Extending SDN to the Data Plane

Anirudh Sivaraman, Keith Winstein, Suvinay Subramanian, Hari Balakrishnan

M.I.T.

http://web.mit.edu/anirudh/www/sdn-data-plane.html

November 7, 2013

Switch Data Planes today

Two key decisions on a per-packet basis:

Scheduling: Which packet to transmit next?

• Queue Management: How long can queues grow? Which packet to drop?

The Data Plane is continuously evolving

▶ Each scheme wins in its own evaluation.

► Some believe in a "silver bullet" knobless in-network method.

We disagree: There is no silver bullet!

- Different applications care about different objectives.
- Applications use different transport protocols.

Networks are heterogeneous.

Our work:

Quantify non-universality of in-network methods.

Extend SDN to the Data Plane.

Quantifying "No Silver Bullet": Network Configurations

Configuration	Description		
CoDel+FCFS	One shared FCFS queue with CoDel		
CoDel+FQ	Per-flow fair queueing with CoDel on each queue		
Bufferbloat+FQ	Per-flow fair queueing with deep buffers on each queue		

Quantifying "No Silver Bullet": Workloads and Objectives

Workload	Description	Objective
Bulk	Long-running	Max. throughput
Web	Switched flow with ON and OFF periods	Min. 99.9 %ile flow completion time
Interactive	Long-running in- teractive flow	$\begin{array}{c} Max. & \frac{throughput}{delay} \\ (power) \end{array}$

Bufferbloat+FQ

Why is no single data plane configuration the best?

- Bufferbloat on variable-rate links helps throughput!
 - ▶ Variable-rate links have an inherent delay-throughput tradeoff
- ► FCFS is preferable to Fair Queuing in some cases
 - When equally aggressive flows compete, they don't need protection from each other
 - ▶ Helps reduce tail packet delay
- Fair Queuing is required in some cases
 - ▶ When competing flows aren't equally aggressive, isolation helps

So what should the network designer do?

Architect a flexible data plane

- Programmable queue management and scheduling
- Not just for selecting among pre-built choices, but to change behavior in the field
- Because there is no silver bullet and innovation will continue!

Controlled flexibility: Want performance, security

- Provide interfaces only to the head and tail of queues
- Operators specify only queue-management/scheduling logic
- No access to packet payloads.

Building such a data plane in four parts

- Hardware gadgets
 - ► Random number generators (RED, BLUE)
 - ▶ Binary tree of comparators (pFabric, SRPT)
- ▶ I/O interfaces
 - Drop/mark head/tail of queue
 - ▶ Interrupts for enqueue/dequeue
- State maintenance
 - Per-flow (WFQ, DRR)
 - ► Per-dst address (PF)
- A domain-specific instruction set
 - Expresses control flow
 - ▶ Implements new functions unavailable in hardware

Feasibility study: CoDel

Synthesis numbers on Xilinx Kintex-7:

Resource	Usage	Fraction
Slice logic	1,256	1%
Slice logic dist.	1,975	2%
IO/GTX ports	27	2%
DSP slices	0	0%
Maximum speed	12.9×10^6 pkts/s ~10gbps	

- Small fraction of the FPGA's resources.
- Can be improved by pipelining or parallelizing.

Limitations and Practical Considerations:

- Cannot express several network functions that need payloads.
- How do applications signal objectives to the network?
- ▶ Feasibility at 10G on high port-density switches.
- Energy and Area overheads.

Related Work:

Active Networking, e.g., ANTS

Software Routers, e.g., Click

► Software-Defined Networking, e.g., OpenFlow

Conclusion

 There is no silver bullet to in-network resource control because of application and network diversity

 Algorithms will continue to evolve: the data plane should help

Directions to reproduce results: http://web.mit.edu/anirudh/www/sdn-dataplane.html