

UNIVERSITÀ DEGLI STUDI DI PADOVA

Mean shift

Stefano Ghidoni

Agenda

IAS-LAB

Introduction to mean shift

- An efficient approach to density estimation
 - Density gradient estimation

Visualization of the mean shift procedure

Mean shift – key idea

- Mean shift is a tool for finding stationary points (i.e. peaks)
- Key idea:
 - Find peaks in high-dimensional data distribution without computing the distribution function explicitly
- It implicitly models the distribution using a smooth continuous non-parametric model

Density estimation

IAS-LAB

- Assumption: the data points are sampled from an underlying density function (PDF)
- Direct PDF estimation can be made by means of functions like:

$$f(\mathbf{x}) = \sum_{i} c_{i} e^{-\frac{(\mathbf{x} - \boldsymbol{\mu}_{i})^{2}}{2\sigma_{i}^{2}}}$$

Needs estimates!

To be estimated

Density estimation

IAS-LAB

- Data point density is an implicit description of PDF value
 - Non-parametric estimation

Assumed underlying PDF

Data samples

Density estimation

- How to avoid evaluating the whole density function?
- Do not estimate the PDF
 - Estimate its gradient instead!
- Mean shift is a steepest-ascend method

Density gradient estimation

IAS-LAB

Kernel density estimation

Kernel density gradient estimation

Kernel density gradient estimation:

$$\nabla f(\mathbf{x}) = \frac{1}{Nr^n} \sum_{i=1}^{N} \nabla K(\mathbf{x} - \mathbf{x}_i)$$

Recall:

$$K(\boldsymbol{x} - \boldsymbol{x}_i) = c_k k \left(\frac{\|\boldsymbol{x} - \boldsymbol{x}_i\|^2}{r^2} \right)$$

Density gradient estimation

IAS-LAB

• $\nabla f(x)$ is the multiplication of

$$c_k k' \left(\frac{\|\mathbf{x} - \mathbf{x}_i\|^2}{r^2} \right)$$

And the derivative of the inner function

$$\frac{2}{r^2} \|\boldsymbol{x} - \boldsymbol{x}_i\|$$

IAS-LAB

Now define

$$y_i = \frac{1}{r^2} \|x - x_i\|^2$$

And

$$g(a) = -k'(a)$$

• Where the minus sign is used to express in terms of $(x_i - x)$

IAS-LAB

• The derivative $\nabla f(x)$ can then be written as

$$\nabla f(\mathbf{x}) = \frac{2c_k}{Nr^{n+2}} \sum_{i=1}^{N} [(\mathbf{x}_i - \mathbf{x}) \cdot g(\mathbf{y}_i)]$$

$$= \frac{2c_k}{Nr^{n+2}} \left(\sum_{i=1}^{N} [\mathbf{x}_i g(\mathbf{y}_i)] - \mathbf{x} \cdot \sum_{i=1}^{N} g(\mathbf{y}_i) \right)$$

$$= \frac{2c_k}{r^2 c_g} \left[\frac{c_g}{Nr^n} \sum_{i=1}^{N} g(\mathbf{y}_i) \right] \left[\frac{\sum_{i=1}^{N} \mathbf{x}_i g(\mathbf{y}_i)}{\sum_{i=1}^{N} g(\mathbf{y}_i)} - \mathbf{x} \right]$$

• Where the constant c_g normalizes the integral in the feature space when $g(\cdot)$ is used as a kernel

Density gradient estimation

IAS-LAB

Considering the last formulation:

$$\frac{2c_k}{r^2c_g}\left[\frac{c_g}{Nr^n}\sum_{i=1}^N g(\mathbf{y}_i)\right]\left[\frac{\sum_{i=1}^N \mathbf{x}_i g(\mathbf{y}_i)}{\sum_{i=1}^N g(\mathbf{y}_i)} - \mathbf{x}\right]$$

Constant term

Kernel density estimator using a kernel function $g(\cdot)$

Mean shift vector

The mean shift vector starts at vector x

We can rewrite the previous equation as:

$$\nabla f_k(\mathbf{x}) = \mathbf{A} \cdot f_g(\mathbf{x}) \cdot m_g(\mathbf{x})$$

Which can be rearranged as:

$$m_g(\mathbf{x}) = \frac{\nabla f_k(\mathbf{x})}{\mathbf{A} \cdot f_g(\mathbf{x})}$$

 This shows that the mean shift vector proceeds in the direction of the gradient

Mean shift vector

$$m(x) = \left[\frac{\sum_{i=1}^{N} x_i g(y_i)}{\sum_{i=1}^{N} g(y_i)} - x \right]$$

- The mean shift vector is the direction to follow to find the mode
- Iterative procedure:
 - Compute mean shift vector m(x)
 - Move the kernel window by m(x)
 - Stop when the gradient is close to 0

Mode pruning

- Saddle points have zero-gradient
 - Unstable locations
 - A small
 perturbation cause
 the process to
 move away

Mean shift iterative procedure

- The mean shift vector is the direction to follow to find the mode
- Iterative procedure:
 - Compute mean shift vector m(x)
 - Move the kernel window by m(x)
 - Stop when the gradient is close to 0
 - Prune the mode by perturbation

Mean shift properties

- Automatic convergence speed
 - The mean shift vector magnitude depends on the gradient

- Steps are smaller towards a mode
- Convergence depends on appropriate step size

Optimization

- Divide the space into windows
- Run the procedure in parallel

Optimization

IAS-LAB

The blue points were traversed by the windows – same cluster

Window trajectories

IAS-LAB

The windows trajectories follow the steepest ascent directions

IAS-LAB

Pros

- Does not assume clusters to be spherical
- One single parameter (window size r)
 - It has a physical meaning
- Finds a variable number of modes
- Robust to outliers

Cons

- Depends on window size
 - Not always easy to find the best value
 - Inappropriate choice can cause modes to be merged
- Computationally expensive
- Does not scale well with dimension of feature space

UNIVERSITÀ DEGLI STUDI DI PADOVA

Mean shift

Stefano Ghidoni

