Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. One approach popular for requirements analysis is Use Case analysis. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Unreadable code often leads to bugs, inefficiencies, and duplicated code. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. One approach popular for requirements analysis is Use Case analysis. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. It is usually easier to code in "high-level" languages than in "low-level" ones. Code-breaking algorithms have also existed for centuries. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Normally the first step in debugging is to attempt to reproduce the problem. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks.