Quiz 1. True/False: If P is the proposition 6 < 5 and Q is the proposition, "Earth is a planet," then the logical statement $P \to Q$ is false.

Solution. The statement is *false*. Recall that the truth table for $P \rightarrow Q$ is as follows:

$$\begin{array}{c|ccc} P & Q & P \rightarrow Q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

Here, P is the proposition P:6<5 and Q is the proposition Q: "Earth is a planet." It is clear that P is false and Q is true. But then examining the logic table above, we can see that $P \to Q$ is true.

Quiz 2. True/False:
$$\neg(P \rightarrow \neg Q) \equiv P \land Q$$

Solution. The statement is *true*. To determine if two propositions are logically equivalent, one can either examine the truth table or apply logical rules to obtain one logical expression from the other. If we construct a truth table, we have...

P	Q	$\neg Q$	$P \to \neg Q$	$\mid \neg(P \to \neg Q) \mid$	$P \wedge Q$
\overline{T}	T	F	F	T	T
T	F	T	T	F	F
F	$\mid T \mid$	F	T	F	F
F	$\mid F \mid$	T	T	F	F

Because for each possible pair of choices for P and Q the outputs for $\neg(P \to \neg Q)$ and $P \land Q$ match, $\neg(P \to \neg Q) \equiv P \land Q$. Alternatively, we can transform one into the other by applying logical equivalences (recall $P \to Q \equiv \neg P \lor Q$ or $\neg(P \to Q) \equiv P \land \neg Q$):

$$\neg (P \to \neg Q) \equiv \neg (\neg P \lor \neg Q) \equiv \neg (\neg P) \land \neg (\neg Q) \equiv P \land Q.$$

Quiz 3. *True/False*: The logic corresponding to the circuit shown below is the proposition:

$$(\neg P \land Q) \lor \neg Q.$$

Solution. The statement is *false*. We can trace through the circuit. We see that the current from P passes through a NOT gate and we obtain $\neg P$. This then feeds into an AND gate along with Q so that we obtain $\neg P \land Q$. The resulting current is then passed through a NOT gate, obtaining $\neg (\neg P \land Q)$. This finally reaches an OR gate—along with Q—to obtain $\neg (\neg P \land Q) \lor Q$. We can see a diagrammatic explanation below.

Quiz 4. *True/False*: Let the universe \mathcal{U} be the set of real numbers and define P(x) to be the predicate $P(x): x^2 + x - 4 \ge 0$. Then $(\forall x)(\neg P(x))$ is true.

Solution. The statement is *false*. If $P(x): x^2+x-4 \ge 0$, then $\neg P(x): x^2+x-4 < 0$. But then $(\forall x) (\neg P(x))$ is the statement, "For all $x, x^2+x-4 < 0$." Now if x=1, we have $\neg P(1): 1^2+1-4 < 0$, i.e. -2 < 0, which is true. If x=0, we have $\neg P(0): 0^2+0-4 < 0$, i.e. -4 < 0, which is true. However, while $(\forall x) (\neg P(x))$ is clearly true for *some* (we found at least two), it is not true *for all x*. As a counterexample, let x=10. Then $\neg P(10): 10^2+10-4 < 0$, which is 104 < 0—clearly false. Therefore, $\neg P(x)$ is not true for all x. But then $(\forall x) (\neg P(x))$ is false.

Quiz 5. True/False: Let the domain of x, y be the integers. Then $(\exists! x)(\forall y)(x+2y=5)$.

Solution. The statement is *false*. The logical proposition $(\exists ! x)(\forall y)(x+2y=5)$ in words states, "There exists a unique x such that for all y, x+2y=5." Suppose that there were such a x, say x_0 . Then we know that $x_0+2y=5$ for all y. In particular, x_0 satisfies this equality when y=0. But then we know that $x_0=5$. But also, it must satisfy the equality when x=1. But then $x_0+2=5$ so that x_0 . Then there is not a unique x that works for all y! Therefore, the statement is false. Note that if we reverse the quantifiers, the statement is true: $(\forall y)(\exists ! x)(x+2y=5)$. In this case, this is the statement, "For all y, there exists a unique x such that x+2y=5." If you were given any y, define $x_0:=5-2y$. But then x+2y=(5-2y)+2y=5. So there exists such an x. Is it unique? Well if there were two or more x values that worked for some y, say two of them are x_0 and \tilde{x}_0 , then we have $x_0+2y=5=\tilde{x}_0+2y$. But then $x_0+2y=\tilde{x}_0+2y$. Subtracting y, we have $y=\tilde{y}_0$. Therefore, there can only be one such $y=\tilde{y}_0$. Because we have found one, we know that the statement that for all y, there exists a unique y such that x+2y=5 is true.

Quiz 6. True/False: $\{1,2\} \subseteq \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$

Solution. The statement is *false*. We know that $A \subseteq B$ if and only if for all $a \in A$, we have $a \in B$. We test every element of the set $\{1,2\}$. The first element is 1. However, $1 \notin \{\varnothing, \{1\}, \{2\}, \{1,2\}\}$. [Note that $1 \notin \{\varnothing, \{1\}, \{2\}, \{1,2\}\}$ but $\{1\} \in \{\varnothing, \{1\}, \{2\}, \{1,2\}\}$.] However, we do have $\{1,2\} \notin \{\varnothing, \{1\}, \{2\}, \{1,2\}\}$.

Quiz 7. True/False:
$$\bigcap_{n\in\mathbb{N}}\left(-\frac{1}{n},\frac{1}{n}\right)=\varnothing$$

Solution. The statement is *false*. For n=1, the set $(-\frac{1}{n},\frac{1}{n})$ is the interval (-1,1). For n=2, the set $(-\frac{1}{n},\frac{1}{n})$ is the interval $(-\frac{1}{2},\frac{1}{2})$. For n=3, the set $(-\frac{1}{n},\frac{1}{n})$ is the interval $(-\frac{1}{3},\frac{1}{3})$. Note that 0 is an element of all these sets. Generally, we have $0\in(-\frac{1}{n},\frac{1}{n})$ for all $n\in\mathbb{N}$. But then we know that $0\in\bigcap_{n\in\mathbb{N}}\left(-\frac{1}{n},\frac{1}{n}\right)$. This is sufficient to demonstrate that this is not empty. [Note that it is actually true that $\bigcap_{n\in\mathbb{N}}\left(-\frac{1}{n},\frac{1}{n}\right)=\{0\}$ —though this takes more work to prove.]

Quiz 8. *True/False*: Let E(n) denote the relation from \mathbb{N} to $\mathbb{Z}^{\geq 0}$ given by the rule that E(n) is the number of positive even integers less than or equal to n. Then this relation is a function with E(5)=2, i.e. 2 is in the image of 5, and 10 in the preimage of 5.

Solution. The statement is *true*. There are several claims here. First, the claim that $E(n): \mathbb{N} \to \mathbb{Z}^{\geq 0}$ is a function. Given some $n \in \mathbb{N}$, there is a single number of positive even integers $\leq n$. But then for every input for E(n), there is only one possible output. Therefore, E(n) is a function from \mathbb{N} to $\mathbb{Z}^{\geq 0}$. For 2 to be in the image of 5, we need E(5)=2. There are two positive even integers ≤ 5 (namely, 2 and 4) so that 2 is in the image of 5. For 10 to be in the preimage of 5, we would have to have E(10)=5. Note that there are 5 positive even integers ≤ 10 (namely 2, 4, 6, 8, 10). Therefore, 10 is in the preimage of 5.

Quiz 9. True/False: Let $f: X \to Y$ be a function. Then f^{-1} will be a function if and only if the preimage set satisfies the following: $(\forall y \in \text{im } f)(\exists x \in X)(f^{-1}(y) = x)$.

Solution. The statement is *false*. Take for example the function $f: \mathbb{R} \to \mathbb{R}^{\geq 0}$ given by $f(x) = x^2$. For all $y \in \mathbb{R}^{\geq 0}$, there exists an $x \in \mathbb{R}$ such that f(x) = y, namely $\pm \sqrt{y}$. But if y > 0, then there are two possibilities: $+\sqrt{y}$ and $-\sqrt{y}$. But this function f(x) has f^{-1} with the property that $(\forall y \in \text{im } f)(\exists x \in X)(f^{-1}(y) = x)$. If we want f^{-1} to be a function, we require $(\forall y \in \text{im } f)(\exists ! x \in X)(f^{-1}(y) = x)$.

Quiz 10. True/False: Suppose that $f:A\to B$ and $g:B\to C$ are functions and that $g\circ f$ is injective. Then it must be that f is injective.

Solution. The statement is *true*. Observe that $g \circ f : A \to C$. Suppose f were not injective. Then there are two values in A, say a_1, a_2 , such that $a_1 \neq a_2$ and $f(a_1) = f(a_2)$. But then we have...

$$f(a_1) = f(a_2)$$

$$g(f(a_1)) = g(f(a_2))$$

$$(g \circ f)(a_1) = (g \circ f)(a_2)$$

But then there are two values in the domain of $g \circ f$, namely a_1, a_2 such that $a_1 \neq a_2$ but $(g \circ f)(a_1) = (g \circ f)(a_2)$. But then $g \circ f$ is not injective, contrary to what we were told. Our assumption that f was not injective must then be wrong. Therefore, it must be that f is injective.