EE3203: Power Electronics

Tutorial 2

- 1. A step down converter is operating with the following parameters. $V_{in}=30\,V$ and $T_s=1000\,\mu s$ and $T_{ON}=125\,\mu s$. Find
 - (a) The steady state output voltage of the converter (Assume sufficiently large filter elements are present and the switches are ideal)
 - (b) The steady state current flowing through the inductor, if a load of $R=5\,\Omega$ is connected at the output of the converter.

- 2. Find the range of duty ratio for a step down converter operating in figure 1 at $f_s = 50 \, kHz$ when the input voltage varies from $30 \, V$ to $70 \, V$ keeping the output voltage at $15 \, V$.
- 3. A buck converter is operating with an input voltage $V_{in}=60\,V$, switching frequency $f_s=50\,kHz$, duty ratio of the switch d=0.25. The filter inductance and capacitance are $L=10\,mH$ and $C=100\,\mu F$ respectively. For a load of $R=5\,\Omega$ find
 - (a) Steady state output voltage across the load and current through the load
 - (b) Ripple current in the inductor expressed as a fraction of output dc current
 - (c) Energy stored in the indcutor in one switching cycle
 - (d) Ripple voltage in the capacitor expressed as a fraction of output dc voltage
 - (e) Energy stored in the capacitor in one switching cycle
- 4. A buck converter feeding a variable resistance load. The converter is operating at a switching frequency of $f_s = 100 \, kHz$ and duty ratio d = 0.6, filter inductance $L = 5 \, mH$. The output voltage is $36 \, V$ while the input is $60 \, V$. Assuming all ideal components and the output to be ripple free, find the value of the load resistance such that the inductor current is just continuous.

- 5. A boost converter has an average voltage of $V_a=15\,V$ for an input voltage of $V_s=5\,V$. The average load current is $I_a=0.5\,A$. The switching frequency is $25\,kHz$. If $L=150\,\mu H$ and $C=220\,\mu F$, determine
 - (a) Duty cycle, d
 - (b) Ripple current of the inductor, ΔI
 - (c) Peak current of the inductor, I_L
 - (d) Ripple voltage of the filter capacitor, ΔV
 - (e) Critical values of L and C
- 6. The dc-dc converter shown is used to control power flow from a dc voltage, $V_s = 110 V$ to a battery voltage, E = 220 V. The power transferred to the battery is $30 \, kW$. The current ripple of the inductor is negligible. Determine:
 - (a) Duty cycle, d
 - (b) Effective load resistance, R_{eq}
 - (c) Average input current, I_s

- 7. For the problem 6, plot the instantaneous inductor current and current through the battery, E if the inductor L has a finite value of $L = 7.5 \, mH$, $f = 250 \, Hz$ and d = 0.5.
- 8. The boost converter shown has $R = 10 \Omega$, $L = 6.5 \, mH$, $E = 5 \, V$ and d = 0.5. Find I_1 , I_2 and ΔI .

- 9. In a buck-boost converter, consider all components to be ideal. Let V_s vary between 8V to 40V, $V_o = 15V$, $f_S = 20\,kHz$ and $C = 470\,\mu F$. Calculate L_{min} that will keep the converter operating in continous conduction mode if $P_o \ge 2W$.
- 10. In a buck-boost converter, $V_s=12\,V,\ V_O=1\,V,\ I_o=250\,mA,\ L=150\,\mu H,\ C=470\,\mu F,$ and $f_s=20\,kHz.$ Calculate ΔV_o (peak-peak).
- 11. Calculate the rms value of the ripple current in problem 10 through diode and, hence, through the capacitor.

- 12. In a buck-boost converter operating at $20\,kHz$, $L=0.05\,mH$. The output capacitor C is sufficiently large and $V_s=15\,V$. The output is to be regulated at $10\,V$ and the converter is supplying a load of $10\,W$. Calculate the duty ratio, D.
- 13. A dc-dc converter has diode voltage and current as shown in the figure given below. The source voltage, $V_s = 12\,V$, duty ratio, D = 0.6, switching frequency, $f_s = 25\,kHz$, inductance, $L = 250\,\mu$ and filter capacitance is $C = 220\,\mu$ F. For average load current, $I_a = 1.5\,A$, determine:
 - (a) average output voltage, V_a
 - (b) peak-to-peak output ripple voltage, ΔV_C
 - (c) peak-to-peak ripple current of inductor, ΔI_L
 - (d) critical values of L and C

