30 March 2024 16:36

$$x \equiv 0 \pmod{8}$$
 $x \equiv 8 \pmod{125}$ $x \equiv 0 \pmod{8}$ $x \equiv 4 \pmod{125}$
 $x \equiv 8 \pmod{125}$ $x \equiv 8 \pmod{125}$
 $x = 8$

$$\chi = 0 \pmod{4}$$
 $\chi = 1 \pmod{25}$
 $4 = 4 \pmod{25}$ $\chi = 76$
 $76 = 1 \pmod{25}$

Det a and b be relatively prime positive intergs. Prove that there are in finitely many relatively prime terms in the AP, a, a+b, a+2b, a+3b, ----

Ans:
$$gcd(a,b)=1$$
 $S=\begin{cases} a, a_1, a_3, ---- & 0 \end{cases}$ $gcd(a_i, a_j)=1$ fij and $i\neq j$ $S_1=\begin{cases} a_1 \end{cases}$ $S_2=\begin{cases} a_1 \end{cases}$ $S_2=\begin{cases} a_1 \end{cases}$ $S_3=\begin{cases} a_1 \end{cases}$ $S_4=\begin{cases} a_1 \end{cases}$ S

Inductive assumption! - Sm exists

Inductive Step'- Let $Sm = \{a+k_1b, a+k_2b, \dots, a+k_mb\}$ Then, let $\{P_1, P_2, \dots, P_n\}$ be the set of all prime that divides $a+k_1b$ for some $i \in \{1, \dots, m\}$. That $j \in \{1, \dots, m\}$ for $j \in \{1, \dots, m\}$. That $j \in \{1, \dots, m\}$ for $j \in \{1, \dots, m\}$. $j \in \{1, \dots, m\}$ for $j \in \{1, \dots, m\}$. $j \in \{1, \dots, m\}$ for $j \in \{1, \dots, m\}$. $j \in \{1, \dots, m\}$ for $j \in \{1, \dots, m\}$. $j \in \{1, \dots, m\}$ for $j \in \{1, \dots, m\}$. $j \in \{1, \dots, m\}$ for $j \in \{1, \dots, m\}$. $j \in \{1, \dots, m\}$ for $j \in \{1, \dots, m\}$. $j \in \{1, \dots, m\}$ for $j \in \{1, \dots, m\}$. $j \in \{1, \dots, m\}$ for $j \in \{1, \dots, m\}$. $j \in \{1, \dots, m\}$ for $j \in \{1, \dots, m\}$. $j \in \{1, \dots, m\}$ for $j \in \{1, \dots, m\}$.

$$\Rightarrow g(d(a+k_{m+1}b, a+k_{i}b) = 1 + 1 \in \{1,2,-,m\}$$

$$\Rightarrow S_{m+1} \text{ exists}$$

(x = a, (wod b))

(x = an (mod bn))

(x d(bi) d) = 1,

Fore district 1 + 1

n fro duto b, b. bn)

Theorem: - Chuese Remainder Theorem:

The system of linear equations $x = a_1 \pmod{b_1}, \dots, x = a_n \pmod{b_n}$ where b_1, b_2, \dots, b_n are sparingise coprime has one distinct solution for $x \pmod{b_1b_2...b_n}$

7 x00/ !-

$$x = \alpha_1 \pmod{b_1}, x = \alpha_2 \pmod{b_2}$$

$$x = \alpha_1 \pmod{b_1}$$

$$x = \alpha_2 \pmod{b_1}$$

$$x = \alpha_1 \pmod{b_1}$$

$$x = \alpha_2 \pmod{b_1}$$

$$x = \alpha_1 \pmod{b_2}$$

$$x = \alpha_1 \pmod{b_1}$$

$$x = \alpha_2 \pmod{b_1}$$

$$x = \alpha_1 \pmod{b_1}$$

$$x = \alpha_2 \pmod{b_2}$$

$$x = \alpha_1 \pmod{b_1}$$

$$x = \alpha_2 \pmod{b_2}$$

$$x = \alpha_1 \pmod{b_1}$$

$$x = \alpha_2 \pmod{b_2}$$

$$x = \alpha_1 \pmod{b_2}$$

$$x = \alpha_2 \pmod{b_2}$$

J KI, Kz suchthat b, k, + bzkz=1

$$\Rightarrow x = \alpha_1 b_2 k_2 + \alpha_2 b_1 k_1 = \alpha_1 (1 - b_1 k_1) + \alpha_2 b_1 k_1 = \alpha_1 + (\alpha_2 - \alpha_1) b_1 k_1 = \alpha_2 + (\alpha_1 - \alpha_2) b_2 k_2$$

Now let $N = \alpha_1 \pmod{b_1}, \dots, N = \alpha_n \pmod{b_n}$ Let $\alpha_{1,2}$ be the solution for first two equations $\Rightarrow N = M_{1,2} \pmod{b_1b_2}$

Let us take $N \equiv N_{1/2}$ (mod b) and $N \equiv \Omega_3$ (wod b) and apply the same process, then we get, $N_{1/3}$ as the solution for first three equations and so on. $N_{1/3} = N_{1/3} \pmod{b_1 b_2 - \cdots b_n}$

Let u and v be the solution for $N = M_{1,N}$ (wod $b_{1}b_{2}$. b_{N}) $\Rightarrow u - V = O$ (wod $b_{1}b_{2}$. b_{N})

Now $u, V \leq b_{1}b_{2}$. b_{N} but $u, V > O \Rightarrow u = V$ Hence unique solution emists.

Aux! -
$$(a^{N} + N) | (b^{N} + N) \Leftrightarrow (a^{N} + N) | (b^{N} - a^{N})$$

For
$$a=1$$
, $(+v)$ $|(b^n+n) \cdot w^n \cdot$

However! - Prove that $\exists a \times such that x^2 \equiv -1 \pmod{p}$ iff $p \equiv 1 \pmod{4}$