MASTER OF SCIENCE THESIS

Hybrid Vortex Method for 2D Vertical-Axis Wind Turbine

A fast and accurate Eulerian-Lagrangian numerical method in python

L. Manickathan B.Sc.

01.12.2013

Faculty of Aerospace Engineering · Delft University of Technology

Hybrid Vortex Method for 2D Vertical-Axis Wind Turbine

A fast and accurate Eulerian-Lagrangian numerical method in python

MASTER OF SCIENCE THESIS

For obtaining the degree of Master of Science in Aerospace Engineering at Delft University of Technology

L. Manickathan B.Sc.

01.12.2013

Copyright \bigodot L. Manickathan B.Sc. All rights reserved.

DELFT UNIVERSITY OF TECHNOLOGY DEPARTMENT OF AERODYNAMICS AND WIND ENERGY

The undersigned hereby certify that they have read and recommend to the Faculty of Aerospace Engineering for acceptance a thesis entitled "Hybrid Vortex Method for 2D Vertical-Axis Wind Turbine" by L. Manickathan B.Sc. in partial fulfillment of the requirements for the degree of Master of Science.

	Dated: <u>01.12.2013</u>
Head of department:	prof.dr.ir. G.J.W. van Bussel
Academic Supervisor:	dr.ir. C.J. Simao Ferreira
Academic Supervisor:	dr.ir. A. Palha da Silva Clerigo
Industrial Supervisor:	prof.dr.ir. I. Bennett

Summary

This is the summary of the thesis.

vi

Acknowledgements

I wish to thank the following persons. . .

Delft, The Netherlands 01.12.2013

L. Manickathan B.Sc.

Contents

\mathbf{S} ι	ımm	ary		v
A	ckno	wledge	ements	vii
Li	st of	Figur	es	xiii
Li	st of	Table	s	xv
1	Intr	oduct	ion	1
	1.1	Resea	rch question	. 1
	1.2	Resea	rch objective	. 1
	1.3	Impor	tance of study	. 1
	1.4	Scope	of thesis	. 1
	1.5	Struct	ture of the report	. 1
N	omer	ıclatur	re	1
2	Lite	erature	e Review	3
	2.1	Curre	nt approaches	. 3
		2.1.1	Momentum Theory	. 3
		2.1.2	Single/Multiple Streamtube Model	. 3
		2.1.3	Vortex Theory	
		2.1.4	Full Navier-Stokes Model	. 3
	2.2	Purpo	ose of further research	
	2.3	Releva	ant research areas	. 3

x Contents

3	Ove	erview	of Hybrid Vortex Methods	5			
	3.1	Theor	y	5			
	3.2	Partic	le-Grid Coupling techniques	5			
		3.2.1	Vortex in Cell method	5			
		3.2.2	Particle-Grid domain decomposition methods	5			
	3.3	Vortex	diffusion methods	5			
		3.3.1	Random walk method	5			
		3.3.2	Core expansion method	5			
		3.3.3	Particle-Strength Exchange	5			
		3.3.4	Modified interpolation kernel for diffusion	5			
	3.4	Simula	ation acceleration techniques	5			
		3.4.1	Fast multi-pole Method	5			
		3.4.2	Parallel computation in GPU	5			
4	Dev	/elopm	ent of the Hybrid Vortex Method for 2D VAWT	7			
	4.1	Metho	odology	8			
	4.2	Vortex	Method	8			
		4.2.1	Blob Discretization	8			
		4.2.2	Vortex blob convection	8			
		4.2.3	Treatment of vortex diffusion with remeshing	8			
		4.2.4	Treatment of geometry in fluid	8			
	4.3	Coupl	ing grid to particle solver	8			
		4.3.1	Coupling algorithm and modified overlap region	8			
	4.4	Movin	g boundaries	8			
		4.4.1	Modification to grid solver	8			
		4.4.2	Modification to vortex method	8			
5	Val	Validation of the Hybrid Vortex Method					
	5.1	Fixed	boundary	9			
		5.1.1	Dipole-wall interaction	9			
		5.1.2	Impulsively started flow past cylinder	9			
	5.2	2 Cascading airfoil					
	5.3	Movin	g boundary	9			
	5.4	Pitchi	ng airfoil	9			
6	App	plicatio	on of the Hybrid Vortex Method	11			
	6.1	Applie	eation of Hybrid Vortex method for a 2D VAWT	11			
		6.1.1	Reference setup	11			
		6.1.2	Instantaneous flow-field	11			
		6.1.3	Time averaged flow-field	11			
		6.1.4	Near-wake	11			

Contents xi

		6.1.5	Far-wake	11
	6.2	Feasib	ility of Hybrid Vortex method for compressor cascade	11
		6.2.1	Assumptions and approximations	11
		6.2.2	Advantages of hybrid vortex method	11
		6.2.3	Limitation of using hybrid vortex method	11
		6.2.4	Proposed solution	11
7	Con	clusio	n and Recommendation	13
	7.1	Conclu	asion	13
		7.1.1	Feasibility of hybrid vortex method for compressor cascade	13
	7.2	Recom	nmendations	13
		7.2.1	RBF kernel representation of boundary	13
		7.2.2	Recommended numerical simulation for compressor cascade	13
\mathbf{A}	Mat	hemat	cical Model	15
	A.1	Introd	uction	15
Re	efere	nces		15

xii Contents

List of Figures

xiv List of Figures

List of Tables

xvi List of Tables

Introduction

- 1.1 Research question
- 1.2 Research objective
- 1.3 Importance of study
- 1.4 Scope of thesis
- 1.5 Structure of the report

2 Introduction

Literature Review

- 2.1 Current approaches
- 2.1.1 Momentum Theory
- 2.1.2 Single/Multiple Streamtube Model
- 2.1.3 Vortex Theory

Vortex Filament/Lifting Line Theory

Vortex particle Method

- 2.1.4 Full Navier-Stokes Model
- 2.2 Purpose of further research
- 2.3 Relevant research areas

4 Literature Review

Overview of Hybrid Vortex Methods

3.1	Theory
$\mathbf{o}_{\cdot \mathbf{T}}$	T IICOI V

- 3.2 Particle-Grid Coupling techniques
- 3.2.1 Vortex in Cell method
- 3.2.2 Particle-Grid domain decomposition methods
- 3.3 Vortex diffusion methods
- 3.3.1 Random walk method
- 3.3.2 Core expansion method
- 3.3.3 Particle-Strength Exchange
- 3.3.4 Modified interpolation kernel for diffusion
- 3.4 Simulation acceleration techniques
- 3.4.1 Fast multi-pole Method
- 3.4.2 Parallel computation in GPU

Development of the Hybrid Vortex Method for 2D VAWT

- 4.1 Methodology
- 4.2 Vortex Method
- 4.2.1 Blob Discretization

Error analysis of discretization

4.2.2 Vortex blob convection

Remeshing for lagrangian grid distortion

Error of time-Stepping

4.2.3 Treatment of vortex diffusion with remeshing

Modified interpolation kernel

Convergence of modified interpolation kernel

4.2.4 Treatment of geometry in fluid

Vortex sheet for inviscid boundary condition

Convergence of panel method

- 4.3 Coupling grid to particle solver
- 4.3.1 Coupling algorithm and modified overlap region
- 4.4 Moving boundaries
- 4.4.1 Modification to grid solver
- 4.4.2 Modification to vortex method

Validation of the Hybrid Vortex Method

- 5.1 Fixed boundary
- 5.1.1 Dipole-wall interaction
- 5.1.2 Impulsively started flow past cylinder
- 5.2 Cascading airfoil
- 5.3 Moving boundary
- 5.4 Pitching airfoil

Application of the Hybrid Vortex Method

- 6.1 Application of Hybrid Vortex method for a 2D VAWT
- 6.1.1 Reference setup
- 6.1.2 Instantaneous flow-field
- 6.1.3 Time averaged flow-field
- 6.1.4 Near-wake

Dynamic Stall of the airfoil

6.1.5 Far-wake

Blade-wake interaction

- 6.2 Feasibility of Hybrid Vortex method for compressor cascade
- 6.2.1 Assumptions and approximations
- 6.2.2 Advantages of hybrid vortex method
- 6.2.3 Limitation of using hybrid vortex method
- 6.2.4 Proposed solution

Conclusion and Recommendation

- 7.1 Conclusion
- 7.1.1 Feasibility of hybrid vortex method for compressor cascade
- 7.2 Recommendations
- 7.2.1 RBF kernel representation of boundary
- 7.2.2 Recommended numerical simulation for compressor cascade

References

16 References

Appendix A

Mathematical Model

A.1 Introduction

This appendix contains the math model of the thesis. It looks as follows:

$$c = \sqrt{a^2 + b^2} \tag{A.1}$$