```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import linregress
```

In [14]: # Read data from file
df = pd.read_csv('epa-sea-level.csv')

In [5]: df

Out[5]:

	Year	CSIRO Adjusted Sea Level	Lower Error Bound	Upper Error Bound	NOAA Adjusted Sea Level
0	1880	0.000000	-0.952756	0.952756	NaN
1	1881	0.220472	-0.732283	1.173228	NaN
2	1882	-0.440945	-1.346457	0.464567	NaN
3	1883	-0.232283	-1.129921	0.665354	NaN
4	1884	0.590551	-0.283465	1.464567	NaN
129	2009	8.586614	8.311024	8.862205	8.046354
130	2010	8.901575	8.618110	9.185039	8.122973
131	2011	8.964567	8.661417	9.267717	8.053065
132	2012	9.326772	8.992126	9.661417	8.457058
133	2013	8.980315	8.622047	9.338583	8.546648

134 rows × 5 columns

```
In [16]: # Creating scatter plot
    x = df['Year']
    y = df['CSIRO Adjusted Sea Level']
    fig, ax = plt.subplots(figsize=(6,6))
    ax = plt.scatter(x, y)
```


Out[17]: [<matplotlib.lines.Line2D at 0x2c1aba51cf0>]


```
In [18]: # Creating second Line of best fit

df_forecast = df.loc[df['Year'] >= 2000]

x_forecast = df_forecast['Year']

y_forecast = df_forecast['CSIRO Adjusted Sea Level']
```

```
In [19]: # getting new slope + intercept
slope, intercept, r_value, p_value, stderr = linregress(x_forecast, y_forecast)
x_pred2 = pd.Series([i for i in range(2000, 2051)])
y_pred2 = slope*x_pred2 + intercept
plt.plot(x_pred2, y_pred2, 'green')
y_pred2 = slope*x_pred2 + intercept
plt.plot(x_pred2, y_pred2, 'green')
```

Out[19]: [<matplotlib.lines.Line2D at 0x2c1ababdc90>]


```
In [20]: # Add Labels and title
    plt.title('Rise in Sea Level')
    plt.xlabel('Year', fontsize = 12)
    plt.ylabel('Sea Level (inches)', fontsize = 12)
```

Out[20]: Text(0, 0.5, 'Sea Level (inches)')


```
In [ ]:
```