Simpsonovi zapiski v LATEX datoteki

Matej Knap

12. november 2023

Uvod

Te zapiski so mišljeni kot kompaktna oblika Simpsonovih zapiskov za pravila uporabe in vpeljave. Namenjena so tudi za uporabo pri kolokvijih, kvizih in izpitih. Če kdo najde napako ali ima kakšno opombo me lahko kontaktira. (To datoteko bom morda probal povezati z GitHubom.) Oranžni kvadrati za dokaze izgledajo dokaj vredu, če kdo ve kako narediti to bolje naj prosim sporoči.

1 Pravila dokazovanja

Pravili zamenjave

- izraz smemo zamenjati z njemu enakim izrazom
- izjavo smemo zamenjti z njej ekvivalentno izjavo

za vsak veznik in kvantifikator.

Pravila vpeljave

Povedo nam, kako neposredno dokažemo izjavo s tem veznikom ali kvantifikatorjem.

Pravila uporabe

Povedo nam, kako že znano izjavo uporabimo.

2 Konjunkcija

Pravilo upeljave

• Če sta izjavi Φ in Ψ na voljo, potem lahko dodamo v dokaz:

$$\Phi \wedge \Psi$$
 ker veljata Φ in Ψ

Pravili uporabe

• Če je izjava $\Phi \wedge \Psi$ na voljo, potem lahko dodamo v dokaz:

$$\Phi$$
ker velja $\Phi \wedge \Psi$

• Če je izjava $\Phi \wedge \Psi$ na voljo, potem lahko dodamo v dokaz:

$$\Psi$$
 ker velja $\Phi \wedge \Psi$

3 Implikacija

Pravilo vpeljave

Lahko dodamo v dokaz:

```
Dokažimo \Phi \Rightarrow \Psi

Predpostavimo \Phi

... <dokaz> ...

\Psi

\Phi \Rightarrow \Psi
```

Predpostavka Φ je na voljo le v oranžni škatlici.

Pravilo uporabe

• Če sta izjavi $\Phi \Rightarrow \Psi$ in Φ na voljo, potem lahko dodamo v dokaz:

$$\Psi$$
 ker veljata $\Phi \Rightarrow \Psi$ in Φ

4 Disjunkcija

Pravili vpeljave

- Če je izjava Φ na voljo, potem lahko dodamo v dokaz:

$$\Phi \vee \Psi$$
 ker velja Φ

• Če je izjava Ψ na voljo, potem lahko dodamo v dokaz:

$$\Phi \vee \Psi$$
ker velja Ψ

Pravilo uporabe

• Če je izjava $\Phi \vee \Psi$ na voljo in bi želeli dokazati $\rho,$ lahko dodamo v dokaz:

Dokažemo ρ z uporabo $\Phi \vee \Psi$

```
Predpostavimo \Phi . . . <dokaz> . . . \rho
```

```
\begin{array}{c} \text{Predpostavimo } \Psi \\ \dots < \text{dokaz} > \dots \\ \rho \\ \end{array}
```

Vsaka predpostavka je na voljo le v svoji oranžni škatlici.

5 Negacija

Pravilo vpeljave

• Lahko dodamo v dokaz:

Predpostavka Φ je na voljo le v oranžni škatlici.

5.1 Pravilo uporabe

• Če sta $\neg \Phi$ in Φ na voljo, lahko dodamo v dokaz:

 \perp ker veljata $\neg \Phi$ in Φ

6 Neresnica

Pravila vpeljave ni

Pravilo uporabe

• Če je \perp na voljo, lahko dodamo v dokaz:

 Φ zaradi protislovja

7 Resnica

Pravilo vpeljave

• Vedno lahko dodamo v dokaz:

⊤ očitno

Pravila uporabe ni

8 Dokaz s protislovjem

• Dodamo v dokaz:

Dokažemo Φ s protislovjem

```
\begin{array}{c} \text{Predpostavimo } \neg \Phi \\ \dots < \text{dokaz} > \dots \\ \bot \\ \Phi \end{array}
```

Predpostavka Φ je na voljo le v oranžni škatlici.

9 Pravilo izključene tretje možnosti

• Vedno lahko dodamo v dokaz:

$$\Phi \vee \neg \Phi$$
 LEM

LEM pomeni "Law of the Excluded Middle".

10 Univerzalni kvantifikator

Pravilo vpeljave

• Dodamo v dokaz

Dokažemo $\forall x \in X. \Phi(X)$

Naj bo
$$x \in X$$

 $\dots < \text{dokaz} > \dots$
 $\Phi(X)$
 $\forall x \in X. \Phi(X)$

Izjava $x \in X$ doda spremenljivko x v kontext. x mora biti sveža spremenljivka. x je na voljo le v oranžni škatlici.

Pravilo uporabe

• Če je $\forall x \in X$. $\Phi(X)$ na voljo in če vemo da je $\langle izraz \rangle \in X$, lahko dodamo v dokaz:

$$\Phi(\langle izraz \rangle)$$
 ker velja $\forall x \in X$. $\Phi(X)$

Vse proste spremenljivke v $\langle izraz \rangle$ u morajo biti it trenutnega konteksta.

11 Eksistenčni kvantifikator

Pravilo vpeljave

• Če je $\Phi(\langle izraz \rangle)$ na voljo in vemo, da $\langle izraz \rangle \in X$, lahko dodamo v dokaz:

$$\exists x \in X. \ \Phi \text{ ker velja } \Phi(\langle izraz \rangle)$$

Samodejno drži, da so vse proste spremenljivke $\langle izraz \rangle$ a iz konteksta, ker je to posledica pogoja, da je $\Phi(\langle izraz \rangle)$ na voljo.

Pravilo uporabe

• Če je izjava $\exists x \in X. \Phi(X)$ na voljo in želimo dokazati ρ , lahko dodamo v dokaz:

Dokažemo ρ z uporabo $\exists x \in X. \Phi(X)$

Naj bo
$$x \in X$$

Predpostavimo $\Phi(x)$
... $<$ dokaz $>$... ρ

Izjava $x \in X$ doda x v kontekst, kjer je x sveža spremenljivka. Spremenljivka x in predpostavka $\Phi(x)$ sta na voljo le v oranžnem kvadratku.