

Mechanobiology of the musculoskeletal system Lecture I: Cell mechanics and bone mechanosensitivity

Mark S Thompson

C6: Engineering Science

BME2: Biomedical Engineering

HT 2008

How to get the most out of these lectures

http://www.eng.ox.ac.uk/obme

- Research topic
 - Independent thinking, evaluation
 - Source material
 - controversial
 - wrong
 - not yet in many books
 - Find papers to read:
 - http://www.pubmed.com/
 - http://newisiknowledge.com/

Roschger et al 2001 J Struct Biol 136, 126-36

Mechanobiology I C6 / BME2 HT 2008 MST

Rüegsegger et al 1996 Calcif Tissue Int 58, 24-9

Mechanobiology I C6 / BME2 HT 2008 MST

Patient 4

calculated measured

Definition

Heller et al 2001 J Biomech 34 883-93

50

100

100

50 100 Gait Cycle [%]

Definition

Mechanobiology

The study, at the cell and tissue level, of the mechanical and physical aspects of biological processes

Musculoskeletal system - mechanical system - orthopaedics

BME2 Mechanobiology

- Lecture 1
 - Cell mechanics and bone mechanosensitivity [cells, local structure, bone mechano-regulation]
- Lecture 2
 - Fluid flow in musculoskeletal tissue [material models, focus on cartilage]
- Lecture 3
 - Tools for mechanobiology [digital image correlation, models]
- Lecture 4
 - Mechanobiology theories and applications [bone healing, tissue continuum models]

Cell structure (eukaryotic)

Mechanobiology I C6 / BME2 HT 2008 MST

- Jelly bag model of cell mechanical behaviour
- Critical pressure to flow into pipette

$$P_{cr} = 2\tau_o(1/R_p - 1/R_c)$$

Membrane ruffled - can

extend to c 2.1 x area

- "Surface tension" $\tau_0 \approx 3.5 \times 10^{-5} \text{ Nm}^{-1}$
- Viscous flow for $P > P_{cr}$

Evans and Yeung 1989 Biophys J 56, 151-60

Cell structure

- Jelly bag model of cell mechanical behaviour
- Comparison with
 - Wrinkling of silicone

Harris et al 1980 Science 208, 177-9

Cell structure

Mechanobiology I C6 / BME2 HT 2008 MST

- Endothelial cell cytoskeleton
 - A. Microtubules (GFP-tubulin),
 - B. Microfilaments (rhodaminated-phalloidin for actin)
 - C. Intermediate filaments (antibodies to vimentin)

Ingber 2003 J Cell Sci 116, 1157-73

- Tensegrity
- Actin filamentsØ 7 nm (isolated 1945)
 - "ties"
- Tubulin Ø 25 nm, length µm - mm
 - "struts"
- Vimentin filamentsØ 8 11 nm
 - "intermediate filaments - bundling"

Kenneth Snelson "City Boots" 1968 Ingber 1993 JCellSci 104: 613-627

Loading experiments

e.g. ferromagnetic bead \varnothing 5.5 μm peptide coated

- Stiffening effect
 - Alignment

Wang and Ingber 1994 Biophys J 66, 2181-9

http://www.eng.ox.ac.uk/obme

Microtubule buckling

• Euler:

$$Py = M = -EI \frac{d^2y}{dx^2}$$

$$y = A \sin ax + B \cos ax$$

$$a^2 = P / EI;$$

$$B = 0;$$

$$A \sin aL = 0; \quad \text{so } aL = \pi, 2\pi, \dots$$

$$P_{\text{critical}} = \pi^2 EI / L^2$$

• Microtubule properties:

$$EI = 2.15 \text{ x } 10^{-23} \text{ Nm}^2$$

 $L = 10 \text{ µm} \text{ so } P_{\text{critical}} \sim 2 \text{ pN}$

• $P_{\text{critical}} \sim 100 \text{ pN}$

Volokh et al 2000 J Biomech 33, 1543-9 Brangwynne et al 2006 J Cell Biol 173, 733-41

- Osteocyte
- Osteoblast
- Osteoclast

Mesenchymal stem cell

Mechanobiology I C6 / BME2 HT 2008 MST

Bone cells - introduction

Healthy bone cell activity

Bone marrow:

Source of blood cells & bone cells

Bone cells - introduction

Healthy bone cell activity

Osteoclasts resorb bone material (also macrophages)

Increase in [Ca²⁺]

Healthy bone cell activity

Osteoblasts deposit bone material

Trapped osteoblasts become osteocytes

Decrease in [Ca²⁺]

Osteocytes

Sensor network?

Healthy bone cell activity

Pogoda et al 2005 Osteoporos Int 16, suppl. 2: S18-24

Bone cells - introduction

- Disuse osteoporosis
 - Spinal cord injury: increased fracture risk
 - Bed rest: resorption increased, formation reduced
 - Astronauts: bone mass reduced after space flight
 - Hibernation: hamsters, squirrels, bats lose bone
 - Serum hormone levels disturbed:
 - Parathyroid, Leptin, Insulin-like growth factor I
- Imbalance: resorption vs formation
 - Increased activity

- Black bear (ursus americanus)
 - ~ 6 mths hibernation p.a.
 - Bone strength increases with age!
 - Blood serum samples
 - Before, during, after hibernation
 - Increased markers for both:
 - Resorption & formation
 - Bone formation maintained
 - Parathyroid hormone key?

Donahue et al 2006 J Exp Biol 209, 1630-8

- Mechanosensitivity of individual bone cells
- in vitro cell culture experiments:
 - Fluid flow (membrane shear stress)
 - Single cell stretching, squashing
 - Substrate stretching (2D & 3D)
- Biological response
 - Short term (changes in mRNA)
 - Longer term (changes in protein synthesis)
 - Differentiation

http://www.eng.ox.ac.uk/obme

- Cell differentiation
- Mesenchymal stem cells: (niche in bone marrow)
 - "Multipotent" key in healing response (recruited to injury site)
 - Cartilage, skeletal muscle, osteoblast, osteocyte, cardiac muscle, nerve, liver, pancreas, adipose
 - Differentiated cells lay down extracellular matrix tissue
- Differentiation
 - Process of choice of cell specialism
 - Factors influencing: mechanical & biological

- Bioreactor
 - Pneumatically driven
 - Silicone membranes
 - Fibrin / bone sandwich
 - Mesenchymal stem cells
 - Air filters
 - Medium with nutrients
 - 10 kPa, 0.05 1 Hz, up to 3 weeks

Matziolis et al 2006 Tissue Eng 12, 201-8
Mechanobiology I C6 / BME2 HT 2008 MST

Stimulated

von Kossa (silver nitrate)

von Kossa indicates matrix calcification

Collagen X indicates endochondral ossification

Collagen X (antibody)

Neither present in unstimulated constructs

- In vitro strains for activation:
 - **2** 10%
- Measured in vivo strains
 - **•** ~ 0.2%
- Bone failure strain
 - **•** ~ 0.8%
- What are the processes for sensing mechanical loading?
- Which cells are involved?

- Tissue microstructure
 - Cortical bone
 - Trabecular bone
 - Osteon
 - Osteocyte
 - Osteo-blasts, -clasts
- Canaliculi
 - strain concentrators
 - fluid flow
 - Which cells?
 - Osteocyte network?

Martini 1997 "Fundamentals of anatomy and physiology"

- Tissue microstructure
 - Cortical bone
 - Trabecular bone
 - Osteon
 - Osteocyte
 - Osteo-blasts, -clasts
- Canaliculi
 - strain concentrators
 - fluid flow
 - Which cells?
 - Osteocyte network?

http://facstaff.bloomu.edu/jhranitz/Courses/APHNT/Lab_Pictures/

Osteocyte process

Transverse section

Longitudinal section

You et al 2001 J Biomech 34, 1375-1386

Han et al 2004 PNAS 101, 16689-94

Mechanobiology I C6 / BME2 HT 2008 MST

Osteocyte process

$$F_d \sim 20 F_s$$

You et al 2001 J Biomech 34, 1375-1386 Han et al 2004 PNAS 101, 16689-94

Mechanobiology I C6 / BME2 HT 2008 MST

Osteocyte process

You et al 2001 J Biomech 34, 1375-1386

Han et al 2004 PNAS 101, 16689-94

Mechanobiology I C6 / BME2 HT 2008 MST

- Low level strains do have a bone stimulatory effect
 Rubin et al 2001 Nature 412, 603-4
- How is trabecular bone stimulated?
- Other competing hypotheses
 - Damage osteocyte processes
 - Matrix damage remodelling as repair

Summary

- Cells have a mechanical architecture
 - Cytoskeleton; tensegrity
- Roles of bone cells in maintaining healthy bone
 - Importance of mechanical sensitivity
- Differentiation of stem cells and mechanical sensitivity
 - Tissue staining (histology)
- Bone mechanosensitivity paradox
 - Possible mechanisms

Ingber, D.E. 2006

Website: http://www.childrenshospital.org/research/Site2029/mainpageS2029P23sublevel24.html Mechanobiology I C6 / BME2 HT 2008 MST