Pathway to $\pi^0 v_n$ Measurements

Anthony Hodges
UIUC Group Meeting
September 21st, 2023

NSF Ascend Fellow

Discussion at Bulk TG

- Goal: Measure π^0 v_n via scalar product method
- Needs:
 - Good run list for calibrated EMCal and MBD data
 - Event plane and centrality production/modules
- What we have:
 - π^0 reconstruction code
 - EMCal QA code
- Anticipated Systematics
 - Event plane resolution
 - π^0 reconstruction
- Intended data sample: All of Run 23

Personpower

- Postdoc:
 - Anthony supervisory
- Graduate Students
 - Apurva Narde EMCal/ π^0 analysis
 - Grace Garmire MBD/Event plane analysis
 - Justin Bennett –EMCal calibrations
- Undergraduates
 - Abraham Holtermann EMCal analysis and QA
 - Max Erbach MBD Analysis and QA
- More opportunities bound to arise as we delve into the analysis!

Doing a Physics Analysis

- Firstly one always starts with QA
 - Hot tower/PMT removal
 - Bad cluster removal
 - NB some of this will be done by the Calo Calibrations team, but our aim is to provide a baseline data set, which users are free to (reasonably) refine based on their analysis needs.
- Extraction of "objects of interest"
 - π^0 's and event planes
 - q_{π^0} and Q_{EP}
- Extraction of Signal
 - $v_n\{SP\}$
- Corrections
- Systematics

Doing a Physics Analysis

- Firstly one always starts with QA
 - Hot tower/PMT removal
 - Bad cluster removal
 - NB some of this will be done by the Calo Calibrations team, but our aim is to provide a baseline data set, which users are free to (reasonably) refine based on their analysis needs.
- Extraction of "objects of interest"
 - π^0 's and event planes
 - q_{π^0} and Q_{EP}
- Extraction of Signal
 - $v_n\{SP\}$
- Corrections
- Systematics

Note that each of these stages is iterative and should be reported to the TG when a major milestone is reached

(Very Basic) Analysis Roadmap

Event Mixing and Efficiency Corrections

- Correlation signals can arise from non-physical source
 - E.g. Solely because particles saw the same detector
- To remedy this, one can take π^0 q-vectors from one event and compute the scalar product with Q-vectors from another
- In my analysis, this was a correction to the overall correlation shape (i.e. it integrated to 1)
- Unless the efficiency has some phi dependency to it, I'm not sure it's necessary and/or the event mixing will handle it

π^0 Systematics

- π^0 combinatoric background
- Nominally, we accept π^0 's with a mass between some range (TBD)
- However not all π^0 's in this range are real π^0 's

π^0 Systematics

- Nominally, we accept π^0 's with a mass between some range (TBD)
- However not all π^0 's in this range are real π^0 's
- Therefore you need to estimate the contributions from fake π^0 's to the v_n
- This involves doing a sideband analysis in an area you know is essentially all "fakes"

Event Plane Systematics

• Interesting since you're already dividing by a $\Psi_n^N - \Psi_n^P$ term, unsure how this propagates to actual systematic uncertainties simultaneously

Summary

- Woot woot! Physics time!
- Pre-QM23 dataset is a great place to start refining tools and code:
 - https://wiki.sphenix.bnl.gov/index.php/Calorimeter Data
- Do not look at uncalibrated DST's unless you need to or you're assigned to
- Make yourself a spot in the... Bulk TG area? Probably actually use the Jet TG space, it's where our work will eventually culminate
 - /direct/sphenix+tg+tg01
- My advice would be to take advantage of the large disk space to keep everything as nTuples/Trees

Yes, you can start right now

- Right? Have suite of QA tools for EMCal already, those should be deployed on the Pre-QM dataset to hone down observables of interest
- MBD QA in development?