統計的モデリング基礎⑨ ~マルコフモデル(系列データのモデル)~

鹿島久嗣 (情報学科 計算機科学コース)

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

今回の話題: 系列の確率モデル

- マルコフモデル
 - マルコフモデルの最尤推定
 - 平滑化
 - マルコフモデルのMAP推定
- ■マルコフ決定過程
 - マルコフモデルに沿った期待値
 - 動的計画法による期待報酬和最大化

マルコフモデル

系列データ: 互いに独立でないデータの代表格

- これまで扱ってきたデータでは、観測が互いに独立であることを仮定
- 系列データ:時間的・論理的な前後関係をもつデータ (=独立でない)
 - 長さnの系列: $(x_1, x_2, ..., x_n), x_i \in \mathcal{X}$ $(|\mathcal{X}| = k$ 種類)
 - $\{x_1, x_2, ..., x_n\}$ が互いに独立でない
 - 行動系列: ≝ ⇒ ∅ ⇒ ⊎ ⇒ ≝ ⇒ ∅ ⇒ ⊎
 - 自然言語文:「大親友の彼女の連れおいしいパスタ作ったお前」
 - 時系列:株価の系列

系列データの確率モデル: データの尤もらしさや予測・生成に利用できる

- 系列の確率モデルは系列データに確率を与える
 - 確率変数の列 $X_1, X_2, ..., X_n$ に対する、その実現値の確率: $\Pr[X_1 = x_1, X_2 = x_2, ..., X_n = x_n]$
- $\Pr[X_1 = x_1, X_2 = x_2, ..., X_n = x_n]$ がわかると...:
 - データ $(x_1, x_2, ..., x_n)$ の尤もらしさ(尤もらしくなさ)を評価できる
 - ◆応用例:異常検知
 - ・予測: $X_1 = x_1, ..., X_{n-1} = x_{n-1}$ が与えられたとき、 X_n を予測 $\Pr[X_n = x_n \mid X_1 = x_1, ..., X_{n-1} = x_{n-1}] = \frac{\Pr[X_1 = x_1, ..., X_n = x_n]}{\Pr[X_1 = x_1, ..., X_{n-1} = x_{n-1}]}$
- 問題点: |X|ⁿ個の要素に対して確率を直接与えるのは困難

マルコフモデル: シンボル系列の確率モデル

- シンボル集合(たとえば { ≝ , ∅, ⊕ })の系列がどのような順番で 出現するかを記述するモデルをつくりたい
- (1次の)マルコフモデルはある位置のシンボル X_t の出現確率がひとつ前の位置のシンボル X_{t-1} にのみ依存するようなモデル
 - 今 ♥ が観測されたときに次はどのシンボルがどのくらい現れやすいか

•
$$\Pr(X_t = \# \mid X_{t-1} = \#) = 0.5, \Pr(X_t = \# \mid X_{t-1} = \#) = 0.3,$$
 ある時刻のシンボル X_t

$$\Pr(X_t = \begin{picture}(0,0) \put(0,0) \put(0,0)$$

ひとつ前の時点のシンボル X_{t-1}

3	0.3	0.3	0.4
*	0.5	0.3	0.2
	0.1	0.8	0.1

高次のマルコフモデル: さらに遠い過去まで考慮したモデル

▶次の時刻のシンボルの出現確率が、現在だけでなく、さらに前の時刻に出現したシンボルにも依存するようなモデルを考えることもできる

ある時刻のシンボル

ひとつ前の時刻, ふたつ前の時刻

	\(\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	*	•
. . .	0.3	0.3	0.4
≝ , ⊌	0.5	0.3	0.2
₩, ψ	0.1	0.8	0.1
₩, ≝	0.2	0.3	0.5
₩, ₩	0.4	0.4	0.2
⊌, 🖐	0.1	0.1	0.8
.	0.8	0.2	0.0
. ₩	0.6	0.2	0.2
.	0.4	0.2	0.4

マルコフモデルの一般形:

k次のマルコフモデルは過去k時点分の観測に依存する

■ k次のマルコフモデル:

$$Pr(X_t = x_t \mid X_{t-1} = x_{t-1}, ..., X_1 = x_1)$$

$$= Pr(X_t = x_t \mid X_{t-1} = x_{t-1}, ..., X_{t-k} = x_{t-k})$$

$$= p(x_t \mid x_{t-1}, ..., x_{t-k})$$

■ 2次のマルコフモデル:

$$Pr(X_t = x_t \mid X_{t-1} = x_{t-1}, ..., X_1 = x_1)$$

$$= Pr(X_t = x_t \mid X_{t-1} = x_{t-1}, X_{t-2} = x_{t-2})$$

$$= p(x_t \mid x_{t-1}, x_{t-2})$$

マルコフモデルによる確率計算: 遷移確率の掛け算で計算できる

Pr(
$$x_1 = \$, x_2 = \$, x_3 = \$$$
)

= Pr($x_1 = \$) \cdot Pr(x_2 = \$ | x_1 = \$)$

· Pr($x_3 = \$ | x_2 = \$) = 0.2 \times 0.3 \times 0.4 = 0.024$

• $\Pr(x_1 = \buildrel \b$

ある時刻のシンボル X_t

ひとつ前の時点のシンボル X_{t-1}

	\(\text{\tin}\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	ð	•
&	0.3	0.3	0.4
&	0.5	0.3	0.2
<u> </u>	0.1	0.8	0.1

マルコフモデルを使った予測①: 次の出現シンボルの予測

- あるシンボル系列を観測したときに、つぎに出てくるシンボルが何かを 予測する
 - ⇒ ⇒ ♥ を観測したとすると、次は何が来るか?
 - 1次のマルコフモデルなら

$$p(\ \ \ | \ \ \) = 0.5, p(\ \ | \ \ \) = 0.3, p(\ \ \ \ \ \ \ \) = 0.2$$

◆最も現れやすいのは (確率50%)

マルコフモデルを使った予測②:シンボル列のベイズ判別

- ■あるシンボル系列を観測したときに、その発生源を判別する
 - → → を観測したとするとこの人は宇宙人?地球人?
 - 宇宙人ならば $p(\le, \le,) = 0.02$ 、 地球人なら $p(\le, \le,) = 0.01$ であったとする
 - そもそもの存在比率は $p(\mathbf{v})=0.4, p(\mathbf{v})=0.6$
 - p(♥)×p(♥,♥,♥)とp(↑)×p(♥,♥)の比較、この場合は宇宙人の可能性が大

宇宙人のモデル

	9	₩	
*	0.3	0.3	0.4
¥	0.5	0.3	0.2
•	0.1	0.8	0.1

地球人のモデル

	S	₽	•
and the second	0.1	0.2	0.7
S)	0.6	0.3	0.1
**	0.4	0.1	0.5

マルコフモデルの最尤推定:

尤度関数の定義

- 1次のマルコフモデルのもと、データ $(x_1, x_2, ..., x_n)$ の尤度は: $p(x_1, x_2, ..., x_n) = p(x_n \mid x_{n-1}) \cdots p(x_2 \mid x_1) p(x_1)$ $= \prod_{i=1}^n p(x_i \mid x_{i-1})$
 - $p(x_1) = p(x_1 \mid x_0 = \emptyset)$ とする(Øは特別なシンボル)
- シンボルa, bが隣り合って出現する回数n_{a.b}を使って書き直すと:

$$p(x_1,x_2,\ldots,x_n)=\prod_{\mathsf{a},\mathsf{b}\in\mathcal{X}} \left(p_{\mathsf{a},\mathsf{b}}\right)^{n_{\mathsf{a},\mathsf{b}}}$$
 指示関数 (引数が真のとき1)

• $\forall a, b \in \mathcal{X}, p_{a,b} = p(b \mid a), n_{a,b} = \sum_{i=1}^{n} I(x_{i-1} = a, x_i = b)$

マルコフモデルの最尤推定: 対数尤度関数

■対数尤度関数は:

$$L\left(\left\{p_{a,b}\right\}_{a,b}\right) = \sum_{a,b\in\mathcal{X}} n_{a,b} \log p_{a,b}$$

最尤推定の最適化問題:

$$\begin{aligned} \left\{\hat{p}_{a,b}\right\}_{a,b} &= \operatorname{argmax}_{\left\{p_{a,b}\right\}_{a,b}} \sum_{a,b \in \mathcal{X}} n_{a,b} \log p_{a,b} \\ \text{s. t. } \forall a \in \mathcal{X}, \sum_{b \in \mathcal{X}} p_{a,b} = 1, p_{a,b} \geq 0 \end{aligned}$$

• 制約は $p_{a,b}$ が確率であるためのもの(b についての和を制約)

マルコフモデルの最尤推定: 出現回数を集計して割り算するだけ

■ これは各 $a \in X$ 毎に別々の最適化問題を解けばよい:

$$\begin{aligned} \left\{\hat{p}_{a,b}\right\}_b &= \operatorname{argmax}_{\left\{p_{a,b}\right\}_b} \ \sum_{b \in \mathcal{X}} n_{a,b} \log p_{a,b} \\ \text{s. t.} \sum_{b \in \mathcal{X}} p_{a,b} &= 1, p_{a,b} \geq 0 \end{aligned}$$

■離散分布(サイコロ)の最尤推定と同じ:

$$\hat{p}_{a,b} = \frac{n_{a,b}}{\sum_{b \in \mathcal{X}} n_{a,b}}$$

マルコフモデルの最尤推定の例: 出現回数を集計して割り算するだけ

■ 2つのシンボルが連続して出現した回数を数える

$n_{a,b}$	S	¥	*
&	3	3	4
8	1	6	4
*	2	0	2
Ø	3	4	5

- 出現回数の割合で推定:
 - p ,b の場合:

	\(\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	₩	•
*	2	0	2

•
$$p = \frac{2}{2+2} = \frac{1}{2}$$

データ数が少ない場合: 平滑化によって補う

- $p \rightarrow p$ の最尤推定値は $\hat{p} \rightarrow p$ の最之推定値は $\hat{p} \rightarrow p$ の最之推定値は $\hat{p} \rightarrow p$ の最大推定値は $\hat{p} \rightarrow p$ のまた推定値は $\hat{p} \rightarrow p$ のまたを使えまた
 - **2** 0 2
 - たまたま出なかっただけかも? (たった4回の観測)
 - 予測時に ♥ のあとに♥が出る確率は常に0になってしまう
- 平滑化:観測数を底上げして確率が0になるのを避ける
 - 加算平滑化: $\hat{p}_{a,b} = \frac{n_{a,b} + \alpha}{\sum_{b \in \mathcal{X}} (n_{a,b} + \alpha)}$ ($\alpha = 1$:ラプラス平滑化)
 - 線形補間:異なる次数のマルコフモデルを混合する

bの出現数

- 0次と1次の混合: $\hat{p}_{a,b} = \lambda \frac{n_{a,b}}{\sum_{b \in \mathcal{X}} n_{a,b}} + (1 \lambda) \frac{n_b}{\sum_{b \in \mathcal{X}} n_b}$
- 正則化・ベイズ推定の枠組みで解釈できる

ベイズ的統計モデリングの考え方: 最尤推定の尤度の代わりに事後分布を考える

- ベイズ的なモデリングの考え方では、事後分布を考える: $P(\, \mathcal{C}_{S,b} | \mathcal{C}_{S,b}) = P(\{ p_{a,b} \}_{a,b} | x_1, x_2, ..., x_n)$
 - 事後分布ではパラメータを確率変数と考える
- 事後分布: ベイズの定理
 P(パラメータ | データ) ∝ P(データ | パラメータ)P(パラメータ)
- ■対数事後分布:

$$\log P(\mathcal{N} \ni \mathsf{X} - \mathcal{P} \mid \tilde{\mathcal{T}} - \mathcal{P})$$

= $\log P(\tilde{\mathcal{T}} - \mathcal{P} \mid \mathcal{N} \ni \mathsf{X} - \mathcal{P}) + \log P(\mathcal{N} \ni \mathsf{X} - \mathcal{P}) + \mathrm{const.}$
尤度 事前分布

事後確率最大化(MAP)推定: 事後確率を最大化するパラメータを採用

- ■事後確率最大化(Maximum a posteriori; MAP)推定
- 事後確率を最大化するパラメータを採用する:
 log P(パラメータ | データ)
 = log P(データ | パラメータ) + log P(パラメータ) + const.
- 事前分布P(パラメータ)を与える必要がある
 - 線形回帰モデルの場合、正規分布やラプラス分布を事前分布として用いた

離散分布の事前分布: ディリクレ分布

- 1次のマルコフモデルは離散分布 $\{p_{a,b}\}_{b\in\mathcal{X}}$ として考えることができる
- (表記上の) 簡単のため $p_1, p_2, ..., p_k$ (k = |X|) のMAP推定を考える
- 事前分布P(p₁, p₂, ..., p_k)は離散分布上の確率分布である必要がある
- ディリクレ分布: $P(p_1, p_2, ..., p_k) = \frac{\Gamma(\alpha_1 + \cdots + \alpha_k)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_k)} \prod_{j=1}^k (p_j)^{\alpha_j 1}$
 - $\mathbf{p} = (p_1, p_2, ..., p_k), p_j \ge 0, \sum_{j=1}^k p_j = 1$ を生成する確率モデル
 - $\alpha = (\alpha_1, ..., \alpha_k) \ge 0$ は (ハイパー) パラメータ

マルコフモデルのMAP推定: ディリクレ事前分布は加算平滑化を導く

- ■対数尤度: $\sum_{j=1}^{k} n_j \log p_j$ $(n_j$: 各シンボルの観測数)
- 対数事後分布:

$$\sum_{j=1}^{k} n_{j} \log p_{j} + \log \frac{\Gamma(\alpha_{1} + \dots + \alpha_{k})}{\Gamma(\alpha_{1}) \dots \Gamma(\alpha_{k})} \prod_{j=1}^{k} (p_{j})^{\alpha_{j}-1} + \text{const.}$$

$$= \sum_{j=1}^{k} (n_{j} + \alpha_{j} - 1) \log p_{j} + \log \frac{\Gamma(\alpha_{1} + \dots + \alpha_{k})}{\Gamma(\alpha_{1}) \dots \Gamma(\alpha_{k})} + \text{const.}$$

$$\underbrace{\sum_{j=1}^{k} (n_{j} + \alpha_{j} - 1) \log p_{j} + \log \frac{\Gamma(\alpha_{1} + \dots + \alpha_{k})}{\Gamma(\alpha_{1}) \dots \Gamma(\alpha_{k})}}_{\text{SUTLUBLUE}} + \text{const.}$$

$$\underbrace{\sum_{j=1}^{k} (n_{j} + \alpha_{j} - 1) \log p_{j} + \log \frac{\Gamma(\alpha_{1} + \dots + \alpha_{k})}{\Gamma(\alpha_{1}) \dots \Gamma(\alpha_{k})}}_{\text{SUTLUBLUE}} + \text{const.}$$

■ MAP推定 ≈ 加算平滑化

まとめ: マルコフモデル

- マルコフモデルは系列に対する確率モデル:
 - 行動系列・自然言語文・時系列などに適したモデル
 - 「次の時点の観測が、直近の過去の観測にのみ依存する」という 仮定によって、モデル推定や予測を簡単にする
- ■マルコフモデルの推定:離散分布の推定とほぼ同様に行える
 - 高次のマルコフモデルの最尤推定におけるデータ不足を平滑化で補う
 - ベイズ推定(MAP推定)は加算平滑化として解釈できる

マルコフ決定過程

報酬をともなうマルコフモデル: 状態遷移に報酬を伴う

- ■会社の経営状況
 - 3つの状態があるとする
 - ◆好調 (a)
 - ◆通常(b)
 - ◆不調 (c)
 - ・期毎に状態が変化する
 - ・変化に収益を伴う
 - ◆好調→通常の遷移で10億円の減益など

報酬の期待値: あらゆる状態遷移列について報酬和の期待値をとる

- ■状態集合X: k個の状態をもつとする(会社の経営状況など)
- マルコフモデルに従った状態遷移:
 - 時点t=1において、 p_{\emptyset,S_1} に従って初期状態 $S_1\in \mathcal{X}$ が決まる
 - 各時点t=2,3,...,nで p_{s_{t-1},s_t} に従って s_{t-1} から s_t へ状態遷移する
- 遷移に伴う報酬: S_{t-1} から S_t への遷移に伴い報酬 r_{S_{t-1},S_t} を受ける
- n期間の間の累積報酬の期待値:

$$R = \sum_{S_1, S_2, \dots, S_n} \left(\sum_{t=1}^n r_{S_{t-1}, S_t} \right) \prod_{t=1}^n p_{S_{t-1}, S_t}$$
 遷移に伴う報酬和 遷移確率の積

報酬期待値の計算:動的計画法で計算できる

■ 各経路の報酬和を経路の確率で重みづけたものを、全ての経路に

経営状況の例:

- 好調 (a)
- 通常(b)
- 不調 (c)

報酬期待値の計算:動的計画法で計算できる

■ 再帰式を利用して動的計画法で計算(t = nから0の向きに)

報酬期待値の計算:動的計画法で計算できる

 \bullet $e_1(a)$ は $e_2(a)$, $e_2(b)$, $e_2(c)$ から計算できる

マルコフ決定過程:

遷移確率と報酬が決定(行動)に依存する

- ■「好調」「不調」の2状態があるとする
- 各時点で「新規事業立ち上げ($c_t = 1$)」「様子見($c_t = 0$)」 の2種類の施策のいずれかをとれる
- 施策に応じて遷移確率と報酬が変わる

様子見 $(c_t = 0)$

マルコフ決定過程:

遷移確率と報酬が決定(行動)に依存する

- 各時点tで決定 $c_t \in \mathcal{C}$ を選択する
- 遷移確率と報酬が決定に依存:
 - ・状態遷移:各時点tで $p_{S_{t-1},S_t}(c_t)$ に従って s_{t-1} から s_t へ遷移する
 - •報酬: s_{t-1} から s_t への遷移に伴い報酬 $r_{s_{t-1},s_t}(c_t)$ を受ける
- 時刻nにおける累積報酬の期待値は決定系列 $c_1, c_2, ..., c_n$ に依存

$$R(c_1, c_2, \dots, c_n) = \sum_{S_1, S_2, \dots, S_n} \left(\sum_{t=1}^n r_{S_{t-1}, S_t}(c_t) \right) \prod_{t=1}^n p_{S_{t-1}, S_t(c_t)}$$

遷移に伴う報酬和

遷移確率の積

マルコフ決定過程における有限期間報酬和最大化:動的計画法によって最適な決定系列が求まる

■ 累積報酬の期待値 $R(c_1, c_1, ..., c_n)$ を最大化する $c_1, c_2, ..., c_n$:

$$\operatorname{argmax}_{c_1, c_2, \dots, c_n} \sum_{S_1, S_2, \dots, S_n} \left(\sum_{t=1}^n r_{s_{t-1}, s_t}(c_t) \right) \prod_{t=1}^n p_{s_{t-1}, s_t(c_t)}$$

動的計画法による最適な決定系列の決定:

$$e_t^*(s_t) = \max_{c_{t+1}} \sum_{s_{t+1}} p_{s_t, s_{t+1}}(c_{t+1}) \left(r_{s_t, s_{t+1}}(c_{t+1}) + e_{t+1}^*(s_{t+1}) \right)$$

- なお無限期間の場合は少し工夫が必要:
- $e_t^*(s_t)$: t+1以降で最適な 決定を行うときの期待報酬
 - 報酬和が発散しないように将来の報酬を割り引く
 - 同様の再帰式が成り立つが、解法はやや複雑

まとめ: マルコフモデル

- マルコフモデル:離散的な時系列のモデル
 - データの独立性を仮定しないモデル
 - 依存関係が限定的: k次のマルコフモデルでは過去k時点のデータに依存
 - 最尤推定は、複数の離散分布の推定と同じ
 - MAP推定は、出現回数の平滑化に相当する
- マルコフ決定過程:状態遷移に報酬を伴うマルコフモデル+最適な行動系列
- その他関連する(が含めなかった) 話題:
 - 隠れマルコフモデル:観測されない離散変数を含むマルコフモデル
 - ◆ 再帰型ニューラルネットワーク(RNN):観測されない連続変数を含む
 - 時系列モデル:連続的な時系列モデル
 - ◆ 状態空間モデル:観測されない連続変数を含む