44 of 49 DOCUMENTS

COPYRIGHT: 1984, JPO & Japio

PATENT ABSTRACTS OF JAPAN

59139481

August 10, 1984

FINGERPRINT INFORMATION INPUTTING DEVICE

INVENTOR: HASE MASAHIKO; TAKANO RIKUO; SHIMIZU AKIHIRO

APPL-NO: 58012830

FILED-DATE: January 31, 1983

ASSIGNEE-AT-ISSUE: NIPPON TELEGR & TELEPH CORP <NTT>

PUB-TYPE: August 10, 1984 - Un-examined patent application (A)

PUB-COUNTRY: Japan (JP)

IPC-MAIN-CL: G 06K009#0

IPC ADDL CL: G 06K009#20

CORE TERMS: finger, picture, detecting, inputting, fingerprint, positional,

displayed, display

ENGLISH-ABST:

PURPOSE: To enable inputting of fingerprint picture in the same condition at all times and shorten time for collation by detecting whole positional information of a finger and detecting pressure of the finger when inputting a picture.

CONSTITUTION: When inputting fingerprint information of a finger 2, a person sets his finger 2 to a fixed position looking general view of his finger 2 displayed on a picture display section 7. Positional information of correct finger position is detected by a position detecting section 8. In the figure (a), the finger 2 is in improper position. Accordingly, the finger is brought to proper position as in the figure (b). As for information of pressure of the finger 2, the finger- print picture is inputted when the pressure is adjusted to optimum pressure (1g/cm (2)Wlkg/cm (2)) by a pressure detecting section 5. This pressure is also displayed on the picture display section 7 to indicate whethr the pressure is within the range of proper pressure or not.

(19) 日本国特許庁 (JP)

①特許出願公開

⑩公開特許公報(A)

昭59-139481

⑤Int. Cl.³ G 06 K 9/00 9/20

識別記号

庁内整理番号 A 6619→5B 7157--5B

母公開 昭和59年(1984)8月10日

発明の数 1 審査請求 未請求

(全 4 頁)

匈指紋情報入力装置

②特 願 昭58-12830

②出 願 昭58(1983)1月31日

⑫発 明 者 長谷雅彦

横須賀市武 1 丁目2356番地日本 電信電話公社横須賀電気通信研

究所内

@発 明 者 髙野陸男

横須賀市武1丁目2356番地日本電信電話公社横須賀電気通信研 究所内

⑫発 明 者 清水明宏

横須賀市武1丁目2356番地日本電信電話公社横須賀電気通信研究正中

究所内

⑪出 願 人 日本電信電話公社

四代 理 人 弁理士 小林将高 外1名

明細物

1. 発明の名称

指紋情報入力裝置

2. 特許請求の範囲

3. 発明の詳細な説明

この発明は、指紋情報を格納するための指紋情報入力装置に関するものである。

従来の指紋情報を入力する契値では、フイルム

上に焼きつけられた指紋情報をFSS(Flying Spot Scanner)で計算機内の苦機部に格納する方法が一般的であつた。フィルム上に焼きつけるためにはインクを指に塗布し、それを紙上に押しつけて指紋画像を作り、それを写真で撮影する方法がとられていた。またインクを用いずに指紋画像を入力する方法は各植あるが、入力する場合に頻変を入力する方法は各植あるが、入力する場合に頻変を入力する方法は各植あるが、入力する場合に処理像の位健が一定でないために後の照合での処理に負担がかかるという欠点があつた。

つまり照合を行う場合には、第1図のように指紋 画像1の指紋の中心点 P。を求め、その点をXY 平面の(0,0)点とした場合の場点 P。,分骸点 P。の位置情報を特徴量とするのが一般的である。その際に中心点を求める処理を計算機内で行うため、処遇時間がかかるという欠点があつた。またブリズムなどの光学系を用いてインクなしに入力する場合に、指の圧力が一定でないために指数入力画像に強みが生じるという問題点があつた。

この発明は、これらの欠点を除去するために、 指数情報を入力する場合に指の位置および圧力を

特開昭59-139481(2)

校出する処理部を設けたことを特徴とする招款情報入力設定を提供するものである。以下この発明 について説明する。

第2図はこの発明の一央施例を示す構成略でである。この図で、2は指、3は招紋情報検出部で(ブリズム等)、4は虹気信号に変換する指紋情報 大力ので、2は指、3は招紋情報検出部で(ブリズム等)、4は虹気信号に変換する指紋は た力検出部、6は前配指2の金体像を入力する下 と表示する面像入力部、7は前配指2の金体像 を計研する位像検出部、9は装置全体をコントで を計研する間ので、10は初ののメモリの 指紋情報を一かまるための光ディスク 等の岩線部、12は共通バスである。

次に動作について説明する。

指2の指紋情報を入力する場合、人間は画像表示部7 に表示される自分の指2 の概観図を見なが ち一定の位置に指2を合わせる。正しい指の位置 情報の検出は位置検出部8 で検出される。すなわ

なお、ブリズム 3 Aを用いた指紋情報入力方法 に関しては、本出収人の出版に係る符顧昭 5 7 ー 2 6 1 5 4 号で詳細に述べてあるので、ここでは その原理について第 5 図,第 6 図により説明する。

第 5 図で P_* , P_b , P_c は前記プリズム 3 A の 三角面の項点を示し、R , Q はそれぞれプリズム 3 A の接触面に接触している指の指紋の凹凸における接触している部分と接触していない部分を娯念的に示した点であり、X は点Q からの光がブリズム 3 A に入射する点を示す。また θ_1 , θ_2 , θ_3 , θ_4 は 点Q からの光の屈折の角度を示し、 θ_4 , θ_3 , θ , は 点R からの光の屈折の角度を示す。ただし θ_q , θ , は 面 P_c P_s と平行な面となす角である。 θ 。は 頂点 P_s の角度を示す。

第 5 凶において、空気の屈折率を 1 としたとき のプリズム 3 Aの屈折率を n とするとき、スネル の法則により点Qからの光が ℓ n の角度でプリズ ム 3 Aに入射するとき、

$$n \sin \theta_1 = \sin \theta_1$$

$$\therefore \theta_2 = \sin^{-1} \left(\frac{1}{n} \sin \theta_1 \right) \cdots \cdots \cdots (i)$$

ち胡3図(a)は指2が不適切な位置にあるので、 第3図(b)のような適切な位置になるようにする。 また指2の圧力情報については圧力検出部5で最 適な圧力(1g/cm²~1kg/cm²)に調整された時 に指数函像は入力される。なお、この圧力も函像 投示部7に投示され、適切圧力の範囲内であるか とうかが判るようにする。

つまり指2の位置情報および指2の押し付け圧力が放適な場合に指数情報は、指数情報検出部3 および指数情報入力部4を通し、かつ共通パス12を通して招数情報の審視部11にストンクされる。この要型の全体のコントロールは制御部9で行われる。指2の位置情報の検出については、無白面索の変化点の抽出等簡単な適像処理を行うことにより実現可能である。

指2の押し付け圧力の検出については、第4図のようにプリズム3Aの後面に感圧センサ3Bを 装滑させるか、または重みゲージ3Cをはりつける等の簡便な構成で圧力を検出することが可能で ある。

n sin (
$$\theta_s - \theta_i$$
) = sin θ_s

ここで、 $\theta_1 \to \frac{\pi}{2}$ (rad) として、 θ_2 を陥昇角とするとき、このときの θ_3 を θ_{3min} とすると第 (3)式より

 $heta_{smin} = sin^{-1} \left\{ n sin \left(\theta_s - sin^{-1} \frac{1}{n} \right) \right\} \cdots (4)$ これに対して、点 R からの光については、プリズム 3 A 中を通り、空気中へ抜けるので

n sin
$$\theta_{+} = \sin \theta_{s}$$

∴ θ_s = sin⁻¹ (n sin θ_s)(5) ここで、P_c P_a 平面を基準に考えると、点Qか らの出射光の角度を $\ell_{\mathbf{q}}$ 、点Rからの出射光の角 度を $\ell_{\mathbf{r}}$ 、たして

$$\theta_s + \theta_{smin} \le \theta_q$$
(6)

第(6)式より、点Qからの光は、 $\theta_a + \theta_{smin}$ より小さい角度の所へは到達しないことになる。 今、n=1.5, $\theta=4.5$ ° として英際にこの角度 を計算して見ると第(4)式より

$$\theta_a + \theta_{amin} = 45^{\circ} + sin^{-1} \{ 1.5 \times sin(45^{\circ} - sin^{-1} \frac{1}{15}) \}$$

 $\Rightarrow 4.9.8^{\circ}$

となる。すなわち、βq < 49.8° となる領域へは 光が到達しないことになる。ここまでの式中の符 号は全て第5図中のものに対応する。

用いて招紋画像を入力する場合の招の押しつけ圧力を検出する機構例を示す図、錦 5 図、錦 6 図はプリズムを用いた招紋情報入力方法の原理を説明するための図である。

図中、1は指数画像、2は指、3は指数情報検出部、3Aはプリズム、3Bは感圧センサ、3Cは歪みゲージ、4は指数情報入力部、5は圧力検出部、6は画像入力部、7は画像表示部、8は位健検出部、9は制御部、10はメモリ部、11は蓄援部、12は共通パスである。

代理人 小林将高地株型(ほか1名) の形式

特開昭59-139481(3)

の角度 θ 。によつてのみ決まるので、第6図の領域 R_1 の中に非到達領域はない。そこで第6図に示すように領域 R_1 内に指数情報入力部4を設ければ、接触部(点R)からの光のみを検出することができる。

以上説明したように、この発明の指紋情報入力 装隆は面像を入力する際に指の全体的な位置情報を を検出する処理および指の圧力を検出する処理を 行うことによつて常に何じ状態で指紋面像を入力 することが可能になる。そのため後の指紋の無合 を行う処理での指紋の中心点を検出する時間およ び前処理等を軽減することが可能となり、照合時 間の短縮および照合処理の簡略化が災現できる利 点を有する。

4. 図面の簡単な説明

第1図(a),(b)は指紋函像を入力する場合の中心点が変動する例を示す図、第2図はこの発明の一実施例を示す構成略図、第3図(a),(b)は指紋函像を入力する場合の指の不適切な位置および適切な位置の例を示す図、第4図はプリズムを

図

