

T830(E)(M27)T

# NATIONAL CERTIFICATE INDUSTRIAL INSTRUMENTS N6

(8080216)

27 March 2018 (X-Paper) 09:00-12:00

This question paper consists of 4 pages and 1 formula sheet.

Copyright reserved Please turn over

## DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE
INDUSTRIAL INSTRUMENTS N6
TIME: 3 HOURS
MARKS: 100

#### **INSTRUCTIONS AND INFORMATION**

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Write neatly and legibly.

Copyright reserved Please turn over

### **SECTION A: ANALYSERS**

| QL | JES | TIO | N | 1 |
|----|-----|-----|---|---|
|    |     |     |   |   |

| 1.1     | Make a neat, labelled sketch of the Cuttler-Hammer-type recording gas calorimeter.                                             |                                                                                                                                                                                     |                    |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| 1.2     | Discuss<br>QUESTIC                                                                                                             | the operating principle of the calorimeter named in ON 1.1.                                                                                                                         | (8)                |  |
| 1.3     | Draw a c                                                                                                                       | omplete block diagram of gas chromatography.                                                                                                                                        | (5)                |  |
| 1.4     | Make a n                                                                                                                       | neat, labelled sketch of a catalytic combustion-type $O_2$ -analyser.                                                                                                               |                    |  |
| 1.5     | Briefly (<br>QUESTIC                                                                                                           | discuss the operating principle of the analyser named in ON 1.4.                                                                                                                    | (6)<br><b>[30]</b> |  |
|         |                                                                                                                                | TOTAL SECTION A:                                                                                                                                                                    | 30                 |  |
|         |                                                                                                                                |                                                                                                                                                                                     |                    |  |
| SECTION | ON B: AUT                                                                                                                      | OMATIC CONTROLLERS AND VALVES                                                                                                                                                       |                    |  |
| QUEST   | TION 2                                                                                                                         |                                                                                                                                                                                     |                    |  |
| 2.1     |                                                                                                                                | ibe the systematic experimental method of adjusting the controller gs of a proportional plus integral controller.                                                                   |                    |  |
| 2.2     | Illustrate, with the aid of sketches, the effect of increasing the integral rate, in question 2.1.                             |                                                                                                                                                                                     |                    |  |
| 2.3     | Define the following terms as applied in control systems:                                                                      |                                                                                                                                                                                     |                    |  |
|         | 2.3.1                                                                                                                          | Potential value                                                                                                                                                                     | (2)                |  |
|         | 2.3.2                                                                                                                          | Inherent regulation                                                                                                                                                                 | (3)                |  |
|         | 2.3.3                                                                                                                          | Valve coefficient                                                                                                                                                                   | (2)                |  |
| 2.4     | Calculate the $\mathcal{C}_v$ of a control valve suitable for controlling a process gas if the following information is given: |                                                                                                                                                                                     |                    |  |
|         | <ul><li>Baro</li><li>Tem</li><li>Upst</li><li>Down</li></ul>                                                                   | cific gravity of gas is 0,86 metric pressure is 1,0135 bars perature of the gas is 86 °C cream pressure is 10,85 bars nstream pressure is 2,3 bars uired flow rate is 386,5 $m^3/h$ | (5)<br><b>[25]</b> |  |

Copyright reserved Please turn over

**TOTAL SECTION B:** 

25



Copyright reserved Please turn over

#### **SECTION C: DISTILLATION COLUMN AND STEAM BOILERS**

#### **QUESTION 3**

| 3.1                         | Discuss the construction and operation of the following devices, as used in the feeding of unmeasured fuel into a burner: |                                                                      |                    |  |  |  |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------|--|--|--|--|
|                             | 3.1.1                                                                                                                     | Stoker                                                               | (4)                |  |  |  |  |
|                             | 3.1.2                                                                                                                     | Cyclone burner                                                       | (3)                |  |  |  |  |
| 3.2                         | Draw a two-element feed-water control system.                                                                             |                                                                      |                    |  |  |  |  |
| 3.3                         | Explain how the water level in a boiler drum is controlled by the system named in QUESTION 3.2.                           |                                                                      |                    |  |  |  |  |
| 3.4                         | Name FI                                                                                                                   | /E factors which will influence the operation of a reflux condenser. | (5)                |  |  |  |  |
| 3.5                         | Explain the function of each of the following basic interlocks on a boiler:                                               |                                                                      |                    |  |  |  |  |
|                             | 3.5.1                                                                                                                     | Purge interlock                                                      |                    |  |  |  |  |
|                             | 3.5.2                                                                                                                     | Low-water interlock                                                  |                    |  |  |  |  |
|                             | 3.5.3                                                                                                                     | High-flame interlock                                                 |                    |  |  |  |  |
|                             | 3.5.4                                                                                                                     | Low-airflow interlock                                                | (0)                |  |  |  |  |
|                             |                                                                                                                           | $(4 \times 2)$                                                       | (8)<br><b>[30]</b> |  |  |  |  |
|                             |                                                                                                                           | TOTAL SECTION C:                                                     | 30                 |  |  |  |  |
| SECTION D: INTRINSIC SAFETY |                                                                                                                           |                                                                      |                    |  |  |  |  |
| QUEST                       | ION 4                                                                                                                     |                                                                      |                    |  |  |  |  |
| 4.1                         | State THREE important questions to be asked when evaluating a system for intrinsic safety.                                |                                                                      |                    |  |  |  |  |
| 4.2                         | Name THREE types of purging installation systems.                                                                         |                                                                      |                    |  |  |  |  |
| 4.3                         | Discuss what is meant by non-incentive equipment and wiring.                                                              |                                                                      |                    |  |  |  |  |

Make a neat, labelled sketch of a type X purging system.

TOTAL SECTION D: 15
GRAND TOTAL: 100

(3)

[15]

4.4

(8080216) T830**(E)**(M27)T

#### **INDUSTRIAL INSTRUMENTS N6**

#### **FORMULA SHEET**

1. Point of inflection = 
$$\frac{reaction \, range}{2}$$

2. % change in variable = 
$$\frac{point\ of\ inflection}{process\ range} \times 100$$

3. 
$$R = \frac{\% change in variable}{time in minutes}$$

4. Proportional band = 
$$\frac{100 RL}{\Delta P}$$

5. Proportional band = 
$$\frac{110 RL}{\Delta P}$$

6. Integral rate 
$$(r/m) = \frac{0.3}{L}$$

7. Proportional band = 
$$\frac{83 \text{ RL}}{\Delta P}$$

8. Integral rate 
$$(r/m) = \frac{0.5}{L}$$

9. 
$$C_v = 1.16 Q \sqrt{\frac{G_f}{\Delta P}}$$

10. 
$$C_v = \frac{1,16 W}{\sqrt{G_f \Delta P}}$$

11. 
$$C_v = \frac{Q}{295} \sqrt{\frac{G.T}{\Delta P(P_1 + P_2)}}$$

12. 
$$C_v = \frac{47.2 W}{\sqrt{\Delta P(P_1 + P_2)}}$$

13. 
$$C_v = \frac{72.4 W}{\sqrt{\Delta P(P_1 + P_2)}}$$

14. 
$$PB = \frac{change\ in\ process\ variable}{100}\%$$