Rubbish-Classification

Model Documentation

1 Dataset Labels

Images within the dataset were labelled using the following classifications:

- 0. Mixed Plastic
- 1. No Plastic
- 2. Plastic Bags
- 3. Plastic Bottles

Image names and their classification labels were stored within a .csv file named 'Images_metatdata.csv' which uses the following structure:

image_id	image_id_root	label
$IMG_0409.JPG$	IMG_0409	No Plastic
$IMG_6949.JPG$	IMG_6949	Plastic Bottle
$IMG_6950.JPG$	IMG_6950	No Plastic
$IMG_6951.JPG$	IMG_6951	Plastic Bags
$IMG_6952.JPG$	IMG_6952	Mixed Plastic

2 Folder structure for dataset

The folder structure used for loading this dataset is as follows:

dataset_root/

- Images/
 - image001.JPG
 - image002.JPG
 - image003.JPG
- Images_metadata.csv

The following sections document the process for loading the data.

3 Required libraries

The following python code is used to load the required libraries:

```
%matplotlib inline
# python libraries
import os, cv2, itertools
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from tqdm import tqdm
from glob import glob
from PIL import Image
# pytorch libraries
import torch
from torch import optim, nn
from torch.autograd import Variable
from torch.utils.data import DataLoader, Dataset
from torchvision import models, transforms
# sklearn libraries
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
# ensure results are reproducible
np.random.seed(10)
torch.manual_seed(10)
torch.cuda.manual_seed(10)
```

4 Loading the dataset

The following python code is used to load the dataset:

```
data_dir = '../dataset_root'
all_image_path = glob(os.path.join(data_dir, '*', '*.JPG'))
imageid_path_dict = {os.path.splitext(os.path.basename(x))[0]: x for x in all_image_path}
label_type_dict = {
    'No Plastic': 'No Plastic',
    'Mixed Plastic': 'Mixed Plastic',
    'Plastic Bottle': 'Plastic Bottle',
    'Plastic Bags': 'Plastic Bags'
}

df_original = pd.read_csv(os.path.join(data_dir, 'Images_metadata.csv'))
df_original['path'] = df_original['image_id_root'].map(imageid_path_dict.get)
df_original['label'] = df_original['label'].map(label_type_dict.get)
df_original['label_num'] = pd.Categorical(df_original['label']).codes
df_original.head()
```

The dataset is now loaded and the resulting output should be similar to the following:

	image_id	image_id_root	label	path	label_num
0	IMG_0409.JPG	IMG_0409	No Plastic	/dataset_root/Images/IMG_0409.JPG	1
1	IMG_0422.JPG	IMG_0422	No Plastic	/dataset_root/Images/IMG_0422.JPG	1
2	IMG_0440.JPG	IMG_0440	No Plastic	/dataset_root/Images/IMG_0440.JPG	1
3	IMG_0449.JPG	IMG_0449	No Plastic	/dataset_root/Images/IMG_0449.JPG	1
4	IMG_0451.JPG	IMG_0451	No Plastic	/dataset_root/Images/IMG_0451.JPG	1

5 Loading the model

The inference script (Jupyter notebook) that is used to load the data and load the model is provided and is titled:

Model_Data_Loader.ipynb

This notebook can be used to load the trained model which is titled:

 $Model_Trained.pt$

6 Reporting predictions on test dataset

Once the dataset and model have been loaded (using Model_Data_Loader.ipynb) and the trained model is loaded (using Model_Trained.pt) the predictions may be reported using the following methods:

- 1. Confusion matrix
- 2. Classification report
- 3. Classification label error plot