Fabrication of MOSFET

Pravin Zode

Introduction

- CMOS Fabrication technology, requires both n-channel (nMOS) and (pMOS) transistor built on same substrate
- Special regions are required to accommodate nMOS and pMOS
- These regions are called as wells or tubs.
- A p-well is created in an n-type substrate, alternatively, an n-well is created in a p-type substrate

CMOS Fabrication Flow

- Creation of the n-well regions for pMOS transistors, by impurity implantation into the substrate
- Thick oxide is grown in the regions surrounding the nMOS and pMOS active regions
- Thin gate oxide is subsequently grown on the surface through thermal oxidation
- followed by the creation of n+ and p+ regions (source, drain, and channelstop implants) and by final metallization (creation of metal interconnects).

Inverter Cross Section

Mask Set for Inverter

Layout of Inverter

Layout of Inverter

Cross Section Inverter

Cross section view of Inverter

Design Rules

- Design rules are a set of geometrical specifications that dictate the design of the layout
- Layout is top view of a chip.
- Design process are aided by stick diagram and layout
- Stick diagram gives the placement of different
- components and their connection details
- But the dimensions of devices are not mentioned
- Circuit design with all dimensions is Layout

Design Rules

- Design Fabrication process needs different masks, these masks are prepared from layout
- Layout is an Interface between circuit designer and fabrication
- Engineer
- Layout is made using a set of design rules.
- Design rules allow translation of circuit (usually in stick diagram or symbolic form) into actual geometry in silicon wafer
- These rules usually specify the minimum allowable line widths for physical objects on-chip
- Example: metal, poly, interconnects, diff. areas, min feature dimensions, and minimum feature.

Need for Design Rules

- Better yield
- Better reliability
- Increase the probability of fabricating a successful
- product on Si wafer

If design rules are not followed:

- Functional or non-functional circuit.
- Design consuming larger Si area.
- The device can fail during or after simulation

Color Codes for Design Rules

Layer	Color	Representation
N+ Active	Green	
P+ Active	Yellow/Brown	
PolySi	Red	
Metal 1	Blue	
Metal 2	Magenta	
Contact	Black	X
Buried contact	Brown	X
Via	Black	X
Implant	Dotted yellow	
N-Well	Dotted Green/Black	:;

Stick Diagrams

- A stick diagram is a symbolic representation of a layout.
- In stick diagram, each conductive layer is represented by a line of distinct color.
- Width of line is not important, as stick diagrams just give only wiring and routing information.
- Does show all components/vias, relative placement.
- Does not show exact placement, transistor sizes, wire lengths, wire widths, tub boundaries.

Stick Diagrams: Basic Rules

- Poly crosses diffusion forms transistor
- Red (poly) over Green(Active), gives a FET

Stick Diagrams: Implied Connections & Crossover

- Where two sticks of the same color meet or cross there is always a connection
- Where two sticks of different colors meet or cross there is no implied connection.

Stick Diagrams (CMOS): Basic Steps

- Normally, the first step is to draw two parallel metal (blue) VDD and GND rails.
- There should be enough space between them for other circuit elements.
- Draw Demarcation line (Brown) at center of VDD and GND rails.
 This line represents the well (n/p-well).
- Next, Active (Green/yellow) paths must be drawn for required
 PU & PD transistors above & below DL.
- Draw vertical poly crossing both diffusions (Green & yellow)
- Remember, Poly (Red) crosses Active (Green/yellow), where transistor is required.

Stick Diagrams (CMOS): Basic Steps

- No Diffusion can cross demarcation line.
- Only poly and metal can cross demarcation line
- N-diffusion and p-diffusion are joined using a metal wire.
- Place all PMOS above and NMOS below demarcation line.
- Connect them using wires (metal).
- Blue may cross over red or green, without connection.
- Connection between layers is specified with X.
- Metal lines on different layer can cross one another, connections are done using via

Stick Diagrams: Inverter

Layout

Stick Diagrams: Inverter

Stick Diagrams: Inverter

- The various N and P diffusions must be reverse biased to ensure that those wells are insulated from each other.
- This requires that the N- wells are connected to the most positive voltage, VDD
- The P- substrate must be connected to the most negative voltage, ground.
- This assumes that all other nets are at a voltage between 0V and VDD.

Layout Design Rules

Two types of Design rules

- Industry Standard: Micron Rule
 - All device dimensions are expressed in terms of absolute dimension(μm/nm)
 - These rules will not support proportional scaling
- Based Design Rules
 - All device dimensions are expresses in terms of a scalable parameter $\boldsymbol{\lambda}$
 - $\lambda = L/2$; L = The minimum feature size of transistor, L = 2 λ
 - These rules support proportional scaling

Measure twice, fab once

Thank you!

Happy Learning