

Ring Based Approximation of Graph Edit Distance

Presented at S+SSPR 2018, Beijing, China, August 17–19, 2018

D. B. Blumenthal¹, S. Bougleux², J. Gamper¹, L. Brun²

¹Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy

²Normandie Université, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, France

August 18, 2018

Experiments

Rings as Local Structures

Background

Background •000000 References o

Graph Edit Distance (Definition)

Background 0000000

- \triangleright idea: distance between labeled graphs G and H = minimal amount of distortion needed for transforming G into H
- edit operations and edit costs:
 - substituting a node $u \in V^G$ by a node $v \in V^H \leadsto c_V(u,v)$
 - deleting an isolated node $u \in V^G \leadsto c_V(u, \epsilon)$
 - inserting an isolated node $v \in V^H \rightsquigarrow c_V(\epsilon, v)$
 - ▶ substituting an edge $e \in E^G$ by an edge $f \in E^H \leadsto c_E(e, f)$
 - deleting an edge $e \in E^G \leadsto c_F(e, \epsilon)$
 - ▶ inserting an edge $f \in E^H \leadsto c_F(\epsilon, f)$
- ▶ sequence $P = (o_i)_{i=1}^r$ of edit operations is edit path between G and H iff $(o_r \circ \ldots \circ o_1)(G) = H \leadsto c(P) = \sum_{i=1}^r c(o_i)$
- ▶ $GED(G, H) := min\{c(P) \mid P \text{ is edit path between } G \text{ and } H\}$
- ► computing GED is *NP*-hard \rightsquigarrow approximative techniques needed

Graph Edit Distance (Example)

- real-valued, positive node and edge labels:
 - $\ell_V^G: V^G \to \mathbb{R}_{>0}, \ell_V^H: V^H \to \mathbb{R}_{>0}$
 - $\ell_E^G: E^G \to \mathbb{R}_{>0}, \ell_E^H: E^H \to \mathbb{R}_{>0}$
- edit costs:

Background 0000000

- $ightharpoonup c_V(u,v) = |\ell_V^G(u) \ell_V^H(v)|, c_V(u,\epsilon) = \ell_V^G(u), c_V(\epsilon,v) = \ell_V^H(v)$
- \triangleright $c_F(e,f) = |\ell_F^G(e) \ell_F^H(f)|, c_F(e,\epsilon) = \ell_F^G(e), c_F(\epsilon,f) = \ell_F^H(f)$
- c(P) = 3.0 + 5.0 + 2.0 = 10

Graph Edit Distance (Computation)

- ▶ if we know how to edit nodes $u_1, u_2 \in V^G$, then we know how to edit the edge $e = (u_1, u_2) \in E^G$
- ⇒ complete set of node operations induces edit path

Background 0000000

induced edge edit operations:

- \triangleright edge e_1 is substituted by edge f_1
- ▶ edge *e*₂ is deleted

task: find complete set of node edit operations that induces cheap edit path

Background

0000000

Linear Sum Assignment with Error Correction

- $\blacktriangleright \pi \in \{1,\ldots,n+1\} \times$ $\{1, \ldots, m+1\}$ is solution for LSAPE instance C iff:
 - each row except for n+1 is covered exactly once
 - each column except for m+1 is covered exactly once
 - \triangleright solution π minimizing $\mathbf{C}(\pi) =$ $\sum_{i=1}^{n+1} \sum_{k \in \pi[i]} c_{i,k}$ can be computed in $O(\min\{n, m\}^2 \max\{n, m\})$ time, greedy suboptimal solutions in O(nm) time

Background

0000000

Linear Sum Assignment with Error Correction

row to column assignments m = 2 m + 1row deletions • 0 n+1column insertions

- $\blacktriangleright \pi \in \{1,\ldots,n+1\} \times$ $\{1, \ldots, m+1\}$ is solution for LSAPE instance C iff:
 - each row except for n+1 is covered exactly once
 - each column except for m+1 is covered exactly once
 - \triangleright solution π minimizing $\mathbf{C}(\pi) =$ $\sum_{i=1}^{n+1} \sum_{k \in \pi[i]} c_{i,k}$ can be computed in $O(\min\{n, m\}^2 \max\{n, m\})$ time, greedy suboptimal solutions in O(nm) time

Linear Sum Assignment with Error Correction

- $\blacktriangleright \pi \in \{1,\ldots,n+1\} \times$ $\{1, \ldots, m+1\}$ is solution for LSAPE instance C iff:
 - each row except for n+1 is covered exactly once
 - each column except for m+1 is covered exactly once
 - \triangleright solution π minimizing $\mathbf{C}(\pi) =$ $\sum_{i=1}^{n+1} \sum_{k \in \pi[i]} c_{i,k}$ can be computed in $O(\min\{n, m\}^2 \max\{n, m\})$ time, greedy suboptimal solutions in O(nm) time

Background

0000000

LSAPE Based Heuristics for **GED** (Paradigm)

- solution for LSAPE instance C $\hat{=}$ complete set of node operations = edit path between G and H → upper bound for **GED**
- $\triangleright S^{G|H}(\cdot)$: local structure rooted at node of one of the input graphs
- \triangleright d_S: distance measure for local structures

LSAPE Based Heuristics for **GED** (Instantiations)

 $S^G(u) = \text{node } u \text{ and its incident edges } [2, 5]:$

- baseline instantiation, yields rather loose upper bound
- construction time for C cubic or quadratic in maximum degrees (depending on distance measure for local structures)

 $S^G(u) \stackrel{\frown}{=} \text{subgraph of radius } L \text{ rooted at } u [3]$:

- yields tighter upper bound than baseline
- construction time for C polynomially bounded only for graphs with constantly bounded maximum degrees

 $S^G(u) \stackrel{\frown}{=}$ walks of length L rooted at u [4]:

- yields tighter upper bound than baseline
- construction time for C bounded by polynomial of degree $2 + \omega$ (ω is matrix multiplication complexity exponent)
- suffers from tottering and supports only constant edit costs

Rings as Local Structures

Towards a New LSAPE Based Heuristic for GED

Shortcomings of Local Structures Used in Existing Instantiations

- baseline (root plus incident edges): considers only very local information → loose upper bound on some datasets
- subgraph of fixed radius around root: construction of C prohibitively expensive
- walks of fixed length starting at root: tottering, supports only constant edit costs → loose upper bound on some datasets

Desiderata

- define ring structures $S^G(u) = \mathcal{R}^G_L(u)$ and distance measure $d_{\mathcal{S}} = d_{\mathcal{R}}$, such that:
 - $\triangleright \mathcal{R}_{i}^{G}(u)$ considers more information than the baseline and contains nodes and edges at most once to avoid tottering
 - $ightharpoonup d_{\mathcal{R}}$ supports general edit costs and can be evaluated quickly to ensure reasonable construction time for C

Definition of Rings

- rings are sequences of layers: $\mathcal{R}_{L}^{G}(u) = (\mathcal{L}_{L}^{G}(u))_{L=0}^{L-1}$, $\mathcal{R}_{I}(\epsilon) = ((\emptyset, \emptyset, \emptyset)_{I})_{I=0}^{L-1}$
- layers contain nodes, inner, and outer edges at distance / from root: $\mathcal{L}_{L}^{G}(u) = (V_{L}^{G}(u), OE_{L}^{G}(u), IE_{L}^{G}(u))$
- ▶ nodes at distance / from root are reachable from root on path of length *I*: $V_{I}^{G}(u) = \{ u' \in V^{G} \mid d_{V}^{G}(u, u') = I \}$
- ▶ inner edges at distance / from root connect two nodes at distance I: $IE_I^G(u) = E^G \cap (V_I^G(u) \times V_I^G(u))$
- outer edges at distance / from root connect nodes at distance I and I + 1: $OE_{I}^{G}(u) = E^{G} \cap (V_{I}^{G}(u) \times V_{I+1}^{G}(u))$

Definition of Distance Measure for Rings

distance measure for rings:

$$d_{\mathcal{R}}\left(\mathcal{R}_{L}^{G}(u), \mathcal{R}_{L}^{H}(v)\right) = \sum_{l=0}^{L-1} \lambda_{l} d_{\mathcal{L}}\left(\mathcal{L}_{l}^{G}(u), \mathcal{L}_{l}^{H}(v)\right)$$

- $\lambda \in \mathbb{R}^{L}_{>0}$: weights for distances between layers
- distance measure for layers:

$$d_{\mathcal{L}}\left(\mathcal{L}_{I}^{G}(u), \mathcal{L}_{I}^{H}(v)\right) = \alpha_{0}\phi_{V}\left(V_{I}^{G}(u), V_{I}^{H}(v)\right) + \alpha_{1}\phi_{E}\left(OE_{I}^{G}(u), OE_{I}^{H}(v)\right) + \alpha_{2}\phi_{E}\left(IE_{I}^{G}(u), IE_{I}^{H}(v)\right)$$

- ▶ $\phi_V : \mathcal{P}(V^G) \times \mathcal{P}(V^H) \to \mathbb{R}_{>0}$: distance measure for node sets
- ▶ $\phi_F : \mathcal{P}(E^G) \times \mathcal{P}(E^H) \to \mathbb{R}_{>0}$: distance measure for edge sets
- $\boldsymbol{\alpha} \in \mathbb{R}^3_{>0}$: weights for distances between nodes, outer, and inner edges

- ▶ node sets $U = \{u_1, ..., u_r\} \subseteq V^G$, $V = \{v_1, ..., u_s\} \subseteq V^H$ \leadsto define $\phi_V(U, V)$ as follows (definitions of ϕ_F analogous):
- ► LSAPE based approach:
 - 1. define instance $\mathbf{C} = (c_{i,k}) \in \mathbb{R}^{(r+1)\times(s+1)}$: $c_{i,k} = c_V(u_i, v_k)$, $c_{i,s+1} = c_V(i, \epsilon)$, and $c_{r+1,k} = c_V(\epsilon, v_k)$ for $i \neq r+1$, $k \neq s+1$
 - 2. compute solution π for \mathbf{C} , either optimally or greedily
 - 3. return $\phi_V(U, V) = \mathbf{C}(\pi) / \max\{r, s, 1\}$
- multiset intersection based approach:
 - 1. compute size Γ of intersection between multisets containing U's and V's node labels
 - 2. compute avg. insertion, deletion, and substitution costs c_V^{ins} , c_V^{del} , and c_V^{sub} between the nodes in U and V
 - 3. return $\phi_V(U, V) = [c_V^{del} \delta_{r>s}(r-s) + c_V^{ins} \delta_{s>r}(s-r) + c_V^{sub}(\min\{r, s\} \Gamma)]/\max\{r, s, 1\}$

Construction of Rings and Choice of Meta-Parameters

- ▶ construction of ring rooted at node $u \in V^G$: variant of BFS, runs in $O(|V^G| + |E^G|)$ time
- **\triangleright** choice of weights α , λ , and number of layers L:
 - 1. sample training set \mathcal{T} from graph database
 - 2. set *L* to upper bound for ring sizes, e.g., $L = 1 + \max_{G \in \mathcal{T}} |V^G|$
 - 3. compute all rings for all graphs contained in ${\mathcal T}$
 - 4. lower *L* to maximal size of the rings
 - 5. learn α and λ by calling blackbox optimizer with objective $obj(\alpha, \lambda) = [\mu + (1-\mu)\left(\frac{|\operatorname{supp}(\lambda)|-1}{\max\{1,L-1\}}\right)]\sum_{(G,H)\in\mathcal{T}^2}\operatorname{RING}_{\alpha,\lambda}^{\phi_V,\phi_E}(G,H)$ and the constraints that α and λ be simplex vectors
 - ▶ RING $_{\alpha,\lambda}^{\phi_V,\phi_E}(G,H)$: upper bound for GED(G,H) given fixed choices of α , λ , ϕ_V , and ϕ_E
 - ▶ tuning parameter $\mu \in [0,1]$: close to 1 \rightsquigarrow optimize for accuracy, close to 0 \rightsquigarrow optimize for runtime
 - 6. lower L to $L = 1 + \max_{l \in \text{supp}(\lambda)} I$

Construction of Ring of Size L Rooted at $u \in V^G$

```
I \leftarrow 0; V \leftarrow \emptyset; OE \leftarrow \emptyset; IE \leftarrow \emptyset; \mathcal{R}_{I}^{G}(u) \leftarrow ((\emptyset, \emptyset, \emptyset)_{I})_{I=0}^{L-1};
                                                                                                      // initialize ring
d[u] \leftarrow 0; for u' \in V^G \setminus \{u\} do d[u'] \leftarrow \infty;
                                                                                     // initialize distances to root
for e \in E^G do discovered[e] \leftarrow false;
                                                                              // mark all edges as undiscovered
open \leftarrow \{u\};
                                                                                           // initialize FIFO queue
while open \neq \emptyset do
                                                                                                           // main loop
      u' \leftarrow \text{open.pop()};
                                                                                            // pop node from queue
                                                                                       // the Ith layer is complete
      if d[u'] > I then
                                                                               // store Ith layer and increment I
             \mathcal{R}_{I}^{G}(u)_{I} = (V, OE, IE); I \leftarrow I + 1;
             V \leftarrow \emptyset: OE \leftarrow \emptyset: IE \leftarrow \emptyset:
                                                                        // reset nodes, inner, and outer edges
       V \leftarrow V \cup \{u'\};
                                                                                          // u' is node at I<sup>th</sup> layer
      for u'u'' \in E^G do
                                                                             // iterate through neighbours of u'
             if discovered[u'u''] then continue;
                                                                                           // skip discovered edges
             if d[u''] = \infty then
                                                                                                   // found new node
                    d[u''] \leftarrow l + 1;
                                                                                      // set distance of new node
                    if d[u''] < L then open.push(u'');
                                                                                // add close new node to queue
             if d[u''] = I then IE \leftarrow IE \cup \{u'u''\};
                                                                               // u'u'' is inner edge at I^{th} layer
             else OE \leftarrow OE \cup \{u'u''\};
                                                                               // u'u'' is outer edge at I^{th} layer
                                                                                       // mark u'u" as discovered
             discovered[u'u''] \leftarrow true;
\mathcal{R}_{I}^{G}(u)_{I} = (V, OE, IE); \text{ return } \mathcal{R}_{I}^{G}(u);
                                                                              // store last layer and return ring
                                                                                    4 □ → 4 □ → 4 □ →
```

Rings as Local Structures

Experiments

Experiments

•00

Background 0000000 References

Setup

- ▶ datasets: ALKANE, ACYCLIC, PAH, MAO from GREYC's Chemistry Dataset (https://brunl01.users.greyc.fr/CHEMISTRY/): contain graphs representing chemical compounds
- edit costs: edit costs 1 defined in [1]
- compared methods:
 - ightharpoonup RING^{OPT}: rings using optimal LSAPE for defining ϕ_V and ϕ_E
 - ▶ RING^{GD}: rings using greedy LSAPE for defining ϕ_V and ϕ_F
 - ightharpoonup RING^{MS}: rings using multisets for defining ϕ_V and ϕ_F
 - ▶ BP: LSAPE based method suggested in [5]
 - BRANCH: LSAPE based method suggested in [2]
 - BRANCH-FAST: LSAPE based method suggested in [2]
 - WALKS: LSAPE based method suggested in [4]
 - SUBGRAPH: LSAPE based method suggested in [3]

Results

Experiments 000

References

- [1] Z. Abu-Aisheh, B. Gaüzere, S. Bougleux, J.-Y. Ramel, L. Brun, R. Raveaux, P. Héroux, and S. Adam. "Graph edit distance contest 2016: Results and future challenges". In: Pattern Recogn. Lett. 100 (2017), pp. 96–103.
- [2] D. B. Blumenthal and J. Gamper. "Improved Lower Bounds for Graph Edit Distance". In: *IEEE Trans. Knowl. Data Eng.* 30.3 (2018), pp. 503–516.
- [3] V. Carletti, B. Gaüzère, L. Brun, and M. Vento. "Approximate Graph Edit Distance Computation Combining Bipartite Matching and Exact Neighborhood Substructure Distance". In: GbRPR 2015. Ed. by C. Liu, B. Luo, W. G. Kropatsch, and J. Cheng. Vol. 9069. LNCS. Cham: Springer, 2015, pp. 188-197.
- [4] B. Gaüzère, S. Bougleux, K. Riesen, and L. Brun. "Approximate Graph Edit Distance Guided by Bipartite Matching of Bags of Walks". In: S+SSPR 2014. Ed. by P. Fränti, G. Brown, M. Loog, F. Escolano, and M. Pelillo. Vol. 8621. LNCS. Cham: Springer, 2014, pp. 73–82.
- [5] K. Riesen and H. Bunke. "Approximate Graph Edit Distance Computation by Means of Bipartite Graph Matching". In: Image Vis. Comput. 27.7 (2009), pp. 950–959.