

Topic & Structure of the Lesson

- □ Unified Modeling Language (UML) and examples of UML diagrams.
- □ Concept of user interface design and Human-Computer Interaction (HCI), including basic principles of user-centered design.

Learning Outcomes

At the end of the module, you should be able to:

- 1. Describe the Unified Modeling Language (UML) and examples of UML diagrams.
- 2. Explain the concept of user interface design and human-computer interaction, including basic principles of user-centered design.

Key Terms you must be able to use

If you have mastered this topic, you should be able to use the following terms correctly in your assignment and exam:

- □UML and UML diagrams.
- □ Concept of user interface design, human-computer interaction, and basic principles of user-centered design.

Influence of Software Design

☐ Process Centered Design

- Designing software based on automation of the process
- Examples: Ticketing Machine, Manufacturing process, Hotel booking, etc.

□ Data Centered Design

- Designing software based on processing large data.
- Examples: Big Data, Shopping, Immigration system, flight management.

☐ User Centered Design

- Designing software based on human behavior
- Examples: AI, games, social sites, navigation applications, etc.

Unified Modeling Language (UML)

- □ Unified Modeling Language (UML) is a widely used method of visualizing and documenting software systems design.
- □UML uses object-oriented design concepts, but it is independent of any specific programming language and can be used to describe business processes and requirements generally.
- □UML can be used to design, discuss, present and event test a software component before its built.

Unified Modeling Language (UML) Traditional versus Object-Oriented Approaches

Unified Modeling Language (UML) TWO different views of UML diagrams

☐ Static / Structural view

- Emphasizes the static structure of the system using objects, attributes, operations and relationships.
- Used for data and process-oriented development approach.
- Presented through class and entity relationship diagrams.

☐ Dynamic / Behavioral view

- Emphasizes the dynamic behavior of the system by showing collaborations among objects and changes to the internal states of objects.
- Used for a user and some process-oriented development approach.
- Presented through sequence diagrams, activity diagrams and state machine diagrams.

Unified Modeling Language (UML) TWO different views of UML modeling

Examples of UML Diagrams

Behaviour Diagrams

- ☐ An Activity diagram represents workflows in a graphical way.
 - Describes the business workflow or the operational workflow of any component in a system.
- ☐ A State machine diagram is similar to an activity diagram.
 - Known as a state diagram or state chart diagram.
 - Describes the behavior of objects that act differently according to the state they are in now.
- ☐ A Use case diagram gives a graphic overview of the actors involved in a system,
 - Shows different functions needed by those actors and how these different functions interact.
- ☐ A Sequence diagram shows how objects interact with each other and the order in which those interactions occur.

Examples of UML Diagrams

Structure Diagrams

- ☐ A class diagram is the main building block of any object-oriented solution.
 - It shows the classes in a system, attributes, and operations of each class and the relationship between each class.
- ☐ A component diagram displays the structural relationship of components of a software system.
 - Mostly used when working with complex systems with many components
- ☐ A deployment diagram shows the hardware of your system and the software in that hardware.
 - Useful when your software solution is deployed across multiple machines with each having a unique configuration.
- ☐ Object Diagram referred to as Instance diagram very similar to class diagrams.
 - Show the relationship between objects, but they use real-world examples.

User Interface Design

- □ A **user interface (UI)** describes how users interact with a computer system, and consists of all the hardware, software, screens, menus, functions, output, and features that affect two-way communications between the user and the computer.
- ☐ Three aspects of the user interface:

Perceptual Aspects

- What the user sees, hears, touches
- Screen objects, buttons

Physical Aspects

- Devices used
- Documents, Forms

Conceptual Aspects

•What the user understands about the system

User-Centered Design Principles

Understand the Business

- Understand the underlying business functions and how the system supports individual, departmental, and enterprise goals.
- The overall objective is to design an interface that helps users to perform their iobs.

Maximize Graphical Effectiveness

 A well-designed interface can help users learn a new system rapidly and be more productive.

Think Like a User

 The interface should be flexible enough to accommodate novices as well as experienced users.

Use Models and Prototypes

- Construct models and prototypes for user approval.
- An interface designer should obtain as much feedback as possible, as early as possible.

User-Centered Design Principles (continued)

Focus on Usability

 Include all tasks, commands, and communications between users and the information system.

Invite Feedback

- Even after the system is operational, it is important to monitor system usage and solicit user suggestions.
- You can determine if system features are being used as intended by observing and surveying users.

Document Everything

- Document all screen designs for later use by programmers.
- If you are using a CASE tool or screen generator, number the screen designs and save them in a hierarchy like a menu tree.
- User-approved sketches and storyboards also can be used to document the user interface.

Human Computer Interaction (HCI)

- □ A user interface is based on basic principles of human-computer interaction. Human-computer interaction (HCI) describes the relationship between computers and people who use them to perform their jobs.
- □HCI concepts apply to everything from PC desktops to global networks. In its broadest sense, a user interface includes all the communications and instructions necessary to enter input to the system and to obtain output in the form of screen displays or printed reports.
- □Concepts of creating software that is safe and pleasant to use.

Human Computer Interaction (HCI) (continued)

- □ As a systems analyst, you will design user interfaces for in-house developed software and customize interfaces for various commercial packages and user productivity applications. Your main objective is to create a user-friendly design that is easy to learn and use.
- ☐ Things to consider in HCI:
 - Users' abilities/ disabilities
 - User's age group (interest, legal contents, etc.)
 - User's computer literacy (Novice, Intermediate, Expert)
 - User's Socio-culture (perception of color, language, religious sensitivity, etc.)
 - Purpose of Software (Command line, GUI, Interactive, 3D, etc.)

Summary

IUnified Modeling Language (UML) is a method of visualizing and documenting software systems design. UML uses object-oriented design concepts, but it is independent of any specific programming language.
IUML static diagrams emphasize the static structure of the system using objects, attributes, operations, and relationships. Used for data and procest oriented development approach.
IUML behavioral diagrams emphasize the dynamic behavior of the system be showing collaborations among objects and changes to the internal states objects. Used for a user and some process-oriented development approach
System user interface is based on basic principles of human-computer interaction that describe the relationship between computers and people who use them to perform their jobs.
The user-centered design aim is to design an interface that helps users to perform their jobs and based on perceptual, physical, and conceptual aspects.

Question & Answer

Next session

□System Implementation

References

- □Tilley, S. (2019). Systems Analysis and Design 12th Edition. Cengage Learning. ISBN-13: 978-0357117811. ISBN-10: 0357117816
- □ Pressman, R., & Maxim, B. (2019). Software Engineering: A Practitioner's Approach 9th Edition. McGraw Hill. ISBN-13: 978-1259872976. ISBN-10: 1259872971
- □ Dennis, A., Wixom, B., & Roth, R.M. (2021). Systems Analysis and Design 8th Edition. Wiley. ISBN: 978-1-119-80378-2