Increasing & Decreasing Incr Decr function Inc + Dea over x interval Ex f(x) = x3-12x-5 Ina? dea? $f'(x) = 3x^2 - 12 = 0$ 1 x=4 >> CN: X= ±2) -202 Ina: (- 2) (2,00) Dea 1 (-2,2) $f(x) = x^{1/2}(x-4)$ $= x^{4/3} - 4x^{1/3}$ fa) = \frac{4}{3} x \frac{1}{3} - \frac{4}{3} x \frac{-2}{3} $=\frac{4}{3}\left(\frac{x-1}{x^{a/3}}\right)=0$ CN: X=1,017 - J + Ince! (1,00) Dea! (-0,1) extreme points (LMAX, LMIN) Criticalpoints X=1 or f(1) = 1 (1-4) = -31 1 in point (1, -3)

 $\frac{1}{(x)} = \frac{1}{(x+1)} \times \frac{1}{(x+1)} \times \frac{1}{(x+1)} \times \frac{1}{(x+1)} \times \frac{1}{(x+1)} \times \frac{1}{(x+1)} \times \frac{1}{(x+1)} = 0$ $\frac{1}{(x)} = \frac{1}{(x+1)} = \frac{1}{(x+1)} \times \frac{1}{(x+1)} = 0$ $\frac{1}{(x+1)} \times \frac{1}{(x+1)} \times \frac{1}{(x+1)} \times \frac{1}{(x+1)} = 0$ $\frac{1}{(x+1)} \times \frac{1}{(x+1)} \times$

Second derivation of $\alpha = 0$ Frints in flection: ptinff $x \ge 2$ $f(x) = x^4 - 8x^3 + 18x^2$ Concave up (upward) $f(x) = 4x^3 - 24x^2 + 36x$ $f''(x) = (2x^2 - 48x + 36 = 0)$ $f''(x) = (2x^2 - 48x + 36 = 0)$ $f''(x) = (3x^2 - 48x + 36x + 36 = 0)$ $f''(x) = (3x^2 - 48x + 36x + 36 = 0)$ $f''(x) = (3x^2 - 48x + 36x + 36 = 0)$ $f''(x) = (3x^2 - 48x + 36x + 36 = 0)$ $f''(x) = (3x^2 - 48x + 36x + 36x + 36 = 0)$ $f''(x) = (3x^2 - 48x + 36x + 36x + 36 = 0)$ $f''(x) = (3x^2 - 48x + 36x +$

L-abe.