ensayo1

September 18, 2015

1 Análisis de los datos obtenidos

Uso de ipython para el análsis y muestra de los datos obtenidos durante la producción. Se implementa un regulador experto. Los datos analizados son del día 11 de Agosto del 2015

Los datos del experimento: * Duración 30min * Filamento extruido: 537cm * T: 150°C * $V_{min}tractora$: 1.5mm/s * $V_{max}tractora$: 3.4mm/s * Los incrementos de velocidades en las reglas del sistema experto son las mismas.

```
In [16]: #Importamos las librerías utilizadas
         import numpy as np
         import pandas as pd
         import seaborn as sns
In [17]: #Mostramos las versiones usadas de cada librerías
         print ("Numpy v{}".format(np.__version__))
         print ("Pandas v{}".format(pd.__version__))
         print ("Seaborn v{}".format(sns.__version__))
Numpy v1.9.2
Pandas v0.16.2
Seaborn v0.6.0
In [18]: #Abrimos el fichero csv con los datos de la muestra
         datos = pd.read_csv('ensayo1.CSV')
In [19]: %pylab inline
Populating the interactive namespace from numpy and matplotlib
WARNING: pylab import has clobbered these variables: ['box']
'%matplotlib' prevents importing * from pylab and numpy
In [20]: #Almacenamos en una lista las columnas del fichero con las que vamos a trabajar
         columns = ['Diametro X', 'RPM TRAC']
In [21]: #Mostramos un resumen de los datos obtenidoss
         datos[columns].describe()
         #datos.describe().loc['mean',['Diametro X [mm]', 'Diametro Y [mm]']]
Out[21]:
                                RPM TRAC
                 Diametro X
         count 1526.000000 1526.000000
                   1.721607
                                2.363879
         mean
                   0.299929
                                0.909141
         std
                                1.497500
         min
                   1.206868
         25%
                   1.482145
                                1.497500
         50%
                   1.631253
                                2.165000
         75%
                   1.986820
                                3.500000
                   2.560314
                                3.500000
         max
```

Representamos ambos diámetro y la velocidad de la tractora en la misma gráfica

Out[22]: <matplotlib.text.Text at 0x8b1f4d0>

Out[23]: <matplotlib.patches.Polygon at 0x8d3ef50>

En el boxplot, se ve como la mayoría de los datos están por encima de la media (primer cuartil). Se va a tratar de bajar ese porcentaje. La primera aproximación que vamos a realizar será la de hacer mayores incrementos al subir la velocidad en los tramos que el diámetro se encuentre entre 1.80mm y 1.75mm(caso 5) haremos incrementos de d_v*2 en lugar de d_v*1

Comparativa de Diametro X frente a Diametro Y para ver el ratio del filamento

In [24]: plt.scatter(x=datos['Diametro X'], y=datos['Diametro Y'], marker='.')

Out[24]: <matplotlib.collections.PathCollection at 0x8bd7e50>

2 Filtrado de datos

Las muestras tomadas $d_x>=0.9$ or $d_y>=0.9$ las asumimos como error del sensor, por ello las filtramos de las muestras tomadas.

```
In [25]: datos_filtrados = datos[(datos['Diametro X'] >= 0.9) & (datos['Diametro Y'] >= 0.9)]
In [26]: #datos_filtrados.ix[:, "Diametro X":"Diametro Y"].boxplot(return_type='axes')
```

2.1 Representación de X/Y

```
In [27]: plt.scatter(x=datos_filtrados['Diametro X'], y=datos_filtrados['Diametro Y'], marker='.')
Out[27]: <matplotlib.collections.PathCollection at 0x8c243d0>
```


3 Analizamos datos del ratio

```
50% 0.999491
75% 1.077269
max 1.655858
dtype: float64
```

In [29]: rolling_mean = pd.rolling_mean(ratio, 50)
 rolling_std = pd.rolling_std(ratio, 50)
 rolling_mean.plot(figsize=(12,6))
 # plt.fill_between(ratio, y1=rolling_mean+rolling_std, y2=rolling_mean-rolling_std, alpha=0.5)
 ratio.plot(figsize=(12,6), alpha=0.6, ylim=(0.5,1.5))

Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x8dcbd50>

4 Límites de calidad

Calculamos el número de veces que traspasamos unos límites de calidad. $Th^+ = 1.85$ and $Th^- = 1.65$

Out[32]:		Tmp Husillo	Tmp Nozzle	Diametro X	Diametro Y	MARCHA	PARO	\
	count	1469.000000	1469.000000	1469.000000	1469.000000	1469	1469	
	mean	63.554323	151.313070	1.721209	1.706638	1	1	
	std	0.279066	0.864951	0.305449	0.297587	0	0	
	min	63.200000	149.500000	1.206868	1.195617	True	True	
	25%	63.400000	150.600000	1.470675	1.471450	1	1	
	50%	63.500000	151.300000	1.619783	1.609366	1	1	
	75%	63.600000	151.900000	1.998289	1.954157	1	1	

max	64.4000	00 153.200000	2.560314	2.609260	True	True
	RPM EXTR	RPM TRAC				
count	1469	1469.000000				
mean	0	2.356450				
std	0	0.913973				
min	0	1.497500				
25%	0	1.497500				
50%	0	1.942500				
75%	0	3.500000				

In [33]: data_violations.plot(subplots=True, figsize=(12,12))

3.500000

0

max

In []: