

: 프로야구 배럴(Barrel) 을 통한 타자 성적 예측

팀명: 늘보

<u>팀장 : 홍진</u>우 rw2006@naver.com

팀원: 박종서 qkrwhdtj208@naver.com

<목차>

- 1. 문제정의
- 2. 데이터 개요
- 3. 분석 배경 및 목표
- 4. 데이터 전처리
- **5. 배럴타구 정의** 5-1) EDA

5-2) 산정 기준

5-3) 결과 및 검증

6. OPS 예측 - 개요 및 문제 정의

6-1) 장타율 예측

- 추가한 변수
- 모델 구축 및 훈련
- 모델 선정 및 장타율 예측

6-2) 출루율 예측

- 추가한 변수
- 모델 구축 및 훈련
- 모델 선정 및 장타율 예측

6-3) OPS 예측

7. 결론

- 분석 결과 활용 및 시사점

8. 참조

스포츠투아이에서 제공하는 야구데이터(타자 기본정보, 타자 트래킹 데이터 등)를 활용하여 좋은 타구(배럴)에 대하여 정의하고,

타자 성적 예측 모형 개발을 통한 타자의 OPS(장타율+출루율) 예측

02 데이터개요

	GYEAR	PCODE	GAMENUM	타석	타수	타율	안타	홈런	루타	장타율	희생플라이	볼넷	삼진	고의4구	2
0	2018	60100	70	169	152	0.243	37		63	0.414		12	36)
1	2018	60184	6	10	10	0.200	2	0		0.300	0	0)
2	2018	60288				0.000	0	0	0	0.000	0	0	0)
3	2018	60343	83	174	162	0.216	35	8	63	0.389	0	8	49)
4	2018	60456	4	8		0.500		0		0.500	0	2	0		0
1093	2021	79290	4	8	8	0.125		0		0.125	0	0	2		0
1094	2021	79365	73	261	219	0.265	58	16	117	0.534		32	69		ס
1095	2021	79402	70	278	237	0.211	50		61	0.257	0	30	26		
1096	2021	79456	62	135	124	0.274	34	0	38	0.306	2	7	11		
1097	2021	79608	55	246	212	0.325	69		102	0.481		26	32		0
1098 rc	ws × 16	columns	S												1
															_

2018, 2019, 2020, 2021 시즌 타구 트래킹 데이터 총 120,745개

2018, 2019, 2020, 2021 시즌 <mark>타자 일반 데이터</mark> 총 1098개

		GYEAR	G_ID	PIT_ID	PCODE	T_ID	INN	타구속도	발사각도	HIT_RESULT	투구구속	STADIUM
	0	2018	20180324HHWO0	180324_140436	62797	НН	1	131.50	42.7	플라이	149.59	고척
	1	2018	20180324HHWO0	180324_140514	76753	НН	1	135.18	9.9	1루타	148.78	고척
П	2	2018	20180324HHWO0	180324_140647	71752	НН	1	152.41	2.1	1루타	148.59	고척
	3	2018	20180324HHWO0	180324_140911	62700	НН	1	113.72	13.5	1루타	139.13	고척
	4	2018	20180324HHWO0	180324_142050	68730	НН	2	54.11	16.4	번트안타	134.07	고척
	17959	2021	20210711LTSS0	210711_195321	50458	SS	8	141.23	-4.9	땅볼아웃	137.76	대구
	17960	2021	20210711LTSS0	210711_195424	62415	SS	8	101.09	31.8	1루타	138.51	대구
	17961	2021	20210711LTSS0	210711_195627	75566	SS	8	146.84	33.4	홈런	134.10	대구
	17962	2021	20210711LTSS0	210711_200047	69418	SS	8	146.12	23.9	홈런	139.96	대구
	17963	2021	20210711LTSS0	210711_200245	64793	SS	8	140.45	28.2	플라이	137.36	대구
	120745	rows × 1	1 columns									

03 분석배경 및 목표 - 분석 배경

	다승 순위			평균자책 순위			탈삼진 순위		세이브 순위	
K	1 요키시 키움	13승	□ D	1 미란다 두산	2.33	II.	1 미란다 두산	164	1 오승환 삼성	31
	2 루친스키 NC	12슴		2 수아레즈 LG	2.46		2 폰트 SSG	139	2 김재윤 KT	25
	2 미란다 두산	12승	3	3 요키시 키움	2.50	3	3 카펜터 한화	137	3 고우석 LG	24
	2 원태인 삼성	12승		4 백정현 삼성	2.63		4 데스파이네 KT	128	3 김원중 롯데	24
	5 뷰캐넌 삼성	11승		5 원태인 삼성	2.69		5 루친스키 NC	126	5 정해영 KIA	19
	타율 순위			타점 순위			홈런 순위		도루 순위	
	1 강백호 KT	0.374		1 강백호 KT	86		1 나성범 NC	28	1 김혜성 키움	33
T	2 이정후 키움	0.361		1 피렐라 삼성	86		2 최정 SSG	27	1 박해민 삼성	33
	3 양의지 NC	0.336		3 양의지 NC	85	-	3 피렐라 삼성	25	3 최원준 KIA	25
	4 박건우 두산	0.331		4 김재환 두산	79		4 양의지 NC	23	3 구자욱 삼성	25
	5 홍창기 LG	0.325		5 나성범 NC	78		4 양석환 두산	23	5 김지찬 삼성	19

클래식 스탯 (투수의 경우 낮은 평균 자책점, 승리, 세이브, 타자의 경우 타율, 홈런, 타점 등)에 대한 평가 위주의 한국프로야구

최근 야구팬들의 **세이버 매트릭스**에 대한 관심 증가에 따른 추세 변화

최근 2, 3년 간 구장 전광판에 팀 타자의 타율 대신 OPS를 표기하는 구단이 생겨났고, 방송사는 중계에서 WAR, WRC+ 등의 지표를 적극적으로 사용 중

03 분석배경 및 목표 - 분석 목표

지난 5-6년 간 강한 타구에 대한 주목도가 높아진 메이저리그

→ 강하고 좋은 타구를 만들어 내는 타자, 그런 타구를 효과적으로 억제할 수 있는 투수를 훌륭한 선수로 평가

<MLB의 배럴타구 기준>

: 타구 속도와 발사각도의 조합상 평균적으로 타율 .500, 장타율 1.500이상을 생산하는 타구들

- ▶ 배럴 타구가 되기 위해서는 최소 시속 98마일을 기록해야 하며, 해당 속도에서는 발사각이 26°~30°가 돼야 한다. 시속 98마일을 넘어가는 타구들에 대해서는 그 발사각의 범주가 커짐.
- → 시속 100마일부터 시속 116마일까지는 시속 1마일이 증가할 때마다 배럴 타구가 되는 발사각의 범위가
 2°~3° 증가하며, 시속 116마일짜리 타구에서는 발사각이 8°~50°사이이기만 하면 배럴 타구

즉, 타자의 좋은 타구를 만들어 내는 능력을 타자의 고유 능력으로 상정

배럴 타구 기준 선정

: MLB와 KBO는 평균 투구 속도, 평균 타구 속도에서 차이를 보이므로 한국 프로야구 만의 배럴 타구 기준을 타구 데이터 분석을 통해 선정

→ 결과 해석: 공인구의 차이와 같은 외부 환경을 제외한다고 하더라도, KBO의 선수들과 MLB선수들 사이에 기본적인 신체적 능력의 차이가 있는 것으로 보인다. 이는 두 리그 내에서 만들어지는 인플레이 타구의 환경이 확연히 다르다는 것을 보여준다. 또한 수비범위와 송구력의 차이에 따라 같은 타구에 있어서도 타율, 장타율이 상이하게 나타날 수 있다. 따라서 MLB의 배럴타구의 기준을 그대로 가져와서 KBO의 타자들에게 적용시키는 것이 아닌, KBO만의 배럴타구 기준을 만들어야 할 것이다.

> 이 기준을 바탕으로 타자 개인의 능력을 수치화 후, 9/15 ~ 10/8 기간의 105경기에 대한 타자들의 출루율, 장타율 그리고 이 둘을 더한 OPS를 예측

04 데이터 전처리

2018, 2019, 2020, 2021 시즌 타자 일반 데이터 총 1098개 정규 시즌 통계 기록이므로 이상치가 없다고 판단

타구 트래킹 데이터에 대해서만 EDA를 통한 이상치 제거

- → Box Plot을 통해 시각화
- → 이상치 값을 보이는 것으로 의심되는 데이터의 경우 직접 해당 경기일, 타석의 중계를 통해 입력 설정 오류값인지, 실제 값인지 판단

<18,19,20,21 시즌 전체 타구 트래킹 데이터 중 '타구속도' 분포>

Q1 - 1.5 * IQR 값들에 대해서는 통계적인 이상치 기준 적용 X

→ 야구의 경우, 번트 혹은 특정 파울 타구의 경우 매우 낮은 타구 속도를 충분히 기록할 수 있으므로 이상치로 판단 X

< 18km/h 이하의 타구속도를 보인 타구 트래킹 데이터 >

	GYEAR	G_ID	PIT_ID	PCODE	T_ID	INN	타구속도	발사각도	HIT_RESULT	투구구속	STADIUM	color	score
6984	2018	20180429HHLT0	180429_165816	72546	LT		14.28	57.8	파울플라이	141.47	사직	gainsboro	0
7099	2018	20180429SKWO0	180429_140319	73209	SK		17.25	22.6	희생번트	134.10	고척	gainsboro	0
8660	2018	20180508LTLG0	180508_203411	67539	LT		14.04	-29.9	희생번트	132.68	잠실	gainsboro	0
14536	2018	20180607HTKT0	180607_201018	60558	KT	6	13.61	82.7	플라이	143.21	수원	gainsboro	0
20659	2018	20180710HTNC0	180710_203633	60566	NC	4	16.59	-3.3	희생번트	140.54	마산	gainsboro	0
23814	2018	20180728HHOB0	180728_202331	62700	НН	4	14.91	-25.7	땅볼아웃	133.02	잠실	gainsboro	0
24215	2018	20180729LTWO0	180729_192918	62332	wo	4	9.88	77.8	땅볼아웃	139.25	고척	gainsboro	0
28574	2018	20180908KTWO0	180908_182840	63450	KT	4	15.64	-16.2	희생번트	139.34	고척	gainsboro	0
34155	2018	20181009HHKT0	181009_152843	78756	НН	4	17.74	-22.5	희생번트	120.03	수원	gainsboro	0

04 데이터 전처리

타구 트래킹 데이터에 대해서만 EDA를 통한 이상치 제거

- → Box Plot을 통해 시각화
- → 이상치 값을 보이는 것으로 의심되는 데이터의 경우 직접 해당 경기일, 타석의 중계를 통해 입력 설정 오류값인지, 실제 값인지 판단

< 190km/h 이상의 타구속도를 보인 타구 트래킹 데이터 >

	GYEAR	G_ID	PIT_ID	PCODE	T_ID	INN	타구속도	발사각도	HIT_RESULT	투구구속	STADIUM	color	score
19787	2018	20180705SKWO0	180705_194020	67394	wo	4	195.25	-4.1	1루타	139.72	고척	thistle	
24374	2018	20180731LGOB0	180731_220412	68103	LG	9	210.13	-13.3	땅볼아웃	144.04	잠실	gainsboro	0

G_ID: 20180705SKW00

195km/h의 타구 속도를 충분히 가지고 있는 것으로 판단(타구가 내야를 빠져나가는 시간, 좌익수에게 도달하는 시간, 좌익수가 공을 잡는 모션)

G ID: 20180731LG0B0

평범한 땅볼 타구 210km/h는 기계 오류 등에 의해 잘못 측정된 것으로 판단

→ 경기 중계영상을 통해 이상치 여부를 직접 눈으로 확인하고, 24374행 제거

04 데이터 전처리

타구 트래킹 데이터에 대해서만 EDA를 통한 이상치 제거

- → Box Plot을 통해 시각화
- → 이상치 값을 보이는 것으로 의심되는 데이터의 경우 직접 해당 경기일, 타석의 중계를 통해 입력 설정 오류값인지, 실제 값인지 판단

<18,19,20,21 시즌 전체 타구 트래킹 데이터 중 '발사각도' 분포>

< 89.5도 이상의 발사각도를 보인 타구 트래킹 데이터 >

	index	타구속도	발사각도	HIT_RESULT	투구구속	STADIUM	color	score
1919	1919	132.89	89.6	파울플라이	127.35	대구	gainsboro	0
66884	66885	55.00	89.6	파울플라이	138.81	수원	gainsboro	0
70529	70530	109.52	89.7	파울플라이	137.56	대전	gainsboro	0
101700	101701	109.34	89.8	파울플라이	120.41	대전	gainsboro	0

< -65도 이하의 발사각도를 보인 타구 트래킹 데이터 >

	index	타구속도	발사각도	HIT_RESULT	투구구속	STADIUM	color	score
442	442	33.17	-68.9	희생번트	139.04	잠실	gainsboro	0
13670	13670	62.29	-66.8	땅볼아웃	150.12	잠실	gainsboro	0
15273	15273	79.84	-67.2	땅볼아웃	138.30	잠실	gainsboro	0
25897	25898	65.26	-68.1	땅볼아웃	112.96	마산	gainsboro	0

이상치 범위 내의 있는 타구들의 경우, 모두 정상적인 인플레이 상황에서 발생 가능한 타구들로 판단하여, 발사각도 기준으로는 이상치 제거 X

05 배럴타구 정의 - EDA

각 점의 색깔은 각 타구별 결과 파란색 점은 홈런, 분홍색 점은 1루타를 대표

특정 색깔이 뭉쳐 있는 부분이 그래프를 통해 관찰되며, 이는 특정 타구 결과를 만들어 낼 수 있는 특정한 타구 속도와 타구 각도의 영역이 존재한다는 것을 보여줌.

좋은 타구 결과를 만들어 낼 수 있는 영역 또한 제한된 구역으로 표시할 수 있음.

05 배럴타구 정의 - EDA

배럴타구 구간 산정을 위해 임의로

발사각도 : 5도 ~ 65도

범위에서 1도 단위,

타구 속도: 133km/h ~ 193km/h 범위에서 1km/h 단위로

구간 분할

<산정한 구간의 타구 속도 분포>

<산정한 구간의 발사 각도 분포>

각 구간에 속하는 타구들의 결과를 바탕으로 구간별 장타율, 타율 계산

		count	score	hit_count	타물
발사각도_cut2	타구속도_cut2				
5	133	34	0.558824	18	0.529412
	134	28	0.500000	14	0.500000
	135	31	0.612903	16	0.516129
	136	41	0.780488	29	0.707317
	137	46	0.565217	26	0.565217
63	151		0.000000	0	0.000000
	152		0.000000	0	0.000000
	153		0.000000	0	0.000000
	154		0.000000	0	0.000000
	155		0.000000	0	0.000000
2067 rows × 4 co	lumns				

05 배럴타구 정의 - EDA

각 구간의 평균 장타율을 표현한 그래프

: 각 정사각형의 크기가 클수록 해당 구간의 평균 장타율이 높음

MLB의 배럴타구 기준

: 타구 속도와 발사각도의 조합상 평균적으로 타율 .500, 장타율 1.500이상을 생산하는 타구

을 **KBO의 타구들에 적용**한 결과

05 배럴타구 정의 - _{산정기준}

MLB의 배럴타구 기준을 KBO에 그대로 적용?

▶ 배럴 타구 기준 산정의 타당성과 MLB의 최근 4년간 리그 평균 장타율, 타율, 평균 타구 속도, 직구 평균 속도, barrel%를 KBO와 비교

지난 4년간 MLB에서 평균 7.5%의 배럴 타구가 생성되었다는 점에서 착안하여서, 전체 타구 개수 중 **장타율 상위 7.5%**의 타구들만 그래프에 포함 될 수있도록 그래프에 표현

MLB 배럴타구 기준을 KBO에 그대로 적용한 그래프와 유사한 모양과 분포

05 배럴타구 정의 - 산정기준

그래프에서 표현된 KBO 배럴타구 기준의 하한선이 두 리그의 평균 타구 속도의 차이를 반영하여, 주력/수비력/송구력 등의 외부요인을 고려하였더라도, 너무 낮다고 판단. <mark>타율과 장타율 기준을 상향 조정할 필요성</mark>

05 배럴타구 정의 - 산정기준

산정한 구간들에 대해, 장타율(1.470 ~ 1.600) - 타율(0.500 ~ 0.600)값을 조정해보며 MLB와 KBO의 차이를 반영한 적절한 기준값 선정

05 배럴타구 정의 - 결과및검증

KBO의 최종 배럴 타구 기준 선정

: 타율 0.600, 장타율 1.550 이상을 기록할 수 있다고 판단되는 타구

구간 산정

```
산정된 배럴타구 기준 적용
df['배럴지수'] = 0
for i in range(len(df)):
 a = float(df['타구속도'][i])
 b = float(df['발사각도'][i])
  if (148 <= a) & (a < 153) :
   if (-0.6 * a + 111.8 <= b) & (b < 1.6 * a - 209.8):
     df['배럴지수'][i] = 1
 elif (153 <= a) & (a < 158) :
   if (-0.6 * a + 111.8 <= b) & (b < (13/12) * a - 130.75):
     df['배럴지수'][i] = 1
  elif (158 <= a) & (a < 165) :
   if (-0.3125 * a + 66.375 <= b) & (b < (13/12) * a - 130.75):
     df['배럴지수'][i] = 1
  elif (165 <= a) & (a < 166) :
   if (-0.3125 * a + 66.375 <= b) & (b <= 48):
     df['배럴지수'][i] = 1
  elif (166 <= a) & (a < 169) :
   if (1.5 * a + 263.5 <= b) & (b <= 48):
     df['배럴지수'][i] = 1
```

1 배럴타구 정의 - 결과 및 검증

배럴로 분류되지 않은 타구

배럴로 분류된 타구

KBO 배럴타구 기준 정의 (타율: 0.600) (장타율: 1.550) (151,37) (151,31) 1301311323333413936373839140411424314444464714849505115253545956157585960611626364651666768697071172737479767777879808118283184

배럴로 분류된 타구

배럴로 분류되지 않은 타구

05 배럴타구 정의 - 결과및검증

배럴지수 TOP5 (규정타석)

팀 배럴지수 TOP4(2020)

	배럴지수	장타율(순위)
라모스(LG)	0.160584	0.592(4위)
김재환(두산)	0.156550	0.495(17위)
알테어(NC)	0.131410	0.541(9위)
로하스(kt)	0.127551	0.680(1위)
박건우(두산)	0.125000	0.472(25위)

		배럴지수	팀 장타율
LG 트윈스	TWINS	0.066704	0.428(3위)
NC 다이노스	Tiños	0.055632	0.462(1위)
두산 베어스	BEARS	0.055495	0.427(4위)
kt 위즈	ktwiz	0.049343	0.436(2위)

작년 규정 타석을 채운 타자 기준 **가장 높은 배럴지수를 기록한 5명**은 라모스, 김재환, 알테어, 로하스, 박건우.

이들은 장타율 상위권에 위치해 있으며 리그를 대표하는 강타자

팀 배럴지수 TOP4는 LG, NC, 두산, kt이며 이는 팀 장타율 TOP4와 일치하는 모습

06 OPS 예측 - 개요 및 문제 정의

변수 조합을 통해 후보군 3개 선정

OPS 예측 - 개요 및 문제 정의

선수 10명의 target value가 모두 주어졌으므로, 모델의 과적합 방지와 RMSE를 통해 성능을 평가할 때 의도한 **데이터셋별**, **요인별 차이의 효과를 객관적으로 반영**하기 위해

최종 예측 선수 10명은 train, test dataset에서 모두 제외함

데이터셋1), 2), 3) 각각에 대해 변수를 달리하여, 총 3개의 후보군 데이터셋을 추가로 생성하고, 이렇게 생성된 데이터셋 9개에 대해

Linear Regression, SVM Regressor, Random Forest Regressor, XGBoost Regressor, DNN regression

총 5개의 모델을 사용하여 학습하고,

성능평가 지표로는 RMSE score를 비교하여 최종 예측 모델을 선정

데이터셋 1) - 전체 시즌 평균 데이터

데이터셋 2) - 전체 시즌 가중치 평균 데이터(타자의 성장 혹은 노쇠화 등의 요인 반영)

18시즌: 17.5% / 19시즌: 22.5% / 20시즌: 27.5% / 21시즌: 32.5%의 가중치 부여

데이터셋 3) - 개별 시즌 데이터(스프링 캠프, 부상 등의 외부 요인을 고려해 타자의 해당 시즌 OPS 예측에는 개별 시즌의 데이터만 주요하다고 가정) + Train dataset 수 증가의 장점

데이터셋 4) - 21시즌 전체 평균 데이터

데이터셋 5) - 21시즌 최근 30일 경기 평균 데이터(21.08.14 ~ 21.09.14)

● 장타율 예측 - 추가한 변수

인플레이 타구비율, 볼넷삼진비율, 뜬볼-땅골 비율 변수 추가

변수 조합을 달리하여 데이터셋 후보 1, 2, 3 선정

```
df1 = df[['PCODE', '배럴지수', '뜬공땅볼비율', '장타율']]
df2 = df[['PCODE', '배럴지수', '뜬공땅볼비율', '홈런', '장타율']]
df3 = df[['PCODE', '타율', '홈런', '인플레이타구비율', '뜬공땅볼비율', '배럴지수', '장타율']]
df3
```

규정타석 기준의 40% 기준을 적용하여, 해당 기준에 미치지 못하는 타석수를 보인 타자 데이터는 제외

```
out_index1 = h2018['타석'] < 446*0.4
out_index2 = h2019['타석'] < 446*0.4
out_index3 = h2020['타석'] < 446*0.4
out_index4 = h2021['타석'] < 75*3.1*0.4

h2018 = h2018[~out_index1]
h2019 = h2019[~out_index2]
h2020 = h2020[~out_index3]
h2021 = h2021[~out_index4]
```

규정타석의 규정을 그대로 사용하여 데이터의 Quality를 높이는 문제와, 모델 학습을 위한 데이터의 수를 늘리는 **Trade-off 관계**를 고려하여

규정타석 규정의 40%로 데이터셋의 규정타석 기준 임의 산정

- 0.25

- 0.25

- 0.50

데이터셋 1) - 전체 시즌 평균 데이터

	PCODE	배렬지수	타석	타수	타율	안타	홈런	루타	장타물	희생플라이	볼넷	삼진	고의4구	사구	병살타	출루뮬	인플레이타구비율	뜬곰땅볼비율	0PS	볼넷삼진비율
3		0.157248	349.50	308.0	0.26050	82.50	23.00	166.50			36.50	89.50			4.5	0.353693	0.307494	2.253521	0.860693	0.407821
11	50350	0.062500	271.00	244.0	0.25400	62.00	2.00	82.00	0.33600	3.00	22.00	37.00	1.00		6.0	0.319853	0.297030	1.897436	0.655853	0.594595
14	50458	0.000000	241.50		0.24950	52.50	1.00	61.50	0.29300	2.50	18.50	32.50	0.00	1.0		0.306383	0.290960	1.112360	0.599383	
15	50468	0.108434	163.00	132.0	0.28000	37.00	6.00	63.00	0.47700	1.00	23.00	41.00	0.00	7.0	3.0	0.411043	0.369048	1.625000	0.888043	0.560976
16	50469	0.078261		196.0	0.20900	41.00	8.00	72.00	0.36700		18.00	58.00	0.00			0.271889	0.259843	1.629630	0.638889	0.310345
428	79402	0.022989	447.75	390.5	0.26225	104.75	5.25	138.25	0.34375	2.25	40.50	59.75		8.5		0.348785	0.307811	1.334507	0.692535	0.677824
430	79456	0.004754	239.50	218.0	0.30200	65.75	0.75	76.75	0.35425	1.00	14.00	23.50	1.00	2.5	7.5	0.352008	0.337224	0.790816	0.706258	0.595745
433	79608	0.039496	415.75	370.0	0.31700	117.50	10.25	174.75	0.46725	5.25	34.25	43.25	1.25	4.5		0.379290	0.344578	1.822034	0.846540	0.791908
435	99606	0.042017	205.00	183.0	0.29500	54.00	4.00	77.00	0.42100	1.00	16.00	49.00	1.00	5.0	5.0	0.368932	0.387597	1.074074	0.789932	0.326531
436	99810	0.036697			0.31800	90.00	3.00	118.00	0.41700		25.00	35.00	1.00			0.371795	0.359504	1.142857	0.788795	0.714286
153 rc	ws × 20	columns																		

데이터셋 2) - 전체 시즌 가중치 평균 데이터

	PC0DE	타율	홈런	인플레이타구비율	뜬공땅볼비율	배럴지수	장타율
	50165	0.26050	23.00	0.307494	2.239521	0.182801	0.50700
11	50350	0.25400	2.00	0.297030	1.897436	0.068750	0.33600
14	50458	0.24950	1.00	0.290960	1.101408	0.000000	0.29300
15	50468	0.28000	6.00	0.369048	1.625000	0.119277	0.47700
16	50469	0.20900	8.00	0.259843	1.629630	0.086087	0.36700
428	79402	0.26225	5.25	0.307811	1.346857	0.021220	0.34375
430	79456	0.30200	0.75	0.337224	0.826477	0.003962	0.35425
433	79608	0.31700	10.25	0.344578	1.793256	0.035714	0.46725
435	99606	0.29500	4.00	0.387597	1.074074	0.029412	0.42100
436	99810	0.31800	3.00	0.359504	1.142857	0.025688	0.41700
153 rc	ws × 7	columns					

데이터셋 3) - 개별 시즌 데이터

	PCODE_YEAR	타율	홈런	인플레이타구비율	뜬공땀볼비뮬	배럴지수	장타율
0	50165_2020	0.278		0.324111	2.386364	0.160584	0.592
1	50165_2021	0.243		0.276119	2.037037	0.150376	0.422
2	50350_2020	0.254		0.297030	1.897436	0.062500	0.336
3	50458_2020	0.232		0.280193	1.239130	0.000000	0.272
4	50458_2021	0.267		0.306122	0.976744	0.000000	0.314
461	79608_2019	0.315		0.346032	1.666667	0.020619	0.412
462	79608_2020	0.286		0.309859	2.203390	0.028571	0.413
463	79608_2021	0.325		0.376471	1.268293	0.048193	0.481
464	99606_2018	0.295		0.387597	1.074074	0.042017	0.421
465	99810_2018	0.318		0.359504	1.142857	0.036697	0.417
466 rc	ows × 7 columi	ns					

06 장타율 예측 - 모델 구축 및 훈련

from sklearn.linear_model import LinearRegression
lr_model = LinearRegression()
lr_model.fit(x_train, y_train)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

y_pred = lr_model.predict(x_test)

사용한 모델 Linear Regression

모델 선정 이유

적절한 독립변수 활용과 정규화 과정을 거치면 다른 복잡한 모델에 비해 높은 예측력과 설명력을 동시에 갖기 때문

(데이터의 일반적 인 분포를 고려하여, Standard Scaler 사용)

SV	R(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma='scal kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)
у.	ored = svr_model.predict(x_test)
	l용한 모델 upport Vector Machine Regression

svr_model = SVR(C=1.0, epsilon=0.2, kernel='rbf')

svr_model.fit(x_train, v_train)

모델 선정 이유

데이터의 수가 많지 않기 때문에, 학습속도가 느린 SVR의 단점 X Overfitting되는 경우가 적음

(데이터의 일반적 인 분포를 고려하여, Standard Scaler 사용)

사용한 모델

Deep Neural Network Regression

모델 선정 이유

2층의 hidden layer, relu activation function 사용 데이터의 비선형적인 특징 고려

○ **6** 장타율 예측 - 모델 구축 및 훈련


```
estimator = RandomForestRegressor()
param_grid = {
             'max_depth': [3, 4, 5, 6],
            "n_estimators" : [100,150,200],
             'min_samples_leaf': [1, 2, 3],
            "min_samples_split" : [2, 3, 4],
grid = GridSearchCV(estimator, param_grid, n_jobs=-1, cv=5)
grid.fit(x_train, y_train)
GridSearchCV(cv=5, error_score=nan,
             estimator=RandomForestRegressor(bootstrap=True, ccp_alpha=0.0,
                                             criterion='mse', max_depth=None,
                                             max_features='auto',
                                             max leaf nodes=None.
                                             max_samples=None,
                                             min impurity decrease=0.0.
                                             min_impurity_split=None,
                                             min_samples_leaf=1.
                                             min_samples_split=2,
                                             min_weight_fraction_leaf=0.0,
                                             n_estimators=100, n_jobs=None,
                                             oob_score=False, random_state=None,
                                             verbose=0, warm_start=False)
```

사용한 모델

Random Forest Regressor

Decision Tree기반 Bagging을 활용한 앙상블 알고리즘

모델 선정 이유

예측의 변동성이 줄고, 과적합을 방지함 결측치에 대해 Robust한 학습이 가능하기 때문에, 데이터수가 적은 경우 효과적 Grid Search를 통한 최적의 parameter tuning

사용한 모델

XGBoost Regressor

Decision Tree기반 Boosting을 활용한 앙상블 알고리즘

모델 선정 이유

병렬 처리를 이용한 빠른 학습 속도와 우수한 회귀 성능 Greedy 알고리즘을 통한 prunning을 통한 과적합 방지 Grid Search를 통한 최적의 parameter tuning

● **장타율 예측** - 모델 선정 및 장타율 예측

RMSE	Linear Regression	SVM Regression	Random Forest	XGBoost Regressor	DNN Regression
1-df1	0.050434181	0.053617175	0.05026235	0.053986618	0.056097957
1-df2	0.035939917	0.06036132	0.038473453	0.038987665	0.061332755
1-df3	0.020625518	0.080701662	0.021703205	0.021975356	0.032886636
2-df1	0.052219195	0.064047883	0.05781137	0.058628853	0.058746854
2-df2	0.038708033	0.068708343	0.034226742	0.034373811	0.045040512
2-df3	0.015867147	0.093634368	0.026819903	0.020690334	0.028152229
3-df1	0.060608077	0.063210976	0.067153797	0.077771392	0.068625346
3-df2	0.037691405	0.06624536	0.043528447	0.04699012	0.037703187
3-df3	0.024537555	0.101503589	0.025691432	0.025572611	0.02766533

데이터셋 1,2,3번에 대해 모두 공통적으로,

타율, 홈런, 인플레이타구비율, 뜬공땅볼비율, 배럴지수를 통해

장타율을 예측한 데이터셋(df3)에서 가장 높은 성능을 보임

예측 모델로는 Linear Regression, Random Forest, XGBoost Regressor 사용

데이터셋 1,2,3 각각에 대한

성능이 우수한 3개 모델의 예측값

+ 21년 기록

+ 최근 30경기의

ensemble을 통해

최종 예측값 도출

```
sig = (sig1 + sig2 + sig3 + sig4 + sig5)/5
slg
PCODE
76232
         0.529828
68050
         0.534003
75847
         0.541094
         0.530886
67341
79192
         0.469827
78224
         0.494640
78513
         0.448415
76290
         0.461833
79215
         0.444699
67872
         0.432151
dtype: float64
```

06 출루율 예측 - 추가한 변수

볼넷삼진비율, P/PA, 초구, 전체, 컨택%, 2S후 커트%, 2S후 선구% 변수 추가

P/PA: 타석 당 투구수

초구: 초구 배트 적극성, 초구에 배트가 나올 확률

전체: 전체 배트 적극성, 전체 투구수에서 배트가 나올 확률

컨택 %: 배트를 휘둘렀을 때 공을 맞춘 확률

2S후커트%: 2스트라이크 이후 커트율

2S후선구%: 2스트라이크 이후 선구율

장타율과 같은 기준의 정규타석 기준(QAB * 0.4)으로 이를 충족하지 못하는 타자들을 제거했으며, 변수 추가하는 과정에서, 선수이름과 PCODE를 연결하며 개명한 선수 2명 확인 및 동일 이름으로 처리

```
      rf [pf ['PCODE'] ==67539]

      index
      PCODE
      NAME

      343
      343
      67539
      나종덕

      969
      416
      67539
      나균안

      pf [pf ['PCODE'] ==62895]

      index
      PCODE
      NAME

      113
      113
      62895
      한동민

      1071
      205
      62895
      한동민
```

변수 조합을 달리하여 데이터셋 후보군 1, 2, 3 선정

df1 = df[['PCODE', '타율', '홈런', '볼샴비', 'P/PA', '초구', '전체', '컨택%', '2S후커트%', '2S후선구%', '출루율']] df2 = df[['PCODE', '타율', '홈런', '볼샴비', 'P/PA', '전체', '컨택%', '2S후선구%', '출루율']] df3 = df[['PCODE', '타율', '홈런', '볼샴비', '전체', '2S후선구%', '출루율']]

데이터셋 1) - 전체 시즌 평균 데이터

	PCODE	타율	홈런	볼삼비	P/PA	초구	전체	컨택%	2S후커트%	2S후선구%	출루뮬
	74540	0.278500	16.250000	0.451362	3.7400	26.775	45.275	77.725	74.750	36.825	0.345431
1	68050	0.337750	18.750000	0.670487	4.0000	31.225	44.225	78.775	74.625	37.525	0.415301
	62925	0.263250	4.500000	0.387931	3.7300	14.800	47.050	85.450	81.650	26.400	0.337010
	61353	0.285000	3.000000	0.215686	3.7250	36.950	52.850	76.050	73.200	30.300	0.327765
	62404	0.296750	15.250000	0.470930	3.9175	32.025	47.825	78.075	77.050	32.850	0.366544
121	79240	0.316750	6.250000	0.881481	3.5875	15.275	43.375	89.325	88.600	31.200	0.370721
122	68730	0.261333	17.333333	0.451613	3.7100	30.150	47.700	78.350	74.400	35.000	0.352336
123	66108	0.258500	2.000000	1.006623	4.2800	18.950	36.800	84.050	79.200	42.350	0.433815
124	76313	0.301500	18.250000	0.524691	3.9325	25.000	44.175	80.700	76.050	34.225	0.366316
125	51725	0.257000	7.000000	0.275862	3.8800	23.500	46.700	75.700	72.600	27.500	0.305970
126 ro	ws × 11	columns									

데이터셋 2) - 전체 시즌 가중치 평균 데이터

	NAME	P/PA	전체	초구	컨택%	2S후커트%	2S후선구%	PCODE	GYEAR	GAMENUM	타석	타수	타율	안타	홈런	루타	장타율	희생플라이	볼넷	삼진	고의4구	사구	병살타	출루율	볼삼비
0	강경학																								
1	강로한	3.44700	45.0900		57.6900						275.400		0.216000		3.600			0.900			0.000			0.278689	
2																	0.469475							0.349409	0.484488
3	강백호	4.01950			79.0825	75.2475		68050			480.775		0.345475	140.000			0.540850		58.85	81.475			6.40	0.425245	0.722307
4																									
162																									
163	흥창기	5.12600	43.9300	22.6450	100.9950		50.8250	66108	2020.5		500.500	399.250		121.850			0.514700	2.300		76.450	1.850	12.000		0.441382	1.115762
164														36.400											0.192308
165	황재균	3.94825	44.2675	25.0800	80.6750	76.3500	34.3675				449.250	402.125	0.303650		16.925	200.30	0.491650		40.35	75.300	0.625	2.850		0.368175	0.535857
166					98.4100						348.400									75.400					
167 rc	ws × 25	columns																							

데이터셋 3) - 개별 시즌 데이터

	PCODE_x	이름	P/PA	전체	초구	컨택%	2S후커트%	2S후선구%	GYEAR_x	PCODE_YEAR	PCODE_y	NAME	GYEAR_y	GAMENUM	타석	타수	타율	안타	홈런	루타	장타율	희생플라이	볼넷	삼진	고의4구	사구	병살타	출루뮬	볼삼비
0																													
1										61102_2018																		0.353448	0.350000
2										61186_2018																			
3										61208_2018														44.0				0.348276	
4																													
395		안재석										안재석																	
396	51463	피렐라								51463_2021	51463	피렐라									0.546							0.378453	0.666667
397										51725_2021																			
398										51817_2021																		0.406250	
399																													
		olumns																											

06 장타율 예측 - 모델 구축 및 훈련

from sklearn.linear_model import LinearRegression
lr_model = LinearRegression()
lr_model.fit(x_train, y_train)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

y_pred = lr_model.predict(x_test)

사용한 모델 Linear Regression

모델 선정 이유

적절한 독립변수 활용과 정규화 과정을 거치면 다른 복잡한 모델에 비해 높은 예측력과 설명력을 동시에 갖기 때문

(데이터의 일반적 인 분포를 고려하여, Standard Scaler 사용)

SV	R(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma='scal kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)
у.	ored = svr_model.predict(x_test)
	l용한 모델 upport Vector Machine Regression

svr_model = SVR(C=1.0, epsilon=0.2, kernel='rbf')

svr_model.fit(x_train, v_train)

모델 선정 이유

데이터의 수가 많지 않기 때문에, 학습속도가 느린 SVR의 단점 X Overfitting되는 경우가 적음

(데이터의 일반적 인 분포를 고려하여, Standard Scaler 사용)

사용한 모델

Deep Neural Network Regression

모델 선정 이유

2층의 hidden layer, relu activation function 사용 데이터의 비선형적인 특징 고려

○ **6** 장타율 예측 - 모델 구축 및 훈련


```
estimator = RandomForestRegressor()
param_grid = {
             'max_depth': [3, 4, 5, 6],
            "n_estimators" : [100,150,200],
             'min_samples_leaf': [1, 2, 3],
            "min_samples_split" : [2, 3, 4],
grid = GridSearchCV(estimator, param_grid, n_jobs=-1, cv=5)
grid.fit(x_train, y_train)
GridSearchCV(cv=5, error_score=nan,
             estimator=RandomForestRegressor(bootstrap=True, ccp_alpha=0.0,
                                             criterion='mse', max_depth=None,
                                             max_features='auto',
                                             max leaf nodes=None.
                                             max_samples=None,
                                             min impurity decrease=0.0.
                                             min_impurity_split=None,
                                             min_samples_leaf=1.
                                             min_samples_split=2,
                                             min_weight_fraction_leaf=0.0,
                                             n_estimators=100, n_jobs=None,
                                             oob_score=False, random_state=None,
                                             verbose=0, warm_start=False)
```

사용한 모델

Random Forest Regressor

Decision Tree기반 Bagging을 활용한 앙상블 알고리즘

모델 선정 이유

예측의 변동성이 줄고, 과적합을 방지함 결측치에 대해 Robust한 학습이 가능하기 때문에, 데이터수가 적은 경우 효과적 Grid Search를 통한 최적의 parameter tuning

사용한 모델

XGBoost Regressor

Decision Tree기반 Boosting을 활용한 앙상블 알고리즘

모델 선정 이유

병렬 처리를 이용한 빠른 학습 속도와 우수한 회귀 성능 Greedy 알고리즘을 통한 prunning을 통한 과적합 방지 Grid Search를 통한 최적의 parameter tuning

1 출루율 예측 - 모델 선정 및 장타율 예측

RMSE	Linear Regression	SVM Regression	Random Forest	XGBoost Regressor	DNN Regression
1-df1	0.011179908	0.034197882	0.016365512	0.022348527	0.59161625
1-df2	0.010432962	0.031445665	0.016626596	0.01597909	0.118699831
1-df3	0.017801209	0.032180909	0.021511706	0.025755987	0.211677245
2-df1	0.010476095	0.038380662	0.029513569	0.017557252	0.24527692
2-df2	0.013337261	0.029608601	0.022173497	0.02413501	0.102014505
2-df3	0.016742267	0.042136354	0.022958638	0.018426288	0.082582563
3-df1	0.009785504	0.034604691	0.014482869	0.013204167	0.46162966
3-df2	0.012448365	0.03798404	0.017769258	0.014105301	0.056389797
3-df3	0.014435321	0.041499461	0.015701606	0.015025819	0.062156958

데이터셋 1은 후보군 2번

데이터셋 2,3번에는 후보군 1번이

가장 높은 성능

예측 모델로는

Linear Regression, Random Forest, XGBoost Regressor 사용

데이터셋 1,2,3 각각에 대한

성능이 우수한 3개 모델의 예측값

+ 21년 기록

+ 최근 30경기의

ensemble을 통해

최종 예측값 도출

```
obp = (obp1 + obp2 + obp3 + obp4 + obp5) / 5
obp
PCODE
76232
         0.388486
68050
         0.405424
75847
         0.375414
67341
         0.451350
79192
         0.330667
         0.369018
78224
78513
        0.355794
76290
         0.373556
79215
         0.384098
67872
        0.339398
dtype: float64
```

06 OPS 예측

ops = s ops	slg + obp
PCODE 76232 68050 75847 67341 79192 78224 78513 76290 79215 67872 dtype:	0.918314 0.939427 0.916508 0.982236 0.800494 0.863658 0.804209 0.835389 0.828798 0.771549 float64

출루율과 장타율의 합으로 OPS 예측

test test	['OPS' ['장타] = ops 量] = s	os.index .values slg.values obp.values		
	NO.	PCODE	0PS	장타율	출루율
1	1	76232	0.918314	0.529828	0.388486
2	2	68050	0.939427	0.534003	0.405424
3	3	75847	0.916508	0.541094	0.375414
4	4	67341	0.982236	0.530886	0.451350
5	5	79192	0.800494	0.469827	0.330667
6	6	78224	0.863658	0.494640	0.369018
7	7	78513	0.804209	0.448415	0.355794
8	8	76290	0.835389	0.461833	0.373556
9	9	79215	0.828798	0.444699	0.384098
10	10	67872	0.771549	0.432151	0.339398

최종 예측결과

팬, 미디어

과거 타자의 **타점**, 홈런 수, 타율을 통해 타자를 평가했다면, 최근 장타율과 출루율을 더한 OPS 정도는 일반 야구를 가볍게 시청하는 시청자들에게 익숙해졌으며 이에 더해 타자의 WAR, WRC+를 찾아보는 팬층도 증가하는 추세

타구 데이터에 대한 축적과 분석, 새로운 기준을 제공함으로써, 야구라는 스포츠를 즐기는데 있어서 더 풍부한 경험을 소비자들에게 제공

구단

한국 프로야구 만의 배럴타구 기준의 선정을 통해 더다양한 방면에서 타자의 능력을 측정 가능

선수의 자유계약, 트레이드, 신인드래프트를 진행할 때양질의 데이터 분석을 통해 더 좋은 선수 혹은 저평가된 숨겨진 좋은 선수 영입

타석 당 투구수, 배트 적극성%, 컨택%, 2S후커트%, 2S후선구%

Baseballsavant,mlb.com

www.fangraphs.com

Exit Velo Average, Pitch Velo Average, Barrels%