Marc T. Henry de Frahan

US citizen, Applied Mathematics/Mechanical engineer

tional Laboratory

1619 S Van Gordon Ct Lakewood, CO, 80228 marchdf@gmail.com (734)747-0156

Fall 2015

Work Experience	
Computational Scientist, National Renewable Energy Laboratory Next-generation simulations of wind farms and combustion processes	2019-present
Post-doctoral Researcher, National Renewable Energy Laboratory Next-generation simulations of wind farms and combustion processes	2016-2019
Education ————————————————————————————————————	
Deep Learning Specialization Coursera Topics: neural networks (CNN, RNN), deep learning frameworks (Keras, Tensorflow)	2017-2018
Ph.D. in Mechanical Engineering University of Michigan, Ann Arbor, MI Thesis: Numerical simulations of shock and rarefaction waves interacting with interfaces in compressible multiphase flows Advisor: E. Johnsen, Assistant Professor of Mechanical Engineering	2011-2016
M.S. in Applied Mathematics Engineering Université Catholique de Louvain, Belgium Thesis: Implementation of a Discontinuous Galerkin Method for hyperbolic PDEs on GP and Advisors: Prof. J-F Remacle, Prof. P. Chatelain, Prof. V. Legat.	2009-2011 Us
B.S. in Applied Mathematics Engineering Université Catholique de Louvain, Belgium	2007-2009
Research Interests Fluid mechanics - multiphase flows, hydrodynamic instabilities, turbulence Energy - turbomachinery, combustion, wind farms High order numerical methods for computational fluid dynamics High performance computing with graphics processing units Machine learning for improved physics models	
Research Experience Argonne Training Program on Extreme-Scale Computing, Argonne Na-	Summer 2017

Invited to an intensive 2-week workshop on high performance computing

Invited to participate in a workshop to prepare for faculty positions

NextProf Engineering Future Faculty Workshop, University of Michigan

International High Performance Computing Summer School, Hungary Invited to attend NSF workshop to learn new paradigms in scientific computing	Summer 2014
Lawrence Livermore National Laboratory, Livermore, CA Student intern Comparing Beryllium strength models with experimental data Supervisors: Dr. B. Remington and Dr. R. Cavallo	Summer 2012
Computational Methods in High Energy Density Plasmas, UCLA, CA Invited to attend a 6 week long workshop by the Institute for Pure and Applied Mathematics at the University of California - Los Angeles	Spring 2012
Lawrence Livermore National Laboratory, Livermore, CA Student intern Studied hydrodynamic instabilities in inertial confinement fusion targets Characterized growth factors during capsule compression Supervisors: Dr. L. J. Suter and Dr. D. S. Clark	Summer 2010
Lawrence Livermore National Laboratory, Livermore, CA Student intern Studied hot electron signatures and capsule preheat in the context of inertial confinement fusion as developed at the National Ignition Facility Supervisors: Dr. L. J. Suter and Dr. C. A. Thomas	Summer 2009
Lawrence Livermore National Laboratory, Livermore, CA Student intern Studied and optimized National Ignition Facility inertial confinement fusion target geometries using view factor calculations Supervisors: Dr. L. J. Suter and Dr. C. A. Thomas	Summer 2008
Leadership Experience ———————————————————————————————————	
NREL Postdoctoral Committee Organizing networking and professional development activities	2016-2018
Sweetland Center for Writing, University of Michigan Dissertation Writing Group Leader Lead a group of PhD students in weekly dissertation writing and feedback sessions	Spring 2016
Mechanical Engineering Graduate Council, University of Michigan - STEM Communication Chair Communicate graduate student research to lay audiences	2013-2016
- President Promote social, academic and professional development for ME graduate students	
- Graduate Seminar Chair Organize monthly seminars to showcase graduate student research	
Graduate Student Advisory Committee, University of Michigan Representative for Department of Mechanical Engineering Identify and plan activities to promote community among engineering graduate students	2014-2015

Mentorship and Teaching Experience Julia Ream, National Renewable Energy Laboratory Mentored Ph.D. graduate student for a project on turbulent supercritical CO2 jet simulations	2019
Prakash Mohan, National Renewable Energy Laboratory Mentored Ph.D. graduate student for a project on deep learning for LES models	2018
Jalil Alidoost, University of Michigan Mentored senior undergraduate for a project on diffusive and kinetic properties of chair motion in the Shapiro Library	2015-2016
Colby Hanley, University of Michigan Mentored freshman undergraduate for a project on multi-GPU profiling for high- performance computing	2015-2016
Graduate Student Instructor for ME 523: Computational Fluid Dynamics University of Michigan, Ann Arbor, MI	Fall 2013
Fellowships and Awards Better Scientific Software Fellowship (honorable mention) Better Scientific Software (Department of Energy organization)	2018
AIAA CFD Best Student Paper Award (3 ^d place) American Institute of Aeronautics and Astronautics	2015
Rackham Predoctoral Fellowship University of Michigan	2015
Rackham Centennial Fellowship University of Michigan	2013
NIF Poster Winner Lawrence Livermore National Laboratory 2012 Summer Poster Session	2012
High Distinction M.S. in Applied Mathematics Engineering at the Université Catholique de Louvain	2011
Volunteer Service and Outreach DAPCEP Instructor Organized and taught a 6-week long engineering discovery course for Detroit-area middle school students	Spring 2015
Volunteer Instructor, Adams Academy Engineering Club Instructed fun basic science and engineering projects at a local primary school	2014-2016
Graduate Student Recruiter, University of Michigan Organized and participated in recruitment events graduate students visiting the Mechanical Engineering department	2012-2016

Publications

M. T. Henry de Frahana, S. Yellapantula, R. King, M. S. Day, and R. W. Grout, **Deep learning**

- for presumed probability density function models, Comb. and Flame, 208:436–450, 2019, Pages 436-450
- P. Mohan, M. T. Henry de Frahan, R. King, and R. Grout, A block-random algorithm for learning on distributed, heterogeneous data, arXiv:1903.00091, 2019
- M. T. Henry de Frahan, and R. Grout, **Data recovery in computational fluid dynamics through deep image priors**, *arXiv:1901.11113*, 2019
- M. T. Henry de Frahan, S. Yellapantula, R. King, M. Day, and R. Grout, **Deep learning for presumed probability density function models**, arXiv:1901.05557, 2019
- M. T. Henry de Frahan, J. L. Belof, R. M. Cavallo, V. A. Raevsky, O. N. Ignatova, A. Lebedev, D. S. Ancheta, B. S. El-dasher, J. N. Florando, G. F. Gallegos, E. Johnsen, and M. M. LeBlanc, Experimental and Numerical Investigations of Beryllium Strength Models Using the Rayleigh-Taylor Instability, featured article in J. Appl. Phys., 117(22):225901, 2015
- M. T. Henry de Frahan, S. Varadan, and E. Johnsen, A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces, J. $Comput. \ Phys., \ 280(0):489-509,2015$
- M. T. Henry de Frahan, P. Movahed, and E. Johnsen, Numerical simulations of a shock interacting with successive interfaces using the Discontinuous Galerkin method: the multilayered Richtmyer-Meshkov and Rayleigh-Taylor instabilities, *Shock Waves*, 25(4):329–345, 2015
- C. A. Di Stefano, G. Malamud, M. T. Henry de Frahan, C. C. Kuranz, A. Shimony, S. R. Klein, R. P. Drake, E. Johnsen, D. Shvarts, V. A. Smalyuk, and D. Martinez, **Observation and modeling of mixing-layer development in high-energy-density, blast-wave-driven shear flow**, *Phys. Plasmas*, 21(5):056306, 2014
- M. T. Henry de Frahan and E. Johnsen, Mixing in blast-driven hydrodynamic instabilities, In preparation for J. Fluid Mech., 2016

Conference Proceedings

- S. Yellapantula, B. A. Perry, M. T. Henry de Frahan, M. E. Mueller, and R. W. Grout, **Machine Learning based models for joint PDF shapes for multi-scalar mixing in turbulent flows**, 11th U.S. National Combustion Meeting, 2019
- M. T. Henry de Frahan, L. Khieu, and E. Johnsen, **High-order Discontinuous Galerkin Methods Applied to Multiphase Flows**, 22^d AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, doi: 10.2514/6.2015-3045, 2015, AIAA CFD Best Student Paper Award (3^d place)
- M. T. Henry de Frahan and E. Johnsen, **Discontinuous Galerkin method for multifluid Euler equations**, In 21st AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, doi: 10.2514/6.2013-2595, 2013
- M. T. Henry de Frahan, P. Movahed, and E. Johnsen, Investigating the multilayered Richtmyer-Meshkov instability with high-order accurate numerical methods, In 29th International Symposium on Shock Waves 2, Springer International Publishing, 2015

Conference Presentations

- M. T. Henry de Frahan, R. King, R. Grout, **Data recovery for computational fluid dynamics using deep image priors**, SIAM CSE, Feb. 2019, Spokane, WA
- M. T. Henry de Frahan, S. Yellapantula, R. King, M. Day, R. Grout, **A-priori analysis of joint PDF** of mixture fraction and progress variable trained using machine learning techniques, APS 71st Meeting of the Division of Fluid Dynamics, Nov. 2018, Atlanta, GA
- S. Yellapantula, M. T. Henry de Frahan, R. King, M. Day, R. Grout, **A-priori analysis of a data** driven closure model trained from a reacting DNS of a Low-Swirl Burner, APS 71st Meeting of the Division of Fluid Dynamics, Nov. 2018, Atlanta, GA
- M. T. Henry de Frahan, S. Yellapantula, G. Vijayakumar, R. Knaus, M. Sprague, **Hybrid RANS-LES** using high-order numerical methods, APS 70th Meeting of the Division of Fluid Dynamics, Nov. 2017, Denver, CO
- M. T. Henry de Frahan, M. S. Day, J. B. Bell, R. W. Grout, **Filtering in large eddy simulations** with adaptive mesh refinement, 29th Parallel CFD Conference, May 2017, Glasgow, Scotland
- M. T. Henry de Frahan, E. Johnsen, Circulation in blast driven instabilities, APS 69th Meeting of the Division of Fluid Dynamics, Nov. 2016, Portland, OR
- M. T. Henry de Frahan, S. Beig, B. Aboulhasanzadeh, H. Ganesh, S. L. Ceccio, and E. Johnsen, **A new mixture model for compressible multiphase flows**, 9th International Conference on Multiphase Flow, May 2016, Firenze, Italy
- M. T. Henry de Frahan, H. Ganesh, S. L. Ceccio, and E. Johnsen, **Numerical simulations of high-void-fraction bubbly flow over a wedge**, 9th International Symposium on Cavitation, Dec. 2015, Lausanne, Switzerland
- M. T. Henry de Frahan, E. Johnsen, **Interactions of Blast Waves with Perturbed Interfaces**, APS 68th Meeting of the Division of Fluid Dynamics, Nov. 2015, Boston, MA
- M. T. Henry de Frahan, L. Khieu, and E. Johnsen, **High-order Discontinuous Galerkin Methods Applied to Multiphase Flows**, 23^d AIAA Computational Fluid Dynamics Conference, Jun. 2015, Dallas, Tx
- M. T. Henry de Frahan, E. Johnsen, Numerical simulations of hydrodynamic instabilities with GPUs, IPAM Computational Methods in High Energy Density Plasmas Reunion Conference, Dec. 2014, Lake Arrowhead, CA
- M. T. Henry de Frahan, E. Johnsen, **Hydrodynamic instabilities in blast-driven systems**, APS 67th Meeting of the Division of Fluid Dynamics, Nov. 2014, San Francisco, CA
- M. T. Henry de Frahan, R. P. Drake, E. Johnsen, **Hydrodynamic instabilities of finite width layers**, APS 56th Meeting of the Division of Plasma Physics, Oct. 2014, New Orleans, LA
- E. Johnsen, M. T. Henry de Frahan, S. A. Beig, Numerical simulations of gas-liquid interfaces in compressible flows, AIAA Aviation Forum, Jun. 2014, Atlanta, GA
- M. T. Henry de Frahan, E. Johnsen, Blast-driven hydrodynamic instability, APS 66th Meeting of

the Division of Fluid Dynamics, Nov. 2013, Pittsburgh, PA

- M. T. Henry de Frahan, J. L. Belof, R. M. Cavallo, O. Ignatova, E. Johnsen, B. A. Remington, V. Raevsky, **Analysis of recent Beryllium Rayleigh-Taylor experiments**, Fundamentals of Pu Workshop XIII, Sep. 2013, Sarov, Russia
- M. T. Henry de Frahan, P. Movahed, E. Johnsen, **Investigating the multi-layered Richtmyer-Meshkov instability with high-order accurate numerical methods**, 29th International Symposium on Shock Waves, Jul. 2013, Madison, WI
- M. T. Henry de Frahan, E. Johnsen, **Discontinuous Galerkin method for multifluid Euler equations**, 21^{st} AIAA Computational Fluid Dynamics Conference, Jun. 2013, San Diego, CA
- M. T. Henry de Frahan, J. L. Belof, R. M. Cavallo, O. Ignatova, E. Johnsen, B. A. Remington, V. Raevsky, **Beryllium strength under extreme dynamic loading conditions**, APS 54th Meeting of the Division of Plasma Physics, Oct. 2012, Providence, RI

Skills

Scientific programming

C/C++, Python, Git, Bash, R, C for CUDA, MPI, OpenMP, LATEX, VisIt, Gmsh, Matlab

Operating systems

GNU/Linux, OSX, Windows

Languages

English, French

Memberships

American Physical Society

2012-2018

American Institute of Aeronautics and Astronautics

2012-2017