ECH4905 ChemE Optimization HW 4

Andres Espinosa

April 14, 2025

1 Problem 1

Consider the following integer programming problem:

maximize
$$1.2y_1 + y_2$$

subject to $y_1 + y_2 \le 1$
 $1.2y_1 + 0.5y_2 \le 1$
 $y_1, y_2 \in \{0, 1\}$

1.1 Part a

Solve the first relaxed LP subproblem by hand using the simplex method and derive Gomory cuts based on the LP relaxation.

Solution: To tackle this problem we first relax the problem and then turn the problem above into the standard form so we can create a simplex tableau from it.

maximize
$$1.2y_1 + y_2$$

subject to $y_1 + y_2 + s_1 = 1$
 $1.2y_1 + 0.5y_2 + s_2 = 1$
 $y_1 + s_3 = 1$
 $y_2 + s_4 = 1$
 $y_1, y_2, s_1, s_2, s_3, s_4 \ge 0$

In matrix notation,

minimize
$$\mathbf{c}^{\top}\mathbf{x}$$

subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \succeq 0$

where

$$\mathbf{c} = \begin{bmatrix} -1.2 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1.2 & 0.5 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} y_1 \\ y_2 \\ s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix}$$

(with a flipped objective component)

The initial simplex tableau for the problem is as follows:

Basic Var	y_1	y_2	s_1	s_2	s_3	s_4	RHS	α
s_1	1	1	1	0	0	0	1	
s_2	1.2	0.5	0	1	0	0	1	
s_3	1	0	0	0	1	0	1	
s_4	0	1	0	0	0	1	1	
obj	-1.2	-1	0	0	0	0	_	_

we can define the slack variables equal to the right hand side, and this is in turn a basic feasible solution, so we can jump into phase 2.

We select the y_1 as the entering variable and calculate the alpha value for each basic variable

Basic Var	y_1	y_2	s_1	s_2	s_3	s_4	RHS	α
s_1	1	1	1	0	0	0	1	$\frac{1}{1}$
s_2	1.2	0.5	0	1	0	0	1	$\frac{1}{12}$
s_3	1	0	0	0	1	0	1	$\frac{1}{1}$
s_4	0	1	0	0	0	1	1	$\frac{1}{0}$
obj	-1.2	-1	0	0	0	0	_	_

We pivot this on the 1st column (y_1) and the 2nd row (s_2)

Basic Var	y_1	y_2	s_1	s_2	s_3	s_4	RHS	α
$\overline{s_1}$	0	$\frac{7}{12}$	1	$-\frac{5}{6}$	0	0	$\frac{1}{6}$	
y_1	1	$\frac{5}{12}$	0	$\frac{5}{6}$	0	0	$\frac{5}{6}$	
s_3	0	$-\frac{5}{12}$	0	$-\frac{5}{6}$	1	0	$\frac{1}{6}$	
s_4	0	1	0	0	0	1	ĺ	
obj	0	-0.5	_	_	_	_	_	_

With blands rule, we pick y_2 and calculate the alpha value for each basic variable.

Basic Var	y_1	y_2	s_1	s_2	s_3	s_4	RHS	α
s_1	0	$\frac{7}{12}$	1	$-\frac{5}{6}$	0	0	$\frac{1}{6}$	$\frac{2}{7}$
y_1	1	$\frac{5}{12}$	0	$\frac{5}{6}$	0	0	$\frac{5}{6}$	$\frac{2}{1}$
s_3	0	$-\frac{5}{12}$	0	$-\frac{5}{6}$	1	0	$\frac{1}{6}$	$-\frac{1}{5}$
s_4	0	1	0	0	0	1	Ĭ	$\frac{1}{1}$
obj	0	-0.5	_	_	_	_	_	_

We pivot on the 2nd column (y_2) and the 1st row (s_1) .

Basic Var	y_1	y_2	s_1	s_2	s_3	s_4	RHS	α
y_2	0	1	$\frac{12}{7}$	$-\frac{10}{7}$	0	0	$\frac{2}{7}$	
y_1	1	0	$-\frac{5}{7}$	$\frac{60}{42}$	0	0	$\frac{30}{42}$	
s_3	0	0	$\frac{5}{7}$	$-\frac{\overline{60}}{42}$	1	0	14	
s_4	0	0	$-\frac{12}{7}$	$\frac{60}{42}^{2}$	0	1	$\frac{\overline{42}}{\underline{30}}$	
obj	0	0	0.857	0.286	0	0	0	-1.143

This is the optimal solution to the LP relaxed problem. Now we will derive Gomory cuts from this LP relaxed problem. Since each constraint has a non-integer solution, we can generate a Gomory cut on each constraint.

$$y_{2} + \operatorname{floor}(\frac{12}{7})s_{1} + \operatorname{floor}(\frac{-10}{7})s_{2} \leq \operatorname{floor}(\frac{2}{7})$$

$$y_{1} + \operatorname{floor}(\frac{-5}{7})s_{1} + \operatorname{floor}(\frac{10}{7})s_{2} \leq \operatorname{floor}(\frac{5}{7})$$

$$s_{3} + \operatorname{floor}(\frac{5}{7})s_{1} + \operatorname{floor}(\frac{-10}{7})s_{2} \leq \operatorname{floor}(\frac{2}{7})$$

$$s_{4} + \operatorname{floor}(\frac{-12}{7})s_{1} + \operatorname{floor}(\frac{10}{7})s_{2} \leq \operatorname{floor}(\frac{5}{7})$$

These turn into the cuts

$$y_2 + s_1 - 2s_2 \le 0$$

$$y_1 - s_1 + s_2 \le 0$$

$$s_3 - 2s_2 \le 0$$

$$s_4 - 2s_1 + s_2 \le 0$$

1.2 Part b

Solve the above problem with the branch and bound method by enumerating nodes in the tree and solving the LP subproblems using GAMS.

Solution: The initial LP relaxed problem is solved in 1.1, so we can start with the parent node. An important note for this question, I will be solving the LPs in my custom gatorpy LP solver so that I can use them as verification tests. The code used will be available in section 6.1

$$\begin{bmatrix} \frac{5}{7}, \frac{2}{7}, 0, 0, \frac{2}{7}, \frac{5}{7} \end{bmatrix}, z = \frac{8}{7}$$
maximize $1.2y_1 + y_2$
subject to $y_1 + y_2 + s_1 = 1$,
$$1.2y_1 + 0.5y_2 + s_2 = 1$$
,
$$y_1 + s_3 = 1$$
,
$$y_2 + s_4 = 1$$
,
$$y_1, y_2, s_1, s_2, s_3, s_4 \ge 0$$
.
$$UB = \frac{8}{7}, LB = -inf$$

Since all variables are fractional, we can pick the first one y_1 to branch on

Via the branch and bound method, the optimal solution to the problem

$$\begin{array}{ll} \text{maximize} & 1.2y_1 + y_2 \\ \text{subject to} & y_1 + y_2 \leq 1 \\ & 1.2y_1 + 0.5y_2 \leq 1 \\ & y_1, y_2 \in \{0, 1\} \end{array}$$

is $y_1 = 0, y_2 = 1, z = 1$.

2 Problem 2

3 Problem 2

Consider the following superstructure for the separation of four chemical components using sharp distillation columns. The total cost of a distillation column is calculated as follows:

$$cost_k = \alpha_k + \beta_k F_k + \gamma_{Hot} Q_k^{Hot} + \gamma_{Cold} Q_k^{Cold}$$

where:

Figure 1: Problem 2 superstructure

- α_k represents a fixed capital cost,
- β_k represents the variable investment cost,
- $\gamma_{
 m Hot/Cold}$ is the cost of hot/cold utilities, and
- $Q_k^{
 m Hot}/Q_k^{
 m Cold}$ is the total demand of hot and cold utilities (assumed to be equal).

Given:

- Initial feed: 1000 Kmol/h,
- Feed composition (mole fraction): A = 0.15, B = 0.3, C = 0.35, D = 0.2.

and the following data:

	Investr	ment cost	Heat duty
Separator	α_k , fixed (10^3/yr)	β_k , variable (10 ³ \$hr/kmol yr)	coefficients, K _k , (10 ⁶ kJ /kgmol)
A/BCD	145	0.42	0.028
AB/CD	52	0.12	0.042
ABC/D	76	0.25	0.054
A/BC	125	0.78	0.024
AB/C	44	0.11	0.039
B/CD	38	0.14	0.040
BC/D	66	0.21	0.047
A/B	112	0.39	0.022
B/C	37	0.08	0.036
C/D	58	0.19	0.044
of utilities:			
oling water			
am	$C_H = 34 (10^3 \$/10^6 \text{kJy})$	r)	
	A/BCD AB/CD ABC/D A/BC AB/C B/CD BC/D A/B B/C C/D of utilities:	Separator α_k , fixed (103\$/yr) A/BCD 145 AB/CD 52 AB/CD 76 A/BC 125 AB/CD 38 BC/D 66 A/B 112 B/C 37 C/D 58 of utilities: of utilities:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Figure 2: Problem 2 Data

3.1 Part A: MILP Formulation

Formulate a Mixed-Integer Linear Programming (MILP) problem to find the optimal sequence of distillation columns. Identify at least 2 logicx based equations that can be formulated to tighten the problem formulation.

3.2 Part B: Solve Using GAMS

Solve the problem using GAMS.

3.3 Part C: Integer Cut

Once the solution is found:

- Identify the active binary variables in the optimal solution.
- Formulate an integer cut to exclude this solution from the feasible space.
- Solve the problem again to find the next best solution.

4 Problem 3

5 Problem 3

Given are three candidate reactors for the reaction $A \to B$, where we would like to produce 10 kmol/h of B. Up to 15 kmol/hr of reactant A are available at a price of \$2/kmol. The data on the three reactors is as follows:

Reactor	Conversion	Cost
1	0.8	$8 + 1.5 \cdot \text{Feed}$
2	0.667	5.4 + Feed
3	0.555	$2.7 + 0.5 \cdot \text{Feed}$

Table 1: Reactor Data

5.1 Part A: Superstructure Design

Design a superstructure to represent this problem.

5.2 Part B: MILP Formulation

Determine a MILP formulation.

5.3 Part C: Solve Using GAMS

Solve in GAMS.

6 Code

6.1 Problem 1 Code

```
# Parameters
A_{arr} = np.array([[1,1],[1.2,0.5]])
b_arr = np.array([1,1])
c_arr = np.array([1.2,1])
A = Parameter(A_arr)
b = Parameter(b_arr)
c = Parameter(c_arr)
# Variables
y = Variable(2)
# Problem
problem = Problem({
    'maximize': c.T @ y,
    'subject to': [
        A @ y \le b,
        y >= 0,
        y <= 1
    ]
})
# CVX Vars
y_cvx = cp.Variable(2)
# CVX Problem
objective = cp.Maximize(c_arr @ y_cvx)
constraints = [
    A_arr @ y_cvx <= b_arr,
    y_cvx >= 0,
    y_cvx <= 1
problem_cvx = cp.Problem(objective, constraints)
get_test_results(problem, problem_cvx, "HW5 Problem 1 initial LP relaxation")
# branch and bound arrays
I_y_1_arr = np.array([[1,0],[0,0]])
I_y_2_arr = np.array([[0,0],[0,1]])
I_y_1 = Parameter(I_y_1_arr)
I_y_2 = Parameter(I_y_2_arr)
# LEFT SPLIT
# Problem
problem = Problem({
    'maximize': c.T @ y,
    'subject to': [
        A @ y \le b,
        y >= 0,
        y <= 1,
```

```
I_y_1 @ y \le 0,
    ]
})
# CVX Vars
y_cvx = cp.Variable(2)
# CVX Problem
objective = cp.Maximize(c_arr @ y_cvx)
constraints = [
    A_arr @ y_cvx <= b_arr,
    y_cvx >= 0,
    y_cvx <= 1,
    I_y_1_arr @ y_cvx <= 0</pre>
problem_cvx = cp.Problem(objective, constraints)
get_test_results(problem, problem_cvx, "HW5 Problem 1 Branch and Bound Left Split y_1 <= 0")</pre>
# RIGHT SPLIT
# Problem
problem = Problem({
    'maximize': c.T @ y,
    'subject to': [
        A @ y <= b,
        y >= 0,
        y <= 1,
        I_y_1 @ y >= 1,
    ]
})
# CVX Vars
y_cvx = cp.Variable(2)
# CVX Problem
objective = cp.Maximize(c_arr @ y_cvx)
constraints = [
    A_arr @ y_cvx <= b_arr,
    y_cvx >= 0,
    y_cvx <= 1,
    I_y_1_arr @ y_cvx >= 1
problem_cvx = cp.Problem(objective, constraints)
get_test_results(problem, problem_cvx, "HW5 Problem 1 Branch and Bound Right Split y_1 >=1")
Test ID: HW5 Problem 1 initial LP relaxation
CVX: (np.float64(1.14), array([[0.71, 0.29]]), True)
GatORPy: (array(1.14285714), array([0.71428571, 0.28571429, 0.
                                                                        , 0.
                                                                                     , 0.285714
       0.71428571]), True)
```

Test passed: False

Test ID: HW5 Problem 1 Branch and Bound Left Split y_1 <= 0

CVX: (np.float64(1.0), array([[0., 1.]]), True)

GatORPy: (array(1.), array([0. , 1. , 0. , 0.5, 1. , 0. , 0. , 0.]), True)

Test passed: False

Test ID: HW5 Problem 1 Branch and Bound Right Split $y_1 >= 1$

CVX: (None, None, False)

Test passed: False