李

东南大学考试卷(A卷)

课系	呈名称		几何与代	数 (B)	考试学	설期 2014	-2015-2	得分	
适月	专业	Ę	电类各专业	考 词	式形式	闭卷	考试	时间长度	120 分钟
			Т	<u> </u>	. · I	1			
题	目			=	四	五	六	七	八
得	分								
									
— .	填空(4	每小题	3分,共	30 分)					
1. i	投 A =($\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\mathbf{B} = \begin{pmatrix} 1 & x \\ 2 & y \end{pmatrix}$;)满足 <i>A</i>	B = BA,	则 x =		y =	·
			$=(\alpha,\beta,\gamma)$						
3. I	直线 {x 2:	+2y+ x+3y-	3z = 0 $+ 4z = 0$	ix + y + z	+1=0 拍	内夹角为_			•
4. i	殳平面 7	过点	P(1, 0, 1)1	1垂直于]	直线 <u>x-6</u>	y = y - 5 =	$\frac{z+9}{-2}$,则	J点 <i>Q</i> (1, 2	2, 3)到
7	Р面π的	距离)	勺	-			:		•
5. 由	由面 x ²	+ 2y ² +	z-1=0	与 z = 2xj	v的交线a	生 xOy 平i	面内的投	影曲线 L	的方程
J	য						· · · · · · · · · · · · · · · · · · ·		•
6. 世	_	5阵 <i>A</i> 	与 n 维列 关.	向量 <i>ξ</i> 满人	ደ <i>ለξ</i> ²≠($0, A\xi^3 = 0$,则向量	组 <i>ξ,Αξ,</i> /	4 <i>5</i> ² 线
7. 设 ①	(A, P)	为 n 阶 = b ,	方阵, P 回② PA	丁逆阵,贝 <i>x=Pb</i> ,	可下列方和 ③ P ^T A	呈组中 <i>Px = b</i> ,	一定 ④ P ⁻¹ A	5 = Ax = b $Px = b.$	5 同解.
8. 该	$ \begin{cases} 1 & a \\ 0 & 1 \\ 0 & 0 \end{cases} $	c b 1	似于对角统	矩阵,则	a =	, b = _		, c =	<u> </u> •
9. 实	矩阵	-2 0 0 3 0 1	$\begin{bmatrix} 0 \\ a \\ 3 \end{bmatrix} = \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix}$	0 0 b 0 0 c	同的充分。	必要条件是	是 a		
b					. <i>c</i>				

10. 设 n 阶方阵 A 的秩为 1, tr(A) = 2, 则满足 $A^2 = kA$ 的实数 $k = ___$

二.
$$(6 分)$$
设 $\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 0 \\ 6 \end{pmatrix}$. 求向量组 α_1 , α_2 , α_3 , α_4 的秩以及一个极大无关组.

三.
$$(14 \, f)$$
 设线性方程组
$$\begin{cases} x_1 + x_2 & +x_3 + 5x_4 = 2, \\ x_2 & +3x_4 = 1, \\ x_1 & +(a+1)x_3 + 2x_4 = b, \\ -x_1 & -x_3 - 2x_4 = a - 1 \end{cases}$$
 有无穷多解,求参数 a, b 的值,

并求该方程组的通解(要求写成向量的形式).

四.
$$(8 \text{ } \%)$$
设 $\mathbf{B} = \begin{pmatrix} \mathbf{A} & \mathbf{E} \\ \mathbf{E} & \mathbf{O} \end{pmatrix}$, 其中 $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}$, $\mathbf{E} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, 求矩阵 \mathbf{X} 使得 $\mathbf{B}\mathbf{X} = \mathbf{B}^{\mathsf{T}}$.

五.
$$(12 分)$$
设 $\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$.

1. 求 A 的特征值和特征向量.

2. 求标准正交向量组 α_1 , α_2 , α_3 和实数 k_1 , k_2 , k_3 使得 $A = k_1 \alpha_1 {\alpha_1}^{\mathrm{T}} + k_2 \alpha_2 {\alpha_2}^{\mathrm{T}} + k_3 \alpha_3 {\alpha_3}^{\mathrm{T}}$.

六.
$$(12 分)$$
设二次型 $f(x) = x^{T}Ax$, 其中 $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1+a & a \\ 0 & a & 1 \end{pmatrix}$, $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$.

1. 用配方法把二次型f(x)化为标准形,并写出所用的可逆线性变换x = Py.

2. 分别就实数 a 的不同取值范围讨论二次曲面 f(x) = 1 的类型.

七. (8 分)设曲线 c 是曲面 $x^2 - 2xy + y^2 - z - 1 = 0$ 与 yOz 平面的交线, S 是曲线 c 绕 z 轴旋转一周得到的曲面.

1. 求曲线 c 的方程.

2. 求曲面 S 的方程.

3. 在上面的直角坐标系中绘制曲面 S 的草图(要求标出曲线 c 以及 S 与 xOy 平面的交线).

八. 证明题(每小题 5 分, 共 10 分)

1. 设平面 π_i : $A_i x + B_i y + C_i z = D_i$ 的法向量 $\vec{n}_i = (A_i, B_i, C_i)$, i = 1, 2, 3 。证明: 三平面 π_1, π_2, π_3 交于一点的充分必要条件是它们的法向量 $\vec{n}_1, \vec{n}_2, \vec{n}_3$ 不共面.

2. 设 $A = (a_{ij})_{3\times 3}$ 为非零实矩阵, a_{ij} 的代数余子式为 A_{ij} . 若对于任意的 i, j = 1, 2, 3,有 $A_{ij} = a_{ij}$,证明: A 为正交阵.