Lecture 1. Introduction. Probability Theory

COMP90051 Machine Learning

Sem2 2018 Lecturer: Ben Rubinstein

This lecture

- Machine learning: why and what?
- About COMP90051
- Review: Probability theory

Why Learn Learning?

Motivation

 "We are drowning in information, but we are starved for knowledge"
 John Naisbitt, Megatrends

- Data = raw information
- Knowledge = patterns or models behind the data

Solution: Machine learning

- Hypothesis: pre-existing data repositories contain a lot of potentially valuable knowledge
- Mission of learning: find it
- Definition of learning:

(semi-)automatic extraction of **valid**, **novel**, **useful** and **comprehensible** knowledge – in the form of rules, regularities, patterns, constraints or models – from arbitrary sets of data

Applications of ML are deep and prevalent

- Online ad selection and placement
- Risk management in finance, insurance, security
- High-frequency trading
- Medical diagnosis
- Mining and natural resources
- Malware analysis
- Drug discovery
- Search engines

• • •

Draws on many disciplines

- Artificial Intelligence
- Statistics
- Continuous optimisation
- Databases
- Information Retrieval
- Communications/information theory
- Signal Processing
- Computer Science Theory
- Philosophy
- Psychology and neurobiology

• • •

Many companies across all industries hire ML experts:

Data Scientist **Analytics Expert Business Analyst** Statistician Software Engineer Researcher

Job\$

Australia

About this Subject

(refer also to LMS)

Vital statistics

Lecturer & Ben Rubinstein (DMD7, brubinstein@unimelb.edu.au)

Coordinator Associate Prof, Computing & Information Systems

Statistical Machine Learning, ML + Privacy/Security/Databases

Tutors: Neil Marchant (Head Tutor; nmarchant@unimelb.edu.au)

Dr Yi Han (yi.han@unimelb.edu.au)

Dr Ash Rahimi (rahimi.a@unimelb.edu.au)

Punit Rathore (punit Rathore (punit.rathore@unimelb.edu.au)

Kat Vylomova (<u>ekaterina.vylomova@unimelb.edu.au</u>)

Contact: Weekly you should attend: 2x Lectures & 1x Workshop

Office Hours Wednesdays 2:15-3:15pm 7.02 DMD Building

About me (Ben)

- PhD 2010 Berkeley, USA
- 4 years in industry research
 - * Silicon Valley: Google Research, Yahoo! Research, Intel Labs, Microsoft Research
 - * Australia: IBM Research
 - Patented & Published, Developed & Tested, Recruited
 - * Impacted: Xbox, Bing (MS), Firefox (Mozilla), Kaggle, ABS ...
- Interests: Machine learning theory; adversarial ML; differential privacy; info integration in DBs

Subject content

The subject will cover topics from

Foundations of statistical learning, linear models, non-linear bases, kernel approaches, neural networks, Bayesian learning, probabilistic graphical models (Bayes Nets, Markov Random Fields), cluster analysis, dimensionality reduction, regularisation and model selection

- Theory in lectures; hands-on experience with range of toolkits in workshop pracs and projects
- Vs COMP90049: much more depth, rigor, maths

Advanced ML: Expected Background

- Why a challenge: Diverse math methods + CS + coding
- ML: COMP90049; refresher in workshop this week
- Alg & complexity: big-oh, termination; basic data structures & algorithms; solid coding ideally experience in Python
- Maths: Refreshers but really need solid understanding in advance "Matrix A is symmetric & positive definite, hence its eigenvalues..."
- Probability theory: probability calculus; discrete/continuous distributions; multivariate; exponential families; Bayes rule
- Linear algebra: vector inner products & norms; orthonormal bases; matrix operations, inverses, eigenvectors/values
- Calculus & optimisation: partial derivatives; gradient descent; convexity; Lagrange multipliers

Subject objectives

- Develop an appreciation for the role of statistical machine learning, both in terms of foundations and applications
- Gain an understanding of a representative selection of ML techniques
- Be able to design, implement and evaluate ML systems
- Become a discerning ML consumer

Textbooks

- Primarily references to
 - Bishop (2007) Pattern Recognition and Machine Learning

- * Murphy (2012) Machine Learning: A Probabilistic Perspective [read free ebook using 'ebrary' at http://bit.ly/29SHAQS]
- Hastie, Tibshirani, Friedman (2001) The Elements of Statistical Learning: Data Mining, Inference and Prediction [free at

http://www-stat.stanford.edu/~tibs/ElemStatLearn

Textbooks

- References for PGM component
 - * Koller, Friedman (2009) *Probabilistic Graphical Models: Principles and Techniques*

Assessment

- Assessment components
 - Two projects one released early (w4-7), one late (w9-11);
 will have ~3 weeks to complete
 - Each (25%)
 - At least one will be group projects (possibly both)
 - Final Exam (50%)

50% Hurdle applies to both exam and ongoing assessment

Machine Learning Basics

Terminology

- Input to a machine learning system can consist of
 - Instance: measurements about individual entities/objects a loan application
 - * Attribute (aka Feature, explanatory var.): component of the instances the applicant's salary, number of dependents, etc.
 - * Label (aka Response, dependent var.): an outcome that is categorical, numeric, etc. forfeit vs. paid off
 - * Examples: instance coupled with label <(100k, 3), "forfeit">
 - * Models: discovered relationship between attributes and/or label

Supervised vs unsupervised learning

	Data	Model used for
Supervised learning	Labelled	Predict labels on new instances
Unsupervised learning	Unlabelled	Cluster related instances; Project to fewer dimensions; Understand attribute relationships

Architecture of a supervised learner

Evaluation (supervised learners)

- How you measure quality depends on your problem!
- Typical process
 - Pick an evaluation metric comparing label vs prediction
 - Procure an independent, labelled test set
 - * "Average" the evaluation metric over the test set
- Example evaluation metrics
 - Accuracy, Contingency table, Precision-Recall, ROC curves
- When data poor, cross-validate

Probability Theory

(This should be a) brief refresher

Data is noisy (almost always)

• Example:

- given mark for Knowledge Technologies (KT)
- predict mark for Machine Learning (ML)

^{*} synthetic data:)

Types of models

$$\hat{y} = f(x)$$

KT mark was 95, ML mark is predicted to be 95

P(y|x)

KT mark was 95, ML mark is likely to be in (92, 97)

P(x,y)

probability of having (KT = x, ML = y)

Basics of probability theory

- A probability space:
 - * Set Ω of possible outcomes
 - Set F of events (subsets of outcomes)
 - * Probability measure P: $F \rightarrow \mathbf{R}$

- Example: a die roll
 - * {1, 2, 3, 4, 5, 6}
 - * { φ, {1}, ..., {6}, {1,2}, ..., {5,6}, ..., {1,2,3,4,5,6} }
 - * P(φ)=0, P({1})=1/6, P({1,2})=1/3, ...

Axioms of probability

1. $P(f) \ge 0$ for every event f in F

2. $P(\bigcup_f f) = \sum_f P(f)$ for all collections* of pairwise disjoint events

3. $P(\Omega) = 1$

^{*} We won't delve further into advanced probability theory, which starts with measure theory. But to be precise, additivity is over collections of countably-many events.

Random variables (r.v.'s)

- A random variable X is a numeric function of outcome $X(\omega) \in \mathbf{R}$
- P(X ∈ A) denotes the probability of the outcome being such that X falls in the range A

- Example: X winnings on \$5 bet on even die roll
 - * X maps 1,3,5 to -5 X maps 2,4,6 to 5
 - * $P(X=5) = P(X=-5) = \frac{1}{2}$

Discrete vs. continuous distributions

- Discrete distributions
 - Govern r.v. taking discrete values
 - Described by probability mass function p(x) which is P(X=x)
 - * $P(X \le x) = \sum_{a=-\infty}^{x} p(a)$
 - * Examples: Bernoulli, Binomial, Multinomial, Poisson

- Continuous distributions
 - * Govern real-valued r.v.
 - Cannot talk about PMF but rather probability density function p(x)
 - * $P(X \le x) = \int_{-\infty}^{x} p(a)da$
 - * Examples: Uniform, Normal, Laplace, Gamma, Beta, Dirichlet

Expectation

- Expectation E[X] is the r.v. X's "average" value
 - * Discrete: $E[X] = \sum_{x} x P(X = x)$
 - * Continuous: $E[X] = \int_x x p(x) dx$
- Properties
 - * Linear: E[aX + b] = aE[X] + bE[X + Y] = E[X] + E[Y]
 - * Monotone: $X \ge Y \implies E[X] \ge E[Y]$
- Variance: $Var(X) = E[(X E[X])^2]$

Independence and conditioning

- X, Y are independent if
 - * $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$
 - * Similarly for densities: $p_{X,Y}(x,y) = p_X(x)p_Y(y)$
 - Intuitively: knowing value of Y reveals nothing about X
 - * **Algebraically**: the joint on *X,Y* factorises!

Conditional probability

*
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- * Similarly for densities $p(y|x) = \frac{p(x,y)}{p(x)}$
- * Intuitively: probability event A will occur given we know event B has occurred
- * X,Y independent equiv to P(Y = y | X = x) = P(Y = y)

Inverting conditioning: Bayes' Theorem

In terms of events A, B

*
$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

*
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Bayes

- Simple rule that lets us swap conditioning order
- Bayesian statistical inference makes heavy use
 - Marginals: probabilities of individual variables
 - Marginalisation: summing away all but r.v.'s of interest

Summary

- Why study machine learning?
- COMP90051
- Machine learning basics
- Review of probability theory

Workshops week #1: COMP90049, Jupyter setup

Next time: Statistical schools of thought - how many ML algorithms come to be