MATH 101.2 PS-5

Q1) Find the intervals of increase and decrease of the functions below.

3)
$$f(x) = (x^2-4)^2$$

Sole $f'(x) = 2 \cdot (x^2 - 4) \cdot 2x = 4x(x+2)(x-2)$. The roots of f(x) are x = -2, 0, 2. We can make a table.

$$f'(x)$$
 $-\frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \frac{2}{\sqrt{$

We know that f(x) is increasing if f'(x)>0 and f(x) is decreasing if f'(x)<0. Therefore, f(x) is increasing on $(-2,0)V(2,\infty)$ and decreasing on $(-\infty,-2)V(0,2)$

b)
$$f(x) = \frac{1}{x^2+1}$$

Sol:
$$f'(x) = [(x^2+1)^{-1}]' = -(x^2+1)^{-2} \cdot 2x = \frac{-2x}{(x^2+1)^2}$$
. Clearly, $f'(x) > 0$ if $x < 0$ and $f'(x) < 0$ if $x > 0$. Hence, $f(x)$ is increasing on $(-\infty, 0)$ and $f(x)$ is decreasing on $(0, \infty)$.

c)
$$f(x) = x^3 (5-x)^2$$

Sols
$$f'(x) = 3x^2 (5-x)^2 + 2(5-x)(-1) \cdot x^3 = x^2 (5-x)(15-5x)$$

= $5x^2 (5-x)(3-x)$

The roots of f'(x) are 3,5 and 0 (double root) We can make a wildle table.

$$\frac{-\infty}{f'(x)} + 0 + 0 - 0 +$$

$$f'(x)$$
70 on $(-\infty,0)$ 0(0,3)0(5, ∞) and $f'(x)$ 60 on (3,5)
Therefore, $f(x)$ is increasing on $(-\infty,3)$ 0(5, ∞) and decreasing on (3,5).

d) $f(x) = x + \sin x$

Solo $f'(x) = 1 + \cos x$. Since $-1 \le \cos x \le 1$, we can say $f'(x) = 1 + \cos x \ge 0$. Also, f'(x) = 0 only at isolated points $x = \mp \pi$, $\mp 3\pi$,.... Hence, f is increasing everywhere.

Q2) Let $f(x) = x^2 \cdot \sin(\frac{1}{x})$ if $x \neq 0$ and f(0) = 0. Show that f'(x) exists at every x but f' is not continuous at x = 0.

Sol: Let us show f'(x) lexists. It must be continuous.

$$\lim_{X\to 0} f(x) = \lim_{X\to 0} \frac{\sin\left(\frac{1}{X}\right)}{\left(\frac{1}{X}\right)^2} = \lim_{h\to \mp \infty} \frac{\sinh}{h^2} = 0 = f(0). \quad \begin{pmatrix} \frac{1}{X} = h \\ h\to \mp \infty & 3s \\ x\to 0 \end{pmatrix}$$

Lee us find f'(0).

$$\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \frac{x^2 \cdot \sin(\frac{1}{x})}{x} = \lim_{x\to 0} x \cdot \sin(\frac{1}{x}) = \lim_{h\to \mp\infty} \frac{\sinh}{h} = 0.$$

So, f'(0) exists and it is equal to 0.

Let us show that f' is not continuous at x=0.

$$f'(x) = 2x \cdot \sin\left(\frac{1}{x}\right) - \frac{2}{x^2} \cdot \cos\left(\frac{1}{x}\right) = 2x \cdot \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$$

$$f'(x) = 2x \cdot \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$$

f'(x) is not continuous at x=0 because the limit of $\cos(\frac{1}{x})$ does not exist as x goes to 0.

Q3) Find dy in terms of x and y.

 $3) x^3 y + x y^5 = 2$

5018 We must calculate the derivative of both sides of the equation.

 $3x^2 \cdot y + x^3 \cdot y' + y^5 + 5xy^4y' = 0$. Hence,

$$y'(x^3+5xy^4) = -3x^2y-y^5 = \frac{dy}{dx} = \frac{-3x^2y-y^5}{x^3+5xy^4}$$

b)
$$\frac{x-y}{x+y} = \frac{x^2}{y} + 1$$

Solo
$$\frac{x-y}{x+y} = \frac{x^2}{y} + 1 = \frac{x^2+y}{y} \Rightarrow xy-y^2 = x^3+x^2y+xy+y^2$$
 or $x^3+x^2y+2y^2=0$. Differentiate with respect to x ,

$$3x^2 + 2xy + x^2y' + 4yy' = 0 \implies y'(x^2 + 4y) = -3x^2 - 2xy$$

$$\frac{dy}{dx} = -\frac{3x^2 + 2xy}{x^2 + 4y}.$$

Q4) Find an equation of the tangent to the given curve at the given point.

$$2) 2x^2 + 3y^2 = 5 \quad 24 \quad (1,1)$$

Sols Let us find
$$\frac{dy}{dx}$$
. $4x+3.2.yy'=0 \Rightarrow \frac{dy}{dx} = \frac{-2x}{3y}$

At (1,1),
$$\frac{dy}{dx}\Big|_{(1,1)} = \frac{-2.1}{3.1} = -\frac{2}{3}$$
. Hence,

$$y-1 = \frac{1}{3}(x-1) \Rightarrow 2x+3y=5$$
.

b)
$$\frac{x}{y} + \left(\frac{y}{x}\right)^3 = 2$$
 $\partial \in (-1, -1)$

Sol: Let us find dy, but whe must rearrange the

equation.
$$\frac{x}{y} + \frac{y^3}{x^3} = 2 \Rightarrow x^4 + y^4 = 2x^3y$$
. Then,

$$4x^3 + 4y^3y' = 6x^2y + 2x^3y' \Rightarrow \frac{dy}{dx} = \frac{4x^3 - 6x^2y}{2x^3 - 4y^3}$$

$$\frac{dy}{dx}\Big|_{(-1,-1)} = \frac{4(-1)^3 - 6(-1)^2(-1)}{2(-1)^3 - 4(-1)^3} = \frac{-4+6}{-2+4} = 1.$$
 Tangent line:

$$g+1=1(x+1) \Rightarrow g=x.$$

c)
$$tan(xy^2) = \frac{2xy}{\pi}$$
 at $\left(-\pi, \frac{1}{2}\right)$.

Sol:
$$[1+\tan^2(xy^2)][y^2+2xyy']=\frac{2}{\pi}(y+xy')$$
. At $(-\pi,\frac{1}{2})$, $[1+\tan^2(\frac{\pi}{4})][\frac{1}{4}+2(-\pi),\frac{1}{2},y']=\frac{2}{\pi}(\frac{1}{2}+(-\pi)y')$. Hence, $2\cdot(\frac{1}{4}-\pi y')=\frac{2}{\pi}(\frac{1}{2}-\pi y')\Rightarrow y'=\frac{\pi-2}{4\pi(\pi-1)}$. The tangent line has the equation $y-\frac{1}{2}=\frac{\pi-2}{4\pi(\pi-1)}(x+\pi)$.

Q5) Let
$$x^3 - y^2 + y^3 = x$$
. Find y'' in terms of x and y .

Sol:
$$3x^2 - 2yy' + 3y^2y' = 1 \Rightarrow y' = \frac{1 - 3x^2}{3y^2 - 2y}$$
. (*)
 $6x - 2(y')^2 - 2yy'' + 6y(y')^2 + 3y^2y'' = 0$. Hence,
 $y'' = \frac{(2 - 6y)(y')^2 - 6x}{3y^2 - 2y}$.

$$y'' = \frac{(2-6y)(\frac{1-3x^2}{3y^2-2y})^2 - 6x}{3y^2-2y} = \frac{(2-6y)(1-3x^2)^2}{(3y^2-2y)^3} = \frac{6x}{3y^2-2y}.$$

Q6) For,
$$x^2+y^2=a^2$$
 Show that $y''=-\frac{a^2}{4^3}$.

Solo
$$x^2+y^2=a^2 \implies 2x+2yy'=0 \implies y'=-\frac{x}{y}$$
. Also, $2+2(y')^2+2yy''=0$. Hence,

$$y'' = \frac{-2-2(y')^2}{2y} = \frac{2+2(-\frac{x}{y})^2}{2y} = \frac{1+\frac{x^2}{y^2}}{y} = -\frac{x^2+y^2}{y^3} = -\frac{z^2}{y^3}$$

Q7) Find the indefinite integral
$$\int \frac{1+\cos^3x}{\cos^2x} dx$$

Solo
$$\int \frac{1+\cos^3 x}{\cos^2 x} dx = \int \left(\frac{1}{\cos^2 x} + \frac{\cos^3 x}{\cos^2 x}\right) dx = \int (\sec^2 x + \cos x) dx$$
$$= +\partial_1 x + \sin x + C.$$

(28)
$$\int \frac{6(x-1)}{x^{4/3}} dx = 3$$

Solo
$$\int \frac{6(x-1)}{x^{4/3}} dx = \int \frac{6x-6}{x^{4/3}} dx = \int \left(\frac{6x}{x^{4/3}} - \frac{6}{x^{4/3}}\right) dx$$

= $\int (6 \cdot x^{-1/3} - 6 \cdot x^{-4/3}) dx = 9x^{-2/3} + 18x^{-1/3} + 0$

Q9) Find the given indefinite integrals. This may require guessing the form of an antiderivative and then checking by differentiation.

3)
$$\int \frac{dx}{(1+x)^2} = ?$$
 b) $\int 2x \cdot \sin(x^2) dx = ?$

Sols 2) The derivative of $c(1+x)^k$ is $ck(1+x)^{k-1}$.

If k-1=-2, then k=-1 and c=-1. Hence, $\int \frac{dx}{(1+x)^2} = -\frac{1}{1+x} + C$

b) We know that derivative of $f(x^2)$ is $2x.f'(x^2)$. Also, $(-\cos x)' = \sin x$. Hmm, We can conclude

$$\int 2x.\sin(x^2)dx = -\cos(x^2) + C.$$