Machine Learning Tarea - 2

Franco De Simone Gaston François Santiago Rivas

Regresión lineal y múltiple

Datos

- Datos provenientes de Advertising.csv
- Datos normalizados
- Cambio de orden aleatorio en los datos
- 80% Train y 20% Test

Correlaciones entre variables

Regresiones simples

MSE: 31.0

MAE: 4.49

R²: 0.384

MSE: 13.1

MAE: 2.67

R²: 0.414

MSE: 18.7

MAE: 3.46

R²: 0.162

Regresión múltiple

Multi Reg $R^2 = 0.8453$

Multi Reg Adj $R^2 = 0.8163$

Multi Reg MSE = 0.0108

βΟ	0.05146048
β1	0.53882635
β2	0.36483891
β3	-0.00877584

Regresión múltiple

Regresión logística

Datos

- Datos provenientes de german_credit.csv
- Datos normalizados
- Cambio de orden aleatorio en los datos
- Separación en Test y Trian
 - Misma cantidad de datos con etiqueta 0 y etiqueta 1
 - 20% de la clase con menor cantidad para test

Resultados

Precisión: 0.675

Recall: 0.866

F1: 0.759

Método numérico elegido: Gradiente descendiente

Conclusión

Conclusión

- Se logró clasificar mediante regresión logística.
- Detección de posibles límites a la hora de clasificar con regresión logística.
- En regresión múltiple, se puede interpretar el peso de cada beta como la influencia de cada medio en las ventas.