#### Adversarial examples

Гельван Кирилл НИУ ВШЭ 15.11.19

#### Что сейчас будет?

Что такое adversarial examples?

I. Как создавать adversarial examples?

I. Как защищаться от adversarial атак?

#### I. Что такое adversarial examples?







Наложение на картинку, может заставить классификатор определить панду в категорию «гиббон»

| Обозначние         | Значение                                |
|--------------------|-----------------------------------------|
| x                  | оригинальные данные                     |
| l                  | номер класса $(1 \dots m)$              |
| x'                 | adversarial example                     |
| l'                 | номер класса (если adv. ex. направ.)    |
| $f(\cdot)$         | модель $(f \in F : \mathbb{R}^n \to l)$ |
| $\theta$           | параметры модели $f$                    |
| $J_f(\cdot,\cdot)$ | функция потерь для модели $f$           |
| $\eta$             | разница между оригиналом и adv. ex.     |
|                    | $(\eta = x' - x)$                       |
| $  \cdot  _p$      | $l_p$ норма                             |
| $\nabla_t$         | градиент по <i>t</i>                    |

#### Постановка задачи

#### Дано:

Модель f, оригинал x

#### Задача:

| $\min_{x'}$ | x'-x          |
|-------------|---------------|
| s.t.        | f(x') = l',   |
|             | f(x) = l,     |
|             | $l \neq l'$ , |
|             |               |

 $x' \in [0,1],$ 

| Обозначние          | Значение                                |
|---------------------|-----------------------------------------|
| x                   | оригинальные данные                     |
| l                   | номер класса (1m)                       |
| x'                  | adversarial example                     |
| l'                  | номер класса (если adv. ex. направ.)    |
| $f(\cdot)$          | модель $(f \in F : \mathbb{R}^n \to l)$ |
| θ                   | параметры модели f                      |
| $J_f(\cdot, \cdot)$ | функция потерь для модели f             |
| η                   | разница между оригиналом и adv. ex.     |
|                     | $(\eta = x' - x)$                       |
| $   \cdot   _{p}$   | $l_p$ норма                             |
| $\nabla_t$          | градиент по t                           |

$$\eta = x' - x$$

Perturbation ~ разница, отклонение





#### Threat model

Adversarial Falsification

Adversary's Knowledge Adversarial Specificity

Attack Frequency

#### Adversarial Falsification



False Negative

False Positive





Уверенность >= 99%

#### Adversary's Knowledge

White-box



Bcë

Black-box



Уверенность

#### White-box



# Black-box BLACKBOX MODEL SUBSTITUTE MODEL

#### **Adversarial Specificity**

#### Targeted attacks

$$P(f(x') = l') \to \max$$

| Обозначние          | Значение                                |
|---------------------|-----------------------------------------|
| x                   | оригинальные данные                     |
| l                   | номер класса (1m)                       |
| x'                  | adversarial example                     |
| l'                  | номер класса (если adv. ex. направ.)    |
| $f(\cdot)$          | модель $(f \in F : \mathbb{R}^n \to l)$ |
| θ                   | параметры модели f                      |
| $J_f(\cdot, \cdot)$ | функция потерь для модели f             |
| η                   | разница между оригиналом и adv. ex.     |
|                     | $(\eta = x' - x)$                       |
| $  \cdot  _p$       | $l_p$ норма                             |
| $\nabla_t$          | градиент по t                           |

Non-targeted attacks

a) 
$$P(f(x) = l) \rightarrow min$$

b) 
$$l_k = \min(\eta), l_k \in l_1 ... l_t$$

#### Attack Frequency

One-time attacks



Iterative attacks



II. Как создавать adversarial examples?

#### L-BFGS

Limited-memory Broyden-Fletcher-Goldfarb-Shanno

$$\min_{x'} c \|\eta\| + J_{\theta}(x', l')$$
s.t.  $x' \in [0, 1]$ .

 $\Longrightarrow$ Линейный поиск по c

| Обозначние          | Значение                                |
|---------------------|-----------------------------------------|
| x                   | оригинальные данные                     |
| l                   | номер класса (1m)                       |
| x'                  | adversarial example                     |
| l'                  | номер класса (если adv. ex. направ.)    |
| $f(\cdot)$          | модель $(f \in F : \mathbb{R}^n \to l)$ |
| $\theta$            | параметры модели f                      |
| $J_f(\cdot, \cdot)$ | функция потерь для модели $f$           |
| η                   | разница между оригиналом и adv. ex.     |
|                     | $(\eta = x' - x)$                       |
| $  \cdot  _p$       | $l_p$ норма                             |
| $\nabla_t$          | градиент по t                           |



Страус

#### **FGSM**

Fast Gradient Sign Method

We are only interested in the sign of the slopes to know if we want to increase or decrease the pixel values

$$\eta = \epsilon sign(\nabla_x J_\theta(x, l)), 
x' = x + \eta$$

| Обозначние            | Значение                                |  |
|-----------------------|-----------------------------------------|--|
| x                     | оригинальные данные                     |  |
| l                     | номер класса (1m)                       |  |
| x'                    | adversarial example                     |  |
| l'                    | номер класса (если adv. ex. направ.)    |  |
| $f(\cdot)$            | модель $(f \in F : \mathbb{R}^n \to l)$ |  |
| $\theta$              | параметры модели f                      |  |
| $J_f(\cdot, \cdot)$   | функция потерь для модели $f$           |  |
| η                     | разница между оригиналом и adv. ex.     |  |
|                       | $(\eta = x' - x)$                       |  |
| $  \cdot  _p$         | $l_p$ норма                             |  |
| $\nabla_t$            | градиент по t                           |  |
| Curdona Diet of Toots |                                         |  |



#### **FGSM**

Fast Gradient Sign Method





$$\eta = \epsilon sign(\nabla_x J_{\theta}(x, l)),$$
  
$$x' = x + \eta$$





#### **FGV**

Fast Gradient Value Method

$$\eta = \nabla_x J(\theta, x, l) 
x' = x + \eta$$





FGSM
$$\eta = \epsilon sign(\nabla_x J_{\theta}(x, l)), \\
x' = x + \eta$$

$$SM$$
 $_{r}J_{\theta}(x)$ 

$$abla_x J_{ heta}(x,$$



$$I_0(x)$$

оригинальные данные номер класса (1 ... m)adversarial example номер класса (если adv. ex. направ.) модель  $(f \in F : \mathbb{R}^n \to l)$ параметры модели f функция потерь для модели f

Значение

$$J_f(\cdot, \cdot)$$
 $\eta$ 

 $||\cdot||_p$ 

 $\nabla_{t}$ 

Обозначние

разница между оригиналом и adv. ex.  $(\eta = x' - x)$  $l_p$  норма градиент по t

$$\mathbf{g}_{t+1} = \mu \mathbf{g}_t + \frac{\nabla_x J_{\theta}(x'_t, l)}{\|\nabla_x J_{\theta}(x'_t, l)\|},$$

**FGSM + Momentum** 

$$g(x_t',l)$$

 $X_0^{adv} = X$ ,  $X_{N+1}^{adv} = Clip_{X,\epsilon} \{ X_N^{adv} + \alpha \operatorname{sign}(\nabla_X J(X_N^{adv}, y_{true})) \}$ 

Basic Iterative Method (BIM)

 $x' = x - \epsilon sign(\nabla_x J(\theta, x, l')).$ One-step Target Class Method (OTCM)

### Почувствуй себя машиной



# III. Как защищаться от adversarial атак?

#### **Adversarial Defences**



#### **Adversarial Training**



# Regularizing the Gradient of the Model



# Detecting Adversaries Through Classification



#### Face recognition



#### Object detection



### WHO WOULD WIN?





**ONE NOISY BOI** 

#### Вопросы:

• Чем отличаются white и black box атаки?

• Как работает метод FGSM?

• Опишите своими словами любой метод Adversarial Defence.

#### References:

https://arxiv.org/pdf/1312.6199.pdf https://arxiv.org/pdf/1412.6572.pdf https://arxiv.org/pdf/1712.07107.pdf http://www.cleverhans.io/

#### Картинки:

https://medium.com/element-ai-research-lab/securing-machine-learning-models-against-adversarial-attacks-b6cd 5d2be8e2

https://medium.com/@ml.at.berkeley/tricking-neural-networks-create-your-own-adversarial-examples-a61eb7620fd8

https://medium.com/element-ai-research-lab/tricking-a-machine-into-thinking-youre-milla-jovovich-b19bf322d55c

https://towardsdatascience.com/adversarial-examples-in-deep-learning-be0b08a94953

https://towardsdatascience.com/spam-detection-with-logistic-regression-23e3709e522?gi=324a60138bcc