MODEL QUESTION PAPER: 2023-24

Course Code:21MA563

VIDYAVARDHAKA COLLEGE OF ENGINEERING Autonomous Institute, Affiliated to Visvesvaraya Technological University, Belagavi Gokulam, 3rd Stage, Mysuru 570 002

Fifth Semester B.E. Examinations

COURSE NAME: NUMBER THEORY AND CRYPTOGRAPHY

Duration: 3-hour Max. Mark: 100

INSTRUCTION TO STUDENTS

1) Answer One Full question from each module

Q. No.	Module-I	Marks	BL	со
1. (a)	Use Euclidean algorithm to obtain integers x and y satisfying: $gcd(12378, 3054) = 12378x + 3054y$	6	L3	2
1. (b)	Determine all integer solutions of the following Diophantine equations: i. $56x + 72y = 40$ ii. $221x + 35y = 11$	7	L3	2
1. (c)	Use Chinese remainder theorem to solve the simultaneous congruence: $x \equiv 1 (mod \ 3)$ $x \equiv 2 (mod \ 5)$ $x \equiv 3 (mod \ 7)$	7	L3	2
	Module-II			
2.(a)	State and prove Euler's theorem. / Fernat thm	6	L2	1
2.(b)	Find the last two digits of 3 ²⁰⁵⁰	7	L3	2
2.(c)	Prove that $F_7 = \{0, 1, 2, 3, 4, 5, 6\}$ is a finite field with respect to the binary operations addition and multiplication modulo 7.	7	L4	3
	Module-III			
3.(a)	Let the integer a have order k modulo n . Then prove that $a^h \equiv 1 \pmod{n}$ if and only if $k \mid h$.	6	L2	1
3.(b)	Show that if n has a primitive root then it has precisely $\phi(\phi(n))$ number of primitive roots.	7	L3	2
3.(c)	Determine the remainder when $N = 3^{24}5^{13}$ is divided by 17.	7	L3	2
	(OR)			
4.(a)	Write the definition of Legendre symbol and evaluate $\left(\frac{219}{383}\right)$.	6	L2	1
4.(b)	If p is an odd prime and $gcd(a, p) = 1$, prove that a is a quadratic residue modulo p if and if $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.	7	L3	2

MODEL QUESTION PAPER: 2023-24

Course Code:21MA563

4.(c)	Solve the following quadratic congruence $x^2 + 7x + 10 \equiv 0 \pmod{11}$	7	L3	2
	1		LS	
	Module-IV			
5.(a)	Decipher HPCCXAQ if the encipherment function is $E(x) \equiv (5x + 8) \pmod{26}$.	6	L3	2
5.(b)	Use the Vigenère cipher formula to encrypt a plaintext ATTACKATDAWN using a keyword LEMON .	7	L4	3
5.(c)	Use a Hill cipher with key $\begin{bmatrix} 3 & 7 \\ 5 & 17 \end{bmatrix}$ to encrypt the following message. "Agnes Driscoll worked for NSA".	7	L4	3
	(OR)			
6.(a)	In a Diffie-Hellman Key Exchange, Alice and Bob have chosen prime value $q=17$ and primitive root is 5. If Alice's secret key is 4 and Bob's secret key is 6, what is the secret key they exchanged?	6	L3	2
6.(b)	Use RSA algorithm, find the public key and private key with respect to $p = 3$, $q = 11$ and $M = 31$. Also encrypt and decrypt the number $M = 31$	7	L4	3
6.(c)	Evaluate the discrete logarithm of 60 to the base 4 with prime $p=163$.	7	L4	3
	Module- V			
7.(a)	The cubic curve $y^2=x^3+17$ has the following points say $Q_1=(-2,3)$ $Q_2=(2,5)$, compute the points $Q_3=-Q_1+2Q_2$ and $Q_4=3Q_1-Q_2$.	6	L2	1
7.(b)	Use Miller-Robin's primality test to show that 561 is a composite number.	7	L3	2
7.(c)	Explain Elliptic curve Diffie Hellman key exchange.	7	L3	2