

Université de Montréal

FICHE RÉCAPITULATIVE

Analyse I

Julien Hébert-Doutreloux

Contents

1	Les nombre réels	3
2	Les intervalles	3
3	Les points	3
4	Les ensembles	4
5	Les théorèmes	4
6	Les propriétés	5
7	Suites numériques a) Limite d'une suite et suite bornée . b) Opération sur les limites . c) Sous-suites et suites monotones . d) Suites de Cauchy . e) Limite supérieure et limite inférieure .	6 6 7 7 8 8
8	Limite et continuité a) Limite d'une fonction b) Opérations sur les limites c) Continuité	8 9 9 10 10 10
9	Dérivation a) Fonctions différentiables ou dérivables b) Opération sur les fonctions différentiables c) Propriétés des fonctions différentiables d) Règle de L'Hôspital e) Formule de Taylor	11 11 11 12 12 13
	Série numériques a) Convergence des séries numériques	13 13 14 14 15

1 Les nombre réels

Théorème 1. Les nombres réels sont ordonné tel que

$$\forall a, b \in \mathbb{R}_{\geq 0}, a+b \geq 0$$

$$a \in \mathbb{R}, \begin{cases} a < 0 \\ a = 0 \\ a > 0 \end{cases}$$

Théorème 2. Soit $\mathbb{R} \supset E \neq \emptyset$,

E borné supérieurement (resp. inférieurement) possède un supremum (resp. infimum) dans $\mathbb R$

Proposition 1. Soit $x, y \in \mathbb{R}, x > 0, x < y \implies \exists n \in \mathbb{N} \ tel \ que \ nx > y$

Définition 1.

$$x \in \mathbb{R}, |x| \le b \Longleftrightarrow -b \le x \le b$$

$$x, y \in \mathbb{R}, |x \cdot y| = |x| \cdot |y|$$

$$\forall x, y \in \mathbb{R}, |x \pm y| \le |x| + |y|$$

$$\forall x, y \in \mathbb{R}, ||x| - |y|| \le |x \pm y|$$

2 Les intervalles

Définition 2. I est un intervalle $\subset \mathbb{R}$ si lorsque $x, y \in I : x < y \implies \forall z \in \mathbb{R} : x < z < y$ est dans I

Définition 3. I est borné s'il possède un sup I = b et un inf I = a où $a, b \in \mathbb{R}$

Définition 4.

- Non-borné sup. : $\sup I \notin \mathbb{R}$
- Non-borné inf. : $\inf I \notin \mathbb{R}$
- \bullet Non-borné:

Définition 5. Voisinage centré en $x \in \mathbb{R}$ de rayon $\delta > 0$: $V(x, \delta)$ est l'intervalle ouvert

$$(x-\delta,x+\delta)$$

Définition 6. Voisinage pointé...: $V'(x, \delta) = V(x, \delta) \setminus \{x\}$

3 Les points

Définition 7. Un point $a \in E \subset \mathbb{R}$ est un point intérieur de E si

$$\exists \delta_{>0} : V(a, \delta) \subset E$$

Définition 8. Un point $a \in \mathbb{R}$ est un point d'accumulation de $E \subset \mathbb{R}$ si

$$\forall \delta_{>0}: V'(a,\delta) \cap E \neq \emptyset$$

Remarque : $a \notin E \Rightarrow a \notin E'$

Définition 9. Un point $a \in \mathbb{R}$ est un point adhérent de $E \subset \mathbb{R}$ si,

$$\forall \delta_{>0}, V(a,\delta) \cap E \neq \emptyset$$

Remarque:

$$a \in \bar{E} \implies a \in E'$$

 $a \in E \implies a \in \bar{E}$

4 Les ensembles

Définition 10. Soit $E \subset \mathbb{R}$, l'ensemble de ses point intérieur noté int E est tel que

$$int \ E = \{x \in E | \exists \delta_{>0}, V(x, \delta) \subset E\}$$
$$int \ E \subset E \subset \mathbb{R}$$

Remarque: int E est un ouvert

Définition 11. Soit $E \subset \mathbb{R}$, l'ensemble de ses point d'accumulation noté E' est tel que

$$E' = \{x \in E | \forall \delta_{>0}, V'(x, \delta) \cap E \neq \emptyset \}$$

$$E' \subset \mathbb{R} \supset E$$

Remarque : "Ensemble dérivé de E"

$$E \ fini \implies E' = \emptyset$$

$$E in fini \Rightarrow E' = \emptyset$$

Définition 12. *Soit* $E \subset \mathbb{R}$,

$$E \ ouvert \iff int \ E = E$$

$$E \subset int \ E \subset E \subset \mathbb{R}$$

Définition 13. Ensemble fermé Soit $E \subset \mathbb{R}$,

$$E \ ferm\'e \iff E' \subset E$$

Définition 14. *Soit* $E \subset \mathbb{R}$,

$$E \ compact \iff E \ ferm\'e \ et \ born\'e$$

Ensemble compact si tout recouvrement ouvert de E possède un sous-recouvrement fini.

Définition 15. Recouvrement ouvert Ensemble O: collection d'ensemble ouvert

$$\{O_{\lambda}, \lambda \in \Lambda\}$$

 $tel\ que$

$$\mathbb{R}\supset E\subset\bigcup_{\lambda\in\Lambda}O_\lambda$$

Théorème 3. Soit O un recouvrement ouvert de $E \subset \mathbb{R}$

$$O' \subset O$$

sera appelé sous-recouvrement fini si O' est lui même un recouvrement ouvert de E et qu'il contient un nombre fini d'éléments.

Définition 16. Soit $E \subset \mathbb{R}$, la frontière de E noté Fr E = fr $E = \bar{E} \setminus \{int E\}$

$$\bar{E} \setminus \{int \ E\} \subset fr \ E \subset \bar{E} \setminus \{int \ E\}$$

5 Les théorèmes

Théorème 4 (Bolzano-Weierstrass). Tout ensemble borné et infini possède un point d'accumulation.

Théorème 5 (Heine-Borel). Soit $E \subset \mathbb{R}$, un recouvrement ouvert de E est un ensemble O d'ensemble ouvert

$$\{O_{\lambda}, \lambda \in \Lambda\}$$

tel que

$$\mathbb{R}\supset E\subset\bigcup_{\lambda\in\Lambda}O_\lambda$$

Théorème 6 (Densité des nombres réels). Soit a < b deux nombres réels (resp. irrationels) dans les réels, alors

$$\exists x \in \mathbb{Q} \ (resp. \ \mathbb{Q}^C) : a < x < b$$

Théorème 7 (Corolaire). Soit a < b deux nombres réels, alors il existe un nombre infini de rationnels (resp. irrationels) entre a et b.

-Page 5

6 Les propriétés

Ouvert/Fermé/Compact

Proposition 2 ($\bigcup \bigcap$ ouvert). Soit $\{O_{\lambda}, \lambda \in \Lambda\}$, une collection d'ensemble ouvert

- $\bigcup_{\lambda \in \Lambda} O_{\lambda} \ ouvert$
- $\bigcap_{\lambda \in \Lambda}^{n} O_{\lambda}$ ouvert $si |\Lambda| < \infty$

(i.e) Un nombre fini d'ensemble

Proposition 3 ($\bigcup \bigcap$ fermé). Soit $\{F_{\lambda}, \lambda \in \Lambda\}$, une collection d'ensemble fermé

- $\bigcup_{\lambda \in \Lambda} F_{\lambda}$ fermé fermé si $|\Lambda| < \infty$
- $\bigcap_{\lambda \in \Lambda}^n F_{\lambda} ferm\acute{e}$

(i.e) Un nombre fini d'ensemble

Proposition 4 ($\bigcup \bigcap$ compact). Soit $\{K_{\lambda}, \lambda \in \Lambda\}$, une collection d'ensemble compact

- $\bigcup_{\lambda \in \Lambda} K_{\lambda} \ compact \ si \ |\Lambda| < \infty$
- $\bigcap_{\lambda \in \Lambda}^{n} K_{\lambda} \ compact \ si \ |\Lambda| < \infty$

(i.e) Un nombre fini d'ensemble

Proposition 5.

- Ø ouvert
- $A, B \ ouverts \implies \begin{cases} A \cup B \ ouvert \\ A \cap B \ ouvert \end{cases}$
- ullet E ouvert $\Longleftrightarrow E^C$ fermé
- $E \text{ } ferm\acute{e} \Longleftrightarrow E' \subset E$
- $E \ compact \implies \sup E \in E$
- F ferm'e, E $compact : F \subset E \subset \mathbb{R} \implies F$ compact
- Soit $E \subset \mathbb{R}$
 - $int E = \bigcup_{O \subset E} O$

(L'intérieur d'un ensemble E est la réunion de tous les ensembles ouvert contenue dans E)

- int E ouvert
- int E plus grand ouvert contenue dans E

Adhérence/Accumulation/Intérieur

Proposition 6.

- $\bar{E} = E \cup E'$
- $(\bar{E}) = int (E^C)$
- \bar{E} $ferm\acute{e}$
- $A, B \subset \mathbb{R}$.

$$\begin{array}{l}
-A \subset B \implies \bar{A} \subset \bar{B} \\
-\overline{A \cup B} \implies \bar{A} \cup \bar{B}
\end{array}$$

- $int (A \cap B) = int (A) \cap int (B)$
- $int (A \cup B) = int (A) \cup int (B)$
- Soit $A \subset \mathbb{R}_{\neq \emptyset}$,

$$-d(x,A) = \inf\{|x-a| : a \in A\} \ la \ distance \ x \ de \ A$$

$$-x \in \bar{A} \iff d(x,A) = 0$$

$$-A \text{ ferm\'e } et \ d(x,A) = 0 \implies x \in A$$

Proposition 7 (Supremum/Infimum). Soit $E \subset \mathbb{R}$ non-vide et borné,

$$\forall \varepsilon_{>0}, \exists x, y \in E : \begin{cases} \sup E - \varepsilon < x \le \sup E \\ \inf E \ge x < \inf E + \varepsilon \end{cases}$$

7 Suites numériques

a) Limite d'une suite et suite bornée

Définition 17. Une suite de nombres réels est une fonction de domain $\mathbb N$ et de champ (ou image) un sous-ensemble de $\mathbb R$

Définition 18. La suite $\{x_n\}$ converge (ou tend) vers la limite x si,

$$\forall \varepsilon_{>0}, \exists N : n > N \implies |x_n - x| < \varepsilon$$

Notation: $\lim_{n\to\infty} x_n = x$ ou $x_n \longrightarrow x$

Théorème 8 (Unicité). $Si \lim_{n \to \infty} x_n = x \ et \lim_{n \to \infty} x_n = y, \ alors \ x = y$

Définition 19. Une suite est bornée supérieurement si,

$$\exists M \in \mathbb{R} : \forall n \in \mathbb{N}, |x_n| < M$$

Une suite est bornée inférieurment si,

$$\exists m \in \mathbb{R} : \forall n \in \mathbb{N}, |x_n| > m$$

 ${\bf Th\'{e}or\`{e}me~9.~\it Toute~suite~convergent~est~born\'{e}e}$

b) Opération sur les limites

Théorème 10. $Si \lim_{n\to\infty} x_n = x \ et \lim_{n\to\infty} y_n = y,$

1.
$$\lim_{n \to \infty} (x_n \pm y_n) = x \pm y$$

2.
$$\lim_{n\to\infty} k \cdot x_n = k \cdot x, k \in \mathbb{R}$$

3.
$$\lim_{n \to \infty} x_n \cdot y_n = x \cdot y$$

4.
$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{x}{y}, y \neq 0$$

Théorème 11. Soit $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = x$. Si $x_n \le y_n \le z_n$ pour tout entier positif n, alors $\lim_{n\to\infty} y_n = x$.

Théorème 12. Un point x_0 est un point d'accumulation d'un ensemble $E \subset \mathbb{R}$ si et seulement si il existe une suite $\{x_n\}$ d'éléments de E, $x_n \neq x_0, \forall n \in \mathbb{N} : \lim_{n \to \infty} x_n = x_0$.

Théorème 13.

1.
$$\lim_{n \to \infty} x_n = \pm \infty \land \lim_{n \to \infty} y_n = \pm \infty \implies \lim_{n \to \infty} (x_n + y_n) = \pm \infty$$

2.
$$\lim_{n \to \infty} x_n = \pm \infty \land \lim_{n \to \infty} y_n = \pm \infty \implies \lim_{n \to \infty} (x_n \cdot y_n) = +\infty$$

3.
$$\lim_{n \to \infty} x_n = \pm \infty \land \lim_{n \to \infty} y_n = \mp \infty \implies \lim_{n \to \infty} (x_n \cdot y_n) = -\infty$$

4.
$$\lim_{n \to \infty} |x_n| = +\infty \iff \lim_{n \to \infty} \frac{1}{x_n} = 0$$

5.
$$\lim_{n \to \infty} x_n > 0 \land \lim_{n \to \infty} y_n = \pm \infty \implies \lim_{n \to \infty} x_n \cdot y_n = \pm \infty$$

Théorème 14. Soit $\{x_n\}$ une suite telle que $x_n \neq 0, \forall n \in \mathbb{N}$. Supposons que

$$\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = L \in \mathbb{R}$$

$$a) L < 1 \implies \lim_{n \to \infty} x_n = 0$$

b)
$$L > 1 \implies \lim_{n \to \infty} |x_n| = \pm \infty$$

c) Sous-suites et suites monotones

Définition 20. Soit $\{x_n\}$ une suite quelconque d'entiers positifs telle que $1 \le n_1 < n_2 < ...$ On appelle la suite $\{x_{n_k}\}$ une sous-suite de la suite $\{x_n\}$.

Théorème 15. Soit $\{x_n\}$ une suite convergente. Toute sous-suite de $\{x_n\}$ converge et a la même limite que la suite $\{x_n\}$.

Théorème 16 (Corollaire). Si une suite $\{x_n\}$ possède deux sous-suites qui convergent vers différentes valeurs, la suite $\{x_n\}$ diverge.

Théorème 17. Toute suite bornée possède une sous-suite convergente.

Définition 21. Une suite $\{x_n\}$ est dite croissante (resp. décroissante) si $x_n \leq x_{n+1}, \forall n \in \mathbb{N}$ (resp. $x_n \geq x_{n+1}, \forall n \in \mathbb{N}$). Si pour tout entier positif $n, x_n < x_{n+1}$, la suite $\{x_n\}$ est dite strictement croissante. Si pour tout entier positif $n, x_n > x_{n+1}$, la suite $\{x_n\}$ est dite strictement décroissante. Une suite qui a une des ces propriétés est dite monotone

Théorème 18. Toute suite monotone bornée possède une limite (à partir d'un certain rang N).

Théorème 19. Un ensemble $E \subset \mathbb{R}$ est compact \iff toute suite $\{x_n\}$ d'éléments de E contient une soussuite qui converge vers un élément de E.

d) Suites de Cauchy

Définition 22. Une suite $\{x_n\}$ est appelée suite de Cauchy si

$$\forall \varepsilon_{>0}, \exists N_{(\varepsilon)} \in \mathbb{N} : \forall n > N \land \forall k \in \mathbb{N}, |x_{n+k} - X_n| < \varepsilon$$

ou pour tout couple d'entiers $n, m > N, |x_m - x_n| < \varepsilon$.

Théorème 20. Toute suite de Cauchy est bornée.

Théorème 21. Une suite convergente ⇐⇒ elle est de Cauchy.

e) Limite supérieure et limite inférieure

Définition 23. Un nombre réel x est appelé valeur d'adhérence d'une suite $\{x_n\}$ s'il existe une sous-suite de $\{x_n\}$ qui converge vers x.

Théorème 22. Soit $\{x_n\}$ une suite bornée et

$$A = \{x \mid \exists \{x_{n_k}\} \in \{x_n\} : \{x_{n_k}\} \longrightarrow x\}$$

L'ensemble A est non vide, borné et fermé.

Définition 24. On appelle limite supérieure (resp. limite inférieure) d'une suite bornée $\{x_n\}$ la plus petite borne supérieure (resp. la plus grande borne inférieure) de l'ensemble des valeurs d'adhérence de la suite.

8 Limite et continuité

a) Limite d'une fonction

Définition 25. Soit x_0 un point d'accumulation de D_f . On dit que f a pour limite L au point x_0 (ou encore tend vers L lorsque x tend vers x_0) si,

$$\forall \varepsilon_{>0}, \exists \delta_{>0} : \forall x \in D_f \cap V'(x_0, \delta), f(x) \in V(L, \varepsilon)$$

ou encore soit une suite $\{x_n\} \in D_f : \forall n \in \mathbb{N}, x_n \neq x_0$

$$\forall \varepsilon_{>0}, \exists \delta_{>0} : \forall n \in \mathbb{N}, |x_n - x_0| < \delta \implies |f(x_n) - L| < \varepsilon$$

ou encore

$$\forall \varepsilon_{>0}, \exists \delta_{>0} : \forall x \in D_f \setminus \{x_0\}, |x - x_0| < \delta \implies |f(x) - L| < \varepsilon$$

Notation

$$\lim_{x \to x_0} f(x) = L \quad ou \quad f(x) \xrightarrow[x \to x_0]{} L$$

Théorème 23. Si la limite d'une fonction f existe en un point, elle est unique.

Théorème 24. Soit $f: D_f \longrightarrow \mathbb{R}$ et x_0 un point d'accumulation de D_f . On a $\lim_{x \to x_0} f(x) = L \iff pour$ toute suite $\{x_n\}$ qui converge vers x_0 avec $x_n \in D_f, x_n \neq x_0, \forall n \in \mathbb{N}$, la suite $\{f(x_n)\}$ converge vers L.

Définition 26. Une fonction f est bornée si

$$\exists M \in \mathbb{R}_{>0} : \forall x \in D_f, |f(x)| \leq M$$

Une fonction f est localement bornée en un point $x_0 \in D_f$ si

$$\exists \delta_{>0} \land \exists M_{>0} : \forall x \in D_f \cap V(x_0, \delta) | f(x) | \leq M$$

Théorème 25. Si f possède une limite L au point x_0 , x_0 étant un point d'accumulation de D_f , elle est localement bornée au point x_0 .

Théorème 26. Soit x_0 un point d'accumulation de $D_f \cap (x_0, +\infty)$ (resp. $D_f \cap (-\infty, x_0)$). La fonction possède une limite à droite (resp. à gauche) au point x_0 si,

$$\forall \varepsilon_{>0}, \exists \delta_{>0} : \forall x \in D_f \cap (x_0, x_0 + \delta), |f(x) - L| < \varepsilon$$

resp.

$$\forall \varepsilon_{>0}, \exists \delta_{>0} : \forall x \in D_f \cap (x_0 - \delta, x_0), |f(x) - L| < \varepsilon$$

Notation

$$\lim_{x \to x_0^+} f(x) = L$$

resp.

$$\lim_{x \to x_0^-} f(x) = L$$

Théorème 27. Soit x_0 un point d'accumulation de $D_f \cap (-\infty, x_0)$ et de $D_f \cap (x_0, +\infty)$. Alors,

$$\lim_{x \to x_0} f(x) = L \Longleftrightarrow \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = L$$

b) Opérations sur les limites

Théorème 28. Soit $f, g: D \longrightarrow \mathbb{R}$ deux fonctions de domaine commun D qui possèdent une limites en x_0 , un point d'accumulation de D. On a

1.
$$(f+g)(x_0)$$
: $\lim_{x\to x_0} (f(x)+g(x)) = \lim_{x\to x_0} f(x) + \lim_{x\to x_0} g(x)$

2.
$$(f \cdot g)(x_0)$$
: $\lim_{x \to x_0} (f(x) \cdot g(x)) = \left(\lim_{x \to x_0} f(x)\right) \cdot \left(\lim_{x \to x_0} g(x)\right)$

3.
$$(f/g)(x_0)$$
: $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$, $si \ \forall x \in D, g(x) \neq 0$ et $\lim_{x \to x_0} g(x) \neq 0$

Théorème 29. Soit f, g, h trois fonctions de domaine commun D telles que

$$\exists \delta_{>0} : \forall x \in D \cap V'(x_0, \delta), f(x) \leq g(x) \leq h(x)$$

$$Si \lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L \implies \lim_{x \to x_0} g(x) = L$$

c) Continuité

Définition 27. Une fonction f est continue au point $x_0 \in D_f$ si

$$\forall \varepsilon_{>0}, \exists \delta_{(\varepsilon)} : \forall x \in D_f \cap V(x_0, \delta), f(x) \in V(f(x_0), \varepsilon)$$

ou encore

$$\forall \varepsilon_{>0}, \exists \delta_{(\varepsilon)} : \forall x \in D_f, |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

Théorème 30. Soit x_0 un point d'accumulation de D_f , $x_0 \in D_f$. Les énoncés suivants s'équivalent.

- a) f est continue en $x = x_0$
- b) $\lim_{x \to x_0} f(x) = f(\lim_{x \to x_0}) = f(x_0)$
- c) Pour toute suite $\{x_n\}$ qui converge vers x_0 avec $x_n \in D_f$ pour chaque n, la suite $\{f(x_n)\}$ converge vers $f(x_0)$.

d) Opération sur les fonction continues

Théorème 31. Soit $f, g: D \longrightarrow \mathbb{R}$ deux fonctions continues en $x_0 \in D$. On a

- a) f + g continue en x_0
- b) fg continue en x_0
- c) f/g continue en x_0 si $g(x_0) \neq 0$

Théorème 32. Soit $f: A \longrightarrow B$ et $g: C \longrightarrow D$ telles que $f(A) \subset C$. Si f est continue en $x_0 \in A$ et g continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

e) Propriétés des fonctions continues

Théorème 33. Soit D un ensemble compact et $f:D \longrightarrow \mathbb{R}$ une fonction continue. L'ensemble f(D) est compact.

Théorème 34 (Corollaire). Soit D un ensemble compact et $f: D \longrightarrow \mathbb{R}$ une fonction continue. La fonction f est bornée sur D.

Théorème 35 (Bornes atteintes). Soit D un ensemble compactet $f: D \longrightarrow \mathbb{R}$ une fonction continue.

$$\exists a, b \in \mathbb{R} : f(a) = \sup_{x \in D} f(x) \quad et \quad f(b) = \inf_{x \in D} f(x)$$

Théorème 36 (Valeurs intermédiaires). Soit f une fonction continuesur [a,b] telle que $f(a) \neq f(b)$ et g un nombre arbitraire compris entre g(a) et g(b). Alors,

$$\exists c \in (a,b) : f(c) = y$$

Théorème 37 (Corollaire). Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue telle que $f(a) \neq f(b)$. L'image de f([a,b]) est un intervalle.

f) Continuité uniforme

Définition 28. Une fonction f est uniformément continue sur un ensemble $E \subset \mathbb{R}$ si

$$\forall \varepsilon_{>0}, \exists \delta_{(\varepsilon)} > 0 : \forall x, y \in E, |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

Théorème 38. Soit $f: D \longrightarrow \mathbb{R}$ et D un ensemble compact. Toute fonction f continue sur D est uniformément continue.

Théorème 39. Soit $f: D \longrightarrow \mathbb{R}$, x_0 un point d'accumulation de D et f une fonction uniformément continue sur D. Alors, $\lim_{x \to x_0} f(x)$ existe.

g) Fonction réciproque

Définition 29. Soit $f: A \longrightarrow B$, la fonction f est injective si

$$\forall x, y, f(x) = f(y) \implies x = y \quad (ou \ x \neq y \implies f(x) \neq f(y))$$

Définition 30. Soit $f: A \longrightarrow B$, la fonction f est surjective si

$$\forall y \in B, \exists x \in A : f(x) = y \implies f(A) = B$$

Définition 31. Une fonction est bijective si elle est injective et surjective

Définition 32. La fonction identité est la fonction $f: A \longrightarrow A$ définie par f(x) = x.

Définition 33. Si $f: A \longrightarrow B$ et $g: B \longrightarrow A$ sont telles que la composée $f \circ g$ est la fonction identité sur B, et que $g \circ f$ est la fonction identité sur A, on dit que la fonction g est la fonction réciproque (ou inverse) de f. On note la réciproque de f par f^{-1} .

Théorème 40. Une fonction $f: A \longrightarrow B$ possède un fonction réciproque $\iff f$ est bijective.

Définition 34. Une fonction f est croissante (resp. strictement croissante) si $x, y \in D$ et $x > y \implies f(x) \ge f(y)$ (resp. f(x) > f(y)). Une fonction f est décroissante (resp. strictement décroissante) si $x, y \in D$ et $x > y \implies f(x) \le f(y)$ (resp. f(x) < f(y)). Une fonction qui a une de ces propriétés est monotone (resp. strictement monotone).

Théorème 41. Soit $f: A \longrightarrow f(A)$ une fonction strictement croissante (resp. strictement décroissante). On a

- a) f est injective, d'où f^{-1}
- b) f^{-1} est strictement croissante (resp. strictement décroissante)
- c) f continue $\implies f^{-1}$ continue

9 Dérivation

a) Fonctions différentiables ou dérivables

Définition 35. Soit $f: D_f \longrightarrow \mathbb{R}$ une fonction et x_0 un point d'accumulation de D_f tel que $x_0 \in D_f$. On dit que f est différentiable (ou dérivable) au point x_0 si $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ existe (nombre réel). Cette limite, si elle existe, est appelée la dérivée de f en x_0 et est notée $f'(x_0)$ ou $\frac{d}{dx}f(x)\Big|_{x=x_0}$. Si f est différentiable (ou dérivable) en chaque point de D_f , on dit que f est différentiable (ou dérivable) sur D_f

Théorème 42. Soit $f: D_f \longrightarrow \mathbb{R}$ une fonction et $x_0 \in D_f$ un point d'accumulation de D_f . Si f est différentiable au point x_0 , elle est continue au point x_0 .

b) Opération sur les fonctions différentiables

Théorème 43. Soit $f, g: D \longrightarrow \mathbb{R}$ deux fonction différentiables en x_0 . On a

- a) (f+g) est différentiable en x_0 et $(f+g)'(x_0) = f'(x_0) + g(x_0)$
- b) (fg) est différentiable en x_0 et $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$
- c) si $g(x_0) \neq 0$, (f/g) (le domaine est l'ensemble de tous les x tels que $g(x) \neq 0$) est différentiable en x_0 et

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}$$

Théorème 44. Soit $f: D_f \to \mathbb{R}$ et $g: D_g \to \mathbb{R}$ deux fonctions telles que $f(D_f) \subset D_g$. Si f est différentiable en x_0 et g est différentiable en $f(x_0)$, $g \circ f$ est différentiable en x_0 et

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Théorème 45. Soit $f:(a,b) \longrightarrow f((a,b))$ une fonction strictement croissante (resp. décroissante). Pour chaque $x_0 \in (a,b)$ tel que $f'(x_0) \neq 0$, la fonction $f^{-1}(y)$ est différentiable en $y_0 = f(x_0)$ et

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

Théorème 46. Si f et g sont n fois différentiables sur [a, b]

$$\frac{d^{n}}{dx^{n}}(f(x)g(x)) = \sum_{k=0}^{n} {n \choose n} f^{(k)}(x)g^{(n-k)}(x)$$

où l'on pose $f^{(0)}(x) = f(x)$

c) Propriétés des fonctions différentiables

Théorème 47 (Rolle). Soit f une fonction continue sur [a,b] telle que f(a) = f(b). Si $f'(x_0)$ existe pour tout $x_0 \in (a,b)$,

$$\exists c \in (a,b) : f'(c) = 0$$

Théorème 48 (Corollaire). Soit f une fonction continue sur [a,b] telle que f(a) = f(b).Si $f'(x_0)$ existe pour tout $x_0 \in (a,b)$ et si $x_1, x_2 \in (a,b)$ sont deux zéros consécutifs de f'(x) = 0, il y a au plus un nombre $r \in (x_1, x_2)$ tel que f(r) = 0

Théorème 49 (Moyenne). Si f est continue sur [a,b] et différentiable sur (a.b),

$$\exists c \in (a,b) : \frac{f(b) - f(a)}{b - a} = f'(c), \quad a < c < b$$

Théorème 50. Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue et différentiable sur (a,b).

- a) $si \ \forall x \in (a,b), f'(x) = 0 \implies f \ est \ constante$
- b) si $\forall x \in (a,b), f'(x) \geq 0$ (resp. > 0) $\implies f$ est croissant (resp. strictement croissante)
- c) $si \ \forall x \in (a,b), f'(x) \leq 0 \ (resp. < 0) \implies f \ est \ décroissant \ (resp. \ strictement \ décroissante)$

Théorème 51 (Formule de Cauchy). Soit f et g deux fonctions continues sur [a,b] et différentiables sur (a,b). Si $g'(x) \neq 0$ pour tout $x \in (a,b)$, alors

$$\exists c \in (a,b) : \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

d) Règle de L'Hôspital

Théorème 52. (Règle de L'Hôspital) Soit deux fonction f et g continues sur I et telles que

- a) $f(a^+) = \lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x) = g(a^+)$
- b) f'(x) et g'(x) existent pour tout $x \in I$
- c) g(x) et g'(x) diffèrent de 0 pour tout $x \in I$
- d) $L = \lim_{x \to a} f'(x)/g'(x)$ existe, où $L \in \mathbb{R} \cup \{-\infty, +\infty\}$

 $On\ en\ conclut\ que$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L$$

Théorème 53. (Règle de L'Hôspital) Soit deux fonction f et g continues sur I et telles que

- a) $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \pm \infty$
- b) f'(x) et g'(x) existent pour tout $x \in I$
- c) g(x) et g'(x) diffèrent de 0 pour tout $x \in I$
- d) $L = \lim_{x \to a} f'(x)/g'(x)$ existe, où $L \in \mathbb{R} \cup \{-\infty, +\infty\}$

On en conclut que

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L$$

e) Formule de Taylor

Théorème 54 (Formule de Taylor). Soit f un fonction définie sur [a,b]. Si les dérivées $f'(x), f''(x), ..., f^{(n)}$ existent partout sur [a,b], alors pour tout $x \in [a,b]$, il existe un nombre $c \in (a,x)$ tel que

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n)}(c)}{n!} (x-a)^n$$

Cette égalité s'appelle la formule de Taylor d'ordre n avec $\frac{f^{(n)}(c)}{n!}(x-a)^n$ le reste de Lagrange.

10 Série numériques

a) Convergence des séries numériques

Définition 36. Soit la suite $\{a_n\}$ de nombres réels, $n \geq 1$. La série associée à cette suite et représentée par l'expression

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots$$

Par définition, la suite des sommes partielles $\{S_n\}$ est définie oar

$$S_n = \sum_{k=1}^n a_k, \quad n \ge 1$$

Définition 37. La série $\sum_{n=1}^{\infty} a_n$ converge si la suite des sommes partielles $\{S_n\}$ converge.

Théorème 55 (Critère de Cauchy). La série $\sum_{n=1}^{\infty} a_n$ converge si et seulement si,

$$\forall \varepsilon_{>0}, \exists N \in \mathbb{N} : \forall n > N \land \forall k > 0, \left| \sum_{i=n+1}^{n+k} a_i \right| < \varepsilon$$

Théorème 56 (Critère du terme général). Si la série $\sum_{n=1}^{\infty} a_n$ converge $\implies \lim_{n \to \infty} a_n = 0$

Théorème 57. Soit $\sum_{n=1}^{\infty} a_n$ et $\sum_{n=1}^{\infty} b_n$ deux séries convergentes.

$$\forall k_1, k_2 \in \mathbb{R}, \sum_{n=1}^{\infty} (k_1 a_n + k_2 b_n) = k_1 \sum_{n=1}^{\infty} a_n + k_2 \sum_{n=1}^{\infty} b_n$$

Théorème 58. Soit $\{a_n\}$ et $\{b_n\}$ deux suites de nombres réels. Supposons

$$\exists N \in \mathbb{N} : \forall n \geq N, a_n = b_n$$

$$\sum_{n=1}^{\infty} a_n \in \mathbb{R} \Longleftrightarrow \sum_{n=1}^{\infty} b_n \in \mathbb{R}$$

Théorème 59 (Associativité finie). Si $\sum_{n=1}^{\infty} a_n$ converge, on peut grouper les termes en blocs finis (mais en conservant l'ordre des termes) sans changer la convergence et la valeur de la somme. Autrement dit, si $1 = k_a < k_2 < ...$,

$$\sum_{n=1}^{\infty} \sum_{i=k_n}^{k_{n+1}-1} a_i = \sum_{n=1}^{\infty} a_n$$

Théorème 60. Soit la suite $\{k_n\}$ d'entiers strictement croissante telle que $\{k_{n+1} - k_n\}$ est bornée.

$$\lim_{n\to\infty}a_n=0\implies \sum_{n=1}^\infty a_n \quad \wedge \quad \sum_{n=1}^\infty \sum_{i=k_n}^{k_{n+1}-1}a_i \quad (sont\ de\ m\^{e}me\ nature)$$

b) Critères de convergence

Définition 38 (Convergence absolue). La série $\sum_{n=1}^{\infty} a_n$ converge absolument si $\sum_{n=1}^{\infty} |a_n|$ converge. Si la série $\sum_{n=1}^{\infty} a_n$ converge et la série $\sum_{n=1}^{\infty} |a_n|$ diverge, on dit que la série $\sum_{n=1}^{\infty} a_n$ converge conditionnellement ou est semi-convergente

Théorème 61. Toute série absolument convergente converge.

Théorème 62 (Critère de condensation de Cauchy). Soit la suite décroissante $\{a_n\}$, $a_n \geq 0$.

$$\sum_{n=1}^{\infty} a_n \in \mathbb{R} \Longleftrightarrow \sum_{n=1}^{\infty} 2^n a_{2^n} \in \mathbb{R}$$

Théorème 63 (Critère de comparaison). Soit deux séries $\sum_{n=1}^{\infty} a_n$ et $\sum_{n=1}^{\infty} b_n$ telles que $b_n \geq 0$.

- a) $Si \sum_{n=1}^{\infty} b_n \in \mathbb{R} \land \exists N, M > 0 : \forall n \geq N, |a_n| \leq Mb_n \implies \sum_{n=1}^{\infty} |a_n| \in \mathbb{R}$
- b) $Si \sum_{n=1}^{\infty} b_n \notin \mathbb{R} \land \exists N, M > 0 : \forall n \geq N, a_n \geq Mb_n \implies \sum_{n=1}^{\infty} a_n \notin \mathbb{R}$

Théorème 64 (Critère du quotient). Soit les deux séries $\sum_{n=1}^{\infty} a_n$ et $\sum_{n=1}^{\infty} b_n$. Posons $\lim_{n\to\infty} \left| \frac{a_n}{b_n} \right|$

- a) Si $L \neq 0$ ou ∞ , les séries $\sum |a_n|$ et $\sum |b_n|$ sont de même nature
- b) Si L = 0 et si la série $\sum b_n$ converge absolument, $\sum a_n$ converge absolument. Si la série $\sum |a_n|$ diverge, la série $\sum |b_n|$ diverge.
- c) Si $L = \infty$ et si la série $\sum |b_n|$, la série $\sum |a_n|$ diverge. Si la série $\sum |a_n|$ converge, la série $\sum |b_n|$ converge.

Théorème 65 (Critère de D'Alembert). Soit la série $\sum a_n \ (a_n \neq 0)$ telle que la limite $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \in \mathbb{R}$.

- a) Si L < 1, la série converge absolument
- b) Si L > 1, la série diverge
- c) Si L = 1, nature indéterminée (non-concluant)

Théorème 66. Soit la série $\sum a_n$ telle que la limite $L = \lim_{n \to \infty} \sqrt[n]{|a_n|} \in \mathbb{R}$

- a) Si L < 1, la série converge absolument
- b) Si L > 1, la série diverge
- c) Si L = 1, nature indéterminée (non-concluant)

c) Série alternées et réarrangement d'une séries

Théorème 67 (Critère des séries alternées). Si $\{a_n\}$ est une suite décroissante de termes positifs et $\lim_{n\to\infty} a_n = 0$

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n \in \mathbb{R}$$

De plus, si $S_n = \sum_{k=1}^n (-1)^{k+1} a_k$ et $S = \sum_{n=1}^\infty a_n$,

$$\forall n \in \mathbb{N}, |S - S_n| \le a_{n+1}$$

Définition 39. Soit la fonction bijective $f: \mathbb{N} \longrightarrow \mathbb{N}$. La série $\sum_{n=1}^{\infty} a_{f(n)}$ est appelée réarrangement de la série $\sum_{n=1}^{\infty} a_n$

Théorème 68. Soit la série absolument convergente $\sum_{n=1}^{\infty} a_n$ telle que $\sum_{n=1}^{\infty} a_n = S$. Tout réarrangement de $\sum_{n=1}^{\infty} a_n$ converge absolument vers S.

Théorème 69. Soit la série $\sum_{n=1}^{\infty} a_n$. Les suites $\{p_n\}$, $\{q_n\}$ sont définies par

$$p_n = \begin{cases} a_n & si \ a_n \ge 0 \\ 0 & si \ a_n < 0 \end{cases} \quad et \quad q_n = \begin{cases} a_n & si \ a_n < 0 \\ 0 & si \ a_n \ge 0 \end{cases}$$

La suite $\{p_n\}$ est la partie positive et la suite $\{q_n\}$ la partie négative de $\{a_n\}$. Alors,

$$p_n = \frac{a_n + |a_n|}{2} \quad et \quad q_n = \frac{a_n - |a_n|}{2}$$

Donc, $|a_n| = p_n - q_n$ et $a_n = p_n + q_n$

- a) $\sum a_n$ converge absoluement $\iff \sum p_n \wedge \sum q_n$ convergent; de plus $\sum a_n = \sum p_n + \sum q_n$
- b) Si $\sum a_n$ converge conditionnellement $\implies \sum p_n \wedge \sum q_n$ divergent

Théorème 70 (Théoème de Riemann). Soit la série $\sum a_n$ qui converge conditionnellement.

- a) Il existe un réarrangement $\sum a_{f(n)}$ de $\sum a_n$ qui diverge
- b) $b \in \mathbb{R}, \exists \sum a_{f(n)} de \sum a_n : \sum a_{f(n)} = b$

d) Multiplication de séries

Définition 40 (Produit de Cauchy). Soit les séries $\sum_{n=0}^{\infty} a_n$ et $\sum_{n=0}^{\infty} b_n$.

$$\forall n \in \mathbb{N}, c_n = \sum_{k=0}^n a_k b_{n-k}$$

La série $\sum_{n=0}^{\infty} c_n$ est appelée produit de Cauchy des deux séries $\sum_{n=0}^{\infty} a_n$ et $\sum_{n=0}^{\infty} b_n$.

Théorème 71. Soit la série $\sum_{n=0}^{\infty} a_n$ qui converge absolument et la série $\sum_{n=0}^{\infty} b_n$ qui converge. Posons $\sum_{n=0}^{\infty} a_n = A$ et $\sum_{n=0}^{\infty} b_n = B$. Le produit de Cauchy $\sum_{n=0}^{\infty} c_n$ converge vers $A \cdot B$.

\mathbf{Index}

A	Formule de Taylor13
Archimède	Frontière4
Associativité finie	
Axiome de complétude	H
D	Heine-Borel4
В	1
Bolzano-Weierstrass	
Bornes atteintes	Infimum
Borné 3	Intervalle
C	megante mangulaire
C	L
Caractérisation des points d'accumulation	Limite d'une fonction
Composition	Limite inférieure
Critère de Cauchy	Limite supérieure
Critère de comparaison	Limite à droite
Critère de convergence absolu	Limite à gauche
Critère de D'Alembert	-
Critère des séries alternées	N
Critère du quotient	Non-borné3
Critère du terme général	0
0	0
D	Opération sur les fonction continues
De la moyenne	Opération sur les limites
De Rolle	Opérations sur les limites
Densité de \mathbb{R}	P
Des Gendarmes	Point adhérent
Dérivabilité	Point d'accumulation
_	Point intérieur
E	Produit de Cauchy15
Ensemble compact	
Ensemble des points d'accumulations 4	S
Ensemble des points intérieurs4	Sous-recouvrement ouvert4
Ensemble fermé	Sous-suite
Ensemble ouvert	Suite convergente6
F	Suite de Cauchy 8
	Suite monotone
Fonction bijective	Suite numérique
Fonction identité	Supremum
Fonction injective	Т
Fonction inverse	Théoème de Riemann
Fonction localement bornée	Trichotomie
Fonction monotone	THEHOTOHINE
Fonction réciproque	V
Fonction surjective	Valeur absolue
Fonction uniformément continue	Valeur d'adhérence
Formule de Cauchy	Voisinage
Formule de Leibniz11	Vosinage pointé