

Bilayer Resist Solutions for Sub 100nm Device Production

George Barclay, James Cameron, Leo Linehan, Sheri Ablaza, Kao Xiong, Jerome Wandell, Matt King, Gerd Pohlers, Subbareddy Kanagasabapathy and Joe Mattia

Shipley Company

- Ultra thin imaging has potential for
- Improved resolution
- Process window
- ➤ Reduced Pattern Collapse

- UTR will need an alternate etch scheme
- ➤ Hardmask
- ➤ Bilayer
- > Trilayer

SHIPLEY !

Why Use a Si Bilayer Resist Approach?

- **ULTRA THIN RESIST**
- Improved Resolution
- Larger Process Window
- Reduced Pattern Collapse
- KrF and ArF Options

Post Underlayer Etch ASML/700 0.70 NA OAI, PSM 110 nm 1:1

- Superior Etch Resistance
- Similar Etch Processes for KrF and ArF

Reflection Control

Planarization

ASML/300 0.63 NA, 6% PSM 130 nm 1:1 Features:

- **DUAL DAMASCENE LITHOGRAPHY**
- Planarization and Reflection Control Thick Underlayer for Optimum
- Barrier to Resist Poisoning
- Via Fill
- Planarization over complex

topographies

Coat

Layer 융

1.2.16

Underlayer Dielectric

SiN Etch Stop

KELLEY ES

Bilayer Resists - Silicon Polymer Approaches

Pendent Silicon

➤ Siloxane

- Cornell
- ARCH IBM

UT Austin

Silsesquioxane

- ASET
 Shin-Etsu

HitachiIBM

(H₃C)₃SiO⁻

OSi(CH₃)₃

H₃C-

-CH3

ÓSI(CH₃)₃

S SHIPLEY

Silicon Outgassing

a major issue for the adoption of bilayer technology across all Contamination of the optics with silicon has been identified as wavelengths

important > The method of incorporating silicon into the imaging layer is

Hien et al, SPIE 2001, Proof Plate Analysis @ 157 nm

		Resist	Resist	Proof-plate	Proof-plate
	Type	[weight%]	weight%]	atom%	atom%
		Si-content	F-content	Si-content	F-content
	PFA, CF ₃ side chain		30		4
	PFASO ₂ , CF3 side				
	chain		26		7
	Fluoropolymer		43		4
	Fluoropolymer		36		2
	Si main chain	16	20	0.4	10
	Si main chain	12		0.6	
ļ	Polydimethylsiloxane	38		<0.2	
	CH ₂ SiMe ₃ side chain	12		3	
Ţ	CH ₂ SiMe ₃ side chain	8		6	

Table 3: XPS outgassing data for different polymers (OFI-ROM test)

Stefan Hien, Steve Angood, Domininc Ashworth, Steve Basset, Theodore Bloomstein, Kim Dean, Roderick R. Kunz, Daniel Miller, Shashikant Patel and Georgia Rich, Proceedings of SPIE Vol. 4345, 439, 2001.

Silsesquioxane Advantages

Silsesquioxane (SSQ)

- Silicon Integrated with Backbone Structure
- No Pendant Si Groups
- Very Stable Polymer
- High Silicon Content for Improved Etch
- No Outgassing of Si Species
- Only Carbon Species Observed

ZUU	000
	3
Posit	<u> </u>
ruuy	¥ 5.

	₩.			,,	 	,	
ග ်	<u>S</u>	0	C	Z	Element	ESCA composition	
1.30	14.93	25.92	56.28	0.09	Wt%	ηposition	
0.05	0.11	0.06	0.10	0.06	Stdev		A

SSQ Resist Outgassing Study

C4H8 -99:9%

No Silicon Species

when exposing a material to laser radiation. Outgassing system developed to measure the amount of volatile compounds released

Model Silicon Compounds for Outgassing Calibration

H₃C--£3 -CH3 CH_3 H H

H₃C-.단 티윤 -단3

CE3

Tetraethylorthosilicate

Hexamethldisiloxane

Octamethyltrisiloxane

Decamethyltetrasiloxane

(H₃C)₃SiO-OSI(CH₃)₃ —osi(сн_{з)з}

ĭ

Tetrakis(trimethylsiloxy)silane

Decamethylcyclopentasiloxane

Increasing Size

wavelength

SSHIPLEY !

Resist Layer: 248 Bilayer Outgassing Results

- Silsesquioxane Polymer Approach Advantages
- ➤ Silicon Integrated with Backbone Structure
- ➤ No Pendant Si Groups
- Very Stable Polymer

- No Outgassing of Si Species
- Only Carbon Species From Protecting Group Observed

Results for Outgassing Studies of XP2762A Bilayer Imaging Resist

0.007%	>99.9%	7.E+12	200		
	>99.9%	5.E+12	42	Dry N2	XP2762A
		mol/cm ² -sec	mJ/cm²		
C ₈ H ₁₆ Compound	Isobutene	Rate	Dose	Ambient	Resist

Method: Flood exposure of 10 cm² area on coated wafer; GC-MS Analysis of concentrated headspace Note: Typical Outgassing Rate of Volatile Organics from DUV Resists is 1011 to 1012 molecules/cm2-sec

193nm Bilayer Outgassing Results: XP1646 vs UV6

Silsesquioxane Polymer Approach - Advantages

- Silicon Integrated with Backbone StructureNo Pendant Si Groups
- High Si Content
- No Outgassing of Si Species
- Only Carbon Species From Protecting Group and PAG Observed

0 Si 0	ス	Sa	· ()	Si	ZĮ.
R C O		Ò		0	
CO	刀	δ	0	Si	٦Ņ
		С		0	

	Exposed area (cm2):	19.8	19.8 Datafile	
			XP1646	
			Bilayer 0.46	UV-6 0.46
			ő	mJ/cm2/pulse
193 nm Molecules/cm2 Chami	Chamber Volume (ml):	2000		9 mJ/cm2
	•		02052904	02052906
Ret Time Compound		lons	430	430
	Photoresist	29,43	4.96E+10	3.03E+11
•	Photoresist	TIC	2.01E+14	3.31E+13
	Photoresist	43,58	6.63E+10	7.28E+11
19.62 Aromatic PAG		91		7.54E+10
9	Photoresist	39,41,43	3.49E+11	5.64E+11
ນ່, 2-methyl-	Photoresist	29-72	1.58E+12	1.90E+12
14.94 Aromatic Photo	Photoresist	TIC	1.01E+14	
15.12 Aromatic PAG		96,70,50,39	4.00E+12	
Total o	outenesting rate (m	Total outgassing rate (mol/cm2/sec)	5.13E+11	6.10E+10
Isobutene Outgassing rate (moi/cm2/sec)	outhassing rate (ii	-1/	3 355 11	00

SEINING

Underlayer

Dielectric

SiN Etch Stop

Reflectance vs Thickness

Curve for AR2450

8

AR2450

25 8 8

3000

ğ

ģ

5500

4500 5000 AR2450 Thickness (A)

SS SHIPLEY

Oxide Etch Rate Shipley Bilayer Resist Chemistry: Underlayer Components and Performance Attributes % Relative to UV6 Jnderlayer Components: Etch Resistant Polymer Crosslinker Absorbing Polymeric Dye Thermal Acid Generator **Post Underlayer Etch** .00 110nm 1:1 LS 0.88Coat 즁 Layer

Underlayer Performance Attributes:

Pattern Transfer Fidelity

Etch Resistance

Reflection Control

Planarization - Via Fill

Top Layer Imaging

Pattern Transfer

Shipley Bilayer Resist Chemistry: Underlayer Via Fill Study

Top = 140 nmVia Size

Initial Coat Thickness = 5400Å

Depth = 7800^{8} Pitch = 360 nmBottom = 0 nm

Bottom = 100 nm $\frac{\text{Via Size}}{\text{Top} = 170 \text{ nm}}$ Pitch = 340 nm Depth = 9060Å

Via Size

Pitch = 1840 nm Depth = 9600Å

Final FT = 3960Å

Final FT = 3340Å

Final FT = 5000Å

Final FT = 3100-3500Å

- Data is promising for via-fill capability at sub 130nm geometries
- No void issues for pitch values of 340nm to 1840nm
- No void issues for feature sizes of 140nm to 670nm

Bilayer Resists for the 90nm and 65nm Nodes

Krf Bilayer Resists for the 90nm Node

Lithographic Performance

KrF Bilayer: XP-0681A using 6% attenuated PSM, 0.80NA, 0.75s Conventional 140nm/280nm +30nm Bias

51.2 53.4 — 107.5 131.3 128.8 140.1 137.1 141.8 55.6 57.8 60.0	-0.35 -0.3 -0.25 -0.2 49.0	60.0 KLA Measurements	55.6 57.8	51.2		-0.3 -0.25 -0.2
0.1 137.1	-0.15 -0.1	S		00000 00000 00000 00000	į	-0.15
141.8 14 16 16	-0.05			1.00 to 1.00 t		-0.1
38. 1 41.8 1 51.8 55.4 63.2	0 124.3			1 1 2 3 3 4 5 5 8		Defoc
142.1	0.05					Defocus, μm -0.05 0.0
138.1 .8 141.8 142.1 142.8 131.8 127.2 112.8 1: 151.8 155.4 163.2	0.1	90000 90000 90000 90000			20000 20000	0.0
31.8	0.15	Secad	00000100000	32313	70 1000	•
127.2	0.2					0.05
112.8	0.25					0.1
110.7	0.3					
1	0.35		DOF 0.45	3.3		0.15
).45			0.2
						0.25
SHIPLEY						0.3

KrF Bilayer: XP-0681A using 6% attenuated PSM, 0.80NA, 0.75s Conventional, 140nm/880nm +35nm Bias

KrF Bilayer: XP-0681A using 6% attenuated PSM, 0.80NA, 0.75s Conventional, DOF Overlap 140nm Contact

KrF Bilayer: 1400Å, SR2400 / 5100Å, AR2450 0.8NA, Annular 0.55i/0.85o, Binary, 110nm 1:1 Trench

110nm 1:1 Trench

Exposure Latitude = 9.3%

DOF > 0.40um

Exposure: ASML /700

110nm 1:1 L/S

Bottom Layer: 5100 Å Top Layer: 1500 Å

Post Underlayer Etch

Exposure: **ASML /800**

85nm 1:1 L/S

Customer: "Best etch of any bilayer system evaluated" Top to Bottom Etch Selectivity 12:1

ArF Bilayer Resists for the 65nm Node

Design and Lithographic Performance

ArF Bilayer Photoresists – SR™19xx

Silsesquioxane (SSQ)

- Use SSQ backbone chemistry
- Incorporation of high Si content
- ➤ No Outgassing of Si species
- Pendent R Groups
- Transparent at 193 nm
- Dissolution Enhancing
- Contrast Enhancing

ArF Bilayer Photoresists - Dissolution Contrast

- Dissolution Contrast: Ultra Thin ArF Bilayer Resist (1000 Å)
- Controlled by polymer

design

> Example: high contrast ArF bilayer resist for contact applications

10

XP-1646

oţ

Super Dense Contacts

1000

120@200

130@240

115@200

1:1 Contacts

10nm! (

Dissolution Rate, A/s

105nm 95nm

110nm

Exposure Dose, mJ/cm²

130nm C/H at 240nm pitch (direct)

Isolated 130nm C/H (10nm bias)

130nm C/H Super Dense and Isolated

ArF Bilayer: XP1646I on XP2766A, using 6% attenuated PSM, 0.75NA Super Dense Contacts - 115nm C/H at 200nm pitch (direct)

 $E_s=34 \text{mJ/cm}^2$

1

Super Dense Contacts - 115nm C/H at 200nm pitch (direct) ArF Bilayer: XP1646I on XP2766A, using 6% attenuated PSM, 0.75NA

		1000000		
	0.15 95nm		F)	
	0.10 106nm		,	
31mJ/cm² 136nm	0.05 116nm 30mJ/cm ² 130nm	200000 200000 200000 200000	28mJ/cm ² 114nm	27mJ/cm ² 106nm
	XOCOCX XXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX) () () () () () () () () () (0000	
	- 0.05 120nm			Exposure
	-0.1 116nm		PES P	
	-0.15 107nm		EXP=ASML /1100 (0.75NA, 0=0.3/0.85) PEB=90°C/120sec E _s =29mJ/cm ²	SUB=8' Silicon Bottom Layer: XP2766A Cure = (250°C/60sec), FT=5100A Top Layer=XP1646I FT=1000A SB=90°C/60sec
SHIPLE	-0.2 96nm		n²	

110nm C/H at 220nm pitch (10nm bias)

ArF Bilayer: XP1646I on XP2766A, using 6% attenuated PSM, 0.75NA

ArF Bilayer: XP1646I on XP2766A, using 6% attenuated PSM, 0.75NA 110nm C/H at 220nm pitch (10nm bias)

ArF Bilayer: XP1646I on XP2766A (90°C / 90°C SB/PEB) 120nm at 240 Pitch and Isolated Trench (ASML /1100 Binary)

120nm dense trench on the mask

120nm Isolated: 140nm on the Mask/20nm bias

ArF Bilayer: XP1646I on XP2766A (90°C / 90°C SB/PEB) 120nm at 240 Pitch and 120nm (20nm bias) Isolated Trench

nominal)	olated Trenches (±10% nominal)
15.4	Exposure Latitude
ominal)	ense Trenches(±10% nominal)
16.9	Exposure Latitude
11.0	izing Energy(mJ/cm²)
@ 90°C/90°C (SB/PEB)	
XP1646i on XP0705	

ArF Bilayer: XP1646I on XP2766A (ASML/1100 Binary) 120nm at 240 Pitch

Sub 100nm Trenches (ASML /1100 Binary) ArF Bilayer: XP1646I on XP2766A

0.15

KELLEY CE

Reflectance into Resist (%)

5

ArF Bi-layer: Underlayer Optimization XP-1646 / 4000Å Underlayer / Si

Simulation for XP-1646 / Underlayer/ Si 193nm, 0.75NA, Annular 0.4i / 0.8o

___ n=1.66, k=0.16 XP-0705

න

— n=1.4,k=0.55 (XP-2766A)

S SHIPLEY

Rework Process:

- KrF and ArF Top Layer Rework
- Soluble in Standard Resist Solvent
- Soluble in Standard EBR Solvents

Top Layer Rework SR2400

ESCA Si Surface Analysis

Reworked AR™2450

- 0
- Statte of the Art Krf SSQ Bilayer Platform

 > Highest Si Content of Any Commercial Bilayer System

 > Excellent etch resistance & Thin film imaging capability
- \gg No Outgassing of Si species (Si in the polymer backbone)
- Already Demonstrated Production Worthy by other IC manufacturers
- Demonstrated Control of LER, Iso-Dense Bias etc
- Commercial Products Available for BEOL and FEOL Applications
- Shipley Krf Bilayer Resist technology is capable of resolving 100nm features: L/S and Trenches
- Patitern Fidelity is retained through etch patitern transfer step —
 Allowing for high aspect ratio features at 1.00mm's and below

Performance Summary: Sub 100nm Lithography Demonstrated

L/S 90 nm 1:1 (0.75 NA, ASML/1100)

Trench 90 nm 1:1 (0.75 NA, ASML/1100)

C/H 95 nm 1:1 (0.75 NA, ASML/1100)

C/H Super Dense 120/200 (0.75 NA, ASML/11

Platform:

Tunable dissolution behavior

High Si Content > 10%

No Outgassing of Si

ArF Bilayer Resists

UTR Silicon Resist Developed – 1000A

Bright-field and Dark-field being developed

Bottom Layer Developed, XP0705 and XP2766A

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

/	BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
/	COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.