$\begin{array}{c} \text{FOR HAUSDORFF SPACES,} \\ \textit{H-CLOSED} = \textit{D-PSEUDOCOMPACT FOR ALL} \\ \text{ULTRAFILTERS } \textit{D} \end{array}$

PAOLO LIPPARINI

ABSTRACT. We prove that, for an arbitrary topological space X, the following two conditions are equivalent: (a) Every open cover of X has a finite subset with dense union (b) X is D-pseudocompact, for every ultrafilter D.

Locally, our result asserts that if X is weakly initially λ -compact, and $2^{\mu} \leq \lambda$, then X is D-pseudocompact, for every ultrafilter D over any set of cardinality $\leq \mu$. As a consequence, if $2^{\mu} \leq \lambda$, then the product of any family of weakly initially λ -compact spaces is weakly initially μ -compact.

Throughout this note λ and μ are infinite cardinals. No separation axiom is assumed, if not otherwise specified. By a product of topological spaces we shall always mean the Tychonoff product.

The notion of weak initial λ -compactness has been introduced by Z. Frolík [F] under a different name and subsequently studied by various authors. See, e. g., Stephenson and Vaughan [SV]. See [L, Remark 3] for further references about this and related notions.

For Tychonoff spaces, and for D an ultrafilter over ω , the notion of D-pseudocompactness has been introduced by Ginsburg and Saks [GS]. Their paper contains also significant applications. The notion has been extensively studied by many authors in the setting of Tychonoff spaces, especially in connection with various orders on ω^* . See, e. g., [GF1, HST, ST] and further references there for results and related notions. In the case of an ultrafilter over an arbitrary cardinal, the notion of D-pseudocompactness has been introduced and studied in García-Ferreira [GF2].

In this note we show that weak initial λ -compactness and D-pseudo-compactness are tightly connected. In fact, D-pseudocompactness for

²⁰¹⁰ Mathematics Subject Classification. Primary 54D20; Secondary 54B10, 54A20.

Key words and phrases. Weak initial compactness, D-pseudocompactness, H-closed, H(i).

We wish to express our gratitude to X. Caicedo, S. García-Ferreira and Á Tamariz-Mascarúa for stimulating discussions and correspondence.

every ultrafilter D is equivalent to weak initial λ -compactness for every infinite cardinal λ . No separation axiom is needed to prove the equivalence. As mentioned in the abstract, our result has a local version (Theorem 1 below).

The situation described in this note has some resemblance with the connections between initial λ -compactness and D-compactness. See, e. g., the survey by R. Stephenson [S] for definitions and results, in particular, Section 3 therein. However, Remark 7 here points out a significant difference.

We now recall the relevant definitions. A topological space is said to be weakly initially λ -compact if and only if every open cover of cardinality at most λ has a finite subset with dense union. Notice that, for Tychonoff spaces, weak initial ω -compactness is well known to be equivalent to pseudocompactness.

If D is an ultrafilter over some set I, a topological space X is said to be D-pseudocompact if and only if every I-indexed sequence of nonempty open sets of X has some D-limit point, where x is called a D-limit point of the sequence $(O_i)_{i \in I}$ if and only if, for every neighborhood U of x in X, $\{i \in I \mid U \cap O_i \neq \emptyset\} \in D$.

Theorem 1. If X is a weakly initially λ -compact topological space, and $2^{\mu} \leq \lambda$, then X is D-pseudocompact, for every ultrafilter D over any set of cardinality $\leq \mu$.

Proof. Suppose by contradiction that X is weakly initially λ -compact, D is an ultrafilter over I, $2^{|I|} \leq \lambda$, and X is not D-pseudocompact. Thus, there is a sequence $(O_i)_{i \in I}$ of nonempty open sets of X which has no D-limit point in X. This means that, for every $x \in X$, there is an open neighborhood U_x of x such that $\{i \in I \mid U_x \cap O_i \neq \emptyset\} \notin D$, that is, $\{i \in I \mid U_x \cap O_i = \emptyset\} \in D$, since D is an ultrafilter. For each $x \in X$, choose some U_x as above, and let $Z_x = \{i \in I \mid U_x \cap O_i = \emptyset\}$. Thus, $Z_x \in D$.

For each $Z \in D$, let $V_Z = \bigcup \{U_x \mid x \text{ is such that } Z_x = Z\}$. Notice that if $i \in Z \in D$, then $V_Z \cap O_i = \emptyset$. Notice also that $(V_Z)_{Z \in D}$ is an open cover of X. Since $|D| \leq 2^{|I|} \leq \lambda$, then, by weak initial λ -compactness, there is a finite number Z_1, \ldots, Z_n of elements of D such that $V_{Z_1} \cup \cdots \cup V_{Z_n}$ is dense in X. Since D is a filter, $Z = Z_1 \cap \cdots \cap Z_n \in D$, hence $Z_1 \cap \cdots \cap Z_n \neq \emptyset$. Choose $i \in Z_1 \cap \cdots \cap Z_n$. Then $O_i \cap V_{Z_1} = \emptyset$, ..., $O_i \cap V_{Z_n} = \emptyset$, hence $O_i \cap (V_{Z_1} \cup \cdots \cup V_{Z_n}) = \emptyset$, contradicting the conclusion that $V_{Z_1} \cup \cdots \cup V_{Z_n}$ is dense in X, since, by assumption, O_i is nonempty. \square

Theorem 1 shows that weak initial λ -compactness implies D-pseudo-compactness, for ultrafilters over sets of sufficiently small cardinality. The next proposition presents an easy result in the other direction.

Recall that an ultrafilter over μ is regular if and only if there is a family of μ elements of D such that the intersection of any infinite subset of the family is empty. As a consequence of the Axiom of Choice (actually, the Prime Ideal Theorem suffices), for every infinite cardinal μ there is a regular ultrafilter over μ .

Proposition 2. If the topological space X is D-pseudocompact, for some regular ultrafilter D over μ , then X is weakly initially μ -compact. Actually, every power of X is weakly initially μ -compact.

Proof. E. g., by [L, Corollary 15].

Corollary 3. If $2^{\mu} \leq \lambda$, then the product of any family of weakly initially λ -compact spaces is weakly initially μ -compact.

Proof. Choose some regular ultrafilter D over μ . Given any family of weakly initially λ -compact spaces, then, by Theorem 1, each member of the family is D-pseudocompact. Since D-pseudocompactness is productive [GS], the product is D-pseudocompact, hence weakly initially μ -compact, because of the choice of D, and by Proposition 2.

Let us say that a topological space is weakly initially $< \nu$ -compact if and only if every open cover of cardinality $< \nu$ has a finite subset with dense union. That is, weak initial $< \nu$ -compactness means weak initially λ -compactness for all $\lambda < \nu$. Recall that a topological space is said to be initially λ -compact if and only if every open cover of cardinality at most λ has a finite subcover.

Corollary 4. Suppose that ν is a strong limit cardinal.

- (1) Any product of a family of weakly initially $< \nu$ -compact topological spaces is weakly initially $< \nu$ -compact.
- (2) If ν is singular, then a product of a family of topological spaces is weakly initially ν-compact, provided that each factor is both weakly initially ν-compact and initially 2^{cf ν}-compact.

Proof. (1) is immediate from Corollary 3, and the assumption that ν is a strong limit cardinal.

(2) Suppose that we have a product as in the assumption. By (1), the product is weakly initially $< \nu$ -compact. By known results, or by a variation on the proof of Theorem 1 (see Remark 7 or Theorem 8), any product of initially $2^{\text{cf}\nu}$ -compact spaces is initially $\text{cf}\nu$ -compact. (2) now follows from the easy fact that a weakly initially $< \nu$ -compact

and initially cf ν -compact space is weakly initially ν -compact (actually, a weakly initially $< \nu$ -compact and [cf ν , cf ν]-compact space is weakly initially ν -compact.)

We now give the characterization of Hausdorff-closed spaces announced in the title. Recall that a topological space X is said to be H(i) if and only if every open filter base on X has nonvoid adherence. Equivalently, a topological space is H(i) if and only if every open cover has a finite subset with dense union. A Hausdorff space is H-closed (or Hausdorff-closed, or $absolutely\ closed$) if and only if it is closed in every Hausdorff space in which it is embedded. It is well known that a Hausdorff topological space is H-closed if and only if it is H(i). A regular Hausdorff space is H-closed if and only if it is compact. See, e. g., [SS] for references.

Theorem 5. For every topological space X, the following conditions are equivalent.

- (1) X is H(i).
- (2) X is weakly initially λ -compact, for every infinite cardinal λ .
- (3) X is D-pseudocompact, for every ultrafilter D.
- (4) For every infinite cardinal λ , there exists some regular ultrafilter D over λ such that X is D-pseudocompact.

If X is Hausdorff (respectively, Hausdorff and regular) then the preceding conditions are also equivalent to, respectively:

- (5) X is H-closed.
- (6) X is compact.

Proof. (1) and (2) are equivalent, because of the above mentioned characterization of H(i) spaces.

- $(2) \Rightarrow (3)$ is immediate from Theorem 1.
- $(3) \Rightarrow (4)$ follows from the fact that, as we mentioned right before Proposition 2, for every infinite cardinal λ , there does exist some regular ultrafilter over λ .
 - $(4) \Rightarrow (2)$ follows from Proposition 2.

The equivalences of (1) and (5), and of (1) and (6), under the respective assumptions, follow from the remarks before the statement of the theorem.

As a consequence of Theorem 5, we get another proof of some classical results.

Corollary 6. Any product of a family of H(i) spaces is an H(i) space. Any product of a family of H-closed Hausdorff spaces is H-closed. *Proof.* By Theorem 5, and the mentioned result by Ginsburg and Saks [GS] that D-pseudocompactness is productive.

Remark 7. In conclusion, a few remarks are in order. The situation described in this note is almost entirely similar to the case dealing with initial λ -compactness and D-compactness. Indeed, the proof of Theorem 1 can be easily modified in order to show directly that if $2^{\mu} \leq \lambda$, then every initially λ -compact topological space is D-compact, for every ultrafilter D over any cardinal $\leq \mu$ (see also Theorem 8 and the remark thereafter). This result, however, is already an immediate consequence of implications (8) and (5) in [S, Diagram 3.6]. Since D-compactness, too, is productive, we get that if $2^{\mu} < \lambda$, then any product of initially λ -compact spaces is initially μ -compact, the result analogue to Corollary 3. The above arguments furnish also a proof of the well known result that a space is compact if and only if it is D-compact, for every ultrafilter D, a theorem which, in turn, has the Tychonoff theorem that every product of compact spaces is compact as an immediate consequence. This is entirely parallel to Theorem 5 and Corollary 6.

However, a subtle difference exists between the two cases. A sufficient condition for a topological space X to be initially λ -compact is that, for every λ' with $\omega \leq \lambda' \leq \lambda$, there exists some ultrafilter D uniform over λ' such that X is D-compact (see [S, Theorem 5.13] or, again, [S, Diagram 3.6]). The parallel statement fails, in general, for weak initial λ -compactness and D-pseudocompactness. Indeed, under some set theoretical hypothesis, [GF2, Example 1.9] constructed a space X which is D-pseudocompact, for some ultrafilter uniform D over ω_1 , hence necessarily D'-pseudocompact, for some ultrafilter D' uniform over ω , but X is not weakly initially ω_1 -compact, actually, not even ω_1 -pseudocompact. Cf. also [L, Remark 30].

The above counterexample shows that, in our arguments, and, in particular, in Proposition 2, we do need the notion of a regular ultrafilter; on the contrary, in the corresponding theory for initial compactness, (a sufficient number of) uniform ultrafilters are enough.

Theorem 1 can be generalized to the abstract framework of [L, Section 5]. We recall here only the definitions, and refer to [L] for motivations and further references.

Suppose that X is a topological space, \mathcal{F} is a family of subsets of X, and λ is an infinite cardinals. We say that X is \mathcal{F} - $[\omega, \lambda]$ -compact if and only if, for every open cover $(O_{\alpha})_{\alpha \in \lambda}$ of X, there exists some finite $W \subseteq \lambda$ such that $F \cap \bigcup_{\alpha \in W} O_{\alpha} \neq \emptyset$, for every $F \in \mathcal{F}$. If D is an ultrafilter over some set I, we say that X is \mathcal{F} -D-compact if and only

if every sequence $(F_i)_{i\in I}$ of members of \mathcal{F} has some D-limit point in X.

Theorem 8. If X is an \mathcal{F} -[ω, λ]-compact topological space, and $2^{\mu} \leq \lambda$, then X is \mathcal{F} -D-compact, for every ultrafilter D over any set of cardinality $\leq \mu$.

Theorem 8 is proved in a way similar to Theorem 1, by replacing everywhere the family $(O_i)_{i\in I}$ by an appropriate family $(F_i)_{i\in I}$ of members of \mathcal{F} .

Notice that Theorem 1 is the particular case of Theorem 8 when \mathcal{F} is the family of all nonempty open sets of X. By considering the particular case of Theorem 8 in which \mathcal{F} is the family of all singletons of X we obtain the parallel result mentioned in Remark 7, asserting that if $2^{\mu} \leq \lambda$, then initial λ -compactness implies D-compactness, for every ultrafilter over a set of cardinality $\leq \mu$.

Corollary 9. Suppose that X is a topological space, and \mathcal{F} is a family of subsets of X. Then the following conditions are equivalent.

- (1) X is \mathcal{F} - $[\omega, \lambda]$ -compact, for every infinite cardinal λ .
- (2) X is \mathcal{F} -D-compact, for every ultrafilter D.
- (3) For every infinite cardinal λ , there exists some regular ultrafilter D over λ such that X is \mathcal{F} -D-compact.

Proof. Same as the proof of Theorem 5. The implication $(3) \Rightarrow (1)$ follows from [L, Theorem $35(2) \Rightarrow (4)$] with |T| = 1.

As a concluding observation, we expect that Corollary 3 gives an optimal result, but we have not checked it.

Problem 10. Characterize those pairs of cardinals λ and μ such that the product of any family of (weakly) initially λ -compact spaces is (weakly) initially μ -compact.

References

- [F] Z. Frolík, Generalisations of compact and Lindelöf spaces (Russian, with expanded English summary), Czechoslovak Math. J. 9 (1959), 172–217.
- [GF1] S. García-Ferreira, Some Generalizations of Pseudocompactness, Papers on general topology and applications (Flushing, NY, 1992), 22-31, Ann. New York Acad. Sci. 728, New York Acad. Sci., New York, 1994.
- [GF2] S. Garcia-Ferreira, On two generalizations of pseudocompactness, Topology Proc. **24** (Proceedings of the 14th Summer Conference on General Topology and its Applications Held at Long Island University, Brookville, NY, August 4–8, 1999) (2001), 149–172.
- [GS] J. Ginsburg, V. Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), 403–418.

- [HST] M. Hrušák, M. Sanchis, and Á, Tamariz-Mascarúa, *Ultrafilters, monotone functions and pseudocompactness*, Arch. Math. Logic **44** (2005), 131–157.
- [L] P. Lipparini, More generalizations of pseudocompactness, Topology and its Applications 158 (2011), 1655-1666.
- [ST] M. Sanchis, Á. Tamariz-Mascarúa, p-pseudocompactness and related topics in topological spaces, II Iberoamerican Conference on Topology and its Applications (Morelia, 1997), Topology Appl. 98 (1999), 323-343.
- [SS] C. T. Scarborough, A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131–147.
- [S] R. M. Stephenson, Initially κ-compact and related spaces, in: Handbook of set-theoretic topology, edited by K. Kunen and J. E. Vaughan, North-Holland, Amsterdam (1984), Chap. 13, 603–632.
- [SV] R. M. Stephenson Jr, J. E. Vaughan, Products of initially m-compact spaces, Trans. Amer. Math. Soc. 196 (1974), 177–189.

DIPARTIMENTO DI MATEMATICA, VIALE DEI DECRETI ATTUATTIVI SCIEN-TIFICI, II UNIVERSITÀ DI ROMA (TOR VERGATA), I-00133 ROME ITALY URL: http://www.mat.uniroma2.it/~lipparin