CSE 3521: Introduction to Artificial Intelligence

FOPC

- First-order logic
 - o Increased expressive power over Propositional Logic
 - Objects and relations are semantic primitives
 - Syntax: constants, functions, predicates, equality, quantifiers
 - Two standard quantifiers
 - ➤ Universal ∀
 - ➤ Existential ∃

Universal Quantifiers

- $\forall x \ \forall y$ is same as $\forall y \ \forall x \ (\ \forall x,y)$
- $\exists x \exists y$ is same as $\exists y \exists x (\exists x,y)$
- $\exists x \forall y$ is <u>not same</u> as $\forall y \exists x$
 - $\circ \exists y \ Person(y) \land (\forall x \ Person(x) \Rightarrow Loves(x,y))$
 - "There is someone who is loved by everyone"
 - $\forall x \ Person(x) \Rightarrow \exists y \ Person(y) \land Loves(x,y)$
 - "Everybody loves somebody" (not guaranteed to be the same person)

How to do inference in FOPC

- Reduction of first-order inference to propositional inference
- First-order inference algorithms
 - Generalized Modus Ponens
 - oForward chaining ***
 - OBackward chaining ***
 - Resolution-based theorem proving ***

Topics

- Reduction of first-order inference to propositional inference
- First-order inference algorithms
 - Generalized Modus Ponens
 - o Forward chaining ***
 - OBackward chaining ***
 - Resolution-based theorem proving ***

Propositional vs. FOL Inference

- First-order inference can be done by converting KB to propositional logic and using propositional inference
 - Using modus ponens, etc.
- Specifically, what to do with quantifiers?
- Substitution: {variable/Object}
 - o Remove quantifier by substituting variable with specific object

Think about C or Python → assembly language!

Reduction to Propositional Inference

- Universal Quantifiers (∀)
 - Recall: Sentence must be true *for all* objects in the world (all values of variable)
 - So substituting any object must be valid (Universal Instantiation, UI)
- Example
 - $\circ \forall x \ Person(x) \Rightarrow Likes(x,IceCream)$
 - Substituting: (1), {x/Jack}
 - \circ Person(Jack) \Rightarrow Likes(Jack,IceCream)

- Existential Quantifiers (∃)
 - Recall: Sentence must be true for some object in the world (or objects)
 - Assume we know this object and give it an arbitrary (unique!) name (Existential Instantiation, EI)
 - Known as <u>Skolem constant</u> (SK1, SK2, ...)
- Example
 - $\circ \exists x \ Person(x) \land Likes(x,IceCream)$
 - Substituting: (1), {*x*/*SK1*}
 - Person(SK1) ∧ Likes(SK1,IceCream)
- We don't know who "SK1" is (and usually can't), but we know they must exist

- Multiple Quantifiers
 - No problem if same type $(\forall x,y \text{ or } \exists x,y)$
 - \circ Also no problem if: $\exists x \forall y$
 - There must be some x for which the sentence is true with every possible y
 - Skolem constant still works (for x)
- Problem with $\forall x \exists y$
 - o For every possible x, there must be some y that satisfies the sentence
 - Could be different y value to satisfy for each x!

- Problem with $\forall x \exists y \text{ (con't)}$
 - The value we substitute for y must depend on x
 - Use a Skolem <u>function</u> instead
- Example
 - $\circ \forall x \exists y Person(x) \Rightarrow Loves(x,y)$
 - Substitute: (1), {*y*/*SK1*(*x*)}
 - $\circ \forall x \ Person(x) \Rightarrow Loves(x,SK1(x))$
 - Then: (2), {x/*Jack*}
 - \circ Person(Jack) \Rightarrow Loves(Jack,SK1(Jack))
- SK1(x) is effectively a function which returns a person that x loves. But, again, we can't generally know the specific value it returns.

- Internal Quantifiers
 - Previous rules only work if quantifiers are external (left-most)
 - \circ Consider: $\forall x (\exists y \ Loves(x,y)) \Rightarrow Person(x)$
 - o "For all x, if there is some y that x loves, then x must be a person"
 - A Skolem function limits the values y could take (to one) and we can't know what it is.
- Need to move the quantifier outward
 - $\circ \forall x (\exists y \ Loves(x,y)) \Rightarrow Person(x)$
 - $\circ \forall x \neg (\exists y \ Loves(x,y)) \lor Person(x) \ (convert \ to \neg, \lor, \land)$
 - $\circ \forall x \forall y \neg Loves(x,y) \lor Person(x) \text{ (move } \neg \text{ inward)}$
 - $\circ \forall x \forall y \ Loves(x,y) \Rightarrow Person(x)$
- Now we can see that we can actually substitute anything for y
- May need to rename variables before moving quantifier left

- Once have non-quantified sentences (from quantified sentences using UI, EI), possible to reduce first-order inference to propositional inference
- Suppose KB contains:

```
\forall x \; King(x) \land Greedy(x) \Rightarrow Evil(x)
King(John)
Greedy(John)
Brother(Richard, John)
```

• Using UI with $\{x/John\}$ and $\{x/Richard\}$, we get

```
King(John) \wedge Greedy(John) \Rightarrow Evil(John)
King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)
```

Now the KB is essentially propositional:

```
King(John) \land Greedy(John) \Rightarrow Evil(John)
King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)
King(John)
Greedy(John)
Brother(Richard, John)
```

Then can use propositional inference algorithms to obtain conclusions
 Modus Ponens yields Evil(John)

$$\frac{\alpha, \ \alpha \to \beta}{\beta}$$

 $\frac{\mathit{King}(\mathit{John}) \land \mathit{Greedy}(\mathit{John}), \, \mathit{King}(\mathit{John}) \land \mathit{Greedy}(\mathit{John}) \!\! \Rightarrow \!\! \mathit{Evil}(\mathit{John})}{\mathit{Evil}(\mathit{John})}$

Topics

- Reduction of first-order inference to propositional inference
- First-order inference algorithms
 - Generalized Modus Ponens
 - oForward chaining ***
 - ○Backward chaining ***
 - Resolution-based theorem proving ***

Forward and Backward Chaining

- Have language representing knowledge (FOL) and inference rules (Generalized Modus Ponens)
 - Now study how a reasoning program is constructed
- Generalized Modus Ponens can be used in two ways:
 - Start with sentences in KB and generate new conclusions (<u>forward chaining</u>)
 - "Used when a new fact is added to database and want to generate its consequences"
 or
 - Start with something want to prove, find implication sentences that allow to conclude it, then attempt to establish their premises in turn (backward chaining)
 - "Used when there is a goal to be proved"

Forward Chaining

- Forward chaining normally triggered by addition of <u>new</u> fact to KB (using TELL)
- When new fact p added to KB:
 - For each rule such that p unifies with a premise
 - If the other premises are known, then add the conclusion to the KB and continue chaining
 - Premise: Left-hand side of implication
 - Or, each term of conjunction on left hand side
 - Conclusion: Right-hand side of implication
- Forward chaining uses unification
 - Make two sentences (fact + premise) match by substituting variables (if possible)
- Forward chaining is <u>data-driven</u>
 - Inferring properties and categories from percepts

- Add sentences gradually
 - 1. $\forall x,y \; Buffalo(x) \land Pig(y) \Rightarrow Faster(x,y)$
 - 2. $\forall y,z \ Pig(y) \land Slug(z) \Rightarrow Faster(y,z)$
 - 3. $\forall x,y,z \; Faster(x,y) \land Faster(y,z) \Rightarrow Faster(x,z)$

Now we need to find rule(s) that can use this fact...

Add sentences gradually

Now we need to find rule(s) that can use this fact...

- Add facts 1, 2, 3, 4, 5, 7 in turn
 - Number in [] is unification literal
 - 1. $Buffalo(x) \land Pig(y) \Rightarrow Faster(x, y)$
 - 2. $Pig(y) \land Slug(z) \Rightarrow Faster(y, z)$
 - 3. Faster(x, y) \wedge Faster(y, z) \Rightarrow Faster(x, z)
 - 4. Buffalo(Bob) [1]

Check each rule in turn...

Rule 1 can make use of the fact that something (x) is a Buffalo

- Add facts 1, 2, 3, 4, 5, 7 in turn
 - \circ Number in [] is unification literal; $\sqrt{}$ rule firing
 - 1. $Buffalo(x) \land Pig(y) \Rightarrow Faster(x, y)$
 - 2. $Pig(y) \land Slug(z) \Rightarrow Faster(y, z)$
 - 3. Faster(x, y) \wedge Faster(y, z) \Rightarrow Faster(x, z)
 - And it's the first (a) term that our fact (#4) can satisfy.

 Which is important because...

- Add facts 1, 2, 3, 4, 5, 7 in turn
 - \circ Number in [] is unification literal; $\sqrt{}$ rule firing
 - 1. Buffalo(x) \land Piq(y) \Rightarrow Faster(x, y)
 - 2. $Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
 - 3. Faster(x, y) \wedge Faster(y, z) \Rightarrow Faster(x, z)
 - 4. Buffalo(Bob) [1]

...we need to check to see if the rule can be satisfied and fired.

BUT we are missing a fact to fill in the second (b) part of the rule, so NO, we fail to fire the rule.

- Add facts 1, 2, 3, 4, 5, 7 in turn
 - \circ Number in [] is unification literal; $\sqrt{}$ rule firing
 - 1. $Buffalo(x) \land Pig(y) \Rightarrow Faster(x, y)$
 - 2. $Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
 - 3. Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)
 - *4. Buffalo*(*Bob*) [1]

5. Pig(Pat) [1] **←**

From (#4) we also can satisfy (1), so we can fire the rule!

6. Faster(Bob, Pat)₄

Firing the rule gets us a new fact! But we treat it the same, so check against all rules...

- Add facts 1, 2, 3, 4, 5, 7 in turn
 - \circ Number in [] is unification literal; $\sqrt{}$ rule firing
 - 1. $Buffalo(x) \land Pig(y) \Rightarrow Faster(x, y)$
 - 2. $Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
 - 3. Faster(x, y) \wedge Faster(y, z) \Rightarrow Faster(x, z)
 - *4. Buffalo*(*Bob*) [1]
 - 5. *Pig(Pat)* [1]
 - 6. Faster(Bob, Pat) [3]

- Add facts 1, 2, 3, 4, 5, 7 in turn
 - \circ Number in [] is unification literal; $\sqrt{}$ rule firing
 - 1. $Buffalo(x) \wedge Pig(y) \Rightarrow Faster(x, y)$
 - 2. $Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
 - 3. Faster(x, y) \wedge Faster(y, z) \Rightarrow Faster(x, z)
 - *4. Buffalo*(*Bob*) [1]
 - 5. *Pig(Pat)* [1]
 - 6. Faster(Bob, Pat) [3]
 - 7. Slug(Steve) [2]
 - 8. Faster(Pat, Steve) [3]
 - 9. Faster(Bob, Steve) [3]

Knowledge Base

 $A \Rightarrow B$

 $A \Rightarrow D$

 $D \Rightarrow C$

 $A \Rightarrow E$

 $D \Rightarrow F$

 $E \Rightarrow G$

Add A:

A, $A \Rightarrow B$ gives B [done]

A, $A \Rightarrow D$ gives D

D, D \Rightarrow C gives C [done]

D, D \Rightarrow F gives F [done]

A, $A \Rightarrow E$ gives E

 $E, E \Rightarrow G \text{ gives } G \text{ [done]}$

[done]

Order of generation B, D, C, F, E, G

Topics

- Reduction of first-order inference to propositional inference
- First-order inference algorithms
 - Generalized Modus Ponens
 - oForward chaining ***
 - ○Backward chaining ***
 - Resolution-based theorem proving ***

Backward Chaining

- Backward chaining designed to find all answers to a question posed to KB (using ASK)
- When a query *q* is asked:
 - o If a matching fact q 'is known, return the unifier
 - For each rule whose consequent q 'matches q
 - Attempt to prove each premise of the rule by backward chaining
- Added complications
 - Keeping track of unifiers, avoiding infinite loops
- Two versions
 - Find <u>any</u> solution
 - Find <u>all</u> solutions
- Backward chaining is basis of <u>logic programming</u>
 - Prolog

Given facts/rules 1-5 in KB:

- 1. $Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
- 2. $Slimy(z) \land Creeps(z) \Rightarrow Slug(z)$
- 3. Pig(Pat)
- 4. Slimy(Steve)
- Creeps(Steve)

Given facts/rules 1-5 in KB:

- 1. $Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
- 2. $Slimy(z) \land Creeps(z) \Rightarrow Slug(z)$
- $3. \quad Pig(Pat)$
- 4. Slimy(Steve)
- Creeps(Steve)

Given facts/rules 1-5 in KB:

- 1. $Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
- 2. $Slimy(z) \land Creeps(z) \Rightarrow Slug(z)$
- 3. Pig(Pat)
- 4. Slimy(Steve)
- Creeps(Steve)

Given facts/rules 1-5 in KB:

- 1. $Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
- 2. $Slimy(z) \land Creeps(z) \Rightarrow Slug(z)$
- 3. Pig(Pat)
- 4. Slimy(Steve)
- Creeps(Steve)

Given facts/rules 1-5 in KB:

- 1. $Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
- 2. $Slimy(z) \land Creeps(z) \Rightarrow Slug(z)$
- 3. Pig(Pat)
- 4. Slimy(Steve)
- Creeps(Steve)

Given facts/rules 1-5 in KB:

- 1. $Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
- 2. $Slimy(z) \land Creeps(z) \Rightarrow Slug(z)$
- 3. Pig(Pat)
- 4. Slimy(Steve)
- Creeps(Steve)

Prove: Faster(Pat, Steve)

And Rule #2 requires these two facts...

Given facts/rules 1-5 in KB:

- 1. $Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
- 2. $Slimy(z) \land Creeps(z) \Rightarrow Slug(z)$
- 3. Pig(Pat)
- 4. Slimy(Steve)
- Creeps(Steve)

Prove: Faster(Pat, Steve)

Which we know are true directly from our knowledge-base.

Topics

- Reduction of first-order inference to propositional inference
- First-order inference algorithms
 - Generalized Modus Ponens
 - o Forward chaining ***
 - oBackward chaining ***
 - Resolution-based theorem proving ***

Resolution

- Uses proof by contradiction
 - Referred to by other names
 - Refutation
 - Reductio ad absurdum
- Inference procedure using resolution
 - To prove *P*:
 - Assume P is FALSE
 - Add $\neg P$ to KB
 - Prove a contradiction
 - Given that the <u>KB</u> is known to be <u>True</u>, we can believe that the negated goal is in fact False, meaning that the original goal must be <u>True</u>

Simple Example

• Given: "All birds fly", "Peter is a bird"

• Prove: "Peter flies"

• Step #1: have in FOL

```
\forall x \; Bird(x) \rightarrow Flies(x)
Bird(Peter)
```

• Step #2: put in normal form

```
\neg Bird(x) \lor Flies(x)
Bird(Peter)
```

Simple Example (con't)

Step #3: Assume contradiction of goal

GOAL TO TEST: ¬Flies(Peter)

• Step #4: Unification {*x/Peter*}

 $\neg Bird(Peter) \lor Flies(Peter)$

Step #5: Resolution (unit)

$$\frac{\alpha, \neg \alpha \lor \beta}{\beta} \quad \frac{\neg Flies(Peter), Flies(Peter) \lor \neg Bird(Peter)}{\neg Bird(Peter)}$$

- Step #6: Contradiction
 - The result of Step #5 says that "Peter is not a bird", but this is in contrast to KB containing Bird(Peter)

KB:

Bird(Peter)

 $\neg Bird(x) \lor Flies(x)$

• Therefore, we can conclude that "Peter does indeed fly"

KB:

kb-1: $A(x,bar) \vee B(x) \vee C(x)$

kb-2: $D(y,foo) \lor \neg B(y)$

kb-3: $E(z) \vee \neg A(z,bar)$

kb-4: ¬D(Minsky,foo)

kb-5: ¬A(Minsky,bar)

Goal: prove C(Minsky)

KB:

kb-1: $A(x,bar) \vee B(x) \vee C(x)$

kb-2: $D(y,foo) \lor \neg B(y)$

kb-3: $E(z) \vee \neg A(z,bar)$

kb-4: ¬D(Minsky,foo)

kb-5: ¬A(Minsky,bar)

Goal: prove C(Minsky)

0: ¬C(Minsky)

Start off using our negated goal (proof by contradiction)

KB:

kb-1: $A(x,bar) \vee B(x) \vee C(x)$

kb-2: $D(y,foo) \lor \neg B(y)$

kb-3: $E(z) \vee \neg A(z,bar)$

kb-4: ¬D(Minsky,foo)

kb-5: ¬A(Minsky,bar)

Goal: prove C(Minsky)

0: ¬C(Minsky)

1: $A(Minsky,bar) \vee B(Minsky) \vee C(Minsky)$ [kb-1] $\{x/Minsky\}$

Look for a rule that has C(Minsky) to oppose ¬C(Minsky) from #0. This rule (kb-1) needed a substitution for it to work, giving us the new sentence #1.

KB:

kb-1: $A(x,bar) \vee B(x) \vee C(x)$

kb-2: $D(y,foo) \lor \neg B(y)$

kb-3: $E(z) \vee \neg A(z,bar)$

kb-4: ¬D(Minsky,foo)

kb-5: ¬A(Minsky,bar)

Goal: prove C(Minsky)

 $0: \neg C(Minsky)$

1: A(Minsky,bar) \vee B(Minsky) \vee C(Minsky) [kb-1] $\{x/Minsky\}$

2: ¬C(Minsky), A(Minsky,bar) ∨ B(Minsky) ∨ C(Minsky) 2.a: A(Minsky,bar) ∨ B(Minsky) *[resolution: 0,1]*

Now that we have #0 and #1 with opposing terms, use resolution to eliminate them.

KB:

kb-1: $A(x,bar) \vee B(x) \vee C(x)$

kb-2: $D(y,foo) \lor \neg B(y)$

kb-3: $E(z) \vee \neg A(z,bar)$

kb-4: ¬D(Minsky,foo)

kb-5: ¬A(Minsky,bar)

Goal: prove C(Minsky)

```
0: ¬C(Minsky)
```

- 1: A(Minsky,bar) \vee B(Minsky) \vee C(Minsky) [kb-1] $\{x/Minsky\}$
- 2: ¬C(Minsky), A(Minsky,bar) ∨ B(Minsky) ∨ C(Minsky) 2.a: A(Minsky,bar) ∨ B(Minsky) [resolution: 0,1]
- 3: $D(Minsky,foo) \lor \neg B(Minsky)$ [kb-2] $\{y/Minsky\}$
- 4: A(Minsky,bar) ∨ B(Minsky), D(Minsky,foo) ∨ ¬B(Minsky) 4.a: A(Minsky,bar) ∨ D(Minsky,foo) *[resol: 2a,3]*

And repeat to find and eliminate other opposing terms.

KB:

kb-1: $A(x,bar) \vee B(x) \vee C(x)$

kb-2: $D(y,foo) \lor \neg B(y)$

kb-3: $E(z) \vee \neg A(z,bar)$

kb-4: ¬D(Minsky,foo)

kb-5: ¬A(Minsky,bar)

Goal: prove C(Minsky)

```
0: ¬C(Minsky)
```

1: A(Minsky,bar) \vee B(Minsky) \vee C(Minsky) [kb-1] $\{x/Minsky\}$

2: ¬C(Minsky), A(Minsky,bar) ∨ B(Minsky) ∨ C(Minsky) 2.a: A(Minsky,bar) ∨ B(Minsky) *[resolution: 0,1]*

3: $D(Minsky,foo) \lor \neg B(Minsky) [kb-2]$ {y/Minsky}

4: A(Minsky,bar) ∨ B(Minsky), D(Minsky,foo) ∨ ¬B(Minsky) 4.a: A(Minsky,bar) ∨ D(Minsky,foo) *[resol: 2a,3]*

5: ¬A(Minsky,bar), A(Minsky,bar) ∨ D(Minsky,foo) 5.a: D(Minsky,foo) [resol: 4a,kb-5]

And again...

KB:

kb-1: $A(x,bar) \vee B(x) \vee C(x)$

kb-2: $D(y,foo) \vee \neg B(y)$

kb-3: $E(z) \vee \neg A(z,bar)$

kb-4: ¬D(Minsky,foo)

kb-5: ¬A(Minsky,bar)

Goal: prove C(Minsky)

```
0: ¬C(Minsky)
```

- 1: A(Minsky,bar) \vee B(Minsky) \vee C(Minsky) [kb-1] $\{x/Minsky\}$
- 2: ¬C(Minsky), A(Minsky,bar) ∨ B(Minsky) ∨ C(Minsky) 2.a: A(Minsky,bar) ∨ B(Minsky) [resolution: 0,1]
- 3: $D(Minsky,foo) \lor \neg B(Minsky) [kb-2]$ {y/Minsky}
- 4: A(Minsky,bar) ∨ B(Minsky), D(Minsky,foo) ∨ ¬B(Minsky) 4.a: A(Minsky,bar) ∨ D(Minsky,foo) *[resol: 2a,3]*
- 5: ¬A(Minsky,bar), A(Minsky,bar) ∨ D(Minsky,foo) 5.a: D(Minsky,foo) *[resol: 4a,kb-5]*
- 6: $D(Minsky,foo) \land \neg D(Minsky,foo)$

FALSE, CONTRADICTION!!! must be C(Minsky)

FOPC Infrerence

- Reduction of first-order inference to propositional inference
 - Universal and Existential Instantiation
- Forward chaining
 - Infer properties in data-driven manner
- Backward chaining
 - Proving query of a consequent by proving premises
- Resolution using proof by contradiction