Tangent bundle, vector bundles and vector fields

by Min Ru

1 The Tangent bundle and vector bundle

The aim of this section is to introduce the tangent bundle TX for a differential manifold X. Intuitively this is the object we get by gluing at each point $p \in X$ the corresponding tangent space T_pX . The differentiable structure on X induces a differentiable structure on TX making it into a differentiable manifold of dimension $2\dim(X)$. The tangent bundle TX is the most important example of what is called a **vector bundle** over X (see the definition below).

1.1. Review of the tangent space T_pX :

Let X be a smooth differential manifold of dimension m and let $p \in X$. The tangent space T_pX is a collection of tangent vectors v_p to X at the point p. A tangent vector v_p is a map $v_p : C^{\infty}(X) \to \mathbf{R}$ such that (i) $v_p(af + bg) = av_p(f) + bv_p(g)$, (ii) $v_p(fg) = f(p)v_p(g) + g(p)v_p(f)$. Let (U, ϕ) a local coordinate for X at p, let $\mathbf{R}^m = \mathbf{R}^m_{u^1, \dots, u^m}$ and write $\phi = (x^1, \dots, x^m)$. Then we have special tangent vectors $\{\frac{\partial}{\partial x^k} |_p, 1 \le k \le m\}$ (called the partial derivatives)

$$\frac{\partial}{\partial x^k}|_p: C^\infty(X) \to \mathbf{R}$$

defined by

$$\frac{\partial}{\partial x^k} \mid_p (f) = \frac{\partial (f \circ \phi^{-1})}{\partial u^k} \mid_{\phi(p)}.$$

Then $\{\frac{\partial}{\partial x^k}|_p, 1 \leq k \leq m\}$ forms a basis for T_pX , moreover(from the proof), for every $v_p \in T_pX$, we can write

$$v_p = \sum_{k=1}^m v_p(x^k) \frac{\partial}{\partial x^k} \mid_p.$$

1.2. Construction of the tangent bundle TX:

Let X be a smooth differential manifold of dimension m. Let

$$TX = \bigcup_{p \in X} T_p X = \{(p, v) \mid p \in X, v \in T_p X\}.$$

Let $\pi: TX \to X$ be the natural projection map with $\pi: (p, v) \mapsto p$. For a given point $p \in X$ the fiber $\pi^{-1}(\{p\})$ of π is the m-dimensional tangent space T_pX at p. The triple (TX, X, π) is called the **tangent bundle** of X. We can put a differentiable structure on TX making it into a differentiable manifold of dimension $2\dim(X)$ as follows:

Let X be a differential manifold with maximal atlas \mathcal{A} . Let $x:U\to \mathbf{R}^m$ in \mathcal{A} be a chart for X and define

$$\tilde{\psi}_U: \ \pi^{-1}(U) \to \mathbf{R}^m \times \mathbf{R}^m$$

by

$$\tilde{\psi}_U: (p, \sum_{k=1}^m a_k \frac{\partial}{\partial x^k}|_p) \mapsto (x(p), (a_1, \dots, a_m)).$$

Then it is easy to check that $\tilde{\psi}_U$ is one-to one and $\tilde{\psi}_U(\pi^{-1}(U))$ is an open set in $\mathbf{R}^m \times \mathbf{R}^m$. We now check that overlap(transition) maps are smooth maps. In fact, Let (U, x) and (V, y) be two charts in \mathcal{A} such that $p \in U \cap V$. Then the overlap(transition) map

$$\tilde{\psi}_V \circ (\tilde{\psi}_U)^{-1} : \quad \tilde{\psi}_U(\pi^{-1}(U \cap V)) \to \mathbf{R}^m \times \mathbf{R}^m$$

is given by

$$(a,b) \mapsto (y \circ x^{-1}(a), \quad \sum_{k=1}^{m} \frac{\partial y_1}{\partial x^k} \mid_{x^{-1}(a)} b_k, \dots, \sum_{k=1}^{m} \frac{\partial y_m}{\partial x^k} \mid_{x^{-1}(a)} b_k).$$

Since X is a smooth manifold, $y \circ x^{-1}$ is smooth, hence $\tilde{\psi}_V \circ (\tilde{\psi}_U)^{-1}$ is also smooth. Let

$$\mathcal{A}^* = \{ (\pi^{-1}(U), \tilde{\psi}_U) \mid (U, x) \in \mathcal{A} \},$$

then \mathcal{A}^* is a C^{∞} atlas. So TX is an 2m smooth manifold. It is trivial that the projection map $\pi: TX \to X$ is also smooth.

1.3. The tangent bundle, cotangent bundle and the definition of general vector bundle.

For each point $p \in X$ the fiber $\pi^{-1}(\{p\})$ is the tangent space T_pX of X at p hence an m-dimensional vector space. For a chart $x: U \to \mathbf{R}^m$ is \mathcal{A} , we define $\psi_U: \pi^{-1}(U) \to U \times \mathbf{R}^m$ by

$$\psi_U: (p, \sum_{k=1}^m a_k \frac{\partial}{\partial x^k}|_p) \mapsto (p, (a_1, \dots, a_m)).$$

Obviously ψ_U is a diffeomorphism. Further more, it has the following important property: the restriction of ψ_U to the tangent space T_pX , i.e. $\psi_p = \psi_U|_{T_pX} : T_pX \to \{p\} \times \mathbf{R}^m$ is given by

$$\psi_p: \sum_{k=1}^m a_k \frac{\partial}{\partial x^k} \mid_{p} \mapsto (a_1, \dots, a_m),$$

so it is a vector space isomorphism. The map $\psi_U : \pi^{-1}(U) \to U \times \mathbf{R}^m$ is called a bundle chart.

In summary: For a smooth manifold X, we get a triple (TX, X, π) , which is called the tangent bundle of X, where π is a continuous surjective map(natural projection), TX is a smooth differential manifold of dimension $2 \dim(X)$. Further, it satisfies the following property:

- (i) For each $p \in X$, the fiber $\pi^{-1}(\{p\}) = T_p(X)$ is an m-dimensional vector space.
- (ii) For each $p \in X$ there exists a **bundle chart** $(\pi^{-1}(U), \psi_U)$ (some book called it trivialization) such that $\psi_U : \pi^{-1}(U) \to U \times \mathbf{R}^m$ is a smooth diffeomorphism and for all $q \in U$, the map $\psi_q = \psi_U|_{T_q(X)} : T_q(X) \to \{q\} \times \mathbf{R}^m$ is a vector space isomorphism.

A smooth map $v: X \to TX$ is called a **smooth vector field** (or **smooth section**) if $\pi \circ v(p) = p$ for each $p \in X$.

Finally, motivated by the above construction, we introduce the following general definition:

Definition 1: Let E and X be smooth manifolds and $\pi: E \to X$ be a smooth surjective map. The triple (E, X, π) is called a (smooth) vector bundle of rank k over X if

- (i) For each $p \in X$, the fiber $E_p = \pi^{-1}(\{p\})$ is a k-dimensional vector space.
- (ii) For each $p \in X$ there exists a **bundle chart** $(\pi^{-1}(U), \psi_U)$ (some book called it trivialization) such that $\psi_U : \pi^{-1}(U) \to U \times \mathbf{R}^k$ is a smooth diffeomorphism and for all $q \in U$, the map $\psi_q = \psi_U|_{E_q} : E_q(X) \to \{q\} \times \mathbf{R}^k$ is a vector space isomorphism.

Vector bundles of rank 1 is also called the **line bundle**.

The vector bundle of rank r over X is said to be **trivial** if there exists a global bundle chart $\psi: E \to X \times \mathbf{R}^k$.

Definition 2: Let (E, X, π) be a vector bundle over X. A smooth map $\sigma : X \to E$ is said to be a **smooth section** of the bundle (E, X, π) if $\pi \circ \sigma(p) = p$ for every $p \in X$. The set of all smooth sections is denoted by $\Gamma(X, E)$ or just $\Gamma(E)$.

Definition 3: Let (E, X, π) be a vector bundle of rank k over X. Let $\{U_{\alpha}\}$ be an open covering of X and let $\psi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbf{R}^{k}$ be the trivialization. Then, on $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the composition map

$$\psi_{\alpha} \circ \psi_{\beta}^{-1} : (U_{\alpha} \cap U_{\beta}) \times \mathbf{R}^{k} \to (U_{\alpha} \cap U_{\beta}) \times \mathbf{R}^{k}$$

is of the form, for every $p \in U_{\alpha} \cap U_{\beta}$ and $b \in \mathbf{R}^k$,

$$\psi_{\alpha} \circ \psi_{\beta}^{-1}(p,b) = (p, g_{\alpha\beta}(p)(b))$$

for some smooth map $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to GL(k, \mathbf{R})$ where $GL(k, \mathbf{R})$ is the set of $k \times k$ non-singular matrices. The smooth $GL(k, \mathbf{R})$ -valued maps $\{g_{\alpha\beta}\}$ are called the **transition functions** for a vector bundle E.

Examples

- 1. Let $E = X \times \mathbf{R}^k$. Then E is a vector bundle of rank k. In this case, the trivialization map is an identity map. This bundle is called the trivial bundle.
- 2. Let $E = TX = \bigcup_{p \in X} T_p(X)$. It is called the tangent bundle, denoted by TX. The rank of this bundle is m (the dimension of TX as a manifold is 2m), where dim X = m. Let (U, ϕ_U) be a chart of X with coordinate functions x^1, \ldots, x^m . Then it defines a trivialization $\psi_U: \pi^{-1}(U) \to U \times \mathbf{R}^m$ by

$$\psi_U: (p, \sum_{k=1}^m a_k \frac{\partial}{\partial x^k}|_p) \mapsto (p, (a_1, \dots, a_m)).$$

We now calculate the transition functions. Let $(U, \phi_U), (V, \phi_V)$ two charts on X, with coordinate functions x^1, \ldots, x^m and y^1, \ldots, y^m respectively, where $U \cap V \neq \emptyset$. For every $b = (b_1, \ldots, b_m) \in \mathbf{R}^m$, and $p \in U \cap V$,

$$\psi_V^{-1}(p,b) = (p, \sum_{i=1}^m b_i \frac{\partial}{\partial y^i} \mid_p).$$

Since, on $U \cap V$,

$$\frac{\partial}{\partial y^i} \mid_p = \sum_{j=1}^m \frac{\partial x^j}{\partial y^i} \frac{\partial}{\partial x^j} \mid_p,$$

we conclude that, on $U \cap V$,

$$\psi_V^{-1}(p,b) = (p, \sum_{i=1}^m b_i \frac{\partial}{\partial y^i} \mid_p) = (p, \sum_{i=1}^m \sum_{i=1}^m b_i \frac{\partial x^j}{\partial y^i} \frac{\partial}{\partial x^j} \mid_p).$$

Hence,

$$\psi_U \circ \psi_V^{-1}(p,b) = (p, \sum_{i=1}^m b_i \frac{\partial x^1}{\partial y^i}, \dots, \sum_{i=1}^m b_i \frac{\partial x^m}{\partial y^i}).$$

This means the transition map g_{UV} is, for every $p \in U \cap V$,

$$g_{UV}(p) = \left(\frac{\partial x^i}{\partial y^j}\right)_{1 \le i,j \le m} |_{\phi_V(p)}.$$

3. Besides the tangent bundle TX above, we also have the cotangent bundle T^*X as follows: Consider a smooth manifold X of dimension m. The dual space to the tangent space T_pX , $p \in X$, is called the **cotangent space** to X at p, denoted by T_p^*X . Suppose that $x: U \to \mathbf{R}^m$ be a local coordinates for X at p, then $\{\frac{\partial}{\partial x^k} \mid_p, 1 \le k \le m\}$ forms a basis for T_pX , i.e. for every $v_p \in T_pX$. The dual basis to $\{\frac{\partial}{\partial x^k} \mid_p, 1 \le k \le m\}$ is traditionally denoted by $\{dx^k \mid_p, 1 \le k \le m\}$. (Sometimes, I may drop the subscript p from the notation.) Thus an arbitrary element of T_p^*X is expressed as $\sum_{k=1}^m a_k dx^k \mid_p$ for some $a_k \in \mathbf{R}$. The disjoint union of all the cotangent space

$$T^*X = \cup_{p \in X} T_p^*X$$

is called the **cotangent bundle** of X. The cotangent bundle can be given a smooth structure making it into a manifold of dimension $2\dim(X)$ by an argument very similar to the one for the tangent bundle as above). It is easy to verify that the transition functions for T^*X is

$$g_{UV}(p) = \left(\frac{\partial y^i}{\partial x^j}\right)_{1 \le i,j \le m} |_{\phi_U(p)}.$$

4. Tensor Bundles. Consider the (r, s)-type tensor space

$$T_s^r(p) = T_p(x) \otimes T_p(X) \otimes \otimes T_p^*(X) \otimes \cdots \otimes T_p(X)^*,$$

where the first products for V is taken r times, and the second products for V^* is taken s times. Let

$$T_s^r = \cup_{p \in X} T_s^r(p).$$

Then, similar above, we can show that T_s^r is a vector bundle, which is called an (r, s)-type tensor bundle on X.

5. Bundle Operations. Let (E, X, π) be a vector bundle, we can define, in an obvious way, the dual bundle (E^*, X, π) , which is called the *dual* bundle. Similarly, let E, E' be two vector bundles, we can define $E \oplus E'$ and $E \otimes E'$ the *direct sum* and the *the tensor product* bundles.

2 Smooth Vector fields

Let X be a smooth manifold of dimension m. A vector field v on X is a section of the tangent bundle TX, ie $v: X \to TX$ such that $\pi \circ v(p) = p$ for every $p \in X$. In other words. A vector field on X is a map v which assigns to each point $p \in X$ a tangent vector

$$v(p) = v_p \in T_p(X).$$

Let $x: U \to \mathbf{R}^m$ be a local chart of X, and $p \in U$, then

$$v(p) = \sum_{i=1}^{m} v_p(x^i) \frac{\partial}{\partial x^i} \mid_p.$$

The real-valued functions $v^i: U \to \mathbf{R}$ defined by $v^i(p) = v_p(x^i), 1 \le i \le m$, are called the **components** of v related to the local chart $x: U \to \mathbf{R}^m$.

A vector field is said to be smooth if v is a smooth section tangent bundle TX, i.e. v is smooth as a map. It can be checked (we omit it here) that v is smooth if and only if its components are smooth for all charts in some atlas for X. Denote by $\Gamma(X)$ the set of all smooth vector fields on X. We have the following algebra structure on $\Gamma(X)$:

For $v, w \in \Gamma(X), a \in \mathbf{R}$ and $f \in C^{\infty}(X)$:

- (i) $v + w \in \Gamma(X)$, i.e. (v + w)(p) = v(p) + w(p);
- (ii) $av \in \Gamma(X)$, i.e. (av)(p) = av(p);
- (iii) $fv \in \Gamma(X)$, i.e. (fv)(p) = f(p)v(p).

There is **another way** of thinking about vector fields: Recall that, for every $p \in X$, the tangent vector v_p map $v_p : C^{\infty}(X) \to \mathbf{R}$ such that (i) $v_p(af + bg) = av_p(f) + bv_p(g)$, (ii) $v_p(fg) = f(p)v_p(g) + g(p)v_p(f)$. Since v assigns at each point $p \in X$ a tangent vector v_p , we can define, for each $f \in C^{\infty}(X)$, v(f) as a function on X by $v(f)(p) = v_p(f)$. If the vector

field is smooth, then v(f) is also a smooth function on X for every $f \in C^{\infty}(X)$. Hence, we can think of a smooth vector field $v \in \Gamma(X)$ as a map

$$v: C^{\infty}(X) \to C^{\infty}(X)$$

by

$$f \mapsto v(f),$$

where $(vf)(p) = v_p(f)$.

The smooth vector field

$$v: C^{\infty}(X) \to C^{\infty}(X)$$

also satisfies the following properties: For every $f, g \in C^{\infty}(X)$,

(i)
$$v(af + bg) = av(f) + bv(g)$$
,

(ii)
$$v(fg) = fv(g) + gv(f)$$
.

An **exterior differential** p-form is a section of $\bigwedge^p T^*(X)$. In a local chart $(U, (x^1, \dots, x^m))$, an exterior differential p-form

$$\omega = \sum_{1 \le j_1 < \dots < j_p \le m} a_{j_1 \dots < j_p} dx^{j_1} \wedge \dots \wedge dx^{j_p},$$

where $a_{j_1 \dots < j_p}$ are real valued functions on U.

 $\Lambda^p(X)$ will denote the vector space of exterior differential p-forms.

 $\Gamma(X)$ will denote the vector space of (smooth) vector fields.

 $T_r^s(X)$ denote the vector space of (r,s)-tensor fields.

3 Lie bracket of smooth vector fields

Let v, w be two smooth vector fields (thought as maps from $C^{\infty}(X) \to C^{\infty}(X)$). Define the **Lie bracket** of v and w, denoted by

$$[v,w]: C^{\infty}(X) \to C^{\infty}(X),$$

by

$$[v, w](f) = v(w(f)) - w(v(f)).$$

The Lie bracket has the following properties:

- (i) (**R**-linearity): [au + bw, v] = a[u, v] + b[w, v];
- (ii) (skew-symmetry): [v, w] = -[w, v];
- (iii) (Jacobi-identity) [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0;
- (iv) for every $f, g \in C^{\infty}(X)$, [fv, w] = f[v, w] (w(f))v, [v, gw] = g[v, w] + (v(g))w;
- (v) In local coordinates, if $v = \sum_{i=1}^{m} v^{i} \frac{\partial}{\partial x^{i}}$, and $w = \sum_{i=1}^{m} w^{i} \frac{\partial}{\partial x^{i}}$, then

$$[v, w] = \sum_{i,j=1}^{m} \left(v^{j} \frac{\partial w^{i}}{\partial x^{j}} - w^{j} \frac{\partial v^{i}}{\partial x^{j}} \right) \frac{\partial}{\partial x^{i}}.$$

4 Exterior Differentials

Recall that an exterior differential p-form is a section of $\bigwedge^p T^*(X)$. In a local chart $(U, (x^1, \dots, x^m))$, an exterior differential p-form

$$\omega = \sum_{1 \le j_1 < \dots < j_p \le m} a_{j_1 \dots < j_p} dx^{j_1} \wedge \dots \wedge dx^{j_p},$$

where $a_{j_1 \dots < j_p}$ are real valued functions on U.

Let

$$\Lambda(X) = \bigoplus_{p=0}^{m} \Lambda^{p}(X).$$

It is called the *algebra of exterior differential forms*. Note that it has the structure of an algebra with respect to wedge product " \wedge ".

We now define the exterior differential operator $d: \Lambda^p(X) \to \Lambda^{p+1}(X)$ as follows, for every $\omega \in \Lambda^p(X)$, and for every $X_1, \ldots, X_{p+1} \in \Gamma(X)$,

$$d\omega(X_1, \dots, X_{p+1}) = \sum_{i=1}^{p+1} X_i(\omega(X_1, \dots, \hat{X}_i, \dots, X_{p+1}) + \sum_{i < j} (-1)^{i+j} \omega([X_i, X_j], X_1, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_{p+1}).$$

We also have a local expression, a local chart $(U, (x^1, \dots, x^m))$, i.e. let

$$\omega = \sum_{1 \le j_1 < \dots < j_p \le m} a_{j_1 \dots < j_p} \wedge dx^{j_1} \wedge \dots \wedge dx^{j_p}.$$

Then

$$d\omega = \sum_{1 \le j_1 < \dots < j_p \le m} da_{j_1 \dots < j_p} \wedge dx^{j_1} \wedge \dots \wedge dx^{j_p}.$$

For this expression we see that, for any $\eta \in \Lambda^p(X)$,

$$d(\eta \wedge \xi) = d\eta \wedge \xi + (-1)^p \eta \wedge d\xi.$$

According to the definition, for $f \in \Lambda^0(X)$, we have d(f)(X) = X(f), and for $\omega \in \Lambda^1(X)$, we have

$$d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y]).$$

Now let $F: M \to N$ be a smooth map, then we have $d(F^*\omega) = F^*(d\omega)$ for any differential form ω on N.

Note that we can define the **integration** of a k-form with compact support on a k-dimensional (orientable) manifold, and have the following statement of Stokes' formula: Let

M be a smooth compact manifold of dimension n with boundary, and ω is a (n-1)-form on M. Then

$$\int_{M} d\omega = \int_{\partial M} \omega.$$