HW4 Report

April 20, 2020

1 Homework 4 Report

Christopher W. Hong

1.1 Step 1:

• For reproducibility, I wrote a function load_bert_repo to download the BERT repository instead of downloading using click and drop. The repository was downloaded into BERT_BASE_DIR, \$HOME/Documents/repos/bert.

1.2 Step 2:

• Same as Step1, I wrote a function load_bert_model to download the pretrained BERT model, BERT-Base, Uncased, and uncompress it to *BERT_DATA_DIR*, \$BERT_BASE_DIR/models/uncased_L-12_H-768_A-12. Upon completing the uncompressing, the compressed file was removed automatically.

1.3 Step 3:

• A function called load_handout was written to download the handout from the website, uncompressed it and removed the compressed file automatically. In this step, I also wrote a function etl_text that could extract train.csv, eval.csv and test.csv files into a pandas DataFrame from the *HANDOUT_DATA_DIR*, \$HOME/Documents/repos/handout/data, transform and load the text column into a .txt file that contained each text on a single line into a folder called bert_input_data. The folder was in the same directory as the .ipynb file.

1.4 Step 4:

• A function called run_bert_fv was written to run the sh script run_bert_fv.sh located in the *HANDOUT_DATA_DIR*. In return, the sh script runned the extract_feature.py to generate feature vectors from .txt files generated in Step 3. Those generated feature vectors will be saved as .jsonlines files and were loaded into a folder called bert_output_data that was located in the same directory as folder bert_input_data.

1.5 Step 5:

• There are three sub steps in this part. First of all, I used the extract_feature_vectors function, which was a wrapper over the .jsonlines code provided in the handout, to extract

feature vectors from train, eval and test .jsonlines that were generated in Step 4 and load them into a pandas DataFrame, respectively.

- Then, I loaded the original train, eval and test .csv dataset from the handout directory into a DataFrame, respectively. Grabbed the label column native_language, re-encoded classes within the column into integers so that it could feed into a machine learning model.
- In this final sub step, because we tried to solve a single-label, multi class machine learning problem, I trained a Multinomial LogisticRegression baseline model over 6,000 training samples.

1.6 Step 6:

- In this final step, I used the previous trained model to make predictions over the test dataset. Evaluation metrics such as precision, recall, f1-score and accuracy score were evaluated over ground true and predicted labels. Plus, a confusion matrix was plotted into two heatmaps which one of them showed the discrete results and the other showed the percentages. Error analysis below were based on the metrics provided in **Figure 1-4**:
 - There were 2,000 test samples in total with uniform class distribution over 10 classes which were Japanese, Korean, Vietnamese, Mandarin, Russian, Thai, Spanish, Cantonese, Polish, Arabic. Thus, the accuracy score among many other metrics could be a reasonable measure over the model performance.
 - The model was heavily overfitting because there was big gap between the training accuracy score (65%) and the test one (47%). The performance was undesirable, but it was much higher than random guessing (10%).
 - Class Thai had the highest precision socre (66%) which meaned that in the predicted Thai classes, 66% of them were correctly predicted. Roughly 50% of the predicted classes including Korean, Russian, Spanish and Arabic were correctly predicted. Then, came the Japanese and Polish with 48% precision score. The model had the worst precision performance over classes including Vietnamese (41%), Mandarin (34%) and Cantonese (34%).
 - Around 60% of true Thai and Russian were predicted as true. Then, about 50% true positive rate was for Japanese, Spanish and Polish, respectively. Next, came Arabic and Korean with around (45%). Again, the model had the worst performance over Mandarin and Cantonese with the lowest true positive rate (35%).
 - Based on the combination of precision and recall score, Thai had the highest f1-score (63%) over other classes. Russian came the second (55%). Among the rest, Mandarin and Cantonese had lowest f1-score, 34% and 35%, respectively.
 - Base on the above metrics, the model had comparatively better performance on predicting Thai, Russian and Spanish. However, it did the poorest job at predicting Madarin, Cantonese and Vietnamese. It also implicitely showed that Thai and Russian native language writers had quite distinguished English writing style from others. Yet, Madarin and Cantonese writers had quite the same English writing styles.
 - Around 12% (23 out of 200) of Japanese was misclassified as Korean while 10% Koean was misclassified as Japanese.

- Vietnamese was frequently misclassified (12%) as Madarin over other classes.
- Madarin was frquently misclassified (20%) as Cantonese over others and Cantonese was misclassified as Madarin (24%).
- Russian was frquently misclassified (12%) as Polish over others and 15% of Polish was misclassified as Russian.
- Thai was either mostly misclassified (6.5%) as Vietnamese or Cantonese.
- Spanish was either frequently misclassified (9%) as Vietnamese or Polish.
- Arabic was mostly misclassified (11%) as Spanish over others.
- The above pair-wised comparisons show that most writers whose countries were closed to each other had pretty similar English writing styles. Yet, Spanish native laguange writers were mostly regarded as Vietnamese or Polish. Arabic ones were mostly regard as Spanish.
- To sum up, location and cultural seemed playing a subtle role in non-English native language writers' English writing styles.
- To improve the overall perforance and mitigate overfitting of the model, the most effective way is to gather more training data. Especially, we should try to gather more training data for the most misclassified classes Madarin, Cantonese and Vietnamese. Other approaches such as model regularization, model selection also help increase the model performance.

Figure 1

train metrics				
	precision	recall	f1-score	support
Japanese	0.66	0.71	0.69	600
Korean	0.65	0.63	0.64	600
Vietnamese	0.62	0.60	0.61	600
Mandarin	0.60	0.58	0.59	600
Russian	0.69	0.73	0.71	600
Thai	0.74	0.69	0.71	600
Spanish	0.64	0.67	0.66	600
Cantonese	0.56	0.58	0.57	600
Polish	0.69	0.66	0.68	600
Arabic	0.69	0.67	0.68	600
accuracy			0.65	6000
macro avg	0.65	0.65	0.65	6000
weighted avg	0.65	0.65	0.65	6000
eval metrics:				
eval metrics:	precision	recall	f1-score	support
eval metrics: Japanese	precision 0.51	recall	f1-score 0.53	support 200
	•			
Japanese Korean Vietnamese	0.51	0.56 0.47 0.42	0.53 0.48 0.43	200
Japanese Korean Vietnamese Mandarin	0.51 0.50 0.44 0.38	0.56 0.47 0.42 0.34	0.53 0.48 0.43 0.36	200 200 200 200
Japanese Korean Vietnamese Mandarin Russian	0.51 0.50 0.44 0.38 0.54	0.56 0.47 0.42 0.34 0.55	0.53 0.48 0.43 0.36 0.55	200 200 200 200 200 200
Japanese Korean Vietnamese Mandarin Russian Thai	0.51 0.50 0.44 0.38 0.54 0.59	0.56 0.47 0.42 0.34 0.55 0.59	0.53 0.48 0.43 0.36 0.55 0.59	200 200 200 200 200 200 200
Japanese Korean Vietnamese Mandarin Russian Thai Spanish	0.51 0.50 0.44 0.38 0.54 0.59	0.56 0.47 0.42 0.34 0.55 0.59	0.53 0.48 0.43 0.36 0.55 0.59	200 200 200 200 200 200 200
Japanese Korean Vietnamese Mandarin Russian Thai Spanish Cantonese	0.51 0.50 0.44 0.38 0.54 0.59 0.52	0.56 0.47 0.42 0.34 0.55 0.59 0.58	0.53 0.48 0.43 0.36 0.55 0.59 0.55	200 200 200 200 200 200 200 200
Japanese Korean Vietnamese Mandarin Russian Thai Spanish Cantonese Polish	0.51 0.50 0.44 0.38 0.54 0.59 0.52 0.37 0.52	0.56 0.47 0.42 0.34 0.55 0.59 0.58 0.40 0.52	0.53 0.48 0.43 0.36 0.55 0.59 0.55 0.38 0.52	200 200 200 200 200 200 200 200 200
Japanese Korean Vietnamese Mandarin Russian Thai Spanish Cantonese	0.51 0.50 0.44 0.38 0.54 0.59 0.52	0.56 0.47 0.42 0.34 0.55 0.59 0.58	0.53 0.48 0.43 0.36 0.55 0.59 0.55	200 200 200 200 200 200 200 200
Japanese Korean Vietnamese Mandarin Russian Thai Spanish Cantonese Polish Arabic	0.51 0.50 0.44 0.38 0.54 0.59 0.52 0.37 0.52 0.51	0.56 0.47 0.42 0.34 0.55 0.59 0.58 0.40 0.52	0.53 0.48 0.43 0.36 0.55 0.59 0.55 0.38 0.52 0.48	200 200 200 200 200 200 200 200 200 200
Japanese Korean Vietnamese Mandarin Russian Thai Spanish Cantonese Polish Arabic	0.51 0.50 0.44 0.38 0.54 0.59 0.52 0.37 0.52	0.56 0.47 0.42 0.34 0.55 0.59 0.58 0.40 0.52	0.53 0.48 0.43 0.36 0.55 0.59 0.55 0.38 0.52	200 200 200 200 200 200 200 200 200 200

Figure 2

test metrics:

test metrics.				
	precision	recall	f1-score	support
Japanese	0.48	0.50	0.49	200
Korean	0.50	0.45	0.47	200
Vietnamese	0.41	0.38	0.39	200
Mandarin	0.34	0.35	0.34	200
Russian	0.51	0.59	0.55	200
Thai	0.66	0.60	0.63	200
Spanish	0.49	0.51	0.50	200
Cantonese	0.34	0.35	0.35	200
Polish	0.48	0.49	0.48	200
Arabic	0.50	0.46	0.48	200
accuracy			0.47	2000
macro avg	0.47	0.47	0.47	2000
weighted avg	0.47	0.47	0.47	2000
_				

Figure 3

Figure 4

lapanese e	0.5	0.12	0.05	0.055	0.055	0.02	0.045	0.065	0.05	0.045
Korean	0.1	0.45	0.05	0.06	0.065	0.08	0.04	0.09	0.03	0.035
Vetnamese	0.045	0.06	0.38	0.12	0.07	0.05	0.065	0.095	0.06	0.055
Mandarin	0.08	0.065	0.075	0.35	0.055	0.015	0.06	0.2	0.045	0.055
181	0.06	0.03	0.04	0.025	0.59	0	0.055	0.03	0.12	0.045
Labels Th _{aj} Russ	0.03	0.06	0.065	0.035	0.015	0.6	0.05	0.065	0.03	0.05
Spanish	0.05	0.015	0.09	0.065	0.06	0.02	0.51	0.025	0.085	0.08
Gntonese	0.08	0.06	0.065	0.24	0.035	0.055	0.025	0.35	0.04	0.045
Polish Gn	0.045	0.01	0.045	0.03	0.15	0.035	0.08	0.06	0.49	0.05
Arabic	0.045	0.035	0.07	0.05	0.06	0.035	0.11	0.065	0.075	0.46
•	Apanese	forean	Wetnamese	Mandarin	Russian	Thai	Spanish	Gantonese	Polish	Arabic
Labels										