

Aumentar N o vd disminuye el te/N (para el régimen de altas presiones)

- Recinto de 20mx20m
- 225 individuos
- 1 puerta de 2.4 m

 t_e (vd=2.5 m/s) = t_e (vd=10 m/s) = 26 s

v _d (m/s)	t _e (S)	Vida media BC (s)	Tamaño medio BC	Proba BC (%)	Presion BC x1000 (N/m)
2,5	26	0.29 ± 0.39	9.1 ± 1.4	39	5.8 ± 1.6
4	36	0.40 ± 0.50	9.5 ± 3.0	68	8.5 ± 2.5
10	26	0.42 ± 0.43	15.4 ± 9.3	73	17.6 ± 7.2

A pesar de tener igual t_e , para v_d =10 m/s hay más proba BC y tiempo de vida de BC que v_d =2.5 m/s

v _d (m/s)	t _e (S)	Vida media BC (s)	Tamaño medio BC	Proba BC (%)	Presion BC x1000 (N/m)
2,5	26	0.29 ± 0.39	9.1 ± 1.4	39	5.8 ± 1.6
4	36	0.40 ± 0.50	9.5 ± 3.0	68	8.5 ± 2.5
10	26	0.42 ± 0.43	15.4 ± 9.3	73	17.6 ± 7.2

A pesar de tener igual t_e , para v_d =10 m/s hay más proba BC y tiempo de vida de BC que v_d =2.5 m/s

Distribucion de tamaño de BC

La distribución del tamaño de BC cambia mucho a pesar de tener igual tiempo de evac.

Isobaras

Para vd=10m/s hay mayores valores de presión

Aumentar la V_d aumenta la cantidad de individuos en cada "avalancha"

 $tau_sample = 0.15 s$

$$V_d = 4 \text{ m/s}$$

Tau = intervalo de tiempo de integración. Burst = conjunto de individuos que salen ininterrumpidamente.

$$V_d = 4 \text{ m/s}$$

Burst= conjunto de individuos que sala ininterrumpidamente. Cada burst esta encerrado por dos delays.

Tau= Intervalo de tiempo en el cual sumo (agrupo).

 $tau_sample = 0.15 s$

Aumentar la V_d aumenta la cantidad de individuos en cada "avalancha"

Observable a considerar: Flujo de avalancha

Avalancha: Lo que ocurre entre blocking cluster y blocking cluster

$$J_i = \frac{n_i}{\triangle t_i}$$

J_i flujo de la i-esima avalancha

n_i : cantidad de individuos que sale en la i-esima avalancha

t_i: Duracion de la avalancha

¿ Por qué para vd > 6 m/s el te disminuye ?

Hip: Porque para vd > 6 m/s la Fd le "gana" a la Fg

Morphological and dynamical aspects of the room evacuation process C.O. Dorso 2007

Los delays largos mueren para vd=10. Pero crecen los delays intermedios. En vd=2 hay muchos grandes delays y muchos chicos.

$V_d = 4 \text{ m/s}$

I=28.5

Rozamiento

Puerta 1.2 m

Mitad del recinto

Centro del Blocking Cluster

1 iteracion

Rozamiento/Fsocial

Puerta 1.2 m

Centro del Blocking Cluster

Rozamiento y Fsocial

Puerta 1.2 m

Vd=3 m/s

Vd = 17 m/s

1 individuo que empueza en el centro id=100

Rozamiento y Fsocial

Puerta 1.2 m

vd=6m/s

1 individuo que empueza en el centro id=100

Distancia media entre primeros vecinos del BC

Posicion 'y' rotura BC

Puerta 1.2 m

Vd=2 m/s

Vd = 10 m/s

Barras rojas=posicion en eje y de la puerta

Posicion 'y' rotura BC Puerta 1.2 m

vd=4m/s

Barras rojas=posicion en eje y de la puerta

ubicacion rotura BC (eje y creciente)

Puerta 1.2 m

Vd=2 m/s

Vd = 10 m/s

ubicacion rotura BC (eje y creciente)

Puerta 1.2 m

vd=4m/s

