1. Let **A** and **B** both be $n \times n$ and assume that there is an invertible matrix **S** such that \mathbf{SAS}^{-1} and \mathbf{SBS}^{-1} are both diagonal (but not necessarily equal). Prove that $\mathbf{AB} = \mathbf{BA}$.

Solution: Let

$$\mathbf{SAS}^{-1} = \mathbf{D}_A \text{ and } \mathbf{SBS}^{-1} = \mathbf{D}_B.$$

Write

$$\mathbf{A} = \mathbf{S}^{-1} \mathbf{D}_A \mathbf{S}$$
 and $\mathbf{B} = \mathbf{S}^{-1} \mathbf{D}_B \mathbf{S}$.

Note

$$\mathbf{A}\mathbf{B} = \mathbf{S}^{-1}\mathbf{D}_{A}\mathbf{S}\mathbf{S}^{-1}\mathbf{D}_{B}\mathbf{S} = \mathbf{S}^{-1}\mathbf{D}_{A}\mathbf{D}_{B}\mathbf{S} = \mathbf{S}^{-1}\mathbf{D}_{B}\mathbf{D}_{A}\mathbf{S} = \mathbf{S}^{-1}\mathbf{D}_{B}\mathbf{S}\mathbf{S}^{-1}\mathbf{D}_{A}\mathbf{S} = \mathbf{B}\mathbf{A}.$$

2. Suppose that $\bf A$ is symmetric and positive definite, while $\bf B$ is symmetric. Prove that there is a real invertible matrix $\bf S$ such that

$$\mathbf{A} + \mathbf{B} = \mathbf{S} \left(\mathbf{I} + \mathbf{D} \right) \mathbf{S}^{T}$$

where \mathbf{D} is diagonal.

Solution: Since **A** is SPD it has a Cholesky factorization $\mathbf{A} = \mathbf{L}\mathbf{L}^T$. Factor out the Cholesky factors from the sum:

$$\mathbf{A} + \mathbf{B} = \mathbf{L} \left(\mathbf{I} + \mathbf{L}^{-1} \mathbf{B} \mathbf{L}^{-T} \right) \mathbf{L}^{T}.$$

Notice that the matrix $\mathbf{L}^{-1}\mathbf{B}\mathbf{L}^{-T}$ is real and symmetric, so it has a real orthogonal eigenvalue decomposition

$$\mathbf{L}^{-1}\mathbf{B}\mathbf{L}^{-T} = \mathbf{Q}\mathbf{D}\mathbf{Q}^T.$$

Insert this and simplify

$$\mathbf{L}\left(\mathbf{I} + \mathbf{Q}\mathbf{D}\mathbf{Q}^{T}\right)\mathbf{L}^{T} = \mathbf{L}\left(\mathbf{Q}\mathbf{Q}^{T} + \mathbf{Q}\mathbf{D}\mathbf{Q}^{T}\right)\mathbf{L}^{T} = \mathbf{L}\mathbf{Q}\left(\mathbf{I} + \mathbf{D}\right)(\mathbf{L}\mathbf{Q})^{T}.$$

The matrix S = LQ is real and invertible.

3. Suppose that **A** and **B** are both $n \times n$. Prove that **AB** and **BA** have the same eigenvalues. **Solution:** Suppose that $\mathbf{AB}\vec{v} = \lambda\vec{v}$ with $\vec{v} \neq \vec{0}$. Multiply by **B**: $\mathbf{BAB}\vec{v} = \lambda\mathbf{B}\vec{v}$. Define $\vec{w} = \mathbf{B}\vec{v}$. Then

$$\mathbf{B}\mathbf{A}\vec{w} = \lambda \vec{w}$$
.

This equation only implies that λ is an eigenvalue of **BA** when $\vec{w} \neq \vec{0}$. So what we've shown so far is

If **AB** has eigenvalue λ and eigenvector \vec{v} then **BA** also has eigenvector λ provided that $\mathbf{B}\vec{v} \neq \vec{0}$.

So what happens when $\vec{v} \neq \vec{0}$ but $\mathbf{B}\vec{v} = \vec{0}$? In that case $\lambda = 0$ must be an eigenvalue of $\mathbf{A}\mathbf{B}$ because $\mathbf{A}\mathbf{B}\vec{v} = \mathbf{A}\vec{0} = \vec{0} = (0)\vec{v}$. So we can conclude at this point that

If **AB** has eigenvalue $\lambda \neq 0$ and eigenvector \vec{v} then **BA** also has eigenvector λ .

By re-labeling \mathbf{A} and \mathbf{B} we find that

The nonzero eigenvalues of **AB** and **BA** are the same.

To complete the proof we need to show that if $\lambda = 0$ is an eigenvalue of \mathbf{AB} then it must also be an eigenvalue of \mathbf{BA} . Clearly if \mathbf{A} and \mathbf{B} are both invertible then it's not possible for $\lambda = 0$ to be an eigenvalue of \mathbf{AB} or \mathbf{BA} . If at least one of the factors is singular then the product is also singular, meaning that it has a zero eigenvalue regardless of the order of the factors. This completes the proof.

4. Suppose that **A**and **B** are both symmetric and positive definite. Prove that **AB** has real, positive eigenvalues. (Hint: Show that **AB** is similar to a symmetric and positive definite matrix.)

Solution: Since **A** is SPD it has a Cholesky factorization

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T$$

SO

$$AB = LL^TB$$
.

The Cholesky factor ${\bf L}$ is invertible. Multiply from the left by ${\bf L}^{-1}$ and from the right by ${\bf L}$ to get

$$\mathbf{L}^{-1}\mathbf{A}\mathbf{B}\mathbf{L} = \mathbf{L}^T\mathbf{B}\mathbf{L}.$$

The equation above says that AB is similar to L^TBL , so they have the same eigenvalues. The matrix L^TBL is symmetric, so it has real eigenvalues. Also note that

$$\vec{x}^T \mathbf{L}^T \mathbf{B} \mathbf{L} \vec{x} = \vec{y}^T \mathbf{B} \vec{y} \ge 0 \ \forall \ \vec{y} \ne \vec{0}.$$

Since $\vec{y} = \vec{0}$ only when $\vec{x} = \vec{0}$ (because **L** is invertible), we have shown that $\mathbf{L}^T \mathbf{B} \mathbf{L}$ is positive definite, and therefore has real eigenvalues.

5. Suppose that $\mathbf{L} \in \mathbb{R}^{n \times n}$ is a symmetric matrix with eigenvalues $\lambda_1, \ldots, \lambda_m$. (Note that m can be $\leq n$.) Prove that

$$\mathbf{L} = \lambda_1 \mathbf{P}_1 + \dots + \lambda_m \mathbf{P}_m$$

where \mathbf{P}_i is an orthogonal projection matrix that projects orthogonally onto the nullspace of $\mathbf{L} - \lambda_i \mathbf{I}$.

Solution: Since A is symmetric it has a real orthogonal eigenvalue decomposition

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T.$$

Write

$$\mathbf{Q} = [\vec{q}_1, \cdots, \vec{q}_n]. \quad \mathbf{\Lambda} = \operatorname{diag}(\mu_1, \dots, \mu_n).$$

The eigenvalue decomposition can be equivalently written

$$\mathbf{A} = \mu_1 \vec{q}_1 \vec{q}_q^T + \ldots + \mu_n \vec{q}_n \vec{q}_n^T.$$

If we group the eigenvalues we get

$$\mathbf{A} = \lambda_1[\vec{q}_1, \cdots][\vec{q}_1, \cdots]^T + \ldots + \lambda_m[\vec{q}_r, \cdots][\vec{q}_r, \cdots]^T.$$

Each of the matrices $[\vec{q}_r, \cdots][\vec{q}_r, \cdots]^T$ is an orthogonal projection matrix that projects orthogonally onto the eigenspace associated with λ_r . The notation in this solution is not great, but making it precisely correct requires an overload of notation.

6. Prove that if **A** is invertible (and, for simplicity, real), then there is an orthogonal matrix **U** and a symmetric and positive definite matrix **E** such that **A** = **UE**. This is analogous to writing complex numbers in polar form $x + iy = \rho e^{i\theta}$. Show that if **A** is square but not invertible then there is a similar factorization but with **E** being symmetric and non-negative definite.

Solution: Consider the SVD of **A**:

$$\mathbf{A} = \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T = \mathbf{P} \mathbf{Q}^T \mathbf{Q} \mathbf{\Sigma} \mathbf{Q}^T = \mathbf{U} \mathbf{E}$$

where

$$\mathbf{U} = \mathbf{P} \mathbf{Q}^T \text{ and } \mathbf{E} = \mathbf{Q} \mathbf{\Sigma} \mathbf{Q}^T.$$

The diagonal entries of Σ are the eigenvalues of E. When A is invertible Σ has positive diagonal entries, and when A is not invertible Σ has some positive and some zero diagonal entries. The matrix U is a product of orthogonal matrices and is therefore orthogonal.

7. Let $\mathbf{A} = \mathbf{S} \mathbf{\Lambda} \mathbf{S}^{-1}$ be diagonalizable. Find a symmetric positive definite matrix \mathbf{K} that defines an inner product $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \mathbf{K} \vec{y}$ such that \mathbf{A} commutes with its \mathbf{K} -adjoint.

Solution: First recall that the K-adjoint of A is

$$\mathbf{A}^{\dagger} = \mathbf{K}^{-1} \mathbf{A}^T \mathbf{K}.$$

We will draw inspiration from the idea that 'commutes with adjoint' is a generalization of the definition of a normal matrix, and that the eigenvectors of normal matrices are orthogonal. So we want to find an SPD matrix \mathbf{K} such that the Gram matrix formed using the eigenvectors of \mathbf{A} and the inner product defined by \mathbf{K} is the identity:

$$\mathbf{S}^T \mathbf{K} \mathbf{S} = \mathbf{I}.$$

Consider the SVD of S:

$$\mathbf{S} = \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T$$

where all factors are square and invertible. If we set

$$\mathbf{K} = \mathbf{P} \mathbf{\Sigma}^{-2} \mathbf{P}^T$$

then we find

$$\mathbf{S}^T \mathbf{K} \mathbf{S} = \mathbf{Q} \mathbf{\Sigma} \mathbf{P}^T \mathbf{P} \mathbf{\Sigma}^{-2} \mathbf{P}^T \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T = \mathbf{I},$$

as desired.

We should check that our intuition has guided us correctly though, i.e. does A commute with its K-adjoint? First notice that the above equation implies

$$\mathbf{S}^{-1}\mathbf{K}^{-1}\mathbf{S}^{-T} = \mathbf{I}$$

which implies

$$\mathbf{K}^{-1}\mathbf{S}^{-T} = \mathbf{S}.$$

We also have

$$\mathbf{S}^T\mathbf{K} = \mathbf{S}^{-1}.$$

Now simplify

$$\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{K}^{-1}\mathbf{A}^{T}\mathbf{K}\mathbf{A} = \mathbf{K}^{-1}\mathbf{S}^{-T}\boldsymbol{\Lambda}\mathbf{S}^{T}\mathbf{K}\mathbf{S}\boldsymbol{\Lambda}\mathbf{S}^{-1} = \mathbf{K}^{-1}\mathbf{S}^{-T}\boldsymbol{\Lambda}^{2}\mathbf{S}^{-1} = \mathbf{S}\boldsymbol{\Lambda}^{2}\mathbf{S}^{-1} = \mathbf{A}^{2}$$

and

$$\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{A}\mathbf{K}^{-1}\mathbf{A}^{T}\mathbf{K} = \mathbf{S}\mathbf{\Lambda}\mathbf{S}^{-1}\mathbf{K}^{-1}\mathbf{S}^{-T}\mathbf{\Lambda}\mathbf{S}^{T}\mathbf{K} = \mathbf{S}\mathbf{\Lambda}^{2}\mathbf{S}^{T}\mathbf{K} = \mathbf{S}\mathbf{\Lambda}^{2}\mathbf{S}^{-1} = \mathbf{A}^{2}.$$

We have therefore found that every diagonalizable matrix is normal with respect to some inner product.

8. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ have full column rank. Prove that $\|\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\|_2 = 1/\sigma_n$ where σ_n is the n^{th} singular value of \mathbf{A} . (Note that \mathbf{A}^{-1} is not defined, so your proof cannot use \mathbf{A}^{-1} .)

Solution: Consider the SVD of **A**:

$$\mathbf{A} = \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T$$

where \mathbf{Q} is orthogonal, $\mathbf{\Sigma}$ is diagonal and invertible, and \mathbf{P} is non-square. Plug in and simplify:

$$\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1} = \mathbf{P}\boldsymbol{\Sigma}\mathbf{Q}^T(\mathbf{Q}\boldsymbol{\Sigma}\mathbf{P}^T\mathbf{P}\boldsymbol{\Sigma}\mathbf{Q}^T)^{-1} = \mathbf{P}\boldsymbol{\Sigma}\mathbf{Q}^T(\mathbf{Q}\boldsymbol{\Sigma}^2\mathbf{Q}^T)^{-1} = \mathbf{P}\boldsymbol{\Sigma}\mathbf{Q}^T\mathbf{Q}\boldsymbol{\Sigma}^{-2}\mathbf{Q}^T = \mathbf{P}\boldsymbol{\Sigma}^{-1}\mathbf{Q}^T.$$

This is an SVD¹ of $\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}$. The singular values of $\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}$ are one over the singular values of \mathbf{A} . The 2-norm of $\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}$ is the largest singular value of $\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}$, which is one over the smallest singular value of \mathbf{A} , which is $1/\sigma_n$.

¹Technically we need to insert permutation matrices to re-order the singular values so that they decrease along the diagonal.