Examenul de bacalaureat 2012 Proba E. d) Proba scrisă la FIZICĂ

Filiera teoretică - profilul real, Filiera tehnologică - profilul tehnic și profilul resurse naturale și protecția mediului, Filiera vocațională – profilul militar

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ Se acordă 10 puncte din oficiu.

• Timpul efectiv de lucru este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Varianta 4

- I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Într-un circuit electric simplu tensiunea la bornele sursei este egală cu tensiunea la bornele consumatorului dacă:
- a. rezistența internă a sursei este neglijabilă;
- b. rezistența consumatorului este egală cu rezistența internă a sursei;
- c. rezistența consumatorului este neglijabilă;
- d. rezistența electrică a firelor de legătură este neglijabilă.

(3p)

(3p)

- 2. Știind că simbolurile mărimilor fizice sunt cele utilizate în manualele de fizică, dependența de temperatură a rezistivității unui conductor metalic are expresia:
- **a.** $\rho = \rho_0 \cdot \alpha \cdot t$

- **b.** $\rho = \rho_0 (1 \alpha \cdot t)$ **c.** $\rho = \rho_0 (1 + \alpha \cdot t)$ **d.** $\rho = \frac{\rho_0}{1 + \alpha \cdot t}$ (3p)
- 3. Simbolurile mărimilor fizice și ale unităților de măsură fiind cele utilizate în manualele de fizică, unitatea de măsură S.I a mărimii fizice exprimate prin raportul $\frac{P}{II}$ este:
- a. Ω d. C
- (3p)
- 4. Dintr-un fir metalic de rezistentă electrică R se confectionează un pătrat ABCD ca în figura alăturată. Rezistența electrică a conductorului de formă pătrată, măsurată între punctele A și D, este:
- 3R

- 5. În graficul din figura alăturată este reprezentată dependența tensiunii electrice la bornele unei surse în funcție de intensitatea curentului prin aceasta. Valoarea rezistenței interne a sursei este:
- $a.0,5\Omega$
- **b.**1 Ω
- $c.1,5\Omega$
- d. 20

II. Rezolvaţi următoarea problemă:

În circuitul din figura alăturată se cunosc: tensiunile electromotoare ale surselor $E_1 = 8 \text{ V}$, $E_2 = 2 \text{ V}$, valorile rezistențelor electrice ale rezistorilor $R_1=3\,\Omega$ și $R_2=6\,\Omega$. Ampermetrul ideal ($R_A \cong 0$) indică $I = 1,2 \, \mathrm{A}$, iar voltmetrul ideal ($R_V \to \infty$) indică $U = 3,6 \, \mathrm{V}$. Rezistențele interne ale celor două surse sunt egale $r_1 = r_2 = r$. Considerând rezistențele conductoarelor de legătură neglijabile, determinați:

- a. rezistența electrică echivalentă a circuitului exterior;
- **b.** intensitatea curentului electric prin rezistorul de rezistență R_1 ;
- **c.** rezistenta electrică internă *r* a unei surse;
- **d.** tensiunea electrică la bornele sursei de tensiune electromotoare E_2 .

III. Rezolvati următoarea problemă:

(15 puncte)

La bornele unui generator de tensiune continuă $U_0 = 220 \text{ V}$ se conectează în serie două becuri: unul de putere nominală $P_1 = 44 \,\mathrm{W}$, iar altul de putere nominală $P_2 = 110 \,\mathrm{W}$. Tensiunea nominală a fiecărui bec este $U_n = 110 \text{ V}$. Pentru a asigura funcționarea la parametri nominali a celor două becuri, în paralel cu unul dintre ele, se conectează un rezistor de rezistență electrică R. În aceste condiții, intensitatea curentului prin generator are valoarea $I_0 = 1 \text{ A}$.

- a. Calculați puterea furnizată circuitului exterior în aceste condiții.
- b. Precizați la bornele cărui bec trebuie conectat rezistorul de rezistență electrică R. Justificați răspunsul dat.
- c. Determinați valoarea rezistenței rezistorului R.
- **d.** Calculați energia consumată de cele două becuri într-un interval de timp $\Delta t = 10 \text{ min}$.