Mining Massive Datasets

Lecture 11

Artur Andrzejak http://pvs.ifi.uni-heidelberg.de

Note on Slides

A substantial part of these slides come (either verbatim or in a modified form) from the book Mining of Massive Datasets by Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University). For more information, see the website accompanying the book: http://www.mmds.org.

Infinite Data

High dim.

Locality sensitive hashing

Clustering

Dimensionality reduction

Graph data

PageRank, SimRank

Community Detection

Spam Detection

Infinite data

Filtering data streams

Web advertising

Queries on streams

Machine learning

SVM

Decision Trees

Perceptron, kNN

Apps

Recommen der systems

Association Rules

Duplicate document detection

Programming in Spark & MapReduce

Mining Data Streams

Data Streams

- In many data mining situations, we do not know the entire data set in advance
- Stream Management is important when the input rate is controlled externally:
 - Google queries
 - Twitter or Facebook status updates
- We can think of the data as infinite and non-stationary (the distribution changes over time)

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 - We call elements of the stream tuples
- The system cannot store the entire stream accessibly
- Q: How do you make critical calculations about the stream using a limited amount of (secondary) memory?

General Stream Processing Model

Problems on Data Streams /1

- Types of queries one wants on answer on a data stream: (simpler)
 - Sampling data from a stream
 - Construct a random sample
 - Queries over sliding windows
 - Number of items of type x in the last k elements of the stream
 - Or average, maximum, minimum, ...

Problems on Data Streams /2

- Types of queries one wants on answer on a data stream: (complex)
 - Filtering a data stream
 - Select elements with property x from the stream
 - Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
 - Estimating moments
 - Estimate avg./std. dev. of last k elements
 - Finding frequent elements

Applications /1

Mining query streams

 Google wants to know what queries are more frequent today than yesterday

Mining click streams

 Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour

Mining social network news feeds

E.g., look for trending topics on Twitter, Facebook

Applications /2

Sensor Networks

- Many sensors feeding into a central controller
- Telephone call records
 - Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
 - Gather information for optimal routing
 - Detect denial-of-service attacks

Filtering Data Streams

Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S, determine which tuples of the stream are in S
- Obvious solution: Hash table
 - But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream

Applications

Example: Email spam filtering

- We know 1 billion "good" email addresses
- If an email comes from one of these, it is NOT spam

Publish-subscribe systems

- You are collecting lots of messages (news articles)
- People express interest in certain sets of keywords
- Determine whether each message matches user's interest

First Cut Solution (1)

- Given a set of keys S that we want to filter ...
- Create a bit array B of n bits, initially all Os
- Choose a hash function h with range [0,n)
- Hash each member of s∈ S to one of n buckets, and set that bit to 1, i.e., B[h(s)]=1
- Hash each element a of the stream and output only those that hash to bit that was set to 1
 - Output a if B[h(a)] == 1

First Cut Solution (2)

- Creates false positives but no false negatives
 - If the item is in S we surely output it,
 - If not in S: we may still output it (erroneously)

First Cut Solution (3)

- |S| = 1 billion email addresses|B| = 1GB = 8 billion bits
- If the email address is in S, then it surely hashes to a bucket that has the big set to 1, so it always gets through (no false negatives)
- Approximately 1/8 of the bits are set to 1, so about 1/8th of the addresses not in S get through to the output (false positives)
 - Actually, less than 1/8th, because more than one address might hash to the same bit

<u>Analysis:</u> Throwing Darts (1)

- More accurate analysis for the number of false positives
- Consider: If we throw m darts into n equally likely targets, what is the probability that a target gets at least one dart?
 - Every dart hits (but don't know which target)
- In our case:
 - Targets = bits/buckets
 - Darts = hash values of items

We want to obtain prob. that a "random" bit of array B is set to 1 (by one of the addresses in S) = fraction of 1s in B

<u>Analysis:</u> Throwing Darts (2)

- We have m darts, n targets (each dart hits)
- What is the probability that a specific target X gets at least one dart?

<u>Analysis:</u> Throwing Darts (3)

- Fraction of 1s in the array B =
 = probability of false positive = 1 e^{-m/n}
- Example: m=10⁹ darts, n=8·10⁹ targets
 - Fraction of 1s in $B = 1 e^{-1/8} = 0.1175$
 - Compare with our earlier estimate: 1/8 = 0.125

Bloom Filter: Algorithm

- Consider: |S| = m, bitset B, |B| = n
- Use k independent hash functions $h_1,...,h_k$
- Initialization:
 - Set B to 0s
 - Hash each element $s \in S$ using each hash function h_i , set $B[h_i(s)] = 1$ (for each i = 1,..., k) (note: we have a single bitset B!)
- Run-time:
 - When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all i = 1,..., k then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function $h_i(x)$
 - Otherwise discard the element x

Independent Hash Functions

- Input: a binary string x, e.g. integer
- Possible h1:
 - Take all <u>odd</u>-numbered positions of x
 - l.e. positions 1, 3, 5, ...
 - Treat them as a number, then compute modulo 11
 - ... 11 or some other prime number
- Possible h2:
 - Take all <u>even</u>-numbered positions of x
 - i.e. positions 0, 2, 4, ...
 - Treat them as a number, then compute modulo 11

Bloom Filter -- Analysis

- What fraction of the bit vector B are 1s?
 - Throwing k·m darts at n targets
 - So fraction of 1s is $(1 e^{-km/n})$
- But we have <u>k</u> independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1
- So, false positive probability = $(1 e^{-km/n})^k$

Bloom Filter – Analysis (2)

$$(1-e^{-km/n})^k$$

- m = 1 billion, n = 8 billion
 - k = 1: $(1 e^{-1/8}) = 0.1175$
 - **k** = 2: $(1 e^{-1/4})^2 = 0.0493$

What happens as we keep increasing k?

- "Optimal" value of k: n/m In(2)
 - In our case: Optimal k = 8 In(2) = 5.54 ≈ 6
 - Error at k = 6: $(1 e^{-1/6})^2 = 0.0235$

Bloom Filter: Wrap-up

- Bloom filters guarantee no false negatives, and use limited memory
 - Great for pre-processing before more expensive checks
- Suitable for hardware implementation
 - Hash function computations can be parallelized
- Is it better to have 1 big B or k small Bs?
 - It is the same: $(1 e^{-km/n})^k$ vs. $(1 e^{-m/(n/k)})^k$
 - But keeping 1 big B is simpler

Sampling from a Data Stream:

Sampling a fixed proportion

Sampling from a Data Stream

- Since we can not store the entire stream,
 one obvious approach is to store a sample
- Two different problems:
 - (1) Sample a fixed proportion of elements in the stream (say 1 in 10)
 - (2) Maintain a random sample of fixed size over a potentially infinite stream
 - At any "time" k we would like a random sample of s elements
 - What is the property of the sample we want to maintain?
 For all time steps k, each of k elements seen so far has equal prob. of being sampled

Sampling a Fixed Proportion

- Problem 1: Sampling fixed proportion
- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How often did a user run the same query in a single day?
 - Have space to store 1/10th of query stream
- Naïve solution:
 - Generate a random integer in [0..9] for each query
 - Store the query if the integer is 0, otherwise discard

Problem with Naïve Approach

- Simple question: What fraction of queries by an average search engine user are duplicates?
 - Suppose each user issues x queries once and d queries twice (total of x+2d queries) => Correct answer: d/(x+d)
 - Proposed solution: We keep 10% of the queries
 - Sample will contain x/10 of the singleton queries and 2d/10 of the duplicate queries at least once
 - But only d/100 pairs of duplicates
 - $d/100 = 1/10 \cdot 1/10 \cdot d$

d/100 appear twice: 1st query gets sampled with prob. 1/10, 2nd also with 1/10, there are d such queries: d/100

Very different

from d/(x+d)!

- Of d "duplicates" 18d/100 appear exactly once
 - $18d/100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot d$

Prob. 1/10 for first to get selected and 9/10 for the second to not get selected; and the other way around, so in total 18d/100

$$\frac{\frac{d}{100}}{\frac{x}{10} + \frac{d}{100} + \frac{18d}{100}} = \frac{d}{10x + 19d}$$

Sampling by Value

- Our mistake: we sampled <u>based on the position</u> <u>in the stream</u>, rather than the <u>value of the</u> <u>stream element</u>
- Solution: Pick 1/10th of users and take all their searches in the sample
 - Use a hash function that hashes the user name or user id uniformly into 10 buckets
- All or none of the query instances of a user are selected
 - Therefore the fraction of his duplicate queries in the sample is the same as for the stream as a whole

Generalized Solution

- Stream of tuples with keys:
 - Key is some subset of each tuple's components
 - e.g., tuple is (user, search, time); key is <u>user</u>
 - Choice of key depends on application
- To get a sample of a/b fraction of the stream:
 - Hash each tuple's key uniformly into b buckets
 - Pick the tuple if its hash value is $\leq a$

Hash table with **b** buckets, pick the tuple if its hash value is $\leq a$.

How to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

Spark Streaming

Overview

What is Spark Streaming?

- Spark library / module: extends Spark for (large-scale) distributed data stream processing
- Started in 2012, included in 2014 in Spark 0.9
- Bindings in Spark version 1.2
 - Scala, Java, Python (partial)

Problem 1: Stream vs. Batch Processing

- Many apps require processing the same data in live streaming as well as in batches
 - E.g. finance: trading robots / high freq. trading
 - Batch: testing and evaluating trading systems (backtests)
 - Stream: live trading using prepared systems
 - Detecting DoS attacks
 - Batch: understand patterns of DoS, tune algorithms
 - Stream: apply prepared algorithms to live data
- = > Need for two separate programming models
 - Doubled effort, inconsistency, hard to debug

Problem 2: Fault-tolerance

- Traditional processing model:
 - Pipeline of nodes
 - Each node maintain a mutable state
 - Each input record updates the state and new records are sent out
- => <u>Mutable state is lost</u>if node fails
- => Making stateful stream processing faulttolerant is challenging

Spark Streaming: Concept

- Process stream as a series of small batch jobs
 - Chop up the live stream into batches of X seconds
 - Spark treats each batch of data as an RDD and processes them using (normal) RDD operations
 - The results of the RDD operations are returned in batches

Data Sources and Sinks

- Input data streams can come from many sources, e.g.
 - HDFS/S3 (files), TCP sockets, Kafka, Flume, Twitter, ...
- Output data can be pushed out to ...
 - File systems, databases, live dashboards

Spark Streaming

Basic Programming

Programming Model - DStream

- DStream = Discretized Stream
 - "Container" for a stream
 - Implemented as a sequence of RDDs

- DStreams can be ...
 - Created from "raw" input streams
 - Obtained by transforming existing DStreams

Example: (Stream) Word Count

- Goal: We want to count the occurrences of each word in each batch a text stream
 - Data received from a TCP socket 9999, each "event" (= record) is a <u>line of text</u>
 - Stream is split into RDDs, each 1 second "length"
 - Each RDD can have 0 or more records!
 - Output: first ten elements of each RDD
- Program structure
 - 1. Set up the processing "pipeline"
 - 2. Start the computation and specify termination

Word Count: Pipeline Setup /1

from pyspark import SparkContext from pyspark.streaming import StreamingContext

Use two threads: 1 for source feed, 1 for processing

sc = SparkContext("local[2]", "NetworkWordCount")

ssc = StreamingContext(sc, 1)

Set batch interval to 1 second

lines = ssc.socketTextStream("localhost", 9999)

Create a DStream that will connect to hostname:port, like localhost:9999

Word Count: Pipeline Setup /2

- Since each "event" in a DStream is a "normal" RDDrecord, we can process it with Spark operations
 - Here: each record is a line of text

New DStream (and new RDD for <u>each</u> batch)

Split each line into words

```
words = lines.flatMap( lambda line: line.split(" ") )
pairs = words.map( lambda word: (word, 1) )
wordCounts = pairs.reduceByKey( lambda x, y: x + y )
```

Count each word in each batch

wordCounts.pprint()

Print the first ten elements of each RDD generated in this DStream to the console

Word Count: Start & End

Start the computation

ssc.start()

ssc.awaitTermination()

Wait to terminate

Terminal 1

- Netcat (<u>link</u>) utility can redirect std input to a TCP port (here: 9999)
- nc -lk 9999
- <type anything...>
- Hello IMMD

Terminal 2

- ./bin/spark-submit network_wordcount.py localhost 9999
- **-----**
- Time: 2015-01-08 13:22:51
- _____
- (hello,1)
- (IMMD,1)
- • •

Example – Get hashtags from Twitter

Example in **Scala** because Twitter source was not yet supported in Python (Spark 1.2)

val ssc = new StreamingContext (sparkContext, Seconds(1))
val tweets = TwitterUtils.createStream (ssc, auth)

Twitter Streaming API batch @ t batch @ t+1 batch @ t+2

DStream tweets

RDDs, stored

in memory

Get hashtags from Twitter /2

val ssc = new StreamingContext (sparkContext, Seconds(1))
val hashTags = tweets.flatMap(status => getTags(status))

Transformed DStream

Spark flatMap

In Python: lambda status: getTags(status)

From: Tathagata Das, Spark Streaming, Spark Summit 2014

Get hashtags from Twitter /3

val ssc = new StreamingContext (sparkContext, Seconds(1))
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

Output: write to external storage

Thank you.

Questions?

Additional Slides

Side note: SGD is a Streaming Alg.

- Stochastic Gradient Descent (SGD) is an example of a stream algorithm
- We call this: Online Learning
 - Allows for modeling problems where we have a continuous stream of data
 - We want an algorithm to learn from it and slowly adapt to the changes in data

												_
1		3			5			5		4		
		5	4			4			2	1	3	
2	4		1	2		3		4	3	5		
	2	4		5			4			2		•
		4	3	4	2					2	5	
1		3		3			2			4		

.1	4	.2
5	.6	.5
2	.3	.5
1.1	2.1	.3
7	2.1	-2
-1	.7	.3

1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

R

49

Side note: SGD is a Streaming Alg.

- Idea: Do slow updates to the model
 - SGD makes small updates
 - So: First get initial model Then: For every example from the stream, we slightly update the model

- Initialize P and Q
- Then iterate over the ratings and update factors:

For each r_{xi} :

$$q_i \leftarrow q_i + \mu_1 \left(\varepsilon_{xi} \ p_x - \lambda_2 \ q_i \right)$$

•
$$p_x \leftarrow p_x + \mu_2 \left(\varepsilon_{xi} \ q_i - \lambda_1 \ p_x \right)$$

1		3			5			5		4		
		5	4			4			2	1	3	
2	4		1	2		3		4	3	5		٦
	2	4		5			4			2		
		4	3	4	2					2	5	
1		3		3			2			4		

.1	4	.2
5	.6	.5
2	.3	.5
1.1	2.1	.3
7	2.1	-2
-1	.7	.3

1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

