Algebra II: Homework 6

Due on March 17, 2021

Professor Walton

Gabriel Gress

Last edited March 17, 2021

PROBLEM 1

Claim. Show that $x^3 + x + 1$ is irreducible over \mathbb{F}_2 and let θ be a root. Compute the powers of θ in $\mathbb{F}_2(\theta)$.

Proof.

PROBLEM 2

Claim. Determine the minimal polynomial over \mathbb{Q} for the element 1+i.

Proof.

PROBLEM 3

Claim. Let \mathbb{F} be a finite field of characteristic p. Prove that $|\mathbb{F}| = p^n$ for some positive integer n.

Proof.

PROBLEM 4

Claim. Determine the degree over \mathbb{Q} of $2 + \sqrt{3}$ and of $1 + \sqrt[3]{2} + \sqrt[3]{4}$.

Proof.

PROBLEM 5

Claim. Prove that $x^5 - ax - 1 \in Z[x]$ is irreducible unless a = 0, 2, -1. The first two correspond to linear factors, the third corresponds to the factorization $(x^2 - x + 1)(x^3 + x^2 - 1)$.

Proof. \Box

Problem 6

Claim. Prove that $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2},\sqrt{3})$. Conclude that $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):Q]=4$. Find an irreducible polynomial satisfied by $\sqrt{2}+\sqrt{3}$.

Proof.

Problem 7

Claim. Suppose the degree of the extension K/F is a prime p. Show that any subfield E of K containing F is either K or F.

Proof.

Problem 8

Claim. Prove that if $[F(\alpha):F]$ is odd then $F(\alpha)=F(\alpha^2)$.

Proof.