MATLAB®/Reference

March 3, 2009

David Hiebeler
Dept. of Mathematics and Statistics
University of Maine
Orono, ME 04469-5752

http://www.math.umaine.edu/faculty/hiebeler

I wrote the first version of this reference during the Spring 2007 semester, as I learned R while teaching my course "MAT400, Modeling & Simulation" at the University of Maine. The course covers population and epidemiological modeling, including deterministic and stochastic models in discrete and continuous time, along with spatial models. Half of the class meetings are in a regular classroom, and half are in a computer lab where students work through modeling & simulation exercises. When I taught earlier versions of the course, it was based on MATLAB only. In Spring 2007, some biology graduate students in the class who had learned R in statistics courses asked if they could use R in my class as well, and I said yes. My colleague Bill Halteman was a great help as I frantically learned R to stay ahead of the class. As I went, every time I learned how to do something in R for the course, I added it to this reference, so that I wouldn't forget it later. Some items took a huge amount of time searching for a simple way to do what I wanted, but at the end of the semester, I was pleasantly surprised that almost everything I do in MATLAB had an equivalent in R. I was also inspired to do this after seeing the "R for Octave Users" reference written by Robin Hankin. I've continued to add to the document, with many additions based on topics that came up while teaching courses on Advanced Linear Algebra and Numerical Analysis.

This reference is organized into general categories. There is also a MATLAB index and an R index at the end, which should make it easy to look up a command you know in one of the languages and learn how to do it in the other (or if you're trying to read code in whichever language is unfamiliar to you, allow you to translate back to the one you are more familiar with). The index entries refer to the item numbers in the first column of the reference document, rather than page numbers.

Any corrections, suggested improvements, or even just notification that the reference has been useful will be appreciated. I hope all the time I spent on this will prove useful for others in addition to myself and my students. Note that sometimes I don't necessarily do things in what you may consider the "best" way in a particular language; I often tried to do things in a similar way in both languages. But if you believe you have a "better" way (either simpler, or more computationally efficient) to do something, feel free to let me know.

Acknowledgements: Thanks to Alan Cobo-Lewis and Isaac Michaud for correcting some errors; and Stephen Eglen, David Khabie-Zeitoune, Lee Pang, Manas A. Pathak, and Corey Yanofsky for contributions.

Permission is granted to make and distribute verbatim copies of this manual provided this permission notice is preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation.

Copyright ©2007–2009 David Hiebeler

	D.	Hiebeler.	Matlab	/	R	Reference
--	----	-----------	--------	---	---	-----------

2

Contents

1	Online help	3
2	Entering/building/indexing matrices 2.1 Cell arrays and lists	4 6 6
3	Computations 3.1 Basic computations 3.2 Complex numbers 3.3 Matrix/vector computations 3.4 Root-finding 3.5 Function optimization/minimization 3.6 Numerical integration / quadrature 3.7 Curve fitting	7 7 8 13 14 14 15
4	Conditionals, control structure, loops	16
5	Functions, ODEs	19
6	Probability and random values	21
7	Graphics 7.1 Various types of plotting	25 25 32 33
8	Working with files	34
9	Miscellaneous 9.1 Variables	35 35
10) Spatial Modeling	39
In	ndex of MATLAB commands and concepts	40
In	ndex of R commands and concepts	44

1 Online help

No.	Description	Matlab	R
1	Show help for a function (e.g.	help sqrt, or helpwin sqrt to see	help(sqrt) or ?sqrt
	$\mathbf{sqrt})$	it in a separate window	
2	Show help for a built-in key-	help for	help('for') or ?'for'
	word (e.g. for)		
3	General list of many help top-	help	library() to see available libraries,
	ics		or library(help='base') for very
			long list of stuff in base package which
			you can see help for
4	Explore main documentation	doc or helpbrowser (previously it	help.start()
	in browser	was helpdesk, which is now being	
		phased out)	
5	Search documentation for	lookfor binomial	help.search('binomial')
	keyword or partial keyword		
	(e.g. functions which refer to		
	"binomial")		

${\bf 2}\quad {\bf Entering/building/indexing\ matrices}$

No.	Description	Matlab	R
6	Enter a row vector \vec{v} =	v=[1 2 3 4]	v=c(1,2,3,4) or alternatively
	$\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$		v=scan() then enter "1 2 3 4" and
			press Enter twice (the blank line
			terminates input)
	1		- ,
7	Enter a calumn restor 2	[1. 0. 2. 4]	-(1 0 3 4)
'	Enter a column vector $\begin{bmatrix} 2\\3 \end{bmatrix}$	[1; 2; 3; 4]	c(1,2,3,4)
	4		
			(R does not distinguish between row
			and column vectors.)
8	Enter a matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	[1 2 3 ; 4 5 6]	To enter values by row:
	Enter a matrix [4 5 6]		matrix(c(1,2,3,4,5,6), nrow=2,
			byrow=TRUE) To enter values by
			column: matrix(c(1,4,2,5,3,6),
			nrow=2)
9	Access an element of vector \mathbf{v}	v(3)	v[3]
10	Access an element of matrix	A(2,3)	A[2,3]
	A		
11	Access an element of matrix	A(5)	A[5]
	A using a single index: in-		
	dices count down the first col-		
	umn, then down the second		
10	column, etc.	0.7	0.7
12	Build the vector [2 3 4 5 6 7]	2:7	2:7
13	Build the vector [7 6 5 4 3 2] Build the vector [2 5 8 11 14]	7:-1:2 2:3:14	7:2 seq(2,14,3)
15	Build a vector containing	linspace(a,b,n)	
10	n equally-spaced values be-	linspace(a,b,n)	<pre>seq(a,b,length.out=n) or just seq(a,b,len=n)</pre>
	h equally-spaced values between a and b inclusive		seq(a,b,ten-n)
16	Build a vector of length k	zeros(k,1) (for a column vector) or	rep(0,k)
	containing all zeros	zeros(1,k) (for a row vector)	100(0,11)
17	Build a vector of length k	j*ones(k,1) (for a column vector)	rep(j,k)
	containing the value j in all	or j*ones(1,k) (for a row vector)	1 (3)
	positions	, , , , , , , , , , , , , , , , , , , ,	
18	Build an $m \times n$ matrix of zeros	zeros(m,n)	matrix(0,nrow=m,ncol=n) or just
			matrix(0,m,n)
19	Build an $m \times n$ matrix con-	j*ones(m,n)	matrix(j,nrow=m,ncol=n) or just
	taining j in all positions		matrix(j,m,n)
20	$n \times n$ identity matrix I_n	eye(n)	diag(n)
21	Build diagonal matrix A us-	diag(v)	diag(v,nrow=length(v)) (Note: if
	ing elements of vector ${f v}$ as di-		you are sure the length of vector \mathbf{v} is 2
	agonal entries		or more, you can simply say diag(v).)
22	Extract diagonal elements of	v=diag(A)	v=diag(A)
22	matrix A		
23	"Glue" two matrices a1 and	[a1 a2]	cbind(a1,a2)
	a2 (with the same number of		
0.4	rows) side-by-side	[-10]	white 1/c1 = 0\
24	"Stack" two matrices a1 and	[a1; a2]	rbind(a1,a2)
	a2 (with the same number of		
	columns) on top of each other		

No.	Description	Matlab	R
25	Reverse the order of elements	v(end:-1:1)	rev(v)
	in vector \mathbf{v}		
26	Column 2 of matrix A	A(:,2)	A[,2] Note: that gives the result as a
			vector. To make the result a $m \times 1$ ma-
			trix instead, do A[,2,drop=FALSE]
27	Row 7 of matrix \mathbf{A}	A(7,:)	A[7,] Note: that gives the result as a
			vector. To make the result a $1 \times n$ ma-
20	A11 1		trix instead, do A[7,,drop=FALSE]
28	All elements of A as a vector, column-by-column	A(:) (gives a column vector)	c(A)
29	Rows 2–4, columns 6–10 of A	A(2:4,6:10)	A[2:4,6:10]
20	(this is a 3×5 matrix)	11(2.1,0.10)	112.1,0.10
30	A 3×2 matrix consisting of	A([7 7 6], [2 1])	A[c(7,7,6),c(2,1)]
	rows 7, 7, and 6 and columns		
	2 and 1 of A (in that order)		
31	Given a single index ind into		
	an $m \times n$ matrix A , compute	<pre>[r,c] = ind2sub(size(A), ind)</pre>	r = ((ind-1) %% m) + 1
	the row r and column c of		c = floor((ind-1) / m) + 1
	that position (also works if		
32	ind is a vector) Given the row r and column		
32	\mathbf{c} of an element of an $m \times n$		
	matrix A , compute the single	<pre>ind = sub2ind(size(A), r, c)</pre>	ind = (c-1)*m + r
	index ind which can be used		
	to access that element of A		
	(also works if ${\bf r}$ and ${\bf c}$ are vec-		
	tors)		
33	Given equal-sized vectors ${f r}$		
	and \mathbf{c} (each of length k), set	<pre>inds = sub2ind(size(A),r,c);</pre>	inds = cbind(r,c)
	elements in rows (given by r)	A(inds) = 12;	A[inds] = 12
	and columns (given by c) of		
	matrix \mathbf{A} equal to 12. That is, k elements of A will be		
	modified.		
34	Truncate vector \mathbf{v} , keeping	v = v(1:10)	v = v[1:10], or length(v) = 10
	only the first 10 elements	(=0.=0)	also works
35	Reshape matrix A , making it	A = reshape(A,m,n)	$\dim(A) = c(m,n)$
	an $m \times n$ matrix with ele-	_	
	ments taken columnwise from		
	the original A (which must		
0.0	have mn elements)	7	7
36	Extract the lower-triangular	L = tril(A)	L = A; L[upper.tri(L)]=0
37	portion of matrix A Extract the upper-triangular	U = triu(A)	U = A; U[lower.tri(U)]=0
31	portion of matrix A	0 - 0114(4)	O - A, ULIOWEI.LII(U/)-U
38	Enter $n \times n$ Hilbert matrix H	hilb(n)	Hilbert(n), but this is part of the
	where $H_{ij} = 1/(i+j-1)$		Matrix package which you'll need to
	<i>y</i> / (* · <i>y</i> /		install (see item 295 for how to in-
			stall/load packages).
39	Enter an n -dimensional array,	reshape(1:24, 3, 4, 2) or	array(1:24, c(3,4,2)) (Note that
	e.g. a $3 \times 4 \times 2$ array with the	reshape(1:24, [3 4 2])	a matrix is 2-D, i.e. rows and
	values 1 through 24		columns, while an array is more gen-
			erally N -D)

2.1 Cell arrays and lists

No.	Description	Matlab	R
40	Build a vector v of length n , capable of containing different data types in different elements (called a <i>cell array</i> in MATLAB, and a <i>list</i> in R)	$v = cell(1,n)$ In general, $cell(m,n)$ makes an $m \times n$ cell array. Then you can do e.g.: $v\{1\} = 12$ $v\{2\} = 'hi there'$ $v\{3\} = rand(3)$	<pre>v = vector('list',n) Then you can do e.g.: v[[1]] = 12 v[[2]] = 'hi there' v[[3]] = matrix(runif(9),3)</pre>
41	Extract the i^{th} element of a cell/list vector \mathbf{v}	<pre>w = v{i} If you use regular indexing, i.e. w = v(i), then w will be a 1 × 1 cell matrix containing the contents of the ith element of v.</pre>	<pre>w = v[[i]] If you use regular indexing, i.e. w = v[i], then w will be a list of length 1 containing the contents of the ith element of v.</pre>
42	Set the name of the i^{th} element in a list.	(Matlab does not have names associated with elements of cell arrays.)	names(v)[3] = 'myrandmatrix' Use names(v) to see all names, and names(v)=NULL to clear all names.

2.2 Structs and data frames

No.	Description	Matlab	R
43	Create a matrix-like object	avals=2*ones(1,6);	v=c(1,5,3,2,3,7); d=data.frame(
	with different named columns	yvals=6:-1:1; v=[1 5 3 2 3 7];	cbind(a=2, yy=6:1), v)
	(a struct in Matlab, or a	d=struct('a',avals,	
	data frame in R)	'yy', yyvals, 'fac', v);	

Note that I (surprisingly) don't use R for statistics, and therefore have very little experience with data frames (and also very little with MATLAB structs). I will try to add more to this section later on.

3 Computations

3.1 Basic computations

No.	Description	Matlab	R
44	a+b, a-b, ab, a/b	a+b, a-b, a*b, a/b	a+b, a-b, a*b, a/b
45	\sqrt{a}	sqrt(a)	sqrt(a)
46	a^b	a^b	a^b
47	a (note: for complex ar-	abs(a)	abs(a)
	guments, this computes the		
	modulus)		
48	e^a	exp(a)	exp(a)
49	$\ln(a)$	log(a)	log(a)
50	$\log_2(a), \log_{10}(a)$	log2(a), log10(a)	log2(a), log10(a)
51	$\sin(a), \cos(a), \tan(a)$	sin(a), cos(a), tan(a)	sin(a), cos(a), tan(a)
52	$\sin^{-1}(a), \cos^{-1}(a), \tan^{-1}(a)$	asin(a), acos(a), atan(a)	asin(a), acos(a), atan(a)
53	$\sinh(a), \cosh(a), \tanh(a)$	sinh(a), cosh(a), tanh(a)	sinh(a), cosh(a), tanh(a)
54	$\sinh^{-1}(a), \qquad \cosh^{-1}(a),$	asinh(a), acosh(a), atanh(a)	asinh(a), acosh(a), atanh(a)
	$\tanh^{-1}(a)$		
55	n MOD k (modulo arith-	mod(n,k)	n %% k
	metic)		
56	Round to nearest integer	round(x)	round(x) (Note: R uses IEC 60559
			standard, rounding 5 to the even digit
			— so e.g. round(0.5) gives 0, not 1.)
57	Round down to next lowest	floor(x)	floor(x)
	integer		
58	Round up to next largest in-	ceil(x)	ceiling(x)
	teger	(27)	
59	Sign of $x (+1, 0, \text{ or } -1)$	sign(x) (Note: for complex values,	sign(x) (Does not work with com-
		this computes x/abs(x).)	plex values)
60	Error function $\operatorname{erf}(x) =$	erf(x)	2*pnorm(x*sqrt(2))-1
	$(2/\sqrt{\pi})\int_0^x e^{-t^2} dt$		
61	Complementary er-	erfc(x)	2*pnorm(x*sqrt(2),lower=FALSE)
	ror function $cerf(x) =$		
	$(2/\sqrt{\pi})\int_{x}^{\infty} e^{-t^2} dt = 1$ -erf (x)		
62	Inverse error function	erfinv(x)	qnorm((1+x)/2)/sqrt(2)
63	Inverse complementary error	erfcinv(x)	qnorm(x/2,lower=FALSE)/sqrt(2)
	function		
	N-4 41	l (1:+1+:-1 +:1	1 1: f+: \ -111-

Note: the various functions above (logarithm, exponential, trig, abs, and rounding functions) all work with vectors and matrices, applying the function to each element, as well as with scalars.

3.2 Complex numbers

No.	Description	Matlab	R
64	Enter a complex number	1+2i	1+2i
65	Modulus (magnitude)	abs(z)	abs(z) or Mod(z)
66	Argument (angle)	angle(z)	Arg(z)
67	Complex conjugate	conj(z)	Conj(z)
68	Real part of z	real(z)	Re(z)
69	Imaginary part of z	imag(z)	Im(z)

${\bf 3.3}\quad {\bf Matrix/vector\ computations}$

No.	Description	Matlab	R
70	Matrix multiplication AB	A * B	A %*% B
71	Element-by-element multiplication of A and B	A .* B	A * B
72	Transpose of a matrix, A^T	A' (This is actually the complex conjugate (i.e. Hermitian) transpose; use A.' for the non-conjugate transpose if you like; they are equivalent for real matrices.)	t(A) for transpose, or Conj(t(A)) for conjugate (Hermitian) transpose
73	Solve $A\vec{x} = \vec{b}$	A\b Warning: if there is no solution, MATLAB gives you a least-squares "best fit." If there are many solutions, MATLAB just gives you one of them.	solve(A,b) Warning: this only works with square invertible matrices.
74	Reduced echelon form of A	rref(A)	R does not have a function to do this
75	Compute inverse of A	inv(A)	solve(A)
76	Compute AB^{-1}	A/B	A %*% solve(B)
77	Element-by-element division of A and B	A ./ B	A / B
78	Compute $A^{-1}B$	A\B	solve(A,B)
79	Square the matrix A	A^2	A %*% A
80	Raise matrix A to the k^{th} power	A^k	(No easy way to do this in R other than repeated multiplication A %*% A %*% A)
81	Raise each element of A to the k^{th} power	A.^k	A^k
82	Rank of matrix A	rank(A)	qr(A)\$rank
83	Set w to be a vector of eigenvalues of A , and V a matrix containing the corresponding eigenvectors	[V,D]=eig(A) and then w=diag(D) since MATLAB returns the eigenvalues on the diagonal of D	<pre>tmp=eigen(A); w=tmp\$values; V=tmp\$vectors</pre>
84	Permuted LU factorization of a matrix	[L,U,P]=lu(A) then the matrices satisfy $PA = LU$. Note that this works even with non-square matrices	tmp=expand(lu(Matrix(A))); L=tmp\$L; U=tmp\$U; P=tmp\$P then the matrices satisfy $A = PLU$, i.e. $P^{-1}A = LU$. Note that the lu and expand functions are part of the Ma- trix package (see item 295 for how to install/load packages). Also note that this doesn't seem to work correctly with non-square matrices. L , U , and P will be of class Matrix rather than class matrix; to make them the latter, instead do L=as.matrix(tmp\$L), U=as.matrix(tmp\$U), and P=as.matrix(tmp\$P) above.

No.	Description	MATLAB	R
85	Singular-value decomposition: given $m \times n$ matrix A with rank r , find $m \times r$ matrix P with orthonormal columns, diagonal $r \times r$ matrix S , and $r \times n$ matrix Q^T with orthonormal rows so that $PSQ^T = A$	[P,S,Q]=svd(A,'econ')	<pre>tmp=svd(A); U=tmp\$u; V=tmp\$v; S=diag(tmp\$d)</pre>
86	Schur decomposition of square matrix, $A = QTQ^H = QTQ^{-1}$ where Q is unitary (i.e. $Q^HQ = I$) and T is upper triangular; $Q^H = \overline{Q^T}$ is the Hermitian (conjugate) transpose	[Q,T]=schur(A)	tmp=Schur(Matrix(A)); T=tmp@T; Q=tmp@Q Note that Schur is part of the Matrix package (see item 295 for how to install/load packages). T and Q will be of class Matrix rather than class matrix; to make them the latter, instead do T=as.matrix(tmp@T) and Q=as.matrix(tmp@Q) above.
87	Cholesky factorization of a square, symmetric, positive definite matrix $A = R^T R$, where R is upper-triangular	R = chol(A)	R = chol(A) Note that chol is part of the Matrix package (see item 295 for how to install/load packages).
88	QR factorization of matrix A , where Q is orthogonal (satisfying $QQ^T = I$) and R is upper-triangular	[Q,R]=qr(A) satisfying $QR = A$, or [Q,R,E]=qr(A) to do permuted QR factorization satisfying $AE = QR$	z=qr(A); Q=qr.Q(z); R=qr.R(z); E=diag(n)[,z\$pivot] (where n is the number of columns in A) gives permuted QR factorization satisfying AE = QR
89	Vector norms	$\operatorname{norm}(\mathbf{v},1)$ for 1-norm $\ \vec{v}\ _1$, $\operatorname{norm}(\mathbf{v},2)$ for Euclidean norm $\ \vec{v}\ _2$, $\operatorname{norm}(\mathbf{v},\inf)$ for infinity-norm $\ \vec{v}\ _\infty$, and $\operatorname{norm}(\mathbf{v},\mathbf{p})$ for p -norm $\ \vec{v}\ _p = (\sum v_i ^p)^{1/p}$	R does not have a norm function for vectors; only one for matrices. But the following will work: $\operatorname{norm}(\operatorname{matrix}(v),'1')$ for 1-norm $\ \vec{v}\ _1$, $\operatorname{norm}(\operatorname{matrix}(v),'i')$ for infinity-norm $\ \vec{v}\ _{\infty}$, and $\operatorname{sum}(\operatorname{abs}(v)^p)^(1/p)$ for p -norm $\ \vec{v}\ _p = (\sum v_i ^p)^{1/p}$
90	Matrix norms	$\operatorname{norm}(A,1)$ for 1-norm $\ A\ _1$, $\operatorname{norm}(A)$ for 2-norm $\ A\ _2$, $\operatorname{norm}(A,\inf)$ for infinity-norm $\ A\ _{\infty}$, and $\operatorname{norm}(A,\inf)$ for Frobenius norm $\left(\sum_i (A^T A)_{ii}\right)^{1/2}$	norm(A,'1') for 1-norm $ A _1$, max(svd(A)\$d) for 2-norm $ A _2$, norm(A,'i') for infinity-norm $ A _{\infty}$, and norm(A,'f') for Frobenius norm $\left(\sum_i (A^T A)_{ii}\right)^{1/2}$
91	Condition number cond(A) = $ A _1 A^{-1} _1$ of A, using 1-norm	cond(A,1) (Note: MATLAB also has a function rcond(A) which computes reciprocal condition estimator using the 1-norm)	1/rcond(A,'1')
92	Condition number cond(A) = $ A _2 A^{-1} _2$ of A, using 2-norm	cond(A,2)	kappa(A, exact=TRUE) (leave out the "exact=TRUE" for an estimate)
93	Condition number cond(A) = $ A _{\infty} A^{-1} _{\infty}$ of A, using infinity-norm	<pre>cond(A,inf)</pre>	1/rcond(A,'I')

No.	Description	Matlab	R
94	Compute mean of all ele-	mean(v) for vectors, mean(A(:)) for	mean(v) or mean(A)
	ments in vector or matrix	matrices	
95	Compute means of columns	mean(A)	colMeans(A)
	of a matrix		
96	Compute means of rows of a	mean(A,2)	rowMeans(A)
	matrix		2 0 1110 0222 (11)
97	Compute standard deviation	std(v) for vectors, std(A(:)) for	sd(v) for vectors, sd(c(A)) for ma-
".	of all elements in vector or	matrices. This normalizes by $n-1$.	trices. This normalizes by $n-1$.
	matrix	Use $std(v,1)$ to normalize by n .	
98	Compute standard deviations	std(A). This normalizes by $n-1$.	sd(A). This normalizes by $n-1$.
	of columns of a matrix	Use $std(A,1)$ to normalize by n	, .
99	Compute standard deviations	std(A,0,2) to normalize by $n-1$,	apply(A,1,sd). This normalizes by
	of rows of a matrix	std(A,1,2) to normalize by n	n-1.
100	Compute variance of all ele-	<pre>var(v) for vectors, var(A(:)) for</pre>	var(v) for vectors, var(c(A)) for
	ments in vector or matrix	matrices. This normalizes by $n-1$.	matrices. This normalizes by $n-1$.
		Use $var(v,1)$ to normalize by n .	
101	Compute variance of columns	var(A). This normalizes by $n-1$.	apply(A,2,var). This normalizes by
	of a matrix	Use $var(A,1)$ to normalize by n	n-1.
102	Compute variance of rows of	var(A,0,2) to normalize by $n-1$,	apply(A,1,var). This normalizes by
	a matrix	var(A,1,2) to normalize by n	n-1.
103	Compute covariance for two	$cov(v,w)$ computes the 2×2 co-	cov(v,w)
	vectors of observations	variance matrix; the off-diagonal ele-	
		ments give the desired covariance	
104	Compute covariance matrix,	cov(A)	var(A) or cov(A)
	giving covariances between		
	columns of matrix A		
105	Given matrices A and B ,	I don't know of a direct way to	cov(A,B)
	build covariance matrix C	do this in Matlab. But one way is	
	where c_{ij} is the covariance be-	<pre>[Y,X]=meshgrid(std(B),std(A));</pre>	
	tween column i of A and col-	X.*Y.*corr(A,B)	
100	$\operatorname{umn} j \text{ of } B$	/ NT	
106	Compute Pearson's linear	corr(v,w) Note: v and w must	cor(v,w)
	correlation coefficient be-	be column vectors. To make it	
	tween elements of vectors v	work regardless of whether they	
	and \mathbf{w}	are row or column vectors, do corr(v(:),w(:))	
107	Compute Kendall's tau corre-	corr(v(:),w(:)) corr(v,w,'type','kendall')	cor(v,w,method='kendall')
101	lation statistic for vectors v	corr(v,w, type , kendarr /	Cor(v,w,method- kendarr)
	and \mathbf{w}		
108	Compute Spearman's rho	<pre>corr(v,w,'type','spearman')</pre>	<pre>cor(v,w,method='spearman')</pre>
100	correlation statistic for	ttlitt, , , , tjpo , bpourman /	or (), m, moonou broatman
	vectors \mathbf{v} and \mathbf{w}		
109	Compute pairwise Pearson's	corr(A) The 'type' argument may	cor(A) The method argument may
-00	correlation coefficient be-	also be used as in the previous two	also be used as in the previous two
	tween columns of matrix	items	items
	A and a serial s		
110	Compute matrix C of pair-	corr(A,B) The 'type' argument	cor(A,B) The method argument
	wise Pearson's correlation co-	may also be used as just above	may also be used as just above
	efficients between each pair of	v	, v
	columns of matrices A and B ,		
	i.e. so c_{ij} is the correlation		
	between column i of A and		
	column j of B		

No.	Description	MATLAB	R
111	Compute sum of all elements	<pre>sum(v) for vectors, sum(A(:)) for</pre>	sum(v) or sum(A)
	in vector or matrix	matrices	
112	Compute sums of columns of	sum(A)	colSums(A)
	matrix		
113	Compute sums of rows of ma-	sum(A,2)	rowSums(A)
	trix		
114	Compute matrix exponential	expm(A)	<pre>expm(Matrix(A)), but this is part of</pre>
	$e^A = \sum_{k=0}^{\infty} A^k / k!$		the Matrix package which you'll need
			to install (see item 295 for how to in-
115			stall/load packages).
115	Compute cumulative sum of values in vector	cumsum(v)	cumsum(v)
110		(A)	
116	Compute cumulative sums of columns of matrix	cumsum(A)	apply(A,2,cumsum)
117	Compute cumulative sums of	cumsum(A,2)	t(apply(A,1,cumsum))
111	rows of matrix	Cuiisuii(A,2)	c(appry(H,1,Cumsum))
118	Compute cumulative sum	cumsum(A(:))	cumsum(A)
110	of all elements of matrix	Cumsum(K(.))	Cumsum(K)
	(column-by-column)		
119	Cumulative product of ele-	cumprod(v) (Can also be used in the	cumprod(v) (Can also be used in the
	ments in vector \mathbf{v}	various ways cumsum can)	various ways cumsum can)
120	Cumulative minimum or	I don't know of an easy way to do	cummin(v) or cummax(v)
	maximum of elements in	this in Matlab	
	vector \mathbf{v}		
121	Compute differences between	diff(v)	diff(v)
	consecutive elements of vec-		
	tor \mathbf{v} . Result is a vector		
	\mathbf{w} 1 element shorter than \mathbf{v} ,		
	where element i of \mathbf{w} is ele-		
	ment $i+1$ of \mathbf{v} minus element		
100	$i \text{ of } \mathbf{v}$	F0 41 (/	
122	Make a vector y the same size	$z = [3 \ 4]; y = z((x > 5)+1)$	y = ifelse(x > 5, 4, 3)
	as vector x , which equals 4		
	everywhere that x is greater		
	than 5, and equals 3 everywhere else (done via a vector-		
	ized computation).		
123	Compute minimum of values	min(v)	min(v)
120	in vector \mathbf{v}	min(v)	min(v)
	111 100001 1		

No.	Description	Matlab	R
124	Compute minimum of all val-	min(A(:))	min(A)
	ues in matrix A		
125	Compute minimum value of	min(A) (returns a row vector)	apply(A,2,min) (returns a vector)
	each column of matrix A		
126	Compute minimum value of	min(A, [], 2) (returns a column	apply(A,1,min) (returns a vector)
	each row of matrix A	vector)	
127	Given matrices \mathbf{A} and \mathbf{B} ,	min(A,B)	pmin(A,B)
	compute a matrix where each		
	element is the minimum of		
	the corresponding elements of		
	\mathbf{A} and \mathbf{B}		
128	Given matrix A and scalar	min(A,c)	pmin(A,c)
	c , compute a matrix where		
	each element is the minimum		
	of \mathbf{c} and the corresponding el-		
	ement of A		
129	Find minimum among all val-	min([A(:) ; B(:)])	min(A,B)
	ues in matrices $\bf A$ and $\bf B$		
130	Find index of the first time	[y,ind] = min(v)	<pre>ind = which.min(v)</pre>
	min(v) appears in v , and		
	store that index in ind		

Notes:

- Matlab and R both have a max function (and R has pmax and which.max as well) which behaves in the same ways as min but to compute maxima rather than minima.
- Functions like exp, sin, sqrt etc. will operate on arrays in both Matlab and R, doing the computations for each element of the matrix.

No.	Description	Matlab	R
131	Number of rows in A	size(A,1)	nrow(A)
132	Number of columns in A	size(A,2)	ncol(A)
133	Dimensions of A , listed in a	size(A)	dim(A)
	vector		
134	Number of elements in vector	length(v)	length(v)
	\mathbf{v}		
135	Total number of elements in	numel(A)	length(A)
	matrix A		
136	Max. dimension of A	length(A)	max(dim(A))
137	Sort values in vector v	sort(v)	sort(v)
138	Sort values in v , putting	[s,idx]=sort(v)	<pre>tmp=sort(v,index.return=TRUE);</pre>
	sorted values in \mathbf{s} , and indices		s=tmp\$x; idx=tmp\$ix
	in idx , in the sense that $s[k]$		
	= x[idx[k]]		
139	To count how many values in	sum((x > 4) & (x <= 7))	sum((x > 4) & (x <= 7))
	the vector \mathbf{x} are between 4		
	and 7 (inclusive on the upper		
	end)		
140	Given vector \mathbf{v} , return list of	find(v > 5)	which(v > 5)
	indices of elements of \mathbf{v} which		
	are greater than 5		

No.	Description	Matlab	R
141	Given matrix A, return list	find(A > 5)	which(A > 5)
	of indices of elements of A		
	which are greater than 5, us-		
1.10	ing single-indexing		
142	Given matrix A, generate	[r,c] = find(A > 5)	w = which(A > 5, arr.ind=TRUE);
	vectors r and c giving rows and columns of elements of A		r=w[,1]; c=w[,2]
	which are greater than 5		
143	Given vector \mathbf{x} (of presum-	<pre>v = unique(x); c = hist(x,v);</pre>	<pre>w=table(x); c=as.numeric(w);</pre>
110	ably discrete values), build a		v=as.numeric(names(w))
	vector v listing unique val-		
	ues in \mathbf{x} , and corresponding		
	vector \mathbf{c} indicating how many		
	times those values appear in		
	x		
144	Given vector \mathbf{x} (of presum-	[c,m] = hist(x,k)	w=hist(x,seq(min(x),max(x),
	ably continuous values), di-		<pre>length.out=k+1), plot=FALSE); m=w\$mids; c=w\$counts</pre>
	vide the range of values into k equally-sized bins, and build		m=wpmids; C=wpcounts
	a vector m containing the		
	midpoints of the bins and a		
	corresponding vector c con-		
	taining the counts of values in		
	the bins		
145	Convolution / polynomial	conv(x,y)	<pre>convolve(x,rev(y),type='open')</pre>
	multiplication (given vectors		Note: the accuracy of this is not
	x and y containing polyno-		as good as Matlab; e.g. doing
	mial coefficients, their convo-		v=c(1,-1); for (i in 2:20)
	lution is a vector containing coefficients of the product of		<pre>v=convolve(v,c(-i,1), type='open') to generate the</pre>
	the two polynomials)		20 th -degree Wilkinson polynomial
	one two polynomiais;		$W(x) = \prod_{i=1}^{20} (x-i)$ gives a coefficient
			of ≈ -780.19 for x^{19} , rather than the
			correct value -210.

3.4 Root-finding

No.	Description	Matlab	R
146	Find roots of polynomial	roots(v)	polyroot(rev(v)) (This function
	whose coefficients are stored		really wants the vector to have the
	in vector ${f v}$ (coefficients in ${f v}$		constant coefficient first in v; rev re-
	are highest-order first)		verses their order to achieve this.)
147	Find zero (root) of a function	Define function $f(x)$, then do	Define function $f(x)$, then do
	f(x) of one variable	fzero(f,x0) to search for a root	uniroot(f, c(a,b)) to find a root
		near $x0$, or fzero(f,[a b]) to find	between a and b , assuming the sign
		a root between a and b , assuming	of $f(x)$ differs at $x = a$ and $x = b$.
		the sign of $f(x)$ differs at $x = a$	Default forward error tolerance (i.e.
		and $x = b$. Default forward error	error in x) is fourth root of machine
		tolerance (i.e. error in x) is machine	epsilon, $(\epsilon_{\rm mach})^{0.25}$. To specify e.g.
		epsilon ϵ_{mach} .	a tolerance of 2^{-52} , do uniroot(f,
			c(a,b), tol=2^-52).

3.5 Function optimization/minimization

No.	Description	Matlab	R
148	Find value m which mini-	Define function $f(x)$, then do	Define function $f(x)$, then do
	mizes a function $f(x)$ of one variable within the interval from a to b	m = fminbnd(f, a, b)	<pre>m = optimize(f,c(a,b))\$minimum</pre>
149	Find value m which minimizes a function $f(x, p_1, p_2)$ with given extra parameters (but minimization is only occurring over the first argument), in the interval from a to b .	Define function $f(x,p1,p2)$, then use an "anonymous function": % first define values for p1 % and p2, and then do: m=fminbnd(@(x) f(x,p1,p2),a,b)	Define function f(x,p1,p2), then: # first define values for p1 # and p2, and then do: m = optimize(f, c(a,b), p1=p1, p2=p2)\$minimum
150	Find values of x, y, z which minimize function $f(x, y, z)$, using a starting guess of $x = 1$, $y = 2.2$, and $z = 3.4$.	First write function $f(v)$ which accepts a vector argument v containing values of x , y , and z , and returns the scalar value $f(x, y, z)$, then do: fminsearch(Of,[1 2.2 3.4])	First write function $\mathbf{f(v)}$ which accepts a vector argument \mathbf{v} containing values of x , y , and z , and returns the scalar value $f(x,y,z)$, then do: optim(c(1,2.2,3.4),f)\$par
151	Find values of x, y, z which minimize function $f(x, y, z, p_1, p_2)$, using a starting guess of $x = 1$, $y = 2.2$, and $z = 3.4$, where the function takes some extra parameters (useful e.g. for doing things like nonlinear least-squares optimization where you pass in some data vectors as extra parameters).	First write function $f(v,p1,p2)$ which accepts a vector argument \mathbf{v} containing values of x , y , and z , along with the extra parameters, and returns the scalar value $f(x,y,z,p_1,p_2)$, then do: fminsearch(@f,[1 2.2 3.4], [], p1, p2) Or use an anonymous function: fminsearch(@(x) f(x,p1,p2), [1 2.2 3.4])	First write function $f(\mathbf{v},\mathbf{p1},\mathbf{p2})$ which accepts a vector argument \mathbf{v} containing values of $x, y,$ and $z,$ along with the extra parameters, and returns the scalar value $f(x,y,z,p_1,p_2),$ then do: optim(c(1,2.2,3.4), f, p1=p1, p2=p2)\$par

3.6 Numerical integration / quadrature

No.	Description	Matlab	R
152	Numerically integrate func-	quad(f,a,b) uses adaptive Simp-	integrate(f,a,b) uses adaptive
	tion $f(x)$ over interval from	son's quadrature, with a default	quadrature with default absolute
	$a ext{ to } b$	absolute tolerance of 10^{-6} . To	and relative error tolerances being
		specify absolute tolerance, use	
		quad(f,a,b,tol)	$(\epsilon_{\rm mach})^{0.25} \approx 1.22 \times 10^{-4}$. Tol-
			erances can be specified by using
			<pre>integrate(f,a,b, rel.tol=tol1,</pre>
			abs.tol=tol2). Note that the func-
			tion f must be written to work even
			when given a vector of x values as its
			argument.

3.7 Curve fitting

No.	Description	Matlab	R
153	Fit the line $y = c_1 x + c_0$ to		
	data in vectors \mathbf{x} and \mathbf{y} .	p = polyfit(x,y,1)	p = coef(lm(y ~ x))
		The return vector \mathbf{p} has the coefficients in descending order, i.e. $\mathbf{p}(1)$ is c_1 , and $\mathbf{p}(2)$ is c_0 .	The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is c_0 , and $\mathbf{p}[2]$ is c_1 .
154	Fit the quadratic polynomial $y = c_2 x^2 + c_1 x + c_0$ to data in vectors \mathbf{x} and \mathbf{y} .	p = polyfit(x,y,2)	p = coef(lm(y ~ x + I(x^2)))
155	The the last of th	The return vector \mathbf{p} has the coefficients in descending order, i.e. $\mathbf{p(1)}$ is c_2 , $\mathbf{p(2)}$ is c_1 , and $\mathbf{p(3)}$ is c_0 .	The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p[1]}$ is c_0 , $\mathbf{p[2]}$ is c_1 , and $\mathbf{p[3]}$ is c_2 .
155	Fit n^{th} degree polynomial $y = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0$ to data in vectors \mathbf{x}	<pre>p = polyfit(x,y,n)</pre>	There isn't a simple function built into the standard R distribution to do this, but see the polyreg function in
	and \mathbf{y} .	The return vector \mathbf{p} has the coefficients in descending order, $\mathbf{p}(1)$ is c^n , $\mathbf{p}(2)$ is c^{n-1} , etc.	the mda package (see item 295 for how to install/load packages).
156	Fit the quadratic polynomial with zero intercept, $y = c_2x^2 + c_1x$ to data in vectors \mathbf{x} and \mathbf{y} .	(I don't know a simple way do this in Matlab, other than to write a function which computes the sum of squared residuals and use fmin -	p=coef(lm(y ~ -1 + x + I(x^2))) The return vector p has the coeffi-
		search on that function. There is likely an easy way to do it in the Statistics Toolbox.)	cients in ascending order, i.e. $\mathbf{p}[1]$ is c_1 , and $\mathbf{p}[2]$ is c_2 .
157	Fit natural cubic spline $(S''(x)) = 0$ at both endpoints to points (x_i, y_i) whose coordinates are in vectors \mathbf{x} and \mathbf{y} ; evaluate at	<pre>pp=csape(x,y,'variational'); yy=ppval(pp,xx) but note that csape is in MATLAB's Spline Toolbox</pre>	<pre>tmp=spline(x,y,method='natural', xout=xx); yy=tmp\$y</pre>
	points whose x coordinates are in vector $\mathbf{x}\mathbf{x}$, storing corresponding y 's in $\mathbf{y}\mathbf{y}$		
158	Fit cubic spline using Forsythe, Malcolm and Moler method (third deriva- tives at endpoints match	I'm not aware of a function to do this in Matlab	<pre>tmp=spline(x,y,xout=xx); yy=tmp\$y</pre>
	third derivatives of exact cubics through the four points at each end) to points (x_i, y_i)		
	whose coordinates are in vectors \mathbf{x} and \mathbf{y} ; evaluate at points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing corresponding y 's in $\mathbf{y}\mathbf{y}$		

No.	Description	Matlab	R
159	Fit cubic spline such that	<pre>pp=csape(x,y); yy=ppval(pp,xx)</pre>	I'm not aware of a function to do this
	first derivatives at endpoints	but csape is in Matlab's Spline	in R
	match first derivatives of ex-	Toolbox	
	act cubics through the four		
	points at each end) to points		
	(x_i, y_i) whose coordinates are		
	in vectors \mathbf{x} and \mathbf{y} ; evaluate		
	at points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in yy		
160	Fit cubic spline with periodic	<pre>pp=csape(x,y,'periodic');</pre>	tmp=spline(x,y,method=
	boundaries, i.e. so that first	yy=ppval(pp,xx) but csape is in	'periodic', xout=xx); yy=tmp\$y
	and second derivatives match	Matlab's Spline Toolbox	
	at the left and right ends		
	(the first and last y values		
	of the provided data should		
	also agree), to points (x_i, y_i)		
	whose coordinates are in vec-		
	tors \mathbf{x} and \mathbf{y} ; evaluate at		
	points whose x coordinates		
	are in vector xx , storing cor-		
	responding y 's in yy		
161	Fit cubic spline with "not-	<pre>yy=spline(x,y,xx)</pre>	I'm not aware of a function to do this
	a-knot" conditions (the first		in R
	two piecewise cubics coincide,		
	as do the last two), to points		
	(x_i, y_i) whose coordinates are		
	in vectors \mathbf{x} and \mathbf{y} ; evaluate		
	at points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in yy		

4 Conditionals, control structure, loops

No.	Description	Matlab	R
162	"for" loops over values in a vector v (the vector v is often constructed via a:b)	for i=v command1	If only one command inside the loop: for (i in v) command
		command2 end	or for (i in v) command If multiple commands inside the loop: for (i in v) { command1
			command2 }

No.	Description	Matlab	R
163	"if" statements with no else clause	if cond command1 command2 end	If only one command inside the clause: if (cond) command or if (cond) command If multiple commands: if (cond) { command1 command2 }
164	"if/else" statement	if cond command1 command2 else command3 command4 end Note: MATLAB also has an "elseif" statement, e.g.: if cond1 command1 elseif cond2 command2 elseif cond3 command3 else command4 end	If one command in clauses: if (cond) command1 else command2 or if (cond) cmd1 else cmd2 If multiple commands: if (cond) { command1 command2 } else { command3 command4 } Warning: the "else" must be on the same line as command1 or the "}" (when typed interactively at the command prompt), otherwise R thinks the "if" statement was finished and gives an error. R does not have an "elseif" statement.

Logical comparisons which can be used on scalars in "if" statements, or which operate element-by-element on vectors/matrices:

Matlab	R	Description
x < a	x < a	True if x is less than a
x > a	x > a	True if x is greater than a
x <= a	x <= a	True if x is less than or equal to a
x >= a	x >= a	True if x is greater than or equal to a
x == a	x == a	True if x is equal to a
x ~= a	x != a	True if x is not equal to a

Scalar logical operators:

Description	Matlab	R
a AND b	a && b	a && b
a OR b	a b	a b
a XOR b	xor(a,b)	xor(a,b)
NOT a	~a	!a

The && and | | operators are short-circuiting, i.e. && stops as soon as any of its terms are FALSE, and | | stops as soon as any of its terms are TRUE.

Matrix logical operators (they operate element-by-element):

Description	Matlab	R
a AND b	a & b	a & b
a OR b	a b	a b
a XOR b	xor(a,b)	xor(a,b)
NOT a	~a	!a

No.	Description	Matlab	R
165	To test whether a scalar value	if ((x > 4) && (x <= 7))	if ((x > 4) && (x <= 7))
	\mathbf{x} is between 4 and 7 (inclu-		
	sive on the upper end)		
166	To count how many values in	sum((x > 4) & (x <= 7))	sum((x > 4) & (x <= 7))
	the vector \mathbf{x} are between 4		
	and 7 (inclusive on the upper		
	end)		
167	Test whether all values in	all(v)	all(v)
	a logical/boolean vector are		
	TRUE		
168	Test whether any values in	any(v)	any(v)
	a logical/boolean vector are		
	TRUE		

No.	Description	Matlab	R
169	"while" statements to do iteration (useful when you don't know ahead of time how many iterations you'll need). E.g. to add uniform random numbers between 0 and 1 (and their squares) until their sum is greater than 20:	<pre>mysum = 0; mysumsqr = 0; while (mysum < 20) r = rand; mysum = mysum + r; mysumsqr = mysumsqr + r^2; end</pre>	<pre>mysum = 0 mysumsqr = 0 while (mysum < 20) { r = runif(1) mysum = mysum + r mysumsqr = mysumsqr + r^2 } (As with "if" statements and "for" loops, the curly brackets are not necessary if there's only one statement inside the "while" loop.)</pre>

No.	Description	Matlab	R
170	"Switch" statements for integers	<pre>switch (x) case 10 disp('ten') case {12,13} disp('dozen (bakers?)') otherwise disp('unrecognized') end</pre>	R doesn't have a switch statement capable of doing this. It has a function which is fairly limited for integers, but can which do string matching. See ?switch for more. But a basic example of what it can do for integers is below, showing that you can use it to return different expressions based on whether a value is 1, 2, mystr = switch(x, 'one', 'two', 'three') print(mystr) Note that switch returns NULL if x is larger than 3 in the above case. Also, continuous values of x will be truncated to integers.

5 Functions, ODEs

No.	Description	Matlab	R
171	$\begin{array}{ccc} \text{Implement} & \text{a} & \text{function} \\ \textbf{add(x,y)} & & & \end{array}$	Put the following in add.m: function retval=add(x,y) retval = x+y; Then you can do e.g. add(2,3)	<pre>Enter the following, or put it in a file and source that file: add = function(x,y) { return(x+y) } Then you can do e.g. add(2,3). Note, the curly brackets aren't needed if your function only has one line.</pre>
172	Implement a function $f(x,y,z)$ which returns multiple values, and store those return values in variables ${\bf u}$ and ${\bf v}$	Write function as follows: function [a,b] = f(x,y,z) a = x*y+z; b=2*sin(x-z); Then call the function by doing: [u,v] = f(2,8,12)	Write function as follows: f = function(x,y,z) { a = x*y+z; b=2*sin(x-z) return(list(a,b)) } Then call the function by doing: tmp=f(2,8,12); u=tmp[[1]]; v=tmp[[2]]. The above is most general, and will work even when u and v are different types of data. If they are both scalars, the function could simply return them packed in a vector, i.e. return(c(a,b)). If they are vectors of the same size, the function could return them packed together into the columns of a matrix, i.e. return(cbind(a,b)).

No.	Description	Matlab	R
173	Numerically solve ODE	First implement function	First implement function
	dx/dt = 5x from $t = 3$ to t = 12 with initial condition x(3) = 7	<pre>function retval=f(t,x) retval = 5*x;</pre>	<pre>f = function(t,x,parms) { return(list(5*x))</pre>
174	Numerically solve system of	Then do ode45(@f,[3,12],7) to plot solution, or [t,x]=ode45(@f,[3,12],7) to get back vector t containing time values and vector x containing corresponding function values. If you want function values at specific times, e.g. 3,3.1,3.2,,11.9,12, you can do [t,x]=ode45(@f,3:0.1:12,7). Note: in older versions of MATLAB, use 'f' instead of @f. First implement function	Then do y=lsoda(7, seq(3,12, 0.1), f,NA) to obtain solution values at times 3,3.1,3.2,,11.9,12. The first column of y, namely y[,1] contains the time values; the second column y[,2] contains the corresponding function values. Note: lsoda is part of the deSolve package (see item 295 for how to install/load packages). First implement function
174	ODEs $dw/dt = 5w$, $dz/dt = 3w + 7z$ from $t = 3$ to $t = 12$ with initial conditions $w(3) = 7$, $z(3) = 8.2$	function retval=myfunc(t,x) w = x(1); z = x(2); retval = zeros(2,1); retval(1) = 5*w; retval(2) = 3*w + 7*z;	<pre>myfunc = function(t,x,parms) { w = x[1]; z = x[2]; return(list(c(5*w, 3*w+7*z))) } Then do y=lsoda(c(7,8.2),</pre>
		Then do ode45(@myfunc,[3,12],[7; 8.2]) to plot solution, or $[t,x]=ode45(@myfunc,[3,12],[7; 8.2])$ to get back vector t containing time values and matrix x , whose first column containing corresponding $w(t)$ values and second column contains $z(t)$ values. If you want function values at specific times, e.g. $3,3.1,3.2,\ldots,11.9,12$, you can do $[t,x]=ode45(@myfunc,3:0.1:12,[7; 8.2])$. Note: in older versions of MATLAB, use 'f' instead of @f.	seq(3,12, 0.1), myfunc,NA) to obtain solution values at times $3,3.1,3.2,\ldots,11.9,12$. The first column of \mathbf{y} , namely $\mathbf{y}[,1]$ contains the time values; the second column $\mathbf{y}[,2]$ contains the corresponding values of $w(t)$; and the third column contains $z(t)$. Note: lsoda is part of the deSolve package (see item 295 for how to install/load packages).
175	Pass parameters such as $r = 1.3$ and $K = 50$ to an ODE function from the command line, solving $dx/dt = rx(1 - x/K)$ from $t = 0$ to $t = 20$ with initial condition $x(0) = 2.5$.	First implement function function retval=func2(t,x,r,K) retval = r*x*(1-x/K) Then do ode45(@func2,[0 20], 2.5, [], 1.3, 50). The empty matrix is necessary between the initial condition and the beginning of your extra parameters.	<pre>First implement function func2=function(t,x,parms) { r=parms[1]; K=parms[2] return(list(r*x*(1-x/K))) } Then do y=lsoda(2.5,seq(0,20,0.1)</pre>
			func2,c(1.3,50)) Note: lsoda is part of the deSolve package (see item 295 for how to install/load packages).

6 Probability and random values

No.	Description	Matlab	R
176	Generate a continuous uniform random value between 0 and 1	rand	runif(1)
177	Generate vector of n uniform random vals between 0 and 1	rand(n,1) or rand(1,n)	runif(n)
178	Generate $m \times n$ matrix of uniform random values between 0 and 1	rand(m,n)	<pre>matrix(runif(m*n),m,n) or just matrix(runif(m*n),m)</pre>
179	Generate $m \times n$ matrix of continuous uniform random values between a and b	a+rand(m,n)*(b-a) or if you have the Statistics toolbox then unifrnd(a,b,m,n)	<pre>matrix(runif(m*n,a,b),m)</pre>
180	Generate a random integer between 1 and k	floor(k*rand) + 1	floor(k*runif(1)) + 1 Note: sample(k)[1] would also work, but I believe in general will be less efficient, because that actually generates many random numbers and then just uses one of them.
181	Generate $m \times n$ matrix of discrete uniform random integers between 1 and k	floor(k*rand(m,n))+1 or if you have the Statistics toolbox then unidrnd(k,m,n)	<pre>floor(k*matrix(runif(m*n),m))+1</pre>
182	Generate $m \times n$ matrix where each entry is 1 with probability p , otherwise is 0	<pre>(rand(m,n)<p)*1 (true="" 1="" also="" back="" by="" could="" do="" double(rand(m,n)<p)<="" false)="" into="" logical="" multiplying="" note:="" numeric="" pre="" re-="" sult="" the="" turns="" values.="" you=""></p)*1></pre>	(matrix(runif(m,n),m) <p)*1 (Note: multiplying by 1 turns the logical (true/false) result back into numeric values; using as.numeric() to do it would lose the shape of the matrix.)</p)*1
183	Generate $m \times n$ matrix where each entry is a with probability p , otherwise is b	b + (a-b)*(rand(m,n) <p)< td=""><td>b + (a-b)*(matrix(runif(m,n),m)<p)< td=""></p)<></td></p)<>	b + (a-b)*(matrix(runif(m,n),m) <p)< td=""></p)<>
184	Generate a random integer between a and b inclusive	floor((b-a+1)*rand)+a or if you have the Statistics toolbox then unidrnd(b-a+1)+a-1	floor((b-a+1)*runif(1))+a
185	Flip a coin which comes up heads with probability p , and perform some action if it does come up heads	<pre>if (rand < p) some commands end</pre>	<pre>if (runif(1) < p) { some commands }</pre>
186	Generate a random permutation of the integers $1, 2, \ldots, n$	randperm(n)	sample(n)
187	Generate a random selection of k unique integers between 1 and n (i.e. sampling without replacement)	<pre>[s,idx]=sort(rand(n,1)); ri=idx(1:k) or another way is ri=randperm(n); ri=ri(1:k). Or if you have the Statistics Toolbox, then randsample(n,k)</pre>	ri=sample(n,k)

No.	Description	Matlab	R
188	Choose k values (with re-	L=length(v);	w=sample(v,k,replace=TRUE)
	placement) from the vector \mathbf{v} ,	w=v(floor(L*rand(k,1))+1) Or,	
	storing result in \mathbf{w}	if you have the Statistics Toolbox,	
		w=randsample(v,k,replace=true)	
189	Choose k values (without re-	L=length(v); ri=randperm(L);	w=sample(v,k,replace=FALSE)
	placement) from the vector \mathbf{v} ,	ri=ri(1:k); w=v(ri) Or, if	
	storing result in \mathbf{w}	you have the Statistics Toolbox,	
		w=randsample(v,k,replace=false)	
190	Set the random-number gen-	rand('state', 12)	set.seed(12)
	erator back to a known state		
	(useful to do at the beginning		
	of a stochastic simulation		
	when debugging, so you'll get		
	the same sequence of random		
	numbers each time)		

Note that the "*rnd," "*pdf," and "*cdf" functions described below are all part of the MATLAB Statistics Toolbox, and not part of the core MATLAB distribution.

No.	Description	Matlab	R
191	Generate a random value	binornd(n,p)	rbinom(1,n,p)
	from the Binomial (n, p) dis-		
	tribution		
192	Generate a random value	poissrnd(lambda)	rpois(1,lambda)
	from the Poisson distribution		
	with parameter λ		
193	Generate a random value	exprnd(mu) or -mu*log(rand) will	rexp(1, 1/mu)
	from the Exponential distri-	work even without the Statistics	
	bution with mean μ	Toolbox.	
194	Generate a random value	unidrnd(k) or floor(rand*k)+1	sample(k,1)
	from the discrete uniform dis-	will work even without the Statistics	
	tribution on integers $1 \dots k$	Toolbox.	
195	Generate n iid random values	unidrnd(k,n,1) or	sample(k,n,replace=TRUE)
	from the discrete uniform dis-	floor(rand(n,1)*k)+1 will work	
	tribution on integers $1 \dots k$	even without the Statistics Toolbox.	
196	Generate a random value	unifrnd(a,b) or (b-a)*rand + a	runif(1,a,b)
	from the continuous uniform	will work even without the Statistics	
	distribution on the interval	Toolbox.	
	(a,b)		
197	Generate a random value	normrnd(mu,sigma) or	rnorm(1,mu,sigma)
	from the normal distribution	mu + sigma*randn will work	
	with mean mu and standard	even without the Statistics Toolbox.	
	deviation σ		

Notes:

- The Matlab "*rnd" functions above can all take additional \mathbf{r} , \mathbf{c} arguments to build an $r \times c$ matrix of iid random values. E.g. $\mathtt{poissrnd}(3.5,4,7)$ for a 4×7 matrix of iid values from the Poisson distribution with mean $\lambda = 3.5$. The $\mathtt{unidrnd}(n,k,1)$ command above is an example of this, to generate a $k \times 1$ column vector.
- The first parameter of the R "r*" functions above specifies how many values are desired. E.g. to generate 28 iid random values from a Poisson distribution with mean 3.5, use rpois(28,3.5). To get a 4 × 7 matrix of such values, use matrix(rpois(28,3.5),4).

No.	Description	Matlab	R
198	Compute probability that	binopdf(x,n,p) or	dbinom(x,n,p)
	a random variable from the	$nchoosek(n,x)*p^x*(1-p)^(n-x)$	
	Binomial (n, p) distribution	will work even without the Statistics	
	has value \mathbf{x} (i.e. the density,	Toolbox, as long as \mathbf{n} and \mathbf{x} are	
	or pdf).	non-negative integers and $0 \leq \mathbf{p}$	
		≤ 1 .	
199	Compute probability that a	poisspdf(x,lambda) or	<pre>dpois(x,lambda)</pre>
	random variable from the	exp(-lambda)*lambda^x /	
	Poisson(λ) distribution has	factorial(x) will work even	
	value \mathbf{x} .	without the Statistics Toolbox, as	
		long as x is a non-negative integer	
		and $lambda \ge 0$.	
200	Compute probability density	exppdf(x,mu) or	dexp(x,1/mu)
	function at x for a random	(x>=0)*exp(-x/mu)/mu will work	
	variable from the exponential	even without the Statistics Toolbox,	
	distribution with mean μ .	as long as mu is positive.	
201	Compute probability density	normpdf(x,mu,sigma) or	<pre>dnorm(x,mu,sigma)</pre>
	function at x for a random	exp(-(x-mu)^2/(2*sigma^2))/	
	variable from the Normal dis-	(sqrt(2*pi)*sigma) will work even	
	tribution with mean μ and	without the Statistics Toolbox.	
200	standard deviation σ .		
202	Compute probability density	unifpdf(x,a,b) or	<pre>dunif(x,a,b)</pre>
	function at x for a random	((x>=a)&&(x<=b))/(b-a) will	
	variable from the continuous	work even without the Statistics	
	uniform distribution on inter-	Toolbox.	
000	val (a,b).	. 1 16/) // 67 /)	(/ 1/)
203	Compute probability that a	unidpdf(x,n) or ((x==floor(x))	((x==round(x)) && (x >= 1) &&
	random variable from the dis-	&& (x>=1)&&(x<=n))/n will work	$(x \le n)/n$
	crete uniform distribution on	even without the Statistics Toolbox,	
1	integers $1 \dots n$ has value x .	as long as n is a positive integer.	

integers $1 \dots n$ has value \mathbf{x} . as long as \mathbf{n} is a positive integer.

Note: one or more of the parameters in the above "*pdf" (MATLAB) or "d*" (R) functions can be vectors, but they must be the same size. Scalars are promoted to arrays of the appropriate size.

The corresponding CDF functions are below:

	The corresponding CDF functions are below:			
No.	Description	Matlab	R	
204	Compute probability that a random variable from the Binomial (n, p) distribution is less than or equal to \mathbf{x} (i.e. the cumulative distribution function, or cdf).	binocdf(x,n,p). Without the Statistics Toolbox, as long as n is a non-negative integer, this will work: r = 0:floor(x); sum(factorial(n)./(factorial(r).*factorial(n-r)).*p.^r.*(1-p).^(n-r)). (Unfortunately, MATLAB 's nchoosek function won't take a vector argu-	pbinom(x,n,p)	
205	Compute probability that a random variable from the Poisson(λ) distribution is less than or equal to \mathbf{x} .	ment for k.) poisscdf(x,lambda). Without the Statistics Toolbox, as long as lambda ≥ 0 , this will work: r = 0:floor(x); sum(exp(-lambda)*lambda.^r/factorial(r))	ppois(x,lambda)	
206	Compute cumulative distribution function at \mathbf{x} for a random variable from the exponential distribution with mean μ .	expcdf(x,mu) or (x>=0)*(1-exp(-x/mu)) will work even without the Statistics Toolbox, as long as mu is positive.	pexp(x,1/mu)	
207	Compute cumulative distribution function at \mathbf{x} for a random variable from the Normal distribution with mean μ and standard deviation σ .	normcdf(x,mu,sigma) or 1/2 - erf(-(x-mu)/(sigma*sqrt(2)))/2 will work even without the Statistics Toolbox, as long as sigma is positive.	pnorm(x,mu,sigma)	
208	Compute cumulative distribution function at \mathbf{x} for a random variable from the continuous uniform distribution on interval (a, b) .	unifcdf(x,a,b) or $(x>a)*(min(x,b)-a)/(b-a)$ will work even without the Statistics Toolbox, as long as $b>a$.	<pre>punif(x,a,b)</pre>	
209	Compute probability that a random variable from the discrete uniform distribution on integers $1 \dots n$ is less than or equal to \mathbf{x} .	unidcdf(x,n) or (x>=1)*min(floor(x),n)/n will work even without the Statistics Toolbox, as long as n is a positive integer.	(x>=1)*min(floor(x),n)/n	

7 Graphics

7.1 Various types of plotting

No.	Description	Matlab	R
210	Create a new figure window	figure	windows() (when running R in Windows), quartz() (in Mac OS-X), or x11() (in Linux)
211	Select figure number n	figure(n) (will create the figure if it doesn't exist)	dev.set(n) (returns the actual device selected; will be different from n if there is no figure device with number n)
212	List open figure windows	get(0,'children') (The 0 handle refers to the root graphics object.)	dev.list()
213	Close figure window(s)	close to close the current figure window, close(n) to close a specified figure, and close all to close all figures	<pre>dev.off() to close the currently ac- tive figure device, dev.off(n) to close a specified one, and graphics.off() to close all figure devices.</pre>
214	Plot points using open circles	plot(x,y,'o')	plot(x,y)
215	Plot points using solid lines	plot(x,y)	plot(x,y,type='1') (Note: that's a lower-case 'L', not the number 1)
216	Plotting: color, point markers, linestyle	plot(x,y,str) where str is a string specifying color, point marker, and/or linestyle (see table below) (e.g. 'gs' for green squares with dashed line)	<pre>plot(x,y,type=str1, pch=arg2,col=str3, lty=arg4)</pre>
			See tables below for possible values of the 4 parameters
217	Plotting with logarithmic axes	semilogx, semilogy, and loglog functions take arguments like plot , and plot with logarithmic scales for x, y , and both axes, respectively	plot(, log='x'), plot(, log='y'), and plot(, log='xy') plot with logarithmic scales for x , y , and both axes, respectively
218	Make bar graph where the x coordinates of the bars are in \mathbf{x} , and their heights are in \mathbf{y}	bar(x,y) Or just bar(y) if you only want to specify heights. Note: if A is a matrix, bar(A) interprets each column as a separate set of observations, and each row as a different observation within a set. So a 20×2 matrix is plotted as 2 sets of 20 observations, while a 2×20 matrix is plotted as 20 sets of 2 observations.	Can't do this in R; but barplot(y) makes a bar graph where you specify the heights, barplot(y,w) also specifies the widths of the bars, and hist can make plots like this too.
219	Make histogram of values in \mathbf{x}	hist(x)	hist(x)
220	Given vector \mathbf{x} containing integer values, make a bar graph where the x coordinates of bars are the values, and heights are the counts of how many times the values appear in \mathbf{x}	<pre>v=unique(x); c=hist(x,v); bar(v,c)</pre>	hist(x,(min(x)5):(max(x)+.5))

No.	Description	Matlab	R
221	Given vector \mathbf{x} containing continuous values, lump the data into k bins and make a histogram / bar graph of the binned data	<pre>[c,m] = hist(x,k); bar(m,c) or for slightly different plot style use hist(x,k)</pre>	<pre>hist(x,seq(min(x), max(x), length.out=k+1))</pre>
222	Make a plot containing errorbars of height s above and below (x, y) points	errorbar(x,y,s)	errbar(x,y,y+s,y-s) Note: errbar is part of the Hmisc package (see item 295 for how to install/load packages).
223	Make a plot containing errorbars of height a above and b below (x, y) points	errorbar(x,y,b,a)	errbar(x,y,y+a,y-b) Note: errbar is part of the Hmisc package (see item 295 for how to install/load packages).
224	Other types of 2-D plots	stem(x,y) and stairs(x,y) for other types of 2-D plots. polar(theta,r) to use polar coordinates for plotting.	pie(v)
225	Make a 3-D plot of some data points with given x , y , z coordinates in the vectors \mathbf{x} , \mathbf{y} , and \mathbf{z} .	<pre>plot3(x,y,z) This works much like plot, as far as plotting symbols, line- types, and colors.</pre>	cloud(z~x*y) You can also use arguments pch and col as with plot. To make a 3-D plot with lines, do cloud(z~x*y,type='1', panel.cloud=panel.3dwire)
226	Surface plot of data in matrix \mathbf{A}	surf(A)	persp(A)
		You can then click on the small curved arrow in the figure window (or choose "Rotate 3D" from the "Tools" menu), and then click and drag the mouse in the figure to rotate it in three dimensions.	You can include shading in the image via e.g. persp(A, shade=0.5). There are two viewing angles you can also specify, among other parameters, e.g. persp(A, shade=0.5, theta=50, phi=35).
227	Surface plot of $f(x,y) = sin(x+y)\sqrt{y}$ for 100 values of x between 0 and 10, and 90 values of y between 2 and 8	<pre>x = linspace(0,10,100); y = linspace(2,8,90); [X,Y] = meshgrid(x,y); Z = sin(X+Y).*sqrt(Y); surf(X,Y,Z) shading flat</pre>	<pre>x = seq(0,10,100) y = seq(2,8,90) f = function(x,y) return(sin(x+y)*sqrt(y)) z = outer(x,y,f) persp(x,y,z)</pre>
228	Other ways of plotting the data from the previous command	<pre>mesh(X,Y,Z), surfc(X,Y,Z), surfl(X,Y,Z), contour(X,Y,Z), pcolor(X,Y,Z), waterfall(X,Y,Z). Also see the slice command.</pre>	contour(x,y,z) Or do s=expand.grid(x=x,y=y), and then wireframe(z~x*y,s) or wireframe(z~x*y,s,shade=TRUE) (Note: wireframe is part of the lattice package; see item 295 for how to load packages). If you have vectors x, y, and z all the same length, you can also do symbols(x,y,z).

Adding various labels or making adjustments to plots

		making adjustments to plots	
No.	Description	Matlab	R
229	Set axis ranges in a figure	axis([x1 x2 y1 y2])	You have to do this when
	window		you make the plot, e.g.
			<pre>plot(x,y,xlim=c(x1,x2),</pre>
			ylim=c(y1,y2))
230	Add title to plot	title('somestring')	title(main='somestring')
		-	adds a main title,
			title(sub='somestring') adds
			a subtitle. You can also include
			main= and sub= arguments in a
			plot command.
231	Add axis labels to plot	xlabel('somestring') and	title(xlab='somestring',
		ylabel('somestring')	ylab='anotherstr'). You can
		j	also include xlab = and ylab =
			arguments in a plot command.
232	Include Greek letters or sym-	You can use basic TeX com-	plot(x,y,xlab=
202	bols in plot axis labels	mands, e.g. plot(x,y);	expression(phi^2 + mu['i,j']))
	bols in plot axis labels	xlabel('\phi^2 + \mu_{i,j}')	or plot(x,y,xlab=expression(
		or xlabel('fecundity \phi')	paste('fecundity', phi)))
		See also help tex.m and parts of	See also help(plotmath) and p.
		doc text_props for more about	98 of the <i>R Graphics</i> book by Paul
		building labels using general LaTeX	Murrell for more.
		commands	With the more.
233	Change font size to 16 in plot	For the legends and numerical axis	For on-screen graphics, do
	labels	labels, use set(gca, 'FontSize',	par(ps=16) followed by e.g. a plot
	ido ois	16), and for text labels on axes	command. For PostScript or PDF
		do e.g. xlabel('my x var',	plots, add a pointsize=16 argument,
		'FontSize', 16)	e.g. pdf('myfile.pdf', width=8,
		101100120 , 10)	height=8, pointsize=16) (see
			items 245 and 246)
234	Add grid lines to plot	grid on (and grid off to turn off)	grid() Note that if you'll be
204	riad grid imos to piot	8114 on (and 8114 off to turn on)	printing the plot, the default style
			for grid-lines is to use gray dot-
			ted lines, which are almost invis-
			·
			ible on some printers. You may
			want to do e.g. grid(lty='dashed',
			col='black') to use black dashed
025	A 11 C 1 1 4 1 C	7 1/16:	lines which are easier to see.
235	Add figure legend to top-left	<pre>legend('first', 'second',</pre>	legend('topleft',
	corner of plot	'Location', 'NorthWest')	<pre>legend=c('first', 'second'),</pre>
			col=c('red', 'blue'),
	Magrapastina		pch=c('*','o'))

MATLAB note: sometimes you build a graph piece-by-piece, and then want to manually add a legend which doesn't correspond with the order you put things in the plot. You can manually construct a legend by plotting "invisible" things, then building the legend using them. E.g. to make a legend with black stars and solid lines, and red circles and dashed lines: h1=plot(0,0,'k*-'); set(h1,'Visible', 'off'); h2=plot(0,0,'k*-'); set(h2,'Visible', 'off'); legend([h1 h2], 'blah, 'whoa'). Just be sure to choose coordinates for your "invisible" points within the current figure's axis ranges.

No.	Description	Matlab	R
236	Adding more things to a figure	hold on means everything plotted from now on in that figure window is added to what's already there. hold off turns it off. clf clears the figure and turns off hold.	points() and lines() work like plot, but add to what's already in the figure rather than clearing the figure first. points and lines are basically identical, just with different default plotting styles. Note: axes are not recalculated/redrawn when adding more things to a figure.
237	Plot multiple data sets at once	plot(x,y) where x and y are 2-D matrices. Each column of x is plotted against the corresponding column of y. If x has only one column, it will be re-used.	matplot(x,y) where x and y are 2-D matrices. Each column of x is plotted against the corresponding column of y. If x has only one column, it will be re-used.
238	Plot $\sin(2x)$ for x between 7 and 18	fplot('sin(2*x)', [7 18])	curve(sin(2*x), 7, 18, 200) makes the plot, by sampling the value of the function at 200 values between 7 and 18 (if you don't specify the number of points, 101 is the default). You could do this manually yourself via commands like tmpx=seq(7,18,200); plot(tmpx, sin(2*tmpx)).
239	Plot color image of integer values in matrix A	image(A) to use array values as raw indices into colormap, or imagesc(A) to automatically scale values first (these both draw row 1 of the matrix at the top of the image); or pcolor(A) (draws row 1 of the matrix at the bottom of the image). After using pcolor, try the commands shading flat or shading interp.	image(A) (it rotates the matrix 90 degrees counterclockwise: it draws row 1 of A as the left column of the image, and column 1 of A as the bottom row of the image, so the row number is the x coord and column number is the y coord). It also rescales colors. If you are using a colormap with k entries, but the value k does not appear in A , use image(A,zlim=c(1,k)) to avoid rescaling of colors. Or e.g. image(A,zlim=c(0,k-1)) if you want values 0 through $k-1$ to be plotted using the k colors.
240	Add colorbar legend to image plot	colorbar, after using image or pcolor.	Use filled.contour(A) rather than image(A), although it "blurs" the data via interpolation, or use levelplot(A) from the lattice package (see item 295 for how to load packages). To use a colormap with the latter, do e.g. levelplot(A,col.regions=terrain.colors(100)).
241	Set colormap in image	colormap(hot). Instead of hot, you can also use gray, flag, jet (the default), cool, bone, copper, pink, hsv, prism. By default, the length of the new colormap is the same as the currently-installed one; use e.g. colormap(hot(256)) to specify the number of entries.	<pre>image(A,col=terrain.colors(100)). The parameter 100 specifies the length of the colormap. Other colormaps are heat.colors(), topo.colors(), and cm.colors().</pre>

No.	Description	Matlab	R
242	Build your own colormap us-	Use an $n \times 3$ matrix; each row	Use a vector of hexadecimal strings,
	ing Red/Green/Blue triplets	gives R,G,B intensities between 0	each beginning with '#' and giving
		and 1. Can use as argument with	R,G,B intensities between 00 and FF.
		colormap. E.g. for 2 colors: mycmap	E.g. c('#80CC33','#3333B3'); can
		= [0.5 0.8 0.2 ; 0.2 0.2 0.7]	use as argument to col = parameter
			to image. You can build such a
			vector of strings from vectors of Red,
			Green, and Blue intensities (each
			between 0 and 1) as follows (for a
			2-color example): r=c(0.5,0.2);
			g=c(0.8,0.2); b=c(0.2,0.7);
			mycolors=rgb(r,g,b).

MATLAB plotting specifications, for use with plot, fplot, semilogx, semilogy, loglog, etc:

Symbol	Color	Symbol	Marker	Symbol	Linestyle
b	blue		point (.)	-	solid line
g	green	0	circle (o)	:	dotted line
r	red	х	cross(x)		dash-dot line
С	cyan	+	plus sign (+)		dashed line
m	magenta	*	asterisk (*)		
У	yellow	s	square (\Box)		
k	black	d	diamond (\lozenge)		
W	white	v	triangle (down) (∇)		
		^	triangle (up) (Δ)		
		<	triangle (left) (\triangleleft)		
		>	triangle (right) (\triangleright)		
		р	pentragram star		
		h	hexagram star		

R plotting specifications for \mathbf{col} (color), \mathbf{pch} (plotting character), and \mathbf{type} arguments, for use with \mathbf{plot} , $\mathbf{matplot}$, \mathbf{points} , and \mathbf{lines} :

col	Description	pch	Description	type	Description
'blue'	Blue	'a'	a (similarly for other	р	points
			characters, but see '.'		
			below for an exception		
'green'	Green	19	solid circle	1	lines
'red'	Red	20	bullet (smaller circle)	Ъ	both
'cyan'	Cyan	21	open circle	С	lines part only of "b"
'magenta'	Magenta	22	square	0	lines, points overplotted
'yellow'	Yellow	23	diamond	h	histogram-like lines
'black'	Black	24	triangle point-up	s	steps
'#RRGGBB'	hexadecimal specifica-	25	triangle point-down	S	another kind of steps
	tion of Red, Green,				
	Blue				
(Other names)	See colors() for list of	, ,	rectangle of size 0.01	n	no plotting
	available color names.		inch, 1 pixel, or 1 point		
			(1/72 inch) depending		
			on device		
			(See table on next page		
			for more)		

30

R plotting specifications for lty (line-type) argument, for use with plot, matplot, points, and lines:

lty	Description
0	blank
1	solid
2	dashed
3	dotted
4	dotdash
5	longdash
6	twodash

R plotting characters, i.e. values for ${f pch}$ argument (from the book R Graphics, by Paul Murrell, Chapman & Hall / CRC, 2006)

No.	Description	Matlab	R
243	Divide up a figure window	<pre>subplot(m,n,k) divides the current</pre>	There are several ways to do this, e.g.
	into smaller sub-figures	figure window into an $m \times n$ ar-	using layout or split.screen, al-
		ray of subplots, and draws in sub-	though they aren't quite as friendly
		plot number k as numbered in "read-	as Matlab 's. E.g. if you let $A = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$
		ing order," i.e. left-to-right, top-to- bottom. E.g. subplot(2,3,4) se-	$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 3 \end{bmatrix}$, then layout(A) will
		lects the first sub-figure in the second	4 5 6
		row of a 2×3 array of sub-figures.	divide the figure into 6 sub-figures:
		You can do more complex things,	you can imagine the figure divide into
		e.g. subplot(5,5,[1 2 6 7]) se-	a 3×3 matrix of smaller blocks; sub-
		lects the first two subplots in the first	figure 1 will take up the upper-left
		row, and first two subplots in the	2×2 portion, and sub-figures 2–6 will
		second row, i.e. gives you a bigger	take up smaller portions, according to
		subplot within a 5×5 array of sub-	the positions of those numbers in the
		plots. (If you that command followed	matrix A. Consecutive plotting com-
		by e.g. subplot(5,5,3) you'll see	mands will draw into successive sub- figures; there doesn't seem to be a way
		what's meant by that.)	to explicitly specify which sub-figure
			to draw into next.
			To use split.screen, you can
			do e.g. split.screen(c(2,1)) to
			split into a 2×1 matrix of sub-
			figures (numbered 1 and 2). Then
			split.screen(c(1,3),2) splits sub-
			figure 2 into a 1×3 matrix of smaller
			sub-figures (numbered 3, 4, and 5).
			screen(4) will then select sub-figure number 4, and subsequent plotting
			commands will draw into it.
			A third way to accomplish this is
			via the commands par(mfrow=) or
			par(mfcol=) to split the figure win-
			dow, and par(mfg=) to select which
			sub-figure to draw into.
			Note that the above methods are all
044	D	January (Marry 17)	incompatible with each other.
244	Force graphics windows to update	drawnow (MATLAB normally only updates figure windows when a	R automatically updates graphics windows even before functions/scripts
	upuate	script/function finishes and returns	finish executing, so it's not neces-
		control to the MATLAB prompt, or	sary to explictly request it. But note
		under a couple of other circum-	that some graphics functions (partic-
		stances. This forces it to update	ularly those in the lattice package)
		figure windows to reflect any recent	don't display their results when called
		plotting commands.)	from scripts or functions; e.g. rather
			than levelplot() you need to do
			print(levelplot()). Such func-
			tions will automatically display their
			plots when called interactively from the command prompt.
			the command prompt.

7.2 Printing/saving graphics

No.	Description	Matlab	R
245	To print/save to a PDF file	print -dpdf fname saves the con-	First do pdf('fname.pdf'). Then,
	named fname.pdf	tents of currently active figure window	do various plotting commands to make your image, as if you were plotting in a window. Finally, do dev.off() to close/save the PDF file. To print the contents of the active figure window, do dev.copy(device=pdf, file='fname.pdf'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist='inhibit').)
246	To print/save to a PostScript	print -dps fname for black &	postscript('fname.eps'), followed
	file fname.ps or fname.eps	white PostScript; print -dpsc fname for color PostScript; print -deps fname for black & white Encapsulated PostScript; print -depsc fname for color Encapsulated PostScript. The first two save to fname.ps, while the latter two save to fname.eps.	by your plotting commands, followed by dev.off() to close/save the file. Note: you may want to use postscript('fname.eps', horizontal=FALSE) to save your figure in portrait mode rather than the default landscape mode. To print the contents of the active figure window, do dev.copy(device=postscript, file='fname.eps'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist='inhibit').) You can also include the horizontal=FALSE argument with dev.copy().
247	To print/save to a JPEG file fname.jpg with jpeg quality = 90 (higher quality looks better but makes the file	print -djpeg90 fname	<pre>jpeg('fname.jpg',quality=90), followed by your plotting commands, followed by dev.off() to close/save the file.</pre>
	larger)		

$7.3 \quad Animating \ cellular \ automata \ / \ lattice \ simulations$

No.	Description	Matlab	R
248	To display images of cellu-	Repeatedly use either pcolor or	If you simply call image repeatedly,
	lar automata or other lattice	image to display the data. Don't	there is a great deal of flicker-
	simulations while running in	forget to call drawnow as well, oth-	ing/flashing. To avoid this, after
	real time	erwise the figure window will not be	drawing the image for the first time
		updated with each image.	using e.g. image(A), from then
			on only use image(A,add=TRUE),
			which avoids redrawing the entire
			image (and the associated flicker).
			However, this will soon consume a
			great deal of memory, as all drawn
			images are saved in the image buffer.
			There are two solutions to that
			problem: (1) every k time steps,
			leave off the "add=TRUE" argument
			to flush the image buffer (and get
			occasional flickering), where you
			choose k to balance the flickering
			vs. memory-usage tradeoff; or (2) after drawing the first image,
			do dev.control(displaylist=
			'inhibit') to prohibit retaining the
			data. However, the latter solution
			means that after the simulation is
			done, the figure window will not be
			redrawn if it is resized, or temporarily
			obscured by another window. (A
			call to dev.control(displaylist=
			'enable') and then one final
			image(A) at the end of the sim-
			ulation will re-enable re-drawing
			after resizing or obscuring, without
			consuming extra memory.)

8 Working with files

No.	Description	Matlab	R
249	Create a folder (also known	mkdir dirname	dir.create('dirname')
	as a "directory")		
250	Set/change working directory	cd dirname	setwd('dirname')
251	See list of files in current	dir	dir()
	working directory		
252	Run commands in file 'foo.m'	foo	source('foo.R')
	or 'foo.R' respectively		
253	Read data from text file	A=load('data.txt') or	A=as.matrix(read.table(
	"data.txt" into matrix A	A=importdata('data.txt') Note	'data.txt')) This will ignore
		that both routines will ignore com-	comments (anything on a line
		ments (anything on a line following	following a "#" character). To ig-
		a "%" character)	nore comments indicated by "%",
			do A=as.matrix(read.table(
			'data.txt', comment.char='%'))
254	Write data from matrix A	save data.txt A -ascii	write(A, file='data.txt',
	into text file "data.txt"		ncolumn=dim(A)[2])

9 Miscellaneous

9.1 Variables

No.	Description	Matlab	R
255	Assigning to variables	x = 5	x < -5 or x = 5
256	From within a function, as-	assignin('base', 'y', 7)	у <<- 7
	sign a value to variable \mathbf{y}		
	in the base environment (i.e.		
	the command prompt envi-		
	ronment)		
257	From within a function, ac-	evalin('base', 'y')	y (In R, if there isn't a local variable
	cess the value of variable y		y within the function, it will look for
	in the base environment (i.e.		one in the base environment.)
	the command prompt envi-		
050	ronment) Short list of defined variables	1	7 ()
258		who	ls()
259 260	Long list of defined variables See detailed info about the	whos	ls.str() str(ab)
260	variable ab	whos ab	str(ab)
261	See detailed info about all	whos *ab*	ls.str(pattern='ab')
201	variables with "ab" in their	WHOS FAUF	is.su(pattern- ab)
	name		
262	Open graphical data editor,	openvar(A), or double-click on the	fix(A)
-0-	to edit the value of variable	variable in the Workspace pane (if	
	A (useful for editing values in	it's being displayed) of your MAT-	
	a matrix, though it works for	LABdesktop	
	non-matrix variables as well)	•	
263	Clear one variable	clear x	rm(x)
264	Clear two variables	clear x y	rm(x,y)
265	Clear all variables	clear all	rm(list=ls())
266	See what type of object \mathbf{x} is	class(x)	class(x)
267	(Variable names)	Variable names must begin with a	Variable names may contain letters,
		letter, but after that they may con-	digits, the period, and the underscore
		tain any combination of letters, dig-	character. They cannot begin with a
		its, and the underscore character.	digit or underscore, or with a period
		Names are case-sensitive.	followed by a digit. Names are case-
200			sensitive.
268	Result of last command	ans contains the result of the last	.Last.value contains the result of
		command which did not assign its	the last command, whether or not its
		value to a variable. E.g. after 2+5;	value was assigned to a variable. E.g.
		x=3, then ans will contain 7.	after 2+5; x=3, then .Last.value will
			contain 3.

9.2 Strings and Misc.

No.	Description	Matlab	R
269	Line continuation	If you want to break up a MATLAB command over more than one line, end all but the last line with three periods: "". E.g.: x = 3 + 4	In R, you can spread commands out over multiple lines, and nothing extra is necessary. R will continue reading input until the command is complete. E.g.: x = 3 + 4
270	Controlling formatting of output	format short g and format long g are handy; see help format	options(digits=6) tells R you'd like to use 6 digits of precision in values it displays (it is only a suggestion, not strictly followed)
271	Exit the program	quit or exit	q() or quit()
272	Comments	% this is a comment	# this is a comment
273	Print a string	disp('hi there') or to omit trailing newline use fprintf('hi there')	print('hi there')
274	Print a string containing single quotes	disp('It''s nice') or to omit trailing newline fprintf('It''s nice')	<pre>print('It\'s nice')</pre>
275	Give prompt and read input from user	<pre>x = input('Enter data:')</pre>	<pre>print('Enter data:') x = scan()</pre>
276	Concatenate strings	['two hal' 'ves']	<pre>paste('two hal', 'ves', sep='')</pre>
277	Concatenate strings stored in a vector	<pre>v={'two ', 'halves'}; strcat(v{:}) But note that this drops trailing spaces on strings. To avoid that, instead do strcat([v{:}])</pre>	<pre>v=c('two ', 'halves'); paste(v, collapse='')</pre>
278	Extract substring of a string	<pre>text1='hi there'; text2=text(2:6)</pre>	text1='hi there'; text2=substr(text1,2,6)
279	Determine whether elements of a vector are in a set, and give positions of correspond- ing elements in the set.	<pre>x = 'a', 'aa', 'bc', 'c'; y = 'da', 'a', 'bc', 'a', 'bc', 'aa'; [tf, loc]=ismember(x,y) Then loc contains the locations of last occurrences of elements of x in the set y, and 0 for unmatched elements.</pre>	<pre>x = c('a', 'aa', 'bc', 'c'); y = c('da', 'a', 'bc', 'a', 'bc', 'aa'); loc=match(x,y) Then loc contains the locations of first oc- curences of elements of x in the set y, and NA for unmatched elements.</pre>
280	Convert number to string	num2str(x)	as.character(x)

No.	Description	Matlab	R
281	Use sprintf to create a		
	formatted string. Use %d for integers ("d" stands for "dec-	x=2; y=3.5; s=sprintf('x is %d, y=%g',	x=2; y=3.5 s=sprintf('x is %d, y is %g',
	imal", i.e. base 10), %f for floating-point numbers, %e	x, y)	x, y)
	for scientific-notation floating		
	point, %g to automatically choose %e or %f based on		
	the value. You can specify field-widths/precisions,		
	e.g. %5d for integers with		
	padding to 5 spaces, or %.7f		
	for floating-point with 7		
	digits of precision. There are many other options too; see		
	the docs.		
282	Machine epsilon ϵ_{mach} , i.e.	eps (See help eps for various other	.Machine\$double.eps
	difference between 1 and the	things eps can give.)	
	next largest double-precision		
283	floating-point number Pause for x seconds	pause(x)	Sug alon(u)
284	Wait for user to press any key	pause	Sys.sleep(x) Don't know of a way to do this in R,
204	want for user to press any key	pause	but scan(quiet=TRUE) will wait until the user presses the Enter key
285	Measure CPU time used to do some commands	<pre>t1=cputime;commands ; cputime-t1</pre>	<pre>t1=proc.time();commands ; (proc.time()-t1)[1]</pre>
286	Measure elapsed ("wall-	tic;commands ; toc or	t1=proc.time();commands
	clock") time used to do some	t1=clock;commands;	; (proc.time()-t1)[3]
287	commands Print an error message an in-	<pre>etime(clock,t1) error('Problem!')</pre>	stop('Problem!')
	terrupt execution		-
288	Print a warning message	warning('Smaller problem!')	warning('Smaller problem!')
289	Putting multiple statements	Separate statements by commas or semicolons. A semicolon at the end	Separate statements by semicolons.
	on one line	of a statement suppresses display of	
		the results (also useful even with just	
		a single statement on a line), while a	
		comma does not.	
290	Evaluate contents of a string s as command(s).	eval(s)	eval(parse(text=s))
291	Show where a command is	which sqrt shows you where the file	R does not execute commands directly
		defining the sqrt function is (but	from files, so there is no equivalent
		note that many basic functions are "built in," so the MATLAB func-	command.
		tion file is really just a stub con-	
		taining documentation). This is use-	
		ful if a command is doing something	
		strange, e.g. sqrt isn't working. If	
		you've accidentally defined a variable	
		called sqrt, then which sqrt will	
		tell you, so you can clear sqrt to erase it so that you can go back to	
		using the function sqrt.	

No.	Description	Matlab	R
292	Query/set the search path.	path displays the current search path (the list of places MATLAB searches for commands you enter). To add a directory ~/foo to the beginning of the search path, do	R does not use a search path to look for files.
		addpath ~/foo -begin	
		or to add it to the end of the path, do addpath ~/foo -end (Note: you should generally add the full path of a directory, i.e. in Linux or Mac OS-X something like ~/foo as above or of the form /usr/local/lib/foo, while under Windows it would be something like C:/foo)	
293	Startup sequence	If a file startup.m exists in the startup directory for Matlab, its contents are executed. (See the Matlab docs for how to change the startup directory.)	If a file .Rprofile exists in the current directory or the user's home directory (in that order), its contents are sourced; saved data from the file .RData (if it exists) are then loaded. If a function .First() has been defined, it is then called (so the obvious place to define this function is in your .Rprofile file).
294	Shutdown sequence	Upon typing quit or exit, MATLAB will run the script finish.m if present somewhere in the search path.	Upon typing q() or quit(), R will call the function .Last() if it has been defined (one obvious place to define it would be in the .Rprofile file)
295	Install and load a package.	MATLAB does not have packages. It has toolboxes, which you can purchase and install. "Contributed" code (written by end users) can simply be downloaded and put in a directory which you then add to MATLAB's path (see item 292 for how to add things to MATLAB's path).	To install e.g. the deSolve package, you can use the command install.packages('deSolve'). You then need to load the package in order to use it, via the command library('deSolve'). When running R again later you'll need to load the package again to use it, but you should not need to re-install it. Note that the lattice package is typically included with binary distributions of R, so it only needs to be loaded, not installed.

10 Spatial Modeling

No.	Description	Matlab	R
296	Take an $L \times L$ matrix A of	A = (A (rand(L) < p))*1;	A = (A (matrix(runif(L^2),L)
	0s and 1s, and "seed" frac-)*1
	tion p of the 0s (turn them		
	into 1s), not changing entries		
	which are already 1.		
297	Take an $L \times L$ matrix A of 0s	A = (A & (rand(L) < 1-p))*1;	A = (A & (matrix(runif(L^2),L)
	and 1s, and "kill" fraction p		< 1-p))*1
	of the 1s (turn them into 0s),		
	not changing the rest of the		
	entries		
298	Do "wraparound" on a coor-	mod(newx-1,L)+1 Note: for porta-	((newx-1) %% L) + 1 Note: for
	dinate newx that you've al-	bility with other languages such as	portability with other languages such
	ready calculated. You can	C which handle MOD of negative	as C which handle MOD of nega-
	replace \mathbf{newx} with $\mathbf{x} + \mathbf{dx}$ if	values differently, you may want to	tive values differently, you may want
	you want to do wraparound	get in the habit of instead doing	to get in the habit of instead doing
	on an offset x coordinate.	mod(newx-1+L,L)+1	((newx-1+L)%%L) + 1
299	Randomly initialize a portion	dx=ix2-ix1+1; $dy=iy2-iy1+1$;	dx=ix2-ix1+1; dy=iy2-iy1+1;
	of an array: set fraction p of	$A(iy1:iy2,ix1:ix2) = \dots$	A[iy1:iy2,ix1:ix2] =
	sites in rows iy1 through iy2	(rand(dy,dx) < p0)*1;	(matrix(runif(dy*dx),dy) <
	and columns $ix1$ through $ix2$		p0)*1
	equal to 1 (and set the rest of		
	the sites in that block equal		
	to zero). Note: this assume		
	iy1 < iy2 and $ix1 < ix2$.		

Index of MATLAB commands and concepts

', 72	${\tt clock},286$
, 12 ,, 289	, <u>_</u>
	close, 213 colon, see :
.*, 71	
, 269	colorbar, 240
./, 77	colormap
.^, 81	building your own, 242
/, 76	colormap, 241, 242
:, 12–14	column vector, 7
;, 289	comments, 272
=, 255	complex numbers, 64–69
[, 6–8	cond, 91–93
%, 272	conj, 67
&, 165, 166	contour, 228
$\hat{}$, 46, 79, 80	conv, 145
\setminus , 73, 78	corr, $105-110$
{ 41	$\cos, 51$
, AT CF	$\cosh, 53$
abs, 47, 65	cov, 103, 104
$a\cos, 52$	$\mathtt{cputime},285$
acosh, 54	${\tt csape},157,159,160$
addpath, 292	cubic splines, 158, 159
all, 167	natural, 157
angle, 66	not-a-knot, 161
ans, 268	periodic, 160
any, 168	cumprod, 119
asin, 52	cumsum, 115-118
$\mathtt{asinh},54$	cumulative distribution functions
assignin, 256	binomial, 204
$\mathtt{atan},52$	continuous uniform on interval (a, b) , 208
atanh, 54	discrete uniform from $1n$, 209
average, see mean	exponential, 206
axis, 229	normal, 207
210 220 221	Poisson, 205
bar, 218, 220, 221	,
binocdf, 204	$\mathtt{diag},21,22$
binopdf, 198	$\mathtt{diff},121$
binornd, 191	differential equations, see ode45
boolean tests	$\mathtt{dir},251$
scalar, 165	$\mathtt{disp},273,274$
vector, $166-168$	doc, 4
-4 950	drawnow, 244, 248
cd, 250	
ceil, 58	echelon form, see matrix
cell, 40	$\mathtt{eig},83$
cell arrays, 40	element-by-element matrix operations, see ma
extracting elements of, 41	trix
cellular automata animation, 248	else, 164
chol, 87	elseif, 164
class, 266	eps, 282
clear, 263-265	erf, 60
clf 936	

erfc, 61	$\mathtt{hilb},38$
erfcinv, 63	hist, 143, 144, 219, 220
erfinv, 62	hold, 236
error, 287	,
errorbar, 222, 223	identity, see matrix
etime, 286	if, 163-165
eval, 290	imag, 69
evalin, 257	image, 239, 248
exit, 271	imagesc, 239
exp, 48	importdata, 253
expcdf, 206	ind2sub, 31
expedi, 200 expm, 114	indexing
-	matrix, 10
exppdf, 200	with a single index, 11
exprnd, 193	vector, 9
eye, 20	
figure 210 211	input, 275
figure, 210, 211	inv, 75
file	inverse, see matrix
reading data from, 254	ismember, 279
running commands in, 252	lowerd 225
text	legend, 235
reading data from, 253	length, 134, 136
saving data to, 254	linspace, 15
find, 140-142	load, 253, 254
finish.m, 294	log, 49
floor, 57	log10, 50
fminbnd, 148, 149	log2, 50
fminsearch, 150, 151	loglog, 217
font size in plots, 233	${ t lookfor}, 5$
for, 162	lu, 84
format, 270	
fplot, 238	matrix, 8
fprintf, 273, 274	boolean operations on, 141, 142
function	changing shape of, 35
multi-variable	Cholesky factorization, 87
minimization, 150	condition number, 91–93
minimization, 190 minimization over first parameter only, 149	containing all indentical entries, 19
minimization over only some parameters,	containing all zeros, 18
151	converting row, column to single index, 32
	converting single-index to row, column, 31
single-variable	cumulative sums of all elements of, 118
minimization, 148	cumulative sums of columns, 116
user-written, 171	cumulative sums of rows, 117
returning multiple values, 172	diagonal, 21
fzero, 147	echelon form, 74
022	eigenvalues and eigenvectors of, 83
gca, 233	equation
get, 212	solving, 73
Greek letters	exponential of, 114
in plot labels, 232	- · · · · · · · · · · · · · · · · · · ·
grid, 234	extracting a column of, 26
, , 10	extracting a rectangular piece of, 29
help, $1-3$	extracting a row of, 27
helpbrowser, 4	extracting specified rows and columns of, 30
helpdesk, 4	"gluing" together, 23, 24

identity, 20	${\tt plot},214216,237$
inverse, 75	Greek letters in axis labels, 232
lower-triangular portion of, 36	plot3, 225
LU factorization, 84	poisscdf, 205
minimum of values of, 124	poisspdf, 199
minimum value of each column of, 125	poissrnd, 192
minimum value of each row of, 126	polar, 224
modifying elements given lists of rows and	polyfit, 153-155
columns, 33	polynomial
multiplication, 70	least-squares fitted, 154–156
element-by-element, 71	multiplication, 145
N-dimensional, 39	roots of, 146
norm, 90	ppval, 157, 159, 160
powers of, 80	print, 245-247
QR factorization, 88	probability density functions
rank, 82	binomial, 198
re-shaping its elements into a vector, 28	continuous uniform on interval (a, b) , 202
	discrete uniform from $1n$, 203
Schur decomposition, 86	
singular value decomposition, 85	exponential, 200
size of, 131–133, 135, 136	normal, 201
sum	Poisson, 199
of all elements, 111	qr, 88
of columns of, 112	
of rows of, 113	quad, 152
transpose, 72	quit, 271
upper-triangular portion of, 37	rand, 176-184, 190
$\max, see \min$	random values
mean, $94-96$	Bernoulli, 182
mesh, 228	binomial, 191
meshgrid, 105	continuous uniform distribution on interval
$\min,\ 123-126,\ 128-130$	
\min d, 127	(a,b), 179, 196
mkdir, 249	continuous uniform distribution on interval
mod, 55, 298	(0,1), 176-178
modulo arithmetic, 55, 298	discrete uniform distribution from ab, 184
multiple statements on one line, 289	discrete uniform distribution from $1k$, 181 ,
	194, 195
norm, 89, 90	discrete uniform distribution, 180
normcdf, 207	exponential, 193
normpdf, 201	k unique values sampled from integers 1 n ,
normrnd, 197	187
num2str, 280	normal, 197
numel, 135	Poisson, 192
	setting the seed, 190
ode $45, 173-175$	randperm, 186, 187
ones, 17, 19	${\tt randsample},\ 187{-}189$
openvar, 262	$\mathtt{rank},82$
optimization, 148–151	rcond, 91
	real, 68
path, 292	reshape, 35, 39
pause, 283, 284	roots
pcolor, 228, 239, 248	of general single-variable function, 147
perform some commands with probability p , 185	polynomial, 146
permutation of integers 1n, 186	

 $\bar{\mathtt{unidrnd}},\,194,\,195$

roots, 146	$\mathtt{unifcdf}, 208$
round, 56	$\mathtt{unifpdf},202$
row vector, 6	unifrnd, 196
rref, 74	unique, 143, 220
	• '
sampling values from a vector, 188, 189	var, 100-102
save, 254	variables
schur, 86	assigning, 255
semilogx, 217	assigning in base environment from func-
semilogy, 217	tion, 256
set, 233	evaluating from base environment within fund
sign, 59	tion, 257
sin, 51	names, 267
\sinh , 53	variance, see var
size, 131-133	vector
slice, 228	boolean operations on, 139, 140
sort, 137, 138, 187	containing all indentical entries, 17
spline, 161	containing all zeros, 16
splines, see cubic splines	counts of binned values in, 144
sprintf, 281	counts of discrete values in, 143
sqrt, 45	cumulative sum of elements of, 115
stairs, 224	differences between consecutive elements of,
standard deviation, see std	121
startup.m, 293	minimum of values of, 123
std, 97-99	norm, 89
stem, 224	position of first occurance of minimum value
stop, 287	in, 130
strcat, 277	reversing order of elements in, 25
string	size of, 134
concatenation, 276	sum of all elements, 111
	truncating, 34
converting number to, 280	truncating, 54
substrings, 278	warning, 288
struct, 43	waterfall, 228
sub2ind, 32, 33	which, 291
subplot, 243	while, 169
sum, 111-113, 166	
surf, 226, 227	who, 258 whos, $259–261$
surfc, 228	wiios, 209–201
surfl, 228	xlabel, 231-233
svd, 85	MidDC1, 201 200
switch, 170	ylabel, 231, 232
. 1	J , ,
tan, 51	zeros, 16, 18
tanh, 53	, ,
tic, 286	
title, 230	
toc, 286	
transpose, see matrix	
tril, 36	
triu, 37	
. 1 16 200	
unidcdf, 209	
unidpdf, 203	

Index of ${\sf R}$ commands and concepts

* , 79	complex numbers, 64–69
/, 77	$\mathtt{Conj},67$
:, 12, 13	contour, 228
; , 289	$\mathtt{convolve},145$
<-, 255	cor, 106-110
<<-, 256	$\cos, 51$
=, 255	$\cosh, 53$
? , 1, 2	$\mathtt{cov},103105$
[[, 41	cubic splines, 158, 159, 161
#, 272	natural, 157
%% , 55, 298	periodic, 160
&, 165, 166	cummax, 120
^, 46, 81	cummin, 120
	cumprod, 119
abs, $47, 65$	cumsum, 115-118
$a\cos, 52$	cumulative distribution functions
acosh, 54	binomial, 204
all, 167	continuous uniform on interval (a, b) , 208
any, 168	discrete uniform from 1n, 209
$\mathtt{apply}, 99, 101, 102, 125, 126$	exponential, 206
Arg, 66	normal, 207
array, 39	Poisson, 205
as.character, 280	curve, 238
as.numeric, 143	
asin, 52	$\mathtt{data.frame},43$
asinh, 54	${\tt dbinom},198$
atan, 52	$\mathtt{dev.control},245,246,248$
atanh, 54	dev.copy, 245, 246
average, see mean	dev.list, 212
	${\tt dev.off},213,245247$
barplot, 218	$\mathtt{dev.set},211$
boolean tests	$\mathtt{dexp},200$
scalar, 165	$\mathtt{diag},2022$
vector, $166-168$	diff, 121
c, 6, 7	differential equations, see lsoda
	$\mathtt{dim},35,133,136$
cbind, 23, 33	$\mathtt{dir},251$
ceiling, 58	$\mathtt{dir.create},249$
cellular automata animation, 248	$\mathtt{dnorm}, 201$
chol, 87 class, 266	$ exttt{dpois}, 199$
cloud, 225	dunif, 202
coef, 153, 154, 156	
colMeans, 95	echelon form, see matrix
colon, see:	$\mathtt{eig},83$
	element-by-element matrix operations, see ma
colormap	trix
building your own, 242	else, 164
for image, 241	$\mathtt{errbar},222,223$
colSums, 112	eval, 290
column vector, 7 comments, 272	exp, 48
COHHIGHUS, 414	

expand, 84	kappa, 92
expand.grid, 228	
expm, 114	.Last, 294
	.Last.value, 268
file	lattice package, 228, 240, 244, 295
reading data from, 254	$\mathtt{layout},243$
running commands in, 252	legend, 235
text	length, 34, 134, 135
reading data from, 253	levelplot, 240, 244
saving data to, 254	library, $3, 295$
filled.contour, 240	lines, 236
.First, 293	lists, 40
fix, 262	extracting elements of, 41
floor, 57	lm, 153, 154, 156
font size in plots, 233	log, 49
for, 162	log10, 50
function	log2, 50
multi-variable	lower.tri, 37
minimization, 150	$\mathtt{ls}, 258$
minimization over first parameter only, 149	ls.str, 259, 261
minimization over only some parameters, 151	lsoda, 173-175
single-variable	.Machine $\$$ double.eps, 282
minimization, 148	match, 279
user-written, 171	$\mathtt{matplot},237$
returning multiple values, 172	matrix, 8
o a r	boolean operations on, 141, 142
graphics	changing shape of, 35
not being displayed from scripts/functions,	Cholesky factorization, 87
244	condition number, 91–93
Greek letters	containing all indentical entries, 19
in plot labels, 232	containing all zeros, 18
grid, 234	converting row, column to single index, 32
	converting single-index to row, column, 31
$\mathtt{help},1,2$	cumulative sums of all elements of, 118
${\tt help.search}, 5$	cumulative sums of columns, 116
help.start, 4	cumulative sums of rows, 117
Hilbert, 38	diagonal, 21
$\mathtt{hist}, 144, 218 – 221$	echelon form, 74
	eigenvalues and eigenvectors of, 83
identity, see matrix	equation
if, 163-165	solving, 73
ifelse, 122	exponential of, 114
Im, 69	extracting a column of, 26
image, 239, 248	extracting a rectangular piece of, 29
indexing	extracting a row of, 27
matrix, 10	extracting specified rows and columns of, 30
with a single index, 11	"gluing" together, 23, 24
vector, 9	identity, 20
install.packages, 295	inverse, 75
integrate, 152	lower-triangular portion of, 36
inverse, see matrix	LU factorization, 84
÷	minimum of values of, 124
jpeg, 247	•

1 6 1 1 6 405	204 225
minimum value of each column of, 125	persp, 226, 227
minimum value of each row of, 126	pexp, 206
modifying elements given lists of rows and	$\mathtt{pie},224$
columns, 33	$\mathtt{plot},214217$
multiplication, 70	Greek letters in axis labels, 232
element-by-element, 71	$\mathtt{main=},230$
N-dimensional, 39	sub=, 230
norm, 90	xlab=, 231, 232
powers of, 80	$ exttt{xlim=}, 229$
QR factorization, 88	ylab=, 231, 232
rank, 82	ylim=, 229
re-shaping its elements into a vector, 28	pmin, 127, 128
Schur decomposition, 86	pnorm, 60, 61, 207
singular value decomposition, 85	points, 236
size of, 131–133, 135, 136	polynomial
sum	least-squares fitted, 154–156
of all elements, 111	multiplication, 145
of columns of, 112	roots of, 146
of rows of, 113	polyreg, 155
	polyroot, 146
transpose, 72	
upper-triangular portion of, 37	postscript, 246
matrix, 8, 18, 19	ppois, 205
max, see min	print, 244, 273, 274
mean, 94	probability density functions
min, 123–126, 129	binomial, 198
Mod, 65	continuous uniform on interval (a, b) , 202
modulo arithmetic, 55, 298	discrete uniform from $1n$, 203
multiple statements on one line, 289	exponential, 200
40, 140	normal, 201
names, 42, 143	Poisson, 199
ncol, 132	$\mathtt{proc.time},285,286$
norm, 89, 90	$\mathtt{punif},208$
nrow, 131	
150 151	q, 271
optim, 150, 151	$\mathtt{qnorm},62,63$
optimization, 148–151	qr, 82, 88
optimize, 148, 149	quartz, 210
options	$\mathtt{quit},271$
$\mathtt{digits}=,270$	
outer, 227	$\mathtt{rand},183$
	random values
packages	Bernoulli, 182
installing, 295	binomial, 191
loading, 295	continuous uniform distribution on interval
par, 233	(a,b), 179, 196
par	continuous uniform distribution on interval
mfcol=, 243	(0,1), 176, 178
mfrow=, 243	continuous uniform distribution on inteval
parse, 290	(0,1), 177
paste, 276, 277	discrete uniform distribution from ab , 184
pbinom, 204	discrete uniform distribution from $1k$, 181,
pdf, 233, 245	194, 195
perform some commands with probability p , 185	discrete uniform distribution, 180
permutation of integers $1n$, 186	discrete dimorni distribution, 100

exponential, 193	substr, 278
k unique values sampled from integers 1 n ,	sum, 111, 113, 166
187	svd, 85
normal, 197	switch, 170
Poisson, 192	symbols, 228
setting the seed, 190	Sys.sleep, 283
rbind, 24	
rbinom, 191	t, 72
rcond, 91, 93	table, 143
.RData, 293	tan, 51
Re, 68	anh, 53
read.table, 253, 254	title, $230, 231$
rep, 16, 17	transpose, see matrix
rev, 25	unireat 147
rexp, 193	uniroot, 147
rgb, 242	upper.tri, 36
rm, 263–265	var, 100-102, 104
rnorm, 197	variables
roots	assigning, 255
of general single-variable function, 147	assigning in base environment from func-
polynomial, 146	tion, 256
round, 56	evaluating from base environment within func
row vector, 6	tion, 257
rowMeans, 96	names, 267
rpois, 192	variance, see var
.Rprofile, 293	vector
runif, 176–182, 184, 196	boolean operations on, 139, 140
	containing all indentical entries, 17
sample, 186-189, 194, 195	containing all zeros, 16
sampling values from a vector, 188, 189	counts of binned values in, 144
scan, 275, 284	counts of discrete values in, 143
Schur, 86	cumulative sum of elements of, 115
sd, 97-99	differences between consecutive elements of,
seq, 14, 15	121
set.seed, 190	minimum of values of, 123
$\mathtt{setwd}, 250$	norm, 89
sign, 59	position of first occurance of minimum value
sin, 51	in, 130
\sinh , 53	reversing order of elements in, 25
solve, 73, 75, 76, 78	size of, 134
sort, 137, 138	sum of all elements, 111
source, 252	truncating, 34
spline, 157, 158, 160	vector, 40
splines, see cubic splines	,
split.screen, 243	warning, 288
sprintf, 281	which, $140-142$
sqrt, 45	$\verb which.max , see \verb which.min $
standard deviation, see sd	which.min, 130
str, 260	while, 169
string	${\tt windows},210$
concatenation, 276	wireframe, 228
converting number to, 280	write, 254
substrings, 278	11 910
O /	x11 , 210