OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF	Semester: 1 Page 1 of 6
Subject: MODULE NAME	Examiner: Dr D. Flynn, Dr K Murphy

Question 1

(a)

- (i) $a_0 = 5 \text{ and } a_n = a_n + 3 \text{ for } n \ge 1.$
- (ii) $a_n = 3n + 5$.
- (iii) 2024 = 3n + 5 so $n = 673 \in \mathbb{N}$, therefore 2024 is a term in the sequence.
- (iv) 3n + 5 < 1000 so n < 331.667, therefore there are 331 terms less than 1000.
- (v) $S_{99} = (n+1) \times 5 + \frac{n+1}{2} (nd)(n+1) = 100 \times 5 + \frac{100}{2} (99 \times 3) = 15350.$
- (b) _____

Returns True if input is prime, otherwise returns False.

(c) _____

- (i) $\binom{7-2+12-3}{5} = \binom{14}{5} = 2002$. The paths all have length 14 (9 steps up and 5 steps right), we just select which 5 of those 14 should be up.
- (ii) $\binom{4-2+12-3}{2}\binom{7-4+12-8}{3} = \binom{11}{2} \times \binom{7}{3} = 55 \times 35 = 1925$ First travel to (4,8), and then continue on to (7,12)
- (iii) $\binom{14}{5} \binom{11}{2} \times \binom{7}{3} = 2002 1925 = 77$ Remove all the paths found in preceding question.

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF	Semester: 1 Page 2 of 6
Subject: MODULE NAME	Examiner: Dr D. Flynn, Dr K Murphy

Question 2

(a)

(i) g(h(4)) = 4

(ii) h(g(5)) = 5

(iii) f(g(h(3))) = -8

(iv) k(j(7)) = 6

(v) j(j(g(2))) = j(j(7)) = j(3) = 1

(b)

\ /						
p	q	r	$\neg r \land \neg p$	$q \to (\neg r \land \neg p)$	$p \vee r$	$(q \to (\neg r \land \neg p)) \land (p \lor r)$
F	F	F	Т	Τ	F	F
F	F	Τ	F	${ m T}$	Τ	${ m T}$
F	Τ	\mathbf{F}	Τ	${ m T}$	\mathbf{F}	${ m F}$
F	Τ	Τ	F	F	Τ	${ m F}$
Τ	F	F	F	T	Τ	${ m T}$
Τ	F	T	F	T	${ m T}$	${ m T}$
Τ	Τ	\mathbf{F}	F	F	${ m T}$	${ m F}$
Τ	Τ	Τ	F	F	Τ	${ m F}$

Alternatively, if students starts with all True inputs:

p	q	r	$\neg r \land \neg p$	$q \to (\neg r \land \neg p)$	$p\vee r$	$(q \to (\neg r \land \neg p)) \land (p \lor r)$
\overline{T}	Τ	Τ	F	F	Τ	F
${ m T}$	\mathbf{T}	\mathbf{F}	F	F	Τ	${ m F}$
Τ	F	Τ	F	T	T	${ m T}$
Τ	F	\mathbf{F}	F	T	Τ	${ m T}$
F	Τ	Τ	F	F	T	${ m F}$
F	Τ	F	Т	T	F	${ m F}$
F	F	Τ	F	T	Τ	${ m T}$
F	F	\mathbf{F}	${ m T}$	${ m T}$	F	F

Final column is a mixture of true and false statements \implies satisfiable.

(c)

(i)
$$sum = 3 + 4 + 5 + 6 + 7 = 25$$

(ii)
$$sum = 1 + 2 + 4 + 8 + 16 = 31$$

(iii) product = 0 * 1 * 2 * 3 = 0

(d)

- (i) Not well formed ('not' is a unary operator).
- (ii) Well formed
- (iii) Not well formed. 'implication' operator is a binary operator.
- (iv) Not well formed. 'Not' operator after propositional variable.

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF	Semester: 1 Page 3 of 6
Subject: MODULE NAME	Examiner: Dr D. Flynn, Dr K Murphy

Question 3

(a)

(i) •
$$U = \{1, 2, \cdots, 9\}$$

•
$$A = \{1, 3, 5, 7\}$$

•
$$B = \{2, 4, 6, 8\}$$

•
$$C = \{3, 4, 5\}.$$

- (ii) Venn Diagram as done in class.
- (iii) Equivalent mathematical expressions:

•
$$D = (A \cap C) \cup \overline{B}$$
.

•
$$E = \overline{(A \cup B) \cap C}$$
.

•
$$F = A \cup \overline{B}$$
.

(iv) • D =
$$\{1, 3, 5, 7, 9\}$$
.

•
$$E = \{1, 2, 6, 7, 8, 9\}.$$

•
$$F = \{1, 3, 5, 7, 9\}.$$

(b) _____

(i)
$$\binom{6}{4} = 15 \text{ subsets.}$$

(ii)
$$\binom{3}{1} = 3$$
 subsets.

- (iii) $\binom{6}{4} = 15$ subsets. All subsets of cardinality 4 must contain at least one odd number.
- (iv) $\binom{3}{1} = 3$ subsets. Select one of the three even numbers. The three odd numbers of S must all be in the set.

1		`
(C	١)

` '				
P	Q	R	$\mid (P \vee Q) \to R \mid$	$(P \to R) \lor (Q \to R)$
F	F	F	T	T
F	F	T	T	T
F	$\mid T \mid$	F	F	T
F	$\mid T \mid$	T	T	T
\mathbf{T}	F	F	F	T
\mathbf{T}	F	T	T	T
\mathbf{T}	$\mid T \mid$	F	F	F
\mathbf{T}	$\mid T \mid$	Т	m T	T

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF	Semester: 1 Page 4 of 6
Subject: MODULE NAME	Examiner: Dr D. Flynn, Dr K Murphy

or starting with all p=q=r=TRUE:

P	Q	R	$(P \lor Q) \to R$	$(P \to R) \lor (Q \to R)$
\overline{T}	Т	Т	T	T
\mathbf{T}	Γ	F	F	F
\mathbf{T}	F	Т	T	T
T	F	F	F	T
F	Γ	Т	T	T
F	Γ	F	F	T
F	F	Т	T	T
F	F	F	brack T	T

Looking at either row with inputs: T F F or F T F we don't have logical equivalence (highlighted above).

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF	Semester: 1 Page 5 of 6
Subject: MODULE NAME	Examiner: Dr D. Flynn, Dr K Murphy

Question 4

(a)

- (i) The Python code gives the set $A = \{1, 2, 3, 4\}$, and the relation $R = \{(a, b) | a, b \in A, |a b| \le 2\}$ = $\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)\}$.
- (ii) The digraph is shown below.
- (iii) The relation R is reflexive, symmetric, but not transitive (e.g. $(1,2),(2,4) \in R$ but $(1,4) \notin R$.
- (iv) R is not an equivalence relation as it's not transitive.
- (v) R is: not irreflexive (: (1,1) $\in R$ etc.); not antisymmetric (e.g. (1,2),(2,1) $\in R$ etc.); not asymmetric (e.g. R is reflexive. R is not antisymmetric, etc.).

(b)

- (i) Ending with four bits \implies (14-4)=10 yes/no choices, $|B^{10}|=2^{10}=1024$.
- (ii) Weight 7 and ending with sub-bitstring 0011 i.e. $B_2^4 \implies |B_{7-2}^{14-4}| = \binom{10}{5} = 252$.
- (iii) Divisible by 16 \implies ending with 0000, so weight of 4 is unaffected, $|B_7^{14-4}| = \binom{10}{7} = 120$.

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF	Semester: 1 Page 6 of 6
Subject: MODULE NAME	Examiner: Dr D. Flynn, Dr K Murphy

$egin{aligned} ext{Question 5} \ ext{(a)} \end{aligned}$	
(i) x=38	
(b)	

- (i) (a) TRUE (there is at least a digit in the password
 - (b) FALSE (special characters \$ and # don't satisfy any of the three predicates)
 - (c) TRUE (no character can be both upper and lower).
 - (d) TRUE (Special characters satisfies this.)