MB&B 452b - Biological Data Science - Spring 2016

Based on lectures by Prof. Mark Gerstein + guests James Diao

Table of Contents

Lecture 1: Introduction to the Class	2
Lecture 2: Genomics I (sequencing tech and genomes)	2
Lecture 3: Genomics II (sequencing applications)	3
Lecture 4: Proteomics and P-P Interactions	3
Lecture 5: X-Ray Crystallography and Cryo-EM	4
Lecture 6: Databases in Biosciences	4
Lecture 7: Personal Genomics	5
Lecture 8: Sequence Analysis	6
Lecture 9: Variant Identification	7
Lecture 11: Unsupervised Data Mining	8
Lecture 12: Supervised Data Mining	8
Lecture 13: Skipped	8
Lecture 14: Predicting Networks	9
Lecture 15: Deep Learning	10
Lecture 16: Modeling and Simulation (Computational Immunology)	11
Lecture 17: Modeling and Simulation II (Computational Immunology)	12
Lecture 18: Modeling and Simulation III (Computational Immunology)	12
Lecture 19: Protein Folding I	14
Lecture 20: Protein Folding II	14
Lecture 22: Markov Chains I	15

Lecture 1: Introduction to the Class

Lecture 2: Genomics I (sequencing tech and genomes)

- 1. Methods of sequencing
 - a. First-Gen
 - i. Maxam-Gilbert sequencing: radiotag at 5' end, random breaks generate random lengths under varied conditions (G, A+G, C, C+T), run on gel and analyze.
 - ii. Sanger sequencing: dideoxy method. Add chain-terminating nts (no 3'-OH). Random termination generates random lengths. Run on gel and analyze.
 - b. Second-Gen
 - i. Illumina: fluorescent reversibly-terminated nts
 - ii. Ion Torrent: measure protons
 - iii. PacBio: fluorescent nts (real-time).
 - c. Third-Gen
 - i. Nanopore-based (run DNA through a pore, measure changes in current)
 - ii. Transistor-based (nanopore with field-effect transistor → electronic effect)
 - iii. FRET-based (Forster resonance energy transfer- donor and acceptor chromophores).
- 2. Steps
 - a. Sample/Library preparation: Isolation, shearing, blunting, A-tailing, ligation
 - b. Sequencing: Flow cell loading, cluster generation, sequencing by synthesis, image analysis, de-multiplexing.
 - i. Flow cell: lanes with lawns of oligos complementary to library adaptors.
 - ii. Attachment, bridging, cluster generation.
 - iii. Sequencing by synthesis with fluorescent, reversibly-blocked nts.
 - iv. Multiplexing: barcodes identify samples, all run together.
 - c. Data analysis: read QC filtering, alignment, etc.
- 3. Illumina output (fastq):
 - a. [1] Read identifier, [2] sequence, [3] "+" (Q score id), [4] Q score
 - b. 50-250 nt per read
 - c. Short reads:
 - i. May miss insertions/repeats, GC bias, scaffolding gaps.
 - ii. Due to incomplete incorporation of bases.
 - d. Paired end reads:
 - i. Sequence both ends of a fragment (instead of 1).
 - ii. Known distance (~length of fragment)
 - iii. Easier to align (more sequence, anchor)
 - e. Other bias: size selection, enzyme specificities, selective PCR amplification.
- 4. Alignment
 - a. Overlapping reads \rightarrow contigs \rightarrow scaffolds \rightarrow anchor on chromosomes.

Lecture 3: Genomics II (sequencing applications)

- 1. ChIP-Seq
 - a. Cross-link, shear (+exonuclease?), pull-down with Ab, sequence
 - b. Align, compare to input to look for enrichment, call peaks at significant sites.
 - c. Problems: Ab non-specificity, bad cross-linking, etc.
- 2. Accessibility of chromatin: ATAC-seq, FAIRE-seq, MNase-Seq
- 3. Conformation of chromatin: 3-5 C, Hi-C
- 4. RNA-Seq
 - a. Start with mRNA or total RNA, remove DNA, fragment RNA, RT to cDNA, ligate adaptors, amplify, select size, sequence cDNA ends.
 - b. Technical issues: range of concentrations, strand-specificity, degradation, splicing, 2° structure
 - c. Normalization:
 - i. Internal: reads per kilobase of feature length per million mappe reads.
 - ii. External: reads relative to standard spike
- 5. Ribosome Footprinting: gives translation reading frame.

Lecture 4: Proteomics and P-P Interactions

- 1. Whole genome editing: UAG from STOP to new AA.
- 2. Mass Spec
 - a. Measure m/z of ionized samples
 - b. Ionizer, mass-filter, detector
 - c. LC-MS: shotgun proteomics: proteins → trypsin, liquid chromatography to isolate peptide, MS/MS (gaps between m/z peaks correspond to AAs)
 - d. Sequence coverage: misses chunks
 - e. Proteome fractionation: separate with chromatography or Ab pull-down.
 - f. Ionization techniques
 - i. Electrospray: high voltage → ionized aerosol (evaporates to naked particles).
 - ii. MALDI: matrix-assisted laser desorption ionization.
 Sample mixed into matrix material, laser ablates and desorbs sample.
 Hot plume of gases → ionization.
- 3. P-P Interactions:
 - a. Yeast Two-Hybrid Assay:
 - i. Gal4 AD + Prey
 - ii. Gal4 BD + Bait
 - iii. If active, colonies appear on -His plates.
 - b. Tandem Affinity Purification (TAP) tagging
 - i. Clone Protein + Cam-BD + TEV + IgG BD
 - ii. Bait protein (of interest) binds interaction partners
 - iii. Pull down with IgG and cleave with TEV protease
 - iv. Pull down with Cam and separate with chelation.
 - v. SDS-PAGE, tryptic digest, MS/MS
 - c. Proximity Biotinylation: BirA adds biotin to interactors; pulled down by streptoavidin.

- 4. Quantitative Proteomics
 - a. SILAC: stable isotope labeling with AA in cell culture
 - i. Gives differential protein expression
 - ii. 2 samples: light and heavy. Combine proteins and MS/MS. Look at ratio of abundances for light/heavy version.
 - iii. Applications
 - 1. Specificity of interaction (expression level of pulldown)
 - 2. Phosphorylation (reduced expression of pulldown)
 - b. TiO2 helps enrich for phosphorylated peptides

Lecture 5: X-Ray Crystallography and Cryo-EM

- 1. Crystallography
 - a. Resolution limited by wavelength (diffraction limit). X-Rays give atomic detail.
 - b. NMR: detects H-H distances in solution
 - c. X-rays: detects direct positions in crystals (magnify signal with constructive interference).
 - i. Needs 10¹² copies of protein
 - ii. Source: synchrotron.
 - iii. Output: electron density map, structure model, unit cell type + dimensions
 - d. Single-particle cryo-EM
 - i. No crystals needed! 10⁵ copies
 - ii. Native: not stained or fixed
 - iii. Single-particle: 3D reconstruction from images at different angles

Lecture 6: Databases in Biosciences

- 1. Data sources: drug research, social media, patient records, gene sequencing, medical test results, claims, home monitoring, mobile apps
- 2. 3Vs: volume, variety, velocity.
- 3. Data sources \rightarrow database \rightarrow API, interactive queries, download \rightarrow User
- 4. DB: scalable, multiple users, queries and management.
- 5. Concepts
 - a. Integrity, redundancy, dependency (linkages), security, quality (intended use)
- 6. Relational database management system (RDBMS): based on set theory
 - a. Implementations: MS SQLServer, MySQL, Oracle, etc.
 - b. Table (relation): represents some class (patients, hospitals, etc.)
 - i. Consists of: attributes (columns) and object instances (rows)
 - ii. Primary key: single/multiple columns with unique values.
 - iii. Foreign key: key taken from a different table (i.e. ID of people with different phone numbers)
 - c. Normalization
 - i. Systematically organize tables to eliminate anomalies/redundancy
 - ii. Additions, deletions, modifications made in just 1 table and propagated through foreign keys.

- iii. Normalization reduces performance! Requires joins in report queries.
- iv. Normal form: tables free of certain anomalies
- d. Normal Forms
 - i. First Normal Form (1NF):
 - 1. Columns: single entry, single data type, unique names, no order.
 - 2. Rows: unique, no order.
 - ii. Second Normal Form (2NF):
 - 1. 1NF + all non-key columns are dependent on the key.
 - 2. Single-column keys are automatically 2NF.
 - iii. Third Normal Form (3NF):
 - 1. $2NF + no transitive dependency (Zip <math>\rightarrow City)$
- 7. Entity Relationship Diagram (ERD)
 - a. Description: data model diagram.
 - i. Entity: collection of objects
 - ii. Attribute, relationship
 - iii. Cardinality: 1-1, 1-m, m-n
 - b. Describes attributes + relationships of entities
- 8. OLTP: Online transaction processing
 - a. Info systems (e.g. databases) that help data entry/retrieval
 - b. Supports: insert, update, delete, select rows
- 9. Structured Query Language: help create, select, insert, delete, update data.
 - a. CREATE DATABASE ...
 - b. CREATE TABLE ... (item type, item type, item type)
 - c. INSERT INTO ... (item, item, ..., item) VALUES (item, item, ..., item)
 - d. UPDATE ... SET item=new.value WHERE attribute=a.value
 - e. DELETE ... WHERE attribute = a.value
 - f. SELECT attributes FROM ... WHERE attribute = a.value ORDER BY attribute

10. Star Schema

a. Center holds IDs for different entities (patients, providers, clinics, procedures), each in their own table.

Lecture 7: Personal Genomics

- 1. Costs
 - a. Sanger sequencing: \$100 M
 - b. Next-gen sequencing: <\$1 M
 - c. \$3,100 for exam, blood draw, sequencing, risk report.
- 2. Genome variation
 - a. SNPs, INDELs, SVs (>100 nt)
 - b. Around 3M SNPs
- 3. iPOP (integrated personal omics profile) uses genome and other data over time.
 - a. Incl. transcriptomic, proteomic, metabolomics, medical exams, etc.
 - b. Longitudinal data tracks dynamic regulation during infection, etc.
 - c. Diploid instead of hapoid (reference) finds allele-specific expression.
- 4. Process
 - a. Raw reads (fastq) \rightarrow human aligned reads (BAM)

Lecture 8: Sequence Analysis

- 1. Sequence Comparison
 - a. Alignment with Dynamic Programming
 - i. Key idea: score (i, j) = previous best score + score here
 - ii. Similarity (substitution) matrix: scores A-B match for all Ai Bj.
 - 1. PAM, Blossum, Gonnet.
 - 2. PAM 70 vs PAM 250 (distant)
 - 3. Freq of AA substitutions, log-odds: log2(freq-OBS / freq-EXP)
 - iii. Gap Penalties: usually opening + extension * N
 - iv. Needleman-Wunsch (wiki)
 - 1. Dot matrix at matches, sum matrix, highest number, traceback.
 - b. Global alignment: matches whole thing
 - c. Local alignment: matches part of it.
- 2. Multiple Sequence Alignment
 - a. Progressive multiple alignment: progressively built from most closely related to less related. Local minimum problem. Parameter choice.
 - b. Clustal uses average linkage clustering- mean of groups.
 - c. Position weight matrix:

Position Weight Matrices define an additive scheme for scoring sequence. Often, the weights are simply log likelihood ratios of observing a nucleotide in a binding site relative to genomic background. Sequences are scanned by scoring every site, on both the forward and reverse complement strands, and identifying matches as shown in the schematic below:

A particular site is evaluated by adding up the entries from the scoring matrix at each position, and comparing the sum to a match threshold. For log ratio PWMs, an empirically chosen threshold of 60% of the maximum positive score has been used by Harbison et al. and is approximately equal to cutoffs determined by the principled cross-validated method presented in MacIsaac et al. More sophisticated algorithms developed specifically for motif scanning are described briefly in Figure 3.

- d. Profile: position-specific scoring matrix of 21 (AA) columns and N rows. Chance of finding column (AA) at row (position)
- e. PSI-blast: position specific iterative BLAST.
 - i. Input \rightarrow profile, research, new query... build DB.

- f. EM:
 - i. Expectation step: uses temp parameters to compute likelihood
 - ii. Maximization step: uses likelihood estimate to compute parameters
- g. Gibbs sampling:
 - i. Toss out an instance and use the rest to define a weight matrix.
 - ii. Pick a new toss-out instance according to this matrix.
 - iii. Return highest-scoring motif.
- 3. Alignment Speed and Complexity
 - a. DP is $O(n^2)$, too slow.
 - b. FASTA: hashes short words in query
 - c. BLAST: more efficient query hashing. Takes overlapping words and calculates PAM matrix. Extends high-scoring pairs left and right maximally. O(n)
 - d. BLAT: hashing the DB
 - i. Huge hash table means faster scan but large memory usage.
 - e. BWA/Bowtie: burrows-wheeler transform of DB: reversible cyclic permutation, sort, extract last column.

Lecture 9: Variant Identification

- 1. Detecting genomic variants
 - a. Call SNPs, look for deletions (split reads, 0 coverage), duplications (2x coverage), insertions (overhangs), inversions (paired end mixups)
 - b. AGE: Alignment with Gap Excision: SW (local) at both ends to find INDELs.
 - c. Bayes Theorem to detect variants: P(Genotype | Data)
- 2. HMMs?
- 3. Mean-shift-based (MSB) segmentation
 - a. Discontinuity-preserving smoothing (few assumptions)
 - b. Each bin: attraction vector points toward bins with most similar signal
- 4. HR-PEM: High-resolution paired end mapping (???)
- 5. Pseudogenes and Duplications: not much
- 6. RDV (retroduplication variation) and Mobile Elements
 - a. $mRNA \rightarrow inserts into genome$
- 7. 1000 Genomes Project:
 - a. Typical genome differs by 4-5M SNPs, 2k SVs.

Lecture 11: Unsupervised Data Mining

- 1. Saturation: fraction of genome coverage (y) by any 1:n rows (x)
- 2. Aggregation: find repeating signal and aggregate (usu. bell curve)
- 3. Clustering: by rows or columns
 - a. Agglomerative: bottom up or top down.
 - b. K-means: initialize, assign, recompute centers, reassign.
- 4. Networks: adjacency matrix (can be weighted)
- 5. SVD: $A = USV^{T}$
 - a. AV = US: maps row space (V) to column space (U)
 - b. A expressed as sum of rank-1 matrices ($s*u.v^T + ...$)
 - c. S is non-negative singular values from largest to smallest.
 - d. Works on dependent datasets. Okay with non-normal, imprecise.
 - e. REQUIRES LINEARITY and nonsparsity.
- 6. Weighted Gene Co-Expression Network
 - a. Module detection: find with hierarchical clustering
- 7. Biplot: dimensionality reduction of points AND FEATURES
- 8. CCA: Canonical Correlation Analysis
 - a. Takes two feature SETS that are linearly weighted and look at shared dimensions/variance.
 - b. Correlation circle visualization: closer to outer circle = higher correlation. Variables in the same direction are correlated.

Lecture 12: Supervised Data Mining

- 1. Good rule: increases homogeneity—information theoretic entropy is popular: minimize $S = -SUM(p \log p)$. P = frequency of label.
- 2. Fisher discriminant analysis: find a linear combination that maximizes ratio of TOTAL(separation of class means) / SUM (class variances).
- 3. SVM: maximum margin hyperplane.
 - a. Soft margin subject to cost * sum slack variables.
 - b. Kernel adds non-linearity

Lecture 13: Skipped

Lecture 14: Predicting Networks

- 1. Examples
 - a. Protein-protein (phosphorylation)
 - b. Metabolic
 - c. Regulatory (Chip-Seq)
 - i. Call peaks and draw edge between TFs if they share a target
- 2. "Squared" scale from (N choose 2) possible interactions.
- 3. Predicting Networks via Bayesian Integration:
 - a. R = weights * features + weight_0 = weighted vote + bias
 - b. Intersection: 0 dominant. Union: 1 dominant.
 - c. w i = TPR i/FPR i where prediction is P(feature | interaction)
 - d. If n is small, you might have P = 0, which dominates the classifier. Replace with $(TPR_i + m/k) / (FPR + m)$ where m is a weight (virtual instances) and k is the number of possible values of x.
- 4. Cross-validation
- 5. ROC curve (TPR by FPR)

- 6. Many negatives => low prior => low PPV. Balanced examples is important.
- 7. Likelihood ratio: $P(F \mid +I) / P(F \mid -I)$

Lecture 15: Deep Learning

1. AI, Logic, Learning

- a. Building systems, reasoning, learning.
- b. Supervised: classification and regression. Requires input/output pairs.
- c. Unsupervised: find structure (clusters) or underlying distribution
- d. Semi-supervised: uses structure of data to inform supervised learning.
- e. Reinforcement learning: desired output given only after a sequence of actions.

2. Evaluating Performance

- a. Goal is generalization.
- b. Divide your data to training/validation/test, and/or use CV.
- c. Classification: Accuracy, Sensitivity, Specificity, TPR, FPR.
 - i. ROC analysis for binary classifiers
- d. Regression: Sum of squares error and RMS error

3. Dimensionality and Overfitting

- a. Occam's razor: simplest explanation that fits the data.
- b. Curse of dimensionality: feature space grows quickly; data becomes sparse.

4. Artificial Neurons

- a. $y(x) = g(w^{T}x + w_0)$
- b. g can be sigmoid/logistic: $1/(1+e^{-z})$, tanh, +/- 1 step at z=0, rectified linear (ReLu)
- c. Differentiable activation function => gradient-based optimization.
 - i. Move opposite the gradient repeatedly until Δ error < threshold.
- d. Limitation: monotonic activation function means linear decision boundary.

5. Multilayer NN

- a. Hidden units: makes data linearly separable
- b. Universal approximation theorem: ANNs can approximate any function to arbitrary accuracy with enough hidden units AND non-linear activation.

6. Error functions

- a. Regression: sum of square error: good for Gaussian noise
- b. Classification: cross entropy

7. Backpropagation

- a. Step 1: input is propagated forward and compared to the desired output.
- b. Step 2: error values are computed and propagated backwards until each neuron has an associated error value.
- c. Step 3: compute the gradient and update the weights.

8. ConvNets

- a. Four key ideas: Local connections, shared weights, pooling, many layers
- b. Feature map: each unit is connected to a local patch through a set of weights.
- c. Pooling units: compute maximum of patch
- d. Convolve with a small 3x3 filter matrix => convolved feature
 - i. Edge detection, sharpen, box blur, Gaussian blur, etc.

9. Dropout (bagging)

- a. Sets output of $\frac{1}{2}$ of the neurons to 0 in each pass.
- b. Forces neurons to learn more robust features.
- c. Equivalent to sampling a different architecture (same weights) with each input.

Lecture 16: Modeling and Simulation (Computational Immunology)

- 1. Statistical analysis
 - a. Begin with large data set, find patterns, and generate predictions
 - b. PCA, regression, network analysis
- 2. Mechanistic/Dynamic models
 - a. Begin with hypothesis, write equations, run simulations, and generate predictions
 - b. Dynamical systems, parameter estimation, ODE/PDE, stochastic models
- 3. Prediction
 - a. Interpolation: within sample predictions
 - b. Extrapolation: outside sample predictions
- 4. Modeling benefits: predictions, clarify/simplify, hypothesis generating
- 5. Modeling problems: requires assumptions (garbage in, garbage out), needs validation
- 6. Immunology
 - a. Contains feedback loops and non-linear dynamics.
 - b. Distributed system of 10^{12} cells and molecules.
- 7. Dynamic = over time
 - a. Continuous/discrete, deterministic/stochastic
 - b. ODEs: may not be solvable = simulation
 - i. $dN/dt = rN \Rightarrow$ can compute doubling time and half-life.
 - ii. Steady-state: set derivatives = 0 (as time => Inf)
 - 1. Stable = small perturbations return to same state
 - iii. Density dependence
 - iv. Logistic model (S-shaped):
 - 1. K = carrying capacity

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

- 8. Modeling Interactions
 - a. Law of mass action (mean-field assumption)
 - i. Entities encounter each other according to relative abundance (Rate of rxn is proportional to [C])
 - b. Phase plane analysis: nullclines plot where derivatives = 0 (cross at steady state)
 - i. Plots typical trajectories into the state space.

- 9. Forward modeling
 - a. Model generated from literature parameters; for simulating synthetic data
- 10. Inverse modeling
 - a. Model designed to fit experimental data for quantifying parameters of interest.
 - b. Minimizes difference between model and data.

Lecture 17: Modeling and Simulation II (Computational Immunology)

- 1. BrdU labels cells during S phase; rate of increase => proliferation
- 2. Models are identifiable if you can learn underlying parameters
 - a. Parameters are identifiable if they affect the data and can be estimated from data.
- 3. Inverse Modeling 6 steps
 - a. Select an appropriate model
 - b. Define cost function
 - c. Adjust model parameters for best fit
 - d. Examine goodness of fit
 - e. Determine whether much better fit is possible
 - f. Evaluate accuracy (confidence, uniqueness)
- 4. Euler's method: numerical solutions to ODEs.
 - a. Move a short distance on the tangent; recompute slope/gradient, repeat.
- 5. Maximum likelihood estimation (inverse modeling)
 - a. Maximize P(data | parameters)?
- 6. Goodness of Fit and Residuals Plot
 - a. Look at distribution of residuals- equally and normally distributed; no trends.
- 7. F-statistic: deviations between groups / deviations within groups
 - a. Forward selection: add variables as long as significant F-test
 - b. Backwards selection: remove variables without significant F-test
- 8. Data points must exceed number of parameters.

Lecture 18: Modeling and Simulation III (Computational Immunology)

- 1. Accuracy of Estimated Model Parameters
 - a. Monte Carlo Simulation
 - i. Use estimate as true value to simulate distribution => synthetic data sets.
 - b. Bootstrap method
 - i. Resample from dataset with replacement => synthetic data sets
 - ii. Only works if sample is representative. Does not rely on knowledge of measurement errors/noise.
 - c. Synthetic data set => sampling distribution of parameter(s).
- 2. Examples:
 - a. Model viral dynamics
 - b. Model epidemics (SIR Model: Susceptible, Infectious, Removed).

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = \beta SI - \mu I$$

$$\frac{dR}{dt} = \mu I$$
S is the population of susceptible individuals I is the population of infectious individuals R is the population of individuals who were infected, but have now recovered β is the infection rate β is the recovery rate

- 3. Basic reproductive ratio (R_0) = average number of secondary cases caused by an infectious individual in a totally susceptible population.
 - a. R < 1: disease dies out. R > 1: disease can invade.
- 4. Pseudo-Random Number Generators
 - a. Seed is often system clock.
 - b. Linear congruential generator: $aI_i + c \pmod{m}$
 - c. Mersenne Twister: very long period
- 5. Simulating from other distributions:
 - a. Needs: indefinite integral; f(x) must be invertible.
- 6. Boolean Network Models
 - a. Qualitative: useful when kinetic parameters unknown
 - b. Directed graph: nodes = elements, edges = regulatory relationships
 - c. Nodes are either true or false: N nodes = 2^{N} states.
 - d. Node state determined by transfer function (of neighbor states)
 - i. Generally logical (NOT, AND, OR, XOR, etc.)
 - e. Nodes are related functions (pro-inflammatory, cell types, bacteria, etc).
- 7. ODEs neglect spatial structure
 - a. PDEs allow variation over time and space.
 - b. Compartment modeling: elements in well-mixed compartments (+ movement between) tracked using ODEs.
- 8. Cellular Automata Models
 - a. Conway's Game of Life: grid of cells, each in finite number of states.
- 9. Agent-based modeling (ABM):
 - a. object-oriented, discrete-event, rule-based, stochastic.
 - b. Views system as agents that follow rules.
- 10. Modeling frameworks
 - a. Individual particle-based stochastic
 - b. Particle number stochastic
 - c. Concentration-based (non)spatial, (non)stochastic
- 11. XML encoding: markup language

Lecture 19: Protein Folding I

- 1. Protein-folding problem: find 3D structure from AA sequence
 - a. Detailed: compute & minimize atomic-level free energy for all conformations
 - b. Coarse: same, but residues + solvent
 - c. Levinthal's paradox: number of conformations = #angles^(2N) You cannot just sample all of the states; too many of them.
 - d. Smooth energy landscape = no intermediates.
- 2. Dihedral angles: from stereospecific bonds. Total angles = dihedral bonds + 2
- 3. Driving forces
 - a. Folding: hydrophobicity, H-bonding, van der Waals, ..., electrostatic
 - b. Unfolding: entropy.
- 4. Ramachandran Plot: ok phi/psi angles. Beta is top-left, alpha is left, slightly bottom
- 5. # conformations AND # energy minima increase exponentially.

Lecture 20: Protein Folding II

- 1. Random close packing in protein cores
 - a. Lennard-Jones potential:
 - b. What is the packing fraction?
 - i. 0.74 for hard spheres,0.64 for disordered,0.56 for all-atom in protein cores
 - ii. Volume of residue / volume of container. Container found by summing volumes of Voronoi polyhedral enclosing each atom.

- iii. NOT as high as crystal close-packed, once you consider explicit hydrogens and calibrated radii.
- c. Force-fields necessary to model protein structure (not solid spheres)
- 2. Df = N 3 (after bond length and angle constraints)
- 3. Hard-sphere model: repulsive interactions between non-bonded atoms.
- 4. Finding surface atoms: throw down random points. If the closest atom is more than 1.4 A away, it is a surface atom. (Imagine tracing sphere over the protein).
- 5. High df. Exponential growth of conformations/minima.
- 6. 3-letter BNL model (hydrophobic, neutral, hydrophilic)
- 7. Molecular dynamics
 - a. Equations: $F = m d^2x/dt^2$
 - b. F = -dV/dr

Lecture 22: Markov Chains I

- 1. Protein aggregation (bad!)
 - a. Unfolded => nucleus => protofibrils => amyloid
 - b. Exposed hydrophobic regions bind in (partially) unfolded protein.
 - c. Caused by overproduction, stress, mutation
- 2. smFRET: single-molecule forster resonance energy transfer
 - a. Tells you when two modified sites are close together
- 3. Coarse-grained model:
 - a. Harmonic potential for angles and bond lengths
 - b. Captures effective force and radius of gyration for intrinsically disordered proteins (IDPs)
 - c. MAPt = microtubule associated protein tau -