Спецкурс 2020/2021: "Геометрические и комбинаторные свойства матриц и аппроксимация" Блок лекций "Сложность матриц и аппроксимация" Лекция 7: "Ранг тензоров"

28 ноября 2020 г.

Тензор порядка d размера $n_1 imes n_2 imes \cdots imes n_d$ — это массив чисел

$$T = (T_{i_1,...,i_d}), \quad i_1 \in [n_1],...,i_d \in [n_d].$$

Напомним, $[n] := \{1, 2, \dots, n\}.$

Тензор порядка d размера $n_1 imes n_2 imes \cdots imes n_d$ — это массив чисел

$$T=(T_{i_1,\ldots,i_d}),\quad i_1\in[n_1],\ldots,i_d\in[n_d].$$

Напомним, $[n] := \{1, 2, \dots, n\}.$

Числа n_1, \ldots, n_d называются размерностями тензора. Обозначаем множество таких тензоров как $\mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d}$.

Тензор порядка d размера $n_1 imes n_2 imes \cdots imes n_d$ — это массив чисел

$$T=(T_{i_1,\ldots,i_d}),\quad i_1\in [n_1],\ldots,i_d\in [n_d].$$

Напомним, $[n] := \{1, 2, \dots, n\}.$

Числа n_1, \ldots, n_d называются размерностями тензора. Обозначаем множество таких тензоров как $\mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d}$.

Очевидно, тензор размерности (n_1,\ldots,n_d) состоит из $N=n_1n_2\ldots n_d$ элементов.

Тензор порядка d размера $n_1 imes n_2 imes \cdots imes n_d$ — это массив чисел

$$T=(T_{i_1,\ldots,i_d}),\quad i_1\in[n_1],\ldots,i_d\in[n_d].$$

Напомним, $[n] := \{1, 2, \dots, n\}.$

Числа n_1, \ldots, n_d называются размерностями тензора. Обозначаем множество таких тензоров как $\mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d}$.

Очевидно, тензор размерности (n_1,\ldots,n_d) состоит из $N=n_1n_2\ldots n_d$ элементов.

Тензор порядка d размера $n_1 imes n_2 imes \cdots imes n_d$ — это массив чисел

$$T=(T_{i_1,\ldots,i_d}),\quad i_1\in[n_1],\ldots,i_d\in[n_d].$$

Напомним, $[n] := \{1, 2, \dots, n\}.$

Числа n_1, \ldots, n_d называются размерностями тензора. Обозначаем множество таких тензоров как $\mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d}$.

Очевидно, тензор размерности (n_1,\ldots,n_d) состоит из $N=n_1n_2\ldots n_d$ элементов.

Можно считать, что тензор — это функция нескольких (дискретных) аргументов.

ullet скаляр $x\in\mathbb{R}$ — тензор порядка 0;

Тензор порядка d размера $n_1 imes n_2 imes \cdots imes n_d$ — это массив чисел

$$T=(T_{i_1,\ldots,i_d}),\quad i_1\in[n_1],\ldots,i_d\in[n_d].$$

Напомним, $[n] := \{1, 2, \dots, n\}.$

Числа n_1, \ldots, n_d называются размерностями тензора. Обозначаем множество таких тензоров как $\mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d}$.

Очевидно, тензор размерности (n_1,\ldots,n_d) состоит из $N=n_1n_2\ldots n_d$ элементов.

- ullet скаляр $x\in\mathbb{R}$ тензор порядка 0;
- ullet вектор $x \in \mathbb{R}^n$ тензор порядка 1;

Тензор порядка d размера $n_1 imes n_2 imes \cdots imes n_d$ — это массив чисел

$$T=(T_{i_1,\ldots,i_d}),\quad i_1\in[n_1],\ldots,i_d\in[n_d].$$

Напомним, $[n] := \{1, 2, \dots, n\}.$

Числа n_1, \ldots, n_d называются размерностями тензора. Обозначаем множество таких тензоров как $\mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d}$.

Очевидно, тензор размерности (n_1,\ldots,n_d) состоит из $N=n_1n_2\ldots n_d$ элементов.

- ullet скаляр $x \in \mathbb{R}$ тензор порядка 0;
- ullet вектор $x \in \mathbb{R}^n$ тензор порядка 1;
- ullet матрица $x \in \mathbb{R}^{n_1 \times n_2}$ тензор порядка 2;

Тензор порядка d размера $n_1 imes n_2 imes \cdots imes n_d$ — это массив чисел

$$T=(T_{i_1,\ldots,i_d}),\quad i_1\in[n_1],\ldots,i_d\in[n_d].$$

Напомним, $[n] := \{1, 2, \dots, n\}.$

Числа n_1,\ldots,n_d называются размерностями тензора. Обозначаем множество таких тензоров как $\mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d}$.

Очевидно, тензор размерности (n_1,\ldots,n_d) состоит из $N=n_1n_2\ldots n_d$ элементов.

- ullet скаляр $x \in \mathbb{R}$ тензор порядка 0;
- ullet вектор $x\in \mathbb{R}^n$ тензор порядка 1;
- ullet матрица $x \in \mathbb{R}^{n_1 imes n_2}$ тензор порядка 2;
- ullet тензор $x \in \mathbb{R}^{n_1 imes \dots imes n_d}$ порядка d.

Матрицу можно отождествить с линейным оператором, это даёт много полезных и важных понятий (собственные и сингулярные числа, операторные нормы, инвариантность следа и определителя и т.п.). Каков алгебраический взгляд на тензоры?

Матрицу можно отождествить с линейным оператором, это даёт много полезных и важных понятий (собственные и сингулярные числа, операторные нормы, инвариантность следа и определителя и т.п.). Каков алгебраический взгляд на тензоры?

В более общем смысле тензор — это элемент тензорного произведения пространств. Тензорное произведение линейных пространств U и V состоит из (формальных) линейных комбинаций выражений вида $u\otimes v,\ u\in U,\ v\in V,$ в котором некоторые комбинации отождествлены — так, чтобы выполнялись условия билинейности

$$(\lambda_1 u_1 + \lambda_2 u_2) \otimes v = \lambda_1 (u_1 \otimes v) + \lambda_2 (u_2 \otimes v),$$

и аналогично для второго аргумента.

Матрицу можно отождествить с линейным оператором, это даёт много полезных и важных понятий (собственные и сингулярные числа, операторные нормы, инвариантность следа и определителя и т.п.). Каков алгебраический взгляд на тензоры?

В более общем смысле тензор — это элемент тензорного произведения пространств. Тензорное произведение линейных пространств U и V состоит из (формальных) линейных комбинаций выражений вида $u\otimes v,\ u\in U,\ v\in V,$ в котором некоторые комбинации отождествлены — так, чтобы выполнялись условия билинейности

$$(\lambda_1 u_1 + \lambda_2 u_2) \otimes v = \lambda_1 (u_1 \otimes v) + \lambda_2 (u_2 \otimes v),$$

и аналогично для второго аргумента.

Тензоры вида $u\otimes v$ называются *разложимыми*, они порождают всё тензорное произведение $U\otimes V$ (но составляют лишь малую его часть).

Матрицу можно отождествить с линейным оператором, это даёт много полезных и важных понятий (собственные и сингулярные числа, операторные нормы, инвариантность следа и определителя и т.п.). Каков алгебраический взгляд на тензоры?

В более общем смысле тензор — это элемент тензорного произведения пространств. Тензорное произведение линейных пространств U и V состоит из (формальных) линейных комбинаций выражений вида $u\otimes v,\ u\in U,\ v\in V,$ в котором некоторые комбинации отождествлены — так, чтобы выполнялись условия билинейности

$$(\lambda_1 u_1 + \lambda_2 u_2) \otimes v = \lambda_1 (u_1 \otimes v) + \lambda_2 (u_2 \otimes v),$$

и аналогично для второго аргумента.

Тензоры вида $u\otimes v$ называются *разложимыми*, они порождают всё тензорное произведение $U\otimes V$ (но составляют лишь малую его часть). Можно показать, что если $\{u_1,\ldots,u_m\}$ — базис U, а $\{v_1,\ldots,v_m\}$ — базис V, то $\{u_i\otimes v_j\}$ будет базисом $U\otimes V$. Значит, $\dim(U\otimes V)=\dim(U)\dim(V)$. Аналогично для нескольких пр-в.

Тензорное произведение и функции многих переменных

Выберем в пространстве U базис $\{u_i\colon i\in I\}$. Тогда U можно отождествить с функциями $f\colon I\to\mathbb{R}$. Аналогично для V с базисом $\{v_j\colon j\in J\}\colon g\colon J\to\mathbb{R}$.

В тензорном произведении $U\otimes V$ базис — $\{u_i\otimes v_j\}$, поэтому $U\otimes V$ можно отождествить с пространством функций $h\colon I\times J\to \mathbb{R}$. Разложимые тензоры соответствуют функциям вида h(i,j)=f(i)g(j).

Тензорное произведение и функции многих переменных выбором в пространстве II базис $\{u: i \in I\}$. Тогла II можно

Выберем в пространстве U базис $\{u_i\colon i\in I\}$. Тогда U можно отождествить с функциями $f\colon I\to\mathbb{R}$. Аналогично для V с базисом $\{v_j\colon j\in J\}\colon g\colon J\to\mathbb{R}$.

В тензорном произведении $U\otimes V$ базис — $\{u_i\otimes v_j\}$, поэтому $U\otimes V$ можно отождествить с пространством функций $h\colon I\times J\to \mathbb{R}$. Разложимые тензоры соответствуют функциям вида h(i,j)=f(i)g(j).

То есть, тензорное произведение для пространств функций соответствует переходу к декартовому произведению областей определения.

В тензорном произведении $U\otimes V$ базис — $\{u_i\otimes v_j\}$, поэтому $U\otimes V$ можно отождествить с пространством функций $h\colon I\times J\to \mathbb{R}$. Разложимые тензоры соответствуют функциям вида h(i,j)=f(i)g(j).

То есть, тензорное произведение для пространств функций соответствует переходу к декартовому произведению областей определения.

ullet многочлены: $\mathbb{R}[x]\otimes\mathbb{R}[y]\cong\mathbb{R}[x,y]$;

В тензорном произведении $U\otimes V$ базис — $\{u_i\otimes v_j\}$, поэтому $U\otimes V$ можно отождествить с пространством функций $h\colon I\times J\to \mathbb{R}$. Разложимые тензоры соответствуют функциям вида h(i,j)=f(i)g(j).

To есть, тензорное произведение для пространств функций соответствует переходу к декартовому произведению областей определения.

- ullet многочлены: $\mathbb{R}[x]\otimes\mathbb{R}[y]\cong\mathbb{R}[x,y]$;
- ullet разложимые функции от d переменных: $f_1(x_1)f_2(x_2)\dots f_d(x_d)$;

В тензорном произведении $U\otimes V$ базис — $\{u_i\otimes v_j\}$, поэтому $U\otimes V$ можно отождествить с пространством функций $h\colon I\times J\to \mathbb{R}$. Разложимые тензоры соответствуют функциям вида h(i,j)=f(i)g(j).

То есть, тензорное произведение для пространств функций соответствует переходу к декартовому произведению областей определения.

- ullet многочлены: $\mathbb{R}[x]\otimes\mathbb{R}[y]\cong\mathbb{R}[x,y]$;
- ullet разложимые функции от d переменных: $f_1(x_1)f_2(x_2)\dots f_d(x_d)$;
- многомерная тригонометрическая система $\exp(i(k_1x_1 + \dots k_dx_d))$ состоит из разложимых функций;

В тензорном произведении $U\otimes V$ базис — $\{u_i\otimes v_j\}$, поэтому $U\otimes V$ можно отождествить с пространством функций $h\colon I\times J\to \mathbb{R}$. Разложимые тензоры соответствуют функциям вида h(i,j)=f(i)g(j).

То есть, тензорное произведение для пространств функций соответствует переходу к декартовому произведению областей определения.

- ullet многочлены: $\mathbb{R}[x]\otimes\mathbb{R}[y]\cong\mathbb{R}[x,y]$;
- ullet разложимые функции от d переменных: $f_1(x_1)f_2(x_2)\dots f_d(x_d)$;
- многомерная тригонометрическая система $\exp(i(k_1x_1 + \dots k_dx_d))$ состоит из разложимых функций;
- для функциональных пространств то же самое, например, $C(X)\otimes C(Y)=C(X\times Y)$ для хороших (компактных) X,Y и при подходящем определении нормы тензорного произведения.

В линейной алгебре тензоры (в нашем понимании) возникают как координаты элементов тензорных произведений. Пусть U_1,\ldots,U_d — линейные пространства с базисами $\{u_1^1,\ldots,u_{n_1}^1\},\ldots,\{u_1^d,\ldots,u_{n_d}^d\}$, соответственно. Тогда вектора

$$u^1_{i_1} \otimes u^2_{i_2} \otimes \cdots \otimes u^d_{n_d}$$

образуют базис пространства $U_1 \otimes U_2 \otimes \cdots \otimes U_d$.

В линейной алгебре тензоры (в нашем понимании) возникают как координаты элементов тензорных произведений. Пусть U_1,\ldots,U_d — линейные пространства с базисами $\{u_1^1,\ldots,u_{n_1}^1\},\ldots,\{u_1^d,\ldots,u_{n_d}^d\}$, соответственно. Тогда вектора

$$u^1_{i_1} \otimes u^2_{i_2} \otimes \cdots \otimes u^d_{n_d}$$

образуют базис пространства $U_1 \otimes U_2 \otimes \cdots \otimes U_d$. Значит, $\mathcal{T} \in U_1 \otimes \cdots \otimes U_d$ раскладывается по базису:

$$\mathcal{T} = \sum_{i_1 \in [n_1], \dots i_d \in [n_d]} T_{i_1, \dots, i_d} u^1_{i_1} \otimes \dots \otimes u^d_{n_d}.$$

В линейной алгебре тензоры (в нашем понимании) возникают как координаты элементов тензорных произведений. Пусть U_1,\ldots,U_d — линейные пространства с базисами $\{u_1^1,\ldots,u_{n_1}^1\},\ldots,\{u_1^d,\ldots,u_{n_d}^d\}$, соответственно. Тогда вектора

$$u^1_{i_1} \otimes u^2_{i_2} \otimes \cdots \otimes u^d_{n_d}$$

образуют базис пространства $U_1 \otimes U_2 \otimes \cdots \otimes U_d$. Значит, $\mathcal{T} \in U_1 \otimes \cdots \otimes U_d$ раскладывается по базису:

$$\mathcal{T} = \sum_{i_1 \in [n_1], \dots i_d \in [n_d]} \mathcal{T}_{i_1, \dots, i_d} u_{i_1}^1 \otimes \dots \otimes u_{n_d}^d.$$

При замене базисов в U_j координаты тензора преобразуются по известным законам; при этом некоторые свойства инвариантны относительно замены базиса (см. далее).

В линейной алгебре тензоры (в нашем понимании) возникают как координаты элементов тензорных произведений. Пусть U_1,\ldots,U_d — линейные пространства с базисами $\{u_1^1,\ldots,u_{n_1}^1\},\ldots,\{u_1^d,\ldots,u_{n_d}^d\}$, соответственно. Тогда вектора

$$u^1_{i_1} \otimes u^2_{i_2} \otimes \cdots \otimes u^d_{n_d}$$

образуют базис пространства $U_1 \otimes U_2 \otimes \cdots \otimes U_d$. Значит, $\mathcal{T} \in U_1 \otimes \cdots \otimes U_d$ раскладывается по базису:

$$\mathcal{T} = \sum_{i_1 \in [n_1], \dots i_d \in [n_d]} \mathcal{T}_{i_1, \dots, i_d} u_{i_1}^1 \otimes \dots \otimes u_{n_d}^d.$$

При замене базисов в U_j координаты тензора преобразуются по известным законам; при этом некоторые свойства инвариантны относительно замены базиса (см. далее).

Пространство \mathbb{R}^n обладает естественным базисом; мы можем отождествить тензорное произведение (в алгебраическом смысле) с пространством тензоров (как массивов чисел):

 $\mathbb{R}^{n_1} \otimes \ldots \otimes \mathbb{R}^{n_d} \cong \mathbb{R}^{n_1 \times \ldots \times n_d}$.

Тензорное произведение $V^* \otimes V$ можно отождествить с пространством операторов на V:

$$V^* \otimes V \cong L(V, V), \quad (\xi \otimes v) \colon u \mapsto \xi(u)v.$$

Тензорное произведение $V^* \otimes V$ можно отождествить с пространством операторов на V:

$$V^* \otimes V \cong L(V, V), \quad (\xi \otimes v) \colon u \mapsto \xi(u)v.$$

Выберем в V базис $\{e_j\}$, в V^* возникает сопряжённый базис $\{\xi_i\}$, т.е. такой что $\xi_i(e_j)=\delta_{i,j}$. Тензор раскладыватеся по базису:

$$V^* \otimes V \ni \mathcal{T} = \sum_{i,j} T_{i,j} \xi_i \otimes e_j.$$

Тензорное произведение $V^* \otimes V$ можно отождествить с пространством операторов на V:

$$V^* \otimes V \cong L(V, V), \quad (\xi \otimes v) \colon u \mapsto \xi(u)v.$$

Выберем в V базис $\{e_j\}$, в V^* возникает сопряжённый базис $\{\xi_i\}$, т.е. такой что $\xi_i(e_j)=\delta_{i,j}$. Тензор раскладыватеся по базису:

$$V^* \otimes V \ni \mathcal{T} = \sum_{i,j} T_{i,j} \xi_i \otimes e_j.$$

Вычислим $\mathcal{T}e_k$:

$$\mathcal{T}e_k = (\sum T_{i,j}\xi_i \otimes e_j)e_k = \sum_{i,j} T_{i,j}\xi_i(e_k)e_j = \sum_j T_{k,j}e_j.$$

Тензорное произведение $V^* \otimes V$ можно отождествить с пространством операторов на V:

$$V^* \otimes V \cong L(V, V), \quad (\xi \otimes v) \colon u \mapsto \xi(u)v.$$

Выберем в V базис $\{e_j\}$, в V^* возникает сопряжённый базис $\{\xi_i\}$, т.е. такой что $\xi_i(e_j)=\delta_{i,j}$. Тензор раскладыватеся по базису:

$$V^* \otimes V \ni \mathcal{T} = \sum_{i,j} T_{i,j} \xi_i \otimes e_j.$$

Вычислим $\mathcal{T}e_k$:

$$\mathcal{T}e_k = (\sum T_{i,j}\xi_i \otimes e_j)e_k = \sum_{i,j} T_{i,j}\xi_i(e_k)e_j = \sum_j T_{k,j}e_j.$$

Таким образом, $(T_{i,j})$ это транспонированная матрица оператора \mathcal{T} .

Пример: билинейное отображение

Пространство $L(U \times V, W)$ билинейных отображений $\mathcal{T} \colon U \times V \to W$ отождествляется с тензорным произведением $U^* \otimes V^* \otimes W$. Выбор базисов $\{u_i\}$, $\{v_j\}$, $\{w_k\}$ даёт разложение

$$\mathcal{T} = \sum_{i,j,k} T_{i,j,k} \xi_i \otimes \eta_j \otimes w_k.$$

Пример: билинейное отображение

Пространство $L(U \times V, W)$ билинейных отображений $\mathcal{T} \colon U \times V \to W$ отождествляется с тензорным произведением $U^* \otimes V^* \otimes W$. Выбор базисов $\{u_i\}, \{v_i\}, \{w_k\}$ даёт разложение

$$\mathcal{T} = \sum_{i,j,k} T_{i,j,k} \xi_i \otimes \eta_j \otimes w_k.$$

При этом

$$\mathcal{T}(u_p, v_q) = \sum_{i,j,k} T_{i,j,k} \xi_i(u_p) \eta_j(v_q) w_k = \sum_k T_{p,q,k} w_k.$$

Пример: билинейное отображение

Пространство $L(U \times V, W)$ билинейных отображений $\mathcal{T} \colon U \times V \to W$ отождествляется с тензорным произведением $U^* \otimes V^* \otimes W$. Выбор базисов $\{u_i\}, \{v_j\}, \{w_k\}$ даёт разложение

$$\mathcal{T} = \sum_{i,j,k} T_{i,j,k} \xi_i \otimes \eta_j \otimes w_k.$$

При этом

$$\mathcal{T}(u_p, v_q) = \sum_{i,j,k} T_{i,j,k} \xi_i(u_p) \eta_j(v_q) w_k = \sum_k T_{p,q,k} w_k.$$

К сожалению, для тензоров порядка $d\geqslant 3$ нет настолько же удобного соответствия, как соответствие между матрицами и операторами.

Напомним эквивалентные определения ранга матрицы:

ullet размерность образа $\dim \operatorname{Im} \mathcal{A}$ оператора с матрицей A;

Напомним эквивалентные определения ранга матрицы:

- ullet размерность образа dim ${
 m Im} {\cal A}$ оператора с матрицей A;
- размерность пространства строк/столбцов;

Напомним эквивалентные определения ранга матрицы:

- ullet размерность образа dim ${
 m Im} {\cal A}$ оператора с матрицей A;
- размерность пространства строк/столбцов;
- ullet максимальный размер невырожденного минора: $\max\{|I|=|J|\colon\det A[I,J]\neq 0\};$
- ullet минимальная размерность r, в которой найдутся вектора $x_i \in \mathbb{R}^r$, $y_i \in \mathbb{R}^r$, такие что $A_{i,j} = \langle x_i, y_i \rangle$;
- ullet минимальное число одноранговых матриц (т.е. вида $R_{i,j}=a_ib_j$) в представлении $A=R^{(1)}+R^{(2)}+\ldots+R^{(r)}$.

Напомним эквивалентные определения ранга матрицы:

- ullet размерность образа dim ${
 m Im} {\cal A}$ оператора с матрицей A;
- размерность пространства строк/столбцов;
- ullet максимальный размер невырожденного минора: $\max\{|I|=|J|\colon\det A[I,J]\neq 0\};$
- ullet минимальная размерность r, в которой найдутся вектора $x_i \in \mathbb{R}^r$, $y_j \in \mathbb{R}^r$, такие что $A_{i,j} = \langle x_i, y_j \rangle$;
- ullet минимальное число одноранговых матриц (т.е. вида $R_{i,j}=a_ib_j$) в представлении $A=R^{(1)}+R^{(2)}+\ldots+R^{(r)}$.

Обобщим понятие ранга на основании последнего определения.

Ранг тензора

Назовём тензор $T \in \mathbb{R}^{n_1 imes \dots imes n_d}$ разложимым, если

$$T_{i_1,\ldots,i_d} = v_{i_1}^1 v_{i_2}^2 \ldots v_{i_d}^d, \quad i_1 \in [n_1], \ldots, i_d \in [n_d],$$

для некоторых векторов v^1, \dots, v^d . Например, для тензора порядка 3:

$$T_{i,j,k} = a_i b_j c_k, \quad a \in \mathbb{R}^{n_1}, b \in \mathbb{R}^{n_2}, c \in \mathbb{R}^{n_3}.$$

Ранг тензора

Назовём тензор $T \in \mathbb{R}^{n_1 imes \cdots imes n_d}$ разложимым, если

$$T_{i_1,\ldots,i_d} = v_{i_1}^1 v_{i_2}^2 \ldots v_{i_d}^d, \quad i_1 \in [n_1], \ldots, i_d \in [n_d],$$

для некоторых векторов v^1, \dots, v^d . Например, для тензора порядка 3:

$$T_{i,j,k} = a_i b_j c_k, \quad a \in \mathbb{R}^{n_1}, b \in \mathbb{R}^{n_2}, c \in \mathbb{R}^{n_3}.$$

Рангом тензора назовём минимальное количество разложимых тензоров в представлении $T=R^{(1)}+R^{(2)}+\ldots+R^{(r)}$. Таким образом, "разложимый" это синоним слову "одноранговый" (кроме нулевого).

Ранг тензора

Назовём тензор $T \in \mathbb{R}^{n_1 imes \dots imes n_d}$ разложимым, если

$$T_{i_1,\ldots,i_d} = v_{i_1}^1 v_{i_2}^2 \ldots v_{i_d}^d, \quad i_1 \in [n_1], \ldots, i_d \in [n_d],$$

для некоторых векторов v^1, \dots, v^d . Например, для тензора порядка 3:

$$T_{i,j,k} = a_i b_j c_k, \quad a \in \mathbb{R}^{n_1}, b \in \mathbb{R}^{n_2}, c \in \mathbb{R}^{n_3}.$$

Рангом тензора назовём минимальное количество разложимых тензоров в представлении $T=R^{(1)}+R^{(2)}+\ldots+R^{(r)}$. Таким образом, "разложимый" это синоним слову "одноранговый" (кроме нулевого).

Пример: пусть $n_1=n_2=n_3$. Чему равен ранг тензора $T_{i,j,k}=\mathbf{1}\{i=j=k\}$?

Ранг тензора

Назовём тензор $T \in \mathbb{R}^{n_1 imes \dots imes n_d}$ разложимым, если

$$T_{i_1,\ldots,i_d} = v_{i_1}^1 v_{i_2}^2 \ldots v_{i_d}^d, \quad i_1 \in [n_1], \ldots, i_d \in [n_d],$$

для некоторых векторов v^1, \dots, v^d . Например, для тензора порядка 3:

$$T_{i,j,k} = a_i b_j c_k, \quad a \in \mathbb{R}^{n_1}, b \in \mathbb{R}^{n_2}, c \in \mathbb{R}^{n_3}.$$

Рангом тензора назовём минимальное количество разложимых тензоров в представлении $T=R^{(1)}+R^{(2)}+\ldots+R^{(r)}$. Таким образом, "разложимый" это синоним слову "одноранговый" (кроме нулевого).

Пример: пусть $n_1=n_2=n_3$. Чему равен ранг тензора $T_{i,j,k}=\mathbf{1}\{i=j=k\}$? Ответ: rank T=n.

Ранг в общем виде

Сформулируем понятие ранга в общем, инвариантном виде. Пусть

$$\mathcal{T} \in U_1 \otimes U_2 \otimes \cdots \otimes U_d$$
.

Напомним, что разложимыми тензорами называются тензоры вида $u_1\otimes u_2\otimes\cdots\otimes u_d,\ u_j\in U_j.$ Они порождают всё тензорное произведение (но составляют малую его часть).

Ранг в общем виде

Сформулируем понятие ранга в общем, инвариантном виде. Пусть

$$\mathcal{T} \in U_1 \otimes U_2 \otimes \cdots \otimes U_d$$
.

Напомним, что разложимыми тензорами называются тензоры вида $u_1\otimes u_2\otimes\cdots\otimes u_d,\ u_j\in U_j.$ Они порождают всё тензорное произведение (но составляют малую его часть).

Ранг тензора \mathcal{T} в алгебраическом смысле равен рангу его координат $T \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ в фиксированном базисе. При этом понятия разложимости и ранга не зависят от выбора базиса!

Известно, что множество матриц ранга не выше r замкнуто. Действительно, если $\operatorname{rank} A>r$, то некоторый $(r+1)\times(r+1)$ минор невырожден, это же верно и в окрестности матрицы.

Известно, что множество матриц ранга не выше r замкнуто. Действительно, если $\operatorname{rank} A > r$, то некоторый $(r+1) \times (r+1)$ минор невырожден, это же верно и в окрестности матрицы.

В пространстве тензоров естественным образом возникает топология. Можно рассматривать различные нормы, например, норму Фробениуса

$$\|T\|_F^2 := \sum_{i_1,\dots,i_d} T_{i_1,\dots,i_d}^2.$$

Известно, что множество матриц ранга не выше r замкнуто. Действительно, если $\operatorname{rank} A>r$, то некоторый $(r+1)\times(r+1)$ минор невырожден, это же верно и в окрестности матрицы.

В пространстве тензоров естественным образом возникает топология. Можно рассматривать различные нормы, например, норму Фробениуса

$$\|T\|_F^2 := \sum_{i_1,\dots,i_d} T_{i_1,\dots,i_d}^2.$$

Множество разложимых тензоров замкнуто: если, скажем, $T^{(n)}=a^{(n)}\otimes b^{(n)}\otimes c^{(n)}$ и $T^{(n)}\to T$, то, нормируя $\|b^{(n)}\|_F=\|c^{(n)}\|_F=1$, мы получим, что и нормы $\|a^{(n)}\|$ ограничены.

Известно, что множество матриц ранга не выше r замкнуто. Действительно, если $\operatorname{rank} A>r$, то некоторый $(r+1)\times(r+1)$ минор невырожден, это же верно и в окрестности матрицы.

В пространстве тензоров естественным образом возникает топология. Можно рассматривать различные нормы, например, норму Фробениуса

$$\|T\|_F^2 := \sum_{i_1,\dots,i_d} T_{i_1,\dots,i_d}^2.$$

Множество разложимых тензоров замкнуто: если, скажем, $T^{(n)}=a^{(n)}\otimes b^{(n)}\otimes c^{(n)}$ и $T^{(n)}\to T$, то, нормируя $\|b^{(n)}\|_F=\|c^{(n)}\|_F=1$, мы получим, что и нормы $\|a^{(n)}\|$ ограничены. Поэтому можно выбрать сходящуюся подпоследовательность

$$a^{(n_k)} \rightarrow a$$
, $b^{(n_k)} \rightarrow b$, $c^{(n_k)} \rightarrow c$,

откуда $T^{(n)} o a \otimes b \otimes c$.

Известно, что множество матриц ранга не выше r замкнуто. Действительно, если $\operatorname{rank} A>r$, то некоторый $(r+1)\times(r+1)$ минор невырожден, это же верно и в окрестности матрицы.

В пространстве тензоров естественным образом возникает топология. Можно рассматривать различные нормы, например, норму Фробениуса

$$||T||_F^2 := \sum_{i_1,...,i_d} T_{i_1,...,i_d}^2.$$

Множество разложимых тензоров замкнуто: если, скажем, $T^{(n)}=a^{(n)}\otimes b^{(n)}\otimes c^{(n)}$ и $T^{(n)}\to T$, то, нормируя $\|b^{(n)}\|_F=\|c^{(n)}\|_F=1$, мы получим, что и нормы $\|a^{(n)}\|$ ограничены. Поэтому можно выбрать сходящуюся подпоследовательность

$$a^{(n_k)} \rightarrow a$$
, $b^{(n_k)} \rightarrow b$, $c^{(n_k)} \rightarrow c$,

откуда $T^{(n)} o a \otimes b \otimes c$.

В общем случае замкнутости уже нет.

Утверждение

В пространстве $\mathbb{R}^{n_1 \times n_2 \times n_3}$ при $n_j \geqslant 3$ существует последовательность тензоров ранга 2, предел которой равен тензору ранга 3.

В (1) слева стоят тензоры ранга 2, а справа — ранга 3 (при правильном выборе x_i, y_i):

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} ((x_1 + \varepsilon y_1) \otimes (x_2 + \varepsilon y_2) \otimes (x_3 + \varepsilon y_3) - x_1 \otimes x_2 \otimes x_3) = x_1 \otimes x_2 \otimes y_3 + x_1 \otimes y_2 \otimes x_3 + y_1 \otimes x_2 \otimes x_3.$$
 (1)

Утверждение

В пространстве $\mathbb{R}^{n_1 \times n_2 \times n_3}$ при $n_j \geqslant 3$ существует последовательность тензоров ранга 2, предел которой равен тензору ранга 3.

В (1) слева стоят тензоры ранга 2, а справа — ранга 3 (при правильном выборе x_i, y_i):

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} ((x_1 + \varepsilon y_1) \otimes (x_2 + \varepsilon y_2) \otimes (x_3 + \varepsilon y_3) - x_1 \otimes x_2 \otimes x_3) = x_1 \otimes x_2 \otimes y_3 + x_1 \otimes y_2 \otimes x_3 + y_1 \otimes x_2 \otimes x_3.$$
 (1)

Проблема состоит в том, что одноранговые слагаемые имеют большую норму, но непостижимым образом "сокращаются" друг с другом и норма суммы оказывается малой.

Утверждение

В пространстве $\mathbb{R}^{n_1 \times n_2 \times n_3}$ при $n_j \geqslant 3$ существует последовательность тензоров ранга 2, предел которой равен тензору ранга 3.

В (1) слева стоят тензоры ранга 2, а справа — ранга 3 (при правильном выборе x_i, y_i):

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} ((x_1 + \varepsilon y_1) \otimes (x_2 + \varepsilon y_2) \otimes (x_3 + \varepsilon y_3) - x_1 \otimes x_2 \otimes x_3) = x_1 \otimes x_2 \otimes y_3 + x_1 \otimes y_2 \otimes x_3 + y_1 \otimes x_2 \otimes x_3.$$
 (1)

Проблема состоит в том, что одноранговые слагаемые имеют большую норму, но непостижимым образом "сокращаются" друг с другом и норма суммы оказывается малой. Если рассматривать *регулярные* представления, в которых нормы слагаемых ограничены:

$$T = \sum_{s=1}^{r} a_1^{(s)} \otimes a_2^{(s)} \otimes \cdots \otimes a_d^{(s)}, \quad \max_{s} \|a_1^{(s)}\|_F \cdot \|a_2^{(s)}\|_F \cdots \|a_d^{(s)}\|_F < C,$$

то подобного эффекта не будет.

Скажем, что тензор T имеет *граничный ранг* не выше r, если T является пределом некоторой последовательности тензоров ранга не выше r. Обозначение: r

Скажем, что тензор T имеет r имеет r имеет r не выше r, если r является пределом некоторой последовательности тензоров ранга не выше r. Обозначение: r имеет r не r

Например, для $T = x \otimes y + x \otimes z + y \otimes z$ имеем rank(T) = 3, rank(T) = 2.

Например, для $T = x \otimes y + x \otimes z + y \otimes z$ имеем rank(T) = 3, rank(T) = 2.

Упражнение. Придумайте тензор T c rank T — rank $T \geqslant 2$.

Например, для $T = x \otimes y + x \otimes z + y \otimes z$ имеем rank(T) = 3, rank(T) = 2.

Упражнение. Придумайте тензор T c rank $T - \underline{\operatorname{rank}} T \geqslant 2$.

Известно (2017?), что отношение $\operatorname{rank}(T)/\operatorname{rank} T$ может быть сколь угодно большим.

Тензор матричного умножения

Рассмотрим операцию умножения матриц подходящего размера. Мы "вытянем" матрицы в длинные вектора, т.е. будем считать индексы $A_{i,j}$ одним индексом (i,j).

Тензор матричного умножения

Рассмотрим операцию умножения матриц подходящего размера. Мы "вытянем" матрицы в длинные вектора, т.е. будем считать индексы $A_{i,j}$ одним индексом (i,j). Тензор M умножения матриц имеет вид

$$C = AB \quad \Leftrightarrow \quad C_{(i,j)} = \sum_{(k,l),(p,q)} M_{(i,j),(k,l),(p,q)} A_{(k,l)} B_{(p,q)}.$$

Его размерности это $(n_1 n_3, n_1 n_2, n_2 n_3)$.

Тензор матричного умножения

Рассмотрим операцию умножения матриц подходящего размера. Мы "вытянем" матрицы в длинные вектора, т.е. будем считать индексы $A_{i,j}$ одним индексом (i,j). Тензор M умножения матриц имеет вид

$$C = AB \quad \Leftrightarrow \quad C_{(i,j)} = \sum_{(k,l),(p,q)} M_{(i,j),(k,l),(p,q)} A_{(k,l)} B_{(p,q)}.$$

Его размерности это (n_1n_3, n_1n_2, n_2n_3) . Как мы знаем, тензор умножения равняется

$$M_{(i,j),(k,l),(p,q)} = \mathbf{1}\{k = i, l = p, q = j\},\$$

тогда получается привычная формула $\mathcal{C}_{i,j} = \sum \mathcal{A}_{i,p} \mathcal{B}_{p,j}$.

Тензор умножения матриц

Предположим, ранг этого тензора равен r и мы имеем разложение

$$M = \sum_{s=1}^{r} \alpha^{(s)} \otimes \beta^{(s)} \otimes \gamma^{(s)}.$$

Тензор умножения матриц

Предположим, ранг этого тензора равен $m{r}$ и мы имеем разложение

$$M = \sum_{s=1}^{r} \alpha^{(s)} \otimes \beta^{(s)} \otimes \gamma^{(s)}.$$

Тогда

$$C_{(i,j)} = \sum_{(k,l),(p,q)} \sum_{s=1}^{r} \alpha_{(i,j)}^{(s)} \beta_{(k,l)}^{(s)} \gamma_{(p,q)}^{(s)} A_{(k,l)} B_{(p,q)} =$$

$$= \sum_{s=1}^{r} \alpha_{(i,j)}^{(s)} (\sum_{(k,l)} \beta_{(k,l)}^{(s)} A_{(k,l)}) (\sum_{(p,q)} \gamma_{(p,q)}^{(s)} B_{(p,q)}).$$

Тензор умножения матриц

Предположим, ранг этого тензора равен \emph{r} и мы имеем разложение

$$M = \sum_{s=1}^{r} \alpha^{(s)} \otimes \beta^{(s)} \otimes \gamma^{(s)}.$$

Тогда

$$C_{(i,j)} = \sum_{(k,l),(p,q)} \sum_{s=1}^{r} \alpha_{(i,j)}^{(s)} \beta_{(k,l)}^{(s)} \gamma_{(p,q)}^{(s)} A_{(k,l)} B_{(p,q)} =$$

$$= \sum_{s=1}^{r} \alpha_{(i,j)}^{(s)} (\sum_{(k,l)} \beta_{(k,l)}^{(s)} A_{(k,l)}) (\sum_{(p,q)} \gamma_{(p,q)}^{(s)} B_{(p,q)}).$$

Заметим, что множители с β и γ не зависят от (i,j). Следовательно, достаточно вычислить эти числа, сделать r умножений и найти все $C_{(i,j)}$ как линейные комбинации.

Тензор умножения матриц (2×2)

Рассмотрим теперь матрицы 2×2 . Оказывается, ранг тензора умножения равен 7! Это позволяет умножить две 2×2 матрицы, сделав только 7 умножений (обычный алгоритм требует 8 умножений).

Tензор умножения матриц (2×2)

Рассмотрим теперь матрицы 2×2 . Оказывается, ранг тензора умножения равен 7! Это позволяет умножить две 2×2 матрицы, сделав только 7 умножений (обычный алгоритм требует 8 умножений). Но главное в том, что можно считать элементы матриц 2×2 не числами, а матрицами (формула для умножения справедлива и для блоков)!

Tензор умножения матриц (2×2)

Рассмотрим теперь матрицы 2×2 . Оказывается, ранг тензора умножения равен 7! Это позволяет умножить две 2×2 матрицы, сделав только 7 умножений (обычный алгоритм требует 8 умножений). Но главное в том, что можно считать элементы матриц 2×2 не числами, а матрицами (формула для умножения справедлива и для блоков)! Поэтому умножение матриц $(2n)\times (2n)$ сводится к 7 умножениям матриц $n\times n!$ Общая сложность алгоритма не n^3 (как у тривиального), а $n^{\log_2 7}=n^{2.807...}$. Этот алгоритм придумал Volker Strassen (1969).

Тензор умножения матриц (2×2)

Рассмотрим теперь матрицы 2×2 . Оказывается, ранг тензора умножения равен 7! Это позволяет умножить две 2×2 матрицы, сделав только 7 умножений (обычный алгоритм требует 8 умножений). Но главное в том, что можно считать элементы матриц 2×2 не числами, а матрицами (формула для умножения справедлива и для блоков)! Поэтому умножение матриц $(2n)\times (2n)$ сводится к 7 умножениям матриц $n\times n!$ Общая сложность алгоритма не n^3 (как у тривиального), а $n^{\log_2 7}=n^{2.807...}$. Этот алгоритм придумал Volker Strassen (1969).

Показатель степени улучшался за счёт рассмотрения тензоров умножения матриц большего размера. Есть также оценки, основанные на rank, а не на обычном ранге!

Каков максимально возможный ранг тензора из $\mathbb{R}^{n_1 imes ... imes n_d}$?

Каков максимально возможный ранг тензора из $\mathbb{R}^{n_1 \times ... \times n_d}$?

Утверждение

$$\frac{n_1 n_2 \cdots n_d}{n_1 + \ldots + n_d} \leqslant \max \operatorname{rank} T \leqslant n_1 n_2 \cdots n_d / \max\{n_j\}.$$

Каков максимально возможный ранг тензора из $\mathbb{R}^{n_1 \times ... \times n_d}$?

Утверждение

$$\frac{n_1 n_2 \cdots n_d}{n_1 + \ldots + n_d} \leqslant \max \operatorname{rank} T \leqslant n_1 n_2 \cdots n_d / \max\{n_j\}.$$

Докажем оценку сверху. Пусть размерность n_1 максимальна. Мы можем представить $\mathcal T$ в виде суммы

$$T_{i_1,...,i_d} = \sum_{i'_2,...,i'_d} T_{i_1,i'_2,...,i'_d} \delta_{i_2,i'_2} \cdots \delta_{i_d,i'_d}.$$

Каждое слагаемое представляет собой разложимый тензор.

Каков максимально возможный ранг тензора из $\mathbb{R}^{n_1 \times ... \times n_d}$?

Утверждение

$$\frac{n_1 n_2 \cdots n_d}{n_1 + \ldots + n_d} \leqslant \max \operatorname{rank} T \leqslant n_1 n_2 \cdots n_d / \max\{n_j\}.$$

Докажем оценку сверху. Пусть размерность n_1 максимальна. Мы можем представить $\mathcal T$ в виде суммы

$$T_{i_1,...,i_d} = \sum_{i'_2,...,i'_d} T_{i_1,i'_2,...,i'_d} \delta_{i_2,i'_2} \cdots \delta_{i_d,i'_d}.$$

Каждое слагаемое представляет собой разложимый тензор. Оценка снизу получается из соображений размерности. Тензор ранга r задаётся r наборами векторов $u_1^{(s)} \in \mathbb{R}^{n_1}, \dots, u_d^{(s)} \in \mathbb{R}^{n_d}$. Следовательно, такой тензор описывается $r(n_1+\ldots+n_d)$ параметрами.

Каков максимально возможный ранг тензора из $\mathbb{R}^{n_1 \times ... \times n_d}$?

Утверждение

$$\frac{n_1 n_2 \cdots n_d}{n_1 + \ldots + n_d} \leqslant \max \operatorname{rank} T \leqslant n_1 n_2 \cdots n_d / \max\{n_j\}.$$

Докажем оценку сверху. Пусть размерность n_1 максимальна. Мы можем представить $\mathcal T$ в виде суммы

$$T_{i_1,...,i_d} = \sum_{i'_2,...,i'_d} T_{i_1,i'_2,...,i'_d} \delta_{i_2,i'_2} \cdots \delta_{i_d,i'_d}.$$

Каждое слагаемое представляет собой разложимый тензор. Оценка снизу получается из соображений размерности. Тензор ранга r задаётся r наборами векторов $u_1^{(s)} \in \mathbb{R}^{n_1}, \dots, u_d^{(s)} \in \mathbb{R}^{n_d}$. Следовательно, такой тензор описывается $r(n_1 + \dots + n_d)$

параметрами. Чтобы покрыть всё $n_1 n_2 \dots n_d$ -мерное пространство $\mathbb{R}^{n_1 \times \dots \times n_d}$, должно быть выполнено неравенство

$$r(n_1 + \ldots + n_d) \geqslant n_1 \cdots n_d$$
.
Спецкурс 2020/2021: "Геометрические

В случае тензоров $\mathbb{R}^{n \times n \times \cdots \times n}$ порядка d максимальный ранг заключён между n^{d-1}/d и n^{d-1} .

В случае тензоров $\mathbb{R}^{n \times n \times \cdots \times n}$ порядка d максимальный ранг заключён между n^{d-1}/d и n^{d-1} .

Проблема. Придумать конструктивный пример тензора из $\mathbb{R}^{n\times n\times n}$ ранга $\gg n^{1+\varepsilon}$, $\varepsilon>0$.

Strassen доказал, что сложность вычисления трилинейной формы, задаваемой тензором T, не меньше C rank T. Поэтому суперлинейные оценки ранга дают интересные следствия в теории сложности вычислений. (Ср. с теоремой Valiant-a).

В случае тензоров $\mathbb{R}^{n \times n \times \cdots \times n}$ порядка d максимальный ранг заключён между n^{d-1}/d и n^{d-1} .

Проблема. Придумать конструктивный пример тензора из $\mathbb{R}^{n\times n\times n}$ ранга $\gg n^{1+\varepsilon}$, $\varepsilon>0$.

Strassen доказал, что сложность вычисления трилинейной формы, задаваемой тензором T, не меньше C rank T. Поэтому суперлинейные оценки ранга дают интересные следствия в теории сложности вычислений. (Ср. с теоремой Valiant-a).

Известны явные конструкции тензоров лишь ранга $\geqslant 3n - o(n)$.

В случае тензоров $\mathbb{R}^{n \times n \times \cdots \times n}$ порядка d максимальный ранг заключён между n^{d-1}/d и n^{d-1} .

Проблема. Придумать конструктивный пример тензора из $\mathbb{R}^{n\times n\times n}$ ранга $\gg n^{1+\varepsilon}$, $\varepsilon>0$.

Strassen доказал, что сложность вычисления трилинейной формы, задаваемой тензором T, не меньше C rank T. Поэтому суперлинейные оценки ранга дают интересные следствия в теории сложности вычислений. (Ср. с теоремой Valiant-a).

Известны явные конструкции тензоров лишь ранга $\geqslant 3n - o(n)$.

Тензорный ранг, как мы видим, намного сложнее матричного. Доказано, что задача вычисления тензорного ранга при $d\geqslant 3$ надо полем $\mathbb Q$ является NP-трудной.

Рассмотрим задачу коммуникации с $k\geqslant 2$ участниками. Каждому выдаётся элемент $x_i\in X_i,\ i=1,\ldots,k.$ Требуется вычислить $f(x_1,x_2,\ldots,x_k)$.

Рассмотрим задачу коммуникации с $k\geqslant 2$ участниками. Каждому выдаётся элемент $x_i\in X_i,\ i=1,\ldots,k$. Требуется вычислить $f(x_1,x_2,\ldots,x_k)$. Функцию $f\colon X_1\times\cdots\times X_k\to\{0,1\}$ можно отождествить с тензором из $\{0,1\}^{n_1\times n_2\times\cdots\times n_d},\ N_j=|X_j|$.

Рассмотрим задачу коммуникации с $k\geqslant 2$ участниками. Каждому выдаётся элемент $x_i\in X_i,\ i=1,\ldots,k.$ Требуется вычислить $f(x_1,x_2,\ldots,x_k).$

Функцию $f\colon X_1\times\cdots\times X_k\to\{0,1\}$ можно отождествить с тензором из $\{0,1\}^{n_1\times n_2\times\cdots\times n_d},\ N_j=|X_j|.$

Рассмотрим прямое обобщение случая k=2: участникам известны только свои входные данные. Будем считать, что они обмениваются информацией, записывая сообщения "на доске", так, чтобы все видели (broadcast).

Рассмотрим задачу коммуникации с $k\geqslant 2$ участниками. Каждому выдаётся элемент $x_i\in X_i,\ i=1,\ldots,k.$ Требуется вычислить $f(x_1,x_2,\ldots,x_k).$

Функцию $f\colon X_1\times\cdots\times X_k\to\{0,1\}$ можно отождествить с тензором из $\{0,1\}^{n_1\times n_2\times\cdots\times n_d},\ N_j=|X_j|.$

Рассмотрим прямое обобщение случая k=2: участникам известны только свои входные данные. Будем считать, что они обмениваются информацией, записывая сообщения "на доске", так, чтобы все видели (broadcast).

Зафиксируем протокол. Как и раньше, введём понятие *истории* сообщений. Множество входов, приводящих к данной истории:

$$R_h = \{(x_1, \ldots, x_k) \colon P(x_1) = h_1, \ P(h_1, x_2) = h_2, \ P(h_1, h_2, x_3) = h_3, \ldots \}$$

представляет собой обобщённый "прямоугольник":

$$R_h = I_1 \times I_2 \times \cdots \times I_d$$

Рассмотрим задачу коммуникации с $k\geqslant 2$ участниками. Каждому выдаётся элемент $x_i\in X_i,\ i=1,\ldots,k.$ Требуется вычислить $f(x_1,x_2,\ldots,x_k).$

Функцию $f\colon X_1\times\cdots\times X_k\to\{0,1\}$ можно отождествить с тензором из $\{0,1\}^{n_1\times n_2\times\cdots\times n_d},\ N_j=|X_j|.$

Рассмотрим прямое обобщение случая k=2: участникам известны только свои входные данные. Будем считать, что они обмениваются информацией, записывая сообщения "на доске", так, чтобы все видели (broadcast).

Зафиксируем протокол. Как и раньше, введём понятие истории сообщений. Множество входов, приводящих к данной истории:

$$R_h = \{(x_1, \ldots, x_k) \colon P(x_1) = h_1, \ P(h_1, x_2) = h_2, \ P(h_1, h_2, x_3) = h_3, \ldots \}$$

представляет собой обобщённый "прямоугольник":

$$R_h = I_1 \times I_2 \times \cdots \times I_d$$
.

Отсюда, как и раньше, получаем оценку сложности

$$D(f) \geqslant \log_2 \operatorname{rank} f$$
.

Перейдём к модели коммуникации "число на лбу". Теперь каждый участник видит все x_j , кроме своего. Здесь у участников больше информации и появляются новые эффекты.

Перейдём к модели коммуникации "число на лбу". Теперь каждый участник видит все x_j , кроме своего. Здесь у участников больше информации и появляются новые эффекты.

Пример. Функция равенства: $\mathrm{EQ}(x_1,\ldots,x_k)=\mathbf{1}\{x_1=x_2=\cdots=x_k\}$, для одинаковых множеств $X_1=\ldots=X_k$ мощности N.

Перейдём к модели коммуникации "число на лбу". Теперь каждый участник видит все x_j , кроме своего. Здесь у участников больше информации и появляются новые эффекты.

Пример. Функция равенства: $\mathrm{EQ}(x_1,\dots,x_k)=\mathbf{1}\{x_1=x_2=\dots=x_k\}$, для одинаковых множеств $X_1=\dots=X_k$ мощности N.

В случае коммуникации двух участников мы доказали оценку сложности $D(EQ) \geqslant \log N$. Что будет в случае $k \geqslant 3$ участников?

Перейдём к модели коммуникации "число на лбу". Теперь каждый участник видит все x_j , кроме своего. Здесь у участников больше информации и появляются новые эффекты.

Пример. Функция равенства: $\mathrm{EQ}(x_1,\dots,x_k)=\mathbf{1}\{x_1=x_2=\dots=x_k\}$, для одинаковых множеств $X_1=\dots=X_k$ мощности N.

В случае коммуникации двух участников мы доказали оценку сложности $D(\mathrm{EQ})\geqslant\log N$. Что будет в случае $k\geqslant 3$ участников? Сложность падает до $D(\mathrm{EQ})=2$. Следовательно, log rank оценки уже нет.

Перейдём к модели коммуникации "число на лбу". Теперь каждый участник видит все x_j , кроме своего. Здесь у участников больше информации и появляются новые эффекты.

Пример. Функция равенства: $\mathrm{EQ}(x_1,\dots,x_k)=\mathbf{1}\{x_1=x_2=\dots=x_k\}$, для одинаковых множеств $X_1=\dots=X_k$ мощности N.

сложности $D(\mathrm{EQ})\geqslant\log N$. Что будет в случае $k\geqslant 3$ участников? Сложность падает до $D(\mathrm{EQ})=2$. Следовательно, log rank оценки уже нет.

Однако, по-прежнему справедлива оценка через дискрепанс:

В случае коммуникации двух участников мы доказали оценку

$$D(f) \gg \log(1/\mathrm{disc}(f)).$$

Вместо обобщённых прямоугольников, правда, приходится рассматривать более хитрые множества. Для k=3 это множества вида

$$(I_1 \times I_2 \times X_3) \cap (I_1' \times X_2 \times I_3') \cap (X_1 \times I_2'' \times I_3'').$$

