

Redes de Computadores

Licenciatura em Engenharia Informática (LEI)
Licenciatura em Engenharia Eletrotécnica e de Computadores (LEEC)

Atividade Laboratorial nº 5:

Configuração e Teste de *Virtual Local Area Networks* (VLANs) e Routing Inter-VLAN

ESTSetúbal/IPS, ano letivo 2020/2021 (v2)

ÍNDICE

1.	In	trodução	3
2.	In	trodução às VLAN's	3
		Para que serve uma VLAN	
	2.2.	Tráfego entre VLANs	4
3.	Cr	riação de VLANs nos Switches	5
		Desenho e Configuração de uma Rede Base de Teste	
		Configuração de VLANs nos Switches	
4.	Ro	outing Inter-VLAN	7
		Configuração do router para permitir encaminhamento entre	
		VLANs	9
	4.2.	Backup das configurações dos dispositivos de rede	9
5.		esumo dos comandos	
6.	Re	elatório	10

1. INTRODUÇÃO

Este trabalho de laboratório tem como objetivo fundamental a configuração de Redes Locais Virtuais (*Virtual Local Area Networks* - VLANs) nos switches e a configuração do router para permitir a interligação entre VLANs.

Num primeiro capítulo, de índole mais teórica, apresentam-se diversos aspetos relacionados com a utilidade e operação de VLANs, assim como o modo de comunicação e encaminhamentos das mensagens entre VLANs.

Na parte prática, será configurada uma rede de 2 switches e um router. Nos switches configuram-se as VLANs e as interfaces de ligação aos postos de trabalho. Os postos são configurados consoante as VLANs a que pertencem. Testa-se a conectividade entre postos sem a ligação ao router. Introduz-se um router na rede e configura-se o seu hostname e os endereços IP de gateway das VLANs. Depois da rede estar configurada, testa-se a conectividade entre os postos pertencentes a VLANs diferentes.

Por fim, realiza-se uma cópia de segurança da configuração dos equipamentos para um ficheiro de texto.

2. Introdução às VLANs

Uma importante função da comutação *Ethernet* é a capacidade de criar LANs virtuais (*Virtual LANs* ou VLANs). Uma VLAN é um grupo lógico de estações de rede, serviços e dispositivos de rede que não está limitado a um segmento físico de LAN. As VLANs são criadas para segmentar os serviços e/ou grupos de trabalho.

2.1. Para que serve uma VLAN

As VLANs segmentam logicamente as redes físicas com base em grupos de trabalho, departamentos ou equipas. A criação de VLANs considera a funcionalidade do grupo de utilizadores, ignorando a sua localização física. Todas as estações de trabalho e servidores usados por um grupo de trabalho específico partilham a mesma VLAN (ver Figura 1).

Figura 1 – Topologia Física de uma Rede com VLANs.

2.2. Tráfego entre VLANs

O tráfego entre VLANs é restrito apenas aos postos que pertencem à VLAN. Os switches fazem o confinamento do tráfego *unicast, multicast* e *broadcast* apenas em segmentos que servem a VLAN. Por outras palavras, os dispositivos numa VLAN só comunicam com dispositivos que estão na mesma VLAN. Apenas os routers fornecem capacidade de conectividade entre diferentes VLANs.

As VLANs aumentam o desempenho global da rede através do agrupamento lógico de utilizadores e recursos. Por exemplo, os utilizadores do departamento de *Marketing* de uma empresa, são colocados na VLAN de *Marketing*, enquanto os utilizadores do departamento de Engenharia ficam na VLAN de Engenharia.

As VLANs podem melhorar a escalabilidade, segurança e a gestão da rede. Facilitam também a administração da transferência, adição e alteração dos membros desses grupos.

3. CRIAÇÃO DE VLANS NOS SWITCHES

Em seguida, apresentam-se as atividades práticas a desenvolver neste laboratório.

Deve registar as capturas de ecrã pedidas, efetuar comentários às mesmas e responder às questões colocadas. Mais tarde, deve elaborar um relatório seguindo as recomendações dadas na última secção deste guia.

3.1. Desenho e Configuração de uma Rede Base de Teste

Desenhe no Packet Tracer a rede apresentada na Figura 2. Utilize os switches 2950-24.

Figura 2 – Rede de Teste Base.

Configure os nomes (*display* e *hostname*) dos PCs e Switches. Configure os endereços IP, as máscaras de rede e os *default gateways* dos PCs, utilizando os registados na Tabela 1. Repare que **Contab1** e **Contab2** pertencem à mesma rede (192.168.1.x /24), **DRH1** e **DRH2** pertencem a outra rede (192.168.2.x /24) e a gestão dos switches pertencem uma terceira rede (192.168.3.x /24).

rabela I – rabela de Lildereçamento IF.							
Nome do Equipamento	Interface	Endereço IP	Máscara de Rede	Gateway			
Switch0	VLAN1	192.168.3.10	255.255.255.0	192.168.3.1			
Switch1	VLAN1	192.168.3.20	255.255.255.0	192.168.3.1			
Contab1	NIC	192.168.1.10	255.255.255.0	192.168.1.1			
Contab2	NIC	192.168.1.20	255.255.255.0	192.168.1.1			
DRH1	NIC	192.168.2.10	255.255.255.0	192.168.2.1			
DRH2	NIC	192.168.2.20	255.255.255.0	192.168.2.1			

Tabela 1 – Tabela de Endereçamento IP.

⁻ Página 5 de 11 -

3.2. Configuração de VLANs nos Switches

Verifique quais as VLANs existentes no SwitchO, através do comando:

```
Switch0# show vlan
```

Que portas pertencem à VLAN 1?

Criação da VLAN 10 e atribuição de nome:

```
Switch0(config) # vlan 10
Switch0(config-vlan) # name Contab
Switch0(config-vlan) # ^Z (Tecla controlo + tecla z)
```

Proceda de forma semelhante para a **VLAN 20**, com o nome **DRH**. Registe os comandos utilizados.

Configure o endereço de gestão do SwitchO para se poder efetuar a gestão remota:

```
Switch(config) # interface VLAN 5
Switch(config-if) # ip address 192.168.3.10 255.255.255.0
Switch(config-if) # no shutdown
Switch(config-if) # exit
Switch(config) # ip default-gateway 192.168.3.1
```

Digite os seguintes comandos no Switch0 para adicionar a porta 1 e as portas 5 a 10 à VLAN 10:

```
! configuração da porta 1 do switch
Switch0# configure terminal
Switch0(config)# interface F0/1
Switch0(config-if)# switchport mode access
Switch0(config-if)# switchport access vlan 10
Switch0(config-if)# ^Z
! Configuração da gama de portas entre 5 e 10
Switch0# configure terminal
Switch0(config)# interface range F0/5 - 9
Switch0(config-if)# switchport mode access
Switch0(config-if)# switchport access vlan 10
Switch0(config-if)# ^Z
```

Proceda de forma semelhante para a VLAN 20, atribuindo-lhe as portas 2 e a gama entre as portas 10 e 15.

Digite o comando show vlan no switch0. Registe as atribuições das portas às VLANs.

Configure as VLANs e o endereço IP de gestão do **Switch1**. Registe os comandos utilizados.

Configure as VLANs e as portas atribuídas no **Switch1**. Registe os comandos utilizados. Digite o comando show vlan no **Switch1**. Registe as atribuições das portas às VLANs.

Teste das VLANs

- ✓ Execute um ping do posto Contab1 para o posto Contab2 e anote o resultado.
- ✓ Execute um ping do posto DRH1 para o posto DRH2 e anote o resultado.
- ✓ Execute um ping do posto Contab1 para o posto DRH1 e anote o resultado.

Comente os resultados obtidos.

Criação de ligações trunk entre switches

Como verificou, não existe conectividade na rede. Para que haja comunicação entre os switches, é necessário criar portas *trunk* entre eles, para que o tráfego das VLANs comunique entre os switches. Introduza os seguintes comandos no **Switch0** e no **Switch1**:

```
Switch0(config) # interface F0/24
Switch0(config-if) # switchport mode trunk
```

Volte a testar a conectividade entre os postos de trabalho e comente o resultado.

Adicione um posto de trabalho DRH3 no Switch0, na VLAN DRH. Escolha um endereço IP compatível e teste a conectividade para outros *hosts* na VLAN DRH.

4. ROUTING INTER-VLAN

Como verificou anteriormente através dos comandos ping, não foi possível realizar o encaminhamento entre VLANs diferentes. Este facto verifica-se porque os postos pertencem a redes IP diferentes, e apenas os routers podem encaminhar mensagens entre redes diferentes.

Para realizar o encaminhamento entre VLANs diferentes, deve adicionar um router (modelo 1841) na rede e ligá-lo da forma indicada na Figura 3.

Figura 3 – Rede de Teste Completa.

O router apenas tem uma ligação física ao switch mas, no entanto, terá de transportar o tráfego de 3 redes diferentes. Para o conseguir, teremos de **transformar a interface física do router em várias interfaces virtuais**, uma para cada VLAN/rede.

A porta do switch que liga ao router terá de ser configurada do tipo *trunk*. Crie a ligação trunk na porta 23 do Switch1, indicando os comandos utilizados.

Tabela 2 – Tabela de Endereçamento IP do router.

Nome do Equipamento	Interface virtual	Endereço IP	Máscara de Rede	Observações
	F0/0.5	192.168.3.1	255.255.255.0	VLAN 5 / Switches
R1	F0/0.10	192.168.1.1	255.255.255.0	VLAN 10 / Contab
	F0/0.20	192.168.2.1	255.255.255.0	VLAN 20 / DRH

4.1. Configuração do router para permitir encaminhamento entre VLANs

Configure interface e subinterfaces f0/0 do *router* para serem os *gateways* por omissão das diferentes VLAN's, de acordo com a Tabela 2. Explique o que se pretende com cada comando.

```
Router(config) # interface f0/0
Router(config-if) # no shutdown
Router(config-if) # interface f0/0.10
Router(config-subif) # encapsulation dot1q 10
Router(config-subif) # ip address 192.168.1.1 255.255.255.0
Router(config-if) # interface f0/0.20
Router(config-subif) # encapsulation dot1q 20
Router(config-subif) # ip address 192.168.2.1 255.255.255.0
Router(config-if) # interface f0/0.5
Router(config-subif) # encapsulation dot1q 5
Router(config-subif) # encapsulation dot1q 5
Router(config-subif) # ip address 192.168.3.1 255.255.255.0
Router(config-subif) # end
```

Testes de conetividade

- Faça ping dos PCs para o seu *gateway* por omissão. Comente o resultado.
- Faça Ping entre PCs na mesma VLAN. Comente o resultado.
- Faça Ping entre PCs de VLANs diferentes. Comente o resultado.
- A partir do Contab1 (ou DRH1) faça ping para o IP de gestão de cada switch e comente o resultado.

Em caso de algum dos pings ter falhado deve tentar perceber o que está errado. Comece por verifique se os PCs estão ligados às VLANs corretas, se o *gateway* por omissão definido é o adequado.

De notar que para permitir a conectividade desta rede ao exterior, faltará apenas configurar a outra porta do router com os dados fornecidos pelo ISP.

4.2. Backup das configurações dos dispositivos de rede

Existem essencialmente duas formas de efetuar um *backup* da configuração de um dispositivo de rede. Uma delas é gravar o ficheiro de configuração num ficheiro de texto

e outra será gravá-lo num servidor de TFTP. Neste laboratório vamos apenas fazer o backup num ficheiro de texto.

Os programas de emulação de terminal, que utilizamos para ligar à porta de consola (ou ligação virtual) dos equipamentos, permitem a gravação de um ficheiro de texto com o conteúdo da startup-config ou a running-config. No Packet Tracer também é possível efetuar um procedimento semelhante.

Inicie o Notepad (Bloco de notas) e abra o ficheiro de texto com a configuração gravada e insira de forma manual o comando no shutdown na interface FO/O. Anexe este ficheiro no relatório entregue.

Para restituir o ficheiro de configuração do equipamento, deve escolher a opção **Startup-config → Load**. Para esta configuração ter efeito, deve dar o comando reload no router. Depois do router arrancar, teste a conetividade entre equipamentos.

5. RESUMO DOS COMANDOS

Elabore uma lista com os comandos utilizados neste laboratório, indicando qual a função de cada comando.

Comando	Função

6. RELATÓRIO

Deve elaborar um relatório sucinto do trabalho realizado no laboratório. O relatório deve ser constituído por:

- uma breve introdução;
- uma descrição da realização prática, incluindo as imagens pedidas e respondendo às questões levantadas no enunciado;
- uma secção de conclusões.

Não deve incluir descrições teóricas sobre os temas/assuntos tratados. Utilize o modelo (*template*) disponível no Moodle.

Crie um ficheiro compactado (extensão ZIP ou RAR) onde coloca o **relatório** (em formato pdf), o **ficheiro** final do Packet Tracer e o ficheiro de texto de *backup* da configuração do router. Será esse ficheiro compactado que submeterá no Moodle.

Deve entregar o relatório no Moodle, no prazo de 1 semana em relação à realização da conclusão do trabalho no laboratório. Por cada semana de atraso são descontados 2 valores na nota do relatório.

Este relatório deve ter uma dimensão máxima de 12 páginas, excluindo a capa.