

planetmath.org

Math for the people, by the people.

cumulative distribution function

Canonical name CumulativeDistributionFunction

Date of creation 2013-03-22 11:53:38 Last modified on 2013-03-22 11:53:38

Owner bbukh (348) Last modified by bbukh (348)

Numerical id 10

Author bbukh (348)
Entry type Definition
Classification msc 60A99
Classification msc 46L05
Classification msc 82-00
Classification msc 83-00
Classification msc 81-00

Related topic DistributionFunction Related topic DensityFunction Let X be a random variable. Define $F_X \colon R \to [0,1]$ as $F_X(x) = \Pr[X \le x]$ for all x. The function $F_X(x)$ is called the *cumulative distribution function* of X.

Every cumulative distribution function satisfies the following properties:

- 1. $\lim_{x\to-\infty} F_X(x) = 0$ and $\lim_{x\to+\infty} F_X(x) = 1$,
- 2. F_X is a monotonically nondecreasing function,
- 3. F_X is continuous from the right,
- 4. $\Pr[a < X \le b] = F_X(b) F_X(a)$.

If X is a discrete random variable, then the cumulative distribution can be expressed as $F_X(x) = \sum_{k \le x} \Pr[X = k]$.

Similarly, if X is a continuous random variable, then $F_X(x) = \int_{-\infty}^x f_X(y) dy$ where f_X is the density distribution function.