Kapitel WT:II

II. Kommunikation und Protokolle für Web-Systeme

- Rechnernetze
- □ Prinzipien des Datenaustauschs
- □ Netzsoftware und Kommunikationsprotokolle
- Internetworking
- Client-Server-Interaktionsmodell
- Uniform Resource Locator
- Grundlagen HTTP-Protokoll
- □ Weitere HTTP-Konzepte
- □ Grundlagen TLS-Protokoll
- Zeichen und Codierung

Eigenschaften von Rechnernetzen

- Rechner arbeiten quasi autonom
- Rechner sind miteinander verbunden und können Informationen austauschen
- Probleme durch Verzögerungen und Fehler des Kommunikationskanals werden weitestgehend eliminiert

Übertragungstechnik

Broadcasting:

- □ ein Übertragungskanal, der von allen Netzkomponenten genutzt wird
- Nachrichten (Pakete) werden von einer Station an alle anderen Stationen gesendet; Stationen senden abwechselnd
- je nach Adressierung wird die Nachricht von nur einer Station (unicast),
 mehreren Stationen (multicast) oder allen Stationen (broadcast) verarbeitet

Übertragungstechnik

Broadcasting:

- ein Übertragungskanal, der von allen Netzkomponenten genutzt wird
- Nachrichten (Pakete) werden von einer Station an alle anderen Stationen gesendet; Stationen senden abwechselnd
- je nach Adressierung wird die Nachricht von nur einer Station (unicast),
 mehreren Stationen (multicast) oder allen Stationen (broadcast) verarbeitet

Punkt-zu-Punkt:

- zwei miteinander verbundene Stationen: eigener Übertragungskanal
- zwei nicht benachbarte Stationen: verschiedene Routen möglich
 - → Wegfindung (routing) wichtig
- □ ein Paket wird in der Regel für eine bestimmte Station adressiert

Klassifikation

Klassifikation anhand der räumlichen Ausdehnung:

Entfernung	Organisation	Beispiel	Abkürzung
1m	nächste Umgebung	persönliches Netz	PAN
10m	Raum	lokales Netz	LAN
100m	Gebäude		
1km	Liegenschaft		
10km	Stadt	Stadtnetz	MAN
100km	Land	Fernnetz	WAN
1000km	Kontinent		
10.000km	Planet	Internet	

Klassifikation

Klassifikation anhand der Topologie (hier LAN):

Klassifikation

Klassifikation anhand der Topologie (hier LAN):

Weitere Klassifikationsmöglichkeiten:

- anhand des Übertragungsmediums: Twisted-Pair, Glasfaser, Infrarot, etc.
- anhand des Übertragungsprotokolls: Ethernet, Tokenring, FDDI, ATM, etc.
- anhand der Trägerschaft: öffentlich, privat
- anhand der Einsatzcharakteristik: Funktionsverbund, Lastverbund,
 Nachrichtenverbund, Sicherheitsverbund

Prinzipien des Datenaustauschs

Übersicht

Prinzipien des Datenaustauschs

Übersicht

Definition 8 (Verbindung)

Eine Verbindung ist eine Beziehung zwischen zwei kommunizierenden Stationen über einen bestimmten Zeitraum.

Vermittlungsart

Punkt-zu-Punkt-Verbindung ohne Vermittlung:

- je zwei Rechner permanent miteinander verbunden
- Kommunikation einfach
- Verkabelungsaufwand wächst quadratisch in der Rechneranzahl

Leitungsvermittlung (Switching Network):

- □ Schaltung einer festen Verbindung durch Vermittlungsstellen
- Beispiel: analoges Telefonnetz
- + Teilnehmer erhalten feste Bandbreite zur alleinigen Nutzung
- + Kommunikation einfach
- ungenutzte Übertragungskapazitäten
- Aufbau von Verbindungen ist zeitintensiv
- Ausfall von Vermittlungsstellen legt Teile des Netzes lahm

Vermittlungsart

Paketvermittlung:

- Zerlegung einer Nachricht in individuell adressierte Pakete ("Datagramme")
- Datenpakete werden in Netzknoten zwischengespeichert (store and forward);
 Verzögerungen möglich, aber bessere Ausnutzung der Übertragungskanäle
- □ für jedes korrekt empfangene Paket kann eine Quittung an den Sender geschickt werden; keine Quittung bei Fehlern oder Paketverlust: Paket wird nach Timeout erneut gesendet
- + faire Ressourcenzuteilung wird möglich
- + deutlich erhöhte Ausfallsicherheit
- aufwändiges Kommunikationsprotokoll
- keine (unmittelbar) garantierte Dienstgüte

[Tanenbaum]

Verbindungsart bzw. Dienstparadigma

Verbindungslose Kommunikation (bei Paketvermittlung):

- Daten werden ohne Vorankündigung zur Übertragung übergeben und von Netzwerkknoten zu Netzwerkknoten übertragen
- kein initialer Kontakt zwischen Sender und Empfänger
- keine Garantie, dass die gesendeten Daten den Empfänger erreichen
- Analogie: Briefzustellung durch die Post

Verbindungsart bzw. Dienstparadigma

Verbindungslose Kommunikation (bei Paketvermittlung):

- Daten werden ohne Vorankündigung zur Übertragung übergeben und von Netzwerkknoten zu Netzwerkknoten übertragen
- kein initialer Kontakt zwischen Sender und Empfänger
- keine Garantie, dass die gesendeten Daten den Empfänger erreichen
- Analogie: Briefzustellung durch die Post
- + | keine Reservierung von Ressourcen: Variation der Zustellungsgeschwindigkeit und -qualität möglich
 - + kein Verwaltungsaufwand durch Verbindungsaufbau
 - Adressierung der Daten kompliziert, da Pakete unabhängig voneinander durch das Netz befördert werden

Verbindungsart bzw. Dienstparadigma

Verbindungsorientierte Kommunikation (bei Paketvermittlung):

- Aufstellung einer definierten Verbindung zwischen Stationen notwendig
- Datenaustausch in drei Phasen:
 - 1. Verbindungsaufbau (*connect, set-up*). Sender spricht Empfänger an, sendet Authentifizierungsdaten und verlangt Verbindungsaufbau
 - 2. Uni- oder bidirektionaler Datenaustausch (data transfer).
 - 3. Verbindungsabbau (disconnect).
- Analogie: Telefonieren

Verbindungsart bzw. Dienstparadigma

Verbindungsorientierte Kommunikation (bei Paketvermittlung):

- Aufstellung einer definierten Verbindung zwischen Stationen notwendig
- Datenaustausch in drei Phasen:
 - 1. Verbindungsaufbau (*connect, set-up*). Sender spricht Empfänger an, sendet Authentifizierungsdaten und verlangt Verbindungsaufbau
 - 2. Uni- oder bidirektionaler Datenaustausch (*data transfer*).
 - 3. Verbindungsabbau (disconnect).
- Analogie: Telefonieren
- + steht eine Verbindung, ist der Datenaustausch einfach: Empfänger gefunden, Reihenfolge bleibt erhalten, Ressourcen reserviert, etc.
- der Aufbau einer Verbindung ist komplex und zeitintensiv, insbesondere wenn viele Stationen involviert sind

Verbindungsart bzw. Dienstparadigma

Verbindungsorientierte Kommunikation (bei Paketvermittlung): (Fortsetzung)

- die Einrichtung einer Verbindung stellt sicher, dass alle Daten den Empfänger erreichen – und in der richtigen Reihenfolge
- Herausforderung: verbindungsorientierte Dienste über paketvermittelte
 Netzwerke müssen auf den dort verfügbaren Diensten aufsetzen
 - → die Verbindung ist nur virtuell
- □ für die Dauer einer Verbindung werden benötigte Ressourcen im Netz reserviert (Speicher in Zwischenknoten, Übertragungskapazität, etc.)
 - → Dienstgüte in "bestimmtem Umfang" garantierbar

[Tanenbaum]

Dienste

Vom Prinzip sind Verbindungsart und Zuverlässigkeit orthogonal, d.h., sie bedingen sich nicht:

Dienst	Verbindungsart	Beispiel
zuverlässiger Bytestrom	verbindungsorientiert	Datei-Download
unzuverlässige "Verbindung"		digitalisierte Sprache
bestätigtes Datagramm	verbindungslos IEEE 802.11 (
unzuverlässiges Datagramm		IEEE 802.3 (Ethernet)

Bemerkungen:

□ In der Praxis werden unzuverlässige, verbindungsorientierte Dienste oft durch ein verbindungsorientiertes Steuerungsprotokoll und ein verbindungsloses Übertragungsprotokoll realisiert (z.B. SIP und RTP für Voice-over-IP-Telefonie).

Dadurch ergeben sich primär drei relevante Paradigmen:

- 1. verbindungslos und unzuverlässig
- 2. verbindungsorientiert und zuverlässig
- 3. verbindungslos und zuverlässig
- □ Ein Beispiel für ein tatsächlich verbindungsorientiertes, unzuverlässiges Protokoll ist <u>DCCP</u>, welches als Alternative zu UDP entwickelt wurde, bisher aber kaum Verwendung findet.

Herstellung einer Verbindung und Datenaustausch \neq Kommunikation.

Ziel ist es, sich zu verstehen, zu kommunizieren ...

[Tanenbaum]

Für Rechner definieren Übertragungsprotokolle die Regeln der Kommunikation.

Die Netzsoftware ist eine in Schichten organisierte, komplexe Software, die die gesamte Umsetzung der Kommunikation übernimmt: von der Anwendung über die Protokolle bis zu Steuerung der Netz-Hardware.

Die Netzsoftware ist eine in Schichten organisierte, komplexe Software, die die gesamte Umsetzung der Kommunikation übernimmt: von der Anwendung über die Protokolle bis zu Steuerung der Netz-Hardware.

Definition 9 (Netzsoftware-Dienst)

Ein Dienst fungiert als Schnittstelle zwischen zwei Schichten und bezeichnet eine Menge von Operationen, die eine Schicht der ihr überliegenden Schicht anbietet.

Definition 10 (Netzsoftware-Protokoll)

Ein Protokoll ist eine Menge von Regeln, die Format (Syntax) und Bedeutung (Semantik) der von gleichgestellten Schichten ausgetauschten Pakete festlegen.

ISO-OSI-Modell [Paketvermittlung]

[Tanenbaum]

ISO-OSI-Modell [Paketvermittlung]

[Tanenbaum]

ISO-OSI-Modell [Paketvermittlung]

ISO-OSI-Modell [Paketvermittlung]

ISO-OSI-Modell [Paketvermittlung]

Bemerkungen:

- Dienste und Protokolle sind unabhängig voneinander: gleichgestellte Schichten können ihre Protokolle nach Belieben ändern, solange die für den Dienstnutzer sichtbaren Dienste unverändert bleiben.
- Abkürzungen für die Datenpakettypen:
 - APDU = Application Protocol Data Unit
 - PPDU = Presentation Protocol Data Unit
 - SPDU = Session Protocol Data Unit
 - TPDU = Transport Protocol Data Unit
- □ ISO = International Organization for Standardization
 - OSI = Open Systems Interconnection

ISO-OSI versus TCP/IP Protokoll-Stack

ISO-OSI

7	Anwendung
6	Darstellung
5	Sitzung
4	Transport
3	Vermittlung
2	Sicherung
1	Bitübertragung

Aufgaben der Netzsoftware im ISO-OSI-Modell:

- □ Schicht 4. Ende-zu-Ende-Übertragung, Dienstzuverlässigkeit, Flusskontrolle.
- Schicht 3. Netzübergreifendes Routing, Staukontrolle.
- Schicht 2. Fehlerbehandlung, Flusskontrolle, Medienzuteilung.
- □ Schicht 1. Übertragung der Bits über einen physischen Kommunikationskanal.

ISO-OSI versus TCP/IP Protokoll-Stack

	ISO-OSI	TCP/IP	TCP/IP-Protokolle		
7	Anwendung		SMTP, HTTP/1 /2, RPC, FTP, TELNET,	HTTP/3	SNMP, DHCP, RIP,
6	Darstellung	Anwendung	DNS, BGP	(zuverlässig, verbindungs- orientiert)	RTP, NFS, DNS,TFTP
5	Sitzung			,	DNO,11 11
4	Transport	Transport	TCP (zuverlässig, verbindungsorientiert)	UDP (unzuverlässig, verbindungslos)	
3	Vermittlung	Internet	Internet-Protokoll IPv4, IPv6		
2	Sicherung	Host-zu-Netz Ethernet, Token-Ring, FDDI,			DDI,
1	Bitübertragung	1 1031-20 - 110-12	ARP, SLIP, PPP		

Aufgaben der Netzsoftware im TCP/IP-Modell:

- Schicht 4. Ende-zu-Ende-Übertragung, Dienstzuverlässigkeit, Flusskontrolle.
- Schicht 3. Netzübergreifendes Routing von IP-Paketen, Staukontrolle.
- □ Schicht 1+2. Punkt-zu-Punkt-Verbindung zwischen lokalen Netzknoten.

Bemerkungen:

- □ TCP/IP ist die Abkürzung für Transmission Control Protocol/Internet Protocol.
- □ Das TCP/IP-Modell hat in der Internetschicht (OSI-Schicht 3) nur einen verbindungslosen Kommunikationsmodus, unterstützt in der Transportschicht (OSI-Schicht 4) aber sowohl verbindungslose als auch verbindungsorientierte Kommunikation.
- □ Beide Modelle stellen keinesfalls ein akkurates Bild der Realität dar. Während das ISO-OSI-Modell teils zu komplex und spezifisch ist, zeichnet sich das TCP/IP-Modell durch Übersimplifizierung aus. Viele wichtige Dienste lassen sich nicht eindeutig einzelnen Schichten zuordnen und nicht alle Schichten sind gleichmäßig befüllt.
- □ Siehe die Übersichtsbox des TCP/IP-Modells in der deutschen Wikipedia: IP, TCP, UDP

Datenfragmentierung und Kapselung

Prinzip: Nachrichten aus höheren Schichten werden als Nutzdaten für die unteren Schichten eingesetzt.

- Zahlreiche Netzwerke mit unterschiedlichen Technologien sind im Internet zu einem homogen erscheinenden Netzwerk zusammengeschaltet.
- □ Internetworking = Kommunikation über unterschiedliche Rechnernetze
- Internetworking wird durch ein einheitliches Protokoll oberhalb der technologiegebundenen Schicht (> Schicht 2) realisiert.

"Das Internet ist ein reines Software-Produkt."

[Meinel/Sack 2004]

Internetworking [Meinel/Sack 2004]

Vermittlungssysteme im Internet

Repeater

Arbeitet auf der physischen Schicht (Schicht 1); bewirkt reine Signalverstärkung für größere Distanzen.

→ Bridge

Verbindet Netzsegmente auf der Sicherungs- bzw. Bitübertragungsschicht (Schicht 2); dient zur Erweiterung von LANs; leistet Verkehrsmanagement.

Internetworking [Meinel/Sack 2004]

Vermittlungssysteme im Internet

Router

Verbindet einzelne LANs miteinander, die von verschiedenem Typ sein können; sind vom Netzprotokoll abhängig.

□ Gateway

Verbindet Netzwerke; ermöglicht Kommunikation zwischen Anwendungsprogrammen.

MAC-Adressierung

- MAC-Adresse = Medium Access Layer Address = Hardware-Adresse eines
 Netzwerkgeräts (Netzwerkkarte, Switch, etc.)
- dient zur eindeutigen Identifikation des Netzwerkgeräts im Netzwerk
- wird beim Einschalten gesetzt und kann danach in der Regel nicht mehr verändert werden
- Das Internet-Protokoll (IPv4) verwendet eine dynamische Zuordnung von MAC-Adressen zu Internet-Adressen. Basis ist das Address Resolution Protocol ARP.

Bemerkungen:

- □ Aufbau einer MAC-Adresse bei der Ethernet-Technologie:
 - Länge 48 Bit
 - Darstellung hexadezimal, Beispiel: 08-00-20-ae-fd-7e
 - Die Bits 1-24 enthalten die von der IEEE vergebene Herstellerkennung, die Bits 25-48 sind herstellerintern verwendbar.
- Statische MAC-Adressen sind weltweit eindeutig und dienen zur automatischen Gerätekonfiguration und als Basis für Protokolle wie DHCP.
- □ Unter IPv6 ermöglicht die Erzeugung des Interface Identifiers aus der MAC-Adresse die Identifizierung von Benutzern. Deshalb wurden in RFC 4941 sogenannte Privacy Extensions spezifiziert.

IP-Adressierung mit IPv4

- IPv4-Adressen bestehen aus 32 Bit bzw. 4 Bytes, angegeben als Folge von 4 ganzzahligen, durch Dezimalpunkte getrennte Dezimalzahlen.
- IPv4-Adressen sind in zwei Teile gegliedert: Adresspräfix und Adresssuffix.
- Adresspräfix (Netzwerk-ID) identifiziert das physikalische Netzwerk.
- Adresssuffix (Host-ID) identifiziert Rechner im Netzwerk der Netzwerk-ID.

IP-Adressierung mit IPv4

- IPv4-Adressen bestehen aus 32 Bit bzw. 4 Bytes, angegeben als Folge von 4 ganzzahligen, durch Dezimalpunkte getrennte Dezimalzahlen.
- IPv4-Adressen sind in zwei Teile gegliedert: Adresspräfix und Adresssuffix.
- Adresspräfix (Netzwerk-ID) identifiziert das physikalische Netzwerk.
- □ Adresssuffix (Host-ID) identifiziert Rechner im Netzwerk der Netzwerk-ID.

Subnetzmaske: 32 Bit lang, kennzeichnet den Netzwerk-ID-Teil durch 1-Bits und den Host-ID-Teil durch 0-Bits. [Wikipedia]

□ **Dotted-Decimal-Notation**: 141.54.1.11/255.255.0.0

 \Box Suffix-Notation: 141.54.1.11/16

□ Binär-Darstellung: 10001101.00110110.00000001.00001011/16

16 Binärziffern

IP-Adressierung mit IPv4: Netzklassen (veraltet)

1981-1993. Netzklassen zur Einteilung des IPv4-Adressbereiches. [Wikipedia]

[Tanenbaum]

Bemerkungen:

- □ Spezielle IPv4-Adressblöcke: [RFC 6890]
 - Broadcast. Alle (Host-)Bits sind auf 1 gesetzt.
 - "Hier". 0.0.0.0/8 identifiziert das lokale Netzwerk, 0.0.0.0/32 den lokalen Host.
 - Loopback. 127.0.0.0/8, sendender Rechner erhält Paket zurück.
 - Privat. 10.0.0.0/8, 172.16.0.0/12 und 192.168.0.0/16 sind reserviert f
 ür private Vergabe.
 - Link-Local. 169.254.0.0/16 ist reserviert f
 ür direkte Host-zu-Host-Kommunikation.
- Netzklassen waren eine von 1981 bis 1993 verwendete Unterteilung des IPv4-Adressbereiches in Teilnetze für verschiedene Nutzer. Von der Netzklasse konnte die Größe eines Netzes abgeleitet werden. Dies ist beim Routing im Internet wichtig, um zu unterscheiden, ob eine Ziel-IP-Adresse im eigenen oder einem fremden Netz zu finden ist.
- □ Da Netzklassen sich als zu unflexibel und wenig sparsam im Umgang mit der knappen Ressource IP-Adressen herausgestellt haben, wurden sie 1985 zunächst durch Subnetting und 1992 mit Supernetting ergänzt und 1993 schließlich mit der Einführung des Classless Inter-Domain Routing, CIDR, ersetzt. [Wikipedia]

IP-Adressierung mit IPv6

2001:0db8:85a3:08d3:1319:8a2e:0370:7344/64

- □ IPv6-Adressen bestehen aus 128 Bit bzw. 16 Bytes, angegeben als Folge von 8 durch Doppelpunkt getrennte Hexadezimalzahlen.
- □ IPv6-Adressen sind wie IPv4-Adressen in zwei Teile gegliedert: Adresspräfix und Adresssuffix, auch Interface Identifier genannt.
- IPv6-Netzwerke werden gemäß <u>CIDR</u> notiert, durch Anhängen der Präfixlänge in Bits mit "/" an die Adresse.
- □ In einer URL werden IPv6-Adressen in eckige Klammern eingeschlossen.

IP-Adressierung mit IPv6

2001:0db8:85a3:08d3:1319:8a2e:0370:7344/64

- □ IPv6-Adressen bestehen aus 128 Bit bzw. 16 Bytes, angegeben als Folge von 8 durch Doppelpunkt getrennte Hexadezimalzahlen.
- IPv6-Adressen sind wie IPv4-Adressen in zwei Teile gegliedert:
 Adresspräfix und Adresssuffix, auch Interface Identifier genannt.
- IPv6-Netzwerke werden gemäß <u>CIDR</u> notiert, durch Anhängen der Präfixlänge in Bits mit "/" an die Adresse.
- □ In einer URL werden IPv6-Adressen in eckige Klammern eingeschlossen.
- □ IPv6 ermöglicht 2¹²⁸ Adressen (3.4·10³⁸ bzw. 340 Sextillionen) gegenüber 2³² (3.4 Milliarden) bei IPv4. Zum Vergleich: die Erde hat 10⁵¹ Atome.
- □ IPv6 führt Verbesserungen u.a. im Protokollaufbau ein.
- IPv6 ist als RFC 2460 spezifiziert.

Domain Name System, DNS

Auflösung von Hostnamen und Umwandlung in die zugehörigen IP-Adressen mittels Domain Name System (DNS).

erste Realisierung:

- Alle Namen und Adressen sind in einer zentralen Masterdatei, die per FTP auf jeden Rechner geladen wurde.
- nicht skalierbar, keine lokale Organisation möglich

aktuelle Realisierung:

- hierarchische Organisation durch organisatorische Partitionierung (.com, .edu, .gov, .mil, etc.) als auch geografische Partionierung (.de, .uk, .fr, etc.)
- Der Suffix nach dem letzten Punkt wird als <u>Top-Level-Domain</u>, TLD, bezeichnet. Liste aktueller und neu zugelassener TLDs.

Bemerkungen:

- □ Die geografischen TLDs sind unabhängig von der physischen Position der Ressourcen.

 Aber: die Betreiber der Domains unterliegen der Rechtsprechung des bezeichneten Landes.
- Das DNS ist in "Zonen" aufgeteilt, deren Verwaltung (ausgehend von der <u>ICANN</u>) an mehrere Verantwortliche delegiert wird. Beispielsweise verwaltet die US-Firma Verisign als *Registry* die TLD-Zonen .com und .net. Als Inhaber (*Registrant*) einer Second-Level-Domain (SLD), überträgt Ihnen Ihr *Registrar* die Verwaltung einer eigenen Zone, unter der Sie beliebige Subdomains anlegen oder Unterzonen weiterdelegieren können. [dns zone] [icannwiki]
- □ Korrekterweise müssten Domainnamen mit einem abschließenden Punkt notiert werden (z.B. www.example.com.), wobei der letzte (leere) Teil die "Root"-Zone angibt. In aller Regel wird dieser Teil aber abgekürzt und die Root-Zone wird implizit mitgedacht. [root zone]
- □ Neben der Verwaltung einzelner TLDs, fungiert Verisign im Auftrag der ICANN / IANA außerdem als Administrator der Root-Zone.

Quellen zum Nachlernen und Nachschlagen im Web

- Wikipedia. Top-Level-Domain.en.wikipedia.org/wiki/Top-level_domain
- Wikipedia. Domain Name System.de.wikipedia.org/wiki/Domain_Name_System
- Wikipedia. Root-Nameserver.en.wikipedia.org/wiki/Root_name_server
- Wikipedia. Whois.de.wikipedia.org/wiki/Whois