Makine Öğrenmesi

Giriş Doç. Dr. İlhan AYDIN

- Makine Öğrenimi Nedir?
- "Öğrenme, bir sistemin deneyimden elde ettiği performansı iyileştirdiği herhangi bir süreçtir."
- Tom Mitchell'in tanımı (1998):
- Makine Öğrenimi aşağıdaki görevler için algoritmaların çalışmasıdır.
 - performans P yi arttırma
 - bazı T görevleri
 - deneyim E yi kullanma.
- İyi tanımlanmış bir öğrenme görevi <P,
 T, E> ile verilir.

Makine Öğrenmesi

Makine Öğrenmesi vs Klasik programlama

- İnsan uzmanlığı mevcut değil (Mars'ta gezinme)
- İnsanlar uzmanlıklarını açıklayamazlar (konuşma tanıma)
- Modeller kişiye özel olmalıdır (kişiye özel ilaç)
- Modeller çok büyük miktarda veriye dayanır (genomik)

Öğrenmek her zaman yararlı değildir:

• Bordro hesaplamak için "öğrenmeye" gerek yoktur

Ne zaman Makine Öğrenmesi?

- Makine öğrenimi gerektiren bir görevin klasik bir örneği:
- Neyin 2 olduğunu söylemek çok zor

Ne zaman Makine Oğrenmesi?

- Bir öğrenme algoritması kullanarak en iyi şekilde çözülen bazı görev örnekleri
- Örüntü tanıma:
 - Yüz kimlikleri veya yüz ifadeleri
 - El yazısı veya sözlü kelimeler
 - Tıbbi görüntüler
- Örüntü Üretme:
 - Görüntüler veya hareket dizileri oluşturma
- Anormallikleri tespiti:
 - Olağandışı kredi kartı işlemleri
 - Bir nükleer santralde olağandışı sensör okuma modelleri
- Tahmin:
 - Gelecekteki hisse senedi fiyatları veya döviz kurları

Makine Öğrenmesi ile çözülen problemler

Web Search

Computational **Biology**

Robotics

Finance

Social Networks

Software Debugging

Space **Exploration**

E-Commerce

Information Extraction

Your Favorite Area

Bazı Uygulamalar

- E deneyimine dayalı olarak performans metriği P'ye göre T görevinde iyileştirme
- T: Dama oynamak
- P: Rastgele bir rakibe karşı kazanılan oyunların yüzdesi
- E: Kendine karşı alıştırma oyunları oynamak
- T: Elle yazılmış kelimeleri tanıma
- P: Doğru sınıflandırılmış kelimelerin yüzdesi
- E: El yazısı kelimelerin insan etiketli görüntülerinin veritabanı
- T: Görüntü sensörlerini kullanarak dört şeritli otoyollarda sürüş
- P: İnsan tarafından değerlendirilen bir hatadan önce kat edilen ortalama mesafe
- E: Kaydedilmiş bir dizi görüntü ve direksiyon komutları
- bir insan sürücüyü gözlemlemek.
- T: E-posta mesajlarını spam veya yasal olarak sınıflandırın.
- P: Doğru sınıflandırılmış e-posta mesajlarının yüzdesi.
- E: Bazıları insan tarafından verilen etikelere sahip e-posta veritabanı

Öğrenme görevinin tanımı

- Nevada, Haziran 2011'de otonom araçların yollarda sürmesini yasal hale getirdi.
- 2013 itibariyle, dört eyalet (Nevada, Florida, California ve
- Michigan) otonom arabaları yasallaştırdı

Makine Öğreniminin Son Teknoloji Uygulamaları

Otonom Araba Sensörleri

Makine Öğreniminin Son Teknoloji Uygulamaları

Makine Öğreniminin Son Teknoloji Uygulamaları

Bu bir ikili sınıflandırma görevidir: Girişe (bir e-posta mesajı) etiket (yani spam/spam olmayan) atayın

• Sınıflandırma, girdiye hangi etiketin atanacağını belirlemek için bir model (bir sınıflandırıcı) gerektirir.

Makine Öğreniminin Son Teknoloji Uygulamaları

- Uygulama: Doküman Sınıflandırma
- Bu, çok sınıflı bir sınıflandırma görevidir:
- oGiriş için etiket (yani Politika, Spor, Finans, Sanat) atayın

Makine Öğreniminin Son Teknoloji Uygulamaları

Makine Öğreniminin Son Teknoloji Uygulamaları

1980s-Era Neural Network

Deep Neural Networks

Multiple hidden layers process hierarchical features

Output

layer

Identify

Output: 'George'

according to each link's 'weight'.

Derin Öğrenme ile Yeni Yaklaşımlar

Derin Öğrenme ile Sahne Tanıma

Derin Öğrenme Modellerinden Çıkarım

Derin Öğrenmenin Ses Üzerindeki Etkisi

- Eğiticili (supervised) öğrenme
 - Verilen: eğitim verisi+ arzu edilen çıktılar (etiketler)
- Eğiticisiz(unsupervised) öğrenme
 - Verilen: Eğitim verisi(çıktı verisi yok)
- Yarı eğiticili(semi-supervised)
 - Verilen: eğitim verisi+ bazı çıktı verileri
- Takviyeli Öğrenme
 - Hareketlerin bir sırasından ödüller

Öğrenme Türleri

- Verilen (x1, y1), (x2, y2), ..., (xn, yn)
- x verildiğinde y'yi tahmin etmek için f(x) fonksiyonunu öğrenmek
- y gerçek değerlidir == regresyon

Eğiticili Öğrenme: regresyon

- Verilen (x1, y1), (x2, y2), ..., (xn, yn)
- x verildiğinde y'yi tahmin etmek için f(x) fonksiyonunu öğrenin
- y kategoriktir == sınıflandırma

Eğiticili Öğrenme: Sınıflandırma

- Verilen (x1, y1), (x2, y2), ..., (xn, yn)
- x verildiğinde y'yi tahmin etmek için f(x) fonksiyonunu öğrenin
- y kategoriktir == sınıflandırma

<u>Eğiticili Oğrenme: Sınıflandırma</u>

- X çok boyutlu olabilir
 - Her bir boyut bir özelliğe karşılık gelir.

- Küme Kalınlığı
- Hücre Boyutunun Tekdüzeliği
- Hücre Şeklinin Tekdüzeliği

Eğiticili öğrenme: Sınıflandırma

- X1,x2,..., xn verilsin(Sınıf etiketi yok)
- Çıktı x'lerin arkasındaki gizli yapıyı keşfetme
 - Örneğin kümeleme

Eğiticisiz öğrenme: Kümeleme

Organize computing clusters

Market segmentation

Social network analysis

Astronomical data analysis

Eğiticisiz öğrenme

Bağımsız bileşen analizi – birleşik bir sinyali orijinal kaynaklarına ayırın

Eğiticisiz öğrenme

(Gecikmeli) ödülleri olan bir dizi durum ve eylem verildiğinde, bir politika çıktısı alın

- Politika, belirli bir durumda ne yapacağınızı söyleyen durumlardan ve eylemlerden oluşan bir haritalamadır.
- Örnekler:
- Kredi atama sorunu
- Oyun oynama
- Bir labirentte robot
- Elinizde bir direği dengeleyin

Takviyeli öğrenme

- Ajan ve ortam ayrık zaman adımlarında etkileşime girer: t = 0, 1, 2, K
- Ajan, t adımındaki durumu gözlemler: st ∈S
- t adımında eylem üretir: ∈ A(st)'de
- sonuç ödülü alır: rt +1 ∈ ℜ
- ve ortaya sonraki duruma geçiş yapar

Takviyeli öğrenme

Takviyeli öğrenme

- Eğitim deneyimini seçin
- Tam olarak ne öğrenileceğini seçin
- yani hedef fonksiyon
- Hedef işlevin nasıl temsil edileceğini seçin
- Deneyimden hedef işlevi çıkarmak için bir öğrenme algoritması seçin

Ortam/
deneyim

Bilgi

Performans
elemanı

Bir öğrenme probleminin tasarımı

- Genellikle eğitim ve test örneklerinin bağımsız olarak aynı genel veri dağılımından alındığını varsayıyoruz.
- "Bağımsız ve özdeş olarak dağıtılmış"
- Örnekler bağımsız değilse toplu sınıflandırma gerektirir
- Test dağılımı farklıysa, transfer öğrenimi gerektirir.
- Her makine öğrenme algoritması 3 bileşen içerir:
 - Gösterim
 - Optimizasyon
 - Değerlendirme

Eğitim ve Test Dağılımı

- Numerik fonksiyonlar
 - Doğrusal regresyon
 - Sinir ağları
 - Destek vektör makinalar
- Sembolik gösterimler
 - Karar ağacı
 - Önerme mantığındaki kurallar
 - Birinci dereceden yüklem mantığındaki kurallar
- Örnek-tabanlı fonksiyonlar
 - En yakın komşu
 - Durum-tabanlı
- Olasılık tabanlı grafiksel modeller
 - Naive Bayes
 - Bayes ağları
 - Saklı markov modelleri
 - Markov ağları

Farklı Fonksiyon Gösterimleri

- Gradyan azalımı
 - Algılayıcı
 - Geriye yayılım
- Dinamik programlama
 - HMM öğrenme
 - Olasılık tabanlı öğrenme
- Böl-yönet
 - Karar ağacı
 - Kural öğrenme
- Evrimsel hesaplama
 - Genetik algoritma
 - Genetik programlama
 - Diferansiyel gelişim vb.

Farklı Arama/Optimizasyon

Yöntemleri

- Doğruluk
- Hassasiyet ve geri çağırma
- Kare hatası
- Olasılık
- Arka olasılık
- Maliyet / Fayda
- Marjin
- Entropi
- K-L ayrışması vb

Değerlendirme

- Alanı, ön bilgileri ve hedefleri anlayın
- Veri entegrasyonu, seçimi, temizleme, ön işleme vb.
- Modelleri öğrenin
- Sonuçları yorumlayın
- Keşfedilen bilgileri konsolide edin ve dağıtın

Pratikte Makine Öğrenmesi