Amendments to the Claims

1. (Currently Amended) A compound of Formula I

$$\begin{array}{c|c}
R^1 & & \\
Q & & \\
N & & \\
R^3 & \\
I & \\
I & \\
\end{array}$$

wherein:

Q is CH or N;

R¹ is tetrazolyl, MeCONHSO₂-, PhCONHSO₂-, R⁵O₂C(CH₂)₀₋₃CONHSO₂-,

$$R^{2}$$
 is R^{6} , $-CH_{2}Ar^{1}$, $-CHPh_{2}$, $-CH_{2}CO(4-FPh)$, $-CH_{2}CO(4-CF_{3}Ph)$, or

-CH₂CONp where Np is naphthyl;

R³ is C₅₋₇cycloalkyl;

R⁴ is hydrogen, Ar², or Ar³;

Ar1 is selected from the following group: phenyl, halophenyl,

Ar² is phenyl, naphthyl, or biphenyl, optionally substituted with 1-3 substituents selected from the group comprising halogen, C₁₋₆ alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkoxy, C₁₋₆ sulfoxy, C₁₋₂perfluoroalkyl, hydroxy, formyl, C₁₋₆alkylcarbonyl, cyano, nitro, C₁₋₆alkylamido, CO₂R⁵, CONR⁵R⁵, C₁₋₆alkylsulfonamido, and dioxolane;

 Ar^3 is thienyl, furanyl, pyrrolyl, benzothiophenyl, benzofuranyl, indolyl, quinolinyl, or pyrimidinyl optionally substituted with 1-2 substituents selected from the group comprising C_{1-6} alkyl, formyl, acetoxy, trifluoroacetoxy, and t-butoxycarbonyl;

R⁵ is hydrogen or C₁₋₆alkyl;

R⁶ is halogen, methoxy, CO₂R⁵ or CONR⁷R⁸;

 R^7 and R^8 are independently hydrogen, C_{1-6} alkyl, $-CH(Me)CO_2R^5$, $-(CH_2)_{1-3}CO_2R^5$, -

$$(CH_2)_{1-3}CONR^5R^5$$
, $-(CH_2)_{1-3}OH$, CO_2R^5 , or CO_2R^5 ;

or R⁷ and R⁸ taken together with the nitrogen to which they are attached form pyrrolidine, morpholine, piperidine, 4-hydroxypiperidine, piperazine, or 4-methylpiperazine;

or a pharmaceutically acceptable salt, solvate, or prodrug thereof.

2. (Original) A compound of claim 1 wherein R³ is cyclohexyl.

- 3. (Original) A compound of claim 1 wherein R¹ is tetrazolyl and R² is
- 4. (Original) A compound of claim 3 wherein R⁴ is Ar².
- 5. (Original) A compound of claim 4 wherein R³ is cyclohexyl.
- 6. (Original) A compound of claim 3 wherein R⁴ is Ar³.
- 7. (Original) A compound of claim 6 wherein R³ is cyclohexyl.
- 8. (Original) A compound of claim 3 wherein R⁴ is hydrogen.
- 9. (Original) A compound of claim 8 wherein R³ is cyclohexyl.
- 10. (Original) A compound of claim 1 wherein R² is -CH₂Ar¹.
- 11. (Original) A compound of claim 10 wherein R³ is cyclohexyl.
- 12. (Original) A composition useful for treating hepatitus C comprising a therapeutic amount of a compound of claim 1 and a pharmaceutically acceptable carrier.
- 13. (Original) A method for treating hepatitus C comprising administering a therapeutically effective amount of a compound of claim 1 to a patient.
- 14. (New) A compound of Formula Ia

$$R^1$$
 N
 N
 R^3
 R^6

wherein:

R¹ is tetrazolyl or MeCONHSO₂-;

R³ is C₅₋₇cycloalkyl;

R⁴ is phenyl substituted with halogen or cyano;

R⁶ is methoxy or CONR⁷R⁸;

 R^7 and R^8 are independently hydrogen or $C_{1\text{-}6}$ alkyl;

or a pharmaceutically acceptable salt, solvate, or prodrug thereof.

15. (New) A compound of claim 14 selected from the group consisting of;

$$N - N$$
 $N - N$
 $N -$