

5.4.2 计数器

一、计数器的作用

计数器是用来记录脉冲数目的数字电路,它是构成数字设备的基本的逻辑部件,可用于定时、延时、分频等逻辑功能

二、计数器的分类:

按工作方式分: 异步计数器, 同步计数器

按编码方式分:二进制计数器,二一十进制计数器,任意

进制计数器

按工作特点分:加法计数器,减法计数器,可逆计数器

三、异步计数器

- 1. 二进制计数器
- 1) 加法

- $\cdot CP_0 = CP$, $CP_1 = Q_0$, $CP_2 = Q_1$
- ·J=K=1,所有触发器均接成T'F

2) 减法

•J=K=1, 所有触发器均接成T'F

$$CP_0 = CP, CP_1 = \overline{Q_0}, CP_2 = \overline{Q_1}$$

归纳:异步二进制计数器的构造方法

- 二进制的位数与触发器的个数相同
- 触发器均接成T'F
- $CP_0 = CP$

CPi	加法	减法
下降沿	Q_{i-1}	$\overline{Q_{i-1}}$
上升沿	$\overline{Q_{i-1}}$	\mathbf{Q}_{i-1}

(3) 中规模集成异步二-五-十进制计数器 (74LS290)

*逻辑图与管脚

*功能说明

1) R_{01} = R_{02} =1时,异步清零($Q_3Q_2Q_1Q_0$ =0000)

 $S_{91}=S_{92}=1$ 时,异步置9($Q_3Q_2Q_1Q_0=1001$)

2) $CP_0=CP$, CP_1 悬空, Q_0 是一位二进制计数器 ($Q_3Q_2Q_1$ 保持不变)

3) CP₁=CP, CP₀悬空, Q₃Q₂Q₁是五进制计数器 (Q₀保持不变) Q₀ Q₁ Q₂ Q₃ CP₁ 74LS290 CP₀ R₀₁ R₀₂ S₉₁ S₉₂

4) \mathbf{CP}_0 = \mathbf{CP} , \mathbf{CP}_1 = $\mathbf{Q0}$, $\mathbf{Q}_3\mathbf{Q}_2\mathbf{Q}_1\mathbf{Q}_0$ 是

一位十进制加法计数器

四、同步计数器

二进制计数器

- •1) 加法
- •二进制的位数与触发器的个数相同
- CP_i=CP
- •触发器均接成TF

K=0

$$T_0=1$$

$$T_0=1$$

$$C=\mathbf{Q}_3\mathbf{Q}_2\mathbf{Q}_1\mathbf{Q}_0$$

$$T_0=1$$

$$T_0=1$$

$$T_0=1$$

$$T_0=1$$

СР	Q	3 Q 2	Q ₁	Q ₀	C
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	1
16	0	0	0	0	0
		合作	道.	取 2	义實

2. 同步二进制 加法计数器 的构成电路

2) 减法

- •二进制的位数与触发器的个数相同
- •CP_i=CP
- •触发器均接成TF
- $\cdot T_0 = 1$

$$Ti = \prod_{K=0}^{i-1} \overline{Q_k}$$

$$C = \overline{Q_3 Q_2 Q_1 Q_0}$$

СР	Q	3 Q 2	Q ₁	Q_0	C	
0	0	0	0	0	1	
1	1	1	1	1	0	
2	1	1	1	0	0	
2 3	1	1	0	1	0	
4	1	1	0	0	0	
5	1	0	1	1	0	
6	1	0	1	0	0	
7	1	0	0	1	0	
8	1	0	0	0	0	
9	0	1	1	1	0	
10	0	1	1	0	0	
11	0	1	0	1	0	
12	0	1	0	0	0	
13	0	0	1	1	0	
14	0	0	1	0	0	
15	0	0	0	1	0	
16	0	0	0	0	1	
		合作	進.	取	人實	

創新

2)同步二进制减法计数器的构成电路

3) 可逆计数器

A、单时钟

$$\overline{U}/D=0$$
,加法 $\overline{U}/D=1$,减法

B、双时钟

 CP_U ,加法 CP_D ,减法

2. 中规模集成同步四位二进制加法计数器

2) 74LS161的功能表及说明

Rd	CP	LD	ET	EP	功能	说明	
0	×	×	×	×	异步清零	Qi=0, C=0	
1	↑	0	×	×	同步预置数	$Q_i^{n+1} = D_i$	
1	↑	1	1	1	计数	二进制加法	
1	×	1	1	0	保持	$Q_i^{n+1} = Q_i^n, C^{n+1} = C^n$	
1	×	1	0	X	保持	$Q_i^{n+1} = Q_i^n, C = 0$	

3. 同步十进制加法计数器(74LS160)

2) 74LS160功能表及说明

Rd	CP	LD	ET	EP	功能	说明		
0	×	×	×	×	异步清零	Qi=0, C=0		
1	1	0	×	×	同步预置数 $Q_i^{n+1} = D_i$			
1	↑	1	1	1	计数	十进制加法		
1	×	1	1	0	保持	$Q_i^{n+1} = Q_i^n, C^{n+1} = C^n$		
1	×	1	0	×	保持 $Q_i^{n+1} = Q_i^n, C$			

3) 计数器状态转换图(十进制加法)

4. 同步十进制可逆计数器(74LS190)

 $\overline{RC} = \overline{CP} \cdot CO/BO \cdot \overline{CT}$

当 $\overline{CT} = 0$, CO/BO = 1时 $\overline{RC} = CP$

合作進取求實創新

2) 74LS190的功能表及说明

LD	CP	CT	U/D	功	能	说	明
0	X	×	×	异步预	置数	Q_{i}	$=D_{i}$
1	↑	0	0	同步十进制加法		C=C	Q3Q0
1	↑	0	1	同步十进制减法		COE	$BO=\overline{Q_3Q_3Q_3Q_3}$
1	×	1	×	保持		$Q_i^{n+1} =$	$Q_i^n, C^{n+1} = C^n$

3) 计数器状态转换图(十进制减法)

$$\overline{LD} = 1, \overline{CT} = 0, \overline{U}/D = 1$$

五、用MSI构成N进制计数器的方法

1. 基本原理:假设已有一M进制计数器,要得到一N进制计数器,只要N〈M,即可令M进制计数器在顺序计数过程中跳跃M-N个状态可得到N进制计数器

2. 基本方法

- 1) 异步清零法(异步置数法)
- 2) 同步置数法(任意值、最大值、最小值)

例: 试用74LS161设计一个十进制计数器。

