Bayes Theorem simply explained

With applications in Spam classifier and Autocorrect
Hung Tu Dinh
Jan 2018

Agenda

- Part 1: Basic concepts of conditional probability and Bayes equation
- Part 2: How does spam filter work?
- Part 3: How does Auto-correct work?

Set up

- In a school of 100 students
 - some take guitar in Music class
 - some take Spanish in Language class

Group	Value	Probability
Total	100	1
Guitar	10	0.1
Spanish	50	0.5
Both	5	0.05
Only guitar no Spanish	? 5	?
Neither	? 45	?

11.05.18

Bayes equation and applications

Conditional Probability

- P (Guitar & Spanish) = 5/100 = 0.05
- Among the 50 Spanish learners, only 5 (or 10%) also play guitar
- P(Guitar & Spanish | Spanish) = 5/50 = 0.10
- P(Guitar & Spanish | Guitar) = ? 5/10=0.5

Informal way of saying probability

- Probability is "chance" of a variable takes a value
- Music = {guitar, piano, violin}, Language = {Spanish, English, French}
- P(music=guitar)=0.1
- P(lang=Spanish)=0.5
- P(music=guitar|lang=Spanish) = $\frac{\text{Num}(\text{music=guitar \& lang=Spanish})}{\text{Num}(\text{lang=Spanish})} = \frac{\text{Num}(\text{music=guitar \& lang=Spanish}) / \text{Total}}{\text{Num}(\text{lang=Spanish})} / \text{Total}$

• P(music=guitar|lang=Spanish) =
$$\frac{P(\text{music=guitar \& lang=Spanish})}{P(\text{lang=Spanish})}$$

Rearrange the equation

- P(music=guitar|lang=Spanish) = $\frac{P(\text{music=guitar \& lang=Spanish})}{P(\text{lang=Spanish})}$
- Cross multiplication
 P(music=guitar & lang=Spanish) = P(lang=Spanish) x P(music=guitar|lang=Spanish)
 = 0.5 x 0.1 = 0.05 (also = 5/100=0.05).
- Intuitive:
 - Among the whole school, 50% learn Spanish.
 - Among the Spanish learners, 10% also learn guitar.
 - => Among the whole school, percentage of students doing both Spanish and guitar is 0.5 x 0.1 = 0.05.
- Likewise, switch the order of logic between language and music
- P(music=guitar & lang=Spanish)= P(lang=Spanish| music=guitar) x P(music = guitar)=0.5 x 0.1=0.05

Bayes Equation

Using symbol to make the equation more succint and general

•
$$P(Y = y | X = x)P(X = x) = P(X = x | Y = y)P(Y = y) = P(X = x \cap Y = y)$$

•
$$P(Y = y | X = x) = \frac{P(X = x | Y = y)P(Y = y)}{P(X = x)}$$

Why the equation is needed?

- Because some probabilities is easier to compute than other.
- For example: Spam classifier
 - Objective: to estimate the probability of an email being a spam P(spam=True)
 - Not straightforward to get P(spam=True)
 - we look for other simpler probabilities
 - $P(spam = True | word_1 = money) = \frac{P(word_1 = money | spam = True) \times P(spam = True)}{P(word_1 = money)}$
 - More straightforward to
 - Get P(spam=True) by counting spam emails/all emails available.
 - Among the spam, get the probability of the words e.g. chance of "money"
- More detailed of spam classifier in next part

Summary Part 1

Probability is chance of a variable takes a (range) value

P(music=guitar), P(language=Spanish)

•
$$P(Y = y | X = x) = \frac{P(X = x | Y = y)P(Y = y)}{P(X = x)}$$

Part 2

- Frequentist vs Bayesian
 - Keyword: Updating belief
- Spam filtering application
 - Problem description & how it was solved
 - Propose method

Two interpretations of probability

	Frequentist	Bayesian (Belief)
Example	Flip a coin for 100 times, on average, 50 heads and 50 tails	Weather forecast: quantify the belief that tomorrow is a sunny day
Interpretation	P=1 means the events always happen	P=1 means the belief is 100% certain
Situation	Common in scientific experiments	Belief changes before and after an evidence

Example: Vietnam U23 team in the tournament of 16 teams

- Before the tournament, with no particular evidence, prior belief of winning ~ 1/16
- After some early games, with more evidence, update the belief of winning $\sim 1/2$

Spam filter is not only for email

How was it solved?

- Fighters: manually identify features to detect spam
 - Common words in spam: money, viagra, discount, deals, ...
- Spammers circumvent

Some concepts

- "Spam" ~ undesired # "Scam" ~ fraudulent
- Measure of effectiveness
 - True positive vs false positive:

Calculate spam score

• Find probability of an email being a spam, given a word in the email

$$P(spam = True|word_1 = money) = \frac{P(word_1 = money|spam = True)}{P(word_1 = money)} \times P(spam = True)$$

- Combine probabilities for all words in the email
 - Evidence 1: word "money" give $P_1 = P(spam = True|word_1 = money) = 0.9$
 - Evidence 1: word "hi" give $P_2 = P(spam = True|word_1 = hi) = 0.5$
 - ...
 - Evidence n: word "hot" give $P_n = P(spam = True|word_n = hot) = 0.8$
 - $P_{combine} = \frac{P_1 \times ... \times P_n}{(P_1 \times ... \times P_n) + (1 P_1) \times ... \times (1 P_n)}$ simplified $\frac{abc}{abc + (1 a)(1 b)(1 c)}$

Implementation

$$P(spam = True|word_1 = money) = \frac{P(word_1 = money|spam = True)}{P(word_1 = money)} \times P(spam = True)$$

- 1. Data sets: corpus of spam and corpus of non-spam P(spam = True)
- 2. Tokenize (split into words) & count frequency of words in each corpus $P(word_1 = money|spam = True)$ & $P(word_1 = money|spam = False)$
- 3. Hash table: dict["money"]= $\frac{P(word_1 = money|spam = True)}{P(word_1 = money|spam = true \& false)} \times P(spam = True)$
- 4. For each test email:
 - 1. Tokenize into words
 - 2. For each word, check in hash table to find $P(spam = True | word_1 = money)$
 - 3. Combine probabilities from all words $\frac{abc}{abc+(1-a)(1-b)(1-c)}$

Train

Predict

Updating the belief

•
$$P(spam = True | word_1 = money) = \frac{P(word_1 = money | spam = True)}{P(word_1 = money)} \times P(spam = True)$$

- No evidence: global rate *P*(*spam* = *True*) = 0.5.
- With only 1 evidence of word "money" the belief is $P_1 = 1.8 \times 0.5 = 0.9$
- With another evidence of "hi", $P_2 = 0.5$ the total belief is updated $\frac{0.9 \times 0.5}{0.9 \times 0.5 + (1-0.9) \times (1-0.5)} = 0.9$
- With another evidence of "hot", $P_3 = 0.8$ the total belief is updated $\frac{0.9 \times 0.8}{0.9 \times 0.5 + 0.1 \times 0.2} = 0.97$

$$\frac{abc}{abc + (1-a)(1-b)(1-c)}$$

DEMO TIME

- Check the GitHub repository
 - https://github.com/browning/comment-troll-classifier

Strength of Bayesian filter

- Identify the features by itself (which words are good bad)
- Automatically update the probability ("belief") of spamming words
 - Robust against tricks of spammers
- Take into account both good words & suspicious words
- Customize for individual users (different training sets)

Summary Part 2

- Two interpretations
 - Frequentist: how many times an event occurs
 - Bayesian: how certain is the belief that an event occurring
- Bayes formula
 - Given a hypothesis H and evidence E
 - $P(H|E) = \frac{P(E|H)}{P(E)} \times P(H)$
 - Update belief about H after learning about the evidence E
- Spam filtering
 - Get evidence from each words using Bayes formula
 - Combine evidence from all words
 - Good words and bad words both contribute

Armchair philosophy

- With more evidences, your belief about the world is updated.
- Among many possible evidences, choose wisely.
- Beware that we may reinforce our prior belief because of bias.

Reference

- Brillant explanation https://brilliant.org/wiki/bayes-theorem/
- Some interesting articles from Paul Graham @ "Hackers & Painters"
 - http://www.paulgraham.com/spam.html (August 2002)
 - http://www.paulgraham.com/falsepositives.html
 - http://www.paulgraham.com/naivebayes.html
 - http://www.paulgraham.com/better.html (January 2003)