

GBI Tutorium Nr. 2⁵

Tutorium 5

Dominik Muth - dominik.muth@student.kit.edu | 21. November 2012

INSTITUT FÜR INFORMATIK

←□ → ←□ → ← □ → □ ● り へ ○

Outline/Gliederung

- Übungsblatt 4
- Wiederholung
- Relationen 2Reflexivität
 - Transitivität
 - Harisitivitat
 - Symmetrie
 - Produkt
 - Potenzen
- 4 Kontextfreie Grammatiken
- Sufgaben
- 6 Fragen

Kontextfreie Grammatiken

Übungsblatt 4

Kontextfreie Grammatiken

Relationen 2

990 Aufgaben

Übungsblatt 4

Fragen

3/27

Wiederholung - Quiz

- X = X ist eine Schleifeninvariante!
- $A \Rightarrow B \Leftrightarrow \neg A \lor B$

Wiederholung - Quiz

- X = X ist eine Schleifeninvariante! $\sqrt{}$
- $A \Rightarrow B \Leftrightarrow \neg A \lor B \checkmark$

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 5

Relationen

Es sei A die Menge aller Kinobesucher in einer Vorstellung und B die Menge aller Sitzplätze. Die Abbildung f ordnet den Kinobesuchern die Sitzplätze zu:

$$f:A\rightarrow B$$

- Was wünschen sich die Kinobesucher: Eine injektive, surjektive oder bijektive Abbildung auf die Sitzplätze? Was wünscht sich der Kinobesitzer?
- Erklären Sie jeweils, was es im Kino bedeutet, wenn f linkstotal, linkseindeutig, rechtstotal, rechtseindeutig ist.
- In dieser Teilaufgabe nehmen wir an, 6 Kinobesucher besuchten ein Kino mit 8 Plätzen. Zeichnen Sie eine injektive Abbildung f. Wie viele injektive Abbildungen gibt es?

Relationen

Es sei A die Menge aller Kinobesucher in einer Vorstellung und B die Menge aller Sitzplätze. Die Abbildung f ordnet den Kinobesuchern die Sitzplätze zu:

$$f:A\rightarrow B$$

- Was wünschen sich die Kinobesucher: Eine injektive, surjektive oder bijektive Abbildung auf die Sitzplätze? Was wünscht sich der Kinobesitzer?
- Erklären Sie jeweils, was es im Kino bedeutet, wenn f linkstotal, linkseindeutig, rechtstotal, rechtseindeutig ist.

Relationen 2

In dieser Teilaufgabe nehmen wir an, 6 Kinobesucher besuchten ein Kino mit 8 Plätzen. Zeichnen Sie eine injektive Abbildung f. Wie viele injektive Abbildungen gibt es?

Relationen

Es sei A die Menge aller Kinobesucher in einer Vorstellung und B die Menge aller Sitzplätze. Die Abbildung f ordnet den Kinobesuchern die Sitzplätze zu:

$$f:A\rightarrow B$$

- Was wünschen sich die Kinobesucher: Eine injektive, surjektive oder bijektive Abbildung auf die Sitzplätze? Was wünscht sich der Kinobesitzer?
- Erklären Sie jeweils, was es im Kino bedeutet, wenn f linkstotal, linkseindeutig, rechtstotal, rechtseindeutig ist.

Relationen 2

In dieser Teilaufgabe nehmen wir an, 6 Kinobesucher besuchten ein Kino mit 8 Plätzen. Zeichnen Sie eine injektive Abbildung f. Wie viele injektive Abbildungen gibt es?

Relationen

Es sei A die Menge aller Kinobesucher in einer Vorstellung und B die Menge aller Sitzplätze. Die Abbildung f ordnet den Kinobesuchern die Sitzplätze zu:

$$f: A \rightarrow B$$

- Was wünschen sich die Kinobesucher: Eine injektive, surjektive oder bijektive Abbildung auf die Sitzplätze? Was wünscht sich der Kinobesitzer?
- Erklären Sie jeweils, was es im Kino bedeutet, wenn f linkstotal, linkseindeutig, rechtstotal, rechtseindeutig ist.
- In dieser Teilaufgabe nehmen wir an, 6 Kinobesucher besuchten ein Kino mit 8 Plätzen. Zeichnen Sie eine injektive Abbildung f. Wie viele injektive Abbildungen gibt es?

5/27

Schleifeninvarianz

Gegeben sei folgender Algorithmus:

$$x \leftarrow a$$
;
 $y \leftarrow b$;
 $p \leftarrow 0$;
while $x > 0$ do

$$p \leftarrow p + y$$

$$x \leftarrow x - 1$$

od

Schleifeninvarianz

Gegeben sei folgender Algorithmus:

$$x \leftarrow a$$
;

$$y \leftarrow b$$
;

$$p \leftarrow 0$$
;

while x > 0 do

$$p \leftarrow p + y$$

$$x \leftarrow x - 1$$

od

- Was macht dieser Algorithmus?

Schleifeninvarianz

Gegeben sei folgender Algorithmus:

$$x \leftarrow a$$
;

$$y \leftarrow b$$
;

$$p \leftarrow 0$$
;

while x > 0 do

$$p \leftarrow p + y$$

 $x \leftarrow x - 1$

od

- Was macht dieser Algorithmus?
- Stellen Sie eine Schleifeninvariante über alle Variablen auf

Relationen 2

Beweisen Sie Ihre Schleifeninvariante

Schleifeninvarianz

Gegeben sei folgender Algorithmus:

$$x \leftarrow a$$
;

$$y \leftarrow b$$
;

$$p \leftarrow 0$$
;

while x > 0 do

$$p \leftarrow p + y$$

$$x \leftarrow x - 1$$

od

- Was macht dieser Algorithmus?
- Stellen Sie eine Schleifeninvariante über alle Variablen auf

Relationen 2

Beweisen Sie Ihre Schleifeninvariante

- Wie war eine Relation Definiert?

- Wie war eine Relation Definiert?
- Was bedeutet xRy?

- Wie war eine Relation Definiert?
- Was bedeutet xRy?
- Wie lassen sich Relationen darstellen?

- Wie war eine Relation Definiert?
- Was bedeutet xRy?
- Wie lassen sich Relationen darstellen?
- Welche Besonderheiten haben Relationen?

- Wie war eine Relation Definiert?
- Was bedeutet xRy?
- Wie lassen sich Relationen darstellen?
- Welche Besonderheiten haben Relationen?
- gibt es weitere Besonderheiten?

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 5

Definition

$$\forall x \in M \mid (x, x) \in R$$

$$\Rightarrow R \subseteq M \times M$$

21. November 2012

Definition

$$\forall x \in M \mid (x, x) \in R$$

$$\Rightarrow R \subseteq M \times M$$

Was sagt uns diese Definition?

- Die ≤ Relation ist reflexiv

Definition

$$\forall x \in M \mid (x, x) \in R$$

$$\Rightarrow R \subseteq M \times M$$

Was sagt uns diese Definition?

Beispiel

- Die ≤ Relation ist reflexiv
 - \hookrightarrow Warum?
- Ist die Relation: $R = \{(x, y) \in M \times M \mid y = x^2\}$ reflexiv

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 5

Definition

$$\forall x \in M \mid (x, x) \in R$$

$$\Rightarrow R \subseteq M \times M$$

Was sagt uns diese Definition?

- Die < Relation ist reflexiv
 - → Warum?
- Ist die Relation: $R = \{(x, y) \in M \times M \mid y = x^2\}$ reflexiv?

Transitivität

Definition

$$\forall x, y, z \mid ((x, y) \in R \land (y, z) \in R) \Rightarrow (x, z) \in R$$

- Die ≤ Relation ist auch transitiv. siehe Axiom 12 der reellen Zahlen.

Transitivität

Definition

$$\forall x, y, z \mid ((x, y) \in R \land (y, z) \in R) \Rightarrow (x, z) \in R$$

- Die ≤ Relation ist auch transitiv. siehe Axiom 12 der reellen Zahlen.
- Ist M × M transitiv?

Symmetrie

Definition

$$\forall x, y \in M \mid (x, y) \in R \rightarrow (y, x) \in R$$

$$\Rightarrow R \subseteq M \times M$$

Symmetrie

Definition

$$\forall x, y \in M \mid (x, y) \in R \to (y, x) \in R$$

$$\Rightarrow R \subseteq M \times M$$

Wie sieht eine solche Relation grafisch aus?

- Die = Relation ist symetrisch
- Ist die Relation: $R = f(x) = \begin{cases} x + 1 & \text{falls x gerade} \\ x 1 & \text{falls x ungerade} \end{cases}$

Symmetrie

Definition

$$\forall x, y \in M \mid (x, y) \in R \rightarrow (y, x) \in R$$

$$\Rightarrow R \subseteq M \times M$$

Wie sieht eine solche Relation grafisch aus?

Beispiel

- Die = Relation ist symetrisch
- Ist die Relation: $R = f(x) = \begin{cases} x + 1 & \text{falls x gerade} \\ x 1 & \text{falls x ungerade} \end{cases}$

mit $x \in \mathbb{N}_0$ und $f(x) \in \mathbb{N}_0$ symmetrisch?

Aquivalenzrelationen

Definition

Sei R eine homogene Relation über M. $x, y, z \in M$.

Hat R folgende Eigenschaften:

reflexiv xRx

transitiv $xRy \wedge yRz \Rightarrow xRz$

symmetrisch $xRy \Rightarrow yRx$

So heißt R eine Äquivalenzrelation.

Produkt

Definition

Auch Relationen kann man Verketten, so gilt:

Sei
$$f = A \rightarrow B$$
 und $g = B$

$$\rightarrow C \Rightarrow g \circ f = g(f(x)) = A \rightarrow C$$

Definition

gilt: $R \subseteq M \times M$

Dann kann man R auch Potenzieren:

$$R^* = \bigcup_{i=0}^{\infty} R$$

Definition

gilt: $R \subseteq M \times M$

Dann kann man R auch Potenzieren:

- $R \circ R = R^2$
- $R^0 = I_M = \{(x, x) \mid x \in M\}$
- $R^{i+1} = R^i \circ R$

Reflexiv-Transitive-Hülle

$$R^* = \bigcup_{i=0}^{\infty} R^i$$

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 5

Definition

gilt: $R \subseteq M \times M$

Dann kann man R auch Potenzieren:

- $\blacksquare R \circ R = R^2$
- $P^0 = I_M = \{(x, x) \mid x \in M\}$

$$R^* = \bigcup_{i=0}^{\infty} R$$

Definition

gilt: $R \subseteq M \times M$

Dann kann man R auch Potenzieren:

- $\blacksquare R \circ R = R^2$
- $P^0 = I_M = \{(x, x) \mid x \in M\}$
- $\mathbf{R}^{i+1} = \mathbf{R}^i \circ \mathbf{R}$

$$R^* = \bigcup_{i=0}^{\infty} R$$

Definition

gilt: $R \subseteq M \times M$

Dann kann man R auch Potenzieren:

- $\blacksquare R \circ R = R^2$
- $P^0 = I_M = \{(x, x) \mid x \in M\}$
- $\mathbf{R}^{i+1} = \mathbf{R}^i \circ \mathbf{R}$

Reflexiv-Transitive-Hülle

$$R^* = \bigcup_{i=0}^{\infty} R^i$$

Definition

gilt: $R \subseteq M \times M$

Dann kann man R auch Potenzieren:

- $\blacksquare R \circ R = R^2$
- $P^0 = I_M = \{(x, x) \mid x \in M\}$
- $\mathbf{P}^{i+1} = \mathbf{R}^i \circ \mathbf{R}$

Reflexiv-Transitive-Hülle

$$R^* = \bigcup_{i=0}^{\infty} R^i$$

$$R^* = R^0 \cup R^1 \cup R^2 \cup \cdots \cup R^{\infty}$$

Beispiel (by Patrick Niklaus)

Freunde im Netzwerk

Sei $M = \{Gertrud, Holger, Lars, Katja, Martin, Nina\}$ eine Menge von Nutzern. $R \subseteq M \times M$ sei die "ist-befreundet-mit"-Relation.

- R = {(Martin, Holger), (Lars, Katja), (Nina, Holger), (Gertrud, Holger), (Katja, Nina)} []{ dazu sym. Tupel}

Freunde im Netzwerk

Sei $M = \{Gertrud, Holger, Lars, Katja, Martin, Nina\}$ eine Menge von Nutzern. $R \subseteq M \times M$ sei die "ist-befreundet-mit"-Relation.

- $R = \{ (\textit{Martin}, \textit{Holger}), (\textit{Lars}, \textit{Katja}), (\textit{Nina}, \textit{Holger}), \\ (\textit{Gertrud}, \textit{Holger}), (\textit{Katja}, \textit{Nina}) \} \bigcup \{ \text{dazu sym. Tupel} \}$
- $Arr R^0 = \{(Martin, Martin), ..., (Holger, Holger)\}$
- $\mathbf{R}^1 = R$ "Freundschaft 1. Grades."
- R² = {(Martin, Nina), (Martin, Gertrud), (Martin, Martin), (Lars, Nina), (Lars, Lars), (Nina, Gertrud), (Nina, Martin), (Nina, Nina), (Nina, Lars), (Katja, Katja), (Katja, Holger), (Gertrud, Gertrud), (Gertrud, Martin), (Gertrud, Nina), (Holger, Holger), (Holger, Katja)} "Freundschaft 2. Grades
- $R^* = ?$ "Gibt es eine Verbindung durch Freunde beliebigen Grades"

Freunde im Netzwerk

Sei $M = \{Gertrud, Holger, Lars, Katja, Martin, Nina\}$ eine Menge von Nutzern. $R \subseteq M \times M$ sei die "ist-befreundet-mit"-Relation.

- $R = \{ (\textit{Martin}, \textit{Holger}), (\textit{Lars}, \textit{Katja}), (\textit{Nina}, \textit{Holger}), \\ (\textit{Gertrud}, \textit{Holger}), (\textit{Katja}, \textit{Nina}) \} \bigcup \{ \text{dazu sym. Tupel} \}$
- R⁰ = {(Martin, Martin), ..., (Holger, Holger)}
- R¹ = R "Freundschaft 1. Grades."
- R² = {(Martin, Nina), (Martin, Gertrud), (Martin, Martin), (Lars, Nina), (Lars, Lars), (Nina, Gertrud), (Nina, Martin), (Nina, Nina), (Nina, Lars), (Katja, Katja), (Katja, Holger), (Gertrud, Gertrud), (Gertrud, Martin), (Gertrud, Nina), (Holger, Holger), (Holger, Katja)} "Freundschaft 2. Grades
- R* =? "Gibt es eine Verbindung durch Freunde beliebigen Grades?

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 5

Freunde im Netzwerk

Sei $M = \{Gertrud, Holger, Lars, Katja, Martin, Nina\}$ eine Menge von Nutzern. $R \subseteq M \times M$ sei die ..ist-befreundet-mit "-Relation.

- R = {(Martin, Holger), (Lars, Katja), (Nina, Holger), (Gertrud, Holger), (Katja, Nina)} []{ dazu sym. Tupel}
- $Arr R^0 = \{(Martin, Martin), ..., (Holger, Holger)\}$
- R¹ = R "Freundschaft 1. Grades."
- $Arr R^2 = \{ (Martin, Nina), (Martin, Gertrud), (Martin, Martin), \}$ (Lars, Nina), (Lars, Lars), (Nina, Gertrud), (Nina, Martin), (Nina, Nina), (Nina, Lars), (Katja, Katja), (Katja, Holger), (Gertrud, Gertrud), (Gertrud, Martin), (Gertrud, Nina), (Holger, Holger), (Holger, Katja) Freundschaft 2. Grades"

Freunde im Netzwerk

Sei $M = \{Gertrud, Holger, Lars, Katja, Martin, Nina\}$ eine Menge von Nutzern. $R \subseteq M \times M$ sei die "ist-befreundet-mit"-Relation.

- R = {(Martin, Holger), (Lars, Katja), (Nina, Holger), (Gertrud, Holger), (Katja, Nina)} ∪ { dazu sym. Tupel}
- $Arr R^0 = \{(Martin, Martin), ..., (Holger, Holger)\}$
- $ightharpoonup R^1 = R$ "Freundschaft 1. Grades."
- R² = {(Martin, Nina), (Martin, Gertrud), (Martin, Martin), (Lars, Nina), (Lars, Lars), (Nina, Gertrud), (Nina, Martin), (Nina, Nina), (Nina, Lars), (Katja, Katja), (Katja, Holger), (Gertrud, Gertrud), (Gertrud, Martin), (Gertrud, Nina), (Holger, Holger), (Holger, Katja)} "Freundschaft 2. Grades"
- $\mathbf{R}^* = ?$ "Gibt es eine Verbindung durch Freunde beliebigen Grades?"

Reflexiv-transitive Hülle

Bestimmt die reflexiv-transitive Hülle der Relationen.

$$M:=\{1,2,3,4\}, R_i\subset M\times M$$

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 5

21. November 2012

Reflexiv-transitive Hülle

Bestimmt die reflexiv-transitive Hülle der Relationen.

$$M := \{1, 2, 3, 4\}, R_i \subset M \times M$$

Lösungen

- $P_2^* := \{(1,1),(2,2),(3,3),(4,4)\}$

Relationen 2

0000000

21. November 2012

Definition

Die Menge G = G(N, T, S, P) nennen wir **Kontextfreie Grammatik**.

21. November 2012

Definition

Die Menge G = G(N, T, S, P) nennen wir **Kontextfreie Grammatik**.

Was ist was?

21. November 2012

Definition

Die Menge G = G(N, T, S, P) nennen wir **Kontextfreie Grammatik**.

Was ist was?

N: Nichtterminalsymbol

Definition

Die Menge G = G(N, T, S, P) nennen wir **Kontextfreie Grammatik**.

Was ist was?

- N: Nichtterminalsymbol
- T: Terminal symbol $(T \cap N = \emptyset)$

Definition

Die Menge G = G(N, T, S, P) nennen wir **Kontextfreie Grammatik**.

Was ist was?

- N: Nichtterminalsymbol
- T: Terminalsymbol ($T \cap N = \emptyset$)
- S: Startsymbol ($S \subseteq N$)

21. November 2012

Definition

Die Menge G = G(N, T, S, P) nennen wir **Kontextfreie Grammatik**.

Was ist was?

- N: Nichtterminalsymbol
- T: Terminalsymbol ($T \cap N = \emptyset$)
- S: Startsymbol ($S \subseteq N$)
- P: Produktionsmenge

21. November 2012

Sinn?

Für was brauchen wir kontextfreie Grammatiken?

Kontextfreie Grammatiken

Sinn?

Für was brauchen wir kontextfreie Grammatiken?

- Dienen dazu eine Grammatik zu beschreiben

Sinn?

Für was brauchen wir kontextfreie Grammatiken?

- Dienen dazu eine Grammatik zu beschreiben
- Mit ihnen kann man Wörter einer Grammatik ableiten

Definition

Als Ableitung wird in der theoretischen Informatik der Vorgang bezeichnet, ein Wort nach den Regeln einer formalen Grammatik zu erzeugen.

Wir schreiben:

- w ⇒ v, wenn von der Ableitung von v, aus w, genau 1 Ableitungsschritt liegt.
- $w \Rightarrow^i v$, wenn von der Ableitung von v, aus w, i Ableitungsschritte liegen ($i \in \mathbb{N}$).
- $w \Rightarrow^* v$, wenn von der Ableitung von v, aus w, beliebig viele Ableitungsschritte liegen.

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 5

Definition

Als Ableitung wird in der theoretischen Informatik der Vorgang bezeichnet, ein Wort nach den Regeln einer formalen Grammatik zu erzeugen.

Wir schreiben:

- $w \Rightarrow v$, wenn von der Ableitung von v, aus w, genau 1 Ableitungsschritt liegt.
- $w \Rightarrow^i v$, wenn von der Ableitung von v, aus w, i Ableitungsschritte

Definition

Als Ableitung wird in der theoretischen Informatik der Vorgang bezeichnet, ein Wort nach den Regeln einer formalen Grammatik zu erzeugen.

Wir schreiben:

- w ⇒ v, wenn von der Ableitung von v, aus w, genau 1 Ableitungsschritt liegt.
- $w \Rightarrow^i v$, wenn von der Ableitung von v, aus w, i Ableitungsschritte liegen ($i \in \mathbb{N}$).
- $w \Rightarrow^* v$, wenn von der Ableitung von v, aus w, beliebig viele Ableitungsschritte liegen.

21. November 2012

Definition

Als Ableitung wird in der theoretischen Informatik der Vorgang bezeichnet, ein Wort nach den Regeln einer formalen Grammatik zu erzeugen.

Wir schreiben:

- w ⇒ v, wenn von der Ableitung von v, aus w, genau 1 Ableitungsschritt liegt.
- $w \Rightarrow^i v$, wenn von der Ableitung von v, aus w, i Ableitungsschritte liegen ($i \in \mathbb{N}$).

Kontextfreie Grammatiken

w ⇒* v, wenn von der Ableitung von v, aus w, beliebig viele Ableitungsschritte liegen.

Vorsicht

$$\Rightarrow \neq \rightarrow$$

- ⇒ ist die Relation der Ableitung
- $lue{}$ \rightarrow ist die Relation der Produktion ($\in P$)

21. November 2012

Frage

Was stimmt? Es ist $w_1, w_2 \in N \cup P$.

- $w_1 \rightarrow w_2$, daraus folgt $w_1 \Rightarrow w_2$
- $w_1 \Rightarrow w_2$, daraus folgt $w_1 \rightarrow w_2$

21. November 2012

Sprache der kontextfreien Grammatik

Definition

Sei G eine kontextfreie Grammatik. Dann bezeichnen wir die Sprache L = L(G) mit

$$L = \{ w \in T^* | S \Rightarrow^* w \}$$

Sprache der kontextfreien Grammatik

Definition

Sei G eine kontextfreie Grammatik. Dann bezeichnen wir die Sprache L = L(G) mit

$$L = \{ w \in T^* | S \Rightarrow^* w \}$$

Was ist \Rightarrow *?

Mit \Rightarrow^* ist die *reflexiv-transitive Hülle* der Ableitungsrelation gemeint.

Fragen

21/27

Fragen

1 Gibt es Grammatiken für die gilt: $L(G) = \{\}$?

Lösung

Fragen

- ① Gibt es Grammatiken für die gilt: $L(G) = \{\}$?
- ② Welche Sprache erzeugt: $G_1 := (\{X\}, \{0\}, X, \{X \rightarrow X\})$

Lösung

① Ja z.B. $G = (\{X\}, \{0\}, X, \{\})$

Fragen

- Gibt es Grammatiken für die gilt: $L(G) = \{\}$?
- Welche Sprache erzeugt: $G_1 := (\{X\}, \{0\}, X, \{X \to X\})$
- **3** Ist $G_2 := (\{X\}, \{a, b\}, X, \{X \to \varepsilon\})$ eine gültige Grammatik?

Lösung

- ① Ja z.B. $G = (\{X\}, \{0\}, X, \{\})$
- 2 $L(G_1) = \{\}$

Fragen

- Gibt es Grammatiken für die gilt: $L(G) = \{\}$?
- Welche Sprache erzeugt: $G_1 := (\{X\}, \{0\}, X, \{X \to X\})$
- **3** Ist $G_2 := (\{X\}, \{a, b\}, X, \{X \to \varepsilon\})$ eine gültige Grammatik?

Lösung

- ① Ja z.B. $G = (\{X\}, \{0\}, X, \{\})$
- 2 $L(G_1) = \{\}$
- **3** Ja und $L(G_2) = \{\varepsilon\}$

Welche Sprachen erzeugen folgende Grammatiken.

- **1 G**₁ := ({X, Y}, {a, b}, X, {X → aY | ε , Y → bX})
- ② $G_2 := (\{X, Y, Z\}, \{a, b, c\}, X,$ $\{X \rightarrow Ya|Yb|Yc, Y \rightarrow ZZY|\varepsilon, Z \rightarrow a|b|c\}$

Gebt eine jeweils Grammatik an für die gilt $L(G) = L_i$:

- ① $L_1 := \{ab, cd\}^+ \cdot \{a, c\}^2$
- **2** $A := \{0, 1\}, L_2 := \{w \in A^* | Num_0(w) = Num_1(w)\}$

Relationen 2

Bonus-Aufgabe (by Patrick Niklaus)

Aufgabe

Konstruiert eine Grammatik die alle E-Mail-Adresse aus den Buchstaben a, b, c erzeugt.

Hinweis: $T := \{a, b, c, @, ., .\}$

Bonus-Aufgabe (by Patrick Niklaus)

Aufgabe

Konstruiert eine Grammatik die alle E-Mail-Adresse aus den Buchstaben a, b, c erzeugt.

Hinweis: $T := \{a, b, c, @, ., .\}$

Lösung

$$G = (N, T, S, P)$$

- $N = \{S, A, B, C\}$
- $T = \{a, b, c, ..., 0\}$
- S = S
- $P = \{S \rightarrow AB@C.C,$ $A \rightarrow a|b|c$.
 - $B \to AB|_{-}B|.AB|\varepsilon$,
 - $C \to AC|\varepsilon$

Aufgabe: Winter 2008/2009

Aufgabe

Geben Sie eine kontextfreie Grammatik

$$G = (N, \{a, b\}, S, P)$$

an, für die L(G) die Menge aller Palindrome über dem Alphabet $\{a,b\}$ ist.

- Geben Sie eine Ableitung der Wörter baaab und abaaaba aus dem Startsymbol Ihrer Grammatik an.
- Beweisen Sie, dass Ihre Grammatik jedes Palindrom über dem Alphabet $\{a, b\}$ erzeugt.

Fragen

- Fragen zum Stoff?
- Fragen zum nächsten Übungsblatt?
- Generelle Fragen?
- Feedback?

26/27

EOF

HOME ORGANIZATION TIP: JUST GIVE UP:

source : http : //imgs.xkcd.com/comics/home_organization.png

Relationen 2

