SEQUENTIAL LOGIC CIRCUIT DESIGN

Sequential Circuits

* Asynchronous

* Synchronous

$S R Q_{\theta}$	Q	Q'
0 0 0	0	1
0 0 1	1	0

$S R Q_{\theta}$	Q	Q'	
0 0 0	0	1	
0 0 1	1	0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0 1 0	0	1	Q = 0

SRQ_0	Q	Q'	
0 0 0	0	1	
0 0 1	1	0	
0 1 0	0	1	Q = 0
0 1 1	0	1	Q = 0 $Q = 0$

$S R Q_{\theta}$	Q	Q'	
0 0 0	0	1	
0 0 1	1	0	J V – V ₀
0 1 0	0	1	
0 1 1	0	1	7 6 - 0
1 0 0	1	0	Q = 1

$S R Q_0$	Q	Q '	
0 0 0	0	1	
0 0 1	1	0	
0 1 0	0	1	\int_{0}^{∞}
0 1 1	0	1	
1 0 0	1	0	Q = 1
1 0 1	1	0	Q = 1

S	R	Q_0	Q	Q '	
0	0	0	0	1	
0	0	1	1	0	
0	1	0	0	1	
0	1	1	0	1	
1	0	0	1	0	$\lambda_{0=1}$
1	0	1	1	0	$\int Q = 1$
1	1	0	0	0	Q = Q

S	R	Q_{θ}	Q	Q '	
0	0	0	0	1	$\left \sum_{\alpha=0}^{\infty} \right $
0	0	1	1	0	
0	1	0	0	1	
0	1	1	0	1	\
1	0	0	1	0	$\frac{1}{2}Q = 1$
1	0	1	1	0	J <u>V</u> - 1
1	1	0	0	0	Q = Q
1	1	1	0	0	Q = Q

★ SR Latch

SR	Q
0 0	Q_0
0 1	0
1 0	1
1 1	<i>Q</i> = <i>Q</i> '=0

No change Reset Set Invalid

S R	Q
0 0	<i>Q</i> = <i>Q</i> '=1
0 1	1
1 0	0
1 1	Q_0

Invalid
Set
Reset
No change

★ SR Latch

S R	Q
0 0	Q_0
0 1	0
1 0	1
1 1	<i>Q</i> = <i>Q</i> '=0

No change Reset Set Invalid

S' R'	Q
0 0	<i>Q</i> = <i>Q</i> '=1
0 1	1
1 0	0
1 1	Q_0

Invalid
Set
Reset
No change

Controlled Latches

★ SR Latch with Control Input

CSR	Q
0 x x	Q_0
1 0 0	Q_0
1 0 1	0
1 1 0	1
1 1 1	<i>Q</i> = <i>Q</i> '

No change

No change

Reset

Set

Invalid

Controlled Latches

$\star D$ Latch (D = Data)

C D	Q
0 x	Q_0
1 0	0
1 1	1

No change Reset Set

Controlled Latches

$\star D$ Latch (D = Data)

CD	Q
0 x	Q_0
1 0	0
1 1	1

No change Reset Set

Timing Diagram

★ Controlled latches are level-triggered

★ Flip-Flops are edge-triggered

★ Master-Slave *D* Flip-Flop Q Q Q **D** Latch **D** Latch (Master) (Slave) Master Slave **CLK CLK** Looks like it is negative edge-triggered

★ Edge-Triggered *D* Flip-Flop

$$D = JQ' + K'Q$$

★ T Flip-Flop

$$D = JQ' + K'Q$$

$$D = TQ' + T'Q = T \oplus Q$$

Flip-Flop Characteristic Tables

D	Q(t+1)
0	0
1	1

Reset Set

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

No change

Reset

Set

Toggle

T	Q(t+1)
0	Q(t)
1	Q'(t)

No change Toggle

D	Q(t+1)
0	0
1	1

$$Q(t+1) = D$$

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

$$Q(t+1) = JQ' + K'Q$$

T	Q(t+1)
0	Q(t)
1	Q'(t)

$$Q(t+1) = T \oplus Q$$

* Analysis / Derivation

J	K	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

No change

J	K	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$Q(t+1) = JQ' + K'Q$$

★ Asynchronous Reset

R'	D	CLK	Q(t+1)
0	X	X	0

★ Asynchronous Reset

R'	D	CLK	Q(t+1)
0	X	X	0
1	0	↑	0
1	1	↑	1

* Asynchronous Preset and Clear

PR'	CLR'	D	CLK	Q(t+1)
1	0	X	X	0

* Asynchronous Preset and Clear

PR'	CLR'	D	CLK	Q(t+1)
1	0	X	X	0
0	1	X	X	1

* Asynchronous Preset and Clear

PR'	CLR'	D	CLK	Q(t+1)
1	0	X	X	0
0	1	X	X	1
1	1	0	\rightarrow	0
1	1	1	↑	1

- **★** The State
 - State = Values of all Flip-Flops

Example

AB=00

★ State Equations

$$A(t+1) = D_A$$

$$= A(t) x(t) + B(t) x(t)$$

$$= A x + B x$$

$$B(t+1) = D_B$$

$$= A'(t) x(t)$$

$$= A' x$$

$$y(t) = [A(t) + B(t)] x'(t)$$
$$= (A + B) x'$$

★ State Table (Transition Table)

Present State		Input	Next State		Output
A	B	X	A B		y
0	0	0	0	0	0
0	_0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

$$A(t+1) = A x + B x$$

$$B(t+1) = A'x$$

$$y(t) = (A + B) x'$$

State Table (Transition Table)

Present State	esent					x = 1
A B	A	B	A	B	y	y
0 0	0	0	0	1	0	0
0 1	0	0	1	1	1	0
1 0	0	0	1	0	1	0
11	0	0	1	0	, 1	0,
t	t $t+1$ t					

$$A(t+1) = A x + B x$$

$$B(t+1) = A'x$$

$$y(t) = (A + B) x'$$

★ State Diagram

Present	Next State				Output		
State	x =	= ()	X =	= 1	x = 0	x = 1	
A B	A	B	A	B	y	y	
0 0	0	0	0	1	0	0	
0 1	0	0	1	1	1	0	
1 0	0	0	1	0	1	0	
1 1	0	0	1	0	1	0	

★ D Flip-Flops

Present State	Input		Next State
A	X	y	A
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$A(t+1) = D_A = A \oplus x \oplus y$$

★ JK Flip-Flops

	sent ate	I/P		ext ate	Flip-Flog Inputs)
A	B	X	A	B	J_A	K_A	J_B	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

$$J_A = B$$
 $K_A = B x'$
 $J_B = x'$ $K_B = A \oplus x$

$$A(t+1) = J_{A}Q'_{A} + K'_{A}Q_{A}$$

$$= A'B + AB' + Ax$$

$$B(t+1) = J_{B}Q'_{B} + K'_{B}Q_{B}$$

$$= B'x' + ABx + A'Bx'$$

★ JK Flip-Flops

	II/PI			Next State		Flip-Flop Inputs			
A	B	X	A	B	J_A	K_A	J_B	K_B	
0	0	0	0	1	0	0	1	0	
0	0	1	0	0	0	0	0	1	
0	1	0	1	1	1	1	1	0	
0	1	1	1	0	1	0	0	1	
1	0	0	1	1	0	0	1	1	
1	0	1	1	0	0	0	0	0	
1	1	0	0	0	1	1	1	1	
1	1	1	1	1	1	0	0	0	

★ T Flip-Flops

	sent ate	I/P		ext ate		.F outs	O/P
A	B	X	A	B	T_A	T _B	y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	1	0	0	0
0	1	1	1	0	1	1	0
1	0	0	1	0	0	0	0
1	0	1	1	1	0	1	0
1	1	0	1	1	0	0	1
1	1	1	0	0	1	1	1

$$T_{A} = B x \qquad T_{B} = x$$

$$y = A B$$

$$A(t+1) = T_{A} Q'_{A} + T'_{A} Q_{A}$$

$$= AB' + Ax' + A'Bx$$

$$B(t+1) = T_{B} Q'_{B} + T'_{B} Q_{B}$$

$$= x \oplus B$$

★ T Flip-Flops

	sent ate	I/P		ext ate	F. Inp		O/P
A	B	x	A	B	T_A	T_B	y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	1	0	0	0
0	1	1	1	0	1	1	0
1	0	0	1	0	0	0	0
1	0	1	1	1	0	1	0
1	1	0	1	1	0	0	1
1	1	1	0	0	1	1	1

Mealy and Moore Models

- **★ The Mealy model:** the outputs are functions of both the present state and inputs (Fig. 5-15).
 - The outputs may change if the inputs change during the clock pulse period.
 - **♦** The outputs may have momentary false values unless the inputs are synchronized with the clocks.
- **★ The Moore model:** the outputs are functions of the present state only (Fig. 5-20).
 - The outputs are synchronous with the clocks.

Mealy and Moore Models

Logic

Register

Clock .

(b)

Fig. 5.21 Block diagram of Mealy and Moore state machine

(Moore-type)

Logic

Mealy and Moore Models

Mealy

Present State		I/P		ext ate	O/P	
A	B	X	A	B	y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	
					1	

For the same state, the output changes with the input

Moore

Present State		I/P		ext ate	O/P
A	B	X	A	B	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1
					1

For the same state, the output does not change with the input

Moore State Diagram

State / Output

State Reduction and Assignment

- **★** State Reduction
 Reductions on the
 number of flip-flops and
 the number of gates.
 - A reduction in the number of states may result in a reduction in the number of flip-flops.
 - An example state diagram showing in Fig. 5.25.

Fig. 5.25 State diagram

State Reduction

State: a a b c d e f f g f g a Input: 0 1 0 1 0 1 1 0 1 0 0

Output: 0 0 0 0 1 1 0 1 0 0

- Only the input-output sequences are important.
- Two circuits are equivalent
 - Have identical outputs for all input sequences;
 - **♦** The number of states is not important.

Fig. 5.25 State diagram

Equivalent states

• Two states are said to be equivalent

♦ For each member of the set of inputs, they give exactly the same output and send the circuit to the same state or to an equivalent state.

Table 5.6 State Table

Present State	Next	State	Output		
	x = 0	x = 1	x = 0	<i>x</i> = 1	
а	а	ь	0	0	
b	c	d	0	0	
c	α	d	0	0	
d	e	f	0	1	
e	a	f	0	1	
f	g	f	0	1	
g	a	f	0	1	

★ Reducing the state table

- e = g (remove g);
- d = f (remove f);

Table 5.7

Reducing the State Table

Present State	Next :	State	Output		
	x = 0	x = 1	x = 0	x = 1	
а	a	b	0	0	
b	c	d	0	0	
c	а	d	0	0	
d	e	f	0	1	
e	а	f	0	1	
f	е	ſ	0	1	

• The reduced finite state machine

Table 5.8
Reduced State Table

	Next S	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	Ь	0	0	
b	C	d	0	0	
c	а	d	0	0	
d	e	d	0	1	
e	а	d	0	1	

State: a a b c d e d d e d e a Input: 0 1 0 1 0 1 1 0 1 0 0

Output: 0 0 0 0 0 1 1 0 1 0 0

 The unused states are treated as don't-care condition ⇒ fewer combinational gates.

Table 5.8 *Reduced State Table*

Present State	Next 5	State	Output		
	x = 0	x = 1	x = 0	x = 1	
u	a	b	0	0	
ь	C	d	0	0	
С	a	đ	0	0	
d	ϵ	d	()	1	
e	a	d	0	1	

Fig. 5.26 Reduced State diagram

State Assignment

- **★** State Assignment
- **★** To minimize the cost of the combinational circuits.
 - Three possible binary state assignments. (m states need n-hits, where 2n > m)

Table 5.9Three Possible Binary State Assignments

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3 One-Hot	
а	000	000		
b	001	001	00010	
c	010	011	00100	
d	011	010	01000	
e	100	110	10000	

- Any binary number assignment is satisfactory as long as each state is assigned a unique number.
- Use binary assignment 1.

Table 5.10 *Reduced State Table with Binary Assignment 1*

	Next:	State	Out	put
Present State	x = 0	x = 1	x = 0	x = 1
000	000	001	0	0
001	010	011	0	0
010	000	011	0	0
011	100	011	0	1
100	000	011	0	1

Design Procedure

- **★** Design Procedure for sequential circuit
 - The word description of the circuit behavior to get a state diagram;
 - State reduction if necessary;
 - Assign binary values to the states;
 - Obtain the binary-coded state table;
 - Choose the type of flip-flops;
 - Derive the simplified flip-flop input equations and output equations;
 - Draw the logic diagram;

Design of Clocked Sequential Circuits

Design of Clocked Sequential Circuits

★ Example:

Detect 3 or more consecutive 1's

Present State		Input	Next State		Output
A	B	X	A	B	y
0	0	0	0	0	0
0_	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Design of Clocked Sequential Circuits

★ Example:

Detect 3 or more consecutive 1'

Present State		Input	Next State		Output
A	B	X	A	B	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Synthesis using **D** Flip-Flops

$$A(t+1) = D_A(A, B, x)$$

= $\sum (3, 5, 7)$

$$B(t+1) = D_B(A, B, x)$$

= $\sum (1, 5, 7)$

$$y(A, B, x) = \sum (6, 7)$$

Design of Clocked Sequential Circuits with D F.F.

★ Example:

Detect 3 or more consecutive 1,

Synthesis using **D** Flip-Flops

$$D_A(A, B, x) = \sum (3, 5, 7)$$
$$= A x + B x$$

$$D_B(A, B, x) = \sum (1, 5, 7)$$

= $A x + B' x$

$$y(A, B, x) = \sum (6, 7)$$
$$= A B$$

Design of Clocked Sequential Circuits with D F.F.

★ Example:

Detect 3 or more consecutive 1's

$$D_A = A x + B x$$

$$D_R = A x + B' x$$

$$v = A B$$

Flip-Flop Excitation Tables

Present State	Next State	F.F. Input
Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Present State	Next State	F. Inj	F. out
Q(t)	Q(t+1)	>	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

Design of Clocked Sequential Circuits with JK F.F.

Detect 3 or more consecutive 1⁷

Present State		Input	Next State		Flip-Flop Inputs			
A	B	X	A	B	J_A	K_{A}	J_B	KB
()-	0	0	- (0)	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	0	0	0	X	X	1
0	1	1	1	0	1	X	X	1
1	0	0	0	0	X	1	0	X
1	0	1	1	1	X	0	1	X
1	1	0	0	0	X	1	X	1
1	1	1	1	1	X	0	X	0

Synthesis using JK F.F.

$$J_A(A, B, x) = \sum (3)$$

$$d_{JA}(A, B, x) = \sum (4,5,6,7)$$

$$K_A(A, B, x) = \sum (4, 6)$$

$$d_{KA}(A, B, x) = \sum (0,1,2,3)$$

$$J_{R}(A,B,x) = \sum (1,5)$$

$$d_{IB}(A, B, x) = \sum (2,3,6,7)$$

$$K_B(A, B, x) = \sum (2, 3, 6)$$

$$d_{KB}(A, B, x) = \sum (0,1,4,5)_{62}$$

Design of Clocked Sequential Circuits with JK F.F.

★ Example:

Detect 3 or more consecutive 1's

Synthesis using JK Flip-Flops

$$J_A = B x \qquad K_A = x'$$

Design of Clocked Sequential Circuits with *T* F.F.

★ Example:

Detect 3 or more consecutive 1,

Present State		Input	Next State		F. In	F. out
A	B	X	A	A B		T_B
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	0	0	1
0	1	1	1	0	1	1
1	0	0	0	0	1	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	1	1	1	0	0

Synthesis using T Flip-Flops

$$T_A(A, B, x) = \sum (3, 4, 6)$$

 $T_B(A, B, x) = \sum (1, 2, 3, 5, 6)$

Design of Clocked Sequential Circuits with *T* F.F.

★ Example:

Detect 3 or more consecutive 1's

Synthesis using T Flip-Flops

$$T_A = A x' + A' B x$$

$$T_B = A'B + B \oplus x$$

