Planche 1.

Exercice 1. Soient A et B deux parties d'un ensemble E. Montrer que

$$A = B \iff A \cap B = A \bigcup B$$

Exercice 2. Soit E un ensemble fini. On appelle <u>recouvrement</u> de E un ensemble de parties P_1, \ldots, P_n de E non vides telles que $E = \bigcup_{i=1}^n P_i$ et $P_i \neq P_j$ pour tout $i \neq j$. On appelle <u>partition</u> de E un ensemble de parties P_1, \ldots, P_n de E non vides telles que $E = \bigcup_{i=1}^n P_i$ et $P_i \cap P_j = \emptyset$ pour tout $i \neq j$.

- a) Montrer qu'une partition est un recouvrement. Trouver un recouvrement qui n'est pas une partition.
- **b)** Soit un recouvrement P_1, \ldots, P_n . On pose pour toute partie A de $\{1, \ldots, n\}$, la partie Q_A de E définie par

$$Q_A = \{x \in E : \forall i \in A, x \in P_i \text{ et } \forall i \in [1, n] \backslash A, x \notin P_i\}$$

En enlevant les parties vides montrer qu'il s'agit d'une partition de E.

c) On considère maintenant $E = \mathbb{Z}$. Trouver une partition de \mathbb{Z} en deux parts de taille infinie.

Planche 2.

Exercice 1. Que vaut $\bigcup_{\epsilon>0} [\epsilon, 1]$?

Exercice 2. Soient A et B deux parties d'un ensemble E. Discuter et résoudre l'équation $A \bigcup X = B$.

Planche 3.

Exercice 1. Soit A, B deux parties d'un ensemble E. Montrer que

$$A \subset B \iff A \bigcup B = B$$

Exercice 2. On considère un jeu (le Dobble) qui est fait de cartes \mathcal{C} comportant des symboles \mathcal{S} telles que $\mathcal{C} \subset \mathcal{P}(\mathcal{S})$. Les règles sont que pour toute paire de carte A,B, on a $|A \cap B| = 1$ et |A| = 8. On prend 10 cartes. Montrer qu'il y en a 3 qui ont le même symbole en commun (pour les 3 cartes).

Solutions - Planche 1.

Exercice 1.

- Supposons que A = B. Montrons que $A \cap B = A \cup B$. On procède par double inclusion. Soit $x \in A \cap B$. Alors $x \in A$. Donc $x \in A \cup B$. Donc $x \in A \cup B$.

Soit maintenant $x \in A$, or A = B, donc $x \in B$ et $x \in A \cap B$. Soit $x \in B$, comme A = B, alors $x \in A$ et $x \in A \cap B$. Donc $A \cup B \subset A \cap B$.

On a donc montré que $A \cap B = A \bigcup B$.

- Supposons que $A \cap B = A \cup B$. Montrons que A = B. Soit $x \in A$, alors $x \in A \cup B = A \cap B$. Donc $x \in B$. Donc $A \subset B$. Soit $x \in B$, alors $x \in A \cup B = A \cap B$. Donc $x \in A$. Donc $B \subset A$. D'où A = B et on a montré l'équivalence.

Exercice 2.

a) Soit un partition P_1, \ldots, P_n . Alors $E = \bigcup_{i=1}^n P_i$. Soit $i \neq j$. Montrons que $P_i \neq P_j$. Soit $x \in P_i$ qui existe car P_i est non vide. Donc $x \notin P_j$ car $P_i \cap P_j = \emptyset$. On en déduit que $P_i \neq P_j$. Donc il s'agit d'un recouvrement.

On considère $\{1, 2, 3\}$. Alors $\{1, 2\}, \{2, 3\}$ forme un recouvrement mais n'est pas une partition.

b) Montrons que $E = \bigcup_{A \in \mathcal{P}([1,n])}$. Soit $x \in E$. On pose $A = \{i \in [1,n] : x \in P_i\}$. Montrons que $x \in Q_A$. En effet pour tout $i \in A$, $x \in P_i$. De plus si $i \notin A$, alors $x \notin P_i$. Si ce n'étais pas le cas, alors $x \in P_i$ mais $i \notin A$ c'est exclu par la définition de A. Donc $x \in Q_A$. Donc $E \subset \bigcup_{A \in \mathcal{P}([1,n])}$. De plus l'inclusion inverse est claire. On en déduit l'égalité.

Montrons que $Q_A \cap Q_B = \emptyset$ si $A \neq B$. Dans ce cas il existe $i \in A$ qui n'est pas dans B (ou l'inverse mais c'est symétrique). Donc si l'intersection n'était pas vide, alors il existerait $x \in Q_A \cap Q_B$. Or $x \in P_i$ car $i \in A$. Or $x \in Q_B$ donc $i \in B$ aussi. Mais c'est exclu par définition de i. Donc $Q_A \cap Q_B = \emptyset$ et on a une partition.

c) $\mathbb{N}_{>0}$ et \mathbb{N}^- conviennent.

Solutions - Planche 2.

Exercice 1. Montrons que $\bigcup_{\epsilon>0} [\epsilon,1] =]0,1]$. On procède par double inclusion. Soit $x \in \bigcup_{\epsilon>0} [\epsilon,1]$. Alors il existe $\epsilon>0$ tel que $x \in]\epsilon,1]$. Donc $x \in]0,1]$. Donc on a la première inclusion.

Soit maintenant $x \in]0,1]$. Alors comme 0 < x/2 < x on peut poser $\epsilon = x/2$ de telle sorte qu'on a $x \in]\epsilon,1]$. Donc $[0,1] \subset \bigcup_{\epsilon>0} [\epsilon,1]$.

On a donc montré que

$$\bigcup_{\epsilon>0}]\epsilon, 1] =]0, 1]$$

Exercice 2. Faire un beau dessin et remarquer qu'il faut que $A \subset B$ pour avoir une solution. En effet si ce n'est pas le cas alors il existe $x \in A$ mais $x \notin B$. Si on avait une solution X alors $A \bigcup X = B$. Or $x \in A \bigcup X$ car $x \in A$. Mais $x \notin B$. C'est donc impossible.

Supposons maintenant que $A \subset B$. On pose X = B et on a une solution. En fait toute solution doit au moins contenir $B \setminus A$.

Solutions - Planche 3.

Exercice 1. Supposons que $A \subset B$. Montrons que $A \bigcup B = B$. Or $A \subset B$ et $B \subset B$. Donc $A \bigcup B \subset B$. De plus $B \subset A \bigcup B$. Donc $A \bigcup B = B$.

Supposons que $A \bigcup B = B$. Soit $x \in A$. Alors $x \in A \bigcup B = B$. Donc $x \in B$. Donc $A \subset B$. On a montré l'équivalence.

Exercice 2. On note A_0, A_1, \ldots, A_9 les 10 cartes que l'on prend. Supposons qu'il n'y a pas 3 cartes qui contiennent le même symbole en commun. On note s_1 le symbole en commun entre A_0 et A_1, s_2 celui entre A_0 et A_2, \ldots, s_9 celui entre A_0 et A_9 . Tous ces symboles sont différents sinon il existerait $i \neq j$ tels que $s_i = s_j$. Donc A_0 , A_i et A_j aurait le symbole s_i en commun mais on a exclu ce cas. Cela fait donc 9 symboles au total. Or tous ces symboles sont sur la carte A_0 . Or A_0 n'en contient que 8. C'est donc impossible!

Il existe donc 3 cartes parmi ces 10 telles qu'elles ont exactement un symbole en commun.