Week 4

E04-01. Implement algorithms of interval scheduling and give some examples to test it.

Input: n jobs, start time and finish time of each job

Output: maximum subset of mutually compatible jobs.

Example:

Input:

5

02

14

- -

3 5

4 7

5 6

Output:

3

E04-02. Implement algorithms of interval partitioning and give some examples to test it.

Input: n lectures, start time and finish time of each lecture

Output: the minimum number of classrooms to schedule all lectures.

Example:

Input:

5

02

14

3 5

47

56

Output:

2

E04-03. Implement the algorithms of scheduling to minimize lateness and give some examples to test it.

Input: n jobs, processing time and deadline time of each job

Output: job scheduling to minimize maximum lateness.

Example:

Input:

5

19

3 6

49

28

3 14

Output:

1

Week 5

Exercises

E05-01. Implement algorithms of optimal caching and give some examples to test it. Input:

The first line is size of cache k, initial blocks number n in cache and the number s for the sequence of requests.

The second line is the initial block no in cache

The third line is the block no for the sequence of request.

Output: eviction schedule(when some blocks can be considered at the same time, 3215

E05-02. Implement Dijkstra algorithms of single-source shortest path and give some examples to test it.

Input: a directed graph with n nodes and e edges, source node s, the length of each edge (x_i, x_i, l)

Output: the shortest distance of other nodes and corresponding path.

and proper measures of evilor ne	and corresponding poor.	
Example: Input: 5 8 1 1 2 2 2 3 2 2 4 1 1 3 5 3 4 3 1 4 4 1 5 7 4 5 2	8 16 1 1 5 9 1 2 5 1 8 8 5 8 1 5 8 5 1 2 2 5 6 4 2 3 2 2 8 4 2 4 1 2 3 12 1 3 5 2 4 15 3 4 3 8 3 7 1 4 4 6 3 1 1 4 4 3 4 3 1 5 7 3 7 11 4 5 2	7 12 1 2 0 4 2 5 5 0 1 2 0 3 1 1 4 10 1 3 3 3 2 2 3 5 8 3 6 4 3 4 2 4 6 6 6 5 1
4 5 2 Output: 0 2 4 3 5	3 7 11 5 7 20 6 7 13 4 7 9	651

E05-03. Implement algorithms of minimum spanning tree and give some examples to test it.

Input: a undirected graph with n nodes and e edges, the length of each $edge(x_i, x_j, l)$

Output: the sum of all edges in minimum spanning tree.

Example:

Input:

58

1 2 <mark>2</mark>

232

2 4 1

1 3 5

3 4 3

144

1 5 7 4 5 2

Output:

7

Week 6

Exercises

E06-01. Implement Kruskal's algorithm of minimum spanning tree and give some examples to test it. (If you implement Kruskal in homework5, please implement Prim)

Input: a undirected graph with n nodes and e edges, the length of each

```
edge(x_i, x_j, l)
```

Output: the sum of all edges in minimum spanning tree.

```
Example:
```

```
Input: 5 8
```

1 2 2

2 3 2

2 4 1

1 3 5

3 4 3

. . .

1 4 4

1 5 7

452

Output:

7

E06-02. Implement greedy algorithms of Huffman codes and give some examples to test it.

Input: The first line is the number n for symbols. The second line is the frequency of the symbols.

Output: The avera e len th of Huffman codes.

Example:

```
Input:
```

4

1234

Output:

1.90