Nonparametric linkage (NPL) analysis

Mapping of disease genes for Mendelian diseases:

Sample: one or a few large pedigrees

Analysis: parametric linkage analysis

Success story: disease loci for more than 1,500 Mendelian diseases

have been identified

Mapping of disease genes for genetically complex diseases:

Sample: large collection of small pedigrees (often: affected sib pairs)

Analysis: nonparametric linkage analysis (allele sharing methods)

Success story: much less impressive until now

Allele sharing: IBS and IBD

IBS: Two alleles are said to be *identical by state* (IBS) if they are of the same kind **IBD:** Two alleles are said to be *identical by descent* (IBD) if both of them are copies of the same ancestral allele

Distribution of the IBD score in sib pairs

Assumption:

Each parent transmits each of his or her allele with probability 1/2

IBD score	0	_	_	0	_	2	0	_	_	0	7	-	0	_	_	2	= 1/2
probability	1/16	1/16	1/16	1/16	1/16	1/16	1/16	1/16	1/16	1/16	1/16	1/16	1/16	1/16	1/16	1/16	=1
child 2	1/3	1/4	2/3	2/4	1/3	1/4	2/3	2/4	1/3	1/4	2/3	2/4	1/3	1/4	2/3	2/4	= 1/4, P(BD)
ype of child 1	1/3	1/3	1/3	1/3	1/4	1/4	1/4	1/4	2/3	2/3	2/3	2/3	2/4	2/4	2/4	2/4	(0 =
Genotype of mother child	3/4																= P(IBD)
father	1/2																P(IBD = 2) =

Exercise:

1. Provide a more elegant argument for showing that

$$P(IBD = 2) = P(IBD = 0) = 1/4, P(IBD = 1) = 1/2$$

(Hint: Binomial distribution)

2. Show that the expectation of the IBD score in sib pairs is 1 and the

variance of the IBD score is 1/2.

For
$$k \in \{0, 1, 2\}$$
, let $z_k = P(IBD = k)$ and $z = (z_2, z_1, z_0)$.

Marker and disease locus unlinked (i.e., recombination fraction between

marker and disease locus = 1/2):

Distribution of IBD scores in affected sib pairs is identical to the

distribution of IBD scores in sib pairs, i.e., z = (1/4, 1/2, 1/4).

Marker and disease locus linked (i.e., recombination fraction between marker and disease locus < 1/2):

Distribution of IBD scores in affected sib pairs is different from

$$(1/4, 1/2, 1/4)$$
.

Distribution of the IBD score in affected sib pairs

 (z_2, z_1, z_0) at the disease locus depends on the disease model:

single locus disease model:

$$z_{2} = \frac{1}{4} + \frac{V_{A}/2 + 3V_{D}/4}{4(K_{P}^{2} + V_{A}/2 + V_{D}/4)}$$

$$z_{1} = \frac{1}{2} - \frac{V_{D}/2}{4(K_{P}^{2} + V_{A}/2 + V_{D}/4)}$$

$$z_{0} = \frac{1}{4} - \frac{V_{A}/2 + V_{D}/4}{4(K_{P}^{2} + V_{A}/2 + V_{D}/4)}$$

with

$$V_A = 2p(1-p)[p(f_2-f_1)+(1-p)(f_1-f_0)]^2$$
 (additive variance)
 $V_D = p^2(1-p)^2[f_2-2f_1+f_0]^2$ (dominant variance)
 $K_P = p^2f_2+2p(1-p)f_1+(1-p)^2f_0$ (disease prevalence)

more complex disease model:

 (z_2, z_1, z_0) at the disease locus can be calculated numerically

NPL/7

Distribution of the IBD score in affected sib pairs

fraction θ . Let $z^D = (z^D_2, z^D_1, z^D_0)$ denote the distribution of the IBD scores Assume that a marker locus is linked to a disease locus at recombination in affected sib pairs at the disease locus. Goal: Calculation of the distribution $z^M=(z_2^M,z_1^M,z_0^M)$ of the IBD scores

in affected sib pairs at the marker locus.

NPL/8

Distribution of the IBD score in affected sib pairs

analogously for the alleles at the marker locus. Finally, W_m^D and W_m^M are the Solution: Let $W_f^D=1$ (or =0), if the two alleles at the disease locus transmitted by the father are IBD (or not IBD). Let $W_{\it f}^M$ be defined corresponding random variables for the mother. Then,

$$P(W_f^D = W_f^M) = P(W_m^D = W_m^M) = \theta^2 + (1 - \theta)^2 =: \phi,$$

$$P(W_f^D \neq W_f^M) = P(W_m^D \neq W_m^M) = 2\theta(1-\theta) = 1-\phi$$

$$\Rightarrow z_2^M = \phi^2 z_2^D + \phi (1 - \phi) z_1^D + (1 - \phi)^2 z_0^D$$

$$z_1^M = 2\phi(1-\phi)z_2^D + \left[\phi^2 + (1-\phi)^2\right]z_1^D + 2\phi(1-\phi)z_0^D$$

$$z_0^M = (1 - \phi)^2 z_2^D + \phi (1 - \phi) z_1^D + \phi^2 z_0^D$$

Distribution of the IBD score in affected sib pairs

 z_2 and z_1 for different loci along a chromosome. At the disease locus, positioned at 75 cM, $z_2 = 0.8$ and $z_1 = 0.15$.

ASP tests for a completely informative marker

affected sibs and their parents), in which all family members are typed at a Assume a sample of n nuclear families (each family consisting of two marker locus. Further, assume that the marker locus is completely alleles IBD can be determined unambiguously. For i=0,1,2, let n_i denote

informative. This assumption assures that for each sib pair the number of

the observed number of sib pairs sharing i marker alleles IBD

 $(n_0 + n_1 + n_2 = n)$. Then, (n_2, n_1, n_0) is a realization of a trinomial (i.e.,

multinomial with k=3, c.f. S/5) distributed random variable (N_2,N_1,N_0)

with parameters n and (z_2, z_1, z_0) . In case of no linkage,

$$(z_2,z_1,z_0)=(1/4,1/2,1/4)$$
. Therefore, an ASP test has to decide

between the hypotheses

$$H_0: (z_2, z_1, z_0) = (1/4, 1/2, 1/4) \text{ vs. } H_1: (z_2, z_1, z_0) \neq (1/4, 1/2, 1/4).$$

$$\psi \hat{=}(z_2,z_1,z_0)$$

$$\Psi = \{(z_2, z_1, z_0) : z_i \ge 0, \sum_{i=0}^2 z_i = 1\}$$

The maximum likelihood estimate $(\hat{z}_2, \hat{z}_1, \hat{z}_0)$ of (z_2, z_1, z_0) is given by

(c.f. S/5)

$$\widehat{z}_i = \frac{n_i}{n}, i = 0, 1, 2.$$

Therefore, the test statistic of the likelihood ratio test (c.f. S/19) is

$$T(n_2, n_1, n_0) = -2 \ln \frac{(1/4)^{n_2} \cdot (1/2)^{n_1} \cdot (1/4)^{n_0}}{(n_2/n)^{n_2} \cdot (n_1/n)^{n_1} \cdot (n_0/n)^{n_0}}.$$

The null distribution of this test statistic can be approximated by the χ_2^2 distribution.

Genetic constraints for IBD distributions

Exercise:

1. (simple) Use the equations given on NPL/6 to show that the ibd probabilities z_2, z_1 , and z_0 at the disease locus always satisfy

$$z_1 \le 1/2$$
 and $2z_0 \le z_1$.

2. (more difficult) Use the equations given on NPL/7 to show that the ibd probabilities $z_2^M,\,z_1^M,$ and z_0^M at the marker locus always satisfy

$$z_1^M \le 1/2$$
 and $2z_0^M \le z_1^M$.

3. (simple) The book by Almgren et al. considers the constraint

 $3z_1 + 2z_2 \ge 2$. Show that this constraint is equivalent to $2z_0 \le z_1$, i.e.,

$$3z_1 + 2z_2 \ge 2 \Leftrightarrow 2z_0 \le z_1.$$

It can be shown that the constraints $z_1 \le 1/2$ and $2z_0 \le z_1$ are satisfied for a broad class of disease models (i.e., not only for single locus disease models).

$$\tilde{\Psi} = \{(z_2, z_1, z_0) : z_i \ge 0, \sum_{i=0}^2 z_i = 1, z_1 \le 1/2, 2z_0 \le z_1\}$$

NPL/15

ASP test: restricted likelihood ratio test

When maximization is restricted to $\tilde{\Psi}$, then the maximum likelihood estimate

 $(\tilde{z}_2, \tilde{z}_1, \tilde{z}_0)$ of (z_2, z_1, z_0) is given by

$$\left(\frac{n_2}{2(n_2 + n_0)}, \frac{1}{2}, \frac{n_0}{2(n_2 + n_0)} \right) \quad \text{for } \frac{n_1}{n} > \frac{1}{2} \text{ and } n_2 > n_0$$

$$\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right) \qquad \qquad f$$

for
$$\frac{n_1}{n} > \frac{1}{2}$$
 and $n_2 \le n_0$

$$\left(\frac{n_2}{n}, \frac{2(n_1+n_0)}{3n}, \frac{n_1+n_0}{3n}\right)$$

 $(\tilde{z}_2,\tilde{z}_1,\tilde{z}_0)=$

for
$$2\frac{n_0}{n} > \frac{n_1}{n}$$
 and $\frac{n_2}{n} > \frac{1}{4}$ for $2\frac{n_0}{n} > \frac{n_1}{n}$ and $\frac{n_2}{n} \le \frac{1}{4}$

$$\left(\frac{n_2}{n}, \frac{n_1}{n}, \frac{n_0}{n}\right)$$

 $\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)$

The test statistic of the restricted likelihood ratio test ("possible triangle test")

<u>လ</u>

$$\tilde{T}(n_2, n_1, n_0) = -2 \ln \frac{(1/4)^{n_2} \cdot (1/2)^{n_1} \cdot (1/4)^{n_0}}{(\tilde{z}_2)^{n_2} \cdot (\tilde{z}_1)^{n_1} \cdot (\tilde{z}_0)^{n_0}}.$$

The null distribution of this test statistic can be approximated by a

$$\left(\frac{1}{2}-\frac{\arccos\sqrt{2/3}}{2\pi}
ight):\frac{1}{2}:\frac{\arccos\sqrt{2/3}}{2\pi}$$
 mixture of χ^2 distributions with 0, 1,

and 2 degrees of freedom.

The statistic

$$T^*(n_2, n_1, n_0) = -\log \frac{(1/4)^{n_2} \cdot (1/2)^{n_1} \cdot (1/4)^{n_0}}{(\tilde{z}_2)^{n_2} \cdot (\tilde{z}_1)^{n_1} \cdot (\tilde{z}_0)^{n_0}}.$$

is called the maximum lod score (MLS) statistic.

Note that

1.
$$\tilde{T} = 2 \cdot \ln(10) \cdot T^*$$

maximum lod score $Z(\widehat{\theta})$ in parametric linkage analysis (i.e., T^{\star} and 2. Although T^* is named "maximum lod score", it is not the same as a $Z(\bar{\theta})$ possess different null distributions).

MLS and incompletely informative families

Let PM_j and CM_j denote the observed marker data in the parents and in the children of family j. Let $M_j = (PM_j, CM_j)$ denote the observed marker data in family j. Finally, let IBD_j denote the true (not necessarily observable) number of alleles shared ibd by the children of family j. Then,

$$P(M_j) = \sum_{i=0}^{2} P(M_j \cap (IBD_j = i))$$

$$= \sum_{i=0}^{2} P(PM_j \cap CM_j \cap (IBD_j = i))$$

$$= \sum_{i=0}^{2} P(IBD_j = i) \cdot P(PM_j \mid IBD_j = i) \cdot P(CM_j \mid PM_j \cap (IBD_j = i))$$

$$= P(PM_j) \cdot \sum_{i=0}^{2} z_i \cdot P(CM_j \mid PM_j \cap (IBD_j = i))$$

Example:

$$P(CM_j \mid PM_j \cap (IBD_j = 2)) = \frac{1}{2}$$

$$P(\operatorname{CM}_j | \operatorname{PM}_j \cap (\operatorname{IBD}_j = 1)) = \frac{1}{A}$$

$$P(CM_j | PM_j \cap (IBD_j = 0)) = 0$$

⇒ Contribution of this family to the likelihood is

Example:

$$P(\operatorname{CM}_j | \operatorname{PM}_j \cap (\operatorname{IBD}_j = 2)) = \frac{1}{2}$$

$$P(CM_j | PM_j \cap (IBD_j = 1)) = 0$$

$$P(CM_j \mid PM_j \cap (IBD_j = 0)) = \frac{1}{2}$$

⇒ Contribution of this family to the likelihood is

Likelihood of the whole sample x:

$$L(z_2, z_1, z_0 \mid x) = \prod_{j=1}^{n} \left(\sum_{i=0}^{2} z_i \cdot w_{ij} \right)$$

• How to obtain the restricted ML-estimates for (z_2, z_1, z_0) ?

→ EM-algorithm

Null distribution of the restricted likelihood ratio test?

This distribution can still be approximated by a mixture of χ^2_n

(n = 0, 1, 2) distributions.

Relationship between MLS and parametric

linkage analysis

disease model specification. It can be shown that for samples of affected sib Nonparametric methods of linkage analysis are motivated by the difficulty to linkage analysis. On PL/25, MOD score analysis (i.e., calculation of the lod parameters (f_2, f_1, f_0, p_T)) was mentioned to circumvent this problem of specify an appropriate disease model, which is required for parametric score maximized not only over θ , but also over the disease model pairs, MOD score analysis and MLS are identical.