ROB-GY 6323 reinforcement learning and optimal control for robotics

Lecture 3
Linear Quadratic optimal control problems
Quadratic programs

Course material

All necessary material will be posted on Brightspace Code will be posted on the Github site of the class

https://github.com/righetti/optlearningcontrol

Discussions/Forum with Slack

Contact

ludovic.righetti@nyu.edu Office hours in person Wednesday 3pm to 4pm 370 Jay street - room 80 l (except next week)

Course Assistant

Armand Jordana aj2988@nyu.edu

Office hours Monday Ipm to 2pm

Rogers Hall 515

any other time by appointment only

Tentative schedule (subject to change)

Week		Lecture	Homework	Project
I	<u>Intro</u>	Lecture 1: introduction		
2		Lecture 2: Basics of optimization		
3		Lecture 3: QPs	HW I	
4	Trajectory optimization	Lecture 4: Nonlinear optimal control	111/4/2	
5	<u>openinzacion</u>	Lecture 5: Model-predictive control	HW 2	
6		Lecture 6: 0th order methods (tentative)	1 1\A/ 2	Project I
7	Policy optimization	Lecture 7: Bellman's principle	HW 3	
8		Lecture 8: Value iteration / policy iteration		
9		Lecture 9:TD learning - Q-learning	HW 4	
10		Lecture 10: Deep Q learning	HW 5	
11		Lecture II:Actor-critic algorithms	П۷۷Э	
12		Lecture 12: Learning by demonstration	LI\A/ Z	
13		Lecture 13: Monte-Carlo Tree Search	HW 6	Project 2
14		Lecture 14: Beyond the class		
15		Finals week		

Next week

I am attending the ICRA@40 conference My office hour is canceled (use Slack!)

The class will be given by Armand He will also hold his office hours

Homework I is due next week

Karush Kuhn Tucker conditions of optimality

$$\min_{x} f(x) \qquad \text{subject to} \qquad g(x) = 0$$

$$h(x) \le 0$$

We define the Lagrangian as $L(x, \lambda, \mu) = f(x) + \lambda^T g(x) + \mu^T h(x)$

The vectors λ and μ are called the Lagrange multipliers

First order necessary conditions (KKT conditions)

Suppose that x^* is a local solution and that the LICQ holds at x^* (and that f, g_i and h_i are continuously differentiable). Then there are Lagrange multiplier vectors λ^* and μ^* such that the following conditions are satisfied

$$\nabla_x L(x^*, \lambda^*, \mu^*) = 0$$

$$g(x^*) = 0$$

$$h(x^*) \le 0$$

$$\mu_i \ge 0 \quad \forall i$$

$$\mu_i h_i(x^*) = 0 \quad \forall i$$

Optimal control of linear systems with quadratic costs

$$\min_{x_n, u_n} \frac{1}{2} \sum_{n=0}^{N-1} x_n^T Q x_n + u_n^T R u_n + x_N^T Q x_N$$
 subject to
$$x_{n+1} = A x_n + B u_n$$

$$x_0 = x_{init}$$

$$\min_{x_n, u_n} \frac{1}{2} \sum_{n=0}^{N-1} x_n^T Q x_n + u_n^T R u_n + x_N^T Q x_N$$
subject to
$$x_{n+1} = A x_n + B u_n$$

$$x_0 = x_{init}$$

$$\min_{x_n, u_n} \frac{1}{2} \begin{pmatrix} x_0 \\ u_0 \\ x_1 \\ u_1 \\ \vdots \end{pmatrix}^T \begin{bmatrix} Q & 0 & 0 & 0 & \cdots \\ 0 & R & 0 & 0 & \cdots \\ 0 & 0 & Q & 0 & \cdots \\ 0 & 0 & 0 & R & \cdots \\ 0 & 0 & 0 & 0 & \ddots \end{bmatrix} \begin{pmatrix} x_0 \\ u_0 \\ x_1 \\ u_1 \\ \vdots \end{pmatrix}$$

subject to
$$\begin{bmatrix} I & 0 & 0 & 0 & 0 & 0 & \cdots \\ A & B & -I & 0 & 0 & 0 & \cdots \\ 0 & 0 & A & B & -I & 0 & \cdots \\ 0 & 0 & 0 & A & B & \cdots \end{bmatrix} \begin{pmatrix} u_0 \\ u_0 \\ x_1 \\ u_1 \\ \vdots \end{pmatrix} = \begin{pmatrix} wint \\ 0 \\ 0 \\ 0 \\ \vdots \end{pmatrix}$$

$$\min_{y} \frac{1}{2} y^T G y$$

subject to My = p

Optimal control of linear systems with quadratic costs

$$\min_{y} \frac{1}{2} y^{T} G y$$
 subject to $My = p$

$$L(y,\lambda) = \frac{1}{2}y^T G y + \lambda^T (My - p)$$

As long as $G \ge 0$, the problem is convex (convex domain and convex function to minimize) and therefore the solution to the KKT system is guaranteed to be a minimum

The KKT conditions are then

$$\nabla_x L = Gy + M^T \lambda = 0$$
$$\nabla_\lambda L = My - p = 0$$

or equivalently

$$\begin{bmatrix} G & M^T \\ M & 0 \end{bmatrix} \begin{pmatrix} y \\ \lambda \end{pmatrix} = \begin{pmatrix} 0 \\ p \end{pmatrix}$$

$$\begin{pmatrix} y \\ \lambda \end{pmatrix} = \begin{bmatrix} G & M^T \\ M & 0 \end{bmatrix}^{-1} \begin{pmatrix} 0 \\ p \end{pmatrix}$$

If the matrix is invertible

Inverting a matrix full of zeros...

$$\begin{bmatrix} G & M^T \\ M & 0 \end{bmatrix} \begin{pmatrix} y \\ \lambda \end{pmatrix} = \begin{pmatrix} 0 \\ p \end{pmatrix}$$

$$\begin{bmatrix} G & M^T \\ M & 0 \end{bmatrix} \begin{pmatrix} y \\ \lambda \end{pmatrix} = \begin{pmatrix} 0 \\ p \end{pmatrix} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \begin{pmatrix} y \\ \lambda \end{pmatrix} = \begin{bmatrix} G & M^T \\ M & 0 \end{bmatrix}^{-1} \begin{pmatrix} 0 \\ p \end{pmatrix}$$

Efficient algorithm to solve the KKT system:

1 Compute backward (from N to 0):

$$P_N = Q$$

$$K_n = (R + B^T P_n B)^{-1} B^T P_n A$$

$$P_{n-1} = Q + A^T P_n A - A^T P_n B K_n$$

2 Compute forward (from 0 to N) starting with $x_0 = x_{init}$

$$u_n = -K_n x_n$$
$$x_{n+1} = Ax_n + Bu_n$$

 K_n are called "feedback gains"

The number of multiplications needed to resolve the KKT system without taking into account 0s will grow like N^3 while the efficient algorithm as a number of operations that grow like N. This is much better!

$$\min \sum_{i=0}^{N-1} (2x_i^2 + u_i^2) + 2x_N^2 \qquad Q = 2 R = 1$$

Subject to
$$x_{n+1} = 2x_n + u_n$$
 $A = 2$ $B = 1$

$$A = 2 \ B = 1$$

$$N = 10 P_{10} = Q = 2$$

$$K_9 = (B^T P_{10} B + R)^{-1} B^T P_{10} A$$

$$= (2+1)^{-1} 4 = \frac{4}{3}$$

$$P_9 = Q + A^T P_{10} A - A^T P_{10} B K_9$$

$$= 2 + 8 - \frac{16}{3} = \frac{14}{3}$$

$$K_8 = \cdots$$

$$\min \sum_{i=0}^{N-1} (x_i^T Q x_i + u_i^T R u_i) + x_N^T Q x_N$$

Subject to $x_{n+1} = 2x_n + u_n$

$$N = 10$$
 $x_0 = 10$

$$Q = 2 R = 1$$

$$\min \sum_{i=0}^{N-1} (x_i^T Q x_i + u_i^T R u_i) + x_N^T Q x_N$$

Subject to $x_{n+1} = 2x_n + u_n$

$$N = 10$$
 $x_0 = 10$

$$Q = 2 R = 1$$

$$Q = 100 R = 1$$

increasing cost of state leads to higher gains, larger controls but faster stabilization

$$\min \sum_{i=0}^{N-1} (x_i^T Q x_i + u_i^T R u_i) + x_N^T Q x_N$$

Subject to $x_{n+1} = 2x_n + u_n$

$$N = 10$$
 $x_0 = 10$

$$Q = 2 R = 1$$

$$Q = 100 R = 1$$

$$Q = 1 R = 1000$$

increase control cost leads to smaller gains and control but stabilization does not occur for N=10

Effect of the horizon N

$$Q = 2 R = 1$$
 $Q = 100 R = 1$
 $Q = 1 R = 1000$

gains seem constant for early stages

increasing N seems to lead to more stable behavior even with low control

is it always true?

$$N = 10$$

$$N=20$$

Impulse 8.1 Ns

Peak Force 287 N

LQR Controller

[Mason, Righetti and Schaal, 2014]

More generic LQ problems

Optimization of quadratic costs and linear constraints

Any optimization problem of the form

$$\min_{x} \frac{1}{2}x^{T}Px + q^{T}x$$
subject to $Ax = b$

where $P \geq 0$ is called a (convex) quadratic program (QP) with equality constraints.

The Lagrangian is
$$L(x,\lambda) = \frac{1}{2}x^TPx + q^Tx + \lambda^T(Ax + b)$$

The KKT conditions are

$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} = \begin{pmatrix} -q \\ b \end{pmatrix}$$

Solving LQ problems with constraints

=> what about inequality constraints?

Solving LQ problems with constraints

$$\min_{x_n, u_n} \frac{1}{2} \sum_{n=0}^{N-1} x_n^T Q x_n + u_n^T R u_n + x_N^T Q x_N$$
 subject to
$$x_{n+1} = A x_n + B u_n$$

$$x_{min} \le x_n \le x_{max}$$

$$u_{min} \le u_n \le u_{max}$$

$$x_0 = x_{init}$$

Solving LQ problems with constraints

Any optimization problem of the form

$$\min_{x} \frac{1}{2}x^{T}Px + q^{T}x$$
 subject to
$$Ax = b$$

$$Gx \le h$$

where $P \geq 0$ is called a (convex) quadratic program (QP).

Using a QP solver

Docs » Home

CVXOPT

PYTHON SOFTWARE FOR CONVEX OPTIMIZATION

CVXOPT is a free software package for convex optimization based on the Python programming language. It can be used with the interactive Python interpreter, on the command line by executing Python scripts, or integrated in other software via Python extension modules. Its main purpose is to make the development of software for convex optimization applications straightforward by building on Python's extensive standard library and on the strengths of Python as a high-level programming language.

Quadratic Programming

The function qp is an interface to coneqp for quadratic programs. It also provides the option of using the quadratic programming solver from MOSEK.

Solves the pair of primal and dual convex quadratic programs

minimize
$$(1/2)x^TPx + q^Tx$$

subject to $Gx \leq h$
 $Ax = b$

Using a QP solver

Navigation

Release history

Verified details (What is this?)

These details have been verified by PyPI

Maintainers

stephane-caron

Unverified details

Project description

Quadratic Programming Solvers in Python

This library provides a one-stop shop solve gp function to solve convex quadratic programs:

minimize
$$\frac{1}{2}x^TPx + q^Tx$$
 subject to $Gx \le h$ $Ax = b$ $lb \le x \le ub$

Vector inequalities apply coordinate by coordinate. The function returns the primal solution x^* found by the backend QP solver, or None in case of failure/unfeasible problem. All solvers require the problem to be convex, meaning the matrix P should be positive semi-definite. Some solvers further require the problem to be strictly convex, meaning P should be positive definite.

Dual multipliers: there is also a <u>solve_problem</u> function that returns not only the primal solution, but also its dual multipliers and all other relevant quantities computed by the backend solver.

Solvers

Solver	Keyword	Algorithm	API	License
Clarabel	clarabel	Interior point	Sparse	Apache-2.0
CVXOPT	cvxopt	Interior point	Dense	GPL-3.0
DAQP	daqp	Active set	Dense	MIT
ECOS	ecos	Interior point	Sparse	GPL-3.0
Gurobi	gurobi	Interior point	Sparse	Commercial
HiGHS	highs	Active set	Sparse	MIT
<u>HPIPM</u>	hpipm	Interior point	Dense	BSD-2-Clause
MOSEK	mosek	Interior point	Sparse	Commercial
NPPro	nppro	Active set	Dense	Commercial
<u>OSQP</u>	osqp	Augmented Lagrangian	Sparse	Apache-2.0
PIQP	piqp	Proximal Interior Point	Dense & Sparse	BSD-2-Clause
ProxQP	proxqp	Augmented Lagrangian	Dense & Sparse	BSD-2-Clause
QPALM	qpalm	Augmented Lagrangian	Sparse	LGPL-3.0
<u>qpOASES</u>	qpoases	Active set	Dense	LGPL-2.1
<u>qpSWIFT</u>	qpswift	Interior point	Sparse	GPL-3.0
quadprog	quadprog	Active set	Dense	GPL-2.0
SCS	scs	Augmented Lagrangian	Sparse	MIT

Using a QP solver

Goal
$$x_{n+1} = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} x_n + \begin{bmatrix} 0 \\ \Delta t \end{bmatrix} u_n$$
 $Q = \begin{bmatrix} 100 \\ 0 \end{bmatrix}$ $R = \begin{bmatrix} 0.1 \end{bmatrix}$

$$Q = \begin{bmatrix} 100 & 0 \\ 0 & 100 \end{bmatrix}$$

$$R = [0.1]$$

Goal
$$x_{n+1} = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} x_n + \begin{bmatrix} 0 \\ \Delta t \end{bmatrix} u_n$$
 $Q = \begin{bmatrix} 100 & 0 \\ 0 & 100 \end{bmatrix}$ $R = \begin{bmatrix} 0.1 \end{bmatrix}$

$$Q = \begin{bmatrix} 100 & 0 \\ 0 & 100 \end{bmatrix}$$

$$R = \begin{bmatrix} 0.1 \end{bmatrix}$$

Goal
$$x_{n+1} = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} x_n + \begin{bmatrix} 0 \\ \Delta t \end{bmatrix} u_n$$

Example: biped walking

What is the problem?

How can the robot move forward then?

Legged locomotion is about creating the right contact forces on the ground to keep balance and move forward

Motion of the center of mass

Support polygon

For a robot with its feet on flat ground, the support polygon is the convex hull of the feet

Two feet on the ground and support polygon (top view)

Static stability

If a body starts in a configuration with zero velocity at t=0 and stays in this configuration for t>0 we say that the body is statically stable

A robot is statically stable if the projection of its Center of Mass (CoM) lies inside the support polygon

Static walking strategy: move the robot slowly (velocity close to 0), such that its CoM is always above the support polygon

Center of pressure

The center of pressure (CoP) is the point of the ground where the resultant force Rn acts

$$OP = \frac{\sum q_i f_{ni}}{\sum f_{ni}}$$

The CoP is the point of application of the ground reaction force vector

Center of pressure

The CoP is the point of application of the ground reaction force vector

On flat ground, the CoP lies inside the polygon of support

If the CoP is on the edge of the support polygon, the foot will rotate and leave the ground

Control of walking

- Decide where to step (footstep planning)
- 2. Compute desired motion of the center of mass compatible with the physics (OC problem)
- 3. Compute a motion of the full robot to follow this desired CoM motion (in particular compute swing foot motions)
- 4. Control the robot to execute this movement
- 5. Adapt and Repeat

Control of walking

- Decide where to step (footstep planning)
- 2. Compute desired motion of the center of mass compatible with the physics (OC problem)
- 3. Compute a motion of the full robot to follow this desired CoM motion (in particular compute swing foot motions)
- 4. Control the robot to execute this movement
- 5. Adapt and Repeat

We need to relate the motion of the CoM to the forces exerted on the ground through the CoP

$$m\ddot{\mathbf{c}} = \sum_{i} \mathbf{f}_{i} - m\mathbf{g}$$

Newton equations (center of mass)

$$\dot{\mathbf{L}} = \sum_{i} (\mathbf{p}_i - \mathbf{c}) \times \mathbf{f}_i + \boldsymbol{\tau}_i$$
 Euler equations (angular momentum)

Linear Inverted pendulum model (LIPM)

[Kajita et al. 2001]

If we assume $\ddot{c}^z \simeq 0$ (i.e. the height of the CoM does not change) and also that $\dot{\mathbf{L}}^{x,y} \simeq 0$ (i.e. that the angular momentum around the CoM does not vary either) we get the linear inverted pendulum model

$$\ddot{\mathbf{c}}^{x,y} = \frac{g}{c^z} (\mathbf{c}^{x,y} - \mathbf{p}^{x,y})$$

$$\mathsf{CoP}$$

Model predictive control for walking

The equations of motion of the LIPM can be written as a function of the CoP

$$\ddot{\mathbf{c}}^x = \frac{g}{c^z} (\mathbf{c}^x - \mathbf{p}^x)$$

$$\ddot{\mathbf{c}}^y = \frac{g}{c^z} (\mathbf{c}^y - \mathbf{p}^y)$$

Linear Inverted pendulum model (LIPM)

[Kajita et al. 2001]

$$\dot{c} = v$$

$$\dot{c} = \omega(c - p)$$

Assuming p is constant during Δt then we get the exact discrete equation (where $t = n\Delta t$)

Assuming a predefined sequence of steps (right-left), with predefined stepping time and foot positions, we can define at each time step n support polygon constraints

$$f_n - \frac{l_{foot}}{2} < p_n < f_n + \frac{l_{foot}}{2}$$

where f_n is foot position at time n l_{foot} is the foot length

Linear Inverted pendulum model (LIPM)

[Kajita et al. 2001]

$$\min_{u_n} \sum_{n=0}^{N-1} {c_n - f_n \choose v_n}^T Q \begin{pmatrix} c_n - f_n \\ v_n \end{pmatrix} + (p_n - f_n)^T R(p_n - f_n) + {c_N - f_N \choose v_N}^T Q_N \begin{pmatrix} c_N - f_N \\ v_N \end{pmatrix}$$

subject to

$$\begin{bmatrix} c_{n+1} \\ v_{n+1} \end{bmatrix} = \begin{bmatrix} \cosh(\omega \Delta t) & \omega^{-1} \sinh(\omega \Delta t) \\ \omega \sinh(\omega \Delta t) & \cosh(\omega \Delta t) \end{bmatrix} \begin{bmatrix} c_n \\ v_n \end{bmatrix} + \begin{bmatrix} 1 - \cosh(\omega \Delta t) \\ -\omega \sinh(\omega \Delta t) \end{bmatrix} p_n$$

and

$$f_n - \frac{l_{foot}}{2} \le p_n \le f_n + \frac{l_{foot}}{2}$$

HRP2 - CNRS-AIST [Herdt, et al., 2010]

Linear inverted pendulum models are also used in quadruped robots

Kalakrishnan et al. IJRR 2011

Linear inverted pendulum models can be used with different stability criterions

Daneshmand et al. RA-L 2021

QPs are found everywhere!