

Pré-requis incontournables (à travailler en autonomie)

- Avoir travaillé, appris le cours de 3A004 chapitre déformations et mis en fiche les éléments essentiels.
- Avoir travaillé et rédigé sur feuille le sujet de TD 3 Transformation homogène de la semaine dernière.
- Avoir cherché la présente feuille en travaillant en amont les pré-requis.
- Exercice d'auto-évaluation :

Soit la transformation $\underline{x} = \underline{\Phi}(\underline{X}, t) = X_1 \underline{e}_1 + (X_2 + aX_3) \underline{e}_2 + (X_3 + aX_2) \underline{e}_3$ où a est une constante donnée, \underline{X} la position d'un point dans sa configuration initiale et \underline{x} sa position après transformation.

- a. Calculer les composantes du tenseur gradient de transformation F et son déterminant.
- b. Rappeler la condition pour qu'une transformation soit définie. En déduire la condition que la constante a doit satisfaire pour que la transformation $\underline{\Phi}$ soit définie? La transformation est-elle homogène?
- c. Soient les points A_0 et B_0 de coordonnées avant transformation $A_0:(0,1,0)$ et $B_0:(0,1,1)$. Calculer les coordonnées de ces deux points après transformation. Que devient le segment droit $[A_0B_0]$ après transformation?
- d. Donner le volume du domaine Ω_0 après transformation.
- e. Calculer les composantes du tenseur des dilatations \underline{C} et du tenseur de Green-Lagrange \underline{E} .
- f. Donner les dilatations subies par des segments matériels initialement portés par chacune des trois directions \underline{e}_1 , \underline{e}_2 et \underline{e}_3 .
- g. Donner les variations angulaires subies par deux segments matériels initialement portés par $(\underline{e}_1, \underline{e}_2)$, puis $(\underline{e}_2, \underline{e}_3)$.
- h. Calculer le vecteur déplacement ξ . A quelle condition sur a la transformation peut-elle être considérée petite ?
- i. Calculer les composantes du tenseur des déformations linéarisées $\underline{\varepsilon}$. Comparer avec l'expression du tenseur de Green-Lagrange.
- j. Calculer les allongements relatifs subis par des segments matériels initialement portés par chacune des trois directions e_i.
- h. Donner les angles entre deux segments matériels initialement portés par $(\underline{e}_1, \underline{e}_2)$, puis $(\underline{e}_2, \underline{e}_3)$. Commenter.

Transformation non homogène

On étudie la transformation d'un milieu continu qui transporte tout point $M_0(X, Y, Z)$ du milieu dans sa configuration de référence en M(x, y, z) dans la configuration actuelle, définie par :

$$x = X + \alpha Y^2$$
, $y = Y + \beta X^2$ $z = Z$

OÙ α et β sont des constantes réelles strictement positives. Les coordonnées sont rapportées à un repère orthonormé direct $(O; \underline{i}, j, \underline{k})$.

1. Etude générale de cette transformation : domaine de validité

- $1.1\,$ Déterminer le tableau des composantes du tenseur gradient de la transformation $\underline{\underline{F}}$.
- 1.2 La transformation est-elle homogène? Déterminer l'ensemble des points invariants.
- 1.3 Déterminer le domaine des points $M_0(X,Y,Z)$ pour lequel la transformation est définie. Dans le plan $(O;\underline{i},\underline{j})$, les axes $O\underline{i}$ et $O\underline{j}$, et le carré OACB, avec A(1,0), B(0,1) et C(1,1), sont-ils toujours inclus dans ce domaine?
- 1.4 Déterminer dans la base orthonormée donnée, le tableau des composantes du tenseur des dilatations $\underline{\underline{C}}$, puis celui du tenseur des déformations de Green Lagrange $\underline{\underline{E}}$.

2. Etude de la transformation dans le plan (O; i, j)

- **2.1** On restreint à partir de maintenant l'étude au plan $(O; \underline{i}, \underline{j})$. Le milieu continu considéré est le carré OACB. Déterminer les points O', A', B' et C', transformés respectifs des points O, A, B et C.
- 2.2 Etablir les équations des courbes transformées des côtés OA, OB, BC et AC du carré. Tracer le transformé OA'B'C' du carré OACB. On prendra $\alpha = 1/4$ et $\beta = 3/4$.

3. Etude des déformations au point C(1,1,0)

- 3.1 Donner au point C les dilatations, λ_x , λ_y et λ_z dans les directions des axes.
- 3.2 $\gamma(\underline{i},\underline{j})$ désigne le glissement de l'angle droit formé par les axes $C\underline{i}$ et $C\underline{j}$. Donner une valeur approchée au degré près de l'angle $\gamma(\underline{i},\underline{j})$. Mettre en évidence graphiquement cet angle.