AhmedHesham_Task2

July 9, 2023

0.1 Importing Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report,
confusion_matrix
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
```

0.2 Reading Data:

```
[2]: df_train = pd.read_csv("US_Accidents_March23.csv")
pd.options.display.float_format = '{:.4f}'.format
```

0.3 Data Exploration:

0.3.1 Exploring data shape

```
[3]: pd.set_option('display.max_columns', None)
df_train
```

```
[3]:
                    ID
                         Source Severity
                                                   Start_Time
                   A-1 Source2
                                       3 2016-02-08 05:46:00
                   A-2 Source2
                                       2 2016-02-08 06:07:59
    1
    2
                   A-3 Source2
                                       2 2016-02-08 06:49:27
                   A-4 Source2
                                       3 2016-02-08 07:23:34
    3
    4
                   A-5 Source2
                                       2 2016-02-08 07:39:07
```

```
7728389
                                         2019-08-23 18:03:25
         A-7777757
                     Source1
7728390
         A-7777758
                     Source1
                                         2019-08-23 19:11:30
7728391
         A-7777759
                     Source1
                                         2019-08-23 19:00:21
7728392
                                      2
                                         2019-08-23 19:00:21
         A-7777760
                     Source1
7728393
         A-7777761
                     Source1
                                         2019-08-23 18:52:06
                     End_Time
                               Start_Lat
                                           Start_Lng
                                                       End_Lat
                                                                 End_Lng
0
                                  39.8651
                                            -84.0587
         2016-02-08 11:00:00
                                                                      NaN
                                                           NaN
1
         2016-02-08 06:37:59
                                  39.9281
                                            -82.8312
                                                           NaN
                                                                      NaN
2
         2016-02-08 07:19:27
                                  39.0631
                                            -84.0326
                                                           NaN
                                                                      NaN
3
         2016-02-08 07:53:34
                                  39.7478
                                            -84.2056
                                                                      NaN
                                                           NaN
         2016-02-08 08:09:07
                                 39.6278
                                            -84.1884
                                                           NaN
                                                                      NaN
7728389
         2019-08-23 18:32:01
                                  34.0025
                                           -117.3794
                                                       33.9989 -117.3709
7728390
         2019-08-23 19:38:23
                                  32.7670
                                           -117.1481
                                                       32.7655 -117.1536
         2019-08-23 19:28:49
                                  33.7754
                                           -117.8478
                                                       33.7774 -117.8573
7728391
7728392
         2019-08-23 19:29:42
                                  33.9925
                                           -118.4030
                                                       33.9831 -118.3957
7728393
         2019-08-23 19:21:31
                                  34.1339
                                           -117.2309
                                                       34.1374 -117.2393
         Distance(mi)
                                                                Description \
0
                       Right lane blocked due to accident on I-70 Eas...
                0.0100
1
                0.0100 Accident on Brice Rd at Tussing Rd. Expect del...
2
                        Accident on OH-32 State Route 32 Westbound at ...
                0.0100
                        Accident on I-75 Southbound at Exits 52 52B US...
3
                0.0100
4
                0.0100
                        Accident on McEwen Rd at OH-725 Miamisburg Cen...
                0.5430
                                                  At Market St - Accident.
7728389
7728390
                0.3380
                          At Camino Del Rio/Mission Center Rd - Accident.
                        At Glassell St/Grand Ave - Accident. in the ri...
7728391
                0.5610
                           At CA-90/Marina Fwy/Jefferson Blvd - Accident.
7728392
                0.7720
7728393
                0.5370
                                     At Highland Ave/Arden Ave - Accident.
                             Street
                                              City
                                                             County State
0
                             I-70 E
                                            Dayton
                                                         Montgomery
                                                                        OH
1
                           Brice Rd
                                      Reynoldsburg
                                                           Franklin
                                                                        OH
2
                     State Route 32
                                      Williamsburg
                                                           Clermont
                                                                        OH
3
                             I-75 S
                                            Dayton
                                                         Montgomery
                                                                        OH
4
         Miamisburg Centerville Rd
                                            Dayton
                                                         Montgomery
                                                                        OH
7728389
                       Pomona Fwy E
                                         Riverside
                                                          Riverside
                                                                        CA
7728390
                              I-8 W
                                         San Diego
                                                          San Diego
                                                                        CA
7728391
                   Garden Grove Fwy
                                            Orange
                                                             Orange
                                                                        CA
7728392
                    San Diego Fwy S
                                       Culver City
                                                        Los Angeles
                                                                        CA
7728393
                           CA-210 W
                                          Highland
                                                     San Bernardino
                                                                        CA
```

Timezone Airport_Code

Weather_Timestamp

Zipcode Country

0	45424	US	US/Eas	tern	KFFO	2016-02-	08 05:58:00	
1	43068-3402	US	US/Eas		KCMH		08 05:51:00	
2	45176	US	US/Eas		KI69		08 06:56:00	
3	45417	US	US/Eas		KDAY		08 07:38:00	
4	45459	US	US/Eas		KMGY		08 07:53:00	
I	40403	OB	UD/ Las	o Celli	Krigi	2010 02	00 07.33.00	
 7728389	 92501	US	 US/Pac	ific	 Kral	2010_09_	23 17:53:00	
	92108							
7728390		US	US/Pac		KMYF		23 18:53:00	
7728391	92866	US	US/Pac		KSNA		23 18:53:00	
7728392	90230	US	US/Pac		KSMO		23 18:51:00	
7728393	92346	US	US/Pac	cific	KSBD	2019-08-	23 20:50:00	
	m . (D)		1 (1) : 1 1	(D)		D (
	Temperature(F)	Win	d_Chill		Humidity(%)	Pressure(
0	36.9000			NaN	91.0000	29.6		
1	37.9000			NaN	100.0000	29.6		
2	36.0000		33.3		100.0000	29.6	700	
3	35.1000		31.0	0000	96.0000	29.6	400	
4	36.0000		33.3	3000	89.0000	29.6	500	
•••	•••		•••		•••	•••		
7728389	86.0000		86.0	0000	40.0000	28.9	200	
7728390	70.0000		70.0	0000	73.0000	29.3	900	
7728391	73.0000		73.0	0000	64.0000	29.7	400	
7728392	71.0000		71.0	0000	81.0000	29.6	200	
7728393	79.0000		79.0	0000	47.0000	28.6	300	
	Visibility(mi) V	Wind	_Direct	ion	Wind_Speed(m	ph) Preci	pitation(in)) \
0	10.0000		C	Calm	_	NaN	0.0200)
1	10.0000		C	Calm		NaN	0.0000)
2	10.0000			SW	3.5	000	NaN	J
3	9.0000			SW	4.6		NaN	
4	6.0000			SW	3.5		NaN	
_				٠				•
7728389	10.0000		•••	W	13.0	000	0.0000)
7728390	10.0000			SW	6.0		0.0000	
7728391	10.0000			SSW	10.0		0.0000	
7728392	10.0000			SW		000	0.0000	
7728393	7.0000			SW	7.0	000	0.0000)
	Weather_Condition	n A	menity	Bum	p Crossing	Give_Way	Junction \	
0	Light Rain		False	Fals	-	False	False	`
1	Light Rain		False	Fals		False	False	
2	Overcast		False			False	False	
3	Mostly Cloudy		False			False	False	
	•							
4	Mostly Cloudy	у	False	Fals	e False	False	False	
 7700000		•••						
7728389	Fair	r	False	Fals	e False	False	False	
7728390	Fair		False	Fals		False	False	

77283		ly Cloudy	False			alse	False		rue
77283		Fair	False			Talse	False		lse
77283	93	Fair	False	False	F	Talse	False	Fal	lse
	No_Exit	Railway	Roundabo	ut Sta	tion	Stop	Traffic_C	almir	ng '
0	False	False	Fal	se F	alse	False		Fals	se
1	False	False	Fal	se F	alse	False		Fals	se
2	False	False	Fal	se F	alse	False		Fals	se
3	False	False	Fal	se F	alse	False		Fals	se
4	False	False	Fal	se F	alse	False		Fals	se
•••	•••	•••	•••				•••		
77283	89 False	False	Fal	se F	alse	False		Fals	se
77283	90 False	False	Fal	se F	alse	False		Fals	se
77283	91 False	False	Fal	se F	alse	False		Fals	se
77283	92 False	False	Fal	se F	alse	False		Fals	se
77283	93 False	False	Fal	se F	alse	False		Fals	se
	Traffic	Cianol T	urning Io	on Cunz	iao S	lungot (Civil_Twili	mh+	\
0	II all IC_	_Signai i False	Fal	-				-	\
1		False	Fal			Night		.ght .ght	
2						Night		•	
3		True	Fal			Night		ght	
3 4		False	Fal			Night		Day	
4		True	Fal	se		Day		Day	
 77283	80	 False	 Fal	50	•••	Day	•••	Day	
77283		False	Fal			Day		Day	
77283		False	Fal			Day		Day	
77283		False	Fal			Day		Day	
77283		False	Fal			_		-	
11200	33	raise	rai	26		Day		Day	
	Nautical_	_Twilight	Astronomi	cal_Twi	light	;			
0		Night			Night	5			
1		Night			Day	7			
2		Day			Day	7			
3		Day			Day	7			
4		Day			Day	7			
 77283	90			•••	Dar	7			
77283		Day			Day Day				
77283		Day							
		Day			Day				
77283		Day			Day				
77283	3 0	Day			Day	1			

[4]: df_train.columns

[7728394 rows x 46 columns]

```
[4]: Index(['ID', 'Source', 'Severity', 'Start_Time', 'End_Time', 'Start_Lat',
            'Start_Lng', 'End_Lat', 'End_Lng', 'Distance(mi)', 'Description',
            'Street', 'City', 'County', 'State', 'Zipcode', 'Country', 'Timezone',
            'Airport_Code', 'Weather_Timestamp', 'Temperature(F)', 'Wind_Chill(F)',
            'Humidity(%)', 'Pressure(in)', 'Visibility(mi)', 'Wind Direction',
            'Wind_Speed(mph)', 'Precipitation(in)', 'Weather_Condition', 'Amenity',
            'Bump', 'Crossing', 'Give_Way', 'Junction', 'No_Exit', 'Railway',
            'Roundabout', 'Station', 'Stop', 'Traffic_Calming', 'Traffic_Signal',
            'Turning_Loop', 'Sunrise_Sunset', 'Civil_Twilight', 'Nautical_Twilight',
            'Astronomical_Twilight'],
           dtype='object')
[5]: print("train data info")
     df_train.info()
    train data info
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 7728394 entries, 0 to 7728393
    Data columns (total 46 columns):
     #
         Column
                                 Dtype
    ---
         _____
                                 ----
     0
         ID
                                 object
     1
         Source
                                 object
     2
         Severity
                                 int64
     3
         Start_Time
                                 object
     4
         End Time
                                 object
     5
         Start Lat
                                 float64
     6
         Start Lng
                                 float64
     7
         End_Lat
                                 float64
     8
         End_Lng
                                 float64
     9
         Distance(mi)
                                 float64
     10 Description
                                 object
     11 Street
                                 object
     12 City
                                 object
     13 County
                                 object
     14 State
                                 object
     15 Zipcode
                                 object
     16
        Country
                                 object
     17
        Timezone
                                 object
     18
        Airport_Code
                                 object
         Weather Timestamp
                                 object
     20
        Temperature(F)
                                 float64
     21 Wind Chill(F)
                                 float64
```

float64

float64

float64

object

22 Humidity(%)

23 Pressure(in)

24 Visibility(mi)

25 Wind_Direction

```
26 Wind_Speed(mph)
                           float64
27 Precipitation(in)
                           float64
   Weather_Condition
28
                           object
29
   Amenity
                          bool
30
   Bump
                          bool
31
   Crossing
                           bool
32 Give_Way
                          bool
33 Junction
                          bool
34 No_Exit
                          bool
35 Railway
                          bool
36 Roundabout
                           bool
37
   Station
                          bool
38 Stop
                           bool
39
   Traffic_Calming
                           bool
40 Traffic_Signal
                           bool
41 Turning_Loop
                          bool
42 Sunrise_Sunset
                          object
43 Civil_Twilight
                          object
44 Nautical_Twilight
                           object
45 Astronomical_Twilight object
```

dtypes: bool(13), float64(12), int64(1), object(20)

memory usage: 2.0+ GB

0.3.2 Statistics Summary

[6]: df train.describe()

[0].	ar_tra	ain.describe()						
[6]:		Severity	Start_Lat	Start_Lng	End_Lat	End_L	ng \	
	count	7728394.0000	7728394.0000 7	728394.0000	4325632.0000	4325632.00	00	
	mean	2.2124	36.2012	-94.7025	36.2618	-95.72	56	
	std	0.4875	5.0761	17.3918	5.2729	18.10	79	
	min	1.0000	24.5548	-124.6238	24.5660	-124.54	57	
	25%	2.0000	33.3996	-117.2194	33.4621	-117.75	43	
	50%	2.0000	35.8240	-87.7666	36.1835	-88.02	79	
	75%	2.0000	40.0850	-80.3537	40.1789	-80.24	71	
	max	4.0000	49.0022	-67.1132	49.0750	-67.10	92	
		Distance(mi)	Temperature(F) Wind_Chi	lll(F) Humid	ity(%) Pre	ssure(in)	\
	count	7728394.0000	7564541.00	00 5729375	5.0000 755425	0.0000 758	7715.0000	
	mean	0.5618	61.66	33 58	3.2510 6	4.8310	29.5390	
	std	1.7768	19.01	.37 22	2.3898 2	2.8210	1.0062	
	min	0.0000	-89.00	000 -89	0.000	1.0000	0.0000	
	25%	0.0000	49.00	000 43	3.0000 48	8.0000	29.3700	
	50%	0.0300	64.00	00 62	2.0000 6	7.0000	29.8600	
	75%	0.4640	76.00	000 75	5.0000 8	4.0000	30.0300	
	max	441.7500	207.00	00 207	7.0000 100	0.0000	58.6300	

	<pre>Visibility(mi)</pre>	Wind_Speed(mph)	<pre>Precipitation(in)</pre>
count	7551296.0000	7157161.0000	5524808.0000
mean	9.0904	7.6855	0.0084
std	2.6883	5.4250	0.1102
min	0.0000	0.0000	0.0000
25%	10.0000	4.6000	0.0000
50%	10.0000	7.0000	0.0000
75%	10.0000	10.4000	0.0000
max	140.0000	1087.0000	36.4700

0.3.3 Checking null values

```
[7]: print("train data null cells")
print(df_train.isnull().sum())
```

train data null cells	
ID	0
Source	0
Severity	0
Start_Time	0
End_Time	0
Start_Lat	0
Start_Lng	0
End_Lat	3402762
End_Lng	3402762
Distance(mi)	0
Description	5
Street	10869
City	253
County	0
State	0
Zipcode	1915
Country	0
Timezone	7808
Airport_Code	22635
${\tt Weather_Timestamp}$	120228
Temperature(F)	163853
Wind_Chill(F)	1999019
<pre>Humidity(%)</pre>	174144
Pressure(in)	140679
Visibility(mi)	177098
Wind_Direction	175206
Wind_Speed(mph)	571233
Precipitation(in)	2203586
${\tt Weather_Condition}$	173459
Amenity	0
Bump	0

```
Crossing
                               0
Give_Way
                               0
Junction
                               0
No_Exit
                               0
Railway
                               0
Roundabout
                               0
Station
                               0
Stop
                               0
Traffic_Calming
                               0
Traffic_Signal
                               0
Turning_Loop
                               0
Sunrise_Sunset
                           23246
Civil_Twilight
                           23246
Nautical_Twilight
                           23246
Astronomical_Twilight
                           23246
dtype: int64
```

[8]: df_train.isnull().sum().sort_values(ascending=False)/len(df_train)

[8] •	End_Lat	0.4403
[0].	End_Lng	0.4403
	Precipitation(in)	0.2851
	Wind_Chill(F)	0.2587
	Wind_Speed(mph)	0.0739
	Visibility(mi)	0.0229
	Wind_Direction	0.0227
	Humidity(%)	0.0225
	Weather_Condition	0.0224
	Temperature(F)	0.0212
	Pressure(in)	0.0182
	Weather_Timestamp	0.0156
	Nautical_Twilight	0.0030
	Civil_Twilight	0.0030
	Sunrise_Sunset	0.0030
	Astronomical_Twilight	0.0030
	Airport_Code	0.0029
	Street	0.0014
	Timezone	0.0010
	Zipcode	0.0002
	City	0.0000
	Description	0.0000
	Traffic_Signal	0.0000
	Roundabout	0.0000
	Station	0.0000
	Stop	0.0000
	Traffic_Calming	0.0000
	Country	0.0000
	- J	

```
Turning_Loop
                          0.0000
No_Exit
                          0.0000
End_Time
                          0.0000
Start_Time
                          0.0000
Severity
                          0.0000
Railway
                          0.0000
Crossing
                          0.0000
Junction
                          0.0000
Give Way
                          0.0000
Bump
                          0.0000
Amenity
                          0.0000
Start_Lat
                          0.0000
Start Lng
                          0.0000
Distance(mi)
                          0.0000
Source
                          0.0000
County
                          0.0000
State
                          0.0000
ID
                          0.0000
dtype: float64
```

- 0.4 Data Preprocessing: In this section we handle all null values with convering some features either from categorical to numerical or binary and from continuous to discerete form (bin groups)
- 0.4.1 Dropping unneccesary columns ["End_Lat", "End_Lang", "Perceptation", "Wind_Chill"]

from data exploration section, we can see that there are null values in many columns. So this will be a bit challenging cleaning most of those columns. For "End_Lat" and "End_Lang" columns we will just drop them, as they are not that effective features we may need same as "Perceptation" and "Wind_Chill". Also "Turning_Loop" column will be dropped as its value is constant and doesn't change.

[9]: df train.columns

```
[10]: df_train.drop(["End_Lat", "End_Lng", "Precipitation(in)","Wind_Chill(F)", \
\[ \times \"Turning_Loop"], axis=1, inplace=True)
```

0.4.2 Changing Boolean Columns to numerical 0/1 [Night/False $-\!>0$, Day/True $-\!>$ 1]

[13]: df_train

```
[13]:
                     ID
                          Source Severity
                                                    Start_Time \
                    A-1 Source2
                                         3 2016-02-08 05:46:00
     0
     1
                    A-2 Source2
                                        2 2016-02-08 06:07:59
     2
                    A-3 Source2
                                         2 2016-02-08 06:49:27
     3
                    A-4 Source2
                                         3 2016-02-08 07:23:34
     4
                    A-5 Source2
                                         2 2016-02-08 07:39:07
     7728389 A-7777757 Source1
                                         2 2019-08-23 18:03:25
     7728390 A-7777758 Source1
                                         2 2019-08-23 19:11:30
     7728391 A-7777759 Source1
                                         2 2019-08-23 19:00:21
     7728392 A-7777760 Source1
                                         2 2019-08-23 19:00:21
     7728393 A-7777761 Source1
                                         2 2019-08-23 18:52:06
                         End_Time Start_Lat Start_Lng Distance(mi) \
     0
              2016-02-08 11:00:00
                                     39.8651
                                              -84.0587
                                                              0.0100
     1
              2016-02-08 06:37:59
                                     39.9281
                                               -82.8312
                                                              0.0100
     2
              2016-02-08 07:19:27
                                     39.0631
                                              -84.0326
                                                              0.0100
     3
              2016-02-08 07:53:34
                                     39.7478
                                              -84.2056
                                                              0.0100
     4
              2016-02-08 08:09:07
                                     39.6278
                                              -84.1884
                                                              0.0100
     7728389 2019-08-23 18:32:01
                                     34.0025 -117.3794
                                                              0.5430
                                     32.7670 -117.1481
                                                              0.3380
     7728390 2019-08-23 19:38:23
```

```
7728391
         2019-08-23 19:28:49
                                  33.7754
                                           -117.8478
                                                             0.5610
                                                             0.7720
7728392
         2019-08-23 19:29:42
                                  33.9925
                                           -118.4030
7728393
         2019-08-23 19:21:31
                                  34.1339
                                           -117.2309
                                                             0.5370
                                                  Description \
0
         Right lane blocked due to accident on I-70 Eas...
1
         Accident on Brice Rd at Tussing Rd. Expect del...
         Accident on OH-32 State Route 32 Westbound at ...
2
3
         Accident on I-75 Southbound at Exits 52 52B US...
         Accident on McEwen Rd at OH-725 Miamisburg Cen...
4
7728389
                                    At Market St - Accident.
7728390
           At Camino Del Rio/Mission Center Rd - Accident.
7728391
         At Glassell St/Grand Ave - Accident. in the ri...
            At CA-90/Marina Fwy/Jefferson Blvd - Accident.
7728392
7728393
                      At Highland Ave/Arden Ave - Accident.
                             Street
                                              City
                                                             County State
0
                             I-70 E
                                            Dayton
                                                         Montgomery
                                                                        OH
1
                                                           Franklin
                                                                        OH
                           Brice Rd
                                      Reynoldsburg
2
                     State Route 32
                                      Williamsburg
                                                           Clermont
                                                                        OH
3
                             I-75 S
                                            Dayton
                                                         Montgomery
                                                                        OH
4
                                                         Montgomery
                                                                        OH
         Miamisburg Centerville Rd
                                            Dayton
                       Pomona Fwy E
                                                          Riverside
                                                                        CA
7728389
                                         Riverside
7728390
                              I-8 W
                                         San Diego
                                                          San Diego
                                                                        CA
                   Garden Grove Fwy
7728391
                                            Orange
                                                             Orange
                                                                        CA
7728392
                    San Diego Fwy S
                                                                        CA
                                       Culver City
                                                        Los Angeles
7728393
                           CA-210 W
                                          Highland
                                                     San Bernardino
                                                                        CA
            Zipcode Country
                                 Timezone Airport_Code
                                                           Weather_Timestamp
0
               45424
                          US
                              US/Eastern
                                                         2016-02-08 05:58:00
                                                   KFFO
1
                          US
         43068-3402
                              US/Eastern
                                                   KCMH
                                                         2016-02-08 05:51:00
2
               45176
                          US
                              US/Eastern
                                                   KI69
                                                         2016-02-08 06:56:00
3
               45417
                          US
                              US/Eastern
                                                   KDAY
                                                         2016-02-08 07:38:00
4
               45459
                          US
                              US/Eastern
                                                   KMGY
                                                         2016-02-08 07:53:00
               92501
                          US
                              US/Pacific
                                                         2019-08-23 17:53:00
7728389
                                                   KRAL
7728390
               92108
                          US
                              US/Pacific
                                                   KMYF
                                                         2019-08-23 18:53:00
                              US/Pacific
                                                         2019-08-23 18:53:00
7728391
               92866
                          US
                                                   KSNA
                              US/Pacific
                                                         2019-08-23 18:51:00
7728392
               90230
                          US
                                                   KSMO
7728393
               92346
                              US/Pacific
                                                   KSBD
                                                         2019-08-23 20:50:00
         Temperature(F)
                          Humidity(%)
                                        Pressure(in)
                                                       Visibility(mi)
0
                              91.0000
                 36.9000
                                             29.6800
                                                               10.0000
                 37.9000
                             100.0000
                                             29.6500
                                                               10.0000
1
2
                 36.0000
                             100.0000
                                             29.6700
                                                               10.0000
```

3		35.1	000	96.0000	29.6400)	9.0000			
4		36.0		89.0000	29.6500		6.0000			
		•••								
7728389		86.0	000	40.0000	28.9200)	10.0000			
7728390		70.0		73.0000	29.3900		10.0000			
7728391		73.0		64.0000	29.7400		10.0000			
7728392		71.0		81.0000	29.6200		10.0000			
7728393		79.0	000	47.0000	28.6300	,	7.0000			
	Wind_D	irecti	on Wind	Speed(mph)	Weather Co	ndition	Amenity	Bump	\	
0	_		lm -	NaN		ht Rain	•	0		
1			lm	NaN	_	, ht Rain		0		
2			SW	3.5000	_	vercast		0		
3			SW	4.6000		Cloudy		0		
4			SW	3.5000	-	Cloudy		0		
-			5 "		1105011	oroudy		Ů		
7728389		•••	W	13.0000	•••	 Fair	0	0		
7728390			SW	6.0000		Fair		0		
7728391			SW	10.0000	Dar+1;	Cloudy		0		
7728392			SW	8.0000	raitiy	Fair		0		
				7.0000				0		
7728393			SW	7.0000		Fair	0	U		
	Cross	ing C	ive_Way	Junction 1	No_Exit Ra	ilway	Roundabout	Stat	ion	\
0	01055	111g u	O O	0	0	0	0		0	`
1		0	0	0	0	0	0		0	
2			0	0	0		0			
		0	0	0		0			0	
3					0	0	0		0	
4		0			^	•	0		^	
4		0	0	0	0	0	0		0	
•••	•••	0	0	0	***	***	***			
 7728389		0	0		0	0	0		0	
 7728389 7728390		0 0 0	0	 0 0	 0 0	 0 0	0		0	
 7728389 7728390 7728391		0 0 0 0	0 0 0 0	0 0 0 1	 0 0	 0 0 0	0		0 0 0	
 7728389 7728390 7728391 7728392		0 0 0 0		0 0 0 1	0 0 0 0 0	 0 0 0	0		0 0 0 0	
 7728389 7728390 7728391		0 0 0 0	0 0 0 0	0 0 0 1	0	 0 0 0	0		0 0 0	
 7728389 7728390 7728391 7728392		0 0 0 0 0		0 0 0 1 0	 0 0 0 0	 0 0 0 0	0		0 0 0 0	
 7728389 7728390 7728391 7728392 7728393	 Stop	0 0 0 0 0		0 	 0 0 0 0 0 0	 0 0 0 0 0	 0 0 0 0 0		0 0 0 0	
 7728389 7728390 7728391 7728392	0	0 0 0 0 0		0 	 0 0 0 0 0 0 _Signal Su	 0 0 0 0 0 0	 0 0 0 0 0 unset \		0 0 0 0	
 7728389 7728390 7728391 7728392 7728393	_	0 0 0 0 0		0 	 0 0 0 0 0 0	 0 0 0 0 0 0	 0 0 0 0 0 .0000 .0000		0 0 0 0	
 7728389 7728390 7728391 7728392 7728393	0	0 0 0 0 0		0 	 0 0 0 0 0 0 _Signal Su	 0 0 0 0 0 0	 0 0 0 0 0 unset \		0 0 0 0	
 7728389 7728390 7728391 7728392 7728393	0	0 0 0 0 0		0 0 0 0 1 0 0 0 Traffic	 0 0 0 0 0 0 _Signal Su 0	 0 0 0 0 0 0 .nrise_S	 0 0 0 0 0 .0000 .0000		0 0 0 0	
 7728389 7728390 7728391 7728392 7728393 0 1	0 0	0 0 0 0 0		0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	 0 0 0 0 0 2 Signal Su 0 0	 0 0 0 0 0 mrise_S	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0	
7728389 7728390 7728391 7728392 7728393 0 1 2 3 4	0 0 0 0	0 0 0 0 0		0	0 0 0 0 0 0 0 2 Signal Su 0 1 0	 0 0 0 0 0 mrise_S	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0	
7728389 7728390 7728391 7728392 7728393 0 1 2 3	0 0 0 0	0 0 0 0 0		0	0 0 0 0 0 0 0 2 Signal Su 0 1 0	0 0 0 0 0 0 0	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0	
7728389 7728390 7728391 7728392 7728393 0 1 2 3 4	0 0 0 0 0	0 0 0 0 0		0 	0 0 0 0 0 0 0 0 1 0 1	0 0 0 0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0	
7728389 7728390 7728391 7728393 0 1 2 3 4 7728389	0 0 0 0 0	0 0 0 0 0		0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 2 Signal Su 0 0 1 0 1	0 0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0	
7728389 7728390 7728391 7728392 7728393 0 1 2 3 4 7728389 7728390	0 0 0 0 0	0 0 0 0 0		0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 2 Signal Su 0 1 0 1 0 0	0 0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0	
7728389 7728390 7728391 7728393 0 1 2 3 4 7728389 7728390 7728391	0 0 0 0 0 0	0 0 0 0 0		0 0	0 0 0 0 0 0 2 Signal Su 0 1 0 1 0 0 0	0 0 0 0 0 0 0 0 0 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0	

	Civil_Twilight	Nautical_Twilight	Astronomical_Twilight
0	0.0000	0.0000	0.0000
1	0.0000	0.0000	1.0000
2	0.0000	1.0000	1.0000
3	1.0000	1.0000	1.0000
4	1.0000	1.0000	1.0000
•••	•••	•••	•••
7728389	1.0000	1.0000	1.0000
7728390	1.0000	1.0000	1.0000
7728391	1.0000	1.0000	1.0000
7728392	1.0000	1.0000	1.0000
7728393	1.0000	1.0000	1.0000

[7728394 rows x 41 columns]

[14]: df_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7728394 entries, 0 to 7728393

Data columns (total 41 columns):

#	Column	Dtype
0	ID	object
1	Source	object
2	Severity	int64
3	Start_Time	object
4	End_Time	object
5	Start_Lat	float64
6	Start_Lng	float64
7	Distance(mi)	float64
8	Description	object
9	Street	object
10	City	object
11	County	object
12	State	object
13	Zipcode	object
14	Country	object
15	Timezone	object
16	Airport_Code	object
17	${\tt Weather_Timestamp}$	object
18	Temperature(F)	float64
19	<pre>Humidity(%)</pre>	float64
20	Pressure(in)	float64
21	Visibility(mi)	float64
22	Wind_Direction	object
23	<pre>Wind_Speed(mph)</pre>	float64

```
24 Weather_Condition
                            object
                             int64
 25
    Amenity
 26
    Bump
                             int64
    Crossing
                             int64
 27
 28
    Give Way
                             int64
    Junction
                             int64
    No Exit
                             int64
 31 Railway
                             int64
 32 Roundabout
                             int64
 33
    Station
                             int64
 34 Stop
                             int64
    Traffic_Calming
 35
                             int64
    Traffic_Signal
                             int64
    Sunrise_Sunset
                            float64
 38 Civil_Twilight
                            float64
    Nautical_Twilight
                            float64
 39
 40 Astronomical_Twilight
                            float64
dtypes: float64(12), int64(13), object(16)
memory usage: 2.4+ GB
```

0.4.3 Changing Source Column to Numerical

0.4.4 Create bin groups of Temperature, Humidity and Pressure columns

```
[16]: df_train['Temperature_binned'] = pd.cut(df_train['Temperature(F)'], bins=4)
    df_train['Humidity_binned'] = pd.cut(df_train['Humidity(%)'], bins=4)
    df_train['Pressure_binned'] = pd.cut(df_train['Pressure(in)'], bins=4)
```

0.4.5 Handling Null Values

For the remaining columns we can either drop the null values as the portion is not that big, or we try to get the correlation between columns and try to fill the null values with suitable values.

```
[17]: print(len(df_train))
  df_train = df_train.dropna()
  df_train = df_train.reset_index()
  print(len(df_train))
```

7728394 7051556

As we can see removing the null values didn't affect the data that much and we still have large amount of data to do our analysis, so we will go along with this approach

0.5 Descriptive Analysis:

```
[38]: plt.figure(figsize=(10,6))
   df_train['Severity'].value_counts().sort_index().plot(kind='bar')
   plt.title('Number of Accidents by Severity')
   plt.xlabel('Severity')
   plt.ylabel('Number of Accidents')
   plt.show()
```


A first insight to see how biased our data is, adn from the above figure we can observe that the data is very biased toward severity 2 accidents. To be noted from this observation, that due to this bias only trends can be investigated, but no specific relationships between severity type and any factor can be analysed, as in any case we will find that any analysis we do will be in the favour of severity 2. If we want to avoid this bias, we should balance the data by either gathering more data or removing random portions of the data till all the severities are equal in ratios. Another approach is to make this task a binary task where to convert the severities to "severity2" or "not severity2" by compining all the other severities on one category then balancing both categories by removing the excess data.

Investigating cocorrelations between severity and different factors

Findings: as expected it is hard to find any specific relations between severity and any of the

factors due to the bias in the data.

Investigating Weather Impact on accidents

```
[22]: features = ['Visibility(mi)', 'Wind_Direction', 'Wind_Speed(mph)', |
       ⇔'Weather_Condition',
                  'Sunrise_Sunset', 'Civil_Twilight', 'Nautical_Twilight', |
       'Temperature_binned', 'Humidity_binned', 'Pressure_binned']
     n cols = 2
     n_rows = int(np.ceil(len(features) / n_cols))
     fig, axs = plt.subplots(n_rows, n_cols, figsize=(10*n_cols, 6*n_rows))
     for i, feature in enumerate(features):
         row = i // n cols
         col = i % n_cols
         df_train[feature].value_counts().sort_values(ascending=False).head(10).
       →plot(kind='bar', ax=axs[row, col])
         axs[row, col].set_title(f'Number of Accidents by {feature}',fontsize=12)
         axs[row, col].set_xlabel(feature,fontsize=12)
         axs[row, col].set_ylabel('Number of Accidents',fontsize=12)
         axs[row, col].tick_params(axis='x', labelsize=12)
         axs[row, col].tick_params(axis='y', labelsize=12)
     if len(features) % n_cols != 0:
         for col in range(len(features) % n_cols, n_cols):
             fig.delaxes(axs[n_rows - 1, col])
     plt.tight_layout()
     plt.show()
```


Findings: From the above figures we can find that:

- According to Night/Day time: Most of the accidents occurred at day, as the portion of cars and vehicles on the road during the day is much much higher than that during the night because of the school time, work time, most of the people are awake at day, ...,etc.
- According to cabin Weather Conditions: As expected most of the accidents occured on good(Fair) weather conditions which includes good temperature, normal pressure, good visibility,...,etc. And again this is because of the high portion of vehicles on the road during these conditions, as while under any other condition that can be categorized as bad conditions; roads are closed, people are afraid to drive and most activities are paused.

0.5.1 Investigating Surrounding Road Services Impact on Accidents

```
[24]: features = ['Amenity', 'Bump', 'Crossing', 'Give Way', 'Junction', 'No Exit',
                  'Railway', 'Roundabout', 'Station', 'Stop', 'Traffic_Calming',
                  'Traffic_Signal']
      n_cols = 2
      n_rows = int(np.ceil(len(features) / n_cols))
      fig, axs = plt.subplots(n_rows, n_cols, figsize=(10*n_cols, 6*n_rows))
      for i, feature in enumerate(features):
          row = i // n_cols
          col = i % n_cols
          df_train[feature].value_counts().sort_values(ascending=False).head(10).
       →plot(kind='bar', ax=axs[row, col])
          axs[row, col].set_title(f'Number of Accidents by {feature}',fontsize=12)
          axs[row, col].set_xlabel(feature,fontsize=12)
          axs[row, col].set_ylabel('Number of Accidents',fontsize=12)
          axs[row, col].tick_params(axis='x', labelsize=12)
          axs[row, col].tick_params(axis='y', labelsize=12)
      if len(features) % n cols != 0:
          for col in range(len(features) % n_cols, n_cols):
              fig.delaxes(axs[n_rows - 1, col])
      plt.tight_layout()
      plt.show()
```


Findings: No insight can be observed or concluded from these figures and it needs more investigations.

0.5.2 Investigating Trends based on location

```
[25]: features = ["City", "State", "Zipcode", "Airport_Code", "Timezone"]
      n cols = 2
      n_rows = int(np.ceil(len(features) / n_cols))
      fig, axs = plt.subplots(n_rows, n_cols, figsize=(10*n_cols, 6*n_rows))
      for i, feature in enumerate(features):
          row = i // n cols
          col = i % n_cols
          df_train[feature].value_counts().sort_values(ascending=False).head(20).
       →plot(kind='bar', ax=axs[row, col])
          axs[row, col].set_title(f'Number of Accidents by {feature}',fontsize=12)
          axs[row, col].set_xlabel(feature,fontsize=12)
          axs[row, col].set_ylabel('Number of Accidents',fontsize=12)
          axs[row, col].tick_params(axis='x', labelsize=12)
          axs[row, col].tick_params(axis='y', labelsize=12)
      if len(features) % n_cols != 0:
          for col in range(len(features) % n_cols, n_cols):
              fig.delaxes(axs[n_rows - 1, col])
      plt.tight_layout()
      plt.show()
```


Findings: From the above figures we can find that:

• According to location: Most of the accidents happened in CA state as observed and the number of accidents is very high compared to the state following CA. And this need more investigating to search for the real causes of this number of accidents, and may be some more restict road rules can be applied.

0.5.3 Investigating Trends based on year/month/week/day/time

```
[75]: df_train.Start_Time = pd.to_datetime(df_train.Start_Time, format="mixed")

df_train['Month'] = df_train['Start_Time'].dt.month

df_train['Year'] = df_train['Start_Time'].dt.year

df_train['Week'] = df_train['Start_Time'].dt.isocalendar().week

df_train['Weekday'] = df_train['Start_Time'].dt.weekday

df_train['Hour'] = df_train['Start_Time'].dt.hour
```

Year Analysis

```
[71]: plt.figure(figsize=(10,6))
   df_train['Year'].value_counts().sort_index().plot(kind='bar')
   plt.title('Number of Accidents by Year')
   plt.xlabel('Year')
   plt.ylabel('Number of Accidents')
   plt.show()
```


Month Analysis

```
[72]: plt.figure(figsize=(10,6))
  df_train['Month'].value_counts().sort_index().plot(kind='bar')
  plt.title('Number of Accidents by Month')
  plt.xlabel('Month')
  plt.ylabel('Number of Accidents')
  plt.show()
```


Months per year analysis

```
[73]: grouped = df_train.groupby(['Year', 'Month']).size().

¬reset_index(name='Accident_Count')
      n cols = 2
      n_years = len(grouped['Year'].unique())
      n_rows = int(np.ceil(n_years / n_cols))
      fig, axs = plt.subplots(n_rows, n_cols, figsize=(12*n_cols, 6*n_rows))
      for i, year in enumerate(grouped['Year'].unique()):
          row = i // n_cols
          col = i % n_cols
          monthly_data = grouped[grouped['Year'] == year]
          axs[row, col].bar(monthly_data['Month'], monthly_data['Accident_Count'], __
       stick_label=monthly_data['Month'])
          axs[row, col].set_title(f'Number of Accidents per Month in {year}')
          axs[row, col].set_xlabel('Month')
          axs[row, col].set_ylabel('Number of Accidents')
      if n_years % n_cols != 0:
          for col in range(n_years % n_cols, n_cols):
              fig.delaxes(axs[n_rows - 1, col])
```

```
plt.tight_layout()
plt.show()
```


Week Analysis

```
[76]: plt.figure(figsize=(10,6))
   df_train['Week'].value_counts().sort_index().plot(kind='bar')
   plt.title('Number of Accidents by Week')
   plt.xlabel('Week')
   plt.ylabel('Number of Accidents')
   plt.show()
```



```
[78]: df_train['Week'] = df_train['Week'].fillna(-1).astype(int)
      grouped = df_train.groupby(['Year', 'Week']).size().
       ⇔reset_index(name='Accident_Count')
      n cols = 2
      n_years = len(grouped['Year'].unique())
      n_rows = int(np.ceil(n_years / n_cols))
      fig, axs = plt.subplots(n_rows, n_cols, figsize=(12*n_cols, 6*n_rows))
      for i, year in enumerate(grouped['Year'].unique()):
          row = i // n_cols
          col = i % n_cols
          weekly_data = grouped[grouped['Year'] == year]
          axs[row, col].bar(weekly_data['Week'], weekly_data['Accident_Count'],_
       ⇔tick_label=weekly_data['Week'])
          axs[row, col].set_title(f'Number of Accidents per Week in {year}')
          axs[row, col].set_xlabel('Week')
          axs[row, col].set_ylabel('Number of Accidents')
      if n_years % n_cols != 0:
          for col in range(n_years % n_cols, n_cols):
              fig.delaxes(axs[n_rows - 1, col])
```

```
plt.tight_layout()
plt.show()
```


Weekday Analysis

```
[79]: plt.figure(figsize=(10,6))
   df_train['Weekday'].value_counts().sort_index().plot(kind='bar')
   plt.title('Number of Accidents by Weekday')
   plt.xlabel('Weekday')
   plt.ylabel('Number of Accidents')
   plt.show()
```


Hour Analysis

```
[80]: plt.figure(figsize=(10,6))
  df_train['Hour'].value_counts().sort_index().plot(kind='bar')
  plt.title('Number of Accidents by Hour')
  plt.xlabel('Hour')
  plt.ylabel('Number of Accidents')
  plt.show()
```


Findings: From the above figures we can find that:

- According to Year Analysis: It can be observed that the number of accidents has increased
 over years. Many factors can affect this increase like increasing population, new cars are made
 while old cars get cheaper and people started following travel trends and bough more cars
- According to Month Analysis: We can see that there is some increase in the accidents in last
 months and first month of the year, and this may be due to summer break and the new school
 term break. Though, it is not a general case where we need more investigations to confirsm
 this conclusion. Also, during 2020 we can see a noticable in the accidents number due to
 covid-19 panademic.
- According to Week Analysis: it is following the month analysis trend in the rate of accidents.
- According to Weekday Analysis: we can see equal rates of accidents across all the workdays in
 the week while less accidents on weekends. That points us to conclude that during weekends
 many activities take a break and that leads to less portion of vehicles on the roads, thus fewer
 accidents.
- According to cabin Hour Analysis: There are two time periods with heightened activity: one occurs in the morning between 6 am and 9 am, while the other takes place between 3 pm and 6 pm. These observations support the notion that increased traffic during morning and evening rush hours may contribute to a higher incidence of accidents.

0.6 Machine Learning Models

0.6.1 converting categorical values to numerical values

```
[18]: df_train = df_train.drop(["Street", 'Description', |

¬'Civil_Twilight', 'Nautical_Twilight', 'Astronomical_Twilight', 'County',

       -'Country', 'index', 'ID', 'Start_Time', 'End_Time', 'Start_Lat', 'Start_Lng',

¬"Weather_Timestamp",'Temperature_binned', 'Humidity_binned',

□
       label_encoder = LabelEncoder()
     df_train['Source'] = label_encoder.fit_transform(df_train['Source'])
     df_train['City'] = label_encoder.fit_transform(df_train['City'])
     df_train['State'] = label_encoder.fit_transform(df_train['State'])
     df_train['Airport_Code'] = label_encoder.fit_transform(df_train['Airport_Code'])
     df_train['Zipcode'] = label_encoder.fit_transform(df_train['Zipcode'])
     df_train['Timezone'] = label_encoder.fit_transform(df_train['Timezone'])
     df_train['Weather_Condition'] = label_encoder.

→fit_transform(df_train['Weather_Condition'])
     df train['Wind Direction'] = label encoder.

→fit_transform(df_train['Wind_Direction'])
```

As noticed before the data is unblalanced and is so biased towards class severity 2. A suggested approach to solve this is to heirarichal classification and create multi classifiers than combine them together. * Binary Classifier 1: Class 2 vs [Class 1,3,4] * Binary Classifier 1: Class 3 vs [Class 1,4] * Binary Classifier 1: Class 1 vs [Class 4]

This approach is some how similar to the one vs all approach, but due to the data impalance we can't do classification between severity 1 for rxample vs all, ratios between the two groups will be 1:100. So, what came to my mind is to mix between the one vs all algorithm and the heirarichal algorithm.

```
[19]: X = df_train.drop('Severity', axis=1)
y = df_train['Severity']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, userandom_state=42)
```

```
print("step 0 \n")
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

step 0

```
[20]: print("step 1 \n")
      y_first = (y == 2).astype(int)
      classifier_first = RandomForestClassifier(n_jobs=2)
      classifier_first.fit(X_scaled, y_first)
      print("step 2 \n")
      X_second = X_scaled[y != 2]
      y = (y[y != 2] == 3).astype(int)
      classifier_second = RandomForestClassifier(n_jobs=2)
      classifier_second.fit(X_second, y_second)
      print("step 3 \n")
      X_{third} = X_{scaled}[(y != 2) & (y != 3)]
      y_{third} = (y[(y != 2) & (y != 3)] == 1).astype(int)
      classifier_third = RandomForestClassifier(n_jobs=2)
      classifier_third.fit(X_third, y_third)
      def predict_hierarchical_model(X_test):
          X_test_scaled = scaler.transform(X_test)
          final_predictions = {}
          predictions_first = classifier_first.predict(X_test_scaled)
          class_2_indices = [i for i, x in enumerate(predictions_first) if x == 1]
          final_predictions.update({i: 2 for i in class_2_indices})
          X_test_rest_indices = [i for i, x in enumerate(predictions_first) if x == 0]
          X_test_rest = X_test_scaled[X_test_rest_indices]
          predictions_second = classifier_second.predict(X_test_rest)
          class_3_indices = [X_test_rest_indices[i] for i, x in_
       ⇔enumerate(predictions_second) if x == 1]
          final_predictions.update({i: 3 for i in class_3_indices})
          X_test_rest_indices = [X_test_rest_indices[i] for i, x in_
       ⇔enumerate(predictions_second) if x == 0]
          X_test_rest = X_test_scaled[X_test_rest_indices]
          predictions_third = classifier_third.predict(X_test_rest)
```

```
class_1_indices = [X_test_rest_indices[i] for i, x in_
       →enumerate(predictions_third) if x == 1]
          class_4_indices = [X_test_rest_indices[i] for i, x in_
       →enumerate(predictions_third) if x == 0]
          final_predictions.update({i: 1 for i in class_1_indices})
          final_predictions.update({i: 4 for i in class_4_indices})
          final_predictions_sorted = [final_predictions[i] for i in_
       ⇔sorted(final_predictions)]
          return final_predictions_sorted
      print("Predicting \n")
      y_pred = predict_hierarchical_model(X_test)
      print("Results \n")
      accuracy = accuracy_score(y_test, y_pred)
      print("Accuracy: ", accuracy)
      print(classification_report(y_test, y_pred))
     step 1
     step 2
     step 3
     Predicting
     Results
     Accuracy: 0.9916238392639359
                   precision
                                recall f1-score
                                                    support
                1
                        0.99
                                  0.99
                                             0.99
                                                      13074
                2
                        0.99
                                  1.00
                                             0.99
                                                    1133919
                3
                        1.00
                                  1.00
                                             1.00
                                                     227753
                        0.94
                                  0.77
                                             0.85
                                                      35566
                                             0.99
                                                    1410312
         accuracy
        macro avg
                        0.98
                                  0.94
                                             0.96
                                                    1410312
                        0.99
                                  0.99
                                             0.99
                                                    1410312
     weighted avg
[20]: params = {'C': [0.1, 1, 1000], 'solver': ['lbfgs', 'liblinear'], "max_iter": ____
       →[100, 1000, 10000]}
```

```
classifier = LogisticRegression()
print("step 1")
y_first = (y == 2).astype(int)
# classifier_first = LogisticRegression()
classifier_first = GridSearchCV(classifier, params, cv=5)
classifier_first.fit(X_scaled, y_first)
print("best params: ", classifier_first.best_params_, "\n")
print("best score: ", classifier_first.best_score_, "\n")
print("step 2 \n")
X_second = X_scaled[y != 2]
y_{second} = (y[y != 2] == 3).astype(int)
# classifier_second = LogisticRegression()
classifier_second = GridSearchCV(classifier, params, cv=5)
classifier_second.fit(X_second, y_second)
print("best params: ", classifier_second.best_params_, "\n")
print("best score: ", classifier_second.best_score_, "\n")
print("step 3 \n")
X_{third} = X_{scaled}[(y != 2) & (y != 3)]
y_{third} = (y[(y != 2) & (y != 3)] == 1).astype(int)
# classifier_third = LogisticRegression()
classifier third = GridSearchCV(classifier, params, cv=5)
classifier_third.fit(X_third, y_third)
print("best params: ", classifier_third.best_params_, "\n")
print("best score: ", classifier_third.best_score_, "\n")
def predict_hierarchical_model(X_test):
   X_test_scaled = scaler.transform(X_test)
   final_predictions = {}
   predictions_first = classifier_first.predict(X_test_scaled)
   class_2_indices = [i for i, x in enumerate(predictions_first) if x == 1]
   final_predictions.update({i: 2 for i in class_2_indices})
   X_test_rest_indices = [i for i, x in enumerate(predictions_first) if x == 0]
   X_test_rest = X_test_scaled[X_test_rest_indices]
   predictions_second = classifier_second.predict(X_test_rest)
   class_3_indices = [X_test_rest_indices[i] for i, x in_
 ⇔enumerate(predictions_second) if x == 1]
   final_predictions.update({i: 3 for i in class_3_indices})
```

```
X_{\text{test\_rest\_indices}} = [X_{\text{test\_rest\_indices}}[i] \text{ for i, } x \text{ in}_{\sqcup}
  ⇔enumerate(predictions_second) if x == 0]
    X_test_rest = X_test_scaled[X_test_rest_indices]
    predictions_third = classifier_third.predict(X_test_rest)
    class_1_indices = [X_test_rest_indices[i] for i, x in_
  →enumerate(predictions_third) if x == 1]
    class_4_indices = [X_test_rest_indices[i] for i, x in_
  ⇔enumerate(predictions_third) if x == 0]
    final_predictions.update({i: 1 for i in class_1_indices})
    final_predictions.update({i: 4 for i in class_4_indices})
    final_predictions_sorted = [final_predictions[i] for i in_
  ⇒sorted(final_predictions)]
    return final_predictions_sorted
print("Predicting \n")
y_pred = predict_hierarchical_model(X_test)
print("Results \n")
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy: ", accuracy)
print(classification_report(y_test, y_pred))
step 1
best params: {'C': 0.1, 'max_iter': 100, 'solver': 'lbfgs'}
best score: 0.7349434942576842
step 2
best params: {'C': 1, 'max_iter': 100, 'solver': 'liblinear'}
best score: 0.820304615803052
step 3
best params: {'C': 0.1, 'max_iter': 100, 'solver': 'liblinear'}
best score: 0.8556376610693569
Predicting
Results
```

Accuracy: 0.8059181230819847

C:\ProgramData\Anaconda3\lib\site-

packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\ProgramData\Anaconda3\lib\site-

packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

	precision	recall	f1-score	support
1 2	0.00 0.81	0.00	0.00 0.89	13074 1133919
3	0.52	0.09	0.16	227753
4	0.12	0.00	0.00	35566
accuracy			0.81	1410312
macro avg	0.36	0.27	0.26	1410312
weighted avg	0.74	0.81	0.74	1410312

C:\ProgramData\Anaconda3\lib\site-

packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning:
Precision and F-score are ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, msg_start, len(result))

```
[45]: print("step 1 \n")
    y_first = (y == 2).astype(int)
    classifier_first = DecisionTreeClassifier()
    classifier_first.fit(X_scaled, y_first)

print("step 2 \n")
    X_second = X_scaled[y != 2]
    y_second = (y[y != 2] == 3).astype(int)
    classifier_second = DecisionTreeClassifier()
    classifier_second.fit(X_second, y_second)

print("step 3 \n")
    X_third = X_scaled[(y != 2) & (y != 3)]
    y_third = (y[(y != 2) & (y != 3)] == 1).astype(int)
    classifier_third = DecisionTreeClassifier()
    classifier_third.fit(X_third, y_third)
```

```
def predict_hierarchical_model(X_test):
   X_test_scaled = scaler.transform(X_test)
   final_predictions = {}
   predictions_first = classifier_first.predict(X_test_scaled)
   class_2_indices = [i for i, x in enumerate(predictions_first) if x == 1]
   final predictions.update({i: 2 for i in class 2 indices})
   X_test_rest_indices = [i for i, x in enumerate(predictions_first) if x == 0]
   X_test_rest = X_test_scaled[X_test_rest_indices]
   predictions_second = classifier_second.predict(X_test_rest)
    class_3_indices = [X_test_rest_indices[i] for i, x in_
 \rightarrowenumerate(predictions_second) if x == 1]
   final predictions.update({i: 3 for i in class 3 indices})
   X_test_rest_indices = [X_test_rest_indices[i] for i, x in_
 →enumerate(predictions_second) if x == 0]
   X_test_rest = X_test_scaled[X_test_rest_indices]
   predictions_third = classifier_third.predict(X_test_rest)
    class_1_indices = [X_test_rest_indices[i] for i, x in_
 ⇔enumerate(predictions_third) if x == 1]
    class_4_indices = [X_test_rest_indices[i] for i, x in_
 →enumerate(predictions_third) if x == 0]
   final_predictions.update({i: 1 for i in class_1_indices})
   final_predictions.update({i: 4 for i in class_4_indices})
   final_predictions_sorted = [final_predictions[i] for i in_
 ⇔sorted(final_predictions)]
   return final_predictions_sorted
print("Predicting \n")
y_pred = predict_hierarchical_model(X_test)
print("Results \n")
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy: ", accuracy)
print(classification_report(y_test, y_pred))
```

step 1

step 2

step 3

Accuracy:	0.	9916351842712	2818		
		precision	recall	f1-score	support
	1	0.98	1.00	0.99	13074
	2	1.00	0.99	0.99	1133919
	3	0.99	1.00	1.00	227753
	4	0.82	0.94	0.87	35566
accura	.су			0.99	1410312
macro a	.vg	0.95	0.98	0.96	1410312
weighted a	.vg	0.99	0.99	0.99	1410312

NOTE: * Many other experiments on different classifiers were done, but unfortunately their cells output was omitted while doing other experiments, and some of them can take many hours to run so I will just right the results without showing the output.

- Another point to mention is that I didn't use grid search for decision tree or random forest
 classifiers as they already gave perfect scores. Also, I wanted to use deep learning techniques
 like NN but as I mentioned earlier, other classifiers did the job effeciently.
- Also to note that on a side notebook, I manually inspected that the classifiers are working correctly by picking random samples from the df_train and classify it, then check the prediction.

Results:

- In general, tree based classifiers like decision trees and random forest showed superity in performance over other classifiers as any ther calssifier only predicts one class when given any other class.
- The main reason for this outweight in the performance of the tree based classifiers is their feature interactions. Tree-based models can naturally capture interactions between different features specially that can be represented in the form of if else statements.
- There are also other reasons like:
 - Ability of tree based Classifiers to handle imbalanced datasets reasonably well. They build the model based on the structure of the data and can make decisions based on conditions that might only apply to a small subset of the data
 - Surpass of tree based classifiers to model complex non-linear decision boundaries.