

Desarrollo de un dispositivo de comunicación de equipos de monitoreo y control energético para la domótica de motorhomes

Autor:

Esp. Ing. Matías Nahuel Rodriguez

Director:

Mg. Lic. Leopoldo Alfredo Zimperz (FIUBA)

Índice

1. Descripción técnica-conceptual del proyecto a realizar	 5
2. Identificación y análisis de los interesados	 6
3. Propósito del proyecto	 6
4. Alcance del proyecto	 7
5. Supuestos del proyecto	 7
6. Requerimientos	 7
7. Historias de usuarios (<i>Product backlog</i>)	 8
8. Entregables principales del proyecto	 9
9. Desglose del trabajo en tareas	 10
10. Diagrama de Activity On Node	 11
11. Diagrama de Gantt	 13
12. Presupuesto detallado del proyecto	 16
13. Gestión de riesgos	 16
14. Gestión de la calidad	 17
15. Procesos de cierre	18

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	24 de junio de 2025
1	Se completa hasta el punto 5 inclusive	8 de julio de 2025
2	Se completa hasta el punto 9 inclusive	15 de julio de 2025

Acta de constitución del proyecto

Buenos Aires, 24 de junio de 2025

Por medio de la presente se acuerda con el Esp. Ing. Matías Nahuel Rodriguez que su Trabajo Final de la Maestría en Internet de las Cosas se titulará "Desarrollo de un dispositivo de comunicación de equipos de monitoreo y control energético para la domótica de motorhomes" y consistirá en el desarrollo de un dispositivo que posibilite la adaptación e integración de equipos comerciales a una red domótica orientada al control y monitoreo de sistemas energéticos en motorhomes. El trabajo tendrá un presupuesto preliminar estimado de 631 horas y un costo estimado de \$ XXX, con fecha de inicio el 24 de junio de 2025 y fecha de presentación pública el 15 de junio de 2026.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Ignacio Beloni Enertik Argentina

Mg. Lic. Leopoldo Alfredo Zimperz Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

El presente proyecto se desarrollará en conjunto a la empresa Enertik Argentina para la carrera de Maestría en Internet de las Cosas. Esta empresa posee un área de laboratorio, cuya finalidad es la de investigación y desarrollo de diversos equipos que puedan satisfacer ciertas necesidades y que puedan ser comercializados.

Una de las áreas en las que se especializa el laboratorio es el desarrollo de equipos destinados a la domótica de motorhomes. Estos dispositivos están diseñados para monitorear y controlar diversos parámetros del vehículo, tales como la iluminación, sonido, niveles de agua y energía, y otros sistemas distribuidos a lo largo de toda la unidad habitacional.

Entre estos dispositivos, se destaca un módulo central denominado PRC10, que gestiona toda la comunicación y coordina el accionar de los demás equipos.

Entre las distintas funcionalidades que cumple este dispositivo, se incluye el monitoreo y control energético de un conjunto compuesto por batería, cargador e inversor.

Actualmente, los fabricantes de motorhomes están migrando este conjunto a tecnologías proporcionadas por la marca Victron Energy.

Esta tendencia genera la necesidad de desarrollar un dispositivo que permita integrar los equipos provistos por Victron Energy a la red de domótica desarrollada por Enertik.

Para ello, el Cerbo GX (un dispositivo de Victron Energy que actúa como centro de monitoreo y control de su red de energía) debe vincularse con la PRC10 a través de un canal de comunicación adecuado. La figura 1 muestra un diagrama en bloques que ilustra cómo debe establecerse la comunicación entre ambos sistemas.

Figura 1. Diagrama en bloques del sistema.

Para la comunicación con el Cerbo GX, Victron Energy proporciona (en su sitio web) guías y documentación técnica que permiten implementar el monitoreo y control de sus dispositivos

mediante el protocolo Modbus TCP. Por otra parte, la comunicación con la PRC10 deberá ser por protocolo CAN.

Para el control de la red de domótica, Enertik dispone de una pantalla que cumple la función de HMI. En relación con esto, se deberá desarrollar una aplicación que replique, en la medida de lo posible, todas las funcionalidades de dicha pantalla, así como también permita monitorear y controlar los equipos conectados a la red Victron.

Con este desarrollo se busca brindar a los clientes una alternativa adicional para gestionar y controlar los sistemas integrados en el motorhome.

Este dispositivo de comunicación no existe a la fecha de elaboración de este documento, por lo que deberá ser desarrollado en su totalidad. Esto incluye el diseño del PCB, el desarrollo del firmware para el microcontrolador (ESP32) y la creación de la aplicación mencionada anteriormente.

Este equipo está previsto para convertirse en un producto comercial, por lo que se solicitará la firma de acuerdos de confidencialidad a todas las personas involucradas en su desarrollo (alumno responsable, director, jurados, etc.).

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Cliente	Ignacio Beloni	Enertik Argentina	Director Enertik
Responsable	Esp. Ing. Matías Nahuel	Enertik Argentina - FIU-	Alumno
	Rodriguez	BA	
Orientador	Mg. Lic. Leopoldo Alfre-	FIUBA	Director Trabajo final
	do Zimperz		
Usuario final	Fabricantes de motorho-	Varios	-
	mes		

- Cliente: evaluará el cumplimiento de objetivos.
- Orientador: participará continuamente durante la ejecución del proyecto, guiando y aconsejando sobre el uso de las distintas herramientas.
- Usuarios finales: fabricantes de motorhomes para implementarlos en su red de domótica interna.

3. Propósito del proyecto

Desarrollar un dispositivo de comunicación que permita la integración de equipos de la marca Victron Energy a la red de domótica provista por Enertik, junto con una aplicación que ofrezca al usuario final una alternativa adicional para el control y monitoreo de los distintos sistemas integrados en el motorhome.

4. Alcance del proyecto

El presente proyecto incluye:

- Desarrollo del firmware para el microcontrolador (ESP32).
- Diseño de la placa de circuito impreso (PCB).
- Generación de lista de componentes para montaje (BOM).
- Desarrollo de una aplicación que permita el control tanto de la red Victron como de la red de domótica.
- Pruebas funcionales de integración entre la PRC10 y el Cerbo GX.

El proyecto no incluye:

- Diseño del gabinete o carcasa para el PCB.
- Redacción de manuales de uso o documentación para el usuario final.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Se dispondrá, en tiempo y forma, de las materias primas necesarias para el desarrollo del hardware.
- Se contará con acceso a herramientas de diseño electrónico (como Altium Designer) y entornos de desarrollo (IDE, compiladores, etc.).
- La empresa Enertik aportará los equipos de Victron Energy requeridos para la realización de los ensayos.
- Enertik pondrá a disposición el módulo PRC10, así como los demás dispositivos necesarios para las pruebas.
- La documentación técnica provista en el sitio web de Victron Energy será suficiente y adecuada para establecer la red de comunicación mediante Modbus TCP.
- En caso de requerir orientación o asesoramiento, se contará con el apoyo del director del proyecto, así como también del personal de Enertik con experiencia en redes Victron.

6. Requerimientos

- 1. Requerimientos en el dispositivo:
 - 1.1. Debe establecer comunicación con el Cerbo GX utilizando el protocolo Modbus TCP sobre Ethernet o Wi-Fi.

- 1.2. Debe comunicarse con el módulo PRC10 a través del protocolo CAN.
- 1.3. Debe generar una red Wi-Fi en modo Access Point con SSID configurable.
- 1.4. La frecuencia de actualización de datos debe ser de aproximadamente veinte segundos.
- 2. Requerimientos en la aplicación:
 - 2.1. Debe conectarse al sistema embebido mediante la red Wi-Fi generada por este.
 - 2.2. Debe mostrar en tiempo real el estado de las variables monitoreadas.
 - 2.3. Debe permitir el envío de comandos para el control de los dispositivos de domótica.
 - 2.4. Debe ser accesible desde dispositivos con sistema operativo Android.
 - 2.5. Puede incluir la funcionalidad de inicio de sesión de usuario para acceso a los controles del sistema.
- 3. Requerimientos generales:
 - 3.1. El sistema debe operar de forma autónoma, sin requerir conexión a Internet.
 - 3.2. El equipo debe alimentarse a través de la red física de 12 VDC $(+12, \, \text{GND}, \, \text{CAN H}, \, \text{CAN L})$ utilizada por los demás dispositivos.

7. Historias de usuarios (*Product backlog*)

Para definir los story points se utilizará la serie de Fibonacci.

Por otra parte, la tabla de pesos a utilizar será:

- 1. Dificultad en el trabajo a realizar:
 - Baja: peso 1.
 - Media: peso 3.
 - Alta: peso 5.
- 2. Complejidad en el trabajo a realizar:
 - Baja: peso 1.
 - Media: peso 4.
 - Alta: peso 7.
- 3. Incertidumbre en el trabajo a realizar:
 - Baja: peso 2.
 - Media: peso 3.
 - Alta: peso 5.

Historias de usuario:

1. Como usuario final, quiero conectarme desde mi teléfono a la red Wi-Fi del dispositivo para poder visualizar y controlar los sistemas del motorhome.

• Dificultad: media.

• Complejidad: media.

• Incertidumbre: alto.

• Story point: 13.

2. Como usuario final, quiero encender y apagar dispositivos de la red de domótica desde la aplicación para controlar el ambiente del motorhome.

• Dificultad: bajo.

• Complejidad: media.

• Incertidumbre: bajo.

• Story point: 8.

3. Como desarrollador, quiero que el dispositivo lea datos del Cerbo GX usando Modbus TCP para integrarlos al sistema de monitoreo.

• Dificultad: alto.

• Complejidad: media.

• Incertidumbre: media.

Story point: 13.

4. Como instalador, quiero que el dispositivo se alimente desde la red física existente (+12, GND, CAN H, CAN L) para facilitar la integración en el motorhome.

Dificultad: media.

Complejidad: media.

• Incertidumbre: bajo.

Story point: 8.

5. Como desarrollador, quiero que el dispositivo se comunique con la PRC10 mediante CAN para poder integrar el nuevo sistema a la red de domótica.

Dificultad: alta.

Complejidad: media.

■ Incertidumbre: alta.

• Story point: 13.

8. Entregables principales del proyecto

Los entregables del proyecto son:

- Prototipo funcional del dispositivo de comunicación.
- Diagrama esquemático del circuito.
- Código fuente del firmware.
- Código fuente de la aplicación móvil

- Lista de componentes para montaje (BOM).
- Archivos gerber para fabricación de PCB.
- Instalador de la aplicación (en caso de ser implementado).
- Memoria final de trabajo.

9. Desglose del trabajo en tareas

- 1. Análisis inicial (30 h)
 - 1.1. Revisión de la documentación de microcontrolador ESP32 (5 h).
 - 1.2. Revisión de la documentación de Victron Energy y Modbus TCP (20 h).
 - 1.3. Preparación del entorno de desarrollo IDE (5 h).
- 2. Desarrollo de hardware (233 h)
 - 2.1. Configuración de periféricos sobre el ESP32: pines, timers, puertos, RTOS (10 h).
 - 2.2. Implementación de la red Wi-FI como Acess Point: configuración y manejo de conexión (10 h).
 - 2.3. Desarrollo de comunicación con PRC10
 - 1) Protocolo CAN: implementación con MCP2551 (10 h).
 - 2) Desarrollo del módulo transceiver (10 h).
 - 3) Incorporación de los comandos utilizados en la PRC10 (10 h).
 - 4) Modificación del firmware de la PRC10 (20 h).
 - 5) Ensayos de comunicación entre ESP32 y PRC10 (20 h).
 - 2.4. Desarrollo de comunicación con Cerbo GX
 - 1) Desarrollo de la biblioteca con la información de todos los dispositivos de Victron Energy (25 h).
 - 2) Modbus TCP: implementación por Wi-Fi (30 h).
 - 3) Modbus TCP: implementación por Ethernet con W5100 (30 h).
 - 4) Incorporación de los comandos y funciones para operar con los registros Modbus (30 h).
 - 5) Análisis y comporativa entre implementación Wi-Fi y Ethernet (8 h).
 - 6) Ensayos de comunicación entre ESP32 y Cerbo GX (20 h).
- 3. Desarrollo de la aplicación (220 h)
 - 3.1. Análisis y evaluación: aplicación embebida y aplicación nativa para Android (10 h).
 - 3.2. Diseño de esquemas para interfaces gráficas (15 h).
 - 3.3. Desarrollo de aplicación embebida
 - 1) Desarrollo de estructura en HTML (25 h).
 - 2) Estilos visuales con CSS (25 h).
 - 3) Manejo de peticiones y funciones con Javascript Typescript (35 h).
 - 4) Conversión de formato y carga de archivos al ESP32 (15 h).
 - 5) Ensayos con distintos navegadores y dispositivos (15 h).
 - 3.4. Desarrollo de la aplicación nativa para Android

- 1) Creación y configuración del proyecto en Angular (10 h).
- 2) Desarrollo de componentes y vistas (HTML CSS Javascript) (30 h).
- 3) Implementación de la comunicación con el ESP32 por WebSocket (15 h).
- 4) Configuración en Android Studio para generación de APK (10 h).
- 5) Ensayos en distintos dispositivos móviles (15 h).

4. Desarrollo de PCB (78 h)

- 4.1. Diseño de prototipo experimental (25 h).
- 4.2. Desarrollo de PCB con Altium Designer (35 h).
- 4.3. Fabricación: generación de archivos gerber e inicio de tramite de fabricación (10 h).
- 4.4. Generación de esquemático de circuito y lista de componentes para montaje (8 h).
- 5. Redacción de informe final para maestría (70 h)
 - 5.1. Redacción del informe de avance (10 h).
 - 5.2. Redacción del informe final del proyecto (40 h).
 - 5.3. Elaboración de la presentación (20 h).

Cantidad total de horas: 631 h.

10. Diagrama de Activity On Node

La Figura 2 muestra el diagrama Activity on Node general del proyecto, junto con el tiempo que demandará cada tarea (expresado en horas).

Se puede observar que el camino crítico (representado por el trayecto en rojo) tomará unas 411 horas de trabajo.

Figura 2. Diagrama de Activity on Node general.

A continuación se mostrarán los diagramas Activity on Node que representan a las distintas subtareas, junto con el tiempo que demandarán cada una de ellas (expresado en horas). El camino crítico quedará representado por el trayecto de color rojo.

- La Figura 3 muestra las subtareas 1.
- La Figura 4 muestra las subtareas 2.
- La Figura 5 muestra las subtareas 3.
- La Figura 6 muestra las subtareas 4.
- La Figura 7 muestra las subtareas 5.

Figura 3. Activity on Node (tareas 1).

Figura 4. Activity on Node (tareas 2).

Figura 5. Activity on Node (tareas 3).

Figura 6. Activity on Node (tareas 4).

Figura 7. Activity on Node (tareas 5).

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de Gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa.
 https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 8, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Las fechas pueden ser calculadas utilizando alguna de las herramientas antes citadas. Sin embargo, el siguiente ejemplo fue elaborado utilizando esta hoja de cálculo.

Es importante destacar que el ancho del diagrama estará dado por la longitud del texto utilizado para las tareas (Ejemplo: tarea 1, tarea 2, etcétera) y el valor x unit. Para mejorar la apariencia del diagrama, es necesario ajustar este valor y, quizás, acortar los nombres de las tareas.

Figura 8. Diagrama de gantt de ejemplo

Figura 9. Ejemplo de diagrama de Gantt (apaisado).

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

Incluir la aclaración de si se emplea como moneda el peso argentino (ARS) o si se usa moneda extranjera (USD, EUR, etc). Si es en moneda extranjera se debe indicar la tasa de conversión respecto a la moneda local en una fecha dada.

COSTOS DIRECTOS					
Descripción	Cantidad	Valor unitario	Valor total		
SUBTOTAL					
COSTOS INDIRECTOS					
Descripción	Cantidad	Valor unitario	Valor total		
SUBTOTAL					
TOTAL					

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).
 Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

• Severidad (S): X. Justificación...

 Ocurrencia (O): Y. Justificación...

Riesgo 3:

- Severidad (S): X.
 Justificación...
- Ocurrencia (O): Y. Justificación...
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado:

Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación:

- Severidad (S*): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O*): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Elija al menos diez requerimientos que a su criterio sean los más importantes/críticos/que aportan más valor y para cada uno de ellos indique las acciones de verificación y validación que permitan asegurar su cumplimiento.

• Req #1: copiar acá el requerimiento con su correspondiente número.

- Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar.
- Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar.

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc.

Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno.

En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 - Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, los problemas que surgieron y cómo se solucionaron:
 - Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores:
 - Indicar esto y quién financiará los gastos correspondientes.