

CONVERGÉNCIA DO MÉTODO DE NEUTON

EXERCÍCIOS:

- 1) MOSTRE QUE VAII É UMA MORMA NO ESPAÇO DAS MATRIZES.
- 2) MOSTRE QUE l'AxII < |A/. IXII.

LEMA: SEJA A NÃO SINGULAR. SE ||A-A*|| < ||A*|| 1 ENTÃO À É NÃU SINGULAR E 1/A-1/1 < 2 1/A-1/1. PROVA: VER LIVROS DE ANALISE MATRICIAL (GOLUB, WATCHKINS) HIPOTESE COMUM: H1: A FUNÇÃO DEJGO) É LIPSCHITZ, ISTO É, EXISTE L > 0 TAC QUE $\|\nabla^2 f(\tilde{x}) - \nabla^2 f(x)\| \leq L \|\tilde{x} - x\|$.

TEOREMA (CONVERGENCIA DE NEWTON)

SUPONHA QUE f TENHA PERIVADAS ATÉ A GECUNDA ORDEM CONTINUAS. SEJA χ^* TAL QUE $\nabla f(\chi^*) = 0$. SUPONHA QUE $\nabla^2 f(\chi^*) \neq 1$ NãO SINCULAR. EXISTE ENTÃO E > 0 TAL QUE, SE $||\chi^* - \chi^*|| \leq E$ TEMOS

(i) A SEQUELCIA PEFINIDA POR $\chi^{K+1} = \chi^{K} - (\nabla f(\chi^{K}))^{-1} \nabla f(\chi^{K})$ ESTA BEM PEFINIDA.

(0 PASSO NEUTONIANO É POSSIVEL)

(ii) lim $\chi' = \chi^*$ com ordem Superlinear.

(iii) Se vale H1 (isto é, se $\nabla^2 f(\alpha)$ é lipschitz) entad

A ordem Re convergência é QUADRATICA.

PROVA:

(i) como
$$\chi^* \rightarrow \chi^* \in \mathcal{D}_{+}^{2}(\chi^*) \in \mathcal{N}_{+}^{2}$$
 NÃO SINGULAR, SEGUE

 \mathfrak{Po} LEMA. Rigorosamente falando, não sabemos de antemão que $x^k --> x^*$. Isso segue da expressão (1), na prova do item (ii): Tome epsilon pequeno para x^1 estar bem definido (ele existe pelo Lema). Assim, (1) vale e implica que x^2 está bem definido. A boa definição de x^k segue por indução.

$$\|\chi^{k+1} - \chi^{*}\| = \|\chi^{k} - \chi^{*} - (\nabla f(\chi^{k}))^{-1} \nabla f(\chi^{k})\|$$

$$= \|(\nabla f(\chi^{k}))^{-1} [-\nabla^{2} f(\chi^{k})(\chi^{k} - \chi^{*}) + \nabla f(\chi^{k}) - \nabla f(\chi^{*})\|$$

CONSIDERAMOS A FUNÇÃO

$$f(t) = \nabla f(t x^{\kappa} + (1-t)x^{*}), \quad t \in \Gamma_0, 1J.$$

TEMOS

$$\varphi'(t) = \nabla^2 f(t x^* + (1-t)x^*)(x^* - x^*).$$

PELO D TEO. DO VALOR MÉDIO Existe $\bar{t} \in (0,1)$

TAL QUE

$$f'(\bar{t}) = f(1) - f(0) = \nabla f(x^*) - \nabla f(x^*)$$
.

DAÍ, PARA TOPO K SUFICIENTE MENTE GRANDE,

 $\|\chi^{x+1} - \chi^{*}\| \leq 2 \|\nabla_{f}^{f}(\chi^{*})^{-1}\| \|\nabla_{f}^{2}(\bar{t}\chi^{*} + (1-\bar{t})\chi^{*})(\chi^{*} - \chi^{*})\| - \nabla_{f}^{2}(\chi^{*})(\chi^{*} - \chi^{*})\|$

 $\leq 2\|\nabla^2 f(x^*)^{-1}\|.\|\chi^{\kappa} - \chi^{*}\| \sup_{t \in [0,1]} \|\nabla^2 f(t\chi^{\kappa} + (1-t)\chi^{*}) - \nabla^2 f(\chi^{\kappa})\|$

DEFINIMOS

 $J_{x} = 2 \|\nabla f(x^{*})^{-1}\| \cdot \sup_{t \in [0,1]} \|\nabla^{2} f(tx^{*} + (1-t)x^{*}) - \nabla^{2} f(x^{*})\|.$

PARA E [0,1] TEMOS $\| t \widetilde{x} + (1 - t) x^* - \widetilde{x} \| = (1 - t) \| \widetilde{x} - x^* \| \le \| \widetilde{x} - x^* \|$ ASSIM, PELA CONTINUIDADE DE D'A, EXISTE TAL QUE 1/2-2+1/5 => $2\|\nabla f(x^*)^{-1}\| \sup_{t \in [0,1]} \|\nabla^2 f(t \tilde{x} + (1-t) x^*) - \nabla^2 f(\tilde{x})\|$ ASSIM, 112°- X*11 < E => 10 < 1/2. $\|\chi^{K+1} - \chi^*\| \leq J_K \|\chi^K - \chi^*\|$ SE $\|x^{\circ}-x^{\star}\| \leq \epsilon \Rightarrow \|x^{\prime}-x^{\star}\| \leq \epsilon_{\gamma}$. VOVAMENTE,

$$\|\chi^{1} - \chi^{*}\| \le \frac{\xi}{2} < \xi \implies \eta_{1} \le \frac{1}{2}$$
.

 PA_{1}^{1} ,
 $\|\chi^{2} - \chi^{*}\| \le \frac{1}{2} < \frac{\xi}{2} = \frac{\xi}{4}$.

REPETINDO O ARGUMENTO, TEMOS

$$\|\chi^{k} - \chi^{*}\| \leq \frac{\varepsilon}{2^{k}}. \tag{1}$$

PELA CONTINUIDADE DE D'A, TEMOS

$$\|\chi^{k} - \chi^{*}\| \to 0 \implies 2\|\nabla_{f}^{2}(\chi^{*})^{2}\| \sup_{t \in [0,1]} \|\nabla_{f}^{2}(t\chi^{k} + (1+t)\chi^{*}) - \nabla_{f}^{2}(\chi^{k})\|$$

(i.i.) AQUI, ESTAMOS SUPONDO QUE TIPSCHITZ, Bro É,

11 D2 fa) - Dfa) 11 < L1/2-x11, L>0.

TEMOS

 $\|\chi^{K+7} - \chi^*\| \leq \Lambda_K \|\chi^K - \chi^*\|$

 $= 2 \|\nabla^2_f(z^*)^{-1}\| \sup_{t \in [0,1]} \|\nabla^2_f(t x^k + (1-t)x^k) - \nabla^2_f(x^k)\| \cdot \|x^k - x^k\|$

 $\leq 2\|\nabla^2 f(x^*)^{-1}\| \sup_{t \in [0,1]} L\|t_{x^*} + (1-t)x^* - x^*\| . \|x^* - x^*\|$

1-t) / xx x

$$= 2 \|\nabla f(x^*)^{-1}\| L \sup_{t \in [0,1]} (1-t) \cdot \|\chi^{\times} - \chi^{*}\|^{2}$$

(A CONVERGENCIA É QUADRATICA).

OBS: O MÉTOPO DO GRADIENTE
$$(d^{k} = -\nabla f(G^{k}))$$
 CONVERCE

NO MÁXIMO EM ORPEM LINEAR. OU SEJA, LONGE PA

SOLUÇÃO \Rightarrow CONVERG. LENTA (COM GRAD.), PERTO DA SOL \Rightarrow

CONV. RAPIDA (NEWTON).