

Learning in Metric Spaces: How Can we Best Predict Graphs?

Alex G. Zalles¹, Kai M. Hung² Ann E. Finneran³, Lydia Beaudrot³, César A. Uribe⁴

¹Department of Computational Mathematics and Operations Research, ²Department of Computer Science, ³Department of Biosciences, ³Department of Electrical and Computer Engineering

How to Learn in Wasserstein Space?

- Linear Regression, modeling Euclidean outputs with real valued predictors
 - Distance = length
- How do we predict outputs that are not Euclidean (i.e., graphs)?

Main theoretical result regression in metric spaces is equivalent to a linear combination in the Wasserstein space

Regression with Wasserstein and Frobenius Metrics

What different distance measures are there?

Encode as Graph Laplacian, and then covariance matrix of Gaussian distribution

$$\rightarrow \begin{bmatrix} 5 & -2 & -3 \\ -2 & 3 & -1 \\ -3 & -1 & 4 \end{bmatrix} \rightarrow$$

 $d_F(L_1, L_2) = \{ tr[(L_1 - L_2)^T (L_1 - L_2)] \}^{1/2}$ $W_2^2(N_1(\mu_1, \Sigma_1), N_2(\mu_2, \Sigma_2)) = \|\mu_1 - \mu_2\|_2^2 + tr(\Sigma_1 + \Sigma_2 - 2\left(\Sigma_1^{\frac{1}{2}} \Sigma_2 \Sigma_1^{\frac{1}{2}}\right)^{\frac{1}{2}})$

Regression on Non-Deterministic Graphs

Testing our model on less deterministic examples

Erdős-Rényi graphs randomly generated

$$ER(n = 4, p) \rightarrow p$$

The Wasserstein barycenter $(\overline{m}, \overline{\Sigma})$ of gaussian distributions $(m_1, \Sigma_1), \dots, (m_n, \Sigma_n)$ with weights $\lambda_1, \dots, \lambda_n$ satisfies the equations

Training Over Graph Connectivity

Training Over Graph Topology

Results: Food Webs

- Translate food webs into graphs
 - Organisms = nodes

models to understand connectivity and

robustness of food webs for conservation

Change in Ocean Level Change in Ocean Level

Training Over Spectral Properties

Training on more graphs and more variables results in greater accuracy

Results: COVID-19 and Taxi Trips

 Predicting travel as a response to COVID-19 cases

R² coefficient

Frobenius: 0.433 Power Metric: 0.453 Wasserstein: 0.607

Distance used	% MSPE of Frobenius
Power Metric	96.4%
Wasserstein (Prediction) Frobenius (Error)	95.995%
Wasserstein (Prediction) Wasserstein (Error)	86.375%

Compute Mean Square Prediction error (MSPE) with ten-fold crossvalidation, averaging over 100 iterations

Future Works

- **Directed** food webs, Laplacians become asymmetric
- Extending to graphs of different number of nodes with Gromov-Wasserstein distance
- Robust approaches to barycenters with negative weights
- All encapsulated in Sub-Saharan African food web data set

For more information, you can reach me at agz2@rice.edu and view my LinkedIn profile via the QR code. This work is generously supported by NSF with grant number 2213568.