J. G. PEACEY

Noranda Research Centre, Montreal, Canada

W. G. DAVENPORT

McGill University, Montreal, Canada

Theory and Practice

THE IRON BLAST FURNACE

Theory and Practice

by

J. G. PEACEY

Noranda Research Centre, Montreal, Canada

and

W. G. DAVENPORT

McGill University, Montreal, Canada .

PERGAMON PRESS OXFORD · NEW YORK · TORONTO · SYDNEY · PARIS · FRANKFURT

Contents

	Preface		Хį
	Acknowle	edgements	xiii
1.	A Brief	Description of the Blast-Furnace Process	1
	1.1	Raw Materials	1
	1.2	Products	7
	1.3		9
	1.4		11
	1.5		12
	1.6	Summary Problems	12 14
		rionens	14
2.	A Look	Inside the Furnace	16
	2.1	Behaviour in Front of the Tuyères	16
	2.2	Reactions in the Hearth, Tuyère Raceways and Bosh	18
	2.3	The Fusion Zone	19
	2.4	Reduction Above the Fusion Zone	21
	2.5	Kinetics of the Coke Gasification Reaction	23
	2.6	Reactions in Regions above the 1200 K Isotherm	23
	2.7	Reduction of Higher Oxides	23
	2.8		25
	2.9	Residence Times	25
	2.10 2.11		26
	2,11	Summary Problems	28 29
		Problems	29
3.	Thermo	odynamics of the Blast-Furnace Process: Enthalpies and	
	Equilib	ria	31
	3.1	Enthalpy Requirements in the Blast Furnace	31
	3.2	Critical Hearth Temperature	33
	3.3	Temperature Profiles in the Furnace: The Thermal Reserve	
		Zone	35
	3.4	Free Energy Considerations in the Blast Furnace: The	
		Approach to Equilibrium	36

vi Contents

	3.5	Gas Composition Profiles in the Furnace: The Chemical			
		Reserve Zone	38		
	3.6	Summary	40		
		Problems	42		
4.	Blast-Fu	urnace Stoichiometry	44		
	4.1	The Stoichiometric Development	45		
	4.2	The Stoichiometric Equation	49		
	4.3	Calculations	50		
	4.4 4.5	Graphical Representation of the Stoichiometric Balance Summary	51 56		
	4.5	Problems	56		
5.	Develor	oment of a Model Framework: Simplified Blast-Furnace			
٥.		y Balance	58		
	5.1	Simplifications for an Initial Enthalpy Balance	58		
	5.2		59		
	5.3 5.4	Heat Supply and Heat Demand A General Enthalpy Framework	59 61		
	5.5	Summary	63		
	3.5	Problems	63		
6.		odel Framework: Combination of Stoichiometric and by Equations	65		
	6.1	Combining Stoichiometric and Enthalpy Equations: Calculations	66		
	6.2		68		
	6.3		70		
	6.4	Summary and Discussion of Stoichiometry/Enthalpy Graph Problems	72 74		
7.	Comple	etion of the Stoichiometric Part of the Model: Conceptua	al		
		Division of the Blast Furnace through the Chemical Reserve			
	Zone		75		
	7.1	The Blast Furnace as Two Separate Reactors	76		
	7.2	Stoichiometric Balances for the Bottom Segment	78		
	7.3		80		
	7.4		81		
		Problems	82		

		Contents	vii	
8.	Enthalp	y Balance for the Bottom Segment of the Furnace	84	
	8.1 8.2 8.3 8.4	Enthalpy Balance for the Bottom Segment The Demand-Supply Form of the Enthalpy Equation Numerical Development Summary Problems	84 86 88 89 90	
9.	Combining Bottom Segment Stoichiometry and Enthalpy Equations: a priori Calculation of Operating Parameters		91	
	9.1	Example Calculations	94	
		Implications of the Equations	96	
		Graphical Representation of the Equations	98	
		A Graphical Calculation	101	
	9.5 9.6	Characteristics of the Operating Line Summary	104	
		Problems	106 106	
10.	Testing	of the Mathematical Model and a Discussion of its	el and a Discussion of its	
	Premises		108	
	10.1	Testing for Thermal Validity	108	
	10.2	Top-gas Temperature Calculation	110	
	10.3	Testing for Stoichiometric Validity	113	
	10.4 10.5	Testing for Thermodynamic Validity	114	
	10.5	Validity of the Model Assumptions and Predictions Non-attainment of Equilibrium in the Chemical Reserve Zone	114	
	10.7	Thermal Reserve Temperature Effects	117 117	
	10.8	Summary	120	
		Problems	121	
11.	The Eff	ects of Tuyère Injectants on Blast-Furnace Operations	123	
	11,1	A General Injectant	124	
	11.2	Representing Injected Materials in the Overall Stoichiometric	* .	
	11.3	Equation Representing Injected Materials in the Bottom Segment	126	
	11.0	Stoichiometric Equation	128	
	11.4		120	
		Enthalpy Equation	130	
	11.5	A Form Convenient for Calculations	133	
	11.6 11.7	Example Calculations: I. Oxygen Enrichment	133	
	11.7	Example Calculations: II. Hydrocarbon Injection Graphical Calculations (General Case)	140	
	11.9	Top-gas Composition with Hydrogen Injection	144 148	
		Discussion of Injection Calculations and Summary	148	
		Problems	150	

viii Contents

12.	Losses;	n of Details into the Operating Equations: Heat Reduction of Si and Mn; Dissolution of Carbon; on of Slag; Decomposition of Carbonates	153
	12.1 12.2 12.3	Enthalpy Effects	153 157 164 165
13.		ry of Blast-Furnace-Operating Equations: Comparison Predictions and Practice	167
	13.1 13.2 13.3	A Strategy for Computer Calculation Comparison of Model Predictions with Industrial	167 173
	13.4	Ore and Metal Impurities on Coke and Blast Requirements	173 176
	13.5	•	179
14.	Blast-fu	rnace Optimization by Linear Programming	181
	14.1 14.2 14.3 14.4 14.5 14.6	Computer Inputs and Outputs	182 184 189 191 196 202 203
Appendix I		Tuyère Flame Temperature Calculations	205
	AI.1 AI.2		208 210
Appendix II		Representing Complex Tuyère Injectants in the Operating Equations	212
		Gaseous Injectants with Known Heats of Combustion and Chemical Compositions	212
	AII.2	Injectants with Known Weight Percentages of Carbon and Hydrogen and Known Heats of Combustion	214
App	endix III	Slag Heat Demands	216

Contents	ix

Appendix IV	Stoichiometric Data for Minerals and Compounds in Ironmaking	219
Appendix V	Enthalpies of Formation at Temperature T from Elements at Temperature $T\left(H_T^f\right)$	220
Appendix VI	Enthalpy Increment Equations for Elements and Compounds, $[H_T^\circ - H_{298}^\circ]$	222
Appendix VII	Numerical Values of E^B , Blast Enthalpy	224
Answers to Numerical Problems		225
List of Symbo	Is	227
Index		231

THE IRON BLAST FURNACE

Theory and Practice

J. G. PEACEY, Noranda Research Centre, Montreal, Canada W. G. DAVENPORT, McGill University, Montreal, Canada

An up to date and comprehensive treatment of blast furnaces from fundamental principles through to modern operation procedures. Fundamental equations for the iron blast furnace are developed on the basis of experimental, operational and theoretical data. These equations are used to indicate the relationships between operating variables (raw materials, fuels, fluxes, tuyere injectants, temperatures) and demonstrate how processes should be operated to achieve a specified optimisation goal. Worked examples are provided throughout the text. Each chapter contains a selection of problems and answers are given at the end of the book. Uses SI/Metric units.

CONTENTS: A brief description of the blast furnace process. A look inside the furnace. Thermodynamics of the blast furnace process enthalpies and equilibria. Blast furnace stoichiometry. Development of a model framework: simplified blast furnace enthalpy balance. The model framework: combination of stoichiometric and enthalpy equations. Completion of the stoichiometric part of the model: conceptual division of the blast furnace through the chemical reserve zone. Enthalpy balance for the bottom segment of the furnace. Combining bottom segment stoichiometry and enthalpy equations: a priori calculation of operating parameters. Testing of the mathematical model and a discussion of its premises. The effects of tuyere injectants on blast turnace operations. Addition of details into the operating equations: heat losses, reduction of Si and Mn; dissolution of carbon; formation of slag; decomposition of carbonates. Summary of blast furnace operating equations: comparison between predictions and practices. Blast furnace optimisation by linear programming. Appendices.

ISBN: O O8 O23218 3