

AIC8800D80X2 射频测试说明--UART 版

公司	爱科微半导体 (上海) 有限公司
	AIC Semiconductor (Shanghai) CO., Ltd.
版本信息	V1.0
日期	2024年5月9日
Release note	
2024年7月5日	增加信道补偿校准 pwrofst
2024年7月26日	增加信道补偿校准 SRRC 指令
Semileondiactor	

AIC8800	D80X2 射频测试说明UART 版	1
1.	搭建测试环境	3
	1.1 硬件	3
	1.2 软件	3
2.	烧录测试文件	5
	2.1 SecureCRT 配置	5
	2.2 连接 EVB 测试板	7
	2.3 烧录文件	8
3.	WiFi 测试指令	12
	3.1 TX 测试指令	\ \
	3.2 RX 测试指令	14
4.	WiFi 性能测试	15
	4.1 TX 测试	
	4.2 RX 测试	22
5.	WiFi 晶体校准	25
6.	写入 MAC 地址	26
7.	读芯片温度与修改发包间隔	27
8.	WiFi TX 功率校准	28
	8.1 信道功率补偿	29
9.	8.1 信道功率补偿	30
	9.1 TX 测试指令	31
	9.2 RX 测试指令	
10.	- 1=12014	
	10.1 TX 测试	
	10.2 RX 测试	41
11.	7 - 74 - 74 - 74	
	11.1 WiFi 发射指令	44
	11.2 BT 发射指令	49
	11.3 BT 接收指令	51
	• 0	
~ O		
Se		
> '		

1. 搭建测试环境

1.1 硬件

PC AIC8800D80X2 EVB 测试板 CMW500 综测仪 RF 测试 cable USB 转 UART 线(1.8V/3.3V) Type_C USB 线/直流电源

1.2 软件

SecureCRT 测试 bin 文件

Figure 1-1 测试环境

Figure 1-2 AIC8800D80X2/AIC8800M80X2 EVB 图示

2. 烧录测试文件

2.1 SecureCRT 配置

PC 识别 COM 口 Port

Buad rate 921600

Data bits 8 **Parity** None Stop bits 1

Figure 2-1 Serial 配置

X/Ymodem send packet size 选择 1024bytes 可提高烧写测试文件速度

)Figure 2-2 X/Ymodem 配置

2.2 连接 EVB 测试板

PC 通过串口线连接到 EVB UARTO

EVB	USB-UART	
TX	RX	77,7
RX	TX	5
GND	GND	

EVB 射频测试口通过 RF Cable 连接到 CMW500

连接 USB 线给 EVB 供电(或用直流电源给 VBAT 供电,建议电压 3.3V,最大不超过±10%)

Figure 2-3 EVB 上电打印

Note: 上电后拨码开关的 pwrkey 拨到 ON 的一端芯片开机

2.3 烧录文件

SecureCRT 命令窗口输入 x 160000 回车执行

Figure 2-4 烧写指令

Send Xmodem 测试文件到 EVB 板 b.

Figure 2-5 Send Xmodem

c. 选择要烧录测试文件

Figure 2-6 选择测试文件

发送完成后 SecureCRT 命令窗口输入 g 160000 回车执行进入 WiFi 测试程序。每次掉电 后需要重新烧录测试文件。另外 BT 测试程序烧录地址: x 1a0000—load bin—g 1a0000

Figure 2-7 执行测试程序

3. WiFi 测试指令

3.1 TX 测试指令

setch channelnum

\\设置信道

eg. setch 13

\\设置信道 13

Note:对于 6e 频点,直接 setch+频点即可。如: setch 6500 \\ 设置 6500MHz

setbw chbw sigbw

\\设置带宽

	chbw[信道带宽]	sigbw[信号带宽]
20MHz	0	0
40MHz	1	1
80MHz	2	2

eg. setbw 22

\\设置 80M 带宽

setrate format rate preamble/gi nss

\\设置模式、速率、preamble/gi 以及天线个数

format

		0			2	2 4			5			
format		NO	N-HT		HT-MF VHT			VHT				
rate				X								
	0	1	2)3	4	5	6	7	8	9	10	11
NON-HT	1M	2M	5.5M	11M	6M	9M	12M	18M	24M	36M	48M	54M
HT-MF		~				mo	s index					
VHT						mo	s index					
HE-SU	, ()				mo	s index					
preamble/g	şi 🗡											
	· ·		0			1				2		
11b			short							long		
HT-MF			long			sh	ort					
VHT			long			sh	ort					

nss: 0 单天线收发 nss: 1 双天线收发

eg. setrate 0 3 2 \\设置 11b 11M long

Note: 无需设置 preamble/gi 参数时,可不写

eg. setrate 5 11 0 1

\\设置 11ax MCS11 1×ltf_gi0.8,两天线

Note: 无需设置 preamble/gi 参数时,可不写

setlen val

\\设置 package length

eg. setlen 4096

\\设置 package length 为 4096

Length推荐值:

	20M	40M	80M
B/NON-HT	1024		
HT/VHT/HE	4096	8192	16384

Note: Note:推荐值为各带宽下最高速的最小长度,低速 Length 值 1024 即可。

setsg val

\\设置 HT/VHT Guard Interval

	0	1
HT-MF	long	short
VHT	long	short

eg. Setsg 0

\\设置 HT/VHT GI 为 short

sethegi val

\\设置 HE GI

GI 1×ltf_gi0.8 2×ltf_gi0.8 2×ltf_gi1.6 4×ltf_gi0.8 4×ltf_gi3.2		0	1	2	3	4
	GI	1×ltf_gi0.8	2×ltf_gi0.8	2×ltf_gi1.6	4×ltf_gi0.8	4×ltf_gi3.2

eg. sethegi 2

\\设置 HE GI 为 2×ltf_gi1.6

settx val

\\发射模式使能 0: 关闭 1: 打开

TX OFF

TX Mode eg. settx 1

\\打开发射模式

setant val

val: 0 ANTO、ANT1 同时收发 val: 1 打开 ANTO,关闭 ANT1 val: 2 打开 ANT1,打开 ANT0

(TBD) tone_on freq(MHz)

\\开启单 tone, freq 为相对载波偏移, 范围-20~19 整数

TX ON

eg. tone_on 1

\\设置相对载波 1MHz 偏移单 tone 发射

tone_off

\\关闭单 tone 发射

srrc val

val:0 关闭

val:1 打开

3.2 RX 测试指令

a. 单次发包测试指令

startrxstat

\\开启接收测试,同时清空接收统计数据

getrxstat

\\获取接收统计信息

fcsok=xxx 为收到并解对包数,total=xxx 为收到总包数,此数据在不清空统计数据情况下是直累加的。可设置仪表端单次发 1000 个包,查看 fcsok 包数,计算 per per=(1-fcsok/1000)*100%

stoprxstat

\\停止接收测试

b. 连续发包测试指令

setrx

\\开启接收测试打印

物理层解对包数 / 接收到总包数, per:xx.xx%

setrxstop

Semice

\\关闭接收测试打印

Note: 1.设置信道、带宽指令请见 WiFi Tx 测试指令

2.接收测试只需要设置对应信道和带宽即可

4. WiFi 性能测试

4.1 TX 测试

- 以 Channel 1 HT 20M MCS7 为例来展示测试过程
- ①CMW500 端设置, 按下 MEASURE

②勾选 WLAN 下 Multi Evaluation 后点击 WLAN Multi Evaluation

③设置 RF Settings,线损根据实际使用 RF Cable 来补偿,信道设置 channel 1(2412MHz),期望功率设置 30dBm,通常该值设置要比实际发射功率大 15db

④Trigger 选择 IF Power

⑤设置 Input Signal, Standard 选择 802.11n, Band Width 选择 20MHz

⑥运行 Multi Evaluation

⑦EVB 端设置:

setch 1

setrate 27

setbw 00

settx 1

Confidential and Proprietary - AICSEMI INC.

⑧测试界面,可进入相应测试界面来观察详细测试数据。测试完毕 settx 0 停止发射信号

4.2 RX 测试

- 以 Channel 1 HT 20M MCS7 为例来展示测试过程。
- ①CMW500 端设置,按下 SIGNAL GEN

②勾选 General Purpose RF Generator 1,然后点 GPRF 1 Generator

③信号源设置如下,设置线损,频点,信号幅度,选择 ARB 模式,单次 1000 个包,选择 HT 20M MCS7 波形文件。

Senil Condition

- ④EVB 端设置:
 - setch 1
 - setbw 00
 - startrxstat
- ⑤打开信号源单次发 1000 个包
- ⑥getrxstat 获取接收统计信息,从下图可以看到 fcsok=1000, per=0%
- ⑦stoprxstat 停止接收测试

Confidential and Proprietary - AICSEMI INC.

5. WiFi 晶体校准

AIC8800D80X2 XTAL 电路内部提供了可变负载电容,可选用晶体的负载电容为 9pF~11pF。本校准流程做如下

setxtalcap val \\晶体频偏粗调,默认值 0x10,范围 0x00~0x1F

eg. setxtalcap -4 \\负向频偏,降低内部负载电容

setxtalcapfine val \\晶体频偏细调,默认值 0x1F,范围 0x00~0x3F

eg. setxtalcapfine 16 \\正向频偏,提高内部负载电容

粗调校准流程:

- ①判断 frequency offset (Δf) 极性, Δf >0,setxtalcap 4,反之,setxtalcap -4;
- ②判断 frequency offset (Δf) 极性, Δf >0,setxtalcap 2,反之,setxtalcap -2;
- ③判断 frequency offset(Δ f)极性, Δ f>0,setxtalcap 1,反之,setxtalcap -1;细调校准流程:
- ①判断 frequency offset (Δf) 极性, Δf >0,setxtalcapfine 16,反之,setxtalcapfine -16;
- ②判断 frequency offset (Δf) 极性, Δf >0,setxtalcapfine 8,反之,setxtalcapfine -8;
- ③判断 frequency offset (Δf) 极性, Δf >0,setxtalcapfine 4,反之,setxtalcapfine -4;
- ④判断 frequency offset (Δf) 极性, Δf >0,setxtalcapfine 2,反之,setxtalcapfine -2;
- ⑤判断 frequency offset (Δf) 极性, Δf >0,setxtalcapfine 1,反之,setxtalcapfine -1;

effreqcal func val

\\读写晶体频偏校准值

effreqcal	func	val		description
	0			读 efuse/flash 中晶体频偏校准值,func 写 0 或不写均实现读功
				能
	1	粗	调	写晶体频偏校准粗调值到 efuse(2 次)或 flash(重复)
		値		
	2	细	调	写晶体频偏校准细调值到 efuse(2 次)或 flash(重复)
		值		

eg. effreqcal 1 0x1A \\\写晶体频偏校准粗调值 0x1A 到 efuse/flash

Note: 校准频偏指令对应参数均为十进制相对值,即相对默认值偏移值,输入指令后会返回配置后频偏实际参数,且以十六进制显示。写入 efuse 或者 flash 的频偏校准值为十六进制绝对值。

6. 写入 MAC 地址

setmac mac_str \\写 WiFi MAC 地址到 efuse(2 次)或 flash(重复)

eg. setmac 0a1c11223344 \\写 WiFi MAC 地址

getmac \\读 WiFi MAC 地址

setbtmac mac_str \\写 BT MAC 地址到 efuse(2 次)或 flash(重复)

eg. setbtmac 0a1c11223345 \\写 BT MAC 地址

getbtmac \\读 BT MAC 地址

Note: 如果 wifi 还需要同时支持 p2p, softap, 两颗芯片的 mac 地址需要至少相差 4。

7. 读芯片温度与修改发包间隔

t //读取当前芯片温度

setintv val

最小值: 50, 单位: us

Eg: setintv 1000 //发包间隔为 1000us

8. WiFi TX 功率设置

pwrlvl band mod idx val

\\设置不同模式速率的功率

val: 十进制

	band		mod	
		11b+11a/g	0	
2.4G	1	11n/11ac	1	0
		11ax	2	
		11a/g	0	
5G	2	11n/11ac	1	
		11ax	2	

2.4G Rate Group

Fmt\ldx	0	1	2	3	4	5	6	7	8	9	10	11
11b+11a/g	1M	2M	5.5M	11M	6M	9М	12M	18M	24M	36M	48M	54M
11n/ac	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9		
11ax	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11

5G Rate Group

							/					
Fmt\ldx	0	1	2	3	4	5	6	7	8	9	10	11
11a/g	NA	NA	NA	NA	6M	9М	12M	18M	24M	36M	48M	54M
11n/ac	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9		
11ax	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11

Note: 5G 11a/g 比较特殊,如果多个值同时写,前面 4 个写-128,表示无效值

pwrlvl 共有两种设置方法:

> 设置其中一个 Rate 的方法:选择 band,需要设置的 mod,Rate 对应的 idx,需要的 val。

eg: pwrlvl 1 0 3 18 \\设置 2.4G 11b+11a/g 模式 11M 的 TX power 为 18dBm

▶ 设置一组中多个 Rate 的方法:选择 band,需要设置的 mod,对应 mod 下所有的 rate 都需要设置。

eg: pwrlvl 1 1 15 15 15 15 15 14 14 14 13 13 \\设置 2.4G 11n/ac 模式下MCSO-MCS9 的发射功率分为 15dBm 15 dBm 15 dBm 15 dBm 15 dBm 14 dBm 14 dBm 14 dBm 14 dBm 13 dBm

pwrlvl 0

\\读取功率增益档位,写0或不写均实现读功能

8.1 信道功率补偿

pwrofst2x	hand	rata	ch	ofct	
DWIOISLZX	panu	rate	CH	OISL	

\\设置信道补偿

pwroist2x ban	id rate cri	10131 \	(以且信坦州	` 云		
	band		Rate		ch	ofst
2.4G_ANT0	1	11b	0	CH1~CH4	0	-15~15
				CH5~CH9	1	-15~15
				CH10~CH13	2	-15~15
		ofdm_highrate	1	CH1~CH4	0	-15~15
				CH5~CH9	1	-15715
				CH10~CH13	2	-15~15
2.4G_ANT1	2	11b	0	CH1~CH4	0	-15~15
				CH5~CH9	1	-15~15
				CH10~CH13	2	-15~15
		ofdm_highrate	1	CH1~CH4	0	-15~15
				CH5~CH9	1	-15~15
				CH10~CH13	2	-15~15
5.8G_ANT0	3	ofdm_highrate	0	CH36~CH50	0	-15~15
				CH51~CH64	1	-15~15
				CH98~CH114	2	-15~15
				CH115~CH130	3	-15~15
				CH131~CH146	4	-15~15
				CH147~CH166	5	-15~15
5.8G_ANT1	4	ofdm_highrate	0	CH36~CH50	0	-15~15
		\times		CH51~CH64	1	-15~15
				CH98~CH114	2	-15~15
				CH115~CH130	3	-15~15
		0,		CH131~CH146	4	-15~15
				CH147~CH166	5	-15~15

eg. pwrofst2x1.112 \\设置 2.4G ANTO,ofdm_highrate,CH5~CH9 信道补偿为 2 ofst 为带符号偏移值,步进为 1,对应功率变化 0.5dbm,最大 15,最小-15,可通过调整响应信道补偿值来优化信道功率差异。

Note: 2.4G 分别在 11b_1M, 11AX_mcs11 校准 11b, ofdm_highrate。在 ch1,ch7,ch13 信道校准。

5G 分别在 11ax_mcs11 校准 ofdm_highrate。在 ch42,ch58,ch106,ch122,ch138,ch155 信道校准。

pwrofst2x 0

\\读取信道补偿值,写0或不写均实现读功能

efpwrofst2x band rate ch ofst \\写信道补偿值到 efuse(2 次)或 flash(重复) eg. efpwrofst2x 1 1 1 2 \\2.4G ANTO,ofdm_highrate,CH5~CH9 信道补偿值 2 写到 efuse/flash

efpwrofst2x 0

\\读 efuse/flash 中信道补偿值,写 0 或不写均实现读功能

Eg: pwrofst2x 1 1 1 6 //设置 2.4G ANTO OFDM_Highrate CH5~9 pwrofst 值为 6

pwrofst2x 2 1 1 6 //设置 2.4G ANT1 OFDM_Highrate CH5~9 pwrofst 值为 6

pwrofst2x 3 0 1 6 //设置 5G ANTO OFDM_Highrate CH51~64 pwrofst 值为 6

pwrofst2x 4 0 1 6 //设置 5G ANT1 OFDM_Highrate CH51~64 pwrofst 值为 6

pwrofst2x 1 0 1 -8 //设置 2.4G ANTO 11B CH5~9 pwrofst 值为-8

pwrofst2x 2 0 1 -8 //设置 2.4G ANT1 11B CH5~9 pwrofst 值为-8

pwrofst2x 3 0 1 -8 //设置 5G ANTO OFDM_Highrate CH51~64 pwrofst 值为-8

pwrofst2x 4 0 1 -8 //设置 5G ANT1 OFDM_Highrate CH51~64 pwrofst 值为-8

efpwrofst2x 1 0 1 -8 //写入 2.4G ANTO 11B CH5~9 pwrofst 值为-8

efpwrofst2x 2 0 1 -8 //写入 2.4G ANT1 11B CH5~9 pwrofst 值为-8

efpwrofst2x 3 0 1 -8 //写入 5G ANTO OFDM_Highrate CH51~64 pwrofst 值为-8

efpwrofst2x 4 0 1 -8 //写入 5G ANT1 OFDM_Highrate CH51~64 pwrofst 值为-8

BT 测试指令

8.2 TX 测试指令

set_mode val \\设置 mode,BT: 0 BLE: 1

eg. set_mode 0 \\设置 BT mode

set_chidx channelnum \\设置信道,BT: 0~78 BLE: 0~39

eg. set_chidx 39 \\设置信道 39

set_pkt idx \\设置 package type

		X /
mode	Package type	idx
BR	DH1	0x11
	DH3	0x13
	DH5	0x15
EDR	2DH1	0x21
	2DH3	0x23
	2DH5	0x25
	3DH1	0x31
	3DH3	0x33
	3DH5	0x35
BLE	1M	0x41
	2M	0x42
	LongRange(S8) 125K	0x43
0	LongRange(S2) 500K	0x44

eg. set pkt 0x15

\\设置 package type 为 DH5

set_pattern	\\设置 pattern 类型	
pattern	idx	
PRBS9	0x00	
11110000	0x01	
10101010	0x02	
PRBS15	0x03	
11111111	0x04	
00000000	0x05	0
00001111	0x06	
01010101	0x07	00

回长
A O.Y
Length (Max)
27
183
339
54
367
679
83
552
1021
255
255
255
255

\\设置包长 27bytes

set_addr 0A 1C 6B C6 96 7E

\\设置 BD Address

settx val \\发射模式使能 0: 关闭 1: 打开

txpwr_inc \\发射功率档位加 1

txpwr_dec \\发射功率档位减 1

set_hop val \\跳频使能 0: 关闭 1: 打开

toneon chidx txpwr mode \\开启单 tone 发射

chidx txpwr mode

0~78 0~7 0:only 1:combo only 指射频走 BT RF 口,combo 指射频走 WiFi 2.4G 口

eg. toneon 39 6 0 \\开启单 tone 发射, ch39, 功率等级 6, BT Only

toneoff \\关闭单 tone 发射

Note: 1. 测试前先选择 mode

2. 切换测试参数时需先停止发射再做参数修改

3. 功率调节指令只对 BT 生效

8.3 RX 测试指令

\\开始接收测试 setrxstart

\\停止接收测试并清空统计数据 setrxstop

\\获取接收测试数据,返回值为收到包数 getrxresult

0: 关闭 1: 打开, 只 BT 有效 \\接收 log 打印使能 rx log val

Note: 信号源发包结束需要先停止接收测试,再去获取统计结果。BT接收信息是软件做的 et:

Genileonductor

Semileonductor 统计,BLE 则是硬件做的统计,如果接收不停止,硬件无法给出统计信息,这也是 BLE

9. BT 性能测试

9.1 TX 测试

- 以 channel 0 BR DH5 PRBS9 包长 339 为例来进行展示
- ①CMW500 端设置,按下 MEASURE

②勾选 Bluetooth 下 Measurements 后点击 Bluetooth Multi Eval

③设置 RF Settings,线损根据实际使用 RF Cable 来补偿,信道设置 channel 1(2402MHz),期望功率设置 25dBm,通常该值设置要比实际发射功率大 15db。

④Trigger 选择 Power

⑤设置 Input Signal,Burst Type 选择 Basic Rate,BD Address 设置 OA 1C 6B C6 96 7E,Packet Type 选择 DH5,Pattern Type 选择 other,Payload Length 设置 339Byte(s)

Type... Type...

⑥运行 Multi Evaluation


```
⑦EVB 端设置:
  set_mode 0
  set_chidx 0
  set pkt 15
  set_pattern 00
  set_len 339
  set_addr 0A 1C 6B C6 96 7E
  settx 1

✓ Serial-COM23

   set_mode 0
                                    设置模式
   mode:BT
    aic>
                                     设置信道
   aic> set_chidx 0
BT chidx:0
   aic>
                                    - 设置包类型
   aic> set_pkt 15 <
   BT pkt 0x15
   aic>
aic> set_pattern 00<del><</del>
                                           — 设置pattern
   BT pattern 0
   aic>
   aic> set_len 339 ←
BT len 339
   aic>
aic> set_addr OA 1C 6B C6 96 7E
BT addr OA 1C 6B C6 96 7E
                                            ----- 设置BD Address
                                       - 开启发射
   aic> settx 1◀
   tx 1
aic>
   aic>
```

⑧测试界面,可进入相应测试界面来观察详细测试数据。测试完毕 settx 0 停止发射信号

9.2 RX 测试

- 以 channel O BR DH5 PRBS9 包长 339 为例来展示测试过程。
- ①CMW500 端设置,按下 SIGNAL GEN

②勾选 General Purpose RF Generator 1,然后点 GPRF 1 Generator

③信号源设置如下,设置线损,频点,信号幅度,选择 ARB 模式,单次 1000 个包,选择 BR DH5 PRBS9 包长 339 对应波形文件。

Semile Se


```
④EVB 端设置:
set_mode 0
set_chidx 0
set_pkt 0x15
set_pattern 0x00
set_len 339
set_addr 0a 1c 6b c6 96 7e
setrxstart
```

- ⑤打开信号源单次发 1000 个包
- ⑥ setrxstop 停止接收测试
- ⑦ getrxresult 获取接收统计信息,从下图可以看到 BT rx result 1000,per=0%

WiFi/BT 测试指令示例 **10**.

WiFi 发射指令 10.1

```
ctor confidential appays
A. ANTO Channel 1 11b 1M
   setch 1
   setbw 00
   setrate 0 0
   settx 1
   setant 1
```

B. ANTO Channel 1 11b 11M

setch 1 setbw 00 setrate 0 3 settx 1

setant 1

C. ANTO Channel 1 11g 6M

setch 1 setbw 0 0 setrate 0 4 settx 1 setant 1

D. ANTO Channel 1 11g 54M

setch 1 setbw 00 setrate 0 11 setant 1

ANTO Channel 1 11n 20M mcs0

setch 1 setbw 00 setrate 20 settx 1 setant 1


```
ANTO Channel 1 11n 20M mcs7
    setch 1
    setbw 00
                                  Confidential
    setrate 2 7
    settx 1
    setant 1
G. ANTO Channel 1 11n 40M mcs0
    setch 1
    setbw 11
    setrate 20
    settx 1
    setant 1
H. ANTO Channel 1 11n 40M mcs7
    setch 1
    setbw 11
    setrate 2 7
    setlen 4096
    settx 1
    setant 1
I. ANTO Channel 1 11ac 20M mcs0
    setch 1
    setbw 00
    setrate 40
    settx 1
    setant 1
    ANTO Channel 1 11ac 20M mcs8
    setch 1
    setbw 0 0
    setrate 48
    setlen 4096
    settx 1
    setant 1
    ANTO Channel 1 11ac 40M mcs0
    setch 1
    setbw 11
    setrate 40
```

settx 1

Confidential

setant 1

L. ANTO Channel 1 11ac 40M mcs9

setch 1

setbw 11

setrate 49

setlen 8192

settx 1

setant 1

M. ANTO Channel 1 11ax 20M mcs0

setch 1

setbw 00

setrate 5 0

settx 1

setant 1

N. ANTO Channel 1 11ax 20M mcs11

setch 1

setbw 00

setrate 5 11

setlen 4096

settx 1

setant 1

O. ANTO Channel 1 11ax 40M mcs0

setch 1

setbw 11

setrate 5 0

settx 1

setant 1

P. ANTO Channel 1 11ax 40M mcs11

setch 1

setbw 11

setrate 5 11

setlen 8192

settx 1

setant 1

Q. ANTO Channel 42 11ax 80M mcs0

setch 42

setbw 22

setrate 5 0

settx 1

setant 1

MC Semiconductor Confidential M230325

WiFi 接收指令 10.2

a. ANTO Channel 1 20M RX

setch 1

setbw 00

setant 1

startrxstat

oridential appropriate and a serial and a se stoprxstat (wait until the packet is send)

getrxstat

b. ANTO Channel 1 40M RX

setch 1

setbw 11

setant 1

startrxstat

stoprxstat (wait until the packet is send)

getrxstat

c. ANTO Channel 1 80M RX

setch 42

setbw 22

setant 1

startrxstat

(wait until the packet is send) stoprxstat

getrxstat

Note: 在 ANT1 测试时把 setant 1 换成 setant 2 即可

BT 发射指令 10.3

A. 2402MHz DH1 PRBS9

set_mode 0 set_chidx 0

set_pkt 0x11

set_pattern 0x00

set_len 27

ctor confidential apparation set_addr 0A 1C 6B C6 96 7E

settx 1

B. 2402MHz 2DH3 PRBS9

set_mode 0

set_chidx 0

set_pkt 0x23

set_pattern 0x00

set_len 367

set_addr 0A 1C 6B C6 96 7E

settx 1

C. 2402MHz 3DH5 PRBS9

set_mode 0

set_chidx 0

set_pkt 0x35

set_pattern 0x00

set_len 1021

set_addr 0A 1C 6B C6 96 7E

settx 1

D. 2402MHz LE 1M PRBS9

set_mode 1

set_chidx 0

set_pkt 0x41

set pattern 0x00

set_len 255

settx 1

2402MHz LE 2M PRBS9

set_mode 1

set_chidx 0

set pkt 0x42

set_pattern 0x00

set_len 255

settx 1

F. 2402MHz LE LongRange(S8) 125K PRBS9

set_mode 1

set_chidx 0

set_pkt 0x43

set_pattern 0x00

set len 255

settx 1

Confidential and a service of the se G. 2402MHz LE LongRange(S2) 500K PRBS9

set_mode 1

set_chidx 0

set_pkt 0x44

set_pattern 0x00

set_len 255

settx 1

Note: 每次测试完毕需要 settx 0 停掉当前测试

10.4 BT 接收指令

A. 2402MHz DH1 PRBS9

set_mode 0

set_chidx 0

set_pkt 0x11

set_pattern 0x00

set_len 27

set_addr 0A 1C 6B C6 96 7E

setrxstart (wait until the packet is send)

setrxstop getrxresult

B. 2402MHz 2DH3 PRBS9

set_mode 0

set_chidx 0

set_pkt 0x23

set_pattern 0x00

set_len 367

set addr 0A 1C 6B C6 96 7E

setrxstart (wait until the packet is send)

setrxstop getrxresult

C. 2402MHz 3DH5 PRBS9

set mode 0

set_chidx 0

set_pkt 0x35

set_pattern 0x00

set_len 1021

set_addr 0A 1C 6B C6 96 7E

setrxstart (wait until the packet is send)

setrxstop getrxresult

D. 2402MHz LE 1M PRBS9

set_mode 1

set_chidx 0

set_pkt 0x41

set_pattern 0x00

set_len 255

setrxstart (wait until the packet is send)

setrxstop getrxresult

E. 2402MHz LE 2M PRBS9

set_mode 1

set_chidx 0

set_pkt 0x42

set_pattern 0x00

set_len 255

setrxstart (wait until the packet is send)

setrxstop getrxresult

F. 2402MHz LE LongRange(S8) 125K PRBS9

set_mode 1

set_chidx 0

set_pkt 0x43

set_pattern 0x00

set_len 255

setrxstart (wait until the packet is send)

setrxstop

getrxresult

G. 2402MHz LE LongRange(S2) 500K PRBS9

set mode 1

set_chidx 0

set_pkt 0x44

set_pattern 0x00

set_len 255

setrxstart (wait until the packet is send)

setrxstop getrxresult