WHAT IS CLAIMED IS:

1. A silver halide photographic light-sensitive material comprising a silver halide photographic emulsion containing a silver halide grain, wherein the silver halide photographic emulsion includes a dye chromophore adsorbed in multiple layers on the surface of the silver halide grain, and at least one of compounds containing the dye chromophore is Dye X satisfying Condition 1 represented by the following formula (1):

 $\{Agg(Dye\ X)/Agg(Dye\ 1)\} \ge 1.1$ wherein $Agg(Dye\ 1)$ represents an aggregation property of the following Dye 1 and $Agg(Dye\ X)$ represents an aggregation property of Dye X: Dye 1:

2. A silver halide photographic light-sensitive material comprising a silver halide photographic emulsion containing a silver halide grain, wherein the silver halide photographic emulsion includes a dye chromophore adsorbed in multiple layers on the surface of the silver halide grain, and at least one of compounds containing the dye

chromophore is Dye X satisfying Condition 2 represented by the following formula (2):

 $\{\log P(\text{Dye X})/\log P(\text{Dye 1})\} \ge 1.1$

wherein logP(Dye 1) represents a hydrophilicity/hydrophobicity of the following Dye 1 and logP(Dye X) represents a hydrophilicity/hydrophobicity of Dye X: Dye 1:

3. A silver halide photographic light-sensitive material comprising a silver halide photographic emulsion containing a silver halide grain, wherein the silver halide photographic emulsion includes a dye chromophore adsorbed in multiple layers on the surface of the silver halide grain, and at least one of compounds containing the dye chromophore is Dye X satisfying Condition 3 represented by the following formula (3):

 $\{ J-Agg(Dye\ X)/J-Agg(Dye\ 1) \} \geq 1.1$ wherein J-Agg(Dye 1) represents a J-aggregation property of the following Dye 1 and J-Agg(Dye X) represents a J-aggregation property of Dye X:

Dye 1:

4. A silver halide photographic light-sensitive material comprising a silver halide photographic emulsion containing a silver halide grain, wherein the silver halide photographic emulsion includes a dye chromophore adsorbed in multiple layers on the surface of the silver halide grain, and at least one of compounds containing the dye chromophore is Dye X satisfying all of Conditions 1 to 3 represented by the following formulas (1) to (3), respectively:

Condition 1:

Formula (1)

 $\{Agg(Dye X)/Agg(Dye 1)\} \ge 1.1$

wherein Agg(Dye 1) represents an aggregation property of the following Dye 1 and Agg(Dye X) represents an aggregation property of Dye X,

Condition 2:

Formula (2)

 $\{\log P(Dye X)/\log P(Dye 1)\} \ge 1.1$

wherein logP(Dye 1) represents a hydrophilicity/hydro-

phobicity of the following Dye 1 and logP(Dye X) represents a hydrophilicity/hydrophobicity of Dye X,

Condition 3:

Formula (3)

 ${J-Agg(Dye X)/J-Agg(Dye 1)} \ge 1.1$

wherein J-Agg(Dye 1) represents a J-aggregation property of the following Dye 1 and J-Agg(Dye X) represents a J-aggregation property of Dye X:

Dye 1:

- 5. The silver halide photographic light-sensitive material as described in claim 1, wherein in the silver halide photographic emulsion, tabular silver halide grains having an aspect ratio of 2 or more occupy 50% (area) or more of all silver halide grains in the emulsion.
- 6. The silver halide photographic light-sensitive material as described in claim 2, wherein in the silver halide photographic emulsion, tabular silver halide grains having an aspect ratio of 2 or more occupy 50% (area) or more of all silver halide grains in the emulsion.

- 7. The silver halide photographic light-sensitive material as described in claim 3, wherein in the silver halide photographic emulsion, tabular silver halide grains having an aspect ratio of 2 or more occupy 50% (area) or more of all silver halide grains in the emulsion.
- 8. The silver halide photographic light-sensitive material as described in claim 4, wherein in the silver halide photographic emulsion, tabular silver halide grains having an aspect ratio of 2 or more occupy 50% (area) or more of all silver halide grains in the emulsion.
- 9. The silver halide photographic light-sensitive material as described in claim 1, wherein the silver halide photographic emulsion is subjected to a selenium sensitization.
- 10. The silver halide photographic light-sensitive material as described in claim 2, wherein the silver halide photographic emulsion is subjected to a selenium sensitization.
- 11. The silver halide photographic light-sensitive material as described in claim 3, wherein the silver halide

photographic emulsion is subjected to a selenium sensitization.

- 12. The silver halide photographic light-sensitive material as described in claim 4, wherein the silver halide photographic emulsion is subjected to a selenium sensitization.
- 13. A silver halide photographic light-sensitive material comprising a silver halide photographic emulsion containing a silver halide grain, wherein the silver halide photographic emulsion includes a dye chromophore adsorbed in multiple layers on the surface of the silver halide grain, and at least one of compounds containing the dye chromophore is a dye represented by the following formula (E):

M₂₀₁m₂₀₁

wherein Z_{201} and Z_{202} each represents an oxygen atom, a sulfur atom, a selenium atom or a nitrogen atom, V_{201} represents a 5-membered aromatic heterocyclic ring, V_{202} represents a substituent, P_{202} represents 0, 1, 2, 3 or 4,

 R_{201} and R_{202} each represents an alkyl group, an aryl group or a heterocyclic group, L_{201} , L_{202} and L_{203} each represents a methine group, n_{201} represents 0 or 1, M_{201} represents an electric charge balancing counter ion, and m_{201} represents a number of 0 to more necessary for neutralizing the electric charge of the molecule.

14. A silver halide photographic light-sensitive material comprising a silver halide photographic emulsion containing a silver halide grain, wherein the silver halide photographic emulsion includes a dye chromophore adsorbed in multiple layers on the surface of the silver halide grain, and at least one of compounds containing the dye chromophore is a dye represented by the following formula (F):

$$Z_{2} = C$$

$$C - N - (L_{1} - L_{2})$$

$$R_{1}$$

$$M1m1$$

wherein Z_1 represents an atomic group necessary for forming a nitorgen-containing 5- or 6-membered heterocyclic ring,

 Z_2 represents an atomic group necessary for forming aromatic ring or aliphatic ring, and necessary for forming a 4 membered or more multi-cyclic condensed ring together with the nitorgen-containing 5- or 6-membered heterocyclic ring formed by Z_1 , Q represents a group necessary for forming a methine dye as the compound represented by the formula (F) forms a methine dye, R_1 represents an alkyl group, an aryl group or a heterocyclic group, each of which is substituted by one of an acidic group and a group having a positive electric charge, L_1 and L_2 each represents a methine group, pl represents 0 or 1, M_1 represents an electric charge balancing counter ion, and m_1 represents a number of 0 to more, necessary for neutralizing the electric charge of the molecule.

15. The silver halide photographic light-sensitive material as described in claim 14, the dye represented by the formula (F) is represented by the following formula (F1):

$$(X_{301})_{h301}$$
 $(X_{302})_{i301}$ $(X_{302})_{i301}$ $(X_{301})_{h301}$ $(X_{302})_{h301}$ $(X_{302})_{$

wherein Z₃₀₁ and Z₃₀₂ each represents an oxygen atom, a sulfur atom, a selenium atom or a nitrogen atom, X₃₀₁ and X₃₀₂ each represents a substituent of the dibenzofuran ring, V₃₀₁ represents a substituent, R₃₀₁ represents an alkyl group, an aryl group or a heterocyclic group, each of which is substituted by one of an acidic group and a group having a positive electric chargeis substituted, L₃₀₁, L₃₀₂ and L₃₀₃ each represents a methine group, n₃₀₁ represents 0 or 1, h₃₀₁ represents 0, 1, 2, 3 or 4, i₃₀₁ represents 0, 1 or 2, j₃₀₁ represents 0, 1, 2, 3 or 4, M₃₀₁ represents an electric charge balancing counter ion, and m₃₀₁ represents a number of 0 to more, necessary for neutralizing the electric charge of the molecule.

16. A silver halide photographic light-sensitive material comprising a silver halide photographic emulsion containing a silver halide grain, wherein the silver halide photographic emulsion includes a dye chromophore adsorbed in multiple layers on the surface of the silver halide grain, and at least one of compounds containing the dye chromophore is a dye represented by the following formula (G):

R1a
$$-Z1a$$
 $C = Qa$

$$\begin{array}{c} C = Qa \\ L1a = L2a \\ p1a \end{array}$$

Miamia

wherein Z1a represents an atomic group necessary for forming a nitorgen-containing 5- or 6-membered heterocyclic ring, which may be condensed with a ring, Xa represents a substituted or unsubstituted benzofuran ring, L1a and L2a each represents a methine group, pla represents 0 or 1, Qa represents a group necessary for forming a methine dye as the compound represented by the formula (G), R1a represents an alkyl group, an aryl group or a heterocyclic group, M1a represents an electric charge balancing counter ion, and m1a represents a number of 0 to more, necessary for neutralizing the electric charge of the molecule.