oef 21

Wietse Vaes

Stel $S_n = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = \frac{1}{n^2} \}, \forall n \in \mathbb{N}_0$

$$V := \bigcup_{n \in \mathbb{N}_0} S_n \subset \mathbb{R}^2$$

Gevraagd: $\mathring{V}, \overline{V}, \partial V$ in \mathbb{R}^2 met de Euclidische topologie $(\mathbb{R}^2, \mathcal{T}_2)$.

• $\overline{V} = V$:

We bewijzen dat V gesloten is in \mathbb{R}^2 met de Euclidische metriek. Anders gezegd: $\mathbb{R}^2 \setminus V$ is open.

 $\mathbb{R}^2 \backslash V = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \neq \frac{1}{n^2} \}, \quad n \in \mathbb{N}_0$

Kies $(x,y) \in \mathbb{R}^2 \setminus V$ willekeurig en definieer $r = \min_{(a,b) \in V} (d((x,y),(a,b)) = \min_{(a,b) \in V} (\sqrt{(x-a)^2 + (y-b)^2}) > 0$.

Het is groter dan nul aangezien $(x,y) \notin V$ en $\sqrt{c} \ge 0$, $\forall c \in \mathbb{R}^+$.

Nu is $B_r(x,y) \subset \mathbb{R}^2 \setminus V$ open, dus $\mathbb{R}^2 \setminus V$ open, dus $V = \overline{V}$

We concluderen dat $(a, b) \notin V$ endus is $G \not\subset V$. Een contradictie, dus $\mathring{V} = \emptyset$.

• $\mathring{V} = \emptyset$:

Stel $V \neq \emptyset$, dus $\exists (x,y) \in \mathring{V}$. Oftewel: $G \in \mathcal{T}_2$: $(x,y) \in G \subset V^*$ (* is een verwijzing voor zo meteen). In de Euclidische topologie zit een open bol $B_r(x,y)$ (r> 0) in de fundamenteel stel omgevingen, dus stel $G = B_r(x,y)$ met r>0. Er bestaat nog een $(a,b) \in B_r(x,y)$ met $(a,b) \neq (x,y)$ aangezien $r \neq 0$, oftewel d((x,y),(a,b)) < r. Nu kunnen we zeggen dat $(a,b) = (x,y) + (\varepsilon_1,\varepsilon_2)$ met $\sqrt{\varepsilon_1^2 + \varepsilon_2^2} < r$. Maar nu is $a^2 + b^2 = x^2 + y^2 + 2\varepsilon_1 x + 2\varepsilon_2 y + \varepsilon_1^2 + \varepsilon_2^2 = \frac{1}{n^2}^* + r^2 + 2\varepsilon_1 x + 2\varepsilon_2 y$. Aangezien we weten uit analyse 1 dat er tussen elk rationaal getal een reeel getal zit $\exists \varepsilon_1, \varepsilon_2 \in \mathbb{R}^2$ zodat $\frac{1}{n^2} + r^2 + 2\varepsilon_1 x + 2\varepsilon_2 y \neq \frac{1}{\tilde{n}^2}$, $\tilde{n} \in \mathbb{N}_0$.

• $\partial V = V$: $\overline{V} = \mathring{V} \cup \partial V \to V = \emptyset \cup \partial V \to V = \partial V$