

CONNECTIVITY OF GRAPHS

CONNECTIVITY OF A GRAPH

A graph is said to be **connected**, if there is a path between any two vertices.

Some graphs are "more connected" than others.

Two numerical parameters :-

edge connectivity &vertex connectivity

are useful in measuring a graph's connectedness.

EDGE CONNECTIVITY

DEFINITION

$$\lambda(G) = \min\{k \mid k = |S|, G - S \text{ disconnected}, S \subseteq E_G\}$$

The edge-connectivity $\lambda(G)$ of a connected graph G is the smallest number of edges whose removal disconnects G.

When $\lambda(G) \ge k$, the graph G is said to be k-edge-connected.

The above graph G1 can be split up into two components by removing one of the edges bc or bd.

G1 has edge-connectivity 1.

$$\lambda(GI) = 1$$

The above graph G2 can be disconnected by removing a single edge, cd

G2 has edge-connectivity 1. $\lambda(G2) = 1$

The above graph G3 cannot be disconnected by removing a single edge, but the removal of two edges (such as ac and bc) disconnects it.

G3 has edge-connectivity 2.

$$\lambda(G3) = 2$$

CUT SET

A **cut set** of a connected graph G is a set S of edges with the following properties:

- 1) The removal of all edges in S disconnects G.
- 2) The removal of some (but not all) of edges in S does not disconnects G

Cut set is also known as edge-cut

-OR-

An **edge- cut** S of G consists of edges so that G-S is disconnected.

We can disconnect G by removing the three edges **bd**, **be**, and **ce**, but we cannot disconnect it by removing just two of these edges.

So,{ bd, be, ce }is a cut set of the graph G. {df,eg} is another cut set {fh} is another cut set

BRIDGE

Or cut-edge (not edge-cut)

is an edge-cut consisting of a single edge.

Or

A **bridge** is a single edge whose removal disconnects a graph

The above graph G can be split up into two components by removing one of the edges *bc* or *bd*. Therefore, edge bc or bd is a bridge

RELATIONSHIP BETWEEN CUT-SET & EDGE CONNECTIVITY

$$\lambda(G) = \min\{k \mid k = |S|, G - S \text{ disconnected}, S \subseteq E_G\}$$

Where

S is the cut set of graph G(V,E)

THEOREM

"If S is a cut set of the connected graph G, then G – S has two components" Proof.

Let S = {e1, ..., ek}. The graph G-{e1, ..., ek-1} is connected (and so is G if k = 1) by condition #2.

When we remove the edges from the connected graph, we get at most two components.

EXAMPLE

{e1, e4}, {e6, e7}, {e1, e2, e3}, {e8}, {e3, e4, e5, e6}, {e2, e5, e7}, {e2, e5, e6} and {e2, e3, e4} are cut sets.

PROPOSITION

Let G be a graph. Then the edge connectivity $\lambda(G)$ is less than or equal to the minimum vertex degree $\delta_{\min}(G)$.

Proof:

Let v be a vertex of graph G, with degree $k = \delta_{\min}(G)$. Then the deletion of the k edges that are incident on vertex v separates v from the other vertices of G

THEOREM

An edge e is a bridge of G iff e lies on no cycle on G

Proof:

By definition- A **bridge** is a single edge whose removal disconnects a graph. If it lies on a cycle, its removal will not disconnect the graph

VERTEX CONNECTIVITY

DEFINITION

$$k(G) = \min\{k \mid k = |S|, G-S \text{ disconnected }, S \subseteq VG\}$$

$$0 \le \kappa(G) \le n-1$$

Where n is the number of vertices of the graph.

The **connectivity** (or vertex connectivity) $\mathbf{K}(G)$ of a connected graph G is the minimum number of vertices whose removal disconnects G.

When $K(G) \ge k$, the graph is said to be k-connected (or k-vertex connected).

The above graph G can be disconnected by removal of single vertex (either b or c). The G has connectivity 1. That is G is 1-connected or simply *connected*.

The above graph G can be disconnected by removal of single vertex (either c or d).

The G has connectivity 1

The above G can be disconnected by removing just one vertex i.e., vertex c. The G has connectivity 1

The above G cannot be disconnected by removing a single vertex, but the removal of two non-adjacent vertices (such as b and c) disconnects it. The G has connectivity 2

VERTEX CUT SET

- A vertex-cut set of a connected graph G is a set S of vertices with the following properties.
- 1) the removal of all the vertices in S disconnects G.
- 2) the removal of some (but not all) of vertices in S does not disconnects G.

-OR-

A vertex-cut in a graph G is a vertex set S such that G-S is disconnected.

Also known as separating set.

- We also say that S separates the vertices u and v and it is a
 - (u, v)-separating set, if u and v belong to different connected components of G-S.

We can disconnects the graph by removing the two vertices b and e, but we cannot disconnect it by removing just one of these vertices.

The vertex-cut set of G is {b, e}.

CUT-VERTEX

A **cut-vertex** (*not vertex-cut*) is a single vertex whose removal disconnects a graph. Cut vertex is also known as **cut point**

The above graph G can be disconnected by removal of single vertex (either c or d).

The vertex **c** or **d** is a cut-vertex

RELATIONSHIP BETWEEN VERTEX-CUT & CONNECTIVITY

The (vertex) connectivity number k(G) of G is defined as

$$k(G) = \min\{k \mid k = |S|, G-S \text{ disconnected } S \subseteq V_G\}$$

A graph *G* is *k*-connected, if $k(G) \ge k$.

In other words,

- k(G) = 0, if G is disconnected,
- $k(G) = V_G 1$, if G is a complete graph, and
- otherwise k(G) equals the minimum size of a vertex cut of G.

THEOREM

The vertex **v** is a cut vertex of the connected graph **G** if and only if there exist two vertices **u** and **w** in the graph **G** such that

(i) v ≠ u, v ≠ w and u ≠ w, but
 (ii) v is on every u-w path.

PROOF

First, let us consider the case that v is a cut-vertex of G. Then, G - v is not connected and there are at least two components G1 = (V1,E1) and G2 = (V2,E2). We choose $\mathbf{u} \in \mathbf{V1}$ and $w \in V2$. The u-w path is in G because it is connected. If v is not on this path, then the path is also in G - v. The same reasoning can be used for all the **u**–**w** paths in G.

If \mathbf{v} is in every \mathbf{u} — \mathbf{w} path, then the vertices \mathbf{u} and \mathbf{w} are not connected in \mathbf{G} — \mathbf{v} .

EXAMPLE

BLOCK

A block is a connected graph which has no cut vertices.

A block of a graph is a maximal sub graph with no cut vertices.

GRAPH

BLOCKS

MENGER'S THEOREM

Menger's theorem states that "If u and v are non-adjacent vertices in a graph G, then the maximum number of internally disjoint u-v paths equals the minimum number of vertices in a u-v separating set."

PROOF BY INDUCTION

Basis: m = 2.

Inductive step:

Assume true for all graphs of size \leq m

- ☐ Let U be a minimum u-v separating set.
- \Box Clearly, the number of u-v disjoint paths is at most |U| = k.

PROOF (CONT)

We look at all minimum u-v separating sets. There are three cases

Case 1: There is a u-v separating set U that contains a vertex that is adjacent to both u and v

Case 2: There is u-v separating set W with a vertex not adjacent to u and a vertex not adjacent to v

Case 3: For each min. u-v separating set S, either (every vertex in S is adjacent to u but not to v) or (every vertex in S is adjacent to v but not to u)

- \square Consider G-{x}:
- It's size is less than m
- U-{x} is a min.separating set for G-{x}.
- Since |U-{x}| = k -1, by the induction hypothesis, there are k-1 internally disjoint u-v paths in G-{x}
- So in G, we have these paths plus u-x-v
 - Done.

■ Note: x and y can be the same vertex

- \square W = {w1, ..., wk}
- □ First let's construct
 G(u) which contains
 all u-wi paths for all
 wi ∈ W in G1 + W
- Make a new graph
 G'(u) by adding a
 new vertex v' to
 G(u) and connecting
 it to all wi
- ☐ Construct G(v) and G'(v) similarly

- \square size G'(u) < m
- W is a min u-v' seperating set of size k.
- By the ind. hyp., there are k disjoint u-v' paths.
- We take these paths and delete v' from them. Call the resulting paths P1
- With similar reasoning, we conclude that G'(v) has k disjoint v-u' paths. Generate paths P2 in a similar fashion.
- ☐ Combine P1 and P2 using the vertices wi.
- We obtained k internally disjoint paths for G

■ We have either the situation on the left or the symmetric case (where v is connected to all in S)

- \square Let $P = \{u, x, y, ..., v\}$ be a u-v geodesic in G
- \square Let e = (x,y) and consider G-e
- Claim: The size k' of any minimum u-v separating set in G-e is also k.
- Clearly, $k' \ge k-1$.
- Suppose, for contradiction, that k' = k-1 (i.e. the claim is false).
- Let Z be a min u-v separating set in G-e
- $Z + \{x\}$ is a min u-v separating set in G
- So all vertices in Z are adjacent to u (we are in case 3)
- \blacksquare Z + {y} is a min u-v separating set in G
- So y is adjacent to v

CASE 3 (CONT)

- \Box G-{e} has a min. u-v separating set of size k.
- By ind. hyp. It has k internally disjoint u-v paths.

☐ So does G!

The **edge-connectivity** version of Menger's theorem is as follows:

Let G be a finite undirected graph and x and y two distinct vertices. Then the theorem states that the size of the minimum edge cut for x and y is equal to the maximum number of pairwise edge-independent paths from x to y.

The **vertex-connectivity** statement of Menger's theorem is as follows:

Let G be a finite undirected graph and x and y two nonadjacent vertices. Then the theorem states that the size of the minimum vertex cut for x and y is equal to the maximum number of pairwise vertex-independent paths from x to y.

APPLICATION

Network survivability

The connectivity measures K(G) and $\lambda(G)$ are used in a quantified model of network survivability, which is the capacity of a network to retain connections among its nodes after some edges or nodes are removed

AND NOTE ONE MORE THING...

For every connected graph,

$$K(G) \le \lambda(G) \le \delta_{\min}(G)$$

Thank you for your support....

SHAMEER P H
DEPT OF FUTURES STUDIES
KERALA UNIVERSITY
phshameer@gmail.com