

Inteligência Artificial

Profº - Dr. Thales Levi Azevedo Valente thales.l.a.valente@gmail.com.br

Grupo da turma 2024.2

https://chat.whatsapp.com/JFB6CgOI7IMCoYmoIKEK62

Sejam Bem-vindos!

Os celulares devem ficar no silencioso ou desligados

Pode ser utilizado apenas em caso de emergência

Boa tarde/noite, por favor e com licença DEVEM ser usados

Educação é essencial

Na aula anterior...

Realizamos uma dinâmica para conhecer um ao outro

Discutimos sonhos e desejos

A importância de ter um objetivo definido

Discutimos boas práticas de estudo

Importância de um cronograma
Importância do foco
Importância de revisões periódicas
Alimentação e exercício

Na aula anterior...

Avaliações

🗽 Sala: Atividades(10%) presença (10%)

2 provas (40%) + 1 Trabalho(30%) + ?

Objetivos de hoje

Apresentar a disciplina;

Ao final da aula, os alunos serão capazes de ter uma visão geral dos principais tópicos e conteúdo programático da disciplina (ementa).

Roteiro: Resumo das Aulas

Agentes

• Definição: tudo o que pode

- ✓ Perceber o ambiente através de sensores
- ✓ **Agir** sobre o ambiente através de atuadores

Exemplos

✓ Agente Humano

- ✓ Sensores: Olhos, ouvidos
- ✓ Atuadores: Mãos, pernas

✓ Agente Robótico

- ✓ Sensores: Câmeras, detectores infravermelhos
- ✓ Atuadores: Motores, braços robóticos

Agentes

Agentes

- Percepção: entradas obtidas do agente.
- A sequência de percepções: a história completa de tudo percebido.
- Comportamento: função do agente que mapeia sequência de percepções para uma ação.
 - $\blacksquare [F: P* \rightarrow A]$
 - P* é uma sequência de percepções e A é uma ação

Agentes racionais

- **Definição:** entidade que escolhe ações que maximizam uma medida de desempenho
 - Com base nas percepções e em qualquer conhecimento interno.
- Racionalidade≠Perfeição: racionalidade considera as informações disponíveis e limitações do agente, enquanto a perfeição exige desempenho ideal.
- Autonomia: aprendem com suas percepções e adaptam seu comportamento.
- Medida de Desempenho: avalia o sucesso com base no objetivo desejado.
 - Exemplo: Um aspirador avaliado pela quantidade de sujeira limpa.

O agente deve tomar a ação "correta" baseado no que ele percebe para ter sucesso, a noção de desejável.

Propriedades dos Ambientes de Tarefa (PEAS)

• Ao projetar um agente, é essencial definir

- Performance (P): Critério de sucesso.
- **Environment (E):** Ambiente onde o agente opera.
- Actuators (A): Ações que o agente pode executar.
- Sensors (S): Percepções do agente.

• Exemplo: Carro Autônomo

- <u>P:</u> Viagem segura, rápida, sem violações de trânsito.
- **E**: Ruas, pedestres, outros veículos.
- A: Direção, freio, acelerador.
- <u>S</u>: Câmeras, GPS, sensores de proximidade.

Propriedades dos ambientes (ODDDA)

- 1. Observabilidade: quanto o agente acessa do ambiente?
 - Completamente Observável Vs. Parcialmente Observável
- 2. Determinismo: próximo estado do ambiente é certo ou probabilístico?
 - Determinístico Vs. Estocástico
- 3. Dinamismo: o ambiente muda enquanto o agente está pensando?
 - Estático Vs. *Dinâmico*
 - Episódico: a experiência do agente é dividida em episódios independentes?

Propriedades dos ambientes (ODDDA)

- **4. Discretização:** número de estados e ações é finito e bem definido ou infinito?
 - Discreto Vs. Contínuo
- **5. Agentes Únicos x Multiagentes:** único agente opera ou vários interagem?
 - Único Vs. Multiagente

Categoria	Opções	Exemplo	
Observabilidade	Completamente x Parcialmente	Xadrez (completo) x Dirigir com neblina (parcial)	
Determinismo	Determinístico x Estocástico	Movimentos em um grid (determinístico) x Jogo de dados	
Dinamismo	Estático x Dinâmico x Episódico	Quebra-cabeça (estático) x Futebol (dinâmico) x Inspeção de itens em uma linha de produção (episódico)	
Discretização	Discreto x Contínuo	Tabuleiro (discreto) x Dirigir um carro (contínuo)	
Agentes	Único x Multiagentes	Resolver labirinto (único) x Jogo de futebol (multiagente)	

O mundo real é parcialmente observável, estocástico, sequencial, dinâmico, contínuo, multi-agente.

Tipos de Agentes (SMOUA)

- Agentes Reativos Simples: regras simples (se-então)
 - **Exemplo**: Aspirador de pó que aspira se detectar sujeira

- Agentes Reativos Baseados em Modelos
 - Mantêm um estado interno para lidar com ambientes parcialmente observáveis.
 - **Exemplo**: Um robô que lembra onde já limpou.
- Agentes Baseados em Objetivos: ações com base em um objetivo específico
 - **Exemplo**: Robô que planeja uma rota até o destino

Tipos de Agentes (SMOUA)

Agentes Baseados em Utilidade

- Avaliam o "grau de felicidade" com os estados e escolhem o mais desejável
- Exemplo: Carro autônomo que escolhe a rota mais rápida e segura

Agentes com Aprendizagem

- Aprendem com o ambiente para melhorar seu desempenho
- **Exemplo**: Sistemas de recomendação

Agentes reativos simples

Agentes reativos baseados em modelos

Agentes baseados em objetivos

Agentes baseados na utilidade

Agentes com aprendizagem

Revisão (Prova)

Definições Essenciais

- O que é um agente? O que é um agente racional?
- Exemplos de PEAS

Tipos de Agentes

 Quais são os tipos? Quais as diferenças?

Propriedades do Ambiente

 O que é um ambiente parcialmente observável? Um ambiente estocástico?

Exemplos Clássicos

 Funcionamento do aspirador de pó e carro autônomo

Agentes com Aprendizado

 Como o aprendizado melhora a autonomia do agente?

Roteiro: Resumo das Aulas parte 2

Contexto Histórico

- Surgimento do Paradigma de Agentes: "Agent-Oriented Programming" (1993) de Yoav Shoham
 - Criado para resolver problemas complexos em ambientes dinâmicos

Conexão com a IA Moderna

- Aplicações de aprendizado por reforço (ex.: jogos como Go e xadrez)
- Uso em IA generativa para criar arte e música
- Planejamento e raciocínio aplicados em sistemas como veículos autônomos

Conceitos Introdutórios

Inteligência Artificial Distribuída (IAD)

 Definição: Ramo da IA que estuda sistemas compostos por múltiplos agentes autônomos colaborando ou competindo

Características

- **Descentralização**: Controle distribuído.
- **Escalabilidade**: Facilidade em adicionar ou remover agentes.
- <u>Autonomia</u>: Agentes tomam decisões independentes

Conceitos Introdutórios

Sistemas Multiagentes (SMAs)

- Definição: Conjunto de agentes interagindo em um ambiente compartilhado
- Componentes
 - Agentes: Entidades autônomas que percebem e agem.
 - **Ambiente**: Espaço onde os agentes operam.
 - Interação: Coordenação entre agentes.

Características

- Autonomia: Cada agente decide com base em suas percepções
- Percepção Limitada: Percebem apenas partes do ambiente
- **Comunicação**: Compartilham informações e coordenam ações

Modelo Genérico de um Agente

Componentes: (PEDRA)

- **Percepção**: Coleta informações do ambiente.
- **Estado**: Memória interna do agente.
- **Decisão e Raciocínio**: Avalia opções e escolhe ações.
- Ação: Modifica o ambiente com base na decisão.

Ciclo Operacional

- Percepção → Decisão → Ação → Feedback
- **Exemplo**: Robô aspirador detecta sujeira, planeja a rota e limpa

Tipos de Agentes

Reativos Simples

Funcionamento

- Baseados em regras simples (se-então).
- Não possuem modelo interno ou planejamento.
- Inspiração: Comportamentos biológicos, como colônias de formigas
- Exemplo de Aplicação
 - Robótica Simples: Robôs aspiradores (ex.: Roomba).
 - <u>Sistemas de Enxame</u>: Drones simples em missões coordenadas.

Tipos de Agentes

Agentes Cognitivos

- Funcionamento
 - Baseados em raciocínio simbólico e arquiteturas como BDI
 - Planejam ações e avaliam consequências antes de agir
- Inspiração: comportamento humano
- Exemplo de Aplicação
 - Assistentes Virtuais: Alexa, Siri
 - Veículos Autônomos: Decidem rotas e ações baseadas em múltiplas variáveis
 - **Agentes Financeiros**: Analisam mercados e realizam transações automatizadas

Arquitetura BDI – um tipo de cognitivo

(Beliefs-Desires-Intentions)

- Componentes: (FCFDFIA)
 - FRC Função Revisora de Crenças: atualiza crenças para refletir o ambiente
 - **Crenças**: O que o agente acredita sobre o ambiente
 - FGO Função Geradora de Opções: atualiza os desejos com base em crenças atualizadas
 - **Desejos**: Objetivos que o agente quer alcançar
 - <u>Filtros</u>: Atualiza o conjunto de intenções do agente, com base nas crenças e desejos atualizados e nas intenções já existentes
 - Intenções: Planos que o agente escolhe executar
 - **Ação**: Modifica o ambiente com base na decisão

Arquitetura BDI – um tipo de cognitivo

(Beliefs-Desires-Intentions)

Ciclo Operacional

- Percepção do ambiente: Coleta informações do ambiente
- Revisão de Crenças: Atualiza com base no ambiente
- **Definição dos Desejos**: Agente gera possíveis objetivos a partir de suas crenças
- **Deliberação de Intenções**: Filtra desejos para criar planos concretos
- Execução de Ações: Realiza o plano escolhido.
- Reavaliação: Avalia os resultados e ajusta as crenças.

Comparação entre Arquiteturas

Aspecto	BDI	Reativos Simples	Cognitivos
Complexidade	Alta	Baixa	Alta
Base de Decisão	Crenças, desejos, intenções	Regras simples	Raciocínio simbólico
Tempo de Resposta	Médio	Imediato	Mais lento
Exemplo	Robôs autônomos	Aspiradores de pó	Veículos autônomos

Dúvidas?

Até a próxima...

Apresentador

Thales Levi Azevedo Valente

E-mail:

thales.l.a.valente@gmail.com

Referências

- Artigos referenciados nos respectivos slides.
- T.B. Borchartt . *Introdução à Inteligência Artificial*. 2024. 37 slides. Universidade Federal do Maranhão.
- A.O. B. Filho. Inteligência Artificial Introdução. 2024. 31 slides.
 Universidade Federal do Maranhão.
- S. Lago. *INTRODUÇÃO À LINGUAGEM PROLOG*. Universidade de São Paulo. Disponível em <u>Microsoft Word slago-prolog.doc</u>.
- C. A. M. Lima. Aula 04 Redes Neurais Artificiais. 2015. 39 slides.
 Universidade Federal do Maranhão. Disponível em <u>Aula 04 Redes Neurais Artificiais</u>