1 Hipotenusas inteiras (+++)

(IME-USP) Dado um número inteiro positivo *n*, determinar todos os inteiros entre 1 e *n* que são comprimento da hipotenusa de um triângulo retângulo com catetos inteiros. Para cada valor de hipotenusa válido no intervalo de 1 a *n*, imprimir todos os pares de catetos que formam um triângulo retângulo distinto com aquele valor de hipotenusa.

Entrada

O programa deve ler um valor inteiro n maior que zero.

Saída

O programa deve apresentar uma linha com o texto: "hipotenusa = h, catetos c_1 e c_2 ", onde h é uma hipotenusa inteira, c_1 e c_2 são seus catetos inteiros, de modo que $c_1 \le c_2$. No caso de haver mais de um par de catetos válidos para um mesmo valor de hipotenusa, por exemplo $(c_1, c_2), (c_3, c_4), \dots (c_k, c_{k+1})$, imprima os pares de tal modo que o valor do primeiro cateto seja menor ou igual ao valor do segundo cateto de um mesmo par e que o valor do primeiro cateto de um par seja menor que o valor do primeiro cateto do par de subsequente. Por exemplo, para um valor de hipotenusa igual a 85, existem os seguintes pares de catetos: (13,84), (40,75), (36,77)e(51,68). Nesse caso a saída deve ser a seguinte:

hipotenusa = 85, catetos 13 e 84 hipotenusa = 85, catetos 36 e 77 hipotenusa = 85, catetos 40 e 75 hipotenusa = 85, catetos 51 e 68

Exemplo

Entrada				
5				
Saída				
hipotenusa = 5,	catetos	3	е	4

Entrada			
15			
Saída			
hipotenusa	=	5,	catetos 3 e 4
hipotenusa	=	10,	catetos 6 e 8
hipotenusa	=	13,	catetos 5 e 12
hipotenusa	=	15,	catetos 9 e 12