Home ► Electrical Engineering ► Engr17-2016F-Tatro ► Homework ► Homework 13 - Chap 9

Started on Sunday, 20 November 2016, 7:12 PM

State Finished

Completed on Sunday, 20 November 2016, 8:53 PM

Time taken 1 hour 40 mins

Grade 98.75 out of 100.00

Question 1

Correct

Mark 10.00 out of 10.00

P9.44 9ed

The sinusoidal voltage source in the circuit is developing a voltage equal to $247.49 \cos(1,000 t + 45^{\circ}) \text{ V}$.

a) Find the Thévenin voltage with respect to the terminals a,b.

$$|V_{Th}| = \boxed{350}$$
 \checkmark V

Angle =
$$\bigcirc$$
 \bigcirc \bigcirc \bigcirc (Degrees)

b) Find the Thévenin impedance with respect to the terminals a,b.

Express your answer in polar form.

$$|Z_{ab}| = \boxed{141.42} \qquad \checkmark \Omega \text{ (Ohm)}$$

Angle =
$$\begin{bmatrix} 45 \\ \checkmark \circ \text{ (Degrees)} \end{bmatrix}$$

Numeric Answer

V_{Th} = 350 at angle 0° Volts

 Z_{ab} = 100 + j 100 Ω (Ohm) = 141.42 at angle 45° Ω (Ohm)

Correct

Correct

Mark 10.00 out of 10.00

P9.46_7ed

The frequency of operation is 400 rad/sec.

Find the Thévenin impedance seen looking into the terminals ab of this circuit.

$$Z_{Th} = \boxed{30000} \checkmark + j \boxed{-2500} \checkmark \Omega \text{ (Ohm)}$$

Numeric Answer

$$Z_{Th} = 30,000 - j 2,500 \Omega \text{ (Ohm)}$$

Correct

Question $\bf 3$

Correct

Mark 10.00 out of 10.00

P9.29_6ed

Given:

$$v_g = 150 \cos(8,000 \pi t + 20^\circ) V$$

$$i_g = 30 \sin(8,000 \pi t + 38^\circ) A$$

a) What is the impedance seen by the source?

$$Z_{circuit} = Mag \left[5 \right]$$
 with Angle $\left[72 \right]$ (Ohm)

b) By how many microseconds is the current out of phase with the voltage?

$$t_{phase} = 50$$
 $\checkmark \mu s (micro sec)$

Numeric Answer

a)
$$Z_{circuit} = 5$$
 at angle $72^{\circ} \Omega$ (Ohm)

b)
$$t_{phase} = 50 \mu s$$
 (micro sec)

Correct

Correct

Mark 10.00 out of 10.00

P9.36_6ed

Find the Thévenin impedance seen looking into the terminals ab of this circuit.

The frequency of operation is 25 krad/sec (kilo rad/sec).

$$Z_{Th} = \begin{bmatrix} 3500 \\ \checkmark + j \\ \end{bmatrix}$$
 (Ohm) in rectangular form

Numeric Answer

$$Z_{Th} = 3,500 - j 12,000 \Omega$$
 (Ohm)

Correct

Correct

Mark 10.00 out of 10.00

P9.56_6ed

Use the node-voltage method to find the follow phasor values.

$$V_0 = 1280$$
 $\checkmark + j 320$ $\checkmark Volts$

$$I_0 = \begin{bmatrix} -1.4 \\ \end{bmatrix} + j \begin{bmatrix} -1.2 \\ \end{bmatrix}$$
 Amps

Numeric answer

 $V_0 = 1,280 + j 320 V = 1319.394 at angle 14.04° V$

I₀ = -1.40 - j 1.20 A = 1.844 at angle -139.40° A

Correct

Marks for this submission: 10.00/10.00.

Question 6

Correct

Mark 10.00 out of 10.00

P9.54_10ed

Use the node-voltage method to find V_0 .

$$V_0 = \text{Magnitude}$$
 188.43 with Angle -42.88 \checkmark (Degrees) Volts

Numeric answer

 $V_0 = 188.432$ at angle -42.88° Volts

Correct

Correct

Mark 10.00 out of 10.00

P9.72_6ed

The operational amplifier is ideal.

Given $v_g(t) = 2 \cos(100,000 t) V$

a) Find the steady-state output $v_0(t)$.

$$v_0(t) = 2.152$$
 $< cos(100,000 t + -22.08)$ Volts

b) How large can the amplitude of $\boldsymbol{v}_g(t)$ be before the amplifier saturates?

$$|v_0(t)_{\text{max}}| \le \boxed{4.646}$$
 Volts (less than or equal to)

Numeric answer

a) $v_0(t) = 2.154 \cos(100,000 t - 21.80^{\circ}) \text{ Volts}$

b) $| v_0(t)_{max} | \le 4.634 \text{ Volts}$

Correct

Correct

Mark 10.00 out of 10.00

P9.61_10ed

Given: $v_{g1} = 25 \sin (400 t + 143.12^{\circ}) V$ and $v_{g2} = 18.03 \cos (400 t + 33.69^{\circ}) V$

Use the mesh-current method to find the steady-state voltage of $\boldsymbol{v}_0(t)$.

$$v_0(t) = 15$$
 $\sqrt{\cos(400 t + 0)}$ (Degrees) V

Numeric answer

$$v_0(t) = 15 \cos (400 t + 0^\circ) V$$

Correct

Correct

Mark 10.00 out of 10.00

P9.48_6ed

Given: $v_g = 72 \cos(5,000t) \text{ V}$

Find the steady-state expression for $\boldsymbol{v}_0(t)$ in this circuit.

$$v_0(t) = 11.31$$
 $\sqrt{\cos(5,000 t + -45)}$ (Degrees) V

Numeric answer

$$v_0(t) = 11.314 \cos(5,000t - 45^\circ) V$$

Correct

Partially correct

Mark 8.75 out of 10.00

P9.52_6ed

Use the Mesh method and find the following currents:

$$I_a = Magnitude$$
 30 with Angle 0 0 (Degrees) Amps
$$I_b = Magnitude$$
 36.05 with Angle -33.69 (Degrees) Amps
$$I_c = Magnitude$$
 31.62 with Angle 18.43 (Degrees) Amps
$$I_d = Magnitude$$
 10 with Angle -90 (Degrees) Amps

Numeric Answer

I_a = 30 at angle 0° A

I_h = 36.056 at angle -33.69° A

I_c = 31.623 at angle 18.43° A

I_d = 30 at angle -90° A

Partially correct