Upper bounds for average Bayes accuracy in terms of mutual information

Charles Zheng and Yuval Benjamini

September 23, 2016

These are preliminary notes.

1 Introduction

Suppose X and Y are continuous random variables (or vectors) which have a joint distribution with density p(x,y). Let $p(x) = \int p(x,y)dy$ and $p(y) = \int p(x,y)dx$ denote the respective marginal distributions, and p(y|x) = p(x,y)/p(x) denote the conditional distribution.

Mutual information is defined

$$I[p(x,y)] = \int p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy.$$

ABE_k, or k-class Average Bayes accuracy is defined as follows. Let $X_1, ..., X_K$ be iid from p(x), and draw Z uniformly from 1, ..., k. Draw $Y \sim p(y|X_Z)$. Then, the average Bayes accuracy is defined as

$$ABA_k[p(x,y)] = \sup_{f} \Pr[f(X_1,...,X_k,Y) = Z]$$

where the supremum is taken over all functions f. A function f which achieves the supremum is

$$f_{Bayes}(x_1, ..., x_k, y) = \operatorname{argmax}_{z \in \{1, ..., k\}} p(y|x_z),$$

where an arbitrary rule can be employed to break ties. Such a function f_{Bayes} is called a Bayes classification rule. It follows that ABA_k is given explicitly

by

$$ABA_k = \frac{1}{k} \int \left[\prod_{i=1}^k p(x_i) dx_i \right] \int dy \max_i p(y|x_i),$$

as stated in the following theorem.

Theorem 1.1 For a joint distribution p(x,y), define

$$ABA_k[p(x,y)] = \sup_{f} \Pr[f(x_1,...,x_k,y) = Z]$$

where $X_1, ..., X_K$ are iid from p(x), Z is uniform from 1, ..., k, and $Y \sim p(y|X_Z)$, and the supremum is taken over all functions $f: \mathcal{X}^k \times \mathcal{Y} \to \{1, ..., k\}$. Then,

$$ABA_k = \frac{1}{k} \int \left[\prod_{i=1}^k p(x_i) dx_i \right] \int dy \max_i p(y|x_i).$$

Proof. First, we claim that the supremum is attained by choosing

$$f(x_1, ..., x_k, y) = \operatorname{argmax}_{z \in \{1, ..., k\}} p(y|x_z).$$

To show this claim, write

$$\sup_{f} \Pr[f(X_1, ..., X_k, Y) = Z] = \sup_{f} \frac{1}{k} \int p_X(x_1) ... p_X(x_k) p(y | x_{f(x_1, ..., x_k, y)}) dx_1 ... dx_k dy$$

We see that maximizing $\Pr[f(X_1,...,X_k,Y)=Z]$ over functions f additively decomposes into infinitely many subproblems, where in each subproblem we are given $\{x_1,...,x_k,y\}\in\mathcal{X}^k\times\mathcal{Y}$, and our goal is to choose $f(x_1,...,x_k,y)$ from the set $\{1,...,k\}$ in order to maximize the quantity $p(y|x_{f(x_1,...,x_k,y)})$. In each subproblem, the maximum is attained by setting $f(x_1,...,x_k,y)=\arg\max_z p(y|x_z)$ —and the resulting function f attains the supremum to the functional optimization problem. This proves the claim.

We therefore have

$$p(y|x_{f(x_1,...,x_k,y)}) = \max_{i=1}^k p(y|x_i).$$

Therefore, we can write

$$ABA_{k}[p(x,y)] = \sup_{f} \Pr[f(X_{1},...,X_{k},Y) = Z]$$

$$= \frac{1}{k} \int p_{X}(x_{1}) \dots p_{X}(x_{k}) p(y|x_{f(x_{1},...,x_{k},y)}) dx_{1} \dots dx_{k} dy.$$

$$= \frac{1}{k} \int p_{X}(x_{1}) \dots p_{X}(x_{k}) \max_{i=1}^{k} p(y|x_{i}) dx_{1} \dots dx_{k} dy.$$

2 Problem formulation

Let \mathcal{P} denote the collection of all joint densities p(x,y) on finite-dimensional Euclidean space. For $\iota \in [0,\infty)$ define $C_k(\iota)$ to be the largest k-class average Bayes error attained by any distribution p(x,y) with mutual information not exceeding ι :

$$C_k(\iota) = \sup_{p \in \mathcal{P}: I[p(x,y)] \le \iota} ABA_k[p(x,y)].$$

A priori, $C_k(\iota)$ exists since ABA_k is bounded between 0 and 1. Furthermore, C_k is nondecreasing since the domain of the supremum is monotonically increasing with ι .

It follows that for any density p(x, y), we have

$$ABA_k[p(x,y)] \le C_k(I[p(x,y)]).$$

Hence C_k provides an upper bound for average Bayes error in terms of mutual information.

Conversely we have

$$I[p(x,y)] \ge C_k^{-1}(ABA_k[p(x,y)])$$

so that C_k^{-1} provides a lower bound for mutual information in terms of average Bayes error.

On the other hand, there is no nontrivial *lower* bound for average Bayes error in terms of mutual information, nor upper bound for mutual information in terms of average Bayes error, since

$$\inf_{p \in \mathcal{P}: I[p(x,y)] \le \iota} ABA_k[p(x,y)] = \frac{1}{k}.$$

regardless of ι .

The goal of this work is to attempt to compute or approximate the functions C_k and C_k^{-1} .

2.1 Notation

 $|\cdot|$ denotes set cardinality.

3 Special case

We work out the special case where p(x, y) lies on the unit square, and p(x) and p(y) are both the uniform distribution. Let \mathcal{P}^{unif} denote the set of such distributions, and

$$C_k^{unif}(\iota) = \sup_{p(x,y) \in \mathcal{P}^{unif}: \mathbf{I}[p] \le \iota} ABA_k[p].$$

We prove the following result:

Theorem 3.1 For any $\iota > 0$, there exists $c_{\iota} \geq 0$ such that defining

$$Q_c(t) = \frac{\exp[ct^{k-1}]}{\int_0^1 \exp[ct^{k-1}]},$$

we have

$$\int_0^1 Q_{c_{\iota}}(t) \log Q_{c_{\iota}}(t) dt = \iota.$$

Then,

$$C_k^{unif}(\iota) = \int_0^1 Q_{c_{\iota}}(t) t^{k-1} dt.$$

The proof depends on the following lemmas.

Lemma 3.2 Let f(t) be an increasing function from $[a,b] \to \mathbb{R}$, where a < b, and let g(t) be a bounded continuous function from $[a,b] \to \mathbb{R}$. Define the set

$$A = \{t : f(t) \neq g(t)\}.$$

Then, we can write A as a countable union of intervals

$$A = \bigcup_{i=1}^{\infty} A_i$$

where A_i are mutually disjoint intervals, with $\inf A_i < \sup A_i$, and for each i, either f(t) > g(t) for all $t \in A_i$ or f(t) < g(t) for all $t \in A_i$.

Lemma 3.3 Let f(t) be a measurable function from $[a, b] \to \mathbb{R}$, where a < b. Then there exists sets \mathcal{B}_0 and \mathcal{B}_1 , satisfying the following properties:

- $\mathcal{B} = \mathcal{B}_0 \cup \mathcal{B}_1$ is countable partition of [a, b],
- f(t) is constant on all $B \in \mathcal{B}_0$, but not constant on any proper super-interval $B' \supset B$, and
- $B \in \mathcal{B}_1$ contains no positive-length subinterval where f(t) is constant.

Lemma 3.4 Define an exponential family on [0,1] by the density function

$$q_{\beta}(t) = \exp[\beta t^{k-1} - \log Z(\beta)]$$

where

$$Z(\beta) = \int_0^1 \exp[\beta t^{k-1}] dt.$$

Then, the negative entropy

$$I(\beta) = \int_0^1 q_{\beta}(t) \log q_{\beta}(t) dt$$

is decreasing in β on the interval $(-\infty, 0]$. and increasing on the interval $[0, \infty)$.

Furthermore, for any $\iota \in (0, \infty)$, there exist two solutions to $I(\beta) = \iota$: one positive and one negative.

Lemma 3.5 For any measure G on $[0, \infty]$, let G^k denote the measure defined by

$$G^k(A) = G(A)^k,$$

and define

$$E[G] = \int x dG(x).$$

$$I[G] = \int x \log x dG(x)$$

and

$$\psi_k[G] = \int x d(G^k)(x).$$

Then, defining Q_c and c_ι as in Theorem 1, we have

$$\sup_{G: E[G] = 1, I[G] \le \iota} \psi_k[G] = \int_0^1 Q_{c_{\iota}}(t) t^{k-1} dt.$$

Furthermore, the supremum is attained by a measure G that has cdf equal to Q_c^{-1} , and thus has a density g with respect to Lesbegue measure.

Lemma 3.6 The map

$$\iota \to \int_0^1 Q_{c_\iota}(t) t^{k-1} dt$$

is concave in $\iota > 0$.

Proof of Lemma 3.2. (This will appear in the appendix of the paper.) The function h(t) = f(t) - g(t) is measurable, since all increasing functions are measurable. Define $A^+ = \{t : f(t) > g(t)\}$ and $A^- = \{t : f(t) < g(t)\}$. Since A^+ and A^- are measurable subsets of \mathbb{R} , they both admit countable partitions consisting of open, closed, or half-open intervals. Let \mathcal{H}^+ be the collection of all partitions of A^+ consisting of such intervals. There exists a least refined partition \mathcal{A}^+ within \mathcal{H}^+ . Define \mathcal{A}^- analogously, and let

$$\mathcal{A} = \mathcal{A}^+ \cup \mathcal{A}^-$$

and enumerate the elements

$$\mathcal{A} = \{A_i\}_{i=1}^{\infty}.$$

We claim that the partitions \mathcal{A}^+ and \mathcal{A}^- have the property that for all $t \in A^{\pm}$, ther interval $I \in \mathcal{A}^{\pm}$ containing t has endpoints $l \leq u$ defined by

$$l = \inf_{x \in [a,b]} \{x : \operatorname{Sign}(h([x,t])) = \{\operatorname{Sign}(h(t))\}\}$$

and

$$u = \sup_{x \in a[,b]} \{x : \text{Sign}(h([t,x])) = \{\text{Sign}(h(t))\}\}.$$

We prove the claim for the partition \mathcal{A}^+ . Take $t \in A^+$ and define l and u as above. It is clear that $(l, u) \in A^+$, and furthermore, there is no l' < l and u' > u such that $(l', x) \in A^+$ or $(x, u') \in A^+$ for any $x \in I$. Let \mathcal{H} be any other partition of A^+ . Some disjoint union of intervals $H_i \in \mathcal{H}$ necessarily

covers I for i=1,..., and we can further require that none of the H_i are disjoint with I. Since each H_i has nonempty intersection with I, and I is an interval, this implies that $\bigcup_i H_i$ is also an interval. Let $l'' \leq u''$ be the endpoints of $\bigcup_i H_i$ Since $I \subseteq \bigcup_i H_i$, we have $l'' \leq l \leq u \leq u''$. However, since also $I \in A^+$, we must have $l \leq l'' \leq u'' \leq u$. This implies that l'' = l and u'' = u. Since $\bigcup_i H_i = I$, and this holds for any $I \in \mathcal{A}^+$, we conclude that \mathcal{H} is a refinement of \mathcal{A}^+ . The proof of the claim for \mathcal{A}^- is similar.

It remains to show that there are not isolated points in \mathcal{A} , i.e. that for all $I \in \mathcal{A}$ with endpoints $l \leq u$, we have l < u. Take $I \in \mathcal{A}$ with endpoints $l \leq u$ and let $t = \frac{l+u}{2}$. By definition, we have $h(t) \neq 0$. Consider the two cases h(t) > 0 and h(t) < 0.

If h(t) > 0, then $t' = g^{-1}(h(t)) > t$, and for all $x \in [t, t']$ we have h(x) > 0. Therefore, it follows from definition that $[t, t'] \in I$, and since $l \le t < t' \le u$, this implies that l < u. The case h(t) < 0 is handled similarly. \square

Proof of Lemma 3.3. (This will appear in the appendix of the paper.) To construct the interval, define

$$l(t) = \inf\{x \in [0,1] : f([x,t]) = \{f(t)\}\}$$

$$u(t) = \sup\{x \in [0,1] : f([t,x]) = \{f(t)\}\},\$$

Let B_0 be the set of all t such that l(t) < u(t), and let B_1 be the set of all t such that l(t) = t = u(t). For all $t \in B_0$, define

$$I(t) = (l(t), u(t)) \cup \{x \in \{l(t), u(t)\} : f(x) = f(t)\}.$$

Then we claim

$$\mathcal{B}_0 = \{ I(t) : t \in B_0 \}$$

is a countable partition of B_0 . The claim follows since the members of \mathcal{B}_0 are disjoint intervals of nonzero length, and B_0 has finite length. It follows from definition that for any $B \in B_0$, that f is not constant on any proper superinterval $B' \supset B$.

Meanwhile, let \mathcal{B}_1 be a countable partition of B_1 into intervals.

Next, we show that for all $I \in \mathcal{B}_1$, I does not contain a subinterval I' of nonzero length such that f is constant on I'. Suppose to the contrary, we could find such an interval I and subinterval I'. Then for any $t \in I'$, we have $t \in B_0$. However, this implies that $t \notin B_1$, a contradiction.

Since $t \in [a, b]$ belongs to either B_0 or B_1 , letting $\mathcal{B} = \mathcal{B}_0 \cup \mathcal{B}_1$ yields the desired partition of [a, b]. \square .

Proof of Lemma 3.4.

Define $\beta(\mu)$ as the solution to

$$\mu = \int_0^1 t q_{\beta}(t) dt.$$

By [Wainwright and Jordan 2008], the function $\beta(\mu)$ is well-defined. Furthermore, since the sufficient statistic t^{k-1} is increasing in t, it follows that $\beta(\mu)$ is increasing.

Define the negative entropy as a function of μ ,

$$N(\mu) = \int_0^1 q_{\beta(\mu)}(t) \log q_{\beta(\mu)}(t) dt.$$

By Theorem 3.4 of [Wainwright and Jordan 2008], $N(\mu)$ is convex in μ . We claim that the derivative of $N(\mu) = 0$ at $\mu = \frac{1}{2}$. This implies that $N(\mu)$ is decreasing in μ for $\mu \leq \frac{1}{2}$ and increasing for $\mu \geq \frac{1}{2}$. Since $I(\beta(\mu)) = N(\mu)$, β is increasing in μ , and $\beta(\frac{1}{2}) = 0$, this implies that $I(\beta)$ is decreasing in β for $\beta \leq 0$ and increasing for $\beta \geq 0$.

We will now prove the claim. Write

$$\left. \frac{d}{d\mu} N(\mu) \right|_{\mu=1/2} = \frac{d}{d\beta} I(\beta(\mu)) \left| \frac{d\beta}{\beta=0} \frac{d\beta}{d\mu} \right|_{\mu=1/2}.$$

We have

$$\frac{d}{d\beta}I(\beta) = \beta \int q_{\beta}t^{k-1}dt - \log Z(\beta).$$

Meanwhile, Z(0) = 1 so $\log Z(0) = 0$. Therefore,

$$\left. \frac{d}{d\beta} I(\beta) \right|_{\beta=0} = 0.$$

This implies that $\frac{d}{d\mu}N(\mu)|_{\mu=1/2}=0$, as needed.

For the final statement of the lemma, note that I(0) = 0 since q_0 is the uniform distribution. Meanwhile, since q_{β} tends to a point mass as either $\beta \to \infty$ or $\beta \to -\infty$, we have

$$\lim_{\beta \to \infty} I(\beta) = \lim_{\beta \to -\infty} I(\beta) = \infty.$$

And, as we can check that $I(\beta)$ is continuous in β , this means that

$$I((-\infty, 0]) = I([0, \infty)) = [0, \infty)$$

by the mean-value theorem. Combining this fact with the monotonicity of $I(\beta)$ restricted to either the positive and negative half-line yields the fact that for any $\iota > 0$, there exists $\beta_1 < 0 < \beta_2$ such that $I(\beta_1) = I(\beta_2) = \iota$. \square .

Proof of Lemma 3.5. (This will appear in the appendix of the paper.)

Consider the quantile function $Q(t) = \inf_{x \in [0,1]} : G((-\infty, x]) \ge t$. Q(t) must be a monotonically increasing function from [0,1] to $[0,\infty)$. Let \mathcal{Q} denote the collection of all such quantile functions.

We have

$$E[G] = \int_0^1 Q(t)dt$$
$$\psi_k[G] = \int_0^1 Q(t)x^{k-1}dt.$$

and

$$I[G] = \int_0^1 Q(t) \log Q(t) dt.$$

For any given ι , let P_{ι} denote the class of probability distributions G on $[0,\infty]$ such that E[G]=1 and $I[G]\leq \iota$. From Markov's inequality, for any $G\in P_{\iota}$ we have

$$G([x,\infty]) \le x^{-1}$$

for any $x \geq 0$, hence P_{ι} is tight. From tightness, we conclude that P_{ι} is closed under limits with respect to weak convergence. Hence, since ψ_k is a continuous function, there exists a distribution $G^* \in P_{\iota}$ which attains the supremum

$$\sup_{G\in P_{\iota}}\psi_{k}[G].$$

Let \mathcal{Q}_{ι} denote the collection of quantile functions of distributions in P_{ι} . Then, \mathcal{Q}_{ι} consists of monotonic functions $Q:[0,1]\to[0,\infty]$ which satisfy

$$E[Q] = \int_0^1 Q(t)dt = 1,$$

and

$$I[Q] = \int_0^1 Q(t) \log Q(t) dt \le \iota.$$

Let \mathcal{Q} denote the collection of *all* quantile functions from measures on $[0, \infty]$. And letting Q^* be the quantile function for G^* , we have that Q^* attains the supremum

$$\sup_{Q \in \mathcal{Q}_t} \phi_k[Q] = \sup_{Q \in \mathcal{Q}_t} \int_0^1 Q(t) t^{k-1} dt. \tag{1}$$

Therefore, there exist Lagrange multipliers $\lambda \geq 0$ and $\nu \geq 0$ such that defining

$$\mathcal{L}[Q] = -\phi_k[Q] + \lambda E[Q] + \nu I[Q] = \int_0^1 Q(t)(-t^{k-1} + \lambda + \nu \log Q(t))dt,$$

 Q^* attains the infimum of $\mathcal{L}[Q]$ over all quantile functions,

$$\mathcal{L}[Q^*] = \inf_{Q \in \mathcal{Q}} \mathcal{L}[Q].$$

The global minimizer Q^* is also necessarily a stationary point: that is, for any perturbation function $\xi : [0,1] \to \mathbb{R}$ such that $Q^* + \xi \in \mathcal{Q}$, we have $\mathcal{L}[Q^*] \leq \mathcal{L}[Q^* + \xi]$. For sufficiently small ξ , we have

$$\mathcal{L}[Q+\xi] \approx \mathcal{L}[Q] + \int_0^1 \xi(t)(-t^{k-1} + \lambda + \nu + \nu \log Q(t))dt.$$
 (2)

Define

$$\nabla \mathcal{L}_{Q^*}(t) = -t^{k-1} + \lambda + \nu + \nu \log Q(t). \tag{3}$$

The function $\nabla \mathcal{L}_{Q^*}(t)$ is a functional derivative of the Lagrangian. Note that if we were able to show that $\nabla \mathcal{L}_{Q^*}(t) = 0$, this immediately yields

$$Q^*(t) = \exp[-1 - \lambda \nu^{-1} + \nu^{-1} t^{k-1}]. \tag{4}$$

At this point, we know that the right-hand side of (4) gives a stationary point of \mathcal{L} , but we cannot be sure that it gives the global minimzer. The reason is because the optimization occurs on a constrained space. We will show that (4) indeed gives the global minimizer Q^* , but we do so by showing that the set of points t where $\nabla \mathcal{L}_{Q^*}(t) \neq 0$ is of zero measure. Since sets of zero measure don't affect the integrals defining the optimization problem (1), we conclude there exists a global optimal solution with $\nabla \mathcal{L}_{Q^*}(t) = 0$ everywhere, which is therefore given explicitly by (4) for some $\lambda \in \mathbb{R}$, $\nu \geq 0$.

We will need the following result: that for $\iota > 0$, any solution to (1) satisfies $\phi_k[Q] < 1$. This follows from the fact that

$$E[Q] - \phi_k[Q] = \int_0^1 (1 - t^{k-1})Q(t)dt,$$

where the term $(1-t^{k-1})$ is negative, except for the one point t=1. Therefore, in order for $\phi_k[Q]=1=E[Q]$, we must have Q(t)=0 for t<1. However, this yields a contradiction since Q(t)=0 for t<1 implies that E[Q]=0, a violation of the hard constraint E[Q]=1.

Let us establish that $\nu > 0$: in other words, the constraint $I[Q] = \iota$ is tight. Suppose to the contrary, that for some $\iota > 0$, the global optimum Q^* minimizes a Lagrangian with $\nu = 0$. Let $\phi^* = \phi_k[Q^*] < 1$. However, if we define $Q_{\kappa}(t) = I\{t \geq 1 - \frac{1}{\kappa}\}\kappa$, we have $E[Q_{\kappa}] = 1$, and also for some sufficiently large $\kappa > 0$, $\phi_k[Q_{\kappa}] > \phi^*$. But since the Lagrangian lacks a term corresponding to I[Q], we conclude that $\mathcal{L}[Q_{\kappa}] < \mathcal{L}[Q^*]$, a contradiction.

The rest of the proof proceeds as follows. We will use Lemmas 3.2 and 3.3 to define a decomposition $A = D_0 \cup D_1 \cup D_2$, where D_2 is of measure zero. First, we show that assuming the existence of $t \in D_0$ yields a contradiction, and hence $D_0 = \emptyset$. Then, again using argument from contradiction we establish that $D_1 = \emptyset$. Finally, since D_2 is a set of zero measure, this allows us to conclude that the $Q^*(t) = 0$ on all but a set of zero measure.

We will now apply the Lemmas to obtain the necessary ingredients for constructing the sets D_i . Since $\nabla \mathcal{L}_{Q^*}(t)$ is a difference between an increasing function and a continuous strictly increasing function, we can apply Lemma 3.2 to conclude that there exists a countable partition \mathcal{A} of the set $A:\{t\in[0,1]:\nabla\mathcal{L}_{Q^*}(t)\neq 0\}$ into intervals such that for all $J\in\mathcal{A}$, $|\mathrm{Sign}(\nabla Q^*(J))|=1$ and inf $J<\sup I$. Applying Lemma 3.3 we get a countable partition $\mathcal{B}=\mathcal{B}_0\cup\mathcal{B}_1$ of [0,1] so that each element $J\in\mathcal{B}_0$ is an interval such that $\nabla\mathcal{L}_{Q^*}(t)$ is constant on J, and furthermore is not properly contained in any interval with the same property, and each element $J\in\mathcal{B}_1$ is an interval, such that J contains no positive-length subinterval where $\nabla\mathcal{L}_{Q^*}(t)$ is constant. Also define B_i as the union of the sets in \mathcal{B}_i for i=0,1.

Note that B_0 is necessarily a subset of A. That is because if $\nabla \mathcal{L}_{Q^*}(t) = 0$ on any interval J, then that $Q^*(t)$ is necessarily not constant on the interval.

We will construct a new countable partition of A, called \mathcal{D} . The partition \mathcal{D} is constructed by taking the union of three families of intervals,

$$\mathcal{D} = \mathcal{D}_0 \cup \mathcal{D}_1 \cup \mathcal{D}_2$$
.

Define D_i to be the union of intervals in \mathcal{D}_i for i = 0, 1, 2. Define $\mathcal{D}_0 = \mathcal{B}_0$, Define a countable partition \mathcal{D}_1 by

$$\mathcal{D}_1 = \{ J \cap L : J \in \mathcal{A}, L \in \mathcal{B}_1, \text{ and } |L| > 1 \},$$

in order words, \mathcal{D}_1 consists of positive-length intervals where $\nabla Q^*(t)$ is entirely positive or negative and is not constant. Define

$$\mathcal{D}_2 = \{ J \in \mathcal{B}_1 : J \subset A \text{ and } |J| = 1 \},$$

i.e. \mathcal{D}_2 consists of isolated points in A.

One verifies that \mathcal{D} is indeed a partition of A by checking that $D_0 = B_0$, $D_1 \cup D_2 = B_1 \cap A$, so that $D_0 \cup D_2 \cup D_2 = A$: it is also easy to check that elements of \mathcal{D} are disjoint. Furthermore, as we mentioned earlier, the set D_2 is indeed of zero measure, since it consists of countably many isolated points.

Now we will show that the existence of $t \in D_0$ implies a contradiction. Take $t \in D$ for $D \in \mathcal{D}_0$, and let $a = \inf D$ and $b = \sup D$. Define

$$\xi^{+} = I\{t \in D\}(Q^{*}(b) - Q^{*}(t))$$

and

$$\xi^{-} = I\{t \in D\}(Q^{*}(a) - Q^{*}(t)).$$

Observe that $Q + \epsilon \xi^+ \in \mathcal{Q}$ and $Q + \epsilon \xi^- \in \mathcal{Q}$ for any $\epsilon \in [0,1]$. Now, if $\nabla \mathcal{L}_{Q^*}(t)$ is strictly positive on D, then for some $\epsilon > 0$ we would have $\mathcal{L}[Q^* + \epsilon \xi^-] < \mathcal{L}[Q^*]$, a contradiction. A similar argument with ξ^+ shows that $\nabla \mathcal{L}_{Q^*}(t)$ cannot be strictly negative on D either. From this pertubation argument, we conclude that $\nabla \mathcal{L}_{Q^*}(t) = 0$. Since this argument applies for all $t \in D_0$, we conclude that $D_0 = \emptyset$: therefore, on the set $[0,1] \setminus (D_1 \cup D_2)$, we have $\nabla \mathcal{L}_{Q^*}(t) = 0$.

The following observation is needed for the next stage of the proof. If we look at the function $Q^*(t)$, then up so sets of neglible measure, it is given by the expression (4) on the set $[0,1] \setminus D_1$, and it is piecewise constant inbetween. But since (4) gives a strictly increasing function, and since Q^* is increasing, this implies that Q^* is discontinuous at the boundary of D_1 .

Now we are prepared to show that $\nabla \mathcal{L}_{Q^*}(t) = 0$ for $t \in D_1$. Take $t \in D$ for $D \in \mathcal{D}_1$, and let $a = \inf D$ and $b = \sup D$. From the previous argument, there is a discontinuity at both a and b, so that $\lim_{u\to a^-} Q(u) < Q(t) < \lim_{u\to b^+} Q(u)$. Therefore, for any $\xi(t)$ which is increasing on D and zero

elsewhere, there exists $\epsilon > 0$ such that $\nabla Q^* + \epsilon \xi \in \mathcal{Q}$. It remains to find such a perturbation ξ such that $\mathcal{L}[Q + \epsilon \xi] < \mathcal{L}[Q]$.

Also, since by definition $\nabla \mathcal{L}_{Q^*}(t)$ is constant on D, follows from(3) that ∇Q^* is strictly decreasing, and thus either

- Case 1: $\nabla \mathcal{L}_{Q^*}(t) \geq 0$ on D,
- Case 2: $\nabla \mathcal{L}_{Q^*}(t) \leq 0$ on D, or
- Case 3: $\nabla \mathcal{L}_{Q^*}(t) \geq 0$ for all $t \in D \cap [a, t_0]$ and $\nabla \mathcal{L}_{Q^*}(t) \leq 0$ for all $t \in D \cap [t_0, b]$.

Depending on the case, we construct a suitable perturbation ξ :

- Case 1: Construct $\xi(t) = -I\{t \in D\}$.
- Case 2: Construct $\xi(t) = I\{t \in D\}$
- Case 2: Construct

$$\xi(t) = \begin{cases} -1 & \text{for } t \in D \cap [a, t_0], \\ 0 & \text{otherwise.} \end{cases}$$

In all three cases, given the corresponding construction for $\xi(t)$ we get

$$\int_0^1 \xi(t) \nabla \mathcal{L}_{Q^*}(t) dt < 0.$$

Therefore, from (2), there exists some $\epsilon > 0$ such that $\mathcal{L}[Q + \epsilon \xi] < \mathcal{L}[Q]$, a contradiction. Again, since the contradiction applies for all $t \in D_1$, we conclude that $D_1 = \emptyset$.

By now we have established that a global optimum for (1) exists, and is given by (4) for some $\lambda \in \mathbb{R}$, $\nu > 0$. It remains to determine the values of λ and ν .

Reparameterize $\alpha = \exp[-1 - \lambda \nu^{-1}]$ and $\beta = \nu^{-1}$. Therefore,

$$Q^*(t) = \alpha \exp[\beta t^{k-1}]$$

for $\alpha > 0$, $\beta > 0$. There is a one-to-one mapping from $(\alpha, \beta) \in (0, \infty)^2$ to $(\lambda, \nu) \in \mathbb{R} \times (0, \infty)$.

Now, from the constraint

$$1 = E[Q^*] = \int_0^1 \alpha \exp[\beta t^{k-1}] dt.$$

we conclude that

$$\alpha = \frac{1}{\int_0^1 \exp[\beta t^{k-1}] dt}.$$

Therefore, we have reduced the set of possible solutions Q^* to a one-parameter family,

$$Q^*(t) = \frac{\exp[\beta t^{k-1}]}{Z(\beta)}.$$

where

$$Z(\beta) = \int_0^1 \exp[\beta t^{k-1}] dt.$$

Next, note that

$$I[Q^*] = \int_0^1 Q^*(t) \log Q^*(t) = \beta \mu_{\beta} - \log Z(\beta),$$

as a function of β , is completely characterized by Lemma 3.4. Let us define c_{ι} as the unique positive solution to the equation

$$c_{\iota}\mu_{c_{\iota}} - \log Z(c_{\iota}) = \iota$$

given by Lemma 3.4. We therefore have

$$Q^*(t) = \frac{\exp[c_t t^{k-1}]}{\int_0^1 \exp[c_t t^{k-1}]},$$

as needed. \square

Proof of theorem 3.1 Define $f(\iota) = \int_0^1 Q_{c_\iota}(t) t^{k-1} dt$: our goal is to establish that $C_k^{unif}(\iota) = f(\iota)$. Note that $f(\iota)$ is the same function which appears in Lemma 3.6 and the same bound as established in Lemma 3.5.

Define the density $p_{\iota}(x,y)$ where

$$p_{\iota}(x,y) = \begin{cases} g_{\iota}(y-x) & \text{for } x \ge y\\ g_{\iota}(1+y-x) & \text{for } x < y \end{cases}$$

where

$$g_{\iota}(x) = \frac{d}{dx}G_{\iota}(x)$$

and G_{ι} is the inverse of Q_c .

One can verify that $I[p_{\iota}] = \iota$, and

$$ABA_k[p] = \int_0^1 Q_{c_{\iota}}(t)t^{k-1}dt.$$

This establishes that

$$C_k^{unif}(\iota) \ge \int_0^1 Q_{c_{\iota}}(t) t^{k-1} dt.$$

It remains to show that for all $p \in \mathcal{P}^{unif}$ with $I[p] \leq \iota$, that $ABA_k[p] \leq ABA_k[p_{\iota}]$.

Take $p \in \mathcal{P}^{unif}$ such that $I[p] \leq \iota$. Letting $X_1, ..., X_k \sim \text{Unif}[0, 1]$, and $Y \sim \text{Unif}[0, 1]$ define $Z_i(y) = p(y|X_i)$. We have $\mathbf{E}(Z(y)) = 1$ and,

$$I[p(x,y)] = \mathbf{E}(Z(Y) \log Z(Y))$$

while

$$ABA_k[p(x,y)] = k^{-1}\mathbf{E}(\max_i Z_i(Y)).$$

Letting G_y be the distribution of Z(y), we have

$$E[G_y] = 1$$

$$I[p(x, y)] = \mathbf{E}(I[G_Y])$$

$$ABA_k[p(x, y)] = \mathbf{E}(\psi_k[G_Y])$$

where the expectation is taken over $Y \sim \text{Unif}[0,1]$ and where E[G], I[G], and $\psi_k[G]$ are defined as in Lemma 3.5.

Define the random variable $J = I[G_Y]$. We have

$$ABA_{k}[p(x,y)] = \mathbf{E}(\psi_{k}[G_{Y}])$$

$$= \int_{0}^{1} \psi_{k}[G_{y}] dy$$

$$\leq \int_{0}^{1} \left(\sup_{G:I[G] \leq I[G_{y}]} \psi_{k}[G] \right) dy$$

$$= \int_{0}^{1} f(I[G_{y}]) dy = \mathbf{E}[f(J)].$$

Now, since f is concave by Lemma 3.6, we can apply Jensen's inequality to conclude that

$$ABA_k[p(x,y)] = \mathbf{E}[f(J)] \le f(\mathbf{E}[J]) = f(\iota),$$

which completes the proof. \Box