

Acionamentos Eletrônicos Aula 03 - Chaves semicontroláveis - tiristores (SCR, DIAC, TRIAC)

Apresentação

A eletrônica de potência engloba uma vasta variedade de aplicações e, em alguns casos, o diodo de potência não contempla as especificidades das aplicações por ser uma chave muito simples. Um dispositivo que é largamente utilizado em circuitos de potência é o tiristor, o qual age de forma semelhante ao diodo, porém para conduzir na polarização direta é necessária uma habilitação e essa característica favorece uma gama enorme de aplicações.

Objetivos

- Reconhecer as características dos tiristores.
- Descrever o funcionamento dos tiristores.
- Identificar as possíveis aplicações dos tiristores.

Tiristores

Os tiristores são dispositivos de potência que funcionam como chave, assim como o diodo, porém apresentam uma maior funcionalidade, podendo ser usados em mais situações. Fisicamente, o tiristor se apresenta como mostrado na Figura 1. Já a Figura 2 mostra o símbolo de um tiristor com a sua polaridade. A extremidade do tiristor que assume a polaridade positiva é chamada de **anodo** e, a que assume a polaridade negativa de **catodo**. Existe ainda o gatilho, ou gate, que é responsável pela habilitação da condução ou não, na condução direta.

Figura 01 - Tiristor comercial.

Fonte: < http://2.imimg.com/data2/MF/FJ/MY-2706893/thyristors-250x250.jpg. Acesso em: 23 abr. 2014.

Figura 02 - Símbolo e polaridade do tiristor.

Fonte: Autoria Própria (2014).

Notem que esse dispositivo tem três pernas, enquanto o diodo tem apenas duas. Isso ocorre porque no diodo existem apenas duas camadas, uma camada P e uma camada N. Já no tiristor existem quatro camadas, duas P e duas N, como mostrado na Figura 3.

Figura 03 - Construção do tiristor.

Fonte: Autoria Própria (2014).

Características de Operação

Quando o tiristor está polarizado diretamente (a tensão sobre ele coincide com a sua polaridade), apenas conduzirá se um sinal de tensão positivo for aplicado no gatilho, caso contrário, mesmo estando polarizado diretamente, ele não conduz. E quando ele está polarizado reversamente (a tensão sobre ele é contrária à sua polaridade), não conduz de forma alguma, independente da tensão aplicada no gatilho. A Figura 4 mostra exemplos de condução do tiristor

Tensão no tiristor Polarização direta

Tensão no gatilho

Tempo

Tempo

Tempo

Tempo

Tempo

Tempo

Figura 04 - Exemplo de condução e não condução do tiristor.

Fonte: Autoria Própria (2014).

A Figura 4 mostra dois sinais de tensão, o que é aplicado no tiristor entre o anodo e o catodo (na parte superior) e o sinal de tensão que é aplicado no gatilho (parte inferior). A figura é dividida em oito regiões, de R1 a R8, em que as situações são descritas no Quadro 1.

	Tensão no diodo	Tensão no gatilho	Condução
R1	Positiva	Zero	Não conduz
R2	Positiva	Positiva	Conduz
R3	Positiva	Negativa	Conduz
R4	Positiva	Zero	Conduz
R5	Negativa	Zero	Não conduz
R6	Negativa	Positiva	Não conduz

	Tensão no diodo	Tensão no gatilho	Condução
R7	Negativa	Negativa	Não conduz
R8	Negativa	Zero	Não conduz

Quadro 1 - Regiões de condução e não condução do tiristor. Fonte: Autoria Própria (2014).

Para saber se um tiristor está conduzindo, primeiro observa-se se a polarização sobre ele é a polarização direta. Analisando o gráfico da Figura 4, nota-se que nas regiões de 5 a 8 tem-se a polarização reversa, logo, já podemos afirmar que nessa região não há condução do tiristor. Sabemos ainda que para a condução do tiristor, além dele estar polarizado diretamente, é necessário ainda que haja um sinal de tensão positivo no gatilho (pelo menos um pulso). Então, de acordo com o gráfico, percebemos que a partir da região R2, onde ocorre um pulso positivo de tensão no gatilho, o tiristor conduzirá, até que a polarização reversa substitua a polarização direta. Portanto, as regiões em que o tiristor conduzirá serão as regiões R2, R3 e R4.

Para que o tiristor conduza é necessário que ele esteja polarizado diretamente e que ocorra, no mínimo, um pulso de tensão positiva no gatilho. Mesmo quando há um pulso negativo no gatilho, isso não é suficiente para retirar um tiristor convencional de operação.

Por causa dessa característica, a qual podemos controlar parcialmente o funcionamento do tiristor como chave, é que ele se enquadra na categoria de chaves semicontroláveis. Não temos como controlar totalmente as características do sinal que o tiristor deixa passar, mas podemos ao menos controlar o tempo de abertura da chave.

Atividade 01

1. Qual a principal diferença de um tiristor para um diodo? Em que situação um tiristor deve ser utilizado?

Para checar as respostas, clique aqui.

Respostas

1. Qual a principal diferença de um tiristor para um diodo? Em que situação um tiristor deve ser utilizado?

Os tiristores são dispositivos de potência que funcionam como chave, assim como o diodo, porém apresentam uma maior funcionalidade, pois existe o gatilho, ou gate, que é responsável pela habilitação da condução ou não, na polarização direta.

Parâmetros Básicos

Os principais parâmetros que são necessários conhecer para entender o funcionamento de um tiristor são as correntes que limitam e possibilitam a sua operação.

A principal corrente que deve ser analisada no tiristor é a corrente de gatilho, pois ela é responsável pela condução ou não do tiristor quando este se encontra polarizado diretamente. Porém, para que o tiristor comece a conduzir, é necessário que, além de o tiristor estar polarizado diretamente e de haver um pulso positivo no gatilho, a corrente proporcionada pelo circuito no qual o tiristor está ligado não seja muito pequena, assim, ela deve ultrapassar um valor mínimo chamado de corrente de travamento.

Uma vez que o tiristor está em condução, deve ser mantida uma corrente mínima de manutenção para que ele não pare de conduzir. A corrente de travamento é sempre maior que a corrente de manutenção.

Duas referências de tensão também são importantes para o funcionamento adequado do tiristor, são estas os limites de tensão que podem ser aplicados no tiristor na condução direta (tensão de ruptura direta) e reversa (tensão de ruptura reversa).

Resumidamente, os parâmetros que devem ser observados na aplicação e operação dos tiristores são os seguintes:

Corrente de gatilho (\$I_{G}\$) – É um pulso de corrente no gatilho do tiristor que é responsável por colocar o tiristor em condução se ele estiver polarizado diretamente.

Corrente de travamento (\$I_{L}\$) – É a corrente mínima que deve circular entre anodo e catodo, enquanto o pulso no gatilho for mantido, para que o tiristor conduza.

Corrente de manutenção (\$I_{H}\$) – É a corrente mínima entre anodo e catodo capaz de manter o tiristor em condução depois da retirada no pulso do gatilho.

$$$$ I_{L} > I_{H} $$$$

Tensão de ruptura direta (\$V_{BO}\$) – É a máxima tensão que deve ser aplicada ao tiristor na polarização direta para que este funcione adequadamente.

Tensão reversa máxima (\$V_{BR}\$) – É a máxima tensão que deve ser aplicada ao tiristor na polarização reversa sem que ocorra a avalanche (a corrente aumenta rapidamente na polarização reversa quando ocorre a ruptura do tiristor).

Atividade 02

1. Em que circunstancias um tiristor conduz? Uma vez conduzindo, como ele deixa de conduzir?

Respostas

1. Em que circunstancias um tiristor conduz? Uma vez conduzindo, como ele deixa de conduzir?

Quando o tiristor está polarizado diretamente (a tensão sobre ele coincide com a sua polaridade), apenas conduzirá se um sinal de tensão positivo for aplicado no gatilho, caso contrário, mesmo estando polarizado diretamente, ele não conduz. Para deixar de conduzir, basta que a sua polaridade seja invertida ou a corrente que passa através dele seja inferior a corrente de manutenção.

Formas de Disparo

Até o momento, já vimos que para um tiristor conduzir (ou disparar) é necessário que ele esteja polarizado diretamente e que haja um pulso positivo de corrente no seu gatilho. Essa é a forma mais direta de fazer um tiristor conduzir, porém há outras formas desse disparo ocorrer, pode ser através de luz, temperatura, sobretensão, taxa de crescimento da tensão e da própria corrente no gatilho. Vejamos, a seguir, como isso ocorre.

Luz – Alguns tiristores são projetados de tal forma que a luz pode atingir as suas junções. Quando isso acontece, dependendo da intensidade da luz, a energia radiante é capaz de aumentar os pares lacunas-elétrons e isso pode propiciar o disparo do tiristor.

Temperatura – O disparo do tiristor pelo aumento da temperatura, normalmente, não é uma forma de disparo desejada. Aumentado-se a temperatura do tiristor quando ele está polarizado reversamente, aumenta-se também a corrente de fuga. Esse aumento na corrente de fuga, dependendo de quanto a temperatura aumente, pode levar ao disparo do tiristor.

Sobretensão – O tiristor quando polarizado diretamente e sem corrente no gatilho não conduzirá. Porém, se a tensão aplicada sobre ele for superior à tensão de ruptura direta, ocorrerá uma ruptura e o tiristor é disparado.

Taxa de crescimento da tensão – Quando o tiristor está polarizado diretamente, é possível aumentar essa tensão sem causar danos, desde que essa variação de tensão não seja muito rápida. Variações bruscas de tensão na polarização direta podem danificar o tiristor e fazê-lo disparar.

Corrente no gatilho – Essa é a forma de disparo do tiristor mais comum. Quando o tiristor está polarizado diretamente e há um pulso positivo de corrente, ele é disparado. A Figura 5 mostra um circuito com um tiristor.

Figura 05 - Circuito com tiristor.

Fonte: Autoria Própria (2014).

Na Figura 5, o tiristor está ligado em série com a fonte V e o resistor R e, o circuito de disparo é composto pela fonte Vg, pelo resistor Rg e pela chave S. Quando a chave S está aberta, o tiristor não conduz, mesmo estando polarizado diretamente (a polaridade dos terminais da fonte V coincide com as do tiristor). Porém, quando a chave S é fechada por um instante, então é suficiente para gerar o pulso de corrente no gatilho e o tiristor inicia a condução.

Desligamento

Uma vez o tiristor em condução, é preciso que saibamos como retirá-lo de operação, ou seja, como fazemos para que ele deixe de conduzir, o que é chamado de comutação. Apesar de o gatilho ser responsável por colocar o tiristor em funcionamento, ele não pode ser usado para desligá-lo. Para esse desligamento, o que deve ser feito é reduzir a corrente direta (entre anodo e catodo) a um valor abaixo da corrente de manutenção IH.

Existem muitas técnicas de fazer a comutação do tiristor, elas se dividem em comutação natural e forçada. Na comutação natural, a própria característica do sinal de tensão aplicado já se encarrega de fazer a comutação. A Figura 6 mostra um circuito em que isso ocorre.

Figura 06 - Circuito com tiristor e comutação natural.

Fonte: Autoria Própria (2014).

Na Figura 6, podemos observar que o circuito composto por um resistor e um tiristor é alimentado por uma tensão senoidal, mostrada no gráfico como tensão direta. No momento em que o tiristor está polarizado diretamente e que o pulso de tensão no gatilho é disparado (mostrado no segundo gráfico), o tiristor começa a conduzir permitindo a passagem de corrente pelo resistor R, sobre o qual surge uma

tensão mostrada no terceiro gráfico. Note que mesmo quando o pulso do gatilho é retirado, o tiristor permanece conduzindo enquanto estiver polarizado diretamente. Porém, quando a tensão sobre o tiristor inverte a polaridade e passa à polarização reversa, ocorre a comutação, ou seja, o tiristor para de conduzir.

Para a comutação forçada são usados circuitos auxiliares para forçar a não condução do tiristor e estes podem ser de várias formas, por impulso, por pulso ressonante, pulso externo etc.

Tipos de Tiristores

Até o momento, vimos o funcionamento básico do tiristor, no entanto, alguns dispositivos apresentam algumas variações na sua estrutura e configuração e, com isso, uma pequena diferença no seu funcionamento. Baseando-se nisso, podemos classificar os tiristores em alguns tipos especiais, dentre eles os mais utilizados são o SCR, o DIAC e o TRIAC.

SCR (tiristor de controle de fase) – Também é conhecido por retificador controlado de silício e seu princípio e operação são exatamente como vimos na descrição do funcionamento dos tiristores. Ele conduz quando está polarizado diretamente e com um pulso de tensão positivo no gatilho. É, normalmente, indicado em aplicações que requerem chaveamento em baixa velocidade e operam, geralmente, na frequência da rede de alimentação e proporcionam a comutação natural do tiristor.

DIAC (diode for alternating current) – O DIAC é um tiristor bidimensional, que é capaz de conduzir e bloquear a passagem da corrente nas duas direções. No DIAC não é utilizado o pulso no gatilho. Para que ele conduza, é necessário elevar a tensão aplicada entre os dois anodos até que essa tensão seja superior à tensão de disparo. Para que o DIAC pare de conduzir, é necessário que uma corrente no sentido inverso seja aplicada, porém deve haver cuidado nesse valor aplicado, pois se essa corrente aumentar muito pode atingir a condução no sentido inverso. O símbolo do DIAC é mostrado na Figura 7.

Figura 07 - Símbolo do DIAC.

Fonte: Autoria Própria (2014).

TRIAC (triode for alternating current) – O TRIAC também é um tiristor bidimensional e também é capaz de conduzir e bloquear a passagem da corrente nas duas direções. Ele é formado por dois tiristores comuns (SCRs) ligados em antiparalelo com os gatilhos interligados, ou seja, quando um pulso for disparado no gatilho, os dois tiristores conduzirão permitindo a passagem de corrente nos dois sentidos. Essa característica permite que o TRIAC seja utilizado em circuitos de corrente alternada. Ele tanto pode ser disparado com um pulso positivo como negativo no gatilho. A Figura 8 mostra o símbolo usado para o TRIAC e também a ligação usada para compô-lo com dois SCR, interligando os seus gatilhos.

Figura 08 - Símbolo do TRIAC e estrutura interna.

Fonte: Autoria Própria (2014).

Exemplo

Você já viu um dispositivo no lugar de um interruptor de luz, o qual, ao movermos um botão, a intensidade de luz aumenta ou diminui? Esse dispositivo se chama *dimmer*. Na verdade, o *dimmer* não é utilizado apenas para controlar luz, mas fluxo de energia de uma forma geral. Existem vários circuitos que desempenham a função desse dispositivo. A Figura 9 mostra um modelo deste que utiliza DIAC e TRIAC.

Figura 09 - Símbolo do TRIAC e estrutura interna.

Fonte: Autoria Própria (2014).

Controlando o potenciômetro P, é possível dizer em que ponto da senoide o TRIAC passará a conduzir, ou seja, é possível definir o momento em que o pulso de gatilho será acionado e, com isso, o quanto da tensão V passará para a lâmpada. As Figuras 10 e 11 mostram duas situações, uma com o potenciômetro proporcionando um disparo no início de cada semiciclo e a outra no final. Notem que a diferença das duas situações está sobre a "quantidade" de tensão aplicada sobre a lâmpada. Na Figura 10, a tensão sobre a lâmpada apresenta um nível maior que a apresentada na Figura 11, com isso, na situação mostrada na Figura 10, a intensidade da luz na lâmpada é maior que na Figura 11.

Figura 10 - Formas de onda do *dimmer* com disparo no início do semiciclo.

Fonte: Autoria Própria (2014).

Figura 11 - Formas de onda do *dimmer* com disparo no final do semiciclo.

Fonte: Autoria Própria (2014).

. . .

Atividade 03

1. Em um *dimmer* utilizado para controlar uma lâmpada, o que faz com que a intensidade de luz aumente ou diminua?

Para checar as respostas, clique aqui.

Respostas

1. Em um dimmer utilizado para controlar uma lâmpada, o que faz com que a intensidade de luz aumente ou diminua?

A variação de tensão gerada pelo corte na forma de onda senoidal proporcionado pelo disparo do TRIAC. Como o usuário pode ajustar a tensão em que ocorre o disparo do TRIAC, acaba por limitar a tensão aplicada a lâmpada, ocasionando a variação da intensidade da luz.

Leitura Complementar

Na leitura complementar sugerida, você vai obter informações mais detalhadas sobre o funcionamento dos tiristores, como descrição mais detalhada do funcionamento, curvas de funcionamento e mais comentários sobre os parâmetros básicos que envolvem os tiristores.

http://www.dsce.fee.unicamp.br/~antenor/pdffiles/ee833/Modulo2.pdf

Resumo

Nesta aula, você aprendeu sobre chaves semicontroláveis de potência, mais especificamente, sobre os tiristores. Viu como é a sua construção, o seu funcionamento e a diferença entre os tiristores. A aula mostrou ainda que as características básicas desse dispositivo são usadas em novas categorias de tiristores, como os DIAC e TRIAC, que funcionam com a possibilidade de condução nas duas direções ao contrário dos SCR convencionais. Na aula, é também mostrado um exemplo de aplicação dos tiristores em circuitos capazes de controlar o fluxo de energia para uma carga.

Autoavaliação

 Considere as tensões a seguir e identifique em quais regiões o tiristor SCR está conduzindo. (suponha que o semiciclo positivo sempre polariza o tiristor SCR de forma direta e o semiciclo negativo de forma inversa). a.

b.

- 2. Qual a forma mais comum para disparar (colocar em condução) um tiristor?
- 3. Considerando o circuito a seguir composto por uma fonte contínua, uma chave, dois resistores e dois tiristores. A chave S é fechada no instante t=0, e após 10 segundos um pulso positivo é aplicado no gatilho de ambos os tiristores. O que ocorre em relação à condução de T1 e T2?

4. Considere o circuito a seguir composto por uma fonte senoidal, uma chave, dois resistores e dois tiristores e a forma de onda V mostrada no gráfico. A chave S é fechada no instante t=0 e, então, a tensão V da fonte se comporta como mostrada no gráfico. A tensão de gatilho é a mesma aplicada a ambos os tiristores e nos instantes R2, R7 e R10. O que ocorre em relação à condução de T1 e T2?

5. Qual a diferença entre os tiristores DIAC e TRIAC em termos de operação?

Para checar as respostas, clique aqui.

Respostas

- 1. Considere as tensões a seguir e identifique em quais regiões o tiristor SCR está conduzindo (suponha que o semiciclo positivo sempre polariza o tiristor SCR de forma direta e o semiciclo negativo de forma inversa).
 - a. R2 e R3
 - b. R2, R3 e R9 e R10
- 2. Qual a forma mais comum para disparar (colocar em condução) um tiristor?
 - Quando o tiristor está polarizado diretamente e há um pulso positivo de corrente no gatilho, ele é disparado.
- 3. Considerando o circuito a seguir composto por uma fonte contínua, uma chave, dois resistores e dois tiristores. A chave S é fechada no instante t=0, e após 10 segundos um pulso positivo é

aplicado no gatilho de ambos os tiristores. O que ocorre em relação à condução de T1 e T2?

Apenas T1 entra em condução pois somente ele está polarizado diretamente.

4. Considere o circuito a seguir composto por uma fonte senoidal, uma chave, dois resistores e dois tiristores e a forma de onda V mostrada no gráfico. A chave S é fechada no instante t=0 e, então, a tensão V da fonte se comporta como mostrada no gráfico. A tensão de gatilho é a mesma aplicada a ambos os tiristores e nos instantes R2, R7 e R10. O que ocorre em relação à condução de T1 e T2?

No momento R2, o tiristor T1 entra em condução pois ele está polarizado diretamente, mas T2 dois continua sem conduzir pois está polarizado inversamente. T1 se mantém em condução até o final de R3, quando a polaridade é invertida, desativando-o. No momento R7, T1 está polarizado inversamente, logo não entra em condução independente da tensão no gatilho. T2, embora esteja polarizado diretamente nesse momento, também não entrará em condução pois a tensão do gatilho é negativa. Já em R10 novamente T1 entrará em condução, pois está polarizado diretamente, e continuará até o final de R11. Já T2 não entrará em condução pois está inversamente polarizado.

5. Qual a diferença entre os tiristores DIAC e TRIAC em termos de operação?

No DIAC não é utilizado o pulso no gatilho. Para que ele conduza, é necessário elevar a tensão aplicada entre os dois anodos até que essa tensão seja superior à tensão de disparo. Para que o DIAC pare de conduzir, é necessário que uma corrente no sentido inverso seja aplicada, porém deve haver cuidado nesse valor aplicado, pois se essa corrente aumentar muito pode atingir a condução no sentido inverso.

O TRIAC é formado por dois tiristores comuns ligados em antiparalelo com os gatilhos interligados, ou seja, quando um pulso for disparado no gatilho, os dois tiristores conduzirão permitindo a passagem de corrente nos dois sentidos. Essa característica permite que o TRIAC seja utilizado em circuitos de corrente alternada. Ele tanto pode ser disparado com um pulso positivo como negativo no gatilho.

Referências

RASHID, M. H. Eletrônica de potência. São Paulo-SP: Makron, 1999.

REVISTA ELETRÔNICA TOTAL. Estudo do TRIAC. Ano 2, n. 150, set./out. 2011.