

LES ANNEAUX, CORPS, \mathbb{Z} , $\mathbb{Z}/n\mathbb{Z}$

Presenté par: Groupe 3

Ahmidany fatiha

El Alaoui abdelkarim

Ezzaki ismail

Larbaoui hajar

Plan

- 1. Aneaux
- 2. Idéaux et Corps
- 3. Construction de l'ensemble \mathbb{Z} des entiers relatifs
- 4. L'anneau $\mathbb{Z}/n\mathbb{Z}$

anneaux

DFINITION

Un anneau est un ensemble muni de deux LCI (A, +, .) tels que :

- (A, +) est un groupe commutatif de neutre noté 0_A .
- La loi . est une LCI sur A associative et distibutive à gauche et à droite par rapport à + :

$$\forall x, y, z \in A$$
, $x.(y+z) = x.y + x.z$ et $(x+y).z = x.z + y.z$

Si la loi . est commutative, l'anneau est dit commutatif ou abélien.

EXERCICE

Si $x \in A$, montrer que $0_A \cdot x = 0_A$ (considérer $0_A \cdot x + 0_A \cdot x$).

EXEMPLES

- $-(\mathbb{Z},+,.),(\mathbb{Q},+,.),(\mathbb{R},+,.)$ et $(\mathbb{C},+,.)$ sont des anneaux bien connus.
- L'ensemble des suites réelles, muni de l'addition et du produit des suites, est un anneau. Même chose pour l'ensemble des fonctions de / dans ℝ. On déterminera précisément les neutres de ces anneaux.

Sous-anneaux

DFINITION

Soit (A, +, .) un anneau. Une partie non vide A_1 de A est un sous-anneau de A lorsque :

- - $\mathbf{1}_A \in A_1$;
- - les lois + et . induisent des LCI sur A_1 , et, muni de ces lois, $(A_1, +, .)$ est un anneau.

PROPOSITION

Une partie A_1 non vide de A est un sous-anneau si et seulement si

- ightharpoonup $(A_1, +)$ est un sous-groupe de (A, +);
- lacktriangledown $oldsymbol{1}_A\in A_1$
- ightharpoonup induit une LCI sur A_1 .

EXEMPLES

- lacktriangle Bien entendu, $\mathbb Z$ est un sous-anneau de $\mathbb Q$ qui est un sous-anneau de...
- L'ensemble des fonctions dérivables sur l constitue un sous-anneau des fonctions continues sur l, qui constitue lui-même un sous-anneau de l'ensemble des fonctions de l dans ℝ.
- L'ensemble des suites réelles stationnaires est un sous-anneau de $(\mathbb{R}^{\mathbb{N}},+,.)$, qui est un sous-anneau de $(\mathbb{C}^{\mathbb{N}},+,.)$

Morphismes d'anneaux

DFINITION

Soient (A, +, .) et (B, +, .) deux anneaux (on note de la même façon les lois de A et B...). Un morphisme d'anneaux de A vers B est une application de A vers B telle que :

- - $f(\mathbf{1}_{A}) = \mathbf{1}_{B}$
- pour tout $x, y \in A$, f(x + y) = f(x) + f(y) et $f(x,y) = f(x) \cdot f(y)$.

EXEMPLES

- - $z \mapsto \bar{z}$ réalise un automorphisme d'anneaux de \mathbb{C} .
- - $f \mapsto f(\pi)$ réalise un morphisme d'anneaux de $\mathbb{R}^{\mathbb{R}}$ sur \mathbb{RR} .

Divisibilité

DFINITION

Soit (A, +, .) un anneau commutatif.

- \bullet On dit que $x \in A$ est inversible s'il admet un symétrique pour la loi .
- On dit que $a \neq 0$ divise b s'il existe $c \in A$ tel que b = ca. On note $a \mid b$.
- On dit que $a \neq 0$ est un diviseur de 0 s'il existe $b \neq 0$ tel que ab = 0.
- Un anneau est dit intègre s'il ne contient pas de diviseur de 0 autre que 0 lui-même.

PROPOSITION

Dans un anneau commutatif (A, +, .):

- ightharpoonup 0_A n'est jamais inversible.
- Si $x_1, x_2, y \in A$ intègre, avec $y \neq 0$ et $x_1y = x_2y$, alors $x_1 = x_2$. On dit qu'' on peut simplifier'' (ce qui ne veut pas dire diviser) par $y \neq 0$.

EXEMPLES

-

- $ightharpoonup \mathbb{Z}$ est intègre, et ses éléments inversibles sont 1 et -1.
- ightharpoonup Q, $\mathbb R$ et C sont des anneaux intègres dont tous les éléments non nuls sont inversibles.
- L'ensemble des fonctions de \mathbb{R} dans \mathbb{R} n'est pas intègre : toute application f qui s'annulle est diviseur de 0 (le montrer). Les éléments inversibles sont les fonctions qui ne s'annullent pas.

EXERCICE

Montrer que $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ est un sous-anneau intègre de \mathbb{C} , dont les inversibles sont 1, i, -1 et -i.

Idéaux

Définition

on appelle idéal à gauche de l'anneau A, un sous-groupe de (A, +) tel que:

$$\forall a \in A \forall x \in Iax \in I$$

on appelle idéal à droite de A un sous groupe de (A, +) tel que:

$$\forall a \in A \forall x \in I x a \in I$$

On appelle idéal bilatére de A un sous- groupe de (A, +) qui vérifie les deux conditions précédentes.

Évidemment, si l'anneau A est commutatif, les trois notions sont identiques. On dit alors tout simplement, "un idéal" de A. Dans un anneau A, il existe au moins deux idéaux bilatères, à savoir $\{0\}$ et A.

Supposons A unifere. Pour que $I \neq \emptyset$ soit un idéal à gauche, il suffit que

$$\forall x \in I \ \forall y \in I \ x + y \in I \ \text{et} \ \forall a \in A \ \forall x \in I \ ax \in I.$$

car alors $0 = 0x \in I$ et $-x = (-1)x \in I$ pour tout $x \in I$. Ainsi I est un sous-groupe de (A, +).

Supposons A unitaire. Si un idéal à gauche (resp. à droite) I de A contient l'unité 1 de A, alors I=A car alors $a=a1\in I$ pour tout $a\in A$. Plus généralement, si I contient un élément inversible u de A, alors $1=u^{-1}u\in I$ et donc I=A.

Un idéal de A est un sous-anneau de A car (1) ou (2), montre que $xy \in I$ pour tout $x \in I$ et tout $y \in I$. La réciproque est fausse : par exemple Z est un sous-anneau de \mathbb{R} mais n'est pas un idéal de \mathbb{R} .

Prposition

Soit $f: A \longrightarrow B$ un morphisme d'anneaux.

- (i) Soit Jun idéal à gauche (resp. à droite, bilatère) de B. Alors $f^{-1}1(J)$ est un idéal à gauche (resp. à droite, bilatère) de A. En particulier, le noyau $Ker(f) = f^{-1}(\{0\})$ de f est un idéal bilatère de A.
- (ii) Supposons f surjectif. L'image f(I) de tout idéal à gauche (resp. à droite, bilatère) I de A, est un idéal à gauche (resp. à droite, bilatère) de B.
- (iii) Supposons f surjectif. L'application $\alpha: J \mapsto f^{-1}(J)$ est une bijection, de 1 'ensemble $\mathcal J$ des idéaux bilatères de B sur l'ensemble $\mathcal F$ des idéaux bilatères de A contenant Ker (f) et α respecte l'inclusion.

Proof.

- (i) $f^{-1}(J)$ est un sous-groupe additif de A. Pour $x \in f^{-1}(J)$ et $a \in A$ on a $f(x) \in J$, d'où $f(ax) = f(a)f(x) \in J$ et donc $ax \in f^{-1}(J)$.
- (ii) Nous laissons la vérification au lecteur.
- (iii) D'après (i), si J est un idéal bilatère de B, alors $f^{-1}(J)$ est un idéal bilatère de A. Il contient Ker $(f) = f^{-1}(\{0\})$. Ainsi α est une application de $\mathcal J$ dans $\mathcal F$. Si $J, J' \in \mathcal J$ sont tels que $J \subset J'$ on a $f^{-1}(J) \subset f^{-1}(J')$ donc α respecte l'ordre. Pour tout $J \in \mathcal J$ on a $f \left[f^{-1}(J) \right] = J$ car f est surjective donc α est injective. Elle est surjective car pour tout $I \in \mathcal F$, on a Ker $(f) \subset I$ et donc $f^{-1}(f(I)) = I + \operatorname{Ker}(f) = I$.

Intersection et somme d'idéaux

Proposition

 $\|$ Soit $(I_k)_{k\in K}$ une famille d'idéaux à gauche de l'anneau A. (i) $\bigcap_{k\in K}I_k$ est un idéal à gauche de A. (ii) L'ensemble $\sum_{k\in K}I_k$ des éléments $x\in A$ qui sont somme finie $x_{i_1}+\cdots+x_{i_k}$ d'éléments de $\bigcup_{K\in K}I_k$, est un idéal à gauche de A. C'est le plus petit idéal à gauche de A contenant I_k pour tout $k\in K$. En particulier, la somme $I+J=\{x+y;x\in I,y\in J\}$ de deux idéaux à gauche I et I de I0, est un idéal à gauche de I1.

Quotient d'un anneau par un idéal bilatère

Lemme

Soient A un anneau, I un sous-groupe du groupe additif (A, +). La relation d'équivalence de congruence modulo le sous-groupe I,

$$x \equiv y \Leftrightarrow y - x \in I$$
,

est compatible avec le produit de A, si et seulement si l est un idéal bilatère de A.

Proof.

L'équivalence est compatible avec les multiplications à gauche, si pour $x, y \in A$, la condition $x \equiv y$ implique que $ax \equiv$ ay pour tout $a \in A$, soit si pour tout $z \in I$ et tout $a \in A$, on a $az \in I$, c'est-à-dire si I est idéal à gauche. De même, l'équivalence est compatible avec le produit du côté droit si et seulement si I est un idéal à droite de A, d'où le lemme.

Proposition

Soient A un anneau et I un idéal bilatère de A. Le quotient A/I, muni des opérations

$$\bar{x} + \bar{y} = \overline{x + y}$$
 , $\bar{x}\bar{y} = \overline{xy}$

est un anneau. Si A a une unité, alors $\overline{1}$ est une unité pour A/I. L'application canonique $\varphi: x \mapsto \overline{x}$ est un homomorphisme d'anneaux surjectif de A sur A/I, de noyau I et le couple $(A/I, \varphi)$ a la propriété universelle suivante (factorisation des homomorphismes): (P) Si un homomorphisme fde A dans un anneau B est nul sur I, alors il existe un homomorphisme unique $\overline{f}: A/I \to B$ tel que $\overline{f} \circ \varphi = f$. De plus, on a $\operatorname{Im}(\overline{f}) = \operatorname{Im}(f)$ et $\operatorname{Ker}(\overline{f}) = \operatorname{Ker}(f)/I$.

Proof.

A/I est un groupe additif. D'après le lemme, le produit est bien défini sur A/I et les axiomes des anneaux sont vérifiés (voir 1-2). Soit $f \in \operatorname{Hom}(A,B)$ nul sur I. on définit un homomorphisme de groupes additifs en posant $\overline{f}(\overline{x}) = \overline{f(x)}$ pour tout $\overline{x} \in A/I$. On a

$$\overline{f}(\overline{xy}) = \overline{f}(\overline{xy}) = f(xy) = f(x)f(y) = \overline{f}(\overline{x})\overline{f}(\overline{y}),$$

donc \bar{f} est un homomorphisme d'anneaux, d'où la propriété universelle (P).

Idéaux maximaux

Définition

On appelle idéal a gauche maximal de 1 'anneau A, un idéal a gauche I de A, distinct de A, tel que les seuls idéaux à gauche de A contenant I soient I et A. On définit de même les notions d'idéal à droite maximal et d'idéal bilatère maximal.

Proposition

Soit A un anneau avec unité. Tout idéal à gauche de A, distinct de A, est inclus dans un idéal à gauche maximal. Tout idéal à droite de A, distinct de A, est inclus dans un idéal à droite maximal. Tout idéal bilatère de A, distinct de A, est inclus dans un idéal bilatère maximal.

Corps

Définition

Un corps est un anneau K, possédant une unité 1 (distincte du zéro) tel que tout élément non nul x possède un inverse x^{-1} . Si le produit est commutatif, on dit que K est un corps commutatif. On appelle sous-corps de K un sous-anneau K_0 de K contenant I' unité de K et tel que pour tout $x \in K_0$ non nul on ait $x^{-1} \in K_0$.

Un corps K est donc un anneau unitaire dont le groupe des unités est $K_* = K \setminus \{0\}$. Un corps est intègre : si xy = 0 et si $x \neq 0$ alors x est inversible et $y = x^{-1}(xy) = 0$. L'intersection d'une famille $(K_i)_{i \in I}$ de sous-corps d'un corps K est non seulement un sous-anneau de K contenant l'unité mais c'est un sous-corps de K. En effet, pour tout $x \in \bigcap_{i \in I} K_i$, avec $x \neq 0$, on a $x^{-1} \in K_i$ pour tout $i \in I$ et donc $x^{-1} \in \bigcap_{i \in I} K_i$. Soit X une partie non vide de K. L'intersection des sous-corps de K contenant X, est le plus petit sous-corps de K contenant X, appelé le sous-corps engendré par X. Les corps Q, R, C jouent un rôle essentiel en mathématique.

Proposition

Soit K un anneau avec unité. Pour que K soit un corps, il faut et il suffit que $\{0\}$ et K soient les seuls idéaux à gauche de K. Il en est de même pour les idéaux à droite.

Proof.

Soit I un idéal à gauche du corps K. Si $I \neq \{0\}$, il existe $x \in I$ non nul. On a $1 = x^{-1}x \in I$ et donc I = K. Réciproquement, soit K un anneau unitaire ayant pour seuls idéaux à gauche $\{0\}$ et K. Pour tout $x \neq 0$ l'idéal à gauche Kx de K contient X. Il est donc égal à K. En particulier, il existe $y \in K$ tel que yx = 1. Comme $y \neq 0$, il existe de même $z \in K$ tel que zy = 1. Alors y qui a un inverse à droite x et un inverse à gauche x, est inversible d'inverse x. Tout élément non nul x de x0 est donc inversible et x1 est un corps. On montre de même l'assertion concernant les idéaux à droite.

Quotient par un idéal maximal

Proposition

Soit A un anneau commutatif unitaire. Pour qu'un idéal I de A soit maximal, i $\mathbf{1}$ faut et il sufiit que \mathbf{A}/\mathbf{I} soit un corps.

Proof.

l'anneau commutatif unitaire A/I est un corps si et seulement si $\{0\}$ et A/I sont ses seuls idéaux. D'après , prop. (iii), cela signifie que I et A sont les seuls idéaux de A contenant 1, c'est-à-dire que I est maximal.

Corollaire

 $\|$ L'anneau $\mathbb{Z}/p\mathbb{Z}$ est un corps si et seulement si $p \in N$ est premier.

Construction de l'ensemble $\mathbb Z$ des entiers relatifs

Pourquoi on applle les entiers relatifs $\ensuremath{\mathbb{Z}}$

- ightharpoonup Nombre
- $ightharpoonup \mathbb{R} \Rightarrow \mathsf{Reel}$
- ightharpoonup $\mathbb{C} \Rightarrow \mathsf{Complexe}$
- $\mathbb{Z} \Rightarrow$

Pourquoi on applle les entiers relatifs $\ensuremath{\mathbb{Z}}$

- ightharpoonup Nombre
- $ightharpoonup \mathbb{R} \Rightarrow \mathsf{Reel}$
- $ightharpoonup \mathbb{C} \Rightarrow \mathsf{Complexe}$
- Arr $\mathbb{Z} \Rightarrow \mathsf{Nombre} \ \mathsf{en} \ \mathsf{allemand} \ \mathsf{Zahlen}$

Normalement, en utilisant les nombres naturels, on peut facilement définir les entiers relatifs comme suit : Les **entiers relatifs**, notés \mathbb{Z} , sont tous les nombres entiers positifs et négatifs : soit

$$\mathbb{Z} = \{\ldots -2, -1, 0, 1, 2, 3, \ldots\}.$$

Cependant, on peut facilement voir que la définition ci-dessus est suspecte,

- Que signifie —3 ?
- Comment −3 interagit-il avec l'addition et la multiplication ?
- nous n'avons pas de règles qui équivalent à "vous pouvez faire une deuxième copie de votre premier ensemble mais avec des symboles spéciaux devant tous ces éléments"

classes d'équivalence l

Prenons un ensemble quelconque S avec une relation d'équivalence R. Pour tout élément $x \in S$, nous pouvons définir la **classe d'équivalence** correspondant à x comme l'ensemble

$$\{y \in S \mid yRx\}$$

Par exemple, dans l'arithmétique pour modulo 3 il existe trois classes d'équivalence possibles :

$$\{\ldots -6, -3, 0, 3, 6 \ldots\}$$

 $\{\ldots -5, -2, 1, 4, 7 \ldots\}$
 $\{\ldots -4, -1, 2, 5, 8 \ldots\}$

Chaque élément correspond à l'une de ces trois classes.

Définir \mathbb{Z}

En utilisant ce concept, nous définissons les entiers relatifs comme suit :

Définir $\mathbb Z$

En utilisant ce concept, nous définissons les entiers relatifs comme suit :

définition

Construire $\mathbb{N} \times \mathbb{N} = \mathbb{N}^2$, le produit cartésien des nombres naturels par eux-mêmes. Créer une relation d'équivalence \sim sur $\mathbb{N}\mathbb{N}$ de la manière suivante :

- écrivez $(a,b) \sim (c,d)$ si et seulement si a-b=c-d. ($(a,b) \sim (c,d)$ si et seulement si a+d=b+c; ceci est équivalent).
- Prenez la collection de toutes les classes d'équivalence de \mathbb{N}^2 sous cette relation. Nous appelons cet ensemble le **entiers relatifs**, et l'écrivons \mathbb{Z} .

Définir \mathbb{Z}

• (a, b) correspond à l'entier a - b, où notre relation d'équivalence est une façon de dire que (a, b) et (a + k, b + k) représentent tous deux le même "entier relatif".

Définir $\mathbb Z$

• (a, b) correspond à l'entier a - b, où notre relation d'équivalence est une façon de dire que (a, b) et (a + k, b + k) représentent tous deux le même "entier relatif".

Définir $\mathbb Z$

- (a, b) correspond à l'entier a b, où notre relation d'équivalence est une façon de dire que (a, b) et (a + k, b + k) représentent tous deux le même "entier relatif".
- Cela peut sembler bizarre, mais cela a l'avantage d'être un ensemble que nous pouvons etudier (c'est une collection de sous-ensembles de \mathbb{N}^2).

L'addition

- On définit la somme de deux couples d'entiers ainsi : $(n_1, n_2) + (n'_1, n'_2) = (n_1 + n'_1, n_2 + n'_2)$; cette opération est commutative, associative et d'élément neutre (0,0) sur les couples d'entiers , dont le neutre est la classe de (0,0), constituée des couples (n,n).
- si (n_1, n_2) représente un entier relatif dans les couples d'entiers, $(n_1, n_2) + (n_2, n_1) = (n_1 + n_2, n_1 + n_2)$ donc équivalent à (0, 0). \Rightarrow La classe d'équivalence de (n_2, n_1) est donc opposée à la classe d'équivalence de (n_1, n_2) .
- Il existe une classe d'équivalence Z contenant cette paire, car les classes d'équivalence partitionnent \mathbb{N}^2 !
- Remarquez que le représentant choisi n'a pas d'importance, car choisir n'importe quel autre représentant $(n_1 + c, n_2 + c), (n'_1 + d, n'_2 + d)$ donnerait $(n_1 + n_2 + c + d, n'_1 + n'_2 + c + d)$, ce qui est équivalent à $(n_1 + n'_1, n_2 + n'_2)$, il s'agit d'une opération bien définie!

la multiplication

On peut alors définir la multiplication comme suit :

 $(n_1,n_2)\times(m_1,m_2)=(n_1m_1+n_2m_2,n_1m_2+m_1n_2)$ Cette opération définie sur $\mathbb{N}\times\mathbb{N}$ est associative, commutative, possède un élément neutre (1,0) et est distributive pour l'addition précédemment définie. De plus, elle donne à \mathbb{Z} une structure d'anneau unitaire. Les égalités

- $(d,0) \times (d',0) = (dd',0)$
- $(d,0) \times (0,d') = (0,dd')$
- $(0,d) \times (0,d') = (dd',0)$

permettent les écritures

- $d \times d' = dd'$
- $d \times (-d') = (-dd')$
- $(-d) \times (-d') = dd'$

qui permettent de démontrer que l'anneau est aussi intègre.

la relation d'ordre

Pour comparer deux classes d'équivalence quelconques X, Y:

- half choisissez un représentant $(x_1, x_2) \in X, (y_1, y_2) \in Y$.
- On dit que X < Y si et seulement si $x_1 x_2 < y_1 y_2$, ou de manière équivalente $x_1 + y_2 < y_1 + x_2$.
- Là encore, on peut vérifier que cette propriété ne dépend pas des représentants choisis dans les classes d'équivalence de X, Y, donc elle aussi est bien définie.

Écriture simplifiée des éléments de Z

Notons (n ; m) la classe d'un couple d'entiers naturels (n, m). Elle est de l'un des trois types suivants :

- (d;0) si n>m avec n=m+d et d non nul
- (0;d) si n < m avec n + d = m et d non nul
- (0;0) si n=m

Or l'ensemble des classes (d ; 0) est isomorphe à \mathbb{N} ; on note donc ces classes sous la forme simplifiée d. D'autre part, pour d non nul, les classes (d ; 0) et (0 ; d) sont opposées. En effet, (d ; 0) + (0 ; d) = (d ; d) = (0 ; 0). On note donc les classes (0 ; d) sous la forme simplifiée (-d). L'ensemble \mathbb{Z} retrouve alors sa forme plus classique de $\mathbb{N} \cup \{(-d) \mid d \in \mathbb{N}^*\}$.

Propriétés de Z

Les entiers satisfont toutes les propriétés énumérées précédemment pour \mathbb{N} , à l'exception du bon ordre :

- **stabilité(+)**: $\forall a, b \in \mathbb{Z}$, on a $a + b \in \mathbb{Z}$.
- **▶ Identité(**+): $\exists 0 \in \mathbb{Z}$ tel que $\forall a \in \mathbb{Z}$, 0 + a = a.
- **Commutativité(+)**: $\forall a, b \in \mathbb{Z}, a+b=b+a$.
- **Associativité(+)**: $\forall a, b, c \in \mathbb{Z}, (a+b)+c=a+(b+c).$
- stabilité(·): $\forall a,b\in\mathbb{Z}$, on a $a\cdot b\in\mathbb{Z}$.
- Identité(·): $\exists 1 \in \mathbb{Z}$ tel que $\forall a \in \mathbb{Z}, \cdot a = a$.
- **Commutativité(·)**: $\forall a, b \in \mathbb{Z}, a \cdot b = b \cdot a$.
- Associativité(·): $\forall a, b, c \in \mathbb{Z}, (a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- **Distributivité**: $(+, \cdot)$: $\forall a, b, c \in \mathbb{Z}, (a+b) \cdot c = (a \cdot c) + (b \cdot c)$

En outre, il satisfait aux deux propriétés supplémentaires suivantes :

- Inverses (+): $\forall a \in \mathbb{Z}, \exists \text{ a unique } (-a) \in \mathbb{Z} \text{ tel aue } a + (-a) = 0.$
- Ordre de multiplication $(<,\cdot)$: $\forall a,b,c \in \mathbb{Z}$, si a < b,0 < c alors ac < bc.

Proposition : L'anneau $(\mathbb{Z}, +, *)$

Le triplet $(\mathbb{Z},+,*)$ est un anneau commutatif , intègre et unitaire

 $\mathbb{N}, \mathbb{R}, \mathbb{C}$

pour approfondir : la construction de $\mathbb{N}, \mathbb{R}, \mathbb{C}$

```
https:
//web.math.ucsb.edu/padraic/ucsb_2014_15/ccs_proofs_f2014/ccs_proofs_f2014.html
```

L'anneau $\mathbb{Z}/n\mathbb{Z}$

Congruences dans ${\mathbb Z}$

Soit *n* un entier naturel.

Rappels Nous avons vu en première année la relation de congruence modulo n définie par :

$$x \equiv y \quad [n] \iff y - x \in n\mathbb{Z}.$$

Il s'agit d'une relation d'équivalence sur $\mathbb Z$ qui est compatible arec les opérations de $\mathbb Z$, c'est-à-dire qui vérifie :

$$\forall (x, y, x', y') \in \mathbb{Z}^4 \left\{ \begin{array}{l} x \equiv x' & [n] \\ y \equiv y' & [n] \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} x + y \equiv x + y' & [n] \\ x \times y \equiv z' \times y' & [n]. \end{array} \right.$$

Notation On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble des classes d'équivalence pour cette relation. La classe d'un élément k de \mathbb{Z} est notée \bar{k} .

Proposition

Pour $n \in \mathbb{N}^*$, l'ensemble $\mathbb{Z}/n\mathbb{Z}$ a n éléments, et l'on a :

$$\mathbb{Z}/n\mathbb{Z}=\{\overline{0},\overline{1},\ldots,\overline{n-1}\}$$

Remarque $\mathbb{Z}/n\mathbb{Z}$ est appelé ensemble quotient de \mathbb{Z} par $n\mathbb{Z}$, ce qui explique sa notation.

Proposition

- 1. Il existe sur $\mathbb{Z}/n\mathbb{Z}$ des lois, notées + et \times (ou implicitement pour le produit) et appelées lois quotient, telles que : $\forall (x,y) \in (\mathbb{Z}/n\mathbb{Z})^2 \quad \bar{x} + \bar{y} = \overline{x+y}$ et $\bar{x} \times \bar{y} = \overline{xy}$.
- 2. $(\mathbb{Z}/n\mathbb{Z}, +, x)$ est un anneau commutatif d'éléments neutres $\overline{0}$ et $\overline{1}$.
- 3. La projection canonique $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ est un morphisme d'anneaux surjectif de noyau $n\mathbb{Z}$.

Remarque

- On peut aussi prendre pour représentants des classes modulo $n \neq 0$, n'importe quel n-uplet d'entiers consécutifs.

Par exemple, pour étudier la multiplication sur $\mathbb{Z}/5\mathbb{Z}$, il pourra être intéressant d'écrire $\mathbb{Z}/5\mathbb{Z}=\{\overline{0},\pm\overline{1},\pm\overline{2}\}.$

- Les éléments $0,1,\ldots,n-1$ sont privilégiés dans leurs classes respectives. Il arrivera donc que l'on note p à la place de \bar{p} lorsque $0 \leqslant p < n,s'$ il n'y a pas de confusion possible.

Proposition

- (Éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$) 1. La classe de $k \in \mathbb{Z}$ est inversible dans $\mathbb{Z}/n\mathbb{Z}$ si, et seulement si, k est premier avec n.
- 2. Pour $n \in \mathbb{N}^*$, les assertions suivantes sont équivalentes : (i) $\mathbb{Z}/n\mathbb{Z}$ est un corps; (ii) $\mathbb{Z}/n\mathbb{Z}$ est intègre;
- (iii) n est premier.

Théorème chinois

On note ici $[k]_n$ la classe de l'entier k modulo un entier naturel non nul n.

Proposition

Soit n et m des entiers premiers entre eux. Les anneaux $\mathbb{Z}/(nm)\mathbb{Z}$ et $(\mathbb{Z}/n\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z})$ sont isomorphes par le morphisme d'anneaux φ :

$$\mathbb{Z}/(nm)\mathbb{Z} \longrightarrow (\mathbb{Z}/n\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z})$$
$$[k]_{nm} \longrightarrow ([k]_n, [k]_m)$$

Corollaire

(Théorème chinois) Si n et m sont des entiers premiers entre eux, pour tout $(a,b) \in \mathbb{Z}^2$, il existe un entier k vérifiant le système:

$$\begin{cases} k \equiv a & [n] \\ k \equiv b & [m] \end{cases}$$

et les solutions de ce système sont exactement les entiers congrus à k modulo nm.

Le théorème chinois permet de ramener l'étude d'une équation sur $\mathbb{Z}/n\mathbb{Z}$ lorsque n n'est pas premier, à celle d'équations sur des anneaux plus simples.

Point méthode (pour obtenir une solution de (S)) A partir d'une relation de Bézout nu + nv = 1, on trouve deux entiers $k_1 = mu$ et $k_2 = nv$ vérifiant respectivement les systemes de congruences:

$$\begin{cases} k_1 \equiv 1 & [n] \\ k_1 \equiv 0 & [m] \end{cases}$$

et

$$\begin{cases} k_2 \equiv 1 & [n] \\ k_2 \equiv 0 & [m] \end{cases}$$

et une solution du systèe (S) est alors $k = k_1 a + k_2 b$ (vérification imme diate en prenant les congruences nodulo n et m) **Remarque** L'obtention d'une telle solution est non triviale, mais sa vérification est immédiate. Il ne faut donc pas oublier de la faire pour repérer une erreur de calcul éventuelle.

