Groups:

Group 1:

Amelia Camino

Jake Magee

Amanda Muratore

Julissa Sarmiento

Group 2:

Finian Ashmead

Francis Burk

Mykola Chernyashevskyy

Mohamed Ismail

Ehteshamul Karim

Group 3:

Cullen Abelson

Alia Dawood

Mira Salman

Yunchong Zhang

Group 4:

Nathalie Chicoine

Lauren Elicker

Yoki Salcedo

Marcos Tamargo-Arizmendi

Probability Distributions

Statistics and Data Science Spring 2025

http://xkcd.com/1236/

STATISTICALLY SPEAKING, IF YOU PICK UP A SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

Goals for today: you should be able to...

- * Lecture 5 notebook: Explain what the binomial distribution is and apply it
- Choose priors for a binomial distribution
- * Lecture 6 notebook: Perform Bayesian statistical inference with the binomial distribution
- Use np.where() and np.isfinite()
- * Reminder: Homework due Friday!

Review: key rules of probability to remember

- → If events A and B are *independent* then: $p(A \text{ AND } B) = p(A) \times p(B)$
- The *conditional* probability A is true, given that B is true: $p(A \mid B) = p(A \mid AND \mid B)/p(B)$
- $\rightarrow p(A \mid B) = p(A)$ if and only if A and B are independent.
- ⇒In general, $p(A \ OR \ B) = p(A) + p(B) p(A \ AND \ B)$
- \longrightarrow Marginalization: $p(A) = \sum p(A \mid B_i) p(B_i)$

Let's generalize from coins and dice to more complicated situations...

- We'll come back to applications of Bayes' theorem, but need more background to go further.
- * Till now, we've mostly talked about probabilities with just a few possibilities, equally likely. However, we can instead consider arbitrary probabilities as a function of continuous variables: a *probability density function* or PDF (for functions of discrete variables, the term is *probability mass function* or PMF).
- * Probability density functions just have to be nonnegative everywhere, and integrate to 1 (or have sum 1 in the discrete case). For a continuous PDF f(x),

$$p(a < x < b) = \int_{a}^{b} f(x) \ dx$$

Sometimes, the term *probability distribution* is used instead of PDF.

More on distributions

* It is sometimes helpful to look at the fraction of the integral of f(x) which is below some value. This is the *cumulative distribution function* or CDF, generally written F(x):

$$F(x) = \int_{-\infty}^{x} f(y) \ dy$$

* Another useful thing to look at can be the expectation value of some function g(x):

$$\mathbf{E}g = \int_{-\infty}^{\infty} g(x) \, f(x) \, dx$$

* The expectation value is the value of g(x), weighted by the probability of each possible x.

Expectation values

- Ex.: suppose I'll pay you \$5 if a coin comes up heads, and you pay me \$5 if it comes up tails. What is the expectation value of your winnings after a coin toss?
- Some important expectation values are based on the moments of the distribution (remember basic mechanics...):
 - * The *mean* is, simply, the first moment of f(x) compare to the center of mass in mechanics. It provides a measure of the *location* or *center* of f(x).

$$\mu = \mu_1 = Ex = \int_{-\infty}^{\infty} x f(x) dx$$

Variance and standard deviation (of a probability distribution)

* We often are interested in the width, not just central value, of a probability distribution (e.g. an error bar). We can measure this with a second moment (compare to the moment of inertia about the center of mass):

$$\sigma^2 = \mu_2 = E(x - \mu)^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

- * In statistics, μ_2 is called the *variance*, and is equal to the *standard deviation* squared. σ provides a measure of width in the same units as x.
- * We can also construct statistics to describe other moments: the *skewness* = μ_3/σ^3 = $\mathbf{E}(x-\mu)^3/\sigma^3$ describes how asymmetric a distribution is, the *kurtosis* = μ^4/σ^4 describes how flattened it is, etc. A Gaussian distribution has 0 skewness and kurtosis of 3.

Although f(x) can take arbitrary form (if nonnegative and normalized to have integral 1), there are dozens of well-studied cases.

- Let's start, again, with dice rolls. What is the probability of getting M ones when we roll N dice? Open up today's jupyter notebook...
- * E.g.: if we roll 100 dice, how many 1's will we observe, in total? import numpy.random as random import numpy as np nsims=int(1E5) prob=1/6. is_one=(random.rand(????,100) < prob) ndice=100 # plot a histogram of the total # of 1's from each sim plt.hist(np.sum(is_one[:,0:ndice],????))
- We'd like to try this with ndice=2,5,10,50,100, and do a few repeats, plotting each time. This can get to be a pain retyping things or copying and pasting -- so I've made a function for you in a module file.

Using another module

- Last week, we wrote a function to give the result of 2 coin flips.
- * This time, I made a module for you that rolls dice: dice.py
- Download dice.py from Courseweb to a directory in your PYTHONPATH: e.g., ~/python/
- Open the file up in vscode to see what is in it...

Contents of dice.py

```
import numpy.random as random
import numpy as np
import matplotlib.pyplot as plt
```

Contents of dice.py

```
def rolldice(nsims):
# nsims is number of simulations to do
nsims =int(nsims)
    prob=1/6.
    is_one=(random.rand(nsims,100) < prob)</pre>
# generate nsims sets of 100 rolls
    ndice_array=[2,5,10,25,100]
    for i,ndice in enumerate(ndice_array):
     plt.figure(i) # create a new figure for each plot
        plt.hist( np.sum(is_one[:,0:ndice],axis=1),
range=(-0.5, ndice+0.5), bins=(ndice + 1)
        plt.title(str(ndice) + ' dice')
 # convert ndice to a string with str(), then use that to title the plot
```

Running the function

* Import dice and run dice.rolldice(), e.g., with 50_000 simulations.

What would we expect to see?

- * Let p = the probability of getting a 1 (=1/6.)
- * Each roll of the dice is independent of all others, so p(A AND B) = p(A) p(B) for each combination of die rolls
- e.g. probability of rolling a 1 on the first roll, the second, etc. N times must be p^N
- * probability of a 1 on the first M rolls, and non-1 all the rest would be: $p^{M}(1-p)^{N-M}$, since each roll is independent
 - * the same must be true for *any* specific ordering of the rolls that gives M ones total, as we'll have to have M factors of p and N factors of (1-p)

How many ways can we get M ones?

- ❖ If we have *N* things, there are *N*! (*N* factorial) different ways of ordering them.
- * However, any case with a 1 coming up on dice 1, 3, and 5 only, say, is indistinguishable, and we shouldn't double-count them.
- * There are M! ways to reorder the M cases of p that are indistinguishable, and then we can still reorder the N-M cases of (1-p) so there are a total of C(N,M)=N!/(M!(N-M)!)
- So, summing up the probability of each case with M ones (since they are mutually exclusive), we find:

 $prob(M \ ones) = C(N,M) \ p^{M} (1-p)^{N-M}$

The Binomial Distribution

* We didn't really use the fact that we're looking at dice anywhere in that derivation. In general, if there is a probability p of success, and we do N trials, then:

$$prob(M \ successes) = C(N,M) \ p^{M} \ (1-p)^{N-M}$$

- *This formula defines the binomial distribution. This is the distribution that controls coin tosses (like in the homework), or any other set of independent events of fixed probability.
- * It has mean = $\langle x \rangle$:

$$\mu = N p$$

* and variance = $< x^2 > - (< x >)^2$:

$$\sigma^2 = N \ p \ (1-p)$$

Testing our distributions

- * We expect that the number of ones we get will follow a binomial distribution with N=ndice. Let's test this by modifying the rolldice function in dice.py:
- 1) Does the data have mean $\mu = N p$?
- In python, we can check this with either np.mean or np.sum:

Note: some good links on f-string formatting: https://realpython.com/python-f-strings/, https://string.help/, https://string.help/, https://string.help/, https://cissandbox.bentley.edu/sandbox/wp-content/uploads/
2022-02-10-Documentation-on-f-strings-Updated.pdf

Be sure to reload the module when you make changes!

Testing our distributions

Be sure to reload the module when you make changes!

Results

Did that all check out? If so, let's make rolldice also plot the predicted distributions. First, we need to add an import:

```
from scipy.misc import factorial,comb

* Then, after:
   plt.hist( np.sum(n_ones[:,0:ndice],axis=1),range=(-0.5,ndice+0.5),bins=(ndice + 1) )

* add:
   x=np.arange(ndice)
   plt.plot(x,nsims*factorial(ndice)/factorial(x)/
   factorial(ndice-x)*prob**x*(1-prob)**(ndice-x),'r-')

* or:
   plt.plot(x,nsims*comb(ndice,x)*prob**x*(1-prob)**(ndice-x),'ro')
```

It works!

We could have used a scipy function instead

- * scipy has a class (i.e., type of object), scipy.stats.binom, that allows you to calculate pretty much anything you'd want about a binomial distribution.
- * It offers many subsidiary functions; scipy.stats.binom.pmf(x,n,prob) provides the probability of getting x occurrences out of n trials if the probability of an occurrence is prob (note that x can be an array!)
- alternatively, you can set up an object that is a member of the binomial class and inherits all of its functions ("methods"), but set up to assume n trials and probability prob, with e.g.

```
a = stats.binom(n,prob)
```

and then get the PMF (the discrete equivalent of a PDF) via

We could have also used a scipy function

- * import scipy.stats and look at the help information for binom. Now modify your function to add a curve to your plots showing the expected number of ones out of the simulation for each value of x using stats.binom; this should be nsims times the probability for one simulation...
- Note: you can actually look at the code for binom! Just do:??scipy.stats.binom

Back to Bayesian statistics

- * Suppose we do N independent experiments, and get a positive result M times. What have we learned about the true probability that we get a positive result, p?
- Recall Bayes' theorem:

```
prob(B \mid A) = prob(A \mid B) prob(B) / prob(A)
```

- * So: $prob(p \mid M \ successes) = prob(M \ successes \mid p) \ prob(p) \ / prob(M \ successes)$
- For a binomial distribution,

```
prob(M \ successes \mid p) = C(N,M) \ p^{M}(1-p)^{N-M}
```

❖ What is the prior, prob(p)?

Choosing a prior

- * $prob(p \mid M successes) \propto p^{M}(1-p)^{N-M} prob(p)$; what's prob(p)?
- We have a number of options:
- 1) Often, we don't have any information about p, so we want an "uninformative" or "noninformative" prior. One option is to choose a prior that can make no difference at all: a uniform prior. In that case, prob(p) is a constant for all eligible p (0<p<1).
- * A distribution uniform between a and b has mean $\mu = (a+b)/2$ and variance $\sigma^2 = (b-a)/12$
- * Note that a uniform prior technically isn't a PDF if it's uniform over all possible parameter values (e.g. $-\infty < y < \infty$), as it doesn't integrate to 1. Most calculations still work, though; we call a prior that is not a PDF an *improper prior*.

Choosing a prior

- $prob(p \mid M successes) \propto p^{M}(1-p)^{N-M} prob(p)$; what's prob(p)?
- 2) A uniform prior sounds like a good no-information assumption... but suppose we had a different set of parameters.
- * A prior uniform in p would not be uniform in log(p), sqrt(p), etc.; changing variables changes the effect of the prior. A uniform prior is not the only one to encode 'no information'.
- * Often, probabilities are either close to 0 or close to 1 (e.g.: will Pitt win their next basketball game? The answer should be yes or no...) In such cases, one reasonable guess is Haldane's prior:

$prob(p) \propto p^{-1}(1-p)^{-1}$

- * This is an improper prior (due to its infinite integral), even over the range [0,1], with equal probability of p~0 and p~1.
- * With this prior, $prob(p \mid 1 \text{ success in 2 trials})$ will be a uniform distribution between 0 and 1.

Choosing a prior

- 3) It is possible to construct a prior which has the same effect on the posterior distribution under simple transformations of variables this is called a Jeffreys prior (**NOT** Jeffrey's prior). This sort of prior can be constructed from a Fisher matrix (which will turn out to be derivable from the likelihood function).
- * For a binomial process, the Jeffreys prior is $prob(p) \propto p^{-1/2}(1-p)^{-1/2}$
- Note that this is intermediate between (geometric mean of) the Haldane prior and a uniform prior
- Note: the book erroneously mislabels the Haldane and Jeffreys priors in section 2.3!

What difference does the prior make?

- * Suppose you observe a set of 8 different early-type (red sequence / non-star-forming / elliptical/S0) galaxies and observe AGN signatures from three of them. What can we conclude about the probability *p* that a randomly chosen early-type galaxy has an AGN?
- * The likelihood *prob*(*observation* | p) should correspond to a binomial distribution, with 8 trials and 3 coming up 'AGN': $\propto p^3(1-p)^5$
- * For the prior, prob(p), we'll try all three possibilities for a binomial prior

 $prob(p \mid observation) = prob(observation \mid p) prob(p) / prob(observation)$

Plotting a distribution in Python

Before we plotted functions of x, where x took whole-number values.
 Instead we want to consider probabilities at equally-spaced values between 0 and 1, inclusive.

```
p=np.linspace(0.,1.,501)
```

So what does prob(observation | p) look like?

```
likelihood=p**3 * (1-p)**5
plt.plot(likelihood)

* Now let's set up our priors: Haldane, Jeffreys, and uniform
prior_h=1/p/(1-p)
prior_j=np.sqrt(prior_h)
prior_u=p*0.+1.
```

* These are plotted in the notebook. Which one would you expect to have the greatest impact on the posterior probability density function?

So what does prob(p | observation) look like?

- Now, we can make plots of the relative probability of each value of p, as a function of p.
- Use a y range from 0 to 0.03, and plot the likelihood and the posterior assuming each different prior, using different lines or plot symbols for each.

Normalizing probabilities

Which of these was most strongly peaked?

```
plt.plot(p,likelihood*prior_h,'b-')
plt.plot(p,likelihood*prior_j,'r--')
plt.plot(p,likelihood*prior_u,'g-.')
```

- We can tell most easily if we normalize them all to give PDFs i.e., to have integral 1.
- * This will require us to do some calculus -- numerically.

Interpolation and calculus in Python

- * We often want to calculate the integral or derivative of some function. There are many ways to do this in Python; a simple recipe:
- 1) create arrays of values of x and the evaluated function f(x), where f(x) is the function you want to integrate or differentiate.
- 2) Use scipy.interpolate.interp1d() to create a Python function (just like np.sin(x), etc.) that interpolates between the tabulated values of x and f(x). E.g.:

```
import scipy.interpolate as interpol
x = np.linspace(-np.pi,3*np.pi,100)
# we want the interpolation table to extend beyond bounds we will use
x_fine = np.linspace(0,2*np.pi,10_000)
f = np.cos(x)
interp_f = interpol.interp1d(x,f,kind='cubic')
# interp_f is a new Python function!
plt.plot(x_fine,interp_f(x_fine),'r-')
```

Interpolation and calculus

```
3) To integrate: one routine is scipy.integrate.quad(function name, lower limit, upper
limit). E.g.:
import scipy.integrate as integrate
print(f'{integrate.quad(interp_f,0,np.pi/2) = }')

* Note that integrate.quad returns a tuple (of the integral and its uncertainty)!

* To differentiate: one routine is scipy.misc.derivative(function name,x value[s],dx=[dx value for calculations]). E.g.:
import scipy.misc as misc
der = misc.derivative(interp_f,x_fine,dx=1E-3)
plt.plot(x_fine,der,'b--')
```

Normalizing probabilities (cont'd)

So we can do:

```
posterior_u = interpol.interp1d(p,likelihood*prior_u,kind='cubic')
norm_u=(integrate.quad(posterior_u,0.,1.))[0]
```

- * and similarly for priors h and j (Haldane & Jeffreys).
- We can then check how this worked:

```
print(f'{norm_u = } , {norm_j = } , {norm_h = }')
```

Where did things go wrong?

Ways to avoid the problem

* 2 ways to proceed:

1) avoid division by zero via algebra:

```
prob_u=likelihood
prob_h=p**2*(1-p)**4
prob_j=p**2.5*(1-p)**4.5
posterior_u = interpol.interp1d(p,prob_u,kind='cubic')
norm_u=(integrate.quad(posterior_u,0.,1.))[0]
...
* and similarly for priors h and j (Haldane & Jeffreys).
```

Then we can plot normalized posterior PDFs ... (e.g., posterior_h / norm_h)

Second option: np.isfinite()

* 2) The problem was that we divided by zero, so some elements of prior_h & prior_j were illegal numbers (NaN). We can test if a given number is finite with np.isfinite(x); it returns True if the number is finite, False if not.

```
print(np.sum(np.isfinite(p)==False))
print(np.sum(np.isfinite(prior_h)==False))
```

* Since, for a dataset that is not all one value, the posterior probability should be zero at both p=0 and p=1 (WHY?), we can safely make the prior 0 at those points. We could use logic to deduce the right element #s, but let's be lazy.

np.where()

- One of the most powerful functions in numpy is np.where().
- It returns the array indices where some condition is true. e.g.:

```
test=np.array([1,2,3,4,5])
print(np.where(test == 3))
print(np.where(test > 2))
```

- * We can use the result just like we can specify any other set of array indices (e.g. [0:i]):
- print(test[np.where(test > 2)])
- * Alternatively, you can use a logical expression to slice the array, with similar results:

```
print(test[ test > 2 ])
```

Using np. where with np. isfinite

```
* So we can get the array indices where prior_h blows up with:
whbad=np.where( np.isfinite(prior_h)==False)
print(whbad)
* Let's repair the problem:
prior_h[whbad]=0
prior_j[whbad]=0
posterior_h = interpol.interp1d(p,likelihood*prior_h,kind='cubic')
posterior_j = interpol.interp1d(p,likelihood*prior_j,kind='cubic')
norm_h=integrate.quad(posterior_h,0.,1.)[0]
norm_j=integrate.quad(posterior_j,0.,1.)[0]
* and plot again:
plt.plot(p,likelihood*prior_u/norm_u)
```

Some things to discuss with your group

- * Where does the posterior peak in each case? How does this compare to the observed fraction (3/8)?
- * For which prior do you get the tightest constraint on *p*? (Hint: since the integral is one, a tighter distribution will have a higher peak, when they are normalized into PDFs)

What happens if we have more data?

- Montero-Dorta et al. 2008 found that, of 710 early-type galaxies, 213 were AGN and 497 were not. What is the probability distribution for the true probability an early-type galaxy is an AGN, given each prior?
- What do we want for likelihood? Do the priors change?
- Redo the normalizations and plot the normalized posterior for the new likelihood

 $prob(p \mid observation) = prob(observation \mid p) prob(p) / prob(observation)$

Using previous results as priors

- * The Uniform, Haldane, and Jeffreys priors are all uninformative priors i.e., priors we might choose knowing absolutely nothing about *p*.
- Suppose we want to use our sample of 8 galaxies to estimate the AGN fraction
- Going in, we've read Montero-Dorta et al., and we can use their result as a prior:
 - $prob(p) \propto p^{213} (1-p)^{497}$

prob(p | observation) = prob(observation | p) prob(p) / prob(observation)

Results as priors

```
* Then: prob(p \mid obs) = prob(obs \mid p) prob(p) / prob(obs)
 \propto (p^3 (1-p)^5) x (p^{213} (1-p)^{497})
```

- Notice that:
- 1) This is the same result we'd get if we took the result of our observation as a prior, and then added the information from Montero-Dorta et al. which is 'prior' and which is 'data' doesn't matter.
- 2) This is exactly the same result as if we had 216 AGN and 502 non-AGN; i.e., evaluated everything as one dataset

What difference does our sample make?

Our prior is:

```
prior_obs=x**213.*(1-x)**497.
```

- * Calculate its normalization to get a pdf! No need to worry about checking for nonfinite elements here...
- Our likelihood is:

```
likelihood=x**3*(1-x)**5
```

Calculate its normalization to get a pdf!

```
posterior = likelihood*prior_obs
```

- Calculate its normalization too!
- Now plot up the normalized likelihood, the normalized prior, and the normalized posterior probability, with different linestyles and/or colors (solid, dashed, red, etc.)

Coming up with your own priors

- * One simple way to produce a prior for a binomial distribution is to produce a guess as to the right answer, and how many observations that guess is 'worth'.
- * E.g. if in your experience about half of galaxies are AGN, but you're not too sure about that, you might consider it worth a few observations : prior $\propto p^{1.5}(1-p)^{1.5}$
- ❖ Or you might know that ~25% of galaxies overall are AGN, but be unsure whether that overall number is relevant for the particular sample you are working on : prior $\propto p^1(1-p)^3$
- * Or you might be really sure that 25% is the right universal answer, whatever your sample tells you: prior $\propto p^{250}(1-p)^{750}$