COMPITO FDE-BIO DER 5/9/2024 3 APPELLO

Problema 1

Dato il circuito amplificatore in figura di cui sono noti:

- I parametri dei MOSFET:
 - o M_1 : $k_1 = 2mA/V^2$,
- $V_{TN} = 1V$
- o M_2 : $k_2 = 5mA/V^2$,
- $V_{TP} = -1V$
- I valori delle resistenze: R_2 = $2k\Omega$, R_3 = $3k\Omega$, R_4 = 500Ω R_i = $5k\Omega$, R_L = $4.5k\Omega$.
- La tensione di alimentazione: V_{DD} = 5V

- 1) Trovare il valore di R_1 sapendo che la corrente attraverso M_1 è I_{DS} = 1mA.
- 2) Trovare la polarizzazione di M_1 e M_2 in condizioni DC.
- Determinare i potenziali dei nodo A, B e C
- 4) Disegnare il modello ai piccoli segnali del circuito e calcolare le transconduttanze di M_1 e M_2 . Dall'analisi ai piccoli segnali, calcolare:
- 5) La resistenza di ingresso e di uscita dell'amplificatore, come mostrato in figura
- 6) Il guadagno dall'ingresso v_i all'uscita v_o.

$$V_{A} = -V_{DD} + I_{DS_1}(R_1 + R_2) = -2V$$
 $V_{B} = V_{DD} - I_{DS_1}R_3 = 2V$
 $V_{DS_1} = V_{B} - V_{A} = U_{A}V$
 $V_{DS_2} = V_{B} - V_{A} = U_{A}V$
 $V_{DS_2} = V_{B} - V_{A}D = -3V$
 $V_{DS_2} = V_{C} - V_{DD_1} = -3V$
 $V_{DS_2} = V_{C} - V_{DD_2} = -5V$
 $V_{DS_2} = V_{DS_2} = -3V$
 $V_{DS_2} = -3V$
 $V_{DS_2} = V_{DS_2} = -3V$
 $V_{DS_2} = -3V$
 V_{DS

Problema 2

Dato il circuito in figura, realizzato con un amplificatore operazionale ideale, un diodo con $V_{ON} = 1V$ e resistenze di valore $R = 1k\Omega$. Tracciare la transcaratteristica di v_O in funzione di v_S . Disegnare il grafico usando il diagramma a pagina seguente. (A fianco di ciascun punto di spezzamento indicare i valori di tensione v_S e v_O corrispondenti. A fianco di ciascun segmento indicare il valore della pendenza (dv_O/dv_S) e la regione di funzionamento del diodo)

$$| \Rightarrow | v_{0} | \Rightarrow$$

Problema 3

DATI: $R_1 = 1k\Omega$, $R_2 = 4k\Omega$, $R_L = 10k\Omega$

Dato il circuito in figura realizzato con un amplificatore operazionale reale. Sapendo che la tensione di uscita dell'amplificatore operazionale ha limiti -5V e +5V e che la massima corrente erogata o assorbita dal terminale di uscita è 2mA, calcolare la tensione vo con:

1.
$$v_1 = 5V$$
, $v_2 = 3V$

2.
$$v_1 = -2V$$
, $v_2 = -4V$

10 = NS (- 15)

To
$$= \frac{\sqrt{0}2}{RL} + \frac{\sqrt{0}2}{R(+R2)}$$
 $= \frac{5V}{4} + \frac{5V}{8V} = \frac{23}{43} + \frac{\sqrt{2}}{R(+R2)}$
 $= \frac{\sqrt{0}2}{RL} + \frac{\sqrt{0}2}{R(+R2)} = \frac{\sqrt{2}2}{R(+R2)} = \frac{\sqrt{2}2}{R(+R2)}$
 $= \frac{\sqrt{0}2}{RL} + \frac{1}{R(+R2)} = \frac{\sqrt{2}2}{R(+R2)} = \frac$

Problema 4

DATI: R_1 = 0.5k Ω , C_1 = 200nF, R_2 = 4.5k Ω , R_3 = 1k Ω , C_3 = 1 μ F, R_4 = 99k Ω Dato il filtro in figure.

- 1. Calcolare il guadagno a bassa frequenza ($\omega \rightarrow 0$)
- 2. Calcolare il guadagno ad alta frequenza ($\omega \rightarrow \infty$)
- 3. Trovare la funzione di trasferimento (riportare l'espressione della funzione di trasferimento nella scheda della quarta pagina)
- 4. Tracciare i diagrammi di bode asintotici di modulo e fase (usando i grafici in quarta pagina).

