

<u>Course</u> > <u>Bandits</u> > <u>Knowledge Checks</u> > Knowledge Checks

Knowledge Checks

Question 1

1.0/1.0 point (graded)

Which of the following is a fundamental challenge of reinforcement learning?

<u> </u>	5	J
Representation of the states of the sy	stem.	
Generalization from training to other	possible states of the system	
 Temporal credit assignment to determ determining the outcome. 	nine which actions are import	tant in
O Exploration of states or actions that a	re not optimal.	
All of the above.		

Submit

You have used 1 of 2 attempts

Question 2

1.0/1.0 point (graded)

Why is it important for a reinforcement agent to take both exploitation and exploratory steps?

 An agent which takes only exploratory steps gains information which guarantees and optimal exploitation of the state space. 		
 An agent which only takes greedy steps will converge quickly using generalized information to optimize policy. 		
 An agent that only take greedy steps gather generalized information and converge rapidly to an optimal policy. 		
 An agent which takes some exploratory steps along with greedy steps will converge to optimal an policy while acquiring information to improve the policy. 		
Submit You have used 2 of 2 attempts		
Question 3 0.0/1.0 point (graded)		
Which two of the following cases are "extreme" for the epsilon-greedy?		
\Box When e = 0 only greedy steps are taken and regret is minimized.		
☑ When e = 1 no greedy steps are taken and regret is maximized.		
☑ When e = 0 only greedy steps are taken and regret is maximized.		
☐ When e = 1 no greedy steps are taken and regret is minimized.		
×		
Submit You have used 2 of 2 attempts		

Question 4

1.0/1.0 point (graded)

Which three reasons are why generalization is important in reinforcement

learning?	
An agent that generalizes will be able to provide good solutions when faced with states and action options not encountered before.	
☑ An agent that generalizes will be able to solve complex problems where the number of states is very large.	
An agent that generalizes will be able to chose actions from a large number of possibilities.	
 An agent which generalizes must have acquired knowledge of all possible states. 	
Submit You have used 2 of 2 attempts	
Question 5	
1.0/1.0 point (graded)	

1.0/1.0 point (graded)

Which two of the following are examples of exploration AND exploitation?

	movie recommender agent that occasionally offers a recommendation the use in a new category.
a	n advertising display agent which occasionally displays an divertisement for a different class of goods to a use who has never nown interest in that class of goods.

 $\ \square$ A chess playing agent which takes the move with the highest probability of winning at each move of each game.

$\ \square$ A agent which explores for oil by always choosing a drilling location in a distinctly different area from the last drilling location.
✓
Submit You have used 1 of 2 attempts
Question 6
1.0/1.0 point (graded)
Which two of the following are true about regret?
Regret is the expected value of the sum over all actions of the difference between optimal value and value of each action.
☐ Regret is never linear with time steps for an agent that both explores and exploits.
\square Regret can be computed only from the action value function.
☐ Regret is the expected value of the sum over actions for each time step of the opportunity lost.
✓
Submit You have used 1 of 2 attempts
Question 7
1.0/1.0 point (graded) Which of the following statements about the UCB algorithm is correct?
The UCB algorithm uniformly samples in order to reduce uncertainty and maximize reward.

•	The UCB algorithm selects the action with the largest uncertainty for the reward in order to reduce that uncertainty.
0	The UCB algorithm selects actions with lowest uncertainty and therefore largest expected reward to ensure rapid convergence.
0	The UCB algorithm selects actions with the lowest uncertainty to minimize regret.
Sı	ubmit You have used 1 of 2 attempts
1.0/1. Wha	estion 8 .0 point (graded) t do we mean by contextual learning and how is it different from forcement learning (RL)?
0	A contextual bandit takes actions and receives rewards which may depend on state, whereas an RL agent takes actions regardless of state and receive rewards.
0	A contextual bandit takes actions determined by state and receives rewards which may be determined by state, whereas an RL agent takes actions to change state and receive rewards.
•	A contextual bandit takes actions and receives rewards which may depend on state, whereas an RL agent takes actions to change state and receive rewards.
0	A contextual bandit is a type of RL agent.

Submit

You have used 1 of 2 attempts

© All Rights Reserved