- 1. Let A be an $m \times n$ matrix.
 - (a) The full A = QR factorization contains more information than necessary to reconstruct A. What are the smallest matrices \tilde{Q} and \tilde{R} such that $\tilde{Q}\tilde{R} = A$?
 - (b) Let \tilde{A} be an $m \times n$ matrix (m > n) whose columns each sum to zero, and let $\tilde{A} = \tilde{Q}\tilde{R}$ be the reduced QR factorization of \tilde{A} . The squared Mahalanobis distance to the point \tilde{x}_i^{T} (the i^{th} row of \tilde{A}) is

$$d_i^2 = \tilde{x}_i^{\mathrm{T}} \hat{S}^{-1} \tilde{x}_i$$

where $\hat{S} = \frac{1}{m-1} \tilde{A}^{\mathrm{T}} \tilde{A}$ is a covariance matrix. Compute d_i^2 without inverting a matrix.

2. Consider the constrained optimization problem

minimize:
$$x^2 + 4xy + 3y^2$$

subject to: $2x + 8y = 12$

- (a) Write down the Lagrangian for the problem and compute its gradient.
- (b) The critical point of the Lagrangian can be found by solving a linear system. Write this system in matrix notation.
- (c) Use elimination followed by back substitution to compute the critical point. What is the value of the objective at the critical point?
- (d) Use the constraint to reduce the objective to a function of 1 variable. Find the critical point of this new 1 variable objective and verify that it is a minimum.
- 3. Consider using Lagrange's method to solve the following optimization problem.

minimize:
$$3x_1 - 4x_2 + x_3 - 2x_4$$

subject to: $-x_2^2 + x_3^2 + x_4^2 = 1$
 $3x_1^2 + x_3^2 + 2x_4^2 = 6$

Write down the Lagrangian and its gradient and explain why it is difficult to find a critical point.

4. Compute the gradient of the Lagrangian for the maximum expected return portfolio subject to risk = $(20\%)^2$.