3.2

VARIANTS OF TURING MACHINES

Alternative definitions of Turing machines abound, including versions with multiple tapes or with nondeterminism. They are called *variants* of the Turing machine model. The original model and its reasonable variants all have the same power—they recognize the same class of languages. In this section, we describe some of these variants and the proofs of equivalence in power. We call this invariance to certain changes in the definition *robustness*. Both finite automata and pushdown automata are somewhat robust models, but Turing machines have an astonishing degree of robustness.

To illustrate the robustness of the Turing machine model, let's vary the type of transition function permitted. In our definition, the transition function forces the head to move to the left or right after each step; the head may not simply stay put. Suppose that we had allowed the Turing machine the ability to stay put. The transition function would then have the form $\delta \colon Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R, S\}$. Might this feature allow Turing machines to recognize additional languages, thus adding to the power of the model? Of course not, because we can convert any TM with the "stay put" feature to one that does not have it. We do so by replacing each stay put transition with two transitions: one that moves to the right and the second back to the left.

This small example contains the key to showing the equivalence of TM variants. To show that two models are equivalent, we simply need to show that one can simulate the other.

MULTITAPE TURING MACHINES

A *multitape Turing machine* is like an ordinary Turing machine with several tapes. Each tape has its own head for reading and writing. Initially the input appears on tape 1, and the others start out blank. The transition function is changed to allow for reading, writing, and moving the heads on some or all of the tapes simultaneously. Formally, it is

$$\delta: Q \times \Gamma^k \longrightarrow Q \times \Gamma^k \times \{L, R, S\}^k$$

where k is the number of tapes. The expression

$$\delta(q_i, a_1, \dots, a_k) = (q_j, b_1, \dots, b_k, L, R, \dots, L)$$

means that if the machine is in state q_i and heads 1 through k are reading symbols a_1 through a_k , the machine goes to state q_j , writes symbols b_1 through b_k , and directs each head to move left or right, or to stay put, as specified.

Multitape Turing machines appear to be more powerful than ordinary Turing machines, but we can show that they are equivalent in power. Recall that two machines are equivalent if they recognize the same language.

THEOREM 3.13

Every multitape Turing machine has an equivalent single-tape Turing machine.

PROOF We show how to convert a multitape TM M to an equivalent single-tape TM S. The key idea is to show how to simulate M with S.

Say that M has k tapes. Then S simulates the effect of k tapes by storing their information on its single tape. It uses the new symbol # as a delimiter to separate the contents of the different tapes. In addition to the contents of these tapes, S must keep track of the locations of the heads. It does so by writing a tape symbol with a dot above it to mark the place where the head on that tape would be. Think of these as "virtual" tapes and heads. As before, the "dotted" tape symbols are simply new symbols that have been added to the tape alphabet. The following figure illustrates how one tape can be used to represent three tapes.

FIGURE **3.14** Representing three tapes with one

S = "On input $w = w_1 \cdots w_n$:

1. First S puts its tape into the format that represents all k tapes of M. The formatted tape contains

$$\#w_1^{\bullet}w_2 \cdots w_n \# \sqcup \# \sqcup \# \cdots \#.$$

- 2. To simulate a single move, S scans its tape from the first #, which marks the left-hand end, to the (k+1)st #, which marks the right-hand end, in order to determine the symbols under the virtual heads. Then S makes a second pass to update the tapes according to the way that M's transition function dictates.
- 3. If at any point S moves one of the virtual heads to the right onto a #, this action signifies that M has moved the corresponding head onto the previously unread blank portion of that tape. So S writes a blank symbol on this tape cell and shifts the tape contents, from this cell until the rightmost #, one unit to the right. Then it continues the simulation as before."

COROLLARY 3.15

A language is Turing-recognizable if and only if some multitape Turing machine recognizes it.

PROOF A Turing-recognizable language is recognized by an ordinary (single-tape) Turing machine, which is a special case of a multitape Turing machine. That proves one direction of this corollary. The other direction follows from Theorem 3.13.

NONDETERMINISTIC TURING MACHINES

A nondeterministic Turing machine is defined in the expected way. At any point in a computation, the machine may proceed according to several possibilities. The transition function for a nondeterministic Turing machine has the form

$$\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}).$$

The computation of a nondeterministic Turing machine is a tree whose branches correspond to different possibilities for the machine. If some branch of the computation leads to the accept state, the machine accepts its input. If you feel the need to review nondeterminism, turn to Section 1.2 (page 47). Now we show that nondeterminism does not affect the power of the Turing machine model.

THEOREM 3.16

Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

PROOF IDEA We can simulate any nondeterministic TM N with a deterministic TM D. The idea behind the simulation is to have D try all possible branches of N's nondeterministic computation. If D ever finds the accept state on one of these branches, D accepts. Otherwise, D's simulation will not terminate.

We view N's computation on an input w as a tree. Each branch of the tree represents one of the branches of the nondeterminism. Each node of the tree is a configuration of N. The root of the tree is the start configuration. The TM D searches this tree for an accepting configuration. Conducting this search carefully is crucial lest D fail to visit the entire tree. A tempting, though bad, idea is to have D explore the tree by using depth-first search. The depth-first search strategy goes all the way down one branch before backing up to explore other branches. If D were to explore the tree in this manner, D could go forever down one infinite branch and miss an accepting configuration on some other branch. Hence we design D to explore the tree by using breadth-first search instead. This strategy explores all branches to the same depth before going on to explore any branch to the next depth. This method guarantees that D will visit every node in the tree until it encounters an accepting configuration.

PROOF The simulating deterministic TM D has three tapes. By Theorem 3.13, this arrangement is equivalent to having a single tape. The machine D uses its three tapes in a particular way, as illustrated in the following figure. Tape 1 always contains the input string and is never altered. Tape 2 maintains a copy of N's tape on some branch of its nondeterministic computation. Tape 3 keeps track of D's location in N's nondeterministic computation tree.

FIGURE **3.17** Deterministic TM D simulating nondeterministic TM N

Let's first consider the data representation on tape 3. Every node in the tree can have at most b children, where b is the size of the largest set of possible choices given by N's transition function. To every node in the tree we assign an address that is a string over the alphabet $\Gamma_b = \{1, 2, \ldots, b\}$. We assign the address 231 to the node we arrive at by starting at the root, going to its 2nd child, going to that node's 3rd child, and finally going to that node's 1st child. Each symbol in the string tells us which choice to make next when simulating a step in one branch in N's nondeterministic computation. Sometimes a symbol may not correspond to any choice if too few choices are available for a configuration. In that case, the address is invalid and doesn't correspond to any node. Tape 3 contains a string over Γ_b . It represents the branch of N's computation from the root to the node addressed by that string unless the address is invalid. The empty string is the address of the root of the tree. Now we are ready to describe D.

- 1. Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.
- **2.** Copy tape 1 to tape 2 and initialize the string on tape 3 to be ε .
- 3. Use tape 2 to simulate N with input w on one branch of its nondeterministic computation. Before each step of N, consult the next symbol on tape 3 to determine which choice to make among those allowed by N's transition function. If no more symbols remain on tape 3 or if this nondeterministic choice is invalid, abort this branch by going to stage 4. Also go to stage 4 if a rejecting configuration is encountered. If an accepting configuration is encountered, accept the input.
- **4.** Replace the string on tape 3 with the next string in the string ordering. Simulate the next branch of *N*'s computation by going to stage 2.

COROLLARY 3.18

A language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it.

PROOF Any deterministic TM is automatically a nondeterministic TM, and so one direction of this corollary follows immediately. The other direction follows from Theorem 3.16.

We can modify the proof of Theorem 3.16 so that if N always halts on all branches of its computation, D will always halt. We call a nondeterministic Turing machine a *decider* if all branches halt on all inputs. Exercise 3.3 asks you to modify the proof in this way to obtain the following corollary to Theorem 3.16.

COROLLARY 3.19

A language is decidable if and only if some nondeterministic Turing machine decides it.

ENUMERATORS

As we mentioned earlier, some people use the term *recursively enumerable language* for Turing-recognizable language. That term originates from a type of Turing machine variant called an *enumerator*. Loosely defined, an enumerator is a Turing machine with an attached printer. The Turing machine can use that printer as an output device to print strings. Every time the Turing machine wants to add a string to the list, it sends the string to the printer. Exercise 3.4 asks you to give a formal definition of an enumerator. The following figure depicts a schematic of this model.

FIGURE **3.20** Schematic of an enumerator

An enumerator E starts with a blank input on its work tape. If the enumerator doesn't halt, it may print an infinite list of strings. The language enumerated by E is the collection of all the strings that it eventually prints out. Moreover, E may generate the strings of the language in any order, possibly with repetitions. Now we are ready to develop the connection between enumerators and Turing-recognizable languages.

THEOREM 3.21

A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF First we show that if we have an enumerator E that enumerates a language A, a TM M recognizes A. The TM M works in the following way.

M = "On input w:

- 1. Run E. Every time that E outputs a string, compare it with w.
- 2. If w ever appears in the output of E, accept."

Clearly, M accepts those strings that appear on E's list.

Now we do the other direction. If TM M recognizes a language A, we can construct the following enumerator E for A. Say that s_1, s_2, s_3, \ldots is a list of all possible strings in Σ^* .

E = "Ignore the input.

- **1.** Repeat the following for $i = 1, 2, 3, \ldots$
- **2.** Run M for i steps on each input, s_1, s_2, \ldots, s_i .
- 3. If any computations accept, print out the corresponding s_i ."

If M accepts a particular string s, eventually it will appear on the list generated by E. In fact, it will appear on the list infinitely many times because M runs from the beginning on each string for each repetition of step 1. This procedure gives the effect of running M in parallel on all possible input strings.

EQUIVALENCE WITH OTHER MODELS

So far we have presented several variants of the Turing machine model and have shown them to be equivalent in power. Many other models of general purpose computation have been proposed. Some of these models are very much like Turing machines, but others are quite different. All share the essential feature of Turing machines—namely, unrestricted access to unlimited memory—distinguishing them from weaker models such as finite automata and pushdown automata. Remarkably, *all* models with that feature turn out to be equivalent in power, so long as they satisfy reasonable requirements.³

³For example, one requirement is the ability to perform only a finite amount of work in a single step.

To understand this phenomenon, consider the analogous situation for programming languages. Many, such as Pascal and LISP, look quite different from one another in style and structure. Can some algorithm be programmed in one of them and not the others? Of course not—we can compile LISP into Pascal and Pascal into LISP, which means that the two languages describe *exactly* the same class of algorithms. So do all other reasonable programming languages. The widespread equivalence of computational models holds for precisely the same reason. Any two computational models that satisfy certain reasonable requirements can simulate one another and hence are equivalent in power.

This equivalence phenomenon has an important philosophical corollary. Even though we can imagine many different computational models, the class of algorithms that they describe remains the same. Whereas each individual computational model has a certain arbitrariness to its definition, the underlying class of algorithms that it describes is natural because the other models arrive at the same, unique class. This phenomenon has had profound implications for mathematics, as we show in the next section.

3.3

THE DEFINITION OF ALGORITHM

Informally speaking, an *algorithm* is a collection of simple instructions for carrying out some task. Commonplace in everyday life, algorithms sometimes are called *procedures* or *recipes*. Algorithms also play an important role in mathematics. Ancient mathematical literature contains descriptions of algorithms for a variety of tasks, such as finding prime numbers and greatest common divisors. In contemporary mathematics, algorithms abound.

Even though algorithms have had a long history in mathematics, the notion of algorithm itself was not defined precisely until the twentieth century. Before that, mathematicians had an intuitive notion of what algorithms were, and relied upon that notion when using and describing them. But that intuitive notion was insufficient for gaining a deeper understanding of algorithms. The following story relates how the precise definition of algorithm was crucial to one important mathematical problem.

HILBERT'S PROBLEMS

In 1900, mathematician David Hilbert delivered a now-famous address at the International Congress of Mathematicians in Paris. In his lecture, he identified 23 mathematical problems and posed them as a challenge for the coming century. The tenth problem on his list concerned algorithms.

Before describing that problem, let's briefly discuss polynomials. A *polynomial* is a sum of terms, where each *term* is a product of certain variables and a