Chemistry Lab Report

Exp No: θ_4

Exp Name: Determination of Fe in supplied $FeSO_4$ by using standardized

 $0.02(M)KMnO_4$ solution.

Equipments: 1. Burette (500mL) 2. Conical flask (250mL) 3. Funnel 4. Wash bottle

5. Pipette 6. Burette stand.

Theory: Titration is a common laboratory method of quantitative chemical analysis to determine the concentration of an identified analyte (a substance to be analyzed). A reagent, termed the titrant or titrator, is prepared as a standard solution of known concentration and volume. The titrant reacts with a solution of analyte to determine the analyte's concentration. The volume of titrant that reacted with the analyte is termed the titration volume.

Chemicals: 1. $KMnO_4$ 2. $FeSO_4$ 3. Distilled water 4. Indicator(Methyl orange).

Chemical Reaction:

$$2KMnO_4 + 10FeSO_4 + 8H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 8H_2O$$
 ...(1)

Description:

- **01.** $0.1(M)KMnO_4$ solution preparation: We obtained $0.02(M)KMnO_4$ provided by our lab assistant.
- **02.** Standardization of $FeSO_4$ solution: At first fil the burette with $KMnO_4$ solution and record the initial burette reading. Then take $10mLKMnO_4$ in conical flask and mix it up with 1/2 drops of methyl orange.
- 03. Determination: Mix $KMnO_4$ with $FeSO_4$ drop by drop carefully until $KMnO_4$ solution changes it's color. When $FeSO_4$ changes it's color that means it's the end point of our titration. Now mark the reading for $KMnO_4$ from burette for our

further

calculation.

Data Table:

Burette $KMnO_4$ volume				
SN	$FeSO_{4mL}$	$Initial_{(mL)}$	$Final_{(mL)}$	$Diff_{initial-final}$
01	10mL	0mL	3.3mL	3.3mL
02	10mL	3.3mL	6.6mL	3.3mL
02	10mL	6.6mL	10.1mL	3.5mL

Calculation:

```
From the table, Mean value of KMnO_4=\frac{3.3+3.3+3.5}{3}=3.3666mL From equation (1) we get, 1000mL\ 1(M)\ KMnO_4\equiv 5mol\ Fe^{2+}\\ 1mL\ 1(M)\ KMnO_4\equiv \frac{5}{1000}mol\ Fe^{2+}\\ 3.36mL\ 0.02(M)\ KMnO_4\equiv \frac{5\times3.36\times0.02\times55.85}{1000}g\ Fe^{2+} Therefore, 10mL\ Fe^{2+}=0.0187656g\ Fe^{2+}\\ 100mL\ Fe^{2+}=\frac{0.0187656\times100}{10}=0.187656g\ Fe^{2+}
```

Result: The amount of Fe^{2+} is **0.0.187656g**.

Discussion: The amount of Fe may not be totally correct for same certain chemical fault.

Precaution:

- **01.** Usually an air bubble is present in the nozzele of the burette. It must be removed before taking the inital readint.
- 02. There should not be any kind of leakage from the burette during titration.
- **03.** Always add acid to water.
- **04.** Dont't let base level in burrete to reach zero.