Osnove matematične analize

Šesti sklop izročkov

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

11. november 2020

Limita funkcije

Zanima nas, kako se funkcija f obnaša v okolici točke a, torej na intervalu $(a - \delta, a + \delta)$ za nek $\delta > 0$, razen morda v točki a.

Število L je **limita** funkcije f v točki a, če za vsak $\varepsilon > 0$ obstaja tak $\delta > 0$, da je $|f(x) - L| < \varepsilon$, če je $0 < |x - a| < \delta$. Pišemo: $L = \lim_{x \to a} f(x)$.

Neformalno: L je limita funkcije f v točki a: vrednost f(x) je poljubno blizu L, če je le x dovolj blizu a (a ne enak a).

Limita funkcije f v točki a ni odvisna od vrednosti funkcije f v točki a.

Leva in desna limita

Število L je **leva limita** funkcije f v točki a, če za vsak $\varepsilon > 0$ obstaja tak $\delta > 0$, da je $|f(x) - L| < \varepsilon$, če je $a - \delta < x < a$. Označimo:

$$L = \lim_{x \nearrow a} f(x) = \lim_{x \to a^{-}} f(x).$$

Število L je **desna limita** funkcije f v točki a, če za vsak $\varepsilon > 0$ obstaja tak $\delta > 0$, da je $|f(x) - L| < \varepsilon$, če je $a < x < a + \delta$. Označimo:

$$L = \lim_{x \to a} f(x) = \lim_{x \to a^+} f(x).$$

Funkcija f ima v točki a limito natanko tedaj, ko ima v točki a tako levo kot desno limito in sta ti dve limiti enaki.

Zgledi

Ali ima funkcija
$$f(x) = \frac{1}{1 + e^{\frac{1}{x}}}$$

v točki a=0 levo limito, desno limito oz. limito?

Ali obstajajo limite naslednjih funkcij v točki a = 0:

1.
$$f(x) = x^2$$

2.
$$f(x) = \begin{cases} 1, & x \in \mathbb{Z}, \\ 0, & x \notin \mathbb{Z}. \end{cases}$$

$$3. \ f(x) = \frac{x^2 + x}{x}$$

Neskončna limita

Če za vsako število $M \in \mathbb{R}$ obstaja tak $\delta > 0$, da je f(x) > M, če le $a - \delta < x < a$, potem pišemo $\lim_{x \nearrow a} f(x) = \infty$.

Podobno definiramo simbol $\lim_{x \nearrow a} f(x) = -\infty$, če za vsako število $m \in \mathbb{R}$ obstaja tak $\delta > 0$, da je f(x) < m, če le $a - \delta < x < a$.

Če za vsako število $M \in \mathbb{R}$ obstaja tak $\delta > 0$, da je f(x) > M, če le $a < x < a + \delta$, potem pišemo $\lim_{x \searrow a} f(x) = \infty$.

Podobno definiramo simbol $\lim_{x \searrow a} f(x) = -\infty$, če za vsako število $m \in \mathbb{R}$ obstaja tak $\delta > 0$, da je f(x) < m, če le $a < x < a + \delta$.

Limita v neskončnosti

Oznaka $\lim_{x \to \infty} f(x) = L$ pomeni, da je število L limita funkcije f, ko gre x čez vse meje, torej da za vsak $\varepsilon > 0$ obstaja tako število M, da je $|f(x) - L| < \varepsilon$ za vsak x > M.

Podobno definiramo s simbolom $\lim_{x \to -\infty} f(x) = L$, da za vsak $\varepsilon > 0$ obstaja tako število m, da je $|f(x) - L| < \varepsilon$ za vsak x < m.

Karakterizacija limit funkcij prek zaporedij

Trditev

Funkcija f ima v točki a limito L natanko tedaj, ko za vsako zaporedje $(a_n)_n$, ki konvergira proti a (ter ne vsebuje a) velja $\lim_{n\to\infty} f(a_n) = L$.

Dokaz implikacije (\Rightarrow) (Neobvezen, za radovedne). Predpostavimo, da ima f v točki x=a limito L, tj.

$$\forall \epsilon > 0 \ \exists \delta > 0 : \text{Iz pogoja } |x - a| < \delta, \text{ sledi } |f(x) - L| < \epsilon.$$
 (1)

Izberimo poljubno zaporedje $(a_n)_n$, $a_n \neq a$, z $\lim a_n = a$. Dokazati moramo $\lim f(a_n) = L$ oz. po definiciji limite zaporedja

$$\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} : \text{Iz pogoja } n > n_0, \text{ sledi } |f(x_n) - L| < \epsilon.$$
 (2)

Ker je $\lim a_n = a$, po definiciji limite velja

$$\forall \delta > 0 \ \exists n_1 \in \mathbb{N} :$$
lz pogoja $n \ge n_1$, sledi $|a_n - a| < \delta$. (3)

Izberimo sedaj $\epsilon>0$. Po (1) obstaja $\delta>0$, da $|x-a|<\delta$ implicira $|f(x)-L|<\epsilon$. Po (3) obstaja $n_1\in\mathbb{N}$, da za vsak $n\geq n_1$ velja $|a_n-a|<\delta$. Združimo zadnji dve ugotovitvi in sklepamo, da za poljuben $\epsilon>0$ obstaja $n_0\in\mathbb{N}$ (npr. n_1 iz (3)), tako da za vsak $n\geq n_0$ velja $|f(a_n)-L|<\epsilon$, kar je (2).

Karakterizacija limit funkcij prek zaporedij

Dokaz implikacije (\Leftarrow) (Neobvezen, za radovedne). Predpostavimo, da za vsako zaporedje $(a_n)_n$, $a_n \neq a$, z $\lim a_n = a$, velja $\lim f(a_n) = L$. Dokazujemo, da ima f v točki x = a limito L, tj.

$$\forall \epsilon > 0 \ \exists \delta > 0 :$$
 Iz pogoja $|x - a| < \delta$, sledi $|f(x) - L| < \epsilon$. (4)

Pa predpostavimo nasprotno. Torej obstaja $\epsilon>0$, tako da zanj ne obstaja δ , pri katerem bi $|x-a|<\delta$ impliciralo $|f(x)-L|<\epsilon$. Posebej to velja za vsak $\delta_n=\frac{1}{n},\ n\in\mathbb{N}\setminus\{0\}$. Torej obstaja zaporedje $(a_n)_n$ z $|a_n-a|<\delta_n$ in $|f(a_n)-L|\geq\epsilon$. Sledi $\lim a_n=a$ in $\lim f(a_n)\neq L$. To pa je v protislovju s predpostavko.

Pravila za računanje limit

Za računanje limit veljajo enaka pravila kot pri zaporedjih.

Trditev

Naj bo
$$\lim_{x \to a} f(x) = L \in \mathbb{R}$$
 in $\lim_{x \to a} g(x) = K \in \mathbb{R}$. Potem je

 $\lim_{x\to a} (f(x)+g(x)) = L+K.$

Dokaz. Po karakterizaciji limit funkcij prek zaporedij moramo za poljubno zaporedje $(a_n)_n$ z $\lim a_n = a$ preveriti $\lim (f(a_n) + g(a_n)) = L + K$. Po pravilih za računanje limit zaporedij pa res velja:

$$\lim(f(a_n)+g(a_n))=\lim f(a_n)+\lim g(a_n)=L+K.$$

- $\lim_{x \to a} (\alpha f(x)) = \alpha L \text{ za vsak } \alpha \in \mathbb{R}.$

Primeri

1. $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$

Za vsak $x \in (0,1)$ obstaja $n \in \mathbb{N}$, tako da je

$$\frac{1}{n+1} < x \le \frac{1}{n}$$
 oz. $n \le \frac{1}{x} < n+1$.

Sledi

$$\left(1+\frac{1}{n+1}\right)^n \le \left(1+x\right)^{\frac{1}{x}} \le \left(1+\frac{1}{n}\right)^{n+1}.$$

Velja

$$\lim \left(1 + \frac{1}{n+1}\right)^n = \lim \left(1 + \frac{1}{n+1}\right)^{n+1} \left(1 + \frac{1}{n+1}\right)^{-1}$$

$$= \lim \left(1 + \frac{1}{n+1}\right)^{n+1} \lim \left(1 + \frac{1}{n+1}\right)^{-1} = e \cdot 1 = e.$$

Podobno

$$\lim \left(1 + \frac{1}{n}\right)^{n+1} = e.$$

Po izreku o sedviču za zaporedja sledi $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$.

Primeri

2. $\lim_{x \to \frac{2}{x}} \sin \frac{1}{x}$, $\lim_{x \to 0} \sin \frac{1}{x}$, $\lim_{x \to \infty} \sin \frac{1}{x}$

- 3. $f(x) = \lim_{x \to 0} \operatorname{sign}(x)$
- 4. $\lim_{x\to 0} \frac{\sin x}{x}$.

Za $x \in [0, \frac{\pi}{2})$ velja $\sin x \le x \le \tan x = \frac{\sin x}{\cos x}$. Torej je $\frac{\sin x}{x} \le 1$ in $\cos x \le \frac{\sin x}{x}$ oz. $\cos x \le \frac{\sin x}{x}$ 1. Sledi

$$1 = \lim_{x \to 0^+} \cos x \le \lim_{x \to 0^+} \frac{\sin x}{x} \le \lim_{x \to 0^+} 1 = 1.$$

Torej je $\lim_{x\to 0^+} \frac{\sin x}{x} = 1$. Ker je $\frac{\sin -x}{-x} = \frac{-\sin x}{-x} = \frac{\sin x}{x}$, tudi $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Zveznost funkcije

Funkcija f je **zvezna** v točki *a* natanko tedaj, ko je

$$\lim_{x\to a} f(x) = f(a).$$

Z drugimi besedami: funkcija f je zvezna v točki a, ko ima v tej točki limito L, ki je enaka f(a). V $\epsilon-\delta$ notaciji lahko zveznost funkcije f definiramo kot:

Funkcija $f:\mathcal{D}\to\mathbb{R}$ je v točki $a\in\mathcal{D}$ zvezna natanko tedaj, ko za vsak $\varepsilon>0$ obstaja tak $\delta>0$, da je

$$|f(x)-f(a)|<\varepsilon,$$

če je $|x - a| < \delta$.

Določimo takšen a, da bo spodnja funkcija povsod zvezna:

$$f(x) = \begin{cases} x^2 + 2x + 1 & x < 1, \\ ax + 3, & x \ge 1. \end{cases}$$

Lastnosti zveznosti

Izrek

Naj bosta $f: \mathcal{D}_f \to \mathbb{R}$ in $g: \mathcal{D}_g \to \mathbb{R}$ funkciji, ki sta zvezni v točki $a \in \mathcal{D}_f \cap D_g$.

- 1. Potem so tudi funkcije $f+g,\ f-g,\ fg$ zvezne v a.
 - Dokaz zveznosti f+g. Po pravilih za računanje limit vemo, da je $\lim_{x\to a}(f(x)+g(x))=\lim_{x\to a}f(x)+\lim_{x\to a}g(x)$. Ker sta f in g zvezni v x=a, sledi $\lim_{x\to a}f(x)+\lim_{x\to a}g(x)=f(a)+g(a)$.
- 2. Če je še $g(a) \neq 0$, potem je f/g definirana na neki okolici točke a in zvezna v točki a.
- 3. Naj bo $\mathcal{Z}_f \subseteq \mathcal{D}_g$. Če je funkcija f zvezna v točki a, g pa ima v točki f(a) limito L, je

$$\lim_{x\to a}(g\circ f)(x)=L.$$

Posebej, če je g zvezna v točki f(a), potem je $g \circ f$ zvezen v točki a.

Lastnosti zveznosti

Dokaz (3). Naj bo $(a_n)_n$, $a_n \neq a$, zaporedje z $\lim a_n = a$. Velja $\lim_n (g \circ f)(a_n) = \lim_n g(f(a_n))$. Ker je $\lim_n f(a_n) = f(a)$, in $\lim_n g(b_n) = L$ za vsako zaporedje $(b_n)_n$ z $\lim_n b_n = f(a)$, sledi $\lim_n g(f(a_n)) = L$.

- ▶ Vse elementarne funkcije so zvezne povsod, kjer so definirane.
- Če je podatek a podan dovolj natančno (z napako manjšo od δ), bo vrednost f(a) izračunana z napako manjšo od ε .
- ► Graf zvezne funkcije bo v točki (a, f(a)) "nepretrgana krivulja".
- ▶ Če vrednost f(a) ni definirana, vendar obstaja $L = \lim_{\substack{x \to a \\ \text{Homographis}}} f(x)$, lahko funkcijo f razširimo, tako da definiramo f(a) := L. Tako razširjena funkcija je zvezna v točki a.
- Zamenjamo lahko vrstni red računanja limite in vrednosti zvezne funkcije.

Izračunajmo $\lim_{x\to 0} \sin(3x^2 + \pi)$.

Ničle zveznih funkcij

Izrek

Če je f zvezna na zaprtem omejenem intervalu [a, b] in je f(a)f(b) < 0, tj. f v krajiščih intervala sta predznaka različna, potem obstaja točka $c \in (a, b)$, kjer je f(c) = 0.

Dokaz z **bisekcijo**: Definiramo tri zaporedja, a_n , b_n in c_n :

- $ightharpoonup a_0 = a, b_0 = b.$
- ightharpoonup za n = 0, 1, 2, ...

$$c_n = (a_n + b_n)/2\dots$$
 to je razpolovišče intervala $[a_n, b_n]$,
$$[a_{n+1}, b_{n+1}] = \begin{cases} [a_n, c_n], & \text{\'e je } f(a_n) f(c_n) < 0, \\ [c_n, b_n], & \text{\'e je } f(c_n) f(b_n) < 0. \end{cases}$$

Če za kakšen c_n velja $f(c_n)=0$, je $c=c_n$. Sicer pa zaporedja a_n , b_n in c_n vsa konvergirajo k istemu številu c, saj je $a_n \le c_n \le b_n$, $(a_n)_n$ je naraščajoče, $(b_n)_n$ padajoče in $b_n-a_n=\frac{1}{2^n}(b_0-a_0)$.

Omejenost zveznih funkcij

Izrek

Naj bo f zvezna funkcija na zaprtem intervalu [a, b]. Potem:

▶ f je omejena na [a, b], tj. obstajata

$$M = \sup\{f(x) ; x \in [a, b]\}, \quad m = \inf\{f(x) ; x \in [a, b]\}.$$

▶ Obstajata $x_m, x_M \in [a, b]$, kjer je

$$f(x_m) = m$$
 in $f(x_M) = M$.

▶ Za vsako vrednost y med m in M, m ≤ y ≤ M, obstaja točka $x_y \in [a, b]$, kjer je $f(x_y) = y$, tj. enačba f(x) = y ima rešitev na intervalu [a, b].

Drugače povedano, zvezna funkcija f preslika omejen zaprt interval [a,b] v omejen zaprt interval:

$$f([a,b])=[m,M].$$