A Project Report

on

ANOMALY DEVICE FINGERPRINTING

Submitted for the partial fulfillment of the requirement

for the award of the Degree of

BACHELOR OF TECHNOLOGY

In

COMPUTER SCIENCE & ENGINEERING

by

RITAM GHOSH

Under the Supervision of

Under the Supervision of

RAMANPREET KAUR

SAKET ARUN JADHAV

DIT UNIVERSITY, DEHRADUN, INDIA

(State Private University through State Legislature Act No 10 of 2013 of Uttarakhand and approved by UGC)

Mussoorie Diversion Road, Dehradun, Uttrakhand-248009, India

2019-2020

DECLARATION

This is to certify that the Project entitled "Anomaly Device Fingerprinting" in partial fulfillment of the requirement for the award of the Degree of Bachelor of Technology in Computer Science & Engineering, submitted to DIT University, Dehradun, Uttarakhand, India, is an authentic record of my own work carried out during the period January 2020 to May 2020, under the supervision of Mr. Saket Arun Jadhav.

The matter embodied in this Project has not been submitted for the award of any other degree or diploma to any University/Institution.

Ritam Ghosh

160111046

Date: 12/04/2020

Place: Dehradun

CERTIFICATE

This is to certify that the Project entitled "Anomaly Device Fingerprinting" in partial fulfillment of the requirement for the award of the Degree of Bachelor of Technology in Computer Science & Engineering, submitted to DIT University, Dehradun, Uttarakhand, India, is an authentic record of bonafide research work carried out by Mr. Ritam Ghosh, 160111046 under my supervision.

Ramanpreet Kaur

IBM Trainer

DIT University

Saket Arun Jadhav Product Engineer Vehere Interactive

Dr. Vishal Bharti HOD of Department Dept. CSE

Date: 12/04/2020

Place: Dehradun

ABBREVIATIONS

CNN CONVOLUTIONAL NEURAL NETWORK [3]

RNN RECURRENT NEURAL NETWORKS [3]

RELU RECTIFIED LINEAR UNIT [2]

ACKNOWLEDGEMENT

I gratefully acknowledge Mr. Prasenjit Mandal (Senior Product Engineer), Vehere Interactive, Kolkata for his permission, expertise, appreciation and recognition during the work.

I express my sincere thanks to my mentor during internship program Mr. Saket Arun Jadhav (Product Engineer), Vehere Interactive, Kolkata, for his personal attention, guidance and encouragement during this work.

I heartily thank our university mentor Mrs. Ramanpreet Kaur (IBM Trainer), DIT University, Dehradun for his guidance and suggestions during this completion project work.

The joy of getting acquainted with a group of well associated, highly efficient, professional staff was a great experience to me. I acknowledge, at this moment, the appreciations, recognitions, favours, advices and encouragement from all members of Vehere Interactive, Kolkata & DIT University, Dehradun has given to me, which has thrown new light and meaning on my life.

I once again sincerely thanks all those who have helped me directly and indirectly during my project.

Ritam Ghosh

ABSTRACT

This project automates the various manual procedures that occur during device fingerprinting which is commonly used for tracking, monitoring & detection. In this device fingerprinting is used but in the specific context of anomaly, providing signatures & pattern analysis of incoming & outgoing processes of a network of an organisation to maintain security standards. Device Fingerprinting is a new way of differentiating between a valuable client, employee and professional fraudster online. Online identity verification and authentication is a significant challenge and concern to all business owners to safeguards their organisation interest.

So, the topic "Anomaly Device Fingerprinting" is chosen to develop an automated system which can validates internal security from inside and outside world. It will not only act as a self-propelled firewall from an organisation but as a monitoring, tracking and detection system for an organisation having full control of it. This automated system will reduce the risk as having own monitoring system than trusting other 3rd party firewall. Here an automated programmed & algorithm will be developed as per datasets generated after pre-processing & transformation of raw data which will help in having an automated device fingerprinting system for network analysis.

LIST OF FIGURES

Figure No.	Title	Page No
Fig 1	Methodology Stages	12
Fig 2	Activity Diagram	13
Fig 3	Flow Diagram	14
Fig 4	Flow Diagram	14
Fig 5	layers structure	15
Fig 6	CNN Architecture	15
Fig 7	Model Flow	16
Fig 8	Anomaly Detection Architecture	16
Img 1	Raw Data	17
Img 2	Featured Data Frame	18
Img 3	Min Max Data Frame	19
Img 4	Model Accuracy	20
Img 5	Packet Data	20

TABLE OF CONTENTS

Title	Page No			
DEC	CLARATIONII			
CER	TIFICATEIII			
ABE	BRIVATIONSIV			
ACK	KNOWLEDGEMENTV			
ABS	TRACTVI			
LIST OF FIGURESVII				
TAE	BLE OF CONTENTSVIII			
CHA	APTER 1 INTRODUCTION			
1.1	ABOUT VEHERE01			
1.2	VEHERE PRODUCT DOMAINS02			
1.3	PURPOSE03			
1.4	OBJECTIVE03			
1.5	MOTIVATION03			
1.6	DEFINITION AND OVERVIEW04			
1.7	COMBAT STRATEGY05			

CHA	APTER 2	OVERALL DESCRIPTION		
2.1	METHOD	LOGY		
2.2	PROJECT	PERSPECTIVE	09	
2.3	PROJECT	PARAMETERS	10	
2.4	PROJECT	FUNCTIONALITY	11	
CHA	APTER 3	FIGURES & DIAGRAMS		
CHA	APTER 4	INTERFACES		
4.1	DEVELOP	PER USER INTERFACES	17	
4.2	HARDWA	RE INTERFACES	21	
4.3	SOFTWAR	RE INTERFACES	22	
CHA	APTER 5	CONCLUSION AND SCOPE OF WORK		
5.1	CONCLUS	SION	23	
5.2	SCOPE OF	F WORK	24	
5.3	REFERENCES			