$V = l(b_1, b_2, ..., b_k)$, то съществува подсистема на системата вектори $b_1, b_2, ..., b_k$, която е базис на V над F.

Д о к а з а т е л с т в о. От $V \neq \{0\}$ следва, че поне един от векторите b_1, b_2, \ldots, b_k е различен от нулевия вектор. Нека например $b_1 \neq 0$. Ако $V = l(b_1)$, то b_1 е базис на V. Нека $V \supsetneq l(b_1)$. Тогава поне един от векторите b_2, \ldots, b_k , например b_2 , не принадлежи на $l(b_1)$ (в противен случай $V = l(b_1, b_2, \ldots, b_k) = l(b_1)$). Според лема 1 векторите b_1 и b_2 са линейно независими. Ако $V = l(b_1, b_2)$, то b_1 и b_2 образуват базис на V. В противен случай, например $b_3 \notin l(b_1, b_2)$ и тогава векторите b_1, b_2, b_3 са линейно независими. Продължавайки по същия начин, след краен брой стъпки избираме вектори $b_1, b_2, \ldots, b_n, n \leq k$, които са линейно независими и $V = l(b_1, b_2, \ldots, b_n)$. Следователно тези вектори образуват базис на V.

З а б е л е ж к а. Едно ненулево линейно пространство V е крайномерно над F точно когато е линейна обвивка на краен брой свои вектори.

Теорема 3. Всеки два базиса на ненулевото крайномерно пространство V над полето F съдържат равен брой вектори.

Д о к а з а т е л с т в о. Нека a_1, a_2, \ldots, a_n и b_1, b_2, \ldots, b_k са два базиса на V. Тогава всеки вектор от втория базис се изразява линейно чрез векторите от първия базис. Тъй като векторите b_1, b_2, \ldots, b_k са линейно независими, от основната лема (лема 1 от § 8) следва, че $k \leq n$. Аналогично $n \leq k$. Следователно n = k.

Определение. Броят на векторите в кой да е базис на ненулевото крайномерно пространство V над полето F ще наричаме размерност на V над F и ще го бележим $c \dim_F V$ или само $\dim V$, ако F се подразбира. По определение размерността на нулевото пространство е равна на нула. Ако V е безкрайномерно пространство, ще пишем $\dim V = \infty$.

От предпите примери следва, че $\dim F^n=n$, $\dim F^{n+1}[x]=n+1$, $\dim F[x]=\infty$.

Теорема 4. Нека V е линейно пространство над полето F. Тогава

- а) V е крайномерно $u \dim V = n$ тогава u само тогава, когато във V съществуват n на брой линейно независими вектора u всеки n+1 на брой вектора са линейно зависими. B този случай всеки n на брой линейно независими вектора от V са базис на V;
- б) V е безкрайномерно тогава и само тогава, когато за всяко естествено число n във V има n на брой линейно независими вектора.

Доказателство. а) Нека V е крайномерно и $\dim V = n$. Тогава V притежава базис a_1, a_2, \ldots, a_n , състоящ се от n на брой вектора. Нека

 $b_1, b_2, \ldots, b_{n+1}$ е произволна система от n+1 на брой вектора ог вектори се изразяват линейно чрез базисните вектори a_1, a_2, \ldots основната лема (лема 1 от § 8) следва, че векторите b_1, b_2, \ldots линейно зависими.

Обратно, нека a_1, a_2, \ldots, a_n са линейно независими вектори всеки n+1 на брой вектора от V са линейно зависими. Нека a е при вектор от V. Ако $a \notin l(a_1, a_2, \ldots, a_n)$, според лема 1 векторите \ldots, a_n ; a биха били линейно независими; противоречие. Следовате $l(a_1, a_2, \ldots, a_n)$. Така векторите a_1, a_2, \ldots, a_n са линейно не и всеки вектор a от V е тяхна линейна комбинация. Следовате вектори са базис па V и значи V е крайномерно и dim V = n.

Накрая, нека $\dim V = n$ и b_1, b_2, \ldots, b_n е произволна системь брой линейно независими вектори от V. Ако съществува вектор от $l(b_1, b_2, \ldots, b_n)$, прилагайки лема 1 бихме получили n+1 на брой независими вектора във V, което противоречи на $\dim V = n$. Слеме $V = l(b_1, b_2, \ldots, b_n)$ и значи тези вектори са базис на V.

б) Нека V е безкрайномерно и n е произволно естествено чис пуснем, че във V няма n линейно независими вектора (т. е. всеки във V са линейно зависими). Тогава от подусловие а) следва, че противоречие.

Обратно, ако за всяко естествено число n във V има n на брой независими вектора, отново от подусловие а) следва, че не с при да е крайномерно пространство, т.е. V е безкрайномерно.

Твърдение 5. Всяка линейно независима система вектори номерно пространство V може да се допълни до базис на V.

Доказателство. Нека b_1, b_2, \ldots, b_s са линейно вектори от V. Ако $V = l(b_1, b_2, \ldots, b_s)$, то тези вектори са базва противен случай съществува вектор b_{s+1} от V, такъв че b_s \ldots, b_s). Според лема 1 векторите $b_1, b_2, \ldots, b_s, b_{s+1}$ са линейно сими. Ако $V = l(b_1, b_2, \ldots, b_s, b_{s+1})$, то тези вектори са базва противен случай съществува вектор b_{s+2} от V, такъв че b_s \ldots, b_s, b_{s+1}). Продължавайки по този начин (процести не безкраен, тъй като dim $V < \infty$), достигаме до система вектори b_{s+1}, \ldots, b_n , които са линейно независими и $V = l(b_1, \ldots, b_n)$ Следователно тези вектори са базис на V.

Задача 1. Нека V е крайномерно пространство и W на ранство на V. Тогава W също е крайномерно и $\dim W = \dim W$ $\dim W = \dim V$ тогава и само тогава, когато W = V.

Твърдение 6. Нека V е ненулево крайномерно пространство над полето F. Една система вектори от V е базис на V тогава и само тогава, когато всеки вектор от V се представя по единствен начин като линейна комбинация на векторите от тази система.

Доказателство. Нека $b_1,\ b_2,\ldots,\ b_n$ е базис на $V,\ v\in V$ и

$$v = \lambda_1 b_1 + \lambda_2 b_2 + \dots + \lambda_n b_n, v = \mu_1 b_1 + \mu_2 b_2 + \dots + \mu_n b_n.$$

Като извадим горните две равенства, получаваме

$$\mathbf{0} = (\lambda_1 - \mu_1)b_1 + (\lambda_2 - \mu_2)b_2 + \dots + (\lambda_n - \mu_n)b_n.$$

От линейната независимост на векторите $b_1,\ b_2,\dots,\ b_n$ получаваме

$$\lambda_1 = \mu_1, \quad \lambda_2 = \mu_2, \quad \dots \quad , \quad \lambda_n = \mu_n.$$

Следователно векторът v се записва по единствен начин като линейна комбинация на векторите $b_1,\ b_2,\ldots,\ b_n.$

Обратно, нека векторите b_1, b_2, \ldots, b_n са такива, че всеки вектор от V се представя по единствен начин като тяхна линейна комбинация. Тогава $V = l(b_1, b_2, \ldots, b_n)$ и за да докажем, че тези вектори образуват базис на V, остава да проверим, че те са липейно независими. Нека

$$\lambda_1 b_1 + \lambda_2 b_2 + \dots + \lambda_n b_n = 0 \quad (\lambda_i \in F; \quad i = 1, 2, \dots, n).$$

Също така, очевидно имаме $0.b_1+0.b_2+\cdots+0.b_n=0$. Тъй като нулевият вектор се записва по единствен начин като линейна комбинация на векторите $b_1,\ b_2,\ldots,\ b_n$, то $\lambda_1=0,\ \lambda_2=0,\ldots,\ \lambda_n=0$ и значи тези вектори са линейно пезависими.

Задача 2. Да се докаже, че векторите b_1, b_2, \ldots, b_n образуват базис на крайномерното пространство V тогава и само тогава, когато $V = l(b_1, b_2, \ldots, b_n)$ и нулевият вектор се представя по единствен начин като линейна комбинация на тези вектори.

Твърдение 6 ни позволява да дадем следното

Определение. Нека V е линейно пространство с размерност n над полето F и $b_1,\ b_2,\ldots,\ b_n$ е фиксиран базис на V. Нека $v\in V$ и

$$v = \lambda_1 b_1 + \lambda_2 b_2 + \dots + \lambda_n b_n \quad (\lambda_i \in F, i = 1, 2, \dots, n).$$

Еднозначно определените (от базиса b_1, b_2, \ldots, b_n) числа $\lambda_1, \lambda_2, \ldots, \lambda_n$ ще наричаме координати на v в базиса b_1, b_2, \ldots, b_n .

Задача 3. Нека V е крайномерно пространство, v

$$v = \mu_1 v_1 + \mu_2 v_2 + \dots + \mu_k v_k \quad (\mu_i \in F, \ v_i \in V; \quad i = 1$$

Тогава координатите на вектора v във фиксиран базие и комбинации с коефициенти $\mu_1, \mu_2, \ldots, \mu_k$ на съответи на векторите v_1, v_2, \ldots, v_k в същия базис.

§ 10. Сума на подпространства

Сечение на произволна фамилия подпространства на пространство също е подпространство (задача 3 от § 7) не че обединение на подпространства отново е подпространства

Задача 1. Да се докаже, че обединението на две потново е подпространство тогава и само тогава, пространство се съдържа в другото.

Ще дефинираме понятието сума на подпространства подпространство.

Определение. Нека V_1, V_2, \ldots, V_s са подпространо пространство V. Под сума $V_1 + V_2 + \cdots + V_s$ на тем ще разбираме множеството от всички вектори v се представят като сума $v = v_1 + v_2 + \cdots + v_s$ на тем $v = v_1 + v_2 + \cdots + v_s$ на $v = v_1 + v_2 + \cdots +$

Задача 2. Да се докаже, че:

а) $V_1 + V_2 + \cdots + V_s$ е подпространство на V_1

6) $V_1 + V_2 + \cdots + V_s = l(V_1 \cup V_2 \cup \cdots \cup V_s)$

Теорема 1. Нека V е линейно пространство и V подпространства на V. Тогава пространствата V крайномерни V

$$\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 - V_2)$$

 \mathcal{A} оказателство. Нека $\dim V_1=k$, $\dim V_2$ е подпространство както на V_1 , така и на V_2 , от залати $V_1\cap V_2$ е крайномерно пространство и $\dim(V_1\cap V_2)$

Нека a_1,\ldots,a_r е базис на $V_1\cap V_2$, ако $V_1\cap V_2$ (ако е необходимо) до базис $a_1,\ldots,a_r;b_{r+1},\ldots,b_r$