Final

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise marked.

Problems

- 1. For two given languages A and B, define $A \diamond B = \{xy \mid x \in A \text{ and } y \in B \text{ and } |x| = |y|\}$. Prove that, if A and B are regular, then $A \diamond B$ is context-free. (Hint: construct a PDA where the stack is used to ensure that x and y are of equal length.)
- 2. Give a formal description of a (single-tape deterministic) Turing machine that decides the language $\{1^k \# 1^{k^2} \mid k \geq 1\}$.
- 3. Show that single-tape TMs that cannot write on the portion of the tape containing the input string recognize only regular languages.
- 4. A useless state in a pushdown automaton is a state that is never entered on any input. Show the decidability of the problem of determining whether a given pushdown automaton has a useless state.
- 5. Let $CONTAIN_{PDA_DFA} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ is a PDA and } M_2 \text{ is a DFA such that } L(M_1) \subseteq (M_2)\}$. Show that $CONTAIN_{PDA_DFA}$ is decidable.
- 6. Let $CONTAIN_{DFA_PDA} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ is a DFA and } M_2 \text{ is a PDA such that } L(M_1) \subseteq (M_2)\}$. Show that $CONTAIN_{DFA_PDA}$ is undecidable.
- 7. If A is reducible to B and B is a regular language, does that imply that A is a regular language? Why or why not?
- 8. Discuss the applicability of Rice's Theorem for each of the following problems (languages). Please give the reasons why or why not.
 - (a) $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular}\}.$
 - (b) $UNCOUNTABLE_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is uncountable} \}.$
- 9. In the proof that the 3SAT problem is polynomially reducible to the $VERTEX_COVER$ problem, we convert an arbitrary boolean expression in 3CNF (input of the 3SAT problem) to an input graph of the $VERTEX_COVER$ problem.
 - (a) Please illustrate the conversion by drawing the graph that will be obtained from the following boolean expression:

$$(\overline{x} + y + z) \cdot (x + \overline{y} + \overline{z}) \cdot (x + y + \overline{z}).$$

- (b) The original boolean expression is satisfiable. As a demonstration of why the reduction is correct, please use the resulting graph to argue that it is indeed the case.
- 10. In the proof that the 3SAT problem is polynomially reducible to the $SUBSET_SUM$ problem, we convert an arbitrary boolean expression in 3CNF (input of the 3SAT problem) to a set of numbers and a target number as input of the $SUBSET_SUM$ problem.
 - (a) Please illustrate the conversion by giving the set of numbers and the target number that will be obtained from the following boolean expression:

$$(\overline{x} + y + z) \cdot (x + \overline{y} + \overline{z}) \cdot (x + y + \overline{z}).$$

(b) The original boolean expression is satisfiable. As a demonstration of why the reduction is correct, please use the resulting set of numbers and the target number to argue that it is indeed the case.

Appendix

• Given a language $L \subseteq \Sigma^*$, define a binary relation R_L over Σ^* as follows:

$$xR_Ly$$
 iff $\forall z \in \Sigma^* (xz \in L \leftrightarrow yz \in L)$

 R_L can be shown to be an equivalence relation.

(Myhill-Nerode Theorem) With R_L defined as above, the following are equivalent:

- 1. L is regular.
- 2. R_L is of finite index.

Moreover, the index of R_L equals the number of states in the smallest DFA that recognizes L.

Note: the index of an equivalence relation is the number of equivalence classes it induces.

- $ALL_{CFG} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \Sigma^* \}$. ALL_{CFG} is undecidable.
- (Rice's Theorem) Any problem P about Turing machines satisfying the following two conditions is undecidable:
 - 1. For any TMs M_1 and M_2 , where $L(M_1) = L(M_2)$, we have $\langle M_1 \rangle \in P$ iff $\langle M_2 \rangle \in P$.
 - 2. P is nontrivial, i.e., there exist TMs M_1 and M_2 such that $\langle M_1 \rangle \in P$ and $\langle M_2 \rangle \notin P$.
- Language A is **mapping reducible** (many-one reducible) to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

- $A \leq_m B$ is equivalent to $\overline{A} \leq_m \overline{B}$.
- $3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3CNF-formula} \}$. (A 3CNF-formula is a CNF-formula where all the clauses have three literals.) 3SAT is NP-complete.
- $VERTEX_COVER = \{ \langle G, k \rangle \mid G \text{ is an undirected graph that has a } k\text{-node vertex cover} \}$. (A $vertex\ cover$ of an undirected graph G is a subset of the nodes where every edge of G touches one of those nodes.) $VERTEX_COVER$ is NP-complete.
- $SUBSET_SUM = \{\langle S, t \rangle \mid S = \{x_1, \dots, x_k\} \text{ and for some } \{y_1, \dots, y_l\} \subseteq S$, we have $\sum y_i = t\}$. $SUBSET_SUM$ is NP-complete.