18.2 注释

张志聪

2025年5月18日

说明 1. \mathbb{R}^n 自身就被可数个单位立方体 $(0,1)^n$ 覆盖,如何覆盖?

证明:

我们用以下方式覆盖 \mathbb{R}^n :

$$\mathbb{R}^n = \bigcup_{q \in \mathbb{Q}^n} ((0,1)^n + q)$$

其中,有理数 $\mathbb Q$ 是可数的 (推论 8.1.15),又由推论 8.1.14 可知 $\mathbb Q^n$ 也是可数的。 $(0,1)^n+q$ 表示单位立方体平移到 q 这个位置。

接下来,需要证明这个集合确实可以覆盖 \mathbb{R}^n 。

对任意 $x=(x_1,\cdots,x_n)\in\mathbb{R}^n$, 由实数的构造方式可得,对任意分量 $1\leq j\leq n$, 存在有理数 q_i , 使得

$$x_j - q_j \in (0,1)$$

说明 2. 虽然 \mathbb{R} 的一维测度是 $+\infty$, 但是 \mathbb{R}^2 的整个 x 轴的二维外测度却是 0。

证明:

设 \mathbb{R}^2 的整个 x 轴是区间 $X = \{(x,0) : x \in \mathbb{R}\}$ 。

对于每一个整数 z, $B_z:=\prod\limits_{i=1}^2[a_i,b_i]$,其中 $[a_1,b_1]=[z-1,z+1]$, $[a_2,b_2]=[0,0]$,于是

$$m^*(B_z) = 2 \times 0 = 0$$

全体的 $z \in \mathbb{Q}, B_z$ 的并集就是整个目标集合 X, 所以

$$m^*(X) \le \sum_{z \in \mathbb{Q}} m^*(B_z) = 0$$