

Como é que a teoria de Lewis explica as ligações na H_2 e no F_2 ?

Partilha de dois eletrões entre dois átomos.

Mas estas ligações tem características muito diferentes

	Energia de dissociação das ligações	Comprimento da ligação	<u>Sobreposição</u>
H ₂	436,4 kJ/mole	74 pm	2 orbitais 1s
F ₂	150.6 kJ/mole	142 pm	2 orbitais 2p

Teoria da Ligação de Valência — os eletrões numa molécula ocupam **orbitais atómicas** dos átomos individuais.

1

3

Variação da energia potencial de dois átomos H durante a formação da molécula de H_2

3

Teoria da Ligação de Valência (TLV)

- Quando 2 átomos se aproximam suficientemente, as suas orbitais atómicas podem sobrepor-se.
- A formação de uma ligação pressupõe que os 2 e tenham spins opostos.
- O nº de ligações que um átomo pode formar é dado pelo nº de edesemparelhados.

Postulados da TLV

- 1- Quanto mais extensa for a sobreposição de orbitais atómicas mais forte a ligação.
- 2- As ligações simples, duplas e triplas resultam da partilha de 1, 2 ou 3 pares de eletrões, respetivamente.
- 3- Em moléculas covalentes, os eletrões podem ocupar orbitais hibridas, em vez das AO dos átomos isolados

2

Teoria da Ligação de Valência e o NH₃

$$_{7}$$
N: $1s^{2} 2s^{2} 2p^{3}$
$$\qquad \underbrace{ }_{2s} \qquad \underbrace{ }_{2px} \qquad \underbrace{ }_{2py} \qquad \underbrace{ }_{2pz}$$

Teoria da Ligação de Valência e o NH₃

₇N: 1s² 2s² 2p³

11 11 11 11

₁H: 1s¹

Qual é a geometria molecular do NH_3 se as ligações se formarem a partir da sobreposição das orbitais 1s dos átomos de H e as orbitais p do átomo de N.

As ligações não podem formar-se a partir das orbitais atómicas simples

5

5

Formação de Orbitais Híbridas sp³

Hibridização — coalescência de duas ou mais orbitais atómicas para formar um novo conjunto de orbitais híbridas.

- 1. O conceito de hibridização não se aplica a átomos isolados.
- Coalescência de, pelo menos, 2 orbitais atómicas não equivalentes (por ex., s e p). As orbitais hibridas têm uma forma muito diferente das orbitais atómicas originais.
- O número de orbitais híbridas é igual ao número de orbitais atómicas puras que participam no processo de hibridização.
- 4. As ligações covalentes são formadas por:
 - a. Sobreposição de orbitais atómicas puras.
 - b. Sobreposição de orbitais híbridas com orbitais atómicas puras.
 - c. Sobreposição de orbitais híbridas com outras orbitais híbridas.
- 5. O processo de hibridização necessita de fornecimento de energia

6

6

Formação de Ligações Covalentes

8

8

-

sp³ — O átomo hibridizado N no NH₃

9

11

Formação de Orbitais Híbridas sp

Formação de Orbitais Híbridas sp²

10

12

Hibridização *sp*² de um átomo de carbono que possui uma ligação dupla

12

A orbital $2p_z$ é perpendicular ao plano das orbitais híbridas

13

13

15

Ligações no etileno C_2H_4 H 1s

H 1s Sp^2 Sp^2 Sp

Ligação Sigma (σ) – densidade eletrónica entre os 2 átomos ligados.

Ligação Pi (π) – densidade eletrónica acima e abaixo dos núcleos dos átomos ligados.

14

14

Hibridização *sp* de um átomo de carbono que possui uma ligação tripla ou duas ligações duplas

17

19

Ligações sigma (σ) e pi (π)

Ligação simples 1 ligação sigma
Ligação dupla 1 ligação sigma e 1 ligação pi

Ligação tripla 1 ligação sigma e 2 ligações pi

σ s+s p+p s+p s+hibrida p+hibrida

π

p+p

paralelas

18

20

18

Como determino a hibridização do átomo central?

1- Escrever a estrutura de Lewis da molécula

2 -Prever a sua geometria usando a TRPECV

- 4 pares de e- em torno do N

- A repulsão deve ser mínima

3- Ver configuração eletrónica do átomo no nível de valência

2p 2s 1

4- Prever o tipo de hibridização que o átomo terá que sofrer para arranjar o nº de orbitais hibridas necessárias para a geometria prevista anteriormente

São necessárias 4 orbitais iguais

2p 2p 2sp³ 2sp³ 2sp³ 2sp³

20

19

Configuração eletrónica do átomo de N hibridizado

1s² 2(sp³)² 2(sp³)¹ 2(sp³)¹ 2(sp³)¹

Exercício: Descrever o estado de hibridização do fósforo no pentabrometo de fósforo (PBr₅)

15^P

P hibridizado