Regular Notebook

June 6, 2017

1 A presentation about presentations

Lab Meeting 8.6.2017 @ IKW Osnabrueck, Johannes Leugering

1.1 Capabilities of jupyter notebooks

- document code with MarkDown text, MathJax etc.
- run code
 - supports many languages, but most importantly python
- present results
 - depending on the type of result, it can be visualized nicely
 - output such as matplotlib figures are included as well
 - for custom data types, custom display methods can be defined (see e.g. pandas.DataFrame next slide)

1.1.1 Example: Loading and displaying a dataset

How a pandas. DataFrame object is presented

```
In [2]: from sklearn.datasets import load_iris
        import pandas
        import numpy as np
        import matplotlib
        %matplotlib inline
        matplotlib.style.use("ggplot")
        from matplotlib import pyplot as pp, style, patheffects
        iris = load_iris()
        iris_data = pandas.DataFrame(data=iris.data, columns=iris.feature_names)
        iris_data["class id"] = iris.target
        iris_data["class name"] = iris.target_names[iris.target]
        iris_data.head(10)
Out[2]:
           sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \
        0
                          5.1
                                            3.5
                                                                1.4
                                                                                   0.2
        1
                          4.9
                                            3.0
                                                                                   0.2
                                                                1.4
        2
                          4.7
                                            3.2
                                                                1.3
                                                                                   0.2
        3
                          4.6
                                            3.1
                                                                1.5
                                                                                   0.2
        4
                          5.0
                                            3.6
                                                                1.4
                                                                                   0.2
        5
                          5.4
                                            3.9
                                                                1.7
                                                                                   0.4
        6
                          4.6
                                            3.4
                                                                1.4
                                                                                   0.3
        7
                          5.0
                                            3.4
                                                                1.5
                                                                                   0.2
        8
                          4.4
                                            2.9
                                                                1.4
                                                                                   0.2
        9
                          4.9
                                            3.1
                                                                1.5
                                                                                   0.1
           class id class name
        0
                  0
                        setosa
                  0
        1
                        setosa
        2
                  0
                        setosa
        3
                  0
                        setosa
        4
                  0
                        setosa
        5
                  0
                        setosa
        6
                  0
                        setosa
        7
                  0
                        setosa
        8
                  0
                        setosa
        9
                        setosa
```

Figures can be rendered inline:

```
for label in data["class"]:
    subset = data.where(lambda x: x["class"] == label)
    pts, = ax.plot(subset["x"], subset["y"], "o", markersize=10)
    all_pts.append(pts)
    return all_pts

fig = pp.figure(figsize=(10, 10))
ax = fig.add_subplot(111)
pts = plot_data(ax, data)
ax.set_xlabel("sepal length (cm)")
ax.set_ylabel("sepal width (cm)")
ax.set_title("The Iris dataset")
colors = [p.get_color() for p in pts]
colors = dict(zip(iris.target_names, colors))
ax.legend(pts, iris.target_names);
```


1.2 "Inline" capabilities of Jupyter's MarkDown text

1.2.1 Supports lists

- lists can be unordered
 - like this example
 - with a sublist
- lists can also be ordered
 - 1. like this list
 - 1. with this sub-example
 - 2. and this one

1.2.2 Supports basic text formatting

You can write *cursive* and **bold** text, embed monospace text.

Use double spaces at the end of a line to force a break, an empty line starts a new paragraph. You can embed block-quotes as in email:

A SQL query goes into a bar, walks up to two tables and asks, "Can I join you?"

1.2.3 Supports embedding/linking other content

embed links to other things (e.g. the documentation of all the features) or images in the local

directory

1.2.4 Supports embedding code blocks with syntax highlighting (most languages):

Example algorithm in erlang

```
-module(fibonacci). % This is the file 'fibonacci.erl', the module and the filename must match -export([fib/1]). % This exports the function 'fib' of arity 1 fib(0) -> 0; % If 0, then return 0, otherwise (note the semicolon; meaning 'else') fib(1) -> 1; % If 1, then return 1, otherwise fib(N) when N > 1 -> fib(N - 1) + fib(N - 2).
```

1.2.5 Supports (limited) inline html and css

```
<div id="somediv" style="position: absolute; height: 100px; width: 100px; background-color: red;
<div id="somediv" style="position: absolute; height: 100px; width: 100px; background-color: gree
<div id="somediv" style="position: absolute; height: 100px; width: 100px; background-color: blue</pre>
```

1.2.6 Supports inline tables

First Header	Second Header	Third Header
Content Cell Content Cell	Content Cell Content Cell	Content Cell Content Cell

1.2.7 Supports some inline Latex (via MathJax)

E.g. align formulas:

$$dI_t^{(j)} \leftarrow \text{ external input or } Y_t^{(j)}$$
 (1)

$$dX_t^{(i)} = a_{\eta}(X_t^{(i)})dt + b_{\eta}(X_t^{(i)}) \sum_j W_t^{(i,j)} dI_{t-\tau^{(i,j)}}^{(j)}$$
(2)

$$d\bar{\phi}_{t}^{(i)} = \gamma(\eta(X_{t}^{(i)}) - \bar{\phi}_{t}^{(i)})dt \tag{3}$$

$$Y_t^{(i)} = \nu_{\bar{\phi}_t^{(i)}}(X_t^{(i)}) = (F_Y^{-1} \circ F_X)(X_t^{(i)}, \bar{\phi}_t^{(i)}) \tag{4}$$

$$dW_t^{(i,j)} = \delta(f_{\text{pre}}(Y_{t-\tau^{(i,j)}}^{(j)}) \cdot f_{\text{post}}(Y_t^{(i)}) - W_t^{(i,j)})dt$$
 (5)

1.3 Further capabilities with cell magic

1.3.1 Cell magic commands can redefine the language of a cell

E.g. %html turns the cell into a raw html cell. This input is not parsed through MarkDown and thus very flexible (can include iframes, javascript, ...). Similarly, %%javascript executes the cell as javascript code in the client browser.

1.3.2 Example: embedding external content (e.g. youtube player) as iframe

1.3.3 Example: javascript shenanigans in raw html

1.3.4 Example: embedding d3.js

```
In [7]: %%javascript
        requirejs.config({
          paths: {
              d3: 'https://d3js.org/d3.v4.min'
        });
        require(["d3"], function(d3){
            var body = element.append("<div id='body'></div>")
            var width = 960,
                height = 500,
                radius = 80,
                x = Math.sin(2 * Math.PI / 3),
                y = Math.cos(2 * Math.PI / 3),
                offset = 0,
                speed = 4,
                start = Date.now();
            var svg = d3.select('#body').append('svg')
                .attr('width', width)
                .attr('height', height)
                .append("g")
                  .attr("transform", "translate(" + width / 2 + "," + height / 2 + ")scale(.55)"
                .append("g");
            var frame = svg.append("g")
                .datum({radius: Infinity});
            frame.append("g")
                .attr("class", "annulus")
                .datum({teeth: 80, radius: -radius * 5, annulus: true})
```

.append("path")

```
.attr("d", gear);
frame.append("g")
    .attr("class", "sun")
    .datum({teeth: 16, radius: radius})
  .append("path")
    .attr("d", gear);
frame.append("g")
    .attr("class", "planet")
    .attr("transform", "translate(0,-" + radius * 3 + ")")
    .datum({teeth: 32, radius: -radius * 2})
  .append("path")
    .attr("d", gear);
frame.append("g")
    .attr("class", "planet")
    .attr("transform", "translate(" + -radius * 3 * x + "," + -radius * 3 * y + ")")
    .datum({teeth: 32, radius: -radius * 2})
  .append("path")
    .attr("d", gear);
frame.append("g")
    .attr("class", "planet")
    .attr("transform", "translate(" + radius * 3 * x + "," + -radius * 3 * y + ")")
    .datum({teeth: 32, radius: -radius * 2})
  .append("path")
    .attr("d", gear);
d3.selectAll("input[name=reference]")
  .data([radius * 5, Infinity, -radius])
    .on("change", function(radius1) {
      var radius0 = frame.datum().radius, angle = (Date.now() - start) * speed;
      frame.datum({radius: radius1});
      svg.attr("transform", "rotate(" + (offset += angle / radius0 - angle / radius1
    });
d3.selectAll("input[name=speed]")
    .on("change", function() { speed = +this.value; });
function gear(d) {
  var n = d.teeth,
      r2 = Math.abs(d.radius),
      r0 = r2 - 8,
      r1 = r2 + 8,
      r3 = d.annulus ? (r3 = r0, r0 = r1, r1 = r3, r2 + 20) : 20,
      da = Math.PI / n,
      a0 = -Math.PI / 2 + (d.annulus ? Math.PI / n : 0),
```

```
i = -1,
                  path = ["M", r0 * Math.cos(a0), ",", r0 * Math.sin(a0)];
              while (++i < n) path.push(</pre>
                  "A", r0, ",", r0, " 0 0,1 ", r0 * Math.cos(a0 += da), ",", r0 * Math.sin(a0),
                  "L", r2 * Math.cos(a0), ",", r2 * Math.sin(a0),
                  "L", r1 * Math.cos(a0 += da / 3), ",", r1 * Math.sin(a0),
                  "A", r1, ",", r1, " 0 0,1 ", r1 * Math.cos(a0 += da / 3), ",", r1 * Math.sin(a
                  "L", r2 * Math.cos(a0 += da / 3), ",", r2 * Math.sin(a0),
                  "L", r0 * Math.cos(a0), ",", r0 * Math.sin(a0));
              path.push("M0,", -r3, "A", r3, ",", r3, " 0 0,0 0,", r3, "A", r3, ",", r3, " 0 0,0
              return path.join("");
            }
            d3.timer(function() {
              var angle = (Date.now() - start) * speed,
                  transform = function(d) { return "rotate(" + angle / d.radius + ")"; };
              frame.selectAll("path").attr("transform", transform);
              frame.attr("transform", transform); // frame of reference
            });
        })
<IPython.core.display.Javascript object>
In [8]: %%html
        <form>
          <input name="reference" id="ref-annulus" type="radio">
          <label for="ref-annulus">Annulus</label><br>
          <input name="reference" id="ref-planet" checked="" type="radio">
          <label for="ref-planet">Planets</label><br>
          <input name="reference" id="ref-sun" type="radio">
          <label for="ref-sun">Sun</label>
        </form>
<IPython.core.display.HTML object>
1.4 Using interactive widgets
In [9]: from ipywidgets import interact, fixed
```

```
import IPython.display as display
fig = pp.figure(figsize=(10,5))
ax1 = fig.add_subplot(1,2,1)
xx = np.linspace(0.001, 0.999, 1000)
yy = -np.log2(xx)*xx-np.log2(1-xx)*(1-xx)
line, = ax1.plot(xx, yy, linestyle="dashed", linewidth=2)
#line.set_visible(False)
dot, = ax1.plot([0.5], [1.0], "o", markersize=10)
```

```
ax1.set_ylim([0, 1.1])
        ax1.set_xlim([-0.1, 1.1])
        ax1.axvline(0.5, color="black", linestyle="dashed")
        ax1.axhline(1, color="black", linestyle="dashed")
        ax1.set_xlabel("p")
        ax1.set_ylabel("$H_p(X)$")
        ax1.set_title("Entropy of $X\sim\mathcal{B}(p)$")
        ax2 = fig.add_subplot(1,2,2)
        ax2.set_title("PMF of $\mathcal{B}(p)$")
        pp.close(fig)
        def my_histogram(ax, hist):
            labels, counts = zip(*hist.items())
            x = np.arange(len(labels))
            ax.bar(x, counts, zorder=1, align="center")
            ax.set_xticks(x)
            ls = ax.set_xticklabels(labels, rotation=90, color="white", ha="center", va="bottom"
            pp.setp(ls, path_effects=[patheffects.withStroke(linewidth=3, foreground="black")])
            ax.xaxis.set_tick_params(pad=-10)
            ax.grid(False)
            ax.set_axisbelow(False)
        def drawEntropy_bernoulli(p, plot_line=True, redraw=False):
            dot.set_xdata([p])
            dot.set_ydata([-p*np.log2(p)-(1-p)*np.log2(1-p)])
            line.set_visible(plot_line)
            ax2.cla()
            my_histogram(ax2, {"A": p, "B": 1-p})
            ax2.set_title("PMF of $\mathcal{B}(p)$")
            ax2.set_ylim([0, 1])
            if redraw:
                display.display(fig)
            else:
                return dot, line
        interact(drawEntropy_bernoulli, p=(0.001, 0.999, 0.001), plot_line=False, redraw=fixed(T
Widget Javascript not detected. It may not be installed or enabled properly.
```

1.5 Generating & displaying animations inline

1.6 Generating slides from a jupyter notebook

1.6.1 HTML slides are generated from the console as follows:

```
jupyter nbconvert --to slides --post serve "Regular Notebook.ipynb"
```

1.6.2 Similarly, PDF slides are generated as follows:

```
jupyter nbconvert --to pdf "Regular Notebook.ipynb"
```

1.7 Live slideshows possible

For live slideshows that behave just like full fledged notebooks, use the jupyter RISE extension. This gives the whole thing a PowerPoint-ish flavor.