A Short Introduction to Networks and Model Comparisons

Levi Lee Advisor: Amy Wagaman Amherst College

April 12, 2017

A Highly Connected World

Networks are everywhere

History

- Travers & Milgram (1967)
- Letter correspondence between strangers in Nebraska and Massachusetts
- Overall, it took only around six people for the letter to be delivered
- "Six degrees of separation"

Social Networks

- Involves a lot of people
- Highly condensed groups
- Relatively short distances between people

Question

- Can we simulate this? If so, how?
- Conduct a simulation study utilizing different graph models

Basic Terminlogy

- A graph, denoted G(V, E), consists of a set of vertices $i, j, k, ... \in V$ and a set of edges $\{i, j\}, \{i, k\}, \{j, k\}... \in E$.
- Our focus is on simple, undirected, and connected graphs.

Other Representations of Graphs

• Adjacency matrix: denoted $\bf A$ is an $N_V \times N_V$ matrix where each element denotes the existence of edges between pairs where

$$A_{ij} = \begin{cases} 1 & \text{if } \{i, j\} \in E \\ 0 & \text{otherwise.} \end{cases}$$

• Edge list: two-column list of all the edges in a graph denoted by their corresponding vertices present

Example: Karate Club of Zachary (1977)

Network Statistics

- Analogous to statisitcs seen in elementary statistics
- Characterizes a given network

Transitivity/Clustering Coefficient

- Ratio of triangles to connected triples
- Triangle: three vertices connected by three edges
- Connected triple: three vertices connected by two edges

$$C = \frac{(\text{number of triangles}) \times 3}{\text{number of connected triples}}$$

Notions of Distance

Average path length: average of the shortest paths of all distinct pairs of vertices in the network

Diameter: longest of all the shortest paths between distinct pairs of vertices

Example: Karate Club of Zachary and Lazega's Law Firm

Network Statistic	Zachary's Karate Club
Transitivity	0.256
Average Path Length	2.408
Diameter	13

Centrality

- Measure of importance for each vertex in the graph
- Many different types of centralities exist

Degree Centrality

- Based on the number of edges are connected to a vertex
- Vertices with higher vertex degrees are considered to be more central to the network than those with lower vertex degrees

Closeness Centrality

 Measures how close a vertex is to other vertices based on the inverse of the total distance of the vertex from all others

$$c_{Cl}(i) = \frac{1}{\sum_{j \in V} d(i, j)}$$

ullet dist(i,j) is the geodesic distance between the vertices $i,j\in V$

Betweenness Centrality

 Measures the extent to which a vertex is located between other pairs of vertices

$$c_B(i) = \sum_{g \neq h \neq i \in V} \frac{\sigma(g, h|i)}{\sigma(g, h)}$$

• $\sigma(g,h|i)$ is the total number of shortest paths between g and h that pass through i, and $\sigma(g,h)=\sum_{i\in V}\sigma(g,h|i)$

Eigenvector Centrality

 Based on the idea of "status," "prestige," or "rank;" the more central the neighbors of a vertex are, the more central that vertex itself is

$$c_{Ei}(i) = \alpha \sum_{\{i,j\} \in E} c_{Ei}(u)$$

• $c_{Ei}=(c_{Ei}(1),...,c_{Ei}(N_V))^T$ is the solution to the eigenvalue problem $\mathbf{Ac}_{Ei}=\alpha^{-1}\mathbf{c}_{Ei}$, where \mathbf{A} is the adjacency matrix for network graph G.

Example: Karate Club of Zachary (1977)

Degree

Closeness

Betweenness

Eigenvector

Example: Karate Club of Zachary

Network Statistic	Zachary's Karate Club
Avg. Degree	4.588
Avg. Closeness Cen.	0.005
Avg. Betweenness Cen.	26.194
Avg. Eigenvector Cen.	0.377

Graph Models

- A graph model takes in fixed parameters and generates a graph that vary in structure with each iteration
- Equivalently, it is a collection, or ensemble of graphs, denoted by

$$\{\mathbb{P}_{\theta}(G), G \in \mathcal{G} : \theta \in \Theta\}$$

- $\mathcal G$ is a collection or ensemble of possible graphs, P_θ is a *probability distribution* on the random graph G, and θ is a vector of parameters that describe the graphs that G can be, ranging over possible parameters in Θ

Erdős-Rényi Model (1959)

- ullet Model with parameters: N_V , and N_E or p
- Model of the form $G(N_V,p)$ and $G(N_V,N_E)$

Properties of the Erdős-Rényi Model

- Short average path lenths
- Low clustering coefficient
- For the $G(N_V,p)$ model, a particular simple graph g with exactly N_V vertices has probability $P(G=q)=p^{N_E}(1-p)^{\binom{N_V}{2}-N_E}$

Watts-Strogatz Model (1998)

ullet Model with parameters: N_V , r, p

Properties of the Watts-Strogatz Model

- High clustering coefficient
- Small average path length

Exponential random graph models (ERGMs) I

- Exponential random graph models (ERGMs) are a class of models that can be used to generate probability distributions
- Flexible in design; we can decide our parameters
- Conduct goodness-of-fit tests for model assessment

Exponential random graph models (ERGMs) II

• The general form for an ERGM is as follows:

$$P_{\theta,\mathcal{G}}(\mathbf{G} = \mathbf{g}) = \frac{exp(\theta^T \mathbf{s}(\mathbf{g}))}{\kappa(\theta,\mathcal{G})}, \mathbf{g} \in \mathcal{G}$$

• **Y** is the random variable representing a random graph and **g** is the particular adjacency matrix we observe. $\mathbf{s}(\mathbf{g})$ is the vector of model statistics for \mathbf{g} , θ is the vector of coefficients for those statistics, and $\kappa(\theta,\mathcal{G})$ is the quantity in the numerator summed over all possible networks

Properties of ERGMs I

- Deriving the Erdős-Rényi Model from ERGMs
- Suppose we have a particular graph g and the only statistic we have is L(G), the number of edges in g

$$P_{\theta,\mathcal{G}}(g) = \frac{exp(\theta_L L(g))}{\sum_{g' \in \mathcal{G}} exp(\theta_L L(g'))} = \frac{exp(\theta_L L(g))}{\kappa(\theta,\mathcal{G})}, g \in \mathcal{G}$$

Properties of ERGMs II

• Consider the probability distribution for a particular graph g with N_E edges again (from the Erdős-Rényi model). Using the fact that $N_E = L(g)$, taking the equation as a power of base e, we get the following:

$$P(g) = p^{N_E} (1 - p)^{\left(\binom{N_V}{2} - N_E\right)}$$

$$= p^{L(g)} (1 - p)^{\left(\frac{N_V(N_V - 1)}{2} - L(g)\right)}$$

$$= \left(\frac{p}{1 - p}\right)^{L(g)} (1 - p)^{\frac{N_V(N_V - 1)}{2}}$$

$$= exp\left(L(g)log\left(\frac{p}{1 - p}\right) - \frac{N_V(N_V - 1)}{2}log\left(\frac{p}{1 - p}\right)\right)$$

$$= exp(\theta_L L(g) - c)$$

$$= \frac{exp(\theta_L L(g))}{exp(c)},$$

Data Set

- A component of the Facebook network
- \bullet 4039 vertices and 88234 edges
- Simple, connected, and undirected

Generating Random Graphs

- Create graphs of parable magnitude using certain parameters
- Simulate 1000 random graphs for and record network statatistics for each graph
- Create distribution of these values and/or see a table of averages
- Compare network statistics of the Facebook network with that of the graphs we generated

The Picture in Mind

Erdős-Rényi Model

- ullet N_V and p
- The number of vertices is 4039
- Estimate the probability by taking the number of observed edges and dividing by the number of possible edges $\hat{p} = \frac{88234}{\binom{4039}{2}} = 0.011$
- \bullet For every possible edge among the 4039 vertices, determine if an edge will form based on the estimated probability

Watts-Strogatz Model

- \bullet N_V , r, p
- Will not use p
- Start with a lattice with 4039 vertices
- Randomly add 88234 4039 = 84195 edges until we have approximately the same number as our observed network.
- Assign a number of edges to the vertices equal to the smallest degree observed in our Facebook network; 1
- Simplify our simulated graph to eliminate multi-edges and loop

Results for Erdős–Rényi and Watts-Strogatz Models

Network Statistic	Observed	Erdős-Rényi	Watts-Strogatz
Transitivity	0.617	0.0108 ± 0.0001	0.0107 ±
,			9.135e-05
Average Path	4.338	2.606 ± 0.002	2.6093 ± 0.0002
Length			
Diameter	17	3.96 ± 0.21	3.95 ± 0.22
Avg. Degree	43.691	43.69 ± 0.14	43.45 ± 0.01
Cen.			
Avg.	2072.642	3242 ± 4	3249.2 ± 0.4
Betweenness			
Cen.			
Avg.	8.881e-	9.507e-05 \pm	9.494e-05 \pm
Closeness	80	7.230e-08	7.319e-09
Cen.			
Avg.	0.040	0.620 ± 0.022	0.6235 ± 0.0227

Figenvector

ERGMs

- Four different ERGMs-labeled as ERGM 1a, ERGM 2a, ERGM 2b, and ERGM 3a
- ERGM 1a: one parameter: edges
- ERGM 2a: two parameters: edges and triangles
- ERGM 2b: two parameters: edges and k-stars (of size 3)
- ERGM 3a: three parameters: edges, triangles, and k-stars (of size 3)
- For each random graph, calculate the networks statistics of interest

Results for ERGMs I

Network			
Statistic	Observed	ERGM1a	ERGM2a
Transitivity	0.617	0.3696 ± 0.0012	0.4823 ± 0.0020
Average Path	4.338	2.885 ± 0.004	3.052 ± 0.0086
Length			
Diameter	17	5.216 ± 0.412	6.098 ± 0.035
Avg. Degree	43.691	43.66 ± 0.052	44.54 ± 0.03
Avg.	2072.642	3805 ± 9	4140 ± 18
Betweenness			
Cen.			
Avg. Closeness	8.881e-	8.286e-05 \pm	6.008e-05 \pm
Cen.	80	8.353e-06	1.514e-05
Avg.	0.040	0.0417 ± 0.0008	0.0410 \pm
Eigenvector			3.577e-05
Cen.			

Results for ERGMs II

Network			
Statistic	Observed	ERGM2b	ERGM3a
Transitivity	0.617	0.3787 ± 0.0013	0.4891 ± 0.0020
Average Path	4.338	2.851 ± 0.003	3.0562 ± 0.0079
Length			
Diameter	17	5.095 ± 0.293	6.161 ± 0.3677
Avg. Degree	43.691	44.06 ± 0.057	44.52 ± 0.034
Cen.			
Avg.	2072.642	3736 ± 6	4148 ± 16
Betweenness			
Cen.			
Avg. Closeness	8.881e-	8.558e-05 \pm	5.875e-05 \pm
Cen.	80	6.025e-06	1.5035e-05
Avg.	0.040	0.0392 ± 0.0002	0.0410 \pm
Eigenvector			3.451e-05
Cen.			

Conclusions and Future Work

- The models were bad, so now what?
- Choose other models
- Choose different network statistics
- Choose other data sets

Implications

- Understand the flow of information
- Better access to jobs through networking
- Better leads to resources in research
- Improving traffic
- Understanding biological systems

Sources I

Baumer, B., Kaplan, D., & Horton, N. (2017). Modern Data Science With R: With Digital Download. Taylor & Francis. Retrieved from

https://books.google.com/books?id=Gv1nvgAACAAJ

Butts, C. T., & others. (2008). Social network analysis with sna. Journal of Statistical Software, 24 (6), 1-51.

Butts, C., Hunter, D., Handcock, M. S., Morris, M., Krivtisky, P. N., Almquist, Z.,. . . Bender de-Moll, S. (2015, June). Introduction to Exponential-family Random Graph (ERG or p*) modeling with ergm. Retrieved from https://statnet.org/trac/raw-attachment/wiki/Sunbelt2015/ergm_tutorial.pdf

Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., Morris, & Martina. (2008). Ergm: A package to fit, simulate and diagnose exponential-family models for networks. Journal of Statistical Software, 24 (3), 1–29.

Sources II

Leskovec, J., Chakrabarti, D., Kleinberg, J., & Faloutsos, C. (2005). Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication. In Knowledge Discovery in Databases: PKDD 2005 (pp. 133–145). Springer, Berlin, Heidelberg. Retrieved from

http://link.springer.com/chapter/10.1007/11564126_17

Jackson, M. O. (2013). Social and economic networks: Models and analysis. StanfordUniversity; Coursera Course Lecture.

Kolaczyk, E. D. (2009). Statistical Analysis of Network Data: Methods and Models. Springer Science & Business Media.

Kolaczyk, E. D., & Csárdi, G. (2014). Statistical Analysis of Network Data with R. Springer.

Lazega, E., & Pattison, P. E. (1999). Multiplexity, generalized exchange and cooperation in organizations: A case study. Social Networks, 21 (1), 67–90.

Sources III

Leskovec, J., & Krevl, A. (2014, June). SNAP Datasets: Stanford large network dataset collection.

http://snap.stanford.edu/data.

Leskovec, J., Chakrabarti, D., Kleinberg, J., & Faloutsos, C. (2005). Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication. In Knowledge Discovery in Databases: PKDD 2005 (pp. 133–145). Springer, Berlin, Heidelberg. Retrieved from

http://link.springer.com/chapter/10.1007/11564126_17

Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., & Ghahramani, Z. (2010).

Kronecker Graphs: An Approach to Modeling Networks. Journal of Machine Learning Research, 11 (Feb), 985–1042. Retrieved from http://www.jmlr.org/55papers/v11/leskovec10a.html

Sources IV

Newman, M. (2010). Networks: An Introduction. OUP Oxford

Travers, J., & Milgram, S. (1967). The small world problem. Phychology Today, 1, 61–67.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of "small-world" networks. Nature, 393 (6684), 440–442. http://doi.org/10.1038/30918

Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33 (4), 452–473. http://doi.org/10.1086/jar.33.4.3629752