Attention Outputs

The computation can be represented as

•
$$Q \cdot K^{\mathsf{T}}$$
 is $n \times n$

• diagonal of $D = \operatorname{LT}(\exp(Q \cdot K^{\mathsf{T}})) \cdot 1_n$

• Naively computing takes $O(n^2)$ time

Prohibitive when n is large

 $D^{-1} \cdot \mathsf{LT}(\exp(Q \cdot K^\mathsf{T})) \cdot V$

Attention Outputs

The computation can be represented as

$$D^{-1} \cdot \mathsf{LT}(\exp(Q \cdot K^{\mathsf{T}})) \cdot V$$

- $Q \cdot K^{\mathsf{T}}$ is $n \times n$
- diagonal of $D = \mathrm{LT}(\exp(Q \cdot K^{\mathsf{T}})) \cdot 1_n$
- Naively computing takes $O(n^2)$ time
 - Prohibitive when n is large

Train Step Latency Per Token

Each token in the training examples looks back at the whole context