SOLUTIONS

Solution of pre-tutorial:

Solution of problem 2:

Let w, x, y, p are the inputs and E be the output.

Truth Table: -

W	Х	У	р	E
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Therefore,
$$E = \overline{w} \, \overline{x} \, \overline{y} \, p + \overline{w} \, \overline{x} \, y \, \overline{p} + \overline{w} \, x \, y \, \overline{p} + \overline{w} \, x \, y \, p + w \, \overline{x} \, \overline{y} \, \overline{p} + w \, \overline{x} \, y \, p + w \, x \, \overline{y} \, p + w \, x \, y \, \overline{p}$$

$$= \overline{w} \, \overline{x} \, (y \oplus p) + \overline{w} \, \overline{x} \, \overline{(y \oplus p)} + w \, \overline{x} \, \overline{(y \oplus p)} + w \, x \, (y \oplus p)$$

$$= (y \oplus p) (\overline{w} \, \overline{x} + w \, x) + \overline{(y \oplus p)} \, (\overline{w} \, x + w \, \overline{x})$$

$$= (y \oplus p) (\overline{w \oplus x}) + \overline{(y \oplus p)} \, (w \oplus x)$$

$$= (y \oplus p) \oplus (w \oplus x)$$

Solution of problem 3:

$$S = \overline{A}B$$
$$R = \overline{B} \ \overline{C}$$

S	R	Q	\overline{Q}
0	0	Latch	Latch
0	1	0	1
1	0	1	0
1	1	0	0

Solution of problem 4:

(a)
$$7. - \frac{\left(R_1 - \frac{j}{\omega C}\right)}{\left(R_1 - \frac{j}{\omega C}\right)}$$

$$Z_{in} = \frac{\left(R_1 - \frac{j}{\omega C}\right)(R_2 + j\omega L)}{R_1 + R_2 + j\left(\omega L - \frac{1}{\omega C}\right)}$$

Solving the above equation, we will get,

$$Z_{in} = \frac{\left(R_1R_2 + \frac{L}{C}\right)(R_1 + R_2) + \left(\omega L R_1 - \frac{R_2}{\omega C}\right)\left(\omega L - \frac{1}{\omega C}\right) + \\ j\left((R_1 + R_2)\left(\omega L R_1 - \frac{R_2}{\omega C}\right) - \left(\omega L - \frac{1}{\omega C}\right)\left(R_1R_2 + \frac{L}{C}\right)\right)}{(R_1 + R_2)^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

For resonance,

$$(R_1+R_2)\left(\omega LR_1-\frac{R_2}{\omega C}\right)=\left(\omega L-\frac{1}{\omega C}\right)\left(R_1R_2+\frac{L}{C}\right)$$

Where, $\textit{R}_{1}=10~\Omega$, $\textit{R}_{2}=20~\Omega$, C=10~nF and L=10~mHSolving the above equation we will get $f_0 = 15913.106 \ Hz$

- (b) Q of RC branch $\frac{1}{\omega RC} = 100.01$ (c) Q of RL branch $\frac{\omega L}{R} = 49.99$

Solution of problem 5:

$$I_{\mathsf{R}} = \frac{V}{10^4}$$

Writing KVL for ABCD loop,

$$V + 10^{5}I_{R} = \frac{-jI}{\omega C}$$

$$\Rightarrow V + 10V = \frac{-jI}{\omega C}$$

$$\Rightarrow \frac{V}{I} = Z' = \frac{-j}{11\omega C}$$
a) $Y_{\text{in}} = \frac{-j}{\omega L} + 10^{-4} + \frac{1}{Z'} = 10^{-4} + j(11\omega C - \frac{1}{\omega L})$
b) $\omega_{0} = \frac{1}{\sqrt{11LC}} = 45454.54 \text{ rad/sec}$

$$Z_{in}(\omega_{0}) = 10^{4} + j0 \Omega$$

a)
$$Y_{in} = \frac{-j}{\omega L} + 10^{-4} + \frac{1}{Z'} = 10^{-4} + j(11\omega C - \frac{1}{\omega L})$$

b)
$$\omega_0 = \frac{1}{\sqrt{11LC}} = 45454.54 \text{ rad/sec}$$

$$Z_{in}(\omega_0) = 10^4 + j0\,\Omega$$