MAT4220: Partial Differential Equations Tutorial 8 Slides¹

Mou Minghao

CUHK(SZ)

November 8, 2022

¹All of the problems are taken from [Strauss, 2007].

Contents

- Review
 - Notions of Convergence
 - \bullet Convergence Theorems
 - Dirichlet Kernel $K_N(\theta)$
- 2 Question 1
- 3 Question 2
- 4 Question 3

Review: Notions of Convergence

Definition (Pointwise Convergence)

 $f_n(x)$ is said to converge to f(x) in (a,b) pointwisely if for every $x \in (a,b)$ and for any $\epsilon > 0$, there exists a $M(\mathbf{x}) \in \mathbb{N}$ such that for n > M(x)

$$|f_n(x) - f(x)| < \epsilon.$$

Definition (Uniform Convergence)

 $f_n(x)$ is said to converge to f(x) in (a,b) uniformly if for any $\epsilon > 0$, there exists a M, which does not depend on the choice of x, such that for $\forall n \geq M$,

$$|f_n(x) - f(x)| < \epsilon, \quad \forall x \in (a, b).$$

Review: Notions of Convergence

Definition (L^2 Convergence / Mean-Square Convergence)

Suppose $f_n, f \in L^2$, f_n is said to converge to f in L^2 if

$$\lim_{n\to\infty} ||f_n - f||_2 \to 0.$$

Remark

You can view f_n and f as two vectors in the vector space L^2 . The L^2 convergence plainly says that the two vectors are getting closer and closer as $n \to \infty$.

Definition (Weak Convergence)

A sequence of functions $\{f_n\}_{n=1}^{\infty} \subset L^2(\Omega)$ is said to converge weakly to $f \in L^2(\Omega)$ if

$$\int_{\Omega} f_n \cdot g d\lambda = \int_{\Omega} f \cdot g d\lambda, \quad \forall g \in L^2(\Omega).$$

Review: Notions of Convergence

Let's play with those concepts by considering the following example

Example

$$f_n(x) := \sqrt{\frac{n}{1 + n^2 x^2}} - \sqrt{\frac{n - 1}{1 + (n - 1)x^2}}, \quad x \in (0, l).$$

Then.

$$F_n(x) = \sum_{i=1}^n f_i(x) = \sqrt{\frac{1}{1+x^2}} - \sqrt{\frac{n}{1+n^2x^2}},$$
 (by telescoping)

- (a). Does $F_n(x)$ converges pointwisely? If yes, find the limit. If no, explain.
- (b). Does $F_n(x)$ converges uniformly? If yes, find the limit. If no, explain.
- (c). Does $F_n(x)$ converges in L^2 ? If yes, find the limit. If no, explain.

Review: Notions of Convergence

(a). We claim that F_n converges to $F(x) := \sqrt{\frac{1}{1+x^2}}$. The reason is that

Question 2

$$|F_n(x) - F(x)| = \sqrt{\frac{n}{1 + n^2 x^2}} \to 0, \ n \to \infty, \text{ for each fixed } x.$$

(b). If F_n converges uniformly, the limit must be F(x) (why? Explain). Note that

$$\sup_{x \in (0,l)} |F_n(x) - F(x)| = \sup_{x \in (0,l)} \sqrt{\frac{n^2}{1 + n^2 x^2}} = n \to \infty, \text{ as } n \to \infty.$$

Therefore, no uniform convergence.

(c). We prove that F_n does not converge in L^2 to F

$$||F_n - F||_2^2 = \int_0^l \frac{N}{1 + N^2 x^2} dx = arc \tan(nx) \Big|_0^l \to \frac{\pi}{2} \neq 0.$$

Convergence Theorems

Theorem $(C^1 \Rightarrow \text{Pointwise Convergence})$

The classical Fourier series converges to f(x) pointwisely on (a,b)provided that $f(x) \in C^1[a,b]$.

Theorem $(C^1 \Rightarrow \text{Uniform Convergence})$

Suppose $f \in C^1([a,b])$ s.t. B.C., then $S_N(f)$ converges uniformly to fon \mathbb{T} .

Theorem (L^2 Convergence)

The Fourier series converges to f(x) in the mean-square sense in (a,b) provided only that f(x) is any function for which

$$||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2} < \infty.$$

Convergence Theorems

Proof Ideas

Dirichlet Kernel $K_N(\theta)$

The Dirichlet Kernel $K_N(\theta) = 1 + 2 \sum_{n=1}^{N} \cos n\theta$ occurs in the proof of pointwise convergence. It has the following properties:

- $\bullet \int_{-\pi}^{\pi} K_N(\theta) \frac{d\theta}{2\pi} = 1.$
- $K_N(\theta)$ can be summed. This is because

$$K_N(\theta) = \sum_{n=-N}^{N} e^{in\theta} = \frac{e^{-iN\theta} - e^{i(N+1)\theta}}{1 - e^{i\theta}} = \frac{\sin[(N+1/2)\theta)}{\sin(1/2)\theta}.$$

Question 1

Problem (1 - Notions of Convergence)

Prove or disprove the followings

- On a finite domain, uniform convergence implies L^2 convergence.
- \bullet L^2 convergence implies uniform convergence.
- \bullet L^2 convergence implies pointwise convergence.

The first assertion is TRUE. Assume Ω is finite (i.e. it has finite measure, $\mu(\Omega) < \infty$). If $f_n \to f$ uniformly, consider

$$||f_n - f||_2^2 = \int_{\Omega} |f_n - f|^2 d\mu \le \sup_{\Omega} |f_n - f|^2 \mu(\Omega) \to 0, \quad as \ n \to \infty.$$

The second assertion is FALSE. Set

 $f_n(x) = (1-x)x^{n-1}, x \in (0,1)$, we know that its partial sum is $S_N(f) = 1 - x^N$. Obviously, $S_N(f) \to 1$ as $N \to \infty$. Note that

$$||S_N(f) - 1||^2 = \int_{\Omega} |x^N|^2 d\mu = \frac{1}{2N+1} \to 0, \text{ as } N \to \infty.$$

However, it does not converge uniformly to 1. The reason is: fix $\epsilon = \frac{1}{2}$, for each $N \in \mathbb{N}$, choose $x \in [\frac{1}{2}^{1/N}, 1)$, then we have

$$\sup_{x \in (0,1)} |S_N(f) - 1| = \sup_{x \in (0,1)} |x^N| \ge \frac{1}{2} = \epsilon.$$

The third assertion is FALSE. Consider $f_n(x) = n^{\frac{1}{2}} \mathbb{I}((0, \frac{1}{n})),$ where $\mathbb{I}(\cdot)$ is a characteristic function. The sequence converges pointwisely to [0, 1] to the function that is identically equal to zero but does not converge to this function with respect to the $L^{2}[0,1]$ norm. This is because

$$||f_n - 0||_2^2 = \int_{\Omega} n\mathbb{I}((0, \frac{1}{n}))d\mu = 1.$$

Remark

If the domain Ω is NOT of finite measure, then the first assertion is in general FALSE. Let $\Omega = \mathbb{R}$, obviously the domain is not finite. Consider the function $f_n = \frac{1}{\sqrt{n}} \cdot \mathbb{I}((0,n))$.

More Remarks

• Although in general if $f_n \to f$ in L^2 , we cannot say that $f_n \to f$ pointwisely, however, we have the following theorem, which says that if f_n converges in L^2 to f, then there exists a subsequence of f_n converges pointwisely.

Remark (Riesz-Fischer Theorem)

If $f_n \to f$ in $L^2(\Omega)$, there exists a subsequence f_{n_k} such that $f_{n_k} \to f$ pointwise almost everywhere on Ω .

• Also, if $f_n \to f$ pointwisely, we cannot conclude that $f_n \to f$ uniformly. However, pointwise convergence almost implies uniform convergence...

Remark (Egoroff's Theorem)

Suppose f_n converges almost everywhere on Ω of f. Then for any $\epsilon > 0$ there exists a subset A of Ω with $\mu(A) < \epsilon$ such that f_n converges uniformly to f on Ω/A .

More Remarks

• An interesting result feature of $L^2(\Omega)$ is that the **Heine-Borel** Theorem does NOT hold. That is, not every bounded and closed set is compact.

Example (Bounded + Closed \neq Compact in $L^2(\Omega)$)

Consider the closed unit ball $B = \{ f \in L^2([0,1]) : ||f||_{L^2} \le 1 \}$ in $L^2([0,1])$. Define $f_n = (\sqrt{2})^n \cdot \mathbb{I}((0,2^{-n}))$. Then $||f_n|| = 1$ so $f_n \in B$ for each n. But if m > n, then

$$||f_n - f_m||_{L^2} \ge 1.$$

Question 2

Problem (2)

Prove the validity of the Fourier series solution of the diffusion equation on (0,l) with $u_x(x,0) = u_x(x,l) = 0$, $u(x,0) = \phi(x)$, where $\phi(x)$ is continuous with a piecewise continuous derivative. That is, prove that the series truly converges to the solution. (**Hint:** Read p.144-145)

Question 3

Problem (3)

Show that if f(x) is a C^1 function in $[-\pi, \pi]$ that satisfies the periodic BC and if $\int_{-\pi}^{\pi} f(x)dx = 0$, then $\int_{-\pi}^{\pi} |f|^2 dx \leq \int_{-\pi}^{\pi} |f'|^2 dx$. (**Hint:** Parseval's equality)

- $f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$.
- $\bullet \ a_0 = \frac{1}{2} \int_{-\pi}^{\pi} f(x) dx = 0.$
- By parseval's equality,

$$\int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{n=1}^{\infty} a_n^2 \left(\int_{-\pi}^{\pi} \cos^2 nx dx \right)^2 + b_n^2 \left(\int_{-\pi}^{\pi} \sin^2 nx dx \right)^2$$
$$= \sum_{n=1}^{\infty} \pi (a_n^2 + b_n^2).$$

- $f'(x) = \frac{1}{2}a'_0 + \sum_{n=1}^{\infty} a'_n \cos nx + b'_n \sin nx; \ a'_0 = \int_{-\pi}^{\pi} f'(x)dx = 0.$
- Note that $a'_n = nb_n$ and $b'_n = -na_n$.
- By parseval's equality,

$$\int_{-\pi}^{\pi} |f'(x)|^2 dx = \pi \sum_{n=1}^{\infty} ((nb_n)^2 + (-na_n)^2) = \pi \sum_{n=1}^{\infty} n^2 (a_n^2 + b_n^2)$$
$$\geq \pi \sum_{n=1}^{\infty} a_n^2 + b_n^2 = \int_{-\pi}^{\pi} |f(x)|^2 dx.$$

References I

Strauss, W. A. (2007).

Partial differential equations: An introduction. John Wiley & Sons.