```
In [1]:
          import numpy as np
          import pandas as pd
In [2]:
          data = pd.read_csv('diabetes.csv')
          data.head()
Out[2]:
            Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction
                                                                                                 Age C
         0
                     6
                            148
                                           72
                                                         35
                                                                 0 33.6
                                                                                           0.627
                                                                                                   50
         1
                     1
                             85
                                           66
                                                         29
                                                                 0 26.6
                                                                                           0.351
                                                                                                   31
         2
                     8
                            183
                                           64
                                                         0
                                                                 0 23.3
                                                                                           0.672
                                                                                                   32
                                                         23
                                                                    28.1
         3
                     1
                             89
                                           66
                                                                94
                                                                                           0.167
                                                                                                   21
                     0
                                           40
                                                         35
                                                               168 43.1
                                                                                           2.288
                                                                                                   33
         4
                            137
        Class Distribution: (class value 1 is interpreted as "tested positive for diabetes")
In [3]:
          data.shape
         (768, 9)
Out[3]:
In [4]:
          data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 768 entries, 0 to 767
         Data columns (total 9 columns):
          #
              Column
                                          Non-Null Count Dtype
         - - -
              Pregnancies
          0
                                          768 non-null
                                                            int64
          1
              Glucose
                                          768 non-null
                                                            int64
              BloodPressure
                                          768 non-null
          2
                                                            int64
          3
              SkinThickness
                                          768 non-null
                                                            int64
          4
                                                            int64
              Insulin
                                          768 non-null
          5
                                                           float64
              BMI
                                          768 non-null
          6
              DiabetesPedigreeFunction
                                          768 non-null
                                                            float64
          7
              Age
                                          768 non-null
                                                            int64
              Outcome
                                          768 non-null
                                                            int64
         dtypes: float64(2), int64(7)
         memory usage: 54.1 KB
In [5]:
          import seaborn as sns
          import matplotlib.pyplot as plt
          sns.pairplotplot(data)
         <seaborn.axisgrid.PairGrid at 0x1c67840f400>
Out[5]:
```



```
In [7]: plt.figure(figsize=(12,6))
sns.heatmap(data.corr(),annot=True,cmap='cubehelix')
```

Out[7]: <AxesSubplot:>

In [8]: type(data.corr())

Out[8]: pandas.core.frame.DataFrame

In [9]: data.corr()

Out

•		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Dia
Pr	egnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.017683	
	Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	
Bloo	dPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	
Skin	Thickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	
	Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	
	ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	
DiabetesPedigre	eFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	
	Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.036242	
	Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.292695	
4					_			

In [15]: data.loc[:, data.corr()['Outcome'] > 0.4]

Out[15]: Glucose Outcome

0 148 1

	Glucose	Outcome
1	85	0
2	183	1
3	89	0
4	137	1
•••		
763	101	0
764	122	0
765	121	0
766	126	1
767	93	0

768 rows × 2 columns

<AxesSubplot:>

```
In [18]:
```

```
sns.distplot(x=data['Age'],kde=False,bins=40)
```

E:\Anaconda\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` i s a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[18]:

In [21]:

```
sns.distplot(x=data['Glucose'],bins=40)
```

E:\Anaconda\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` i s a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

<AxesSubplot:ylabel='Density'>

Out[21]:


```
In [20]: sns.distplot(x=data['BMI'],color='red')
```

Out[20]: <AxesSubplot:ylabel='Density'>


```
In [22]: sns.jointplot(x=data['BloodPressure'],y=data['Age'],kind='hist',color='green')
```

Out[22]: <seaborn.axisgrid.JointGrid at 0x1c602a4d2b0>


```
In [23]: sns.scatterplot(x=data['SkinThickness'],y=data['Insulin'])
```

Out[23]: <AxesSubplot:xlabel='SkinThickness', ylabel='Insulin'>


```
In [24]: sns.scatterplot(x=data['Glucose'],y=data['Insulin'],hue=data['Outcome'])
```

Out[24]: <AxesSubplot:xlabel='Glucose', ylabel='Insulin'>


```
In [25]: sns.scatterplot(x=data['BMI'],y=data['BloodPressure'])
```

Out[25]: <AxesSubplot:xlabel='BMI', ylabel='BloodPressure'>


```
In [27]:
    X = data.iloc[:,:-1].values
    y = data.iloc[:,-1].values
```

In [29]:
 from sklearn.model_selection import train_test_split
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

```
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score,confusion_matrix
from sklearn.naive_bayes import GaussianNB
```

```
classifier = GaussianNB()
In [32]:
          classifier.fit(X_train, y_train)
         GaussianNB()
Out[32]:
In [33]:
          y_pred = classifier.predict(X_test)
          cm = confusion_matrix(y_test, y_pred)
          print(cm)
          print(accuracy_score(y_test, y_pred))
         [[93 14]
          [18 29]]
         0.7922077922077922
In [34]:
          plt.title('Heatmap of Confusion Matrix', fontsize = 30)
          sns.heatmap(cm, annot = True)
          plt.show()
```

Heatmap of Confusion Matrix

In []: