## EE-219 Project 5

## **Project 5: Popularity Prediction on Twitter**

March 19, 2018

Ashish Shah (804946005) Ayush Dattagupta (305024749) Shrey Agarwal (004943082) Varun Saboo (505028591)

#### **Objective**

In this project, we analyze a twitter data set and explore the activity on Twitter. The main objective behind this project was to use different regression techniques and models to predict the popularity of topics on Twitter. Specifically, we wanted to know the activity of different hashtags on Twitter. Adn from that, we tried to predict the activity of that hashtag in the future. We explored various features from the tweets such as number of followers, timestamp, number of tweets etc to find the features of most significance for the task of predictions of hashtag activity.

#### **Dataset**

Twitter data is collected by querying popular hashtags related to the 2015 Super Bowl spanning a period starting from 2 weeks before the game to a week after the game. The dataset was grouped in 6 hashtags which were, gohawks, nfl, sb49, gopatriots, patriots and superbowl. Each of these tweet data is stored in a separate file. Given this dataset, our objective was to predict the popularity of each hashtag in the future.

## Part 1 - Popularity Prediction

## Problem 1.1

Plot "number of tweets in hour" over time for #SuperBowl and #NFL (a histogram with 1-hour bins).

The objective of this part was to analyze the initial twitter dataset in order to calculate the statistics mentioned. This was done for each hashtag. The following statistics were computed.

- Average number of tweets per hour
- Average number of followers of users posting the tweets
- Average number of retweets.

In the dataset, each tweet is described by a JSON string. We created an initial Panda dataframe object to store the tweet count, timestamp of tweet and retweet count for all the hashtags. After doing this, we grouped the data into hours to calculate the statistics. The following code represents the way we calculated each of them.

- Tweet\_count += 1
- Date = Tweet\_data['citation\_date']
- Retweet count = tweet data['metrics']['citations']['total']
- Follower\_count = tweet\_data['author']['followers']
- NOTE: For Average number of followers per user according to the answer given on piazza by the instructor we DO NOT follow the unique authors scheme and therefore it is assumed that tweets posted by the same author are considered to be different authors. (Therefore the average number of followers per tweet is equivalent to the average number of followers per tweet)

| Hashtag     | Average Number of tweets per hour | Average number of followers per tweet | Average number of retweets per tweet |
|-------------|-----------------------------------|---------------------------------------|--------------------------------------|
| #gohawks    | 325.4214                          | 2203.931767                           | 2.014617                             |
| #nfl        | 441.262                           | 4653.252286                           | 1.538533                             |
| #sb49       | 1417.3252                         | 10267.316849                          | 2.511149                             |
| #gopatriots | 46.3712                           | 1401.895509                           | 1.400084                             |
| #patriots   | 835.3255                          | 3309.978828                           | 1.782816                             |
| #superbowl  | 2298.3281                         | 8858.974663                           | 2.388272                             |

With the statistics above, we plotted a graph for the number of tweets in an hour for the two hashtags, #superbowl and #nfl.

## Q1.1 Plotting the number of tweets per hour across all days of data with the **#superbowl**Hourly Tweets for all days between 01/14 - 02/07



Q1.1 Plotting the number of tweets per hour across all days of data with the #nfl



## Observation:

We can infer from above that the hashtag #superbowl was the highest trending hashtag out of all the 6. We confirm this from the graphs as well that there was a huge spike in the graph around the hour 450 for the #superbowl and #nfl. We see that this was superbowl day and hence there was this huge a spike in the hashtags on that day. We see another spike in the graph of #nfl which tells us another event which lead to the spike on the graph.

# Some Interesting observations from the tweet count statistics of #goHawks and #patriots and it's trends with the actual game score!! (Not asked as a part of the question)

We also plotted the tweet count graph for 1st Febuary (SUPERBOWL day) on an hourly basis for the two team hashtags #goHawks and #patriots here are the graphs

## #goHawks



## #goPatriots



If we analyze the general trend of increase and decrease in number of tweets for each time, it actually gives us a good sense of who was **winning** the game. As we can see above from the period between 15:00(start of the game) and 20:00 (end of the game). Initially both the teams have high tweet count as the game is just starting. In the first two quarter the game was tied and there is a similar trend with the tweet count decreasing slightly for both the teams over the first two quarters. In the third quarter the Hawks took the lead and if we look at the graph there is a sudden increase in tweet count for the hawks and a decrease in tweet count for the patriots from 17:00 - 19:00. In the last quarter the patriots equalized and eventually won the game in the last few moments and corresponding to that from 19:00 - 20:00 we can see a huge increase in patriots tweets and a huge decrease in hawks tweets. Therefore following this pattern and observing trends in the tweet counts for each team can also shed some light on which team was winning during any given quarter of the game!!

## Problem 1.2

For each of your models, report your model's training accuracy and R-squared measure.

Also, analyse the significance of each feature using the t-test and P-value. You may use the library statsmodels.api in Python.

Approach: For this part we train a linear regression model for each hashtag based on the following five features:

- Total number of tweets
- Total number of retweets
- Sum of Followers of users (tweets) posting the tweet.

(NOTE: As discussed in part 1.1 two tweets posted by the same author are considered to be different authors and therefore the metric really is sum of followers of tweets.)

- Maximum number of followers of a user(tweet) posting the tweet.
- Time of the day as an hour value from 0 23 (representing 23 hours in a day)

(NOTE: Using one hot encoding is a better approach to tackle the time of day feature as opposed to having a single numerical value as the feature with later time of day has more weight as opposed to feature of less time of day. This one - hot encoding approach has been used in part 1.3 as this part did not mention using the following approach)

The data for each hashtag was broken up into bins of 1 hour each starting from 14th January 12:00 A.M extending upto 7th february 11:59 P.M The date range was obtained using the **CITATION\_DATE** parameter and for simplicity the calculations were done till the end of the last day i.e 11:59 pm rather than stopping at last hour of the day for which the data was recorded.

Using these 5 features mentioned above for a particular hour, we predict the number of tweets in the next hour. I.e to predict the number of tweets on 14th January from 1:00 A.M to 1:59 A.M we use the attributes from the time frame 14th January 12:00 AM to 12:59 A.M as the feature vector for the predictions.

A linear regression model was fit with the following data and a T test was also conducted that gave resultant P-values for each feature. Using the data the RMSE as well as the importance of each of the features was computed and the top 3 most important features for each model are listed along with the R- squared value.

#### Question.

How to calculate significance of each feature using t-test and P-value?

When a predictor has a lower p-value, it means it is a valid and useful addition to our model since the changes and modifications in the predictor's value is directly related to the changes in the response variable. In the opposite case, when the predictor has a larger p-value, it tells us that it is not useful and any change in the predictor is not associated with the changes in the response.

The p-value can be interpreted as "the probability that this coefficient is actually 0 (while its estimator that we calculated might not be 0)".

| R^2/Hashtag | #gohawks         | #gopatriots     | #NFL             | #patriots         | #sb49             | #superbo<br>wl    |
|-------------|------------------|-----------------|------------------|-------------------|-------------------|-------------------|
| R^2         | 0.474            | 0.632           | 0.566            | 0.670             | 0.805             | 0.802             |
| RMSE        | 39127.487<br>187 | 9338.70115<br>7 | 26759.23581<br>7 | 137554.168<br>633 | 328104.89<br>3002 | 584906.3<br>32891 |

## Results for #superbowl

The regression results for the tweets with the hashtag #superbowl are

| Dep. Va                               | ariable:   |                                          | y I   | R-squ               | ared:      |           | 0.802     |  |
|---------------------------------------|------------|------------------------------------------|-------|---------------------|------------|-----------|-----------|--|
| Model:                                |            | OLS<br>Least Squares<br>Mon, 19 Mar 2018 |       | Adj.                | R-squared: |           | 0.801     |  |
| Method                                | •          |                                          |       | F-sta               | tistic:    |           | 481.1     |  |
| Date:                                 | N          |                                          |       | Prob (F-statistic): |            |           | 5.70e-206 |  |
| Time: No. Observations: Df Residuals: |            | 14:04:                                   | :51   | Log-L               | ikelihood: |           | -6227.0   |  |
|                                       |            | 599<br>593                               |       | AIC:                |            |           | 1.247e+04 |  |
|                                       |            |                                          |       | BIC:                |            |           | 1.249e+04 |  |
| Df Mode                               | el:        |                                          | 5     |                     |            |           |           |  |
| Covaria                               | ance Type: | nonrobu                                  | ust   |                     |            |           |           |  |
| ======                                | coef       | std err                                  | ===== | t                   | P> t       | [0.025    | 0.975]    |  |
| x1                                    | 4.099e+04  | 1401.316                                 | 29.   | 248                 | 0.000      | 3.82e+04  | 4.37e+04  |  |
| x2                                    | -1.358e+04 | 1670.559                                 | -8.   | 132                 | 0.000      | -1.69e+04 | -1.03e+04 |  |
| <b>x</b> 3                            | -1.57e+04  | 2213.603                                 | -7.0  | 091                 | 0.000      | -2e+04    | -1.13e+04 |  |
| v4                                    | 2914 5314  | 539 507                                  | 5     | 102                 | 0 000      | 1854 955  | 307/ 100  |  |

| x1         | 4.099e+04  | 1401.316 | 29.248               | 0.000        | 3.82e+04  | 4.37e+04    |  |  |
|------------|------------|----------|----------------------|--------------|-----------|-------------|--|--|
| x2         | -1.358e+04 | 1670.559 | -8.132               | 0.000        | -1.69e+04 | -1.03e+04   |  |  |
| <b>x</b> 3 | -1.57e+04  | 2213.603 | -7.091               | 0.000        | -2e+04    | -1.13e+04   |  |  |
| x4         | 2914.5314  | 539.507  | 5.402                | 0.000        | 1854.955  | 3974.108    |  |  |
| x5         | -157.3469  | 326.680  | -0.482               | 0.630        | -798.937  | 484.243     |  |  |
| const      | 2251.6845  | 325.104  | 6.926                | 0.000        | 1613.190  | 2890.179    |  |  |
| Omnibus:   |            | 1038.2   | =======<br>271 Durbi | in-Watson:   |           | 2.316       |  |  |
| Prob(Omn   | ibus):     | 0.0      | 000 Jarqu            | ue-Bera (JB) | ):        | 1958959.991 |  |  |
| Skew:      | •          | 10.2     | 210 Prob             | (JB):        |           | 0.00        |  |  |
| Kurtosis   | :          | 282.4    | 414 Cond.            | No.          |           | 15.3        |  |  |

## Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Best features selected are:

tweetCount

retweetCount

followerCount

## Best features are:

- No. of Tweets
- No. of Retweet

## No of followers

## Results for #sb49

The regression results for the tweets with the hashtag #sb49 are OLS Regression Results

| D Vi-l     | -1        |         |          | D      |              |           | 0.005       |
|------------|-----------|---------|----------|--------|--------------|-----------|-------------|
| Dep. Varia | ore:      |         | У        |        | uared:       |           | 0.805       |
| Model:     |           |         | OLS      |        | R-squared:   |           | 0.803       |
| Method:    |           | Least   | Squares  |        | atistic:     |           | 489.5       |
| Date:      |           | Mon, 19 | Mar 2018 | Prob   | (F-statisti  | o):       | 9.03e-208   |
| Time:      |           |         | 14:04:54 | Log-   | Likelihood:  |           | -5876.1     |
| No. Observ | ations:   | 599     |          | AIC:   |              |           | 1.176e+04   |
| Df Residua | ls:       |         | 593      | BIC:   |              |           | 1.179e+04   |
| Df Model:  |           |         | 5        |        |              |           |             |
| Covariance | Type:     | r       | onrobust |        |              |           |             |
| =======    | coe       | f std   | err      | t      | P> t         | [0.025    | 0.975]      |
| x1         | 1.185e+0  | 4 936.  | 078      | 12.662 | 0.000        | 1e+04     | 1.37e+04    |
| x2         | -4751.803 | 0 1920. | 939      | -2.474 | 0.014        | -8524.474 | -979.132    |
| <b>x</b> 3 | 1586.387  | 9 1181. | 489      | 1.343  | 0.180        | -734.024  | 3906.800    |
| x4         | 431.266   | 212.    | 338      | 2.031  | 0.043        | 14.240    | 848.292     |
| x5         | -119.222  | 8 182.  | 097      | -0.655 | 0.513        | -476.856  | 238.411     |
| const      | 1380.552  | 5 180.  | 958      | 7.629  | 0.000        | 1025.157  | 1735.949    |
| Omnibus:   | =======   | ======  | 1223.720 | Durb   | in-Watson:   | =======   | 1.683       |
| Prob(Omnib | us):      |         | 0.000    | Jaro   | ue-Bera (JB) | :         | 2444265.127 |
| Skew:      |           |         | 14.899   | Prob   | (JB):        |           | 0.00        |
| Kurtosis:  |           |         | 314.522  | Conc   | I. No.       |           | 23.6        |

#### Warnings

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Best features selected are:

tweetCount

retweetCount

maxFollowers

RMSE: 328104.893002

## Best features are:

- No. of Tweets
- No. of Retweet
- Max no. of Followers

## Results for #patriot

The regression results for the tweets with the hashtag  $\mbox{\tt\#patriots}$  are OLS Regression Results

| =======    |                   |         | =====   |              |       |              |           |            |  |
|------------|-------------------|---------|---------|--------------|-------|--------------|-----------|------------|--|
| Dep. Vari  | able:             |         |         | У            | R-squ | ared:        |           | 0.670      |  |
| Model:     |                   |         | (       | DLS          | Adj.  | R-squared:   |           | 0.667      |  |
| Method:    |                   | Leas    | t Squar | res          |       | tistic:      |           | 240.7      |  |
| Date:      |                   | Mon, 19 | Mar 20  | 18           | Prob  | (F-statistic | ):        | 3.95e-140  |  |
| Time:      |                   |         | 14:04:  |              |       | ikelihood:   | •         | -5536.2    |  |
| No. Observ | vations:          |         | 9       | 599          | AIC:  |              |           | 1.108e+04  |  |
| Df Residua | als:              |         | 5       | 593          | BIC:  |              |           | 1.111e+04  |  |
| Df Model:  |                   |         |         | 5            |       |              |           |            |  |
| Covariance | e Type:           |         | nonrobu | ıst          |       |              |           |            |  |
| =======    | coe               | f std   | err     |              | t     | P> t         | [0.025    | 0.975]     |  |
| x1         | 4004.394          | 9 307   | .745    | 13           | .012  | 0.000        | 3399.991  | 4608.799   |  |
| x2         | -524.980          | 8 350   | .224    | -1           | .499  | 0.134        | -1212.811 | 162.850    |  |
| <b>x</b> 3 | -3.311            | 4 224   | .492    | -0           | .015  | 0.988        | -444.208  | 437.585    |  |
| x4         | 211.010           | 5 128   | .642    | 1            | .640  | 0.101        | -41.638   | 463.659    |  |
| x5         | -48.689           | 6 103   | .504    | -0           | .470  | 0.638        | -251.969  | 154.590    |  |
| const      | 817.512           | 5 102   | .611    | 7            | .967  | 0.000        | 615.988   | 1019.037   |  |
| Omnibus:   | =======           | ======  | 905.1   | -====<br>L96 | Durbi | .n-Watson:   | =======   | <br>1.995  |  |
| Prob(Omnil | bus):             |         | 0.0     | 000          | Jarqu | e-Bera (JB): |           | 741809.555 |  |
| Skew:      | 0.00 P00 (** 100) |         | 7.8     | 399          | Prob( |              |           | 0.00       |  |
| Kurtosis:  |                   |         | 174.6   |              | Cond. |              |           | 7.48       |  |

## Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Best features selected are:

tweetCount

maxFollowers

retweetCount

RMSE : 137554.168633

## Best features are:

No. of Tweets

- No. of Retweet
- Max no. of Followers

## Results for #gopatriot

The regression results for the tweets with the hashtag #gopatriots are OLS Regression Results

| Kurtosis:                                |          | 120.0          |                                     | Cond.   |               |            | 25.6      |
|------------------------------------------|----------|----------------|-------------------------------------|---------|---------------|------------|-----------|
| Skew:                                    | ,-       |                |                                     | Prob(   |               |            | 0.00      |
| Omnibus: 539.270<br>Prob(Omnibus): 0.000 |          |                | Durbin-Watson:<br>Jarque-Bera (JB): |         |               | 342835.077 |           |
| Omnibus:                                 |          | 539            | 70                                  | Durhi   | n-Watson:     |            | 1.953     |
| const                                    | 43.7930  | 7.438          | 5.                                  | 888<br> | 0.000         | 29.185     | 58.401    |
| x5                                       | -0.9127  |                | -0.                                 |         | 0.903         | -15.640    | 13.815    |
| x4                                       | -56.7812 |                | -1.                                 |         | 0.053         | -114.217   | 0.654     |
| <b>x</b> 3                               | 96.0770  |                | 1.                                  |         | 0.210         | -54.131    | 246.285   |
| x2                                       | 194.2410 | 82.905         | 2.                                  | 343     | 0.019         | 31.419     | 357.063   |
| x1                                       | -24.1604 | 74.650         | -0.                                 | 324     | 0.746         | -170.771   | 122.450   |
|                                          | coef     | std err        |                                     | t       | P> t          | [0.025     | 0.975]    |
|                                          |          |                |                                     |         |               |            |           |
| Covariance                               | Type:    | nonrobu        | ust                                 |         |               |            |           |
| Df Model:                                |          |                | 5                                   |         |               |            |           |
| Df Residua                               | ls:      | Ţ.             | 593                                 | BIC:    |               |            | 7967.     |
| No. Observ                               | ations:  | Ţ.             |                                     | AIC:    |               |            | 7941.     |
| Time:                                    |          | 14:04          |                                     |         | ikelihood:    |            | -3964.3   |
| Date:                                    |          | Mon, 19 Mar 20 |                                     |         | (F-statistic) | :          | 3.06e-126 |
| Method:                                  |          | Least Squar    |                                     | _       | tistic:       |            | 203.9     |
| Model:                                   |          | (              | -                                   | 200     | R-squared:    |            | 0.629     |
| Dep. Varia                               | ble:     |                | У                                   | R-sau   | uared:        |            | 0.632     |

#### Warnings

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Best features selected are:

retweetCount

maxFollowers

followerCount

RMSE: 9338.701157

Best features are:

- Max no. of followers
- No. of Retweet
- No. of Followers

## Results for #gohawk

The regression results for the tweets with the hashtag #gohawks are OLS Regression Results

| Dep. Vari  | able:     |               | y F   | R-squa          | red:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 0.474      |
|------------|-----------|---------------|-------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| Model:     |           | 0             | LS A  | Adj. R          | -squared:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0.469      |
| Method:    |           | Least Squar   | es F  | F-statistic:    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 106.7      |
| Date:      | M         | on, 19 Mar 20 | 18 F  | Prob (          | c):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.10e-80 |            |
| Time:      |           | 14:04:        | 57 L  | Log-Likelihood: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -4960.5    |
| No. Obser  | vations:  | 5             | 99 A  | AIC:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 9933.      |
| Df Residu  | als:      | 5             | 93 E  | BIC:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 9959.      |
| Df Model:  |           |               | 5     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Covarianc  | e Type:   | nonrobu       | st    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| =======    | coef      | std err       | ===== | t               | P> t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [0.025   | 0.975      |
| x1         | 1623.4544 | 219.550       | 7.3   | 394             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1192.265 | 2054.644   |
| x2         | -301.6224 | 102.974       | -2.9  | 929             | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -503.861 | -99.384    |
| <b>x</b> 3 | -479.0853 | 225.903       | -2.1  | L21             | 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -922.753 | -35.418    |
| x4         | 10.9198   | 72.959        | 0.1   | 150             | 0.881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -132.369 | 154.209    |
| x5         | 13.0976   | 39.833        | 0.3   | 329             | 0.742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -65.133  | 91.328     |
| const      | 314.0334  | 39.242        | 8.6   | 002             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 236.963  | 391.104    |
| Omnibus:   | ========  | 956.2         | 44 [  | urbin           | :<br>-Watson:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =======  | 2,221      |
| Prob(Omni  | bus):     | 0.0           | 00    | arque           | -Bera (JB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :        | 878638.612 |
| Skew:      |           |               |       | Prob(J          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0.00       |
| Kurtosis:  |           | 189.7         |       | Cond.           | Control of the Contro |          | 14.6       |

\_\_\_\_\_\_

Warnings

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Best features selected are:

tweetCount

retweetCount

followerCount

RMSE: 39127.487187

## Best features are:

• No. of Tweets

- No. of Retweet
- No. of Followers

## Results for #nfl

The regression results for the tweets with the hashtag #nfl are OLS Regression Results

| Don Vania  | hla.                 |             |           |              | D                   | and.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 0.500      |
|------------|----------------------|-------------|-----------|--------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| Dep. Varia | pre:                 |             |           | у            | R-squa              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0.566      |
| Model:     |                      | • (2)(3)(3) |           | OLS          | ( - C               | R-squared:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 0.563      |
| Method:    |                      |             | ist Squai |              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 154.8      |
| Date:      |                      | Mon, 1      | 19 Mar 20 |              | Prob (F-statistic): |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 4.62e-105  |
| Time:      |                      |             | 14:04     |              | _                   | ikelihood:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | -4656.6    |
| No. Observ | ations:              |             | !         | 599          | AIC:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 9325.      |
| Df Residua | ls:                  |             |           | 593          | BIC:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 9352.      |
| Df Model:  |                      |             |           | 5            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Covariance | Type:                |             | nonrob    | ust          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
|            | co                   | ef st       | d err     | ====         | t                   | P> t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [0.025   | 0.975]     |
| x1         | 603.80               | 61 11       | 15.685    | 5            | .219                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 376.603  | 831.009    |
| x2         | -247.20              | 31 9        | 3.645     | -2           | .640                | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -431.119 | -63.287    |
| <b>x</b> 3 | 347.63               | 11 10       | 5.925     | 3            | . 282               | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 139.597  | 555.665    |
| x4         | -110.53              | 36          | 14.863    | -2           | .464                | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -198.643 | -22.424    |
| <b>x</b> 5 | -2.28                | 89 2        | 23.898    | -0           | .096                | 0.924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -49.225  | 44.647     |
| const      | 432.32               | 89 2        | 23.628    | 18           | . 297               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 385.924  | 478.734    |
| Omnibus:   | =======              | ======      | 630.0     | =====<br>671 | Durbir              | <br>n-Watson:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =======  | 2.334      |
| Prob(Omnib | us):                 |             | 0.0       | 900          | Jarque              | e-Bera (JB):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 378483.016 |
| Skew:      | 50 (12 <b>6</b> ) 34 |             |           | 881          | Prob(               | The Control of the Co |          | 0.00       |
| Kurtosis:  |                      |             | 125.      |              | Cond.               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 11.1       |

#### Warnings

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Best features selected are:

tweetCount

followerCount

retweetCount

RMSE: 26759.235817

## Best features are:

No. of Tweets

- No. of Retweet
- No. of Followers

#### Problem 1.3

For each of the top 3 features in your measurements, draw a scatter plot of predicted (number of tweets for next hour) versus value of that feature, using all the samples you have extracted, and analyze it.

For this question, we added 8 new features/attributes to our above model for better accuracy and regression model.

We added the following attributes.

- longTweet = number of tweets that are longer than 90 characters per hour interval
- impressionCount = sum of the impression count per hour
- rankingScore = sum of ranking scores of all tweets in an hour
- favoriteCount = sum of the favorite count per hour
- userID = number of unique users tweeting
- hashTag = sum of hashtags used in tweets per hour
- Url = sum of urls used in tweets per hour
- Mentions = sum of mentions of tweets per hour

We also modified the following attribute:

• Time of day = instead of having a single feature taking values from 0-23 where higher hours equal higher weight for the feature we performed a one hot encoding for the different possible hours where there are 24 values and a 1 at that index corresponds the the current hour and the rest are all 0.

After adding the above features to our feature set, we applied the above linear regression model.

We then perform t-test and use P-values to determine the top 3 attributes for each hashtag. We are comparing the values from parts 1.2 and 1.3. We can also see the plotted graphs of predicted vs value of the top 3 features for each hashtag for all extracted samples:

We can see that adding these new features improves the R^2 values for each hashtag.

| R^2/Hashtag #goh | nawks #gopatriots | #NFL | #patriots | #sb49 | #superbo<br>wl |  |
|------------------|-------------------|------|-----------|-------|----------------|--|
|------------------|-------------------|------|-----------|-------|----------------|--|

| R^2 from 1.2 | 0.474 | 0.632 | 0.566 | 0.670 | 0.805 | 0.802 |
|--------------|-------|-------|-------|-------|-------|-------|
| R^2 from 1.3 | 0.694 | 0.915 | 0.780 | 0.820 | 0.882 | 0.905 |

From the above comparison, we can clearly see the increase in accuracy due to the addition of the attributes in our features. We can reason this by observing that the features are well defined and well distributed for the entirety of the match. They are not sparse.

We can also see the increase in accuracy can be because of this additional information that the model now has. By adding more features, the prediction can be done better. Hence we see a significant increase in accuracy for #gopatriots, #gohawks, #nfl and #patriots.

We have also plotted scatter plots for the top features of each hashtag in order to get a more visual inference of the prediction.

Results for #superbowl

The regression results for the tweets with the hashtag #superbowl are OLS Regression Results

\_\_\_\_\_\_ y R-squared: Dep. Variable: 0.905 OLS Adj. R-squared: Model: 0.899 Least Squares F-statistic: Method: 152.9 Mon, 19 Mar 2018 Prob (F-statistic): 2.96e-262 14:39:52 Log-Likelihood: -6008.0 Date: Time: 599 AIC: No. Observations: 1.209e+04 Df Residuals: 563 BIC: 1.225e+04

Df Model: 35 Covariance Type: nonrobust

|            | coef       | std err  | t      | P> t          | [0.025    | 0.975]    |
|------------|------------|----------|--------|---------------|-----------|-----------|
|            |            |          |        |               |           |           |
| x1         | -2.14e+05  | 1.29e+05 | -1.654 | 0.099         | -4.68e+05 | 4.01e+04  |
| x2         | -2.009e+04 | 4952.639 | -4.056 | 0.000         | -2.98e+04 | -1.04e+04 |
| <b>x</b> 3 | 8256.7160  | 2.42e+04 | 0.341  | 0.733         | -3.93e+04 | 5.58e+04  |
| x4         | -394.3228  | 455.800  | -0.865 | 0.387         | -1289.599 | 500.954   |
| x5         | 50.6323    | 223.317  | 0.227  | 0.821         | -388.005  | 489.269   |
| x6         | 17.4926    | 222.842  | 0.078  | 0.937         | -420.211  | 455.196   |
| x7         | 17.8787    | 223.460  | 0.080  | 0.936         | -421.039  | 456.797   |
| x8         | 129.8947   | 224.066  | 0.580  | 0.562         | -310.212  | 570.001   |
| x9         | 38.9916    | 223.047  | 0.175  | 0.861         | -399.114  | 477.098   |
| x10        | 79.0765    | 222.385  | 0.356  | 0.722         | -357.729  | 515.882   |
| x11        | 30.9468    | 222.282  | 0.139  | 0.889         | -405.657  | 467.551   |
| x12        | 1.0727     | 223.487  | 0.005  | 0.996         | -437.898  | 440.043   |
| x13        | 42.9299    | 223.833  | 0.192  | 0.848         | -396.720  | 482.580   |
| x14        | -38.8344   | 223.707  | -0.174 | 0.862         | -478.238  | 400.569   |
| x15        | -126.2612  | 223.585  | -0.565 | 0.572         | -565.425  | 312.902   |
| x16        | -103.8532  | 224.338  | -0.463 | 0.644         | -544.495  | 336.788   |
| ×17        | -191.8663  | 224.173  | -0.856 | 0.392         | -632.185  | 248.452   |
| x18        | 5.8632     | 224.077  | 0.026  | 0.979         | -434.267  | 445.993   |
| x19        | 1033.4911  | 222.926  | 4.636  | 0.000         | 595.623   | 1471.359  |
| x20        | -389.1347  | 227.236  | -1.712 | 0.087         | -835.469  | 57.199    |
| x21        | -71.1541   | 227.722  | -0.312 | 0.755         | -518.442  | 376.134   |
| x22        | 97.4711    | 228.088  | 0.427  | 0.669         | -350.536  | 545.478   |
| x23        | -113.1903  | 228.963  | -0.494 | 0.621         | -562.916  | 336.535   |
| x24        | -248.9572  | 231.386  | -1.076 | 0.282         | -703.442  | 205.528   |
| x25        | -108.8243  | 223.905  | -0.486 | 0.627         | -548.615  | 330.966   |
| x26        | -50.9688   | 222.818  | -0.229 | 0.819         | -488.624  | 386.687   |
| x27        | -89.4260   | 224.019  | -0.399 | 0.690         | -529.441  | 350.589   |
| x28        | -13.5327   | 223.331  | -0.061 | 0.952         | -452.197  | 425.131   |
| x29        | -1.067e+04 | 2.46e+04 | -0.434 | 0.665         | -5.9e+04  | 3.77e+04  |
| x30        | 1.419e+05  | 1.22e+05 | 1.164  | 0.245         | -9.77e+04 | 3.82e+05  |
| x31        | 2.002e+05  | 1.95e+04 | 10.240 | 0.000         | 1.62e+05  | 2.39e+05  |
| x32        | -1213.5027 | 985.425  | -1.231 | 0.219         | -3149.062 | 722.057   |
| x33        | 4.032e+04  | 1.1e+04  | 3.662  | 0.000         | 1.87e+04  | 6.19e+04  |
| x34        | 1.229e+04  | 3275.367 | 3.753  | 0.000         | 5858.990  | 1.87e+04  |
| x35        | -1.959e+04 | 9026.179 | -2.170 | 0.030         | -3.73e+04 | -1862.175 |
| x36        | -1.233e+05 | 1.77e+04 | -6.970 | 0.000         | -1.58e+05 | -8.85e+04 |
| const      | 2251.6845  | 231.487  | 9.727  | 0.000         | 1797.002  | 2706.367  |
| Omnibus:   |            | 1043.4   |        | <br>n-Watson: |           | <br>2.050 |
| Dark (One  |            |          | 000 7  |               |           | 2.000     |

 Omnibus:
 1043.453
 Durbin-Watson:
 2.050

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1435883.895

 Skew:
 10.482
 Prob(JB):
 0.00

 Kurtosis:
 241.939
 Cond. No.
 6.23e+15

Best Features for #superbowl is:

- hashTags
- longTweets
- retweetCount







RMSE: 601320.945760

There is a small clustered region with a very small linear deviation for the majority of the points. The t- test suggests that these features are especially important and we can see that they are indeed correlated well with the predicted values.

## Results for #sb49

The regression results for the tweets with the hashtag #sb49 are OLS Regression Results

|            |                     | OLS Reg             | gressio      | n Re  | sults            |           |             |
|------------|---------------------|---------------------|--------------|-------|------------------|-----------|-------------|
| Dep. Varia | ========<br>ble:    |                     | y F          | R-sau | =======<br>ared: | =======   | 0.882       |
| Model:     |                     | C                   |              |       | R-squared:       |           | 0.874       |
| Method:    |                     | Least Squar         |              |       | tistic:          |           | 119.9       |
| Date:      | Mo                  | on, 19 Mar 20       |              |       | (F-statistic     | :):       | 7.63e-236   |
| Time:      |                     | 14:40:              |              |       | ikelihood:       | ć.        | -5726.4     |
| No. Observ | ations:             |                     |              | AIC:  |                  |           | 1.152e+04   |
| Df Residua |                     | 5                   | 63 E         | BIC:  |                  |           | 1.168e+04   |
| Df Model:  |                     |                     | 35           |       |                  |           |             |
| Covariance | Type:               | nonrobu             | ıst          |       |                  |           |             |
|            | coef                | std err             | :=====       | t     | P> t             | [0.025    | 0.975       |
|            | 7.047.05            |                     |              |       |                  |           |             |
| x1         | -7.947e+05          | 8.54e+04            | -9.3         |       | 0.000            | -9.62e+05 |             |
| x2         | 1.806e+04           | 2549.497            | 7.0          |       | 0.000            | 1.31e+04  |             |
| <b>x</b> 3 | 5.974e+04           | 5904.339            | 10.1         |       | 0.000            | 4.81e+04  |             |
| x4         | -1626.9980          | 253.905             | -6.4         |       | 0.000            | -2125.714 |             |
| x5         | 138.8912            | 139.480             | 0.9          |       | 0.320            | -135.074  | 412.856     |
| x6         | 98.2037             | 139.319             | 0.7          |       | 0.481            | -175.445  | 371.852     |
| x7         | 51.5355             | 139.250             | 0.3          |       | 0.711            | -221.978  | 325.049     |
| x8         | 86.1336             | 139.302             | 0.6          |       | 0.537            | -187.482  | 359.749     |
| x9         | 30.4792             | 138.983             | 0.2          |       | 0.826            | -242.509  | 303.46      |
| x10        | -11.3848            | 138.893             | -0.6         |       | 0.935            | -284.197  | 261.42      |
| x11        | 39.6959             | 138.995             | 0.2          |       | 0.775            | -233.316  | 312.70      |
| x12        | -68.7575            | 139.750             | -0.4         |       | 0.623            | -343.252  | 205.73      |
| x13        | -85.0806            | 139.569             | -0.6         |       | 0.542            | -359.220  | 189.059     |
| x14        | -134.7075           | 140.736             | -0.9         |       | 0.339            | -411.139  | 141.72      |
| x15        | 578.5086            | 140.094             | 4.1          |       | 0.000            | 303.337   | 853.680     |
| x16        | -138.7393           | 141.849             | -0.9         |       | 0.328            | -417.357  | 139.87      |
| x17        | -213.9897           | 139.587             | -1.5         |       | 0.126            | -488.165  | 60.18       |
| x18        | -134.0744           | 140.792             | -0.9         |       | 0.341            | -410.615  | 142.46      |
| x19        | 14.2831             | 140.821             | 0.1          |       | 0.919            | -262.315  | 290.88      |
| x20        | -189.3432           | 142.007             | -1.3         |       | 0.183            | -468.272  |             |
| x21        | -64.7644            | 141.690             | -0.4         |       | 0.648            | -343.071  | 213.54      |
| x22        | -135.3080           | 141.865             | -0.9         |       | 0.341            | -413.958  |             |
| x23        | -61.9763            | 140.849             | -0.4         |       | 0.660            | -338.631  |             |
| x24        | 23.3292             | 141.671             | 0.1          |       | 0.869            | -254.940  |             |
| x25        | 107.0422            | 141.542             | 0.7          |       | 0.450            | -170.972  | 385.05      |
| x26        | -99.1079            | 139.357             | -0.7         |       | 0.477            | -372.831  | 174.61      |
| x27        | 138.7526            | 140.437             | 0.9          |       | 0.324            | -137.091  |             |
| x28        | 30.9783             | 139.528             | 0.2          |       | 0.824            | -243.080  |             |
| x29        | -4.482e+04          | 5492.297            | -8.1         |       | 0.000            | -5.56e+04 |             |
| x30        | 5.756e+05           | 7.43e+04            | 7.7          |       | 0.000            | 4.3e+05   |             |
| x31        | 9.478e+04           | 8332.932            | 11.3         |       | 0.000            | 7.84e+04  |             |
| x32        | -1089.8157          | 214.067             | -5.6         |       | 0.000            | -1510.283 |             |
| x33        | 2.003e+05           | 2.02e+04            | 9.9          |       | 0.000            | 1.61e+05  |             |
| x34        | -6.647e+04          | 1.4e+04             | -4.7         |       | 0.000            | -9.39e+04 |             |
| x35        | -2.742e+04          | 7583.940            | -3.6         |       | 0.000            | -4.23e+04 |             |
| x36        | 1.027e+04           | 2514.327            | 4.6          |       | 0.000            | 5331.078  |             |
| const      | 1380.5526<br>====== | 144.664<br>======== | 9 <b>.</b> 5 |       | 0.000<br>======  | 1096.405  |             |
| Omnibus:   |                     | 1125.1              |              |       | n-Watson:        |           | 2.002       |
| Prob(Omnib | us):                |                     |              | 100   | e-Bera (JB):     |           | 1544222.510 |
| Skew:      |                     | 12.4                |              | Prob( |                  |           | 0.00        |
| Kurtosis:  |                     | 250.4               | 193 (        | Cond. | No.              |           | 6.71e+15    |

## Best Features for #sb49 is:

- hashTags
- followerCount
- mentions







All three features seem to be linearly correlated. The first and third feature seem to be similarly proportional to the predicted values.

The regression results for the tweets with the hashtag #patriots are OLS Regression Results

\_\_\_\_\_ Dep. Variable: R-squared: 0.820 Adj. R-squared: Model: OLS 0.808 Method: Least Squares F-statistic: 73.04 Prob (F-statistic): Date: Mon, 19 Mar 2018 9.27e-185 Time: 14:40:08 Log-Likelihood: -5355.4 No. Observations: AIC: 599 1.078e+04 Df Residuals: 563 BIC: 1.094e + 04

Df Model: 35 Covariance Type: nonrobust

| =======    |            | <del>-</del> |         |       | ========= | ========  |
|------------|------------|--------------|---------|-------|-----------|-----------|
|            | coef       | std err      | t       | P> t  | [0.025    | 0.975]    |
|            |            |              |         |       |           |           |
| x1         | -2.927e+05 | 2.62e+04     | -11.172 | 0.000 | -3.44e+05 | -2.41e+05 |
| x2         | -1819.7813 | 415.708      | -4.378  | 0.000 | -2636.310 | -1003.253 |
| <b>x</b> 3 | 3695.7020  | 1488.244     | 2.483   | 0.013 | 772.514   | 6618.890  |
| x4         | -385.7960  | 146.196      | -2.639  | 0.009 | -672.952  | -98.640   |
| x5         | 56.2797    | 75.364       | 0.747   | 0.456 | -91.749   | 204.309   |
| <b>x</b> 6 | 34.8655    | 75.426       | 0.462   | 0.644 | -113.286  | 183.017   |
| x7         | -7.6607    | 75.237       | -0.102  | 0.919 | -155.440  | 140.118   |
| x8         | 18.2303    | 75.348       | 0.242   | 0.809 | -129.768  | 166.228   |
| <b>x</b> 9 | -3.3427    | 75.057       | -0.045  | 0.964 | -150.770  | 144.084   |
| x10        | 6.3414     | 75.025       | 0.085   | 0.933 | -141.021  | 153.704   |
| x11        | -40.4475   | 74.820       | -0.541  | 0.589 | -187.409  | 106.514   |
| x12        | -68.2522   | 74.988       | -0.910  | 0.363 | -215.542  | 79.037    |
| x13        | -84.2355   | 75.095       | -1.122  | 0.262 | -231.736  | 63.265    |
| x14        | -14.5148   | 75.611       | -0.192  | 0.848 | -163.028  | 133.999   |
| x15        | 180.6900   | 75.802       | 2.384   | 0.017 | 31.801    | 329.579   |
| x16        | -64.6115   | 75.313       | -0.858  | 0.391 | -212.541  | 83.318    |
| x17        | -119.2092  | 75.581       | -1.577  | 0.115 | -267.664  | 29.246    |
| x18        | -11.1540   | 76.407       | -0.146  | 0.884 | -161.232  | 138.924   |
| x19        | 6.9830     | 75.560       | 0.092   | 0.926 | -141.430  | 155.396   |
| x20        | -65.9043   | 76.184       | -0.865  | 0.387 | -215.544  | 83.735    |
| x21        | -5.3287    | 76.695       | -0.069  | 0.945 | -155.971  | 145.314   |
| x22        | 29.3012    | 76.095       | 0.385   | 0.700 | -120.164  | 178.767   |
| x23        | 85.2723    | 76.991       | 1.108   | 0.269 | -65.952   | 236.496   |
| x24        | -27.5760   | 76.752       | -0.359  | 0.720 | -178.331  | 123.179   |
| x25        | 57.0920    | 76.273       | 0.749   | 0.454 | -92.722   | 206.905   |
| x26        | -6.3482    | 75.847       | -0.084  | 0.933 | -155.327  | 142.630   |
| x27        | -7.6663    | 75.252       | -0.102  | 0.919 | -155.475  | 140.142   |
| x28        | 52.2066    | 75.243       | 0.694   | 0.488 | -95.585   | 199.998   |
| x29        | -2371.0687 | 1429.054     | -1.659  | 0.098 | -5177.997 | 435.860   |
| x30        | 2.295e+05  | 2.18e+04     | 10.509  | 0.000 | 1.87e+05  | 2.72e+05  |
| x31        | 3.447e+04  | 4121.940     | 8.362   | 0.000 | 2.64e+04  | 4.26e+04  |
| x32        | 123.5722   | 116.038      | 1.065   | 0.287 | -104.348  | 351.493   |
| x33        | 3.501e+04  | 6208.700     | 5.638   | 0.000 | 2.28e+04  | 4.72e+04  |
| x34        | -7598.9437 | 6122.969     | -1.241  | 0.215 | -1.96e+04 | 4427.710  |
| x35        | 9892.6013  | 4158.527     | 2.379   | 0.018 | 1724.479  | 1.81e+04  |
| x36        | -1100.0174 | 821.614      | -1.339  | 0.181 | -2713.821 | 513.786   |
| const      | 817.5125   | 77.871       | 10.498  | 0.000 | 664.560   | 970.465   |
| =======    |            |              |         |       |           | ========  |

 Omnibus:
 1092.905
 Durbin-Watson:
 1.820

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1243150.224

 Skew:
 11.745
 Prob(JB):
 0.00

 Kurtosis:
 224.940
 Cond. No.
 6.27e+15

Best Features for #patriots is:

- tweetCount
- rankingScore
- hashTags







There a linear relationship with all three features. The first and third feature exhibit a similar correlation, suggesting that these two are of similar importance. The second feature also has a nice linear relation with the predicted values.

The regression results for the tweets with the hashtag #gopatriots are OLS Regression Results

| =======    |                     |              | ======== |              |           |           |
|------------|---------------------|--------------|----------|--------------|-----------|-----------|
| Dep. Varia | ble:                |              | y R-so   | uared:       |           | 0.915     |
| Model:     |                     |              | OLS Adj. | R-squared:   |           | 0.910     |
| Method:    |                     | Least Squa   | res F-st | atistic:     |           | 173.8     |
| Date:      | M                   | on, 19 Mar 2 | 018 Prob | (F-statisti  | .c):      | 1.96e-276 |
| Time:      |                     | 14:40        | :08 Log- | Likelihood:  |           | -3524.5   |
| No. Observ | ations:             |              | 599 AIC: |              |           | 7121.     |
| Df Residua | ls:                 |              | 563 BIC: |              |           | 7279.     |
| Df Model:  |                     |              | 35       |              |           |           |
| Covariance | - 1                 | nonrob       |          |              |           |           |
| =======    | coef                | std err      | <br>t    | P> t         | [0.025    | 0.975]    |
|            |                     |              |          |              |           |           |
| x1         | -9933.85 <b>2</b> 8 | 917.829      | -10.823  | 0.000        | -1.17e+04 | -8131.066 |
| x2         | -813.8093           | 52.750       | -15.428  | 0.000        | -917.421  | -710.198  |
| <b>x</b> 3 | -105.2861           | 107.412      | -0.980   | 0.327        | -316.264  | 105.692   |
| x4         | 285.3944            | 31.257       | 9.130    | 0.000        | 223.999   | 346.790   |
| x5         | 0.8732              | 3.519        | 0.248    | 0.804        | -6.038    | 7.785     |
| <b>x</b> 6 | 0.4241              | 3.520        | 0.120    | 0.904        | -6.489    | 7.337     |
| x7         | 0.5854              | 3.522        | 0.166    | 0.868        | -6.332    | 7.503     |
| x8         | 1.1358              | 3.518        | 0.323    | 0.747        | -5.774    | 8.046     |
| <b>x</b> 9 | -0.6694             | 3.516        | -0.190   | 0.849        | -7.576    | 6.238     |
| x10        | 0.2935              | 3.517        | 0.083    | 0.934        | -6.614    | 7.201     |
| x11        | -1.3489             | 3.520        | -0.383   | 0.702        | -8.262    | 5.564     |
| x12        | -2.4526             | 3.519        | -0.697   | 0.486        | -9.364    | 4.459     |
| x13        | -4.7643             | 3.516        | -1.355   | 0.176        | -11.671   | 2.142     |
| x14        | -2.5328             | 3.526        | -0.718   | 0.473        | -9.458    | 4.393     |
| x15        | -0.6257             | 3.523        | -0.178   | 0.859        | -7.546    | 6.294     |
| x16        | -4.7975             | 3.532        | -1.358   | 0.175        | -11.735   | 2.140     |
| x17        | -4.7521             | 3.533        | -1.345   | 0.179        | -11.691   | 2.187     |
| x18        | 0.0342              | 3.606        | 0.009    | 0.992        | -7.048    | 7.116     |
| x19        | 10.7675             | 3.572        | 3.015    | 0.003        | 3.752     | 17.783    |
| x20        | 2.3087              | 3.645        | 0.633    | 0.527        | -4.851    | 9.469     |
| x21        | -2.9738             | 3.668        | -0.811   | 0.418        | -10.179   | 4.231     |
| x22        | 8.6224              | 3.575        | 2.412    | 0.016        | 1.601     | 15.644    |
| x23        | -3.4560             | 3.638        | -0.950   | 0.343        | -10.601   | 3.689     |
| x24        | -0.8346             | 3.609        | -0.231   | 0.817        | -7.923    | 6.253     |
| x25        | -5.1868             | 3.556        | -1.459   | 0.145        | -12.171   | 1.797     |
| x26        | 5.7315              | 3.542        | 1.618    | 0.106        | -1.225    | 12.688    |
| x27        | 0.4904              | 3.516        | 0.139    | 0.889        | -6.416    | 7.397     |
| x28        | 3.1897              | 3.525        | 0.905    | 0.366        | -3.734    | 10.113    |
| x29        | -580.4917           | 67.721       | -8.572   | 0.000        | -713.508  | -447.475  |
| x30        | 1.042e+04           | 677.547      | 15.375   | 0.000        | 9086.350  | 1.17e+04  |
| x31        | 884.3562            | 286.908      | 3.082    | 0.002        | 320.816   | 1447.896  |
| x32        | 17.4423             | 7.640        | 2.283    | 0.023        | 2.436     | 32.448    |
| x33        | 388.8288            | 36.626       | 10.616   | 0.000        | 316.888   | 460.770   |
| x34        | 498.6153            | 27.503       | 18.129   | 0.000        | 444.594   | 552.636   |
| x35        | -460.6857           | 192.865      | -2.389   | 0.017        | -839.508  | -81.863   |
| x36        | -192.7385           | 78.176       | -2.465   | 0.014        | -346.291  | -39.186   |
| const      | 43.7930<br>======   | 3.664        | 11.953   | 0.000        | 36.597    | 50.989    |
| Omnibus:   |                     | 299.         |          | in-Watson:   |           | 2.004     |
| Prob(Omnib | us):                |              |          | ue-Bera (JB) | :         | 45040.545 |
| Skew:      | (2)                 |              |          | (JB):        |           | 0.00      |
| Kurtosis:  |                     |              |          | I. No.       |           | 4.69e+15  |
|            |                     |              |          |              |           |           |

Best Features for #gopatriots is:

- urls
- retweetCount
- rankingScore







There is a linear relationship between the input and output for all the features but there is some spread in the distribution.

Results for #gohawks

The regression results for the tweets with the hashtag #gohawks are

OLS Regression Results \_\_\_\_\_\_ Dep. Variable: y R-squared: Model: OLS Adj. R-squared: Least Squares F-statistic: Method: 36.41 Mon, 19 Mar 2018 Prob (F-statistic): Date: 3.10e-121 14:40:11 Log-Likelihood: -4798.4 Time: 599 AIC: No. Observations: 9669. Df Residuals: 563 BIC: 9827. Df Model: 35 Covariance Type: nonrobust \_\_\_\_\_\_ coef std err t P>|t| [0.025 0.975] \_\_\_\_\_\_ -6.48e+04 6141.362 -10.551 0.000 -7.69e+04 -5.27e+04 97.7499 126.641 0.772 0.441 -150.996 346.496 -2062.0802 280.206 -7.359 0.000 -2612.458 -1511.702 294.5490 67.816 4.343 0.000 161.346 427.752 10.6119 29.722 0.357 0.721 -47.767 68.991 5.5534 29.676 0.187 0.852 -52.736 63.843 8.9599 29.675 0.302 0.763 -49.328 67.247 8.7879 29.711 0.296 0.768 -49.570 67.145 3.8494 29.658 0.130 0.897 -54.404 62.103 3.8970 29.645 0.131 0.895 -54.331 62.125 1.0087 29.579 0.034 0.973 -57.090 59.108 0.9003 29.571 0.030 0.976 -57.182 58.983 x1 x2 **x**3 x4 x5 x6 x7 x8 x9 x10 x11 0.976 -57.182 0.9003 29.571 0.030 58.983 x12 29.839 0.974 x13 -0.9733 -0.033 -59.582 57.636 -13.2743 29.727 0.655 x14 -0.447 -71.664 45.116 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 42.5779 43.474 0.979 0.328 -42.813 127.968 

 329.476
 6.515
 0.000
 1499.465

 194.762
 5.138
 0.000
 618.175

 806.732
 7.089
 0.000
 4133.986

 352.229
 -5.292
 0.000
 -2555.709

 30.725
 10.221
 0.000
 253.683

 2146.6169 329.476 2793.769 x33 1000.7235 x34 1383.272 5718.5575 7303.129 x35 -1863.8646 352.229 314.0334 30.725 x36 -1172.020 374.384 const \_\_\_\_\_\_ 924.839 Durbin-Watson: Omnibus: 1.951 564151.585 Prob(Omnibus): 0.000 Jarque-Bera (JB): Skew: 8.412 Prob(JB):

152.401 Cond. No.

\_\_\_\_\_\_

5.92e + 15

Kurtosis:

Best Features for #gohawks is:

- rankingScore
- tweetCount
- followerCount



Number of tweets/hour

There is a linear relationship in the scatter plots reflecting a good relationship between the three features.

Results for #nfl

The regression results for the tweets with the hashtag #nfl are OLS Regression Results

| ==========        |                  |                     |           |
|-------------------|------------------|---------------------|-----------|
| Dep. Variable:    | У                | R-squared:          | 0.780     |
| Model:            | OLS              | Adj. R-squared:     | 0.766     |
| Method:           | Least Squares    | F-statistic:        | 57.01     |
| Date:             | Mon, 19 Mar 2018 | Prob (F-statistic): | 7.08e-161 |
| Time:             | 14:40:14         | Log-Likelihood:     | -4453.4   |
| No. Observations: | 599              | AIC:                | 8979.     |
| Df Residuals:     | 563              | BIC:                | 9137.     |
| Df Model:         | 35               |                     |           |

Covariance Type: nonrobust

| =======    |                           |          |        |       |           |           |
|------------|---------------------------|----------|--------|-------|-----------|-----------|
|            | coef                      | std err  | t      | P> t  | [0.025    | 0.975]    |
| x1         | -1680.8943                | 1250.386 | -1.344 | 0.179 | -4136.887 | 775.098   |
| x2         | -64.9280                  | 82.320   | -0.789 | 0.431 | -226.620  | 96.764    |
| x3         | -374.4514                 | 143.435  | -2.611 | 0.009 | -656.185  | -92.718   |
| x4         | 114.7793                  | 42.038   | 2.730  | 0.007 | 32.209    | 197.350   |
| x5         | -25.0116                  | 16.952   | -1.475 | 0.141 | -58.308   | 8.285     |
| <b>x</b> 6 | -24.1847                  | 16.855   | -1.435 | 0.152 | -57.292   | 8.923     |
| x7         | -20.0622                  | 16.885   | -1.188 | 0.235 | -53.228   | 13.103    |
| x8         | -8.1570                   | 16.737   | -0.487 | 0.626 | -41.031   | 24.717    |
| <b>x</b> 9 | 0.0412                    | 16.657   | 0.002  | 0.998 | -32.677   | 32.759    |
| x10        | 15.7586                   | 16.696   | 0.944  | 0.346 | -17.036   | 48.553    |
| ×11        | 26.7896                   | 16.621   | 1.612  | 0.108 | -5.857    | 59.436    |
| x12        | 17.7093                   | 16.758   | 1.057  | 0.291 | -15.207   | 50.625    |
| x13        | 12.1089                   | 17.018   | 0.712  | 0.477 | -21.319   | 45.536    |
| ×14        | 12.0021                   | 16.884   | 0.711  | 0.477 | -21.161   | 45.165    |
| x15        | 21.3595                   | 16.963   | 1.259  | 0.208 | -11.959   | 54.678    |
| x16        | 18.4304                   | 17.063   | 1.080  | 0.281 | -15.085   | 51.946    |
| ×17        | -6.6134                   | 17.151   | -0.386 | 0.700 | -40.300   | 27.074    |
| x18        | 2.5218                    | 16.808   | 0.150  | 0.881 | -30.492   | 35.535    |
| x19        | 84.1302                   | 16.833   | 4.998  | 0.000 | 51.067    | 117.194   |
| x20        | -17.7716                  | 17.313   | -1.027 | 0.305 | -51.777   | 16.234    |
| x21        | -4.6663                   | 16.842   | -0.277 | 0.782 | -37.747   | 28.415    |
| x22        | 12.9416                   | 17.074   | 0.758  | 0.449 | -20.595   | 46.478    |
| x23        | 8.2873                    | 16.801   | 0.493  | 0.622 | -24.713   | 41.288    |
| x24        | -15.3547                  | 16.878   | -0.910 | 0.363 | -48.507   | 17.798    |
| x25        | -19.7492                  | 16.758   | -1.178 | 0.239 | -52.665   | 13.167    |
| x26        | -20.2913                  | 16.838   | -1.205 | 0.229 | -53.364   | 12.781    |
| x27        | -41.4848                  | 16.804   | -2.469 | 0.014 | -74.492   | -8.478    |
| x28        | -29.3005                  | 16.981   | -1.725 | 0.085 | -62.655   | 4.054     |
| x29        | 86.1305                   | 105.312  | 0.818  | 0.414 | -120.722  | 292.983   |
| x30        | 1891.4932                 | 1173.020 | 1.612  | 0.107 | -412.537  | 4195.524  |
| x31        | 2642.1668                 | 255.669  | 10.334 | 0.000 | 2139.986  | 3144.348  |
| x32        | -176.1530                 | 29.210   | -6.031 | 0.000 | -233.527  | -118.779  |
| x33        | 556.1614                  | 130.071  | 4.276  | 0.000 | 300.677   | 811.645   |
| x34        | 249.2511                  | 93.829   | 2.656  | 0.008 | 64.953    | 433.549   |
| x35        | -1502.4054                | 246.587  | -6.093 | 0.000 | -1986.748 | -1018.063 |
| x36        | - <mark>1075.150</mark> 1 | 257.418  | -4.177 | 0.000 | -1580.767 | -569.533  |
| const      | 432.3289                  | 17.272   | 25.031 | 0.000 | 398.404   | 466.254   |
|            |                           |          |        |       |           |           |

 Omnibus:
 769.419
 Durbin-Watson:
 2.309

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 132722.405

 Skew:
 6.304
 Prob(JB):
 0.00

 Kurtosis:
 74.825
 Cond. No.
 8.37e+15

\_\_\_\_\_\_

## Best Features for #nfl is:

- hashTags
- authors
- Long Tweets







A linear relationship can be seen for features and all three features seem to be proportional to the predicted values in a similar way. This suggests that these three features can be very strong when used to predict the number of tweets for this hashtag in the next hour.

#### Observations

From the graphs above, we can clearly see that each hashtag, the patterns are similar within each hashtag. This tells us that the features have high importance and are similar to one another in the regression model. We also see that the pattern for the attributes is linear and hence using a linear regression is logical and useful. We were able to achieve a good R^2 score to confirm this.

## Problem 1.4

For each hashtag, report the average cross-validation errors for the 3 different models. Note that you should do the 90-10% splitting for each model within its specific time window. I.e. Only use data within one of the 3 periods above for training and testing each time, so for each period you will run 10 tests.

Also, aggregate the data of all hashtags, and train 3 models (for the intervals mentioned above) to predict the number of tweets in the next hour on the aggregated data.

The below table shows the 2 cross validation RMSE and MAE scores.

Table for Before the Superbowl Match

| Model\<br>Hashtags    | Error<br>type | #Superb<br>owl | #GoPatri<br>ots | #GoHaw<br>ks | #NFL        | #Patriots | #sb49   |
|-----------------------|---------------|----------------|-----------------|--------------|-------------|-----------|---------|
| 1. Linear             | RMSE          | 22.84          | 5.75            | 19.41        | 11.85       | 19.41     | 9.09    |
| Regression            | MAE           | 204.51         | 13.11           | 160.89       | 71.20       | 134.43    | 44.73   |
| 2. Neural             | RMSE          | 23.61          | 11.44           | 20.98        | 18.48       | 22.29     | 245.71  |
| Network<br>Regression | MAE           | 273.29         | 28.17           | 155.35       | 186.31      | 203.58    | 226.42  |
| 3. Random             | RMSE          | 22.32          | 4.923           | 16.97        | 12.95       | 17.76     | 8.72    |
| Forest<br>Regression  | MAE           | 175.93         | 7.83            | 74.36        | 75.42       | 101.32    | 47.41   |
| 4. SVR                | RMSE          | 22.94          | 6.25            | 19.86        | 14.75       | 19.48     | 12.87   |
|                       | MAE           | 264.42         | 14.76           | 138.28       | 127.94      | 165.53    | 137.31  |
| Order of<br>MAE       |               | 3>1>4>2        | 3>1>4>2         | 3>4>2>1      | 1>3>4><br>2 | 3>1>4>2   | 1>3>4>2 |

Normalized MAE for all hashtags for the best performing model (Random Forest): 114.74

Table for during the Superbowl Match

| Model\<br>Hashtags    | Error<br>type | #Superb<br>owl | #GoPatri<br>ots | #GoHaw<br>ks | #NFL    | #Patriots | #sb49    |
|-----------------------|---------------|----------------|-----------------|--------------|---------|-----------|----------|
| 1. Linear             | RMSE          | 852.34         | 73.34           | 79.41        | 87.25   | 164.49    | 225.21   |
| Regression            | MAE           | 723874.8<br>1  | 4995.28         | 6310.79      | 7597.39 | 27035.51  | 50944.37 |
| 2. Neural             | RMSE          | 317.15         | 42.89           | 79.41        | 71.39   | 175.22    | 266.132  |
| Network<br>Regression | MAE           | 101204.8<br>0  | 1854.41         | 6175.20      | 5006.19 | 30512.39  | 70451.47 |
| 3. Random             | RMSE          | 199.14         | 29.86           | 51.55        | 44.19   | 127.31    | 181.16   |
| Forest<br>Regression  | MAE           | 39911.95       | 904.32          | 2547.44      | 1831.66 | 15982.0   | 33101.94 |
| 4. SVR                | RMSE          | 348.59         | 36.56           | 57.32        | 71.326  | 110.29    | 177.74   |
|                       | MAE           | 120084.8<br>89 | 1412.46         | 3217.31      | 5128.5  | 12092.54  | 31525.49 |
| Order of<br>MAE       |               | 3>2>4>1        | 3>4>2>1         | 3>4>2>1      | 3>2>4>1 | 4>3>1>2   | 4>3>1>2  |

Normalized MAE for all hashtags for the best performing model (Random Forest): 28678.24

Table for after the Superbowl match

| Model\Has<br>htags    | Error<br>type | #Superb<br>owl | #GoPatri<br>ots | #GoHaw<br>ks | #NFL   | #Patriots | #sb49  |
|-----------------------|---------------|----------------|-----------------|--------------|--------|-----------|--------|
| 1. Linear             | RMSE          | 21.46          | 2.31            | 7.85         | 13.95  | 12.3      | 15.97  |
| Regression            | MAE           | 279.13         | 4.22            | 28.49        | 134.12 | 89.39     | 194.82 |
| 2. Neural             | RMSE          | 29.14          | 7.72            | 12.63        | 23.85  | 15.21     | 20.73  |
| Network<br>Regression | MAE           | 738.12         | 6.21            | 73.91        | 536.41 | 186.33    | 395.14 |
| 3. Random             | RMSE          | 19.96          | 3.61            | 5.86         | 14.79  | 11.168    | 13.146 |
| Forest<br>Regression  | MAE           | 257.81         | 2.822           | 23.95        | 161.88 | 97.935    | 134.88 |

| 4. SVR          | RMSE | 21.71   | 2.823   | 8.67    | 16.27   | 13.62   | 22.67   |
|-----------------|------|---------|---------|---------|---------|---------|---------|
|                 | MAE  | 638.68  | 8.25    | 59.62   | 283.66  | 208.91  | 446.59  |
| Order of<br>MAE |      | 3>1>4>2 | 3>1>2>4 | 3>1>2>4 | 1>3>4>2 | 1>3>2>4 | 3>1>2>4 |

Normalized MAE for all hashtags for the best performing model (Random Forest): 181.23

Normalized MAE = Summation over all (MAE for # \* tweets for #)/Total tweets for #

We tried 4 different regression models for this part, namely, Linear Regression, Neural Networks, Random Forest and SVR.

We can see Random Forest is performing the best out of the 4 because

We can see that for some hashtags(patriots and nfl), linear regression also performs decently well when compared with Random Forest which tells us that the data for these hashtags are linear separable. In addition to this, the fact that data for time section 1 and 3 is less when compared with time section 2, Random forest is not able to generalize this data and doesn't give good results but instead, linear regression performs better hence it is linearly separable. But time section 2 has lot of data so RF performs well.

#### Problem 1.4b

<u>Perform the same evaluations on your combined model and compare with models you trained for individual hashtags.</u>

Before Feb. 1, 8:00 a.m.

'Mean absolute error: ', 211.835

'RMSE: ', 782.496

Between Feb. 1, 8:00 a.m. and 8:00 p.m.

'Mean absolute error: ', 29725.951

'RMSE: ', 37239.824

After Feb. 1, 8:00 p.m

'Mean absolute error: ', 176.0413

'RMSE: ', 303.729

#### **Observations**

Some observation we'll like to make is that when comparing the MAE values for the combined dataset vs the individual hashtags, we observe that the MAE values are lower for specific dataset than for combined dataset. This is because the combined dataset leads to a model which is more general and is unaware of the hashtag associated with the data point when we test it. This tells is that the importance of hashtag to predict tweet count (model trained on specific hashtag) performs better than the combined training model.

#### Problem 1.5

Report the model you use. For each test file, provide your predictions on the number of tweets in the next hour.

For this part, we used the trained aggregate model of part 1.4.2. We first sliced it hourly and then combined it vertically for the last 5 hour periods. We tried to test this with different samples from different time sections. We arrived at 3 different combined models for different time sections for 1,2 and 3.

For this section we created a vector for the 5 hourly period having 11\*5 features. (Basically, 11 features for each hour section). This helps us understand how the tweet count will be for the next hour. This is done to see how the previous 5 hour sections can help predict the tweet count for the next hour.

Sample 8 was only file which did not have 5 hour data so we performed oversampling by replicating the last hour data and introduce more weight in it.

| Sample and Period  | Predicted tweets in next hour |
|--------------------|-------------------------------|
| Sample 1 Period 1  | 244.831                       |
| Sample 2 Period 2  | 165535.241                    |
| Sample 3 Period 3  | 877.323933                    |
| Sample 4 Period 1  | 362.0899531                   |
| Sample 5 Period 1  | 322.74213                     |
| Sample 6 Period 2  | 147211.824                    |
| Sample 7 Period 3  | 75.129                        |
| Sample 8 Period 1  | 28.426                        |
| Sample 9 Period 2  | 156374.812                    |
| Sample 10 Period 3 | 75.135                        |

We can see from the above table that the next hour tweet predictions follow very closely to the tweet count we get in the 5 hour data. We compared the tweet count of the previous hour with true value and saw it matches well. Hence our model was able to predict the number of tweets in next hour.

We know from the data that time period 2 is most significant as it is during the match. Our data is larger in 2 when compared to 1 and 3. Hence the samples which are corresponding to period 2 have higher prediction which tells us that the model is trained well. Hence the higher tweet count of period 2 when compared with 1 and 3 is justified.

Order of number of tweets

Time period 2 > Time period 1 > Time period 3

The above can be see from the table.

## **Part 2 - Fan Base Prediction**

In this part, we try to classify the location of a tweet based on it's content.

Instead of directly using the dataset for this part, we first need to create our training and test set by manually checking the location field for each tweet in the #superbowl tweet file.

In order to identify the location, we used the following terms to determine whether the tweet is from **Washington**:

- Seattle
- WA
- Washington
- Kirkland

Note that Washington does not guarantee that the tweet was from Washington state, it could have also originated from Washington DC. We ensured that we handled such boundary cases while labelling the location. For **Massachusetts**, the set of cities were as follows:

- MA
- Massachusetts
- Boston
- Worcester
- Springfield
- Lowell
- Arlington
- Bedford
- Brockton
- Quincy
- Lynn
- Northampton
- Cambridge

Even for Massachusetts there is an edge case. Boston is also a city in Ohio. We ensured that tweets which contained 'Boston, Ohio' as location were not considered in the dataset.

After labelling the data, we **preprocessed the tweets** to remove the following from any tweet:

- Mentions (@twitter\_handle)
- URL
- HTML tags
- Emoticons
- Numbers
- 'RT' indicating the tweet was a retweet.

We also performed stemming to bring the words to their root form and restrict the vocabulary of the dataset.

#### Ex:

**Original Tweet**: Terminator Genisys: He's back, and we're lovin' it, @ParamountPics. RT to try to win movie tix for a year https://cards.twitter.com/cards/16ac3u/bmun

**Preprocessed Tweet**: terminator genisys he s back and we re lovin it to try to win movie tix for a year

After preprocessing, we **split the data** into train and test set.

On the train set we performed **TF-IDF** computations and reduced the dimension of the resulting sparse matrix using **Truncated SVD**.

On the test set, we transformed it using the previously learned TF-IDF transformer and the SVD model.

To visualize the linear separability of the problem, we visualized the dataset by projecting the training data onto a 2D plane. This visualization is observed as follows:



From this we can infer that the separating the tweet location just from the tweets is a very difficult and challenging task for all machine learning algorithms because there is a large overlap between the two classes. However, note that this visualization is only when we reduce the data to 2D, and it may be separable when we increase the dimensions.

We tested the performance of many models on this binary classification task and observed the following results:

| Accuracy Precision Recall AUC |
|-------------------------------|
|-------------------------------|

| Naive Bayes              | 0.7058 | 0.6897 | 0.7043 | 0.76 |
|--------------------------|--------|--------|--------|------|
| SVM                      | 0.7723 | 0.7443 | 0.8165 | 0.84 |
| Random Forest            | 0.7633 | 0.7356 | 0.8027 | 0.81 |
| Adaboost                 | 0.7628 | 0.7408 | 0.7814 | 0.82 |
| Multilayer<br>Perceptron | 0.7465 | 0.7394 | 0.7424 | 0.83 |
| Logistic Regression      | 0.7767 | 0.7506 | 0.8141 | 0.85 |

As we can observe from the above table, SVM and logistic regression were the best models to classify the tweet coming from a particular location. AUC (Area under the curve) is a popular metric to measure the performance of a binary classifier. From the table again, it is evident that these two classifiers perform better than the rest.

## **Naive Bayes**





Amongst all the classifiers, Naive Bayes has the worst performance due to the independence assumption. It was also noticed in Project 1 that SVM performs better than Naive Bayes and the same holds true for this task also.

## **SVM**





## **AdaBoost**





## **Random Forest Classifier**





Max Depth = 5 Number of estimators = 50

# **Logistic Regression**





# **Multilayer Perceptron**





Hidden units = 100 Hidden layers = 2 Activation function = relu From the graphs and the table, we can draw some of the following inferences:

- 1. SVM and Logistic Regression gave equivalent results for this task with accuracies of 77%.
- 2. Naive Bayes was not a suitable classifier for this task due to the linear independency.
- 3. For multi-layer perceptron, we can try various other hyperparameter settings (We tested it on a 2 layer with 100 units each). But given that there are nearly 40,000 tweets, this algorithm may require more data to perform better due to the large number of parameters.
- 4. We also found that on increasing more cities from Washington, reduced the performance of all algorithms by almost 10% for each classifier. In Washington, we added the following additional cities Spokane, Bellevue, Everett, Yakima, Redmond, Kent and Tacoma. A possible reason for this could be that these city names are common across the world, for example, Kent is a county in Michigan, Ohio, UK, Washington, Connecticut and even Australia! Thus, adding these additional cities could have resulted in a larger, more incorrect dataset. The key factor in this particular task is to have a correctly labeled dataset, and thus handling these possible incorrect labels is crucial to the performance of the system.
- 5. We also tested the performance of the models by varying the dimension of the data.



As we can see from this graph, on increasing the dimension, the accuracy for Random Forest and SVM decreases, whereas the accuracy for logistic regression remains the same.

In general, we can say that increasing the dimensions reduces the performance of the algorithms due to increasing sparsity of the data. Also, since the tweets are short, increasing dimensions should not improve the performance of the system as most of the important features to distinguish between the location of the tweet should already be captured within the first few dimensions.

In general, neural networks worked a bit better. Logistic regression maybe worked well as seen in previous parts, since features are linearly correlated to predicted values. Neural network is able to fit the model well given the data. Also, random forests sometimes don't work well for textual data as text data has many terms or features which are not contributing. As a result, weak trees will be created and the forest has larger likelihood to make wrong decision which mainly results from those weak trees.

#### Part 3 - What's Trending?

One of the most important features in Twitter is it's capability to find who/what is trending at any given time. Analysing the twitter data to find out the trends is extremely vital to marketing officials for brand popularity. Not limited to just companies, by analysing the tweets, we can also try and find out key moments and popular and influential people. If a person is more influential, his/her brand value increases and thus they can monetize their services accordingly.

For this part, we propose the objective of trying to find out the trending topics and analysing the Super Bowl tweets for advertising companies and player performances. The part can be split up into 3 specific sub parts -

- I. Analyzing advertisements
- II. Analyzing celebrity importance at Super Bowl
- III. Analyzing player impact for each team

#### **Approach**

- The approach for all parts is similar in structure. We considered all tweets generated on the Super Bowl day and split them up into 15 minute windows for analysis.
- After preprocessing the tweets by removing some punctuations and stop words, we get all hashtags and non-hashtag words from the tweet.
- We analyze the processed text for each tweet to get keywords with respect to ads, celebrities and players.
- The data is then classified into a respective advertisement/celebrity/player.
- We analyze all tweets in the 15 minute window based on tweet count based on the keywords to find out the most trending advertisement/celebrity/player for that window and to interpret the results by comparing it to the real world information available.

### **Advertisements**

Super Bowl is one of the biggest events of the year creating a huge amount of interaction on the social media, buzz among brand advertisements and the celebrity halftime show. Over the years, it has become less about football and more about the entertainment surrounding the event. It has become an opportunity for companies to sell their lucrative products and connect with over 111 million of their customers. These companies spend millions of dollars for their 30-45 second commercials. We can use the Twitter data generated by the event to help brands understand their customers and see what is trending in that time.

For our analysis, we considered the following brands that had advertised during the Super Bowl:

- T-Mobile
- Budweiser
- BMW
- Coca Cola
- Doritos
- Esurance

- Loctite
- Mcdonald's
- Snickers
- Toyota

To handle brands with 2 words in their names, we also computed a bigram count to find whether the tweet contained a reference to that company. Aside from just checking for the company name, we also checked for the tagline of the advertisement being used as a hashtag. This is a very popular way of promoting tweets by companies and we often see them happening in Twitter or any other social media platform.



From this graph, we can see how popular each company's advertisement was. Majority of the peaks are between 15:00 and 17:00 hours. Budweiser had the most number of tweet references followed by McDonald's, Snickers and Loctite. While this graph shows the popularity for each company, we can normalize the tweets per company per window, and notice a key observation.

These results are not available in the pdf as we used Plotly library to visualize interactive graphs. These graphs can be found at - <a href="https://plot.ly/~varunsaboo">https://plot.ly/~varunsaboo</a>.



From this graph, it is evident that each company had a strategy to air their ads at specific times. We see that all companies peak at a specific time and then drop off. This is usually the case because the cost of advertisements is extremely expensive at Super Bowl. While majority of the companies made their efforts before half-time (17:00), Loctite was the leading company for advertisement chatter post half-time. Most of the focus on advertisements was before the half-time due to 'competition' amongst companies to have the biggest impact when the game is in its infancy. During the end, people tend to tweet lesser about ads as more importance is given to players and the outcome of the final.

Another visualization of this same graph is viewing it based on normalized number of tweets received per hour per company. The graph below demonstrates the ratio of tweets being addressed to a particular company per hour. For instance, at 18:15, Loctite received 80% of the tweets. This graph shows how each company fared against every other company during every window. The higher count on number of tweets for a company reflects that an ad for that company was recently played, and more people are tweeting about it. Certain large companies have more than one spike in this graph. This indicates that they probably spent more money to show their ads more times than other companies. Another factor for this could be due to the fact that the company had more than one advertisement. In this case, the first ad was aired during the first peak whereas the second ad was aired during the second peak. Such is the case for Budweiser. We identify that the company had 2 different hashtags by doing our own research online and finding out the different ads made by a company for Super Bowl 49.



#### **Celebrities**

No major sporting event is ever complete without celebrity presence. Super Bowl is no different. In fact, it is opposite! Super Bowl attracts many top celebrities from Hollywood and the music industry. Celebrities flock out in large numbers to support their favorite teams, and entertain the fans by special half-time performances. During Super Bowl, each celebrity is present for one of 3 reasons - to perform at half-time, to show support to their team, or to sing the national anthem prior to kick off. In Super Bowl 49, Katy Perry was the headliner at the Pepsi halftime show and was supported by fellow artists Lenny Kravitz and Missy Elliott. The national anthem was sung by Idina Menzel. To pick all 3 types of celebrities at Super Bowl, we considered the aforementioned 4 celebrities as well as Mark Wahlberg and Kevin Hart who were present at the stadium to cheer their favored teams respectively. By performing steps similar to detecting popularity of Advertisements, we generated the following graphs -



As we can see from this graph, it is evident that the halftime show took place at 17:15 and the national anthem was sung at 15:15. There was a lot of buzz and excitement for Katy Perry's performance and is indicated by the consistent increase in her tweets from 16:00. She was the headline for the show and got more than sixty thousand tweets during her performance, which was more than the combined sum of the tweets for all other performers. Idina Menzel was trending at 15:15 when she sang the national anthem. We also see that there were barely any tweets for Mark Wahlberg who was only a spectator, and hence didn't trend compared to the other celebrities. However, by viewing the next graph, we notice that he was probably shown on TV and hence received certain tweets before the match started.



### **Player Impact**

While it is fun to see which celebrities, companies were trending during a sporting event, the crux of any sporting event is the players. We also performed analysis on the players for each team to identify which players produced crucial impact during the game.



The above graph shows the trending players for Seahawks. According to our analysis, the 3 most influential/popular players during the Super Bowl for the Seattle Seahawks were :

- 1. Chris Matthews
- 2. Marshawn Lynch
- 3. Russell Wilson

The Seahawks players were trending during the 2nd and 3rd quarters.

In the 2nd quarter, the teams tied 14-14 and during the 3rd quarter Seahawks won 10-0. In the second quarter, Lynch scored a touchdown for Seahawks. This is highlighted by the corresponding peak at 16:30.



This graph shows the trending players for New England Patriots during the Super Bowl. The popularity for Tom Brady is constant throughout the match because of his popular nature amongst other celebrities compared to all other athletes. For the PAtriots, the following 3 players were the most influential in the game -

- 1. Tom Brady
- 2. Julian Edelman
- 3. Malcolm Butler

Tom Brady was arguably the best player of the match and received the MVP trophy after the match. He made 2 crucial passes for touchdowns in the 4th quarter which resulted in Patriot's turning the game around on its head. The two touchdowns were for Edelman and Amendola, both of whom have a peak during the 4th quarter of the match. Additionally, at the end of the 4th quarter, Malcolm Butler made a crucial and mind blowing interception to prevent Lynch from scoring a touchdown for the Seahawks. This resulted in both players having a spike in their tweets in the 4th quarter.

Aside from just our analysis, Twitter also conducted their own analysis. Their results were -

These were the most-mentioned @Patriots players players on Twitter during the live telecast of #SB49:

- Tom Brady
- 2 Rob Gronkowski (@RobGronkowski)
- 3 Julian Edelman (@Edelman11)

And these were the most-mentioned @Seahawks players on Twitter:

- 1 Marshawn Lynch (@MoneyLynch)
- 2 Russell Wilson (@DangeRussWilson)
- 3 Chris Matthews (@TheRealCMaTT13)

Our results match all but one of Twitter's analysis. Hence, we feel confident that our analysis of the twitter data was correct.

An additional task that we could have implemented would be to use sentiment analysis of the tweets to find out whether the tweet for each ad, celebrity or player was positive or negative. With the help of this, we could have assigned a score to identify the most liked ad, player and celebrity performance.

#### **Conclusion:**

In this project, we analyze and explore the Twitter dataset and activity for the Superbowl event. We used various regression models to first predict the popularity of different hashtags. We tried to see the tweet activity of different hashtags going on and in future. We also saw the best features contributing the most for this task. We also predicted the number of tweets in next hour using previous hours for each hashtag. We also proposed additional ideas that can be used to help companies utilize the twitter activity using the vast and rich data.