Assembly vs Alignment and Quality Assessment

Assembly vs. Alignment

- Alignment
 - Aligning reads to a reference sequence
- Assembly
 - You don't have a reference, you need to build one
 - Genome or transcriptome

You have a reference genome

Known -> CTCCTAGAATGCTGGGAAGTGGAAGTCCAACTTCTTCCATGGGTTCACCT

Sequences from Sequencing company:
TAATGCTGGGAAAGTG
GGAAAGTGGGAAGTCC
GTCCAACTTCTTG
CTCCTATAATGCTGGG
TGGATGGGTTAAC
ATGGGTTAACCT
CTGGGAAAGTGGAAG
CTTCTTGGATGGG

You have a reference genome

Known -> CTCCTAGAATGCTGGGAAGTGGAAGTCCAACTTCTTCCATGGGTTCACCT

Sequences from Sequencing company:

TAATGCTGGGAAAGTG

GGAAAGTGGAAGTCC

GTCCAACTTCTTG

CTCCTATAATGCTGGG

TGGATGGGTTAAC

ATGGGTTAACCT

CTGGGAAAGTGGAAG

CTTCTTGGATGGG

You have a reference genome

Known -> CTCCTAGAATGCTGGGAAGTGGAAGTCCAACTTCTTCCATGGGTTCACCT
TAATGCTGGGAAAGTG

Sequences from Sequencing company:

TAATGCTGGGAAAGTG

GGAAAGTGGAAGTCC

GTCCAACTTCTTG

CTCCTATAATGCTGGG

TGGATGGGTTAAC

ATGGGTTAACCT

CTGGGAAAGTGGAAG

CTTCTTGGATGGG

You have a reference genome

Known -> CTCCTAGAATGCTGGGAA-GTGGAAGTCCAACTTCTTCCATGGGTTCACCT

TAATGCTGGGAAAGTG

Sequences from Sequencing company:

TAATGCTGGGAAAGTG

GGAAAGTGGAAGTCC

GTCCAACTTCTTG

CTCCTATAATGCTGGG

TGGATGGGTTAAC

ATGGGTTAACCT

CTGGGAAAGTGGAAG

CTTCTTGGATGGG

You have a reference genome

Known -> CTCCTAGAATGCTGGGAA-GTGGAAGTCCAACTTCTTCCATGGGTTCACCT CTCCTATAATGCTGGG

TAATGCTGGGAAAGTG

CTGGGAAAGTGGAAG

GGAAAGTGGAAGTCC

GTCCAACTTCTTG

CTTCTTGGATGGG

T<mark>GG</mark>ATGGGTT<mark>A</mark>AC

ATGGGTT<mark>A</mark>ACCT

- No reference.
- What does this region look like?

Sequences from Sequencing company:
TAATGCTGGGAAAGTG
GGAAAGTGGAAGTCC
GTCCAACTTCTTG
CTCCTATAATGCTGGG
TGGATGGGTTAAC
ATGGGTTAACCT
CTGGGAAAGTGGAAG
CTTCTTGGATGGG

- No reference.
- What does this region look like?

```
Sequences from Sequencing company:
TAATGCTGGGAAAGTG
GGAAAGTGGAAAGTCC
GTCCAACTTCTTG
CTCCTATAATGCTGGG
TGGATGGGTTAAC
ATGGGTTAACCT
CTGGGAAAGTGGAAG
CTTCTTGGATGGG
```

- No reference.
- What does this region look like?

```
Sequences from Sequencing company:
TAATGCTGGGAAAGTG

GGAAAGTGGAAGTCC

CTGGGAAAGTGGAAG
```

GTCCAACTTCTTG
CTCCTATAATGCTGGG
TGGATGGGTTAAC
ATGGGTTAACCT
CTTCTTGGATGGG

- No reference.
- What does this region look like?

```
Sequences from Sequencing company:
TAATGCTGGGAAAGTG

GGAAAGTGGAAGTCC

CTGGGAAAGTGGAAG

GTCCAACTTCTTG
```

CTCCTATAATGCTGGG
TGGATGGGTTAAC
ATGGGTTAACCT
CTTCTTGGATGGG

You have a reference genome

CTCCTATAATGCTGGG

TAATGCTGGGAAAGTG

CTGGGAAAGTGGAAG

GGAAAGTGGAAGTCC

GTCCAACTTCTTG

CTTCTTGGATGGG

TGGATGGGTTAAC

ATGGGTTAACCT

Assembly -> CTCCTAGAATGCTGGGAAGTGGAAGTCCAACTTCTTGGATGGGTTAACCT

Alignment vs Assembly

Alignment vs Assembly

mRNA Data Analysis Pipeline

FastQC

Trimming

Skewer

FastQC

Quality Assessment

Mapping to a Reference

Visualization

Counting reads per gene

Differential Gene Expression

STAR

HTSeq

DESeq2

Submit to Public Repository

What if you don't have a reference?

Quality Assessment

Quality Assessment

What the researcher cares about:

- Yield did you get the number of reads you expected?
- Error are the bases of reliable quality?
- Representative of sample do the reads accurately represent the sample?

How do we get this information?

1. Think about sample quality and library quality

- Input sample quality is crucial for good sequencing
- High quality
- If quantity is low, use a kit designed for
- Check
 - spectrophotometric (Nanodrop)
 - fluorimetric (Pico- and Ribo-Green)
 - gel electrophoretic methods (Bioanalyser)
 - RNA Integrity Number (RIN)
- If you have someone else prepare your libraries, they should be able to tell you minimum necessary quantity, concentration, and QC values.

1. Think about sample quality and library quality

- Library quality
 - Bioanalyzer
 - Fragment Analyzer
 - Agarose Gel
- Library quantity
 - Flourometric = a dsDNA-specific fluorescent dye method, such as QuBit, PicoGreen, and AccuClear
 - qPCR
- Why?
 - confirm insert size
 - no primer dimers

https://support.illumina.com/bulletins/2 016/05/library-quantification-andquality-control-quick-referenceguide.html

2. Instrument Metrics

- Cluster density
 - You need the right amount of DNA per run, which varies by instrument
 - Under clustering quality is generally fine but you lost yield
 - Over clustering quality problems!
 - Avoid by properly quantifying your library

2. Instrument Metrics

- PF% percent passing filtering
 - single molecule = single cluster = clear signal
 - Anything else doesn't pass the filter
- Phasing/Prephasing
 - Sometimes individual molecules in a cluster become out of sync
- Q30 bases over quality value 30

https://www.well.ox.ac.uk/ogc/sequencing-quality-monitoring-run/

PhiX Spike In

 Libraries must be diverse for proper sequencing

- Fix with a Phi-X spike in
 - A known quantity of DNA from a bacteriophage
 - 10-20% of sequences (or more)

Krueger et al 2011

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016607

3. Data Assessment

Software options

Illumina SAV – Sequence analysis viewer

- Part of BaseSpace
- Your sequencing facility probably uses this

FastQC

- Free
- Runs on linux

FastQC – Basic Statistics

Basic Statistics

Measure	Value
Filename	<pre>good_sequence_short.txt</pre>
File type	Conventional base calls
Encoding	Illumina 1.5
Total Sequences	250000
Sequences flagged as poor quality	0
Sequence length	40
%GC	45

FastQC – Per Base Sequence Quality

Per base sequence quality

GOOD

FastQC – Per Base Sequence Quality

OPER Per base sequence quality

BAD

FastQC – Example Reports

Good report

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html

Bad report

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html

- Adapter Dimer report (ligated adapters w/ no insert sequence)
 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/RNA-Seq_fastqc.html
- Small RNA with read through report:

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/small_rna_fastqc.html

