

Data Science and Machine Learning 2187 & 2087: Unsupervised Learning

Max Thomasberger, December 4, 2020

Goals of this lecture

- Understand the difference between unsupervised- and supervised learning
- Understand the definition of hard clustering
- Understand clustering cost from different similarity measures
- Understand the K-means algorithm
- Understand the K-medeoids algorithm

Some notation

Feature vectors x, labels y

$$x \in \mathbb{R}^d$$
$$y \in \{-1, 1\}$$

Training set

$$S_n = \{(x^{(i)}, y^{(i)}), i = 1, ..., n\}$$

Classifier

$$h: \mathbb{R}^d \to \{-1, 1\}$$

Supervised Learning vs. Unsupervised Learning

- ▶ In supervised learning we have labeled data: $S_n = \{(x^{(i)}, y^{(i)}), i = 1, ..., n\}$ and want to learn to correctly classify unseen data
 - Think of:
 - A gazillion of photos with a "cat" and "not cat" classification.
 - etc.
- ▶ In clustering we only have feature vectors: $S_n = \{x^{(i)} | i = 1, \dots, n\}$ and want to find structures in unlabeled data
 - ► Think of:
 - Clustering a data set of customer into groups
 - Find spatial patterns, e.g. crime hotspots
 - Find similar news stories
 - Recommend products to customers "like you"
 - Create labels for supervised learning algorithms
 - Exploratory data analysis
- Types
 - Hard clustering
 - Soft clustering
 - ► Hierarchical clustering

Clustering as Partitioning

Clustering input: $S_n = \{x^{(i)} | i = 1, \dots, n\}, K$

Number of clusters: K

The output of the clustering algorithm are indexes that partition the data: C_1, \dots, C_k ; where $C_1 \cup C_2 \cup \dots \cup C_K = \{1, 2, \dots, n\}$ and $C_i \cap C_i = \emptyset$ {for any $i \neq j$ in $\{1, \dots, k\}$.

In other words: the union of all C_j 's is the original set and the intersection of any C_i and C_j is an empty set.

In plain English:

We want to assign each element of the training data set S_n into K separate clusters in a way that each element only belongs to one cluster.

Clustering as selecting representatives

Clustering input:
$$S_n = \{x^{(i)} | n = 1, \dots, n\}, K$$

Number of clusters: *K*

Select the best representatives of each cluster: $z^{(1)}, \dots, z^{(k)}$.

Similarity Measures-Cost functions

- Cost of partitioning
 - Sum of costs of all individual clusters: $cost(C_1, \dots, C_k) \sum_{i=1}^k cost(C_i)$.
- Cost of a single cluster
 - Sum of distances from data points to the representative of the cluster: $Cost(C, z) = \sum_{i \in C} distance(x^{(i)}, z)$
- Total Cost to be minimized
 - ► Cost $(C_1, ..., C_K) = \sum_{j=1}^K \text{Cost}(C_j) = \sum_{j=1}^K \sum_{i \in C_j} ||x_i z_j||^2$

Two common distance measures

- ► Cosine similarity: $cos(x^{(i)}, x^{(j)}) = \frac{x^{(i)} \cdot x^{(j)}}{||x^{(i)}||||x^{(j)}||}$
 - Is not sensitive of magnitude of vector (will not react to length).
- ▶ Euclidean squared distance: $dist(x^{(i)}, x^{(j)}) = ||x^{(i)} x^{(j)}||^2$.
 - ▶ Will react to length of the vectors

- ➤ The Euclidean distance between any two points is the square root of the sum of squares of differences between the coordinates. Straight line distance between any two points (pythagorean theorem)
- ▶ In two dimensions: $dist(p,q) = \sqrt{(p_1 q_1)^2 + (p_2 q_2)^2}$.
- Squared Euclidean distance is the sum of squares: $dist^2(p,q) = (p_1 q_1)^2 + (p_2 q_2)^2$
- Generalizes to n-dimensions but looses meaning in very high dimensional data

Cosine distance and Cosine similarity

- Cosine similarity between any two points is defined as the cosine of the angle between any two points with the origin as its vertex.
- Cosine distance is defined as: 1 cosine similarity
- ► Cosine distance varies from 0 to 2, whereas cosine similarity varies between -1 to 1.

Iris Dataset

Assign random initialization points (representatives z_j)

Recalculate representatives z_j as centroids of the new cluster (1st round)

Recalculate representatives z_j as centroids of the new cluster (2nd round)

K-means Algorithm

Given a set of feature vectors $S_n = \{x^{(i)} | i = 1, ..., n\}$ and the number of clusters K we can find cluster assignments C_1, \dots, C_K and the representatives of each of the K clusters z_1, \dots, z_K :

- 1. Randomly select z_1, \dots, z_K
- 2. Iterate until no change in cost
 - 2.1 Given z_1, \dots, z_K , assign each data point $x^{(i)}$ to the closest z_j , such that $Cost(z_1, \dots z_K) = \sum_{i=1}^n \min_{j=1,\dots,K} ||x^{(i)} z_j||^2$
 - 2.2 Given C_1, \dots, C_K find the best representatives z_1, \dots, z_K , i.e. find z_1, \dots, z_K such that $z_j = \operatorname{argmin}_z \sum_{i \in C_j} \|x^{(i)} z\|^2$

Minimizing the cost in K-means

K-means only works with Euclidean square distance!

The best representative is found by optimization (gradient with respect to $z^{(j)}$, setting to zero and solving for $z^{(j)}$).

$$\nabla_{z_j} \left(\sum_{i \in \mathbb{C}_j} \|x^{(i)} - z_j\|^2 \right) = 0$$

$$\sum_{i\in\mathbb{C}_j}-2(x^{(i)}-z_j)=0$$

$$z^{(j)} = \frac{\sum_{i \in C_j} x^{(i)}}{|C_j|}$$

It is the centroid of the cluster, where C_j is the size of the respective cluster.

The clustering output that the K-Means algorithm converges to depends on the intialization! Suboptimal initializations are possible.

K-means in pseudo code for two clusters

- 1. Choose any two random coordinates, z_1 and z_2 , on the scatter plot as initial cluster centers.
- 2. Calculate the distance of each data point in the scatter plot from coordinates z_1 and z_2
- 3. Assign each data point to a cluster based on whether it is closer to z_1 or z_2
- 4. Find the mean coordinates of all points in each cluster and update the values of z_1 and z_2 to those coordinates respectively.
- 5. Start again from Step 2 until the coordinates of z_1 and z_2 stop moving significantly, or after a certain pre-determined number of iterations of the process.

Limitations of the K-Means Algorithm

- ▶ Algorithm is only guaranteed to converge to local minimum
- Initialization matters
 - ▶ Bad initalization can lead to suboptimal clusters in pathological cases
- Unlclear how many cluster we should plug into the algo (more about that next lecture)
- Only works with eucledian distance

K-Medoids

Any distance measure possible!

Gives actual data points as representatives.

Finds the cost-minimizing representatives z_1, \dots, z_K for any distance measure. Uses real data points for initialization.

- 1. Randomly select $\{z_1, ..., z_K\} \subseteq \{x_1, ..., x_n\}$
- 2. Iterate until no change in cost
 - 2.1 Given z_1, \dots, z_K , assign each data point $x^{(i)}$ to the closest z_j , so that $Cost(z_1, \dots z_K) = \sum_{i=1}^n \min_{j=1,\dots,K} ||x^{(i)} z_j||^2$
 - 2.2 Given $C_j \in \{C_1, ..., C_K\}$ find the best representative $z_j \in \{x_1, ..., x_n\}$ such that $\sum_{x^{(i)} \in C_j} \operatorname{dist}(x^{(i)}, z_j)$ is minimal

K-Mediods pseudocode

- 1. Choose k data points from the scatter plot as starting points for cluster centers.
- 2. Calculate their distance from all the points in the scatter plot.
- 3. Classify each point into the cluster whose center it is closest to.
- 4. Select a new point in each cluster that minimizes the sum of distances of all points in that cluster from itself.
- 5. Repeat Step 2 until the centers stop changing.

Literature

