Aflevering 2

Jonas Trepiakas - hv
n548@alumni. ku.dk Vi beviser først et lemma:

Lemma 1: Lad g være en primitiv rod modulo p. Da har vi

$$g^l \equiv -1 \pmod{p} \iff l \equiv \frac{p-1}{2} \pmod{p-1}.$$

Bevis: Da vi for $k \in \mathbb{Z}$ har $p \mid k^2 - 1 \iff p \mid (k-1)(k+1) \iff k \equiv 1 \lor k \equiv -1 \pmod{p}$ følger, at $g^{\frac{p-1}{2}} \equiv -1 \pmod{p}$ (hvis $g^{\frac{p-1}{2}} \equiv 1 \pmod{p}$ ville det stride imod, at g er en primitiv rod modulo p). Så hvis $l \equiv \frac{p-1}{2} \pmod{p-1}$ fås

$$1 \equiv g^{(p-1)k} \equiv g^{l-\frac{p-1}{2}} \pmod{p} \implies g^l \equiv g^{\frac{p-1}{2}} \equiv -1 \pmod{p}.$$

Antag nu modsat, at $g^l \equiv -1 \pmod{p}$. Da har vi

$$g^l \equiv -1 \equiv g^{\frac{p-1}{2}} \pmod{p} \implies g^{l-\frac{p-1}{2}} \equiv 1 \pmod{p} \implies p-1 = \operatorname{ord}(g) \mid l - \frac{p-1}{2} \implies l \equiv \frac{p-1}{2} \pmod{p-1}.$$

Hvormed resultatet følger.

Opgave 1. Antag først, at a=-1 er en primitiv rod modulo p>3, hvor p er et primtal. Da $a^2\equiv 1\pmod p$, fås $\operatorname{ord}(a)\mid 2< p-1=\varphi(p)$, hvormed a ikke er en primitiv rod modulo p. Antag nu, at a er et perfekt kvadrat, altså $a=k^2, k\in\mathbb{Z}_+$, og antag, at a er en primitiv rod modulo p>3, hvor p er et primtal. Skriv da p-1=2l. Idet a er en primitiv rod, må $\gcd(a,p)=1$, hvormed $\gcd(k,p)=1$, så vi får

$$1 \equiv k^{p-1} = k^{2l} = (k^2)^l = a^l \pmod{p}.$$

Dermed har vi $\operatorname{ord}(a) \mid l \implies \operatorname{ord}(a) \leq l < 2l = p - 1$, så a er ikke en primitiv rod modulo p.

Antag nu, at p = 3. Da $\varphi(p) = 2 = \operatorname{ord}(-1)$, er $-1 \equiv 2$ en primitiv rod modulo 3. Da samtlige kvadratiske rødder modulo 3 desuden er 0, 1, følger alle perfekte kvadrater har orden 1 eller ∞ , så ingen perfekte kvadrater er primitive rødder modulo 3.

Opgave 2: Lad p-1=2l. Per Lemma 1 fås $(aa')^l \equiv a^l(a')^l \equiv (-1)(-1) \equiv 1 \pmod{p}$, så $\operatorname{ord}(aa')|l \Longrightarrow \operatorname{ord}(aa') \leq l < 2l = p-1$, så aa' er ikke en primitiv rod modulo p.

Opgave 3: Antag, at -a er en primitiv rod, og at $p \equiv 3 \pmod{4}$. Da har vi4l = p - 3 for et $l \in \mathbb{Z}$, hvormed p - 1 = 2k, hvor $k \in \mathbb{Z}$ er ulige. Per Lemma 1 fås nu

$$(-a)^k \equiv (-1)^k a^k \equiv (-1)(-1) \equiv 1 \pmod{p}.$$

Hvormed $\operatorname{ord}(-a) \mid k$, så $\operatorname{ord}(-a) \leq k < 2k = p-1$, så -a er ikke en primitiv rod. Da p > 3 er et primtal, er den specielt ulige, så p er enten 1 eller 3 modulo 4, hvormed vi får, at hvis -a er en primitiv rod, må $p \equiv 1 \pmod{4}$.

Antag nu i stedet, at $p \equiv 1 \pmod 4$. Vi har, at $\operatorname{ord}(-a) \leq p-1$ ifølge Fermats lille sætning. Antag nu, at $\operatorname{ord}(-a) = d < p-1 = 4k$ for $k \in \mathbb{Z}$. Hvis d er lige, fås $1 \equiv (-a)^d \equiv a^d \pmod p$ i modstrid med, at a er en primitiv rod modulo p. Men hvis d er ulige fås $1 \equiv (-a)^d \equiv -a^d \iff a^d \equiv -1 \pmod p$, hvormed Lemma 1 giver $d \equiv \frac{p-1}{2} \pmod {p-1}$, så $4k \mid d-2k$, så d er lige, som er en modstrid. Dermed er -a en primitiv rod modulo p.

Opgave 4: Vi har først, at $2 \equiv 11 \equiv x^2 - 3y^3 \equiv x^2 \pmod{3}$, men da 2 ikke er en kvadratisk rest modulo 3, eksisterer ingen heltallige løsninger til ligningen. Til gengæld har vi i \mathbb{R} , at

$$11 = x^2 - 3y^3$$

$$\iff y^3 = \frac{x^2 - 11}{3}$$

$$\iff y = \sqrt[3]{\frac{x^2 - 11}{3}},.$$

og da $\sqrt[3]{\frac{x^2-11}{3}}\in\mathbb{R}$ for alle $x\in\mathbb{R},$ følger at alle $x,y\in\mathbb{R}$ af formen

$$(x,y) = \left(x, \sqrt[3]{\frac{x^2 - 11}{3}}\right)$$

løser ligningen.