Programming Project: Selection Problem

Tyler Do

1. Problem definition:

The selection problem seeks to find the ith order statistic in a set A of n distinct numbers, where $1 \le I \le n$. The ith order statistic is the ith smallest element in the set. Originally the measurements for the RT consisted of the following input sizes n = 10000, 20000, 30000, 40000,, 200000. More specifically, n takes 20 values from 10k to 200k with increments of 10k. I scaled down to n = 1000, 2000, 3000, 4000,, 20000. This helped execute the experiment in a faster time frame. In this project, let us take I = 2n/3 for all the experiments. First algorithm will use Insertion sort, the second algorithm will use Heapsort, and the third algorithm will use Randomized-Select.

2. Algorithms and RT analysis:

<u>ALG1(v,n,i)</u>	ALG2(v,n,i)	ALG3(v,n,i)
INSERTION-SORT(v,n)	HEAPSORT(v,n)	x = RANDOMIZED-SELECT(v,l,n,i)
Print v[i]	Print v[i]	Print x
$RT = O(n^2)$	RT = O(nlgn)	RT = O(n)

3. Experimental Results:

Table ALG1

n	Theoretical	EmpiricalRT	Ratio =	Predicted
	RT N ²	(msec)	(EmpiricalRT)/(TheoreticalRT)	RT(msec)
10 ³	10 ⁶	12	R _{1 =} 0.000012	27.35
2*10 ³	4*10 ⁶	48.6	R ₂ = 0.00001215	109.4
3*10 ³	9*10 ⁶	109.4	$R_3 = 0.00002735 = c_1$	246.15
4*10 ³	16*10 ⁶	195.2	R ₄ = 0.0000122	437.6
5*10 ³	25*10 ⁶	302	R ₅ = 0.00001208	683.75
6*10 ³	36*10 ⁶	435	R ₆ = 0.00001	984.6
7*10 ³	49*10 ⁶	590.6	R _{7 =} 0.00001	1340.15
8*10 ³	64*10 ⁶	782.2	R ₈ = 0.000012221	1750.4
9*10 ³	81*10 ⁶	987	R ₉ = 0.00001	2215
10*10 ³	100*10 ⁶	1202.8	R ₁₀ = 0.000012028	2735
11*10 ³	121*10 ⁶	1449	R ₁₁ = 0.00002	3309
12*10 ³	144*10 ⁶	1721.8	R ₁₂ = 0.00001256	3938
13*10 ³	169*10 ⁶	2025.4	R ₁₃ = 0.000011	4622
14*10 ³	196*10 ⁶	2344.2	R ₁₄ = 0.00001	5360
15*10 ³	225*10 ⁶	2691	R ₁₅ = 0.00001196	6153
16*10 ³	256*10 ⁶	3055.6	R ₁₆ = 0.0000119359375	7001
17*10 ³	289*10 ⁶	3465.6	R ₁₇ = 0.00001	7904
18*10 ³	324*10 ⁶	3895	R ₁₈ = 0.0000131	8861.4
19*10 ³	361*10 ⁶	4365.6	R ₁₉ = 0.000019902	9873
20*10 ³	400*10 ⁶	4724.2	R ₂₀ = 0.0000118105	10940

ALG1: Runtime

EmpiricalRT (msec) and Predicted

I omitted r1 for c value because it seemed to be an outlier in the data.

Table ALG2

n	Theoretical RT	EmpiricalRT	Ratio =	Predicted
	nlog₂n	(msec)	(EmpiricalRT)/(TheoreticalRT)	RT(msec)
10 ³	$10^3 \log_2 10^3$	91.6	$R_1 = 0.0916$	48.83234
2*10 ³	2*10 ³ log ₂ 2*10 ³	101.6	R ₂ = 0.00463	107.46
3*10 ³	3*10 ³ log ₂ 3*10 ³	170	$R_{3} = 0.00490 = c_{2}$	169.79
4*10 ³	4*10 ³ log ₂ 4*10 ³	225.8	R _{4 =} 0.00471	234
5*10 ³	5*10 ³ log ₂ 5*10 ³	274	$R_{5} = 0.00445$	301
6*10 ³	6*10 ³ log ₂ 6*10 ³	342.6	R ₆ = 0.00454	368
7*10 ³	7*10 ³ log ₂ 7*10 ³	418.2	$R_{7} = 0.00467$	438
8*10 ³	8*10 ³ log ₂ 8*10 ³	479.2	R ₈ = 0.00461	508
9*10 ³	9*10 ³ log ₂ 9*10 ³	521	R ₉ = 0.00440	579
10*10 ³	10*10 ³ log ₂ 10*10 ³	556	$R_{10} = 0.00418$	651
11*10 ³	11*10 ³ log ₂ 11*10 ³	587.8	R ₁₁ = 0.00398	723
12*10 ³	12*10 ³ log ₂ 12*10 ³	618.2	R ₁₂ = 0.00380	796
13*10 ³	13*10 ³ log ₂ 13*10 ³	655.2	R ₁₃ = 0.00368	870
14*10 ³	14*10 ³ log ₂ 14*10 ³	682.6	$R_{14} = 0.00354$	944
15*10 ³	15*10 ³ log ₂ 15*10 ³	705.4	R ₁₅ = 0.00338	1019
16*10 ³	16*10 ³ log ₂ 16*10 ³	731.4	$R_{16} = 0.00327$	1094
17*10 ³	17*10 ³ log ₂ 17*10 ³	753.2	R _{17 =} 0.00315	1170
18*10 ³	18*10 ³ log ₂ 18*10 ³	776	R ₁₈ = 0.00304	1246
19*10 ³	19*10 ³ log ₂ 19*10 ³	804.2	R ₁₉ = 0.00297	1323
20*10 ³	20*10 ³ log ₂ 20*10 ³	846.4	$R_{20} = 0.00296$	1400

ALG2: Runtime

EmpiricalRT (msec) and Predicted

Table ALG3

n	Theoretical	EmpiricalRT	Ratio =	Predicted
	RT	(msec)	(EmpiricalRT)/(TheoreticalRT)	RT(msec)
	N			
10 ³	10 ³	0	R _{1 =} 0	0.31
2*10 ³	2*10 ³	0	$R_2 = 0$	0.62
3*10 ³	3*10 ³	0.4	R _{3 =} 0.00013	0.93
4*10 ³	4*10 ³	0.8	R ₄ = 0.0002	1.24
5*10 ³	5*10 ³	1.2	R ₅ = 0.00024	1.55
6*10 ³	6*10 ³	1.4	R ₆ = 0.00023	1.86
7*10 ³	7*10 ³	1.4	$R_{7} = 0.0002$	2.17
8*10 ³	8*10 ³	1.8	R ₈ = 0.00022	2.48
9*10 ³	9*10 ³	2.8	$R_9 = 0.00031 = c_3$	2.79
10*10 ³	10*10 ³	1.8	R ₁₀ = 0.00018	3.1
11*10 ³	11*10 ³	2.8	R _{11 =} 0.00025	3.41
12*10 ³	12*10 ³	2.6	R ₁₂ = 0.00021	3.72
13*10 ³	13*10 ³	3.2	R ₁₃ = 0.00024	4.03
14*10 ³	14*10 ³	2.8	$R_{14} = 0.0002$	4.34
15*10 ³	15*10 ³	3.4	R ₁₅ = 0.00022	4.65
16*10 ³	16*10 ³	2.8	R ₁₆ = 0.00017	4.96
17*10 ³	17*10 ³	4.4	$R_{17} = 0.00025$	5.27
18*10 ³	18*10 ³	5.2	R ₁₈ = 0.00028	5.58
19*10 ³	19*10 ³	4.8	R ₁₉ = 0.00025	5.89
20*10 ³	20*10 ³	6.2	$R_{20} = 0.00031$	6.2

ALG3: Runtime

EmpiricalRT (msec) and Predicted

All Algorithms runtimes:

Emperical RT ALG1, Emperical RT ALG2 and Emperical RT ALG3(ms)

The speed for ALG3 is so fast compared to the others that it appears to be a straight line following the horizontal axis.

4. Conclusions:

Through out the experiment we viewed the runtime for ALG1, ALG2, and ALG3. From the graphs we see the predicted worst-case scenarios. All the algorithms ran better than predicted, with ALG3 running the fastest and ALG1 running the slowest. This is to be expected because of the runtime for the sorting algorithms. With a smaller input ie. N = 1000, I was able to run the analysis. When the inputs ran up to 200000, the experiment would run for up to a few hours.

5. References:

http://www.cplusplus.com/reference/

Introduction to Algorithms, 3rd edition, by T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, The MIT Press, 2009, ISBN: 0262033844.