3D Printing of Multi-Material Hydrogels

IIB Project Final Presentation, Division C Nanoscience Centre, University of Cambridge

Senior Supervisor: Prof Shery Huang

PhD Student Supervisor: Yaqi Sheng

By Lorcan Nicholls ~ In356@cam.ac.uk

Presentation Outline

Introduction

What are multi-material hydrogels?
What has been done so far?
What is new about this work?

Hydrogels

Crosslinked biopolymers swell in water to form a solid structure

We aim to make hydrogels that can change their shape. How might this be done?

Biopolymer

Aqueous Electrolyte

Ionic Hydrogel (Polyelectrolyte)

Problem: relies on a change in chemical environment

→ totally unsuitable for biomedical applications

Ionisation is pH dependent

→ allows actuation

Introduction

Theory

Methods

Results

Applications

Conclusions

Biocompatible Actuation of Hydrogels

True biocompatibility requires homeostasis

Introduction

Theory

Results

Applications

Methods

Ę

Conclusions

3D Printing of Magnetic Hydrogels

Implants that become part of a person's natural tissues over time

Shery's group has already built a 3D bioprinter (Printer.HM) for extruding soft materials in the Nanoscience centre. [1]

If we can similarly automate the production of magnetic fibres, we can **3D print the composite hydrogels**.

Applications:

- 1) In vitro lung models
- 2) Smart biomedical textiles

Applications Conclusions

Theory

Structural Analysis
Computational Modelling
Material Selection

Structural Analysis of Magnetic Fibre

Beam theory with a additional contact force from the hydrogel

Assume a clamped elastic beam surrounded by a soft hydrogel medium. The hydrogel exerts a viscoelastic reaction force on the displaced fibre [2]

(k: hydrogel stiffness per unit length, E: fibre modulus, *I*: fibre second moment of area)

Hydrogel force ky must not cause it to fail Compliant hydrogels do not impede the motion

Computational Modelling

Captures the nonlinear magnetomechanical coupling

Solidworks: simple structural FEA

COMSOL: complex multiphysics

Useful for checking feasibility of setup

But precise calculations are hard because material properties are highly variable!

Introduction Theory

Methods

Results

Applications

Conclusions

Material Selection

Stiffness-limited design, with many secondary constraints

The relevant failure criterion for this application is fatigue loading

Material property chart, using **Ansys Granta** L3 database

Rule of thumb: ensuring peak stress is less than half of yield stress will protect against high-cycle fatigue

Introduction Theory

Materials and Methods

What materials were chosen?
How are the fibres made?
How are the composites made and tested?

Introduction Theory Methods Results Applications Conclusions

11

Fibre Compositions

Solvent + Polymer + Magnets

DMF

(*N*,*N*-dimethylformamide)

85% weight

+

Acetone (propanone) 15% weight

Polystyrene sets spinnability

Iron oxide sets magnetism

Magnetic solution

Ready for nanospinning process

Solvent

Introduction Theory

Methods

Results

Applications

Conclusions

12

Fibre Spinning

Using a robot arm, syringe and spinning frame

Automated nanospinning

syringe full of fibre solution

robot arm

extruded fibres

spinning frame

diameter ~ 20 µm

Produces this in about 2 mins of spinning

Hydrogel Compositions

Gelatin/Alginate as a Self-Crosslinking UCST Hydrogel

Making gelatin hydrogels is **very simple**: just mix the powders together in water

Printer.HM (3D bioprinter) extrudes hot liquid phase hydrogel which **solidifies** on the stage as it cools below its **upper critical solution temperature (UCST)**

By depositing the hydrogel onto the fibres, the composite can be prepared as the hydrogel surrounds the fibres

Testing the Magnetic Responsiveness

Use an electromagnet and measure the deflection

Electromagnet programmed to switch on and off

With a small contraction using the slider on the frame, the fibres will show large deflections in the magnetic field

Results

Make Magnetic Polymer Solution
Program Spinner
Extrude Fibres
Observe Under Microscope
Assess Quality and Deformation

16

Best Compositions for Magnetic Fibres

Need ~50% solid in fibre solution, with most compliant hydrogel

'Best' means 1) good spinnability, 2) homogeneous fibres, 3) high deflection

Combinations of these variables were tested:

- Polystyrene mass fraction: {10%, 20%, 30%}
- Iron oxide mass fraction: {10%, 20%, 30%}
- Gelatin/Alginate (6:1) mass fraction: {7%, 2.33%, 0.33%}

Best fibre solution: using 20% polystyrene and 30% iron oxide

Best hydrogel: 2% gelatin and 0.33% sodium alginate in DI water

Introduction Theory Methods Results Applications Conclusions

17

Homogeneity of Fibre Dimensions

Over the range of tested compositions, size was quite consistent

More polymer/iron in the solution usually gives thicker fibres but correlation is weak

Homogeneity of Fibre Dimensions

Over the range of tested compositions, size was quite consistent

Fibre length ~ 28 mm

Deflection ~ 1 mm

Strain ~ 5%

Reduced to **about half** when combined with the hydrogel

19

Theory

Applications

In vitro lung model organoids
Smart biomedical textiles

Applications of Soft Actuators

Combines remote movement with biocompatibility

Can **combine with other projects** demonstrated from Shery's group (cryoprinting, fibre printing robot...) to **fully realise 3D printing capabilities**

Application #1: Lung Organoids

Introduction

Hydrogel loaded with cells could experience **actuation** to simulate lung tissue **breathing** *in vitro*, study cell-matrix mechanobiological interactions

Application #2: Smart Biomedical Textiles (+ Regenerative Medicine?)
Using bioresorbable hydrogels as post-surgical cavity fillers to prevent internal adhesions by moving into place, reducing patient complications

Theory Methods Results Applications

21

Conclusions

Conclusions

Magnetic hydrogel composites can be 3D printed in a modular fashion

Key Takeaways from this Project

Magnetic Hydrogels

- ★ It is easy to functionalise fibres with magnetic materials
- ★ The nanospinning process can be automated for high-throughput production
- The fibres and hydrogels can be printed separately
- ★ Using (30% iron oxide, 20% polystyrene) fibres with (2% gelatin, 0.33% alginate) hydrogel was found to be optimal across a variety of metrics
- ★ The fibres are resilient and do not delaminate or cut the hydrogel during operation

Thank You Q & A

Sources cited in this presentation

[1] Lei, I. M., Sheng, Y., Lei, C. L., Leow, C., & Huang, Y. Y. (2022). A hackable, multi-functional, and modular extrusion 3D printer for soft materials. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-16008-6

[2] Dillard, D. A., Mukherjee, B., Karnal, P., Batra, R. C., & Frechette, J. (2018). A review of Winkler's foundation and its profound influence on adhesion and soft matter applications. Soft Matter, 14(19), 3669–3683. https://doi.org/10.1039/c7sm02062g

Own content: photographs of experimental results not referenced