Probabilités et statistiques

Pierre-Damien Olive Mis à jour le 2019-06-16

Contents

4 CONTENTS

Introduction

Le site avec la dernière version du cours est disponible sur : https://olivepierre.github.io/probaStats/

6 CONTENTS

Part I Probabilités

Chapter 1

Évènements et probabilités

- 1.1 Évènements
- 1.2 Probabilités
- 1.3 Probabilités conditionnelles
- 1.4 Indépendance

Chapter 2

Variables aléatoires

- 2.1 Variables aléatoires
- 2.2 Variables discrètes et continues
- 2.3 Vecteurs aléatoires

Chapter 3

Variables aléatoires discrètes

3.1 Fonctions de masse

Définition 3.1. La fonction de masse d'une variable aléatoire discrète X est la fonction $f: \mathbb{R} \mapsto [0,1]$ définie par:

$$f(x) = \mathbb{P}(X = x).$$

Fonctions de répartitions et fonctions de masse sont reliées par les relations:

$$F(x) = \sum_{x_i \le x} f(x_i); f(x) = F(x) - F(x^-).$$

Lemme 3.1. Une fonction $f: \mathbb{R} \mapsto [0,1]$ est une fonction de masse si et seulement si l'ensemble $\{x: f(x) > 0\}$ est dénombrable et $\sum_i f(x_i) = 1$, où les x_1, \ldots, x_n, \ldots sont les valeurs de x tel que f(x) > 0.

TODO: exemples du programme

3.2 Indépendance

Définition 3.2. Deux variables aléatoires discrètes X et Y sont **indépendantes** si les évènements $\{X=x\}$ et $\{Y=y\}$ sont indépendants pour tout x et y:

$$\mathbb{P}(X=x,Y=y) = \mathbb{P}(X=x)\mathbb{P}(Y=y).$$

On peut étendre cette définition à un ensemble de variables aléatoires