Table 1
 Microeconomic Model Calibration

Calibrated Parameters				
Description	Parameter	Value	Source	
Permanent Income Growth Factor	Γ	1.03	PSID: Carroll (1992)	
Interest Factor	R	1.04	Conventional	
Time Preference Factor	β	0.96	Conventional	
Coefficient of Relative Risk Aversion	ρ	2	Conventional	
Probability of Zero Income	\wp	0.005	PSID: Carroll (1992)	
Std Dev of Log Permanent Shock	σ_{ψ}	0.1	PSID: Carroll (1992)	
Std Dev of Log Transitory Shock	$\sigma_{ heta}$	0.1	PSID: Carroll (1992)	

 Table 2
 Model Characteristics Calculated from Parameters

		Approximate
		Calculated
Description	Symbol and Formula	Value
Finite Human Wealth Measure	$\mathcal{R}^{-1} \equiv \Gamma/R$	0.990
PF Finite Value of Autarky Measure	$\supset \equiv \beta \Gamma^{1-\rho}$	0.932
Growth Compensated Permanent Shock	$\hat{\psi} \equiv (\mathbb{E}[\psi^{-1}])^{-1}$	0.990
Uncertainty-Adjusted Growth	$\hat{\Gamma} \equiv \Gamma \hat{\psi}$	1.020
Utility Compensated Permanent Shock	$\hat{\hat{\psi}} \equiv (\mathbb{E}_t[\psi^{1-\rho}])^{1/(1-\rho)}$	0.990
Utility Compensated Growth	$\hat{\hat{\Gamma}} \equiv \Gamma \hat{\hat{\psi}}$	1.020
Absolute Patience Factor	$\mathbf{b} \equiv (R\beta)^{1/\rho}$	0.999
Return Patience Factor	$\mathbf{p}_{R} \equiv \mathbf{p}/R$	0.961
PF Growth Patience Factor	$\mathbf{p}_{\Gamma} \equiv \mathbf{p}/\Gamma$	0.970
Growth Patience Factor	$\mathbf{p}_{\hat{\Gamma}} \equiv \mathbf{p}/\hat{\Gamma}$	0.980
Finite Value of Autarky Measure	$\hat{\hat{\Box}} \equiv \beta \Gamma^{1-\rho} \hat{\psi}^{1-\rho} $	0.941

 Table 3
 Definitions and Comparisons of Conditions

Perfect Foresight Versions	Uncertainty Versions
Finite Human Wealtl	Condition (FHWC)
$\Gamma/R < 1$	$\Gamma/R < 1$
The growth factor for permanent income	The model's risks are mean-preserving
Γ must be smaller than the discounting	spreads, so the PDV of future income is
factor R for human wealth to be finite.	unchanged by their introduction.
	•
Absolute Impatiend	
p < 1	p < 1
The unconstrained consumer is	If wealth is large enough, the expectation
sufficiently impatient that the level of	of consumption next period will be
consumption will be declining over time:	smaller than this period's consumption:
consumption will be deciming over time.	period b consumption.
$c_{t+1} < c_t$	$\lim_{m_t \to \infty} \mathbb{E}_t[c_{t+1}] < c_t$
Return Impatie	
Return Impatience Condition (RIC)	Weak RIC (WRIC)
$\mathbf{P}/R < 1$	$\wp^{1/ ho}\mathbf{P}/R < 1$
The growth factor for consumption ${f p}$	If the probability of the zero-income
must be smaller than the discounting	event is $\wp = 1$ then income is always zero
factor R, so that the PDV of current and	and the condition becomes identical to
future consumption will be finite:	the RIC. Otherwise, weaker.
$c'(m) = 1 - \mathbf{P}/R < 1$	$c'(m) < 1 - \wp^{1/\rho} \mathbf{P}/R < 1$
Growth Impatie	ence Conditions
PF-GIC	GIC
$\mathbf{p}/\Gamma < 1$	$\mathbf{p} \mathbb{E}[\psi^{-1}]/\Gamma < 1$
Guarantees that for an unconstrained	By Jensen's inequality, stronger than
consumer, the ratio of consumption to	the PF-GIC.
permanent income will fall over time. For	Ensures consumers will not
a constrained consumer, guarantees the	expect to accumulate m unboundedly.
constraint will eventually be binding.	- · ·
	$\lim_{m_t \to \infty} \mathbb{E}_t[m_{t+1}/m_t] = \mathbf{P}_{\hat{\Gamma}}$
Finite Value of A	ıtarky Conditions
I mile varae of 11	FVAC
PF-FVAC	1 1110
PF-FVAC	
$\begin{array}{c} \text{PF-FVAC} \\ \beta \Gamma^{1-\rho} < 1 \end{array}$	$\beta \Gamma^{1-\rho} \mathbb{E}[\psi^{1-\rho}] < 1$
$\begin{array}{c} \text{PF-FVAC} \\ \beta \Gamma^{1-\rho} < 1 \\ \text{equivalently } \mathbf{P}/\Gamma < (R/\Gamma)^{1/\rho} \end{array}$	$\beta \Gamma^{1-\rho} \mathbb{E}[\psi^{1-\rho}] < 1$
$\begin{array}{c} \text{PF-FVAC} \\ \beta \Gamma^{1-\rho} < 1 \\ \text{equivalently } \mathbf{P}/\Gamma < (R/\Gamma)^{1/\rho} \\ \text{The discounted utility of constrained} \end{array}$	$\beta \Gamma^{1-\rho} \mathbb{E}[\psi^{1-\rho}] < 1$ By Jensen's inequality, stronger than the
$\begin{array}{c} \text{PF-FVAC} \\ \beta \Gamma^{1-\rho} < 1 \\ \text{equivalently } \mathbf{P}/\Gamma < (R/\Gamma)^{1/\rho} \end{array}$	$\beta \Gamma^{1-\rho} \mathbb{E}[\psi^{1-\rho}] < 1$

 Table 4
 Sufficient Conditions for Nondegenerate[‡] Solution

Model	Conditions	Comments
PF Unconstrained	RIC, FHWC°	$RIC \Rightarrow v(m) < \infty; FHWC \Rightarrow 0 < v(m) $
		RIC prevents $\bar{c}(m) = 0$
		FHWC prevents $\bar{\mathbf{c}}(m) = \infty$
PF Constrained	PF-GIC*	If RIC, $\lim_{m\to\infty} \mathring{c}(m) = \bar{c}(m)$, $\lim_{m\to\infty} \mathring{\kappa}(m) = \underline{\kappa}$
		If $\Re \mathcal{C}$, $\lim_{m\to\infty} \mathring{\boldsymbol{\kappa}}(m) = 0$
Buffer Stock Model	FVAC, WRIC	FHWC $\Rightarrow \lim_{m\to\infty} \mathring{c}(m) = \bar{c}(m), \lim_{m\to\infty} \mathring{\kappa}(m) = \underline{\kappa}$
		$\text{EHWC+RIC} \Rightarrow \lim_{m \to \infty} \mathring{\boldsymbol{\kappa}}(m) = \underline{\kappa}$
		EHWC+RIC $\Rightarrow \lim_{m\to\infty} \mathring{\mathbf{k}}(m) = 0$
		GIC guarantees finite target wealth ratio
		FVAC is stronger than PF-FVAC
		WRIC is weaker than RIC

[‡]For feasible m, the limiting consumption function defines the unique value of c satisfying $0 < c < \infty$. °RIC, FHWC are necessary as well as sufficient. *Solution also exists for PF-GTC and RIC, but is identical to the unconstrained model's solution for feasible $m \ge 1$.