Here's a re-formatted version of the notes, incorporating more detail and aiming for greater clarity:

Prompt Engineering

- Prompt engineering is designing inputs (prompts) to get the best results from Large Language Models (LLMs).
- An LLM is a prediction engine that takes text as an input and predicts the next token based on its training data.
- The way you write prompts impacts the LLM's output. Factors include the model, training data, configurations, word choice, style, tone, structure, and context.
- Prompt engineering is an iterative process.

LLM Output Configuration

- After choosing a model, you configure it.
- Most LLMs have configuration options that control the LLM's output.
- Effective prompt engineering requires setting these configurations optimally.
- Key configurations are output length and sampling controls.

Output Length

- Output length is the number of tokens in a response.
- More tokens increase computation, energy consumption, response time, and costs.
- Reducing output length doesn't make the LLM more succinct; it just stops token prediction.
- If a short output is needed, the prompt may need adjustment.
- Output length restriction is important for some LLM prompting techniques, like ReAct, where the LLM can emit useless tokens.

Sampling Controls

- LLMs predict probabilities for the next possible token.
- Token probabilities are sampled to determine the next token.
- Temperature, top-K, and top-P are common settings for this.

Temperature

- Temperature controls randomness in token selection.
- Lower temperatures are for more deterministic responses; higher ones for more diverse output.
- A temperature of 0 (greedy decoding) is deterministic, selecting the highest probability token.
- Temperatures near the maximum produce more random output.

As temperature increases, all tokens become equally likely.

Top-K and Top-P

- Top-K and top-P restrict the next token to those with the highest predicted probabilities.
- Like temperature, these control the randomness and diversity of generated text.
- Top-K sampling selects the top K most likely tokens. Higher K means more varied output; lower K, more restrictive output.
- A top-K of 1 is equivalent to greedy decoding.
- Top-P sampling selects the top tokens whose cumulative probability doesn't exceed a value (P), ranging from 0 (greedy decoding) to 1 (all tokens).
- The best way to choose between top-K and top-P is to experiment.

Putting it all together

- The choice between top-K, top-P, temperature, and output length depends on the application and desired outcome, as these settings impact each other.
- It's also important to understand how your chosen model combines the different sampling settings.
- If temperature, top-K, and top-P are all available, tokens that meet both the top-K and top-P criteria are candidates for the next predicted token, and then temperature is applied to sample from the tokens that passed the top-K and top-P criteria.
- If only top-K or top-P is available, the behavior is the same, but only the one top-K or P setting is used.
- If temperature is not available, whatever tokens meet the top-K and/or top-P criteria are then randomly selected from to produce a single next predicted token.
- Extreme settings of one sampling configuration value can cancel out others or become irrelevant.
 - If temperature is 0, top-K and top-P are irrelevant; the most probable token is predicted.
 - If temperature is extremely high (above 1), it becomes irrelevant, and tokens meeting top-K and/or top-P criteria are randomly sampled.
 - If top-K is 1, temperature and top-P are irrelevant.
 - If top-K is extremely high, any token with a nonzero probability will meet the top-K criteria.
 - o If top-P is 0, temperature and top-K are irrelevant.
 - o If top-P is 1, any token with a nonzero probability will meet the top-P criteria.
- A temperature of 0.2, top-P of 0.95, and top-K of 30 gives coherent, moderately creative results.

- For more creative results, start with a temperature of 0.9, top-P of 0.99, and top-K of 40.
- For less creative results, start with a temperature of 0.1, top-P of 0.9, and top-K of 20.
- For tasks with a single correct answer (e.g., math), start with a temperature of 0.
- More freedom in LLM settings can generate less relevant text.

WARNING: The Repetition Loop Bug

- A common issue in LLMs is the repetition loop bug, where the model repeats a word, phrase, or sentence, often due to inappropriate temperature and top-K/top-P settings.
- This occurs at both low and high temperatures.
- At low temperatures, the model becomes overly deterministic, which can lead to a loop.
- At high temperatures, the model's output becomes excessively random, increasing the probability of repetition.
- In both cases, the model's sampling process gets "stuck," resulting in monotonous and unhelpful output.
- Solving this requires carefully balancing determinism and randomness by adjusting temperature and top-K/top-P values.

Prompting Techniques

- LLMs are tuned to follow instructions and are trained on large amounts of data.
- Clearer prompts help LLMs predict the next likely text.
- Specific techniques leverage LLM training to get relevant results.

General Prompting / Zero Shot

- A zero-shot prompt is the simplest, providing only a task description.
- The input could be a question, story start, or instructions.
- "Zero-shot" means 'no examples' are provided.

One-Shot & Few-Shot

- Providing examples helps AI models understand what is asked.
- Examples are useful to steer the model to a certain output structure or pattern.
- A one-shot prompt provides a single example for the model to imitate to complete the task.
- A few-shot prompt provides multiple examples, showing a pattern for the model to follow.
- The number of examples needed depends on task complexity, example quality, and gen AI model capabilities.

- Use at least three to five examples for few-shot prompting.
- Examples should be relevant, diverse, high-quality, and well-written.
- Include edge cases for robust output.

System, Contextual, and Role Prompting

- These guide LLMs to generate text, focusing on different aspects:
 - System prompting sets the overall context and purpose.
 - Contextual prompting provides specific, relevant details.
 - Role prompting assigns a character or identity.
- Distinguishing these provides a framework for designing prompts with clear intent and makes it easier to analyze how each prompt type influences the language model's output.

System Prompting

- System prompts generate output that meets specific requirements.
- A 'system prompt' provides an additional task.

Role Prompting

- Role prompting guides LLMs by assigning a specific role or persona.
- This is effective in creative writing, Q&A, and interactive applications, helping the model generate relevant and contextually appropriate responses.

Contextual Prompting

- Contextual prompting provides specific details or background information.
- By grounding the LLM in a context, you can generate more focused and relevant outputs.

Step-Back Prompting

- Step-back prompting improves LLM reasoning.
- The LLM first considers a general question before a specific task.
- The general question's answer is then used in a prompt for the specific task.
- This is inspired by how humans break down complex problems.
- This technique can increase prompt accuracy.

Chain of Thought (CoT)

- Chain of Thought (CoT) prompting improves LLM reasoning by generating intermediate steps for more accurate answers.
- Combining it with few-shot prompting improves results on complex reasoning tasks.
- CoT is low-effort, effective, and works with off-the-shelf LLMs (no fine-tuning

- needed).
- CoT improves interpretability, allowing you to learn from the LLM's responses and see the reasoning steps that were followed.
- LLM responses include chain of thought reasoning, which means more output tokens, which means predictions cost more money and take longer.

Self-Consistency

- Self-consistency improves LLM accuracy in reasoning or problem-solving tasks.
- It builds on Chain of Thought (CoT) prompting.
- Instead of a single chain of thought, it generates multiple diverse reasoning paths.
- The final answer is selected based on the consistency among these paths.
- If a model reasons correctly, it should arrive at the same answer through different lines of reasoning.
- Checking for agreement among multiple reasoning paths reduces the likelihood of a correct answer by chance or superficial pattern matching.

ReAct (Reason & Act)

- ReAct enhances LLM ability to perform complex tasks by combining reasoning and acting.
- It enables LLMs to interact with environments or tools to gather information and take actions, in addition to generating natural language.
- ReAct is inspired by how humans solve problems, combining deduction with actions that modify our environment.
- The LLM generates interleaved reasoning and action steps.
- Reasoning helps the model think through the problem, plan, and decide what actions to take.
- Action steps let the model interact with external environments like search engines or databases.
- By combining reasoning and acting, ReAct allows LLMs to tackle more complex and dynamic tasks.

Code Prompting

The same regular large language model can be used for code prompting.

Multimodal Prompting

 Multimodal prompting uses multiple input formats, instead of just text, to guide a large language model.

Best Practices

Effective prompt engineering involves providing examples, simplicity, clear

instructions, controlling output length, using variables, experimenting with formats, and adapting to model updates.

- For CoT prompting, put the answer after the reasoning.
- For CoT prompting, set the temperature to 0.
- Document prompt attempts in full detail.

JSON Repair

- JSON, while good for parsing, requires more tokens than plain text, increasing processing time and costs.
- JSON verbosity can consume the entire output window, and truncation can result in invalid JSON.
- Tools like json-repair can automatically fix incomplete or malformed JSON, which is crucial when dealing with potential truncation issues.

Working with Schemas

 JSON Schemas define the expected structure and data types of a JSON object, and can be used to structure LLM input.