CSE 6220 INTRODUCTION TO HIGH PERFORMANCE COMPUTING PARALLEL ALGORITHMS: DESIGN GOALS AND ANALYSIS TECHNIQUES

Ümit V. Çatalyürek
School of Computational Science and Engineering
Georgia Institute of Technology

Measuring Algorithmic Performance

Sequential Computing

$$T(n)$$
: sequential runtime $n = \text{problem size}$

$$T(n) = O(f(n)) \quad \left[\leq c f(n) \right]$$

$$T(n) = \Omega(g(n)) \quad [\geq d \ g(n)]$$

$$T(n) = \Theta(f(n))$$
 $O(f(n))$ and

$\Omega(f(n))$

Parallel Computing

T(n,p): parallel runtime

n = problem size

p = number of processors

Can different algorithms perform better for different values of *p*?

Speedup

$$S(p) = \frac{T(n,1)}{T(n,p)}$$

Lemma 1: $S(p) \leq p$

Proof: By Contradiction.

Suppose

$$S(p) > p$$

$$\Rightarrow \frac{T(n,1)}{T(n,p)} > p$$

$$\Rightarrow T(n,1) > p \cdot T(n,p)$$

Lemma 1 – Proof (cont'd)

Design a new sequential alg. by simulating the actions of processors in the parallel alg. using a single processor.

Run-time of new sequential alg.

$$T(n,1) \le p \cdot T(n,p)$$

But this contradicts with

$$T(n,1) > p \cdot T(n,p)$$

In Theory

"In theory, theory and practice are the same. In practice, they are not."

In practice, Superlinear Speedup is possible

- Memory Access Issues
 - Cache vs. main memory
- T(n,p) is for worst-case complexity
 - Examples:
 - Sorted list in sorting
 - Search

Parallel Efficiency

Efficiency = Work done by the best seq. alg.
Work done by the parallel alg.

$$E(p) = \frac{T(n,1)}{p(T(n,p))} = \frac{S(p)}{p} \le 1$$

Efficiency is a measure of how effectively resources of a parallel computer are utilized

What should be the aim when designing a parallel algorithm?

Example: Matrix Matrix Multiplication

better at 23?

3-loop naïve sequential algorithm: $T(n, 1) = O(n^3)$

Parallel Alg 1: $T(n,n^3) = O(\log n)$

Parallel Alg 2: $T(n,n^2) = O(n)$

Speedup

Efficiency

Alg 1:

$$T(n,n^3) = O(\log n)$$

$$\frac{n^3}{\log n}$$

Alg 2:

$$T(n,n^2) = O(n)$$

What should be the aim when designing a parallel algorithm?

Example: Matrix Matrix Multiplication

•
$$T(n,1) = \Theta(n^3) \leq c f(n) \approx c f(n)$$

• Alg 1:
$$T(n,n^3) = \Theta(\log n)$$

• Alg 2: $T(n,n^2) = \Theta(n)$

Speedup

Efficiency

Alg 1:

$$T(n,n^3) = \Theta(\log n)$$

$$\frac{n^3}{\log n}$$

$$\frac{n^3}{n^3 \log n} = \frac{1}{\log n}$$

Alg 2:

$$T(n,n^2) = \Theta(n)$$

Speedup

Efficiency

Alg 1:

$$T(n,n^3) = \Theta(\log n)$$

Alg 2:

$$T(n,n^2) = \Theta(n)$$

$$\Theta\left(\frac{n^3}{\log n}\right)$$

$$\Theta(n^2)$$

$$\Theta\left(\frac{1}{\log n}\right)$$

$$\Theta(1)^{\bigstar}$$

Lemma 2: (Brent's Lemma)

- Let $T(n, p_1)$ be the run-time of a parallel alg. designed to run on p_1 processors.
- The same alg. can be run on $p_2 < p_1$ processors without loss of efficiency, i.e., $E(p_2) = E(p_1)$.
- This is also called efficiency scaling.

Lemma 2: (Brent's Lemma)

Proof:

To run on p_2 processors, let each processor simulate $\underline{p_1}$ processors. $\underline{p_2}$

$$T(n, p_2) = \frac{p_1}{p_2} T(n, p_1)$$

$$E(p_2) = \frac{T(n,1)}{p_2 \cdot T(n,p_2)} = \frac{T(n,1)}{p_2 \cdot \frac{p_1}{p_2} T(n,p_1)} = E(p_1)$$

Lemma 2: (Brent's Lemma)

Proof: To run on p_2 processors, let each processor simulate $\left\lceil \frac{p_1}{p_2} \right\rceil$ processors.

$$T(n, p_2) = \left[\frac{p_1}{p_2}\right] T(n, p_1)$$

$$E(p_2) = \frac{T(n,1)}{p_2 \cdot \left[\frac{p_1}{p_2}\right] T(n,p_1)}$$

$$\geq \frac{T(n,1)}{p_2 \cdot \left(\frac{p_1}{p_2} + 1\right) T(n,p_1)} = \frac{T(n,1)}{\left(p_1 + p_2\right) T(n,p_1)} \geq \frac{1}{2} E(p_1) = \Theta(E(p_1))$$

A₂ is faster!

• Speed: Design alg. to minimize T(n,p) using the smallest possible value p.

Efficiency: Design alg. to maximize E(p) s.t.
 p is the largest possible.

- A₁: Designed for speed and uses p₁ processors
- A₂: Designed for efficiency and uses a maximum of p₂ processors

$$p_1 \geqslant p_2$$

Otherwise:

We can use Brent's Lemma and scale A₂ A₂ will run faster than A₁ on p₁ processors

Contradicts A₁ is designed for speed and A₂ is designed for efficiency

- A₂ (A₁) can run on less number of processors with their respective efficiencies preserved
- Only guarantee on p₂, A₁ will be less efficient than A₂
- A₂ will be more efficient, and hence provide better speedup, on any number of processors ≤ p₂

- We use larger number processors to solve larger problems.
- Think our matrix multiplication example
 - Where $f(n) = O(n^3)$ and $g(n) = O(n^2)$
 - Say we want to solve a problem that is twice of the problem we solve on p processor

Matrix Multiplication

Sequential: $T(n, 1) = O(n^3)$

Alg 1: $T(n, n^3) = O(\log n)$ Not Efficient

Alg 2: $T(n, n^2) = O(n)$

Alg 3: $T(n, n) = O(n^2)$

$$E(p) = \frac{T(n,1)}{p \cdot T(n,p)} = \Theta(1)$$

Which one you would use: Alg 2 or Alg 3?

Scalability

- Increase the problem size retain same runtime?
 - Fixed-time scalability
- Example: (Again) Matrix Multiplication

Scalability: Matrix Multiplication Example

If there is an efficient algorithm

•
$$T(n, n^3) = O(1), \le n^3$$

•
$$T(n,p) = O(\frac{n^3}{p})$$

- Increase problem size by 2x
 - Work increases 8x,
 - Let's use 8x processors

•
$$T(2n, 8p) = O\left(\frac{8n^3}{8p}\right) = O\left(\frac{n^3}{p}\right)$$

Inefficient algorithm

•
$$T(n, n^3) = O(\log n)$$

•
$$T(n,p) = O(\frac{n^3 \log n}{p})$$

- Increase problem size by 2x
 - Work increases 8x,
 - Let's use 8x processors

•
$$T(2n, 8p) = O\left(\frac{8n^3 \log 2n}{8p}\right) = O\left(\frac{n^3 (1+\log n)}{p}\right)$$

Scalability

What if we have two efficient algorithms?

A₂:
$$T(n, n^2) = O(n)$$
 $p \le n^2$

A₃:
$$T(n, n) = O(n^2)$$
 $p \le n$

If we double the problem size n,

 A_2 : Can quadruple no. of processors \Rightarrow doubles run-time.

 A_3 : Can double no. of processors \Rightarrow quadruples run-time.

Scalability

- Let's say you are multiplying 2 1000×1000 matrices.
- problem size n = 1000 and say p = 100,
 - $p_3 = 1000, p_2 = 1000000$
- Now let's say we want to solve problem 2x, n = 2000
- Work is increased 8x (matrix multiplication), let's use 8x processors
- p=800, $p_3=2000$, $p_2=4000000$, since $p< p_3$ and $p< p_2$ you can use either algorithm
- If we double again?
- p = 6400, $p_3 = 4000$, $p_2 = 16000000$, now $p > p_3$ so we cannot use A₃, so A₂ better!

Example: Speed and Efficiency Analysis

Given n numbers, compute their sum using p processors.

- Serial runtime: $T(n, 1) = \Theta(n)$
- Parallel runtime: $T(n,p) = \Theta\left(\frac{n}{p} + \log p\right)$

Speed

• Find p s.t. T(n,p) is minimized

$$\frac{d}{dp} \left(\frac{n}{p} + \log p \right) = 0$$

$$-\frac{n}{p^2} + \frac{1}{p} = 0$$

$$\Rightarrow p = n$$

Efficiency

• What p can we use while maintaining $E(p) = \Theta(1)$

$$E(p) = \frac{T(n,1)}{pT(n,p)} = \Theta(1)$$

$$E(p) = \frac{n}{p\left(\frac{n}{p} + \log p\right)} = \Theta(1)$$

$$\Rightarrow \frac{n}{n + p \log p} = \Theta(1)$$

$$\Rightarrow p \log p = O(n)$$

Efficiency

• What p can we use while maintaining $E(p) = \Theta(1)$

$$\Rightarrow p \log p = O(n)$$

Guess:
$$\Rightarrow p = O\left(\frac{n}{\log n}\right) \approx \frac{1}{\tau} \frac{n}{\log n}$$

Substitute *p*

$$O\left(\frac{n}{\log n} \cdot \log \frac{n}{\log n}\right)$$

$$= O\left(\frac{n}{\log n} \cdot (\log n - \log \log n)\right)$$

$$= O\left(\frac{n}{\log n} \cdot \log n\right) = O(n)$$

Another Example

•
$$T(n,p) = \Theta\left(\frac{n^2}{p} + \sqrt{n}\right), p \le n^2$$

•
$$T(n,1) = \Theta(n^2)$$

Speed

- Find p s.t. T(n,p) is minimized
- Choose $p = n^2$ for speed

•
$$T(n, n^2) = \Theta\left(\frac{n^2}{n^2} + \sqrt{n}\right) = \Theta(\sqrt{n})$$

Efficiency?

•
$$E(n^2) = \frac{\Theta(n^2)}{n^2 \Theta(\sqrt{n})} = \Theta\left(\frac{1}{\sqrt{n}}\right)$$

Efficiency

• What p can we use while maintaining $E(p) = \Theta(1)$

$$E(p) = \frac{\Theta(n^2)}{p \cdot \Theta\left(\frac{n^2}{p} + \sqrt{n}\right)} = \Theta(1)$$

$$\Rightarrow \frac{n^2}{n^2 + p\sqrt{n}} = \Theta(1)$$

$$\Rightarrow p\sqrt{n} = O(n^2)$$

$$\Rightarrow p = O(n\sqrt{n})$$

Work-Optimal or Work-Efficient Algorithm