DM 14

Exercice 1. On considère trois points distincts du plan nommés A, B et C. Nous allons étudier le déplacement aléatoire d'un pion se déplaçant sur ces trois points. A l'étape n=0, on suppose que le pion se trouve sur le point A. Ensuite, le mouvement aléatoire du pion respecte les deux règles suivantes :

- le mouvement du pion de l'étape n à l'étape n+1 ne dépend que de la position du pion à l'étape n;
- pour passer de l'étape n à l'étape n+1, on suppose que le pion a une chance sur deux de rester sur place, sinon il se déplace de manière équiprobable vers l'un des deux autres points.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement "le pion se trouve en A à l'étape n ", B_n l'évènement "le pion se trouve en B à l'étape n " et C_n l'évènement "le pion se trouve en C à l'étape n ". On note également, pour tout $n \in \mathbb{N}$,

$$a_n = P(A_n), b_n = P(B_n), c_n = P(C_n) \text{ et } V_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$$

- 1. Calculer les nombres a_n, b_n et c_n pour n = 0, 1.
- 2. Pour $n \in \mathbb{N}$, exprimer a_{n+1} en fonction de a_n, b_n et c_n . Faire de même pour b_{n+1} et c_{n+1} .
- 3. Donner une matrice M telle que, pour tout $n \in \mathbb{N}$, on a $V_{n+1} = MV_n$.
- 4. On admet que, pour tout $n \in \mathbb{N}$, on a

$$M^{n} = \frac{1}{3 \cdot 4^{n}} \begin{pmatrix} 4^{n} + 2 & 4^{n} - 1 & 4^{n} - 1 \\ 4^{n} - 1 & 4^{n} + 2 & 4^{n} - 1 \\ 4^{n} - 1 & 4^{n} - 1 & 4^{n} + 2 \end{pmatrix}$$

En déduire une expression de a_n, b_n et c_n pour tout $n \in \mathbb{N}$.

5. Déterminer les limites respectives des suites (a_n) , (b_n) et (c_n) . Interpréter le résultat.

Exercice 2. Fonctions k-contractantes.

On suppose que f est une fonction définie sur [0,1] à valeurs dans [0,1] et qu'il existe $k \in]0,1[$ tel que

$$\forall (x,y) \in [0,1]^2, |f(x) - f(y)| \le k|x - y|.$$

Une telle fonction s'appelle une fonction k-contractante.

- 1. Montrer que f est continue.
- 2. En déduire que f admet au moins un point fixe dans [0,1].
- 3. Montrer par l'absurde que ce point fixe est unique. On le note c.
- 4. On considère alors une suite $(c_n)_{n\in\mathbb{N}}$ définie par son premier terme $c_0\in[0,1]$ et par la relation de récurrence : $\forall n\in\mathbb{N},\ c_{n+1}=f(c_n)$.
 - (a) Montrer que la suite $(c_n)_{n\in\mathbb{N}}$ est bien définie.
 - (b) Montrer que pour tout $n \in \mathbb{N}$, $|c_n c| \le k^n |c_0 c|$.
 - (c) En déduire la limite de la suite $(c_n)_{n\in\mathbb{N}}$.