Visualizing Neurons: A Comparative Analysis of PDE-Based Image Reconstruction

James Rosado

February 15, 2020

Project Proposal

Image segmentation is the process of partitioning raw digital data (an image) into image objects, e.g. pixels, line segments, closed contours/surfaces. The purpose is to generate meaningful data e.g. a 2D closed contour or 3D triangulation that then can be utilized as a computational domain to analyze/solve PDE model equations on [4]. The process itself will require the use of non-linear equations PDEs. In particular one methodology utilizes active contours (or snakes) [3], that is an evolving curve which is constrained by a given raw image $u_0(x)$, where $x \in \Omega \subset \mathbb{R}^2$ in 2D as an example. The snake models that are used [3] are based on

$$F_1(C) = \alpha \int_0^1 |C'(s)|^2 ds + \beta \int_0^1 |C''(s)| ds - \lambda \int_0^1 |\nabla u_0(C(s))|^2 ds$$

where the contour C that minimizes the above functional is the contour that realizes the image and this is analogous to a non-linear PDE. A more compact version [3] is given by

$$F_2(C) = \int_0^1 g(\nabla(u_0(s))) \ ds$$

which is analogous to

$$\phi_t = |\nabla \phi| g(\nabla u_0) \kappa + \nabla g(\nabla u_0) \cdot \nabla \phi$$

where ϕ are the isocontours, level sets, of our image u_0 , this formulation is given by [5]. Another methodology involves gradient vector flows [2]

$$E_{\text{GVF}} = \iint \mu(u_x^2 + u_y^2 + v_x^2 + v_y^2) + |\nabla f|^2 |\mathbf{v} - \nabla f|^2 dx dy$$

where μ is a controllable smoothing term, which is solved by the Euler equations

$$\mu \nabla^2 u - \left(u - \frac{\partial}{\partial x} F_{\text{ext}} \right) \left(\frac{\partial}{\partial x} F_{\text{ext}}(x, y)^2 + \frac{\partial}{\partial y} F_{\text{ext}}(x, y)^2 \right) = 0$$
$$\mu \nabla^2 v - \left(v - \frac{\partial}{\partial y} F_{\text{ext}} \right) \left(\frac{\partial}{\partial x} F_{\text{ext}}(x, y)^2 + \frac{\partial}{\partial y} F_{\text{ext}}(x, y)^2 \right) = 0$$

A third methodology is to use the Mumford-Shah functional [1]

$$E[J,B] = C \int_D (I(\vec{x}) - J(\vec{x}))^2 d\vec{x} + A \int_{D/B} \vec{\nabla} J(\vec{x}) \cdot \vec{\nabla} J(\vec{x}) d\vec{x} + B \int_B ds$$

optimizing this functional leads to a criteria for segmenting an image into sub-image regions and Ambrosio-Tortorelli give an algorithm for acheiving the minimum and also show the minimum is well-defined. For this project we will implement the aforementioned methodologies to realize computational domains from 2D and then 3D raw neuronal cell data. From these implementations we will perform a comparative analysis of the reproduced image data and determine if there is a particular methodology that is more efficient given the unstructured nature of neuron cells.

References

- [1] Luigi Ambrosio and Vincenzo Maria Tortorelli. Approximation of functional depending on jumps by elliptic functional via t-convergence. *Communications on Pure and Applied Mathematics*, 43(8):999–1036, 1990.
- [2] Chenyang Xu and J. L. Prince. Gradient vector flow: a new external force for snakes. In *Proceedings* of *IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, pages 66–71, June 1997.
- [3] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences. Springer New York, 2006.
- [4] George Stockman and Linda G. Shapiro. Computer Vision. Prentice Hall PTR, USA, 1st edition, 2001.
- [5] Hong-Kai Zhao, T. Chan, B. Merriman, and S. Osher. A variational level set approach to multiphase motion. *Journal of Computational Physics*, 127(1), 8 1996.