# Quintic splines

In[1]:= ClearAll["Global`\*"]

This file explains the basic working of quintic splines, as we use them in the paper of Thomas Blanchet, Juliette Fournier and Thomas Piketty, "Generalized Pareto Curves: Theory and Applications", 2017.

### **Basis functions**

Determine the basis functions by solving the appropriate linear system:

```
ln[2]:= poly[x] = Sum[a_i x^i, \{i, 0, 5\}]
  Out[2]= a_0 + x a_1 + x^2 a_2 + x^3 a_3 + x^4 a_4 + x^5 a_5
  In[3]:= coef = CoefficientList[poly[x], x]
  Out[3]= \{a_0, a_1, a_2, a_3, a_4, a_5\}
   ln[4] = h00[x] = poly[x] /. First[Solve[{poly[0] == 1, poly[1] == 0,}]
                poly'[0] == 0, poly'[1] == 0, poly''[0] == 0, poly''[1] == 0}, coef]];
   ln[5]:= h01[x_] = poly[x] /. First[Solve[{poly[0] == 0, poly[1] == 1,}]
                poly'[0] == 0, poly'[1] == 0, poly''[0] == 0, poly''[1] == 0}, coef]];
   ln[6]:= h10[x] = poly[x] /. First[Solve[{poly[0] == 0, poly[1] == 0,}]
                poly'[0] == 1, poly'[1] == 0, poly''[0] == 0, poly''[1] == 0}, coef]];
   ln[7] = h11[x_] = poly[x] /. First[Solve[{poly[0] == 0, poly[1] == 0,}]
                poly'[0] == 0, poly'[1] == 1, poly''[0] == 0, poly''[1] == 0}, coef]];
   ln[8] = h20[x_] = poly[x] /. First[Solve[{poly[0] == 0, poly[1] == 0,}]
                poly'[0] == 0, poly'[1] == 0, poly''[0] == 1, poly''[1] == 0}, coef]];
   ln[0]:= h21[x_] = poly[x] /. First[Solve[{poly[0] == 0, poly[1] == 0,}]
                poly'[0] == 0, poly'[1] == 0, poly''[0] == 0, poly''[1] == 1}, coef]];
        Expressions of the basis functions:
  log[10] = TableForm[Map[#\&, {h00[x], h01[x], h10[x], h11[x], h20[x], h21[x]}],
         TableHeadings → {{"h00", "h01", "h10", "h11", "h20", "h21"}}]
Out[10]//TableForm=
        h00 | 1 - 10 x^3 + 15 x^4 - 6 x^5
        h01 | 10 x^3 - 15 x^4 + 6 x^5
        h10 | x - 6 x^3 + 8 x^4 - 3 x^5
        | -4 x^3 + 7 x^4 - 3 x^5 |
        h20 \left| \frac{x^2}{2} - \frac{3x^3}{2} + \frac{3x^4}{2} - \frac{x^5}{2} \right|
        h21 \left| \frac{x^3}{2} - x^4 + \frac{x^5}{2} \right|
```

Their first derivatives:

In[11]:= TableForm[Map[D[#, x] &, {h00[x], h01[x], h10[x], h11[x], h20[x], h21[x]}], TableHeadings → {{"h00", "h01", "h10", "h11", "h20", "h21"}}]

Out[11]//TableForm=

Their second derivatives:

 $log[12] := TableForm[Map[D[#, {x, 2}] &, {h00[x], h01[x], h10[x], h11[x], h20[x], h21[x]}],$ TableHeadings → {{"h00", "h01", "h10", "h11", "h20", "h21"}}]

Out[12]//TableForm=

Their third derivatives:

In[13]= TableForm[Map[D[#, {x, 3}] &, {h00[x], h01[x], h10[x], h11[x], h20[x], h21[x]}], TableHeadings → {{"h00", "h01", "h10", "h11", "h20", "h21"}}]

Out[13]//TableForm=

Plots of the basis functions:

 $\label{eq:local_local_local_local_local} $$\inf_{1\leq i\leq n} \operatorname{GraphicsColumn}[\{\operatorname{Plot}[\{h00[x], h01[x]\}, \{x, 0, 1\}, \operatorname{PlotLabel} \to "h_{\theta\theta} \text{ and } h_{\theta1}"], $$$  $\label{eq:plot_state} {\tt Plot[\{h10[x], h11[x]\}, \{x, 0, 1\}, PlotLabel $\rightarrow$ "$h_{10}$ and $h_{11}$"],}$  $\label{eq:plot_plot_label} \mathsf{Plot}[\{\mathsf{h20}[\mathsf{x}]\,,\,\mathsf{h21}[\mathsf{x}]\}\,,\,\{\mathsf{x},\,\emptyset,\,1\}\,,\,\mathsf{PlotLabel}\,\rightarrow\,\mathsf{"h}_{2\theta}\,\,\mathsf{and}\,\,\mathsf{h}_{21}\mathsf{"]}\}]$ 







Their first derivatives:

Their second derivatives:

-0.06

In[16]:= GraphicsColumn[  $\{ \texttt{Plot}[\texttt{Evaluate}[\{ \texttt{h00''}[\texttt{x}] \texttt{, h01''}[\texttt{x}] \}] \texttt{, \{x, 0, 1\}, PlotLabel} \rightarrow \texttt{"} \texttt{h}_{00} \texttt{ and } \texttt{h}_{01} \texttt{"}] \texttt{,} \\$  $\label{eq:plot_evaluate} $$ Plot[Evaluate[\{h10''[x], h11''[x]\}], \{x, 0, 1\}, PlotLabel \rightarrow "h_{10} \ and \ h_{11}"], $$ $$ $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ $$ $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0, 1), PlotLabel \rightarrow "h_{10} \ and h_{11}"], $$ (x, 0,$  $Plot[Evaluate[\{h20''[x], h21''[x]\}], \{x, 0, 1\}, PlotLabel \rightarrow "h_{20} \ and \ h_{21}"]\}]$  $h_{00}$  and  $h_{01}$ 2 0.2 0.4 8.0 -4 -6 h<sub>10</sub> and h<sub>11</sub> 2 Out[16]= 0.2 0.8 -2  $h_{20}$  and  $h_{21}$ 1.0 8.0 0.6 0.4 0.2 -0.2 -0.4

## Interpolation function

The interpolating function over [0, 1] is a linear combination of those six basis functions:

```
ln[17] = h[x_, y0_, y1_, s0_, s1_, a0_, a1_] =
       y0 * h00[x] + y1 * h01[x] + s0 * h10[x] + s1 * h11[x] + a0 * h20[x] + a1 * h21[x];
```

```
In[18]: Manipulate[GraphicsColumn[{Plot[h[x, y0, y1, s0, s1, a0, a1], \{x, 0, 1\},
           PlotRange \rightarrow \{\{0, 1\}, \{-2, 2\}\}, PlotLabel \rightarrow "Quintic spline function"],
         Plot[Evaluate[D[h[x, y0, y1, s0, s1, a0, a1], x]], {x, 0, 1},
           PlotRange \rightarrow {{0, 1}, {-10, 10}}, PlotLabel \rightarrow "First derivative"],
         Plot[Evaluate[D[h[x, y0, y1, s0, s1, a0, a1], {x, 2}]], {x, 0, 1},
           PlotRange \rightarrow \{\{0, 1\}, \{-50, 50\}\}, PlotLabel \rightarrow "Second derivative"]\}],
       \{\{y0, -1\}, -2, 2\}, \{\{y1, 1\}, -2, 2\}, \{\{s0, 0\}, -2, 2\}, \{\{s1, 0\}, -2, 2\},
       \{\{a0, 0\}, -20, 20\}, \{\{a1, 0\}, -20, 20\}\}
```



We can extend this function to an arbitrary interval using an affine transformation:

In[19]:= 
$$f[x_{-}] = y0 * h00 \left[ \frac{x - x0}{x1 - x0} \right] + y1 * h01 \left[ \frac{x - x0}{x1 - x0} \right] +$$

$$s0 * (x1 - x0) * h10 \left[ \frac{x - x0}{x1 - x0} \right] + s1 * (x1 - x0) * h11 \left[ \frac{x - x0}{x1 - x0} \right] +$$

$$a0 * (x1 - x0) ^2 * h20 \left[ \frac{x - x0}{x1 - x0} \right] + a1 * (x1 - x0) ^2 * h21 \left[ \frac{x - x0}{x1 - x0} \right];$$

Check that the function and its derivatives have the right values:

$$\label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_$$

# Regularity conditions to determine the parameters of the spline

To determine the parameters of the spline, we impose the requirement that the third derivative is continuous at the jointures. That leads to the most regular curve possible in the sense that the first derivative has the lowest curvature possible.

We start by defining two splines over the knots  $(x_1, x_2, x_3)$ . The spline over  $(x_1, x_2)$  if  $f_1$ , and the one over  $(x_2, x_3)$  is  $f_2$ .

$$\begin{aligned} &\text{In}[21] = \ f1\big[x_{\_}\big] = y1 * h00\Big[\frac{x - x1}{x2 - x1}\Big] + y2 * h01\Big[\frac{x - x1}{x2 - x1}\Big] + \\ & s1 * (x2 - x1) * h10\Big[\frac{x - x1}{x2 - x1}\Big] + s2 * (x2 - x1) * h11\Big[\frac{x - x1}{x2 - x1}\Big] + \\ & a1 * (x2 - x1) ^2 * h20\Big[\frac{x - x1}{x2 - x1}\Big] + a2 * (x2 - x1) ^2 * h21\Big[\frac{x - x1}{x2 - x1}\Big]; \\ & \text{In}[22] = \ f2\big[x_{\_}\big] = y2 * h00\Big[\frac{x - x2}{x3 - x2}\Big] + y3 * h01\Big[\frac{x - x2}{x3 - x2}\Big] + \\ & s2 * (x3 - x2) * h10\Big[\frac{x - x2}{x3 - x2}\Big] + s3 * (x3 - x2) * h11\Big[\frac{x - x2}{x3 - x2}\Big] + \\ & a2 * (x3 - x2) ^2 * h20\Big[\frac{x - x2}{x3 - x2}\Big] + a3 * (x3 - x2) ^2 * h21\Big[\frac{x - x2}{x3 - x2}\Big]; \end{aligned}$$

Get the system in matrix form:

In[24]:= system[[1]] // Normal

$$\begin{array}{l} \text{Out}[24] = \end{array} \left\{ - \ \frac{24 \, \text{s1}}{\left(-\,\text{x1} + \text{x2}\right)^{\,2}} - \ \frac{36 \, \text{s2}}{\left(-\,\text{x1} + \text{x2}\right)^{\,2}} + \ \frac{36 \, \text{s2}}{\left(-\,\text{x2} + \text{x3}\right)^{\,2}} + \\ \\ \frac{24 \, \text{s3}}{\left(-\,\text{x2} + \text{x3}\right)^{\,2}} - \ \frac{60 \, \text{y1}}{\left(-\,\text{x1} + \text{x2}\right)^{\,3}} + \ \frac{60 \, \text{y2}}{\left(-\,\text{x1} + \text{x2}\right)^{\,3}} + \ \frac{60 \, \text{y2}}{\left(-\,\text{x2} + \text{x3}\right)^{\,3}} - \ \frac{60 \, \text{y3}}{\left(-\,\text{x2} + \text{x3}\right)^{\,3}} \right\} \end{array} \right\}$$

In[25]:= system[[2]] // Normal

Out[25]= 
$$\left\{ \left\{ -\frac{3}{-x1+x2}, \frac{9}{-x1+x2} + \frac{9}{-x2+x3}, -\frac{3}{-x2+x3} \right\} \right\}$$

We need two additional equations for the system to be uniquely determined. At the lower end (first knot), we impose the third derivative equal to zero.

```
In[26]:= systemfirst = CoefficientArrays[{f1'''[x1] == 0}, {a1, a2, a3}];
```

$$\text{Out}[27] = \left\{ - \; \frac{36\;\text{s1}}{\left(-\,\text{x1} + \text{x2}\,\right)^{\,2}} \; - \; \frac{24\;\text{s2}}{\left(-\,\text{x1} + \text{x2}\,\right)^{\,2}} \; - \; \frac{60\;\text{y1}}{\left(-\,\text{x1} + \text{x2}\,\right)^{\,3}} \; + \; \frac{60\;\text{y2}}{\left(-\,\text{x1} + \text{x2}\,\right)^{\,3}} \right\}$$

In[28]:= systemfirst[[2]] // Normal

Out[28]= 
$$\left\{ \left\{ -\frac{9}{-x1+x2}, \frac{3}{-x1+x2}, 0 \right\} \right\}$$

At the upper end (last knot), we estimate the second derivative directly using a two-points difference:

$$ln[29] = systemlast = CoefficientArrays \left[ \left\{ f1''[x1] = \frac{s3 - s2}{x3 - x2} \right\}, \left\{ a1, a2, a3 \right\} \right];$$

In[30]:= systemlast[[1]] // Normal

Out[30]= 
$$\left\{-\frac{-s2+s3}{-x2+x3}\right\}$$

In[31]:= systemlast[[2]] // Normal

Out[31]=  $\{\{1, 0, 0\}\}$ 

Calculate explicit solution for testing purposes:

Out[32]//InputForm

$$\left\{ \{a1 \ -> \ (7*s3*(x1 \ -\ x2)^3*(x2 \ -\ x3) \ +\ s2*(x1 \ -\ x2)*(x2 \ -\ x3)*(13*x1^2 \ +\ x2^2 \ +\ 12*x3^2 \ 2*x1*(x2 \ +\ 12*x3)) \ +\ 4*(s1*(x1 \ -\ x2)*(9*x1 \ -\ 2*x2 \ -\ 7*x3)*(x2 \ -\ x3)^2 \ -\ 5*(3*x2*x3^2*(y1 \ -\ y2) \ +\ 2*x3^3*(-y1 \ +\ y2) \ +\ 3*x1*(x3^2*(y1 \ -\ y2) \ +\ 2*x2^3*(-y1 \ +\ y2) \ +\ x2^2*(y1 \ -\ y3)) \ +\ x1^3*(y2 \ -\ y3) \ +\ x2^3*(-y1 \ +\ y3) \ +\ 3*x1^2*x2*(-y2 \ +\ y3))))/((x1 \ -\ x2)^2*(9*x1 \ -\ x2 \ -\ 8*x3)*(x2 \ -\ x3)^2),$$
 
$$a2 \ -> \ (21*s3*(x1 \ -\ x2)^3*(x2 \ -\ x3) \ +\ s2*(x1 \ -\ x2)*(x2 \ -\ x3)* \ (39*x1^2 \ -\ 78*x1*x2 \ +\ 11*x2^2 \ +\ 56*x2*x3 \ -\ 28*x3^2) \ -\ 4*(3*s1*(x1 \ -\ x2)*(x2 \ -\ x3)^3 \ -\ 5*(-2*x3^3*(y1 \ -\ y2) \ +\ x2*(6*x3^2*(y1 \ -\ y2) \ +\ 9*x1^2*(y2 \ -\ y3)) \ +\ x2^3*(2*y1 \ +\ y2 \ -\ 3*y3) \ +\ 3*x1^3*(-y2 \ +\ y3) \ +\ x2^2*(-6*x3*y1 \ -\ 9*x1*y2 \ +\ 6*x3*y2 \ +\ 9*x1*y3))))/((x1 \ -\ x2)^2*(9*x1 \ -\ x2 \ -\ 8*x3)*(x2 \ -\ x3)^2), \ a3 \ -> \ (s2 \ -\ s3)/(x2 \ -\ x3)\} \right\}$$

### Constraint on the spline

The interpolation method requires certain conditions on the spline to get a nondecreasing quantile function. We search for a lower bound of the polynomial

$$f''(x_0 + x(x_1 - x_0)) + f'(x_0 + x(x_1 - x_0)) (1 - f'(x_0 + x(x_1 - x_0)))$$
 over [0, 1].

$$[n(33)] = g = f''[x0 + x(x1 - x0)] + f'[x0 + x(x1 - x0)] (1 - f'[x0 + x(x1 - x0)]);$$

In[34]:= gcoefs = Simplify[CoefficientList[g, x]];

We rewrite the polynomial in its Bernstein form:

In[35]:= tobernstein[k\_] :=

 $Sum[Part[gcoefs, r+1] * Binomial[k, r] / Binomial[Length[gcoefs] - 1, r], \{r, 0, k\}]$ 

In[36]:= bernsteincoefs = FullSimplify[Map[tobernstein, Range[0, Length[gcoefs] - 1]]];

Hence, we require all the following expressions to be non-negative:

#### In[37]:= TableForm[bernsteincoefs]

```
Out[37]//TableForm=
```

```
a0 + s0 - s0^2
a0 + s0 - s0^2 + \\ \frac{(x0 - x1) \left(24 \ s1 + 2 \ s0 \left(18 + a0 \ (x0 - x1)^2\right) + (x0 - x1)}{(x0 - x1) \left(3 \ a1 + a0} \left(\frac{-9 - x0 + x}{2}\right)\right)\right) + 60 \ (-y0 + y1)}{(x0 - x1) \left(24 \ s1 + 2 \ s0 \left(18 + a0 \ (x0 - x1)^2\right) + (x0 - x1)\right)}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         8 (x0-x1)^{2}
          -480\ (y0-y1)+(x0-x1)\ \left(16\ s0^{2}\ (x0-x1)-\left(a0\ (34+5\ x0-5\ x1)+3\ a1\ (-6+x0-x1)+2\ a0^{2}\ (x0-x1)^{2}\right)\ (x0-x1)+24\ s1\ (7-x0+x1)+60\ (y0-y1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x0-x1)+30(x
             -300 \; \left(y0 - y1\right) + \left(x0 - x1\right) \; \left(96 \; \text{s0}^2 \; \left(x0 - x1\right) + 4 \; \text{s1} \; \left(15 - 6 \; \text{a0} \; \text{x0}^2 + \text{x1} \; \left(11 - 6 \; \text{a0} \; \text{x1}\right) + \text{x0} \; \left(-11 + 12 \; \text{a0} \; \text{x1}\right) \right) + 2 \; \text{s0} \; \left(\; \left(-18 \; \text{a0} + 5 \; \text{a1}\right) \; \text{x0}^2 + 2 \; \text{x0} \; \left(-5 + 22 \; \text{a0} \; \text{x0}^2 + 2 \; \text{x0}^
             100 \text{ a0 } \times 0^2 + 100 \text{ a1 } \times 0^2 - 20 \text{ a0 } \times 0^3 + 20 \text{ a1 } \times 0^3 + 9 \text{ a0}^2 \times 0^4 - 26 \text{ a0 a1 } \times 0^4 + 9 \text{ a1}^2 \times 0^4 + 576 \text{ s0}^2 \text{ } (\times 0 - \times 1)^2 + 576 \text{ s1}^2 \text{ } (\times 0 - \times 1)^2 - 200 \text{ a0 } \times 0 \times 1 - 200 \text{ a0 } \times 0^2 + 100 \text{ a0} \text{ a0} \text{ and } \times 0^2 + 100 \text{ and } \times 0^2
           \left( x0 - x1 \right) \left( 96\,s1^2 \, \left( x0 - x1 \right) + 4\,s0 \, \left( -15 + 6\,a1\,x0^2 + x0 \, \left( -11 + 22\,s1 - 12\,a1\,x1 \right) + x1 \, \left( 11 - 22\,s1 + 6\,a1\,x1 \right) \right) - \left( x0 - x1 \right) \, \left( a0 \, \left( -1 + x0 \, \left( -5 + 3\,a1\,x0 \right) + 5 + 22\,a1 + 22\,a1\,a1 + 22\,a1 + 22
      480\ (y0-y1)-(x0-x1)\ \left(\ (34\ a1+a1\ (-5+2\ a1\ (x0-x1)\ )\ (x0-x1)-3\ a0\ (6+x0-x1)\ )\ (x0-x1)+16\ s1^2\ (-x0+x1)-24\ s0\ (-7+(-1+2\ s1)\ x0+x1)-24\ s0\ (-7+(-1+2\ s1)\ x0+x1)-12\ s0\ (-7+(-1+2\ s1)\ s0\ (-7+(-1+2\ 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        56 (x0-x1)<sup>2</sup>
          -\left(x0-x1\right) \; \left(24\; x0+8\; x1^2 \; \left(x0-x1\right) - \left(3\; a0+a1 \; \left(-1+x0-x1\right)\right) \; \left(x0-x1\right) + 2\; x1 \; \left(18+a1\; x0^2-2\; x0 \; \left(2+a1\; x1\right) + x1 \; \left(4+a1\; x1\right)\right)\right) + 60 \; \left(y0-y1\right) + 30 \; x^2 + 30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            8 (x0-x1)<sup>2</sup>
   a1 + s1 - s1^2
```

#### In[38]:= Map[InputForm[Simplify[D[#, a1]]] &, bernsteincoefs] // TableForm

```
Out[38]//TableForm=
```

```
0
3 / 8
   (3 * (6 + (-1 + 2 * s0) * x0 + x1 - 2 * s0 * x1)) / 56
   (1 \, - \, 3 \, * \, a0 \, * \, x0 \, ^{\wedge}2 \, + \, (5 \, - \, 10 \, * \, s0) \, * \, x1 \, - \, 3 \, * \, a0 \, * \, x1 \, ^{\wedge}2 \, + \, x0 \, * \, (-5 \, + \, 10 \, * \, s0 \, + \, 6 \, * \, a0 \, * \, x1) \,) \, / \, 50 \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, - \, 10 \, * \, s0) \, + \, (1 \, -
 ((13 * a0 - 9 * a1) * x0^2 + 2 * (5 + 44 * s0 + 36 * s1) * x1 + (13 * a0 - 9 * a1) * x1^2 - 2 * (13 * a0 + 36 * s1) * (13 * a0 + 36 * a1) * (13 * a0 + 3
   (-35 - 3*a0*x0^{^{\circ}}2 + 6*a1*x0^{^{\circ}}2 + 24*s0*(x0 - x1) + 36*s1*(x0 - x1) + 6*a0*x0*
   (-34 - 4 * a1 * x0^{2} + 5 * (-1 + 2 * s1) * x1 - 4 * a1 * x1^{2} + x0 * (5 - 10 * s1 + 8 * a1 * x1)
   (-1 + x0 - 2 * s1 * x0 + (-1 + 2 * s1) * x1) / 8
```

 $ln[39] = \phi[x_, x0_, x1_, y0_, y1_, s0_, s1_, a0_, a1_] = g;$ 

 $ln[40] = \psi[x0_, x1_, y0_, y1_, s0_, s1_, a0_, a1_] = Min[bernsteincoefs];$ 

We can check the bound for different values of the parameters.

```
In[41]= Manipulate[Plot[\{\phi[x, 0, 1, y0, y1, s0, s1, a0, a1], \psi[0, 1, y0, y1, s0, s1, a0, a1]\}
        \{x, 0, 1\}, PlotRange \rightarrow \{\{0, 1\}, \{-2, 2\}\}, AspectRatio \rightarrow 1],
       \{\{y0, 2\}, 1, 4\}, \{\{y1, 2.5\}, 1, 4\}, \{\{s0, 1/2\}, 0, 2\},
       \{\{s1, 1/2\}, 0, 2\}, \{\{a0, 0\}, -10, 10\}, \{\{a1, 0\}, -10, 10\}\}
```



In[42]:= Map[InputForm[Simplify[#]] &, CoefficientList[g, x]] // TableForm

Out[42]//TableForm=

```
a0 + s0 - s0^{4}
a0 * (-9 + (-1 + 2 * 50) * x0 + x1 - 2 * 50 * x1) + (3 * (a1 * x0^2 + 12 * 50 * (x0 - x1)) + 8 * (a1 * x0^2 + x1) + (a1 * x0^
9 * a0^2 * (x0 - x1)^2 - a0 * (10 + 3 * a1 * x0^2 - 6 * (1 + 4 * s0 + 4 * s1) * x1 + 3 * a1 * x1
-15 * s0 - 294 * s0^2 - 15 * s1 - 402 * s0 * s1 - 144 * s1^2 + (5 * a0 * (x0 - x1)) / 2 + 221 + (5 * a0 * (x0 - x1)) / 2 + 221 + (5 * a0 * (x0 - x1)) / 2 + (x0 - x1) / 2 + 
1152 * \$0^2 + 1776 * \$0 * \$1 + 672 * \$1^2 + 240 * a1 * \$0 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * \$1 * (x0 - x1) + 180 * a1 * (x0 - x1) + 180 * (x0 - x1)
-1564 * \$0^2 - 2692 * \$0 * \$1 - 1144 * \$1^2 + 609 * a0 * \$0 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * \$1 * (x0 - x1) + 531 * a0 * (x0 - x
10 * (96 * \$0^2 + 180 * \$0 * \$1 + 84 * \$1^2 + 28 * \$1 * \$0 * (x0 - x1) + 26 * \$1 * \$1 * (x0 - x1) + 26 * \$1 * \$1 * (x0 - x1) + 26 * \$1 * \$1 * (x0 - x1) + 26 * \$1 * \$1 * (x0 - x1) + 26 * \$1 * \$1 * (x0 - x1) + 26 * \$1 * \$1 * (x0 - x1) + 26 * \$1 * \$1 * (x0 - x1) + 26 * \$1 * \$1 * (x0 - x1) + 26 * (x0 - x1) + 26
  (-25*(6*s0*x0+6*s1*x0-a0*x0^2+a1*x0^2-6*s0*x1-6*s1*x1+2*a0*x0^2+a1*x0^2-6*s0*x1-6*s1*x1+2*a0*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1*x0^2+a1
```

### Optimization problem to satisfy the constraint

```
In[43]:= A = Simplify[
                                                                          Integrate[((f[x] /. {y0 \rightarrow y0new, y1 \rightarrow y1new, s0 \rightarrow s0new, s1 \rightarrow s1new, a0 \rightarrow a0new,
                                                                                                                                                         a1 \rightarrow a1new\}) - f[x])^2, \{x, x0, x1\}]]
Out[43]= -
                                                                  27720
                                                                  (x0 - x1) (416 s1<sup>2</sup> x0<sup>2</sup> - 832 s1 s1new x0<sup>2</sup> + 416 s1new<sup>2</sup> x0<sup>2</sup> + 52 a0 s1 x0<sup>3</sup> - 52 a0 new s1 x0<sup>3</sup> +
                                                                                                69 a1 s1 \times 0^3 - 69 a1 new s1 \times 0^3 - 52 a0 s1new \times 0^3 + 52 a0new s1new \times 0^3 - 69 a1 s1new \times 0^3 +
                                                                                                5 a0new a1 \times 0^4 + 3 a1<sup>2</sup> \times 0^4 - 5 a0 a1new \times 0^4 + 5 a0new a1new \times 0^4 - 6 a1 a1new \times 0^4 + 6
                                                                                                3 \text{ alnew}^2 \times 0^4 + 416 \times 0^2 (\times 0 - \times 1)^2 + 416 \times 0 + 0 \times 1)^2 - 832 \times 1^2 \times 0 \times 1 + 0 \times 10^2 
                                                                                                1664 s1 s1new x0 x1 - 832 s1new<sup>2</sup> x0 x1 - 156 a0 s1 x0<sup>2</sup> x1 + 156 a0new s1 x0<sup>2</sup> x1 -
                                                                                                207 a1 s1 \times 0^2 x1 + 207 a1new s1 \times 0^2 x1 + 156 a0 s1new \times 0^2 x1 - 156 a0new s1new \times 0^2 x1 +
                                                                                                207 a1 s1new x0^2 x1 - 207 a1new s1new x0^2 x1 - 12 a0^2 x0^3 x1 + 24 a0 a0new x0^3 x1 - 207
                                                                                                12 a0new^2 \times 0^3 \times 1 - 20 \ a0 \ a1 \times 0^3 \times 1 + 20 \ a0new \ a1 \times 0^3 \times 1 - 12 \ a1^2 \times 0^3 \times 1 +
                                                                                                20 a0 a1new \times 0^3 \times 1 - 20 a0new a1new \times 0^3 \times 1 + 24 a1 a1new \times 0^3 \times 1 - 12 a1new<sup>2</sup> \times 0^3 \times 1 + 24 a1 a1new \times 0^3 \times 1 - 12 a1new<sup>2</sup> \times 0^3 \times 1 + 24 a1 a1new \times 0^3 \times 1 - 12 a1new<sup>2</sup> \times 0^3 \times 1 + 24 a1 a1new \times 0^3 \times 1 - 12 a1new<sup>2</sup> \times 0^3 \times 1 + 24 a1 a1new \times 0^3 \times 1 - 12 a1new<sup>2</sup> \times 0^3 \times 1 + 24 a1 a1new \times 0^3 \times 1 - 12 a1new<sup>2</sup> \times 0^3 \times 1 + 24 a1 a1new \times 0^3 \times 1 - 12 a1new<sup>2</sup> \times 0^3 \times 1 + 24 a1 a1new \times 0^3 \times 1 - 12 a1new<sup>2</sup> \times 0^3 \times 1 + 24 a1 a1new \times 0^3 \times 1 - 12 a1new<sup>2</sup> \times 0^3 \times 1 + 24 a1 a1new \times 0^3 \times 1 - 12 a1new<sup>2</sup> \times 0^3 \times 1 + 24 a1 a1new \times 0^3 \times 1 - 12 a1new<sup>2</sup> \times 0^3 \times 1 + 24 a1 a1new \times 0^3 \times 1 - 12 a1new<sup>2</sup> \times 0^3 \times 1 + 24 a1 a1new \times 0^3 \times 1 + 24 a1n
                                                                                                416 \text{ s1}^2 \text{ x1}^2 - 832 \text{ s1} \text{ s1new x1}^2 + 416 \text{ s1new}^2 \text{ x1}^2 + 156 \text{ a0 s1 x0 x1}^2 - 156 \text{ a0new s1 x0 x1}^2 + 166 \text{ a0 s1}^2 \text{ x1}^2 - 166 \text{ a0 s1}^2 \text{ x1}^2 + 166 \text{ a0 s1}^2 \text{ x1}^2 - 166 \text{ a0 s1}^2 \text{ x1}^2 + 166 \text{ a0 s1}^2 \text{ x1}^2 - 166 \text{ a0 s1}^2 \text{ x1}^2 + 166 \text{ a0 s1}^2 \text{ x1}^2 - 166 \text{ a0 s1}^2 \text{ x1}^2 + 166 \text{ a0 s1}^2 + 166 \text{ a0 s1}^2
                                                                                                207 a1 s1 x0 x1^2 - 207 a1new s1 x0 x1^2 - 156 a0 s1new x0 x1^2 + 156 a0new s1new x0 x1^2 -
                                                                                                207 a1 s1new x0 x1^2 + 207 a1new s1new x0 x1^2 + 18 a0^2 x0^2 x1^2 - 36 a0 a0new x0^2 x1^2 +
                                                                                                18 \text{ a0new}^2 \times 0^2 \times 1^2 + 30 \text{ a0 a1} \times 0^2 \times 1^2 - 30 \text{ a0new a1} \times 0^2 \times 1^2 + 18 \text{ a1}^2 \times 0^2 \times 1^2 - 30 \text{ a0}
                                                                                                 30 a0 alnew x0^2 x1^2 + 30 a0new alnew x0^2 x1^2 - 36 al alnew x0^2 x1^2 + 18 alnew x0^2 x1^2 - 36
                                                                                                52 a0 s1 x1^3 + 52 a0new s1 x1^3 - 69 a1 s1 x1^3 + 69 a1new s1 x1^3 + 52 a0 s1new x1^3 -
                                                                                                52 a0new s1new x1^3 + 69 a1 s1new x1^3 - 69 a1new s1new x1^3 - 12 a0<sup>2</sup> x0 x1^3 + 69
                                                                                                24 a0 a0new \times 0 \times 1^3 - 12 \text{ a0new}^2 \times 0 \times 1^3 - 20 \text{ a0 a1} \times 0 \times 1^3 + 20 \text{ a0new a1} \times 0 \times 1^3 - 20 \times 10^3 \times 10^
                                                                                                12 a1^2 x0 x1^3 + 20 a0 a1new x0 x1^3 - 20 a0new a1new x0 x1^3 + 24 a1 a1new x0 x1^3 -
                                                                                                12 alnew ^2 x0 x1 ^3 + 3 a0 ^2 x1 ^4 - 6 a0 a0new x1 ^4 + 3 a0new ^2 x1 ^4 + 5 a0 a1 x1 ^4 -
                                                                                                5 a0new a1 x1^4 + 3 a1^2 x1^4 - 5 a0 a1new x1^4 + 5 a0new a1new x1^4 - 6 a1 a1new x1^4 + 6
                                                                                                3 \text{ alnew}^2 \text{ x1}^4 + 1812 \text{ s1 x0 y0} - 1812 \text{ s1new x0 y0} + 281 \text{ a0 x0}^2 \text{ y0} - 281 \text{ a0new x0}^2 \text{ y0} + 281 \text{ a0new x0}^2 
                                                                                                181 \text{ a} 1 \times 0^2 \text{ y} 0 - 181 \text{ a} 1 \text{new } \times 0^2 \text{ y} 0 - 1812 \text{ s} 1 \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{new } \times 1 \text{ y} 0 - 562 \text{ a} 0 \times 0 \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ new } \times 1 \text{ y} 0 + 1812 \text{ s} 1 \text{ 
                                                                                                562 a0new x0 x1 y0 - 362 a1 x0 x1 y0 + 362 a1new x0 x1 y0 + 281 a0 x1<sup>2</sup> y0 -
                                                                                                281 a0new x1^2 y0 + 181 a1 x1^2 y0 - 181 a1new x1^2 y0 + 10 860 y0<sup>2</sup> - 1812 s1 x0 y0new +
                                                                                                1812 s1new x0 y0new - 281 a0 x0<sup>2</sup> y0new + 281 a0new x0<sup>2</sup> y0new - 181 a1 x0<sup>2</sup> y0new +
                                                                                                181 alnew x02 y0new + 1812 s1 x1 y0new - 1812 s1new x1 y0new + 562 a0 x0 x1 y0new -
                                                                                                562 a0new x0 x1 y0new + 362 a1 x0 x1 y0new - 362 a1new x0 x1 y0new -
                                                                                                281 a0 x1<sup>2</sup> y0new + 281 a0new x1<sup>2</sup> y0new - 181 a1 x1<sup>2</sup> y0new + 181 a1new x1<sup>2</sup> y0new -
                                                                                                21720 \text{ y0 y0new} + 10860 \text{ y0new}^2 + 3732 \text{ s1 x0 y1} - 3732 \text{ s1new x0 y1} + 181 a0 \text{ x0}^2 \text{ y1} - 3732 \text{ s1new x0 y1} + 181 a0 \text{ x0}^2 \text{ y1} - 3732 \text{ s1new x0 y1} + 181 a0 \text{ x0}^2 \text{ y1} - 3732 \text{ s1new x0 y1} + 181 a0 \text{ x0}^2 \text{ y1} - 3732 \text{ s1new x0 y1} + 181 a0 \text{ x0}^2 \text{ y1} - 3732 \text{ s1new x0 y1} + 181 a0 \text{ x0}^2 \text{ y1} - 3732 \text{ s1new x0 y1} + 181 a0 \text{ x0}^2 \text{ y1} - 3732 \text{ s1new x0 y1} + 181 a0 \text{ x0}^2 \text{ y1} - 3732 \text{ s1new x0 y1} + 181 a0 \text{ x0}^2 \text{ y1} - 3732 \text{ s1new x0 y1} + 181 a0 \text{ x0}^2 \text{ y1} - 3732 \text{ s1new x0 y1} + 181 a0 \text{ x0}^2 \text{ y1} - 3732 \text{ s1new x0 y1} + 3732 \text{ s1new x0} + 3732 \text{ s1ne
                                                                                                181 a0new x0^2 y1 + 281 a1 x0^2 y1 - 281 a1new x0^2 y1 - 3732 s1 x1 y1 + 3732 s1new x1 y1 -
                                                                                                362 a0 x0 x1 y1 + 362 a0new x0 x1 y1 - 562 a1 x0 x1 y1 + 562 a1new x0 x1 y1 +
                                                                                                181 \text{ a0 } \times 1^2 \text{ y1} - 181 \text{ a0new } \times 1^2 \text{ y1} + 281 \text{ a1 } \times 1^2 \text{ y1} - 281 \text{ a1new } \times 1^2 \text{ y1} + 6000 \text{ y0 } \text{ y1} - 281 \text{ a1new } \times 1^2 \text{ y1} + 6000 \text{ y0 } \text{ y1} - 281 \text{ a1new } \times 1^2 \text{ y1} + 6000 \text{ y0 } \text{ y1} - 281 \text{ a1new } \times 1^2 \text{ y1} + 6000 \text{ y0 } \text{ y2} - 281 \text{ a1new } \times 1^2 \text{ y2} + 6000 \text{ y0 } \text{ y3} - 281 \text{ a2new } \times 1^2 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ a2new } \times 1^2 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ a2new } \times 1^2 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ a2new } \times 1^2 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ a2new } \times 1^2 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text{ y3} + 6000 \text{ y0 } \text{ y3} - 281 \text
                                                                                                6000 y0new y1 + 10 860 y1^2 + s0new (x0 - x1) (69 a0 x0^2 - 69 a0new x0^2 + 52 a1 x0^2 -
                                                                                                                                   52 alnew x0^2 + 532 s1 (x0 - x1) - 532 slnew (x0 - x1) - 138 a0 x0 x1 +
                                                                                                                                   138 a0new x0 x1 - 104 a1 x0 x1 + 104 a1new x0 x1 + 69 a0 x1<sup>2</sup> - 69 a0new x1<sup>2</sup> +
                                                                                                                                   52 a1 x1<sup>2</sup> - 52 a1new x1<sup>2</sup> + 3732 y0 - 3732 y0new + 1812 y1 - 1812 y1new) -
                                                                                                s0 (x0 - x1) (-532 s1new x0 + 69 a0 x0^2 - 69 a0new x0^2 + 52 a1 x0^2 - 52 a1new x0^2 + 60 a0new x0^2 + 60 a
                                                                                                                                   832 s0new (x0 - x1) + 532 s1 (x0 - x1) + 532 s1new x1 - 138 a0 x0 x1 +
```

```
138 a0new x0 x1 - 104 a1 x0 x1 + 104 a1new x0 x1 + 69 a0 x1<sup>2</sup> - 69 a0new x1<sup>2</sup> +
    52 a1 x1<sup>2</sup> - 52 a1new x1<sup>2</sup> + 3732 y0 - 3732 y0new + 1812 y1 - 1812 y1new) -
3732 s1 x0 y1new + 3732 s1new x0 y1new - 181 a0 x0<sup>2</sup> y1new + 181 a0new x0<sup>2</sup> y1new -
281 al x0<sup>2</sup> ylnew + 281 alnew x0<sup>2</sup> ylnew + 3732 sl x1 ylnew -
3732 slnew x1 ylnew + 362 a0 x0 x1 ylnew - 362 a0new x0 x1 ylnew +
562 a1 x0 x1 y1new - 562 a1new x0 x1 y1new - 181 a0 x1<sup>2</sup> y1new +
181 a0new x1<sup>2</sup> y1new - 281 a1 x1<sup>2</sup> y1new + 281 a1new x1<sup>2</sup> y1new -
6000 y0 y1new + 6000 y0new y1new - 21 720 y1 y1new + 10 860 y1new<sup>2</sup>)
```