Dot plot basics

Richard Layton

2017-09-11

Dot plots can be multivariate

Dot plots begin with bivariate data. In this way they replace nearly every pie chart and bar chart, ever.

x-axis: quantitative

y-axis: categorical

Using *conditioning* we can display additional variables. In today's examples, we have

- no conditioning
- one additional categorical variable
- two additional categorical variables

Example 1

1970's population of US states by region Dot plot with one conditioning variable

Base R includes data(state)

library(ggplot2)
library(tibble)
data(state)

```
glimpse(state.name)
## chr [1:50] "Alabama" "Alaska" "Arizona" ...
glimpse(state.region)
## Factor w/ 4 levels "Northeast", "South", ..: 2 4 4 2 4 4
glimpse(state.x77)
##
   num [1:50, 1:8] 3615 365 2212 2110 21198 ...
   - attr(*, "dimnames")=List of 2
##
     ..$ : chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansa
##
## ..$ : chr [1:8] "Population" "Income" "Illiteracy" "L:
```

Create data frame for example

Similar to a scatterplot but with y = categorical variable

```
ggplot(data = state_df, aes(
    x = population,
    y = name
    )) + geom_point()
```


Change row-order in aes() via reorder()

```
ggplot(data = state_df, aes(
    x = population,
    y = reorder(name, population)
    )) + geom_point()
```


Edit dot size with geom_point()

```
ggplot(data = state_df, aes(
    x = population,
    y = reorder(name, population)
    )) + geom_point(size = 3)
```


Change population units to millions inside aes()

```
f3 <- ggplot(data = state_df, aes(
    x = population * 1000 / 1e6,
    y = reorder(name, population)
    )) + geom_point(size = 3)</pre>
```


That's the basic dot plot

- ▶ We can still edit axis labels and the theme
- ▶ Dot plots are effective substitutes for most pies and bars

Conditioning by a categorical variable region

Facets in a column by swapping the position of ~

Delete unused rows with scales = "free_y"

```
f6 <- f3 + facet_grid(
    region ~. ,
    scales = "free_y")</pre>
```


Make row intervals equal with space = "free_y"

```
f7 <- f3 + facet_grid(
    region ~. ,
    scales = "free_y", space = "free_y")</pre>
```


Reorder facets by sum of population in a facet

```
f8 <- f3 + facet_grid(
    reorder(region, -population, sum) ~. ,
    scales = "free_y", space = "free_y")</pre>
```


Edit labels and theme

```
f9 <- f8 + theme_light() +
    labs(x = "Population in 1975 (millions)", y = "")</pre>
```


Rotate the facet strip labels

```
f10 <- f9 + theme(
    strip.text.y = element_text(angle = 0, size = 14))</pre>
```


Reduce spacing between facets concludes the example

Example 2

1940's death rates in Virginia

Dot plot with two conditioning variables

We manually tidied this data previously

```
library(readxl)
rates <- read_excel(
    path = "data/VADeaths.xlsx", sheet = "tidy"
)</pre>
```

Examine the data in a simple table

knitr::kable(rates)

location	sex	age_group	death_rate
rural	men	50-54	11.7
rural	men	55-59	18.1
rural	men	60-64	26.9
rural	men	65-69	41.0
rural	men	70-74	66.0
rural	women	50-54	8.7
rural	women	55-59	11.7
rural	women	60-64	20.3
rural	women	65-69	30.9
rural	women	70-74	54.3
urban	men	50-54	15.4
urban	men	55-59	24.3
urban	men	60-64	37.0
urban	men	65-69	54.6
		70 74	

The basic dot plot has 4 dots per row

```
f1 <- ggplot(data = rates,
    aes(x = death_rate, y = age_group)) +
    geom_point(size = 3)</pre>
```


Condition by both categories

Reorder the panels by the mean rate by location

Reorder the panels by the mean rate by sex

Add color to aes() to distinguish urban and rural

Removing the location condition yields two dots per row

```
f7 <- ggplot(data = rates,
    aes(x = death_rate, y = age_group, col = location)) +
    geom_point(size = 3) +
    facet_grid(.~ reorder(sex, -death_rate, mean))</pre>
```


Swap orientation in facet_grid()

```
f8 <- ggplot(data = rates,
    aes(x = death_rate, y = age_group, col = location)) +
    geom_point(size = 3) +
    facet_grid(reorder(sex, -death_rate, mean) ~.)</pre>
```


Edit the two colors (See Colors in R)

```
f9 <- f8 + scale_colour_manual(
   values = c("aquamarine4", "darkgoldenrod3"))</pre>
```


Add group in aes() and we can add a geom_line()

```
f10 <- ggplot(data = rates,
    aes(x = death_rate, y = age_group, col = location,
        group = location)
    ) +
    geom_line() + geom_point(size = 3) +
    facet_grid(reorder(sex, -death_rate) ~.) +
    scale_colour_manual(
        values = c("aquamarine4", "darkgoldenrod3")
    )
}</pre>
```


Change facet_grid() to facet_wrap()

Moves the facet labels to the top of the panel

```
f11 <- ggplot(data = rates,
    aes(x = death_rate, y = age_group, col = location,
        group = location)) +
    geom_line() + geom_point(size = 3) +
    facet_wrap(~ sex, ncol = 1) +
    scale_colour_manual(
        values = c("aquamarine4", "darkgoldenrod3")
    )</pre>
```


And urbal/rural labels to the lines

Create a new data frame for line labels

- ▶ The new data frame is a subset of the original
- Keeping only those rows for which the age group is "65-69"

```
library(dplyr)
line_labels <- rates %>%
    filter(age_group == "65-69")
```

Use geom_text() and the new data frame for line labels

```
f13 <- f11 + geom_text(data = line_labels,
    aes(label = location), col = "black")</pre>
```


Justify the text labels

```
f14 <- f11 + geom_text(data = line_labels,
    aes(label = location)
    , col = "black"
    , hjust = c(1.4, -0.4, 1.4, -0.4)
    , vjust = 0.4
)</pre>
```


Add labels, edit theme, omit legend

```
f15 <- f14 +
   labs(x = "Death rates per 1000 in Virginia in 1940",
        y = "Age group") +
   theme_light() +
   theme(legend.position = "none")</pre>
```


Edit text in facet strip

Change the aspect ratio

