```
In [1]: # Import Libraries
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]: # Set visualization styles
         sns.set(style="whitegrid")
In [3]: # Read in the data
         schools = pd.read_csv("schools.csv")
In [4]: # Preview the dataset
         print("Dataset Preview:")
         schools.head()
       Dataset Preview:
Out[4]:
            school_name
                           borough building_code average_math average_reading average_v
                    New
             Explorations
         0
             into Science, Manhattan
                                            M022
                                                            657
                                                                             601
              Technology
                   and ...
             Essex Street
                          Manhattan
         1
                                            M445
                                                            395
                                                                             411
                Academy
                   Lower
         2
               Manhattan Manhattan
                                            M445
                                                            418
                                                                             428
            Arts Academy
              High School
                 for Dual
                          Manhattan
                                                            613
                                                                             453
                                            M445
            Language and
            Asian Studies
             Henry Street
               School for
         4
                         Manhattan
                                            M056
                                                            410
                                                                             406
             International
                 Studies
```

SECTION 1: NYC Schools with Best Math Results

```
In [6]: print("\nBest Performing Schools in Math (>= 80% of 800):")
  best_math_schools = schools[schools['average_math'] >= 0.8 * 800]
  best_math_schools = best_math_schools.sort_values('average_math', ascending=best_math_results = best_math_schools[['school_name', 'average_math']]
  best_math_results.head(10)
```

Best Performing Schools in Math (>= 80% of 800):

0 1	$\Gamma \cap I$	
()11+	161	
UU L	1 U I	

school_name	average_ma	ath
-------------	------------	-----

88	Stuyvesant High School	754
170	Bronx High School of Science	714
93	Staten Island Technical High School	711
365	Queens High School for the Sciences at York Co	701
68	High School for Mathematics, Science, and Engi	683
280	Brooklyn Technical High School	682
333	Townsend Harris High School	680
174	High School of American Studies at Lehman College	669
0	New Explorations into Science, Technology and	657
45	Eleanor Roosevelt High School	641

Visualization: Top 10 Math Scores

```
In [8]: plt.figure(figsize=(10, 6))
    sns.barplot(data=best_math_results.head(10), x='average_math', y='school_nam
    plt.title("Top 10 Schools with Best Math Scores")
    plt.xlabel("Average Math Score")
    plt.ylabel("School Name")
    plt.tight_layout()
    plt.savefig("top_math_scores.png")
    plt.show()
```

/var/folders/17/y6yqqy7n54j29b_bxf1w8h880000gn/T/ipykernel_69892/1463068675.py:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(data=best_math_results.head(10), x='average_math', y='school_n
ame', palette="coolwarm")

SECTION 2: Top 10 Schools Based on Combined SAT Scores

In [10]: schools['total_SAT'] = schools['average_math'] + schools['average_reading']
 top_10_schools = schools.sort_values('total_SAT', ascending=False).head(10)
 print("\nTop 10 Schools by Combined SAT Scores:")
 top_10_schools[['school_name', 'total_SAT']]

Top 10 Schools by Combined SAT Scores:

	- 1-	,	
Out[10]:		school_name	total_SAT
	88	Stuyvesant High School	2144
	170	Bronx High School of Science	2041
	93	Staten Island Technical High School	2041
	174	High School of American Studies at Lehman College	2013
	333	Townsend Harris High School	1981
	365	Queens High School for the Sciences at York Co	1947
	5	Bard High School Early College	1914
	280	Brooklyn Technical High School	1896
	45	Eleanor Roosevelt High School	1889
	68	High School for Mathematics, Science, and Engi	1889

Visualization: Top 10 Combined SAT Scores

```
In [11]: plt.figure(figsize=(10, 6))
    sns.barplot(data=top_10_schools, x='total_SAT', y='school_name', palette="viplt.title("Top 10 Schools by Combined SAT Scores")
    plt.xlabel("Total SAT Score")
    plt.ylabel("School Name")
    plt.tight_layout()
    plt.savefig("top_combined_scores.png")
    plt.show()

/var/folders/17/y6yqqy7n54j29b_bxf1w8h880000gn/T/ipykernel_69892/999765075.p
    y:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the
```

same effect.

sns.barplot(data=top_10_schools, x='total_SAT', y='school_name', palette="
viridis")

SECTION 3: Borough with the Largest SAT Score Standard Deviation

```
In [13]: borough_stats = schools.groupby('borough')['total_SAT'].agg(['count', 'mean'
largest_std_borough = borough_stats.loc[borough_stats['std'].idxmax()]
print("\nBorough with Largest Standard Deviation in SAT Scores:")
largest_std_borough
```

Borough with Largest Standard Deviation in SAT Scores:

Out[13]: count 89.00 mean 1340.13 std 230.29

Name: Manhattan, dtype: float64

Visualization: Borough SAT Statistics

```
In [14]: plt.figure(figsize=(8, 5))
    borough_stats.sort_values('std', ascending=False)['std'].plot(kind='bar', cc
    plt.title("Standard Deviation of SAT Scores by Borough")
    plt.xlabel("Borough")
    plt.ylabel("Standard Deviation")
    plt.tight_layout()
    plt.savefig("borough_sat_std.png")
    plt.show()
```


Average Math Score per Borough

```
In [17]: avg_math_borough = schools.groupby('borough')['average_math'].mean().round(2
    print("\nAverage Math Scores by Borough:")
    avg_math_borough
```

Average Math Scores by Borough:

```
Out[17]: borough
Bronx 404.36
Brooklyn 416.40
Manhattan 455.89
Queens 462.36
Staten Island 486.20
Name: average_math, dtype: float64
```

Visualization: Average Math Scores by Borough

```
In [18]: plt.figure(figsize=(8, 5))
    avg_math_borough.sort_values(ascending=False).plot(kind='bar', color='darkor
    plt.title("Average Math Scores by Borough")
    plt.xlabel("Borough")
    plt.ylabel("Average Math Score")
    plt.tight_layout()
    plt.savefig("avg_math_borough.png")
    plt.show()
```


Schools with Above Average Total SAT Scores

```
In [20]: overall_avg_sat = schools['total_SAT'].mean()
  above_avg_schools = schools[schools['total_SAT'] > overall_avg_sat]
  print("\nSchools with Above Average SAT Scores:")
  above_avg_schools[['school_name', 'total_SAT']].head(10)
```

Schools with Above Average SAT Scores:

Out[20]:	school_name
----------	-------------

0	New Explorations into Science, Technology and	1859
3	High School for Dual Language and Asian Studies	1529
5	Bard High School Early College	1914
10	Pace High School	1292
11	High School for Health Professions and Human S	1327
12	High School for Language and Diplomacy	1290
14	Institute for Collaborative Education	1592
15	Gramercy Arts High School	1360
16	Urban Assembly New York Harbor School	1327
18	Millennium High School	1704

total_SAT

Correlation Between SAT Sections

```
In [22]: correlations = schools[['average_math', 'average_reading', 'average_writing'
    print("\nCorrelation Between SAT Sections:")
    correlations
```

Correlation Between SAT Sections:

Out[22]:

	average_math	average_reading	average_writing
average_math	1.000000	0.928239	0.934155
average_reading	0.928239	1.000000	0.985439
average_writing	0.934155	0.985439	1.000000

Visualization: Heatmap of SAT Section Correlations

```
In [23]: plt.figure(figsize=(8, 6))
    sns.heatmap(correlations, annot=True, cmap="Blues", fmt=".2f")
    plt.title("Correlation Between SAT Sections")
    plt.tight_layout()
    plt.savefig("sat_correlation.png")
    plt.show()
```

