```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
df = pd.read csv("diabetes.csv")
df.head()
   Pregnancies Glucose BloodPressure SkinThickness Insulin
BMI \
                    148
                                     72
                                                               0 33.6
0
             6
                                                    35
                     85
                                     66
                                                    29
                                                               0 26.6
2
                    183
                                     64
                                                     0
                                                               0 23.3
3
                     89
                                     66
                                                    23
                                                              94 28.1
                                     40
                    137
                                                    35
                                                             168 43.1
   DiabetesPedigreeFunction
                             Age
                                   Outcome
0
                      0.627
                               50
                                         1
1
                      0.351
                               31
                                         0
2
                                         1
                      0.672
                               32
3
                      0.167
                               21
                                         0
4
                      2.288
                                         1
                               33
df.columns
Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',
'Insulin',
       'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
      dtype='object')
df.dtypes
Pregnancies
                               int64
Glucose
                               int64
BloodPressure
                               int64
SkinThickness
                               int64
Insulin
                               int64
                             float64
DiabetesPedigreeFunction
                             float64
                               int64
Age
                               int64
Outcome
dtype: object
df.isna().sum()
```

Glu Blo Ski Ins BMI Dia Age Out dty	betesPedigre		0 0 0 0 0 0 0			
Glu Blo Ski Ins BMI Dia Age Out dty	betesPedigre	eFunction	0 0 0 0 0 0 0			
	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI
0	6	148	72	35	0	33.6
1	1	85	66	29	0	26.6
2	8	183	64	Θ	0	23.3
3	1	89	66	23	94	28.1
4	0	137	40	35	168	43.1
5	5	116	74	9	0	25.6
6	3	78	50	32	88	31.0
7	10	115	0	0	0	35.3
/	10	113	U	U	U	33.3

30.5

0.0

0 37.6

0 38.0

12	10	139	80	0	0	27.1
13	1	189	60	23	846	30.1
14	5	166	72	19	175	25.8
15	7	100	0	0	0	30.0
16	0	118	84	47	230	45.8
17	7	107	74	0	0	29.6
18	1	103	30	38	83	43.3
19	1	115	70	30	96	34.6

	DiabetesPedigreeFunction	Age	Outcome
0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1
5	0.201	30	0
6	0.248	26	1
7	0.134	29	0
8	0.158	53	1
9	0.232	54	1
10	0.191	30	0
11	0.537	34	1
12	1.441	57	0
13	0.398	59	1
14	0.587	51	1
15	0.484	32	1
16	0.551	31	1
17	0.254	31	1
18	0.183	33	0
19	0.529	32	1

df.shape

(768, 9)

df.corr()

		Pregnancies	Glucose	BloodPressure	
SkinThickness	\				
Pregnancies		1.000000	0.129459	0.141282	-
0.081672					
Glucose		0.129459	1.000000	0.152590	

0.057328 BloodPressure	0.1412	82 0.1525	90 1.000000
0.207371 SkinThickness	-0.0816	72 0.0573	28 0.207371
1.000000 Insulin	-0.0735	35 0.3313	57 0.088933
0.436783 BMI 0.392573	0.0176	83 0.2210	71 0.281805
DiabetesPedigreeFunction 0.183928	-0.0335	23 0.1373	37 0.041265
Age 0.113970	0.5443	41 0.2635	14 0.239528 -
Outcome 0.074752	0.2218	98 0.4665	81 0.065068
	Insulin	BMI	DiabetesPedigreeFunction
\ Pregnancies	-0.073535	0.017683	-0.033523
Glucose	0.331357	0.221071	0.137337
BloodPressure	0.088933	0.281805	0.041265
SkinThickness	0.436783	0.392573	0.183928
Insulin	1.000000	0.197859	0.185071
BMI	0.197859	1.000000	0.140647
DiabetesPedigreeFunction	0.185071	0.140647	1.000000
Age	-0.042163	0.036242	0.033561
Outcome	0.130548	0.292695	0.173844
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome plt.figure(figsize = (15, sns.heatmap(df.corr(),anr plt.savefig("correlations)	ot= <mark>True</mark>)	Outcome 0.221898 0.466581 0.065068 0.074752 0.130548 0.292695 0.173844 0.238356 1.000000	

df.describe()
 Pregnancies Glucose BloodPressure SkinThickness
Insulin \

count 768.000	768.000000	768.000000	768.000000	768.00	0000
mean	3.845052	120.894531	69.105469	20.53	6458
79.7994 std	479 3.369578	31.972618	19.355807	7 15.95	2218
115.24	4002				
min 0.0000	0.000000	0.000000	0.00000	0.00	0000
25%	1.000000	99.000000	62.00000	0.00	0000
0.00000	00				
50%	3.000000	117.000000	72.000000	23.00	0000
30.5000	000				
75%	6.000000	140.250000	80.00000	32.00	0000
127.250	0000				
max	17.000000	199.000000	122.00000	99.00	0000
846.000	0000				
	BMI	DiabetesPedig	reeFunction	Age	Outcome
count mean	768.000000 31.992578	Diabetes redig	768.000000 0.471876	768.000000 33.240885	768.000000 0.348958
std	7.884160		0.331329	11.760232	0.476951
min	0.000000		0.078000	21.000000	0.000000
25%	27.300000		0.243750	24.000000	0.000000
50%	32.000000		0.372500	29.000000	0.000000
75%	36.600000		0.626250	41.000000	1.000000
max	67.100000		2.420000	81.000000	1.000000

Data Imputations

sns.distplot(df.Pregnancies)

C:\Users\apurv\AppData\Local\Temp\ipykernel_19356\3462734468.py:1:
UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.Pregnancies)

<Axes: xlabel='Pregnancies', ylabel='Density'>

sns.distplot(df.Glucose)

C:\Users\apurv\AppData\Local\Temp\ipykernel_19356\2035962260.py:1:
UserWarning:

'distplot' is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.Glucose)

<Axes: xlabel='Glucose', ylabel='Density'>

sns.distplot(df.BloodPressure)

C:\Users\apurv\AppData\Local\Temp\ipykernel_19356\3755031075.py:1:
UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.BloodPressure)

<Axes: xlabel='BloodPressure', ylabel='Density'>

sns.distplot(df.SkinThickness)

C:\Users\apurv\AppData\Local\Temp\ipykernel_19356\1815010915.py:1:
UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.SkinThickness)

<Axes: xlabel='SkinThickness', ylabel='Density'>

sns.distplot(df.Insulin)

C:\Users\apurv\AppData\Local\Temp\ipykernel_19356\2622307985.py:1:
UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.Insulin)

<Axes: xlabel='Insulin', ylabel='Density'>

sns.distplot(df.BMI)

C:\Users\apurv\AppData\Local\Temp\ipykernel_19356\1689980233.py:1:
UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.BMI)

<Axes: xlabel='BMI', ylabel='Density'>

sns.distplot(df.DiabetesPedigreeFunction)

C:\Users\apurv\AppData\Local\Temp\ipykernel_19356\2655324800.py:1:
UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.DiabetesPedigreeFunction)

<Axes: xlabel='DiabetesPedigreeFunction', ylabel='Density'>

sns.distplot(df.Age)

C:\Users\apurv\AppData\Local\Temp\ipykernel_19356\1239919984.py:1:
UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.Age)

<Axes: xlabel='Age', ylabel='Density'>


```
df['Insulin']=df['Insulin'].replace(0,df['Insulin'].median())
df['Pregnancies']=df['Pregnancies'].replace(0,df['Pregnancies'].median
())
df['Glucose']=df['Glucose'].replace(0,df['Glucose'].mean())
df['BloodPressure']=df['BloodPressure'].replace(0,df['BloodPressure'].
mean())
df['SkinThickness']=df['SkinThickness'].replace(0,df['SkinThickness'].
median())
df['BMI']=df['BMI'].replace(0,df['BMI'].mean())
df['DiabetesPedigreeFunction']=df['DiabetesPedigreeFunction'].replace(
0,df['DiabetesPedigreeFunction'].median())
df['Age']=df['Age'].replace(0,df['Age'].median())
df.head(20)
    Pregnancies
                 Glucose
                          BloodPressure
                                          SkinThickness
                                                         Insulin
BMI
0
              6
                   148.0
                               72,000000
                                                     35
                                                            30.5
33.600000
                    85.0
                               66.000000
                                                     29
                                                            30.5
              1
26.600000
                                                     23
              8
                   183.0
                               64.000000
                                                             30.5
23.300000
              1
                    89.0
                               66.000000
                                                     23
                                                             94.0
```

43.100000 5 5 11 25.600000 6 3 7 31.000000 7 10 11 35.300000	16.0 7 78.0 5	4.000000 6.000000		23	168.0 30.5
5 5 11 25.600000 6 3 7 31.000000 7 10 11 35.300000	78.0 5				30.5
6 3 7 31.000000 7 10 11 35.300000		0.000000			
7 10 11 35.300000				32	88.0
	15.0 6	9.105469		23	30.5
	97.0 7	0.000000		45	543.0
	25.0 9	6.000000		23	30.5
	10.0 9	2.000000		23	30.5
	68.0 7	4.000000		23	30.5
	39.0 8	0.000000		23	30.5
	89.0 6	0.000000		23	846.0
30.100000 14 5 16 25.800000	66.0 7	2.000000		19	175.0
	00.0 6	9.105469		23	30.5
	18.0 8	4.000000		47	230.0
	07.0 7	4.000000		23	30.5
	03.0 3	0.000000		38	83.0
	15.0 7	0.000000		30	96.0
DiabetesPedigreeF 0 1 2 3 4 5 6 7	0.627 0.351 0.672 0.167 2.288 0.201 0.248 0.134 0.158	50 31 32 21 33 30 26 29 53	e 1 0 1 0 1 0 1 0		

14	0.587	51	1
15	0.484	32	1
16	0.551	31	1
17	0.254	31	1
18	0.183	33	Θ
19	0.529	32	1

Outliers Detection

```
X = df.drop(columns='Outcome',axis=1)
Y = df['Outcome']

fig,ax = plt.subplots(figsize = (15,15))
sns.boxplot(data = X,ax=ax)
plt.savefig('boxplot.jpg')
```



```
cols = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',
'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age']

for col in cols:
    Q1 = X[col].quantile(0.25)
    Q3 = X[col].quantile(0.75)
    IQR = Q3-Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    mask = (X[col]>=lower_bound) & (X[col]<=upper_bound)

X_after_outlier_detection = X[mask]
Y_after_outlier_detection = Y[mask]</pre>
```

```
X_after_outlier_detection.shape
(759, 8)
Y_after_outlier_detection.shape
(759,)
```

Standardization

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_Scaled = scaler.fit_transform(X_after_outlier_detection)
fig,ax = plt.subplots(figsize = (15,15))
sns.boxplot(data = X_Scaled,ax=ax)
plt.savefig('boxplot.jpg')
```



```
cols = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',
'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age']
X Scaled = pd.DataFrame(X Scaled,columns=cols)
X Scaled.describe()
        Pregnancies
                         Glucose
                                  BloodPressure SkinThickness
Insulin \
count 7.590000e+02 7.590000e+02
                                  7.590000e+02
                                                  7.590000e+02
7.590000e+02
       1.029772e-16 -3.978665e-17 -3.042508e-17 -1.509552e-16 -
mean
4.329724e-17
       1.000659e+00 1.000659e+00
                                   1.000659e+00
                                                  1.000659e+00
std
```

```
1.000659e+00
     -1.079800e+00 -2.558042e+00 -3.968588e+00 -2.200901e+00 -
min
7.684941e-01
      -7.491956e-01 -7.286101e-01 -6.755847e-01 -4.729631e-01 -
6.126688e-01
     -4.185912e-01 -1.517621e-01 -1.698412e-02 -4.729631e-01 -
5.607270e-01
75%
       5.732217e-01 6.063810e-01 6.416165e-01 4.990017e-01
3.222827e-01
max
      4.209869e+00 2.551183e+00
                                   4.099270e+00 7.734740e+00
7.088876e+00
               BMI
                    DiabetesPedigreeFunction
                                                       Age
count 7.590000e+02
                                7.590000e+02 7.590000e+02
mean
       5.546727e-16
                                4.914821e-17 1.591466e-16
      1.000659e+00
                                1.000659e+00 1.000659e+00
std
                                -1.183313e+00 -1.062953e+00
min
      -2.081038e+00
25%
      -7.125819e-01
                                -6.852739e-01 -7.928253e-01
      -7.202795e-02
                                -3.045975e-01 -3.426125e-01
50%
                                4.627740e-01 6.478556e-01
75%
       5.976421e-01
max
      5.037846e+00
                                5.864467e+00 2.988962e+00
X Scaled.reset index(drop=True, inplace = True)
Y after outlier detection.reset index(drop=True,inplace = True)
q = X Scaled['Insulin'].quantile(0.95)
mask = X Scaled['Insulin']<q</pre>
dataNew = X_Scaled[mask]
Y_after_outlier_detection = Y after outlier detection[mask]
dataNew.shape
(721, 8)
Y after outlier detection.shape
(721,)
fig,ax = plt.subplots(figsize = (15,15))
sns.boxplot(data = dataNew,ax=ax)
plt.savefig('boxplot.jpg')
```



```
from sklearn.model_selection import train_test_split
X_train, X_test, Y_Train,Y_test =
  train_test_split(dataNew,Y_after_outlier_detection,test_size=0.35,rand
  om_state=43)
X_train.shape
(468, 8)
X_test.shape
(253, 8)
Y_Train.value_counts()
```

```
Outcome
     312
1
     156
Name: count, dtype: int64
from imblearn.over sampling import SMOTE
smote = SMOTE(random state=42)
X trained resample, Y trained resample =
smote.fit resample(X train,Y Train)
print(pd.Series(Y trained resample).value counts())
Outcome 0
     312
1
     312
Name: count, dtype: int64
from sklearn.linear model import LogisticRegression
Classification = LogisticRegression()
Classification.fit(X trained resample, Y trained resample)
LogisticRegression()
Y prediction = Classification.predict(X test)
Y prediction
array([0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1,
0,
       0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0,
1,
       1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1,
0,
       0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0,
1,
       0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0,
0,
       1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0,
1,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0,
1,
       0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0,
       0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0,
0,
       0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1,
1,
       0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0,
1,
       1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0], dtype=int64)
from sklearn.metrics import accuracy_score
print(accuracy score(Y test,Y prediction))
```

0.7786561264822134

```
from sklearn.metrics import classification_report
target_names = ['Non-Diabetic','Diabetic']
print(classification_report(Y_test,Y_prediction,target_names =
target names))
```

	precision	recall	f1-score	support
Non-Diabetic Diabetic	0.84 0.67	0.81 0.72	0.83 0.69	165 88
accuracy macro avg weighted avg	0.76 0.78	0.76 0.78	0.78 0.76 0.78	253 253 253

```
import pickle
pickle.dump(Classification, open("Classification_model.pkl", "wb"))
```