Yformer: U-Net Inspired Transformer Architecture for Far Horizon Time Series Forecasting

Yformer

Paper by Kiran Madhusudhanan Johannes Burchert Lars Schmidt-Thieme Presentation by Tobramycin

NCUT

2022.6

1/18

Tobramycin (NCUT) Yformer 2022.6

Contents

Background

2 Yformer

SEXPERIMENTS

Tobramycin (NCUT)

Background

ProbSparse Self-Attention¹

Implement of the *ProbSparse* self-attention

We have implemented the *ProbSparse* self-attention in Python 3.6 with Pytorch 1.0. The pseudo-code is given in Algo.(1). The source code is available at https://github.com/zhouhaoyi/Informer2020. All the procedure can be highly efficient vector operation and maintains logarithmic total memory usage. The masked version can be achieved by applying positional mask on step 6 and using cmusum(\cdot) in mean(\cdot) of step 7. In the practice, we can use sum(\cdot) as the simpler implement of mean(\cdot).

Algorithm 1 ProbSparse self-attention

Require: Tensor $\mathbf{Q} \in \mathbb{R}^{m \times d}$, $\mathbf{K} \in \mathbb{R}^{n \times d}$, $\mathbf{V} \in \mathbb{R}^{n \times d}$

1: **print** set hyperparameter c, $u = c \ln m$ and $U = m \ln n$

2: randomly select U dot-product pairs from \mathbf{K} as $\bar{\mathbf{K}}$

3: set the sample score $\bar{\mathbf{S}} = \mathbf{Q}\bar{\mathbf{K}}$

4: compute the measurement $M = \max(\bar{S}) - \max(\bar{S})$ by row

5: set Top-u queries under M as $\bar{\mathbf{Q}}$

6: set $\mathbf{S}_1 = \operatorname{softmax}(\bar{\mathbf{Q}}\mathbf{K}^\top/\sqrt{d}) \cdot \mathbf{V}$

7: set $\mathbf{S}_0 = \text{mean}(\mathbf{V})$

8: set $S = \{S_1, S_0\}$ by their original rows accordingly

Ensure: self-attention feature map S.

_CSDN @思考实践

Tobramycin (NCUT) Yformer 2022.6 4/18

¹Xiaowu Zou et al. "Integration of residual network and convolutional neural network along with various activation functions and global pooling for time series classification". In: Neurocomputing 367 (2019), pp. 39–45.

U-Net²

up-conv-1 up-conv-2

Tobramycin (NCUT) Yformer 2022.6

5/18

Cross-Attention

Self-Attention vs Cross-Attention³

Tobramycin (NCUT) Yformer 2022.6

Masked Self-Attention⁴

7/18

Canonical Self-Attention

Canonical Self-Attention⁵ vs Convolutional Self-Attention⁶

Tobramycin (NCUT) Yformer 2022.6 8/18

⁵ Ashish Vaswani et al. "Attention is all you need". In: Advances in neural information processing systems 30 (2017).

⁶ Shiyang Li et al. "Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting". In: Advances in neural information processing systems 32 (2019).

Yformer

Framework

(a) Informer Architecture

(b) Yformer Architecture

Tobramycin (NCUT) Yformer 2022.6 10 / 18

Y-Decoder

- "... mitigates the issue of the redundant reprocessing of parts of the past sequence (x, y) used as tokens (xtoken, ytoken) in the Informer architecture."
- "... construct direct connections between the lower levels of the encoder and the corresponding symmetric higher levels of the decoder."

Tobramycin (NCUT) Yformer 2022.6 11 / 18

U-net architecture

• "The U-net architecture is capable of compressing information by aggregating over the inputs and up-sampling embeddings to the same resolutions as that of the inputs from their compressed latent features."

Contracting ProbSparse Cross Attention

Algorithm 2 Contracting ProbSparse Self-Attention Block

```
Input: h_i
Output: h_{i+1}
h_{i+1} \leftarrow \text{ProbSparseAttn}(h_i, h_i)
h_{i+1} \leftarrow \text{Conv1d}(h_{i+1})
h_{i+1} \leftarrow \text{Conv1d}(h_{i+1})
h_{i+1} \leftarrow \text{LayerNorm}(h_{i+1})
h_{i+1} \leftarrow \text{MaxPool}(\text{ELU}(\text{Conv1d}(h_{i+1})))
```

<ロト <部ト < 注 ト < 注 ト 13 / 18

Expanding ProbSparse Cross Attention

Algorithm 1 Expanding ProbSparse Cross-Attention Block

Tobramycin (NCUT) Yformer 2022.6 14/18

EXPERIMENTS

Datasets

Datasets	Datasets	# of concors	Time Range
Datasets		''	_
ETT	Electricity Transformer Temperature	6 features	70,080 data poin
ECL	Electricity Consuming Load	370 clients	from 2011 to 201

Result

Dataset	Horizon (au)	Methods				Improvement %	
Dataset		LogTrans	LSTnet	Informer*	Informer	Yformer	improvement %
ETTh1	24	0.259	0.280	0.246	0.247	0.230	6.50
	48	0.328	0.327	0.322	0.319	0.308	3.45
	168	0.375	0.422	0.355	0.346	0.268	22.54
	336	0.398	0.552	0.369	0.387	0.365	1.08
	720	0.463	0.707	0.421	0.435	0.394	6.41
	24	0.255	0.263	0.241	0.240	0.221	7.92
	48	0.348	0.341	0.317	0.314	0.334	-6.37
ETTh2	168	0.422	0.414	0.390	0.389	0.337	13.37
	336	0.437	0.607	0.423	0.417	0.391	6.24
	720	0.493	0.58	0.442	0.431	0.382	11.37
	24	0.202	0.243	0.160	0.137	0.118	13.87
	48	0.220	0.362	0.194	0.203	0.173	10.82
ETTm1	96	0.386	0.496	0.384	0.372	0.311	16.40
	288	0.572	0.795	0.548	0.554	0.316	42.34
	672	0.702	1.352	0.664	0.644	0.476	26.09
	48	0.429	0.357	0.368	0.359	0.322	9.80
	168	0.529	0.436	0.514	0.503	0.361	17.20
ECL	336	0.563	0.519	0.552	0.528	0.375	27.75
	720	0.609	0.595	0.578	0.571	0.479	19.50
	960	0.645	0.683	0.638	0.608	0.573	16.11
# wins per method		0	0	0	1	19	
					Avg	13.62	

Thank you!

