# Mathematical Logic

Notes and Exercises

Sudip Sinha

September 23, 2019

## Contents

Bibliography 5

### 1 Sudip Sinha

PHIL 4010

2019-09-10

**Exercise** (Notes, 1.8) *For any sets A and B, we have A*  $\cap$  *B*  $\subseteq$  *A.* 

Solution Let  $x \in A \cap B$  be arbitrary. This means  $x \in A$  and  $x \in B$ . Therefore  $x \in A$ . Since every element in  $A \cap B$  is also an element of A, we have  $A \cap B \subseteq A$ .

**Exercise** (Notes, 1.10) For any set A, we have  $A \cap \emptyset = \emptyset$ .

- Solution ( $\subseteq$ ) Let  $x \in A \cap \emptyset$  be arbitrary. This means  $x \in A$  and  $x \in \emptyset$ . But there does not exist  $x \in \emptyset$ . Therefore, the statement is vacuously true.
  - ( $\supseteq$ ) Now, let  $x \in \emptyset$  be arbitrary. Again, since there does not exist  $x \in \emptyset$ , the statement vacuously true.

**Exercise** (Notes, 1.13) For any sets A and B, if  $A \subseteq B$ , then  $A \cup B = B$ .

- Solution ( $\subseteq$ ) Let  $x \in A \cup B$  be arbitrary. This means  $x \in A$  or  $x \in B$ . If  $x \in A$ , then by the condition  $A \subseteq B$ , we obtain  $x \in B$ . Therefore, in either case,  $x \in B$ .
  - (⊇) Let  $x \in B$  be arbitrary. Therefore,  $x \in A$  or  $x \in B$ . Hence  $x \in A \cup B$ .  $\Box$

### 2 Sudip Sinha

PHIL 4010

2019-09-24

*Note:* We shall say that a truth assignment v satisfies  $\Sigma$  iff it satisfies every member of  $\Sigma$ .

**Exercise** (Enderton, 1.2.1) *Show that neither of the following two formulas tautologically implies the other:* 

$$\alpha = (A \leftrightarrow (B \leftrightarrow C))$$
  
$$\beta = ((A \land (B \land C)) \lor ((\neg A) \land ((\neg B) \land (\neg C))))$$

*Solution* We have to show that  $\alpha \not\models \beta$  and  $\beta \not\models \alpha$ .

 $(\alpha \not\models \beta)$  For this, it suffices to produce a truth assignment v such that  $\bar{v}(\alpha) = T$  and  $\bar{v}(\beta) = F$ .

Consider v such that v(A) = v(B) = F and v(C) = T. Under  $\bar{v}$ , we get exactly what is required as is shown in the computations below. (Here the truth assignments by  $\bar{v}$  is denoted under each symbol.)

$$\alpha = (A \leftrightarrow (B \leftrightarrow C))$$
 
$$T \quad F \quad T \quad F \quad F \quad T$$
 
$$\beta = ((A \land (B \land C)) \lor ((\neg A) \land ((\neg B) \land (\neg C))))$$
 
$$F \quad F \quad F \quad F \quad F \quad F \quad F \quad F$$

 $(\beta \not\models \alpha)$  Again, it suffices to produce v such that  $\bar{v}(\beta) = T$  and  $\bar{v}(\alpha) = F$ . Consider v such that v(A) = v(B) = v(C) = F. Under  $\bar{v}$ , we get exactly what is required as is shown in the computations below.

$$\beta = ((A \land (B \land C)) \lor ((\neg A) \land ((\neg B) \land (\neg C))))$$

$$T = T TF T TF T TF$$

$$\alpha = (A \leftrightarrow (B \leftrightarrow C))$$

$$F = F F F T F$$

**Exercise** (Enderton, 1.2.4(a)) *Show that*  $\Sigma \cup \{\alpha\} \models \beta \text{ iff } \Sigma \models (\alpha \rightarrow \beta).$ 

*Solution* We show each direction separately.

- ( $\Longrightarrow$ ) We suppose  $\Sigma \cup \{\alpha\} \models \beta$ . Let v be an arbitrary truth assignment that satisfies  $\Sigma$ . We have to show that v satisfies  $(\alpha \rightarrow \beta)$ . We have two cases.
- i.  $\bar{v}(\alpha) = T$ : In this case, from the supposition, we get  $\bar{v}(\beta) = T$ . So  $\bar{v}(\alpha \to \beta) = T$ .
- ii.  $\bar{v}(\alpha) = F$ : In this case,  $\bar{v}(\alpha \to \beta) = T$  since the antecedent is F.

Since v was arbitrary, we have  $\Sigma \models (\alpha \rightarrow \beta)$ .

( $\Leftarrow$ ) We suppose  $\Sigma \models (\alpha \to \beta)$ . Let v be an arbitrary truth assignment that satisfies  $\Sigma \cup \{\alpha\}$ . We have to show that v satisfies  $\beta$ . Since v satisfies  $\Sigma \cup \{\alpha\}$ , it satisfies  $\Sigma$ . Therefore, by our supposition, v satisfies  $(\alpha \to \beta)$ . Now, since v satisfies  $\alpha$ , it can only be that v satisfies  $\beta$ , since the only other way the material implication can be satisfied is when v does not satisfies  $\alpha$ . This proves our claim.  $\square$ 

**Exercise** (**Enderton, 1.2.5**) *Prove or refute each of the following assertions:* 

- a. If either  $\Sigma \models \alpha$  or  $\Sigma \models \beta$ , then  $\Sigma \models (\alpha \lor \beta)$ .
- *b.* If  $\Sigma \models (\alpha \lor \beta)$ , then either  $\Sigma \models \alpha$  or  $\Sigma \models \beta$ .

#### Solution

- a. (T) There are two cases:  $\Sigma \models \alpha$  and  $\Sigma \models \beta$ . Without loss of generality, we can assume that  $\Sigma \models \alpha$ , as the argument for other case is exactly the same. This means any arbitrary truth assignment v satisfying  $\Sigma$  also satisfies  $\alpha$ . This implies  $\bar{v}(\alpha \lor \beta) = T$  by the definition of extension of  $\bar{v}$  for  $\vee$ .
- b. (F) We give a counterexample. Let  $\alpha$  be a sentence symbol and  $\Sigma = \emptyset$ . Then it is always true that  $\models (\alpha \lor (\neg \alpha))$ . But it does not follow that  $\models \alpha$  or  $\models (\neg \alpha)$ . For an explicit example, consider two truth assignments  $v_1$  and  $v_2$ , such that  $v_1(\alpha) = T$  and  $v_2(\alpha) = F$ . In this case,  $\models \alpha$  is not true since  $v_2$  does not satisfy  $\alpha$ , and  $\models (\neg \alpha)$  is not true since  $v_1$  does not satisfy  $(\neg \alpha)$ .

#### Exercise (Enderton, 1.2.6)

- a. Show that if  $v_1$  and  $v_2$  are truth assignments which agree on all the sentence symbols in the wff  $\alpha$ , then  $\bar{v}_1(\alpha) = \bar{v}_2(\alpha)$ .
- b. Let S be a set of sentence symbols that includes those in  $\Sigma$  and  $\tau$  (and possibly more). Show that  $\Sigma \models \tau$  iff every truth assignment for S which satisfies every member of  $\Sigma$  also satisfies  $\tau$ .

#### Solution

- a. Let G be the set of sentence symbols used in  $\alpha$ , and let  $B = \{\phi \text{ wff} : \bar{v}_1(\phi) = \bar{v}_2(\phi)\}$ . All we need to show is that  $\alpha \in B$ . Firstly,  $G \subseteq B$  since  $v_1$  and  $v_2$  agree on the sentence symbols used in  $\alpha$ .
  - Secondly, let  $\phi, \psi \in B$  (arbitrary), so  $v_1$  and  $v_2$  agree on  $\phi$  and  $\psi$ . Let  $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ . Since conditions 1–5 on page 20–21 are the same for  $\bar{v}_1$  and  $\bar{v}_2$ , we have  $\bar{v}_1(\neg \phi) = \bar{v}_2(\neg \phi)$  and  $\bar{v}_1(\phi \square \psi) = \bar{v}_2(\phi \square \psi)$ . Hence  $(\neg \phi), (\phi \square \psi) \in B$ , that is, B is closed with respect to the formula building operations. Therefore, by the induction principle, B is the set of all wffs generated by the formula building operations. So  $\alpha \in B$ , and we are done.
- b. In this part, we use v to denote truth assignments and "v on a set" means v is defined on that set. Let G be the set of sentence symbols used in  $\Sigma$  and  $\tau$ . Clearly,  $G \subseteq S$ . We show each direction separately.
  - $(\Longrightarrow)$  From the definition of tautological implication,

$$\Sigma \models \tau$$
 $\iff (\forall v \text{ on } G)((v \text{ satisfies } \Sigma) \to (v \text{ satisfies } \tau))$ 
 $\implies (\forall v \text{ on } S)((v \text{ satisfies } \Sigma) \to (v \text{ satisfies } \tau)) \text{ [Part (a)]}$ 

( $\Leftarrow$ ) Since  $\Sigma$  and  $\tau$  does not depend on any element of  $S \setminus G$ , restricting the definition of v from S to G will not change anything on  $\Sigma$  and  $\tau$ . Therefore,

```
(\forall v \text{ on } S)((v \text{ satisfies } \Sigma) \to (v \text{ satisfies } \tau)) \Longrightarrow (\forall v \text{ on } G)((v \text{ satisfies } \Sigma) \to (v \text{ satisfies } \tau)) \Longleftrightarrow \Sigma \vDash \tau
```

## **BIBLIOGRAPHY**