Exercise: Chapter 1 – Capstone Project

✓ A. Multiple Choice Questions (MCQs)

1.	0	a) Featureb) Model	e Definition Evaluation		ycle?			
	0	d)	m Definitio	П			Deployment	
		→ Corre	ect: c)					
2.	Which of the following is not one of the five main types of AI questions?							
	0	a) Which	group?					
	0		nappened ye	esterday?				
	0	c) Is this						
	0	,	How	much	or	how	many?	
		→ Corre	,					
3. The Design Thinking process includes:								
	o a) Predict, Analyze, Act							
	 b) Empathize, Define, Ideate, Prototype, Test 							
	0	<u>.</u> .	_	y, Evaluate	-	•••	** 11.1	
	0	d)	Crea	ate,	Bu	ild,	Validate	
4	TT 71	→ Corre	,	#GE : 1.0	0			
4. What does the acronym RMSE stand for?								
	0	· ·	Aatrix Scale					
	0	*	Mean Square					
	0		-	e Evaluation		C 1:	Б	
	0	d)	Rounded	Mea	ın	Sampling	Error	
5	Whiat	\rightarrow Corre	,	urata than 1	roin tos	t split for sm	all datagata?	
٦.			sion Matrix	urate than t	i aiii-tes	t spiit 101 siii	an dalasets!	
	0	*	orcement Le	arnina				
	0		validation	arming				
	0	d)	vandation	Neu	ıra1		Nets	
	O	→ Corre	ect· c)	1100	ıraı		NCIS	
		→ Curre						
<u></u> B	. Fill i	n the Blai	ıks					
1.		nal projec	et in AI curi	riculum that	integrate	es all learning	g is known as	
	the				_		Project.	
_		pstone		.4			_	
2.		egression ntinuous	problems,	, the outp	out is	a	value.	

3.	The process of breaking a	large problem into	smaller parts is called
			decomposition.
	→ problem		
4.	A model's accuracy in regi	ression can be evalu	nated using,
	MSE,	and	MAE.
	\rightarrow RMSE		
5.	The five stages of Design	Thinking are Em	pathize, Define, Ideate,
	Prototype,	and	·
	\rightarrow Test		

Questions and Answers with Examples

? Q1. What is a Capstone Project in Artificial Intelligence? Give one example.

Answer:

A Capstone Project is a final project that integrates all the knowledge and skills a student has acquired in the AI curriculum. It involves solving a real-world problem using the AI Project Cycle.

Example:

Predicting student results based on study hours, attendance, and internal assessments using a regression model.

? Q2. What are the six steps in the AI Project Cycle? Explain with an example.

Answer:

The six steps in the AI Project Cycle are:

- 1. **Problem Definition** Understanding the problem.
- 2. **Data Gathering** Collecting relevant data.
- 3. **Feature Definition** Selecting important variables.
- 4. **Model Construction** Building a predictive or classification model.
- 5. **Evaluation & Refinement** Testing and improving the model.
- 6. **Deployment** Implementing the model in the real world.

Example:

If we want to **predict movie ticket prices**, we:

- Understand factors affecting price (problem),
- Collect historical data on movies.

- Define features like genre, duration, release month,
- Train a model using regression,
- Evaluate accuracy using RMSE,
- Deploy it for users to forecast future ticket costs.

? Q3. How can we identify whether a problem is suitable for AI?

Answer:

We can use AI only when the problem has a **recognizable pattern** in the data. If no pattern exists, AI cannot be applied effectively.

Example:

Predicting the **next word in a sentence** (pattern exists) is suitable for AI. Predicting **random lottery numbers** (no pattern) is not.

? Q4. What is Design Thinking, and how does it help in AI projects?

Answer:

Design Thinking is a method to solve complex problems through empathy and user-centered design. It has five stages: **Empathize**, **Define**, **Ideate**, **Prototype**, **Test**.

Example:

If you're building an AI-based fitness app:

- Empathize with users who want to lose weight,
- Define their needs (personalized plans),
- Ideate features (diet suggestions, activity tracker),
- Build a prototype with dummy data,
- Test it with feedback from real users.

? Q5. What is the difference between Regression and Classification? Give examples.

Answer:

- Regression predicts a numerical value.
- Classification predicts a category or label.

Examples:

- Regression: Predicting **house prices** based on size and location.
- Classification: Identifying whether an **email is spam or not**.

? Q6. What is Train-Test Split and how is it used in AI modeling?

Answer:

Train-Test Split is a technique to evaluate AI models. The dataset is split into a **training set** (to build the model) and a **test set** (to evaluate it).

Example in Python:

```
python
CopyEdit
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```

? Q7. What is RMSE and how is it useful in evaluating models? Give an example.

Answer:

RMSE (Root Mean Squared Error) measures how much predicted values differ from actual values. Lower RMSE means better accuracy.

Example:

If a model predicts student marks:

- Actual marks: [90, 85, 70]
- Predicted: [88, 80, 75] RMSE will show how far off the predictions are, on average.

? Q8. What is Cross-Validation and why is it preferred over Train-Test split sometimes?

Answer:

Cross-validation divides data into multiple folds and rotates them between training and testing. It gives a **more reliable model evaluation**, especially for small datasets.

Example:

In 5-fold cross-validation, the model is trained and tested **5 times** using different parts of the data each time, ensuring no part is left untested.

? Q9. What kind of real-life problems can be solved using AI Capstone Projects? Give at least two examples.

Answer:

AI Capstone Projects solve real-life issues by predicting or classifying data.

Examples:

- 1. **Healthcare** Predicting whether a patient will develop diabetes based on health indicators.
- 2. **Agriculture** Using AI to detect plant diseases from leaf images.

Long Answer Questions (With Examples)

? Q1. Explain the AI Project Cycle in detail with a real-life example.

Answer:

The **AI Project Cycle** is a structured way to solve real-world problems using Artificial Intelligence. It consists of six main steps:

1. Problem Definition:

Understand the problem and determine whether it has a pattern. If there's no pattern, AI cannot help.

Example: Predicting crop yield based on rainfall, soil type, and temperature.

2. Data Gathering:

Collect data relevant to the problem. This may include past records, surveys, sensors, etc.

Example: Gather past 10 years' data on crop yield, weather, and farming practices.

3. Feature Definition:

Identify important variables (features) that influence the output.

Example: For crop yield prediction, features could be rainfall (mm), fertilizer quantity, and seed quality.

4. Model Construction:

Use machine learning algorithms to build a model that can learn patterns from the data.

Example: Train a regression model to predict yield using historical data.

5. Evaluation & Refinement:

Test the model's performance using metrics like RMSE or accuracy, and improve it by changing features or model types.

Example: If RMSE is high, refine the model by adding new features like pest control usage.

6. **Deployment:**

Use the trained model in real-world applications.

Example: Deploy the model in a mobile app for farmers to predict yield based on inputs.

? Q2. What is Design Thinking? Describe its stages and explain how it can be used to solve an AI problem.

Answer:

Design Thinking is a human-centered approach used for solving complex and undefined problems creatively and efficiently. It has five stages:

1. Empathize:

Understand the users and their problems by observing and interacting. *Example:* Interview farmers to learn the challenges they face in pest control.

2. **Define:**

Clearly state the problem using insights gathered. *Example:* "Farmers cannot detect early signs of pest attacks on crops."

3. Ideate:

Brainstorm possible solutions with creativity and without judgment. *Example:* Ideas could include AI-based image recognition, mobile notifications, drone analysis, etc.

4. Prototype:

Build a simple version of the selected idea to see how it works. *Example:* Develop a basic app that uses photos of leaves to identify pest issues.

5. **Test:**

Try the prototype with real users, collect feedback, and improve the solution.

Example: Give the app to a few farmers and improve it based on their input.

This method ensures that AI solutions are practical, user-friendly, and targeted.

? Q3. Describe Train-Test Split and Cross-Validation techniques in AI. When and why should each be used? Provide code examples.

Answer:

Both Train-Test Split and Cross-Validation are methods to evaluate AI model performance.

1. Train-Test Split:

Divides the dataset into two parts:

- Training Set: To train the model.
- **Test Set:** To evaluate the model's predictions.

When to use:

- When you have a large dataset.
- Fast evaluation required.

Example in Python:

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```

2. Cross-Validation: Splits data into **k subsets** (folds) and runs k experiments where each fold is used once as a test set.

When to use:

- When you have a small dataset.
- You need a more **reliable** and **less biased** performance score.

Example in Python:

```
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestRegressor
scores = cross_val_score(RandomForestRegressor(), X, y, scoring='neg_mean_absolute_error', cv=5)
print("MAE:", -1 * scores.mean())
```

Conclusion:

- Train-Test Split is faster, suitable for big data.
- Cross-Validation is more accurate and preferred when data is limited.

? Q4. What are RMSE and MSE? How are they calculated and interpreted? Give examples.

Answer:

Both RMSE (Root Mean Squared Error) and MSE (Mean Squared Error) are metrics used to evaluate the accuracy of regression models.

1. MSE (Mean Squared Error):

It is the average of the squared differences between actual and predicted values.

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

2. RMSE (Root Mean Squared Error): It is the square root of MSE and provides the error in the same units as the target variable.

$$RMSE = \sqrt{MSE}$$

Example:

• Actual: [2, 4, 6]

• Predicted: [2.2, 3.8, 5.9]

$$MSE = rac{(2-2.2)^2 + (4-3.8)^2 + (6-5.9)^2}{3} = rac{0.04 + 0.04 + 0.01}{3} = 0.03$$
 $RMSE = \sqrt{0.03} \approx 0.173$

Interpretation:

- Lower RMSE/MSE = better model.
- If RMSE is high, the model predictions are far from actual values.