處理器設計與實作

CS250 組合語言與計算機組織

LAB2: Describe C code in MIPS assembly

實驗目的

- 1. 了解 C 程式與組合語言程式的關係
- 2. MIPS定址法
- 3. 比較LAB1進階題與自己所想的Assembly Code有何不同(探討LAB1進階題)
- 4. 了解Assembly Code執行流程&結果

Tool used

實驗環境:

- 1. Linux
- 2. MIPS Cross compiler (Compile program)
- 3. Modelsim (Run CPU simulator)
- 4. Java

Example: Fibonacci數列

探討LAB1進階題 - Fibonacci數列

```
#include<stdio.h>
     main()
3
       int n, first = 0, second = 1, next, c;
       n = 10;
       volatile int * base = (int*) 0x20000000;
       for (c = 0; c < n; c++)
          if ( c <= 1 )
10
            next = c;
11
          else
12
13
            next = first + second;
            first = second;
14
15
            second = next;
16
          base[c]= next;
17
18
19
       return 0;
20
```

Fibonacci Assembly Code from gcc Compiler

```
main:
               $sp,0,$31
                                      # vars= 0, regs= 0/0, args= 0, gp= 0
       .frame
               0x00000000,0
        .mask
        .fmask
               0x00000000,0
        .set
               noreorder
       . set
               nomacro
       move
               $6,$0
       li
                                      # 0x1
               $5,1
       li
                                      # 0xa
               $8,10
       li
               $7,536870912
                                              # 0x20000000
       move
               $4,$0
. L7:
       slt
               $2,$4,2
                                  表示整個FOR迴圈(line:7-18)
       bne
               $2,$0,.L6
               $3,$4
        move
       addu
               $3,$6,$5
                                  表示IF判斷式(line:9-10)
       move
               $6,$5
               $5,$3
       move
. L6:
                                  表示ELSE判斷式(line:11-16)
       sll
               $2,$4,2
       addu
               $2,$2,$7
               $3,0($2)
        SW
                                  表示每次把記憶體位址+4並store
       addiu
               $4,$4,1
       slt
               $2,$4,$8
                                  value(line:17)
               $2,$0,.L7
        bne
               $2,$0
        move
               $31
       nop
```

Compile C Code to Assembly Code

將Ubuntu開機後,打開Terminal並輸入以下指令

[cs250a] sde-gcc -S fib.c -o fib.s

① -S: 僅將C code轉為Assembly code,不做後續的assemble跟link

```
ubuntu@ubuntu-VirtualBox:~/cs250a/share$ sde-gcc -S fib.c -o fib.s
ubuntu@ubuntu-VirtualBox:~/cs250a/share$ ls
bonus.c call_function.c converter data_struct.c fib.c fib.s AIPS_cpu_test
ubuntu@ubuntu-VirtualBox:~/cs250a/share$
```

Compile Assembly Code

輸入以下指令產生fib.conv

```
[cs250a] sde-as fib.s -g -o fib.o
[cs250a] sde-ld fib.o -Ttext 0x00008000 -o fib.image
[cs250a] sde-conv fib.image -o fib.conv
```

```
ubuntu@ubuntu-VirtualBox:~/cs250a/share$ sde-gcc -S fib.c -o fib.s
ubuntu@ubuntu-VirtualBox:~/cs250a/share$ ls
bonus.c call_function.c conventer data_struct.c fib.c fib.s MTPS_cpu_test
ubuntu@ubuntu-VirtualBox:~/cs250a/share$ sde-as fib.s -g -o fib.o
ubuntu@ubuntu-VirtualBox:~/cs250a/share$ sde-ld fib.o -Ttext 0x000008000 -o fib.image
sde-ld: warning: cannot find entry symbol __start; defaulting to 0000000000000000000
ubuntu@ubuntu-VirtualBox:~/cs250a/share$ sde-conv fib.image -o fib.conv
ubuntu@ubuntu-VirtualBox:~/cs250a/share$ ls
bonus.c conventer fib.c fib.image fib.s
call_function.c data_struct.c fib.conv
ubuntu@ubuntu-VirtualBox:~/cs250a/share$
```

Copy conv file

將編好的fib.conv複製到Windows中以下路徑:

C:\CS250A\Lab2\converter

Conv2mif

在windows底下執行conv2mif.bat,輸入檔名fib.conv按下Enter

產生fib.mif檔

Loader

執行loader.bat,輸入剛才所產生的fib.mif按下Enter

產生code.mif檔

Prepare for ModelSim

將剛才所產生的code.mif複製到MIPS_cpu_test/software_mips底下

Step.1: change to LAB1 file location

打開modelsim後,在File下選擇change directory到你放\...\MIPS_cpu_test的地方注意: 路徑不可以有中文

Step.2: new project

接著new一個project(名稱自訂)

Step.3: add source code

新增完project後,會跳出一個視窗(如左圖),點選Add Existing File將所有的 Verilog source code加入到這個project中

Step.4: compile source code

點擊Compile All

Step.5: simulate source code

Compile成功後點擊simulate

Step.6: choose testbench and enable optimization

打開work後選testbench並取消最佳化

Add Wave of Registers

將你要看的訊號線按右鍵add wave,在這裡我們選擇所有的register (u_cpu_top→u_cpu_core → u_cpuid → u_regbank)

Add Wave of Memory

在這邊要新增與記憶體相關的wave

(u_output_memory→ Mem)

Step.7: run simulation

點擊Run-all

ModelSim - 波形結果

■- Mem	32'h00000000 32	(********* <mark>*******</mark>	************ X	**********	******	*** **	*******	******	** **	******	******	** **	******	******	** *:	********
	32'h00000000	(32'h00000000														
⊕ - → [1]	32'h00000000	(32h000000000		<u>) 32'h00000001</u>												
. . . . [2]	32'h00000000	(32'h000000000			32'h0000	0001										
± - ♦ [3]	32'h00000000	(32'h000000000				(3)	2'h00000002									
⊕ - ♦ [4]	32'h00000000	(32'h00000000						32'h0000	00003							
⊕ - ♦ [5]	32'h00000000	(32'h00000000							32	h00000005						
. - → [6]	32'h00000000	(32'h00000000									(32'h0000	8000				
⊕ - ♦ [7]	32'h00000000	(32'h00000000										(32	h0000000d			
∔ - ♦ [8]	32'h00000000	(32'h00000000												32'h0000	0015	i de la composição de la c
+ - → [9]	32'h00000000	(32'h00000000													(3	2'h00000022
+ [10]	32'h00000000	(32'h00000000														i i i i i i i i i i i i i i i i i i i
÷> [11]	32'h00000000	(32'h00000000														

Project Assignment

實作(一) - C/C++ struct

```
#include <stdio.h>
     struct student{
       int mathGrade;
       int csGrade;
       int englishGrade;
    };
    main(){
     volatile struct student* A =(struct student*) 0x20000000;
10
11
     volatile struct student* B =(struct student*) 0x20000020;
12
    struct student s1 = \{60,70,70\};
     struct student s2 = {70,50,80};
13
14
15
    *A = s1;
    *B = s2;
16
17
```

實作(一) – assembly code

```
.LCO:
                          main:
                                                    # vars= 32, regs= 0/0, args= 0, gp= 0
    .word
              60
                              .frame $sp,32,$31
                                     0x00000000,0
                              .mask
    .word
            70
                              .fmask 0x00000000,0
            70
    .word
                                     noreorder
                              .set
    .align 2
                              .set
                                     nomacro
.LC1:
                                    $sp,$sp,-32
                              addiu
    .word
              70
                              li $4,536870912
                                              # 0x20000000
                              ori $6,$4,0x20
    .word
             50
                              lui $2,%hi(.LC0)
              80
    .word
                              lw $9,%lo(.LC0)($2)
    .text
                              addiu $2,$2,%lo(.LC0)
                              lw $7,4($2)
    .align 2
                              lw $8,8($2)
    .globl main
                              lui $2, %hi(.LC1)
                              lw $5,%lo(.LC1)($2)
    .set
              nomips16
                              addiu $2,$2,%lo(.LC1)
              main
    .ent
                              lw $3,4($2)
                              lw $2,8($2)
                              sw $5,16($sp)
                              sw $3,20($sp)
                              sw $2,24($sp)
                              sw $9,0($4)
                              sw $7,4($4)
                              sw $8,8($4)
                              lw $3,20($sp)
                              lw $4,24($sp)
                              lw $2,16($sp)
                              sw $2,0($6)
                              sw $3,4($6)
                              sw $4,8($6)
                              i
                                 $31
                              addiu
                                     $sp,$sp,32
```

實作(二) - function call

```
#include<stdio.h>
     int sum(int,int,int);
     int main()
5
       int a=44,b=87,c=2;
       volatile int* n = (int*) 0x20000000;
       *n=sum(a,b,c);
       return 0;
10
11
     int sum(int a,int b,int c)
12
13
14
       int n;
15
       n=a+b+c;
16
       return n;
17
```

實作(二) – assembly code

```
main:
   .frame $sp,24,$31
                       # vars= 0, regs= 1/0, args= 16, gp= 0
          0x80000000,-8
   .mask
   .fmask 0x00000000,0
   .set
          noreorder
   .set
          nomacro
   addiu $sp,$sp,-24
   sw $31,16($sp)
   li $4,44
             # 0x2c
   li $5,87 # 0x57
   jal sum
   li $6,2
           # 0x2
   li $3,536870912
                            # 0x20000000
   sw $2,0($3)
   move $2,$0
   lw $31,16($sp)
   j $31
   addiu $sp,$sp,24
   .set
          macro
   .set reorder
          main
   .end
   .size
          main, .-main
   .align
   .qlobl sum
   .set
          nomips16
   .ent
          sum
sum:
   .frame $sp,0,$31  # vars= 0, regs= 0/0, args= 0, gp= 0
   .mask
         0x00000000,0
   .fmask 0x00000000,0
   .set
          noreorder
   .set
          nomacro
   addu
          $2,$4,$5
   j $31
   addu
          $2,$2,$6
```

Project Assignment

◆請同學完成上述兩個實作,將C code轉為Assembly code,最後完成在ModelSim的驗證,將結果寫成一份報告上傳至Portal

▶ 檔案格式: s+你的學號_hw2. docx (ex: s1234567 hw2. docx)

- 申 報告須包含以下幾個部分
 - ➤ 編譯後的Assembly code
 - > 實驗結果
 - 波形圖
 - 根據你得到的波形圖,解釋Assembly code與C code之間的關係
 - > 實驗心得

Bonus - 進階題

請分析Lab2底下bonus.s這份assembly code

- 1. 寫出每次迴圈執行後memory的變化(共四次)
- 2. 簡單描述此code意義為何

main:	.frame .mask .fmask .set .set	\$sp,0,\$31 0x000000000,0 0x000000000,0 noreorder nomacro	. L15 :	addu lw lw slt beq nop	\$4,\$2,\$8 \$2,4(\$4) \$3,0(\$4) \$2,\$2,\$3 \$2,\$0,.L7	
	li li li sw li	\$8,536870912 \$9,5 \$2,10 \$2,0(\$8) \$2,92	. L7 :	lw lw sw sw	\$3,0(\$4) \$2,4(\$4) \$2,0(\$4) \$3,4(\$4)	
.L10:	SW li SW li SW	\$2,4(\$8) \$2,55 \$2,8(\$8) \$2,1 \$2,12(\$8)		addiu slt bne sll	\$5,\$5,1 \$2,\$5,\$6 \$2,\$0,.L15 \$2,\$5,2	
	li sw move addiu	\$2,46 \$2,16(\$8) \$7,\$0 \$10,\$9,-1	.L14:	addiu slt bne move	\$7,\$7,1 \$2,\$7,\$10 \$2,\$0,.L10 \$2,\$0	
	subu addiu blez move	\$2,\$9,\$7 \$2,\$2,-1 \$2,.L14 \$5,\$0		j nop	\$31	
	subu addiu sll	\$2,\$9,\$7 \$6,\$2,-1 \$2,\$5,2				