## Presentación de Avance - Proyecto SWE ILI384: Taller de Modelos y Métodos Cuantitativos

Rodrigo Naranjo

Martín Villanueva

11 de noviembre 2015

## 1. Descripción del Problema

El problema consiste en modelar el sistema de *Shallow Water Equations* en 1*D* y 2*D*, de tal modo que se pueda determinar la evolución del sistema, dadas las ecuaciones diferenciales que modelan el problema, las condiciones iniciales y las condiciones de borde. Las SWE corresponden a un caso particular de las ecuaciones de Navier-Stokes, que se obtiene al hacer la suposición de que el fluido es incompresible, sin viscosidad y que la profundidad del agua es baja en relación al área en que se extiende. En el caso general (2D) las ecuaciones pueden escribirse como a continuación

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + g \frac{\partial h}{\partial x} = 0 \tag{1}$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + g \frac{\partial h}{\partial y} = 0 \tag{2}$$

$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x}(u(h-b)) + \frac{\partial}{\partial y}(v(h-b)) = 0 \tag{3}$$

donde las variables de interés (a modelar) son h(x, y, t) (nivel de agua), u(x, y, t) (componente de velocidad en x), v(x, y, t) (componente de velocidad en y).

## 2. La Implementación

Para la resolución del problema se plantea un enfoque del tipo partículas, donde la superficie del agua se modela por medio de un conjunto de partículas y por la forma en que se distribuyen. Para ser más precisos, cada una de las variables de interés  $(h, u \ y \ v)$  se aproximan como una combinación lineal de funciones RBF, para h por ejemplo se tiene:

$$h(x, y, t) = \sum_{i=0}^{N} \gamma_i(t) \Phi(||\mathbf{x} - \boldsymbol{\xi}_i(t)||, \epsilon_i(t))$$

donde la función RBF a ocupar es de preferencia una función de soporte compacto, de modo que se acote el radio de influencia de cada función.

Lo que se quiere lograr sigue el enfoque *Evolutive RBF*, donde se obtienen ecuaciones de evolución (ODE's) para los parámetros dependientes del tiempo en cada RBF ( $\gamma(t)$ ,  $\xi_i(t)$  y  $\varepsilon_i(t)$ ). En dicho caso, para obtener el estado del sistema en un tiempo siguiente, sería tan sólo computar las ecuaciones de evolución para cada RBF (de cada variable) y luego sumar los resultados respectivos en el espacio.

## 3. Dificultades

Se presentan aquí algunas de las dificultades que se conocen, y otras que eventualmente podrían aparecer en la implementación del proyecto.

- La batimetría b(x, y, t) es en general una función discontinua (o que se conoce parcialmente), y por lo tanto debe hallarse una manera de aproximar su derivada.
- En simulaciones ocupando otros métodos (SPH *Smoothed Particle Hidrodynamics*) se ha notado que no tomar en cuenta la viscosidad, puede llevar a problemas de estabilidad numérica en las simulaciones.
- Probablemente en las simulaciones sea necesario ocupar una gran cantidad de partículas para modelar la superficie del agua, lo cual lleva a una gran cantidad de computación para determinar los estados siguientes del sistema. Por ello quizas sea necesario paralelizar la ejecución, o buscar métodos más eficientes de computación (FMM Fast Multipole Method).