MAP2121 - CÁLCULO NUMÉRICO (POLI - USP)

List of exercises about zeros (roots) of functions Solved by Gustavo Quintero

1. Show that the function $f(x) = x^2 - 4x + \cos(x)$ has exactly two roots: $\alpha_1 \in [0, 1.8]$ and $\alpha_2 \in [3, 5]$. Consider the functions:

$$\phi_1(x) = \frac{x^2 + \cos(x)}{4}$$
 and $\phi_2(x) = \frac{\cos(x)}{4 - x}$.

Mark with C for the correct alternatives and E for the wrong alternatives:

- a) ϕ_1 can be used in the interval [0, 1.8] to approximate α_1 by successive approximation method, but $\phi_2(x)$ can't be used in this interval.
- b) ϕ_1 and $\phi(x)_2$ can be used in the interval [0, 1.8] to approximate α_1 by successive approximation method.
- c) $\phi(x)_2$ can be used in the interval [3,5] to approximate α_2 by successive approximation method, but $\phi_1(x)$ can't be used in this interval.
- d) ϕ_1 and $\phi(x)_2$ can be used in the interval [3, 5] to approximate α_2 by successive approximation method.
- e) ϕ_1 can be used to approximate α_1 in the interval [0, 1.8] and also to approximate α_2 in the interval [3, 5].

Solution: We define $g(x) = x - f(x) = -x^2 - 3x - \cos(x)$. Then, $g'(x) = \sin(x) - 2x - 3$. Note that, g(0) = -1 < 0 and g(1.8) = 5.9872 > 1.8. In addition, g'(x) is decreasing for all $x \in [0, 1.8]$, therefore its maximum value occurs at x = 0. Since g'(0) = -3, we deduce that $g'(x) \neq 1$. So, there exist a fixed point α_1 of g(x) in [0, 1.8], which means that there exist a root of f(x) in [0, 1.8]. Analogously we can show that there exist a fixed point α_2 of f(x) in [3, 5].