UNSUPERVISED MACHINE LEARNING FOR SEROUS OVARIAN CANCER SUBTYPING

Rebecca Aviles, Jeanne Michelle Revilla, Andrea Velazquez

Ovarian Cancer

Ovarian Cancer

- A cancer that affects the reproductive system.
- > 5th overall deadliest type of cancer
 - Late prognosis and lack of symptoms
 Age at Diagnosis: 55-64 years
- > 5 year survival rate : 49.7% (2011-2018)

Lisio, et. al, 2019

Serous Ovarian Cancer

Serous Ovarian Cancer

- Epithelial cancer cell
- ❖ 75% of overall cases

Low Grade Serous Ovarian Cancer (LGSOC)

- ❖ Slower abnormal cell growth
- Cancer cells are more similar

High Grade Serous Ovarian Cancer (HGSOC)

- More common within Serous subtype
- Faster abnormal cell growth
- High metastasis rate

HGSOC Subtypes

Mesenchymal

Cellular stroma

Proliferative

- Mitotic figures
- Nuclear aggregates

Differentiated

- Papillary structures
- Intratumoral lymphocytes

Immunoreactive

Lymphocytesinfiltrating tumors

Khashaba et. al, 2022

Motivations

- Identify genetic markers for subtype characterization
- No existing test for Ovarian Cancer detection
 - Current diagnosis is invasive
- Optimize treatment and predict prognosis

Research Question

Using transcriptomic TCGA data of **High-Grade Serous Ovarian Cancer**, can an **unsupervised machine learning** model cluster the data into distinct **molecular subtypes**?

Methods

- "TCGA-OV" dataset (n=429)
 - RNAseq
 - o R and Python
- Principal Feature Analysis: 246 genes selected
 - 95% variance
- Clustering
 - 5 clusters 1 outlier cluster (n=5)
- Analysis- 4 clusters
 - Clinical factors: age and survival
 - Pathway analysis
 - Specific gene expression

Figure 1: Clusters

- \diamond Cluster 0 (dark blue), n = 13
- **♦** Cluster 1 (teal), n = 166
- \bullet Cluster 2 (green), n = 36;
- \diamond Cluster 3 (yellow), n = 209.
- ♦ Uncertainty (dark purple), n = 5.

Figure 2: Gene Expression by Cluster

Heat-map for gene expression by clusters (labeled at the bottom)

Common Identifiers

•	<u>mesenchymal</u>	<u>immunoreactive</u>	<u>differentiated</u>	<u>proliferative</u>
	 	 Immune-related ¹T-cell markers ¹cell death protein PD1 PDCD1 ¹programmed death-ligand (PDL1) CD274 	 • • ovarian tumor markers MUC1 MUC16 • high expression of transcription factors/proliferative markers 	 ◆MKI67 ◆PCNA high expression of transcription factors and proliferative markers

Mesenchymal Analysis

No TCGA samples are defined as metastatic

PANTHER Analysis – pathway

UNIQUE genes from Top 50 most expressed in

Cluster 3

2 / 21 genes related to angiogenesis pathway

Immunoreactive Analysis

Analysis of PDL1 Protein (gene CD274):

- ★ Relatively similar expression
- ★ High outliers inCluster 1 havepossible significance

Differentiated Analysis

Analysis of MUC1 and MUC16 levels:

- ★ Cluster 0 has higher levels of MUC1
- ★ Range of **Cluster 0** is higher & smaller
- High spread in Cluster 3
- ★ Similar levels of MUC16

Proliferative Analysis

Analysis of MKI67 and PCNA levels:

- ★ Cluster 0 has higher levels of PCNA
- ★ Range of **Cluster 0** is smaller
- ★ High spread inCluster 3

Transcription Factors

PANTHER Analysis – protein class

- ★ <u>UNIQUE</u> genes from Top 50 most expressed in **Cluster 1**
- ★ <u>11/35</u> related to transcription
- ★ 1-2 in other clusters

Clinical Variables: Age, KM plots

Cluster	0	1	2	3	Overall
Mean Age (yrs)	55.46	60.36	59.33	60.35	60.12

Table 1.

★ similar average age -> clustering not based on age

Clinical Variables: Age, KM plots

Pairwise Analysis of Survival Time for every combination of clusters

P-values between 0.5-0.6

Clinical Variables: Age, KM plots

Most significant finding.

p-value = 0.092

Discussion

Cluster	0	1	2	3
Possible Subtype	DifferentialProliferative	ImmunoreactiveProliferative/Differentiated	• None	Mesenchymal

- ★ Clusters show traits of multiple subtypes
- ★ Cluster 2 showed no traits
- ★ Unclear, no consensus
- ★ Cluster accuracy?

Future Research Opportunities

- Connection to Existing Literature
- Machine Learning
 - Supervised ML could be useful for a starting point
- Subtype characterization
 - Combine histopathological analysis and omic data currently
- Explore
 - Treatment outcomes in clusters

WORKS CITED

Budden, Timothy, et al. "Development and Validation of the Gene Expression Predictor of High-Grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE)." *Clinical Cancer Research*, vol. 26, no. 20, 2020, pp. 5411–23, https://doi.org/10.1158/1078-0432.CCR-20-0103.

Canadian Cancer Society / Société canadienne du cancer. "Grading Ovarian Cancer." Canadian Cancer Society,

 $cancer. ca/en/cancer-information/cancer-types/ovarian/grading \#: \sim: text = Low\%20 grade\%20 usually\%20 means\%20 that, are \%20 poorly\%20 differentiated\%20 or \%20 undifferentiated.$

Chien, J., et al. "Integrated Genomic Analyses of Ovarian Carcinoma." Nature (London), vol. 474, no. 7353, 2011, pp. 609–15, https://doi.org/10.1038/nature10166.

Kassuhn, Wanja Nikolai, et al. "Classification of Molecular Subtypes of High-Grade Serous Ovarian Cancer by MALDI-Imaging." *Journal of Clinical Oncology*, vol. 39, no. 15_suppl, 2021, pp. e17544–e17544, https://doi.org/10.1200/JCO.2021.39.15 suppl.e17544.

Khashaba, Marwa, et al. "Subtyping of High Grade Serous Ovarian Carcinoma: Histopathological and Immunohistochemical Approach." *Journal of Egyptian National Cancer Institute*, vol. 34, no. 1, 2022, pp. 6–6, https://doi.org/10.1186/s43046-022-00104-9.

Lisio, Michael-Antony, et al. "High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints." *International Journal of Molecular Sciences*, vol. 20, no. 4, 2019, pp. 952-, https://doi.org/10.3390/ijms20040952.

Leong, Huei San, et al. "Efficient Molecular Subtype Classification of High-Grade Serous Ovarian Cancer." The Journal of Pathology, vol. 236, no. 3, 2015, pp. 272–77, https://doi.org/10.1002/path.4536.

Momenimovahed, Zohre et al. "Ovarian cancer in the world: epidemiology and risk factors." *International journal of women's health* vol. 11 287-299. 30 Apr. 2019, doi:10.2147/IJWH.S197604.

"Ovarian Cancer by the Numbers." OCRA, ocrahope.org/get-the-facts/statistics/.

Rojas, Veronica, et al. "Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment." International Journal of Molecular Sciences, vol. 17, no. 12, 2016, pp. 2113–2113, https://doi.org/10.3390/ijms17122113.

Wang, Yuanshuo Alice, et al. "Multi-omics-based Analysis of High Grade Serous Ovarian Cancer Subtypes Reveals Distinct Molecular Processes Linked to Patient Prognosis." FEBS Open Bio, vol. 13, no. 4,