Q-learning - umelá inteligencia na obzore?

Ing. Michal CHOVANEC Fakulta riadenia a informatiky

Apríl 2016

Obsah

- Experiment s jedným stavom
 - nanoQ learning
- Experiment s novou bázickou funkciou

Učenie s odmeňovaním

- Zistenie stavu
- Výber akcie
- Vykonanie akcie
- Prechod do d'alšieho stavu
- Získanie odmeny alebo trestu
- Učenie sa zo získanej skúsenosti

Výhody

Definuje sa čo robiť, nie ako to robiť

- vďaka odmeňovacej funkcií
- agent sa môže naučiť všetky detaily problému

Lepšie konečné riešenie

- založené na skutočnej skúsenosti, nie skúsenosti programátora
- treba menej ľudského času na nájdenie dobrého riešenia

Experiment s jedným stavom - nanoQ learning

Plánovanie pohybu robota - aký krok má robot vybrať? Dostupné akcie : vľavo, vpravo, vpred, (vzad)

- smer nie je známy
- známa je len vzdialenosť
- šum

Experiment s jedným stavom - nanoQ learning

- Najjednoduhší prípad Q-learning algoritmu
- Reward zadaný dvoma hodnotami :
 - situácia sa zlepšuje +1
 - ullet situácia sa zhoršuje -1
- Voliteľná prevdepodobnosť p ∈ ⟨0,4⟩ náhodnej zmeny rewardu - šum

$$Q_n(A(n)) = R(n) + \gamma \max_{a'(n-1) \in \mathbb{A}} Q_{n-1}(a'(n-1))$$
 (1)

Výsledky

Obr. : Dráha robotov pre $\gamma = 0.7p = 0.0$

Obr. : Dráha robotov pre
$$\gamma = 0.7p = 0.4$$

Výsledky

Obr. : Dráha robotov pre $\gamma = 0.9p = 0.4$

Obr. : Dráha robotov pre $\gamma = 0.98p = 0.4$

Výsledky - zhrnutie

Komplexné vyšetrenie závislosti γ a p. Znázornenie funkcie vzdialenosti od pohyblivého cieľa po 25000 krokoch robota, priemer z 32 robotov

Experiment s novou bázickou funkciou

Experimentálne sa zitili typické rysy funkcie pre

$$Q_n(s(n), a(n)) = R(s(n), a(n)) + \gamma \max_{a(n-1) \in \mathbb{A}} Q_{n-1}(s(n-1), a(n-1))$$

Experiment s novou bázickou funkciou

Peak and Hill funkcia

$$P_{i}(s(n), a(n)) = \begin{cases} r_{ai} & \text{if } s(n) = \alpha_{i}^{1} \\ 0 & \text{inak} \end{cases}$$
 (2)

$$H_{j}(s(n), a(n)) = w_{aj}e^{-\beta_{aj}\sum_{i=1}^{n_{s}}(s_{i}(n) - \alpha_{aji}^{2})^{2}}$$
(3)

$$Q(s(n), a(n)) = \sum_{i=1}^{J} P_i(s(n), a(n)) + \sum_{j=1}^{J} H_j(s(n), a(n))$$
(4)

kde

 α_j^1 sú oblasti kde $H_j(s(n))$ nadobúda nenulové hodnoty α_j^2 sú oblasti pre ktoré $f_j(s(n),a(n))$ nadobúda maximum r_{ai} je hodnota okamžitej odmeny R(s(n)) v tomto stave w_{aj} je váha a zobovedá veľkosti maxima resp. minima pre fukciu β_{aj} je strmosť, a platí $\beta>0$ I a J sú počty bázických funkcií

Porovnanie s ostatnými

Porovnanie s ostatnými

1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

Obr. : Dráha robotov, funkcia 2 - Gauss

Obr. : Dráha robotov, funkcia 6 -Peak and Hill

Ďakujem za pozornosť

michal.chovanec@yandex.ru https://github.com/michalnand/q_learning

