## **Student Information**

Name: Satılmış ÖRENCİK

ID: 2396273

## Answer 1

Turing Machine:



Our algorithms purpose write blank symbol for leftmost "0" and rightmost "1" each cycle. Machine starts with  $q_s$  state. If there is only blank input or starts with input "1" it goes to  $q_f$  and remain there.

 $q_0$  state: Starting Cycle State if input 0 then tape goes to right and machine goes to the next state  $q_1$  if there is only blank symbol then it is ACCEPTED!

 $q_1$  state: To find right most "1" it goes to right of the tape. If there is blank symbol machine goes to  $q_2$  state.

 $q_2$  state: Write replace blank with "1" and machine goes to  $q_3$  state.

 $q_3$  state: It find leftmost "0" then machine goes to again  $q_0$  state.

 $q_f$  state: trap state if there is only blank input or input starts with "1". accept state: if  $q_0$  take input blank there are same amount of 0's and 1's in the input and input is ACCEPTED.

For Inputs: 000111





Final State:







Final State:







Final State:



|  |  |  |  | 1 |   |  |  |  |  |
|--|--|--|--|---|---|--|--|--|--|
|  |  |  |  |   |   |  |  |  |  |
|  |  |  |  | _ |   |  |  |  |  |
|  |  |  |  |   |   |  |  |  |  |
|  |  |  |  |   | 1 |  |  |  |  |



Final State:



| 100 |   |   | 2/ | 200   |   |   | 7 | 100 | Ç0 |    |  |  |
|-----|---|---|----|-------|---|---|---|-----|----|----|--|--|
|     |   |   |    | 5,000 |   |   |   |     |    |    |  |  |
|     | 0 | 0 | 1  | 1     | 1 | 0 |   |     |    |    |  |  |
|     | • | _ | _  | _     | _ | • |   |     |    | 37 |  |  |





Final State:



| - 0 |  |  |  |   |     |   |   |  |  |  |   |   |
|-----|--|--|--|---|-----|---|---|--|--|--|---|---|
|     |  |  |  | 1 | - 4 | a |   |  |  |  |   |   |
|     |  |  |  | 1 | 1   | 0 |   |  |  |  |   |   |
|     |  |  |  |   |     |   |   |  |  |  |   |   |
|     |  |  |  |   | -   |   | 3 |  |  |  | _ | _ |





Final State:





## Answer 2

Turing Machine:



Turing Machine consists of 3 parts. First find the right most input. Second make a cycle change main inputs and create new palindromic string. Third make a new cycle and reverse inputs starting values.

 $q_0$  and  $q_1$  states: Find the right most input and write "x" to first blank, machine goes to  $q_2$  state.  $q_2$  state: First Loop State it changes "0" to "B" and "1" to "D" and if last input is "0" machine goes to  $q_3$  state, if last input "1" machine goes to  $q_4$  state. In addition, if there is no 0's or 1's in first string it goes to  $q_6$ ,

 $q_3$  state: insert first blank "0" otherwise tape went right machine goes to  $q_5$ .

 $q_4$  state: insert first blank "1" otherwise tape went right machine goes to  $q_5$ .

 $q_5$  state: tape goes to left to find "x" cross mark between two strings. Then machine goes to loop state  $q_2$ .

 $q_6$  state: Reverse first string "B" to "0" and "D" to "1". find cross mark "x" input tape and delete "x".

 $q_7$  state: if next input "0" delete it and tape goes left machine goes to  $q_8$ . If next input "1" delete it and tape goes left machine goes to  $q_{10}$ .

 $q_8$  state: insert "0" and tape goes to right machine goes to  $q_9$ .

 $q_{10}$  state: insert "1" and tape goes to right machine goes to  $q_9$ .

 $q_9$  state: find to next blank in tape machine goes to  $q_7$ . Loop again.  $q_{11}$  state: END state.

For Inputs: 1011



Final State:





Final State:



Initial State:



Final State:





Final State:





Final State:





Final State:



## Answer 3

Turing machines with a 2-dimensional tape that have one read-write head, one finite control, and one two dimensional tape. The tape has the left end, and the top end but extends indefinitely to the down and right. It is separated into rows of small squares.

A Turing Machine is quintuple( $K, \Sigma, \delta, s, H$ ) where;

K is a finite set of states.

 $\Sigma$  is an alphabet

 $s \in K$  is the initial state

 $H \subseteq K$  is the set of halting states.

 $\delta$  is a transition function, and  $\delta$ : Q  $\times \Sigma - > Q \times \Sigma \times \{L, R, U, D\}$  where;

L: Left, R: Right, U: Up and D: Down

A 2-dimensional Turing machine's computation is a series of configurations, starting with an initial configuration, each of which is decided by the preceding configuration and the machine's current state.

A 2-dimensional Turing machine determines a language L if, after a finite number of steps, it halts in a final state for every string w in L and never halts for any string w not in L.