

Math 1300-010 - Fall 2016

Related Rates, Pt. I - 10/17/16

Guidelines: Please work in groups of two or three. This will not be handed in, but is a study resource for Midterm 3. This first worksheet over related rates covers some easier examples so we can get used to the process.

1. Each side of a square is increasing at a rate of 5 cm/s. At what rate is the area of the square increasing when the area of the square is 16 cm².

$$\times$$
 A= \times^2 \longrightarrow $\frac{dA}{dt} = 2x \cdot \frac{dx}{dt}$. When A= 1 (em², X= $\frac{4}{4}$) so $\frac{dx}{dt} = 5$ cm/s $\frac{dA}{dt} = 2(4)(5) = 40$ cm²/s

2. The length of a rectangle is increasing at a rate of 8 cm/s and its width is increasing at a rate of 3 cm/s. When the length is 20 cm and the width is 10 cm, how fast is the area of the rectangle increasing?

W A=l·W
$$\rightarrow$$
 $\frac{dA}{dt} = \frac{dl}{dt} \cdot w + l \cdot \frac{dw}{dt} \cdot w + w = 10$ and $l = 20$, Given:
$$\frac{dA}{dt} = 8 \text{ cw/s}$$

$$\frac{dA}{dt} = 8(10) + 20(3) = \sqrt{140 \text{ cm}^2/5} = \frac{dA}{dt}$$

$$\frac{dW}{dt} = 3 \text{ cw/s}$$

3. A cylindrical tank with radius 5 m is being filled with water at a rate of 3 m³/min. How fast is the height of the water increasing? For a cylinder, $V = \pi r^2 h$.

How fast is the height of the water increasing? For a cylinder,
$$V = \pi r^2 h$$
.

Clear Way: ΓB a constant!

 $V = \pi r^2 h$

So $dV = \pi r^2 h$

When $r = 5 m$

4. The radius of a sphere is increasing at a rate of 4 mm/s. How fast is the volume increasing when the diameter is 80 mm?

dr = 4nm/s

- 5. Suppose $y = \sqrt{2x+1}$, where x and y are functions of t.
 - (a) If dx/dt = 3, find dy/dt when x = 4.

$$\frac{dy}{dt} = \frac{1}{2} (3x+1)^{-1/3} \cdot 2\frac{dx}{dt} = \frac{dx}{\sqrt{3x+1}}.$$
So $\frac{dy}{dt} = \frac{3}{\sqrt{3}} = \frac{3}{3} = 1.$

(b) If dy/dt = 5, find dx/dt when y = 5.

In (a), we saw
$$\frac{dy}{dt} = \frac{1}{\sqrt{2x+1}} \cdot \frac{dx}{dt}$$
, so $\frac{dx}{dt} = \sqrt{2x+1} \cdot \frac{dy}{dt}$. But $y = \sqrt{2x+1}$, so $\frac{dx}{dt} = y - \frac{dy}{dt}$. Thus $\frac{dx}{dt} = (5)(5) = 25$, $\frac{dx}{dt} = 25$ units/ times

6. If $x^2 + y^2 = 25$ and dy/dt = 6, find dx/dt when y = 4.

Given:

$$\frac{G_{iven}}{dV} = G_{iven}$$

$$\frac{dV}{dV} = G_{iven}$$

$$\frac{dV}{$$

7. If $x^2 + y^2 = r^2$ and if dx/dt = 2 and dy/dt = 3, find dr/dt when x = 5 and y = 12.

Given:
$$x^2+y^2=r^3 \rightarrow 2x \frac{dx}{dt} + 3y \frac{dy}{dt} = 2r \frac{dr}{dt}$$

when $x=5, y=12, r^2=25+144=169 \rightarrow r=13$ or $r=-13$
 $x^2+y^2=r^3 \rightarrow 2x \frac{dx}{dt} + 3y \frac{dy}{dt} = 2r \frac{dr}{dt}$

when $x=5, y=12, r^2=25+144=169 \rightarrow r=13$ or $r=-13$

when $r=13, 2(5)(2)+2(12)(3)=2(13) \frac{dr}{dt} \rightarrow \frac{dr}{dt}=\frac{92}{26}$ units/time

when $r=13, 2(5)(9)+2(12)(3)=3(-13) \frac{dr}{dt}$

when $r=13, 2(5)(9)+3(12)(3)=3(-13) \frac{dr}{dt}$

8. A partical moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point $\sqrt{(2,3)}$ the y-coordinate is increasing at a rate of 4 cm/s. How fast is the x-coordinate of the point changing at that instant?

Given:

$$y = \sqrt{1+x^3} \rightarrow \frac{dy}{dt} = \frac{1}{2}(1+x^3)^{-1/2} \cdot 3x^2 \cdot \frac{dx}{dt} = \frac{3x^2}{2\sqrt{1+x^3}} \cdot \frac{dx}{dt}$$

$$50 \quad \frac{dy}{dt} = \frac{2\sqrt{1+x^3}}{3x^2} \cdot \frac{dy}{dt} \cdot \frac{dx}{dt} = 2cm/5$$

$$when we are at $(2,3)$, $x=2$ so
$$\frac{dx}{dt} = \frac{2\sqrt{1+8}}{3\sqrt{4}} \cdot \frac{dy}{dt} = \frac{2\cdot 3\sqrt{4}}{3\sqrt{4}} = 2$$$$