Single Path One-Shot Neural Architecture Search with Uniform Sampling

https://arxiv.org/abs/1904.00420

https://github.com/megvii-model/SinglePathOneShot

NAS

Definition: Neural Architecture Search (NAS).

Find the architecture that leads to the best validation accuracy (or other metrics such as efficiency.)

- Example: ResNet has better accuracy than VGG.
- Example: MobileNet is more efficient than ResNet, although MobileNet has lower accuracy.

NAS

Search Space

Hyper-parameter Types	Candidates		
# of filters	{24, 36, 48, 64}		
size of filters	$\{3\times3, 5\times5, 7\times7\}$		
stride	{1, 2}		

Search space: The set containing all the possible architectures.

- We want to build a CNN with 20 Conv layers.
- Search space:

$${24,36,48,64}^{20} \times {3\times3,5\times5,7\times7}^{20} \times {1,2}^{20}$$
.

Size of search space (i.e., number of possible architectures):
 (4×3×2)²⁰

NAS

Challenge 1: Each trial is expensive.

 Training a CNN from scratch takes hours or days, if a single GPU is used.

Challenge 2: The search space is too big.

Number of possible architectures:

$$(4\times3\times2)^{20} = 4\times10^{27}$$
.

- 1.每个结构的尝试成本很高;
- 2.搜索空间很大。

SuperNet

FBNet

- $\mathbf{x}_1, \dots, \mathbf{x}_n$: training images.
- y_1, \dots, y_n : targets (aka labels).
- $p(x_i; W, \Theta)$: a prediction made by the 20-layer super-net.
- Learn W and ⊕ from the training set by minimizing the cross-entropy loss:

$$\min_{\mathcal{W},\Theta} \ \frac{1}{n} \sum_{i=1}^{n} \text{Loss}(\mathbf{y}_i, \ \mathbf{p}(\mathbf{x}_i; \mathcal{W}, \Theta)).$$

FBNet

每一层只选择α最大的block,对20层重复进行这个操作。只保留最重要的模块,丢弃其他模块。如果将supernet看作一个图,选择的神经网络结构就是其中的一条路径,从输入通往输出。

联合优化问题

- 超网中的权重是紧密耦合的,尚不清楚子网的权重继承为何是有效的。
- 使用同时优化的方式也给网络架构参数和超网参数引入了耦合。

SPOS

提出了均匀采样的single path one-shot方法,可以克服现有one-shot方法的缺点。其简单的形式允许更大的搜索空间,包括block搜索、通道搜索、比特宽度搜索等。采用进化算法来进行搜索,可以满足低延迟等约束。

第一阶段 优化supernet

$$W_{\mathcal{A}} = \operatorname*{argmin}_{W} \mathcal{L}_{ ext{train}} \left(\mathcal{N}(\mathcal{A}, W) \right).$$

 \mathcal{A} 代表网络搜索空间,W代表超网权重, $\mathcal{N}(\mathcal{A},W)$ 代表超网中编码的搜索空间。

第二阶段 网络架构search

$$a^* = \operatorname*{argmax}_{a \in \mathcal{A}} \mathrm{ACC}_{\mathrm{val}} \ \left(\mathcal{N} \left(a, W_{\mathcal{A}}(a) \right) \right)$$

a代表被采样的子网架构,它会继承超网的权重 $W_{\mathcal{A}}(a)$,然后在这个过程中挑选验证集上准确率最高的子网结构。

Supernet实现细节

Single path supernet

Channel number search

Search实现细节

Algorithm 1: Evolutionary Architecture Search

```
1 Input: supernet weights W_A, population size P, architecture constraints C, max iteration T, validation dataset D_{val}
```

2 Output: the architecture with highest validation accuracy under architecture constraints

```
3 P_0 := Initialize\_population(P, C); Topk := \emptyset;
                                                                       Crossover number
 4 n := P/2;
 5 m := P/2;
                                                                       Mutation number
 6 prob := 0.1;
                                                                   Mutation probability
 7 for i = 1 : T do
       ACC_{i-1} := Inference(W_A, D_{val}, P_{i-1});
       Topk := Update\_Topk(Topk, P_{i-1}, ACC_{i-1});
       P_{crossover} := Crossover(Topk, n, C);
10
       P_{mutation} := Mutation(Topk, m, prob, C);
11
       P_i := P_{crossover} \cup P_{mutation};
12
```

13 end

14 Return the architecture with highest accuracy in Topk;

实验

Table 3. Results of building block search. SPS – single path supernet

model	FLOPs	top-1 $acc(\%)$
all choice_3	324M	73.4
all choice_5	321M	73.5
all choice_7	327M	73.6
all choice_x	326M	73.5
random select (5 times)	$\sim 320 \mathrm{M}$	\sim 73.7
SPS + random search	323M	73.8
ours (fully-equipped)	319M	74.3

- ▶ 随机搜索效率低
- ▶ 进化算法搜索效率高,有限时间内搜索到最高精度

实验

Table 4. Results of channel search. * Performances are reported in the form "x (y)", where "x" means the accuracy retrained by us and "y" means accuracy reported by the original paper

Model	FLOPs/Params	Top-1 $acc(\%)$
all choice_3	324M/3.1M	73.4
rand sel. channels (5 times)	$\sim 323 \mathrm{M}/3.2 \mathrm{M}$	~ 73.1
$choice_3 + channel search$	329M/3.4M	73.9
rand sel. blocks + channels	$\sim 325 M/3.2 M$	~ 73.4
block search	319M/3.3M	74.3
block search + channel search	328M/3.4M	74.7
MobileNet V1 (0.75x) 8	325M/2.6M	68.4
MobileNet V2 $(1.0x)$ [18]	300M/3.4M	72.0
ShuffleNet V2 $(1.5x)$ [14]	299M/3.5M	72.6
NASNET-A 36	564M/5.3M	74.0
PNASNET [11]	588M/5.1M	74.2
MnasNet [21]	317M/4.2M	74.0
DARTS [12]	595M/4.7M	73.1
Proxyless-R (mobile)* [4]	320M/4.0M	74.2 (74.6)
FBNet-B* 23	$295\mathrm{M}/4.5\mathrm{M}$	74.1 (74.1)

同时搜索block和channel的精度更高,超过了其他同类型方法。