Aula prática nº 2 - Instruções de decisão e ciclos

Tópicos

- Vetores
- Instruções de decisão e ciclos
- Edição, compilação e execução de programas em Java

Exercícios

- 1. Implemente um programa que para a disciplina POO leia as notas da componente prática, *notaP*, e teórica, *notaT*, dum aluno (ambas arredondadas às décimas) e imprima a nota final deste aluno (para ser inserida na pauta) que pode ser uma das seguintes: 66 (se reprovado por nota mínima 7.0 em alguma das componente), 0.4 * *notaT* + 0.6 * *notaP* <arredondada a unidades> (em casos restantes).
- 2. Escreva um programa que imprima uma contagem decrescente (até 0) a partir de um valor positivo *N*.
- 3. Escreva um programa que leia do teclado um número inteiro positivo e determine se o número introduzido é um número primo. Um número natural é um número primo quando tem exatamente dois divisores naturais distintos: o número 1 e ele mesmo. Repare que deve validar o valor de entrada repetindo a leitura se o valor não for válido (positivo).
- 4. Escreva um programa que leia uma lista de números reais, terminada por um valor igual ao primeiro que foi introduzido. No fim, indique o valor máximo, o valor mínimo, a média e o número de elementos lidos.
- 5. Escreva um programa que lê do teclado uma data composta pelo mês e o ano (validandoos), calcule e escreva no monitor o número de dias desse mês. *Sugestão: não se esqueça dos anos bissextos*.
- 6. O jogo AltoBaixo consiste em tentar adivinhar um número (inteiro) entre 1 e 100. O programa escolhe um número aleatoriamente. Depois, o utilizador insere uma tentativa e o programa indica se é demasiado alta, ou demasiado baixa. Isto é repetido até o utilizador acertar no número. O jogo deve indicar quantas tentativas foram feitas e de seguida perguntar: "Novo jogo (sim/não)?". O utilizador responde escrevendo a palavra correspondente. O programa só termina se a resposta for "não". Sugestão: para ler uma palavra utilize o método next: String resposta = sc.next();.

7. Altere o programa do exercício 1 de modo que seja possível processar todos os alunos duma turma que tem 16 alunos. Crie um vetor bidimensional para armazenar as notas de componentes teórica e prática de todos os alunos e preenche-o com valores aleatórios (mas válidos, i.e. as notas podem variar de 0.0 a 20.0). De seguida processe as notas e imprima os resultados em formato seguinte:

NotaT	NotaP	Pauta
11.3	9.3	10
16.7	5.1	66
7.8	18.9	14
10.6	15.9	14
16.9	5.9	66
1.9	12.7	66
17.6	4.8	66
0.7	12.1	66
8.7	8.6	9
19.2	1.4	66
17.5	3.4	66
11.6	11.4	11
7.2	8.5	8
1.9	1.4	66
19.3	14.9	17
0	12.1	12

- 8. Implemente um programa que leia um valor de tipo **byte** e determine quantos bits estão a 1. Teste para valores positivos e negativos. Verifique os resultados à mão.
- 9. Implemente um programa que leia um valor inteiro de tipo **byte** e de seguida imprime-o em binário (com 8 bits). Teste para valores positivos e negativos. Verifique os resultados à mão. Tente agora para valores reais e tente perceber o modo como o computador processa este tipo de valores.