Given the following table of operators, with increasing precedence from top to bottom,

Operators	Associativity
and, or	right
<, >	nonassoc
+, *	left

specify the BNF of a corresponding language for expressions based on the following requirements:

- Atomic elements of the expression are either constants or identifiers;
- Precedence/associativity relevant to + and * can be altered by parentheses;
- Precedence/associativity relevant to and and or cannot be altered.

Example of phrase: (a*(b+24)) > x+y and c < z+12 or (d+3)*4 > 10

Given the following table of operators, with increasing precedence from top to bottom,

Operators	Associativity	Nonterminal
and, or	right	E
<,>	nonassoc	T
+, *	left	S
		\overline{F}

specify the BNF of a corresponding language for expressions based on the following requirements:

- Atomic elements of the expression are either constants or identifiers;
- Precedence/associativity relevant to + and * can be altered by parentheses;
- Precedence/associativity relevant to and and or cannot be altered.

Example of phrase: (a*(b+24)) > x+y and c < z+12 or (d+3)*4 > 10

$$E \rightarrow T$$
 and $E \mid T$ or $E \mid T$
 $T \rightarrow S > S \mid S < S \mid S$
 $S \rightarrow S + F \mid S * F \mid F$
 $F \rightarrow \text{id} \mid \text{num} \mid (S)$

Specify the BNF equivalent to the following grammar

$$S \rightarrow A$$
 a | B b | c
 $A \rightarrow A$ d | e
 $B \rightarrow B$ f | S g | h

Specify the BNF equivalent to the following grammar

$$S \rightarrow A$$
 a | B b | c
 $A \rightarrow A$ d | e
 $B \rightarrow B$ f | S g | h

$$S \rightarrow A \ \mathbf{a} \ | B \ \mathbf{b} \ | \ \mathbf{c}$$
 $A \rightarrow A \ \mathbf{d} \ | \ \mathbf{e}$
 $B \rightarrow B \ \mathbf{f} \ | \ S \ \mathbf{g} \ | \ \mathbf{h}$
 $S \rightarrow A \ \mathbf{a} \ | \ B \ \mathbf{b} \ | \ \mathbf{c}$
 $A \rightarrow \mathbf{e} \ A'$
 $A' \rightarrow \mathbf{d} \ A' \ | \ \epsilon$
 $A \rightarrow \mathbf{e} \ A' \ | \ \epsilon$

$$S \rightarrow A \mathbf{a} \mid B \mathbf{b} \mid \mathbf{c}$$

 $A \rightarrow A \mathbf{d} \mid \mathbf{e}$
 $B \rightarrow B \mathbf{f} \mid S \mathbf{g} \mid \mathbf{h}$
 $\Rightarrow B \rightarrow B \mathbf{f} \mid S \mathbf{g} \mid \mathbf{h}$
 $\Rightarrow B \rightarrow B \mathbf{f} \mid S \mathbf{g} \mid \mathbf{h}$

$$\Rightarrow$$

$$S \rightarrow A \mathbf{a} \mid B \mathbf{b} \mid \mathbf{c}$$
 $A \rightarrow \mathbf{e} A'$
 $A' \rightarrow \mathbf{d} A' \mid \epsilon$
 $B \rightarrow B \mathbf{f} \mid A \mathbf{a} \mathbf{g} \mid B \mathbf{b} \mathbf{g} \mid \mathbf{c} \mathbf{g} \mid \mathbf{h}$

$$S \rightarrow A \text{ a } | B \text{ b } | \text{ c}$$

$$A \rightarrow \text{ e } A'$$

$$A' \rightarrow \text{ d } A' | \epsilon$$

$$B \rightarrow B \text{ f } | \text{ e } A' \text{ a g } | B \text{ b g } | \text{ c g } | \text{ h}$$

$$\Rightarrow$$

$$S \rightarrow A \mathbf{a} \mid B \mathbf{b} \mid \mathbf{c}$$

 $A \rightarrow \mathbf{e} A'$
 $A' \rightarrow \mathbf{d} A' \mid \epsilon$
 $B \rightarrow \mathbf{e} A' \mathbf{a} \mathbf{g} B' \mid \mathbf{c} \mathbf{g} B' \mid \mathbf{h} B'$
 $B' \rightarrow \mathbf{f} B' \mid \mathbf{b} \mathbf{g} B' \mid \epsilon$

Specify the BNF equivalent to the following grammar

$$S \rightarrow A$$
 b | B **a** | **c**
 $A \rightarrow A$ **a** | **b**
 $B \rightarrow B$ **b** | S **a** | **a**

Specify the BNF equivalent to the following grammar

$$S \rightarrow A$$
 b | B **a** | **c**
 $A \rightarrow A$ **a** | **b**
 $B \rightarrow B$ **b** | S **a** | **a**

$$S \rightarrow A \ \mathbf{b} \ | B \ \mathbf{a} \ | \ \mathbf{c}$$
 $A \rightarrow A \ \mathbf{a} \ | \ \mathbf{b}$
 $B \rightarrow B \ \mathbf{b} \ | S \ \mathbf{a} \ | \ \mathbf{a}$
 $A' \rightarrow \mathbf{a} \ A' \ | \ \mathbf{e}$
 $B \rightarrow B \ \mathbf{b} \ | \ S \ \mathbf{a} \ | \ \mathbf{a}$
 $B \rightarrow B \ \mathbf{b} \ | \ S \ \mathbf{a} \ | \ \mathbf{a}$
 $B \rightarrow B \ \mathbf{b} \ | \ A \ \mathbf{b} \ \mathbf{a} \ | \ \mathbf{c} \ | \ \mathbf{a}$

$$S \rightarrow A \ \mathbf{b} \ | B \ \mathbf{a} \ | \ \mathbf{c}$$

$$A \rightarrow \mathbf{b} \ A'$$

$$A' \rightarrow \mathbf{a} \ A' \mid \mathbf{\epsilon}$$

$$B \rightarrow B \ \mathbf{b} \ | \ \mathbf{b} \ A' \ \mathbf{b} \ \mathbf{a} \ | \ \mathbf{c} \ \mathbf{a} \ B' \ | \ \mathbf{a} \ B' \ | \ \mathbf{a} \ \mathbf{a} \ B' \ | \ \mathbf{a} \ B' \$$

Given the following table of operators, with increasing precedence from top to bottom,

Operators	Associativity
&&,	left
==, !=	nonassoc
+, -	right

specify the BNF of a corresponding language for expressions based on the following requirements:

- parentheses can be used for arithmetic operators (+, -);
- parentheses cannot be used for logical operators (&&, | |);
- atomic elements of the expression are either constants or identifiers.

Given the following table of operators, with increasing precedence from top to bottom,

Operators	Associativity
&&,	left
==, !=	nonassoc
+, -	right

specify the BNF of a corresponding language for expressions based on the following requirements:

- parentheses can be used for arithmetic operators (+, -);
- parentheses cannot be used for logical operators (&&, | |);
- atomic elements of the expression are either constants or identifiers.

F

Operators Associativity		Nonterminal
&&,	left	E
==, !=	nonassoc	T
+, -	right	S

$$E \rightarrow E \&\& T \mid E \mid \mid T \mid T$$

$$T \rightarrow S == S \mid S \mid = S \mid S$$

$$S \rightarrow F + S \mid F - S \mid F$$

$$F \rightarrow id \mid num \mid (S)$$