TPAMI' 2023

Guaranteed Tensor Recovery fused Low-rankness and Smoothness

Hailin Wang¹, Jiangjun Peng(co-first)¹, Wenjin Qin², Jianjun Wang² and Deyu Meng^{1*}

¹Xi'an Jiaotong University; ²Southwest University

Wechat

VALSE 2024 重庆

视觉与学习青年学者研讨会 VISION AND LEARNING SEMINAR

Motivations

Tensor recovery is a typical inverse problem that estimates an underlying tensor from its compressed/incompleted/corrupted observations using regularization method. Low-rankness (L) and smoothness (S) are the most two important structural information of various visual tensor data. However, almost all existing works encode these two priors separately with "L+S" regularized models, which is not only lack of theories but also affected heavily by the trade-off parameter.

Literature	Problem	Model	Theory
Ji et al. [23]	TC	MF + STV	×
Li et al. [24]	TC	SNN + TV-1	×
Ko et al. [30]	TC	TT + TV-2	×
Yokota et al. [26]	TC	CP + TV-1/TV-2	×
He et al. [25]	TRPCA	MF + STV	×
Wang et al. [27]	TRPCA	SNN + SSTV	×
Chen et al. [28]	TRPCA	TNN + HTV	×
Zhang et al. [29]	TRPCA	NLTRD + SSTV	×
This work	TC&TRPCA	t-CTV	~

tensor Correlated Total Variation (t-CTV)

Theoretical Guarantees

Tensor Completion (TC)

$$\min_{\mathcal{X}} \|\mathcal{X}\|_{\mathsf{t-CTV}}, \quad \mathsf{s.t.} \quad \mathcal{P}_{\Omega}(\mathcal{X}) = \mathcal{P}_{\Omega}(\mathcal{X}_0) \tag{1}$$

Theorem (Exact Recovery for TC Problem)

Suppose that \mathcal{X}_0 obeys the gradient tensor incoherence condition and $\Omega \sim \text{Ber}(p)$. Then, there exist universal constants $c_0, c_1, c_2 > 0$ such that \mathcal{X}_0 is the unique solution of model (1) with probability at least $1 - c_1 \gamma (n_{(1)} n_3 \cdots n_d)^{-c_2}$, provided that

$$p \ge c_0 \mu R(\log(n_{(1)}\ell))^2/n_{(2)}\ell,$$

where ℓ is the specific scale factor given in t-SVD framework, $n_{(1)} := \max\{n_1, n_2\} \text{ and } n_{(2)} := \min\{n_1, n_2\}.$

Proposition (Worst-case Sampling Complexity)

Let $\mathcal{X}_0 \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ with multi-structural prior simultaneously. Consider the following general TC model

$$\min_{\mathcal{T}} f(\mathcal{X}) := \sum w_i \|\mathcal{X}\|_{(i)} \quad s.t. \quad \mathcal{P}_{\Omega}(\mathcal{X}) = \mathcal{P}_{\Omega}(\mathcal{X}_0),$$

where $\|\cdot\|_{(i)}$ denotes a regularization norm (such as TNN, TV, and t-CTV norm) modeling certain prior with Lipschitz constant L_i , $w_i > 0$ is the wight parameter. Suppose $\Omega \sim \text{Ber}(p)$ and m is the number of sampling entries. Then, there exist constant $c_0, c_1 > 0$ such that \mathcal{X}_0 is **not** the unique solution of model (1) with probability at least $1 - \exp(-\frac{c_1 m}{n_1 \cdots n_d ||\bar{\mathcal{X}}_0||_{2a}^2})$, provided that $m \leq m_{\text{low}} := c_0 \kappa_{\min}^2 n_1 \cdots n_d$, where $\kappa_{\min} = \min \{ \kappa_i = \| \bar{\mathcal{X}}_0 \|_{(i)} / L_i \}$ and $ar{oldsymbol{\mathcal{X}}}_0 = oldsymbol{\mathcal{X}}_0/\|oldsymbol{\mathcal{X}}_0\|_{\mathrm{F}}$.

Tensor Robust PCA (TRPCA)

Theorem (Exact Recovery for TRPCA Problem)

Suppose that \mathcal{X}_0 obeys the gradient tensor incoherence condition and S_0 's support set, denoted as Ω_0 , is uniformly distributed among all sets of cardinality m. Then, there exist universal constants $c_1, c_2 > 0$ such that $(\mathcal{X}_0, \mathcal{S}_0)$ is the unique solution of model (2) when $au = 1/\sqrt{n_{(1)}\ell}$ with probability at least $1-c_1\gamma(n_{(1)}n_3\cdots n_d)^{-c_2}$, provided that

$$\operatorname{rank}_{\mathsf{t-SVD}}(\mathcal{X}_0) \leq \frac{\rho_r n_{(2)} \ell}{\mu \log^2(n_{(1)} \ell)} \quad and \quad m \leq \rho_s n_1 \cdots n_d,$$

where $\rho_r, \rho_s > 0$ are some universal constants.

Theorem (Smaller Sampling Lower Bound)

For order-d tensor $\mathcal{X}_0 \in \mathbb{R}^{N \times \cdots \times N}$ with low-rankness (**L**) and smoothness (S) priors structures simultaneously, denote its t-SVD rank as R and gradient tensor G_k 's sparsity (number of nonzero entries) as S_k , and $S = \min_{k \in \Gamma} \{S_k\}$. Then, the corresponding lower bounds of the following L and/or S models satisfy:

Model	$f(\mathcal{X}) =$	$m_{low} \lesssim$	Missing 90%	Re	W.	ĺ
L	$\ \mathcal{X}\ _{\circledast}$	$N^d \cdot \frac{R}{N}$	Missing 95%	0	A.	
S	$\ \mathcal{X}\ _{TV}$	$N^d \cdot \frac{S}{N^d}$	Missing 98%	8	-	
L+S	$\ \mathcal{X}\ _{\circledast} + \lambda \ \mathcal{X}\ _{TV}$	$N^d \cdot \min\{\frac{R}{N}, \frac{S}{N^d}\}$	Making 99%			
t-CTV	$\ \mathcal{X}\ _{t-CTV}$	$N^d \cdot \frac{R}{N} \cdot \frac{S}{N^d}$	(a) Observal	(b-1) KBR	(b-2) SNN	(b

Simulation Studies

Tensor Completion

	R	$\frac{m}{d_r}$	m	DF			DCT	ROT	
1 V	11	d_r		\hat{R}	RelErr	\hat{R}	RelErr	\hat{R}	RelErr
100	335550				4.54e-7				
200	20	3	0.57	20	1.83e-7	20	3.30e-6	20	1.59e-7
400	60	2	0.56	60	2.90e-6	60	4.07e-6	60	8.92e-6

Tensor Robust PCA

R	m	DFT				DCT			
16	116	\hat{R}	$RelErr\mathcal{T}$	\hat{m}	$RelErr\mathcal{E}$	\hat{R}	$RelErr\mathcal{T}$	\hat{m}	$RelErr\mathcal{E}$
10	2e6	10	2.18e-6	2e6	3.96e-6	10	4.38e-7	2e6	7.27e-7
10	8e6	10	9.32e-7	8e6	9.84e-7	10	5.03e-7	8e6	3.64e-6
20	8e6	20	1.83e-6	8e6	3.03e-6	20	8.29e-6	8e6	7.10e-6
0.5									
	10 10	5 2e6 10 2e6 10 8e6	5 2e6 5 10 2e6 10 10 8e6 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	R m \hat{R} RelErr \mathcal{T} \hat{m} RelErr \mathcal{E} 5 2e6 5 1.85e-7 2e6 2.46e-7 10 2e6 10 2.18e-6 2e6 3.96e-6 10 8e6 10 9.32e-7 8e6 9.84e-7	R m \hat{R} RelErr \mathcal{T} \hat{m} RelErr \mathcal{E} \hat{R} 5 2e6 5 1.85e-7 2e6 2.46e-7 5 10 2e6 10 2.18e-6 2e6 3.96e-6 10 10 8e6 10 9.32e-7 8e6 9.84e-7 10	R m \hat{R} RelErr \mathcal{T} \hat{m} RelErr \mathcal{E} \hat{R} RelErr \mathcal{T} 5 2e6 5 1.85e-7 2e6 2.46e-7 5 9.97e-6 10 2e6 10 2.18e-6 2e6 3.96e-6 10 4.38e-7 10 8e6 10 9.32e-7 8e6 9.84e-7 10 5.03e-7	R m \hat{R} RelErr \mathcal{T} \hat{m} RelErr \mathcal{E} \hat{R} RelErr \mathcal{T} \hat{m} 5 2e6 5 1.85e-7 2e6 2.46e-7 5 9.97e-6 2e6 10 2e6 10 2.18e-6 2e6 3.96e-6 10 4.38e-7 2e6 10 8e6 10 9.32e-7 8e6 9.84e-7 10 5.03e-7 8e6

Real Applications

- RGB Image Inpainting

- Light Field Image Completion

- Video Denoising

- Hyperspectral Anomaly Detection

- Surveillance Video Background Modeling

*It also performs well for CT/MRI, hyperspectral video, traffic flow data, etc

t-CTV is a simple, powerful and user-friendly regularizer Conclusion with theoretical guarantees for low-rank&smooth tensor!