Second - Order Elliptic Equations

(1) Preliminaries:

$$\begin{cases} Ln = f \text{ in } U & n : \overline{U} \to \mathcal{K}' \\ n = 0 & \text{on } \partial U & f : U \to \mathcal{K}' \end{cases}$$

Lis an operator. defined by:

$$ln = \begin{cases} -\frac{\pi}{2} \left(a^{ij}(x) \mu x_i \right) x_j + \sum b^i(x) \mu x_i + c(x) \mu, & \text{livergence Form.} \\ -\frac{\pi}{2} \left(a^{ij}(x) \mu x_i x_j + \sum b^i(x) \mu x_i + c(x) \mu, & \text{Non-Livergence Form.} \end{cases}$$

Penalk: Divergence Form is natural for energy method. Since it's convenient for integrating by part. Nonlivergence form is fit for maximum principles.

Pef: L is uniformly elliptic if 38.20. Const.

St. Inii(x) fis; = 81512. UStip. n.c.x.

Frank: It means (a'ix) Jaxa is positive definite.

whose smallest eigenvalue 30.

Gr. I Z alien alien 3: 4 3 12 3 12 3 12

Pf: Fix i.j: In At Siksic = giAsiT

where $A = (nij(x))_{nxn}$. $S' = (S_{ii} - S_{in})$ suppose O is orthonormal. It. $OAO^{T} = Aings O - Oh Barbara . Okazara.$ Denote $Ni = S^{i}O^{T}$. $S^{i}AS^{iT} = \sum OK PiKPiK \ge OP^{i}N^{iT}$ Report Again. Since $|ni| = |S^{i}| = \sum I_{in}^{n} = \sum I_{in}^{n}$.

Interpretion in Physics:

i) Second-order term I ailix) Uxix; represents the diffusion of u in U. (ail) Auscribes amisotrophic heterogeneous pature of medium.

Existence of week solutions

- ii) First-order term Ibicx) Ux: represents transport in U.
- iii) Zeroth-order term cox) next describes increase or depletion.

@ Wank Solutions:

· Suppose pilex). b'ex). cex) & L'iII). f & L'iU).

For ln=f. Consider (Lu, v) = cf. vs. test by v & Ccou).

⇒ ∫ ∑ aijux; Vx; + ∑ b'ux; V + cuv = ∫ b f v ex

since by approx: to Mocus. in Wicus. replace Ci by No.

Ped: BE., of associated with Livergence form L is:

BEN.VJ = \int I ailux ux; Vx; + \subsetence bern L is:

for \(\forall u.v \in N'_1 \cup v.
\)

We say u is weak solution of Ln=f. if

BEH.UT = cf.U). & UE Ho'LU).

Permork: For other boundary conditions $\begin{cases} Ln = f \text{ in } U. \\ u = g \text{ on } \partial U. \end{cases}$ Find $w \in H'(u)$. St. $w |_{\partial U} = g$.

Follow $\begin{cases} L\bar{n} = f \text{ in } U. \\ \bar{n} = n - w. \end{cases}$ f = f - LwFollow $\begin{cases} L\bar{n} = f \text{ in } U. \\ \bar{n} = 0. \text{ on } \partial U. \end{cases}$

(2) Existence of weak solutions:

O Energy Estimate:

7hm. There exists a. B>0. y 30. 5t.

 $|BINIV]| \leq \alpha ||N||_{H_0(0)} ||N||_{H_0(0)} \qquad for \forall n, v \in N_0(0).$ $|BINIV_{N_0(0)}| \leq |BINIV_0| + \gamma ||N||_{L_1(0)}.$

Pf. 1) The first one filestly by Canaly Inequility.

2') Apply Elliptic modition: (with Pionense Ince) $\theta \int_{U} |Dul^{2}Ax| \leq B [u,u] + C C \int_{U} |Dul|u| + |u|^{2}$ $\leq B [u,u] + C C \int_{\overline{Z}} |Dul^{2} + \frac{1}{2} |u|^{2} + |u|^{2}$

Thm. I First existence Then for work solutions)

There exists unique u & Micu) work solution

There exists unique u & Micu) work solution

for [Lu+mu=f in U where M=Y.

u=0 or au.

Pf: Let $B_n \in a, v = B_{E_n, v = M_{E_n, v = M_n}}$ $< f \cdot v > = (f \cdot v)_{L^n}$ Fernark: Note that $\forall (f')_{o}^{n} = L^{2} \iota_{K}^{n}$,

Since $\langle f, V \rangle = \int_{U} f^{o} V + I f^{i}_{i} V_{Ki}$ is BLO on $M_{o}^{i} \iota_{U} \iota_{i}$. $\begin{cases} L_{n} + \mu_{n} = f^{o} - \frac{1}{2} f^{i}_{Ki} \text{ in } U \text{ has unique solution} \\ \mu = 0 \text{ on } \partial U \text{ in weak sense.} \end{cases}$

in L+MI: Ho' - H' isomorphism.

O Fresholm Alternative:

Def: i) l*v = - I (n'ix) Vij)xi - Ilix) Vi; + (L-Ibx; (x)) V.

ii) B*[v,u] = (L*v,u) = (v.ln) = Ben.v].

iii) V is week solution for { L*v=f in U if.

B*\text{V}.u] = \(l \cdot \text{No} \(\text{U} \).

<u>Prmmk</u>: It's from: ([u,v) = \(\int a^{ij}(x) \(\text{Vx}_i \) + \(\int b^{i}(x) \(\text{Vx}_i \) + \(\text{Vx}_i \) + \(\text{Vx}_i \) \(\text{Vx}_i

7hm. c Second Existence 7hm)

i) One of the following statements will hold:

has unique weak Johntion for $\forall f \in L^2(U)$

(b) { Ln=0 in U u=0 or dU exists u=0. u & N.(u) work solution. Denote tot N.

(f.v) >0. & VENY.

- Pf: 1) Choise M=4. Lyu=ln+yn. Correspone Byt.,....

 Y 7 t l'2 U). In = lyg solves it.

 Chrok Ly is linear.
 - 2) -: B Eu.vJ = cf, v (=) $u = l_1^{\dagger} c \text{ yu+} f$ $D \text{ enote} \quad k u = y l_1^{\dagger} u \cdot h = l_1^{\dagger} f \cdot u \cdot k u = h$.
 - 3°) (Luck k: L'ou) -> L'ou) is opt operator.

 prove: k: L'ou) -> M'ou) is BLO. (Ma By I. 3)

 Apply Moou) co L'ou). Attain subseq coverges.
- 4) Apply Frakhm Alternative on u-kn=h. $u-kn=0 \Leftrightarrow u-ln=0$. Similar as $u-k^2n=0$ It has solution $\Leftrightarrow (h.V)=0$. $\forall V \in N \in I-k^2$). $\Leftrightarrow (f,v)=0$. Since $(h.v)=\frac{1}{7}(f,v)$.

for Al-K. KEKEL'(U)).

7hm. c Third Existence Thm).

- i) There exists an at most constable set $\Sigma \subset \mathbb{R}^{\prime}$.

 St. $\begin{cases} Ln = \lambda n + f \text{ in } U \\ \lambda = 0 \end{cases}$ on ∂U has unique weak solution $\begin{cases} \lambda = 0 \end{cases}$ on ∂U $\begin{cases} for \forall f \in L^{\prime}(U) \end{cases}$. $\iff \lambda \not\in \Sigma$.
 - ii) If I is infinite. Then I=(lk) -+ +00.

Denote: I is spectral of L.

Solvetion of [Ln=An in U

woo on 20

Dyn = (y+A)n. \implies u= ly (y+A)n = \frac{y+A}{y}kn.

For As-y. Then it holds.

For A>-y. Then \implies \frac{y}{y+A} ish't eigenvalue of k.

Since k is apt. operator. Apply FA.

7hm. (Bounded inverse)

If $\lambda \in \Sigma$. Then there exists anst. C. St.

II Ullians all for $\begin{cases} Lw = \lambda n + f \text{ in } U \\ w = 0 \text{ on } \lambda U \end{cases}$ $for \begin{cases} Lw = \lambda n + f \text{ in } U \\ w = 0 \text{ on } \lambda U \end{cases}$ $for (Lw = \lambda n + f \text{ in } U)$ $for (Lw = \lambda n + f \text{ i$

- Sluk = luk + fk in U for some fk. HUKII, > CHfkII.

Wh = 0 on dU

Then since Bluelly'ou & Benever + y HURELL = yt HURELL HIGH.

Then since Bluelly'ou & Benever + y HURELL = yt HURELL HIGH.

THEN IS bounded in M'CUS -: (Jens) -> u in M'CUS

LUAN is bounded in M'CUS -: (UAK -> u in L'

:. $||u||_{L^{2}(N)} = 1$. And : $f_{K} \to 0$:: $Lu = \lambda u$. u = 0. Since $\lambda \notin \Sigma$ which is a contradiction.

(3) Regularity:

· Motivation :

Gossier a case: $-An = f \cdot in \ ^n$.

Improse $u \in C^{\infty}(\mathbb{R}^n)$, $u(x) \to 0$ $(1x1 \to \infty)$.

Note that: $\int f^2 = \int (An)^2 = \int 10^2 n^2 Ax$.

It means: second perivates of n is lominated by 11 flicing,

Replace $\bar{\mathcal{U}} = D^{\alpha}n$. $|\mathcal{A}| = m$. Then we obtain: $(m_{12})^{\pm h}$ - Arrivates of n is controlled by $||f||_{W^{\alpha}(\bar{p})}$

O Interior Regularity:
Suppose U is open. bounder.

Thm.

If a vix) & C'(U). b'(x). c(x) & L'(U).

JEL'(U) and WEM'(U) Solve In=fin U

Wenkly. Then WE Minorus. Besides.

Hullyin = C(IIflicon+Hullicon). HV CCU. C=CCV.U.L).

pf: 1°) Fix VCCU. Find wopen. VCCWCCU.

Costruct 3 & Coocus. 5=1 on V. 3=0 on 15/w

0 < 3=1. which is for gnarantee u keep

away from 2U.

2°) From BEU.13 = cf.vs. & v & M. (U). separate the second-order gare: If airsing = lufukx. where f = f - Ibiex, ux; - cvex). Let V= - Dk (5 Dk (Mexi)). It is sufficient small. from: 11 Dk Dn112 5 C. UK. 15 is for rataining 5" after differentiation). Recall $\begin{cases} \int_{W} v D_{k}^{-1} u = -\int_{W} u P_{k}^{-1} v \\ P_{k}^{-1} v w J = v^{+} D_{k}^{-1} w + w P_{k}^{-1} v \end{cases}$ E C Sw 10 pt Dni + 10 mi. we obtain: Supernit = Sustiller out = CSuft ut + 10ml. : Du & Mic (U). and Hully'ev, = Cellflien + Hully'en,) Choose 3 & C = 1 | S = 1 on W. Smpps = W

Let V= Sn. Apply elliptic condition:

ofw 10012 = of 5 1001 = c fu f + w.

Remark: i) Since we how't consider boundary of U.
There's no need: WE Micus.

ii) since we Minc (U). Then BEN.VJ = cf. 0) = (Ln. V) + VE (C(U). -: Ln=f. n.e. U. Thm. (Migher order).

MEZ/Z. If ais. bi. o & Come of the Minu).

WE M'(U) solves last in U. wently.

Then WE Minu (U). Besides. Hully in a Confliction).

Where Y V COU. C= COUNTL).

Pf. By induction on m.

1) m=0. it holds by the former thm.

By hypothesis: $\mu \in M_{inc}(U)$, with an estimation.

3) Consider |A| = m + 1. $\overline{V} \in C_0^{\infty}(W)$. $\overline{V} \in W \subset U$.

Let $V = (-1)^{|A|} D^{\alpha} \overline{V}$. By integration by part: $\overline{B} \in V = (-1)^{|A|} D^{\alpha} \overline{V}$. By integration by part: $\overline{f} = D^{\alpha} f - \sum_{p \in P} (\overline{p}) [- \sum_{p \in P} (\overline{p}^{-p} - \overline{p}^{-p} -$

4') Apply m=0 case on R. We have we M'co).

||m||production = C C ||f||production + ||m||con)

Cor. If nis. bi. c & C CU). ft C CU). we N'ou)

silver ln = f in U workly. Then we C LU).

Pf: we Miou (U). + m & Z +. Then for HV CCU.

I we C - I = J-1. Y (V). H M & Z +.

.. KEC CUI.

@ Boundary Regulatity:

7hm.

If n'it C'cus, b', c & Lous, fe L'ius, ke M'ius.

Silves { lm=f in U workly. dU is C'.

[n=0 on du

Then WE M.(U). Besides. HARINGE C CHIFILTY, +HARIED).

C= C C U. V. L). (If a is anique. Then Harlyin, = cliftle inverse is bound)

- Pf: 1') Consider U = 8° (0.1) O'Rr. firstly. V = B'(0.1/2) O'Rr.

 Let 3 & Carp. S = 1 or B'(0.1) . S = 0 or 18/8(0.1).
 - 2°) Similarly, separate second-order part.

 Let V = Dx C 5° Pxn). V & M'(U).

 Besides. for 15 k s not : V = 0 or 2U. .: V & M'(U).

Since under Ulliptic Condition: Ilmilyios is contolled by IlfIllion. Ilmilizous.

6) Straighten out Argument:

Whom. Suppose UNB'(xo.r) = IXE B'(x...(1) | Xn > y(x')). $y \in C^2(R^n)$. $U \stackrel{q}{\longleftrightarrow} U \stackrel{\sim}{\longleftrightarrow} U \stackrel{\sim}{\longleftrightarrow} xn - y(x')$

choose 5 small enough. St. $U' = B(0.5) \cap I\eta_{n>0} = \phi(U)$. Set $V' = B^{\circ}(0, \frac{1}{2}) \cap I\eta_{n>0}$. $N'(\eta) \stackrel{\Delta}{=} N(\gamma \eta) = N(\chi)$.

7) Chark Kings & Micuis. by Approxi of Cacins

8°) Claim: $u'(\eta)$ is work solution of L'u'=f' in U'. $f'(\eta) = f(\gamma_0\eta_0) = f(x)$. $L'(\eta) = C(\gamma_0\eta_0) = C(x)$. $a'_{k}(\eta) = \sum_{r,s} a''_{r}(\gamma_0\eta_0) \phi_{xr}(\gamma_0\eta_0) \phi_{xs}(\gamma_0\eta_0)$. $L'u' = -\sum_{k,s} (a'_{k}(u'_{k}\eta_{k})\eta_{s} + \sum_{k} b'_{k} u'_{k} u'_{k} + C'u'$.

It originates from:

I prix) mix) = I prixipixi) histopixi)

= I be Uxi Y'c pox) of = I be (you) Uxi Y'n of xx

= I (I profund dxx) (Inx; fin)

= Z bien unevers). We obtain biegs= I breyings \$xx

Similar to obtain aij. C'

It can be checked by Dq. Dy = In. Conversely.

9') Check L' is miformly elliptic.

Apply the half-bull case. And cover du by finite balls.

Thm. (Migher orker)

m & Z/Z-. n'i, b', c & C'''LUI, f & M''LUI, N& M''CUI,

Solves { Lu = f in U wenkly. dU is C'''.

N = 0 or du

mes proston of a ship of

Then $u \in M_o^{rel}(u)$. Pesides. $||u||_{M_o(u)} = C(||f||_{M_o(u)} + ||u||_{L_{(u)}})$ $C = C \in U.L.m) \cdot Const. \quad (If u is unique solution. Then
we have: <math>||u||_{M_o(u)} \leq C ||f||_{M_o(u)}$.

- Pf: 1') By induction on m:

 m=0 is proved by Thm whove.

 Now if n'i, b', c & C^{me2}(I), f & H^{me1}(U). JU & C^{me2}

 By inductive assumption: W& H^{me2}(U) with estimation.
 - 2°) For $|\pi| = m+1$, $\langle n = 0$. (For $\overline{n} | 1\pi x_{1} z_{0} \rangle = 0$)

 Consider $\overline{n} = D^{q} n$. $\in \mathcal{H}_{0}^{1}(U)$. $|\overline{n}| = \overline{f}$ Contain it's from $D^{q} | |\overline{n}| = D^{q} f$, $|\overline{n}| = 0$. $\overline{f} = D^{q} f \sum (\overline{g}) = \overline{g}$. $\overline{f} \in L^{2}(U)$ Apply m = 0 (ase. $|\overline{n}| \in \mathcal{H}_{0}^{1}(U)$:

 i.e. $||D^{p} n||_{L^{2}(U)} = C \in ||f||_{\mathcal{H}_{0}^{m_{1}}(U)} + ||n||_{L^{2}(U)}$)

 for ||p|| = m+3. ||p|| = 0. $||f||_{L^{2}(U)}$
 - 3°) For $|\beta|=m+3$, induction on $\beta_n=j$ again. j=0.1.2 We have proved. If $\beta_n=j+50,...m+2$ holds. for $\beta_n=j+1$. Denote $\beta=\gamma+2\leq n$. Since ln=f. a.e. U. ... $D^{\gamma}lm=D^{\gamma}f$. a.e.

 $D^{Y}f = \Lambda^{nn}D^{p}u + I Smm of terms involving at most$ j revivates of u. W. r.t Xn)

It follows from hypothesis. Then by strighten and lover.

Cor. If Ail. bi. c & C^CLD). ft C^LD). Nt Micos

Silves (Lu=f in U weakly du is C.

N=0 2+ 0U

Then U & C^CLD)

Pf: $\mu \in M^{C}(U)$. $\forall m \in \mathbb{Z}^{d}$. $\Rightarrow u \in C^{m-1-\frac{d}{2}-1+1,7}(U)$. $\forall m \in \mathbb{Z}^{d}$.

(4) Maximal Principle:

• Suppose $U \subseteq \mathcal{R}^n$ bounded. For unsidering pointwise values of Dn. D^2n . (Note that n attains max at \mathcal{R}_n if $Dn(x_0) = 0$. $D^2n(x_0) \leq 0$).

Suppose: WE C'LL)

Consider 2 in mondivergence form. And sym: n'i = n'i
Besides. a'i, b', c are const.

O werk maximal Principle:

For U& C'(U) (CCI). And C(X) =0 in L.

- i) If lu = 0. in U. Then max ucx = max ucx).
- ii) If Ln 20 in U. Than minux = minux.
 - Pf: Only prove i). Since for ii). Let n=-n.
 - 1) Consider $N^{2}(x) = \mu(x) + 2e^{\lambda x}$. Choose $\lambda = 5t$. Lu²(x) $\leq \epsilon Le^{\lambda x} < 0$.
 - 2') Suppose IXo EU. St. N°(XO) = mrx N°(X).

 Then Dn°(XO) =0. D'n°(XO) =0 (negative Aefinite)
 - 3') : A. D'u' are symmetric. : I O E M'cik). Orthonormol.

 5t. DAOT = Ling Id. ... Les. OD'u'OT = Ling Sp.... Pas.

 Li 30 > 0. Y leien. Pi = 0. Y leien.

For $uiq_0 = ui \chi_0 + O(x-\chi_0)$. $D_x uiq_0 = P_y ui \cdot O$. $D_x ui = O^T D_y ui O$.: $\begin{cases} ui_{y_0} = 0, & \text{if } t = 0 \end{cases}$. $\begin{cases} ui_{y_0} = 0, & \text{if } t = 0 \end{cases}$.

4) $\sum \Lambda^{ij} \stackrel{\sim}{N_{X_i X_j}} = \sum \Lambda_K \stackrel{\sim}{N_{\eta K \eta K}} = 0$.

At $X = X_0$. $D \stackrel{\sim}{N_{i X_i Y_j}} = 0$. $D \stackrel{\sim}{N_{i X_i Y_j}} =$

5') Let & -> o. Attain max n = max n.

Cor. If ne ciuin citis. c 30 in L in U.

- i) For In 30 in U. Then maxut + maxu
- ii) For Lu 30 in U. Then maxu = maxc-u)

Remark: Ln =0 => max INI = max INI.

Pf. only prove i), ii) is from $\bar{n}=-n$. $(-n)^{\dagger}=\bar{n}$ Consider $V=[x\in U|n(x)>0]$.

- 1) V = X. It's trivial. (; may be strict)
- 2') $V \neq \emptyset$. Since by $K \in C(\overline{U})$. $\exists V \cap U \subseteq I \cap I = 0$. $\exists V \cap \partial U \neq \emptyset$. For kn = Ln - cn. $kn \times - cn \times 0$. in V. $\Rightarrow Dy$ thm. max u = max u $max u = max u + \ldots max u = max u = max u = 0$. We're done.

Def: We say L satisfies work maximum principle

if for Y NECCUIN CCUI. and She so in U

then N = 0 in U. (Denote WMP)

prop. If IVE C'UN OCCUS. and Lugo. in U.

V>0 on U. Then L satisfies WMP.

Pf: 1') Prore: $\exists M. \ St. \ M \ has no Zeroth-order term.$ Not $M \in \frac{u}{V} > 0$. in $R = \{u > 0\}$. Apply thm: $\therefore \max_{\overline{R}} \frac{u}{V} = \max_{\overline{R}} \frac{u}{V} \leq 0. \quad \therefore R = X.$

2') Suppose $Lu = -\Sigma \wedge i \int ux_i x_j + \Sigma \int ux_i + cn$. $Lulate : -\Sigma \wedge i \int ux_i x_j = L \wedge i \int ux_i = Aji$) $\frac{V \ln - u L v}{v^2} - \frac{2}{V} \sum_{i \neq j} \int ux_i + \frac{1}{V} \sum_{i \neq j} \int ux_i + \frac{1}{V} \sum_{i \neq j} \int ux_i = \sum_{i \neq j}$

: M(v) = V/n- MLV = 0.

1) Mopf's Lemma:

If we ciu) nociu). CED in U of L. Luso in U.

there exists xo Edu. St. M(xo)>M(xo) - WXEU. and

U satisfies interior ball condition at Xo. Circ. IBSU.

St. X. EDB). Them: \frac{\partial m}{\partial v} (Xo) > 0. \vec{v} is outer normal writ.

For czo. It holds when ucx. 130.

femork: If DU is C. Then by formula of osculating ball. U satisfies interior ball condition nutspatically.

- Pf: 1') Denote $B = B^{\circ}(0,r)$. $R = B^{\circ}(0,r)/B(0,\frac{r}{r})$.

 For $V(x) = e^{-\lambda u^{2}} e^{-\lambda r^{2}}$. V = 0 in k for λ large enough.
 - 2')] [20. Jo. Kixo & Mix) + EVix) or dBco. 2').

 : Mixo) & Mix) + EVix) in dR. (V=0, 4x+1811.11)
 - 3') Since $L(m(x) M(x_0) + EV(x_0)) \leq L(-M(x_0)) = -GM(x_0) \leq 0$.

 Apply then in $O = M(x_0) M(x_0) + EV(x_0) \leq 0$ in R.

 Besiden. $M(x_0) M(x_0) + EV(x_0) \geq 0$. $\therefore \frac{\partial n}{\partial V}(x_0) + \frac{\partial V}{\partial V}(x_0) \geq 0$. $\Rightarrow V = \frac{X_0}{r} \quad \therefore \frac{\partial u}{\partial V}(x_0) \geq 0 \lambda \leq re^{-\lambda r^2} > 0$
- If we c'eux n ceux me coo in U

 where U is connected.

- i) For lu = 0 in U. = X. EU. St. W(x.) = mox W(x)

 Then W= Const in U
- ii) For Ln 30 in U. 3x. EU. St. M(x) = min M(x)

 Then N = lorst. it U.
- Pf. Denote M= max u. C= [xellux)=n3.

 If C \(\pm \lambda \). Set V= [xellux].

 Sina \(\lambda = C \text{UV}. \) Chose \(\ph \in V. \) St. \(\lambda \), \(\cho \) \(\lambda \)

 with largest ball \(\beta \), \(\cho \) \(\cho \) \(\lambda \).

 If \(C \text{U} = \beta, \) \(\frac{1}{2} \text{X.} \in (\text{U}).

 \(\frac{1}{2} \text{X.} \in \) \(\text{Bepin}(r). \) \(\text{Apply Volf Lemma.} \)

 \(\frac{1}{2} \text{X.} \)
- in the (x0) 20. Contradict with Decroses
 - Gr. Mt C'UNCCU). C70. U is Connected
 - i) If Lugo in U. AxoEU. St. MIXO) =

 max u(x) 30. Then W= worst. in U.
 - min u(x) <0. Then u = lonst. in U.
 - Pf: There correspond the "Nox.) 39" part in Mopf's Lemma.
 - ii) is from : 2 = u.

3 Marrank's Inequility:

Thm. If u > 0. u & CiU) solves Lu = 0 in U.

for V CCU. connected. Then I Const. C

st. Supu = Cinfu. C=CCL.V)

Pf: Only grove special case: b'= C=0. a's new smooth

2) : Ln=0 : $\Sigma a^{ij} V_{xixj} + a^{ij} V_{xi} V_{xj} = 0$ in U.

Superatu Sucend-order turm: $W = \Sigma a^{ij} V_{xi} V_{xj}$: $W = - \Sigma a^{ij} V_{xixj}$

where IRI = EID'VI + CLES IDVI

From II a" N'K Vxix Vxjxk & g" | D"V12. Chos &= ==

:. - I aku Wxxxx + Ib Wxx = - = 10"1" + 210" bk = -2 IA x Vx.

Since Blow = 0 V > Blul > 0.

.. 3 X0 & U. Z(X0) = rex Z(X).

: 3Wxx + 43xxW = 0 At X = X0. Besiles at X = X. We have:

DE - IALL ZXXXX + IBEZXX = IZ.

Otherwise IZ <0. by Unti. :: IZ <0 in Bexx.r).

Then Z = Zexo) in Bexo.r) : LZ = 0 prtradict!

⇒ 0 ≤ 94 (-Int WXXXX + Ib+WXX) + R

Where IRI = C(5" + 5" | DWI) = C5" (By-5wx=45xx)

Apply estimate in 2):

34 10 1 = 634 1001 + 65 W. From: 81001 = W = 61001

: Z = 54 W = 0 Nt X = X0.

IDVIZE OWEC.

4') General Case: Cover V by balls (Ba). [

(5) Eigenvalues:

O Symmetrie Elliptic Operators:

Consider $Ln = -\sum (a^{ij}(x) Ux^i)x^j$, $a^{ij} \in C^{\infty}(\overline{U})$. Besides, Aij = aji : BERINJ = (Ln,v) = (u,lv) = BEV.nJ.

30 First Se King Marine Marine Se King Co

For symmetric operator L.

i) Each eige-value of L is real.

- ii) $\Sigma = (\lambda_n)$, where $0 < \lambda_1 \le \lambda_2 \le \lambda_3 \le -\infty$
- There exists orthonormal basis (Wa) of L'U). It.

 WK E Mo(U). Solves of LWK = AKWK in U

 WK = 0 on dU

Remark: Wet Cocu). What's more. if DUEC. then

WE t Coci)

- - 2') Claim: L is symmetric

 For $f. g \in L^2(u)$. Suppose $\begin{cases} Lu = f \text{ in } U \\ Lv = g \text{ in } U \end{cases}$: (Sf. g) = (u.g) = BEU.v3 = BEU.v3 = (v.f) = (Sg.f)
 - 3") Apply cpt. sym operator than on 5

 Positive is from: (Ln.n) > 0.

 in : min (Ln.n) > 0.

Penition: We call 1, >0 principle ligenvalue of L.

7hm. (Variational principle for principle value)

i) Zi = min [Bruin] | IInllion = 1. WE Ho'(U)].

Besikes. if u is another

Solution. then $u = cW_1 \in \lambda_1$ is Simple)

Since & u & L. n = I cwx. NIN.

· BIN. WE/AFJ = 0 . YISK => N = 0.

29) For $||n||_{L_{L_0}} = 1$. Since $||M| = \sum_{i=1}^{n} ||L_i||_{L_0} = 1$. $||L_i||_{L_0} = 1$. $||L_i||_{L_0} = \sum_{i=1}^{n} ||L_i||_{L_0} = \sum_{i=1}^{n} ||L_i||_{L_0}$

3°) Claim: For WEMicus. IImilion=1.

{ Lu = λin in U n = 0 or ∂U Brn.n7 = λ.

Denote $\lambda k = CWk, NJ$. $\therefore I / k = 1$.

If $\beta i n, NJ = \lambda$, $\Rightarrow \lambda$, I / k = I / k / k k = 0 if $\lambda k > \lambda$.

: u = I lewe. where Lwk = l, wk.

4°) Prove: For $u \in Mi(u)$ silves $\begin{cases} ln = lin \text{ in } U \\ n = 0 \text{ on } \partial U \end{cases}$

uto. Then use or use in U.

Lemma: $u \in W''(u) \iff W^{\dagger}, u \in W''(u)$. Besides, we have: $Du^{\dagger} = \begin{cases} Du, & \text{in } \{u > 0\} \end{cases} \quad Du^{-1} = \begin{cases} 0, & \text{in } \{u > 0\} \\ 0, & \text{on } \{u < 0\} \end{cases}.$

Pf: $f_{\xi}(r) = CJ_{r+\xi}^{*} - \Sigma$) $\chi_{Lr_{\xi}0\delta} \in C'_{\xi}(R)$ Besides. $f_{\xi}(r) \in L^{\infty}(R')$. $F_{\xi}(n) = 0$.

By Chain Rule: $\int_{U} F_{\xi}(u) \frac{\partial \phi}{\partial x_{i}} = -\int_{U} F_{\xi}(u) \frac{\partial m}{\partial x_{i}} d$ By Det. Let $\Sigma \to 0^{+}$. Since $f_{\xi}(u) \to |u| \chi_{|u_{\xi}0\rangle} = u^{+}$ $\int_{U} u^{+} \frac{\partial \phi}{\partial x_{i}} = -\int_{U} \frac{\partial m}{\partial x_{i}} \phi \chi_{Ju_{\xi}0\delta}$ Apply on $N = -\mu$. Obtain N^{-} case.

-: Lut=1, u+30 : By SMP: u+20 in U or u=30 in U

Similim for u: .: u+20 or u=20 in U

5') For \bar{n} is mother solution. \bar{n} so or so in U \bar{n} \bar{n}

: Sū-cn=0. : n-cn is mother solution.

: ~ = cn. Otherwise f ~-cn >0 or co.

7hm. C Courant minimax Principle)

For IL= (Ax). We have: Ax = max min Bening

SeIx nest

Inuliant

In is the collection of

all (k1)- Limension subspace of M.'LU).

Pf: Denvie A: L': L'iu) -> L'iu). opt BLO.

1) Prove: At = sup int BIMINJ.

SEEM NUMBER

Ext collects all (k1)-dimension subspaces of Liu)

Suppose cex) is the correspond eigenfunctions.

Since u = Ille, usek. ... BIM, nJ = I Axlen, ex)12

- 2') $\forall S \in E_{k-1}$. $\exists Wo \in S^{\perp} \cap Spantei3^{k}$. $Wo = \overline{I}_{s} \neq i \neq i$: inf $B \in I$ $\exists Wo \in S^{\perp} \cap Spantei3^{k}$. $Wo = \overline{I}_{s} \neq i \neq i$: inf $B \in I$ $\exists Wo \in S^{\perp} \cap Spantei3^{k}$. $Wo = \overline{I}_{s} \neq i \neq i$: $Sup inf B \in I$ $\exists Wo \in S^{\perp} \cap Spantei3^{k}$. $Wo = \overline{I}_{s} \neq i \neq i$: $Sup inf B \in I$ $\exists Wo \in S^{\perp} \cap Spantei3^{k}$. $Wo = \overline{I}_{s} \neq i \neq i$: $Sup inf B \in I$ $\exists Wo \in S^{\perp} \cap Spantei3^{k}$. $Wo = \overline{I}_{s} \neq i \neq i$: $Sup inf B \in I$ $\exists Wo \in S^{\perp} \cap Spantei3^{k}$. $Wo = \overline{I}_{s} \neq i \neq i$: $Sup inf B \in I$ $\exists Wo \in S^{\perp} \cap Spantei3^{k}$. $Wo = \overline{I}_{s} \neq i \neq i$: $Sup inf B \in I$ $\exists Wo \in S^{\perp} \cap Spantei3^{k}$. $Wo = \overline{I}_{s} \neq i \neq i$: $Sup inf B \in I$ $\exists Wo \in S^{\perp} \cap Spantei3^{k}$. $Wo = \overline{I}_{s} \neq i \neq i$
- 30) Pick So = Spanlei). inf BININT & Ak
 wesot

 ... Supinf BININT & Ak.
- 4°) Since Mo'(U) CC L'(U). :. At ? max min Bland Se Ita nes unilise Conversely. Choose \(\bullet_{k1}^0 = \span10 | /\displant \begin{array}{c} \lambda \text{pan 10 | /\displant \te

O Nonsymmetric Cau:

For Lu=- Iai uxix; + Ib'uxi + cn. ai.b. c e Ciu)

U is open. bounder. connected. DU E Co. ni=nii

C 30 in U. for u & Mo'(U).

7hm. (Principle eigenvalue)

- i) Three exists $\lambda_1 \in \mathcal{I}_L$, $\lambda_2 \in \mathcal{R}_L$ st. $\forall \lambda \in \mathcal{I}_L$.

 Lech) $\geq \lambda_1$. Busines. λ_1 is simple
- ii) There exists a corresponding eigenfunc. W.

 st. W. > 0 in U.
- 7hm. For principle eigenvalue λ_1 . We have: $\lambda_1 = \sup_{x \in U} \lim_{x \in U} |u \in C^{\infty}(U), u > 0 \text{ in } U. \text{ } u = 0 \text{ on } \partial U \}.$
 - Pf: 1) $\exists W_i \in \mathcal{H}'(u)$. It. $\angle W_i = \lambda_i W_i$.

 Note that $\exists W_i \in \mathcal{C}''(u) \rightarrow W_i$ in \mathcal{H}' . $\therefore \text{ sup inf } \frac{Lw}{w} \geq \inf \frac{Lw}{w} \rightarrow \lambda_i$.
 - 2') Prove: λ , is principle eigenvalue of L^* Suppose λ^* is correspond $w^* > 0$ $C \left[\begin{array}{c} L^* w^*, w_i \end{array} \right] = \lambda^* (w^*, w_i) = (w^*, Lw_i)$ $= \lambda_i (w^*, w_i) \qquad \therefore \lambda^* = \lambda_i$
 - 3°) Conversely. Prove:

 inf Ln = 1. for tuttion fusion to

It follows from (Wi*, Ln-lin) = 0.

But W.* > 0. - inf Ln-lin = 0.