SAVITRIBAI PHULE PUNE UNIVERSITY

ACTIVITY BOOK FOR

"DeepFake Detection Machine Learning"

Submitted to the Department of Artificial intelligence and machine learning Engineering, SVCET, Rajuri, Pune, in partial fulfillment of the requirements for the

FINAL YEAR OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Group Id: 005

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING ENGINEERING

SAHYADRI VALLEY COLLEGE OF ENGINEERING & TECHNOLOGY, RAJURI, PUNE (2024-2025)

Title Page

1. Name of Student : Jadhav Abhijeet Digambar Lokare Sakshi Pandurang Sinde Priya Ravindra
2. Branch : Artificial intelligence and machine learning Engineering
3. Academic Year: 2024-25
4. Activity Book: 16/01/2025 – 12/03/2025
5. Proposed Topic : DeepFake Detection Using Machine Learning
<u>Day & Date : Thursday 16/01/2025</u>
Day 1
Work Done : Finalized the project topic. Conducted initial research on deepfake threats and machine learning techniques.
Tools Used: Research papers, browser, Google Scholar
Learnings: Understood different approaches to deepfake detection.
Challenges: Narrowing down the exact ML method.
Next Steps: Start dataset collection and tool selection.

... Day & Date : Friday 17/01/2025

Work Done : Selected the FaceForensics++ dataset. Set up project repo and virtual environment.
Tools Used: GitHub, Python, pip, Anaconda
Learnings: How to structure ML project files.
Challenges: Dataset size and storage.
Next Steps: Preprocess the dataset.
Day & Date : Wednesday 22/01/2025
Day 3
Work Done: Wrote preprocessing scripts to resize, normalize frames, and label real/fake videos.
Tools Used: OpenCV, NumPy, Pandas
Learnings: Handling video-to-frame conversion.
Challenges: Time taken to process large datasets.
Next Steps: Build CNN model for feature extraction.

... <u>Day & Date : Thursday 23/01/2025</u>

Day & Date: Thursday 25/01/2025
Day 4 Work Done: Implemented ResNeXt CNN architecture for spatial feature extraction.
Tools Used: PyTorc
Learnings: Deep residual networks for image classification.
Challenges: GPU memory overflow.
Next Steps: Train the CNN and evaluate.
<u>Day & Date : Friday 24/01/2025</u>
Day 5
Work Done: Trained CNN on real vs fake image frames. Achieved baseline accuracy.
Tools Used: PyTorch, TensorBoard
Learnings: How CNN learns low-level image manipulations.
Challenges : Overfitting noticed after 5 epochs.
Next Steps: Add temporal learning using LSTM

<u>Day & Date : Wednesday 29/01/2025</u>
Day 6
Work Done : Integrated CNN + LSTM model to learn spatiotemporal patterns.
Tools Used: PyTorch, torch.nn.LSTM
Learnings: Sequence modeling with video frames.
Challenges: Adjusting input dimensions between CNN output and LSTM input.
N 4 C4 T ' 1' 1 1 1
Next Steps: Train combined model.
Day & Date : Thursday 30/01/2025
Day 7
Work Done: Trained CNN+LSTM architecture and evaluated accuracy.
Tools Used: GPU (Google Colab), PyTorch
Learnings : Joint spatial-temporal learning improves results.
Challenges: Runtime instability on long videos.
Next Steps: Optimize model and hyperparameters.
110At Steps. Opininze model and hyperparameters.

<u>Day & Date : Friday 31/01/2025</u>
Day 8
Work Done: Applied dropout, learning rate decay, and batch normalization.
Tools Used: PyTorch optimizer, torch.nn modules
Learnings: Improved generalization with regularization.
Challenges: Finding optimal dropout rate.
Next Steps: Build Django-based front-end for testing.
<u>Day & Date : Wednesday 05/02/2025</u>
Day 9
Work Done: Created Django project to upload and analyze videos.
Tools Used: Django, HTML, Bootstrap
Learnings: Backend-server integration with ML model.
Challenges: Large video upload handling.
Next Steps: Connect frontend to prediction pipeline.

... Day & Date: Thursday 06/02/2025

D	4	0
1121	7	П
Da	у <u>т</u>	U

Work Done: Integrated PyTorch model with Django backend using REST APIs.

Tools Used: Django REST Framework

Learnings: ML inference as a web service.

Challenges: Prediction delays due to frame-by-frame processing.

Next Steps: Optimize video sampling.

.....

...Day & Date : Friday 07/02/2025

Day 11

Work Done: Implemented sampling logic to reduce number of frames per video.

Tools Used: OpenCV

Learnings: Balanced speed and accuracy with fewer frames.

Challenges: Choosing ideal frame sampling rate.

Next Steps: Test model with real-world deepfakes.

.....

... Day & Date : Wednesday 12/02/2025

D -	- 1	2
Hat	7 I	/
Du,	/ _	_

Work Done: Collected and tested videos from YouTube and TikTok.

Tools Used: YoutubeDL, Browser

Learnings: Deepfakes vary significantly in manipulation quality.

Challenges: Inconsistent video formats.

Next Steps: Validate model across diverse samples

.....

... Day & Date : Thursday 13/02/2025

Day 13

Work Done: Visualized LSTM activations for interpretability.

Tools Used: Matplotlib, seaborn

Learnings: Identified which features help in detecting deepfakes.

Challenges: Complexity in interpreting high-dimensional data.

Next Steps: Add Grad-CAM for visual insights.

.....

Day 14 Work Done: Implemented Grad-CAM to highlight manipulated video regions. Tools Used: PyTorch hooks, OpenCV Learnings: Saliency maps for explainability. Challenges: Generating consistent overlays. Next Steps: Add user option to display these in GUI. ... Day & Date: Wednesday 19/02/2025 **Day 15** Work Done: Integrated saliency map output into frontend. **Tools Used**: Django Templates Learnings: Improved user interaction and trust in results. Challenges: Image overlay mismatches. Next Steps: Create download report feature.

... Day & Date : Friday 14/02/2025

<u>Day & Date : Thursday 20/02/2025</u>
Day 16
Work Done: Developed report generator for prediction results.
Tools Used: ReportLab
Learnings: Auto-generating PDFs from model outputs.
Challenges: Formatting report structure.
Next Steps: Deploy on cloud for testing.
<u>Day & Date : Friday 21/02/2025</u>
Day 17
Work Done: Deployed application on Heroku using Docker.
Tools Used: Docker, Heroku CLI.
Learnings: Cloud deployment of ML-powered web apps.
Challenges: Memory allocation and slug size.
Next Steps: Monitor logs and latency.

... Day & Date : Wednesday 26/02/2025 Day 18 Work Done: Collected logs, latency data, and user feedback. Tools Used: Heroku Dashboard Learnings: Importance of performance monitoring. Challenges: Occasional timeouts. Next Steps: Optimize video processing pipeline. ...Day & Date : Thursday 27/02/2025 **Day 19** Work Done: Cleaned up project files, added inline comments. Tools Used: VS Code Learnings: Importance of clean code and documentation. Challenges: Commenting all scripts thoroughly. Next Steps: Create flowchart and architecture diagram.

Day 20 Work Done: Created flowchart and system architecture diagram. Tools Used: Draw.io Learnings: Documenting system pipelines visually. Challenges: Making diagrams informative yet minimal. Next Steps: Start drafting final report. ... Day & Date : Wednesday 05/03/2025 Day 21 Work Done: Drafted project report with screenshots, charts, and results. Tools Used: MS Word Learnings: Reporting technical concepts clearly. Challenges: Screenshot formatting. Next Steps: Add abstract, conclusion, and references.

... Day & Date : Friday 28/02/2025

... Day & Date: Thursday 06/03/2025 Day 22 Work Done: Completed report and added conclusion, limitations, and future scope. Tools Used: MS Word Learnings: Reporting best practices. Challenges: Time management. Next Steps: Create presentation ... Day & Date : Friday 07/03/2025 Day 23 Work Done: Created PowerPoint for project demonstration. Tools Used: MS PowerPoint **Learnings**: How to communicate findings to evaluators. Challenges: Compressing 2 months of work into 10 slides.

Next Steps: Final demo preparation.

... Day & Date : Wednesday 12/03/2025

Day 24

Work Done: Conducted project dry-run, tested app, fixed UI issues, and completed submission.

Tools Used: Django, PowerPoint

Learnings: How to carry a project from idea to deployment.

Challenges: Minor code bugs and formatting fixes.

Next Steps: Submit and present project.