Министерство образования и науки Российской Федерации Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

Факультет компьютерных технологий и информатики Кафедра вычислительной техники

Отчёт по лабораторной работе №2 «Деревья» по дисциплине «Алгоритмы и структуры данных»

Вариант 23

Выполнили студенты факультета КТИ группы №3305 Лоуцкер Алексей и Григорьева Анна

Проверил старший преподаватель Колинько Павел Георгиевич

Оглавление

1. Задание на работу с деревьями	3
2. Обоснование выбора способа представления деревьев в памяти	
3. Тестовый пример	4
4. Результаты прогона программы с генерацией случайного дерева	4
5. Оценки временной сложности для функций обхода дерева	5
6. Выводы о результатах испытания алгоритмов обзода деревьев	6
7. Список использованный литературы	6
8. Исходные тексты	6

1. Задание на работу с деревьями

Написать и отладить программу для работы с деревьями по предложенному преподавателем варианту индивидуального задания. Программа должна выводить на экран изображение дерева с разметкой его вершин, сделанной заданным способом, а под ним — последовательность меток вершин при обходе дерева и результат вычисления заданого параметра.

Вариант 23:

Вид дерева — троичное

Разметка — симметричная

Способ обхода — в глубину

Что надо вычислить — количество средних листьев

2. Обоснование выбора способа представления деревьев в памяти

Дерево представлено в виде списочной структуры. Этот способ прост в реализации, имеет хорошие врененные оценки и эффективно решает поставленную задачу. Другие способы не обладают этими качествами: матричное представление неэффективно для графов-деревьев, а представление массивом плохо описывает несбалансированные деревья, генерируемые случайным образом.

3. Тестовый пример

```
create node(depth = 0)? : v
create node(depth = 1)? : y
create node(depth = 2)? : y
create node(depth = 2)? : v
create node(depth = 2)? : n
create node(depth = 1)? : y
create node(depth = 2)? : n
create node(depth = 2)? : n
create node(depth = 2)? : n
create node(depth = 1)? : y
create node(depth = 2)? : v
create node(depth = 2)? : y
create node(depth = 2)? : y
preOrder Traversal: d b a c e g f h i
Middle leaves = 3
.....f....h...i....i....i.....i
Для закрытия терминала нажмите клавишу [ВВОД]...
```

4. Результаты прогона программы с генерацией случайного дерева

preOrder Traversal: f b a d c e i g h k j l Middle leaves = 1
fiiii
Для закрытия терминала нажмите клавишу [ВВОД]
preOrder Traversal: d a b c f e i g h j k Middle leaves = 2
diiiii
gjj
Для закрытия терминала нажмите клавишу [ВВОД]

5. Оценки временной сложности для функций обхода дерева

1) Создание дерева.

Создается log(n) строк в массиве Screen и n вершин, итоговая сложность — O(n)

2) Разметка и обход.

Для каждой из n вершин запускается функция обхода с O(1), итого — O(n)

3) Вывод дерева

Заполнение Screen точками — $\log(n)$, запись имени вершины — O(n), вывод на экран — $\log(n)$, всего — O(n)

6. Выводы о результатах испытания алгоритмов обхода деревьев

Судя по графическому изображению дерева, реализованные алгоритмы обхода дерева работают верно и выдают ожидаемый результат.

7. Список использованной литературы

- 1) Алгоритмы и структуры данных: методические указания к лабораторным работам, практическим занятиям и курсовому проектированию / сост. П. Г. Колинько. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2013
- 2) лекция 27.10
- 2) http://stackoverflow.com
- 3) http://cplusplus.com

8. Приложение: исходные тексты

Файлы tree.h и tree.cpp содержат основной класс дерева — Tree, node.h и node.cpp — вспомогательный класс вершины — Node, main.cpp — главную функцию main.

Исходный код доступен в репозитарии по адресу: github.com/alout1/TriTree