全国青少年博特学奥林匹克联赛

NOBP 2023

小清新模拟赛

题目名称	推数机	三元组	徽章	网格
题目类型	传统型	传统型	传统型	传统型
目录	device	triple	badge	grid
可执行文件名	device	triple	badge	grid
输入文件名	device.in	triple.in	badge.in	grid.in
输出文件名	device.out	triple.out	badge.out	grid.out
每个测试点时限	1.0 秒	1.0 秒	3.0 秒	1.0 秒
内存限制	512 MiB	512 MiB	512 MiB	512 MiB
测试点数目	10	10	10	10
测试点是否等分	是	是	是	是

提交源程序文件名

对于 C++ 语言	device.cpp	triple.cpp	badge.cpp	grid.cpp
-----------	------------	------------	-----------	----------

编译选项

对于 C++ 语言	-02 -std=gnu++1z

注意事项

1. 评测机为 11th Gen Intel® CoreTM i5-1135G7 @ 2.40GHz × 2, NOI Linux 2.0 虚 拟机。在评测机上,以上述编译命令编译下发的 time.cpp,运行时间约为 1.2s。

推数机 (device)

【题目描述】

Kaguva 是一个喜欢旅行的女孩子。

在一次旅行中,她遇到了一位来自枫丹的学者,并得到了一台推数机。

经过细致的研究(连蒙带猜),她发现,这台推数机按如下方式工作:

- 1. 接受一个三位数 x, 并依次将其乘以 13,11,7;
- 2. 返回用 x 的非零数位组成的一个随机三位数。

在第二步中,每个数位只能被使用一次。如: x = 112,203 时,可能返回 232 或 221,但不可能返回 111、233、203 和 334。

Kaguya 觉得这个推数机很神奇。于是,她做了一组实验。她有一个三位数 k,并重复了以下实验 n 次:

- 1. 将 k 作为推数机的输入;
- 2. 将 k 改为推数机的输出。

Kaguya 希望知道, 最终 k 的取值有多少种可能。

另外,请注意: Kaguya 认为整数 x 是三位数,当且仅当 $111 \le x \le 999$ 且 x 的个位、十位、百位均非 0。

【输入格式】

从文件 device.in 中读入数据。

本题有多组测试数据。

输入的第一行包含一个整数 t,表示测试数据组数。

接下来依次输入每组测试数据,对于每组测试数据:

输入的唯一一行包含两个整数 k, n,表示 k 的初始值与实验重复次数。

【输出格式】

输出到文件 device.out 中。

对于每组测试数据输出一行一个整数,表示最终 k 的可能取值数目。

【样例1输入】

1 3

2 123 0

3 **123 1**

4 999 100

【样例1输出】

1 1

2 24

3 **1**

【样例1解释】

对于第二组数据,24种可能的结果依次为:

- 112, 113, 221, 223, 331, 332;
- 121, 131, 212, 232, 313, 323;
- 211, 311, 122, 322, 133, 233;
- 123, 132, 213, 231, 312, 321.

【样例 2】

见选手目录下的 device/device2.in 与 device/device2.ans。

【子任务】

对于所有测试数据保证: $0 \le t \le 10^6$, $111 \le k \le 999$, k 的个位、十位、百位均非 0, $0 \le n \le 10^9$ 。

每个测试点的具体限制见下表:

测试点编号	$t \leq$	k	n
1	0		无额外限制
2		无额外限制 $n = 1$	n = 0
3		プロイグクト・ドバードリー 	n = 1
4	$\frac{1}{10^6}$		$n \ge 5$
5	10	k 的个位、十位、百位两两相同	
6		k 的个位、十位、百位两两不同	
7		$111 \le k \le 119$	无额外限制
8	10^{3}		プロインファドスコリ
9	10^{5}	无额外限制	
10	10^{6}		

三元组 (triple)

【题目描述】

Kaguya 是一个喜欢变化的女孩子。

有一天,她收到了一个由整数构成的三元组。Kaguya 认为这个三元组不够优美,于是决定对这个三元组进行一些调整。在一次操作中,Kaguya 会依次进行如下步骤;

- 1. 选择一个整数 d 和一种运算 (加法或乘法);
- 2. 选择三元组中的一些数;
- 3. 对选出的每一个数执行选出的运算。

如: Kaguya 可以选择将 (3,5,7) 的第一个数和第三个数都加上 3,在一次操作内将 (3,5,7) 变为 (6,5,10)。

Kaguya 希望知道至少需要多少次操作,才能将她收到的三元组 (p,q,r) 变为她认为优美的三元组 (a,b,c)。

【输入格式】

从文件 triple.in 中读入数据。

本题有多组测试数据。

输入的第一行包含一个整数 t,表示测试数据组数。

接下来依次输入每组测试数据。对于每组测试数据:

输入的第一行包含三个整数 p,q,r,表示 Kaguya 的初始三元组。

输入的第二行包含三个整数 a, b, c,表示 Kaguya 的目标三元组。

【输出格式】

输出到文件 triple.out 中。

对于每组测试数据输出一行一个整数,表示 Kaguya 至少需要的操作数目。

【样例1输入】

```
1 2
2 3 5 7
3 6 5 10
4 8 6 3
5 9 7 8
```

【样例1输出】

1 1

2 2

【样例1解释】

1. (3+3,5,7+3) = (6,5,10);

2. $(8,6,3) \rightarrow (9,7,4) \rightarrow (9,7,8)$.

【子任务】

对于所有测试数据保证: $1 \le t \le 10^5$, $|p|, |q|, |r|, |a|, |b|, |c| \le 10^9$ 。 每个测试点的具体限制见下表:

测试点编号	$t \leq$	$ p , q , r , a , b , c \le$	特殊性质
1		1	
2	10^{3}	10	
3		10^6	A, B
4			A
5			В
6			
7		10^{9}	А, В
8	10^5		A
9		10	В
10			

特殊性质 A: p = a。

特殊性质 B: (p,q,r,a,b,c) 在所有合法的六元组中均匀随机生成。

徽章 (badge)

【题目描述】

Kaguya 是一个还没能辟谷的女孩子。

有一天,Kaguya 来到了食堂。食堂的队伍好长好长,居然长达 n 个同学。Kaguya 学过一点信息学,所以她将队伍中的同学依次编号为 $1 \dots n$ 。其中,有 n 个区间 $[l_i, r_i]$ 引起了她的兴趣。

Kaguya 拿出了 m 个徽章, 并将第 i $(1 \le i \le m)$ 个徽章送给了第 x_i 个人。

Kaguya 不喜欢奇数。她希望知道, $[l_1, r_1] \dots [l_n, r_n]$ 中,有多少区间 [l, r] 满足:第 l 个人到第 r 个人得到的徽章数目总和是奇数。

由于 Kaguya 非常可爱,所以你需要回答她 q 次同样形式的询问。

【输入格式】

从文件 badge.in 中读入数据。

输入的第一行包含两个整数 n,q,分别表示 Kaguya 感兴趣的区间数目和询问数目。接下来 n 行,第 i 行包含两个整数 l_i,r_i ,表示 Kaguya 感兴趣的第 i 个区间的左右端点。

接下来依次输入每个询问,对于每个询问:

输入的第一行包含一个整数 m,表示 Kaguya 拿出的徽章数目。

输入的第二行包含 m 个整数 $x_{1...m}$,表示 Kaguya 将第 i $(1 \le i \le m)$ 个徽章送给了第 x_i 个人。

【输出格式】

输出到文件 badge.out 中。

对于每次询问、输出一行一个整数表示对应的答案。

【样例1输入】

```
      1
      5
      2

      2
      4
      5

      3
      5

      4
      2
      4

      5
      1
      3

      6
      5
      5

      7
      4

      8
      1
      2
      3

      4
      4
```

```
9 1
10 4
```

【样例1输出】

```
1 3 2 3
```

【样例 2 输入】

```
5 2
1
  4 5
  3 5
3
4
  2 4
  2 3
  5 5
6
7
  2
  2 5
9
  1 2 5
10
```

【样例 2 输出】

```
55
```

【样例 3】

见选手目录下的 badge/badge3.in 与 badge/badge3.ans。

【样例 4】

见选手目录下的 badge/badge4.in 与 badge/badge4.ans。

【样例 5】

见选手目录下的 badge/badge5.in 与 badge/badge5.ans。

【子任务】

对于所有测试数据保证: $1 \le n \le 5 \times 10^5$, $0 \le q \le n$, $1 \le l_i \le r_i \le n$, $0 \le m$, $\sum m \le n$, $1 \le x_i \le n$ 。

每个测试点的具体限制见下表:

测试点编号	$n \leq$	特殊性质
1, 2	3×10^3	
3,4	5×10^5	$r_i - l_i \le 5$
5,6	3 × 10	$l_i \cdot r_i \le n$
7,8	2×10^5	
9, 10	5×10^5	

网格 (grid)

【题目描述】

Kaguya 是一个喜欢几何的女孩子。

一天,她在平面直角坐标系上画出了一个整点三角形。她发现,这个三角形的边经过了一些整点。

于是,她对所有整点三角形的边上的整点数目的和是多少产生了好奇,希望你能告诉她这个问题的答案。

另外, 请注意:

- Kaguya 认为三角形的顶点也在三角形的边上;
- Kaguya 认为一个点 (x,y) 是整点, 当且仅当 $x,y \in \mathbb{Z}$ 且 $0 \le x < n, 0 \le y < m$;
- Kaguya 认为 $\triangle ABC$ 是整点三角形, 当且仅当 A, B, C 均为整点。

【输入格式】

从文件 grid.in 中读入数据。

本题有多组测试数据。

输入的第一行包含一个整数 t, 表示测试数据组数。

接下来依次输入每组测试数据,对于每组测试数据:

输入的唯一一行包含两个整数 n, m, 含义见题目描述。

【输出格式】

输出到文件 grid.out 中。

对于每组测试数据,输出一行一个整数,表示整点三角形边上的整点数目的和。

【样例1输入】

```
      1
      3

      2
      2
      2

      3
      2
      3

      4
      3
      2
```

【样例1输出】

```
    1 12
    2 60
    3 60
```

【样例1解释】

对于第二组测试数据:

共有 18 个三角形, 其中边上有 3 个整点的有 12 个, 边上有 4 个整点的有 6 个。

【样例 2】

见选手目录下的 *grid/grid2.in* 与 *grid/grid2.ans*。

【子任务】

对于所有测试数据保证: $1 \le t \le 5$, $1 \le n, m \le 10^6$ 。 每个测试点的具体限制见下表:

测试点编号	$n,m \leq$	特殊性质
1,2	10^{6}	$\min(n,m) \le 2$
3,4	10^{2}	
5,6	10^{3}	
7,8	10^{5}	
9, 10	10^{6}	

特别地,对于编号为奇数的测试点,保证 n=m。