

NASA-TM-81346 19800005607

NASA Technical Memorandum 81346

EXTREME MEAN AND ITS APPLICATIONS

Ram Swaroop and James D. Brownlow System Development Corporation

and

William R. Winter NASA Dryden Flight Research Center

December 1979

LIBRARY COPY

DEC 17 1979

LA.. IT RESEARCH CENTER
SHARY, NASA
HAMPTON, VIRGINIA



Marine Company of the 

### NASA Technical Memorandum 81346

### EXTREME MEAN AND ITS APPLICATIONS

Ram Swaroop and James D. Brownlow System Development Corporation Edwards, California

and

William R. Winter Dryden Flight Research Center Edwards, California



n de la companya del companya de la companya del companya de la co

· 对比较的1000年1200年1200年1200年1200年

#### EXTREME MEAN AND ITS APPLICATION

Ram Swaroop and James D. Brownlow System Development Corporation

and

William R. Winter NASA Dryden Flight Research Center

### INTRODUCTION

In applications where observations are assumed to follow a normal distribution, very often interest centers around the extreme value, since in some sense, such a value indicates the tolerance of a system. The maximum or minimum sample values in such applications are of limited usefulness, because maximum and minimum tend to extend with increasing sample sizes. Moreover, the information actually sought may not pertain to the actual extreme values, but rather may be needed for the values falling above or below some preassigned p-th percentile. In a given application (ref. 1) the information may be needed on the values falling above the 99th percentile. For such an application, the method of extreme mean is presented in this study.

The extreme mean in this study is defined as the mean of a truncated normal distribution above or below a preassigned p-th percentile. An unbiased estimate of this extreme mean is obtained and its variance is then compared with the Cramer-Rao lower bound. Further, the distribution of the standard-ized estimate and various confidence intervals are obtained.

The distortion parameters data obtained from high frequency response pressure measurements made at the inlet/engine interface plane during a YF-12 flight experiment (ref. 1) are used to demonstrate the usefulness of extreme mean in applications.

### **SYMBOLS**

```
Α
                   = (1\sqrt{n}) + af/\sqrt{2(n-1)}
                   Constants corresponding to extreme mean and variance
a,b
                   = f\sqrt{(2n-3)/(2n-2)} - 1
В
                   = \sqrt{(1 + d)/2n(n - 1)}
C
                   Solution to equation \Phi[(c_p - \mu)/\sigma] = p
                   = \sqrt{2n - 3}
D
D(T)
                   Density function of T
                   = na^2 (f^2 - 1)
d
Ε
                   Expectation of random variable
F(T)
                   Distribution function of T
                   = \sqrt{(n-1)/2} \Gamma[(n-1)/2]/\Gamma(n/2)
f
f(x)
                   Density function of the truncated normal distribution
I<sub>11</sub>, I<sub>12</sub>, I<sub>22</sub>
                   Elements of information matrix
IDT
                   Measure of simple distortion
i
                   Sample number
K_{\Delta}
                   Measure of combined circumferential and radial distortion
Kr
                   Measure of radial distortion
K
                   Measure of circumferential distortion
L,U
                   Lower and upper confidence bounds
1,u
                   Lower and upper confidence bounds of standardized distribution
                   Length of confidence interval
2m
                   Sample size
n
                   Probability of event
                   Percentile assigned for extreme mean
                   Sample standard deviation
```

=  $(\hat{\mu}_E - \mu_E) / \hat{\sigma}_{\mu_E}$ , standardized extreme mean variable Τ Sample values  $X_1, \dots, X_n$ x Sample mean Chi Square random variable with r degrees of freedom Z Standard normal random variable Confidence level α, ALPHA  $\Gamma(x)$ Gamma function Mean of normal distribution u, MU Extreme mean  $\mu_{\mathsf{F}}$ Standard deviation of normal distribution o, SIGMA

Estimate of associated  $\mu$  or  $\sigma$ 

Standard normal distribution function

σE

^, HAT

 $\Phi(x)$ 

FORMULAE FOR EXTREME MEAN  $\boldsymbol{\mu}_{\boldsymbol{F}}$  AND ITS UNBIASED ESTIMATE

Standard deviation of truncated normal distribution

Let  $x_1$ ,  $x_2$ ,...,  $x_n$  be a random sample of size  $\,n\,$  from a normal distribution with unknown population parameters, mean  $\,\mu\,$  and standard deviation  $\,\sigma\,$ , shown in figure 1. The extreme mean  $\,\mu_E\,$  is defined as the mean of the truncated distribution shown in figure 1, truncated at  $\,c_p\,$  depending on the preassigned value of  $\,p\,$ . The sample provides a sample mean,  $\,\bar{x}\,$ , and a sample standard deviation,  $\,p\,$ , which are sufficient statistics (ref. 2) to estimate any function of  $\,\mu\,$  and  $\,p\,$ . These statistics are independent and are employed in the estimation of  $\,\mu\,$  and its distribution.

Truncated Distribution Mean  $\mu_E$  and Variance  $\sigma_E^{\ 2}$ 

The density function of a truncated normal distribution is

$$f(x) = [(1 - p)\sigma\sqrt{2\pi}]^{-1} \exp\{-[(x - \mu)/\sigma]^2/2\}; x > c_p$$

where p =  $\Phi$  (c<sub>p</sub> -  $\mu$ )/ $\sigma$  is preassigned and represented by the unshaded portion of the normal distribution in figure 1. For a given  $\mu$  and  $\sigma$ , c<sub>p</sub> can be obtained from standard normal tables. From the density function, the expres-





Figure 1. Normal distribution with mean  $\mu$  and standard deviation  $\sigma$  , and truncated normal distribution truncated at  $c_p$  corresponding to p-th percentile.

sions for  $\mu_E$  and  $\sigma_E^{\ 2}$  are

$$\mu_{E} = [(1 - p)\sigma \sqrt{2\pi}]^{-1} \int_{C_{p}}^{\infty} x \exp \{-[(x - \mu)/\sigma]^{2}/2\} dx$$

$$= \mu + a\sigma$$

$$\sigma_{E}^{2} = [(1 - p)\sigma \sqrt{2\pi}]^{-1} \int_{C_{p}}^{\infty} x^{2} \exp \{-[(x - \mu)/\sigma]^{2}/2\} dx - \mu_{E}^{2}$$

$$= b\sigma^{2}$$

where

$$a = [(1 - p) \sqrt{2\pi}]^{-1} \exp \{-[(c_p - \mu)/\sigma]^2/2\}$$

$$b = [(1 - p) \sqrt{2\pi}]^{-1} \left( \sqrt{2} \left\{ r(3/2) - \int_{0}^{(c_p - \mu)/\sigma} \frac{^{2}}{^{2}} [exp(-t)] t^{1/2} dt \right\} - a \right)$$

For any specific value of p, the values of a and b can be obtained with the available tables of complete and incomplete Gamma functions. For example, for p = .90,  $c_p = 1.282$ , the corresponding value of a = 1.7541 and b =  $(.395)^2$ .

Unbiased Estimate of  $\boldsymbol{\mu}_{\text{F}}$ 

It is to be noted that

$$\bar{x} = (\Sigma x_i)/n$$

and

$$s = [\Sigma(x_i - x)^2/(n - 1)]^{\frac{1}{2}}$$

are sufficient statistics from the sample, and must be employed in the estimation of  $\mu_{\mbox{\scriptsize F}}.$  Further

$$E(\bar{x}) = \mu$$
;  $E(s) = \sigma \sqrt{2/(n-1)} \Gamma(n/2) / \Gamma(n-1)/2$ 

and

$$Var(\bar{x}) = \sigma^2/n$$
;  $Var(s) = \sigma^2 \left(1 - \left(\sqrt{2}r(n/2)\right) / \sqrt{(n-1)} r[(n-1)/2]\right)^2$ 

Thus an unbiased estimate of  $\mu_{\text{F}}$  is given by

$$\hat{\mu}_{E} = \bar{x} + as \sqrt{(n-1)/2} r [(n-1)/2] / r(n/2)$$

$$= \bar{x} + asf$$

where a was derived in the section on truncated distributions, and

$$f = \sqrt{(n-1)/2} \Gamma [(n-1)/2] / \Gamma (n/2)$$

depends on the sample size n via Gamma function values.

Since  $\bar{x}$  and  $s^2$  are stochastically independent, the variance of the unbiased estimate  $\mu_F$  is

$$Var(\hat{\mu}_{E}) = Var(\bar{x}) + a^{2}f^{2}Var(s)$$

$$= \sigma^{2}/n + a^{2}f^{2}Var(s)$$

$$= \sigma^{2}/n + a^{2}f^{2}\sigma^{2}(1 - f^{-2})$$

$$= (\sigma^{2}/n) \left[1 - na^{2}(f^{2} - 1)\right]$$

$$= \hat{\sigma}_{\mu_{E}}^{2}$$

In this expression, sample size n, a and f are known; and the only unknown factor is  $\sigma^2$ . Thus an estimate of  $\text{Var}(\hat{\mu}_E)$  can be obtained by replacing  $\sigma^2$  by  $s^2$  obtained from the sample. Therefore,

$$Var(\hat{\mu}_{E}) = (s^{2}/n) [1 + na^{2}(f^{2} - 1)]$$
$$= (s^{2}/n)(1 + d)$$
$$= \hat{\sigma}_{\mu_{E}}^{2}$$

This estimate is different from  $s^2/n$  by a factor of  $d=na^2(f^2-1)$ , which is a function of n; and even for sufficiently large n, the factor d is not negligible.

# Cramer-Rao Lower Bound of Variance of $\hat{\mu}_{\text{F}}$

Variance of the estimate  $\hat{\mu}_E$  measures, in some sense, the quality of the unbiased estimate. The smaller the variance, the better the estimate. An unbiased estimate is considered best if it achieves the minimum possible variance without specifying the estimate. The Cramer-Rao lower bound for  $\bar{x}$  and s are

$$Var(\bar{x}) \ge 1/E$$
  $\frac{\partial}{\partial \mu} \ln f(\bar{x},s)^2 = 1/I_{11}$   
 $Var(s) \ge 1/E$   $\frac{\partial}{\partial \sigma} \ln f(\bar{x},s)^2 = 1/I_{22}$ 

In many cases, it is possible to find an unbiased estimate which achieves this bound. In other cases, it is never attainable. In this section, the lowest bound is obtained and then compared with the variance  $\hat{\mu}_E$  computed in the earlier section.

The joint distribution of  $\bar{x}$  and s is (ref. 3)

$$f(\bar{x},s) = k_n(s^{(n-2)}/\sigma^n) \exp \left\{ -[(\bar{x} - \mu) \sqrt{n}/\sigma]^2 - (n-1)s^2/\sigma^2 \right\} / 2$$

where

$$kn = \left[2\sqrt{n} (n-1)^{(n-1)/2}\right] / \left\{\sqrt{2\pi} 2^{(n-1)/2} r [(n-1)/2]\right\}$$

Thus

$$\ln f(\bar{x},s) = \ln k_n + (n-2)\ln s - n \ln \sigma - \left\{ \left[ (\bar{x} - \mu)\sqrt{n}/\sigma \right]^2 + (n-1)s^2/\sigma^2 \right\} / 2$$

where  $k_n$  is the first factor in  $f(\bar{x},s)$ . From the expression for  $\ln f(\bar{x},s)$ , it is seen by differentiating that

$$\frac{\partial}{\partial \mu} \ln f(\bar{x},s) = \left[ (\bar{x} - \mu) \sqrt{n} / \sigma \right] (\sqrt{n} / \sigma)$$

$$\frac{\partial}{\partial \sigma} \ln f(\bar{x},s) = -(n/\sigma) + \left[ (\bar{x} - \mu) \sqrt{n} \right]^2 + \left[ (n-1)s^2 \right] \left[ 2/\sigma^3 \right]$$

$$= (1/\sigma) \left[ (\bar{x} - \mu) \sqrt{n} / \sigma \right]^2 + (n-1)s^2 / \sigma^2 - n$$

The Cramer-Rao lower bound for  $\bar{x}$  and s from these expressions is already given.

It is known that the distribution of  $\left[(\bar{x}-\mu)\sqrt{n}/\sigma\right]^2$  is Chi Square with 1 degree of freedom. The distribution of (n-1) s $^2/\sigma^2$  is Chi Square with (n-1) degrees of freedom. The two distributions are independent. If  $Y_r$  is a Chi Square variable with r degrees of freedom, then  $E(Y_r)=r$  and  $E(Y_r^2)=2r+r^2$ . Therefore

$$\begin{split} I_{11} &= (n/\sigma^2) \ E \left[ (\bar{x} - \mu) \sqrt{n} / \sigma \right]^2 \\ &= n/\sigma^2 \\ I_{22} &= (1/\sigma^2) \ E \quad Y_1 + Y_{(n-1)} - n^2 \\ &= (1/\sigma^2) \ E \quad Y_1^2 + Y_{(n-1)}^2 + n^2 + 2Y_1 Y_{(n-1)} - 2n Y_1 + Y_{(n-1)} \\ &= (1/\sigma^2) \left\{ (2+1) + \left[ 2(n-1) + (n-1)^2 \right] + n^2 + 2(n-1) - 2n^2 \right\} \\ &= 2n/\sigma^2 \end{split}$$

Thus the lowest bound of the variance of  $\hat{\mu}_E = \bar{x} + afs$  is obtained by the appropriate function of inverses of  $I_{11}$  and  $I_{22}$ . Therefore

Var 
$$\hat{\mu}_{E} \ge 1/I_{11} + a^{2}f^{2}/I_{22}$$
  
 $\ge \sigma^{2}/n + a^{2}f^{2}\sigma^{2}/2n$ 

The expression for the variance of  $\hat{\mu}_{E}$  obtained in the earlier section is

$$Var \hat{\mu}_E = \sigma^2/n + a^2\sigma^2(f^2 - 1)$$

which is larger than the lower bound shown above by a factor of  $a^2\sigma^2\left[(f^2-1)-f^2/2n\right]$ . For larger values of n, this factor's value decreases;

therefore,  $\hat{\mu}_E$  is a satisfactory estimate of  $\mu_E$  for all applications. In fact, as n approaches infinity, the variance of the estimate achieves the Cramer-Rao lower bound.

Large Sample Distribution of T = 
$$(\hat{\mu}_E - \mu_E) / \hat{\sigma}_{\mu_E}$$

The exact distribution of  $\hat{\mu}_E = \bar{x} + afs$  depends on the sum of both the normal and Chi Square distributions. However, for a large sample (n > 30), an approximate distribution is available which can be used to compute confidence bounds.

It is to be noted that the distribution of  $(\bar{x} - \mu)\sqrt{n}/\sigma = Z$  is standard normal, that the distribution of  $(n-1)s^2/\sigma^2$  is Chi Square with (n-1) degrees of freedom, and these distributions are independent of one another. For a large sample  $(n \ge 30)$ , the distribution can be approximated by

$$Z = \sqrt{2Y_{(n-1)}} - \sqrt{2(n-1)} - 1$$
$$= (s/\sigma) \sqrt{2(n-1)} - \sqrt{2n-3}$$

which yields

$$s/\sigma = \left[\sqrt{2(n-1)}\right]^{-1} \left(Z + \sqrt{2n-3}\right)$$

In this section, instead of finding the distribution of  $\hat{\mu}_E$ , the distribution of the standardized T =  $(\hat{\mu}_E - \mu_E)/\hat{\sigma}_{\mu_E}$  is obtained by the above approximation of s/ $\sigma$ .

$$T = (\hat{\mu}_{E} - \mu_{E})/\hat{\sigma}_{\mu_{E}}$$

$$= \left[ (\bar{x} + afs) - (\mu + a\sigma) \right] / s\sqrt{(1 + d)/n}$$

$$= \left\{ (1/\sqrt{n}) \left[ (x - \mu)\sqrt{n}/\sigma \right] \sigma + a\sigma(fs/\sigma - 1) \right\} \left[ \sigma(s/\sigma)\sqrt{(1 + d)/n} \right]^{-1}$$

$$\simeq \frac{(Z/\sqrt{n}) + a\sigma}{\sqrt{(1 + d)/n} \left[ (Z + \sqrt{2n - 3}) / \sqrt{2(n - 1)} \right] - 1}$$

$$\simeq \frac{Z \left[ (1/\sqrt{n}) + af/\sqrt{2(n - 1)} \right] + a \left[ f\sqrt{(2n - 3)/(2n - 2)} - 1 \right]}{\sqrt{(1 + d)/2n(n - 1)} \left( Z + \sqrt{2n - 3} \right)}$$

$$\simeq (ZA + B)/C(Z + D)$$

where

A = 
$$(Z/\sqrt{n}) + af/\sqrt{2(n-1)}$$
  
B =  $a(f\sqrt{(2n-3)/(2n-2)} - 1)$   
C =  $\sqrt{(1+d)/2n(n-1)}$   
D =  $\sqrt{2n-3}$ 

are functions of the sample size n and a preassigned value of p. Since Z has a standard normal density, the density function of T is given by

$$D(t) = [C(AD - B)/\sqrt{2\pi}](A - Ct)^{-2} exp \{-[(CDt - B)/(A - Ct)]^{2}/2\}$$

This density function does not depend on  $\mu$  or  $\sigma,$  but is a function of the sample size n and the preassigned value of p. Appendix B lists the computer program which generates the density and distribution function of T for a designated sample size n and value of p. A sample of the density of T for n = 90 and p = .90 is tabulated in Table 1 and shown in figure 2. Figure 2 also contrasts the density of T with a standard normal density.

# Confidence Intervals of $\mu_{\mbox{\footnotesize E}}$

A confidence interval is either specified by assigning a level of confidence  $\alpha,$  or by assigning the length of the confidence interval 2m. In the first case, lower and upper confidence bounds L and U are obtained which, in a long series of experiments, are likely to include the population  $\mu_E$ ,  $\alpha\%$  of times. In the second case, the values of L and U are fixed and the level  $\alpha$  is obtained. Analytically both the cases involve solving for either L, U or  $\alpha$ , given the other.

Confidence interval with  $\alpha$  confidence. - In this case, the equation

$$Pr [1 < (ZA + B)/C(Z + D) < u] = \alpha$$

needs to be solved. Since Z is a standard normal variate, it follows that

$$1 = \left(-Z_{\alpha/2}A + B\right) / \left[C(-Z_{\alpha/2}) + D\right]$$

$$u = \left(Z_{\alpha/2}A + B\right) / \left(CZ_{\alpha/2} + D\right)$$

where Z  $_{\alpha/2}$  is obtained from a normal probability table. For these expressions, it is seen that the lower and upper confidence values, L and U, for  $\mu_E$  are

$$L = \bar{x} + afs - us \sqrt{(1 + d)/n}$$

$$U = \bar{x} + afs + 1s \sqrt{(1 + d)/n}$$

TABLE 1. DENSITY ( D(T) ) AND DISTRIBUTION ( F(T) ) OF THE RANDOM VARIABLE T = (MU HAT - MU)/S(MU HAT) N = 90

| T          | D(T)        | F(T)     | T    | O(T)                                    | F(T)          |
|------------|-------------|----------|------|-----------------------------------------|---------------|
| -5.00      | .003591     | .002637  | 0.00 | .281669                                 | .500024       |
|            |             | .003020  |      | .283965                                 | 528317        |
| -4.90      | .004093     |          | •10  |                                         |               |
| -4.80      | .004662     | .003457  | .20  | .284827                                 | •556769       |
| -4.70      | • 0 0 530 4 | .003955  | •30  | .284193                                 | •585232       |
| -4.60      | .006029     | .004521  | . 40 | .282027                                 | •613556       |
| -4.50      | .006846     | .005164  | •50  | .278312                                 | .641586       |
| -4.40      | .007766     | .005894  | .60  | .273062                                 | .669168       |
|            |             |          |      | .266315                                 | .696149       |
| -4.30      | .008799     | .00€721  | •70  |                                         |               |
| -4.20      | .009958     | .007658  | .80  | .258136                                 | .722383       |
| -4.10      | .011257     | .008717  | • 90 | .248620                                 | •747731       |
|            | 0.4.27.0.0  | 0.00047  | 1.00 | .237884                                 | .772066       |
| -4.00      | .012709     | .009914  |      |                                         |               |
| -3.90      | .014329     | .011265  | 1.10 | .226069                                 | . 795272      |
| -3.80      | .01€135     | .0127.66 | 1.20 | •213339                                 | .817249       |
| -3.70      | .018143     | .014498  | 1.30 | •199872                                 | .837915       |
| -3.60      | .020371     | .016422  | 1.40 | •185859                                 | .857206       |
| -3.50      | .022840     | .018581  | 1.50 | .171496                                 | .875075       |
| -3.40      | 025557      | .020999  | 1.60 | .156985                                 | .891500       |
|            |             |          |      |                                         | .906474       |
| -3.30      | .028575     | • 023703 | 1.70 | •142521                                 |               |
| -3.20      | .031884     | .026724  | 1.80 | .128292                                 | .920012       |
| -3.10      | .035515     | .030091  | 1.90 | •114471                                 | .932146       |
| -3.00      | .039489     | .033838  | 2.00 | .101214                                 | .942925       |
|            |             | .03 8001 | 2.10 | .088656                                 | .952412       |
| -2.90      | .043827     |          |      | .076905                                 |               |
| -2.80      | .048549     | .042616  | 2.20 |                                         | .960683       |
| -2.70      | .053673     | .047724  | 2.30 | • 0 66046                               | • 967823      |
| -2.60      | .059218     | .053365  | 2.40 | .056136                                 | . 97 3924     |
| -2.50      | .065199     | .05 (582 | 2.50 | .0 47204                                | .979083       |
| -2:40      | .071626     | . 166420 | 2.60 | .039256                                 | .983398       |
| -2.30      | .078510     | .073923  | 2.70 | .0 32275                                | . 986966      |
| -2.20      | .085856     | .082137  | 2.80 | .026223                                 | . 989883      |
|            |             |          |      |                                         | 992240        |
| -2.10      | .093662     | .091109  | 2.90 | 021047                                  | 4 776640      |
| -2.00      | .101924     | .100 885 | 3,00 | .016680                                 | .994120       |
| -1.90      | .110628     | .111509  | 3.10 | .013048                                 | .995600       |
| -1.80      | .119757     | .123024  | 3.20 | .010070                                 | 996751        |
|            |             |          |      | .00766.3                                | .997633       |
| -1.70      | .129283     | .135473  | 3.30 | _                                       |               |
| -1.60      | .139170     | .148893  | 3.40 | .005748                                 | .998300       |
| -1.50      | • 1 49374   | .163318  | 3.50 | .0 (4248                                | • 998797      |
| -1.40      | •159839     | .178777  | 3.60 | .0C3091                                 | • 999161      |
| -1.30      | .170502     | .195292  | 3.70 | .002213                                 | .999424       |
| -1.20      | .181287     | .212881  | 3.80 | .001559                                 | .999611       |
| -1.10      | .192110     | .231551  | 3.90 | .001079                                 | .999742       |
| -1010      | •192110     | • 201331 |      | *************************************** | • > > > • • • |
| -1.00      | .202877     | .251301  | 4.00 | .000734                                 | •999832       |
| 90         | .213482     | .272121  | 4.10 | .000498                                 | . 999892      |
| 80         | . 223815    | 293989   | 4.20 | .000321                                 | •999932       |
| 70         | • 233755    | .316871  | 4.30 | .000206                                 | 999958        |
|            |             | .340722  | 4.48 | .000130                                 | 999975        |
| 60         | .243178     |          |      |                                         |               |
| <b></b> 50 | . 251954    | . 365485 | 4.50 | .000080                                 | .999985       |
| 40         | •259953     | .391087  | 4.60 | .000048                                 | • 999991      |
| 30         | .267046     | • 417445 | 4.70 | .0(0028                                 | • 999995      |
| 20         | .273107     | . 444462 | 4.80 | .000016                                 | . 999997      |
| 10         | .278018     | .472028  | 4.90 | .000009                                 | • 999999      |
| -          |             |          |      |                                         |               |



Figure 2. Density function of the standard normal variate Z, and the density function of the standardized extreme mean variate T.

Confidence interval of fixed length 2m.- In this case, it is already known that  $L = \mu_E - m$  and  $U = \mu_E + m$ . The object, therefore, is to find the corresponding value of  $\alpha_m$ . Since  $\sigma_{\mu_E} = s\sqrt{(1+d)/n}$  in the terms of standardized T variable, it is required to find

$$\alpha_{\text{m}} = \Pr \left[ -m/s\sqrt{(1+d)/n} < T < m/s\sqrt{(1+d)/n} \right]$$

$$\alpha_{\text{m}} = \Pr \left[ -m/s\sqrt{(1+d)/n} < (ZA + B)/C(Z + D) < m/s\sqrt{(1+d)/n} \right]$$

$$= \Pr \left[ Z_{L} < Z < Z_{U} \right]$$

$$= \Phi(Z_{U}) - \Phi(Z_{L})$$

The right-hand side can be read from standard normal probability tables after calculating  $Z_{i}$  and  $Z_{i}$  which are given below.

$$Z_{L} = mCD/s\sqrt{(1 + d)/n} + B / A + mC/s\sqrt{(1 + d)/n}$$
  
 $Z_{U} = mCD/s\sqrt{(1 + d)/n} - B / A - mC/s\sqrt{(1 + d)/n}$ 

A table of confidence bounds for standardized T for various sample sizes are given in Appendix A for ready use.

#### APPLICATION TO FLIGHT DATA

To demonstrate the usefulness of extreme mean estimation, data are obtained on distortion parameter IDT,  ${\rm K}_{\rm A},~{\rm K}_{\rm O},$  and  ${\rm K}_{\rm r}$  from high frequency response pressure measurements made at the inlet/engine interface plane during a supersonic aircraft propulsion research program (ref. 1). The summarized data are presented in Table 2. The data show the sample size, the sample mean  $(\bar{\rm x})$  and standard deviation  $(\vartheta)$  for all distortion parameters.

The succeeding four tables, numbered 3, 4, 5, and 6, show the extreme means and their lower and upper 95% confidence bounds for  $\alpha$  = .95 . Tables 7, 8, 9, and 10 present corresponding values for  $\alpha$  = .99 .

TABLE 2. SUMMARY OF DISTORTION PARAMETERS' DATA

| SAMPLE<br># | SAMPLE<br>SIZE | x    | IDT<br>∂ | ×κΑ   | ô        | χ̈́  | θ δ      | x Kr  | ^    |
|-------------|----------------|------|----------|-------|----------|------|----------|-------|------|
| π           | SIZL           | -^   | 0        |       | <u> </u> | ×    | <u> </u> | X     | ô .  |
| 1           | 470            | .137 | .012     | .875  | .084     | .377 | .068     | .498  | .049 |
| 2           | 470            | .167 | .013     | 1.285 | .119     | .767 | .101     | .518  | .067 |
| 3           | 470            | .194 | .017     | 1.050 | .082     | .400 | .065     | .650  | .050 |
| 4           | 470            | .207 | .016     | 1.088 | .081     | .360 | .074     | .729  | .056 |
| 5           | 470            | .225 | .018     | 1.170 | .095     | .443 | .076     | .727  | .062 |
|             |                |      |          |       |          |      |          |       |      |
| 6           | 406            | .118 | .012     | .744  | .071     | .414 | .060     | .330  | .038 |
| 7           | 406            | .120 | .014     | .572  | .052     | .297 | .043     | .275  | .029 |
| 8           | 406            | .186 | .032     | .886  | .149     | .519 | .128     | .367  | .106 |
| 9           | 406            | .177 | .015     | .834  | .079     | .264 | .059     | .570  | .043 |
| 10          | 406            | .200 | .019     | .891  | .109     | .373 | .074     | .518  | .057 |
|             |                |      |          |       |          | -    |          |       |      |
| 11          | 448            | .194 | .012     | 1.075 | .093     | .377 | .078     | .697  | .055 |
| 12          | 448            | .226 | .013     | 1.153 | .103     | .415 | .090     | .738  | .057 |
| 13          | 448            | .257 | .027     | 1.514 | .136     | .541 | .112     | .973  | .093 |
| 14          | 448            | .184 | .014     | .682  | .058     | .302 | .047     | . 381 | .036 |
| 15          | 448            | .206 | .015     | .731  | .074     | .314 | .059     | .418  | .043 |
|             |                |      |          | •     |          | ·    |          |       |      |

TABLE 3. 95 PERCENT CONFIDENCE INTERVALS FOR EXTREME MEAN, MU + 2.06 SIGMA (DATA: IDT)

| SAMPLE<br>NUMBER | SAMPLE<br>SIZE | SAMPLE<br>MEAN | SAMPLE<br>STD DEV | LOWER  | UPPER<br>BOUND |
|------------------|----------------|----------------|-------------------|--------|----------------|
| 1                | 470            | .1370          | .0120             | . 1596 | . 1641         |
| 2                | 470            | . 1670         | .0130             | . 1915 | . 1964         |
| 3                | 470            | . 1940         | .0170             | .2261  | .2324          |
| 4                | 470            | .2070          | .0160             | .2372  | .2432          |
| 5<br>6           | 470            | .2250          | .0180             | .2590  | .2657          |
| 6                | 406            | .1180          | .0120             | . 1405 | .1453          |
| 7                | 406            | .1200          | .0140             | .1462  | . 1519         |
| 8                | 406            | .1860          | .0320             | .2460  | . 2589         |
| 9                | 406            | .1770          | .0150             | .2051  | .2112          |
| 10               | 406            | .2000          | .0190             | .2356  | . 2433         |
| 11               | 448            | . 1940         | .0120             | .2166  | .2212          |
| 12               | 448            | .2260          | .0130             | .2505  | .2555          |
| 13               | 448            | .2570          | .0270             | .3073  | .3182          |
| 14               | 448            | .1840          | .0140             | .2104  | .2157          |
| 15               | 448            | .2060          | .0150             | .2342  | .2400          |

TABLE 4. 95 PERCENT CONFIDENCE INTERVALS FOR EXTREME MEAN, MU + 2.06 SIGMA (DATA: KA)

| SAMPLE | SAMPLE | SAMPLE | SAMPLE  | LOWER  | UPPER    |
|--------|--------|--------|---------|--------|----------|
| NUMBER | SIZE   | MEAN   | STD DEV | BOUND  | BOUND    |
|        |        |        |         |        |          |
| 1      | 470    | .8750  | .0840   | 1.0335 | 1.0649   |
| 2      | 470    | 1.2850 | .1190   | 1.5095 | 1.5541   |
| 3      | 470    | 1.0500 | .0820   | 1.2047 | 1.2354   |
| 3<br>4 | 470    | 1.0880 | .0810   | 1.2408 | 1.2712   |
| 5      | 470    | 1.1700 | .0950   | 1.3492 | 1.3848   |
| 6      | 406    | .7440  | .0710   | .8770  | .9057    |
| 7<br>8 | 406    | .5720  | .0520   | .6694  | .6904    |
| 8      | 406    | .8860  | .1490   | 1.1652 | 1.2253   |
| 9      | 406    | .8340  | .0790   | .9820  | 1.0139   |
| 10     | 406    | .8910  | .1090   | 1.0953 | 1.1392   |
| 11     | 448    | 1.0750 | .0930   | 1.2501 | 1.2858   |
| 12     | 448    | 1.1530 | .1030   | 1.3469 | . 1.3864 |
| 13     | 448    | 1.5140 | .1360   | 1.7700 | 1.8222   |
| 14     | 448    | .6820  | .0580   | .7912  | .8134    |
| 15     | 448    | .7310  | .0740   | .8703  | .8987    |
|        |        |        |         |        |          |

TABLE 5. 95 PERCENT CONFIDENCE INTERVALS FOR EXTREME MEAN, MU + 2.06 SIGMA (DATA: K<sub>Q</sub>)

|                  | •              |                |                   |                |                |
|------------------|----------------|----------------|-------------------|----------------|----------------|
| SAMPLE<br>NUMBER | SAMPLE<br>SIZE | SAMPLE<br>MEAN | SAMPLE<br>STD DEV | LOWER<br>BOUND | UPPER<br>BOUND |
|                  | li er o        |                |                   |                |                |
|                  | 470            | .3770          | .0680             | .5053          | .5308          |
| 2                | 470            | .7670          | .1010             | .9575          | .9954          |
| 3                | 470            | .4000          | .0650             | .5226          | .5470          |
| 4                | 470            | .3600          | .0750             | .5015          | .5296          |
| 5                | 470            | .4430          | .0760             | .5864          | .6149          |
| 6                | 406            | .4140          | .0600             | .5264          | .5506          |
| 7                | 406            | .2970          | .0430             | .3776          | .3949          |
| 8                | 406            | .5190          | .1280             | .7589          | .8105          |
| 9                | 406            | .2640          | .0590             | .3746          | .3984          |
| 10               | 406            | .3730          | .0740             | .5117          | .5415          |
| 11               | 448            | .3770          | .0780             | .5238          | .5538          |
| 12               | 448            | .4150          | .0900             | .5844          | .6190          |
| 13               | 448            | .5410          | .1120             | .7518          | .7948          |
| 14               | 448            | .3020          | .0470             | .3905          | 4085           |
| 15               | 448            | .3140          | .0590             | .4251          | .4477          |
|                  |                |                |                   |                |                |

TABLE 6. 95 PERCENT CONFIDENCE INTERVALS FOR EXTREME MEAN, MU + 2.06 SIGMA (DATA: K<sub>R</sub>)

| SAMPLE | SAMPLE | SAMPLE | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LOWER   | UPPER   |
|--------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| NUMBER | SIZE   | MEAN   | STD DEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BOUND   | BOUND   |
|        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |
| 1      | 470    | .4980  | .0490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .5904   | .6088   |
| 2      | 470    | .5180  | .0670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .6444   | .6695   |
| 3      | 470    | .6500  | .0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .7443   | .7631   |
| . 4    | 470    | .7290  | The state of the s |         |         |
|        |        |        | .0560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8346   | .8556   |
| 5      | 470    | .7270  | .0620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8440   | .8672   |
| 6      | 406    | .3300  | .0380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .4012   | .4165   |
| 7      | 406    | .2750  | .0290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .3293   | .3410   |
| δ      | 406    | .3670  | .1060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .5656   | .6084   |
| 9      | 406    | .5700  | .0430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .6506   | .6679   |
| 10     | 406    | .5180  | .0570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .6248   | .6478   |
| 11     | 448    | .6970  | .0550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8005   | .8217   |
| 12     | 448    | .7380  | .0570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8453   | .8672   |
| 13     | 448    | .9730  | .0930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1481  | 1.1838  |
| 14     | 448    | .3810  | .0360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 448'8 | .4626   |
| 15     | 448    | .4180  | .0430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .4989   | .5155   |
|        |        |        | • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 7707  | • ) • ) |

TABLE 7. 95 PERCENT CONFIDENCE INTERVALS FOR EXTREME MEAN, MU + 2.67 SIGMA (DATA: IDT)

| SAMPLE | SAMPLE | SAMPLE | SAMPLE  | LOWER  | UPPER  |
|--------|--------|--------|---------|--------|--------|
| NUMBER | SIZE   | MEAN   | STD DEV | BOUND  | BOUND  |
|        |        |        |         |        |        |
| . 1    | 470    | .1370  | .0120   | .1655  | .1730  |
| 2      | 470    | .1670  | .0130   | .1979  | .2060  |
| 3      | 470    | . 1940 | .0170   | .2344  | .2450  |
| 4      | 470    | .2070  | .0160   | . 2451 | .2550  |
| 5      | 470    | .2250  | .0180   | .2673  | .2790  |
| ő      | 406    | .1180  | .0120   | .1463  | . 1544 |
| 7      | 406    | .1200  | .0140   | .1530  | .1624  |
|        | 406    | .1000  | .0320   | . 2615 | .2830  |
| 8<br>9 | 406    | .1770  | .0150   | .2124  | .2225  |
| 10     | 406    | .2000  | .0190   | . 2448 | .2576  |
| 11     | 448    | .1940  | .0120   | .2225  | .2301  |
| 12     | 448    | .2260  | .0130   | .2568  | . 2651 |
| 13     | 448    | .2570  | .0270   | .3210  | .3383  |
| 14     | 448    | . 1840 | .0140   | .2172  | .2262  |
| 15     | 448    | .2060  | .0150   | .2416  | .2512  |
|        |        |        |         |        |        |

TABLE 8. 95 PERCENT CONFIDENCE INTERVALS FOR EXTREME MEAN, MU + 2.67 SIGMA (DATA: K<sub>A</sub>)

| SAMPLE | SAMPLE | SAMPLE | SAMPLE  | LOWER  | UPPER  |
|--------|--------|--------|---------|--------|--------|
| NUMBER | SIZE   | MEAN   | STD DEV | BOUND  | BOUND  |
|        |        |        |         |        |        |
| . 1    | 470    | .8750  | .0840   | 1.0748 | 1.1272 |
| 2      | 470    | 1,2850 | .1190   | 1.5680 | 1.6423 |
| 3      | 470    | 1.0500 | .0820   | 1.2450 | 1.2962 |
| . 4    | 470    | 1.0880 | .0810   | 1.2807 | 1.3312 |
| 5      | 470    | 1.1700 | .0950   | 1.3960 | 1.4552 |
| 6      | 406    | .7440  | .0710   | .9114  | .9591  |
| · 7    | 406    | .5720  | .0520   | .6946  | .7296  |
| 8      | 406    | . 8860 | .1490   | 1.2374 | 1.3375 |
| 9      | 406    | .8340  | .0790   | 1.0203 | 1.0734 |
| 10     | 406    | .8910  | .1090   | 1.1481 | 1.2213 |
| 11     | 448    | 1.0750 | .0930   | 1.2956 | 1.3550 |
| 12     | 448    | 1.1530 | .1030   | 1.3973 | 1.4631 |
| 13     | 448    | 1.5140 | .1360   | 1.8366 | 1.9235 |
| 1.4    | 448    | .6820  | .0580   | .8196  | .8566  |
| 15     | 448    | .7310  | .0740   | .9065  | .9538  |
|        |        |        |         |        |        |

TABLE 9. 95 PERCENT CONFIDENCE INTERVALS FOR EXTREME MEAN, MU + 2.67 SIGMA (DATA:  $K_{\Theta}$ )

| SAMPLE | SAMPLE | SAMPLE | SAMPLE  | LOWER  | UPPER  |
|--------|--------|--------|---------|--------|--------|
| NUMBER | SIZE   | MEAN   | STD DEV | BOUND  | BOUND  |
|        |        |        |         |        |        |
| 1      | 470    | .3770  | .0680   | .5387  | .5811  |
| 2      | 470    | .7670  | .1010   | 1.0072 | 1.0702 |
| 3      | 470    | .4000  | .0650   | .5546  | 5951   |
| 4      | 470    | .3600  | .0750   | .5384  | .5852  |
| 5      | 470    | .4430  | .0760   | .6238  | .6712  |
| 6      | 406    | .4140  | .0600   | .5555  | .5852  |
| 7      | 406    | .2970  | .0430   | .3984  | .4273  |
| 8      | 406    | .5190  | .1280   | .8209  | .9069  |
| 9      | 406    | .2640  | .0590   | .4031  | .4428  |
| 10     | 406    | .3730  | .0740   | .5475  | .5972  |
| 11     | 448    | .3770  | .0780   | .5620  | .6119  |
| 12     | 448    | .4150  | .0900   | .6285  | .6860  |
| 13     | 448    | .5410  | .1120   | .8067  | .8782  |
| 14     | 448    | .3020  | .0470   | .4135  | 4435   |
| 15     | 448    | .3140  | .0590   | .4540  | .4917  |
|        |        |        |         |        |        |

TABLE 10. 95 PERCENT CONFIDENCE INTERVALS FOR EXTREME MEAN, MU + 2.67 SIGMA (DATA: K<sub>R</sub>)

|        | ;      |        |         |        |        |
|--------|--------|--------|---------|--------|--------|
| SAMPLE | SAMPLE | SAMPLE | SAMPLE  | LOWER  | UPPER  |
| NUMBER | SIZE   | MEAN   | STD DEV | BOUND  | BOUND  |
|        |        |        | ,       |        |        |
| 1      | 470    | .4980  | .0490   | .6145  | .6451  |
| 2      | 470    | .5180  | .0670   | .6774  | .7191  |
| 3      | 470    | .6500  | .0500   | .7689  | .8001  |
| 4      | 470    | .7290  | .0560   | .8622  | .8971  |
| 5      | 470    | .7270  | .0620   | .8745  | .9131  |
| Ó      | 406    | .3300  | .0380   | .4196  | . 4451 |
| , 1    | 406    | .2750  | .0290   | .3434  | .3629  |
| 8      | 406    | .3670  | .1060   | .6170  | .6882  |
| 9      | 406    | .5700  | .0430   | .6714  | .7003  |
| 10     | 406    | .5180  | .0570   | .6524  | .6907  |
| 11     | 448.   | .6970  | .0550   | .8275  | .8626  |
| 12     | 448    | .7380  | .0570   | .8732  | .9096  |
| 13     | 448    | .9730  | .0930   | 1.1936 | 1.2530 |
| 14     | 448    | .3810  | .0360   | .4664  | . 4894 |
| 15     | 448    | .4180  | .0430   | .5200  | .5475  |
|        |        |        |         |        |        |

## APPENDIX A

This appendix presents upper and lower confidence bounds of T for  $\alpha$  = .90, .95, .975, .99 and various sample sizes.

TABLE 11. UPPER AND LOWER CONFIDENCE BOUNDS OF T = (MU HAT - MU)/S(MU)

FOR ALPHA =0.91. 0.95. J.975. AND 0.99

p=.9

UPPER BOUND = (8+A\*Z)/(C\*(D+Z)). LOWER BOUND = (8-A\*Z)/(C\*(D-Z))

(Z VALUES ARE STANGARD NORMAL VALUES FOR ALPHA)

| SAMPLE     | ALPHA = 8.90                     | ALPHA = 8.95                     | ALPHA = 0.975                    | ALPHA = 0.99                     |
|------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| SIZE       | UPPER LOWER                      | UPPER LOWER                      | UPPER LOWER                      | UPPER LOWER                      |
|            | BOUND BOUND                      | BOUND BOUND                      | BOUND BOUND                      | GUND BOUND                       |
| 30         | 1.9409 -3.0236                   | 2.2361 -3.8955                   | 2.4825 -4.5783                   | 2.7602 -5.6207                   |
| 40         | 1.9798 -2.8941                   | 2.2898 -3.6676                   | 2.5504 -4.2996                   | 2.8462 -5.2125                   |
| 50         | 2.0079 -2.8137                   | 2.3287 -3.4863                   | 2.5997 -4.1339                   | 2.9088 -4.9700                   |
| 6 <b>0</b> | 2.0296 -2.7580                   | 2.3586 -3.4030                   | 2.6378 -4.0160                   | 2.9574 -4.8067                   |
| <b>61</b>  | 2.0315 -2.7533                   | 2.3613 -3.3960                   | 2.6411 -4.0065                   | 2.9617 -4.7932                   |
| 62         | 2.0333 -2.7468                   | 2.3639 -3.3892                   | 2.6444 -3.9972                   | 2.9658 -4.7891                   |
| 63         | 2.0352 -2.7444                   | 2.3664 -3.3827                   | 2.6476 -3.9882                   | 2.9700 -4.7674                   |
| 64         | 2.0370 -2.7401                   | 2.3689 -3.3763                   | 2.6508 -3.9795                   | 2.9740 -4.7551                   |
| 65         | 2.0387 -2.7359                   | 2.3713 -3.3701                   | 2.6539 -3.9710                   | 2.9779 -4.7431                   |
| 66         | 2.0404 -2.7319                   | 2.3737 -3.3641                   | 2.6569 -3.9627                   | 2.9818 -4.7314                   |
| 67         | 2.0421 -2.7279                   | 2.376( -3.3582                   | 2.6599 -3.9547                   | 2.9856 -4.7201                   |
| 68         | 2.0437 -2.7241                   | 2.3783 -3.3525                   | 2.6628 -3.9468                   | 2.9893 -4.7091                   |
| 69         | 2.0454 -2.7203                   | 2.3805 -3.3469                   | 2.6656 -3.9392                   | 2.9929 -4.6984                   |
| 70         | 2.0469 -2.7167                   | 2.3827 -3.3415                   | 2.6684 -3.9318                   | 2.9965 -4.6880                   |
| 71         | 2.0485 -2.7131                   | 2.3849 -3.3362                   | 2.6712 -3.9246                   | 3.0000 -4.6778                   |
| 72         | 2.0500 -2.7096                   | 2.3871 -3.3311                   | 2.6739 -3.9175                   | 3.0035 -4.6679                   |
| 73         | 2.0515 -2.7652                   | 2.3891 -3.3268                   | 2.6765 -3.9107                   | 3.0069 -4.6583                   |
| 74<br>75   | 2.0530 -2.7029                   | 2.3911 -3.3211                   | 2.6791 -3.9846                   | 3.0102 -4.6489                   |
| 75<br>76   | 2.0544 -2.6997<br>2.0559 -2.6965 | 2.3931 -3.3163<br>2.3951 -3.3116 | 2.6817 -3.8974                   | 3.0135 -4.6397                   |
| 77         | 2.0573 -2.6934                   | 2.3978 -3.3171                   | 2.6842 -3.8910                   | 3.0167 -4.6308                   |
| 78         | 2.0586 -2.6904                   | 2.3989 -3.3026                   | 2.6867 -3.8848<br>2.6891 -3.8787 | 3.0198 -4.6220<br>3.0230 -4.6135 |
| 79         | 2.0600 -2.6875                   | 2.4008 -3.2982                   | 2.6915 -3.8727                   | 3.0250 -4.6152                   |
| 80         | 2.0613 -2.6846                   | 2.4026 -3.2939                   | 2.6938 -3.8669                   | 3.0290 -4.5970                   |
| 81         | 2.0626 -2.6817                   | 2.4045 -3.2898                   | 2.6961 -3.8612                   | 3.0320 -4.5891                   |
| 82         | 2.0639 -2.6790                   | 2.4962 -3.2857                   | 2.6984 -3.8556                   | 3.0349 -4.5813                   |
| 93         | 2.6652 -2.6763                   | 2.408# -3.2816                   | 2.7007 -3.8502                   | 3.0378 -4.5737                   |
| 94         | 2.0664 -2.6736                   | 2.4097 -3.2777                   |                                  | 3.0406 -4.5662                   |
| 85         | 2.0676 -2.6710                   | 2.4114 -3.2739                   | 2.7050 -3.8396                   | 3.0433 -4.5590                   |
| 36         | 2.0688 -2.6684                   | 2.4131 -3.2701                   | 2.7072 -3.8345                   | 3.0461 -4.5518                   |
| 87         | 2.0700 -2.6659                   | 2.4147 -3.2664                   | 2.7693 -3.8295                   | 3.4488 -4.5448                   |
| 88         | 2.0712 -2.6635                   | 2.4164 -3.2628                   | 2.7113 -3.8246                   | 3.0514 -4.5380                   |
| 89         | 2.0723 -2.6611                   | 2.4186 -3.2593                   | 2.7134 -3.8198                   | 3.0540 -4.5313                   |
| 90         | 2.0734 -2.6587                   | 2.4195 -3.2558                   | 2.7154 -3.8151                   | 3.0566 -4.5247                   |
| 91         | 2.0746 -2.6564                   | 2.4211 -3.2524                   | 2.7173 -3.8104                   | 3.0592 -4.5183                   |
| 92         | 2.0757 -2.6541                   | 2.4226 -3.2490                   | 2.7193 -3.3059                   | 3.0617 -4.5120                   |
| 93         | 2.1767 -2.6519                   | 2.4241 -3.2458                   | 2.7212 -3.8014                   | 3.0641 -4.5058                   |
| 94         | 2.0778 -2.6497                   | 2.4256 -3.2425                   | 2.7231 -3.7971                   | 3.0665 -4.4997                   |
| 95         | 2.0789 -2.6476                   | 2.4271 -3.2394                   | 2.7250 -3.7928                   | 3.0689 -4.4937                   |
| 100        | 2.0839 -2.6374                   | 2.4341 -3.2244                   | 2.7339 -3.7725                   | 3.0805 -4.4655                   |
| 120        | 2.1011 -2.6040                   | 2.4580 -3.1754                   | 2.7646 -3.7062                   | 3.1198 -4.3738                   |

TABLE 11.-CONTINUED

| SAMPLE        | ALPHA = 0.90      | ALPHA = 0.95   | ALPHA = 0.975                    | ALPHA = 0.99                     |
|---------------|-------------------|----------------|----------------------------------|----------------------------------|
| SIZE          | UPPER LOWER       | UPPER LOWER    | UPPER LOWER                      | UPPER LOWER                      |
|               | BOUND BOUND       | BOUND BOUND    | BOUND BOUND                      | BOUND BOUND                      |
| 140           | 2.1178 -2.5827    | 2.4806 -3.1432 | 2.7930 -3.6620                   | 3.1558 -4.3119                   |
| 160           | 2.1287 -2.5623    | 2.4959 -3.1137 | 2.8126 -3.6225                   | 3.1812 -4.2577                   |
| 180           | 2.1379 -2.5458    | 2.5086 -3.0897 | 2.8292 -3.5905                   | 3.2027 -4.2141                   |
| 200           | 2.1457 -2.5321    | 2.5199 -3.0699 | 2.8435 -3.5646                   | 3.2212 -4.1779                   |
| 220           | 2. 1526 -2. 5205  | 2.5295 -3.0531 | 2.8559 -3.5416                   | 3.2373 -4.1474                   |
| 240           | 2.1587 -2.5105    | 2.5380 -3.0386 | 2.8669 -3.5223                   | 3.2515 -4.1213                   |
| 260           | 2.1641 -2.5018    | 2.5456 -3.0260 | 2.8767 -3.5055                   | 3.2642 -4.0985                   |
| 2 90          | 2.1689 -2.4941    | 2.5524 -3.0149 | 2.8855 -3.4907                   | 3.2757 -4.0785                   |
| 300           | 2.1733 -2.4872    | 2.5586 -3.0050 | 2.8934 -3.4776                   | 3.2860 -4.0607                   |
| 320           | 2.1773 -2.4810    | 2.5642 -2.9961 | 2.9007 -3.4658                   | 3-2955 -4-0448                   |
| 348           | 2.1810 -2.4755    | 2.5694 -2.9381 | 2.9073 -3.4552                   | 3.3042 -4.0304                   |
| 360           | 2-1844 -2-4704    | 2.5741 -2.9868 | 2.9135 -3.4455                   | 3.3121 -4.0173                   |
| 380           | 2.1875 -2.4658    | 2.5785 -2.9741 | 2.9191 -3.4367                   | 3.3195 -4.0054                   |
| 400           | 2.1904 -2.4615    | 2.5826 -2.9680 | 2.9244 -3.4296                   | 3.3264 -3.9945                   |
| 420           | 2.1931 -2.4576    | 2.5864 -2.9624 | 2.9293 -3.4211                   | 3.3328 -3.9844                   |
| 440           | 2.1956 -2.4539    | 2.5899 -2.9571 | 2.9339 -3.4141                   | 3.3388 -3.9751                   |
| 460           | 2.1980 -2.4505    | 2.5933 -2.9523 | 2.9382 -3.4077                   | 3.3444 -3.9664                   |
| 480           | 2.2082 -2.4474    | 2.5964 -2.9477 | 2.9423 -3.4017                   | 3.3497 -3.9583                   |
| 500           | 2.2023 -2.4444    | 2.5994 -2.9435 | 2.9461 -3.3961                   | 3.3547 -3.9507                   |
| 520           | 2.2043 -2.4417    | 2.6022 -2.9395 | 2.9497 -3.3908                   | 3.3594 -3.9437                   |
| 548           | 2.2062 -2.4390    | 2.6048 -2.9358 | 2.9532 -3.3859                   | 3.3639 -3.9370                   |
| 560           | 2.2079 -2.4366    | 2.6073 -2.9322 | 2.9564 -3.3812                   | 3.3681 -3.9387                   |
| 5 8 <b>0</b>  | 2.2096 -2.4343    | 2.6097 -2.9289 | 2.9595 -3.3768                   | 3.3722 -3.9248                   |
| 600           | 2.2112 -2.4321    | 2.6126 -2.9257 | 2.9624 -3.3726                   | 3.3760 -3.9192                   |
| 620           | 2.2128 -2.4300    | 2.6141 -2.9227 | 2.9652 -3.3687                   | 3.3797 -3.9139                   |
| 640           | 2.2142 -2.4280    | 2.6162 -2.9199 | 2.9679 -3.3649                   | 3.3832 -3.9089                   |
| 66 <b>0</b>   | 2.2157 -2.4261    | 2.6182 -2.9172 | 2.9705 -3.3613                   | 3.3865 -3.9041                   |
| 680           | 2.2170 -2.4243    | 2.6201 -2.9146 | 2.9729 -3.3579                   | 3.3897 -3.8995                   |
| 700           | 2.2183 -2.4226    | 2.6219 -2.9121 | 2.9753 -3.3547                   | 3.3928 -3.8951                   |
| 720           | 2.2195 -2.4209    | 2.6236 -2.9198 | 2.9775 -3.3516                   | 3.3958 -3.8989                   |
| 740           | 2. 2207 -2. 41 93 | 2.6253 -2.9375 | 2.9797 -3.3486                   | 3.3986 -3.8870                   |
| 760           | 2.2219 -2.4178    | 2.6269 -2.9054 | 2.9818 -3.3457                   | 3.4813 -3.8831                   |
| 7 90          | 2.2230 -2.4164    | 2.6285 -2.9033 | 2.9838 -3.3430                   | 3.4040 -3.8795                   |
| 80 <u>0</u> , | 2.2240 -2.4150    | 2.6300 -2.9013 | 2.9858 -3.3404                   | 3.4065 -3.8760                   |
| 820           | 2.2250 -2.4137    | 2.6314 -2.8994 | 2.9876 -3.3379                   | 3.4690 -3.8726                   |
| 840           | 2.2260 -2.4124    | 2.6328 -2.8975 | 2.9894 -3.3354                   | 3.4113 -3.8693<br>3.4136 -3.8662 |
| 860           | 2.2270 -2.4111    | 2.6342 -2.8958 | 2.9912 -3.3331                   | 3.4158 -3.8632                   |
| 880           | 2.2279 -2.4099    | 2.6355 -2.8941 | 2.9929 -3.3308<br>2.9945 -3.3287 | 3.4180 -3.8603                   |
| 910           | 2.2288 -2.4088    | 2.6367 -2.8924 | 2.9945 -3.3287<br>2.9961 -3.3266 | 3.4200 -3.8574                   |
| 920           | 2.2297 -2.4077    | 2.6380 -2.8908 | 2.9976 -3.3245                   | 3.4220 -3.8547                   |
| 940           | 2.2305 -2.4056    | 2.6391 -2.8893 | E 3310 -3-3543                   | 01455                            |

TABLE 12. UPPER AND LOWER CONFIDENCE BOUNDS OF T = (MU HAT - MU)/S(MU)

FOR ALPHA =1.90, 0.95, 0.975, AND 0.99

P=.95

UPPER BCUND = (E+A\*Z)/(C\*(D+Z)), LOWER BOUND = (B+A\*Z)/(C\*(D-Z))

(Z VALUES ARE STANCARD NORMAL VALUES FOR ALPHA)

| SAMPLE                   | ALPHA = 0.90                     | ALPHA = 1.95                     | ALPHA = 0.975                    | ALPHA = 0.99                     |
|--------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| SIZE                     | UPPER LOWER                      | UPPER LOWER                      | UPPER LOWER                      | UPPER LONER                      |
|                          | BOUND BOUND                      | BOUND BOUND                      | BOUND BOUND                      | BOUND BOUND                      |
| 7.0                      | 4 64 88 8 8 8 8 8 8 8 8          |                                  |                                  |                                  |
| 36                       | 1.9173 -2.9868                   | 2.2088 -3.7591                   | 2.4522 -4.5226                   | 2.7265 -5.5522                   |
| 46                       | 1.9561 -2.8595                   | 2.2623 -3.5645                   | 2.5198 -4.2481                   | 2.8121 -5.1501                   |
| 50                       | 1.9842 -2.7804                   | 2.3011 -3.4450                   | 2.5689 -4.0820                   | 2.8744 -4.9112                   |
| 6 <b>C</b>               | 2.0057 -2.7256                   | 2.3309 -3.3636                   | 2.6068 -3.9688                   | 2.9226 -4.7502                   |
| 6 <b>1</b><br>62         | 2.0076 -2.7216                   | 2.3335 -3.3561                   | 2.6101 -3.9594                   | 2.9269 -4.7369                   |
| 6 <b>3</b>               | 2.0095 -2.7165                   | 2.3361 -3.3495                   | 2.6134 -3.9503                   | 2.9310 -4.7240                   |
| 64                       | 2.0113 -2.7122                   | 2.3386 -3.3430                   | 2.6166 -3.9414                   | 2.9351 -4.7115                   |
| 65                       | 2.0131 -2.7086<br>2.0148 -2.7039 | 2.3411 -3.3367<br>2.3435 -3.3386 | 2.6197 -3.9328                   | 2.9391 -4.6993                   |
| 66                       | 2.0165 -2.6999                   | 2.3458 -3.3247                   | 2.6228 -3.9244                   | 2.9433 -4.6875                   |
| 67                       | 2.0182 -2.6960                   | 2.3482 -3.3189                   | 2.6258 -3.9163<br>2.6287 -3.9084 | 2.9468 -4.6760                   |
| 68                       | 2.0198 -2.6922                   | 2.3504 -3.3133                   | 2.6316 -3.9007                   | 2.9506 -4.6649                   |
| 69                       | 2.0214 -2.6885                   | 2.3527 -3.3078                   | 2.6344 -3.8932                   | 2.9543 -4.6540                   |
| 70                       | 2.0230 -2.6849                   | 2.3548 -3.3024                   | 2.6372 -3.8859                   | 2.9579 -4.6435<br>2.9615 -4.6332 |
| 71                       | 2.0246 -2.6814                   | 2.3570 -3.2972                   | 2.6400 -3.8787                   | 2.9650 -4.6232                   |
| 72                       | 2.0261 -2.6780                   | 2.3591 -3.2922                   | 2.6426 -3.8718                   | 2.9684 -4.6134                   |
| 73                       | 2.6276 -2.6747                   | 2.3612 -3.2872                   | 2.6453 -3.8650                   | 2.9718 -4.6039                   |
| 74                       | 2.0290 -2.6714                   | 2.3632 -3.2824                   | 2.6479 -3.8584                   | 2.9751 -4.5947                   |
| 75                       | 2.4305 -2.6682                   |                                  | 2.6504 -3.8520                   | 2.9783 -4.5856                   |
| 76                       | 2.0319 -2.6651                   | 2.3672 -3.2730                   | 2.6529 -3.8457                   | 2.9815 -4.5768                   |
| 77                       | 2.0333 -2.6620                   | 2.3691 -3.2685                   | 2.6553 -3.8395                   | 2.9846 -4.5682                   |
| 78                       | 2.0346 -2.6591                   | 2.3710 -3.2641                   | 2.6578 -3.8335                   | 2.9877 -4.5598                   |
| 79                       | 2.0360 -2.6562                   | 2.3728 -3.2598                   | 2.6601 -3.8276                   |                                  |
| 80                       | 2.0373 -2.6533                   | 2.3747 -3.2556                   | 2.6625 -3.8219                   | 2.9937 -4.5435                   |
| 81                       | 2.0386 -2.6505                   | 2.3765 -3.2515                   | 2.6648 -3.8163                   | 2.9967 -4.5357                   |
| 82                       | 2.6399 -2.6478                   | 2.3782 -3.2474                   | 2.6670 -3.8108                   | 2.9996 -4.5280                   |
| 83                       | 2.0411 -2.6451                   | 2.3801 -3.2435                   | 2.6692 -3.8054                   | 3.0024 -4.5205                   |
| 84                       | 2.0424 -2.6425                   | 2.3817 -3.2396                   | maa.                             | 3.0052 -4.5131                   |
| 85                       | 2.0436 -2.6486                   |                                  | 2.6736 -3.7950                   | 3.0080 -4.5060                   |
| 86                       | 2.8448 -2.6374                   | 2.3850 -3.2321                   | 2.6757 -3.7906                   | 3.0107 -4.4989                   |
| 97                       | 2.0459 -2.6350                   | 2.3867 -3.2285                   | 2.6778 -3.7850                   | 3.0133 -4.4920                   |
| 88                       | 2.0471 -2.6326                   | 2.3883 -3.2249                   | 2.6798 -3.7802                   | 3.0160 -4.4853                   |
| 89<br>90                 | 2.0482 -2.6302                   | 2.3899 -3.2214                   | 2.6819 -3.7754                   | 3.0186 -4.4787                   |
| 9 <b>0</b><br>9 <b>1</b> | 2.0494 -2.6279<br>2.0505 -2.6256 | 2.3914 -3.2180                   |                                  | 3.0211 -4.4722                   |
| 92                       | 2.0516 -2.6234                   | 2.3930 -3.2146<br>2.3945 -3.2114 | 2.6858 -3.7662                   | 3.0236 -4.4658                   |
| 93                       | 2.0527 -2.6212                   | 2.3960 -3.2081                   | 2.6877 -3.7617<br>2.6897 -3.7574 | 3.0261 -4.4596                   |
| 94                       | 2.6537 -2.6190                   | 2.3975 -3.2049                   | 2.6915 -3.7530                   | 3.0286 -4.4535<br>3.0310 -4.4475 |
| 95                       | 2.0548 -2.6159                   | 2.3989 -3.2018                   | 2.6934 -3.7488                   | 3.0334 -4.4416                   |
| 100                      | 2.0598 -2.6069                   | 2.4059 -3.1871                   | 2.7023 -3.7238                   | 3.0448 -4.4138                   |
| 120                      | 2. 1769 -2. 5740                 | 2.4297 -3.1387                   | 2.7327 -3.6635                   | 3.0838 -4.3234                   |
|                          |                                  |                                  | E-10E1 010000                    | 044000 -400504                   |

| SAMPLE      | ALPHA = 0.90                     | ALPHA = \$.95                    | ALPHA = 0.975                    | ALPHA = 0.99                     |
|-------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| SIZE        | UPPER LOWER                      | UPPER LOWER                      | UPPER LOWER                      | UPPER LOWER                      |
|             | BOUND BOUND                      | BOUND BOUND                      | 60 UND BOUND                     | BOUND BOUND                      |
| 140         | 2.0938 -2.5534                   | 2.4525 -3.1076                   | 2.7613 -3.6206                   | 3.1200 -4.2631                   |
| 160         | 2.1046 -2.5333                   | 2.4676 -3.0784                   | 2.7807 -3.5814                   | 3.1452 -4.2095                   |
| 1.30        | 2.1136 -2.5170                   | 2.4804 -3.0549                   | 2.7972 -3.5498                   | 3.1664 -4.1663                   |
| 200         | 2.1214 -2.5035                   | 2.4913 -3.0351                   | 2.8113 -3.5236                   | 3.1847 -4.1306                   |
| 228         | 2.1282 -2.4920                   | 2.5009 -3.0185                   | 2.8235 -3.5015                   | 3.2006 -4.1005                   |
| 240         | 2.1342 -2.4821                   | 2.5093 -3.0042                   | 2.8344 -3.4824                   | 3.2147 -4.0746                   |
| 260         | 2.1396 -2.4734                   | 2.5168 -2.9917                   | 2.8441 -3.4658                   | 3.2273 -4.0521                   |
| 280         | 2.1444 -2.4658                   | 2.5235 -2.9807                   | 2.8528 -3.4512                   | 3.2386 -4.0323                   |
| 330         | 2.1487 -2.4590                   | 2.5296 -2.9710                   | 2.8607 -3.4382                   | 3.2488 -4.0147                   |
| 320         | 2.1527 -2.4529                   | 2.5352 -2.9622                   | 2.8678 -3.4266                   | 3.2582 -3.9990                   |
| 340         | 2.1563 -2.4474                   | 2.5403 -2.9543                   | 2.8744 -3.4161                   | 3.2667 -3.9848                   |
| 360         | 2.1596 -2.4424                   | 2.5450 -2.9471                   | 2.8805 -3.4065                   | 3.2746 -3.9719                   |
| 380         | 2.1627 -2.4379                   | 2.5493 -2.9405                   | 2.8861 -3.3978                   | 3.2820 -3.9601                   |
| 400         | 2.1656 -2.4336                   | 2.5534 -2.9344                   | 2.8913 -3.3897                   | 3.2887 -3.9493                   |
| 420         | 2.1683 -2.4298                   | 2.5571 -2.9288                   | 2.8962 -3.3823                   | 3.2951 -3.9393                   |
| 440         | 2.1708 -2.4262                   | 2.560£ +2.9237                   | 2.9017 -3.3755                   | 3.3010 -3.9301                   |
| 460         | 2.1731 -2.4228                   | 2.5639 -2.9189                   | 2.9050 -3.3691                   | 3.3066 -3.9215                   |
| 480         | 2.1753 -2.4197                   | 2.5670 -2.9144                   | 2.9090 -3.3632                   | 3.3118 -3.9135                   |
| 50 <b>0</b> | 2.1774 -2.4168                   | 2.5699 -2.9162                   | 2.9128 -3.3576                   | 3.3167 -3.9060                   |
| 520         | 2.1793 -2.4140                   | 2.5727 -2.9062                   | 2.9163 -3.3524                   | 3.3214 -3.8990                   |
| 540         | 2.1812 -2.4114                   | 2.5,53 -2.9025                   | 2.9197 -3.3475                   | 3.3258 -3.8924                   |
| 56 <b>0</b> | 2.1829 -2.4094                   | 2.5778 -2.8990                   | 2.9229 -3.3429                   | 3.3300 -3.8862                   |
| 580         | 2.1846 -2.4067                   | 2.5802 -2.8957                   | 2.9260 -3.3386                   | 3.3340 -3.8804                   |
| 6 <b>00</b> | 2.1862 -2.4845                   | 2.5824 -2.8926                   | 2. 92 89 -3. 3344                | 3.3378 -3.8748                   |
| 620         | 2.1877 -2.4025                   | 2.5846 -2.8897                   | 2.9317 -3.3305                   | 3.3414 -3.8696                   |
| 640         | 2.1892 -2.4005                   | 2.5866 -2.8868                   | 2.9343 -3.3268                   | 3.3449 -3.8646                   |
| 66 <b>0</b> | 2.1906 -2.3986                   | 2.5886 -2.8842                   | 2.9369 -3.3233                   | 3.3482 -3.8599<br>3.3514 -3.8553 |
| 6 9 0       | 2.1919 -2.3968                   | 2.5904 -2.8816                   | 2.9393 +3.3199                   |                                  |
| 700         | 2.1932 -2.3951                   | 2.5922 -2.8792                   | 2.9416 -3.3167<br>2.9438 -3.3136 | 3.3544 -3.8510<br>3.3573 -3.8469 |
| 720         | 2.1944 -2.3935                   | 2.5939 -2.8768                   |                                  | 3.3601 -3.8430                   |
| 740         | 2.1956 -2.3920                   | 2.5956 -2.8746                   |                                  | 3.3628 -3.8392                   |
| 768         | 2.1967 -2.3965                   | 2.5972 -2.8725                   |                                  | 3.3654 -3.8356                   |
| 780         | 2.1978 -2.3890                   | 2.5987 -2.8704                   | 2.9500 -3.3052<br>2.9520 -3.3026 | 3.3679 -3.8321                   |
| 8 0.0       | 2.1988 -2.3877                   | 2.6002 -2.8685                   |                                  | 3.3784 -3.8287                   |
| 82 <b>0</b> | 2.1999 -2.3863                   | 2.6016 -2.8666                   | 2.9538 -3.3091<br>2.9556 -3.2977 | 3.3727 -3.8255                   |
| 840         | 2.2008 -2.3851                   | 2.6030 -2.8647                   | 2.9573 -3.2954                   | 3.3750 -3.8224                   |
| 860         | 2.2018 -2.3838                   | 2.6044 -2.8630<br>2.6056 -2.8613 | 2.9598 -3.2931                   | 3.3772 -3.8194                   |
| 880         | 2.2027 -2.3827                   | 2.6169 -2.8597                   | 2.9606 -3.2910                   | 3.3793 -3.8166                   |
| 900         | 2.2036 -2.3815<br>2.2044 -2.3804 | 2.6081 -2.8581                   | 2.9622 -3.2839                   | 3.3813 -3.8138                   |
| 920         |                                  | 2.6093 -2.8566                   | 2.9637 -3.2869                   | 3.3833 -3.8111                   |
| 948         | 2.2053 -2.3794                   | E 6 0 9 2 - E 6 0 9 C D          | E# 3001 - 0# E003                | J10000 010222                    |

TABLE 13. UPPER AND LOWER CONFIDENCE BOUNDS OF T = (MU HAT - MU)/S(MU)

FOR ALPHA =0.91. 0.95. 0.975. AND 0.99

p=.975

UPPER BOUND = (8+A\*Z)/(C\*(D+Z)), LOWER BOUND = (8-A\*Z)/(C\*(D-Z))

(Z VALUES ARE STANCARD NORMAL VALUES FOR ALPHA)

| SAMPLE           | ALPHA = 0.90                     | ALPHA = 0.95                     | ALPHA = 0.975                    | ALPHA = C.99                     |
|------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| SIZE             | UPPER LOWER                      | UPPER LOWER                      | UPPER LOWER                      | UPPER LOWER                      |
| 01               | BOUND BOUND                      | BOUND BOUND                      | BOUND BOUND                      | BOUND BOUND                      |
| 70               | 4 0007 0 0405                    | 0.4007 7.7440                    | 0 2022 6 2066                    | 0 6 64 5 5 4 044                 |
| 30               | 1.8927 -2.9485                   | 2.1805 -3.7118                   | 2.4207 -4.4646                   | 2.6915 +5.4811                   |
| 48               | 1.9313 -2.8233                   | 2.2337 -3.5193                   | 2.4879 -4.1943<br>2.5366 -4.0307 | 2.7764 -5.0849<br>2.8382 -4.8494 |
| 50               | 1.9592 -2.7454                   | 2.2721 -3.4817<br>2.3017 -3.32(9 | 2.5741 -3.9191                   | 2.8860 -4.6937                   |
| 60               | 1.9866 -2.6915<br>1.9825 -2.6869 | 2.3043 -3.3141                   | 2.5774 -3.9099                   | 2.8902 -4.6776                   |
| 61<br>62         | 1.9843 -2.6825                   | 2.3068 -3.3075                   | 2.5807 -3.9008                   | 2.8943 -4.6649                   |
| 63               | 1. 9861 -2.6783                  | 2.3093 -3.3012                   | 2.5838 -3.8921                   | 2.8984 -4.6525                   |
| 64               | 1.9879 -2.6741                   | 2.3118 -3.2950                   | 2.5869 -3.8836                   | 2.9023 -4.6405                   |
| 65               | 1.9896 -2.6761                   | 2.3142 -3.2890                   | 2.5900 -3.8754                   | 2.9062 -4.6289                   |
| 66               | 1.9913 -2.6661                   | 2.3165 -3.2931                   | 2.5929 -3.8673                   | 2.9100 -4.6176                   |
| 67               | 1.9930 -2.6623                   | 2.3188 -3.2774                   | 2.5959 -3.8595                   | 2.9137 -4.6066                   |
| 68               | 1.9946 -2.6586                   | 2.3211 -3.2719                   | 2.5987 -3.8519                   | 2.9174 -4.5959                   |
| 69               | 1.9962 -2.6550                   | 2.3233 -3.2665                   | 2.6015 -3.8445                   | 2.9210 -4.5855                   |
| 70               | 1.9977 -2.6514                   | 2.3254 -3.2612                   | 2.6043 -3.8373                   | 2.9245 -4.5753                   |
| 71               | 1.9993 -2.6484                   | 2.3276 -3.2561                   | 2.6070 -3.8303                   | 2.9279 -4.5655                   |
| 72               | 2.00082.6446                     | 2.3297 -3.2511                   | 2.6097 -3.8235                   | 2.9313 -4.5559                   |
| 73               | 2.0923 -2.6413                   | 2.3317 -3.2462                   | 2.6123 -3.8168                   | 2.9347 -4.5465                   |
| 74               | 2.0037 -2.6381                   | 2.3337 -3.2414                   | 2.6148 -3.8103                   | 2.9379 -4.5373                   |
| 75               | 2.0051 -2.6349                   | 2.3357 -3.2368                   | 2.6173 -3.3039                   | 2.9412 -4.5284                   |
| 76               | 2.0065 -2.6319                   | 2.337 c -3.232?                  | 2.6198 -3.7977                   | 2.9443 -4.5197                   |
| . 77             | 2.0079 -2.6239                   | 2.3395 -3.2278                   | 2.6222 -3.7917                   | 2.9474 -4.5112                   |
| 78               | 2.0093 -2.6259                   | 2.3414 -3.2234                   | 2.6246 -3.7857                   | 2.9505 -4.5029                   |
| 79               | 2.[106 -2.6231                   | 2.3433 -3.2192                   | 2.6270 -3.7800<br>2.6293 -3.7743 | 2.9535 -4.4948<br>2.9564 -4.4869 |
| 30               | 2,0119 -2.6203                   | 2.3451 -3.2158<br>2.3469 -3.2110 | 2.6316 -3.7688                   | 2.9594 -4.4792                   |
| 8 <b>1</b><br>82 | 2.0132 -2.6175<br>2.0145 -2.6148 | 2.3486 -3.2070                   | 2.6338 -3.7633                   | 2.9622 -4.4716                   |
| 93               | 2.0157 -2.6122                   | 2.3503 -3.2331                   | 2.6369 -3.7580                   | 2.9650 -4.4642                   |
| 84               | 2.0169 -2.6096                   | 2.3526 -3.1993                   | 2.6382 -3.7529                   | 2.9678 -4.4570                   |
| 85               | 2.0181 -2.6071                   | 2.3537 -3.1956                   | 2.6403 -3.7478                   | 2.9705 -4.4499                   |
| 86               | 2.0193 -2.6046                   | 2.3554 -3.1919                   | 2.6424 -3.7428                   | 2.9732 -4.4430                   |
| 37               | 2.0205 -2.6022                   | 2.3571 -3.1983                   | 2.6445 -3.7379                   | 2.9759 -4.4362                   |
| 38               | 2.0216 -2.5998                   | 2.3586 -3.1848                   | 2.6465 -3.7332                   | 2.9785 -4.4295                   |
| 39               | 2.0228 -2.5975                   | 2.3601 -3.1814                   | 2.6485 -3.7285                   | 2.9818 -4.4238                   |
| 90               | 2.0239 -2.5952                   | 2.3617 -3.1780                   | 2.6505 -3.7239                   | 2.9836 -4.4166                   |
| 91               | 2.0250 -2.5930                   | 2.3632 -3.1747                   | 2.6524 -3.7194                   | 2.9861 -4.4103                   |
| 92               | 2.0261 -2.5908                   | 2.3647 -3.1714                   | 2.6543 -3.7150                   | 2.9885 -4.4042                   |
| 93               | 2.6271 -2.5886                   | 2.3662 -3.1683                   | 2.6562 -3.7107                   | 2.9909 -4.3982                   |
| 94               | 2. u 282 -2.5865                 | 2.3677 -3.1651                   | 2.6581 -3.7064                   | 2.9933 -4.3923                   |
| 95               | 2.0292 -2.5844                   | 2.3691 -3.1621                   | 2.6599 -3.7023                   | 2.9957 -4.3865                   |
| 100              | 2.0342 -2.5745                   | 2.3761 -3.1475                   | 2.6687 -3.6825                   | 3.0070 -4.3590                   |
| 120              | 2.0512 -2.5421                   | 2.3996 -3.4999                   | 2.6988 -3.6181                   | 3.0456 -4.2699                   |

TABLE 13.-CONTINUED

| CAMBLE             | AL DUA - 0 00                    | 11 DUA 0 OF                      |                                  |                                  |
|--------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| SAMPLE             | ALPHA = 0.90                     | ALPHA = C.95                     | ALPHA = 0.975                    | ALPHA = 0.99                     |
| SIZE               | UPPER LOWER                      | UPPER LOWER                      | UPPER LOWER                      | UPPER LOWER                      |
|                    | BOUND BOUND                      | BOUND BOUND                      | BOUND BOUND                      | BOUND BOUND                      |
|                    |                                  |                                  |                                  |                                  |
| 140                | 2.0681 -2.5222                   | 2.4225 -3.0696                   | 2.7275 -3.5763                   | 3.0818 -4.2109                   |
| 160                | 2.0788 -2.5023                   | 2.4374 -3.0467                   | 2.7467 -3.5376                   | 3.1066 -4.1580                   |
| 180                | 2.0878 -2.4862                   | 2.4500 -3.0174                   | 2.7629 -3.5864                   | 3.1276 -4.1153                   |
| 200                | 2.0955 -2.4728                   | 2.4608 -2.9980                   | 2.7768 -3.4895                   | 3.1457 -4.0801                   |
| 220                | 2.1022 -2.4615                   | 2.4702 -2.9816                   | 2.7890 -3.4586                   | 3.1614 -4.0503                   |
| 240                | 2.1981 -2.4517                   | 2.4786 -2.9674                   | 2.7997 -3.4398                   | 3.1754 -4.0247                   |
| 260                | 2.1134 -2.4432                   | 2.4860 -2.9551                   | 2.8093 -3.4234                   | 3.1878 -4.0025                   |
| 2 3 0              | 2.1181 -2.4356                   | 2.4926 -2.9443                   | 2.8179 -3.4096                   | 3.1989 -3.9830                   |
| 300<br>320         | 2.1224 -2.4289                   | 2.4987 -2.9346<br>2.5041 -2.9259 | 2.8256 -3.3961                   | 3.2091 -3.9656                   |
| 340                | 2.1263 -2.4229<br>2.1299 -2.4175 | 2.5041 -2.9259<br>2.5092 -2.9181 | 2.8327 -3.3846<br>2.8392 -3.3742 | 3.2183 -3.95#0<br>3.2268 -3.9360 |
| 360                | 2.1332 -2.4125                   | 2.5138 -2.9110                   | 2.8452 -3.3648                   | 3.2346 -3.9232                   |
| 3.80               | 2.1362 -2.4080                   | 2.5181 -2.9945                   | 2.8508 -3.3562                   | 3.2418 -3.9116                   |
| 490                | 2.1391 -2.4039                   | 2.5221 -2.8985                   | 2.8559 -3.3483                   | 3.2485 -3.9009                   |
| 420                | 2.1417 -2.4000                   | 2.5258 -2.8930                   | 2.8607 -3.3409                   | 3.2547 -3.8911                   |
| 440                | 2.1442 -2.3965                   | 2.5293 -2.8879                   | 2.8652 -3.3342                   | 3.2606 -3.8820                   |
| 460                | 2.1465 -2.3932                   | 2.5325 -2.8831                   | 2.8694 -3.3279                   | 3.2661 -3.8735                   |
| 480                | 2.1487 -2.3981                   | 2.5356 -2.8787                   | 2.8734 -3.3220                   | 3.2713 -3.8656                   |
| 500                | 2.1507 -2.3872                   | 2.5385 -2.8745                   | 2.8771 -3.3165                   | 3.2761 -3.8582                   |
| 52 <b>0</b>        | 2.1527 -2.3845                   | 2.5412 -2.8707                   | 2.8806 -3.3114                   | 3.2807 -3.8513                   |
| 540                | 2.1545 -2.3819                   | 2.5438 -2.8670                   | 2.8840 -3.3066                   | 3.2851 -3.8448                   |
| 560                | 2.1562 -2.3795                   | 2.5462 -2.8635                   | 2.8872 -3.3020                   | 3.2892 -3.8387                   |
| 580                | 2.1579 -2.3772                   | 2.5486 -2.8603                   | 2.8902 -3.2977                   | 3.2932 -3.8329                   |
| 600                | 2.1595 -2.3751                   | 2.5508 -2.8572                   | 2.8930 -3.2936                   | 3.2969 -3.8274                   |
| 62 <b>0</b><br>640 | 2.1619 -2.3731<br>2.1624 -2.3711 | 2.5529 -2.8543                   | 2.8958 -3.2898                   | 3.3005 -3.8222                   |
| 660                | 2.1638 -2.3693                   | 2.5549 -2.8515<br>2.5569 -2.8489 | 2.8984 -3.2861<br>2.9009 -3.2826 | 3.3039 -3.8173<br>3.3072 -3.8126 |
| 68 <b>0</b>        | 2.1651 -2.3675                   | 2.5587 -2.8463                   | 2.9033 -3.2793                   | 3.3103 -3.8081                   |
| 700                | 2.1663 -2.3658                   | 2.5605 -2.8439                   | 2.9056 -3.2761                   | 3.3133 -3.8039                   |
| 720                | 2.1675 -2.3642                   | 2.5622 -2.8416                   | 2.9078 -3.2731                   | 3.3162 -3.7998                   |
| 740                | 2.1687 -2.3627                   | 2.5638 -2.8394                   | 2.9099 -3.2702                   | 3.3190 -3.7959                   |
| 760                | 2.1698 -2.3612                   | 2.5654 -2.8373                   | 2.9120 -3.2674                   | 3.3217 -3.7922                   |
| 780                | 2.1709 -2.3598                   | 2.5669 -2.8353                   | 2.9139 -3.2647                   | 3.3242 -3.7886                   |
| 890                | 2.1719 -2.3584                   | 2.5684 -2.8333                   | 2.9158 -3.2621                   | 3.3267 -3.7852                   |
| 820                | 2.1729 -2.3571                   | 2.5698 -2.8315                   | 2. 9177 -3. 2597                 | 3.3291 -3.7819                   |
| 840                | 2.1739 -2.3559                   | 2.5712 -2.8297                   | 2.9194 -3.2573                   | 3.3314 -3.7787                   |
| 860                | 2.1748 -2.3547                   | 2.5725 -2.8279                   | 2.9211 -3.2550                   | 3.3337 -3.7756                   |
| 890                | 2.1757 -2.3535                   | 2.5738 -2.8263                   | 2.9228 -3.2528                   | 3.3358 -3.7727                   |
| 900                | 2.1766 -2.3524                   | 2.5750 -2.8247                   | 2.9244 -3.2507                   | 3.3379 -3.7698                   |
| 928                | 2.1775 -2.3513                   | 2.5762 -2.8231                   | 2. 92 59 - 3. 2486               | 3.3399 -3.7671                   |
| 940                | 2.1783 -2.3502                   | 2.5773 -2.8216                   | 2.9274 -3.2467                   | 3.3419 -3.7644                   |

TABLE 14. UPPER AND LOWER CONFIDENCE BOUNDS OF T = (MU HAT - MU)/S(MU)

FOR ALPHA = 0.96, 0.95, 0.975, AND 0.99

p=.99

UPPER BCUND = (E+A\*Z)/(C\*(D+Z)), LOWER BCUND = (B-A\*Z)/(C\*(D-Z))

(Z VALUES ARE STANDARD NORMAL VALUES FOR ALPHA)

| SAMPLE     | ALPHA = 0.90                     | ALPHA = 8.95                       | ALPHA = 6.975                    | ALPHA = G.99                     |
|------------|----------------------------------|------------------------------------|----------------------------------|----------------------------------|
| SIZE       | UPPER LOWER                      | UPPER LOWER                        | UPPER LOWER                      | UPPER LOWER                      |
|            | BOUND BOUND                      | BOUND BOUND                        | BOUND BOUND                      | BOUND BOUND                      |
| 30         | 1.8626 -2.9017                   | 2.1458 -3.6520                     | 2.3823 -4.3937                   | 2.6488 -5.3940                   |
| 40         | 1.9008 -2.7758                   | 2.1984 -3.4638                     | 2.4487 -4.1282                   | 2.7326 -5.0047                   |
| 50         | 1.9284 -2.7023                   | 2.2364 -3.3483                     | 2.4967 -3.9674                   | 2.7936 -4.7733                   |
| 60         | 1.9496 -2.6493                   | 2.2657 -3.2689                     | 2.5338 -3.8578                   | 2.8408 -4.6173                   |
| 6 <b>1</b> | 1.9514 -2.6449                   | 2.2682 -3.2623                     | 2.5371 -3.8487                   | 2.8450 -4.6044                   |
| 62         | 1.9533 -2.6446                   | 2.2707 -3.2558                     | 2.5403 -3.8398                   | 2.8490 -4.5919                   |
| 63         | 1.9550 -2.6364                   | 2.2732 -3.2496                     | 2.5434 -3.8313                   | 2.8530 -4.5798                   |
| 64         | 1.9568 -2.6323                   | 2.2756 -3.2435                     | 2.5465 -3.8229                   | 2.8569 -4.5680                   |
| 65         | 1.9585 -2.6283                   | 2.2784 -3.2376                     | 2.5495 -3.8148                   | 2.8608 -4.5565                   |
| 66         | 1.9602 -2.6245                   | 2.2803 -3.2318                     | 2.5524 -3.8069                   | 2.8645 -4.5454                   |
| 67         | 1.9518 -2.6247                   | 2.2826 -3.2262                     | 2.5553 -3.7992                   | 2.8682 -4.5346                   |
| 68         | 1.9634 -2.6171                   | 2.2848 -3.2268                     | 2.5581 -3.7918                   | 2.8718 -4.5241                   |
| 69         | 1.9650 -2.6135                   | 2.2871 -3.2155                     | 2.5609 -3.7845                   | 2.8753 -4.5139                   |
| 70         | 1.9665 -2.6100                   | 2.2891 -3.2103                     | 2.5636 -3.7774                   | 2.8788 -4.5039                   |
| 71<br>72   | 1.9681 -2.6066                   | 2.2912 -3.2053                     | 2.5663 -3.7795                   | 2.8822 -4.4942                   |
| 72         | 1.9695 +2.6033                   | 2.2933 -3.2063                     | 2.5689 -3.7638                   | 2.8856 -4.4848                   |
| 73<br>74   | 1.9710 -2.6031<br>1.9724 -2.5969 | 2.2953 -3.1955                     | 2.5715 -3.7572                   | 2.8889 -4.4755                   |
| 75         | 1.9739 -2.5938                   | 2.2973 -3.1969 -<br>2.2992 -3.1863 | 2.5740 -3.7508                   | 2.8921 -4.4666                   |
| 76         | 1.9752 -2.5908                   | 2.3012 -3.1818                     | 2.5765 -3.7446<br>2.5789 -3.7385 | 2.8953 -4.4578                   |
| 77         | 1.9766 -2.5879                   | 2.3031 -3.1774                     | 2.5813 -3.7325                   | 2.8984 -4.4492<br>2.9015 -4.4409 |
| 78         | 1.9779 -2.5850                   | 2.3049 -3.1732                     | 2.5837 -3.7267                   | 2.9045 -4.4327                   |
| 79         | 1.9793 -2.5822                   | 2.3067 -3.1699                     | 2.5860 -3.7210                   | 2.9074 -4.4248                   |
| 3 Ú        | 1.9805 -2.5794                   | 2.3085 -3.1649                     | 2.5883 -3.7155                   | 2.9104 -4.4170                   |
| 91         | 1.9818 -2.5767                   | 2.3103 -3.1669                     | 2.5905 -3.7110                   | 2.9132 -4.4094                   |
| 82         | 1.9831 -2.5741                   | 2.312( -3.1570                     | 2.5928 -3.7047                   | 2.9160 -4.4019                   |
| 83         | 1.9843 -2.5715                   | 2.3137 -3.1532                     | 2.5949 -3.6995                   | 2.9188 -4.3947                   |
| 34         | 1.9855 -2.5690                   | 2.3154 -3.1495                     | 2.5971 -3.6944                   | 2.9216 -4.3875                   |
| 85         | 1. 9867 -2.5665                  | 2.3170 -3.1458                     | 2.5992 -3.6894                   | 2.9243 -4.3806                   |
| 86         | 1.9879 -2.5641                   | 2.3187 -3.1422                     | 2.6012 -3.6845                   | 2.9269 -4.3738                   |
| 87         | 1.9890 -2.5617                   | 2.3203 -3.1387                     | 2.6033 -3.6797                   | 2.9295 -4.3671                   |
| 88         | 1.9902 -2.5593                   | 2.3218 -3.1352                     | 2.6053 -3.6750                   | 2.9321 -4.3605                   |
| 89         | 1.9913 -2.5571                   | 2.3234 -3.1319                     | 2.6073 -3.6704                   | 2.9346 -4.3541                   |
| 90         | 1. 9924 -2.5548                  | 2.3249 -3.1285                     | 2.6092 -3.6659                   | 2.9371 -4.3478                   |
| 91         | 1.9935 -2.5526                   | 2.3264 -3.1253                     | 2.6111 -3.6615                   | 2.9396 -4.3417                   |
| 92         | 1.9945 -2.5504                   | 2.3279 -3.1221                     | 2.6130 -3.6572                   | 2.9420 -4.3356                   |
| 93         | 1.9956 -2.5483                   | 2.3294 -3.1193                     | 2.6149 -3.6529                   | 2.9444 -4.3297                   |
| 94         | 1.9966 -2.5462                   | 2.3308 -3.1159                     | 2.6167 -3.6487                   | 2.9467 -4.3239                   |
| 95         | 1.9977 -2.5442                   | 2.3322 -3.1129                     | 2.6185 -3.6446                   | 2.9491 -4.3182                   |
| 100        | 2.0026 -2.5345                   | 2.3391 -3.0985                     | 2.6272 -3.6252                   | 2.9602 -4.2913                   |
| 120        | 2.0193 -2.5026                   | 2.3623 -3.0517                     | 2.6569 -3.5619                   | 2.9984 -4.2036                   |

| SAMPLE                                 | ALPHA = 0.90                                                                                                               | ALPHA = £.95                                                                                                               | ALPHA = 0.975                                                                                                              | ALPHA = 0.99                                                                                                               |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| SIZE                                   | UPPER LOWER                                                                                                                | UPPER LOWER                                                                                                                | UPPER LOWER                                                                                                                | UPPER LOWER BOUND                                                                                                          |
| 140                                    | 2.0363 -2.4833                                                                                                             | 2.3852 -3.0223                                                                                                             | 2.6855 -3.5212                                                                                                             | 3.0344 -4.1461                                                                                                             |
| 160                                    | 2.0468 -2.4638                                                                                                             | 2.3999 -2.9939                                                                                                             | 2.7044 -3.4831                                                                                                             | 3.0588 -4.0940                                                                                                             |
| 180                                    | 2.0556 -2.4479                                                                                                             | 2.4123 -2.9709                                                                                                             | 2.7204 -3.4524                                                                                                             | 3.0795 -4.0520                                                                                                             |
| 200                                    | 2.0632 -2.4347                                                                                                             | 2.4229 -2.9518                                                                                                             | 2.7341 -3.4269                                                                                                             | 3.0972 -4.0172                                                                                                             |
| 220                                    | 2.0698 -2.4236                                                                                                             | 2.4322 -2.9357                                                                                                             | 2.7460 -3.4053                                                                                                             | 3.1128 -3.9879                                                                                                             |
| 240                                    | 2.0756 -2.4139                                                                                                             | 2.4404 -2.9217                                                                                                             | 2.7566 -3.3868                                                                                                             | 3.1265 -3.9628                                                                                                             |
| 260                                    | 2.0808 -2.4055                                                                                                             | 2.4477 -2.9J96                                                                                                             | 2.7660 -3.3707                                                                                                             | 3.1387 -3.9409                                                                                                             |
| 280                                    | 2.0855 -2.3981                                                                                                             | 2.4542 -2.8989                                                                                                             | 2.7745 -3.3565                                                                                                             | 3.1497 -3.9216                                                                                                             |
| 300                                    | 2.0897 -2.3915                                                                                                             | 2.4602 -2.8894                                                                                                             | 2.7821 -3.3438                                                                                                             | 3.1596 -3.9045                                                                                                             |
| 320                                    | 2.0936 -2.3856                                                                                                             | 2.4656 -2.8819                                                                                                             | 2.7891 -3.3325                                                                                                             | 3.1687 -3.8892                                                                                                             |
| 340                                    | 2.0971 -2.3802                                                                                                             | 2.4705 -2.8732                                                                                                             | 2.7955 -3.3223                                                                                                             | 3.1771 -3.8754                                                                                                             |
| 360                                    | 2.1003 -2.3754                                                                                                             | 2.4751 -2.8662                                                                                                             | 2.8014 -3.3130                                                                                                             | 3.1847 -3.8628                                                                                                             |
| 380                                    | 2.1033 -2.3769                                                                                                             | 2.4793 -2.8597                                                                                                             | 2.8069 -3.3045                                                                                                             | 3.1918 -3.8514                                                                                                             |
| 400                                    | 2.1061 -2.3668                                                                                                             | 2.4832 -2.8539                                                                                                             | 2.8119 -3.2967                                                                                                             | 3.1984 -3.8408                                                                                                             |
| 420                                    | 2.1087 -2.3631                                                                                                             | 2.4869 -2.8484                                                                                                             | 2.8167 -3.2895                                                                                                             | 3.2046 -3.8311                                                                                                             |
| 440                                    | 2.1111 -2.3595                                                                                                             | 2.4903 -2.8434                                                                                                             | 2.8211 -3.2828                                                                                                             | 3.2104 -3.8222                                                                                                             |
| 460                                    | 2.1134 -2.3563                                                                                                             | 2.4935 -2.8387                                                                                                             | 2.8252 -3.2766                                                                                                             | 3.2158 -3.8138                                                                                                             |
| 480                                    | 2.1156 -2.3533                                                                                                             | 2.4965 -2.8344                                                                                                             | 2.8291 -3.2719                                                                                                             | 3.2209 -3.8061                                                                                                             |
| 5 <b>00</b>                            | 2.1176 -2.3504                                                                                                             | 2.4994 -2.8303                                                                                                             | 2.8328 -3.2655                                                                                                             | 3.2257 -3.7988                                                                                                             |
| 520<br>540<br>568<br>580<br>600<br>620 | 2.1195 -2.3477<br>2.1213 -2.3452<br>2.1230 -2.3429<br>2.1246 -2.3406<br>2.1262 -2.3385<br>2.1277 -2.3365<br>2.1291 -2.3346 | 2.5021 -2.8264<br>2.5046 -2.8228<br>2.5070 -2.8194<br>2.5093 -2.8162<br>2.5115 -2.8132<br>2.5136 -2.8103<br>2.5156 -2.8076 | 2.8363 -3.2604<br>2.8396 -3.2556<br>2.8427 -3.2512<br>2.8457 -3.2469<br>2.8485 -3.2429<br>2.8512 -3.2391<br>2.8538 -3.2355 | 3.2302 -3.7920<br>3.2345 -3.7856<br>3.2386 -3.7795<br>3.2425 -3.7739<br>3.2461 -3.7685<br>3.2497 -3.7634<br>3.2530 -3.7585 |
| 660                                    | 2.1291 -2.3328                                                                                                             | 2.5175 -2.8050                                                                                                             | 2.8562 -3.2320                                                                                                             | 3.2563 -3.7539 3.2593 -3.7495 3.2623 -3.7453 3.2651 -3.7413 3.2679 -3.7375 3.2705 -3.7338                                  |
| 690                                    | 2.1317 -2.3310                                                                                                             | 2.5193 -2.8025                                                                                                             | 2.8586 -3.2288                                                                                                             |                                                                                                                            |
| 700                                    | 2.1338 -2.3294                                                                                                             | 2.5211 -2.8001                                                                                                             | 2.8608 -3.2256                                                                                                             |                                                                                                                            |
| 720                                    | 2.1342 -2.3278                                                                                                             | 2.5227 -2.7979                                                                                                             | 2.8630 -3.2226                                                                                                             |                                                                                                                            |
| 740                                    | 2.1353 -2.3263                                                                                                             | 2.5243 -2.7957                                                                                                             | 2.8651 -3.2198                                                                                                             |                                                                                                                            |
| 760                                    | 2.1364 -2.3248                                                                                                             | 2.5259 -2.7936                                                                                                             | 2.8671 -3.2170                                                                                                             |                                                                                                                            |
| 780<br>800<br>820<br>848<br>860<br>880 | 2.1375 -2.3234<br>2.1385 -2.3221<br>2.1395 -2.3208<br>2.1404 -2.3196<br>2.1413 -2.3184<br>2.1422 -2.3172<br>2.1431 -2.3161 | 2.5274 -2.7916<br>2.5288 -2.7897<br>2.5302 -2.7879<br>2.5316 -2.7861<br>2.5329 -2.7844<br>2.5341 -2.7827<br>2.5353 -2.7812 | 2.8690 -3.2144 2.8709 -3.2119 2.8727 -3.2095 2.8745 -3.2071 2.8761 -3.2049 2.8778 -3.2027 2.8793 -3.2006                   | 3.2730 -3.7303<br>3.2755 -3.7269<br>3.2778 -3.7236<br>3.2801 -3.7205<br>3.2823 -3.7175<br>3.2844 -3.7146<br>3.2865 -3.7118 |
| 92 <b>0</b>                            | 2.1439 -2.3151                                                                                                             | 2.5365 -2.7796                                                                                                             | 2.8809 -3.1986                                                                                                             | 3.2885 -3.7091                                                                                                             |
| 94 <b>0</b>                            | 2.1447 -2.3140                                                                                                             | 2.5376 -2.7781                                                                                                             | 2.8823 -3.1967                                                                                                             | 3.2904 -3.7065                                                                                                             |

TABLE 15. UPPER AND LOWER CONFIDENCE BOUNDS OF T = (MU HAT - MU)/S(MU)

FOR ALPHA =0.90, 0.95, 0.975, AND 0.99

p=.995

UPPER BCUND = (8+A\*Z)/(C\*(D+Z)), LOWER BOUND = (8-A\*Z)/(C\*(D-Z))

(Z VALUES ARE STANDARD NORMAL VALUES FOR ALPHA)

|            |                | :              |                |                |
|------------|----------------|----------------|----------------|----------------|
| SAMPLE     | ALPHA = 0.90   | ALPHA = C.95   | ALPHA = 0.975  | ALPHA = 0.99   |
| SIZE       | UPPER LOWER    | UPPER LOWER    | UPPER LOWER    | UPPER LOWER    |
|            | BOUND BOUND    | BOUND BOUND    | BOUND BOUND    | BOUND BOUND    |
|            | 355.,5         |                | 200112         | 333,13         |
| 30         | 1.8422 -2.8700 | 2.1224 -3.6122 | 2.3562 -4.3458 | 2.6198 -5.3351 |
| 40         | 1.8892 -2.7486 | 2.1746 -3.4262 | 2.4221 -4.0834 | 2.7630 -4.9584 |
| <b>50</b>  | 1.9075 -2.6731 | 2.2122 -3.3121 | 2.4697 -3.9245 | 2.7634 -4.7216 |
| 6 <b>0</b> | 1.9285 -2.6208 | 2.2412 -3.2336 | 2.5065 -3.8162 | 2.8101 -4.5675 |
| 61         | 1.9304 -2.6164 | 2.2438 -3.2271 | 2.5097 -3.8072 | 2.8143 -4.5548 |
| 62         | 1.9322 -2.6121 | 2.2462 -3.2267 | 2.5129 -3.7984 | 2.8183 -4.5424 |
| 63         | 1.9339 -2.6080 | 2.2487 -3.2145 | 2.5160 -3.7899 | 2.8222 -4.5304 |
| 64         | 1.9357 -2.6039 | 2.2511 -3.2385 | 2.5190 -3.7817 | 2.8261 -4.5187 |
| 65         | 1.9374 -2.6000 | 2.2534 -3.2027 | 2.5220 -3.7737 | 2.8299 -4.5074 |
| 66         | 1.9390 -2.5962 | 2.2557 -3.1979 | 2.5249 -3.7659 | 2.8336 -4.4964 |
| 67         | 1.9407 -2.5925 | 2.2580 -3.1915 | 2.5277 -3.7583 | 2.8373 -4.4857 |
| 68         | 1.9422 -2.5889 | 2.2692 -3.1861 | 2.5346 -3.7509 | 2.8408 -4.4753 |
| 69         | 1.9438 -2.5853 | 2.2623 -3.1808 | 2.5333 -3.7437 | 2.8444 -4.4652 |
| 78         | 1.9453 -2.5819 | 2.2645 -3.1757 | 2.5360 -3.7367 | 2.8478 -4.4554 |
| 71         | 1.94692.5785   | 2.2665 -3.1717 | 2.5386 -3.7299 | 2.8512 -4.4458 |
| 72         | 1.9483 -2.5753 | 2.2686 -3.1659 | 2.5412 -3.7233 | 2.8545 -4.4364 |
| 73         | 1.9498 -2.5721 | 2.2706 -3.1611 | 2.5438 -3.7168 | 2.8577 -4.4273 |
| 74         | 1.9512 -2.5691 | 2.2726 -3.1565 | 2.5463 -3.7105 | 2.8609 -4.4185 |
| 75         | 1.9526 -2.5659 | 2.2745 -3.1520 | 2.5488 -3.7043 | 2.8641 -4.4098 |
| 76         | 1.9540 -2.5629 | 2.2764 -3.1476 | 2.5512 -3.6982 | 2.8672 -4.4013 |
| 77         | 1.9553 -2.5600 | 2.2783 -3.1432 | 2.5535 -3.6924 | 2.8702 -4.3931 |
| 78         | 20 7700 277712 | 2.2801 -3.1390 | 2.5559 -3.6866 | 2.8732 -4.3850 |
| 79         | 1.9579 -2.5544 | 2.2819 -3.1349 | 2.5582 -3.6816 | 2.8761 -4.3772 |
| 80         | 1.9592 -2.5517 | 2.2537 -3.1309 | 2.5604 -3.6755 |                |
| 91         | 1.9605 -2.5490 | 2.2854 -3.1269 | 2.5627 -3.6731 | 2.8819 -4.3619 |
| 82         | 1.9617 -2.5464 | 2.2871 -3.1231 | 2.5649 -3.6648 | 2.8847 -4.3546 |
| 93         | 1.9629 -2.5438 | 2.2888 -3.1193 | 2.5679 -3.6597 | 2.8874 -4.3474 |
| 84         | 1.9641 -2.5413 | 2.2905 -3.1156 | 2.5691 -3.6547 | 2.8961 -4.3404 |
| 85         | 1.9653 -2.5389 | 2.2921 -3.1128 | 2.5712 -3.6497 | 2.8928 -4.3335 |
| 86         | 1.9665 -2.5365 | 2.2937 -3.1084 | 2.5733 -3.6449 | 2.8954 -4.3267 |
| 87         | 1.9676 -2.5341 | 2.2953 -3.1049 |                | 2.8989 -4.3201 |
| 58         | 1.9688 -2.5318 | 2.2969 -3.1015 | 2.5773 -3.6355 | 2.9006 -4.3136 |
| 89         | 1.9699 -2.5296 | 2.2984 -3.0982 | 2.5792 -3.6310 | 2.9031 -4.3073 |
| 90         | 1.9710 -2.5273 | 2.2999 -3.0949 | 2.5812 -3.6265 | 2.9055 -4.3011 |
| 91         | 1.9720 -2.5252 | 2.3014 -3.0917 | 2.5831 -3.6222 | 2.9080 -4.2950 |
| 92         | 1.9731 -2.5230 | 2.3029 -3.0885 | 2.5849 -3.6179 | 2.9104 -4.2890 |
| 93         | 1.9741 -2.5209 | 2.3043 -3.0854 | 2.5868 -3.6137 | 2.9127 -4.2832 |
| 94         | 1.9752 -2.5189 | 2.3058 -3.0824 | 2.5886 -3.6095 | 2.9151 -4.2774 |
| 95         | 1.9762 -2.5168 | 2.3072 -3.0794 | 2.5904 -3.6055 | 2.9174 -4.2718 |
| 100        | 1.9810 -2.5072 | 2.3139 -3.0653 | 2.5990 -3.5863 | 2.9284 -4.2452 |
| 120        | 1.9976 -2.4758 | 2.3370 -3.0190 | 2.6284 -3.5237 | 2.9662 -4.1585 |

TABLE 15 .- CONTINUED

| SAMPLE       | ALPHA = 0.90   | ALPHA = 0.95   | ALPHA = 0.975    | ALPHA = 0.99      |
|--------------|----------------|----------------|------------------|-------------------|
| SIZE         | UPPER LOWER    | UPPER LOWER    | UPPER LOWER      | UPPER LOWER BOUND |
| 1 40         | 2.0146 -2.4569 | 2.3597 -2.9961 | 2.6569 -3.4837   | 3.0020 -4.1019    |
| 160          | 2.0249 -2.4375 | 2.3743 -2.9620 | 2.6756 -3.4460   | 3.0262 -4.0503    |
| 180          | 2.0337 -2.4218 | 2.3865 -2.9392 | 2.6913 -3.4156   | 3.0466 -4.0088    |
| 200          | 2.9412 -2.4088 | 2.3971 -2.9204 | 2.7649 -3.3904   | 3.0642 -3.9744    |
| 200          | 2.9477 -2.3977 | 2.4063 -2.9044 | 2.7167 -3.3690   | 3.0796 -3.9454    |
| 2 48         | 2.0535 -2.3882 | 2.4144 -2.8906 | 2.7272 -3.3507   | 3.0931 -3.9205    |
| 2 6 <b>0</b> | 2.0586 -2.3799 | 2.4216 -2.8786 | 2.7365 -3.3347   | 3.1652 -3.8989    |
| 2 80         | 2.0633 -2.3726 | 2.4281 -2.8680 | 2.7449 -3.3207   | 3.1161 -3.8798    |
| 300          | 2.0674 -2.3660 | 2.4339 -2.8586 | 2.7524 -3.3682   | 3.1259 -3.8629    |
| 320          | 2.0712 -2.3602 | 2.4393 -2.8502 | 2.7594 -3.2970   | 3.1349 -3.8477    |
| 348          | 2.0747 -2.3549 | 2.4442 -2.8425 | 2.7657 -3.2868   | 3.1432 -3.8340    |
| 360          | 2.0779 -2.3500 | 2.4487 -2.8356 | 2.7715 -3.2776   | 3.1508 -3.8216    |
| 380          | 2.0809 -2.3496 | 2.4529 -2.8292 | 2.7769 -3.2692   | 3.1578 -3.8103    |
| 400          | 2.0837 -2.3416 | 2.4568 -2.8234 | 2.7819 -3.2615   | 3.1643 -3.7999    |
| 420          | 2.0862 -2.3378 | 2.4638 -2.8131 | 2.7866 -3.2544   | 3.1764 -3.7983    |
| 440          | 2.0866 -2.3344 | 2.4638 -2.8131 | 2.7910 -3.2478   | 3.1761 -3.7814    |
| 46 <b>G</b>  | 2.0909 -2.3312 | 2.4669 -2.8084 | 2.7951 -3.2417   | 3.1815 -3.7731    |
| 49 <b>0</b>  | 2.0930 -2.3282 | 2.4699 -2.8041 | 2.7989 -3.2360   | 3.1865 -3.7655    |
| 500          | 2.0950 -2.3253 | 2.4727 -2.8001 | 2.8026 -3.2306   | 3.1913 -3.7583    |
| 520          | 2.1969 -2.3227 | 2.4754 -2.7963 | 2.8060 -3.2256   | 3.1957 -3.7515    |
| 540          | 2.1987 -2.3212 | 2.4779 -2.7927 | 2.8093 -3.2209   | 3.2000 -3.7452    |
| 560          | 2.1004 -2.3179 | 2.4803 -2.7894 | 2.8124 -3.2165   | 3.2040 -3.7392    |
| 580          | 2.1020 -2.3157 | 2.4826 -2.7862 | 2.8153 -3.2123   | 3.2079 -3.7336    |
| 6 <b>00</b>  | 2.1035 -2.3136 | 2.4847 -2.7832 | 2.9181 -3.2083   | 3.2115 -3.7283    |
| 6 <b>20</b>  | 2.1050 -2.3116 | 2.4868 -2.7813 | 2.8208 -3.2045   | 3.2150 -3.7232    |
| 640          | 2.1064 -2.3097 | 2.4887 -2.7776 | 2.8233 -3.2010   | 3.2183 -3.7184    |
| 660          | 2.1077 -2.3079 | 2.4906 -2.7751 | 2.8257 -3.1976   | 3.2215 -3.7138    |
| 630          | 2.1090 -2.3062 | 2.4924 -2.7726 | 2.8281 -3.1943   | 3.2246 -3.7095    |
| 700          | 2.1102 -2.3045 | 2.4942 -2.7713 | 2.8303 -3.1912   | 3.2275 -3.7053    |
| 720          | 2.1114 -2.3030 | 2.4958 -2.7680 | 2.8325 -3.1883   | 3.2303 -3.7014    |
| 740          | 2.1125 -2.3015 | 2.4974 -2.7659 | 2.8345 -3.1854   | 3.2330 -3.6976    |
| 760          | 2.1136 -2.3000 | 2.4989 -2.7638 | 2.8365 -3.1827   | 3.2356 -3.6940    |
| 780          | 2.1147 -2.2987 | 2.5304 -2.7618 | 2.8384 -3.1811   | 3.2381 -3.6905    |
| 8 <b>00</b>  | 2.1157 -2.2973 | 2.5018 -2.7599 | 2.8443 -3.1776   | 3.2405 -3.6871    |
| 820          | 2.1166 -2.2961 | 2.5032 -2.7581 | 2.8421 -3.1752   | 3.2429 -3.6839    |
| 840          | 2.1176 -2.2948 | 2.5046 -2.7564 | 2.8438 -3.1729   | 3.2451 -3.6808    |
| 860          | 2.1185 -2.2937 | 2.5058 -2.7547 | 2.8455 -3.1737   | 3.2473 -3.6778    |
| 880          | 2.1194 -2.2925 | 2.5071 -2.7531 | 2.8471 -3.1686   | 3.2494 -3.6750    |
| 9 <b>00</b>  | 2.1202 -2.2914 | 2.5083 -2.7515 | 2.8486 -3.1665   | 3.2514 -3.6722    |
| 920          | 2.1210 -2.2904 | 2.5094 -2.7500 | 2. 8501 - 3.1645 | 3.2534 -3.6695    |
|              | 2.1218 -2.2893 | 2.5106 -2.7485 | 2. 8516 - 3.1626 | 3.2553 -3.6669    |

## APPENDIX B

This appendix presents the computer program used to compute the density functions for a specified extreme mean and its confidence intervals.

```
PROGRAM MAIN (OUTPUT, TAPE 13)
      COMMON /SHARE/ N(41), K, DEN(103,9), DIST(103,9), T(103), INDEX(9)
       COMMON /CHARE/ A(41), B(41), C(41), D(41), DD(41), F(41)
                    ROUTINE TO PRODUCE TABLE FOR DISTRIBUTION OF
C4+++
                    VALUES ABOVE A..
C****
C***
                    CONFIDENCE INTERVAL COMPUTATIONS ..
C****
      DATA N/30,40,50,60/
      AA = 1.753975
      00 1 I=5,39
      N(I) = 60 + I - 4
C***
      N(48) = 180
      N(41) = 120
C****
      DO 7 L=1,2
      DO 2 J=1,3
      00 4 I=1,41
      IF(N(I).LF.120)
     -F(I)=SORT(FLOAT(N(I)-1)/2.)+GAMMA(FLOAT(N(I)-1)/2.)/GAMMA(FLOAT(N(
     -I))/2.)
      IF (N(I).GT.12C)
     -F(I) =EXP(+.5)*(FLOAT(N(I)-1)/FLOAT(N(I)))**((FLOAT(N(I))-1.)/2.)
      A(I) = . 1./SQRT(FLOAT(N(I))) + AA*F(I)/SQRT(FLOAT(2*N(I)-1))
      B(I) = AA*(F(I)*SQRT(FLOAT(2*N(I)-3)/FLOAT(2*N(I)-2))-1.)
      OD(I) = FLOAT(N(I))*AA*AA*(F(I)*F(I)-1.)
      C(I) = SQFT((1.+00(I)))/FLOAT(2*N(I)*N(I)-1))
    4 O(I) = SORT(FLOAT(2*N(I)-3))
      IF(L.EG.2)3,6
                    FRINT RESULTS, TABLE 1..
    6 IF(J.EQ.1) CALL PRINT1
C****
                    FRINT RESULTS, TABLE 2..
    3 IF (J.EQ.2) CALL PRINT2
      IF (J.E0.3) PRINT 104
       FORMAT (" "76 ("-"))
  104
      CONTINUE
  2
C****
      CALL DRAW1
      N(1) = 148
      DO 98 K=2.41
   98 N(K)=N(K-1)+26
C***
    7 K=0
C****
      CALL PLOT (0.,0.,999)
      END
```

```
SUBROUTINE DRAW1
      DIMENSION ZNORM (183,9)
      COMMON /SHARE/ N(41), K, DEN(103,9), DIST(103,9), T(103), INDEX(9)
      COMMON /CHARE/ A(41), B(41), C(41), D(41), DD(41), F(41)
      DATA INDEX/1,2,3,4,14,24,34,40,41/
      DATA FI/172162207732584285518/
      CALL PLOTS (0,0,13)
      CALL FACTOR(2./2.54)
      CALL PLOT (1.,2.,-3)
      T(102) = -5.
      T(103) = 1.
      ZNORM(1)2) = 0.
      ZNGRM(103) = .05
C****
                    FILL ARRAYS WITH DENSITY AND DISTRIBUTION VALUES...
C****
      DO 109 K=1,9
      I = INDEX(K)
C****
      DO 3 J=1,161
      T(J) = -5. + FLOAT(J-1)/10.
      ZNORM(J) = 1./SORT(2.*PI*EXP(T(J)*T(J)))
      X = (C(I)*i(I)*I(J) - B(I))/(A(I)*C(I)*T(J))
      DIST(J,K) = FNORMAL(X)
      DEN(J,K) = C(I)*(A(I)*D(I)-B(I))/(SQRT(2.*FI)*(A(I)-C(I)*T(J))**2)
     -+EXP(-(C(I)+D(I)+T(J)-9(I))++2/(2.*(A(I)-C(I)+T(J))++2))
  3
      CONTINUE
C****
      CALL AXIS(0.,u.," ".-1,13.,0.,-5.,1.)
      CALL AX93 (5.,0.," ",1,8.,90.,0.,05)
      DEN(102,K) = 0.
      DEN(103.K) = .05
C****
                    DO THE PLCTTING STUFF ....
      CALL LINE (T, DEN(1, K), 161, 1, 0, 0)
      CALL DASHL (T, ZNORM, 101,1,0,0)
      CALL SYMBOL(1.,8.5,.15,"DENSITY FUNCTION OF Z(...) AND T(-) = (MU H
     -HAT - MU)/S(MU HAT)", 0., 62)
      CALL SYMBOL (8.5,8.,.15,"N = ",0.,4)
      CALL NUMBER (9.1.8.,.15.FLOAT (N(INDEX(K))).0.,-1)
      CALL PLOT (12., 0., -3)
                    FRINT RESULTS, TABLE 3..
  109 CALL PRINT4
C****
      RETURN
      END
```

```
SUBROUTINE PRINT1
     DIMENSION Z(4)
     COMMON /SHARE/ N(41),K,DEN(103,9),DIST(103,9),T(103),INDEX(9)
     COMMON /CHARE/ A(41),8(41),C(41),D(41),DD(41),F(41)
     FCNU(A,3,C,0,Z) = (B+A+Z)/(C+(B+Z))
     FCNL(A+B+C+D+Z) = (B-A+Z)/(C+(D-Z))
     DATA Z/1.645,1.96, 2.24,2.576/
     PRINT 100, (N(I), F(I), SQRT((1.+DU(I))/FLOAT(N(I))), A(I), B(I), C(I),
  - -D(1).I=1.41)
166 FOFMAT(*1*,//,* TABLE 1.*,/,T10,"VARIOUS FUNCTION OF N NEEDED IN
    -THE CALCULATION OF THE", /, T10, "DISTRIBUTION OF T = (MU HAT - MU)/S
    - (MU HAT) ", //, T15, "F = (GAMMA((N-1)/2)/GAMMA(N/2)) *SQRT((N-1)/2)", /
                    115,"01 = N*(F*F - 1)*A1*A1",/,
    -,
                    115,"A = 1./SQRT(N) + A1*F*(1./SQRT(2*(N-1)))",/,
                    T15,"B = A1*(F*SQRT(2*N-3)/(2*N-2)) -1)",/,
                    T15,"C = SQRT( (1 + D1)/(2*N*(N-1) )",/,
                   T15,"D = SORT(2*N-3)",///,
        N",T13,"F",T20,"SQRT((1+D1)/N)",T38,"A",T48,"8",T58,"C",T68,"D"
    -(" "I3,T9,F9.6,T20,F9.6,T33,F9.6,T43,F9.6,T53,F9.6,T63,F9.6))
     RETURN
     ENTRY FRINTS
   4 PRINT 132, (N(I), (FLNU(A(I), B(I), C(I), D(I), Z(M)),
                   FCNL(A(I),B(I),C(I),D(I),Z(M)),M=1,4),I=1,41)
 102 FORMAT ("1",//" TABLE 2: UPPER AND LOWER CONFIDENCE BOUNDS OF T =
    -(MU HAT - MU)/5(MU)"/T15,"FOR ALPHA =0.90, 0.95, 0.975, AND 0.99"//
    - T12,"(=.9"
    -/T12, "UPPER BOUND = (8+A+Z)/(C+(0+Z)), LOWER BOUND = (8-A+Z)/(C+(D+Z))
    --Z)) "/,T15,"(Z VALUES ARE STANDARD NORMAL VALUES FOR ALPHA) "//" ",
    -76("-"),/,T2,"SAMPLE",19,"I ALPHA = 0.90",T26,"I ALPHA = 0.95",T43
    -,"I ALFHA = 0.975", T60, "I ALPHA = 0.99", T77, "I", /, T9,69("-"), /, -T4, "SIZE", T9, "I UPPER I LOWER", T26, "I UPPER I LOWER", T43, "I UPPE
    -R I LCWER", TED, "I UPPER I LOWER", T77, "I", /, T9,
-"I BOUND I BOUND", T26, "I BOUND I BOUND", T43, "I BOUND I BOUND",
    -T6(,"I BOUND I BOUND",T77,"I",/,T2,76("-"),/
            (" "13, T9, "I ", F6. 4, 1X, F7. 4, T26, "I ", F6. 4, 1X, F7. 4, T43, "I ",
    -F6.4.1X.F7.4.T60,"I ".F6.4.1X.F7.4.T77,"I"))
     RETURN
     ENTRY PRINT4
     PRINT 136, N(INDEX(K)),(T(II),DEN(II,K),DIST(II,K),T(II+50),DEN(II
    -+50,K),OIST(II+50,K),II=1,50)
 106 FORMAT (*1*,//," TABLE 3. DENSITY ( D(T) ) AND DISTRIBUTION ( F(T
    -) ) OF THE RANDOM VARIABLE"/, T15, "T = (MU HAT - MU)/S(MU HAT)
    -N = ... 13.//.
    -112, "T", T22, "C(T)", T32, "F(T)", T45, "T", T55, "C(T)", T65, "F(T)",/,
    -( 10(* *,110,F6.2,T20,F9.6,T30,F9.6,T43,F6.2,T53,F9.6,T63,F9.6,/)
    -))
     RETURN
     END
```

```
SUBROUTINE CINTRVL(XBAR, SIGMA, FCNU, FCNL, N, XLOW, XHIGH)
C****
C***
                     SUBROUTINE TO PRODUCE 95 PERCENT CONFIDENCE INTERVALS
C***
                     FOR EXTREEM MEAN
C + + +.*
C++++
                     BY BROWNLOW, SDC/ISI 3/79
C****
                     INFUT :
C + + + +
                       XBAR GATA MEAN
                       SIGMA DATA STANDARD DEVIATION
                       FCNU.FCNL FUNCTIONAL VALUES PASSED IN FROM
                       N NUMBER OF OBSERVATIONS IN THE SAMPLE... MAIN ROUTINE WRITTEN BY CRUM.
                    CUTPUT:
                       XLOW LOWER CONFIDENCE INTERVAL VALUE
                       XHIGH UPPER CONFIDENCE INTERVAL VALUE.
C***
C * * * *
C++++
                    FOR VARIOUS PROBABILITY VALUES, AA AND Z MUST
C***
                    RE CHANGED. .
C++++
                      SEE PAPER FOR DETAILS...
C***
      AA = 2.362712834
      7 = 1.644853628
C****
C++++
      FN = N
      F = EXF(.5)*((FN-1.)/FN)**((FN-1.)/2.)
C****
      DD = FN*AA*(F*F-1.)
      XLCH = XBAR + AA*F*SIGMA - FCNU*SIGMA*SQRT((1.+DD)/FN).
      XHIGH = XBAR + AA*F*SIGMA - FCNL*SIGMA*SORT((1.+DD)/FN)
C++++
C****
C****
      RETURN.
      ENU
```

### **REFERENCES**

- 1. Bauer, Carol A.; Mackall, Karen G.; Stoll, Frederick; and Tremback, Jeffrey W.: Comparison of Flight and Wind Tunnel Model Instantaneous Distortion Data From a Mixed-Compression Inlet. YF-12 Experiments Symposium, Vol. 3. NASA CP-2054, 1978, pp. 295-375.
- 2. Fisz, Marek: Probability Theory and Mathematical Statistics. Third ed. John Wiley & Sons, Inc., c. 1963.
- 3. Zacks, Shelemyahu: The Theory of Statistical Inference. John Wiley & Sons, Inc., c. 1971.

É,

| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or revalue statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extremedution are derived. The distribution of samples is found to be non-normal. Further variance of the unbiased estimate compound.  The computer program used to obtain tions of the standardized unbiased estim of the extreme mean for any data are incomposed in included to demonstrate the uncomposed in the standardized uncomposed in the standard | results are predica distributed data. p-th probability t  me mean and its lar f this estimate eve ther, as the sample onverges to the Cran the density and d mate, and the conficluded for ready apusefulness of extre  8. Distribution Statement Unclassified—Unl | An extreme mear runcated normal ge sample distr n for very large size increases mer-Rao lower istribution fundence intervals plication. An me mean application imited                   | ;-<br>:<br>:                          | 65 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----|
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or revalue statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extreme bution are derived. The distribution of samples is found to be non-normal. Further the variance of the unbiased estimate cobound.  The computer program used to obtain tions of the standardized unbiased estim of the extreme mean for any data are incompleted in the computer in the extreme mean for any data are incompleted in the extreme mean for any data are incompleted in the extreme mean for any data are incompleted in the extreme mean for any data are incompleted in the extreme mean for any data are incompleted in included to demonstrate the undirected distribution  17. Key Words (Suggested by Author(s))  Maximum value prediction Truncated distribution Normal distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | results are predica distributed data. p-th probability t me mean and its lar f this estimate eve ther, as the sample onverges to the Cran the density and d mate, and the conficluded for ready apusefulness of extre 8. Distribution Statement                    | ted upon extreme An extreme mear runcated normal ge sample distring for very large size increases mer-Rao lower istribution fundence intervals plication. An me mean application imited | tion.                                 |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or revalue statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extreme bution are derived. The distribution of samples is found to be non-normal. Further the variance of the unbiased estimate combound.  The computer program used to obtain tions of the standardized unbiased estim of the extreme mean for any data are incompacted in the computer in the computer than the example is included to demonstrate the uncompacted distribution  17. Key Words (Suggested by Author(s)) Maximum value prediction Truncated distribution Normal distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | results are predica distributed data. p-th probability t me mean and its lar f this estimate eve ther, as the sample onverges to the Cran the density and d mate, and the conficluded for ready apusefulness of extre 8. Distribution Statement                    | ted upon extreme An extreme mear runcated normal ge sample distring for very large size increases mer-Rao lower istribution fundence intervals plication. An me mean applica            | ;-<br>:<br>:                          |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or revalue statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extrementation but on are derived. The distribution of samples is found to be non-normal. Further the variance of the unbiased estimate cobound.  The computer program used to obtain tions of the standardized unbiased estim of the extreme mean for any data are into the extremental program and the program and prog | results are predica distributed data. p-th probability t me mean and its lar f this estimate eve ther, as the sample onverges to the Cran the density and d mate, and the conficluded for ready apusefulness of extre 8. Distribution Statement                    | ted upon extreme An extreme mear runcated normal ge sample distring for very large size increases mer-Rao lower istribution fundence intervals plication. An me mean applica            | ;-<br>:<br>:                          |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or revalue statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extrement bution are derived. The distribution of samples is found to be non-normal. Further variance of the unbiased estimate compound.  The computer program used to obtain tions of the standardized unbiased estim of the extrement mean for any data are incomposed in the incomposition of the extrement of the extrement of the example is included to demonstrate the uncomposition of the extrement of the example is included to demonstrate the uncomposition of the extrement of the example is included to demonstrate the uncomposition of the extrement of the example is included to demonstrate the uncomposition of the extrement of the example is included to demonstrate the uncomposition of the extrement of the example is included to demonstrate the uncomposition of the extrement of the extrement of the example is included to demonstrate the uncomposition of the extrement of the example is included to demonstrate the uncomposition of the extrement of the extrement of the uncomposition of the extrement of the extrement of the uncomposition of the extrement of the uncomposition of the extrement of the extrement of the uncomposition of the extrement of the uncomposition of the extrement of the extrement of the uncomposition of  | results are predica distributed data. p-th probability t me mean and its lar f this estimate eve ther, as the sample onverges to the Cran the density and d mate, and the conficluded for ready apusefulness of extre 8. Distribution Statement                    | ted upon extreme An extreme mear runcated normal ge sample distring for very large size increases mer-Rao lower istribution fundence intervals plication. An me mean applica            | ;-<br>:<br>:                          |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or revalue statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extremedution are derived. The distribution of samples is found to be non-normal. Further variance of the unbiased estimate combound.  The computer program used to obtain tions of the standardized unbiased estim of the extreme mean for any data are incomputed in included to demonstrate the uncomputed in the standardized demonstrated in the standardized demonstrated in the standardized dem | results are predica distributed data. p-th probability t me mean and its lar f this estimate eve ther, as the sample onverges to the Cran the density and d mate, and the conficluded for ready ap usefulness of extre                                             | ted upon extreme An extreme mear runcated normal ge sample distring for very large size increases mer-Rao lower istribution fundence intervals plication. An                            | ;-<br>:<br>:                          |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or r value statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extrem bution are derived. The distribution of samples is found to be non-normal. Furt the variance of the unbiased estimate co bound.  The computer program used to obtain tions of the standardized unbiased estim of the extreme mean for any data are inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | results are predica distributed data. p-th probability t me mean and its lar f this estimate eve ther, as the sample onverges to the Crant the density and d mate, and the conficluded for ready ap                                                                | ted upon extreme An extreme mear runcated normal ge sample distring for very large size increases mer-Rao lower istribution fundence intervals plication. An                            | ;-<br>:<br>:                          |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or r value statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extrem bution are derived. The distribution of samples is found to be non-normal. Furt the variance of the unbiased estimate co bound.  The computer program used to obtain tions of the standardized unbiased estim of the extreme mean for any data are inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | results are predica distributed data. p-th probability t me mean and its lar f this estimate eve ther, as the sample onverges to the Crant the density and d mate, and the conficluded for ready ap                                                                | ted upon extreme An extreme mear runcated normal ge sample distring for very large size increases mer-Rao lower istribution fundence intervals plication. An                            | ;-<br>:<br>:                          |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or r value statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extrem bution are derived. The distribution of samples is found to be non-normal. Furt the variance of the unbiased estimate co bound.  The computer program used to obtain tions of the standardized unbiased estim of the extreme mean for any data are inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | results are predica distributed data. p-th probability t me mean and its lar f this estimate eve ther, as the sample onverges to the Crant the density and d mate, and the conficluded for ready ap                                                                | ted upon extreme An extreme mear runcated normal ge sample distring for very large size increases mer-Rao lower istribution fundence intervals plication. An                            | ;-<br>:<br>:                          |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or r value statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extrem bution are derived. The distribution of samples is found to be non-normal. Furt the variance of the unbiased estimate co bound.  The computer program used to obtain tions of the standardized unbiased estim of the extreme mean for any data are inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | results are predica distributed data. p-th probability t me mean and its lar f this estimate eve ther, as the sample onverges to the Crant the density and d mate, and the conficluded for ready ap                                                                | ted upon extreme An extreme mear runcated normal ge sample distring for very large size increases mer-Rao lower istribution fundence intervals plication. An                            | ;-<br>:<br>:                          |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or r value statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extrem bution are derived. The distribution of samples is found to be non-normal. Furt the variance of the unbiased estimate co bound.  The computer program used to obtain tions of the standardized unbiased estim of the extreme mean for any data are inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | results are predica distributed data. p-th probability t me mean and its lar f this estimate eve ther, as the sample onverges to the Crant the density and d mate, and the conficluded for ready ap                                                                | ted upon extreme An extreme mear runcated normal ge sample distring for very large size increases mer-Rao lower istribution fundence intervals plication. An                            | ;-<br>:<br>:                          |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or r value statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extrem bution are derived. The distribution of samples is found to be non-normal. Furt the variance of the unbiased estimate co bound.  The computer program used to obtain tions of the standardized unbiased estim of the extreme mean for any data are inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | results are predica distributed data. p-th probability t me mean and its lar f this estimate eve ther, as the sample onverges to the Crant the density and d mate, and the conficluded for ready ap                                                                | ted upon extreme An extreme mear runcated normal ge sample distring for very large size increases mer-Rao lower istribution fundence intervals plication. An                            | ;-<br>:<br>:                          |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or revalue statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extrement bution are derived. The distribution of samples is found to be non-normal. Furthe variance of the unbiased estimate conduct.  The computer program used to obtain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | results are predica distributed data. p-th probability t me mean and its lar f this estimate eve ther, as the sample onverges to the Cra                                                                                                                           | ted upon extreme An extreme mear runcated normal ge sample distrinfor very large size increases mer-Rao lower istribution func                                                          | -<br> -<br> -<br> -<br> -<br> -<br> - |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or revalue statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extrement bution are derived. The distribution of samples is found to be non-normal. Furt the variance of the unbiased estimate combound.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | results are predica<br>distributed data.<br>p-th probability t<br>me mean and its lar<br>f this estimate eve<br>ther, as the sample<br>onverges to the Cra                                                                                                         | ted upon extreme<br>An extreme mear<br>runcated normal<br>ge sample distr<br>n for very large<br>size increases<br>mer-Rao lower                                                        | -<br> -<br> -<br> -<br> -<br> -<br> - |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develoy Corporation) and William R. Winter (NASA Dryden Flig Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or revalue statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extrement bution are derived. The distribution of samples is found to be non-normal. Further the variance of the unbiased estimate contents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | results are predica<br>distributed data.<br>p-th probability t<br>me mean and its lar<br>f this estimate eve<br>ther, as the sample                                                                                                                                | ted upon extreme<br>An extreme mear<br>runcated normal<br>ge sample distr<br>n for very large<br>size increases                                                                         | -<br> -                               |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or r value statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extrem bution are derived. The distribution of samples is found to be non-normal. Furt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | results are predica<br>distributed data.<br>p-th probability t<br>me mean and its lar<br>f this estimate eve<br>ther, as the sample                                                                                                                                | ted upon extreme<br>An extreme mear<br>runcated normal<br>ge sample distr<br>n for very large<br>size increases                                                                         | -<br> -                               |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  16. Abstract  In many applications, a number or r value statistics obtained from normally in this study is defined as the mean of distribution.  An unbiased estimate of this extrem bution are derived. The distribution of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | results are predica<br>distributed data.<br>p-th probability t<br>me mean and its lar<br>f this estimate eve                                                                                                                                                       | ted upon extreme<br>An extreme mear<br>runcated normal<br>ge sample distr<br>n for very large                                                                                           | -<br> -                               |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  In many applications, a number or revalue statistics obtained from normally in this study is defined as the mean of distribution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | results are predica<br>distributed data.<br>p-th probability t                                                                                                                                                                                                     | ted upon extreme<br>An extreme mear<br>runcated normal                                                                                                                                  | )<br>                                 |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develop Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  In many applications, a number or realue statistics obtained from normally in this study is defined as the mean of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | results are predica<br>distributed data.                                                                                                                                                                                                                           | ted upon extreme<br>An extreme mear                                                                                                                                                     |                                       |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  In many applications, a number or realue statistics obtained from normally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | results are predica<br>distributed data.                                                                                                                                                                                                                           | ted upon extreme<br>An extreme mear                                                                                                                                                     |                                       |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes  In many applications, a number or research center  In many applicatio | results are predica                                                                                                                                                                                                                                                | ted upon extreme                                                                                                                                                                        |                                       |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                  | 4. Sponsoring Agency                                                                                                                                                                    |                                       |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develop Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                  | 4. Sponsoring Agency                                                                                                                                                                    |                                       | 3  |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                  | 4. Sponsoring Agency                                                                                                                                                                    |                                       |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                  | 4. Sponsoring Agency                                                                                                                                                                    |                                       | 3  |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546  15. Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                  | 4. Sponsoring Agency                                                                                                                                                                    |                                       |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                  | 4. Sponsoring Agency                                                                                                                                                                    |                                       |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                  | 4. Sponsoring Agency                                                                                                                                                                    |                                       | 3  |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                  | 4. Sponsoring Agency                                                                                                                                                                    |                                       | 3  |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                  | 4. Sponsoring Agency                                                                                                                                                                    |                                       |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flighesearch Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523  12. Sponsoring Agency Name and Address National Aeronautics and Space Administration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                  | 4. Sponsoring Agency                                                                                                                                                                    |                                       |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         | Code                                  | 3  |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flig Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273 Edwards, California 93523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                  | A C                                                                                                                                                                                     | Code                                  | 3  |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                              | Technical Mem                                                                                                                                                                           |                                       |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flight Research Center)  9. Performing Organization Name and Address NASA Dryden Flight Research Center P. O. Box 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                    | 3. Type of Report an                                                                                                                                                                    | 1 Period Covere                       |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develor Corporation) and William R. Winter (NASA Dryden Flig Research Center)  9. Performing Organization Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | '                                                                                                                                                                                                                                                                  | NAS4-2334                                                                                                                                                                               | NO.                                   |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develop Corporation) and William R. Winter (NASA Dryden Flig Research Center)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                    | 1. Contract or Grant                                                                                                                                                                    | No.                                   | ·  |
| <ol> <li>Title and Subtitle         EXTREME MEAN AND ITS APPLICATIONS</li> <li>Author(s)         Ram Swaroop and James D. Brownlow (System Develop Corporation) and William R. Winter (NASA Dryden Flight)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    | 0. Work Unit No.<br>168-02-05                                                                                                                                                           |                                       |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS  7. Author(s) Ram Swaroop and James D. Brownlow (System Develop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ight                                                                                                                                                                                                                                                               | 0. Work Unit No.                                                                                                                                                                        |                                       |    |
| 4. Title and Subtitle EXTREME MEAN AND ITS APPLICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pment                                                                                                                                                                                                                                                              | <ol> <li>Performing Organiza<br/>H-1088</li> </ol>                                                                                                                                      | tion Report No.                       |    |
| 4. Title and Subtitle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |                                       |    |
| 4. Title and Subtitle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    | 6. Performing Organiza                                                                                                                                                                  | tion Code                             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                    | December 1979                                                                                                                                                                           |                                       |    |
| NASA TM-81346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                    | 5. Report Date                                                                                                                                                                          | ·····                                 |    |
| 1. Report No. 2. Government Accession                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 190,                                                                                                                                                                                                                                                             | 3. Recipient's Catalog                                                                                                                                                                  | IVO.                                  |    |

ì,