-	`	1
l)	-

Question	Answer		
1	Commence division and reach a partial quotient $x^2 + kx$		
	Obtain quotient $x^2 - 2x + 5$		
	Obtain remainder $-12x + 5$		

SHEED AND THE SHEET AND THE SH	
_	$x^2 - 2x + 5$
$x^2 + 2x - 1$	z"
	$x^4 + 2x^3 - x^2$
	$-2x^3 + x^2$
	$-2x^{3} - 4x^{2} + 2x$
	$5x^2 - 2x$
	5x2 + 10x - 5
	-12x +5

Quotient: $x^2 - 2x + 5$ Remainder: -12x + 5

				1
2	State correct unsimplified first two terms of the expansion of $(1+2x)^{-\frac{3}{2}}$, e.g. $1+(-\frac{3}{2})(2x)$	B1		
	State correct unsimplified term in x^2 , e.g. $\left(-\frac{3}{2}\right)\left(-\frac{3}{2}-1\right)(2x)^2/2!$	B1		
	Obtain sufficient terms of the product of $(2-x)$ and the expansion up to the term in x^2	M1		
	Obtain final answer $2-7x+18x^2$ Do not ISW	A1	[4]	

$$\left(1+2x\right)^{-\frac{3}{2}} = 1+\left(-\frac{3}{2}(2x)\right) + \frac{-\frac{3}{2}(-\frac{5}{2})}{2}\left(2x\right)^{2}+\dots$$

$$= 1-3x+\frac{15}{2}x^{2}+\dots$$

$$(2-x)(1-3x+\frac{15}{2}x^2+...) = 2-6x+15x^2-x+3x^2$$
= 2-7x+18x^2+...

Q3

Question	Answer	Marks
4(a)	Use the product rule	Mi
	State or imply derivative of $\tan^{-1}(\frac{1}{2}x)$ is of the form $k/(4+x^2)$, where $k=2$ or 4, or equivalent	MI
	Obtain correct derivative in any form, e.g. $\tan^{-1} \left(\frac{1}{2} x \right) + \frac{2x}{x^2 + 4}$, or equivalent	A1
		3
4(b)	State or imply y-coordinate is $\frac{1}{2}\pi$	B1
	Carry out a complete method for finding p , e.g. by obtaining the equation of the tangent and setting $x = 0$, or by equating the gradient at $x = 2$ to $\frac{1}{2}\pi - p$	M1
	Obtain answer $p = -1$	Al
		3

$$y = x + an^{-1} \left(\frac{1}{2}x\right)$$

$$dy = x \left(\frac{1}{2+\frac{1}{2}x^2}\right) + tan^{-1} \left(\frac{1}{2}x\right)$$

$$dy = \frac{du}{dx} = \frac{1}{4}$$

$$\frac{dy}{dy} = \frac{1}{1+u^2}$$

$$= \frac{2x}{4+x^2} + tan^{-1} \left(\frac{1}{2}x\right)$$

$$\frac{dy}{dy} = \frac{1}{1+u^2}$$

b)
$$f'(2) = \frac{4}{5} + \frac{\pi}{4}$$
 $x = 2$ $y = 2(\frac{\pi}{4}) = \frac{\pi}{3}$ $y - \frac{\pi}{3} = (\frac{1}{2} + \frac{\pi}{4})(x - 2)$ $x = 0$ $y = \frac{\pi}{4} - 1 - \frac{\pi}{3}$ $\rho = -1$

Question	Answer	Marks	Guidance
4	State that $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$ or $du = \frac{1}{2\sqrt{x}} dx$	B1	
	Substitute throughout for x and dx	M1	
	Obtain a correct integral with integrand $\frac{2}{u^2+1}$	A1	
	Integrate and obtain term of the form $k \tan^{-1} u$	M1	$(2 \tan^{-1} u)$
	Use limits $\sqrt{3}$ and ∞ for u or equivalent and evaluate trig.	A1	e.g. $2\left(\frac{\pi}{2} - \frac{\pi}{3}\right)$ Must be working in radians.
	Obtain answer $\frac{1}{3}\pi$	A1	Or equivalent single term.

$$\int_{5}^{\infty} \frac{1}{(x+1)\sqrt{x}} dx$$

$$= \int_{3}^{\infty} \frac{1}{(u^{2}+1)\sqrt{x}} du$$

$$= \int_{3}^{\infty} \frac{1}{(u^{2}+1)\sqrt{x}} du$$

$$= \int_{\sqrt{3}}^{\infty} \frac{2}{u^{2}+1} du$$

$$= 2 \left[tan^{-1} (u) \right]_{\sqrt{3}}^{\infty}$$

$$= 2 \left[\frac{\pi}{2} - \frac{\pi}{3} \right]$$

$$= \frac{\pi}{3}$$

let
$$u = x^{\frac{1}{2}}$$

$$\frac{du}{dx} = \frac{1}{2\sqrt{x}}$$

$$dx = 2\sqrt{x}$$

$$du$$

$$x = u^{2}$$

$$x+1 = u^{2}+1$$

Guidance

Q5

Question

4(a)	Draw V-shaped graph with vertex on positive x-axis	B1	
	Draw approximately correct graph of $y = 3x - 3$ with greater gradient	В1	Crossing <i>x</i> -axis between origin and vertex of first graph.
		2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			j 22
Question	Answer	Marks	y = 2x -
4(b)	Attempt solution of linear equation where signs of $2x$ and $3x$ are different	M1	
	Solve $-2x+11=3x-3$ to obtain $x=\frac{14}{5}$	A1	OE
	Conclude $x > \frac{14}{5}$	A1	OE /
	Alternative method for Question 4(b)		
	Attempt solution of 3-term equation $(2x-11)^2 = (3x-3)^2$ to obtain at least one value of x	М1	Or equivalent inequality.
	Obtain at least $x = \frac{14}{5}$	A1	OE
	Conclude $x > \frac{14}{5}$	A1	OE
		3	In N = 14
4(c)	Attempt value of <i>N</i> (maybe non-integer at this stage) using logarithms and <i>their</i> answer to part (b).	М1	10 N = 14 N = 16.44
	Conclude with single integer 17	A1	: N = 17 smallest value of N
		2	

Marks

Question	Answer	Marks	Guidance
7(a)	Show sufficient working to justify the given answer	B1	
		1	
7(b)	Correct separation of variables	В1	e.g. $-\int \frac{1}{t} dt = \int \frac{1}{x \ln x} dx$
	Obtain term $\ln(\ln x)$	В1	
	Obtain term −ln <i>t</i>	B1	
	Evaluate a constant or use $x = e$ and $t = 2$ as limits in an expression involving $\ln(\ln x)$	М1	
	Obtain correct solution in any form, e.g. $\ln(\ln x) = -\ln t + \ln 2$	A1	
	Use log laws to enable removal of logarithms	M1	
	Obtain answer $x = e^{\frac{2}{t}}$, or simplified equivalent	A1	
		7	
7(c)	State that x tends to 1 coming from $x = e^{\frac{k}{t}}$	В1	
		1	

$$y = \ln(\ln x)$$

$$y = \ln(u)$$

$$\frac{du}{dx} = \frac{1}{x}$$

$$\frac{dy}{dx} = \frac{1}{x \ln x}$$

$$|et u = \ln x$$

$$\frac{du}{dx} = \frac{1}{x}$$

b)
$$t \frac{dt}{dt} = -x \ln x \frac{d}{dx}$$

$$\int \frac{1}{t} dt = -\int \frac{1}{x \ln x} dx$$

$$\ln t = -\ln(\ln x) + C$$

$$x = e \quad t = 2 \qquad \ln(2) = C$$

$$\ln(\ln x) = \ln(2) - \ln(t)$$

$$\ln(\ln x) = \ln(\frac{2}{t})$$

$$x = e^{\frac{2}{t}}$$

$$c) \qquad t \to \infty \qquad x \to e^{\circ}$$

$$\Rightarrow 1$$

Question	Answer	Marks
7(a)	Square $x + iy$ and equate real and imaginary parts to 8 and -15	M1
	Obtain $x^2 - y^2 = 8$ and $2xy = -15$	A1
	Eliminate one unknown and find a horizontal equation in the other	M1
	Obtain $4x^4 - 32x^2 - 225 = 0$ or $4y^4 + 32y^2 - 225 = 0$, or three term equivalent	A1
	Obtain answers $\pm \frac{1}{\sqrt{2}}(5-3i)$ or equivalent	A1
		5
7(b)	Show a circle with centre 2+i in a relatively correct position	B1
	Show a circle with radius 2 and centre not at the origin	B1
	Show line through i at an angle of $\frac{1}{4}\pi$ to the real axis	B1
	Shade the correct region	B1
		4

a)	u= 8-15i
	$\sqrt{8-15i}$ * $a+ib$ 8-15i = a^2-b^2+2iab .
	$a^{2} - \frac{225}{4a^{2}} = 8$ $2 \cdot b = -5$ $6 = -\frac{15}{2a}$
	$4a^4 - 32a^2 - 225 = 0$
	$a^2 = 32 \pm \sqrt{32^2 - 4(4)(-225)^2}$
	$=\frac{25}{2}$, $-\frac{9}{2}$
	\Rightarrow $q = \frac{1}{2}\sqrt{\frac{2\cdot 5}{2}}$
	$\sqrt{u'} = \frac{5}{\sqrt{2}} - (\frac{3}{\sqrt{2}})$ and $\sqrt{u'} = -\frac{5}{\sqrt{2}} + (\frac{3}{\sqrt{2}})$

Show that the interval (3.335, 3.365)

11)

$$\int_{0}^{a} xe^{-\frac{1}{2}x} dx = 2$$

$$\int_{0}^{a} xe^{-\frac{1}{2}x} dx = -\frac{1}{2}x$$

$$\int_{0}^{$$

= a = 3.36 to 3 sf.

(i)	State or imply the form	<i>1</i> ⊥	B	C
	State of imply the form A		2x+1	$\overline{x+2}$
	State on obtain 1 = 2			

State or obtain A = 2

Use a correct method for finding a constant

Obtain one of B = 1, C = -2

Obtain the other value

B1

M1

A1

A1 [5]

(ii) Integrate and obtain terms
$$2x + \frac{1}{2}\ln(2x+1) - 2\ln(x+2)$$

Substitute correct limits correctly in an integral with terms $a \ln(2x+1)$

and $b \ln(x+2)$, where $ab \neq 0$

Obtain the given answer after full and correct working

M1

[5] **A1**

i)
$$f(x) = 2 - \frac{3x}{(2x+1)(x+2)} \qquad 2x^2+5x+2 = \frac{2}{(4x^2+7x+4)} - 3x$$

$$-3z = A(x+2) + B(2x+1)$$

$$x = -2$$
 $6 = -36$ $x = -\frac{1}{2}$ $\frac{3}{2} = \frac{3}{2}$

$$f(x) = 2 + \frac{1}{2x+1} - \frac{2}{x+2}$$

$$f(x) = 2 - \frac{3x}{(2x+1)(x+2)} \qquad 2x^{2}+5x+2 \frac{2}{(4x^{2}+7x+4)} \qquad ii) \int_{0}^{4} 2 + \frac{1}{2x+1} - \frac{2}{x+2} dx = \left[2x + \frac{1}{2} \ln |2x+1| - 2 \ln |x+2| \right]_{0}^{4}$$

$$= \left[8 + \frac{1}{2} \ln (9) - 2 \ln (6) - (-2 \ln (2)) \right]$$

$$= \left[8 + \ln 3 - 2 \ln (6) + 2 \ln (2) \right]$$

$$= 8 + \ln 3 - 2 \ln (6) + 2 \ln (2)$$

$$= 8 + \ln 3 + \ln (\frac{1}{4})$$

$$= 8 + \ln (\frac{1}{3})$$

$$= 8 - \ln (3)$$

Q10 8 (i) State
$$2\sin x \cos x \cdot \frac{\cos x}{\sin x}$$

Simplify to confirm $2\cos^2 x$

(ii) (a) Use $\cos 2x = 2\cos^2 x - 1$ Express in terms of $\cos x$

Obtain $16\cos^2 x + 3$ or equivalent

State 3, following their expression of form $a\cos^2 x + b$

B1

B1 [2]

B1 М1

A1

[4] A1

B1

M1*

A1

dep M1*

A1 [5]

(b) Obtain integrand as
$$\frac{1}{2}\sec^2 2x$$

Integrate to obtain form $k \tan 2x$
Obtain correct $\frac{1}{4}\tan 2x$
Apply limits correctly

Obtain $\frac{1}{4}\sqrt{3} - \frac{1}{4}$ or exact equivalent

i) LHS =
$$2\sin x \cos x \cdot \frac{\cos x}{\sin x}$$

= $2\cos^2 x$

(ii) a)
$$6 \cos^2 x + 5 \cos 2x + 8 = 6 \cos^2 x + 5(2 \cos^2 x - 1) + 8$$

= $16 \cos^2 x + 3$

: the least value = 3

$$\int_{\frac{\pi}{8}}^{\pi} \cos kx \tan 2x \, dx = \int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \frac{\tan 2x}{\sin 4x} \, dx$$

$$= \int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \frac{\frac{\sin 2x}{\cos 2x}}{2\sin 2x \cos 2x} \, dx$$

$$= \int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \frac{1}{2 \cos^2 2x} \, dx$$

$$= \int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \frac{1}{2 \sec^2 2x} \, dx$$

$$= \frac{1}{4} \left[\tan 2x \right]_{\frac{\pi}{8}}^{\frac{\pi}{4}}$$
$$= \frac{1}{4} \left[\sqrt{3} - 1 \right]$$