KLASYCZNA METODA NAJMNIEJSZYCH KWADRATÓW

WYNIKI ESTYMACJI - ZAPIS ANALITYCZNY OSZACOWANEGO MODELU

MODEL LINIOWY

 $KOSZTY_t = \beta_0 + \beta_1 * PRODUKCJA_t + \beta_2 * TEMPERATU_t + \xi_t$

Diagnostic Tests	
(Testy diagnostyczne	

******	******	******	****	****	*****
* Test Statistics			F Vers		
*******	**********	******	****	****	*****
* A:Serial Correlation	CHSQ(1)=	*NONE* F	"(1,	1)=	NONE
* B:Functional Form	CHSQ(1)=	*NONE* F	7(1,	1)=	NONE
* C:Normality	CHSQ(2)=	*NONE*	Not a	applic	able
* D:Heteroscedasticity ********					
A:Lagrange multiplie B:Ramsey's RESET to C:Based on a test of s	est using the so	quare of the fitte	d valu	es	

D:Based on the regression of squared residuals on squared fitted values

MODEL POTĘGOWY

 $LOG_{K_t} = \beta_0 + \beta_1 * LOG_{P_t} + \beta_2 * LOG_{T_t} + \xi_t$

Ordinary Least Squares Estimation ************************************						
Dependent variab	_		1 to	5		
5 observations used for estimation from 1 to 5 ************************************						
Regressor	Coefficien	t Standa	rd Error	T-Ratio	[Prob]	
STALA	2.3392	.128	03	18.2710	[.003]	
LOG_P	.10240	.152	18	.67291	[.570]	
LOG_T	.37240	.159:	57	2.3337	[.145]	

R-Squared		.79218	F-stat.	F(2, 2)	3.8118[.208]
R-Bar-Squared		.58436	S.E. of	Regression	.10	6768
Residual Sum of	Squares	.056232	Mean	of Dependent	Variable 2.	6112
S.D. of Dependen	t Variable	.26009	Equati	on Log-likeli	hood 4.	1246
DW-statistic		2.6926	_	_		

MODEL WYKŁADNICZY

 $LOG_{-}K_{t} = \beta_{0} + \beta_{1} * PRODUKCJA_{t} + \beta_{2} * TEMPERATU_{t} + \xi_{t}$

Ordinary Least Squares Estimation ***********************************						
Dependent variable is LOG_K 5 observations used for estimation from 1 to 5 **********************************						
Regressor	Coefficient	Standard Error	T-Ratio	[Prob]		
STALA	2.0850	.16204	12.8672			
PRODUKCJA	.068072	.061246	1.1115	[.382]		
TEMPERATU	.19504	.075011	2.6001	[.122]		

R-Squared	.86137	F-stat. F(2	2, 2) 6.2	133[.139]		
R-Bar-Squared	.72273	S.E. of Regre		.13695		
Residual Sum of Squ	Mean of Dependent Variable 2.6112					
S.D. of Dependent Va	Equation Log	-likelihood	5.1367			
DW-statistic	2.7575					
