Scilab Textbook Companion for Hydraulics by J. Lal¹

Created by
Sashank Konete
Fluid Mechanics
Chemical Engineering
IIT Bombay
College Teacher
Parth Goswami
Cross-Checked by
Lavitha Pereira

May 26, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Hydraulics

Author: J. Lal

Publisher: Metropolitan Book Co. Pvt. Ltd.

Edition: 2

Year: 1959

ISBN: 9788120004221

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Hydrostatics	5
2	Hydrodynamics	17
3	Flow Through Orifices Mouthpieces Nozzles	22
4	Flow Over Weirs Notches	31
5	Flow Through Pipes	42
6	Flow Through Open Channels	57

List of Scilab Codes

Exa 1.1	Pressure of water	5
Exa 1.2	reading of mercury	5
Exa 1.3	pressure	6
Exa 1.4	Reading of the pressure guage at the top of tank	7
Exa 1.5	Depth of point	7
Exa 1.6	Depth of point	8
Exa 1.7	Total pressure	8
Exa 1.8	total pressure	8
Exa 1.9	total pressure	9
Exa 1.10	Total pressure	9
Exa 1.11	position of centre of pressure	0
Exa 1.12	Level of water	0
Exa 1.13	Total comression in the promp CD	1
Exa 1.14	force F required to act horizontally at the top of gate.	1
Exa 1.15	RB	2
Exa 1.16	S max	13
Exa 1.17	Volume of concrete	4
Exa 1.18	Depth necessary to just float the ship in river 1	4
Exa 1.19	Rightening moment	5
Exa 1.20	angle through which the cube will tilt	5
Exa 2.1	$v1, v2 \dots $	7
Exa 2.2	p2	7
Exa 2.3	Discharge	8
Exa 2.4	water pressure at top	9
Exa 2.5	Discharge	9
Exa 2.6		20
Exa 2.7	speed of submarine	20
Exa 2.8		21

Exa 3.1	Cr	2
Exa 3.2	Cd, Cc	3
Exa 3.3	Work done	3
Exa 3.4	Pressure at Vent-contraction	4
Exa 3.5	Actual Discharge	5
Exa 3.6	Discharge	5
Exa 3.7	time required to lower the water level	б
Exa 3.8	time required to empty the vessel	6
Exa 3.9	time to emptify biler	7
Exa 3.11	time required to reduce the water level difference 2'	7
Exa 3.12	side of the square orifice	8
Exa 3.13	Total discharge	8
Exa 3.14	Discharge by appropriate formula	9
Exa 3.15	Total discharge	9
Exa 4.1	length of the weir	1
Exa 4.2	HP	1
Exa 4.3	discharge percent	2
Exa 4.4	K, n	3
Exa 4.5	Q	3
Exa 4.6	n	4
Exa 4.7	Total discharge	4
Exa 4.8	Percent decrease in discharge	5
Exa 4.9	time required to lower level of reservoir	5
Exa 4.10	depth of water	6
Exa 4.11	percentage error of discharge over the weir	б
Exa 4.12	Discharge	7
Exa 4.13	Discharge	8
Exa 4.14	Discharge	8
Exa 4.15	height of anicut which is drowned	9
Exa 4.16	length	9
Exa 4.17	Volume of extra water stored	0
Exa 5.1	hydraulic mean depth	2
Exa 5.2	example 2	2
Exa 5.3	example 3	3
Exa 5.4	example 4	4
Exa 5.5	example 5	4
Exa 5.6	example 6	5
Exa 5.7	example 7	5

Exa 5.8	example 8
Exa 5.10	Pressure difference at discharge end 46
Exa 5.11	example 11
Exa 5.12	example 12
Exa 5.13	example 13
Exa 5.14	example 14
Exa 5.15	example 15
Exa 5.16	example 16
Exa 5.18	example 18
Exa 5.19	example 19
Exa 5.20	example 20
Exa 5.21	example 21
Exa 5.22	example 22
Exa 5.23	example 23
Exa 5.24	example 24
Exa 5.25	example 25
Exa 5.26	example 26
Exa 5.27	example 27
Exa 6.1	example 1
Exa 6.2	example 2
Exa 6.3	example 3
Exa 6.4	example 4
Exa 6.5	example 5
Exa 6.6	example 6
Exa 6.7	example 7
Exa 6.8	example 8
Exa 6.9	example 9
Exa 6.10	example 10
Exa 6.11	example 11
Exa 6.12	example 12
Exa 6.13	example 13
Exa 6.14	example 14
Exa 6.15	example 15
Exa 6.16	example 16
Exa 6.17	example 17
Exa 6.18	example 18
Exa 6.19	example 19
Exa 6 20	example 20

Chapter 1

Hydrostatics

Scilab code Exa 1.1 Pressure of water

```
1 clc
2 //initialisation of variables
3 h1= 2 //in
4 h2= 2 //in
5 wn= 13.6 //g/cc
6 w= 1 //g/cc
7 W= 62.4 //lbs/ft^3
8 //CALCULATIONS
9 ha= ((h2*wn/w)-h1)/12
10 pa= ha*W/144
11 //RESULTS
12 printf ('Pressure of water= %.2 f lb/sq in ',pa)
```

Scilab code Exa 1.2 reading of mercury

```
1 clc
2 //initialisation of variables
3 a= 6 //ft
```

```
4 h= 2 //ft
5 sm= 13.6
6 sw= 1
7 sl=0.8
8 //CALCULATIONS
9 dh= h*(sm-sw)+a
10 h1= (dh-a)/(sl-1)
11 //RESULTS
12 printf ('pressure difference in ft of water= %.1 f ft of water ',dh)
13 printf ('\n reading of mercury= %.f ft of liquid ', h1)
```

Scilab code Exa 1.3 pressure

```
1 clc
2 //initialisation of variables
3 \text{ sm} = 13.6
4 \text{ so} = 0.9
5 \text{ sw}=1
6 ha= 12.7 // ft
7 hb= 8 // ft
8 \text{ hc} = 7.5 // \text{ft}
9 hd= 1.75 // ft
10 //CALCULATIONS
11 pa = (sm - so) *sw
12 pc = -hb*so+ha
13 pd = ha + so *2 - sm *2.5 - hc
14 pb = hb + hd + pd
15 //RESULTS
16 printf ('pressure at A=\%.2 f ft of water ',pa)
17 printf ('\n pressure at B=\%.2 f ft of water ',pb)
18 printf ('\n pressure at C=\%.2 \, f ft of water ',pc)
19 printf ('\n pressure at D=\%.2 f ft of water ',pd)
```

Scilab code Exa 1.4 Reading of the pressure guage at the top of tank

```
1 clc
 2 //initialisation of variables
3 \text{ lm} = 2 // \text{ft}
4 lw= 5 // ft
5 lo= 8 //ft
 6 \text{ so} = 0.75
 7 p = 40 // lb / in^2
 8 \text{ w} = 62.4 // \text{lbs/ft}^3
9 \text{ sm} = 13.6
10 //CALCULATIONS
11 h= p*144/w
12 Pd = (h-lm*sm)
13 Pc = Pd - lw
14 Pb= Pc-lo*so
15 \text{ Pg} = \text{Pb*w}/144
16 //RESULTS
17 printf ('Reading of the pressure guage at the top of
        tank = \%.1 f lb/in^2', Pg)
```

Scilab code Exa 1.5 Depth of point

```
1 clc
2 //initialisation of variables
3 h= 42 //in
4 w= 62.4 //lbs/ft^3
5 //RESULTS
6 D= h*w/(144*12)
7 //CALCULATIONS
8 printf ('Depth of point = %.1 f lb/in^2 ',D)
```

Scilab code Exa 1.6 Depth of point

```
1 clc
2 //initialisation of variables
3 h= 200 //ft
4 w= 62.4 //lbs/ft^3
5 //RESULTS
6 D= h*w/(144)
7 //CALCULATIONS
8 printf ('Depth of point = %.1 f lb/in^2 ',D)
```

Scilab code Exa 1.7 Total pressure

```
1 clc
2 //initialisation of variables
3 w= 62.4 //lbs/ft^3
4 l= 2 //ft
5 b= 3 //ft
6 h= 10 //ft
7 //CALCULATIONS
8 P= w*l*b*h
9 //RESULTS
10 printf ('Total pressure = %.f lb ',P)
```

Scilab code Exa 1.8 total pressure

```
1 clc
2 //initialisation of variables
3 l= 2 //ft
```

```
4 b= 3 //ft
5 a= 60 //degrees
6 h= 8 //ft
7 w= 62.4 //lbs/ft^3
8 //CALCULATIONS
9 x= h+(b/1)*cosd(a)
10 P= w*1*b*x
11 //RESULTS
12 printf ('total pressure = %. f lb ',P)
```

Scilab code Exa 1.9 total pressure

```
1 clc
2 //initialisation of variables
3 l= 2 //ft
4 b= 3 //ft
5 h= 8 //ft
6 w= 62.4 //lbs/ft^3
7 //CALCULATIONS
8 P= w*1*b*(h+(b/2))
9 //RESULTS
10 printf ('total pressure = %.f lb ',P)
```

Scilab code Exa 1.10 Total pressure

```
1
2 clc
3 //initialisation of variables
4 l= 6 //ft
5 b= 4 //ft
6 w= 62.4 //lbs/ft^3
7 h= 10 //ft
8 //CALCULATIONS
```

```
9 P= w*l*b*(b/2)
10 hn= (b/2)+(l*b^3/(12*l*b*(b/2)))
11 P1= w*(h+(b/2))*l*b
12 h1= (h+(b/2))+(l*b^3/(12*l*b*(h+(b/2))))
13 //RESULTS
14 printf("Total pressure = %d lb",P1)
15 printf("\n Depth = %.2 f ft",hn)
16 printf ('\n pressure in ft in case 2= %.3 f ft ',h1)
```

Scilab code Exa 1.11 position of centre of pressure

```
1 clc
2 //initialisation of variables
3 \text{ sp} = 0.87
4 d = 12 //ft
5 \text{ W} = 62.4 // \text{lb/ft}^3
6 \text{ Wa} = 30 // lb / in^2
7 //CALCULATIONS
8 A = \%pi*d^2/4
9 \text{ w= W*sp}
10 x = Wa * 144/(W)
11 P = w * A * x
12 h = x + (A*d^2/16/(A*x))
13 //RESULTS
14 printf ('force exerted by the oil upon the gate = \%.
       f lb ',P)
15 printf ('\n position of centre of pressure = \%.3 f ft
        ',h)
```

Scilab code Exa 1.12 Level of water

```
1 clc
2 //initialisation of variables
```

```
3  w= 62.4 //lb/ft^3
4  a= 60 //degrees
5  l= 18 //ft
6  b= 4 //ft
7  W= 8000 //lb
8  //CALCULATIONS
9  P= w*b/(sind(a)*2)
10  h= ((b/(12*(sind(a))^3))*(sind(a))^2/(b/(sind(a)*2))
        )+0.5
11  h1= (1-h)/sind(a)
12  x= ((1*W)/(h1*P))^(1/3)
13  //RESULTS
14  printf ('Level of water = %.2 f ft ',x)
```

Scilab code Exa 1.13 Total comression in the promp CD

```
1 clc
2 //initialisation of variables
3 w= 62.4 //lb/ft^3
4 l= 12 //ft
5 b= 6 //ft
6 h= 5.196 //ft
7 a= 60 //degrees
8 a1= 45 //degrees
9 //CALCULATIONS
10 P= w*l*b*h/2
11 h1= ((1*b^3*(sind(a))^2/12)/(1*b*(h/2)))+(h/2)
12 R= P*(b-(h1/cosd(a/2)))/((b*sind(a1))/2)
13 //RESULTS
14 printf ('Total comression in the promp CD = %.f lb ', R)
```

Scilab code Exa 1.14 force F required to act horizontally at the top of gate

```
1
2 clc
3 //initialisation of variables
4 \text{ w} = 62.4 // \text{lb} / \text{ft}^3
5 h = 4 //ft
6 b = 6 //ft
7 \text{ sg} = 1.45
8 \text{ h1} = 5 // \text{ft}
9 = 90 // degrees
10 //CALCULATIONS
11 P1= w*sg*h*b*(h1+(h/2))
12 P2= w*h*b*(h/2)
13 Pr= P1-P2
14 hup= ((b*h^3/12)*(sind(a))^2/(h*b*(h1+(h/2))))+(h1+(h/2))
      h/2)
15 \text{ x1} = \text{h+h1-hup}
16 \text{ hd} = \text{h} * 2/3
17 \text{ x2= } h-hd
18 x = (P1 * x1 - P2 * x2)/Pr
19 d = h1 + h - x
20 \text{ F= Pr*x/4}
21 //RESULTS
22 printf ('P resultant = \%. f lb ', Pr)
23 printf ('\n depth of centre of pressure = \%.3 \, \mathrm{f} ft',
       d)
24 printf ('\n force F required to act horizontally at
       the top of gate = \%. f lb ',F)
25 //The answer given in texxtbook is wrong. Please
       check using a calculator.
```

Scilab code Exa 1.15 RB

```
1 clc
2 //initialisation of variables
3 \text{ w} = 15 // \text{ft}
4 D = 15 //ft
5 \text{ W} = 62.4 // \text{lb/ft}^3
6 a = 120 // degrees
7 \text{ h1} = 15 // \text{ft}
8 h2 = 4 ///ft
9 h3 = 18 //ft
10 //CALCULATIONS
11 Pu= w*D*W*w/2
12 hu = ((w*D^3/12)/(w^2*D/2))+w/2
13 Pd= W*h2*w*h2/2
14 hd= ((w*h2^3/12)/(h2*h1*(h2/2)))+(h2/2)
15 P = Pu - Pd
16 h= (Pu*(h1-hu)-Pd*(h2-hd))/P
17 F = P/(2*sind(a/4))
18 RT= F*(h3-(h1/10)-h)/(h3-(h1/5))
19 RB = F - RT
20 //RESULTS
21 printf ('RB = \%. f lb ', RB)
```

Scilab code Exa 1.16 S max

```
1 clc
2 //initialisation of variables
3 h= 42 //ft
4 w= 25 //ft
5 d= 8 //ft
6 W= 150 //lb/ft^3
7 w1= 62.4 //lb/ft^3
8 //CALCULATIONS
9 W1= W*(h*d+(h*(w-d)/2))
10 P= w1*h*(h/2)
11 R= sqrt(W1^2+P^2)
```

```
12  o= atand(P/W1)
13  AE= (d*h*(d/2)+(w-d)*h*(d+(w-d)/3)/2)/(d*h+h*(w-d)/2)
14  EF= 14*P/W1
15  AF= EF+AE
16  AH= w/2
17  e= AF-AH
18  BS= W1*e*AH/(w^3/12)
19  DS= W1/w
20  Smax= BS+DS
21  Smin= DS-BS
22  //RESULTS
23  printf ('S max = %.f lb/sq ft ',Smax)
24  printf ('\n S min = %.f lb/sq ft ',Smin)
```

Scilab code Exa 1.17 Volume of concrete

```
1 clc
2 //initialisation of variables
3 W= 145 //lb/cu ft
4 M= 500 //lb
5 W1= 64 //lb/cu ft
6 //CALCULATIONS
7 dW= W-W1
8 V= M/dW
9 //RESULTS
10 printf ('Volume of concrete = %.1 f cu ft ',V)
```

Scilab code Exa 1.18 Depth necessary to just float the ship in river

```
1 clc
2 //initialisation of variables
3 W= 10000 //tons
```

```
4 A= 15000 //ft^2
5 d= 15 //ft
6 Dsw= 64 //lb/ft^3
7 Dw= 62.4 //lb/ft^3
8 //CALCULATIONS
9 Vsw= 2240/Dsw
10 Vw= 2240/Dw
11 dV= Vw-Vsw
12 V1= W*dV
13 h= W/A
14 h1= d+h
15 //RESULTS
16 printf ('Depth necessary to just float the ship in river = %.2f ft ',h1)
```

Scilab code Exa 1.19 Rightening moment

```
1 clc
2 //initialisation of variables
3 W= 5000 //tons
4 w= 10 //tons
5 d= 30 //ft
6 x= 5.5 //in
7 l= 10 //ft
8 a= 15 //degrees
9 //CALCULATIONS
10 GM= (w*d)*l/(W*(x/12))
11 M= GM*sind(a)*W
12 //RESULTS
13 printf ('Rightening moment = %.f lb ',M)
```

Scilab code Exa 1.20 angle through which the cube will tilt

```
1 clc
2 //initialisation of variables
3 1 = 5 // ft
4 h = 20 //in
5 n = 1/15
6 \text{ AG} = 50 //in
7 x = 30 //in
8 \text{ w} = 62.4 // \text{lb/ft}^3
9 //CALCULATIONS
10 AG1 = AG/(1+n)
11 G1G2= n*x/(1+n)
12 \quad W = 1^2 * w * (1/2)
13 h1= 32 //in
14 \text{ BK= } h1/2
15 GK= 10 //in
16 \text{ G1K} = (AG+GK)-AG1
17 \quad BG1 = BK - G1K
18 BM= (1^4/12)*2*12/(1^3*BK*n)
19 G1M= BM+BG1
20 o= atand(G1G2/G1M)
21 //RESULTS
22 printf ('angle through which the cube will tilt = \%.
      f degrees ',o)
```

Chapter 2

Hydrodynamics

Scilab code Exa 2.1 v1, v2

```
1 clc
2 //initialisation of variables
3 Q= 0.8 //ft^3/sec
4 w= 62.4 //lb/sec
5 d1= 3 //in
6 d2= 1.5 //in
7 //CALCULATIONS
8 Q1= Q*w*60/10
9 a1= %pi*(d1/12)^2/4
10 a2= %pi*(d2/12)^2/4
11 v1= Q/a1
12 v2= Q/a2
13 //RESULTS
14 printf ('v1 = %.1 f ft/sec ',v1)
15 printf ('\n v2 = %.1 f ft/sec ',v2)
```

Scilab code Exa 2.2 p2

```
1 clc
2 //initialisation of variables
3 d1 = 12 //in
4 d2 = 9 //in
5 z1 = 10 //ft
6 z2 = 10 //ft
7 p1= 15 //lb/in^2
8 \text{ w} = 62.4 // \text{lb/ft}^3
9 \ Q= 2 \ // cuses
10 g= 32.2 // ft / sec^2
11 //CALCULATIONS
12 v1= Q/(\%pi*(d1/12)^2/4)
13 v2 = Q/(\%pi*(d2/12)^2/4)
14 p2= w*(z1-z2+(p1*144/w)+(v1^2/(2*g))-(v2^2/(2*g)))
      /144
15 //RESULTS
16 printf ('p2 = \%.3 \, \text{f lb/in^2}',p2)
```

Scilab code Exa 2.3 Discharge

```
1 clc
2 //initialisation of variables
3 d0= 4 //ft
4 d2= 2 //ft
5 z0 = 0 //ft
6 z1= 5 //ft
7 z2= 13 //ft
8 h= 9.5 //in
9 w= 62.4 //lb/ft^3
10 w1= 30 //lb/ft^3
11 g= 32.2 //ft/sec^2
12 r= 0.1
13 //CALCULATIONS
14 p2= -h*34/w1
15 v2= sqrt(2*g*(z1-p2-z2)/(1+r))
```

```
16 Q= %pi*(d2/12)^2*v2*w*60/(10*4)
17 //RESULTS
18 printf ('Discharge = %.f gpm',Q)
```

Scilab code Exa 2.4 water pressure at top

```
1 clc
2 //initialisation of variables
3 d1 = 2 //ft
4 d2 = 3 // ft
5 v1 = 20 //ft/sec
6 z1 = 20 //ft
7 z2 = 0 //ft
8 h = 5 // ft
9 \text{ w} = 62.4 // \text{lb/ft}^3
10 g = 32.2 / ft / sec^2
11 //CALCULATIONS
12 Hl= v1^2*0.15/(2*g)
13 a1 = \%pi*d1^2/4
14 \ a2 = \ \%pi * d2^2/4
15 v2 = a1 * v1/a2
16 p1= ((h-z1+(v2^2)/(2*g))-(0.85*v1^2/(2*g)))
17 //RESULTS
18 printf ('water pressure at top = \%.2 \,\mathrm{f} ft of water ',
      p1)
```

Scilab code Exa 2.5 Discharge

```
1 clc
2 //initialisation of variables
3 d1= 15 //in
4 d2= 6//in
5 h= 10 //in of mercury
```

Scilab code Exa 2.6 Actual discharge

```
1 clc
2 //initialisation of variables
3 d1 = 8 //in
4 d2 = 4 //in
5 h = 10 //in of mercury
6 \text{ Cd= } 0.98
7 \text{ g= } 32.2 \text{ // ft/sec}^2
8 \text{ sm} = 13.56
9 //CALCULATIONS
10 a1= \pi (d1/12)^2/4
11 a2 = \%pi*(d2/12)^2/4
12 h1 = h*(sm-1)/12
13 Q= a1*a2*sqrt(2*g)*sqrt(h1)/sqrt(a1^2-a2^2)
14 Qactual = Cd*Q
15 //RESULTS
16 printf ('Actual discharge = \%.2 \,\mathrm{f} cuses ', Qactual)
```

Scilab code Exa 2.7 speed of submarine

```
1 clc
2 //initialisation of variables
3 h= 6.8 //in of mercury
4 sm= 13.6
5 ssw= 1.026
6 g= 32.2 //ft/sec^2
7 //CALCULATIONS
8 V= sqrt(2*g*h*(sm-ssw)/12)*3600/5280
9 //RESULTS
10 printf ('speed of submarine = %.1f miles per hour ', v)
```

Scilab code Exa 2.8 Volume of air passing through the Venturimeter

```
1 clc
    2 //initialisation of variables
    3 \text{ g} = 32.2 // \text{ft/sec}^2
    4 d1 = 2 //in
    5 d2 = 12 //in
    6 r = 1.4
    7 n = 0.905
    8 Q = 2995 // lb / ft^2
   9 \text{ w} = 0.083 // lb / ft^3
10 //CALCULATIONS
11 V1 = 1/w
12 n1 = n^{((r-1)/r)}
13 n2 = n^{(2/r)}
14 Q= pi*(d1/12)^2*sqrt(2*g*Q*(1-n1)*r/((r-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(-1)*n2*(1-(
                                      d1/d2)^2)))
15 //RESULTS
16 printf ('Volume of air passing through the
                                      Venturimeter = \%.1 f cuses ',Q)
```

Chapter 3

Flow Through Orifices Mouthpieces Nozzles

Scilab code Exa 3.1 Cr

```
1 clc
 2 //initialisation of variables
3 Q = 16 //gpm
4 \text{ w} = 62.4 // lb / ft^3
5 d = 1 //in
6 h = 2 + (5/12) // ft
7 \text{ g} = 32.2 // \text{ft/sec}^2
8 x = 11.5 // ft
9 h1= 1.2 //in
10 //CALCULATIONS
11 Cd= Q*10/(60*w*(\%pi*(d/12)^2/4)*sqrt(2*g*h))
12 Cv = sqrt(x^2/(4*(h1/12)*h*12^2))
13 Cc = Cd/Cv
14 \text{ Cr} = (1 - \text{Cv}^2) / \text{Cv}^2
15 //RESULTS
16 printf ('Cr = \%.3 f', Cr)
```

Scilab code Exa 3.2 Cd, Cc

```
1 clc
 2 //initialisation of variables
3 \text{ Ww} = 261 // lb / min
4 a = 1 //in^2
5 h = 4 // ft
6 y = 5 //ft
7 \text{ W1} = 10.65 // \text{lb}
8 1 = 1 // ft
9 Q= 261 // lb / min
10 w= 62.4 //lb/ft^3
11 g= 32.2 // ft / sec^2
12 //CALCULATIONS
13 v = Q*144/(w*60)
14 F = W1 * 1/y
15 v = F*g*60/Q
16 vth= sqrt(2*g*h)
17 \text{ Cv= v/vth}
18 Q1= Ww/w
19 Qth= vth*60/144
20 Cd= Q1/Qth
21 Cc= Cd/Cv
22 //RESULTS
23 printf ('Cd = \%.3 \,\mathrm{f} ',Cd)
24 printf ('\n Cc = \%.3 \,\mathrm{f}',Cc)
```

Scilab code Exa 3.3 Work done

```
1 clc
2 //initialisation of variables
3 Q= 10 //ft^3/sec
4 a1= 1 //ft^2
5 a2= 4 //ft^2
6 g= 32.2 //ft/sec^2
```

```
7 p1= 12 //lb/in^2
8 v1= 10 //ft/sec
9 w= 62.4 //lb/ft^3
10 //RESULTS
11 v2= v1*a1/a2
12 H1= (v1-v2)^2/(2*g)
13 p2= ((p1*144/w)+(v1^2/(2*g))-(v2^2/(2*g))-H1)*(w /144)
14 W= H1*v1*w/550
15
16 //RESULTS
17 printf ('Head lost = %.3 f ft of water ',H1)
18 printf ('\n Pressure in larger part of pipe = %.2 f lb/in^2 ',p2)
19 printf ('\n Work done = %.3 f HP ',W)
```

Scilab code Exa 3.4 Pressure at Vent-contraction

```
1 clc
2 //initialisation of variables
3 \text{ Cc} = 1
4 \text{ Cv} = 0.833
5 d = 2 //in
6 g= 32.2 // ft / sec^2
7 \text{ H} = 12 // \text{ft}
8 Pa= 34 //lb/in^2
9 ///CALCULATIONS
10 Q= Cc*Cv*\%pi*(d/12)^2*sqrt(2*g*H)/4
11 Cd = Cc * Cv
12 \text{ Pc} = \text{Pa} - 0.92 * \text{H}
13 //RESULTS
14 //RESULTS
15 printf ('Discharge = \%.3 \, f cu ft/sec ',Q)
16 printf ('\n Coefficient of discharge = \%.3 \,\mathrm{f} ',Cd)
17 printf ('\n Pressure at Vent-contraction= \%.2 f ft of
```

Scilab code Exa 3.5 Actual Discharge

```
1 clc
2 //initialisation of variables
3 H= 4 //ft
4 d= 1 //in
5 g= 32.2 //ft/sec^2
6 Cc= 0.5
7 //CALCULATIONS
8 Q= Cc*%pi*(d/12)^2*sqrt(2*g*H)/4
9 //RESULTS
10 printf ('Actual Discharge = %.4 f cu ft/sec',Q)
```

Scilab code Exa 3.6 Discharge

```
1 clc
2 //initialisation of variables
3 D = 4 //ft
4 d = 2 //in
5 \text{ H1= } 6 \text{ } // \text{ft}
6 \text{ H2} = 2 // \text{ft}
7 t = 4 //min
8 \text{ g} = 32.2 // \text{ft/sec}^2
9 \text{ w= } 62.4 // lb / ft^3
10 H= 5 //ft
11 //CALCULATIONS
12 Cd= (2*(\%pi/4)*D^2*(sqrt(H1)-sqrt(H2)))/(t*60*(\%pi)
       /4)*(d/12)^2*sqrt(2*g)
13 Q= Cd*(\%pi/4)*(d/12)^2*sqrt(2*g*H)*w*60/10
14 //RESULTS
15 printf ('Cd = \%.3 \, \text{f}', Cd)
```

```
16 printf ('\n Discharge = \%.1 f gpm',Q)
```

Scilab code Exa 3.7 time required to lower the water level

```
1 clc
2 //initialisation of variables
3 \text{ H1} = 10 // \text{ft}
4 \text{ H2} = 2 // ft
5 \text{ Cd= } 0.61
6 d1 = 8 // ft
7 g= 32.2 // ft / sec^2
8 d2 = 3 //ft
9 //CALCULATIONS
10 a = d2^2/144
11 H0 = H1*d2/(d1-d2)
12 t= \%pi*(d1/2)^2*((2/5)*(H1^(5/2)-H2^(5/2))+2*H0^2*(
      sqrt(H1) - sqrt(H2)) + (4/3) * H0 * (H1^(3/2) - H2^(3/2)))
      /(60*Cd*a*sqrt(2*g)*(H1+H0)^2)
13 //RESULTS
14 printf ('time required to lower the water level = \%
      .2 f min',t)
```

Scilab code Exa 3.8 time required to empty the vessel

```
1
2 clc
3 //initialisation of variables
4 D= 10 //ft
5 H1= 17 //ft
6 H2= 5 //ft
7 d= 3 //in
8 Cd= 0.62
9 g=32.2 //ft/s^2
```

Scilab code Exa 3.9 time to emptify biler

Scilab code Exa 3.11 time required to reduce the water level difference

```
1
2 clc
3 //initialisation of variables
4 H1= 9 //ft
5 H2= 4 //ft
6 Cd= 0.6
7 a= 4 //in^2
8 A1= 72 //ft^2
```

Scilab code Exa 3.12 side of the square orifice

```
1 clc
2 //initialisation of variables
3 l= 80 //ft
4 w= 12 //ft
5 t= 3 //min
6 H1= 12 //ft
7 g= 32.2 //ft/sec^2
8 Cd= 0.6
9 //CALCULATIONS
10 s= sqrt(2*1*w*H1^(1/2)/(Cd*sqrt(2*g)*t*60))
11 //RESULTS
12 printf ('side of the square orifice = %.2 f ft',s)
```

Scilab code Exa 3.13 Total discharge

```
1 clc
2 //initialisation of variables
3 g= 32.2 //ft/sec^2
4 Cd= 0.6
5 d= 2 //in
6 H1= 5 //ft
7 //CALCULATIONS
```

```
8 v= sqrt(2*g*H1)/2
9 q= v*Cd*%pi*(d/12)^2/4
10 //RESULTS
11 printf ('Total discharge = %.3 f cfs',q)
```

Scilab code Exa 3.14 Discharge by appropriate formula

```
1
2 clc
3 //initialisation of variables
4 Cd= 0.62
5 H= 9 //in
6 l= 3 //ft
7 g= 32.2 //t/sec^2
8 //CALCULATIONS
9 Q1= Cd*(H*1/12)*sqrt(2*g*3*H/24)
10 Q2= Cd*2*1*sqrt(2*g)*((H/6)^(3/2)-(H/12)^(3/2))/3
11 //RESULTS
12 printf ('Discharge by appropriate formula = %.2 f cfs ',Q1)
13 printf ('\n Discharge by exact formula = %.2 f cfs',Q2)
```

Scilab code Exa 3.15 Total discharge

```
1 clc
2 //initialisation of variables
3 Cd= 0.62
4 B= 2.5 //ft
5 H2= 8 //ft
6 H1= 7 //ft
7 g= 32.2 //ft/sec^2
8 h= 4 //ft
```

```
9  //CALCULATIONS
10  Q1= 2*Cd*B*sqrt(2*g)*(H2^(3/2)-H1^(3/2))/3
11  Q2= Cd*sqrt(2*g)*sqrt(H2)*B*(h-1)
12  Q= Q1+Q2
13  //RESULTS
14  printf ('Total discharge = %.f cfs',Q)
```

Chapter 4

Flow Over Weirs Notches

Scilab code Exa 4.1 length of the weir

```
1 clc
2 //initialisation of variables
3 p= 70 //per cent
4 Cd= 0.6
5 Q= 50 //million gallons
6 H= 2 //ft
7 w= 62.4 //lb/ft^3
8 g= 32.2 //ft/sec^2
9 //CALCULATIONS
10 Q1= p*Q*10^6*10/(100*w*24*3600)
11 L= Q1*3/(2*Cd*sqrt(2*g)*H^1.5)
12 //RESULTS
13 printf ('length of the weir = %.2 f ft ',L)
```

Scilab code Exa 4.2 HP

```
1 clc
2 //initialisation of variables
```

```
3 L= 15 //ft
4 H= 1 //ft
5 Cd= 0.6
6 v= 80 //ft/min
7 g= 32.2 //ft/sec62
8 w= 62.4 //lb/ft^3
9 //CALCULATIONS
10 vo= v/60
11 Q= 2*Cd*sqrt(2*g)*L*((1+(vo^2/(2*g)))^1.5-(vo^2/(2*g)))^1.5)*w*100/(3*550)
12 //RESULTS
13 printf ('HP = %. f HP ',Q)
```

Scilab code Exa 4.3 discharge percent

```
1 clc
2 //initialisation of variables
3 L = 11 //ft
4 \text{ H= } 0.7 // \text{ft}
5 \text{ Cd} = 0.6
6 g= 32.2 //ft/sec^2
7 h = 1.95 //ft
8 \ Q = 20.65 \ // cuses
9 Q1= 21.2 // cfs
10 //CALCULATIONS
11 Q = 2*Cd*sqrt(2*g)*L*H^1.5/3
12 vo= Q/(h*L)
13 h1= vo^2/(2*g)
14 Q1= 2*Cd*sqrt(2*g)*L*((H+(vo^2/(2*g)))^1.5-(vo^2/(2*g)))
      g))^1.5)/3
15 v1 = Q1/(L*h)
16 Q2= 2*Cd*sqrt(2*g)*L*((H+(v1^2/(2*g)))^1.5-(v1^2/(2*g)))
      g))^1.5)/3
17 p = (Q2-Q1)*100/Q1
18 //RESULTS
```

```
19 printf ('discharge percent = %.3 f per cent ',p)
```

Scilab code Exa 4.4 K, n

```
1 clc
2 //initialisation of variables
3 b= 3 //ft
4 H= 1 //ft
5 Q= 9 //cfs
6 k= 1.105
7 h= 0.1 //ft
8 //CALCULATIONS
9 K= Q/b
10 n= (k-log10(3*K))/h
11 //RESULTS
12 printf ('K = %.f ',K)
13 printf ('\n n = %.1f ',n)
```

Scilab code Exa 4.5 Q

```
1 clc
2 //initialisation of variables
3 g= 32.2 //ft/sec^2
4 Cd= 0.62
5 L= 7.573 //ft
6 H= 1.2 //ft
7 S= 2.85 //ft
8 //CALCULATIONS
9 Q1= 2*Cd*sqrt(2*g)*L*H^1.5/3
10 Q2= 3.33*L*H^1.5
11 Q3= sqrt(2*g)*L*H^1.5*(0.405+(0.00984/H))
12 He= H+0.004
13 Q4= (3.227+0.435*(He/S))*L*He^1.5
```

```
14 //RESULTS
15 printf ('Q = %.2 f cuses ',Q1)
16 printf ('\n Q = %.2 f cuses ',Q2)
17 printf ('\n Q = %.2 f cuses ',Q3)
18 printf ('\n Q = %.2 f cuses ',Q4)
```

Scilab code Exa 4.6 n

```
1 clc
2 //initialisation of variables
3 H= 2.5 //ft
4 L= 10 //ft
5 A= 10 //miles
6 p= 30 //per cent
7 a= 2 //in/hr
8 w= 2 //ft
9 //CALCULATIONS
10 Q= L*1760^2*3^2*a*p/(60*60*12*100)
11 n= ((Q/(3.33*H^1.5))-(L-0.1*w*H))/(L-0.1*w*H)
12 //RESULTS
13 printf ('n = %.f ',n)
```

Scilab code Exa 4.7 Total discharge

```
1 clc
2 //initialisation of variables
3 L= 2.5 //ft
4 H= 1 //ft
5 g= 32.2 //ft/sec^2
6 Cd= 0.61
7 L1= 1.75 //ft
8 L2= 2.25 //ft
9 //CALCULATIONS
```

```
10 Q1= 2*Cd*sqrt(2*g)*L*H/3

11 Q2= 2*Cd*sqrt(2*g)*L1*(L1^1.5-1)/3

12 Q3= 2*Cd*sqrt(2*g)*H*(L2^1.5-L1^1.5)/3

13 Q= Q1+Q2+Q3

14 //RESULTS

15 printf ('Total discharge = %.1f cfs ',Q)
```

Scilab code Exa 4.8 Percent decrease in discharge

```
1 clc
2 //initialisation of variables
3 g= 32.2 //ft/sec^2
4 h1= 16.63 //cm
5 h2= 10.18 //cm
6 h3= 16.53 //cm
7 //CALCULATIONS
8 H1= h1-h2
9 H2= h3-h2
10 p= (H1^1.5-H2^1.5)*100/H1^1.5
11 //RESULTS
12 printf ('Percent decrease in discharge = %.2f percent ',p)
```

Scilab code Exa 4.9 time required to lower level of reservoir

```
1
2 clc
3 //initialisation of variables
4 Cd= 0.6
5 a= 20000 //yd^2
6 H2= 12 //in
7 L= 5 //ft
8 H1= 2 //ft
```

Scilab code Exa 4.10 depth of water

```
1 clc
2 //initialisation of variables
3 L= 3 //ft
4 H= 6 //in
5 Cd= 0.62
6 Cd1= 0.59
7 a= 45 //degrees
8 g= 32.2 //ft/sec^2
9 //CALCULATIONS
10 H= ((2/3)*Cd*sqrt(2*g)*L*(H/12)^1.5/((8/15)*Cd1*sqrt(2*g)))^0.4
11 //RESULTS
12 printf ('depth of water = %.3 f ft ',H)
```

Scilab code Exa 4.11 percentage error of discharge over the weir

```
1 clc
2 //initialisation of variables
3 V= 20 //litres
4 g= 981 //cm/sec^2
5 Cd= 0.593
6 r= 2.5
7 r1= 1.5
```

```
8 e= 2 //mm
9 Cd1= 0.623
10 L= 30 //cm
11 //CALCULATIONS
12 H= (V*1000*15/(8*Cd*sqrt(2*g)))^0.4
13 dH1= e/10
14 p= r*dH1*100/H
15 H1= (V*3*1000/(2*Cd1*sqrt(2*g)*L))^(2/3)
16 p1= r1*dH1*100/H1
17 //RESULTS
18 printf ('percentage error of discharge over the weir = %.2 f per cent ',p)
19 printf ('\n percentage error of discharge over the weir = %.2 f per cent ',p1)
```

Scilab code Exa 4.12 Discharge

```
1 clc
2 //initialisation of variables
3 L = 16 //in
4 \text{ H} = 9 // i \text{ n}
5 h = 18 //in
6 g= 32.2 // ft / sec^2
7 \text{ w} = 2 // \text{ft}
8 \text{ Cd} = 0.63
9 \text{ W} = 62.4 // \text{lbs/ft}^3
10 //CALCULATIONS
11 Q = 2*Cd*sqrt(2*g)*(L/12)*(H/12)^1.5/3
12 v = Q/(w*(h/12))
13 H1= v^2/(2*g)
14 Q1= 2*Cd*sqrt(2*g)*(L/12)*(((H/12)+H1)^1.5-H1^1.5)*W
15 //RESULTS
16 printf ('Discharge = \%.f gpm',Q1)
```

Scilab code Exa 4.13 Discharge

```
1 clc
2 //initialisation of variables
3 L= 100 //ft
4 H= 2.25 //ft
5 Cd= 0.95
6 w= 120 //ft
7 h= 2 //ft
8 g= 32.2 //ft/sec^2
9 //CALCULATIONS
10 Q= 3.087*Cd*L*H^1.5
11 v0= Q/(w*(h+H))
12 Q1= 3.087*Cd*L*((H+(v0^2/(2*g)))^1.5-(v0^2/(2*g)))^1.5)
13 //RESULTS
14 printf ('Discharge = %.f cuses',Q1)
```

Scilab code Exa 4.14 Discharge

```
1 clc
2 //initialisation of variables
3 L= 6 //ft
4 H1= 0.5 //ft
5 H2= 0.25 //ft
6 g= 32.2 //ft/sec^2
7 Cd1= 0.58
8 Cd2= 0.8
9 w= 6.24 //lb/ft^3
10 //CALCULATIONS
11 Q1= 2*Cd1*sqrt(2*g)*L*(H1-H2)^1.5/3
12 Q2= Cd2*L*H2*sqrt(2*g*(H1-H2))
```

```
13 Q= (Q1+Q2)*w*3600
14 //RESULTS
15 printf ('Discharge = %.f cuses ',Q)
```

Scilab code Exa 4.15 height of anicut which is drowned

```
1 clc
2 //initialisation of variables
3 \text{ W} = 100 // \text{ft}
4 h= 10 // ft
5 v = 4 //ft/sec
6 \text{ h1} = 3 // \text{ft}
7 \text{ g= } 32.2 // \text{ft/sec}^2
8 \text{ H} = 5.4 // \text{ft}
9 \text{ Cd1} = 0.58
10 \text{ Cd2} = 0.8
11 //CALCULATIONS
12 v0 = (W*h*v)/(W*(h+h1))
13 h0 =v0^2/(2*g)
14 H2= (W*h*v-(2*Cd1*W*sqrt(2*g)*((h1+h0)^1.5-h0^1.5))
       /3))/(Cd2*W*sqrt(2*g*(h1+h0)))
15 \text{ dh} = \text{h} - \text{H}2
16 //RESULTS
17 printf ('height of anicut which is drowned = \%. f ft
       ', dh)
```

Scilab code Exa 4.16 length

```
1 clc
2 //initialisation of variables
3 x= 6 //in
4 l= 200 //ft
5 d= 10 //ft
```

```
6  v= 4 //ft/sec
7  Ce= 0.95
8  g= 32.2 //ft/sec^2
9  //CALCULATIONS
10  l1= sqrt(l^2/(Ce^2*(((x/12)*2*g/v^2)+(d^2/(d+(x/12))^2))))
11  //RESULTS
12  printf ('length = %. f ft ',11)
```

Scilab code Exa 4.17 Volume of extra water stored

```
1
2 clc
3 //initialisation of variables
4 g= 32.2 // ft / sec^2
5 \text{ H= } 25 \text{ // } \text{ft}
6 1 = 2.5 // ft
7 b = 5 // ft
8 \text{ Cd} = 0.64
9 \ Q = 3200 \ // cuses
10 L=150 // ft
11 C=3.2
12 depth=0.5 // ft
13 A1=5000000 //sq yards
14 //CALCULATIONS
15 Q1= Cd*l*b*sqrt(2*g*H)
16 n = Q/Q1
17 h= (Q/(3.2*L))^{(2/3)}
18 hr=h-depth
19 Area=A1*9
20 V = Area * hr
21 //RESULTS
22 printf ('number of spilways = \%. f ',n)
23 printf("\n Volume of extra water stored = %d cu ft",
      V)
```

Chapter 5

Flow Through Pipes

Scilab code Exa 5.1 hydraulic mean depth

```
1 clc
2 //initialisation of variables
3 h= 4 //ft
4 h1= 3 //ft
5 r= 3 //ft
6 h2= 1.5 //ft
7 //CALCULATIONS
8 m= (h*h1+(h1^2/2))/(h+(h/2)*sqrt(h1^2+(h1/2)^2))
9 a= 2*acosd(h2/r)
10 P= 2*%pi*r*a/360
11 A= r^2*((2*%pi/3)-sind(a))/2
12 H= A/(2*%pi)
13 //RESULTS
14 printf ('hydraulic mean depth = %.3 f ft ',H)
```

Scilab code Exa 5.2 example 2

```
1 clc
```

```
2 //initialisation of variables
3 d= 3 //ft
4 l= 5280 //ft
5 v= 3 //ft/sec
6 f= 0.005
7 g= 32.2 //ft/sec^2
8 C= 115
9 //CALCULATIONS
10 hf= 4*f*l*v^2/(2*g*v)
11 m= d/4
12 hf1= (v/C)^2*4*1/3
13 //RESULTS
14 printf ('hf = %.2 f ft ',hf)
15 printf ('\n hf = %.2 f ft ',hf1)
```

Scilab code Exa 5.3 example 3

```
1 clc
2 //initialisation of variables
3 d = 6 //in
4 Q= 2 // cfs
5 1 = 1000 // ft
6 f = 0.0055
7 \text{ w= } 62.4 \text{ //lb/ft}^3
8 \text{ g} = 32.2 // \text{ft/sec}^2
9 h = 70 //ft
10 //CALCULATIONS
11 v = Q/(\%pi*(d/12)^2/4)
12 hf = 4*f*l*w*(Q/(\%pi*(d/12)^2/4))^2/((d/12)*2*144*g)
13 P= hf + (h*w/144)
14 //RESULTS
15 printf ('pressure = \%.1 f lb/in^2',hf)
16 printf ('\n presure difference = \%.2 \,\mathrm{f}\,\mathrm{lb/in}\,^2',P)
```

Scilab code Exa 5.4 example 4

```
1
2 clc
3 //initialisation of variables
4 d= 6 //in
5 hf= 7.7 //ft
6 f= 0.005
7 l= 1000 //ft
8 g= 32.2 //ft/sec^2
9 //CALCULATIONS
10 C= sqrt(2*g/f)
11 Q= %pi*C*(d/12)^2.5*(hf/1000)^0.5 /8
12 //RESULTS
13 printf ('Discharge = %.2 f cfs ',Q)
```

Scilab code Exa 5.5 example 5

```
1 clc
2 //initialisation of variables
3 Q= 400000
4 d= 4 //miles
5 h= 50 //ft
6 q= 40 //gallons of water
7 t= 8 //hr
8 f= 0.0075
9 w= 6.24 //lb/ft^3
10 g= 32.2 //ft/sec^2
11 //CALCULATIONS
12 Q1=Q*q*0.5/(t*60*60*w)
13 d= (4*f*(d*5280)*Q1^2*16/(%pi^2*h*2*g))^0.2*12
14 //RESULTS
```

```
15 printf ('size of the supply = \%.1 \, \text{f} in ',d)
```

Scilab code Exa 5.6 example 6

```
1 clc
2 //initialisation of variables
3 Q= 0.7 //cfs
4 d= 6 //in
5 v1= 1.084*10^-5 //ft^2/sec
6 v2= 0.394*10^-5 //ft^2/sec
7 R= 2320
8 //CALCULATIONS
9 v3= R*v1/(d/12)
10 v4=R*v2/(d/12)
11 v= Q*4/(%pi*(d/12)^2)
12 //RESULTS
13 printf ('crititeal velocity = %.4 f ft/sec ',v4)
14 printf ('\n actual velocity = %.2 f ft/sec ',v)
```

Scilab code Exa 5.7 example 7

```
1
2 clc
3 //initialisation of variables
4 p= 0.91 //units
5 u= 0.21 //poise
6 q= 200 //gallons
7 h= 40 //ft
8 l= 200 //ft
9 w= 62.4 //lb/ft^3
10 d= 3/4 //in
11 g=32.2 //ft/s^2
12 //CALCULATIONS
```

```
13  v= u/(p*(30.5)^2)
14  Q= q*10/(w*3600*p)
15  V= Q/(%pi*(d/12)^2/4)
16  Re= V*(d/12)/v
17  F= 64/Re
18  Hf= F*1*V^2/(2*g*(d/12))
19  Ht= Hf+h
20  P= w*p*Ht/144
21  //RESULTS
22  printf ('Pressure head = %.1 f lb/in^2 ',P)
```

Scilab code Exa 5.8 example 8

```
1 clc
2 //initialisation of variables
3 logh= 0.1761
4 logk= -0.415
5 logv= 0.3010
6 //CALCULATIONS
7 n= (logh-logk)/logv
8 //RESULTS
9 printf ('n = %.2 f ',n)
```

Scilab code Exa 5.10 Pressure difference at discharge end

```
1 clc
2 //initialisation of variables
3 pb= 20 //lb/in^2
4 w= 62.4 //lb/ft^3
5 Q= 1.96 //cfs
6 d1= 0.5 //ft
7 d2= 1 //ft
8 f= 0.005
```

```
9 g= 32.2 //ft/sec^2
10 \ 11 = 300 \ // ft
11 H= 14.015 //ft of water
12 //CALCULATIONS
13 v1= Q/(\%pi*d1^2/4)
14 \text{ v2= Q/(\%pi*d2^2/4)}
15 hf1= 4*f*l1*v1^2/(2*g*d1)
16 \text{ hf2} = 4*f*11*v2^2/(2*g*d2)
17 h= (v1-v2)^2/(2*g)
18 h1= v1^2/(2*g)
19 h2 = v2^2/(2*g)
20 P = H*w/144
21 //RESULTS
22 printf ('Loss of head at C = \%.3 f ft ',h)
23 printf ('\n Loss of head at C = \%.2 f ft', h1)
24 printf ('\n Loss of head at C = \%.3 f ft ',h2)
25 printf ('\n Pressure differnece at discharge end = \%
      .2 f lb/in^2, P)
```

Scilab code Exa 5.11 example 11

```
1 clc
2 //initialisation of variables
3 d= 8 //in
4 l= 6000 //ft
5 H= 100 //ft
6 H1= 1000 //ft
7 f= 0.008
8 g= 32.2 //ft/sec^2
9 h1= 24 //ft
10 h2= 34 //ft
11 h3= 25 //ft
12 w= 6.24 //lb/ft^3
13 //CALCULATIONS
14 v= sqrt(H*d*2*g/(4*f*l*12))
```

```
15 h= -h1+(v^2/(2*g))+h3+(4*f*H1*v^2/(2*g*(d/12)))
16 Q= %pi*(d/12)^2*v*3600*w/4
17 //RESULTS
18 printf ('minimum depth = %. f ft ',h)
19 printf ('\n Discharge = %. f gpm',Q)
```

Scilab code Exa 5.12 example 12

```
1 clc
2 //initialisation of variables
3 h = 25 //ft
4 1 = 2000 // ft
5 d = 12 //in
6 g= 32.2 // ft / sec^2
7 f = 0.005
8 dz = 16 //ft
9 \text{ zb} = 25 // \text{ft}
10 zc= -16 // ft
11 //CALCULATIONS
12 v = \frac{sqrt}{2*g*h}/(1.5+(4*f*1/(d/12)))
13 Q = \%pi*(d/12)^2*v/4
14 \ 11 = (34 - dz) * 1/(zb - zc - dz)
15 //RESULTS
16 printf ('Discharge = \%.1 \,\mathrm{f} \,\mathrm{cfs}',Q)
17 printf ('\n length of the inlet = \%. f ft of water ',
      11)
```

Scilab code Exa 5.13 example 13

```
1 clc
2 //initialisation of variables
3 d1= 2 //in
4 l1= 25 //ft
```

```
5 d2= 4 //in
6 12= 140 //ft
7 v= 4 //ft/sec
8 g= 32.2 //ft/sec^2
9 f= 0.0065
10 //CALCULATIONS
11 v1= v*(d2/d1)^2
12 H= (0.5*v1^2/(2*g))+(4*f*11*12*v1^2/(d1*2*g))+((v1-v)^2/(2*g))+(4*f*12*12*v^2/(d2*2*g))+(v^2/(2*g))
13 //RESULTS
14 printf ('necessaey height of water = %.3 f ft ',H)
```

Scilab code Exa 5.14 example 14

Scilab code Exa 5.15 example 15

```
1 clc
2 //initialisation of variables
3 g= 32.2 //ft/sec^2
```

```
4 D= 9 //in
5 //CALCULATIONS
6 d= D/(2^0.4)
7 //RESULTS
8 printf ('diameter of paralle mains = %.2 f in ',d)
```

Scilab code Exa 5.16 example 16

```
1 clc
2 //initialisation of variables
3 d = 2 //ft
4 1 = 5280 // ft
5 f = 0.01
6 \text{ H} = 100 // \text{ft}
7 g= 32.2 // ft / sec^2
8 //CALCLATIONS
9 \text{ v= } \frac{\text{sqrt}(H*2*d*g/(4*f*1))}{}
10 Q = \%pi*d^2*v/4
11 r = d
12 v2= sqrt(H/((r^2+1)*(4*f*1/(2*2*2*g))))
13 Q1= 2*\%pi*d^2*v^2/4
14 dQ = Q1 - Q
15 p = dQ * 100/Q
16 //RESULTS
17 printf ('percentage increase in discharge = %.1f per
        cent ',p)
```

Scilab code Exa 5.18 example 18

```
1 clc
2 //initialisation of variables
3 A= 10000 //ft^2
4 H1= 50 //ft
```

```
5 H2= 40 //ft
6 l= 1500 //ft
7 d= 6 //in
8 f= 0.0075
9 g= 32.2 //f/sec^2
10 //CALCULATIONS
11 t= 2*A*sqrt((1.5+(4*f*1/(d/12)))/(2*g))*(sqrt(H1)-sqrt(H2))/(%pi*(d/12)^2/4)
12 //RESULTS
13 printf ('Time taken to lower the level of water = %.f sec',t)
```

Scilab code Exa 5.19 example 19

```
1 clc
2 //initialisation of variables
3 1 = 24 // ft
4 b = 12 //ft
5 f = 0.006
6 d = 4 //in
7 11 = 25 // ft
8 \text{ H1} = 6 // \text{ft}
9 \text{ H= } 20 \text{ // } \text{ft}
10 g= 32.2 // ft / sec^2
11 \text{ Cd} = 0.6
12 //CALCULATIONS
13 a = \%pi*(d/12)^2/4
14 A = 1*b
15 H2= H1+H
16 t= 2*A*sqrt((1.5+(4*f*11/(d/12)))/(2*g))*(sqrt(H2)-
      sqrt(H))/a
17 t1 = 2*A*sqrt((1.5+(4*f*11/(d/12)))/(2*g))*sqrt(H1)/a
18 t2= 2*A*sqrt(H1)/(Cd*a*sqrt(2*g))
19 //RESULTS
20 printf ('Time taken to lower the pipe = \%.f sec ',t)
```

```
21 printf ('\n Time taken to lower the pipe = %.f sec ',t1)
22 printf ('\n Time taken to lower the pipe = %.f sec ',t2)
```

Scilab code Exa 5.20 example 20

```
1 clc
2 //initialisation of variables
3 d = 2 // ft
4 l = 1000 // ft
5 f = 0.0075
6 \text{ H1} = 20 // \text{ft}
7 \text{ A1} = 100000 // \text{ft}^2
8 A2 = 50000 //ft^2
9 \text{ g} = 32.2 // \text{ft/sec}^2
10 //CALCULATIONS
11 h = 2*A1/A2
12 H2= H1-h
13 t= 2*A1*A2*sqrt(1.5+(4*f*1/2))*0.47/((A1+A2)*(%pi*d)
       ^2/4) *sqrt(2*g))/60
14 //RESULTS
15 printf ('Time taken to lower the level of water = \%.
      f min ',t)
```

Scilab code Exa 5.21 example 21

```
1 clc
2 //initialisation of variables
3 H= 1000 //lb/in^2
4 Hf= 100 //lb/in^2
5 l= 10 //miles
6 HP= 100
```

```
7 g= 32.2 //ft/sec^2
8 w= 64.4 //lb/ft^3
9 f= 0.006
10 //CALCULATIONS
11 n= (H-Hf)*100/H
12 v= Hf*550/((%pi/4)*n*10*144)
13 r= Hf*144*2*g/(w*4*f*1*5280)
14 d= (v^2/r)^(1/5)
15 //RESULTS
16 printf ('Diameter = %.4 f ft ',d)
```

Scilab code Exa 5.22 example 22

```
1 clc
2 //initialisation of variables
3 h1 = 1640 // ft
4 h2 = 40 //ft
5 d = 8 //in
6 1 = 2 // miles
7 D = 3 //ft
8 f = 0.006
9 \text{ Cv} = 0.98
10 g= 32.2 // ft / sec^2
11 w= 62.4 //lb/ft^3
12 //CALCULATIONS
13 r = (d/12)/D
14 vact= Cv*sqrt(2*g*(h1-h2)/(1+(4*f*1*5280*r^4/D)))
15 HP= w*vact^3*(\%pi*(d/12)^2/4)/(550*2*g)
16 //RESULTS
17 printf ('Horse Power of Jet = \%.f HP ', HP)
```

Scilab code Exa 5.23 example 23

```
1 clc
2 //initialisation of variables
3 p= 60 //lb/in^2
4 1= 300 //ft
5 D= 2.5 //in
6 d= 7/8 //in
7 f= 0.018
8 g= 32.2 //ft/sec^2
9 w= 62.4 //lb/ft^3
10 //CALCULATIONS
11 r= (D/d)^4
12 V= sqrt(2*g*144*p/(w*(r+0.5+(4*f*1/(D/12)))))
13 Q= V*(%pi*(D/12)^2)/4
14 //RESULTS
15 printf ('Volume of flow = %.3 f cu ft/sec',Q)
```

Scilab code Exa 5.24 example 24

```
1 clc
2 //initialisation of variables
3 D = 3 //in
4 1 = 800 // ft
5 \text{ H} = 120 // \text{ft}
6 f = 0.01
7 \text{ g} = 32.2 // \text{ft/sec}^2
8 \text{ w} = 62.4 // \text{lb/ft}^3
9 //CALCULATIONS
10 d = ((D/12)^5/(8*f*1))^0.25
11 hf = H/3
12 dh = H - hf
13 v = sqrt(hf*(D/12)*2*g/(4*f*1))
14 HPmax= w*\%pi*((D/48)^2/4)*v*dh/550
15 //RESULTS
16 printf ('HPmax = \%.3 \, f HP', HPmax)
```

Scilab code Exa 5.25 example 25

```
1 clc
2 //initialisation of variables
3 l= 2 //miles
4 Q= 2*10^6 //gal/day
5 d= 12 //in
6 t= 16 //sec
7 w= 62.4 //lb/ft^3
8 g= 32.2 //ft/sec^2
9 //CALCULATIO
10 Q1=Q*10/(w*24*60*60)
11 hi= 1*5280*Q1/((%pi*(d/12)^2/4)*(g*t))
12 //RESULTS
13 printf ('height = %.1 f ft ',hi)
```

Scilab code Exa 5.26 example 26

```
1 clc
2 //initialisation of variables
3 d= 6 //in
4 Q= 0.7854 //cfs
5 E= 30*10^6 //lb/in^2
6 t= 0.25 //in
7 g= 32.2 //ft/sec^2
8 w= 62.4 //lb/ft^3
9 K= 300000 //lb/in^2
10 //CALCULATIONS
11 v= Q/(%pi*(d/12)^2/4)
12 p= v/(sqrt(144*(g/w)*((1/K)+(d/(t*E)))))
13 //RESULTS
```

```
14 printf ('rise of presure in the pipe = \%.f lb/in^2 ',p)
```

Scilab code Exa 5.27 example 27

```
1 clc
2 //initialisation of variables
3 w= 62.4 //lb/ft^3
4 f= 0.005
5 Q= 100 //cuses
6 m= 40 //Rs
7 n= 0.75
8 n1= 0.065
9 K= 15 //Rs
10 //CALCULATIONS
11 d= ((5*w/(1.5*550*10))*n*f*Q^3*m/(K*n1))^(1/6.5)
12 //RESULTS
13 printf ('economical diameter of pipe line = %.3 f ft ',d)
```

Chapter 6

Flow Through Open Channels

Scilab code Exa 6.1 example 1

```
1 clc
2 //initialisation of variables
3 i= 0.000146
4 v= 2.8 //ft/sec
5 m= 7 //ft
6 //CALCULAIONS
7 C= v/sqrt(m*i)
8 K= (157.6-C)*sqrt(m)/C
9 //RESULTS
10 printf ('K = %.3 f ',K)
```

Scilab code Exa 6.2 example 2

```
1 clc
2 //initialisation of variables
3 b= 10 //ft
4 n= 1
5 i= 1/1000
```

```
6 d= 1.5 //ft
7 C= 110
8 w= 62.4 //lb/ft^3
9 //CALCULATIONS
10 L= sqrt(2*d^2)
11 P= b+2*L
12 A= d*(b+n*d)
13 m= A/P
14 v= C*sqrt(m*i)
15 Q= A*v*w*60*60*24/10
16 //RESULTS
17 printf ('Discharge = %.2e gal/day ',Q)
```

Scilab code Exa 6.3 example 3

```
1 clc
2 //initialisation of variables
3 b= 10 //ft
4 n= 2
5 d= 3.5 //ft
6 i= 1/625
7 //CALCULATIONS
8 A= d*(b+(d/n))
9 L= sqrt(d^2+(d/2)^2)
10 P= b+2*L
11 m= A/P
12 v= 1.486*m^(2/3)*i^0.5/0.03
13 Q= A*v
14 //RESULTS
15 printf ('Discharge = %.1 f cuses ',Q)
```

Scilab code Exa 6.4 example 4

```
1 clc
2 //initialisation of variables
3 d= 3 //ft
4 i= 1/4500
5 C= 80
6 //CALCULATIONS
7 A= 0.5*(%pi*d^2/4)
8 P= %pi*d/2
9 m= A/P
10 v= C*sqrt(m*i)
11 Q= v*A
12 //RESULTS
13 printf ('Discharge = %.2 f cuses ',Q)
```

Scilab code Exa 6.5 example 5

```
1 clc
2 //initialisation of variables
3 A= 2500 //acres
4 n= 20
5 Q= 40 //gal/head
6 C= 130
7 i= 1/3000
8 p = 7 //per cent
9 w= 62.4 //lb/ft^3
10 //CALCULATIONS
11 Q1= Q*50000*p/(60*100*60*w)
12 Q2= Q1+(A*4840*9/(12*24*60*60))
13 d= (Q2*8*sqrt(4/i)/(%pi*C))^0.4
14 //RESULTS
15 printf ('Diameter = %.3 f ft ',d)
```

Scilab code Exa 6.6 example 6

```
1 clc
2 //initialisation of variables
3 Qt = 150000 / cuses
4 i = 1/10000
5 n1 = 1
6 n2 = 2/3
7 d1 = 30 // ft
8 C1 = 100
9 C2 = 75
10 b1= 600 // ft
11 b2= 2000 // ft
12 r = 2
13 \quad A1 = (b1+d1)*d1
14 P1= b1+(2*d1*sqrt(2))
15 \text{ m1} = A1/P1
16 v1= C1*sqrt(m1*i)
17 Q1 = A1 * v1
18 Q2= Qt-Q1
19 v2 = v1/2
20 \text{ A2} = Q2/v2
21 d2= (-b2+sqrt(b2^2+4*1.5*A2))/(2*1.5)
22 //RESULTS
23 printf ('depth of water = \%. f ft ',d2)
```

Scilab code Exa 6.7 example 7

```
1 clc
2 //initialisation of variables
3 d= 3 //ft
4 i= 1/1000
5 C= 65
6 Cd= 0.56
7 g= 32.2 //ft/sec^2
8 h1= 7.5 //ft
9 h2= 3 //ft
```

```
10  //CALCULATIONS
11  m= d
12  v= C*sqrt(m*i)
13  Q= v*d
14  H= (Q*d/(2*sqrt(2*g)*Cd))^(2/3)
15  h= h1+h2-H
16  //RESULTS
17  printf ('Height of dam = %.2 f ft ',h)
```

Scilab code Exa 6.8 example 8

```
1 clc
2 //initialisation of variables
3 Q = 100 / cuses
4 v= 2 /// ft / sec
5 n = 1.5
6 A = 50 //ft^2
7 C = 120
8 //CALCULATIONS
9 d = sqrt((Q/v)/(2*sqrt(n^2+1)-n))
10 \text{ m} = A/d
11 \quad h1 = m-n*d
12 h2 = m + n * d
13 i = (v/C)^2*(2/d)
14 //RSULTS
15 printf ('Depth = \%.2 \,\mathrm{f} ft ',d)
16 printf ('\n Bottom width = \%.2 \, \text{f} ft ',h1)
17 printf ('\n Top width = \%.2 \, \text{f} ft ',h2)
```

Scilab code Exa 6.9 example 9

```
1 clc
2 //initialisation of variables
```

```
3 Q= 1100 //cuses
4 i= 1/1800
5 C= 95
6 n= 1.5
7 //CALCULATIONS
8 d= ((Q*sqrt(3600)/C)/(n+0.6))^0.4
9 b= 0.6*d
10 ht= b+2*(n*d)
11 //RESULTS
12 printf ('Depth = %.2 f ft ',d)
13 printf ('\n Bottom width = %.2 f ft ',b)
14 printf ('\n Top width = %.2 f ft ',ht)
```

Scilab code Exa 6.10 example 10

```
1 clc
2 //initialisation of variables
3 n= 1.5
4 Q= 800 //cuses
5 i= 2.5/5280
6 n1= 9.24
7 r= 0.6
8 k= 1.49
9 //CALCULATIONS
10 d= (k*10^7*4/n1)^(1/8)
11 //RESULTS
12 printf ('Depth of channel = %.1 f ft ',d)
```

Scilab code Exa 6.11 example 11

```
1 clc
2 //initialisation of variables
3 d= 8 //ft
```

```
4 i= 1/1200
5 C= 90
6 a= 308 //degrees
7 //CALCULATIONS
8 h= 0.95*d
9 A= (d/2)^2*(a*(%pi/180)-sind(a))/2
10 m= 0.29*d
11 Q= A*C*sqrt(m*i)
12 //RESULTS
13 printf ('Discharge = %.f cuses ',Q)
```

Scilab code Exa 6.12 example 12

```
1 clc
2 //initialisation of variables
3 v= 5 //ft/sec
4 Q= 500 //cuses
5 w= 25 //ft
6 g= 32.2 //ft/sec^2
7 //CALCULATIONS
8 h= (Q/v)/w
9 E= h+(v^2/(2*g))
10 //RESULTS
11 printf ('Specific energy = %.2 f ft ',E)
```

Scilab code Exa 6.13 example 13

```
1 clc
2 //initialisation of variables
3 i= 1/5000
4 C= 100
5 b= 50 //ft
6 h= 10 //ft
```

```
7 Q= 1000 //cuses
8 g= 32.2 //ft/sec^2
9 //CALCULATIONS
10 f= 2*g/C^2
11 m= (b*h)/(b+2*h)
12 v= Q/(b*h)
13 r= (i-(f*4/(2*g*m)))/(1-(2^2/(g*h)))
14 s= i-r
15 //RESULTS
16 printf ('Slope = %.6 f ',s)
```

Scilab code Exa 6.14 example 14

```
1 clc
2 //Initialization of variables
3 B=48 //ft
4 D=5 // ft
5 f = 0.005
6 i = 1/1000
7 g = 32.2
8 //calculations
9 C = sqrt(2*g/f)
10 m=B*D/(B+2*D)
11 V=C*sqrt(m*i)
12 Q = B * D * V
13 Dc = (Q^2 / (g*B^2))^(1/3)
14 d1=2.25 // ft
15 \quad Q1 = 1 * D * V
16 d2 = -d1/2 + sqrt(2*Q1^2 /(g*d1) + d1^2 /4)
17 hd=d2-d1
18 //results
19 printf ("height required = \%.3 \, \text{f} ft", hd)
20 //The answer is a bit different due to rounding off
      error in textbook
```

Scilab code Exa 6.15 example 15

```
1
2 clc
3 //initialisation of variables
4 Q = 360 // cfs
5 d1 = 1 //ft
6 B = 18 //ft
7 \text{ g= } 32.2 // \text{ft/sec}^2
8 w1= 624. //lb/ft^3
9 d2=4.5 //ft
10 //CALCULATIONS
11 \text{ w= Q/B}
12 v1 = w/d1
13 v2 = v1/d2
14 d2 = -0.5 + sqrt((2*v1^2*d1/(g)) + (d1^2/4))
15 El= (d1+(w^2/(2*g)))-(d2+(v2^2/(2*g)))
16 \quad EL = w1*Q*E1
17 //RESULTS
18 printf ('loss in energy = \%. f lb ', EL)
```

Scilab code Exa 6.16 example 16

```
1 clc
2 //initialisation of variables
3 d1= 4 //ft
4 v1= 60 //ft/sec
5 g= 32.2 //ft/sec^2
6 //CALULATIONS
7 d2= d1*(sqrt(1+8*v1^2/(g*d1))-1)/2
8 //RESULTS
9 printf ('d2 = %. f ft ',d2)
```

Scilab code Exa 6.17 example 17

```
1 clc
2 //initialisation of variables
3 b = 150 //ft
4 d = 12 // ft
5 N = 0.03
6 i = 1/10000
7 h = 10 // ft
8 \text{ g} = 32.2 // \text{ft/sec}^2
9 //CALCULATIONS
10 A = b*d
11 P = b + 2 * d
12 m = A/P
13 v = m^{(2/3)} *1.49 *i^{0.5/N}
14 \text{ A1= b*(h+d)}
15 P1 = b + 2*(h+d)
16 \text{ m1} = A1/P1
17 C1= 1.49*m1^(1/6)/N
18 \quad v1 = A * v/A1
19 s= (i-(v1^2/(C1^2*m1)))/(1-(v1^2/(g*(h+d))))
20 L = 2*h/s
21 //RESULTS
22 printf ('Length of back water = \%.f ft ',L)
```

Scilab code Exa 6.18 example 18

```
1 clc
2 //initialisation of variables
3 b1= 3.2 //ft
4 b2= 1.3 //ft
```

```
5 h1= 1.86 //ft
6 h2= 1.63 //ft
7 g= 32.2 //ft/sec^2
8 //CALCULATIONS
9 a1= b1*h1
10 a2= b2*h2
11 Q= a1*a2*sqrt(2*g)*sqrt(h1-h2)/(sqrt(a1^2-a2^2))
12 //RESULTS
13 printf ('Discharge = %.1 f cuses ',Q)
```

Scilab code Exa 6.19 example 19

```
1 clc
2 //initialisation of variables
3 b1= 4 // ft
4 b2= 2 // ft
5 h1 = 2 // ft
6 g= 32.2 // ft / sec^2
7 //CALCULATIONS
8 \text{ Qmax} = 3.09*b2*h1^1.5
9 v1 = Qmax/(b1*h1)
10 H= h1+(v1^2/(2*g))
11 Qmax2 = 3.09*b2*H^1.5
12 h2 = 2*H/3
13 //RESULTS
14 printf ('Qmax = \%.2 \,\mathrm{f} \,\mathrm{cfs}', Qmax)
15 printf ('\n Qmax = \%.2 \, \text{f cfs}', Qmax2)
16 printf ('\n h2 = \%.3 f ft ',h2)
```

Scilab code Exa 6.20 example 20

```
1 clc
2 //initialisation of variables
```

```
3 \text{ h1= 8 } // \text{ft}
4 b1= 32 //ft
5 h = 1 // ft
6 b2 = 24 //ft
7 \text{ g= } 32.2 \text{ // ft/sec}^2
8 //CALCULATIONS
9 \text{ H= } h1-h
10 \ Q = 3.09 * H^1.5 * b2
11 v1 = Q/(b1*h1)
12 Q1= 3.09*(H+(v1^2/(2*g)))^1.5*b2
13 hc= (Q1^2/(g*b2^2))^(1/3)
14 d2 = -(hc/2) + sqrt(9*hc^2/2) + h
15 //RESULTS
16 printf ('Q = \%.f cfs ',Q1)
17 printf ('\n hc = \%.2 \,\mathrm{f} ft ',hc)
18 printf ('\n max depth = \%.2 f ft ',d2)
```