CHAPTER-10 VECTOR ALGEBRA

1 EXERCISE - 10.3

- 1. Find the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes $\sqrt{3}$ and 2 respectively having \overrightarrow{a} . $\overrightarrow{b} = \sqrt{6}$.
- 2. Find the angle between the the vectors $\hat{i} 2\hat{j} + 3\hat{k}$ and $3\hat{i} 2\hat{j} + \hat{k}$.
- 3. Find the projection of the vector $\hat{i} \hat{j}$ on the vector $\hat{i} + \hat{j}$.
- 4. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} \hat{j} + 8\hat{k}$.
- 5. Show that each of the given three vectors is a unit vector: $\frac{1}{7} (2\hat{i}+3\hat{j}+6\hat{k}), \frac{1}{7}(3\hat{i}-6\hat{j}+2\hat{k}), \frac{1}{7}(6\hat{i}+2\hat{j}-3\hat{k})$ Also, show that they are mutually perpendicular to each other.
- 6. Find $|\overrightarrow{a}|$ and $|\overrightarrow{b}|$, if $(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} \overrightarrow{b}) = 8$ and $|\overrightarrow{a}| = 8 |\overrightarrow{b}|$.
- 7. Evaluate the product $(3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b}).$
- 8. Find the magnitude of two vectors \overrightarrow{a} and \overrightarrow{b} , having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$
- 9. Find $|\overrightarrow{x}|$, if for a unit vector \overrightarrow{a} , $(\overrightarrow{x} \overrightarrow{a}) \cdot (\overrightarrow{x} + \overrightarrow{a}) = 12$.
- 10. If $\overrightarrow{a} = 2\hat{i} + 2\hat{j}3\hat{k}$, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j}$ are such that $\overrightarrow{a} + \lambda \overrightarrow{b}$ is perpendicular to \overrightarrow{c} , then find the value of λ .
- 11. Show that $|\overrightarrow{a}| \overrightarrow{b} + |\overrightarrow{b}| \overrightarrow{a}$ is perpendicular to $|\overrightarrow{a}| \overrightarrow{b} |\overrightarrow{b}| \overrightarrow{a}$, for any two nonzero vectors \overrightarrow{a} and \overrightarrow{b} .
- 12. If \overrightarrow{a} . $\overrightarrow{a} = 0$ and \overrightarrow{a} . $\overrightarrow{b} = 0$, then what can be conculded about the vector \overrightarrow{b} ?
- 13. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, find the value of \overrightarrow{a} . \overrightarrow{b} + \overrightarrow{b} . \overrightarrow{c} + \overrightarrow{c} . \overrightarrow{a} .

- 14. If either vector $\overrightarrow{a} = 0$ or $\overrightarrow{b} = 0$, then $\overrightarrow{a} \cdot \overrightarrow{b} = 0$. But the converse need not be true .Justify your answer with an example.
- 15. If the vertices A,B,C of a triangle ABC are (1,2,3),(-1,0,0)(0,1,2), respectively, then find $\angle ABC$. $[\angle ABC$ is the angle between the vectors \overrightarrow{BA} and \overrightarrow{BC} .
- 16. show that the points A(1,2,7), B(2,6,3) and C(3,10,-1) are collinear.
- 17. show that the vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} 3\hat{j} 5\hat{k}$ and $3\hat{i} 4\hat{j} 4\hat{k}$ from the vertices of a right angled triangle.
- 18. If \overrightarrow{a} is a nonzero vector of magnitude 'a' and λ a nonzero scalar , then $\lambda \overrightarrow{a}$ is unit vector if
- 1. $(A)\lambda = 1$
- 2. (B) $\lambda = -1$
- 3. (C) $a = |\lambda|$
- 4. (D) $a = 1/|\lambda|$