BACKFLIP: An Improved QC-MDPC Bit-Flipping Decoder

NICOLAS SENDRIER VALENTIN VASSEUR INRIA INRIA UNIVERSITÉ PARIS DESCARTES, SORBONNE PARIS CITÉ

ORIGINAL ALGORITHM (BIT-FLIPPING)

Input

$$\begin{aligned} \mathbf{H} &\in \{0,1\}^{r \times n} \\ \mathbf{s} &= \mathbf{e} \mathbf{H}^T \in \{0,1\}^r \\ |\mathbf{e}| &\leq t \end{aligned}$$
 tput

Output

$$\begin{aligned} \mathbf{e} &\in \{0,1\}^r \\ \mathbf{e} &\leftarrow 0 \\ \mathbf{while} \mid \mathbf{s} - \mathbf{e}H^T \mid \neq 0 \ \mathbf{do} \\ \mathbf{s}' &\leftarrow \mathbf{s} - \mathbf{e}H^T \\ & T \leftarrow \mathbf{threshold}(\textit{context}) \\ \mathbf{for} \ j &\in \{0,\dots,n-1\} \ \mathbf{do} \\ & \mathbf{if} \ | \mathbf{s}' \cap \mathbf{h}_i | > T \ \mathbf{then} \end{aligned}$$

 $e_i \leftarrow 1 - e_i$

return e

H: moderately sparse parity check matrix

e: error pattern

 $s = eH^T$

s: syndrome

 $|s \cap h_i|$: counter

Main idea:

If $j \notin e$, $|s \cap h_j|$ is small If $i \in e$, $|s \cap h_i|$ is big

STATE OF THE ART OF MDPC DECODERS

STATE OF THE ART OF MDPC DECODERS: EXTRAPOLATION [SV18]1

	(a)	(b ₁₂₈)	(b ₂₅₆)
Original	-21.7	39 766	48 215
BIKE	-47.5	37 450	44 924

(a): linearly extrapolated value for $\log_2(p_{\rm fail}(32\,749))$ (b_{λ}): minimal r such that $p_{\rm fail}(r) < 2^{-\lambda}$ assuming a linear evolution

¹Nicolas Sendrier and Valentin Vasseur. On the Decoding Failure Rate of QC-MDPC Bit-Flipping Decoders. Cryptology ePrint Archive, Report 2018/1207. https://eprint.iacr.org/2018/1207-To appear in POCrypto 2019, 2018.

ORIGINAL ALGORITHM (BIT-FLIPPING)

Input

$$\mathbf{H} \in \{0, 1\}^{r \times n}$$

$$\mathbf{s} = \mathbf{e}\mathbf{H}^T \in \{0, 1\}^r$$

$$|\mathbf{e}| \le t$$

Output

$$\begin{aligned} \mathbf{e} &\in \{0,1\}' \\ \mathbf{e} &\leftarrow 0 \\ \mathbf{while} &\left| \mathbf{s} - \mathbf{e} \mathbf{H}^T \right| \neq 0 \ \mathbf{do} \\ \mathbf{s}' &\leftarrow \mathbf{s} - \mathbf{e} \mathbf{H}^T \\ T &\leftarrow \mathsf{threshold}(\mathit{context}) \end{aligned}$$

for $j \in \{0, ..., n-1\}$ do if $|s' \cap h_i| > T$ then

 $e_j \leftarrow 1 - e_j$

return e

Problem: algorithm sometimes takes bad decisions

- Bad flips are not always easy to detect
- Too many bad flips hinder progress of the algorithm and can lock it

12

IDEAS OF OUR VARIANT

- Regularly and systematically cancel oldest flips to avoid locking
- Each flip has a time-to-live (from 1 to 5 iterations)
- Most reliable flips (higher counters) live longer
- Threshold selection rule should be adapted

Input $H \in \{0,1\}^{r \times n}$; $s = eH^T \in \{0,1\}^r$ |e| < tOutput $e \in \{0, 1\}^r$ $\mathbf{e} \leftarrow \mathbf{0}$; $\mathbf{F} \leftarrow \mathbf{0}$; $\mathbf{now} \leftarrow \mathbf{1}$ while $|s - eH^T| \neq 0$ do $s' \leftarrow s - eH^T$ $T \leftarrow \mathsf{threshold}(\mathit{context})$ for $j \in \{0, ..., n-1\}$ do if $|s' \cap h_i| > T$ then $e_i \leftarrow 1 - e_i$

- To each flip, a time-to-live is computed
- F is a vector storing the time-of-death of each position
- At the beginning of every iteration, obsolete flips are canceled

```
Input
     H \in \{0,1\}^{r \times n}: s = eH^T \in \{0,1\}^r
     |e| < t
Output
     e \in \{0, 1\}^r
e \leftarrow 0; F \leftarrow 0; now \leftarrow 1
while |s - eH^T| \neq 0 do
     for each j such that F_i = \text{now do}
          e_i \leftarrow 1 - e_i; F_i \leftarrow 0
     now \leftarrow now + 1
     s' \leftarrow s - eH^T
     T \leftarrow \mathsf{threshold}(\mathit{context})
     for j \in \{0, ..., n-1\} do
          if |s' \cap h_i| > T then
               e_i \leftarrow 1 - e_i
               if F_i \ge \text{now then}
                    F_i \leftarrow 0
               else
                    F_i \leftarrow \text{now} + \text{ttl}(context)
```

- To each flip, a time-to-live is computed
- F is a vector storing the time-of-death of each position
- At the beginning of every iteration, obsolete flips are canceled

return e

TIME-TO-LIVE: $TTL(\delta)$

 $\delta \! :$ difference between the counter and the threshold ttl: saturating affine function in δ

$$\mathsf{ttl}(\delta) = \mathsf{max}(1, \mathsf{min}(\mathsf{max_ttl}, \lfloor A\,\delta + B \rfloor))$$

Using optimization methods to minimize the DFR:

security level	max_ttl	Α	В
1	5	0.45	1.1
3	5	0.36	1.41
5	5	0.45	1

BIKE-1 and BIKE-2

THRESHOLDS: THRESHOLD(|S|, |E|)

From [Cha17]², a good threshold is the smallest T such that

$$|e| f_{d,\pi_1}(T) \ge (n - |e|) f_{d,\pi_0}(T)$$
.

with

$$\pi_0 = \frac{\bar{\sigma}_{\mathsf{corr}}}{d} = \frac{(w-1)|\mathsf{s}| - X}{d(n-|\mathsf{e}|)}$$
 and $\pi_1 = \frac{\bar{\sigma}_{\mathsf{err}}}{d} = \frac{|\mathsf{s}| + X}{d|\mathsf{e}|}$

 π_0 and π_1 depend on

- |s| which we can know,
- |e| which we cannot.

Assume that |e| = t - |F|

- true if no error was added,
- gives a more conservative threshold otherwise.

²Julia Chaulet. 'Étude de cryptosystèmes à clé publique basés sur les codes MDPC quasi-cycliques'. PhD thesis. University Pierre et Marie Curie, Mar. 2017. URL: https://tel.archives-ouvertes.fr/tel-01599347.

RESULTS

EXTRAPOLATION [SV18]1

	(a)	(b ₁₂₈)	(b ₂₅₆)
Original	-21.7	39 766	48 215
BIKE	-47.5	37 450	44 924
Backflip	-75.9	34 939	40 597

(a): linearly extrapolated value for $\log_2(p_{\mathrm{fail}}(32\,749))$ (b_{λ}): minimal r such that $p_{\mathrm{fail}}(r) < 2^{-\lambda}$ assuming a linear evolution

¹Nicolas Sendrier and Valentin Vasseur. On the Decoding Failure Rate of QC-MDPC Bit-Flipping Decoders. Cryptology ePrint Archive, Report 2018/1207. https://eprint.iacr.org/2018/1207-To appear in POCrypto 2019, 2018.

BIKE PARAMETERS FOR IND-CCA SECURITY

Achieving a DFR of $\mathbf{2}^{-\lambda/2}$ where λ is the security parameter

security	Original <i>r</i>	Revised <i>r</i>	Ratio
128	10 163	10 253	1.009
192	19 853	21 059	1.061
256	32 749	34 939	1.067
	128 192	128 10 163 192 19 853	128 10 163 10 253 192 19 853 21 059

Achieving a DFR of 2 $^{\text{-}\lambda}$ where λ is the security parameter

Original <i>r</i>	Revised r	Ratio
10 163	11 779	1.159
19 853	24821	1.250
32 749	40 597	1.240
	10 163 19 853	10 163 11 779 19 853 24 821

CONCLUSION

- We propose an improved decoding algorithm for MDPC
 - Slighly higher complexity
 - Order of magnitude lower DFR
- We extrapolate the DFR for BIKE parameters needed to reach IND-CCA security
 - < 25 % increase in blocksize</p>