

Analog 2.0 ドキュメンテーション

Vol. 10

MInI Board II の製作

バージョン:1.2

作成日:2008年12月25日

目次

1. こ	このドキュメントについて	3
2. M	IINI BOARD II の製作	4
2.1.	製作の流れ	4
2.2.	製作するモジュールの概要	4
機	%能	4
シ	ンステム内での位置づけ	5
	可路	6
2.3.	部品の入手	8
剖	78品入手時の注意点	10
2.4.	基板の製作	12
2.5.	基板の配線確認	13
2.6.	動作確認	14
G	Fate 信号の確認	14
C	V 信号の確認	14
基	基準音発生器の確認	14
2.7.	調整	14
7	ナフセットの調整	14

1. このドキュメントについて

このドキュメントは、アナログシンセサイザーシステム Analog2.0 の校正のためのツール MInI Board II の製作方法を解説します。

このドキュメントを読む前に、スターターキットのマニュアルを読んで Analog 2.0 の基本的な構成を理解しておいてください。

また、このドキュメントは、スターターキットに含まれるパネル・電源モジュール・ライフラインがすでに組み立ててあることが前提に書かれています。

更新履歴

バージョン	日付	変更内容	
1.0	2009/11/21	Analog2.0 ドキュメントバージョン 2.0	
		- 回路設計を見直し。	
		- それにあわせてドキュメントを改訂。	
1.1	2009/12/06	- パーツリスト、R9の間違いを修正。	
		(誤)抵抗器(正)半固定抵抗	
		- パーツリスト、R12の間違いを修正。	
		(誤) 抵抗器 (正) 半固定抵抗	
1.2	2009/12/25	- 図のキャプション間違いを修正。	
		(誤)ノイズジェネレータ (正)Minl Board II	

2. Mini Board II の製作

2.1. 製作の流れ

- 部品の入手
- 基板へ部品を取り付ける
- パネル部品の取り付け
- 基板の配線確認
- 動作確認
- 調整

2.2. 製作するモジュールの概要

機能

この記事では、Analog2.0 の製作全般にわたって、随所で校正のために使う MInI Board II の制作方法を解説します。

図 2-1 が MInI Board II の外観です。

図 2-1 MInI Board II の外観

MInI Board II は、以下のような機能を持っています。

- ライフラインケーブルに接続して、CV と Gate 信号を発生する。CV および Gate は ライフラインのバスに出力する。
- CV と Gate は鍵盤または MIDI 信号により発生させます。
- 鍵盤はオクターブスイッチで指定したオクターブで CV を発生させます。例えば、オクターブスイッチで "4" を指定して A の鍵盤を押すと、A4 に相当する CV を発生します。
- ファンクションスイッチを 1 秒間押し続けると、スピーカから 440 Hz の基準音が出力されます。基準音を止めるときにはファンクションスイッチをまた 1 秒間押し続けます。

なお、MInI Board II はファームウェアの更新により機能を変えることが可能です。上記の仕様はファームウェアバージョン 1.0 のものです。

システム内での位置づけ

図 2-2 に、Analog2.0 製作システムの構成の中での MInI Board の位置づけを示します。

図 2-2 Minl Board II の位置づけ

回路

製作する電源回路の回路図は図2-3のとおりです。

図 2-3 Minl Board II の回路図

2.3. 部品の入手

製作に必要なパーツは以下のとおりです。製作にあたっては、まずこれらのパーツを入手 してください。

表 2-1: Mini Board II の製作に必要な部品

部品	デバイス名	値/型番	備考
番号			
C1	積層セラミックコンデンサ	0.1μ F	
C2	電解コンデンサ	100 μ F	
СЗ	電解コンデンサ	$100\mu~\mathrm{F}$	
C4	積層セラミックコンデンサ	$0.1\mu~\mathrm{F}$	
C5	積層セラミックコンデンサ	$0.1\mu~\mathrm{F}$	
C6	積層セラミックコンデンサ	$0.1\mu~\mathrm{F}$	
C7	電解コンデンサ	100 μ F	
C8	セラミックコンデンサ	27pF	
С9	セラミックコンデンサ	27pF	
C10	積層セラミックコンデンサ	$0.1\mu~\mathrm{F}$	
C11	積層セラミックコンデンサ	$0.47\mu~\mathrm{F}$	
C12	積層セラミックコンデンサ	$0.47\mu~\mathrm{F}$	
C13	積層セラミックコンデンサ	$0.47\mu~\mathrm{F}$	
C14	積層セラミックコンデンサ	$0.001\mu~\mathrm{F}$	
C15	積層セラミックコンデンサ	0.022μ F	
C16	積層セラミックコンデンサ	0.022μ F	
C17	積層セラミックコンデンサ	0.022μ F	
D1	ダイオード	1N4148	
D2	ダイオード	1N4148	
D3	ダイオード	1N4148	
D4	ダイオード	1N4148	
D5	ダイオード	1N4148	
D6	ダイオード	1N4148	
D7	ダイオード	1N4148	
D8	ダイオード	1N4148	
D9	ダイオード	1N4148	
D10	ダイオード	1N4148	
D11	ダイオード	1N4148	

D12	ダイオード	1N4148	
D13	ダイオード	1N4148	
D14	ダイオード	1N4148	
D15	ダイオード	1N4148	
D16	ダイオード	1N4148	
D17	ダイオード	1N4148	
D18	ダイオード	1N4148	
D19	ダイオード	1N4148	
D20	ダイオード	1N4148	
D21	ダイオード	1N4148	
D22	ダイオード	1N4148	
D23	ダイオード	1N4148	
D24	ダイオード	1N4148	
D25	ダイオード	1N4148	
D26	ダイオード	1N4148	
IC1	三端子レギュレータ	LM78L05	
IC2	オペアンプ	TL064	
IC3	マイクロプロセッサ	ATTiny2313	
J1	コネクタ	DIN 5P 180°	MIDI 入力
JP1	ボックスピンヘッダ	2x5 L 字型	Lifeline
JP2	ピンヘッダ	2x3	ISP writing port
Q1	水晶発振子	20MHz	
R1	抵抗器	$22\mathrm{k}\Omega$	
R2	抵抗器	$470 \mathrm{k}\Omega$	
R3	抵抗器	10k Ω	
R4	抵抗器	10k Ω	
R5	抵抗器	10k Ω	
R6	抵抗器	1ΜΩ	
R8	抵抗器	$56\mathrm{k}\Omega$	
R9	半固定抵抗	$20\mathrm{k}\Omega$	
R10	抵抗器	$47\mathrm{k}\Omega$	
R11	抵抗器	$820 \mathrm{k}\Omega$	
R12	半固定抵抗	$500\mathrm{k}\Omega$	
R13	抵抗器	$47\mathrm{k}\Omega$	
R14	抵抗器	$1 \mathrm{k} \Omega$	

D15	₩.+	0000	
R15	抵抗器	220Ω	
R16	抵抗器	10k Ω	
R17	抵抗器	$10 \mathrm{k}\Omega$	
R18	抵抗器	$10\mathrm{k}\Omega$	
R19	抵抗器	$470\mathrm{k}\Omega$	
R20	抵抗器	$47\mathrm{k}\Omega$	
R21	抵抗器	$1 k \Omega$	
S1	タクトスイッチ		鍵盤 C#
S2	タクトスイッチ		鍵盤 D#
S3	タクトスイッチ		鍵盤 F#
S4	タクトスイッチ		鍵盤 G#
S5	タクトスイッチ		鍵盤 A#
S6	タクトスイッチ		鍵盤 A
S7	タクトスイッチ		鍵盤 lowC
S8	タクトスイッチ		鍵盤 D
S9	タクトスイッチ		鍵盤 E
S10	タクトスイッチ		鍵盤 F
S11	タクトスイッチ		鍵盤 G
S12	タクトスイッチ		鍵盤 B
S13	タクトスイッチ		鍵盤 highC
S14	タクトスイッチ		Function Switch
SP1	ピエゾスピーカ		
SW1	ロータリー DIP スイッチ		Octave/MIDI Ch
U1	フォトカプラ	TLP552	

部品入手時の注意点

部品は極力、秋葉原の店舗で入手できるもので構成されています。部品形状に制約がある場合には千石電商の商品番号がパーツリストに記載されています。参考にしてください。 以下の部品については、入手の際に注意が必要です。

DIN5P コネクタ Analog2.0 MIDI コネクタとして使われます。基板取り付けタイプの DIN コネクタは秋葉原の店舗では入手しづらいかもしれません。例えば RS オンラインからなどで入手が可能です。

ロータリーDIP スイッチのピンアウトにはいろいろなタイプがあり注意が必要です。秋月電子の 0-F ロータリーディップ・正論理で、ピンが 2x3 のタイプを使うことが前提です。

ATTiny2313

Atmel 社のマイクロプロセッサです。プロセッサにはファームウェアを書き込む必要があります。キットに同梱の ATTiny2313 にはあらかじめファームウェアが書き込んでありますが、プロセッサを別途用意される場合や、ファームウェアをアップデートする場合には、書き込み作業が必要です。 MInI Board II 基板には、AVR ISP による書き込みができるよう書き込みポートを用意してあります。

2.4. 基板の製作

図 2-4 は、今回製作するプリント基板の配線図です。四角いランドをつないでいる線はジャンパ線です。

図 2-4 MinI Board 基板の配線図

MInI Board II は他の機能モジュールと違い、基板単体で使うことを前提にしています。 ですが、安全のために簡易的なケースに収めることを推奨します。最低限四隅にスペーサ は取り付けてください。

2.5. 基板の配線確認

ここまでで、MInI Board 回路の組み立ては完了です。すぐ動かしてみたいところですが、まだ電源投入しないでください。電源投入をする前に必ず配線確認を行います。万一配線間違いがあると、正常に動作しないだけでなく、場合によっては部品を破損してしまいます。以下のチェックリストを見ながら正しく配線されているかどうか確認してください。

- [] 抵抗器は正しい場所に正しい値が取り付けられているか?
- 「] コンデンサは正しい場所に正しい種類が正しい値で取り付けられているか?
- [] 電解コンデンサは正しい向きに取り付けられているか?
- 「 〕 ダイオードは正しい場所に正しい向きで取り付けられているか?
- [] トランジスタは正しい場所に正しい向きで取り付けられているか?
- 「] IC1, IC2 は正しい場所に正しい向きで取り付けられているか?
- [] ジャック・ピンヘッダは正しい場所に取り付けられているか?
- [] 基板を裏返して、ハンダ付け箇所をチェックする。隣り合った銅箔パタンが、ハンダでショートしているハンダブリッジが発生していないか?
- [] ハンダ付けがイモハンダになっている箇所はないか?部品の本体をグラグラ揺らしてハンダ付け箇所のリードが動く場合、ほぼ確実にイモハンダです。イモハンダは時間が経過すると、剥離してしまうので、見つけたらハンダ付けをやり直します。

図 2-5 正しいハンダとイモハンダ

2.6. 動作確認

では、いよいよ動作確認です。動作確認にはテスターと、MIDI キーボード等 MIDI 信号を 出力する機器を使います。

Gate 信号の確認

テスターのマイナス側を、アースに接続します。プラス側は、JP1(ライフラインコネクタ) の、1 または 2 番ピン(Gate 端子)に接続します。誤って隣のピンに触れてしまわないよう注意してください。

なにもしていない状態では、Gate 端子には 0V が出力されています。

鍵盤のキーを一つずつ押していって、どのキーを押しても押している間だけ Gate 出力に約5V が出ることを確認してください。

次に、MIDI機器から任意のノート信号を入れると(鍵盤を弾くなど)Gate 出力に 5V が出ることを確認してください。

CV 信号の確認

テスターのプラス側を、JP1(ライフラインコネクタ)の3または4番ピン(CV 端子)に接続します。誤って隣のピンに触れてしまわないよう注意してください。

オクターブスイッチを 0 に設定して、鍵盤の LowC キーを押してください。CV の電圧をメモしてから、鍵盤の HighC キーを押してください。CV がおおまかに 1V ぐらい大きくなれば正常動作しています。まだ調整前なので、厳密に 1V でなくてもかまいません。

さらに、オクターブスイッチを 1 に設定して、鍵盤の HighC キーをもう一度押してください。 CV がさらに約 1V 大きくなれば正常動作です。

基準音発生器の確認

ファンクションスイッチを 1 秒間押し続けてください。スピーカから 440Hz の基準音が出てくれば正常です。基準音を止めるにはもう一度ファンクションスイッチを 1 秒間押し続けます。

2.7. 調整

オフセットの調整

テスターのマイナス側を、JP1(ライフラインコネクタ)の3または4番ピン(CV 端子)に接続します。誤って隣のピンに触れてしまわないよう注意してください。

オクターブスイッチを 0 にセットして、鍵盤の LowC を押します。半固定抵抗 R9 を回して CV が 0V になるように調整します。

次に、鍵盤の HighC を押します。半固定抵抗 R12 を回して、CV が 1V になるように調整します。

この手順を数回繰り返します。