BIOS 312: MODERN REGRESSION ANALYSIS

James C (Chris) Slaughter

Department of Biostatistics Vanderbilt University School of Medicine james.c.slaughter@vanderbilt.edu

biostat.mc.vanderbilt.edu/CourseBios312

Contents

10	Simple Poisson Regression	5
	10.1 Count Data and Event Rates	5
	10.2 Poisson Model	6
	10.2.1 Poisson distribution	6
	10.2.2 Regression Model	7
	10.3 Example: Acid reflux and BMI	9
	10.3.1 Data description	9
	10.3.2 Descriptive Plots	10
	10.3.3 Regression commands	13
	10.3.4 Estimation of the regression model	14
	10.4 Example: Acid reflux and BMI by esophagitis status	16
	10.4.1 BMI modeled as a linear term	16
	10.4.2 BMI modeled using splines	19
	10.4.3 Comparison of modeling linear BMI to using spline function	21

Chapter 10

Simple Poisson Regression

10.1 Count Data and Event Rates

- Sometimes a random variable measures the number of events occurring over some space and time interval
- · Examples include
 - Number of polyps recurring in the three year interval between colonoscopies
 - Number of pulmonary exacerbations experienced by a cystic fibrosis patient in a year
 - Number of reflux events in a 24-hour period
- Count data have (in theory) no upper limit, although very large counts can be highly improbable
- · When a response variable measures counts over space and time, we often

summarize by considering the event rate

- "Event rate" is the expected number of events per unit of space-time
- The rate is thus a mean count
- In most statistical problems, we know the interval of time and the volume of space sampled
 - * Poisson models allow us to take into account the known interval of time/space using an "offset"

10.2 Poisson Model

10.2.1 Poisson distribution

- Often we assume that counts follow a Poisson distribution
- · The Poisson distribution can be derived from the following assumptions
 - The expected number of events in an interval is proportional to the size of the interval
 - The probability that two events occur with an infinitesimally small interval of space-time is zero
 - The number of events occurring in disjoint (separate) intervals of space-time are independent
- (Note that the assumption of a constant rate with independence over spacetime is pretty strong and rarely holds completely)
- Poisson distribution

- Counts the events occurring at a constant rate λ in a specified time (and space) t
 - * Independent intervals of time and space
- Probability distribution has parameter $\lambda > 0$
 - * For $k = 0, 1, 2, \dots$

$$\Pr(Y = k) = \frac{e^{-\lambda t} (\lambda t)^k}{k!}$$
 (10.1)

- * Mean: $E[Y] = \lambda t$
- * Var: $V[Y] = \lambda t$
- * (Mean-variance relationship, like binary data)

10.2.2 Regression Model

- When the response variable represent counts of some event, we usually model using the (log) rate with Poisson regression
 - Compares rates of response per space-time (e.g. person-years) across groups
 - "Rate ratio"
- Why not use linear regression? The reasons are primarily statistical
 - The rate is in fact a mean
 - For Poisson Y having event rate λ measured over time t
 - * The mean is equal to the variance (both are λt)
 - We want to be able to account for

- * Different areas of space or length of time for measuring counts
- * Mean-variance relationship (if not using robust standard errors)
- In Poisson regression, we tend to use a log link when modeling the event rate
 - As in other models, a log link means that we are assuming a multiplicative modeling
 - * Multiplicative model → comparisons between groups based on ratios
 - * Additive model → comparisons between groups based on differences
 - Log link also has the best technical statistical properties
 - * Log rate is the "canonical parameter" for the Poisson distribution
 - * Being the canonical parameter makes the calculus and mathematical properties easier to derive, and thus easier to understand from a theoretical perspective
- Poisson regression
 - Response variable is count of event over space-time (often person-years)
 - Offset variable specifies amount of space-time
 - Allows continuous or multiple grouping variables
 - * But will also work with binary grouping variables
- Simple Poisson Regression
 - Modeling rate of count response Y on predictor X

Distribution
$$\Pr(Y_i = k | T_i = t_i) = \frac{e^{-\lambda_i t_i} (\lambda_i t_i)^k}{k!}$$

Model $\log E[Y_i | T_i, X_i] = \log (\lambda_i T_i) = \log(T_i) + \beta_0 + \beta_1 \times X_i$
 $X_i = 0$ $\log \lambda_i = \beta_0$
 $X_i = x$ $\log \lambda_i = \beta_0 + \beta_1 \times x$
 $X_i = x + 1$ $\log \lambda_i = \beta_0 + \beta_1 \times x + \beta_1$

- To interpret as rates, exponentiate the parameters

Distribution
$$\begin{aligned} &\Pr(Y_i = k | T_i = t_i) = \frac{e^{-\lambda_i t_i} (\lambda_i t_i)^k}{k!} \\ &\text{Model} & \log E[Y_i | T_i, X_i] = \log \left(\lambda_i T_i\right) = \log(T_i) + \beta_0 + \beta_1 \times X_i \\ &X_i = 0 & \lambda_i = e^{\beta_0} \\ &X_i = x & \lambda_i = e^{\beta_0 + \beta_1 \times x} \\ &X_i = x + 1 & \lambda_i = e^{\beta_0 + \beta_1 \times x + \beta_1} \end{aligned}$$

- Interpretation of the model
 - Intercept
 - * Rate when the predictor is 0 is found by exponentiation of the intercept from Poisson regression: e^{β_0}
 - Slope
 - * Rate ratio between groups differing in the value of the predictor by 1 unit is found by exponentiation of the slope from Poisson regression: e^{β_1}

10.3 Example: Acid reflux and BMI

10.3.1 Data description

 Research question: Are the number of acid reflux events in a day related to body mass index (BMI)?

- 9
- Each subject pH in the esophagus in monitored continuously for about 24 hours
- · Count the number of time pH drop below 4, which is called a "reflux event"
- · Analysis (statistical) goals
 - Primary goal: Determine if there is an association between BMI and acid reflux rate
 - Secondary goal: Describe the (mean) trend in reflux rates as a function of BMI
- Variables
 - Response: Number of acid reflux events
 - Offset: Number of minutes subject was monitored
 - Predictor of interest: BMI
 - Other covariates: Presence of esophagitis at baseline

10.3.2 Descriptive Plots

- Characterization of plots
 - Plots are visually similar if we consider the rate (events per day) or the raw number of events
 - First order trend: Event rate increases with increasing BMI
 - Second order trend: Event rate increase until BMI of 32 (or so) and then flattens out
 - Within-group variability
 - * Hard to visualize from the plots
 - Model assumes increasing variability with increasing BMI, which looks reasonable

10.3.3 Regression commands

- · As before, but need to specify the offset
 - Offset is the log of the exposure time
 - In Stata, can alternatively specify the "exposure" and it will take the log for you
- Stata
 - poisson respvar predvar, exposure(time) [robust]
 - poisson respvar predvar, offset(logtime) [robust]
- R
 - One method to fit Poisson models

- * Uses the sandwich and lmtest libraries
- * Must install the above two libraries using install.packages("lmtest") and install.packages("sandwich")
- * model.poisson <- glm(response ~ predictors + offset(log(time)),
 data=data, family="poisson")</pre>
- * coeftest(model.poisson, vcov=sandwich)
- Another method to fit Poisson models using the Design package

```
* m1 <- glmD(response ~ predictors + offset(log(time)),
  data=data, family="poisson", x=TRUE, y=TRUE)</pre>
```

- * bootcov(m1) for robust (bootstrap) confidence intervals
- Can also use methods within the gee library

10.3.4 Estimation of the regression model

- Regression model for number of reflux events on BMI
 - Answer primary research question: Is there an association between BMI and the acid reflux event rate?
 - Estimate the best fitting line to (log) number of reflux events within BMI groups using an offset of log time
 - * $\log(\text{Events}|\text{BMI}) = \beta_0 + \beta_1 \times \text{BMI} + \log(\text{time})$
 - An association will exist if the slope β_1 is nonzero

. poisson events bmi, offset(logmins) robust

Iteration 0: $\log pseudolikelihood = -11360.89$ Iteration 1: $\log pseudolikelihood = -11360.89$

l Robust

events	Coef.	Robust Std. Err.				Interval]
bmi _cons	.0223194 -3.119991 (offset)	.0046121	4.84	0.000	.0132799 -3.393448	.0313589 -2.846535

Interpretation of output

 $-\log \text{ rate} = -3.119991 + 0.0223194 \times BMI$

Interpretation of intercept

- Estimated event rate when BMI is 0 is found by exponentiation: $e^{-3.12}=0.044$
- This is the rate per 2-minute interval. This unusual time interval is an artifact of the way in pH data is sampled
 - * To convert to events per day, multiply by 720 (there are 720 2-minute intervals in a day)

*
$$720 \times e^{-3.12} = 31.7$$
 events per day

Interpretation of slope

- Estimated ratio of rates for two subjects differing by 1 in their BMI
- Interpretation by exponentiation of slope
 - * A subject with a 1 kg/ m^2 higher BMI will have an acid reflux event rate that is 2.3% higher. (calc: $e^{0.0223}=1.023$)

- * We are 95% confident that the increase in event rate is between 1.3% higher and 3.2% higher
- \ast There is a significant association between BMI and reflux events p < 0.001

10.4 Example: Acid reflux and BMI by esophagitis status

10.4.1 BMI modeled as a linear term

- The following results compare using a Poisson model to a linear regression model
- Both models will control for Esophagitis status, so any interpretation must involve "Holding esophagitis status constant..." ("Among subjects with the same Esophagitis status...")
- Note the different (numerical) estimates for the coefficients and standard errors for BMI and esophagitis, but the similar statistical significance
- Also if we plot the predicted number of events per day versus BMI, the results are similar from either model

Stata Output

. poisson events bmi esop, offset(logmins) robust

Number of obs = 279 Wald chi2(2) = 30.30 Prob > chi2 = 0.0000 Pseudo R2 = 0.0761 Poisson regression Log pseudolikelihood = -11072.339

events	Coef.				2 - 10	Interval]
bmi esop _cons		.0047721	4.14 3.15 -21.71	0.000 0.002	.0103934 .0991442 -3.367944	.0290997 .42529 -2.810123

- . gen eventsmins = events / mins
- . regress eventsmins bmi esop, robust

Linear regression Number of obs = 279

F(2, 276) = 14.16Prob > F = 0.0000 R-squared = 0.0856 Root MSE = .05102

eventsmins	Coef.	Robust Std. Err.	_	P> t		Interval]
bmi esop _cons		.0004618 .0085449 .0129053	3.98 2.94 2.16	0.000 0.004 0.032	.0009299 .0082826 .0024407	.0027482 .0419254 .0532515

- Example prediction calculations: BMI=30, with esophagitis
 - **Linear regression:** $0.0278461 + .025104 + .001839 \times 30 = 0.108$
 - * Stata: adjust bmi=30 esop=1
 - Poisson regression: $e^{-3.089033+0.2622171+.01975465\times30}=0.107$
 - * Stata: adjust bmi=30 esop=1, nooffset exp

 Remember the above rates are for a 2-minute time interval. To convert to daily rates, multiply by 720

10.4.2 BMI modeled using splines

- Regression splines are handled more naturally in R than in Stata
 - glm(events \sim ns(bmi,4) + esop + offset(log(mins)), data=bmi.data, family="poisson")
 - ns(bmi, 4) specified a natural spline for bmi with 4 degrees of freedom
 - Later, we will discuss regression splines in Stata using mkspline
- Note that there is an optical illusion in the following plots
 - For both plots, it appears as if the lines are closer in the middle ranges of BMI
 - For the Poisson regression, the true distance between lines is increasing with increasing with BMI
 - For the Linear regression, the true distance between lines is constant

10.4.3 Comparison of modeling linear BMI to using spline function

- For all regression models, we are more confident modeling associations than predicting means
- When we use a linear term (i.e. a straight line) for the predictor, we are modeling a first-order association
 - Most power to detect this type of association
 - Always need to check that a first-order association answers the scientific question
 - * Counter example: Interested in seasonal trends in air pollution. A linear effect of time would only answer if air pollution levels are increasing/decreasing over time, not how they are changing from month to month
- Flexible functions for predictors, including splines, are, in general, more useful if we care about predicting means or individual observations
- Acid reflux example: Which model you choose depends on the scientific goals
 - Primary goal: Is there an association between BMI and the rate of acid reflux?
 - * Fitting the linear BMI term answers this question
 - Secondary goal: Describe the (mean) trend in reflux rates as a function of BMI
 - * A priori, I would be less inclined to believe a linear function captures the true mean relationship
 - * To answer this scientific question, a spline analysis is preferred