- 8. Ein System $\mathfrak A$ der Mengen A_1 , A_2, \ldots, A_n bildet eine Zerlegung der Menge E, wenn $A_1 + A_2 + \cdots + A_n = E$ ist (das setzt bereits voraus, daß die Mengen A_i paarweise disjunkt sind).
- 9. B ist eine Untermenge von A: $B \subseteq A$.
- Ein Versuch M besteht darin, daß man feststellt, welches unter den Ereignissen A₁, A₂,..., A_n vorkommt. A₁, A₂,..., A_n sind die möglichen Ausgänge des Versuches M.
- 9. Aus der Realisation des Ereignisses B folgt notwendig dieselbe von A.

§ 4. Unmittelbare Folgerungen aus den Axiomen, bedingte Wahrscheinlichkeiten, der Satz von Bayes.

Aus $A + \overline{A} = E$ und den Axiomen IV und V folgt

(1)
$$P(A) + P(\bar{A}) = 1$$
,

(2)
$$P(\bar{A}) = 1 - P(A)$$
.

Da $\overline{E} = 0$ ist, erhält man insbesondere

(3)
$$P(0) = 0$$
.

Wenn A, B, ..., N unvereinbar sind, so folgt aus dem Axiom IV die Formel

(4)
$$P(A+B+\cdots+N) = P(A) + P(B) + \cdots + P(N)$$
 (der Additionssatz).

Wenn P(A) > 0 ist, so nennt man den Quotienten

$$\mathsf{P}_{A}(B) = \frac{\mathsf{P}(AB)}{\mathsf{P}(A)}$$

die bedingte Wahrscheinlichkeit des Ereignisses B unter der Bedingung A. Aus (5) folgt unmittelbar

(6)
$$P(AB) = P(A) P_{A}(B).$$

Ein Induktionsschluß ergibt sodann die allgemeine Formel

(7)
$$P(A_1A_2...A_n) = P(A_1) P_{A_1}(A_2) P_{A_1A_2}(A_3) ... P_{A_1A_2...A_{n-1}}(A_n)$$

(der Multiplikationssatz).

Man beweist auch leicht folgende Formeln:

$$\mathsf{P}_{A}(B) \ge 0,$$

$$P_{A}(E) = 1,$$

(10)
$$P_{A}(B+C) = P_{A}(B) + P_{A}(C)$$
.

Vergleicht man diese Formeln (8) bis (10) mit den Axiomen III bis V, so ergibt sich, daß das Mengensystem \mathfrak{F} mit der Mengenfunktion $P_{\mathbf{A}}(B)$