Contrôle 1 Architecture des ordinateurs

		Duree: 1 n 30		
Nom:	Prénom :			

Exercice 1 (6 points)

Soit le nombre binaire 10011010112, que l'on considère non signé dans un premier temps.

- 1. Donnez sa représentation décimale.
- 2. Donnez sa représentation hexadécimale.

On le considère maintenant signé sur 10 bits.

- 3. Donnez sa représentation décimale.
- 4. Donnez sa représentation binaire sur 15 bits signés.

Si le nombre binaire signé 27 bits **10001110100100011010100100**₂ vaut -59470516₁₀.

- 5. Combien vaut le nombre binaire signé 32 bits 11111100011101001000110101010012 ?
- 6. Combien vaut le nombre binaire signé 27 bits 1100011101001000110101010102?

Soit le nombre en représentation décimale suivant : 2²⁴.

- 7. Combien faut-il de bits au minimum pour le représenter en binaire non signé ?
- 8. Combien faut-il de bits au minimum pour le représenter en binaire signé ?

Soit le nombre en représentation décimale suivant : -2²⁴.

9. Combien faut-il de bits au minimum pour le représenter en binaire signé ?

Pour finir:

- 10. Donnez la représentation binaire sur 10 bits signés du nombre -512.
- 11. Donnez la représentation binaire sur 12 bits signés du nombre -512.
- 12. Donnez la représentation binaire sur 12 bits signés du nombre -511.

Exercice 2 (5 points)

- Convertissez, en détaillant chaque étape, les deux nombres ci-dessous dans le format flottant simple précision. Vous exprimerez le résultat final, sous forme binaire, en précisant chacun des champs.
 - 155,25
 - 0,625
- En détaillant chaque étape, donnez la représentation décimale des nombres codés en double précision suivants :
 - 12E1 4000 0000 0000₁₆
 - 8001 2000 0000 0000₁₆
 - 7FF0 0000 0000 0000₁₆

Contrôle 1

Exercice 3 (4 points)

On désire réaliser un compteur synchrone avec la séquence du tableau ci-dessous. On dispose pour cela de bascules JK synchronisées sur front montant.

1. Remplissez le tableau.

\mathbf{Q}_1	\mathbf{Q}_0	J_1	K ₁	J_0	\mathbf{K}_{0}
1	0				
1	1				
0	1				
0	0				

2. Donnez les équations des entrées J et K de chaque bascule <u>en détaillant vos calculs par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (ex : $J_0 = 1$, $K_1 = \overline{Q}_2$).

Exercice 4 (5 points)

Pour chaque question, vous pourrez ajouter toutes les portes logiques que vous jugerez nécessaires.

1. Câblez les bascules ci-dessous afin de réaliser un compteur asynchrone modulo 10.

2. Câblez les bascules ci-dessous afin de réaliser un décompteur asynchrone modulo 11.

3. Donnez le schéma de câblage d'un diviseur de fréquence par deux à l'aide d'une bascule D.

Contrôle 1 2/2