SMART MANUFACTURING E X P E R I E N C E

June 7-9, 2022
Pittsburgh, PA
smartmanufacturingexperience.com

Introduction to Building Machine Learning Models with a Simple Manufacturing Application

Andy Henderson, Ph.D.

Chief Technology Officer

Praemo Inc.

Matthew Krugh, Ph.D.

Postdoctoral Research Fellow

Clemson University

SMART MANUFACTURING EXPERIENCE OVERVIEW

- Why ML and where do you start?
- Dataset overview
- Importing and cleaning
- Analysis
- Modeling

SMART MANUFACTURING Why Deploy ML?

- Volume of Data (existing and being newly created) is too LARGE!
- New products and processes creating variation in data
- Time savings (saving people time)
- Find hidden or unexpected phenomena

- ML learns automatically from historical data to identify unexpected behaviors and patterns and predict future trends

SMART MANUFACTURING What is A!?

Inspiration

Human Intelligence

- "...cognitive capacity and stock of knowledge available at a given time." (Maier)
- "Ability to think abstractly and rationally and to derive purposeful knowledge and action from it." (Duden)
- → Knowledge and Adaptation on the basis of information obtained from previously acquired data acquisition.

Machine

A machine which perceives its condition and environment and learns from and adapts to it.

Artificial General Intelligence (Strong AI)
The capability of a machine to learn anything that a human being can.

VS.

Artificial Narrow Intelligence (Weak AI)
The capability of a machine to learn a specific problem at least as good as but rather better than a human being can.

SMART MANUFACTURING What is A!?

Most important requirement for most AI application is <u>data</u>. You need to understand the types of data to understand how to handle it

- Qualitative: Categorical data in ordered (nominal) or unordered (ordinal) way
- Quantitative: Numerical data in discrete or indiscrete way
- <u>Single values</u>: *Time-independent data points*
- <u>Time-series</u>: *Time-dependent series of data points*
- <u>Structured</u>: Data which can be represented in a table
- <u>Unstructured</u>: Images, signals, sounds, ...
- <u>Historical</u>: *Stored data from the past*
- <u>Present</u>: Data from current processes

Without analytical processing, data are just a series of bits. Data is important, but don't stop there.

SMART MANUFACTURING What is A!?

Data Science

 Statistical methods to analyze hypotheses about data

Machine Learning

Statistical learning methods to build models

Deep learning

 Artificial neural networks that try to mimic the human brain as we understand it

Artificial Intelligence

 Systems that resemble human intelligence (learn, reason, convey information)

Machine Learning and Al Overview

How do we change traditional programming around for machine learning?

Machine Learning and Al Overview

How do we change traditional programming around for machine learning?

Traditional Programming

Expected Output

Expected Output

Model

SMART MANUFACTURING

EXPERIENCE How are things learned?

- Observe a set of examples Training Data
 - Displacement measurements relative to mass changes
- Infer something about the process that generated the data
 - Fit a polynomial curve using linear regression
- Use inference to make predictions about previously unseen data <u>Test Data</u>
 - Predict displacement for other weights

Tested Mass vs Distance

Mass 1 = Distance 1

Mass 2 = Distance 2

Mass 3 = Distance 3

Mass n = Distance n

Untested Mass vs Distance Mass 1.5 = Predicted Distance 1.5

SMART MANUFACTURING EXPERIENCE Hurdles to ML

- Question being asked (Objectives)
- Knowledge and/or experience
- Company culture
- Timeline
- Being willing to take that first step...

Dataset - Synthetic Process Dataset

Training Data
Dark lines represent 'bad' data
Light blue represents 'good' cycles

SMART MANUFACTURING E X P E R I E N C E

June 7-9, 2022
Pittsburgh, PA
smartmanufacturingexperience.com

Importing and Cleaning Data

SMART MANUFACTURING EXPERIENCE

June 7-9, 2022
Pittsburgh, PA
smartmanufacturingexperience.com

Data Analysis

Modeling Process Overview

The Data used at each stage should be independent from the other stages

EXPERIENCE Models Types Used Today

Supervised Learning

- The model compares its predictions with a real result and updates its parameters according to that.
- Required: Training data with known results for the predicted output (labeled data)

Unsupervised Learning

- The model clusters data or
- The model reduces the data to make it more interpretable
- Required: Usually a large data set to recognize patterns

SMART MANUFACTURING E X P E R I E N C E

June 7-9, 2022
Pittsburgh, PA
smartmanufacturingexperience.com

Model Building

SMART MANUFACTURING

EXPERIENCE ION MILL Analysis

- Explore data to determine how to parse
- **Unsupervised Learning to** cluster based on similarity
- Next... label clusters to run supervised learning

SMART MANUFACTURING

EXPERIENCE Contact Info

Andy Henderson, Ph.D.

Email:

andy.henderson@praemo.com

Phone: (864) 230-9015

LinkedIn:

https://www.linkedin.com/in/andyhend/

Website:

https://praemo.com

Matthew Krugh, Ph.D.

Email:

mkrugh@clemson.edu

Phone: (412) 401-7764

LinkedIn:

https://www.linkedin.com/in/matthew-krugh

Website:

https://clemsonvac.com/

