Machine Learning Foundations Homework 2

Problem 1 (60 points).

Figure 1: Q1 Screenshot (100 points). Please zoom in to see the details.

Problem 2 (20 points).

Sol. We can show that there exists a set of 4 points that allows all $2^4 = 16$ dichotomies to be implemented.

Consider a set of 4 points which form a rectangle with diagonal points at (0,0) and (2,1).

Rotating these four points by 30 degrees, we obtain the following points: $(0,0), (\sqrt{3},1), (\sqrt{3}-\frac{1}{2},1+\frac{\sqrt{3}}{2}),$ and $(-\frac{1}{2},\frac{\sqrt{3}}{2}).$

•

Figure 2: The resultant points.

Using these points, it is possible to shatter \mathcal{H} , as there exists the following dichotomies:

- 1 dichotomy that excludes all 4 points;
- 4 dichotomies that includes just 1 point and excludes the other three;
- 6 dichotomies that includes 2 points and excludes the other two;
- 4 dichotomies that includes 3 points and excludes the remaining one;
- and 1 dichotomy that includes all 4 points.

Combined, this yields $16 = 2^4$ dichotomies for 4 points.

Specifically, note that with these set of points, it is possible to include only the north-south diagonal pair (that is, $(\sqrt{3} - \frac{1}{2}, 1 + \frac{\sqrt{3}}{2})$ and (0,0)) and exclude the other two points. In addition, it is also possible to include only the east-west diagonal pair (that is, $(-\frac{1}{2}, \frac{\sqrt{3}}{2})$ and $(\sqrt{3}, 1)$) and exclude the other two points. It is not possible to do this with some other configurations of 4 points.

Since shattering is possible for N=4, the VC dimension is at least 4.

Problem 3 (20 points).

Sol. For this \mathcal{H} , the VC dimension $d_{\text{vc}} = \infty$; that is, for every possible input set size N, it is possible to find a set of N points that can be shattered, i.e. we need to find 2^N values for α (that is, $\alpha_1, \alpha_2, \ldots, \alpha_{2^N}$) such that all possible dichotomies can be created.

To make this problem easier, we can think of h_{α} as taking the result of αx modulo 4 and checking if it falls inside the range of [1,3]. If it does, then $h_{\alpha}(x) = -1$; else if it falls outside (i.e. [0,4) - [1,3]) then $h_{\alpha}(x) = +1$.

To this end, let the *i*th point's value be at 4^i , and the first α be 0 (i.e. $\alpha_1 = 0$). At this point all values are strictly in +1 territory. For the remaining α_k , we can see that each $4^i\alpha_k$ moves the point at different "speeds"; that is, it is possible to move the *i*th point a different distance to the other points. In this way, it is possible to shatter N points.

For example, consider a case with N=3, where point 3 moves twice as fast as point 2, which in turn moves twice as fast as point 1. From α_1 to α_4 , point 1 is in the [0,1) region, but for the remaining α it is safely in [1,3) region. However, point 2, which travels twice as fast as point 1, is in the h(x)=+1 region during α_1 , α_2 , α_5 , α_6 . Meanwhile point 3 alternates between +1 and -1 every α . This enumerates all possible 8 dichotomies.

Problem 4 (20 points).

Sol. For any two hypothesis sets A and B with nonempty intersections, let their VC dimensions be $d_{vc}(A)$ and $d_{vc}(B)$ respectively.

To prove $d_{vc}(\mathcal{H}_1 \cap \mathcal{H}_2) \leq d_{vc}(\mathcal{H}_1)$, first observe the following:

If $A \subseteq B$, then $d_{vc}(A) \leq d_{vc}(B)$. This is because if $d_{vc}(A)$ is the largest amount of points that can be shattered by A, then B can shatter **at least** $d_{vc}(A)$ points, since B contains all of the hypotheses in A. If B has other hypotheses not in A, then B can possibly shatter more points than A.

Also notice that for any sets S and T, $S \cap T \subseteq S$ by definition of intersection. Combining these two observations, we can conclude that since $\mathcal{H}_1 \cap \mathcal{H}_2 \subseteq \mathcal{H}_1$, then $d_{vc}(\mathcal{H}_1 \cap \mathcal{H}_2) \leq d_{vc}(\mathcal{H}_1)$.

Problem 5 (20 points).

Sol. We can think of $\mathcal{H}_1 \cup \mathcal{H}_2$ as: for every $h \in \mathcal{H}_1$ that determines h(x) = +1 when $x < \theta$ and -1 when $x > \theta$, there is a corresponding $h' \in \mathcal{H}_2$ that determines h'(x) = +1 when $x < \theta$ and +1 when $x > \theta$.

Thus, for a set of N points x_1, x_2, \ldots, x_N , $\mathcal{H}_1 \cup \mathcal{H}_2$ can create 2 dichotomies in between each possible point, as well as two extra dichotomies that determines all points to be +1 or all -1.

That is, if we sort the points so that they are in ascending order, then between points x_i and x_{i+1} , two dichotomies are formed: one which determines that all points to the right of x_1 are +1 (and everything else -1), and one which determines that all points to the right of x_1 are -1. Combined with the dichotomy that determines all points to be +1 and the dichotomy that determines all points to be -1, we arrive at $m_{\mathcal{H}_1 \cup \mathcal{H}_2}(N) = 2(N-1) + 2 = 2N$ dichotomies.

Note that this function holds even if there is is only one point (N = 1), where $m_{\mathcal{H}_1 \cup \mathcal{H}_2}(1) = 2$ as the only two possible dichotomies are $h(x_1) = +1$ and $h(x_1) = -1$.

Since $m_{\mathcal{H}_1 \cup \mathcal{H}_2}(N) = 2N$, the VC dimension can easily be determined as $d_{\text{vc}} = 2$ as it is the largest value that enables $m_{\mathcal{H}_1 \cup \mathcal{H}_2}(N) = 2^N$.

Problem 6 (20 points).

Sol. To calculate $E_{\text{out}}(h_{s,\theta})$, we need to find the probability that the hypothesis $h_{s,\theta} = h$, given the input vector x, incorrectly predicts the correct output y where h(x) is attempting to approximate a noisy function f(x) and y is iid on the distribution P(y|x),

First observe the following:

- The target function f(x) will output the correct output y with probability 0.8, and will output an incorrect value with probability 0.2.
- Since f can only ever output -1 or +1, we only need to consider the values of s = -1, 1 in $h_{s,\theta}(x) = s \cdot \operatorname{sgn}(x \theta)$ so that h also only outputs ± 1 .
- If we let μ be the probability that h incorrectly predicts the value of f (i.e. the chance that $h(x) \neq f(x)$), then the probability that h fails to output the correct output y is $0.8\mu + 0.2(1 \mu) = 0.6\mu + 0.2$ (that is, either f is correct but $h(x) \neq f(x)$, or f is wrong and h(x) = f(x)).
- Note that if $f(x) \neq y$ and $h(x) \neq f(x)$, then h(x) = y, since both h and f can only output +1 or -1.

To find μ , we can split this problem into four cases, which is when s=+1 or s=-1, and $\theta>0$ or $\theta\leq 0$. We can assume for these cases that f(x) is correct, since the μ in 0.8μ refers to when f is correct; in addition, the $(1-\mu)$ in $0.2(1-\mu)$ refers to when f(x) is wrong and h(x)=f(x), which is related to to μ and thus trivial to obtain.

Case 1: $s = +1 \text{ and } \theta > 0$.

We can see that from $0 < x < \theta$, $h(x) \neq f(x)$. Since [0,1] is half of the possible range, and in that range θ of it is wrong, $\mu = \frac{\theta}{2}$.

Case 2: s = +1 and $\theta \le 0$.

Similarly, we can see that when $\theta < x \le 0$, $h(x) \ne f(x)$. By symmetry, we obtain $\mu = \frac{|\theta|}{2}$ when s = 1.

Case 3: s = -1 and $\theta > 0$.

$$f(x) = -1$$

$$f(x) = +1$$

$$0$$

$$h(x) = +1$$

$$h(x) = -1$$

$$0$$

$$\theta$$

$$1$$

We can see that $h(x) \neq f(x)$ everywhere except $0 < x < \theta$. Using the result from case 1, the μ for this case is $\mu = 1 - \frac{\theta}{2}$.

Case 4: s = -1 and $\theta \le 0$.

$$f(x) = -1$$

$$f(x) = +1$$

$$h(x) = +1$$

$$h(x) = +1$$

$$h(x) = -1$$

$$0$$

$$h(x) = -1$$

$$1$$

We can see that $h(x) \neq f(x)$ everywhere except $0 < x < \theta$. Using the result from case 2 and by symmetry, $\mu = 1 - \frac{|\theta|}{2}$ when s = -1.

Putting these cases together, we have

$$\mu = \begin{cases} \frac{|\theta|}{2} & \text{if } s = +1\\ 1 - \frac{|\theta|}{2} & \text{if } s = -1 \end{cases}$$

Thus

$$E_{\text{out}}(h) = \begin{cases} 0.8\mu + 0.2(1-\mu) = 0.6(\frac{|\theta|}{2}) + 0.2 & \text{if } s = +1\\ 0.8\mu + 0.2(1-\mu) = 0.6(1-\frac{|\theta|}{2}) + 0.2 & \text{if } s = -1 \end{cases}$$

We can simplify this by making moving this into a single equation, by combining the two cases together:

$$E_{\text{out}} = \left(\frac{s+1}{2}\right)\left[0.6\left(\frac{|\theta|}{2}\right) + 0.2\right] + \left(\frac{1-s}{2}\right)\left[0.6\left(1 - \frac{|\theta|}{2}\right) + 0.2\right]$$

After some simplification, this results in

$$E_{\text{out}} = 0.5 + 0.3s(|\theta| - 1)$$

which completes the proof.

Problem 7 (20 points).

- The experiment was run 1000 times using seeds from 1234 to 2235.
- The histogram was plotted using 30 bins.
- The program prints the execution time and saves the file as an image named "20.png".

The histogram is as follows:

As we can see, a data size of 20 produces results mostly centered around -0.1 with small outliers beyond -0.3 and 0.1. The average error is -0.083. Since the data size is smaller, the results are more volatile than the graph in the next question.

Problem 8 (20 points).

Sol. The following environment was used:

- The experiment was run 1000 times using seeds from 1234 to 2235.
- The histogram was plotted using 30 bins.

The histogram is as follows:

We can see that by increasing the data size to 2000, $|E_{\rm in}-E_{\rm out}|$ is much more uniform than the previous question, decreasing the average distance to -0.0009, with most of the values being centered around -0.01 and 0.01.

Problem 9 (20 points).

Sol. We can split the problem into two parts: showing that 2^d points can be shattered, and then showing that $2^d + 1$ points cannot be.

2^d points can be shattered

First, observe that v represents a series of choices determined by the input x as it goes through the binary decision tree based on the threshold vector t. Specifically, at the ith layer of the tree, the input x decides to enter the left child (if $x_i \leq t_i$) or the right child (if $x_i > t_i$). The choice made at the ith layer is recorded as $v_i = 0$ or 1 respectively. This continues until after the dth layer has been processed.

From this perspective, we can see that an input x can result in up to 2^d possible paths (i.e. at each layer, you can either go left or right). Specifically, for any possible input x, it is possible to construct 2^d threshold vectors t: for each dimension x_i , the value of t_i is either larger or no larger than x_i , done for all d dimensions.

This means that, for $N = 2^d$ inputs, it is possible to create all possible v vectors by assigning each x_i to its own path.

For example, if d=2, then $N=2^d=4$ can enumerate the following outcomes: x_1 to $v_1=[0,0]$, x_2 to $v_2=[0,1]$, x_3 to $v_3=[1,0]$, and x_4 to $v_4=[1,1]$.

We can collectively say that there exists a t such that for 2^d inputs, x_i corresponds to v_i , which is a unique path. If there are **more** than 2^d inputs, some of them will correspond to the same v_i by pigeonhole principle.

Next, since $S \subseteq \{0,1\}^d$, we can effectively create 2^{2^d} possible S sets. Using the d=2 example, some possible sets S may be $\{[0,1],[1,0]\}$, \emptyset , $\{[0,0],[1,1]\}$ and so on. This implies that there are 2^{2^d} dichotomies, and if $v_i \in \text{some set } S$, then h(x)=+1 and h(x)=-1 otherwise.

Using $N=2^d$ inputs, there are thus exactly 2^{2^d} dichotomies that can be created, as each of the possible 2^d paths v are possible for some t, and \mathcal{H} can effectively create a powerset of all possible vs (of which members are called S).

For example, let S_1, S_2, \ldots, S_{16} be all possible subsets of $\{0, 1\}^2$. Then

```
h_{S_1=\emptyset,t}(x_1,x_2,x_3,x_4) = (-1,-1,-1,-1);

h_{S_2=\{[0,0]\},t}(x_1,x_2,x_3,x_4) = (+1,-1,-1,-1);

...
```

 $h_{S_{16}=\{[0,0],[0,1],[1,0],[1,1]\},t}(x_1,x_2,x_3,x_4)=(+1,+1,+1,+1).$

Which effectively shatters the $N = 2^d$ points.

Note that with less than 2^d points, they can all be shattered as some set of $N < 2^d$ points can correspond to N (which are some, but not all) possible paths v; the powerset that can be derived from all possible vs has a cardinality of 2^N .

$2^d + 1$ points cannot be shattered

Next, we show that since $2^d + 1$ points cannot be shattered,

Assume that the first 2^d points each has a corresponding path v. By the pigeonhole principle, the next point x' must also correspond to an existing path (since there are only 2^d paths). That is, some point x from the first 2^d points

will correspond to the same v. We can then see that h(x) = h(x'), meaning it is impossible to shatter the set with more than 2^d points.

For example, if d=2, then N=4 points can be shattered as shown above. However, if N=5, then x_5 and some other point (say, x_1) will correspond to the same path. Then, this will happen:

$$h_{S_2=\{[0,0]\},t}(\mathbf{x_1},x_2,x_3,x_4,\mathbf{x_5})=(+\mathbf{1},-1,-1,-1,+\mathbf{1});$$

It is impossible that (+1, -1, -1, -1, -1) can occur; thus this set of points cannot be shattered.

With these two parts in mind, we can conclude that the VC dimension of \mathcal{H} is 2^d .