Visual Question Answering with Graph Matching and Reasoning

Anonymous ICCV submission

Paper ID ****

Abstract

xxx.

1. Reasoning

In this section, we briefly introduce the construction of inference graph to infer the hidden attributes. The inference graph is constructed using Bayesian network described by a pair $\mathfrak{B}=<\mathcal{G},\, \Theta_{\mathcal{G}}>$. Specifically, the notation \mathcal{G} is a directed acyclic graph, of which the i-th vertex corresponds to a random variable X_i , and the connected edge in \mathcal{G} between two vertexes indicates the dependency. The second item $\Theta_{\mathcal{G}}$ is a set of parameters used to quantify the dependencies of \mathcal{G} . We use the notation $\theta_{X_i|\mathrm{Pa}(X_i)}=P_{\mathfrak{B}}(X_i|\mathrm{Pa}(X_i))$ to denote the parameter of X_i , of which $\mathrm{Pa}(X_i)$ is the attributes of the parents of X_i . The joint probability distribution of Bayesian network is given by:

$$P_{\mathfrak{B}}(X_1,\cdots,X_n) = \prod_{i=1}^n P_{\mathfrak{B}}(X_i|\operatorname{Pa}(X_i)) = \prod_{i=1}^n \theta_{X_i|\operatorname{Pa}(X_i)}$$
(1)

In our inference graph, the role of Bayesian network is to predict the object class when given the attributes $\{X_i\}_{i=1}^n$ as input. In the sense of probability, the object class is also a variable. Let $Y=X_0$ be the class variable, the network now has one extra vertex Y. According to the Bayesian rule, the network can be rewritten as:

$$P_{\mathfrak{B}}(Y|X) = \frac{P_{\mathfrak{B}}(Y)P_{\mathfrak{B}}(X|Y)}{P_{\mathfrak{B}}(X)}$$

$$= \frac{\theta_{Y|Pa(X_0)} \prod_{i=1}^{n} \theta_{X_i|Y,Pa(X_i)}}{\sum_{y' \in \mathcal{Y}} \theta_{y'|Pa(X_0)} \prod_{i=1}^{n} \theta_{X_i|y',Pa(X_i)}}$$
(2)

where \mathcal{Y} is the set of classes.

In the context of Naïve Bayes, the importance of $P_{\mathfrak{B}}(Y|X)$ is stressed by taking the class variable as the root, and all attributes are conditionally independent when taking

the class as a condition. As a consequence, the calculation can be simplified as:

$$P_{\mathfrak{B}}(Y|X) = c \cdot \theta_Y \prod_{i=1}^n \theta_{X_i|Y} \tag{3}$$

where c is used to make the calculation being a distribution: $c = \sum_{y' \in \mathcal{Y}} \theta_{y'} \prod_{i=1}^n \theta_{X_i|y'}$.

References