PICHICUCO 7: GULF OF CALIFORNIA CTD DATA REPORT: US RESEARCH VESSEL R/V N. (U) SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CA N A BRAY ET AL. MAR 85 SIO-REF-SERIES-86-4 N00014-84-C-9257 F/G 9/10 AD-A169 838 1/3 UNCLASSIFIED NL

poore Beenchen cerrenan communication provides communications

Pichicuco 7: Gulf of California CTD Data Report

March, 1985

R/V New Horizon

N. A. Bray¹

J. M. Robles²

A. C. Carrasco¹

NOO014 -84-C-0257

SIO Reference Series 86-4

¹ Scripps Institution of Oceanography, La Jolla, CA 92093.

² Centro de Investigaciones Scientificas y de Educacion Superior de Ensenada, Ensenada, B.C., Mexico.

Table of Contents

Abstract	i
List of Figures	ii
List of Tables	iii
Introduction and Acknowledgements	1
Data Processing	7
a. Acquisition	7
b. Calibration	7
c. Error identification	14
d. Combination of separately digitized fast and slow temperature signals	15
e. Lag correction and salinity calculation	17
f. Pressure averaging	17
Data Display Notes	17
Potential Temperature vs Salinity Diagrams	19
Temperature, Salinity and Density Profiles for Each Station	29
Appendix A: Program Listings	178
1. Data acquisition: MAR85.FOR	179
2. Data processing: APROC.FOR	188
APROSUB.FOR	198
3. Calculation of lag correction weights: ANAW.FOR	205

Acces	sion For
NTIS	GPA&I
DTIC	TAB f
Unann	ा क्रिक्टन्याल
J	fleation.
By	
Distr	ibution/
Avai	lability Codes
	Avail and/or
Dist	Special
	j
4-1	
	<u> </u>

Abstract

During late winter of 1985, the R/V New Horizon occupied a total of 149 CTD stations in the northern half of the Gulf of California. The objective of the cruise was to examine winter hydrographic characteristics, especially as they might apply to water mass formation processes in the northern Gulf. This report presents individual profiles of temperature, salinity and density for those stations, along with regional composite diagrams of potential temperature vs salinity.

A detailed discussion of the techniques used to process the data is also included, in which a new technique for computing high resolution salinity profiles is introduced.

The second second

STATE OF THE STATE

Resumen

A fines del invierno de 1985, la embarción R/V New Horizon ocupó un total de 149 estaciones de CTD en la parte norte del Golfo de California. El objectivo de este crucero fué examinar las características hidrográficas que se presentan en invierno, especialmente como éstas se pueden aplicar a procesos de formación de masas de agua en la parte norte del golfo. Este reporte presenta, para cada estación, perfiles de temperatura, salinidad y densidad, junto con diagramas regionales compuestos de temperatura potencial contra salinidad.

Se incluye una detallada discusión de las técnicas usadas para procesar los datos, en la cual se describe una nueva técnica para calcular perfiles de salinidad con alta resolución.

List of Figures

1.	Station Locations	2
2a.	Thermal Shock	8
2 b.	PRT Calibration	8
3a.	Pressure sensor hysteresis, 0 °C, pre cruise	9
3b.	Pressure sensor hysteresis, 19.4 °C, pre cruise	9
3c.	Pressure sensor hysteresis, 2.0 °C, post cruise	9
3d.	Pressure sensor hysteresis, 21.4 °C, post cruise	9
4.	Salinity check sample differences by station.	11
5 .	Salinity check sample differences by depth.	12
6.	Distribution of surface layer salinity check sample differences.	13
7.	Composite ⊕ vs S : PC7001 to PC7149	23
8.	Regional Θ vs S plots:	24
	a. Yoyos near sill: PC7001 to PC7006 b. Northern Gulf Survey 1: PC7007 to PC7040 c. Tiburon-Salsipuedes Sill Survey: PC7041 to PC7061 d. Eastern S. Esteban Basin Survey: PC7062 to PC7069 e. Western along-Gulf Section: PC7070 to PC7084 f. Northern Gulf Survey 2: PC7085 to PC7124 g. Special Northern Gulf Section: PC7104 to PC7111 h. Eastern along-Gulf Section: PC7125 to PC7146 i. San Pedro Basin: PC7138 to PC7147	

List of Tables

1.	Station Locations	3
2.	Pichicuco cruises in the Gulf of California	6
3.	Interpolated points	16
4.	Lag correction filter weights	18

1. Introduction

The CTD stations presented in this report are from the seventh Pichicuco cruise in the Gulf of California. The Pichicuco cruises began in 1982 as a cooperative physical oceanography field program between scientists at Centro de Investigación Cientifica y Educación Superior de Ensenada and Scripps Institution of Oceanography. A wide range of phenomena relating to circulation in the Gulf have been examined during the cruises. The data collected during this cruise (PC7) were aimed primarily at studying the late winter water mass conditions in the northern Gulf, and stations are concentrated in the northern half of the Gulf (Figure 1, Table 1).

As shown in Table 2, both the Mexican research vessel B/O El Puma and the U.S. research vessel R/V New Horizon were used during the Pichicuco cruises. Cruise PC7, aboard the R/V New Horizon, was conducted under the auspices of Permit No. 250285-333-04-0603 (28 Feb 1985) and Diplomatic Note No. 300649 (11 Mar 1985) courtesy of the Government of Mexico. Funding for the cruise came from NSF grant No. OCE83-18288 and ONR contract N00014-84-C-0257.

Many people deserve thanks for their efforts toward making this report possible. In particular, we would like to thank those responsible both in the U.S. and in Mexico for obtaining clearance for the R/V New Horizon to work in Mexican waters. Vanessa Cunningham and Jenniser Davis most capably kept our customs, shipping and finances in order. The captain and crew of the R/V New Horizon participated in the work with skill and enthusiasm, contributing substantially to the success of the cruise. Watchstanders on the cruise were Walt Waldorf and Jim Wells (watch captains); Cindy Paden, Myrl Hendershott, Joan Semler, Antoine Badan, Geoff Hargreaves and Juan Gaviño. The consistently high quality of the data is a tribute to their skill and concentration.

deficiency described appropriate lasteres conserved

Particular thanks go to Frank Delahoyde for advice in the early stages of programming our IBM 9000 to acquire CTD data. Final layup of the report was done by Mike Clark. The report cover was illustrated by Nancy Hulbirt.

1. Introducción

Las estaciones de CTD presentadas en este reporte pertenecen al séptimo crucero Pichicuco en el Golfo de California. Los cruceros Pichicuco empezaron en 1982 como un programa de Oceanografía Física entre investigadores del Centro de Investigación Cientifica y Educación Superior de Ensenada y Scripps Institution of Oceanography. Durante estas cruceros se examinó un amplio rango de fenómenos relacionados con la circulación en el Golfo. Los datos obtenidos durante este crucero (PC7) fueron enfocados principalmente al estudio de las condiciones de masas de agua en la parte norte del Golfo durante el final del invierno y las estaciones se concentraron en la mitad Norte del Golfo (Figura 1).

Como se indica en la Tabla 1, los cruceros Pichicuco, fueron realizados en dos embarcaciones, una mexicana, el B/O El Puma y la otra estadounidense (B/O) R/V New Horizon. El Crucero PC7, abordo del R/V New Horizon, se efectuó bajo los auspicios del permiso No. 250285-333-04-0603 (28 de febero de 1985) y el registro Diplomatico No. 300649 (11 de Marzo de 1985) cortesía del gobierno de México. Los fondos para el crucero provinieron de la NSF (National Science Foundation) programa No. OCE83-18288 y del contrato N00014-84-C-0257 de la ONR (Office of Naval Research).

Este reporte ha sido posible gracias a la colaboración de un gran número de personas. En particular, nos gustaria agradecer a aquellas personas responsables, tanto en Estados Unidos como en México de la obtención del permiso, con lo cual la embarcarción New Horizon pudo trabajar en aguas mexicanas. Vanessa Cunningham y Jennifer Davis manejaron muy capazmente todo lo referente a cuestiones administrativas. El capitán y la tripulación del R/V New Horizon participaron con habilidad y entusiasmo, contribuyendo substancialmente al éxito del crucero. Las personas que realizaron las guardias durante el crucero fueron Walt Waldorf y Jim Wells (capitanes de guardia), Cindy Paden, Myrl Hendershott, Joan Semler, Antoine Badan, Geoff Hargreaves y Juan Gaviño. La alta calidad de los datos obtenidos es una consecuencia de su habilidad y paciencia.

CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL

Figure 1. Station locations

Table 1: Station Locations

Station	L	at	Lo	ng	Date	GMT	Depth	Section	Across Guif	Along Gulf
PC7001	28	39.1N	112	36.4W	10/ 3/85	1012Z	444/ 451m	CAP-1	-19.83km	241 . 29 km
PC7002	28	37.6N	112		10/ 3/85	1047Z	493/ 498m	CAP-2	-24.74km	241.29km
PC7003	28	37.6N	112		10/ 3/85	1144Z	372/ 377m	CAP-3	-24.16km	240.98km
PC7004	28	39.6N	112		10/ 3/85	12 0 5Z	484/ 489m	CAP-4	-22.96km	244.66km
PC7005 PC7006	28	43.3N	112		10/ 3/85	1302Z	449/ 454m	CAP-5	-19.69km	250.78km
PC7007	28 29	36.2N 48.6N	112 112		10/ 3/85 11/ 3/85	1402Z 1031Z	295/ 300m 64/ 69m	CAP-6 NG1-1	-25.03km 49.40km	238.41 km 350.16 km
PC7008	30	2.8N	113		11/ 3/85	1345Z	153/ 158m	NG1-2	18.90km	404.73km
PC7009	30	7.5N	113		11/ 3/85	1538Z	160/ 165m	NG1-3	3.82km	426.45km
PC7010	30	9.6N	113	45.1W	11/ 3/85	1714Z	223/ 228m	NG1-4	-10.90km	441.95km
PC7011	30	13.9N	113	55.0W	11/ 3/85	1836Z	378/ 383m	NG1-5.	-19.10km	457.75km
PC7012	30	18.0N	113		11/ 3/85	1947Z	267/ 272m	NG1-6.	-19.82km	467.66km
PC7013	30	21.4N	114		11/ 3/85	2055Z	311/ 316m	NG1-7.	-21.31km	476.53km
PC7014 PC7015	30 30	27.6N 33.7N	114 114		11/ 3/85 11/ 3/85	2224Z 14Z	148/ 153m 103/ 108m	NG1-8 NG1-9.	−21.67km −24.10km	490.98km 506.71km
PC7016	30	42.3N	114		11/ 3/85	159Z	37/ 42m	NG1-10.	-25.98km	527.77km
PC7017	30	57.3N	114		11/ 3/85	405Z	24/ 29m	NG1-11.	-29.91km	564.96km
PC7018	31	3.0N	114		11/ 3/85	611Z	33/ 38m	NG1-12.	-1.43km	557.31km
PC7019	31	4.8N	114		12/ 3/85	727Z	168/ 173m	NG1-13.	16.81km	548.18km
PC7020	31	11.0N	113	53.5W	12/ 3/85	945Z	42/ 47m	NG1-14	46.07km	541.11km
PC7021 PC7022	31 31	15.1N .2N	113		12/ 3/85	1118Z	18/ 23m	NG1-15	68.02km	534.55km 515.84km
PC7023	30	42.1N	113 113		12/ 3/85 12/ 3/85	1300Z 1503Z	61/ 66m 80/ 84m	NG1-16 NG1-17	46.83km 22.48km	492.10km
PC7024	30	33.5N	113		12/ 3/85	1612Z	90/ 95m	NG1-18.	8.90km	482.28km
PC7025	30	26.7N	113	50.7W	12/ 3/85	1712Z	172/ 177m	NG1-19	.72km	472.66km
PC7026	30	19.4N	113	51.5W	12/ 3/85	1808Z	250/ 255m	NG1-20	-8.41 km	462.58km
PC7027	30	15.0N	113		12/ 3/85	2013Z	398/ 403m	NG1-21.	-10.12km	453.75km
PC7028	30	5.8N	113	57.7W	12/ 3/85	2201Z	382/ 387m	NG1-22.	-31.62km	448.31 km
PC7029 PC7030	29 29	54.9N 51.4N	114 114		12/ 3/85 12/ 3/85	2Z 103Z	460/ 465m 479/ 484m	NG1-23. NG1-24.	47.77km 51.91km	435.09km 430.08km
PC7031	29	45.1N	114		12/ 3/85	215Z	301/ 306m	NG1-25	-61.26km	422.45km
PC7032	29	37.5N	114		12/ 3/85	342Z	99/ 104m	NG1-26.	-71.26km	412.32km
PC7033	29	37.7N	113		12/ 3/85	440Z	674/ 679m	NG1-27.	-63.12km	406.87km
PC7034	29	39.0N	113		12/ 3/85	603Z	947/ 952m	NG1-28.	-55.75km	404.49km
PC7035	29	39.5N	113		13/ 3/85	738Z	608/ 613m	NG1-29	-48.07km	400.05km
PC7036 PC7037	29 29	41.9N 45.6N	113 113		13/ 3/85 13/ 3/85	859Z 1032Z	549/ 554m 234/ 239m	NG1-30 NG1-31	−35.66km −19.57km	396.53km 393.31km
PC7038	29	45.2N	113		13/ 3/85	1146Z	181/ 186m	NG1-31	-7.36km	383.52km
PC7039	29	46.9N	113		13/ 3/85	12497	182/ 187m	NG1-33	5.06km	378.39km
PC7040	29	50.5N	112		13/ 3/85	1431Z	87/ 92m	NG1-34	29.98km	368.53km
PC7041	28	40.5N	112		14/ 3/85	1115Z	102/ 107m	SILL-1	8.34km	223.96km
PC7042	28	39.6N	112		14/ 3/85	1213Z	273/ 278m	SILL-2	94km	228.67km
PC7043 PC7044	28 28	38.1N 36.6N	112 112	28.4W 34.6W		1310Z 1406Z	291/ 296m 497/ 502m	SILL-3 SILL-4	−10.40km −20.12km	232.08km 235.87km
PC7045	28	38.4N	112		14/ 3/85	1520Z	337/ 342m	SILL-5	-24.19km	242.83km
PC7046	28	38.4N	112		14/ 3/85	1615Z	527/ 532m	SILL-6	-26.59km	244.57km
PC7047	28	37.2N	112	44.1W		1742Z	358/ 363m	SILL-7	-32.14km	245.82km
PC7048	28	37.4N	112		14/ 3/85	1821Z	589/ 594m	SILL-8	-30.21 km	244.99km
PC7049	28	34.3N	112		14/ 3/85	1924Z	429/ 434m	SILL-9	-32.33km	239.36km
PC7050 PC7051	28 28	30.5N 27.9N	112 112		14/ 3/85 14/ 3/85	2029Z 2137Z	351/ 356m 378/ 383m	SILL-10 SILL-11		231.61km 226.73km
PC7051	28	26.8N	112		14/ 3/85	2137Z 2237Z	367/ 372m	SILL-12		225.09km
PC7053	28	17.9N	112		14/ 3/85	124Z	560/ 565m	SILL13;		216.50km
PC7054	28	24.0N	112	37.8W	14/ 3/85	312Z	378/ 383m	SILL-14	$-38.31\mathrm{km}$	220.10km
PC7055	28	27.7N	112	45.6W	14/ 3/85	502Z	590/ 595m	SILL-15		233.15km
PC7056 PC7057	28	28.4N	112		14/ 3/85	609Z	788/ 793m	SIIL-16		233.14km
PC7058	28 28	33.0N 29.8N	112 112		15/ 3/85 15/ 3/85	733Z 836Z	270/ 280m 148/ 153m	SILL-17 SILL-18		241.28km 243.10km
PC7059	28	34.7N	112		15/ 3/85	1300Z	662/ 667m	SILL-19		233.49km
PC7060	28	56.8N	112	40.2W	15/ 3/85	1423Z	366/ 371m	PC7060	-5.38km	271.33km
PC7061	29	17.1N	112	43.3W	15/ 3/85	1540Z	382/ 387m	_	12.76km	304.67km
PC7062	29	6.3N	112		15/ 3/85	445Z	303/ 308m	T1	03km	289.15km
PC7063 PC7064	29 28	1.3N 55.5N	112 112		15/ 3/85	610Z	327/ 332m	STA T2.	1.75km -7 93km	276.41km 270.16km
PC7065	28	52.3N	112		16/ 3/85 16/ 3/85	718Z 852Z	628/ 633m 752/ 757m	STA.T3. STA.T4.	−7.93km −9.33km	270.16km 263.86km
PC7066	28	48.5N	112		16/ 3/85	1020Z	572/ 613m	STA. TS		253.96km
PC7067	28	48.0N	112	31.5W	16/ 3/85	1120Z	557/ 562m	T6	-3.59km	249.84km
PC7068	28	42.4N	112		16/ 3/85	1233Z	359/ 385m	T7.	-6.83km	239.37km
PC7069	28	37.0N	112		16/ 3/85	1342Z	243/ 248m	T8.	-7.72km	227.66km
PC7070 PC7071	28 28	. 0N 4 . 3N	112 112		16/ 3/85	129Z 3387	1097/1102m	WS-15.	-38.08km	165.02km 177.27km
. 5, 5, 1	20	7.JN	114	£J.3M	16/ 3/85	338Z	1015/1030m	WS-14.	-41.52km	177.Z/KM

TO COLOR TO THE CONTROL OF THE COLOR OF THE

Across— and along—Gulf distances are computed using an origin of 27 N, 111 W; the angle of rotation is 36 degrees.

Station	L	at	Lo	ng	Do	at e	GMT	Dep	th	Section	Across Gulf	Along Gulf
PC7072	28	15.0N	112	28.5W	16/	3/85	551Z	846/	851m	WS-13.	-35.84km	197.73km
PC7073	28	22.0N	112	35.6W			744Z	464/		WS-12	-37.58km	215.02km
PC7074	28	29.4N	112	43.1W			956Z	760/		WS -11	-39.40km	233.28km
PC7075	28	32.0N	112	51.2W	17/	3/85	1144Z	789/		WS10	-47.28km	244.95km
PC7076	28	36.0N	112	56.5W			1335Z	1327/1		WS9	-49.90km -48.84km	256.02km 268.75km
PC7077 PC7078	28	41.9N	113	.6W		3/85	1545Z 1802Z	1509/1 1281/1		WS8 . WS7	-51.40km	294.19km
PC7079	28 28	52.2N 1.5N	113 113	16.4W			320Z	1224/1		WS6.	-114.31km	223.84km
PC7080	29	9.2N	113	24.1W			543Z	967/		WS-5.	-49.85km	331.98km
PC7081	29	15.2N	113	33.8W			732Z	577/		WS4	-56.05km	350.22km
PC7082	29	22.2N	113	41.6W			910Z	730/		WS3	-58.62km	368.11km
PC7083	29	29.2N	113	48.5W			1055Z	852/		WS2	-59.99km	385.13km
PC7084	29	37.8N	113	57.0W	18/	3/85	1248Z	940/		WS1	-61.69km	406.06km
PC7085	29	37.5N	114	3.8W	18/	3/85	1432Z	66/ 343/		NG2-26 NG2-25	-70.99km -64.34km	412.13km 428.13km
PC7086 PC7087	29 29	46.6N 52.7N	114 114			3/85 3/85	1537Z 1642Z	492/		NG2-24	22.65km	378.89km
PC7088	29	57.0N	114			3/85	1750Z	469/		NG2-23	-49.53km	441.17km
PC7089	30	6.0N	113	57.2W			1933Z		413m	NG2-22.	-30.74km	448.12km
PC7090	29	14.9N	113	55.4W			2058Z	299/	304m	NG2-21.	-84.92km	370.51km
PC7091	30	20.6N	113	51.5W			2219Z	287/		NG2-20.	-7.08km	464.36km
PC7092	30	27.7N	113	51.6W	18/	3/85	2352Z		159m	NG2-19.	. 64 km	475.00km 483.57km
PC7093	30	34.5N	113	50.0W			1117	92/	97m	NG2-18. NG2-16	10.27km 21.44km	494.23km
PC7094	30	42.7N 50.5N	113	48.4W 46.2W			231Z 343Z	67/ 7 0 /	72m 75m	NG2-16	32.95km	503.72km
PC7095 PC7096	30 31	. 8N	113 113	44.5W			506Z	62/	67m	NG2-16.	46.58km	517.40km
PC7097	31	7.2N	113	41.9W			622Z	36/	41m	NG2-15A		524.43km
PC7098	31	13.7N	113	46.7W			746Z	16/	21m	NG2-14	57.96km	538.66km
PC7099	31	11.0N	113	53.0W	19/	3/85	900Z	46/	52m	NG2-13A		540.64km
PC7100	31	4.0N	114	59.5W			1031Z	59/	64m	NG2-13A		593.54km
PC7101	31	4.8N	114	13.2W			1317Z		164m	NG2-13	13.40km -1.38km	550.66km 555.22km
PC7102	31	2.1N	114	22.2W			1438Z 1538Z	35/ 21/	42m 26m	NG1-12. NG2-11.	-17.17km	557.37km
PC7103 PC7104	30 31	58.0N 25.0N	114 114	30.8W 18.5W			717Z	22/	27m	SF-1	28.88km	585.66km
PC7105	31	16.5N	114	14.5W			832Z		105m	SF-2	24.68km	569.25km
PC7106	31	5.0N	114	11.0W			956Z		163m	SF-3	16.51km	548.86km
PC7107	30	55.8N	114			3/85	1106Z		163m	SF-4	5.00km	536.16km
PC7108	30	46.0N	114			3/85	1225Z		203m	SF-5	-1.93km	518.76km
PC7109	30	38.6N	114	2.9W	20/	3/85	1345Z		180m	SF-6 SF-7	−2.13km −4.00km	501.97km 493.48km
PC7110 PC7111	30 30	34.3N 26.1N	114			3/85 3/85	1519Z 1630Z		163m 229m	SF-8	-9.41 km	478.64km
PC7112	30	14.4N	113			3/85	1851Z		400m	NG2-5	-11.97km	453.72km
PC7113	30	10.6N	113	45.5W	20/	3/85	1954Z		229m	NG2-4.	-10.25km	443.77km
PC7114	30	6.9N	113	33.1W	20/	3/85	2127Z	164/	169m	NG2-3.	1.97km	426.42km
PC7115	30	2.0N	113			3/85	2334Z		163m	NG2-2	17.89km	403.64km
PC7116	29	53.4N	112			3/85	245Z	68/		NG2-1.	49.64km 29.87km	360.88km 368.38km
PC7117	29	50.4N	112			3/85	416Z 600Z	92/	93m 189m	NG2-34. NG2-33.		378.23km
PC7118 PC7119	29 29	47.5N 47.2N	113 113			3/85 3/85	710Z		177m	NG2-32	-5.68km	386.88km
PC 120	29	44.6N	113			3/85	8227	241/	250m	NG2-31	-20.68km	391.83km
PC7121	29	41.5N	113	40.04	21/	3/85	937Z	572/	577m	NG2-31	-35.18km	395.26km
PC7122	29	39.9N	113	48.0%	21/	3/85	1105Z	608/	613m	NG2-29	-47.50km	400.55km
PC7123	29	38.6N	113	54.0W	/ 21/	3/85	12162		954m	NG2-28	-56.85km	404.37km 407.43km
PC7124	29	38.4N	113			3/85	1323Z		681m 199m	NG2-27 ES-1	-61.69km -6.48km	384.71km
PC7125 PC7126	29 29	46.0N 34.7N	113 113			3/85 3/85	248Z 430Z		342m	ES-2	-10.30km	361.62km
PC7127	29	28. ØN	113			3/85	621Z		414m	ES-3	-12.48km	347.87km
PC7128	29	18.4N	113	6.00	22/	3/85	742Z		461m	ES-4	-15.80km	328.31 km
PC7129	29	11.2N	113	. 04	/ 21/	3/85	919Z	438/	443m	ES-5	63.51 km	254.20km
PC7130	29	4.0N	112			3/85	1042Z		406m	ES-6 ES-7	-16.44km	295.81km 278.96km
PC7131	28	56.5N	112			3/85 3/85	12017		'409m '394m	ES-7 ES-8	-16.89km -24.03km	2/8.90km 263.77km
PC7132 PC7133	28 28		112 112			3/85	1801Z 1924Z		851m	ES-9	-29.82km	251.50km
PC7133	28		112	41.8	22/	3/85	2052Z		540m	ES-10.	-28.22km	244.85km
PC7135	28		112	38.9	1 22/	3/85	2237Z		556m	ES-11	-27.78km	237,43km
PC7136	28		112			3/85	2347Z		734m	ES-12	-27.75km	226.42km
PC7137	28		112	29.41	V 22/	3/85	115Z		/ 863m	ES-13.	-27.16km	212.02km
PC7138	28					3/85	306Z		/1063m / 850m	ESP-1. ESP-2.	−35.16km −26.81km	199.76km 221.62km
PC7139	28					/ 3/85 / 3/85	548Z 725Z		/ 850m / 632m		-28.80km	237.71km
PC7140 PC7141	28 28					/ 3/85	827Z		/ 580m		-28.38km	245.19km
PC7142	28					/ 3/85	921Z		/ 856m		-27.09km	249.97km
					,	.,		/				

See the second and describe the second and the seco

SOURCES REPORTED FRANKERY PROGRAMME SERVICES CHARACLE DESIGNAL CONTRACT CON

Station	Lat		Lo	ng	Date	GMT	Depth	Section	Across Gulf	Along Gulf
PC7143 PC7144 PC7145 PC7146 PC7147 PC7148 PC7149	27 2	7.1N 8.0N 1.5N 25.0N	112 112 112 111 111	23.0W 29.0W 16.9W 45.6W 36.2W	23/ 3/85 23/ 3/85 24/ 3/85 24/ 3/85 25/ 3/85 25/ 3/85 25/ 3/85	1123Z 654Z 845Z 1108Z 856Z 1109Z 1319Z	669/ 674m 909/ 914m 1079/1084m 850/ 855m 1512/1517m 1532/1840m 1500/1505m	ESP-6 ES-14. ESP1, ES-15 B-4 B-5 B-4.	-32.96km -26.24km -33.21km -24.28km -33.55km -13.38km 2.62km	227.92km 195.56km 202.69km 181.32km 81.60km 82.97km 82.56km

MANAGER STATES AND STATES SEEDING

ALEBOAR CONSISSAY SOLOWER RELEASES ASSOCIATE

Table 2

Pichicuco Cruises in the Gulf of California

Month	Year	Ship	Expedition	Number of Stns.	Type of Data	Chief Scientist/ P.I.
Mar	85	New Horizon	Pichicuco VII	149	CTD	Bray
Nov	84	New Horizon	Pichicuco VI	230	CTD	Winant/Bray
May	84	New Horizon	Pichicuco V	179	CTD	Winant/Bray
Nov	83	El Puma	Pichicuco IV	78	CTD	Badan/Robles
May	83	El Puma	Pichicuco III	160	STD	Badan/Robles
Nov	82	El Puma	Pichicuco II	48	STD	Badan/Robles

2. Data Processing

This discussion is divided into several sections, organized approximately in the order in which the data is acquired and processed. Program listings are appended. The sections are: acquisition, calibration, error identification, combination of separately digitized fast- and slow-response temperature signals, lag correction and salinity calculations, and pressure averaging.

a) Acquisition

All data described in this report were taken using a NBIS Mark III fish with a separately digitized fast-response thermistor, and an SIOdesigned and fabricated deck unit which converts the audio FSK signal into a digital data stream. The digital data is then read by an IBM 9000 computer in real time, is framed and stored on floppy disks. Minimal real time processing is conducted, due to timing constraints on the computer, but subsampled raw scans are scaled and printed to both screen and line printer for check purposes. The acquisition program does check for timing errors (time is a variable in the data stream) and gaps in the incoming data, as well as for input buffer overflows. A listing of the acquisition program, MAR85.FOR, is appended.

b) Calibration

The CTD used during PC7 was calibrated at the PACODF laboratory (SIO) for absolute accuracy of pressure and platinum resistance thermometer temperature, temperature response of the pressure sensor and hystersis in the 0-2000 db pressure range. Results are summarized in Figures 2 and 3. Absolute temperature accuracy is: .002 °C for the PRT. The pressure sensor has an offset of -4.5 db; hysteresis errors are 0(2 db). Conductivity is calibrated at sea using water samples taken with a rosette sampler during the uptrace of most casts. Check sample conductivity ratios were determined using a Hytech salinometer and Wormley standard water batch P-96. Salinities were then computed using PSS78 (Fofonoff and Millard, 1983). Raw CTD values of pressure, slow temperature and conductivity were also recorded for each check sample as it was being taken, for immediate comparison. In addition, the uptraces were

Agradecemos particularmente a Frank Delahoyde por sus consejos en las primeras etapas de programación de nuestra IBM 9000 para la adquisición de los datos de CTD. El diseño final del reporte fué realizado por Mike Clark.

2. Procesamiento de datos

Esta discusión está dividida en varias secciones, organizadas aproximadamente en el orden en el cual fueron adquiridos y procesados los datos. Los listados de los programas aparecen en el apéndice. Las secciones son: adquisición, calibración, identificación, combinación de las señales de respuesta lenta y rápida de la temperatura que son digitizados por separado, corrección del retardo y cálculo de la salinidad, y promediado de la presión.

a) Adquisición

Todos los datos descritos en este reporte fueron tomados usando una unidad sumergible (NBIS) Mark III, con una unidad de grabación diseñada y fabricada en SIO, la cual convierte la señal audio FSK en datos digitales. Los datos digitales son entonces, leidos por una computadora IBM 9000 en tiempo real, y son ajustados y almacenados en discos flexibles. Se efectua un minimo de procesamiento en tiempo real debido a restricciones de tiempo en la computadora, sin embago, con propósitos de verificación, se imprimen, tanto en la terminal como en la impresora, valores submuestredos de los datos crudos. El programa de adquisición de datos verifica posibles errores de tiempo, (el tiempo es una variable en el flujo de datos) e interrupciones en la llegada de datos, así como saturaciones del "buffer". El listado del programa de adquisición MAR85.FOR se encuentra en el apéndice.

b) Calibración

El CTD usado durante PC7 fue calibrado en el laboratorio PACODF (SIO) para precisión absoluta, de la presión y la resistencia de platino del termómetro, la respuesta de temperatura del sensor de presión e histérisis en el rango de presión de 0-2000 db. Los resultados se resumen en las Tablas 2 y Figuras 2. La precisión absoluta de temperatura es ± .002°C para el PRT. El sensor de presión tiene un desplazamiento de

BRAY CTD #3 THERMAL SHOCK 27 FEB 85

Figure 2a. Thermal Shock

Figure 2b. PRT Calibration

Figure 3a. Pressure sensor hysteresis, 0°C, pre cruise

BRAY CTD no.3 2°C., 30 SEPT85

Figure 3c. Pressure sensor hysteresis, 2.0°C, post cruse

BRAY CTD no.3 19.4 °C., 25 FEB 85

Figure 3b. Pressure sensor hysteresis, 19.4°C, pre cruise

BRAY CTD no.3 21.4 °C., 30 SEPT 85

Figure 3d. Pressure sensor hysteresis, 21.4°C, post cruise

later fully processed using a new technique described later in this report, and the check samples compared with the 2 db average points as well as the raw data.

Interestingly, the processed data agree more consistently with the check samples than do the original raw data scans, even though only minor calibration connections to pressure (none to temperature or conductivity) were made during processing. The processing technique appears to provide a precise and accurate representation of the true temperature and salinity structure.

Three salt samples were analyzed for most casts: one near the surface, one near the bottom and one at mid-depth. The stations occupied are all shallower than about 1500 m, so there is no stable, isothermal deep water available for check samples. Nevertheless, the processed data agree with the salinometer to within ± 3 ppm for most of the points. The major exception to this occurred in the middle of the cruise, when we experienced difficulties with the salinometer. Figure 4 illustrates the time history of the check sample difference (salinometer - CTD) during the cruise. Surface, mid-depth and near-bottom samples are plotted with different symbols, and the groups of samples run at the same time (boxes of samples) are noted.

Boxes 2, 6, 7, 9R and 10R were run during periods when the salinometer was not working well. They will be excluded from the remaining analysis of salinity calibration. The points from these boxes show a much wider range of differences than the earlier and later samples.

In Figure 5 differences from the remaining 17 boxes are plotted as a function of depth. The deeper points, though few in number, are arguably in better agreement than those in the middle of the depth range. The largest number of points in any depth range is found in the surface layer. The distribution of points in that layer is remarkably Gaussian about a difference of zero, as can be seen in Figure 6. For the surface layer points alone (83 points) a mean difference of -0.12 ppm (.00012 ppt) and a standard deviation of 1.6 ppm is found. For all points at all depths (271 points) the mean is 0.2 ppm and the standard deviation is 2 ppm.

4.5 db; los errores de histérisis son 0(2 db). La conductividad es calibrada en el mar usando muestras de agua tomadas, con una roseta de botellas, durante los ascensos de la mayoría de los lances, con las botellas de muestreo se determinaron razones de conductividad usando un salinómetro Hytech y agua estándar Wormley del grupo P-96.

Para cada botella de muestreo se registraron valores crudos del CTD de presión, temperatura lenta y conductividad, conforme éstas fueron tomadas, y así tener una comparación, inmediata. Adicionalmente los ascensos fueron completamente procesados usando una nueva técnica la cual será descrita mas tarde en este reporte. Las botellas de muestreo fueron entonces comparadas tanto con puntos promediados cada 2 db como con los datos crudos. Interesantemente, los datos procesados concuerdan mas consistentemente con las botellas de muestreo que con los datos crudos, aun cuando fué hecha una calibración menor en conexiones de presión (nó en temperatura ni en conductividad) durante el procesado. La técnica de procesado parece proveer una exacta y precisa representación de la verdadera temperatura y de la estructura de salinidad.

Tres muestras de sal fueron analizadas para la mayoria de los lances: una cerca de la superficie, una cerca del fondo y otra en medio. Todas las estaciones ocupadas fueron mas someras que 1500 m, por lo tanto no hay disponible agua isotermal profunda para las botellas de muestreo. Sin embargo, los datos procesados concuerdan con el salinómetro en un rango de ± 3 ppm para la mayoría de los puntos. La excepción mayor ocurrió a la mitad del crucero, cuando tuvimos dificultades con los salinometros. La Figura 4 muestra un registro en tiempo de la diferencia (salinómetro - CTD) de las botellas de muestreo durante el crucero. Las muestras en la superficie, a la mitad y en el fondo fueron dibujadas con diferentes símbolos y se marcaron al mismo tiempo corridas de grupos de botellas de muestreo (cajas de muestras).

Las cajas 2, 6, 7, 9R y 10R fueron corridas durante los periodos en que el salinómetro no trabajó bien. Estas diferencias no se excluyeron del análisis restante de calibración de salinidad. Los puntos de estas cajas muestran un mayor

Distribution of salinity check samples with station number and sample box number. Figure 4.

STATE LANGUAGE CONTRACTOR SECURIOR SCHOOLS STATEMENT CONTRACTOR CONTRACTOR

Figure 5. Distribution of salinity check samples with depth.

Distribution of near-surface check sample differences (salinometer - CTD).

As a result of the excellent statistical agreement between the salinometer and CTD data, no changes were made to the CTD conductivity values during processing. Similarly, temperature was not altered; a pressure offset of -4.5 db was applied to the raw data. Overall accuracy of the data is expected to be better than \pm .005 °C, \pm .005 psu, \pm 5 db.

It should be noted that in the raw data there is a small systematic difference in thermocline T vs S between up- and down-traces. This is apparently due to the slow equilibrium of the pressure housing and electronics in regions of rapid temperature change. The error in temperature thus introduced is about 5 mdeg; the corresponding error in salinity (due to the temperature error in the salinity calculation) is 5 ppm. The sense of the error is that downtraces appear warmer and fresher than they should, and uptraces colder and saltier. This error does not occur in the deep water or in the CTD data taken during rosette samples, apparently because the system is nearly in thermal equilibrium. No correction for this error has been applied to any of the data presented in this report.

c) Error Identification

After the data are acquired, a separate program is used for processing (see APROC.FOR and ANAW.FOR for program listings). The first stage of processing is error identification, in which two simple editing criteria are applied. The first is an interval criterion requiring that data fall into set ranges. Ranges used are: 0 to 2000 db for pressure, 0 to 30 °C for temperature, and 30 to 70 mmho for conductivity. In addition, the first differences (scan to scan) of the raw data are constrained to fall within .5 db. 0.10 °C and 0.20 mmho. No further error checking is done on the raw data. Data which is rejected is not interpolated. Rejected scans are flagged in a special error file for each station. No significant data gaps were encountered, and very few errors were found away from the surface and away from rosette bottle trips (where errors are expected).

After processing is completed, the 2 db averaged data are checked visually for bad points. The few points which were altered are

rango de diferencias que el de las muestras anteriores y posteriores.

En la Figura 5 se marcan las diferencias de las 17 cajas restantes en función de la profundidad. Los puntos mas profundos, aunque pocos en número, estan argumentablemente en mejor concordancia que aquellos de la mitad de la profundidad. El mayor número de puntos en el rango de profundidad se encuentra en la capa superficial. La distribución de los puntos en esta capa es remarcablemente Gaussiana con respecto a la diferencia igual a cero, como se puede ver en la Figura 6. Para sólo los puntos de la capa superficial (83 puntos) obtuvimos una diferencia media de -0.12 ppm (.00012 ppt) y una desviación estandar de 1.6 ppm. Para todos los puntos en todas las profundidades (271 puntos) la media es 0.2 ppm y la desviación estandar es 2 ppm.

Como un resultado de la excelente concordancia estadística entre los datos del salinómetro y el CTD, no se hicieron cambios en los valores de conductividad del CTD durante el procesado. Similarmente, la temperatura no fué alterada; un desplazamiento de presión de -4.5 db fué aplicado a los datos crudos. Se espera que la precisión de los datos sea mejor que ± .005 °C, ± .005 psu y ± 5 db.

Deberá hacerse notar que en los datos crudos hay una pequeña diferencia sistemática, en T vs S en la termoclina, entre el ascenso y el descenso. Esto es aparentemente debido al lento equilibrio térmico entre la envoltura estanca y los circuitos electrónicos en regiones de cambios rápidos de temperatura. El error en temperatura debido a esto es de aproximadamente 5 mdeg; el correspondiente error en salinidad (debido al error de temperatura) es 5 ppm. El significado de este error es que los descensos aparecen mas calientes y menos salinos de lo que deberian de ser, y los ascensos mas frios y salinos. Este error no ocurre en aguas profundas o en datos de CTD tomados durante muestras con roseta, aparentemente debido a que el sistema esta cercano a un equilibrio termal. No se hicieron correcciones para este error en los datos presentados en este reporte.

c) Identificación del error.

listed in Table 3. The new values are arithmetic interpolations between points on either side of the bad points. Uptraces rather than downtraces appear for several stations where irreparable errors occurred. In most of these cases there is a problem with the conductivity signal, apparently due to fouling of the sensor. A notation is found in the header of the stations where an uptrace is used. Those stations are: 4, 29, 30, 38, 62, 66, 77, 87, 99, 100, 104, 108, 122, 125, 132, 144 and 148.

d) Combination of Fast and Slow Temperature Signals

The NBIS fish used in these stations has a separately digitized fast response thermistor (FRT) signal and a data acquisition rate of 25 hz. (This differs from the 'standard' Mark III, which samples at 32.5 hz but has a single analog combination of FRT and PRT signals for temperature). A new algorithm for combining fast and slow temperatures was developed for processing these data. It is described more fully in Bray (1986).

Conceptually, the processing problem is the following. The FRT, with a response time of about 80 msec, contains most of the high frequency variance of the true temperature. However, the FRT is not a stable temperature measurement, in that it is a strong function of pressure and temperature. The PRT, on the other hand, is extremely stable, but, with a response time of 270 msec, blurs the true temperature signal over several scans of CTD data (one data scan is 40 msec). Ideally, we would like to combine the stability of the PRT and the high frequency information of the FRT.

The new algorithm is a simple recursive filter applied to both the PRT and FRT. It is a centered running mean boxcar filter with 2300 points, corresponding to 92 seconds or 92 m at a lowering rate of 60 m/min. The filter is applied to the time series data after error checking. The combined temperature T_{ϵ} is then estimated by

$$T_{t}(t) = \langle T_{t} \rangle (t) - \langle T_{f} \rangle (t) + T_{f}(t)$$

where subscripts are * for slow and f for fast, and * > indicate filtered data. The subroutine which does this calculation is called FAST2. The length of the filter is critical to the success

Despues de adquiridos los datos, otro programa es usado para el procesado (ver los listados de los programas APROC.FOR y ANAW.FOR). La primera etapa del procesado es la identificación de errores, en la cual se aplican dos criterios simples de editado. El primero es un criterio de intervalo que ordena a los datos de acuerdo a una serie de rangos. Los rangos usados son: de 0 a 2000 db para la presión, de 0 a 30°C para la temperatura, y de 30 a 70 mmho para conductividad. Además la primera diferencia de los datos crudos esta restringida a caer dentro de .5 db, 0.10° C y 0.20 mmho, respectivamente. No hay verificaciones adicionales de errores efectuados en los datos crudos. Los datos que son rechazados no son interpolados. Los registros rechazados son identificados y escritos en un archivo de errores para cada estación. No se encontraron interrupciones significantes en los datos y muy pocos errores fueron encontrados lejos de la superficie y lejos de los disparos de la roseta de botellas, donde se suelen esperar errores.

Despues de que el procesado está terminado, se verifican los datos visualmente, para localizar datos disparados. Los pocos puntos que fueron alterados estan listados en la tabla 3. Los valores nuevos son una interpolación aritmética entre los puntos vecinos de los puntos malos. En los ascensos, mas que en los descensos, aparecieron, en algunas estaciones. errores irreparables. En lo mayoría de etos casos hay un problema con la señal de conductividad, aparentemente debido a impurezas del sensor. Una nota aparece en la cabezera de aquellas estaciones donde se usaron ascensos. Estas estaciones son: 4, 29, 30, 38, 62, 66, 77, 87, 99, 100, 104, 108, 122, 125, 132, 144 y 148.

d) Combinación de las señales rápida y lenta de temperatura.

La unidad sumergible del NBIS usada en estas estaciones tiene una digitalización por separado de la señal de respuesta rápida del termistor (RRT) y una razón de adquisición de datos de 25 hz. (Esta difiere del modelo Mark III, en el cual las muestras son a 32.5 hz, pero tiene una sola combinación análogica de las señales de temperatura (RRT) y (PRT). Se desarralló un nuevo algoritmo donde se com-

Station	1	Tempero	iture	Salini	ty	Comments
PC7	pressure	orig.	new	orig.	new	
994	382	9.142		34.653	34.669	
004	404	8.865		34.657	34.648	
	416	8.500		34.624	34.635	
	410	6.300		34.024	34.633	
015	68	14.510		35.083	35.095	
016	6	16.027		35.202	35.212	
	8	15.631		35.179	35.214	
	10	15.625		35.203	35.216	
039	52	15.568		35.192	35.241	
057	884	3 475		74 740	74 674	
053	554	7.075	7.313	34.748	34.574	
054	374	11.676	11.769	34.844	34.846	
	376	11.600	11.757	34.836	34.845	
				• • • • • • • • • • • • • • • • • • • •		
061	328	9.006	9.420	34.945	34.705	
963	218	11.750		34.834	34.844	
982	276	12.084		34.847		gap
				•		•
087	22	15.876		35.210	35.263	
	24	15.862		35.223	35.246	
108	10	16.230		35.160	35.179	
	12	16.229		35.132	35,177	
122	588	11.315		34.760	34.764	
124	586	11.504		34 787	14 700	
127	588			34.767	34.79 0	
	300	11.502		34.792	34.790	
125	48	15.729		35.162	35.174	
140	566	8.117		34.598	34.613	
142	56	12.846		34.858	34.887	
143	46	13.412		34.920		gap
	48	13.438		34.922		y op
	50	13.451		34.921		
	52	13.412		34.950		
	54	13.385		34.919		
	5 6	13.358		34.918		
	J 0	13.330		37.910		
144	122	13.410	13.344	34.895	34.885	
146	50	14.725		35.007		gap

CONTROL BUSINESS SOMEONE

Table 3: Interpolated points

of the algorithm; filters shorter than 1500 points are inferior for subsequent salinity calculations. This is apparently due to the relatively long time scale of the FRT drift. However, little difference was seen in the salinity calculations done using 1500 points and 2300 points.

e) Lag Correction and Salinity Calculations

After the PRT and FRT signals are combined, spectral analyses indicate that there is still a lag of about 2 data scans between the combined temperature and the conductivity signal. This is corrected using a scheme similar to that developed by Horne and Toole (1980). In that approach, filters are constructed for pressure, temperature and conductivity according to theoretical descriptions of sensor response as a function of time. Weights used in these filters are given in Table 4; the filters are not recursive. A separate program called ANAW.FOR is used to compute three sets of filter weights which are applied to pressure, temperature and conductivity. The lag correction, while effective, is not as important in the calculation of spike-free salinity as is the combination of fast and slow temperatures. Details of the lag correction scheme are given in Bray (1986). Salinity is calculated from lagged temperature and filtered pressure and conductivity using the subroutine SAL78 (Fofonoff and Millard, 1983) for practical salinity.

f) Pressure Averaging.

CASSASSE CONTRACTOR CONTRACTOR SECTIONS TO THE PROPERTY TO THE SECTION OF THE SEC

After lag correction and salinity calculation, the data are accumulated in 2 db bins (± 1 db about even pressures, starting with 2 db, or the shallowest even pressure deeper than 2 db) and averaged to form an even 2 db series. All data within the range is averaged; no data are discarded. For a uniform lowering rate of 60 m/min, this involves about 2 seconds of data per bin, or 50 data scans. Near the top and bottom of the cast more points are included. Pressure averaging is done in subroutine PRSORT.

3. Data Display Notes

The 2 db data series are plotted on the following pages. All points in the series are plotted, but only subsampled 'standard' depth data are listed. binan las respuestas rápida y lenta de las temperaturas para el procesado de estos datos. Este es descrito completamente en Bray (1986).

Conceptualmente, el problema de procesamiento es el siguiente. La RRT, con una respuesta en tiempo de alrededor de 80 msec, contiene la variación de frecuencia alta de la temperatura verdadera. Sin embargo, la RRT no es una medida estable de temperatura, ya que ésta es una fuerte función de la presión y de la temperatura. La RPT, por otro lado, es extremadamente estable pero con una respuesta en tiempo de 270 msec, por la cual encubre la señal verdadera de temperatura sobre varios registros de datos de CTD (un registro de datos es de 40 msec). Idealmente nos gustaria combinar la establidad del RPT y la información de frecuencia alta del RRT.

El nuevo algoritmo es un simple filtro recursivo aplicado a ambos, el RPT y RRT. Este es un promedio corrido de 2300 puntos que coresponden a 92 segundos o 92 metros considerando una razón de descenso de 60 m/min. El filtro es aplicado a las series de datos despues de haber sido verificados los errores. La temperatura combinada es entonces estimada por

$$T_{c}(t) = \langle T_{l} \rangle \langle t \rangle - \langle T_{r} \rangle \langle t \rangle + T_{r}(t)$$

donde el subindice l indica lenta r indica rápida, y < > indica filtrado de datos. La subrutina que efectúa estas operaciones se llama FAST2. La longitud del filtro es critica para el éxito del algoritmo; filtros más chicos que 1500 puntos son claramente peores para cálculos subsecuentes de salinidad. Esto se debe aparentemente, a que la escala de tiempo de deriva del RRT es relativamente larga. Sin embargo, se obtuvieron pequeñas diferencias en los cálculos de salinidad usando 1500 puntos y 2300 puntos.

e) Correcciónes del retardo y cálculos de salinidad.

Despues de combinadas las señales RPT y RRT el análisis espectral indica que hay todavía un retardo de alrededor de 2 registros de datos entre la temperatura combinada y la señal de conductividad. Esto es corregido usando un esquema similar al desarollado por Horne and Toole (1980). Según dichos autores se construyen filtros para la presión, temperatura y

	temperature	conductivity	pressure
N	weight	weight	weight
1	 9357	0048	. 9964
ż	.0041	.0075	0023
3	.0239	.0008	0084
4	0058	0089	0032
5	0368	.0046	.0075
6	.0424	.0077	. 0092
7	.0063	0105	00 29
8	0456	0037	0147
9	.0044	.0183	00 65
10	.0875	00 93	.0177
11	0982	0222	. 0252
12	6 597	.0375	0161
13	.2605	. 00 87	0682
14	128 0	1200	. 0008
15	-1.0870	.2404	. 2967
16	.7074	.7074	.5177
17	1.5679	.2404	. 2967
18	1120	1200	.0008
19	2431	. 0 087	0682
20	. 1348	. 0375	0161
21	. 0539	0222	. 0252
22	1062	00 93	.0177
23	.0323	.0183	0065
24	. 0 383	0 037	0147
25	0 273	0105	0029
26	0 271	.0077	.0092
27	. 0460	.0046	.0075
28	0120	0089	0032
29	0222	.0008	0084
30	.0109	.0075	0023
31	.0262	0048	.0064

Table 4: Lag correction filter weights

CONTRACTOR SERVICES TOLLOWS PROPERTY SERVICES SERVICES SERVICES SERVICES

* * * * * * * * * *

Important:

receded anababa haraster anababaa, recorded notices, notices,

Temperature traces (in degrees C) are bold solid lines, salinity traces (in practical salinity units) are light solid lines and σ_{\bullet} traces are dots (actual data points).

* * * * * * * * *

Station header information is also listed on each page. It is mostly self-explanatory, but the following may be of interpretative help. Across the top of each page are: station sequential number, latitude, longitude date, hour (GMT), cast depth (in db) and water depth in meters, corrected for depth of hull transducer, but not for sound speed variations.

Below the plot is ancillary header information: the year day with decimal (GMT) time; sea surface temperature, dry and wet bulb air temperatures; wind speed in kt, and CTD identification number. The next two lines are comments. The first is the original comment entered at the beginning of data acquisition, and the second is one entered at the processing stage. It includes header processing date and information about modifications to header information made after the data were acquired. The second comment is primarily for our own use.

4. Potential Temperature vs Salinity Diagrams

The stations are divided into regional surveys, with a composite potential temperature vs salinity (Θ vs S) plot and location map constructed for each survey (Figures 8a to 8j). The surveys are:

- 1) Yoyos near the San Esteban sill (Stations PC7001 to PC7006, designated CAP-1 to CAP-6).
- First of two Northern Gulf Surveys (Stations PC7007 to PC7040, designated NG1-1 to NG1-34).

conductividad de acuerdo a la descripción teórica de la respuesta del sensor como una función del tiempo. Los pesos usados en estos filtros estan dados en la tabla 4: los filtros no son recursivos. Un programa separado llamado ANAW.FOR es usado para calcular los 3 grupos de pesos de los filtros, los cuales son aplicados a la presión, temperatura y conductividad. La corrección del retardo, aunque efectiva, no es tan importante en los cálculos de salinidad libre de picos como lo es la combinación de las temperaturas rápida y lenta. Detalles del esquema de corrección del retardo están dados en Bray (1986). La salinidad es calculada a partir de la temperatura retardada y la presión y conductividad filtradas, usando la subrutina SAL78 (Fofonoff and Millard, 1983) para salinidad práctica.

f) Presión promediada.

Despues de la corrección del retardo y los cálculos de salinidad, los datos son acumulados en grupos de 2 db (± 1 db alrededor de las presiones pares, empezando con 2 db, o la presión par más somera mayor que 2 db) y son promediados para formar una serie cada 2 db. Todas las datos dentro del rango son promediados; ningún dato es descartado. Para una razón de descenso uniforme de 60 m/min, esto podriá inplicar alredecor de 2 segundos de datos por grupo, o 50 registros de datos. Cerca de la superficie y del fondo del lance se incluyeron mas puntos. El promedio de la presión se efectua en la subrutina PRSORT.

3. Notas sobre la exposición de los datos.

Las series de datos cada 2 db son graficadas en las páginas siguientes. Todos los puntos de las series son graficados, pero sólo se enlistan series submuestras a profundidades standars.

* * * * * * * * * *

Importante:

Los valores de temperatura (en grados °C) estan graficados con lineas gruesa, las de salinidad (en unidades prácticas de salinidad) estan graficados con lineas delgadas y los de σ_{θ} estan graficados con lineas punteadas.

- Sill Survey, across San Esteban sill (Stations PC7041 to PC7061, designated Sill-1 to Sill-21).
- Eastern San Esteban Basin Tiburon Basin Survey (Stations PC7062 to PC7069, designated T1 to T8).
- Western north-south section through Ballenas-Salsipuedes Channel (Stations PC7070 to PC7084, designated WS-1 to WS-15).
- Second of two Northern Gulf Surveys (Stations PC7085 to PC7124, designated NG2-1 to NG2-34).

DOMESTIC CONTRACT CONTRACT CONTRACTOR CONTRA

- 6a) Subsection of NG2: special north-south section through the deep basins of the northern Gulf (Stations PC7104 to PC7111, designated SF-1 to SF-8).
- Eastern north-south section east of Is. Angel de Ia Guarda (Stations PC7125 to PC7146, designated ES-1 to ES-18).
 - 7a) Subsection of ES: San Pedro Mártir basin survey (Stations PC7138 to PC7143, designated ESP-1 to ESP-6).
- 8) Central Guaymas Basin (stations PC7147 to PC7149, designated B-4 to B-6).

La información sobre la identificación de las estáciones esta también enlistada en cada página. Es en su mayoria fácil de interpretar, pero lo que sigue a continuación puede ayudar. En el margen superior de cada página están: el número secuencial de la estación, latitud, longitud, fecha hora (GMT), profundidad del lance (en db) y la profundidad en metros, corregida por la profundidad del transductor en el casco del barco, pero no por las variaciónes de la velocidad del sonido.

Debajo de la gráfica hay información adicional: el día del año con tiempo decimal (GMT); temperatura de la superficie del mar, temperatura del aire seco y humedad; velocidad del viento en nudos y el número del CTD. Las dos lineas siguientes son comentarios. El primero es un comentario original introducido al principio de la adquisición de los datos, y el segundo fue introducido en una etapa del procesamiento. Este incluye fecha e información relacionadas con las modificaciones hechas a la información de la cabecera despues de que los datos fueron adquíridos. El segundo comentario es para nuestro uso propio.

4. Diagramas de Temperatura Potencial vs Salinidad

Las estaciones fueron dividas de acuerdo a muestras y se incluye un mapa de localización al principio de cada muestra que incluye un diagrama de temperatura vs salinidad (Fig. 8a-8j). Las muestras son:

- 1) Yoyos cerca del umbral de San Esteban (Estaciones PC7001 a PC7006, designadas como CAP-1 a CAP-6).
- 2) El primero de dos muestras en la parte Norte del Golfo (Estaciones PC7007 a PC7040, designadas como NG1-1 a NG1-34.
- Muestra através del umbral de San Esteban (Estaciones PC7041 a PC7061, designadas como Sill-1 a Sill-21)
- 4) Muestras en las cuencas tiburón y San Esteban parte Este (Estaciones PC7062 a PC7069, designadas como T1 a T8).

COLORD TOWNS OF THE PROPERTY O

- 5) Muestra através del canal de Ballenas-Salsipuedes sección Nor-Sur Oeste (Estaciones PC7070 a PC7084, designadas como WS-1 a WS-15).
- 6) Segundo de dos muestras en la parte Norte del Golfo (Estaciones PC7085 a PC7124, designadas como NG2-1 a NG2-34).
- 6a) Muestra especial NG24 através de cuencas profundas en la parte Norte del Golfo, sección Norte-Sur (Estaciones PC7104 a PC7111, designadas como SF-1 a SF-8).
- 7) Muestra en la parte Este de la isla Angel de la Guarda, sección Nor-Sur Este (Estaciones PC7125 a PC7146, designadas como ES-1 a ES-18).
- 7a) Muestra en la cuenca San Pedro Martir subsección Sur-Este (Estaciones PC7138 a PC7143, designadas como ESP-1 a ESP-6).
- 8) Cuenca Guaymas, parte central (Estaciones PC7147 a PC7149, designadas como B-4 a B-6).

References

- Bray, N. A., 1986: Salinity calculation techniques for separately digitized fast response and platinum resistance CTD temperature sensors. (submitted to *Deep Sea Research*).
- Fofonoff, N. P. and R. C. Millard, 1983: Algorithms for computation of fundamental properties of seawater. UNESCO Technical Papers in *Marine Science*, 44, 53 p.
- Horne, E. P. W. and J. M. Toole, 1980: Sensor response mismatches and lag correction techniques for temperature-salinity profilers. J. Phys. Oceanogr., 10, 1122-1130.

CONTROL OF THE PROPERTY OF THE

ALTERNO LINESPEND LINESPEND THE THE THEORY IN THE STATE OF THE STATE O

Figure 7. Composite potential temperature vs salinity diagram.

PROPERTY SECURIOR PROPERTY

STANDARD CARRESTS

8c PC7041 to PC7061: Sill-1 to Sill-21: Across-sill survey

8e PC7070 to PC7084: WS-15 to WS-1: Western N-S section

STATES SERVICES STREET

AND THE PROPERTY OF THE PARTY O

SACCESSAM SERVICES SERVICES

STATION PC7001: 28 39.1 N 112 36.4 W 10/ 3/85 1012Z 444/ 451m

Day: 69.42 SST: 13.2 Tdry: 15.8 Twet: 13.5 Wspd: 12.6 CTD #: 3 CAP YOYO 1 NEAR SILL BUOY. RANGE 3.45 @ 040 S.ESTEBAN. ANC 17 SEP 85 CH:WD,CD POS:OK

di krasosoo akkeeneeli neekeesesi keessaasi keessaasi koosoosaa koosoosa. Koosoosaa keessaasi

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	13.046	34.934	26.351	90.0	12,445	34.898	26.445
10.0	13.045	34.931	26.349	100.0	12.409	34.895	26.450
20.0	12.795	34.920	26.391	120.0	12.404	34.893	26.450
30.0	12.714	34.913	26.402	140.0	12.229	34.884	26.477
40.0	12.639	34.909	26.414	160.0	12.227	34.880	26.475
50.0	12.565	34.906	26.426	180.0	12.039	34.869	26.503
60.0	12.536	34.904	26.431	200.0	11.830	34.853	26.531
70.0	12.488	34.901	26.438	300.0	10.813	34.783	26.666
80.0	12.463	34.900	26.443	400.0	10.076	34.728	26.754

STATION PC7002: 28 37.6 N 112 38.8 W 10/3/85 1047Z 493/498m

Day: 69.44 SST: 13.3 Tdry: 15.6 Twet: 13.4 Wspd: 3.2 CTD #: 3 CAP Y-2 NEAR SILL BUOY. DEPTH IS 460M. S.ESTEBAN 3.73 @ 038. ANC 17 SEP 85 CH:WD,CD POS:OK

ALTERNATION TO THE PROPERTY AND ALTERNATION AN

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	13.026	34,930	26.352	90.0	12.188	34.882	26.482
10.0	13.008	34.927	26.353	100.0	12.129	34.874	26.488
20.0	12.600	34.912	26.423	120.0	11.910	34.859	26.518
30.0	12.572	34.911	26.428	140.0	11.256	34.826	26.616
40.0	12.554	34.907	26.429	160.0	11.261	34.818	26.609
50.0	12.583	34.904	26.421	180.0	10.991	34.806	26.649
60.0	12.569	34.904	26.424	200.0	11.004	34.804	26.646
70.0	12.586	34.902	26.420	300.0	10.303	34.749	26.729
80.0	12.334	34.892	26.462	400.0	8.095	34.612	26.982

STATION PC7003: 28 37.6 N 112 38.4 W 10/3/85 1144Z 372/377m

Day: 69.48 SST: 14.1 Tdry: 16.2 Twet: 13.9 Wapd: 12.1 CTD #: 3 CAP-3.SHIP REPOSITIONED AFTER LAST CAST.
ANC 2 OCT 85 CH:WD,CD POS:ANC RADAR

PERSONAL PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PERSONAL PROPERTY OF TH

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	13.747	35.014	26.269	90.0	12.439	34.901	26.448
10.0	13.743	35.006	26.264	100.0	12.250	34.887	26.474
20.0	13.520	34.985	26.294	120.0	11.987	34.868	26.511
30.0	13.393	34.972	26.311	140.0	12.086	34.875	26.498
40.0	13.144	34.953	26.347	160.0	11.949	34.864	26.516
50.0	12.345	34.904	26.468	180.0	11.970	34.867	26.515
60.0	12.317	34.902	26.472	200.0	12.013	34.869	26.509
70.0	12.458	34.907	26.449	300.0	10.667	34.761	26.675
80.0	12.487	34.904	26.441	555.5		•	

STATION PC7004: 28 39.6 N 112 39.1 W 10/3/85 1205Z 484/489m

RESULTED TO SERVICE TO

Day: 69.50 SST: 14.0 Tdry: 16.6 Twet: 13.7 Wapd: 13.0 CTD #: 3 CAP Y-4 NEAR SILL BUOY. SAN ESTEBAN 033 @ 3.6. ANC 17 SEP 85 CH:WD,CD POS:OK *** uptrace ***

SOFTON SEPONDAL PROPERTY CONTROL BASSASSA (KASTASA DAGGGGG) SOFTON SEPONDAL SEPONDA

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	13.644	35.002	26.281	90.0	12.630	34.920	26.425
10.0	13.556	34.996	26.295	100.0	12.600	34.918	26.430
20.0	13.368	34.987	26.327	120.0	12.554	34.914	26.437
30.0	13.480	34.989	26.306	140.0	12.386	34.899	26.458
40.0	13.211	34.978	26.353	160.0	11.926	34.872	26.526
50.0	12.742	34.939	26.417	180.0	11.453	34.846	26.596
60.0	12.820	34.949	26.409	200.0	11.275	34.828	26.615
70.0	12.749	34.933	26.411	300.0	10.954	34.801	26.655
80.0	12.673	34.927	26.422	400.0	8.679	34.654	26.925

STATION PC7005: 28 43.3 N 112 39.8 W 10/ 3/85 1302Z 449/ 454m

Day: 69.54 SST: 13.4 Tdry: 15.9 Twet: 13.8 Wapd: 10.2 CTD #: 3 CAP-5.NOMINAL RADAR 3.1 AT 045, SEE CTD LOG SHEET FOR UPDATES ANC 17 SEP 85 CH:WD,CD POS:OK

Paradona Lancacka Foundation (editorial) Brackett Carreston

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	13.090	34.943	26.349	90.0	10.523	34.766	26.700
10.0	12.895	34.922	26.372	100.0	10.523	34.772	26.705
20.0	12.059	34.875	26.500	120.0	10.225	34.756	26.745
30.0	11.876	34.858	26.522	140.0	10.123	34.751	26.759
40.0	11.567	34.835	26.563	160.0	10.225	34.756	26.745
50.0	11.544	34.827	26.561	180.0	10.167	34.752	26.753
60.0	11.019	34.804	26.640	200.0	10.426	34.763	26.717
70.0	10.914	34.794	26.651	300.0	10.305	34.762	26.739
80.0	10.809	34.786	26.664	400.0	10.181	34.751	26.754

CARLA COORDAY CORRESPOND PROPERTY RELIGIONS

essessor addition basesses been seen

STATION PC7006: 28 36.2 N 112 37.9 W 10/ 3/85 1402Z 295/ 300m

Day: 69.58 SST: 13.4 Tdry: 15.9 Twet: 13.9 Wspd: 14.2 CTD #: 3 CAP-6. SEE CTD NOTES FOR RADARS, COMMENTS ON SPECTACULAR SFC BOILS. ANC 1 NOV 85 CH:WD,CD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	13.405	34.967	26.304	80.0	10.597	34.775	26,693
10.0	12.707	34.914	26.403	90.0	10.301	34.758	26.732
20.0	11.922	34.875	26.526	100.0	10.333	34.759	26.728
30.0	11.737	34.850	26.542	120.0	10.199	34.746	26.741
40.0	11.709	34.839	26.539	140.0	9.858	34.728	26.786
50.0	11.654	34.829	26.542	160.0	9.504	34.708	26.830
60.0	10.761	34.791	26.676	180.0	9.366	34.700	26.847
70.0	10.790	34.788	26,669	200.0	9.305	34.696	26.854

STATION PC7007: 29 48.6 N 112 41.8 W 11/ 3/85 1031Z 64/ 69m

これには、 これのできない これのないには

Day: 70.43 SST: 15.0 Tdry: 18.6 Twet: 13.4 Wspd: 4.2 CTD #: 3 NG1 ANC 17 SEP 85 CH:WD,CD POS:OK

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.775	35.094	26.112	40.0	14.522	35.092	26.166
10.0	14.778	35.099	26.115	50.0	14.292	35.074	26.202
20.0	14.552	35.094	26.161	60.0	14.295	35.075	26.202
30.0	14.531	35.093	26.165				

TOTAL CONTROL SECTION SECTION SECTION VALUE

STATION PC7008: 30 2.8 N 113 16.8 W 11/3/85 1345Z 153/158m

Doy: 70.56 SST: 16.6 Tdry: 17.8 Twet: 15.6 Wapd: 3.1 CTD #: 3 NG1-2 ANC 17 SEP 85 CH:LTMIN,LGMIN,WD,CD POS:SHL/RAD

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.493	35.297	25.880	70.0	14.803	35.173	26.169
10.0	16.078	35.290	25.971	80.0	14.477	35.131	26.207
20.0	15.895	35.287	26.011	90.0	13.916	35.037	26.254
30.0	15.856	35.288	26.021	100.0	13.537	34.975	26.285
40.0	15.845	35.295	26.029	120.0	12.925	34.900	26.352
50.0	15.643	35.269	26.055	140.0	12.917	34.900	26.354
60.0	15.170	35.219	26.123				

STATION PC7009: 30 7.5 N 113 32.2 W 11/3/85 1538Z 160/165m

THE REPORT OF THE PARTY OF THE

Day: 70.64 SST: 16.6 Tdry: 18.2 Twet: 15.0 Wapd: 9.2 CTD #: 0 STATION NG1-3 ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SHL/RAD

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.261	35.245	25.894	70.0	14.714	35,129	26.154
10.0	15.725	35.222	25.999	80.0	14.227	35,070	26.214
20.0	15.500	35.213	26.043	90.0	13.966	35.033	26.241
30.0	15.352	35.203	26.069	100.0	13.548	34,982	26.289
40.0	15.286	35, 201	26.083	120.0	13.143	34,928	26.330
50.0	15.249	35, 195	26.087	140.0	12.539	34.872	26.408
60 0	15 108	35 176	28 104	160 0	12 498	34 865	26 411

STATION PC7010: 30 9.6 N 113 45.1 W 11/3/85 1714Z 223/228m

Day: 70.71 SST: 17.0 Tdry: 18.9 Twet: 15.4 Wspd: 6.5 CTD #: 3 STATION NG1-4 ANC 17 SEP 85 POS:OK

AND PERSONAL PROPERTY CONTRACTOR INCOMESSES

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.776	35.324	25.834	80.0	15.387	35.226	26.081
10.0	16.514	35.336	25.905	90.0	14.695	35.136	26.164
20.0	16.209	35.342	25.981	100.0	14.542	35.108	26.176
30.0	16.037	35.323	26.006	120.0	14.183	35.050	26.209
40.0	15.892	35.307	26.028	140.0	13.838	35.003	26.246
50.0	15.852	35.298	26.030	160.0	13.297	34.943	26.312
60.0	15.696	35.271	26.045	180.0	13.042	34.913	26.340
70.0	15.649	35.260	26.048	200.0	12.840	34.894	26.367

STATION PC7011: 30 13.9 N 113 55.0 W 11/3/85 1836Z 378/383m

Day: 70.77 SST: 17.3 Tdry: 18.6 Twet: 16.1 Wapd: 8.4 CTD #: 0 NG1-5. HEADER FILE MODIFIED TO CORRECT STATION TIME, GMT, YRDAY—NAB. ANC 17 SEP 85 CH:LTMIN,LGMIN POS:SHL/RAD

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.784	35.370	25.867	90.0	15.427	35.229	26.075
10.0	16.261	35.367	25.988	100.0	15.283	35.205	26.089
20.0	16.174	35.357	26.001	120.0	14.895	35.146	26.129
30.0	16.166	35.346	25.994	140.0	14.251	35.052	26.197
40.0	16.143	35.336	25.992	160.0	13.611	34.972	26.270
50.0	16.083	35.329	26.001	180.0	13.165	34.920	26.321
60.0	15.886	35.304	26.027	200.0	12.796	34.888	26.371
70.0	15.790	35.296	26.039	300.0	12.079	34.832	26.470
80.0	15.695	35.270	26.045				

STATION PC7012: 30 18.0 N 113 59.0 W 11/3/85 1947Z 267/272m

Day: 70.81 SST: 17.0 Tdry: 18.3 Twet: 16.1 Wapd: 6.1 CTD #: 3 NG1-6. N. GULF MOORING LEG. YEARDAY SHOULD BE FIXED. NAB. ANC 17 SEP 85 CH:LTMIN,LGMIN. POS:SHL/RAD

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.738	35.350	25.863	80.0	15.635	35.270	26.059
10.0	16.320	35.357	25.966	90.0	15.601	35.265	26.063
20.0	16.110	35.342	26.004	100.0	15.549	35.256	26.068
30.0	16.073	35.332	26.005	120.0	15.154	35.202	26.116
40.0	16.022	35.323	26.010	140.0	14.802	35.150	26.153
50.0	15.948	35.312	26.019	160.0	13.958	35.025	26.238
60.0	15.743	35.287	26.047	180.0	13.025	34.907	26.339
70.0	15.689	35.278	26.053	200.0	12.672	34 881	26.390

STATION PC7013: 30 21.4 N 114 3.0 W 11/3/85 2055Z 311/316m

Day: 70.86 SST: 17.2 Tdry: 18.6 Twet: 15.8 Wspd: 1.5 CTD #: 0 NG1-7.
ANC 17 SEP 85 CH:LTMIN, LGD, LGMIN, WD, CD POS:SHL/RAD

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.989	35.297	25.763	90.0	14.815	35.157	26.154
10.0	16,100	35.301	25.974	100.0	14.594	35.122	26.176
20.0	15.805	35.287	26.031	120.0	14.086	35.045	26.226
30.0	15.792	35.282	26.031	140.0	13.661	34.985	26.269
40.0	15.771	35.281	26.035	160.0	13,174	34.923	26.321
50.0	15.746	35.278	26.039	180.0	12.894	34.900	26.360
60.0	15.738	35.273	26 037	200.0	12.669	34.882	26.391
70.0	15.647	35.258	26.047	300.0	12.120	34.832	26.462
80 0	15 342	35 223	26 689				

STATION PC7014: 30 27.6 N 114 8.5 W 11/3/85 2224Z 148/153m

Day: 70.93 SST: 16.9 Tdry: 18.9 Twet: 15.8 Wspd: 1.1 CTD #: 0 NG1-8
ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SHL/RAD

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.298	35.246	25.886	70.0	15.247	35.199	26.091
10.0	15.903	35,253	25.983	80.0	15.013	35.169	26.120
20.0	15.736	35.255	26.022	90.0	14.431	35.093	26.188
30.0	15.596	35.247	26.048	100.0	14.067	35.043	26.227
40.0	15.573	35.244	26.052	120.0	13.150	34.932	26.332
50.0	15.463	35.232	26.067	140.0	12.540	34.872	26.407
60.0	15 300	35 223	26 075				

STATION PC7015: 30 33.7 N 114 15.5 W 11/3/85 14Z 103/108m

SEASON WESSELD WITCHEST

Day: 71.01 SST: 16.6 Tdry: 18.1 Twet: 15.7 Wspd: 6.4 CTD #: 3 NG1-9.
ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SHL/?

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.520	35.075	25.703	60.0	14.737	35.126	26.147
10.0	15.506	35.127	25.976	70.0	14.044	35.096	26.272
20.0	15.404	35.204	26.058	80.0	14.039	35.101	26.277
30.0	15.162	35.190	26.102	90.0	14.061	35.103	26.275
40.0	15.124	35.185	26.106	100.0	14.080	35.111	26.277
50.0	15.003	35.163	26.117				

STATION PC7016: 30 42.3 N 114 24.2 W 11/ 3/85 159Z 37/ 42m

Day: 71.07 SST: 17.5 Tdry: 18.3 Twet: 16.6 Wspd: 1.8 CTD #: 3 NG1-10.
ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SHL/?

STATES OF THE PROPERTY OF THE

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	17.177	35.198	25.642	20.0	15.474	35.218	26.053
10.0	15.625	35.216	26.017	30.0	15.406	35.212	26.064

STATION PC7017: 30 57.3 N 114 39.9 W 11/ 3/85 405Z 24/ 29m

CONTRACTOR COCCOCCO

Day: 71.17 SST: 17.0 Tdry: 19.2 Twet: 16.2 Wspd: 5.2 CTD #: 0 NG1-11.DEPTH MUCH LESS THAN CHART WOULD SUGGEST.
ANC 17 SEP 85 CH:T,CD,WD,LTMIN,LGMIN. POS:SHL/RAD

SGTH ΤE SA SGTH PR ΤE 2.0 10.0 34.838 16.898 25.433 20.0 15.613 35.076 25.913 15.637 35.078 25.909

STATION PC7018: 31 3.0 N 114 23.0 W 11/ 3/85 611Z 33/ 38m

Day: 71.25 SST: 16.8 Tdry: 17.1 Twet: 15.5 Wspd: 2.4 CTD #: 3
NG1-12.SATNAV SCREWY. REDID POS32 02.5,114 22.5.WILL ASK BRIDGE IF THERE.
ANC 17 SEP 85 CH:WD,CD,LTD,LTMIN,LGMIN. POS:SHL/RAD

DESCRIPTION OF SERVICE AND ADDRESS OF SERVICE

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.775	35.110	25.670	20.0	15.544	35.177	26.006
10.0	15.619	35.171	25.984	30.0	15.438	35.205	26.052

STATION PC7019: 31 4.8 N 114 10.6 W 12/ 3/85 727Z 168/ 173m

Day: 71.30 SST: 16.5 Tdry: 16.9 Twet: 15.0 Wspd: 6.8 CTD #: 3 NG1-13.

ANC 17 SEP 85 CH:LTD,LTMIN,LGMIN,WD,CD. POS:SHL/RAD

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.344	35.316	25.929	70.0	14.331	35.183	26.278
10.0	15.599	35.315	26.099	80.0	14.189	35.159	26.290
20.0	15.327	35.307	26.154	90.0	14.059	35.145	26.307
30.0	15.060	35.272	26.187	100.0	14.042	35.150	26.315
40.0	14.808	35.270	26.241	120.0	14 431	35.275	26.329
50.0	14.659	35.241	26.252	140.0	14.254	35.270	26.364
60 0	14 432	35 198	26 268	160 0	14 320	35 306	26 378

STATION PC7020: 31 11.0 N 113 53.5 W 12/ 3/85 945Z 42/ 47m

Day: 71.39 SST: 16.4 Tdry: 16.5 Twet: 13.1 Wapd: 21.8 CTD #: 0 NG1-14
ANC 17 SEP 85 CH:LTMIN,LGD,LGMIN,WD,CD. POS:SHL/RAD

PR	TE	SA	SGTH	PR	ΤE	SA	SGTH
2.0	16.189	35.501	26.107	30.0	15.557	35.488	26.242
10.0	15.947	35.492	26.156	40.0	15.557	35.492	26.246
20 A	15 509	35 400	26 234				

STATION PC7021: 31 15.1 N 113 40.2 W 12/ 3/85 1118Z 18/ 23m

Day: 71.47 SST: 16.6 Tdry: 15.9 Twet: 12.0 Wapd: 26.8 CTD #: 3 NG1-15 ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SHL/RAD PR TE SA SGTH PR TE **SGTH** 2.0 16.325 35.633 26.177 10.0 16.323 35.630 26.175

STATION PC7022: 31 .2 N 113 43.8 W 12/3/85 1300Z 61/66m

Day: 71.54 SST: 16.2 Tdry: 15.9 Twet: 12.5 Wspd: 18.2 CTD #: 3 NG1-16
ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SHL/?

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.967	35.254	25.968	30.0	14.672	35.178	26.200
10.0	15.957	35.246	25.965	40.0	14.692	35.184	26.200
20.0	15.546	35.311	26.108	50.0	14.668	35.188	26.209

STATION PC7023: 30 42.1 N 113 47.1 W 12/3/85 1503Z 80/84m

Day: 71.63 SST: 16.3 Tdry: 15.8 Twet: 12.6 Wapd: 15.7 CTD #: 3 NG1-17 ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SHL/?

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.069	35.232	25.928	50.0	14.558	35.127	26.186
10.0	16.033	35.223	25.930	60.0	14.403	35.153	26.239
20.0	15.429	35.215	26.061	70.0	14.269	35.135	26.255
30.0	15.372	35.207	26.068	80.0	14.225	35.124	26.256
40.0	15.076	35.188	26.119				

STATION PC7024: 30 33.5 N 113 50.2 W 12/ 3/85 1612Z 90/ 95m

Day: 71.67 SST: 16.2 Tdry: 16.0 Twet: 12.7 Wapd: 17.5 CTD #: 3 NG1-18. POSITION NOMINAL. NO SATNAV AT THE MOMENT. ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SHL/?

PATEORES ANDRONE SASYSTEE SERVICES SERVICES

PR	TE	SA	SGTH	PR	TE	SA	SGTH
10.0	15.922	35.250	25.976	60.0	14.169	35.056	26.215
20.0	15.611	35.226	26.028	70.0	13.971	35.032	26.238
30.0	15.147	35.186	26.102	80.0	13.461	34.981	26.305
40.0	14.820	35.150	26.146	90.0	13.303	34.959	26.321
50.0	14.357	35.084	26.196				

STATION PC7025: 30 26.7 N 113 50.7 W 12/ 3/85 1712Z 172/ 177m

Day: 71.71 SST: 16.3 Tdry: 16.1 Twet: 12.6 Wapd: 2.4 CTD #: 3 NG1-19 ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SHL/?

PARTY OF THE SERVICE CONTINUES AND AND ASSESSED.

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.018	35.266	25.966	70.0	15.354	35,214	26.079
10.0	16.025	35.264	25.963	80.0	15.211	35,188	26.091
20.0	15.779	35.266	26.021	90.0	14.640	35.117	26.162
30.0	15.614	35.260	26.054	100.0	14.017	35.044	26.239
40.0	15.589	35.255	26.056	120.6	13.645	34.997	26.281
50. 0	15.559	35.251	26.060	140.0	12.824	34.901	26.374
60.0	15.508	35.241	26.065	169 0	12.586	34.875	26.401

STATION PC7026: 30 19.4 N 113 51.5 W 12/ 3/85 1808Z 250/ 255m

Day: 71.75 SST: 16.7 Tdry: 15.9 Twet: 12.5 Wapd: 14.3 CTD #: 3 NG1-20 ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SHL/?

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.476	35.292	25.880	80.0	15.413	35.231	26.079
10.0	16.462	35.288	25.880	90.0	15.377	35.220	26.079
20.0	16.039	35.298	25.986	100. 0	15.023	35.182	26.128
30.0	15.737	35.269	26.033	120.0	14.427	35.093	26.190
40.0	15.728	35.271	26.037	140.0	13.866	35.009	26.245
50.0	15.742	35.277	26.039	160.0	13.220	34.929	26.316
60. 0	15.637	35.262	26.052	180.0	12.930	34.900	26.353
70.0	15.530	35.248	26.065	200.0	12.651	34.874	26.389

STATION PC7027: 30 15.0 N 113 49.1 W 12/ 3/85 2013Z 398/ 403m

Day: 71.84 SST: 17.1 Tdry: 15.8 Twet: 12.2 Wspd: 12.3 CTD #: 3 NG1-21.POSITION IS OMEGFA.
ANC 17 SEP 85 CH:WD,CD,LGMIN,LTMIN. POS:SHL/OME

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.769	35.305	25.821	90.0	14.827	35.160	26.154
10.0	16.452	35.331	25.916	100.0	14.704	35.138	26.164
20.0	16.018	35.326	26.013	120.0	14.122	35.051	26.223
30.0	15.991	35.320	26.015	140.0	13.630	34.980	26.271
40.0	15.873	35.295	26.023	160.0	13.132	34.918	26.326
50.0	15.798	35.285	26.033	180.0	12.697	34.883	26.386
60.0	15.596	35.259	26.059	200.0	12.538	34.869	26.407
70.0	15.474	35.239	26.071	300.0	12.216	34.842	26.451
80 0	15.337	35.216	26.084	••••			

STATION PC7028: 30 5.8 N 113 57.7 W 12/3/85 2201Z 382/387m

CONTRACT PROCESSES CASA MAN

Day: 71.92 SST: 17.0 Tdry: 15.9 Twet: 12.5 Wepd: 9.0 CTD #: 3 NG1-22.
ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SHL/OME

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.717	35.355	25.872	90.0	16.041	35.322	26.007
10.0	16.528	35.358	25.919	100.0	15.915	35.300	26.019
20.0	16.421	35.360	25.946	120.0	15.118	35.182	26.108
30.0	16.346	35.358	25.962	140.0	14.207	35.052	26.206
40.0	16.233	35.349	25.981	160.0	13.619	34.977	26.272
50.0	16.218	35.351	25.987	180.0	13.075	34.922	26.341
60.0	16.201	35.351	25.991	200.0	12.984	34.910	26.350
70.0	16.177	35.346	25.993	300.0	12.041	34.837	26.481
80.0	16.098	35.335	26.003				

STATION PC7029: 29 54.9 N 114 .8 W 12/ 3/85 2Z 460/ 465m

Day: 72.00 SST: 17.1 Tdry: 16.5 Twet: 12.6 Wapd: 9.3 CTD #: 3 NG1-23.
ANC 17 SEP 85 CH:WD,CD,LGMIN,LTMIN. POS:SHL/? *** uptrace ***

Control Confessor Control Control Constitution Control Control

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.908	35.319	25.799	90.0	14.745	35.148	26.163
10.0	16.542	35.321	25.887	100.0	14.351	35.105	26.215
20.0	15.713	35.268	26.038	120.0	14.113	35.068	26.238
30.0	15.396	35.228	26.079	140.0	13.482	34.988	26.308
40.0	15.150	35,208	26.118	160.0	13.043	34.935	26.357
50.0	14.954	35, 186	26,145	180.0	12.714	34.898	26.394
60.0	14.931	35.180	26.146	200.0	12.600	34.884	26.406
70.0	14.900	35.172	26.147	300.0	11.948	34.832	26,495
80.0	14.864	35.164	26.149	400.0	11.638	34.809	26.538

STATION PC7030: 29 51.4 N 114 1.0 W 12/3/85 103Z 479/484m

Doy: 72.04 SST: 16.0 Tdry: 16.0 Twet: 13.0 Wspd: 3.1 CTD #: 3 NG1-24. ANC 17 SEP 85 CH:WD,CD. POS:OK *** uptrace *** TE 13.382 13.051 12.748 SA 35.148 **SGTH** TE **SGTH** SA 15.470 15.258 34.970 34.931 26.313 26.351 100.0 10.0 26.000 20.0 35.136 26.038 120.0 30.0 14.598 35.091 26.149 140.0 34.902 26.390 35.085 12.628 12.617 34.890 34.886 40.0 14.509 160.0 26.405 26.164 50.0 35.086 35.058 180.0 200.0 26.404 14.383 26.192 34.884 26.223 26.236 26.272 26.405 14.137 12.609 26.491 70.0 14.009 35.039 300.0 11.968 34.832 80.0 13.755 35.017 400.0 11.621 34.807 26.539 90.0 34.995 26.294 13.571

THE PERSONAL PERSONAL MANAGEMENT OF THE PROPERTY CONTRACT CONTRACT

STATION PC7031: 29 45.1 N 114 2.8 W 12/ 3/85 215Z 301/ 306m

Day: 72.09 SST: 16.4 Tdry: 15.7 Twet: 13.0 Wspd: 3.6 CTD #: 3 NG1-25 ANC 17 SEP 85 CH:WD,CD. POS:OK

PR	TE	SA	SGTH	PR	TE	SA	SGTH
					• •	• • • • • • • • • • • • • • • • • • • •	
2.0	16.197	35.234	25.900	90.0	13.993	35.026	26.230
10.0	15.547	35.243	26.056	100.0	13.526	34.970	26.284
20.0	15.211	35.212	26.107	120.0	13.130	34.925	26.330
30.0	15.141	35.195	26.110	140.0	13.018	34.929	26.357
40.0	15.116	35.186	26.109	160.0	12.728	34.894	26.388
50.0	14.790	35.148	26.152	180.0	12.339	34.856	26.435
60.0	14.508	35.111	26.185	200.0	12.213	34.846	26.452
70.0	14.246	35.072	26.211	300.0	11.999	34.830	26.484
90 0	14 202	TE AEO	28 214				

STATION PC7032: 29 37.5 N 114 4.0 W 12/ 3/85 342Z 99/ 104m

Day: 72.14 SST: 16.7 Tdry: 15.9 Twet: 12.8 Wspd: 5.2 CTD #: 3 NG1-26.
ANC 17 SEP 85 CH:WD,CD,LGMIN. POS:SHL/RAD.

CARRELL CONTROL OF THE ANGENTS ANGESTED AND ANGEST AND ANGEST OF THE ANG

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.513	35.277	25.860	60.0	13.600	34.994	26.286
10.0	16.374	35.271	25.888	70.0	13.410	34.972	26.308
20.0	16.286	35.263	25.902	80.0	13.282	34.959	26.325
30.0	15.912	35.237	25.969	90.0	13.229	34.958	26.335
40.0	15.596	35.193	26.007	100.0	13.214	34.958	26.338
50.0	14.535	35.082	26.156				

STATION PC7033: 29 37.7 N 113 58.0 W 12/ 3/85 440Z 674/ 679m

Day: 72.18 SST: 15.7 Tdry: 15.5 Twet: 13.2 Wapd: 4.3 CTD #: 3 NG1-27. ANC 17 SEP 85 CH:WD,CD. POS:OK

TANGET AND AND THE STATE OF THE

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.403	35.134	26.004	100.0	13.271	34.945	26.317
10.0	15.381	35.134	26.009	120.0	12.776	34.908	26.388
20.0	15.350	35.133	26.016	140.0	12.653	34.894	26.402
30.0	15.277	35,159	26.052	160.0	12.561	34.885	26.414
40.0	15.268	35.168	26.061	180.0	12.439	34.870	26.427
50.0	14.913	35.141	26.119	200.0	12.312	34.853	26.439
60.0	14.709	35.124	26.151	300.0	11.969	34.827	26.487
70.0	14.544	35.099	26.168	400.0	11.824	34.816	26.508
80.0	14.026	35.032	26.227	500.0	11.712	34.809	26.526
90.0	13.563	34.975	26.280	600.0	11.505	34.799	26.560

MANAGER CONTINUE SERVICES CONTINUES SERVICES SERVICES

STATION PC7034: 29 39.0 N 113 53.5 W 12/ 3/85 603Z 947/ 952m

Day: 72.25 SST: 15.3 Tdry: 15.3 Twet: 13.6 Wapd: 10.3 CTD #: 3 NG1-28.

ANC 17 SEP 85 CH:WD,CD,LTMIN. POS:SHL/RAD.

PR	TE	SA	SGTH	PR	TĒ	SA	SGTH
2.0	15.081	35.082	26.035	140.0	12.834	34.910	26.379
10.0	15.013	35.084	26.052	160.0	12.770	34.904	26.387
20.0	14.907	35.094	26.083	180.0	12.695	34.896	26.396
30.0	14.662	35.085	26.130	200.0	12.642	34.889	26.402
40.0	14.429	35.061	26.162	300.0	12.115	34.839	26.468
50.0	14.083	35.032	26.214	400.0	11.638	34.803	26.533
60.0	13.985	35.018	26.224	500.0	11.406	34.788	26.567
70.0	13.870	35.003	26.237	600.0	11.308	34.782	26.583
80.0	13.329	34.961	26.317	700.0	11.283	34.780	26.588
90.0	13.172	34.946	26.337	800.0	11.272	34.779	26.592
100.0	13.103	34.937	26.345	900.0	11.254	34.777	26.596
120 0	12 949	34 921	26 364				

STATION PC7035: 29 39.5 N 113 48.1 W 13/3/85 738Z 608/613m

Maryan samples areases respective

Day: 72.31 SST: 15.0 Tdry: 15.1 Twet: 13.6 Wspd: 1.5 CTD #: 3 NG1-29
ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. PQS:SHL/RAD.

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.920	35.062	26.055	100.0	13.330	34.955	26.312
10.0	14.918	35.059	26.054	120.0	13.144	34.935	26.335
20.0	14.820	35.056	26.073	140.0	12.557	34.892	26.420
30.0	14.706	35.048	26.092	160.0	12.376	34.873	26.441
40.0	14.474	35.040	26.137	180.0	12.287	34.866	26.453
50.0	14.332	35.032	26.161	200.0	12.244	34.862	26.459
60.0	13.837	35.001	26.242	300.0	12.027	34.841	26.487
70.0	13.664	34.986	26.267	400.0	11.840	34.820	26.508
80.0	13.557	34.976	26.281	500.0	11.470	34.791	26.557
90.0	13.417	34.965	26.302	600.0	11.333	34.780	26.577

STATION PC7036: 29 41.9 N 113 40.7 W 13/ 3/85 859Z 549/ 554m

Day: 72.36 SST: 15.7 Tdry: 15.8 Twet: 13.6 Wapd: 5.5 CTD #: 3 NG1-30 ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SHL/RAD.

PLANCES SONOON REPRESENT INVESTIGE SPECIAL SERVICES SPECIAL BOOKSES.

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.560	35.161	25.989	100.0	13.217	34.946	26.328
10.0	15.563	35.150	25.980	120.0	13.092	34.934	26.345
20.0	15.062	35.123	26.072	140.0	12.956	34.922	26.364
30.0	14.629	35.095	26.145	160.0	12.795	34.908	26.385
40.0	14.468	35.081	26.169	180.0	12.650	34.896	26.405
50.0	13.765	35.009	26.263	200.0	12.586	34.890	26.414
60.0	13.549	34.987	26.291	300.0	12.266	34.859	26.455
70.0	13.398	34.969	26.308	400.0	11.977	34.839	26.497
80.0	13.326	34.958	26.315	500.0	11.654	34.818	26.544
90.0	13.275	34.952	26.321				

STATION PC7037: 29 45.6 N 113 31.6 W 13/3/85 1032Z 234/239m

Day: 72.43 SST: 16.4 Tdry: 15.7 Twet: 13.9 Wapd: 13.2 CTD #: 3 NG1-31 ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SHL/RAD

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.213	35.294	25.943	80.0	13.224	34.944	26.325
10.0	16.232	35.281	25.928	90.0	13,149	34.936	26.334
20.0	15.995	35.235	25.948	100.0	12.942	34.915	26.360
30.0	14.628	35.080	26.134	120.0	12.642	34.890	26.401
40.0	14.151	35.037	26.203	140.0	12.457	34.875	26.426
50.0	13.959	35.022	26.232	160.0	12.412	34.875	26.435
60.0	13.926	35.020	26.238	180.0	12.380	34.874	26,441
70.0	13.560	34.983	26.286	200.0	12.338	34.870	26.447

STATION PC7038: 29 45.2 N 113 22.0 W 13/ 3/85 1146Z 181/ 186m

STANKS THE

METERS SEEDEN SOFTERED METERS AND AND METERS OF

Day: 72.48 SST: 16.6 Tdry: 15.9 Twet: 13.7 Wspd: 12.9 CTD #: 3 NG1-32 ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SHL/RAD *** uptrace ***

PR	TE	SA	SGTH	PR	TE	SA	SGTH
10.0	16.435	35.309	25.903	80.0	14.489	35.113	26.191
20.0	16.064	35.293	25.977	90.0	13.718	35.030	26.290
30.0	15.781	35.278	26.030	100.0	13.663	35.015	26.290
40.0	15.459	35.262	26.091	120.0	13.305	34.972	26.331
50. 0	15.227	35.232	26.120	140.0	13.120	34.946	26.349
60.0	15.066	35.206	26.136	160.0	12.898	34.919	26.373
70.0	15.015	35.187	26.133	180.0	12.727	34.907	26.399

STATION PC7039: 29 46.9 N 113 14.0 W 13/3/85 1249Z 182/187m

Day: 72.52 SST: 16.5 Tdry: 16.2 Twet: 14.2 Wapd: 14.3 CTD #: 3 NG1-33 ANC 17 SEP 85 CH:LTMIN,LGMIN. POS:SHL/RAD.

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.334	35.305	25.923	80.0	14.948	35.156	26.124
10.0	16.339	35.302	25.920	90.0	14.243	35.065	26.207
20.0	16.085	35.288	25.968	100.0	13.810	35,011	26.257
30.0	15.824	35.276	26.019	120.0	13.533	34.968	26.281
40.0	15.674	35.260	26.041	140.0	13.169	34.925	26.323
50.0	15.622	35.255	26.049	160.0	12.686	34.884	26.388
60.0	15.357	35.213	26.077	180.0	12.663	34.886	26.395
70 0	15 166	35 193	28 184		• • •		

STATION PC7040: 29 50.5 N 112 58.1 W 13/ 3/85 1431Z 87/ 92m

Day: 72.60 SST: 16.9 Tdry: 16.2 Twet: 14.4 Wspd: 14.6 CTD #: 3 NG1-34 NOTE SEA TEMP. IS 16.35 NOT 16.55 ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SHL/?.

receives sepressed temperate remediate received

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.572	35.318	25.877	50.0	15.595	35.252	26.053
10.0	16.575	35.316	25.875	60.0	15.021	35.184	26.129
20.0	16.552	35.309	25.876	70.0	14.755	35.144	26.157
30.0	16.129	35.296	25.964	80.0	14.444	35.097	26.188
40.0	15 838	35 279	26 618				

STATION PC7041: 28 40.5 N 112 16.3 W 14/ 3/85 1115Z 102/ 107m

Day: 73.46 SST: 15.3 Tdry: 15.4 Twet: 14.3 Wspd: 4.0 CTD #: 3 SILL-1 ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN,T. POS:SAIL

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.307	34.962	25.893	60.0	13.701	34.934	26.219
10.0	14.914	34.968	25.985	70.0	13.491	34.928	26.258
20.0	14.299	34.956	26.109	80.0	13.368	34.922	26.279
30.0	14.244	34.952	26.118	90.0	13.313	34.920	26.289
40.0	13.830	34.944	26.199	100.0	13.269	34.918	26.296
50.0	13.765	34.937	28 287				

STATION PC7042: 28 39.6 N 112 22.5 W 14/ 3/85 1213Z 273/ 278m

Day: 73.51 SST: 14.6 Tdry: 14.9 Twet: 13.4 Wspd: 1.0 CTD #: 3 SILL-2 ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN,T. POS:SAIL

SERVICE ESTABLISH WATERCOLE FORESTOR CHANGES ARESERVAL RESISERY SERVICES SERVICES

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.284	34.952	26.108	80.0	13.107	34.932	26.339
10.0	13.989	34.942	26.163	90.0	12.933	34.926	26.370
20.0	13.923	34.934	26.171	100.0	12.877	34.914	26.372
30.0	13.639	34.923	26.222	120.0	12.580	34.879	26.404
40.0	13.317	34.912	26.280	140.0	12.447	34.870	26.424
50.0	13.171	34.914	28.312	160.0	12.335	34.861	26.439
60.0	13.148	34.923	26.323	180.0	11.932	34.812	26.479
70.0	13.133	34.928	26.331	200.0	11.433	34.800	26.564

STATION PC7043: 28 38.1 N 112 28.4 W 14/ 3/85 1310Z 291/ 296m

MERCENCE CONTRACTOR PROPERTY

Day: 73.55 SST: 13.6 Tdry: 14.2 Twet: 13.4 Wspd: 5.0 CTD #: 3 SILL-3 ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN. POS:SAIL

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	12.904	34.910	26.361	80.0	12.462	34.902	26.444
10.0	12.549	34.902	26.425	90.0	12.457	34.900	26.444
20.0	12.508	34.898	26.431	100.0	12.454	34.899	26.444
30.0	12.484	34.901	26.438	120.0	12.228	34.884	26.477
40.0	12.497	34.902	26.436	140.0	12.140	34.877	26.489
50.0	12.469	34.899	26.440	160.0	12.023	34.866	26.503
60.0	12.452	34.899	26.443	180.0	11.817	34.851	26.531
70.0	12.455	34.902	26.445	200 0	11.741	34.843	26.540

STATION PC7044: 28 36.6 N 112 34.6 W 14/ 3/85 1406Z 497/ 502m

Day: 73.59 SST: 13.0 Tdry: 14.1 Twet: 13.4 Wspd: 7.0 CTD #: 3 SILL-4 ANC 17 SEP 85 CH:WD,CD,T. POS:OK

THE CONTROL OF THE PROPERTY BENEFITS THE PROPERTY OF THE PROPE

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	12.822	34.914	26.380	90.0	12.131	34.877	26.489
10.0	12.806	34.912	26.382	100.0	12.101	34.874	26.493
20.0	12.675	34.906	26.404	120.0	12.032	34.868	26.502
30.0	12.587	34.902	26.418	140.0	11.928	34.860	26.516
40.0	12.513	34.898	26.430	160.0	11.793	34.851	26.535
50.0	12.438	34.895	26.443	180.0	11.699	34.843	26.547
60.0	12.375	34.892	26.453	200.0	11.552	34.831	26.566
70.0	12.353	34.889	26.455	300.0	10.947	34.785	26.644
80.0	12.165	34.881	26.486	400.0	10.020	34.726	26.762

STATION PC7045: 28 38.4 N 112 39.1 W 14/ 3/85 1520Z 337/ 342m

Day: 73.63 SST: 14.2 Tdry: 14.7 Twet: 13.1 Wapd: 13.4 CTD #: 3 SILL-5
ANC 17 SEP 85 CH:LTMIN,LGMIN,WD,CD. POS:SAIL

Consiste Manager Shipping opposite souther southern assesses

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	13.970	34.954	26.176	90.0	13.150	34.933	26.332
10.0	13.978	34.952	26.173	100.0	13.074	34.931	26.346
20.0	13.982	34.949	26.170	120.0	13.023	34.921	26.349
30.0	13.852	34.945	26.195	140.0	12.877	34.910	26.370
40.0	13,627	34.946	26.243	160.0	12.252	34.878	26.469
50.0	13.574	34.946	26.254	180.0	12.094	34.868	26.492
60.0	13.490	34.942	26.268	200.0	12.112	34.865	26.487
70.0	13.445	34.940	26.276	300.0	11.156	34.799	26.617
80.0	13.358	34.940	26.294				

STATION PC7046: 28 38.4 N 112 40.9 W 14/ 3/85 1615Z 527/ 532m

Day: 73.67 SST: 14.9 Tdry: 14.6 Twet: 13.5 Wspd: 11.1 CTD #: 3 SILL-6 ANC 17 SEP 85 CH:LGD,LGMIN,LTMIN,WD,CD,T. POS:SAIL

THE PARTY OF THE PROPERTY OF THE PARTY OF TH

PR	TE	SA	SGTH	PR	ΤE	SA	SGTH
2.0	14.947	35.094	26.074	100.0	12.895	34.939	26.388
10.0	14.986	35.098	26.069	120.0	12.762	34.927	26.4 0 6
20.0	15.069	35.118	26.066	140.0	12.698	34.920	26.413
30.0	14.619	35.085	26.140	160.0	12.434	34.899	26.450
40.0	14.054	35.034	26.221	180.0	12.222	34.883	26.479
50.0	13.861	35.012	26.245	200.0	12.049	34.867	26.500
60.0	13.515	34.982	26.294	300.0	10.841	34.781	26.659
70.0	13.229	34.968	26.342	400.0	10.001	34.725	26.765
80.0	13.108	34.957	26.358	500.0	8.110	34.607	26.977
90.0	13.011	34.949	26.372				

STATION PC7047: 28 37.2 N 112 44.1 W 14/ 3/85 1742Z 358/ 363m

Day: 73.73 SST: 15.9 Tdry: 14.7 Twet: 13.7 Wepd: 11.3 CTD #: 3 SILL-7 ANC 17 SEP 85 CH:WD,CD,LTMIN,LGMIN,T. POS:SAIL

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.711	35.149	25.946	90.0	13.029	34.950	26.369
10.0	15.626	35.150	25.966	100.0	12.976	34.942	26.374
20.0	14.764	35.111	26.128	120.0	12.765	34.925	26.403
30.0	14.372	35.065	26.177	140.0	12.713	34,923	26.413
40.0	14.309	35.049	26.179	160.0	12.480	34,907	26.447
50.0	13.806	35.014	26.258	180.0	12.294	34.891	26.471
60.0	13.747	35.005	26.264	200.0	12.014	34.874	26.512
70.0	13.481	34.983	26.302	300.0	11.503	34.832	26.578
80.0	13.330	34.973	26.326				

STATION PC7048: 28 37.4 N 112 42.8 W 14/ 3/85 1821Z 589/ 594m

Day: 73.76 SST: 15.9 Tdry: 14.7 Twet: 14.0 Wspd: 11.6 CTD #: 3 SILL—8 ANC 17 SEP 85 CH:LTMIN,LGMIN,WD,CD. POS:SAIL

PR	ΤE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.660	35.168	25.972	100.0	12.959	34.942	26.377
10.0	15.631	35.163	25.975	120.0	12.654	34.922	26.423
20.0	15.348	35.146	26.026	140.0	12.500	34.905	26.441
30.0	15.034	35.122	26.077	160.0	12.364	34.897	26.462
40.0	14.575	35.086	26.150	180.0	12,271	34.889	26.474
50.0	14.083	35.036	26.217	200.0	12.237	34.883	26.476
60.0	13.799	35.005	26.253	300.0	10.839	34.784	26.662
70.0	13.560	34.983	26.286	400.0	9.299	34.682	26.848
80.0	13.206	34.965	26.345	500.0	8.312	34.623	26.959
90.0	13.129	34.956	26.354			•	

STATION PC7049: 28 34.3 N 112 41.8 W 14/ 3/85 1924Z 429/ 434m

property and analyzing professor professor

Day: 73.80 SST: 15.9 Tdry: 14.8 Twet: 14.0 Wspd: 8.3 CTD #: 3 SILL-9
ANC 17 SEP 85 CH:WD,CD. POS:OK.

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.653	35.153	25.962	90.0	12.832	34.933	26.395
10.0	15.288	35.146	26.039	100.0	12.779	34.929	26.403
20.0	15.015	35.122	26.081	120.0	12,644	34.919	26.423
30.0	14.639	35.088	26.138	140.0	12.563	34.913	26.435
40.0	13.816	35.017	26.258	160.0	12.512	34.906	26.440
50.0	13.628	34.995	26.281	180.0	12,376	34.895	26.458
60.0	13.528	34.985	26.294	200.0	12.163	34.880	26.488
70.0	13.065	34.954	26.364	300.0	11.375	34.813	26.587
80.0	12.930	34.942	26.383	400.0	9.312	34.683	26.847

STATION PC7050: 28 30.5 N 112 39.6 W 14/ 3/85 2029Z 351/ 356m

Day: 73.85 SST: 15.2 Tdry: 15.6 Twet: 14.3 Wspd: 1.1 CTD #: 3 SILL-10 ANC 17 SEP 85 CH:WD,CD. POS:OK

ness designed accessed assessed appropriate accessed property accessed because increases increases property

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.220	35.152	26.058	90.0	13.138	34.961	26.356
10.0	14.760	35.088	26.111	100.0	13.131	34.958	26.355
20.0	14.437	35.077	26.172	120.0	12.868	34.926	26.384
30.0	14.097	35.034	26.212	140.0	12.383	34.890	26.452
40.0	13.446	34.985	26.310	160.0	12.194	34.878	26.480
50.0	13.195	34.967	26.348	180.0	12.112	34.871	26.491
60.0	13.168	34.964	26.351	200.0	12.008	34.861	26.503
70.0	13.151	34.964	26.355	300.0	11.037	34.799	26.638
80 0	17 147	34 067	26 356				

STATION PC7051: 28 27.9 N 112 38.7 W 14/ 3/85 2137Z 378/ 383m

Day: 73.89 SST: 15.4 Tdry: 15.6 Twet: 13.8 Wspd: 8.4 CTD #: 3 PC7051, SILL-11 ANC 17 SEP 85 CH:WD,CD. POS:OK

Principal percession congression tentended intercepts appropriate accepts

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.506	35.145	25.989	90.0	13.212	34.955	26.336
10.0	15.308	35.136	26.027	100.0	13.026	34.939	26.362
20.0	15.009	35.120	26.081	120.0	12.947	34.937	26.376
30.0	14.528	35.081	26.156	140.0	12.820	34.927	26.395
40.0	14.237	35.052	26.196	160.0	12.503	34.898	26.435
50.0	13.985	35.021	26.226	180.6	12.259	34.881	26.470
60.0	13.635	34.999	26.283	200.0	12.175	34.876	26.483
70.0	13.414	34.982	26.315	300.0	11.371	34.823	26.596
80.0	13.259	34.961	26.331				

MANNA MANNAM MANNAM MANNAM MANNAM MANNAM

CONTRACT CONTRACT (CONTRACT CONTRACT

STATION PC7052: 28 26.8 N 112 38.6 W 14/ 3/85 2237Z 367/ 372m

Day: 73.93 SST: 15.3 Tdry: 16.0 Twet: 13.8 Wapd: 5.8 CTD #: 3 SILL-12.
ANC 17 SEP 85 CH:WD,CD. POS:OK

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.998	35.075	26.048	90.0	13.477	34.972	26.295
10.0	14.530	35.045	26.127	100.0	13.271	34.942	26.314
20.0	14.131	35.000	26.178	120.0	12.881	34.911	26.370
30.0	13.959	34.980	26.199	140.0	12.628	34.898	26.410
40.0	13.877	34.979	26.216	160.0	12.590	34.895	26.416
50.0	13.790	34.973	26.230	180.0	12.545	34.891	26.422
60.0	13.742	34.968	26.236	200.0	12.424	34.885	26.442
70.0	13.622	34.963	26.258	300.0	11.607	34.788	26.525
80.0	13.440	34.959	26.292				

STATION PC7053: 28 17.9 N 112 43.4 W 14/ 3/85 124Z 560/ 565m

Day: 74.05 SST: 14.8 Tdry: 16.7 Twet: 12.7 Wapd: 17.3 CTD #: 3 SILL13; AFTER NAN'S SILL12. SATFIX BAD, PDRPOS74. ANC 25 SEP 85 CH: WD, CD. POS: OK

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.689	35.052	26.098	100.0	13.009	34.933	26.360
10.0	14.651	35.079	26.127	120.0	12.959	34.929	26.368
20.0	14.159	35.035	26.199	140.0	12.929	34.932	26.377
30.0	13.805	34.995	26.243	160.0	12.844	34.924	26.388
40.0	13.587	34.962	26.263	180.0	12.467	34.890	26.437
50.0	13.520	34.984	26.294	200.0	11.937	34.840	26.501
60.0	13.413	34.969	26.305	300.0	9.936	34.661	26.724
70.0	13.357	34.959	26.309	400.0	9.049	34.621	26.841
80.0	13.117	34.941	26.344	500.0	8.160	34.591	26.957
90 0	13 005	34 Q3Q	26 347				

PARTY DESCRIPTION DESCRIPTION SERVICES SERVICES INC.

THE STATE OF THE PROPERTY OF T

STATION PC7054: 28 24.0 N 112 37.8 W 14/ 3/85 312Z 378/ 383m

Day: 74.13 SST: 14.9 Tdry: 16.6 Twet: 12.9 Wspd: 16.3 CTD #: 3 SILL—14.SATFIX BAD.OMEGA POS. RADAR 320AT10MI SW SAN LORENCO. 28 SEP 85 NAB CH:WD,CD POS:OME

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.705	35.077	26.114	90.0	13.755	34.974	26.239
10.0	14.703	35.073	26.111	100.0	13.729	34.971	26.243
20.0	14.612	35.062	26.123	120.0	13.684	34.966	26.249
30.0	14.452	35.053	26.151	140.0	13.575	34.955	26.263
40.0	14.325	35.036	26.165	160.0	13.315	34.942	26.307
50.0	14.160	35.009	26.180	180.0	12.928	34.912	26.363
60.0	14.071	34.992	26.186	200.0	12.785	34.904	26.385
70.0	14.041	34.990	26.191	300.0	12.336	34.884	26.461
80.0	13.773	34.977	26.237				

STATION PC7055: 28 27.7 N 112 45.6 W 14/ 3/85 502Z 590/ 595m

Day: 74.21 SST: 14.6 Tdry: 15.7 Twet: 11.5 Wepd: 17.3 CTD #: 3 SILL-15. RADAR 245AT6.31MI S FRANSQUITO PT.SAT DUBIOUS. ANC 23 OCT 85 CH:WD,CD. POS:CINDY RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.255	35.029	26.174	100.0	13.606	34.959	26.259
10.0	14.263	35.027	26.171	120.0	13.538	34.955	26.270
20.0	14.182	35.018	26.181	140.0	13.493	34.950	26.276
30.0	14.067	35.007	26.197	160.0	13.316	34.943	26.308
40.0	14.049	35.002	26.198	180.0	13,168	34.932	26.330
50.0	14.042	35.001	26.199	200.0	12,954	34.916	26.361
60.0	14.002	34.998	26.205	300.0	12.329	34.869	26.450
70.0	13.778	34.979	26.238	400.0	12.071	34.851	26.489
80.0	13.763	34.976	26.239	500.0	11.894	34.838	26.515
90.0	13 682	34 966	26 248				

leaved transfer leavestable addresses

STATION PC7056: 28 28.4 N 112 44.5 W 14/ 3/85 609Z 788/ 793m

Day: 74.25 SST: 14.6 Tdry: 16.1 Twet: 13.7 Wspd: 9.6 CTD #: 3 SIIL—16.SATPOS NG, WILL PUT RADAR ON LOG SHEET. ANC 1 NOV 85 CH:WD,CD. POS:CINDY RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.375	35.044	26.160	120.0	13.301	34.942	26.309
10.0	14.387	35.041	26.155	140.0	13.160	34.932	26.330
20.0	14.384	35.037	26.153	160.0	12.985	34.919	26.356
30.0	14,286	35.028	26.167	180.0	12.803	34.906	26.383
40.0	13.998	35.000	26.207	200.0	12.664	34.895	26.402
50.0	13.880	34.988	26.223	300.0	12.244	34.867	26.465
60.0	13.851	34.981	26.224	400.0	12.212	34.872	26.478
70.0	13.793	34.975	26.231	500.0	11.967	34.851	26.511
80.0	13.553	34.962	26.271	600.0	11.781	34.849	26.547
90.0	13.556	34.960	26.270	700.0	11.041	34.783	26.634
100 0	13 500	74 057	26 274				

STATION PC7057: 28 33.0 N 112 45.9 W 15/ 3/85 733Z 270/ 280m

Day: 74.31 SST: 14.5 Tdry: 14.5 Twet: 11.9 Wapd: 10.9 CTD #: 3 SILL-17 ANC 25 SEP 85 CH:WD,CD,LTMIN,LGMIN,T. POS:SAIL

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.210	35.015	26.172	80.0	13.754	34.977	26.241
10.0	14.214	35.013	26.170	90.0	13.577	34.959	26.265
20.0	14.200	35.010	26.171	100.0	13.536	34.956	26.271
30.0	13.988	35.003	26.211	120.0	13.268	34.934	26.309
40.0	13.937	34.998	26.218	140.0	13.204	34.927	26.318
50.0	13.853	34.992	26.231	160.0	13.074	34.919	26.338
60.0	13.822	34.988	26.235	180.0	12.729	34.905	26.397
70.0	13.809	34.986	26.237	200.0	12.665	34.898	26.404

ecessis masses access formers confere

STATION PC7058: 28 29.8 N 112 52.6 W 15/ 3/85 836Z 148/ 153m

Day: 74.35 SST: 14.9 Tdry: 15.2 Twet: 11.2 Wspd: 15.3 CTD #: 3 SILL-18
ANC 26 SEP 85 CH:LTMIN,LGMIN,WD,CD,T. POS:SAIL

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.712	35.001	26.054	70.0	13.821	34.958	26.213
10.0	14.715	34.996	26.050	80.0	13.608	34.950	26.251
20.0	14.596	34.992	26.073	90.0	13.543	34.945	26.261
30.0	14.473	34.987	26.096	100.0	13.465	34.942	26.275
40.0	14.157	34.978	26.156	120.0	13.364	34.937	26.292
50.0	14.048	34.971	26.174	140.0	13.289	34.930	26.303
RA A	14 026	TA ORR	26 175				

STATION PC7059: 28 34.7 N 112 35.1 W 15/ 3/85 1300Z 662/ 667m

Day: 74.54 SST: 14.5 Tdry: 14.6 Twet: 12.1 Wapd: 14.7 CTD #: 3 SILL-19 ANC 26 SEP 85 CH:WD,CD. POS:OK

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.295	34.965	26,116	100.0	12.839	34.903	26.371
10.0	14.187	34.951	26.128	120.0	12.700	34.906	26.402
20.0	14.055	34.941	26.149	140.0	12.532	34.904	26.434
30.0	14.033	34.937	26,151	160.0	12.291	34.886	26.467
40.0	14.024	34.936	26.152	180.0	11.947	34.865	26.518
50.0	13.861	34.944	26.193	200.0	11.842	34.850	26.526
60.0	13.589	34.944	26.250	300.0	10.896	34.788	26.655
70.0	13.428	34.942	26.281	400.0	9.549	34.705	26.825
80.0	13.181	34.935	26.327	500.0	8.786	34.660	26.915
90.0	13.093	34.927	26.339	600.0	8.424	34.637	26.955

STATION PC7060: 28 56.8 N 112 40.2 W 15/ 3/85 1423Z 366/ 371m

Day: 74.59 SST: 16.1 Tdry: 15.0 Twet: 12.1 Wspd: 14.3 CTD #: 3 PC7060 ANC 26 SEP 85 CH:LTMIN,LGMIN,WD,CD,T. POS:SAIL

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.958	35.214	25.940	90.0	13.858	34.971	26.215
10.0	15.980	35.204	25.927	100.0	13.580	34.932	26.243
20.0	15.894	35.185	25.933	120.0	13.296	34.911	26.286
30.0	14.730	35.103	26.129	140.0	13.194	34.912	26.308
40.0	14.594	35.093	26.151	160.0	13.098	34.907	26.324
50.0	14.492	35.078	26.162	180.0	12.668	34.891	26.398
60.0	14.269	35.058	26.195	200.0	12.129	34.860	26.479
70.0	14.189	35.047	26.204	300.0	11.082	34.804	26.634
80 0	14 021	35 014	26 214				

STATION PC7061: 29 17.1 N 112 43.3 W 15/ 3/85 1540Z 382/ 387m

Day: 74.64 SST: 15.8 Tdry: 15.0 Twet: 12.0 Wspd: 16.0 CTD #: 3

ANC 26 SEP 85 CH:WD,CD,T. POS:OK

PROVIDES AND PROCESSION OF STREET, DODGE STREET, STREE

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.608	35.196	26.005	90.0	15.031	35.130	26.086
10.0	15.608	35.195	26.005	100.0	14.728	35.101	26.131
20.0	15.543	35.187	26.014	120.0	14, 133	35.035	26.208
30.0	15.410	35.176	26.036	140.0	13.823	34,989	26.238
40.0	15.321	35.169	26,050	160.0	12.898	34.903	26.361
50.0	15.243	35.163	26.063	180.0	12.443	34.871	26.427
60.0	15.212	35.158	26.067	200.0	11.881	34.841	26.512
70.0	15,141	35.148	26.075	300.0	10.801	34.781	26.667
80 0	15 113	35 142	26 077				

STATION PC7062: 29 6.3 N 112 44.0 W 15/ 3/85 445Z 303/ 308m

Day: 75.19 SST: 16.7 Tdry: 15.9 Twet: 13.0 Wspd: 1.0 CTD #: 3 STATION T1,SATFIX BAD.
ANC 26 SEP 85 CH:WD,CD. POS:OK *** uptrace ***

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.452	35.265	25.865	90.0	13.737	35,018	26.277
10.0	15.924	35.250	25.975	100.0	13.637	35.003	26.286
20.0	15.790	35.236	25.996	120.0	13.115	34.952	26.354
30.0	15.597	35.206	26.017	140.0	12.534	34.901	26.431
40.0	15.068	35.175	26.111	160.0	12.268	34.880	26.467
50.0	14.638	35.132	26.172	180.0	11.912	34.851	26.513
60.0	14.305	35.088	26.210	200.0	11.641	34.836	26.553
70.0	13.859	35.043	26.270	300.0	10.875	34.796	26.660
80.0	13.798	35.030	26.273				

PICHICUCO 7: GULF OF CALIFORNIA CTD DATA REPORT: US RESEARCH VESSEL R/V N. (U) SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CA N A BRAY ET AL. MAR 85 SIO-REF-SERIES-86-4 N88014-84-C-9257 F/G 8/10 AD-A169 838 2/3 UNCLASSIFIED NL

PARTICIPATION AND PROPERTY.

STATE OF THE PROPERTY OF THE P

STATION PC7063: 29 1.3 N 112 38.5 W 15/ 3/85 610Z 327/ 332m

Day: 75.25 SST: 16.5 Tdry: 15.9 Twet: 13.3 Wapd: 6.5 CTD #: 3 STA T2.POSITION IS NOMINAL. ANC 26 SEP 85 CH:WD,CD. POS:OK

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.342	35.206	25.845	90.0	13.716	34.987	26.257
10.0	16.092	35.199	25.898	100.0	12.966	34.932	26.368
20.0	16.028	35.195	25.910	120.0	12.673	34.909	26.409
30.0	15.816	35.182	25.949	140.0	12.505	34.898	26.434
40.0	15.260	35.154	26.052	160.0	12.338	34.886	26.458
50.0	14.983	35.135	26.099	180.0	12.280	34.880	26.465
60.0	14.384	35.078	26.186	200.0	11.924	34.856	26.515
70.0	14.082	35.035	26.217	300.0	10.452	34.758	26.710
80 0	14 005	35 017	26 226				

STATION PC7064: 28 55.5 N 112 41.0 W 16/3/85 718Z 628/633m

Day: 75.30 SST: 16.8 Tdry: 16.0 Twet: 13.5 Wepd: 3.4 CTD #: 3 STA.T3.POSITION IS 113 AT 5.0 ON PTA WILLARD. ANC 26 SEP 85 CH:WD,CD. POS:OK

PROGRAM ASSESSED CORRESPOND BROSDED BRODDED BESTERN BRODDED CORRESPOND CORRESPOND

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.612	35,215	25.789	100.0	13.346	34.952	26.307
10.0	16.101	35.203	25.899	120.0	13.139	34.929	26.332
20.0	15.884	35.194	25.942	140.0	12.713	34.905	26.399
30.0	15,453	35.163	26.016	160.0	12.562	34.893	26.420
40.0	14.896	35,118	26.105	180.0	12.252	34.880	26.471
50.0	14.640	35.090	26.140	200.0	12.033	34.864	26.501
60.0	14.427	35.067	26,168	300.0	10.727	34.780	26.679
70.0	14.318	35.052	26.180	400.0	10.18 0	34.745	26.750
80.0	14.108	35.034	26.211	500.0	9.748	34.714	26.801
90.0	13.933	35.011	26.231	600.0	9.637	34.707	26.816

STATION PC7065: 28 52.3 N 112 39.4 W 16/ 3/85 852Z 752/ 757m

Day: 75.36 SST: 14.9 Tdry: 15.8 Twet: 13.6 Wapd: 3.9 CTD #: 3 STA.T4. 073 AT 3.5 PTA. WILLARD. ANC 10 OCT 85 CH:WD,CD. POS:ANC RADAR

PR	ΤE	SA	SGTH	PR	ΤE	SA	SGTH
2.0	14.590	34.975	26.060	120.0	12.945	34.899	26.347
10.0	14.554	34.968	26.063	140.0	12.519	34.886	26,422
20.0	14.330	34.955	26.101	160.0	12.206	34.864	26,467
30.0	14.254	34.952	26,115	180.0	11.876	34.847	26.517
40.0	14.122	34.947	26.140	200.0	11.860	34.844	26.518
50.0	13.692	34.937	26.223	300.0	11.264	34.811	26.696
60.0	13.667	34.935	26,226	400.0	10.414	34.761	26.721
70.0	13.640	34.934	26.232	500.0	9.981	34.729	26.773
80.0	13.636	34.931	26.230	600.0	9.654	34.712	26.817
90.0	13.624	34.928	26,231	700.0	9.657	34.712	26.818
100 0	13 622	34 923	26 228				

STATION PC7066: 28 48.5 N 112 35.0 W 16/3/85 1020Z 572/613m

Day: 75.43 SST: 15.2 Tdry: 15.1 Twet: 13.0 Wapd: 3.6 CTD #: 3 STA. T5. 350 AT 5.0 PTA WILLARD. ANC 10 OCT CH:WD,CD. POS:ANC RADAR *** uptrace ***

Property secretal respond testings and testing secretal secretal secretal secretal secretal secretal secretal secretarians.

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.749	34.968	26.020	100.0	13.240	34.938	26.318
10.0	14.620	34.970	26.050	120.0	13,118	34.926	26.334
20.0	13.843	34.945	26.196	140.0	12.965	34.920	26.360
30.0	13.761	34.938	26.208	160.0	12.759	34.907	26.392
40.0	13.658	34.935	26.228	180.0	12.385	34.881	26.446
50.0	13.590	34.932	26.240	200.0	11.972	34.864	26.513
60.0	13.397	34.928	26.277	300.0	10.142	34.752	26.759
70.0	13.332	34.931	26.293	400.0	9.793	34.725	26.8 00
80.0	13.253	34.936	26.313	500.0	9.771	34.722	26.803
90.0	13 285	34 941	26 310				

STATION PC7067: 28 48.0 N 112 31.5 W 16/3/85 1120Z 557/562m

Day: 75.47 SST: 15.4 Tdry: 15.1 Twet: 13.5 Wepd: 4.6 CTD #: 3 T6 RADAR ON CTD LOG SHEET, SATFIX GUASTO. ANC 22 OCT 85 CH:WD,CD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.257	34.992	25. 9 27	1 00 .0	13.154	34.886	26.295
10.0	14.559	34.969	26.063	120.0	13.089	34.895	26.315
20.0	14.351	34.959	26.1 00	140.0	12.976	34.897	26.340
30.0	14.221	34.950	26.121	160.0	12.809	34.890	26.369
40.0	14.132	34.943	26.135	180.0	12.492	34.868	26.415
50.0	13.706	34.924	26.210	200.0	11.639	34.831	26.550
60.0	13.622	34.915	26.220	300.0	10.148	34.745	26.753
70.0	13.293	34.895	26.273	400.0	9.989	34.735	26.774
80.0	13.161	34.889	26.295	500.0	9.916	34.730	26.785
04 4	13 162	34 887	28 204				

AND THE PARTY OF THE PARTY

reserve species ecosess

ed bestever september september bestever in

STATION PC7068: 28 42.4 N 112 29.3 W 16/ 3/85 1233Z 359/ 385m

Day: 75.51 SST: 15.6 Tdry: 14.9 Twet: 13.3 Wepd: 1.7 CTD #: 3 T7.SATFIX NG.REQUESTED POS 28 42.5,112 28.4.RDR ON LOG. ANC 10 OCT CH:WD,CD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.066	34.997	25.973	90.0	12.924	34.921	26.368
10.0	15.023	34.981	25.971	100.0	12.827	34.916	26.384
20.0	14.230	34.951	26.119	120.0	12.787	34.914	26.391
30.0	13.797	34.944	26.206	140.0	12.755	34.911	26.395
40.0	13.592	34.934	26.241	160.0	12.452	34.896	26.444
50.0	13.462	34.929	26.264	180.0	12.299	34.886	26.466
60.0	13.365	34.943	26.295	200.0	12.170	34.878	26.485
70.0	13.275	34.939	26.310	300.0	10.826	34.780	26.661
90 0	13 483	34 031	26 343				

STATION PC7069: 28 37.0 N 112 25.5 W 16/3/85 1342Z 243/248m

Doy: 75.56 SST: 13.8 Tdry: 14.9 Twet: 12.7 Wapd: 3.6 CTD #: 3
T8. SATFIX NG.RADAR 039 ● 8.8MI S.END TURNER ISL.
ANC 10 OCT 85 CH:WD,CD. POS:CINDY RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	13.557	34.954	26.262	80.0	12.992	34.929	26.360
10.0	13.551	34.953	26,263	90.0	12.903	34.921	26.372
20.0	13.500	34.951	26.272	100.0	12.701	34.911	26.405
30.0	13.358	34.939	26.292	120.0	12.514	34.896	26.430
40.0	13.256	34.923	26.301	140.0	12.403	34.887	26.446
50.0	13.192	34.924	26.315	160.0	12.068	34.844	26.478
60.0	13.190	34.932	26.322	180.0	11.944	34.829	26.490
70.0	13.127	34.936	26.338	200.0	11.717	34.815	26.523

STATION PC7070: 28 .0 N 112 17.8 W 16/ 3/85 129Z 1097/1102m

Day: 76.05 SST: 17.4 Tdry: 17.3 Twet: 14.5 Wepd: 8.7 CTD #: 3 WS-15.0MEGA FIX.RADAR353 AT 22MI S PT S PEDRO MARTYR.
ANC 10 OCT 85 CH:WD,CD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SCTH
2.0	16.982	35.109	25.620	140.0	13.055	34.923	26.344
10.0	15.828	35.064	25.855	160.0	13.018	34.917	26.348
20.0	15.289	35.034	25.953	180.0	12.985	34.912	26.351
30.0	15.297	35.031	25.949	200.0	12.595	34.883	26.407
40.0	15.253	35.028	25.957	300.0	10.128	34.660	26.690
50.0	15.123	35.020	25.980	400.0	8.925	34.599	26.843
60.0	14.386	34.999	26,124	500.0	7.892	34.571	26.981
70.0	14.109	34.984	26.172	600.0	7.043	34.544	27.083
80.0	14.003	34.974	26.187	700.0	6.412	34.533	27.160
90.0	13.964	34.969	26.192	800.0	5.881	34.537	27.232
100.0	13.783	34.960	26.223	900.0	5.152	34.540	27.323
120.0	13.346	34.938	26.297	1000.0	4.850	34.546	27.364

STATION PC7071: 28 4.3 N 112 23.9 W 16/3/85 338Z 1015/1030m

Day: 76.14 SST: 16.3 Tdry: 16.8 Twet: 14.4 Wspd: 12.9 CTD #: 3 WS-14.POS IS OMEGA.RADAR 015AT17MI S. SAN PEDRO MARTYR.
ANC 10 OCT 85 CH:CD,WD. POS:SAIL

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.427	35.139	25.774	140.6	12.503	34.838	26.388
10.0	15.796	35.088	25.880	160.0	12.249	34.813	26.419
20.0	15.546	35.071	25.924	180.0	12.175	34.804	26.427
30.0	14.890	35.029	26.038	200.0	11.961	34.790	26.457
40.0	14.735	35.015	26.061	300.0	9.722	34.645	26.747
50.0	14.573	34.999	26.084	400.0	8.861	34.609	26.861
60.0	13.980	34.972	26.190	500.0	8.018	34.574	26.965
70.0	13.766	34.957	26.223	600.0	7.007	34.544	27.088
80.0	13.690	34,946	26, 231	700.0	6.394	34.538	27.166
90.0	13.441	34.927	26.268	800.0	5.814	34.536	27.240
100.0	13.342	34.914	26.278	900.0	4.880	34.544	27.358
120.0	12.958	34.880	26.330	1000.0	4.705	34.547	27.381

PROGRAM DESCRIPTION OF STREET, STREET,

PARADRAN MANAGAN MANAGAN SORRAN PROGRAM

STATION PC7072: 28 15.0 N 112 28.5 W 16/3/85 551Z 846/851m

Day: 76.23 SST: 17.2 Tdry: 15.9 Twet: 14.5 Wspd: 14.7 CTD #: 3 WS-13.BATHY POS 198.RADAR045,9.4MI S PEDRO M. ANC 22 OCT 85 CH:WD,CD,T. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.6	17.070	35.174	25.649	120.0	13.112	34.906	26.319
10.6	15.900	35.105	25.870	140.0	12.433	34.814	26.383
20.0	15.741	35.089	25.894	160.0	12.185	34.804	26.424
30.0	15.751	35.079	25.884	180.0	11.796	34.765	26.469
40.0	15.729	35.070	25.883	200.0	11.481	34.735	26.505
50.0	15.239	35.042	25.971	300.0	9.943	34.648	26.712
60.0	14.854	35.010	26.032	400.0	8.957	34.606	26.844
70.0	14.208	34.961	26,133	500.0	8.065	34.587	26.968
80.0	13.643	34.910	26.213	600.0	7.739	34.571	27.005
90.0	13.365	34.885	26.251	700.0	7.230	34.557	27.068
100.0	13.339	34.897	26.266	800.0	6.215	34.540	27.192

STATION PC7073: 28 22.0 N 112 35.6 W 17/ 3/85 744Z 464/ 469m

Day: 76.31 SST: 15.1 Tdry: 15.1 Twet: 14.2 Wapd: 9.9 CTD #: 3 WS-12 OMEGA POSITIONING WAS USED ANC 10 OCT 85 CH:CD.WD,T. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.825	35.061	26.075	90.0	13,444	34.948	26.283
10.0	14.758	35.051	26.083	100.0	13,290	34.939	26.308
20.0	14.174	35.008	26.175	120.0	12.991	34.921	26,355
30.0	13.976	34.991	26,204	140.0	12,758	34.897	26.384
40.0	13.880	34.981	26.217	160.0	12.597	34.883	26,405
50.0	13.777	34.973	26.233	180.0	12,507	34.883	26.423
60.0	13.761	34.970	26.234	200.0	12.155	34.855	26,471
70.0	13.733	34.966	26.237	300.0	10.047	34.670	26.712
80.0	13.535	34.956	26.271	400.0	8.497	34.623	26,929

STATION PC7074: 28 29.4 N 112 43.1 W 17/ 3/85 956Z 760/ 765m

Day: 76.40 SST: 14.7 Tdry: 15.1 Twet: 14.3 Wspd: 5.3 CTD #: 3 WS -11 ANC 18 OCT 85 CH:WD,CD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.587	35.030	26.103	120.0	12.847	34.908	26.374
10.0	14.605	35.037	26.105	140.0	12.768	34.904	26.387
20.0	14.582	35.029	26.104	160.0	12.718	34.898	26,393
30.0	14.587	35.028	26.103	180.0	12.548	34.884	26.416
40.0	14.466	35.029	26.130	200.0	12,401	34.873	26.437
50.0	14.406	35.019	26.135	300.0	11.887	34.853	26.523
60.0	14.191	34.996	26.164	400.0	11.790	34.844	26.536
70.0	13.938	34.979	26.204	500.0	11.517	34.822	26.573
80.0	13.699	34.962	26.241	600.0	11.210	34.802	26.616
90.0	13.276	34.937	26.309	700.0	11,275	34.803	26.607
100.0	13.096	34 925	26.337				

STATION PC7075: 28 32.0 N 112 51.2 W 17/ 3/85 1144Z 789/ 794m

Day: 76.48 SST: 15.3 Tdry: 15.6 Twet: 13.8 Wapd: 7.1 CTD #: 3 WS10 ANC 18 OCT 85 CH:WD,CD. POS:ANC RADAR

Westisse brooks without absence meeting received

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.140	35,078	26.019	120.0	13.066	34.931	26.348
10.0	14.823	35.046	26.065	140.0	12.930	34.918	26.366
20.0	14.568	35.025	26.104	160.0	12.723	34.901	26.394
30.0	14.441	35.016	26.125	180.0	12.603	34.890	26.410
40.0	14.115	34.991	26.175	200.0	12.560	34.886	26.416
50.0	13.872	34.967	26.208	300.0	12.124	34.851	26.476
60.0	13.712	34.961	26,237	400.0	11.666	34.818	26.540
70.0	13.699	34.960	26.239	500.0	11.406	34.805	26.580
80.0	13.442	34.945	26.281	600.0	11.370	34.804	26.588
90.0	13.315	34.938	26.302	700.0	11.270	34.797	26.604
100 0	13 172	34 937	28 331			-	

STATION PC7076: 28 36.0 N 112 56.5 W 17/ 3/85 1335Z 1327/1332m

Day: 76.56 SST: 15.1 Tdry: 15.1 Twet: 13.2 Wapd: 8.0 CTD #: 3 WS9
ANC 17 OCT 85 CH:T,WD,CD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.971	35.087	26.063	180.0	12.574	34.887	26.413
10.0	14.983	35.081	26.056	200.0	12.351	34.871	26.445
20.0	14.934	35.071	26.060	300.0	12.938	34.846	26.488
30.0	14.241	35.030	26.178	400.0	11.836	34.832	26.519
40.0	13.956	35.014	26.227	500.0	11.629	34.816	26.547
50.0	13.738	34.996	26.259	600.0	11.460	34.810	26.576
60.0	13.640	34.990	26.275	700.0	11.310	34.800	26.599
70.0	13.385	34.965	26.308	800.0	11.292	34.798	26.603
80.0	13.240	34.954	26.329	900.0	11.181	34.785	26.615
90.0	13.195	34.948	26.334	1000.0	11.131	34.783	26.625
100.0	13.037	34.934	26.356	1100.0	11.092	34.777	26.630
120.0	12.918	34.924	26.372	1200.0	11.078	34.775	26.633
140.0	12.878	34.918	26.376	1300.0	11.031	34.764	26.636
160.0	12.820	34.909	26.381				

STATION PC7077: 28 41.9 N 113 .6 W 17/ 3/85 1545Z 1509/1514m

Day: 76.64 SST: 16.4 Tdry: 15.9 Twet: 14.2 Wapd: 7.0 CTD #: 3 WSB . POSITIONING IS NOT CORRECT ANC 22 OCT 85 CH:WD,CD,T. POS:CINDY RADAR *** uptrace ***

STANDARD COORDINATION CONTROL CONTROL

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.125	35,198	25.889	200.0	12.149	34.872	26.485
10.0	15.824	35,188	25.951	300.0	12.051	34.861	26.498
20.0	15,415	35.164	26.025	400.0	11.808	34.842	26.532
30.0	14.689	35.108	26.142	500.0	11.566	34.809	26.554
40.0	14.298	35.061	26,190	600.0	11.344	34.798	26.589
50.0	13.841	35.017	26.253	700.0	11.266	34.791	26.600
60.0	13.796	35.004	26.253	800.0	11.215	34.787	26.608
70.0	13.724	34.994	26.261	900.0	11.149	34.783	26.620
80.0	13.558	34.981	26.285	1000.0	11.113	34.778	26.625
90.0	13.286	34.963	26.327	1100.0	11.039	34.767	26.632
100.0	12.835	34.941	26.401	1200.0	11.044	34.769	26.635
120.0	12.716	34.925	26.413	1300.0	11.016	34.763	26.638
140.0	12.581	34.907	26.426	1400.0	11.027	34.766	26.640
160.0	12.508	34.898	26.434	1500.0	11.040	34.765	26.640
180.0	12.320	34.885	26.461		•		

STATION PC7078: 28 52.2 N 113 11.1 W 17/ 3/85 1802Z 1281/1286m

Day: 76.75 SST: 16.3 Tdry: 16.6 Twet: 13.8 Wspd: 8.8 CTD #: 3 WS7
ANC 11 OCT 85 CH:CD,WD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.744	35.142	25.933	160.0	13.166	34.958	26.35 0
10.0	15.290	35.137	26.032	180.0	13.050	34.942	26.361
20.0	14.872	35.116	26.108	200. 0	12.894	34.933	26.386
30.0	14.740	35.107	26.13 0	300.0	12.187	34.860	26.471
40.0	14.599	35.094	26.151	400.0	11.758	34.822	26.525
50.0	14.449	35.076	26.170	500.0	11.496	34.803	26.562
60.0	14.326	35.062	26.186	600.0	11.320	34.792	26.588
70.0	14.223	35.047	26.197	700.0	11.194	34.787	26.610
80.0	14.046	35.032	26.223	800.0	11.139	34.780	26.617
90.0	13.754	35.008	26.266	900.0	11.078	34.773	26.625
100.0	13.613	35.000	26.289	1000.0	11.041	34.767	26.629
120.0	13.480	34.986	26.306	1100.0	10.994	34.758	26.633
140.0	13.412	34.979	26.315	1200.0	10.987	34.757	26.636

STATION PC7079: 28 1.5 N 113 16.4 W 17/ 3/85 320Z 1224/1229m

Doy: 77.13 SST: 15.2 Tdry: 16.8 Twet: 14.1 Wspd: 3.7 CTD #: 3 WS6.SAT NAV SEEMS OK NOW.
ANC 22 OCT 85 CH:WD,CD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.969	34.916	25.932	160.0	13.048	34.938	26.358
10.0	14.882	34.984	26.0 0 4	180.0	12.982	34.926	26,363
20.0	14.439	35.051	26.152	200.0	12.542	34.888	26.421
30.0	14.270	35.042	26.181	300.0	12.129	34.849	26.473
40.0	14.028	35.024	26.219	400.0	11.864	34.822	26.505
50.0	13.819	35.008	26.251	500.0	11.492	34.794	26.556
60.0	13.687	34.996	26.269	600.0	11.365	34.788	26.577
70.0	13.590	34.989	26.284	700.0	11.211	34.774	26.597
80.0	13.502	34.982	26.297	800.0	11.129	34.768	26.609
90.0	13.486	34.978	26.298	900.0	11.085	34.763	26.616
100.0	13.368	34.967	26.314	1000.0	10.996	34.751	26.625
120.0	13.233	34.959	26.336	1100.0	10.996	34.750	26,626
140.0	13.102	34.946	26.353	1200.0	10.992	34.748	26.628

STATION PC7080: 29 9.2 N 113 24.1 W 17/ 3/85 543Z 967/ 972m

Day: 77.23 SST: 15.0 Tdry: 16.0 Twet: 14.0 Wepd: 2.2 CTD #: 3 WS-5.
ANC 22 OCT 85 CH:WD,CD,T. POS:ANC RADAR

Egget assessed assessed acceptant acceptant acceptant acceptant acceptant restriction resolvents acceptant to

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.756	35.069	26. 0 97	140.0	13.243	34.953	26.33 0
10.0	14.752	35.071	26.099	160.0	13.040	34.928	26.352
20.0	14.635	35.067	26,122	180.0	12.696	34.902	26.401
30.0	14.611	35.059	26.121	200.0	12.595	34.892	26.414
40.0	14.604	35.062	26.125	300.0	12,129	34.846	26.471
50.0	14.087	35.030	26.212	400.0	11.838	34.817	26.506
60.0	13.897	35.015	26.240	500.0	11.467	34.789	26.556
70.0	13.843	35.008	26.247	600.0	11.231	34.774	26.590
80.0	13.795	35.002	26.252	700.0	11.106	34.765	26.609
90.0	13.780	35.000	26.254	800.0	11.061	34.758	26.614
100.0	13.698	34.994	26.267	900.0	11.035	34.753	26.617
120.0	13.430	34.973	26.306	00000			

STATION PC7081: 29 15.2 N 113 33.8 W 18/ 3/85 732Z 577/ 582m

Day: 77.31 SST: 15.0 Tdry: 16.0 Twet: 13.7 Wepd: 5.7 CTD #: 3 WS4 ANC 11 OCT 85 CH:CD,WD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.685	35.070	26.113	100.0	13.609	34.986	26.279
10.0	14.694	35.067	26.109	120.0	13.552	34.980	26.287
20.0	14.623	35.061	26.120	140.0	13.446	34.973	26.304
30.0	14.214	35.034	26.187	160.0	13.404	34.968	26.309
40.0	14.205	35.032	26.188	180.0	13.444	34.969	26.302
50.0	14.044	35.021	26.214	200.0	13.307	34.955	26.320
60.0	14.035	35.017	26.213	300.0	12.599	34.889	26.413
70.0	13.894	35.008	26.236	400.0	11.925	34.830	26.500
80.0	13.903	35.006	26.233	500.0	11.610	34.803	26,541
00.0	17 774	34 004	26 260	2000			

STATION PC7082: 29 22.2 N 113 41.6 W 18/ 3/85 910Z 730/ 735m

Day: 77.38 SST: 14.0 Tdry: 15.9 Twet: 13.6 Wapd: 4.8 CTD #: 3 WS3 ANC 11 OCT 85

PARTICLE STREET, STREET, MARKET BASSON BONDON STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET,

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	13.794	34.991	28.242	120.0	13.063	34.928	26.346
10.0	13.706	34.982	26.253	140.0	12.924	34.918	26.367
20.0	13.622	34.976	26.266	160.0	12.848	34.910	26.376
30.0	13.590	34.972	26.270	180.0	12.768	34.902	26.387
40.0	13.478	34.964	26.287	200.0	12.591	34.887	26.411
50.0	13.463	34.963	26.298	300.0	12.077	34.846	26.481
60.0	13.452	34.960	26.290	400.0	11.869	34.829	26.510
70.0	13.436	34.958	26.292	500.0	11.712	34.814	26.530
80.0	13.375	34.953	26.301	600.0	11.590	34.806	26.549
90.0	13.346	34.950	26.305	700.0	11.528	34.800	26.559
100 0	13 220	34 941	26 322				

STATION PC7083: 29 29.2 N 113 48.5 W 18/ 3/85 1055Z 852/ 857m

Day: 77.44 SST: 14.8 Tdry: 16.0 Twet: 13.2 Wspd: 9.8 CTD #: 3 WS2 ANC 17 OCT 85 CH:WD,CD. POS:ANC RADAR

00	75	64	DOTU	-	75	SA	SGTH
PR	TE	SA	SGTH	PŘ	TE	3A	
2.0	14.743	35.097	26.121	120.0	13.054	34.923	26.344
10.0	14.755	35.094	26.116	140.0	12.907	34.911	26.365
20.0	14.715	35.092	26.124	160.0	12.858	34.907	26.372
30.0	14.710	35.090	26,124	180.0	12.752	34.896	26.385
40.0	14.703	35.087	26.123	200.0	12.459	34.872	26.425
50.0	14.630	35.079	26.133	300.0	12.050	34.837	26.479
60.0	14.543	35.067	26.143	400.0	11.801	34.812	26.510
70.0	14.456	35.056	26.154	500.0	11.635	34.801	26.535
80.0	14.134	35.019	26.194	600.0	11.498	34.791	26.555
90.0	13.701	34.977	26.253	700.0	11.420	34.787	26.568
100.0	13.594	34.964	26.265	800.0	11.294	34.776	26.585

STATION PC7084: 29 37.8 N 113 57.0 W 18/ 3/85 1248Z 940/ 945m

Day: 77.52 SST: 16.1 Tdry: 16.6 Twet: 14.1 Wepd: 8.6 CTD #: 3
WS1
ANC 22 OCT 85 CH:WD,CD,T. POS:CINDY RADAR

PR TE SA SGTH PR TE SA
2.0 15.925 35.242 25.969 140.0 12.926 34.922
10.0 15.858 35.238 25.981 160.0 12.791 34.905
20.0 15.746 35.215 25.989 180.0 12.701 34.893
30.0 15.558 35.205 26.025 200.0 12.612 34.889

2.0	13.923	JJ . Z4Z	23.909	140.0	12.920	34.922	20.3/0
10.0	15.858	35.238	25.981	160.0	12.791	34.905	26.384
20.0	15.746	35.215	25.989	180.6	12.701	34.893	26.393
30.0	15.558	35.205	26.025	200.0	12.612	34.889	26.408
40.0	15.216	35.164	26.070	300.0	11.940	34.825	26.491
50.0	14.579	35,101	26.161	400.0	11.521	34.796	26.549
60.0	14,188	35.054	26.209	500.0	11.344	34.786	26.577
70.0	13.997	35.030	26.231	600.0	11.278	34.779	26.586
80.0	13.771	35.005	26.260	700.0	11.288	34.780	26.587
90.0	13.484	34.979	26.299	800.0	11.267	34.778	26.592
100.0	13.405	34.968	26.307	900.0	11.186	34.779	26.610
120.0	13.099	34.940	26.348			• • • • • • • • • • • • • • • • • • • •	
		T					

SGTH

STATION PC7085: 29 37.5 N 114 3.8 W 18/ 3/85 1432Z 66/ 75m

Day: 77.60 SST: 16.4 Tdry: 19.8 Twet: 11.9 Wapd: 9.5 CTD #: 3 NG2-26 ANC 11 OCT 85 CH:WD,CD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.084	35.225	25.919	40.0	15.219	35.147	26.056
10.0	15.993	35.219	25.936	50.0	13.867	35.027	26.256
20.0	15.539	35.199	26.024	60.0	13.480	34.986	26.304
30.0	15.355	35.166	26.040				

Contract and the second and the second and the second seco

problem levered tropping kededed

STATION PC7086: 29 46.6 N 114 6.4 W 18/ 3/85 1537Z 343/ 348m

Day: 77.64 SST: 19.5 Tdry: 12.9 Twet: 12.9 Wepd: 1.1 CTD #: 3 NG2-25,MISTAKE ,WET=19.12,DRY=12.86,SST=15.83 ANC 11 OCT 85 CH:WD,CD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.228	35.197	25.865	90.0	13.611	34.979	26.273
10.0	16.166	35.189	25.873	100.0	13.517	34.970	26.286
20.0	15.509	35.151	25.994	120.0	13.237	34.942	26.322
30.0	15.168	35.110	26.039	140.0	12.868	34.913	26.374
40.0	14.840	35.076	26.085	160.0	12.799	34.903	26.381
50.0	14.242	35.038	26.185	180.0	12.751	34.897	26.386
60.0	14.046	35.026	26.217	200.0	12.649	34.886	26.398
70.0	13.882	35.008	26.238	300.0	11.946	34.821	26.487
90 0	17 747	74 000	26 255				

STATION PC7087: 29 52.7 N 114 5.5 W 18/ 3/85 1642Z 492/ 497m

Day: 77.68 SST: 16.5 Tdry: 19.7 Twet: 12.9 Wspd: 3.3 CTD #: 3
NG2-24
ANC 13 OCT 85 CH:WD,CD. POS:ANC RADAR *** uptrace ***

CONTRACT CONTRACTOR CONTRACT CONTRACT CONTRACT CONTRACT CONTRACTOR CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACTOR CONTRACT CONTRA

PR	ΤE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.259	35.296	25.933	90.0	13.941	35.046	26.256
10.0	16.161	35.298	25.958	100.0	13.804	35.023	26.267
20.0	15.915	35.293	26.011	120.0	13.404	34.976	26.314
30.0	15.852	35.285	26.020	140.0	13,177	34.956	26.345
40.0	15.783	35.274	26.027	160.0	12.874	34.927	26.384
50.0	15.496	35.244	26.069	180.0	12.745	34.914	26.401
60.0	15.131	35.202	26.119	200.0	12,642	34.900	26.411
70.0	14.775	35.158	26, 163	300.0	11.952	34.830	26.492
80.0	14.232	35.090	26.228	400.0	11.680	34.815	26.535

STATION PC7088: 29 57.0 N 114 3.9 W 18/ 3/85 1750Z 469/ 474m

TOOK BECAUSE TOOKSTOOM SUBSUING ACCORDING BUILDING BUILDING BUILDING BUILDING BUILDING BUILDING BUILDING BUILDING

77 73 SST: 1.4 Tdry: 18.7 Twet: 14.3 Wepd: 7.2 CTD #: 3 Doy NG2-23 ANC 23 OCT 85 CH:WD,CD,T. POS:CINDY RADAR SGTH TE SA SGTH TE SA 16.343 35.286 25.906 90.0 15.101 35.172 35.105 26.103 2.0 14.642 26.152 26.271 25.951 25.961 100.0 16.159 10.0 35.288 34.975 20.0 16.108 35.286 120.0 13.611 34.926 26.321 30.0 16.027 35.290 25.983 140.0 13.183 12.924 12.735 12.547 160.0 34.900 26.354 15.956 40.0 35.285 25.996 34.884 26.379 180.0 50.0 15.876 35.277 26.009 34.874 26.409 26.457 35.269 35.227 35.207 200.0 60.0 15.759 26.029 15.386 15.295 26.082 26.087 70.0 12.225 34.852 300.0 11.781 34.819 26.519 400.0 80.0

PERSONAL LANGESTA, DESPESAS, CONTROL

STATION PC7089: 30 6.0 N 113 57.2 W 18/3/85 1933Z 408/413m

Day: 77.81 SST: 17.3 Tdry: 18.5 Twet: 15.0 Wepd: 12.2 CTD #: 3 NG2-22. WAKE UP.
ANC 13 OCT 85 CH:WD,CD. POS:SHL/OMEGA

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	17.191	35.361	25.763	90.0	15.975	35.315	26.017
10.0	16.984	35.366	25.817	100.0	15.885	35.300	26.026
20.0	16.549	35.357	25.913	120.0	15.734	35.264	26.033
30.0	16.409	35.354	25.944	140.0	14.740	35.122	26.145
40.0	16.244	35.346	25.977	160.0	13.997	35.021	26.227
50.0	16.217	35.342	25.980	180.0	13.381	34.957	26.306
60.0	16.205	35.339	25.981	200.0	13.172	34.938	26.334
70.0	16.134	35.332	25.992	300.0	12.227	34.847	26.453
80.0	16.091	35.327	25.999	400.0	11.752	34.813	26.520

STATION PC7090: 29 14.9 N 113 55.4 W 18/ 3/85 2058Z 299/ 304m

Day: 77.86 SST: 17.4 Tdry: 19.1 Twet: 15.5 Wepd: 11.4 CTD #: 3 NG2-21.TOOK US A LONG TIME BUT HERE WE GO. ANC 14 OCT 85 CH:WD,CD. POS:SHL/OMEGA

Indonesia descendi inscrissio independente proposita positional secondistra secondistra secondistra

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	17.214	35.352	25.751	90.0	15.868	35,298	26.028
10.0	16.774	35.356	25.859	100.0	15.839	35.290	26.029
20.0	16.449	35.353	25.934	120.0	15.448	35.232	26.073
30.0	16.341	35.348	25.955	140.0	15.056	35,161	26.106
40.0	16.298	35.343	25.962	160.0	14.314	35.059	26.189
50.0	16.239	35.336	25.971	180.0	13.188	34.935	26.328
60. 0	16.096	35.325	25.995	200.0	12.907	34.901	26.359
70.0	15.924	35.309	26.023	300.0	12.279	34.843	26.440
RA A	15 011	36 305	26 627	••••			

STATION PC7091: 30 20.6 N 113 51.5 W 18/ 3/85 2219Z 287/ 292m

Day: 77.92 SST: 17.4 Tdry: 20.6 Twet: 15.7 Wspd: 14.2 CTD #: 3 NG2−20.ANDIAMO.
ANC 14 OCT 85 CH:WD,CD. POS:SHL/OMEGA

interestation appropriate appropriate activities

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	17.093	35.334	25.766	80.0	15.764	35.280	26.037
10.0	16.768	35.344	25.851	90.0	15.623	35.257	26.052
20.0	16.355	35.338	25.944	100.0	15.514	35.235	26.060
30.0	16.201	35.325	25.970	120.0	14.836	35.143	26.140
40.0	16.164	35.321	25.976	140.0	13.975	35.023	26.233
50.0	16.072	35.313	25.991	160.0	13.733	34.989	26.257
60.0	15.926	35.304	26.018	180.0	13.340	34.952	26.310
70.0	15.812	35.290	26.034	200.0	12.615	34.871	26.393

STATION PC7092: 30 27.7 N 113 51.6 W 18/ 3/85 2352Z 154/ 159m

Day: 77.98 SST: 17.1 Tdry: 19.9 Twet: 15.8 Wapd: 25.9 CTD #: 3 NG2-19.SOME BLKUE AIR DELAY IN ARRIVING. ANC 14 OCT 85 CH:WD,CD. POS:SHL/?

SOSO PROCESS POSSONO PROCESSO PONTO PONTO

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.825	35.307	25.809	70.0	15.236	35.193	26.089
10.0	16.713	35.289	25.822	80.0	15.018	35.166	26.117
20.0	15.905	35.253	25.982	90.0	14.918	35,147	26.124
30.0	15.808	35.243	25.997	100.0	14.365	35.079	26.192
40.0	15.835	35.253	25.999	120.0	13.682	34.992	26.269
50.0	15.819	35.253	26.003	140.0	12.852	34.901	26.368
80 0	15 728	36 244	26 017				

STATION PC7093: 30 34.5 N 113 50.0 W 18/ 3/85 111Z 92/ 97m

Day: 78.05 SST: 16.4 Tdry: 18.9 Twet: 15.3 Wapd: 25.5 CTD #: 3 NG2−18.REALLY ROLLING ANC 4 NOV 85 CH:WD,CD. POS:SHL/?

CONTRACT PRODUCTION OF STREET, SECTIONS CONTRACT STREET, SECTION OF STREET, ST

PR	ΤE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.028	35.251	25.952	50.0	14.973	35.199	26.151
10.0	15.934	35.239	25.965	60.0	14.054	35.099	26.272
20.0	15.534	35.243	26.059	70.0	14.041	35.093	26.271
30.0	15.511	35.244	26.065	80.0	13.968	35.075	26.272
40.0	15.409	35.231	26.078	90.0	13.952	35.076	26.277

STATION PC7094: 30 42.7 N 113 48.4 W 18/ 3/85 231Z 67/ 72m

Day: 78.10 SST: 16.6 Tdry: 17.9 Twet: 15.0 Wapd: 19.0 CTD #: 3 NG2-16A.FIX IS OMEGA, STANAY GUASTO. SEAS ABATING. 14 OCT 85 CH:WD,CD. POS:SHL/?

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.361	35.267	25.887	40.0	15.414	35.229	26.976
10.0	16.254	35.258	25.906	50.0	14.708	35.188	26.200
20.0	15.822	35.257	26.004	60.0	14.668	35.207	26.224
30 0	15 675	35 252	26 634				

STATION PC7095: 30 50.5 N 113 46.2 W 18/3/85 343Z 70/75m

Day: 78.14 SST: 16.8 Tdry: 18.0 Twet: 15.3 Wepd: 10.0 CTD #: 3 NG2-16A.POS IS OMEGA.JACK SAYS EYE OF HURRICANE IS PAST. ANC 14 OCT 85 CH:WD,CD. POS:SHL/OMEGA

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.604	35.330	25.879	40.0	15.370	35.264	26.113
10.0	16.510	35.313	25.888	50.0	14.864	35.221	26.192
20.0	15.679	35.278	26.053	60.0	14.678	35.230	26.239
30.0	15.499	35.284	26.099	70.0	14.682	35.239	26.246

STATION PC7096: 31 .8 N 113 44.5 W 18/3/85 506Z 62/67m

accepted control comment business which

edicines (colored) reserves a lauricies

Day: 78.21 SST: 16.8 Tdry: 16.7 Twet: 13.1 Wapd: 32.6 CTD #: 3 NG2-16.0MEGA POS. JACK WAS RIGHT. ANC 14 OCT 85 CH:WD,CD. POS:SHL/?

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.515	35.320	25.892	40.0	15.126	35.290	26.187
10.0	16.475	35.306	25.891	50.0	15.111	35.289	26.190
20.0	16.100	35.302	25.975	60. 0	15.003	35.269	26.198
10 A	45 707	75 004	00 100				

STATION PC7097: 31 7.2 N 113 41.9 W 18/ 3/85 622Z 36/ 41m

Day: 78.26 SST: 16.6 Tdry: 16.6 Twet: 12.5 Wepd: 25.0 CTD #: 3 NG2-15A. RADAR ON PTA PENASCO;031 AT 11.5 MI. ROLLING O OP ANC 14 OCT 85 CH:WD,CD. POS:SHL/RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.360	35.434	26.016	20.0	16.128	35.411	26.053
10.0	16.381	35.430	26.008	30.0	15.803	35.452	26, 159

area expanse energy associate executes

STATION PC7098: 31 13.7 N 113 46.7 W 19/ 3/85 746Z 16/ 21m

Day: 78.31 SST: 16.7 Tdry: 15.3 Twet: 11.2 Wapd: 31.0 CTD #: 3
NG2-14
ANC 23 OCT 85 CH:T,WD,CD. POS:CINDY RADAR

PR TE SA SGTH PR TE SA

2.0 16.532 35.570 26.080 10.0 16.549 35.561 26.069

SGTH

STATION PC7099: 31 11.0 N 113 53.0 W 19/ 3/85 900Z 46/ 52m

Day: 78.38 SST: 16.3 Tdry: 15.1 Twet: 11.6 Wspd: 22.8 CTD #: 3 NG2−13A ANC 24 OCT 85 CH:WD,CD. POS:CINDY RADAR *** uptrace ***

manage secretary reseasons to second

PR	TE	SA	SGTH	PR	TÉ	SA	SGTH
2.0	16.151	35.500	26.115	30.0	15.941	35.543	26.197
10.0	16.150	35.501	26.116	40.0	15.900	35.550	26.212
20.0	16.144	35.502	26.119				

STATION PC7100: 31 4.0 N 114 59.5 W 19/ 3/85 1031Z 59/ 64m

Day: 78.43 SST: 16.0 Tdry: 14.7 Twet: 11.2 Wspd: 16.0 CTD #: 3 NG2-13A ANC 14 OCT 85 CH:WD,CD. POS:ANC RADAR *** uptrace ***

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.771	35.326	26.068	40.0	15.230	35.361	26.218
10.0	15.771	35.328	26.070	50.0	15.109	35.381	26.261
20.0	15.745	35.330	26.078	60.0	15.122	35.376	26.255
30.0	15.591	35.339	26.120				

STATION PC7101: 31 4.8 N 114 13.2 W 19/ 3/85 1317Z 159/ 164m

Day: 78.45 SST: 15.8 Tdry: 15.6 Twet: 12.7 Wspd: 23.0 CTD #: 3 NG2-13 REDONE. NAB.
ANC 14 OCT 85 CH:T,WD,CD. POS:ANC RADAR

Participation participation of the participation of

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.565	35.295	26.091	70.0	14.604	35.268	26.285
10.0	15.585	35.285	26.079	80.0	14.566	35.260	26.287
20.0	15.593	35.281	26.075	90.0	14.397	35.230	26.301
30.0	15.399	35.281	26.119	100.0	13.838	35.114	26.330
40.0	15.129	35.305	26.198	120.0	13.886	35.148	26.347
50.0	14.868	35.294	26.247	140.0	13.950	35.185	26.363
60 A	14 725	35 278	26 266				

PROCESSES PROCESSES SECRETARISM (CONFIDENCE RECORDS)

STATION PC7102: 31 2.1 N 114 22.2 W 19/ 3/85 1438Z 35/ 42m

Day: 78.60 SST: 16.1 Tdry: 15.7 Twet: 12.5 Wspd: 14.0 CTD #: 3 NG1-12. SATNAV SUSPECT 8.7 310 TO CONSAG ROCK. ANC 14 OCT 85 CH:WD,CD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.707	35.170	25.963	20.0	15.684	35.170	25.969
10.0	15.714	35.165	25.958	30.0	15.594	35.184	26.000

STATION PC7103: 30 58.0 N 114 30.8 W 19/ 3/85 1538Z 21/ 26m

Contract Concentral Children Science Concentral

the second of th

Day: 78.64 SST: 16.4 Tdry: 16.0 Twet: 12.6 Wspd: 8.2 CTD #: 3 NG2-11. 005 0 7 MI FROM CONSAG ROCK. SATNAV SUSPECT. ANC 14 OCT 85 CH:WD,CD. POS:ANC RADAR

PR TE SA SGTH PR TE SA SGTH 2.0 16.211 35.113 25.804 20.0 16.198 35.113 25.808 10.0 16.205 35.112 25.805

STATION PC7104: 31 25.0 N 114 18.5 W 20/ 3/85 717Z 22/ 27m

Day: 79.30 SST: 16.5 Tdry: 16.6 Twet: 14.6 Wapd: 6.5 CTD #: 3 SF-1 *** uptrace ***
ANC 14 OCT 85 CH:WD,CD. POS:SHL/RADAR

PR TE SA SGTH PR TE SA SGTH 2.0 16.206 35.158 25.840 20.0 15.538 35.362 26.149 10.0 15.555 35.372 26.153

STATION PC7105: 31 16.5 N 114 14.5 W 20/ 3/85 832Z 100/ 105m

Day: 79.35 SST: 18.0 Tdry: 16.2 Twet: 14.8 Wapd: 14.3 CTD #: 3 SF-2 ANC 14 OCT 85 CH:WD,CD. POS:SHL/RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.851	35.349	26.068	30.0	14.631	35.272	26.281
10.0	15.591	35.332	26.114	40.0	14.619	35.271	26.283
20.0	14.962	35.295	26.226				

STATION PC7106: 31 5.0 N 114 11.0 W 20/ 3/85 956Z 158/ 163m

Day: 79.40 SST: 15.9 Tdry: 15.9 Twet: 15.1 Wapd: 8.3 CTD #: 3 SF-3 ANC 17 OCT 85 CH:WD,CD,T. POS:SHL/RADAR

CONTROL DISTINGTON DESCRIPTION OF STREET, STRE

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.670	35,281	26.057	70.0	14.795	35.292	26.262
10.0	15.614	35.313	26.094	80.0	13.961	35.122	26.310
20.0	15.443	35.305	26.127	90.0	13.934	35.129	26.321
30.0	15.302	35.305	26.159	100.0	13.835	35.123	26.338
40.0	14.995	35.309	26.230	120.0	14.197	35.231	26.345
50.0	14.815	35.285	26.252	140.0	13,426	35.058	26.373
60.0	14.783	35.275	26.251				

STATION PC7108: 30 46.0 N 114 9.0 W 20/ 3/85 1225Z 198/ 203m

Day: 79.51 SST: 16.4 Tdry: 16.2 Twet: 14.7 Wepd: 7.6 CTD #: 3 SF-5 *** uptrace ***
ANC 15 OCT 85 CH:WD,CD,T. POS:SHL/?

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.195	35.184	25.862	80.0	14.335	35.139	26.244
10.0	16.198	35.181	25.860	90.0	14.106	35.105	26.267
20.0	16.020	35.181	25.901	100.0	13.812	35.057	26.292
30.0	15.401	35.212	26.065	120.0	13.402	34.985	26.321
40.0	15.327	35.210	26.081	140.0	13.206	34.950	26.335
50.0	15.272	35.202	26.087	160.0	12.950	34.913	26.358
60.0	15.140	35.184	26.103	180.0	12.690	34.882	26.387
70.0	14.617	35.158	26.198	200.0	12.640	34.872	26.389

STATION PC7107: 30 55.8 N 114 12.0 W 20/ 3/85 1106Z 158/ 163m

TOTAL CONSTRUCTION OF THE PROPERTY OF THE PROP

Day: 79.46 SST: 16.1 Tdry: 16.2 Twet: 15.0 Wapd: 6.2 CTD #: 3 SF-4 ANC 15 OCT 85 CH:WD,CD. POS:SHL/? SA 35.245 35.253 35.254 35.247 35.241 35.234 PR 2.0 TE 15.816 SGTH 25.996 PR 70.0 TE 14.676 SA 35.190 **SGTH** 26.209 35.175 35.163 35.136 35.089 26.254 26.290 26.304 26.321 10.0 15.725 26.023 80.0 14.417 15.611 15.595 15.519 26.050 26.049 26.061 14.205 14.043 13.792 20.0 90.0 100.0 120.0 30.0 40.0 50.0 14.963 26.180 140.0 13.512 35.060 26.357 14.872 35.225 26.193

STATION PC7109: 30 38.6 N 114 2.9 W 20/ 3/85 1345Z 174/ 180m

Day: 79.56 SST: 16.1 Tdry: 15.8 Twet: 15.1 Wepd: 11.6 CTD #: 3 SF-6 ANC 15 OCT 85 CH:WD,CD. POS:SHL/?

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.088	35,260	25.945	70.0	14.420	35.069	26.171
10.0	16.082	35.255	25.943	80.0	13.897	34.994	26.225
20.0	15.807	35,229	25.986	90.0	13.175	34.915	26.313
30.0	15.558	35,199	26.020	100.0	12.925	34.884	26.339
40.0	15.207	35.176	26.081	120.0	12.637	34.862	26.380
50.0	14.886	35.133	26.119	140.0	12.459	34.846	26.403
60.0	14.769	35.115	26.131	160.0	12 438	34.842	26.405

ROPOLOGICAL MICKES SEED TO TO TO THE PROPERTY OF

STATION PC7110: 30 34.3 N 114 .7 W 20/ 3/85 1519Z 158/ 163m

Day: 79.63 SST: 16.2 Tdry: 15.9 Twet: 14.9 Wspd: 11.8 CTD #: 3 SF-7 ANC 15 OCT 85 CH:WD,CD. POS:SHL/?

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.057	35.234	25.932	70.0	13.951	35.005	26.222
10.0	16.052	35.235	25,935	80.0	13.600	34.963	26.263
20.0	15.788	35,191	25.961	90.0	13.207	34.920	26.310
30.0	15.487	35.162	26.008	100.0	12.972	34.894	26.338
40.0	14.998	35,125	26.088	120.0	12.555	34.854	26.390
50.0	14.712	35, 101	26.132	140.0	12.533	34.850	26.392
60 0	14 152	35 632	26 200				

STATION PC7111: 30 26.1 N 113 57.9 W 20/ 3/85 1630Z 224/ 229m

Day: 79.68 SST: 16.5 Tdry: 16.3 Twet: 14.4 Wapd: 6.7 CTD #: 3 SF-8 ANC 15 OCT 85 CH:WD,CD,T. POS:SHL/?

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.230	35.208	25.873	80.0	14.016	35.025	26.224
10.0	16.223	35.249	25.906	90.0	13.906	35.003	26.230
20.0	15.958	35.250	25.968	100.0	13.625	34.968	26.262
30.0	15.754	35.241	26.008	120.0	13.204	34.933	26.322
40.0	15.621	35.222	26.024	140.0	12.832	34.890	26.364
50.0	15.550	35.210	26.031	160.0	12.503	34.857	26.404
60.0	15.428	35.192	26.045	180.0	12.352	34.844	26.423
70 0	14.299	35.065	26.194	200.0	12.355	34.844	26.423

STATION PC7112: 30 14.4 N 113 50.0 W 20/ 3/85 1851Z 395/ 400m

Day: 79.77 SST: 17.0 Tdry: 17.1 Twet: 13.9 Wapd: 8.0 CTD #: 3 NG2-5 ANC 15 OCT 85 CH:WD,CD,T. POS:SHL/?

HONGROUS SERVICES SOUTHERN PERFORM REPORTED REPORTED INSCREES SERVICES INCREASES

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.599	35.305	25.861	90.0	15.566	35.247	26.057
10.0	16.487	35.318	25.898	100.0	15.329	35.213	26.084
20.0	16.445	35.320	25.909	120.0	15.063	35.166	26.108
30.0	16.352	35.321	25.932	140.0	14.224	35.053	26.203
40.0	16.224	35.313	25.956	160.0	13.955	35.016	26.232
50.0	15.948	35.300	26.010	180.0	13.703	34.987	26.263
60.0	15.850	35.292	26.026	200.0	13,606	34.962	26.264
70.0	15.814	35.283	26.028	300.0	12.232	34.834	26.442
80.0	15.713	35.267	26.039				

STATION PC7113: 30 10.6 N 113 45.5 W 20/ 3/85 1954Z 224/ 229m

Day: 79.81 SST: 17.0 Tdry: 17.2 Twet: 14.4 Wspd: 5.8 CTD #: 3 NG2-4.
ANC 15 OCT 85 CH:WD,CD. POS:SHL/?

PR	TΕ	SA	SGTH	PR	TE	SA	SGTH
2.0	16.712	35.299	25.830	80.0	15.959	35.303	26.011
10.0	16.549	35.317	25.882	90.0	15.928	35.296	26.013
20.0	16.401	35.325	25.923	100.0	15.840	35.282	26.022
30.0	16.306	35.329	25.949	120.0	15.491	35.233	26.064
40.0	16.234	35.323	25.961	140.0	14.982	35.160	26.122
50.0	16.120	35.316	25.983	160.0	14.828	35.122	26.127
60.0	16.046	35.312	25.997	180.0	13.936	35.001	26.225
70.0	16.019	35.309	26.001	200.0	12.856	34.890	26.360

THE PROPERTY OF THE PROPERTY O

STATION PC7114: 30 6.9 N 113 33.1 W 20/3/85 2127Z 164/169m

Day: 79.89 SST: 16.9 Tdry: 18.2 Twet: 14.3 Wapd: 2.2 CTD #: 3 NG2-3. ANC 15 OCT 85 CH:WD,CD. POS:SHL/?

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.571	35.278	25.847	70.0	15.266	35.187	26.077
10.0	16.319	35.273	25.902	80.0	15.037	35.179	26.122
20.0	16.176	35.264	25.929	90.0	14.792	35.134	26.142
30.0	16.127	35.264	25.940	100.0	14.157	35.043	26.208
40.0	15.953	35.248	25.968	120.0	13.178	34.919	26.316
50.0	15.714	35.230	26.009	140.0	12.319	34.845	26.430
60.0	15.488	35.203	26.040	160.0	12.286	34.843	26.435

STATION PC7115: 30 2.0 N 113 16.9 W 20/ 3/85 2334Z 158/ 163m

Day: 79.97 SST: 16.9 Tdry: 19.1 Twet: 14.8 Wapd: 7.3 CTD #: 3 NG2-2 ANC 24 OCT 85 CH:WD,CD. POS:CINDY RADAR

PR	TE	SA	SGTH	PR	ΤE	SA	SGTH
2.0	16.672	35.193	25.758	70.0	14.984	35.143	26.106
10.0	16.258	35.211	25.869	80.0	14.417	35.092	26.190
20.0	16.024	35.216	25,927	90.0	14.310	35.075	26.200
30.0	15.927	35.217	25,950	100.0	13.447	34.954	26.288
40.0	15,743	35.214	25.990	120.0	13.005	34.899	26.335
50.0	15.236	35.176	26,075	140.0	12.983	34.898	26.340
60 0	15 104	16 167	26 090				

(65.64 | 155555555 | 5555555 | 55655556

STATION PC7116: 29 53.4 N 112 45.6 W 20/ 3/85 245Z 68/ 73m

Day: 80.10 SST: 17.0 Tdry: 17.4 Twet: 15.6 Wapd: 8.3 CTD #: 3 NG2-1.
ANC 24 OCT 85 CH:WD,CD. POS:CINDY RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.634	35.226	25.792	40.0	14.987	35.149	26.109
10.0	15.492	35.193	26.030	50.0	14.673	35.132	26.165
20.0	15.321	35.182	26.060	60.0	14.632	35,125	26.169
30 a	15 291	35 167	26 057				

Contract Contract Contract of

STATION PC7117: 29 50.4 N 112 58.1 W 20/ 3/85 416Z 92/ 93m

Day: 80.17 SST: 17.2 Tdry: 17.0 Twet: 15.8 Wspd: 3.3 CTD #: 3 NG2-34.AT LAST.
ANC 24 OCT 85 CH:WD,CD,T. POS:CINDY RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.896	35.300	25.787	50.0	15.293	35.202	26.082
10.0	16.584	35.295	25.857	60.0	15.159	35.184	26.099
20.0	16.368	35.284	25.900	70.0	14.511	35.107	26.181
30.0	15.855	35.262	26.001	80.0	14.415	35.093	26.191
40.0	15.498	35.229	26.057	90.0	14.402	35.088	26.191

STATION PC7118: 29 47.5 N 113 12.9 W 20/ 3/85 600Z 184/ 189m

Day: 80.25 SST: 16.9 Tdry: 16.8 Twet: 14.9 Wspd: 9.0 CTD #: 3 NG2-33.
ANC 15 OCT 85 CH:WD,CD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.657	35.274	25.824	80.0	14.668	35.105	26.146
10.0	16.530	35.266	25.848	90.0	14.360	35.062	26.179
20.0	15.938	35.247	25.970	100.0	13.812	34.997	26.245
30.0	15.814	35.236	25.990	120.0	13.138	34.916	26.322
40.0	15.577	35.231	26.041	140.0	12.663	34.867	26.379
50.0	15.435	35.214	25.060	160.0	12.467	34.857	26.411
60.0	15.313	35.192	26.071	180.0	12.217	34.847	26.452
70.0	15.017	35.144	26.099				

STATION PC7119: 29 47.2 N 113 22.4 W 21/ 3/85 710Z 172/ 177m

Day: 80.30 SST: 16.7 Tdry: 16.7 Twet: 14.8 Wapd: 2.5 CTD #: 3 NG2-32 ANC 15 OCT 85 CH/;WD,CD. POS:SHL/?

process proposes tocoponia tocoponia contraction

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.536	35.243	25.828	70.0	14.857	35,134	26.127
10.0	16.454	35.234	25.841	80.0	14.510	35.086	26.165
20.0	15.960	35.236	25.957	90.0	14.082	35.037	26.219
30.0	15.860	35.228	25.974	100.0	13.838	35.011	26.251
40.0	15.638	35.218	26.017	120.0	13.722	34.992	26.261
50.0	15.319	35,190	26.067	140.0	13.221	34.938	26.323
60.0	15.164	35.171	26.087	160.0	13.025	34.921	26.350

PROPERTY SECTIONS SECTIONS SECTIONS SECTIONS.

STATION PC7120: 29 44.6 N 113 31.6 W 21/3/85 822Z 241/250m

Day: 80.34 SST: 15.7 Tdry: 16.4 Twet: 13.8 Wapd: 13.3 CTD #: 3 NG2-31 ANC 15 OCT 85 CH:WD,CD. POS:SHL/?

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.818	35.062	26.078	80.0	13.939	34.989	26.212
10.0	14.823	35.063	26.078	90.0	13.829	34.980	26.228
20.0	14.817	35.062	26.079	100.0	13.649	34.964	26.254
30.0	14.819	35.060	26.077	120.0	13.273	34.937	26.311
40.0	14.797	35.054	26.077	140.0	13.056	34.918	26.340
50.0	14.717	35.045	26.088	160.0	12.813	34.898	26.374
60.0	14.366	35.017	26.143	180.0	12.593	34.876	26.401
70.0	14.230	35.006	26.163	200.0	12.198	34.849	26.458

STATION PC7121: 29 41.5 N 113 40.0 W 21/ 3/85 937Z 572/ 577m

Day: 80.39 SST: 17.7 Tdry: 13.9 Twet: 13.4 Wspd: 16.7 CTD #: 3
NG2-31 THE CORRECT VALUES FOR SST AND DRY BULB TEMP ARE RESP: 13.89 AND 17.33
ANC 15 OCT 85 CH:WD,CD. POS:SHL/RADAR

PR	TE	SA	SGTH	PR	ΤE	SA	SGTH
2.0	13.811	34.984	26.233	100.0	13.452	34.955	26.287
10.0	13.816	34.986	26.233	120.0	13.214	34.937	26.323
20.0	13.811	34.986	26.235	140.0	13.037	34.921	26.347
30.0	13.814	34.986	26.234	160.0	12.795	34.902	26.381
40.0	13.803	34.985	26.236	180.0	12.751	34.896	26.385
50.0	13.771	34.982	26,241	200.0	12.639	34.887	26.401
60.0	13.743	34.981	26.246	300.0	12.214	34.854	26.461
70.0	13.721	34.978	26.249	400.0	11.978	34.835	26.494
80.0	13.691	34.976	26,254	500.0	11.583	34.808	26.550
90 0	13 573	TA ORR	26 271				

add been seems builded andere seems

DESCRIPTION OF THE PROPERTY OF

STATION PC7122: 29 39.9 N 113 48.0 W 21/ 3/85 1105Z 608/ 613m

Day: 80.46 SST: 16.4 Tdry: 17.2 Twet: 14.4 Wepd: 8.2 CTD #: 3 NG2-29 *** uptrace ***
ANC 15 OCT 85 CH:WD,CD. POS:SHL/RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.366	35.242	25.867	100.0	12.825	34.918	26.386
10.0	15.992	35.220	25.937	120.0	12.670	34.905	26.407
20.0	15.320	35.153	26.038	140.0	12.647	34.898	26.406
30.0	14.062	35.044	26.227	160.0	12.604	34.891	26.410
40.0	13.516	35.015	26.319	180.0	12.560	34.886	26.415
50.0	13.437	35.001	26.325	200.0	12.475	34.878	26.426
60.0	13.414	34.990	26.321	300.0	12.285	34.858	26.450
70.0	13.402	34.976	26.313	400.0	11.836	34.818	26.508
80.0	13.351	34.964	26.314	500.0	11.415	34.787	26.564
90.0	13.214	34.948	26.330	600.0	11.310	34.779	26.580

STATION PC7123: 29 38.6 N 113 54.0 W 21/3/85 1216Z 949/954m

Day: 80.51 SST: 16.5 Tdry: 17.3 Twet: 13.9 Wapd: 6.6 CTD #: 3 NG2-28 ANC 23 OCT 85 CH:WD,CD. POS:ANC RADAR

THE PARTY OF THE P

	J. 00 0		,				
PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.382	35.245	25.866	140.0	12.874	34.912	26.372
10.0	16.363	35.240	25.867	160.0	12.647	34.888	26.399
20.0	15.969	35.224	25.946	180.0	12.554	34.879	26.411
30.0	15.778	35.201	25.972	200.0	12.415	34.864	26.427
40.0	15.290	35.157	26.048	300.0	12.134	34.836	26.462
50.0	15.026	35.123	26.081	400.0	11.628	34.798	26.531
60.0	14.450	35.067	26.163	500.0	11.413	34.788	26.566
70.0	14.055	35.019	26.210	600.0	11.244	34.775	26.589
80.0	13.785	34.995	26.249	700.0	11.247	34.775	26.591
90.0	13.632	34.989	26.276	800.0	11.238	34.775	26.595
100.0	13.576	34.979	26.280	900.0	11.229	34.775	26.599
120.0	13.188	34.940	26.330				

STATION PC7124: 29 38.4 N 113 57.5 W 21/ 3/85 1323Z 676/ 681m

THE PROPERTY OF THE PROPERTY O

Day: 80.55 SST: 16.1 Tdry: 16.3 Twet: 14.5 Wapd: 7.0 CTD #: 3 NG2-27 ANC 16 OCT 85 CH:WD,CD. POS:SHL/RADAR

	• -					
TE	SA	SGTH	PR	TE	SA	SGTH
15.934	35.201	25.935	100.0	13.306	34.955	26.317
15.483	35.140	25.991	120.0	13.133	34.936	26.338
15.187	35.142	26.059	140.0	12.886	34.915	26.372
15.061	35.121	26.071	160.0	12.864	34.911	26.374
14.889	35.101	26.093	180.0	12.814	34.904	26.379
14.249	35.052	26.194	200.0	12.653	34.890	26.401
13.668	34.995	26.273	300.0	12.259	34.849	26.448
13.472	34.976	26.299	400.0	11.864	34.816	26.501
13.382	34.966	26.310	500.0	11.703	34.807	26.527
13.356	34.961	26.311	600.0	11.439	34.789	26.564
	15.934 15.483 15.187 15.061 14.889 14.249 13.668 13.472 13.382	15.934 35.201 15.483 35.140 15.187 35.142 15.061 35.121 14.889 35.101 14.249 35.052 13.668 34.995 13.472 34.976 13.382 34.966	15.934 35.201 25.935 15.483 35.140 25.991 15.187 35.142 26.059 15.061 35.121 26.071 14.889 35.101 26.093 14.249 35.052 26.194 13.668 34.995 26.273 13.472 34.976 26.299 13.382 34.966 26.310	15.934 35.201 25.935 100.0 15.483 35.140 25.991 120.0 15.187 35.142 26.059 140.0 15.061 35.121 26.071 160.0 14.889 35.101 26.093 180.0 14.249 35.052 26.194 200.0 13.668 34.995 26.273 300.0 13.472 34.976 26.299 400.0 13.382 34.966 26.310 500.0	15.934 35.201 25.935 100.0 13.306 15.483 35.140 25.991 120.0 13.133 15.187 35.142 26.059 140.0 12.886 15.061 35.121 26.071 160.0 12.864 14.889 35.101 26.093 180.0 12.814 14.249 35.052 26.194 200.0 12.653 13.668 34.995 26.273 300.0 12.259 13.472 34.976 26.299 400.0 11.864 13.382 34.966 26.310 500.0 11.703	15.934 35.201 25.935 100.0 13.306 34.955 15.483 35.140 25.991 120.0 13.133 34.936 15.187 35.142 26.059 140.0 12.886 34.915 15.061 35.121 26.071 160.0 12.864 34.911 14.889 35.101 26.093 180.0 12.814 34.904 14.249 35.052 26.194 200.0 12.653 34.890 13.668 34.995 26.273 300.0 12.259 34.849 13.472 34.976 26.299 400.0 11.864 34.816 13.382 34.966 26.310 500.0 11.703 34.807

STATION PC7125: 29 46.0 N 113 22.0 W 21/ 3/85 248Z 194/ 199m

Day: 81.10 SST: 17.1 Tdry: 18.1 Twet: 16.1 Wapd: 8.2 CTD #: 3 ES-1 *** uptrace ***
ANC 16 OCT 85 CH:WD,CD. POS:SHL/?

PR	TE	SA	SGTH	PR	ΤĒ	SA	SGTH
2.0	17.102	35.253	25.702	80.0	14.972	35.166	26.127
10.0	16.199	35,269	25.927	90.0	14.690	35,126	26.158
20.0	15.951	35.261	25.978	100.0	14.110	35.061	26.232
30.0	15.829	35.251	25.999	120.0	13.642	35.008	26.290
40.0	15.805	35,236	25.993	140.0	13.237	34.960	26.336
50.0	15.596	35.218	26.027	160.0	13.094	34.941	26.351
60.0	15.290	35.206	26.086	180.0	13.031	34.930	26.356
70.0	15.090	35.185	26.115				

STATION PC7126: 29 34.7 N 113 15.4 W 21/ 3/85 430Z 337/ 342m

Day: 81.18 SST: 16.8 Tdry: 19.0 Twet: 15.9 Wepd: 10.2 CTD #: 3 ES-2 ANC 16 OCT 85 CH:WD,CD. POS:SHL/RADAR

PR	**		00711				
FK	TΕ	SA	SGTH	PR	TE	SA	SGTH
2.0	16.398	35.197	25.825	90.0	13.642	34.983	26.270
10.0	16.198	35.209	25.881	100.0	13.456	34.966	26.295
20.0	15.404	35.143	26.011	120.0	13.313	34.951	26.313
30.0	15.377	35.177	26.044	140.0	13.073	34,930	26.346
40.0	14.996	35.151	26.109	160.0	12.903	34,914	26.369
50.0	14.333	35.054	26.178	180.0	12.820	34,906	26.379
60.0	14.144	35.028	26.198	200.0	12.780	34.902	26.385
70. 0	13.963	35.010	26.223	300.0	11.204	34,779	26.592
80.0	13.699	34.991	28.284	20010		- · · · · ·	

STATION PC7127: 29 28.0 N 113 11.5 W 21/ 3/85 621Z 409/ 414m

Day: 81.26 SST: 16.2 Tdry: 19.6 Twet: 14.9 Wapd: 23.8 CTD #: 3 ES-3 AT LAST.

ANC 16 OCT 85 CH:WD,CD. POS:SHL/?

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.016	35.166	25.890	90.0	13.355	34.949	26.302
10.0	15.904	35.152	25.905	100.0	13.338	34.946	26.304
20.0	14.849	35.093	26.095	120.0	13.204	34.936	26.324
30.0	14.193	35.041	26, 197	140.0	13.068	34.927	26.345
40.0	13.632	34.979	26.267	160.0	12.931	34.916	26.364
50.0	13.630	34.974	26.264	180.0	12.889	34.911	26.370
60.0	13.507	34.961	26.280	200.0	12.644	34.894	26,406
70.0	13.457	34.958	26.288	300.0	10.997	34.775	26.627
80.0	13.422	34.954	26.292	400.0	10.383	34.742	26.712

person recovers recovery regarded and and the resultant

STATION PC7128: 29 18.4 N 113 6.0 W 22/ 3/85 742Z 456/ 461m

Day: 81.31 SST: 17.2 Tdry: 17.9 Twet: 15.1 Wapd: 17.8 CTD #: 3 ES-4 ANC 16 OCT 85 CH:WD,CD. 23705.PTAROCOSA POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.837	35.244	25.758	90.0	14.168	35.025	26.192
10.0	16.550	35.250	25.831	100.0	14.144	35.018	26.192
20.0	16.157	35.220	25.899	120.0	13.298	34.934	26.303
30.0	16.079	35.209	25.909	140.0	13.125	34.913	26,323
40.0	16.027	35.195	25.911	160.0	12.973	34.897	26.341
50.0	15.030	35.108	26.068	180.0	12.863	34.881	26.352
60.0	14.685	35.086	26.127	200.0	12.499	34.858	26.406
70.0	14.412	35.060	26.166	300.0	11.121	34.789	26,615
80.0	14.277	35.041	26.181	400.0	10.232	34.735	26.733

STATION PC7129: 29 11.2 N 113 .0 W 21/ 3/85 919Z 438/ 443m

Day: 80.38 SST: 16.5 Tdry: 16.9 Twet: 15.4 Wspd: 4.7 CTD #: 3 ES-5 ANC 16 OCT 85 CH:WD,CD. POS:SHL/CINDY RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.062	35.128	25.850	90.0	13.243	34.937	26.316
10.0	15.563	35.111	25.951	100.0	13.141	34.937	26.337
20.0	14.874	35.079	26.079	120.0	13.022	34.928	26.354
30.0	14.156	35.032	26.198	140.0	12.949	34.926	26.368
40.0	14.017	35.014	26.214	160.0	12.878	34.920	26.378
50.0	13.685	34.981	26.258	180.0	12.641	34.902	26.412
60.0	13.607	34.972	26.267	200.0	12.271	34.873	26.462
70.0	13.395	34.956	26.299	300.0	11.517	34.818	26.565
80.0	13.320	34.947	26.308	400.0	10.691	34.766	26.677

STATION PC7130: 29 4.0 N 112 54.5 W 22/ 3/85 1042Z 401/ 406m

Day: 81.43 SST: 15.5 Tdry: 16.3 Twet: 15.0 Wapd: 7.7 CTD #: 3 ES-6 ANC 16 OCT 85 CH:WD,CD. 273010.5 I.ESTANQUE POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.180	35.129	26.050	90.0	14.444	35.054	26.155
10.0	15.187	35.128	26,048	100.0	14.410	35.042	26.154
20.0	15.176	35.125	26.048	120.0	13.711	34.981	26.255
30.0	15.097	35.122	26.064	140.0	13,109	34.921	26.332
40.0	14.970	35.101	26.076	160.0	12,642	34.877	26.392
50.0	14.884	35.086	26.083	180.0	12,165	34.847	26.462
60.0	14.788	35.084	26,103	200.0	12,096	34.840	26.470
70.0	14.680	35.073	26.118	300.0	11,108	34.785	26.614
80.0	14.459	35.060	28 158	400 0	10 058	34.728	26.757

STATION PC7131: 28 56.5 N 112 48.6 W 22/ 3/85 1201Z 396/ 409m

Day: 81.50 SST: 15.6 Tdry: 16.9 Twet: 14.1 Wapd: 4.0 CTD #: 3 ES-7 ANC 16 OCT 85 CH:WD,CD. 297017.5 ESTANQUE POS:ANC RADAR

Contract disposition additional announced the contract and contract announced

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.565	35.127	25.962	90.0	13.232	34.948	26.327
10.0	15.435	35.126	25.991	100.0	13.213	34.946	26.329
20.0	15.038	35.114	26.070	120.0	12.983	34.916	26.353
30.0	15.004	35.106	26.072	140.0	12.572	34.892	26.417
40.0	14.836	35.092	26.098	160.0	12.517	34.884	26.422
50.0	14.232	35.045	26.192	180.0	12.418	34.872	26.432
60.0	13.674	34.985	26.264	200.0	12.081	34.849	26.480
70.0	13.274	34.952	26.321	300.0	10.574	34.767	26.696
80.0	13.243	34.949	26.325				

KARAL IRRAKAN MAMBAN KANGKAN MAKAKAN BINGKANAN

STATION PC7132: 28 47.6 N 112 46.6 W 22/3/85 1801Z 389/394m

Day: 81.75 SST: 16.1 Tdry: 16.1 Twet: 13.9 Wapd: 12.5 CTD #: 3 ES-8 *** uptrace ***
ANC 16 OCT 85 CH:WD,CD. 59011.3PTWILLAR POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.757	35.170	25.952	90.0	13.177	34.933	26.326
10.0	15.607	35.176	25.991	100.0	13.023	34.923	26.350
20.0	15.553	35.172	26.000	120.0	12.980	34.907	26.347
30.0	15.489	35.167	26.011	140.0	12.882	34.894	26.357
40.0	15.461	35.165	26.016	160.0	12.814	34.891	26.368
50.0	15.240	35.147	26.052	180.0	12.647	34.882	26.395
60.0	14.939	35.116	26.095	200.0	12.317	34.865	26.447
70.0	14.591	35.082	26.145	300.0	10.688	34.770	26.678
80.0	14.001	35.021	26.224				

STATION PC7133: 28 40.4 N 112 45.0 W 22/ 3/85 1924Z 850/ 851m

Day: 81.80 SST: 14.8 Tdry: 16.4 Twet: 14.3 Wepd: .8 CTD #: 3 ES-9 ANC 17 OCT 85 CH:WD,CD,TD,TW (FROM UW LOG). POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.181	34.939	26.120	120.0	11.692	34.813	26.524
10.0	13.842	34.935	26.189	140.0	11.091	34.780	26.610
20.0	13.761	34.931	26.203	160.0	10.984	34.776	26.627
30.0	13.623	34.922	26.225	180.0	10.836	34.768	26.648
40.0	13.253	34.909	26.291	200.0	10.807	34.766	26.652
50.0	12.995	34.885	26.325	300.0	10.681	34.757	26.669
60.0	12.619	34.874	26.391	400.0	10.391	34.744	26.712
70.0	12.584	34.868	26.394	500.0	9.862	34.711	26.779
80.0	12.563	34.865	26.396	600.0	9.883	34.709	26.776
90.0	12.516	34.857	26.399	700.0	9.637	34.696	26.809
100.0	12.328	34.840	26.423	800.0	9.084	34.663	26.875

STATION PC7134: 28 38.0 N 112 41.8 W 22/ 3/85 2052Z 535/ 540m

Day: 81.85 SST: 14.0 Tdry: 15.6 Twet: 14.2 Wapd: 4.7 CTD #: 3 ES-10.JUST SOUTH OF SILL. ANC 16 OCT 85 CH:WD,CD,D. 24004SESL POS:ANC RADAR

AND TODOSTON TODOSTON TODOSTON DESCRIPTION DESCRIPTION TODOSTONO T

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14,161	34.898	26.093	100.0	11.739	34.823	26.522
10.0	13.470	34.910	26.246	120.0	11.612	34.815	26.541
20.0	13.315	34.909	26.278	140.0	11.440	34.807	26.567
30.0	13.266	34.902	26.282	160.0	11.432	34.805	26.567
40.0	13.088	34.890	26.310	180.0	11.404	34.802	26.571
50.0	12.705	34.874	26.374	200.0	11.276	34.794	26.588
60.0	12.586	34.862	26.388	300.0	10.515	34.752	26.695
70.0	12.525	34.853	26.394	400.0	9.923	34.710	26.766
80.0	12.333	34.847	26.427	500.0	8.485	34.631	26.939
90.0	11 801	34 828	26 514	555.5	00	• • • • • • • • • • • • • • • • • • • •	

STATION PC7135: 28 34.9 N 112 38.9 W 22/ 3/85 2237Z 551/ 556m

Day: 81.93 SST: 13.6 Tdry: 16.0 Twet: 14.6 Wapd: 6.3 CTD #: 3 ES-11
ANC 16 OCT 85 CH:WD,CD.28005.8SESL POS:ANC RADAR

TANKAN MARANAN MARANAN

00	75	64	SGTH	PR	TÉ	SA	SGTH
PR	TE	SA					
2.0	13.138	34.894	26.301	100.0	12.335	34.857	26.435
10.0	12.897	34.886	26.344	120.0	12.327	34.851	26.432
20.0	12.737	34.879	26.371	140.0	11.934	34.832	26.493
30.0	12.656	34.875	26.384	160.0	11.726	34.819	26.523
40.0	12.628	34.873	26.388	180.0	11.544	34.810	26.551
50.0	12.527	34.868	26.404	200.0	11.441	34.804	26.566
60.0	12.468	34.865	26.414	300.0	11.213	34.779	26.591
70.0	12.417	34.863	26.423	400.0	8.882	34.653	26.892
80.0	12.409	34.862	26.424	500.0	7.823	34.591	27.007
00 0	12 381	34 BE1	28 420				

MANAGE MANAGES STREET, STREET, STREET, CONTROL

STATION PC7136: 28 30.1 N 112 34.9 W 22/ 3/85 2347Z 729/ 734m

Day: 81.98 SST: 15.4 Tdry: 16.2 Twet: 14.6 Wapd: 9.6 CTD #: 3 ES-12 ANC 16 OCT 85 CH:D,WD,CD. 301010.7 SESL POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	15.717	35.014	25.841	120.0	12.862	34.890	26.357
10.0	15.385	35.006	25.910	140.0	12.728	34.888	26.383
20.0	15.294	35.001	25.927	160.0	12.704	34.884	26.385
30.0	15.010	34.984	25.977	180.0	12.657	34.878	26.390
40.0	14.603	34.970	26.055	200.0	12.402	34.864	26.430
50.0	13.964	34.938	26.167	300.0	11.531	34.809	26.555
60.0	13.764	34.930	26.202	400.0	10.512	34.750	26.696
70.0	13.514	34.916	26.244	500.0	7.617	34.577	27.026
80.0	13.491	34.913	26.246	600.0	6.851	34.551	27,114
90.0	13.401	34.908	26.261	700.0	6.824	34.552	27.120
100.0	13.289	34.903	26. 281				

STATION PC7137: 28 24.0 N 112 29.4 W 22/ 3/85 115Z 858/ 863m

Day: 82.05 SST: 16.1 Tdry: 17.3 Twet: 15.4 Wapd: 5.6 CTD #: 3 ES-13.
ANC 1 NOV 85 CH:WD,CD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.115	35.070	25.793	120.0	13.360	34.883	26.251
10.0	15.106	35.019	25.982	140.0	13.228	34.873	26.271
20.0	15.114	35.008	25.972	160.0	13.071	34.859	26.292
30.0	15.073	35.005	25.979	180.0	12.950	34.841	26.303
40.0	14.697	34.988	26.048	200.0	12.664	34.828	26.350
50.0	14.574	34.975	26.065	300.0	11.696	34.759	26.486
60.0	14.535	34.967	26.068	400.0	9.983	34.695	26.744
70.0	14.324	34.950	26.100	500.0	8.763	34.613	26.882
80.0	13.800	34.915	26.184	600.0	7.421	34.562	27.044
90.0	13.658	34.902	26.204	700.0	6.755	34.543	27.122
100.0	13.544	34.892	26.220	800.0	6.488	34.538	27.155

BARRACKS MINISTER (BROKESSE) BARRACKS MANAGEMENT

STATION PC7138: 28 16.1 N 112 28.9 W 22/ 3/85 306Z 1058/1063m

Day: 82.13 SST: 17.5 Tdry: 16.8 Twet: 15.5 Wapd: 10.6 CTD #: 3 ESP-1.SAN PEDRO DEEP.RADAR ON CTD LOG SHEET.
ANC 16 OCT 85 CH:WD,CD. POS:SAIL

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	17.184	35.116	25.578	140.0	12.994	34.827	26.283
10.0	16.521	35.105	25.726	160.0	11.566	34.734	26.487
20.0	15.534	35.057	25.916	180.0	11.472	34.720	26,494
30.0	15.523	35.047	25.911	200.0	11.384	34.720	26.511
40.0	14.631	34.998	26.070	300.0	10.673	34.672	26.605
50.0	14.424	34.984	26.104	400.0	9.623	34.654	26.773
60.0	14.361	34.977	26.113	500.0	8.258	34.569	26.925
70.0	14.279	34.966	26.122	600.0	7.307	34.549	27.050
80.0	14,170	34.956	26.138	700.0	6.449	34.534	27.156
90.0	14.080	34.944	26.148	800.0	6.324	34.534	27.174
100.0	13.509	34.905	26.237	900.0	6.319	34.534	27.176
120.0	13.331	34.865	26.243	1000.0	6.304	34.533	27.178

STATION PC7139: 28 28.3 N 112 32.7 W 22/ 3/85 548Z 845/ 850m

Day: 82.23 SST: 13.8 Tdry: 15.3 Twet: 14.3 Wepd: 10.0 CTD #: 3 ESP-2.WIND IS 9.991 ANC 17 OCT 85 CH:WD,CD. POS:SAIL

		-					
PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	13.484	34.914	26.246	120.0	12.657	34.877	26.388
10.0	13.445	34.913	26.254	140.0	12.306	34.860	26.444
20.0	13.341	34.912	26.275	160.0	12.116	34.851	26.474
30.0	13.292	34.911	26.284	180.0	12.124	34.845	26.468
40.0	13.190	34.907	26.302	200.0	11.771	34.830	26.524
50.0	13.104	34.904	26.317	300.0	10.157	34.723	26.734
60.0	13.061	34.900	26.323	400.0	9.162	34.661	26.854
70.0	13.052	34.899	26.325	500.0	8.931	34.642	26.878
80.0	12.814	34.887	26.363	600.0	8.145	34.602	26.969
90.0	12.686	34.883	26.386	700.0	7.859	34.589	27.003
100.0	12.681	34.882	26.386	800.0	6.617	34.543	27.142

STATION PC7140: 28 34.7 N 112 39.5 W 23/ 3/85 725Z 627/ 632m

Day: 82.30 SST: 13.7 Tdry: 15.6 Twet: 14.2 Wepd: 12.0 CTD #: 3 ESP-3 ANC 23 OCT 85 CH:WD,CD,T. POS:CINDY RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	13.367	34.925	26.279	100.0	12.449	34.870	26.423
10.0	13.340	34.922	26.282	120.0	12.428	34.866	26.424
20.0	13.282	34.917	26.291	140.0	12.396	34.861	26.427
30.0	13.154	34.913	26.314	160.0	12.400	34.856	26.423
40.0	12.890	34.896	26.354	180.0	11.902	34.837	26.504
50.0	12.772	34.891	26.374	200.0	11.841	34.831	26.512
60.0	12.734	34.888	26.379	300.0	11.336	34.802	26.586
70.0	12.587	34.880	26.402	400.0	10.886	34,770	26.645
80.0	12.508	34.875	26.414	500.0	9.587	34.698	26.815
90.0	12.432	34.870	26.426	600.0	7.418	34.574	27.054

STATION PC7141: 28 38.1 N 112 42.0 W 23/ 3/85 827Z 515/ 580m

Day: 82.34 SST: 13.4 Tdry: 15.5 Twet: 14.2 Wapd: 12.8 CTD #: 3 ESP-4 ANC 1 NOV 85 CH:CD,T. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	13.259	34.906	26.286	100.0	12.321	34.853	26.434
	· - ·						
10.0	13.164	34.897	26.298	120.0	11.880	34.834	26.505
20.0	12.880	34.885	26.347	140.0	11.866	34.829	26.504
30.0	12.618	34.874	26.391	160.0	11.686	34.821	26.532
40.0	12.594	34.870	26.393	180.0	11.532	34.810	26.553
50.0	12.591	34.869	26.393	200.0	11.441	34.804	26.566
60.0	12.430	34.865	26.421	300.0	11.101	34.774	26.607
70.0	12.362	34.862	26.433	400.0	9.120	34.663	26.862
80.0	12.345	34.860	26.435	500.0	8.437	34.629	26.945
90.0	12.333	34.856	26.434				

STATION PC7142: 28 40.6 N 112 43.1 W 23/ 3/85 921Z 851/ 856m

Doy: 82.38 SST: 13.7 Tdry: 15.1 Twet: 14.4 Wspd: 7.8 CTD #: 3 ESP-5 ANC 17 OCT 85 CH:WD,CD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	13.539	34.932	26.249	120.0	12.628	34.869	26.387
10.0	13.449	34.923	26.261	140.0	12.441	34.849	26.409
20.0	13.253	34.911	26.292	160.0	11.496	34.810	26.559
30.0	12.915	34.895	26.348	180.0	11.477	34.803	26.558
40.0	12.873	34.890	26.353	200.0	11.434	34.798	26.562
50.0	12.872	34.888	26.352	300.0	10.919	34.768	26.635
60.0	12.816	34.885	26.361	400.0	10.091	34.724	26.748
70.0	12.816	34.885	26.361	500. 0	9.292	34.680	26.849
80.0	12.808	34.883	26.361	600.0	9.245	34.678	26.857
90.0	12.764	34.880	26.368	700.0	9.263	34.675	26.854
100.0	12.758	34.879	26.369	800.0	8.959	34.657	26.890

SECOND CONTRACT STREET, CONTRACT CONTRACT CONTRACT

STATION PC7143: 28 29.1 N 112 38.0 W 23/ 3/85 1123Z 669/ 674m

Day: 82.47 SST: 13.9 Tdry: 14.8 Twet: 14.1 Wspd: 13.9 CTD #: 3 ESP-6 = ES12
ANC 17 OCT 85 CH:WD,CD. 300010.6 SESL POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	14.190	34.959	26.134	100.0	13.223	34.910	26.299
10.0	14.183	34.952	26.130	120.0	13.092	34.904	26.322
20.0	13.649	34.933	26.227	140.0	12.978	34.896	26.339
30.0	13.447	34.924	26.262	160.0	12.833	34.891	26.365
40.0	13.512	34.920	26.246	180.0	12.734	34.884	26.379
50.0	13.451	34.921	26.260	200.0	12.466	34.865	26.418
60.0	13.314	34.915	26.284	300.0	11.481	34.806	26.562
70.0	13.480	34.920	26.254	400.0	10.019	34.719	26.757
80.0	13.277	34.913	26.290	500.0	7.661	34.583	27.024
90.0	13.250	34.912	26,295	600.0	6.978	34.558	27, 103

[8555] [3555555 222222] [5555565]

STATION PC7144: 28 17.1 N 112 23.0 W 23/ 3/85 654Z 909/ 914m

Day: 83.27 SST: 16.7 Tdry: 16.8 Twet: 15.0 Wspd: 23.2 CTD #: 3 ES-14. *** uptrace ***
ANC 17 OCT 85 CH:WD,CD. 2004.9 SPM POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.511	35.118	25.738	140.0	13.051	34.854	26.292
10.0	16.526	35.119	25.736	160.0	12.135	34.780	26.415
20.0	16.501	35.116	25.740	180.0	11.839	34.756	26.454
30.0	16.415	35.109	25.755	200.0	11.758	34.743	26.459
40.0	16.403	35.104	25.754	300.0	10.123	34.664	26.694
50.0	16.058	35.068	25.807	400.0	9.626	34.672	26.786
60.0	14.773	35.019	26.056	500.0	7.871	34.578	26.990
70.0	14.421	34.990	26.110	600.0	7.077	34.548	27.081
80.0	13.811	34.959	26.216	700.0	6.667	34.540	27.132
90.0	13.757	34.961	26.229	800.0	6.175	34.533	27.192
100.0	13.720	34.953	26.231	900.0	6.049	34.529	27.206
120.0	13.344	34.893	26.262				

CARROLL VICENCE

STATION PC7145: 28 18.0 N 112 29.0 W 24/ 3/85 845Z 1079/1084m

Day: 83.35 SST: 16.8 Tdry: 17.4 Twet: 14.0 Wapd: 15.8 CTD #: 3 ESP1,SAN PEDRO PITS AGAIN.WILL WE SEE DEEP MIXT LAYER?

ANC 17 OCT 85 CH:WD,CD. 5709.4 SPM POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	16.629	35,119	25.711	140.0	12.503	34.805	26.363
10.0	16.445	35.097	25.738	160.0	11.981	34.765	26.433
20.0	15.124	35,030	25.987	180.0	11.779	34.756	26.465
30.0	14.693	35.003	26.060	200.0	11.422	34.726	26.509
40.0	14.093	34.954	26.151	300.0	9.969	34.676	26.730
50.0	14.038	34.944	26.156	400.0	9.183	34.612	26.812
60.0	13.974	34.928	26.157	500.0	8.060	34.570	26.955
70.0	13.655	34.896	26.199	600.0	7.513	34.555	27.025
80.0	13.274	34.880	26.265	700.0	6.967	34.546	27.096
90.0	13.065	34.866	26.297	800.0	6.683	34.544	27.134
100.0	12.902	34.850	26.318	900.0	6.514	34.540	27.155
120.0	12.854	34.839	26.319	1000.0	6.299	34.537	27.182

STATION PC7146: 28 11.5 N 112 16.9 W 24/ 3/85 1108Z 850/ 855m

Day: 83.46 SST: 16.7 Tdry: 17.2 Twet: 14.7 Wapd: 7.6 CTD #: 3 ES-15 ANC 17 OCT 85 340010.4 SPM POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	17.007	35.140	25.638	120.0	13.074	34.886	26.311
10.0	16.927	35.116	25.639	140.0	12.746	34.850	26.350
20.0	15.800	35.066	25.863	160.0	12.696	34.838	26.351
30.0	15.210	35.035	25.972	180.0	12.651	34.824	26.349
40.0	14.904	35.015	26.024	200.0	11.901	34.766	26.450
50.0	14.725	35.007	26.057	300.0	9.989	34,634	26.694
60.0	14.525	34.997	26.093	400.0	8.968	34.597	26.835
70.0	14.363	34.986	26.120	500.0	8.028	34.568	26.959
80.0	14.186	34.972	26.147	600.0	7.574	34.557	27.018
90.0	13.982	34.955	26.177	700.0	6.872	34.542	27.106
100.0	13.717	34.924	26.209	800.0	6.134	34.534	27.198

CONTRACTOR CONTRACTOR CONTRACTOR

140.0

169.0

180.0

13.031

12.867 12.465

34.881

34.865

34.842

26.317

26.338 26.400

27 25.0 N 111 45.6 W 25/ 3/85 856Z 1512/1517m STATION PC7147:

ANC 30 OCT 85 CH:WD,CD. POS: ANC RADAR SA SGTH PR PR SGTH ΤE 17.149 16.465 35.093 35.081 25.568 25.721 12.214 34.822 26.434 2.0 200.0 26.647 10.0 300.0 10.515 34.691 16.167 35.069 25.781 400.0 9.272 34,623 26.806 20.0 34.558 26.956 16.023 35.057 500.0 7.990 30.0 25.805 34.530 27.070 40.0 14.998 35.023 26.010 600.0 7.053 14.483 14.399 34.995 26.100 26.110 700.0 5.793 34.515 27.225 50.0 34.984 5.370 34.517 27.279 60.0 800.0 34.525 34.535 27.325 5.036 70.0 14.284 34.975 26.128 900.0 27.376 80.0 14.122 34.965 26.155 1030.0 4.656 34.548 27.434 90.0 13.762 34.947 26.217 1100.0 4.228 27.480 100.0 13.653 34.943 26.237 1200.0 3.893 34.562 34.573 27.515 13.458 1300.0 120.0 34.931 26.268 3.636 27.558

1400.0

1500.0

3.305

3.118

34.586

34.595

27.583

STATION PC7148: 27 32.0 N 111 36.2 W 25/ 3/85 1109Z 1532/1840m

Day: 84.46 SST: 18.2 Tdry: 18.1 Twet: 17.1 Wapd: 5.2 CTD #: 3 B-5 *** uptrace ***
ANC 17 OCT 85 WD-DUBIOUS 249015 SE TORTUGA POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	17.796	35.173	25.473	200.0	12.118	34.781	26.420
10.0	17.188	35.144	25.598	300.0	10.425	34.680	26.654
20.0	16.293	35.123	25.793	400.0	8.803	34.593	26.858
30.0	15.999	35.106	25.848	500.0	7.720	34.567	27.003
40.0	15.629	35.085	25.917	600.0	7.008	34.554	27.095
50.0	15.390	35.064	25.955	700.0	6.353	34.536	27.170
60.0	15.143	35.051	26.000	800.0	5.642	34.531	27.257
70.0	14.936	35.040	26.037	900.0	5.088	34.530	27.323
80.0	14.693	35.024	26.078	1000.0	4.626	34.540	27.384
90.0	14.349	35.005	26.138	1100.0	4.294	34.551	27.429
100.0	14.153	34.993	26.171	1200.0	3.927	34.565	27.479
120.0	13.829	34.963	26.216	1300.0	3.563	34.578	27.526
140.0	13.326	34.912	26.281	1400.0	3.353	34.587	27.554
160.0	12.547	34.821	26.367	1500.0	3.145	34.594	27.580
180.0	12.359	34.800	26.388				

STATION PC7149: 27 36.9 N 111 28.2 W 25/ 3/85 1319Z 1500/1505m

Day: 84.55 SST: 18.0 Tdry: 18.1 Twet: 17.0 Wspd: 7.8 CTD #: 3 B-4.PROBABLY THE LAST OF THE PICHICUCO PROGRAM.MCH&AB-D. ANC 31 OCT 85 CH:WD,CD. POS:ANC RADAR

PR	TE	SA	SGTH	PR	TE	SA	SGTH
2.0	17.741	35,179	25.491	200.0	12.102	34.760	26.407
10.0	17.641	35.174	25.512	300.0	10.514	34.673	26.633
20.0	17.146	35.159	25.620	400.0	8.923	34.590	26.836
30.0	16.795	35.116	25.671	500.0	7.941	34.560	26.965
40.0	16.574	35.096	25.708	600.0	7.087	34.541	27.074
50.0	16.125	35.063	25.787	700.0	6.208	34,526	27.181
60.0	15.700	35.031	25.860	800.0	5.504	34.517	27.263
70.0	15.559	35.020	25.884	900.0	5.073	34.525	27.321
80.0	15.415	35.008	25.907	1000.0	4.721	34.533	27.368
90.0	15.003	34.994	25.988	1100.0	4.346	34.546	27.420
100.0	14.426	34.953	26.082	1200.0	3.952	34.558	27.471
120.0	13.744	34.896	26.182	1300.0	3.614	34.572	27.516
140.0	13.335	34.878	26.253	1400.0	3.361	34.584	27.551
160.0	12.985	34.843	26.297	1500.0	3.147	34.594	27.580
188 8	12 505	34 793	28 354			-	

Appendix: Program listings

the second seconds executed seconds produced

```
179
            $INT2
            C SPECIAL VERSION (MAR85) TO READ STATIONS DURING PC7
              1 FEB 85 N.BRAY
           C BASED ON PROGRAM NOV84 TO READ NB DATA FROM RAW C DATA STREAM COMING IN .O IBM 9000. BASED ON
            C PERKIN-ELMER PROGRAM CTDMAY.
           C CHECK FRAME SYNCHS, STRIP OFF ZEROS, CONVERT
C DOUBLE 16-BIT INTEGERS INTO SINGLE 16-BIT
            C INTEGERS, WATCHING OUT FOR SIGN BIT PROBLEMS
12
            C OUTPUT SCANS OF INTEGER DATA TO A SECOND DISC C FILE, AND SUBSAMPLED FLOATING POINT SCANS TO
            C A PRINTABLE FILE.
15
16
            C PROGRAMMER: N. BRAY
            C IBM 900 VERSION: 25 JUL 84
17
18
19
                       PROGRAM MAR85
21
            C
22
23
                       IMPLICIT INTEGER+2 (J-N)
24
25
                       CHARACTER+12 IFILE, OUTFIL, PRIFIL, ERRFIL
                       CHARACTER+6 IDSTN
26
                       CHARACTER+80 COMNT, COMNT1, COMNT2
27
                       CHARACTER+1 BEEP
28
29
30
            C DIMENSION
31
                       DIMENSION JSTOR(11),KD(11,11)
32
33
34
               INTEGER DECLARATIONS
                       INTEGER•1 JDAT(24), JGET
INTEGER•2 CBPB(10), SERINT(6), DTCB(8)
35
36
                       INTEGER+1 CIRBUF(8192), DTCSTA, ABUF(256)
INTEGER+4 LEN4, LEN, INLU, OUTLU, ZERO, ONE, IDUM, IOST, IOSTAT
37
38
                        INTEGER+4 ERRLU, PRILU, HEDLU, SILU
39
40
                        INTEGER+1 SYN(2), IBEEP
                        INTEGER+2 SYNCH1, SYNCH2
                        INTEGER+4 IYEAR, IMONTH, IDAY, THIRTY, TWELVE, BASEYR
43
            Č COMMON
46
                       COMMON/PROG/ IEOD, ISECT
                       COMMON/IO/ INLU,OUTLU,LEN4,LEN,ZERO,ONE,IOSTAT,CBPB,CIRBUF
COMMON/IN/ ERRLU,PRILU,HEDLU,SILU
47
48
                       COMMON/HEADR/ XLAT, XLONG, TIME, GMT, DEPTH, CASTD, IDAY, IMONTH, IYEAR COMMON/HEADR/ WIND, SST, TDRY, TWET COMMON/HEADR/ XDAY, XR, YR COMMON/HDCHR/ IDSTN, COMNT
52
               EQUIVALENCE
55
                       EQUIVALENCE (DTCB(1),DTCSTA)
EQUIVALENCE (JTEST,SYN(1))
EQUIVALENCE (BEEP,IBEEP)
56
57
58
59
60
            C DATA
61
62
                        DATA NUM/0/
                       DATA SERINT/26,0,39,0,0,0/
63
                       DATA THIRTY/31/, TWELVE/12/, BASEYR/84/
64
65
            Č
66
               OPEN
67
68
69
               INITIALIZE VARIABLES AND ARRAYS
70
71
```

WRITE(1,+)'CRUISE AND STATION (E.G. PC7###)'
READ(+,10)IDSTN
FORMAT(A6)

72

10

SILU-8

OUTFIL(1:2)='2:'
OUTFIL(3:8)=IDSTN

```
OUTFIL(9:12)='.OUT'
PRIFIL(1:2)='2:'
                                                                    180
 78
 79
                        PRIFIL(1:2)='2:

PRIFIL(3:8)=IDSTN

PRIFIL(9:12)='.HED'

ERRFIL(1:2)='4:'

ERRFIL(3:8)=IDSTN

ERRFIL(9:12)='.HED'
 80
 81
 82
 83
 84
 85
                        WRITE(*,*)'READ IN HEADER INFORMATION? (1=YES,0=NO)'
 86
                        READ(+,+) IYES
 87
                        WRITE(*,*)'ENTER LIST DEVICE: 6-SCREEN, 1-PRINTER'
 88
                        READ(+,+)PRILU
                        IF(PRILU.EQ.ONE)OPEN(ONE, FILE='#SER01')
 89
 90
                        IF (IYES. EQ. 1) THEN
                                   OPEN(HEDLU, FILE=PRIFIL, STATUS='NEW')
 91
 92
                                   CALL STNLOC
 93
                        ENDIF
 94
                        WRITE(+,+)'WRITE TO DISK? (1=YES, 0=NO)'
 95
             C
                        READ(*,*)IFLOP
 96
                        IFLOP=1
 97
                        IBEEP-$07
 98
             C
             C
 99
                        IF(IFLOP.EQ.1)OPEN(OUTLU, FILE=OUTFIL, FORM='UNFORMATTED', STATUS='NEW')
                        OPEN(OUTLU, FILE=OUTFIL, FORM='UNFORMATTED', STATUS='NEW')
OPEN(HEDLU, FILE=PRIFIL, STATUS='OLD')
100
101
             C
102
             C2590
                        FORMAT(A80)
FORMAT(A6,12,12,14,F5.0,F5.0,7X,F6.0,F6.0,F8.3,F8.3,2F8.2,3F5.2,F6.1)
103
             С
                 40
104
                        READ (HEDLU, 40) IDSTN, IDAY, IMONTH, IYEAR, TIME, GMT, DEPTH, CASTD,
105
             CCC
                        XLAT, XLONG, XR, YR, SST, TDRY, TWET, WIND
106
                        WRITE(+,40)IDSTN, IDAY, IMONTH, IYEAR, TIME, GMT, DEPTH, CASTD,
107
                        XLAT, XLONG, XR, YR, SST, TDRY, TWET, WIND
108
             CCCC
                        READ (HEDLU, 2590) COMNT2
                        WRITE(*,2590)COMNT2
WRITE(*,*)
WRITE(*,*)'CORRECT STATION? (0=YES 1=NO)'
READ(*,*)IST
109
110
111
112
             CCCC
113
                        IF(IST.NE.0)THEN
                                   WRITE(\bullet,\bullet)'ENTER NEW HEADER INFO? (1=YES, \theta=QUIT)' READ(\bullet,\bullet) INEW
114
115
116
             00000000
                                   IF (INEW.NE.1)STOP
117
                                   OPEN(HEDLU, FILE=PRIFIL, STATUS='NEW')
118
                                   IYES-1
119
                        ELSE
120
                                   IYDAY=KDAY(IDAY, IMONTH, IYEAR)-KDAY(THIRTY, TWELVE, BASEYR)
XDAY=FLOAT(IYDAY)+TIME/2400.
121
122
                                   REWIND HEDLU
123
                                  WRITE(HEDLU, 41) IDSTN, IDAY, IMONTH, IYEAR, TIME, GMT, XDAY, DEPTH, CASTD,
             C
124
                        XLAT, XLONG, XR, YR, SST, TDRY, TWET, WIND
WRITE (HEDLU, 2590) COMNT2
125
126
                        FORMAT(A6,12,12,14,F5.0,F5.0,F7.2,F6.0,F6.0,F8.3,F8.3,2F8.2,3F5.2,F6.1)
127
             C
                                   CLOSE (HEDLU)
             Č
128
                        ENDIF
                        WRITE(PRILU, 42) IDSTN, IDAY, IMONTH, IYEAR, TIME, GMT, XDAY, DEPTH, CASTD, XLAT, XLONG, XR, YR, SST, TDRY, TWET, WIND WRITE(PRILU, 2590) COMNT2
             C
129
130
             C
131
             C
             č
132
                        FORMAT(A6, I2, I2, I4, F5.0, F5.0, F7.2, F6.0, F6.0, F8.3, F8.3, /, 2F8.2, 3F5.2, F6.1)
                 42
133
134
                READ IN STATION HEADER INFORMATION
135
136
137
                OPEN SERIAL PORT
138
                        CALL SYSOPE(INLU, '#SER02', ONE, ZERO, ZERO, IDUM, IOSTAT)
IF(IOSTAT.NE.0)WRITE(*,*)'ERROR OPENING SERIAL PORT 2'
139
140
                        CALL ADDR(CIRBUF(1), CBPB(1))
141
                                   CBPB(3)=8192
CBPB(4)=0
CBPB(5)=0
142
143
144
145
                                   CBPB(6)=0
                        CALL ADDR(CBPB(1), SERINT(2))
CALL SYSFUN(INLU, SERINT, IOSTAT)
146
147
148
                                   IF(IOSTAT.NE.0)WRITE(+,+)'ERROR SENDING PACKET'
149
150
                END OF PORT INITIALIZATION
151
152
153
                IDENTIFY OUTPUT FILES
154
```

```
181
155
            C
                      WRITE(+,10)PRIFIL
156
                      WRITE(ERRLU, 10) ERRFIL
                      WRITE(PRILU,+)'TIME PRESS1 TEMP1 COND1 FAST1 PRESS2 TEMP2 COND2 FAST2 UW1 UW2' WRITE(+,+)'TIME PRESS1 TEMP1 COND1 FAST1 PRESS2 TEMP2 COND2 FAST2 UW1 UW2'
157
158
159
160
161
162
                      WRITE(1,+)'NUMBER OF MINUTES OF DATA?'
163
            C
                      READ(+,+)NMINS
164
                      NMINS-90
            C
165
                      WRITE(1,*)'OUTPUT INTERVAL FOR PRINT FILE?'
READ(*.*)NOUT
166
167
                      NOUT-200
168
169
                      IEOD=195+NMINS+1
170
                      ISECT-0
171
                      IPR=0
172
                      ISTOR=1
173
                      NLOST-0
174
175
               LOOK FOR FIRST FRAME SYNCH
176
177
                      CONTINUE
                                SYN(2)=JGET(1,NUM)
178
179
            C
                                WRITE(1,+)JTEST,
                                                          \dotsDATA\dots', 'JGET = ',SYN(2)
180
                                          ICOUNT=ICOUNT+1
                                          IF(ICOUNT.GT.24)THEN
ITIME=ITIME+2
181
182
            C
183
                                                    NLOST-NLOST+1
184
                                                    ICOUNT-0
185
                                          ENDIF
                       IF(JTEST.NE.240)GO TO 50
JDAT(1)=SYN(2)
IF(KFLAG.EQ.0)THEN
WRITE(*,*)'FRAME SYNCH FOUND'
186
187
188
189
190
                       WRITE(PRILU, +) 'FRAME SYNCH FOUND'
191
                                          ENDIF
192
                                KFLAG-1
193
                      CALL GETDAT(2,24, JDAT, NUM)
194
             5000
                      CONTINUE
195
                                IF(JDAT(13).NE.15)THEN
196
                                          SYN(2)=JGÉT(1,NUM)
IF(JTEST.NE.240)GÓ TO 9000
197
198
                                          IFLAG=1
199
                                ENDIF
200
                                          IF(NLOST.GT.0)THEN
201
                                                    WRITE(+,5111)NLOST
WRITE(+,5050)BEEP
202
203
             5050
                                                    FORMAT(A1)
204
                                                    WRITE(PRILU,5111)NLOST
205
                                                    FORMAT (40X, 17, ' FRAMES LOST')
             5111
206
                                                    NLOST=0
207
                                                    KFLAG=0
208
                                          ENDIF
209
210
              PROCESSING SUBROUTINES
211
212
             6000
                      CONTINUE
213
                      CALL SIXT(JDAT, JSTOR)
214
            C
215
216
                      CALL SUSPAL
217
                      DO 60 IJ=1,11
218
                               KD(IJ, ISTOR)=JSTOR(IJ)
219
                      CONTINUE
                60
220
                                ISTOR=ISTOR+1
221
            C
222
                                IPR=IPR+1
223
                                IF(IPR.EQ.NOUT)THEN
224
                                          CALL PRDAT (JSTOR)
225
                                          NPRINT=NPRINT+1
226
                      IF(NPRINT.EQ.88)THEN
WRITE(PRILU,*)'TIME PRESS1 TEMP1
227
                                                         TEMP1 COND1 FAST1 PRESS2 TEMP2
                                           UW2
228
                      COND2 FAST2 UW1
229
                      WRITE(+,+)'TIME
                                           PRESS1 TEMP1 COND1 FAST1 PRESS2 TEMP2
230
                      COND2 FAST2 UW1 UW2'
231
                                          NPRINT-0
```

restatat seggests reaction terroras herosess segment

```
ENDIF
                                                            182
232
233
                                        IPR-0
234
                              ENDIF
235
             WRITE OUT BINARY DATA FILE-11 SCANS OF 11 WORDS PER RECORD
236
237
             FIRST ACCUMULATE SCANS
238
239
                     IF(ISTOR.GT.11)THEN
                              IF(IFLOP.EQ.1)THEN
CALL AWRITE(DTCB,OUTLU,KD(1,1),LEN,ZERO,ZERO,ZERO,IOSTAT)
IF(IOSTAT.NE.0)WRITE(*.*)'ERROR WRITING TO DISK...IOSTAT- ',IOSTAT
240
241
242
                               WRITE(PRILU, +)KD
243
           C
244
                               ENDIF
245
                               WRITE(SILU, 61, IOSTAT=IOSTAT)KD
246
               61
                               FORMAT(1117
                               IF(IOSTAT.NE.0)WRITE(+,+)'ERROR WRITING TO SILO...IOSTAT= ', IOSTAT
247
           Č
248
                               ISTOR=1
                     ENDIF
249
250
           C
251
                     IF(IFLAG. EQ. 1) THEN
252
                               JDAT(1)=SYN(2)
253
                               CALL GETDAT (2,24, JDAT, NUM)
254
                               IFLAG=0
255
                     ELSE
                               CALL GETDAT(1,24, JDAT, NUM)
256
257
                     ENDIF
258
                               IF(JDAT(1).NE.240)THEN
259
                                         JFLAG=1
                               FNOTE
260
261
            C
262
                               IF(JDAT(13).NE.15)THEN
                                         IF(JFLAG.NE.1)GO TO 5000
263
264
                                                  JFLAG-0
265
                                                  GO TO 9000
266
                               ELSE
267
                                         IF(JFLAG.EQ.1)JFLAG-0
268
                                         GO TO 6000
                               ENDIF
269
270
             9000
271
                     CONTINUE
                               NLOST=NLOST+1
272
273
                               GO TO 50
274
275
              I+1 FUNCTION GET TO READ CTD DATA FROM RAW DATA STREAM WORD BY WORD
276
            C
277
278
            C
279
                      INTEGER+1 FUNCTION JGET(I, NUM)
280
            C
281
282
                      IMPLICIT INTEGER+2 (J-N)
                      INTEGER+2 CBPB(10)
283
                      INTEGER+1 CIRBUF (8192)
284
285
                      INTEGER+1 KDAT(256)
 286
                      INTEGER+4 LEN4, LEN, INLU, OUTLU, ZERO, ONE, IDUM, IOST, IOSTAT
                      INTEGER+4 ERRLU, PRILU, HEDLU, SILU
287
288
            C COMMON
 289
 290
                      COMMON/PROG/ IEOD, ISECT
                      COMMON/IO/ INLU, OUTLU, LEN4, LEN, ZERO, ONE, IOSTAT, CBPB, CIRBUF COMMON/IN/ ERRLU, PRILU, HEDLU, SILU
 291
292
 293
 294
            С
              DATA
 295
 296
                      DATA KDAT/256+0/
            C
 297
 298
                      IF(NUM+I.GT.252)NUM=NUM-252
 299
                                IF (NUM. LE. 0) THEN
                                         ISECT=ISECT+1
 300
                                         IF(ISECT.EQ.IEOD)THEN
 301
 302
                                                   WRITE(+,+)'END OF DATA ', ISECT
 303
 304
                                         ENDIF
                      IOSTAT-1
 305
                15
 306
                       WRITE( .. . ) '
                                           ..., CBPB(6), '... BYTES IN CIRBUF...'
                      IF (CBPB(6).LT.LEN4)GO TO 15
IF (CBPB(6).GT.7000)WRITE(1,*)'CIRBUF OVERFLOW IMMINENT'
 307
 308
```

CCC POSTOR

STATE OF THE STATE

MANAGER CONTRACT PROPERTY

```
309
                     CALL SREAD(INLU, KDAT(1), LEN4, ZERO, ZERO, ZERO, IOSTAT)
310
                     IF(IOSTAT. EQ. 10) THEN
311
                               WRITE(*,*)'NO DATA ON THE INPUT LINE'
WRITE(*,*)'PAUSE OR STOP? (1 FOR PAUSE, 0 TO STOP)'
312
313
                               READ(+,+) ISTOP
314
                               IF(ISTOP.EQ.0)STOP
315
                               PAUSE
316
                               GO TO 16
317
                     ENDIF
                     IF(IOSTAT.NE.0)THEN
                                       WRITE(*,*)'ERROR READING DATA...IOSTAT= ',IOSTAT
WRITE(PRILU,*)'ERROR READING DATA...IOSTAT= ',IOSTAT
319
320
321
                                       PAUSE
322
                     ENDIF
323
               16
                     CONTINUE
324
           C
325
                               ENDIF
326
           C
327
                     NUM-NUM+I
                     JGET=KDAT (NUM)
328
                     WRITE(+,+)'...JGET = IF(NUM.EQ.252)NUM-0
329
                                      .JGET = ',JGET,'.....
330
331
                     RETURN
332
              900
                     STOP
333
                     END
334
335
              SUBROUTINE GETDAT TO CALL FUNCTION JGET
336
337
            C
338
                     SUBROUTINE GETDAT(I1, I2, JDAT, NUM)
339
340
                     IMPLICIT INTEGER+2 (J-N)
341
342
                      INTEGER+1 JDAT(24)
343
344
              COMMON
345
346
                     COMMON/PROG/ IEOD, ISECT
347
            C
348
                     CONTINUE
349
                     DO 10 I=I1, I2
350
                               JDAT(I)=JGET(1, NUM)
                               WRITE(*,*)'IN GETDAT AFTER JGET CALL AND RETURN'
351
352
                     CONTINUE
353
            C
                      ITIME=ITIME+2
354
                     RETURN
355
                     END
356
357
              SUBROUTINE SIXT TO COMPRESS PAIRS OF 16-BIT NUMBERS INTO A
358
            C
              SINGLE VARIABLE. 32767 IS SUBTRACTED TO KEEP THE NUMBERS
359
              WITHIN TWO'S COMPLEMENT RANGE FOR I+2
360
361
362
                     SUBROUTINE SIXT(JDAT, JSTOR)
363
364
            C
365
                      IMPLICIT INTEGER+2 (J-N)
366
            C
367
                     DIMENSION JSTOR(11)
                     INTEGER+4 IDAT(24)
INTEGER+1 JDAT(24)
368
369
                     INTEGER+1 DATBYT(4),HI,LO
INTEGER+4 DATA, IDT, IDPREV
370
371
372
                     INTEGER+4 ERRLU, PRILU, HEDLU, SILU
373
           C
374
                     COMMON/IN/ ERRLU, PRILU, HEDLU, SILU
375
           C
376
                     EQUIVALENCE (DATA, DATBYT(1)), (DATBYT(3), HI), (DATBYT(4), LO)
           ¢
377
378
                     DATA IDPREV/0/
379
            C
380
                     DO 10 I=1,24
381
                               IDAT(I)=JDAT(I)
382
               10
                     CONTINUE
383
384
                     DO 30 I=2,9
385
                               IJ=2+I
```

```
386
                                   IF(I.GT.5)IJ=IJ+4
387
                                   JJ=[J-1
388
                                  HI-JDAT(IJ)
                                  LO-JDAT(JJ)

LO-JDAT(JJ)

JSTOR(I)=IDAT(IJ)+256+IDAT(JJ)-32767

JSTOR(I)=DATA-32767
389
390
             C
391
392
                 30
                       CONTINUE
                                   JSTOR(10)=JDAT(2)-32767
JSTOR(11)=JDAT(14)-32767
393
394
                                  HI-JDAT(12)
LO-JDAT(11)
395
396
397
                                   JSTOR(1)=DATA-32767
398
                                   IDT-DATA-IDPREV
                                   IF(IDT.LT.0)THEN
399
                                             WRITE(PRILU, *)'TIME OUT OF ORDER : ',DATA, IDPREV
400
401
                                             WRITE(+,+)'TIME OUT OF ORDER : ',DATA,IDPREV
402
                                   ENDIF
403
                                   IDPREV=DATA
404
                        RETURN
405
                        END
406
               SUBROUTINE PRDAT (JSTOR) TO PRINT OUT ONE (DOUBLE) SCAN OF
407
               CTD DATA IN FLOATING POINT FORMAT
408
409
410
             C
411
                        SUBROUTINE PRDAT(JSTOR)
412
413
             C
414
                        IMPLICIT INTEGER+2 (J-N)
             C
415
                       DIMENSION JSTOR(11), XST(11)
INTEGER*4 ISTOR(11), ERRLU, PRILU, HEDLU, SILU
416
417
418
             C
419
                        COMMON/IN/ ERRLU.PRILU.HEDLU.SILU
             C
420
421
                        DO 10 I=1,11
422
                                   ISTOR(I)=JSTOR(I)
423
                                  XST(I)=FLOAT(ISTOR(I)+32767)
424
                        CONTINUE
425
             C
                                  TI=XST(1)
P1=XST(2) • .025
T1=XST(3) • .0005
C1=XST(4) • .001
F1=XST(5) • .0005
P2=XST(6) • .025
T2=XST(7) • .0005
426
427
428
429
430
431
432
                                   C2=XST(8) + .001
F2=XST(9) + .0005
U1=XST(10)
433
434
435
436
                                   U2=XST(11)
437
             C
438
                        WRITE(PRILU, 1000) TI, P1, T1, C1, F1, P2, T2, C2, F2, U1, U2
                        FORMAT(F7.0,F8.1,3F7.3,F8.1,3F7.3,2X,2F4.0)
WRITE(*,1000)TI,P1,T1,C1,F1,P2,T2,C2,F2,U1,U2
439
               1000
440
441
             C
442
                        RETURN
443
                        END
444
445
                INIT SUBPROGRAM TO INITIALIZE VARIABLES
446
447
448
                        SUBROUTINE INIT
449
450
451
                        INTEGER+2 CBPB(10)
452
                        INTEGER+1 CIRBUF(8192)
                        INTEGER+4 LEN4, LEN, INLU, OUTLU, ZERO, ONE, IDUM, IOST, IOSTAT
453
454
                        INTEGER+4 ERRLU, PRILU, HEDLU, SILU
455
             C
                        COMMON/IO/ INLU,OUTLU,LEN4,LEN,ZERO,ONE,IOSTAT,CBPB,CIRBUF COMMON/IN/ ERRLU,PRILU,HEDLU,SILU
456
457
458
             C
459
                        DO 10 I=1.10
460
                                   CBPB(I)=0
                        CONTINUE
461
              C
462
```

INDESCRIPTION DESCRIPTION OF PARTIES

```
386
                                      IF(I.GT.5)IJ=IJ+4
                                                                         185
387
                                       JJ=IJ-1
                                      LO-JDAT(IJ)
388
389
                                       JSTOR(I)=IDAT(IJ)+256+IDAT(JJ)-32767
JSTOR(I)=DATA-32767
              C
390
391
392
                   30
                          CONTINUE
                                       JSTOR(10)=JDAT(2)-32767
JSTOR(11)=JDAT(14)-32767
393
394
                                      HI=JDAT(12)
LO=JDAT(11)
JSTOR(1)=DATA-32767
IDT=DATA-IDPREV
395
396
397
398
399
                                       IF(IDT.LT.0)THEN
400
                                                  WRITE(PRILU, *)'TIME OUT OF ORDER : ', DATA, IDPREV
401
                                                   WRITE(*,*)'TIME OUT OF ORDER : ',DATA,IDPREV
402
                                       ENDIF
403
                                       IDPREV-DATA
404
                          RETURN
405
                           END
406
407
              С
                 SUBROUTINE PRDAT (JSTOR) TO PRINT OUT ONE (DOUBLE) SCAN OF
408
               C
                 CTD DATA IN FLOATING POINT FORMAT
409
              C
410
411
                           SUBROUTINE PRDAT(JSTOR)
412
413
414
                           IMPLICIT INTEGER+2 (J-N)
415
              C
                          DIMENSION JSTOR(11),XST(11)
INTEGER+4 ISTOR(11),ERRLU,PRILU,HEDLU,SILU
416
417
418
               C
419
                           COMMON/IN/ ERRLU, PRILU, HEDLU, SILU
420
               C
421
                          DO 10 I=1,11
                                       ISTOR(I)=JSTOR(I)
422
423
                                       XST(I) = FLOAT(ISTOR(I) + 32767)
424
                   10
                           CONTINUE
425
                                      TI=XST(1)
P1=XST(2)*.025
T1=XST(3)*.0005
C1=XST(4)*.001
F1=XST(5)*.0005
P2=XST(6)*.025
T2=XST(7)*.0005
C2=XST(8)*.001
F2=XST(9)*.0005
U1=XST(10)
U2=XST(11)
426
427
428
429
430
431
432
433
435
436
437
               C
                          WRITE(PRILU,1000)TI,P1,T1,C1,F1,P2,T2,C2,F2,U1,U2
FORMAT(F7.0,F8.1,3F7.3,F8.1,3F7.3,2X,2F4.0)
WRITE(*,1000)TI,P1,T1,C1,F1,P2,T2,C2,F2,U1,U2
438
439
                 1000
440
441
               C
442
                           RETURN
443
                           END
444
               C
445
                  INIT SUBPROGRAM TO INITIALIZE VARIABLES
               С
446
447
448
                           SUBROUTINE INIT
449
               C
450
451
                           INTEGER+2 CBPB(10)
                          INTEGER*2 COPD(10)
INTEGER*1 CIRBUF(8192)
INTEGER*4 LEN4, LEN, INLU, OUTLU, ZERO, ONE, IDUM, IOST, IOSTAT
INTEGER*4 ERRLU, PRILU, HEDLU, SILU
452
453
454
455
               C
                           COMMON/IO/ INLU,OUTLU,LEN4,LEN,ZERO,ONE,IOSTAT,CBPB,CIRBUF COMMON/IN/ ERRLU,PRILU,HEDLU,SILU
456
457
458
               C
459
                           DO 10 I=1,10
460
                                       CBPB(I)=0
461
                           CONTINUE
                   10
462
               C
```

CONTROL CONTRO

```
186
463
                       DO 30 I=1,8192
464
                                 CIRBUF(I)-0
465
                       CONTINUE
                30
466
            C
467
                       ZERO-0
468
                       ONE=1
469
                       LEN4=252
470
                       LEN-242
471
                       INLU-10
472
                       OUTLU-11
473
                       ERRLU-9
474
                       HEDLU-12
475
                       IOSTAT=1
476
            C
477
                       RETURN
478
                       END
479
480
            C
               SUBROUTINE STNLOC TO LOG STATION LOCATION INFORMATION
481
482
            C
483
                       SUBROUTINE STNLOC
484
            C
485
            C
486
                       INTEGER+4 ERRLU, PRILU, HEDLU, SILU
                       INTEGER+4 THIRTY, TWELVE, BASEYR, IDAY, IMONTH, IYEAR
487
488
                       CHARACTER IDSTN+6, COMNT+80
489
            C
                       COMMON/HEADR/ XLAT, XLONG, TIME, GMT, DEPTH, CASTD, IDAY, IMONTH, IYEAR COMMON/HEADR/ WIND, SST, TDRY, TWET COMMON/HEADR/ XDAY, XR, YR
490
491
492
493
                       COMMON/HDCHR/ IDSTN.COMNT
494
                       COMMON/IN/ ERRLU, PRILU, HEDLU, SILU
495
            C
                       WRITE(*,*)'ENTER DAY, MONTH, YEAR'
READ(*,*)IDAY, IMONTH, IYEAR
WRITE(*,*)'ENTER LOCAL TIME (24 HOUR CLOCK)'
496
497
498
499
                       READ(+,+)TIME
WRITE(+,+)'ENTER WATER DEPTH'
500
                       READ(*,*)DEPTH
WRITE(*,*)'ENTER INTENDED CAST DEPTH'
READ(*,*)CASTD
501
502
503
                       WRITE(*,*)'ENTER LATITUDE DEGREES, MINUTES'
READ(*,*)XLTDEG, XLTMIN
WRITE(*,*)'ENTER LONGITUDE DEGREES, MINUTES'
READ(*,*)XLGDEG, XLGMIN
504
505
506
507
508
                       WRITE(+,+)'ENTER WIND SPEED (MPH)'
                       READ(+,+)WIND
509
510
                       WRITE(+,+)'ENTER SEA SURFACE TEMPERATURE'
511
                       READ(*,*)SST
512
                       WRITE(*,*)'ENTER DRY BULB AND WET BULB AIR TEMPERATURES'
513
                       READ(*,*)TDRY,TWET
                       WRITE(*,*)'ENTER 80 CHARACTER COMMENT'
READ(*,37)COMNT
514
515
516
517
            C CALCULATIONS
518
519
                       THIRTY=31
520
                       TWELVE=12
521
                       BASEYR=84
522
                       IYDAY=KDAY(IDAY, IMONTH, IYEAR)-KDAY(THIRTY, TWELVE, BASEYR)
523
                       XDAY=9999
524
                       GMT=TIME+700
525
                       XDAY=FLOAT(IYDAY)+GMT/2400
IF(GMT.GT.2400)THEN
526
527
                                 GMT=GMT-2400
528
                       ENDIF
             C
529
530
                       XLAT=XLTDEG+XLTMIN/60.
531
                       XLONG-XLGDEG+XLGMIN/60.
532
                       ZLTO=27.
533
                       ZLGO=111
534
                       CALL XPL(XLAT, XLONG, ZLTO, ZLGO, XD, YD)
535
536
               ROTATE AXES TO ALIGN WITH THE GULF
537
538
                       TH=360-324
539
                        TH-2+3.14159+TH/360.
```

ኯኇቘፙዀኇ፞ቘቔዾ፞ፙፘፚዀቔቔዀዄዄዄዄዀዀዀዀዀዀዀቔቔፙቔዀጞ

g

\$\$\$#\$P\$P\$\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta

1をなっている。 1をなっている。大学によることは、1年である。このは、1年によっている。「1年によって、1年によってはよっているによってはらいるによってはらいるによってはらいるによってはらいによってはらいによってはらいによってはらいによってはらいによってはらいによってはらいによってはらいによってはらいによ


```
187
                        CTH=COS(TH)
541
542
                        STH-SIN(TH)
                        XR=XD+CTH+YD+STH
543
                        YR=YD+CTH-XD+STH
544
                WRITE STATION DATA TO SCREEN FOR OK
546
547
                        WRITE(PRILU,*)'STATION DAY MONTH YEAR TIME WRITE(PRILU,10)IDSTN,IDAY,IMONTH,IYEAR,TIME,GMT,XDAY WRITE(PRILU,*)
                                                                                            TIME
                                                                                                                 YRDAY'
548
549
550
                        WRITE(PRILU, .)
                                                        LAT
                                                                MIN
                                                                         LONG
                                                                                  MIN
                                                                                            DEPTH
                                                                                                       CAST DEPTH'
551
                         WRITE(PRILU, 20) XLTDEG, XLTMIN, XLGDEG, XLGMIN, DEPTH, CASTD
                        WRITE (PRILU. .
552
553
                        WRITE(PRILU, .)
                                                                                       XR
                                                        XLAT
                                                                         XLONG
                                                                                                  YR'
554
                         WRITE(PRILU, 30) XLAT, XLONG, XR, YR
555
                         WRITE(PRILU, .
                        WRITE(PRILU, ...)' SST TI
WRITE(PRILU, ...)' SST, TDRY, TWET, WIND
556
                                                                     TDRY
                                                                                TWET
                                                                                                WIND
557
558
                         WRITE(PRILU, .
559
                         WRITE(PRILU, +
                        WRITE (PRILU, 37) COMNT
560
561
             C WRITE TO SCREEN
562
                        WRITE(+,+)'STATION DAY MONTH YEAR TIM WRITE(+,10)IDSTN,IDAY,IMONTH,IYEAR,TIME,GMT,XDAY
                                                                                                            YRDAY'
                                                                                       TIME
563
                        WRITE(+,+)
564
565
                                                   LAT
                                                          MIN
                                                                   LONG
                                                                             MIN
                                                                                       DEPTH
                                                                                                  CAST DEPTH'
                        WRITE(+,20)XLTDEG,XLTMIN,XLGDEG,XLGMIN,DEPTH,CASTD WRITE(+,+)
566
567
568
                        WRITE(*,*): XLAT
WRITE(*,30)XLAT,XLONG,XR,YR
                                                                   XLONG
                                                                                 YR
                                                                                            YR'
569
                        WRITE(+,+)
WRITE(+,+)
570
571
                                                   SST
                                                                          TWET
                                                               TORY
                                                                                           WIND'
                        WRITE(•,35)SST,TDRY,TWET,WIND
WRITE(•,•)
WRITE(•,•)
572
573
574
             WRITE(+,37)COMNT
C WRITE TO HEADER FILE
575
576
577
                        WRITE(HEDLU, 40) IDSTN, IDAY, IMONTH, IYEAR, TIME, GMT, XDAY, DEPTH, CASTD, XLAT, XLONG, XR, YR, SST, TDRY, TWET, WIND
578
                        WRITE (HEDLU, 37) COMNT
579
                        WRITE(HEDLU, 37)COMMY
CLOSE(HEDLU)
WRITE(ERRLU, 40)IDSTN, IDAY, IMONTH, IYEAR, TIME, GMT, XDAY, DEPTH, CASTD,
XLAT, XLONG, XR, YR, SST, TDRY, TWET, WIND
WRITE(ERRLU, 37)COMNT
CLOSE(ERRLU)
580
581
582
583
584
585
                        PAUSE
586
                        RETURN
587
SAR
                FORMATS
589
590
                  10
                         FORMAT(2X,A6,6X,I2,6X,I2,4X,I4,3X,F5.0,2X,F5.0,2X,F7.2)
591
                        FORMAT(8X,F4.0,2X,F5.2,2X,F4.0,2X,F5.2,3X,F6.0,4X,F6.0)
FORMAT(7X,F8.3,4X,F8.3,F8.2,2X,F8.2)
                  20
592
                  30
                        FORMAT(9X,F5.2,4X,F5.2,4X,F5.2,4X,F6.1)
FORMAT(A80)
593
                  35
594
                  37
595
                         FORMAT(A6, 12, 12, 14, F5.0, F5.0, F7.2, F6.0, F6.0, F8.3, F8.3, 2F8.2, 3F5.2, F6.1)
                  40
596
597
598
                SUBROUTINE XPL TO COMPUTE THE DISTANCE IN KM BETWEEN TWO LAT/LONG POSITIONS
599
600
             C
601
                        SUBROUTINE XPL(XLAT, XLONG, ZT, ZG, XD, YD)
602
603
604
                         XD=-111.12 • (XLONG-ZG) • COS((XLAT+ZT)/114.592)
605
                         YD=111.12+(XLAT-ZT)
                        RETURN
606
607
                         END
```

```
188
                C FILE APROCOM. FOR
                C DIM
                              DIMENSION DATA(6000,9)
DIMENSION TI(6000),PR(6000),TE(6000),CN(6000),FT(6000),UT(6000)
DIMENSION TC(6000),TR(6000),SA(6000)
                C COLUMN 10 OF DATA IS USED IN THE PLOTTING ROUTINE-BEWARE OF CHANGES
 8
                               INTEGER+2 JSTOR(11),DTCB(8),KD(11,11)
INTEGER+4 LEN,ZERO,ONE,IOSTAT,INLU,OUTLU,HEDLU,PRILU,ERRLU
INTEGER+1 DTCSTA,ERR(4)
10
12
13
                               INTEGER+2 RTS, XON, TERM, WRT, READ
14
                C CHARACTER
16
                               CHARACTER+12 INFIL,OUTFIL,HEDFIL,ERRFIL CHARACTER+80 STNID,COMNT
17
18
19
                               CHARACTER+6 IDSTN
20
21
22
                C EQUIVALENCE
                               EQUIVALENCE (DTCB(1),DTCSTA)
EQUIVALENCE (DATA(1,1),TI(1))
23
24
25
26
27
28
29
31
33
33
35
36
37
38
39
40
41
42
43
                C COMMON
                               COMMON/IO/ INLU,OUTLU,HEDLU,LEN,ZERO,ONE,IOSTAT,IQUIT COMMON/IN/ ERRLU,PRILU COMMON/SU/ NSTEPS,TAU,TAUINV,ISCM.THPR,TEPR,XN,PRPR,TPR,SPR,PINT COMMON/SU/ PINT2,NDATA,BLKT,BLKS,BLKD COMMON/DAT/ JSTOR,JSCAN,KD COMMON/ED/ OFFSET(3),SLOPE(3),P1,P2,T1,T2,C1,C2,DP1,DT1,DC1 COMMON/LAG/ ANT(50),ANC(50),ANP(50),NPTS2,NPTS
                C
                               COMMON KIN
                               COMMON KTTX, KLIST, KOUT, KTP, ISW, JSW, KBR
                               COMMON PF, TO, SO, DVO
                               COMMON PI, THF, SF, DVF
COMMON PM, THM, SM, DVM, CDM
                               COMMON CP(8), 21, CT(8), Z2, CC(8), Z3, F1, F2, F3, N
                C
                               COMMON P(10),T(10),CD(10),DV(10)
COMMON TH(10),PT(10),TT(10),CDT(10)
COMMON B(8',SP(8),BT(8),BC(8),BA(8),CQ(36),MR(8)
COMMON MM,M1,M2,M2X2,IR,IQ,C1535,IPPREV,IPINT,JCOUNT,ICOUNT
COMMON NDP,XNDP,TIPREV
COMMON DATAX(3,21)
 46
47
48
 49
                                COMMON RTS, XON, TERM, WRT, READ
50
51
52
                                COMMON ISTRT
                                COMMON SUMT, EXPC (20)
                                COMMON SFT(20),STI(20),JSV
53
54
55
                 C DON'T PUT ANY BLANK COMMON AFTER THIS LINE-DANGER OF OVERWRITING
 56
                                COMMON TI, PR. TE, CN, FT, UT, TC, TR, SA, XJNK
```

```
C PROGRAM TO READ DATA FROM A HARD DISK FILE, SCALE, LAG CORRECT, AND PRESSURE
              SORT (BLOCK AVERAGE)
 2
              BASED ON A SIMILAR PROGRAM FOR PLESSY STD DATA FROM THE 832.
              18 SEPT 84
            C PROGRAMMER: N. BRAY
            C MODIFIED 12 MAR 85 ABOARD N.H. TO INCLUDE FOFONOFF LAGCOR SCHEME
                       PROGRAM APROC
            C **************
10
12
            $INCLUDE APROCOM.FOR
13
14
            C DATA
15
            C
16
                       DATA INFIL/
17
                       DATA OUTFIL/
                       DATA HEDFIL'
18
                       DATA IPLOT/0/, ISTOP/0/, IFAST/0/, IREDO/0/, IBLK/0/
19
C
              PROGRAM
            C DUMMY CALL FOR FLOATING POINT PROCESSOR
                       CALL PHYSIC(I)
            C OPEN
            C OPEN KEYPAD FOR BEEP
                       CALL SYSOPE(13, * KPD ',1,0,0,KDUMP, IOSTAT)
IF(IOSTAT.NE.0)WRITE(*,*) 'KEYPAD IOSTAT IS: ',IOSTAT
            C ENTER STATION
                       WRITE(1,+)'CRUISE AND STATION (E.G. PC7###)'
READ(+,7)IDSTN
FORMAT(A6)
                       FORMAT (A6)
INFIL(1:2)='2:'
INFIL(3:8)=IDSTN
INFIL(9:12)='.OUT'
OUTFIL(1:2)='4:'
OUTFIL(3:8)=IDSTN
OUTFIL(9:12)='.UPT'
HEDFIL(1:2)='2:'
HEDFIL(3:8)=IDSTN
HEDFIL(9:12)='.NHD'
ERRFIL(1:2)='4:'
ERRFIL(3:8)=IDSTN
ERRFIL(3:8)=IDSTN
ERRFIL(9:12)='.ERR'
 49
50
51
52
               PRINT DEVICE
53
54
55
56
57
                        WRITE(+,+)'LIST TO SCREEN (0) OR PRINTER (1)?'
                        READ(+,+) IPR
                        IPR-1
                        PRILU-6
58
59
                        IF(IPR.EQ.1)THEN
                                   OPEN(PRILU, FILE='#SER01')
 60
                        ELSE
 61
                                   PRILU-0
62
63
                        ENDIF
                        OPEN(2, FILE='CTD.WTS')
 65
                                   NSTEPS=2301
66
67
             C NSTEPS MUST BE LESS THAN OR EQUAL TO ##, OR THE ARRAY REORGANIZATION C SCHEME WILL OVERWRITE ITSELF.
 68
                                   NLAG-1
 69
               FILTER WEIGHTS FOR LAG CORRECTION (T=TEMP, C=COND, P=PRESS)
 70
71
72
73
74
                        DO 1 I=1,50
                                    ANT(1)=0.
                                   ANP(I)=0.
ANC(I)=0.
 75
76
                        CONTINUE
```

CHENNAS CONTRACTOR CANCELLO

CANADARA SESSIONA

```
190
C WARNING--CHANGE THE WEIGHT INDICES WHEN CHANGING NPTS
                    NPTS-25
                    M1-1201
                    4800
                    CONTINUE
C
     3
                    WRITE(*,*)'ST PT, # PTS IN DATA ARRAY, NSTEPS, NLAG'
WRITE(*,*)M1, MM, NSTEPS, NLAG
WRITE(*,*)'CHANGE? (@-NO, 1-YES)'
     3
                    READ(+,+)IOK
          10K=0
                    IF(IOK.EQ.1)THEN
WRITE(+,+)'M1,MM,NSTEPS,NLAG'
                              READ(+,+)M1,MM,NSTEPS,NLAG
                    ENDIF
                    READ(2, •) NPTS
NPTS2=(NPTS-1)/2
                    ISCM=(NSTEPS-1)/2
C NLAG IS THE LAG IN SCANS FOR LAGCOR: NPTS IS THE NUMBER OF POINTS IN THE
C FILTER
Ċ
C
C LAGCOR FILTER WEIGHTS AN(I) FROM FOFONOFF, HAYES AND MILLARD 1974
                    IQ=ISCM+1
IR=(NPTS-1)/2
XN=FLOAT(NSTEPS)
                    M2-MM-ISCM-IR
                    IM-M1+IR-ISCM
                    IF(IM.LT.1)WRITE(*,*)'ERROR IN INDEX PARAMETERS'
  IQ IS THE NUMBER OF SCANS SUBROUTINE FAST LOOKS BACKWARD: IR IS THE NUMBER OF
C SCANS THAT LAGCOR LOOKS FORWARD
                    M2X2-M4/2
C M2X2 IS THE NUMBER OF DOUBLE SCANS TO READ IN
                    NDP=M2-M1
XNDP=FLOAT(NDP)
                    TIPREV-0.
                    SUMT-0.
C
                    IF(IREDO. EQ. 1)GO TO 8000
  CHOSE INTERVAL OF INTEREST
          WRITE(.,.)'ENTER MIN AND MAX PRESSURES (0,0 DOES COMPLETE CAST)'
C
          READ(+,+)PST,PND
          PST-0.
          PND-0
          IF(PND.EQ.0)PND-6000.
          CALL INIT
  OPEN
          OPEN(INLU, FILE-INFIL, FORM-'UNFORMATTED', STATUS-'OLD')
OPEN(OUTLU, FILE-OUTFIL, FORM-'FORMATTED', STATUS-'NEW')
          OPEN(HEDLU, FILE-HEDFIL, STATUS-'OLD', ERR-8888)
OPEN(ERRLU, FILE-ERRFIL, STATUS-'NEW')
 8001
          GO TO 8880
```

C IF HEADER FILE NOT FOUND ON FLOPPY, CHECK HARD DISK

OPEN(HEDLU, FILE-HEDFIL, STATUS-'OLD')

 $WRITE(\bullet,\bullet)$ 'SKIP HOW MANY SECONDS AT START OF CAST?' READ(\bullet,\bullet) ISKP

CALL SREAD(INLU, KD(1,1),242, ZERO, ZERO, ZERO, IOSTAT)

HEDFIL(1:2)='4:'

ISREC-ISKP+25/22 DO 853 IJ-1, ISREC

C SKIP OVER RECORDS AT BEGINNING OF CAST

GO TO 8001

CONTINUE

 COLORS SCHOOL SCHOOL SCHOOL SCHOOL

verses acusers masses

```
853
                     CONTINUE
156
157
              READ HEADER
158
159
                      DO 10 I=1,16
                                READ(HEDLU, 9) COMNT
160
                                WRITE(OUTLU,9)COMNT
WRITE(PRILU,9)COMNT
161
162
163
                                WRITE (ERRLU, 9) COMNT
164
                      CONTINUE
                18
165
                      WRITE(OUTLU, *)
WRITE(PRILU, *)
166
167
                      WRITE(ERRLU, +)
168
                                WRITE(PRILU, 5661)M1, MM, NSTEPS, NLAG, NPTS
                                                                                         NLAG ='. 13,'
                                                                                                             NPTS = ', I3)
                                               MM =', 15,'
                                                                 NSTEPS =', 15,'
169
             5661 FORMAT('M1 =', IS,'
170
171
                      FORMAT(A80)
172
            C CALL CALIBRATION SUBR
173
174
175
                       CALL CALIB
            C PRINT OUT, BIGED ARRAYS
176
                      WRITE(PRILU, •) 'RANGES OF: PRESSURE TEMPERATURE CONDUCTIVITY' WRITE(PRILU, •)' P1 P2 T1 T2 C1 C2'
177
178
179
                      WRITE(PRILU,566)P1,P2,T1,T2,C1,C2
                      WRITE(PRILU, *)'
WRITE(PRILU, *)'FIRST DIF:
WRITE(PRILU, 567)DP1,DT1,DC1
180
                                                                          DT1
                                                                                            DC1'
181
                                                           DP1
182
                      WRITE(PRILU,*)'
FORMAT(8X,4F6.1,2X,2F6.1)
FORMAT(12X,F8.3,4X,F8.3,6X,F8.3)
183
184
               566
185
               567
186
187
            C PRINT WEIGHTS
188
                                DO 4 IJ=1,NPTS
189
190
                                           READ(2, *)ANT(IJ), ANC(IJ), ANP(IJ)
191
                                 CONTINUE
192
                      WRITE(PRILU, .) WEIGHTS OF TEMPERATURE
193
                      WRITE(PRILU,568)(IJ,ANT(IJ),IJ=1,NPTS)
FORMAT(7(I3,': ',F6.3))
WRITE(PRILU,*)'
194
195
              568
196
                       WRITE(PRILU, +) 'WEIGHTS OF CONDUCTIVITY'
197
198
                       WRITE(PRILU, 568) (IJ, ANC(IJ), IJ=1, NPTS)
                      WRITE(PRILU.+)'
WRITE(PRILU.+)'WEIGHTS OF PRESSURE'
199
200
                      WRITE(PRILU,568)(IJ,ANP(IJ),IJ=1,NPTS)
WRITE(PRILU,*)'
WRITE(PRILU,*)'
201
202
203
204
            C START READING IN DATA
205
206
                       JSCAN=(M1-1)/2
207
                       CALL NÈWDAT
268
                       PRPR-A
209
210
             C FILL ROWS 1-10 OF DATA WITH 11-20 TO HAVE A START POINT
211
              8000
                       THST=M1-ISCM
212
213
                       DO 26 I=THST,M1-1
214
                                 IN-M1
215
                       DO 21 J=1.9
                                 DATA(I,J)=DATA(IN,J)
216
                       CONTINUE
217
                21
218
                                 TC(I)=TE(I)
219
                20
                       CONTINUE
                       DO 23 I-M1, M1+IR-1
220
 221
                                 TC(I)=TE(I)
 222
                 23
                       CONTINUE
              9999
223
                       CONTINUE
224
 225
             C PRINT OUT RAW DATA VALUES AT TOP AND BOTTOM OF ARRAY
 226
 227
                       CALL CHECK
228
 229
               CHECK FOR START OF UPCAST
 230
 231
                       PDP=PR(M2)-PR(M1)
```

```
192
                         IF(ISTOP.EQ.3)GO TO 9000
IF(POP.LT.0)THEN
 232
 233
234
235
236
237
238
             0000000000000000
                  95
                                    CONTINUE
                                    WRITE(+,96)PR(M1),PR(M2)
FORMAT(2F10.3)
                  96
                                   WRITE(*,*)'START PR > LAST PR IN ARRAY. ACTION?'
WRITE(*,*)'G=STOP'
WRITE(*,*)'1=CONTINUE'
WRITE(*,*)'2=NEW ARRAY'
WRITE(*,*)'3=PROCESS UPTRACE'
 239
 240
 241
 242
                                   CALL BEEP
READ(*,*)ISTOP
IF(ISTOP.EQ.0)STOP
IF(ISTOP.EQ.2)GO TO 5000
IF(ISTOP.EQ.3)THEN
PINT—ABS(PINT)
                                    CALL BEEP
 243
 244
 245
 246
 247
 248
                                              PINT2-ABS(PINT2)
              Č
 249
                                   ENDIF
 250
              C
                                   IF(ISTOP.GT.3.OR.ISTOP.LT.0)GO TO 95
 251
              C
                        ENDIF
 252
               9000
                        CONTINUE
 253
 254
                COMBINE FAST AND SLOW OR CONTINUE
 255
256
                                   CALL FAST2
257
259
                LAG CORRECTION OR CONTINUE
259
260
                        ILAGC=1
                        IF(ILAGC.EQ.1)THEN
261
262
                                              CALL LAGCOR (PR, TC, CN, NLAG, NPTS)
263
                        ELSE
264
                                   DO 3020 I-M1,M2
265
                                              SA(I)=SAL78(PR(I),TC(I),CN(I),C1535,0)
TR(I)=TC(I)
266
267
               3020
                                   CONTINUE
268
                        ENDIF
269
270
                BLOCK AVERAGE
271
272
                                   CALL PRSORT
273
                                   IF(IQUIT.EQ.1)THEN
274
                                             WRITE(+,+)'STOP (0) OR CONTINUE ONE MORE ARRAY (1)?'
READ(+,+)ICONT
IF(ICONT.EQ.0)THEN
275
276
277
                                                    WRITE(+,+)'END OF PROCESSING : PROGRAMMED STOP '
278
                                                    STOP
279
                                              ENDIF
280
                                   ENDIF
281
              5000
                        CONTINUE
282
283
             C SHIFT ARRAYS AND READ IN NEXT DATA
284
285
                        CALL SHIFT
286
                        JSCAN-(M1+ISCM+IR-1)/2
287
                        CALL NEWDAT
288
                        GO TO 9999
289
                        STOP
290
                        END
291
292
293
               SUBROUTINE PRSORT TO BLOCK AVERAGE DATA
294
295
             C
296
                       SUBROUTINE PRSORT
297
298
299
             $INCLUDE APROCOM, FOR
300
301
                       CALL PSTATS(PR,PMIN,PMAX,DP,M1,M2)
PRESS=FLOAT(IPPREV)+PINT
                 1
302
303
                       IF (PINT. LT. 0. AND. PRESS. LT. 2) THEN
304
                                  WRITE( .. . ) 'PRESS LESS THAN 2 (PRSORT) '
305
                                  STOP
306
                       ENDIF
307
                       IF(PMIN.GT.PRESS+PINT2)THEN
308
                                  PNEW-(IFIX(PMIN)/2)+2
```

NAME OF

```
WRITE(*,*)'CHANGING PRESS : ',PRESS,PNEW WRITE(*,*)'OK? (YE OR NO)'
309
310
                                CALL BEEP
312
                                IF(NOYES(0,0).NE.1)THEN
313
                                          RETURN
314
                                ENDIF
315
                                PEXP-PNEW
316
                                PRESS-PEXP+PINT
                      ENDIF
317
318
319
                      IF(PRESS.GT.PMAX)RETURN
                      IPC-0
ISTOP-0
320
321
322
                      PXP1=PRESS-PINT2
                      PXP2=PRESS+PINT2
323
324
325
            C BLOCK AVERAGE
326
327
                      DO 12 I-M1,M2
328
            C
329
              FOR UPTRACES ONLY (PINT<0)
            C
330
331
                      IF(PINT.LT.0)THEN
332
                                IF(PR(I).LE.PXP1)THEN
333
                                          XND=FLOAT(NDATA)
BLKT=BLKT/XND
BLKS=BLKS/XND
334
335
336
                                DIFT-TPR-BLKT
337
                                DIFS=SPR-BLKS
338
                                TPR-BLKT
                                SPR-BLKS
339
340
                                          WRITE(OUTLU, 17) PRESS, BLKT, BLKS
341
                                          WRITE(PRILU, 17) PRESS, BLKT, BLKS, DIFT, DIFS, NDATA
342
343
              SET UP FOR NEXT BLOCK
344
345
                                          BLKT-0.
346
                                          BLKS-0.
347
            C
                                          BLKD-0
348
                                          NDATA-0
349
                                          IPPREV=IFIX(PRESS)
350
                                          PRESS-PRESS+PINT
351
                                          PXP1=PXP1+PINT
352
                                          PXP2-PXP2+PINT
353
                                ENDIF
354
355
               ACCUMULATE SCANS FOR BLOCK AVERAGE
356
357
              1250
                                CONTINUE
358
                                BLKT=BLKT+TR(I)
359
                                BLKS-BLKS+SA(1)
360
                                BLKD=BLKD+1.E05+(EOS80(PR(I),TR(I),SA(I))-V350P(PR(I)))
361
                                NDATA=NDATA+1
362
                      ENDIF
363
364
              DOWNTRACES ONLY (PINT>0)
365
366
                      IF(PINT.GT.0)THEN
                                IF(PR(I).LT.PXP1)THEN
IPC=IPC+1
367
368
369
370
               ALLOW A FEW POINTS TO BE LT THE TARGET PRESSURE BEFORE DECIDING IT'S THE
371
               START OF THE UPTRACE
372
373
                                           IF(IPC.LT.10.OR.PRESS.LE.10)GO TO 12
374
                                          IF(ISTOP.EQ.1.OR.ISTOP.EQ.3)GO TO 843
WRITE(*,*)'PRSORT EXIT: PRESS,PR(I): ',PRESS,PR(I)
WRITE(*,*)'STOP (0), CONTINUE (1), OR UPTRACE (3)?'
375
376
377
                                           CALL BEEP
378
                                          READ (+,+)ISTOP
IF(ISTOP.EQ.0)STOP
IF(ISTOP.EQ.3)THEN
379
380
381
                                                     PINT-ABS(PINT)
382
                                                    PINT2-ABS(PINT2)
                                                    XND=FLOAT(NDATA)
BLKT=BLKT/XND
383
384
385
                                                     BLKS-BLKS/XND
```

```
194
386
                                                  DIFT-TPR-BLKT
387
                                                  DIFS-SPR-BLKS
388
                                                  TPR-BLKT
389
                                                  WRITE(OUTLU,17)PRESS,BLKT,BLKS
WRITE(PRILU,17)PRESS,BLKT,BLKS,DIFT,DIFS,NDATA
390
391
392
393
           C SET UP FOR NEXT BLOCK
394
                                                  BLKT=8.
395
396
                                                  BLKS-0.
397
                                                  NDATA-0
398
                                                  IPPREV=IFIX(PRESS)
399
                                                  PRESS-PRESS+PINT
400
                                                  PXP1=PXP1+PINT
401
                                                  PXP2=PXP2+PINT
402
                                                  GO TO 12
403
                                        ENDIF
404
                               ENDIF
405
                     CONTINUE
406
                               IF(PR(I).GE.PXP2)THEN
                                        XND=FLOAT(NDATA)
BLKT=BLKT/XND
407
408
409
                                        BLKS-BLKS/XND
BLKD-BLKD/XND
410
411
                               DIFT=TPR-BLKT
412
                               DIFS-SPR-BLKS
DIFD-DPR-BLKD
413
                              TPR-BLKT
SPR-BLKS
DPR-BLKD
414
415
416
417
                                        WRITE(OUTLU, 17) PRESS, BLKT, BLKS
418
                                        WRITE(PRILU, 17) PRESS, BLKT, BLKS, DIFT, DIFS, NDATA
419
420
             SET UP FOR NEXT BLOCK
421
422
                                        BLKT-0.
423
                                        BLKS-0.
424
           C
                                        BLKD-0.
425
                                        NDATA-0
426
                                        IPPREV-IFIX(PRESS)
427
                                        PRESS-PRESS+PINT
428
                                        PXP1=PXP1+PINT
429
                                        PXP2=PXP2+PINT
430
                               ENDIF
431
432
              ACCUMULATE SCANS FOR BLOCK AVERAGE
433
434
                               CONTINUE
435
                               BLKT=BLKT+TR(I)
BLKS=BLKS+SA(I)
436
437
           C
                               BLKD-BLKD+1.E05+(EOS80(PR(I),TR(I),SA(I))-V350P(PR(I)))
438
                               NDATA-NDATA+1
439
                     ENDIF
440
               12
                     CONTINUE
441
                     RETURN
442
               17
                     FORMAT(5(F10.3,2X),15)
443
444
              SUBROUTINE SHIFT TO REORGANIZE DATA ARRAY FOR NEXT PROCESSING
445
446
447
448
                     SUBROUTINE SHIFT
449
450
           $INCLUDE APROCOM. FOR
451
452
                     NQ=M1-IQ
MQ=M2-IQ+1
453
454
455
           C
                     DO 10 I-NQ,M1-1
456
457
                         5 J=1,9
458
                               DATA(I,J)=DATA(MQ,J)
459
                     CONTINUE
460
                     MQ=MQ+1
461
               10
                     CONTINUE
```

C

```
195
                    MR-M2+1
                   DO 20 I-M1,M1+ISCM+IR-1
DO 15 J=1,9
464
465
466
467
                            DATA(I,J)-DATA(MR,J)
              15
                    CONTINUE
468
                    MR-MR+1
469
470
                    CONTINUE
              20
                    RETURN
                    END
473
474
             SUBROUTINE LAGCOR USES SINGLE POLE FILTER OF FOFONOFF, HAYES, AND MILLARD TO
             CORRECT TEMPERATURE FOR SALINITY CALCULATIONS
475
476
           C
                    SUBROUTINE LAGCOR(XP,XT,XC,INLAG,INPTS)
477
478
479
                    DIMENSION XT(4000)
480
481
           $INCLUDE APROCOM. FOR
482
                   DO 18 I=M1,M2

TR(I)=TSUM(I,XT)

FILC =CSUM(I,XC)

FILP =PSUM(I,XP)
483
484
485
486
487
                             SA(I)=SAL78(FILP,TR(I),FILC,C1535,0)
488
                    CONTINUE
              10
489
                    RETURN
490
                    END
491
492
           C FUNCTION TSUM TO FILTER TEMPERATURE FOR LAGCOR
493
494
           C
495
                    FUNCTION TSUM(10,XT)
496
           C
497
           C
498
                    DIMENSION XT(4000)
           $INCLUDE APROCOM. FOR
499
500
           C
501
                    NTST=10-NPTS2
502
                    NTEND -NTST+NPTS-1
503
                    NJ-1
504
                    TSUM-0
505
                    DO 10 I-NTST, NTEND
506
                             IF(ANT(NJ).EQ.0)GO TO 15
                             TSUM-TSUM+ANT(NJ)+XT(I)
507
508
                             WRITE(+,+)NTST,NTEND, IO, I,NJ,AN(NJ),XT(I),TSUM
           C
509
              15
                             NJ=NJ+1
510
                    CONTINUE
              10
511
                    RETURN
512
                    END
513
514
           C FUNCTION CSUM TO FILTER CONDUCTIVITY FOR LAGCOR
515
516
517
                    FUNCTION CSUM(10,XC)
518
           C
                 *******
519
           C
                    DIMENSION XC(4000)
520
           $INCLUDE APROCOM.FOR
521
522
523
                    NTST=10-NPTS2
524
                    NTEND =NTST+NPTS-1
525
                    NJ=1
526
                    CSUM-0
527
                    DO 10 I-NTST, NTEND
                             IF(ANC(NJ).EQ.0)GO TO 15
CSUM-CSUM+ANC(NJ)+XC(I)
528
529
530
                             NJ=NJ+1
531
                    CONTINUE
532
                    RETURN
533
                    END
534
535
           C FUNCTION PSUM TO FILTER PRESSURE FOR LAGCOR
536
537
538
                    FUNCTION PSUM(10,XP)
```

STATE OF STA

```
540
           C
541
                    DIMENSION XP(4000)
542
           SINCLUDE APROCOM. FOR
543
544
                    NTST=10-NPTS2
545
                    NTEND -NTST+NPTS-1
546
                    NJ=1
547
                    PSUM-0
548
                    DO 10 I-NTST, NTEND
                             IF(ANP(NJ).EQ.0)GO TO 15
PSUM-PSUM+ANP(NJ)*XP(I)
549
550
551
                              NJ=NJ+1
               15
552
                    CONTINUE
553
                    RETURN
554
                    END
555
556
             SUBROUTINE FAST2 TO COMBINE FAST AND SLOW TEMPERATURES
557
           С
             25 SEPT 84 N. BRAY
558
559
560
                    SUBROUTINE FAST2
561
562
563
           $INCLUDE APROCOM. FOR
564
           C
565
                    DO 10 I-M1+IR, M2+IR
566
                              IF(I.EQ.M1+IR)THEN
                                       TEPR-0.
567
568
                                       DO 15 J=M1+IR-ISCM, M1+IR+ISCM
569
                                                TEPR=TEPR+TE(J)
THPR=THPR+FT(J)
570
571
                                       CONTINUE
572
               15
573
                                       TEPR-TEPR/XN
                                       THPR=THPR/XN
WRITE(6,+)'I,TEPR,THPR: ',I,TEPR,THPR
575
576
                              ENDIF
                              TC(I)=SUM3(I)+FT(I)-SUM2(I)
WRITE(PRILU,11)I,TI(I),PR(I),TE(I),FT(I),TC(I)
FORMAT(I5,5(F10.3,2X))
577
578
           C
579
               11
                    CONTINUE
580
               10
581
                    RETURN
582
                     FND
583
584
             FUNCTION SUM2 TO COMPUTE RUNNING MEAN FILTER OF FAST TEMP
585
           C 22 MAR 85 NAB
586
587
588
                     FUNCTION SUM2(10)
589
590
591
            $INCLUDE APROCOM.FOR
592
593
                     SUM2=THPR+(FT(I0+ISCM)-FT(I0-ISCM-1))/XN
594
                     THPR=SUM2
595
                     RETURN
596
                     END
597
598
              FUNCTION SUM3 TO COMPUTE RUNNING MEAN FILTER OF SLOW TEMP
           С
           Č
              22 MAR 85 NAB
599
600
601
                     FUNCTION SUM3(10)
602
603
            C
604
605
            $INCLUDE APROCOM.FOR
606
607
                     SUM3=TEPR+(TE(10+ISCM)-TE(10-ISCM-1))/XN
608
                     TEPR-SUM3
                     RETURN
609
610
                     END
611
612
              SUBOUTINE BEEP TO SOUND THE AUDIBLE BEEPER
613
614
615
                     SUBROUTINE BEEP
616
```

617	C	197
618		INTEGER+2 BP(3)
619		DATA BP/4,10,0/
620	C	
621		CALL SYSFUN(13.BP.IOSTAT)
622		CALL SYSFUN(13,BP, IOSTAT) IF(IOSTAT.NE.0)WRITE(*,*)'BEEP IOSTAT IS : ', IOSTAT
623		RETURN
624		ENO
625	C	
626	C	
627		

```
FILE APROSUB. FOR
 3
               C CALIB SUBROUTINE TO APPLY CALIBRATION VALUES TO RAW DATA
 5
 6
                  7
                             SUBROUTINE CALIB
 8
 9
               $INCLUDE APROCOM.FOR
10
11
               C CALIBRATION VALUES
12
13
14
               C WRITE OUT CALIBRATION VALUES USED
15
16
17
                                                                                 OFFSET
                                                                                                            SLOPE'
                     23
                              WRITE(+,+)'VARIABLE
                             WRITE(*.*)
WRITE(*.*)'PRESSURE
WRITE(*.*)'TEMPERATURE
WRITE(*.*)'CONDUCTIVITY
                                                                            ',OFFSET(1),SLOPE(1)
',OFFSET(2),SLOPE(2)
',OFFSET(3),SLOPE(3)
18
19
20
21
               C
                              WRITE(*,*)'CHANGE CALIBRATION VALUES (1=YES, 0=NO)?'
22
23
                              READ (+,+)ICH
24
                              ICH-0
25
                              IF(ICH.EQ.0)GO TO 30
                              WRITE(*,*)'ENTER VARIABLE # (0 TO QUIT)'
READ(*,*)J
26
                     25
27
                              IF(J.EQ.0)GO TO 30
WRITE(*,*)'ENTER OFFSET, SLOPE'
READ(*,*)OFFSET(J),SLOPE(J)
28
29
30
31
                              GO TO 23
32
                              CONTINUE
                     30
                              WRITE(PRILU, +)
WRITE(PRILU, +)
WRITE(PRILU, +)
WRITE(PRILU, +)
WRITE(PRILU, +)
33
34
35
                                                                                                                          SLOPE'
                                                                                          OFFSET
36
                              WRITE(PRILU,*)
WRITE(PRILU,997)OFFSET(1),SLOPE(1)
FORMAT('PRESSURE ',F7.3,9X,F12.8)
WRITE(PRILU,998)OFFSET(2),SLOPE(2)
FORMAT('TEMPERATURE ',F7.3,9X,F12.8)
WRITE(PRILU,999)OFFSET(3),SLOPE(3)
FORMAT('CONDUCTIVITY ',F7.3,9X,F12.8)
WRITE(PRILU,*)
WRITE(PRILU,*)
WRITE(PRILU,*)
WRITE(PRILU,*)
37
38
                  997
39
40
                  998
41
42
                  999
43
44
                              WRITE(PRILU,*)
WRITE(OUTLU,*)
45
46
47
                                                                                        OFFSET
                                                                                                                    SLOPE'
 48
                                                                                   ',OFFSET(1),SLOPE(1)
',OFFSET(2),SLOPE(2)
',OFFSET(3),SLOPE(3)
 49
50
51
52
                               WRITE(OUTLU, +)
53
54
55
                               WRITE(OUTLU, +)
                               RETURN
                               END
56
57
                C CHECK SUBROUTINE TO CHECK RAW DATA VALUES
58
59
                               SUBROUTINE CHECK
 60
 61
                $INCLUDE APROCOM.FOR
62
 63
                C PRINT OUT CHECK OF EACH INTERVAL
 64
                               SALT1=SAL78(PR(M1),TE(M1),CN(M1),C1535,0)

SALT2=SAL78(PR(M2),TE(M2),CN(M2),C1535,0)

WRITE(PRILU,2200)PR(M1),TE(M1),CN(M1),SALT1

WRITE(PRILU,2200)PR(M2),TE(M2),CN(M2),SALT2

FORMAT(30X,F10.2,3F10.3)
 65
 66
 67
 68
 69
                   2200
 70
                               RETURN
 71
72
                               END
                 C
 73
 74
75
                    INIT SUBPROGRAM TO INITIALIZE VARIABLES
 76
                               SUBROUTINE INIT
```

```
199
78
79
80
81
              $INCLUDE APROCOM, FOR
                          OFFSET(1)=-4.5
OFFSET(2)=0.
OFFSET(3)=0.
SLOPE(1)=1.
SLOPE(2)=1.
SLOPE(3)=1.
82
83
84
85
86
87
88
99
91
                           NDATA-0
PRPR-0.
THPR-0.
                           TEPR-0.
                           TPR=0.
SPR=0.
 93
94
95
96
                           BLKT-0
                           BLKS=0.
BLKD=0.
ZERO=0
 97
98
                           ONE-1
 99
                           LEN-22 • M2X2
                           INLU-10
OUTLU-11
100
101
102
                           HEDLU-12
                           PRILU-6
ERRLU-7
103
104
105
                           IQUIT-0
106
                           IOSTAT-1
107
                           C1535 = 42.909
108
                            IPPREV - 0
109
                            IPINT = 2
                           PINT=FLOAT(IPINT)
PINT2=PINT/2
JCOUNT = 1
ICOUNT=1000
110
111
112
113
114
                            ISTRT=1
115
               C SET FOR BIGED
116
117
                           P1=2000.
                           P2=1.
118
                            T1=30
                           T2=0.
C1=70.
119
120
121
                            C2-30.
122
                            DP1-0.5
123
                            DT1=.10
124
125
                            DC1=.2
126
               C SET UP ARRAYS FOR FAST SUBROUTINE
127
128
                            DO 10 I=1,MM
129
                            DO 10 J=1,9
130
                                        DATA(I,J)=0.
131
132
                            CONTINUE
                    10
                            RETURN
133
                            END
134
135
136
137
                  SUBROUTINE BIGED TO ELIMINATE DATA OUTSIDE OF SET BOUNDS
138
                            SUBROUTINE BIGED (IERR)
139
140
141
142
                SINCLUDE APROCOM. FOR
143
144
145
                            DATA IFLAG/0/, IFL/0/, IFLB/0/
               C
                            IERR-0
I-JSCAN+2-1
146
147
148
                            I2=I+1
149
                            DO 10 K-I, I2
                                        IF(PR(K).GT.P1.OR.PR(K).LT.P2)GO TO 999
IF(TE(K).GT.T1.OR.TE(K).LE.T2)GO TO 999
IF(FT(K).GT.T1.OR.FT(K).LE.T2)GO TO 999
IF(CN(K).GT.C1.OR.CN(K).LE.C2)GO TO 999
150
151
152
153
154
               C
```

CONTRACTOR CONTRACTOR CONTRACTOR DESCRIPTION AND CONTRACTOR CONTRA

C555553

```
200
            C FIRST DIFFERENCE TESTS
155
156
157
            C SKIP FIRST POINT
158
159
                      IF (K.EQ.M1)THEN
                                WRITE(+,+)'K EQUALS M1'
GO TO 10
160
161
162
                      ENDIF
                                DP=ABS(PR(K)-PR(K-1))
DT=ABS(TE(K)-TE(K-1))
DC=ABS(CN(K)-CN(K-1))
DF=ABS(FT(K)-FT(K-1))
163
164
165
166
167
            C
                                IF(DP.GT.DP1)GO TO 998
IF(DT.GT.DT1)GO TO 998
IF(DF.GT.DT1)GO TO 998
168
169
170
171
                                 IF(DC.GT.DC1)GO TO 998
172
                10
                      CONTINUE
173
                      RETURN
174
            C ERROR STATUS RETURN
175
176
177
               999
                      CONTINUE
178
                      I ERR=1
179
180
            C IF PRESSURE IS GREATER THAN 10 DB/PRDAT (I.E. IN THE WATER) WRITE BAD DATA
181
            C SCAN TO ERRFIL (PC####.ERR)
182
183
184
                       IF(PR(K).GT.10)THEN
                                WRITE(ERRLU,990)(DATA(K,J),J=1,6)
FORMAT('BAD DATA: ',6F9.3,'...200 SKIPS')
185
186
               990
187
                                 I ERR-10
188
                      ENDIF
                      IFLB-IFLB+1
189
                       IF(MOD(IFLB, 100).EQ.0)WRITE(+,+)'BIGED INTERVAL ERRORS: ', IFLB
190
191
                       IF(IFLB.GT.5000)STOP
192
                      RETURN
193
               998
                      CONTINUE
194
            C IF TWO SEQUENTIAL ERRORS, DO NOT REJECT-RETURN INSTEAD
195
196
197
                       IF(IFLAG.EQ.K)THEN
                                WRITE(ERRLU, *)'***** SEQUENTIAL ERROR ***** WRITE(*, *)'***** SEQUENTIAL ERROR ***** WRITE(*, *)
198
199
            C
200
            Č
                                 WRITE(+,980)K, (DATA(K,J),J=1,6),DP,DT,DC,DF
201
202
                                 WRITE(+,+)
WRITE(+,+)'ENTER 0 TO REJECT, 1 TO CONTINUE'
203
204
                                 CALL BEEP
            Č
                                 READ(*,*)IREJ
IF(IREJ.EQ.1)RETURN
205
206
207
                                 RETURN
208
                       ENDIF
209
210
               OTHERWISE WRITE OUT ERROR TO ERR FILE
211
                       WRITE(ERRLU,980)K, (DATA(K,J),J=1.6),DP,DT,DC,DF
FORMAT('BAD DIFF: ',I4,1X,6F10.3,/,'..............,4F10.3)
212
213
               980
214
                       IFL=IFL+1
215
                       IF(MOD(IFL,10).EQ.0)WRITE(*,*)'......BIGED FIRST DIFF ERRORS: ',IFL
216
                       IF(IFL.GT. 1000)STOP
217
                       I ERR=2
218
219
               IFLAG KEEPS TRACK OF SEQUENTIAL ERRORS
220
221
                       IFLAG-K
222
                       RETURN
223
224
225
               SUBROUTINE STATS TO FIND MIN, MAX, DELTA OF A SERIES
226
227
228
                       SUBROUTINE PSTATS(XDAT, XMIN, XMAX, DELTA, M1, M2)
229
 230
```

The state of the s

100 C

DIMENSION XDAT(1500)

```
201
232
             C
233
234
                         XMIN-1.E36
                         XMAX-1.E36
                        DO 10 I=M1,M2

IF(XDAT(I).LT.XMIN)XMIN=XDAT(I)

IF(XDAT(I).GE.XMAX)XMAX=XDAT(I)
235
236
237
238
                         CONTINUE
239
                         DELTA-XMAX-XMIN
248
                         RETURN
241
                         END
242
243
                SUBROUTINE NEWDAT TO FILL A SPECIFIED SECTION OF ARRAY DATA WITH NEW DATA
244
245
246
                         SUBROUTINE NEWDAT
247
248
249
              SINCLUDE APROCOM, FOR
250
251
                         IF(JSCAN.GE.M2X2)GO TO 21
252
                                    JSCAN-JSCAN+1
                                               WRITE(+,5)ICOUNT, JSCAN,N
FORMAT(30X,'ICOUNT : ',15,'
253
254
                   5
                                                                                        JSCAN : ',15,' N : ',15)
255
                                    CALL GETSCN
256
                                    IF(IQUIT.EQ.1)RETURN
257
                                    CALL PROAT
258
                                    CALL BIGED(IERR)
             C IF IERR IS .NE. @ THEN A (DOUBLE) SCAN HAS BEEN REJECTED AS OUT OF BOUNDS IF (IERR.NE.@) JSCAN-JSCAN-1
259
260
261
262
                REJECT 5 SEC OF DATA FOR ROSETTE FIRING (ASSUMED IF BAD DATA APPEARS BELOW
263
                THE SURFACE LAYER)
264
265
                                    IF(IERR.EQ.10)THEN
266
                                               DO 30 I=1,200
267
                                                           CALL GETSCN
268
                                               CONTINUE
                  36
269
                                    ENDIF
270
                                    GO TO 20
271
                  21
                         CONTINUE
272
                         RETURN
273
274
275
              C SAL78 FCN ******** OCT 24 1979 *****
276
                      REAL FUNCTION SAL78(P1,T,CND,C1535,M)
277
278
             C FUNCTION TO CONVERT CONDUCTIVITY TO SALINITY (M=0) OR C SALINITY TO CONDUCTIVITY (M=1, CND = SAL) ACCORDING TO THE C ALGORITHMS RECOMMENDED BY JPOTS USING THE PRACTICAL
279
280
281
              C SALINITY SCALE (IPSS-78) AND IPTS-68 FOR TEMPERATURE. C C1535 = 1.0 FOR CONDUCTIVITY RATIO OR CONDUCTIVITY AT
282
283
              C SALINITY 35 NSU AND TEMPERATURE 15 DEG CELSIUS (IPTS-68) FOR C ABSOLUTE CONDUCTIVITY.
284
285
286
              C PRESSURE: BARS (AS WRITTEN-MODIFIED BY N. BRAY TO BE DBARS)
              C RETURNS ZERO FOR CND < 0.0005 AND M = 0
C RETURNS ZERO FOR CND < 0.02 AND M = 1
287
288
289
              C CHECKVALUE: SAL78 = 1.888091 FOR S=40 NSU,T=40 DEG C,P=1000 BARS
290
              C SAL78 = 39.99999 FOR CND = 1.88091,T=40DEG C,P=1000 BARS,M=1
291
              C N FOFONOFF, REVISED OCT 6 1980
292
              C N BRAY REVISED TO ACCEPT PRESSURE IN DB. 29 SEPT 83
293
              C FCN SAL78, XR = SQRT(RT)
294
295
                     SAL(XR,XT) =((((2.7081*XR- 7.0261)*XR+14.0941)*XR+25.3851)*XR

X -0.1692)*XR+0.0080+(XT/(1.0+0.0162*XT))*(((((-0.0144*XR+

X 0.0636)*XR-0.0375)*XR-0.0066)*XR-0.0056)*XR+0.0005)
296
297
             C DERIVATIVE WRT XR: DSAL/DXR

DSAL(XR,XT) =((((13.5405*XR-28.1044)*XR+42.2823)*XR+50.7702)*XR

X -0.1692)+(XT/(1.0+0.0162*XT))*((((-0.0720*XR+0.2544)*XR

X -0.1125)*XR-0.0132)*XR-0.0056)
298
299
300
```

RT35(XT) = (((1.0031E-9)XT-6.9698E-7)XT+1.104259E-4)XT ((1.0031E-9)XT + 0.6766097

C(XP) = ((3.989E-12*XP-6.370E-8)*XP+2.070E-4)*XP B(XT) = (4.464E-4*XT+3.426E-2)*XT + 1.0 A(XT) = -3.107E-3*XT + 0.4215

C RT35

C C.B.A POLYNOMIALS

```
202
309
             C ZERO SALINITY TRAP
                    IF((M.EQ.0).AND.(CND.GT.5E-4))GO TO 5
IF((M.EQ.1).AND.(CND.GT.0.02))GO TO 5
SAL78 = 0.0
310
311
312
                    RETURN
313
314
             C SELECT BRANCH FOR SALINITY (M=6) OR CONDUCTIVITY (M=1)
315
                  5 DT = T - 15.0
316
                    P-P1/10.
                     IF(M.EQ.1)GO TO 18
317
318
             C CONVERT CONDUCTIVITY TO SALINITY
                    R = CND/C1535

RT = R/(RT35(T)*(1.0 + C(P)/(B(T) + A(T)*R)))

RT = SQRT(ABS(RT))
319
320
321
322
             C SALINITY RETURN
323
                     SAL 78 = SAL(RT,DT)
324
                     RETURN
325
             C CONVERT SALINITY TO CONDUCTIVITY
326
             C FIRST APPROXIMATION
327
                 10 RT = SQRT(CND/35.0)
                     SI = SAL(RT,DT)
328
329
                     N - 0
            C ITERATE (MAX 10 ITERATIONS) TO INVERT SAL POLY FOR SQRT(RT)
15 RT = RT + (CND - SI)/DSAL(RT,DT)
SI = SAL(RT,DT)
330
331
332
333
                     N = N + 1
334
                     DELS = ABS(SI-CNO)
             IF((DELS.GT.1.0E-4).AND.(N.LT.10))GO TO 15
C COMPUTE CONDUCTIVITY RATIO
335
336
337
                     RTT = RT35(T)+RT+RT
338
                     AT = A(T)
339
                     BT = B(T)
340
                     CP = C(P)
                     CP = RTT+(CP + BT)
341
342
                     BT = BT-RTT+AT
343
             C
             R = SQRT(ABS(BT+BT + 4.0+AT+CP)) - BT
C CONDUCTIVITY RETURN
344
345
348
                     SAL78 - 0.5+C1535+R/AT
347
                     RETURN
348
                     END
             C SUBROUTINE PRDAT (JSTOR) TO PRINT OUT ONE (DOUBLE) SCAN OF
349
350
             C CTD DATA IN FLOATING POINT FORMAT
351
352
353
                        SUBROUTINE PROAT
354
355
356
             C
357
                        DIMENSION XST(11)
358
                        INTEGER+4 ISTOR(11)
359
360
             $INCLUDE APROCOM.FOR
361
362
                        DO 10 I=1,11
                                  ISTOR(I)=JSTOR(I)
XST(I)=FLOAT(ISTOR(I)+32767)
363
364
365
                 10
                        CONTINUE
366
                                   J=JSCAN+2-1
367
368
                                   IF(XST(1).EQ.0.)THEN
                                         WRITE(PRILU, .)'......TIME ROLL OVER...TIME = ',XST
WRITE(PRILU, .)'......PREVIOUS TIME WAS : ',TI(J-1)
369
             C
                                                                   .....TIME ROLL OVER...TIME = ',XST(1)
370
371
                                         IF(J.EQ.1)THEN
372
                                                    TIPREV-TI(M2)
373
                                         ELSE
374
                                                    TIPREV-TI(J-1)
375
                                         ENDIF
376
                                   ENDIF
                                  TI(J)= XST(1)+TIPREV
PR(J)=OFFSET(1) + SLOPE(1)*XST(2)*.025
TE(J)=OFFSET(2) + SLOPE(2)*XST(3)*.0005
CN(J)=OFFSET(3) + SLOPE(3)*XST(4)*.001
FT(J)=XST(5)*.0005
UT(J)=XST(10)
377
378
379
 380
 381
 382
 383
                                   JJ=J+1
                                   TI(JJ)=TI(J)
PR(JJ)=OFFSET(1) + SLOPE(1)*XST(6)*.025
 384
 385
```

The second second

Carlo Carlo Carlo

```
TE(JJ)=OFFSET(2) + SLOPE(2)*XST(7)*.0005
CN(JJ)=OFFSET(3) + SLOPE(3)*XST(8)*.001
FT(JJ)=XST(9)*.0005
UT(JJ)=XST(11)
387
388
389
390
391
                    MINUS SIGNS
392
393
                               PSIGN-IAND(JSTOR(10),2)
TSIGN-IAND(JSTOR(10),1)
394
                               IF(PSIGN.NE.0)THEN
PR(J)—PR(J)
PR(JJ)—PR(JJ)
395
396
397
398
                               ENDIF
399
                               IF(TSIGN.NE.0)THEN
401
                                             TE(J)=-TE(J)
FT(J)=-FT(J)
402
                                             TE(JJ)-TÈ(JJ)
FT(JJ)-FT(JJ)
403
405
                               ENDIF
406
                               WRITE(*,1000)J,TI(J),PR(J),TE(J),CN(J),FT(J),UT(J)
WRITE(*,1000)JJ,TI(JJ),PR(JJ),TE(JJ),CN(JJ),FT(JJ),UT(JJ)
FORMAT(15,F7.0,F8.1,3F7.3,2X,F4.0)
407
408
                 Č
409
                   1000
410
411
                               RETURN
412
                               END
413
414
                 C SUBROUTINE GETSON TO PUT NEXT SCAN OF INPUT DATA (KD) INTO JSTOR
415
416
417
                               SUBROUTINE GETSCN
418
419
420
                               INTEGER+4 JD(11)
421
                               CHARACTER+12 NEWFIL
422
423
                 $INCLUDE APROCOM. FOR
424
425
                               IF(ICOUNT.GT.11)THEN
426
427
                                             CALL SREAD(INLU, KD(1,1),242, ZERO, ZERO, ZERO, IOSTAT)
                                             IF(IOSTAT.NE.0)THEN
IF(IOSTAT.EQ.133)THEN
428
429
                                                                         CLOSE(INLU,IOSTAT=IOSTAT,ERR=915)
WRITE(*,*)'CLOSE IOSTAT IS: ',IOSTAT
WRITE(*,*)'END OF FILE ENCOUNTERED'
WRITE(*,*)'ENTER: '
WRITE(*,*)' 0 TO STOP'
WRITE(*,*)' 1 TO START NEW FILE'
WRITE(*,*)' 2 TO PROCESS TOP OF UP'
CALL REFP
431
432
                    915
                                                                                                    2 TO PROCESS TOP OF UPTRACE'
                                                                          CALL BEEP
                                                                         CALL BEEP
READ(*,*)ISTP
IF(ISTP.EQ.0)STOP
IF(ISTP.EQ.2)IQUIT=1
IF(ISTP.GT.2)GO TO 915
WRITE(*,*)'CHANGE DISC AND ENTER NEW FILE NAME'
NEWFIL(1:2)='2:'
READ(*,900)NEWFIL(3:8)
NEWFIL(9:12)='.OUT'
WRITE(*,930)NEWFIL
FORMAT(A6)
PAUSE
441
                    910
445
446
447
                     900
448
                                                                          PAUSE
449
                    920
                                        OPEN(INLU, FILE-NEWFIL, FORM-'UNFORMATTED', STATUS-'OLD', ERR-910)
                                                                         WRITE(+,930)NEWFIL
WRITE(PRILU,930)NEWFIL
WRITE(ERRLU,930)NEWFIL
450
451
452
453
                    930
                                                                          FORMAT('NEW FILE ',A12,' OPENED')
454
455
                    READ FIRST RECORD OF NEW FILE
456
457
                                                                      CALL SREAD(INLU,KD(1,1),242,ZERO,ZERO,ZERO,IOSTAT)
WRITE(•,•)'FIRST RECORD OF NEW FILE READ'
458
459
                                                           ELSE
460
                                                                          WRITE(+,+)'SREAD IOSTAT IS: ', IOSTAT
461
                                                                          STOP
462
                                                           ENDIF
```

STATE OF THE PERSON OF THE PER

463		END1F	204
464		ICOUNT=1	
465		ENDIF	
466		DO 10 IJ=1.11	
467		JSTOR(IJ)=KD(IJ,ICOUNT)	
468	10	CONTINUE	
469		ICOUNT=ICOUNT+1	
470		RETURN	
471		END	

CONTROL CONTROL MACRICAL MODIFICATION CONTROL CONTROL CONTROL

```
205
            Ç
              PROGRAM TO EMULATE ANA'S PRIME PROGRAM TO CALCULATE WEIGHTS ALA TOOLE AND
            C HORNE
            č
              11 JULY 85 N. BRAY
 5
            Č
                       PROGRAM ANAW
 7
 8
            C
 9
                       COMMON/A1/ OME(188),PH(188),AMP2(188)
COMMON/A2/ A(188,188),AT(188,188),WT(188),WC(188),WP(188)
COMMON/A2/ BT(188),BC(188),BP(188)
10
11
12
13
            C
                       OPEN(6,FILE='#SER01')
OPEN(7,FILE='CTD.WTS')
14
15
16
                 2
                       CONTINUE
17
                       WRITE(+,+)'INPUT # OF FREQUENCIES (N) 0 TO STOP'
18
                       READ(+,+)N
19
                       IF(N.EQ.0)STOP
20
21
22
23
24
25
                       NR=2+N+1
                       FR-FLOAT(NR)
                       WRITE(...)'INUPT # OF WEIGHTS'
READ(...)NC
                       WRITE(*,*)'INPUT STARTING INDEX FOR WEIGHTS (L)'
READ(*,*)L
WRITE(6,*)'N, N, Q, L: ',N,NR,NC,L
L=-(NC-1)/2
26
27
28
            C
                       PI=3.14159
29
30
31
                       TAU-1
                       WRITE(+,+)'ENTER TAU IN SCANS'
                       READ(+,+)TAU
32
33
34
35
36
37
38
39
              CONSTRUCT FREQUENCIES OF INTEREST
                       OME(1)-0
                       DO 10 I=2,N+1
                                  OME(I)=2+PI+(I-1)/NR
                       CONTINUE
40
41
              CONSTRUCT A MATRIX
42
43
44
45
46
47
                       DO 20 I=1,NC
                                  KI-N+2
                                  A(1,I)=1/SQRT(FR)
                                  DO 15 J=2,N+1
                                             A(J,I)=COS(OME(J)+L)+SQRT(2./FR)
A(KI,I)=SIN(OME(J)+L)+SQRT(2./FR)
48
                                             KI=KI+1
49
                15
                                  CONTINUE
50
51
                                  L=L+1
                20
                       CONTINUE
52
53
54
55
56
            C
                       DO 25 I=1,NR
                                  WRITE(6,2500)(A(I,J),J=1,NC)
            C
                                  FORMAT (9F8.2)
             2500
            C
                25
                       CONTINUE
57
58
            C
                       WRITE(6.+)
59
              FIND A TRANSPOSE
60
61
                       DO 30 I=1,NC
62
                       DO 30 J=1,NR
63
                                  AT(I,J)=A(J,I)
64
                30
                       CONTINUE
65
            C
66
                       DO 35 I=1,NC
67
            C
                                  WRITE(6,2500)(AT(I,J),J=1,NR)
            Č
68
                35
                       CONTINUE
69
                       WRITE(6,+)
70
71
72
73
74
75
76
77
              CONSTRUCT THE B MATRIX
                                  KI=N+2
                                  BT(1)=1./SQRT(FR)
BC(1)=BT(1)
BP(1)=BT(1)
```

AMP2(1)=BT(1)++2

Controlled the Controlled Controlled the Controlled

```
206
                                                    $2 = SQRT(2./FR)
 79
80
81
                                                    PH(1)-0.
                                   DO 40 I=2,N+1
                                                    CME(I)=CME(I)

AMP=SQRT(1.+CME(I)++2+TAU++2)

TH =ATAN(CME(I)+TAU)
 82
 83
 84
85
                                                    RR-1/AMP
                                                    RR2-RR+RR
 86
                                                     WRITE(6,8500)I,OME(I),AMP,TH,RR,RR2
                                   FORMAT(15,2X,5F10.2)
PH(1)=TH
BT(1)=S2+AMP+COS(TH)
 87
                     8500
 88
 89
 90
                                                     BT(KI)=S2+AMP+SIN(TH)
                                                    BC(I)=S2
BC(KI)=0.
BP(I)=S2
BP(KI)=0.
 91
 92
 93
 94
 95
                                                     AMP2(1)=BT(1)++2+BT(K1)++2
 96
                                                     KI=KÌ+İ
 97
                                    CONTINUE
                          40
  98
  99
                        CONSTRUCT THE FREQUENCY TAIL-OFF
100
                                    WRITE(*,*)'ENTER P, ISTP AND IST'
READ(*,*)P, ISTP, IST
101
102
103
                                                     DWP-1
104
                                                     DW-1
105
                                    DO 43 I=ISTP, N+1
106
                                                     KI=N+I
                                                    107
108
109
110
111
112
113
114
115
                                                                      AMP2(I)=BT(I)++2+BT(KI)++2
116
                                                     ENDIF
                                                     DWP=DWP+1
117
                                     CONTINUE
118
                           43
119
120
                        WRITE TO PRINTER OMEGA, PHASE, B
                                    WRITE(6,*)'TAU, P, ISTP, IST: ',TAU,P,ISTP,IST
WRITE(6,*)'OMEGA:'
WRITE(6,5'OMEGA:'
WRITE(6,5'PHASE:'
WRITE(6,5'PHASE:'
WRITE(6,5'BT MATRIX'
WRITE(6,5'MATRIX'

WRITE(6,5'MATRIX')
WRITE(6,5'MATRIX')
WRITE(6,5'MATRIX')
WRITE(6,5'MATRIX')
121
 122
123
124
 125
 126
 127
 128
 129
130
 131
 132
133
134
 135
 136
 137
 138
 139
 140
 141
142
                     C MULTIPLY AT BY B
 143
 144
                                                                                                  WEIGHT
                                                                                                                    SUM OF WEIGHTS'
                                                      WRITE(6,*)'
 145
                                      WRITE(7,+)NC
 146
                                      DO 50 I-1,NC
                                                      WT(I)=0.
WC(I)=0.
  147
 148
                                                      WP
 149
                                                           (I)-0.
  150
                                                             55
                                                                      WT(I)=WT(I)+AT(I,K)*BT(K)
WC(I)=WC(I)+AT(I,K)*BC(K)
WP(I)=WP(I)+AT(I,K)*BP(K)
 151
 152
  153
  154
                                                      CONTINUE
                            55
```

and success acceptant versions which

Actual to assess to exercise to essential transcense described to accessive consistent to accessive accessive