04-02-2020 Meeting Minutes - Nanoparticles Case Study

General Notes

- Nondimensionalisation
 - We have found that by using the change of variables $\hat{r} = kr$ and $\hat{t} = Dk^2t$ our equations simplify:
 - We get that our partial differential equation simplifies so that the diffusion constant D is removed.
 - We get that the $\frac{1}{k}$ factor in the robin boundary conditions at r = R(t) is removed.
 - O When using the suggested scaling: $\hat{c}_3(\hat{r},\hat{t}) = \frac{c_3(\hat{r},\hat{t})}{c_m(0)}$ we found:
 - Our PDE does not change.
 - The right hand side of the boundary condition at r=R(t) is divided by a factor of $c_{\infty}(0)$.
 - The right hand side of the boundary condition at infinity becomes: $\frac{c_{\infty}(\hat{t})}{c_{\infty}(0)}$.
 - The right hand side of our initial condition reduces to 1.
 - O When using the suggested scaling: $\hat{c}_3(\hat{r},\hat{t}) = \frac{c_3(\hat{r},\hat{t}) c_\infty(0)}{\Delta c}$ we found:
 - Our PDE does not change.
 - The right hand side of the boundary condition at r=R(t) becomes: $\frac{c_1(t)-c_\infty(0)}{\Delta c}.$
 - The right hand side of the boundary condition at infinity becomes: $\frac{c_{\infty}(t)-c_{\infty}(0)}{\Lambda c}.$
 - The right hand side of the initial condition reduces to 0.
 - \circ We are unsure how to pick Δc since there is no natural choice.
 - Ask supervisor on Thursday how we are supposed to pick this scaling factor.
- Timescales
 - The Damköhler number in out model corresponds to the ratio: $\frac{k}{D}$.
 - When this quantity is very large it corresponds to the chemical reaction dominating the system (i.e. $D \ll k$).
 - When this quantity is very small it corresponds to the diffusion process dominating the system (i.e. $k \ll D$).
 - Would be useful to see if we can perform a substitution that introduces a factor of either $\frac{k}{D}$ or its reciprocal into our governing equations, so that we may use asymptotics to analyse the behaviour of this system in the two extremes.

Plan of Action

- William will update the Overleaf document so that the equations are consistent with those provided by our supervisor.
- Lewis will update the Overleaf document to explain how our change of variables from (r,t) to (\hat{r},\hat{t}) simplifies our system. He will also add the equations we get when using the substitutions for $\widehat{c_3}$ suggested by our supervisor, so that we can show him why it is not clear how to pick Δc .

• Shyam and Piefeng will attempt to see if there is a time scaling (change of variable for t) which can be made to introduce either a factor of $\frac{k}{D}$ or $\frac{D}{k}$ into our governing equation and look at any asymptotic analysis (i.e. setting either $0 \ll \frac{k}{D} < 1$ or $0 \ll \frac{D}{k} < 1$).