

- 1. Construa o AFD para as seguintes linguagens:
 - a. $L = \{ w \in \{0, 1\}^+ | w \in \{0, 1\}^+ | w \in \{0, 1\}^+ \}$
 - b. $L = \{ w \in \{a, b\}^+ \mid w \text{ possui } ab \text{ como sufixo} \}$
 - c. $L = \{ w \in \{a, b\}^* \mid w \text{ não contém } aaa \}$
 - d. $L = \{ w \in \{0, 1\}^* \mid w \text{ \'e de tamanho par } \}$
 - e. $L = \{ w \in \{a, b\}^+ | w \text{ possui } a \text{ seguido de } bb \}$
 - f. $L = \{ w \in \{a, b\}^* \mid w \text{ não contém } aaa \text{ nem } bbb \}$
 - g. $L = \{ w \in \{a, b\}^+ \mid possui abb \text{ como subpalavra} \}$
 - h. $L = \{ w \in \{a, b\}^+ \mid possui \ aa \ ou \ bb \ como \ sufixo \}$
- 2. Seja o AFD M = $(\{a, b\}, \{q_0, q_1, q_2, q_3\}, \delta, q_0, \{q_3\})$, onde δ é dada pela tabela:

δ	a	b
q_0	q_1	q_2
q_1	q_3	-
q_2	-	q_3
q_3	q_3	q_3

- a. Qual a linguagem reconhecida por este Autômato Finito Determinístico?
- b. Construa o diagrama de transição do autômato.
- c. Represente o processamento do autômato para uma palavra, utilizando a Função Programa Estendida. Mostre se a palavra foi ACEITA ou REJEITADA pelo autômato.
- 3. Desenvolva um AF que reconheça a linguagem

$$L = \{w_1 w_2 w_3 \mid \Sigma = \{0,1\}, |w_1| = 2, w_2 = 001 \text{ e } |w_3| \ge 3\}$$

- 4. Desenvolva o AFND para as Linguagens a seguir, sobre $\Sigma = \{a, b, c\}$.
 - a. $L = \{w \mid w \in \{a, b, c\}^+ \text{ e possui } aaa \text{ como sufixo}\}\$
 - b. $L = \{w \mid w \in \{a, b, c\}^+, possui\ aba\ ou\ bab\ como\ subpalavra\ e\ aaa\ como\ prefixo\}$
 - c. $L = \{w \mid w \in \{a, b, c\}^+ \text{ e o terceiro símbolo da direita para esquerda é } b\}$
- 5. Desenvolva um autômato finito, de qualquer tipo, para as seguintes linguagens sobre o $\Sigma = \{0,1\}$:
 - a. $L = \{ w \text{ contém a sequência } 11011 \}$
 - b. L = {w não contém a sequência 110}

- 6. (POSCOMP) Assinale quantas seqüências de caracteres a seguir são reconhecidas pelo autômato finito abaixo. As 4 seqüências de caracteres (separadas por vírgulas) são: 0, +567, -89.5, -3e3.
 - a) 0 b) 1 c) 2 d) 3 e) 4

- 7. Seja $\Sigma = \{a, b, c\}$. Considere a linguagem consistindo de todas as palavras que iniciam e terminam com letras distintas. Construa um AF que aceita esta linguagem.
- 8. Descreva a linguagem gerada pelas expressões regulares e construa os respectivos AF.
 - a. (aa)*(bb)*
 - b. (a*b*c*)*
 - c. (b+a)*aba(b+a)*
- 9. Construa uma ER que gere todas as sentenças de {1,0} que iniciem por 1 e terminem por 00.
- 10. Desenvolva um ER que gere as datas válidas no formato AAMMDD (não é necessário prever anos em que fevereiro tem 29 dias). Considere $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$.
- 11. Construa um AF que reconheça qualquer valor expresso em reais no seguinte formato: R\$ d.ddd,dd
- 12. Qual a finalidade do estudo dos formalismos relacionados às linguagens regulares?
- 13. Transforme o AFND em um AFD

