

it moves to the position shown in Figure 26C, it is in communication with the orifice 314. Again, the piston is at its minimum rate of axial movement as it passes the top-dead center and the continued displacement of fluid can be accommodated within the chamber 68a. At the position shown in Figure 26D, the piston has gone past top-dead center and is being moved towards bottom-dead center. In this position however, it is not in communication with the low pressure kidney port 300 and the residual pressure within the chamber 68a replenishes the fluid within the cylinder to avoid cavitation. As the barrel continues to rotate, the cylinder is put into communication with the low pressure port and the fluid is drawn into the cylinder.

[0087] It will be seen therefore that as the barrel 40a rotates, the pistons are alternatively connected to pressure and section ports 302, 300 and that the spacing of the ports is such as to inhibit leakage between the high pressure and low pressure chambers. The provision of the restricted orifice 314 together with the balancing chamber 68a accommodates the small change in volume as the pistons go over bottom-dead center or top-dead center as well as providing a balancing force to maintain the port plate against the end of the barrel 40a. The undercut 310 provides a relatively unrestricted ingress of fluid into the cylinders to enhance the efficiency of the machine and inhibit cavitation.