Análisis exploratorio de datos

```
# Importamos librerías:
In [ ]:
         import numpy as np
         import matplotlib.pyplot as plt
         import pandas as pd
         import seaborn as sns
         # Importamos los datos:
         data train = pd.read csv('./train motion data.csv')
         data test = pd.read csv('./test motion data.csv')
In []: # Revisamos el set de entrenamiento:
         data train.head()
                                          GyroX
                                                             GyroZ
               AccX
                        AccY
                                  AccZ
                                                                      Class Timestamp
Out[ ]:
                                                    GyroY
           0.000000
                     0.000000
                               0.000000
                                        0.059407
                                                 -0.174707 0.101938
                                                                   NORMAL
                                                                               3581629
         1 -1.624864 -1.082492 -0.204183 -0.028558
                                                  0.051313 0.135536
                                                                  NORMAL
                                                                               3581630
         2 -0.594660 -0.122410
                               0.220502
                                       -0.019395
                                                 -0.029322 0.087888
                                                                   NORMAL
                                                                               3581630
                                        0.069791 -0.029932 0.054902 NORMAL
            0.738478 -0.228456
                               0.667732
                                                                               3581631
                                       0.030696 -0.003665 0.054902 NORMAL
            0.101741
                    0.777568 -0.066730
                                                                               3581631
         data train.sort values(["Timestamp"])
                  AccX
                           AccY
                                     AccZ
                                             GyroX
                                                       GyroY
                                                                GyroZ
                                                                          Class
                                                                               Timestamp
Out[]:
               0.000000
                        0.000000
                                  0.000000
                                           0.059407
                                                    -0.174707
                                                              0.101938
                                                                       NORMAL
                                                                                  3581629
            1 -1.624864
                        -1.082492
                                 -0.204183
                                           -0.028558
                                                    0.051313
                                                              0.135536
                                                                       NORMAL
                                                                                  3581630
              -0.594660
                        -0.122410
                                  0.220502
                                          -0.019395
                                                    -0.029322
                                                              0.087888
                                                                       NORMAL
                                                                                  3581630
               0.738478
                       -0.228456
                                           0.069791 -0.029932
                                                              0.054902 NORMAL
                                  0.667732
                                                                                  3581631
               0.101741
                        0.777568
                                 -0.066730
                                           0.030696
                                                    -0.003665
                                                              0.054902
                                                                       NORMAL
                                                                                  3581631
         3639
               0.915688
                        -2.017489
                                  1.687505
                                           0.450360
                                                    0.384845
                                                             -1.236468
                                                                         SLOW
                                                                                  3583789
         3640
              -1.934203
                        0.914925
                                 -0.096013
                                           0.321468
                                                    0.649350
                                                             -0.477162
                                                                         SLOW
                                                                                  3583790
         3641 -0.222845
                        0.747304
                                 -0.887430
                                           0.361174
                                                    -0.406836
                                                              0.054291
                                                                         SLOW
                                                                                  3583790
             -0.349423
                        0.067261
                                  0.394368
                                          -0.132405
                                                    0.020159
                                                             -0.004963
                                                                         SLOW
                                                                                  3583791
         0.001145
                                                                         SI OW
                                                                                  3583791
        3644 rows × 8 columns
         data train.sort values(["Timestamp"]).loc[data train.Class == "NORMAL"]
```

Out[]:		AccX	AccY	AccZ	GyroX	GyroY	GyroZ	Class	Timestamp
	0	0.000000	0.000000	0.000000	0.059407	-0.174707	0.101938	NORMAL	3581629
	1	-1.624864	-1.082492	-0.204183	-0.028558	0.051313	0.135536	NORMAL	3581630
	2	-0.594660	-0.122410	0.220502	-0.019395	-0.029322	0.087888	NORMAL	3581630
	3	0.738478	-0.228456	0.667732	0.069791	-0.029932	0.054902	NORMAL	3581631
	4	0.101741	0.777568	-0.066730	0.030696	-0.003665	0.054902	NORMAL	3581631
	1195	-0.820672	2.556599	-0.617599	-0.031612	-0.865596	-0.962189	NORMAL	3582274
	1197	2.488864	-1.001262	0.432143	0.140041	-0.080023	0.051847	NORMAL	3582275
	1196	-0.016871	1.171574	0.603792	0.253662	0.692110	0.537485	NORMAL	3582275
	1198	-0.680338	-0.048300	-3.298533	-0.169057	-0.383012	0.217392	NORMAL	3582276
	1199	0.563353	1.234707	-0.729512	0.226784	-1.290758	-0.309174	NORMAL	3582276

1200 rows × 8 columns

```
In [ ]: # Revisamos el set de prueba:
        data test.head()
```

```
Out[]:
               AccX
                         AccY
                                   AccZ
                                           GyroX
                                                     GyroY
                                                               GyroZ
                                                                             Class Timestamp
         0 0.758194 -0.217791 0.457263
                                         0.000000
                                                   0.000000
                                                             0.000000 AGGRESSIVE
                                                                                       818922
         1 0.667560 -0.038610 0.231416
                                        -0.054367
                                                  -0.007712
                                                             0.225257
                                                                      AGGRESSIVE
                                                                                       818923
                                         0.023824
         2 2.724449 -7.584121 2.390926
                                                            -0.038026 AGGRESSIVE
                                                                                       818923
                                                   0.013668
         3 2.330950 -7.621754 2.529024
                                         0.056810
                                                  -0.180587
                                                            -0.052076 AGGRESSIVE
                                                                                       818924
         4 2.847215 -6.755621 2.224640 -0.031765 -0.035201
                                                             0.035277 AGGRESSIVE
                                                                                       818924
```

```
In [ ]: # Lógicamente, ambos sets describen el mismo fenómeno y cuentan con las mism
        # Imprimimos las columnas (o variables) involucradas:
        data train.columns
```

```
Index(['AccX', 'AccY', 'AccZ', 'GyroX', 'GyroY', 'GyroZ', 'Class',
Out[ ]:
                'Timestamp'],
               dtype='object')
```

```
# Observamos si hay datos faltantes (en el caso del set de entrenamiento):
pd.isna(data train).sum()
```

```
AccX
Out[]:
         AccY
                       0
         AccZ
                       0
         GyroX
                       0
         GyroY
                       0
         GyroZ
                       0
         Class
         Timestamp
         dtype: int64
```

0

```
In [ ]: # Observamos si hay datos faltantes (en el caso del set de prueba):
        pd.isna(data_test).sum()
                     0
        AccX
Out[]:
        AccY
                     0
                     0
        AccZ
        GyroX
                     0
        GyroY
                     0
        GyroZ
                     0
        Class
                     0
        Timestamp
        dtype: int64
```



```
In [ ]: # Se observan diversos comportamientos entre variables, existiendo relacione
        # Computamos e imprimimos estadísticas basadas en las clases que nos present
        # Categorías
        print( data train['Class'].unique() )
        # Conteo por categoría
        print( data train['Class'].value counts() )
        # Proporciones de datos existentes por categoría
                = len(data_train[data_train['Class']=='SLOW'])
        Nc1
        Nc2
                = len(data train[data train['Class']=='NORMAL'])
        Nc3
                = len(data_train[data_train['Class']=='AGGRESSIVE'])
        Ntotal = Nc1 + Nc2 + Nc3
        pct Nc1 = Nc1 / Ntotal
        pct Nc2 = Nc2 / Ntotal
        pct Nc3 = Nc3 / Ntotal
        print("Proporción of AGGRESSIVE es {0:0.1f}%".format(pct Nc3*100))
        ['NORMAL' 'AGGRESSIVE' 'SLOW']
        SL0W
                     1331
       NORMAL
                     1200
       AGGRESSIVE
                    1113
       Name: Class, dtype: int64
       Proporción de SLOW
       Proporción de NORMAL
                              es 32.9%
       Proporción of AGGRESSIVE es 30.5%
In [ ]: # Observamos que los datos no se encuentran balanceados, por lo que habrá qu
        # Codificamos la etiqueta de cada clase en todas las ocurrencias del conjunt
        data train.Class = [2 if i == 'NORMAL' else 3 if i == 'AGGRESSIVE' else 1 fd
        # Visualización del conjunto de datos con la clase codificada
        data train
```

Out[]:		AccX	AccY	AccZ	GyroX	GyroY	GyroZ	Class	Timestamp
	0	0.000000	0.000000	0.000000	0.059407	-0.174707	0.101938	2	3581629
	1	-1.624864	-1.082492	-0.204183	-0.028558	0.051313	0.135536	2	3581630
	2	-0.594660	-0.122410	0.220502	-0.019395	-0.029322	0.087888	2	3581630
	3	0.738478	-0.228456	0.667732	0.069791	-0.029932	0.054902	2	3581631
	4	0.101741	0.777568	-0.066730	0.030696	-0.003665	0.054902	2	3581631
	3639	0.915688	-2.017489	1.687505	0.450360	0.384845	-1.236468	1	3583789
	3640	-1.934203	0.914925	-0.096013	0.321468	0.649350	-0.477162	1	3583790
	3641	-0.222845	0.747304	-0.887430	0.361174	-0.406836	0.054291	1	3583790
	3642	-0.349423	0.067261	0.394368	-0.132405	0.020159	-0.004963	1	3583791
	3643	-0.402428	0.406218	-0.423009	-0.053603	-0.006720	0.001145	1	3583791

3644 rows × 8 columns

In []: # Calculamos la correlación entre variables:
 ax = sns.heatmap(data_train.corr(), annot=True).set(title='Pearson Correlation)


```
In [ ]: # Graficando aceleración en X y giroscopio en Z, clasificados en función de
        accXSLOW = data_train.loc[data_train.Class == 1]
        accXNORMAL = data_train.loc[data_train.Class == 2]
        accXAGGRESSIVE = data_train.loc[data_train.Class == 3]
In [ ]: data train2 = pd.read csv('./train motion data.csv')
In [ ]: ax = sns.barplot(x="Class", y="AccX", data=data_train2)
             0.15
             0.10
        AccX
             0.05
             0.00
            -0.05
                         NORMAL
                                            AGGRESSIVE
                                                                     SLOW
```

```
In [ ]: ax3 = sns.barplot(x="Class", y="AccY", data=data_train2)
```

Class

In []: ax3 = sns.barplot(x="Class", y="GyroX", data=data_train2)


```
In [ ]: ax2 = sns.barplot(x="Class", y="GyroZ", data=data_train2)
```


Implementación del modelo de Random Forest

Tres clases: SLOW, NORMAL y AGGRESSIVE

```
In [ ]: # AccX distingue entre manejo etiquetado como normal (valores negativos) los
# AccZ distingue entre manejo etiquetado como agresivo (valores negativos) y
# Implementamos Random Forest
X = data_train[['AccX', 'AccY', 'AccZ', 'GyroX', 'GyroY', 'GyroZ']]
X
```

Out[]:		AccX	AccY	AccZ	GyroX	GyroY	GyroZ
	0	0.000000	0.000000	0.000000	0.059407	-0.174707	0.101938
	1	-1.624864	-1.082492	-0.204183	-0.028558	0.051313	0.135536
	2	-0.594660	-0.122410	0.220502	-0.019395	-0.029322	0.087888
	3	0.738478	-0.228456	0.667732	0.069791	-0.029932	0.054902
	4	0.101741	0.777568	-0.066730	0.030696	-0.003665	0.054902
	3639	0.915688	-2.017489	1.687505	0.450360	0.384845	-1.236468
	3640	-1.934203	0.914925	-0.096013	0.321468	0.649350	-0.477162
	3641	-0.222845	0.747304	-0.887430	0.361174	-0.406836	0.054291
	3642	-0.349423	0.067261	0.394368	-0.132405	0.020159	-0.004963
	3643	-0.402428	0.406218	-0.423009	-0.053603	-0.006720	0.001145

3644 rows × 6 columns

```
In [ ]: y = data_train['Class'] # Labels
                2
Out[ ]:
                2
        1
        2
                2
                2
        3
                2
        3639
                1
        3640
        3641
                1
        3642
        3643
        Name: Class, Length: 3644, dtype: int64
In [ ]: X_test = data_test[['AccX', 'AccY', 'AccZ', 'GyroX', 'GyroY', 'GyroZ']]
        X_{test}
```

```
AccY
                 AccX
                                  AccZ
                                          GyroX
                                                   GyroY
                                                            GyroZ
Out[]:
           0 0.758194 -0.217791 0.457263
                                        0.000000
                                                 0.000000
                                                          0.000000
           1 0.667560 -0.038610 0.231416 -0.054367 -0.007712 0.225257
           2 2.724449 -7.584121 2.390926
                                                0.013668 -0.038026
                                        0.023824
              2.330950 -7.621754 2.529024
                                        0.056810 -0.180587 -0.052076
              2.847215 -6.755621 2.224640 -0.031765 -0.035201
                                                          0.035277
        3079 -0.713858 -0.652975 -0.164015 -0.147829 -1.309466
                                                          0.517250
              1.514261 0.330070
                              1.020714
                                        1.321302
        3080
                                                 1.707598 -0.674548
        3081 1.280216 -1.735172 -2.332695 0.583376 0.690507 -0.468075
        3082
              0.912313 0.583314 -0.965622 0.235794 0.512745 0.406073
        3083
              3084 rows × 6 columns
In [ ]:
        # Codificamos la etiqueta de cada clase en todas las ocurrencias del conjunt
        y_test = data_test['Class']
```

```
data_test.Class = [2 if i == 'NORMAL' else 3 if i == 'AGGRESSIVE' else 1 for
        y test
                 3
Out[]:
         1
                 3
         2
                 3
         3
                 3
         4
                 3
         3079
                 1
         3080
                 1
                 1
         3081
         3082
                 1
         3083
                 1
        Name: Class, Length: 3084, dtype: int64
```

```
In [ ]: # Normalizamos los datos
        from sklearn.preprocessing import StandardScaler
        sc = StandardScaler()
        norm train data X = pd.DataFrame(sc.fit transform(X), columns = X.columns)
        norm test data X = pd.DataFrame(sc.fit transform(X test), columns = X test.c
        # Importamos el modelo de Random Forest desde sklearn
        from sklearn.ensemble import RandomForestClassifier
        # Creamos una instancia del clasificador
        clf = RandomForestClassifier(n estimators=500, max depth=8, max features=2)
        # Entrenamos el modelo
        clf.fit(norm train data X,y)
        # Predecimos la salida con base en los datos de entrada (3 clases)
        y pred = clf.predict(X test)
        # Obtenemos la puntuación del modelo
        clf.score(X test,y test)
        0.4724383916990921
Out[ ]:
In [ ]: # Imprimimos métricas de evaluación
        from sklearn.metrics import classification report, confusion matrix, accurac
        print('Matriz de confusión:\n', confusion matrix(y test, y pred))
        Matriz de confusión:
         [[1122
                 36 1151
                 42 184]
         [ 771
         [ 492
                 29 293]]
In [ ]: print('\nReporte de clasificación:\n', classification report(y test, y pred)
        print('\nAccuracy score:\n', accuracy score(y test, y pred))
        Reporte de clasificación:
                       precision
                                    recall f1-score
                                                        support
                           0.47
                                     0.88
                                               0.61
                                                          1273
                   2
                           0.39
                                     0.04
                                               0.08
                                                           997
                   3
                           0.49
                                     0.36
                                               0.42
                                                          814
                                               0.47
                                                          3084
            accuracy
           macro avg
                           0.45
                                     0.43
                                               0.37
                                                          3084
                                     0.47
                                               0.39
                                                          3084
        weighted avg
                           0.45
        Accuracy score:
         0.4724383916990921
```

Random Forest acotado a dos clases (SLOW-NORMAL y AGGRESSIVE)

```
In [ ]: # Importamos los datos
        data_train_dropslow = pd.read_csv('./train_motion_data.csv')
        data test dropslow = pd.read csv('./test motion data.csv')
        # Codificamos la etiqueta de cada clase en todas las ocurrencias del conjunt
        data train dropslow.Class = [0 if i == 'NORMAL' else 1 if i == 'AGGRESSIVE'
        data test dropslow.Class = [0 if i == 'NORMAL' else 1 if i == 'AGGRESSIVE' e
        # Separamos variables
        X tr dr = data train dropslow[['AccX', 'AccY', 'AccZ', 'GyroX', 'GyroY', 'Gy
        y tr dr = data train dropslow['Class'] # Labels
        X te dr = data test dropslow[['AccX', 'AccY', 'AccZ', 'GyroX', 'GyroY', 'Gyr
        y te dr = data test dropslow['Class'] # Labels
        # Normalizamos los datos
        sc2 = StandardScaler()
        norm train data X dr = pd.DataFrame(sc2.fit transform(X tr dr), columns = X
        norm test data X dr = pd.DataFrame(sc2.fit transform(X te dr), columns = X t
        # Importamos el modelo de Random Forest desde sklearn
        from sklearn.ensemble import RandomForestClassifier
        # Creamos una instancia del clasificador
        clf2 = RandomForestClassifier(n estimators=10000)
        # Entrenamos el modelo
        clf2.fit(norm train data X dr,y tr dr)
        # Obtenemos la puntuación del modelo
        clf2.score(X tr dr,y tr dr)
        0.756860592755214
Out[ ]:
In [ ]: # Predecimos la salida con base en los datos de entrada (2 clases)
        y pred dr = clf2.predict(X te dr)
        # Imprimimos métricas de evaluación
        from sklearn.metrics import classification report, confusion matrix, accurac
        print('Matriz de confusión:\n', confusion matrix(y te dr, y pred dr, labels=
        Matriz de confusión:
         [[2087 183]
         [ 606 208]]
In [ ]: print('\nReporte de clasificación:\n', classification report(y te dr, y pred
        print('\nAccuracy score:\n', accuracy score(y te dr, y pred dr))
```

Reporte de	clas	sificación: precision	recall	f1-score	support	
	0	0.77	0.92	0.84	2270	
	1	0.53	0.26	0.35	814	
accura	СУ			0.74	3084	
macro av	/g	0.65	0.59	0.59	3084	
weighted av	/g	0.71	0.74	0.71	3084	

Accuracy score: 0.7441634241245136

```
In []: # Matriz de confusión a color
CM2 = confusion_matrix(y_te_dr, y_pred_dr, normalize = 'true')
fig, axes = plt.subplots(1, 2, figsize=(16, 3), sharey=True)
sns.heatmap(CM2, annot=True, fmt='g', ax=axes[0], cmap="YlGnBu", linewidths=axes[0].set_title('Matriz de confusión:')
```

```
Out[]: Text(0.5, 1.0, 'Matriz de confusión:')
```


Implementación de KNN y regresión logística

Se junta la clase 'SLOW' con 'NORMAL' y se elimina el ruido presente en los datos para una mejor presición en los modelos

```
In []: data_train.drop(data_train[data_train['AccX'] > 2.5].index, inplace = True) data_train.drop(data_train[data_train['AccY'] < -2.5].index, inplace = True) data_train.drop(data_train[data_train['AccY'] > 2.5].index, inplace = True) data_train.drop(data_train[data_train['AccY'] < -2.5].index, inplace = True) data_train.drop(data_train[data_train['AccZ'] > 2.5].index, inplace = True) data_train.drop(data_train[data_train['AccZ'] < -2.5].index, inplace = True) data_train.drop(data_train[data_train['GyroX'] > 0.4].index, inplace = True) data_train.drop(data_train[data_train['GyroX'] < -0.4].index, inplace = True data_train.drop(data_train[data_train['GyroY'] > 0.4].index, inplace = True data_train.drop(data_train[data_train['GyroY'] < -0.4].index, inplace = True data_train.drop(data_train[data_train['GyroZ'] > 0.4].index, inplace = True data_train.drop(data_train[data_train['GyroZ'] > 0.4].index, inplace = True data_train.drop(data_train[data_train['GyroZ'] < -0.4].index, inplace = True data_train.drop(data_train[data_train['GyroZ'] < -0.4].index, inplace = True data_train
```

Out[]:		AccX	AccY	AccZ	GyroX	GyroY	GyroZ	Class	Timestamp
	0	0.000000	0.000000	0.000000	0.059407	-0.174707	0.101938	2	3581629
	1	-1.624864	-1.082492	-0.204183	-0.028558	0.051313	0.135536	2	3581630
	2	-0.594660	-0.122410	0.220502	-0.019395	-0.029322	0.087888	2	3581630
	3	0.738478	-0.228456	0.667732	0.069791	-0.029932	0.054902	2	3581631
	4	0.101741	0.777568	-0.066730	0.030696	-0.003665	0.054902	2	3581631
	3632	0.702303	-0.930822	0.809290	0.001985	-0.172264	-0.025733	1	3583786
	3633	0.319258	0.272088	0.535243	0.018479	0.106901	-0.062385	1	3583786
	3634	0.402702	0.432955	-0.683754	-0.090255	-0.085521	0.362167	1	3583787
	3642	-0.349423	0.067261	0.394368	-0.132405	0.020159	-0.004963	1	3583791
	3643	-0.402428	0.406218	-0.423009	-0.053603	-0.006720	0.001145	1	3583791

3347 rows × 8 columns

```
In [ ]: data_train = data_train.replace({"Class": {"SLOW":0, "NORMAL":0, "AGGRESSIVE
    test_motionDf = data_test.replace({"Class": {"SLOW":0, "NORMAL":0, "AGGRESSI
```

Se normalizan los datos

```
In [ ]: | # Initialize scaler
        from sklearn.preprocessing import MinMaxScaler
        print(data_train)
        scaler = MinMaxScaler()
        scaler.fit(data train[['AccX']])
        data train['AccX Scaled'] = scaler.transform(data train[['AccX']])
        scaler.fit(data train[['AccY']])
        data_train['AccY_Scaled'] = scaler.transform(data_train[['AccY']])
        scaler.fit(data train[['AccZ']])
        data_train['AccZ_Scaled'] = scaler.transform(data_train[['AccZ']])
        scaler.fit(data train[['GyroX']])
        data_train['GyroX_Scaled'] = scaler.transform(data_train[['GyroX']])
        scaler.fit(data train[['GyroY']])
        data_train['GyroY_Scaled'] = scaler.transform(data_train[['GyroY']])
        scaler.fit(data train[['GyroZ']])
        data train['GyroZ Scaled'] = scaler.transform(data train[['GyroZ']])
        data train
```

```
AccX
                    AccY
                              AccZ
                                       GyroX
                                                GyroY
                                                          GyroZ Class \
0
      0.000000 \quad 0.000000 \quad 0.000000 \quad 0.059407 \quad -0.174707 \quad 0.101938
                                                                       2
1
     -1.624864 -1.082492 -0.204183 -0.028558 0.051313 0.135536
                                                                       2
     \hbox{-0.594660 -0.122410   0.220502 -0.019395 -0.029322   0.087888}
                                                                       2
3
      0.738478 \ -0.228456 \ \ 0.667732 \ \ 0.069791 \ -0.029932 \ \ 0.054902
                                                                       2
      0.101741 \quad 0.777568 \quad -0.066730 \quad 0.030696 \quad -0.003665 \quad 0.054902
                                                                       2
                               . . .
                                         . . .
           . . .
                     . . .
3632 0.702303 -0.930822 0.809290 0.001985 -0.172264 -0.025733
                                                                       1
3633 0.319258 0.272088 0.535243 0.018479 0.106901 -0.062385
3634 0.402702 0.432955 -0.683754 -0.090255 -0.085521 0.362167
                                                                       1
3642 -0.349423  0.067261  0.394368 -0.132405  0.020159 -0.004963
                                                                       1
1
      Timestamp
0
        3581629
1
        3581630
2
        3581630
3
        3581631
       3581631
4
. . .
            . . .
        3583786
3632
3633
       3583786
        3583787
3634
```

[3347 rows x 8 columns]

3583791

3583791

3642

3643

Out[]:		AccX	AccY	AccZ	GyroX	GyroY	GyroZ	Class	Timestamp	AccX_
	0	0.000000	0.000000	0.000000	0.059407	-0.174707	0.101938	2	3581629	0.4
	1	-1.624864	-1.082492	-0.204183	-0.028558	0.051313	0.135536	2	3581630	0.1
	2	-0.594660	-0.122410	0.220502	-0.019395	-0.029322	0.087888	2	3581630	3.0
	3	0.738478	-0.228456	0.667732	0.069791	-0.029932	0.054902	2	3581631	0.6
	4	0.101741	0.777568	-0.066730	0.030696	-0.003665	0.054902	2	3581631	9.0
	3632	0.702303	-0.930822	0.809290	0.001985	-0.172264	-0.025733	1	3583786	0.6
	3633	0.319258	0.272088	0.535243	0.018479	0.106901	-0.062385	1	3583786	9.0
	3634	0.402702	0.432955	-0.683754	-0.090255	-0.085521	0.362167	1	3583787	9.0
	3642	-0.349423	0.067261	0.394368	-0.132405	0.020159	-0.004963	1	3583791	0.4
	3643	-0.402428	0.406218	-0.423009	-0.053603	-0.006720	0.001145	1	3583791	0.4

3347 rows × 14 columns

```
In []: # Initialize scaler
scaler = MinMaxScaler()
scaler.fit(data_test[['AccX']])
data_test['AccX_Scaled'] = scaler.transform(data_test[['AccX']])
scaler.fit(data_test[['AccY']])
data_test['AccY_Scaled'] = scaler.transform(data_test[['AccY']])
scaler.fit(data_test[['AccZ']])
data_test['AccZ_Scaled'] = scaler.transform(data_test[['AccZ']])
scaler.fit(data_test[['GyroX']])
data_test['GyroX_Scaled'] = scaler.transform(data_test[['GyroX']])
scaler.fit(data_test[['GyroY']])
data_test['GyroY_Scaled'] = scaler.transform(data_test[['GyroY']])
scaler.fit(data_test[['GyroZ']])
data_test['GyroZ_Scaled'] = scaler.transform(data_test[['GyroZ']])
data_test['GyroZ_Scaled'] = scaler.transform(data_test[['GyroZ']])
data_test
```

Out[]:	AccX	AccY	AccZ	GyroX	GyroY	GyroZ	Class	Timestamp	AccX_
0	0.758194	-0.217791	0.457263	0.000000	0.000000	0.000000	3	818922	0.5
1	0.667560	-0.038610	0.231416	-0.054367	-0.007712	0.225257	3	818923	0.5
2	2.724449	-7.584121	2.390926	0.023824	0.013668	-0.038026	3	818923	0.7
3	2.330950	-7.621754	2.529024	0.056810	-0.180587	-0.052076	3	818924	0.6
4	2.847215	-6.755621	2.224640	-0.031765	-0.035201	0.035277	3	818924	0.7
3079	-0.713858	-0.652975	-0.164015	-0.147829	-1.309466	0.517250	1	820706	0.3
3080	1.514261	0.330070	1.020714	1.321302	1.707598	-0.674548	1	820707	0.5
3081	1.280216	-1.735172	-2.332695	0.583376	0.690507	-0.468075	1	820707	0.5
3082	0.912313	0.583314	-0.965622	0.235794	0.512745	0.406073	1	820708	0.5
3083	1.462172	0.190287	0.019377	-0.254731	-0.279547	0.076205	1	820709	0.5

3084 rows × 14 columns

```
In []: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler

Xtrain = data_train[['AccX_Scaled', 'AccY_Scaled', 'AccZ_Scaled', 'GyroX_Scaled', 'AccZ_Scaled', 'GyroX_Scaled', 'AccY_Scaled', 'AccZ_Scaled', 'GyroX_Scaled', 'AccY_Scaled', 'AccZ_Scaled', 'GyroX_Scaled', 'AccY_Scaled', 'AccZ_Scaled', 'GyroX_Scaled', 'SyroX_Scaled', 'AccZ_Scaled', 'GyroX_Scaled', 'AccY_Scaled', 'AccZ_Scaled', 'GyroX_Scaled', 'GyroX_Scaled', 'AccZ_Scaled', 'GyroX_Scaled', 'GyroX_Scaled', 'AccZ_Scaled', 'GyroX_Scaled', 'GyroX_Scaled', 'AccZ_Scaled', 'GyroX_Scaled', 'GyroX_Scaled',
```

KNN Learn

```
In [ ]: from sklearn.neighbors import KNeighborsClassifier
        from sklearn.metrics import accuracy score
        from sklearn.metrics import confusion matrix
        from sklearn.metrics import ConfusionMatrixDisplay
        clf kNN1ve
                    = KNeighborsClassifier(n neighbors=50)
        clf kNN5ve = KNeighborsClassifier(n neighbors=100)
        clf kNN20ve = KNeighborsClassifier(n neighbors=150)
        clf kNN1ve.fit( Xtrain , ytrain )
        clf kNN5ve.fit( Xtrain , ytrain )
        clf kNN20ve.fit( Xtrain , ytrain )
        ypred kNN1ve = clf kNN1ve.predict(Xtest)
        ypred kNN5ve = clf kNN5ve.predict(Xtest)
        ypred kNN20ve = clf kNN20ve.predict(Xtest)
        #print("Predictions in order")
        #print(vpred kNN1ve)
        #print(ypred kNN5ve)
        #print(ypred kNN20ve)
        #print("\nReal data")
        #print(ytest)
        acc_kNN1ve = 100*accuracy_score(ytest, ypred_kNN1ve)
        acc kNN5ve = 100*accuracy score(ytest, ypred kNN5ve)
        acc_kNN20ve = 100*accuracy_score(ytest, ypred_kNN20ve)
       print('\nConfusion Matrices for every k used:')
        CM kNN1ve = confusion matrix(ytest, ypred kNN1ve, normalize='true')
        CM kNN5ve = confusion matrix(ytest, ypred_kNN5ve, normalize='true')
        CM_kNN20ve
                     = confusion matrix(ytest, ypred kNN20ve, normalize='true')
        fig, axes = plt.subplots(1, 3, figsize=(16, 3), sharey=True)
        sns.heatmap(CM kNN5ve, annot=True, fmt='g', ax=axes[0], cmap="YlGnBu", linew
        axes[0].set title('kNN with k=50');
        sns.heatmap(CM kNN5ve, annot=True, fmt='g', ax=axes[1], cmap="YlGnBu", linew
        axes[1].set title('kNN with k=100');
        sns.heatmap(CM kNN20ve, annot=True, fmt='g', ax=axes[2], cmap="YlGnBu", line
        axes[2].set title('kNN with k=150');
        plt.show()
       Accuracy kNN with k=50:
                                     41.96 %
```

Accuracy kNN with k=50: 41.96%Accuracy kNN with k=100: 41.89%Accuracy kNN with k=150: 41.83%

Confusion Matrices for every k used:

Logistic Regression

```
In []: from sklearn.linear_model import LogisticRegression
    logistic = LogisticRegression(random_state=0)
    logistic.fit(Xtrain, ytrain)
    y_predLR = logistic.predict(Xtest)
    #print("Prediction")
    #print(y_predLR)
    #print("\nReal data")
    #print(ytest)
    acc = 100*accuracy_score(y_predLR, ytest)
    print('Accuracy: ', acc)
```

Accuracy: 35.27885862516213

Multi-Layer Perceptron Classifier

```
In []: from sklearn.neural_network import MLPClassifier
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import classification_report
    from sklearn.metrics import plot_confusion_matrix
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import GridSearchCV
    from sklearn.metrics import confusion_matrix

    data_train=pd.read_csv('./train_motion_data.csv')
    data_test=pd.read_csv('./test_motion_data.csv')

    data_train
```

Class Timestamp

GyroZ

Out[]:

```
0.000000
                       0.000000
                                0.000000
                                         0.059407 -0.174707
                                                           0.101938 NORMAL
                                                                              3581629
           1 -1.624864 -1.082492 -0.204183 -0.028558
                                                  0.051313
                                                          0.135536 NORMAL
                                                                              3581630
           2 -0.594660 -0.122410
                               0.220502 -0.019395 -0.029322
                                                           0.087888 NORMAL
                                                                              3581630
              0.738478 -0.228456
                                0.667732
                                         0.069791 -0.029932
                                                           0.054902 NORMAL
                                                                              3581631
                      0.777568 -0.066730
              0.101741
                                         0.030696 -0.003665
                                                           0.054902 NORMAL
                                                                              3581631
              0.915688
                      -2.017489
                                1.687505
                                         0.450360
                                                  0.384845 -1.236468
                                                                      SLOW
                                                                              3583789
         3639
         3640
             -1.934203
                       0.914925
                               -0.096013
                                         0.321468
                                                  0.649350 -0.477162
                                                                      SLOW
                                                                              3583790
        3641 -0.222845 0.747304 -0.887430
                                        0.361174 -0.406836
                                                          0.054291
                                                                      SLOW
                                                                              3583790
        3642 -0.349423 0.067261
                               0.394368 -0.132405
                                                 0.020159 -0.004963
                                                                      SLOW
                                                                              3583791
        0.001145
                                                                      SLOW
                                                                              3583791
        3644 rows × 8 columns
        print((data train.Class == 'NORMAL').count())
In [ ]:
        print((data train.Class == 'AGGRESSIVE').count())
         print((data train.Class == 'SLOW').count())
         print((data test.Class == 'NORMAL').count())
         print((data test.Class == 'AGGRESSIVE').count())
         print((data test.Class == 'SLOW').count())
        3644
        3644
        3644
        3084
        3084
        3084
        y=data train['Class']
In [ ]:
        X=data train.drop(['Class','Timestamp','AccZ','GyroZ'], axis=1)
         #X=data train.drop(['Class'], axis=1)
         y test=data test['Class']
        X test=data test.drop(['Class','Timestamp','AccZ','GyroZ'], axis=1)
         #X test=data test.drop(['Class'], axis=1)
         sc=StandardScaler()
         scaler = sc.fit(X)
         \#X = scaler.transform(X)
        #X test = scaler.transform(X test)
        #X
In [ ]: | clf = MLPClassifier(hidden layer_sizes=(4,256,3),
                                  max iter =40,activation = 'relu',
                                  solver = 'adam')
         clf.fit(X, y)
```

AccY

AccZ

GyroX

GyroY

AccX

/home/david586/.local/lib/python3.10/site-packages/sklearn/neural_network/_
multilayer_perceptron.py:702: ConvergenceWarning: Stochastic Optimizer: Max
imum iterations (40) reached and the optimization hasn't converged yet.
 warnings.warn(

plt.show()

/home/david586/.local/lib/python3.10/site-packages/sklearn/utils/deprecatio n.py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Funct ion `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1. 2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator.

warnings.warn(msg, category=FutureWarning)

Confusion Matrix for Driver types

	precision	recall	f1-score	support
AGGRESSIVE NORMAL SLOW	0.46 0.39 0.48	0.41 0.05 0.83	0.43 0.09 0.60	814 997 1273
accuracy macro avg weighted avg	0.44 0.44	0.43 0.47	0.47 0.38 0.39	3084 3084 3084

```
In [ ]: plt.plot(clf.loss_curve_)
    plt.title("Loss Curve", fontsize=14)
    plt.xlabel('Iterations')
    plt.ylabel('Cost')
    plt.show()
```

