# Mathematical Preliminaries

### Mathematical Preliminaries

- Sets
- Functions
- Relations
- · Graphs
- Proof Techniques

### SETS

#### A set is a collection of elements

$$A = \{1, 2, 3\}$$

$$B = \{train, bus, bicycle, airplane\}$$

#### We write

$$1 \in A$$

$$ship \notin B$$

# Set Representations

$$C = \{a, b, c, d, e, f, g, h, i, j, k\}$$

$$C = \{a, b, ..., k\} \longrightarrow finite set$$

$$S = \{2, 4, 6, ...\} \longrightarrow infinite set$$

$$S = \{j : j > 0, and j = 2k \text{ for some } k > 0\}$$

$$S = \{j : j \text{ is nonnegative and even}\}$$

$$A = \{1, 2, 3, 4, 5\}$$



### Universal Set: all possible elements

## Set Operations

$$A = \{1, 2, 3\}$$

$$B = \{ 2, 3, 4, 5 \}$$

Union



Intersection

$$A \cap B = \{2, 3\}$$

· Difference

$$A - B = \{ 1 \}$$

$$B - A = \{4, 5\}$$





Venn diagrams

### Complement

Universal set =  $\{1, ..., 7\}$  $A = \{1, 2, 3\}$   $\overline{A} = \{4, 5, 6, 7\}$ 



{ even integers } = { odd integers }

#### Integers



# DeMorgan's Laws

$$\overline{A \cup B} = \overline{A \cap B}$$

$$\overline{A \cap B} = \overline{A \cup B}$$

# Empty, Null Set: Ø

$$\emptyset = \{\}$$

$$SUØ = S$$

$$S \cap \emptyset = \emptyset$$

$$S - \emptyset = S$$

$$\emptyset - S = \emptyset$$

$$\overline{\emptyset}$$
 = Universal Set

### Subset

$$A = \{1, 2, 3\}$$
  $B = \{1, 2, 3, 4, 5\}$   
 $A \subseteq B$ 

Proper Subset:  $A \subseteq B$ 



# Disjoint Sets

$$A = \{1, 2, 3\}$$
  $B = \{5, 6\}$ 

$$A \cap B = \emptyset$$



# Set Cardinality

For finite sets

$$A = \{ 2, 5, 7 \}$$

$$|A| = 3$$

(set size)

### Powersets

A powerset is a set of sets

$$S = \{a, b, c\}$$

Powerset of S = the set of all the subsets of S

$$2^{5} = { \emptyset, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }$$

Observation: 
$$|2^{5}| = 2^{|5|}$$
 (8 = 2<sup>3</sup>)

### Cartesian Product

$$A = \{ 2, 4 \}$$

$$B = \{ 2, 3, 5 \}$$

$$A \times B = \{ (2, 2), (2, 3), (2, 5), (4, 2), (4, 3), (4, 5) \}$$

$$|A \times B| = |A| |B|$$

Generalizes to more than two sets

### **FUNCTIONS**



 $f:A \rightarrow B$ 

If A = domain

then f is a total function

otherwise f is a partial function

### RELATIONS

$$R = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), ...\}$$

$$x_i R y_i$$

e. q. if 
$$R = '>': 2 > 1, 3 > 2, 3 > 1$$

## Equivalence Relations

- · Reflexive: x R x
- · Symmetric: xRy yRx
- Transitive: x R y and  $y R z \longrightarrow x R z$

### Example: R = '='

- x = x
- $\cdot x = y$  y = x
- x = y and y = z x = z

# Equivalence Classes

### For equivalence relation R

equivalence class of 
$$x = \{y : x R y\}$$

#### Example:

$$R = \{ (1, 1), (2, 2), (1, 2), (2, 1), (3, 3), (4, 4), (3, 4), (4, 3) \}$$

Equivalence class of  $1 = \{1, 2\}$ 

Equivalence class of  $3 = \{3, 4\}$ 

#### GRAPHS

### A directed graph



Nodes (Vertices)

$$V = \{ a, b, c, d, e \}$$

Edges

$$E = \{ (a,b), (b,c), (b,e), (c,a), (c,e), (d,c), (e,b), (e,d) \}$$

# Labeled Graph



### Walk



Walk is a sequence of adjacent edges (e, d), (d, c), (c, a)

### Path



Path is a walk where no edge is repeated

Simple path: no node is repeated

# Cycle



Cycle: a walk from a node (base) to itself

Simple cycle: only the base node is repeated

## Euler Tour



A cycle that contains each edge once

# Hamiltonian Cycle



A simple cycle that contains all nodes

# Finding All Simple Paths





- (c, a) (c, e)



(c, a), (a, b)

(c, e)

(c, a)

(c, e), (e, b)

(c, e), (e, d)



(c, a)

(c, a), (a, b)

(c, a), (a, b), (b, e)

(c, e)

(c, e), (e, b)

(c, e), (e, d)







# Binary Trees



## PROOF TECHNIQUES

Proof by induction

Proof by contradiction

### Induction

We have statements  $P_1$ ,  $P_2$ ,  $P_3$ , ...

#### If we know

- for some b that  $P_1$ ,  $P_2$ , ...,  $P_b$  are true
- for any k >= b that

$$P_1, P_2, ..., P_k$$
 imply  $P_{k+1}$ 

#### Then

Every P<sub>i</sub> is true

#### Proof by Induction

Inductive basis

Find P<sub>1</sub>, P<sub>2</sub>, ..., P<sub>b</sub> which are true

Inductive hypothesis

Let's assume  $P_1$ ,  $P_2$ , ...,  $P_k$  are true, for any  $k \ge b$ 

Inductive step

Show that  $P_{k+1}$  is true

#### Example

Theorem: A binary tree of height n has at most 2<sup>n</sup> leaves.

#### Proof by induction:

let L(i) be the maximum number of leaves of any subtree at height i



Inductive basis

$$L(0) = 1$$
 (the root node)

Inductive hypothesis

Let's assume 
$$L(i) \leftarrow 2^i$$
 for all  $i = 0, 1, ..., k$ 

Induction step

we need to show that 
$$L(k + 1) \leftarrow 2^{k+1}$$

#### Induction Step



From Inductive hypothesis:  $L(k) \leftarrow 2^k$ 

#### Induction Step



$$L(k+1) \leftarrow 2 * L(k) \leftarrow 2 * 2^{k} = 2^{k+1}$$

(we add at most two nodes for every leaf of level k)

#### Remark

#### Recursion is another thing

#### Example of recursive function:

$$f(n) = f(n-1) + f(n-2)$$

$$f(0) = 1, f(1) = 1$$

#### Proof by Contradiction

We want to prove that a statement P is true

- we assume that P is false
- then we arrive at an incorrect conclusion
- therefore, statement P must be true

# Example

Theorem:  $\sqrt{2}$  is not rational

#### Proof:

Assume by contradiction that it is rational

$$\sqrt{2}$$
 = n/m

n and m have no common factors

We will show that this is impossible

$$\sqrt{2} = n/m$$
  $2 m^2 = n^2$ 

Therefore, 
$$n^2$$
 is even  $n = 2 k$ 

$$2 m^2 = 4k^2 \qquad m^2 = 2k^2 \qquad m = 2 p$$

Thus, m and n have common factor 2

#### Contradiction!

# 14B11CI171 Theory of Computation

Finite Automata

#### Finite Automaton



### Transition Graph



# Initial Configuration

Input String

a b b a



# Reading the Input

















#### Input finished





# Rejection















#### Input finished





### Another Rejection









# Another Example















#### Input finished





# Rejection Example

















# Input finished





# Languages Accepted by FAs FA M

#### Definition:

The language L(M) contains all input strings accepted by M

$$L(M)$$
 = { strings that bring  $M$  to an accepting state}

$$L(M) = \{abba\}$$



$$L(M) = \{\lambda, ab, abba\}$$



$$L(M) = \{a^n b : n \ge 0\}$$



#### Formal Definition

#### Finite Automaton (FA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: set of states

 $\Sigma$ : input alphabet

 $\delta$  : transition function

 $q_0$ : initial state

F: set of accepting states

# Input Alphabet $\Sigma$

$$\Sigma = \{a,b\}$$



#### Set of States Q

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$



# Initial State $q_0$



# Set of Accepting States F

$$F = \{q_4\}$$



#### Transition Function $\delta$

$$\delta: Q \times \Sigma \to Q$$



$$\delta(q_0, a) = q_1$$



$$\delta(q_0,b)=q_5$$



$$\delta(q_2,b)=q_3$$



#### Transition Function $\delta$

| $\delta$                                                          | а          | Ь          |     |
|-------------------------------------------------------------------|------------|------------|-----|
| 90                                                                | 91         | <b>9</b> 5 |     |
| 91                                                                | <b>9</b> 5 | 92         |     |
| 92                                                                | $q_5$      | 93         | ,   |
| <i>9</i> <sub>3</sub>                                             | 94         | 95         | a,b |
| 94                                                                | <b>9</b> 5 | 95         |     |
| <b>9</b> 5                                                        | <b>9</b> 5 | 95         | 75  |
| b $a$ $a$ $b$ $a$ $a$ $b$ $a$ |            |            |     |

#### Extended Transition Function $\delta^*$

$$\delta^*: Q \times \Sigma^* \to Q$$



$$\delta * (q_0, ab) = q_2$$



$$\delta * (q_0, abba) = q_4$$



$$\delta * (q_0, abbbaa) = q_5$$



# Observation: if there is a walk from q to q' with label $\mathcal W$ then

$$\delta * (q, w) = q'$$



$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} q'$$

# Example: There is a walk from $q_0$ to $q_5$ with label abbbaa

$$\delta * (q_0, abbbaa) = q_5$$



#### Recursive Definition

$$\delta^*(q,\lambda) = q$$
  
$$\delta^*(q,w\sigma) = \delta(\delta^*(q,w),\sigma)$$



$$\delta * (q_0, ab) =$$

$$\delta(\delta * (q_0, a), b) =$$

$$\delta(\delta(\delta * (q_0, \lambda), a), b) =$$

$$\delta(\delta(q_0, a), b) =$$

$$\delta(q_1, b) =$$

$$q_2$$

$$q_3$$

$$q_4$$

$$q_4$$

# Language Accepted by FAs

For a FA 
$$M = (Q, \Sigma, \delta, q_0, F)$$

#### Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$



#### Observation

#### Language rejected by M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \mathcal{S}^*(q_0, w) \notin F \}$$



L(M)= { all strings with prefix ab }



 $L(M) = \{ all strings without substring 001 \}$ 



$$L(M) = \{awa : w \in \{a,b\}^*\}$$



# Regular Languages

#### Definition:

A language L is regular if there is FA M such that L = L(M)

#### Observation:

All languages accepted by FAs form the family of regular languages

#### Examples of regular languages:

```
 \{abba\} \quad \{\lambda, ab, abba\}   \{awa: w \in \{a,b\}^*\} \quad \{a^nb: n \geq 0\}   \{all \ strings \ with \ prefix \ ab\}   \{all \ strings \ without \ substring \quad 001 \}
```

There exist automata that accept these Languages (see previous slides).

#### There exist languages which are not Regular:

Example: 
$$L=\{a^nb^n:n\geq 0\}$$

There is no FA that accepts such a language

(we will prove this later in the class)

# 14B11CI171

Theory of Computation

Non-Deterministic Finite Automata

#### Nondeterministic Finite Automaton (NFA)

Alphabet = 
$$\{a\}$$



#### Alphabet = $\{a\}$



#### Alphabet = $\{a\}$



#### First Choice





#### First Choice





#### First Choice







## All input is consumed

















### Input cannot be consumed



### An NFA accepts a string:

when there is a computation of the NFA that accepts the string

There is a computation: all the input is consumed and the automaton is in an accepting state

## Example

## aa is accepted by the NFA:

computation

accepts aa



## Rejection example

























### An NFA rejects a string:

when there is no computation of the NFA that accepts the string.

## For each computation:

 All the input is consumed and the automaton is in a non final state

#### OR

The input cannot be consumed

## Example

a is rejected by the NFA:



All possible computations lead to rejection

## Rejection example















### Input cannot be consumed

















### Input cannot be consumed



## aaa is rejected by the NFA:



All possible computations lead to rejection

# Language accepted: $L = \{aa\}$



### Lambda Transitions











### (read head does not move)









## all input is consumed





String aa is accepted

## Rejection Example









## (read head doesn't move)









No transition: the automaton hangs

## Input cannot be consumed





String aaa is rejected

Language accepted:  $L = \{aa\}$ 



# Another NFA Example



















### Another String

































#### Language accepted

$$L = \{ab, abab, ababab, ...\}$$
  
=  $\{ab\}^+$ 



# Another NFA Example



#### Language accepted

$$L(M) = {\lambda, 10, 1010, 101010, ...}$$
  
=  ${10}*$ 



#### Remarks:

- The  $\lambda$  symbol never appears on the input tape
- ·Simple automata:



# ·NFAs are interesting because we can express languages easier than FAs



#### Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e.  $\{q_0,q_1,q_2\}$ 

 $\Sigma$ : Input applied, i.e.  $\{a,b\}$ 

 $\delta$ : Transition function

 $q_0$ : Initial state

F: Accepting states

#### Transition Function $\delta$

$$\delta(q_0,1) = \{q_1\}$$



$$\delta(q_1,0) = \{q_0,q_2\}$$



$$\delta(q_0,\lambda) = \{q_0,q_2\}$$



$$\delta(q_2,1) = \emptyset$$



#### Extended Transition Function $\delta^*$

$$\delta * (q_0, a) = \{q_1\}$$



$$\delta * (q_0, aa) = \{q_4, q_5\}$$



$$\delta * (q_0, ab) = \{q_2, q_3, q_0\}$$



# Formally

 $q_j \in \delta^*(q_i, w)$  : there is a walk from  $q_i$  to  $q_j$  with label w



$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q_i \xrightarrow{\sigma_1} \sigma_2 \xrightarrow{\sigma_2} q_j$$

## The Language of an NFA $\,M\,$



$$\delta * (q_0, aa) = \{q_4, \underline{q_5}\} \qquad aa \in L(M)$$

$$\Longrightarrow \in F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a$$

$$a$$

$$a$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta * (q_0, ab) = \{q_2, q_3, \underline{q_0}\} \qquad ab \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta * (q_0, abaa) = \{q_4, \underline{q_5}\} \quad aaba \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0, aba) = \{q_1\} \qquad aba \notin L(M)$$



$$L(M) = \{\lambda\} \cup \{ab\}^* \{aa\}$$

# Formally

The language accepted by NFA M is:

$$L(M) = \{w_1, w_2, w_3, ...\}$$

where 
$$\delta^*(q_0, w_m) = \{q_i, q_j, ..., q_k, ...\}$$

and there is some  $q_k \in F$  (accepting state)



# 14B11CI171 Theory of Computation

NFAs accept the Regular Languages

## Equivalence of Machines

### Definition:

Machine  $\,M_1\,$  is equivalent to machine  $\,M_2\,$ 

if 
$$L(M_1) = L(M_2)$$

# Example of equivalent machines

$$L(M_1) = \{10\} *$$





## We will prove:

Languages
accepted
by NFAs
Regular
Languages

Languages accepted by FAs

NFAs and FAs have the same computation power

#### We will show:

 Languages

 accepted

 by NFAs

 Regular

 Languages

Languages
accepted
by NFAs
Regular
Languages

## Proof-Step 1

Proof: Every FA is trivially an NFA



Any language L accepted by a FA is also accepted by an NFA

## Proof-Step 2

```
Languages
accepted
by NFAs
Regular
Languages
```

Proof: Any NFA can be converted to an equivalent FA

Any language L accepted by an NFA is also accepted by a FA



























### NFA to FA: Remarks

We are given an NFA M

We want to convert it to an equivalent  $\mathsf{F} A$  M'

With 
$$L(M) = L(M')$$

#### If the NFA has states

$$q_0, q_1, q_2, \dots$$

## the FA has states in the powerset

$$\emptyset, \{q_0\}, \{q_1\}, \{q_1, q_2\}, \{q_3, q_4, q_7\}, \dots$$

### Procedure NFA to FA

1. Initial state of NFA:  $q_0$ 



Initial state of FA:  $\{q_0\}$ 

# Example





### Procedure NFA to FA

2. For every FA's state  $\{q_i, q_i, ..., q_m\}$ 

$$\{q_i,q_j,...,q_m\}$$

Compute in the NFA

$$\left.\begin{array}{l}
\delta^*(q_i,a), \\
\delta^*(q_j,a), \\
\dots
\end{array}\right\} = \left\{q_i',q_j',\dots,q_m'\right\}$$

Add transition to FA

$$\delta(\{q_i,q_j,...,q_m\}, a) = \{q'_i,q'_j,...,q'_m\}$$

## Exampe



FA M'



### Procedure NFA to FA

Repeat Step 2 for all letters in alphabet, until no more transitions can be added.

# Example





### Procedure NFA to FA

3. For any FA state  $\{q_i, q_j, ..., q_m\}$ 

If  $q_j$  is accepting state in NFA

Then,  $\{q_i,q_j,...,q_m\}$  is accepting state in FA

# Example





## Theorem

Take NFA M

Apply procedure to obtain FA M'

Then M and M' are equivalent:

$$L(M) = L(M')$$

## Proof

$$L(M) = L(M')$$



$$L(M) \subseteq L(M')$$
 AND  $L(M) \supseteq L(M')$ 

First we show: 
$$L(M) \subseteq L(M')$$

Take arbitrary: 
$$w \in L(M)$$

We will prove: 
$$w \in L(M')$$

$$w \in L(M)$$

$$M: -q_0$$
  $w$ 

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$M: -q_0 \sigma_1 \sigma_2 \sigma_2 \sigma_4 \sigma_6$$



### denotes



## We will show that if $w \in L(M)$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$
 $M: \longrightarrow q_0 \overset{\sigma_1}{\longrightarrow} \overset{\sigma_2}{\longrightarrow} \overset{\sigma_2}{\longrightarrow} \overset{\sigma_k}{\longrightarrow} \overset{\sigma_k$ 

## More generally, we will show that if in M:

(arbitrary string) 
$$v = a_1 a_2 \cdots a_n$$

$$M: -q_0 \stackrel{a_1}{\smile} q_i \stackrel{a_2}{\smile} q_j \stackrel{a_2}{\smile} q_l \stackrel{a_n}{\smile} q_m$$

$$M': \xrightarrow{a_1} \xrightarrow{a_2} \xrightarrow{a_2} \xrightarrow{a_m} \xrightarrow{a_m} \xrightarrow{a_m} \xrightarrow{q_0} \{q_i,...\} \{q_j,...\}$$

# Proof by induction on |v|

Induction Basis: 
$$v = a_1$$

$$M: -q_0 q_i$$

$$M'$$
:  $q_0$   $q_i$ ...}

## Is true by construction of M':

# Induction hypothesis: $1 \le v \le k$

$$v = a_1 a_2 \cdots a_k$$

$$M: -q_0^{a_1} q_i^{a_2} q_j - q_c^{a_k} q_d$$

$$M': \xrightarrow{a_1} \xrightarrow{a_2} \xrightarrow{a_2} \xrightarrow{a_2} \xrightarrow{a_k} \xrightarrow{a_k} \xrightarrow{a_k} \xrightarrow{q_c,\ldots} \{q_c,\ldots\}$$

Induction Step: 
$$|v| = k+1$$

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

$$M: -q_0 \stackrel{a_1}{\longrightarrow} q_i \stackrel{a_2}{\longrightarrow} q_j \stackrel{a_k}{\longrightarrow} q_d$$

$$M': \longrightarrow \underbrace{a_1}_{\{q_0\}} \underbrace{a_2}_{\{q_i,\ldots\}} \underbrace{\{q_j,\ldots\}}_{\{q_c,\ldots\}} \underbrace{\{q_d,\ldots\}}_{\{q_d,\ldots\}}$$

Induction Step: 
$$|v| = k+1$$

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

$$M: -q_0^{a_1} q_i^{a_2} q_j^{a_2} q_j^{a_3} q_c^{a_k} q_d^{a_{k+1}} q_e$$

$$M': \xrightarrow{a_1} \underbrace{a_2}_{\{q_0\}} \underbrace{a_2}_{\{q_i,...\}} \underbrace{a_2}_{\{q_c,...\}} \underbrace{a_k}_{\{q_c,...\}} \underbrace{a_{k+1}}_{\{q_e,...\}} \underbrace{a_k}_{\{q_e,...\}}$$

## Therefore if $w \in L(M)$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$
 $M: \longrightarrow q_0 \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} q_f$ 

$$M': \longrightarrow \sigma_1 \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} \xrightarrow{\sigma_k} q_f$$
 $w \in L(M')$ 

We have shown: 
$$L(M) \subseteq L(M')$$

We also need to show: 
$$L(M) \supseteq L(M')$$

(proof is similar)

# Single Accepting State for NFAs

Any NFA can be converted

to an equivalent NFA

with a single accepting state



#### NFA



#### In General

#### NFA



# Equivalent NFA



Single accepting state

#### Extreme Case

#### NFA without accepting state





Add an accepting state without transitions

# Properties of Regular Languages

# For regular languages $L_1$ and $L_2$ we will prove that:

Union:  $L_1 \cup L_2$ 

Concatenation:  $L_1L_2$ 

Star:  $L_1*$ 

Reversal:  $L_1^R$ 

Complement:  $L_1$ 

Intersection:  $L_1 \cap L_2$ 

Are regular Languages

#### We say: Regular languages are closed under

Union:  $L_1 \cup L_2$ 

Concatenation:  $L_1L_2$ 

Star:  $L_1*$ 

Reversal:  $L_1^R$ 

Complement:  $\overline{L_1}$ 

Intersection:  $L_1 \cap L_2$ 

## Regular language $L_1$

# Regular language $\,L_{2}\,$

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$



NFA  $M_2$ 



Single accepting state

Single accepting state





#### **Union**

# NFA for $L_1 \cup L_2$



NFA for 
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$



#### Concatenation

NFA for  $L_1L_2$ 



NFA for 
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

$$L_{1} = \{a^{n}b\}$$

$$a$$

$$L_{2} = \{ba\}$$

$$\lambda$$

$$b$$

$$\lambda$$

#### Star Operation

NFA for  $L_1*$ 



NFA for 
$$L_1^* = \{a^n b\}^*$$

$$w = w_1 w_2 \cdots w_k$$
$$w_i \in L_1$$



#### Reverse







- 1. Reverse all transitions
- 2. Make initial state accepting state and vice versa



## Complement





- 1. Take the  ${\bf F}{m A}$  that accepts  $L_1$
- 2. Make final states non-final, and vice-versa





#### Intersection

$$L_1$$
 regular  $L_1 \cap L_2$   $L_2$  regular regular

# DeMorgan's Law: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

$$L_1$$
,  $L_2$  regular  $\overline{L_1}$ ,  $\overline{L_2}$  regular  $\overline{L_1} \cup \overline{L_2}$  regular  $\overline{L_1} \cup \overline{L_2}$  regular  $\overline{L_1} \cup \overline{L_2}$  regular  $\overline{L_1} \cup \overline{L_2}$  regular

$$L_1 = \{a^nb\} \quad \text{regular} \\ L_1 \cap L_2 = \{ab\} \\ L_2 = \{ab,ba\} \quad \text{regular}$$
 regular

#### Another Proof for Intersection Closure

Machine  $M_1$ FA for  $L_1$ 

Machine  $M_2$ FA for  $L_2$ 

Construct a new FA M that accepts  $L_1 \cap L_2$ 

M simulates in parallel  $M_1$  and  $M_2$ 

#### States in M





transition

63







Both constituents must be accepting states

$$L_{1} = \{a^{n}b\}$$

$$M_{1}$$

$$a$$

$$b$$

$$q_{0}$$

$$a,b$$

$$q_{2}$$

$$a,b$$



#### Automaton for intersection

$$L = \{a^n b\} \cap \{ab^n\} = \{ab\}$$



 $\,M\,$  simulates in parallel  $\,M_1\,$  and  $\,M_2\,$ 

M accepts string w if and only if

 $M_1$  accepts string w and  $M_2$  accepts string w

$$L(M) = L(M_1) \cap L(M_2)$$

# 14B11CI171 Theory of Computation

Regular Expressions

#### Regular Expressions

Regular expressions describe regular languages

Example: 
$$(a+b\cdot c)^*$$

describes the language

$${a,bc}* = {\lambda,a,bc,aa,abc,bca,...}$$

#### Recursive Definition

Primitive regular expressions:  $\emptyset$ ,  $\lambda$ ,  $\alpha$ 

Given regular expressions  $r_1$  and  $r_2$ 

$$r_1 + r_2$$
 $r_1 \cdot r_2$ 
 $r_1 *$ 
 $(r_1)$ 

Are regular expressions

A regular expression: 
$$(a+b\cdot c)*\cdot(c+\varnothing)$$

Not a regular expression: (a+b+)

## Languages of Regular Expressions

$$L(r)$$
: language of regular expression  $r$ 

$$L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$$

#### Definition

#### For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

## Definition (continued)

For regular expressions  $r_1$  and  $r_2$ 

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Regular expression:  $(a+b)\cdot a*$ 

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Regular expression 
$$r = (a+b)*(a+bb)$$

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

Regular expression 
$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Regular expression 
$$r = (0+1)*00(0+1)*$$

$$L(r)$$
 = { all strings with at least two consecutive 0 }

Regular expression 
$$r = (1+01)*(0+\lambda)$$

$$L(r)$$
 = { all strings without two consecutive 0 }

# Equivalent Regular Expressions

#### Definition:

Regular expressions  $r_1$  and  $r_2$ 

are equivalent if 
$$L(r_1) = L(r_2)$$

$$L = \{ all strings without two consecutive 0 \}$$

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$

 $r_1$  and  $r_2$  are equivalent regular expr.

# Regular Expressions and Regular Languages

#### Theorem

```
Languages
Generated by
Regular Expressions

Regular
Languages
```

#### We will show:

Languages
Generated by
Regular Expressions

Regular Languages

Languages
Generated by
Regular Expressions

Regular
Languages

#### Proof - Part 1

For any regular expression r the language L(r) is regular

Proof by induction on the size of r

#### Induction Basis

Primitive Regular Expressions:  $\emptyset$ ,  $\lambda$ ,  $\alpha$ 

#### NFAS



$$L(M_1) = \emptyset = L(\emptyset)$$



$$L(M_2) = \{\lambda\} = L(\lambda)$$

regular languages

$$L(M_3) = \{a\} = L(a)$$

# Inductive Hypothesis

```
Assume for regular expressions r_1 and r_2 that L(r_1) and L(r_2) are regular languages
```

## Inductive Step

#### We will prove:

$$L(r_1+r_2)$$

$$L(r_1 \cdot r_2)$$

$$L(r_1 *)$$

$$L((r_1))$$

Are regular Languages

### By definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

#### By inductive hypothesis we know:

$$L(r_1)$$
 and  $L(r_2)$  are regular languages

#### We also know:

Regular languages are closed under:

Union 
$$L(r_1) \cup L(r_2)$$
  
Concatenation  $L(r_1) L(r_2)$   
Star  $(L(r_1))^*$ 

#### Therefore:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1)) *$$

Are regular languages

### And trivially:

 $L((r_1))$  is a regular language

#### Proof - Part 2

For any regular language L there is a regular expression r with L(r) = L

Proof by construction of regular expression

# Since L is regular take the NFA M that accepts it

$$L(M) = L$$

Single final state

# From M construct the equivalent Generalized Transition Graph

in which transition labels are regular expressions



Another Example:  $\boldsymbol{a}$ a Reducing the states:  $\boldsymbol{a}$ bb\*abb\*(a+b)

#### Resulting Regular Expression:



$$r = (bb*a)*bb*(a+b)b*$$

$$L(r) = L(M) = L$$

#### In General

Removing states:  $q_j$  $q_i$ qa $ae^*d$ *ce*\**b* ce\*d $q_i$  $q_j$ ae\*b

#### The final transition graph:



### The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

$$L(r) = L(M) = L$$

# Standard Representations of Regular Languages



When we say: We are given a Regular Language L

We mean: Language L is in a standard representation

# Elementary Questions

about

Regular Languages

# Membership Question

Question:

Given regular language L and string w how can we check if  $w \in L$ ?

Answer: Take the DFA that accepts L

and check if w is accepted





$$w \in L$$



Question: Given regular language L how can we check if L is empty:  $(L = \emptyset)$ ?

Answer: Take the DFA that accepts L

Check if there is any path from the initial state to a final state

### DFA



$$L \neq \emptyset$$

### DFA



$$L = \emptyset$$

Question: Given regular language L how can we check if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle from the initial state to a final state

#### DFA



L is infinite



L is finite

Question: Given regular languages  $L_1$  and  $L_2$  how can we check if  $L_1 = L_2$ ?

Answer: Find if  $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$ 

$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \varnothing$$

$$L_1 \cap \overline{L_2} = \varnothing \quad \text{and} \quad \overline{L_1} \cap L_2 = \varnothing$$

$$L_1 \cap L_2 = Z$$

$$L_1 \cap L_2 \cap L_2 = Z$$

$$L_1 \cap L_2 \cap L_2 \cap L_1 \cap L_2 \cap L_2 \cap L_1 \cap L_2 \cap L_2 \cap L_1 \cap L_2 \cap L_2 \cap L_2 \cap L_1 \cap L_2 \cap L_2 \cap L_1 \cap L_2 \cap L_2 \cap L_1 \cap L_2 \cap L_1 \cap L_2 \cap L$$