Sequential Medical Decision-Making with RL

August 2, 2019

MMCi Applied Data Science Block 5, Lecture 2

Matthew Engelhard

Sepsis Management and Artificial Pancreas

TWO ILLUSTRATIVE EXAMPLES

Sequential Medical Decision-Making

An agent

takes actions

based on the state of a system

to maximize reward

Treating sepsis: the latest evidence

"Uncertainties still exist regarding the optimal type of fluid, the optimal volume, and the best way to monitor the response to therapy."

Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. bmj. 2016 May 23;353(i1585).

Sequential Medical Decision-Making:

Sepsis Management

An agent

takes actions

based on the state of a system

to maximize reward

A clinician

gives fluid and/or vasopressor

based on the patient's physiologic status

to maximize chance of survival

Deep Reinforcement Learning for Sepsis Treatment

Raghu A, Komorowski M, Ahmed I, Celi L, Szolovits P, Ghassemi M. arXiv:1711.09602. 2017 Nov 27

- Policy via Deep Q-Learning
- 17,898 patients from MIMIC-III

Independent validation on the Philips eICU Research Institute Database: >3.3 million admissions from 2003–2016 in 459 ICUs across the US

Closed-Loop Blood Glucose Control (artificial pancreas)

Blood Glucose Readings from Continuous Glucose Monitor

https://medium.com/@justin_d_lawler/continuous-glucose-monitoring-the-first-four-weeks-7a6aa5fdb06e

Sequential Medical Decision-Making:

Artificial Pancreas

An agent

takes actions

based on the state of a system

to maximize reward

A computer program

administers insulin

based on blood glucose and recent patient behaviors

to maintain normoglycemia

PUBLISH

ABOUT

BROWSE

RESEARCH ARTICLE

Model-Free Machine Learning in Biomedicine: Feasibility Study in Type 1 Diabetes

Elena Daskalaki, Peter Diem, Stavroula G. Mougiakakou 🖸

Published: July 21, 2016 • https://doi.org/10.1371/journal.pone.0158722

FORMULATING THE RL PROBLEM

- A set of states: $S = \{s^1, s^2, ..., s^n\}$
- A set of possible actions: $A = \{a^1, a^2, ..., a^m\}$
- A reward r(s, a, s') for reaching state s' from state s after taking action a

GOAL:

Learn a <u>policy</u> $\pi: S \to A$ that assigns each state s to the action a that **maximizes expected reward over time**

The RL Paradigm

...
$$S_{t-1}$$
 a_{t-1} r_{t-1} s_t a_t r_t s_{t+1} ...

- A set of states: $S = \{s^1, s^2, ..., s^n\}$
- A set of possible actions: $A = \{a^1, a^2, ..., a^m\}$
- A reward r(s, a, s') for reaching state s' from state s after taking action a

GOAL:

Learn a <u>policy</u> $\pi: S \to A$ that assigns each state s to the action a that **maximizes expected reward over time**

The RL Paradigm

...
$$S_{t-1}$$
 a_{t-1} r_{t-1} s_t a_t r_t s_{t+1} ...

Chess or Go: the state is what you see on the board

Blood Glucose Readings from Continuous Glucose Monitor

Idea 1:

The state is the current blood glucose value

https://medium.com/@justin_d_lawler/continuous-glucose-monitoring-the-first-four-weeks-7a6aa5fdb06e

Blood Glucose Readings from Continuous Glucose Monitor

Idea 2:

The state is the current blood glucose value plus recent trends

https://medium.com/@justin d lawler/continuous-glucose-monitoring-the-first-four-weeks-7a6aa5fdb06e

Blood Glucose Readings from Continuous Glucose Monitor

https://medium.com/@justin_d_lawler/continuous-glucose-monitoring-the-first-four-weeks-7a6aa5fdb06e

Idea 3:

The state is the current blood glucose value, recent trends, and the patient's insulin sensitivity

Blood Glucose Readings from Continuous Glucose Monitor

https://medium.com/@justin_d_lawler/continuous-glucose-monitoring-the-first-four-weeks-7a6aa5fdb06e

The state: all information relevant to our decision

- BG trends
- Previous insulin doses
- Patient physiology
- Recent behaviors (e.g. eating, physical activity)

Category	Items	Туре
	Age	Continuous
	Gender	Binary
Demographics	Weight	Continuous
	Readmission to intensive care	Binary
	Elixhauser score (premorbid status)	Continuous
Vital signs	Modified SOFA*	Continuous
	SIRS	Continuous
	Glasgow coma scale	Continuous
	Heart rate, systolic, mean and diastolic blood	
	pressure, shock index	Continuous
	Respiratory rate, SpO2	Continuous
	Temperature	Continuous
Lab values	Potassium, sodium, chloride	Continuous
	Glucose, BUN, creatinine	Continuous
	Magnesium, calcium, ionized calcium,	Continuous
	carbon dioxide	Continuous
	SGOT, SGPT, total bilirubin, albumin	Continuous
	Hemoglobin	Continuous
	White blood cells count, platelets count, PTT,	
	PT, INR, pH, PaO2, PaCO2, base excess,	
	bicarbonate, lactate, PaO2/FiO2 ratio	Continuous
Ventilation	Mechanical ventilation	Binary
parameters	FiO2	Continuous
Medications and fluid balance	Current IV fluid intake over 4h	Continuous
	Maximum dose of vasopressor over 4h	Continuous
	Urine output over 4h	Continuous
	Cumulated fluid balance since admission	
	(includes preadmission data when available)	Continuous

State s_t : Sepsis

- A set of states: $S = \{s^1, s^2, ..., s^n\}$
- A set of possible actions: $A = \{a^1, a^2, ..., a^m\}$
- A reward r(s, a, s') for reaching state s' from state s after taking action a

GOAL:

Learn a <u>policy</u> $\pi: S \to A$ that assigns each state s to the action a that **maximizes expected reward over time**

The RL Paradigm

...
$$S_{t-1}$$
 a_{t-1} r_{t-1} s_t a_t r_t s_{t+1} ...

Actions a_t : Sepsis Management

How much fluid?

Vasopressor dose?

Actions a_t : Artificial Pancreas

Insulin Basal Rate

X

Insulin Bolus Amount

https://time.com/4703099/continuous-glucose-monitor-blood-sugar-diabetes/

Actions a_t : Artificial Pancreas

Insulin Basal Rate

X

Insulin Bolus Amount

X

Glucagon Bolus Amount

https://time.com/4703099/continuous-glucose-monitor-blood-sugar-diabetes/

Must be discretized

We need a finite set of actions to choose from

Q Learning:

- Q function implemented as a look-up table
- Input: state *s*
- Output: Q(s, a) for each action $a \in A$

We need a finite set of actions to choose from

Q Learning:

- Q function implemented as a look-up table
- Input: state *s*
- Output: Q(s, a) for each action $a \in A$

We need a finite set of actions to choose from

Deep Q Learning:

- Q function implemented as a deep neural network
- Input: state s
- Output: Q(s, a) for each action $a \in A$

Tradeoff: more actions means greater flexibility, but also makes the problem more complex

Actions a_t : Sepsis Management

Five IV fluid quantities: {0, Quartile1, Q2, Q3, Q4}

Five vasopressor doses {0, Quartile1, Q2, Q3, Q4}

- Quartiles are defined based on the training dataset
- Example action:
 (Q2 fluid, 0 vasopressor)
- 25 possible actions

- A set of states: $S = \{s^1, s^2, ..., s^n\}$
- A set of possible actions: $A = \{a^1, a^2, ..., a^m\}$
- A reward r(s, a, s') for reaching state s' from state s after taking action a
- (sometimes) A model P(s, a, s') that describes the probability of reaching state s' from state s after taking action a

The RL Paradigm

...
$$S_{t-1}$$
 a_{t-1} r_{t-1} s_t a_t r_t s_{t+1} ...

Treating sepsis: the latest evidence

"Uncertainties still exist regarding the optimal type of fluid, the optimal volume, and the best way to monitor the response to therapy."

Clinician goals: keep the patient stable.

- central venous pressure (8-12 mm Hg)
- mean arterial pressure (65-90 mm Hg)
- urine output (0.5 mL/kg/h)
- central venous oxygen saturation (70%)

RL goals: optimize the outcome

- prevent death
- prevent organ damage

-> The RL algorithm chooses actions that maximize expected reward over time

Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. bmj. 2016 May 23;353(i1585).

Primary objective: prevent mortality

Should this be the only goal?

 We want to optimize patient outcomes, but follow-up data is not available

Additional Goal: Prevent Organ Dysfunction -> SOFA Score (0-24)

Table 1. The Sequential Organ Failure Assessment (SOFA) Score*

Variables	SOFA Score					
	0	1	2	3	4	
Respiratory Pao ₂ /Fio ₂ , mm Hg	>400	≤400	≤300	≤200†	≤100†	
Coagulation Platelets ×10³/µL‡	>150	≤150	≤100	≤50	≤20	
Liver Bilirubin, mg/dL‡	<1,2	1.2-1.9	2.0-5.9	6.0-11.9	>12.0	
Cardiovascular Hypotension	No hypotension	Mean arterial pressure <70 mm Hg	Dop ≤5 or dob (any dose)§	Dop >5, epi ≤0.1, or norepi ≤0.1§	Dop >15, epi >0.1, or norepi >0.1§	
Central nervous system Glasgow Coma Score Scale	15	13-14	10-12	6-9	<6	
Renal Creatinine, mg/dL or urine output, mL/d	<1.2	1.2-1.9	2.0-3.4	3.5-4.9 or <500	>5.0 or <200	

^{*}Norepi indicates norepinephrine; Dob, dobutamine; Dop, dopamine; Epi, epinephrine; and Fio₂, fraction of inspired oxygen, †Values are with respiratory support.

Ferreira FL, Bota DP, Bross A, Mélot C, Vincent J. Serial Evaluation of the SOFA Score to Predict Outcome in Critically III Patients. *JAMA*. 2001;286(14):1754–1758.

To convert bilirubin from mg/dL to µmol/L, multiply by 17.1.

[§]Adrenergic agents administered for at least 1 hour (doses given are in µg/kg per minute).

To convert creatinine from mg/dL to µmol/L, multiply by 88.4.

Reward r_t : Sepsis Management

- Receive a large reward if the patient survives, and a large penalty if they die
- Receive a penalty if the SOFA score remains greater than zero
- Receive an additional penalty/reward proportional to the increase/decrease in the SOFA score
- Receive an additional penalty/reward proportional to the increase/decrease in lactate

Reward r_t : Artificial Pancreas

https://medium.com/@justin_d_lawler/continuous-glucose-monitoring-the-first-four-weeks-7a6aa5fdb06e

The reward quantifies our objectives

Sepsis Management and Artificial Pancreas

CHALLENGE 1: MISSING INFORMATION

What happens when important information is missing?

What happens when important information is missing?

Negative impact of missing state information

Q(s,a)medium

Q Learning:

 The expected reward for choosing action a while in state s is moderate

Negative impact of missing state information

a		$Q(s^\prime,a)$ high	Q(s'',a)low	

$$s'$$
 s''

Q Learning:

- The expected reward for choosing action a while in state s' is high
- The expected reward for choosing action a while in state s'' is low

Learning from observational data: where things can REALLY go wrong

What's really happening...

Learning from observational data: where things can REALLY go wrong

а		Q(s,a) medium	

Q Learning:

 The expected reward for choosing action a while in state s appears to be high

 In fact, this is a very bad action for some patients

S

Sepsis Results: Observed Mortality

U curve with naïve baselines

Concerns about Off-Policy Evaluation

- 1) Sicker patients get higher dosages!
- 2) Discretizing dosages by quantile bad.

Slide Credit: Michael Hughes (michaelchughes.com)

RL: LEARNING THROUGH TRIAL AND ERROR

In RL, we typically learn "from scratch":

- Try things and see what works
- Initially our actions are random

Drone Uses AI and 11,500 Crashes to Learn How to Fly

Crashing into objects has taught this drone to fly autonomously, by learning what not to do

By Evan Ackerman

Failing 11,500 times isn't always an option

A1. Learn from Observational Data

The eICU Collaborative Research Database, a freely available multicenter database for critical care research. Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG and Badawi O. Scientific Data (2018).

• provides a large number of (state, action, reward) examples

A2. Learn Policy from Simulated Environment

A3. Learn with Expert Oversight

algorithm recommendation

physician approval

Open Questions for RL

1. How can we incorporate existing knowledge to avoid "starting from scratch"?

2. Should we avoid starting from scratch?

Clinical Trials and Self-Experimentation

OTHER DIRECTIONS IN RL FOR MEDICINE

Sequential Decision-Making Problems are Everywhere in Medicine

A reinforcement learning approach to weaning of mechanical ventilation in intensive care units.

Prasad, Niranjani, et al. arXiv:1704.06300 (2017).

Suppose we are evaluating a new drug...

A special case of RL

Application: Optimal Allocation of Clinical Trial Participants

"An explicit assumption is the goal to treat patients effectively, in the trial as well as out. That is controversial (...)"

(Stangl, Inoue and Irony, 2012)

N-of-1 Trial: Identify IBS Triggers

IBS Trigger Foods

Find foods (i.e. "actions") that minimize IBS symptoms (i.e. "reward")

TummyTrials: A Feasibility Study of Using Self-Experimentation to Detect Individualized Food Triggers.

Karkar R, Schroeder J, Epstein DA, et al. SIGCHI Conference 2017;2017:6850-6863.

This time, we track what works for men versus women

Personalized clinical trials can be formulated as RL

