PHYSICS PAPER-II

IPPSC A PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

Roll Number

PHYSICS, PAPER-II

TIME ALLOWED:	(PART-I)	30 MINUTES	MAXIMUM MARKS:20
	(PART-II)	2 HOURS & 30 MINUTES	MAXIMUM MARKS:80

NOTE: (i) First attempt PART-I (MCQ) on separate Answer Sheet which shall be taken back after 30 minutes.

(ii) Overwriting/cutting of the options/answers will not be given credit.

	(iii) Use of Scientif	ic Cal	culator is allowed.				
			PART – I (M (COMPULSO				
Q.1.	Select the best option	/answ	er and fill in the app	ropri	ate box on the Ans	swer S	Sheet. (20)
(i)	A Watt – sec is a unit	of:					
	(a) Force		Energy	(c)	Power	(d)	None of these
(ii)	The direction of any m				* *		
	(a) Coulumb's Law		Ampere's Law	(c)	Lenz's Law	(d)	None of these
(iii)	A magnetic field cannot			<i>a</i> >			
	(a) accelerate a char			(b)	Exert a force on a	a char	ge
<i>(</i> : \)	(c) change the kineti			(d)	None of these		
(iv)	The inverse of resistiv					(1)	NI C.1
()	(a) Ohm ⁻¹		ohm-metre	(c)	(ohm-meter) ⁻¹	. (d)	None of these
(v)	An LRC Circuit has R			-			N. C.1
	(a) 5 Ω		7 Ω	(c)	13 Ω	(d)	None of these
(vi)	A "step-down" transfo				·) 3.1
	(a) increase the power				Increase the voltage	e (d) None of these
(vii)	Electrical potential is t		O. 1		-	(1)	27 0.1
,	(a) Charge		Voltage	(c)	Force	(d)	None of these
(viii)	The force on a charge						
	(a) $F = (q/v \times B)$		$F = (qv \times B)$		F = (qv + B)	(d)	None of these
(ix)	A changing current "i"						
	(a) $e = di/dt$	()	$E = i d\Phi/dt$	(c)	$e = - L \frac{di}{dt}$	(d)	None of these
(x)	Inductive reactance of						
	(a) $X_L = \omega^2 L$		$X_L = \omega/L$	(c)	e = -L di/dt	(d)	None of these
(xi)	The resonant frequenc						
	(a) $f = 2\Pi LC$		$f = 1 / 2\Pi \sqrt{LC}$	(c)		(d)	None of these
(xii)	The deliberate addition	n of an					
	(a) doping	(b)		(c)	mixing	(d)	None of these
(xiii)	The conversion of AC						
	(a) amplification	(b)	rectification	(c)	modulation	(d)	None of these
(xiv)	The Laser light is:						
	(a) monochromatic	(b)	coloured	(c)	chromatic	(d)	None of these
(xv)	The Laser light may be						
	(a) quartz crystal		NaCl crystal	(c)	ruby crystal	(d)	None of these
(xvi)	The emission of photo			fect is			
			(b) intensity of light	(c)		(d)	None of these
(xvii)	Which one of the follo			ıclear I	Fission reactor:		
	(a) fuel		accelerator	(c)	moderator	(d)	None of these
(xviii)	The half life of a radio	active	isotope is 140 days.	How r	nany days would it	take	to loose 3/4 of its
	initial activities:						
	(a) 105 days	(b)		(c)	35 days	(d)	None of these
(xix)	Most of the energy pro	duced	l in Sun is due to:				
	(a) Nuclear fusion	(b)	Chemical reaction	(c)	Nuclear Fission	(d)	None of these
(xx)	A U-235 nucleus will	split w	hen it captures:				
	(a) an α-particle	(b)	e.m. radiation	(c)	neutron	(d)	None of these

PHYSICS, PAPER-II

PART – II

	(°) DADTH: 4.1 (4.4 D.1				
	(i) PART-II is to be attempted on the separate Answer Book.(ii) Attempt ONLY FOUR questions from PART-II. All questions carry EQUAL marks.				
NOTE:	(iii) Extra attempt of any question or any part of the attempted question will not be				
	considered.				
	(iv) Use of Scientific calculator is allowed.				
0.2 (a)	State and prove Causala Law in alcotrogratics and express the law in differential				
Q.2. (a)	State and prove Gauss's Law in electrostatics and express the law in differential forms.				
(b)	Find the electric intensity at a point outside a volume distribution of charge confined into a spherical region of radius R. (06)				
Q.3. (a)	State and explain Ampere's Law. Derive an expression for the value of 'B' inside a solenoid. (14)				
(b)	A thin 10 cms long solenoid has a total of 400 turns of wire and carries a current of 0.20 amp				
	Calculate the field inside near the centre. Given $\mu = 12.57 \times 10^{-7} \text{ T} \cdot \text{m/A}$ (06)				
Q.4. (a)	How a Semi Conductor diode is used as a half wave and full wave rectifier? (08)				
(b)	What are the transistors? Give Construction and Symbol of PNP and NPN transistor. (07)				
(c)	The resistivity of a metal increases with increase in temperature while that of a semi conductor decreases. Explain. (05)				
Q.5. (a)	Discuss briefly the wave nature of matter and obtain an expression of de Broglie's wavelength				
Q.3. (a)	for matter waves. (14)				
(b)	Calculate the de Broglie's wavelength of a 0.20kg ball moving with a speed of 15 m/s. (06)				
Q.6. (a)	Derive Einstein's photoelectric effect on the basis of quantum theory and derive Einstein's				
(b)	photoelectric equations. (14) Calculate the work function of Na in electron-volts, given that the threshold wavelength is 6800				
(0)	A° and $h = 6.625 \times 10^{-34} \text{ J-S}$ (06)				
Q.7. (a)	Define the terms decay constant, half life and average life as applied to a radioactive substance.				
(L)	Find the relation between them. (11) The half life of Padium is 1500 years. In how many years will one am of nurs element. (a) lease				
(b)	The half life of Radium is 1590 years. In how many years will one gm of pure element (a)loose one centigram and (b)be reduced to one centigram. (07)				
(c)	When a nucleus emits a γ – ray photon, what happens to its atomic number and its actual				
()	mass. (02)				
Q.8.	Write notes on ANY TWO of the following: (20)				
	(a) Self and Mutual Inductance				
	(b) Pauli's Exclusion Principle (c) Compton Scattering				

Page 2 of 2