

1 **CLAIMS**

2 We claim:

3 1. A method comprising:

4 processing a data packet, having a destination address (d), towards a routing
5 destination; and

6 determining a default-route-prefix (P_d) in a default-route determination step, when in
7 a routing table cache (L_1) and in a routing table (L_2), there is no entry with a
8 destination address prefix that is a prefix of the destination address (d).

9 2. A method as recited in claim 1, wherein the default-route-prefix (P_d) is determined
10 to be a prefix of at least the destination address (d).

11 3. A method as recited in claim 1, wherein in a first lookup step for the destination
12 address (d) the destination address prefix being a prefix thereof is searched in the
13 routing table cache (L_1), and wherein if said first lookup step results in not finding
14 such destination address prefix, in a second lookup step for said destination
15 address (d) the destination address prefix being a prefix thereof is searched in the
16 routing table (L_2).

17 4. A method as recited in claim 3, wherein if the second lookup step on the routing
18 table (L_2) results in finding the destination address prefix being a prefix of the
19 destination address (d) a matching destination address prefix, the found destination
20 address prefix entry is entered into the routing table cache (L_1) in a cache update
21 step, and the data packet is forwarded in a destination forwarding step to the
22 corresponding routing destination.

1 5. A method as recited in claim 3, wherein if the second lookup step results in not
2 finding the destination address prefix being a prefix of the destination address (d),
3 in a default forwarding step the data packet is forwarded to a default routing
4 destination.

5 6. A method as recited in claim 1, wherein in a default-route caching step, the
6 default-route-prefix (P_d) is entered together with the default routing destination as
7 an entry into the routing table cache (L_1).

8 7. A method as recited in claim 3, wherein in the first lookup step the routing table
9 cache (L_1) is searched for covering path entries that reside in the routing table
10 cache (L_1), the covering path entries in their totality being a prefix for at least all
11 destination address prefixes existing in the routing table (L_2).

12 8. A method as recited in claim 7, wherein in the event that the first lookup step
13 results in finding no covering path entry for the destination address (d), the data
14 packet is forwarded to a default routing destination in a default forwarding step.

15 9. A method as recited in claim 7, wherein in the event that the first lookup step
16 results in finding a covering path entry for the destination address (d), in a second
17 lookup step for said destination address (d) the destination address prefix being a
18 prefix of the destination address (d) is searched in the routing table (L_2).

19 10. A method as recited in claim 3, wherein in the event that the first lookup step
20 results in finding the destination address prefix being a prefix of the destination
21 address (d), the data packet is forwarded in a destination forwarding step to the
22 corresponding routing destination.

23 11. A method comprising:

1 processing a data packet, having a destination address (*d*), towards a routing
2 destination, wherein a default-route-prefix (P_d) resides together with a default
3 routing destination as an entry in a routing table cache (L₁); and

4 forwarding the data packet to said default routing destination, when the
5 default-route-prefix (P_d) matches at least part of said destination address (*d*).

6 12. An article of manufacture comprising a computer usable medium having
7 computer readable program code means embodied therein for causing processing
8 of a data packet, the computer readable program code means in said article of
9 manufacture comprising computer readable program code means for causing a
10 computer to effect the steps of claim 1.

11 13. An article of manufacture comprising a computer usable medium having
12 computer readable program code means embodied therein for causing processing
13 of a data packet, the computer readable program code means in said article of
14 manufacture comprising computer readable program code means for causing a
15 computer to effect the steps of claim 11.

16 14. A program storage device readable by machine, tangibly embodying a program of
17 instructions executable by the machine to perform method steps for processing of
18 a data packet, said method steps comprising the steps of claim 1.

19 15. A program storage device readable by machine, tangibly embodying a program of
20 instructions executable by the machine to perform method steps for processing of
21 a data packet, said method steps comprising the steps of claim 11.

22 16. An apparatus comprising:

1 means for processing a data packet, having a destination address (d), towards a
2 routing destination; and

3 means for determining a default-route-prefix (P_d) in a default-route determination
4 step, when in a routing table cache (L_1) and in a routing table (L_2), there is no entry
5 with a destination address prefix that is a prefix of the destination address (d).
6 17. A computer program product comprising a computer usable medium having
7 computer readable program code means embodied therein for causing a
8 processing of a data packet, the computer readable program code means in said
9 computer program product comprising computer readable program code means for
10 causing a computer to effect the functions of claim 16.