

MICROCOPY RESOLUTION TEST CHART

ļ
İ
I
ŀ
١
ł
ŀ
ł
}

6
059
_
9
17
V
1
AL

							•	• •	- \$
Unclass	ified				8770	ru.	r 00	~ C	?
SECURITY CL	ASSIFICATION	OF THIS PAGE		· · · · · · · · · · · · · · · · · · ·	BING	FIL	E CO	EA (I
			REPORT DOCL	MENTATION	PAGE				_
1	SECURITY CLAS	SIFICATION		16. RESTRICTIVE	MARKINGS				
Unclass		ON AUTHORITY		3 0/570 0/50	 				
			<u> </u>	Approved	for Public R	F REPOR	Distr	ibution	ı
26. DECLASS	IFICATION / DO	WNGRADING SCHEDI	JLE .	Unlimited	l				
4. PERFORMI	NG ORGANIZA	TION REPORT NUMB	ER(S)	5. MONITORING	ORGANIZATION R	EDORT N	I IMPERIO		
AFGL-TR	-87-0116		•		ondanization it	LIONI N	OWIDER(3)		
		ORGANIZATION	6b. OFFICE SYMBOL	72 NAME OF A	101117021115				
		ics Laborator	(If applicable)	7a. NAME OF MONITORING ORGANIZATION					
6c ADDRESS	(City, State, ar	nd ZIP Code)		7b. ADDRESS (Ci	ty, State, and ZIP (Code)			
	setts, 01				,,, <u></u>	-001,		•	
				Į.				- 4 - 1	
8a. NAME OF ORGANIZA	FUNDING/SPO ATION	ONSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT IDE	NTIFICAT	TION NUMB	IER	
8c. ADDRESS	(City, State, and	d ZIP Code)	·	10. SOURCE OF	FUNDING NUMBER	,			
				10. SOURCE OF FUNDING NUMBERS PROGRAM ' PROJECT TASK WORK UNIT					
				62101F	6670	NO. 18	A	CCESSION N 04	10 .
	lude Security (· ·		10000	100.0				
Middle A	tmosphere	Density and N	Models						
12 PERSONAL	AUTHOR(S)								
Reprint		13b. TIME CO	то	14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 8 nd Middle Atmospheric Density Modeling					
	ENTARY NOTA	TON Reprinte Spacecraft Des	ed from Upper a sign and Operat:	nd Middle Atm ions, Proceed	ospheric Der	isity I	Modeling	in	
Huntsvil	le, Alaba	ma, November	19-21, 1985	1003, 110000	illigs of a we	i kanoj	p nera ,	T.11	
FIELD	COSATI		18. SUBJECT TERMS (Continue on reverse	e if necessary and	identify	by block n	umber)	
FIELD	GROUP	SUB-GROUP	Middle atmos	nhere. Densit	v Models 9	Shurr1	e reenti	- 37	
			}	\checkmark	nodels, .	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	e reenti	. y	
19 ABSTRACT	(Continue on	reverse if necessary	and identify by block	number)					
that no	one seems	altitude regio to be interes	on is our old "sted in, and yet	ignorosphere" the critica	' - the region for	on of t	the atmo	osphere	
atmosphe	ric braki	ng. Compariso	n between the A	Air Force ref	erence atmos	phere	and Shu	ittle IM	TU
data sho	ws large	fluctuations a	it high latitude	es. New data	sources are	avai:	lable ne	w, such	ı
as the A	recibo and	d Milistone Hi	.11 ionospheric	scatter rada	rs.	I	T		
					'\	_ ¦			
S APR 1 4 1987									
							'D	(
20 DISTRIBUT								_	

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT QUNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USEF	21. ABSTRACT SECURITY CLASSIFICATION Unclassified		
22. NAME OF RESPONSIBLE INDIVIDUAL K.S.W. Champion	22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL AFGL/LY	_	

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted. All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE Ujclassified

AFCL-TR -87-0116 NASA Conference Publication 2460

Upper and Middle Atmospheric Density Modeling Requirements for Spacecraft Design and Operations

M. H. Davis and R. E. Smith Universities Space Research Association Boulder, Colorado

D. L. Johnson George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

> Proceedings of a workshop held in Huntsville, Alabama November 19-21, 1985

> > National Aeronautics

and Space Administration

Scientific and Technical Information Branch

1987

97 4 000

MIDDLE ATMOSPHERE DENSITY AND MODELS

K.S.W. CHAMPION ATMOSPHERIC SCIENCES DIVISION AIR FORCE GEOPHYSICS LABORATORY

ANTE SACCOLO ESCRETA ELECTRO ESCRETA ESCRETA PROCECO ESCRETA ESCRETA CONTRA ELECTROS DE LA CALAR DE CA

Acces	ion For		_	
DTIC	ounced			
By Dist.ib	ution/	****************	1	
Availability Codes				
Dist	Avail and Special	or	1	
A-1			-	

MIDDLE ATMOSPHERE DENSITY AND MODELS

K. Champion, Air Force Geophysics Laboratory

The 80 to 130 km altitude region is our old "ignorosphere" - the region of the atmosphere that no one seems to be interested in, and yet the critical region for shuttle entry and atmospheric braking. Comparison between the Air Force reference atmosphere and Shuttle IMU data shows large fluctuations at high latitudes. New data sources are available now, such as the Arecibo and Millstone Hill ionospheric scatter radars.

Conclusions:

In the 20-80 km altitude range there is a reasonable quantity of data on the mean atmosphere; however, information on diurnal variability is needed.

In the 80-120 km altitude range data is needed to identify systematic variations and models for the region are preliminary. Unpredictable variations are observed: turbulence, storm effects, gravity waves.

SHUTTLE REENTRY DENSITY DATA

AF REFERENCE ATMOSPHERES 1978

DRAFT NEW REFERENCE MIDDLE ATMOSPHERE

A GLOBAL REFERENCE ATMOSPHERE FROM 18 TO 80KM

TIDAL EFFECTS

NEW MODELS FOR 80 TO 120KM

CONCLUS IONS

SPECIFICAL ESPECIFIC PERSONAL PROPERTY PROPERTY SESSION ESPECIFICAL ESPECIFICACION ESPECIFICACION ES

AND LINES	LANDING	APRIL 14, 1981 1021 PST	NOVEMBER 14, 1981 1323 PST	JULY 4, 1982 0809 PST	NOVEMBER 16, 1982 0633 PST
SHUTTLE LAUNCH AND LANDING DAIES AND LIMES	LAUNCH	APRIL 12, 1981 0700 EST	NOVEMBER 12, 1981 1010 EST	JUNE 27, 1982 1000 EST	November 11, 1982 0719 EST
SHUTTLE L	FLIGHT	STS-1	518-2	STS-4	S1S-5

TOOL SANDER VERZEER FORGEREN FORGER FOR THE SANDER FOR SANDERS FOR SANDERS FOR SANDERS FOR SANDERS FOR SANDERS

A GLOBAL REFERENCE ATMOSPHERE FROM 18 TO 80KM

BASED ON NORTHERN AND SOUTHERN HEMISPHERE ROCKET DATA AND GLOBAL SATELLITE REMOTE SOUNDING DATA

CONTAINS DISTINCT NORTHERN AND SOUTHERN HEMISPHERE MODELS

ZONAL MEAN MODELS

TE MPERATURE PRESSURE DENSITY

NUMBER DENSITY
PRESSURE SCALE HEIGHT
GEOSTROPHIC (W-E) WIRD

LONGITUDINAL MODELS

TE MPERATURE PRESSURE PARTE PROVEST SERVICE ESPECIAL ESPECIAL PROCESSO POSSONO POR SON INCOSONO PER PROPERTO PARTE PAR

DENSITY

NEW MODELS FOR 80 TO 120 KM ALTITUDES

BASED ON NORTHERN AND SOUTHERN HEMISPHERE ROCKET DATA AND ARECIBO AND MILLSTONE HILL INCOHERENT SCATTER TEMPERATURES

SINGLE HEMISPHERE MODELS ZONAL MEAN MODELS ANALYTIC TEMPERATURE FITS WITH LATITUDE AND ALTITUDE BUT NOT WITH TIME OF YEAR

TEMPERATURES AND PRESSURES FITTED AF REFERENCE ATMOSPHERES AT 68KM

CONCLUSIONS

SHUTTLE REENTRY DATA DEMONSTRATE PROBLEMS

CLIMATOLOGY OR PREDICTABLE VARIATIONS

20-80KM REASONABLE QUANTITY OF DATA MODELS REASONABLY 600D

NEED - DIURNAL VARIATIONS, CORRELATION DISTANCES AND TIMES, VARIABILITY

80-120KM REQUIRE ADEQUATE DATA TO IDENTIFY SYSTEMATIC VARIATIONS MODELS ARE PRELIMINARY NEED - MORE THEORETICAL AND EMPIRICAL MODELS FORE DATA WITH GLOBAL AND TEMPORAL COVERAGE

UNPREDICTABLE VARIATIONS

TURBULENCE STORM EFFECTS IN REAL TIME LOCATION, AMPLITUDE, PHASE AND VELOCITY OF GRAVITY WAVES

THE RESERVENT COCKSON DECORDED ASSESSOR LECCECCO. TO SECONDARY SECOND SE

SALVAN SALVAN AND AND SALVAN MANAGOR AND SALVAN AND SALVAN SALVAN SALVAN AND