Lineare Bewegungen

Anton Haase, Michael Goerz

Im Allgemeinen sind lineare Bewegungen ein dimensionale Bewegungen, die durch drei Formen charahlensiert werden. Gleich formige Benegungen finden ohne jede Krafteinwirhung statt. Gleichmäßig beschlennigte Bewegunger werden durch eine Monstante Wraft angefrieben. Die mathematische Beschreibung dies & Form erfolgt mittels der Newton's den Kraft beziehung F = m. a. bzw. F = m v. In der Graphischen Auswertung engibt sich auf Grennel der borstanten Boschlennigung eine lineaux Anstieg der Geschwindigheit mit der Zeit. Die drike Form ist eine Bewegung mil zeitabhængige Beschlennigung bzw Knaft. In dem folgenden Experiment handelt es sich um die 2. Form. Nebon der Antrabenden Maft F existient hier jedoch noch eine geschwindig-Keitsabhangige Brensmatt, die duch in der Bewegungsgleichung Benüch sichtigung finden muss:

 $F - \delta \sigma = m \cdot \frac{d\sigma}{dt}$

Diese hour Differentialgleichung bann leicht in die typische Form Lingewandelt werden:

 $\dot{v} + \frac{\int w}{m} v = \frac{F}{m}$

Zunoichst ist die Losung der homogenen Gleichung gesucht. Daza wird ein allgemeiner Exponential ausate vervandet:

$$v(t) = A \cdot e^{\lambda t}$$

Durch Einselsen erhält man:

$$Aze^{2t} + \frac{\int Ae^{2t}}{m}Ae^{2t} = 0$$

$$\Rightarrow \lambda + \frac{\delta}{m} = 0 \Rightarrow \lambda = -\frac{\delta}{m}$$

Bierres Eine spezielle Lösung der inhamogener Gleichung ist gegoben durch

$$\mathcal{C} = \frac{F}{S}$$

Der (noch) freie Pouavneler A wird danch die Anfeingsbedingung vo = v(t=0) = 0 bestimmt:

$$A(A) \quad \sigma(0) = A + \frac{F}{S} = 0$$

$$\Rightarrow A = -\frac{F}{S}$$

Darans ergist sich die vollskändige Lösung unter den vorwendsten Ansatz zu:

$$v(t) = -\frac{F}{\sigma}e^{-\frac{C}{m}t} + \frac{F}{\sigma}$$
$$= \frac{F}{\sigma}\left(1 - e^{-\frac{C}{m}t}\right)$$

Damit ergist sich kin diese standig beschleunigte Bewegung im Grenzfall t > 20 eine konstante, Grenzgeschwindigheit vo = \(\frac{F}{5} \), die sich indivoluel in Abhangigheit de Kraft und der Reibung oder Bremsmaßt einstellt. Die Zeit bis elieser Effeht zu beobachlen ist hängt dabei start von de Reibung und der Masse ab. Dabei gitt: große Reibung und Isleine Masse => hurzeste Zeit.

18:03 05 -//

Experiment Mess protokoll

Anton Haase, Michael Goere

Aufgabe 2:

Anhängegewichte:

$$m_1 = (2 \pm 0.7) g$$
 $m_2 = (5.0 \pm 0.5) g$
 $m_3 = (11 \pm 1) g$
 $m_4 = (17 \pm 1) g$

Alle weiteren Messdaten wurden elektronisch aufgenommen, und sind als Ausduche des "CASSY Lab" vorhanden. Sie worden daher erst bei der Auswertungen der jeweiligen Messungen Irscheinen und nicht hier im Mess protoholl.

Aufgabe 1

In Voraus de Messungen wurde die Luftkissenschiene sovgfältig kalibriert. Dennoch kounte kein Zustand erreicht werden, in dem der Wagen an jeder Skelle der Bahn seine Position beitsehalten hat. Alle folgenden Messungen bzw. Auswehungen sind somit einem geningen Fehler unterworfen. Insbesondere in der Zweiten Hälfte der Bahn erfuhr der Wagen eine Leichte Beschleunigung in positive Richteung. Weiter systematische tehler durch die Bahn bzw. den Wegen werden im weiter Verlanf dieses Protoholls und in der abschließenden Dishussion behandelt.

Aufgabe 2:

In dieser Anfgabe wurde die eingangs erwählte gleichmäßig beschleunigte Lineare Bewegung für den (fast) reibings heien Fall unkrsacht. Aus els Theorie ahält Man man die einfache Benegungsgleichung:

F= m·a = m. s

welche für den vorliegenden Fell die einfache Lösung:

s(t) = \frac{1}{7}at^{7} + vot + so

hat.

Die Parameter Weld vound so wurden durch den experimentellen Aufbau gleich Nall gesetet, so dass sich das Bewegungs gesetzt zu $S(t) = \frac{1}{2} \alpha t^2$

vereinfeulit. Die Beschleunigung a ergibt sich aus de anheibenden Kraft zu:

 $F_{A} = F_{G}$ $m_{w} \cdot \alpha = m_{G} \cdot g$ $\Leftrightarrow \alpha = \frac{m_{G} \cdot g}{m_{w}}$

mober mu die Masse des Wagens und me die Masse des Zasatzgenichtes (Mattern)

In der ersten Messung wurden verschiedene Ensatzgewichte bei konsternter Wagenmasse beobachtet. Es ergab sich in der genaliteativer Betrachtung die arwartete Parabel: Die jeweilige Zusatzmasse ist dabei an dem zugehörigen Graphen zu finder.

Neben dieser graphischen Darskellung wurden alle Mess werte auch tabellanisch erfasst.

Diese Dalen sind auf den folgenden Seiten auf geführt. Jeder Daten blach ist wieder mit der jeneitige Zusatz- bew. Beschlennigungs gewicht markiert.

t / :

28g

_ap		C/ (CC) Lub		CASST Lab	
t/s	sA1 / m	t/s	sA1/m	t/s	sA1/m
0,00	0,000	1,24	0,138	2,46	0,606
0,02	0,000	1,26	0,144	2,49	0,618
0,05	0,000	, 1,29	0,149	2,51	0,630
0,07	0,000	1,31	0,156	2,53	0,642
0,09	0,000	1,33	0,161	2,56	0,655
0,12	0,000	1,36	0,168	2,58	0,667
0,14	0,000	1,38	0,174	2,60	0,680
0,16	0,000	1,40	0,180	2,62	0,693
0,18	0,000	1,42	0,186	2,65	0,705
0,21	0,000	1,45	0,193	2,67	0,717
0,23	0,001	1,47	0,199	2,69	0,730
0,26	0,001	1,49	0,206	2,71	0,743
0,28	0,002	1,51	0,213	2,74	0,757
0,30	0,003	1,53	0,220	2,76	0,769
0,33	0,004	1,55	0,226	2,78	0,782
0,35	0,005	1,58	0,233	2,80	0,796
0,38	0,006	1,60	0,241	2,83	0,809
0,40	0,008	1,62	0,248	2,85	0,824
0,42	0,009	1,64	0,256	2,87	0,837
0,45	0,011	1,67	0,263	2,90	0,850
0,47	0,013	1,69	0,270	2,92	0,865
0,49	0,014	1,71	0,278	2,94	0,880
0,52	0,017	1,73	0,286	2,96	0,894
0,54	0,018	1,75	0,294	2,99	0,908
0,56	0,021	1,78	0,302	3,01	0,922
0,59	0,024	1,80	0,310	3,03	0,937
0,61	0,026	1,82	0,319	3,05	0,952
0,64	0,029	1,85	0,328	. 3,08	0,966
0,66	0,030	1,87	0,337	3,10	0,981
0,68	0,033	1,89	0,345	3,12	0,997
0,70	0,037	1,92	0,354	3,15	1,012
0,72	0,040	1,94	0,364	3,17	1,026
0,74	0,042	1,96	0,373	3,19	1,041
0,77	0,045	1,98	0,382	3,21	1,056
0,79	0,049	2,01	0,392	3,23	1,072
0,81	0,052	2,03	0,401	3,25	1,086
0,84	0,056	2,05	0,411	3,28	1,102
0,86	0,059	2,07	0,421	3,30	1,117
0,88	0,062	2,10	0,431	3,32	1,133
0,90	0,066	2,12	0,441	3,34	1,149
0,93	0,070	2,14	0,452	3,37	1,154
0,95	0,074	2,16	0,461	3,39	1,151
0,97	0,078	2,19	0,471	3,41	1,149
0,99	0,083	2,21	0,481	3,43	1,146
1,01	0,088	2,23	0,492	3,45	1,144
1,04	0,092	2,26	0,503	3,47	1,142
1,06	0,097	2,28	0,514	3,50	1,141
1,08	0,102	2,30	0,525	3,52	1,140
1,11	0,106	2,33	0,537	3,54	1,139
1,13	0,112	2,35	0,548	3,57	1,138
1,15	0,117	2,37	0,558	3,59	1,138
1,17	0,121	2,39	0,570	3,61	1,137
1,20	0,126	2,42	0,582	3,63	1,137
1,22	0,132	2,44	0,594	3,65	1,137

SSY Lab			CASSY Lab		
	t/s	sA1 / m		t/s	sA1 / m
	3,68	1,137		1,60	1,104
	3,70	1,137		1,70	1,106
	3,72	1,137			
50	0,00	0,000			
8	0,20	0,015			
	0,40	0,052			
	0,61	0,111			
	0,80	0,185			
	1,00	0,280			
	1,21	0,399			
	1,41	0,533			
	1,61	0,687			
	1,80	0,856			
	2,01	1,056			
	2,20	1,167			
119	0,00	0,000			
11/1	0,10	0,000			
	0,20	0,004			
	0,30	0,018			
	0,40	0,042			
	0,50	0,077			
	0,60	0,121			
	0,70	0,177			
	0,80	0,241			
	0,90	0,317			
	1,00	0,402			
	1,10	0,498			
	1,20	0,604			
	1,30	0,721			
	1,40	0,847			
	1,50	0,984			
	1,60	1,129			
	1,70	1,159			
	1,80	1,150			
	1,90	1,149			
170	0,00	0,001			
ď	0,10	0,001			
	0,20	0,008			
	0,30	0,032			
	0,40	0,072			
	0,50	0,125			
	0,60	0,195			
	0,70	0,280			
	0,80	0,380			
	0,90	0,496			
	1,00	0,624			
	1,10	0,771			
	1,20	0,932			
	1,30	1,108			

1,40

1,50

1,136

1,110

Da bis auf die Wagenmasse mn alle Porameter betannt sind, bann om Hend der Formet a = mo of so mm = mo og

die Analität der Messungen über präft werden. In jedem Fall sollte die gleiche Wagenmasse berechnet werden können. Ist clies den Fall, so erhält nan damit eine implizite Uber präfung des Benegungs gesetzes aus dem die Beschleuungung a berechnet wird. Fur Vereinfachung der Auswetung wurden die eben Clargestellen Messwerk über t² aufgehage und tabellarisch berechnet:

	t2 / s2	sa1 / m	t2/s2	sA1 / m	t2 / s2	sA1 / m
28	0,00	0,000	1,54	0,138	6,07	0,606
δ	0,00	0,000	1,60	0,144	6,19	0,618
	0,00	0,000	1,66	0,149	6,30	0,630
	0,00	0,000	1,72	0,156	6,42	0,642
	0,01	0,000	1,78	0,161	6,53	0,655
	0,01	0,000	1,84	0,168	6,65	0,667
	0,02	0,000	1,90	0,174	6,77	0,680
	0,03	0,000	1,96	0,180	6,89	0,693
	0,03	0,000	2,02	0,186	7,00	0,705
	0,04	0,000	2,09	0,193	7,12	0,717
	0,05	0,001	2,15	0,199	7,24	0,730
	0,07	0,001	2,22	0,206	7,36	0,743
	0,08	0,002	2,28	0,213	7,49	0,757
	0,09	0,003	2,35	0,220	7,60	0,769
	0,11	0,004	2,42	0,226	7,73	0,782
	0,12	0,005	2,49	0,233	7,86	0,796
	0,14	0,006	2,56	0,241	7,99	0,809
	0,16	0,008	2,63	0,248	8,13	0,824
	0,18	0,009	2,70	0,256	8,25	0,837
	0,20	0,011	2,78	0,263	8,38	0,850
	0,22	0,013	2,85	0,270	8,52	0,865
	0,24	0,014	2,92	0,278	8,66	0,880
	0,27	0,017	3,00	0,286	8,79	0,894
	0,29	0,018	3,08	0,294	8,92	0,908
	0,32	0,021	3,15	0,302	9,05	0,922
	0,35	0,024	3,24	0,310	9,19	0,937
	0,38	0,026	3,32	0,319	9,33	0,952
	0,40	0,029	3,41	0,328 0,337	9,47	0,966
	0,43	0,030	3,49	0,337	9,61 9,75	0,981
	0,46	0,033	3,58	0,354	9,89	0,997 1,012
	0,49	0,037	3,67	0,364	10,04	1,012
	0,53	0,040	3,75 3,84	0,373	10,16	1,041
	0,56	0,042	3,93	0,382	10,30	1,056
	0,59 0,63	0,045	4,02	0,392	10,46	1,072
	0,66	0,049 0,052	4,12	0,401	10,59	1,086
	0,70	0,056	4,12	0,411	10,74	1,102
	0,74	0,059	4,30	0,421	10,88	1,117
	0,74	0,062	4,40	0,431	11,03	1,133
	0,78	0,066	4,50	0,441	11,18	1,149
	0,86	0,070	4,60	0,452	11,34	1,154
	0,90	0,074	4,68	0,461	11,47	1,151
	0,94	0,078	4,78	0,471	11,63	1,149
	0,99	0,083	4,88	0,481	11,76	1,146
	1,03	0,088	4,99	0,492	11,92	1,144
	1,08	0,092	5,09	0,503	12,07	1,142
	1,13	0,097	5,19	0,514	12,23	1,141
	1,18	0,102	5,30	0,525	12,39	1,140
	1,23	0,106	5,41	0,537	12,55	., 1,139
	1,27	0,112	5,51	0,548	12,72	1,138
	1,33	0,117	5,62	0,558	12,88	1,138
	1,37	0,121	5,73	0,570	13,02	1,137
	1,43	0,126	5,84	0,582	13,19	1,137
	1,48	0,132	5,95	0,594	13,36	1,137
	1,40	0,102	0,00	,	. 2,30	-,

s_{A1} / m

1,104 1,106

SY Lab		CASSY Lab
t2/s2	sA1/m	t²/s²
13,52	1,137	2,56
13,69	1,137	2,89
13,87	1,137	·
,	,	
50 0,00	0,000	
0,04	0,015	
0,16	0,052	
0,37	0,111	
0,64	0,185	
1,00	0,280	
1,46	0,399	
1,98	0,533	
2,58	0,687	
3,24	0,856	
4,04	1,056	
4,85	1,167	
11. 000	0.000	
My 0,00	0,000	
0,01	0,000	
0,04	0,004	
0,09	0,018 0,042	
0,16 0,25	0,077	
0,25	0,121	
0,38	0,177	
0,49	0,241	
0,81	0,317	
1,00	0,402	
1,21	0,498	
1,44	0,604	
1,70	0,721	
1,97	0,847	
2,26	0,984	
2,56	1,129	
2,90	1,159	
3,25	1,150	
3,61	1,149	
179,0,00	0,001	
ð 0,01	0,001	
0,04	0,008	
0,09	0,032	
0,16	0,072	
0,25	0,125	
0,36	0,195	
0,49	0,280	
0,64	0,380	
0,81	0,496	
1,00	0,624	
1,21	0,771	
1,44	0,932	
1,69	1,108	
1,96	1,136	

2,25

1,110

Aus dem linearisierkn Graphen braun de Wert der Beschleunigung ods Steigung obgelesen werden. Dabei ist der Fehror 2 zu beachkn:

$$S(t) = \frac{1}{2}\alpha t^{2}$$

$$S(t) = 2 = \alpha$$

Damit ergibt sich:

2g;
$$\alpha = 2 \cdot 0.1 \frac{m}{s^2} = 0.20 \frac{m}{s^2} \pm 0.05 \frac{m}{s^2}$$

5g: $\alpha = 2 \cdot 0.26 \frac{m}{s^2} = 0.52 \frac{m}{s^2} \pm 0.05 \frac{m}{s^2}$
Mg: $\alpha = 2 \cdot 0.14 \frac{m}{s^2} = 0.80 \frac{m}{s^2} \pm 0.05 \frac{m}{s^2}$
17g: $\alpha = 2 \cdot 0.63 \frac{m}{s^2} = 1.26 \frac{m}{s^2} \pm 0.05 \frac{m}{s^2}$

Der Fehler der Beschleunigungswerte nurde dabei aus der umseitig dokumentierkn Kontrollmessung für das Eg Genicht geschätet.

Aus diesen Beschleunigungen erhalt man die folgenden Werte fin die Wagen nasse: (g = 9,81 m

29:
$$m_w = (98,1 \pm 26,5)$$
 g
59: $m_w = (94,3 \pm 13,2)$ g
119: $m_w = (184,9 \pm 14,8)$ g
179: $m_w = (132,4 \pm 10,6)$ g

Die Wate sind mit Britsrichtigung de velativ hohen Fehler verträglich. Die mittlere Wagenmasse ergibt sich zu:

wa mu = (114,9 ± 3,2) g

In einer zweiten Messteine wurde die Masse des Wagens durch zwei unbekannte Zusakgewichte veraudest und eine analoge Messung zu der vorherige durchgeführt.

Jun følgenden sind wieder die Graphen in beiden Danstellungen sowie die rugehönigen Messwerk aufgekährt:

CASSY Lab - Zusammenfassung02 - 2, 5, 11, 17 g Mutter, 2 Gewichte

							·
	t/s	s _{A1} / m				t/s	sA1 / m
) a	0,0	0,000				5,4	0,942
29	0,1	0,000				5,5	0,979
	0,2	0,001				5,6	1,017
	0,3	0,002				5,7	1,055
	0,4	0,002				5,8	1,094
	0,5	0,005				5,9	1,134
	0,6	0,007				6,0	1,142
	0,7	0,010		•		6,1	1,138
	0,8	0,014				6,2	1,135
	0,9	0,019				6,3	1,133
	1,0	0,024					
	1,1	0,030			5g	0,0	0,000
	1,2	0,037		4	J	0,1	0,000
	1,3	0,044				0,2	0,000
	1,4	0,052				0,3	0,000
	1,5	0,061				0,4	0,003
	1,6	0,070		,		0,5	0,007
	1,7	0,081				0,6	0,012
	1,8	0,091				0,7	0,019
	1,9	0,103				0,8	0,027
	2,0	0,115				0,9	0,036
	2,1	0,128				1,0	0,048
	2,2	0,142				1,1	0,062
	2,3	0,155		w		1,2	0,076
	2,4	0,170				1,3	0,093
	2,5	0,186				1,4	0,111
	2,6	0,202				1,5	0,130
	2,7	0,219				1,6	0,151
	2,8	0,237				1,7	0,174
	2,9	0,255				1,8	0,198
	3,0	0,274				1,9	0,224
	3,1	0,294				2,0	0,251
	3,2	0,314				2,1	0,280
	3,3	0,335				2,2	0,311
	3,4	0,358				2,3	0,343
	3,5	0,379			,	2,4	0,376
	3,6	0,403		ren		2,5	0,412
	3,7	0,427				2,6	0,448
	3,8	0,451				2,7	0,487
	3,9	0,477		, on		2,8	0,527
	4,0	0,502				2,9	0,568
	4,1	0,529				3,0	0,612
	4,2	0,557		.,		3,1	0,656
	4,3	0,585				3,2	0,703
	4,4	0,614				3,3	0,751
	4,5	0,643				3,4	0,800
	4,6	0,673				3,5	0,851
	4,7	0,705				3,6	0,904
	4,8	0,735				3,7	0,959
	4,9	0,769				3,8	1,014
	5,0	0,802				3,9	1,072
	5,1	0,835				4,0	1,132
	5,2	0,870				4,1	1,162
	5,3	0,906				4,2	1,158

Lab - Zusammenfassung02 - 2, 5, 11			
	t/s	sa1/m	
119	0,0	0,000	
V	0,1	0,000	
	0,2	0,003	
	0,3	0,009	
	0,4	0,019	
	0,5	0,032	
	0,6	0,048	
	0,7 0,8	0,068 0,092	
	0,9	0,032	
	1,0	0,149	
	1,1	0,184	
	1,2	0,220	
	1,3	0,261	
	1,4	0,307	
	1,5	0,353	
	1,6	0,405	
	1,7	0,460	
	1,8	0,519	
	1,9	0,581	
	2,0	0,646	
	2,1	0,715	
	2,2	0,787	
	2,3	0,863	
	2,4	0,943	
	2,5	1,025	
	2,6	1,112	
	2,7	1,187	
	2,8	1,187	
	2,9	1,188	
	3,0	1,189	
179	0,0	0,000	
•	0,1	0,000	
	0,2	0,000	
	0,3 0,4	0,003 0,012	
	0,5	0,026	
	0,6	0,043	
	0,7	0,064	
	0,8	0,092	
	0,9	0,124	
	1,0	0,163	
	1,1	0,207	
	1,2	0,256	
	1,3	0,310	
	1,4	0,371	
	1,5	0,436	
	1,6	0,507	
	1,7	0,583	
	1,8	0,664	
	1,9	0,753	
	2,0	0,845	

	•
t/s	sA1 / m
2,1	0,943
2,2	1,047
2,3	1,108
2,4	1,106
2,5	1,107
2,6	1,108
2,7	1,108

 $\frac{\text{sA1}}{\text{m}}$

Ans der Steigang abgelesene Beschleunigungen

$$Q_{g}: \alpha = (0,063 \pm 0,016) \frac{m}{s^{2}}$$

$$T_{g}: \alpha = (0,133 \pm 0,015) \frac{m}{s^{3}}$$

$$M_{g}: \alpha = (0,325 \pm 0,015) \frac{m}{s^{3}}$$

$$M_{g}: \alpha = (0,425 \pm 0,015) \frac{m}{s^{3}}$$

Der Fehler der Messing winde wiederun geschäht.

					,
	t ² / s ²	sA1 / m		t2 / s2	sA1 / m
79	0,00	0,000		29,17	0,942
d	0,01	0,000	;	30,26	0,979
	0,04	0,001		31,37	1,017
	0,09	0,002	.:	32,51	1,055
	0,16	0,002		33,65	1,094
	0,25	0,005		34,82	1,134
	0,36	0,007		36,01	1,142
	0,49	0,010		37,22	1,138
	0,64	0,014	**	38,45	1,135
	0,81	0,019		39,70	1,133
	1,00	0,024			
	1,21	0,030	**	5q 0,00	0,000
	1,44	0,037		0,01	0,000
	1,69	0,044		0,04	0,000
	1,96	0,052	1	0,09	0,000
	2,25	0,061		0,16	0,003
	2,56	0,070		0,25	0,007
	2,89	0,081		0,36	0,012
	3,24	0,091	:	0,49	0,019
	3,61	0,103	1.	0,64	0,027
	4,00	0,115		0,81	0,036
	4,41	0,128	1	1,00	0,048
	4,84	0,142		1,21	0,062
	5,29	0,155		1,44	0,076
	5,77	0,170		1,70	0,093
	6,26	0,186		1,96	0,111
	6,77	0,202		2,25	0,130
	7,30	0,219		2,56	0,151
	7,85	0,237		2,89	0,174
	8,42	0,255		3,24	0,198
	9,01	0,274		3,61	0,224
	9,62	0,294		4,00	0,251
	10,25	0,314		4,41	0,280
	10,90	0,335		4,84	0,311
	11,57	0,358		5,29	0,343
	12,26	0,379	••	5,76	0,376
	12,97	0,403		6,26	0,412
	13,70	0,427		6,77	0,448
	14,45	0,451		7,30	0,487
	15,23	0,477		7,85	0,527
	16,01	0,502		8,42	0,568
	16,82	0,529		9,01	0,612
	17,66	0,557		9,62	0,656
	18,50	0,585		10,25	0,703
	19,37	0,614		10,90	0,751
	20,26	0,643		11,57	0,800
	21,17	0,673		12,26	0,851
	22,10	0,705		12,97	0,904
	23,05	0,735		13,70	0,959
	24,02	0,769		14,45	1,014
	25,01	0,802		15,22	1,072
	26,02	0,835		16,02	1,132
	27,05	0,870		16,82	1,162
	28,10	0,906		17,65	1,158

SSY Lab -	Zusammenfassu	ng02 - 2, 5, 11, 17 g Mutter, 2 Ge
	t² / s²	SA1 / m
112	0,00	0,000
0	0,01	0,000
	0,04	0,003
	0,09	0,009
	0,16	0,019
	0,25	0,032
	0,36	0,048
	0,49	0,068
	0,64	0,092
	0,81	0,119
	1,00	0,149
	1,21	0,184
	1,44	0,220
	1,69	0,261
	1,96	0,307
	2,25	0,353
	2,57	0,405
	2,89	0,460
	3,24	0,519
	3,61	0,581
	4,00	0,646
	4,41	0,715
	4,84	0,787
	5,29	0,863
	5,76	0,943
	6,26	1,025
	6,77	1,112
	7,30	1,187
	7,85	1,187
	8,42	1,188
	9,01	1,189
179	0,00	0,000
4	0,01	0,000
	0,04	0,000
	0,09	0,003
	0,16	0,012
	0,25	0,026
	0,36	0,043
	0,49	0,064
	0,64	0,092
	0,81	0,124
	1,00	0,163
	1,21	0,207
	1,44	0,256
	1,69	0,310
	1,96	0,371
	2,25	0,436
	2,56	0,507
	2,89	0,583
	3,24	0,664
	3,61	0,753
	4,00	0,845

t2/s2	sA1 / m
4,41	0,943
4,84	1,047
5,29	1,108
5,76	1,106
6,26	1,107
6,77	1,108
7,30	1,108

Ans dem Worker für die Beschlernigung kann wiede die Masse des Wagens berachnet werden:

2g:
$$m_w = (311 \pm 84)$$
 g
5g: $m_w = (369 \pm 56)$ g
11 g: $m_w = (332 \pm 37)$ g
17 g: $m_n = (332 \pm 32)$ g

Die Wate sind wieder innerhalb ihres Fehlebereiches als verhäglich anzusehen.

Dar Millel net ergibt sich zu:

mw = (351 ± 28) q

Die Verhäglichkeit der berechneten Werte, lässt die Aussage zu, dass die beobachtete und gemessene Beweging den genannten Benegungsgesete folgt.

Antyabe 3

In diesem Experiment winde der zuvor verwende Versuchsanfban dahingehend modifizient, dass Permanentmagnete eine Geschwindig keils abhängige Bremswirhung aufbauen. Für die Auswerfung Scheint es zunächst sinnvoll eine Geschwindigheits-7 eit- Messung dunchzuführen. Dies ist mit den vorhandenen beråten jedoch nu in sehr embefriedigen der Weise möglich, vie die graphische Dankellung his ein Beispiel auf der tolgenden Seite illustriert. Stattdessen wurde eine Weg-7eit-Messung dunchgeführt. In dieser Massung bounte had eine ansieichenden Zeit in nahezu aller Faller eine Linearer Ensammenhang Jestgestellt worden, melder die eingangs beschriebene Gienzgeschwindig Keil

 $V_{\infty} = \frac{F}{\delta}$

darskellt. Da die anheibende Knaft F bekannt ist, kann der Dämpfungsfaktor & leicht berechnet werden,

Die nachfolgenden Messergebnisse sind fälschlicherweise in s² angegeben (Zeit). Die Umrechnung in s ist jedoch simpel und hat keinen Einfluss auf die Wake.

Die orste Messing erfolgte mit 2 Magneton und ohne Zusah gewicht auf dem Wagen.

Die Messreiher sind wieder jeweils mit dem Anhängegewicht gehenhzeichnet.

Nach den Messchafen ist die graphische

Danstellung der Messwerte mit einer Linearen

Approximation eingehigt. Die Sleizung der

Geaden gibt wie beeits beschwieben die

Grenzgeschwindig heit von an.

1,00

0,080

SST Lar)		CASSI Lab		. , 0, (88)	
	t2 / s2	sA1/m	t² / s²	sA1 / m	t²/s²	s _{A1} / m
C	0,00	0,000	1,21	0,095	42,26	1,276
Sp	0,01	0,000	1,44	0,111	43,59	1,275
	0,04	0,004	1,69	0,128	44,90	1,272
	0,09	0,012	1,97	0,146	46,25	1,271
	0,16	0,023	2,25	0,163	47,62	1,270
	0,25	0,037	2,56	0,182	49,01	1,269
	0,36	0,055	2,89	0,201	50,44	1,268
	0,49	0,076	3,24	0,220	51,85	1,270
	0,64	0,099	3,61	0,240	53,32	1,271
	0,81	0,124	4,00	0,260	54,77	1,272
	1,00	0,153	4,41	0,280	56,27	1,274
	1,21	0,183	4,84	0,302	57,78	1,275
	1,44	0,215	5,29	0,323	59,31	1,278
	1,69	0,248	5,76	0,344	60,86	1,280
	1,96	0,284	6,26	0,365	62,43	1,283
	2,25	0,320	6,77	0,387	'	
	2,56	0,357	7,30	0,409		
	2,89	0,396	7,85	0,431		
*	3,24	0,436	8,42	0,453		
	3,61	0,477	9,01	0,475		
	4,00	0,518	9,62	0,498	•	
	4,41	0,561	10,25	0,520		
	4,84	0,604	10,90	0,543		
4	5,29	0,648	11,57	0,566	•	
	5,76	0,692	12,26	0,588		
	6,26	0,737 0,784	12,97	0,612 0,635		
	6,77 7,30	0,764	13,70 14,45	0,659		
	7,36 7,85	0,8 <u>2</u> 9	15,22	0,682		
	8,42	0,923	16,01	0,705		
	9,01	0,969	16,82	0,728		
	9,62	1,017	17,65	0,752		
	10,25	1,065	18,50	0,776		
	10,90	1,113	19,37	0,800		
	11,57	1, 161	20,26	0,824		
	12,26	1,210	21,18	0,848		
	12,97	1,254	22,10	0,871		
	13,70	1,292	23,06	0,896		
	14,45	1,321	24,02	0,919		
	15,22	1,344	25,01	0,943		
	16,01	1,357	26,03	0,967		
	16,82	1,364	27,06	0,991		
			28,10	1,015		
2	9 0,00	0,000	29,18	1,039		
•	<i>d</i> 0,01	0,000	30,26	1,063		
	0,04	0,003	31,37	1,087		
	0,09	0,007	32,50	1,111		
	0,16	0,014	33,65	1,135		
	0,25	0,022	34,82	1,159		
	0,36	0,031	36,01	1,183		
	0,49	0,042	37,22	1,207		
	0,64	0,054	38,45	1,230		
	0,81	0,067	39,70	1,248		
	4.00	0.000	40.07	4.007		

40,97

1,267

Anhaengemasse: 2g - 2 Magente - Wagen ohne Zusatzgewichte

Aus den Graphen ergibt sich folgende Geschwindig keit.

$$2g: v_{\infty} = 0,23 \frac{m}{s}$$
 $5g: v_{\infty} = 0,46 \frac{m}{s}$

Der Fehler ist auf Ground der geden Approximation seller opening und fällt bei de nei keen Bebachteng (insbeconder im Hintlich auf dem hohen Fehler der Anhengemasse) nicht weiter ins Gericht.

Aus dieser beider Messungen vesultief nach der beschrießener Formel für den Deimpfungstaktor J:

2g:
$$S = (0,003 \pm 0,01) \frac{\text{Mg}}{\text{S}}$$

 $Sg: S = (0,11 \pm 0,01) \frac{\text{Mg}}{\text{S}}$

Aus den Mossdaten ben den Graphen auf den folgenden beiden Seiten, ethet wah noch einen weiten Wert bei 11 g Anhange masse:

11 g:
$$\sigma = 0.82 \frac{m}{s}$$

$$\Rightarrow Mg: \quad S = (0.13 \pm 0.01) \frac{m_s}{s}$$

De Millelwerf eight sich somit zu:
$$\overline{S} = (0.11 \pm 0.01) \frac{m_s}{s}$$

s_{A1} / m

1,501

1,501

- Messung1	2 - 11 g Mutter, keine	e Gewichte, 2 Magnete	CASS	Y Lab~ Messur
t2 / s2	sA1 / m			t2/s2
0,00	-0,001			29,16
0,01	-0,001			30,26
0,04	0,002			
0,09	0,015			
0,16	0,036			
0,25	0,064			
0,36	0,100			
0,49	0,143			
0,64	0,191			
0,81	0,244			
1,00	0,303			
1,21	0,367			
1,44	0,433			
1,69	0,504			
1,96	0,579			
2,25	0,656			
2,56	0,736			
2,89	0,820			
3,24	0,905			
3,61	0,993			
4,00	1,084			
4,41	1,173			
4,84	1,263			
5,29	1,336			
5,76	1,395			
6,25	1,438			
6,76	1,468			
7,29	1,481			
7,84	1,483			
8,41	1,483 1,484			
9,00 9,61	1,484			
10,25	1,486			
10,89	1,488			
11,56	1,489			
12,25	1,492			
12,96	1,495			
13,69	1,497			
14,44	1,500			
15,21	1,501			
16,00	1,500			
16,81	1,499			
17,64	1,499			
18,49	1,500			
19,36	1,500			
20,25	1,501			
21,16	1,501			
22,09	1,500			
23,04	1,500			
24,01	1,501			
25,00	1,501			
26,01	1,501			
27,04	1,501			
28,10	1,501			
	.1-2.			

Las soben durchgeführte Experiment wurde nochmals mit 2 x 2 Magneten (also einer etrothen Brenstraft) durchgeführt. Aus den auf den folgenden Seiten dargestellten Dorten und braphen wurden die untern aufgeführten Werte für die Genzgeschwendurkeit von ermittelt:

$$2g: U_{20} = 0.16 \frac{m}{s}$$
 $5g: U_{20} = 0.31 \frac{m}{s}$
 $Mg: U_{20} = 0.64 \frac{m}{s}$

Damit eliat man fin den Dampfungs fablor

2g:
$$S = (0,12 \pm 0,02) \frac{W_G}{S}$$

5g: $S = (0,16 \pm 0,02) \frac{W_G}{S}$
11g: $S = (0,17 \pm 0,02) \frac{W_G}{S}$

Der Millelwert engibt sich also zu:

$$\overline{S} = (0, 15 \pm 0, 41) \frac{u_{yy}}{s}$$

In einer allerletzter Messing wurde das Vahedlen bei 1 Zusakgewicht durf dern Wagen untersucht. Heer konnte jedoch keine auswichende Breinswirtung mehr festogestellt werden. Die zusehönigen Messelate wurden unbearbeitet im vor der abschließende Dischussion in diese Prototell einen fügt.

			:		
CASSY Lab		CASSY Lab		CASSY Lab	
t²/s²	sA1 / m	t² / s²	sA1 / m	t² / s²	sA1 / m
29 0,0	0,001	29,2	0,678	1,7	0,169
0,0	0,001	30,3	0,694	2,0	0,195
0,0	0,001	31,4	0,709	2,3	0,221
0,1	0,001	32,5	0,725	2,6	0,248
0,2	0,002	33,7	0,740	2,9	0,276
0,3	0,005	34,8	0,755	3,2	0,305
0,4	0,009	36,0	0,771	3,6	0,333
0,5	0,015	37,2	0,787	4,0	0,363
0,6	0,022 0,029	38,5	0,803	4,4	0,392
0,8 1,0	0,029	39,7	0,819	4,8	0,422
1,2	0,038	41,0	0,834	5,3	0,452
1,4	0,058	42,3	0,850	5,8	0,483
1,7	0,069	43,6	0,866	6,3	0,513
2,0	0,081	44,9	0,882	6,8	0,544
2,3	0,093	46,3	0,897	7,3	0,576
2,6	0,106	47,6 49,0	0,912 0,927	7,8	0,607
2,9	0,119	50,4	0,927	8,4	0,637
3,2	0,132	51,9	0,959	9,0	0,669
3,6	0,146	53,3	0,974	9,6	0,700
4,0	0,160	54,8	0,990	10,2	0,732
4,4	0,174	56,3	1,006	10,9	0,764
4,8	0,189	57,8	1,022	11,6 12,3	0,796 0,828
5,3	0,203	59,3	1,037	13,0	0,828
5,8	0,218	60,9	1,053	13,7	0,892
6,3	0,233	62,4	1,069	14,5	0,924
6,8	0,247	64,0	1,085	15,2	0,955
7,3	0,262	65,6	1,099	16,0	0,987
7,8	0,277	67,3	1,115	16,8	1,019
8,4	0,292	68,9	1,131	17,6	1,051
9,0	0,307	70,6	1,147	18,5	1,083
9,6	0,322	72,3	1,162	19,4	1,115
10,2	0,338	74,0	1,178	20,3	1,146
10,9	0,353	75,7	1,194	21,2	1,179
11,6	0,368	77,5	1,210	22,1	1,209
12,3	0,383	79,2	1,223	23,0	1,236
13,0	0,398	81,0	1,237	24,0	1,261
13,7	0,414	82,8	1,250	25,0	1,283
14,5	0,430	84,7	1,260	26,0	1,296
15,2	0,445	86,5	1,268	27,1	1,304
16,0 16,8	0,460 0,475	98°		28,1	1,304
17,6	0,473	Eg 0,0	0,000	29,2	1,301
18,5	0,506	0,0	0,000	30,3	1,301
19,4	0,522	0,0	0,000	31,4	1,301
20,3	0,537	0,1	0,003		
21,2	0,552	0,2	0,009	119 0,0	0,000
22,1	0,568	0,3	0,018	- 0,0	0,002
23,0	0,583	0,4 0,5	0,030 0,044	0,0	0,011
24,0	0,599	0,6	0,044	0,1	0,027
25,0	0,615	0,8	0,080	0,2	0,051
26,0	0,630	1,0	0,079	0,3	0,079
27,1	0,646	1,0	0,099	0,4	0,114
28.1	0.662	1,2	0,121	0,5	0,152

1,4

0,144

28,1

0,662

0,6

0,195

t^2/s^2	sA1 / m
0,8	0,242
1,0	0,291
1,2	0,343
1,4	0,396
1,7	0,452
2,0	0,510
2,3	0,568
2,6	0,628
2,9	0,690
3,2	0,752
3,6	0,816
4,0	0,880
4,4	0,943
4,8	1,008
5,3	1,074
5,8	1,140
6,3	1,206
6,8	1,267
7,3	1,320
7,8	1,364
8,4	1,399

Anhaengemasse: 11g - 2x2 Magente - Wagen ohne Zusatzgewichte

t² / s²	sA1/m
Zg 0,00	0,000
Ø 0,01	0,000
0,04	0,000
0,09	0,000
0,16	0,002
0,25	0,004
0,36	0,008
0,49	0,011
0,64	0,016
0,81	0,020
1,00	0,027
1,21	0,032
1,44	0,039
1,69	0,047
1,96	0,055
2,26	0,063
2,57	0,071
2,89	0,080
3,24	0,090
3,61	0,100
4,00	0,111
4,41	0,122
4,84	0,132
5,29	0,144
5,76	0,156
6,26	0,168
6,77	0,180
7,30	0,192
7,85	0,204
8, 4 2	0,218
9,01	0,230
9,62	0,243
10,25	0,256
10,90	0,269
11,57	0,283
12,26	0,295
12,97	0,308
13,70	0,323
14,45	0,336
15,23	0,350
16,01	0,363
16,82	0,377
	0,377
17,65 18,50	0,406
	0,400
19,37	·
20,26	0,434
21,17	0,448
22,10	0,462
23,06	0,476
24,02	0,490
25,01	0,504
26,02	0,519
27,05	0,532
28,10	0,547

t2/s2	sA1 / m
29,17	0,562
30,26	0,576
31,37	0,591
32,50	0,605
33,65	0,620
34,82	0,635
36,01	0,648
37,22	0,663
38,45	0,679
39,70	0,692
40,97	0,707
42,26	0,723
43,57	0,738
44,90	0,752
46,25	0,767
47,62	0,782
49,03	0,797
50,42	0,812
51,85	0,827
53,30	0,842
54,77	0,856
56,28	0,871
57,78	0,887
59,31	0,900
60,86	0,916
62,44	0,931
64,02	0,945
65,63	0,960
67,26	0,975
68,92	0,990
70,58	1,004
72,28	1,019
73,98	1,034
75,90 75,71	1,049
77,48	1,043
79,23	1,004
	1,079
81,02	1,108
82,83	1,124
84,68 86,51	*
	1,139
88,40	1,154
90,27	1,168
92,18	1,183
94,13	1,199
96,06	1,214
98,05	1,227
100,02	1,239
102,03	1,254
104,06	1,264
106,11	1,274
108,18	1,276
0.00	0.000

My

0,00 0,000 0,01 0,000

Zusammenfassung und Dishussion

Die meisten in diesen Experimenten gewonnener Ergebnisse winden bacits sofort nach ihrer Beedning hommentiest. Aus diesem Grund soll sich die folgende Diskussion insbesonder auf die systematischen Pehler wie sie bereits eingangs ernähut nunder konzenhieren. Nebers den bereit beschriebenen Fehlen doch die ungenane Kalibrievung bew. Ausrichtung der Bahn, konnten während der Durchführeng noch weiter Fehler beobachtet weeden. Lo gab es beispielsmerse an einem Punkt der Bahn oman lanzen "Reibningspunkt" der die Geschnindigkeit des Wagens leicht brenste. Die Umlertrolle ist om weiker (unbekannter) Reibungs faktor, welche zur einer Verfälschung der Ergebnice gefishet hat. De Verglachsweise note Tehler der berechneten Wagenasse hate seiner Ursprung jedoch primar it den relativ ungenauen West der Anhangemasson. Subjektiv scheint der genonnene Wert von ca. 115 g jedoch durchaus realistisch. Insgesamt stellt de experimentelle Aufgan der erster Messunge jedoch eine gete Møgliskeil der die eine qualitative und quantitative Uberprüfung des Berregungsgeseldes dend zu führen.

Beneunfuit du weise zer. Diese bield duch dim aunvalland Die benuter Grale eerser unser Keinung nach peloch mu die aben beschrie sene befolwers-Author selv zing vall zu Bartinknum var 8. verusabil Tusgeaunt list de experimentelle die ungenaus Behunnung der Arhangenassa wieder portregen, 5 tett dossen führte die Boshinnuz der Geenzegedlusindigteit zum Erfelg. Der gewaldte feller minke wieder prienar duch uns and grand der under gelinden Genouisgheit Dillung and Differences quotender wurde van beabsichtighe Meesung der Gedlundigteit duch follon underwake wil das ante Eure runculint war prinziplell der gleichen 590 leurakolour Damphungsfaktor of the workwaler Daraphung. Das zweide Exportment zur beshimmung des