

- > cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- > working counter

EtherCAT in practice

Michael Jost Beckhoff

BECKHOFF New Automation Technology

Cable

- cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

Requirements:

Category 5 / class D cable
EtherCAT uses 4 poles
symmetrical assignment 1:1 (no cross-cable is needed)
max. length 100m

Pin M12	Pin RJ45	Wire color (EIA/TIA-T568B)	Wire color (Industrial Ethernet cable)	Signal	Description
1	1	white-orange	yellow	TD+	Transmission Data +
3	2	orange	orange	TD-	Transmission Data -
2	3	white-green	white	RD+	Receiver Data +
4	6	green	blue	RD-	Receiver Data -

Cable

- cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- > working counter

Standard patch cable (min. CAT5) can be used for internal wirings in control cabinets.

RJ45 connector crimping

- cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

The crimping of RJ45 connectors often causes problems in industrial environments.

- filigree technique in comparison with traditional field bus systems
- connector and tool have to match
- assembly time is higher
- additional tool is required

PIN assignment standard RJ45 connector 1/2

- cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

normal assignment

- Pin
- 1 white-orange
- 2 orange
- 3 white-green
- 4 blue
- 5 white-blue
- 6 green
- 7 white-brown
- 8 brown

Nach EIA/TIA-T568B

turned assignment

Pin

- 1 white-green
- 2 green`
- 3 white-orange
- 4 blue
- 5 white-blue
- 6 orange
- 7 white-brown
- 3/brown

PIN assignment standard RJ45 connector 2/2

- cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

Cable standardization

- cable and connector
- > LED diagnosis
- > version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

Twisted Pair cable is divided into different categories according to EIA/TIA* 568-A-5 (ISO/IEC 11801). These correspond to the classes of EN50173.

Class	Applications	Category
Class A	Speech-/Data circuit for low-frequency applications up to 100 KHz for phone and ISDN	
Class B	Data circuit with medium data rates up to 1 MHz for phone and ISDN	
Class C	Data circuit for up to 16 MHz for phone, ISDN, Token Ting, Ethernet	Cat3
Class D	Data circuits for up to 100/125 MHz for phone, ISDN, Token Ring, Ethernet (Giga Bit Ethernet) , FDDI, TPDDI, 100 VG Anylan	Cat5, (Cat5e)
Class E	Data circuits for up to 250 MHz for Class D plus ATM and Giga Bit Ethernet	Cat6
Class F	Data circuits for up to 600 MHz	Cat7
Class G	CATV-equipments (Video) for up to 1200 MHz with a cable length of max. 50 m	Cat8

*Electronic Industries Alliance / Telecommunications Industry Association

Installation for field assembly connector ZS1090-0003

1/2

- cable and connector
- ➤ LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

Push the housing over the cable sheath

Press data module and element together

Stripping

Remove

Form the wires

Put on upper shielding shell

Put up splicing element

Put on lower shielding shell

Put up housing

Push housing and lock it

Put the data module into the assembly tool

Tighten connection

BECKHOFF New Automation Technology

Installation for field assembly connector ZS1090-0003

2/2

- cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

- assembly with existing tool
- error-secure through color code
- industrial capable

Function/ Signal	V EtherCAT	Pin No.		
Transmission Dats+/TD+	YE	WH GN	WH OG	1
Transmission Data-/TD-	OG	GN	OG	2
Receiver Data/RD+	WH	WH OG	WH GN	3
Receiver Data/RD-	BU	OG	GN	6

Link/Act LED

- > cable and connector
- ➤ LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

All EtherCAT devices with a connector (e.g. RJ45, M12), must have a Link/Activity display. Devices without connector could have such a display.

Status (as with standard Ethernet components)

LED out: no connection

LED on: connection

LED blinking: communication

RUN LED

- > cable and connector
- ➤ LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

The RUN LED indicates the status of the EtherCAT device -> see State Machine

- Status:
 - off:
 - blinking
 - single flash
 - on
 - flickering

INIT

Pre-Operational

Safe-Operational

Operational

Bootstrap

- > cable and connector
- ➤ LED diagnosis
- > version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- > working counter

power supply for bus coupler and E-Bus

power supply for power contacts

LED's at the EK1100

- > cable and connector
- ► LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

existing EtherCAT connection over cable and E-Bus; status EK1100 INIT

existing EtherCAT connection over cable and E-Bus; EK1100 is in status Operational

existing EtherCAT connection over cable; E-Bus disconnected; Status EK1100 INIT

Version identification – Hardware

- > cable and connector
- > LED diagnosis
- > version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- > working counter

Version identification – Software

- > cable and connector
- > LED diagnosis
- > version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

E²PROM

- > cable and connector
- > LED diagnosis
- > version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

FPGA

- > cable and connector
- > LED diagnosis
- > version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

BECKHOFF New Automation Technology

- > cable and connector
- > LED diagnosis
- > version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- > working counter

EtherCAT State Machine

- cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- > working counter

EtherCAT State Machine

1/2

- cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

,Init' State

no process data communication Master can write info register

Pre-Operational State
no process data communication
Master configures Slave
mailbox communication

,Safe Operational' State

mailbox communication

process data communication -> just inputs
outputs are in ,Safe State'

EtherCAT State Machine

2/2

- cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

,Operational' State process data communication in- and outputs

Bootstrap' State optional for download of new Firmware

BECKHOFF New Automation Technology

Sync Manager

- > cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

Prevents simultaneous access to DPRAM - data consistence

- 3 Buffer operation:
 - always one cache free for writing
 - always one cache with consistent data ready to read
 - assures most actual data
 - occupied threefold memory opposite to 1-cache operation
 - default for process data
- 1 Buffer operation
 - 1:1 data transmission, no lost of data
 - writing site must write before reading site can write and contrary
 - overflow protection
 - default for mailbox data

Sync Manager

- cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

10/02/2009

EtherCAT in practice 23

- > cable and connector
- > LED diagnosis
- > version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- > working counter

FMMU – Field bus Memory Management Unit

- cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

Translation of the logical address (within the telegram) into the physical address (within the node).

Mapping of the local addresses into the global EtherCAT address space (4 GByte)

- integrated within the EtherCAT Slave Controller
- bit addressing possible
- minimal overhead

Advantage: no copying within the controller, as the I/O's are prearanged in the process image

-> performance benefit

Mailbox

- > cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- > working counter

For acyclic exchange of parameter data between Master and Slave For configuration of the process image

Protocols

- > cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

ADS over EtherCAT (AoE)

ADS messages over EtherCAT

Ethernet over EtherCAT (EoE)

standard Ethernet frames over EtherCAT

CANopen over EtherCAT (CoE)

standard access to the object dictionary

File Access over EtherCAT (FoE)

for the download of new Firmware

Servo Profile (Sercos) over EtherCAT (SoE)

standard access to the Sercos identifier

Working Counter

- > cable and connector
- > LED diagnosis
- version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- working counter

Every EtherCAT telegram ends with a 16 bit Working Counter.

Every Slave Controller in communication who is completing the command (reading/writing) increases the working counter.

The Master compares the received Working Counter with the calculated Working Counter. Through this it can be determined if all commands have been completed.

- > cable and connector
- > LED diagnosis
- > version identification
- > state machine
- > sync manager
- > FMMU
- > mailbox
- > protocols
- > working counter

EtherCAT in practice 10/02/2009 29