UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i	MAT-INF 1100 — Modellering og	
Eksamensdag:	beregninger. Onsdag 7. oktober 2009.	
Tid for eksamen:	15:00 – 17:00.	
Oppgavesettet er på 6 sider.		
Vedlegg:	Formelark.	
Tillatte hjelpemidler:	Ingen.	
du begyr	t oppgavesettet er komplett før nner å besvare spørsmålene.	
Husk å fyll	e inn kandidatnummer under.	
	Kandidatnr:	
Den totale poengsummen er altså 50. Det er 5 svaralternativer for hvert spørsmål, men det er bare ett av disse som er riktig. Dersom du svarer feil eller lar være å krysse av på et spørsmål, får du null poeng. Du blir altså ikke "straffet" med minuspoeng for å svare feil. Lykke til! Oppgave- og svarark		
Oppgave 1. Det binære tallet 1110111 ₂ er det samme som det desimale tallet		
119		
121		
116 125		
117		
Oppgave 2. Skrevet i to 111100001101 ₂ 111100000011 ₂ 110000001111 ₂ 111101001111 ₂ 111100001111 ₂	stallssystemet blir det heksadesimale tallet $f4f_{16}$	

Op	pgave 3. Desimaltallet 5.3 kan skrives på binær form som 101.0100110011001 · · · der sifrene 1001 gjentas uendelig mange ganger	
	101.010011001101 101.011	
	$101.01010101010101010101\cdots$ der sifrene 01 gjentas uendelig mange ganger $101.01100110011001100110\cdots$ der sifrene 0110 gjentas uendelig mange	
gan		
Op	pgave 4. I åttetallssystemet blir det desimale tallet 40.125	
	49.1_8	
	40.1 ₈	
	50.3 ₈	
	40.11_8 50.1_8	
Op: 2.4	pgave 5. I siffersystemet med grunntall $\beta = 4$ blir det desimale tallet	
	2.3_{4}	
	2.10303_4	
	2.103_4	
	2.1_4	
\checkmark	krever uendelig mange siffer	
Oppgave 6. Tallet $\frac{1+\sqrt{2}+\sqrt{8}}{5-\sqrt{8}}$		
$\stackrel{\mathrm{er}}{\sqcap}$		
	et rasjonalt tall	
	$1 + \sqrt{2}$ $\sqrt{2} - 1$	
	$\sqrt{2-1}$ $\sqrt{8} + \sqrt{2}$	
	$\sqrt{8}-\sqrt{2}$	
	pgave 7. En følge er definert ved $x_n = e^{-n^2}$ for $n \ge 1$. Hva er største	
ned	nedre skranke for tallmengden gitt ved $\{x_n \mid n \geq 1\}$?	
	1/2	
	er ikke definert	
<u>v</u>	0	
	$rac{1}{e}$	

Anta at vi multipliserer ut parentesene i uttrykket $(2-x)^{99}$. Oppgave 8. Hva blir da koeffisienten foran x^{98} ? 99 1 -198-99198 Oppgave 9. Hva er Taylor-polynomet av grad 2 om a = -1 for funksjonen $f(x) = x^4$? $3 + 9x + 7x^2$ $\boxed{3+8x+6x^2}$ -x x^2 **Oppgave 10.** Hva er Taylor-polynomet av grad 2 om a = 1 for funksjonen $f(x) = x^2$? $\sqrt{}$ $-1 + x + x^2$ $3 - x - x^2$ 0 Vi minner om at dividerte differenser tilfredstiller relasjonene $f[x_0, x_1, \dots, x_{k-1}, x_k] = \frac{f[x_1, \dots, x_{k-1}, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_0}$ og $f[x_k] = f(x_k)$. **Oppgave 11.** Vi har funksjonen $f(x) = \sin x$ og punktene $x_0 = 0$, $x_1 = \pi/2$ og $x_2 = \pi$. Da har den dividerte differansen $f[x_0, x_1, x_2]$ verdien $\sqrt{-4/\pi^2}$ $4/\pi^2$

 $\begin{bmatrix} \\ -2/\pi \end{bmatrix}$

Oppgave 12. Vi har funksjonen $f(x) = x^4$ og punktene $x_i = i$, for i = 0, $1, \ldots, 5$. Da har den dividerte differansen $f[x_0, x_1, x_2, x_3, x_4, x_5]$ verdien 6 2 12 **Oppgave 13.** Vi interpolerer funksjonen $f(x) = x^3$ med et polynom p_2 av grad 2 i punktene 0, 1, 2. Da er p_2 lik x^3 $4x^2 - 3x$ **Oppgave 14.** Du skal tilnærme funksjonen $f(x) = e^x$ med et Taylorpolynom av grad n på intervallet [0,1], utviklet om a=0. Det viser seg at feilen er begrenset av Hva er den minste graden n som gjør at feilen blir mindre enn 0.01 for alle x i intervallet [0,1]? \square n=1 \square n=3n = 7

Oppgave 15. Differensligningen

$$x_{n+1} - x_n = (-1)^{n+1}, \quad x_0 = 1/2$$

har løsningen $x_n = (-1/2)^{n+1}$ $x_n = (-1)^n/2$ $x_n = 1/2$ $x_n = (n+1)/2$ $x_n = n$

Oppgave 16. Vi har gitt en differensligning med initialbetingelser,

$$x_{n+2} - 3x_{n+1} - 4x_n = 2$$
, $x_0 = 0$, $x_1 = 1$.

Hva er løsningen?

 $\bigcup x_n = n$

 $x_n = (4^n - 1)/3$

Oppgave 17. Vi har en følge definert ved

$$y_n = 1 + 2^2 + 3^2 + \dots + n^2$$
, $n = 1, 2, \dots$

og en annen følge $\{x_n\}_{n=1}^{\infty}$ definert ved differensligningen

$$x_{n+1} - x_n = (n+1)^2, \quad x_1 = 1.$$

For $n \ge 1$ er da $y_n - x_n$ gitt ved

 $\bigsqcup (n-1)^2$

 \checkmark 0

 $\bigsqcup (n-1)n^2$

Oppgave 18. Vi har differensligningen

$$x_{n+1} - \frac{x_n}{3} = 2, \quad x_0 = 2,$$

og simulerer denne med 64-bits flyttall. For alle n over en viss grense vil da den beregnede løsningen \bar{x}_n gi som resultat

√ 3

1

| | (

 $3 - 3^{-n}$

☐ Det blir overflow

Oppgave 19. Vi har differensligningen

$$x_{n+2} - 6x_{n+1} + 12x_n = 1$$
, $n \ge 1$, $x_0 = 1/7$, $x_1 = 1/7$

og simulerer denne med 64-bits flyttall på datamaskin. For alle n over en viss grense vil da den beregnede løsningen \bar{x}_n gi som resultat:

 \square 5

(Fortsettes på side 6.)

Oppgave 20. Vi lar P_n betegne påstanden

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \ge \sqrt{n}.$$

Et induksjonsbevis for at P_n er sann for alle heltall $n \geq 1$ kan være som følger:

- 1. Vi ser lett at P_1 er sann.
- 2. Anta nå at vi har bevist at P_1, \ldots, P_k er sanne. For å fullføre induksjonsbeviset, må vi vise at P_{k+1} også er sann. Siden vi antar at P_k er sann vet vi at

$$\sum_{i=1}^{k} \frac{1}{\sqrt{i}} \ge \sqrt{k},$$

og vi må vise at da er også

$$\sum_{i=1}^{k+1} \frac{1}{\sqrt{i}} \ge \sqrt{k+1}.$$

Vi har følgende relasjoner

$$\sum_{i=1}^{k+1} \frac{1}{\sqrt{i}} = \sum_{i=1}^{k} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{k+1}}$$

$$\geq \sqrt{k} + \frac{1}{\sqrt{k+1}}$$

$$= \frac{\sqrt{k(k+1)} + 1}{\sqrt{k+1}}$$

$$\geq \frac{\sqrt{k^2} + 1}{\sqrt{k+1}}$$

$$= \sqrt{k+1}.$$

Vi ser dermed at om P_k er sann så må også P_{k+1} være sann. Hvilket av følgende utsagn er sant?

Påstanden P_n er sann, men del 2 av induksjonsbeviset er feil

Påstanden P_n er feil, og del 2 av induksjonsbeviset er feil

Påstanden P_n er feil, og del 1 av induksjonsbeviset er feil

Både påstanden P_n og induksjonsbeviset er riktige

Beviset er riktig, men det er ikke noe induksjonsbevis