STAT 339: Statistical Theory

Bayesian Parameter Estimation

Anthony Scotina

Bayes' Rule (for events)

Theorem (Bayes' Rule)

For events A and B,

$$P(B \mid A) = rac{P(A \cap B)}{P(A)} = rac{P(A \mid B)P(B)}{P(A)},$$

where by the Law of Total Probability,

$$P(A) = P(A \mid B)P(B) + P(A \mid B^{c})P(B^{c}).$$

Real or Fake News?

From Bayes Rules! by Johnson, Ott, and Dogucu:

Is the article fake or not?!

In a sample of n=150 articles posted on Facebook and fact-checked...

- 60% are real: P(B) = 0.6
- **40%** are fake: $P(B^c) = 0.4$

These are **prior probabilities**. They suggest that, assuming the sample is representative, incoming articles are most likely real.

- 2.22% of real news titles (2 of 90) used an exclamation point: $P(A \mid B) = 0.0222$
- 26.67% of fake news titles (16 of 60) used an exclamation point: $P(A \mid B^c) = 0.2667$

The data suggest that exclamation points are more consistent with fake news titles.

Real or Fake News?

Using Bayes' Rule, we can calculate the posterior probability of whether an article is real:

$$P(B \mid A) = rac{P(A \mid B)P(B)}{P(A)}$$

$$= rac{P(A \mid B)P(B)}{P(A \mid B)P(B) + P(A \mid B^c)P(B^c)}$$

$$= rac{0.0222 \times 0.6}{0.0222 \times 0.6 + 0.2667 \times 0.4}$$

$$= 0.111$$

Thus, after balancing our prior information and the information present in the data, we have developed a posterior understanding of whether an article is real.

• Equivalently, there is a ~89% posterior probability that an article is fake, given the presence of an exclamation point in the title.

Bayesian Estimation

We will still refer to θ as the target parameter of interest.

• But in Bayesian parameter estimation, we treat θ as a random variable, rather than a fixed value. That is, θ is still unknown, but it can vary or fluctuate over time.

We can still use Bayes' Rule to evaluate distributions of θ , given the observed data:

$$f(\theta \mid \mathbf{y}) = rac{f(\mathbf{y} \mid heta)f(heta)}{f(\mathbf{y})},$$

where $\mathbf{y}=(y_1,\ldots,y_n)$ and $f(\mathbf{y})=\int_{-\infty}^{\infty}f(\mathbf{y}\mid\theta)f(\theta)\,d\theta.$

- $f(\theta)$ is the prior distribution PDF of a parameter before observing any data.
- $f(y \mid \theta)$ is the likelihood function, which gives the relative likelihood of observing data y under different values of θ .
- $f(\theta \mid \mathbf{y})$ is the **posterior distribution** PDF of the parameter, given the observed data.

Animal Crossing!

Suppose a group of college students are interested in starting an Animal Crossing club.

• In order to estimate demand, the students want to estimate θ , the proportion of students who play Animal Crossing.

Based on anecdotal evidence, the students think that θ could reasonably range from 0.1 to 0.25.

• Though in reality, θ could be any value between 0 and 1.

How might we model our **prior** understanding of the parameter, θ ?

Prior Distribution

If we treat θ as random, then the distribution that one assigns to θ before observing any data is called the **prior distribution**.

• In the Animal Crossing example, because θ can be any number between 0 and 1, what might be a suitable prior distribution?

It is reasonable to use a **Beta prior** here. That is:

- $\theta \sim Beta(\alpha, \beta)$
 - \circ In a prior model, lpha and eta are called **hyperparameters**.

$$ullet f(heta) = rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)} heta^{lpha-1} (1- heta)^{eta-1}, \quad 0 \leq heta \leq 1$$

 \circ This PDF can tell us which values of θ are more plausible than others.

Assuming the α and β hyperparameters are fixed values, we can **tune** them to reflect our prior understanding about Animal Crossing popularity among students.

Prior Distribution

Let's work with the Beta(10,40) prior. That is:

- $\theta \sim Beta(10,40)$
 - $\circ E(\theta) = 0.2$

$$\circ Var(\theta) = 0.003 \implies SD(\theta) = 0.056$$

•
$$f(heta) = rac{\Gamma(50)}{\Gamma(10)\Gamma(40)} heta^9 (1- heta)^{39}, \quad 0 \leq heta \leq 1$$

- This distribution represents our prior assumptions about the possible proportion of students who play Animal Crossing.
 - It tends to deviate by ~6% from the prior mean of 20%.

The Data Model

In the next step of our Bayesian analysis, we're ready to collect some data!

- ullet We'll take a random sample of n=30 students, and let Y denote the number that play Animal Crossing.
- Note: The data, Y, depend on θ ; the greater the actual proportion of students who play Animal Crossing, the greater Y will be.

Assumptions:

- Students are sampled independently from one another.
- The probability that any student plays Animal Crossing is fixed at θ .

A reasonable model for the data, Y, conditional on θ , is:

- $Y \mid \theta \sim Binomial(30, \theta)$
- $f(y \mid \theta) = P(Y = y \mid \theta) = {30 \choose y} \theta^y (1 \theta)^{30 y}, \quad y = 0, 1, \dots, 30$

The Data Model

The likelihood, $f(y \mid \theta)$, provides the probability of obtaining certain values of Y, if the proportion of students who play Animal Crossing were some given value of θ .

- If θ is low, then Y is more likely to be low.
- If θ is high, then Y is more likely to be high.

Suppose, in reality, we observe that Y=12. That is, in our sample of 30 randomly selected students, 40% play Animal Crossing!

•
$$P(Y = 12 \mid \theta = 0.4) = \binom{30}{12} 0.4^{12} (1 - 0.4)^{18} \approx 0.147$$

Summary (so far)

Let's recap what we have so far:

- $heta \sim Beta(10,40)$ is our prior distribution for heta
- ullet $Y \mid heta \sim Binomial(30, heta)$ is the distribution for our <code>data</code>, Y, given heta

The prior and data aren't in perfect agreement!

- The prior generally assumes fewer students play Animal Crossing than the data suggest.
 - That doesn't make the prior wrong!!!

Posterior Distribution

The prior and data are both valuable to Bayesians.

• The posterior distribution will combine information from the prior and data.

It turns out...

- $\theta \mid Y \sim Beta(22,58)$ is the posterior distribution of θ , given Y.
 - \circ This is the updated distribution of θ that combines information from the prior and data.

Deriving the Posterior

We have:

- $\theta \sim Beta(10,40)$
- $Y \mid \theta \sim Binomial(30, \theta)$

We can derive the posterior distribution using Bayes' Rule...

$$egin{align} f(heta \mid y) &= rac{f(y \mid heta)f(heta)}{f(y)} \ &= rac{\left(inom{30}{12} heta^{12}(1- heta)^{18}
ight)\left(rac{\Gamma(50)}{\Gamma(10)\Gamma(40)} heta^{9}(1- heta)^{39}
ight)}{f(y)} \ &\propto heta^{21}(1- heta)^{57} \ \end{cases}$$

This is the kernel of a Beta(22,58) distribution!

• The remaining "stuff" that doesn't depend on θ is lumped into a normalizing constant so that $f(\theta \mid y)$ integrates to 1.

Flat (Uniform) Prior

Suppose we had absolutely no idea how many students played Animal Crossing.

• It wouldn't really make sense to assign any particular $Beta(\alpha,\beta)$ distribution. How would we even know what to choose for α and β ?

We could choose to assign a uniform, or flat prior to θ (which is technically a Beta(1, 1)). That is, let's assume the following hierarchy:

$$ullet \ heta \sim Uniform(0,1) \implies f(heta) = 1, \quad 0 \leq heta \leq 1$$

• $Y \mid \theta \sim Binomial(30, \theta)$

Other Beta Priors

Maybe instead of a uniform prior, we assign a different prior with more variability but higher mean:

- $\theta \sim Beta(1,4)$
- $Y \mid \theta \sim Binomial(30, \theta)$

The Beta Binomial Model

We just worked with the beta-binomial Bayesian model! In general...

- Prior: $\theta \sim Beta(\alpha, \beta)$
- Likelihood: $Y \mid \theta \sim Binomial(n, \theta)$
- Posterior: $\theta \mid Y \sim Beta(\alpha + y, \beta + n y)$

This model is very useful when:

- The parameter of interest, heta, is a number between 0 and 1.
- The data, Y, represents the number of "successes" in n independent Bernoulli trials.

Sequential Observations

Suppose that, in the previous example, we didn't observe all n=30 observations at once.

• Rather, we observed 10 observations each day, for three days.

We still assume the following:

- Prior: $\theta \sim Beta(10,40)$
- Likelihood: $Y \mid \theta \sim Binomial(n, \theta)$

But now, we observe the following data over three days:

- Day 1: n=10, Y=7 play Animal Crossing
- Day 2: n=5, Y=1 play Animal Crossing
- ullet Day 3: n=15, Y=4 play Animal Crossing

Each day, our understanding of heta evolves, conditional on the previous day(s)!

Sequential Observations

Using the general Beta-Binomial model from a previous slide, we can obtain the posterior for $\theta \mid Y$ after Day 1:

- Prior: $heta \sim Beta(10,40)$
- ullet Likelihood: $Y \mid heta \sim Binomial(10, heta)$; we observe Y = 7 students who play AC
- Posterior: $\theta \mid Y \sim Beta(10+7,40+10-7)$

Sequential Observations

Each day, we update the posterior by essentially treating the previous posterior as a new prior.

In other words,

$$f(heta \mid y_2) = rac{f(y_2 \mid heta)f(heta \mid y_1)}{f(y_2)} = rac{f(y_2 \mid heta)\left[rac{f(y_1 \mid heta)f(heta)}{f(y_2)}
ight]}{f(y_2)}.$$

Example

Suppose we want to estimate the lifetime (in hours), θ , of a certain electrical component.

Consider the following:

• Prior: $\theta \sim Gamma(\alpha, \beta)$, where

$$f(heta) = rac{eta^lpha}{\Gamma(lpha)} heta^{lpha-1} e^{-eta heta}$$

ullet Likelihood: $Y_1,Y_2,\ldots,Y_n\mid heta \sim Exponential(heta)$, where

$$f(y_i \mid heta) = heta e^{-eta heta}$$

Let's derive the **posterior distribution**, $\theta \mid \mathbf{Y}$.

Conjugate Priors

Revisiting the Beta-Binomial

- Prior: $\theta \sim Beta(\alpha, \beta)$
- Likelihood (Data): $Y \mid \theta \sim Binomial(n, \theta)$
- Posterior: $\theta \mid Y \sim Beta(\alpha + y, \beta + n y)$

What's so great about this?!

- It's fairly simple to compute and work with.
- Interpretability
 - Posterior distribution can be understood as a balance between the data and prior models.

Conjugate Families

The beta-binomial Bayesian model is also a conjugate family.

Suppose that...

- ullet The prior model for heta has PDF f(heta)
- The data model for Y_1,\ldots,Y_n conditional on θ has likelihood function $f(\mathbf{y}\mid\theta)$.

If the resulting posterior model with PDF $f(\theta \mid \mathbf{y}) \propto f(\mathbf{y} \mid \theta) f(\theta)$ is of the same model family as the prior, then the prior is a **conjugate prior**.

We've already seen some examples!

- Prior: beta; Data: binomial; Posterior: beta
- Prior: gamma; Data: exponential; Posterior: gamma

These are wayyyyy simpler to work with than non-conjugate priors! For example...

A Non-Conjugate Prior

Suppose we still want to estimate the **proportion**, θ , of college students who play Animal Crossing.

ullet We still model the data Y, conditional on heta, as $Y \mid heta \sim Binomial(n, heta)$.

However, instead of $heta \sim Beta$, we choose a different probability distribution:

$$f(heta) = (3/2) heta^2 + heta, \quad 0 \le heta \le 1$$

•

• We can use Bayes' Rule to derive the posterior distribution, but it's not fun!

Non-Conjugate Priors

Recap:

- The calculation of the posterior was not easy!
 - As such, it's more challenging to develop an understanding of the posterior as a balance between the prior and data models.
- Because the posterior PDF is messy, it's more challenging to derive a posterior mean, mode, etc. (more on this in a bit!)

We could just use a conjugate beta prior!

Back to Piéchart Emporium

Piéchart Emperium

Model rate λ , the typical number of customers at Pié Emporium on weekday afternoons.

Prior to collecting data, I'm guessing that the rate λ could be anywhere between 3 to 9 customers. Because it's the place to be. \bigcirc

• To learn more, I record the number of weekday afternoon customers on each of n days, Y_1, Y_2, \ldots, Y_n .

Why shouldn't we model the data with a binomial distribution?.

Why shouldn't we use a **beta prior** for λ ?

Potential Data Models

Each data point, Y_i , is a **count** representing the number of customers observed on a given weekday afternoon.

• Y_i can range from ${ t O}$ to something very large.

The Poisson distribution is useful for modeling the data, Y_i , conditional on λ :

- $Y_i \mid \lambda \sim Poisson(\lambda)$
- $ullet f(y_i \mid \lambda) = rac{\lambda^{y_i} e^{-\lambda}}{y_i!}, \quad y = 0, 1, 2, \ldots$

Potential Priors

The rate parameter, λ , represents the typical number of customers on a weekday afternoon.

ullet λ is positive and continuous.

There are a few distributions that satisfy this property (i.e., continuous with support > 0).

• But let's try to choose a useful *conjugate* prior to use with the Poisson data model.

A Gamma prior for λ would work here! (trust me)

- $\lambda \sim Gamma(\alpha, \beta)$
- $f(\lambda)=rac{eta^{lpha}}{\Gamma(lpha)}\lambda^{lpha-1}e^{-eta\lambda}, \quad \lambda>0$

Gamma-Poisson Conjugacy (aka "The Logo")

Let $\lambda>0$ be an unknown rate parameter and (Y_1,Y_2,\ldots,Y_n) be iid Poisson(λ) observations. In other words:

- $Y_i \mid \lambda \sim iid\ Poisson(\lambda)$
- $\lambda \sim Gamma(\alpha, \beta)$

Upon observing the data $\mathbf{y}=(y_1,y_2,\ldots,y_n)$, the posterior distribution for λ also follows a Gamma distribution with updated parameters:

• $\lambda \mid \mathbf{y} \sim Gamma(\alpha + \sum_{i=1}^{n} y_i, \beta + n)$

Tuning the Prior

While we originally derived the Gamma-Poisson conjugacy in general terms, let's tune our Gamma prior to reflect our prior beliefs about weekday afternoon customers:

I'm guessing that the rate λ could be anywhere between 3 to 9 customers.

If $\lambda \sim Gamma(lpha,eta)$, then:

- $E(\lambda) = \alpha \beta$
- $Var(\lambda) = \alpha \beta^2$

Let's try to choose lpha and eta such that $E(\lambda) pprox 5$ and $Var(\lambda) pprox 3$

Tuning the Prior

A Gamma(5, 1) prior could also work:

bayesrules::plot_gamma(shape = 5, rate = 1)

Tuning the Prior

A Gamma(10, 2) prior (where 2 is the rate parameter*) could also work:

bayesrules::plot_gamma(shape = 10, rate = 2)

Tuning the Prior

Maybe a Gamma(20, 3) prior?

bayesrules::plot_gamma(shape = 20, rate = 3)

Onto the DATA

Let's stick with $\lambda \sim Gamma(20,33)$.

Now suppose we record the number of customers for five weekday afternoons:

- $(Y_1 = 2, Y_2 = 5, Y_3 = 4, Y_4 = 2, Y_5 = 5)$
- ullet In other words: n=5 and $\sum_{i=1}^5 y_i=18$

That means $\lambda \mid \mathbf{y} \sim Gamma(20+18,3+5)!$

Gamma-Poisson Conjugacy (aka "The Logo")

 $\lambda \mid \mathbf{y} \sim Gamma(20+18,3+5)$

bayesrules::plot_gamma_poisson(shape = 20, rate = 3, sum_y = 18, n = 5)

Gamma-Poisson Conjugacy (aka "The Logo")

 $\lambda \mid \mathbf{y} \sim Gamma(20+18,3+5)$

Critiques of Conjugate Familes

Conjugate families can be very **convenient** to work with, but they are not without their limitations!

- Sometimes a conjugate prior is simply not as appropriate as a non-conjugate prior.
 - Maybe the best fit for our prior understanding isn't a Gamma or Beta model...
- We cannot always choose a flat prior in a conjugate family.
 - Because Uniform(0, 1) = Beta(1, 1), a uniform prior is conjugate if the data are modeled with a binomial distribution.
 - But a Uniform(0, 1) isn't conjugate if the data are modeled with a Poisson distribution!
 - One potential workaround could be to just choose a non-uniform prior with high variance...

Improper Priors

If we can't use a **flat prior** in a conjugate family, we could also use an **improper prior**.

• An improper prior distribution (like flat priors) capture the idea that the data are worth more than our prior understanding.

An improper prior has a PDF that does not integrate to 1. In other words, we are using an improper prior for θ if

$$\int_{ heta} p(heta) d heta = \infty.$$

- Usually we can obtain an improper prior by replacing a conjugate prior's hyperparameter(s) with 0.
- Beta(0, 0), Gamma(0, 0), Normal(μ , $\sigma^2 = \infty$)

Improper Gamma Prior

Suppose in our Piéchart Emporium customer example, we obtain customer counts on n=150 days, where $\sum_{i=1}^{150}y_i=1100$.

- If we model $Y_1, \ldots, Y_{150} \mid \lambda$ using a Poisson(λ) distribution, the Gamma(α , β) is a conjugate prior.
- ullet We could also use an **improper** Gamma(0, 0) prior, with "pdf" $f(\lambda)=\lambda^{-1}$

We can apply Bayes' Rule and obtain:

$$f(\lambda \mid \mathbf{y}) \propto f(\mathbf{y} \mid \lambda) f(\lambda) \ = Gamma(n, \sum_i y_i)$$

Bayes Estimators

Estimating θ

Recall: Rather than treat the parameter θ as a fixed value, a Bayesian framework assumes that θ is a random variable with a probability distribution.

• How can we estimate θ in a Bayesian framework?

In the **Animal Crossing** example, we used the following model:

- $\theta \sim Beta(10, 40)$
 - This distribution represents our prior assumptions about the possible proportion of students who play Animal Crossing.
- $Y \mid \theta \sim Binomial(30, \theta)$
 - This is the distribution for our data (the number of students in our sample who play AC), Y, given θ .
 - $\circ~$ In our sample of n=30, Y=12 students played AC.

Estimating θ

- $\theta \sim Beta(10,40)$
- $Y \mid \theta \sim Binomial(30, \theta)$

Because this is a **conjugate family**, we derived the following posterior distribution for $\theta \mid Y$:

$$\theta \mid Y \sim Beta(10+12,40+30-12)$$

• What metric(s) can we use to summarize $\theta \mid Y$?

Bayes Estimator

While there are many different types of Bayes estimators for θ , we will use the posterior expected value:

Let Y_1,Y_2,\ldots,Y_n be a random sample with likelihood function $f(\mathbf{y}\mid\theta)$, and let θ have prior density $f(\theta)$. The posterior Bayes estimator for θ is given by

$$\hat{ heta}_B = E(heta \mid \mathbf{Y})$$

Example

In the Animal Crossing Example, our posterior distribution for $heta \mid Y$ was

$$\theta \mid Y \sim Beta(22, 58)$$
.

ullet Therefore, $\hat{ heta}_B = E(heta \mid Y) = 22/(22+58) = 0.275.$

Bayes Estimator for Beta-Binomial

In general, the Beta-Binomial model consists of the following:

- $\theta \sim Beta(\alpha, \beta)$
- $Y \mid \theta \sim Binomial(n, \theta)$
- $\theta \mid Y \sim Beta(\alpha + y, \beta + n y)$

Therefore the Bayes estimator (posterior expected value), $\hat{ heta}_B$ is:

$$\hat{ heta}_B = E(heta \mid Y = y) = rac{lpha + y}{lpha + eta + n}$$

Posterior as a Balance

A great thing about Bayesian estimation (especially when working with conjugate families) is that we can think of the posterior distribution as a balance between the data and prior.

Posterior as a Balance

A great thing about Bayesian estimation (especially when working with conjugate families) is that we can think of the posterior distribution as a balance between the data and prior.

But let's see what is going on with the expected value of θ ...

•
$$\theta \sim Beta(\alpha, \beta) \implies E(\theta) = \frac{\alpha}{\alpha + \beta}$$

•
$$\theta \mid Y \sim Beta(\alpha + y, \beta + n - y) \implies E(\theta \mid Y) = \frac{\alpha + y}{\alpha + \beta + n}$$

The posterior mean is actually a weighted average between the prior and data!

In the Animal Crossing example...

- $\theta \sim Beta(10, 40) \implies E(\theta) = 0.2$
- ullet Y=12 out of n=30 (40% of sample plays Animal Crossing)

•
$$\theta \mid Y \sim Beta(22, 58) \implies E(\theta \mid Y) = 0.275$$

Sensitivity of Estimators

How sensitive are our results to different priors?

 $\bullet\,$ Either way, we observe Y=12 Animal Crossing players out of 30, but let's play with different priors.

Functions of θ

We can also derive Bayes estimators for functions of θ .

Example: Using the Beta-Binomial conjugate family, find the Bayes estimator for $\theta(1-\theta)$.

• Note: heta(1- heta) is the variance of a Bernoulli RV with "success" probability heta.

In general we can calculate

$$\widehat{\theta(1-\theta)}_B = E(\theta(1-\theta) \mid Y)$$

using the fact that $heta \mid Y \sim Beta(\alpha + y, \beta + n - y)$.

Posterior Median

While the posterior mean generally provides a solid summary metric for $\theta \mid Y$, other Bayes estimators exist!

• For example, we could calculate the posterior median.

The posterior median isn't as straightforward to calculate as the posterior mean, but we could estimate it via simulation.

• If $heta \mid Y \sim Beta(22,58)$, we can estimate the posterior median with R:

```
median(
  rbeta(n = 10000, shape1 = 22, shape2 = 58)
)
```

• Or we could just find it exactly:

[1] 0.2737252

```
qbeta(0.5, shape1 = 22, shape2 = 58)
## [1] 0.2731171
```

Gamma-Poisson Bayes Estimator

The Gamma-Poisson conjugate family:

- $\theta \sim Gamma(\alpha, \beta)$
 - $\circ~$ Using the alternate version of the Gamma PDF where E(heta) = lpha/eta
- $\mathbf{Y} \mid \theta \sim Poisson(\theta)$
- $\theta \mid \mathbf{Y} \sim Gamma(\alpha + \sum_i y_i, \beta + n)$
 - What is the **Bayes estimator** for θ ? \ref{gain}