FIFA Player Position Prediction using Supervised Learning

Project Summary

This project uses supervised machine learning to predict a football player's club position based on their in-game attributes. A Random Forest Classifier was trained using the FIFA 21 dataset and evaluated using the FIFA 22 dataset, simulating a real-world scenario of predicting outcomes on new, unseen data.

Pain Point Addressed

One key pain point addressed by this project is the inefficiency of manual player position assessment in football scouting and game strategy. By predicting a player's most suitable position based on performance attributes, the model aids scouts, coaches, and analysts in making faster and more data-driven decisions.

Data Sources

- FIFA 21 dataset (training data)
- FIFA 22 dataset (testing data)

Both datasets were sourced from Kaggle and include over 30 performance-related attributes per player.

Data Preprocessing

- Filtered to include only outfield players (excluding Goalkeepers and substitutes/reserves).
- Removed rows with missing values in selected numeric features.
- Selected key attributes such as pace, shooting, passing, dribbling, defending, and physic, among

others.

- Encoded the target variable ('club_position') using Label Encoding.

Modeling

- Model: Random Forest Classifier

- Features: 35 numeric attributes selected based on relevance to on-field performance.

- Training: Model was trained on FIFA 21 player data.

- Testing: Model was tested on FIFA 22 player data to measure real-world generalization.

Evaluation Metrics

- Accuracy Score

- Classification Report (Precision, Recall, F1-score)

These metrics provide insights into the model's effectiveness in correctly predicting player positions.

Search Functionality

An interactive function allows users to input a player's name fragment and receive a predicted club position based on their attributes, with graceful handling of missing data and edge cases.

Conclusion

This project showcases how supervised learning can be applied to sports analytics by predicting a player's club position using key performance indicators. It reflects how machine learning can enhance talent identification, player development, and team composition strategies in professional football.