1 向量

1.1 基本概念

- 1. n 个数 a_1, a_2, \ldots, a_n 所组成的有序数组 $\alpha = (a_1, a_2, \ldots, a_n)^T$ 或 $\alpha = (a_1, a_2, \ldots, a_n)$ 称为 n 维向量,其中 a_1, a_2, \ldots, a_n 称为向量 α 的分量(或坐标),前一个表示式称为列向量,后者称为行向量
- 2. 对 n 维向量 $\alpha_1, \alpha_2, \ldots, \alpha_s$,如果存在不全为零的数 k,使得

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

则称向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性相关,否则,称向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性无关

- (a) 有零向量
- (b) 两向量成比例
- (c) $n+1 \uparrow n$ 维向量
- 3. TODO: 向量组 $\alpha_1 = (a_{11}, a_{21}, \dots, a_{r1})^T, \alpha_2 = (a_{12}, a_{22}, \dots, a_{r2})^T, \dots, \alpha_m = (a_{1m}, a_{2m}, \dots, a_{rm})^T$ 及向量组 $\alpha_1 = (a_{11}, a_{21}, \dots, a_{r1})^T, \alpha_2 = (a_{12}, a_{22}, \dots, a_{r2})^T, \dots, \alpha_m = (a_{1m}, a_{2m}, \dots, a_{rm})^T$

1.2 定理

- 1. 向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 线性相关
 - (a) $\Leftrightarrow \Box \Box \Box \Box \Box \Box \Box [\alpha_1, \alpha_2, \dots, \alpha_s][x_1, x_2, \dots, x_n]^T = 0$ 有非零解
 - $(b)\Leftrightarrow\Box\Box\Box\Box\Box\Gamma(lpha_1,lpha_2,\ldots,lpha_s)< s$, s 表示未知数的个数或向量个数
 - (c) $\Leftrightarrow \square \square \square \square \square \square \square (n \square n \square \square) \square \square |\alpha_1, \alpha_2, \dots, \alpha_n| = 0$
- 2. n+1 个 n 维向量一定线性相关
- 3. 任何部分组 $\alpha_1, \alpha_2, \ldots, \alpha_r$ 相关 \Rightarrow 整体组 $\alpha_1, \alpha_2, \ldots, \alpha_r, \ldots, \alpha_s$ 相关
- 4. 整体组 $\alpha_1, \alpha_2, \dots, \alpha_r, \dots \alpha_s$ 无关 \Rightarrow 部分组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 无关
- 5. $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关 \Rightarrow 延伸组 $\widetilde{\alpha_1}, \widetilde{\alpha_2}, \ldots, \widetilde{\alpha_n}$ 线性无关
- 6. $\widetilde{\alpha}_1, \widetilde{\alpha}_2, \ldots, \widetilde{\alpha}_n$ 线性相关 ⇒ 缩短组 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性相关

1.3 运算

- 1. 设 n 维向量 $\alpha = (a_1, a_2, \dots, a_n)^T, \beta = (b_1, b_2, \dots, b_n)^T$,则
 - (a) $\alpha + \beta = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)^T$
 - (b) $k\alpha = (ka_1, ka_2, ..., ka_n)^T$
 - (c) $0\alpha = 0$
 - (d) $(\alpha, \beta) = \alpha^T \beta = \beta^T \alpha = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$

- (e) $\alpha + \beta = \beta + \alpha$
- (f) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
- (g) $\alpha + 0 = \alpha$
- (h) $\alpha + (-\alpha) = 0$
- (i) $1\alpha = \alpha$
- (j) $k(l\alpha) = (kl)\alpha$
- (k) $k(\alpha + \beta) = k\alpha + k\beta$
- (1) $(k+l)\alpha = k\alpha + l\alpha$

2.

1.4 条件转换思路

1.