

— North America 2023 —

Supercharge your Al Platform with KubeRay: Ray + Kubernetes

Archit Kulkarni, Software Engineer, Anyscale Winston Chiang, Product Manager, Google

Presenter Information

Archit Kulkarni Software Engineer, Anyscale

Winston Chiang
Product Manager, Google

Agenda

- Introduction
- What is Ray
- Why Kubernetes
- What is KubeRay
- Demo: LLM lifecycle with KubeRay
- Conclusion and Q&A

Al is all around you

Large models gain new abilities

Source: "Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough Performance" by Sharan Narang and Aakanksha Chowdhery, Google Research Blog

AI Platform Trends

As AI capabilities have grown, so have the challenges

Unified AI Platform

Why Ray

- → Open source unified framework for scaling AI and Python
- → User doesn't need to be a distributed systems expert!
- → Ray automatically handles orchestration, scheduling, fault tolerance, autoscaling

Developing AI Applications with Ray

→ Ray Al Libraries:

- + Data: Scalable, framework-agnostic **data loading and transformation** across training, tuning, and prediction.
- + Train: Distributed multi-node and multi-core **model training** with fault tolerance that integrates with popular training libraries.
- + Tune: Scalable **hyperparameter tuning** to optimize model performance.
- Serve: Scalable and programmable serving to deploy models for online inference,
 with optional micro-batching to improve performance.
- + RLlib: Scalable distributed **reinforcement learning** workloads.

When to use 🧇 Ray & Ray Al Libraries?

Scale a single type of workload

- Data ingestion for ML
- Batch Inference at scale
- Distributed Training
- Only serving or online inference

Scale end-to-end ML applications Data Train Tune Serve

Run ecosystem libraries using a unified API

Build a custom ML platform

- Spotify, Instacart
- Pinterest & DoorDash
- Samsara & Niantic
- Uber Eats & LinkedIn

<u>Functions -> Tasks</u>

```
def read_array(file):
    # read array "a" from "file"
    return a

def add(a, b):
    return np.add(a, b)
```

```
@ray.remote
def read_array(file):
    # read array "a" from "file"
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)
```

```
@ray.remote
def read_array(file):
    # read array "a" from "file"
    return a
@ray.remote
def add(a, b):
    return np.add(a, b)
id1 = read_array.remote("/input1")
```

```
read_array

id1
```

```
@ray.remote
def read_array(file):
    # read array "a" from "file"
    return a
@ray.remote
def add(a, b):
    return np.add(a, b)
id1 = read_array.remote("/input1")
id2 = read array.remote("/input2")
```



```
@ray.remote
def read_array(file):
    # read array "a" from "file"
    return a
@ray.remote
def add(a, b):
    return np.add(a, b)
id1 = read_array.remote("/input1")
id2 = read_array.remote("/input2")
id3 = add.remote(id1, id2)
```



```
@ray.remote
def read_array(file):
    # read array "a" from "file"
    return a
@ray.remote
def add(a, b):
    return np.add(a, b)
id1 = read_array.remote("/input1")
id2 = read_array.remote("/input2")
id3 = add.remote(id1, id2); ray.get(id3)
```


Functions -> Tasks

```
@ray.remote
def read_array(file):
    # read array "a" from "file"
    return a
@ray.remote
def add(a, b):
    return np.add(a, b)
id1 = read_array.remote("/input1")
id2 = read_array.remote("/input2")
id3 = add.remote(id1, id2)
```

Functions -> Tasks

```
@ray.remote
def read array(file):
   # read array "a" from "file"
    return a
@ray.remote
def add(a, b):
    return np.add(a, b)
id1 = read_array.remote("/input1")
id2 = read_array.remote("/input2")
id3 = add.remote(id1, id2)
```

```
@ray.remote
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
    return self.value
```

```
Functions -> Tasks
@ray.remote
def read array(file):
    # read array "a" from "file"
    return a
@ray.remote
def add(a, b):
    return np.add(a, b)
id1 = read_array.remote("/input1")
id2 = read array.remote("/input2")
```

id3 = add.remote(id1, id2)

```
@ray.remote
class Counter(object):
    def init (self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value
c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()
ray.get([id4, id5])
```

Functions -> Tasks

```
@ray.remote
def read array(file):
   # read array "a" from "file"
    return a
@ray.remote(num gpus=1)
def add(a, b):
    return np.add(a, b)
id1 = read_array.remote("/input1")
id2 = read array.remote("/input2")
id3 = add.remote(id1, id2)
```

```
@ray.remote(num_gpus=1)
class Counter(object):
    def init (self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value
c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()
ray.get([id4, id5])
```

Ray Architecture

- Raylet: Manages shared resources on each node
- GCS: Manages cluster-level metadata
- Worker process:
 Task/Actor execution
- Driver process: Special worker process executing the top-level application (e.g. __main__)

Why Kubernetes with Ray?

- → Get the unified Python experience delivered by Ray
- → Together with the operational benefits of Kubernetes.

Ray on Kubernetes

- Both Ray and Kubernetes serve as resource orchestrators.
- Ray focuses on computation with Tasks and Actors as its scheduling unit.
- Kubernetes focuses on deployment with Pod as its scheduling unit.

KubeRay: The best solution for Ray on Kubernetes

 KubeRay enables data/ML scientists to focus on computation while infra engineers concentrate on Kubernetes.

data/ML scientists: Develop Python scripts.

infra engineers: Integrate KubeRay with Kubernetes ecosystem tools, e.g. Prometheus, Grafana, and Nginx.

KubeRay: 3 core components for different workloads

RayCluster

- Manage lifecycle of Ray cluster
- Autoscaling
- GCS fault tolerance

RayJob = RayCluster + Job

- Creates a RayCluster
- Submits job when ready
- RayCluster can be recycled automatically

RayService = RayCluster + Ray Serve

- Creates a RayCluster and deploys Ray Serve applications on it
- In-place update
- Zero-downtime upgrade
- High-availability

Benefits of KubeRay

Scalability and Performance

Cost and Efficiency

Customizability

Portability

Scalability and Performance

Fine tune performance and scale the platform.

Distributed, high performance accelerators

 Scale the platform from 1 to 1000's to meet the needs of all of your Al workloads

 Ray achieves zero-downtime by monitoring unhealthy states **Utilization Bin Packing**

Google Cloud

Kubernetes helps you achieve and manage scale

- Al and GenAl models demand massively distributed compute
- Kubernetes is the proven solution
- The largest models were trained on Kubernetes

RayService stability features

Zero-downtime

RayService Detect unhealthy Create and states or detect redirect the config changes traffic RayCluster RayCluster

High-availability + GCS fault tolerance

Cost and Efficiency

Pay for what you need when you need it

- Higher utilization of compute resources (CPUs, GPUs, TPUs) and cost savings with Spot
- Reduced operational costs for unified platform

Google Cloud

Ray Autoscaler on KubeRay

- KubeRay seamlessly integrates with Ray Autoscaler.
- This is fine-grained **application-level** autoscaling (smarter than default K8s autoscaler, which can't see into the application!)

Supports heterogeneous resources (e.g. high-end GPUs for LLM serving)!

Customizability

Choose the best framework(s) for the job

- Meet the needs of multiple teams with their framework of choice
- Customize the platform to meet your structure and requirements
- Ray is platform-agnostic.

Vibrant ecosystem of frameworks from which to choose!

www.ray.io/integrations

Portability

Write Once. Run Everywhere.

- Train and serve with the same ML program across clouds and on-premises
- Cloud native, Open standards

K8s is the industry
standard compute
orchestration platform
available anywhere you
need it
Ray is simply Python

Getting Started: Ray Solution Templates on GKE

- Out-of-box Terraform integrations:
 - GPU/TPU-enabled clusters
 - Kuberay operator
 - IAP-enabled endpoint
 - Cloud Logging
 - Prometheus monitoring
 - Jupyter notebook server
- User guide is available at <u>link</u>
- Kubecon Session by Richard Liu –
 <u>Accelerate your GenAl Model</u>
 <u>Inference with Ray and Kubernetes</u>

Thursday, November 9 • 2:55pm - 3:30pm

Kuberay Benefits

Kuberay Customers achieving greatly improved efficiencies

***instacart**

12x faster

50% cheaper

40% cheaper

10x cheaper

5x faster

DOORDASH

30% cheaper

Thanks to Ray ... we are able to reduce scan processing time by 75%, cost per scan by more than 60%, and number of lines of code by more than 85%....

We heavily rely on KubeRay to reliably create, autoscale, and shutdown our production Ray clusters.

Massive growth in the number of KubeRay clusters

+37% per month avg growth over the last 6 months

4 major releases

230 commits → 600+ commits

100+ contributors

100+ contributors

10+ External Blogs

KubeRay is GA!

We're happy to announce that KubeRay is generally available, packed with enhanced features, robust stability, and community-driven improvements.

KubeRay v1.0.0 is now available.

LLMs with KubeRay

Traditional ML model lifecycle

- CPU-inference
- Single/Small GPU inference
- Compute-intensive

LLM model lifecycle

LLM model lifecycle

Serving becomes much more expensive and important!

- Multiple / Large GPU(s) inference
- Memory-intensive

LLMs with KubeRay

- KubeRay can manage the end-to-end LLM lifecycle on Kubernetes.
- KubeRay/Ray are the best solution for LLM on Kubernetes, especially for LLM serving cost.
 - **Autoscaling:** It is hard to predict the traffic for online serving. KubeRay supports autoscaling, which adjusts based on dynamic load, to save costs.
 - Heterogeneous: High-end GPUs are in high demand. Supporting heterogeneous computing resources, such as different types of GPUs, TPUs, and CPUs, is important.

Demo: End-to-end LLM lifecycle with KubeRay

Demo: End-to-end LLM lifecycle with KubeRay

KubeRay

Demo: Infrastructure

Prototyping

- Run a Jupyter Notebook as a head Pod's sidecar container.
- KubeRay injects an Autoscaler sidecar container into the head Pod if the autoscaling is enabled.

Fine-tuning with RayJob

- Fine-tune a Llama-2 7B on the GSM8K (8th grade math) dataset.
- Demo:
 - Use Ray Train + DeepSpeed. [1]
 - 16 NVIDIA A10 GPUs (24GB / GPU).
 - o 1 epoch takes 22 minutes.

Demo: Fine-tuning with RayJob

Install a KubeRay operator

```
• (ray-py38) archit@archit-C02D27V8MD6N aviary % kubectl get svc
 NAME
              TYPE
                          CLUSTER-IP
                                      EXTERNAL-IP
                                                    PORT(S)
 kubernetes ClusterIP 10.100.0.1 <none>
                                                    443/TCP
                                                             2d19h
o (ray-py38) archit@archit-C02D27V8MD6N aviary % helm install kuberay-operator ~/kuberay/helm-chart/kuberay-
 operator
```

Serving with RayService+RayLLM

Demo:

- Use RayService and RayLLM to deploy the fine-tuned Llama-2 7B.
- RayLLM provides an OpenAI compatible API.

Demo: Serving with RayService+RayLLM

```
(ray-py38) archit@archit-C02D27V8MD6N aviary % kubectl get svc
              TYPE
                          CLUSTER-IP
                                       EXTERNAL-IP
                                                    PORT(S)
  NAME
  kubernetes ClusterIP 10.100.0.1 <none>
                                                    443/TCP
                                                              20h
• (ray-py38) archit@archit-C02D27V8MD6N aviary % helm install kuberay-operator ~/kuberay/helm-chart/kuberay-
  operator
 NAME: kuberay-operator
  LAST DEPLOYED: Thu Sep 14 08:45:07 2023
 NAMESPACE: default
  STATUS: deployed
 REVISION: 1
 TEST SUITE: None
o (ray-py38) archit@archit-C02D27V8MD6N aviary % kubectl apply -f ray ob-finetune.yaml
```

Build a LLM application with LangChain and Gradio

A math problem from GSM8K dataset

"Betty is saving money for a new wallet which costs \$100. Betty has only half of the money she needs. Her parents decided to give her \$15 for that purpose, and her grandparents twice as much as her parents. How much more money does Betty need to buy the wallet?"

Demo: Launch a LLM application

https://github.com/ray-project/llm-applications/blob/main/notebooks/rag.ipynb

Thank you.

Follow us! https://www.ray.io/community

Ray Slack channels:

#kuberay-discuss, #kuberay-questions

Ray on GKE:

Ray on GKE Github ray-on-gke@google.com

