

Universidad Tecnológica de la Mixteca

Clave DGP 509394

Ingeniería en Diseño

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Teoría General de Sistemas		

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Segundo Semestre	035024	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

El alumno comprenderá el enfoque y los conceptos básicos de la Teoría General de Sistemas, identificará los principales campos de desarrollo de la misma y mediante los conocimientos adquiridos será capaz de aplicar el enfoque sistémico en el análisis de la realidad.

TEMAS Y SUBTEMAS

¿Qué es la Teoría General de Sistemas?

- 1.1 El pensamiento sistémico
- 1.2 la Teoría General de Sistemas desde un punto de vista Epistemológico

2. Surgimiento de la Teoría General de Sistemas

- 2.1 Vitalismo
- 2.2 Mecanicismo
- 2.3 Positivismo lógico o empirismo lógico
- 2.4 Organicismo
- 2.5 Funcionalismo
- 2.6 Estructuralismo

3. Definiciones Generales de sistemas

- 3.1 Concepto de sistema
- 3.2 Conceptos Básicos de la Teoría General de Sistemas

4. Clasificaciones Básicas de Sistemas

- 4.1 Niveles del sistema
- 4.2 las fronteras de un sistema
- 4.3 los sistemas físicos y abstractos
- 4.4 Sistemas centralizados y descentralizados
- 4.5 Sistemas naturales y sistemas elaborados
- 4.6 Sistemas abiertos y cerrados
- 4.7 Sistemas estables y en equilibrio
- 4.8 Sistemas de retroalimentación
- 4.9 Taxonomía de Building
- 4.10 Taxonomía de Checkland

5. Propiedades de los sistemas

- 5.1 Sinergia. 5.2 Recursividad
- 5.3 las leyes de la termodinámica
- 5.4 Entropía
- 5.5 la entropía y los sistemas abiertos
- 5.6 La nequentropía y la subsistencia del sistema
- 5.7 La generación de la neguentropía
- 5.8 Entropía e información
- 5.9 Homeostasis
- 5.10 Isomorfismo
- 5.11 Equifinalidad
- 5.12 Ley de la variedad requerida

6. Modelos

- 6.1 La noción de modelo
- 6.2 Características del modelo
- 6.3 El modelo en la investigación científica
- 6.4 Clases de modelo: Por función, por estructura, Referencia temporal, Referencia por incertidumbre, Generalidad
- 6.5 Modelo formal y modelo informal
- 6.6 Función del modelo
- 6.7 Formulación de modelos

7. Dimensiones del análisis de sistema: morfología

- 7.1 El proceso de diseño y mejoramiento de sistemas
- 7.2 Fases del análisis de sistemas
- 7.3 Pasos del análisis de sistemas

8. Orientaciones y aplicaciones de la Teoría General de Sistemas

- 8.1 El enfoque reduccionista vs, Enfoque holístico
- 8.2 Enfoque para el estudio de la Teoría General de Sistemas
- 8.3 Tendencias Que buscan la aplicación práctica de la Teoría General de Sistemas

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor con base en textos y temas elegidos, y con la participación activa del alumno en clase, utilizando técnicas como lluvia de ideas, exposiciones, debates y otros, reforzando el desarrollo de los temas mediante apoyo didáctico como retroproyector y cañón.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor deberá indicar el procedimiento de evaluación, que deberá comprender, evaluaciones parciales que tendrán una equivalencia del 50% de la calificación final y un examen ordinario que equivaldrá al restante 50%.

Las evaluaciones podrán ser escritas y/o prácticas y cada una consta de un examen teórico-práctico, tareas y proyectos. La parte práctica de cada evaluación deberá estar relacionada con la ejecución exitosa y la documentación de la solución de problemas sobre temas del curso.

Pueden ser consideradas otras actividades como: el trabajo extra clase y la participación durante las sesiones del curso. El examen tendrá un valor mínimo de 50%, las tareas, proyectos y otras actividades, un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica

- FCE. Bertalanffy, Ludvig Van. Teoría general de los sistemas. Fundamentos, desarrollo, aplicaciones. México (Ciencia y Tecnología).1998.
- 2. Cárdenas, Miguel A. La Ingeniería de Sistemas, Filosofía y Técnicas. México.
- 3. Jerez, Víctor y Grijalva, Manuel. El Enfoque de Sistemas. México: Limusa.
- 4. Hall, Arthur D. Ingeniería de Sistemas. México: CECSA..

De consulta

- 1. Marín Gómez, Edgar. Esto es el caos. CNCA, México.1995.
- 2. Johasen Bertoglio, Osear. Introducción a la Teoría General de Sistemas. Limusa, México, 1992.
- 3. Mc Dermontt, O' Connor. Introducción al Pensamiento Sistémico. Urano. 1997.
- 4. Morín, Edgar. Introducción al pensamiento complejo. Gedisa. Barcelona, 1994 (Ciencias cognitivas).

PERFIL PROFESIONAL DEL DOCENTE

Posgrado en cualquier área, solo ocupar el enfoque y pensamiento sistémico para la solución de problemas complejos debido a que la teoría tiene que ser llevada a la práctica.

Vo.Bo. Autorizó

I.D. Eruvid Cortés Camacho Jefe de Carrera

Dr. Agustín Santiago Alvarado Vice-Rector Académico