Tarea 3

Criptografía y Seguridad Curvas Elípticas

Castro Mejia Jonatan Alejandro 314027687

June 23, 2020

- 1. Sea E: $y^2 + 20x = x^3 + 21 \pmod{35}$ y sea Q = $(15,-4) \in E$.
 - a) Factoriza 35 tratando de calcular 3Q.

Hay que obtener 2Q, y esto es haciendo Q + Q, y como son iguales, entonces: $\lambda = (3x_1^2 + a)(2y_1)^{-1}$ Entonces $\lambda = (3(15)^2 - 20)(2(-4))^{-1}(-8^{-1} \equiv 13 \mod 35) = (675-20)(13) \mod 35 = 655(13) = 8515 \mod 35$

 $\lambda = 10$

Ahora hay que calcular $x_3 = \lambda^2 - x_1 - x_2$ y $y_3 = \lambda(x_1 - x_3) - y_1$

 $x_3 = 10^2 - 15 - 15 \mod 35$

 $= 100 - 30 \mod 35 = 70 \mod 35 = 0$

 $y_3 = 10(15-0)+4 = 154 \mod 35 = 14.$

Entonces 2Q = (0.14).

Ahora ya podemos obtener 3Q,y para eso hay que sumar (15,-4) y (0,14).

Como son diferentes entonces $\lambda = (y_2 - y_1)(x_2 - x_1)^{-1}$

 $\lambda = (14 + 4)(15 - 0)^{-1} = 18(15)^{-1} (15^{-1} \equiv 1 \mod 35)$ entonces esto nos indica que hay que sacar el mcd(15,35) = 5. y este es un factor de factorización.

b) Factoriza 35 tratando de calcular 4Q duplicándolo.

Del ejercicio anterior ya tenemos 2Q y como son iguales, entonces hay que calcular

$$\lambda = (3x_1^2 + a)(2y_1)^{-1}$$

$$\lambda = (3(0) - 20)(2(14))^{-1}$$

 $\lambda = (-20)(28)^{-1} \ (28^{-1} \equiv 1 \mod 35)$ entonces hay que sacar el $\mathbf{mcd}(\mathbf{28}, \mathbf{35}) = \mathbf{7}$, entonces este es una factor de factorización

- c) Calcula 3Q y 4Q sobre E (mod 5) y sobre E (mod 7) explica por que el factor 5 se obtiene calculando 3Q y por que el factor 7 se obtiene calculando 4Q.
 - Al calcular 3Q llegamos a un problema, este problema es que no podemos sacar el inverso de 15 en el grupo 35. Esto ocurre ya que 15 y 35 no son primos, por lo que tenemos que sacar el mcd(15,35) que nos da 5. por eso es que el factor 5 se obtiene calculando 3Q.
 - Al calcular 4Q llegamos a un problema, este problema es que no podemos sacar el inverso de 28 en el grupo 35. Esto ocurre ya que 28 y 35 no son primos, por lo que tenemos que sacar el mcd(28,35) que nos da 7, por eso es que el factor 7 se obtiene calculando4Q.
 - Calculando 3Q sobre E(mod 5)

Hay que obtener 2Q, y esto es haciendo Q + Q, y como son iguales, entonces:

$$\lambda = (3x_1^2 + a)(2y_1)^{-1}$$

Entonces $\lambda = (3(15)^2 - 20)(2(-4))^{-1}(-8^{-1} \equiv 2 \mod 5) = (675-20)(2) \mod 5 = 655(2) = 1310 \mod 5$

$$\lambda = 0$$

Ahora hay que calcular $x_3 = \lambda^2 - x_1 - x_2$ y $y_3 = \lambda(x_1 - x_3) - y_1$

$$x_3 = 0^2 - 15 - 15 \mod 5$$

$$= -30 \mod 5 = 70 \mod 5 = 0$$

$$y_3 = 0(15-0)+4 = 4 \mod 5 = 4.$$

Entonces 2Q = (0,4).

Ahora ya podemos obtener 3Q, y para eso hay que sumar (15,-4) y (0,4).

Como son diferentes entonces $\lambda = (y_2 - y_1)(x_2 - x_1)^{-1}$ $\lambda = (4 + 4)(15 - 0)^{-1} = 8(15)^{-1} (15^{-1} \equiv 0 \mod 5)$

15 no tiene inverso en 5 multiplicativo entonces terminamos aquí.

• Calculando 4Q mod 5

Ya tenemos 2Q para obtener 4Q hay que sumar 2Q + 2Q

Como son iguales

$$\lambda = (3x_1^2 + a)(2y_1)^{-1}$$
$$\lambda = (3(0) -20)(2(4))^{-1}$$

$$\lambda = (-20)(8)^{-1} (8^{-1} \equiv 5 \mod 5)$$

$$\lambda = (-20)(5) = -100 \equiv 0 \mod 5$$

Entonces 4Q = (0,1)

• Calculando 3Q sobre E(mod 7)

Hay que obtener 2Q, y esto es haciendo Q + Q, y como son iguales, entonces:

$$\lambda = (3x_1^2 + a)(2y_1)^{-1}$$

$$\lambda = (3(15)^2 - 20)(2(-4))^{-1}(-8^{-1} \equiv 6 \mod 7) = (675-20)(6) \mod 7 = 655(6) = 3930 \mod 7 = 3$$

 $\lambda = 3$

$$x_3 = 3^2 - 15 - 15 \mod 7 = 0$$

$$y_3 = 3(15-0) + 4 \mod 7 = 0$$
.

Entonces 2Q = (0,0)

Ahora ya podemos obtener 3Q, y para esto hay que sumar (15,-4) y (0,0).

Como son diferentes entonces $\lambda = (y_2 - y_1)(x_2 - x_1)^{-1}$

$$\lambda = (0+4)(0-15)^{-1} = (4)(-15)^{-1} ((-15)^{-1} \equiv 6 \mod 7)$$

$$\lambda = 4(6) = 24 \mod 7 = 3$$

 $\lambda = 3$

Ahora hay que calcular $x_3 = \lambda^2 - x_1 - x_2$ y $y_3 = \lambda(x_1 - x_3) - y_1$

$$x_3 = 3^2 - 15 - 0 = 9 - 15 = -6 \equiv 1 \mod 7$$

$$y_3 = 3(15-1) + 4 = 46 \equiv 4 \mod 7$$

Entonces 3Q = (1,4)

• Calculando 4Q sobre E(mod 7)

Ya tenemos 2Q para obtener 4Q hay que sumar 2Q + 2Q

Como son iguales

$$\lambda = (3x_1^2 + a)(2y_1)^{-1}$$

$$\lambda = (3(0)-20)(2(0))^{-1} = (-20)(0)^{-1}.$$

Pero no podemos obtener el valor del inverso de 0, ya que no existe.

- 2. Sea E la curva elíptica $y^2 = x^3 + x + 28$ definida sobre \mathbb{Z}_{71}
 - a) Calcula y muestra el número de puntos de E.

```
O,\ (1,32),\ (1,39),\ (2,31),\ (2,40),\ (3,22),\ (3,49),\ (4,5),\ (4,66),\ (5,4),\ (5,67),\ (6,26),\ (6,45),\ (12,8),\ (12,63),\ (13,26),\ (13,45),\ (15,9),\ (15,62),\ (19,27),\ (19,44),\ (20,5),\ (20,66),\ (21,3),\ (21,68),\ (22,30),\ (22,41),\ (23,19),\ (23,52),\ (25,22),\ (25,49),\ (27,0),\ (31,32),\ (31,39),\ (33,1),\ (33,70),\ (34,23),\ (34,48),\ (35,14),\ (35,57),\ (36,12),\ (36,59),\ (37,33),\ (37,38),\ (39,32),\ (39,39),\ (41,7),\ (41,64),\ (43,22),\ (43,49),\ (47,5),\ (47,66),\ (48,11),\ (48,60),\ (49,24),\ (49,47),\ (52,26),\ (52,45),\ (53,0),\ (58,27),\ (58,44),\ (61,15),\ (61,56),\ (62,0),\ (63,17),\ (63,54),\ (65,27),\ (65,44),\ (66,18),\ (66,53),\ (69,35),\ (69,36).
```

- b) Muestra que E no es un grupo cíclico.
- c) ¿Cuál es el máximo orden de un elemento en E? Encuentra un elemento que tenga ese orden.
- 3. Sea E: $y^2 2 = x^3 + 333x$ sobre \mathbb{F}_{347} y sea P = (110,136).
 - a) ¿Es Q=(81,-176) un punto de E?

Para verificar esto hay que sustituir en E Q,

$$(-176)^2 - 2 = (81)^3 + 333(81)$$

$$30976 - 2 = 531441 + 26973.$$

 $30974 = 558414 \mod 347$

Entonces 347|558414 - 30974 = 1520, $P \in F_{347}$

b) si sabemos que |E| = 358 ¿Podemos decir E es criptográficamente útil? ¿Cuál es el orden de P? ¿Entre que valores se puede escojer la clave privada?

El orden de P = 179. E no es criptográficamente útil, ya que no es capaz de dividir a un número primo grande, este número se determina por 172*2, siendo 2 nuestro primo.

c) si tu clave privada es k=101 y algún conocido te ha enviado el mensaje cifrado (M_1 =(232,278) y M_2 =(135,214)) ¿Cuál era el mensaje original?

```
\begin{split} M &= M_2 - k M_1 \\ M &= (135, 214) - 101(232, 278) \\ \text{aplicando sumas consecutivas -101} \\ M &= (135, 214) - (275, 176) \\ M &= (135, 214) + (275, -176) \\ M &= (74, 87) \text{ mensaje original} \end{split}
```

- 4. Sea \mathbb{E} : $F(x,y)=y^2-x^3-2x-7$ sobre \mathbb{Z}_{31} con $\neq \mathbb{E}=39$ y P=(2,9) es un punto de orden 39 sobre \mathbb{E} , el ECIES simplifado definido sobre \mathbb{E} tiene \mathbb{Z}_{31}^* como espacio de texto plano, supongamos que la clave privada es m=8.
 - a) Calcula Q=mP Hay que calcular Q = 8P = 4P + 4P = (2P+2P) + (2P+2P)

Como son los mismos puntos tenemos $\lambda = (3x_1^2 + A) (2y_1)^{-1} = (3(2)^2 + 2)(2(9))^{-1}$ hay que encontrar el inverso de 9 mod 31 usando el algoritmo extendido de euclides, $2(9)^{-1} \equiv 18^{-1} \equiv 19 \mod 31$. Entonces $\lambda = (12+2) \times 19 = 266$.

Queda calcular $x_3 = \lambda^2 - x_1 - x_2$, $y_3 = \lambda(x_1 - x_3) - y_1$.

```
x_3 = (266)^2 - 2 - 2 = 70,756-4 = 70,752 \equiv 10 \mod 31.

y_3 = 266(2-70752) - 9 = -18,819,509 \equiv 2 \mod 31.

Entonces 2P = (10,2).

4P = 2P + 2P = (10,2)+(10,2).

Entonces \lambda = (3(10^2) + 2)(2(2))^{-1} = 2,416.
```

 $x_3 = (2.416)^2 - 10 - 10 = 5.837,036 \equiv 15 \mod 31.$

 $y_3 = 2,416(10 - 5,837,036) - 2 = -14102254818 \equiv 8 \mod 31.$

Por lo que 4P = (15.8), solo falta calcular 8P = 4P + 4P = (15.8) + (15.8).

Ahora $\lambda = (3(15)^2 + 2)(2(8)^{-1})$; $2(8)^{-1} \equiv 2 \mod 31$.

entonces $\lambda = 677 \text{ x } 2 = 1354.$

 $x_3 = 1,354^2$ - 15 -15 = 1.833,286 $\equiv 8 \mod 31$.

 $y_3 = 1354(15 \mbox{ - } 1{,}833{,}286$)-8 = -24,82,248,942 $\equiv 15 \mbox{ mod } 31.$

Entonces 8P = (8.15).

b) Descifra la siguiente cadena de texto cifrado:

$$((18,1),21),((3,1),18),((17,0),19),((28,0),8)$$

E: $y^2 = x^3 + 2x + 7 \mod 31$

1) ((18,1),21)

Evaluamos 18 en E:

Entonces $18^3 + 2(18) + 7 = 5875 \equiv 16 \mod 31$.

 $y = \pm 4$, ahora hay que fijarnos en la segunda entrada la cual nos dice que $y \equiv 1 \mod 2$, entonces y = 27.

El punto de descompresión es (18,27), entonces 8(18,27)=(15,8)

Ahora hay que encontrar $15^{-1} \equiv 29 \mod 31$, y con esto hay que calcular $29(21) \mod 31$ que nos da: 20.

2) ((3,1),18)

Evaluamos 3 en E:

Entonces $3^3 + 2(3) + 7 = 40 \equiv 9 \mod 31$

 $y = \pm 3$, ahora hay que fijarnos en la segunda entrada la cual nos dice que $y \equiv 1 \mod 2$, entonces

$$y = 28$$

El punto de descompresión es (3,28), entonces 8(3,28) = (2,22)

Ahora hay que encontrar $2^{-1} \equiv 16 \mod 31$, y con esto hay que calcular $16(18) \mod 31$ que nos da: 9.

3) ((17,0),19)

Evaluamos 17 en E:

Entonces $17^3 + 2(17) + 7 = 4954 \equiv 25 \mod 31$

 $y=\pm$ 5, ahora hay que fijarnos en la segunda entrada la cual nos dice que $y\equiv 0 \bmod 2,$ entonces y=26

El Punto de descompresión es (17,26), entonces 8(17,26) = (30,29)

Ahora hay que encontrar $30^{-1} \equiv 30 \mod 31$, y con esto hay que calcuar $30(19) \mod 31$ que nos da: 12

4) ((28,0),8)

Evaluamos 28 en E:

Entonces $28^3 + 2(28) + 7 = 22015 \equiv 5 \mod 31$ Hay que sumarle a 5, 31 tantas veces como sea necesario para que nos genere un cuadrado perfecto. En este caso 5 + 31 = 36.

Entonces y = \pm 6, ahora nos fijamos en la segunda entrada la cual nos dice que y \equiv 0 mod 2, entonces y = 25

El punto de descompresión es (28,26), entonces 8(28,25) = (14,12)

Ahora hay que encontrar $14^{-1} \equiv 20 \mod 31$, y con esto hay que calcular $20(8) \mod 31$ que nos da: 5.

c) Supongamos que cada texto plano representa un caracter alfabético, convierte el texto plano en una palabra en ingles, usa la asociación (A \rightarrow 1, ..., Z \rightarrow 26) en este caso 0 no es considerado como un texto plano o par ordenado.

Del ejercicio anterior obtuvimos los valores {20, 9, 12, 5}

A	В	С	D	E	F	G	Н	I	J	K	L	Μ
1	2	3	4	5	6	7	8	9	10	11	12	13
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25	26

 ${\bf Y}$ con los valores obtenemos: ${\bf TILE}$ como mensaje descifrado.