Section 14.1

Show that the two given sets have equal cardinality by describing a bijection from one to the other. Describe your bijection with a formula (not as a table).

Exercise (1). \mathbb{R} and $(0, \infty)$.

Solution: We need to show bijectivity from \mathbb{R} and $(0, \infty)$. Consider the function $f(a) = e^a$. We observe that f(a) = f(b) implies that $e^a = e^b$ and that taking the natural log of both sides gives a = b. This demonstrates the function injective. Because $b \in (0, \infty)$ and $f(\ln b) = b$, the function is is surjective. Thus \mathbb{R} and $(0, \infty)$ have equal cardinality.

Exercise (3). \mathbb{R} and (0, 1).

Solution: Let $f(a) = \frac{1}{1+e^a}$. Observe that f(a) = f(b) implies $\frac{1}{1+e^a} = \frac{1}{1+2^b}$. Cross-multiplying both sides gives $1 + e^a = 1 + e^b$, so $e^a = e^b$. Taking the natural log of both sides gives a = b. Thus f is injective. Let $a \in (0, \infty)$ and $b = \frac{1}{1+e^a}$. Solving for e^a gives $e^a = \frac{1-b}{b}$. Taking the natural log of both sides gives $a = \ln\left(\frac{1-b}{b}\right)$ which will always be greater than 0 as $a \in (0,1)$ and $a \in \mathbb{R}$. This demonstrates that f is surjective. Thus f is bijective and \mathbb{R} and (0,1) share the same cardinality.

Exercise (4). The set of even integers and the set of odd integers.

Proof: Let
$$A = \{2k : k \in \mathbb{Z}\}$$
 and $B = \{2n + 1 : n \in \mathbb{Z}\}$

Exercise (12). \mathbb{N} and \mathbb{Z} (SuggestionL: use Exercise 18 from §12.2.)

Solution: Write your answer here.

Exercise (13). $\mathcal{P}(\mathbb{N})$ and $\mathcal{P}(\mathbb{Z})$. (Suggestion: use Exercise 12, above.)

Proof: Write your answer here.

Section 14.2

Exercise (1). Prove that the set $A = \{\ln(n) : n \in \mathbb{N}\} \subseteq \mathbb{R}$ is countably infinite.

Proof: Write your answer here.

Exercise (2). Prove that the set $A = \{(m, n) \in \mathbb{N} \times \mathbb{N} : m \leq n\}$ is countably infinite.

Proof: Write your answer here.	
Exercise (7). Prove or disprove: The set \mathbb{Q}^{100} is countably infinite.	
Proof: Write your answer here.	
Section 14.3	
Exercise (1). Suppose B is an uncountable set and A is a set. Given that there is a surjectifunction $f: A \to B$, what can be said about the cardinality of A?	ive
Solution: Write your answer here.	
Exercise (3). Prove or disprove: If A is uncountable, then $ A = \mathbb{R} $.	
Proof: Write your answer here.	
Exercise (7). Prove or disprove: If $A \subseteq B$ and A is countably infinite and B is uncountable then $B - A$ is uncountable.	ole,
Proof: Write your answer here.	
Section 14.4	
Exercise (1). Show that if $A \subseteq B$ and there is an injection $g: B \to A$, then $ A = B $.	
Proof: Write your answer here.	
Exercise (2). Show that $ \mathbb{R}^2 = \mathbb{R} $. Suggestion: Begin by showing $ (0,1) \times (0,1) = (0,1) $.) .
Proof: Write your answer here.	
REFLECTION	
Exercise (Reflection Problem).	
Answers:	
How long did it take you to complete each problem?:	

What was easy?:

What was challenging? What made it challenging?:

What did you learn from comparing your answers to those in the book?: