Implementing a

Neural Network

on FPGAs

Project Seminar

Author: Oliver Kugel

Supervisor: Dirk Koch

24th November 2016

Outline

- 1. Brief explanation of Artificial Neural Networks (ANN)
- 2. Serialized FPGA-implementation of an ANN
- 3. Computation cell architecture
- 4. Dataflow Scheduling
- 5. Verilog Testbench

- 6. Where do I get the data from, where do I get the trained ANN from?
- 7. What is left to do?

Advantages of Serialization

- Avoid problem of large fan-outs
- Computations and replications are of a fixed preknown size
- Computation pipeline can be divided and mapped onto multiple FPGAs connected by PCIe links

FPGA₁ FPGA, FPGA₄ FPGA₃ FPGA₁ → PCle link FPGA₂

Challenges with Serialization

- Match producer rate to consumer rate to avoid large delays
- Get orchestration right
- Keep the pipe full at all times!

Computation Cell

Computation Cell

Scheduling

	Т	t(0)	t(1)	t(2)	t(3)	t(4)	t(5)	t(6)	t(7)	t(8)	t(9)	t(10)	t(11)	t(12)	t(13)	t(14)
h(0)	input	4	5	6	de	lay	2	3	4	delay					delay	
	result		0	5	17			0	3	11						
h(1)	input		4	5	6	17		2	3	4	11					
	result			4	14	32	32		2	8	20	20				
h(2)	input			4	5	6	17	32	2	3	4	11	20			
	result				8	23	47	47	47	4	13	29	29	29		
Р	input							17	32	47			11	20	29	

Verilog Testbench Waveform

Where does the Data come from?

- 14 million images
- 21,000 synsets
- Images are labelled
- Used heavily in academia and industry to train and evaluate
 artificial neural networks

Where does the Neural Network come from?

Inception-v3

- Pre-trained neural network provided by Google
- 5 billion multiply-adds per inference
- Less than 25 million parameters (we can bring ~4 million on an FPGA)
- Best-in-class error rates

Network	Crops	Top-5	Top-1	
Network	Evaluated	Error	Error	
GoogLeNet [20]	10	-	9.15%	
GoogLeNet [20]	144	-	7.89%	
VGG [18]	-	24.4%	6.8%	
BN-Inception [7]	144	22%	5.82%	
PReLU [6]	10	24.27%	7.38%	
PReLU [6]	-	21.59%	5.71%	
Inception-v3	12	19.47%	4.48%	
Inception-v3	144	18.77%	4.2%	

What is done

- My knowledge on FPGAs, Verilog, Tensorflow and Neural Networks has grown
- ImageNet data is locally available
- Tensorflow is built and works fine
- Compressed Inception-v3 network
- Designed and implemented computation cell
- Working testbench for computation cells
- Accumulated considerable number of sources and papers to reference in my thesis

What is left to do

- Functions implemented by Inception-v3 must be translated to Verilog (e.g. Relu)
- Software pre-processing to format images
- Problem of variable number of weights must be solved
- Speed and cost comparison to GPP
- Thesis must be written
- Optional: Multi-FPGA solution

Thank you.

Any questions?

Project Seminar

Author: Oliver Kugel

Supervisor: Dirk Koch

24th November 2016

