Figure 1: Double bootstrap Simulation with $B=500,\ p=13,\ \mu_{\alpha}=10,\ X_{i,t}\overset{iid}{\sim}\Gamma(1,10),\ \delta_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p}),\ \gamma_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$ with $\sigma_{\delta}=\sigma_{\gamma}=1$ and $\sigma=1$

		Bi	Consistency						
					Guess			Proposition	
n	σ_{α}	$ \hat{\alpha}_{\mathrm{adj}}^{\dagger} - \mathrm{E}(\hat{\alpha}_{\mathrm{adj}}) $	$ \hat{\alpha}_{\mathrm{wadj}}^{\dagger} - \mathrm{E}(\alpha_1) $	$\hat{\alpha}_{\mathrm{adj}}$	$\hat{\alpha}_{\mathrm{wadj}}$	$\hat{\alpha}_{\mathrm{IVW}}$	$\hat{lpha}_{ m adj}$	$\hat{\alpha}_{\mathrm{wadj}}$	$\hat{lpha}_{ m IVW}$
	1	28.742 (2.911)	87.932 (8.292)	1 (0)	1 (0)	1 (0)	0.98 (0.02)	1 (0)	0.98 (0.02)
5	5	28.74(2.9)	87.346 (8.312)	1 (0)	1(0)	1(0)	0.98(0.02)	1 (0)	0.98(0.02)
	10	28.742(2.913)	86.615 (8.357)	1 (0)	1(0)	1(0)	0.98(0.02)	1 (0)	0.98(0.02)
	25	29.323 (3.024)	84.986 (8.495)	1 (0)	1(0)	1(0)	0.98(0.02)	1 (0)	0.98(0.02)
	100	$43.439 \ (4.457)$	87.463 (9.793)	1 (0)	1 (0)	1 (0)	0.98 (0.02)	$0.98 \ (0.02)$	0.98 (0.02)
	1	18.541 (2.258)	77.577 (8.909)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)
10	5	$18.456\ (2.265)$	77.457 (8.969)	1 (0)	1(0)	1(0)	1 (0)	1 (0)	1 (0)
	10	18.463 (2.277)	77.504 (9.026)	1 (0)	1(0)	1(0)	1 (0)	1 (0)	1 (0)
	25	19.307 (2.306)	77.706 (9.29)	1 (0)	1(0)	1(0)	1 (0)	1(0)	1 (0)
	100	31.557 (3.223)	88.11 (11.057)	1 (0)	1 (0)	1 (0)	0.96 (0.028)	0.98(0.02)	0.96 (0.028)
	1	15.152 (1.58)	86.296 (9.39)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)
	5	15.411 (1.608)	86.145 (9.396)	1 (0)	1(0)	1(0)	1 (0)	1 (0)	1 (0)
15	10	15.734 (1.66)	85.957 (9.417)	1 (0)	1(0)	1(0)	1 (0)	1 (0)	1 (0)
	25	17.168 (1.833)	85.911 (9.467)	1 (0)	1(0)	1(0)	1 (0)	0.98(0.02)	1 (0)
	100	29.884 (2.977)	95.744 (9.65)	1 (0)	1 (0)	1 (0)	0.9 (0.043)	0.9(0.043)	0.9 (0.043)
	1	11.834 (1.157)	66.679 (8.566)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)
	5	11.708 (1.182)	66.752 (8.542)	1 (0)	1(0)	1(0)	1 (0)	1 (0)	1 (0)
25	10	$11.758\ (1.189)$	66.863 (8.517)	1 (0)	1(0)	1(0)	1 (0)	1 (0)	1 (0)
	25	$12.425\ (1.221)$	67.218 (8.496)	1 (0)	1(0)	1(0)	1 (0)	1(0)	1 (0)
	100	20.426 (2.156)	75.549 (8.53)	1 (0)	1(0)	1(0)	$0.94 \ (0.034)$	0.98(0.02)	0.94 (0.034)

Figure 2: Simulation with $B=200,\ p=13,\ \mu_{\alpha}=2,\ X_{i,t}\stackrel{iid}{\sim}\Gamma(1,2),\ \delta_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p}),\ \gamma_{i}\sim\mathcal{N}(\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$ with $\sigma_{\delta}=\sigma_{\gamma}=0.5$ and $\sigma=10$

		Bi	as	Consistency						
_					Guess			Proposition		
n	σ_{lpha}	$ \hat{\alpha}_{\mathrm{adj}}^{\dagger} - \mathrm{E}(\hat{\alpha}_{\mathrm{adj}}) $	$ \hat{\alpha}_{\mathrm{wadj}}^{\dagger} - \mathrm{E}(\alpha_1) $	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ ext{IVW}}$	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{ m wadj}$	$\hat{lpha}_{ ext{IVW}}$	Best
	5	5.516 (0.379)	10.812 (0.786)	0.99 (0.01)	1 (0)	0.99 (0.01)	0.94 (0.024)	0.96 (0.02)	0.94 (0.024)	0.33 (0.047)
	10	$6.421 \ (0.436)$	$11.804 \ (0.876)$	0.99(0.01)	1 (0)	0.99(0.01)	$0.92 \ (0.027)$	0.94 (0.024)	0.92 (0.027)	$0.31\ (0.046)$
5	25	$10.338 \ (0.763)$	16.839 (1.299)	$0.93 \ (0.026)$	0.98 (0.014)	0.93(0.026)	$0.83 \ (0.038)$	$0.84\ (0.037)$	$0.83 \ (0.038)$	0.32(0.047)
	50	18.744 (1.357)	28.068(2.171)	$0.83 \ (0.038)$	0.95(0.022)	$0.83 \ (0.038)$	0.67 (0.047)	0.73 (0.045)	0.66 (0.048)	0.42(0.05)
	100	36.587 (2.592)	$52.071 \ (4.143)$	$0.76 \ (0.043)$	$0.98 \; (0.014)$	$0.76 \ (0.043)$	$0.59 \ (0.049)$	0.62 (0.049)	0.58 (0.05)	$0.46 \ (0.05)$
	5	3.596 (0.237)	9.874 (0.717)	1 (0)	1 (0)	1 (0)	0.94 (0.024)	0.95 (0.022)	0.94 (0.024)	0.32 (0.047)
	10	4.099 (0.262)	9.825 (0.722)	1 (0)	1 (0)	1 (0)	0.94 (0.024) 0.92 (0.027)	$0.94 \ (0.024)$	0.94 (0.024) 0.92 (0.027)	0.32 (0.041) 0.25 (0.044)
10	$\frac{10}{25}$	$6.681 \ (0.458)$	11.809 (0.902)	0.98 (0.014)	1 (0)	0.99 (0.01)	0.78 (0.042)	$0.78 \ (0.042)$	0.82 (0.021) $0.82 (0.039)$	$0.32 \ (0.044)$
10	50	$12.411 \ (0.837)$	$19.12 \ (1.476)$	0.93 (0.014) 0.93 (0.026)	1 (0)	0.93 (0.026)	0.59 (0.042)	0.73 (0.042) $0.59 (0.049)$	$0.52 \ (0.05)$	0.32 (0.047) 0.31 (0.046)
	100	24.383 (1.67)	36.953 (2.925)	0.81 (0.039)	0.97 (0.017)	0.93 (0.020) $0.8 (0.04)$	0.45 (0.049)	0.45 (0.049)	0.33 (0.05) $0.43 (0.05)$	0.31 (0.040)
	100	24.363 (1.07)	30.933 (2.923)	0.01 (0.039)	0.97 (0.017)	0.8 (0.04)	0.45 (0.05)	0.45 (0.05)	0.45 (0.05)	0.32 (0.047)
	5	2.472(0.162)	7.94 (0.604)	1 (0)	1 (0)	1 (0)	0.9(0.03)	0.89(0.031)	0.9(0.03)	$0.18 \ (0.039)$
	10	$2.961 \ (0.183)$	8.9(0.707)	1 (0)	1 (0)	1 (0)	$0.88 \; (0.033)$	0.87 (0.034)	0.87 (0.034)	0.19 (0.039)
15	25	5.232 (0.358)	14.068 (1.102)	1 (0)	1 (0)	1(0)	0.77(0.042)	0.79(0.041)	0.77(0.042)	$0.31\ (0.046)$
	50	9.64(0.737)	25.147 (1.847)	0.85 (0.036)	1 (0)	0.85 (0.036)	0.58 (0.05)	0.64 (0.048)	0.57(0.05)	0.4(0.049)
	100	$18.953\ (1.509)$	48.8 (3.413)	0.69(0.046)	$0.95 \ (0.022)$	0.68(0.047)	$0.53\ (0.05)$	0.52(0.05)	$0.53\ (0.05)$	$0.41\ (0.049)$
	_	0.011 (0.100)	0.101 (0.740)	1 (0)	1 (0)	1 (0)	0.00 (0.00)	0.07 (0.017)	0.07 (0.000)	0.00 (0.044)
	5	2.211 (0.183)	9.181 (0.746)	1 (0)	1 (0)	1 (0)	0.96 (0.02)	0.97 (0.017)	0.95 (0.022)	0.26 (0.044)
~~	10	2.628 (0.211)	9.579 (0.771)	1 (0)	1 (0)	1 (0)	0.92 (0.027)	0.93 (0.026)	0.92 (0.027)	0.28 (0.045)
25	25	$4.412 \ (0.325)$	$12.446 \ (0.978)$	0.97 (0.017)	1 (0)	0.97 (0.017)	0.84 (0.037)	0.9 (0.03)	$0.84 \ (0.037)$	0.39 (0.049)
	50	$7.815 \ (0.561)$	20.087 (1.515)	0.88 (0.033)	0.99 (0.01)	$0.88 \ (0.033)$	0.65 (0.048)	0.69 (0.046)	0.65 (0.048)	$0.42 \ (0.05)$
	100	$14.934 \ (1.059)$	37.69 (2.811)	$0.74 \ (0.044)$	$0.96 \ (0.02)$	$0.73 \ (0.045)$	$0.54 \ (0.05)$	0.52 (0.05)	$0.53 \ (0.05)$	$0.35 \ (0.048)$

Figure 3: Simulation with $B=200,\ p=13,\ \mu_{\alpha}=2,\ X_{i,t}\stackrel{iid}{\sim}\Gamma(1,2),\ \delta_{i}\sim\mathcal{N}(\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p}),\ \gamma_{i}\sim\mathcal{N}(\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$ with $\sigma_{\delta}=\sigma_{\gamma}=0.5$ and $\sigma=10$

		Distance to α_1			Distance to y_{1,T_1^*+1}				
n	σ_{lpha}	$\hat{lpha}_{ m adj}$	$\hat{lpha}_{\mathrm{wadj}}$	$\hat{lpha}_{ m IVW}$	Original	$\hat{lpha}_{ m adj}$	$\hat{\hat{lpha}}_{\mathrm{wadj}}$	$\hat{lpha}_{ m IVW}$	
	5	11.725 (0.759)	11.697 (0.77)	11.729 (0.765)	55.665 (1.901)	16.015 (1.355)	16.785 (1.41)	16.14 (1.352)	
	10	12.868 (0.926)	13.684 (1.011)	13.066 (0.926)	56.708 (1.971)	17.237 (1.443)	18.393 (1.573)	17.336 (1.453)	
5	25	21.31 (1.64)	23.992 (1.9)	21.809 (1.627)	59.965 (2.691)	23.874 (2.086)	27.642 (2.245)	24.215 (2.083)	
J	50	39.875 (3.05)	44.796 (3.512)	40.643 (3.013)	69.245 (4.068)	41.799 (3.318)	47.423 (3.717)	42.346 (3.297)	
	100	79.354 (6.01)	88.317 (6.814)	80.151 (5.98)	99.526 (6.566)	80.279 (6.232)	89.234 (7.065)	81.05 (6.192)	
	100	10.001 (0.01)	0.011	00.101 (0.00)	(0.500)	00.210 (0.202)	00.201 (1.000)	01.00 (0.102)	
	5	$12.171 \ (0.986)$	12.072(1.056)	$12.148 \ (0.986)$	54.956 (1.938)	$16.464 \ (1.263)$	$17.151\ (1.32)$	16.414(1.28)	
	10	13.293 (1.129)	14.209 (1.154)	13.16 (1.138)	54.657 (2.099)	17.508 (1.381)	18.897 (1.402)	17.374(1.405)	
10	25	22.934 (1.754)	25.814 (1.858)	22.948 (1.759)	54.068 (3.048)	25.704 (1.974)	28.494 (2.101)	25.753 (1.985)	
	50	43.573 (3.153)	50.779 (3.219)	43.994 (3.149)	59.051 (4.647)	44.973 (3.356)	51.829 (3.476)	45.452 (3.352)	
	100	87.16 (6.186)	101.743 (6.331)	87.816 (6.249)	88.642 (7.381)	88.014 (6.334)	102.414 (6.501)	88.669 (6.401)	
	_								
	5	10.085 (0.839)	10.848 (0.804)	10.114 (0.834)	54.124 (2.011)	$17.094\ (1.557)$	$18.529 \ (1.566)$	17.228 (1.551)	
	10	$12.656 \ (0.992)$	$13.691 \ (1.032)$	$12.702 \ (0.992)$	54.56 (2.208)	$18.831 \ (1.672)$	$20.791 \ (1.719)$	$19.003\ (1.67)$	
15	25	$23.758 \ (1.762)$	$26.584 \ (1.831)$	$23.885 \ (1.769)$	56.719 (3.114)	28.487 (2.183)	$31.651 \ (2.359)$	28.717 (2.197)	
	50	44.848 (3.285)	49.543 (3.482)	45.018 (3.313)	$66.12 \ (4.598)$	49.316 (3.368)	53.818 (3.773)	49.558 (3.412)	
	100	87.861 (6.529)	$96.61 \ (6.888)$	$88.434 \ (6.557)$	100.28 (7.164)	92.031 (6.414)	$99.966 \ (7.08)$	92.603 (6.469)	
	5	11.969 (0.833)	11 024 (0 007)	11.05 (0.920)	60 475 (2 640)	17 700 (2.09)	10 206 (2 001)	17 779 (2 001)	
		\ /	11.934 (0.887)	11.95 (0.839)	60.475 (2.649)	17.709 (2.08)	18.296 (2.081)	17.778 (2.091)	
25	10	14.268 (0.996)	14.382 (0.991)	14.279 (0.994)	60.614 (2.767)	19.266 (2.149)	19.877 (2.117)	19.365 (2.156)	
25	25	23.987 (1.783)	24.782 (1.67)	23.94 (1.78)	61.974 (3.376)	27.789 (2.532)	28.095 (2.484)	27.86 (2.532)	
	50	42.392 (3.388)	45.205 (3.081)	42.444 (3.362)	67.704 (4.792)	45.163 (3.752)	47.252 (3.51)	45.109 (3.754)	
	100	81.173 (6.679)	87.99 (6.042)	$81.223 \ (6.638)$	$94.144 \ (7.449)$	83.225 (6.777)	$89.548 \ (6.134)$	$83.268 \ (6.747)$	

Figure 4: Simulation with B=500, p=13, $\mu_{\alpha}=10$, $X_{i,t}\overset{iid}{\sim}\Gamma(1,10)$, $\delta_i\sim\mathcal{N}(2\mathbf{1}_p,\sigma_{\delta}^2\mathbf{I}_p)$, $\gamma_i\sim\mathcal{N}(2\mathbf{1}_p,\sigma_{\gamma}^2\mathbf{I}_p)$ with $\sigma_{\delta}=\sigma_{\gamma}=1$ and $\sigma=1$

	Best	0.56 (0.07) 0.555 (0.07) 0.56 (0.07) 0.545 (0.071) 0.475 (0.071)	0.55 (0.071) 0.555 (0.07) 0.56 (0.07) 0.555 (0.07) 0.455 (0.071)	0.55 (0.071) 0.545 (0.071) 0.555 (0.07) 0.535 (0.071) 0.47 (0.071)	0.47 (0.071) 0.47 (0.071) 0.485 (0.071) 0.475 (0.071) 0.44 (0.07)	0.255 (0.062) 0.275 (0.063) 0.265 (0.063) 0.26 (0.062) 0.29 (0.064)
	$\hat{lpha}_{ m IVW}$	0.99 (0.014) 0.995 (0.01) 0.995 (0.01) 0.995 (0.01) 0.96 (0.028)	0.99 (0.014) 0.99 (0.014) 0.99 (0.014) 0.995 (0.01) 0.955 (0.029)	0.99 (0.014) 0.99 (0.014) 0.99 (0.014) 0.995 (0.01) 0.96 (0.028)	0.985 (0.017) 0.985 (0.017) 0.985 (0.017) 0.98 (0.02) 0.965 (0.026)	0.95 (0.031) 0.955 (0.029) 0.95 (0.031) 0.95 (0.031) 0.93 (0.036)
Consistency	$\begin{array}{c} \text{Proposition} \\ \hat{\alpha}_{\text{wadj}} \end{array}$	$ \begin{array}{c} 1 (0) \\ 1 (0) \\ 1 (0) \\ 1 (0) \\ 0.965 (0.026) \end{array} $	$ \begin{array}{c} 1 & (0) \\ 1 & (0) \\ 1 & (0) \\ 1 & (0) \\ 0.965 & (0.026) \end{array} $	$ \begin{array}{c} 1 (0) \\ 1 (0) \\ 1 (0) \\ 1 (0) \\ 0.96 (0.028) \end{array} $	$\begin{array}{c} 1 \ (0) \\ 1 \ (0) \\ 0.995 \ (0.01) \\ 0.965 \ (0.026) \end{array}$	0.96 (0.028) 0.965 (0.026) 0.965 (0.026) 0.955 (0.029) 0.925 (0.037)
Co	$\hat{lpha}_{ m adj}$	0.995 (0.01) 0.995 (0.01) 0.995 (0.01) 0.995 (0.01) 0.96 (0.028)	0.995 (0.01) 0.995 (0.01) 0.995 (0.01) 0.995 (0.01) 0.96 (0.028)	0.995 (0.01) 0.995 (0.01) 0.995 (0.01) 0.995 (0.01) 0.96 (0.028)	0.99 (0.014) 0.99 (0.014) 0.99 (0.014) 0.985 (0.017) 0.96 (0.028)	0.955 (0.029) 0.955 (0.029) 0.955 (0.029) 0.95 (0.031) 0.93 (0.036)
	$\hat{lpha}_{ m IVW}$	1 (0) (1) (0) (1) (0) (1) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1 (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
	Guess $\hat{lpha}_{ m wadj}$	1 (0) 1 (0) 1 (0)	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\hat{lpha}_{ m adj}$	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 $	$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
as	$ \hat{lpha}_{ ext{wadj}}^\dagger - ext{E}(lpha_1) $	79.884 (8.911) 79.975 (8.883) 80.121 (8.857) 80.781 (8.84) 88.474 (10.074)	80.135 (8.925) 80.215 (8.899) 80.335 (8.878) 81.009 (8.857) 88.805 (10.066)	80.462 (8.959) 80.541 (8.934) 80.672 (8.91) 81.381 (8.883) 89.257 (10.066)	81.941 (9.102) 82.028 (9.075) 82.181 (9.047) 82.999 (8.995) 90.991 (10.114)	98.318 (10.747) 98.279 (10.742) 98.327 (10.731) 98.805 (10.721) 107.054 (11.38)
Bias	$ \hat{lpha}_{ m adj}^{\dagger} - { m E}(\hat{lpha}_{ m adj}) $	17.288 (2.073) 17.363 (2.087) 17.533 (2.111) 18.439 (2.239) 29.569 (3.56)	17.218 (2.069) 17.275 (2.086) 17.444 (2.11) 18.281 (2.249) 29.461 (3.566)	17.255 (2.074) 17.317 (2.09) 17.435 (2.122) 18.23 (2.266) 29.459 (3.569)	18.248 (2.137) 18.301 (2.153) 18.398 (2.186) 19.125 (2.329) 29.757 (3.646)	34.136 (3.372) 34.189 (3.375) 34.275 (3.387) 34.901 (3.428) 41.988 (4.349)
	σ_{lpha}	1 5 10 25 100	1 5 10 25 100	1 5 10 25 100	1 5 10 25 100	1 5 10 25 100
	σ	11	ರು	10	25	100

Figure 5: Simulation with $B=500,\,p=13,\,\mu_{\alpha}=10,\,X_{i,t}\overset{iid}{\sim}\Gamma(1,10),\,\delta_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\delta}^{2}\mathbf{I}_{p}),\,\gamma_{i}\sim\mathcal{N}(2\mathbf{1}_{p},\sigma_{\gamma}^{2}\mathbf{I}_{p})$ with $\sigma_{\delta}=\sigma_{\gamma}=1$ and $\sigma=1$

$\hat{lpha}_{ m IVW}$	103.829 (11.216)	103.704 (11.192)	104.01 (11.154)	106.714 (11.206)	139.104 (16.709)
	103.541 (11.18)	103.44 (11.149)	103.646 (11.126)	106.298 (11.183)	139.011 (16.63)
	103.411 (11.133)	103.203 (11.118)	103.413 (11.091)	105.997 (11.153)	138.966 (16.546)
	104.254 (11.036)	103.869 (11.045)	103.688 (11.079)	105.855 (11.19)	139.417 (16.378)
	122.361 (13.568)	122.147 (13.511)	122.124 (13.467)	123.154 (13.59)	156.747 (16.972)
$0 y_{1,T_1^*+1}$ $\hat{\alpha}_{\text{wadj}}$	95.706 (10.907)	95.912 (10.93)	96.504 (10.987)	100.014 (11.396)	148.615 (16.986)
	95.343 (10.881)	95.575 (10.899)	96.237 (10.943)	99.839 (11.338)	148.839 (16.887)
	95.21 (10.844)	95.357 (10.875)	96.082 (10.907)	99.856 (11.272)	149.178 (16.785)
	96.533 (10.762)	96.663 (10.792)	97.068 (10.876)	100.851 (11.23)	150.776 (16.59)
	125.608 (12.965)	125.455 (13.02)	125.566 (13.112)	128.209 (13.45)	172.65 (17.727)
Distance to y_{1,T_1^*+1} $\hat{\alpha}_{\mathrm{adj}}$	103.874 (11.162)	103.603 (11.156)	103.711 (11.143)	106.441 (11.157)	138.265 (16.674)
	103.711 (11.107)	103.4 (11.105)	103.503 (11.089)	106.094 (11.123)	138.188 (16.591)
	103.63 (11.056)	103.293 (11.055)	103.408 (11.033)	105.872 (11.08)	138.12 (16.511)
	104.427 (10.984)	103.951 (10.998)	103.819 (11.009)	105.961 (11.084)	138.682 (16.326)
	122.689 (13.562)	122.461 (13.495)	122.321 (13.454)	122.81 (13.626)	155.292 (17.077)
Original	539.648 (17.268)	540.334 (17.22)	541.206 (17.207)	543.483 (17.48)	553.71 (24.271)
	538.77 (17.218)	539.456 (17.17)	540.328 (17.156)	542.605 (17.431)	552.832 (24.238)
	537.673 (17.18)	538.359 (17.131)	539.231 (17.117)	541.508 (17.393)	551.735 (24.214)
	534.382 (17.226)	535.068 (17.175)	535.94 (17.161)	538.217 (17.438)	548.444 (24.258)
	517.926 (20.725)	518.612 (20.676)	519.484 (20.66)	521.761 (20.901)	532.468 (26.711)
$\hat{a}_{ ext{IVW}}$	103.914 (11.224)	104.006 (11.226)	104.146 (11.229)	104.73 (11.244)	110.075 (11.67)
	103.628 (11.188)	103.739 (11.186)	103.878 (11.189)	104.463 (11.203)	109.845 (11.618)
	103.516 (11.139)	103.573 (11.147)	103.694 (11.153)	104.248 (11.171)	109.767 (11.553)
	104.395 (11.038)	104.444 (11.046)	104.504 (11.062)	104.795 (11.125)	110.32 (11.473)
	122.515 (13.573)	122.59 (13.569)	122.71 (13.564)	123.147 (13.564)	126.9 (13.912)
Distance to α_1 $\hat{lpha}_{ m wadj}$	95.732 (10.912)	95.943 (10.94)	96.28 (10.979)	97.877 (11.098)	114.743 (12.27)
	95.414 (10.879)	95.615 (10.909)	96.031 (10.934)	97.661 (11.047)	114.35 (12.261)
	95.276 (10.842)	95.501 (10.868)	95.939 (10.889)	97.632 (10.991)	113.987 (12.27)
	96.582 (10.765)	96.863 (10.78)	97.239 (10.81)	98.752 (10.939)	113.465 (12.489)
	125.681 (12.964)	125.824 (12.988)	126.006 (13.031)	126.643 (13.234)	135.655 (15.019)
$\hat{lpha}_{ m adj}$	103.994 (11.163)	104.043 (11.161)	104.119 (11.162)	104.586 (11.156)	108.954 (11.563)
	103.831 (11.109)	103.886 (11.106)	103.97 (11.104)	104.389 (11.107)	108.912 (11.482)
	103.754 (11.058)	103.784 (11.059)	103.85 (11.061)	104.234 (11.069)	108.9 (11.412)
	104.595 (10.98)	104.579 (10.989)	104.601 (10.998)	104.814 (11.035)	109.429 (11.362)
	122.764 (13.583)	122.751 (13.587)	122.786 (13.587)	122.95 (13.606)	125.836 (13.979)
σ_{α}	1	1	1	1	1
	5	5	5	5	5
	10	10	10	10	10
	25	25	25	25	25
	100	100	100	100	100
Ь	1	Ю	10	25	100