University Physics with Modern Physics -Modern Physics by Young and Freedman Notes

Chris Doble

June 2023

Contents

17	Tem	nperature and Heat		1
		Temperature and Thermal Equilibrium		_
		2 Thermometers and Temperature Scales		
		Gas Thermometers and the Kelvin Scale		
		Thermal Expansion		
		S Quantity of Heat		
		6 Calorimetry and Phase Changes		
		7 Mechanisms of Heat Transfer		
18	The	ermal Properties of Matter		6
		Equations of State		. 6
		2 Molecular Properties of Matter		
		3 Kinetic-Molecular Model of an Ideal Gas		
		Heat Capacities		
		5 Molecular Speeds		
		6 Phases of Matter		

17 Temperature and Heat

17.1 Temperature and Thermal Equilibrium

- The **zeroth law of thermodynamics** states: If C is initially in thermal equilibrium with both A and B, then A and B are also in thermal equilibrium with each other.
- Two systems are in thermal equilibrium iff they have the same temperature.

17.2 Thermometers and Temperature Scales

- Water freezes at 0°C or 32°F and boils at 100°C or 212°F.
- A temperature measurement is denoted x° C ("x degrees Celsius") whereas a temperature interval is denoted x° C ("x Celsius degrees").

17.3 Gas Thermometers and the Kelvin Scale

- Under the Kelvin temperature scale temperature differences are equal
 to those of the degrees Celsius scale, but the zero is equal to −273.15°C.
 This is known as absolute zero where molecules have their lowest possible
 kinetic and potential energies.
- The ratio of two temperatures in the Kelvin scale equals the ratio of the corresponding pressures in a constant-volume gas thermometer

$$\frac{T_2}{T_1} = \frac{p_2}{p_1}.$$

17.4 Thermal Expansion

- Materials expand when their temperatures increase.
- Expansion in a single dimension is described by the equation

$$\Delta L = \alpha L_0 \Delta T$$

where ΔL is the change in length, α is the **coefficient of linear expansion**, L_0 is the original length, and ΔT is the change in temperature.

• Expansion in three dimensions (volume expansion) is described by the equation

$$\Delta V = \beta V_0 \Delta T$$

where ΔV is the change in volume, β is the **coefficient of volume expansion** (equal to 3α), V_0 is the original volume, and ΔT is the change in temperature.

• If the ends of a material are fixed in place, changes in temperature can induce **thermal stresses** that can damage the material. The magnitude of these stresses is given by

$$\frac{F}{A} = -Y\alpha\Delta T.$$

17.5 Quantity of Heat

- Energy transferred as a result of a temperature difference is called **heat**.
- The **specific heat** of a material is the amount of energy required to raise the temperature of one unit of mass of the material by one unit of temperature, e.g. 1 kg by 1 K. It has units like J/(kg K).
- The specific heat of water is

$$4190 \,\mathrm{J/(kg\,K)}$$
 or $1 \,\mathrm{cal/(g\,C^\circ)}$.

• The energy required to change the temperature of a material is given by

$$Q = mc\Delta T$$

where m is the mass of the material, c is its specific heat, and ΔT is the change in temperature.

- The **molar mass** of a substance is the mass of one mole.
- ullet The total mass of a material m is equal to the mass per mole M times the number of moles n

$$m = nM$$
.

• The energy required to change the temperature of a certain number of moles of a substance is

$$Q = nC\Delta T$$

where C = Mc is the **molar heat capacity**.

17.6 Calorimetry and Phase Changes

- A phase is a specific state of matter, e.g. solid, liquid, or gas.
- A phase change or phase transition is a transition from one phase to another.
- For a given pressure, phase change takes places at a definite temperature.
- While a substance is undergoing a phase change, any added or removed energy will affect the progress of the phase change but won't change the temperature.

Phase of water changes. During these periods, temperature stays constant and the phase change proceeds as heat is added: Q = +mL.

Temperature of water changes. During these periods, temperature rises as heat is added: $O = mc \Delta T$.

 $a \rightarrow b$: Ice initially at -25° C is warmed to 0° C. $b \rightarrow c$: Temperature remains at 0° C until all ice melts. $c \rightarrow d$: Water is warmed from 0° C to 100° C. $d \rightarrow e$: Temperature remains at 100° C until all water vaporizes. $e \rightarrow f$: Steam is warmed to temperatures above 100° C.

• The heat transfer required for a material to undergo a phase change is given by

$$Q = \pm mL$$

where the \pm indicates that heat may need to be added or removed depending on the direction of the phase change (e.g. energy must be added to melt ice), m is the mass of the material, and L is the latent heat associated with the phase change.

- When a material is freezing or melting, $L=L_f$ the **latent heat of fusion**.
- When a material is condensing or vaporising, $L = L_v$ the **latent heat of vaporisation**.
- When a material sublimates (changes directly from a solid to a gas, skipping liquid) or deposits/desublimates (changes directly from a gas to a solid, skipping liquid), $L = L_s$ the **latent heat of sublimation**.
- When a material burns, $L = L_c$ the latent heat of combustion.
- For any given material at any given pressure, the freezing temperature is
 the same as the melting temperature. This is called **phase equilibrium**.
 Similarly the condensing temperature is the same as the vaporisation temperature.

17.7 Mechanisms of Heat Transfer

- Conduction is a mechanism of heat transfer where the molecules in an area of high temperature have greater kinetic energy, they bump neighboring molecules which increases their kinetic energy, and so on spreading the heat through the material.
- The direction of heat flow is always from higher to lower temperature.

• When a quantity of heat dQ is transferred through a material in time dt we say the rate of heat flow or the **heat current** is

$$H = \frac{dQ}{dt}.$$

• If a rod has cross sectional area A, length L, one end is held at temperature T_H , and the other is held at T_C where $T_H > T_C$, the heat current is

$$H = \frac{dQ}{dT} = kA\frac{T_H - T_C}{L}$$

where k is the **thermal conductivity** of the material and $(T_H - T_C)/L$ is the temperature difference per unit length or the magnitude of the **temperature gradient**.

- **Convection** is the transfer of heat by mass motion of fluid from one region of space to another, e.g. ducted cooling/heating. If the fluid is circulated by a blower or a pump the process is called **forced convection**; if the flow is caused by differences in density due to thermal expansion, such as hot air rising, the process is called **free convection**.
- Radiation is the transfer of heat by electromagnetic waves such as visible light, infrared, and ultraviolet radiation.
- \bullet The wavelength of the radiation depends on temperature. At 20 °C the radiation is infrared. At 800 °C the radiation is red. At 3000 °C the radiation is white.
- The **Stefan-Boltzmann law** gives the rate of energy radiation from a surface

$$H = Ae\sigma T^4$$

where A is its surface area, e is a dimensionless constant between 0 and 1 called the **emissivity** of the surface (1 would be a perfect radiator), σ is the **Stefan-Boltzmann constant**

$$\sigma = 5.67037442 \times 10^{-8} \,\mathrm{W/(m^2 \, K^4)},$$

and T is the temperature in Kelvin.

• An object's surroundings also emit radiation which is absorbed by the object. The net heat current from the object is this

$$H = Ae\sigma(T^4 - T_s^4)$$

where T_s is the temperatue of the surroundings. At thermal equilibrium there is no heat flow.

• An object that is a good absorber must also be a good emitter. An ideal radiator with e=1 is also an ideal absorber, absorbing all the radiation that hits it. Such a surface is called an **ideal black body** or a **blackbody**.

18 Thermal Properties of Matter

18.1 Equations of State

- Quantities such as pressure, volume, temperature, and amount of substance are called **state variables**.
- An equation that relates state variables is called an **equation of state**.
- Molar mass (i.e. the mass of one mole of a substance) is sometimes called **molecular weight**.
- The ideal gas equation relates the absolute pressure p, volume V, number of moles n, and absolute temperature (in Kelvin) T

$$pV = nRT$$

or

$$pV = \frac{m_{\rm total}}{M}RT$$

or

$$pV = NkT$$

where R is the gas constant

$$R = 8.314 \,\mathrm{J/(mol\,K)}.$$

• If the amount of a gas is contant, i.e. nR is constant, then

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} = \text{constant.}$$

- Standard temperature and pressure (STP) is defined as 0 °C and 1 atm.
- The van der Waals equation extends the ideal gas law to account for the effects of interactions between gas molecules and their finite size

$$\left(p + \frac{an^2}{V^2}\right)(V - nb) = nrT$$

where a and b are constants that vary between gases, a depends on the strength of attractive forces between the molecules, and b depends on the volume of the molecules.

- A pV-diagram is a two-dimensional diagram plotting pressure as a function of volume. Each line, called an **isotherm**, describes the relationship between pressure and volume at a particular temperature.
- \bullet In the pV-diagrams of non-ideal gases, isotherms can have flat areas. These represent periods where the gas is condensing into a liquid.
- ullet The area under a pV-curve represents the work done by the system during a volume change.

18.2 Molecular Properties of Matter

- The force between molecules in a gas varies with r.
- An ideal gas is one whose molecules exert no attractive forces on each other and thus have no potential energy.
- The number of molecules in a mole is given by **Avagadro's number**

$$N_A = 6.02214076 \times 10^{23} \text{ molecules/mol.}$$

18.3 Kinetic-Molecular Model of an Ideal Gas

• The average translational kinetic energy of an ideal gas is

$$K_{\rm tr} = \frac{3}{2}nRT.$$

• The Boltzmann constant is

$$k = \frac{R}{N_A} = 1.381 \times 10^{-23} \,\text{J/(molecule K)}.$$

• The average translational kinetic energy of a gas molecule is

$$\frac{1}{2}m(v^2)_{\rm av} = \frac{3}{2}kT$$

and thus the root-mean-square speed of a gas molecule is

$$v_{\rm rms} = \sqrt{(v^2)_{\rm av}} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}}$$

where m is the mass of a molecule and M is the molar mass.

• The average distance travelled by a particle between collisions is called the **mean free path**

$$\lambda = \frac{V}{4\pi\sqrt{2}r^2N} = \frac{kT}{4\pi\sqrt{2}r^2p}$$

where V is the volume of the gas, r is the radius of a gas molecule, N is the number of molecules in the gas, T is its temperature, and p is its volume.

18.4 Heat Capacities

• The molar heat capacity at constant volume of a particular gas is determined by its degrees of freedom, i.e. the number of ways in which it can store kinetic energy.

- Monatomic gases have three degrees of freedom: one for each translational axis.
- Diatomic gases have five degrees of freedom: one for each translational axis and two for rotational axes (the third is excluded because it's not affected by collisions).
- Polyatomic gases have more than five degrees.
- The principle of equipartition of energy states that each degree of freedom contributes $\frac{1}{2}kT$ to the average kinetic energy of the gas, i.e. for monatomic gases the average kinetic energy per molecule is $\frac{3}{2}kT$, for diatomic $\frac{5}{2}kT$, etc.
- The molar heat capacity at constant volume of a gas is equal to

$$C_V = \frac{d}{2}R$$

where d is the number of degrees of freedom.

- Vibrational energy can also contribute to the molar heat capacity at constant volume, but for most diatomic molecules this isn't the case.
- Molar heat capacity at constant volume is temperature dependent, with rotational and vibrational degrees of freedom only coming in to play at higher temperatures.
- Crystalline solids, i.e. solids whose atoms are arranged in a threedimensional matrix, have six degrees of freedom: three translational and three from the potential energy of intermolecular forces. This results in the **rule of Dulong and Petit** which states that the molar heat capacity at constant volume of an ideal monatomic solid is

$$V_C = 3R$$
.

18.5 Molecular Speeds

- In regards to the speeds of molecules in a gas, a **distribution function** f(v) gives the probability per unit speed of finding a particle with a speed near v. That is, the area under the curve between $f(v_1)$ and $f(v_2)$ gives the probability of finding a particle with speed in that range.
- The Maxwell-Boltzmann distribution is a particular distribution function

$$f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-mv^2/2kT}$$

where m is the mass of a molecule, T is the absolute temperature of the gas, and v is the molecular speed.

• The peak of the curve and thus the most probable speed occurs at

$$v_{\rm mp} = \sqrt{\frac{2kT}{m}}.$$

• The average speed is

$$v_{\rm av} = \sqrt{\frac{8kT}{\pi m}}.$$

• The rms speed is

$$v_{\rm rms} = \sqrt{\frac{3kT}{m}}.$$

18.6 Phases of Matter

- A pT phase diagram is a two-dimensional graph with pressure p on the vertical axis and temperature T on the horizontal axis. The plane is separated into three distinct regions: one for each phase of the material (solid, liquid, and gas).
- The borders between regions represent points of **phase equilibrium** where both phases can coexist at the same pressure and temperature.
- The **fusion curve** separates the solid and liquid regions.
- The vaporisation curve separates the liquid and gas regions.
- The **sublimation curve** separates the solid and gas regions.
- The three curves meet at the **triple point** the only conditions under which all three phases can coexist.
- The vaporisation curve ends at the **critical point**. As the pressure and temperature of a substance approaches those of its critical point the physical differences between the liquid and gas phases decrease. At the critical point there are no differences and a substance whose pressure or temperature is gradually decreased won't undergo a phase transition instead its properties will continuously change from those of a gas to those of a liquid or vice versa.