Hjemmeopgave 3 – Statiske modeller med kapital

Praktisk information:

- Afleveringsfrist: Søndag den 14. november 2020 kl. 08.00
- Opgaveafleveringen skal indeholde:
 - o GAMS filer.
 - o 1 pdf-fil med tekst, tabeller og evt. figurer.
- Opgaven skal afleveres i grupper af max. 4 personer.
- Navne skal fremgå på første side af tekstdokumentet såvel som i toppen af alle GAMS-filer.
- Rettidig og tilfredsstillende besvarelse af hjemmeopgaverne er et krav for at kunne blive indstillet til eksamen.
- Såfremt besvarelsen ikke kan godkendes, er der mulighed for genaflevering 7 dage efter, at I har fået opgaverne igen.
- Opgaven skal sendes til <u>asv@dreamgruppen.dk</u>.
 - o Emne: Hjemmeopgave 3, Navne på personer i gruppen.

Hjemmeopgave 3.1 - Statisk lukket model med kapital og to typer arbejdskraft.

I hjemmeopgave 3.1 moduleres en lukket model med kapital og to typer arbejdskraft målt i hoveder.

CES- produktionsfunktionen der er beskrevet i forelæsningsnoten 3.1.5, har to typer input (kapital og arbejdskraft):

$$Y = F(K, L)$$

Denne model udvides således, at CES- produktionsfunktionen har 3 inputs, kapital, højt og lavt uddannet arbejdskraft. Det antages, at produktionsfunktionen er en nestet produktionsfunktion, jf. forelæsningsnoten 2.2.1.1. Nestningstrukturen kan ses i figur 1.

CES-Produktionsfunktionen er givet ved:

$$Y = F(K, H(L_1, L_2))$$
,

Hvor $F(\Box \text{ og } H(\Box \text{ er 2-faktor CES-funktioner, der er defineret som:}$

$$Y = F(K, H) = \left[\mu_K^{\frac{1}{E_Y}} K^{\frac{E_Y - 1}{E_Y}} + \mu_G^{\frac{1}{E_Y}} H^{\frac{E_Y - 1}{E_Y}} \right]^{\frac{E_Y}{E_Y - 1}},$$

$$H = H(L_1, L_2) = \left[\mu_{L_1}^{\frac{1}{E_H}} L_1^{\frac{E_H - 1}{E_H}} + \mu_{L_2}^{\frac{1}{E_H}} L_2^{\frac{E_H - 1}{E_H}} \right]^{\frac{E_H - 1}{E_H - 1}}$$

Produktionen har 6 parametre $\mu_K, \mu_H, \mu_{L_1}, \mu_{L_2}, E_Y, E_H$, bemærk at $H(\Box)$ er en hjælpe-variabel og uden økonomisk mening.

Opskriv den fulde CGE modelmed kapital og to typer arbejdskraft.

Hint:

Produktionsfunktionen er opdelt i 2 efterspørgselssystem: 1) Efterspørgslen efter kapital, K og CES hjælpe-variablen, H. 2) Efterspørgslen efter de to typer arbejdskraft, L_j . Der er en nul - profit betingelse til hvert af efterspørgselssystemer.

I modellen er der to eksogene produktivitetsmål: Det arbejdskraftbesparende teknologiske fremskridt, θ , som sættes til 1, og den uddannelses afhængige arbejdskraftsproduktivitet, ρ_j , som i denne modeludvidelse skal kalibreres.

I ligning 3.1.30 indgår risikoaversionsparameteren, den skal i denne model benævnes φ .

Figur 1. Nestningsstrukturen for CES-produktionsfunktion.

Det antages, at produktionsfunktionens sustitutionselasticitet mellem kapital og arbejdskraft er $E_{\scriptscriptstyle Y}=0,7\,$ og at sustitutionselasticitet mellem højt og lavt uddannet arbejdskraft er $E_{\scriptscriptstyle H}=2\,$, risikoaversionsparameteren er $\varphi=2$ og vækstraten er $g=0,02\,$. Den <code>endogene</code> rente kalibreres til $r=0.05\,$.

Data indlæses via GAMS-filen IOdata3 1.gms, som ligger på Absalon.

Initialiser og kalibrer modellen. Tjek at modellerne kører, og udfør et 0-stødstest.

Hint: Arbejdskraftsproduktivitet, ρ_j , skal i denne modeludvidelse kalibreres og indføres som i opgave 3.2.

Som en del af besvarelsen **skal** I lave en tabel med **alle** variable for basis og alternativforløbene.

Stød 3.1a: Lad kapitalens afskrivningsrate falde med 10 procent.

Ville resultatet for Y og C være anderledes hvis der kun havde været en type arbejdskraft?

Stød 3.1b: Arbejdsudbudsstød.

Analyser effekten af, at 10 lavt uddannede, *type 1*, bliver højtuddannede, *type 2*. Hvad sker der i modellen, forklar resultatet?

Hjemmeopgave 3.2 - Statisk åben model med kapital

I hjemmeopgave 3.2 moduleres en åben model med kapital og to forskellige kalibreringer. Modellen er beskrevet i forelæsningsnoten 3.1.6.

Bemærk, at ligning 3.1.54 ikke skal medtages i modellen, i en lille åben økonomi er renten givet ud fra det internationale renteniveau, hvorfor ligning 3.1.54 ikke bestemmer nogen endogen variabel.

Det antages, at den internationale rente er r=0.05 og at produktionsfunktionens sustitutionselasticitet er E=0,7, risikoaversionsparameteren er $\rho=2$ og vækstraten er g=0.02. Endelig antages det, at der er ligevægt på handels og kapitalbalancen, derfor kalibreres NX=0 og V=B=K.

Data indlæses via GAMS-filen IOdata3_2.gms, som ligger på Absalon.

Som en del af besvarelsen **skal** I lave en tabel med **alle** variable for begge kalibreringer og alternativforløb.

Stød 3.2a:

Kalibrer modellen under antagelse af, at de indenlandske forbrugere ejer alle indenlandske aktier og deres beholdning af udenlandske aktiver er nul, $\alpha^V=1$, $\overline{B}_t^F=0$. Tjek at modellerne kører, og udfør et 0-stødstest

Lad produktiviteten vokse med 10 procent.

Stød 3.2b:

Kalibrer modellen under antagelse af, at de indenlandske forbrugere ejer halvdelen af de indenlandske aktier og at halvdelen af den indenlandske formue er placeret i udenlandske aktiver,

$$\alpha^V = \frac{1}{2}$$
 , $\overline{B}^F = \frac{1}{2}B$.

Hint: Lav evt. en ny GAMS-fil til den nye kalibrering.

Lad produktiviteten vokse med 10 procent.

Sammenlign stød 3.2a og 3.2b?