Chapter 22: Elementary Graph Algorithms I

About this lecture

- Representation of Graph
 - · Adjacency List, Adjacency Matrix
- Breadth First Search

Graph

undirected

directed

Adjacency List (1)

 For each vertex u, store its neighbors in a linked list

Adjacency List (2)

 For each vertex u, store its neighbors in a linked list

Adjacency List (3)

- Let G = (V, E) be an input graph
- · Using Adjacency List representation:
 - Space: O(|V|+|E|)
 - Excellent when |E| is small
 - · Easy to list all neighbors of a vertex
 - Takes O(|V|) time to check if a vertex u is a neighbor of a vertex v
- · can also represent weighted graph

Adjacency Matrix (1)

• Use a $|V| \times |V|$ matrix A such that A(u,v) = 1 if (u,v) is an edge A(u,v) = 0 otherwise

	1	2	3	4	5
•	0	1	0	0	1
-	1	0	1	0	0
3	0	1	0	1	1
-	0	0	1	0	1
5	1	0	1	1	0

Adjacency Matrix (2)

• Use a $|V| \times |V|$ matrix A such that A(u,v) = 1 if (u,v) is an edge A(u,v) = 0 otherwise

	1	2	3	4	5
1	0	0	0	0	1
2	1	0	1	0	0
3	0	1	0	0	0
4	0	0	0	1	0
5	0	0	1	1	0

Adjacency Matrix (3)

- Let G = (V, E) be an input graph
- · Using Adjacency Matrix representation:
 - Space: O(|V|²)
 - Bad when |E| is small
 - O(1) time to check if a vertex u is a neighbor of a vertex v
 - $\Theta(|V|)$ time to list all neighbors
- · can also represent weighted graph

Transpose of a Matrix

- Let A be an n × m matrix
- Definition:

The transpose of A, denoted by A^{T} , is an $m \times n$ matrix such that $A^{T}(u,v) = A(v,u)$ for every u, v

If A is an adjacency matrix of an undirected graph, then $A = A^T$

Breadth First Search (BFS)

- A simple algorithm to find all vertices reachable from a particular vertex s
 - s is called source vertex
- · Idea: Explore vertices in rounds
 - At Round k, visit all vertices whose shortest distance (#edges) from s is k-1
 - Also, discover all vertices whose shortest distance from s is k

The BFS Algorithm

1. Mark s as discovered in Round O 2. For Round k = 1, 2, 3, ...,For (each u discovered in Round k-1) { Mark u as visited; Visit each neighbor v of u; If (v not visited and not discovered) Mark v as discovered in Round k;

Stop if no vertices were discovered in Round k-1

} (Implemented by Queue)

Done when no new node is discovered

The directed edges form a tree that contains all nodes reachable from s

Called BFS tree of s

Correctness

 The correctness of BFS follows from the following theorem:

Theorem: A vertex v is discovered in Round k if and only if shortest distance of v from source s is k

Proof: By induction

Performance (1)

- BFS algorithm is easily done if we use
 - an O(|V|)-size array to store discovered/visited information
 - a separate list for each round to store the vertices discovered in that round
- Since no vertex is discovered twice, and each edge is visited at most twice (why?)
 - \square Total time: O(|V|+|E|)
 - \square Total space: O(|V|+|E|) (adjacency-list representation)

Performance (2)

- Instead of using a separate list for each round, we can use a common queue
 - When a vertex is discovered, we put it at the end of the queue
 - To pick a vertex to visit in Step 2, we pick the one at the front of the queue
 - · Done when no vertex is in the queue
- No improvement in time/space ...
- But algorithm is simplified

Practice at Home

- Exercise: 22.1-6, 22.1-7, 22.2-6 22.2-9
- n-Queen Problem: (Practice at home)
 - Give an algorithm that takes an integer n as input and determine the total number of solutions to the n-Queen problem (Practice at home)