Macroéconomie 1 (3/6)

Le modèle de croissance avec apprentissage par la pratique (Romer, 1986)

Olivier Loisel

ENSAE

Septembre - Décembre 2022

Caractéristiques clefs du modèle

- Le modèle de Romer (1986) endogénéise le progrès technique du modèle de Cass-Koopmans-Ramsey pour mieux expliquer la croissance à long terme.
- Paul M. Romer: économiste américain, né en 1955 à Denver, professeur à l'Université de New York depuis 2011, co-lauréat (avec William D. Nordhaus) du prix de la Banque de Suède en sciences économiques en mémoire d'Alfred Nobel en 2018 "for integrating technological innovations into long-run macroeconomic analysis".
- Ce modèle repose sur deux concepts clefs :
 - l'apprentissage par la pratique,
 - la diffusion des connaissances.
- Il endogénéise le taux d'épargne du modèle de Frankel (1962) de la même façon que le modèle de Cass-Koopmans-Ramsey endogénéise le taux d'épargne du modèle de Solow-Swan.

Rendements privés et sociaux du capital

- Ce modèle fait une distinction entre
 - les rendements privés du capital, strictement décroissants,
 - les rendements sociaux du capital, constants.
- Il s'agit d'un "modèle AK" \equiv modèle dans lequel la fonction de production agrégée peut être réécrite sous une forme de type $Y_t = \mathcal{A}_t K_t$ où \mathcal{A}_t est exogène (attention à ne pas confondre \mathcal{A}_t et A_t).
- La constance des rendements sociaux du capital va
 - générer de la croissance à long terme,
 - entraı̂ner l'absence de convergence conditionnelle.
- L'écart entre les rendements privés et sociaux du capital va donner un rôle à la politique économique.

Aperçu général du modèle *

- Chaque entreprise loue du capital et emploie du travail pour produire des biens, avec une efficacité du travail dépendant du capital agrégé (stock).
- Les ménages détiennent le capital et fournissent le travail.
- Les biens produits par les entreprises sont utilisés pour la consommation des ménages et l'investissement en nouveau capital.
- Le taux d'épargne est endogène, choisi optimalement par les ménages.
- Le capital évolue dans le temps en fonction de l'investissement et de la dépréciation du capital.

(Dans les pages dont le titre est suivi d'un astérisque, en bleu : changements par rapport au chapitre 2.)

Variables exogènes *

• Ni flux ni stocks :

- temps continu, indicé par t,
- prix des biens \equiv numéraire = 1,
- (grand) nombre d'entreprises I.

Flux:

• offre de travail = 1 par tête.

Stocks:

- capital agrégé initial $K_0 > 0$,
- population $L_t = L_0 e^{nt}$, où $L_0 > 0$ et $n \ge 0$,
- paramètre de productivité $A_t = A_0 e^{gt}$, où $A_0 > 0$ et $g \ge 0$.

Variables endogènes *

• Prix:

- coût réel d'usage du capital z_t,
- salaire réel w_t,
- taux d'intérêt réel r_t .

• Quantités – flux :

- production $Y_{i,t}$ de l'entreprise i,
- demande de travail $N_{i,t}$ de l'entreprise i,
- production agrégée $Y_t \equiv \sum_{i=1}^{I} Y_{i,t}$,
- demande de travail agrégée $N_t \equiv \sum_{i=1}^{l} N_{i,t}$,
- consommation agrégée C_t .

Quantités – stocks :

- capital $K_{i,t}$ de l'entreprise i (sauf en t = 0),
- capital agrégé $K_t \equiv \sum_{i=1}^l K_{i,t}$ (sauf en t=0),
- montant réel agrégé des actifs B_t ,
- paramètre de productivité A_t .

Bien, agents privés, marchés, conditions d'équil. général *

- Les bien, agents privés et marchés sont identiques à ceux du chapitre 2. En particulier, les marchés sont en **concurrence pure et parfaite**.
- Chaque agent privé résout son problème d'optimisation : du fait que tous les marchés sont en concurrence pure et parfaite,
 - à chaque date $t \geq 0$, chaque entreprise i choisit $(Y_{i,t}, K_{i,t}, N_{i,t})$, en fonction des prix (w_t, z_t, r_t) et de la productivité A_t qu'elle considère comme donnés, de façon à maximiser son profit instantané,
 - à la date 0, le ménage représentatif choisit $(\frac{C_t}{L_t}, \frac{B_t}{L_t})_{t \geq 0}$, en fonction des prix $(w_t, z_t, r_t)_{t \geq 0}$ qu'il considère comme donnés, de façon à maximiser son utilité *intertemporelle* (en anticipation parfaite) sous contraintes.
- Les prix sont tels que chaque marché est équilibré à chaque date $t \ge 0$:

Macroéconomie 1 (3/6) : le modèle de Romer (1986)

- w_t équilibre le marché du travail : $N_t = L_t$,
- z_t équilibre le marché du capital,
- r_t équilibre le marché des prêts.

Plan du chapitre

- Introduction
- Conditions d'équilibre
- 3 Détermination de l'équilibre
- Sous-optimalité de l'équilibre
- Conclusion
- 6 Annexe

Conditions d'équilibre

- Introduction
- Conditions d'équilibre
 - Comportement des ménages
 - Comportement des entreprises
 - Equilibre des marchés
- Détermination de l'équilibre
- Sous-optimalité de l'équilibre
- Conclusion
- 6 Annexe

Comportement des ménages *

- Les ménages sont modélisés exactement comme au chapitre 2, avec une élasticité de substitution intertemporelle constante, égale à $\frac{1}{4}$
- Leur comportement est donc caractérisé par les conditions d'équilibre

•
$$b_t = w_t + (r_t - n)b_t - c_t$$
 (contrainte budgétaire instantanée),

•
$$\frac{\dot{c}_t}{c_t} = \frac{r_t - \rho}{\theta}$$
 (équation d'Euler),

•
$$\lim_{t\to +\infty} \left[b_t e^{-\int_0^t (r_\tau-n)d au} \right] = 0$$
 (condition de transversalité),

οù

- $c_t \equiv \frac{C_t}{L_t}$ est la consommation par tête,
- ρ le taux de préférence pour le présent ($\rho > n > 0$),
- $b_t \equiv \frac{B_t}{I_A}$ le montant total des actifs en unités de bien par personne.

Fonction de production et efficacité du travail

- Production de chaque entreprise $i: Y_{i,t} = F(K_{i,t}, A_t N_{i,t})$, où la fonction de production F satisfait les mêmes propriétés qu'au chapitre 2.
- Efficacité du travail dans chaque entreprise $i: A_t = \frac{K_t}{L_t}$ (et non $A_{i,t} = \frac{K_{i,t}}{N_{i,t}}$).
- Cette spécification capture deux concepts définis par Arrow (1962) :
 - l'apprentissage par la pratique : plus le stock de capital par tête est élevé, plus chaque travailleur est efficace,
 - la diffusion des connaissances (supposée instantanée) entre les entreprises, en raison de la nature non-rivale et non-exclusive de ces connaissances.

Non-rivalité et non-exclusion

- Bien de nature non-rivale ≡ bien dont la consommation par un agent n'a aucun effet sur la quantité disponible pour les autres agents.
- Bien de nature non-exclusive ≡ bien dont chaque agent peut bénéficier sans coût.
- Dans le chapitre 4, nous considérerons un bien de nature non-rivale mais exclusive (à savoir, la capacité ou le droit de produire un type de bien intermédiaire, du fait d'un secret ou d'un brevet de fabrication).

Un exemple d'apprentissage par la pratique

Log du nombre moyen de défauts par voiture produite en fonction du log du nombre de voitures déjà produites (dans une usine de production de voitures)

Source : Levitt, List et Syverson (2013).

Macroéconomie 1 (3/6) : le modèle de Romer (1986)

13 / 51

Des nains sur les épaules de géants

- L'efficacité du travail $A_t = \frac{K_t}{L_t}$ est un stock.
- Cela traduit l'idée que le savoir(-faire) s'accumule au cours du temps.
- On dit que les agents privés sont "des nains sur les épaules de géants".
- La première trace écrite connue de cette expression se trouve dans de Salisbury (1159): "Bernard de Chartres used to say that we are like dwarfs on the shoulders of giants, so that we can see more than they, and things at a greater distance, not by virtue of any sharpness of sight on our part, or any physical distinction, but because we are carried high and raised up by their giant size."

Arrow, de Salisbury, de Chartres

- Kenneth J. Arrow: économiste américain, né en 1921 à New York, mort en 2017 à Palo Alto, professeur à l'Université de Stanford à partir de 1979, co-lauréat (avec John R. Hicks) du prix de la Banque de Suède en sciences économiques en mémoire d'Alfred Nobel en 1972 "for their pioneering contributions to general economic equilibrium theory and welfare theory".
- **Jean de Salisbury** : philosophe et historien anglais, né vers 1115 à Salisbury, mort en 1180 à ou près de Chartres.
- Bernard de Chartres : philosophe français, né vers 1130, mort vers 1160.

Problème d'optimisation des entreprises *

- Comme au chapitre 2, on suppose que
 - les entreprises louent leur stock de capital à chaque date,
 - il n'y a pas de coût d'ajustement du capital.
- Donc, à chaque date t, l'entreprise i choisit $K_{i,t}$ et $N_{i,t}$ de façon maximiser son profit $instantan\acute{e}$

$$F(K_{i,t}, A_t N_{i,t}) - z_t K_{i,t} - w_t N_{i,t}$$

en considérant z_t , w_t et $A_t = \frac{K_t}{L_t}$ comme donnés.

Conditions du premier ordre *

• Comme au chapitre 2, en notant F_j la dérivée partielle de F par rapport à son $j^{\text{lème}}$ argument pour $j \in \{1,2\}$, on obtient les conditions du premier ordre

$$F_1(K_{i,t}, A_t N_{i,t}) = z_t,$$

$$A_t F_2(K_{i,t}, A_t N_{i,t}) = w_t.$$

- Comme au chapitre 2, on en déduit que
 - le profit instantané est nul quels que soient $K_{i,t}$ et $N_{i,t}$,
 - $\frac{K_{i,t}}{N_{i,t}}$ ne dépend pas de i et vaut donc $\frac{K_t}{N_t}$,
 - $Y_t \equiv \sum_{i=1}^{I} Y_{i,t} = F(K_t, A_t N_t).$

Rendements sociaux du capital

• En utilisant $A_t = \frac{K_t}{L_t}$, on obtient alors la fonction de production agrégée

$$Y_t = K_t F\left(1, \frac{N_t}{L_t}\right) \equiv F^S\left(K_t, \frac{N_t}{L_t}\right).$$

• En notant $F_{i,j}^S$ la dérivée seconde de F^S par rapport à son $j^{\text{ième}}$ argument pour $i \in \{1, 2\}$, on obtient

$$\forall K_t > 0, \qquad F_{1,1}^{S} \left(K_t, \frac{N_t}{L_t} \right) = 0,$$

donc les rendements sociaux du capital sont constants.

Rendements privés du capital

• La fonction de production individuelle de l'entreprise i est

$$Y_{i,t} = F\left(K_{i,t}, \frac{K_t}{L_t} N_{i,t}\right) \equiv F^P\left(K_{i,t}, N_{i,t}, \frac{K_t}{L_t}\right).$$

• En notant $F_{j,j}^P$ la dérivée seconde de F^P par rapport à son $j^{\text{lème}}$ argument pour $j \in \{1,2,3\}$, on obtient

$$\forall K_{i,t} > 0, \qquad F_{1,1}^P\left(K_{i,t}, N_{i,t}, \frac{K_t}{L_t}\right) < 0,$$

donc les rendements privés du capital sont strictement décroissants.

Coût d'usage du capital *

- ullet Comme au chapitre 2, on suppose que le capital se déprécie au taux δ .
- Comme au chapitre 2, on suppose que les ménages peuvent
 - louer leurs biens comme capital aux entreprises,
 - prêter leurs biens aux autres ménages.
- Donc, comme au chapitre 2, on obtient la condition d'équilibre

$$r_t = z_t - \delta$$
.

Equilibre des marchés *

- Comme au chapitre 2, les conditions d'équilibre des marchés sont
 - $B_t = K_t$ (marchés des actifs),
 - $N_t = L_t$ (marché du travail),
 - $K_t = Y_t C_t \delta K_t$ (marché des biens).
- En utilisant $N_t = L_t$, on peut réécrire la fonction de production agrégée comme $Y_t = F(1,1)K_t$, donc le modèle est un modèle AK.

Détermination de l'équilibre

- Introduction
- Conditions d'équilibre
- Détermination de l'équilibre
 - Conditions d'équilibre sur k_t et c_t
 - Détermination de k_t et c_t
 - Implications
- Sous-optimalité de l'équilibre
- Conclusion
- Annexe

Conditions d'équilibre sur k_t et c_t I

• En notant $f(x) \equiv F(x, 1)$ pour tout x > 0 et en dérivant $F(K_{i,t}, A_t N_{i,t}) =$ $A_t N_{i,t} f(\frac{K_{i,t}}{\Delta \cdot N_{i,t}})$ par rapport à $K_{i,t}$ et $N_{i,t}$, on obtient

$$F_1(K_{i,t}, A_t N_{i,t}) = f'\left(\frac{K_{i,t}}{A_t N_{i,t}}\right),$$

$$A_t F_2(K_{i,t}, A_t N_{i,t}) = A_t \left[f\left(\frac{K_{i,t}}{A_t N_{i,t}}\right) - \frac{K_{i,t}}{A_t N_{i,t}} f'\left(\frac{K_{i,t}}{A_t N_{i,t}}\right) \right].$$

• En utilisant $\frac{K_{i,t}}{N_{i,t}} = \frac{K_t}{N_a}$, $N_t = L_t$, $A_t = \frac{K_t}{L_a} \equiv k_t$ et $r_t = z_t - \delta$, on peut alors réécrire les conditions du premier ordre du problème d'optimisation des entreprises comme

$$r_t = f'(1) - \delta$$
 et $w_t = [f(1) - f'(1)]k_t$.

Conditions d'équilibre sur k_t et c_t II

 Ces dernières conditions permettent de réécrire la contrainte budgétaire instantanée des ménages comme

$$\dot{b}_t = [f(1) - f'(1)]k_t + [f'(1) - (n+\delta)]b_t - c_t.$$

• En utilisant $B_t = K_t$, qui implique $b_t = k_t$, on obtient alors

$$\dot{k}_t = f(1)k_t - c_t - (n+\delta)k_t.$$

 Cette équation différentielle s'interprète comme "variation du stock de capital = épargne - dilution - dépréciation" (par tête) et implique l'équilibre sur le marché des biens (conséquence de la loi de Walras).

Conditions d'équilibre sur k_t et c_t III

• En utilisant $r_t = f'(1) - \delta$, on peut réécrire l'équation d'Euler comme

$$\frac{\dot{c}_t}{c_t} = \frac{f'(1) - (\delta + \rho)}{\theta}.$$

• En utilisant $b_t = k_t$ et $r_t = f'(1) - \delta$, on peut réécrire la condition de transversalité comme

$$\lim_{t\to +\infty} \left\{ k_t e^{-[f'(1)-(n+\delta)]t} \right\} = 0.$$

Conditions d'équilibre sur k_t et c_t IV

• $(k_t)_{t\geq 0}$ et $(c_t)_{t\geq 0}$ sont donc déterminés par deux équations différentielles, une condition initiale et une condition terminale :

$$\begin{split} \dot{k}_t &= [f(1)-(n+\delta)]k_t - c_t,\\ \dot{\frac{c}_t} &= \frac{f'(1)-(\delta+\rho)}{\theta},\\ k_0 &= \frac{K_0}{L_0},\\ \lim_{t\to +\infty} \left\{k_t e^{-[f'(1)-(n+\delta)]t}\right\} = 0. \end{split}$$

• Les autres variables endogènes sont déterminées résiduellement, à partir de $(k_t)_{t>0}$ et $(c_t)_{t>0}$, par les autres conditions d'équilibre.

Détermination de k_t et c_t I

ullet L'équation différentielle en \dot{c}_t s'intègre pour donner

$$c_t = c_0 e^{\frac{f'(1) - (\delta + \rho)}{\theta}t}.$$

- On se restreint aux valeurs des paramètres telles que
 - $f'(1) > \delta + \rho$, de façon à ce que le taux de croissance de la consommation par tête soit strictement positif.
 - $\rho n > \frac{1-\theta}{\theta}[f'(1) (\delta + \rho)]$, de façon à ce que l'utilité intertemporelle prenne une valeur finie.

Détermination de k_t et c_t II

• On peut alors réécrire l'équation différentielle en k_t comme

$$\dot{k}_t = [f(1) - (n+\delta)]k_t - c_0 e^{\frac{f'(1) - (\delta + \rho)}{\theta}t}.$$

ullet Puis, en réarrangeant les termes et en multipliant par $e^{-[f(1)-(n+\delta)]t}$,

$$\begin{cases} \dot{k}_t - [f(1) - (n+\delta)]k_t \\ \end{cases} e^{-[f(1) - (n+\delta)]t} = -c_0 e^{-\varphi t},$$
 où $\varphi \equiv f(1) - (n+\delta) - \frac{f'(1) - (\delta + \rho)}{\sigma}.$

• On montre en annexe que $\varphi > f(1) - f'(1) > 0$.

Détermination de k_t et c_t III

On peut donc intégrer l'égalité précédente pour obtenir

$$\begin{split} k_t e^{-[f(1)-(n+\delta)]t} - k_0 &= \frac{c_0}{\varphi} e^{-\varphi t} - \frac{c_0}{\varphi} \\ \text{puis } k_t &= \left(k_0 - \frac{c_0}{\varphi}\right) e^{[f(1)-(n+\delta)]t} + \frac{c_0}{\varphi} e^{\frac{f'(1)-(\delta+\rho)}{\theta}t}. \end{split}$$

La condition de transversalité se réécrit alors

$$\lim_{t \to +\infty} \left\{ \left(k_0 - \frac{c_0}{\varphi} \right) \mathrm{e}^{[f(1) - f'(1)]t} + \frac{c_0}{\varphi} \mathrm{e}^{[f(1) - f'(1) - \varphi]t} \right\} = 0$$

et implique $c_0 = \varphi k_0 > 0$ puisque $\varphi > f(1) - f'(1) > 0$ (comme au chapitre 2, c_0 s'ajuste pour satisfaire la condition de transversalité).

Détermination de k_t et c_t IV

On obtient donc finalement

$$k_t = k_0 e^{rac{f'(1) - (\delta +
ho)}{ heta}t}$$
 et $c_t = \varphi k_0 e^{rac{f'(1) - (\delta +
ho)}{ heta}t}$.

- Croissent donc au même taux constant
 - le stock de capital par tête k_t ,
 - la consommation par tête c_t ,
 - la production par tête $y_t = f(1)k_t$.
- ullet Ce taux de croissance, égal à $rac{f'(1)-(\delta+
 ho)}{ heta}$, dépend
 - positivement de f'(1) et $\frac{1}{\theta}$,
 - négativement de δ et ρ ,

ce qui s'interprète par l'équation d'Euler, comme au chapitre 2.

Détermination de k_t et c_t V

- Du fait des rendements sociaux constants du capital,
 - le taux de croissance à long terme dépend de f'(1), $\frac{1}{\theta}$, δ et ρ ,
 - la convergence vers l'état régulier est instantanée,

ce qui n'est pas le cas dans le modèle de Cass-Koopmans-Ramsey, dans lequel les rendements du capital sont **décroissants**.

- ullet Le niveau initial de la consommation par tête $c_0=arphi k_0$ dépend
 - positivement de k_0 , f(1), ρ et (si $\frac{1}{\theta} > 1$) δ ,
 - négativement de f'(1), n, $\frac{1}{\theta}$ et (si $\frac{1}{\theta} < 1$) δ .
- c_0 et $\frac{c_t}{c_t}$ réagissent en sens opposés à une variation de ρ , f'(1), $\frac{1}{\theta}$ ou (si $\frac{1}{\theta} > 1$) δ pour satisfaire la contrainte budgétaire intertemporelle.

Faits stylisés de Kaldor (1961)

- Le modèle de Romer (1986) rend donc compte non seulement des cinq premiers faits stylisés de Kaldor (1961), comme le modèle de Cass-Koopmans-Ramsey à l'état régulier, mais aussi du 6ème :
 - **1** la production par tête croît : $\frac{\dot{y}_t}{y_t} = \frac{f'(1) (\delta + \rho)}{\theta} \ge 0$,
 - ② le stock de capital par tête croît : $\frac{\dot{k}_t}{k_t} = \frac{f'(1) (\delta + \rho)}{\theta} \geq 0$,
 - **3** le taux de rendement du capital est constant : $r_t = f'(1) \delta$,
 - **1** le ratio capital / production est constant : $\frac{K_t}{Y_t} = \frac{1}{f(1)}$,
 - **1** les parts de rémunération du travail et du capital dans la production sont constantes : $\frac{w_t L_t}{Y_t} = \frac{f(1) f'(1)}{f(1)}$ et $\frac{z_t K_t}{Y_t} = \frac{f'(1)}{f(1)}$,
 - **1** le taux de croissance de la production par tête varie entre les pays : $\frac{\dot{y}_t}{y_t} = \frac{f'(1) (\delta + \rho)}{\theta} \text{ varie entre les pays lorsque les paramètres de préférence } \rho \text{ et } \theta \text{ varient entre les pays.}$

Ni convergence absolue, ni convergence conditionnelle

- On a $\ln(y_t) = \ln(y_0) + \frac{f'(1) (\delta + \rho)}{\theta} t$, où $y_0 = f(1)k_0$.
- Il n'y a donc pas de convergence à long terme des $\ln(y_t)$ entre les pays ayant des y_0 différents, même s'ils ont les mêmes paramètres
 - de technologie f(.),
 - d'évolution du capital et du travail n, δ ,
 - de préférence ρ , θ .
- Le modèle ne prédit donc **ni convergence absolue, ni convergence conditionnelle** des $ln(y_t)$ entre les pays, contrairement aux modèles de Solow-Swan et Cass-Koopmans-Ramsey.
- L'absence de convergence conditionnelle est en désaccord avec les données empiriques, comme l'a vu au chapitre 1.

Effet permanent des chocs

- Un choc exogène non anticipé sur le stock de capital ne modifie pas la pente du sentier de $ln(y_t)$, mais modifie son ordonnée à l'origine.
- Donc, suite à un tel choc, $ln(y_t)$ ne "rattrape" pas sa trajectoire initiale : le choc a un effet permanent.
- Cette prédiction est en accord avec l'hypothèse, non rejetée par les données, de racine unitaire dans les séries macroéconomiques.
- Les modèles de Solow-Swan et Cass-Koopmans-Ramsey prédisent au contraire qu'un tel choc n'a pas d'effet permanent sur $ln(y_t)$ car il ne modifie pas son sentier d'état régulier.

Sous-optimalité de l'équilibre

- Introduction
- Conditions d'équilibre
- 3 Détermination de l'équilibre
- Sous-optimalité de l'équilibre
 - Externalité
 - Sous-optimalité sociale de l'équilibre concurrentiel
 - Rôle de la politique économique
- Conclusion
- Annexe

Externalité I

- A $K_{j,t}$ donnés pour $j \neq i$, une variation de $K_{i,t}$ a simultanément
 - un effet direct sur $Y_{i,t} = F(K_{i,t}, A_t N_{i,t})$,
 - un effet indirect sur tous les $Y_{j,t}$ pour $j \in \{1,...,I\}$, via $A_t = \frac{K_t}{L_t}$.
- L'entreprise i ne prend en compte que le premier effet lorsqu'elle choisit $K_{i,t}$ car
 - ullet elle ne prend pas en compte l'effet indirect sur les $Y_{j,t}$ pour j
 eq i,
 - l'effet indirect sur $Y_{i,t}$ est négligeable par rapport à l'effet direct sur $Y_{i,t}$ (I étant grand, une variation de $K_{i,t}$ affecte peu K_t et A_t).
- On dit qu'il y a **externalité de diffusion des connaissances** entre les entreprises.

Externalité II

- Une variation de K_t a deux effets simultanés sur $Y_t = F(K_t, A_t N_t)$:
 - un effet direct.
 - un effet indirect, via $A_t = \frac{K_t}{L_t}$.
- Le planificateur omniscient, omnipotent et bienveillant \mathcal{POOB} prend en compte les deux effets lorsqu'il choisit K_t , car ils sont du même ordre de grandeur.
- On dit que **le** \mathcal{POOB} **internalise l'externalité** de diffusion des connaissances entre les entreprises.
- On doit donc s'attendre à ce que, par rapport à l'équilibre concurrentiel, le \mathcal{POOB} commande plus d'investissement.

Sous-optimalité sociale de l'équilibre concurrentiel I

- L'équilibre concurrentiel est socialement optimal si et seulement s'il coïncide avec l'allocation choisie par le \mathcal{POOB} .
- Problème d'optimisation du \mathcal{POOB} : pour $k_0 > 0$ donné,

$$\max_{(c_t)_{t\geq 0}, (k_t)_{t>0}} \left[L_0 \int_0^{+\infty} \mathrm{e}^{-(\rho-n)t} \left(\frac{c_t^{1-\theta}-1}{1-\theta} \right) dt \right]$$

sous les contraintes

- $\forall t \geq 0, c_t \geq 0$ (contrainte de positivité de la consommation),
- ② $\forall t > 0$, $k_t \ge 0$ (contrainte de positivité du capital),
- ③ $\forall t \geq 0$, $k_t = [f(1) (n+\delta)]k_t c_t$ (contrainte de technologie et de ressources).

Sous-optimalité sociale de l'équilibre concurrentiel II

• **Hamiltonien** associé au problème d'optimisation du \mathcal{POOB} :

$$H^p(c_t,k_t,\lambda_t^p,t)\equiv \mathrm{e}^{-(
ho-n)t}\left(rac{c_t^{1- heta}-1}{1- heta}
ight)+\lambda_t^p\{[f(1)-(n+\delta)]k_t-c_t\}$$

où λ_t^p représente la valeur, mesurée en unités d'utilité à la date 0, d'une augmentation d'une unité de bien des ressources à la date t.

- En appliquant la théorie du contrôle optimal, on obtient alors

 - $\lambda_t^p = e^{-(\rho-n)t}c_t^{-\theta}$ (condition du 1^{er} ordre sur la variable de contrôle), $\lambda_t = [n+\delta-f(1)]\lambda_t^p$ (cond. d'évolution de la co-variable d'état),
 - $k_t = [f(1) (n+\delta)]k_t c_t$ (contrainte de ressources),
 - $\lim_{t \to \infty} k_t \lambda_t^p = 0$ (condition de transversalité).

Olivier Loisel, ENSAE

Sous-optimalité sociale de l'équilibre concurrentiel III

- On en déduit, par des calculs similaires à ceux du chapitre 2,
 - $k_t = [f(1) (n+\delta)]k_t c_t$ (équation différentielle en k_t),
 - $\frac{\dot{c}_t}{c_t} = \frac{f(1) (\rho + \delta)}{\theta}$ (équation différentielle en \dot{c}_t),
 - $\lim_{t \to +\infty} \left\{ k_t e^{-[f(1)-(n+\delta)]t} \right\} = 0$ (condition de transversalité).
- Ces trois conditions et $k_0 = \frac{K_0}{L_0}$ déterminent $(k_t)_{t\geq 0}$ et $(c_t)_{t\geq 0}$.
- L'équation différentielle en c_t s'intègre pour donner $c_t = c_0 e^{\frac{f(1) (\delta + \rho)}{\theta}t}$.
- On se restreint aux valeurs des paramètres telles que $\rho-n>rac{1- heta}{ heta}[f(1)-(\delta+
 ho)]$, de façon à ce que l'utilité intertemporelle prenne une valeur finie.

Sous-optimalité sociale de l'équilibre concurrentiel IV

• On peut alors réécrire l'équation différentielle en k_t comme

$$\dot{k}_t = [f(1) - (n+\delta)]k_t - c_0 e^{\frac{f(1) - (\delta + \rho)}{\theta}t}.$$

ullet Puis, en réarrangeant les termes et en multipliant par $e^{-[f(1)-(n+\delta)]t}$,

$$\begin{cases} \dot{k}_t - [f(1) - (n+\delta)]k_t \end{cases} e^{-[f(1) - (n+\delta)]t} = -c_0 e^{-\varphi^p t},$$
 où $\varphi^p \equiv \frac{\theta - 1}{2} f(1) - (n+\delta) + \frac{\delta + \rho}{2}.$

• De la condition $\rho - n > \frac{1-\theta}{\alpha}[f(1) - (\delta + \rho)]$, on déduit que $\varphi^p > 0$.

Olivier Loisel, ENSAE

Sous-optimalité sociale de l'équilibre concurrentiel V

• On peut donc intégrer l'égalité précédente pour obtenir

$$\begin{aligned} k_t e^{-[f(1)-(n+\delta)]t} - k_0 &= \frac{c_0}{\varphi^p} e^{-\varphi^p t} - \frac{c_0}{\varphi^p} \\ \text{puis } k_t &= \left(k_0 - \frac{c_0}{\varphi^p}\right) e^{[f(1)-(n+\delta)]t} + \frac{c_0}{\varphi^p} e^{\frac{f(1)-(\delta+\rho)}{\theta}t}. \end{aligned}$$

• La condition de transversalité se réécrit alors

$$\lim_{t\to+\infty}\left\{k_0-\frac{c_0}{\varphi^p}+\frac{c_0}{\varphi^p}e^{-\varphi^pt}\right\}=0$$

et implique $c_0 = \varphi^p k_0 > 0$ puisque $\varphi^p > 0$ (comme au chapitre 2, c_0 est choisi de façon à satisfaire la condition de transversalité).

Sous-optimalité sociale de l'équilibre concurrentiel VI

On obtient donc finalement

$$k_t = k_0 e^{\frac{f(1) - (\delta + \rho)}{\theta}t}, \ c_t = \varphi^{\rho} k_0 e^{\frac{f(1) - (\delta + \rho)}{\theta}t} \ \text{et} \ y_t = f(1) k_0 e^{\frac{f(1) - (\delta + \rho)}{\theta}t}.$$

- Ces résultats diffèrent de ceux obtenus précédemment, donc l'équilibre concurrentiel n'est pas socialement optimal.
- Plus précisément, l'équilibre concurrentiel est socialement sous-optimal
 : U₀ prend une valeur strictement plus faible à l'équilibre concurrentiel qu'avec le POOB.
- Ce dernier point, qui se vérifie aisément par calcul, vient du fait que le \mathcal{POOB} ne choisit pas l'allocation de l'équilibre concurrentiel alors qu'elle satisfait les trois contraintes de son problème d'optimisation.

Sous-optimalité sociale de l'équilibre concurrentiel VII

- ullet Le taux de croissance de k_t , c_t et y_t est égal à
 - $\frac{f(1)-(\delta+\rho)}{\theta}$ avec le \mathcal{POOB} ,
 - $\frac{f'(1)-(\delta+\rho)}{\theta}$ à l'équilibre concurrentiel.
- Or, du fait de l'externalité, le produit marginal social du capital, f(1), est strictement supérieur au produit marginal privé du capital, f'(1).
- Donc la croissance est plus élevée avec le \mathcal{POOB} : ce dernier, qui internalise l'externalité, commande plus d'investissement.
- Et, par conséquent, c_0 est plus faible avec le \mathcal{POOB} :

$$\varphi^{p}k_{0} = \left[\varphi - \frac{f(1) - f'(1)}{\theta}\right]k_{0} < \varphi k_{0}.$$

Rôle de la politique économique I

- Le fait que l'équilibre concurrentiel soit socialement sous-optimal donne un rôle à la politique économique.
- La partie 4 des TDs montre qu'une autorité fiscale peut mettre en œuvre l'allocation du POOB dans un cadre décentralisé en
 - **subventionnant l'investissement** à un taux tel que le rendement privé du capital soit égal à son rendement social,
 - finançant cette subvention par un impôt forfaitaire sur les ménages, qui ne "distord" pas leurs choix (impôt forfaitaire ≡ impôt conditionnel à une caractéristique que l'individu ne peut pas modifier),

ou bien, de manière alternative, en

- subventionnant les revenus des actifs à un taux tel que le rendement privé du capital soit égal à son rendement social,
- finançant cette subvention par une taxe sur les revenus du travail, qui ne "distord" pas les choix des ménages du fait de la nature exogène de leur offre de travail.

Rôle de la politique économique II

- Dans le cas d'une **externalité positive** (comme la diffusion des connaissances), de tels systèmes de **subventions**, financées de manière forfaitaire, font **internaliser** aux agents privés le **bénéfice social** de leurs actions.
- Dans le cas d'une externalité négative (comme la pollution), un système similaire de taxes, redistribuées de manière forfaitaire, permet de faire internaliser aux agents privés le coût social de leurs actions.
- Ces taxes/subventions sont appelées taxes/subventions **pigouviennes**.
- Arthur C. Pigou : économiste anglais, né en 1877 à Ryde, mort en 1959 à Cambridge, professeur à l'Université de Cambridge à partir de 1896.

Conclusion

- Introduction
- Conditions d'équilibre
- Oétermination de l'équilibre
- Sous-optimalité de l'équilibre
- Conclusion
- 6 Annexe

Principales prédictions du modèle

- A court comme à long terme,
 - la croissance dépend des paramètres de technologie, de préférence, d'évolution du capital, et seulement de ces paramètres,
 - les six faits stylisés de Kaldor (1961) sont obtenus.
- L'effet de l'accumulation du capital sur la croissance ne disparaît pas à long terme, grâce à la constance des rendements sociaux du capital.
- Il y a ni convergence absolue ni convergence conditionnelle des niveaux de production par tête (en logarithme) entre les pays.
- L'équilibre concurrentiel est socialement sous-optimal, à cause de la présence d'une externalité.
- Des politiques économiques de subventions pigouviennes permettent de mettre en œuvre l'équilibre socialement optimal.

Principales limites du modèle

- Le modèle correspond au cas spécial où les rendements sociaux du capital sont constants car les effets d'apprentissage et de diffusion compensent *exactement* la décroissance de ses rendements privés (la partie 4 des TDs montre à quel point ce cas est spécial).
 - \hookrightarrow Le chapitre 4 ne fait pas d'hypothèse "sur le fil du rasoir" concernant la valeur d'un paramètre.
- Le modèle explique la croissance de long terme par l'accumulation involontaire et non rémunérée de la connaissance.

- Introduction
- 2 Conditions d'équilibre
- 3 Détermination de l'équilibre
- Sous-optimalité de l'équilibre
- Conclusion
- Annexe

Preuve que $\varphi > f(1) - f'(1) > 0$

- On montre que $\varphi > f(1) f'(1) > 0$ en quatre étapes :
 - **1** En dérivant $F(1,x) = xf(\frac{1}{x})$ par rapport à $x \in \mathbb{R}^+$, on obtient $F_2(1,x) = f(\frac{1}{x}) \frac{1}{x}f'(\frac{1}{x})$. Or $F_2(1,1) > 0$, donc f(1) f'(1) > 0.
 - ② En utilisant $\varphi \equiv f(1) (n+\delta) \frac{f'(1) (\delta+\rho)}{\theta}$, on obtient $\varphi [f(1) f'(1)] = \frac{\theta 1}{\theta} f'(1) (n+\delta) + \frac{\delta + \rho}{\theta}$.

 - ① On déduit des deux précédentes étapes que $\varphi [f(1) f'(1)] > n \rho + \frac{\theta 1}{\theta} (\delta + \rho) n \delta + \frac{\delta + \rho}{\theta} = 0.$