F-VLM: OPEN-VOCABULARY OBJECT DETECTION UPON FROZEN VISION AND LANGUAGE MODELS

ICLR 2023

报告人:徐静远

1	作者介绍	
2	研究背景	
3	研究方法	
4	实验效果	
5	总结	

1	作者介绍	
2	研究背景	
3	研究方法	
4	实验效果	
5	总结	

作者介绍

Weicheng Kuo*, Yin Cui[†], Xiuye Gu[†], AJ Piergiovanni*, Anelia Angelova* *Google Research, Brain Team; [†]Google Research, Perception {weicheng, yincui, xiuyegu, ajpiergi, anelia}@google.com

Weicheng Kuo

Proceedings of the National Academy of Sciences 116 (45), 22737-22745

FOLLOW

<u>Google</u> Brain Verified email at google.com - <u>Homepage</u> Computer Vision

TITLE	CITED BY	YEAR
Deepbox: Learning objectness with convolutional networks	204	2015
W Kuo, B Hariharan, J Malik Proceedings of the IEEE international conference on computer vision, 2479-2487		
Proceedings of the IEEE International conference on computer vision, 2473-2407		
Open-vocabulary object detection via vision and language knowledge distillation	166	2021
X Gu, TY Lin, W Kuo, Y Cui		
arXiv preprint arXiv:2104.13921		
Expert-level detection of acute intracranial hemorrhage on head computed tomography using	163	2019
deep learning		
W Kuo, C Häne, P Mukheriee, J Malik, EL Yuh		

1	作者介绍	
2	研究背景	
3	研究方法	
4	实验效果	
5	总结	
	心に口	

研究背景一: 视觉语言模型

- □可用于开放类的视觉语言模型
 - > 以CLIP 为例[1]

图2: CLIP模型的推理方式,可用于开放类

研究背景二: 开放类目标检测

□ 特点

- > 从视觉语言模型蒸馏知识
- > 结合检测模型,可以做open-vocabulary和 zero-shot

□ 难点:

- 开放词汇需要对视觉和语言嵌入的高度理解
- 强调泛化性就需要更大规模数据和模型

1	作者介绍	
2	研究背景	
3	研究方法	
_		
4	实验效果	
5	总结	

Motivation

- ▶ 原始的视觉语言模型的语义提取能力和局部性很好(CLIP)
- » 冻结encoder可以减少训练和计算的消耗

- □ 训练流程
 - ▶ 借鉴了Mask-RCNN的head设计方案
 - > 检测得分定义为 $\mathbf{z}(\mathbf{r}_b) = Softmax(\frac{1}{\tau} \left[cos(\mathbf{r}_b, \mathbf{t}_{bg}), cos(\mathbf{r}_b, \mathbf{t}_1), \cdots, cos(\mathbf{r}_b, \mathbf{t}_{|C_B|}) \right])$

(a) **F-VLM training architecture**. At training time, F-VLM is simply a detector with the last classification layer replaced by base-category text embeddings. The detector head is the only trainable part of the system, which includes RPN (Ren et al., 2015), FPN (Lin et al., 2017), and Mask R-CNN heads (He et al., 2017).

□ 测试流程

- > 测试过程中使用新类的语言嵌入定义视觉语言得分
- 》视觉语言得分 $\mathbf{w}(\mathbf{v}_b) = Softmax(\frac{1}{T}\left[cos(\mathbf{v}_b, \mathbf{t}_{bg}), \, cos(\mathbf{v}_b, \mathbf{t}_1), \, \cdots, \, cos(\mathbf{v}_b, \mathbf{t}_{|C_{B \cup N}|})\right])$

(b) **F-VLM inference architecture**. At test time, F-VLM uses the region proposals to crop out the top-level features of VLM backbone and compute the VLM score per region. The trained detector head provides the detection boxes and masks, while the classification scores are a combination of detection and VLM scores.

□ 测试流程

- > 结合检测得分和视觉语言得分,采取几何平均方案
- 》融合策略 $s(\mathbf{r}_b)_i = \begin{cases} z(\mathbf{r}_b)_i^{(1-\alpha)} \cdot w(\mathbf{v}_b)_i^{\alpha} & \text{if } i \in C_B \\ z(\mathbf{r}_b)_i^{(1-\beta)} \cdot w(\mathbf{v}_b)_i^{\beta} & \text{if } i \in C_N \end{cases}$

(b) **F-VLM inference architecture**. At test time, F-VLM uses the region proposals to crop out the top-level features of VLM backbone and compute the VLM score per region. The trained detector head provides the detection boxes and masks, while the classification scores are a combination of detection and VLM scores.

4	实验效果	
3	研究方法	
2	研究背景	
1	作者介绍	

□ LVIS v1 [1]

> 866个基类(frequent & common), 337个新类(rare)

□ COCO [2]

> 48个基类, 17个新类, 移除不包含在WordNet的15类

(b) Object localization

^{[1].} Gupta et al. Lvis: A dataset for large vocabulary instance segmentation. CVPR2019

^{[2].} Lin et al. Microsoft COCO: Common Objects in Context. ECCV2014

□LVIS数据集

Backbone (# Params)	Pretrained CLIP	Method	Distill	Trainable Backbone	AP_r	AP
R50 Comparison:						
R50	ViT-B/32	ViLD (Gu et al., 2022)	✓	✓	16.1	22.5
R50	ViT-B/32	ViLD-Ens. (Gu et al., 2022)	✓	✓	16.6	25.5
R50	ViT-B/32	DetPro (Du et al., 2022) [‡]	✓	✓	19.8	25.9
R50	ViT-B/32	Detic-ViLD (Zhou et al., 2022c)*	X	✓	17.8	26.8
R50	R50	RegionCLIP (Zhong et al., 2022) [†]	✓	✓	17.1	28.2
R50	R50	F-VLM (Ours)	X	X	18.6	24.2
System-level Comparis	on:					
R152 (60M)	ViT-B/32	ViLD (Gu et al., 2022)	✓	✓	18.7	23.6
R152 (60M)	ViT-B/32	ViLD-Ens. (Gu et al., 2022)	✓	✓	18.7	26.0
EN-B7 (67M)	ViT-L/14	ViLD-Ens. (Gu et al., 2022)	✓	✓	21.7	29.6
EN-B7 (67M)	EN-B7*	ViLD-Ens. (Gu et al., 2022)	✓	✓	26.3	29.3
R50 (26M)	ViT-B/32	DetPro-Cascade (Du et al., 2022) [‡]	✓	✓	20.0	27.0
R50 (26M)	ViT-B/32	Detic-CN2 (Zhou et al., 2022c)*	X	✓	24.6	32.4
R50x4 (87M)	R50x4	RegionCLIP (Zhong et al., 2022) [†]	✓	✓	22.0	32.3
ViT-L/14 (303M)	ViT-L/14	OWL-ViT (Minderer et al., 2022)	X	✓	25.6	34.7
R50x4 (87M)	R50x4	F-VLM (Ours)	X	×	26.3	28.5
R50x16 (167M)	R50x16	F-VLM (Ours)	X	×	30.4	32.1
R50x64 (420M)	R50x64	F-VLM (Ours)	X	×	32.8	34.9

□ COCO数据集

Method	Training source	Novel AP	AP
WSDDN (Bilen & Vedaldi, 2016) Cap2Det (Ye et al., 2019)	image-level labels in $C_B \cup C_N$	19.7 20.3	19.6 20.1
ZSD (Bansal et al., 2018) DELO (Zhu et al., 2020) PL (Rahman et al., 2020)	instance-level labels in C_B	0.31 3.41 4.12	24.9 13.0 27.9
OVR-CNN (Zareian et al., 2021)	image captions in $C_B \cup C_N$ instance-level labels in C_B	22.8	39.9
CLIP-RPN (Gu et al., 2022) ViLD (Gu et al., 2022) Detic* (Zhou et al., 2022c) RegionCLIP [‡] (Zhong et al., 2022) RegionCLIP [†] (Zhong et al., 2022) RegionCLIP* (Zhong et al., 2022) F-VLM (Ours)	CLIP image-text pairs instance-level labels in C_B	26.3 27.6 27.8 31.4 26.8 14.2 28.0	27.8 51.3 45.0 50.4 47.5 42.7 39.6

□训练需求

Table 3: **Training Resource Benchmark.** We report LVIS mask AP_r to show the performance vs training cost trade-off. F-VLM can outperform ViLD (Gu et al., 2022) with $226 \times$ less compute.

Method	Mask AP _r	#Iters	Epochs	Training Cost (Per-Core-Hour)	Training Cost Savings
ViLD-EN-B7 (Gu et al., 2022)	26.3	180k	460	8000	1×
F-VLM (Ours) F-VLM (Ours)	32.8 31.0	46.1k 5.76k	118 14.7	565 71	14× 113×
F-VLM (Ours)	27.7	2.88k	7.4	35	$226 \times$

□迁移效果

Table 4: **Transfer detection of F-VLM**. We evaluate LVIS-trained F-VLM on COCO and Objects365 without finetuning. F-VLM demonstrates strong scaling property with a gain of +7.3/+5.8 AP on COCO/Objects365 by increasing backbone capacity.

Method	COCO			Objects365		
Wichiod	AP	AP_{50}	AP_{75}	AP	AP_{50}	AP_{75}
Supervised (Gu et al., 2022)	46.5	67.6	50.9	25.6	38.6	28.0
ViLD-R50 (Gu et al., 2022)	36.6	55.6	39.8	11.8	18.2	12.6
DetPro-R50 (Du et al., 2022)	34.9	53.8	37.4	12.1	18.8	12.9
F-VLM-R50 (Ours)	32.5	53.1	34.6	11.9	19.2	12.6
F-VLM-R50x4 (Ours)	36.0	57.5	38.7	14.2	22.6	15.2
F-VLM-R50x16 (Ours)	37.9	59.6	41.2	16.2	25.3	17.5
F-VLM-R50x64 (Ours)	39.8	61.6	43.8	17.7	27.4	19.1

LVIS Novel Categories

Ego4D Transfer

1	F者介绍
---	------

- 研究背景
- 研究方法
- 实验效果
- 总结

总结

□总结

- ▶ 本文和很多OVOD方法落脚点相似, MaskRCNN+CLIP:
 - ▶ ViLD, DetPro等方法通过知识蒸馏
 - ▶ GLIP, OVD-ViT走大规模预训练+finetuen策略
- ▶ 本文特点在于:确立了固定backbone的思路保持模型泛化能力,因为 finetune本身对域外数据不友好(如表5)
- ▶ 借助大模型能力对于零样本、长尾任务有降维打击效果

Table 5: **Finetuning vs frozen backbone.** Finetuning does not benefit the novel categories (AP_r) but improves the base categories (AP_c, AP_f) .

Backbone LR	$\mid AP_r$	AP_c	AP_f	AP
	18.1 18.1		30.2 28.8	
0.0	18.6 (+0.5)	24.0	26.9	24.2

