SWCON253: Machine Learning

Lecture 11 K-Nearest Neighbors

ΕZ

Jinwoo Choi Assistant Professor CSE, Kyung Hee University

Table of Contents

- · Recap: supervised learning
 - Setup
 - Basic concepts
- K-Nearest Neighbor (kNN)
 - Distance metric
 - Pros/Cons of nearest neighbor
- Recap: Validation, cross-validation, hyperparameter tuning

Supervised learning

- Input: x (Images, texts, emails)
- Output: y (e.g., spam or non-spams)
- Data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(N)}, y^{(N)})$ (Labeled dataset)

• (Unknown) Target function: $f: x \to y$ ("True" mapping)

- Model/hypothesis: $h: x \to y$ (Learned model)
- Learning = search in hypothesis space

Procedural view of supervised learning

Training Stage:

- Raw data $\rightarrow x$
- Training data $\{(x,y)\} \rightarrow h$

Testing Stage

- Raw data $\rightarrow x$
- Test data $x \to h(x)$

世明明知時記此制落

(Feature Extraction)

(Learning)

(Feature Extraction)

(Apply function, evaluate error)

Basic steps of supervised learning

- Set up a supervised learning problem
- Data collection: Collect training data with the "right" answer.
- Representation: Choose how to represent the data.
- **Modeling**: Choose a hypothesis class: $H = \{h: X \to Y\}$
- Learning/estimation: Find best hypothesis in the model class.
- Model selection: Try different models. Picks the best one. (More on this later)

Nearest neighbor classifier

Training data

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(N)}, y^{(N)})$$

Learning

Do nothing.

$$h(x) = y^{(k)}$$
, where $k = \operatorname{argmin}_i D(x, x^{(i)})$

Face recognition

Image credit: MegaFace

Face recognition – surveillance application

Music identification

Synonyms

Nearest Neighbors

• k-Nearest Neighbors

- Member of following families:
 - · Instance-based Learning
 - · Memory-based Learning
 - Exemplar methods
 - Non-parametric methods 取印时/업데 6년 없

Instance/Memory-based Learning

- 1. A distance metric
- 2. How many nearby neighbors to look at?

3. How to fit with the local points?

Instance/Memory-based Learning

1. A distance metric

2. How many nearby neighbors to look at?

3. How to fit with the local points?

Recall: 1-Nearest neighbor classifier

Training data

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(N)}, y^{(N)})$$

Learning

Do nothing.

Testing

$$h(x) = y^{(k)}$$
, where $k = \operatorname{argmin}_{i} D(x, x^{(i)})$

Distance metrics (x: continuous variables)

•
$$L_2$$
-norm: Euclidean distance $D(x,x') = \sqrt{\sum_i (x_i - x_i')^2}$

•
$$L_1$$
-norm: Sum of absolute difference $D(x,x') = \sum_i |x_i - x_i'|$

•
$$L_{\text{inf}}$$
-norm
$$D(x, x') = \max(|x_i - x_i'|)$$

• Scaled Euclidean distance
$$D(x,x') = \sqrt{\sum_i \sigma_i^2 (x_i - x_i')^2}$$

• Mahalanobis distance
$$D(x, x') = \sqrt{(x - x')^{\mathsf{T}} A(x - x')}$$

Distance metrics (x: discrete variables)

- Example application: document classification
- · Hamming distance

Distance metrics (x: Histogram / PDF)

istance ...

• Histogram intersection $\mu_{\overline{L}}$ \overline{L} \overline{L}

$$\chi^{2}(x, x') = \frac{1}{2} \sum_{i} \frac{[x_{i} - x'_{i}]^{2}}{x_{i} + x'_{i}}$$

- Earth mover's distance (Cross-bin similarity measure)
 - minimal cost paid to transform one distribution into the other

[Rubner et al. IJCV 2000]

Distance metrics

(x: gene expression microarray data)

- When "shape" matters more than values 乳にかける
- Want $D(x^{(1)}, x^{(2)}) < D(x^{(1)}, x^{(3)})$
- How?
- Correlation Coefficients ATA
 - Pearson, Spearman, Kendal, etc.

Instance/Memory-based Learning

1. A distance metric

2. How many nearby neighbors to look at?

3. How to fit with the local points?

kNN Classification

Classification decision boundaries

Instance/Memory-based Learning

1. A distance metric

2. How many nearby neighbors to look at?

3. How to fit with the local points?

Instance/Memory-based Learning

1. A distance metric

2. How many nearby neighbors to look at?

3. How to fit with the local points?

1-NN for Regression

• Just predict the same output as the nearest neighbour.

1-NN for Regression

• Often bumpy (overfits)

9-NN for Regression

• Predict the averaged of k nearest neighbor values

attribute0

Weighting/Kernel functions

Weight

$$w^{(i)} = \exp(-\frac{d(x^{(i)}, query)^2}{\sigma^2})$$

Prediction (use all the data)

$$y = \sum_{i} w^{(i)} y^{(i)} / \sum_{i} w^{(i)}$$

(Our examples use Gaussian)

Effect of Kernel Width

- What happens as $\sigma \rightarrow \inf$?
- What happens as $\sigma \rightarrow 0$?

Problems with Instance-Based Learning

- Expensive
 - · No Learning: most real work done during testing
 - For every test sample, must search through all dataset very slow!
 - Must use tricks like approximate nearest neighbour search
- Doesn't work well when large number of irrelevant features
 - Distances overwhelmed by noisy features
- Curse of Dimensionality
 - Distances become meaningless in high dimensions

Curse of dimensionality

- Consider a hypersphere with radius r and dimension d
- Consider hypercube with edge of length 2r

$$rac{V_{hypersphere}}{V_{hypercube}} = rac{\pi^{d/2}}{d2^{d-1}\Gamma(d/2)}
ightarrow 0$$
 as $d
ightarrow \infty$

• Distance between center and the corners is $r\sqrt{d}$

Hypercube consist almost entirely of the "corners"

Overcoming drawbacks of kNN

- · Overcoming the curse of dimensionality?
 - Dimensionality reduction (more on this later)

Test time too slow?

Random projection

- Approaximate nearest neighbor search (e.g., http://www.cs.ubc.ca/research/flann/)
- · Noisy features?
 - Outlier detection
 - Learnable features

Hyperparameter selection

• How to choose K?

- Which distance metric should I use? L2, L1?
- How large the kernel width σ^2 should be?

•

Tune hyperparameters on the test dataset?

- Will give us a stronger performance on the test set!
- Why this is not okay? Let's discuss

Evaluate on the test set only a single time, at the very end.

Validation set

• Spliting training set: A fake test set to tune hyper-parameters

keep track of what works on the validation set validation_accuracies.append((k, acc))

```
# assume we have Xtr rows, Ytr, Xte rows, Yte as before
# recall Xtr rows is 50.000 x 3072 matrix
Xval_rows = Xtr_rows[:1000, :] # take first 1000 for validation
Yval = Ytr[:1000]
Xtr rows = Xtr rows[1000:, :] # keep last 49,000 for train
Ytr = Ytr[1000:1
validation accuracies = []
for k in [1, 3, 5, 10, 20, 50, 100]:
  # use a particular value of k and evaluation on validation data
  nn = NearestNeighbor()
  nn.train(Xtr rows, Ytr)
  # here we assume a modified NearestNeiahbor class that can take a k as input
  Yval_predict = nn.predict(Xval_rows, k = k)
  acc = np.mean(Yval predict == Yval)
  print 'accuracy: %f' % (acc.)
```


Cross-validation

- 5-fold cross-validation -> split the training data into 5 equal folds
- 4 of them for training and 1 for validation

train data					test data
↓					
fold 1	fold 2	fold 3	fold 4	fold 5	test data

Hyper-parameters selection

- Split training dataset into train/validation set (or cross-validation)
- Try out different values of hyper-parameters and evaluate these models on the validation set

· Pick the best performing model on the validation set

• Run the selected model on the test set. Report the results.

Things to remember

- Supervised Learning
 - Training/testing data: classification/regression: Hypothesis
- k-NN
 - Simplest learning algorithm
- With sufficient data, very hard to beat "strawman" approach
- · Kernel regression/classification
 - Set k to n (number of data points) and chose kernel width
 - Smoother than k-NN
- Problems with k-NN
 - · Curse of dimensionality
 - · Not robust to irrelevant features
 - · Slow NN search: must remember (very large) dataset for prediction

