Project Euler #78: Coin partitions

This problem is a programming version of Problem 78 from projecteuler.net

Let p(n) represent the number of different ways in which n coins can be separated into piles. For example, five coins can separated into piles in exactly seven different ways, so p(5) = 7.

```
00000
0000 0
000 00
000 0 0
00 00 0
00 0 0 0
```

How many different ways can $oldsymbol{N}$ coins be separated into piles?

As answer can be large, print $\%(10^9+7)$

Input Format

First line of the input contains T, which is number of testcases. Each testcase contains N.

Constraints

$$1 \le T \le 100 \ 2 \le N \le 6 \times 10^4$$

Output Format

Print the output corresponding to each testcase on a new line.

Sample Input

Sample Output

