PRÁCTICA 2

Ejercicio 1

	Diseño	Señales de control	Comentarios
lc R1 R2 (R3)	MAR <- PC	(C0, T2)	Hay que tener en
` ,	MBR <- memory[MAR]	(R, BW=11, M1, C1, TA,	cuenta la suma al PC
	PC <- PC + 4	M2, C2)	ya que la parte
	R1 <- MBR	(SelC=10101, LC, T1,	imaginaria se
	Salto a fetch	A0=1, B=1, C=0)	encuentra en la
			dirección de memoria
			del contador de
			programa por lo que
			hay que sumar 4 a PC
			para apuntar a la
			siguiente instrucción
sc R1 R2 (R3)	MAR <- R3	(MR=0, SeIA=1011, T9, C0)	- Nada a destacar
, ,	MBR <- R1	(MR=0, SelA=10101, T9, C1)	
	memory[MAR] <- MBR	(TA, TD, W, BW=11)	
	MAR <- R3 + 4	(MB=10, MC=1, selCOP=1010, T6, C0, SelA=1011)	
	MBR <- R2	(MR=0, SelB=10000, T10, C1)	
	memory[MAR] <- MBR	(TA, TD, W, BW=11,	
	Salto a fetch	A0=1, B=1, C=0)	
Ic R1 R2 (R3)	MAR <- R3	(MR=0, SeIA=1011, T9, C0)	- Nada a destacar
ic NI NZ (NS)	MBR <-memory[MAR]	(TA, R, BW=11, M1, C1)	- Ivada a destacai
	R1 <- MBR	(T1, LC, SelC= 10101)	
	MAR <- R3 + 4	(MB=10, MC=1, selCOP=1010, T6, C0, SelA=1011)	
	MBR <- memory[MAR]	(TA, R, BW=11, M1, C1)	
	R1 <- MBR	(T1, LC, SelC= 10000,	
	Salto a fetch	A0=1, B=1, C=0)	
addc R1 R2 R3 R4	R1 <- R1 + R3	(SelA=10101, SelB=1011, MC, SelCop=1010, T6, SelC=10101, LC,	- Se debe actualizar sr
dddc NI NZ NS N4	Actualizo SR	SelP=11, M7, C7)	en el mismo ciclo que
	R2 <- R2 + R4	(SelA=10000, SelB=110, MC, SelCop=1010, T6, SelC=10000, LC,	· ·
	Salto a fetch	A0=1, B=1, C=0)	la primera suma.
mulc R1 R2 R3 R4	RT1 <- R1 * R3	(selA=10101, selB=1011, selCop=01100, MC, T6, C4)	- Es necesario guardar
	RT2 <- R2 * R4	(selA=10000, selB=110, selCop=01100, MC, T6, C5)	R1 en un RT para
	RT3 <- RT1 - RT2	(selCop=01011, MC, MA, MB=01, C6	poder realizar todas
	actualizo sr	selP=11, M7, C7)	las operaciones y no
	RT1 <- R1 * R4	(selA=10101, selB=110, selCop=01100, MC, T6, C4)	operar con R1
	RT2 <- R2 * R3	(selA=10000, selB=1011, selCop=01100, MC, T6, C5)	cambiado por las
	R2 <- RT1 - RT2	(selC=10000, LC, selCop=01011, MC, T6, MA, MB=01)	•
	R1 <- RT3	(T7, SelC=10101, LC,	primeras operaciones.
	Salto a fetch	A0=1, B=1, C=0)	

beqc R1 R2	MBR <- SR SR (R1 - R3) IF SR.Z != 0, j beq2 SR (R2 - R4) IF SR.Z != 0, j beq2 RT1 <- PC RT2 <-S6 PC <-PC + S6 beq2: SR <- MBR Salto a fetch	(T8,C1) (SelA=10101, SelB=1011, SelCop=01011, MC, SelP=11, M7, C7) (A0=0, B=1, C=110, MADDR=beq2) (SelA=10000, SelB=110, SelCop=01011, MC, SelP=11, M7, C7) (A0=0, B=1, C=110, MADDR=beq2) (T2, C4) (SE=1, Offset=0, Size=110, T3, C5) (MA, MB=01, SelCop=1010, MC, T6, C2) beq2: (T1, C7, A0=1, B=1, C=0)	- Hay que destacar que al ser 2 condiciones se deben realizar 2 saltos y 2 comprobaciones, además de guardar el sr en mbr antes de todo para que al final se pueda recuperar.
call U20	ra(x1) <- PC PC <- U20 Salto a fetch	(LC, SelC=1, MR, T2) (SIZE=10100, OFFSET=0, SE=0, T3, C2, A0=1, B=1, C=0)	- Se debe utilizar MR puesto que el ID del registro no viene dado por la instrucción IR.
ret	PC <- ra(x1) Salto a fetch	(SeIA=0, MR, T9, C2, A0=1, B=1, C=0)	- Se puede lograr en un solo ciclo
hcf	PC <- x0 SR <- x0 Salto a fetch	(SeIA=0, MR, T9, C2) (SeIA=0, MR, T9, C7, A0=1, B=1, C=0)	- Hay que seleccionar x0 para asegurar que lo que llevamos a ambos registros es un0

Ejercicio 2

	Ciclos de reloj	Ciclos de reloj con	Mejora (%)
	Sin extensión	extensión	
A==B	131 ciclos	102 ciclos	19,84 % mejora
A!=B	105 ciclos	92 ciclos	12,38% mejora

La mejora de ciclos respecto al código sin extensión se debe a que este no contiene instrucciones para manejar dos registros a la vez, es decir, la parte real y la imaginaria trabajan de manera independiente, teniendo que ejecutar primero la real y justo después la imaginaria por lo que el programa trabaja el doble.

Sin embargo, la parte con extensión se crean instrucciones específicas para complejos, es decir, para operar la parte real y la imaginaria de manera simultánea y de ese modo el procesador necesita menos ciclos.

Después de hacer la comparación se puede ver que con la extensión el programa es mucho más eficiente por lo tanto si necesitamos realizar cualquier instrucción que conlleve usar complejos es rentable usar la extensión.

Conclusiones y problemas encontrados

Gracias a esta práctica hemos podido conocer una pequeña introducción a la microprogramación, lo que nos ha sido de gran ayuda para esta parte del curso. Gracias a esta misma hemos solventado con bastante soltura el ejercicio relativo al tema del último mini examen, por lo que estamos bastante satisfechos.

Los principales problemas que nos encontramos estuvieron principalmente localizados en el inicio de la práctica, pues no habíamos trabajado nunca con la herramienta y estábamos bastante desorientados. Comenzamos haciendo las instrucciones sc y lc, pero nos costó mucho más sacar la instrucción lc, puesto que no sabíamos trabajar con las dos palabras hasta que el coordinador, nuestro profesor en las clases magistrales, nos pudo dar unas breves indicaciones. A partir de ahí el desarrollo del trabajo ha sido bastante llevadero y progresivo.

	Horas estimadas
Ejercicio 1	11h
Ejercicio 2	3h
Memoria	2:30h