Análisis de series de tiempo

Primer examen parcial

Grupo: 6AM1

Fecha de entrega: Miércoles 26 de octubre de 2022

Instrucciones: Lea cuidadosamente las preguntas y resuelva.

Pregunta 1. Dado el modelo de caminata aleatoria con drift

$$x_t = \delta + x_{t-1} + w_t$$

donde $w_t \sim \mathcal{N}(0, \sigma^2)$ y X_0 la condición inicial, es decir, una constante fija.

- 1. Escriba el valor de x_t en términos de x_0 .
- 2. Reescriba la generalización del punto anterior en forma de la ecuación general de la recta Ax + By + C = 0 e indique de manera explícita los valores de A, B y C.

(4 puntos)

Pregunta 2. De manera general podemos expresar una serie de tiempo en términos de su distribución de probabilidad conjunta

$$F(c_1, c_2, \dots, c_n) = Pr(x_1 \le c_1, x_2 \le c_2, \dots, x_n \le c_n)$$

Donde las distribuciones marginales pueden expresarse como

$$F_t(c) = Pr(x_t \le c)$$

Realice una gráfica de una serie de tiempo cualquiera e indique en ella en dónde se pueden observar estas definiciones.

(5 puntos)

Pregunta 3. Demuestre que la función, definida por

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

es una distribución de probabilidad.

(5 puntos)

Pregunta 4. Demuestre que el valor esperado de una variable aleatoria $X \sim \mathcal{N}(\mu, \sigma)$ es μ , donde $\mathcal{N}(\mu, \sigma)$ es la distribución normal.

(5 puntos)

Pregunta 5. Calcule el valor esperado de la variable aleatoria dada y_t definida por

$$y_t = cos(x_t)$$

Si la distribución de probabilidad de x_t es $|sin(x_t)|/4$ y

- 1. $x_t \in [0, \pi/2]$
- 2. $x_t \in [0, \pi]$
- 3. $x_t \in [0, 2\pi]$

(9 puntos)

Pregunta 6. Calcule la autocovarianza $\gamma(s,t)$ del modelo de medias móviles dado por

$$x_t = \frac{1}{3}(w_{t-2} + w_{t-1} + w_t)$$

donde $w_t \sim \mathcal{N}(0, \sigma_w^2)$.

(6 puntos)

Pregunta 7. Calcule la autocovarianza $\gamma(s,t)$ del modelo de la caminata aleatoria con drift dada por

$$x_t = \delta t + \sum_{k=1}^t w_k$$

donde $w_t \sim \mathcal{N}(0, \sigma_w^2)$.

(7 puntos)

Pregunta 8. Calcule la autocovarianza $\gamma(s,t)$ del modelo de medias móviles dado por

$$x_t = A\cos(2\pi\omega t + \phi) + m_t$$

donde $m_t \sim \mathcal{N}(0, \sigma_w^2)$.

(6 puntos)

Pregunta 9. Demuestre que la correlación cruzada dada por

$$\rho_{xy}(s,t) = \frac{\gamma_{xy}(s,t)}{\sqrt{\gamma_x(s,s)\gamma_y(t,t)}}$$

está acotada por $-1 \le \rho_{xy}(s,t) \le 1$.

[Tip: Utilice la desigualdad de Cauchy-Schwarz dada por $|\gamma_{xy}(s,t)|^2 \leq \gamma_x(s,s)\gamma_y(t,t)]$

(5 puntos)

Pregunta 10. Dado el modelo

$$x_t = \frac{1}{2}(w_{t-1} + w_t)$$

Compruebe si cumple las tres propiedades necesarias para ser considerado estacionario (en sentido amplio), es decir, compruebe si cumple:

- 1. La media (el valor esperado) es una constante que no depende del tiempo.
- 2. La función de autocovarianza $\gamma(s,t)$ dependerá en s y t únicamente por su diferencia |s-t|.
- 3. La varianza debe ser finita para todo tiempo t.

En caso de cumplirlas, calcule su función de autocorrelación y grafíquela.

(5 puntos)