Devoir sur table nº 3 le 24/11/2016

Exercice 1

On considère les matrices
$$N = \begin{pmatrix} 7 & 2 & 1 \\ 3 & 6 & 1 \\ 9 & 6 & 7 \end{pmatrix}, I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ et } M = \frac{1}{20}N.$$

On pose : A = N - 4I et B = N - 12I

- 1. Vérifier que AB = BA = 0. En déduire que : NA = 12A et que NB = 4B.
- **2.** a) Vérifier qu'on a $I = \frac{1}{8}A \frac{1}{8}B$.
 - **b)** Montrer par récurrence que $\forall n \in \mathbb{N}$, on a : $N^n = a_n A + b_n B$, avec $\begin{cases} a_{n+1} = 12a_n \\ b_{n+1} = 4b_n. \end{cases}$
 - c) Déterminer, pour $n \in \mathbb{N}$, les expressions de a_n et de b_n en fonction de n.
 - **d)** Montrer que $\forall n \in \mathbb{N}$, on a : $M^n = \frac{1}{8} \left(\frac{3}{5}\right)^n A \frac{1}{8} \left(\frac{1}{5}\right)^n B$.
- **3.** Un particulier a acheté une poule. Chaque semaine, la poule pond entre 0 et 3 œufs. Si une semaine donnée, la poule ne pond pas d'œuf, son propriétaire décide de la manger à la fin de la semaine (elle ne pondra donc plus d'œufs les semaines suivantes).

On note pour tout entier n non nul, les événements suivants :

- $ightharpoonup U_n$: « la poule est vivante lors de la n-ème semaine et pond un œuf »,
- $ightharpoonup D_n$: « la poule est vivante lors de la n-ème semaine et pond deux œufs »,
- $ightharpoonup T_n$: « la poule est vivante lors de la n-ème semaine et pond trois œufs ».

On note u_n , d_n et t_n leurs probabilités respectives.

3.a) Que représente le nombre $1 - (u_n + d_n + t_n)$?

Pour
$$n \in \mathbb{N}$$
, on note X_n le vecteur-colonne $\begin{pmatrix} u_n \\ d_n \\ t_n \end{pmatrix}$.

On suppose que la première semaine la poule pond un œuf.

3.b) Expliciter le vecteur X_1 .

On suppose que pour tout entier n non nul, on a :

$$\begin{cases} u_{n+1} = \frac{7}{20}u_n + \frac{1}{10}d_n + \frac{1}{20}t_n \\ d_{n+1} = \frac{3}{20}u_n + \frac{3}{10}d_n + \frac{1}{20}t_n \\ t_{n+1} = \frac{9}{20}u_n + \frac{3}{10}d_n + \frac{7}{20}t_n \end{cases}$$

- **3.c)** Justifier que : $X_{n+1} = MX_n$, pour tout entier $n \ge 1$.
- **3.d)** Montrer que : $X_n = M^{n-1}X_1$, pour tout entier $n \ge 1$.
- **3.e)** En déduire que pour tout $n \ge 1$: $\begin{cases} u_n = \frac{3}{8} \left(\frac{3}{5}\right)^{n-1} + \frac{5}{8} \left(\frac{1}{5}\right)^{n-1} \\ d_n = \frac{3}{8} \left(\frac{3}{5}\right)^{n-1} \frac{3}{8} \left(\frac{1}{5}\right)^{n-1} \\ t_n = \frac{9}{8} \left(\frac{3}{5}\right)^{n-1} \frac{9}{8} \left(\frac{1}{5}\right)^{n-1} \end{cases}$
- **3.f)** Vérifier que pour tout entier $n \ge 1$ on a : $u_n + 2d_n + 3t_n = \frac{9}{2} \left(\frac{3}{5}\right)^{n-1} \frac{7}{2} \left(\frac{1}{5}\right)^{n-1}$. Que représente ce nombre?
- **3.g)** Montrer que la série $\sum_{n=1}^{+\infty} (u_n + 2d_n + 3t_n)$ converge et calculer sa valeur. Que représente ce nombre?

Exercice 2

Pour tout $n \in \mathbb{N}$, on pose : $u_n = \int_0^{\frac{1}{2}} \frac{x^n}{1-x^2} dx$, et donc en particulier, on a $u_0 = \int_0^{\frac{1}{2}} \frac{1}{1-x^2} dx$.

- 1. Calcul de u_0 .
 - a) Trouver les deux réels $a, b \in \mathbb{R}$ tels que $\forall x \neq \pm 1$, on ait : $\frac{1}{1-x^2} = \frac{a}{1-x} + \frac{b}{1+x}$.
 - **b)** Montrer que : $\int_0^{\frac{1}{2}} \frac{dx}{1+x} = \ln\left(\frac{3}{2}\right)$ et $\int_0^{\frac{1}{2}} \frac{dx}{1-x} = \ln(2)$.
 - c) En déduire $u_0 = \frac{\ln(3)}{2}$.

On considère les trois fonctions f, g et h définies sur $[0; \frac{1}{2}]$ par

$$f(x) = \ln(1-x),$$

$$b g(x) = \ln(1+x),$$

$$h(x) = \ln(1 - x^2).$$

- **2.** a) Montrer que les fonctions f, g, h sont de classe C^1 sur $[0; \frac{1}{2}]$.
 - **b)** Pour tout x de $[0; \frac{1}{2}]$, calculer les dérivées f'(x), g'(x) et h'(x).
 - c) Pour tout x de $[0; \frac{1}{2}]$, exprimer h(x) en fonction de f(x) et g(x).
 - d) En déduire : $u_1 = \frac{1}{2} \ln \left(\frac{4}{3} \right)$.
- **3.** a) Montrer, pour tout entier naturel n, l'égalité suivante : $u_n u_{n+2} = \frac{1}{(n+1)2^{n+1}}$.
 - b) En déduire les valeurs de u_2 et de u_3 .
- **4.** a) Étudier le signe de u_n pour $n \in \mathbb{N}$.
 - **b)** Montrer que $\forall n \in \mathbb{N}, \ u_n u_{n+1} = \int_0^{\frac{1}{2}} \frac{x^n}{1+x} \, \mathrm{d}x.$
 - c) En déduire le sens de variations de (u_n) .
 - d) En déduire que la suite (u_n) est convergente.
- **5.** a) Montrer que pour tout x de $[0; \frac{1}{2}]$, on a : $\frac{1}{1-x^2} \leqslant \frac{4}{3}$.
 - **b)** En déduire, pour tout $n \in \mathbb{N}$, l'encadrement suivant : $0 \le u_n \le \frac{4}{3(n+1)2^{n+1}}$.
 - c) Quelle est la limite de la suite (u_n) ?

- **6.** On pose, pour tout entier naturel $n: S_n = \sum_{k=0}^n u_k$, c'est-à-dire, $S_n = u_0 + u_1 + \cdots + u_n$.
 - a) Déduire de la question 5.b) que la série de terme général $S_n = \sum_{k \ge 0} u_k$ converge.
 - **b)** Rappeler, pour $x \neq 1$, l'expression sous forme de fraction, de la somme : $1+x+\cdots+x^n$.
 - c) Établir l'égalité : $S_n = \int_0^{\frac{1}{2}} \frac{1}{(1-x^2)(1-x)} dx \int_0^{\frac{1}{2}} \frac{x^{n+1}}{(1-x^2)(1-x)} dx.$
 - **d)** Établir, pour $n \in \mathbb{N}$, l'encadrement : $0 \leqslant \int_0^{\frac{1}{2}} \frac{x^{n+1}}{(1-x^2)(1-x)} \, \mathrm{d}x \leqslant 2u_{n+1}.$
 - e) En déduire la somme de la série $\sum_{k=0}^{+\infty} u_k$ comme une intégrale.
 - f) Pour $x \in [0; \frac{1}{2}]$, réduire au même dénominateur l'expression : $\frac{1}{1-x} + \frac{2}{(1-x)^2} + \frac{1}{1+x}$.
 - g) Montrer que $\int_0^{\frac{1}{2}} \frac{\mathrm{d}x}{(1-x)^2} = 1$. En déduire la valeur explicite de $\sum_{k=0}^{+\infty} u_k$.

Exercice 3

Dans ce problème, $\mathcal{M}_3(\mathbb{R})$ désigne l'espace vectoriel des matrices carrées de format 3×3 .

On considère les matrices suivantes :
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 et $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

- 1. a) Trouver une base et la dimension des sous-espaces vectoriels Ker(A) et Im(A).
 - **b)** Calculer A^2 et A^3 .
 - c) En déduire A^n pour tout entier n supérieur ou égal à 3.
- 2. On définit le commutant A comme l'ensemble de matrices :

$$\mathcal{C} = \{ M \in \mathcal{M}_3(\mathbb{R}) \text{ telles que} : AM = MA \}.$$

a) Soit
$$M_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 et $M_2 = \begin{pmatrix} 1 & -2 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$. A-t-on $M_1 \in \mathcal{C}$? A-t-on $M_2 \in \mathcal{C}$?

(Les matrices M_1 , M_2 n'ont valeur que d'exemple, et ne seront pas spécialement à réutiliser...)

b) Montrer que \mathcal{C} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. En déduire que \mathcal{C} est de dimension finie et que $\dim(\mathcal{C}) \leq 9$.

c) Soit
$$M = \begin{pmatrix} a & b & c \\ u & v & w \\ x & y & z \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$
. Montrer que $AM - MA = \begin{pmatrix} u & v - a & w - b \\ x & y - u & z - v \\ 0 & -x & -y \end{pmatrix}$.

- **d)** Montrer que les matrices appartenant à \mathcal{C} sont celles de la forme : $M = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$.
- e) En déduire que la famille (I, A, A^2) forme une base de \mathcal{C} . En déduire dim (\mathcal{C}) .
- **3.** Cette question montre qu'il n'existe pas de matrice $N \in \mathcal{M}_3(\mathbb{R})$ vérifiant : $N^2 = A$.
 - a) Montrer que si une telle matrice N existait, alors elle vérifierait : AN = NA. b) Justifier qu'on peut écrire $N = aI + bA + cA^2$ avec $a, b, c \in \mathbb{R}$.
 - c) Montrer alors que $N^2 = a^2I + 2abA + (b^2 + 2ac)A^2$.
 - **d)** En déduire qu'une matrice N vérifiant $N^2 = A$ n'existe pas.

4. Exemples de calculs d'inverses

- a) Justifier que la matrice I A est inversible.
- **b)** Développer le produit $(I A)(I + A + A^2)$. En déduire l'inverse de la matrice I - A en fonction de A et de A^2 .
- c) Résoudre de même l'équation $(I+A)(aI+bA+cA^2)=I,$ d'inconnues $a,b,c\in\mathbb{R}.$
- d) En déduire l'inverse de la matrice (I + A).
- **5.** Cette question étudie les matrices $P \in \mathcal{M}_3(\mathbb{R})$ vérifiant : PA = P A
 - a) Soit P une matrice vérifiant : PA = P A. Calculer P(I A).
 - b) En déduire l'expression de P en fonction de A et A^2 .