Institute for Analysis and Scientific Computing

Lothar Nannen, Conrad Gößnitzer, Michael Innerberger

Numerik von Differentialgleichungen - Kreuzlübung 11

Übungstermin: 17.6.2020 10. Juni 2020

Aufgabe 51:

Beweisen Sie, dass die symplektischen Euler-Verfahren die Konvergenzordnung 1 haben. Konstruieren Sie dazu auch ein Beispiel welches zeigt, dass Sie keine höhere Ordnung besitzen.

Aufgabe 52:

Betrachten Sie die Hamiltonfunktion $H(p,q)=\frac{1}{2}p^2+\frac{1}{2}q^2$. Zeigen Sie, dass das symplektische Eulerverfahren

$$\begin{pmatrix} p_{\ell+1} \\ q_{\ell+1} \end{pmatrix} = \begin{pmatrix} p_{\ell} \\ q_{\ell} \end{pmatrix} + h \begin{pmatrix} -\nabla_q H(p_{\ell+1}, q_{\ell}) \\ \nabla_p H(p_{\ell+1}, q_{\ell}) \end{pmatrix}$$
 (1)

im Allgemeinen nicht die Energie H(p,q) erhält. Zeigen Sie dazu, dass es Anfangsbedingungen p_0, q_0 gibt, sodass $H(p_\ell, q_\ell) \neq H(p_0, q_0)$ für die numerischen Lösungen p_ℓ, q_ℓ des symplektischen Eulerverfahrens gilt.

Betrachten Sie weiter die gestörte Hamiltonfunktion

$$H_h(p,q) := \frac{1}{2} \begin{pmatrix} p \\ q \end{pmatrix}^\top \begin{pmatrix} 1 & -h/2 \\ -h/2 & 1 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix}. \tag{2}$$

Zeigen Sie, dass für alle p, q mit $|p|, |q| \le R \in \mathbb{R}$ gilt, dass $||H(p, q) - H_h(p, q)|| = \mathcal{O}(h)$ und dass das symplektische Eulerverfahren H_h erhält, d.h., zeigen Sie, dass $H_h(p_\ell, q_\ell) = H_h(p_0, q_0)$.

Aufgabe 53:

Sei Ψ^h der diskrete Fluss des expliziten Euler Verfahrens. Welche bekannten Verfahren ergeben sich aus $(\Psi^{h/2})^* \circ \Psi^{h/2}$ und $\Psi^{h/2} \circ (\Psi^{h/2})^*$? Welche Ordnung haben diese Verfahren?

Aufgabe 54:

Gegeben sei ein beliebiges m-stufiges Runge-Kutta Verfahren mit Butcher Tableau $\frac{c \mid A}{\mid b^{\top}}$ und diskretem Fluss Ψ^h . Geben Sie die Butcher Tableaus

- a) des zugehörigen adjungierte Verfahrens mit adjungiertem Fluss $\left(\Psi^{h}\right)^{*}$ und
- b) des reversiblen Verfahrens $(\Psi^{h/2})^* \circ \Psi^{h/2}$ an.

Aufgabe 55:

Sei $f \in C^1(\mathbb{R}^{2d}, \mathbb{R}^{2d})$ die rechte Seite des autonomen Systems

$$\begin{pmatrix} p' \\ q' \end{pmatrix} = f(\begin{pmatrix} p \\ q \end{pmatrix}). \tag{3}$$

Weiter sei die Abbildung R definiert durch

$$R(\begin{pmatrix} p \\ q \end{pmatrix}) = \begin{pmatrix} -p \\ q \end{pmatrix}. \tag{4}$$

Es gelte außerdem

$$R \circ f = -f \circ R. \tag{5}$$

a) Zeigen Sie, dass für den kontinuierlichen Fluss Φ^t von (3) gilt, dass

$$R \circ \Phi^t = \Phi^{-t} \circ R.$$

b) Zeigen Sie, dass für den diskreten Fluss Ψ^h eines Runge-Kutta Verfahrens angewandt auf (3) gilt, dass

$$R \circ \Psi^h = \Psi^{-h} \circ R$$
.

c) Sei M eine symmetrisch, positive definite Matrix, U eine zweimal stetig diffferenzierbare Funktion und H eine Hamiltonfunktion mit

$$H(p,q) := \frac{1}{2} p^{\top} M^{-1} p + U(q).$$
 (6)

Zeigen Sie, dass die Funktion f des zugehörigen Hamilton-Systems (5) erfüllt.