```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from io import StringIO
from sklearn.preprocessing import LabelEncoder
import numpy as np
import seaborn as sns
In [2]: audio = pd_read_csy('audiology2 csy' beader=0 sen=' ')
```

```
In [2]: audio = pd.read_csv('audiology2.csv',header=0,sep=',')
audio.columns
df=audio
```

```
In [3]: | df=df.drop("number row",axis = 1)
        var_mod = ['age_gt_60', 'airBoneGap', 'boneAbnormal', 'history_buzzing', 'history_
        dizziness',
                'history fluctuating', 'history fullness', 'history heredity',
                'history_nausea', 'history_noise', 'history_recruitment',
                'history_ringing', 'history_roaring', 'history_vomiting',
                'late_wave_poor', 'm_at_2k', 'm_cond_lt_1k', 'm_gt_1k', 'm_m_gt_2k',
                'm_m_sn', 'm_m_sn_gt_1k', 'm_m_sn_gt_2k', 'm_m_sn_gt_500',
                'm_p_sn_gt_2k', 'm_s_gt_500', 'm_s_sn', 'm_s_sn_gt_1k', 'm_s_sn_gt_2k',
                'm_s_sn_gt_3k', 'm_s_sn_gt_4k', 'm_sn_2_3k', 'm_sn_gt_1k', 'm_sn_gt_2k'
                'm_sn_gt_3k', 'm_sn_gt_4k', 'm_sn_gt_500', 'm_sn_gt_6k', 'm_sn_lt_1k',
                'm_sn_lt_2k', 'm_sn_lt_3k', 'middle_wave_poor', 'mod_gt_4k',
                'mod_mixed', 'mod_s_mixed', 'mod_s_sn_gt_500', 'mod_sn', 'mod_sn_gt_1k'
                'mod_sn_gt_2k', 'mod_sn_gt_3k', 'mod_sn_gt_4k', 'mod_sn_gt_500',
                'notch_4k', 'notch_at_4k', 's_sn_gt_1k',
                's_sn_gt_2k', 's_sn_gt_4k', 'static_normal', 'viith_nerve_signs',
               'wave_V_delayed', 'waveform_ItoV_prolonged']
        le = LabelEncoder()
        for i in var mod:
            df[i] = le.fit_transform(df[i])
        df.head(10)
```

Out[3]:

	age_gt_60	air()	airBoneGap	ar_c()	ar_u()	bone()	boneAbnormal	bser()	history_buz
0	0	moderate	0	normal	normal	?	1	?	_
1	1	mild	1	?	absent	mild	1	?	
2	1	mild	1	?	absent	mild	0	?	
3	1	mild	0	normal	normal	mild	1	?	
4	1	mild	0	normal	normal	mild	1	?	
5	0	mild	0	normal	normal	mild	1	?	
6	0	mild	0	normal	normal	mild	1	?	
7	0	severe	0	?	?	?	1	?	
8	1	mild	0	elevated	absent	mild	1	?	
9	1	mild	0	normal	absent	mild	1	?	

10 rows × 70 columns

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 70 columns):

Data	columns (total 70 columns	5):	
#	Column	Non-Null Count	Dtype
0	age_gt_60	200 non-null	int32
1	air()	200 non-null	object
2	airBoneGap	200 non-null	int32
	•		
3	ar_c()	200 non-null	object
4	ar_u()	200 non-null	object
5	bone()	200 non-null	object
6	boneAbnormal	200 non-null	int32
7	bser()	200 non-null	object
8	history_buzzing	200 non-null	int32
9	history_dizziness	200 non-null	int32
10	history_fluctuating	200 non-null	int32
11	history_fullness	200 non-null	int32
12	history_heredity	200 non-null	int32
13	history_nausea	200 non-null	int32
14			
	history_noise	200 non-null	int32
15	history_recruitment	200 non-null	int32
16	history_ringing	200 non-null	int32
17	history_roaring	200 non-null	int32
18	history_vomiting	200 non-null	int32
19	late_wave_poor	200 non-null	int32
20	m_at_2k	200 non-null	int32
21	m_cond_lt_1k	200 non-null	int32
22	 m_gt_1k	200 non-null	int32
23	 m_m_gt_2k	200 non-null	int32
24	m_m_sn	200 non-null	int32
25	m_m_sn_gt_1k	200 non-null	int32
26	m_m_sn_gt_2k	200 non-null	int32
27	m_m_sn_gt_500	200 non-null	int32
28	m_p_sn_gt_2k	200 non-null	int32
29		200 non-null	int32
	m_s_gt_500		
30	m_s_sn	200 non-null	
31	m_s_sn_gt_1k	200 non-null	
32	m_s_sn_gt_2k	200 non-null	int32
33	m_s_sn_gt_3k	200 non-null	int32
34	m_s_sn_gt_4k	200 non-null	int32
35	m_sn_2_3k	200 non-null	int32
36	m_sn_gt_1k	200 non-null	int32
37	m_sn_gt_2k	200 non-null	int32
38	m_sn_gt_3k	200 non-null	int32
39	m_sn_gt_4k	200 non-null	int32
40	m_sn_gt_500	200 non-null	int32
41	m_sn_gt_6k	200 non-null	int32
42	m_sn_lt_1k	200 non-null	int32
43	m_sn_lt_2k	200 non-null	int32
44	m_sn_lt_3k	200 non-null	
			int32
45	middle_wave_poor	200 non-null	
46	mod_gt_4k	200 non-null	
47	mod_mixed	200 non-null	int32
48	mod_s_mixed	200 non-null	int32
49	mod_s_sn_gt_500	200 non-null	int32
50	mod_sn	200 non-null	int32
51	mod_sn_gt_1k	200 non-null	int32

```
200 non-null
                                                        int32
         52 mod_sn_gt_2k
         53 mod_sn_gt_3k
                                       200 non-null
                                                        int32
         54 mod_sn_gt_4k
                                       200 non-null
                                                        int32
         55 mod sn gt 500
                                       200 non-null
                                                        int32
         56 notch 4k
                                       200 non-null
                                                        int32
         57 notch_at_4k
                                       200 non-null
                                                        int32
         58 o_ar_c()
                                       200 non-null
                                                        object
         59 o_ar_u()
                                       200 non-null
                                                        object
         60 s_sn_gt_1k
                                       200 non-null
                                                        int32
         61 s_sn_gt_2k
                                       200 non-null
                                                        int32
         62 s_sn_gt_4k
                                       200 non-null
                                                        int32
         63 speech()
                                       200 non-null
                                                        object
         64 static_normal
                                       200 non-null
                                                        int32
                                       200 non-null
         65 tymp()
                                                        object
         66 viith_nerve_signs
                                       200 non-null
                                                        int32
         67 wave_V_delayed
                                       200 non-null
                                                        int32
         68 waveform ItoV prolonged 200 non-null
                                                        int32
         69 classification
                                       200 non-null
                                                        object
        dtypes: int32(60), object(10)
        memory usage: 62.6+ KB
In [5]: | df['speech()'].value_counts()
Out[5]: normal
                       83
        good
                       36
                       35
        very_good
                       19
        poor
                       18
        very_poor
                        6
                        3
        unmeasured
        Name: speech(), dtype: int64
In [6]:
        le = LabelEncoder()
        data_cat=df['speech()']
        data_cat_encoded= le.fit_transform(data_cat)
        data_cat_encoded= pd.DataFrame(data_cat_encoded,columns=["speech()"])
        df['speech()']=data_cat_encoded
        df['speech()'].value_counts()
Out[6]: 2
             83
             36
        1
        5
             35
        3
             19
             18
        6
        0
              6
              3
        Name: speech(), dtype: int64
In [7]: | df['air()'].value_counts()
Out[7]: mild
                     101
                      73
        normal
        moderate
                      17
        severe
                       8
        profound
                       1
        Name: air(), dtype: int64
```

```
In [8]: le = LabelEncoder()
         data_cat=df['air()']
         data_cat_encoded= le.fit_transform(data_cat)
         data cat encoded= pd.DataFrame(data cat encoded,columns=['air()'])
         df['air()']=data cat encoded
         df['air()'].value_counts()
Out[8]: 0
              101
               73
         2
               17
         1
         4
                8
         3
                1
         Name: air(), dtype: int64
In [9]: | df['ar_c()'].value_counts()
Out[9]: normal
                     117
         absent
                       50
                       29
         elevated
                       4
         Name: ar_c(), dtype: int64
In [10]: le = LabelEncoder()
         data_cat=df['ar_c()']
         data_cat_encoded= le.fit_transform(data_cat)
         data_cat_encoded= pd.DataFrame(data_cat_encoded,columns=['ar_c()'])
         df['ar c()']=data cat encoded
         df['ar_c()'].value_counts()
Out[10]: 3
              117
         1
               50
         2
               29
                4
         Name: ar_c(), dtype: int64
In [11]:
         le = LabelEncoder()
         data cat=df['ar u()']
         data_cat_encoded= le.fit_transform(data_cat)
         data_cat_encoded= pd.DataFrame(data_cat_encoded, columns=['ar_u()'])
         df['ar_u()']=data_cat_encoded
         df['ar_u()'].value_counts()
Out[11]: 3
              121
         1
               41
         2
               35
                3
         Name: ar_u(), dtype: int64
```

```
In [12]: | df['bone()'].value_counts()
Out[12]: ?
                        75
         mild
                        55
                        37
         normal
         unmeasured
                        30
         moderate
                         3
         Name: bone(), dtype: int64
In [13]: le = LabelEncoder()
         data_cat=df['bone()']
         data_cat_encoded= le.fit_transform(data_cat)
         data_cat_encoded= pd.DataFrame(data_cat_encoded,columns=['bone()'])
         df['bone()']=data_cat_encoded
         df['bone()'].value_counts()
Out[13]: 0
              75
         1
              55
              37
         3
              30
         4
         2
               3
         Name: bone(), dtype: int64
In [14]: | df['bser()'].value_counts()
Out[14]: ?
                      196
         degraded
                        2
         normal
                        2
         Name: bser(), dtype: int64
In [15]:
         le = LabelEncoder()
         data_cat=df['bser()']
         data_cat_encoded= le.fit_transform(data_cat)
         data_cat_encoded= pd.DataFrame(data_cat_encoded,columns=['bser()'])
         df['bser()']=data_cat_encoded
         df['bser()'].value_counts()
Out[15]: 0
              196
         2
                 2
         Name: bser(), dtype: int64
In [16]: | df['o_ar_c()'].value_counts()
         le = LabelEncoder()
         data_cat=df['o_ar_c()']
         data_cat_encoded= le.fit_transform(data_cat)
         data_cat_encoded= pd.DataFrame(data_cat_encoded,columns=['o_ar_c()'])
         df['o_ar_c()']=data_cat_encoded
         df['o_ar_c()'].value_counts()
Out[16]: 3
              124
         1
               47
                24
         2
                 5
         Name: o_ar_c(), dtype: int64
```

```
In [17]: | df['o_ar_u()'].value_counts()
         le = LabelEncoder()
         data_cat=df['o_ar_u()']
         data cat encoded= le.fit transform(data cat)
         data_cat_encoded= pd.DataFrame(data_cat_encoded,columns=['o_ar_u()'])
         df['o_ar_u()']=data_cat_encoded
         df['o_ar_u()'].value_counts()
Out[17]: 3
              114
         1
               47
         2
               37
                2
         Name: o_ar_u(), dtype: int64
In [18]: | df['tymp()'].value_counts()
         le = LabelEncoder()
         data_cat=df['tymp()']
         data_cat_encoded= le.fit_transform(data_cat)
         data_cat_encoded= pd.DataFrame(data_cat_encoded,columns=['tymp()'])
         df['tymp()']=data_cat_encoded
         df['tymp()'].value_counts()
Out[18]: 0
              169
         2
               12
         3
                8
                7
         4
                4
         1
         Name: tymp(), dtype: int64
In [19]: | df['tymp()'].value_counts()
Out[19]: 0
              169
         2
               12
                8
                7
         4
                4
         Name: tymp(), dtype: int64
In [20]:
         le = LabelEncoder()
         data_cat=df['tymp()']
         data_cat_encoded= le.fit_transform(data_cat)
         data_cat_encoded= pd.DataFrame(data_cat_encoded, columns=['tymp()'])
         df['tymp()']=data cat encoded
         df['tymp()'].value_counts()
Out[20]: 0
              169
               12
         2
         3
                8
         4
                7
         1
         Name: tymp(), dtype: int64
```

In [21]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 70 columns):

Data	columns (total 70 columns	5):	
#	Column	Non-Null Count	Dtype
0	age_gt_60	200 non-null	int32
1	air()	200 non-null	int32
2	airBoneGap	200 non-null	int32
3	•	200 non-null	int32
	ar_c()		
4	ar_u()	200 non-null	int32
5	bone()	200 non-null	int32
6	boneAbnormal	200 non-null	int32
7	bser()	200 non-null	int32
8	history_buzzing	200 non-null	int32
9	history_dizziness	200 non-null	int32
10	history_fluctuating	200 non-null	int32
11	history_fullness	200 non-null	int32
12	history_heredity	200 non-null	int32
13	history_nausea	200 non-null	int32
14	history_noise	200 non-null	int32
15	history_recruitment	200 non-null	int32
16	history_ringing	200 non-null	int32
17	history_roaring	200 non-null	int32
18	history_vomiting	200 non-null	int32
19	late_wave_poor	200 non-null	int32
	·	200 non-null	
20	m_at_2k		int32
21	m_cond_lt_1k	200 non-null	int32
22	m_gt_1k	200 non-null	int32
23	m_m_gt_2k	200 non-null	int32
24	m_m_sn	200 non-null	int32
25	m_m_sn_gt_1k	200 non-null	int32
26	m_m_sn_gt_2k	200 non-null	int32
27	m_m_sn_gt_500	200 non-null	int32
28	m_p_sn_gt_2k	200 non-null	int32
29	m_s_gt_500	200 non-null	int32
30	m_s_sn	200 non-null	int32
31	m_s_sn_gt_1k	200 non-null	int32
32	m_s_sn_gt_2k	200 non-null	int32
33	m_s_sn_gt_3k	200 non-null	int32
34	m_s_sn_gt_4k	200 non-null	int32
35	m_sn_2_3k	200 non-null	int32
36	m sn gt 1k	200 non-null	int32
37	m sn gt 2k	200 non-null	int32
38	m_sn_gt_3k	200 non-null	int32
		200 non-null	
39	m_sn_gt_4k		int32
40	m_sn_gt_500	200 non-null	int32
41	m_sn_gt_6k	200 non-null	int32
42	m_sn_lt_1k	200 non-null	int32
43	m_sn_lt_2k	200 non-null	int32
44	m_sn_lt_3k	200 non-null	int32
45	middle_wave_poor	200 non-null	int32
46	mod_gt_4k	200 non-null	int32
47	<pre>mod_mixed</pre>	200 non-null	int32
48	mod_s_mixed	200 non-null	int32
49	mod_s_sn_gt_500	200 non-null	int32
50	mod_sn	200 non-null	int32
51	mod_sn_gt_1k	200 non-null	int32
	0		-

```
52 mod_sn_gt_2k
                             200 non-null
                                             int32
 53 mod_sn_gt_3k
                             200 non-null
                                             int32
54 mod_sn_gt_4k
                             200 non-null
                                             int32
55 mod sn gt 500
                             200 non-null
                                             int32
 56 notch 4k
                             200 non-null
                                             int32
57 notch_at_4k
                             200 non-null
                                             int32
58 o_ar_c()
                             200 non-null
                                             int32
59 o_ar_u()
                             200 non-null
                                             int32
60 s_sn_gt_1k
                             200 non-null
                                             int32
61 s_sn_gt_2k
                             200 non-null
                                             int32
62 s_sn_gt_4k
                             200 non-null
                                             int32
63 speech()
                             200 non-null
                                             int32
64 static_normal
                             200 non-null
                                             int32
65 tymp()
                             200 non-null
                                             int64
66 viith_nerve_signs
                             200 non-null
                                             int32
67 wave V delayed
                             200 non-null
                                             int32
68 waveform ItoV prolonged 200 non-null
                                             int32
69 classification
                             200 non-null
                                             object
dtypes: int32(68), int64(1), object(1)
memory usage: 56.4+ KB
```

```
In [22]:
          le = LabelEncoder()
          data cat=df['classification']
          data_cat_encoded= le.fit_transform(data_cat)
          data cat encoded= pd.DataFrame(data cat encoded,columns=['classification'])
          df['classification']=data_cat_encoded
          df['classification'].value_counts()
Out[22]: 7
                48
                46
          2
         18
                20
                18
          3
          6
                16
          22
                 8
          9
                 6
          14
                 5
          11
                 4
          21
                 4
         19
                 4
          15
                 3
                 2
          5
                 2
          8
          23
                 2
                 2
         12
                 2
          13
                 2
         17
          10
                 1
          16
                 1
          4
                 1
          20
                 1
         1
                 1
                 1
         Name: classification, dtype: int64
```

```
In [23]: df_label=df["classification"].copy()

In [24]: df=df.drop("bser()",axis = 1)

In [25]: from sklearn.preprocessing import StandardScaler

    #feature_scal = StandardScaler()
    #df = pd.DataFrame(feature_scal.fit_transform(df), columns=df.columns)
    #df.head()
    y=df.classification
    x = df.drop(columns=['classification'])
```

```
In [26]: df=df.drop("classification",axis = 1)
    median = df['mod_sn'].median()
    df['mod_sn'].fillna(median)
    df.head(50)
```

Out[26]:

	age_gt_60	air()	airBoneGap	ar_c()	ar_u()	bone()	boneAbnormal	history_buzzing	history_
0	0	1	0	3	3	0	1	0	
1	1	0	1	0	1	1	1	0	
2	1	0	1	0	1	1	0	0	
3	1	0	0	3	3	1	1	0	
4	1	0	0	3	3	1	1	0	
5	0	0	0	3	3	1	1	0	
6	0	0	0	3	3	1	1	0	
7	0	4	0	0	0	0	1	0	
8	1	0	0	2	1	1	1	0	
9	1	0	0	3	1	1	1	0	
10	1	0	0	3	3	0	1	0	
11	0	4	0	3	3	2	1	0	
12	0	2	0	2	3	1	0	0	
13	1	0	0	3	3	1	1	0	
14	1	0	0	3	2	1	1	0	
15	0	0	0	3	3	1	1	0	
16	0	0	0	3	2	1	1	0	
17	0	2	0	3	3	0	0	0	
18	0	2	0	3	2	0	0	0	
19	1	0	0	3	3	0	1	0	
20	1	0	0	3	3	0	1	0	
21	0	2	0	3	3	0	1	0	
22	0	2	0	3	3	3	0	0	
23	0	1	0	2	2	0	1	0	
24	0	2	0	3	3	3	1	0	
25	0	2	0	3	2	3	1	0	
26	0	0	0	3	3	0	1	0	
27	0	0	0	1	1	1	1	0	
28	0	0	0	2	3	1	1	0	
29	0	0	0	3	3	0	0	0	
30	0	2	0	2	3	0	0	0	
31	0	2	0	3	2	0	0	0	
32	0	2	0	2	2	0	0	0	
33	0	1	1	1	1	1	1	0	
34	0	0	0	1	3	1	1	0	

	age_gt_60	air()	airBoneGap	ar_c()	ar_u()	bone()	boneAbnormal	history_buzzing	history_
35	1	0	0	1	1	1	1	0	_
36	0	2	0	1	2	3	0	0	
37	0	4	1	1	1	1	0	0	
38	1	2	0	3	3	0	0	0	
39	1	2	0	2	3	0	0	0	
40	0	2	0	3	2	3	0	0	
41	1	0	0	3	3	0	0	0	
42	0	0	0	2	3	0	0	0	
43	0	0	0	2	2	0	0	0	
44	0	1	0	1	1	2	1	1	
45	0	0	1	1	1	3	0	0	
46	0	0	0	1	1	1	1	0	
47	0	2	0	1	2	3	0	0	
48	1	1	0	3	3	0	0	0	
49	1	1	0	3	2	0	0	0	

50 rows × 68 columns

In [27]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.4,random_sta
te=400)

```
In [28]: from sklearn.tree import DecisionTreeClassifier
    from sklearn import metrics
    from sklearn import preprocessing
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import classification_report
    clft=DecisionTreeClassifier()
    clft=clft.fit(x_train,y_train)
    y_predt = clft.predict(x_test)

from sklearn import tree
    plt.figure(figsize=(50,80))
    temp = tree.plot_tree(clft.fit(x,y),fontsize=24)
    plt.show()
```


	precision	recall	f1-score	support
2	0.95	0.91	0.93	22
3	0.80	0.80	0.80	10
6	1.00	1.00	1.00	4
7	0.86	0.75	0.80	16
9	1.00	1.00	1.00	4
11	0.25	1.00	0.40	1
14	1.00	0.67	0.80	3
15	1.00	1.00	1.00	1
17	1.00	1.00	1.00	1
18	0.80	0.80	0.80	10
19	0.00	0.00	0.00	3
21	0.00	0.00	0.00	2
22	0.33	1.00	0.50	3
accuracy			0.80	80
macro avg	0.69	0.76	0.69	80
weighted avg	0.81	0.80	0.79	80

C:\Users\Amirshnll\anaconda3\lib\site-packages\sklearn\metrics_classificatio n.py:1221: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` par ameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

```
In [30]:
         from sklearn.neighbors import KNeighborsClassifier
         k=1
         clfk= KNeighborsClassifier(n neighbors=k)
         clfk.fit(x train,y train.ravel())
         y predk=clfk.predict(x test)
         print("when k = {} neighbors , knn test acuracy : {}" .format(k,clfk.score(x_t
         est,y_test)))
         print("when k = {} neighbors , knn test acuracy : {}" .format(k,clfk.score(x t
         rain,y train)))
         print(classification_report(y_test,clfk.predict(x_test)))
         ran = np.arange(1,30)
         train list = []
         test list = []
         for i,each in enumerate(ran):
             clfk= KNeighborsClassifier(n neighbors=each)
             clfk.fit(x_train,y_train.ravel())
```

when k = 1 neighbors, knn test acuracy: 0.6125 when k = 1 neighbors , knn test acuracy : 1.0 precision recall f1-score support 2 0.71 0.91 0.80 22 3 1.00 0.50 0.67 10 6 0.33 0.50 0.40 4 7 0.44 0.50 0.47 16 8 0.00 0.00 0.00 0 9 1.00 0.75 0.86 4 11 0.50 1 1.00 0.67 3 14 0.60 1.00 0.75 1 15 0.00 0.00 0.00 17 1.00 1 1.00 1.00 18 0.50 0.50 0.50 10 19 0.00 0.00 0.00 3 0.00 2 21 0.00 0.00 22 1.00 0.33 0.50 3

accuracy macro avg

weighted avg

C:\Users\Amirshnll\anaconda3\lib\site-packages\sklearn\metrics_classificatio n.py:1221: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` par ameter to control this behavior.

0.61

0.47

0.59

80

80

80

_warn_prf(average, modifier, msg_start, len(result))

0.50

0.61

0.51

0.62

C:\Users\Amirshnll\anaconda3\lib\site-packages\sklearn\metrics_classificatio n.py:1221: UndefinedMetricWarning: Recall and F-score are ill-defined and bei ng set to 0.0 in labels with no true samples. Use `zero_division` parameter t o control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

```
In [31]: from sklearn.neural_network import MLPClassifier
    clfm = MLPClassifier(hidden_layer_sizes=(5,),max_iter=1500)
    clfm.fit(x_train,y_train.ravel())
    y_predm = clfm.predict(x_test)
    print ("acuracy:", metrics.accuracy_score (y_test,y_predm))
```

acuracy: 0.7625

C:\Users\Amirshnll\anaconda3\lib\site-packages\sklearn\neural_network_multil
ayer_perceptron.py:582: ConvergenceWarning: Stochastic Optimizer: Maximum ite
rations (1500) reached and the optimization hasn't converged yet.
 warnings.warn(

In []:	