LINFO2345

Formal Models of Distributed Systems

Seif Haridi - Royal Institute of Technology Peter Van Roy - Université catholique de Louvain

haridi(at)kth.se peter.vanroy(at)uclouvain.be

9/21/21

1

1

Formal Modeling

9/21/21

Models

- What is a model?
 - □ Abstraction of relevant system properties
- Why construct or learn a model?
 - Real world is (infinitely) complex, model simplifies reality (finite approximation)

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

3

3

Modeling

- What can modeling do for us?
 - □ Help *solve* problems
 - Making algorithms
 - Help analyze problems/solutions
 - Analysis, proofs, simulations
- Very important skill

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

4

Modeling

- Different types of models:
 - Discrete event models
 - Often described by state transition systems: system evolves, moving from one state to another at discrete time steps
 - Continuous models
 - Often described by differential equations involving variables which can take real (continuous) values
- This course: models of distributed computing (discrete)

9/21/21

D2203- Based on Ali Ghodsi's slides 2009

-

5

Granularity of Models

- Biggest challenge of modeling
 - Choosing the right level of abstraction!
- Model must be powerful enough to construct
 - Impossibility proofs
 - A statement about all possible algorithms in a system
 - But it should not be too complicated! This is a delicate balance.
- Our model should therefore be:
 - □ *Complete*: explain all relevant properties (nothing missing)
 - □ *Correct*: behave as the system does (no mistakes)
 - Concise: explain a class of distributed systems compactly

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

6

Model of Distributed Systems

Based on model from Attiya & Welch

9/21/21

7

7

Model of Distributed Computing

- What is a distributed system?
 - □ A set of nodes/processes
 - sending messages over a network
 - □ to solve a common goal (algorithm)

- How do we model this?
 - Model one node: internal node state
 - Model many nodes: communication network

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

Modeling one node

9/21/21

۵

Modeling one node

- A single node has a bunch of neighbors
 - Can send and receive messages
 - $\hfill \square$ Can do local computations
- Model node by state transition system (STS)
 - □ Like a finite state machine, except
 - Need not be finite
 - No input

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

10

State Transition System - Informal

- A state transition system consists of
 - A set of states
 - Rule for which state to go to from each state (transition function/binary relation)
 - The set of starting states (initial states)

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

11

11

State Transition System - Example

Example algorithm:

Using graphs:

- Formally:
 - □ States {X0, X1, X2, X1'}
 - □ Transition function $\{X0 \rightarrow X1, X1 \rightarrow X2, X2 \rightarrow X1'\}$
 - □ Initial states {X0}

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

State of one node outbuf[1] inbuf[1] outbuf[3] Example states inbuf[3] inbuf[2] x=0 x=0 outbuf[1]={} outbuf[1]={} outbuf[1]={m1 inbuf[1]={} $inbuf[1]=\{m0\}$ inbuf[1]={} outbuf[2]={} outbuf[2]={} outbuf[2]={} inbuf[2]={} inbuf[2]={} inbuf[2]={} outbuf[3]={} outbuf[3]={} outbuf[3]={} inbuf[3]={} inbuf[3]={} inbuf[3]={} outbuf[1]={m1} outbuf[1]={m1} outbuf[1]={m1} inbuf[1]={} inbuf[1]={} inbuf[1]={} outbuf[2]={} outbuf[2]={} $outbuf[2]=\{m4\}$ inbuf[2]={m2} inbuf[2]={m2,m3} inbuf[2]={} outbuf[3]={} outbuf[3]={} outbuf[3]={} $inbuf[3]={}$ $inbuf[3]={}$ inbuf[3]={} 9/21/21 ID2203- Based on Ali Ghodsi's slides 2009

Transition functions

- All state except outbufs is called the accessible state
 - when in outbuf, can't read it any more ("in the network")
 - □ inbuf is read-only and outbuf is write-only ("network state")
- Transition function f
 - takes accessible state and returns new state
 - sends messages: adds at most 1 msg to each outbuf[i]
 - reads messages: all inbuf[i] of new state must be empty

15

9/21/21

Transition functions formally

- State of a node (with k channels) is triple <1,0,s>
 - □ <1,0> is the network state
 - I is a vector of inbufs, <I[1],...,I[k]>
 - O is a vector of outbufs, <O[1],...,O[k]>
 - s is the local state
- Correctness condition for network state:
 - $f(\langle I_1, O_1, s_1 \rangle) = \langle I_2, O_2, s_2 \rangle$ and $f(\langle I_3, O_3, s_3 \rangle) = \langle I_4, O_4, s_4 \rangle$
 - $I_2=I_4=\langle\emptyset,...,\emptyset\rangle$, i.e. all inbufs are empty, and
 - If $I_1=I_3$ and $S_1=S_3$ then
 - □ S₂=S₄, i.e. deterministic but don't read outbufs ⁽¹⁾,
 - \bigcirc $O_1[i] \bigcirc O_2[i]$ and $O_3[i] \bigcirc O_4[i]$, i.e. only add messages to outbufs, and
 - $O_2[i]-O_1[i] = O_4[i]-O_3[i]$, i.e. outbufs keep their old messages (2)
- Definition from Attiya & Welch book
 - Note there is a small error in the book: output buffers are not read, yet they must be passed on

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

Single node perspective

- Execution of one node:
 - □ 1. Wait for message
 - 2. When received message, do some local computation, send some messages
 - Goto 1.
- Is this a correct model? [d]
 - □ Is it deterministic? Where is the nondeterminism?
 - □ How is I/O done?
 - Is the execution of one node atomic?

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

17

17

Modeling many nodes

9/21/21

Modeling many nodes (full system)

A configuration is snapshot of state of all nodes $C = (q_0, q_1, ..., q_{n-1}) \text{ where } q_i \text{ is state of node } p_i$

 An initial configuration is a configuration where each q_i is an initial state

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

10

19

Modeling many nodes (full system)

- The distributed system evolves by events
 - Computation event at node i: comp(i)
 - Delivery event of msg m from i to j: del(i,j,m)
- Computation event comp(i)
 - □ Apply transition function f on node i's state
- Delivery event del(i,j,m)
 - □ Move message m from outbuf of p_i to inbuf of p_j

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

20

Execution of distributed system

- An execution E is an infinite sequence of configurations c_k and events e_k
 - \Box E=(c₀, e₁, c₁, e₂, c₂, e₃, c₃, ...)
 - \Box where c_0 is the initial configuration
- If e_k is comp(i)
- If e_k is del(i,j,m)

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

21

21

Some definitions for later use... (1)

- Each comp(i) is associated with a transition
 - □ If f of process i maps state₁ to state₂: the triple (state₁,state₂,i) is called a transition
- Transition (s₁,s₂,j) is applicable in configuration c if
 - □ The accessible state of node j is s₁ in c
- A del(i,j,m) is applicable in configuration c if
 m is in outbuf for link i-j of node i in c

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

22

23

Some definitions for later use... (2)

- If transition e=(s1,s2,i) is applicable to conf c
 - □ Then app(e,c) gives new configuration after the event comp(i)
- If e=del(i,j,m) is applicable to conf c
 - □ Then app(e,c) gives new configuration after the event del(i,j,m)

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

25

25

Schedules and Synchronism

9/21/21

26

Schedules (Asynchronous Model)

- Nodes are deterministic
 - Given some message, update state, send some messages, and wait...
- Nondeterminism comes from asynchrony
 - Messages take arbitrary time to be delivered
 - Processes execute at different speeds
- A schedule is a sequence of events (e₁, e₂, e₃, ...)
 - □ Where each event e_k is del(i,j,m) or comp(i)
 - Message asynchrony is determined by del(i,j,m)
 - Process speeds is determined by comp(i)
 - All nondeterminism is embedded in the schedule!

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

27

27

Schedules (2)

- Given the initial configuration
 - The schedule determines the whole execution
- Not all schedules allowed for an initial conf.
 - del(i,j,m) only allowed if m is in outbuf of i in previous configuration

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

28

Admissible executions (a.k.a. fairness)

- An execution is admissible if
 - each process has infinite number of comp(i)
 - This is exactly thread fairness in a concurrent system!
 - every message m sent is eventually del(i,j,m)
 - We have to add a fairness condition for the network
- Why infinity?
 - Executions are infinite because it lets messages wait arbitrary long finite times before being delivered
 - When algorithm is finished, only make dummy transitions (same state)

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

29

29

Synchronous Systems

- Lockstep execution
 - Execution partitioned into non-overlapping rounds
- Informally, in each round
 - Every process can send a message to each neighbor
 - All messages are delivered
 - Every process computes based on message received

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

30

Synchronous Systems Formally

- Execution partitioned into disjoint rounds
- Round consists of
 - Deliver event for every message in all outbufs
 - One computation event on every process
- Every execution is admissible
 - Executions by definition infinite
 - Processes take infinite steps
 - Every message is delivered

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

31

31

Events & Causality

9/21/21

Concurrent events

- Consider these two executions:
 - $(c_0, comp(1), c_1, comp(2), c_2)$ $(c_0, comp(2), c'_1, comp(1), c_2)$ Same configuration!
 - Two different comp events can be switched! [Why?]
- Consider these two executions:
 - □ $(c_0, del(1,2,m), c_1, del(2,3,m'), c_2)$ □ $(c_0, del(2,3,m), c_1', del(1,2,m'), c_2)$ Same configuration
 - Two different del events can be switched! [Why?]
- Theorem: Order of two applicable comp or del events is irrelevant. We say that the events are concurrent.

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

22

33

Causally related events

- Consider this execution:
 - $\begin{tabular}{c} $ \Box$ $(c_0$, $del(1,2,m)$, c_1, $comp(2)$, c_2) \\ \hline $ Move\ m\ from \\ outbuf\ 1\ to\ inbuf\ 2$ \\ \hline \end{tabular}$
 - These two events cannot be switched! [Why not?]
- The events del(1,2,m) and comp(2) are causally related
- We can define causality for all events...

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

Causal Order

- The relation <_H on the events of an execution (or schedule), called causal order, is defined as follows

 - $\hfill\Box$ If a produces (comp) m and b delivers m, then $a\mathrel{<_H} b$
 - $\ \square$ If a delivers m and b consumes (comp) m, then $a \mathrel{<_H} b$
 - $\neg <_{\rm H}$ is transitive.
 - I.e. If a $<_H$ b and b $<_H$ c then a $<_H$ c
- Two events, a and b, are concurrent if not a <_H b and not b <_H a
 We write this as follows: a || b

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

35

35

Similarity of executions

- The view of p_i in E, denoted E|p_i, is
 - the subsequence of execution E restricted to events and state of p_i
- Two executions E and F are similar w.r.t p_i if
 E|p_i = F|p_i
- Two executions E and F are similar if
 E and F are similar w.r.t every node

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

27

37

Equivalence of executions: *Computations*

- Computation Theorem:
 - □ Let E be an execution $(c_0,e_1,c_1,e_2,c_2,...)$, and V the schedule of events $V=(e_1,e_2,e_3,...)$
 - I.e. app(e_i,c_{i-1})=c_i
 - Let P be a permutation of V, preserving causal order
 - P=(f₁, f₂, f₃...) preserves the causal order of V when for every pair of events, f_i <_H f_i implies i<j</p>
 - Then E is similar to the execution starting in c₀
 with schedule P

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

Equivalence of executions

- If two executions F and E have the same set of events, and their causal order is preserved, then F and E are said to be similar executions, written F~E
 - □ *F* and *E* could have different permutation of events as long as causality is preserved!

9/21/21

2203- Based on Ali Ghodsi's slides 2009

39

39

Computations

- Similar executions form equivalence classes where every execution in class is similar to the other executions in the class.
- I.e. the following always holds for executions:
 - □ ~ is reflexive
 - I.e. a~ a for any execution
 - □ ~ is symmetric
 - I.e. If a~b then b~a for any executions a and b
 - ~ is transitive
 - If a~b and b~c, then a~c, for any executions a, b, c
- Equivalence classes of executions are called computations

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

40

41

Two important results (1)

- Computation theorem implies two important results
- Result 1: There is no algorithm that can observe the order of the sequence of events (that can "see" the time-space diagram) for all executions
- Proof:
 - Assume such an algorithm exists. Assume node p knows the order in the final repeated configuration.
 - Take two distinct similar executions of algorithm that preserve causality
 - Computation theorem says their final repeated configurations are the same, therefore the algorithm cannot have observed the actual order of events as they differ

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

42

Two important results (2)

 Result 2: The computation theorem does not hold if the model is extended such that each process can read a local hardware clock

Proof:

- Assume a distributed algorithm in which each process reads the local clock each time a local event occurs
- The final (repeated) configuration of different causality preserving executions will have different clock values, which would contradict the computation theorem

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

43

43

Observing Causality

- So causality is all that matters...
- ...how to locally tell if two events are causally related?

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

44

Lamport Clock and Vector Clock

9/21/21

45

Lamport Clock

- Each process has a local logical clock, kept in variable t, initially t=0
 - □ Node p piggybacks (t, p) on every sent message
- On each event update t:

```
\Box t := max(t, t<sub>a</sub>)+1 (delivery)
```

- When p receives message with timestamp (t_q, q)
- □ t := t + 1 for every transition (comp)

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

46

Lamport Clock (2)

- Comparing two timestamps (t_p,p) and (t_q,q)
 - \Box $(t_p,p)<(t_q,q)$ iff $(t_p< t_q \text{ or } (t_p=t_q \text{ and } p< q))$
 - i.e. break ties using node identifiers
 - \Box e.g. $(5,p_5)<(7,p_2), (4,p_2)<(4,p_3)$
- Lamport logical clocks guarantee that:
 - \Box If a <_H b, then t(a) < t(b),
 - where t(a) is Lamport clock of event a

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

47

47

Example of Lamport logical clock

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

Vector Clock

- Each process p has local vector v_p of size n
 - $v_p[i]=0$ for all i
- For each transition update local v_D by
 - $v_p[p] := v_p[p] + 1$
 - $\neg \forall i: v_p[i] := max(v_p[i], v_q[i])$
 - where v_q is clock in message received from node q

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

40

49

Comparing Vector Clocks

- $V_D \le V_Q$ iff
 - $\ \ \ v_p[i] \le v_q[i]$ for all i
- V_p < V_q iff
- ullet v_p and v_q are concurrent $(v_p \mid \mid v_q)$ iff
 - \Box not $v_p < v_q$, and not $v_q < v_p$
- Vector clocks guarantee
 - \Box If v(a) < v(b) then $a <_H b$, and
 - If a <_H b, then v(a) < v(b)</p>
 - where v(a) is the vector clock of event a

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

50

Great! But cannot be done with smaller vectors than size n, for n nodes

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

51

51

Partial and Total Orders

- Is it a partial order or a total order? [d]
 - the relation <_H on events in executions
 - Partial: <_H doesn't order concurrent events
 - □ the relation < on Lamport logical clocks
 - Total: any two distinct clock values are ordered
 - the relation < on vector timestamps
 - Partial: timestamp of concurrent events not ordered

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

52

Lamport Clock vs. Vector Clock

- Lamport clock
 - $\Box \text{ If a } <_{H} b \text{ then } t(a) < t(b)$ (1)
- Vector clock
 - $\Box \text{ If a } <_{H} b \text{ then } t(a) < t(b)$ (1)
 - $\Box \text{ If } t(a) < t(b) \text{ then } a <_H b$ (2)
- Which of (1) and (2) is more useful? [d]
- What extra information do vector clocks give? [d]

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

53

53

Summary

9/21/21

Summary of Causality and Clocks

- The total order of executions of events is not always important
 - Two different executions can yield the same result (if same causality)
- Causal order matters:
 - Order of two events on the same process
 - Order of two events, a send and the corresponding receive
 - Order of two events, that are transitively related according to above
- Executions which contain permutations of each others' events such that causality is preserved are called similar executions
- Similar executions form equivalence classes called computations
 - Every execution in a computation is similar to every other execution in the computation
- Vector timestamps can be used to determine causality
 - Cannot be done with smaller vectors than size n, for n processes

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

55

55

Complexity

9/21/21

56

Complexity of Algorithms

- We care about
 - Number of messages used before terminating
 - Time it takes to terminate
- Termination
 - $\ \ \square$ A subset of the states Q_i are terminated states
- Algorithm has terminated when
 - All states in a configuration are terminated
 - No messages in {in,out}bufs

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

57

57

Message Complexity

- Maximum number of messages until termination for all admissible executions
 - This is worst-case message complexity...

(Admissible ≈ fairness ≈
 all messages sent are eventually delivered +
 executions infinitely long)

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

58

Time Complexity

- Basic idea of time complexity
 - Message delay is at most 1 time unit
 - Computation events take 0 time units
- Formally, timed execution is an execution s.t.
 - □ Time value is associated with each comp(i) event
 - First event happens at time 0
 - □ Time can never decrease & strictly increases locally
 - Max time between comp(i) sending m and comp(j) consuming m is 1 time unit
 - Time complexity is maximum time until termination for all admissible timed executions

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

E0

59

Time Complexity (2)

- Why at most 1 time unit?
 - Why not assume every message takes exactly 1 time unit?
- Would not model reality
 - Some algorithms would have misleading time complexity

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

60

At most is less or more than equal?

- Compare "at most" vs. "exactly" 1 time unit
 - □ How do they compare? [d]

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

61

61

Time Complexity: broadcasting

```
Init:
```

```
parent = null
n = total number of nodes
```

Source

```
send <a> to all neighbors
wait to receive n-1 <b>
```

Others:

```
when receive <a> from p:
    if parent==null:
        parent := p
        forward <a> to all neighbors except <parent>
        send <b> to parent
when receive <b>:
    send <b> to parent
```

- What is the time complexity if every message takes
 - At most 1 time unit?
 - Exactly 1 time unit?

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009

"At most" can only raise complexity

- "at most" can increase time complexity
 - Every timed execution with "exactly" 1 time unit is possible in the "at most" model
 - □ The "at most" model has other executions too
 - Time complexity considers the maximum time
 - Time complexity of "at most" can only increase over "exactly"
- In broadcast example:
 - <a> takes 0 or 1 time unit
 - takes 1 time unit
 - □ Long <a> paths can be fast
 - □ But path will be very slow!

9/21/21

ID2203- Based on Ali Ghodsi's slides 2009