Matching and Learning in School Choice

Silvio Ravaioli (Columbia University) Lan Nguyen (Columbia University) Guillaume Haeringer (Baruch College)

Columbia University - Applied Micro Theory Colloquium

March 3, 2020

Motivation - Mistakes in RoL under DA

- Empirical evidence: students make mistakes in ranking schools in strategyproof mechanisms
- Mistake: prefer Harvard to Columbia, and declare the opposite
- For example, when the Deferred Acceptance (DA strategyproof) algorithm is used, we observe failures to rank truthfully the options
- Evidence from Israel medical matching (Hassidim et al. 2017): students rank the no-scholarship option before the with-scholarship option of the same program

Motivation - Mistakes in RoL under DA

- Empirical result replicated in several lab experiments (Chen and Sonmez 2006, Klijn et al. 2010, Ding and Schotter 2019)
 - Large number of deviations from truthful reporting
- Also empirical evidence of little penalization for some of these mistakes (Artemov, Che and He 2017)
 - Some systematic mistakes are payoff irrelevant

Can the students learn and avoid costly mistakes by receiving feedback?

Feedback in School Choice

- Feedback and learning in the real world 3 interpretations
 - Past self, e.g. TAing preferences (every year)
 - Advising, e.g. friends and family
 - Review process embedded in the mechanism (examples from China and France)

- ► Imagine that, after Ranked Ordered Lists (RoLs) are collected and the matching is generated, each student could see their own match, review the RoL, and submit it again
- ▶ What is the effect of the review process on the final matches?

Feedback in School Choice

- Feedback and learning in the real world 3 interpretations
 - Past self, e.g. TAing preferences (every year)
 - Advising, e.g. friends and family
 - Review process embedded in the mechanism (examples from China and France)

- Imagine that, after Ranked Ordered Lists (RoLs) are collected and the matching is generated, each student could see their own match, review the RoL, and submit it again
- ▶ What is the effect of the review process on the final matches?

Students					Schools				
P_{i_1}	P_{i_2}	P_{i_3}	P_{i_4}	P_{s_1}	P_{s_2}	P_{s_3}	P_{s_4}		
s_3	<i>s</i> ₁	s_2	s_3	i_3	<i>i</i> ₁	i_2	i_4		
s_4	s_2	s_3	s_1	i_2	i_4	i_3	i_3		
s_1	s_3	s_1	s_2	i_1	i_3	i_1	i_1		
s_2	s_4	s_4	s_4	i_4	i_2	i_4	i_2		

First period

- \triangleright Students i_1 and i_4 are truthful
- Student i_2 submits $\widehat{P}_{i_2} = s_3, s_4, s_1, s_2$
- Student i_3 submits $\widehat{P}_{i_3} = s_3, s_2, s_1, s_4$
- \Rightarrow i_3 is matched to s_2 . $(i_1, s_4), (i_2, s_3), (i_3, s_2), (i_4, s_1)$

- ► All students are truthful
- \Rightarrow i_3 is matched to s_3 . $(i_1, s_4), (i_2, s_1), (i_3, s_3), (i_4, s_2)$

	Stu	ıdent	S		Scho	ools	
P_{i_1}	P_{i_2}	P_{i_3}	P_{i_4}	P_{s_1}	P_{s_2}	P_{s_3}	P_{s_4}
s_3	<i>s</i> ₁	s_2	s_3	i_3	i_1	i_2	i_4
s_4	s_2	s_3	s_1	i_2	i_4	i_3	i_3
s_1	s_3	s_1	s_2	i_1	i_3	i_1	i_1
s_2	s_4	s_4	s_4	i_4	i_2	i_4	i_2

First period

- \triangleright Students i_1 and i_4 are truthful
- Student i_2 submits $\widehat{P}_{i_2} = s_3, s_4, s_1, s_2$
- Student i_3 submits $\widehat{P}_{i_3} = s_3, s_2, s_1, s_4$
- \Rightarrow i_3 is matched to s_2 . $(i_1, s_4), (i_2, s_3), (i_3, s_2), (i_4, s_1)$

- ► All students are truthful
- \Rightarrow i_3 is matched to s_3 . $(i_1, s_4), (i_2, s_1), (i_3, s_3), (i_4, s_2)$

	Stı	ident:	S		Scho	ools	
P_{i_1}	P_{i_2}	P_{i_3}	P_{i_4}	P_{s_1}	P_{s_2}	P_{s_3}	P_{s_4}
s_3	<i>s</i> ₁	$\mathbf{s_2}$	s_3	i_3	<i>i</i> ₁	i_2	i_4
s_4	s_2	s_3	s_1	i_2	i_4	i_3	i_3
s_1	s_3	s_1	s_2	i_1	i_3	i_1	i_1
s_2	s_4	s_4	s_4	i_4	i_2	i_4	i_2

First period

- \triangleright Students i_1 and i_4 are truthful
- Student i_2 submits $\widehat{P}_{i_2} = s_3, s_4, s_1, s_2$
- Student i_3 submits $\widehat{P}_{i_3} = s_3, s_2, s_1, s_4$
- \Rightarrow i_3 is matched to s_2 .

$$(i_1, s_4), (i_2, s_3), (i_3, s_2), (i_4, s_1)$$

- ► All students are truthful
- \Rightarrow i_3 is matched to s_3 . $(i_1, s_4), (i_2, s_1), (i_3, s_3), (i_4, s_4)$

Students					Schools				
P_{i_1}	P_{i_2}	P_{i_3}	P_{i_4}	P_{s_1}	P_{s_2}	P_{s_3}	P_{s_4}		
s_3	<i>s</i> ₁	$\mathbf{s_2}$	s_3	i_3	i_1	i_2	i_4		
s_4	s_2	s_3	s_1	i_2	i_4	i_3	i_3		
s_1	s_3	s_1	s_2	i_1	i_3	i_1	i_1		
s_2	S_4	S_4	S_4	i_4	i_2	i_4	i_2		

First period

- Students i_1 and i_4 are truthful
- Student i_2 submits $\widehat{P}_{i_2} = s_3, s_4, s_1, s_2$
- Student i_3 submits $\widehat{P}_{i_3} = s_3, s_2, s_1, s_4$
- \Rightarrow i_3 is matched to s_2 . (i_1, \dots, i_n)

$$(i_1, s_4), (i_2, s_3), (i_3, s_2), (i_4, s_1)$$

- ► All students are truthful
- \Rightarrow i_3 is matched to $\mathbf{s_3}$. $(i_1, s_4), (i_2, s_1), (i_3, s_3), (i_4, s_2)$

Students					Schools				
P_{i_1}	P_{i_2}	P_{i_3}	P_{i_4}	P_{s_1}	P_{s_2}	P_{s_3}	P_{s_4}		
s_3	<i>s</i> ₁	$\mathbf{s_2}$	s_3	i ₃	i_1	i_2	i_4		
s_4	s_2	\mathbf{s}_3	s_1	i_2	i_4	i_3	i_3		
s_1	s_3	s_1	s_2	<i>i</i> ₁	i_3	i_1	i_1		
s_2	s_4	s_4	s_4	i_4	i_2	i_4	i_2		

First period

- \triangleright Students i_1 and i_4 are truthful
- Student i_2 submits $\widehat{P}_{i_2} = s_3, s_4, s_1, s_2$
- Student i_3 submits $\widehat{P}_{i_3} = s_3, s_2, s_1, s_4$
- \Rightarrow i_3 is matched to s_2 . $(i_1, s_4), (i_2, s_3), (i_3, s_2), (i_4, s_1)$

- ► All students are truthful
- \Rightarrow i_3 is matched to s_3 . $(i_1, s_4), (i_2, s_1), (i_3, s_3), (i_4, s_2)$

School Choice - Experimental Literature

	w/ Computer	w/ Humans
No Learn	Rees-Jones et al. (2019)	Chen and Sonmez (2006) Calsamiglia et al. (2010)
Learn	Ding and Schotter (2017)	Ding and Schotter (WP) This Project

- The typical experiment involves multiple rounds
- ▶ Mild increase in truthfulness during a session (from 55 to 65%)
- ▶ Ding and Schotter (WP): feedback and random re-match in every round (5 students, 3 schools, priorities known)

- Lab experiment with Deferred Acceptance algorithm
 - ► Eight *rounds* = different environments (preferences/priorities)
 - Each round has five *periods* = same environment

- Separate two aspects of learning:
 - Matching mechanism (DA is strategyproof)
 - Environment (priorities, others' preferences)
- Corresponding to two different sets of predictions for DA
 - Increase in truthful RoL over rounds
 - Decrease in "costly" deviation from truthful
- ► And also to different possible implications.

- Lab experiment with Deferred Acceptance algorithm
 - ► Eight *rounds* = different environments (preferences/priorities)
 - Each round has five *periods* = same environment

- Separate two aspects of learning:
 - Matching mechanism (DA is strategyproof)
 - Environment (priorities, others' preferences)
- Corresponding to two different sets of predictions for DA
 - Increase in truthful RoL over rounds
 - Decrease in "costly" deviation from truthful
- And also to different possible implications.

- Lab experiment with Deferred Acceptance algorithm
 - ► Eight *rounds* = different environments (preferences/priorities)
 - Each round has five *periods* = same environment

- Separate two aspects of learning:
 - Matching mechanism (DA is strategyproof)
 - Environment (priorities, others' preferences)
- Corresponding to two different sets of predictions for DA
 - Increase in truthful RoL over rounds
 - Decrease in "costly" deviation from truthful
- ► And also to different possible implications.

- Lab experiment with Deferred Acceptance algorithm
 - ► Eight *rounds* = different environments (preferences/priorities)
 - Each round has five *periods* = same environment

- Separate two aspects of learning:
 - Matching mechanism (DA is strategyproof)
 - Environment (priorities, others' preferences)
- Corresponding to two different sets of predictions for DA
 - Increase in truthful RoL over rounds
 - Decrease in "costly" deviation from truthful
- And also to different possible implications.

Theory Overview

- ▶ Goal: we want to define when a RoL P_i'' is "better" than the previous P_i' , knowing the true preferences P_i .
- Better = guarantees a weakly preferred match.

Two possible criteria:

- **Better reply** (weaker): P_i'' is better than P_i' when other students' submitted lists are the same
- **Dominating strategy** (stronger): P_i'' is better than P_i' regardless of the others' submitted lists

Theory Overview

- ► Goal: we want to define when a RoL P_i'' is "better" than the previous P_i' , knowing the true preferences P_i .
- Better = guarantees a weakly preferred match.

Two possible criteria:

- **Better reply** (weaker): P_i'' is better than P_i' when other students' submitted lists are the same
- **Dominating strategy** (stronger): P_i'' is better than P_i' regardless of the others' submitted lists

Better replies in DA - Haeringer & Halaburda 2011

Take any student iFix P_{-i} (the submitted lists of other students + schools' priorities).

Notation:

- $ightharpoonup P_i$ = the true preferences of student *i*
- P'_i = submitted list by $i \neq P_i$
- $\blacktriangleright \mu'(i)$ = match of i with P'_i
- $\triangleright \mathcal{P}_{-i} = \text{all } P_{-i} \text{ such that }$

$$DA(P'_i, P_{-i})(i) = \mu'(i)$$

Better replies in DA - Haeringer & Halaburda 2011

 P_i'' is a better reply than P_i' against $P_{-i} \in \mathcal{P}_{-i}$ if and only if P_i'' is such that only truly preferred schools are "moved up" (above the match),

$$s P_i'' \mu'(i)$$
 and $\mu'(i) P_i' s \implies s P_i \mu'(i)$

In short, for a better reply a student can do:

- move above $\mu'(i)$ any school truly preferred to $\mu'(i)$
- ightharpoonup move below $\mu'(i)$ any school
- re-order in any way above $\mu'(i)$
- re-order in any way below $\mu'(i)$

and cannot do:

• move above $\mu'(i)$ any school less preferred to $\mu'(i)$.

Better replies in DA - Haeringer & Halaburda 2011

 P_i'' is a better reply than P_i' against $P_{-i} \in \mathcal{P}_{-i}$ if and only if P_i'' is such that only truly preferred schools are "moved up" (above the match),

$$s P_i'' \mu'(i)$$
 and $\mu'(i) P_i' s \implies s P_i \mu'(i)$

In short, for a better reply a student can do:

- move above $\mu'(i)$ any school truly preferred to $\mu'(i)$
- move below $\mu'(i)$ any school
- re-order in any way above $\mu'(i)$
- re-order in any way below $\mu'(i)$

and cannot do:

• move above $\mu'(i)$ any school less preferred to $\mu'(i)$.

Dominating Strategies and Kemeny Distance

► Consider P'_i , P''_i two possible rank order lists ($\neq P_i$ true pref.)

Define $K(P_i, P'_i)$ the Kemeny set of P_i and P'_i ,

$$K(P_i, P'_i) = \{(s, s') : P_i \text{ and } P'_i \text{ rank } s \& s' \text{ differently}\}$$

[Haeringer & Halaburda (2016)] P'_i dominates P''_i if, and only if,

$$K(P_i, P'_i) \subseteq K(P_i, P''_i)$$

That is, whenever P'_i and P_i disagree about the ranking of two schools, so do P_i and P''_i .

The Kemeny sets provide only a partial order, so in the analysis we will use the Kemeny distance $\delta_{K(P_i,P_i')} := ||K(P_i,P_i')||$.

Dominating Strategies and Kemeny Distance

► Consider P'_i , P''_i two possible rank order lists ($\neq P_i$ true pref.)

Define $K(P_i, P'_i)$ the Kemeny set of P_i and P'_i ,

$$K(P_i, P_i') = \{(s, s') : P_i \text{ and } P_i' \text{ rank } s \& s' \text{ differently}\}$$

[Haeringer & Halaburda (2016)] P'_i dominates P''_i if, and only if,

$$K(P_i, P'_i) \subseteq K(P_i, P''_i)$$

That is, whenever P'_i and P_i disagree about the ranking of two schools, so do P_i and P''_i .

The Kemeny sets provide only a partial order, so in the analysis we will use the Kemeny distance $\delta_{K(P_i,P_i')} := ||K(P_i,P_i')||$.

Dominating Strategies and Kemeny Distance

► Consider P'_i , P''_i two possible rank order lists ($\neq P_i$ true pref.)

Define $K(P_i, P'_i)$ the Kemeny set of P_i and P'_i ,

$$K(P_i, P_i') = \{(s, s') : P_i \text{ and } P_i' \text{ rank } s \& s' \text{ differently}\}$$

[Haeringer & Halaburda (2016)] P'_i dominates P''_i if, and only if,

$$K(P_i, P'_i) \subseteq K(P_i, P''_i)$$

That is, whenever P'_i and P_i disagree about the ranking of two schools, so do P_i and P''_i .

► The Kemeny sets provide only a partial order, so in the analysis we will use the Kemeny distance $\delta_{K(P_i,P'_i)} := ||K(P_i,P'_i)||$.

- Two treatments: DA and IA algorithms (between subjects)
- ► Two parts: without zones and with zones (within subject)
- Twenty participants (students), 5 schools (4 seats each)
- Schools' value is positively correlated across students
- Students observe own preferences (schools' values)
- Each round of the experiment contains five periods
- Each period contains two phases:
 - ► Submit the RoL
 - Observe the realized match

- Two treatments: DA and IA algorithms (between subjects)
- ► Two parts: without zones and with zones (within subject)
- Twenty participants (students), 5 schools (4 seats each)
- Schools' value is positively correlated across students
- Students observe own preferences (schools' values)
- Each round of the experiment contains five periods
- Each period contains two phases:
 - Submit the RoL
 - Observe the realized match

- Two treatments: DA and IA algorithms (between subjects)
- ► Two parts: without zones and with zones (within subject)
- Twenty participants (students), 5 schools (4 seats each)
- Schools' value is positively correlated across students
- Students observe own preferences (schools' values)
- Each round of the experiment contains five periods
- Each period contains two phases:
 - Submit the RoL
 - Observe the realized match

Experimental Design

Experimental Design

Overview of the Results

- 1. Truthfulness declines between periods (mostly from t_1 to t_2)
- 2. Little negative consequences on payoffs
- 3. Revisions of the RoLs are frequent in all the periods
- 4. Systematic patterns in the type of revisions
- 5. (Only) costly mistakes increase truthfulness
- 6. Truthfulness slowly increases between rounds

Results /1 - Measures of Truthfulness

Full Truthful: 1 if the whole RoL is truthful, 0 otherwise Kemeny Distance: numb. of *pairwise switches* from the truthful RoL

Results /2 - Inconsequential Mistakes

Students labeled as *Not-Truthful* (no effect) are untruthful but still matched with the same school as if they were truthful.

Results /2 - Inconsequential Mistakes

		Period 2		
		Truthful (36%)	N-Truthful No effect (55%)	N-Truthful W/ effect (9%)
Period 1	Truthful (68%)	45%	49%	6%
	N-Truthful No effect (26%)	18%	73%	9%
	N-Truthful W/ effect (5%)	18%	38%	44%

		Period 5			
		Truthful (39%)	N-Truthful No effect (53%)	N-Truthful W/ effect (8%)	
Period 4	Truthful (37%)	75%	24%	1%	
	N-Truthful No effect (54%)	16%	75%	9%	
	N-Truthful W/ effect (9%)	23%	46%	31%	

Transition matrices: periods 1 to 2 (left) and periods 4 to 5 (right).

Results /3 - RoL revisions

Results /3 - RoL revisions

- ► R1 = shuffle (above), R2 = shuffle (below)
- ▶ R3 = move down (better), R4 = move down (worse)
- ► R5 = move up (better), R6 = move up (worse)

Results /4 - RoL revisions

Results /4 - RoL revisions

Results /5 - Revision probability

	Logistic Regression - Pr(Revision in period t)			
	(1)	(2)	(3)	(4)
Constant	0.052	-1.206***	-0.157	-1.212***
	(0.183)	(0.285)	(0.217)	(0.287)
Kemeny Distance (t-1)	0.291***	0.095**	0.374***	0.102*
	(0.046)	(0.048)	(0.069)	(0.054)
Payoff Loss (vs best reply) (t-1)	0.325***	0.225	0.131	0.164
	(0.106)	(0.149)	(0.162)	(0.165)
Δ Payoff Loss (t-2 to t-1)		0.247	0.290**	0.304
		(0.401)	(0.114)	(0.405)
Revision (t-1)		2.876***		2.856***
		(0.201)		(0.202)
Δ Payoff Loss*Revision (t-1)		0.063		0.091
		(0.398)		(0.398)
ΔKemeny Distance (t-2 to t-1)			-0.059	-0.007
			(0.055)	(0.055)
ΔPayoff Loss*ΔKemeny Distance			0.066**	0.033
			(0.032)	(0.025)
Round FEs	Y	Y	Y	Y
Periods	2-5	3-5	3-5	3-5
Pseudo R-squared	0.083	0.336	0.124	0.337
N	1184	888	888	888

Results /5 - Kemeny Distance

	Kemeny Distance (t)			
	(1)	(2)	(3)	(4)
Constant	1.179***	0.726***	0.635***	0.554***
	(0.190)	(0.202)	(0.194)	(0.199)
Kemeny Distance (t-1)	0.584***	0.622***	0.838***	0.820***
	(0.036)	(0.042)	(0.038)	(0.040)
Payoff Loss (vs best reply) (t-1)	-0.340***	-0.281***	-0.243**	-0.268**
	(0.079)	(0.107)	(0.105)	(0.109)
Δ Payoff Loss (t-2 to t-1)		0.498**	0.048	0.399**
		(0.197)	(0.071)	(0.198)
Revision (t-1)		0.303*		0.194
		(0.158)		(0.140)
Δ Payoff Loss*Revision (t-1)		-0.612***		-0.344*
		(0.194)		(0.193)
Δ Kemeny Distance (t-2 to t-1)			-0.318***	-0.313***
			(0.046)	(0.046)
ΔPayoff Loss*ΔKemeny Distance			-0.043**	-0.041**
			(0.017)	(0.017)
Round FEs	Y	Y	Y	Y
Periods	2-5	3-5	3-5	3-5
R-squared	0.268	0.359	0.410	0.411
N	1184	888	888	888

Results /6 - Learning

Results /6 - Learning

	Full Truthfulness	Payoff	Payoff Loss (vs best reply)
Constant	0.542***	5.291***	0.284***
	(0.029)	(0.163)	(0.048)
Round	0.019***	-0.003	-0.023**
	(0.006)	(0.031)	(0.011)
Period	-0.047***	0.024	0.029
	(0.009)	(0.050)	(0.019)
IA Dummy	-0.057	0.089	1.712***
	(0.042)	(0.236)	(0.138)
IA * Round	-0.013*	0.055	0.010
	(0.008)	(0.044)	(0.027)
IA * Period	0.004	-0.040	-0.134***
	(0.013)	(0.072)	(0.043)
R-squared	0.029	0.0023	0.1562
N	2960	2960	2960

Conclusions

- Participants learn that the algorithm is strategyproof
- But they experiment making mistakes, mostly inconsequential
- Making costly mistakes accelerates learning
- Implications/applications? France stopped using the revision (also: regret, strategic manipulation in early periods)
- ► Major revisions to the experimental paradigm for "pilot 2"
- Manipulate the number of periods (not always 5)
- Other results for IA and for DA-with-zones

Conclusions

- Participants learn that the algorithm is strategyproof
- But they experiment making mistakes, mostly inconsequential
- Making costly mistakes accelerates learning
- Implications/applications? France stopped using the revision (also: regret, strategic manipulation in early periods)
- Major revisions to the experimental paradigm for "pilot 2"
- Manipulate the number of periods (not always 5)
- Other results for IA and for DA-with-zones

Matching and Learning in School Choice

Silvio Ravaioli (Columbia University) Lan Nguyen (Columbia University) Guillaume Haeringer (Baruch College)

Columbia University - Applied Micro Theory Colloquium

March 3, 2020

Discussion - Design Changes for Pilot 2

- ► Incentive for all the periods or only the last one?
- ► Modify the number of periods (e.g. 1,3,5)
- ► Conditions (and their order): DA/IA, zones/no-zones
- Control for one unique stable matching
- Making students' preferences more correlated can increase the likelihood of costly mistakes