The SyntX Parser Library

The SyntX parser library is a set of C++ classes that enables users to create a parser for an LL(k) grammar by giving the production rules with an EBNF-like notation as C++ expressions. There is thus no need for a precompiler, the parser can be an integral part of a C++ project.

Recursive descent parsing

The SyntX library is based upon the theory of recursive descent parsers (RDPs). In order to gain a deep and confident understanding of the library, one has to be familiar with the rudiments of recursive descent parsing.

This section provides a brief introduction with a very simple example. It also introduces some of the types and notations that are used in the source code of the library as well.

The Extended Backus-Naur Form

EBNF¹ is a widespread notation that can be used to express context-free grammars. It is the extension of the Backus-Naur Form (BNF) and actually several EBNF styles exist. This document uses the one defined by W₃C².

The "Hello World" grammar that is used to introduce parsing describes a mathemtical expression containg numbers, the four basic operations and an arbitrary depth of parentheses. The grammar below is even simpler than that, it allows only addition, so the way precedence can be handled is not shown. It allows an infinite depth of grouping using parentheses however. The ease with which recursive structures can be handled by EBNF grammars and RDPs is a very important feature and is often exploited.

```
addition = addend ('+' addend)*
addend = [0-9] | expression
expression = '(' addition ')'
```

The production rule named addition is the *start rule*. The text that we're trying to analyse should conform to this rule as a whole. The details can be investigated by following the references to other rules.

¹Extended Backus-Naur Form – en.wikipedia.org/wiki/Ebnf

²World Wide Web Consortium – www.w3.org

The addition rule states that an addition is made up of an addend that can be followed by an arbitrary number of addends each preceded by a '+' operator. The * operator in EBNF allows an zero or more occurrence of a rule (or a sequence of rules). This means that an addition may consist of a single addend as well, which is OK: a number can be thought of as a mathematical expression.

If we wanted to have at least two addends seperated by a '+' operator, than EBNF's + should be used, which allows one or more occurences.

An addend in our simple grammar can be either a single digit (given here by a the shorthand used to describe character sequences in EBNF) or an expression. The | operator stands for *alternation*.

The interesting part lays in the expression rule. An expression is an addition enclosed by parantheses. This is how the grammar becomes recursive and how an expression of infinite complexity can be described by a handful of production rules.

Let's see some examples! The simplest possible expression is a single digit:

8

The start rule is where the matching starts, so we assume that the our text is an addition. An addition starts with an addend. An addend can be a digit, so indeed the text starts with an addend. Thus the first part of the addition rule matched, we may move on to the rest of the text. Next we're looking for a '+' character which we don't find. Luckiliy this part of the rule is optional, so we get to the end of the rule having matched the entire text. This is a successful match.

Let's go for something a bit more complex next:

2 + 3 + (4 + 8)

The addition rule will find two digits with a '+' character in between. It could already stop there as we have a sum which complies to the rules, but we haven't reached the end of the text and actually the rule allows more than two addends. So the parsing continues, we find a second '+' character and then an opening parenthesis. This is OK, as the addend rule doesn't only match digits, expressions are also allowed.

So next we're trying to match the expression rule which contains an addition between parentheses. That's exactly what we have here so, again, we have a successful match. Please note that the addition inside the expression can again turn into an expression and then into an addition – this is exactly how the arbitrary depth of the expression is analysed.

Functions corresponding to each production rule

In a recursive descent parser there is a function corresponding to every production rule. These functions receive the context of parsing (i.e. the text to be parsed and the current position) and return a Boolean value which is true if the function could match a certain substring of the text and could move the position further towards the end of the text. If the function returns false, the position is not altered.

Following is an example function that matches one character of the text if it can be found in the string serving as a character set taken as an argument. The structure of this function is characteristic of the rule methods in the SyntX library.

```
bool character(match_range &context, std::string const &characters) {
      match_range local = context;
3
      if (local.first == local.second) return false;
 5
6
      for (auto c: characters) {
 7
        if (*local.first == c) {
 8
          ++local.first;
          context.first = local.first;
9
          return true;
10
11
12
13
     return false;
14
15
```

The match_range type is an std::pair that holds two std::string::iterators. It describes the context of the parsing: the first element points to the current position (the character that should be analysed next), the second to the end of the text.

The function has two arguments, the context and the character set that enumerates the characters that are accepted. The context is taken as a non-constant reference because the function sets the current position after the last character it could match.

In line 2 a copy of the context is created. This copy will reflect the analysis performed by the function. A complex parser function can delve deep into a string before finding out that it doesn't match it after all. It might also call a series of other parsing functions on the way that also alter this value, so it is absolutely necessary to keep a copy of the original position and only change that value when there is a successful match.

Every parser function that operates at the character level should constantly check if the end of the text has been reached. This can be seen in line 4.

As long as a function finds characters it can consume, it advances the current position, i.e. the first element in the local copy of the context (line 8).

If a function matches a certain substring of the text and can not advance further, two things need to be done: the context taken by reference has to be changed to reflect the advancement in the analysis of the text and it has to return true (lines 9-10). Otherwise it has to merely return false (line 14), the context is left unchanged.