Quadratics: Nature of roots 1

Rules for quadratic $ax^2 + bx + c$

$$b^2 - 4ac > 0$$
 two distinct real roots

$$b^2 - 4ac = 0$$
 one, repeated, real roots

$$b^2 - 4ac < 0$$
 no real roots

Examples:

(1)
$$f(x) = 2x^2 + 7x + 6$$

$$a = 2, b = 7, c = 6$$

 $b^2 - 4ac = 7^2 - (4 \times 2 \times 6) = 49 - 48 = 1$
 $b^2 - 4ac > 0$, so $f(x)$ has two real roots

(2)
$$g(x) = x^2 - 6x + 9$$

$$a = 1, b = -6, c = 9$$

 $b^2 - 4ac = (-6)^2 - (4 \times 1 \times 9) = 36 - 36 = 0$

$$b^2 - 4ac = 0$$
, so $g(x)$ has one repeated real root

(3)
$$h(x) = x^2 + 9$$

$$a = 1, b = 0, c = 9$$

 $b^2 - 4ac = 0^2 - (4 \times 1 \times 9) = -36$
 $b^2 - 4ac < 0$, so $h(x)$ has no real roots

Exercises:

(4)
$$2x^2 + 3x + 1$$

(5)
$$4x^2 + 4x + 1$$

(6)
$$x^2 + 3x + 2$$

(7)
$$4x^2 - 9$$

(8)
$$x^2 + 2x + 5$$

(9)
$$-x^2 + 2x - 5$$

$$(10) \quad 4x^2 + 4x + 1$$

(11)
$$2x^2 + 3x - 9$$

$$(12) \quad x^2 - \frac{4}{3}x + \frac{4}{9}$$

Next level:

(13) For what value(s) of c does the quadratic $p(x) = x^2 + 4x + c$ have one repeated real root?

(14) For what positive value(s) of b does the quadratic $q(x) = x^2 + bx + 9$ have two distinct real roots?