Workshop - Open FPGA tools

Jesús Arroyo Torrens

https://github.com/Jesus89

Field Programmable Gate Array

Open FPGA toolchain

IceStorm Project by Clifford Wolf

Open FPGA boards

<u>Icestick</u>

iCE40-HX8K Breakout Board

IceZUM Alhambra

Open FPGA tool stack

Icestorm

Iverilog

GTKWave

Open FPGA tool stack

Requirements

1. Python 2.7

https://www.python.org

Windows Users: DON'T FORGET to select Add python.exe to Path feature on the "Customize" stage

Check installation: open a console and type python

https://github.com/FPGAwars/icestudio

Experimental graphic editor for open FPGAs. Created with HTML and JS

1. Install

- Copy icestudio-0.2.4-dev.zip
- Unzip the file
- Execute icestudio

2. Setup

- Install toolchain
 Tools > Toolchain > Install
- Install drivers
 Tools > Drivers > Enable

Drivers configuration requires administrative privileges
Follow the instructions in each OS

3. Hello, world!

- Load example
 1. Basic > 1. Led on
- Select board
 Board > IceZUM
- Select I/O pin
 Edit the combo
- Upload bit stream
 Tools > Upload

Enter in a block and edit a I/O label by double clicking

4. More leds on

- Create a project
 File > New project
- Add blocksBit > 1Basic > Output
- Connect wires
- Upload bit stream
 Tools > Upload

Multiple I/O blocks can be created, e.g. "led0, led1, led2"

5. Blink

- Import DIV blockFile > Import block
- Add clock input
 Basic > Input
- Connect wires
- Upload bit stream
 Tools > Upload

The clock is a 12 MHz signal

6. Custom blink

- Add constant
 Basic > Constant
- Insert a value 6000000
- Connect wires
- Upload bit stream
 Tools > Upload

The clock is a 12 MHz signal

7. Counter

- Import counter block
 File > Import block
- Reconnect wires
- Upload bit stream
 Tools > Upload

untitled IceZUM Alhambra

8. Let's code

- Create a project
 File > New project
- Add blocks
 Basic > Code
 Basic > Input
 Basic > Output
- Connect wires
- Verify the design
 Tools > Verify

9. Custom block

- Load a projectFile > Open project
- Save project as block
 File > Export as block

Input / Output pins will become in/out block ports

10. Using buttons

- Create a project
 File > New project
- Add blocks
 Basic > Input
 Basic > Output
 Config > Pull up inv
- Connect wires
- Upload bit stream
 Tools > Upload

Apio

https://github.com/FPGAwars/apio


```
Terminal
 esus@ThinkPad ~
Usage: apio [OPTIONS] COMMAND [ARGS]...
 Experimental micro-ecosystem for open FPGAs
Options:
 --version Show the version and exit.
 --help
            Show this message and exit.
Code commands:
 build
            Synthesize the bitstream.
            Clean the previous generated files.
 clean
 sim
            Launch the verilog simulation.
 time
            Bitstream timing analysis.
            Upload the bitstream to the FPGA.
 upload
 verify
            Verify the verilog code.
Environment commands:
 boards
            Manage FPGA boards.
 config
            Apio configuration.
 drivers
            Manage FPGA drivers.
 examples
            Manage verilog examples.
 init
            Manage apio projects.
 install
            Install packages.
 system
            System tools.
 uninstall Uninstall packages.
 upgrade
            Check the latest Apio version.
 e<u>s</u>us@ThinkPad ~
```

Experimental open source ecosystem for open FPGAs. Created with Python

Apio

1. Install

- Open the console and execute \$ pip install -U apio
- Check apio\$ apio

2. Setup

- Install toolchain
 - \$ apio install --all
- Install drivers
 - \$ apio drivers --enable

```
Terminal
 esus@ThinkPad ~
Usage: apio [OPTIONS] COMMAND [ARGS]...
 Experimental micro-ecosystem for open FPGAs
 --version Show the version and exit.
 --help
            Show this message and exit.
Code commands:
 build
            Synthesize the bitstream.
 clean
            Clean the previous generated files.
            Launch the verilog simulation.
 time
            Bitstream timing analysis.
 upload
            Upload the bitstream to the FPGA.
 verify
            Verify the verilog code.
nvironment commands:
 boards
            Manage FPGA boards.
 config
            Apio configuration.
 drivers
            Manage FPGA drivers.
 examples
            Manage verilog examples.
 init
            Manage apio projects.
 install
            Install packages.
 system
            System tools.
 uninstall Uninstall packages.
            Check the latest Apio version.
```

Drivers configuration requires administrative privileges
Follow the instructions in each OS

Apio

3. Hello, world!

- Load example
 - \$ apio examples -d icezum/leds
- Move to example
 - \$ cd icezum/leds
- Verify and simulate
 - \$ apio verify \$ apio sim
- Build and upload
 - \$ apio build \$ apio upload
- Time analysis and clean
 - \$ apio time \$ apio clean

I want more!

http://FPGAwars.github.io

Workshop - Open FPGA tools

Jesús Arroyo Torrens

https://github.com/Jesus89

