Experimental Chapter 4: N x CO₂ x BNF growth chamber experiment

Option #1: Invest extra nitrogen toward whole plant growth at expense of leaf nitrogen

Option #2: Maintain photosynthesis with greater water use efficiency at expense of nitrogen use efficiency

Key questions

How does atmospheric CO₂ modify effects of soil nutrient availability on tradeoffs between leaf nutrient allocation and whole plant growth?

Key questions

How does atmospheric CO₂ modify effects of soil nutrient availability on tradeoffs between leaf nutrient allocation and whole plant growth?

How does atmospheric CO₂ modify effects of soil nutrient availability on tradeoffs between nutrient and water use?

Key questions

How does atmospheric CO₂ modify effects of soil nutrient availability on tradeoffs between leaf nutrient allocation and whole plant growth?

How does atmospheric CO₂ modify effects of soil nutrient availability on tradeoffs between nutrient and water use?

To what extent does inoculation with nitrogen-fixing bacteria influence the two questions listed above?

Experimental setup

- Growth chamber experiment
- Individually potted soybean (Glycine max)
- Planted in unfertilized, steam sterilized potting soil
- Will grow at maximum light setting on 16:8 light: dark schedule and constant temperature (25°C) for 8-week period

Experimental setup

Nutrient acquisition strategy treatments

treatments

Soil nitrogen

Atmospheric carbon dioxide treatments

+ BNF

70 ppm N

0 ppm N

400 ppm CO₂

- BNF

210 ppm N

1000 ppm CO₂

630 ppm N

Plant measurements

Leaf measurements

- Leaf nitrogen allocation (N_{mass}; SLA; N_{area})
- A_{net} , V_{cmax25} , J_{max25} , g_{s} , R_{d25}
- J_{max25} : V_{cmax25} ; R_{d25} : V_{cmax25} ; stomatal limitation
- PNUE, χ (from leaf δ^{13} C), $N_{\text{area}}:g_{\text{s}}, V_{\text{cmax}}:g_{\text{s}}$

Whole plant measurements

- Carbon costs to acquire nitrogen (Root carbon mass / whole plant nitrogen mass)
- Whole plant biomass
- Total leaf area
- Root nodule number, root nodule biomass

Timeline for Experiment 4

Start experiment in March/April 2022 using growth chambers in ESB I

- Only one growth chamber available
 - Two separate trial runs for each CO₂ treatment (2 months each)
 - Temperature, relative humidity, and PAR sensors set up through both trials
- Harvest and tissue processing should take another 2 months

Data analysis, manuscript draft finished by end of calendar year?

Extra slides for hypotheses

Hypothesis 1a: Increasing CO₂ should increase leaf production and whole plant growth through a stimulation in whole plant nutrient demand

Hypothesis 1a: Increasing CO₂ should increase leaf production and whole plant growth through a stimulation in whole plant nutrient demand

Hypothesis 1b: Increased soil nutrient supply should increase the positive effect of eCO₂ on leaf production and whole plant growth

Hypothesis 1b: Increased soil nutrient supply should increase the positive effect of eCO₂ on leaf production and whole plant growth, but will depend on whether individuals associate with nitrogen-fixing bacteria

Hypothesis 1b: Increased soil nutrient supply should increase the positive effect of eCO₂ on leaf production and whole plant growth, but will depend on whether individuals associate with nitrogen-fixing bacteria

Inoculation with BNF should increase total leaf area and growth under low soil nutrients, but have similar total leaf area and growth under high soil nutrients

Hypothesis 2

Hypothesis 2a: Increasing CO₂ will have a direct positive effect on leaf-level photosynthesis due to increased substrate needed to drive photosynthesis forward

Hypothesis 2b: Increasing CO₂ will decrease leaf-level photosynthesis as a function of reduced stomatal conductance

Hypothesis 2d: Increasing CO₂ will decrease leaf-level photosynthesis as a function of reduced maintenance costs for photosynthetic capacity <u>and</u> reduced stomatal conductance

Hypothesis 2

