NIS LAB7

Prof. Mrudang T. Mehta
Associate Professor
Computer Engineering Department
Faculty of Technology,
Dharmsinh Desai University, Nadiad

- Write a program to implement Elgamal Cryptosystem.
 - Function to create Primitive root for the given
 Multiplicative Group
 - Key Generation
 - Encryption
 - Decryption

- Primitive Root
- Find the primitive roots for <Z^{*}₇, x>
- $Z_7^* = \{1,2,3,4,5,6\}$
- $\phi(7) = 6$

Mod 7

	i=1	i=2	i=3	i=4	i=5	i=6
a=1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1

- Ord(1)=1
- Ord(2)=3
- Ord(3)=6
- Ord(4)=3
- Ord(5)=6
- Ord(6)=2

• 3 and 5 are primitive roots. (Generator for the group)

Key Generation

- 1. Select P (Very large prime number)
- 2. Select e_1 (primitive root) of the group $\langle Z_p^*, x \rangle$
- 3. Select d to be a member of the group $G = \langle Z_p^*, x \rangle$ x> such that 1<=d<=p-2
- 4. $e_2 = e_1^d \mod p$
- 5. Public key: (e₁, e₂, p)
- 6. Private key= d

```
Encryption
Elegamal_Encryption (M, e_1, e_2, p)
c_1 = e_1^r \mod p r is random number from group G = \langle Z_p^*, x \rangle
c_2 = (e_2^r \times M) \mod p
Decryption
Elegamal_decryption(c_1, c_2, d, p)
  M = [c_2 x (c_1^d)^{-1}] \mod p
```