Unidad temática 1: INTRODUCCIÓN A LOS SISTEMAS DE CONTROL Trabajo Práctico 1-2: función de transferencia

Ejercicio 1: determinar la transformada de Laplace de la función pulso de la figura:

Conocida la transformada anterior, determinar la misma para el caso en que $t_0 \to 0$; es decir determinar la transformada de Laplace de un impulso. Finalmente definir la función impulso unitario ó función Delta de Dirac en el tiempo y su respectiva transformada.

Ejercicio 2: dado el siguiente sistema mecánico de rotación:

$$T(t) = J\ddot{\theta}(t) + B\dot{\theta}(t) + K\theta(t)$$

Determinar la función de transferencia $\frac{\theta(s)}{T(s)}$ y luego valuarla sabiendo que:

- $J = 20[Kg \times m^2]$ momento de inercia
- $B = 1 \left[\frac{N \times m \times seg}{rad} \right]$ coeficiente de fricción viscosa rotacional

 $K = 5 \left[\frac{N \times m}{rad} \right]$ constante elástica rotacional

Ejercicio 3: hallar la función de transferencia $\frac{Y(s)}{X(s)}$ del siguiente sistema descripto por la ecuación diferencial que se muestra:

$$y(t) + 2\int y(t)dt = x(t) + \int x(t)dt$$

Luego obtener la respuesta temporal de la salida si de entrada se tiene como excitación la función Delta de Dirac.

Ejercicio 4: Deducir la ecuación diferencial correspondiente a la siguiente función de transferencia:

$$G(s) = \frac{Y(s)}{X(s)} = \frac{2s+1}{s^2+s+1}$$

Ing. Eduardo Picco – Ing. Mario G. Salguero

Ejercicio 5: Determinar la función de transferencia de la siguiente red:

Valuar para:

- $C = 1[\mu F]$
- $R_1 = 1[M\Omega]$
- $R_2 = 100[K\Omega]$

Ejercicio 6: Hallar la respuesta temporal y(t) si $x(t) = 6\mu(t)$.

Ejercicio 7: Dado el siguiente diagrama de polos y ceros, perfilar a mano alzada la respuesta del sistema a una excitación impulsiva unitaria.

