Synthèse du cours de Probabilités

1 Variables aléatoires

1.1 Probabilité conditionnelle:

Soient (Ω, \mathcal{A}, P) un espace de probabilité et B un événement tel que $P(B) \neq 0$. On appelle probabilité conditionnelle de A sachant B, le réel

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

Propriétés:

• Soit B un évènement tel que $P(B) \neq 0$, alors, pour tout $A \in \mathcal{A}$, on a

$$P(A \cap B) = P(B)P(A \mid B).$$

- $\bullet\,$ Soit A et B deux évènements de probabilité non nulle. Les trois conditions sont équivalentes :
 - 1. A et B sont indépendants : $P(A \cap B) = P(A) \cdot P(B)$
 - 2. $P(A \mid B) = P(A)$.
 - 3. $P(B \mid A) = P(B)$.
- Soit $B \in \mathcal{A}$ tel que 0 < P(B) < 1. Alors, pour tout $A \in \mathcal{A}$, on a

$$P(A) = P(A \mid B)P(B) + P(A \mid B^{c})P(B^{c}).$$

1.2 Formule des Probabilités Totales

Soit $(B_i)_{i\in I}$ (avec $I\subseteq N$ fini ou non) une famille d'évènements deux à deux incompatibles telle que : $\forall i\in I,\ P(B_i)\neq 0$ et $\bigcup_{i\in I}B_i=\Omega$ alors, pour tout évènement $A\in\mathcal{A}$, on a :

$$P(A) = \sum_{i \in I} P(A \cap B_i) = \sum_{i \in I} P(A|B_i)P(B_i).$$

1.3 Loi de probabilité:

Si $X:\Omega\longrightarrow R$ est une variable aléatoire réelle discrète, alors $X(\Omega)=\{X(\omega):\omega\in\Omega\}$ est un ensemble dénombrable.

Soit (Ω, \mathcal{A}, P) un espace probabilisé, et X une variable aléatoire réelle discrète. On appelle loi de probabilité (ou distribution de probabilité) de la variable X, l'application f:

$$f: X(\Omega) \longrightarrow [0,1]$$

$$x \longmapsto P(X = x).$$

On suppose que X est une variable aléatoire réelle discrète et que $X(\Omega)=\{x_1,x_2,x_3,\ldots\}$. On peut présenter la loi de probabilité de X sous forme de tableau :

x	x_1	x_2	x_3	
P(X=x)	$P(X=x_1)$	$P(X=x_2)$	$P(X=x_3)$	

Proposition: Soit X une v.a. réelle discrète définie sur l'espace probabilisé $(\Omega, \mathcal{P}(\Omega), P)$. Alors la famille d'ensembles $\{X = x\}_{x \in X(\Omega)}$ forme une partition de l'univers Ω . De plus, $\sum_{x \in X(\Omega)} P(X = x) = 1$.

1.4 Fonction de répartition:

On appelle fonction de répartition (f.d.r.) d'une variable aléatoire X la fonction F_X définie sur R par :

$$F_X(x) = P(X \le x).$$

Lorsque X est une variable aléatoire discrète, c'est-à-dire qu'elle ne prend qu'un nombre dénombrable de valeurs $\{x_i:i\in I\subset N\}$, la f.d.r. F_X de X s'écrit :

$$F_X(x) = P(X \le x) = \sum_{x_i \le x} P(X = x_i).$$

Propriétés:

La fonction de répartition F_X vérifie les propriétés suivantes :

- F_X est une application définie sur R à valeurs dans l'intervalle [0,1].
- F_X est continue à droite.

- F_X est une fonction croissante et, pour une variable aléatoire discrète, F_X est une fonction en escalier.
- On a:

$$\lim_{x \to +\infty} F_X(x) = 1, \quad \lim_{x \to -\infty} F_X(x) = 0.$$

- La fonction de répartition caractérise totalement la variable aléatoire X.
- Pour tout $x \in R$, $P(X > x) = 1 F_X(x)$.
- Pour tout $x, y \in R$, $P(x < X \le y) = F_X(y) F_X(x)$.

1.5 Espérance:

On appelle espérance mathématique de X, le nombre E(X) défini par :

$$E(X) = \sum_{k \in E} k \cdot P(X = k)$$

Propriétés:

Soient X et Y deux variables aléatoires, et a et b des nombres réels. On a :

- E(aX) = aE(X)
- E(aX + b) = aE(X) + b
- E(aX + bY) = aE(X) + bE(Y) (linéarité de l'espérance)
- Si $X \ge 0$, alors $E(X) \ge 0$
- Si $X \ge 0$ et E(X) = 0, alors P(X = 0) = 1 (c'est-à-dire X est une constante égale à 0)
- Si $X \geq Y$ (c'est-à-dire pour tout $\omega \in \Omega$, on a $X(\omega) \geq Y(\omega)$), alors $E(X) \geq E(Y)$

1.6 Variance:

$$V(X) = E((X - E(X))^2)$$

Propriétés:

Soit X une variable aléatoire admettant une variance et donc une espérance.

- $V(X) = E(X^2) E(X)^2$
- La variance est toujours positive.
- Soient a et b deux réels, $V(aX + b) = a^2V(X)$
- Si V(X) = 0, alors X est égale à une constante.

1.7 Écart type:

Soit X une variable aléatoire possédant une variance. L'écart type de la variable aléatoire X est un réel égal à

$$\sigma(X) = \sqrt{\operatorname{Var}(X)}.$$

2 Lois usuelles discrètes

2.1 Loi de Probabilité Uniforme

Soit Ω un univers discret et fini. La loi de probabilité uniforme P satisfait :

- Pour tout $\omega \in \Omega$, $P(\omega) = \frac{1}{card(\Omega)}$;
- Pour tout $A \subset \Omega$, $P(A) = \frac{card(A)}{card(\Omega)}$ (le nombre des cas favorables divisé par le nombre des cas possibles).

2.2 Loi de bernoulli:

Modélise une expérience aléatoire qui n'a que deux issues possibles :

- Succès (avec probabilité p),
- Échec (avec probabilité 1-p).

Variable de Bernoulli:

Une variable aléatoire X suit une loi de Bernoulli de paramètre p si :

$$P(X = 1) = p$$
 et $P(X = 0) = 1 - p$

Où:

- X = 1 représente le succès,
- X = 0 représente l'échec.

Espérance et Variance:

- Espérance : E(X) = p
- Variance : Var(X) = p(1-p)

Exemples d'application:

- Lancer une pièce : succès si face, échec si pile (p = 0, 5).
- Réussite ou échec d'un tir au but (p = probabilité de marquer).

2.3 Loi binomiale:

La loi binomiale modélise une situation où l'on répète une **même expérience** aléatoire indépendante (suivant une loi de Bernoulli) un nombre fixé de fois. Elle est utilisée pour dénombrer le **nombre de succès** obtenus dans ces répétitions.

Variable binomiale:

Une variable aléatoire X suit une loi binomiale de paramètres n (nombre de répétitions) et p (probabilité de succès) si :

$$P(X = k) = nkp^{k}(1-p)^{n-k}, k \in \{0, 1, ..., n\}$$

Où $nk = \frac{n!}{k!(n-k)!}$ est le coefficient binomial.

Espérance et Variance

• Espérance : E(X) = np

• Variance : Var(X) = np(1-p)

Exemples d'application

- Lancer une pièce n fois : compter le nombre de faces (p = 0, 5).
- Étude d'un test médical : calculer le nombre de patients guéris parmi n participants (p = probabilité de guérison).

2.4 Loi hypergéometrique:

La loi hypergéométrique modélise une situation où l'on effectue un **tirage sans** remise dans une population de taille N, contenant deux types d'éléments :

- K éléments d'un type (succès),
- N-K éléments d'un autre type (échecs).

Elle permet de calculer la probabilité d'obtenir exactement k succès lors d'un tirage de n éléments.

Variable hypergéométrique:

Une variable aléatoire X suit une loi hypergéométrique avec les paramètres $N,\,K,\,$ et n si :

$$P(X=k) = \frac{KkN - Kn - k}{Nn}, \quad \max(0, n - (N-K)) \le k \le \min(n, K)$$

Où $ab = \frac{a!}{b!(a-b)!}$ est le coefficient binomial.

Espérance et Variance:

• Espérance : $E(X) = n \cdot \frac{K}{N}$

• Variance : $Var(X) = n \cdot \frac{K}{N} \cdot \frac{N-K}{N} \cdot \frac{N-n}{N-1}$

Exemples d'application

• Tirage de cartes : Probabilité d'avoir k cartes rouges en tirant n cartes d'un paquet de N = 52.

• Qualité en production : Vérification de n produits pour estimer le nombre k de défectueux parmi K produits défectueux dans un lot de taille N.

2.5 Loi Uniforme:

• X suit la loi uniforme sur $E = \{x_1, \dots, x_n\}$ si et seulement si X prend les valeurs x_1, \dots, x_n avec les probabilités :

$$P(X = x_i) = \frac{1}{n}, \quad \forall i \in \{1, 2, \dots, n\}.$$

• Espérance :

$$E(X) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Variance :

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)^2$$

2.6 Loi Géométrique:

La loi géométrique modélise une situation où l'on effectue une série d'essais identiques et indépendants, chaque essai ayant deux issues possibles : succès ou échec. La variable aléatoire X représente le **nombre d'essais nécessaires** pour obtenir le premier succès.

2.6.1 Propriété principale

ullet Chaque essai a une probabilité constante p de succès.

 $\bullet\,$ La probabilité que le premier succès se produise au k-ième essai est donnée par :

$$P(X = k) = (1 - p)^{k-1}p, \quad k \ge 1.$$

2.6.2 Espérance et Variance

• Espérance : $E(X) = \frac{1}{n}$

• Variance : $Var(X) = \frac{1-p}{p^2}$

2.6.3 Exemples d'application

- Compter combien de lancers de dé sont nécessaires pour obtenir un 6 $(p = \frac{1}{6})$.
- Observer combien de jours il faut attendre avant qu'un événement rare se produise (p = probabilité quotidienne de l'événement).

2.7 Loi de Poisson

La loi de Poisson est utilisée pour modéliser le **nombre d'événements rares** ou aléatoires qui se produisent dans un intervalle donné (temps, espace, etc.).

Définition:

Une variable aléatoire X suit une loi de Poisson si elle représente le **nombre** d'événements survenant dans un intervalle, avec une probabilité donnée par :

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$

Propriétés principales:

Le paramètre λ représente à la fois l'espérance et la variance :

$$E(X) = \lambda, \quad Var(X) = \lambda.$$

3 Élements d'analyse combinatoire

Le dénombrement est une branche des mathématiques permettant de **compter** les éléments d'un ensemble fini, souvent en lien avec les probabilités. Voici les notions principales :

3.1 Règles

- 1. Principe additif : Si une tâche peut être réalisée de n_1 façons ou n_2 façons (mutuellement exclusives), alors elle peut être réalisée de $n_1 + n_2$ façons.
 - Exemple : Choisir une carte rouge (26 possibilités) ou noire (26 possibilités) dans un jeu standard : 26 + 26 = 52.
- 2. Principe multiplicatif : Si une tâche est composée de plusieurs étapes indépendantes, elle peut être réalisée de $n_1 \times n_2$ façons.
 - Exemple : Choisir une carte et lancer un dé : $52 \times 6 = 312$.

3.2 Arrangements

Un arrangement est une sélection **ordonnée** de p éléments parmi n.

• Sans répétition :

$$A_n^p = \frac{n!}{(n-p)!}.$$

Exemple: Placer 3 personnes parmi 10 en ligne $(A_{10}^3 = 720)$.

• Avec répétition :

$$A_n^p = n^p$$
.

Exemple : Composer un mot de 3 lettres avec l'alphabet $(26^3 = 17576)$.

3.3 Combinaisons

Une combinaison est une sélection **non ordonnée** de p éléments parmi n.

• Formule :

$$C_n^p = \frac{n!}{p!(n-p)!}.$$

Exemple : Choisir 5 cartes dans un jeu de 52 (C_{52}^5) .

• Avec répétition : On utilise la même formule en tenant compte des éléments réutilisables :

$$C_{n+p-1}^p = \frac{(n+p-1)!}{p!(n-1)!}.$$

3.4 Permutations

Une permutation est un arrangement de tous les éléments d'un ensemble.

• Formule:

$$P_n = n!$$
.

Exemple: Ordonner 5 personnes (5! = 120).

4 Indépendance des Événements

Soit (Ω, \mathcal{A}, P) un espace de probabilité.

 \bullet Deux événements A et B sont dits indépendants si :

$$P(A \cap B) = P(A)P(B)$$

• Soit $(A_i)_{i \in I}$, avec $I \subseteq N$ (fini ou non). On dit que les A_i sont indépendants dans leur ensemble (ou mutuellement indépendants) si, pour tout $J \subseteq I$, on a :

$$P\left(\bigcap_{i\in J}A_i\right) = \prod_{i\in J}P(A_i)$$

Remarque : Ne pas surtout confondre "indépendants" et "incompatibles" pour des événements.

- A et B sont incompatibles si $A \cap B = \emptyset$.
- A et B sont indépendants si $P(A \cap B) = P(A)P(B)$.
- La seule liaison : L'incompatibilité de deux événements de probabilité non nulle implique leur dépendance.