# **Driverless AI Experiment:** nucodewo

Generated on: Sat Nov 24 22:36:06 2018

Generated by: h2oai

## **Table of Contents**

- 1. Experiment Overview
- 2. Data Overview
- 3. Methodology
- 4. Valiation Strategy
- 5. Model Tuning
- 6. Feature Evolution
- 7. Feature Transformation
- 8. Final Model
- 9. Deployment

# **Experiment Overview**

Driverless AI built a stacked ensemble of 1 XGBoostModel, 1 GLMModel to predict

Drug\_Overdose\_Mortality\_Rate given 31 original features from the input dataset 100\_Best\_Features.csv. This regression experiment completed in 1 hours and 33 minutes (1:33:13), using 27 of the 31 original features, and 4 of the 9,385 engineered features.

### **Performance**

| Dataset             | RMSE                   |
|---------------------|------------------------|
| Internal Validation | 5.02                   |
| Test Data           | Test Data not Provided |

## **Driverless Settings**

| Dial Settings    | Description                          | Setting Value | Range of Possible Values |
|------------------|--------------------------------------|---------------|--------------------------|
| Accuracy         | Controls sophistication of the model | 7             | 1-10                     |
| Time             | Controls duration of the experiment  | 6             | 1-10                     |
| Interpretability | Controls complexity of the features  | 6             | 1-10                     |

## **System Specifications**

| System | System Memory | CPUs | GPUs |
|--------|---------------|------|------|
| Linux  | 15            | 4    | 0    |

## **Versions**

## **Driverless Al Version**

1.3.1

## **Data Overview**

This section provides information on the datasets used for the experiment.

| data       | file path                            | number of rows | number of columns |
|------------|--------------------------------------|----------------|-------------------|
| training   | ./tmp/hegiciko/100_Best_Features.csv | 3,141          | 103               |
| validation | Not provided                         |                |                   |
| testing    | Not provided                         |                |                   |

## **Training Data**

The training data consists of both numeric and non numeric columns.

The summary of the columns is shown below:

### **Numeric Columns**

| name                                | min        | mean       | max         | std        | unique | freq<br>of<br>mode |
|-------------------------------------|------------|------------|-------------|------------|--------|--------------------|
| Health_Factors_pctile_within_state  | 1.000      | 51.288     | 100.000     | 28.580     | 104    | 59                 |
| Length_of_Life_pctile_within_state  | 1.000      | 51.148     | 100.000     | 28.526     | 104    | 63                 |
| pct_Smokers                         | 6.900      | 18.399     | 41.200      | 3.788      | 230    | 53                 |
| pct_Physically_Inactive             | 9.100      | 27.359     | 41.700      | 5.414      | 290    | 36                 |
| pct_Excessive_Drinking              | 8.400      | 16.574     | 27.300      | 3.346      | 176    | 45                 |
| Preventable_Hospitalization_rate    | 12.230     | 63.889     | 260.580     | 24.615     | 2,498  | 52                 |
| pct_Some_College                    | 2.703      | 56.278     | 100.000     | 11.649     | 3,130  | 5                  |
| pct_Frequent_Mental_Distress        | 6.600      | 11.229     | 19.200      | 2.078      | 117    | 70                 |
| pct_Diabetic                        | 5.100      | 11.137     | 22.800      | 2.282      | 148    | 73                 |
| Median_Household_Income             | 21,658.000 | 47,117.423 | 125,635.000 | 12,099.241 | 3,003  | 3                  |
| pct_Rural                           | 0.000      | 58.624     | 100.000     | 31.505     | 2,413  | 701                |
| NSSATS_COMPSAT_3                    | 0.000      | 0.104      | 0.200       | 0.042      | 50     | 254                |
| NMHSS_TREATFAMTHRPY                 | 0.519      | 0.705      | 0.889       | 0.100      | 51     | 254                |
| NMHSS_TREATTRAUMATHRPY              | 0.444      | 0.701      | 0.931       | 0.114      | 51     | 254                |
| NMHSS_FOCUS_Mental health treatment | 0.314      | 0.645      | 0.872       | 0.139      | 50     | 254                |

| name                                                           | min   | mean  | max   | std   | unique | freq<br>of<br>mode |
|----------------------------------------------------------------|-------|-------|-------|-------|--------|--------------------|
| NMHSS_FOCUS_Mix of mental health and substance abuse treatment | 0.111 | 0.323 | 0.686 | 0.138 | 51     | 254                |
| NMHSS_LANGPROV_BOTH staff and on-call interpreter              | 0.011 | 0.213 | 0.566 | 0.135 | 51     | 254                |
| NMHSS_HLTHREC6                                                 | 0.000 | 0.038 | 0.104 | 0.025 | 49     | 274                |
| NMHSS_FACNUM_11 to 30 facilities                               | 0.000 | 0.001 | 0.009 | 0.002 | 12     | 2,304              |
| NMHSS_IPSEXPERF_3                                              | 0.000 | 0.011 | 0.030 | 0.009 | 36     | 616                |
| NMHSS_IPAGEPER017_1                                            | 0.000 | 0.005 | 0.016 | 0.005 | 27     | 1,156              |
| NMHSS_IPETHPERHISP_2                                           | 0.000 | 0.011 | 0.049 | 0.011 | 35     | 802                |
| NMHSS_IPETHPERNONHISP_4                                        | 0.000 | 0.001 | 0.024 | 0.003 | 8      | 2,650              |
| NMHSS_IPRACETOTASIAN_41 to 50                                  | 0.000 | 0.000 | 0.003 | 0.001 | 3      | 2,825              |
| NMHSS_IPRACEPERWHIT_1                                          | 0.000 | 0.000 | 0.006 | 0.001 | 5      | 2,699              |
| NMHSS_IPRACEPERWHIT_6                                          | 0.000 | 0.026 | 0.089 | 0.017 | 41     | 274                |
| NMHSS_IPRACEPERUNK_2                                           | 0.000 | 0.003 | 0.024 | 0.005 | 21     | 1,863              |
| NMHSS_IPRACEPERUNK_3                                           | 0.000 | 0.002 | 0.013 | 0.003 | 17     | 1,913              |
| NMHSS_OPAGETOT017_51 to 75                                     | 0.000 | 0.057 | 0.122 | 0.027 | 48     | 254                |
| NMHSS_OPAGETOT017_None                                         | 0.090 | 0.212 | 0.533 | 0.063 | 51     | 254                |
| NMHSS_OPAGEPER017_0                                            | 0.090 | 0.213 | 0.533 | 0.063 | 51     | 254                |
| NMHSS_OPETHPERHISP_3                                           | 0.000 | 0.026 | 0.085 | 0.023 | 43     | 328                |
| NMHSS_OPETHTOTUNK_1 to 10                                      | 0.000 | 0.086 | 0.271 | 0.053 | 50     | 254                |
| NMHSS_OPRACEPERBLK_1                                           | 0.000 | 0.178 | 0.328 | 0.096 | 50     | 254                |
| NMHSS_OPRACETOTWHIT_More than 250                              | 0.000 | 0.072 | 0.146 | 0.035 | 50     | 254                |
| NMHSS_OPRACEPERWHIT_7                                          | 0.000 | 0.215 | 0.608 | 0.117 | 51     | 254                |
| NMHSS_OPLEGALTOTNONFOREN_11                                    | 0.000 | 0.001 | 0.006 | 0.002 | 7      | 2,574              |
| NMHSS_PERCENTVA_7                                              | 0.000 | 0.000 | 0.005 | 0.001 | 5      | 2,834              |
| NSDUH_PRUD_PYR_AVEG                                            | 0.006 | 0.008 | 0.010 | 0.001 | 51     | 254                |
| NSDUH_SMI_PYR_AVEG                                             | 0.036 | 0.047 | 0.060 | 0.006 | 51     | 254                |
| NSDUH_AMI_PYR_AVEG                                             | 0.168 | 0.195 | 0.242 | 0.017 | 51     | 254                |
| TEDSA_AGE_8                                                    | 0.085 | 0.121 | 0.146 | 0.011 | 52     | 254                |
| TEDSA_DETNLF_3                                                 | 0.000 | 0.085 | 0.361 | 0.054 | 51     | 254                |
| TEDSA_ARRESTS9                                                 | 0.000 | 0.054 | 0.975 | 0.148 | 51     | 254                |
| TEDSA_ARRESTS_0                                                | 0.022 | 0.858 | 0.965 | 0.140 | 52     | 254                |

| name              | min   | mean  | max   | std   | unique | freq<br>of<br>mode |
|-------------------|-------|-------|-------|-------|--------|--------------------|
| TEDSA_METHUSE9    | 0.000 | 0.047 | 1.000 | 0.161 | 41     | 514                |
| TEDSA_SUB1_7      | 0.018 | 0.103 | 0.285 | 0.058 | 52     | 254                |
| TEDSA_SUB2_7      | 0.016 | 0.054 | 0.136 | 0.025 | 52     | 254                |
| TEDSA_FRSTUSE2_10 | 0.001 | 0.005 | 0.048 | 0.006 | 52     | 254                |
| TEDSA_FRSTUSE2_11 | 0.000 | 0.003 | 0.043 | 0.005 | 52     | 254                |
| TEDSA_FRSTUSE2_12 | 0.000 | 0.002 | 0.054 | 0.007 | 52     | 254                |
| TEDSA_FRSTUSE2_7  | 0.009 | 0.023 | 0.110 | 0.013 | 52     | 254                |
| TEDSA_FRSTUSE2_8  | 0.004 | 0.012 | 0.062 | 0.007 | 52     | 254                |
| TEDSA_FRSTUSE2_9  | 0.002 | 0.008 | 0.061 | 0.007 | 52     | 254                |
| TEDSA_SUB3_7      | 0.000 | 0.022 | 0.044 | 0.009 | 52     | 254                |
| TEDSA_FRSTUSE39   | 0.023 | 0.746 | 1.000 | 0.126 | 52     | 254                |
| TEDSA_FRSTUSE3_10 | 0.000 | 0.003 | 0.063 | 0.008 | 52     | 254                |
| TEDSA_FRSTUSE3_11 | 0.000 | 0.002 | 0.055 | 0.007 | 50     | 254                |
| TEDSA_FRSTUSE3_12 | 0.000 | 0.002 | 0.067 | 0.009 | 48     | 254                |
| TEDSA_FRSTUSE3_5  | 0.000 | 0.023 | 0.126 | 0.015 | 52     | 254                |
| TEDSA_FRSTUSE3_6  | 0.000 | 0.018 | 0.135 | 0.017 | 52     | 254                |
| TEDSA_FRSTUSE3_7  | 0.000 | 0.011 | 0.133 | 0.017 | 52     | 254                |
| TEDSA_FRSTUSE3_8  | 0.000 | 0.006 | 0.096 | 0.012 | 52     | 254                |
| TEDSA_FRSTUSE3_9  | 0.000 | 0.004 | 0.075 | 0.010 | 52     | 254                |
| TEDSA_OPSYNFLG_0  | 0.578 | 0.826 | 0.957 | 0.081 | 52     | 254                |
| TEDSA_OPSYNFLG_1  | 0.043 | 0.174 | 0.422 | 0.081 | 52     | 254                |
| TEDSA_OTCFLG_0    | 0.990 | 0.997 | 1.000 | 0.002 | 51     | 254                |
| TEDSA_OTCFLG_1    | 0.000 | 0.003 | 0.010 | 0.002 | 51     | 254                |
| TEDSA_DSMCRIT9    | 0.003 | 0.598 | 1.000 | 0.332 | 41     | 802                |
| TEDSA_DSMCRIT_12  | 0.000 | 0.004 | 0.025 | 0.006 | 39     | 841                |
| TEDSA_DSMCRIT_14  | 0.000 | 0.004 | 0.053 | 0.009 | 24     | 1,782              |
| TEDSA_DSMCRIT_15  | 0.000 | 0.009 | 0.116 | 0.019 | 25     | 1,680              |
| TEDSA_DSMCRIT_17  | 0.000 | 0.004 | 0.054 | 0.010 | 25     | 1,680              |
| TEDSA_DSMCRIT_18  | 0.000 | 0.001 | 0.012 | 0.002 | 24     | 1,782              |
| TEDSA_DSMCRIT_2   | 0.000 | 0.017 | 0.199 | 0.042 | 36     | 1,065              |
| TEDSA_DSMCRIT_5   | 0.000 | 0.073 | 0.414 | 0.077 | 39     | 841                |
| TEDSA_PSYPROB_1   | 0.000 | 0.269 | 0.695 | 0.187 | 48     | 561                |
| TEDSD_AGE_8       | 0.083 | 0.112 | 0.148 | 0.011 | 51     | 271                |

| name                                        | min        | mean        | max           | std         | unique | freq<br>of<br>mode |
|---------------------------------------------|------------|-------------|---------------|-------------|--------|--------------------|
| TEDSD_DETNLF_1                              | 0.000      | 0.011       | 0.058         | 0.011       | 50     | 271                |
| TEDSD_PREG_1                                | 0.003      | 0.015       | 0.041         | 0.007       | 51     | 271                |
| TEDSD_CBSA_14540                            | 0.000      | 0.002       | 0.061         | 0.012       | 8      | 2,520              |
| TEDSD_CBSA_17300                            | 0.000      | 0.006       | 0.145         | 0.028       | 8      | 2,520              |
| TEDSD_CBSA_21060                            | 0.000      | 0.001       | 0.020         | 0.004       | 8      | 2,520              |
| TEDSD_CBSA_21780                            | 0.000      | 0.000       | 0.003         | 0.001       | 8      | 2,520              |
| TEDSD_CBSA_26580                            | 0.000      | 0.004       | 0.091         | 0.017       | 8      | 2,520              |
| TEDSD_CBSA_30460                            | 0.000      | 0.003       | 0.073         | 0.014       | 8      | 2,520              |
| TEDSD_CBSA_30940                            | 0.000      | 0.000       | 0.002         | 0.000       | 8      | 2,520              |
| TEDSD_CBSA_31140                            | 0.000      | 0.005       | 0.119         | 0.023       | 8      | 2,520              |
| TEDSD_CBSA_36980                            | 0.000      | 0.001       | 0.022         | 0.004       | 8      | 2,520              |
| TEDSD_DIVISION_6                            | 0.000      | 0.103       | 1.000         | 0.286       | 8      | 2,358              |
| TEDSD_SUB2_7                                | 0.009      | 0.053       | 0.134         | 0.026       | 51     | 271                |
| TEDSD_SUB3_7                                | 0.000      | 0.022       | 0.051         | 0.010       | 51     | 271                |
| TEDSD_DSMCRIT_14                            | 0.000      | 0.005       | 0.060         | 0.013       | 27     | 1,555              |
| TEDSD_PSYPROB_1                             | 0.000      | 0.261       | 0.687         | 0.178       | 45     | 614                |
| RetailDrug_AMOBARBITAL (SCHEDULE 2)         | 0.460      | 27.118      | 152.210       | 28.700      | 41     | 295                |
| RetailDrug_AMPHETAMINE                      | 25,380.020 | 544,943.799 | 1,534,182.940 | 410,506.389 | 51     | 254                |
| RetailDrug_FENTANYL BASE                    | 397.690    | 10,437.374  | 34,415.750    | 8,312.239   | 51     | 254                |
| RetailDrug_LISDEXAMFETAMINE                 | 5,188.460  | 290,112.458 | 1,086,524.420 | 270,318.638 | 51     | 254                |
| RetailDrug_METHYLPHENIDATE (DL;D;L;ISOMERS) | 32,818.620 | 503,090.213 | 1,353,418.140 | 367,019.951 | 51     | 254                |
| RetailDrug_TAPENTADOL                       | 5,498.000  | 169,584.071 | 480,772.940   | 146,550.897 | 51     | 254                |
| Drug_Overdose_Mortality_Rate                | 2.713      | 17.287      | 84.882        | 6.646       | 1,587  | 717                |

## **Non-Numeric Columns**

| name   | unique | top        | freq of top value |
|--------|--------|------------|-------------------|
| STATE  | 51     | TX         | 254               |
| County | 1,848  | Washington | 31                |

## **Shifts Detected**

Driverless AI can perform shift detection between the training, validation and testing datasets. It does this by training a binomial model to predict which dataset a record belongs to. For example, it may find that it is able to

separate the training and testing data with an AUC of 0.8 using only the column: C1 as the predictor. This indicates that there is some sort of drift in the distribution of C1 between the training and testing data.

An example of a shift distribution between two datasets is shown below:



For this experiment, Driverless AI was not able to check for distribution shifts because only the training dataset was supplied by the user.

## Methodology

This section describes the experiment methodology.

## **Assumptions and Limitations**

Driverless AI trains all models based on the training data provided (in this case: 100\_Best\_Features.csv). It is the assumption of Driverless AI that this dataset is representative of the data that will be seen when scoring.

Driverless AI may perform shift detection between the train data and another dataset. If a shift in distribution is detected, this may indicate that the data that will be used for scoring may have distributions not represented in the training data.

For this experiment, Driverless AI was not able to detect any shift in distribution between train data and another dataset because no validation or test data was provided.

## **Experiment Pipeline**

For this experiment, Driverless AI performed the following steps to find the optimal final model:

| Ingest | Feature       | Model + Feature | Feature   | Final | Scoring  |
|--------|---------------|-----------------|-----------|-------|----------|
| Data   | Preprocessing | Tuning          | Evolution | Model | Pipeline |

The steps in this pipeline are described in more detail below:

### 1. Ingest Data

detected column types

## 2. Feature Preprocessing

turned raw features into numeric

### 3. Model and Feature Tuning

- found the optimal parameters for xgboost models by training models with different parameters
- the best parameters are those that generate the least **RMSE** on the internal validation data
- trained and scored **41** models to evaluate features and model parameters

#### 4. Feature Evolution

- found the best representation of the data for the final model training by creating and evaluating 9,385
   features over 100 iteration s
- trained and scored **808** models to further evaluate engineered features

#### 5. Final Model

- the final model is a stacked ensemble of **1 XGBoostModel**, **1 GLMModel**.
- the features of these models are the best features found during the feature engineering iterations

### 6. Create Scoring Pipeline

- created and exported the Python scoring pipeline (no MOJO Scoring Pipeline created)
- Python Scoring Pipeline: h2oai\_experiment\_nucodewo/scoring\_pipeline/scorer.zip

Driverless AI trained models throughout the experiment in an effort to determine the best parameters, model dataset, and optimal final model. The stages are described below:

| Driverless Al Step           | Number of Models | Number of Folds/Validation Datasets |
|------------------------------|------------------|-------------------------------------|
| Parameter and Feature Tuning | 41               | 3                                   |
| Feature Evolution            | 808              | 3                                   |
| Final Model                  | 2                | 3                                   |

## **Experiment Settings**

Below are the settings selected for the experiment by h2oai:

#### **Defined Parameters**

| Parameter         | Value                        |
|-------------------|------------------------------|
| dataset_key       | hegiciko                     |
| target_col        | Drug_Overdose_Mortality_Rate |
| weight_col        |                              |
| fold_col          |                              |
| orig_time_col     |                              |
| time_col          | [OFF]                        |
| is_classification | False                        |
| cols_to_drop      | []                           |
| validset_key      |                              |
| testset_key       |                              |
| enable_gpus       | False                        |

| Parameter        | Value |
|------------------|-------|
| seed             | False |
| accuracy         | 7     |
| time             | 6     |
| interpretability | 6     |
| scorer           | RMSE  |
| is_timeseries    | False |

## **Config Overrides**

| Parameter                     | Value  |
|-------------------------------|--------|
| enable_xgboost                | "auto" |
| enable_glm                    | "auto" |
| enable_tensorflow             | "off"  |
| enable_rulefit                | "off"  |
| enable_lightgbm               | "off"  |
| check_distribution_shift      | true   |
| time_series_recipe            | true   |
| make_python_scoring_pipeline  | true   |
| make_mojo_scoring_pipeline    | false  |
| smart_imbalanced_sampling     | false  |
| seed                          | 1234   |
| nfeatures_max                 | -1     |
| feature_engineering_effort    | 5      |
| max_feature_interaction_depth | 8      |
| max_relative_cardinality      | 0.95   |
| string_col_as_text_threshold  | 0.3    |
| tensorflow_max_epochs         | 100    |
| tensorflow_max_epochs_nlp     | 2      |
| max_nestimators               | 3000   |
| max_learning_rate             | 0.5    |
| max_cores                     | 0      |
| num_gpus_per_model            | 1      |
| num_gpus_per_experiment       | -1     |
| gpu_id_start                  | 0      |

These Accuracy, Time, and Interpretability settings map to the following internal configuration of the Driverless Al experiment:

| Internal Parameter                        | Value |
|-------------------------------------------|-------|
| data filtered                             | False |
| tune target transform                     | True  |
| number of feature engineering iterations  | 100   |
| number of models trained per iteration    | 4     |
| early stopping rounds                     | 10    |
| monotonicity constraint                   | False |
| number of model tuning model combinations | 41    |
| number of base learners in ensemble       | 2     |
| time column                               | [OFF] |

#### **Details**

- data filtered: Driverless AI may filter the training data depending on the number of rows and the Accuracy setting.
  - for this experiment, the training data was not filtered.
- tune target transform: whether Driverless AI evaluated the model performance if the target was transformed.
  - ex: the model performance may be better by predicting the log of the target column instead of the raw target column
- number of feature engineering iterations: the number of iterations performed of feature engineering.
- **number of models evaluated per iteration**: for each feature engineering iteration, Driverless AI trains multiple models. Each model is trained with a different set of predictors or features. The goal of this step is to determine which types of features, lead to the least RMSE.
- early stopping rounds: if Driverless Al does not see any improvement after 10 iterations of feature engineering, the feature engineering step is automatically stopped.
- **monotonicity constraint**: if enabled, the xgboost models will only have monotone relationships between the predictors and target variable.
- **number of model tuning combinations**: the number of model tuning combinations evaluated to determine the optimal model settings for the xgboost models.
- number of base learners in ensemble: the number of base models used to create the final ensemble.
- **time column**: the column that provides time column. If a time column is provided, feature engineering and model validation will respect the causality of time. If the time column is turned off, no time order is used for modeling and data may be shuffled randomly (any potential temporal causality will be ignored).

## Validation Strategy

Driverless AI automatically split the training data to determine the performance of the model parameter tuning and feature engineering steps.

For the experiment, Driverless AI randomly split the data into 3 fold cross validation. With cross validation, the whole dataset is utilized by training 3 models where each model is trained on a different subset of the training data.

The visualization below shows how cross validation is utilized to get predictions on hold out data. The visualization shows an example of cross validation with 5 folds. For this experiment, however, 3 folds were created.



# **Model Tuning**

The table below shows a portion of the different parameter configurations evaluated by Driverless AI for the xgboost models and their score and training time. The table is ordered based on a combination of least score and lowest training time.

| tree<br>method | grow<br>policy | max<br>depth | max<br>leaves | colsample<br>bytree | subsample | nfeatures | scores | training<br>times |
|----------------|----------------|--------------|---------------|---------------------|-----------|-----------|--------|-------------------|
| hist           | depthwise      | 6.000        | 0.000         | 0.900               | 0.500     | 95        | 5.080  | 8.684             |
| hist           | depthwise      | 6.000        | 0.000         | 0.900               | 0.500     | 95        | 5.080  | 8.497             |
| hist           | depthwise      | 4.000        | 0.000         | 0.650               | 0.700     | 95        | 5.135  | 4.798             |
| hist           | lossguide      | 0.000        | 16.000        | 0.800               | 0.900     | 254       | 5.139  | 12.743            |
| hist           | depthwise      | 4.000        | 0.000         | 0.650               | 0.700     | 268       | 5.145  | 13.748            |
| hist           | depthwise      | 3.000        | 0.000         | 0.800               | 0.600     | 91        | 5.148  | 4.020             |
| hist           | lossguide      | 0.000        | 512.000       | 0.650               | 0.800     | 280       | 5.150  | 373.911           |
| hist           | depthwise      | 10.000       | 0.000         | 0.300               | 0.900     | 99        | 5.157  | 31.469            |
| hist           | depthwise      | 10.000       | 0.000         | 0.900               | 0.500     | 95        | 5.157  | 20.219            |
| hist           | depthwise      | 10.000       | 0.000         | 0.900               | 0.500     | 95        | 5.157  | 20.358            |
| hist           | depthwise      | 10.000       | 0.000         | 0.900               | 0.500     | 86        | 5.160  | 18.825            |
| hist           | depthwise      | 10.000       | 0.000         | 0.900               | 0.500     | 86        | 5.160  | 18.788            |
| hist           | depthwise      | 10.000       | 0.000         | 0.400               | 0.800     | 300       | 5.092  | 97.753            |
| hist           | lossguide      | 0.000        | 64.000        | 0.800               | 1.000     | 91        | 5.166  | 11.362            |
| hist           | lossguide      | 0.000        | 16.000        | 0.300               | 0.700     | 308       | 5.167  | 11.392            |
| hist           | lossguide      | 0.000        | 256.000       | 0.450               | 0.400     | 317       | 5.168  | 68.692            |
| hist           | depthwise      | 8.000        | 0.000         | 0.550               | 0.700     | 97        | 5.171  | 16.814            |
| hist           | depthwise      | 6.000        | 0.000         | 0.600               | 0.900     | 295       | 5.172  | 23.500            |
| hist           | depthwise      | 9.000        | 0.000         | 0.350               | 0.700     | 301       | 5.178  | 62.244            |

| tree<br>method | grow<br>policy | max<br>depth | max<br>leaves | colsample<br>bytree | subsample | nfeatures | scores | training<br>times |
|----------------|----------------|--------------|---------------|---------------------|-----------|-----------|--------|-------------------|
| hist           | depthwise      | 9.000        | 0.000         | 0.500               | 0.900     | 286       | 5.181  | 87.849            |
| hist           | lossguide      | 0.000        | 512.000       | 0.500               | 1.000     | 282       | 5.183  | 111.029           |
| hist           | lossguide      | 0.000        | 64.000        | 0.300               | 0.500     | 321       | 5.187  | 30.391            |
| hist           | depthwise      | 5.000        | 0.000         | 0.200               | 0.500     | 307       | 5.197  | 10.369            |
| hist           | depthwise      | 6.000        | 0.000         | 0.900               | 0.500     | 90        | 5.097  | 8.902             |
| hist           | depthwise      | 7.000        | 0.000         | 0.300               | 0.800     | 310       | 5.200  | 23.817            |
| hist           | lossguide      | 0.000        | 32.000        | 0.350               | 0.900     | 100       | 5.202  | 5.823             |
| hist           | lossguide      | 0.000        | 1,024.000     | 0.450               | 0.700     | 291       | 5.207  | 204.957           |
| hist           | lossguide      | 0.000        | 64.000        | 0.800               | 0.800     | 277       | 5.215  | 44.489            |
| hist           | depthwise      | 10.000       | 0.000         | 0.900               | 0.500     | 280       | 5.221  | 83.225            |
| hist           | lossguide      | 0.000        | 1,024.000     | 0.200               | 0.700     | 293       | 5.277  | 29.028            |
| hist           | lossguide      | 0.000        | 1,024.000     | 0.800               | 1.000     | 258       | 5.279  | 304.015           |
| hist           | lossguide      | 0.000        | 64.000        | 0.650               | 0.500     | 307       | 5.293  | 18.230            |
| hist           | depthwise      | 10.000       | 0.000         | 0.700               | 1.000     | 267       | 5.308  | 127.064           |
| hist           | lossguide      | 0.000        | 16.000        | 0.200               | 0.600     | 101       | 5.339  | 4.198             |
| hist           | depthwise      | 6.000        | 0.000         | 0.900               | 0.500     | 90        | 5.097  | 9.337             |
| hist           | lossguide      | 0.000        | 512.000       | 0.900               | 0.900     | 68        | 5.350  | 36.222            |
| hist           | depthwise      | 8.000        | 0.000         | 0.350               | 0.800     | 304       | 5.098  | 87.700            |
| hist           | lossguide      | 0.000        | 64.000        | 0.800               | 0.700     | 78        | 5.106  | 13.284            |
| hist           | depthwise      | 5.000        | 0.000         | 0.650               | 0.900     | 96        | 5.119  | 9.930             |
| hist           | depthwise      | 3.000        | 0.000         | 0.350               | 0.700     | 260       | 5.124  | 13.747            |
| hist           | depthwise      | 5.000        | 0.000         | 0.550               | 1.000     | 264       | 5.128  | 31.363            |

## **Feature Evolution**

During the Model and Feature Tuning Stage, Driverless AI evaluates the effects of different types of algorithms, algorithm parameters, and features. The goal of the Model and Feature Tuning Stage is to determine the best algorithm and algorithm parameters to use during the Feature Evolution Stage. The Feature Evolution Stage trained 808 xgboost models where each model evaluated a different set of features. The Feature Evolution Stage uses a genetic algorithm to search the large feature engineering space.

The graph belows shows the effect the Model and Feature Tuning Stage and Feature Evolution Stage had on the performance.



## **Feature Transformation**

The result of the Feature Evolution Stage is the final set of features to use for the model. Some of these features were automatically created by Driverless AI. The top 14 features used in the final model are shown belowed ordered by importance. If no transformer was applied, the feature is an original column.

| Feature                              | Description                                                                                                        | Transformer           | Relative<br>Importance |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|
| 3_Length_of_Life_pctile_within_state | Length_of_Life_pctile_within_state (original)                                                                      | None                  | 1.000                  |
| 99_pct_Rural                         | pct_Rural (original)                                                                                               | None                  | 0.562                  |
| 53_TEDSA_DSMCRIT_5                   | TEDSA_DSMCRIT_5 (original)                                                                                         | None                  | 0.170                  |
| 25_NMHSS_OPRACEPERBLK_1              | NMHSS_OPRACEPERBLK_1 (original)                                                                                    | None                  | 0.159                  |
| 4_Median_Household_Income            | Median_Household_Income (original)                                                                                 | None                  | 0.158                  |
| 97_pct_Frequent_Mental_Distress      | pct_Frequent_Mental_Distress (original)                                                                            | None                  | 0.152                  |
| 100_pct_Smokers                      | pct_Smokers (original)                                                                                             | None                  | 0.136                  |
| 0_Freq: County                       | Encoding of categorical levels of feature(s) ['County'] to value between 0 and 1 based on their relative frequency | Frequency<br>Encoding | 0.104                  |
| 64_TEDSA_FRSTUSE3_5                  | TEDSA_FRSTUSE3_5 (original)                                                                                        | None                  | 0.093                  |
| 29_NMHSS_TREATFAMTHRPY               | NMHSS_TREATFAMTHRPY (original)                                                                                     | None                  | 0.090                  |
| 42_TEDSA_AGE_8                       | TEDSA_AGE_8 (original)                                                                                             | None                  | 0.089                  |
| 43_TEDSA_ARRESTS9                    | TEDSA_ARRESTS9 (original)                                                                                          | None                  | 0.088                  |

| Feature                   | Description                       | Transformer | Relative<br>Importance |
|---------------------------|-----------------------------------|-------------|------------------------|
| 96_pct_Excessive_Drinking | pct_Excessive_Drinking (original) | None        | 0.272                  |
| 12_NMHSS_IPRACEPERUNK_2   | NMHSS_IPRACEPERUNK_2 (original)   | None        | 0.079                  |

## **Final Model**

### **Pipeline**

Final StackedEnsemble pipeline with ensemble\_level=2 transforming 29 original features -> 31 features in each of 2 models each fit on 3 internal holdout splits then linearly blended

#### **Final Model Scores**

| Scorer | Final ensemble external validation scores +/- standard deviation | Optimized | Better score |
|--------|------------------------------------------------------------------|-----------|--------------|
| GINI   | 0.68861 +/- 0.02215                                              |           | higher       |
| R2     | 0.43681 +/- 0.062708                                             |           | higher       |
| MSE    | 25.313 +/- 2.9173                                                |           | lower        |
| RMSLE  | 0.24628 +/- 0.0078511                                            |           | lower        |
| RMSPE  | 0.31386 +/- 0.019966                                             |           | lower        |
| MAE    | 3.0992 +/- 0.11826                                               |           | lower        |
| MER    | 11.387 +/- 0.62292                                               |           | lower        |
| MAPE   | 19.579 +/- 0.82387                                               |           | lower        |
| SMAPE  | 17.936 +/- 0.60953                                               |           | lower        |
| RMSE   | 5.0203 +/- 0.29053                                               | *         | lower        |

# **Deployment**

For this experiment, the Python Scoring Pipeline is available for productionizing the final model pipeline for a given row of data or table of data. The MOJO Scoring Pipeline can be built by clicking the **BUILD MOJO SCORING PIPELINE** button if available.

## **Python Scoring Pipeline**

This package contains an exported model and Python 3.6 source code examples for productionizing models built using H2O Driverless AI. The Python Scoring Pipeline is located here:

h2oai\_experiment\_nucodewo/scoring\_pipeline/scorer.zip

The files in this package allow you to transform and score on new data in a couple of different ways:

- From Python 3.6, you can import a scoring module, and then use the module to transform and score on new data.
- From other languages and platforms, you can use the TCP/HTTP scoring service bundled with this package to call into the scoring pipeline module through remote procedure calls (RPC).