```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
# Input data files are available in the "../input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter)
will list the files in the input directory
import os
print(os.listdir())
# Any results you write to the current directory are saved as output.
from pandas import read csv
#Lets load the dataset and sample some
column_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE',
'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
data = read csv('/content/housing.csv', header=None, delimiter=r"\s+",
names=column names)
print(data.head(5))
['.config', 'housing.csv', 'sample data']
             ZN INDUS CHAS
                              NOX
                                       RM
                                             AGE
                                                     DIS
                                                          RAD
                                                                 TAX
      CRIM
  0.00632 18.0
                  2.31
                              0.538 6.575
                                            65.2 4.0900
                                                               296.0
                                                            1
1 0.02731
           0.0 7.07
                           0
                              0.469 6.421 78.9 4.9671
                                                               242.0
                                                            2
2 0.02729
            0.0
                  7.07
                              0.469 7.185 61.1 4.9671
                                                               242.0
3 0.03237
            0.0
                  2.18
                              0.458 6.998 45.8 6.0622
                                                            3
                                                               222.0
                           0
4 0.06905
            0.0
                  2.18
                           0 0.458 7.147 54.2 6.0622
                                                               222.0
   PTRATIO
                   LSTAT
                          MEDV
                В
                          24.0
0
      15.3
           396.90
                    4.98
1
      17.8
           396.90
                    9.14
                          21.6
2
      17.8
           392.83
                    4.03
                          34.7
3
           394.63
      18.7
                    2.94
                         33.4
      18.7 396.90
                    5.33 36.2
# Dimension of the dataset
print(np.shape(data))
(506, 14)
# Let's summarize the data to see the distribution of data
print(data.describe())
             CRIM
                          ΖN
                                   INDUS
                                                CHAS
                                                             NOX
RM \
      506.000000 506.000000
                              506.000000 506.000000 506.000000
count
506.000000
```

mean 6.284634 std 0.702617 min 3.561000 25% 5.885500 50%	3.613524	11.363636	11.136779	0.069170	0.554695
	8.601545	23.322453	6.860353	0.253994	0.115878
	0.006320	0.000000	0.460000	0.000000	0.385000
	0.082045	0.000000	5.190000	0.000000	0.449000
	0.256510	0.000000	9.690000	0.000000	0.538000
6.208500 75%	3.677083	12.500000	18.100000	0.000000	0.624000
	88.976200	100.000000	27.740000	1.000000	0.871000
8.780000					
	AGE	DIS	RAD	TAX	PTRATIO
B \ count 50 506.0000	06.000000	506.000000	506.000000	506.000000	506.000000
	68.574901	3.795043	9.549407	408.237154	18.455534
	28.148861	2.105710	8.707259	168.537116	2.164946
min 0.320000	2.900000	1.129600	1.000000	187.000000	12.600000
	45.025000	2.100175	4.000000	279.000000	17.400000
	77.500000	3.207450	5.000000	330.000000	19.050000
	94.075000	5.188425	24.000000	666.000000	20.200000
	90.000000	12.126500	24.000000	711.000000	22.000000
mean std min 25% 50% 75%	LSTAT 06.000000 12.653063 7.141062 1.730000 6.950000 11.360000 16.955000 37.970000	MEDV 506.000000 22.532806 9.197104 5.000000 17.025000 21.200000 25.000000 50.000000			

From get-go, two data coulmns show interesting summeries. They are: ZN (proportion of residential land zoned for lots over 25,000 sq.ft.) with 0 for 25th, 50th percentiles. Second, CHAS: Charles River dummy variable (1 if tract bounds river; 0 otherwise) with 0 for 25th, 50th and 75th percentiles. These summeries are understandable as both variables are conditional + categorical variables. First assumption would be that these coulms may not be useful in regression task such as predicting MEDV (Median value of owner-occupied homes).

Another interesing fact on the dataset is the max value of MEDV. From the original data description, it says: Variable #14 seems to be censored at 50.00 (corresponding to a median price of \$50,000). Based on that, values above 50.00 may not help to predict MEDV. Let's plot the dataset and see interesting trends/stats.

```
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats

fig, axs = plt.subplots(ncols=7, nrows=2, figsize=(20, 10))
index = 0
axs = axs.flatten()
for k,v in data.items():
    sns.boxplot(y=k, data=data, ax=axs[index])
    index += 1
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=5.0)
```

Columns like CRIM, ZN, RM, B seems to have outliers. Let's see the outliers percentage in every column.

```
for k, v in data.items():
    q1 = v.quantile(0.25)
    q3 = v.quantile(0.75)
    irq = q3 - q1
    v_col = v[(v <= q1 - 1.5 * irq) | (v >= q3 + 1.5 * irq)]
    perc = np.shape(v_col)[0] * 100.0 / np.shape(data)[0]
    print("Column %s outliers = %.2f%%" % (k, perc))
```

```
Column CRIM outliers = 13.04%
Column ZN outliers = 0.00%
Column INDUS outliers = 0.00%
Column CHAS outliers = 100.00%
Column NOX outliers = 0.00%
Column RM outliers = 5.93%
Column AGE outliers = 0.00%
Column DIS outliers = 0.99%
Column RAD outliers = 0.00%
Column TAX outliers = 0.00%
Column TAX outliers = 2.96%
Column B outliers = 15.22%
Column LSTAT outliers = 1.38%
Column MEDV outliers = 7.91%
```

Let's remove MEDV outliers (MEDV = 50.0) before plotting more distributions

```
data = data[~(data['MEDV'] >= 50.0)]
print(np.shape(data))

(490, 14)
```

Let's see how these features plus MEDV distributions looks like

```
fig, axs = plt.subplots(ncols=7, nrows=2, figsize=(20, 10))
index = 0
axs = axs.flatten()
for k,v in data.items():
    sns.distplot(v, ax=axs[index])
    index += 1
plt.tight layout(pad=0.4, w pad=0.5, h pad=5.0)
<ipython-input-14-bb467ecc5f9e>:5: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
v0.14.0.
Please adapt your code to use either `displot` (a figure-level
function with
similar flexibility) or `histplot` (an axes-level function for
histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(v, ax=axs[index])
<ipython-input-14-bb467ecc5f9e>:5: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
v0.14.0.
```

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(v, ax=axs[index])
<ipython-input-14-bb467ecc5f9e>:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(v, ax=axs[index])
<ipython-input-14-bb467ecc5f9e>:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(v, ax=axs[index])
<ipython-input-14-bb467ecc5f9e>:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(v, ax=axs[index])
<ipython-input-14-bb467ecc5f9e>:5: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
v0.14.0.
Please adapt your code to use either `displot` (a figure-level
function with
similar flexibility) or `histplot` (an axes-level function for
histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(v, ax=axs[index])
<ipython-input-14-bb467ecc5f9e>:5: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
v0.14.0.
Please adapt your code to use either `displot` (a figure-level
function with
similar flexibility) or `histplot` (an axes-level function for
histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(v, ax=axs[index])
<ipython-input-14-bb467ecc5f9e>:5: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
v0.14.0.
Please adapt your code to use either `displot` (a figure-level
function with
similar flexibility) or `histplot` (an axes-level function for
histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(v, ax=axs[index])
<ipython-input-14-bb467ecc5f9e>:5: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
v0.14.0.
Please adapt your code to use either `displot` (a figure-level
function with
similar flexibility) or `histplot` (an axes-level function for
```

```
histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(v, ax=axs[index])
<ipython-input-14-bb467ecc5f9e>:5: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
v0.14.0.
Please adapt your code to use either `displot` (a figure-level
function with
similar flexibility) or `histplot` (an axes-level function for
histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(v, ax=axs[index])
<ipython-input-14-bb467ecc5f9e>:5: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
v0.14.0.
Please adapt your code to use either `displot` (a figure-level
function with
similar flexibility) or `histplot` (an axes-level function for
histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(v, ax=axs[index])
<ipython-input-14-bb467ecc5f9e>:5: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
v0.14.0.
Please adapt your code to use either `displot` (a figure-level
function with
similar flexibility) or `histplot` (an axes-level function for
histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(v, ax=axs[index])
<ipython-input-14-bb467ecc5f9e>:5: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
```

v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(v, ax=axs[index])
<ipython-input-14-bb467ecc5f9e>:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(v, ax=axs[index])

The histogram also shows that columns CRIM, ZN, B has highly skewed distributions. Also MEDV looks to have a normal distribution (the predictions) and other colums seem to have norma or bimodel ditribution of data except CHAS (which is a discrete variable).

Now let's plot the pairwise correlation on data.

```
plt.figure(figsize=(20, 10))
sns.heatmap(data.corr().abs(), annot=True)
<Axes: >
```


From correlation matrix, we see TAX and RAD are highly correlated features. The columns LSTAT, INDUS, RM, TAX, NOX, PTRAIO has a correlation score above 0.5 with MEDV which is a good indication of using as predictors. Let's plot these columns against MEDV.

```
from sklearn import preprocessing
# Let's scale the columns before plotting them against MEDV
min_max_scaler = preprocessing.MinMaxScaler()
column_sels = ['LSTAT', 'INDUS', 'NOX', 'PTRATIO', 'RM', 'TAX', 'DIS',
    'AGE']
x = data.loc[:,column_sels]
y = data['MEDV']
x = pd.DataFrame(data=min_max_scaler.fit_transform(x),
columns=column_sels)
fig, axs = plt.subplots(ncols=4, nrows=2, figsize=(20, 10))
index = 0
axs = axs.flatten()
for i, k in enumerate(column_sels):
    sns.regplot(y=y, x=x[k], ax=axs[i])
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=5.0)
```


So with these analsis, we may try predict MEDV with 'LSTAT', 'INDUS', 'NOX', 'PTRATIO', 'RM', 'TAX', 'DIS', 'AGE' features. Let's try to remove the skewness of the data trough log transformation.

```
y = np.log1p(y)
for col in x.columns:
    if np.abs(x[col].skew()) > 0.3:
        x[col] = np.log1p(x[col])
```

Let's try Linear, Ridge Regression on dataset first.

```
from sklearn import datasets, linear model
from sklearn.model selection import cross val score
from sklearn.model selection import KFold
import numpy as np
l regression = linear model.LinearRegression()
kf = KFold(n splits=10)
min max scaler = preprocessing.MinMaxScaler()
x scaled = min max scaler.fit transform(x)
scores = cross val score(l regression, x scaled, y, cv=kf,
scoring='neg mean squared error')
print("MSE: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std()))
scores map = \{\}
scores map['LinearRegression'] = scores
l ridge = linear model.Ridge()
scores = cross val score(l ridge, x scaled, y, cv=kf,
scoring='neg mean squared error')
scores map['Ridge'] = scores
```

```
print("MSE: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std()))
# Lets try polinomial regression with L2 with degree for the best fit
from sklearn.pipeline import make pipeline
from sklearn.preprocessing import PolynomialFeatures
#for degree in range(2, 6):
    model = make pipeline(PolynomialFeatures(degree=degree),
linear model.Ridge())
     scores = cross val score(model, x scaled, y, cv=kf,
scoring='neg mean squared error')
     print("MSE: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std()))
model = make pipeline(PolynomialFeatures(degree=3),
linear model.Ridge())
scores = cross val score(model, x scaled, y, cv=kf,
scoring='neg mean squared error')
scores map['PolyRidge'] = scores
print("MSE: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std()))
MSE: -0.04 (+/-0.04)
MSE: -0.04 (+/-0.04)
MSE: -0.03 (+/-0.03)
```

The Liner Regression with and without L2 regularization does not make significant difference is MSE score. However polynomial regression with degree=3 has a better MSE. Let's try some non prametric regression techniques: SVR with kernal rbf, DecisionTreeRegressor, KNeighborsRegressor etc.

```
from sklearn.svm import SVR
from sklearn.model selection import GridSearchCV
svr rbf = SVR(kernel='rbf', C=1e3, gamma=0.1)
#grid sv = GridSearchCV(svr rbf, cv=kf, param grid={"C": [1e0, 1e1,
1e2, 1e3], "gamma": np.logspace(-2, 2, 5)},
scoring='neg mean squared error')
#grid sv.fit(x scaled, v)
#print("Best classifier :", grid_sv.best_estimator_)
scores = cross val score(svr rbf, x scaled, y, cv=kf,
scoring='neg mean squared error')
scores_map['SVR'] = scores
print("MSE: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std()))
MSE: -0.04 (+/-0.03)
from sklearn.tree import DecisionTreeRegressor
desc tr = DecisionTreeRegressor(max depth=5)
#grid sv = GridSearchCV(desc tr, cv=kf, param grid={"max depth" : [1,
2, 3, 4, 5, 6, 7]}, scoring='neg mean squared error')
#grid sv.fit(x_scaled, y)
#print("Best classifier :", grid_sv.best_estimator_)
```

```
scores = cross val score(desc tr, x scaled, y, cv=kf,
scoring='neg mean squared error')
scores map['DecisionTreeRegressor'] = scores
print("MSE: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std()))
MSE: -0.05 (+/-0.04)
from sklearn.neighbors import KNeighborsRegressor
knn = KNeighborsRegressor(n neighbors=7)
scores = cross val score(knn, x scaled, y, cv=kf,
scoring='neg mean squared error')
scores map['KNeighborsRegressor'] = scores
#grid sv = GridSearchCV(knn, cv=kf, param grid={"n neighbors" : [2, 3,
4, 5, 6, 7]}, scoring='neg_mean_squared_error')
#grid_sv.fit(x_scaled, y)
#print("Best classifier :", grid sv.best estimator )
print("KNN Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(),
scores.std()))
KNN Accuracy: -0.04 (+/- 0.02)
```

Compared to three models which are shosen through grid search, SVR performes better. Let's try an ensemble method finally.

```
from sklearn.ensemble import GradientBoostingRegressor

gbr = GradientBoostingRegressor(alpha=0.9,learning_rate=0.05,
    max_depth=2, min_samples_leaf=5, min_samples_split=2,
    n_estimators=100, random_state=30)

#param_grid={'n_estimators':[100, 200], 'learning_rate':
    [0.1,0.05,0.02], 'max_depth':[2, 4,6], 'min_samples_leaf':[3,5,9]}

#grid_sv = GridSearchCV(gbr, cv=kf, param_grid=param_grid,
    scoring='neg_mean_squared_error')

#grid_sv.fit(x_scaled, y)

#print("Best classifier:", grid_sv.best_estimator_)

scores = cross_val_score(gbr, x_scaled, y, cv=kf,
    scoring='neg_mean_squared_error')

scores_map['GradientBoostingRegressor'] = scores
    print("MSE: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std()))

MSE: -0.03 (+/- 0.02)
```

Let's plot k-fold results to see which model has better distribution of results. Let's have a look at the MSE distribution of these models with k-fold=10

```
plt.figure(figsize=(20, 10))
scores_map = pd.DataFrame(scores_map)
sns.boxplot(data=scores_map)
```

<Axes: >

The models SVR and GradientBoostingRegressor show better performance with -11.62 (+/- 5.91) and -12.39 (+/- 5.86).

This is my first kernel and thanks to https://www.kaggle.com/vikrishnan for the dataset and the well written kernel that provdies great pointers into this dataset.