Projekt

WIZUALIZACJA DANYCH SENSORYCZNYCH

Stacja pomiarowa do kontroli stanu wody w zbiorniku

Paweł Łyszczarz, 259258

Prowadzący: dr inż. Bogdan Kreczmer

Katedra Cybernetyki i Robotyki Wydziału Elektroniki, Fotoniki i Mikrosystemów Politechniki Wrocławskiej

Spis treści

1	Charakterystyka tematu projektu	1
2	Podcele i etapy realizacji projektu	1
3	Specyfikacja finalnego produktu	1
4	Terminarz realizacji poszczególnych podcelów (z dokładnością do 1 tygodnia)	1
5	Projekt graficznego interfejsu użytkownika 5.1 Funkcjonalności aplikacji	4 4 4 4 5
6	Wstępne rezultaty 6.1 Opis rezultatów	6
7	Rezultaty zaawansowane7.1 Wygląd aplikacji7.2 Dane z układu rzeczywistego	9 9 11
8	Rezultaty prawie końcowe 8.1 Wygląd aplikacji	12 12
9	Rezultaty końcowe 9.1 Funkcjonalność aplikacji	13 13 13 13 15 16
	9.4 Wady aplikacji	16

1 Charakterystyka tematu projektu

Zamysłem projektu jest stworzenie i wizualizacja danych sensorycznych ze stacji pomiarowej na zbiorniku wodnym, wyposażonej w między innymi w czujnik wilgotności oraz temperatury, wysokości wody jak zarówno prędkość przepływu wody w symulowanym "kanale". Projekt od strony fizycznej zostanie skonstruowany z użyciem płytki Arduino Uno. Od strony wizualizacji przewiduję, że projekt będzie ujawniał graficzne odzwierciedlenie stanu zbiornika i wszystkich informacji z nim związanych.

2 Podcele i etapy realizacji projektu

Planowane są poszczególne etapy, lista podcelów:

- Przegląd literatury i zasobów Internetu związanych z tematem projektu
- Projekt układu elektronicznego (schemat ideowy)
- Stworzenie całego układu elektronicznego.
- Zaprojektowanie wizualizacji danych sensorycznych.
- Implementacja założeń projektowych.
- Dopracowanie komunikacji układu z komputerem.
- Testy aplikacji oraz układu i ewentualna redukcja błędów.

3 Specyfikacja finalnego produktu

Projekt na finalnym etapie będzie zawierał aplikację wizualizującą dane ze stacji pomiarowej kontrolującej stan zbiornika, którego temperaturę, poziom wody oraz prędkość przepływu będzie można kontrolować, a aplikacja odpowiednio te zmiany uwzględniać. Projekt takiego zbiornika ma odzwierciedlenie na przykład w stacjach antypowodziowych, gdzie stan wysokości wody oraz prędkości przypływów są stale monitorowane.

4 Terminarz realizacji poszczególnych podcelów (z dokładnością do 1 tygodnia)

- 21 marca 2023 zakończenie przeglądu materiałów związanych z danym tematem, podjęcie decyzji dotyczącej wyboru czujników oraz ich zakup.
- 28 marca 2023 projekt aplikacji do wizualizacji danych, zaplanowanie wyglądu odpowiednich elementów interfejsu oraz wstępne zapoznanie się z metodami ich implementacji.
- 4 kwietnia 2023 schemat układu elektronicznego, przygotowanie wszystkich materiałów, początkowy projekt stanowiska pomiarowego, symulacyjny zbiornik na wodę z miejscami na czujniki oraz "kanał" do pomiaru prędkości przepływu.

- 18 kwietnia 2023 złożenie kompletnego układu elektronicznego, podłączenie wszystkich czujników do kontrolera, umieszczenie ich w ostatecznych miejscach pomiarowych oraz zapoznanie się z ich działaniem.
- 25 kwietnia 2023 początkowa wizualizacja graficzna, wdrożenie poznanych metod przy założeniach projektowych.
- 9 maja 2023 testy działania układu, komunikacja z komputerem, próby znalezienia błędów, testowanie czujników, manipulowanie stanem zbiornika wodnego.
- 16 maja 2023 rozwinięcie wizualizacji graficznej oraz wcześniej utworzonych elementów graficznych przedstawiających dane z czujników.
- 23 maja 2023 testowanie niezawodności transmisji danych, testowanie limitów czujników i reakcji aplikacji na te limity.
- 1 czerwca 2023 Dopracowanie aplikacji wizualizującej oraz interfejsu i jego elementów.
- 7 czerwca 2023 Dopracowanie układu fizycznego, stworzenie łatwego do testów środowiska.
- 20 czerwca 2023 finalne testowanie całego układu

Rysunek 1: Diagram Gantt'a

5 Projekt graficznego interfejsu użytkownika

5.1 Funkcjonalności aplikacji

Aplikacja będzie dostarczać interfejs użytkownika ukazujący widok ogólny (bazowy) stanu wszystkich czujników na raz. W tym ognie widoczny będzie przycisk połączenia komunikacji aplikacji ze stacją pomiarową oraz lampkę LED sygnalizującą o statusie połączenia.

5.2 Wizualizacja projektu

5.2.1 Okno widoku bazowego - ogólnego

Po uruchomieniu aplikacji ukaże się widok bazowy, który pozwalać będzie na kontrolę wszystkich odczytów z czujników na raz 2. Każdy z pomniejszych prostokątów będzie przedstawiał odczytywane z konkretnych czujników dane. W zależności od tego jak blisko górnej granicy zakresu pomiarowego czujnika, mierzony obiekt będzie się znajdował istnieje możliwość pojawienia się czerwonego trójkąta z żółtym wykrzyknikiem w środku w celu zawiadomienia i ostrzeżenia użytkownika aplikacji o tych zdarzeniach. W lewym górnym rogu widnieć będzie również przycisk pozwalający na podgląd wykresów odzwierciedlających przebieg pomiarów każdego z sensorów z osobna w przestrzeni czasu w nowym oknie 3.

Rysunek 2: Widok bazy

5.2.2 Okno podglądu wykresów

Po wciśnięciu przycisku "Podgląd wykresów" z pozycji widoku bazowego otworzy się nowe okno podobnie wyglądające do poprzedniego, z tą różnicą, że teraz w prostokątach wcześniej ujawniających modele wizualizujące stan mierzonych obiektów znajdować się będą wykresy dokumentujące przebieg pomiarów czujników w przestrzeni czasu. W lewym górnym rogu widoczny będzie przycisk pozwalający na powrót do standardowego widoku bazowego.

Rysunek 3: Widok wykresów

6 Wstępne rezultaty

6.1 Opis rezultatów

W ramach zaplanowanych działań w harmonogramie, do tego momentu został złożony kompletny schemat elektroniczny, zawierający czujniki oraz płytkę z mikroprocesorem, udało się również pomyślnie skomunikować stację pomiarową z komputerem poprzez interfejs komunikacyjny UART oraz poprawnie odebrać te przesyłane dane w QT Application w utworzonym projekcie, poprzez prawidłowe zapisywanie osobnych odczytów do tablicy. Udało się również skonstruować dwa docelowe okna, jedno w przyszłości przedstawiające widok bazowy aplikacji ze wszystkimi pomiarami z czujników 4, oraz okno z podglądem na wykresy pomiarowe 5. Obydwa z tych ekranów posiadają przyciski pozwalające na przełączanie się między ekranami oraz ich ukrywanie.

Rysunek 4: Okno bazowe

Rysunek 5: Okno wykresów

Kod do obsługi przełączania się pomiędzy okienkami za pomocą przycisków

1. main_window

```
QT_BEGIN_NAMESPACE
namespace Ui { class MainWindow; }
QT_END_NAMESPACE

class MainWindow : public QMainWindow

{
      Q_OBJECT

public:
      MainWindow(QWidget *parent = nullptr);
      ~MainWindow();

private slots:
      void on_pushButton_clicked();

private:
      Ui::MainWindow *ui;
      Second_Dialog *sec_dial;
};
```

Rysunek 6: $main_w indow.h$

```
MainWindow::MainWindow(QWidget *parent)
    : QMainWindow(parent)
    , ui(new Ui::MainWindow)
{
    ui->setupUi(this);
}

MainWindow::~MainWindow()
{
    delete ui;
}

void MainWindow::on_pushButton_clicked()
{
    hide();
    sec_dial = new Second_Dialog(this);
    sec_dial->show();
}
```

Rysunek 7: $main_w indow.cpp$

2. second_dialog

```
class MainWindow;

namespace Ui {
  class Second_Dialog;
}

class Second_Dialog : public QDialog
{
    Q_OBJECT

public:
    explicit Second_Dialog(MainWindow *main_window, QWidget *parent = nullptr);
    ~Second_Dialog();

private slots:
    void on_pushButton_clicked();
    void on_backButton_clicked();

private:
    Ui::Second_Dialog *ui;
    MainWindow *main_window;
};
```

Rysunek 8: second $_dialog.h$

```
Second_Dialog::Second_Dialog(MainWindow *main_window, QWidget *parent) :
    QDialog(parent),
    ui(new Ui::Second_Dialog),
    main_window(main_window)
{
    ui->setupUi(this);
    connect(ui->pushButton, &QPushButton::clicked, this, &Second_Dialog::on_pushButton_clicked);
}
Second_Dialog::~Second_Dialog()
{
    delete ui;
}
void Second_Dialog::on_pushButton_clicked()
{
    main_window->show();
    close();
}
```

Rysunek 9: $\operatorname{second}_{d}ialog.cpp$

6.2 Protokół komunikacyjny UART

W ramach komunikacji stacji mierniczej z urządzeniem został skonfigurowany protokół komunikacyjny UART. Mikroprocesor po porcie szeregowym wysyła odpowiednio przetworzone dane z czujników w postaci linii tekstu, w którym każdy pomiar jest oddzielony przecinkiem, dodatkowo do każdej linijki przesyłanej portem szeregowym po przecinku i znaku mnożenia (,*) zostaje umieszczona suma kontrolna będąca sumą wszystkich wartości przesyłanych danych zapisanych w systemie sześciennym 10. Po odpowiednim przetworzeniu otrzymanych danych przez Qt Application oraz obliczeniu i sprawdzeniu sumy kontrolnej, dane są zapisywane do buffora 11.

```
$21,49,3,0,*49
```

Rysunek 10: Przesyłany pasek danych

```
Found serial port: "COM3"

Received data: 22 49 5 0 "4C"

Received data: 22 49 4 0 "4B"

Received data: 22 49 4 0 "4B"

Received data: 22 50 6 0 "4E"

Received data: 22 52 4 0 "4E"

Received data: 22 58 6 0 "56"

Received data: 22 64 5 0 "5B"
```

Rysunek 11: Odbierane dane

7 Rezultaty zaawansowane

Do tego momentu udało się zrealizować wszystkie dotychczas zaplanowane cele i etapy realizacji projektu, od poprawnie przesyłanych danych do początkowego wyglądu aplikacji

7.1 Wygląd aplikacji

Wygląd odpowiednich okien aplikacji odpowiadających poszczególnym widokom danych zostały dostosowane na wzór wcześniej zaprojektowanych wyglądów widoków 12.

Rysunek 12: Okno widoku bazy

Okno główne ukazujące widok bazy zawiera cztery główne pola z których każde jest opisane ramką nazwy np. "Wysokość poziomu wody", są one równo rozłożone na ekranie a ich rozmiar odpowiednio dostosowuje się to wielkości okna aplikacji. Każde wyżej wymienione pole posiada w sobie obiekty, które w dalszych etapach będą odpowiadały za odpowiednie grafiki i wyświetlane dane. Położenie tych obiektów jest ściśle określone w danych polach i nie zmienia się ono pomimo skalowania okna. Na ramce powyżej

wspomnianych pól widnieje nazwa obecnie wyświetlanego widoku oraz funkcjonalne przyciski takie jak Podgląd wykresów który otwiera nowe okno z widokiem wykresów, czy też przycisk do połączenia z bazą wraz z diodą LED wskazującej na stan połączenia.

Rysunek 13: Okno widoku wykresów

Drugie okno - okno widoku wykresów posiada identycznie rozmieszczone i nazwane dynamicznie skalujące się pola, w których tym razem znajdować się będą wykresy dokumentujące przebieg wartości danych, które tak samo będą dostosowywać swój rozmiar i położenie do otoczenia 13. Podobnie jak poprzednio nad wspomnianymi polami znajduje się ramka z nazwą aktualnie wyświetlanego widoku oraz przycisk powrotu zamykający okno z wykresami.

7.2 Dane z układu rzeczywistego

Układ oraz dane z niego otrzymywane w aplikacji zostały sprawdzone pod względem poprawności i trafności odczytów pomiarowych. Odpowiednio odbierane, sprawdzane i filtrowane ramki danych są przechowywane w programie i gotowe do wyświetlania na ich bazie grafik ilustrujących stan bazy oraz przebieg odczytywanych danych.

8 Rezultaty prawie końcowe

W tym etapie udało się zrealizować wszystkie dotychczas zaplanowane postępy. Okno główne jest już praktycznie całkowicie ukończone.

8.1 Wygląd aplikacji

Główne okno aplikacji jest już wyposażone w obiekty wizualizujące odczyty wszystkich czujników, wraz z wyświetleniem ich dosłownych wartości 14.

Rysunek 14: Okno główne

Dodane również zostały znaki ostrzegawcze, przy wcześniej ustalonych granicach bezpieczeństwa parametrów odczytywanych przez sensory, wyświetlany jest znak który sygnalizuje zagrożenie lub stan wymagający szczególnej uwagi.

9 Rezultaty końcowe

Projekt został zakończony pomyślnie, wszystkie założone etapy zostały zrealizowane w terminie. Utworzono specjalny plik wykonywalny (eng. executable file ".exe"), który pozwala na uruchomienie aplikacji na każdym komputerze bez względu na wersję aplikacji Qt.

9.1 Funkcjonalność aplikacji

Aplikacja dostarcza główny widok okna bazowego z interfejsem użytkownika, który pozwala na interakcję z bazą czy też na podgląd jej dodatkowych funkcjonalności. Oprócz głównego widoku aplikacja posiada możliwość przełączenia się na drugie okno, w którym mamy dostęp do na bieżąco wyrysowywujących się wykresów.

9.2 Aspekt wygladu aplikacji

Po początkowym uruchomieniu aplikacji ukazuje nam się okno główne aplikacji nieposiadające jeszcze jednak żadnej grafiki odzwierciedlającej odczyty z czujników, w zasadzie to i dane z portu szeregowego nie są jeszcze na ten moment odczytywane. Opisywany stan można rozpoznać poprzez czerwoną ikonę znajdującą się w prawym górnym rogu aplikacji, tuż przy przycisku "Połącz z bazą" 15

Rysunek 15: Sygnalizator niepołaczonej stacji mierniczej

Po wciśnięciu przycisku "Połącz z bazą" aplikacja powinna automatycznie znaleźć dostępny port szeregowy a następnie wyświetlić docelowe grafiki wizualizujące odczyty z czujników oraz odpowiednio zasygnalizować poprawne połączenie z bazą poprzez zieloną ikonę znajdującą się również w prawym górnym rogu 16

Rysunek 16: Sygnalizator połączonej stacji mierniczej

9.2.1 Okno gówne

Przy poprawnie połączonej stacji mierniczej powinien nam się pokazać okno główne w pełnej okazałości ze wszystkimi grafikami 17. W każdym z zaokrąglonych czworokątów widoczne są osobne grafiki odpowiadające każdemu z czujników w układzie rzeczywistym. W lewym górnym zaokrąglonym czworokącie widoczny jest zbiornik wody, którego poziom zmienia się w zależności od poziomu wody w rzeczywistym pojemniku, ponadto obok zbiornika znajdują się napisy, górny z dokładną ilością wody w mililitrach a niżej procentowe wypełnienie pojemnika, w przypadku przekroczenia ustalonej granicy wysokości wody, obok napisów pojawi się czerwony trójkąt z żółtym wykrzyknikiem oznaczający ostrzeżenie przed zakrażającym poziomem wody 18.

Rysunek 17: Okno główne aplikacji

Rysunek 18: Ostrzeżenie o wysokości wody

W prawym górnym rogu natomiast widoczna jest grafika odzwierciedlająca odczyty z czujnika prędkości przepływu wody. Na zielonym panelu wyświetlana jest dokładna wartość odczytywana przez czujnik w jednostce mililitrów na minuty. W przypadku przekroczenia wcześniej ustalonej granicy również wyświetlany jest trójkąt ostrzegawczy 19.

Analogicznie sytuacja wygląda w prawym dolnym i lewym dolnym zaokrąglonym czworokącie, gdzie zarówno dla wizualizowanego czujnika poziomu wilgoci jak i dla czujnika temperatury, po przekroczeniu granicy bezpieczeństwa przez odczyty z czujników zaświeca się trójkąt ostrzegawczy 20. Po spadku wartości odczytu z czujnika poniżej wartości granicznej, ostrzeżenie w postaci trójkąta naturalnie znika.

Rysunek 19: Ostrzeżenie o prędkości przepływu wody

Rysunek 20: Ostrzeżenie o poziomie wilgoci

9.2.2 Okno wykresów

W oknie wykresów zostały stworzone identyczne zaokrąglone czworokąty, tym razem zawierające wykresy przedstawiające pomiary każdego z czujników w zależności od czasu 21. Prawie dla każdego z wykresów zastosowany inny rozmiar plotowania aby pokazać możliwości zawartej biblioteki do tworzenia wykresów.

Rysunek 21: Okno wykresów

9.3 Komunikacja przez port szeregowy

Od poprzedniego momentu implementacji komunikacji aplikacji z portem szeregowym nic nie zostało zmienione. Przetestowana została tylko niezawodność transmisji danych z wynikiem pozytywnym. Ramka wysyłanych danych dalej ma format jak poprzednio 10, a przerobione i podzielone już dane przez aplikację prezentują się bez zmian tak jak wcześniej 11.

9.4 Wady aplikacji

Jedyną zauważalną lecz dopuszczalną wadą aplikacji jest odczyt poziomu wody. W założeniu układ rzeczywisty miał składać się z bardziej wysokiego niż szerokiego pojemnika na wodę aby móc lepiej zwizualizować zmiany w poziomie wody korzystając z większego zakresu czujnika odległości. Problemem okazało się jednak dobranie odpowiedniego pojemnika, który byłby na tyle wysoki i o takim kształcie aby czujnik ultradźwiękowy był możliwy do zamontowania a zakres jego pomiaru był jak największy. Aktualnie znajdujący się w rzeczywistym układzie pojemnik na wodę jest dosyć płaski w porównaniu do zakładanego, dlatego też zakres pomiarowy czujnika odległości to o 0 do 7 jednostek, przez co grafika wizualizująca pojemnik często ukazuje przeskakującą wartość ilości wody właśnie przez ten mały zakres jednostek. Wada ta nie wpływa jednak na poprawność działania aplikacji tylko na jej przejrzystość.

Literatura

- [1]
- [2] Jasmin Blanchette, Mark Summerfield. C++ GUI Programming with Qt 4. http://www.qtrac.eu/C++-GUI-Programming-with-Qt-4-1st-ed.zip, 2006.
- [3] Analog Devices. Ad1871 stereo audio. http://www.analog.com/en/prod/0,,760_789_AD1871%2C00.html.
- [4] J. Hallam. Intelligent Automatic Interpretation of Active Marine Sonar. Praca doktorska, University of Edinburgh, Edinburgh, 1984.
- [5] UM Inc. User modeling and user adapted interaction. http://www.um.org/.
- [6] K. Klinger. Informationsverarbeitung durch menschen. NTZ, 12(2):73–82, 1998.
- [7] R. Kuc. Forward model for sonar maps produced with the polaroid ranging module. *IEEE Trans. Robot. Automat.*, 19(2):358 362, Marzec 2003.
- [8] A. Litwin, J. Kowalski, R. Nowak, J. Ziobro. Transport phenomena in InSb doped with various impurities. 11 International Conference on the Physics of Semiconductors, wolumen 2, strony 952 957, Warszawa Poland, July 25 29 1972.
- [9] M. Michnikowski. Systemy wspomagania decyzji. R. Rudkowski, redaktor, *Informatyka medyczna*. PWN, Warszawa, 2003.
- [10] R. Rudowski, redaktor. Informatyka medyczna. PWN, Warszawa, 2003.
- [11] M. W. Spong, M. Vidyasagar. *Dynamika i sterowanie robotów*, rozdzia/l 9, strony 266 269. WNT, Warszawa, 1989.
- [12] J. Szabatin. Podstawy teorii sygna³ów. WK£, Warszawa, 2000.
- [13] AAMAS-04 Workshop. Modeling others from observations. http://www.cs.biu.ac.il/~galk/moo2004/.
- [14] AAMAS-04 Workshop. Modeling others from observations. http://www.cs.biu.ac.il/~galk/moo2004/.