

Sumário

- 1. Introdução
- 2. Conceitos Primitivos
- 3. Postulados de Hilbert
- 4. Postulados de Existência
- 5. Demonstrações

Introdução

- O conhecimento em geometria foi sendo adquirido ao longo de milhares de anos.
- A palavra Geometria vem do grego, designando a ciência para medir a terra.
- Possivelmente tenha se iniciado na Antiguidade, de forma bem simples, aperfeiçoando-se gradativamente até atingir o estágio atual.
- Mesmo na nossa forma mais primitiva, nosso instinto levou a ter ideias relacionadas à geometria, como:
 - distância;
 - comparar formas e tamanhos.

A curiosidade pela natureza talvez tenha levado o homem a observar que nela existem muitas figuras geométricas:

Figura 1: Forma Hexagonal das Colméias

Figura 2: Forma Pentagonal das Estrelas Marinhas

Figura 3: Forma Circular da Lua (e do Sol)

Figura 4: Forma Cilíndrica dos Troncos das Árvores

- A vida cotidiana pode ter levado o homem à percepção de curvas, superfícies e sólidos, como:
 - uma pedra que, arremessada no ar, descreve uma parábola.

 uma pedra que, se jogada sobre uma superfície de um lago, descreve círculos concêntricos

Origem [2]

"A Idade da Pedra durou vários milhares de anos, começando talvez já em 5 milhões a.C. e indo até por volta de 3000 a.C. Num mundo de vastas pastagens e savanas onde abundavam os animais selvagens e as pessoas eram principalmente caçadores e colhedores. Suas vidas eram agrestes e difíceis, de maneira que elas viviam demasiado ocupadas e em permanente agitação para poderem desenvolver tradições científicas. Depois de 3000 a.C. emergem comunidades agrícolas densamente povoadas ao longo do rio Nilo na África, dos rios Tigre e Eufrates no Oriente Médio e ao longo do rio Amarelo na China. Essas comunidades criaram culturas nas quais a ciência e a matemática começam a se desenvolver."

Geometria Babilônica [2]

- A geometria babilônica se relaciona intimamente com a mensuração prática.
- Deviam estar familiarizados com as regras gerais da área de:
 - um retângulo

Geometria Babilônica [2]

 da área do triângulo retângulo e do triângulo isósceles (e talvez da área de um triângulo genérico)

Geometria Babilônica [2]

4

um trapézio retângulo:

Além de estarem familiarizados com o volume de um paralelepípedo reto-retângulo e, mais geralmente, do volume de um prisma reto de base trapezoidal:

A Matemática na Antiguidade

- A Geometria também teve seu desenvolvimento no Egito.
- ▶ De forma empírica, a Geometria foi especialmente desenvolvida pelos egípcios para medir a terra nos trabalhos de irrigação.
- Porém, coube aos gregos a formulação de uma cadeia lógica e rigorosa da Geometria.
- Como exemplo, podemos citar que os babilônios já conheciam o Teorema de Pitágoras (nomeado assim depois), mas foi o matemático grego Pitágoras quem fez a primeira demonstração geral.

A Escola Pitagórica

- Pitágoras fundou a escola pitagórica, um centro de estudo de filosofia, matemática e ciências naturais.
- A irmandade continuou existindo por mais dois séculos, após a sua morte.
- Uma grande realização dos pitagóricos foi a descoberta de que existem números irracionais. Eles perceberam que não existe um número racional (uma fração) que represente a diagonal do quadrado cujos lados medem uma unidade.
- A descoberta dos irracionais é um grande marco da história da Matemática.

Euclides

- ► Euclides (330 275 A.C.) foi o primeiro matemático a introduzir uma estrutura estritamente lógica na Geometria, sintetizando trabalhos de vários séculos em sua famosa obra de 13 volumes: **Elementos**.
- Escrito em grego, a obra cobre toda a aritmética, álgebra e geometria conhecidas até então no mundo grego.
- Nenhum outro trabalho, com exceção da Bíblia, foi tão usado e estudado.

Euclides

- ► Euclides emprega o MÉTODO AXIOMÁTICO para construir a geometria plana de forma sistemática.
- No que consiste esse método:
 - Se quero convencê-lo de que uma afirmação A1 é verdadeira, posso demonstrar como ela logicamente decorre de outra afirmação A2, que você já aceita como verdadeira.
 - Se, por acaso, você duvida de A2, terei que recorrer a outra afirmação, A3, e assim por diante.
 - Esse processo é repetido até chegar a uma afirmação que você aceita sem necessidade de justificação adicional (um axioma ou postulado).
 - Sem isso, o processo seria interminável, resultando em uma sequência infinita de demonstrações.

Axiomas, Postulados e Teoremas

A Geometria Euclidiana

Assim, existem dois requisitos que devem ser cumpridos para que uma prova esteja correta:

Requisito 1: Aceitar como verdadeiras certas afirmações chamadas "axiomas" ou "postulados", sem a necessidade de prova.

Requisito 2: Saber como e quando uma afirmação segue logicamente de outra.

O trabalho de Euclides destaca-se pelo fato de que com apenas 5 postulados ele foi capaz de deduzir 465 proposições, muitas complicadas e não intuitivas.

A Geometria Euclidiana

O 5º Postulado de Euclides

- ▶ Num mesmo plano, *t* corta as retas *r* e *s*.
- Tome pares (α, β) , onde α é um ângulo formado pela interseção de t e r e β formado pela interseção de t e s (ângulos colaterais). Acima, temos apenas um exemplo. Cada interseção gera 4 ângulos.

O 5º Postulado de Euclides

➤ Se existir um par no qual a sua soma é menor que 180, as retas *r* e *s* se cortam. Além disso, se cortam no semiplano gerado por *t*, em que os ângulos colaterais referidos estão (nesse exemplo, do lado direito de *t*).

A Negação do 5º Postulado: Outras Geometrias

Sejam *r* uma reta e *P* um ponto fora dela.

Na Geometria Euclidiana, veremos que o quinto postulado é equivalente a afirmar que existe uma única reta paralela à r passando por P (Axioma de Playfair).

A Negação do 5º Postulado: Outras Geometrias

- A negação do 5º Postulado de Euclides resulta na geração de outras formas de Geometria
- Os outros 4 postulados são independentes do 5°, o que permite que diferentes Geometrias surjam a partir deles com uma alteração no 5°, sem provocar contradições.

A Negação do 5º Postulado: Outras Geometrias

4

Dada uma reta *r* e um ponto *P* fora dela, temos que na:

- Geometria Elíptica: não existe reta paralela à r passando por P.
- ► **Geometria Hiperbólica**: existem várias retas paralelas à *r* passando por *P*.

As Geometrias listadas acima são conhecidas também como **Geometrias Não Euclidianas**.

Conceitos Primitivos

O ponto inicial: ponto, reta e plano [3, 4]

- Pode parecer possível definir todos os entes da Geometria, mas percebam que para definir um termo (por exemplo, paralelogramos) empregamos outros termo (por exemplo, quadriláteros).
- Por isso, teremos que aceitar alguns termos sem defini-los. S\u00e3o eles: o ponto, a reta e o plano.

O Ponto

Mesmo sem defini-los, temos a noção exata desses entes:

- ► Um ponto pode ser representado pela marca produzida pela ponta fina de um lápis quando pressionada sobre uma folha de papel
 - Usaremos letras maiúsculas como A, B, C, . . ., para denotar os pontos:

A Reta

- ► Parte de uma reta pode ser desenhada com a ajuda de uma régua, com duas setas nas suas pontas.
 - Usaremos letras minúsculas como r, s, t, \ldots , para denotar as retas:

O Plano

- Um plano pode ser visto como a superfície de uma parede que se estende indefinidamente em todas as direções.
 - Usaremos letras gregas como α , β , γ , . . ., para denotar os planos:

Pontos Colineares

Definição 1

Diz-se que os pontos de um conjunto estão **alinhados** ou são **colineares**, se existe uma reta que os contém.

Os pontos A, B e C são colineares.

Os pontos R, S e T não são colineares.

Postulados de Hilbert

O trabalho de Hilbert

- Os matemáticos começaram então a estudar a consistência dos postulados de Euclides, e logo perceberam que eles eram insuficientes para provar os teoremas conhecidos, sem falar nos demais que viessem a ser considerados no futuro.
- Analisando os Elementos desse novo ponto de vista, eles descobriram que a axiomática euclidiana era muito incompleta e continha sérias falhas. Euclides, em suas demonstrações, apelava para fatos alheios aos postulados.

O trabalho de Hilbert

- ► Era necessário reorganizar a própria geometria euclidiana, suprindo, inclusive, os postulados que estavam faltando.
- ▶ Isso foi feito por vários matemáticos no final do século XIX, dentre eles David Hilbert (1862-1943), que, em 1889, publicou o livro Fundamentos da Geometria, no qual ele faz uma apresentação rigorosa de uma axiomática adequada ao desenvolvimento lógico-dedutivo da geometria euclidiana.

Postulados de Incidência: Hilbert

Postulado 1 (Postulado 1 de Euclides): Dados dois pontos distintos, existe uma única reta que os contém.

Determinação da reta

Assim, diremos que dois pontos distintos determinam uma reta.

Neste caso, designaremos também a reta por \overleftrightarrow{AB} .

Postulados de Incidência: Hilbert

Postulado 2: Em qualquer reta estão no mínimo dois pontos distintos.

Figura 5: $A, B \in r e A \neq B$

Postulados de Incidência: Hilbert

▶ **Postulado 3:** Existem pelo menos três pontos distintos não colineares (que não estão todos numa mesma reta).

Postulados de Incidência

Postulados - Exercício de Fixação

Baseando-se nos Postulados de Incidência, classifique em verdadeiro (V) ou falso (F), justificando a sua resposta:

- a) Três pontos distintos são sempre colineares.
- b) Três pontos distintos são sempre coplanares.
- c) Quatro pontos todos distintos determinam duas retas.
- d) Por quatro pontos todos distintos pode passar uma só reta.
- e) Três pontos pertencentes a um plano são sempre colineares.

Postulados - Exercício

Definição 2

Duas retas intersectam-se quando elas possuem um ponto em comum.

Duas retas são **iguais** quando possuem **todos** os seus pontos em comum. Caso contrário, dizemos que as retas são **distintas**.

Prove que os Teoremas a seguir:

Teorema 1

Duas retas distintas ou não intersectam-se ou intersectam-se em um único ponto.

Postulados - Exercício

Teorema 2

Para todo ponto P, existem pelo menos duas retas distintas passando por P.

Teorema 3

Para todo ponto P existe pelo menos uma reta r que não passa por P.

Postulado da Determinação: Hilbert

Postulado da Determinação: Plano

Dados três pontos quaisquer não colineares, existe um único plano que os contém.

Três pontos não colineares determinam um plano!

Postulado da Inclusão: Hilbert

Postulado da Inclusão

Se dois pontos de uma reta pertencem a um plano, então esta reta está contida neste plano.

Postulados - Exercício de Fixação

Baseando-se nos Postulados anteriores, classifique em verdadeiro (V) ou falso (F), justificando a sua resposta:

- a) Por um ponto passam infinitas retas.
- b) Por dois pontos distintos passa uma reta.
- c) Uma reta contém dois pontos distintos.
- d) Dois pontos distintos determinam uma e uma só reta.
- e) Por três pontos dados passa uma só reta.

Retas Concorrentes

Definição 3

Quando duas retas têm apenas um ponto em comum, elas são ditas concorrentes.

Exercícios de Fixação

Prove o teorema abaixo:

Teorema 4

Se duas retas são concorrentes, então existe um único plano que as contém.

Postulados de Existência

Postulado da Existência

i) Numa reta, bem como fora dela, há infinitos pontos.

Postulado da Existência

ii) Num plano, bem como fora dele, há infinitos pontos.

Demonstrações

Consequência do Postulado 1

Demonstração do Teorema 1: 'Duas retas distintas ou não intersectam-se ou intersectam-se em um único ponto'.

- ▶ **Hipótese** 1 : as retas distintas r e s se interceptam.
- ► Tese²: o ponto de interseção é único.

¹Hipótese é um conjunto de condições que se supõe verdadeiras.

²Tese é a verdade que se pretende demonstrar.

Vamos usar a **prova por contradição** (ou redução ao absurdo).

- Para isso, supomos, por absurdo, que a tese é falsa.
- Logo, a negativa da mesma é verdadeira:
 - \sim Tese: O ponto de interseção NÃO é único.
 - Ou seja, existe mais de um ponto de interseção.
- Com isso, sejam P e Q dois pontos em comum das retas r e s.

- ► Então, pelo **Postulado da Determinação para retas**, existe uma única reta que passa pelos pontos *P* e *Q*.
- ▶ Como $P, Q \in r$ e $P, Q \in s$, devemos ter r = s.
- ▶ Isso contraria a nossa hipótese de que *r* e *s* são distintas.

- A contradição veio da afirmação de negar a tese: 'O ponto de interseção é único.'
- Logo, a negativa é falsa e, portanto, a tese é verdadeira.

- ► **Hipótese:** As retas *r* e *s* são concorrentes .
- ► Tese: Existe um único plano que as contém.

Sejam A o único ponto de interseção entre as retas. Sejam B e C dois pontos distintos de A, com $B \in r$ e $C \in s$.

ightharpoonup Com isso, obtemos 3 pontos não colineares³ que, pelo Postulado da Determinação, determinam um único plano α .

³Para exercitar: o que garante essa afirmação?

Como A e B pertencem à reta r e ao plano α , o Postulado da Inclusão garante que r está contida no plano α ($r \subset \alpha$).

Analogamente, $B \in C$ pertencem à reta s e ao plano α , de onde concluímos que s está contida no plano α ($s \subset \alpha$).

- Portanto, o único plano determinado por A, B e C, contém r e s.
- Não há outro plano que satisfaça a condição de conter r e s, uma vez que esse plano também deve conter os pontos A, B e C, não podendo ser distinto de α .

Referencias I

A.R.V. Gerbasi.

As Maravilhosas Utilidades da Geometria: da Pré-História à era Espacial. PUCPRess, 2020.

H. Eves.

Introdução à História da Matemática.

Editora UNICAMP, 2005.

Eliane Q. F. R and Maria L. B. Q. Geometria Plana e contruções geométricas. Ed. UNICAMP, 2018.

Referencias II

Osvaldo D. and José N. P. Fundamentos de Matemática Elementar: Geometria Plana. Ed. Atual, 2013.