HW1

Problem 1

a

$$egin{aligned} H(S) &= -\sum_{i=1}^n p_i \log p_i \ &= -(rac{12}{32} \log(rac{12}{32}) + rac{10}{32} \log(rac{10}{32}) + rac{3}{32} \log(rac{3}{32}) + rac{4}{32} \log(rac{4}{32}) + rac{1}{32} \log(rac{1}{32}) + rac{2}{32} \log(rac{2}{32})) \ &pprox 2.156 \end{aligned}$$

b

a: 0

b: 10

c: 1110

d: 110

e: 11110

f: 11111

$$egin{aligned} BR &= \sum_{i=1}^n p_i | codeword(a_i) | \ &= 1 rac{12}{32} + 2 rac{10}{32} + 3 rac{4}{32} + 4 rac{3}{32} + 5 rac{1}{32} + 5 rac{2}{32} \ &= rac{71}{32} \ &pprox 2.219 \end{aligned}$$

d

- 1 aaaaabbbdddbdebaaaaccbaf

$$BR = rac{52}{24} pprox 2.167$$

problem 2

a

Firstly we need to know the probability of the binary sequence

$$\begin{split} P[000111] &= P[1^{st}bit = 0]P[0|0]P[0|0]P[0|1]P[1|1]P[1|1] \\ &\approx 0.019342 \end{split}$$

L	R	Split	Δ	curr_symbol	action
0	1	$\frac{1}{2}$	1	0	choose left
0	$\frac{64}{128}$	$\frac{61}{128}$	64 128	0	choose left
0	3904 8192	3721 8192	$\frac{3904}{8192}$	0	choose left
0	$\frac{238144}{524288}$	$\frac{226981}{524288}$	$\frac{238144}{524288}$	1	choose right
$\frac{14526784}{33554432}$	$\frac{15241216}{33554432}$	$\frac{14560273}{33554432}$	$\frac{714432}{33554432}$	1	choose right
$\frac{931857472}{2147483648}$	$\frac{975437824}{2147483648}$	$\frac{933900301}{2147483648}$	$\frac{43580352}{2147483648}$	1	choose right
933900301 2147483648	$\frac{975437824}{2147483648}$		$\frac{41537523}{2147483648}$	end	final interval

So finally, L =
$$\frac{933900301}{2147483648}$$
,R= $\frac{975437824}{2147483648}$, $\Delta = \frac{41537523}{2147483648} \approx 0.019342$

$$t = \lceil -log\Delta \rceil = 6$$

$$\frac{L+R}{2} = \frac{1909338125}{4294967296} = b0.01110001110011100011000000001101$$

Take the first 6 bits after point

Then the coded bitstream is 011100

The length hasn't changed so the BR = 1

symbol	Cal	Probability
000	$P[1^{st}bit = 0]P[00]P[00]$	3721 8192
001	$P[1^{st}bit = 0]P[00]P[01]$	183 8192
010	$P[1^{st}bit = 0]P[01]P[10]$	$\frac{9}{8192}$
011	$P[1^{st}bit = 0]P[01]P[11]$	183 8192
100	$P[1^{st}bit = 1]P[10]P[00]$	183 8192
101	$P[1^{st}bit = 1]P[10]P[01]$	$\frac{9}{8192}$
110	$P[1^{st}bit = 1]P[11]P[10]$	183 8192
111	$P[1^{st}bit = 1]P[11]P[11]$	3721 8192

symbol	CodeWord
000	0
001	1100
010	111100
011	1101
100	1110
101	111101
110	11111

symbol	CodeWord
111	01

So 000111 -> 001

BR = 3/6 = 0.5

This bitrate is lower compared to BR = 1 in part a. So block-Huffman has achieved a better compression comparing to arithmetic coding in this scenario.

Problem 3

a

$$x = 0^{15}1^{11}0^{10}1^{13}0^{14}1^9$$

4 bit for each length so we can support at most 15 in length.

so x can be coded as x = (0,15)(1,11)(0,10)(1,13)(0,14)(1,9)

or in binary x = (0,1111)(1,1011)(0,1010)(1,1101)(0,1110)(1,1001)

word_length = 30

b

In x,
$$P(0) = \frac{11}{24}$$
, $P(1) = \frac{13}{24}$

MPB(x) is 1

$$p*rac{Ln2}{1-p}pprox 0.82$$

The nearest power of 2 is $2^0=1$, so m=1

rewrite x as 0^x1

$$\mathsf{x=}0^{15}1(0^{0}1)^{10}0^{10}1(0^{0}1)^{12}0^{14}1(0^{0}1)^{8}1$$

code
$$0^{15}1$$
: q=15 so code $(0^{15}1)$ = $1^{15}0$

code
$$0^01$$
: q=0 so code (0^01)=0

code
$$0^{10}1$$
: q=10 so code $(0^{10}1)$ = $1^{10}0$

code
$$0^{14}1$$
: q=14 so code $(0^{14}1)$ = $1^{14}0$

With head and tail, the coded word should be

$$1, 0^{15} 1, 0^{10}, 1^{10} 0, 0^{12}, 1^{14} 0, 0^8, 1$$

word_length = 74

C

With differential GOLOMB, the original x can be transformed into $0^{15}1,0^{10}1,0^91,0^{12}1,0^{13}1,0^8(1)$

$$P(1) = \frac{5}{72}, P(0) = \frac{67}{72}$$

So MPB is 0

$$p*\frac{Ln2}{1-p}\approx 9.24$$
 The nearest power of 2 is $2^3=8$ so m=8, log(m)=3 length of r is 3 code $0^{15}1$: 15=1*8+7, q=1,r=111 so code $(0^{15}1)$ =10111 code $0^{10}1$: 10=1*8+2, q=1,r=010 so code $(0^{15}1)$ =10010 code 0^91 : 9=1*8+1, q=1,r=001 so code $(0^{15}1)$ =10001 code $0^{12}1$: 12=1*8+4, q=1,r=100 so code $(0^{15}1)$ =10100 code $0^{13}1$: 13=1*8+5, q=1,r=101 so code $(0^{15}1)$ =10101 code 0^81 : 15=1*8+0, q=1,r=000 so code $(0^{15}1)$ =10000 So with head and tail, x is coded as

d

word_length=32

So we can see for this particular x

- run-length achieved word_length=30
- Golomb achieved word_length=74
- Differential Golomb achieved word_length=32

So the best technique for this x is ren-length

Problem 4

a

$$x = 0^{15}1^{11}0^{10}1^{13}0^{14}1^9$$

i	$\lceil \log i \rceil$	J	W	a	Dict[i]
1	0	empty	empty	0	0
2	1	1=1	0	0	00
3	2	10=2	00	0	000
4	2	11=3	000	0	0000
5	3	100=4	0000	0	00000
6	3	000=0	empty	1	1
7	3	110=6	1	1	11
8	3	111=7	11	1	111
9	4	1000=8	111	1	1111

i	$\lceil \log i ceil$	J	W	a	Dict[i]
10	4	0110=6	1	0	10
11	4	0101=5	00000	0	000000
12	4	0011=3	000	1	0001
13	4	1001=9	1111	1	11111
14	4	1101=13	11111	1	111111
15	4	1010=10	10	0	100
16	5	01011=11	000000	0	0000000
17	5	00101=5	00000	1	000001
18	5	01110=14	111111	1	1111111
19	5	00110=6	1	empty	1

So we need to extract J and a from the dict

(-,0)(1,0)(10,0)(11,0)(100,0)(000,1)(110,1)(111,1)(1000,1)(0110,0)(0101,0)(0011,1)(1001,1)(1101,1)(1010,0)(01011,0)(00101,1)(01110,1)(00110,-)

word length = 84, BR=83/72pprox1.15

This result is not as good as techniques in problem3

b

y = aaaabbbbabbabaabaabbaaa

if we have more than 2 characters then we might need huffman code the string.

But for only two characters, we can assume a:0, b:1

so that y = 000011110111010 | 010 | 011000

i	$\lceil \log i ceil$	J	W	a	Dict[i]
1	0	empty	empty	0	0
2	1	1=1	0	0	00
3	2	01=1	0	1	01
4	2	00=0	empty	1	1
5	3	100=4	1	1	11
6	3	011=3	01	1	011
7	3	100=4	1	0	10

i	$\lceil \log i \rceil$	J	W	a	Dict[i]
8	3	011=3	01	0	010
9	4	0110=6	011	0	0110
10	4	0010=2	00	empty	00

So the coded string is (-,0)(1,0)(01,1)(00,1)(100,1)(011,1)(100,0)(011,0)(0110,0)(0010,-)

WordLength =34

If we don't need to add mapping(a:0,b:1) to the code word then

$$BR = 34/24 \approx 1.42$$

If we need to add mapping to the coded string, then coded word length will need to increase and so will the BR

Problem 5

- The approach I'm to generalize the AC is:
 - Instead of splitting the interval into two, we can split the interval into three.
 - The characteristic of the AC doesn't change with this change.
 - The final interval's length is still the probability of the given string.
 - The Final interval is included in all the intervals in the path, so the coded word can be decoded with a similar decoding approach
- The pseudo compress code goes as below
- Let I = [L,R) where initially L=0, R=1;
- For i=1 to n do
 - \circ Let $P_{ai}=Pr[a/x_1x_2\dots x_{(i-1)}]$,Let $P_{ci}=Pr[c/x_1x_2\dots x_{(i-1)}]$
 - \circ Let $\Delta = R L$;
 - Divide interval I into 3 subintervals: [L, L+ $P_{ai}\Delta$),[L+ $P_{ai}\Delta$,R - $P_{ci}\Delta$),[R - $P_{ci}\Delta$,R)
 - If $x_i == a$, reduce I to $[L, L + P_{ai}\Delta)$
 - If $x_i == b$, reduce I to $[L+P_{ai}\Delta, R-P_{ci}\Delta)$
 - if $x_i == c$, reduce I to $[R P_{ci}\Delta_i, R)$
- ullet Let t = $\lceil -log(R-L)
 ceil$, and exprss $rac{L+R}{2}$ in binary as $0.r_1r_2\dots r_t$
- Output := $r_1 r_2 \dots r_t$

For Decompress

- The decompress process remains mostly the same.
- The only difference is we need to reproduce the 3 intervals our encoder generated. And pick the interval where our coded string value is in.
- Following the decoding step, when T>=t, the original string will be completely decompressed.