```
In [1]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
ifood_df = pd.read_csv('ifood.csv')
ifood_df
```

Out[1]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProduct
0	58138.0	0	0	58	635	88	54
1	46344.0	1	1	38	11	1	
2	71613.0	0	0	26	426	49	12
3	26646.0	1	0	26	11	4	2
4	58293.0	1	0	94	173	43	11
•••							
2200	61223.0	0	1	46	709	43	18
2201	64014.0	2	1	56	406	0	3
2202	56981.0	0	0	91	908	48	21
2203	69245.0	0	1	8	428	30	21
2204	52869.0	1	1	40	84	3	6

2205 rows × 39 columns

```
In [2]: # Some Intial Cleaning
  ifood_df.sort_values(by='Income', ascending=False)
  columns_to_drop = ["education_2n Cycle", "education_Basic", "education_Gradu
]
  ifood_df.drop(columns=columns_to_drop, axis=1, inplace=True)
  ifood_df
```

Out[2]:		Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProduct
	0	58138.0	0	0	58	635	88	54
	1	46344.0	1	1	38	11	1	
	2	71613.0	0	0	26	426	49	12
	3	26646.0	1	0	26	11	4	2
	4	58293.0	1	0	94	173	43	11
	•••		•••	•••	•••	•••		
	2200	61223.0	0	1	46	709	43	18
	2201	64014.0	2	1	56	406	0	3
	2202	56981.0	0	0	91	908	48	21
	2203	69245.0	0	1	8	428	30	21
	2204	52869.0	1	1	40	84	3	6

2205 rows × 34 columns

```
In [3]: x_col = 'Income'
y_col = 'MntTotal'
plt.figure(figsize=(8, 6))
sns.scatterplot(data=ifood_df, x='Income', y='MntTotal', alpha=0.7, edgecolc
plt.title(f"Scatter Plot of {'Income'} vs {'Total Spent'}")
plt.xlabel('Income')
plt.ylabel('Amount Spent on iFood')
```

Out[3]: Text(0, 0.5, 'Amount Spent on iFood')

Scatter Plot of Income vs Total Spent


```
In [4]: plt.figure(figsize=(8, 5))
    sns.histplot(ifood_df["Income"], bins=30, kde=True)
    plt.title("Distribution of Customer Income")
    plt.xlabel("Income")
    plt.ylabel("Frequency")
    plt.tight_layout()
    plt.show()
```

Distribution of Customer Income


```
In [5]: marital_status_df = ifood_df.copy()
        # Fix naming to make more clear for Visual
        marital names = {
            "marital_Divorced": "Divorced",
            "marital_Married": "Married",
            "marital_Single": "Single",
            "marital_Together": "Together",
            "marital_Widow": "Widow"}
        # Create a categorical column for marital status
        marital_status_df["Marital_Status"] = ( marital_status_df[list(marital_names
        # boxplot
        plt.figure(figsize=(8, 5))
        sns.boxplot(data=marital_status_df, x="Marital_Status", y="MntTotal")
        plt.title("Total Spending (MntTotal) by Marital Status")
        plt.xlabel("Marital Status")
        plt.ylabel("Total Spending (MntTotal)")
        plt.tight_layout()
        plt.show()
```


Married

Marital Status

Divorced

Widow

In []: # Model Starts Below

Single

```
In [10]: import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, classification
import matplotlib.pyplot as plt
import seaborn as sns

# Load the iFood dataset
ifood_df = pd.read_csv('ifood.csv')

#check:
ifood_df.head()
```

Together

Out[10]:

0	58138.0						
		0	0	58	635	88	546
1	46344.0	1	1	38	11	1	6
2	71613.0	0	0	26	426	49	127
3	26646.0	1	0	26	11	4	20
4	58293.0	1	0	94	173	43	118
5 r	ows × 39 col	umns					
]: if	food_df.his	t(column = ['/	Age', '	Customer_[Days', 'I	ncome', 'h	Kidhome', 'Teen
400	<pre> <axe <axe <axe <axe< pre=""></axe<></axe </axe </axe </pre>	es: title={'ce es: title={'ce es: title={'ce es: title={'ce es: title={'ce es: title={'ce es: title={'ce	enter': enter': enter': enter': enter':	'Kidhome' 'Teenhome 'MntTotal 'MntRegul 'MntGoldP	}>, '}>, '}>], arProds'} rods'}>, CmpOveral	•	type=object)
200			150			200	
	30 40 50 Kidhon	60 70 80	100	300 2400 2500 2600 Teephome	2700 2800	200	
100	30 40 50 Kidhon	ne	1000 - 2200 2	300 2400 2500 2600 Teenhome	2700 2800	200	0 40000 60000 80000 100000 MntTotal
100 0 1250 1000 750		ne	100 - 2200 2 1000 - 800 - 600 -		2700 2800	200	
100 0 1250 1000 750 500 250		ne	1000 50 22200 2 1000 800 600 400 200		2700 2800	200 - 1000 - 20000 1000 - 800 - 600 - 400 - 200 - 200	
100 0 1250 1000 750 500 250		1.25 1.50 1.75 2.00	100			200	MntTotal
100 0 1250 1000 750 500 250	Kidhon	1.25 1.50 1.75 2.00 rProds	100	Teenhome		200 20000	MntTotal
100 - 1250 - 1000 - 750 - 500 - 250 - 0	Kidhon	1.25 1.50 1.75 2.00 rProds	1000 2200 2 1000 800 600 400 200 0.00 0.25	Teenhome		200 20000	MntTotal

spending_df = ifood_df[spending_features + ['MntTotal', 'Response']]

Income Kidhome Teenhome Recency MntWines MntFruits MntMeatProducts I

```
In [14]: from sklearn.model selection import train test split
         train_spend, test_spend = train_test_split(spending_df, test_size=0.2, rando
In [15]: #Split train and test
         y train spend = train spend['Response']
         X_train_spend = train_spend.drop(columns=['Response'])
         y_test_spend = test_spend['Response']
         X_test_spend = test_spend.drop(columns=['Response'])
In [16]: # Train Decision Tree
         from sklearn.tree import DecisionTreeClassifier, plot_tree
         T = DecisionTreeClassifier(max_depth=3, random_state=42)
         T.fit(X_train_spend, y_train_spend)
         train_score = T.score(X_train_spend, y_train_spend)
         test_score = T.score(X_test_spend, y_test_spend)
In [17]: print('Score on train:', train_score)
         print('Score on test:', test_score)
         fig, ax = plt.subplots(1, figsize = (20, 20))
         p = plot_tree(T, filled = True, feature_names = X_train_spend.columns)
        Score on train: 0.8577097505668935
        Score on test: 0.854875283446712
```



```
T = DecisionTreeClassifier(max_depth=3, random_state=42)
T.fit(X_train_channel, y_train_channel)

train_score = T.score(X_train_channel, y_train_channel)
test_score = T.score(X_test_channel, y_test_channel)
```

```
In [22]: print('Score on train:', train_score)
print('Score on test:', test_score)

fig, ax = plt.subplots(1, figsize = (20, 20))
p = plot_tree(T, filled = True, feature_names = X_train_channel.columns)
```

Score on train: 0.8469387755102041 Score on test: 0.8571428571428571

In []: