Réseau de Contrainte Ternaire pour une Propagation Efficace de Bornes sur GPU

Journées Francophones de Programmation par Contraintes (JFPC 2025)

Pierre Talbot

pierre.talbot@uni.lu
https://ptal.github.io
2nd July 2025

University of Luxembourg

Motivation

- Machine learning (deep learning, reinforcement learning, ...) has seen tremendous speed-ups (e.g. 100x, 1000x) by using GPU.
- Some (sequential) optimizations on CPU are made irrelevant if we can explore huge state space faster.

Can we replicate the success of GPU on machine learning applications to combinatorial optimization?

1

State of the Art: Combinatorial Optimization on GPU

Very scarce literature, usually:

- **Heuristics**: often population-based algorithms¹.
- Limited set of problems²
- **Limited GPU parallelization**: offloading to GPU specialized filtering procedures^{3,4}.
- **cuOpt**: new MILP solver—relaxation on GPU, search on CPU⁵.

No general-purpose constraint solver on GPU.

¹A. Arbelaez and P. Codognet, A GPU Implementation of Parallel Constraint-Based Local Search, PDP, 2014.

 $^{^2}$ Jan Gmys. Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale GPU-Accelerated Supercomputers. INFORMS Journal on Computing, 2022.

³F. Campeotto et al., Exploring the use of GPUs in constraint solving, PADL, 2014

⁴F. Tardivo et al., *Constraint propagation on GPU: A case study for the AllDifferent constraint*, Journal of Logic and Computation, 2023.

⁵Using primal-dual linear programming (PDLP).

Our Contributions

- First general constraint solver fully executing on GPU (propagation + search).
 - ⇒ **General**: Support MiniZinc and XCSP3 constraint models.
 - \Rightarrow **Simple**: interval-based constraint solving + backtracking search (no global constraints, learning, restart, event-based propagation, ...).
 - \Rightarrow **Efficient?**: Almost on-par with Choco (21% better, 30% worst, 49% equal).
 - \Rightarrow Open-source: Publicly available on https://github.com/ptal/turbo.
- Ternary constraint network: representation of constraints suited for GPU architectures.

(Simplified) Architecture of the GPU Nvidia H100

 $8448\ cores\ grouped$ in $132\ streaming\ multiprocessors$ (SM) of $64\ cores\ each.$

(Simplified) Architecture of the GPU Nvidia H100

8448 cores grouped in 132 streaming multiprocessors (SM) of 64 cores each.

 \Rightarrow **Oversubscribe** (to hide memory latency): 1024 threads per SM

135168 threads running in parallel!