МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Алтайский государственный технический университет им. И.И. Ползунова»

А.Ю. Андреева

Методические указания к лабораторному практикуму по курсу

«КОМПЬЮТЕРНАЯ ГРАФИКА»

Изд-во АлтГТУ Барнаул 2017 УДК.

Андреева А.Ю.. Методические указания к лабораторному практикуму по курсу «Компьютерная графика» для студентов направления «Программная инженерия» /А. Ю. Андреева; Алт. гос. техн. ун-т им. И. И. Ползунова. – Барнаул: Изд – во АлтГТУ, 2017. – 12 с.

Методические указания представляют собой руководство к лабораторным занятиям по курсу компьютерной графики.

Рекомендовано студентам дневной формы обучения направления «Программная инженерия»

Рассмотрено и одобрено на заседании кафедры прикладной математики

Оглавление

Лабораторная раб	бота 1. Р	еализация	алгоритмов	построения	проекций
трехмерных объекто	в. Афинные	е преобразо	вания в прост	ранстве	4
Лабораторная рабо	ота 2. Реали	зация алгор	итмов удален	ния невидимь	іх линий и
поверхностей при г	преобразов	ании изобра	ажения слож	иных простра	нственных
сцен	•••••	•••••	•••••	•••••	6
Лабораторная ра	абота 3.	(дополните	ельная)	Построение	сцен с
использованием пр	остейшей и	модели осв	ещенности. Р	еализация ал	лгоритмов
закраски методом Гу	уро и Фонга				7
Лабораторная раб	бота 4. (Создание п	ростейшей	реалистическ	ой сцены
средствами OpenGL.		•••••		•••••	8
Лабораторная раб	бота 5.	Получение	статистичес	ских характе	ристик и
простейшая коррекц	ция фотоизо	бражения			9
Лабораторная рабо	ота 6. Фил	ьтрация фо	тоизображен	ия. Подавлен	ие шумов
на фотографиях					10
Лабораторная рабо	ота 7 (допо <i>г</i>	інительная).	Изменение	размеров изо	бражения
с применением алгоритмов улучшения качества11					
Список литературы	ı :				12

Лабораторная работа 1.

Реализация алгоритмов построения проекций трехмерных объектов. Афинные преобразования в пространстве.

Цель работы: Ознакомить студентов с базовыми понятиями аффинных преобразований в пространстве.

Программное обеспечение: среда разработки Visual_Studio 10.0 либо любая другая, позволяющая подключение графических библиотек.

Литература: [1-5]

Задание: Разработать программу аффинных преобразований и проецирования 3d проволочного объекта. Интерфейс должен позволять управлять текущим преобразованием объекта мышью или клавиатурой.

Необходимый минимум: все **элементарные** преобразования (перемещения, вращения и масштабирование). Кроме того, реализовать дополнительое динамическое преобразование (анимацию) по варианту.

Варианты:

- 1. Перемещение (анимированное) вдоль произвольной прямой на заданное расстояние с замедлением перед остановкой.
- 2. Вращение относительно произвольной прямой.
- 3. Масштабирование (анимированное) относительно центра координат с заданными коэффициентами по X, У, Z с замедлением перед остановкой.
- 4. Плавное изменение исходного объекта: случайный выбор вершины, плавное изменение его положение (случайные вектор) туда и обратно, следующая вершина.
- 5. Вращение по спирали вдоль осей с замедлением.
- 6. Создать второй объект, симметричный относительно одной из базовых плоскостей (задается) с сохранением всех базовых преобразований в зеркальном варианте для второго объекта.
- 7. Вращение относительно геометрического центра объекта со случайной сменой направления (смена направления должна осуществляться плавно!)

- 8. Прыгающий объект (например, по нажатию клавиши пробел и с учетом законов физики, те. с замедлением).
- 9. Переключение в перспективное проецирование и обратно с сохранением элементарных преобразований
- 10. Одновременное вращение относительно центра координат и собственного геом. центра.
- 11. Масштабирование относительно произвольной точки одновременно по X и У (коэффициенты задать) в плоскости XOУ с постепенным возвратом к исходному состоянию с замедлением
- 12. Вращение вокруг геометрического центра в одной плоскости с одновременным перемещением вдоль одной из осей.
- 13. Вращение по сходящейся спирали вдоль оси ОУ (по поверхности конуса) с замедлением.
- 14. Плавный переход в одноточечное перспективные проецирование.
- 15. Скачкообразное масштабирование со случайными коэффициентами относительно геометрического центра фигуры с плавным возвращением к испожному состоянию.

Лабораторная работа 2.

Реализация алгоритмов удаления невидимых линий и поверхностей при преобразовании изображения сложных пространственных сцен.

Цель работы: Ознакомить студентов с базовыми алгоритмами удаления невидимых линий и граней.

Программное обеспечение: среда разработки Visual_Studio 10.0 либо любая другая, позволяющая подключение графических библиотек.

Литература: [1-5]

Задание: Сгенерировать 5-6 многоугольников (от3 до 6 сторон) в пространстве и удалить невидимые части одним из методов.

Вариант:

- 1. Z-буфер
- 2. Простой алгоритм удаления невидимых **ребер** у выпуклого тела с динамикой, например, вращение. Этот вариант допустимо выполнить на базе проволочного объекта из лаб. раб №1.
- 3. Метод Варнока
- 4. Построчное сканирование с использованием z-буфера
- 5. Интервальный алгоритм построчного сканирования

При оценивании этой работы решающее значение имеет демонстрация работы алгоритма. Например: пошаговая реализация с выводом текущих параметров алгоритма, либо пошаговая отрисовка секущей плоскости и иллюстрацией текущих отрезков, подсветка списка активных ребер, текущее состояние z-буфера и т.п.

Лабораторная работа 3. (дополнительная) Построение сцен с использованием простейшей модели освещенности. Реализация алгоритмов закраски методом Гуро и Фонга.

Цель работы: Ознакомить студентов с принципами простейшей модели освещения и базовыми алгоритмами обратной трассировки лучей.

Программное обеспечение: среда разработки Visual_Studio 10.0 либо любая другая, позволяющая подключение графических библиотек.

Литература: [1-5]

Задание:

- 1. Создать фигуру вращения (из произвольной кривой).
- 2. Сделать триангуляцию поверхности
- 3. Вычислить цвет каждого треугольника, используя простейшую модель освещенности. (Используйте палитру градаций серого)
 - 4. Реализовать движение камеры между 2-мя точками.
- 5. Используя закраску Гуро или Фонга (по варианту) получить сглаженное изображение.

Лабораторная работа 4.

Создание простейшей реалистической сцены средствами OpenGL.

Цель работы: Ознакомить студентов с принципами простейшей модели освещения и базовыми алгоритмами обратной трассировки лучей.

Программное обеспечение: среда разработки Visual_Studio 10.0 либо любая другая, позволяющая подключение графических библиотек.

Литература: [1-5]

Задание: Создать стационарное изображения заданной трехмерной статичной сцены средствами OpenGL с использованием, возможно, стандартных геометрических примитивов.

Обязательно наличие освещения, тени, текстуры и материала объектов, динамическая камера.

Варианты

- 1. Кабинет
- 2. Кухня
- 3. Столовая
- 4. Гостинная
- 5. Городок
- 6. Улица с магазинами
- 7. Площадь города с памятником
- 8. Стадион
- 9. Магазин
- 10. Автосервис
- 11. Ресторан
- 12. Музей (зал с картинами и скульптурами)
- 13. Поле с такторами и лесополосой
- 14. Пляж (лодки, зонитики, лежаки)
- 15. Аквапарк

Лабораторная работа 5.

Получение статистических характеристик и простейшая коррекция фотоизображения

Цель работы: Ознакомить студентов с принципами обработки растровых изображений и базовыми алгоритмами их коррекции.

Программное обеспечение: среда разработки Visual_Studio 10.0 либо любая другая, позволяющая подключение графических библиотек.

Литература: [5]

Задание: Для произвольного фотоизображения реализовать:

- 1. вывод изображения на экран;
- 2. построение гистограммы яркости;
- з. преобразование яркости;
- 4. преобразование контрастности;
- 5. изменение цветности:
 - бинаризация (переход к чёрно-белому);
 - переход к оттенкам серого;
 - получение негатива;

Дополнительно оцениваются:

- работа с выделенным фрагментом;
- преобразование гистограмм;
- бинаризация с различными методами выбора уровня.

Лабораторная работа 6. Фильтрация фотоизображения. Подавление шумов на фотографиях.

Цель работы: Ознакомить студентов с принципами фильтрации растровых изображений.

Программное обеспечение: среда разработки Visual_Studio 10.0 либо любая другая, позволяющая подключение графических библиотек.

Литература: [5]

Задание: Для произвольного фотоизображения реализовать механизм коррекции и использованием фильтрации

- 1. искусственное наложение шума (точки, линии, окружности);
- 2. сравнение фильтров шумоподавления со сменой аппертуры (по вариантам):
 - 1. равномерный и фильтр гаусса
 - 2. равномерный и медианный
 - з. медианный и гаусса
- з. сравнение методов повышения резкости;
- 4. Применение спецэффектов (по вариантам)
 - 1. Акварелизация
 - 2. Тиснение
 - з. Оконтуривание (любым методом)
 - 4. Стекло
 - 5. Волны
 - 6. Шар (дополнительно)

Лабораторная работа 7 (дополнительная). Изменение размеров изображения с применением алгоритмов улучшения качества

Цель работы: Ознакомить студентов с принципами фильтрации растровых изображений.

Программное обеспечение: среда разработки Visual_Studio 10.0 либо любая другая, позволяющая подключение графических библиотек.

Литература: [5]

Задание:

Для произвольного изображения выполнить масштабирование с произвольным коэффициентом. В качестве тестовых изображении взять:

- Изображение с фотокачеством
- Произвольные геометрические фигуры (кольца, круги, линии).

Выполнить сглаживание и провести сравнительный анализ следующих методов:

1 вариант

- 1. Ближайшего соседа
- 2. Билинейное сглаживание

2 вариант

- 1. Ближайшего соседа
- 2. Бикубическое сглаживание

3 вариант

- 1. Билинейное сглаживание
- 2. Бикубическое сглаживание

Список литературы:

Основная литература

1. Порев В.Н. Компьютерная графика. – СПб.:БХВ-Петербург, 2005. – 432с. (30 экз)

Дополнительная литература

- 2. Шикин Е.В., Боресков А.В. Компьютерная графика. Полигональные модели. –М.: ДИАЛОГ-МИФИ, 2005.-464с. (50 экз.)
- 3. Роджерс Д. Алгоритмические основы машинной графики: Пер. с англ. -М.: Мир, 1989. -512 с. (9 экз)
- 4. Никулин Е.А. Компьютерная геометрия и алгоритмы машинной графики. СПб.: БХВ–Петербург, 2005. 560 с. (1 экз.)
- 5. Андреева А. Ю. Компьютерная графика. [Электронный ресурс]: Учебное пособие.— Электрон. дан.— Барнаул: АлтГТУ, 2008.— Режим доступа: http://elib.altstu.ru/elib/eum/pm/cl-Andreeva-KG.pdf.