SIGN-CONGRUENCE, EXTERNAL VALIDITY, AND

REPLICATION

Tara Slough & Scott A. Tyson

REPLICATION AND ACCUMULATION

Most prominent critique of the credibility revolution: lack of external validity

Typical advice: run more studies

Then:

Compare results from multiple studies \to replication Combine results from multiple studies \to meta-analysis

REPLICATION AND ACCUMULATION

Most prominent critique of the credibility revolution: lack of external validity

Typical advice: run more studies

Then:

Compare multiple studies → **replication** (Here!)
Combine from multiple studies → **meta-analysis** (Slough & Tyson 2022)

ACCUMULATION OF EVIDENCE

When we observe differences across experiments, kinds of explanations:

- 1. Statistical noise, e.g., sampling variability
- 2. Differences in **study design**, e.g., different outcome measures
- 3. Phenomenon is not **generalizable**

ACCUMULATION OF EVIDENCE

When we observe differences across experiments, kinds of explanations:

- 1. Statistical noise, e.g., sampling variability
- 2. Differences in **study design**, e.g., different outcome measures
- 3. Phenomenon is not **generalizable**

Accumulating evidence requires addressing all three

What we do

Present a general framework to help think about evidence accumulation

Develop key concepts relevant for understanding replication

Formally link some replication approaches with external validity concepts

Advocate a design-based approach to conceptual replication

OUTLINE

- FRAMEWORK
- 2 Concepts
- RESULTS
- PRACTICAL GUIDANCE
- **5** Two Approaches to Evidence Accumulation

WHAT'S A STUDY?

A **study** is a triple:

1. A setting, θ

Contextual features, population, time, etc.

- 2. A measurement strategy, m
 - Outcome choice and measurement components
- 3. A contrast, (ω', ω'')

Comparison of interest (e.g., treatment/control)

WHAT'S A STUDY?

A **study** is a triple:

1. A setting, θ

Contextual features, population, time, etc.

2. A measurement strategy, m

Outcome choice and measurement components

3. A contrast, (ω', ω'')

Comparison of interest (e.g., treatment/control)

Two studies are harmonized if the measurement strategy and contrast are the same

WHAT'S THE EMPIRICAL TARGET?

The treatment effect function, $\tau_m(\omega', \omega'' \mid \theta)$

• Smooth, derivative has full rank in measurement strategies and contrasts

WHAT'S THE EMPIRICAL TARGET?

The treatment effect function, $\tau_m(\omega', \omega'' \mid \theta)$

• Smooth, derivative has full rank in measurement strategies and contrasts

Measured effect:

$$e_j = au_{m_j}(\omega_j{'}, \omega_j{''} \mid heta_j) + arepsilon_j^{n_j}.$$

- $\varepsilon_i^{n_j}$ is observation error
- Unbiased when $\mathbb{E}[\varepsilon_i^{n_j}] = 0$
- Consistent when $\mathbb{E}(\varepsilon_i^{n_i} \mathbb{E}[\varepsilon_i^{n_j}])^2 \to 0$ (in probability) as $n_i \to \infty$.

OUTLINE

- FRAMEWORK
- 2 Concepts
- RESULTS
- PRACTICAL GUIDANCE
- **5** Two Approaches to Evidence Accumulation

TWO KEY CONCEPTS FOR ACCUMULATING EVIDENCE

1. Two studies $\mathcal{E}_1 = \{m_1, (\omega_1', \omega_1''), \theta_1\}$ and $\mathcal{E}_2 = \{m_2, (\omega_2', \omega_2''), \theta_2\}$ are target-equivalent if

$$\tau_{m_1}(\omega_1', \omega_1'' \mid \theta_1) = \tau_{m_2}(\omega_2', \omega_2'' \mid \theta_2).$$

2. Two studies $\mathcal{E}_1 = \{m_1, (\omega_1', \omega_1''), \theta_1\}$ and $\mathcal{E}_2 = \{m_2, (\omega_2', \omega_2''), \theta_2\}$ are target-congruent if

$$sign(\tau_{m_1}(\omega_1',\omega_1''\mid\theta_1)) = sign(\tau_{m_2}(\omega_2',\omega_2''\mid\theta_2)).$$

TARGET DISCREPANCIES

The **target discrepancy** from setting θ to θ' is

$$\Delta_{m,(\omega',\omega'')}(\theta,\theta') = \tau_m(\omega',\omega'' \mid \theta) - \tau_m(\omega',\omega'' \mid \theta').$$

Target discrepancies are (nonrandom) differences in the treatment effects (targets) that come from differences under the same design in different settings.

TARGET DISCREPANCIES

The **target discrepancy** from setting θ to θ' is

$$\Delta_{m,(\omega',\omega'')}(\theta,\theta') = \tau_m(\omega',\omega'' \mid \theta) - \tau_m(\omega',\omega'' \mid \theta').$$

Target discrepancies are (nonrandom) differences in the treatment effects (targets) that come from differences under the same design in different settings.

Target discrepancies are about departures from external validity

- Target-equivalence is when they're absent
- Target-congruence is when they take a particular form

Two notions of external validity

1. A mechanism has **external validity** from setting θ to setting θ' if for almost every measurement strategy and contrast,

$$\tau_{m}(\omega',\omega''\mid\theta)=\tau_{m}(\omega',\omega''\mid\theta').$$

2. A mechanism has **sign-congruent external validity** from setting θ to θ' if for almost every measurement strategy and contrast

$$sign(\tau_m(\omega',\omega''\mid\theta))=sign(\tau_m(\omega',\omega''\mid\theta')).$$

ILLUSTRATING NOTIONS OF EXTERNAL VALIDITY

ARTIFACTUAL DISCREPANCIES AND HARMONIZATION

For a fixed setting θ , the **artifactual discrepancy** is

$$\mathcal{A}_{ij}(\theta) = \tau_{m_i}(\omega_i', \omega_i'' \mid \theta) - \tau_{m_j}(\omega_j', \omega_j'' \mid \theta).$$

Artifactual discrepancies are (nonrandom) differences in treatment effects produced by:

- Different measurement strategies
- Different contrasts

ARTIFACTUAL DISCREPANCIES AND HARMONIZATION

For a fixed setting θ , the **artifactual discrepancy** is

$$\mathcal{A}_{ij}(\theta) = \tau_{m_i}(\omega_i', \omega_i'' \mid \theta) - \tau_{m_j}(\omega_j', \omega_j'' \mid \theta).$$

Artifactual discrepancies are (nonrandom) differences in treatment effects produced by:

- Different measurement strategies
- Different contrasts

Remark: $A_{ij}(\theta) = 0$ for almost every θ if and only if i and j are harmonized.

OUTLINE

- FRAMEWORK
- 2 Concepts
- RESULTS
- PRACTICAL GUIDANCE
- **Two Approaches to Evidence Accumulation**

Main Results

For a collection of studies $\{\mathcal{E}_i = \{m_i, (\omega_i', \omega_i''), \theta_i\}_{i=1}^N$:

Theorem: Target-equivalence holds across i if and only if the mechanism satisfies external validity and all studies are harmonized (almost everywhere).

Main Results

For a collection of studies $\{\mathcal{E}_i = \{m_i, (\omega_i', \omega_i''), \theta_i\}_{i=1}^N$:

Theorem: Target-equivalence holds across i if and only if the mechanism satisfies external validity and all studies are harmonized (almost everywhere).

Theorem: Target-congruence holds across i if and only if the mechanism satisfies sign-congruent external validity and all studies are harmonized (a.e.).

Main Results

For a collection of studies $\{\mathcal{E}_i = \{m_i, (\omega_i', \omega_i''), \theta_i\}_{i=1}^N$:

Theorem: Target-equivalence holds across i if and only if the mechanism satisfies external validity and all studies are harmonized (almost everywhere).

Theorem: Target-congruence holds across i if and only if the mechanism satisfies sign-congruent external validity and all studies are harmonized (a.e.).

Theorem: The set where the sign of empirical targets is different is nondecreasing (in the set inclusion order) in the number of studies N.

OUTLINE

- TRAMEWORK
- 2 Concepts
- RESULTS
- PRACTICAL GUIDANCE
- **5** Two Approaches to Evidence Accumulation

Comparing Signs

The **sign-comparison test** computes:

$$\mathcal{Z} = e_1 \cdot e_2$$

and tests the null hypothesis $H_0^z: \mathcal{Z} > 0$ against the alternative $H_a^z: \mathcal{Z} \leq 0$.

Comparing Signs

The **sign-comparison test** computes:

$$\mathcal{Z} = e_1 \cdot e_2$$

and tests the null hypothesis $H_0^z: \mathcal{Z} > 0$ against the alternative $H_a^z: \mathcal{Z} \leq 0$.

Proposition: If two studies $\mathcal{E}_1 = (m_1, (\omega_1', \omega_1''), \theta_1)$ and $\mathcal{E}_2 = (m_2, (\omega_2', \omega_2''), \theta_2)$ are harmonized, and estimation errors, $\varepsilon_1^{n_1}$ and $\varepsilon_2^{n_2}$, are unbiased and consistent, then the sign-comparison test assesses a null hypothesis of sign-congruent external validity.

COMPARING ESTIMATES

The **estimate-comparison test** computes:

$$\mathcal{W} = e_1 - e_2$$

and test the null hypothesis $H_0^w: \mathcal{W}=0$ against the alternative $H_a^w: \mathcal{W} \neq 0$.

Comparing Estimates

The **estimate-comparison test** computes:

$$\mathcal{W}=e_1-e_2$$

and test the null hypothesis $H_0^w: \mathcal{W}=0$ against the alternative $H_a^w: \mathcal{W} \neq 0$.

Proposition: If two studies $\mathcal{E}_1 = (m_1, (\omega_1', \omega_1''), \theta_1)$ and $\mathcal{E}_2 = (m_2, (\omega_2', \omega_2''), \theta_2)$ have unbiased and consistent estimation errors, then

- 1. If studies 1 and 2 are harmonized, then the estimate-comparison test assesses a null hypothesis that the mechanism is externally valid;
- 2. If the mechanism has external validity, then the estimate-comparison test assesses a null hypothesis that the studies 1 and 2 are harmonized.

OUTLINE

- FRAMEWORK
- 2 Concepts
- RESULTS
- PRACTICAL GUIDANCE
- **5** Two Approaches to Evidence Accumulation

STRUCTURAL APPROACH

Posit a structural model of cross-study environment

• Constrain the kind of data the external world is permitted to supply

STRUCTURAL APPROACH

Posit a structural model of cross-study environment

• Constrain the kind of data the external world is permitted to supply

Key strength: facilitates strong empirical conclusions from data,

Key drawback: cannot support causal interpretations some researchers may wish to impart to results from replication (or meta-analysis).

Design-based Approach

How to maintain causal interpretation in meta-studies?

Design-based Approach

How to maintain causal interpretation in meta-studies?

Focus on the importance of research design studies

connected with credibility approaches to internal validity

Design-based Approach

How to maintain causal interpretation in meta-studies?

Focus on the importance of research design studies

connected with credibility approaches to internal validity

Design-based approach to conceptual replication takes a sequential method that proceeds by admitting one discrepancy at a time

3-step approach:

DESIGN-BASED APPROACH TO CONCEPTUAL REPLICATION

Step	Description	Learning	Caveats/limitations
1.	Harmonized	External validity	Nothing about target discrepancies or external validity under different designs.
2.	Single-setting	How $ au$ changes in design	Artifactual discrepancies may not be equivalent across settings
3.	Non-harmonized multi- study	With steps 1 and 2, see whether artifactual discrepancies vary in settings.	

General framework and concepts for evidence accumulation

General framework and concepts for evidence accumulation

• Key concepts: Target and Artifactual discrepancies

General framework and concepts for evidence accumulation

• Key concepts: Target and Artifactual discrepancies

Formally link some approaches to comparison and concepts of external validity

• External validity and sign-congruent external validity

General framework and concepts for evidence accumulation

• Key concepts: Target and Artifactual discrepancies

Formally link some approaches to comparison and concepts of external validity

External validity and sign-congruent external validity

Advocate a design-based approach to conceptual replication

SIGN-CONGRUENCE, EXTERNAL VALIDITY, AND REPLICATION

Tara Slough & Scott A. Tyson

Thanks!!