Math 3302: Practice Exam 1

Sept. 21, 2018

On my honor, I have neither given nor received aid on this exam

The following will be the instructions on your in-class exam (although the number of questions may vary):

- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- No calculators or other electronic devices are permitted without the explicit consent of the instructor. Please turn your cell phone off and keep it out of sight at all times
- This exam is open book and open notes.
- Circle or otherwise indicate your final answers.
- This test has x problems and is worth xxx points. Please make sure that you have all of the pages.

#	Score
1	
2	
3	
4	
5	
6	
Total	

1. For the vectors

$$\mathbf{a} = 2\vec{i} + 2\vec{j} + 1\vec{k}$$

$$\mathbf{b} = 4\vec{i} + 1\vec{j} + 1\vec{k}$$

$$\mathbf{c} = 5\vec{i} + 3\vec{j} + 4\vec{k}$$

$$\mathbf{d} = 3\vec{i} + 1\vec{j} + 4\vec{k}$$

compute each of the following, or state why the indicated product does not exist:

- (a) a · b
- (b) $\mathbf{c} \times \mathbf{d}$
- (c) $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
- (d) $(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}$
- (e) $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$
- 2. Let $\{a, b, c, d\}$ each be vectors. Indicate whether each of the following products is a vector, scalar, or not defined.
- (a) $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
- (b) $(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}$
- (c) $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$
- (d) $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d})$
- (e) $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d})$
- (f) $(\mathbf{a} \cdot \mathbf{b}) \times (\mathbf{c} \cdot \mathbf{d})$
- **3.** For the vectors

$$\mathbf{a} = 1\vec{i} + 2\vec{j} + 3\vec{k}$$

$$\mathbf{b} = 4\vec{i} + 5\vec{j} + 6\vec{k}$$

Show that $(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} + \mathbf{b}) = 2(\mathbf{a} \times \mathbf{b}).$

4. Consider the lines

$$\mathbf{r}_1(t) = \langle 3, 5, 7 \rangle + t \langle 1, 2, 3 \rangle$$

$$\mathbf{r}_{2}\left(s\right) = \left\langle -2, -1, 0 \right\rangle + s \left\langle 3, 2, 1 \right\rangle.$$

- (a) Find the point of intersection of these lines.
- (b) Find the equation of the plane that contains these lines.
- **5.** Write an equation for the plane containing the points (-7,2,1), (9,0,-2) and (-5,-1,2). Is this plane parallel, perpendicular or neither, to the plane

$$2x - 3y + z = 5?$$

2

- **6.** Consider the two planes x z = y + 4 and 2x + y = z.
- (a) Find the vectors that are perpendicular to these two planes, let's call these vectors \vec{u} and \vec{v} .
- (b) Parallel planes have parallel \vec{u} and \vec{v} . Show that these two planes are not parallel.
- (c) Since the planes are not parallel then they intersect in a line, let's call this line \mathcal{L} . Find any point on \mathcal{L} .
- (d) Since \mathcal{L} is parallel to both planes, it is perpendicular to both \vec{u} and \vec{v} . Find a vector perpendicular to \vec{u} and \vec{v} , that is therefore parallel to \mathcal{L} .
- (e) Using your results from parts (c) and (d), write the line of intersection for the two planes.
- 7. Consider the curve $\vec{r}(t) = \sin(3t)\vec{i} + t^2\vec{j} + \cos(3t)\vec{k}$. Find
- (a) $\frac{d}{dr}\vec{r}(t)$
- **(b)** $\vec{T}(t)$
- (c) $\frac{d}{dt} \left[\vec{T} \left(t \right) \cdot \vec{T} \left(t \right) \right]$
- **8.** If $r(t) = 2\cos t\vec{i} + 2\sin t\vec{j} + 3t\vec{k}$ find \vec{T} , \vec{N} and \vec{B} when $t = \frac{3\pi}{2}$.
- **9.** Consider the function $f(x,y) = \frac{1}{1+x^2+y^2}$. Find the equations for the following level surfaces for f and sketch them.
- (a) $f(x,y) = \frac{1}{5}$
- **(b)** $f(x,y) = \frac{1}{10}$
- **10.** Describe the level surfaces f(x, y, z) = k for the function $f(x, y, z) = 1 x^2 \frac{y^2}{2} \frac{z^2}{3}$ and the values k = -1, k = 1, and k = -2.
- 11. What is the arclength of the curve $\vec{r}(t) = \langle e^t \sin(2t), 0, e^t \cos(2t) \rangle$ from t = 1 to t = 2? Provide an exact expression by performing all derivatives/integrals by hand; you do not need to simplify your answer.
- 12. Determine whether the curve $\vec{r}(t) = \langle 2t \cos(2t), 2t \sin(2t), t \rangle$ intersects the surface $4z^2 = x^2 + y^2$. If so, where do they intersect?
- **13.** An ostrich runs along a mountain path with coordinates given by $\vec{r}(t) = \langle e^t, e^{-t}, \sqrt{2}t \rangle$. What is the total distance travelled by the ostrich from t = 0 to t = 4?
- **14.** Find the curvature of $\vec{r}(t) = \langle t, t^2, t^3 \rangle$ at the point (1, 1, 1).
- 15. Find the domain and range of the indicated functions. Be precise; the range can be contained in \mathbb{R} , but it does not necessarily cover all of \mathbb{R} .
- (a) $f(x,y) = 3x^2 y^2 + 5$
- **(b)** $f(x,y) = 2 \ln (1 x^2 y^2) \frac{1}{x}$

- (c) $f(x, y, z) = \sqrt{x^2 + y^2 + z^2 4}$
- (d) $f(x, y, z) = 2\cos x 3\sin(y + z)$
- 16. Find the first partial derivatives of the functions:
- (a) $f(x,t) = e^{-t} \cos \pi x$
- **(b)** $f(x,y) = \sin^2(xy^2)$
- (c) $f(x,y) = x^y$
- 17. Let $f(x, y, z) = xy^4z^3$. Verify that $f_{xyz} = f_{xzy} = f_{zyx}$.
- **18.** Demostrate that the functions f(x,y) = 5xy and $f(x,y) = \arctan(y/x)$ both solve the Laplace equation $f_{xx} + f_{yy} = 0$.
- 19. In a study of frost penetration it was found that the temperature T at time t (measured in days) at a depth x (measured in feet) can be modeled by the function

$$T(x,t) = T_0 + T_1 e^{-\lambda x} \sin(\omega t - \lambda x),$$

where $\omega = 2\pi/365$ and λ is a positive constant.

- (a) Find $T_x(x,t)$. What is its physical significance?
- (b) FInd $T_t(x,t)$. What is its physical significance?
- (c) Show that T satisfies the heat equation $T_t = \kappa T_{xx}$ where κ is a constant. Write κ in terms of ω and λ .
- **20.** If the following equation implicitely defines z as a function of x and y, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$,

$$x^2yz + 2xz^3 - 3yz = 2xy.$$