Data Visualisation Lecture 6 – Visualising Text & Documents

Dr. Cathy Ennis

Learning Outcomes Week 6

- Design effective Visualisations based on principles from perceptual psychology, cognitive science, graphic design and visual art
- Create and deploy successful data visualisations using leading software tools
- Demonstrate an understanding how visualisation is used in date journalism to communicate complex ideas and stories
- Demonstrate understanding how visualisation is used in story telling

Visualisation of the Week

Visualisation of the Week

Data available:

https://giwps. georgetown.e du/the-index/

(Un) Visualisation of the Week

Overview

In this lecture we will cover:

- Some Wrangling
 - Bag of words representation , n-grams
 - Word embeddings
- Single document visualisations
 - Tag & word clouds, Word trees
 - Semantics
 - Arc diagrams
- Corpus visualisations
- Lab + Project Work

Why Visualise Text?

- Understanding
 - get the "gist" of a document
- Grouping
 - cluster for overview or classification
- Comparison
 - compare document collections, or inspect evolution of collection over time
- Correlation
 - compare patterns in text to those in other data, e.g., correlate with social network

Text as Data

Documents

- Articles, books and novels
- E-mails, web pages, blogs
- Tags, comments
- Computer programs, logs

Collections of Documents

- Messages (e-mail, blogs, tags, comments)
- Social networks (personal profiles)
- Academic collaborations (publications)

DOCUMENT REPRESENTATIONS

Representing Text

No numerical values

- Techniques to convert text to numerical values (feature extraction):
 - Bag of Words
 - Word N-grams
 - Character n-grams
 - Part of Speech
 - Vocabulary richness
 - Punctuation
 - Word length And others.....

Bag Of Words

- Documents in text visualisation are often represented using a featurevector model
 - Also called a bag of words

• In this approach, we look at the histogram of the words within the text, i.e. considering each word count as a feature

Bag of Words

Patient Record 1

The patient is a male with a history of diabetes, hypertension and CAD.

Patient Record 2

Bag of Words - Binary

Patient Record 1

The patient is a male with a history of diabetes, hypertension and CAD.

Patient Record 2

Bag of Words - Binary

Patient Record 1

The patient is a male with a history of diabetes, hypertension and CAD.

Patient Record 2

Bag of Words - Numeric

Patient Record 1

The patient is a male with a history of diabetes, hypertension and CAD.

Patient Record 2

Bag of Words - Normalized

 The problem with counting term frequencies is that the frequently used terms become dominant in the document and begin to represent the document

Normalized values are used instead showing the relative frequency

Bag of Words — TF-IDF

• Term Frequency - Inverse document frequency

 Statistical measure used to evaluate how important a word is to a document in a collection or corpus

 The importance increases proportionally to the number of times a word appears in the document but is offset by the frequency of the word in the corpus

Limitations of Frequency Statistics

Typically focus on unigrams (single terms)

- Often favours frequent (TF) or rare (IDF) terms
 - Not clear that these provide best description

- A "bag of words" ignores additional information
 - Grammar / part-of-speech
 - Position within document
 - Recognizable entities

N-grams

 An n-gram is a contiguous sequence of n items from a given sample of text or speech

- A unigram is one word, a bigram is a sequence of two words, a trigram is a sequence of three words etc
 - It is common to use more than one type of n-gram

 The items inside an n-gram may not have any relation between them apart from the fact that they appear next to each other

N-grams

The office building was demolished yesterday.

Contains 5 bigrams:

- 1. the office
- 2. office building
- 3. building was
- 4. was demolished
- 5. demolished yesterday

N-grams

Google Books Ngram Viewer

Too Many Features

 One of the unique characteristics of textual data is the very large number of features involved – typically in the range of tens of thousands of features

• It is common practice to reduce the number of features as much as possible before attempting to build a useful model or visualisation

Zipf's Law

 Zipf's Law captures the distribution of the frequency of occurrence of words in natural language texts

- Zipf's law suggests two things:
 - High frequency words occur in too many documents to be useful in prediction
 - Low frequency words are too rare to be of value

Stop-Word Removal & Document Frequency

- We utilise two common feature reduction techniques:
 - Stop-word removal to remove the high frequency words achieved using a list of known stop words or tf-idf
 - Document frequency to remove the low frequency words remove terms that occur at most n times (1 <= n <= 3)

These will typically reduce a feature set massively

always	i'm	somebody	both	mainly	they're
am	immediate	someday	brief	make	they've
amid	in	somehow	but	makes	thing
amidst	inasmuch	someone	by	many	things
among	inc	something	С	may	think
amongst	inc.	sometime	came	maybe	third
an	indeed	sometimes	can	mayn't	thirty
and	indicate	somewhat	cannot	me	this
another	indicated	somewhere	cant	mean	thorough
any	indicates	soon	can't	meantime	thoroughly
anybody	inner	sorry	caption	meanwhile	those
anyhow	inside	specified	cause	merely	though
anyone	insofar	specify	causes	might	three
anything	instead	specifying	certain	mightn't	through
anyway	into	still	certainly	mine	throughout
anyways	inward	sub	changes	minus	thru
anywhere	is	such	clearly	miss	thus
apart	isn't	sup	c'mon		till
appear	it	sure		more	
appreciate	it'd	t	со	moreover	to
appropriate	it'll	take	co.	most	together
are	its	taken	com	mostly	too
aren't	it's	taking	come	mr	took
			comes	mrs	toward

eg	notwithstanding	via	few	ourselves	whereas
eight	novel	viz	fewer	out	whereby
eighty	now	VS	fifth	outside	wherein
either	nowhere	W	first	over	where's
else	0	want	five	overall	whereupor
elsewhere	obviously	wants	followed	own	wherever
end	of	was	following	р	whether
ending	off	wasn't	follows	particular	which
enough	often	way	for	particularly	whichever
entirely	oh	we	forever	past	while
especially	ok	we'd	former	per	whilst
et	okay	welcome	formerly	perhaps	whither
etc	old	well	forth	placed	who
even	on	we'll	forward	please	who'd
ever	once	went	found	plus	whoever
evermore	one	were	four	possible	whole
every	ones	we're	from	presumably	who'll
everybody	one's	weren't	further	probably	whom
everyone	only	we've	furthermore	provided	whomever
everything	onto	what	g	provides	who's
everywhere	opposite	whatever	get	q	whose
ex	or	what'll	gets	que	why
exactly	other	what's	getting	quite	will

For Example: Stop Word Removal

Stop Word Removal

Patient Record 1

The patient is a male with a history of diabetes, hypertension and CAD.

Patient Record 2

Stop Word Removal

Patient Record 1

The patient is a male with a history of diabetes, hypertension and CAD.

Patient Record 2

Stop Word Removal

Patient Record 1

The patient is a male with a history of diabetes, hypertension and CAD.

Patient Record 2

Wordcount.org

 Wordcount data currently comes from the British National Corpus®, a 100 million word collection of samples

Capturing Meaning

Semantic networks

Word embeddings

Semantic Networks

 Attempt to illustrate the semantics – or meaning – of text based on the relationship of words

Word Embeddings

 Word embeddings are unsupervised techniques used to map words or phrases from a text to a corresponding vector of real numbers

 This representation involves building a low dimensional continuous vector space from a high dimensional space (one dimension per word)

 The obtained vector space preserves the contextual similarity of words, therefore words that appear regularly together in text will also appear together in the vector space

Word Embeddings

Word Embeddings

SINGLE DOCUMENT VISUALISATIONS

Single Document Visualisations

 In single document visualisations we try to quickly give readers a sense of the contents of a document without requiring that they read the actual text

 There is lots of debate about whether or not this is a sensible thing to do!

Word Clouds

Word Clouds

 Word clouds are probably the most common single document visualisation tool

- The important things to consider in developing word clouds:
 - What words will be displayed?
 - How will words be scaled?
 - How will the sizes be normalised?
 - What ordering of words is used?
 - How do we measure overlaps/collisions?

Wordle answers these questions as follows:

- What words will be displayed?
 - Wordle removes stopwords which otherwise clutter the display
 - It contains lists of stopwords in 26 languages and by default uses whichever list has the most words in the input text

- How will words be scaled?
 - Font size is proportional to word frequency

Wordle answers these questions as follows:

- How will the sizes be normalised?
 - The overall playing pitch size is determined and available fonts are scaled so the biggest word will fit
 - All word frequencies are then normalised to give a range of smallest to biggest font
- What ordering of words is used?
 - Wordle allows a number of different placement strategies clustering is probably the most interesting
 - Results are approximate though

- For each word w in sorted words:
- placementStrategy.place(w)

- While w intersects any previously placed words:
- Move w a little bit along a spiral path

- How do we measure overlaps/collisions
 - Wordle is quite sophisticated and actually measures the internal shapes of words, other approaches use a simple bounding box

Word Cloud Challenges

- But Wordle present some challenges
- 1. Semantics syntactic
- 2. Context
- 3. Comparison
- 4. What is the relationship between the words?

Word Clouds

Word cloud of Tea Party feelings about Obama Largest words are

like

policy

Word Clouds

Word cloud of Tea Party feelings about Obama Largest words are

like

policy

- Stop word removal effect
- I really don't like Obama's policy on gun control
- I like nothing about ...
- He is not like ...

Semantic Networks

Semantic Networks address some of the challenges of a wordle

Semantic Networks attempt to illustrate the semantics – or meaning –
of text based on the relationship of words in a traditional thesaurus
(Wordnet)

Visual Thesaurus

Word Trees

 A word tree places a tree structure onto the words that follow a particular search term, and uses that structure to arrange those words spatially

Interactions are key in allowing the viewer to explore relationships

Word Trees

105 hits

technology

Word Trees

Implementing word trees is surprisingly simple

Words are scaled according to frequency - similarly to word clouds

• The data structure used is a **suffix tree**, which has been common in computer science string-processing for decades

ENTITY RELATIONSHIPS

Arc Diagrams

- Arc diagrams are an interesting network layout approach that can be adapted to text
- Lay out all entities on a single line and draw arcs between cooccurring entities
- Strengths can be shown through colour intensity
- Groups can be shown with bands

Arc Diagrams

Co-occurrence of characters in Les Miserables

Rainbow Boxes

Co-occurrence of characters in Les Miserables

MULTIPLE DOCUMENT VISUALISATIONS

Multiple Document Visualisations

Visualising document collections is not particularly well standardised

- We can split approaches into two groups:
 - Visualising connections between documents
 - Visualising change in a document

Wide open for Exploration!!

Connections - Dendrograms

Connections - Plagiarism Detection

Visualising distances between documents

Visualising Connections Between Documents

- Collections of documents can be seen as a network
- The real challenge is finding the most appropriate document representation for the task
- All network visualization approaches can also be applied to collections of documents
- This, however, is a NLP challenge not a visualisation one

Visualising Changing Documents

- Visualising changes within documents typically involves monitoring changes in, for example:
 - Topic
 - Style
 - Author

and visualizing these using trend visualisation techniques

Changing - Style change detection

- A simple, yet challenging question to answer for style change detection is as follows:
 - Given a document, is it written by a single author or by multiple authors?

 To be able to provide an answer, the document has to be intrinsically analysed, i.e., changes of authorship have to be determined by capturing changes of writing styles

Visualising Conversations

- Many dimensions to consider:
 - Who (senders, receivers)
 - What (the content of communication)
 - When (temporal patterns)

- Interesting cross-products:
 - What x When -> Topic "Zeitgeist"
 - Who x Who -> Social network
 - Who x Who x What x When -> Information flow

Visualising Conversations

CONCLUSIONS

Conclusions

• Visualizing text seems like a sensible idea, but can be quite tricky.

 The main problem working with texts is document representation and feature extraction.

 Visualisations of texts include wordles, frequency xy scatter/histograms, word trees, arc diagrams, dendrograms amongst others.

Conclusions

- The field of text analytics and natural language processing is a very interesting open research area with plenty of applications
 - Forensic linguistics
 - Plagiarism
 - Genre/topic/Author studies
 - Style changes (authorship, health of author, dating)

Visualisation of text can offer an extra insight into text analytics

This Week's Lab

Exploratory Analysis of data

 Visualisation as a tool for exploring Bias and Fairness in Machine Learning

Assignment 1 30%

Specification

You have been hired as a visualisation designer to design an effective dashboard providing insights into a dataset. As part of the visualisation process you will first explore the data and produce a dashboard useful for exploration, then you will set your editorial thinking and produce a dashboard with at least 3 insights from the data.

Marking scheme

- Select a Dataset 2%
- Decide on an audience (user story) 3%
- Using Tableau Public, design a Dashboard that allows the exploration of the data 8%
- Using Tableau Public, design a Dashboard that shows at least three insights from the data 12%
- 5. Show evidence of previous iterations or alternatives 5%

Assignment 1 30%

Sample sources of data

- https://toolbox.google.com/datasetsearch
- https://archive.ics.uci.edu/ml/index.php
- https://data.gov.ie/
- https://public.tableau.com/en-us/s/resources
- Make Over Monday challenges

Thanks To

 Marisa Llorens-Salvador, John McAuley, Colman McMahon and Brian Mac Namee for an earlier version of these lecture notes