LFA Laborator 3

Miriam Costan

Aprilie 2020

1 $DFA \rightarrow DFA_{min}$.

Avand dat un DFA, vom construi DFA_{min} -ul echivalent, care accepta acelasi set de cuvinte dar cu numar minim de stari.

δ	a	b
0	1	2
1	0	3
2	4	5
3	4	5
4	4	5
5	5	5

1.1 Pasul 1. Determinarea starilor echivalente.

Doua stari sunt **echivalente** daca si numai daca pentru orice cuvant am alege, plecand din cele doua stari, ajungem in doua stari fie finale sau nefinale.

$$\forall q,r \in Q, q \equiv r \iff [\forall \omega \in \Sigma^*, \delta(q,\omega) \in F \leftrightarrow \delta(r,\omega) \in F]$$

Vom calcula starile echivalente in felul urmator:

1. Construim matricea de echivalenta si o marcam pe toata cu TRUE (consideram ca toate sunt echivalente).

	0	1	2	3	4	5
0	-	-	-	_	_	-
1	TRUE	-	-	-	-	-
2	TRUE	TRUE	-	-	-	-
3	TRUE	TRUE	TRUE	-	-	-
4	TRUE	TRUE	TRUE	TRUE	-	-
5	TRUE	TRUE	TRUE	TRUE	TRUE	-

Observatie 1. Marcam doar partea stanga jos, matricea fiind simetrica.

- 2. Marcam cu FALSE toate perechile (q, r), unde q stare finala si r stare nefinala.
- 3. Marcam cu FALSE toate perechile (q, r) pentru care $(\delta(q, \alpha), \delta(r, \alpha))$ sunt marcate cu FALSE, $\alpha \in \Sigma$.
- 4. Repetam 3 pana nu mai apar modificari.

	0	1	2	3	4	5
0	-	-	-	-	-	-
1	TRUE	-	-	-	-	-
2	FALSE	FALSE	-	-	-	-
3	FALSE	FALSE	TRUE	-	-	-
4	FALSE	FALSE	TRUE	TRUE	-	-
5	FALSE	FALSE	FALSE	FALSE	FALSE	_

Observam ca grupurile de stari echivalente sun $\{0,1\},\{2,3,4\}$ si $\{5\}.$

1.2 Pasul 2. Gruparea starilor echivalente si calcularea functiei de tranzitie δ^* .

Grupam starile echivalente rezultate din matricea de echivalenta intr-o unica stare. Tranzitiile vor fi aceleasi cu ale automatului initial dar tinand cont de aceasta grupare.

δ^*	a	b
01	01	234
234	234	5
5	5	5

1.3 Pasul 3. Calcularea starilor finale si initiale.

- Starea initiala devine starea ce contine starea initiala a automatului origina. In cazul nostru q_{01} .
- Starile finale sunt toate starile compuse din stari finale. In cazul nostru q_{234} .

1.4 Pasul 4. Eliminarea starilor dead-end.

O stare q_k este dead-end daca nu exista niciun drum de la aceasta stare la o stare finala. Putem elimina in siguranta starile dead-end.

In exemplul de mai sus 1 este dead-end.

In automatul nostru, 5 este un dead-end si il putem elimina.

1.5 Pasul 5. Eliminarea starilor neaccesibile.

O stare q_k este neaccesibila daca nu exista niciun drum de la starea initala q_0 pana la q_k . Putem elimina in siguranta starile neaccesibile.

In exemplul de mai sus, k nu este accesibil.

Rezultatu este:

