Université d'Évry Val d'Essonne 2011-2012

M54 algèbre et arithmétique 2

Examen — session de janvier 2012

Squelette de cours autorisé, calculatrice autorisée Durée : 3h

Exercice 1. Résoudre les systèmes de congruences suivants.

$$(S_1) \begin{cases} 10x = 7 \mod 42 \\ 25x = 19 \mod 33 \\ 37x = 15 \mod 57 \end{cases} \qquad (S_2) \begin{cases} 10x = 5 \mod 15 \\ 24x = 19 \mod 5 \\ 25x = 17 \mod 6 \end{cases}$$

Exercice 2. Soit $P = X^3 + X^2 + X - 1 \in \mathbf{F}_5[X]$. On note $K = \mathbf{F}_5[X]/(P)$ et α la classe de X dans K.

- 1. Montrer que K est un corps, donner sa caractéristique et son cardinal, ainsi qu'une base de K en tant que \mathbf{F}_5 -espace vectoriel.
- 2. On pose $x = \alpha 1$; calculer x^4 et x^{-1} . (Questions indépendantes.)
- 3. Montrer que $x^{25} = \alpha^{25} 1$.
- 4. Donner le cardinal de K^{\times} et déduire du théorème de Lagrange (II.4.1) que l'ordre d'un élément de K^{\times} appartient forcément à $\{1, 2, 4, 31, 62, 124\}$.
- 5. Justifier que l'équation $X^4 = 1$ a au plus 4 solutions dans K. Montrer que tous les éléments de \mathbf{F}_5^{\times} sont solution et en déduire que ce sont les seules.
- 6. En déduire les ordres possibles des éléments de $K^{\times} \setminus \mathbf{F}_{5}^{\times}$.
- 7. Montrer (presque) sans calculs que α^4 est d'ordre 31 exactement. En déduire que 2α est un générateur de K^{\times} .

Exercice 3. On considère l'anneau $A = \mathbf{C}[X]$ des polynômes en une variable à coefficients complexes. Si E est un sous-ensemble de \mathbf{C} , on note

$$I(E) = \{ P \in A \text{ tel que } (x \in E \implies P(x) = 0) \}$$

l'ensemble des polynômes qui s'annullent en tout point de E.

- 1. Calculer $I(\emptyset)$, $I(\{0\})$ et $I(\mathbf{C})$.
- 2. Plus généralement, monter que si E est infini, alors $I(E) = \{0\}$, en utilisant les propriétés des polynômes.

On suppose désormais que E est fini, de cardinal n, et que $E = \{x_1, \ldots, x_n\}$.

3. Pour chaque $x \in \mathbf{C}$, on introduit une application

$$ev_x \colon A \to \mathbf{C}$$

 $P \mapsto P(x)$

Montrer que c'est un morphisme d'anneaux, surjectif.

- 4. Montrer que $I(E) = \ker ev_{x_1} \cap \cdots \cap \ker ev_{x_n}$.
- 5. En déduire que I(E) est un idéal de A.
- 6. Montrer que $\ker ev_x = (X x)$.
- 7. En utilisant les propriétés de l'anneau A, déduire des question précédentes que :
 - (a) I(E) est engendré par $\prod_{i=1}^{n} (X x_i)$;
 - (b) $I(E) \cap I(F) = I(E \cup F)$;
 - (c) $I(E) + I(F) = I(E \cap F)$;
 - (d) $I(E) \subset I(F) \iff F \subset E$;
 - où $F = \{y_1, \dots, y_m\}$ est un autre sous-ensemble fini de \mathbb{C} .

Exercice 4. Attaques élémentaires sur RSA.

1. Petits messages.

En utilisant le système RSA, Alice souhaite transmettre des messages à Bob, dont la clé publique est (5, 1112927).

- (a) Alice veut transmettre le message $m_1 = 10$ à Bob. Quel message chiffré c_1 doit-elle lui envoyer? Que remarquez-vous en calculant c_1 ?
- (b) Alice transmet un deuxième message m_2 à Bob; vous interceptez le message chiffré $c_2 = 32768$, que vous reconnaissez immédiatement comme étant 2^{15} . Retrouvez m_2 en justifiant.
- (c) Plus généralement, expliquez pour quoi le système RSA n'est pas sûr si $m \le n^{1/e}$ (avec les notations du cours).

En pratique, on évite cette attaque en modifiant m s'il est trop petit.

2. Attaque de Håstad (1985).

En utilisant le système RSA, Alice souhaite envoyer un même message m a ses trois amies Bianca, Bernard et Bob. Supposons qu'ils utilisent tous le même exposant public e=3, leurs clés publiques sont donc $(n_1,3)$, $(n_2,3)$ et $(n_3,3)$. Supposons de plus que $m < \min(n_1, n_2, n_3)$ et que n_1 , n_2 , n_3 soient premiers entre eux deux à deux. On note c_1 , c_2 et c_3 les messages chiffrés correspondants; on suppose que Ève les intercepte.

- (a) Expliquer comment, à partir de c_1 , c_2 et c_3 , Ève peut calculer facilement un entier c' tel que $c' = m^3 \mod n_1 n_2$ puis un entier c'' tel que $c'' = m^3 \mod n_1 n_2 n_3$.
- (b) Montrer que $m^3 < n_1 n_2 n_3$ et en déduire comment Ève peut retrouver m facilement.
- (c) Supposons maintenant que l'exposant public commun de Bianca, Bernard et Bob soit e=5 au lieu de 3. Cette méthode marche-t-elle encore en général? Pourquoi?

En pratique, il est courant que plusieurs personnes utilisent le même exposant public, la valeur la plus courante étant 65537.

(d) En remarquant que $65537=2^{16}+1$, expliquer comment, quelle que soit la valeur de x, on peut calculer x^{65537} avec seulement 17 multiplications.