Regression Analysis: Dummy Variables

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + u$$

Statistics and Econometrics

Jiahua Wu

9/11/2020:1-

382 Business School j.wu@imperial.ac.uk

Roadmap

- Regression analysis with cross-sectional data
 - Basics: estimation, inference, analysis with dummy variables
 - More involved: model specification and data issues
- Advanced topics
 - Binary dependent variable models
 - Panel data analysis
 - Time series analysis

Outline (Wooldridge, Chap. 7.1 - 7.6)

- Qualitative information and dummy variables
- Interactions involving dummy variables
- The linear probability model

Outline

- Qualitative information and dummy variables
- Interactions involving dummy variables
- The linear probability model

Qualitative Information

- Many factors in empirical projects are qualitative (non-numerical) that take two values
 - Eg. gender, marriage, etc
- They can be modelled as binary valued variables (0-1), known as dummy variables
 - Eg. female (= 1 if are female, 0 otherwise), married (= 1 if are married, 0 otherwise)
- ullet The assignment of values (0,1) is often determined by interpretation convenience

Dummy Independent Variables

• Eg. Wage model

$$wage = \beta_0 + \delta_0 female + \beta_1 educ + u,$$

where δ_0 characterise the gender difference in wage

• The conditional expectation of wage is given by

$$E(wage|female = 1, educ) = \beta_0 + \delta_0 + \beta_1 educ,$$

 $E(wage|female = 0, educ) = \beta_0 + \beta_1 educ,$

where δ_0 represents an intercept shift

Dummy Independent Variables

$$wage = \beta_0 + \delta_0 female + \beta_1 educ$$
 for $\delta_0 < 0$

Interpretation of Dummy

• Eg. Wage model (continued)

$$wage = \beta_0 + \delta_0 female + \beta_1 educ + u$$

Would you add the male dummy in the model?

Interpretation of Dummy

• Eg. Wage model (continued)

$$wage = \beta_0 + \delta_0 female + \beta_1 educ + u$$

- Would you add the male dummy in the model?
- Males are treated as the base group (against which comparisons are made)
- We could regress wage on male and educ, where females would be base group (coefficient interpretation would be different)

Dummy Independent Variables

• Example 7.1 (wage1.RData) Use *educ*, *exper*, *tenure* and gender to explain hourly wage

Dummy Independent Variables

ependent Variables

le 7.1. OLS SRF $\widehat{wage} = -1.57 - 1.81 \text{ female} + 0.572 \text{ educ}$ (0.72) (0.26)• Example 7.1. OLS SRF $+0.025 \mathop{\it exper}_{(0.012)} + 0.141 \mathop{\it tenure}_{(0.021)}$

$$n = 526, R^2 = 0.364$$

- Negative intercept is not meaningful here
- Interpretation of the coefficient of *female*
 - A female worker is predicted to earn \$1.81 less than a male worker at the same level of educ, exper and tenure
- Compare the above with the simple regression

$$\widehat{wage} = 7.10 - 2.51 \text{ female}, \quad n = 526, R^2 = 0.116$$

Natural Interpretation: average wage for men

Dummy Independent Variables in a Log Model

• Eg. Wage model (continued): what if $y = \log(wage)$?

$$\begin{array}{ll} \widehat{\log(wage)} & = & .501 - .301 \, female + .087 \, educ \\ {}_{(.102)} & {}_{(.037)} & {}_{(.007)} \\ & & + .005 \, exper + .017 \, tenure \\ {}_{(.002)} & {}_{(.003)} \end{array}$$

$$n = 526, R^2 = 0.392$$

What is the interpretation of the coefficient of female?

Dummy Independent Variables in a Log Model

• Eg. Wage model (continued): what if $y = \log(wage)$?

$$\begin{array}{ll} \widehat{\log(wage)} & = & .501 - .301 \, female + .087 \, educ \\ {}_{(.102)} & {}_{(.037)} & {}_{(.007)} \\ & & + .005 \, exper + .017 \, tenure \\ {}_{(.002)} & {}_{(.003)} \end{array}$$

$$n = 526, R^2 = 0.392$$

- What is the interpretation of the coefficient of female?
 - A female worker is predicted to earn 30.1% less than a male worker at the same level of *educ*, *exper* and *tenure*

Dummy Variables for Multiple Categories

- What if individuals are from more than two categories?
 - Eg. gender-marriage: single male, single female, married male, and married female
 - Eg. Wage model (again)

wage =
$$\beta_0 + \delta_1 SingleFemale + \delta_2 MarriedFemale + \delta_3 MarriedMale + \beta_1 educ + \cdots + u$$

- In general, for g groups, we need g-1 dummy variables, with the intercept for the base group
- The coefficient on the dummy of a group is the difference in the intercepts between that group and the base group

Dummy Variables for Ordinal Information

- Consider a variable that takes multiple values, where the order matters but the scale is not meaningful
 - Eg. A government's credit rating is on the scale of 0-4 with 0= very risky, 1= risky, 2= neutral, 3= safe, 4= very safe.
 - Can we just include an independent variable, say *CR*, and use the regression model

$$y = \beta_0 + \beta_1 CR + other factors?$$

Dummy Variables for Ordinal Information

- Consider a variable that takes multiple values, where the order matters but the scale is not meaningful
 - Eg. A government's credit rating is on the scale of 0-4 with 0= very risky, 1= risky, 2= neutral, 3= safe, 4= very safe.
 - Can we just include an independent variable, say *CR*, and use the regression model

$$y = \beta_0 + \beta_1 CR + other factors?$$

- Better to use separate dummies for multiple values: $CR_1 = 1$ if risky, $CR_2 = 1$ if neutral, $CR_3 = 1$ if safe, $CR_4 = 1$ if very safe
- If an ordinal variable takes too many values, then group them into a small number of categories
 - Eg. Business school rankings: not sensible to use a dummy for each value. Rather use 4 dummies to indicate if the rank is in top 10, 11-25, 26-40, 41-60, and the rest

Dummy Variables for Ordinal Information: An Example

- Example 7.7 (beauty.RData) Effects of attractiveness on wage.
 - The attractiveness of each person in the sample was ranked as "below average", "average", or "above average"
 - Use *educ*, *exper* and physical attractiveness of an individual to explain *wage*
 - > data.male <- data %>% filter(female == 0)

 - > data.female <- data %>% filter(female == 1)

Dummy Variables for Ordinal Information: An Example

	Dependent variable: log(wage)	
	(1)	(2)
belavg	-0.173***	-0.108
	(0.055)	(0.069)
abvavg	-0.038	0.038
	(0.039)	(0.051)
educ	0.066***	0.083***
	(0.007)	(0.009)
exper	0.015***	0.011***
	(0.001)	(0.002)
Constant	0.751***	$0.105^{'}$
	(0.096)	(0.124)
Observations	824	436
R^2	0.181	0.199
Adjusted R^2	0.177	0.192
Residual Std. Error	0.490 (df = 819)	0.471 (df = 431)
F Statistic	45.175*** (df = 4; 819)	26.822^{***} (df = 4; 431)

Note:

p<0.1; p<0.05; p<0.01

Outline

- Qualitative information and dummy variables
- Interactions involving dummy variables
- The linear probability model

Interactions among Dummy Variables

- Interacting dummy variables is like subdividing the group
- Eg. Wage model (controlling for gender and marital status)

wage =
$$\beta_0 + \delta_1 SingleFemale + \delta_2 MarriedFemale + \delta_3 MarriedMale + \beta_1 educ + \cdots + u$$

 Alternatively, we can use two dummy variables: female and married, and their interactions

wage =
$$\beta_0 + \delta_1$$
 female + δ_2 married · female
+ δ_3 married + β_1 educ + · · · + u

Other Interactions with Dummies

- Interacting a dummy with a quantitative variable allows for different slope parameters
- Eg. Wage model

$$log(wage) = (\beta_0 + \delta_0 female) + (\beta_1 + \delta_1 female) educ + u$$

- female = 0: intercept and slope are β_0 and β_1
- female = 1: intercept and slope are $(\beta_0 + \delta_0)$ and $(\beta_1 + \delta_1)$
- Differences in intercept and slope are measured by δ_0 and δ_1 , respectively

Other Interactions with Dummies

$$\log(\textit{wage}) = (\beta_0 + \delta_0 \textit{female}) + (\beta_1 + \delta_1 \textit{female}) \textit{educ} + \textit{u}$$
$$\delta_0 < 0, \delta_1 < 0 \qquad \qquad \delta_0 < 0, \delta_1 > 0$$

Other Interactions with Dummies

• To estimate, we use OLS for

$$\log(wage) = \beta_0 + \delta_0 female + \beta_1 educ + \delta_1 female \cdot educ + u,$$

where δ_1 is the effect of the interaction of *female* and *educ*

- A number of hypotheses of interest can be tested in this model
 - The return to education is the same for men and women
 - Expected wages are the same for men and women who have the same level of education
- Testing hypotheses in R

23

Outline

- Qualitative information and dummy variables
- Interactions involving dummy variables
- The linear probability model

Linear Probability Model

- Consider the case where the dependent variable (response) is binary: y=0 or 1
 - Eg. y represents whether or not: a person was employed last week; a household purchased a car last year.
- When the response (y) is influenced by a number of independent variables (x's), we may write

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

• But how do we interpret the β coefficients?

Linear Probability Model

Notice that for binary response

$$P(y = 1 | \mathbf{x}) = E(y | \mathbf{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k.$$

The PRF is the probability of "success" for given x's

- $P(y=1|\mathbf{x})$ is known as the response probability, and the regression model with a binary dependent variable is called the linear probability model (LPM)
- The parameter β_j is interpreted as the change in the probability of success caused by a one-unit increase in x_j : $\Delta P(y=1|\mathbf{x})=\beta_i\Delta x_j$
- The interpretation of the predicted value is the predicted probability of success

Linear Probability Model: An Example

- Example (mroz.RData). Predict labour force participation by married women (7.29)
 - The dependent variable is *inlf*, whether the woman was in the labour force last year
 - The mechanics of OLS are the same as before
 - > load("mroz.RData")
 - > fitted.inlf <- lm(inlf ~ educ + kidslt6, data = data)</pre>
 - OLS SRF

$$\widehat{inlf} = .053 + .046 \, educ - .224 \, kidslt6, \\ (.095) + (.008)$$

where

- educ: years of education
- kidslt6: number of children less than six years old
- Holding everything else fixed, another year of education increases the probability of labour force participation by 0.046

Issues with Linear Probability Model

- ullet The predicted probability can be outside [0,1]
 - Linear function is not suitable for modelling probabilities
- For LPM, it can be shown that

$$Var(u|\mathbf{x}) = Var(y|\mathbf{x}) = P(y=1|\mathbf{x})[1 - P(y=1|\mathbf{x})]$$

That is, the conditional variance depends on x's (heteroskedasticity). It does not cause estimation bias but does invalidate the standard errors