

基于计算机视觉的零件表面缺陷检测研究和应用

答辩 人: 宋佳

学 号: MG1533047

指导老师: 郭延文 教授

- >第一章 绪论
- > 第二章 表面法线提取
- > 第三章 基于传统算法的缺陷检测
- > 第四章 基于深度学习的缺陷检测
- > 第五章 总结与展望

> 常见零件

图1-1: 常见零件图

> 零件缺陷

图1-2: 缺陷示意图

> 研究背景

工业生产的需要

目前工业生产中雇佣大量人力来进行缺陷检测,严重浪费人力物力,急迫需要一种自动化的检测方法。

智能制造的需要

智能制造是我国国策之一,产品质量自动检测是智能制造重要一环。

> 相关工作

• 基于深度学习的缺陷检测

● 基于传统方法的缺陷检测

> 基于传统方法的缺陷检测

特征设计困难, 鲁棒性差

HOG、LBP、Haar-like、GLCM等

获取图像

特征提取

分类器检测

1

2

3

4

5

数据预处理

训练分类器

SVM、逻辑斯特回归、随机森林等

模型泛化能力差

> 基于深度学习的缺陷检测

- 候选区域推荐+深度学习分类
- 先生成候选区域,再使用深度学习进行分类。
- 代表: R-CNN、Fast R-CNN、Faster R-CNN、RFCN等
- 效果好,速度慢

- 基于深度学习的回归方法
- 给定输入图像,使用回归的方式输出这个目标的边框和类别。
- 代表: YOLO、YOLO v2、 YOLO v3、SSD、DSSD等
- 牺牲了精确性,提高了速度

- 需要大量数据训练
- 对小目标物体效果不理想

> 本文工作

提出一种提取零件表面法线的算法

2

将法线图应用到基于传统方法的 缺陷检测中

3

将法线图应用到基于深度学习的缺陷检测中

- > 第一章 绪论
- > 第二章 表面法线提取
- > 第三章 基于传统算法的缺陷检测
- > 第四章 基于深度学习的缺陷检测
- > 第五章 总结与展望

> 硬件设计

五大模块整合

- 遮光模块
- 平台模块
- 灯光模块
- 拍照模块
- 控制模块

表面法线提取

多种硬件协同

- ✓ LED灯带
- ✓ 单反相机
- ✓ 步进电机
- ✓ 偏光镜
- ✓ 滤光膜

. . .

图2-1: 设备结构示意图

> 硬件实现

图2-2: 硬件实现示意图

> 零件照片获取

图2-3: 零件照片获取结果示意图-滤除高光

> 零件照片获取

图2-4: 零件照片获取结果示意图-保留高光

> 算法部分

表面法线提取

> 校正算法

白平衡整纸补僧算法

Cimage a special 24色标准色卡 Compa*(avg(Image+)/avg(Base))*

其中 $Comp_a = max(0, Base^L - Adjust_a^L + \alpha)$, 畸变校 E_i , 般, 座友标定法

光线补偿算法

〉法线提取算法

- 1. 获滤除高光照片亮度: $Image_E^L$ 、 $Image_W^L$ 、 $Image_N^L$ 、 $Image_S^L$
- 2. 新建SouthEast和NorthWest 将Image^L作为SouthEast的G通道, Image^L作为SouthEast的R通道, 将Image^L作为NorthWest的G通道, Image^L作为NorthWest的R通道。
- 3. 分别调整SouthEast和NorthWest色阶到[0.5-1.0], [0.0=0.5]: p' = p * (a b) + b
- 4. 计算Normal1的R、G通道: Normal1=2*NorthWest*SouthEast
- 5. 计算Normal1的B通道: $b = 2.0 * \sqrt{1.0 (r 0.5)^2 + (g 0.5)^2} 1.0$
- 6. 使用保留高光的照片用同样的方法计算Normal2
- 7. 计算最终法线: Normal = (Normal1 + Normal2) * 0.5

> 零件照片获取

图2-4: 法线提取结果示意图

- > 第一章 绪论
- > 第二章 表面法线提取
- > 第三章 基于传统算法的缺陷检测
- > 第四章 基于深度学习的缺陷检测
- > 第五章 总结与展望

> 算法流程

> 数据预处理

宣為系大意 基于传统算法对的缺陷检测

> 零件主表面获取

> 数据增强

- 滑动窗口分割
- ✓ 尽可能是缺陷占窗口面积较大 比重
- ✓ 尽可能是窗口能包含任意单独 缺陷

- 镜像和旋转
- ✓ 扩充数据量
- ✓ 增强样本多样性

图3-2: 滑动窗口分割示意图

> 数据集划分

图3-3:数据集划分示意图

> 特征提取

- Haar-like特征
- 图像梯度 (Gradient)
- 方向梯度直方图 (HOG)
- 局部二值模式(LBP)
- 灰度共生矩阵 (GLCM)
- 颜色空间(RGB)

> 特征提取

图3-4: 输入数据示意图

> 特征提取

图3-5: Canny边缘提取结果图

> 特征提取

> 特征提取

> 分类器设计

> 分类器设计

- 支持向量机 (SVM)
- 自适应增强算法 (Adaboost)
- 级联检测器 (Cascade)

图3-9: SVM分类示意图

〉分类器设计

- 支持向量机 (SVM)
- 自适应增强算法 (Adaboost)
- 级联检测器 (Cascade)

$$Adaboost$$
模型: $H(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$

$$\begin{aligned} \alpha_t &= \frac{1}{2} \ln \frac{1 - \varepsilon_t}{\varepsilon_t}, \\ D_{t+1}(i) &= \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t}, & \text{if } h(x_j) = y_j \\ e^{\alpha_t}, & \text{otherwise} \end{cases} \end{aligned}$$

为系大意基于传统算法对的缺陷检测

> 分类器设计

- 支持向量机(SVM)
- 自适应增强算法 (Adaboost)
- 级联检测器 (Cascade)

图3-10: 级联检测示意图

〉实验结果

输入类型	REC	PRE	MDR	FDR
东部灯光组	0.6071	0.2484	0.3929	0.3279
西部灯光组	0.6249	0.2664	0.3751	0.3072
南部灯光组	0.7143	0.3091	0.2857	0.2850
北部灯光组	0.7428	0.3134	0.2572	0.2905
顶部灯光组	0.8574	0.5022	0.1426	0.1517
法线图	0.9293	0.5981	0.0707	0.1115

表3-1: 不同光照条件下检测结果表

〉实验结果

国为京大学 基于传统算法对的缺陷检测

〉实验结果

輸入类型	REC	PRE	MDR	FDR
Haar-like	0.8214	0.4677	0.1786	0.1669
LBP	0.8932	0.5374	0.1062	0.1372
Gradient	0.9114	0.5727	0.0886	0.1214
HOG	0.9642	0.7207	0.0358	0.0667
GLCM	0.7862	0.4921	0.2183	0.1448
HOG+Gradient+RGB	0.9915	0.8158	0.0085	0.0400

表3-2: 不同特征检测结果表

基于传统算法对的缺陷检测

〉实验结果

特征类型	Haar-like	LBP	Gradient	HOG	GLCM	HOG+Gradient+RGB
速度	11ms	17ms	16ms	22ms	486ms	25ms

表3-3: 不同特征检测s速度表

- >第一章 绪论
- > 第二章 表面法线提取
- > 第三章 基于传统算法的缺陷检测
- > 第四章 基于深度学习的缺陷检测
- > 第五章 总结与展望

> 算法流程

> 网络模型

图4-1: 网络模型结构示意图

> 模型优化

- 对应二分类问题调整模型
- 训练多个模型,使用Cascade组合 成级联检测器
- Batch Normalization 预防过拟合

$$\mathcal{L}_{loss} = -\frac{1}{N} \sum_{i=1}^{N} (y_i \log \widehat{y}_i)$$

> 模型优化

- 对应二分类问题调整模型
- 训练多个模型,使用Cascade组合 成级联检测器
- Batch Normalization 预防过拟合

图4-2: 级联检测示意图

> 模型优化

- 对应二分类问题调整模型
- 训练多个模型,使用Cascade组合 成级联检测器
- Batch Normalization 预防过拟合

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i}$$
 // mini-batch mean
$$\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2}$$
 // mini-batch variance
$$\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}$$
 // normalize
$$y_{i} \leftarrow \gamma \widehat{x}_{i} + \beta \equiv \text{BN}_{\gamma,\beta}(x_{i})$$
 // scale and shift

> 模型训练

- 数据集划分
- 模型初始化
- 模型参数优化

- ✓ 针对数据不平衡问题划分不同数据子集,训练多个模型
- ✓ 使用ImageNet上预训练的参 数初始化
- ✓ 使用Adam算法对模型进行 优化

〉实验结果

图4-3: 不同模型loss曲线示意图

〉实验结果

模型类别	REC	PRE	MDR	FDR
VGG-11	0.9643	0.7297	0.0356	0.1786
VGG-13	0.9292	0.8468	0.0708	0.1080
VGG-16	0.9548	0.8120	0.0452	0.1420
VGG-19	0.9381	0.8281	0.0619	0.1250

表4-1: 最终结果表

〉实验结果

模型类别	REC	PRE	MDR	FDR
VGG-11	0.9735	0.8661	0.0265	0.0966
VGG-13	0.9469	0.7643	0.0531	0.1875
VGG-16	0.9646	0.8015	0.0354	0.1534
VGG-19	0.9558	0.8120	0.0442	0.1420

表4-2: 最优结果表

〉实验结果

模型类别	REC	PRE	MDR	FDR
VGG-9-final	0.9027	0.7286	0.0973	0.2159
VGG-9-best	0.9292	0.7143	0.0708	0.286
VGG-11-final	0.9643	0.7297	0.0356	0.1786
VGG-11-best	0.9735	0.8661	0.0265	0.0966

表4-3: 不同模型对比结果表

〉实验结果

模型类别	VGG-9	VGG-11	VGG-13	VGG-16	VGG-19
速度	16ms	23ms	29ms	34ms	46ms

表4-4: 不同模型检测速度表

- > 第一章 绪论
- > 第二章 表面法线提取
- > 第三章 基于传统算法的缺陷检测
- > 第四章 基于深度学习的缺陷检测
- > 第五章 总结与展望

总结与展望

> 工作总结

基于传统算法对的缺陷检测

> 分类器设计

- 表面法线提取
- 基于传统方法的缺陷检测
- 基于深度学习的缺陷检测

- ✓ 阴影对法线提取结果的影响
- ✓ 数据库的扩充
- ✓ 缺陷种类多样化划分
- ✓ 使用深度学习中的目标检测算法

> 感谢我的导师郭延文教授!

> 感谢答辩委员会的各位老师!

> 感谢实验室的所有同学!

> 感谢南京大学!

谢谢 Q&A

姓名: 宋佳

学号: MG1533047

指导老师: 郭延文 教授