- Given a landom field, $\alpha(\alpha,\omega)$, we can write

$$\mathcal{L}(x,\omega) = \overline{\mathcal{L}(x)} + \sum_{\hat{x}=1}^{\infty} \sqrt{\lambda_i} \mathcal{Q}_i(x) \mathcal{Q}_i(\omega)$$

- · Note d, l. p. are seterministic
- \cdot $\Theta_{i}(\omega)$ is stochastic, i.e., if we assume \times is a Gaussian random field, Q~N(0,1)
- $\lambda_i + 0$, are eigenpairs corresponding C(x, x)

Ex) Absolute exponential

$$C(\chi,\chi) = \sigma^2 \exp\left(-\frac{|\chi-\chi'|}{L}\right), \chi \in [-1,1]$$

· This works well when dealing with non differentiable random field

· Lis the correlation length, or is general variance

- Note, the eigen values + eigen functions

$$\lambda_{\eta} = O^2 \frac{2L}{1 + L^2 N_{\eta}^2}$$

where
$$v_n$$
 solve
System of transcendal equations
$$\frac{Sin(v_n x)}{(1 - Sin(2v_n)/2v_n)^{1/2}}, \quad \Lambda \text{ is even}$$

$$\frac{Sin(v_n x)}{(1 - Sin(2v_n)/2v_n)^{1/2}}, \quad \Lambda \text{ is even}$$

$$\frac{Cos(v_n x)}{2v_n} = \frac{(1 + \frac{Sin(2v_n)}{2v_n})^{1/2}}{(1 + \frac{Sin(2v_n)}{2v_n})^{1/2}}, \quad \Lambda \text{ is odd}$$

$$\frac{\int \cos(\sqrt[n]{x})}{(1+\frac{\sin(2\sqrt[n]{x})}{2\sqrt[n]{x}})} v_2$$

$$1 \wedge \sqrt[n]{x} \text{ odd}$$

Note: It $L \ni \infty$, $C(x,x') = 0^2$ => & Full Correlation!

=> you get one eighnvalue >0

-If
$$L \geqslant 0$$
, no correlation
· To analyze, we set $0^{-2} = \frac{1}{2L(1 - exp(-1/L))}$

$$= > ((x,x) = \frac{1}{2L(1-exp(-1))} \cdot exp(\frac{-|x-x'|}{L})$$

$$\Rightarrow \int_{L \neq 0}^{l'm} C(x, x') = \int_{L \neq 0}^{l'm} (x - x')$$

- The eigenvilne problem becomes

$$Q_{\eta}(x) = \lambda_{\eta}Q_{\eta}(x) \Rightarrow \lambda_{\eta} = 1$$

& So no information is communicated through ((x,x)

Ex) Squared exponential (radial basis function)

$$C(x, x') = \sigma^2 e_{XP} \left(\frac{-(x-x')^2}{2L^2} \right), \quad \chi \in \mathbb{R}$$

· eigenvalues come from Jolving eigenvectors that are Hermitian Polynomials

$$Q_n(x) = H_n\left(\sqrt{2} + x\right)$$

- Consider the Huncated landom tield

$$\alpha(\chi,\omega) \approx \overline{\alpha}(\chi) + \underbrace{\varepsilon}_{i=1}^{N} \overline{\lambda}_{i} \cdot f_{i}(\chi) \Theta_{i}(\omega)$$

$$\alpha_{N}(\chi,\omega)$$

- Note that $E[||\Delta_{N}||^{2}]^{N \to \infty} = \{\lambda_{n}\}$

- This definition was not so clear. Let's instead write the

· Assume &(x, w) is zero mean (or assume we are working with action) · By Lefinition, orthogonality of Pr & wes us

$$= \int_{\Omega} \int_{\Omega} \left| \underbrace{z}_{i} \sqrt{\lambda_{i}} \cdot \hat{P}_{i} \cdot \hat{Q}_{i} \right|^{2} \int_{\Omega} JP(\omega)$$

[-Recall that E[OiOj] = Sij + Oi are orthonormal)

$$b = \frac{\mathbb{E}[\|\alpha^N - \alpha\|^2]}{\mathbb{E}[\|\alpha\|^2]} = \frac{\infty}{\sum_{i=N+1}^{\infty} \lambda_i} \leq \varepsilon^2$$

where I Victories our tokrace

- For Sufficiently large N, $\alpha_N \Rightarrow \alpha - \overline{\alpha}$, based on λ . Letay. Note: If $\overline{\alpha} = 0$, $\alpha_N \Rightarrow \alpha$

- If we assume $\alpha(\chi,\omega)$ is a Gaussian Random field

then uncorrelated \Rightarrow independent $\Rightarrow O(w) \sim N(0, 1)$

- -Throughout, we have assumed a C(x,x') for $X(x,\omega)$.
 - . The tre ((1,x) is typically unlnown
 - One alterative is to construct an estimate of C(x,x') from Samples of C(x,w)