Тема «Численные методы оптимизации»

Пусть дана функция f(x), где $x = (x_1, x_2, ..., x_n)$ принадлежащая n-мерному пространству R_n , ограниченная снизу на множестве и имеющая непрерывные частные производные во всех его точках.

Требуется найти локальный минимум функции f(x) на множестве допустимых решений R_n , т.е. найти такую точку x^* , что

$$f(x^*) = \min_{x \in R^n} f(x)$$

Метод градиентного спуска с постоянным шагом

Стратегия решения задачи состоит в построении последовательности точек $\{x^k\}$, таких что,

$$f(x^{k+1}) < f(x^k) \ (k = 0, 1, ...)$$

Элементы последовательности $\{x^k\}$ вычисляются по правилу

$$x^{k+1} = x^k - t_k \operatorname{grad} f(x^k) \tag{1}$$

где x^0 - точка начального приближения;

 $\operatorname{grad} f(x)$ – градиент скалярной функции f(x);

 t_k — величина шага (задается), остается постоянной до тех пор, пока функция убывает в точках последовательности, что контролируется путем проверки выполнения условия

$$f(x^{k+1}) - f(x^k) < 0$$

Построение оптимизирующей последовательности $\{x^k\}$ заканчивается на таком шаге K, при котором выполняется условие

$$\|\operatorname{grad} f(x^K)\| < \varepsilon \tag{2}$$

где є - заданное малое число или допустимая погрешность, с которой можно считать, что достигнута стационарная точка.

Напомним, что для функции многих переменных $f(x_1, x_2, ..., x_n)$ или в сокращенной записи f(x), необходимым условием экстремума является равенство нулю всех частных производных (условие стационарной точки)

$$\frac{\partial f}{\partial x_i} = 0 \ (i = 1, 2, \dots, n) \tag{3}$$

или grad
$$f(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right) = 0$$

Поэтому условие (2) является численным приближением условий (3)

Заметим, что число итераций не должно превышать некоторого заданного их числа, то есть K < M. При превышении данного числа M, алгоритм останавливается и рекомендуется выбрать другую начальную точку.

Для остановки процесса вычислений можно также воспользоваться критерием, основанным на критерии Коши существования предела, то есть если при некотором малом ε_1 выполняются оценки

$$|| x^{K} - x^{K+1} || < \varepsilon_1 \text{ M } | f(x^{K}) - f(x^{K+1}) | < \varepsilon_1$$

То последовательность $\{x^k\}$ сходится и ее значение на K шаге отличается от предельного значения x^* не более чем на ϵ_1

$$\|x^K - x^*\| < \varepsilon_1$$

Заметим, что не всякая стационарная точка является точкой экстремума (min в нашем случае). Поэтому для определения наличия экстремума в точке x^* необходимы дополнительные действия.

На рисунке дана графическая иллюстрация сходимости метода градиентного спуска при n=2

Метод наискорейшего градиентного спуска

Данный метод является модификацией предыдущего подхода, то есть стратегия поиска минимума состоит в построении последовательности точек $\{x^k\}$, удовлетворяющих условию

$$f(x^{k+1}) < f(x^k) \ (k = 0, 1, ...)$$

Элементы последовательности $\{x^k\}$ вычисляются по правилу (1)

$$x^{k+1} = x^k - t_k \operatorname{grad} f(x^k)$$

где x^0 - точка начального приближения; grad f(x) — градиент скалярной функции f(x);

Основное отличие от градиентного спуска с постоянным шагом заключается в том, что величина шага t_k уже не является постоянной величиной.

Величина шага t_k вычисляется для каждой k — итерации из условия

$$\varphi(t_k) = f(x^k - t_k grad f(x^k)) \to min$$
 (4)

Эта задача решается обычными методами математического анализа, то есть, чтобы функция одного аргумента $\varphi(t)$ имела минимум в некоторой точке t_k необходимо, чтобы ее производная в этой точке равнялась нулю:

$$\left. \frac{d\varphi}{dt} \right|_{t=t_k} = 0$$

Для того, чтобы в этой точке действительно существовал min требуется

$$\left. \frac{d^2 \varphi}{d^2 t} \right|_{t=t_k} > 0$$

Заметим, что в некоторых случаях решить одномерную задачу минимизации (4) целесообразнее с помощью численных методов.

На следующем рисунке показана сходимость метода наискорейшего градиентного спуска в случае двух координат

Метод покоординатного спуска

Построение оптимизирующей последовательности точек $\{x^k\}$, сходящихся к точке минимума x^* функции f(x) осуществляется в данном методе по правилу

$$x^{jk+1} = x^{jk} - t_k \left(\frac{\partial f(x)}{\partial x_{k+1}} \right)_{x=x^{jk}} \cdot e_{k+1}$$

где $j=0,1,\ldots$ – номер цикла вычислений, $k=0,1,\ldots,n-1$ номер итерации внутри цикла, x^{00} – точка начального приближения;

$$e_{k+1} = (0, 0, \cdots, 1, \dots 0)$$

единичный вектор, содержащий 1 на (k+1) позиции и нули на остальных Шаг t_k выбирается из условия

$$f\left(x^{jk} - t_k \left(\frac{\partial f(x)}{\partial x_{k+1}}\right)_{x=x^{jk}} \cdot e_{k+1}\right) - f\left(x^{jk}\right) < 0$$

Если выбранное условие на текущем значении t_k не выполняется, то шаг уменьшается вдвое

$$t_k \rightarrow t_k/2$$

И точка

$$x^{jk} - t_k \left(\frac{\partial f(x)}{\partial x_{k+1}} \right)_{x=x^{jk}} \cdot e_{k+1}$$

пересчитывается. Можно увидеть, что при фиксированном j за одну итерацию с номером k изменяется только одна проекция точки x^{jk} , имеющая номер k+1, а в течение всего цикла с номером j, т.е. начиная с k=0 и кончая k=n-1 изменяются все n проекций точки x^{j0} . После этого точке x^{jn} присваивается номер $x^{j+1,0}$ и она берется за начальную точку для вычислений на j+1 цикле.

Полученные в результате вычислений точки могут быть записаны как элементы последовательности $\{x^l\}$, где $l=n\cdot j+k$, порядковый номер точки, т.е.

$$\left\{ x^{l} \right\} = \left\{ x^{0} = x^{00}, x^{1} = x^{01}, ..., x^{n} = x^{0n} = x^{10}, x^{n+1} = x^{11}, x^{n+2} = x^{12}, ... \right\}$$

Графическая иллюстрация сходимости метода градиентного спуска при n=2 дана ниже

