

UNIVERSITATEA BABEŞ-BOLYAI Facultatea de Matematică și Informatică

INTELIGENŢĂ ARTIFICIALĂ

Rezolvarea problemelor de căutare

Strategii de căutare informată locală Algoritmi Evolutivi

Laura Dioşan

Sumar

- A. Scurtă introducere în Inteligența Artificială (IA)
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială
- c. Sisteme inteligente
 - Sisteme care învaţă singure
 - Arbori de decizie
 - Rețele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
 - Sisteme bazate pe reguli
 - Sisteme hibride

Sumar

- Rezolvarea problemelor prin căutare
 - Strategii de căutare informate (euristice) SCI
 - Strategii locale
 - Algoritmi evolutivi

Materiale de citit și legături utile

- capitolul 14 din C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998
- □ capitolul 7.6 din A. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- Capitolul 9 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

Căutare locală

Tipologie

- Căutare locală simplă se reţine o singură stare vecină
 - □ Hill climbing → alege cel mai bun vecin
 - □ Simulated annealing → alege probabilistic cel mai bun vecin
 - □ Căutare tabu → reţine lista soluţiilor recent vizitate
- Căutare locală în fascicol (beam local search) se reţin mai multe stări (o populaţie de stări)
 - Algoritmi evolutivi
 - Optimizare bazată pe comportamentul de grup (Particle swarm optimisation)
 - Optimizare bazată pe furnici (Ant colony optmisation)

Algoritmi inspirați de natură

- Care este cea mai bună metodă de rezolvare a unei probleme?
 - Creierul uman
 - a creat roata, maşina, oraşul, etc
 - Mecanismul evoluţiei
 - a creat creierul (mintea) umană
- Simularea naturii
 - Cu ajutorul maşinilor → reţelele neuronale artificiale simulează mintea umană
 - maşini de zbor, computere bazate pe ADN, computere cu membrane
 - Cu ajutorul algoritmilor
 - algoritmii evolutivi simulează evoluţia naturii
 - algoritmii inspirați de comportamentul de grup simulează adaptarea colectivă și procesele sociale dintr-un colectiv (*Particle Swarm Optimisation*)
 - algoritmii inspiraţi de furnici (Ant Colony Optimisation)

- Simularea naturii
 - Zborul liliecilor

- Zborul păsărilor şi al avioanelor
- Zborul păsărilor şi turbinele eoliene

- □ Care sunt caracteristicile de bază ale AE?
 - Implică procese iterative și paralele
 - Folosesc populaţii de potenţiale soluţii
 - Se bazează pe o căutare aleatoare
 - Sunt inspiraţi de biologie implică mecanisme precum:
 - selecţia naturală
 - reproducerea
 - recombinarea
 - mutaţia

Câteva repere istorice

- □ Jean Baptise de Lamark (1744-1829)
 - A propus în 1809 o explicaţie pentru originea speciilor în cartea Zoological Philosophy:
 - Nevoile unui organism determină caracteristicile care evoluează
 - Caracteristicile utile dobândite în cursul vieţii unui organism se pot transfera urmaşilor acestuia
 - Legea utilizării şi neutilizării
 - use and disuse

Câteva repere istorice

- Charles Darwin (1807-1882)
 - În cartea Origin of Species demostrează că toate organismele au evoluat din alte organisme pe baza:
 - variaţiei
 - supraproducţia de descendenţi
 - selecţiei naturale
 - competiţia (generaţii constante ca dimensiune)
 - supravieţuirea pe baza calităţii/adaptării la mediul de viaţă (fitness)
 - reproducerea
 - apariţia de specii noi

Câteva repere istorice

- Teoria evolutivă modernă
 - Îmbogățește teoria Darwiniană cu mecanismul moștenirii genetice
 - Variaţia genetică se produce prin:
 - mutaţie spontană şi
 - reproducere sexuală
 - L. Fogel 1962 (San Diego, CA) → programare evolutivă PE (Evolutionary Programming)
 - J. Holland 1962 (Ann Arbor, MI) → algoritmi genetici AG (Genetic Algorithms)
 - I. Rechenberg & H.-P. Schwefel 1965 (Berlin, Germany) → strategii evolutive – SE – (Evolution Strategies)
 - J. Koza 1989 (Palo Alto, CA) → programare genetică PG (Genetic Programming)

Metafora evolutivă

Evoluţia naturală		Rezolvarea problemelor
Individ	\longleftrightarrow	Soluţie potenţială
Populaţie	\longleftrightarrow	Mulţime de soluţii potenţiale
Cromozom	\leftrightarrow	Codarea unei soluții potențiale
Genă	\longleftrightarrow	Parte a codării
Fitness	\leftrightarrow	Calitate
Încrucişare și mutație	\longleftrightarrow	Operatori de căutare
Mediu	\leftrightarrow	Problemă

Algoritmi evolutivi - algoritm

- Schema generală
- Projectare

- □ Schema generală a unui AE
 - Generaţional → → →
 - Steady-state ----->

Algoritmi evolutivi – algoritm

Projectare

- Alegerea unei reprezentări a cromozomilor
- Alegerea unui model de populaţie
- Stabilirea unei funcţii de evaluare
- Stabilirea operatorilor genetici
 - Selecţie
 - Mutaţie
 - Recombinare
- Stabilirea unui criteriu de stop

- 2 nivele de existență pentru o soluție candidat
 - Nivel exterior → fenotip
 - Individ obiectul original în contextul dat de problemă

adcaacb

- Nivel interior → genotip
 - Cromozom codul asociat unui obiect
 - format din gene, poziţionate în locuri (fixe) loci şi având anumite valori – alele
 - Aici are loc căutarea unei noi potenţiale soluţii
 - Vector unidimensional (numeric, boolean, string), matrice,

Inteligență artificială - metode de căutare locală (AE)

- Reprezentarea trebuie să fie relevantă pentru:
 - problemă,
 - funcţia de evaluare şi
 - operatorii genetici

Tipologia reprezentării cromozomilor

- Liniară
 - Discretă
 - □ Binară → problema rucsacului
 - Ne-binară
 - Întreagă
 - Oarecare → procesarea imaginilor
 - Permutări → problema comisului voiajor
 - Categorială → problema colorării hărţilor
 - Continuă (reală) → optimizări de funcţii
- □ Arborescentă → probleme de regresie

- Reprezentare liniară discretă binară
 - Genotip
 - 🛮 şir de biţi

- Reprezentare liniară discretă binară
 - Genotip
 - sir de biţi
 - Fenotip
 - Elemente de tip Boolean
 - Ex. Problema rucsacului obiectele alese pentru umplerea rucsacului

- Reprezentare liniară discretă binară
 - Genotip
 - sir de biţi
 - Fenotip
 - Elemente de tip Boolean
 - Ex. Problema rucsacului obiectele alese pentru umplerea rucsacului
 - Numere întregi

- Reprezentare liniară discretă binară
 - Genotip
 - sir de biţi
 - Fenotip
 - Elemente de tip Boolean
 - Ex. Problema rucsacului obiectele alese pentru umplerea rucsacului
 - Numere întregi
 - Numere reale într-un anumit Interval (ex. [2.5, 20.5])

Genotip Fenotip
$$1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 = 13.9609$$

$$x = 2.5 + \frac{163}{256} (20.5 - 2.5) = 13.9609$$

Transformarea valorilor reale reprezentate pe biţi

- □ Fie $z \in [x,y] \subseteq \mathcal{R}$ reprezentat ca $\{a_1,...,a_L\} \in \{0,1\}^L$
- □ Funcţia $[x,y] \rightarrow \{0,1\}^L$ trebuie să fie inversabilă (un fenotip corespunde unui genotip)
- □ Funcţia Γ : $\{0,1\}^{L} \rightarrow [x,y]$ defineşte reprezentarea

$$\Gamma(a_1,...,a_L) = x + \frac{y - x}{2^L - 1} \cdot (\sum_{j=0}^{L-1} a_{L-j} \cdot 2^j) \in [x, y]$$

- Observaţii
 - Se pot reprezenta doar 2^L valori
 - L indică precizia maximă a soluţiei
 - Pentru o precizie cât mai bună → cromozomi lungi → evoluţie încetinită

- Reprezentare liniară discretă ne-binară întreagă oarecare
 - Genotip
 - şir de numere întregi dintr-un anumit interval
 - Fenotip
 - Utilitatea numerelor în problemă
 - Ex. Problema plăţii unei sume folosind diferite monezi
 - □ Genotip → şir de nr întregi de lungime egală cu numărul de monezi diferite, fiecare număr din intervalul [0,suma/valoarea monezii curente]
 - □ Fenotip → câte monezi din fiecare tip trebuie considerate

- Reprezentare liniară discretă ne-binară întreagă de tip permutare
 - Genotip
 - □ Permutare de *n* numere (*n* numărul de gene)
 - Fenotip
 - Utilitatea permutării în problemă
 - Ex. Problema comisului voiajor

 - □ Fenotip → ordinea de vizitare a orașelor, știind că fiecărui oraș îi corespunde un număr din mulţimea {1,2,...,n}

- Reprezentare liniară discretă ne-binară categorială
 - Similară cu cea întreagă, dar în loc de numere se folosesc etichete
 - Genotip
 - şir de etichete dintr-o anumită mulţime
 - Fenotip
 - Interpretarea etichetelor
 - Ex. Problema colorării hărţilor
 - □ Genotip → şir de etichete (culori) de lungime egală cu numărul de ţări, fiecare etichetă aparţinând unei mulţimi de culori date
 - □ Fenotip → cu ce culoare trebuie haşurată fiecare hartă a unei ţări

- Reprezentare liniară continuă (reală)
 - Genotip
 - Şir de numere reale
 - Fenotip
 - Utilitatea numerelor în problemă
 - **Ex.** Problema optimizării funcțiilor $f: R^n \rightarrow R$
 - □ Genotip \rightarrow tuplu de numere reale X=[$x_1, x_2, ..., x_n$], $x_i \in R$
 - $lue{}$ Fenotip $lue{}$ valorile asociate argumentelor funcţiei f

- Reprezentare arborescentă
 - Genotip
 - Arbori care codează S-Expresii
 - Nodurile interne ale arborelui → funcţii (F)
 - Matematice
 - Operatori aritmetici
 - Operatori de tip Boolean
 - Instrucţiuni
 - Într-un limbai de programare
 - Alt tip de instrucţiuni
 - □ Frunzele arborelui → terminale (T)
 - Valori reale sau Booleene, constante sau variabile
 - Subprograme
 - Fenotip
 - Interpretarea S-expresiilor
 - Ex. Calculul ariei unui cerc

$$\pi * r^2$$

Populaţie – concept

- Scop
 - reţine o colecţie de soluţii candidat
 - se permit repetiţii
 - este folosită în întregime în procesul de selecţie pentru reproducere

Proprietăţi

- dimensiune (de obicei) fixă μ
- diversitate
 - Nr de fitness-uri/fenotipuri/genotipuri diferite

Observaţii

- Reprezintă unitatea de bază care evoluează
 - populaţia întreagă evoluează, nu indivizii!!!

- Populație inițializare
 - Uniformă (dacă e posibil) în spaţiul de căutare
 - Stringuri binare
 - generarea de 0 şi 1 cu probabilitatea 0.5
 - Şiruri de numere reale generate uniform (într-un anumit interval)
 - Permutări
 - generarea permutării identice şi efectuarea unor schimbări

Populație – inițializare

- Uniformă (dacă e posibil) în spaţiul de căutare
 - Arbori
 - Metoda Full arbori compleţi
 - Nodurile de la adâncimea d < D_{max} se iniţializează aleator cu o funcţie din setul de funcţii F
 - Nodurile de la adâncimea $d = D_{max}$ se iniţializează aleator cu un terminal din setul de terminale T
 - Metoda Grow arbori incompleţi
 - Nodurile de la adâncimea d < D_{max} se iniţializează aleator cu un element din $F\ U\ T$
 - Nodurile de la adâncimea $d = D_{max}$ se iniţializează aleator cu un terminal din setul de terminale T
 - Metoda Ramped half and half
 - ½ din populație se creează cu metoda Full
 - ½ din populație se creează cu metoda Grow
 - Folosind diferite adâncimi

- Modele de populaţii algoritm evolutiv:
 - Generaţional
 - \square În fiecare generație se crează μ descendenți
 - Fiecare individ supravieţuieşte o singură generaţie
 - Mulţimea părinţilor este înlocuită în întregime cu mulţimea descendenţilor
 - Steady-state
 - □ În fiecare generaţie se obţine un singur descendent
 - Un singur părinte (cel mai slab) este înlocuit cu descendentul obţinut
- □ Discrepanţa între generaţii (*Generation Gap*)
 - Proporţia populaţiei înlocuite
 - $1 = \mu/\mu$, pentru modelul generațional
 - $1/\mu$, pentru modelul steady-state

Algoritmi evolutivi – algoritm Proiectare – funcția de evaluare

Scop

- Reflectă condiţiile la care trebuie să se adapteze populaţia
- Funcție de calitate sau funcție obiectiv
- Asociază o valoare fiecărei soluţii candidat
 - □ Consecințe asupra selecției → cu cât sunt mai multe valori diferite, cu atât e mai bine

Proprietăţi

- Etapa cea mai costisitoare
 - Nu se re-evaluează indivizii nemodificaţi

Tipologie:

- După nr de obiective urmărite:
 - Uni-obiectiv
 - Multi-objectiv → fronturi Pareto
- După direcția optimizării
 - De maximizat
 - De minimizat
- După gradul de exactitate
 - Exactă
 - Euristică

Algoritmi evolutivi – algoritm Proiectare – funcția de evaluare

Exemple

- Problema rucsacului
 - □ reprezentare → liniară discretă binară
 - □ fitness → abs(greutatea rucsacului greutatea obiectelor alese) → minimizare
- Problema plății unei sume folosind diferite monezi
 - □ reprezentare → liniară discretă întreagă
 - □ fitness → abs(suma de plată suma monezilor selectate) → minimizare
- Problema comisului voiaior
 - □ reprezentare → liniară discretă întreagă sub formă de permutare
 - □ fitness → costul drumului parcurs → minimizare
- Problema optimizării funcţiilor
 - □ Reprezentare → liniară continuă reală
 - □ fitness → valoarea funcţiei → minimizare/maximizare
- Calculul ariei unui cerc
 - □ reprezentare → arborescentă
 - fitness → suma pătratelor erorilor (diferenţelor între valoarea reală şi cea calculată pe un set de exemple) → minimizare

Algoritmi evolutivi – algoritm Proiectare – selecția

Scop:

- acordă şanse de reproducere/supravieţuire mai mari indivizilor mai buni
 - şi indivizii mai slabi trebuie să aibă şansa să se reproducă/supravieţuiască pentru că pot conţine material genetic util
- direcţionează populaţia spre îmbunătăţirea calităţii

Proprietăți

- lucrează la nivel de populaţie
- se bazează doar pe fitnessul indivizilor (este independentă de reprezentare)
- aiută la evadarea din optimele locale datorită naturii sale stocastice

Algoritmi evolutivi – algoritm Proiectare – selecția

Tipologie

- în funcție de scop:
 - Selecţia părinţilor (din generaţia curentă) pentru reproducere
 - Selecţia supravieţuitorilor (din părinţi şi descendenţi) pentru generaţia următoare
- în funcţie de modul de decidere al câştigătorului
 - Deterministă cel mai bun câştigă
 - Stocastică cel mai bun are cele mai mari şanse să câştige
- în funcţie de mecanism
 - Selecţia pentru reproducere
 - Selecţie proporţională (bazată pe fitness)
 Selecţie proporţională (bazată pe fitness)
 Bazate pe întreaga populaţie
 - Selecţie bazată pe ranguri
 - Selecție prin turnir ----→ Bazată pe o parte din populație
 - Selecţia pentru supravieţuire
 - Bazată pe vârstă
 - Bazată pe calitate (fitness)

- Selecţie proporţională (bazată pe fitness) SP
 - Ideea de bază
 - Algoritmul ruletei la nivelul întregii populaţii
 - Estimarea numărului de copii ale unui individ $E(n_i) = \mu \frac{f(i)}{f(x)}$, unde:
 - $\mu = dimensiunea populației,$
 - f(i) = fitnessul individului i,
 - \(\operatorname{f} \) = fitnessul mediu al populaţiei
 - Indivizii mai buni
 - au alocat mai mult spaţiu în ruletă
 - au şanse mai mari să fie selectați
 - **Ex.** O populaţie cu μ = 3 indivizi

	f(i)	P _{selSP} (i)	
Α	1	1/10=0.1	
В	5	5/10=0.5	
С	4	4/10=0.4	
Suma 10		1	

- SP	
i id Cel mai bun	
	Cel mai slab

Selecție proporțională (bazată pe fitness)

- Avantaie
 - Algoritm simplu
- Dezavantaie
 - Convergenţa prematură
 - cromozomii foarte buni tind să domine populaţia
 - Presiune de selecţie foarte mică atunci când fintessurile indivizilor sunt foarte apropiate (la sfârşitul rulării)
 - Susceptibilă de traspoziția funcției
 - Rezultatele reale ale unei astfel de selcţii diferă de distribuţia probabilistică teoretică
 - Lucrează cu întreaga populaţie
- Soluţii
 - scalarea fitnessului
 - Windowing
 - $f'(i) = f(i) \beta^t$, unde β este un parametru care depinde de istoria recentă a evolution
 - ex. β este fitnessul celui mai slab individ din populația curentă (a *t*-a ge
 - Scalare de tip sigma (de tip Goldberg)
 - $f'(i) = max\{f(i) (\langle f \rangle c * \sigma_f), 0.0\}$, unde:
 - c este o constantă (de obicei 2)
 - \(\f \) fitnessul mediu al populaței
 - σ_f deviaţia standard a fitnessului populaţiei
 - Scalare prin normalizare
 - Se începe cu fitnessurile absolute (iniţiale)
 - Se standardizează astfel încât Se aiustează fitnessurile a.î.:
 - ele să aparţină [0,1]
 - cel mai bun fitness să fie cel mai mic (egal cu 0)
 - suma lor să fie 1
 - alt mecanism de selecție

- Selecţia bazată pe ranguri SR
 - Ideea de bază
 - Se ordonează întreaga populație pe baza fitnessului
 - Creşte puţin complexitatea algoritmului, dar se poate negliia această creştere comparativ cu timpul necesar evaluării unui individ
 - Se acordă ranguri fiecărui individ
 - Se calculează probabilitățile de selecție pe baza rangurilor
 - Cel mai slab individ are rangul 1
 - Cel mai bun individ are rangul μ
 - Încearcă să rezolve problemele selecţiei proporţionale prin folosirea fitnessurilor relative (în locul celor absolute)

Proiectare – selecția pt. reproducere

- Selecţia bazată pe ranguri SR
 - Modalități de acordare a rangurilor

Liniară (RL)
$$P_{lin_rank}(i) = \frac{2-s}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

- s presiunea de selecţie
 - măsoară avantaiele celui mai bun individ
 - 1.0 < s ≤ 2.0
 - în algoritmul genetic generațional s este numărul de copii ai unui individ
- Ex. pentru o populație cu $\mu = 3$ indivizi

	f(i)	P _{selSP} (i)	Rang	P _{selRL} (i) pt. s=2	P _{selRL} (i) pt. s=1
А	1	1/10=0.1	1	0.33	0.33
В	5	5/10=0.5	3	1.00	0.33
С	4	4/10=0.4	2	0.67	0.33
Suma	10	1			

- **Exponențială (RE)** $P_{\exp_{-rank}}(i) = \frac{1 e^{-i}}{c}$
 - Cel mai bun individ poate avea mai mult de 2 copii
 - c factor de normalizare
 - depinde de dimensiunea populaţiei (μ)
 - trebuie ales a.î. suma probabilităţilor de selecţie să fie 1

- Selecţia bazată pe ranguri SR
 - Avantaie
 - Păstrează presiunea de selecţie constantă
 - Dezavantaie
 - Lucrează cu întreaga populație
 - Soluţii
 - Alt mecanism de selecţie

Selecţia prin turnir

- Ideea de bază
 - □ Se aleg aleator k indivizi \rightarrow eşantion de k indivizi (k mărimea turnirului)
 - Se selectează cel mai bun individ dintre cei aleşi anterior
 - Probabilitatea alegerii unui individ în eşantion depinde de
 - Rangul individului
 - Dimensiunea eşantionului (k)
 - Cu cât k este mai mare, cu atât crește și presiunea de selcție
 - Modul în care se face alegerea dacă se realizează cu înlocuire (model steadystate) sau nu
 - Alegerea fără înlocuire creşte presiunea de selecţie
 - Pt k = 2 timpul necesar ca cel mai bun individ să domine populația este același cu cel de la selecția pe bază de ranguri liniare cu s = 2 * p, p probabilitatea alegerii celui mai bun individ din populație

Selecţia prin turnir

Avantaje

- Nu implică lucrul cu întrega populaţie
- Uşor de implementant
- Uşor de controlat presiunea de selcţie prin intermediul parametrului k

Dezavantaje

 Rezultatele reale ale unei astfel de selecţii diferă de distribuţia probabilistică teoretică (similar selecţiei prin mecanismul ruletei)

Algoritmi evolutivi Proiectare – selecția

- Selecţia pentru supravieţuire (înlocuire)
 - Pe baza vârstei
 - eliminarea celor mai "bătrâni" indivizi
 - Pe baza calităţii (fitness-ului)
 - selecţiei proporţională
 - selecţie bazată pe ranguri
 - selecţie prin turnir
 - elitism
 - Păstrarea celor mai buni indivizi de la o generaţie la alta (dacă descendenţii sunt mai slabi ca părinţii se păstrează părinţii)
 - GENITOR (înlocuirea celui mai slab individ)
 - Eliminarea celor mai slabi λ indivizi

Algoritmi evolutivi - algoritm Proiectare – operatori de variație

□ Scop:

Generarea unor soluţii potenţiale noi

Proprietăți

- lucrează la nivel de individ
- se bazează doar pe reprezentarea indivizilor (independent de fitness)
- Aiută la explorarea şi exploatarea spaţiului de căutare
- Trebuie să producă indivizi valizi

Tipologie

- În funcţie de aritate
 - □ Aritate 1 → operatori de mutaţie
 - □ Aritate > 1 → operatori de recombinare/încrucişare

Algoritmi evolutivi – algoritm Proiectare – mutația

Scop

- Reintroducerea în populație a materialului genetic pierdut
- Operator unar de căutare (spaţiul continuu)
- Introducerea diversităţii în populaţie (în spaţiul discret binar)

Proprietăţi

- Acţionează la nivel de genotip
- Bazată pe elemente aleatoare

- Responsabilă cu explorarea unor noi regiuni promiţătoare ale spaţiului de căutare
- Este responsabilă de evadarea din optimele locale
- Trebuie să producă mici schimbări stocastice ale individului
- Mărimea mutației trebuie să fie controlabilă
- Se produce cu o anumită probabilitate (p_m) la nivelul fiecărei gene a unui cromozom

Algoritmi evolutivi – algoritm Proiectare – mutația

Tipologie

- Reprezentare binară
 - Mutatie tare bit-flipping
 - Mutaţie slabă
- Reprezentare întreagă
 - Random resetting
 - Creep mutation
- Reprezentare permutare
 - Mutație prin inserție
 - Mutaţie prin interchimbare
 - Mutație prin inversare
 - Mutaţie prin amestec
 - Mutaţie k-opt
- Reprezentare reală
 - Mutaţie uniformă
 - Mutaţie neuniformă
 - Mutaţie Gaussiană
 - Mutaţie Cauchy
 - Mutație Laplace
- Reprezentare arborescentă → într-un curs viitor
 - Mutaţie grow
 - mutaţie shrink
 - Mutaţie switch
 - Mutaţie cycle
 - Mutaţie tip Koza
 - Mutaţie pentru terminalele numerice

- □ Un cromozom $c=(g_1,g_2,...,g_L)$ devine $c'=(g_1',g_2',...,g_L')$, unde $g_i, g_i' \in \{0,1\}$, pt. i=1,2,...,L
- Mutaţie tare bit flipping
 - Ideea de bază
 - $f \Box$ Schimbarea cu probabilitatea p_m (rată de mutație) a unor gene în complementul lor
 - $1 \rightarrow 0$
 - $0 \rightarrow 1$
 - \blacksquare Ex. Un cromozom cu L=8 gene, $p_m=0.1$

- □ Un cromozom $c=(g_1,g_2,...,g_L)$ devine $c'=(g_1',g_2',...,g_L')$, unde $g_i, g_i' \in \{0,1\}$, pt. i=1,2,...,L
- Mutaţie slabă
 - Ideea de bază
 - - $1 \to 0/1$
 - $0 \rightarrow 1/0$
 - □ Ex. Un cromozom cu L=8 gene, $p_m=0.1$

- □ Un cromozom $c=(g_1,g_2,...,g_L)$ devine $c'=(g_1',g_2',...,g_L')$, unde $g_i, g_i' \in \{val_1, val_2,...,val_k\}$, pt. i=1,2,...,L
- Mutaţie random resetting
 - Ideea de bază
 - □ Valoarea unei gene este schimbată (cu probabilitatea p_m) într-o altă valoare (din setul de valori posibile)

- □ Un cromozom $c=(g_1,g_2,...,g_L)$ devine $c'=(g_1',g_2',...,g_L')$, unde $g_i, g_i' \in \{val_1, val_2, ..., val_k\}$, pt. i=1,2,...,L
- Mutaţie creep
 - Ideea de bază
 - □ Valoarea unei gene este schimbată (cu probabilitatea p_m) prin adăugarea unei valori (pozitivă sau negativă)
 - valoarea → face parte dintr-o distribuţie simetrică faţă de zero
 - modificarea produsă este fină (mică)

- □ Un cromozom $c=(g_1,g_2,...,g_L)$ cu $g_i\neq g_i$ pentru orice $i\neq i$ devine $c'=(g_1',g_2',...,g_L')$, unde $g_i,g_i'\in\{val_1,val_2,...,val_L\}$, pt. i=1,2,...,L a.î. $g_i'\neq g_i'$ pentru orice $i\neq i$.
- Mutaţie prin interschimbare (swap mutation)
 - Ideea de bază
 - Se aleg aleator 2 gene şi se interschimbă valorile lor

Un cromozom $c=(g_1,g_2,...,g_L)$ cu $g_i\neq g_i$ pentru orice $i\neq i$ devine $c'=(g_1',g_2',...,g_L')$, unde $g_i,g_i'\in\{val_1,val_2,...,val_L\}$, pt. i=1,2,...,L a.î. $g_i'\neq g_i'$ pentru orice $i\neq i$.

Mutaţie prin inserţie

- Ideea de bază
 - Se aleg 2 gene oarecare g_i şi g_i cu j > i
 - Se inserează gj după gi a.î. $g_i'=g_i$, $g_{i+1}'=g_j$, $g_{k+2}'=g_{k+1}$, pentru k=i, i+1, i+2, ...

Un cromozom $c=(g_1,g_2,...,g_L)$ cu $g_i\neq g_i$ pentru orice $i\neq i$ devine $c'=(g_1',g_2',...,g_L')$, unde $g_i,g_i'\in\{val_1,val_2,...,val_L\}$, pt. i=1,2,...,L a.î. $g_i'\neq g_i'$ pentru orice $i\neq i$.

■ Mutaţie prin inversare

- Ideea de bază
 - Se aleg aleator 2 gene şi se inversează ordinea genelor situate între ele (substringul dintre gene)

- Un cromozom $c=(g_1,g_2,...,g_L)$ cu $g_i\neq g_i$ pentru orice $i\neq i$ devine $c'=(g_1',g_2',...,g_L')$, unde $g_i,g_i'\in\{val_1,val_2,...,val_L\}$, pt. i=1,2,...,L a.î. $g_i'\neq g_i'$ pentru orice $i\neq i$.
- Mutaţie prin amestec (scramble mutation)
 - Ideea de bază
 - Se alege aleator un subşir (continuu sau discontinuu) de gene şi se rearanjează acele gene

Un cromozom $c=(g_1,g_2,...,g_L)$ cu $g_i\neq g_i$ pentru orice $i\neq i$ devine $c'=(g_1',g_2',...,g_L')$, unde $g_i,g_i'\in\{val_1,val_2,...,val_L\}$, pt. i=1,2,...,L a.î. $g_i'\neq g_i'$ pentru orice $i\neq i$.

Mutaţie k-opt

- Ideea de bază
 - Se aleg 2 substringuri disjuncte și de lungime k

■ Se interchimbă 2 elemente ale acestor substringuri

de gene

k=2

- □ Un cromozom $c=(g_1,g_2,...,g_L)$ devine $c'=(g_1',g_2',...,g_L')$, unde $g_i, g_i' \in [LI_i, LS_i]$, pt. i=1,2,...,L
- Mutaţie uniformă
 - Ideea de bază
 - g_i este schimbată cu probabilitatea p_m la o valoare aleasă aleator uniform din $[LI_i, LS_i]$

- □ Un cromozom $c=(g_1,g_2,...,g_L)$ devine $c'=(g_1',g_2',...,g_L')$, unde $g_i, g_i' \in [LI_i, LS_i]$, pt. i=1,2,...,L
- Mutaţie neuniformă
 - Ideea de bază
 - valoarea unei gene este schimbată (cu probabilitatea p_m) prin adăugarea unei valori (pozitivă sau negativă)
 - valoarea → face parte dintr-o distribuţie
 - N(μ, σ) (Gaussiană) cu μ = 0
 - Cauchy (x₀, γ)
 - Laplace (µ, b)
 - şi readusă la [LI_i, LS_i] (dacă este necesar) clamping

Algoritmi evolutivi – algoritm Proiectare - recombinarea

- Scop
 - Amestecarea informaţiilor preluate din părinţi
- Proprietăţi
 - Descendentul trebuie să moştenească ceva de la fiecare dintre părinți
 - Alegerea informaţilor care se amestecă este aleatoare
 - Operator de exploatare probabilistică (p_c) a spaţiilor deja descoperite
 - Descendenţii pot să fie mai buni, la fel de buni sau mai slabi decât părinţii lor
 - Efectele sale se reduc pe măsură ce căutarea converge

Algoritmi evolutivi – algoritm Proiectare - recombinarea

- Tipologie în funcţie de reprezentarea indivizilor
 - Reprezentare binară şi întreagă
 - Cu puncte de tăietură
 - Uniformă
 - Reprezentare cu permutări
 - Încrucişare prin ordonare (versiunea 1 şi versiunea 2)
 - Încrucişare transformată parţial (Partially Mapped Crossover)
 - Încrucişare ciclică
 - Încrucişare bazată pe legături (muchii)
 - Reprezentare reală
 - Discretă
 - Intermediară (aritmetică)
 - Aritmetică singulară
 - Aritmetică simplă
 - Aritmetică completă
 - Geometrică
 - Încrucişare amestecată
 - Încrucişare binară simulată
 - Reprezentare cu arbori
 - □ Încrucişare de sub-arbori → într-un curs viitor

Proiectare – recombinarea (reprez. binară și întreagă)

- Din 2 cromozomi părinți
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ și $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- □ se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in \{0,1\} / \{val_1, val_2, ..., val_k\}$, pt. i=1,2,...,L

□ Încrucişare cu *n* puncte de tăietură

- Ideea de bază
 - □ Se aleg n puncte de tăietură (n < L)
 - Se taie cromozomii părinţi prin aceste puncte
 - Se lipesc părţile obţinute, alternând părinţii

Proiectare – recombinarea (reprez. binară și întreagă)

- □ Încrucişare cu *n* puncte de tăietură
 - Proprietăți
 - Media valorilor codate de părinţi = media valorilor codate de descendenţi
 - Ex. Reprezentarea binară pe 4 biţi a numerelor întregi XO cu n = 1 dupa bitul 2
 - $p_1 = (1,0,1,0), p_2 = (1,1,0,1)$
 - $d_1 = (1,0,0,1), d_2 = (1,1,1,0)$
 - $val(p_1) = 10$, $val(p_2) = (13) \rightarrow (val(p_1) + val(p_2))/2 = 23/2 = 11.5$
 - $val(d_1) = 9$, $val(d_2) = (14) \rightarrow (val(d_1) + val(d_2))/2 = 23/2=11.5$
 - Ex. Reprezentare binară pe 4 biţi pentru problema rucsacului de capacitate K
 = 10 cu 4 obiecte de greutate şi valoare ((2,7), (1,8), (3,1), (2,3))
 - $p_1 = (1,0,1,0), p_2 = (1,1,0,1)$
 - $d_1 = (1,0,0,1), d_2 = (1,1,1,0)$
 - $val(p_1) = 8$, $val(p_2) = 18 \rightarrow (val(p_1) + val(p_2))/2 = 26/2=13$
 - $val(d_1) = 10$, $val(d_2) = 16 \rightarrow (val(d_1) + val(d_2))/2 = 26/2=13$
 - \blacksquare Probabilitatea apariției unui factor de răspândire $\beta\approx 1$ este mai mare decât probabilitatea oricărui alt factor

$$\beta = \left| \frac{val(d_1) - val(d_2)}{val(p_1) - val(p_2)} \right|$$

- Încrucişare prin contracţie β < 1
 - Valorile descendenţilor se află între valorile părinţilor
- Încrucişare prin extensie β > 1
 - Valorile părinților se află între valorile descendenților
- Încrucişare staţionară $\beta = 1$
 - Valorile descendenţilor coincid cu valorile părinţilor

Proiectare – recombinarea (reprez. binară și întreagă)

- Din 2 cromozomi părinţi
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ și $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- □ se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in \{0,1\} / \{val_1, val_2, ..., val_k\}$, pt. i=1,2,...,L
- □ Încrucişare uniformă
 - Ideea de bază
 - Fiecare genă a unui descendent provine dintr-un părinte ales aleator şi uniform:
 - Pentru fiecare genă în parte se generează un număr aleator r care respectă legea uniformă
 - Dacă numărul generat r < probabilitatea p (de obicei p=0.5), c_1 va lua gena respectivă din p_1 şi c_2 va lua gena respectivă din p_2 ,
 - Altfel c_1 va lua gena respectivă din p_2 și c_2 va lua gena respectivă din p_1

Proiectare – recombinarea (reprez. permutare)

•
$$p_1 = (g_1^1, g_2^1, ..., g_L^1)$$
 și $p_2 = (g_1^2, g_2^2, ..., g_L^2)$

- se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i], pt. i=1,2,...,L$

- Descendenţii păstrează ordinea de apariţie a genelor părinţilor
- \Box Se alege un substring de gene din primul părinte p_1
- \square Se copiază substringul din p_1 în descendentul d_1 (pe poziții corespondente)

Proiectare – recombinarea (reprez. permutare)

•
$$p_1 = (g_1^1, g_2^1, ..., g_L^1)$$
 și $p_2 = (g_1^2, g_2^2, ..., g_L^2)$

- se obțin 2 descendenți
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, pt. i=1,2,...,L

Încrucişare ordonată

- Ideea de bază
 - Descendenții păstrează ordinea de apariție a genelor părinților
 - Se alege un substring de gene din primul părinte p₁
 - \square Se copiază substringul din p_1 în descendentul d_1 (pe poziții corespondente)
 - \square Se copiază genele din p_2 în descendentul d_1 astfel:
 - Începând cu prima poziție de după terminarea substringului
 - Respectând ordinea genelor din p₂ şi
 - Re-luând genele de la prima pozițe (dacă s-a ajuns la sfârșit)

Proiectare – recombinarea (reprez. permutare)

$$p_1 = (g_1^1, g_2^1, ..., g_L^1) \text{ si } p_2 = (g_1^2, g_2^2, ..., g_L^2)$$

- se obțin 2 descendenți
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, pt. i=1,2,...,L

Încrucişare ordonată

- Ideea de bază
 - Descendenții păstrează ordinea de apariție a genelor părinților
 - Se alege un substring de gene din primul părinte p₁
 - \square Se copiază substringul din p_1 în descendentul d_1 (pe poziții corespondente)
 - \square Se copiază genele din p_2 în descendentul d_1 astfel:
 - Începând cu prima poziție de după terminarea substringului
 - Respectând ordinea genelor din p₂ şi
 - Re-luând genele de la prima pozițe (dacă s-a ajuns la sfârșit)

Proiectare – recombinarea (reprez. permutare)

$$p_1 = (g_1^1, g_2^1, ..., g_L^1) \text{ si } p_2 = (g_1^2, g_2^2, ..., g_L^2)$$

- □ se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i], pt. i=1,2,...,L$

■ Încrucişare ordonată

- Ideea de bază
 - Descendenţii păstrează ordinea de apariţie a genelor părinţilor
 - \Box Se alege un substring de gene din primul părinte p_1

 - Se copiază genele din p_2 în descendentul d_1 astfel:
 - Începând cu prima poziţie de după terminarea substringului
 - Respectând ordinea genelor din p₂ şi
 - Re-luând genele de la prima poziţe (dacă s-a ajuns la sfârşit)

Proiectare – recombinarea (reprez. permutare)

$$p_1 = (g_1^1, g_2^1, ..., g_L^1) \text{ și } p_2 = (g_1^2, g_2^2, ..., g_L^2)$$

- □ se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i], pt. i=1,2,...,L$

■ Încrucişare ordonată

- Ideea de bază
 - Descendenţii păstrează ordinea de apariţie a genelor părinţilor
 - \Box Se alege un substring de gene din primul părinte p_1

 - Se copiază genele din p_2 în descendentul d_1 astfel:
 - Începând cu prima poziţie de după terminarea substringului
 - Respectând ordinea genelor din p₂ şi
 - Re-luând genele de la prima poziţe (dacă s-a ajuns la sfârşit)

Proiectare – recombinarea (reprez. permutare)

•
$$p_1 = (g_1^1, g_2^1, ..., g_L^1)$$
 și $p_2 = (g_1^2, g_2^2, ..., g_L^2)$

- se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i], pt. i=1,2,...,L$

- Ideea de bază
 - Descendenţii păstrează ordinea de apariţie a genelor părinţilor
 - \Box Se alege un substring de gene din primul părinte p_1

 - Se copiază genele din p_2 în descendentul d_1 astfel:
 - Începând cu prima poziţie de după terminarea substringului
 - Respectând ordinea genelor din p₂ şi
 - Re-luând genele de la prima poziţe (dacă s-a ajuns la sfârşit)

Proiectare – recombinarea (reprez. permutare)

•
$$p_1 = (g_1^1, g_2^1, ..., g_L^1)$$
 și $p_2 = (g_1^2, g_2^2, ..., g_L^2)$

- se obțin 2 descendenți
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, pt. i=1,2,...,L

Încrucişare ordonată

- Ideea de bază
 - Descendenții păstrează ordinea de apariție a genelor părinților
 - Se alege un substring de gene din primul părinte p₁
 - \square Se copiază substringul din p_1 în descendentul d_1 (pe poziții corespondente)
 - \square Se copiază genele din p_2 în descendentul d_1 astfel:
 - Începând cu prima poziție de după terminarea substringului
 - Respectând ordinea genelor din p₂ şi
 - Re-luând genele de la prima pozițe (dacă s-a ajuns la sfârșit)

Proiectare – recombinarea (reprez. permutare)

•
$$p_1 = (g_1^1, g_2^1, ..., g_L^1)$$
 şi $p_2 = (g_1^2, g_2^2, ..., g_L^2)$

- se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i], pt. i=1,2,...,L$

■ Încrucişare ordonată

Ideea de bază

- Descendenţii păstrează ordinea de apariţie a genelor părinţilor
- \Box Se alege un substring de gene din primul părinte p_1
- \square Se copiază substringul din p_1 în descendentul d_1 (pe poziții corespondente)
- Se copiază genele din p_2 în descendentul d_1 astfel:
 - Începând cu prima poziţie de după terminarea substringului
 - Respectând ordinea genelor din p₂ şi
 - Re-luând genele de la prima poziţe (dacă s-a ajuns la sfârşit)
- \Box Se reia procedeul pentru al doilea descendent d_2 .

- Din 2 cromozomi părinţi
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ și $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ și $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, pt. i=1,2,...,L
- □ Încrucişare parţial transformată (partially mapped XO)
 - Ideea de bază
 - \blacksquare Se alege un substring de gene din primul părinte p_1
 - $lue{}$ Se copiază substringul din p_1 în descendentul d_1 (pe poziții corespondente)
 - Se iau pe rând elementele i din substringul din p_2 care nu apar în substringul din p_1 şi se determină care element j a fost copiat în locul lui din p_1
 - Se plasează i în d_1 în poziția ocupată de j în p_2 (dacă locul este liber)
 - Dacă locul ocupat de j în p_2 a fost deja completat în d_1 cu elementul k, i se pune în locul ocupat de k în p_2
 - $lue{}$ Restul elementelor se copiază din p_2 în d_1
 - \blacksquare Pentru descendentul d_2 se procedează similar, dar inversând părinții

- Din 2 cromozomi părinţi
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1) \text{ si } p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, pt. i=1,2,...,L
- □ Încrucişare parţial transformată (partially mapped XO)
 - Ideea de bază
 - Se alege un substring de gene din primul părinte p₁
 - $lue{}$ Se copiază substringul din p_1 în descendentul d_1 (pe poziții corespondente)
 - Se iau pe rând elementele i din substringul din p_2 care nu apar în substringul din p_1 și se determină care element j a fost copiat în locul lui din p_1
 - Se plasează i în d_1 în poziția ocupată de j în p_2 (dacă locul este liber)
 - Dacă locul ocupat de j în p_2 a fost deja completat în d_1 cu elementul k, i se pune în locul ocupat de k în p_2
 - $lue{}$ Restul elementelor se copiază din p_2 în d_1
 - $lue{}$ Pentru descendentul d_2 se procedează similar, dar inversând părinții

Algoritmi evolutivi – algoritm

Proiectare – recombinarea (reprez. permutare)

$$p_1 = (g_1^1, g_2^1, ..., g_L^1) \text{ si } p_2 = (g_1^2, g_2^2, ..., g_L^2)$$

- se obțin 2 descendenți
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i], pt. i=1,2,...,L$

- Ideea de bază
 - Se alege un substring de gene din primul părinte p₁
 - ullet Se copiază substringul din p_1 în descendentul d_1 (pe poziții corespondente)
 - \blacksquare Se iau pe rând elementele *i* din substringul din p_2 care nu apar în substringul din p_1 și se determină care element j a fost copiat în locul lui din p₁
 - \blacksquare Se plasează *i* în d_1 în poziția ocupată de *j* în p_2 (dacă locul este liber)
 - Dacă locul ocupat de j în p_2 a fost deja completat în d_1 cu elementul k, i se pune în locul ocupat de k în p_2
 - Restul elementelor se copiază din p_2 în d_1
 - \blacksquare Pentru descendentul d_2 se procedează similar, dar inversând părinții

- □ Din 2 cromozomi părinţi
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1) \text{ si } p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, pt. i=1,2,...,L
- □ Încrucişare ciclică
 - Ideea de bază
 - 1. initial k = 1
 - 2. Se formează un ciclu
 - Se adaugă în ciclu gena de pe poziția k din p1 (g_k¹)
 - Se consideră gena de pe poziția k din p2 (q_v²)
 - Se alege gena din p1 cu valoarea egală cu g_k^2 (g_r^1) și se include în ciclu
 - Se consideră gena de pe poziția r din p2 (g_r²)
 - Se repetă paşii anteriori până când se ajunge la gena de pe poziţia k din p1
 - 3. Se copiază genele din ciclu în d1 (respectând poziiţiile pe care apar în p1)
 - 4. Se incrementează k și se formează un nou ciclu dar cu genele din p2
 - 5. Se copiază genele din ciclu în d1 (respectând poziiţiile pe care apar în p2)
 - 6. Se repetă paşii 2-5 până când k = L

- Din 2 cromozomi părinţi
 - $p_1 = (g_1^1, g_2^1, ..., g_1^1) \text{ si } p_2 = (g_1^2, g_2^2, ..., g_1^2)$
- se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, pt. i=1,2,...,L
- □ Încrucişare ciclică
 - Ideea de bază
 - 1. initial k = 1
 - 2. Se formează un ciclu
 - Se adaugă în ciclu gena de pe poziția k din p1 (g_k¹)
 - Se consideră gena de pe poziția k din p2 (q_v²)
 - Se alege gena din p1 cu valoarea egală cu g_k^2 (g_r^1) și se include în ciclu
 - Se consideră gena de pe poziția r din p2 (g_r²)
 - Se repetă pașii anteriori până când se ajunge la gena de pe poziția k din p1
 - 3. Se copiază genele din ciclu în d1 (respectând poziițiile pe care apar în p1)
 - 4. Se incrementează k și se formează un nou ciclu dar cu genele din p2
 - 5. Se copiază genele din ciclu în d1 (respectând poziiţiile pe care apar în p2)
 - 6. Se repetă paşii 2-5 până când k = L

- Din 2 cromozomi părinţi
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ și $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ și $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i], pt. i=1,2,...,L$
- □ Încrucişare ciclică
 - Ideea de bază
 - 1. initial k = 1
 - 2. Se formează un ciclu
 - Se adaugă în ciclu gena de pe poziția k din p1 (g_k¹)
 - Se consideră gena de pe poziția k din p2 (q_v²)
 - Se alege gena din p1 cu valoarea egală cu g_k^2 (g_r^1) și se include în ciclu
 - Se consideră gena de pe poziția r din p2 (g_r²)
 - Se repetă paşii anteriori până când se ajunge la gena de pe poziția k din p1
 - 3. Se copiază genele din ciclu în d1 (respectând poziițiile pe care apar în p1)
 - 4. Se incrementează k și se formează un nou ciclu dar cu genele din p2
 - 5. Se copiază genele din ciclu în d1 (respectând poziițiile pe care apar în p2)
 - 6. Se repetă paşii 2-5 până când k = L

- Din 2 cromozomi părinţi
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ și $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, pt. i=1,2,...,L
- □ Încrucişare bazată pe muchii
 - A se consulta: Whitley, Darrell, Timothy Starkweather, D'Ann Fuquay (1989). "Scheduling problems and traveling salesman: The genetic edge recombination operator".International Conference on Genetic Algorithms. pp. 133–140 <u>link</u>

- Din 2 cromozomi părinți
 - $p_1 = (q_1^1, q_2^1, ..., q_1^1)$ si $p_2 = (q_1^2, q_2^2, ..., q_1^2)$
- se obțin 2 descendenți
 - $c_1 = (g_1', g_2', ..., g_1')$ si $c_2 = (g_1'', g_2'', ..., g_1'')$,
 - unde $q_i^1, q_i^2, q_i', q_i'' \in [LI_i, LS_i], pt. i=1,2,...,L$
- Încrucişare discretă
 - Ideea de bază
 - Fiecare genă a unui descendent este luată (cu aceeași probabilitate, p = 0.5) dintr-unul din părinți
 - Similar încrucişării uniforme de la reprezentarea binară/întreagă
 - Nu se modifică valorile efective ale genelor (nu se creează informație nouă)

- Din 2 cromozomi părinți
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ şi $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- se obțin 2 descendenți

 - $c_1 = (g_1', g_2', ..., g_L')$ și $c_2 = (g_1'', g_2'', ..., g_L'')$, unde g_i^1, g_i^2 , g_i'' , $g_i'' \in [LI_i, LS_i]$, pt. i=1,2,...,L

Incrucişare intermediară (aritmetică)

- Ideea de bază
 - □ Se creează copii aflaţi (ca valoare) între părinţi → încrucişare aritmetică
 - $z_i = \alpha x_i + (1 \alpha) y_i$ unde $\alpha : 0 \le \alpha \le 1$.
 - $lue{}$ Parametrul lpha poate fi:
 - Constant → încrucişare aritmetică uniformă
 - Variabil → ex. dependent de vârsta populaţiei
 - Aleator pt fiecare încrucişare produsă
 - Apar noi valori ale genelor

Tipologie

- Încrucişare aritmetică singulară
- Încrucişare aritmetică simplă
- Încrucișare aritmetică completă

- Din 2 cromozomi părinţi
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1) \text{ si } p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ și $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, pt. i=1,2,...,L
- □ Încrucişare intermediară (aritmetică) singulară
 - Se alege câte o genă (de acelaşi index k) din cei doi părinţi şi se combină
 - $g_{k}' = \alpha g_{k}^{1} + (1-\alpha)g_{k}^{2}$
 - $g_{k}'' = (1-\alpha)g_{k}^{1} + \alpha g_{k}^{2}$
 - Restul genelor rămân neschimbate
 - $g_i' = g_i^1$
 - $q_i''=q_i^2$, pentru i=1,2,...,L și $i\neq k$

- Din 2 cromozomi părinţi
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ şi $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, pt. i=1,2,...,L
- □ Încrucişare intermediară (aritmetică) simplă
 - Se alege o poziție k şi se combină toate genele de după acea poziție
 - $g_i' = \alpha g_i^1 + (1-\alpha)g_i^2$
 - $g_{i}'' = (1-\alpha)g_{i}^{1} + \alpha g_{i}^{2}$, pentru i=k, k+1, ..., L
 - Genele de pe poziţii < k rămân neschimbate
 - $g_i'=g_i^1$
 - $g_i'' = g_i^2$, pentru i = 1, 2, ..., k-1

$$[LI,LS] = [-2.5, +3]$$

k=6

$$\alpha = 0.6$$
 0.3
 -1.5
 3.2
 2.4
 -1.1
 0.6
 2.0
 -1.7

-2.1 1.3 0.2 -1.4 1.1 -0.3 1.0 1.7

(1-0.6)*0.6+0.6*(-0.3)=0.06

0.3 -1.5 3.2 2.4 -1.1 0.24 1.6 -0.34

-2.1 1.3 0.2 -1.4 1.1 0.06 **1.4** 0.34

- Din 2 cromozomi părinți
 - $p_1 = (g_1^1, g_2^1, ..., g_1^1) \text{ si } p_2 = (g_1^2, g_2^2, ..., g_1^2)$
- se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_1')$ şi $c_2 = (g_1'', g_2'', ..., g_1'')$,
 - unde $q_i^1, q_i^2, q_i', q_i'' \in [LI_i, LS_i], pt. i=1,2,...,L$
- Incrucişare intermediară (aritmetică) completă
 - Toate genele (de pe poziţii corespunzătoare) se combină
 - $g_{i}' = \alpha g_{i}^{1} + (1-\alpha)g_{i}^{2}$
 - $g_{i}'' = (1-\alpha)g_{i}^{1} + \alpha g_{i}^{2}$, pentru i=1,2,...,L

- Din 2 cromozomi părinţi
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ şi $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, pt. i=1,2,...,L
- □ Încrucişare geometrică
 - Ideea de bază
 - Fiecare genă a unui descendent reprezintă produsul genelor părinţilor, fiecare cu un anumit exponent ω , respectiv 1- ω (unde ω număr real pozitiv subunitar)
 - $g_i' = (g_i^1)^{\omega} (g_i^2)^{1-\omega}$
 - $g_i'' = (g_i^1)^{1-\omega} (g_i^2)^{\omega}$

 $0.3^{0.7} + 2.1^{1-0.7} = 1.68$

[LI,LS] = [-2.5, +3] $\omega = 0.7$

3 1.5 3.2 2.4 1.1 0.6 2.0 1.7

2.1 1.3 0.2 1.4 1.1 0.3 1.0 1.7

 $0.3^{1-0.7} + 2.1^{0.7} = 2.38$

.38 2.33 1.74 2.57 2.10 1.29 2.23 2.62

Inteligență artificială - metode de căutare locală (AE)

1.68

- Din 2 cromozomi părinţi
 - $p_1 = (g_1^1, g_2^1, ..., g_1^1) \text{ si } p_2 = (g_1^2, g_2^2, ..., g_1^2)$
- se obţine 1 descendent
 - $c_1 = (g_1', g_2', ..., g_L'),$
 - unde $g_i^1, g_i^2, g_i' \in [LI_i, LS_i]$, pt. i=1,2,...,L
- □ Încrucişare amestecată (*blend crossover BLX*)
 - Ideea de bază
 - Se generează un singur descendent
 - Genele g_i' ale descendentului sunt alese aleator în intervalul [Min_i - I^*a , Max_i + I^*a], unde:
 - $Min_i = min\{g_i^1, g_i^2\}, Max_i = max\{g_i^1, g_i^2\}$
 - I = Max Min, a parametru din [0,1]

Min-Ia	-0.26	1.16	-1.90	0.70	1.10	0.09	0.30	1.70
Max+Ia	2.66	1.50	3.20	2.40	1.10	0.60	2.00	1.70

- Din 2 cromozomi părinţi
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1) \text{ si } p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- se obţin 2 descendenţi
 - $c_1 = (g_1', g_2', ..., g_L')$ şi $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - unde $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, pt. i=1,2,...,L
- □ Încrucişare binară simulată
 - Ideea de bază
 - Fiecare genă a unui descendent reprezintă o combinație a genelor părinților $d_1 = \frac{p_1 + p_2}{2} \beta \frac{p_2 p_1}{2}, \ d_2 = \frac{p_1 + p_2}{2} + \beta \frac{p_2 p_1}{2}$
 - a.î. să se respecte cele 2 proprietăți de la încrucișarea cu n puncte de tăietură (pt. reprezentarea binară)
 - media valorilor codate în părinţi = media valorilor codate în descendenţi
 - probabilitatea apariţiei unui factor de răspândire $\beta \approx 1$ este mai mare decât a oricărui alt factor

■ Recombinarea multiplă

- Bazată pe frecvenţa valorilor din părinţi (încrucişare uniformă generală)
- Bazată pe segmentare şi recombinare (încrucişare generală cu puncte de tăietură diagonală)
- Bazată pe operaţii numerice specifice valorilor reale (încrucişare bazată pe centrul de masă, încrucişare generală aritmetică)

Algoritmi evolutivi – algoritm Proiectare – mutație sau recombinare?

Dezbateri aprinse

- Întrebări:
 - care operator este mai bun?
 - care operator este necesar?,
 - care operator este mai important?
- Răspunsuri:
 - Depinde de problemă, dar
 - in general, este bine să fie folosiţi ambii operatori
 - Fiecare având alt rol
 - Sunt posibili AE doar cu mutaţie, dar nu sunt posibili AE doar cu încrucişare

Aspecte ale căutării:

- Explorare → descoperirea regiunilor promiţătoare ale spaţiului de căutare (acumulând informaţie utilă despre problemă)
- Exploatare → optimizarea într-o regiune promiţătoare (folosind informaţia existentă)
- Trebuie să existe cooperare şi competiţie între aceste 2 aspecte

Încrucişarea

- Operator exploatativ, realizând un mare salt într-o regiune undeva între regiunile asociate părinţilor
 Efectele exploatative se reduc pe măsură ce AE converge
- Operator binar (n-ar) care poate combina informaţia din 2 (sau mai mulţi) părinţi
- Operator care nu schimbă frecvenţa valorilor din cromozomi la nivelul întregii populaţii

Mutaţia

- Operator explorativ, realizând mici diversiuni aleatoare, rămânând în regiunea apropiată părintelui
 Evadarea din optimele locale
- Operator care poate introduce informaţie genetică nouă
- Operator care schimbă frecvenţa valorilor din cromozomi la nivelul întregii populaţii

Algoritmi evolutivi – algoritm Proiectare – criteriu de oprire

- Stabilirea unui criteriu de stop
 - S-a identificat soluţia optimă
 - S-au epuizat resursele fizice
 - S-a efectuat un anumit număr de evaluaări ale funcţiei de fitness
 - S-au epuizat resursele utilizatorului (timp, răbdare)
 - S-au "născut" câteva generaţii fără îmbunătăţiri

Algoritmi evolutivi - algoritm

- Evaluarea performanţelor unui AE
 - După mai multe rulări se calculează:
 - Măsuri statistice
 - media soluţiilor,
 - mediana soluţiilor,
 - cea mai bună soluţie,
 - cea mai slabă soluţie,
 - deviaţia standard pentru comparabilitate
 - Calculate pentru un număr suficient de mare de rulări independente

Algoritmi evolutivi

- Analiza complexităţii
 - Partea cea mai costisitoare → calculul fitnessului

Avantaje

- Schema AE universală pentru toate problemele
 - se modifică doar
 - reprezentarea
 - funcţia de fitness
- AE sunt capabili să producă rezultate mai bune decât metodele convenţionale de optimizare pentru că:
 - nu necesită liniarizare
 - nu implică anumite presupuneri (continuitate, derivabilitate, etc. a funcției obiectiv)
 - nu ignoră anumite potențiale soluții
- AE sunt capabili să exploreze mai multe potenţiale soluţii decât poate explora omul

- Dezavantaje
 - Timp de rulare îndelungat

Algoritmi evolutivi

Aplicaţii

- Projectări vehicule
 - Componenţa materialelor
 - Forma vehiculelor
- Proiectări inginereşti
 - Optimizarea structurală şi organizatorică a construcţiilor (clădiri, roboţi, sateliţi, turbine)
- Robotică
 - Optimizarea proiectării, funcţionării componentelor
- Evoluare de hardware
 - Optimizarea de circuite digitale
- Optimizarea telecomunicaţiilor
- Generarea de glume şi jocuri de cuvinte
- Invenţii biomimetice (inspirate de arhitecturi naturale)
- Rutări pentru trafic şi transporturi
- Jocuri de calculator
- Criptări
- Profilul expresiv al genelor
- Analiza chimcă a cinecticii
- Strategii financiare şi marketing

Algoritmi evolutivi

- □ Tipuri de algoritmi evolutivi
 - Strategii evolutive
 - Programare evolutivă
 - Algoritmi genetici
 - Programare genetică

Cursul următor

- A. Scurtă introducere în Inteligența Artificială (IA)
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială
- c. Sisteme inteligente
 - Sisteme care învaţă singure
 - Arbori de decizie
 - Retele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
 - Sisteme bazate pe reguli
 - Sisteme hibride

Cursul următor – Materiale de citit și legături utile

- capitolul 16 din *C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011*
- James Kennedy, Russel Eberhart, Particle Swarm Optimisation, Proceedings of IEEE International Conference on Neural Networks. IV. pp. 1942–1948, 1995 (04_ACO_PSO/PSO_00.pdf)
- Marco Dorigo, Christian Blum, Ant colony optimization theory: A survey, Theoretical Computer Science 344 (2005) 243 - 27 (04_ACO_PSO/Dorigo05_ACO.pdf)

- Informaţiile prezentate au fost colectate din diferite surse de pe internet, precum şi din cursurile de inteligenţă artificială ţinute în anii anteriori de către:
 - Conf. Dr. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - Lect. Dr. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - Prof. Dr. Horia F. Pop www.cs.ubbcluj.ro/~hfpop