Output tables for 1xN statistical comparisons.

January 16, 2017

1 Average rankings of Friedman test

Average ranks obtained by each method in the Friedman test.

Ranking	2.9167	5.5	3.7083	9	8.2917	33	7.0833	9.9167	1.875	6.7083
Algorithm	SVRCC	MORF	1	MLS	MLSC	RC	ERC	ERCC	m SVR	SVRRC

Table 1: Average Rankings of the algorithms (Friedman)

Friedman statistic (distributed according to chi-square with 9 degrees of freedom): 159.163636. P-value computed by Friedman Test: 0.

Iman and Davenport statistic (distributed according to F-distribution with 9 and 207 degrees of freedom): 64.408829. P-value computed by Iman and Daveport Test: 0.

2 Post hoc comparison (Friedman)

P-values obtained in by applying post hoc methods over the results of Friedman procedure.

Holm	0.005556	0.00625	0.007143	0.008333	0.01	0.0125	0.016667	0.025	0.05
d	0	0	0	0	0.000002	0.000034	0.035939	0.198033	0.233329
$z = (R_0 - R_i)/SE$	9.200914	7.341662	5.959141	5.530083	4.71964	4.147562	2.097618	1.287174	1.191828
algorithm	ERCC	MLSC	ERC	SVRRC	$_{ m MLS}$	MORF	$^{ m LS}$	$^{ m RC}$	SVRCC
$\cdot i$	6	∞	7	9	က	4	33	2	-

Table 2: Post Hoc comparison Table for $\alpha=0.05$ (FRIEDMAN)

Bonferroni-Dunn's procedure rejects those hypotheses that have an unadjusted p-value ≤ 0.005556 . Holm's procedure rejects those hypotheses that have an unadjusted p-value ≤ 0.016667 .

3 Adjusted P-Values (Friedman)

Adjusted P-values obtained through the application of the post hoc methods (Friedman).

۵	algorithm	unadjusted p	p_{Bonf}	p_{Holm}
_	ERCC	0	0	0
	MTSC	0	0	0
	ERC	0	0	0
J	SVRRC	0	0	0
	MLS	0.000002	0.000021	0.000012
	MORF	0.000034	0.000302	0.000134
	$_{ m LS}$	0.035939	0.32345	0.107817
	$^{ m RC}$	0.198033	1.782301	0.396067
01	SVRCC	0.233329	2.099957	0.396067

Table 3: Adjusted p-values (FRIEDMAN) (I)

unadjusted p	0	0	0	0	0.000002	0.000034	0.035939	0.198033	0.233329
i algorithm	ERCC	MTSC	ERC	SVRRC	MTS	MORF	$^{ m LS}$	$^{ m RC}$	SVRCC
	Н	2	က	4	5	9	7	∞	6

Table 4: Adjusted p-values (FRIEDMAN) (II)