

Zadanie 3 (4 punkty). Jeśli dla wszystkich formuł φ i ψ logiki pierwszego rzędu formuły $\exists x (\varphi \Leftrightarrow \psi)$ oraz $(\exists x \varphi) \Leftrightarrow (\exists x \psi)$ są równoważne, to w prostokąt poniżej wpisz słowo

"RÓWNOWAŻNE". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

```
Uniwersum: \mathbb{R}; \varphi = (x \le 7); \psi = (x > 7)
```

Zadanie 4 (4 punkty). Udowodnij, że jeśli $\varphi_1 \wedge \neg \varphi_2$ jest formułą sprzeczną to $\neg \varphi_1 \vee \varphi_2$ jest tautologią.

Rozwiązanie. Załóżmy, że $\varphi_1 \wedge \neg \varphi_2$ jest formułą sprzeczną. Weźmy dowolne wartościowanie σ i rozważmy dwa przypadki. Jeśli $\hat{\sigma}(\varphi_1) = \mathsf{F}$ to oczywiście $\hat{\sigma}(\neg \varphi_1) = \mathsf{T}$ i $\hat{\sigma}(\neg \varphi_1 \vee \varphi_2) = \mathsf{T}$. Jeśli natomiast $\hat{\sigma}(\varphi_1) = \mathsf{T}$ to z faktu, że $\varphi_1 \wedge \neg \varphi_2$ jest formułą sprzeczną wnioskujemy, że $\hat{\sigma}(\neg \varphi_2) = \mathsf{F}$, a stąd $\hat{\sigma}(\varphi_2) = \mathsf{T}$ i $\hat{\sigma}(\neg \varphi_1 \vee \varphi_2) = \mathsf{T}$. W obu przypadkach $\hat{\sigma}(\neg \varphi_1 \vee \varphi_2) = \mathsf{T}$, co oznacza, że $\neg \varphi_1 \vee \varphi_2$ jest tautologią.

Zadanie 5 (4 punkty). Udowodnij indukcyjnie¹ (względem głębokości φ), że dla każdej formuły φ rachunku zdań istnieje równoważna jej formuła, w której nie występuje symbol \Leftrightarrow .

Rozwiązanie.

Podstawa indukcji: Formuły głębokości 1 to zmienne zdaniowe — nie występują w nich więc spójniki \Leftrightarrow i nie ma czego dowodzić.

Krok indukcyjny: Załóżmy, że dla każdej formuły o głębokości nie większej niż n istnieje równoważna jej formuła, w której nie występuje symbol \Leftrightarrow . Pokażemy, że dla każdej formuły o głębokości n+1 istnieje równoważna jej formuła, w której nie występuje symbol \Leftrightarrow .

Rozważmy dowolną formułę φ o głębokości n+1. Wtedy φ jest postaci $\neg \varphi_1, \varphi_1 \wedge \varphi_2, \varphi_1 \vee \varphi_2, \varphi_1 \Rightarrow \varphi_2$ lub $\varphi_1 \Leftrightarrow \varphi_2$, przy czym odpowiednio formuły φ_1 lub φ_1 i φ_2 mają głębokość nie większą niż n i z założenia indukcyjnego istnieją rownoważne im formuły φ_1' lub φ_1' i φ_2' bez wystąpień spójnika \Leftrightarrow . W pierwszych czterech przypadkach odpowiednio $\neg \varphi_1', \varphi_1' \wedge \varphi_2', \varphi_1' \vee \varphi_2'$ lub $\varphi_1' \Rightarrow \varphi_2'$ jest równoważną φ formułą nie zawierającą spójnika \Leftrightarrow . W ostatnim przypadku, tj. gdy $\varphi = \varphi_1 \Leftrightarrow \varphi_2$, formuła $(\varphi_1' \Rightarrow \varphi_2') \wedge (\varphi_2' \Rightarrow \varphi_1')$ jest równoważną φ formułą nie zawierającą spójnika \Leftrightarrow .

¹To jest zadanie z indukcji. Nie interesują nas żadne inne dowody tej własności.

Logika dla informatyków

Sprawdzian nr 1, 3 listopada 2011

Rozwiązania wszystkich zadań powinny zmieścić się w odpowiednich prostokątach lub na odwrocie tej kartki.

Zadanie 1 (4 punkty). W prostokąt poniżej wpisz formułę w dysjunkcyjnej postaci normalnej równoważną formule $(p \lor q) \land \neg (r \land p)$

$$(p \wedge \neg r) \vee (q \wedge \neg r) \vee (q \wedge \neg p)$$

Zadanie 2 (4 punkty). W prostokąt poniżej wpisz dowód reguły dowodzenia nie wprost, czyli tautologii $(\neg p \Rightarrow \bot) \Rightarrow p$ w systemie naturalnej dedukcji.

$$(\neg p \Rightarrow \bot) \quad \text{założenie}$$

$$\neg p \quad \text{założenie}$$

$$\neg p \Rightarrow \bot \quad \neg p$$

$$\bot \quad (\neg i)$$

$$\neg \neg p \quad (\neg i)$$

$$p \quad (\neg \neg e)$$

$$(\neg p \Rightarrow \bot) \Rightarrow p \quad (\Rightarrow i)$$

Zadanie 3 (4 punkty). Jeśli dla wszystkich formuł φ i ψ logiki pierwszego rzędu formuły $\forall x \, (\varphi \Leftrightarrow \psi)$ oraz $(\forall x \, \varphi) \Leftrightarrow (\forall x \, \psi)$ są równoważne, to w prostokąt poniżej wpisz słowo "RÓWNOWAŻNE". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Uniwersum: \mathbb{R} ; $\varphi = (x = 2)$; $\psi = (x > 7)$

Zadanie 4 (4 punkty). Rozważmy dowolny zbiór klauzul \mathcal{F} .

- (a) Rozważmy taki ciąg klauzul C_1, \ldots, C_n , że dla wszystkich $i \in \{1, \ldots, n\}$ $C_i \in \mathcal{F}$ lub istnieją takie j, k < i, że C_i jest rezolwentą C_j i C_k . Udowodnij, że dla wszystkich i klauzula C_i jest logiczną konsekwencją zbioru klauzul \mathcal{F} . Możesz przy tym skorzystać z udowodnionego na ćwiczeniach faktu, że dla dowolnych klauzul C i D oraz dowolnej zmiennej zdaniowej p rezolwenta $C \vee D$ jest logiczną konsekwencją zbioru $\{C \vee p, D \vee \neg p\}$.
- (b) Udowodnij, że jeśli istnieje rezolucyjny dowód sprzeczności zbioru \mathcal{F} , to \mathcal{F} jest zbiorem sprzecznym. Możesz przy tym skorzystać z poprzedniego punktu, nawet jeśli go nie udowodniłeś.

Rozwiązanie.

(a) Dowód indukcyjny względem numeru klauzuli w dowodzie.

Podstawa indukcji: Klauzula C_1 należy do zbioru \mathcal{F} , jest więc oczywiście jego konsekwencją (każde wartościowanie spełniające wszystkie klauzule z \mathcal{F} spełnia w szczególności klauzule C_1).

Krok indukcyjny: Załóżmy, że wszystkie klauzule o numerach od 1 do i są konsekwencjami \mathcal{F} . Pokażemy, że także C_{i+1} jest konsekwencją \mathcal{F} . Mamy dwa przypadki:

- $C_{i+1} \in \mathcal{F}$: podobnie jak w podstawie indukcji, C_{i+1} w oczywisty sposób jest konsekwencją \mathcal{F} .
- C_{i+1} jest rezolwentą C_j , C_k . Rozważmy dowolne wartościowanie σ spełniające wszystkie klauzule z \mathcal{F} . Z założenia indukcyjnego σ spełnia C_j oraz C_k , a z faktu udowodnionego na ćwiczeniach spełnia także C_{i+1} . Zatem C_{i+1} jest konsekwencją \mathcal{F} .
- (b) Założmy, że C_1, \ldots, C_n jest rezolucyjnym dowodem sprzeczności zbioru \mathcal{F} . Wtedy $C_n = \bot$. Z poprzedniego punktu wnioskujemy, że każde wartościowanie spełniające \mathcal{F} spełnia także \bot . Ponieważ jednak nie ma wartościowań spełniających \bot , więc nie ma wartościowań spełniających \mathcal{F} . Zatem \mathcal{F} jest zbiorem sprzecznym.

Zadanie 5 (4 punkty). Udowodnij, że jeśli $\varphi_1 \Rightarrow \varphi_2$ jest tautologią rachunku zdań to $\varphi_1 \wedge \neg \varphi_2$ jest formułą sprzeczną.

Rozwiązanie. Załóżmy, że $\varphi_1 \Rightarrow \varphi_2$ jest tautologią. Weźmy dowolne wartościowanie σ i rozważmy dwa przypadki. Jeśli $\hat{\sigma}(\varphi_1) = \mathsf{F}$ to oczywiście $\hat{\sigma}(\varphi_1 \wedge \neg \varphi_2) = \mathsf{F}$. Jeśli natomiast

 $\hat{\sigma}(\varphi_1) = \mathsf{T}$ to z faktu, że $\varphi_1 \Rightarrow \varphi_2$ jest tautologią wnioskujemy, że $\hat{\sigma}(\varphi_2) = \mathsf{T}$, a stąd $\hat{\sigma}(\neg \varphi_2) = \mathsf{F}$ i $\hat{\sigma}(\varphi_1 \wedge \neg \varphi_2) = \mathsf{F}$. W obu przypadkach $\hat{\sigma}(\varphi_1 \wedge \neg \varphi_2) = \mathsf{F}$, co oznacza, że $\varphi_1 \wedge \neg \varphi_2$ jest formułą sprzeczną.