Introduction to Electromagnetism

1 Coulomb's Law

 \longrightarrow the force on Q due to q_1 is given by:

$$\vec{F_1} = \frac{1}{4\pi\epsilon_0} \frac{q_1 Q}{r_1^2} \hat{r_1}$$

If there was another charge q_2 at $\vec{r_2}$:

The force on Q due to q_2 is given by:

$$\vec{F_2} = \frac{1}{4\pi\epsilon_0} \frac{q_2 Q}{r_2^2} \hat{r_2}$$

And the net charge on Q is given by:

$$\vec{F} = \vec{F_1} + \vec{F_2}$$

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 Q}{r_1^2} \hat{r_1} + \frac{1}{4\pi\epsilon_0} \frac{q_2 Q}{r_2^2} \hat{r_2}$$

If there were n charges, the net force on Q would be:

$$\vec{F} = \sum_{i=1}^{n} \frac{1}{4\pi\epsilon_0} \frac{q_i Q}{r_i^2} \hat{r_i}$$

$$\vec{F} = Q \sum_{i=1}^{n} \frac{1}{4\pi\epsilon_0} \frac{q_i}{r_i^2} \hat{r}_i$$

where $\sum_{i=1}^{n} \frac{1}{4\pi\epsilon_0} \frac{q_i}{r_i^2} \hat{r_i}$ is the electric field \vec{E} at \vec{R} due to the n charges. **Field**: A value, vector or tensor, that is defined for every point in space and time.

2 Vector Calculus

Vectors A vector is a quantity that is said to transform like a displacement.

Operations on Vectors

• Addition: $\vec{A} + \vec{B} = \vec{C}$

• Subtraction: $\vec{A} - \vec{B} = \vec{C}$

- Multiplication by a scalar: $c\vec{A} = \vec{C}$
- **Dot Product:** $\vec{A} \cdot \vec{B} = AB\cos(\theta)$. Dot product is a scalar. It is commutative and distributive.
- Cross Product: $\vec{A} \times \vec{B} = AB\sin(\theta)\hat{n}$ where \hat{n} is the unit vector perpendicular to the plane containing \vec{A} and \vec{B} .

Cross product is a vector. It is anti-commutative and distributive.

2.2Component form of a Vector:

A vector \vec{A} can be written as:

$$\vec{A} = A_x \hat{i} + A_u \hat{j} + A_z \hat{k}$$

where \hat{i},\hat{j},\hat{k} are unit vectors along the x,y,z axes respectively. Given that $\vec{A}=A_x\hat{i}+A_y\hat{j}+A_z\hat{k}$ and $\vec{B}=B_x\hat{i}+B_y\hat{j}+B_z\hat{k}$, we can perform the following operations:

- Addition (and Subtraction): $\vec{A} + \vec{B} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j} + (A_y + B_y)\hat{j}$ $(A_z + B_z)\hat{k}$
- Multiplication by a scalar: $c\vec{A} = cA_x\hat{i} + cA_y\hat{j} + cA_z\hat{k}$, where c is a
- Dot Product: $\vec{A}.\vec{B} = A_x B_x + A_y B_y + A_z B_z$
- Modulus: $|\vec{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$
- Cross Product: $\vec{A} \times \vec{B} = (A_y B_z A_z B_y)\hat{i} + (A_z B_x A_x B_z)\hat{j} + (A_x B_y A_z B_z)\hat{j}$ $(A_y B_x)\hat{k}$ This can also be written in a determinant form:

$$ec{A} imes ec{B} = egin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{bmatrix}$$

Triple Product: 2.3

Scalar Triple Product: $\vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{B} \cdot (\vec{C} \times \vec{A}) = \vec{C} \cdot (\vec{A} \times \vec{B})$ Geometrically the scalar triple product is the volume of the parallelopiped formed by the three vectors.

Vector Triple Product: $\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A}.\vec{C}) - \vec{C}(\vec{A}.\vec{B})$

3 Differential Calculus

"Ordinary" Derivative:

 $\frac{df}{dx}=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$ Geometrically, the derivative is the slope of the tangent to the curve at a point.

3.2 Gradient:

Consider a scalar, T, which exists at every point in space.

$$dT = \left(\frac{\partial T}{\partial x}\right)dx + \left(\frac{\partial T}{\partial y}\right)dy + \left(\frac{\partial T}{\partial z}\right)dz$$

This can the written in the dot product form as:

$$dT = \left(\frac{\partial T}{\partial x}\hat{x} + \frac{\partial T}{\partial y}\hat{y} + \frac{\partial T}{\partial z}\hat{z}\right) \cdot (dx\hat{x} + dy\hat{y} + dz\hat{z})$$

this is denoted as:

$$dT = \nabla T \cdot d\vec{r}$$

Here, we treat ∇ as an operator. It takes a scalar and returns a vector.

The ∇ operator:

$$\nabla = \hat{x}\frac{\partial}{\partial x} + \hat{y}\frac{\partial}{\partial y} + \hat{z}\frac{\partial}{\partial z}$$

3.3 Divergence:

Consider a vector, \vec{A} , which exists at every point in space. The divergence of \vec{A} is defined as:

$$\begin{split} \nabla \cdot \vec{A} &= \left(\hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z} \right) \cdot \left(A_x \hat{x} + A_y \hat{y} + A_z \hat{z} \right) \\ \nabla \cdot \vec{A} &= \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} \end{split}$$

It behaves like a dot product, and is a scalar.

3.4 Curl:

Consider a vector, \vec{A} , which exists at every point in space. The curl of \vec{A} is defined as:

$$\nabla \times \vec{A} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ A_x & A_y & A_z \end{vmatrix}$$

It behaves like a cross product, and is a vector.

3.5 Second Derivatives:

• Divergence of a Gradient: $\nabla \cdot (\nabla T)$

$$\nabla \cdot (\nabla T) = \left(\hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z} \right) \cdot \left(\frac{\partial T}{\partial x} \hat{x} + \frac{\partial T}{\partial y} \hat{y} + \frac{\partial T}{\partial z} \hat{z} \right)$$
$$\nabla \cdot (\nabla T) = \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right)$$

It is denoted by $\nabla^2 T$ and is called the Laplacian of T.

Note: Laplacian of a vector is theoretically not defined. But when $\nabla^2 \vec{A}$ is written, it means:

$$\nabla^2 \vec{A} = (\nabla^2 A_x) \,\hat{x} + (\nabla^2 A_y) \,\hat{y} + (\nabla^2 A_z) \,\hat{z}$$

• Curl of a Gradient: $\nabla \times (\nabla T)$

$$\nabla \times (\nabla T) = 0$$

Curl of a gradient is always zero.

- Gradient of Divergence: $\nabla \left(\nabla \cdot \vec{A} \right)$
- Divergence of Curl: $\nabla \cdot \left(\nabla \times \vec{A} \right)$

$$\nabla \cdot \left(\nabla \times \vec{A} \right) = 0$$

Divergence of a Curl is always zero.

• Curl of Curl: $\nabla \times \left(\nabla \times \vec{A} \right)$

$$abla imes \left(
abla imes ec{A}
ight) =
abla \left(
abla \cdot ec{A}
ight) -
abla^2 ec{A}$$

4 Integral Calculus

4.1 Line Integral:

Consider a vector field \vec{V} and a curve C joining points a and b. The line integral of \vec{V} along C is defined as:

$$\int_{aP}^{b} \vec{V} \cdot d\vec{l}$$

where $d\vec{l}$ is the differential displacement along the curve C.

when C is a closed figure, it is written as:

$$\oint \vec{V} \cdot d\vec{l}$$

4.2 Surface Integral:

Consider a vector field \vec{V} and a surface S. The surface integral of \vec{V} over S is defined as:

$$\int_{S} \vec{V} \cdot \vec{da}$$

where \vec{da} is the differential area vector of the surface S.

When S is a closed surface:

$$\oint \vec{V} \cdot \vec{da}$$

4.3 Volume Integral:

Consider a scalar field T and a volume V. The volume integral of T over V is defined as:

$$\int_{V} T dV$$

If we consider a vector field \vec{A} , then:

$$\int \vec{A}dV$$

$$\hat{x} \int A_x dV + \hat{y} \int A_y dV + \hat{z} \int A_z dV$$

In Cartesian coordinates:

$$dV = dxdydz$$

In Spherical Polar coordinates:

$$dV = r^2 \sin(\theta) dr d\theta d\phi$$

4.4 Fundamental Theorem of Calculus:

If f(x) is a continuous function and F(x) is the anti-derivative of f(x), then:

$$\int_{a}^{b} f(x) = F(b) - F(a)$$

• Fundamental Theorem for Gradients:

Consider a scalar field T and a curve C, from \vec{a} to \vec{b} , then:

$$\int_{\vec{a}}^{\vec{b}} \nabla T \cdot d\vec{l} = T(\vec{b}) - T(\vec{a})$$

If the curve is a closed curve, then:

$$\int_{\vec{a}}^{\vec{b}} \nabla T \cdot d\vec{l} = 0$$

• Fundamental Theorem for Divergence: a.k.a Gauss' Theorem, Green's Theorem or divergence theorem. Consider a vector field \vec{A} and a volume V, then:

$$\int_{V} \left(\vec{\nabla} \cdot \vec{v} \right) = \oint \vec{v} . \vec{ds}$$

where ds is the differential area vector of the surface S.

• Fundamental Theorem for Curl: a.k.a Stokes' Theorem. Consider a vector field \vec{A} and a surface S, then:

$$\int_{S} \left(\vec{\nabla} \times \vec{v} \right) \vec{da} = \oint \vec{v} \cdot \vec{dl}$$

where dl is the differential displacement vector along the boundary curve C of the surface S.

5 Dirac Delta Function:

5.1 One-Dimensional Dirac Delta Function:

It is a function that is zero everywhere except at x=0 and has an integral of 1. It is defined as:

$$\delta(x) = \begin{cases} \infty & x = 0\\ 0 & x \neq 0 \end{cases}$$

and

$$\int_{-\infty}^{\infty} \delta(x) dx = 1$$

Mathematically, it is not a function. i.e. don't tell your maths profs that its a function.

5.2 Three-Dimensional Dirac Delta Function:

It is a function that is zero everywhere except at $\vec{r} = \vec{r_0}$ and has a volume integral of 1. It is defined as:

$$\delta^{3}(\vec{r}) = \begin{cases} \infty & (x, y, z) = (0, 0, 0) \\ 0 & \text{everywhere else} \end{cases}$$
$$\delta^{3}(\vec{r}) = \delta(x)\delta(y)\delta(z)$$

and

$$\int_{\rm all\ space} \delta^3\left(\vec{r}\right) d\tau = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x) \delta(y) \delta(z) dx dy dz$$

Generalizing the function:

$$\int_{\text{all space}} f(r)\delta^3 (r-a) d\tau = f(a)$$

6 Electrostatics

6.1 Electric Field

The Electric Field at \vec{R} due to q_1 is given by:

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q_1}{r_1^2} \hat{r_1}$$

If there is another charge present:

Principle of Superposition:

The net electric field at \vec{R} due to n charges is given by:

$$E = \frac{1}{4\pi\epsilon_0} \left(\sum_{i=1}^n \frac{q_i}{r_i^2} \hat{r}_i \right)$$

Question:

Consider two charges, q, placed at $r=\pm\frac{d}{2}$ respectively. Find the electric field at z.

Answer

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{\left(\frac{d}{2}\right)^2 + z^2} \hat{r_1} + \frac{q}{\left(\frac{d}{2}\right)^2 + + z^2} \hat{r_2} \right)$$

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \left(\frac{2q}{z^2 + \frac{d^2}{4}} \right) \left(\frac{z}{\sqrt{z^2 + \frac{d^2}{4}}} \hat{z} \right)$$

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \left(\frac{2qz}{\left(z^2 + \frac{d^2}{4}\right)^{\frac{3}{2}}} \right) \hat{z}$$

now, if z is very large (but not infinity):

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \left(\frac{2q}{z^2}\right) \left(1 + \frac{d^2}{4z^2}\right)^{\frac{-3}{2}} \hat{z}$$

this can be approximated to:

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \left(\frac{2q}{z^2} \right) \left(1 - \frac{3d^2}{8z^2} \right) \hat{z}$$