Date: June 5, 2018

 $\mathbf{2}$

(a). Observe that we can rewrite the function accordingly

$$(z^{2}+1)^{-3}(z-1)^{-4} = ((z-i)(z+i))^{-3}(z-1)^{-4} = \frac{1}{(z-i)^{3}(z+i)^{3}(z-1)^{4}}$$

Then it is clear that the function has 3 poles $\{i, -i, 1\}$ with multiplicities $\{3, 3, 4\}$.

(b). Consider $f(z) = z \cot z$ which can be rewritten as $f(z) = \frac{z \cos z}{\sin z}$. Because $\sin z$ and $\cos z$ are $\pi/2$ out of phase, they never share a zero, thus we have poles of order 1 whenever $\sin(z) = 0$ i.e. when $z = n\pi$ such that $n \in \mathbb{Z} \setminus \{0\}$. Here 0 is a special case as we have the indeterminant form $\frac{0}{0}$. This singularity is removable as can be seen by the power series:

$$f(z) = \frac{\cos z}{z^{-1} \sin(z)}$$

$$= \frac{\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}}{z^{-1} \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}}$$

$$= \frac{\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}}{\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!}}$$

$$= \frac{1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots}{1 - \frac{z^2}{3!} + \frac{z^4}{5!} + \dots}$$

And from the last line it is easy to see that as $z \to 0$, $f(z) \to 1$ indicating that z = 0 is in fact a removable singularity.

(c). The function $f(z) = \sin(z)z^{-5}$ has a pole of order 4 when z = 0 because (as we saw in the previous part) the power series for $\sin(z)$ is entire and has a power series looking like $z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots$ Thus dividing by z^5 cancels out the first z-term leaving z^{-4} .

5

(a). We can find $\oint_{\gamma} \cot(z) dz$ by using the argument principle. Observe that $\cot z = \frac{\cos z}{\sin z} = \frac{\sin' z}{\sin z}$. The argument principal gives that $\oint_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i \left[Z(f,\gamma) - P(f,\gamma) \right]$. $\gamma = C[0,3]$ the circle of radius 3 centered about z = 0. Therefore we have that $f(z) = \sin(z)$ has no poles inside of γ and and one zero when z = 0. Thus

$$\oint_{\gamma} \cot(z) dz = 2\pi i$$

(c). We want to find the value of $\oint_{\gamma} \frac{dz}{(z+4)(z^2+1)}$. We can do this using the Residue theorem. First observe that the integral can be rewritten as $\oint_{\gamma} \frac{dz}{(z+4)(z-i)(z+i)}$ which has 3 simple poles of order 1 at $\{-4, i, -i\}$. Only the poles at i, -i lie within γ , thus

$$\oint_{\gamma} \frac{dz}{(z+4)(z-i)(z+i)} = 2\pi i \sum_{i} Res[f, z_{i}]$$

$$= 2\pi i \left[\frac{1}{(i+4)(i+i)} + \frac{1}{(-i+4)(-i-i)} \right]$$

$$= -\frac{2\pi i}{17}$$

8

(c). We want to evaluate the following integral for $\gamma = C[0,2]$: $\oint_{\gamma} \frac{\exp(z)}{z^3+z} dz$. First rearrange the integral to become

$$\oint_{\gamma} \frac{\exp(z)}{z(z^2+1)} dz = \oint_{\gamma} \frac{\exp(z)}{z(z-i)(z+i)} dz$$

From this last equation we see that the integrand has 3 simple poles at z = 0, i, -i. All are included within γ . Therefore, our integral evaluates to

$$\oint_{\gamma} f(z)dz = 2\pi i \sum_{i} Res[f, z_{i}]$$

$$= 2\pi i \left[\frac{\exp(0)}{-i(i)} + \frac{\exp(i)}{i(2i)} + \frac{\exp(-i)}{-i(-2i)} \right]$$

$$= 2\pi i \left[1 - \frac{\cos(1) + i\sin(1)}{2} - \frac{\cos(1) - i\sin(1)}{2} \right]$$

$$= 2\pi i (1 - \cos(1))$$

(d). We want to evaluate the integral $\oint_{\gamma} \frac{dz}{z^2 \sin z}$ where $\gamma = C[0,1]$. This function has only one pole inside of γ when z=0 with order 3. Thus we have that

$$\begin{split} \oint_{\gamma} f(z)dz &= 2\pi i Res(f,z=0) \\ &= 2\pi i \frac{1}{2} \lim_{z \to 0} \frac{d^2}{dz^2} z^3 f(z) \\ &= \pi i \lim_{z \to 0} \frac{d^2}{dz^2} \frac{z}{\sin z} \\ &= \pi i \lim_{z \to 0} \csc(z) [z \cot^2(z) - 2 \cot(z) + z \csc^2(z)] \\ &= \frac{\pi i}{3} \end{split}$$

(e). We want to evaluate the integral $\oint_{\gamma} f(z)dz$ for $f(z) = \frac{\exp(z)}{(z+2)^2\sin(z)}$ $\gamma = C[0,3]$. This function has a simple pole when z=0 and a pole of multiplicity 2 when z=-2. Both of these poles lie within γ and therefore,

$$\oint_{\gamma} f(z)dz = 2\pi i [Res(f, z = 0) + Res(f, z = -2)]$$

$$= 2\pi i \left[\lim_{z \to 0} z f(z) + \lim_{z \to -2} \frac{d}{dz} (z + 2)^2 f(z) \right]$$

$$= 2\pi i \left[\frac{1}{4} + \frac{((-1 - \cot(2))\csc(2))}{e^2} \right]$$

21

(a). We want to find the number of zeros of $3\exp(z) - z$ in $\overline{D}[0,1]$. By Rouche's theorem we can see that |-z| = 1 is less than $|3\exp(z)| = 3 \ \forall z \in \gamma$ (the boundary). So define $f(z) = 3\exp(z)$ and g(z) = -z. Then,

$$Z(f+g,\gamma) = Z(f,\gamma)$$

However here we see that the function $f(z) = 3 \exp(z)$ has no zeros and therefore as we shrink the boundary, we do not find any zeros. Thus we conclude that the function $3 \exp(z) - z$ has no zeros inside of $\overline{D}[0,1]$.

- (b). We want to find the number of zeros of $\frac{1}{3}\exp(z)-z$ in $\overline{D}[0,1]$. In analogy to part (a), observe that $|f(z)|=|\frac{1}{3}\exp(z)|=\frac{1}{3}e^{\Re(z)}\leq \frac{1}{3}e^1=\frac{1}{3}e$ and |g(z)|=|-z|=1 on the boundary. Thus by applying Rouche's theorem, we have that the number of zeros $Z(f+g,\gamma)=Z(g,\gamma)$ since $|g(z)|\geq |f(z)|$. Therefore, there are no zeros until we shrink γ down to radius 0 at which point g(z)=-z has a zero. Therefore we conclude that $f(z)+g(z)=\frac{1}{3}\exp(z)-z$ has one zero inside of $\overline{D}[0,1]$.
- (c). We want to find the zeros of $z^4 5z + 1$ inside of $\{z \in \mathbb{C} : 1 \le |z| \le 2\}$. Define $f(z) = z^4$ and g(z) = -5z + 1. The total number of zeros in our region should be the zeros inside of C[0,2] minus those in C[0,1]. Thus for the first case observe that $|f(z)| = |z^4| \le 2^4 = 16$ on the outer boundary. Then $|g(z)| = |-5z + 1| \le 5 \cdot 2 + 1 = 11$ Therefore Rouche's theorem gives us that the number of zeros for f(z) + g(z) inside of C[0,2] is given by the number of zeros of f(z) which is 4 by the fundamental theorem of algebra.

For the second one we have that $|g(z)| = |-5z+1| \le 5+1 = 6$ on the boundary of C[0,1] and $|f(z)| = |z^4| \le 1^4 = 1$ on the same boundary. Thus the number of zeros for f(z) + g(z) in C[0,1] is given by the number of zeros of g(z) in C[0,1]. This number is 1 (when z = 1/5). Therefore we conclude that that the total number of zeros in the annulus is 4-1=3.