A Deep Learning Multimodal Approach to Survival Risk Prediction in Kidney Cancer Patients

Hieu Nguyen nguyenhieu@uchicago.edu

Project overview

Goal:

- Predict overall survival by stratifying two groups (high/low risk) for patients with clear cell renal cell carcinoma
- Extract features and fuse 3 modalities in an end-to-end model

Loss function: Negative Cox partial log-likelihood

$$loss(eta,t,D=1) = -\sum_{i \in D=1}^n \left(ec{x_i}^Teta - \ln\left(\sum_{j \in R(t)}^{R(t)} e^{ec{x}_j^Teta}
ight)
ight)$$

Datasets and embeddings

- 533 patient-level samples with full data
- Train-validation-test: 70-15-15 ratio
- Labels: event (dead/alive), time (days from diagnosis to last checkup)
- Clinical data:
 - age (normalized), gender, tumor grade, staging (one-hot encoded)
 - 13 features
- RNA-seq gene expressions:
 - counts per million, log1p, and average counts for patients with multiple RNA samples
 - 19962 features
- Histopathology slides
 - Max 5 slides per patient, 1000 tiles per slide per patient
 - o ResNet18 to convert these total tiles to i.e. (3000 tiles, 512) tensor
 - KMeans (k=5) to cluster these tiles

Results - Concordance Index

	Features	Model	c-index (std)
Baseline - Clinical	age, gender, tumor grade, staging	CoxPH penalizer I1_ratio=0.01	0.7631 (0.0514)
Baseline - RNA-seq gene expressions	PCA, n_components=16	CoxPH	0.7326 (0.0410)
Baseline - Histopathology slides	ResNet18 with ImageNet weights => (512,) vectors KMeans clustering (k=5)	Cox partial likelihood Feed-forward networks on each cluster Attention softmax layer at the end epochs=5, Ir=0.001, batch size=32	0.6868 (0.0560)
Multimodality	Clinical+RNA: (32,) Histopathology: (64,) Concatenated: (96,)	Cox partial likelihood Feed-forward networks epochs=5, Ir=0.0001, batch size=32, weight_decay of 0.0001	0.7753 (0.0427)

mean c-index is calculated on test set (n=80) with 300 bootstraps with replacement

Challenges and lessons learned

- Histopathology slides
 - Svs files are very large, needed to immediately delete the files after tiling
 - Only able to work with level=2 resolution which might not be as correct as the lower levels
 - Foundation models might identify ROIs better

Model architecture

- The choices for the layers, neurons, regularizations, and training hyperparameters were somewhat arbitrary
 - => more slurm jobs help
- Stratifying the data splitting or cross-validation might yield more accurate results
- Not much meaningful clinical inference yet so explainability is necessary
 - Grad-CAM on attention heatmap for the histopathology slides
 - Integrated gradient attribution for the gene expressions

Q&A