Fallstudien II

Laura Kampmann, Christian Peters, Alina Stammen

11. Dezember 2020

Inhalt

1. Task I - Vorhersage der Datenrate

Gradient Boosted Trees

Regression mit ARMA-Fehlern

Validierung

Task II - Handover Vorhersage und Link Lifetime Lösungsansatz Task II

1

Task I - Vorhersage der

Datenrate

Task I - Vorhersage der Datenübertragungsrate

- Ziel: Evaluation von neuen anticipatory vehicular communication systems durch möglichst realitätsnahe Simulationen [4]
 - ⇒ Ansatz: Data-Driven Network Simulation
- Durch Machine Learning Modelle sollen möglichst realistische Vorhersagen der Datenraten generiert werden
- Hoffnung: Bessere Aussagekraft der Simulationen durch Einsatz echten Datenmaterials

Task I - Vorhersage der Datenrate

Gradient Boosted Trees

Gradient Boosted Trees

- Kann man aus vielen "schwachen" Lernern einen starken Lerner konstruieren?
 - ⇒ Ja, Boosting ist eines der mächtigsten Konzepte des Machine Learning [2]
- Kombination von einfachen CART Bäumen zu einem starken Ensemble
 - ⇒ Ähnlich zu Random Forest
- Der Unterschied zum Random Forest liegt im Training!

Training von Gradient Boosted Trees

- Bäume werden nacheinander zum Ensemble hinzugefügt
- Jeder neue Baum versucht, die Schwächen seiner Vorgänger "auszubügeln"
 - ⇒ Additives Training
- Je mehr Bäume aufgenommen werden, desto geringer wird der Training-Error (das Modell wird aber komplexer)
 - ⇒ Kontrolle des Bias-Variance Tradeoffs
 - ⇒ Zusätzlich gibt es Regularisierungs-Parameter

Task I - Vorhersage der Datenrate

Datemate

Regression mit ARMA-Fehlern

Regression mit ARMA-Fehlern

Gegeben:

- Beobachtungen $(y_1, ..., y_T)$ der Zeitreihe $(y_t)_t$
- Beobachtungen $(x_1^{(i)},...,x_T^{(i)})$ der Zeitreihen $(x_t^{(i)})_t$ für i=1,...,k

Modellgleichung: Regression mit ARMA(p, q)-Fehlern

$$\begin{aligned} y_t &= c + \sum_{j=1}^k \beta_j x_t^{(j)} + \eta_t \text{ mit} \\ \eta_t &= \sum_{\substack{k=1 \\ \text{vergangene Fehler: LM}}}^p \phi_p \eta_{t-p} + \sum_{\substack{l=1 \\ \text{vergangene Fehler: ARMA}}}^q \theta_l \epsilon_{t-q} + \epsilon_t \end{aligned}$$

Task I - Vorhersage der Datenrate

Validierung

Validierung

k-fache Kreuzvalidierung

- beachtet Abhängigkeit der Datenpunkte nicht
- zerstört zeitliche Komponente
- verwendet eventuell zukünftige Beobachtungen für Prognose der Gegenwart
- $\Rightarrow \text{Kreuzvalidierung für Zeitreihen}$

Validierung

Figure 1: Einteilungen in Trainings- und Testdatensätze bei der Kreuzvalidierung für Zeitreihen.

Task II - Handover Vorhersage

und Link Lifetime

Aufgabenstellung Task II

Vorhersage des Handovers und Link Lifetime

- Vergleich des RSRP Wertes zur verbundenen Zelle sowie zu den Nachbarzellen
- Vorhersage des Handovers durch Angabe der Link Lifetime

Task II - Handover Vorhersage

und Link Lifetime

Lösungsansatz Task II

Lösungsansatz Task II

Idee: Prädiktionsmodell für Link Lifetime mit Einfluss des RSRP der verbunden sowie der Nachbarzellen

- ightarrow Datentransformation nötig
 - Anpassen der RSRP Messwerte in "Cells" an RSRP Werte in "Context"
 - ullet Cell Id o eNodeB
 - ullet eNodeB Wechsel o Response Variable Link Lifetime

time_s [‡]	rsrp_dbm [‡]	ci [‡]	scenario [‡]	provider	enodeb [‡]	drive_id [‡]	rsrp_neighbor [‡]	link_lifetime
0.06	-98	13828122	campus	02	54016	1	-99	18.01
1.07	-101	13828122	campus	02	54016	1	-104	17.00
2.07	-101	13828122	campus	02	54016	1	-104	16.00
3.07	-94	13828122	campus	02	54016	1	-100	15.00
4.07	-94	13828122	campus	02	54016	1	-100	14.00

Prädiktionsmodell Task II

- Anwendung des Prädiktionsmodells XGBoost um Link Lifetime vorherzusagen
- Validierung analog zu Task I mit Zeitreihenkreuzvalidierung

Literatur i

T. Chen and C. Guestrin.

Xgboost: A scalable tree boosting system.

CoRR, abs/1603.02754, 2016.

T. Hastie, R. Tibshirani, and J. Friedman.

The elements of statistical learning: data mining, inference and prediction.

Springer, 2 edition, 2009.

R. Hyndman and G. Athanasopoulos.

Forecasting: principles and practice, 2018.

B. Sliwa and C. Wietfeld.

Data-driven network simulation for performance analysis of anticipatory vehicular communication systems.

IEEE Access, 7:172638-172653, 2019.

Regression mit ARMA-Fehlern

h-Schritt Punktvorhersage

- Ersetze Beobachtungen zu zukünftigen Zeitpunkten mit deren Vorhersagen
- Ersetze Fehler an vergangenen Zeitpunkten durch das entsprechende Residuum
- Ersetze Fehler an zukünftigen Zeitpunkten durch 0

Beispiel:
$$h = 2, k = 1, p = 2, q = 2$$

$$\begin{aligned} y_t &= c + \beta_1 x_t + \epsilon_t \text{ mit} \quad \epsilon_t = \phi_1 \epsilon_{t-1} + \phi_2 \epsilon_{t-2} + \theta_1 e_{t-1} + \theta_2 e_{t-2} + e_t \\ \widehat{y_{t+1}} &= c + \beta_1 x_t + \widehat{\epsilon_{t+1}} \text{ mit } \widehat{\epsilon_{t+1}} = \phi_1 \epsilon_t + \phi_2 \epsilon_{t-1} + \theta_1 e_t + \theta_2 e_{t-1} + \underbrace{\widehat{e_{t+1}}}_{=0} \end{aligned}$$

$$\widehat{y_{t+2}} = c + \beta_1 x_t + \widehat{\epsilon_{t+2}} \text{ mit } \widehat{\epsilon_{t+2}} = \phi_1 \widehat{\epsilon_{t+1}} + \phi_2 \epsilon_t + \theta \underbrace{\widehat{e_{t+1}}}_{=0} + \theta e_t + \underbrace{\widehat{e_{t+2}}}_{=0}$$