Dokumen 3 Tugas Besar IF3141

Analisis Solusi

Scoop & Skoops

Disusun oleh: Kelompok K01-G08

Muhammad Yusuf Rafi	/ 13522009
Erdianti Wiga Putri A	/ 13522053
Nabila Shikoofa Muida	/ 13522069
Bagas Sambega R	/ 13522071
Enrique Yanuar	/ 13522077
Abdul Rafi Radityo H	/ 13522089

Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika - Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132 2025

Program Studi	Nomor Dokumen	Jumlah Halaman
Teknik Informatika STEI – ITB	SI-03/K01-G08	72

Daftar Isi

Daftar Isi	2
Daftar Tabel	4
Daftar Gambar	6
Bab I	
Kondisi Bisnis Perusahaan	
1.1. Tujuan Dokumen	
1.2. Kondisi Bisnis Perusahaan	7
Bab II	4.0
Analisis Kelayakan Alternatif Solusi	
2.1. Alternatif Solusi 1: Customer Relationship Management System	
2.1.1. Deskripsi Solusi	
2.1.2. Analisis Implementasi Solusi	
2.1.3. Analisis Kelayakan Solusi	
2.1.3.1. Aspek <i>Schedule</i>	
2.1.3.2. Aspek <i>Cost</i>	
2.1.3.3. Aspek <i>Technical</i>	
2.1.3.4. Aspek <i>Operational</i>	
2.1.3.5. Aspek Sustainability	
2.2. Alternatif Solusi 2: Platform Komunikasi Antar Cabang Terpusat	
2.2.1. Deskripsi Solusi	
2.2.2. Analisis Implementasi Solusi	
2.2.3. Analisis Kelayakan Solusi	
2.2.3.1. Aspek <i>Schedule</i>	
2.2.3.2. Aspek <i>Cost</i>	
2.2.3.3. Aspek <i>Technical</i>	
2.2.3.4. Aspek <i>Operational</i>	
2.2.3.5. Aspek Sustainability	
2.3. Alternatif Solusi 3: Platform R&D Digital untuk Inovasi Produk dan Manajemen	
Bahan Baku Alternatif	
2.3.1. Deskripsi Solusi	
2.3.2. Analisis Implementasi Solusi	
2.3.3. Analisis Kelayakan Solusi	
2.3.3.1. Aspek Schedule	
2.3.3.2. Aspek Cost	
2.3.3.3. Aspek <i>Technical</i>	
2.3.3.4. Aspek <i>Operational</i> 2.3.3.5. Aspek <i>Sustainability</i>	
2.3.3.5. Aspek Sustainability	
2.4.1. Deskripsi Solusi	∠/

2.4.2. Analisis Implementasi Solusi.	27
2.4.3. Analisis Kelayakan Solusi	28
2.4.3.1. Aspek Schedule	28
2.4.3.2. Aspek <i>Cost</i>	29
2.4.3.3. Aspek Technical.	30
2.4.3.4. Aspek Operational	31
2.4.3.5. Aspek Sustainability	32
2.5. Alternatif Solusi 5: Dashboard Analitik Pemasaran dan Ekspansi	33
2.5.1. Deskripsi Solusi	33
2.5.2. Analisis Implementasi Solusi	33
2.5.3. Analisis Kelayakan Solusi	34
2.5.3.1. Aspek Schedule	34
2.5.3.2. Aspek <i>Cost</i>	35
2.5.3.3. Aspek <i>Technical</i>	35
2.5.3.4. Aspek Operational	36
2.5.3.5. Aspek Sustainability	37
2.6. Alternatif Solusi 6: Platform B2B <i>E-Commerce</i> untuk Mitra Bisnis	
2.6.1. Deskripsi Solusi	38
2.6.2. Analisis Implementasi Solusi	
2.6.3. Analisis Kelayakan Solusi	40
2.6.3.1. Aspek Schedule	40
2.6.3.2. Aspek <i>Cost</i>	41
2.6.3.3. Aspek <i>Technical</i>	42
2.6.3.4. Aspek Operational	43
2.6.3.5. Aspek Sustainability	43
2.7. Penilaian Prioritas Solusi	44
Bab III	
Deskripsi Solusi	46
3.1. Pernyataan Lingkup Solusi	46
3.2. Deliverables Utama	46
3.2.1. Work Breakdown Structure	47
3.2.2. Kamus WBS	49
3.3. Pemangku Kepentingan yang Terlibat	67
3.4. Pendekatan Awal Proyek	68
3.5. Batasan dan Asumsi	69
Bab IV	
Analisis Solusi	
4.1. Analisis Perubahan	
4.2. Analisis <i>Gap</i>	71

Daftar Tabel

Tabel 2.1.3.1.1. Schedule Alternatif Solusi 1	. 12
Tabel 2.1.3.2.1. Cost Alternatif Solusi 1	. 13
Tabel 2.1.3.3.1. <i>Technical</i> Alternatif Solusi 1	. 14
Tabel 2.1.3.4.1. Operational Alternatif Solusi 1	. 14
Tabel 2.2.3.1.1. Schedule Alternatif Solusi 2	. 18
Tabel 2.2.3.2.1. Cost Alternatif Solusi 2	. 19
Tabel 2.2.3.3.1. Technical Alternatif Solusi 2.	. 20
Tabel 2.2.3.4.1. Operational Alternatif Solusi 2	.21
Tabel 2.3.3.1.1. Schedule Alternatif Solusi 3	. 23
Tabel 2.3.3.2.1. Cost Alternatif Solusi 3	. 23
Tabel 2.3.3.3.1. Technical Alternatif Solusi 3	. 24
Tabel 2.3.3.4.1. Operational Alternatif Solusi 3	. 25
Tabel 2.4.3.1.1. Schedule Alternatif Solusi 4	. 29
Tabel 2.4.3.2.1. Cost Alternatif Solusi 4	. 30
Tabel 2.4.3.3.1. Technical Alternatif Solusi 4.	. 30
Tabel 2.4.3.4.1. Operational Alternatif Solusi 4	.31
Tabel 2.5.3.1.1. Schedule Alternatif Solusi 5	. 34
Tabel 2.5.3.2.1. Cost Alternatif Solusi 5	. 35
Tabel 2.5.3.3.1. Technical Alternatif Solusi 5	. 36
Tabel 2.5.3.4.1 Operational Alternatif Solusi 5	.36
Tabel 2.6.3.1.1. Schedule Alternatif Solusi 6	.41
Tabel 2.6.3.2.1. Cost Alternatif Solusi 6	. 41
Tabel 2.6.3.3.1. Technical Alternatif Solusi 6	. 42
Tabel 2.6.3.4.1. Operational Alternatif Solusi 6	.43
Tabel 2.7.1. Pembobotan Tiap Aspek	.44
Tabel 2.7.2. Rentang Penilaian Tiap Aspek	. 44
Tabel 2.7.3. Penilaian Prioritas Solusi	.45
Tabel 3.2.2.1.1 Kamus WBS 1.1	. 49
Tabel 3.2.2.1.2 Kamus WBS 1.2	. 49
Tabel 3.2.2.1.3 Kamus WBS 1.3	. 50
Tabel 3.2.2.1.4 Kamus WBS 1.4	. 50
Tabel 3.2.2.1.5 Kamus WBS 1.5	. 51
Tabel 3.2.2.2.1 Kamus WBS 2.1	. 51
Tabel 3.2.2.2.2 Kamus WBS 2.2	. 52
Tabel 3.2.2.2.3 Kamus WBS 2.3	. 52
Tabel 3.2.2.2.4 Kamus WBS 2.4	. 53
Tabel 3.2.2.2.5 Kamus WBS 2.5	. 53
Tabel 3.2.2.3.1 Kamus WBS 3.1	. 54

Tabel 3.2.2.3.1.1 Kamus WBS 3.1.1	54
Tabel 3.2.2.3.1.2 Kamus WBS 3.1.2	55
Tabel 3.2.2.3.1.3 Kamus WBS 3.1.3	55
Tabel 3.2.2.3.1.4 Kamus WBS 3.1.4	55
Tabel 3.2.2.3.1.5 Kamus WBS 3.1.5	56
Tabel 3.2.2.3.2 Kamus WBS 3.2	57
Tabel 3.2.2.3.2.1 Kamus WBS 3.2.1	57
Tabel 3.2.2.3.2.2 Kamus WBS 3.2.2	58
Tabel 3.2.2.3.2.3 Kamus WBS 3.2.3	58
Tabel 3.2.2.3.3 Kamus WBS 3.3	59
Tabel 3.2.2.3.3.1 Kamus WBS 3.3.1	59
Tabel 3.2.2.3.3.2 Kamus WBS 3.3.2	60
Tabel 3.2.2.3.3.3 Kamus WBS 3.3.3	60
Tabel 3.2.2.3.4 Kamus WBS 3.4	61
Tabel 3.2.2.3.4.1 Kamus WBS 3.4.1	61
Tabel 3.2.2.3.4.2 Kamus WBS 3.4.2	62
Tabel 3.2.2.3.4.3 Kamus WBS 3.4.3	62
Tabel 3.2.2.3.5 Kamus WBS 3.5	63
Tabel 3.2.2.4.1 Kamus WBS 4.1	63
Tabel 3.2.2.4.2 Kamus WBS 4.2	64
Tabel 3.2.2.4.3 Kamus WBS 4.3	64
Tabel 3.2.2.4.1 Kamus WBS 4.4	65
Tabel 3.2.2.5.1 Kamus WBS 5.1	65
Tabel 3.2.2.5.2 Kamus WBS 5.2	66
Tabel 3.2.2.5.3 Kamus WBS 5.3	66
Tabel 3.3.1 Tabel Stakeholder Implementasi Solusi "Dashboard Analitik Pemasaran &	
Ekspansi"	67
Tabel 4.1.1 Analisis Perubahan	70
Tabel 4.2.1 Analisis <i>Gap</i> Perusahaan Saat Ini	71

Daftar Gambar

Gambar 3.3.1 Stakeholder Wheel dalam Implementasi Solusi "Dashboard Analitik	
Pemasaran & Ekspansi''	67

STEI-ITB IF3141-01/K01-G08 Halaman 6 dari 72 halaman

Bab I

Kondisi Bisnis Perusahaan

1.1. Tujuan Dokumen

Dokumen ini disusun untuk menentukan solusi yang dapat memenuhi kebutuhan dan menyelesaikan permasalahan yang sesuai dengan kondisi perusahaan Scoop & Skoops. Tujuan ini dapat dicapai dengan melakukan analisis terhadap kondisi bisnis perusahaan, kemudian menentukan alternatif solusi dan kelayakan alternatif solusi tersebut, dan kemudian diurutkan prioritasnya menggunakan *metric schedule, cost, technical,* dan *operation*. Solusi dengan prioritas tertinggi akan dijabarkan lebih lanjut melalui *work breakdown structure,* pemangku kepentingan yang terlibat, dan pendekatan awalnya dalam proyek. Terakhir, dilakukan analisis perubahan dan *gap* yang akan terjadi jika solusi diimplementasikan.

1.2. Kondisi Bisnis Perusahaan

Scoop & Skoops adalah perusahaan es krim yang menargetkan segmen konsumen muda, khususnya pelajar SMA dan mahasiswa, dengan menawarkan produk berkualitas tinggi yang berbahan dasar alami dan memiliki harga terjangkau. Perusahaan ini mengoperasikan beberapa *outlet* fisik dan aktif memasarkan produk melalui media sosial seperti Instagram dan TikTok. Selain itu, Scoop & Skoops menjalin kemitraan B2B dengan restoran dan sekolah, serta sedang mengeksplorasi distribusi melalui *vending machine* dan kemitraan tanpa merek (*white-label*). Dengan menggunakan bahan baku premium *non-artifisial*, perusahaan terus berinovasi dengan menghadirkan produk baru seperti es krim *swirl* dan *popsicle* untuk meningkatkan daya saing.

Namun, perusahaan menghadapi sejumlah tantangan yang menghambat pertumbuhannya. Salah satunya adalah tingginya biaya operasional, terutama untuk mesin pendingin yang harus beroperasi 24 jam untuk menjaga kualitas produk, yang mempengaruhi margin keuntungan. Selain itu, ketergantungan pada bahan baku alami seperti perisa premium yang harganya fluktuatif juga turut menambah beban biaya produksi. Tantangan lainnya adalah masalah logistik, terutama untuk distribusi ke luar Pulau Jawa, di mana biaya pengiriman yang tinggi dan manajemen stok yang rumit berpotensi menurunkan kualitas produk. Di sisi pemasaran, meskipun aktif menggunakan media sosial dan mengikuti berbagai *event*, jangkauan promosi masih terbatas di wilayah Bandung, mengakibatkan *brand*

STEI-ITB IF3141-01/K01-G08 Halaman 7 dari 72 halaman

awareness yang rendah di luar daerah tersebut. Selain itu, komunikasi internal yang mengandalkan WhatsApp dan Telegram sering kali menimbulkan miskomunikasi. Pengelolaan data yang belum optimal serta rendahnya interaksi jangka panjang dengan pelanggan membatasi pertumbuhan perusahaan.

Di tengah tantangan tersebut, Scoop & Skoops memiliki peluang besar untuk berkembang. Perusahaan dapat memperluas kemitraan B2B dengan sekolah, kafe, dan restoran, yang dapat diperluas ke segmen lain seperti hotel dan ritel modern untuk meningkatkan volume penjualan. Potensi ekspansi pasar juga terbuka lebar di kota-kota besar di luar Jawa, seperti Surabaya dan Medan, di mana permintaan terhadap produk es krim terus meningkat. Inovasi produk, seperti varian rendah gula atau *vegan-friendly*, juga membuka peluang baru. Pemanfaatan teknologi *cold chain* dan kemitraan dengan penyedia logistik pihak ketiga dapat menekan biaya distribusi. Selain itu, meningkatkan *digital marketing* melalui platform *e-commerce* dan kolaborasi dengan *influencer* dapat memperluas jangkauan pemasaran, sementara partisipasi dalam *event* kuliner nasional dapat meningkatkan *brand awareness*. Terlebih lagi, industri es krim di Indonesia sendiri diproyeksikan akan tumbuh pesat dengan nilai pasar yang diperkirakan mencapai \$881,8 juta pada tahun 2028 sehingga bisa menjadi peluang untuk Scoop & Skoops terus berkembang.

Untuk mendukung pertumbuhan ini, Scoop & Skoops menetapkan beberapa target strategis. Pertama, perusahaan ingin memiliki prosedur logistik dan manajemen stok yang terstandarisasi di seluruh cabang untuk meningkatkan efisiensi operasional. Kedua, dibutuhkan sistem informasi terpadu berbasis digital untuk memantau data penjualan dan stok secara *real-time* dengan tujuan untuk mendukung pengambilan keputusan yang lebih cepat dan akurat. Ketiga, perusahaan berencana melakukan ekspansi penjualan dan distribusi ke berbagai wilayah di Indonesia guna meningkatkan pangsa pasar. Terakhir, untuk meningkatkan margin keuntungan, perusahaan berfokus pada efisiensi biaya tanpa mengorbankan kualitas produk.

Akan tetapi, masih ada beberapa *gap* yang perlu diatasi untuk mencapai target tersebut. Prosedur logistik dan pengelolaan stok yang dilakukan secara manual dan berbeda-beda di tiap cabang perlu digantikan dengan sistem manajemen inventaris berbasis *cloud*. Pengelolaan data penjualan dan stok yang masih menggunakan *spreadsheet* berisiko menimbulkan kesalahan dan perlu digantikan dengan sistem *Point of Sales* (POS) yang terintegrasi. Selain itu, strategi pemasaran yang terfokus di Bandung perlu dikembangkan

STEI-ITB IF3141-01/K01-G08 Halaman 8 dari 72 halaman

dengan *dashboard* analitik untuk mengevaluasi potensi ekspansi ke wilayah lain. Biaya operasional yang tinggi akibat mesin pendingin dan fluktuasi harga bahan baku harus dikendalikan agar margin keuntungan dapat diperbaiki.

Berdasarkan analisis tersebut, Scoop & Skoops mengidentifikasi beberapa kebutuhan kritis yang harus dipenuhi. Pertama, perusahaan memerlukan sistem manajemen inventaris berbasis *cloud* untuk menyederhanakan proses distribusi logistik dan pengelolaan stok. Kedua, dibutuhkan sistem informasi terpadu yang dapat mengintegrasikan data penjualan, bahan baku, dan komunikasi internal guna meningkatkan efisiensi operasional. Ketiga, pengembangan *dashboard* analitik berbasis wilayah akan membantu tim manajemen dalam merencanakan strategi ekspansi pasar berbasis data. Keempat, modul R&D digital diperlukan untuk mendokumentasikan inovasi produk dan eksperimen bahan baku baru. Kelima, implementasi sistem CRM akan mempermudah perusahaan dalam memantau interaksi pelanggan dan membangun loyalitas. Terakhir, platform B2B digital dapat mempermudah mitra dalam melakukan pemesanan dan pelacakan produk.

Dengan memprioritaskan pemenuhan kebutuhan tersebut, Scoop & Skoops dapat mengatasi tantangan operasional saat ini sekaligus memanfaatkan peluang pertumbuhan yang ada. Transformasi digital menjadi kunci utama dalam mendorong efisiensi, memperluas jangkauan pasar, dan membangun hubungan yang lebih kuat dengan pelanggan maupun mitra bisnis. Langkah-langkah ini tidak hanya akan membantu perusahaan mencapai *target state* yang diinginkan, tetapi juga mendorong efisiensi dan memperkuat daya saing Scoop & Skoops di industri es krim Indonesia.

Bab II

Analisis Kelayakan Alternatif Solusi

2.1. Alternatif Solusi 1: Customer Relationship Management System

2.1.1. Deskripsi Solusi

Sistem CRM ini merupakan sistem berbasis web yang dirancang untuk mengelola hubungan pelanggan secara lebih strategis dan terintegrasi dengan Accurate. Solusi ini menjawab kebutuhan Scoop & Skoops dalam memperkuat proses pencatatan transaksi (PB-04) dengan menambahkan aspek pelanggan, memperkaya informasi penjualan (I-03) melalui data pelanggan, serta sebagai tempat feedback konsumen (I-04) yang saat ini masih melalui Google Review dan Google Form. Sistem ini mencakup berbagai fungsi penting seperti rekapitulasi data pelanggan, pemantauan riwayat pembelian dan perilaku konsumsi, pengelolaan program loyalitas dan reward, serta pengiriman notifikasi promosi secara otomatis kepada pelanggan berdasarkan segmentasi. Selain itu, sistem ini juga mendukung analisis pola pembelian guna membantu pengambilan keputusan dalam proses produksi.

Dengan sistem ini, Scoop & Skoops dapat meningkatkan retensi pelanggan, memperluas jangkauan pasar, dan meningkatkan nilai transaksi rata-rata per pelanggan. Solusi ini dirancang untuk menjawab kebutuhan bisnis RQ-05 terkait implementasi sistem CRM terkait pemantauan interaksi pelanggan dan sistem loyalitas, serta mengatasi masalah M-05 mengenai belum optimalnya pengelolaan data penjualan dan masalah M-06 mengenai kesulitan dalam melacak dan menganalisis perilaku pelanggan. Di sisi lain, Scoop & Skoops memiliki peluang P-05 yaitu peningkatan *digital marketing* dalam manajemen pelanggan yang memungkinkan promosi terkhusus untuk tiap pelanggan dengan sistem loyalitas. Tujuan akhir dari sistem ini adalah mencapai kondisi target FS-02 di mana Scoop & Skoops memiliki sistem manajemen pelanggan yang terintegrasi dan mampu mendorong pertumbuhan bisnis secara berkelanjutan.

2.1.2. Analisis Implementasi Solusi

Metode implementasi yang digunakan dalam proyek ini adalah pendekatan *Agile* dengan kerangka kerja *Scrum*. Meskipun fitur utama sudah dapat didefinisikan, meliputi pembuatan akun pelanggan, riwayat pembelian produk dan *feedback* konsumen, integrasi program loyalitas, sistem notifikasi otomatis, serta *dashboard* analitik transaksi. namun

STEI-ITB	IF3141-01/K01-G08	Halaman 10 dari 72 halaman
----------	-------------------	----------------------------

pendekatan iteratif memungkinkan penyesuaian berdasarkan *feedback* pengguna dan perubahan prioritas bisnis.

Sistem CRM ini memiliki dua *role* utama: admin dan pelanggan. Admin bertugas untuk mengelola data pelanggan, program loyalitas, serta memantau aktivitas pelanggan melalui *dashboard* analitik. Pelanggan dapat melakukan pendaftaran mandiri, mengakses profil dan riwayat transaksi, serta mendapatkan notifikasi promo berbasis preferensi.

Tim pelaksana proyek terdiri dari *Product Owner*, *Scrum Master*, dan *Development Team*, meliputi UI/UX *Designer*, *Software Engineer*, *Database Administrator*, dan *Quality Assurance Engineer*. Secara garis besar tahapan implementasi akan dilakukan dalam *sprint* berulang selama 2 minggu dengan tahapan

1. Pengumpulan Kebutuhan Sistem dan Perencanaan Penerapan Sistem.

Berisikan aktivitas pengumpulan kebutuhan detail dan pembuatan *backlog* produk, dan *workshop* dengan *stakeholder* untuk menentukan fitur fungsional dan prioritas fitur.

2. Desain Sistem & Sprint Planning

Berisian perancangan arsitektur sistem dan *database*, pembuatan *wireframe* dan *mockup* UI/UX, pembuatan dokumen desain teknis, *breakdown backlog* produk menjadi *user stories*, dan penyusunan jadwal *sprint* dan *milestone*

3. Development Sprints

Berisikan pengembangan iteratif berdasarkan beberapa *sprint*, yakni *sprint* 1 terkait pengembangan fitur manajemen pelanggan, *sprint* 2 terkait pengembangan fitur *dashboard* analitik, *sprint* 3 terkait fitur loyalitas pelanggan, dan *sprint* 4 mengenai sistem notifikasi dan personalisasi.

Setiap *sprint* akan diakhiri dengan *sprint review* dengan *product owner* dan *retrospective* antar anggota *development* tim untuk mengevaluasi pencapaian dan melakukan perbaikan proses untuk *sprint* berikutnya.

4. Pengujian dan Uji Coba Pengguna

Berisikan aktivitas pengujian fungsionalitas sistem oleh tim *quality assurance* engineer, user acceptance test oleh tim operasional dan pelanggan tertentu, dan pengumpulan feedback awal untuk penyempurnaan.

5. Deployment dan Onboarding Pengguna

Deployment bertahap dimulai dari cabang Bandung, lalu mulai *onboarding* dan pelatihan untuk admin, yakni *staff* operasional, dan sosialisasi kepada pelanggan melalui kampanye digital dan edukasi fitur melalui media sosial dan tiap gerai.

Dampak positif yang dihasilkan adalah peningkatan efektivitas dalam pengelolaan pelanggan, pengurangan beban kerja manual pada promosi, serta peningkatan potensi transaksi ulang. Risiko yang mungkin terjadi adalah adanya data pelanggan yang tidak akurat atau tidak diperbarui secara berkala, yang dapat mempengaruhi akurasi personalisasi promosi.

2.1.3. Analisis Kelayakan Solusi

Kelayakan suatu solusi dapat dianalisis melalui lima aspek utama, yaitu jadwal pelaksanaan (*schedule*), biaya yang dibutuhkan (*cost*), kelayakan teknis (*technical*), kesiapan operasional (*operational*), serta keberlanjutan solusi dalam jangka panjang (*sustainability*).

2.1.3.1. Aspek Schedule

Pengembangan CRM ini akan dilaksanakan dalam 5 tahap dengan estimasi 8 jam kerja per hari dan 5 hari kerja per minggu. Durasi proyek diperkirakan sekitar 4 bulan. Estimasi waktu untuk setiap tahap tertera sebagai berikut.

Tabel 2.1.3.1.1. Schedule Alternatif Solusi 1

Tahap	Durasi	Hal yang Dilakukan
Pengumpulan Kebutuhan dan Perencanaan Implementasi sistem	2 minggu	Workshop dengan stakeholder, penyusunan product backlog.
Desain Sistem & Sprint Planning	2 minggu	Penyusunan <i>ER diagram</i> database, mockup UI/UX, user stories, dan sprint planning.
Development Sprint	8 minggu	Pengerjaan <i>sprint 1</i> hingga <i>sprint 4</i> meliputi implementasi <i>frontend, backend,</i> dan integrasi <i>database</i> keseluruhan fitur sistem.

Pengujian dan Uji Coba Pengguna	2 minggu	Uji fungsional sistem oleh QA engineer dan user acceptance test oleh tim operasional dan pelanggan tertentu.
Deployment dan Onboarding Pengguna	2 minggu	Peluncuran sistem secara bertahap dengan pendampingan pelatihan.
Total	16 minggu	

2.1.3.2. Aspek *Cost*

Estimasi biaya pengembangan CRM untuk jangka waktu 1,5 bulan tertera sebagai berikut.

Tabel 2.1.3.2.1. Cost Alternatif Solusi 1

Kebutuhan	Jumlah	Cost/Bulan	Durasi	Total Cost
Project Manager	1 orang	Rp7.500.000,-	4 bulan	Rp30.000.000,-
UI/UX Designer	1 orang	Rp5.000.000,-	1 bulan	Rp5.000.000,-
Full Stack Engineer	1 orang	Rp10.000.000,-	4 bulan	Rp40.000.000,-
Quality Assurance Tester	1 orang	Rp5.000.000,-	1 bulan	Rp5.000.000,-
Server	1 unit	-	One-time	Rp15.000.000,-
Software License	-	-	One-time	Rp2.000.000,-
Biaya Operasional	-	Rp1.500.000,-	4 bulan	Rp9.000.000,-
Total	Rp106.00	00.000,-		

2.1.3.3. Aspek Technical

Dalam pengembangan sistem ini, dibutuhkan beberapa sumber daya teknikal. Perkiraan sumber daya teknikal yang diperlukan beserta dengan ketersediaannya pada saat ini tertera pada tabel berikut.

Halaman 13 dari 72 halaman

Tabel 2.1.3.3.1. Technical Alternatif Solusi 1

Kebutuhan	Ketersediaan Saat Ini	Keterangan
Laptop/Komputer	Tersedia (terbatas)	Perusahaan Scoop & Skoops memiliki laptop namun tidak berspek tinggi sehingga kurang cocok untuk pengembangan software dan jumlahnya terbatas.
Server	Tidak tersedia	Perusahaan Scoop & Skoops belum memiliki <i>server</i> sendiri untuk menampung <i>website</i> .
Tim Pengembang (IT)	Tidak tersedia	Tersedia, namun terbatas. Diperlukan <i>outsourcing</i> tim pengembang untuk percepatan proyek.

2.1.3.4. Aspek *Operational*

Dengan diterapkannya sistem CRM, proses pencatatan pelanggan dan riwayat transaksi akan berjalan otomatis. Program loyalitas juga dapat dipersonalisasi berdasarkan data pembelian pelanggan. Hal ini akan mengurangi pekerjaan manual dalam mencatat transaksi dan pengiriman promosi, sekaligus meningkatkan pengalaman pelanggan.

Perubahan proses operasional yang terjadi bersifat positif dan akan memudahkan baik pihak admin maupun pelanggan. Admin dapat dengan mudah melihat segmentasi pelanggan dan menganalisis kebiasaan belanja, sedangkan pelanggan mendapatkan pengalaman yang lebih personal dan konsisten.

Tabel 2.1.3.4.1. Operational Alternatif Solusi 1

Proses Operasional	Perubahan yang Diperlukan	Gap dengan Kondisi Saat Ini
Pencatatan Data Pelanggan	Sistem CRM menyimpan data pelanggan secara terpusat dan otomatis saat transaksi	Data pelanggan tersebar di Google Form dan Google Review, tidak terintegrasi dengan transaksi

STEI-ITB IF3141-01/K01-G08 Halaman 14 dari 72 halaman

Pemantauan Riwayat Pembelian dan Analisis Pola Pembelian dan Preferensi	Sistem CRM menyimpan riwayat pembelian produk per konsumen dan menyediakan Dashboard analitik CRM menampilkan <i>insight</i> perilaku konsumsi untuk mendukung produksi	Pengambilan keputusan produk baru hanya berdasarkan riwayat pembelian produk saja, tidak berdasarkan segmen pelanggan
Pencatatan <i>Feedback</i> dan Kepuasan	Modul loyalitas berbasis skor transaksi atau frekuensi, otomatisasi pemberian <i>reward</i>	Feedback tersebar di platform yang berbeda (Google Review/Form), tidak terstruktur dan sulit dianalisis
Pengelolaan Loyalitas dan <i>Reward</i>	Alert & Aging Report: notifikasi otomatis ketika mencapai reorder point dan laporan umur stok	Program loyalitas kepada pelanggan reguler belum ada.
Segmentasi Pelanggan dan Promosi	CRM menganalisis data pelanggan untuk mengelompokkan dan mengirim promosi otomatis	Promosi bersifat massal dan tidak tepat sasaran, tidak berdasarkan data perilaku pembelian

2.1.3.5. Aspek Sustainability

Sistem CRM membantu digitalisasi pengelolaan pelanggan, sehingga mengurangi penggunaan kertas dalam pencatatan data dan promosi. Penggunaan notifikasi digital menggantikan brosur fisik atau SMS manual, yang berdampak positif terhadap pengurangan limbah dan konsumsi energi. Sistem ini mendukung strategi bisnis berkelanjutan Scoop & Skoops yang lebih ramah lingkungan.

2.2. Alternatif Solusi 2: Platform Komunikasi Antar Cabang Terpusat

2.2.1. Deskripsi Solusi

Scoop & Skoops menghadapi hambatan dalam komunikasi lintas divisi dan antar cabang, terutama bagi tim yang beroperasi di luar Bandung (M-04). Saat ini, koordinasi masih bergantung pada aplikasi perpesanan informal seperti WhatsApp atau Telegram, yang tidak dirancang untuk komunikasi operasional bisnis secara sistematis. Hal ini berdampak pada lambatnya pengambilan keputusan, potensi miskomunikasi, serta dokumentasi internal yang tidak terstruktur dan sulit dilacak.

Solusi pengembangan platform komunikasi terpusat ini dirancang untuk menjawab kebutuhan akan sistem informasi terpadu (RQ-02), khususnya dalam mengintegrasikan komunikasi, manajemen data penjualan, serta koordinasi operasional lintas unit. Platform ini akan mengadopsi pendekatan *digital workspace* berbasis *cloud* yang dapat diakses baik melalui *desktop* maupun perangkat *mobile*.

Fitur-fitur utama mencakup kanal komunikasi per divisi, sistem notifikasi terintegrasi, forum diskusi, sistem pelaporan harian, serta dokumentasi operasional *digital* yang mudah diakses dan dicari ulang. Dengan adanya *platform* ini, perusahaan dapat meningkatkan efisiensi koordinasi antar tim, mempercepat alur kerja lintas lokasi, serta menciptakan budaya kerja yang lebih kolaboratif dan terdokumentasi dengan baik.

2.2.2. Analisis Implementasi Solusi

Metode implementasi solusi yang akan digunakan adalah *Agile Scrum*, yakni metode pengembangan sistem iteratif yang menekankan kolaborasi tim, adaptasi terhadap perubahan, serta pengiriman produk secara bertahap melalui *sprint*. Metodologi ini dipilih karena menawarkan fleksibilitas tinggi dalam menyesuaikan pengembangan fitur berdasarkan kebutuhan pengguna internal dari berbagai cabang perusahaan. *Scrum* juga memungkinkan pengujian dan evaluasi berkelanjutan di setiap *sprint*, sehingga kualitas dan relevansi platform dapat terus disempurnakan.

Dalam proses implementasinya, terdapat beberapa pihak utama yang bertanggung jawab:

• Scrum Team (Product Owner, Scrum Master, Developer) bertanggung jawab atas perencanaan sprint, pengembangan sistem, dan iterasi fitur.

STEI-ITB IF3141-01/K01-G08 Halaman 16 dari 72 halaman

- Divisi HR/People Ops berperan sebagai perwakilan pengguna, memberikan insight atas kebutuhan komunikasi lintas tim, serta memastikan pelatihan pengguna terlaksana.
- Manajer Operasional Cabang bertindak sebagai *stakeholder* kunci, memberi masukan atas kebutuhan operasional harian dan uji coba sistem.
- **Tim IT Infrastruktur** bertugas menjaga kestabilan platform, konektivitas antar lokasi, dan keamanan data.

Langkah-langkah implementasi untuk solusi ini adalah sebagai berikut:

1. Analisis Kebutuhan & Penyusunan Backlog

Tahap awal dimulai dengan mengadakan sesi *user interview* dan *survey* internal untuk memahami kebutuhan komunikasi antar cabang. Tim *Scrum* bersama *stakeholder* kemudian menyusun *product backlog* yang berisi daftar fitur prioritas, seperti ruang chat per divisi, notifikasi tugas, pelaporan harian, dan dokumentasi digital. Kriteria keberhasilan awal ditetapkan melalui *definition of done* yang jelas.

2. Desain Sistem & Sprint Planning

Dilakukan perancangan antarmuka sistem berbasis web dengan desain UI/UX yang sederhana dan *mobile-friendly*. Platform akan dirancang modular menggunakan pendekatan *component-based architecture*, agar fitur-fitur dapat dikembangkan dan diuji secara terpisah. *Database* dirancang untuk menyimpan *log* komunikasi dan dokumen terstruktur dengan sistem pencarian cepat. Setelah itu dilakukan *sprint planning* untuk membagi pengembangan ke dalam beberapa iterasi.

3. Pengembangan Iteratif (Sprints)

Pengembangan dilakukan dalam *sprint* berdurasi 2 minggu. Setiap akhir *sprint* dilakukan *review* dan *retrospective* bersama *stakeholder* untuk menguji fitur yang sudah jadi dan menyempurnakan *backlog sprint* berikutnya.

4. Pengujian & Uji Coba Pengguna

Dilakukan pengujian fungsional untuk memastikan fitur berjalan sesuai spesifikasi, serta *usability testing* dengan karyawan dari beberapa cabang. Platform juga diuji dari sisi keamanan (*authentication* dan *access control*)

STEI-ITB IF3141-01/K01-G08 Halaman 17 dari 72 halaman

serta kestabilan jaringan antar lokasi. Dilanjutkan dengan *User Acceptance Testing* (UAT) secara terbatas di dua cabang terlebih dahulu.

5. Deployment & Onboarding Pengguna

Sistem akan di-deploy secara bertahap (*rolling release*) dimulai dari kantor pusat dan cabang utama. Disediakan modul pelatihan digital serta tim *onboarding* yang akan membantu setiap cabang dalam memahami penggunaan fitur platform. Dokumentasi penggunaan juga dibuat dalam bentuk *video tutorial* dan panduan PDF.

Implementasi platform komunikasi terpusat akan mempercepat arus informasi antar cabang, meningkatkan efisiensi operasional, dan memperkuat kolaborasi lintas divisi. Selain itu, keputusan bisnis dapat diambil lebih cepat dan akurat karena seluruh komunikasi terdokumentasi dan terpusat. Risiko utama mencakup resistensi pengguna terhadap sistem baru serta keterbatasan infrastruktur di beberapa lokasi.

2.2.3. Analisis Kelayakan Solusi

Kelayakan suatu solusi dapat dianalisis melalui lima aspek utama, yaitu jadwal pelaksanaan (*schedule*), biaya yang dibutuhkan (*cost*), kelayakan teknis (*technical*), kesiapan operasional (*operational*), serta keberlanjutan solusi dalam jangka panjang (*sustainability*).

2.2.3.1. Aspek Schedule

Pengembangan platform ini akan dilaksanakan dalam 7 tahap dengan estimasi waktu sebagai berikut.

Tahap Durasi Hal yang Dilakukan User interview, survey internal, Analisis Kebutuhan & identifikasi kebutuhan komunikasi 2 minggu Backlog antar cabang, penyusunan product backlog awal. Perancangan UI/UX, arsitektur Desain Sistem & Sprint modular, desain database log & 2 minggu dokumen, perencanaan sprint dan Planning pembagian tugas tim. Pembuatan Pengembangan 2 minggu fitur dokumentasi

Tabel 2.2.3.1.1. Schedule Alternatif Solusi 2

Dokumentasi & Pelaporan		digital terstruktur dan pelaporan harian otomatis.
Notifikasi & Perbaikan Berdasarkan <i>Feedback</i>	2 minggu	Penambahan fitur notifikasi tugas, mention antar pengguna, dan perbaikan dari hasil <i>review sprint</i> sebelumnya.
Pengujian & UAT Awal	2 minggu	Pengujian fungsional, usability testing, security testing, dan UAT terbatas di dua cabang.
Deployment & Onboarding	2 minggu	Rolling release sistem ke seluruh cabang, pelatihan digital, pendampingan onboarding, dan distribusi panduan.
Total	14 minggu	

2.2.3.2. Aspek *Cost*

Estimasi biaya pengembangan platform komunikasi tertera sebagai berikut.

Tabel 2.2.3.2.1. Cost Alternatif Solusi 2

Kebutuhan	Jumlah	Cost/Bulan	Durasi	Total Cost
Project Manager	1 orang	Rp7.500.000,-	4 bulan	Rp30.000.000,-
UI/UX Designer	1 orang	Rp5.000.000,-	1 bulan	Rp5.000.000,-
Full Stack Engineer	1 orang	Rp10.000.000,-	4 bulan	Rp40.000.000,-
Quality Assurance Tester	1 orang	Rp5.000.000,-	2 bulan	Rp10.000.000,-
Server	1 unit	-	One-time	Rp15.000.000,-
Software License	-	-	One-time	Rp2.000.000,-
Biaya Operasional	-	Rp1.500.000,-	4 bulan	Rp9.000.000,-
Total	Rp111.000.000,-			

STEI-ITB IF3141-01/K01-G08 Halaman 19 dari 72 halaman

2.2.3.3. Aspek Technical

Dalam pengembangan sistem ini, dibutuhkan beberapa sumber daya teknikal. Perkiraan sumber daya teknikal yang diperlukan beserta dengan ketersediaannya pada saat ini tertera pada tabel berikut.

Tabel 2.2.3.3.1. Technical Alternatif Solusi 2

Kebutuhan	Ketersediaan Saat Ini	Keterangan
Laptop/Komputer	Tersedia (terbatas)	Perusahaan Scoop & Skoops memiliki laptop namun tidak berspek tinggi sehingga kurang cocok untuk pengembangan software dan jumlahnya terbatas.
Server	Tidak tersedia	Perusahaan Scoop & Skoops belum memiliki server sendiri untuk menampung website.
Tim Pengembang (IT)	Tidak tersedia	Tersedia, namun terbatas. Diperlukan <i>outsourcing</i> tim pengembang untuk percepatan proyek.

2.2.3.4. Aspek Operational

Implementasi platform komunikasi terpusat akan mengubah proses komunikasi internal perusahaan secara signifikan. Jika sebelumnya koordinasi antar cabang dilakukan melalui aplikasi seperti WhatsApp dan Telegram yang tidak terstruktur, maka dengan adanya platform ini, seluruh komunikasi akan terdokumentasi rapi, dapat dipantau oleh manajer, serta terintegrasi dengan pelaporan harian dan notifikasi tugas. Perubahan ini akan membutuhkan adaptasi dari karyawan di setiap cabang, namun *gap* antara sistem lama dan sistem baru tidak terlalu besar karena teknologi yang digunakan bersifat familiar (*web* dan *mobile-based*), serta didukung oleh pelatihan *onboarding* yang menyeluruh.

Tabel 2.2.3.4.1. Operational Alternatif Solusi 2

Proses Operasional	Perubahan yang Diperlukan	Gap dengan Kondisi Saat Ini
Komunikasi Antar Divisi & Cabang	Penggunaan platform komunikasi internal dengan ruang <i>chat</i> , <i>mention</i> , dan sistem notifikasi	Komunikasi tidak terstruktur via WhatsApp/Telegram, sulit dilacak dan tidak terdokumentasi
Pelaporan Harian & Tugas	Modul pelaporan dan update tugas berbasis dashboard harian	Laporan harian disampaikan manual melalui pesan teks dan tidak terdokumentasi sehingga pengambilan keputusan kurang tangkas
Dokumentasi Proses Operasional	Penyimpanan dokumentasi digital per divisi (SOP, catatan <i>meeting</i> , dll.)	Tidak ada sistem dokumentasi terpusat
Monitoring Kinerja Cabang	Sistem dashboard manajemen untuk memantau aktivitas dan komunikasi tiap cabang secara real-time	Tidak tersedia monitoring

2.2.3.5. Aspek Sustainability

Dari sisi lingkungan, implementasi solusi ini bersifat digital dan tidak menambah kebutuhan infrastruktur fisik, sehingga minim dampak terhadap lingkungan secara langsung. Dari sisi ketenagakerjaan, sistem ini mendorong transparansi pekerjaan dan kolaborasi yang lebih sehat antar tim, terutama bagi cabang yang sebelumnya merasa kurang terhubung dengan pusat. Ini dapat meningkatkan motivasi dan rasa memiliki terhadap perusahaan. Namun demikian, perlu dipastikan bahwa proses transisi dilakukan secara inklusif agar seluruh karyawan merasa dilibatkan dan tidak mengalami kesenjangan digital, terutama bagi yang belum terbiasa dengan platform kerja terstruktur.

STEI-ITB	<i>IF3141-01/K01-G08</i>	Halaman 21 dari 72 halaman
91EI-IID	1F3141-01/N01-G08	malaman 21 dan 72 halaman

2.3. Alternatif Solusi 3: Platform R&D Digital untuk Inovasi Produk dan Manajemen Bahan Baku Alternatif

2.3.1. Deskripsi Solusi

Solusi ini berfokus pada pengembangan *platform digital* internal untuk *Research & Development* (R&D) yang memungkinkan tim pengembangan produk mencatat, mengelola, dan memonitor seluruh aktivitas eksperimen inovasi produk serta pengujian bahan baku alternatif secara sistematis. Platform ini akan memiliki fitur seperti *log* eksperimen, dokumentasi formula dan rasio bahan, evaluasi hasil uji coba, dan integrasi dengan manajemen bahan baku.

Kebutuhan ini muncul dari adanya *gap* dalam pencatatan dan dokumentasi eksperimen produk yang selama ini dilakukan secara manual atau terfragmentasi antar cabang atau tim. Hal ini menyebabkan kurangnya konsistensi data, sulitnya replikasi eksperimen, dan potensi inovasi yang tidak terdokumentasi dengan baik. Selain itu, proses uji coba bahan baku alternatif juga belum terhubung langsung dengan sistem manajemen bahan, menyebabkan potensi bahan baku efisien sering terabaikan.

Platform ini akan menjawab kebutuhan RQ-04 dengan memberikan ruang kolaborasi yang terdigitalisasi antar tim R&D, QA (*Quality Assurance*), dan produksi, sekaligus meningkatkan efisiensi inovasi dan keberlanjutan produk.

2.3.2. Analisis Implementasi Solusi

Implementasi platform ini akan dilakukan secara bertahap melalui model *agile*, dimulai dari pengumpulan kebutuhan pengguna (*user requirement*), desain antarmuka, pengembangan modul pencatatan eksperimen, lalu integrasi data bahan baku dari sistem inventaris. Selanjutnya dilakukan pengujian fungsional, pelatihan pengguna (*training*), dan tahap *go-live*.

Pihak yang bertanggung jawab adalah divisi IT dan R&D, dengan dukungan dari tim QA dan *procurement* (pengadaan bahan baku). Diperlukan kolaborasi intens antara *developer* dan *end-user* (peneliti produk) untuk memastikan bahwa fitur yang dibuat benar-benar mencerminkan kebutuhan kerja lapangan.

Dampak utama dari implementasi solusi ini adalah meningkatnya keteraturan dalam dokumentasi eksperimen, kemudahan kolaborasi antar cabang, serta pemanfaatan data historis untuk analisis dan perbaikan formula. Namun, risiko implementasi meliputi resistensi

STEI-ITB IF3141-01/K01-G08 Halaman 22 dari 72 halaman

perubahan dari tim R&D tradisional, serta waktu adaptasi terhadap sistem baru yang membutuhkan pelatihan dan pendampingan awal.

2.3.3. Analisis Kelayakan Solusi

Kelayakan suatu solusi dapat dianalisis melalui lima aspek utama, yaitu jadwal pelaksanaan (*schedule*), biaya yang dibutuhkan (*cost*), kelayakan teknis (*technical*), kesiapan operasional (*operational*), serta keberlanjutan solusi dalam jangka panjang (*sustainability*).

2.3.3.1. Aspek Schedule

Pengembangan platform R&D ini akan dilaksanakan dalam 6 tahap dengan estimasi waktu sebagai berikut.

Tahap	Durasi	Hal yang Dilakukan	
Analisis Kebutuhan	2 minggu	Wawancara dan observasi proses R&D	
Desain Sistem	2 minggu	UI/UX dan alur proses eksperimen	
Pengembangan Fitur	4 minggu	Termasuk log eksperimen, manajemen bahan	
Integrasi & Uji Coba	2 minggu	Integrasi dengan inventaris, UAT	
Pelatihan & Sosialisasi	1 minggu	Training internal dan feedback	
Go-Live & Monitoring	1 minggu	Deployment dan pendampingan awal	
Total	12 minggu		

Tabel 2.3.3.1.1. Schedule Alternatif Solusi 3

2.3.3.2. Aspek *Cost*

Biaya pengembangan platform R&D digital ini akan melibatkan beberapa elemen biaya utama seperti biaya pengembangan perangkat lunak, infrastruktur *server*, biaya sumber daya manusia, dan biaya operasional lain. Berikut adalah estimasi biaya yang diperlukan untuk implementasi solusi ini.

Tabel 2.3.3.2.1. Cost Alternatif Solusi 3

Kebutuhan	Jumlah	Cost/Bulan	Durasi	Total Cost
Project Manager	1 orang	Rp7.500.000,-	3 bulan	Rp22.500.000,-

UI/UX Designer	1 orang	Rp5.000.000,-	1 bulan	Rp5.000.000,-
Full Stack Engineer	1 orang	Rp10.000.000,-	3 bulan	Rp30.000.000,-
Quality Assurance Tester	1 orang	Rp5.000.000,-	1 bulan	Rp5.000.000,-
Server	1 unit	-	One-time	Rp15.000.000,-
Software License	-	-	One-time	Rp2.000.000,-
Biaya Operasional	-	Rp1.000.000,-	3 bulan	Rp3.000.000,-
Total	Rp82.500.000,-			

2.3.3.3. Aspek Technical

Platform R&D digital ini membutuhkan sumber daya teknis yang memadai untuk pengembangan, integrasi, dan pemeliharaan. Infrastruktur server yang kuat diperlukan untuk memastikan sistem dapat menangani data yang besar dan memungkinkan kolaborasi tim secara *real-time*. Selain itu, tim pengembangan harus memiliki keahlian dalam pengembangan aplikasi berbasis *cloud*, serta pemahaman yang baik tentang keamanan data dan integrasi sistem.

Saat ini, perusahaan membutuhkan penambahan infrastruktur *server* yang dapat diakses oleh tim R&D dan seluruh perusahaan. Tim pengembangan yang terdiri dari *Full Stack Engineer* dan UI/UX Designers harus direkrut atau dilatih untuk memastikan platform dapat dikembangkan sesuai dengan kebutuhan. Perusahaan juga perlu memastikan bahwa semua lisensi perangkat lunak dan alat yang digunakan untuk pengembangan dan pengujian sistem tersedia.

Tabel 2.3.3.1. Technical Alternatif Solusi 3

Kebutuhan	Ketersediaan Saat Ini	Keterangan
Laptop/Komputer	Tersedia (terbatas)	Perusahaan Scoop & Skoops memiliki laptop namun tidak berspek tinggi sehingga kurang cocok untuk pengembangan software dan jumlahnya terbatas.

STEI-ITB IF3141-01/K01-G08 Halaman 24 dari 72 halaman

Server	Tidak tersedia	Perusahaan Scoop & Skoops belum memiliki <i>server</i> sendiri untuk <i>deploy website</i> .
Project Manager	Tidak tersedia	Pada saat ini, perusahaan Scoop & Skoops belum memiliki karyawan dengan role project manager.
UI/UX Designer	Tidak tersedia	Pada saat ini, perusahaan Scoop & Skoops belum memiliki karyawan dengan role UI/UX designer.
Full Stack Engineer	Pada saat ini, perusahaan Scoop & S Tidak tersedia belum memiliki karyawan dengan ro stack engineer:	
Quality Assurance Tester	Tidak tersedia	Pada saat ini, perusahaan Scoop & Skoops belum memiliki karyawan dengan <i>role</i> QA <i>tester</i> .

2.3.3.4. Aspek Operational

Perubahan operasional yang dihasilkan dari implementasi platform R&D digital ini akan berfokus pada proses inovasi produk dan manajemen bahan baku yang lebih efisien dan terstruktur. Proses riset dan pengembangan akan lebih terorganisir dengan adanya fitur pemodelan produk, simulasi bahan baku, dan sistem pelacakan hasil eksperimen secara *digital*. Sehingga akan mengurangi ketergantungan pada proses manual yang memakan waktu dan meningkatkan akurasi serta kolaborasi antar tim.

Tabel 2.3.3.4.1. Operational Alternatif Solusi 3

Proses Operasional	Perubahan yang Diperlukan	Gap dengan Kondisi Saat Ini
Pencatatan dan Dokumentasi Eksperimen	Implementasi sistem pencatatan digital untuk eksperimen dan dokumentasi formula.	Saat ini eksperimen dan dokumentasi dilakukan secara manual serta terpisah antar tim dan cabang.
Kolaborasi Antar Tim R&D dan QA	Meningkatkan kolaborasi tim dengan sistem yang terintegrasi dan kolaborasi <i>real-time</i> .	Kolaborasi antar tim belum terhubung dengan baik
Pengujian dan	Integrasi pengujian bahan baku	Pengujian bahan baku alternatif

STEI-ITB IF3141-01/K01-G08 Halaman 25 dari 72 halaman

Evaluasi Bahan Baku Alternatif	dalam platform agar hasil uji coba dapat dianalisis bersama.	dilakukan terpisah tanpa pengelolaan data yang
Baku Alternatii	coba dapat dianansis ocisama.	terstruktur.
Pelatihan dan Adaptasi Tim R&D Terhadap Sistem Baru	Program pelatihan untuk semua anggota tim R&D, QA, dan produksi untuk memahami platform.	Tidak ada pelatihan sebelumnya tentang sistem digital. Karyawan mungkin kesulitan beradaptasi.
Manajemen Bahan Baku	Integrasi data manajemen bahan baku ke dalam platform R&D untuk mengoptimalkan penggunaan bahan.	Sistem manajemen bahan baku saat ini belum terhubung dengan sistem R&D, sehingga efisiensi penggunaan bahan belum optimal.
Evaluasi Kinerja Sistem dan <i>Feedback</i> Pengguna	Sistem untuk pengumpulan feedback pengguna secara berkala dan penyesuaian berdasarkan kebutuhan.	Saat ini, evaluasi kinerja sistem lebih bersifat reaktif dan tidak terstruktur.

2.3.3.5. Aspek Sustainability

Platform R&D digital ini juga dapat memberikan dampak positif terhadap keberlanjutan perusahaan, terutama dalam hal penggunaan bahan baku yang lebih ramah lingkungan. Dengan fitur manajemen bahan baku alternatif, perusahaan dapat mengeksplorasi dan menguji bahan baku yang lebih efisien dan memiliki dampak lingkungan yang lebih rendah. Sehingga dapat membantu perusahaan dalam mengurangi jejak karbon dan meningkatkan kepatuhan terhadap regulasi lingkungan yang semakin ketat.

Selain itu, solusi ini dapat mengurangi penggunaan sumber daya yang tidak terbarukan dan meningkatkan efisiensi dalam proses produksi, yang pada akhirnya akan mendukung praktik bisnis yang lebih berkelanjutan. Ketenagakerjaan juga dapat berdampak positif karena adanya peningkatan keterampilan teknis di kalangan karyawan yang terlibat dalam penggunaan platform ini.

2.4. Alternatif Solusi 4: Supply Chain & Inventory Management System

2.4.1. Deskripsi Solusi

Modul *Supply Chain & Inventory Management System* (SCIMS) – terintegrasi dengan Accurate – dirancang untuk menutup *gap* pada proses Pengadaan Bahan Baku & Logistik (PB-02) sekaligus memenuhi kebutuhan Informasi Stok Bahan Baku (I-01) yang saat ini masih dikelola manual melalui *spreadsheet*. Alur kebutuhan-masalah-solusinya adalah sebagai berikut:

• Kebutuhan

- Kepastian ketersediaan bahan baku sebelum produksi (I-01).
- Sinkronisasi stok *real-time* antar-gudang/cabang (PB-02)

Masalah:

- \circ Input manual di *Google Spreadsheet* \rightarrow *human error* & *delay*.
- Tidak ada *approval workflow* → pemesanan sering terlambat atau berlebih

Solusi:

- **Modul PO Otomatis**: *generate* PO berdasarkan *forecast* kebutuhan & approval chain.
- Multi-gudang Real-time: update stok terpusat via API Accurate & SCIMS.
- Mobile Scanning: penerimaan, mutasi, dan pengeluaran barang menggunakan barcode/RFID.
- o Alert & Aging Report: notifikasi reorder point dan laporan umur stok.

Dengan *end-to-end flow* ini, SCIMS menghilangkan entri ganda, mempercepat siklus pemesanan, dan menjaga valuasi persediaan di Accurate tetap akurat.

2.4.2. Analisis Implementasi Solusi

Berikut ini adalah langkah-langkah dalam melakukan implementasi solusi pengembangan *supply chain & inventory management system*:

1. Perencanaan & Persiapan

Melakukan *workshop* dengan *stakeholders* (*Purchasing*, *Finance*, IT *Support*) untuk memfinalisasi kebutuhan fungsional dan teknis. Hasilnya adalah dokumen SRS dan RACI *Chart* yang jelas.

STEI-ITB IF3141-01/K01-G08 Halaman 27 dari 72 halaman

2. Desain Sistem

Solution Architect menyusun arsitektur microservice untuk SCIMS, mendefinisikan ER-diagram untuk inventory, skema API payload Accurate, dan wireframe antarmuka mobile/desktop.

3. Pengembangan & Integrasi

Tim *Backend* (misalnya Node.js/Java) membangun modul SCIMS dan *connector* ke API Accurate (atau generator CSV untuk *import batch*). Tim *Mobile* (Flutter/Kotlin) mengembangkan aplikasi *scan barcode*/RFID dengan *offline-first capability*.

4. Pengujian & Validasi

QA *Engineer* melakukan *unit test* dan *integration test* khusus skenario sinkronisasi data SCIMS ↔ Accurate, serta UAT dengan tim gudang dan *finance* untuk memastikan kelancaran alur *approval* dan mutasi stok.

5. Pelatihan & Go-Live

IT *Support* menyelenggarakan training *one-day* untuk operator gudang dan *purchasing*, serta membuat *user* manual. *Deploy* ke *server* produksi dengan CI/CD (Docker/Kubernetes) dan *cut-over plan minimal downtime*.

6. Monitoring & Continuous Improvement

Mengaktifkan *dashboard monitoring* API *call*, *error log*, dan *feedback loop* dengan BA untuk iterasi fitur (misalnya menambah laporan custom atau optimasi UI setelah 1 bulan penggunaan).

Setiap fase memuat mitigasi risiko, misalnya *buffering* dan *retry logic* untuk API *rate limit, change control* untuk fungsi *approval*, serta *fallback mode* CSV *import* jika koneksi API terganggu.

2.4.3. Analisis Kelayakan Solusi

Kelayakan suatu solusi dapat dianalisis melalui lima aspek utama, yaitu jadwal pelaksanaan (*schedule*), biaya yang dibutuhkan (*cost*), kelayakan teknis (*technical*), kesiapan operasional (*operational*), serta keberlanjutan solusi dalam jangka panjang (*sustainability*).

2.4.3.1. Aspek Schedule

Pengembangan platform B2B *e-commerce* ini akan dilaksanakan dalam 5 tahap dengan estimasi waktu sebagai berikut.

21EI-11B	1F3141-01/K01-G08	Halaman 28 dari 72 halaman

Tabel 2.4.3.1.1. Schedule Alternatif Solusi 4

Tahap	Durasi	Hal yang Dilakukan
Persiapan & Perencanaan	2 minggu	Workshop kebutuhan fungsional & teknis; finalisasi dokumen SRS dan RACI Chart.
Desain Arsitektur & UI/UX	2 minggu	Penyusunan ER-diagram inventory, spesifikasi API (OpenAPI/Swagger), dan mock-up antarmuka mobile/desktop.
Pengembangan <i>Backend</i> & Integrasi	8 minggu	Pembuatan modul PO Engine, inventory sync, dan connector ke Accurate (API/CSV) dengan retry logic.
Pengembangan <i>Mobile</i> Scanning	3 minggu	Pengembangan aplikasi scan barcode/RFID (offline-first), local cache, dan background sync ke SCIMS.
Pengujian & validasi	1 minggu	Unit test (≥80% coverage), integration test end-to-end, serta UAT bersama operator gudang & finance.
Pelatihan & Go-Live	2 minggu	"Train-the-trainer" untuk super-user, migrasi snapshot stok, dan deployment via CI/CD dengan cut-over plan.
Total	18 minggu	

2.4.3.2. Aspek *Cost*

Komponen biaya meliputi: pengembangan SCIMS & connector API (*in-house*) senilai Rp 30 juta, lisensi *server cloud* atau *on-premise* sekitar Rp 20 juta/tahun, perangkat *mobile scanner* (10 unit × Rp 3 juta = Rp 30 juta), plus pelatihan dan *change management* Rp 20 juta.

STEI-ITB	IF3141-01/K01-G08	Halaman 29 dari 72 halaman

Tabel 2.4.3.2.1. Cost Alternatif Solusi 4

Kebutuhan	Jumlah	Cost/Bulan	Durasi	Total Cost
Project Manager	1 orang	Rp7.500.000,-	4 bulan	Rp30.000.000,-
UI/UX Designer	1 orang	Rp10.000.000,-	1 bulan	Rp10.000.000,-
Full Stack Engineer	1 orang	Rp10.000.000,-	4 bulan	Rp40.000.000,-
Quality Assurance Tester	1 orang	Rp5.000.000,-	2 bulan	Rp10.000.000,-
Server	1 unit	-	One-time	Rp10.000.000,-
Scanner Barcode/RFID (one-time)	1 unit	Rp3.000.000,-	one-time	Rp3.000.000,-
Biaya Operasional	-	Rp1.500.000,-	6 bulan	Rp9.000.000,-
Total	Rp112.000.000,-			

2.4.3.3. Aspek Technical

Infrastruktur TI (*server*, jaringan antar cabang, dan Accurate dengan *Web Service* API/CSV *import*) sudah tersedia. Tim internal memiliki kompetensi REST API, pengembangan *mobile*, dan DevOps sehingga risiko kendala teknis relatif rendah.

Tabel 2.4.3.3.1. Technical Alternatif Solusi 4

Kebutuhan	Ketersediaan Saat Ini	Keterangan
Laptop/Komputer	Tersedia (terbatas)	Perusahaan Scoop & Skoops memiliki laptop namun tidak berspek tinggi sehingga kurang cocok untuk pengembangan software dan jumlahnya terbatas.
Server	Tidak tersedia	Perusahaan Scoop & Skoops belum memiliki <i>server</i> sendiri untuk <i>deploy website</i> .
Project Manager	Tidak tersedia	Pada saat ini, perusahaan Scoop &

STEI-ITB IF3141-01/K01-G08 Halaman 30 dari 72 halaman

		Skoops belum memiliki karyawan dengan <i>role project manager</i> .
UI/UX Designer	Tidak tersedia	Pada saat ini, perusahaan Scoop & Skoops belum memiliki karyawan dengan <i>role</i> UI/UX <i>designer</i> .
Full Stack Engineer	Tidak tersedia	Pada saat ini, perusahaan Scoop & Skoops belum memiliki karyawan dengan <i>role full stack engineer</i> .
Scanner Barcode/RFID (one-time)	Tidak tersedia	Perusahaan Scoop & Skoops belum memiliki <i>scanner</i> untuk scan barang.
Quality Assurance Tester	Tidak tersedia	Pada saat ini, perusahaan Scoop & Skoops belum memiliki karyawan dengan <i>role</i> QA <i>Tester</i> .

2.4.3.4. Aspek Operational

Implementasi mengubah SOP gudang dan *purchasing* dari manual ke sistem terotomasi. Dibutuhkan pelatihan singkat dan sosialisasi *change management* agar transisi lancar. Dampak positifnya adalah *cycle time* proses *procurement* turun, *human error* berkurang drastis, dan akurasi data stok meningkat.

Tabel 2.4.3.4.1. Operational Alternatif Solusi 4

Proses Operasional	Perubahan yang Diperlukan	Gap dengan Kondisi Saat Ini
Pengadaan Bahan Baku & Logistik	Implementasi Modul PO Otomatis: <i>generate</i> PO berdasarkan <i>forecast</i> kebutuhan dan <i>approval chain</i>	PO dibuat manual via spreadsheet tanpa approval workflow, human error, keterlambatan, dan pemesanan berlebih.
Manajemen Stok Bahan Baku	Integrasi Real-time Stok: update saldo stok gudang secara otomatis via API Accurate & SCIMS	Stok dikelola manual di spreadsheet, data stok tidak selalu akurat dan sering terlambat

STEI-ITB IF3141-01/K01-G08 Halaman 31 dari 72 halaman

Penerimaan, Mutasi & Pengeluaran Barang di Gudang	Mobile Scanning barcode/RFID untuk penerimaan, mutasi, dan pengeluaran barang	Proses manual tanpa sistem scan, entri ganda, <i>human error</i> , dan risiko keterlambatan
Pelaporan Persediaan & Notifikasi Reorder Point	Alert & Aging Report: notifikasi otomatis ketika mencapai reorder point dan laporan umur stok	Pelaporan stok masih manual tanpa notifikasi, risiko stok kedaluwarsa, keterlambatan restock, valuasi tidak akurat

2.4.3.5. Aspek Sustainability

Dengan SCIMS terintegrasi Accurate, penggunaan kertas dan *print-out* laporan stok berkurang, mendukung inisiatif "*Go Green*". Optimalisasi stok mengurangi kebutuhan pengiriman darat impulsif, menurunkan jejak karbon. Operator gudang dapat fokus pada analisis dan kontrol mutu, meningkatkan keterampilan SDM.

2.5. Alternatif Solusi 5: Dashboard Analitik Pemasaran dan Ekspansi

2.5.1. Deskripsi Solusi

Dashboard analitik pemasaran & ekspansi adalah sistem business intelligence (BI) terintegrasi yang mengumpulkan data dari POS (Moka POS), CRM, inventaris, dan logistik yang didapat dari Accurate ke dalam data warehouse terpusat, lalu menampilkan metrik kunci seperti penetrasi pasar, ROI kampanye, dan heatmap wilayah melalui visualisasi interaktif. Solusi ini menjawab gap M-03 (pemasaran terbatas di Bandung), M-05 (data penjualan dan stok terfragmentasi), dan peluang ekspansi ke kota-kota besar. Solusi ini juga menjawab kebutuhan RQ-03 (implementasi dashboard analitik berbasis wilayah untuk mendukung ekspansi pasar dan penentuan strategi pemasaran nasional) dalam mencapai target perusahaan untuk menjangkau sebanyak-banyaknya daerah (FS-03).

Dengan implementasi proses ETL (*Extract, Transform, Load*) – DW (*Data Warehouse*) – BI (*Business Intelligence*), tim pemasaran dapat membuat keputusan berbasis data, memprioritaskan wilayah baru, dan mengoptimalkan anggaran kampanye secara *real-time*. Perusahaan juga dapat melakukan analisis dan pendataan hasil pemasaran dan strategi pengembangan pemasaran perusahaan, dengan menggunakan *heatmap* wilayah, grafik tren penjualan per *channel* demografi, dan analisis ROI kampanye dan rencana alokasi anggaran.

2.5.2. Analisis Implementasi Solusi

Solusi *dashboard* analitik pemasaran dan ekspansi dapat dikembangkan dengan metode pengembangan *agile* dengan menggunakan *scrum framework*. Pengembangan ini mencakup tahapan-tahapan yang terdiri atas analisis kebutuhan dan *feasibility testing*, desain perangkat lunak, pengembangan perangkat lunak dengan metodologi *scrum*, pengujian dan integrasi, dan terakhir *deployment* dan sosialisasi penggunaan perangkat lunak.

Implementasi solusi dilaksanakan dengan melakukan feasibility testing atau uji kelayakan solusi. Tahap ini dilakukan untuk memastikan alternatif solusi dapat dilaksanakan sesuai dengan kemampuan perusahaan dan mampu memenuhi kebutuhan perusahaan terhadap perangkat lunak. Uji kelayakan harus dilakukan oleh project manager dan dilaporkan ke divisi marketing dan sales. Setelah alternatif solusi dinyatakan layak, maka proses implementasi solusi dapat dilanjutkan ke analisis kebutuhan yang diperlukan, dan desain dari perangkat lunak yang akan dibangun.

STEI-ITB IF3141-01/K01-G08 Halaman 33 dari 72 halaman

Eksekusi development perangkat lunak dilaksanakan dengan metodologi scrum, dan dilakukan oleh tim IT dan project manager, dan dilaporkan ke project owner (divisi marketing dan sales) pada setiap sprint-nya. Penggunaan metodologi scrum dipilih agar hasil produk dapat digunakan secepatnya dan dapat melakukan integrasi dengan sistem yang sudah ada sebelumnya secara bertahap. Tahapan-tahapan yang dapat dilakukan pada sprints adalah membangun dashboard utama, mempersiapkan dan mengintegrasikan business intelligence tools seperti PowerBI atau Tableau, integrasi dengan CRM dan data warehouse (dalam perusahaan ini adalah MokaPOS, Accurate dan Google Spreadsheets).

Setelah perangkat lunak siap dan jika berhasil diuji, dilakukan pelatihan dan sosialisasi kepada perusahaan dan karyawan yang bertanggung jawab dalam pengolahan data dan strategi pemasaran. Setelah perangkat lunak siap digunakan oleh perusahaan, dilakukan pengawasan (*monitoring*) untuk memastikan perangkat berjalan dengan semestinya.

2.5.3. Analisis Kelayakan Solusi

Kelayakan solusi dilakukan untuk memastikan alternatif solusi dapat diimplementasikan dan memenuhi kebutuhan perusahaan dan sesuai dengan kemampuan perusahaan. Kelayakan alternatif solusi dapat dilakukan dengan melihat 5 aspek berikut: *schedule* (waktu untuk implementasi solusi), *cost* (biaya yang dibutuhkan untuk implementasi), *technical* (kebutuhan dan ketersediaan teknis), *operational*, dan *sustainability* (dampak solusi terhadap planet/lingkungan, ataupun ketenagakerjaan).

2.5.3.1. Aspek Schedule

Pengembangan solusi ini akan dilaksanakan dalam 5 tahap dengan estimasi waktu sebagai berikut (mengasumsikan satu minggu adalah 5 hari kerja).

Tahap	Durasi	Hal yang Dilakukan
Feasibility testing dan analisis kebutuhan	2 minggu	Melakukan uji kelayakan implementasi solusi dan <i>meeting</i> dengan <i>stakeholder</i> terkait untuk menentukan kebutuhan yang perlu dipersiapkan.
Desain perangkat lunak	2 minggu	Merancang dan mempersiapkan

Tabel 2.5.3.1.1. Schedule Alternatif Solusi 5

		lingkungan pengembangan perangkat lunak.
Pengembangan perangkat lunak	8 minggu	Eksekusi pengembangan perangkat lunak dengan metodologi <i>scrum</i> .
Pengujian perangkat lunak	2 minggu	Menguji hasil implementasi perangkat lunak.
Sosialisasi	1 minggu	Sosialisasi penggunaan perangkat lunak ke perusahaan.
Total	15 minggu	

2.5.3.2. Aspek Cost

Estimasi biaya pengembangan *dashboard* ini untuk jangka waktu kurang lebih empat bulan tertera sebagai berikut.

Tabel 2.5.3.2.1. Cost Alternatif Solusi 5

Kebutuhan	Jumlah	Cost/Hari	Durasi	Total Cost
Project Manager	1 orang	Rp150.000,-	10 minggu	Rp7.500.000,-
UI/UX Designer	1 orang	Rp120.000,-	2 minggu	Rp1.200.000,-
Full Stack Engineer	2 orang	Rp120.000,-	10 minggu	Rp12.000.000,-
Quality Assurance Tester	1 orang	Rp100.000,-	2 minggu	Rp1.200.000,-
Server	1 unit	-	One-time	Rp15.000.000,-
Software License	-	-	One-time	Rp2.000.000,-
Biaya Operasional	-	Rp1.500.000,-	6 bulan	Rp9.000.000,-
Total	Rp47.900	0.000,-		

2.5.3.3. Aspek Technical

Pengembangan perangkat lunak untuk memenuhi alternatif solusi ini membutuhkan komponen dan aspek teknis sebagai berikut,

STEI-ITB I	F3141-01/K01-G08	Halaman 35 dari 72 halaman
------------	------------------	----------------------------

Tabel 2.5.3.3.1. Technical Alternatif Solusi 5

Kebutuhan	Ketersediaan Saat Ini	Keterangan
Laptop/Komputer	Tersedia (terbatas)	Perusahaan Scoop & Skoops memiliki laptop namun tidak berspek tinggi sehingga kurang cocok untuk pengembangan software dan jumlahnya terbatas.
Server	Tidak tersedia	Perusahaan Scoop & Skoops belum memiliki <i>server</i> sendiri untuk <i>deploy website</i> .
Project Manager	Tidak tersedia	Pada saat ini, perusahaan Scoop & Skoops belum memiliki karyawan dengan <i>role project manager</i> .
UI/UX Designer	Tidak tersedia	Pada saat ini, perusahaan Scoop & Skoops belum memiliki karyawan dengan <i>role</i> UI/UX <i>designer</i> .
Full Stack Engineer	Tidak tersedia	Pada saat ini, perusahaan Scoop & Skoops belum memiliki karyawan dengan <i>role full stack engineer</i> .
Quality Assurance Tester	Tidak tersedia	Pada saat ini, perusahaan Scoop & Skoops belum memiliki karyawan dengan role QA <i>tester</i> .

2.5.3.4. Aspek Operational

Dari segi operasional, implementasi *dashboard* memindahkan proses pembuatan laporan dari *spreadsheet* manual ke *real-time monitoring*, mempersingkat siklus analisis dari berhari-hari menjadi hitungan jam saja.

Tabel 2.5.3.4.1 Operational Alternatif Solusi 5

Proses Operasional	Perubahan yang Diperlukan	Gap dengan Kondisi Saat Ini
Strategi pemasaran perusahaan	Digitalisasi dan restrukturisasi usaha pemasaran dengan mengimplementasikan	Proses saat ini mengandalkan dilakukan secara manual dan tidak menggunakan kanal atau

$oxed{STEI-ITB} oxed{IF3141-01/K01-G08} oxed{Halaman 36 dari 72}$	naiaman
---	---------

	dashboard untuk mempermudah analisis dan perancangan strategi perusahaan.	perangkat tambahan yang dibuat khusus.
Pembuatan Laporan	Pembuatan <i>dashboard</i> sebagai media pelaporan berbasis visualisasi, sehingga divisi <i>marketing</i> tidak perlu membuka banyak <i>file</i> untuk melakukan analisis laporan.	Laporan tidak terpusat dan analisis dilakukan secara manual.
Pengambilan dan Pengiriman Data/Laporan	Implementasi <i>pipelining</i> dan otomatisasi pengambilan data yang diperlukan.	Untuk melihat data yang berasal dari media lain, diperlukan operasi manual dengan membuka media-media yang diperlukan satu per satu.

2.5.3.5. Aspek Sustainability

Dari segi *sustainability*, implementasi *dashboard* akan mengeliminasi kebutuhan cetak laporan bulanan dan juga meminimalkan kebutuhan perangkat harian untuk laporan, karena pembuatan laporan dan analisis dapat dilakukan dengan menggunakan *dashboard*. Selain itu, otomatisasi tugas repetitif seperti *data entry* dan pembaruan laporan, dapat membebaskan karyawan untuk fokus pada analisis strategis dan pengembangan keterampilan sehingga meningkatkan kepuasan kerja dan retensi SDM.

2.6. Alternatif Solusi 6: Platform B2B E-Commerce untuk Mitra Bisnis

2.6.1. Deskripsi Solusi

Scoop & Skoops menghadapi tantangan signifikan dalam melayani mitra B2B mereka melalui proses pemesanan manual yang masih mengandalkan komunikasi tidak terstruktur seperti WhatsApp dan *email* (M-04). Permasalahan utama mencakup tingginya kesalahan input data, keterlambatan respon, kesulitan pelacakan status pesanan, serta manajemen kontrak yang tidak efisien. Solusi pengembangan platform B2B ini secara khusus dirancang untuk menjawab kebutuhan perusahaan akan sistem pemesanan digital terpadu (RQ-06) sekaligus memanfaatkan peluang memperluas jaringan kemitraan (P-01).

Platform ini akan berbasis *web*, sehingga dapat diakses dengan mudah oleh mitra kapan saja dan di mana saja melalui perangkat *desktop* maupun *mobile*. Fitur-fitur yang disediakan mencakup katalog produk digital dengan harga khusus untuk mitra, sistem pemesanan mandiri 24/7, *dashboard* pelacakan *real-time*, manajemen kontrak digital, serta analitik pembelian untuk memahami pola konsumsi mitra. Implementasi solusi ini diharapkan dapat menutup kesenjangan dalam proses bisnis B2B (FS-03) melalui peningkatan efisiensi operasional, akurasi data, dan kemudahan ekspansi pasar.

2.6.2. Analisis Implementasi Solusi

Metode implementasi solusi yang akan digunakan adalah metode *incremental* atau *pengembangan bertahap*. Pendekatan ini dipilih karena menawarkan fleksibilitas dalam perbaikan sehingga memungkinkan penyempurnaan fitur berdasarkan *feedback* dari mitra. Selain itu, metode ini membantu dalam manajemen risiko karena pada setiap tahap pengembangan dapat dilakukan pengujian untuk meminimalkan dampak kesalahan. Pendekatan *incremental* juga memberikan adaptabilitas yang tinggi sehingga sistem dapat menyesuaikan dengan kebutuhan mitra yang beragam. Dalam proses implementasinya, terdapat beberapa pihak utama yang bertanggung jawab, antara lain adalah tim *developer* yang berfokus pada pengembangan platform dan integrasi sistem, *purchasing manager* yang berperan sebagai koordinator dalam pemenuhan kebutuhan mitra B2B, *marketing manager* yang akan merancang strategi adopsi dan memberikan *training* kepada pengguna, dan tim IT yang bertugas memastikan infrastruktur berjalan dengan baik dan sistem tetap aman.

Berikut ini adalah langkah-langkah dalam melakukan implementasi solusi pengembangan platform B2B *e-commerce* untuk mitra bisnis:

STEI-ITB IF3141-01/K01-G08 Halaman 38 dari 72 halaman

1. Analisis Kebutuhan

Tahap awal dimulai dengan melakukan *workshop* bersama para mitra untuk menggali kebutuhan spesifik yang relevan dengan proses bisnis mereka. Dilanjutkan dengan pemetaan alur kerja pemesanan yang saat ini berjalan untuk mengidentifikasi potensi optimalisasi. Tim juga melakukan identifikasi fitur-fitur prioritas yang memiliki dampak langsung terhadap efisiensi dan nilai bisnis, serta menyusun dokumen spesifikasi teknis secara terperinci sebagai acuan pengembangan selanjutnya.

2. Perancangan

Pada fase perancangan, dilakukan desain arsitektur sistem berbasis *microservices* untuk memastikan skalabilitas dan fleksibilitas pengembangan kedepannya. Tim juga melakukan pemodelan *database* yang dapat menangani transaksi B2B secara efisien, serta merancang tampilan antarmuka (UI/UX) yang intuitif dan ramah bagi mitra bisnis. Selain itu, disusun juga API *specification* yang akan menjadi pedoman utama untuk proses integrasi sistem.

3. Pengembangan

Tahap pengembangan dibagi ke dalam empat fase utama. Fase pertama adalah pembangunan modul pemesanan dasar. Selanjutnya, fase kedua melibatkan pengembangan fitur kontrak digital. Fase ketiga berfokus pada integrasi sistem dengan logistik untuk mendukung pengiriman dan pemantauan barang. Fase terakhir adalah implementasi modul analitik pembelian yang akan memberikan wawasan berbasis data kepada perusahaan dan mitra.

4. Pengujian

Setelah pengembangan selesai, dilakukan uji coba untuk memastikan kualitas sistem. Uji fungsional dilakukan untuk memastikan setiap fitur berjalan sesuai spesifikasi dan kebutuhan bisnis. Uji beban dilakukan untuk memastikan sistem mampu menangani hingga 500 mitra secara simultan tanpa menurunkan performa. Uji keamanan (*penetration testing*) bertujuan untuk mengidentifikasi dan menutup celah keamanan terhadap potensi serangan. Tidak lupa juga untuk melakukan *user acceptance test* untuk memastikan sistem mudah digunakan dan sesuai dengan ekspektasi pengguna akhir.

STEI-ITB IF3141-01/K01-G08 Halaman 39 dari 72 halaman

5. Deployment

Deployment sistem dilakukan secara bertahap berdasarkan wilayah untuk memastikan proses berjalan lancar. Disiapkan pula program onboarding untuk membantu mitra dalam mengenal dan menggunakan sistem secara optimal. Tim juga memberikan pelatihan khusus bagi admin dan tim support, serta melakukan pemantauan performa sistem secara real-time untuk mendeteksi dan menangani kendala sedini mungkin.

Implementasi solusi sistem pemesanan B2B berbasis digital diperkirakan akan memberikan dampak positif bagi operasional, keuangan, dan hubungan dengan mitra bisnis. Dari sisi operasional, sistem ini membantu mempercepat proses pemesanan, mengurangi risiko kesalahan input data, dan mengoptimalkan beban kerja tim *sales*. Secara keuangan, perusahaan berpotensi menghemat biaya administrasi serta mendorong peningkatan penjualan seiring dengan efisiensi proses yang tercipta. Hubungan dengan mitra juga akan semakin kuat melalui proses yang lebih transparan, akses layanan yang tersedia kapan saja, dan pengalaman pengguna yang lebih baik.

Meski memberikan banyak manfaat, implementasi ini juga menyebabkan sejumlah risiko yang perlu diantisipasi. Potensi penolakan dari mitra terhadap sistem baru bisa diatasi dengan memberi insentif bagi pengguna awal dan menyediakan tim *support* khusus selama masa awal penggunaan. Risiko integrasi sistem dapat diminimalkan dengan memakai API *gateway* dan melakukan uji coba di lingkungan terpisah sebelum sistem diluncurkan. Jika ada keterbatasan anggaran, pengembangan akan difokuskan pada fitur utama terlebih dahulu dengan pendekatan bertahap. Untuk menjaga keamanan data, akan diterapkan enkripsi dan dilakukan audit keamanan secara rutin.

2.6.3. Analisis Kelayakan Solusi

Kelayakan suatu solusi dapat dianalisis melalui lima aspek utama, yaitu jadwal pelaksanaan (*schedule*), biaya yang dibutuhkan (*cost*), kelayakan teknis (*technical*), kesiapan operasional (*operational*), serta keberlanjutan solusi dalam jangka panjang (*sustainability*).

2.6.3.1. Aspek Schedule

Pengembangan platform B2B *e-commerce* ini akan dilaksanakan dalam 5 tahap dengan estimasi waktu sebagai berikut.

STEI-ITB IF3141-01/K01-G08 Halaman 40 dari 72 halaman

Tabel 2.6.3.1.1. Schedule Alternatif Solusi 6

Tahap	Durasi	Hal yang Dilakukan
Analisis Kebutuhan	1 minggu	Workshop mitra dan spesifikasi teknis.
Perancangan Sistem	2 minggu	Arsitektur dan desain UI/UX.
Pengembangan	7 minggu	Empat fase <i>incremental</i> yang meliputi pembangunan modul pemesanan dasar, pengembangan fitur kontrak digital, integrasi sistem dengan logistik, dan implementasi modul analitik pembelian.
Pengujian	1 minggu	Uji fungsional, uji beban, uji keamanan, user acceptance test.
Deployment	1 minggu	Peluncuran sistem secara bertahap dengan pendampingan pelatihan.
Total	12 minggu	

2.6.3.2. Aspek *Cost*

Estimasi biaya pengembangan platform B2B *e-commerce* untuk jangka waktu tiga bulan tertera sebagai berikut.

Tabel 2.6.3.2.1. Cost Alternatif Solusi 6

Kebutuhan	Jumlah	Cost/Bulan	Durasi	Total Cost
Project Manager	1 orang	Rp7.500.000,-	3 bulan	Rp22.500.000,-
UI/UX Designer	1 orang	Rp5.000.000,-	1 bulan	Rp5.000.000,-
Full Stack Engineer	2 orang	Rp10.000.000,-	3 bulan	Rp60.000.000,-
Quality Assurance Tester	1 orang	Rp5.000.000,-	3 bulan	Rp15.000.000,-

STEI-ITB IF3141-01/K01-G08 Halaman 41 dari 72 halaman

Server	1 unit	-	One-time	Rp15.000.000,-
Software License	-	-	One-time	Rp2.000.000,-
Biaya Operasional	-	Rp1.000.000,-	3 bulan	Rp3.000.000,-
Total	Rp122.50	0.000,-		

2.6.3.3. Aspek Technical

Dalam pengembangan sistem ini, dibutuhkan beberapa sumber daya teknikal. Perkiraan sumber daya teknikal yang diperlukan beserta dengan ketersediaannya pada saat ini tertera pada tabel berikut.

Tabel 2.6.3.3.1. Technical Alternatif Solusi 6

Kebutuhan	Ketersediaan Saat Ini	Keterangan
Laptop/Komputer	Tersedia (terbatas)	Perusahaan Scoop & Skoops memiliki laptop namun tidak berspek tinggi sehingga kurang cocok untuk pengembangan <i>software</i> dan jumlahnya terbatas.
Server	Tidak tersedia	Perusahaan Scoop & Skoops belum memiliki server sendiri untuk deploy website.
Project Manager	Tidak tersedia	Pada saat ini, perusahaan Scoop & Skoops belum memiliki karyawan dengan role project manager:
UI/UX Designer	Tidak tersedia	Pada saat ini, perusahaan Scoop & Skoops belum memiliki karyawan dengan role UI/UX designer:
Full Stack Engineer	Tidak tersedia	Pada saat ini, perusahaan Scoop & Skoops belum memiliki karyawan dengan role full stack engineer.
Quality Assurance Tester	Tidak tersedia	Pada saat ini, perusahaan Scoop & Skoops belum memiliki karyawan dengan role QA tester.

STEI-ITB IF3141-01/K01-G08 Halaman 42 dari 72 halaman

2.6.3.4. Aspek Operational

Dari segi operasional, implementasi platform B2B *e-commerce* akan mengubah cara perusahaan dalam menerima dan memproses pesanan dari mitra bisnis. Detail perubahan tersebut tertera pada tabel berikut.

Tabel 2.6.3.4.1. Operational Alternatif Solusi 6

Proses Operasional	Perubahan yang Diperlukan	Gap dengan Kondisi Saat Ini
Penerimaan & Pemrosesan Pesanan	Migrasi dari pemesanan manual (WhatsApp/email) ke sistem digital terstruktur.	Proses saat ini mengandalkan komunikasi tidak terstruktur yang rentan kesalahan dan keterlambatan.
Manajemen Kontrak	Digitalisasi kontrak dan integrasi dengan platform.	Kontrak masih dikelola secara fisik atau dokumen digital terpisah tanpa sistem terpusat.
Pelacakan Pesanan	Implementasi dashboard pelacakan real-time.	Status pesanan harus ditanyakan secara manual ke tim terkait.
Alur Kerja Tim <i>Sales</i> , <i>Purchasing</i> , dan Administrasi	Penyesuaian alur kerja untuk mengadopsi sistem otomatis.	Tim terbiasa dengan proses manual seperti input data berulang dan verifikasi via spreadsheet.

2.6.3.5. Aspek Sustainability

Dari segi *sustainability*, solusi ini memiliki dampak lingkungan yang relatif rendah karena sistem yang dibangun bersifat digital dan berbasis web. Penggunaan platform *online* akan mengurangi ketergantungan pada dokumen fisik seperti formulir pemesanan, kontrak cetak, dan arsip manual, sehingga secara tidak langsung mendukung pengurangan penggunaan kertas. Selain itu, solusi ini juga berpotensi menciptakan efisiensi kerja yang dapat mendukung keseimbangan beban kerja karyawan. Dengan sistem yang lebih terstruktur, beban kerja administratif yang repetitif dapat dikurangi sehingga memberi ruang bagi tim untuk fokus pada pengembangan strategi dan pelayanan pelanggan.

STEI-ITB IF.	3141-01/K01-G08	Halaman 43 dari 72 halaman
--------------	-----------------	----------------------------

2.7. Penilaian Prioritas Solusi

Dari berbagai alternatif solusi yang telah dirancang dan dijabarkan sebelumnya, akan dipilih satu alternatif untuk dikembangkan lebih lanjut menjadi sebuah proyek. Proses pemilihan dilakukan dengan menilai seluruh alternatif menggunakan tabel penilaian prioritas solusi. Dalam tabel ini, setiap alternatif dievaluasi berdasarkan lima aspek, yaitu waktu (schedule), biaya (cost), teknis (technical), operasional (operational), dan keberlanjutan (sustainability). Masing-masing aspek memiliki bobot serta kriteria penilaian yang berbeda.

Pembobotan untuk setiap aspek dapat dilihat pada tabel berikut.

No. Aspek **Bobot** Alasan Waktu implementasi merupakan faktor penting namun tidak menjadi prioritas tertinggi. Jadwal yang tepat perlu mempertimbangkan kualitas 1 Schedule 20% implementasi. Biaya implementasi menjadi salah satu pertimbangan utama karena 2 25% Cost menyangkut anggaran perusahaan yang terbatas dan harus dioptimalkan. Aspek teknis memiliki bobot yang lebih rendah karena keterbatasan sumber 3 **Technical** 15% daya teknis dapat diatasi dengan outsourcing atau solusi pihak ketiga. Dampak operasional bobot diberi tinggi karena solusi 25% 4 diimplementasikan harus memberikan perbaikan signifikan terhadap **Operational** operasional bisnis. Keberlanjutan jangka panjang dan dampak terhadap lingkungan perlu 5 Sustainability 15% diperhatikan dengan bobot yang lebih seimbang.

Tabel 2.7.1. Pembobotan Tiap Aspek

Sedangkan, rentang penilaian untuk setiap aspek dapat dilihat pada tabel berikut. Tabel 2.7.2. Rentang Penilaian Tiap Aspek

No.	Aspek	Range	Kategori
		0 - 25	Waktu implementasi lebih dari 20 minggu
1	Schedule	26 - 50	Waktu implementasi antara 15-20 minggu
1	Schedule	51 - 75	Waktu implementasi antara 8-14 minggu
		76 - 100	Waktu implementasi kurang dari 8 minggu
		0 - 25	Biaya lebih dari Rp 150.000.000
2	Cost	26 - 50	Biaya antara Rp 100.000.000 - Rp 150.000.000
2	Cost	51 - 75	Biaya antara Rp 50.000.000 - Rp 100.000.000
		76 - 100	Biaya kurang dari Rp 50.000.000
3	Technical	0 - 25	Ketersediaan sumber daya teknis sangat rendah (hampir semua tidak tersedia)

Halaman 44 dari 72 halaman

		26 - 50	Ketersediaan sumber daya teknis rendah (sebagian besar tidak tersedia)
		51 - 75	Ketersediaan sumber daya teknis sedang (beberapa tersedia)
		76 - 100	Ketersediaan sumber daya teknis tinggi (sebagian besar tersedia)
		0 - 25	Dampak operasional minimal terhadap efisiensi bisnis
4	4 Operational	26 - 50	Dampak operasional sedang terhadap efisiensi bisnis
		51 - 75	Dampak operasional tinggi terhadap efisiensi bisnis
		76 - 100	Dampak operasional signifikan terhadap efisiensi bisnis
		0 - 25	Dampak negatif terhadap lingkungan/berkelanjutan
		26 - 50	Dampak netral terhadap lingkungan/berkelanjutan
5	5 Sustainability	51 - 75	Dampak positif sedang terhadap lingkungan/berkelanjutan
		76 - 100	Dampak positif tinggi terhadap lingkungan/berkelanjutan

Setelah menetapkan rentang penilaian, setiap alternatif solusi akan dievaluasi untuk menentukan tingkat prioritasnya. Hasil penilaian tersebut dapat dilihat dalam tabel prioritas solusi di bawah ini.

Tabel 2.7.3. Penilaian Prioritas Solusi

		Solusi 1		Solusi 2		Solusi 3		Solusi 4		Solusi 5		Solusi 6	
Aspek	Bobot	Nilai	Nilai x Bobot										
Schedule	20%	40	8	50	10	65	13	35	7	50	10	65	13
Cost	25%	40	10	30	7.5	55	13.75	35	8.75	80	20	40	10
Technical	15%	40	6	40	6	40	6	40	6	40	6	40	6
Operational	25%	85	21.25	70	17.5	65	16.25	90	22.5	65	16.25	80	20
Sustainability	15%	70	10.5	65	9.75	65	9.75	70	10.5	70	10.5	70	10.5
Total		55.	.75	50	.75	58	.75	54	.75	62	.75	59	9.5
Priorita	S	Prior	itas 4	Prior	ritas 6	Prior	itas 3	Prior	itas 5	Prior	itas 1	Prior	ritas 2

Bab III

Deskripsi Solusi

3.1. Pernyataan Lingkup Solusi

Solusi yang direkomendasikan berdasarkan prioritas solusi pertama adalah "Dashboard Analitik Pemasaran dan Ekspansi" sebagai sistem business intelligence (BI) berbasis web yang mengumpulkan data terintegrasi dari POS, CRM, inventaris, dan logistik ke dalam data warehouse terpusat, lalu menampilkan metrik kunci seperti penetrasi pasar, ROI kampanye, dan heatmap wilayah melalui visualisasi interaktif dalam dashboard. Pengguna utama yang akan menggunakan dashboard ini adalah;

- 1. **Tim** *Marketing*: Untuk mengevaluasi performa kampanye, memantau ROI, dan menentukan wilayah untuk ekspansi pasar.
- 2. **Tim Operasional**: Untuk menyesuaikan strategi produksi dan distribusi berdasarkan data yang ada serta merencanakan pengadaan bahan baku dengan lebih efisien melalui data penjualan *real-time*.
- **3.** *General Manager*: Untuk memantau keseluruhan kinerja bisnis melalui indikator utama seperti pertumbuhan omzet per wilayah, efektivitas strategi pemasaran, dan performa cabang, serta menetapkan target omzet dan *revenue* tahunan yang lebih akurat.

Solusi ini di luar lingkup pemeliharaan dan penyetelan *server* atau penyetelan aplikasi lebih lanjut setelah proyek selesai.

3.2. *Deliverables* Utama

Deliverables utama dari solusi "Dashboard Analitik Pemasaran dan Ekspansi" adalah produk berupa perangkat lunak desktop. Deliverables mencakup produk itu sendiri beserta dengan dokumen pendukung berupa dokumentasi dan panduan penggunaan perangkat lunak. Selain itu, terdapat deliverables terkait manajemen proyek yang meliputi dokumen business case dan project charter.

3.2.1. Work Breakdown Structure

Dalam implementasi solusi ini, digunakan *Work Breakdown Structure* yang didekomposisi berdasarkan aktivitas manajemen proyek. Berikut *Work Breakdown Structure* yang dirancang.

- 1. Initiation
 - 1.1. Menentukan Project Manager
 - 1.2. Membuat dokumen business case
 - 1.3. Membuat dokumen *project charter*
 - 1.4. Pembentukan tim proyek
 - 1.5. *Kick-off meeting* dengan *stakeholder*
- 2. Planning
 - 2.1. Membuat dokumen project scope statement
 - 2.2. Merancang Work Breakdown Structure (WBS)
 - 2.3. Mengidentifikasi *project cost* (biaya SDM, lisensi, *server*)
 - 2.4. Merancang project schedule
 - 2.5. Menyusun rencana pengujian (*Quality Assurance plan*)
- 3. Executing
 - 3.1. Feasibility testing dan analisis kebutuhan
 - 3.1.1. Melakukan uji kelayakan solusi (feasibility testing)
 - 3.1.2. *Meeting* dengan *stakeholder* (*Marketing* dan *Sales*)
 - 3.1.3. Melakukan requirement gathering
 - 3.1.4. Menyusun dokumen Spesifikasi Kebutuhan Perangkat Lunak (SKPL)
 - 3.1.5. Menentukan user story dan use case diagram
 - 3.2. Membuat desain perangkat lunak
 - 3.2.1. Desain arsitektur data perangkat lunak (ETL *pipeline*)
 - 3.2.2. Desain UI/UX perangkat lunak (wireframe)
 - 3.2.3. Pemilihan *tools Business Intelligence* (PowerBI/Tableau)
 - 3.3. Pengembangan Perangkat Lunak dengan Metodologi Scrum
 - 3.3.1. Membangun dashboard utama
 - a. Integrasi data dari MokaPOS
 - b. Visualisasi *heatmap* wilayah

STEI-ITB IF3	<i>141-01/K01-G08</i> Halaman 4	7 dari 72 halaman
--------------	---------------------------------	-------------------

- 3.3.2. Integrasi CRM & Data Warehouse
 - a. Koneksi ke Google Spreadsheets
 - b. Pembuatan pipeline ETL
- 3.3.3. Pengembangan fitur analitik
 - a. Grafik tren penjualan per demografi
 - b. Analisis ROI kampanye
- 3.4. Pengujian
 - 3.4.1. Feature testing
 - 3.4.2. *Integration testing*
 - 3.4.3. *End-to-end testing*
- 3.5. *Maintenance*
- 4. Monitoring and Controlling
 - 4.1. Pelacakan progres *sprint* (*Daily Stand-up Meeting*)
 - 4.2. Evaluasi hasil setiap *sprint* (*sprint review*)
 - 4.3. Penyesuaian jadwal dan anggaran (*change management*)
 - 4.4. Pemantauan kualitas (QA *monitoring*)
- 5. Closing
 - 5.1. Membuat dokumentasi aplikasi
 - 5.2. Melakukan serah terima proyek
 - 5.3. Membuat *final report*

3.2.2. Kamus WBS

Tabel 3.2.2.1.1 Kamus WBS 1.1

Nomor: 1.1	Nama Task: Menentukan Project Manager
Deskripsi: Proses seleksi dan penunjukan individu yang akan memimpin proyek.	
Hasil: Terpilihnya Project Manager	
Daftar sumber daya: - Stakeholder	
Durasi pelaksanaan task (hari): 1 hari	
Nomor task pendahulu: -	
Penanggung jawab task: Sponsor proyek / Steering Committee	

Tabel 3.2.2.1.2 Kamus WBS 1.2

Nomor: 1.2	Nama Task: Membuat dokumen business case	
Deskripsi: Penyusunan dokumen yang menjelaskan alasan bisnis dan manfaat dari proyek.		
Hasil: Dokumen business case		
Daftar sumber daya:		
- Project Manager		
- Analis Bisnis		
Durasi pelaksanaan <i>task</i> (hari): 2	hari	
Nomor task pendahulu: 1.1		
Penanggung jawab task: Project Manager		

72 halaman

Tabel 3.2.2.1.3 Kamus WBS 1.3

Nomor: 1.3

Nama Task: Membuat dokumen project charter

Deskripsi: Penyusunan dokumen resmi yang mengesahkan proyek, menetapkan tujuan, ruang lingkup, dan wewenang.

Hasil: Dokumen project charter

Daftar sumber daya:
- Project Manager
- Sponsor Proyek

Durasi pelaksanaan task (hari): 1 hari

Nomor task pendahulu: 1.2

Tabel 3.2.2.1.4 Kamus WBS 1.4

Penanggung jawab task: Project Manager

Nomor: 1.4	Nama Task: Pembentukan tim proyek		
Deskripsi: Identifikasi dan alokasi	Deskripsi: Identifikasi dan alokasi anggota tim yang memiliki kompetensi sesuai dengan kebutuhan proyek.		
Hasil: Terpilihnya project manager			
Daftar sumber daya:			
- Project Manager	- Project Manager		
- Human Resource			
- Tim Teknis			
Durasi pelaksanaan task (hari): 2 hari			
Nomor task pendahulu: 1.3			
Penanggung jawab task: Project Manager			

Tabel 3.2.2.1.5 Kamus WBS 1.5

Nomor: 1.5 Nama Task: Kick-off meeting dengan stakeholder

Deskripsi: Pertemuan awal dengan *stakeholder* untuk menyampaikan tujuan, ruang lingkup, dan peran masing-masing pihak dalam proyek.

Hasil: Notulen kick-off meeting dan pemahaman stakeholder

Daftar sumber daya:

- Project Manager
- Stakeholder
- Tim Proyek

Durasi pelaksanaan task (hari): 1 hari

Nomor task pendahulu: 1.4

Penanggung jawab task: Project Manager

Tabel 3.2.2.2.1 Kamus WBS 2.1

Nomor: 2.1 Nama Task: Membuat dokumen project scope statement

Deskripsi: Penyusunan dokumen ruang lingkup proyek yang mencakup tujuan, *deliverables*, dan batasan proyek.

Hasil: Dokumen Project Scope Statement

Daftar sumber daya:

- Project Manager
- Tim Proyek
- Stakeholders

Durasi pelaksanaan task (hari): 3 hari

Nomor task pendahulu: 1.5

Penanggung jawab task: Project Manager, Tim Proyek

STEI-ITB IF3141-01/K01-G08 Halaman 51 dari 72 halaman

Tabel 3.2.2.2.2 Kamus WBS 2.2

Nomor: 2.2 Nama Task: Merancang Work Breakdown Structure (WBS)

Deskripsi: Membuat struktur pembagian pekerjaan yang rinci untuk proyek.

Hasil: Struktur WBS selesai dan disetujui

Daftar sumber daya:

- Project Manager
- Tim Proyek
- Tim Teknis
- Analis Proyek

Durasi pelaksanaan task (hari): 3 hari

Nomor task pendahulu: 2.1

Penanggung jawab task: Project Manager, Tim Proyek

Tabel 3.2.2.2.3 Kamus WBS 2.3

Nomor: 2.3 Nama Task: Mengidentifikasi project cost

Deskripsi: Menentukan biaya yang diperlukan untuk proyek, termasuk SDM, lisensi, server.

Hasil: Rencana biaya proyek siap digunakan

Daftar sumber daya:

- Project Manager
- Tim Keuangan
- Tim Proyek

Durasi pelaksanaan task (hari): 2 hari

Nomor task pendahulu: 2.2

Penanggung jawab task: Project Manager, Tim Keuangan

STEI-ITB IF3141-01/K01-G08 Halaman 52 dari 72 halaman

Tabel 3.2.2.2.4 Kamus WBS 2.4

Nomor: 2.4

Nama Task: Merancang project schedule

Deskripsi: Membuat jadwal proyek yang mencakup semua task dan tenggat waktu.

Hasil: Jadwal proyek selesai dan disetujui

Daftar sumber daya:

- Project Manager

- Tim Proyek

- Analis Proyek

Durasi pelaksanaan task (hari): 3 hari

Nomor task pendahulu: 2.3

Tim Teknis

Penanggung jawab task: Project Manager, Tim Proyek

Tabel 3.2.2.2.5 Kamus WBS 2.5

Nomor: 2.5

Nama Task: Menyusun rencana pengujian (Quality Assurance plan)

Deskripsi: Menyusun rencana pengujian untuk memastikan kualitas perangkat lunak.

Hasil: Quality Assurance Plan siap digunakan

Daftar sumber daya:

- Project Manager

- Tim QA

- Tim Proyek

Durasi pelaksanaan task (hari): 2 hari

Nomor task pendahulu: 2.4

Penanggung jawab task: Project Manager, Tim QA

21EI-11B	1F3141-01/K01-G08	Halaman 53 dari 72 halaman

Tabel 3.2.2.3.1 Kamus WBS 3.1

Nomor: 3.1

Nama Task: Feasibility testing dan analisis kebutuhan

Deskripsi: Tahap awal untuk memastikan solusi layak dikembangkan dan sesuai kebutuhan

Hasil: Dokumen kebutuhan dan user story

Daftar sumber daya:
- Project Manager
- Business Analyst
- Stakeholder

Durasi pelaksanaan task (hari): 10 hari

Nomor task pendahulu:
Penanggung jawab task: Project Manager

Tabel 3.2.2.3.1.1 Kamus WBS 3.1.1

Nomor: 3.1.1	Nama Task: Melakukan uji kelayakan solusi (feasibility testing)	
Deskripsi: Evaluasi kelayakan teknis, operasional, dan finansial		
Hasil: Hasil uji kelayakan		
Daftar sumber daya:		
- Project Manager		
- Tim Analis		
Durasi pelaksanaan task (hari): 2 hari		
Nomor task pendahulu: -		
Penanggung jawab task: Project Manager		

STEI-ITB	IF3141-01/K01-G08	Halaman 54 dari 72 halaman

Tabel 3.2.2.3.1.2 Kamus WBS 3.1.2

Nomor: 3.1.2

Nama Task: Meeting dengan stakeholder (Marketing dan Sales)

Deskripsi: Diskusi kebutuhan sistem secara langsung

Hasil: Notulen dan kebutuhan awal

Daftar sumber daya:
- Stakeholder
- Project Manager

Durasi pelaksanaan task (hari): 2 hari

Nomor task pendahulu: 3.1.1

Penanggung jawab task: Project Manager

Tabel 3.2.2.3.1.3 Kamus WBS 3.1.3

Nomor: 3.1.3

Nama Task: Melakukan requirement gathering

Deskripsi: Mengumpulkan kebutuhan sistem secara detail

Hasil: Dokumen Kebutuhan

Daftar sumber daya:
- Business Analyst

Durasi pelaksanaan task (hari): 2 hari

Nomor task pendahulu: 3.1.2

Penanggung jawab task: Business Analyst

Tabel 3.2.2.3.1.4 Kamus WBS 3.1.4

Nomor: 3.1.4	Nama <i>Task</i> : Menyusun dokumen Spesifikasi Kebutuhan Perangkat Lunak (SKPL)
Deskripsi: Pembuatan dokumen Spesifikasi Kebutuhan Perangkat Lunak (SKPL)	
Hasil: Dokumen SKPL	

Daftar sumber daya:

- Business Analyst
- Developer

Durasi pelaksanaan task (hari): 3 hari

Nomor task pendahulu: 3.1.3

Penanggung jawab task: Business Analyst

Tabel 3.2.2.3.1.5 Kamus WBS 3.1.5

Nomor: 3.1.5	Nama Task: Menentukan user story dan use case diagram	
Deskripsi: Mendefinisikan fungsionalitas sistem		
Hasil: User Story, Use Case Diagram		
Daftar sumber daya:		
- Business Analyst		
- UI/UX Designer		
Durasi pelaksanaan task (hari): 2 hari		
Nomor task pendahulu: 3.1.4		
Penanggung jawab task: Business Analyst		

Tabel 3.2.2.3.2 Kamus WBS 3.2

Nomor: 3.2

Nama Task: Membuat desain perangkat lunak

Deskripsi: Mendesain arsitektur data, antarmuka, dan pemilihan tools BI

Hasil: Dokumen desain & wireframe

Daftar sumber daya:

- UI/UX Designer

- Data Engineer

- Project Manager

Durasi pelaksanaan task (hari): 9 hari

Nomor task pendahulu: 3.1.5

Penanggung jawab task: UI/UX Designer

Tabel 3.2.2.3.2.1 Kamus WBS 3.2.1

Nomor: 3.2.1	Nama Task: Desain arsitektur data perangkat lunak (ETL pipeline)	
Deskripsi: Menyusun struktur alur data dari sumber ke dashboard		
Hasil: Dokumen arsitektur data		
Daftar sumber daya: - Data Engineer		
Durasi pelaksanaan task (hari): 3 hari		
Nomor task pendahulu: 3.1.5		
Penanggung jawab task: Data Engineer		

Tabel 3.2.2.3.2.2 Kamus WBS 3.2.2

Nomor: 3.2.2

Nama Task: Desain UI/UX perangkat lunak (wireframe)

Deskripsi: Mendesain tampilan dan interaksi pengguna

Hasil: Wireframe

Daftar sumber daya:
- UI/UX Designer

Durasi pelaksanaan task (hari): 4 hari

Nomor task pendahulu: 3.1.5

Penanggung jawab task: UI/UX Designer

Tabel 3.2.2.3.2.3 Kamus WBS 3.2.3

1a0c1 3.2.2.3.2.3 Kainus W B3 3.2.3	
Nomor: 3.2.3	Nama Task: Pemilihan tools Business Intelligence (PowerBI/Tableau)
Deskripsi: Menentukan tools BI se	suai kebutuhan pengguna
Hasil: Tools terpilih & dokumentasi	
Daftar sumber daya: - Project Manager	
- Data Engineer Durasi pelaksanaan task (hari): 2 hari	
Nomor task pendahulu: 3.1.5	
Penanggung jawab task: Project Manager	

Tabel 3.2.2.3.3 Kamus WBS 3.3

Nomor: 3.3 Nama Task: Pemilihan tools Business Intelligence (PowerBI/Tableau)

Deskripsi: Pengembangan sistem dalam 3 *sprint* iteratif menggunakan metodologi Scrum.

Hasil: Implementasi dashboard tahap awal hingga akhir

Daftar sumber daya:

- Scrum Master
- Dev Team
- Product Owner

Durasi pelaksanaan task (hari): 30 (10 hari/sprint)

Nomor task pendahulu: 3.2

Penanggung jawab task: Scrum Master

Tabel 3.2.2.3.3.1 Kamus WBS 3.3.1

Nomor: 3.3.1 Nama Task: Membangun dashboard utama

Deskripsi: Membangun *core dashboard* analitik yang sudah bisa menampilkan data penjualan dari MokaPOS secara *real-time* dalam bentuk visualisasi geografis (*heatmap*).

Hasil: Integrasi data dari MokaPOS dan visualisasi heatmap wilayah

Daftar sumber daya:

- Frontend Dev
- Backend Dev
- Data Analyst
- QA Engineer

Durasi pelaksanaan task (hari): 10 hari

Nomor task pendahulu: 3.3

Penanggung jawab task: Scrum Master

STEI-ITB IF3141-01/K01-G08 Halaman 59 dari 72 halaman

Tabel 3.2.2.3.3.2 Kamus WBS 3.3.2

Nomor: 3.3.2 Nama Task: Integrasi CRM & Data Warehouse

Deskripsi: Memastikan sistem terintegrasi dengan data dari CRM (Google Spreadsheets) dan membangun *pipeline* ETL untuk memproses data ke dalam *data warehouse* secara otomatis.

Hasil: Koneksi ke Google Spreadsheets dan Pembuatan Pipeline ETL

Daftar sumber daya:

- Frontend Dev
- Backend Dev
- Data Analyst
- QA Engineer

Durasi pelaksanaan task (hari): 10 hari

Nomor task pendahulu: 3.3.1

Penanggung jawab task: Scrum Master

Tabel 3.2.2.3.3.3 Kamus WBS 3.3.3

Nomor: 3.3.3 Nama *Task*: Pengembangan fitur analitik

Deskripsi: Menambahkan fitur-fitur analitik yang memberikan *insight* bagi pengguna, seperti tren penjualan berdasarkan demografi dan analisis ROI kampanye.

Hasil: Grafik tren penjualan per demografi dan Analisis ROI kampanye

Daftar sumber daya:

- Frontend Dev
- Backend Dev
- Data Analyst
- QA Engineer

Durasi pelaksanaan task (hari): 10 hari

Nomor task pendahulu: 3.3.2

Penanggung jawab task: Scrum Master

STEI-ITB IF3141-01/K01-G08 Halaman 60 dari 72 halaman

Tabel 3.2.2.3.4 Kamus WBS 3.4

Nomor: 3.4

Nama Task: Pengujian

Deskripsi: Tahap pengujian menyeluruh terhadap fitur dan integrasi perangkat lunak.

Hasil: Laporan pengujian lengkap

Daftar sumber daya:

- QA Engineer

- QA Tester

- Developer

Durasi pelaksanaan task (hari): 5 hari

Nomor task pendahulu: 3.3.3

Penanggung jawab task: QA Engineer

Tabel 3.2.2.3.4.1 Kamus WBS 3.4.1

Nomor: 3.4.1

Nama Task: Feature testing

Deskripsi: Pengujian terhadap masing-masing fitur fungsional perangkat lunak.

Hasil: Hasil uji fitur

Daftar sumber daya:

- QA Engineer

- QA Tester

- Test Script

Durasi pelaksanaan task (hari): 2 hari

Nomor task pendahulu: 3.3.3

Penanggung jawab task: QA Engineer

Tabel 3.2.2.3.4.2 Kamus WBS 3.4.2

Nomor: 3.4.2

Nama Task: Integration testing

Deskripsi: Pengujian alur data antar modul dan integrasi antarsistem.

Hasil: Laporan pengujian integrasi

Daftar sumber daya:
- QA Engineer
- Developer

Durasi pelaksanaan task (hari): 2 hari

Nomor task pendahulu: 3.4.1

Penanggung jawab task: QA Engineer

Tabel 3.2.2.3.4.3 Kamus WBS 3.4.3

Nomor: 3.4.3

Nama Task: End-to-end testing

Deskripsi: Pengujian menyeluruh dari input hingga output akhir sistem.

Hasil: Validasi keseluruhan sistem

Daftar sumber daya:
- QA Engineer
- End User

Durasi pelaksanaan task (hari): 1 hari

Nomor task pendahulu: 3.4.2

Penanggung jawab task: QA Engineer

Tabel 3.2.2.3.5 Kamus WBS 3.5

Nomor: 3.5

Nama Task: Maintenance

Deskripsi: Perawatan sistem setelah implementasi awal.

Hasil: Sistem tetap stabil dan up-to-date

Daftar sumber daya:
- Software Engineer
- Developer

Durasi pelaksanaan task (hari): Berkelanjutan (iteratif)

Nomor task pendahulu: 3.4.3

Penanggung jawab task: Developer

Tabel 3.2.2.4.1 Kamus WBS 4.1

Nomor: 4.1	Nama Task: Pelacakan progres sprint (Daily Stand-up Meeting)		
Deskripsi: Rapat harian untuk men	nantau progres tim dan hambatan yang dihadapi selama <i>sprint</i> .		
Hasil: Laporan progres harian sprin	nt		
Daftar sumber daya:			
- Project Manager			
- Tim Proyek			
Durasi pelaksanaan task (hari): 1 hari			
Nomor task pendahulu: 3			
Penanggung jawab task: Project Manager, Tim Proyek			

Tabel 3.2.2.4.2 Kamus WBS 4.2

Nomor: 4.2

Nama Task: Evaluasi hasil setiap sprint (sprint review)

Deskripsi: Evaluasi terhadap hasil sprint untuk memastikan deliverable sesuai dengan ekspektasi.

Hasil: Laporan evaluasi hasil sprint

Daftar sumber daya:
- Project Manager
- Tim Proyek

Durasi pelaksanaan task (hari): 1 hari

Nomor task pendahulu: 4.1

Penanggung jawab task: Project Manager, Tim Proyek, Stakeholders

Tabel 3.2.2.4.3 Kamus WBS 4.3

Nomor: 4.3	nor: 4.3 Nama Task: Penyesuaian jadwal dan anggaran (change management)			
Deskripsi: Penyesuaian terhadap ja	adwal dan anggaran jika ada perubahan dalam ruang lingkup atau prioritas.			
Hasil: Jadwal dan anggaran proyek	yang diperbarui			
Daftar sumber daya:				
- Project Manager	- Project Manager			
- Tim Proyek				
Durasi pelaksanaan task (hari): 1 hari				
Nomor task pendahulu: 4.2				
Penanggung jawab task: Project Manager, Tim Keuangan, Tim Proyek				

Tabel 3.2.2.4.1 Kamus WBS 4.4

Nomor: 4.4

Nama Task: Pemantauan kualitas (QA monitoring)

Deskripsi: Memastikan kualitas perangkat lunak sesuai dengan standar yang ditetapkan.

Hasil: Laporan pemantauan kualitas

Daftar sumber daya:
- Project Manager
- Tim Proyek

Durasi pelaksanaan task (hari): 1 hari

Nomor task pendahulu: 4.3

Penanggung jawab task: Project Manager, Tim QA, Tim Proyek

Tabel 3.2.2.5.1 Kamus WBS 5.1

Nomor: 5.1	nor: 5.1 Nama <i>Task</i> : Membuat dokumentasi aplikasi			
Deskripsi: Penyusunan dokumenta	si teknis dan pengguna terkait aplikasi yang telah dibangun.			
Hasil: Dokumentasi aplikasi lengka	ар			
Daftar sumber daya:				
- Project Manager	- Project Manager			
- Tim Proyek				
Durasi pelaksanaan task (hari): 1 hari				
Nomor task pendahulu: 4.4				
Penanggung jawab task: Project Manager, Technical Writer				

Tabel 3.2.2.5.2 Kamus WBS 5.2

Nomor: 5.2

Nama Task: Melakukan serah terima proyek

Deskripsi: Proses serah terima hasil proyek kepada stakeholder atau penerima proyek.

Hasil: Proyek diserahkan kepada stakeholder

Daftar sumber daya:
- Project Manager
- Tim Proyek

Durasi pelaksanaan task (hari): 1 hari

Nomor task pendahulu: 5.1

Penanggung jawab task: Project Manager, Stakeholders

Tabel 3.2.2.5.3 Kamus WBS 5.3

Nomor: 5.3	Nama Task: Membuat final report			
Deskripsi: Penyusunan laporan akl	nir yang merinci keseluruhan proses proyek dan hasil yang dicapai.			
Hasil: Final report proyek siap dise	erahkan			
Daftar sumber daya:				
- Project Manager	- Project Manager			
- Tim Proyek				
Durasi pelaksanaan task (hari): 2 hari				
Nomor task pendahulu: 5.2				
Penanggung jawab task: Project Manager, Tim Proyek				

3.3. Pemangku Kepentingan yang Terlibat

Gambar 3.3.1 Stakeholder Wheel dalam Implementasi Solusi "Dashboard Analitik Pemasaran & Ekspansi"

Berikut *stakeholder* utama yang terlibat dalam implementasi solusi "*Dashboard* Analitik Pemasaran & Ekspansi" beserta peran mereka:

Tabel 3.3.1 Tabel Stakeholder Implementasi Solusi "Dashboard Analitik Pemasaran & Ekspansi"

ID	Pemangku Kepentingan	Peran dalam Solusi Dashboard	
PK-01	Direktur Utama	Menetapkan visi ekspansi nasional, menyetujui anggaran BI, dan memantau KPI penetrasi pasar serta ROI kampanye melalui dashboard.	
PK-02	Direktur Operasional	Memastikan alur data operasional (POS, inventaris, logistik) terintegrasi dengan pipeline ETL dan stabilitas sistem ETL-BI.	
PK-03	Direktur <i>Marketing</i>	Menggunakan metrik kampanye, grafik tren demografi, dan heatmap wilayah untuk merancang strategi pemasaran yang lebih efektif.	
PK-04	Head of Finance & Accounting	Memantau alokasi anggaran kampanye, menganalisis ROI, dan menyusun laporan keuangan berbasis data dari <i>dashboard</i> .	
PK-05	HRD	Mendukung pelatihan pengguna <i>dashboard</i> , menyusun kurikulum <i>onboarding</i> , dan memastikan tim terkait memiliki keterampilan analitik dasar.	
PK-06	Operational Manager 1	Menyiapkan dan memverifikasi data <i>back-office</i> (penjualan, stok) serta memastikan <i>pipeline</i> ETL berjalan sesuai jadwal untuk <i>data warehouse</i> .	
PK-07	Operational Manager 2	Memastikan integrasi data lapangan (logistik & distribusi) akurat dan terkini, sehingga <i>heatmap</i> wilayah mencerminkan kondisi <i>real-time</i> .	
PK-08	Marketing Manager	Berkolaborasi dalam PoC, menguji fitur visualisasi kampanye, dan memberikan umpan balik terhadap desain <i>dashboard</i> kampanye.	

STEI-ITB	IF3141-01/K01-G08	Halaman 67 dari 72 halaman

PK-09	Engineering Manager	Mengawasi tim IT dan BI <i>Developer</i> dalam pembangunan <i>pipeline</i> ETL, serta memastikan arsitektur <i>data warehouse</i> sesuai standar keamanan dan performa.	
PK-10	Purchasing Manager	Mengawasi pembelian lisensi perangkat BI (PowerBI/Tableau) dan infrastruktur server untuk mendukung deployment dashboard.	
PK-12	General Manager	Koordinasi lintas divisi, menyelaraskan <i>roadmap</i> implementasi <i>dashboard</i> , dan mengawasi pelaksanaan <i>sprint</i> serta adopsi pengguna.	
PK-13	End User (Tim Marketing & Sales)	Pengguna utama <i>dashboard</i> untuk monitoring KPI, analisis penjualan per <i>channel</i> , dan rekomendasi area ekspansi.	
PK-15	Employee	Memanfaatkan <i>dashboard</i> untuk mendukung tugas sehari-hari, termasuk laporar performa dan umpan balik untuk perbaikan proses internal.	
PK-16	Vendor BI & Konsultan ETL	Menyediakan dukungan teknis, konfigurasi PowerBI/Tableau, dan optimasi pipeline ETL agar data tersaji dengan cepat dan akurat.	

3.4. Pendekatan Awal Proyek

Pada fase awal, proyek akan dijalankan dengan pendekatan sebagai berikut:

1. Metodologi Pengembangan: Agile Scrum

- Sprint planning, daily stand-up, sprint review, dan retrospective.
- *Timebox* setiap *sprint* selama 2 minggu.

2. Rencana Sprint

- *Sprint* 1: *Set-up pipeline* ETL dan *data warehouse*; konfigurasi koneksi MokaPOS, Accurate, CRM, Google Sheets.
- *Sprint* 2: Desain UI/UX *dashboard* utama; implementasi metrik penetrasi pasar dan ROI kampanye.
- *Sprint* 3: Integrasi visualisasi *heatmap* wilayah dan tren penjualan per *channel* demografi.
- *Sprint* 4: Pengujian *end-to-end*, optimasi performa ETL, dan validasi data.
- *Sprint* 5: *Deployment* ke lingkungan produksi, sosialisasi, dan pelatihan pengguna.

3. Pendekatan Implementasi

- Continuous Integration / Continuous Deployment (CI/CD) untuk setiap komponen ETL dan dashboard.
- *Proof of Concept* (PoC) di wilayah Bandung sebelum perluasan wilayah berikutnya.
- Kolaborasi lintas divisi melalui komunikasi rutin dan dokumentasi tepat.

STEI-ITB	IF3141-01/K01-G08	Halaman 68 dari 72 halaman

4. Hal-hal Terkait

- Penetapan KPI ekspansi per wilayah dan target ROI.
- Penyediaan infrastruktur *server* dan lisensi BI (PowerBI/Tableau).
- Monitoring otomatis (alert & logging) untuk ETL failures dan performa dashboard.
- Rencana pelatihan dan knowledge transfer kepada pengguna akhir selama fase sosialisasi.

3.5. Batasan dan Asumsi

Berdasarkan analisis yang telah dilakukan, terdapat beberapa batasan jika solusi *dashboard* analitik untuk pemasaran dan ekspansi diimplementasikan. Batasan-batasan tersebut dapat dibagi menjadi batasan bisnis dan batasan teknis.

1. Bisnis

- a. Biaya implementasi berada di angka Rp47.900.000
- b. Kebutuhan *server* untuk memastikan program dapat terus berjalan, akan meningkatkan biaya operasional bulanan

2. Teknis

- a. Data yang digunakan dalam *pipeline* untuk keperluan analitikal dan visualisasi haruslah data yang dapat diakses oleh *dashboard*
- b. Divisi *marketing* harus memiliki jumlah perangkat yang cukup agar *dashboard* dapat digunakan secara optimal oleh divisi *marketing*
- c. Visualisasi yang ditampilkan terbatas jenisnya

Adapun asumsi yang didefinisikan untuk mengimplementasikan solusi ini adalah,

- 1. Tidak diperlukan biaya tambahan untuk mengimplementasikan *dashboard* (misalnya karena diperlukan suatu komponen yang harus dibeli)
- 2. Visualisasi/komponen analitik yang dibutuhkan perusahaan mencukupi dan jika akan ditambahkan visualisasi/komponen analitik lain, maka visualisasi/komponen analitik tersebut tidak akan ada di luar *scope dashboard* saat itu
- Program akan dijalankan seefektif mungkin sehingga memberikan benefit bagi Scoop
 Skoops

Bab IV

Analisis Solusi

4.1. Analisis Perubahan

Berikut analisis perubahan dari model bisnis Scoop & Skoop terkait dampak yang ditimbulkan dari implementasi solusi "*Dashboard* Analitik Pemasaran dan Ekspansi".

Tabel 4.1.1 Analisis Perubahan

Aspek	Perubahan	Deskripsi
Proses Bisnis	PB-01: Perencanaan Strategi dan Produk	Proses perencanaan strategi menjadi berbasis data historis dan prediktif dari dashboard analitik. Target revenue dan produk tahunan juga menjadi lebih tepat sasaran karena menggunakan data tren penjualan produk dan demografi dari dashboard BI. Data tren penjualan ini mencakup produk dan wilayah dengan permintaan tinggi berdasarkan data heatmap dan tren distribusi saluran pembelian oleh pelanggan dari dashboard. Sebelumnya, perencanaan strategi hanya berdasarkan proyeksi tahunan, pengalaman masa lalu tanpa data wilayah atau ROI aktual dari tiap jenis produk dan tanpa segmentasi demografis dan wilayah sehingga berisiko menyebabkan deadstock.
	PB-02: Pengadaan Bahan Baku dan Logistik	Estimasi kebutuhan bahan baku dapat disesuaikan secara <i>real-time</i> berdasarkan performa penjualan dari <i>dashboard</i> . Pengadaan menjadi lebih responsif terhadap <i>demand</i> aktual. Sebelumnya, estimasi bahan baku hanya mengacu pada rencana produksi tahunan yang bersifat statis, tanpa mempertimbangkan dinamika <i>demand</i> harian atau mingguan dari tiap gerai.
	PB-03: Produksi Produk	Proses pencatatan penjualan kini langsung terintegrasi dengan dashboard BI untuk menghasilkan <i>insight</i> pemasaran yang mencakup analisis ROI kampanye dan tren konsumen. Sebelumnya, pencatatan dilakukan secara manual per gerai melalui MOKA POS lalu direkap ke dalam Accurate oleh tim <i>marketing</i> , sehingga terjadi dua

STEI-ITB	IF3141-01/K01-G08	Halaman 70 dari 72 halaman

		kali proses pengolahan data yang kurang efektif dan memperlambat analisis strategi pemasaran.	
Inbound Logistics		Proses penerimaan dan pengelolaan bahan baku kini didukung oleh integrasi dashboard BI yang menampilkan proyeksi kebutuhan berdasarkan tren penjualan aktual dan musiman, sehingga tim operasional tidak lagi hanya mengandalkan estimasi dari jadwal produksi tetap, melainkan dapat melihat insight permintaan wilayah serta produk tertentu yang memengaruhi kebutuhan bahan baku.	
Value Chain	Outbound Logistics	Distribusi produk sekarang dapat diprioritaskan ke gerai atau mitra yang memiliki tren penjualan tinggi berdasarkan <i>dashboard</i> BI. Informasi seperti lokasi dengan ROI tinggi, stok menipis, atau pola permintaan harian ditampilkan dalam <i>dashboard</i> logistik. Hal ini membantu operasional mengoptimalkan rute dan jadwal pengiriman serta meminimalkan risiko <i>deadstock</i> . Sebelumnya, pengiriman dilakukan berdasarkan jadwal rutin dan laporan manual tanpa <i>insight</i> performa tiap titik distribusi.	
Model Bisnis	Key Resources	Implementasi solusi BI memungkinkan alokasi sumber daya yang lebih efisien mencakup pengadaan bahan baku yang lebih akurat dan distribusi yang lebih tepat sasaran, mengoptimalkan penggunaan mesin produksi, fasilitas cold storage, dan kendaraan pengiriman untuk mengurangi pemborosan serta meningkatkan ROI.	

4.2. Analisis Gap

Perubahan yang terjadi pada *gap* antara kondisi perusahaan saat ini dan *target state* dapat dilihat pada tabel berikut.

Tabel 4.2.1 Analisis Gap Perusahaan Saat Ini

Perspektif	Target State	Gap	Perubahan
People	Karyawan terampil mengoperasikan teknologi informasi seperti		informasi terpusat serta

STEI-ITB	IF3141-01/K01-G08	Halaman 71 dari 72 halaman

	dashboard analitik pemasaran yang terintegrasi dan tools BI seperti PowerBI atau Tableau.	kurang pemahaman tentang data-driven decision making.	penggunaan BI tools, workshop interpretasi data, dan pendampingan oleh tim IT selama masa transisi, terutama kepada tim marketing dan sales.
Process	Proses analisis pemasaran terotomatisasi dengan real-time monitoring dan pengguna mendapatkan feedback pada setiap prosesnya.	Proses saat ini masih manual (gabungan <i>spreadsheet</i> , CSV, dan MokaPOS) tanpa otomatisasi, lambat, dan rentan <i>error</i> . Tidak ada mekanisme <i>feedback</i> proses dari aplikasi ke pengguna.	Mengintegrasikan teknologi informasi terpusat dengan proses ETL (Extract, Transform, Load) otomatis serta menerapkan otomatisasi pengolahan data dan visualisasi melalui dashboard dengan fitur feedback seperti progress tracking.
Organization	Tidak terdapat <i>blocker</i> dalam proses bisnis karena <i>flow</i> informasi telah terdefinisi dengan baik dengan informasi yang tersentralisasi.	Masih terdapat <i>blocker</i> dalam proses bisnis karena hal-hal seperti misinformasi dan miskomunikasi akibat data tersebar dan tidak terpusat. Setiap tim bekerja sendiri-sendiri.	
Information Technology	Informasi tersentralisasi dengan pertukaran informasi antar tim yang jelas dan <i>tracking</i> informasi pada aplikasi.	Informasi masih tercecer karena menggunakan beragam wadah untuk berkomunikasi dan menyimpan informasi secara manual (POS, CRM, inventaris, logistik) yang belum terintegrasi. Infrastruktur terbatas (laptop rendah spesifikasi, tidak ada server), dan belum ada sumber daya manusia IT (PM, engineer, QA tester).	Menggunakan sistem informasi berupa dashboard analitik yang menjadi jalur utama untuk mengintegrasikan data dari berbagai sumber dan menyediakan visualisasi interaktif untuk analisis data pemasaran. Menyewa cloud server untuk deploy sistem, outsourcing tim pengembang, dan upgrade perangkat kerja untuk mendukung operasional harian.