Компьютерная графика Практика 12: Volume rendering

2022

Находим пересечение с ААВВ объекта (во фрагментном шейдере)

- Вычисляем нормированный вектор направления из камеры в текущую точку поверхности – это вектор направления луча
- ▶ Вычисляем пересечение этого луча с AABB: интервал $[t_{min}, t_{max}]$ для которых $p+t\cdot d$ содержится в AABB (в коде уже есть функция intersect_bbox, возвращает vec2(tmin, tmax))
- ▶ Делаем tmin = max(tmin, 0.0), чтобы не включать часть пересечения сзади камеры
- ▶ В качестве цвета пикселя выводим vec3(tmax tmin) (это значение часто будет больше единицы, так что можно разделить, например, на 4.0)

Вычисляем optical depth куба (во фрагментном шейдере)

- ➤ Заводим константу для коэффициента поглощения: absorption = 1.0
- Вычисляем optical depth: optical_depth = (tmax - tmin) * absorption
- Вычисляем непрозрачность пикселя: opacity = 1.0 - exp(-optical_depth)
- Записываем значение opacity в альфа-канал результирующего цвета (RGB-каналы заполните вашим любимым цветом)
- ► Можно поиграться со значением absorption чтобы понять, как оно влияет на результат

Загружаем 3D текстуру

- ► Создаём текстуру типа GL_TEXTURE_3D, min/mag фильтры GL_LINEAR
- ▶ Устанавливаем параметры WRAP_R, WRAP_S, WRAP_T в GL_CLAMP_TO_EDGE
- Считываем данные из файла cloud_data_path (128x64x64, одноканальная, 1 байт на пиксель):
 - ▶ Заводим std::vector<char> pixels(...) нужного размера
 - Открываем файл std::ifstream input(path, std::ios::binary)
 - ▶ Читаем данные input.read(pixels.data(), pixels.size())
- Загружаем в текстуру с помощью glTexImage3D (internal format GL_R8, format GL_RED, type GL_UNSIGNED_BYTE)
- Добавляем текстуру в шейдер (uniform sampler3D), выводим в качестве цвета значение из текстуры в точке
 - p = camera_position + direction * (tmin + tmax) / 2.0
 - Нужно перевести пространственные координаты в текстурные:
 (p bbox_min) / (bbox_max bbox_min)
 - Удобно завести функцию, возвращающую значение из текстуры по точке в пространстве
- В качестве альфа-канала возьмём 1, иначе ничего не увидим

N.B. можно взять другую текстуру: bunny.data (есть в репозитории с заданием)

- ▶ Размер 64x64x64
- ▶ bbox_min = vec3(-1, -1, -1)
- ▶ bbox_max = vec3(1, 1, 1)

Вычисляем optical depth с помощью front-to-back алгоритма (во фрагментном шейдере)

- ► Инициализируем optical_depth = 0
- ▶ Делаем цикл, например, в 64 шага; один шаг цикла соответствует 1/64 части отрезка dt = (tmax - tmin) / 64
 - Вместо 64 можно взять любое другое число; чем больше, тем красивее и медленнее
 - Каждой итерации і цикла соответвует значение t = tmin + (i + 0.5) * dt
 - Каждому значению t соответствует точка луча p = camera_position + t * direction
 - Берём плотность из текстуры в текущей точке р
 - Обновляем optical depth: optical_depth += absorption * density * dt
- Вычисляем opacity как в задании 2

Вычисляем рассеяние (во фрагментном шейдере), считаем что фазовая функция не зависит от угла рассеяния (тогда $f(p,\theta) = \frac{1}{4\pi}$)

- Коэффициент поглощения можно сделать поменьше (или даже нулём)
- Заводим коэффициенты рассеяния scattering = 4.0 и вымирания extinction = absorption + scattering
- Ваводим интенсивность света light_color = vec3(16.0)
- ▶ Инициализируем рассеянный свет color = vec3(0.0)
- В цикле аккумулируем и optical depth, и рассеянный свет
- optical_depth += extinction * density * dt
- Для рассеяния нужно посчитать light_optical_depth аналогичным вложенным циклом (число итераций может быть другое, например 16) вдоль луча из текущей точки в направлении света light_direction
 - Придётся вызвать intersect_bbox на каждую итерацию внешнего цикла
 - Придётся читать из текстуры на каждую итерацию внутреннего цикла
- Обновляем рассеянный свет как

```
color += light_color * exp(-light_optical_depth) * exp(-optical_depth)
```

- * dt * density * scattering / 4.0 / PI
- ▶ В качестве результата шейдера выводим vec4(color, alpha)

Задание 6*

Разные коэффициенты рассеяния для разных цветов

- Обычный блендинг не умеет делать альфа-канал для каждого цвета по отдельности, так что заменим цвет фона (glClearColor) на чёрный
- Коэффициенты absorption, scattering, extinction, а также величины optical_depth и light_optical_depth должны стать vec3
- ▶ В координаты scattering нужно записать три разных числа (подберите что-нибудь сами в районе 1..10)
- ► Поиграйтесь со значением scattering, чтобы посмотреть, как оно влияет на результат

