# Enhancing E-Commerce Store Clustering Using Frequent Itemset Mining and Mixed Data Analysis

Dat Nguyen<sup>1</sup>, Huong Bui<sup>1</sup>

<sup>1</sup>Faculty of Information Technology, HUTECH, Ho Chi Minh City, Vietnam

April 3, 2025

# Overview

- 1. INTRODUCTION
- 2. PROPOSED METHOD
- 3. EXPERIMENTAL RESULTS
- 4. CONCLUSION

# 1. INTRODUCTION

- Our research clarified 2 main issues:
  - Clustering stores on the Tiki e-commerce platform to support the platform in optimizing business performance and managing more effectively.
  - Maximal Frequent Itemset Mining (FP-Max) is applied to enrich data features, then integrated with clustering methods to improve the clustering performance.
- **Keywords:** E-commerce Store Clustering, Maximal Frequent Itemset Mining, Mixed Data Analysis.

#### **Data Collection:**

Data collected on the Tiki.vn e-commerce platform, including 933 stores & 9 features.

# **Data Preprocessing:**

- Data Cleaning: Remove invalid/missing values.
- **Feature Selection:** Wilson score interval for feature combination. Eliminate highly correlated features.
- Normalization: StandardScaler.
- Noise Handling: Winsorization, Isolation Forest, and DBSCAN.

| Revenue     | YearJoined | Followers | ChatResponse | RatingQuality | PositiveQuality |
|-------------|------------|-----------|--------------|---------------|-----------------|
| 509,781,800 | 6          | 1717      | 1            | 4.536446274   | 0.7506283509    |
| 205,821,900 | 5          | 476       | 0.83         | 4.764938241   | 0.8300109782    |
| 130,629,912 | 4          | 8504      | 0.7          | 4.458951116   | 0.7702080451    |

Table: Data Description

#### **Research Workflow:**

- **Step 1:** Perform initial clustering to establish evaluation baseline.
- **Step 2:** Create new binary features using FP-Max.
- Step 3: Integrate these features & initial data to improve clustering results.

**Step 1:** Perform initial clustering to establish evaluation baseline.



Figure: Initial clustering process

| Models        | Number of Clusters | Parameters                                                | Silhouette score |
|---------------|--------------------|-----------------------------------------------------------|------------------|
| K-Means       | 5                  | init = "k-means++"                                        | 0.3254           |
| Agglomerative | 4                  | linkage = "ward"                                          | 0.3078           |
| GMM           | 3                  | covariance_type = "tied"                                  | 0.3284           |
| DBSCAN        | 2  (noise = 0)     | eps = "1.1", minpts = "12"                                | 0.3351           |
| OPTICS        | 6 (noise = 709)    | min_sample = "12", $xi$ = "0.05", min_cluster_size = "10" | 0.5142           |

Table: Hyperparameter Tuning Results

**Step 2:** Create new binary features using FP-Max.



Figure: Create new binary features process

| RatHigh_revLow_PosHigh | FolLow_revLow | ChatHigh | PosHigh_revLow_ChatLow |  |
|------------------------|---------------|----------|------------------------|--|
| 1                      | 1             | 0        | 1                      |  |
| 0                      | 0             | 0        | 0                      |  |
| 1                      | 0             | 1        | 0                      |  |
|                        |               |          |                        |  |

Table: New binary features created

**Step 3:** Integrate these features & initial data to improve clustering results.



Figure: Integrate new binary features process

#### 3. EXPERIMENTAL RESULTS

#### Comparison of Clustering Results Before and After Integrating Binary Features:

#### Binary Features Added:

- FollowersLow\_YearJoinedLow\_RevenueLow\_ChatLow.
- YearJoinedLow\_PositiveHigh.

#### Evaluation Metrics:

- Silhouette (Higher is better)
- Davies-Bouldin (Lower is better)
- Calinski-Harabasz (Higher is better)

#### Effective Clustering Methods:

- Works well for Agglomerative, K-Means/K-Prototypes, and GMM.
- Does not work well for DBSCAN and OPTICS.

| Algorithms                                | ${\sf Silhouette}$               | Davies-Bouldin                   | Calinski-Harabasz                        |
|-------------------------------------------|----------------------------------|----------------------------------|------------------------------------------|
| K-Means<br>Agglomerative<br>GMM<br>DBSCAN | 0.325<br>0.308<br>0.328<br>0.335 | 1.088<br>1.036<br>1.193<br>1.274 | 415.934<br>361.240<br>362.205<br>427.131 |
| OPTICS                                    | 0.514                            | 0.662                            | 270.900                                  |

Table: Initial clustering evaluation results.

| Algorithms                    | ${\sf Silhouette}$    | Davies-Bouldin        | Calinski-Harabasz       |
|-------------------------------|-----------------------|-----------------------|-------------------------|
| K-Prototypes<br>Agglomerative |                       | 0.963 ↓<br>0.959 ↓    | 495.393 ↑<br>994.749 ↑  |
| GMM<br>DBSCAN<br>OPTICS       | 0.340 ↑<br>- ↓<br>- ↓ | 1.242 ↓<br>- ↑<br>- ↑ | 367.991 ↓<br>- ↓<br>- ↓ |

Table: Clustering results after integrating binary features.

# 3. EXPERIMENTAL RESULTS

# **Cluster Analysis:**

- K-Prototypes was selected for its high cluster number and strong performance.
- High statistics & low p-values indicate significant cluster differences.

| Feature                                          | Test        | Statistic | p-value   |
|--------------------------------------------------|-------------|-----------|-----------|
| Revenue                                          | ANOVA       | 36.88     | 1.92e-28  |
| YearJoined                                       | ANOVA       | 522.09    | 2.22e-226 |
| Followers                                        | ANOVA       | 30.59     | 8.46e-24  |
| ChatResponse                                     | ANOVA       | 3221.11   | 0.00      |
| RatingQuality                                    | ANOVA       | 140.20    | 7.51e-92  |
| PositiveQuality                                  | ANOVA       | 255.01    | 1.60e-143 |
| FollowersLow, YearJoinedLow, RevenueLow, ChatLow | Chi-squared | 543.55    | 2.54e-116 |
| YearJoinedLow, PositiveHigh                      | Chi-squared | 330.26    | 3.21e-70  |

Table: Statistical Test Results Summary

# 3. EXPERIMENTAL RESULTS

#### **Cluster Analysis:**

- $\bullet$  Cluster 0: Long-standing, low-efficiency stores  $\to$  Needs improvement in product, service, and engagement.
- Cluster 1: Newer stores with good but inconsistent performance → Optimize strategies and promotions.
- Cluster 2: Inefficient long-standing stores with some positive scores → Focus on operations product innovation.
- Cluster 3: New stores with average performance → Growth via training, sales support, and better service.
- Cluster 4: Highly efficient, long-standing stores  $\rightarrow$  Retain and support with marketing partnerships.



Figure: Cluster Analysis Visualization

#### 4. CONCLUSION

#### **Key Findings:**

- FP-Max + clustering improves metrics (Silhouette, Davies-Bouldin, Calinski-Harabasz).
- Uncovers hidden data relationships, enhancing store segmentation.

# Impact:

- Practical value for Tiki and similar platforms in competitive e-commerce markets.
- Supports tailored business strategies (e.g., marketing, product optimization).

#### **Future Directions:**

Apply to larger, complex datasets across platforms.

# Thank You Questions & Discussions