

Flash-X, An Open-Source Simulation Software Instrument

AKASH DHRUV

Mathematics and Computer Science, Argonne National Laboratory, Lemont, IL GitHub Open-Source Fridays April 2024

FUNDING ACKNOWLEDGMENT

This material is based upon work supported by:

- Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.
- Exascale Computing Project (17-SC-20-SC), a collaborative effort of the US Department of Energy Office of Science and the National Nuclear Security Administration.

LAND ACKNOWLEDGMENT

The City of Chicago is located on land that is and has long been a center for Native peoples. The area is the traditional homelands of the Anishinaabe, or the Council of the Three Fires: the Ojibwe, Odawa, and Potawatomi Nations. Many other Nations consider this area their traditional homeland, including the Myaamia, Ho-Chunk, Menominee, Sac and Fox, Peoria, Kaskaskia, Wea, Kickapoo, and Mascouten

COLLABORATIONS

UNIVERSITY OF CALIFORNIA, IRVINE, CA

- Sheikh Md Shakeel Hassan
- Arthur Feeney
- Aparna Chandramowlishwaran
- Yoonjin Won

LAWERENCE BERKELEY NATIONAL LABORATORY, BERKELEY, CA

- Weigun Zhang
- Ann Almgren

UNIVERSITY OF MARYLAND, COLLEGE PARK, MD

- Jungho Kim
- Amir Riaz

GEORGE WASHINGTON UNIVERSITY, WASHINGTON, DC

- Elias Balaras

ARGONNE NATIONAL LABORATORY, LEMONT, IL

- Anshu Dubey Klaus Weide
- Jared O'Neal Tom Klosterman
- Sharanjeet Kaur Rajeev Jain
- Youngjun Lee Wesley Kwiecinski

SCIENTIFIC WORKFLOW

SCIENTIFIC WORKFLOW

Simulations solve physics-based partial differential equations in space and time

• Solid-Fluid and Liquid-Gas interfaces are presented with level-set functions, λ (+ in solid, - in fluids) and ϕ (+ in gas, - in liquid) respectively.

6

AMR – Adaptive Mesh Refinement

Venn diagram of Multiphysics interactions and applications that can be modeled using Flash-X

- Luis Martinez. GWU. 2016-2019
- Marcos Vanella. GWU. 2009-2010

FLASH-X WORKFLOW

- Open-source with Apache 2.0 license (<u>https://flash-x.org</u>), designed for exascale platforms. Recipient of 2022 R&D 100 award.
- Interoperability between FORTRAN, C++, and Python.
- Multinode parallelization on supercomputers using Message Passing Interface (MPI) and OpenMP.
- Hybrid CPU-GPU computations.

- Laboratory notebooks are a common practice in experimental science to record and reproduce scientific observations.
- Computational science lacks this rigor.
- In-depth analysis by Jared O'Neal (https://www.youtube.com/watch?v=OpzofH8U0Bs).

FIGURE Jobrunner commands for setting up dependencies, running tests and experiments, and archive data. These commands are executed from the root of the directory-tree

FIGURE Directory tree for a Flash-X experiment.

FIGURE Jobrunner commands for setting up dependencies, running tests and experiments, and archive data. These commands are executed from the root of the directory-tree

FIGURE Directory tree for a Flash-X experiment.

Sandra Gesing, sandra.gesing@nd.edu

DEPARTMENT: REPRODUCIBLE RESEARCH

Managing Software Provenance to Enhance Reproducibility in Computational Research

Akash Dhruv no and Anshu Dubey, Argonne National Laboratory, Lemont, IL, 60439, USA

Execution Environment

Data Clone

