

Amendments to the Claims:

1 1. (canceled)

1 2. (canceled)

1 3. (currently amended) A drive system according to Claim 31 [[2]], wherein the drive
2 networks and intercommunication networks are arranged using a preferably serial ring
3 structure and are organised in accordance with the master/slave principle.

1 4. (currently amended) A drive system according to Claim 3, wherein the
2 communication component is components are designed in the scope of the master/slave
3 principle as a communication master of the respective intercommunication network.

1 5. (currently amended) A drive system according to Claim 31 [[2]], whrcin the
2 communication components are produced with serial interfaces and are controlled by at
3 least one processor.

1 6. (currently amended) A drive system according to Claim 5, wherein the communication
2 component is components are provided with functions of a communication manager.

- 1 7. (currently amended) A drive system according to Claim 6, wherin the plurality of
- 2 intercommunication networks are arranged according to a star structure with the multi-
- 3 link controller as the star center centre.

- 1 8. (previously presented) A drive system according to Claim 7, wherein at least one
- 2 intercommunication network is designed for data transmission synchronously with a
- 3 clock of the multi-link controller.

- 1 9. (currently amended) A drive system according to Claim 8, wherein in at least one of
- 2 the intercommunication networks, at least one of the nodes is configured as using a
- 3 master for other intercommunication networks, and their communication control signals
- 4 are delivered to the other intercommunication networks by the multi-link controller.

- 1 10. (previously presented) A drive system according to Caim 9 wherein setpoint position,
- 2 speed and acceleration values are distributed to one or more of the drive networks via the
- 3 inter-communication system or network.

- 1 11. (currently amended) A drive system according to Claim 10, wherein the
- 2 communicated control information contains logical allocation of one or more drive units
- 3 to one of the networks.

1 12. (previously presented) A drive system according to Claim 11, wherein a transfer that
2 at least partially controls the intercommunication networks takes place via the multi-link
3 controller.

1 13. (previously presented) A drive system according to Claim 12, wherein all information
2 for the allocation of one of the drive units to a respective drive network is transferred via
3 the multi-link controller to each intercommunication network.

1 14. (currently amended) A drive system according to Claim 13, wherein at least a
2 plurality of the drive networks are designed, using program and/or circuit technology, in
3 accordance with the master/slave principle, respectively with a communication master
4 which forms a node of an intercommunication network, and the multi-link controller
5 has all drive units of this intercommunication network each respectively allocated via it
6 to one of the communication masters.

1 15. (currently amended) A drive system according to Claim 31 [[+4]], wherein a node of
2 at least one of the intercommunication networks is both [[as]] a communication master
3 for this intercommunication network, for its individual operation without coupling with
4 the multi-link controller, and [[as]] a communication slave for coupling with the multi-
5 link controller that operates as a communication master.

1 16. (previously presented) A drive system according to Claim 15 wherein the multi-link
2 controller further comprises a plurality of communication components respectively
3 configured as communication masters for external networks, and a processor that controls
4 them.

1 17. (previously presented) A drive system according to Claim 16 wherein the multi-link
2 controller includes communication interfaces designed for synchronous and serial data
3 transmission.

1 18. (previously presented) A drive system according to Claim 16 wherein the multi-link
2 controller includes a processor provided with program code for the distribution, routing
3 of data from one communication interface to another.

1 19. (previously presented) A drive system according to Claim 18 wherein the multi-link
2 controller further comprises one or more modules that control the communication
3 interfaces, for communication management with these communication interfaces.

1 20. (currently amended) A drive system according to Claim 16 [[19]] wherein the multi-
2 link controller further comprises individual parameterisation from an external master data
3 source.

1 21. (previously presented) A drive system according to Claim 20 wherein the multi-link
2 controller further comprising a reception storage unit for data between the
3 communication interfaces.

1 22. (previously presented) A drive system according to Claim 20 wherein the multi-link
2 controller further comprises an instrument, using program and/or circuit technology, for
3 converting one communication protocol of a first intercommunication network into
4 another communication protocol of a second intercommunication network.

1 23. (currently amended) A drive system according to Claim 31 [[2]] and further further
2 comprising a drive synchronisation control unit as nodes of an intercommunication
3 network for an electrical drive system having at least one communication interface and at
4 least one processor that controls it and is provided with the following functional modules:
5 [[[]]] (a) a master axis module, designed to receive, to generate and/or route data and/or
6 commands for a virtual master axis via the at least one communication interface and
7 [[[]]] (b) a data distribution module, which is designed for controlling a data and/or
8 command flow via the least one communication interface with one of the networks, in
9 particular the intercommunication network.

1 24. (previously presented) A drive system according to Claim 23 wherein the
2 synchronisation control unit has the processor also provided with a second

3 communication interface and a drive communication module that can be coupled with it
4 and is designed for controlling a data and/or command flow via the second
5 communication interface with one of the drive networks.

1 25. (previously presented) A drive system according to Claim 24 wherein the
2 synchronisation control unit has a master axis module designed for access to the two
3 communication interfaces for the purpose of bidirectional data and/or command
4 interchange between two networks.

1 26. (currently amended) A drive system according to Claim 25 wherein the
2 synchronisation control unit has a processor also provided with a third communication
3 interface, with which the drive communication module and/or data distribution module
4 for organising a command and/or data flow between one of the drive and/or
5 intercommunication networks, on the one hand, and a further network, ~~in particular~~
6 control network with asynchronous data interchange, on the other hand, can be coupled.

1 27. (previously presented) A drive system according to Claim 26 wherein the
2 synchronisation control unit has a drive communication module designed for access to
3 the second and third communication interfaces for the purpose of bidirectional data
4 and/or command interchange between two networks.

1 28. (previously presented) A drive system according to Claim 26 wherein the
2 synchronisation control unit has a data distribution module designed for access to at least
3 two of the first, second and third communication interfaces for the purpose of
4 bidirectional data and/or command interchange between at least two of the different
5 networks.

1 29. (previously presented) A drive system according to Claim 28 wherein the
2 synchronisation control unit has a processor provided with one or more modules that
3 regulate and/or control the first, second and third communication interfaces, for
4 communication management via these communication interfaces.

1 30. (previously presented) A drive system according to Claim 29 wherein the
2 synchronisation control unit has a data distribution module which comprises filtering or
3 other processing functions for data and commands from at least one communication
4 interface for at least one other communication interface.

1 31. (new) An electrical drive system for the synchronized adjustment of the position,
2 speed or acceleration of a plurality of movable, functional parts of devices and machines,
3 the system comprising:
4 (a) a plurality of drive units each connected to one or more of the functional parts
5 for said adjustment under computer assisted control;

Best Available Copy

- 6 (b) a plurality of drive networks, each drive network having a plurality of the
7 drive units as network nodes, each drive network allocated to a group of the
8 functional parts, the nodes of at least one of the drive networks connected together
9 for communication between the nodes;
10 (c) a plurality of intercommunication networks for synchronizing the drive units
11 of different drive networks, each intercommunication network connecting a node
12 of a drive network with a node of another drive network; and
13 (d) a multi-link controller having a plurality of communication components, each
14 communication component being a node of one of the intercommunication
15 networks for coupling the nodes of the intercommunication network.