

A logical framework

The implementations of Dedukti: Dkcheck, Lambdapi, Kocheck... are not proof-checkers specific to one theory (the Calculus of constructions, Set theory...)

But logical frameworks, where you can define your own theory (like Predicate logic)

- Define your theory
- Check proofs expressed in this theory

Beyond Predicate logic

Logical frameworks: λ -Prolog, Isabelle, The Edinburgh logical framework, Pure type systems, Deduction modulo theory, Ecumenical logic

In Dedukti

- Function symbols can bind variables (like in λ -Prolog, Isabelle, The Edinburgh logical framework)
- Proofs are terms (like in The Edinburgh logical framework)
- Deduction and computation are mixed (like in Deduction modulo theory)
- Both constructive and classical proofs can be expressed (like in Ecumenical logic)

The two features of DEDUKTI

DEDUKTI is a typed λ-calculus with

- Dependent types
- Computation rules

No typing rules today, but illustration of these features with examples

What is a theory?

In Predicate logic: a language (sorts, function symbols, and predicate symbols), and a set of axioms

In Dedukti: a set of symbols (replaces sorts, function symbols, predicate symbols, and axioms), and a set of $computation\ rules$

A typed λ -calculus is much more primitive

These notions must be constructed

Building Predicate logic

An easy warm up exercise

An easy way to illustrate the use of dependent types and computation rules

An interest in itself: The first book of Euclid's elements (originally formalized in Coq) can be expressed in Predicate logic + the axioms of geometry and exported to many systems (Géran)

Terms and propositions: a first attempt

```
I: \mathsf{TYPE} function symbols: I \to ... \to I \to I

Prop: \mathsf{TYPE} predicate symbols: I \to ... \to I \to Prop
\Rightarrow : Prop \to Prop \to Prop
\forall : (I \to Prop) \to Prop
```

- Symbol declarations only (no computation rules yet)
- \triangleright Simply typed λ -calculus (no dependent types yet)
- Types are terms of type TYPE
- ▶ \forall binds (higher-order abstract syntax: $\forall x \ A$ expressed as $\forall \lambda x \ A$)

Works if we want one sort

But if we want several (like in geometry: points, lines, circles...)

 I_1 : TYPE

12: TYPE

1₃ : TYPE

Several (an infinite number of?) symbols and several (an infinite number of?) quantifiers

 $\forall_1: (I_1 \rightarrow Prop) \rightarrow Prop$

 $\forall_2: (I_2 \rightarrow Prop) \rightarrow Prop$

 $\forall_3: (I_3 \rightarrow Prop) \rightarrow Prop$

Making the universal quantifier generic

Something like

 $\forall : \Pi X : \mathsf{TYPE}, ((X \to \mathit{Prop}) \to \mathit{Prop})$

But does not work for two reasons

- (a minor one) no dependent products on TYPE
- \blacktriangleright (a major one) many things in TYPE beyond I_1 , I_2 , and I_3 (e.g. *Prop*)

Making the universal quantifier generic

```
I: \mathsf{TYPE} I_1: \mathsf{TYPE}, I_2: \mathsf{TYPE}, I_3: \mathsf{TYPE} Set: \mathsf{TYPE} \iota: Set \iota_1: Set, \iota_2: Set, \iota_3: Set FI: Set \to \mathsf{TYPE}
```

 $El \iota_1 \longrightarrow I_1, El \iota_2 \longrightarrow I_2, El \iota_3 \longrightarrow I_3$

 $El \iota \longrightarrow I$ Prop : TYPE

 \Rightarrow : $Prop \rightarrow Prop \rightarrow Prop$

 \forall : Πx : Set, $(El x \rightarrow Prop) \rightarrow Prop$

Uses dependent types and computation rules

Reminiscent of expression of Simple type theory in Predicate logic, universes à la Tarski...

Proofs

So far: terms and propositions. Now: proofs

Proofs are trees, they can be expressed in Dedukti

Curry-de Bruijn-Howard: $P \Rightarrow P$ should be the type of its proofs But not possible here $P \Rightarrow P$: *Prop*: TYPE is not itself a type

 $Prf: Prop \rightarrow TYPE$ mapping each proposition to the type of its proofs: $Prf(P \Rightarrow P)$: TYPE

Not all types are types of proofs (e.g. *I*, *El* ι , *Prop*...)

Proofs

Brouwer-Heyting-Kolmogorov: $\lambda x: (Prf P), x$ should be a proof of $P \Rightarrow P$ But has type $(Prf P) \rightarrow (Prf P)$ and not $Prf (P \Rightarrow P)$ $Prf (P \Rightarrow P)$ and $(Prf P) \rightarrow (Prf P)$ must be identified

A computation rule

$$Prf(x \Rightarrow y) \longrightarrow (Prf x) \rightarrow (Prf y)$$

In the same way

$$Prf(\forall x p) \longrightarrow \Pi z : (El x), (Prf(p z))$$

The function *Prf* is an injective morphism from propositions to types: it is the Curry-de Bruijn-Howard isomorphism

Connectives

So far: \Rightarrow and \forall only

 \top , \bot , \neg , \wedge , \vee , \exists defined à *la* Russell

$$\land: Prop \rightarrow Prop \rightarrow Prop$$

 $Prf(x \land y) \longrightarrow \Pi z: Prop, ((Prf x \rightarrow Prf y \rightarrow Prf z) \rightarrow Prf z)$

Classical connectives

So far: constructive deduction rules only What if you want to express classical proofs (a logical framework ought to be neutral)

Ecumenical logic: constructive and classical disjunction are governed by different rules: they are different symbols (like inclusive and exclusive disjunction): \vee and \vee_c

```
\Rightarrow_c, \land_c, \lor_c, \forall_c, \exists_c defined using negative translation as a definition \land_c : Prop \rightarrow Prop \rightarrow Prop
\land_c \longrightarrow \lambda x : Prop, \lambda y : Prop, ((\neg \neg x) \land (\neg \neg y))
```

Also a symbol Prfc

If you want to express proofs coming from Predicate logic

e.g. Vampire, VeriT...

You know enough

Two features

Propositions as objects

Functions

Propositions as objects

```
o: Set
Elo \longrightarrow Prop
\forall o : (El o \rightarrow Prop) \rightarrow Prop
\forall o: (Prop \rightarrow Prop) \rightarrow Prop
\forall o (\lambda X : Prop, (X \Rightarrow X)) : Prop
Prf(\forall o(\lambda X : Prop, (X \Rightarrow X))) : TYPE
Prf(\forall o(\lambda X : Prop.(X \Rightarrow X))) \longrightarrow \Pi X : Prop.((Prf X) \rightarrow (Prf X))
\lambda X : Prop. \lambda y : (Prf X), y : Prf (\forall o (\lambda X : Prop. (X \Rightarrow X)))
```

Functions

$$\sim$$
: Set \rightarrow Set \rightarrow Set
El $(x \sim y) \longrightarrow (El x) \rightarrow (El y)$

An infinite number of elements in $Set(\iota, o, \leadsto)$

Polymorphism

In HOL4, HOL Light, Isabelle/HOL... more than in Church's Simple type theory Object-level prenex polymorphism

In fact: two different features nil : $\forall X$ (list X) $\forall X$ (nil X = nil X)

Polymorphism

```
Scheme: TYPE

\uparrow: Set \rightarrow Scheme

\forall: (Set \rightarrow Scheme) \rightarrow Scheme

Els: Scheme \rightarrow TYPE

Els(\uparrow x) \longrightarrow El x
```

 $Els(\forall p) \longrightarrow \Pi x : Set, Els(px)$

$$V : (Set \rightarrow Prop) \rightarrow Prop$$

 $Prf(V p) \longrightarrow \Pi x : Set, Prf(p x)$

Dependent function type

Non dependent function types

$$\sim$$
: Set \rightarrow Set \rightarrow Set
El $(x \sim y) \longrightarrow (El x) \rightarrow (El y)$

can be made dependent

$$\leadsto_d : \Pi x : Set, (El \ x \to Set) \to Set$$

 $El \ (x \leadsto_d y) \longrightarrow \Pi z : El \ x, El \ (y \ z)$

No need to choose: you can have both (Ecumenism)

Better: $A \sim_d \lambda z$: El A, B can be replaced with $A \sim B$ each time z does not occur in B

Dependent implication

In the same way \Rightarrow can be made dependent

$$\Rightarrow_d : \Pi x : Prop, (Prf x \rightarrow Prop) \rightarrow Prop$$

 $Prf(x \Rightarrow_d y) \longrightarrow \Pi z : Prf x, Prf(y z)$

The Calculus of constructions

With $\Rightarrow_d, \rightsquigarrow_d, \forall$, and a similar symbol π $(\langle *, *, * \rangle, \langle \square, \square \rangle, \langle \square, *, * \rangle, \text{ and } \langle *, \square, \square \rangle)$ an expression of the Calculus of constructions

Reverse engineering proofs (Thiré)

A proof of Fermat's little theorem in MATITA

- **Express it in Dedukti with** \Rightarrow_d , \rightsquigarrow_d , \forall , and π
- ▶ Replace \Rightarrow_d , with \Rightarrow and \rightsquigarrow_d with \rightsquigarrow when possible
- ightharpoonup Remark that $ightharpoonup_d$, and π are not used anymore

A proof of Fermat's little theorem in Simple type theory (HOL4, HOL LIGHT, ISABELLE/HOL...)


```
psub: \Pi t: Set, (El\ t \to Prop) \to Set
pair: \Pi t: Set, \Pi p: El\ t \to Prop, \Pi m: El\ t, Prf\ (p\ m) \to El\ (psub\ t\ p)
pair^{\dagger}: \Pi t: Set, \Pi p: El\ t \to Prop, El\ t \to El\ (psub\ t\ p)
pair\ t\ p\ m\ h \longrightarrow pair^{\dagger}\ t\ p\ m
fst: \Pi t: Set, \Pi p: El\ t \to Prop, El\ (psub\ t\ p) \to El\ t
```

 $snd: \Pi t: Set, \Pi p: Elt \rightarrow Prop, \Pi m: El(psubtp), Prf(p(fsttpm))$

(psub nat even) : Set (pair nat even 6 u) : (psub nat even)

fst t p (pair t' p' m) \longrightarrow m

PVS in Dedukti (Hondet's course)

How to express a theory in Dedukti?

Pick cherries according to your taste

Enough to express Predicate logic, Simple type theory, Simple type theory with predicate subtyping, The Calculus of constructions...

In the next courses

- more advanced features: universes, universe polymorphism, predicativity (Cockx and Felicissimo's course), inductive types...
- other examples: cubical type theory (Barras' course), K (Dubois and Ledein's course)
- ▶ and more (interoperability, cross-verification...)