Основы теории графов. Теория

1 Основы

Teop. 1.1.

$$\sum_{v \in V} \deg(v) = 2|E(G)|$$

2 Вершинная связность

Опр. 2.1. Точка сочленения – если удалить, то распадётся.

Л. 2.0.1 (Хёринг). тах кол-во путей $P(x \to y)$ (не перес. во внутр. точках) = |R| – тах мн-ва вершин, отделяющих x и y.

Теор. 2.1 (Менгер). Для \forall несмежных вершин $x,y \in V \not\equiv e(x,y)$ размер мин. верш.разделяющего мн-ва $|R_{min}(x \leftrightarrow y)| = \max$ числу простых путей $P(x \to y)$, отличных во внутренних точках.

Теор. 2.2 (Уитни). G - k-связный $\iff \forall x,y \in V, \exists k \text{ простых путей } P(x \to y), не пересекающихся во внутренних точках <math>P_i \neq P_i$ (внут.).

$$\kappa(G) \leqslant \lambda(G) \leqslant \delta(G)$$

$$e \partial e \quad \delta(G) = \min_{V} deg(v)$$

3 Рёберная связность

Опр. 3.1. Мост – ребро, при его удалении граф развалится

Теор. 3.1 (Форд-Фалкерсон). тах поток Q через сеть = пропускной способности минимального S-T разреза.

Теор. 3.2 (Менгер "рёберная"). Для \forall несмежных вершин $x,y \in V \not\equiv e(x,y)$ размер \min рёберно-разделяющего мн-ва $|R_{min}^{edge}(x \leftrightarrow y)| = \max$ числу простых рёберно-непересекающихся путей $P(x \to y)$.

3.1 Задачи

4 Паросочетания

	вершинное	рёберное	
незав. мн-во	α	α'	max
покрытие	β	eta'	min
	вершинное	п-сочетание	

Св. 4.0.1. Если S – независ.мн-во вершин, то \bar{S} – покрытие (необязательно \max). Замечание: это неверно для рёбер.

Teop. 4.1 (Галаи).

$$\alpha + \beta = \alpha' + \beta' = n$$

Теор. 4.2 (Кёниг). $B \,\forall \, 2$ -дольном графе B(m,n): $\beta = \alpha'$

Oпр. 4.1. Kyбический граф – регулярный $(\deg v_i = \mathrm{const})$ граф: $\deg = 3$

Св. 4.1.1. В кубическом графе |V| – чётное

Теор. 4.3 (Татт). \exists совершенное $n.c. \iff npu \ y \partial$ алении $\forall \ S \subset V$ образуется нечётных компонент

$$C_o(G \setminus S) \leq |S|$$

Сл. 4.3.1 (Петерсен). В кубическом графе $\exists \ c.n.c., \ ecлu \ N(мостов) \leq 2$

Св. 4.1.2. В чётном графе если $C_o(G\setminus S)\geq |S|$ то $C_o(G\setminus S)\geqslant |S|+2$

Опр. 4.2. Дефицит – число вершин, не покрытых максимальным n.c.

$$\operatorname{def}(G) = |V| - 2\max|M|$$

Теор. 4.4 (Татта-Бержа). $\operatorname{def}(G) = \max_{S \subset V} \left(C_o(G \setminus S) - |S| \right)$

Cл. 4.4.1. def $\equiv |V| \pmod{2}$