Problem 2 Let us prove that $\phi(20) = \phi(4)\phi(5)$. First, note that $\phi(4) = \underline{\hspace{1cm}}$ and $\phi(5) = \underline{\hspace{1cm}}$, so we will prove $\phi(20) = \underline{\hspace{1cm}}$.

- (a) A number a is relatively prime to 20 if and only if a is relatively prime to _____ and ____.
- (b) We can partition the positive integers less that or equal to 20 into

$$1 \equiv \underline{\hspace{1cm}} \equiv \underline{\hspace{1cm}} \equiv \underline{\hspace{1cm}} \equiv \underline{\hspace{1cm}} \pmod 4$$

$$2 \equiv \underline{\hspace{1cm}} \equiv \underline{\hspace{1cm}} \equiv \underline{\hspace{1cm}} \equiv \underline{\hspace{1cm}} \pmod 4$$

$$3 \equiv \underline{\hspace{1cm}} \equiv \underline{\hspace{1cm}} \equiv \underline{\hspace{1cm}} \pmod{4}$$

$$4 \equiv \underline{\hspace{1cm}} \equiv \underline{\hspace{1cm}} \equiv \underline{\hspace{1cm}} \equiv \underline{\hspace{1cm}} \pmod{4}$$

For any b in the range 1, 2, 3, 4, define s_b to be the number of integers a in the range 1, 2, ..., 20 such that $a \equiv b \pmod{4}$ and $\gcd(a, 20) = 1$. Thus, $s_1 = \underline{\hspace{1cm}}, s_2 = \underline{\hspace{1cm}}, s_3 = \underline{\hspace{1cm}},$ and $s_4 = \underline{\hspace{1cm}}$.

We can see that when (b, 4) = 1, $s_b = \phi(\underline{\hspace{1cm}})$ and when (b, 4) > 1, $s_b = \underline{\hspace{1cm}}$.

(c) $\phi(20) = s_1 + s_2 + s_3 + s_4$. Why?

(d) We have seen that $\phi(20) = s_1 + s_2 + s_3 + s_4$, that when (b,4) = 1, $s_b = \underline{\hspace{1cm}}, {}^1$ and that when (b,4) > 1, $s_b = \underline{\hspace{1cm}}, {}^1$ To finish the "proof" we show that there are $\phi(\underline{\hspace{1cm}})$ integers b where (b,4) = 1. Thus, we can say that $\phi(20) = \underline{\hspace{1cm}}$.

Problem 3 Repeat the same proof for m and n where (m,n)=1.

¹This blank is asking for a function, not a numbers.