1. Kanonische Ableitung und Reduktion

a)

Rechtskanonisch:

```
*E* =>

- *T* =>

- T * *F* =>

- T * ( *E* ) =>

- T * ( E + *T* ) =>

- T * ( E + T / *F* ) =>

- T * ( E + *T* / V ) =>

- T * ( E + *F* / V ) =>

- T * ( *E* + V / V ) =>

- T * ( *F* + V / V ) =>

- *T* * ( V + V / V ) =>

- V * ( V + V / V )
```

Linkskanonisch:

```
*E* =>

- *T* =>

- *T* * F =>

- *F* * F =>

- V * (*E* ) =>

- V * (*E* + T ) =>

- V * (*F* + T ) =>
```

$$- v * (v + v / v)$$

b)

Rechtskanonisch:

$$((\lor + \lor) * \lor / \lor) - (\lor / * \lor *) =>$$

$$((\vee + \vee) * \vee / \vee) - (\vee / *F*) \Longrightarrow$$

$$\frac{((V+V)*V/V)-(F/T)=>}{}$$

$$((V + V) * V / V) - (*V* / F) =>$$

$$((v + v) * v / v) - (*F* / F) =>$$

$$((V + V) * V / V) - (*T / F*) =>$$

$$((v + v) * v / v) - *(E)* =>$$

$$((v + v) * v / v) - *F* =>$$

$$((V + V) * V / *V*) - T =>$$

$$((V + V) * *V* / F) - T =>$$

$$((v + *v*) * F / F) - T =>$$

$$((V + *F*) * F / F) - T =>$$

$$((*v* + T) * F / F) - T =>$$

$$((*F* + T) * F / F) - T =>$$

$$((*T* + T) * F / F) - T =>$$

$$((*E + T*)*F/F) - T =>$$

$$(*(E)**F/F)-T=>$$

$$(*F**F/F)-T=>$$

$$(*T * F* / F) - T =>$$

Е

Syntaxbaum:

Linkskanonisch:

$$((*v* + v) * v / v) - (v / v) =>$$

- ((*F* + V) * V / V) (V / V) =>
- ((*T* + V) * V / V) (V / V) =>
- ((E + *v*) * v / v) (v / v) =>
- ((E + *F*) * V / V) (V / V) =>
- ((*E + T*) * v / v) (v / v) =>
- (*(E)**v/v)-(v/v)=>
- (*F**v/v) (v/v) =>
- (T * *v* / v) (v / v) =>
- (*T * F* / V) (V / V) =>
- (T / *v*) (v / v) =>
- (*T / F*) (v / v) =>
- (*T*) (v / v) =>
- *(E)* (V/V) =>
- *F* (v / v) =>
- *T* (v / v) =>
- E (*v* / v) =>
- E (*F* / v) =>
- E (T / *v*) =>
- E (*T / F*) =>
- E (*T*) =>
- E *(E)* =>
- E *F* =>
- *E T* =>

Е

Die Anzahl der Reduktionen ist bei beiden Varianten gleich (24 Reduktionen) und die Syntaxbäume sind ident.

2. Mehrdeutigkeit, Beschreibung und Schreibweisen

a)

Bei der Regel frac liegt die Mehrdeutigkeit, da man auf n kommen kann, indem man entweder die 1. Alternative verwendet, oder die 2. Alternative und dann das dazukommende frac ein ε ableitet.

Beispiel: 6.9

real => mant => sign int . frac => ϵ int . frac => ϵ n . frac

option 1 option 2

option 1 option 2 $=> \epsilon n \cdot n => \epsilon n \cdot \text{frac } n$ $=> \epsilon 6 \cdot n => \epsilon 6 \cdot \text{frac } n$ $=> \epsilon 6 \cdot 9 => \epsilon 6 \cdot \epsilon n$ $=> \epsilon 6 \cdot 9$

Änderung: frac -> n | frac n | ϵ . auf frac -> frac n | ϵ ., der Rest bleibt gleich.

b) Äquivalänte, eindeutige Grammatik

Möglichst wenige Regeln:

```
G(real):
real = ['+'|'-'] (0|...|9) {0|...|9} ['.' {0|...|9}] ['E' ['+'|'-'] (0|...|9)
{0|...|9}] .

"Kürzer":
real = optSign n {n} ['.' {n}] ['E' optSign n {n}] .
optSign = ['+'|'-'] .
n = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 .
```

3. Reguläre Grammatiken

a)

Sätze:

- ع •
- ab
- ab(ab)*
- bb
- bb(b)*

(oder man verwendet die Impl. aus Übung 1):

```
1 G(S):
2 S -> b A | a B | eps
3 A -> b A | b
4 B -> b C | b
5 C -> a B

    Microsoft Visual Studio Debug Console

language(g2):
L(G(S)): maxLength=6 {
    eps
    a b
    a b a b a b
    b b b
    b b b
    b b b
    b b b
    b b b
}
```

```
S -> A b | B b | ε.

A -> a | C a.

C -> A b.

B -> b | B b.

b)

ab(ab)* + bb(b)* + ε oder besser (ab)* + (b)* (erspaart das ε)
```

4. Bezeichner in der Programmiersprache Ada

```
a)

B -> 1 | 1 R

R -> d | 1 | '_' U | 1 R | d R

U -> 1 | d | 1 R | d R

b)

B -> 1 | R 1 | R d

R -> U '_' | R 1 | R d | 1

U -> R d | R 1 | 1

C)

1 ( 1 + d + '_' 1 + '_' d)*

Unix:
```

```
1(1|d|_1|_d)^* = ^= 1(_?(1|d))^* = ^= 1(_?[1d])^*
```

5. Transformation zwischen Darstellungsformen regulärer Sprachen

a)

```
digraph non_deterministic_finite_state_machine {
    fontname="Helvetica, Arial, sans-serif"
    node [fontname="Helvetica, Arial, sans-serif"]
    edge [fontname="Helvetica, Arial, sans-serif"]
    rankdir=LR;
    node [shape = doublecircle]; S A C E;
    node [shape = circle];
    S \rightarrow A [label = "a"]
    A \rightarrow A [label = "a"]
    S \rightarrow B [label = "a"]
    B -> C [label = "b"]
    S \rightarrow D [label = "b"]
    C -> D [label = "b"]
    C -> B [label = "a"]
    D -> E [label = "a"]
    E -> D [label = "b"]
}
```


	0	1
-> S	{A, B}	{D}
οΑ	{A}	-

	0	1
В	{C}	-
οС	{B}	{D}
D	{E}	-
οΕ	-	{D}
(4 D)	(4)	(C)
o {A, B}	{A}	{C}

```
digraph deterministic_finite_state_machine {
    fontname="Helvetica, Arial, sans-serif"
    node [fontname="Helvetica, Arial, sans-serif"]
    edge [fontname="Helvetica, Arial, sans-serif"]
    rankdir=LR;
    node [shape = doublecircle]; S A C E AB;
    node [shape = circle];
    S \rightarrow AB [label = "a"]
    AB \rightarrow A [label = "a"]
    AB \rightarrow C [label = "b"]
    A \rightarrow A [label = "a"]
    B -> C [label = "b"]
    S \rightarrow D [label = "b"]
    C -> D [label = "b"]
    C -> B [label = "a"]
    D -> E [label = "a"]
    E -> D [label = "b"]
}
```


Erläuterung:

Ich habe mir angesehen was mit der Teilbarkeit von Binärzahlen passiert, wenn man eine 1 oder 0 anhängt bzw. wie Binärzahlen dividiert durch 3 in andere Restklassen wandern.

Wenn man eine "0" anhängt, wird eine Binärzahl verdoppelt. Der Rest bei der Division durch 3 bleibt gleich. Wenn man eine "1" anhängt, wird eine Binärzahl verdoppelt und dann inkrementiert. Hat die Binärzahl diviert durch 3 die Restklasse 2, dann bleibt sie nach dieser Operation in dieser Restklasse.

Wenn die Zahl bereits durch 3 Teilbar ist und man hängt

- 0 an, dann bleibt die Zahl durch 3 Teilbar => Restklasse 0. Man kann also beliebig viele 0er anhängen.
- 1 an, ergibt sich ein Rest von 1 => Restklasse 1

Wenn die Zahl geteilt durch 3 einen Rest von 1 hat und man hängt

- 0 an, dann ergibt sich ein Rest von 2 => Restklasse 2
- 1 an, dann ergibt sich ein Rest von 2r + 1 == 3 == 0 => Zahl ist durch 3 Teilbar => Restklasse 0

Wenn die Zahl geteilt durch 3 einen Rest von 2 hat und man hängt

- 0 an, dann ergibt sich ein Rest von 4 => Restklasse 1
- 1 an, dann ergibt sich ein Rest von 2r + 1 == 8 => Restklasse 2. Man kann also beliebig viele 1er anhängen.

Nach diesem Schema wurde der Automat gebaut. Die Namen der Zustände entsprechen den Restklassen.

```
digraph deterministic_finite_state_machine {
    fontname="Helvetica, Arial, sans-serif"
    node [fontname="Helvetica, Arial, sans-serif"]
    edge [fontname="Helvetica, Arial, sans-serif"]
    rankdir=LR;
    node [shape = doublecircle]; S R0;
    node [shape = circle];
    S \rightarrow R0 [label = "0"]
    S -> R1 [label = "1"]
    R0 -> R0 [label = "0"]
    R0 -> R1 [label = "1"]
    R1 -> R2 [label = "0"]
    R2 -> R2 [label = "1"]
    R2 \rightarrow R1 [label = "0"]
    R1 -> R0 [label = "1"]
}
```

	U	ı
-> S	{R0}	{R1}
o R0	{R0}	{R1}

	0	1	
R1	{R2}	{R0}	
R2	{R1}	{R2}	

Anmerkung: man braucht das S für den Start, da der Automat sonst eine Binärzahl ohne Zeichen erlauben würde. (glaube ich?)

