Adaptive Finite Elemente für Lineare Elastizität

Theo Koppenhöfer

25. Mai 2022

Es wird spannender...

Outline

Einführendes Beispiel

Formulierungen des kontinuierlichen Problems

Existenz und Eindeutigkeit des kontinuierlichen Problems

Das diskrete Problem

A Posteriori Fehlerschätzer

A Priori Abschätzung

Numerische Experimente

Zusammenfassung

Quellen

Ein einführendes Beispiel

Abbildung: Numerische Lösung auf dem Gebiet

Abbildung: Lösung mit uniformer Triangulierung

Fragen, die man sich stellen kann

- Wie kann ich den Fehler der berechneten Lösung abschätzen, ohne die genaue Lösung zu kennen? → Fehlerschätzer
- Wie kann ich das die Kenntnis über diesen Fehler gewinnbringend verwenden? → adaptive Gitterverfeinerung

Abbildung: Lösung mit adaptiven Methoden

Formulierung des Problems

Wir nehmen an, der Körper nimmt in Referenzkonfiguration (Lagrange-Koordinaten) das Gebiet $\overline{\Omega} \subseteq \mathbb{R}^d$ ein. Wir bezeichnen

- ▶ Deformation: Eine Abbildung $\chi : \overline{\Omega} \to \mathbb{R}^d$ mit $\det \nabla \chi > 0$
- ▶ Verschiebung: Eine Abbildung u, gegeben durch $\chi = \operatorname{Id} + u$

Die Menge an zulässigen Verschiebungen bezeichnen wir mit V (wir verwenden für eine generische Verschiebung den Buchstaben v).

Abbildung: Eine Deformation in 2D

Vorraussetzung des Models: Der statische deformierte Körper (Euler-Koordinaten) nimmt den Raum Ω ein und befindet sich im Kräftegleichgewicht. Wir definieren

- ▶ Volumenkräfte: Eine Abbildung $f: \Omega \to \mathbb{R}^d$
- ▶ Oberflächenkräfte: Eine Abbildung $\sigma \colon \Omega \to \mathbb{R}^{d \times d}$ (Cauchyscher Spannungstensor). σ_{ij} bezeichnet die Kraft auf die Fläche j in Richtung i wirkt. Kraft, die auf Oberfläche in Richtung n wirkt ist

$$\sigma n = \sum_{j} \sigma_{ij} n_{j} e_{i}$$

Abbildung: Eine mögliche Visualisierung des Spannungstensors in 3D

Randbedingungen

Wir bezeichnen $\Gamma \coloneqq \partial \Omega$ als den Rand des Gebietes, $\Gamma_D \subseteq \Gamma$ als den Dirichlet- und $\Gamma_N \subseteq \Gamma$ als den Neumann-Rand. Damit erhalten wir Randbedingungen an die Lösung u des Problems

$$\sigma n = g$$
 auf Γ_N auf Γ_D

Die Dirichlet-Randbedingung lässt sich verallgemeinern zu gleitenden Randbedingungen

$$\mathit{Mu} = w$$
 auf Γ

mit $M: \Omega \to \mathbb{R}^{d \times d}$. Es ist nun nicht zwingend $\Gamma_D \cap \Gamma_N = \emptyset$. Falls w = 0 bezeichnen wir das Problem als homogen.

Erste Formulierung des Problems

Das Kräftegleichgewicht liefert die Formulierung: Finde eine Deformation u, so dass

wobei σ von u abhängt und f,g als von u unabhängig angenommen werden (tote Lasten).

Der Satz von Gauss liefert

$$-\operatorname{Div} \sigma := -\sum_{j} \partial_{j} \sigma_{ij} e_{i} = f$$

Jetzt haben wir die differenzielle Formulierung

$$-\operatorname{Div} \sigma = f$$
 auf Ω
$$\sigma n = g$$
 auf Γ_N
$$Mu = w$$
 auf Γ

Materialgesetze

Wir definieren den linearisierten Verzerrungstensor

$$\varepsilon \coloneqq \frac{1}{2} \left(\nabla u + \nabla u^{\top} \right)$$

Für ein linear-elastisches Material ist

$$\sigma_{ij} = \sum_{k,l} C_{ijkl} \mathcal{E}_{kl}$$

mit Hooke-Tensor $C \colon \Omega \to \otimes_{i=1}^4 \mathbb{R}^d$.

Für St. Venant-Kirchhoff-Materialen gilt

$$C_{ijkl} = \lambda \, \delta_{ij} \, \delta_{kl} + \mu (\delta_{ik} \, \delta_{jl} + \delta_{il} \, \delta_{jk})$$

mit Lamé-Koeffizienten λ und μ (Schubmodul). Es folgt

$$\sigma_{ij} = \sum_{k,l} C_{ijkl} \varepsilon_{kl} = \lambda \operatorname{Tr}(\varepsilon) \delta_{ij} + 2\mu \varepsilon_{ij}$$

Basierend auf λ , μ kann man weitere Materialparameter K (Kompressionsmodul), E (Elastizitätsmodul) und v (Querkontraktion) definieren.

Ein wenig Funktionalanalysis I

 $L^2(\Omega)$ bezeichnet die Menge aller Funktionen $v\colon\Omega\to\mathbb{R}$, deren Quadrat Lebesgue-integrierbar ist. Wir definieren $H^k(\Omega)$ für $k\in\mathbb{N}$ als die Menge aller $v\in L^2(\Omega)$, so dass für alle Multiindizes α mit $|\alpha|\leq k$ die schwache Ableiung $\partial^\alpha v\in L^2(\Omega)$. Es wird durch

$$\langle u, v \rangle_{0,\Omega} = \int_{\Omega} uv \, \mathrm{d}x$$

Ein Skalarprodukt auf $L^2(\Omega)$ definiert. Durch

$$\langle u, v \rangle_{k,\Omega} = \sum_{|\alpha| \le k} \langle \partial^{\alpha} u, \partial^{\alpha} v \rangle_{0,\Omega}$$

wird ein Scalarprodukt auf $H^k(\Omega)$ definiert. Dieses induziert die Norm $\|\cdot\|_{k,\Omega}$, wodurch $H^k(\Omega)$ zu einem Hilbertraum wird.

Ein wenig Funktionalanalysis II

Die Menge $H^k(\Omega;\mathbb{R}^d)$ ist definiert als die Menge aller $v\colon\Omega\to\mathbb{R}^d$, so dass für alle Komponenten gilt $v_i\in H^k(\Omega)$. Dies wird durch das Skalarprodukt

$$\langle u, v \rangle_{k,\Omega} := \sum_{i} \langle u_i, v_i \rangle_{k,\Omega}$$

zu einem Hilbertraum. Wir setzen hier und im Folgenden $V:=H^1(\Omega;\mathbb{R}^d)$ als die Menge der möglichen Verschiebungen. Außerdem definieren wir

$$V^0 := \{ v \in H^1(\Omega; \mathbb{R}^d) \colon Mv = 0 \text{ auf } \Gamma \}$$

Dies ist auch ein Hilbert-Raum.

Variationelle Formulierung

Wir definieren

$$a(u,v) := \int_{\Omega} \sigma(u) : \varepsilon(v) dx := \int_{\Omega} \sum_{i,j} \sigma_{ij}(u) \varepsilon_{ij}(v) dx$$

sowie

$$\ell(v) := \langle f, v \rangle_{0,\Omega} + \langle g, v \rangle_{0,\Gamma_N}$$

Man kann aus der differenziellen Formulierungen eine variationelle Formulierung (virtuelle Arbeit) herleiten: Finde $u \in V$, so dass

$$a(u,v)=\ell(v)$$
 für alle $v\in V^0$
$$Mu=w \qquad \qquad \text{auf } \Gamma$$

Energiebetrachtung

Wir erhalten für die potenzielle Energie des Zustandes v

$$W(v) := \frac{1}{2}a(v,v) - \ell(v)$$

Man kann eine Formulierung als Optimierungsproblem herleiten: Finde $u \in V$, so dass

$$u \text{ minimiert} \qquad W = \frac{1}{2} a(\cdot, \cdot) - \ell$$
 unter der Nebenbedingung
$$Mu\big|_{\Gamma} = w$$

Existenz und Eindeutigkeit des homogenen Problems

Das folgende Resultat findet sich in [7]

Satz (Lax-Milgram-Lemma)

Seien V ein Banach-Raum, $\ell \in V^*$ und $a \colon V \times V \to \mathbb{R}$ eine stetige symmetrische elliptische bilineare Form. Dann hat das Problem $u \in V$ zu finden, so dass

$$a(u,v) = \ell(v)$$

für alle $v \in V$ eine eindeutige Lösung. Dieses ist dann auch eindeutige Lösung des Problems $u \in V$ zu finden, so dass u das Funktional

$$W(v) = \frac{1}{2}a(v, v) - \ell(v)$$

minimiert.

Existenz und Eindeutigkeit des inhomogenen Problems

Folgerung

Existiert ein $u_{\Gamma} \in V$, so dass $Mu_{\Gamma} = w$ auf Γ und erfüllen a und ℓ die Vorraussetzung des Lax-Milgram-Lemmas, dann besitzt unser Problem eine Eindeutige Lösung.

Beweis.

Es ist $u \in V$ genau dann eine Lösung von

$$a(u,v) = \ell(v)$$
 für alle $v \in V^0$
$$Mu = w$$
 auf Γ

wenn $u-u_{\Gamma}\in V^0$ eine Lösung ist von

$$a(u - u_{\Gamma}, v) = \ell(v) - a(u_{\Gamma}, v)$$
 für alle $v \in V^0$

Es ist recht einfach zu zeigen, dass

- a ist bilinear und symmetrisch
- ▶ (Stetigkeit) es gibt ein $c_A > 0$, so dass für alle $v_1, v_2 \in V$

$$a(v_1, v_2) \le c_A ||v_1|| ||v_2||$$

Es ist nicht sehr einfach zu zeigen, dass

▶ (Elliptizität) es gibt ein $c_a > 0$, so dass für alle $v \in V$

$$a(v,v) \ge c_a ||v||^2$$

Kornsche Ungleichungen

Wir definieren für $v \in H^1(\Omega; \mathbb{R}^d)$ die Norm

$$\|v\|_{K,\Omega}^2 := |v|_{0,\Omega}^2 + |\varepsilon(v)|_{0,\Omega}^2$$

Da $\varepsilon\colon H^1(\Omega;\mathbb{R}^d)\to H^0(\Omega;\mathbb{R}^d)$ linear ist, folgt 1-Homogenität und die Dreiecksungleichung. Wir zeigen die Positivdefinitheit zunächst auf dem Ganzraum.

Lemma (Kornsche Ungleichung ohne Randbedingungen auf dem Ganzraum)

Sei $\Omega = \mathbb{R}^d$ mit $v \in H^1(\Omega; \mathbb{R}^d)$. Dann gilt

$$||v||_{1,\Omega} \le \sqrt{2} ||v||_{K,\Omega}$$

Beweis. Siehe [4]

Intermezzo: Lipschitz Mengen

Wir bezeichnen eine beschränkte Menge $\Omega\subseteq\mathbb{R}^d$ als Lipschitz, falls es für jedes $x\in\partial\Omega$ ein r>0, eine Lipschitz-stetige Funktion $\psi\colon\mathbb{R}^{d-1}\to\mathbb{R}$ und eine affine Isometrie $A\colon\mathbb{R}^d\to\mathbb{R}^d$ gibt, so dass

$$B_r(x) \cap \Omega = B_r(x) \cap A \operatorname{epi}(\psi)$$

Abbildung: Visualisierung eines Lipschitz-Gebiets

Lemma (Kornsche Ungleichung ohne Randbedingungen auf Lipschitz-Mengen)

Sei $\Omega \subseteq \mathbb{R}^d$ Lipschitz, dann gibt es ein $c_K > 0$, so dass für alle $v \in H^1(\Omega; \mathbb{R}^d)$ gilt

$$||v||_{1,\Omega} \le c_K ||v||_{K,\Omega}$$

Beweis.

Siehe [15, 7] für Details

Wir bezeichnen eine offene zusammenhängende Menge $\Omega\subseteq\mathbb{R}^d$ als Gebiet. Ein Gebiet mit Lipschitz-Rand bezeichnen wir als Lipschitz-Gebiet.

Satz (Kornsche Ungleichung mit Randbedingungen)

Sei $\Omega \subseteq \mathbb{R}^3$ ein Lipschitz-Gebiet. Sei $\Gamma_D \subseteq \partial \Omega$ mit positivem Flächenmaß. Dann gibt es $c_K > 0$, so dass für alle $v \in H^1_{\Gamma_D}(\Omega; \mathbb{R}^3)$ gilt

$$||v||_{1,\Omega} \leq c_K |\varepsilon(v)|_{0,\Omega}$$

Beweis.

Siehe [7] für Details

Triangulierungen

Für eine reguläre Triangulierung ${\mathscr T}$ von Ω definieren wir

- \blacktriangleright $\mathscr E$ ist die Menge der Kanten
- $\mathscr{E}_{\Gamma} = \mathscr{E}_D \cup \mathscr{E}_N$ ist die Menge der Rand-Kanten
- $\mathcal{K} = \{x^i\}_{i=1}^n$ ist die Menge der Knoten
- $\mathscr{K}_{\Gamma} = \mathscr{K}_D \cup \mathscr{K}_N = \{x^{i_j}\}_{j=1}^l$ ist die Menge der Rand-Knoten

Abbildung: Beispiel einer Triangulierung

Nodale Basis

Bezeichne φ_i die nodale Basis in einer Dimension. Wir definieren die d-dimensionale nodale Basis

Abbildung: Ein Element einer nodalen Basis in 2D

Diskrete Formulierung

Wir wollen das diskrete Problem auf eine für den Computer verdauliche Form bringen. Wir diskretisieren

$$V = H^{1}(\Omega; \mathbb{R}^{d}) \qquad \longrightarrow V_{h} := \operatorname{Span}\{\phi_{i}\}_{i} \subseteq V$$

$$V^{0} = \{v \in H^{1}(\Omega; \mathbb{R}^{d}) : Mv = 0 \text{ auf } \Gamma\} \qquad \longrightarrow V_{h}^{0} := V_{h} \cap V^{0}$$

Wir schreiben nun

$$u_h = \sum_i \hat{u}_i \phi_i$$
$$v_h = \sum_i \hat{v}_i \phi_i$$

Wir diskretisieren a

$$a(u_h, v_h) = a(\sum_{i} \hat{u}_i \phi_i, \sum_{j} \hat{v}_j \phi_j)$$

$$= \sum_{i,j} \underbrace{a(\phi_i, \phi_j)}_{=:A_{ij}} \hat{u}_i \hat{v}_j$$

$$= \sum_{i,j} A_{ij} \hat{u}_i \hat{v}_j$$

$$= \hat{v}^{\top} A \hat{u}$$

mit der Steifheitsmatrix

$$A_{ij} = a(\phi_i, \phi_j)$$

Weiter approximieren wir

$$\ell(\phi_j) = \langle f, \phi_j \rangle_{0,\Omega} + \langle g, \phi_j \rangle_{0,\Gamma_N}$$

$$\approx \sum_{T \in \mathscr{T}} |T| f(x_T) \phi_i(x_T) + \sum_{E \in \mathscr{E}_N} |E| g(x_E) \phi_i(x_E)$$

$$=: \hat{\ell}_j$$

mit Seitenmittelpunkten x_T und Kantenmittelpunkten x_E und Load-Vektor $\hat{\ell}$ Damit diskretisieren wir

$$\ell(v_h) = \ell\left(\sum_j \hat{v}_j \phi_j\right) = \sum_j \hat{v}_j \ell(\phi_j) \approx \sum_j \hat{v}_j \hat{\ell}_j = \hat{v}^\top \hat{\ell}$$

Wir diskretisieren nun die Dirichletbedingung

$$Mu = w$$
 auf Γ

zu

$$B\hat{u} = \hat{w}$$

wobei
$$B \in \mathbb{R}^{dl \times dn}$$
 und $\hat{w} = \begin{bmatrix} w(x^{i_1}) & \dots & w(x^{i_l}) \end{bmatrix}^{\top} \in \mathbb{R}^{dl}$.

Diskrete Formulierung als Optimierungsproblem

Unser diskretisiertes Problem lautet also: Finde $\hat{u} \in V_h$, so dass

$$\hat{u}$$
 minimiert $\hat{W}(\hat{v}) \coloneqq \frac{1}{2}\hat{v}^{ op}A\hat{v} - \hat{\ell}^{ op}\hat{v}$ unter der Nebenbedingung $B\hat{u} = \hat{w}$

Proposition (Quadratische Programme mit Gleichheitsrestriktionen)

1. Für A positiv definit ist û genau dann Lösung von

$$\hat{u}$$
 minimiert $\hat{W}(\hat{v}) \coloneqq \frac{1}{2}\hat{v}^{\top}A\hat{v} - \hat{\ell}^{\top}\hat{v}$ unter der Nebenbedingung $B\hat{u} = \hat{w}$ (1)

wenn das Paar (\hat{u},\hat{p}) KKT-Punkt von (1) ist.

2. Das Paar (\hat{u},\hat{p}) ist genau dann KKT-Punkt von (1) wenn es folgendes Gleichungssystems löst:

$$\begin{bmatrix} A & B^{\top} \\ B & 0 \end{bmatrix} \begin{bmatrix} \hat{u} \\ \hat{p} \end{bmatrix} = \begin{bmatrix} \hat{\ell} \\ \hat{w} \end{bmatrix}$$
 (2)

3. Sind A positiv definit und die Zeilen von B linear unabhängig (d.h. B ist surjektiv), dann besitzt (2) genau eine Lösung.

Beweis (durch gekonntes Zitieren).

- 1. Siehe Korollar 2.47, S.59 in [10]
- 2. Siehe Satz 5.1, S.198 in [10]
- 3. Siehe Satz 19 in [11]

Diskrete Formulierung mit Lagrange-Multiplikatoren

Unser diskretes Problem lautet also: Finde $(\hat{u}, \hat{p}) \in \mathbb{R}^{nd} \times \mathbb{R}^{ld}$, so dass

$$\begin{bmatrix} A & B^{\top} \\ B & 0 \end{bmatrix} \begin{bmatrix} \hat{u} \\ \hat{p} \end{bmatrix} = \begin{bmatrix} \hat{\ell} \\ \hat{w} \end{bmatrix}$$
 (3)

Dieses System wird vom im Programm aufgestellt und gelöst.

Residuale Fehlerschätzer

Gegeben sei die Lösung u des Problems und u_h des diskretisierten Problems. Wir definieren

- ▶ die flächenbezogenen Residuen $R_T := f + \operatorname{Div} \sigma(u_h)$
- ▶ die kantenbezogenen Sprünge

$$R_E = egin{cases} [\![oldsymbol{\sigma}(u_h) \cdot n]\!] &, \mathsf{falls} \ E \in \mathscr{E} \setminus \mathscr{E}_\Gamma \ 0 &, \mathsf{falls} \ E \in \mathscr{E}_D \ g - oldsymbol{\sigma}(u_h) &, \mathsf{falls} \ E \in \mathscr{E}_N \end{cases}$$

einen lokalen Fehlerschätzer

$$\eta_{R,T}^2 := h_T^2 \|R_T\|_{0,T}^2 + \frac{1}{2} \sum_{E \in \partial T} h_E \|R_E\|_{0,E}^2$$

einen globalen Fehlerschätzer

$$\eta_R^2 := \sum_{T \in \mathscr{T}} h_T^2 \|R_T\|_{0,T}^2 + \sum_{E \in \mathscr{E}} h_E \|R_E\|_{0,E}^2$$

Wir betrachten im folgenden nur den homogenen Fall w = 0.

Proposition

Sei $\Omega \subseteq \mathbb{R}^d$ Lipschitz und $v \in H^1(\Omega; \mathbb{R}^d)$. Dann gilt

$$a(e,v) = \sum_{T \in \mathscr{T}} \langle R_T, v \rangle_{0,T} + \sum_{E \in \mathscr{E}} \langle R_E, v \rangle_{0,E}$$

Beweis.

Wesentliche Idee ist, Satz von Gauss, auf jedem Dreieck seperat anzuwenden.

Satz (Zuverlässigkeit / untere Schranke des residualen Schätzers)

Sei $\mathscr T$ eine quasiuniforme Triangulierung von Ω . Dann gibt es ein c>0, so dass für den Fehler $e:=u-u_h$ gilt

$$||e||_{1,\Omega} \le c\eta_R$$

Beweis.

Analog zu [4, 3]. Verwendet vorhergehende Proposition und Interpolation vom Clément-Typ.

Satz (Effizienz / obere Schranke des residualen Schätzers)

Sei $\mathscr T$ eine quasiuniforme Triangulierung von Ω . Dann gibt es ein c>0, so dass

$$\eta_{R,T}^2 \le c \left(\|e\|_{1,\omega_T}^2 + \sum_{T' \subseteq \omega_T} h_{T'}^2 \|f - P_h f\|_{0,T'}^2 \right)$$

Beweis.

Recht technisch. Analog zu [4, 3]

Fehlerschätzung durch Mittelung, nach [1]

Wir setzen im Folgenden $\tilde{\sigma}_h = \sigma(\tilde{\epsilon}_h)$ und $\sigma_h = \sigma(\epsilon_h)$. Man definiert eine stetige Approximation $\tilde{\sigma}_h$ an σ_h , indem man an den Knoten den Wert von $\tilde{\sigma}_h$ auf das Mittel von σ_h der angrenzenden $T \in \mathscr{T}$ setzt und dieses dann linear interpoliert. Dies liefert dann den Fehlerschätzer

$$\eta_{M,T} \coloneqq \|\tilde{\sigma}_h - \sigma_h\|_{0,T}$$

A Priori Abschätzung

Proposition (A Priori Fehler)

Seien $\mathscr T$ eine quasiuniforme Triangulierung mit Regularitätsparameter κ , $u \in H^2(\Omega;\mathbb R^d)$ Lösung des homogenen Problemes und u_h Lösung des diskreten homogenen Problems. Dann gibt es eine von der Triangulierung unabhängige Konstante c>0, so dass

$$|\sigma - \sigma_h| \le ch_{\mathscr{T}}|u|_{2,\Omega}$$

Hierbei ist $h_{\mathscr{T}} := \max_{T \in \mathscr{T}} h_T$.

Beweis.

Folgt aus Céa's Lemma und einem Interpolationsresultat aus [12].

Numerische Experimente

Das folgende Benchmark ist aus [5]

Benchmark: Quadratisches Gebiet

Wir haben das Gebiet $\Omega=[0,1]^2\subseteq\mathbb{R}^2$ mit reinem Dirichlet-Rand $\Gamma_D=\partial\Omega$, Parameter $\mu=1$, uniforme Triangulierung und Funktionen

$$u(x/\pi) = \pi \begin{bmatrix} \cos(x_2)\sin^2(x_1)\sin(x_2) \\ -\cos(x_1)\sin(x_1)\sin^2(x_2) \end{bmatrix}$$

$$f(x/\pi) = 2\mu\pi^3 \begin{bmatrix} -\cos(x_2)\sin(x_1)(2\cos(2x_1) - 1) \\ \cos(x_1)\sin(x_1)(2\cos(2x_2) - 1) \end{bmatrix}$$

Abbildung: Anfangskonfiguration

Abbildung: Mögliche Deformation des Gebiets

Abbildung: Lösung auf dem Gebiet

4□ ► 4□ ► 4 = ► 4 = ► 9 < 0</p>

Abbildung: Konvergenzrate

Abbildung: Zuverlässigkeit

Abbildung: Auf eine andere Art zuverlässig?

Das Folgende Benchmark ist aus [5, 1]

Benchmark: L-förmiges Gebiet

Wir verwenden ein L-förmiges gebiet mit reinem Dirichlet-Rand und Parameten $E=10^6$, v=0.3 und $\delta=0.7$. u ist In Polarkoordinaten gegeben durch

$$u_r(r,\phi) = \frac{r^{\alpha}}{2\mu} \left(-(\alpha+1)\cos((\alpha+1)\phi) + (C_2 - \alpha - 1)C_1\cos((\alpha-1)\phi) \right)$$
$$u_r(r,\phi) = \frac{r^{\alpha}}{2\mu} \left((\alpha+1)\sin((\alpha+1)\phi) + (C_2 + \alpha - 1)C_1\sin((\alpha-1)\phi) \right)$$

mit speziellen Konstanten C_1 , C_2 und α . f ist gegeben durch f=0

Abbildung: Anfangskonfiguration

Abbildung: Mögliche Deformation des Gebiets

Abbildung: Lösung auf dem Gebiet

Abbildung: Konvergenzrate

Abbildung: uniforme Triangulierung bei DOF = 16

Abbildung: Triangulierung für den residualen Schätzer bei DOF = 38

Abbildung: Triangulierung für den residualen Schätzer bei DOF = 84

Abbildung: Triangulation für den Mittelungs Fehlerschätzer bei DOF = 196

Abbildung: Triangulation für den Mittelungs Fehlerschätzer bei DOF = 1018

Abbildung: Triangulation für den Mittelungs Fehlerschätzer bei DOF = 1946

Zusammenfassung I

Formulierungen des kontinuierlichen Problems: Finde $u \in V$, so dass

Kräftegleichgewicht

$$\int_{\omega} f \, \mathrm{d}x + \int_{\partial \omega} \sigma n \, \mathrm{d}s = 0 \qquad \qquad \text{für alle } \omega \subseteq \Omega$$

$$\sigma n = g \qquad \qquad \text{auf } \Gamma_N$$

$$Mu = w \qquad \qquad \text{auf } \Gamma$$

Differenzielles Problem

$$-\operatorname{Div} \sigma = f$$
 auf Ω
$$\sigma n = g$$
 auf Γ_N
$$Mu = w$$
 auf Γ

Variationelles Problem (virtuelle Arbeit)

$$a(u,v)=\ell(v)$$
 für alle $v\in V^0$
$$Mu=w \qquad \qquad \text{auf } \Gamma = 0 \text{ for all } 0 \text{ for al$$

Zusammenfassung II

Optimierungsproblem (Energiefunktional)

$$u \text{ minimiert } W = \frac{1}{2}a(\cdot,\cdot) - \ell$$
 unter der Nebenbedingung
$$Mu\big|_{\Gamma} = w$$

Formulierungen des diskreten Problems: Finde $u_h \in V_h$, so dass

Optimierungsproblem

$$\hat{u}$$
 minimiert $\hat{W}(\hat{v}) \coloneqq \frac{1}{2}\hat{v}^{\top}A\hat{v} - \hat{\ell}^{\top}\hat{v}$ unter der Nebenbedingung $B\hat{u} = \hat{w}$

LGS mit Lagrange-Multiplikatoren

$$\begin{bmatrix} A & B^\top \\ B & 0 \end{bmatrix} \begin{bmatrix} \hat{u} \\ \hat{p} \end{bmatrix} = \begin{bmatrix} \hat{\ell} \\ \hat{w} \end{bmatrix}$$

Zusammenfassung III

► Man zeigt:

Kornsche Ungleichung ohne Randbedinungen auf dem Ganzraum $\xrightarrow{\text{Erweiterungsoperator}}$ Kornsche Ungleichung ohne Randbedingungen $\xrightarrow{\text{Starrk\"orperbewegungen}}$ Kornsche Ungleichung mit Randbedingungen \rightarrow Positivdefinitheit von a

- Existenz und Eindeutigkeit
 - kontinuierliches Problem: Lax-Milgram-Lemma
 - diskretes Problem: Resultate aus der quadratischen Optimierung
- Der residuale Fehlerschätzer ist verlässlich (reliable) und effizient. Dies sieht man auch in numerischen Experimenten.
- Der residuale Fehlerschätzer wird verwendet, um das Gitter adaptiv zu verfeinern. Dies verbessert bei manchen Problemen die Konvergenz.

Danke für die Aufmerksamkeit.

Fragen?

Quellen I

- [1] Alberty, J., C. Carstensen, S. A. Funken, and R. Klose. "Matlab Implementation of the Finite Element Method in Elasticity." *Computing 69, no. 3 (2002): 239-263.*
- [2] Alt, Hans Wilhelm. Linear Functional Analysis: An Application-Oriented Introduction. London: Springer London, 2016.
- [3] Bangerth, Wolfgang, and Rolf Rannacher. Adaptive Finite Element Methods for Differential Equations. Basel [u.a.]: Birkhäuser, 2003. S.130f.
- [4] Braess, Dietrich. Finite Elemente: Theorie, Schnelle Löser Und Anwendungen in Der Elastizitätstheorie. 4., überarb. und erw. Aufl. Berlin [u.a.]: Springer, 2007.

Quellen II

- [5] Carstensen, C., M. Eigel, and J. Gedicke. "Computational Competition of Symmetric Mixed FEM in Linear Elasticity." Computer Methods in Applied Mechanics and Engineering 200.41 (2011): 2903-2915.
- [6] Ciarlet, Philippe G. Studies in Mathematics and Its Applications. Mathematical Elasticity. 1, Three-dimensional Elasticity. Amsterdam [u.a.]: North-Holland, 1988.
- [7] Ciarlet, Philippe G. Studies in Mathematics and Its Applications. Mathematical Elasticity. 2, Theory of Plates. Amsterdam [u.a.]: North-Holland, 1997.
- [8] Conti, S. "Einführung in die Funktionanalysis". Vorlesungsnotizen. Universität Bonn, Wintersemester 2021/2022.

Quellen III

- [9] Lions, Jacques Louis, and Georges Duvaut. Inequalities in Mechanics and Physics. Berlin, Heidelberg: Springer, 1976.
- [10] Geiger, Carl. Theorie Und Numerik Restringierter Optimierungsaufgaben. 1st ed. 2002. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.
- [11] Gedicke, J. "Einführung in die Numerische Mathematik". Vorlesungsnotizen. Universität Bonn, Sommersemester 2021.
- [12] Gedicke, J. "Wissenschaftliches Rechnen I". Vorlesungsnotizen. Universität Bonn, Wintersemester 2021/2022.
- [13] Kikuchi, Noboru, and John Tinsley Oden. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. *Philadelphia: SIAM, 1988.*

Quellen IV

- [14] Lifshitz, Evgenii Mikhailovich, and Lev Davidovich Landau. Course of Theoretical Physics. *Pergamon*, 1959.
- [15] Nitsche, J. A. On Korn's second inequality. RAIRO Anal. Numér. 15 (1981), no. 3, 237–248.