Prototype of an autonomous selfie drone utilizing pose estimation

Structure

- 1. Aim of work
- 2. Tello Drone
- 3. Mediapipe
- 4. Implementation
 - a. Algorithm
 - o. Autonomous flight
 - c. Poses
- 5. Problems
- 6. Conclusion

Aim of work

Aim of work

Tello Drone

Tello Drone

Ryze Robotics

<u>Price: 100€ ~</u>

Flight Performance:

Max. Flight Distance: 100 m

Max.Speed: 8 m/s

Max. Flight Time: 13 min Max Flight Height: 30 m

Camera:

Photo: 5 Megapixel (2592×1936)

FOV: 82,6°

Video: HD720p30

Format: JPG (Foto), MP4 (Video)

Tello SDK

Port 111111

Video Stream


```
def send command(self, command):
    Send a command to the Tello and wait for a response.
    :param command: Command to send.
    :return (str): Response from Tello.
    print (">> send cmd: {}".format(command))
    self.abort_flag = False
    timer = threading.Timer(self.command_timeout, self.set_abort_flag)
    timer.start()
    while self.response is None:
        if self.abort flag is True:
    if self.response is None:
        response = self.response.decode('utf-8')
    return response
```


DJITelloPy

- → Python interface using the official Tello SDK
 - implementation of all tello commands
 - easily retrieve video stream

```
connect(wait_for_state=True)

send_rc_control(left_right_velocity, forward_backward_velocity, up_down_velocity, yaw_velocity)

get_frame_read().frame
```


Media Pipe

Media Pipe

- From Google
- Open Source
- Offers several ML Solutions

→ Pose Estimation

Blaze Pose

Landmarks:

x and **y**: Landmark coordinates normalized to [0, 1.0] by the images height and width respectively.

visibility: Indicating the likelihood of the landmark being visible [0, 1.0].

(z: Depth of the landmark with midpoint of the depth at hips centre.)

Blaze Pose

	Pixel 3 CPU FPS	Pixel 3 GPU FPS
BlazePose lite	44	112
BlazePose full	18	69

[IV]

Algorithm

Frame

Videoframe

- The **origin** is located in the **upper left corner** of the screen
- Y-Value positive in downwards direction.
- X-Values positive in right direction

→ Perspective from the drone's point of view

Autonomous movement

Autonomous movement

```
distance_{to_x} = (nose_x) - (w/2)
distance_{to_y} = (nose_y) - (h/2)
```


Poses

Right Arm Up:

- Right Arm is above right shoulder
- Left arm is below left shoulder.

→ Due to inverse Y-Axis the values are also inverted. E.g. Right Arm is up if y-value of right wrist is smaller than the y-value of the right shoulder.

Left Arm up:

- Left arm is above left shoulder
- Right arm is below right shoulder.

Move left

Move right

Picture Pose

- Pose detected when the right wrist passes the left wrist.
 - → X- Value of right wrist becomes larger

→ You might notice the ambiguity of the pose the way it is detected.

Video

- Movement on Z-axis.
- Optimizing parameters is a bottomless pit.

Problems

 \rightarrow High wear on rotor blades.

Conclusion

- Due to the fast CNN, 18 FPS can be achieved which is sufficient.
- Poses are detected reliably.
- Autonomous movement is stable with slow speed.

Thank you.

Quellen

- [I] https://cdn.shopify.com/s/files/1/0263/8469/5395/files/Ryze-Tello-review-closeup-749x500.jpg
- [II] https://yt3.ggpht.com/ytc/AKedOLRjqH5YNixEUi8z2zHilzJYPkBECw_UXIBp3uKc=s900-c-k-c0x00ffffff-no-rj
- [III] https://google.github.io/mediapipe/images/mobile/pose_tracking_full_body_landmarks.png
- [IV] https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html

Extras

Constants

```
class Constants():
    """This class contains the neccesary values for the drones settings.
   Changing these values will result in a different behaviour of the drone.
    @property
    def DRONE SPEED X(self) -> int:
        """The function returns the setting for the drones movement in the x direction (left and right).
       Movement is measured in centimeters and can be set from -100 to 100.
        Returns:
            (int): value of the distance
        return 20
    @property
    def DRONE SPEED Y(self) -> int:
        """The function returns the setting for the drones movement in the y direction (up and down).
       Movement is measured in centimeters and can be set from -100 (down) to 100 (up).
        Returns:
            (int): value of the distance
        return 10
```