Projektionen

$$\langle x - u, y \rangle = 0$$

$$\langle x, y \rangle = \langle u, y \rangle$$

$$\langle x, y \rangle = \alpha \langle y, y \rangle$$

$$\langle x = \frac{\langle x, y \rangle}{\langle y, y \rangle} = \lambda u = \frac{\langle x, y \rangle}{\langle y, y \rangle} \frac{y}{2}$$

Projektionsmatrix:

$$\frac{\langle x, y \rangle}{\langle y, y \rangle} \underline{Y} = \frac{y \langle y, x \rangle}{\langle y, y \rangle} = \frac{y y^T x}{\langle y, y \rangle} = \underbrace{\frac{y y^T}{\langle y, y \rangle}}_{\underline{\mathbb{R}}} \underline{x}$$

→ vgl. Gram-Schmidt-Verfahren + Householder-Matrix -> auch für abstrakte Vektorräume

P: V>V lin. Abb. helsst orthogonaler Projector, falls

- \Rightarrow Ein Projektion erhält, im Gegensatz zur Givensrotation, die Länge des Vektor nicht. \Rightarrow Eine Projektion bleibt nach einer Anwendung stehen ($P^2=P$), Rotationen drehen weiter ($G^2\neq G$).

$$\frac{\text{Bsp}}{\text{Bsp}} = \sum_{i=1}^{n} \frac{1}{\sqrt{2}} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}$$

Beispiel: Schiefe Projektion

$$P = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$$
 ist eine Projektionsmatrix ($P^2 = P$), ober keine orthogonale Projektion ($P \neq P^T$)

Kem Bild

=> Projektion parallel zum Kern

	P, 1	B
T61	[3]	[3]
简	[3]	[8]
<u> </u>	[3]	[3]
121	161	וניש

- bereits in Bild

-im Kern von P2