年	月	日
	—— - 试	用

湖南大学课程考试试卷

用	γ (· · · · · · · · · · · · · · · · · ·	, (, () <u> </u>
课程名称: 数据结构 ;课程编	扁码: <u>CS04002</u> 试	卷编号: <u>A</u> ; 考试时间: 120 分钟
所有题目的答案请写在答题纸上,试	卷上的答案一律不记	己分!
一、单项选择题(本大题共 10 小 四个备选项中只有一个是符合题		
1. 链表不具备的特点是 () 。	
A. 可随机访问任一结点	B. 插入删除不需	要移动元素
C. 不必事先估计存储空间	D. 所需空间与其	长度成正比
 若一个栈用数组 data[1n]存储, ()。 A. top++; data[top]=x 	初始栈顶指针 top 为 B. top; data[top]	
C. data[top]=x; top++;	D. data[top]=x; to	
3. 将两个各有 n 个元素的递增有序的为()。		
A. n-1 B. n	C. 2n-1	D. 2n
4. 在二叉检索树中插入一个关键字 A. O(n) B. O(logn)		
5. 某二叉树的先序遍历序列和后序 A. 空或者只有一个节点 C. 二叉检索树		
6. 堆的形状是一棵 ()。 A.二叉排序树 B. 满二叉树	C. 完全二叉树	D. 平衡二叉树
7. 如果从无向图的任一项点出发进	行一次深度优先遍历	间可访问所有顶点,则该图一定是

A. 完全图 B. 连通图 C.有回路 D. 一棵树

学号:

- 8. 不适合在链式存储结构上实现的检索方法是()。

 - A. 顺序检索 B. 二分检索
- C. 二叉检索树 D. 哈希检索
- 9. 以下各种排序方法中,辅助空间为O(n)的是()。
 - A. 快速排序 B. 堆排序
- C. 二路归并排序 D. 希尔排序
- 10. 对数据序列(15,9,7,8,20,1,4)进行排序,进行一趟后数据的排序变为(4,9,1,8,20,7,15), 则采用的是()算法。
 - A. 快速排序
- B. 堆排序 C. 二路归并排序 D. 希尔排序

二、应用题(本大题共 5 小题,每小题 10 分,共 50 分)。

- 1. 假设用于通信的电文仅由 A.B.C.D.E.F.G.H 八个字母组成, 根据字母在电文中出现的频率 分别赋权值为 2, 3, 6, 7, 8, 17, 27, 30。
- (1) 试为这 8 个字母构造 Huffman 树。
- (2) 根据(1) 构造出来的 Huffman 树设计 Huffman 编码。
- 2. (1) 画出从空树开始,依次插入 15、20、25、16、5、3、7 和 18 的 BST 树。
- (2) 画出在 BST 中删除 25 后的 BST 树,若该树不平衡,试将其通过旋转变为平衡二叉 树。

3. 对于下图

- (1)给出下图的顶点数组和邻接矩阵表示。
- (2) 给出从顶点 2 开始的 DFS 树。

- 4. 对于下图,从顶点 4 出发应用 Prim 算法求最小支撑树 (MST),要求:
- (1) 按照访问先后顺序,给出使用 Prim 的 MST 算法时涉及的各个边;
- (2) 给出最终的 MST 并计算其各条边的代价和。

- 5. 已知一个整数序列为 49, 38, 65, 91, 76, 13, 23, 27, 若采用插入排序, 要求:
 - (1) 假定序列存储在一个数组 A 中,且 $A[0]\sim A[i-1]$ 已有序,写出一趟插入排序的基本思想(即简要说明如何插入 A[i]);
 - (2) 画出每一趟排序的过程。

三、算法分析题(本大题共2小题,每小题5分,共10分)

分析下列程序段的时间复杂度 (要求给出具体的计算过程):

```
2.
int Find(ElemType a[],int s,int t,ElemType x)
{
    int m =( s+t)/2;
    if(s <= t)
    {
        if(a[m] == x)
            return m;
        else if(x<a[m])
            return Find(a,s,m-1,x);
        else
            return Find(a,m+1,t,x);
    }
    return -1;
}</pre>
```

四、算法填空题(本大题共1小题,每空2分,共10分)

下面的 C++算法伪代码是归并排序的一种递归实现方式。归并排序一直调用分割过程,直到子数组长度为 1。子数组有序后,需要归并。使用两个数组轮换进行排序。把排序好的两个子数组首先复制到辅助数组 temp 中,然后再把它们归并回原数组。

请按照下面给出的伪代码,补充缺失的部分语句。

```
template <class Elem, class Comp>
void mergesort(Elem A[], Elem temp[], int left, int right) {
    int mid = (left+right)/2;
    if (left == right)
                            (1)
                                    2
    mergesort<Elem,Comp>(____
    mergesort<Elem,Comp>(A, temp, mid+1, right);
    for (int i=left; i<=right; i++) // Copy to temp
      temp[i] = 3;
    int i1 = left; int i2 = mid + 1;
    for (int curr=left; curr<=right; ______) { //merge to A
                            // Left exhausted
      if (i1 == mid+1)
         A[curr] = temp[i2++];
      else if (i2 > right) // Right exhausted
         A[curr] = temp[i1++];
      else if (Comp::lt(temp[i1], temp[i2]))
         A[curr] = temp[i1++];
                                  <u>⑤____</u>];
      else A[curr] = temp[_____
}
```

五、算法设计题(本大题共2小题,每小题10分,共20分)

- 1. 闭散列方法把所有记录直接存储到散列表中。假设已经给出散列函数 h(k),要求设计一个函数,实现闭散列的**查找**基本操作,冲突解决策略采用线性探查方式。
- (1) 描述算法思想。
- (2) 根据算法设计思想,给出伪代码描述的算法步骤,关键之处给出注释。
- 2. 设计一个算法, 求不带权无向连通图 G 中从顶点 u 到顶点 v 的一条最短路径。
- (1) 描述算法思想。
- (2) 根据算法设计思想,给出伪代码描述的算法步骤,关键之处给出注释。(必须基于图 ADT 来访问图中的信息,且不能对图的物理形态做任何限定)
- (3) 针对伪代码,进行算法分析,并给出算法时间复杂度。

湖南大学课程考试试卷答题纸

课程名称: ___数据结构____; 课程编码: CS04002_试卷编号: _A_; 考试时间: 120 分钟

所有题目的答案请写在答题纸上,试卷上的答案一律不记分!

题 号			111	四	五.	六	七	八	九	十	总分
应得分	10	50	10	10	20						100
实得分											
评卷人											