2/2

2/2

-1/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas):
MEETUN	
DYLAN	
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. [III] J'ai lu les instructions et mon sujet est complet: les 4 entêtes sont +199/1/xx+···+199/4/xx+.	
Q.2 Que vaut $L \cap L$?	
■ L □ ε	[{ε}
Q.3 Pour $L_1 = \{a, b\}^*, L_2 = (\{a\}^* \{b\}^*)^*$:	
$\square L_1 \stackrel{\not\subseteq}{\not\supseteq} L_2 \qquad \textcircled{\tiny{1}} \qquad L_1 \subseteq L_2$	$ \boxtimes L_1 = L_2 \qquad \qquad \square L_1 \supseteq L_2 $
Q.4 Soit le langage $L = \{a, b\}^*$.	
	$(L) \cap Pref(L) = \emptyset$ \square $Suff(L) = Pref(L)$ $(L) \subseteq Pref(L)$
Q.5 Que vaut <i>Suff</i> ({ <i>ab</i> , <i>c</i> }):	
	$[a,b,c]$ \square $\{b,\epsilon\}$ \square $\{b,c,\epsilon\}$
	.,,,,,
Q.6 Que vaut $\{a\}\{b\}^* \cap \{a\}^*$	
$\Box \{a,b\}^*\{b\}\{a,b\}^* \qquad \Box \{a\}\{b\}^* \cup \{b\}^* \Box \{a\}\{b\}^* \cup \{b\}^*$	
Q.7 Pour toutes expressions rationnelles e, f, g , on a	$e(f+g) \equiv ef + eg$ et $(e+f)g \equiv eg + fg$.
■ vrai	☐ faux
Q.8 Il est possible de tester si une expression ration	nelle engendre un langage vide
Souvent vrai 🔃 Toujours vrai	☐ Souvent faux ☐ Toujours faux
Q.9 Pour $e = (a + b)^*, f = a^*b^*$:	
	$\Box L(e) \stackrel{\not\subseteq}{\supset} L(f) \qquad \qquad \Box L(e) = L(f)$
Q.10 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L \subseteq \Sigma^*$, on a $\{a\}.L = \{a\}.M \implies L = M$.	
☐ faux ☑ vrai	
O.11 L'expression Perl '([-+]*[0-9A-F]+[-+/*])*[-+]*[0-9A-F]+' n'engendre pas :	
O.II DEVDICESSION FOR CLAIM CALL CALL CALL CALL CALL CALL CALL CAL	L . J Lo JA I J . II CILECTICALE DAS .

2/2

P ne vérifie pas le lemme de pompage

 \square Il existe un ε -NFA qui reconnaisse \mathcal{P}

+199/4/5+

Q.32 & Quels états peuvent être fusionnés sans changer le langage reconnu.

□ 0 avec 1 et avec 2

☐ 1 avec 3

1 avec 2

☐ 2 avec 4

3 avec 4

☐ Aucune de ces réponses n'est correcte.

Q.33

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

2/2

2/2

2/2

a*b*c*

☐ (abc)*

 \Box $a^* + b^* + c^*$

 \Box $(a+b+c)^*$

Q.35 Sur $\{a,b\}$, quel est le complémentaire de b

-1/2

2/2

a, b
a, b
a, b
a, b

Q.36

Quel est le résultat de l'application de BMC en éliminant

1, puis 2, puis 3 et enfin 0?

 $(ab^+ + a + b^+)(a(a + b^+))^*$