Ch 1 - Démonstration non faite en classe.

Proposition:

Rappel:
$$\frac{\sin(x)}{x} \xrightarrow[x \to 0]{} 1$$

Preuve géométrique :

On reprend les notations utilisées dans le cours sur le cercle trigonométrique, et on considère trois aires, pour $x \in \left]0, \frac{\pi}{2}\right[$ fixé et M de coordonnées $(\cos x, \sin x)$:

Notons A_1 l'aire du triangle OAM, A_2 l'aire de la portion du disque trigonométrique délimité par les points A et M, et A_3 l'aire du triangle OAL.

Comme le triangle OAL est rectangle en A, $A_3 = \frac{1}{2}OA \times AL = \frac{1}{2} \times 1 \times \tan(x) = \frac{\sin(x)}{2\cos(x)}$.

Comme MH est la hauteur issue de M du triangle OAM, $A_1 = \frac{1}{2}OA \times MH = \frac{1}{2} \times 1 \times \sin(x) = \frac{\sin(x)}{2}$.

Enfin, pour l'aire \mathcal{A}_2 , utilisons la proportionnalité. Nous savons que l'aire totale du disque est $\pi \times 1^2 = \pi$ (le rayon vaut 1), et cela correspond à un angle 2π (tour complet). Nous cherchons la portion correspondant à un angle x, donc $\mathcal{A}_2 = \pi \times \frac{x}{2\pi} = \frac{x}{2}$.

Il est clair que $A_1 \leq A_2 \leq A_3$, d'où l'encadrement :

$$\frac{\sin(x)}{2} \le \frac{x}{2} \le \frac{\sin(x)}{2\cos(x)}$$

Ainsi $\frac{\sin(x)}{x} \le 1$ avec la première inégalité, et $\cos(x) \le \frac{\sin(x)}{x}$ avec la deuxième inégalité. Finalement, on a montré, pour tout $x \in \left]0, \frac{\pi}{2}\right[$:

$$\cos(x) \le \frac{\sin(x)}{x} \le 1$$

Comme les fonctions cos et $x \mapsto \frac{\sin(x)}{x}$ sont paires, cet encadrement est aussi valable sur $]-\frac{\pi}{2},0[$.

Comme $\cos(x) \xrightarrow[x \to 0]{} \cos(0) = 1$, on en tire, par le théorème des gendarmes, que $\boxed{\frac{\sin(x)}{x} \xrightarrow[x \to 0]{} 1}$.

Proposition:

cos et sin sont dérivables sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $\cos'(x) = -\sin x$ et $\sin'(x) = \cos x$.

Démo 11 : On admet les formules trigonométriques d'addition (qui se démontrent indépendemment, c.f. plus loin).

Pour tout $x \in \mathbb{R}^*$,

$$\frac{\cos(x) - 1}{x} = \frac{-(1 - \cos(x))(\cos(x) + 1)}{x(\cos(x) + 1)}$$
$$= \frac{-(1 - \cos^2(x))}{x(\cos(x) + 1)} = \frac{-\sin^2(x)}{x(\cos(x) + 1)}$$
$$= -\left(\frac{\sin(x)}{x}\right)^2 \frac{x}{\cos(x) + 1}$$

$$\operatorname{Or}\left(\frac{\sin(x)}{x}\right)^2 \underset{x \to 0}{\longrightarrow} 1^2 = 1, \text{ et } \cos(x) + 1 \underset{x \to 0}{\longrightarrow} 2, \text{ donc par produit } : \boxed{\frac{\cos(x) - 1}{x} \underset{x \to 0}{\longrightarrow} 0}.$$

• Soit $a \in \mathbb{R}$. Montrons que cos est dérivable en a et que $\cos'(a) = -\sin(a)$.

$$\forall h \in \mathbb{R}^*, \ \frac{\cos(a+h) - \cos(a)}{h} = \frac{\cos(a)\cos(h) - \sin(a)\sin(h) - \cos(a)}{h}$$
$$= \frac{\cos(a)\left(\cos(h) - 1\right) - \sin(a)\sin(h)}{h}$$
$$= \cos(a)\frac{\cos(h) - 1}{h} - \sin(a)\frac{\sin(h)}{h}$$

D'après les limites trouvées plus haut, on obtient que :

$$\frac{\cos(a+h) - \cos(a)}{h} \xrightarrow[h \to 0]{} -\sin(a).$$

Donc cos est dérivable en a et $\cos'(a) = -\sin(a)$.

Ceci pour tout $a \in \mathbb{R}$, donc cos est dérivable sur \mathbb{R} et $\cos' = -\sin$

• Soit $a \in \mathbb{R}$. Montrons que sin est dérivable en a et que $\sin'(a) = \cos(a)$.

$$\forall h \in \mathbb{R}^*, \ \frac{\sin(a+h) - \sin(a)}{h} = \frac{\sin(a)\cos(h) + \cos(a)\sin(h) - \sin(a)}{h}$$
$$= \frac{\sin(a)\left(\cos(h) - 1\right) + \cos(a)\sin(h)}{h}$$
$$= \sin(a)\frac{\cos(h) - 1}{h} + \cos(a)\frac{\sin(h)}{h}$$

D'après les limites trouvées plus haut, on obtient que :

$$\frac{\sin(a+h) - \sin(a)}{h} \xrightarrow[h \to 0]{} \cos(a).$$

Donc sin est dérivable en a et $\sin'(a) = \cos(a)$.

Ceci pour tout $a \in \mathbb{R}$, donc sin est dérivable sur \mathbb{R} et sin' = cos

2