《数字逻辑》

(第3次实验: 在Logisim和FPGA开发板上实现组合逻辑电路)

厦门大学信息学院软件工程系 曾文华 2024年10月12日

目录

- 第一部分: 在Logisim上实现组合逻辑电路
 - (一) 在Logisim上实现教材第4章的例题
 - (二) 在Logisim上实现教材第4章的习题

- 第二部分:在FPGA开发板上实现组合逻辑电路
 - (一) 在FPGA开发板上实现教材第4章的例题
 - · (二)在FPGA开发板上实现教材第4章的习题

第一部分:在Logisim上实现组合逻辑电路

设计文件: 在Logisim上实现教材第4章的例题和习题.circ

- 例题4.1用ROM的内容
- 例题4.2用ROM的内容
- 例题4.3用ROM1的内容
- □ 例题4.3用ROM2的内容
- 列题4.4用ROM的内容
- □ 例题4.7用ROM1的内容
- 例题4.7用ROM2的内容
- 例题4.8用ROM的内容
- 例题4.9用ROM的内容
- □ 例题4.12 (a) 用ROM的内容
- 例题4.12 (b) 用ROM的内容
- □ 习题4.7 (a) 用ROM1的内容
- ☐ 习题4.7 (a) 用ROM2的内容
- □ 习题4.7 (b) 用ROM1的内容
- □ 习题4.7 (b) 用ROM2的内容

(一) 在Logisim上实现教材第4章的例题

- 1、(验证实验)例题4.1的实现
 - 在Logisim上实现例题4.1的不一致电路,该电路有3个输入、1个输出。

• 2、(验证实验)例题4.2的实现

• 在Logisim上实现例题4.2的<mark>半加器HA电路</mark>,该电路有2个输入、2个输出。

图4.3(a) 逻辑电路

• 3、(验证实验)例题4.3的实现

• 在Logisim上实现例题4.3的将8421码转换为余3码的代码转换电路,该电路有4个输入、4个输出。

• 4、(验证实验)例题4.4的实现

• 在Logisim上实现例题4.4的3变量多数表决电路,该电路有3个输入、1个输出。

• 5、(验证实验)例题4.5的实现

• 在Logisim上实现例题4.5的比较两个3位二进制数是否相等的数值比较器电路,该电路有6个输入、1个输出。

• 6、(验证实验)例题4.6的实现

• 在Logisim上实现例题4.6的<mark>乘法器电路(有2种不同的实现方式</mark>),该电路用于产生两个2位二进制数相乘的积,该电路有4个输入、4个输出。

• 7、(验证实验)例题4.7的实现

• 在Logisim上实现例题4.7的判别以余3码表示的1位十进制数是否为合数的电路,该电路有4个输入、1个输出。

• 8、(验证实验)例题4.8的实现

• 在Logisim上实现例题4.8的组合逻辑电路(有2种不同的实现方式),该电路有3个输入、2个输出。

• 9、(验证实验)例题4.9的实现

• 在Logisim上实现例题4.9的全加器FA电路(有2种不同的实现方式),该电路有3个输入、2个输出。

• 10、(验证实验) 例题4.10的实现

• 在Logisim上实现例题4.10的组合逻辑电路(有2种不同的实现方式),该电路有4个输入、1个输出。

• 11、(验证实验) 例题4.11的实现

• 在Logisim上实现例题4.11的<mark>组合逻辑电路(有2种不同的实现方式),该电路有3个输入、1个输出。</mark>

• 12、(验证实验)例题4.12的实现(a)

• 在Logisim上实现例题4.12的判断献血者与受血者<mark>血型是否相容的电路(</mark>采用血型编码I),该电路有4个输入、 1个输出。

• 13、(验证实验)例题4.12的实现(b)

• 在Logisim上实现例题4.12的判断献血者与受血者血型是否相容的电路(采用血型编码II),该电路有4个输入、1个输出。

表 4.8 血型相容规则表

受血献血	·A	В	AB	О
A	>		√	
В		\checkmark	√	
AB			√	
О	√	√	√	√

• 14、(验证实验) 例题4.16的实现

• 在Logisim上实现例题4.16增加冗余项前的组合逻辑电路(左下图)和增加 冗余项后的组合逻辑电路(图4.23),该电路有3个输入、1个输出。

• 15、(验证实验) 例题4.17的实现

• 在Logisim上实现例题4.17增加冗余项前的组合逻辑电路和增加冗余项后的组合逻辑电路,该电路有4个输入、1个输出。

(二) 在Logisim上实现教材第4章的习题

- 1、(验证实验) 习题4.2的实现
 - 在Logisim上实现习题4.2的电路(图4.28)以及<mark>改用异或门</mark>实现的电路,该电路有3个输入,1 个输出。
- 4.2 分析图 4.28 所示的组合逻辑电路:(1) 指出在哪些输入取值下,输出 F 的值为 1;
- (2) 改用异或门实现该电路的逻辑功能。

• 2、(验证实验) 习题4.6(1)的实现

• 在Logisim上实现习题4.6(1)要求的组合逻辑电路的功能,该电路有2个输入,4个输出。

4.6 假定 X=AB 代表一个 2 位二进制数,试设计满足如下要求的逻辑电路(Y 也用二进制数表示):

(1)
$$Y = X^2$$

• 3、(验证实验) 习题4.6(2)的实现

• 在Logisim上实现习题4.6(2)要求的组合逻辑电路的功能,该电路有2个输入,5个输出。

4.6 假定 X=AB 代表一个 2 位二进制数,试设计满足如下要求的逻辑电路(Y 也用二进制数表示):

(2)
$$Y = X^3$$

• 4、(验证实验)习题4.7的实现

• 在Logisim上用与非门实现习题4.7要求的组合逻辑电路的功能,该电路有4个输入,1个输出。

4.7 用与非门设计一个组合逻辑电路,该电路输入为1位十进制数的2421码,当输入的数字为素数时,输出F为1,否则F为0。

0-9中: 2、3、5、7为素数

• 答: F = A·/B + /A·C + A·/C·D

或者 F = A·/B + /B·C + A·/C·D

• F = A·/B + /A·/C + A·/C·D = /(/(A·/B) · /(/A·C) · /(A·/C·D)) = /(/(A·/(B·B)) · /(/(A·A)·C) · /(A·/(C·C)·D))

"与非门"实现

• $F = A \cdot /B + /B \cdot C + A \cdot /C \cdot D = /(/(A \cdot /B) \cdot /(/B \cdot C) \cdot /(A \cdot /C \cdot D)) = /(/(A \cdot /(B \cdot B)) \cdot /(/(B \cdot B) \cdot C) \cdot /(A \cdot /(C \cdot C) \cdot D))$

十进制字符 8421 码 2421 码 余3码

表 1.3 常用的 3 种 BCD 码

• 5、(验证实验) 习题4.11(1)的实现

- 在Logisim上实现习题4.11(1)要求的组合逻辑电路(F=A·/B+/A·C+B·/C),以及用与非门 实现的电路,该电路有3个输入,1个输出。
- 4.11 在输入不提供反变量的情况下,用与非门组成实现下列函数的最简电路。
- (1) $F = A \overline{B} + \overline{A}C + B\overline{C}$
 - 答: F = /(/(A·/(A·B·C)) · /(B·/(B·A·C)) · /(C·/(C·A·B)))

• 6、(验证实验) 习题4.11(2)的实现

• 在Logisim上实现习题4.11(2)要求的组合逻辑电路(F=A·/B·/C+B·C·/D+A·/C·/D+B·C·D), 以及用与非门实现的电路,该电路有4个输入,1个输出。

4.11 在输入不提供反变量的情况下,用与非门组成实现下列函数的最简电路。

(2)
$$F = A \overline{B} \overline{C} + B C \overline{D} + A \overline{C} \overline{D} + \overline{B} C D$$

• 答: F = /(/(/(B·D)·A·/(C·C)) · /(/(B·D)·B·C) · /(/(B·D)·C·D))

• 7、(设计实验,课后完成)习题4.1的实现

• 在Logisim上实现习题4.1的电路(图4.27)以及其简化电路,该电路有3个输入,1个输出。

4.1 分析图 4.27 所示的组合逻辑电路,说明电路功能,并画出其简化逻辑电路图。

图 4.27 组合逻辑电路

•8、(设计实验,课后完成)习题4.3的实现

• 在Logisim上实现习题4.3的电路(图4.29),该电路有4个输入,4个输出。

4.3 分析图 4.29 所示组合逻辑电路,列出真值表,说明该 电路的逻辑功能。

图 4.29 组合逻辑电路

• 9、(设计实验,课后完成)习题4.4的实现

• 在Logisim上实现习题4.4要求的组合逻辑电路的功能,该电路有4个输入,1个输出。

4.4 设计一个组合逻辑电路,该电路输入端接收两个 2 位二进制数 A=A₂A₁,B=B₂B₁。当 A>B 时,输出 Z=1,否则 Z=0。

• 10、(设计实验,课后完成)习题4.5的实现

• 在Logisim上实现习题4.5要求的代码转换电路的功能,该电路有4个输入,4个输出。

4.5 设计一个代码转换电路,将1位十进制数的余3码转换成2421码。

•11、(设计实验,课后完成)习题4.8的实现

• 在Logisim上实现习题4.8要求的组合逻辑电路的功能,该电路有4个输入,1个输出。

4.8 设计一个"四舍五入"电路。该电路输入为 1 位十进制数的 8421 码,当其值大于或等于 5 时,输出 F 的值为 1,否则 F 的值为 0。

•12、(设计实验,课后完成)习题4.9的实现

• 在Logisim上实现习题4.9要求的组合逻辑电路的功能,该电路有4个输入,1个输出。

4.9 设计一个检测电路,检测 4 位二进制码中 1 的个数是否为偶数。若为偶数个 1,则输出为 1,否则输出为 0。

•13、(设计实验,课后完成)习题4.10的实现

• 在Logisim上实现习题4.10要求的加/减法器的功能,该电路有4个输入,2个输出。

4.10 设计一个加/减法器,该电路在 M 控制下进行加、减运算。当 M=0 时,实现全加器功能;当 M=1 时,实现全减器功能。

• 14、(设计实验,课后完成)习题4.12(3)的实现

• 在Logisim上实现习题4.12(3)要求的组合逻辑电路(F3=(A+/B)·(/A+/C),增加冗余项前), 以及增加冗余项后的电路。

4.12 下列函数描述的电路是否可能产生险象?在什么情况下产生险象?若产生险象,试用增加冗余项的方法消除。

(3)
$$F_3 = (A + \overline{B})(\overline{A} + \overline{C})$$

第二部分: 在FPGA开发板上实现组合逻辑电路

] 名称	^	修改日期	类型	大小
example 4 1 1	EGO1	2024/10/6 8:42	文件夹	
example 4 1 E	GO1	2024/10/6 8:42	文件夹	
example_4_3_1	_EGO1	2024/10/6 8:42	文件夹	
example 4 3 E	GO1	2024/10/6 8:42	文件夹	
example_4_5_1	_EGO1	2024/10/6 8:42	文件夹	
example_4_5_E	GO1	2024/10/6 8:42	文件夹	
example_4_9_1	_EGO1	2024/10/6 8:43	文件夹	
example_4_9_2	EGO1	2024/10/6 8:43	文件夹	
<pre>example_4_9_E</pre>	GO1	2024/10/6 8:43	文件夹	
example_4_12a	1_EGO1	2024/10/6 8:42	文件夹	
example_4_12a	_EGO1	2024/10/6 8:42	文件夹	
example_4_16_	1_EGO1	2024/10/6 8:42	文件夹	
example_4_16_	EGO1	2024/10/6 8:42	文件夹	
EGO1.xdc		2023/12/24 13:00	XDC 文件	18 KB
example_4_1_1	_EGO1.v	2023/10/26 16:42	V 文件	1 KB
example_4_1_E	GO1.v	2023/10/26 16:46	V 文件	2 KB
example_4_3_1	_EGO1.v	2023/10/26 21:21	V 文件	3 KB
example_4_3_E	GO1.v	2023/10/26 22:26	V 文件	2 KB
example_4_5_1	_EGO1.v	2023/10/26 22:25	V 文件	1 KB
example_4_5_E	GO1.v	2023/10/26 22:26	V 文件	2 KB
example_4_9_1	_EGO1.v	2023/10/29 9:30	V 文件	2 KB
example_4_9_2	EGO1.v	2023/10/29 9:30	V 文件	1 KB
example_4_9_E	GO1.v	2023/10/27 10:25	V 文件	2 KB
example_4_12a	1_1_EGO1.v	2023/10/27 11:48	V 文件	2 KB
example_4_12a	a_EGO1.v	2023/10/27 11:15	V 文件	2 KB
example_4_16_	1_EGO1.v	2023/10/29 10:30	V 文件	1 KB
a example 4 16	EGO1.v	2023/10/27 13:00	V 文件	2 KB

请将\第3次实验文档(发给学生)\EGO1\目录中的所有文件,拷贝到实验室电脑(或自己电脑)D:\DigitalLogic\EGO1\目录中

· 如果在下载bit文件时,出现不了这个界面,请将USB线从电脑上拔下来,再插上!

(一) 在FPGA开发板上实现教材第4章的例题

- 1、(验证实验)例题4.1的实现
 - 分别用<mark>结构化描述方式和行为描述方式</mark>实现例题4.1的不一致电路,该电路有3个输入、1个输出。
 - 输入为开发板上最左边的3个拨动开关、输出为开发板上最左边的LED灯。

图4.2(a) 逻辑电路

表 4.1 真值表

A	В	С	F		
0	0	0	0		
0	0	į	1		
0	1	0	1		
0	1	1	1		
1	0	0	1		
1	0	1	1		
1	1	0	1		
1	1	1	0		

• 在EGO1开发板上实现例题4.1的设计文件:

```
I example 4 1 EGO1.v - 记事本
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
//结构化描述方式 (子模块采用行为描述方式) 实现例题4.1的不一致电路,输入为最左边的3个拨动开关,输出为最左边的LED灯。
timescale 1ns / 1ps
module not gate(
  input a,
  output reg f
  always @(*)
                        //行为描述方式
  begin
   f <= ~a:
  end
endmodule
module or gate(
  input a,
  input b,
  output reg f
                        //行为描述方式
  always @(*)
  begin
   f <= a \mid b;
  end
endmodule
module nand gate(
  input a,
  input b,
  output reg f
                                                                图4.2(a) 逻辑电路
  always @(*)
                        //行为描述方式
  begin
   f <= \sim (a \& b);
  end
endmodule
module example 4 1(
                                                           结构化描述方式
 input sw pin[7:0],
                                         //8个拨动开关
  output [15:0] led pin
                                        //16个led灯
  wire n1 n2 n3 n4 n5.
                                                         //结构化描述方式
  not gate U1(.a(sw pin[0]),.f(p1));
                                                         //结构化描述方式
  or gate U2(.a(sw pin[1]),.b(sw pin[2]),.f(p2));
  nand_gate U3(.a(sw_pin[1]),.b(sw_pin[2]),.f(p3));
                                                         //结构化描述方式
  nand gate U4(.a(p1),.b(p2),.f(p4));
                                                         //结构化描述方式
  nand_gate U5(.a(p3),.b(sw_pin[0]),.f(p5));
                                                         //结构化描述方式
  nand_gate U6(.a(p4),.b(p5),.f(led_pin[0]));
                                                         //结构化描述方式
```

```
example 4 1 1 EGO1.v - 记事本
```

文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)

//采用行为描述方式实现例题4.1的不一致电路,输入为最左边的3个拨动开关,输出为最左边的LED灯。

```
module example_4_1_1(
input sw_pin[7:0],
output reg [15:0] led_pin
```

`timescale 1ns / 1ps

行为描述方式

```
//行为描述方式
always @(*)
begin
        case({sw pin[0],sw pin[1],sw pin[2]})
                0: led pin[0] <= 0;
                                                       // ABC=000 F=0
                1: led_pin[0] <= 1;
                                                       // ABC=001 F=1
                 2: led pin[0] <= 1;
                                                       // ABC=010 F=1
                 3: led pin[0] <= 1;
                                                       // ABC=011 F=1
                 4: led pin[0] <= 1;
                                                       // ABC=100 F=1
                 5: led pin[0] <= 1;
                                                       // ABC=101 F=1
                6: led pin[0] <= 1;
                                                       // ABC=110 F=1
                7: led pin[0] <= 0;
                                                       // ABC=111 F=0
        endcase
end
```

endmodule

表 4.1 真值表

A	В	С	F
0	0	0	0
0	0	i	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

• 2、(验证实验)例题4.3的实现

- 分别用结构化描述方式和行为描述方式实现例题4.3的将8421码转换为余3码的代码 转换电路,该电路有4个输入、4个输出。
- 输入为开发板上最左边的4个拨动开关,输出为开发板上最左边的4个LED灯。

图 4.4 逻辑电路

ABCD	WXYZ	ABCD	WXYZ
0000	0011	0101	1000
0001	0100	0110	1001
0010	0101	0111	1010
0011	0110	1000	1011
0100	0111	1001	1100

• 在EGO1开发板上实现例题4.3的设计文件:

```
■ example_4_3_EGO1.v - 记事本
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
//结构化描述方式(子模块采用行为描述方式)实现例题4.3的不一致电路,输入为最左边的4个拨动开关,输出为最左边的4个LED灯。
`timescale 1ns / 1ps
module not gate(
 input a,
 output reg f
  always @(*)
                     //行为描述方式
   f <= ~a;
  end
endmodule
module or gate(
 input a,
  input b,
 output reg f
  always @(*)
                     //行为描述方式
   f <= a | b;
  end
endmodule
module and_gate(
 input a,
  input b,
  output reg f
  always @(*)
                     //行为描述方式
                                                                       ≥1
  begin
   f <= a & b;
  end
endmodule
module xor gate(
 input a,
  input b,
  output reg f
                                                                        图 4.4 逻辑电路
                     //行为描述方式
  always @(*)
 begin
   f <= a ^ b:
  end
endmodule
module example 4 3(
  input sw pin[7:0],
                                             //8个拨动开关
                                                               结构化描述方式
  output [15:0] led pin
                                            //16个led灯
  wire p1, p2;
  or_gate U2(.a(sw_pin[2]),.b(sw_pin[3]),.f(p1));
                                                                       //结构化描述方式
  and_gate U1(.a(sw_pin[1]),.b(p1),.f(p2));
                                                                       //结构化描述方式
  xor gate U3(.a(sw pin[0]),.b(p2),.f(led pin[0]));
                                                                       //结构化描述方式
  xor_gate U4(.a(p1),.b(sw_pin[1]),.f(led_pin[1]));
                                                                       //结构化描述方式
  not gate U6(.a(sw pin[3]),.f(led pin[3]));
                                                                       //结构化描述方式
  xor gate U5(.a(sw pin[2]),.b(led pin[3]),.f(led pin[2]));
                                                                       //结构化描述方式
```

endmodule

■ example 4.3 1, EGO1v · 尼寧本 文件() 編輯() 格式() 查看(v) · 指物(r) //采用行分摊进方式实现则则整4.1的代码转换电路,输入为最左边的4个拨动开关、输出为最左边的4个LED灯。

`timescale 1ns / 1ps

module example_4_3_1(input sw_pin[7:0], //8个拨动开关 output reg [15:0] led_pin //16个led灯

行为描述方式

ys @(*)	//行为描述方式							
n case((sw_pin[0],sw_pin[1],sw_pin[2],sw_pin[3])) 0: begin led_pin[0] <= 0; led_pin[1] <= 0;	// ABCD = 0000	WXYZ = 0011		5		led_pin[0] <= 1; led_pin[1] <= 0;	// ABCD = 010	1 WXYZ = 100
led_pin[2] <= 1; led_pin[3] <= 1; end 1: begin				6	end i: begin	led_pin[2] <= 0; led_pin[3] <= 0;		
led_pin[0] <= 0; led_pin[1] <= 1; led_pin[2] <= 0; led_pin[3] <= 0;	// ABCD = 0001	WXYZ = 0100				led_pin[0] <= 1; led_pin[1] <= 0; led_pin[2] <= 0; led_pin[3] <= 1;	// ABCD = 011	0 WXYZ = 100
end 2: begin led pin[0] <= 0;	// ABCD = 0010	WXYZ = 0101		7	: begin	led_pin[0] <= 1; led_pin[1] <= 0;	// ABCD = 011	1 WXYZ = 101
led_pin[0] < 0; led_pin[1] <= 1; led_pin[2] <= 0; led_pin[3] <= 1;	// ABCD = 0010	WX12 = 0101			end	led_pin[2] <= 1; led_pin[3] <= 0;		
end				8	: begin	led pin[0] <= 1;	// ABCD = 100	0 WXYZ = 101
3: begin led_pin[0] <= 0; led_pin[1] <= 1;	// ABCD = 0011	WXYZ = 0110				led_pin[1] <= 0; led_pin[2] <= 1; led_pin[3] <= 1;	,,	
led_pin[2] <= 1; led_pin[3] <= 0; end				9	end begin	led pin[0] <= 1;	// ABCD = 100	1 WXYZ = 110
4: begin led_pin[0] <= 0; led_pin[1] <= 1; led_pin[2] <= 1;	// ABCD = 0100	WXYZ = 0111		endcase		led_pin[1] <= 1; led_pin[2] <= 0; led_pin[3] <= 0;	// ADED = 100	
led_pin[3] <= 1; end			end	criacuse				
			endmod	dule				

表 4.3 真值表

ABCD	WXYZ	ABCD	WXYZ
0000	0011	0101	1000
0001	0100	0110	1001
0010	0101	0111	1010
0011	0110	1000	1011
0100	0111	1001	1100

• 3、(验证实验)例题4.5的实现

- 分别用结构化描述方式和行为描述方式实现例题4.5的比较两个3位二进制数是否相等的数值比较器电路,该电路有6个输入、1个输出。
- 输入为开发板上最左边的3个拨动开关和最右边的3个拨动开关,输出为开发板上最左边的1个LED灯。

图 4.6 逻辑电路

• 在EGO1开发板上实现例题4.5的设计文件:

```
🧻 example 4 5 EGO1.v - 记事本
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
//结构化描述方式(子模块采用行为描述方式)实现例题4.5的比较两个3位二进制数是否相等的数值比较影
`timescale 1ns / 1ps
module nor gate(
 input a,
  input b,
 input c,
  output reg f
                        //行为描述方式
  always @(*)
  begin
   f <= \sim (a | b | c);
  end
endmodule
module xor gate(
  input a,
 input b,
  output reg f
 always @(*)
                        //行为描述方式
  begin
   f <= a \wedge b;
  end
                                                                        逻辑电路
                                                            图 4.6
endmodule
module example 4 3(
                                          //8个拨动开关
                                                          结构化描述方式
 input sw pin[7:0],
 output [15:0] led pin
                                         //16个led灯
  wire p1, p2, p3;
                                                                   //结构化描述方式
 xor gate U1(.a(sw pin[0]),.b(sw pin[5]),.f(p1));
 xor gate U2(.a(sw pin[1]),.b(sw pin[6]),.f(p2));
                                                                  //结构化描述方式
 xor_gate U3(.a(sw_pin[2]),.b(sw_pin[7]),.f(p3));
                                                                  //结构化描述方式
  nor gate U4(.a(p1),.b(p2),.c(p3),.f(led pin[0]));
                                                                  //结构化描述方式
```

endmodule

```
🧻 example 4 5 1 EGO1.v - 记事本
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
//采用行为描述方式实现例题4.5的数值比较器电路,输入为开发板上最左边的3个拨动开关和扩
`timescale 1ns / 1ps
module example 4 3 1(
  input sw_pin[7:0],
                                                //8个拨动开关
  output reg [15:0] led pin
                                                //16个led灯
  always @(*)
                                                //行为描述方式
  begin
        if(sw pin[0]==sw pin[5] & sw pin[1]==sw pin[6] & sw pin[2]==sw pin[7])
                        led pin[0] <= 1;
        else
                        led pin[0] <= 0;
                                              行为描述方式
  end
```

如果a₃a₂a₁=b₃b₂b₁,则F=1;否则,F=0

endmodule

• 4、(验证实验)例题4.9的实现

- 请分别用结构化描述方式(有2个不同的电路)、行为描述方式和数据流描述方式 实现例题4.9的全加器FA电路,该电路有3个输入、2个输出,该实验有3个小实验 (同时实现2个不同电路的结构化描述方式,行为描述方式,数据流描述方式)。
- (结构化描述方式)输入为开发板上最左边的3个拨动开关,输出为开发板上最左边的2个LED灯(电路I)和最右边的2个LED灯(电路II)。
- (行为描述方式)输入为开发板上最左边的3个拨动开关,输出为开发板上最左边的2个LED灯。
- (数据流描述方式)输入为开发板上最左边的3个拨动开关,输出为开发板上最左边的2个LED灯。

表 4.7 全加器真值表

A_i	\mathbf{B}_i	C_{i-1}	S_i	C_i
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

• 在EGO1开发板上实现例题4.9的设计文件:

```
III example 4 9 EGO1.v - 记事本
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
  begin
    f <= \sim (a \& b);
  end
endmodule
module nand3 gate(
  input a,
  input b,
  input c,
  output reg f
  always @(*)
                          //行为描述方式
  begin
    f <= \sim (a \& b \& c);
  end
endmodule
module xor gate(
  input a,
  input b,
  output reg f
                          //行为描述方式
  always @(*)
  begin
                                                                                                                   (b)
    f <= a \wedge b
  end
endmodule
module example 4 9(
  input sw pin[7:0],
                                             //8个拨动开关
                                                                         结构化描述方式
  output [15:0] led pin
                                            //16个led灯
  wire p1, p2, p3, p4, p5, p6, p7;
                                                                                //结构化描述方式
  xor gate U1(.a(sw pin[0]),.b(sw pin[1]),.f(p1));
  nand2_gate U2(.a(sw_pin[0]),.b(sw_pin[1]),.f(p2));
                                                                                //结构化描述方式
  nand2 gate U3(.a(sw pin[0]),.b(sw pin[2]),.f(p3));
                                                                                //结构化描述方式
  nand2 gate U4(.a(sw pin[1]),.b(sw pin[2]),.f(p4));
                                                                                //结构化描述方式
  xor gate U5(.a(p1),.b(sw pin[2]),.f(led pin[0]));
                                                                                //结构化描述方式
  nand3_gate U6(.a(p2),.b(p3),.c(p4),.f(led_pin[1]));
                                                                                //结构化描述方式
  xor gate U7(.a(sw pin[0]),.b(sw pin[1]),.f(p5));
                                                                                //结构化描述方式
  nand2 gate U8(.a(p5),.b(sw pin[2]),.f(p6));
                                                                                //结构化描述方式
  nand2_gate U9(.a(sw_pin[0]),.b(sw_pin[1]),.f(p7));
                                                                                //结构化描述方式
  xor gate U10(.a(p5),.b(sw pin[2]),.f(led pin[6]));
                                                                                //结构化描述方式
  nand2 gate U11(.a(p6),.b(p7),.f(led pin[7]));
                                                                                //结构化描述方式
endmodule
```

```
example 4 9 1 EGO1.v - 记事本
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
//采用行为描述方式实现例题4.9的全加器FA电路,输入为开发板上最左边的3个提
```

'timescale 1ns / 1ps

always @(*)

endmodule

module example 4 9 1(input sw pin[7:0], output reg [15:0] led pin

//8个拨动开关 //16个led灯

```
case({sw_pin[0],sw_pin[1],sw_pin[2]})
        0: begin
                   led_pin[0] <= 0;
                   led pin[1] <= 0;
           end
        1: begin
                  led pin[0] <= 1;
                   led_pin[1] <= 0;
        2: begin
                  led pin[0] <= 1;
                  led_pin[1] <= 0;
           end
        3: begin
                  led pin[0] <= 0;
                  led_pin[1] <= 1;
           end
        4: begin
                  led pin[0] <= 1;
                  led_pin[1] <= 0;
        5: begin
                  led pin[0] <= 0;
                  led pin[1] <= 1;
           end
        6: begin
                  led pin[0] <= 0:
                  led pin[1] <= 1;
        7: begin
                  led_pin[0] <= 1;
                  led pin[1] <= 1;
           end
endcase
```

行为描述方式

表 4.7 全加器真值表

A_i	\mathbf{B}_i	C_{i-1}	S_i	C_i
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

🧐 example 4 9 2 EGO1.v - 记事本 文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H) //采用数据流描述方式实现例题4.9的全加器FA电路,输入为开发板上最左边的3/

`timescale 1ns / 1ps

module example 4 9 1(input sw pin[7:0], output [15:0] led pin

数据流描述方式

assign {led pin[1], led pin[0]} = sw_pin[0] + sw_pin[1] + sw_pin[2];

endmodule

assign {led_pin[1], led_pin[0]} = sw_pin[0] + sw_pin[1] + sw_pin[2];

• 5、(验证实验) 例题4.12的实现(a)

- 请分别用结构化描述方式和行为描述方式实现例题4.12的判断献血者与受血者血型是否相容的电路(采用血型编码I),该电路有4个输入、1个输出。
- 输入为开发板上最左边的2个拨动开关和最右边的2个开关,输出为开发板上最左边的 LED灯。

表 4.8 血型相容规则表

受血	A	В	AB	О
A	7		√	
В		√	√	
AB			√	
О	√	√	√_	√

表 4.9 血型编码(1)

血 型	献	受		
	W X	Y Z		
A	0 0	0 0		
В	0 1	0 1		
AB	1 0	1 0		
О	1 1	1 1		

• 在EGO1开发板上实现例题4.12 (a) 的设计文件:

```
🧻 example 4 12a EGO1.v - 记事本
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
 always @(*)
                         //行为描述方式
 begin
    f <= \sim (a \& b \& c);
 end
endmodule
module nand4 gate(
  input a,
  input b
  input c,
 input d
 output reg f
                         //行为描述方式
 always @(*)
 begin
    f <= \sim (a \& b \& c \& d);
 end
endmodule
module not gate(
  input a,
 output reg f
                         //行为描述方式
 always @(*)
 begin
   f <= ~a;
 end
endmodule
module example 4 12a(
  input sw pin[7:0].
                                            结构化描述方式
 output [15:0] led pin
 wire p1, p2, p3, p4, p5, p6, p7, p8;
  not gate U1(.a(sw pin[0]),.f(p1));
                                                                      //结构化描述方式
 not gate U2(.a(sw pin[1]),.f(p2));
                                                                      //结构化描述方式
                                                                      //结构化描述方式
 not gate U3(.a(sw pin[7]),.f(p3));
 not gate U4(.a(sw pin[6]),.f(p4));
                                                                      //结构化描述方式
  nand3 gate U5(.a(p1),.b(p2),.c(p3),.f(p5));
                                                                       //结构化描述方式
 nand2 gate U6(.a(sw pin[6]),.b(p3),.f(p6));
                                                                      //结构化描述方式
 nand2 gate U7(.a(sw pin[0]),.b(sw pin[1]),.f(p7));
                                                                      //结构化描述方式
 nand3 gate U8(.a(p4),.b(sw pin[1]),.c(sw pin[7]),.f(p8));
                                                                      //结构化描述方式
 nand4 gate U9(.a(p5),.b(p6),.c(p7),.d(p8),.f(led pin[0]));
                                                                      //结构化描述方式
```

endmodule

if((sw_pin[0]==0 & sw_pin[1]==0) & (sw_pin[6]==0 & sw_pin[7]==0) | (sw_pin[0]==0 & sw_pin[1]==0) & (sw_pin[6]==1 & sw_pin[7]==0) | (sw_pin[0]==0 & sw_pin[1]==1) & (sw_pin[6]==1 & sw_pin[7]==1) | (sw_pin[0]==0 & sw_pin[1]==1) & (sw_pin[6]==1 & sw_pin[7]==0) | (sw_pin[0]==1 & sw_pin[1]==1) & (sw_pin[0]==1 & sw_pin[1]==

```
example 4 12a 1 EGO1.v - 记事本
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
//采用行为描述方式实现实现例题4.12血型是否相容的电路(采用血型编码I),输入为开发板上最左边的2个拨动开关和最右边的2个开关,输出为开发板上最左边的LED灯。
`timescale 1ns / 1ps
module example 4 12a 1(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    行为描述方式
         input sw pin[7:0],
                                                                                                                                                                                                                                     //8个拨动开关
         output reg [15:0] led pin
                                                                                                                                                                                                                                    //16个led灯
           always @(*)
                                                                                                                                                                                                                                   //行为描述方式
                            if((sw pin[0] = 0 \& sw pin[1] = 0) \& (sw pin[6] = 0 \& sw pin[7] = 0) | (sw pin[0] = 0 \& sw pin[1] = 0) \& (sw pin[6] = 1 \& sw pin[7] = 0) | (sw pin[0] = 0 \& sw pin[1] = 0) & (sw pin[6] = 1 \& sw pin[7] = 0) | (sw pin[0] = 0 \& sw pin[1] = 0) & (sw pin[1] = 0) & (sw
                                                                                                                   led pin[0] <= 1;
                            else
                                                                                                                  led pin[0] <= 0;
          end
endmodule
```

表 4.9 血型编码(1)

血 型	献	受
	w x	Y Z
A	0 0	0 0
В	0 1	0 1
AB	1 0	1 0
O	1 1	1 1

表 4.8 血型相容规则表

受血献血	A	В	AB	0
A	/		√	
В		√	√	
AB			√	
О	√	√	√_	√_

• 6、(验证实验)例题4.16的实现

- 分别用<mark>结构化描述方式和数据流描述方式</mark>实现例题4.16增加冗余项前的组合逻辑电路 (F=A·B+/A·C),以及增加冗余项后的组合逻辑电路(F=A·B+/A·C+B·C),该电路有 3个输入、1个输出。
- 输入为开发板上最左边的3个拨动开关。
- 输出为开发板上最左边的LED灯(增加冗余项前)和最右边的LED灯(增加冗余项后)。

增加冗余项前的电路

图 4.23 增加冗余项后的逻辑电路

• 在EGO1开发板上实现例题4.16的设计文件:


```
■ example 4_16_1_EGO1.v - 记事本
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)

//采用数据流描述方式实现例题4.16的组合逻辑电路(增加冗余项前),以及增加冗余项后的组合逻辑电路

`timescale 1ns / 1ps

module example 4_9_1(
    input sw_pin[7:0],
    output [15:0] led_pin

);

assign led_pin[0] = (sw_pin[0] & sw_pin[1]) | (~sw_pin[0] & sw_pin[2]);
```

assign led pin[7] = (sw pin[0] & sw pin[1]) | (~sw pin[0] & sw pin[2]) | (sw pin[1] & sw pin[2]);

endmodule

图 4.23 增加冗余项后的逻辑电路

 $F=A\cdot B+/A\cdot C$

 $F=A\cdot B+/A\cdot C+B\cdot C$

• 7、(设计实验,课后完成)例题4.2的实现

- 请分别用结构化描述方式、行为描述方式和数据流描述方式实现例题4.2的半加器HA电路,该电路有2个输入、2个输出。
- 输入为开发板上最左边的2个拨动开关,输出为开发板上最左边的2个LED灯。
- EGO1开发板(结构化描述方式):工程命名为example 4 2 EGO1,设计文件命名为example 4 2 EGO1.v,约束文件为EGO1.xdc。
- EGO1开发板(行为描述方式): 工程命名为example 4 2 1 EGO1,设计文件命名为example 4 2 1 EGO1.v,约束文件为EGO1.xdc。
- EGO1开发板(数据流描述方式):工程命名为example_4_2_2_EGO1,设计文件命名为example_4_2_2_EGO1.v,约束文件为EGO1.xdc。

图4.3(a) 逻辑电路

表 4.2 真值表

A	В	s	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

·8、(设计实验,课后完成)例题4.12的实现(b)

- 请分别用结构化描述方式和行为描述方式实现例题4.12的判断献血者与受血者血型是否相容的电路(采用血型编码II),该电路有4个输入、1个输出。
- 输入为开发板上最左边的2个拨动开关和最右边的2个开关,输出为开发板上最左边的 LED灯。
- EGO1开发板(结构化描述方式):工程命名为example 4 12b EGO1,设计文件命名为example 4 12b EGO1.v,约束文件为EGO1.xdc。
- EGO1开发板(行为描述方式):工程命名为example_4_12b_1_EGO1,设计文件命名为example_4_12b_1_EGO1.v,约束文件为EGO1.xdc。

表 4.8 血型相容规则表

受血	A	В	АВ	О
A	V		~	
В		√	√	
AB			√	
O	√	√	√	~

表 4.10 血型编码(2)

-670	献	受
血型	W X	Y Z
0	0 0	0 0
A	0 1	0 1
В	1 0	1 0
AB	1 1	1 1

• 9、(设计实验,课后完成)例题4.17的实现

- 请分别用结构化描述方式和数据流描述方式实现例题4.17增加冗余项前的组合逻辑电路(F=/A·C+B·/C·D+A·/B·/C),以及增加冗余项后的组合逻辑电路(F=/A·C+B·/C·D+A·/B·D+A·/C·D),该电路有4个输入、1个输出。
- 输入为开发板上最左边的4个拨动开关。
- 输出为开发板上最左边的LED灯(增加冗余项前)和最右边的LED灯(增加 冗余项后)。
- EGO1开发板(结构化描述方式): 工程命名为example_4_17_EGO1,设计文件命名为example_4_17_EGO1.v,约束文件为EGO1.xdc。
- EGO1开发板(数据流描述方式): 工程命名为example_4_17_1_EGO1,设计文件命名为example_4_17_1_EGO1.v,约束文件为EGO1.xdc。

• 10、(选做实验) 例题4.4的实现

- 请分别用结构化描述方式和行为描述方式实现例题4.4的3变量多数表决电路,该电路有3个输入、1个输出。
- 输入为开发板上最左边的3个拨动开关,输出为开发板上最左边的1个LED 灯。

表 4.4 真值表

Α	В	(,	F
0	0	()	0
0	0	1	0
0	1	()	0
0	1	1	1
1	0	()	0
1	0	1	1
1	1	()	1
1	1	1	1

• 11、(选做实验) 例题4.6的实现

- 请分别用结构化描述方式(有2个不同的电路)和行为描述方式实现例题4.6的乘法器电路(用于产生两个2位二进制数相乘的积),该电路有4个输入、4个输出,该实验有3个小实验(方法I电路的结构化描述方式,方法II电路的结构化描述方式,行为描述方式)。
- 输入为开发板上最左边的2个拨动开关和最右边的2个拨动开关,输出为开发板上最左边的4个LED灯。

图 4.7 方法 I 的逻辑电路

图 4.8 方法Ⅱ的逻辑电路

表 4.5 真值表

A 1	A_0	B_1	B_0	M 3	M 2	Mı	Мо	A 1	Αo	B_1	B_0	M ₃	M ₂	M ₁	M
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0
0	0	1	1	0	0	0	0	1	0	1	1	0	1	1	0
0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1	1	1	0	1	0	0	1	1
0	1	1	0	0	0	1	0	1	1	1	0	0	1	1	0
0	1	1	1	0	0	1	1	1	1	1	1	1	0	0	1

• 12、(选做实验) 例题4.7的实现

- 请分别用结构化描述方式和行为描述方式实现例题4.7的判别以余3码表示的1位十进制数是否为合数的电路,该电路有4个输入、1个输出。
- 输入为开发板上最左边的4个拨动开关,输出为开发板上最左边的1个LED灯。

图 4.10 逻辑电路

表 4.6 真值表

A	В	С	D	F	A	В	С	D	F
0	0	0	0	d	1	0	0	0	0
0	0 .	0	1	d	1	0	0	1	1
0	0	1	0	d	1	0	1	0	0
0	0	1	1	0	1	0	1	1	1
0	1	0	0	0	1	1	0	0	1
0	1	0	1	0	1	1	0	1	d
0	1	1	0	0	1	1	1	0	d
0	1	1	1	1	1	1	1	1	d

• 13、(选做实验) 例题4.8的实现

- 请分别用结构化描述方式(有2个不同的电路)和行为描述方式实现例题4.8的组合逻辑电路,该电路有3个输入、2个输出,该实验有3个小实验(电路I的结构化描述方式,电路II的结构化描述方式,行为描述方式)。
- 输入为开发板上最左边的3个拨动开关,输出为开发板上最左边的2个LED灯。

图 4.11 组合逻辑电路结构框图

真值表

Α	В	С	F1	F2
0	0	0	0	0
0	0	1	1	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	1
1	1	1	1	1

• 14、(选做实验) 例题4.10的实现

- 请用结构化描述方式(有2个不同的电路)实现例题4.10的组合逻辑电路,该 电路有4个输入、1个输出。
- 输入为开发板上最左边的4个拨动开关,输出为开发板上最左边的LED灯(简化前的电路)和最右边的LED灯(简化后的电路)。

• 15、(选做实验) 例题4.11的实现

- 请用结构化描述方式(有2个不同的电路)实现例题4.11的组合逻辑电路, 该电路有3个输入、1个输出。
- 输入为开发板上最左边的3个拨动开关、输出为开发板上最左边的LED灯(简化前的电路)和最右边的LED灯(简化后的电路)。

(二) 在FPGA开发板上实现教材第4章的习题

• 1、(选做实验) 习题4.1的实现

- 请采用结构化描述方式在FPGA开发板上实现习题4.1的电路(图4.27),以及简化后的电路。
- 输入为开发板上最左边的3个拨动开关(ABC),输出为开发板上最左边的LED灯(简化前)和最右边的LED灯(简化后)。
- EGO1开发板: 工程命名为exercise 4 1 EGO1,设计文件命名为exercise 4 1 EGO1.v,约束文件为EGO1.xdc。

• 2、(选做实验) 习题4.2的实现

- 请采用<mark>结构化描述方式</mark>在FPGA开发板上实现习题4.2的电路(图4.28),以及<mark>改用异或门</mark>实现的电路。
- 输入为开发板上最左边的3个拨动开关(ABC),输出为开发板上最左边的LED灯(图4.28的电路)和最右边的LED灯(改用异或门实现的电路)。

• 3、(选做实验) 习题4.3的实现

- 请分别采用结构化描述方式(根据图4.29)和行为描述方式(根据真值表)在FPGA开发板上 实现习题4.3的电路。
- 输入为开发板上最左边的4个拨动开关(ABCD),输出为开发板上最左边的4个LED灯(WXYZ)。

4.3 分析图 4.29 所示组合逻辑电路,列出真值表,说明该电路的逻辑功能。

• 4、(选做实验)习题4.4的实现

- 请分别采用<mark>行为描述方式</mark>(根据题目要求)和<mark>结构化描述方式(</mark>根据设计好的电路)在FPGA 开发板上实现习题4.4要求的组合逻辑电路。
- 输入为开发板上最左边的2个拨动开关(A_2A_1)和最右边的2个拨动开关(B_2B_1),输出为开发板上最左边的LED灯(Z)。

EGO1开发板

4.4 设计一个组合逻辑电路,该电路输入端接收两个 2 位二进制数 A=A₂A₁,B=B₂B₁。当 A>B 时,输出 Z=1,否则 Z=0。

• 5、(选做实验) 习题4.5的实现

- 请分别采用<mark>行为描述方式</mark>(根据题目要求)和<mark>结构化描述方式</mark>(根据设计好的电路)在FPGA 开发板上实现习题4.5要求的代码转换电路。
- 输入为开发板上最左边的4个拨动开关(余3码),输出为开发板上最左边的4个LED灯(2421码)。

4.5 设计一个代码转换电路,将1位十进制数的余3码转换成2421码。

• 6、(选做实验)习题4.6(1)的实现

- 请分别采用<mark>行为描述方式</mark>(根据题目要求)和<mark>结构化描述方式</mark>(根据设计好的电路)在FPGA 开发板上实现习题4.6(1)要求的组合逻辑电路。
- $\frac{\mathbf{h}}{\mathbf{h}}$ 为开发板上最左边的2个拨动开关(X=AB), $\frac{\mathbf{h}}{\mathbf{h}}$ 为开发板上最左边的4个LED灯(Y=Y $_3$ Y $_2$ Y $_1$ Y $_0$)。

4.6 假定 X=AB 代表一个 2 位二进制数,试设计满足如下要求的逻辑电路(Y 也用二进制数表示):

(1)
$$Y = X^2$$

• 7、(选做实验)习题4.6(2)的实现

- 请分别采用行为描述方式(根据题目要求)和结构化描述方式(根据设计好的电路)在FPGA 开发板上实现习题4.6(2)要求的组合逻辑电路。
- $\frac{\mathbf{h}}{\mathbf{h}}$ 为开发板上最左边的2个拨动开关(X=AB), $\frac{\mathbf{h}}{\mathbf{h}}$ 为开发板上最左边的5个LED灯(Y=Y₄Y₃Y₂Y₁Y₀)。

4.6 假定 X=AB 代表一个 2 位二进制数,试设计满足如下要求的逻辑电路(Y 也用二进制数表示):

(2) $Y = X^3$

•8、(选做实验) 习题4.7的实现

- 请分别采用<mark>行为描述方式</mark>(根据题目要求)和<mark>结构化描述方式</mark>(根据设计好的电路)在FPGA 开发板上实现习题4.7要求的组合逻辑电路。
- 输入为开发板上最左边的4个拨动开关(2421码),输出为开发板上最左边的LED灯(F)。

4.7 用与非门设计一个组合逻辑电路,该电路输入为1位十进制数的2421码,当输入的数字为素数时,输出F为1,否则F为0。

• 9、(选做实验) 习题4.8的实现

- 请分别采用<mark>行为描述方式</mark>(根据题目要求)和<mark>结构化描述方式</mark>(根据设计好的电路)在FPGA 开发板上实现习题4.8要求的组合逻辑电路。
- 输入为开发板上最左边的4个拨动开关(8421码),输出为开发板上最左边的LED灯(F)。

4.8 设计一个"四舍五入"电路。该电路输入为 1 位十进制数的 8421 码,当其值大于或等于 5 时,输出 F 的值为 1,否则 F 的值为 0。

• 10、(选做实验) 习题4.9的实现

- 请分别采用<mark>行为描述方式</mark>(根据题目要求)和<mark>结构化描述方式</mark>(根据设计好的电路)在FPGA 开发板上实现习题4.9要求的组合逻辑电路。
- 输入为开发板上最左边的4个拨动开关(4位二进制数),输出为开发板上最左边的LED灯。

4.9 设计一个检测电路,检测 4 位二进制码中 1 的个数是否为偶数。若为偶数个 1,则输出为 1,否则输出为 0。

• 11、(选做实验) 习题4.10的实现

- 请分别采用数据流描述方式(根据题目要求)和结构化描述方式(根据设计好的电路)在
 FPGA开发板上实现习题4.10要求的组合逻辑电路。
- <mark>输入</mark>为开发板上最左边的3个拨动开关(A_i 、 B_i 、 C_{i-1})和最右边的1个开关(M),<mark>输出</mark>为开发 板上最左边的2个LED灯(S_i 、 C_i)。

4.10 设计一个加/减法器,该电路在 M 控制下进行加、减运算。当 M=0 时,实现全加器功能;当 M=1 时,实现全减器功能。

• 12、(选做实验) 习题4.11(1)的实现

- 请采用<mark>结构化描述方式</mark>在FPGA开发板上实现习题4.11(1)的组合逻辑电路(F=A·/B+/A·C+B·/C),以及用与非门实现的电路。
- 输入为开发板上最左边的3个拨动开关(ABC),输出为开发板上最左边的LED灯(F=A·/B+/A·C+B·/C)和最右边的LED灯(用与非门实现)。

4.11 在输入不提供反变量的情况下,用与非门组成实现下列函数的最简电路。

(1) $F = A \overline{B} + \overline{A}C + B\overline{C}$

• 13、(选做实验) 习题4.11(2) 的实现

- 请采用结构化描述方式在FPGA开发板上实现习题4.11(2)的组合逻辑电路(F=A·/B·/C+B·C·/D+A·/C·/D+/B·C·D),以及用与非门实现的电路。
- 输入为开发板上最左边的4个拨动开关(ABCD),输出为开发板上最左边的LED灯(F=A·/B·/C + B·C·/D + A·/C·/D + /B·C·D)和最右边的LED灯(用与非门实现)。

4.11 在输入不提供反变量的情况下,用与非门组成实现下列函数的最简电路。 (2) $F = A \overline{B} \overline{C} + B C \overline{D} + A \overline{C} \overline{D} + \overline{B} C D$

• 14、(选做实验) 习题4.12(3) 的实现

- 请采用<mark>结构化描述方式</mark>在FPGA开发板上实现习题4.12(3)的组合逻辑电路 (F=(A+/B)·(/A+/C)),以及增加冗余项后的电路。
- 输入为开发板上最左边的3个拨动开关(ABC),<mark>输出</mark>为开发板上最左边的LED灯(增加冗余项前,F=(A+/B)·(/A+/C))和最右边的LED灯(增加冗余项后)。

4.12 下列函数描述的电路是否可能产生险象?在什么情况下产生险象?若产生险象,试用增加冗余项的方法消除。

(3)
$$F_3 = (A + \overline{B})(\overline{A} + \overline{C})$$

实验要求

- 1、在Logisim上完成验证实验,将实验过程中的主要结果通过截屏(或拍照)的方式,拷贝到实验报告中,并给予适当的文字说明。
- 2、在FPGA开发板上完成<mark>验证实验</mark>,将实验过程中的主要结果通过截屏(或拍照)的方式,拷贝到实验报 告中,并给予适当的文字说明。
- 3、在Logisim上完成设计实验,设计文件命名为: 第四章习题的实现.circ。
- 4、在FPGA开发板上完成<mark>设计实验</mark>,工程文件、设计文件、约束文件请严格按照规定的要求命名。
- 5、实验报告命名为: 学号+姓名+第3次实验报告.docx。
- 6、将设计文件、实验报告打包压缩成1个压缩文件,命名为: 学号+姓名+第3次实验.zip(或.rar),并上 传到FTP上,上传截止日期: 2024年10月20日晚上24点。
- 7、鼓励有兴趣的同学完成选做实验。

Thanks