frac{e^x + e^{-x}}{2}$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots + \frac{x^{n}}{n!} + \circ (x^{n})$$

$$ch(x) = \frac{e^x + e^{-x}}{2}$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots + \frac{x^{n}}{n!} + \circ (x^{n})$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \cdots + \frac{(-1)^{n}x^{n}}{n!} + \circ (x^{n})$$

►
$$ch(x) = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots + \frac{x^{n}}{n!} + \circ (x^{n})$$
 $e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \cdots + \frac{(-1)^{n}x^{n}}{n!} + \circ (x^{n})$

►
$$ch(x) = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

►
$$sh(x) = \frac{e^x - e^{-x}}{2}$$

►
$$ch(x) = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

•
$$ch(x) = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

►
$$sh(x) = \frac{e^x - e^{-x}}{2} = x + \frac{x^3}{3!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

Théorème : Soit *n* un entier et *l* un intervalle contenant 0.

Soit f une fonction n-1-fois dérivable sur I et dont la dérivée n-ième existe en 0.

Soit P_n le polynôme de Taylor de f en 0 et R_n son reste.

Théorème : Soit *n* un entier et *l* un intervalle contenant 0.

Soit f une fonction n-1-fois dérivable sur I et dont la dérivée n-ième existe en 0.

Soit P_n le polynôme de Taylor de f en 0 et R_n son reste.

Toute primitive de f admet un développement limité d'ordre n+1 en 0 dont le polynôme de Taylor est une primitive de celui de f.

Théorème : Soit *n* un entier et *l* un intervalle contenant 0.

Soit f une fonction n-1-fois dérivable sur I et dont la dérivée n-ième existe en 0.

Soit P_n le polynôme de Taylor de f en 0 et R_n son reste.

Toute primitive de f admet un développement limité d'ordre n+1 en 0 dont le polynôme de Taylor est une primitive de celui de f.

Admis sans démonstration.

$$\blacktriangleright \ \ln(1-x) = -\int \frac{1}{1-x}$$

▶
$$ln(1-x) = -\int \frac{1}{1-x}$$

$$(1-x)^{-1} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

►
$$ln(1-x) = -\int \frac{1}{1-x} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

$$(1-x)^{-1} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

►
$$ln(1-x) = -\int \frac{1}{1-x} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

$$\blacktriangleright \ln(1+x) = \int \frac{1}{1+x}$$

►
$$ln(1-x) = -\int \frac{1}{1-x} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

$$\blacktriangleright \ln(1+x) = \int \frac{1}{1+x}$$

$$(1-x)^{-1} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

►
$$ln(1-x) = -\int \frac{1}{1-x} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

$$\blacktriangleright \ln(1+x) = \int \frac{1}{1+x}$$

$$(1-x)^{-1} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

 $(1+x)^{-1} = 1 - x + x^2 + \dots + (-1)^n x^n + o(x^n)$

►
$$ln(1-x) = -\int \frac{1}{1-x} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$ln(1+x) = \int \frac{1}{1+x} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

$$(1-x)^{-1} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

 $(1+x)^{-1} = 1 - x + x^2 + \dots + (-1)^n x^n + o(x^n)$

►
$$ln(1-x) = -\int \frac{1}{1-x} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$ln(1+x) = \int \frac{1}{1+x} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

▶
$$\arctan x = \int \frac{1}{1+x^2}$$

►
$$ln(1-x) = -\int \frac{1}{1-x} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$ln(1+x) = \int \frac{1}{1+x} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

▶
$$\arctan x = \int \frac{1}{1+x^2}$$

$$(1+x)^{-1} = 1-x+x^2+\cdots+(-1)^n x^n+o(x^n)$$

►
$$ln(1-x) = -\int \frac{1}{1-x} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$ln(1+x) = \int \frac{1}{1+x} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

▶ $\arctan x = \int \frac{1}{1+x^2}$

$$(1+x)^{-1} = 1 - x + x^2 + \dots + (-1)^n x^n + o(x^n)$$

 $(1+x^2)^{-1} = 1 - x^2 + x^4 + \dots + (-1)^n x^{2n} + o(x^{2n})$

►
$$ln(1-x) = -\int \frac{1}{1-x} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$ln(1+x) = \int \frac{1}{1+x} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$\arctan x = \int \frac{1}{1+x^2} = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$$

$$(1+x)^{-1} = 1 - x + x^2 + \dots + (-1)^n x^n + o(x^n)$$

 $(1+x^2)^{-1} = 1 - x^2 + x^4 + \dots + (-1)^n x^{2n} + o(x^{2n})$

►
$$ln(1-x) = -\int \frac{1}{1-x} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$ln(1+x) = \int \frac{1}{1+x} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$\arctan x = \int \frac{1}{1+x^2} = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$$

► arcsin =
$$\int \frac{1}{\sqrt{1-x^2}}$$

►
$$ln(1-x) = -\int \frac{1}{1-x} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$ln(1+x) = \int \frac{1}{1+x} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$\arctan x = \int \frac{1}{1+x^2} = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$$

► arcsin =
$$\int \frac{1}{\sqrt{1-x^2}}$$

$$(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\circ(x^n)$$

►
$$ln(1-x) = -\int \frac{1}{1-x} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$ln(1+x) = \int \frac{1}{1+x} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$\arctan x = \int \frac{1}{1+x^2} = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$$

► arcsin =
$$\int \frac{1}{\sqrt{1-x^2}}$$

$$\begin{aligned} & (1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n + \circ(x^n) \\ & (1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{1\times3}{2\times2\times2!}x^2 - \frac{1\times3\times5}{2\times2\times2\times3!}x^3 + \dots + (-1)^n \frac{1\times3\times\dots\times(2n-1)}{2\times2\times\dots\times2\times n!}x^n + \circ(x^n) \end{aligned}$$

2012 - 2013

►
$$ln(1-x) = -\int \frac{1}{1-x} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$ln(1+x) = \int \frac{1}{1+x} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$\arctan x = \int \frac{1}{1+x^2} = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$$

► arcsin =
$$\int \frac{1}{\sqrt{1-x^2}}$$

$$\begin{split} (1+x)^{\alpha} &= 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1) \cdot \cdot \cdot (\alpha-n+1)}{n!} x^n + \circ (x^n) \\ (1+x)^{-\frac{1}{2}} &= 1 - \frac{1}{2} x + \frac{1 \times 3}{2 \times 2 \times 2!} x^2 - \frac{1 \times 3 \times 5}{2 \times 2 \times 2 \times 3!} x^3 + \dots + (-1)^n \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 2 \times \dots \times 2 \times n!} x^n + \circ (x^n) \\ &= 1 - \frac{1}{2} x + \frac{1 \times 3}{2 \times 4} x^2 - \frac{1 \times 3 \times 5}{2 \times 4 \times 6} x^3 + \dots + (-1)^n \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n} x^n + \circ (x^n) \end{split}$$

►
$$ln(1-x) = -\int \frac{1}{1-x} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$ln(1+x) = \int \frac{1}{1+x} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$\arctan x = \int \frac{1}{1+x^2} = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$$

►
$$\arcsin = \int \frac{1}{\sqrt{1-x^2}}$$

$$\begin{split} (1+x)^{\alpha} &= 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1) \cdot \cdot \cdot (\alpha-n+1)}{n!} x^n + \circ (x^n) \\ (1+x)^{-\frac{1}{2}} &= 1 - \frac{1}{2} x + \frac{1 \times 3}{2 \times 2 \times 2!} x^2 - \frac{1 \times 3 \times 5}{2 \times 2 \times 2 \times 3!} x^3 + \dots + (-1)^n \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 2 \times \dots \times 2 \times n!} x^n + \circ (x^n) \\ &= 1 - \frac{1}{2} x + \frac{1 \times 3}{2 \times 4} x^2 - \frac{1 \times 3 \times 5}{2 \times 4 \times 6} x^3 + \dots + (-1)^n \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n} x^n + \circ (x^n) \\ (1-x^2)^{-\frac{1}{2}} &= 1 + \frac{1}{2} x^2 + \frac{1 \times 3}{2 \times 4} x^4 + \frac{1 \times 3 \times 5}{2 \times 4 \times 6} x^6 + \dots + \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n} x^{2n} + \circ (x^{2n}) \end{split}$$

►
$$ln(1-x) = -\int \frac{1}{1-x} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$ln(1+x) = \int \frac{1}{1+x} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

►
$$\arctan x = \int \frac{1}{1+x^2} = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$$

►
$$\arcsin = \int \frac{1}{\sqrt{1-x^2}}$$

= $x + \frac{1}{2} \frac{x^3}{3} + \dots + \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n} \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^{n} + o(x^{n})$$

$$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{1\times3}{2\times2\times2!}x^{2} - \frac{1\times3\times5}{2\times2\times2\times3!}x^{3} + \dots + (-1)^{n}\frac{1\times3\times\cdots\times(2n-1)}{2\times2\times\cdots\times2\times n!}x^{n} + o(x^{n})$$

$$= 1 - \frac{1}{2}x + \frac{1\times3}{2\times4}x^{2} - \frac{1\times3\times5}{2\times4\times6}x^{3} + \dots + (-1)^{n}\frac{1\times3\times\cdots\times(2n-1)}{2\times4\times\cdots\times2n}x^{n} + o(x^{n})$$

$$(1-x^{2})^{-\frac{1}{2}} = 1 + \frac{1}{2}x^{2} + \frac{1\times3}{2\times4}x^{4} + \frac{1\times3\times5}{2\times4\times6}x^{6} + \dots + \frac{1\times3\times\cdots\times(2n-1)}{2\times4\times\cdots\times2n}x^{2} + o(x^{2n})$$

Quelques exemples

$$(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\circ(x^n)$$

$$(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\circ(x^n)$$

$$(1+x)^{\frac{1}{2}}=1+\frac{1}{2}x$$

$$(1+x)^{\alpha}=1+\alpha x+\tfrac{\alpha(\alpha-1)}{2!}x^2+\cdots+\tfrac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\circ(x^n)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2$$

$$(1+x)^{\alpha}=1+\alpha x+\tfrac{\alpha(\alpha-1)}{2!}x^2+\cdots+\tfrac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\circ(x^n)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3$$

$$(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\circ(x^n)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4$$

$$(1+x)^{\alpha}=1+\alpha x+\tfrac{\alpha(\alpha-1)}{2!}x^2+\cdots+\tfrac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\circ(x^n)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1+x)^{\alpha}=1+\alpha x+\tfrac{\alpha(\alpha-1)}{2!}x^2+\cdots+\tfrac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\circ(x^n)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$
$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x$$

$$(1+x)^{\alpha}=1+\alpha x+\tfrac{\alpha(\alpha-1)}{2!}x^2+\cdots+\tfrac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\circ(x^n)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$
$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{6}x^2$$

$$(1+x)^{\alpha}=1+\alpha x+\tfrac{\alpha(\alpha-1)}{2!}x^2+\cdots+\tfrac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\circ(x^n)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$
$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{6}x^2 - \frac{1}{16}x^3$$

$$(1+x)^{\alpha}=1+\alpha x+\tfrac{\alpha(\alpha-1)}{2!}x^2+\cdots+\tfrac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\circ(x^n)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$
$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 - \frac{5}{2^7}x^4$$

$$(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\circ(x^n)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$\left(1+x\right)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\circ(x^n)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}} = 2 - \frac{1}{4}x^2 - \frac{5}{2^6}x^4 + o(x^4)$$

$$(1+x)^{\alpha}=1+\alpha x+\tfrac{\alpha(\alpha-1)}{2!}x^2+\cdots+\tfrac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\circ(x^n)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}} = 2 - \frac{1}{4}x^2 - \frac{5}{2^6}x^4 + o(x^4)$$

$$\ln\left(\left(1+x\right)^{\frac{1}{2}}+\left(1-x\right)^{\frac{1}{2}}\right)=\ln\left(2-\frac{1}{4}x^2-\frac{5}{2^6}x^4+o(x^4)\right)$$

$$ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + o(u^4)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}} = 2 - \frac{1}{4}x^2 - \frac{5}{2^6}x^4 + o(x^4)$$

$$\ln\left(\left(1+x\right)^{\frac{1}{2}}+\left(1-x\right)^{\frac{1}{2}}\right)=\ln\left(2-\frac{1}{4}x^2-\frac{5}{2^6}x^4+o(x^4)\right)$$

$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + o(u^4)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}} = 2 - \frac{1}{4}x^2 - \frac{5}{2^6}x^4 + o(x^4)$$

$$\ln\left(\left(1+x\right)^{\frac{1}{2}}+\left(1-x\right)^{\frac{1}{2}}\right) = \ln\left(2-\frac{1}{4}x^2-\frac{5}{2^6}x^4+\circ(x^4)\right)$$
$$= \ln\left(2\left(1-\frac{1}{8}x^2-\frac{5}{2^7}x^4+\circ(x^4)\right)\right)$$

$$\begin{split} \ln(1+u) &= u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + \circ(u^4) \\ (1+x)^{\frac{1}{2}} &= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + \circ(x^4) \\ (1-x)^{\frac{1}{2}} &= 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + \circ(x^4) \\ (1+x)^{\frac{1}{2}} &+ (1-x)^{\frac{1}{2}} &= 2 - \frac{1}{4}x^2 - \frac{5}{2^6}x^4 + \circ(x^4) \\ \ln\left((1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}}\right) &= \ln\left(2 - \frac{1}{4}x^2 - \frac{5}{2^6}x^4 + \circ(x^4)\right) \\ &= \ln\left(2(1 - \frac{1}{8}x^2 - \frac{5}{2^7}x^4 + \circ(x^4))\right) \\ &= \ln(2) + \ln\left(1 - \frac{1}{8}x^2 - \frac{5}{2^7}x^4 + \circ(x^4)\right) \end{split}$$

$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + o(u^4)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}} = 2 - \frac{1}{4}x^2 - \frac{5}{2^6}x^4 + o(x^4)$$

$$\ln\left((1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}}\right) = \ln\left(2 - \frac{1}{4}x^2 - \frac{5}{2^6}x^4 + o(x^4)\right)$$

$$= \ln\left(2(1 - \frac{1}{8}x^2 - \frac{5}{2^7}x^4 + o(x^4))\right)$$

 $=\ln(2)+\ln\left(1-\frac{1}{8}x^2-\frac{5}{27}x^4+\circ(x^4)\right)$

$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + o(u^4)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^{2} + \frac{1}{16}x^{3} - \frac{5}{2^{7}}x^{4} + o(x^{4})$$

$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^{2} - \frac{1}{16}x^{3} - \frac{5}{2^{7}}x^{4} + o(x^{4})$$

$$(1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}} = 2 - \frac{1}{4}x^{2} - \frac{5}{2^{6}}x^{4} + o(x^{4})$$

$$\ln\left((1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}}\right) = \ln\left(2 - \frac{1}{4}x^{2} - \frac{5}{2^{6}}x^{4} + o(x^{4})\right)$$

$$= \ln\left(2(1 - \frac{1}{8}x^{2} - \frac{5}{2^{7}}x^{4} + o(x^{4}))\right)$$

$$= \ln(2) + \ln\left(1 - \frac{1}{8}x^{2} - \frac{5}{2^{7}}x^{4} + o(x^{4})\right)$$

$$= \ln(2) + \left(-\frac{1}{8}x^{2} - \frac{5}{2^{7}}x^{4}\right) - \frac{\left(-\frac{1}{8}x^{2} - \frac{5}{2^{7}}x^{4}\right)^{2}}{2} + \frac{\left(-\frac{1}{8}x^{2} - \frac{5}{2^{7}}x^{4}\right)^{3}}{3} + \frac{\left(-\frac{1}{8}x^{2} - \frac{5}{2^{7}}x^{4}\right)^{4}}{4} + o(x^{4})$$

$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + o(u^4)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^{2} + \frac{1}{16}x^{3} - \frac{5}{2^{7}}x^{4} + o(x^{4})$$

$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^{2} - \frac{1}{16}x^{3} - \frac{5}{2^{7}}x^{4} + o(x^{4})$$

$$(1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}} = 2 - \frac{1}{4}x^{2} - \frac{5}{2^{6}}x^{4} + o(x^{4})$$

$$\ln\left((1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}}\right) = \ln\left(2 - \frac{1}{4}x^{2} - \frac{5}{2^{6}}x^{4} + o(x^{4})\right)$$

$$= \ln\left(2(1 - \frac{1}{8}x^{2} - \frac{5}{2^{7}}x^{4} + o(x^{4}))\right)$$

$$= \ln(2) + \ln\left(1 - \frac{1}{8}x^{2} - \frac{5}{2^{7}}x^{4} + o(x^{4})\right)$$

$$= \ln(2) + \left(-\frac{1}{8}x^{2} - \frac{5}{2^{7}}x^{4}\right) - \frac{\left(-\frac{1}{8}x^{2} - \frac{5}{2^{7}}x^{4}\right)^{2}}{2} + \frac{\left(-\frac{1}{8}x^{2} - \frac{5}{2^{7}}x^{4}\right)^{3}}{3} + o(x^{4})$$

$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + o(u^4)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}} = 2 - \frac{1}{4}x^2 - \frac{5}{2^6}x^4 + o(x^4)$$

$$\ln\left((1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}}\right) = \ln\left(2 - \frac{1}{4}x^2 - \frac{5}{2^6}x^4 + o(x^4)\right)$$

$$= \ln\left(2\left(1 - \frac{1}{8}x^2 - \frac{5}{2^7}x^4 + o(x^4)\right)\right)$$

$$= \ln(2) + \ln\left(1 - \frac{1}{8}x^2 - \frac{5}{2^7}x^4 + o(x^4)\right)$$

$$= \ln(2) + \left(-\frac{1}{8}x^2 - \frac{5}{2^7}x^4\right) - \frac{\left(-\frac{1}{8}x^2 - \frac{5}{2^7}x^4\right)^2}{2} + o(x^4)$$

$$\begin{split} \ln(1+u) &= u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + \circ(u^4) \\ (1+x)^{\frac{1}{2}} &= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + \circ(x^4) \\ (1-x)^{\frac{1}{2}} &= 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + \circ(x^4) \\ (1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}} &= 2 - \frac{1}{4}x^2 - \frac{5}{2^6}x^4 + \circ(x^4) \\ \ln\left((1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}}\right) &= \ln\left(2 - \frac{1}{4}x^2 - \frac{5}{2^6}x^4 + \circ(x^4)\right) \\ &= \ln\left(2(1 - \frac{1}{8}x^2 - \frac{5}{2^7}x^4 + \circ(x^4)\right) \\ &= \ln(2) + \ln\left(1 - \frac{1}{8}x^2 - \frac{5}{2^7}x^4 - o(x^4)\right) \\ &= \ln(2) + (-\frac{1}{8}x^2 - \frac{5}{2^7}x^4) - \frac{(-\frac{1}{8}x^2)^2}{2} + \circ(x^4) \end{split}$$

$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + o(u^4)$$

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 - \frac{5}{2^7}x^4 + o(x^4)$$

$$(1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}} = 2 - \frac{1}{4}x^2 - \frac{5}{2^6}x^4 + o(x^4)$$

$$\ln\left((1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}}\right) = \ln\left(2 - \frac{1}{4}x^2 - \frac{5}{2^6}x^4 + o(x^4)\right)$$

$$= \ln\left(2(1 - \frac{1}{8}x^2 - \frac{5}{2^7}x^4 + o(x^4))\right)$$

$$= \ln(2) + \ln\left(1 - \frac{1}{8}x^2 - \frac{5}{2^7}x^4 + o(x^4)\right)$$

 $= ln(2) + (-\tfrac{1}{8}x^2 - \tfrac{5}{2^7}x^4) - \tfrac{(-\tfrac{1}{8}x^2)^2}{2} + \circ(x^4)$

 $= \ln(2) + \left(-\frac{1}{8}x^2 - \frac{5}{2^7}x^4\right) - \frac{1}{2^7}x^4 + o(x^4)$

 $\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{2} - \frac{u^4}{4} + o(u^4)$

$\ln\left(\sqrt{1+x}+\sqrt{1-x}\right)$ ordre 4 au voisinage de 0

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^{2} + \frac{1}{16}x^{3} - \frac{5}{2^{7}}x^{4} + o(x^{4})$$

$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^{2} - \frac{1}{16}x^{3} - \frac{5}{2^{7}}x^{4} + o(x^{4})$$

$$(1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}} = 2 - \frac{1}{4}x^{2} - \frac{5}{2^{6}}x^{4} + o(x^{4})$$

$$\ln\left((1+x)^{\frac{1}{2}} + (1-x)^{\frac{1}{2}}\right) = \ln\left(2 - \frac{1}{4}x^{2} - \frac{5}{2^{6}}x^{4} + o(x^{4})\right)$$

$$= \ln\left(2(1 - \frac{1}{8}x^{2} - \frac{5}{2^{7}}x^{4} + o(x^{4}))\right)$$

$$= \ln(2) + \ln\left(1 - \frac{1}{8}x^{2} - \frac{5}{2^{7}}x^{4} + o(x^{4})\right)$$

$$= \ln(2) + (-\frac{1}{8}x^{2} - \frac{5}{2^{7}}x^{4}) - \frac{(-\frac{1}{8}x^{2})^{2}}{2} + o(x^{4})$$

 $= \ln(2) - \frac{1}{8}x^2 - \frac{3}{26}x^4 + o(x^4)$

 $= \ln(2) + \left(-\frac{1}{8}x^2 - \frac{5}{2^7}x^4\right) - \frac{1}{2^7}x^4 + o(x^4)$

$\sqrt{1+x} \tan x$ ordre 3 au voisinage de 0

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + o(x^3)$$

$\sqrt{1+x}$ tan x ordre 3 au voisinage de 0

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + o(x^3)$$

$$\tan x = \frac{\sin x}{\cos x} = \left(x - \frac{x^3}{6} + o(x^3)\right) \frac{1}{1 - \frac{x^2}{2} + o(x^2)}$$

$\sqrt{1+x} \tan x$ ordre 3 au voisinage de 0

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + o(x^3)$$

$$\tan x = \frac{\sin x}{\cos x} = \left(x - \frac{x^3}{6} + o(x^3)\right) \frac{1}{1 - \frac{x^2}{2} + o(x^2)}$$

$$(1-x)^{-1} = 1 + x + x^2 + \cdots + x^n + o(x^n)$$

$\sqrt{1+x} \tan x$ ordre 3 au voisinage de 0

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + o(x^3)$$

$$\tan x = \frac{\sin x}{\cos x} = \left(x - \frac{x^3}{6} + o(x^3)\right) \frac{1}{1 - \frac{x^2}{2} + o(x^2)}$$

$$= \left(x - \frac{x^3}{6} + o(x^3)\right) \left(1 + \frac{x^2}{2} + o(x^2)\right)$$

$$(1-x)^{-1} = 1 + x + x^2 + \cdots + x^n + o(x^n)$$

$\sqrt{1+x}$ tan x ordre 3 au voisinage de 0

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + o(x^3)$$

$$\tan x = \frac{\sin x}{\cos x} = \left(x - \frac{x^3}{6} + o(x^3)\right) \frac{1}{1 - \frac{x^2}{2} + o(x^2)}$$

$$= \left(x - \frac{x^3}{6} + o(x^3)\right) \left(1 + \frac{x^2}{2} + o(x^2)\right)$$

$$= x + \frac{x^3}{2} - \frac{x^3}{6} + o(x^3)$$

$\sqrt{1+x}$ tan x ordre 3 au voisinage de 0

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + o(x^3)$$

$$\tan x = \frac{\sin x}{\cos x} = \left(x - \frac{x^3}{6} + o(x^3)\right) \frac{1}{1 - \frac{x^2}{2} + o(x^2)}$$

$$= \left(x - \frac{x^3}{6} + o(x^3)\right) \left(1 + \frac{x^2}{2} + o(x^2)\right)$$

$$= x + \frac{x^3}{2} - \frac{x^3}{6} + o(x^3) = x + \frac{x^3}{3} + o(x^3)$$

$\sqrt{1+x}$ tan x ordre 3 au voisinage de 0

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + o(x^3)$$

$$\tan x = \frac{\sin x}{\cos x} = \left(x - \frac{x^3}{6} + o(x^3)\right) \frac{1}{1 - \frac{x^2}{2} + o(x^2)}$$

$$= \left(x - \frac{x^3}{6} + o(x^3)\right) \left(1 + \frac{x^2}{2} + o(x^2)\right)$$

$$= x + \frac{x^3}{2} - \frac{x^3}{6} + o(x^3) = x + \frac{x^3}{3} + o(x^3)$$

$$(1+x)^{\frac{1}{2}}\tan x = \left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \circ(x^3)\right)\left(x + \frac{x^3}{3} + \circ(x^3)\right)$$

$\sqrt{1+x}$ tan x ordre 3 au voisinage de 0

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^{2} + \frac{1}{16}x^{3} + o(x^{3})$$

$$\tan x = \frac{\sin x}{\cos x} = \left(x - \frac{x^{3}}{6} + o(x^{3})\right) \frac{1}{1 - \frac{x^{2}}{2} + o(x^{2})}$$

$$= \left(x - \frac{x^{3}}{6} + o(x^{3})\right) \left(1 + \frac{x^{2}}{2} + o(x^{2})\right)$$

$$= x + \frac{x^{3}}{2} - \frac{x^{3}}{6} + o(x^{3}) = x + \frac{x^{3}}{3} + o(x^{3})$$

$$(1+x)^{\frac{1}{2}} \tan x = \left(1 + \frac{1}{2}x - \frac{1}{8}x^{2} + \frac{1}{16}x^{3} + o(x^{3})\right) \left(x + \frac{x^{3}}{3} + o(x^{3})\right)$$

$$= x + \frac{x^{3}}{3} + \frac{1}{2}x^{2} - \frac{1}{8}x^{3} + o(x^{3})$$

$\sqrt{1+x} \tan x$ ordre 3 au voisinage de 0

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + o(x^3)$$

$$\tan x = \frac{\sin x}{\cos x} = \left(x - \frac{x^3}{6} + o(x^3)\right) \frac{1}{1 - \frac{x^2}{2} + o(x^2)}$$

$$= \left(x - \frac{x^3}{6} + o(x^3)\right) \left(1 + \frac{x^2}{2} + o(x^2)\right)$$

$$= x + \frac{x^3}{2} - \frac{x^3}{6} + o(x^3) = x + \frac{x^3}{3} + o(x^3)$$

$$(1+x)^{\frac{1}{2}}\tan x = \left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + o(x^3)\right)\left(x + \frac{x^3}{3} + o(x^3)\right)$$
$$= x + \frac{x^3}{3} + \frac{1}{2}x^2 - \frac{1}{8}x^3 + o(x^3)$$
$$= x + \frac{1}{2}x^2 + \frac{5}{24}x^3 + o(x^3)$$

$$(1+x)^{\alpha} = (2+u)^{\alpha}$$

$$(1+x)^{\alpha}=(2+u)^{\alpha}$$

$$\left(1+v\right)^{\alpha}=1+\alpha v+\tfrac{\alpha(\alpha-1)}{2!}v^2+\cdots+\tfrac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}v^n+\circ(v^n)$$

Changement de variable : x = 1 + u u est au voisinage de 0.

$$(1+x)^{\alpha} = (2+u)^{\alpha} = 2^{\alpha} (1+\frac{u}{2})^{\alpha}$$

$$\left(1+v\right)^{\alpha}=1+\alpha v+\tfrac{\alpha(\alpha-1)}{2!}v^2+\cdots+\tfrac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}v^n+\circ(v^n)$$

Mathématiques et calcul 1

Changement de variable : x = 1 + u u est au voisinage de 0.

$$\begin{aligned} & (1+x)^{\alpha} = (2+u)^{\alpha} = 2^{\alpha} \left(1 + \frac{u}{2}\right)^{\alpha} \\ & \left(1 + \frac{u}{2}\right)^{\alpha} = 1 + \alpha \frac{u}{2} + \frac{\alpha(\alpha-1)}{2!} \left(\frac{u}{2}\right)^{2} + \dots + \frac{\alpha(\alpha-1) \cdots (\alpha-n+1)}{n!} \left(\frac{u}{2}\right)^{n} + \circ (u^{n}) \end{aligned}$$

$$\left(1+v\right)^{\alpha}=1+\alpha v+\frac{\alpha(\alpha-1)}{2!}v^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}v^n+\circ(v^n)$$

Mathématiques et calcul 1

$$\begin{aligned} & (1+x)^{\alpha} = (2+u)^{\alpha} = 2^{\alpha} \left(1 + \frac{u}{2}\right)^{\alpha} \\ & \left(1 + \frac{u}{2}\right)^{\alpha} = 1 + \alpha \frac{u}{2} + \frac{\alpha(\alpha-1)}{2!} \left(\frac{u}{2}\right)^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} \left(\frac{u}{2}\right)^{n} + \circ (u^{n}) \end{aligned}$$

$$u = x - 1$$

$$(1+x)^{\alpha} = (2+u)^{\alpha} = 2^{\alpha} \left(1 + \frac{u}{2}\right)^{\alpha}$$

$$\left(1 + \frac{u}{2}\right)^{\alpha} = 1 + \alpha \frac{u}{2} + \frac{\alpha(\alpha-1)}{2!} \left(\frac{u}{2}\right)^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} \left(\frac{u}{2}\right)^{n} + \circ (u^{n})$$

$$u = x - 1$$

$$(1+x)^{\alpha} = 2^{\alpha} \left(1 + \alpha \frac{x-1}{2} + \frac{\alpha(\alpha-1)}{2!} \left(\frac{x-1}{2} \right)^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} \left(\frac{x-1}{2} \right)^{n} + \circ (x-1)^{n} \right)$$

$$(1+x)^{\alpha} = (2+u)^{\alpha} = 2^{\alpha} \left(1 + \frac{u}{2}\right)^{\alpha} \left(1 + \frac{u}{2}\right)^{\alpha} = 1 + \alpha \frac{u}{2} + \frac{\alpha(\alpha-1)}{2!} \left(\frac{u}{2}\right)^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} \left(\frac{u}{2}\right)^{n} + o(u^{n})$$

$$u = x - 1$$

$$(1+x)^{\alpha} = 2^{\alpha} \left(1 + \alpha \frac{x-1}{2} + \frac{\alpha(\alpha-1)}{2!} \left(\frac{x-1}{2} \right)^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} \left(\frac{x-1}{2} \right)^{n} + \circ (x-1)^{n} \right)$$

$$= 2^{\alpha} \left(1 + \frac{\alpha}{2}(x-1) + \frac{\alpha(\alpha-1)}{4 \cdot 2!} (x-1)^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{2^{n} \cdot n!} (x-1)^{n} + \circ (x-1)^{n} \right)$$

$$\frac{\sqrt{x^2-1}}{x}$$
 ordre 8 au voisinage de $+\infty$

Mathématiques et calcul 1

$$\frac{\sqrt{x^2-1}}{x}$$
 ordre 8 au voisinage de $+\infty$

$$\frac{\sqrt{x^2-1}}{x}=u\sqrt{\frac{1}{u^2}-1}$$

$$\frac{\sqrt{x^2-1}}{x}$$
 ordre 8 au voisinage de $+\infty$

$$\frac{\sqrt{x^2 - 1}}{x} = u\sqrt{\frac{1}{u^2} - 1} = u\sqrt{\frac{1 - u^2}{u^2}}$$

$$\frac{\sqrt{x^2-1}}{x}$$
 ordre 8 au voisinage de $+\infty$

$$\frac{\sqrt{x^2 - 1}}{x} = u\sqrt{\frac{1}{u^2} - 1} = u\sqrt{\frac{1 - u^2}{u^2}} = \sqrt{1 - u^2}$$

$$\frac{\sqrt{x^2-1}}{x}$$
 ordre 8 a

$\frac{\sqrt{x^2-1}}{2}$ ordre 8 au voisinage de $+\infty$

Changement de variable : $u = \frac{1}{v}$ u > 0 est au voisinage de 0.

$$\frac{\sqrt{x^2 - 1}}{x} = u\sqrt{\frac{1}{u^2} - 1} = u\sqrt{\frac{1 - u^2}{u^2}} = \sqrt{1 - u^2}$$

$$(1-v)^{\frac{1}{2}} = 1 - \frac{1}{2}v - \frac{1}{8}v^2 - \frac{1}{16}v^3 - \frac{5}{2^7}v^4 + o(v^4)$$

$$\frac{\sqrt{x^2-1}}{x}$$

$\frac{\sqrt{x^2-1}}{2}$ ordre 8 au voisinage de $+\infty$

Changement de variable : $u = \frac{1}{v}$ u > 0 est au voisinage de 0.

$$\frac{\sqrt{x^2 - 1}}{x} = u\sqrt{\frac{1}{u^2} - 1} = u\sqrt{\frac{1 - u^2}{u^2}} = \sqrt{1 - u^2}$$
$$(1 - u^2)^{\frac{1}{2}} = 1 - \frac{1}{2}u^2 - \frac{1}{8}u^4 - \frac{1}{16}u^6 - \frac{5}{2^7}u^8 + o(u^8)$$

$$(1-v)^{\frac{1}{2}} = 1 - \frac{1}{2}v - \frac{1}{8}v^2 - \frac{1}{16}v^3 - \frac{5}{2^7}v^4 + o(v^4)$$

$$\frac{\sqrt{x^2-1}}{x}$$

$\frac{\sqrt{x^2-1}}{2}$ ordre 8 au voisinage de $+\infty$

Changement de variable : $u = \frac{1}{v}$ u > 0 est au voisinage de 0.

$$\frac{\sqrt{x^2-1}}{x} = u\sqrt{\frac{1}{u^2}-1} = u\sqrt{\frac{1-u^2}{u^2}} = \sqrt{1-u^2}$$
$$(1-u^2)^{\frac{1}{2}} = 1 - \frac{1}{2}u^2 - \frac{1}{8}u^4 - \frac{1}{16}u^6 - \frac{5}{2^7}u^8 + o(u^8)$$

$$\frac{\sqrt{x^2 - 1}}{x} = 1 - \frac{1}{2x^2} - \frac{1}{8x^4} - \frac{1}{16x^6} - \frac{5}{2^7 x^8} + o\left(\frac{1}{x^8}\right)$$

