Лекция 07.02.22

Note 1

b84aca6df42d4d74ad1fea51970c01d9

Пусть $\{(c3): W-$ линейное пространство, $V\subset W$. $\}$ Тогда V называется $\{(c2):$ линейным подпространством $\}$, если $\{(c1):$

- 1. $\forall v \in V, k \in \mathbb{R} \implies kv \in V$,
- $2. \ \forall v_1, v_2 \in V \implies v_1 + v_2 \in V.$

Note 2

aa489a3d13c4978866a82630be13e73

Пусть W — линейное пространство, $V\subset W$ — линейное подпространство в W. Тогда V — $\{\!\{\!\{\!\}\!\}\!\}$ тоже линейное пространство $\{\!\}\!\}$.

Note 3

3c2988d9ae174eb4aa377f43ebd61f7

Является ли прямая проходящая через начало координат подпространством в \mathbb{R}^n ?

Да, поскольку любая линейная комбинация векторов на прямой тоже лежит на этой прямой.

Note 4

18b402a364da457aaaf95095b9113dcd

Пусть $W=\mathbb{R}^n, A\sim m\times n.$ Является ли множество

$$V = \{ x \in W \mid Ax = 0 \}$$

линейным подпространством?

Да, поскольку $\forall u,v\in V,\quad \alpha,\beta\in\mathbb{R}\quad A(\alpha u+\beta v)=0.$

Note 5

a5081684e6014eeb8d4cd352f7dfd46h

Пусть V — подпространство в \mathbb{R}^n . Тогда всегда существует $A \in \mathbb{R}^{\{\!\{c2:m \times n\}\!\}}$ такая, что $\{\!\{c1:m \times n\}\!\}$

$$V = \{ x \in \mathbb{R}^n \mid Ax = 0 \}$$

}}

Пусть $W = \mathbb{R}^n$, $a_1, a_2, \dots a_n \in W$. Является ли

$$\mathcal{L}(a_1, a_2, \dots a_n)$$

подпространством в W?

Да, является, поскольку любая линейная комбинация линейных комбинаций $a_1, a_2, \dots a_n$ тоже является их линейной комбинацией.

Note 7

d633780bbade46968c2bcb66d05be478

Пусть $W=\mathbb{R}^n, \quad V_1,V_2\subset W$ — два линейных подпространства в W. Всегда ли $V_1\cap V_2$ — тоже линейное подпространство в W?

Да, всегда.

Note 8

9c714ab9fa4b457f993438ef25421061

Пусть $W=\mathbb{R}^n, \quad V_1, V_2\subset W$ — два линейных подпространства в W. Всегда ли $V_1\cup V_2$ — тоже линейное подпространство в W?

Нет, не всегда.

Note 9

2b9216d113914ad98cbc81b055dc174b

Пусть $W=\mathbb{R}^n, \quad V_1, V_2\subset W$ — два линейных подпространства в W. Тогда

$$\{ (c2\cdot V_1 + V_2) \stackrel{\mathrm{def}}{=} \{ (c1\cdot \{v_1 + v_2 \mid v_1 \in V_1, \quad v_2 \in V_2 \}. \} \}$$

Note 10

cd25e86c13c141be80e3673edfece8d2

Пусть $W=\mathbb{R}^n, \quad V_1, V_2\subset W$ — два линейных подпространства в W. Тогда

$$\dim(V_1 + V_2) = \{\{c_1: \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2).\}\}$$

Пусть $W=\mathbb{R}^n, \quad V_1, V_2\subset W$ — два линейных подпространства в W. Всегда ли V_1+V_2 — тоже линейное подпространство в W?

Да, всегда.

Note 12

fe58542dc0ee4e48ab330cd68be1fd77

Пусть $W=\mathbb{R}^n,\ V$ — линейное подпространство в W и e_1,e_2,\ldots,e_k — кеза базис в V.) Тогда в W существует базис вида (класе $e_1,e_2,\ldots,e_k,e_{k+1},\ldots,e_n$.)

Note 13

7e41e14368b94d50be88c6e5b025c706

В чем основная идея доказательства теоремы о размерности суммы подпространств?

Дополнить базис в $V_1 \cap V_2$ до базисов в V_1 и V_2 соответственно и построить на их основе базис в $V_1 + V_2$.

Note 14

01ac0beb84404bed8a9f676002a2804

Пусть

- $e_1, e_2, \dots e_k$ базис в $V_1 \cap V_2$,
- $e_1, e_2, \dots e_k, f_1, \dots f_p$ базис в V_1 ,
- $e_1, e_2, \dots, e_k, g_1, \dots g_q$ базис в V_2 .

Как можно построить базис в $V_1 + V_2$?

$$e_1, \ldots e_k, f_1, \ldots f_p, g_1, \ldots, g_q$$
 — базис в $V_1 + V_2$.

Семинар 09.02.22

Note 1

3fd21160928849f8acbc526a60229e49

Пусть e_1,e_2,\ldots,e_n и e'_1,e'_2,\ldots,e'_n — два базиса в линейном пространстве V. Тогда патрицей перехода от базиса e к базису e' называют патрицу C такую, что для любого $v\in V$, если

$$v = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n,$$

 $v = \mu_1 e'_1 + \mu_2 e'_2 + \dots + \mu_n e'_n,$

то

$$C \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}.$$

}}

Note 2

38fab27df46a451190278cbc1d38698f

 $\{\{e^{2z}\}\}$ Матрицу перехода от базиса e к базису e' $\}$ обычно обозначают $\{\{e^{1z}\}\}$

Note 3

c9e84965d5ea4157b50f6576e2cbddad

Пусть e_1, e_2, \ldots, e_n и e'_1, e'_2, \ldots, e'_n — два базиса в линейном пространстве. Как в явном виде задать матрицу $C_{e \to e'}$?

Столбцы $C_{e \to e'}$ — это координаты векторов e'_1, e'_2, \dots, e'_n в базисе e_1, e_2, \dots, e_n .

Лекция 14.02.22

Note 1

825he05che9f4850806682f4dh48f5e1

Пусть W- линейное пространство, $V_1,V_2 \triangleleft W$. (с2: Сумму V_1+V_2) называют (с1: прямой суммой,) если (с2: $V_1\cap V_2=\{0\}$.)

Note 2

90c98477312541878454fb9689685fc8

 ${}_{\text{{\scriptsize (C2)}}}$ Прямая сумма подпространств V_1 и $V_2{}_{\text{{\scriptsize ()}}}$ обозначается ${}_{\text{{\scriptsize (C2)}}}$

$$V_1 \oplus V_2$$
.

Note 3

951dc5cc9d7d4722ac40423e92273c7a

Пусть V_1 и V_2 — два линейных подпространства. Тогда эквивалентны следующие утверждения:

- 1. $\{\{c_1::V_1+V_2-прямая сумма;\}\}$
- 2. $\{(c2): \dim(V_1 + V_2) = \dim V_1 + \dim V_2; \}\}$
- 3. $\{(c3): Для \ любого \ a \in V_1 + V_2 \ разложение разложение <math>a$ в сумму $v_1 + v_2$, где $v_1 \in V_1, v_2 \in V_2$, единственно. $\{(c3): Q_1 \in V_1 \}$

Note 4

fc93fb548c854d70af3f9cf3017866cb

В чем основная идея доказательства того, что если для любого $a\in V_1+V_2$ разложение разложение a в сумму v_1+v_2 , где $v_1\in V_1, v_2\in V_2$, единственно, то V_1+V_2 — прямая сумма?

Показать, что если $a=v_1+v_2\in V_1\cap V_2$, то $v_1=v_2=0.$

Note 5

78239c298e504fa9841235fdd06ac419

«((с3:: Монотонность размерности подпространств))»

Пусть W — линейное пространство, $V \triangleleft W$. Тогда

- 1. $\{ \dim V \leqslant \dim W, \}$
- 2. $\{c2: \dim V = \dim W \iff V = W.\}$

 $\{\{c\}\}\}$ Отображение $f:V\to W_{\}\}$ называется $\{\{c\}\}\}$ линейным отображением, $\{\}\}$ если $\{\{c\}\}\}$

1.
$$f(x+y) = f(x) + f(y)$$
, $\forall x, y \in V$,

2.
$$f(\lambda x) = \lambda f(x), \quad \forall \lambda \in \mathbb{R}, x \in V.$$

Note 7

4008d3f9d2224ec38cb2e9b8a78aab64

Линейное отображение так же ещё называют ((с.): линейным оператором.)

Note 8

df5862f6f1d4456cb943a7f07c8d8b68

Линейный оператор $f:V\to W$ называется (кана изоморфизмом линейных пространств); тогда и только тогда, когда (кана f — биекция.))

Note 9

d8bd78dfda034119ae049b476da9644

Линейные пространства V и W называются (спаизоморфными) тогда и только тогда, когда ((спаизоморфизм

$$f: V \to W$$
.

Note 10

2d4f456313e24261b688216f4b7f199e

Отношение $\{ (c2) :$ изоморфности $\}$ обозначается символом $\{ (c1) :$

 \simeq

Note 11

7112c4ddaf614005b6a37c3f4fbd3edc

Если $f:V \to W$ — изоморфизм, то $f^{-1}:W \to V$ ((c.:. — тоже изоморфизм.))

Отношение изоморфности удовлетворяет аксиомам отношения $\{(a,b)\}$ эквивалентности. $\{(a,b)\}$

Note 13

9fa02b16e5e74fcea192355d84b99109

Пусть V,W — конечномерные линейные пространства. Тогда

$$\{\text{c2:} V \simeq W\}\}\{\text{c3::} \iff \}\}\{\text{c1::} \dim V = \dim W.\}\}$$

Note 14

13b90eb2ff704cc69e067a3f047966cc

Пусть $f:V\to W$ — линейный оператор. Тогда (кез матрицей линейного оператора f в паре базисов в V и W соответственно) называют (кез матрицу A, переводящую координаты любого вектора $v\in V$ в координаты вектора $f(v)\in W$ в соответствующих базисах.)

Note 15

d8ecf4d0e7a546668528944588ba6060

«({c2:: Теорема о матрице линейного оператора)}»

Пусть $f:V \to W$ — линейный оператор,

- $\{(c3::e_1,e_2,\ldots,e_n)\}$ базис в V,
- $\{ e^{2\pi i} \tilde{e}_1, \tilde{e}_2, \dots, \tilde{e}_m \}$ базис в W.

Как в явном виде задать матрицу оператора f в этих базиcax?

j-ый столбец — это координаты вектора $f(e_j)$ в базисе $\tilde{e}_1, \tilde{e}_2, \ldots, \tilde{e}_m.$

Note 16

1235d9dc6038426387ee1c7475309a4f

Как можно компактно перефразировать утверждение теоремы о матрице линейного оператора?

$$f(e) = \tilde{e}A.$$

Note 17

8e1ba2b68d414caeb7d229ba34833e8d

В чем ключевая идея доказательства теоремы о матрице линейного оператора?

$$f(e\lambda) = f(e)\lambda = \tilde{e}A\lambda$$

 $f(e\lambda) = f(e)\lambda = \tilde{e}A\lambda,$ где λ — координаты вектора из V в базисе e.

Note 18

b595ad9b198f46299eb5af10d49e413d

Композиция линейных операторов — тоже (сая линейный оператор.

Note 19

Матрица композиции линейных операторов есть (сля произведение матриц этих операторов.