Übungsblatt 20 zur Homologischen Algebra II

Aufgabe 1. Beispiele für Ext-Gruppen

- a) Seien A und B abelsche Gruppen. Sei U eine Untergruppe von A. Sei $f:U\to B$ ein Gruppenhomomorphismus. Formuliere und verifiziere ein hinreichendes und notwendiges Kriterium dafür, dass sich f zu einem Gruppenhomomorphismus $\overline{f}:A\to B$ fortsetzen lässt, in dem $\operatorname{Ext}^1_{\mathbb{Z}}(A/U,B)$ vorkommt.
- b) Sei A eine abelsche Gruppe. Zeige: $\operatorname{Ext}_{\mathbb{Z}}^{n}(\mathbb{Z},A)=0$ für alle n>0.
- c) Sei A eine abelsche Torsionsgruppe. Zeige: $\operatorname{Ext}^1_{\mathbb{Z}}(A,\mathbb{Z}) \cong \operatorname{Hom}_{\mathbb{Z}}(A,\mathbb{Q}/\mathbb{Z}).$
- d) Zeige: $\operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Z}/(m),\mathbb{Z}/(n)) \cong \mathbb{Z}/(m,n)$.

Aufgabe 2. Kohomologischer Kleber

Seien X und Y Objekte einer abelschen Kategorie A.

- a) Sei $\eta: Y[0] \to X[2]$ ein Morphismus in $\mathcal{D}(\mathcal{A})$ und C^{\bullet} ein Kegel von η . Zeige: $H^{-2}(C^{\bullet}) \cong X$, $H^{-1}(C^{\bullet}) \cong Y$ und die restliche Kohomologie verschwindet.
- b) Sei C^{\bullet} ein Komplex mit $H^{-2}(C^{\bullet}) \cong X$, $H^{-1}(C^{\bullet}) \cong Y$ und restlicher Kohomologie Null. Zeige, dass C^{\bullet} ein Kegel eines Morphismus $\eta: Y[0] \to X[2]$ ist.
- c) Ziehe das Fazit: Komplexe mit Kohomologie wie in Teilaufgabe b) sind bis auf Isomorphie eindeutig durch H^{-2} , H^{-1} und kohomologischen Kleber gegeben.

Aufgabe 3. Kein kohomologischer Kleber

Sei \mathcal{A} eine abelsche Kategorie mit $\operatorname{Ext}^n(X,Y)$ für alle Objekte X und Y und alle $n\geq 2$. Zeige, dass jeder beschränkte Komplex K^{\bullet} in $\mathcal{D}^b(\mathcal{A})$ isomorph zu seinem Kohomologie-komplex $H^{\bullet}(K^{\bullet})$ (mit Nulldifferentialen) ist.

Hinweis: Verwende ohne Beweis, dass ein ausgezeichnetes Dreieck der Form $A^{\bullet} \to B^{\bullet} \to C^{\bullet} \to$, wobei der Morphismus $C^{\bullet} \to A^{\bullet}[1]$ Null ist, $zerf\ddot{a}llt$ und daher insbesondere B^{\bullet} isomorph zu $A^{\bullet} \oplus C^{\bullet}$ ist. Das werden wir in angemessener Allgemeinheit später beweisen. Tipp: Führe einen Induktionsbeweis über die Amplitude von K^{\bullet} (was kann das wohl sein?) und verwende die kanonische Filtrierung.

Aufgabe 4. Homotopie und Zylinder

Zeige: Homotopien $h:f\simeq g$ von Komplexmorphismen $f,g:K\to L$ stehen in kanonischer Eins-zu-Eins-Korrespondenz zu kommutativen Diagrammen der Form

wobei die beiden senkrechten Morphismen die kanonischen sind. Was bedeutet das anschaulich?