Xuejun Ma

School of Mathematical Sciences
Soochow University
https://xuejunma.github.io

We would like to thank Professor Tian Maozai and Professor Wang Wanjie for sending slides and beneficial discussions

Outline

- Last lecture:review some basic probability concepts; introduce the statistics
- 4 types of convergence
- Relationship between different types of convergence
- Stochastic orders

Terms

- Converge in probability; Converge in Lp; converge in quadratic mean; almost sure converge; converge in distribution;
- \bullet O_p, o_p

Note: May take 1-2 lectures for this topic.

ok into Sample mean

- Recall: Sample mean: $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ Note: When $n \neq m$, X_n and X_m share the same expectation μ but have different distribution.
- Intuitively, when $n \to \infty, \bar{X}_n$ is very close to $\mu = E(X)$.

Real data

```
N(0,1)

1 rm(list=ls())
2 n.vec <- seq(1, 103, 1)
3 n.len <- length(n.vec)
4 mean.full <- NULL
5 for(i in 1:n.len) {
6 mean.full[i] <- mean(rnorm(n.vec[i]))
7 }
8 plot(n.vec, mean.full, type="1", xlab = "n",
9 ylab = "sample mean")
10 abline(h=0,lwd=1,col="blue")</pre>
```

If $x_1, x_2, ..., x_n, ...$ is an array of numbers, we know how to describe whether they convergence or not. But what if they are random variables? How to describe it?

Generalization

- Let $\{Y_i\}_{i=1}^{\infty} = Y_1, Y_2, ..., Y_n, ...$ denotes a sequence of random variables
- Problem: How to describe the limit of Y_n
- Consider 2 cases:
 - Case 1. $Y_i \sim F$ independently, i = 1, 2, ...
 - Case $2.Z_1=Z_2=Z_3=...$,where $Z_1\sim F.$ Let $X\sim F.$ Can we say $Y_i\to X?$ Can we say $Z_i\to X.$ How to differentiate these two cases?
 - Recall: $Y_1, Y_2, ..., Y_n : \omega \to R$. A sequence of functions

Convergence in Probability

Definition 5.5.1: Convergence in Probability

For a sequence of r.v.'s $\{X_n\}_{i=1}^{\infty}=X_1,X_2,...,X_n,...$, we say they converge in probability towards the r.v. X (i.e. $X_n \xrightarrow{\rho} X$ if for any $\epsilon>0$,

$$\lim_{n\to\infty} P(|X_n-X|\geq \epsilon)=0$$

- The target X has the same sample space with all the $X_i's$.
- X_n are usually dependent, but not identically distribution.
- Practically, find the sequence of events $A_n = \{\omega \in \Omega, |X_n(\omega) X(\omega)| \ge \epsilon\}$ by obtaining $|X_n X|$ as a new r.v., and check if $P(A_n) \to 0$ when $n \to \infty$.
- Interpretation: for any ϵ , the event that $|X_n-X|$ has probability smaller than δ when n is large enough. It concerns more about the probability measure and r.v.,instead of the CDF only.

For random p-vectors, X_1, X_n, \ldots and X, if

$$\|\boldsymbol{X}_n - \boldsymbol{X}\| \stackrel{p}{\longrightarrow} 0,$$

we say $X_n \xrightarrow{P} X$, where $||z|| = (\sum_{i=1}^p z_i^2)^{1/2}$ denotes the Euclidean distance (L2-norm) for $z \in R^p$.

• It is easily to seen that $X_n \xrightarrow{P} X$ iff the corresponding component-wise convergence holds.

Example: Convergence in Probability

• Let X be a r.v. with prob 1 at 1,and $X_n \sim N(1, \frac{1}{n^2})$. According to the property of normal distribution. $X_n - X \sim N(0, \frac{1}{n^2})$,so

$$P(|X_n - X| \ge \epsilon) = P(|N(0, \frac{1}{n^2})|)$$

$$\le \frac{1}{n^2 \epsilon^2} \le \delta, n \ge \frac{1}{\epsilon \sqrt{\delta}}$$

So,
$$X_n \stackrel{P}{\longrightarrow} X$$
.¹

$$P(|X - \mu| \ge \epsilon) \le \frac{Var(X)}{\epsilon^2}$$

¹Chebychevs inequality.

Example: Convergence in Probability

• Let $X_n \sim Ber(0.5)$, and $X \sim Ber(0.5)$, X_n and X are independent. Note for any n,

$$P(|X_n - X| \ge 1)$$

$$= P(\{X_n = 1, X = 0\} \cup \{X_n = 0, X = 1\})$$

$$= P(\{X_n = 1, X = 0\}) + P(\{X_n = 0, X = 1\})$$

$$= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \Rightarrow 0$$

So, X_n does NOT converge to X in probability.

Convergence in L_r (rth mean)

Convergence in L_r

For a sequence of r,v,'s $\{X_i\}_{i=1}^{\infty}=X_1,...,X_n,...$,we say they converge in Lr towards the r.v. X (i.e. $X_n \xrightarrow{L^r} X$) if for any $\epsilon>0$,

$$\lim_{n\to\infty} E|X_n-X|^r=0.$$

where $[E(|X_n - X|^r)]^{\frac{1}{r}}$ is the L^r distance between X_n and X

- The target X has the same sample space with all the X_i s
- When r=2, converge in L^2 is also called converge in quadratic mean, i.e., $X_n \xrightarrow{qm} X$, The convergence in quadratic mean is generally used.
- To show L^r convergence, just figure out an upper bound of $E(|X_n X|^r)$, and show this upper bound goes to 0.

Example: Convergence in L_2

• Recall the pervious example when X has a point mass at 1, and $X_n \sim N(1, \frac{1}{n^2})$. According to the property of normal distribution., $X_n - X \sim N(0, \frac{1}{n^2})$,so

$$E(|X_n - X|^2) = (E(X_n - X))^2 + Var(X_n - X)$$
$$= 0 + \frac{1}{n^2} = \frac{1}{n^2} \to 0.$$

Hence, $X_n \xrightarrow{L^2} X$

• According to the deviation, if $Var(X_n-X) \to 0$, and $E(X_n-X) \to 0$, then there is $E(|X_n-X|^2) = (E(X_n-X))^2 + Var(X_n-X) \to 0$

Proposition 1

If $Var(X_n - X) \rightarrow 0$, and $E(X_n - X) \rightarrow 0$, then $X_n \stackrel{L^2}{\longrightarrow} X$.

Proposition 2

Let
$$0 < s < r < \infty$$
 if $X_n \xrightarrow{L^r} X$, then $X_n \xrightarrow{L^s} X$

Recall that with Holder inequality, there is

$$|E(XY)| \le E|XY| \le (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

where
$$\frac{1}{p} + \frac{1}{q} = 1$$

• Let $Y = 1, Z = |X_n - X|^r, I = r/s$, and k = 1/(1 - s/r) > 1, then

$$E(|X_n - X|^s) = E(|X_n - X|^s \times 1)$$

$$\leq \left[E(|X_n - X|^r)\right]^{s/r} \times 1^{1/k}$$

$$= \left[E(|X_n - X|^r)\right]^{s/r} \to 0$$

Proposition 3

Let $0 < r < \infty$ if $X_n \xrightarrow{L^r} X$, then $X_n \xrightarrow{p} X$

Proposition 3

Let $0 < r < \infty$ if $X_n \xrightarrow{L^r} X$, then $X_n \xrightarrow{p} X$

Proof:

$$P(|X_n - X| \ge \varepsilon) = P(|X_n - X|^r \ge \varepsilon^r)$$

$$\le \frac{E(|X_n - X|^r)}{\varepsilon^r} \to 0$$

Markov's Inequality: non-negative r.v.

$$P(X \ge a) \le \frac{E(X)}{a}$$

Markovs Inequality

Markovs(Chebyshevs) Inequality

- If g is strictly increasing and positive on $(0, \infty), g(x) = g(x)$.
- X is a r.v. such that $E[g(X)] < \infty$, then for each a > 0

$$P(|X| \geq a) \leq \frac{E[g(X)]}{g(a)}$$

Markovs Inequality

Markovs(Chebyshevs) Inequality

- If g is strictly increasing and positive on $(0, \infty)$, g(x) = g(x).
- X is a r.v. such that $E[g(X)] < \infty$, then for each a > 0

$$P(|X| \ge a) \le \frac{E[g(X)]}{g(a)}$$

Proof:

$$E[g(X)] \ge E[g(X)I_{\{g(X) \ge g(a)\}}]$$

$$\ge g(a)E[I_{\{g(X) \ge g(a)\}}]$$

$$= g(a)E[I_{\{|X| \ge a\}}]$$

$$= g(a)P(|X| \ge a)$$

Some special cases: Markovs Inequality

$$g(x) = |x| \to P(|X| \ge a) \le \frac{E|X|}{a}$$

$$g(x) = x^p \to P(|X| \ge a) \le \frac{E[g(X^p)]}{a^p}$$

$$g(x) = x^2 \to P(|X - EX| \ge a) \le \frac{Var(X)}{a^2}$$

$$g(x) = e^{t|x|} \to P(|X| \ge a) \le \frac{E[e^{t|X|}]}{a^{ta}}$$

for some constant $t \ge 0$

Almost Sure Convergence

Definition 5.5.6

For a sequence of r.v.'s $\{X_{i=1}^{\infty}\}=X_1,...,X_n,...$, we say they almost sure convergence to r.v. X (i.e. $X_n \xrightarrow{a.s} X$) if any $\epsilon>0$,

$$P(\lim_{n\to\infty} X_n = X) = 1$$
 or $P(\lim_{n\to\infty} X_n(\omega) = X(\omega)) = 1$

- The target X has the same sample space with all the $X_i's$.
- $\{X_n\}$ and X are usually dependent
- Practically, to show the a.s. convergence,
 - For each outcome ω , find the sequence $X_1(\omega), X_2(\omega), ...$ (sequence of real numbers) and the real number $X(\omega)$. Figure out whether $\lim_{n\to\infty} X_n(\omega) = X(\omega)$ is true or not.
 - Let the event $A = \{\omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}.$
 - Check if P(A) = 1
- Interpretation: for almost all the outcomes $\omega!$ when n is large enough, $|X_n(\omega) X(\omega)| \le \epsilon$ for any $\epsilon > 0$

Example 1: Almost Sure Convergence

- Let the sample space $\Omega = [0,1]$, with a probability measure that is uniform on this space, i.e. P([a,b]) = b a for any $0 \le a \le b \le 1$.
- Let

$$X_n(\omega) = \left\{ egin{array}{ll} 1, 0 \leq \omega < rac{n+1}{2n} \\ 0, otherwise \end{array}
ight. \hspace{0.5cm} X(\omega) = \left\{ egin{array}{ll} 1, 0 \leq \omega < rac{1}{2} \\ 0, otherwise \end{array}
ight.$$

For each $\omega \in [0,1]$.

- If $\omega \in [0, \frac{1}{2})$, then $X_n(\omega) = 1 = X(\omega)$.
- If $\omega = \frac{1}{2}$, then $X_n(\omega) = 1 \nrightarrow X(\omega) = 0$.
- If $\omega \in (1/2, 1]$, then $X_n(\omega) = 0 = X(\omega)$, when $\frac{n+1}{2n} < \omega$, which is equivalent with $n \ge \frac{1}{2\omega 1}$. So, $A = [0, 1/2) \cup (1/2, 1]$. Check P(A) = 1?

Example 5.5.7: Almost Sure Convergence

- Let the sample space $\Omega = [0,1]$, with a probability measure that is uniform on this space, i.e. P([a,b]) = b a for any $0 \le a \le b \le 1$.
- Define r.v.

$$X_n(\omega) = \omega + \omega^n$$
 and $X(\omega) = \omega$

For each $\omega \in [0,1]$.

- If $\omega \in [0,1), \omega^n \to 0$, then $X_n(\omega) \to \omega = X(\omega)$.
- If $\omega = 1$,then $X_n(\omega) = 2 \rightarrow X(\omega) = 1$ for every n So,A = [0,1).Check P(A) = 1?

Almost Sure Convergence

- Comparison between almost sure convergence and converge in probability
 - Convergence in probability: for each n, consider $P(|X_n(\omega) X(\omega)| > \epsilon)$, and check the limit of this probability
 - Almost sure convergence: for each ω , check the limit $\lim_{n\to\infty} X_n(\omega)$, and find the probability of the set that the limit does not equal to $X(\omega)$

• Can we express it as the limit of probability?

Theorem 1 (Almost Sure Convergence)

The following statements are equivalent:

- $\bullet \ X_n \stackrel{a.s.}{\longrightarrow} X$
- $\forall \epsilon > 0, P(\cap_{k \geq n} \{|X_k X| < \epsilon\}) \rightarrow 1$
- $\forall \epsilon > 0, P(\cup_{k > n} \{|X_k X| \ge \epsilon\}) \to 0$
- $\forall \epsilon > 0$.

$$\lim_{n\to\infty} P(\sup_{k>n} |X_k - X| > \epsilon) = 0$$

Here, we consider that set $\bigcup_{k \ge n} \{|X_k - X| > \epsilon\}$

Property 1: Almost Sure Convergence

Proposition 4

If $X_n \stackrel{a.s.}{\longrightarrow} X$, then $X_n \stackrel{p}{\longrightarrow} X$

Proof: for any $\varepsilon > 0$

$$0 \le P(|X_n - X| \ge \varepsilon)$$

$$\le P(\bigcup_{k=n}^{\infty} |X_k - X| \ge \varepsilon)$$

$$= 0$$

Hence, $\lim_{n\to\infty} P(|X_n-X|\geq \varepsilon)=0$, which implies $X_n\stackrel{p}{\longrightarrow} X$.

Convergence in Distribution

Definition 5.5.9

Let $\{X_i\}_{i=1}^{\infty}=X_1,X_2,...,X_n,...$ be a sequence of r.v.s with CDF $F_1,...,F_n,...$, and X be r.v. with CDF F.we say they converges in distribution to r.v. X (i.e. $X_n \stackrel{d}{\longrightarrow} X$) if

$$\lim_{n\to\infty}F_n(x)=F(x)$$

at very point at which F is continuous.

- $\{X_n\}$ and X can be dependent or independent
- Convergence:
 - If X is discrete, the convergence stands at points F does not jump
 - If X is cont., the convergence stands at every point
- Convergence in distribution is really the CDFs that converge, not the r.v. Hence it quite different from conv. in prob. or alm. sure conv.

Property 1: Convergence in Distribution

Proposition 5

If $X_n \xrightarrow{P} X$ then $X_n \xrightarrow{d} X$

Proof: Denote $F_n(x) = P(X_n \le x)$ and $F(x) = P(X \le x)$. First we have

$$F_{n}(x) = P(X_{n} \leq x)$$

$$= P(X_{n} \leq x, |X_{n} - X| \leq \epsilon) + P(X_{n} \leq x, |X_{n} - X| > \epsilon)$$

$$\leq P(X \leq x - (X_{n} - X), |X_{n} - X| \leq \epsilon) + P(|X_{n} - X| > \epsilon)$$

$$\leq P(X \leq x + \epsilon) + P(|X_{n} - X| > \epsilon)$$

$$= F(x + \epsilon) + P(|X_{n} - X| > \epsilon)$$

Or

$$F_{n}(x) = P(X_{n} \leq x)$$

$$= P(X_{n} \leq x, X \leq x + \epsilon) + P(X_{n} \leq x, X > x + \epsilon)$$

$$\leq P(X_{n} \leq x, X \leq x + \epsilon) + P(|X_{n} - X| > \epsilon)$$

$$\leq P(X \leq x + \epsilon) + P(|X_{n} - X| > \epsilon)$$

$$= F(x + \epsilon) + P(|X_{n} - X| > \epsilon)$$

On the other hand,

$$F_{n}(x) = 1 - P(X_{n} \ge x)$$

$$= 1 - P(X_{n} \ge x, |X_{n} - X| \ge \epsilon) - P(X_{n} \ge x, |X_{n} - X| \le \epsilon)$$

$$\ge 1 - P(X \ge x - (X_{n} - X), |X_{n} - X| \le \epsilon) - P(|X_{n} - X| \le \epsilon)$$

$$\ge 1 - P(X \le x - \epsilon) - P(|X_{n} - X| \le \epsilon)$$

$$= F(x - \epsilon) - P(|X_{n} - X| \le \epsilon)$$

Or

$$F_{n}(x) = 1 - P(X_{n} \ge x)$$

$$= 1 - P(X_{n} > x, X \le x - \epsilon) - P(X_{n} > x, X > x - \epsilon)$$

$$\ge 1 - P(X > x - \epsilon) - P(|X_{n} - X| \le \epsilon)$$

$$\ge 1 - P(X \le x - \epsilon) - P(|X_{n} - X| \le \epsilon)$$

$$= F(x - \epsilon) - P(|X_{n} - X| \le \epsilon)$$

Combining the two, we have

$$F(x - \epsilon) - P(|X_n - X| \le \epsilon) \le F_n(x) \le F(x + \epsilon) + P(|X_n - X| \le \epsilon)$$

Letting $n \to \infty$ and since $X_n \xrightarrow{p} X$,

$$F(x - \epsilon) \le \lim \inf_{n \to \infty} F_n(x) \le \lim \sup_{n \to \infty} F_n(x) \le F(x + \epsilon)$$

Recall that F is continuous at x,which means $F(x - \epsilon) \to F(x)$ and $F(x + \epsilon) \to F(x)$ as $\epsilon \to 0$.Hence,

$$F(x) \le \lim \inf_{n \to \infty} F_n(x) \le \lim \sup_{n \to \infty} F(x) \le F(x)$$

Convergence in Distribution

Recall the characteristic function for $X \sim F$ is $\Phi_X(t) = E(e^{it})$. If $\Phi_X(t) = \Phi_Y(t)$ then X and Y have the same distribution.

Theorem: Convergence in Distribution

Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of r.v.s with characteristic functions $\Phi_{X_n}(t)$ and X be a r.v. with the characteristic function $\Phi_X(t)$. Then,

$$X_n \xrightarrow{d} X \Leftrightarrow \lim_{n \to \infty} \Phi_{X_n}(X) = \Phi_X(t)$$

Example: Suppose that $X_n \sim N(\mu + 1/n, \sigma^2 + 1/n)$, then

$$\Phi_{X_n(t)} = \exp\{(\mu + 1/n^2)t - t^2(\sigma^2 + 1/n)/2\} \to \exp\{\mu t - t^2\sigma^2/2\}$$

Note that the limit is the characteristic function for $X \sim N(\mu, \sigma^2)$. So, $X_n \stackrel{d}{\longrightarrow} X$.It is easier than the analysis on the CDF of X_n .

Relationship Between 4 Types of Convergence

Some comments

•

$$X_n \xrightarrow{a.s.} X$$

$$\Rightarrow X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X$$

$$X_n \xrightarrow{L_r}$$

- If $0 < s < r < \infty, X_n \xrightarrow{L_r} X \Rightarrow X_n \xrightarrow{L_s} X$.
- No other implications hold in general.

Relationship

• (1).(a) If $X_n \stackrel{a.s}{\longrightarrow} X$, then $X_n \stackrel{P}{\longrightarrow} X$. The converse may not hold. Let

$$P(X_n = 0) = 1 - \frac{1}{n}, P(X_n = 1) = \frac{1}{n}$$

and $X'_n s$ are independent. Since

$$P(|X_n - 0| > \epsilon) = P(X_n = 1) = n^{-1} \to 0$$
, Then

 $X_n \stackrel{P}{\longrightarrow} X$. However, $X_n \stackrel{a.s.}{\longrightarrow} 0$ since for any $0 < \epsilon < 1$, we have

$$\lim_{n \to \infty} P(\bigcap_{k \ge n} \{ |X_k - 0| < \epsilon \}) = \lim_{n \to \infty} P(\lim_{r \to \infty} \bigcap_{k \ge n}^r \{ |X_k| < \epsilon \})$$

$$= \lim_{n \to \infty} \lim_{r \to \infty} P(\bigcap_{k \ge n}^r \{ |X_k| < \epsilon \}) = \lim_{n \to \infty} \lim_{r \to \infty} \prod_{k = n}^r (1 - \frac{1}{k})$$

$$= \lim_{n \to \infty} \lim_{r \to \infty} \frac{n - 1}{n} \frac{n}{n + 1} \cdots \frac{r - 1}{r} = \lim_{n \to \infty} \lim_{r \to \infty} \frac{n - 1}{r} = 0 \neq 1$$

(b) If $X_n \xrightarrow{L_r} X$, then $X_n \xrightarrow{P} X$. The converse may not hold.

$$P(X_n = 0) = 1 - \frac{1}{n}, P(X_n = n) = \frac{1}{n}$$

Then $X_n \stackrel{P}{\longrightarrow} 0$ since

$$P(|X_n - 0| > \epsilon) = P(X_n = n) = \frac{1}{n} \to 0$$

. But $EX_n = 1 \neq 0$.

If $X_n \xrightarrow{L_r} X$, then $X_n \xrightarrow{P} X$. The converse may not hold.

$$X \sim N(0,1), X_n = -X \sim N(0,1)$$

Then $X_n \xrightarrow{d} X$.but $X_n \xrightarrow{P} X$ since

$$P(|X_n - X| > \epsilon) = P(2|X| > \epsilon) \nrightarrow 0$$

.

Relationship

(2) If
$$0 < s < r < \infty, X_n \xrightarrow{L_r} X \Rightarrow X_n \xrightarrow{L_s} X$$
. The converse may not hold.

$$P(X_n = 0) = 1 - \frac{1}{n^2}, P(X_n = n) = \frac{1}{n^2}$$

Then $X_n \stackrel{L_1}{\longrightarrow} X$ since

$$E|X_n - 0| = \frac{1}{n^2} \cdot n = \frac{1}{n} \to 0$$

But $X_n \xrightarrow{L_2} X$ since

$$E|X_n - 0|^2 = \frac{1}{n^2} \cdot n^2 = 1 \neq 0$$

- (3). We now show that "a.s. convergence" and "mean convergence" do not imply each other.
 - Let $P(X_n=0)=1-n^{-2}$ and $P(X_n=n^3)=n^{-2}$. Then $X_n\stackrel{a.s.}{\longrightarrow} 0$, but $X_n\stackrel{L_1}{\longrightarrow} 0$. Since

$$\lim_{n \to \infty} P(\bigcup_{k \ge n} \{ |X_k - 0| \ge \epsilon \}) = \lim_{n \to \infty} P(\lim_{r \to \infty} \bigcup_{k \ge n}^r \{ |X_k| \ge \epsilon \})$$

$$= \lim_{n \to \infty} \lim_{r \to \infty} P(\bigcup_{k \ge n}^r \{ |X_k| \ge \epsilon \}) = \lim_{n \to \infty} \lim_{r \to \infty} \sum_{k = n}^r \frac{1}{k^2}$$

$$= \lim_{n \to \infty} \lim_{r \to \infty} \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{r^2} \right) \to 0.$$

However,

$$|E|X_n-0|=\frac{1}{n^2}\cdot n^3\to\infty$$

• $X_n \stackrel{L_1}{\to} 0$, but $X_n \stackrel{a.s.}{\to} 0$

$$P(X_n = 0) = 1 - \frac{1}{n}, P(X_n = 1) = \frac{1}{n}$$

Properties of Convergence

- ullet $X_n o X$ and $Y_n o Y$, then $X_n \pm Y_n o X + Y$
 - $X_n \xrightarrow{a.s.} X$, $Y_n \xrightarrow{a.s.} Y$, then $X_n \pm Y_n \to X + Y$,
 - $X_n \xrightarrow{L_r} X, X_n \xrightarrow{L_r} X$, then $X_n + Y_n \xrightarrow{a.s.} X + Y$,
 - $X_n \xrightarrow{P} X, X_n \xrightarrow{P} X$, then $X_n + Y_n \xrightarrow{L_r} X + Y$,
 - $X_n \stackrel{d}{\longrightarrow} X, X_n \stackrel{d}{\longrightarrow} X$, it is not sure that $X_n + Y_n \stackrel{d}{\longrightarrow} X + Y$
- Slutsky's Theorem Let $X_n \stackrel{d}{\longrightarrow} X$ and $Y_n \stackrel{d}{\longrightarrow} C$, then
 - $\bullet X_n + Y_n \stackrel{d}{\longrightarrow} X + C$
 - $\bullet X_n Y_n \stackrel{d}{\longrightarrow} CX$
 - $X_n/Y_n \stackrel{d}{\longrightarrow} X/C \text{ id } C \neq 0$
- The Continuous Mapping Theorem: if $g(\cdot)$ is a continuous function, then
 - $X_n \xrightarrow{a.s.} X$, then $g(X_n) \xrightarrow{a.s.} g(X)$,
 - $X_n \stackrel{p}{\longrightarrow} X$, then $g(X_n) \stackrel{p}{\longrightarrow} g(X)$,
 - $X_n \stackrel{d}{\longrightarrow} X$, then $g(X_n) \stackrel{d}{\longrightarrow} g(X)$.

The Continuous Mapping Theorem

Theorem 2 (Continuous Mapping Theorem)

- Let X_1, X_2, \ldots , and X be random p-vectors defined on a probability space
- let $g(\cdot)$ be a vector-valued (including real-valued) continuous function defined on \mathbb{R}^p .

If X_n converges to X in probability, almost surely, or in law, then $g(X_n)$ converges to g(X) in probability, almost surely, or in law, respectively.

Remark The condition that $g(\cdot)$ is continuous function in Theorem can be further relaxed to that $g(\cdot)$ is continuous a.s., i.e., $P(X \in C(g)) = 1$ where $C(g) = \{x : g \text{ is continuous at } x \text{ is called the continuity set of } g$.

Example

- If $X_n \stackrel{d}{\longrightarrow} X \sim N(0,1)$, then $1/X_n \stackrel{d}{\longrightarrow} 1/X$?
- If $X_n = 1/n$, and

$$g(x) = \begin{cases} 1 & x > 0 \\ 0 & x \le 0 \end{cases}$$

Then X_n $g(X_n) \stackrel{d}{\longrightarrow} ?$

Stochastic Orders

Recall:

- In mathematics, we use o and O notations to denote the order of terms
- $a_n = o(1)$ means $a_n \to 0$ when $n \to \infty$; $a_n = o(b_n)$ means that $a_n/b_n = o(1)$.
- $a_n = O(1)$ means $|a_n| \le C$ for some constant C > 0, for all large n; $a_n = O(b_n)$ mean $a_n/b_n = O(1)$.

Now we consider the probabilistic version:

Op

If
$$X_n \xrightarrow{P} 0$$
,i.e. $P(|X_n| \ge \epsilon) \to 0$ for every $\epsilon > 0$, then we say that $X_n = o_p(1)$

O_p

We say that $X_n = O_p(1)$, or X_n is bounded in probability, if for any $\epsilon > 0$, there exists $C_{\epsilon} > 0$, such that

$$P(|X_n| > C_{\epsilon}) \le \epsilon$$

Stochastic Orders

Generalisation: Consider a sequence $X_1, X_2, ...$ of r.v.'s and $a_1, a_2, ...$, a sequence of positive real numbers,

- For a r.v. $X, X_n \stackrel{P}{\longrightarrow} X$ if only if $X_n X = o_p(1)$
- $X_n = o_p(a_n)$ if only if $a_n^{-1}X_n = o_p(1).a_n$ is the rate.
- $X_n = O_p(a_n)$ if only if $a_n^{-1}X_n = O_p(1).a_n$ is the rate.

Examples:

- If $X_n \sim N(0, \frac{1}{n})$,then $X_n = o_p(1)$ and $X_n = O_p(\frac{1}{\sqrt{n}})$
- If $X_n = o_p(1)$, then $X_n = O_p(1)$
- $O_p(1)o_p(1) = o_p(1), O_p(1)O_p(1) = O_p(1)$
- $O_p(1) + o_p(1) = O_p(1)$
- $O_p(a_n)o_p(b_n) = o_p(a_nb_n), O_p(a_n)O_p(b_n) = O_p(a_nb_n)$
- $(1+o_p)^{-1}=O_p(1)$
- $o_p(O_p(1)) = o_p(1)$

Homework

- Show that if $X_n \stackrel{d}{\longrightarrow} X$ for a random variable X, then $X_n = O_p(1)$.
- **a** Let X, X_1, X_2, \cdots be a sequence of random variables. Show that $X_n \stackrel{p}{\longrightarrow} X$ as $n \to \infty$ if and only if

$$E(\frac{|X_n-X|}{1+|X_n-X|}) \to 0$$
 as $n \to \infty$.

- **3** Prove that $O_{P(1)} + o_{P(1)} = O_{P(1)}$.
- Let X_1, X_2, \ldots be iid random variables with $EX_1 = 0, EX_1^2 < \infty$, then $\sqrt{n}\bar{X}_n/S_n \stackrel{d}{\longrightarrow} N(0,1)$