Concepts and Main Aspects of RNA-Seq

Wellcome Trust Centre for Human Genetics 25th, 28th and 29th April 2016

Organised by Helen Lockstone and Irina Pulyakhina

Overview of Gene Expression Profiling and Experimental Design

Helen Lockstone 25th April 2016

Day 2 Overview

- General remarks on gene expression data
- RNA-Seq and microarray technology
- Experimental design considerations
- Transcript quantification
- Data normalisation and quality
- Differential expression analysis
- Biological interpretation using pathway analysis

Schedule

Time	Topic
09.45-10.30	RNA-Seq experimental design
10.30-11.00	Transcript quantification, normalisation
11.00-11.15	Coffee break
11.15-12.00	Differential expression analysis
12.00-12.30	Pathway analysis
12.30-13.30	Lunch
13.30-16.00	Practical sessions (break at 15.00)

Transcriptome profiling

Entire transcriptome can be measured by microarrays or RNA-Seq

Widely-used techniques, provide insight into biological system, albeit a snapshot – highly dynamic and complex process (splicing, gene methylation, RNA stability/degradation, miRNA regulation etc)

Examples of large gene expression projects

- ENCODE
- Allen brain atlas

- Public repositories
 - Gene Expression Omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo/
 - Sequence Read Archive (SRA)
 - http://www.ncbi.nlm.nih.gov/sra

Typical expression profiling designs

- Disease vs control
- Gene knockdown/knockout vs wildtype
- Effect of treatment/stimulus/drug
- Clinical applications
 - Tumour-normal pairs
 - Good prognosis vs poor prognosis
 - Patient subgroups responding to different treatments
 - 'Gene signature' to predict who will respond well to a given treatment
- Time course
- Different tissues/stages of development

Premise of gene expression profiling

 Compare gene expression in different conditions

 Differentially expressed genes may provide some biological insight

 But not magical solutions! Large amounts of descriptive data generated – what to do next?

Limitations of gene expression data

- Comprehensive but inherently limited to descriptive results, no matter how well experiment performed or data analysed
- Produce large amounts of information; subjective interpretation, can be mined in different ways, always much left untouched (often publically available)
- Expensive and time-consuming so often published as a standalone experiment
- However best used as starting point for further work following up hypotheses from gene expression data to uncover mechanistic/causal effects can produce elegant studies

Two key technologies

Microarrays

Total RNA AAAA Reverse Transcription AAAA AAAA AAAA GeneChip Expression Array Hybridization Biotin-labeled cRNA Fragmentation Fragmented, Biotin-labeled cRNA Biotin-labeled cRNA B B B B B C Scan and Quantitate

RNA-Seq

Complementary hybridisation early 1990s onwards

Next-generation sequencing 2007 onwards

Microarrays in the Literature

Which technology to use?

- Microarrays and RNA-Seq are complementary technologies (despite common perception that RNA-Seq superior)
- Choice usually depends how detailed a characterisation of the transcriptome is required
 - Gene level changes => microarrays sufficient
 - Isoform structure, splicing, novel transcripts => RNA-Seq
- Many low expressed genes in a given sample type in both technologies

Exon Array Design

Picture from Affymetrix

Experimental Considerations

- Number of replicates
- Sequencing depth (number of reads per sample)
- Good experimental design principles

Replicates

 Depends on context – type of sample, size of effect, heterogeneity within conditions

Sequencing Depth

- Number of reads required per sample depends on experimental question
- HiSeq4000 one lane = 250 million reads
- Multiplexing e.g. 10-plex human samples gives ~25m reads for each, plenty for quantifying gene expression (except for very low/unexpressed genes)
- Higher depth required in some situations e.g. for splicing analysis, certain library prep methods (Ribo-depletion)

Single or Paired-end?

 Increased mapped reads with PE data – possibly one read maps to non-unique regions, while second read helps anchor to a specific gene/location

Other experimental considerations

- Sufficient replication/depth for purpose
- Avoid confounding factors when obtaining/preparing samples – gene expression data highly sensitive to many factors

 Be aware of potential effects of unrelated factors on the data, which may need to be accounted for to optimise analysis

Effect of other variables

- Wt and Mut groups
- Three different litters
- Top gene ~ 5x
 higher expression in
 Wt compared to
 Mut
- Similarly expressed across litters in both genotypes

Strong litter effect

- Overlap between groups
- Within litters, consistent pattern of higher expression in WT vs Mut
- Within genotypes, B>C>A – expression depends on litter
- Accounting for this variance increases power