CSCI 400 Textbook Notes

Chapter 4: Access Control

4.1: Access Control Principles

- There are two prevalent definitions of access control in the realm of computer science
 - NISTIR 7298 defines access control as the process of granting or denying specific requests to
 - 1. obtain and use information and related information processing services
 - 2. enter specific physical facilities
 - RFC 4949 defines access control as a process by which use of system resources is regulated according to a security policy and is permitted only by authorized entities according to that policy

• Basic Security Requirements

- Limit information system access to authorized users, processes acting on behalf of authorized users, or devices
- Limit information system access to the types of transactions and functions that authorized users are permitted to execute

Derived Security Requirements

- Control the flow of controlled unclassified information (CUI) in accordance with approved authorizations
- Separate the duties of individuals to reduce the risk of malevolent activity without collusion
- Employ the principle of least privilege, including for specific security functions and privileged accounts
- Use non-privileged account roles when accessing non-security functions

- Prevent non-privileged users from executing privileged functions and audit the execution of such functions
- Limit unsuccessful logon attempts
- Provide privacy and security notices consistent with applicable CU rules

Access Control Policies

- Discretionary Access Control, which controls access based don the identity of the requestor and on access rules
- Role-Based Access Control, which controls access based various roles assigned to individuals within an organization
- Mandatory Access Control compares security labels with security clearances
- Attribute-Based Access Control, which controls access based on the attributes of the requesting user

4.2: Subjects, Objects, and Access Rights

- A subject is an entity that is capable of accessing objects
- There are three classes of subject
 - Owner
 - Group
 - World/Everyone
- An object is a resource to which access is controlled, and it is used to contain and/or receive information
- An access right describes the way in which a subject may access an object
- Access rights could include the following
 - o Read
 - Write
 - Execute
 - Delete

- Create
- Search

4.3: Discretionary Access Control (DAC)

- DAC is a scheme in which an entity may be granted access rights that permit the entity, by its own violation, to enable another entity to access some matrix
- DAC is often provided using an access matrix, where
 - One dimension consists of identified subjects that may attempt data access to the resources
 - o The other dimension lists the objects that may be accessed
- Each entry in the matrix indicates the access rights of a particular subject for a particular object
- The following is depiction of an access matrix

		OBJECTS					
		File 1	File 2	File 3	File 4		
SUBJECTS	User A	Own Read Write		Own Read Write			
	User B	Read	Own Read Write	Write	Read		
	User C	Read Write	Read		Own Read Write		

- Most often, access matrices are implement through decomposition in one of two ways
 - Breaking the matrix down column by column yields Access Control Lists (ACLs) for each object stating every user's access right
 - Breaking the matrix down row by row yields Capability Tickets for each user stating their access rights for every object
- To represent the protection state of a matrix, we should extend the universe of objects within the access control matrix to include all of the following
 - Processes

- Devices
- Memory Locations
- Subjects
- This will leave us with an extended access control matrix in the following form

		OBJECTS										
		subjects			files		processes		disk drives			
		$\mathbf{S_1}$	S_2	S_3	$\mathbf{F_1}$	$\mathbf{F_2}$	\mathbf{P}_1	$\mathbf{P_2}$	$\mathbf{D_1}$	$\mathbf{D_2}$		
SUBJECTS	S_1	control	owner	owner control	read *	read owner	wakeup	wakeup	seek	owner		
	S_2		control		write *	execute			owner	seek *		
	S_3			control		write	stop					

* - copy flag set

4.5: Role-Based Access Control (RBAC)

- This is when a company or organization uses predefined roles for each individual user rather than implementing different access rights for every individual user
- This can be understood very simply from the following diagram

4.6: Attribute-Based Access Control (ABAC)

- There are three key attributes to an ABAC model
 - Attributes
 - The following are the three types of attributes in the ABAC model
 - Subject Attributes, which define the identity and characteristics of a subject
 - Object Attributes which have attributes that are commonly used in making access control decisions
 - Environment Attributes, which are largely ignored in ABAC models
 - Access Policy Models
 - Architecture Models
- Below we can see how ACLs and ABACs differ in their relationship between credentials and trust

4.7: Identity, Credential, and Access Management (ICAM)

 ICAM refers to a comprehensive approach to managing and implementing digital identities, credentials, and access control

- This was developed by the US Government
- ICAM is designed to
 - Create trust digital identity representations
 - Bind those identities to credentials that may serve as a proxy for the individual in access transactions
 - Use the credentials to provide authorized access to resources

• Identity Management

- This is concerned with assigning attributes to a digital identity and connecting that entity to a person or non person entity
- The goal is to establish a trustworthy digital identity that is independent of a specific application or context
- The most common approach is to use specified digital identities for each application or context rather than an independent one

Credential Management

- This includes the management of the life cycle of the credential
- A credential could be a smart card, cryptographic key, digital certificate, etc.
- Credential management encompasses five logistical goals
 - An authorized individual sponsors another for a credential
 - The sponsored individual then enrolls for the credential
 - The credential is produced
 - The credential is issued to the individual or NPE
 - A credential must be maintained over its life cycle

Access Management

- Deals with the management of how access rights are granted
- Covers both the physical and logical access
- May be internal to a system or an external element

- o Three support elements are needed for an enterprise-wide access control facility
 - Resource management, which is concerned with defining the rules for a resource which requires access control
 - Privilege management, which is concerned with establishing and maintaining the attributes that comprise an individual's access profile
 - Policy management, which governs what is allowable and unallowable in an access transaction

4.8: Trust Frameworks

- **Identity Federation** is a term used. to describe the technology, standards, policies, and processes that allow an organization to trust digital identities, attributes, and credentials created and issued by another organization
- This addresses the following two questions
 - How can one trust identities of individuals from external organizations who need access to your systems
 - How do you vouch for identities of individuals in your organization when they need to collaborate with external organizations