National University of Computer and Emerging Sciences

Artificial Intelligence Lab

Instructor: Mariam Nasim

Lab contents:

- 1. Introduction to pandas
- 2. Linear regression
- 3. KNN

Pandas:

Pandas is a powerful and widely used open-source Python library for **data manipulation and analysis**. It is especially useful for working with **structured data** such as tables, spreadsheets, and time series.

Pandas provides two main data structures:

- Series a one-dimensional labeled array (like a single column of data).
- DataFrame a two-dimensional labeled data structure, similar to a table in Excel or a SQL database.

Key Features:

- Easy data loading from CSV, Excel, SQL, JSON, etc.
- Fast and efficient filtering, sorting, grouping, and reshaping of data.
- Handling of missing data.
- Powerful time series functionality.
- Integration with other libraries like NumPy, Matplotlib, and Scikit-learn.

Importing Data
We can import the libraries or dependency like Pandas using the following command:
[] import pandas as pd
After the import command, we now have access to a large number of pre-built classes and functions. This assumes the library is installed; in our lab environment all the necessary libraries are installed. One way pandas allows you to work with data is a dataframe. Let's go through the process to go from a comma separated values (.csv) file to a dataframe. This variable csv_path stores the path of the .csv, that is used as an argument to the read_csv function. The result is stored in the object ** df**, this is a common short form used for a variable referring to a Pandas dataframe.
[] df=pd.read_csv('top_selling_albums.csv')
[] type(df)
We can use the method head() to examine the first five rows of a dataframe:
O df.head()
We can use the method tail() to examine the last five rows of a dataframe:
[] df.tail()

Artist	Album	Released	Length	Genre	Music recording sales (millions)	Claimed sales (millions)	Released	Soundtrack	Rating (friends)
Michael Jackson	Thriller	1982	00:42:19	Pop, rock, R&B	46	65	30-Nov-82		10.0
AC/DC	Back in Black	1980	00:42:11	Hard rock	26.1	50	25-Jul-80		8.5
Pink Floyd	The Dark Side of the Moon	1973	00:42:49	Progressive rock	24.2	45	01-Mar-73		9.5
Whitney Houston	The Bodyguard	1992	00:57:44	Soundtrack/R&B, soul, pop	26.1	50	25-Jul-80	Υ	7.0
Meat Loaf	Bat Out of Hell	1977	00:46:33	Hard rock, progressive rock	20.6	43	21-Oct-77		7.0
Eagles	Their Greatest Hits (1971-1975)	1976	00:43:08	Rock, soft rock, folk rock	32.2	42	17-Feb-76		9.5
Bee Gees	Saturday Night Fever	1977	1:15:54	Disco	20.6	40	15-Nov-77	Υ	9.0
Fleetwood Mac	Rumours	1977	00:40:01	Soft rock	27.9	40	04-Feb-77		9.5

We can use the attribute **shape** to examine the number of rows and columns of a dataframe:

[] df.shape

We can access the column "Length" and assign it a new dataframe 'x': [] x=df[['Length']] The process is shown in the figure: x=df[['Length']] Х Music Recording Artist Released.1 Soundtrack Rating Length Sales (millions) (millions) o Michael Jackson 0 0:42:19 Thriller 1982 0:42:19 65 10.0 op, rock, R&B 46.0 30-Nov-82 NaN 1 AC/DC 1 0:42:11 Back in Black 1980 0:42:11 ard rock 26.1 50 25-Jul-80 9.5 The Dark Side of the 2 Pink Floyd 1973 0:42:49 24.2 45 01-Mar-73 9.0 2 0:42:49 3 Whitney Houston 3 0:57:44 44 8.5 The Bodyguard 1992 0:57:44 &B, soul, pop 27.4 17-Nov-92 ard rock, 4 0:46:33 4 Meat Loaf Bat Out of Hell 0:46:33 20.6 43 21-Oct-77 8.0 rogressive rock 5 0:43:08 ock, soft rock, 5 Eagles 1976 0:43:08 32.2 42 17-Feb-76 7.5 (1971-1975) 6 1:15:54 7.0 6 Bee Gees Saturday Night Fever 1977 1:15:54 20.6 40 15-Nov-77 Y 7 Fleetwood Mac 7 0:40:01 0:40:01 27.9 40 04-Feb-77 NaN

You can do the same thing for multiple columns; we just put the dataframe name, in this case, **df**, and the name of the multiple column headers enclosed in double brackets. The result is a new dataframe comprised of the specified columns:

[] y=df[['Length','Artist','Genre']]
y

The process is shown in the figure:

y=df[['Artist','Length', 'Genre']]

A	Artist	lbum	Release	Length	Genre	Music Recording Sales (millions)	Claimed Sales (millions)	Released.1	Soundtrack	Rating
П.,	Michael Jackson	hriller	1982	0:42:19	pop, rock, R&B	46.0	65	30-Nov-82	NaN	10.0
A	AC/DC	lack in Black	1980	0:42:11	hard rock	26.1	50	25-Jul-80	NaN	9.5
F	Pink Floyd	he Dark Side of the Moon	1973	0:42:49	progressive rock	24.2	45	01-Mar-73	NaN	9.0
	Whitney Houston	he Bodyguard	1992	0:57:44	R&B, soul, pop	27.4	44	17-Nov-92	Υ	8.5
N	Meat Loaf	at Out of Hell	1977	0:46:33	hard rock, progressive rock	20.6	43	21-Oct-77	NaN	8.0
E	Eagles	heir Greatest Hits 1971-1975)	1976	0:43:08	rock, soft rock, folk rock	32.2	42	17-Feb-76	NaN	7.5
Е	Bee Gees	aturday Night Fever	1977	1:15:54	disco	20.6	40	15-Nov-77	Υ	7.0
	Fleetwood Mac	Rumours	1977	0:40:01	soft rock	27.9	40	04-Feb-77	NaN	6.5

	Artist	Length	Genre
0	Michael Jackson	0:42:19	pop, rock, R&B
1	AC/DC	0:42:11	hard rock
2	Pink Floyd	0:42:49	progressive rock
3	Whitney Houston	0:57:44	R&B, soul, pop
4	Meat Loaf	0:46:33	hard rock, progressive rock
5	Eagles	0:43:08	rock, soft rock, folk rock
6	Bee Gees	1:15:54	disco
7	Fleetwood Mac	0:40:01	soft rock

```
    Adding Column

[ ] df['New Artist'] = df['Artist']

[ ] df.head()

    Droping Column

[ ] df.drop(['New Artist'], axis=1, inplace=True)

[ ] df.head()

    Object Type of each column

[ ] df.dtypes
```

```
Null values check in Data Frame
[ ] df.isnull()
[ ] df.isnull().sum()
```

```
v Summary Statistics

[ ] df.describe()

[ ] df.describe(include='all')

v Querying a dataframe

Querying a database means finding some values based on certain conditions. For example you want to find out the albums having rating greater and equal to 9

[ ] soundtracks= df[df['Rating']>=9.0]

[ ] soundtracks

Notice that in the above result all the columns are displayed. If you want to access a specific column, then you can use loc for that purpose.

[ ] soundtracks_album= df.loc[df['Rating']>=9.0, ['Album']]

[ ] soundtracks_album
```

```
b. Handling Missing Values
                                                                    python
 df.isnull().sum() # Count missing values
              # Drop rows with missing values with 0
                        # Drop rows with missing values
 df.dropna()
 df.fillna(0)
 df['Age'].fillna(df['Age'].mean()) # Fill with mean
c. Encoding Categorical Data
                                                                    python
 df['Gender'] = df['Gender'].map({'Male': 0, 'Female': 1})
 df = pd.get_dummies(df, columns=['Category']) # One-hot encoding
d. Normalizing or Scaling Data
 python
                                                                    # Min-Max normalization
 df['Score'] = (df['Score'] - df['Score'].min()) / (df['Score'].max() - df['Score'].min())
```

Regression:

A general flow of implementing regression is given below:

2. Load the Dataset

```
python

df = pd.read_csv('your_dataset.csv') # Or any data source
print(df.head())
```

3. Explore and Preprocess the Data

- Handle missing values
- · Convert categorical to numeric if needed
- Drop irrelevant columns

```
python

df = df.dropna() # or df.fillna()

# df['Category'] = df['Category'].map({'A': 0, 'B': 1})
```

♦ 4. Define Features and Target

```
python

X = df[['feature1', 'feature2']] # Independent variables
y = df['target'] # Dependent variable
```

♦ 5. Split into Train and Test Sets

♦ 6. Train the Regression Model

```
python

model = LinearRegression()
model.fit(X_train, y_train)
```

7. Make Predictions

```
python

y_pred = model.predict(X_test)
```

♦ 8. Evaluate the Model

```
python

print("Mean Squared Error:", mean_squared_error(y_test, y_pred))
print("R-squared Score:", r2_score(y_test, y_pred))
```

KNN:

Details can be studied here: https://www.geeksforgeeks.org/k-nearest-neighbours/

Lab Tasks:

Task 1: Regression

- Download advertising dataset from this link: https://www.kaggle.com/datasets/ashydv/advertising-dataset/data
- 2. Load data into a pandas dataframe and check its summary statistics and object type of each column.
- 3. Perform data cleaning
 - check null values, outlier analysis
- 4. Perform Exploratory data analysis
 - see how Sales are related with other variables using scatter plot
 - see correlation between different variables using heatmap
- 5. Build a simple linear regression model to predict sales. Split data into test (20%) and train(80%)
- 6. Evaluate the model (root mean squared error)
- 7. Visualize results using scatter plot

Task 2: KNN

The MNIST database of handwritten digits has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size image. It is a good database for people who want to try learning techniques and pattern recognition methods on real-world data while spending minimal efforts on preprocessing and formatting. It can be downloaded in csv from here:

https://www.kaggle.com/datasets/oddrationale/mnist-in-csv

- 1. Load the data
- 2. Visualize data (display 10 image samples from the training data, 1 from each class)
- 3. Train a KNN classifier to classify each image into one of the classes (0-9)
- 4. Evaluate the model
- 5. Build confusion matrix
- 6. Examine the classification report of our KNN model(precision, recall, f1-score, support)

You can use libraries like Scikit-learn.