

# Unidade I: Funções de várias variáveis-cálculo de várias variáveis

Professora: adriana regina de faria nogueira Email: adriana.nogueira@uva.br

# Funções de duas variáveis

- Definição: Uma função a duas variáveis é uma relação que associa a cada par (x,y) no domínio, uma única imagem z=f(x,y).
  - ➤ Exemplo: O volume de um cone circular reto de altura h e raio de base r, tem sua expressão algébrica dada

por: 
$$V(h,r) = \frac{1}{3}A_b \cdot h = \frac{1}{3}\pi r^2 \cdot h$$

#### Domínio

ightharpoonup O domínio de uma função de duas variáveis é um subconjunto do plano  $R^2$ , onde a função é aplicada. Para determinarmos o domínio, devemos levar em conta a expressão algébrica da função bem como a interpretação da mesma.

• Usaremos a notação dom(f) para o domínio da função f(x,y).

#### **EXEMPLO 1:**

No caso do volume do cone, não há restrições quanto a estrutura algébrica. Porém, como estamos diante de dimensões do cone, tanto a variável h como a variável r devem ser positivas. Neste caso, temos:  $dom(V) = (0, +\infty)x(0, +\infty)$ .



**EXEMPLO 2:** Determine o domínio da função  $f(x, y) = \sqrt{y - x}$ .

**EXEMPLO 2:** Determine o domínio da função  $f(x, y) = \sqrt{y - x}$ .

Neste caso, a estrutura algébrica apresenta uma raiz quadrada, que só se calcula para números positivos. Temos uma restrição: precisamos que  $y-x \ge 0$ .

Escrevemos então: dom(f)= $\{(x,y) \in R^2; y \ge x\}$ . Vamos representar este domínio no plano cartesiano.



O domínio desta função é toda a região do plano que está acima da reta y=x e na própria reta y=x.

**EXEMPLO 3:** Determine o domínio da função  $f(x, y) = \sqrt{y - x^2}$ .

**EXEMPLO 3:** Determine o domínio da função  $f(x,y) = \sqrt{y-x^2}$ .

Neste caso, a estrutura algébrica apresenta uma raiz quadrada, que só se calcula para números positivos. Temos uma restrição: precisamos que  $y-x^2 \ge 0$ .

Escrevemos então: dom(f)= $\{(x,y) \in R^2; y \ge x^2\}$ . Vamos representar este domínio no plano cartesiano. Neste caso, teremos toda a região do plano que está na parábola y= $x^2$  e também acima da parábola y= $x^2$ . Para fazermos a representação gráfica, devemos esboçar o gráfico de y= $x^2$  e marcar toda a região acima desta curva, de forma similar ao exemplo anterior.

#### **EXEMPLO 3:** Determine o domínio da função $f(x,y) = \sqrt{y-x^2}$ .

Vamos representar graficamente a região dom(f)= $\{(x,y) \in \mathbb{R}^2; y \geq x^2\}$ :



### Imagem

>A imagem de uma função de duas variáveis é a coleção:

$$Im(f)=\{z \in R; z = f(x,y); (x,y) \in dom(f)\}$$

Exemplo: Seja  $f(x,y)=x^2+y^2+3$ . calcule f(0,1), f(2,-1); obtenha o domínio de f(x,y) e imagem de f(x,y) .

Exemplo: Seja  $f(x,y)=x^2+y^2+3$ . calcule f(0,1), f(2,-1); obtenha o domínio de f(x,y) e imagem de f(x,y).

$$F(0,1) = 0^2 + 1^2 + 3 = 4$$

$$F(2,-1) = 2^2 + (-1)^2 + 3 = 8$$

➤ Domf=RxR=R<sup>2</sup>

# Exemplo: Obtenha a imagem da função $f(x,y) = x^2 + y^2 + 3$ .

- Para esta função, o domínio é o próprio  $\mathbb{R}^2$ .
- Para cada elemento (x,y), temos que  $x^2 \ge 0$  assim como  $y^2 \ge 0$ .
- Com isso:

$$x^2 + y^2 \ge 0$$

Consequentemente:

$$x^2 + y^2 + 3 \ge 3$$

De onde concluímos que:  $im(f)=[3, +\infty)$ 

Exemplo: Obtenha a imagem da função f(x,y) = 3 + 5sen(x + y).

# Exemplo: Obtenha a imagem da função f(x,y) = 3 + 5sen(x + y).

- Para esta função, o domínio é o próprio  $\mathbb{R}^2$ .
- Para cada elemento (x,y), temos que x + y é um número real qualquer. Com isso:

$$-1 \le sen(x+y) \le 1$$

Consequentemente:

$$-5 \le 5sen(x+y) \le 5$$

De onde concluímos que:

$$-2 \le 3 + 5sen(x + y) \le 8$$

Logo: Imf(x,y)=[-2,8]

#### Gráfico

➤O gráfico de uma função de duas variáveis é a coleção dos elementos no espaço

 $R^3$  constituídos pelos elementos do domínio e suas imagens:

$$graf(f) = \{(x, y, f(x, y); (x, y) \in dom(f)\}\$$

# Atenção

- $\triangleright$  Domínio de função de duas variáveis é subconjunto do plano cartesiano  $R^2$ .
- >Imagem de função de duas variáveis é subconjunto do conjunto dos números reais R.
- $\triangleright$  Gráfico de função de duas variáveis é subconjunto do espaço  $R^3$

#### Curvas de nível

Chamamos de curva de nível k de uma função real f(x,y) de duas variáveis, a coleção de todos os elementos (x,y) no domínio de f(x,y) que possuem imagem k, ou seja, a curva no domínio da função que é levada ao nível k.

Exemplo: obtenha as curvas de níveis k=1, k=2 e k=3 para a função  $f(x,y) = \sqrt{x^2 + y^2}$ 

➤ Para o nível k=1:

$$f(x,y) = 1$$

$$\sqrt{x^2 + y^2} = 1$$

$$x^2 + y^2 = 1$$

A curva de nível k=1 é a curva  $x^2 + y^2 = 1$  que representa uma circunferência de centro (0,0) e raio 1.

Exemplo: obtenha as curvas de níveis k=1, k=2 e k=3 para a função  $f(x,y) = \sqrt{x^2 + y^2}$ 

➤ Para o nível k=2:

$$\int_{0}^{1} f(x,y) = 2$$

$$\sqrt{x^{2} + y^{2}} = 2$$

$$x^{2} + y^{2} = 4$$

A curva de nível k=2 é a curva  $x^2 + y^2 = 4$  que representa uma circunferência de centro (0,0) e raio 2.

Exemplo: obtenha as curvas de níveis k=1, k=2 e k=3 para a função  $f(x,y) = \sqrt{x^2 + y^2}$ 

➤ Para o nível k=3:

$$f(x,y) = 3$$

$$\sqrt{x^2 + y^2} = 3$$

$$x^2 + y^2 = 9$$

A curva de nível k=3 é a curva  $x^2 + y^2 = 9$  que representa uma circunferência de centro (0,0) e raio 3.

Exercício: tente esboçar o gráfico desta função.

https://www.geogebra.org/3d?lang=pt\_PT

# Funções de várias variáveis

- Definição: Uma função a várias variáveis é uma relação que associa a cada elemento  $(x_1, x_2, ..., x_n)$  no domínio, uma única imagem  $z = f(x_1, x_2, ..., x_n)$ .
- O domínio de uma função de n variáveis é um subconjunto do  $\mathbb{R}^n$ , onde a função é aplicada. Para determinarmos o domínio, devemos levar em conta a expressão algébrica da função bem como a interpretação da mesma.
- A imagem de uma função de n variáveis é a coleção:

$$Im(f)=\{z \in R; z = f(x_1, x_2, ..., x_n); (x_1, x_2, ..., x_n) \in dom(f)\}$$

# Exercícios de fixação

➤ Resolva a primeira lista de exercícios disponível no material de estudo!