Numerical Optimization

Lecture 3: Simplex Method

王浩

信息科学与技术学院

Email: wanghao1@shanghaitech.edu.cn

线性规划的历史

- 渊源要追溯到Euler、Leibniz、Lagrange等
- 二战期间, G. Dantzig, Von Neumann和 L. Kantorovich 在1940's创建了线性规划
- 1947年, George Bernard Dantzig于<u>发明了</u>单纯形法
- 以后接着说……

数值最优化 ShanghaiTech-SIST-CS

单纯形法的历史

1914-2005 University of Maryland (BS) University of Michigan (MS)

University of California, Berkeley (PhD)

mathematical adviser to the military (1946-1952),

a research mathematician at the RAND Corp. (1952-1960) chair and professor of the Operations Research Center at UC-Berkeley

(1960-1966).

The recipients of the Dantzig Prize are:

- 1982: Michael J.D. Powell, R. Tyrell Rockafellar
- 1985: Ellis Johnson, Manfred Padberg
- 1988: Michael J. Todd
- 1991: Martin Grotschel, Arkady S. Nemirovskii
- 1994: Claude Lemarechal, Roger J.B. Wets
- 1997: Roger Fletcher, Stephen M. Robinson
- 2000: Yurii Nesterov
- 2003: Jong-Shi Pang, Alexander Schrijver
- 2006: Eva Tardos
- 2009: Gérard Cornuéjols
- 2012: Jorge Nocedal, Laurence Wolsey
- 2015: Dimitri P. Bertsekas
- 2018: Andrzej Piotr Ruszczyński, Alexander Shapiro

George Bernard Dantzig

本节内容

- 规范型、既约费用系数、既约线性规划 基本概念
- 最优性判别、无界判别、BFS的改进-原理(重点)
- 单纯形法的表格实现 方法
- 单纯形法的有限步收敛性 难点
 - ◆ 非退化的线性规划,单纯形法有限步收敛
 - ◆ 退化的线性规划
 - ✓ 退化BFS与退化转轴
 - ✔ 单纯形法循环的例子
 - ✓ 避免循环的Bland法则

数值最优化 ShanghaiTech-SIST-CS

Simplex Method(单纯形法)

- 适用形式:标准形(BFS等价于极点)
- 理论基础:线性规划的基本定理!
- 基本思想:从约束集的某个极点/BFS开始,依次移动到相邻极点/BFS,直到找出最优解,或判断问题无界.
- 迭代规则:如何从一个极点/BFS迭代到相邻的(更好的)极点/BFS? (转轴)
- 判断准则:何时最优?何时无界? (即约费用)
- 初始化:如何找到一个BFS? (启动)
- · 退化:如何避免死循环? (Bland法则)

数值最优化 ShanghaiTech-SIST-CS

标准形 $\min c^T x$ s.t. $Ax = b, x \ge 0$

$$m{B} = egin{bmatrix} | & | & | & | \\ a_{B(1)} & a_{B(2)} & \dots & a_{B(m)} \\ | & | & | \end{bmatrix}, \quad m{x} = egin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix}$$
 \mathcal{B} : set of basis \mathcal{N} : set of nonbasic

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & a_{m4} \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ \vdots \\ b_m \end{bmatrix}$$

 \boldsymbol{B}

线性规划

规范形(Canonical form) $x_B + B^{-1}Nx_N = B^{-1}b, x \ge 0$

这代表了什么?

不妨设 $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_m, \mathbf{a}_{m+1}, \dots, \mathbf{a}_j, \dots, \mathbf{a}_n]$ 和 $\mathbf{B} = [\mathbf{a}_1, \dots, \mathbf{a}_m]$,则有第j列的系数向量 $\mathbf{y}_j = [y_{1j}, \dots, y_{mj}]^T$ 为

$$\mathbf{y}_j = \mathbf{B}^{-1} \mathbf{a}_j \implies \mathbf{a}_j = y_{1j} \mathbf{a}_1 + y_{2j} \mathbf{a}_2 + \ldots + y_{mj} \mathbf{a}_m$$

第j列的系数是用当前基表示 a_i 时的系数!

一般的,
$$\mathbf{B} = [\mathbf{a}_i]_{i \in \mathcal{B}} = [\mathbf{a}_{B(1)}, \dots, \mathbf{a}_{B(m)}]$$
,则有

$$\mathbf{a}_j = \sum_{i \in \mathcal{B}} y_{ij} a_i = y_1 \mathbf{a}_{B(1)j} + y_2 \mathbf{a}_{B(2)j} + \dots + y_m \mathbf{a}_{B(m)j}$$

将 Ax = b 的任一解 x 用非基变量表示为

$$x_1 = \bar{b}_1 - \sum_{j=m+1}^n y_{1j}x_j$$
 $x_{B(1)} = \bar{b}_1 - \sum_{j\in\mathcal{N}} y_{1j}x_j$ $x_2 = \bar{b}_2 - \sum_{j=m+1}^n y_{2j}x_j$ \vdots $x_{B(2)} = \bar{b}_2 - \sum_{j\in\mathcal{N}} y_{2j}x_j$ \vdots $x_{B(m)} = \bar{b}_m - \sum_{j\in\mathcal{N}} y_{mj}x_j$ $f = c_1x_1 + c_2x_2 + \ldots + c_nx_n = f_0 + \sum_{j=m+1}^n (c_j - z_j)x_j$ $f_0 = \bar{b}_1c_1 + \ldots + \bar{b}_mc_m$, $z_j = y_{1j}c_1 + \ldots + y_{mj}c_m$ Reduced C

- ❖ 既约费用系数的经济解释!(合成费用、相对费用)
- What if you have all reduced costs being nonnegative?
- ❖ What is the values of r_j , $j \in \mathcal{B}$?

Reduced Cost

 $r_j=c_j\!-\!z_j$

Reduced Linear Programming(既约线性规划)

minimize
$$r_{m+1}x_{m+1} + ... + r_nx_n + f_0$$

subject to $(x_1 =) \ \bar{b}_1 - \sum_{j=m+1}^n y_{1j}x_j \ge 0$

原问题相对basis B的等价表述

$$(x_m =) \bar{b}_m - \sum_{j=m+1}^n y_{mj} x_j \ge 0$$

• 定理(optimality criterion最优性判别)

在某基本可行解处,如果对所有 \mathbf{j} 有 $\mathbf{r}_j = c_j - z_j \ge 0$,则这个基本可行解是最优的。

• 如果没有达到最优,该怎么办?

严格增大,则目标严格下降

$$r_{m+1}0 + \dots + r_{q-1}0 + r_q x_q + r_{q+1}0 + \dots + r_n0 + f_0$$

非退化,则这些都是正数

subject to

$$(x_{1} =) | \bar{b}_{1} | - y_{1q} x_{q} \ge 0$$

$$\vdots$$

$$(x_{m} =) | \bar{b}_{m} - y_{mq} x_{q} \ge 0$$

 x_q 可以严格增大

定理(BFS的改进)

给定目标值为 f_0 的<u>非退化基本可行解</u>,且假设存在q使得 $r_q < 0$,则

- (i) 用 a_q 替换基中某列得到了新的BFS,则新BFS处的目标值比当前目标值严格小. (why?)
- (ii) 否则,即任何替换都产生不了新的BFS ($y_q \le 0$),问题无界. (why?)

数值最优化 ShanghaiTech-SIST-CS

当前选取基为:
$$A = [B \ N], x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}, c = \begin{bmatrix} c_B \\ c_N \end{bmatrix},$$

在选定的基上把 x_B 用 x_N 来表示: $x_B = B^{-1}b - B^{-1}Nx_N$

把 x_N 设置为0,则得基本解(假设其可行)为: $x^{(0)} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$

在
$$x^{(0)}$$
的目标函数值为: $f_0 = c^T x^{(0)} = [c_B^T, c_N^T] \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix} = c_B^T B^{-1}b$

现在换一个不同的可行解: $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}$

$$f = c^T x = \begin{bmatrix} c_B^T, c_N^T \end{bmatrix} \begin{vmatrix} x_B \\ x_N \end{vmatrix} = c_B^T x_B + c_N^T x_N$$

带入,目标函数变为:

$$= c_B^T (B^{-1}b - B^{-1}Nx_N) + c_N x_N$$

$$= c_B^T B^{-1}b + (c_N - c_B^T B^{-1}N)x_N$$

目标函数变为:
$$f = f_0 + \sum_{i \in \mathcal{N}} (c_j - z_j) x_j = f_0 + \sum_{i \in \mathcal{N}} r_j x_j$$

 $i\in\mathcal{N}$ $i\in\mathcal{N}$ 如果换为新的基本可行解,则选某 x_i 从0变为非0

$$= \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{a}_q x_q = \bar{\mathbf{b}} - \mathbf{y}_q x_q$$

当增加 x_q ,f下降,但是持续增加 x_q ,还能保证 $\mathbf{x}_B \geq 0$?

如果 $\mathbf{y}_q \le 0$,则令 $x_q \to +\infty$,问题无界 $f \to -\infty$

如果存在 $p \in \{1,...,m\}$ 有 $y_{pq} > 0$,则 x_q 不可能无限制增大

一直增大 x_a , 使得某 x_i , $i \in \mathcal{B}$ 变成0 (即, 出基)

$$\mathbf{x_B} = \bar{\mathbf{b}} - \mathbf{y}_q x_q = \begin{bmatrix} \bar{b}_1 \\ \bar{b}_2 \\ \vdots \\ \bar{b}_m \end{bmatrix} - \begin{bmatrix} y_{1q} \\ y_{2q} \\ \vdots \\ y_{mq} \end{bmatrix} x_q = \bar{\mathbf{b}} - \mathbf{y}_q x_q = \begin{bmatrix} \bar{b}_1 - x_q y_{1q} \\ \bar{b}_2 - x_q y_{2q} \\ \vdots \\ \bar{b}_m - x_q y_{mq} \end{bmatrix} \ge 0$$

所以
$$x_q$$
最大可以是 $\max ? \min ? \{ \frac{\bar{b}_i}{y_{iq}} \mid y_{iq} > 0, i = 1,...,m \} = \frac{\bar{b}_p}{y_{pq}}$

Pivot(转轴): x_q 进基后导致 $x_{B(p)}$ 出基,得到新的基本可行解

从一个基本可行解,得到了一个临近的基本可行解

并且带来了目标函数的(严格)下降

数值最优化 ShanghaiTech-SIST-CS

何时终止算法?

以(p,q)元转轴后,新规范形的系数

Pivot, 意味着以此消元

对
$$j=1,...,n$$
,新系数: $y'_{ij}=\begin{cases} y_{ij}-rac{y_{pj}}{y_{pq}}y_{iq} & i
eq p \ rac{y_{pj}}{y_{pq}} & i = p \end{cases}$

$$\mathscr{B} \to \widehat{\mathscr{B}}, \quad \mathscr{N} \to \widehat{\mathscr{N}}$$

$$r'_{j} = c_{j} - z'_{j}, \quad z'_{j} = \sum_{i=1}^{m} y'_{ij} c_{\hat{B}(i)}$$

Reduced Cost的更新

[1] (3.1.16)

• 以
$$(p,q)$$
元转轴后,新reduced cost: $r'_j = r_j - \frac{y_{pj}}{v_{pq}} r_q$

• 特别的:

$$r_{q}' = r_{q} - \frac{y_{pq}}{y_{pq}} r_{q} = 0, \quad r_{p}' = r_{p} - \frac{y_{pp}}{y_{pq}} r_{q} = 0 - \frac{1}{y_{pq}} r_{q} > 0$$

数值最优化 \$hanghaiTech-SIST-CS ₁₈

转轴后,还是一组基吗?(算法是良好定义的吗?)

- 转轴前的基是: $\mathbf{B} = [\mathbf{a}_{B(1)}, \mathbf{a}_{B(2)}, \dots, \mathbf{a}_{B(p)}, \dots, \mathbf{a}_{B(m)}]$ 这是一组线性无关的向量
- 转轴后的基是: $\widehat{\mathbf{B}} = [\mathbf{a}_{B(1)}, \mathbf{a}_{B(2)}, \dots, \mathbf{a}_{q}, \dots, \mathbf{a}_{B(m)}]$ 这还是一组线性无关的向量吗?

$$\mathbf{y}_q = \mathbf{B}^{-1} \mathbf{a}_q \implies \mathbf{a}_q = \mathbf{B} \mathbf{y}_q = \sum_{i=1}^m y_{iq} \mathbf{a}_{B(i)}$$

• 转轴后是:

$$\widehat{\mathbf{B}} = [\mathbf{a}_{B(1)}, \mathbf{a}_{B(2)}, \dots, \sum_{i=1}^{m} y_{iq} \mathbf{a}_{B(i)}, \dots, \mathbf{a}_{B(m)}]$$

故而还是线性无关

Pivot • 规范型 ⇒ 规范型

数值最优化 ShanghaiTech-SIST-CS

二、Simplex Method (单纯形法)

Simplex Method in Tableau Format

单纯形表(tableau): BFS对应规范形的表格+

既约费用系数和BFS目标值的相反数

$\overline{x_1}$	• • •	$x_{m p}$	• • •	x_{m}	x_{m+1}	x_{m+2}	• • •	$x_{m{q}}$	• • •	$x_{m{n}}$	$B^{-1}b$
1	• • •	0	• • •	0	$y_{1,m+1}$	$y_{1,m+2}$	• • •	y_{1q}	• • •	y_{1n}	$ar{ar{b}}_1$
	٠				:	:		÷		÷	•
0	• • •	1	• • •	0	$y_{p,m+1}$	$y_{p,m+2}$	• • •	y_{pq}	• • •	y_{pn}	$ar{b}_p$
			٠		:	:		:		:	•
0	• • •	0	• • •	1	$y_{m,m+1}$	$y_{m,m+2}$	• • •	y_{mq}	• • •	y_{mn}	$ar{b}_m$
$r^{ m T}$ 0	• • •	0	• • •	0	r_{m+1}	r_{m+2}	• • •	$r_{m{q}}$	• • •	$r_{m{n}}$	- f

单纯形表可以提供计算需要的所有信息!

◆ 有的教材在底端采用判别数/检验数(Optimality Test), 其为即约费用的相反数。

数值最优化 ShanghaiTech-SIST-CS 21

如何得到第一张单纯形表

• 初始表格: **BFS**对应规范形的表格 + $(c^T,0)$

	x_1	• • •	x_p	• • •	x_m	x_{m+1}	x_{m+2}	• • •	x_q	• • •	x_n	$B^{-1}b$
	1	• • •	0	• • •	0	$y_{1,m+1}$	$y_{1,m+2}$	• • •	y_{1q}	• • •	y_{1n}	$\overline{ar{b}_1}$
		٠.				÷	÷		÷		÷	:
	0	• • •	1	• • •	0	$y_{p,m+1}$	$y_{p,m+2}$	• • •	y_{pq}	• • •	y_{pn}	$ar{b}_p$
				٠		÷	÷		÷		÷	:
	0		0		1	$y_{m,m+1}$	$y_{m,m+2}$		y_{mq}		y_{mn}	$ar{b}_m$
$c^{ m T}$							c_{m+2}					0

• 用转轴运算(初等行变换)将最后一行与基变量对应的元素化为零,即得第一张单纯形表!(Why?)

数值最优化 ShanghaiTech-SIST-CS

例1. maximize
$$3x_1+x_2+3x_3$$
 subject to $2x_1+x_2+x_3\leq 2,$ 化标准形 $x_1+2x_2+3x_3\leq 5,$ $2x_1+2x_2+x_3\leq 6,$ $x_1>0, x_2>0, x_3>0$

得标准形的初始表格/第一张单纯形表

	$\mathbf{a_1}$	${f a_2}$	$\mathbf{a_3}$	$\mathbf{a_4}$	${f a_5}$	$\mathbf{a_6}$	b
	2	1	1	1	0	0	2
	$\overline{f 1}$	2	$\bf 3$	0	1	0	5
•	2	2	<u>1</u>	0	0	1	6
转轴 cT/rT (-	- 3	-1	(-3)	0	0	0	0

	x_1	x_2	x_3	x_4	x_5	x_6		
	2	1	1	1	0	0	2	0
	-3	0	1	- 2	1	0	1	U
_	-2	0	-1	- 2	0	1	2	\
转轴	-1	0	-2	1	0	0	2	-2
## \	x_1	x_2	x_3	x_4	x_5	x_6		\downarrow
	5	1	0	3	-1	0	1	-4
	-3	0	1	- 2	1	0	1	↓ -27/5
转轴	- 5	0	0	-4	1	1	3	_,,
数值最优化	-7	0	0 线性	一 3 ^{规划}	2	O Shan	$m{4}$ ghaiTech-S	SIST-CS 24

	x_6	x_5	$\boldsymbol{x_4}$	x_3	$\boldsymbol{x_2}$	x_1
1/5	0	-1/5	3/5	0	1/5	1
8/5	0	2/5	-1/5	1	3/5	0
4	1	0	-1	0	1	0
27/5	0	3/5	6/5	0	7/5	0

最优解:

$$x_1 = \frac{1}{5}, x_3 = \frac{8}{5}, x_6 = 4, x_2 = x_4 = x_5 = 0$$

最优值:
$$-\frac{27}{5}$$
 原问题的极大值: $\frac{27}{5}$

单纯形法的步骤

步0 形成与初始BFS对应的初始表格. 通过行变换求出第一张单纯形表.

步1 若对每个j都有 $r_j \geq 0$,停;当前BFS是最优的.

步2 选取q满足 $r_q = \min\{r_j \mid r_j < 0, j = 1,...,n\}$

步3 若 $y_q = (y_{1q}, y_{2q}, \dots, y_{mq})^T \le 0$,停,问题无界; 否则,选 p 满足

$$\frac{\bar{b}_p}{y_{pq}} = \min\{\frac{\bar{b}_i}{y_{iq}} \mid y_{iq} > 0, i = 1,...,m\}$$

步4 以 y_{pq} 为转轴元进行转轴,更新单纯形表,返回步1.

转轴规则:

进基变量:最小既约费用系数规则;出基变量:最小指标规则!

数值最优化 ShanghaiTech-SIST-CS 26

三、Convergence and Degeneracy (收敛性、退化)

单纯形法的收敛性

• 非退化的线性规划问题

称任意一个基本可行解都非退化的线性规划问题是非 退化的.

• 收敛性定理

对于非退化的线性规划问题,利用单纯形法,从任一BFS出发,可在有限步内得到最优解或判断问题无界(why?).

• 退化情况呢?

退化的基本可行解→退化的线性规划问题(几何解释)

对于标准形而言, 当BFS仅对应一个基时, 是非退化的;

当BFS对应多个基时,是退化的

maximize
$$x_1+2x_2+3x_3$$
 subject to $x_1+2x_3\leq 3$ $x_2+2x_3\leq 2$ $x_1,\ x_2,\ x_3\geq 0.$

maximize
$$x_1+2x_2+3x_3$$
 subject to $x_1+2x_3\leq 2$ $x_2+2x_3\leq 2$ $x_1,\ x_2,\ x_3\geq 0.$

对于三维问题(非标准形,如图),若极点是三个平面的交点,是非退化的;否则,是退化的。 数值最优化 ShanghaiTech-SIST-CS 29

退化的基本可行解→退化转轴→循环

基本可行解是退化的当且仅当单纯形表最后一列有一个或者多个零!

退化转轴指转轴后目标函数的值没有发生变化!

数值最优化 ShanghaiTech-SIST-CS

退化(degenerate) →循环(cycling)

退化问题单纯形法可能出现循环(从某张单纯形表开始,若干次转轴 迭代后又返回到该单纯形表的一串转轴)

• 循环的例子 E. M. L. Beale 的例子([1]例3.3.1) $-\frac{3}{4}x_4 + 20x_5 - \frac{1}{2}x_6 + 6x_7$ subject to $x_1 + \frac{1}{4}x_4 - 8x_5 - x_6 + 9x_7 = 0$ $x_2 + \frac{1}{2}x_4 - 12x_5 - \frac{1}{2}x_6 + 3x_7 = 0$ $x_3 + x_6 = 1$ $x_1 \geq 0, \cdots, x_7 \geq 0$

• 转轴规则(进基出基变量的选取规则)

进基变量:最小既约费用系数(平局时采用最小指标)规则

出基变量:最小正比率(平局时采用最小指标)规则

数值最优化 ShanghaiTech-SIST-CS

ShanghaiTech-SIST-CS

第七张单纯形表 $B = (a_1, a_2, a_3)$, 又回来了! 循环!

注:循环时,转轴序列中所有BFS都是退化的,是同一个BFS,但每张表对应这个BFS的互不相同的基!

数值最优化 ShanghaiTech-SIST-CS

避免循环的方法

- 实际中经常碰到退化问题,但很少出现循环
- 避免出现循环的措施: 摄动法、字典序法、Bland法则
- 摄动法(Charnes, 1954)、字典序法(Dantzig, Orden, Wolfe, 1954)
- Bland法则(Bland, 1977)—最小指标法则
 - ◆进基后使目标值减小的变量中,选指标最小者进基(负 既约费用系数中指标最小者规则)
 - ◆出基后使新的基本解保持可行的变量中,选<mark>指标最小者</mark> 出基(最小正比率规则,平局时取最小指标者)
- New Finite Pivoting Rules for the Simplex Method. *Mathematics of Operations Research.* Vol. 2, No. 2 (May, 1977), pp. 103-107 (5 pages)

数值最优化 ShanghaiTech-SIST-CS

利用Bland法则作为转轴规则求解Beale的例子! 前四张单纯形表相同! 但在第四张单纯形表:

最后一张单纯形表/最优单纯形表

$$x^* = (3/4, 0, 0, 1, 0, 1, 0)^T$$
, $z^* = -5/4$

ShanghaiTech-SIST-CS