디지털경영론(001)

PBL1 상장법인의 매출액 예측

- CJ제일제당을 중심으로 -

4조

16010057 전현지

16010088 민장태

16012993 이준희

기업 개요 - CJ제일제당

• CJ제일제당은 60여 년 동안 식 품산업의 발전을 이끌어 온 국내 1위 식품회사

• 2007년부터 CJ 주식회사에서 기업 분할되어 식품, 생명공학에 집중하는 사업 회사로 새출발

주요 사업 개요

• CJ제일제당은 식품, 바이오, 물류를 주요 사업으로 하고 있음

구분	비중(%)	금액(억원)
물류	42.9	95,857
식품	35.8	80,105
바이오	21.3	47,563
계	100.0	223,525

2019년 사업별 매출 구조(%)

자료출처 : 금융감독원 전자공시시스템

주요 사업 개요 – ①식품

- 설탕, 밀가루, 식용유, 조미료, 장류, 육가공식품, 신선식품, 쌀가공식품, 냉동식품, HMR 등의 생산 • 판매
- CJ제일제당의 대표 식품 브랜드/상품

주요 사업 개요 – ②바이오

주요 사업 개요 – ③물류

- CL 사업부문
- 택배 사업부문
- 글로벌 사업부문
- 건설 사업부문

주요 사업 현황

• 사업부문별 현황(2020년 3월 말 기준, 단위 : 백만원)

사업부문	매출유형	품목	매출액(비율)
식품 사업부문	제품/상품	설탕, 밀가루, 식용유 등	2,260,560 (39%)
바이오 사업부문	제품/상품	아미노산 등	1,221,153 (21%)
물류 사업부문	서비스	운송, 하역, 건설 등	2,349,229 (40%)

선형회귀분석

데이터에서 입력변수 X와 목표변수 Y 사이의 선형관계를 추정한 모형의 정확성 예측

- ◎ 장점
 - : 복잡하지 않고 다양한 문제에 적용 가능
- ⊗ 단점
 - : 입력변수의 개수에 영향을 받음(오차 발생)

변수 설정

목표 변수 : 총매출액

필드 -	측정	값	결측값	검사	역할
▲ 시간	፟ 명목	"1Q17","2Q1		없음	○ 없음
▲ 시간 ④ 식품부문매출액	🔗 연속형	[1323859.0,		없음	🔪 입력
🐠 생명공학 매출액	🔗 연속형	[1075590.0,		없음	🔪 입력
🏈 물류매출액	🔗 연속형	[1467085.0,		없음	🔪 입력
🛞 식품매출액 비율	🔗 연속형	[0.31,0.34]		없음	🔪 입력
🛞 생명공학매출액	🔗 연속형	[0.28,0.29]		없음	○ 없음
🛞 물류매출액비율	🔗 연속형	[0.38,0.4]		없음	○ 없음
◈ 단기차입금	🔗 연속형	[1.50325798		없음	🔪 입력
﴿♦ 자본총계	🔗 연속형	[5.90684177		없음	🔪 입력
🛞 부채와 자본총계	🔗 연속형	[1.53905011		없음	🔪 입력
◈ 자산총계	🔗 연속형	[1.53905011		없음	○ 없음
﴿ 급여	🔗 연속형	[3.56738203		없음	🔪 입력
◈ 무형자산상각비	🔗 연속형	[2.2366798E		없음	🔪 입력
◈ 운반비	🔗 연속형	[2.73182555		없음	🔪 입력
🐠 장비임차료	🔗 연속형	[0.0,4.32804		없음	🔪 입력
◈ 지급수수료	🔗 연속형	[2.18515767		없음	🔪 입력
🛞 총매출액	🔗 연속형	[1.48298323		없음	정보

- 모델의 정확도가 96%로 높게 나타남
- 예측변수 중요도 식품부문매출액 > 운반비 > 지급수수료 순으로 높음

- 계수 추정값 → 식품매출액(양의 선형관계)
 - 유의수준 → 식품매출액(전 구간에 해당)

- 잔차의 시각화
 - 히스토그램
 - → 입력변수의 중요도의 크기에 따른 분포

- P-P도표
- → 직선과 오차(원)의 분포의 차이

- · 총매출액과 예상매출액(\$L)의 비교
 - → 높은 선형 상관관계를 통한 모형의 예측 정확성 근거 제시

추정 평균 대상: 총매출액 상위 10개 유의 효과(p<.05)에 대한 추정 평균 차트가 표시되었습니다.

해석의 한계

2Q20	오차	총매출액	\$L-총매출액
선형회귀	11.65%	11,751,821,403	13, 120, 525, 494.91

의사결정나무

데이터 속에서 분류대상이 되는 관측치들 간의 규칙을 통해서 분류대상들을 n개의 소집단으로 분류하는 규칙을 나무구조로 나타내서 목표변수를 예측

- ☺ 장점
 - : 시각적으로 쉬운 이해 높은 예측 정확도
- ⊗ 단점
 - : 과대적합 발생 위험 표본의 크기에 민감

CHAID

- 변수들의 속성 → 연속형
- 예측변수 중요도 급여 > 무형자산상각비 > 단기차입금 > 생명공학매출액 순으로 높음

CHAID

- 다지분리를 통한 예상매출액의 최대값에 해당하는 노드 선택
 - :생명공학매출액(1수준) → 급여(2수준)
- 실제 총매출액과의 비교

CART

- 변수들의 속성 > 연속형
- 예측변수 중요도 식품부문매출액 > 운반비 > 단기차입금 > 자본총계 > 식품매출액 비율 > 지급수수료 > 물류매출액 > 생명공학 매출액 순으로 높음

CART

- 이진분리를 통한 예상매출액의 최대값에 해당하는 노드 선택
 - :식품공학매출액의 금액 범위로 모든 수준에서 분리
- 실제 총매출액과의 비교

CHAID &CART 분석 결과 비교

- 총매출액과 예상매출액(\$R,\$R1)의 비교
 - → 높은 선형 상관관계를 통한 모형의 예측 정확성 근거 제시
- [CHAID > CART] → CHAID의 정확성 & 적합성
 - → CART의 불안정한 예측 오차

■ 출력 필드 등	➡·출력 필드 총매출액의 결과				
- 개별 모델					
- \$R-	ᆸ-\$R-총매출액과(와) 총매출액 비교				
	최소 오류	0.0			
	최대 오류	0.0			
	평균 오류	0.0			
	평균절대 오차	0.0			
	표준 편차	0.0			
	선형 상관관계	1.0			
	발생	14			
⊟ -\$R	1-총매출액과(와) 총매	출액 비교			
	최소 오류	-2865604912.0			
	최대 오류	4442030698.667			
	평균 오류	584884341.19			
	평균절대 오차	1211293154.81			
	표준 편차	1854774328.787			
	선형 상관관계	0.954			
	발생	14			

총매출액	\$R-총매출액	\$R1-총매출액
4348588146.000	4348588146.000	4348588146.000
8802336934.000	8802336934.000	5830942047.000
13747911781.000	13747911781.000	13747911781.000
18670059989.000	18670059989.000	17910431597.333
1482983234.000	1482983234.000	4348588146.000
8802336934.000	8802336934.000	5830942047.000
13747911781.000	13747911781.000	13747911781.000
18670059989.000	18670059989.000	17910431597.333
5017753362.000	5017753362.000	4348588146.000
10533063578.000	10533063578.000	10533063578.000
16391174814.000	16391174814.000	17910431597.333
22352462296.000	22352462296.000	17910431597.333
5830942047.000	5830942047.000	5830942047.000
11751821403.000	11751821403.000	11751821403.000

인공신경망 분석

데이터에서 알 수 없고 복잡할 수 있는 패턴을 찾아 하나 이상의 예측변수를 기반으로 연속 또는 범주형 대상을 예측

- ☺ 장점
 - : 강력한 예측 성능
- ⊗ 단점
 - : Black Box (결과해석 어려움)

데이터 파티션

훈련 데이터: 검정 데이터 = 50:50 비율로 파티션

- 모델의 정확도가 93.2%로 높게 나타남
- 예측변수 중요도 식품부문매출액 > 급여 > 자본총계 순으로 높음

- 은닉층 1 뉴런의 수 = 5개
- 선이 두꺼울수록 높은 중요 도를 가짐
- 최고 중요 : 식품부문매출액
- 최소 중요 : 지급수수료

분석 결과 - 학습/검정데이터 비교

- 검정데이터보다 훈련데이터에서 더 작은 오차 및 표준편차 보임
 - → 데이터 크기의 한계로 인한 과적합 현상

'IIEI션'	1_훈련	2_ 검정
최소 오류	-2388601483.053	-4418549935.711
최대 오류	2024864556.07	12264219881.919
평균 오류	273741001.443	3084091527.162
평균절대 오차	1113257817.573	4933289718.888
표준 편차	1422321155.091	5753988822.618
선형 상관관계	0.968	0.101
발생	8	6

결론 및 한계

• 분석 결과 비교

	선형회귀분석	의사결정나무 (CART, CHAID)	인공신경망분석
모델의 정확도	<u>96.0%</u>	-	93.2%
주요예측변수	<u>식품부문매출액</u> 운반비 지급수수료	생명공학매출액 단기차입금 무형자산상각비 급여	<mark>식품부문매출액</mark> 급여 자본총계

、적극적인 식품 R&D 및 신제품 개발 등의 활동을 통해 식품시장에서 우위를 점하는 것이 중요

결론 및 한계

• 한계점

- 1. 데이터 크기의 한계
 - 2017 1Q~2020 2Q (총 14개 데이터)
 - 예측의 정확도 감소, 데이터 과적합 등의 문제 발생 우려
- 2. 데이터 다양성의 한계
 - 재무상태표, 손익계산서

감사합니다 ②

