

Hyejeong Lee, Kunal Shukla, WanQi Tay, Yingkun Zhu

Time Series Analysis & Forecasting

Master of Science in Analytics, University of Chicago

August 23, 2018

Agenda

- Project Overview
 - Problem Statement
 - Dataset Overview
 - Data Pre-Processing
- Modeling
 - Part I Normalized Series
 - sNaive
 - Dynamic Harmonic Regression
 - Part II Original Series XREG
 - Cross-Validation
- Future Work
 - VAR
 - Neural Networks
 - TBATS (Individual Stations)

Problem Statement

- Enable Divvy to produce detailed annual usage forecasts to assist with business decisions such as
 - Understand key drivers of usage
 - Understand seasonality in usage
 - Number of stations to add during expansion phases

Dataset - Overview

Source

- https://www.divvybikes.com/system-data
- https://cran.r-project.org/web/packages/bikedata/vignettes/bikedata.html

Description

- R package builds database of daily trips from and to each station (matrix)
- This analysis focuses on total number of outbound trips per day

Cleanup

- Imputed data for missing dates using average of total trips from adjacent days
- Removed a single leap year data point to preserve annual seasonality

Data Pre-Processing

 There is a *confounding* effect from the change in number of divvy stations on the time series of total trips

Data Pre-Processing

• The R package has a function to generate a "normalized" series, but the detailed mechanics of the normalization process are not fully documented

Data Pre-Processing

 We performed our own normalization by scaling each daily trip count by the ratio of the maximum number of active stations to the number of active stations on each specific day

Models - Normalized Series

- **Training Period** June 27, 2013 August 5, 2017 (1,500 observations)
- Test Period August 6, 2017 December 31, 2017 (148 observations)
- Models
 - sNaive
 - Dynamic Harmonic Regression
 - VAR

Modeling - sNaive

• Motivation - Obtain a simple baseline to compare with more advanced models

Modeling - Dynamic Harmonic Regression

Motivation

- Initially tried TBATS model, however function was unable to identify trigonometric components
- Single sharp peak in periodogram suggests single sine-cosine pair
- Period is close enough to 365


```
# Dynamic Harmonic Regression
dhg.fit <- list(aicc=Inf)
for (i in 1:25) {
   fit <- auto.arima(train.set, xreg=fourier(train.set, i), seasonal=FALSE)
   if(fit$aicc < dhg.fit$aicc)
     dhg.fit <- fit
}</pre>
```

```
Series: train.set
Regression with ARIMA(1,1,1) errors

Coefficients:
    ar1    mal    S1-365    C1-365
    0.4183   -0.9524    4494.5115    7206.9619
s.e.    0.0265    0.0089    519.0887    518.8199

sigma^2 estimated as 7786130: log likelihood=-14018.72
AIC=28047.44    AICC=28047.48    BIC=28074

Training set error measures:
    ME    RMSE    MAE    MPE    MAPE    MASE    ACF1
Training set 74.1269    2785.709    2011.926    -29.8146    48.66382    0.5463011    0.01562389
```

Modeling - Dynamic Harmonic Regression - Continued

Model - Original Series - XREG w/ ARIMA Errors

- **Training Period** June 27, 2013 August 5, 2017 (1,500 observations)
- Test Period August 6, 2017 December 31, 2017 (148 observations)
- Motivation Forecast the original time series using number of stations as an external regressor
- External Regressors Used Number of Stations, Precipitation, Temperature, Snowfall

Cross Validation

- Methodology Forecast annual usage using rolling and expanding window
- Performance Measure MAPE

Expanding Window

Sliding Window

Cross Validation

- Dynamic Harmonic Regression consistently yields forecasts with the lowest MAPE across rolling / expanding windows
- Dynamic Harmonic Regression has consistent MAPE across multiple split sizes
- Based on cross-validation performance, and the highly sinusoidal nature of the divvy time series, our recommendation is the Dynamic Harmonic Regression model

Future Work - VAR

- Motivation
 - Variables used Trips, Precipitation, Temperature, Snowfall, Snow Depth
 - Leverage interdependencies of weather variables to obtain more robust forecasts of daily trips
- VARselect gave p=15 with AIC when lag.max=100 -> VAR(15)

Future Work - VAR Continued

Future Work - Neural Networks

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set -4187.294265 5887.264642 4538.766859 -100.5313475 104.2170996 0.7184083126 2.821423848

Future Work - Individual Station Forecasts - TBATS

- Motivation
 - Optimize bike placement and availability at the station level
- TBATS Multiple seasonality (weekly, yearly)
- Forecast usage at the station level, then aggregate across all stations to obtain daily total
 - 584 stations out of 586 stations 2 stations were built during the forecast period
 - Run on AWS using multiple cores (~3 hour run time)

