Force Table

Example

Let's suppose that our experimental data is;

1

$$\theta_1 = 0^{\circ}$$
, $m_1 = 409$
 $\theta_2 = 100^{\circ}$, $m_2 = 509$
 $\theta_3 = 240^{\circ}$, $m_3 = 589$

Component Method

$$f_2 = m_2 \cdot 9$$

= 50.10³ 9.8
 $f_2 = 0.490 \text{ N}$

F_= m_. g = 40.10. 9.8 = 0.392 N

$$F_{Lx} = F_1 = 0.392 \text{ N}$$

 $F_{Ly} = 0$

$$F_{2x} = F_{2} \cdot \cos 80^{\circ}$$

 $F_{2x} = 0.490 \cdot \cos 80^{\circ}$
 $F_{2x} = 0.085 \text{ N}$

$$F_{2y} = F_2$$
. $\sin 80^\circ$
 $F_{2y} = 0.490$. $\sin 80^\circ$
 $F_{2y} = 0.482$ N

R: Resultant Force

$$R_x = F_{1x} - F_{2x}$$
 $R_x = 0.392 - 0.085$

$$R_y = F_{2y} = 0.482 \text{ N}$$

$$R = \sqrt{(R_x)^2 + (R_y)^2}$$

tangle of the ten' (
$$\frac{ky}{Rx}$$
) = $\frac{1}{4}$ and $\frac{1}{4}$ = $\frac{ky}{Rx}$ = $\frac{1}{4}$ = \frac

F3: Equilibrant Force

F3: Equilibrant (balancing) Force

The angle of the equilibrant

This value is your theoretical value and may differ from your experimental value.

Let's calculate % Error