Midterm 3

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy April 24, 2020

1 Memory Bank

- 1. $v_d = i/(nqA)$... Charge drift velocity in a current i in a conductor with number density n and area A.
- 2. P = IV ... Relationship between power, current, and voltage.
- 3. $\vec{F} = q\vec{v} \times \vec{B}$... The Lorentz force on a charge q with velocity \vec{v} in a magnetic field \vec{B} .
- 4. $\vec{F} = I\vec{L} \times \vec{B}$... The Lorentz force on a conductor of length \vec{L} carrying a current I in a magnetic field \vec{B} .
- 5. $\int \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$... Ampère's Law.
- 6. $\epsilon = -Nd\phi/dt$... Faraday's Law.
- 7. $\phi = \vec{B} \cdot \vec{A}$... Definition of magnetic flux.
- 8. Faraday's Law using Inductance, M: $emf = -M \frac{dI}{dt}$.
- 9. Typically, we refer to mutual inductance between two objects as M, and self inductance as L. Self-inductance: $\Delta V = -L(dI/dt)$.
- 10. Units of inductance: V s ${\bf A}^{-1}$, which is called a Henry, or H.
- 11. $B = \mu_0 nI$... The B-field of a solenoid, n = N/L is the turn density, and I is the current.

Figure 1: (Left) A current I experiences a force F in a B-field.

2 Chapter 11: Magnetic Forces and Fields

- 1. Consider Fig. 1 (left). In each of the three cases, determine the direction of the B-field given that F is the Lorentz force.
 - · a: Into the page
 - · b: Left
 - · c: Out of page
- 2. Consider Fig. 1 (right). The Hall Effect. An E-field exists in the vertical direction and a B-field is perpendicular to the direction of charge velocity. (a) Show that if the E-field force on a charge balances the Lorentz force on a charge, that v = E/B. (b) If the E-field is constant, $E = \Delta V/\Delta x$. Show that

$$\Delta V = \frac{B\Delta xI}{nq_e A} \tag{1}$$

where n is the charge carrier density, q_e is the electron charge, A is the cross-sectional area of the conductor, and I is the current. Plug in B = 1.33 T, $\Delta x = 2$ cm, I = 10 A, $n = 2 \times 10^{28}$ m⁻³, A = 1 mm², and q_e is the charge of an electron

a) Magnetic field is always 90° to the velocity, force is F=4vB Cross product;

F=QE F=QVB V=E QE=QVB V=B b) $\Delta V = \frac{(1.33T)(0.02m)(10A)}{(2\times10^{28}m^{-3})(1.6\times10^{-19}C)(0.000)^2}$ $\Delta V = 8.3\times10^{-5} V$

3. A proton has a magnetic field due to its spin. The field is similar to that created by a circular current loop 0.65×10^{-15} m in radius with a current of 1.05×10^4 A. Find the maximum torque on a proton in a 2.50-T field. (This is a significant torque on a small particle.)

 $A = \pi r^2$ $A = (0.650 \times 10^{-15} \text{m})^2 (\pi)$ $A = 1.327 \times 10^{-30} \text{m}^2$ $\tau = (1)(1.05 \times 10^{4}A)(1.327 \times 10^{-30}m^{2})(2.5)(\sin 96)$ $\tau = 3.48 \times 10^{-26} N \cdot m$

3 Chapter 12: Sources of Magnetic Fields

1. (a) What is the B-field inside a solenoid with 500 turns per meter, carrying a current of 0.3 A? (b) Suppose we insert a piece of metal inside the solenoid, boosting μ_0 by a factor of 5000. What is the new B-field?

a) $B = \mu a n I$ where μa is $4\pi \times 10^{-7} T/amp m$ B) $(4\pi \times 10^{-7} T/amp m) (5000)$ $B = (4\pi \times 10^{-7} T/amp m) (5000)$ B= $(6.28 \times 10^{-3} T/amp m) (5000)$ $B = 1.8 \times 10^{-4} T$ B= 0.942 T

Figure 2: A basic diagram of a toroid, which is a solenoid wrapped into a circular tube.

2. Consider Fig. 2. Mass spectrometer. Suppose that the velocity of the charged particles moving to the right is v = E/B. (a) Show that if v = E/B, $F_{net} = 0$ in the region in the top left¹. (b) Recall that the centripetal force on a particle of mass m is mv^2/r . Set this equal to the magnitude of the Lorentz force to prove that

$$r = \frac{mE}{qB^2} \tag{2}$$

The mass of an oxygen nucleus is 16 times that of a proton (mass of proton: 1.67×10^{-27} kg). Suppose oxygen ions with the charge of 1 proton are sent through the mass-sepctrometer. The E-field is 10 V/m, and the B-field is 0.01 T. What is the distance r?

Figure 3: A voltage is induced on a loop by a changing B-field.

1. The magnetic field in Fig. 3 flows out of the page through a single (N = 1) loop, and changes in magnitude according to

$$\frac{\Delta B}{\Delta t} = \frac{B_0}{T_0} \left(\sin(2\pi f t) \right) \tag{3}$$

The loop has a radius r. (a) In terms of the given variables, what is the induced voltage in the circuit? (b) If $B_0 = 0.1 \text{ T}$, r = 0.1 m, $f = 10^3 \text{ Hz}$, and T = 1 ms, what is the induced emf at t = 0? (c) What about $t_1 = 0.16 \text{ ms}$? (d) What is the current through the resistor at t_1 ?

ms? (d) What is the current through the resistor at
$$t_1$$
?

a) $\frac{\Delta B}{\Delta t} = \frac{B_0}{F_0} (\text{Sin}(2\pi ft))$

B) $\frac{\Delta B}{\Delta t} = \frac{B_0}{F_0} (\text{Sin}(2\pi ft))$

C) $\frac{\partial AB}{\partial t} = \frac{B_0}{F_0} (\text{Sin}(2\pi ft))$

E) $\frac{\partial AB}{\partial t} = \frac{B_0}{F_0}$

D) I= = 2.65 V = 0.53 A

5 Chapter 14: Inductance

H=VSA-1 NSA-1 = A

1. What is (a) the rate at which the current though a 0.50-H coil is changing if an emf of 0.150 V is induced across

 $E = -L(\frac{\partial O}{\partial t}) \quad \frac{\partial O}{\partial t} = \frac{E}{L} = \frac{(0.150V)}{(0.50H)} = [0.3A/S]$

2. When a camera uses a flash, a fully charged capacitor discharges through an inductor. In what time must the 0.100-A current through a 2.00-mH inductor be switched on or off to induce a 500-V emf?

Courrent through a 2.00-mH inductor be switched on or off to
$$\frac{1}{6} = -L \frac{1}{64}$$

$$\left| -\frac{1}{6} - \frac{1}{64} \right| = \frac{1}{64}$$

$$\left| -\frac{500V}{2 \times 10^{-3} H} \right| = 2.5 \times 10^{5} A/s$$

$$\frac{\partial I}{\partial t} = \frac{I}{4}$$

$$+C \frac{I}{64} = \frac{I}{4}$$

$$+ \frac{0.100 A}{2.5 \times 10^{5} A/s}$$

$$\left| + \frac{0.100 A}{2.5 \times 10^{5} A/s} \right|$$