Uncertainty Quantification course Homework assignment 2

September 21, 2023

We discuss this exercise in the class meeting on 27 September 2023.

Consider the truncated Karhunen-Loève expansion Y_t^d , $t \in [0,1]$, with eigenfunctions $\psi_i(t) = \sin(\pi \, i \, t)$ and eigenvalues $\lambda_i = 1/(\pi \, i)^2$.

Construct and plot sample paths (i.e., realizations) of Y_t^d with d=10,100,1000 (multiple paths for each d). Try out both normal and uniform distributions, i.e. $\hat{Y}_i \sim \mathcal{N}(0,1)$ and $\hat{Y}_i \sim U[-1,1]$.

With normal distributions $(\hat{Y}_i \sim \mathcal{N}(0,1))$ for all i, $B_t^d := \sqrt{2} Y_t^d$ is the KL expansion for the Brownian bridge process B_t . What is the covariance function C(t,s) of the Brownian bridge? Can you prove that $(\psi_i(t), \lambda_i)$ as defined above are indeed the eigenfunctions and eigenvalues of the Brownian bridge covariance function?