

Fig. 1

Fig. 2

Fig.3

EXEMPLARY PLOT OF DISPLACEMENT VERSUS
PERCENTAGE CHANGE IN POTENTIAL

400

Fig.4

Fig.5

600

Fig.6

POLYNOMIAL MODEL

$$Y = C_0 + C_1 \cdot X + C_2 \cdot X^2 + C_3 \cdot X^3$$

LINEAR MODEL

$$Y = C_0 + C_1 \cdot X$$

$$C_1 = M = \Delta D / \Delta V = \Delta D' / \Delta V'$$

OTHER MODEL

$$Y = F(X) \text{ AND/OR OTHER PARAMETER}$$

Fig.7

EXEMPLARY METHOD

Fig.8

EXEMPLARY METHOD

Fig.9

EXEMPLARY METHOD

Fig.10

11/15

1110

NORMALIZED POTENTIAL VERSUS DISPLACEMENT

1120

NORMALIZED POTENTIAL AND DISPLACEMENT VERSUS TIME

Fig. 11

12/15

1200

POTENTIAL
FIELD
1230

SENSOR
1240

DISPLACEMENT
1250

Fig. 12

EXEMPLARY METHOD

Fig.13

EXEMPLARY METHOD

Fig.14

EXEMPLARY METHOD

Fig.15