Verification and Characterization of Users by Their Voices

Laura Fernández Gallardo, Ph.D.

Quality and Usability Lab, Technische Universität Berlin, Germany

Who I am

Laura Fernández Gallardo

- 2005 2011: MSc. Telecommunications Engineering (University of Granada, Spain)
- 2012 2015: PhD in Computer Science (University of Canberra, Australia)
- 2015 2018: Postdoc Researcher (Technische Universität Berlin, Germany)

Telephone distortions

Telephone distortions

My Phd

Extracting speech features

Automatic speaker verification (ASV)

Automatic speaker verification (ASV):

- GMM-UBM
- i-vectors

Test utterance:

Identity claim:

Enrolled users

Automatic speaker verification (ASV)

Too few speech databases sufficient bandwidth (> 16 kHz)

ASV evaluation: GMM-UBM

My PhD: contributions

Who is talking?

✓ Significant improvement from NB to WB, yet not from WB to SWB

✓ Effects of handset, codecs, and packet loss

✓ Speaker-discriminative fricative sounds in WB

- ✓ Significant improvement from NB to WB, and from WB to SWB, especially for females
- ✓ Effects of channel impairments and of channel mismatch
- ✓ Effects of codecs on speaker-specific spectral regions
- ✓ Unvoiced fricatives effective at > 4 kHz

My Postdoc

Nautilus Speaker Characterization (NSC) Corpus

Released for non-commercial research and teaching purposes only

Speaker characteristics

item	Antonyms (German)	
1	sympathisch	unsympathisch
2	unsicher	sicher
3	unattraktiv	attraktiv
4	verständnisvoll	verständnislos
5	entschieden	unentschieden
6	aufdringlich	unaufdringlich
7	nah	distanziert
8	interessiert	gelangweilt
9	emotionslos	emotional
10	genervt	nicht genervt
11	passiv	aktiv
12	unangenehm	angenehm
13	charaktervoll	charakterlos
14	reserviert	gesellig
15	nervös	entspannt
16	distanziert	mitfühlend
17	unterwürfig	dominant
18	affektiert	unaffektiert
19	gefühlskalt	herzlich
20	jung	alt
21	sachlich	unsachlich
22	aufgeregt	ruhig
23	kompetent	inkompetent
24	schön	hässlich
25	unfreundlich	freundlich
26	weiblich	männlich
27	provokativ	gehorsam
28	engagiert	gleichgültig
29	langweilig	interessant
30	folgsam	zynisch
31	unaufgesetzt	aufgesetzt
32	dumm	intelligent
33	erwachsen	kindlich
34	frech	bescheiden

The space of perceptual traits

"WAAT"

1: warmth

2: attractiveness

3: confidence

4: compliance

5: maturity

MOS - Speaker characteristics

"Inwieweit treffen die folgenden Attribute auf den Sprecher zu?"

MOS - Speaker characteristics

"Bitte beurteilen Sie die nachfolgenden Sprachproben nach ihrer Gesamtqualität"

With higher speech quality (MOS), speakers characteristics highlighted:

- unobtrusive, characterful, sympathetic, likable
- pleasant, attractive, beautiful
- impersonal, competent, calm, adult, decided, secure

- friendly, sympathetic, characterful
- interested, emotional, active, young
- impudent, competent, secure, decided, intelligent

My Postdoc: ongoing work

Machine learning (tools)

eGeMAPS:

- Frequency
- Energy
- Spectral
- Temporal

(88)

Machine learning (labels)

300 x 34 item ratings

- 1: non likable
- 2: secure
- 3: attractive
- 4: unsympathetic
- 5: indecisive
- 6: unobtrusive
- 7: distant
- 8: bored
- 9: emotional
- 10: not irritated
- 11: active
- 12: pleasant (...)

300 x 5 trait scores

- 1: warmth
- 2: attractiveness
- 3: confidence
- 4: compliance
- 5: maturity

Evaluation metrics:

- Average per-class accuracy (cls)
- RMSE (reg)

Machine learning (pipeline)

Machine learning (pipeline)

Nested hyperparameter tuning

- Split train data into A (80%) and B (20%) sets
- For each model:
 - RandomizedSearchCV on hyperparameters and on SelectKBest (Cross-validation)
 - Evaluate performance on B
- Choose best model based on performance on B
- · Train best model with all train data

- WAAT
- K-means: 3 classes
- Binary: "low" / "high"

- Logistic Regression
- Naive Bayes
- K-Nearest Neighbors
- Decision Tree
- Random Forest
- Support Vector Machines

Effects of transmission channels

Effects of transmission channels

Ongoing / future work

- Improving the performance
 - Feature engineering
 - Other techniques for feature selection
 - "similarity" as feature
- Re-evaluate channel effects

My Postdoc: contributions

likable attractive competent childish

✓ New labelled speech database (much needed)

- ✓ Main traits of speakers' characteristics
- ✓ Speech quality → speaker characteristics
- ✓ Subjective voice descriptions

 speaker characteristics

- ✓ Important features for speaker characterization
- ✓ Open-source pipeline for classification and regression
- ✓ Effects of degraded test speech on performance

Outline

Thank you for your attention!

Laura Fernández Gallardo laufergall@gmail.com http://www.qu.tu-berlin.de/?id=lfernandez

(Backup slides)

GMM-UBM

UBM

- is a GMM from a speaker population
- typically 1024 or 2048 mixtures
- each mixture defines the pdf of a cluster of n-dimensional MFCCs
- fit by the EM algorithm
- Speaker-specific GMM
 - adapting a well-trained UBM with the target speaker data

$$LLR = log(p(X|\Theta_S)) - log(p(X|\Theta_{UBM}))$$

i-vectors

MSR Identity Toolbox: A MATLAB Toolbox for Speaker Recognition Research, Microsoft

$$score(w_{target}, w_{test}) = \frac{\langle w_{target} | w_{test} \rangle}{\|w_{target}\| \|w_{test}\|}$$

ASV evaluations: i-vectors

- Conditions
 - Bandwidths: NB and WB. (No data for SWB)
 - Codecs
- Speech data
 - Development (fitting UBM): 670 speakers
 - Training / test (a): 112 speakers from TIMIT
 - Training / test (b): 991 speakers from NIST SRE 2010
- Features: MFCCs + delta + delta-delta
- UBMs: 1024 Gaussian mixtures
- 400 total factor (i-vector dimensionality)

ASV evaluations: i-vectors

Relative EER reduction NB to

32% to 57% (clean) 30% to 64% (transmitted)

	TIMIT_test	NIST SRE10 c1		
	EER (%)	EER (%)		
Clean 4kHz	3.41	8.48		
G.711	4.29	10.10		
AMR-NB	5.01	10.99		
Clean 8kHz	1.46	5.76		
G.722	1.80	7.07		
AMR-WB	2.52	7.07		

Extracting speech features

VOICEBOX: Speech Processing Toolbox for MATLAB, by Mike Brookes, Imperial College, London

Speech features

Speech features

- Higher warmth:
 - 1. Higher F0 range
- Higher <u>attractiveness</u>:
 - 1. Higher F0 range
 - 2. Higher std of F0
 - 3. Lower median F0

Most warm+attractive

Least warm+attractive

- Higher confidence:
 - Lower median F0
 - 2. Higher F0 range
- Higher <u>compliance</u>:
 - 1. Lower std length voiced segments
 - 2. Lower std of F1 frequency
 - 3. Lower std of falling slope for loudness
 - 4. Higher F1 and F2 bandwidth
- Higher <u>maturity</u>:
 - 1. Lower median F0
 - 2. Higher std of F3 frequency
 - 3. Higher std of F3 bandwidth

Speech features

- Higher warmth:
 - 1. Higher F1 frequency
 - 2. Higher F0 range
 - 3. Higher std of F2 bandwidth
 - 4. Higher std of spectral flux
- Higher <u>attractiveness</u>:
 - 1. Higher F1 frequency
 - 2. Higher std of F2 bandwidth
 - 3. Lower std of F1 frequency
 - 4. Higher F0 range
 - 5. Lower spectral slope 0-500Hz

- Higher compliance:
 - 1. Lower std of F1 frequency
 - 2. Higher F1 frequency
 - 3. Lower loudness range

- 1. Higher std of falling slope for loudness
- 2. Higher F0 range
- Higher <u>maturity</u>:
 - 1. Lower median F0
 - 2. Higher mean mfcc4
 - 3. Lower F1 frequency
 - 4. Higher mean mfcc2

Speaker characteristics

Factor analysis for male and for female speakers separately

	Warmth	Attract.	Confid.	Compl.	Matur.
herzlich	0.85			-	
mitfuehlend	0.84				
distanziert	-0.76				
freundlich	0.59				
verstaendnislos	-0.58				
unsympatisch	-0.52				
nicht.genervt	0.51				
attraktiv		0.85			
haesslich		-0.79			
angenehm		0.58			
interessant		0.48			
sicher			1.00		
unentschieden			-0.6		
gehorsam				0.87	
zynisch				-0.71	
alt					0.82
kindlich					-0.73

	Warmth	Attract.	Compl.	Confid.	Matur.
herzlich	0.84				
mitfuehlend	0.84				
distanziert	-0.78				
freundlich	0.56				
verstaendnislos	-0.49				
nicht.genervt	0.49				
unsympatisch	-0.45				
attraktiv		0.83			
haesslich		-0.81			
angenehm		0.59			
gehorsam			0.80		
zynisch			-0.72		
sicher				0.82	
unentschieden				-0.81	
kindlich					-0.81
alt					0.68

The "WAAT" space

MOS - Speaker characteristics

Intuition of error in regression (WAAT)

Multioutput regression

Random Forest:

Overall RMSE = 1.07

Baseline:

Overall RMSE = 1.18

