Ontology Languages Introduction to Description Logics

Objectives

Objective
Explain the basic idea of description logics

Objective
Explain the syntax of the simple description logic ALC

Credits

These slides are adapted from the slides by Manolis Koubarakis posted at http://cgi.di.uoa.gr/~pms509/lectures/dl-intro.pdf

What are Description Logics?

Description logics (DLs) are a family of knowledge representation languages that can be used to represent knowledge of an application domain in a structured and well-understood way

 Descendants of semantic networks and KL-ONE from the 1960-70s

- Describe a domain of interest in terms of
 - Concepts (also called "classes")
 - Roles (also called relations or properties)
 - Individuals
- Essentially a decidable fragment of FOL

DLs: Some History

- Approach's origins lie in research on semantic networks and frames
- Developed in the 80s and 90s in parallel with pure FOL approaches and other languages for structured objects (e.g., Telos and F-logic)
- Also known as terminological languages or concept languages
- See http://www.dl.kr.org/

An Example KL-One Network

Applications of DLs

Conceptual Modelling

Data Integration

Configuration

Software Engineering

Medical Informatics

Bioinformatics

Natural Language Processing

Knowledge Representation and Reasoning in the Semantic Web

ALC: Simple DL

ALC Syntax

To define the syntax of ALC, we start with the following three disjoint alphabets:

- Concept names
- Role names
- Individual names

Concept names and role names are also called atomic concepts and atomic roles

ALC Syntax: Concepts

The set of concept expressions or just concepts is defined inductively as follows:

- Every concept name is a concept.
- T (top concept) and ⊥ (bottom concept) are concepts.

- If C and D are concepts and R is a role name then the following are concepts:
 - ¬C (complement of C)
 - C □ D (conjunction of C and D)
 - C □ D (disjunction of C and D)
 - ∀R.C (universal restriction)
 - ∃R.C (existential restriction)

Ex: ∀hasChild. Male ∃hasChild. Male

ALC Syntax: Terminological Axioms (1 of 2)

Let A be a concept name and C, D be concepts

A terminological axiom is a statement in any of the following forms:

- Concept definitions: A ≡ D which is read "A is defined to be equivalent to D"

ALC Syntax: Terminological Axioms (2 of 2)

Woman ≡ **Person** □ **Female**

Mother

■ Woman

□ ∃hasChild. Person

Student ⊆ Person

Student ⊆ ∃enrolled. **Course**

Intuitive Meaning of Concept Definitions

- Concept definitions are used to introduce new symbolic names for complex concept descriptions
- Distinguish between name symbols that occur in the left-hand side of a definition and base symbols that occur only on the right-hand side of some axioms
 - Defined concepts: name symbols appearing in concept definitions
 - Primitive concepts: name symbols appearing in base symbols

Primitive vs. Defined Concepts

Defined Concepts

Have necessary and sufficient conditions for concept membership

Examples: woman, mother, driver, white wine

Primitive Concepts

Cannot be defined or need not be defined

 However, we might know some necessary (but not sufficient) conditions for membership

Examples: dog (or any other natural kind), **wine** (in a food and wine recommendation application)

Necessary Conditions

A concept inclusion of the form C

D states a necessary condition for membership in the concept C:

 For an individual to be in C, it is necessary that it is also in D (it has the properties expressed by D)

Ex: Student

∃enrolled.Course

Concept inclusions express "if" statements

Necessary and Sufficient Conditions

A concept equivalence (definition) of the form C ≡ D states a necessary and sufficient condition for membership in the concept C:

Example: Mother **≡** Woman □ ∃hasChild.Person

Concept equivalences express "if and only if" statements

Example: Family Relationships

Woman \equiv Person \sqcap Female $Man \equiv Person \sqcap \neg Woman$ Mother \equiv Woman \sqcap \exists has Child. Person Father \equiv Man \sqcap \exists has Child. Person Parent \equiv Mother \sqcup Father Grandmother \equiv Mother $\sqcap \exists$ has Child. Parent MotherWithoutDaughter \equiv Mother $\sqcap \forall$ hasChild. \neg Woman Wife \equiv Woman \sqcap \exists has Husband. Man

Examples of Concept Inclusions

- Disjointness of concepts: Male = ¬Female Female = ¬Male
- **Coverings:** T

 Male

 □ Female
- **Domain restrictions:** ∃hasChild.T ⊑ Parent
- **Range restrictions:** $T \sqsubseteq \forall hasChild.Person$

ALC Syntax: Assertions about Individuals

In ALC, one can also describe a specific state of affairs of an application domain in terms of individuals, concepts and roles. This is done by:

- Concept assertions: Statements of the form C(a) where C is a concept and a is an individual.
- Role assertions: Statements of the form R(a, b) where R is a role and a, b are individuals.

Student (John)
enrolled (John, CS415)
(Student ⊔ Professor)(PAUL)

TBoxes, ABoxes and Knowledge Bases

A TBox is a set of terminological axioms.

An Abox is a set of concept and role assertions.

A knowledge base K is a pair (T, A) where T is a TBox and A is an Abox.

Wrap-Up

