# KraftHack - Townhall

Alexandra (alexandra@unifai.dev)
Camilla (camilla.feurst@statkraft.com)
Martin (mhn@energinorge.no)

- hosted by -







### Welcome and introduction to the event

Into to the organising committee, jury, timeline and expectations for Monday & Tuesday.

### Introduction to the domain

Which plant are we looking at? What is a turbine? Other relevant aspects to the upcoming challenge.

### III Introduction to the challenge

What type of data will you receive? Expectations to modelling and what will need to be delivered at the end of the hackathon.



#### Organized by







#### **Judging committee**



Camilla Feurst



Alexandra Gunderson



Thor Arne Hvam Bruun



Kristian Nymoen



**Andreas Solberg** 



Asu Deniz



### Timeline for the event

#### Monday, March 7th

• 09:00 - 10:00 Introduction to the challenge

10:00 Data set will be released

• 10:00 - 16:00 Statkraft & Unifai will be available to answer questions

#### Tuesday, March 8th

| • 10:00 | Deadline for uploading results |
|---------|--------------------------------|
|---------|--------------------------------|

- 10:00 11:00 Results will be reviewed and evaluated
- 11:00 13:00 Top 5 (in person) teams will present their solutions to the jury
- 13:00 15:00 Jury will deliberate and select the winners
- 15:30 16:15
   Winners will be announced on the PTK main stage
- 16:15 17:00 Winners will present their solutions



### Welcome and introduction to the event

Into to the organising committee, jury, timeline and expectations for Monday & Tuesday.

### Introduction to the domain

Which plant are we looking at? What is a turbine? Other relevant aspects to the upcoming challenge.

### III Introduction to the challenge

What type of data will you receive? Expectations to modelling and what will need to be delivered at the end of the hackathon.



### Kvilldal

### Kvilldal hydropower plant

- Biggest plant in Norway, 3 TWh
- Head 538 m
- Blåsjön reservoir 125 m regulation head
- 1240 MW at 4 units
- Commissioned in 1984











## Sensors for monitoring







### Sensor Name Unit\_4\_Power Unit\_4\_Reactive Power Turbine\_Guide Vane Opening Turbine\_Pressure Drafttube Turbine\_Pressure Spiral Casing Turbine\_Rotational Speed mode Bolt\_1\_Steel tmp Bolt\_1\_Tensile Bolt\_2\_Tensile Bolt\_3\_Tensile Bolt\_4\_Tensile Bolt\_5\_Tensile Bolt\_6\_Tensile Bolt\_1\_Torsion Bolt 2 Torsion Bolt\_3\_Torsion Bolt\_4\_Torsion Bolt\_5\_Torsion Bolt\_6\_Torsion lower\_bearing\_vib\_vrt turbine\_bearing\_vib\_vrt



### Welcome and introduction to the event

Into to the organising committee, jury, timeline and expectations for Monday & Tuesday.

### Introduction to the domain

Which plant are we looking at? What is a turbine? Other relevant aspects to the upcoming challenge.

### III Introduction to the challenge

What type of data will you receive? Expectations to modelling and what will need to be delivered at the end of the hackathon.



# 23 sensors measuring operating conditions, bolt conditions, and vibrations

- Operating conditions including power, guide vane opening, pressure, speed.
- Bolt conditions strain gauges measuring tension and torsion in the bolts, and temperature of the bolts
- Vibrations in the turbine and lower bearing





**Note:** Dataset will be provided in a clean format, and all compute can be done locally (no need for cloud compute resources!!)



### What should be completed in 24 hours

- Model results
- **Code** to be uploaded to an open GitHub repository (please use CC BY 4.0 license:)
- **Pitch deck** a short PDF presenting your work
  - o **Data exploration** note any interesting findings, if/how/why you augmented your dataset, etc.
  - Model considerations how did you train your model(s); how did you test performance; model specific details (libraries used, parameters specific to the model)
  - **Putting it into production** how would you propose to utilize this model in a real-life setting (e.g. by presenting a mock-up, work-flow, ...)? How would you extend the model/approach if given more time?
  - Scalability and transferability what other problems do you think your approach could be used for? Do you
    think your approach could be used on other assets, equipment categories, domains?

**Note:** Ambition is to share learning across the industry. Models and insight may be used and further developed. In order to create a level playing field, it is suggested to use open source tools and software wherever possible.



### What the jury will judge for

- Code availability and understanding is the code available and can it be leveraged by others easily?
- **Model performance** metrics will be shared on Monday\*
- **Real-world application** does the model take into account real-world complexity and operator needs? Domain experts will be available for questions on Monday.





Cash prizes for the winning teams <a></a>

o In person: 25 000 NOK

o Online: 5 000 NOK

Summer internship for 1-3 lucky students

