Adaboosting Algoritham

Classification Census Dataset

Dataset: https://archive.ics.uci.edu/ml/datasets/census+income)

(https://archive.ics.uci.edu/ml/datasets/census+income)

For EDA an FE Please watch this post: <a href="https://www.linkedin.com/posts/murali-divya-teja-gummadidala-machine-learning_logisticsvm-assignment-activity-6993985726476378112-XTwa?utm_source=share&utm_medium=member_desktop (https://www.linkedin.com/posts/murali-divya-teja-gummadidala-machine-learning_logisticsvm-assignment-activity-6993985726476378112-XTwa?utm_source=share&utm_medium=member_desktop)

```
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

```
In [3]: df = pd.read_csv(r'C:\Users\HP\Documents\ML-Assignment\ML-assingment\Classificati
df.head()
```

Out[3]:

	Unnamed: 0	age	workclass	fnlwgt	education	education- num	marital- status	occupation	capit g
0	0	3.663562	0.039864	11.258240	0	13	0.328092	0.115783	0.7347
1	1	3.912023	0.078038	11.330336	0	13	0.459937	0.124873	-0.0000
2	2	3.637586	0.753417	12.281393	1	9	0.136452	0.042075	-0.0000
3	3	3.970292	0.753417	12.366153	2	7	0.459937	0.042075	-0.0000
4	4	3.332205	0.753417	12.732011	0	13	0.459937	0.183747	-0.0000

5 rows × 23 columns

```
In [5]: df.drop(['Unnamed: 0'],axis=1,inplace= True)
In [6]: df.head()
Out[6]:
```

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	capital- gain	capital- loss
0	3.663562	0.039864	11.258240	0	13	0.328092	0.115783	0.734717	-0.0
1	3.912023	0.078038	11.330336	0	13	0.459937	0.124873	-0.000000	-0.0
2	3.637586	0.753417	12.281393	1	9	0.136452	0.042075	-0.000000	-0.0
3	3.970292	0.753417	12.366153	2	7	0.459937	0.042075	-0.000000	-0.0
4	3.332205	0.753417	12.732011	0	13	0.459937	0.183747	-0.000000	-0.0

5 rows × 22 columns

```
In [7]: df.isnull().sum()
Out[7]: age
                                          0
        workclass
                                          0
        fnlwgt
                                          0
        education
                                          0
        education-num
                                          0
        marital-status
                                          0
        occupation
                                          0
        capital-gain
                                          0
        capital-loss
        hours-per-week
                                          0
        native-country
                                          0
        salary
                                          0
        sex_ Male
                                          0
        race_ Asian-Pac-Islander
                                          0
        race_ Black
        race_ Other
                                          0
        race White
                                          0
        relationship_ Not-in-family
                                          0
        relationship_ Other-relative
                                          0
        relationship_ Own-child
                                          0
        relationship_ Unmarried
                                          0
        relationship_ Wife
        dtype: int64
```

In [8]: df.describe().T

Out[8]:

	count	mean	std	min	25%	50%	75%	max
age	32561.0	3.589360	0.360379	2.833213	3.332205	3.610918	3.871201	4.499810
workclass	32561.0	0.581492	0.300678	0.000215	0.753417	0.753417	0.753417	0.753417
fnlwgt	32561.0	11.986407	0.583247	10.583043	11.676973	12.091537	12.376031	12.847089
education	32561.0	3.424465	3.453582	0.000000	1.000000	2.000000	5.000000	15.000000
education- num	32561.0	10.080679	2.572720	1.000000	9.000000	10.000000	12.000000	16.000000
marital- status	32561.0	0.339891	0.140320	0.000706	0.328092	0.328092	0.459937	0.459937
occupation	32561.0	0.111534	0.046773	0.000276	0.101195	0.115783	0.125887	0.183747
capital-gain	32561.0	0.061195	0.203023	-0.000000	0.000000	0.000000	0.000000	0.734738
capital-loss	32561.0	0.016342	0.073877	-0.000000	0.000000	0.000000	0.000000	0.350305
hours-per- week	32561.0	40.437456	12.347429	1.000000	40.000000	40.000000	45.000000	99.000000
native- country	32561.0	0.835528	0.254674	0.000031	0.913762	0.913762	0.913762	0.913762
salary	32561.0	0.240810	0.427581	0.000000	0.000000	0.000000	0.000000	1.000000
sex_ Male	32561.0	0.669205	0.470506	0.000000	0.000000	1.000000	1.000000	1.000000
race_ Asian- Pac-Islander	32561.0	0.031909	0.175761	0.000000	0.000000	0.000000	0.000000	1.000000
race_ Black	32561.0	0.095943	0.294518	0.000000	0.000000	0.000000	0.000000	1.000000
race_ Other	32561.0	0.008323	0.090851	0.000000	0.000000	0.000000	0.000000	1.000000
race_ White	32561.0	0.854274	0.352837	0.000000	1.000000	1.000000	1.000000	1.000000
relationship_ Not-in-family	32561.0	0.255060	0.435901	0.000000	0.000000	0.000000	1.000000	1.000000
relationship_ Other- relative	32561.0	0.030128	0.170942	0.000000	0.000000	0.000000	0.000000	1.000000
relationship_ Own-child	32561.0	0.155646	0.362525	0.000000	0.000000	0.000000	0.000000	1.000000
relationship_ Unmarried	32561.0	0.105832	0.307627	0.000000	0.000000	0.000000	0.000000	1.000000
relationship_ Wife	32561.0	0.048156	0.214099	0.000000	0.000000	0.000000	0.000000	1.000000

```
In [9]: X = df.drop(['salary'],axis=1)
X.head()
```

Out[9]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	capital- gain	capital- loss
0	3.663562	0.039864	11.258240	0	13	0.328092	0.115783	0.734717	-0.0
1	3.912023	0.078038	11.330336	0	13	0.459937	0.124873	-0.000000	-0.0
2	3.637586	0.753417	12.281393	1	9	0.136452	0.042075	-0.000000	-0.0
3	3.970292	0.753417	12.366153	2	7	0.459937	0.042075	-0.000000	-0.0
4	3.332205	0.753417	12.732011	0	13	0.459937	0.183747	-0.000000	-0.0

5 rows × 21 columns

```
In [10]: |X.columns
Out[10]: Index(['age', 'workclass', 'fnlwgt', 'education', 'education-num',
                  'marital-status', 'occupation', 'capital-gain', 'capital-loss',
'hours-per-week', 'native-country', 'sex_ Male',
                  'race_ Asian-Pac-Islander', 'race_ Black', 'race_ Other', 'race_ White',
                  'relationship_ Not-in-family', 'relationship_ Other-relative',
                  'relationship Own-child', 'relationship Unmarried',
                  'relationship_ Wife'],
                dtype='object')
In [11]: y = df['salary']
          y.head()
Out[11]: 0
               0
               0
               0
          Name: salary, dtype: int64
In [12]: | from sklearn.model_selection import train_test_split
In [13]: X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.33,random_state=
In [14]: X_train.shape
Out[14]: (21815, 21)
In [15]: y_train.shape
Out[15]: (21815,)
```

```
In [16]: from sklearn.ensemble import AdaBoostClassifier
In [17]: | adb = AdaBoostClassifier()
In [18]: |adb.fit(X_train,y_train)
Out[18]:
          ▼ AdaBoostClassifier
          AdaBoostClassifier()
In [19]: | adb.score(X_train,y_train)
Out[19]: 0.855787302314921
In [20]: y_prd_adb = adb.predict(X_test)
         y_prd_adb
Out[20]: array([0, 0, 1, ..., 0, 0, 0], dtype=int64)
In [21]: from sklearn.metrics import confusion matrix, classification report, accuracy sco
In [22]: cm = confusion matrix(y test,y prd adb)
In [23]:
Out[23]: array([[7719, 477],
                [1016, 1534]], dtype=int64)
In [24]: print(classification_report(y_test,y_prd_adb))
                        precision
                                     recall f1-score
                                                        support
                                       0.94
                                                 0.91
                    0
                             0.88
                                                           8196
                    1
                             0.76
                                       0.60
                                                 0.67
                                                           2550
                                                 0.86
                                                          10746
             accuracy
                                                 0.79
                                                          10746
            macro avg
                             0.82
                                       0.77
         weighted avg
                             0.86
                                       0.86
                                                 0.86
                                                          10746
In [25]: |print(accuracy_score(y_test,y_prd_adb))
         0.8610645821701098
In [26]: from sklearn.metrics import roc_auc_score,roc_curve
```

```
In [27]: |y_prd_adb_prb = adb.predict_proba(X test)[:,1]
         y_prd_adb_prb
Out[27]: array([0.47908405, 0.49763667, 0.5024228, ..., 0.49157928, 0.49773317,
                0.4741657 ])
In [28]: |fpr_a,tpr_a,ther_a = roc_curve(y_test,y_prd_adb_prb)
In [29]: | auc_a = roc_auc_score(y_test,y_prd_adb_prb)
         auc_a
Out[29]: 0.9132332845290386
In [30]: | def plot_roc_curve(fpr, tpr,auc):
             plt.plot(fpr, tpr, color='orange', label='ROC and auc score = '+str(auc))
             plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--')
             plt.xlabel('False Positive Rate')
             plt.ylabel('True Positive Rate')
             plt.title('Receiver Operating Characteristic (ROC) Curve')
             plt.legend()
             plt.show()
```

In [31]: plot_roc_curve(fpr_a,tpr_a,auc_a)

get more accuracy we can do Hyperparametre tuening

```
In [32]: from sklearn.model_selection import RandomizedSearchCV

In [33]: grid_param = {
         'n_estimators': [50,70,90,120,150],
         'learning_rate':[0.001,0.01,0.1,0.5]
}

In [34]: rsearch = RandomizedSearchCV(estimator=adb,param distributions=grid param,cv=3,ve=3)
```

```
In [35]: rsearch.fit(X train,y train)
         Fitting 3 folds for each of 10 candidates, totalling 30 fits
Out[35]:
                                          RandomizedSearchCV
           RandomizedSearchCV(cv=3, estimator=AdaBoostClassifier(), n_jobs=-1,
                              param_distributions={\'learning_rate': [0.001, 0.01, 0.1,
                                                                      0.5],
                                                    'n_estimators': [50, 70, 90, 120, 15
           0]},
                              verbose=1)
                                   ▶ estimator: AdaBoostClassifier
                                         ▼ AdaBoostClassifier
                                        AdaBoostClassifier()
In [36]: print(rsearch.best_params_)
         {'n estimators': 90, 'learning rate': 0.5}
In [37]: | adb p = AdaBoostClassifier(n estimators=90,learning rate=0.5)
In [38]: |adb_p.fit(X_train,y_train)
Out[38]:
                             AdaBoostClassifier
          AdaBoostClassifier(learning rate=0.5, n estimators=90)
In [39]: |adb_p.score(X_train,y_train)
Out[39]: 0.8559706623882649
In [40]: |y_prd_bp = adb_p.predict(X_test)
In [41]:
         print(accuracy_score(y_test,y_prd_bp))
         0.860785408524102
In [42]: |print(classification_report(y_test,y_prd_bp))
                                     recall f1-score
                        precision
                                                        support
                     0
                             0.88
                                       0.94
                                                 0.91
                                                            8196
                     1
                             0.76
                                       0.60
                                                 0.67
                                                            2550
             accuracy
                                                 0.86
                                                           10746
            macro avg
                             0.82
                                       0.77
                                                 0.79
                                                           10746
         weighted avg
                             0.85
                                       0.86
                                                 0.85
                                                          10746
```

```
In [43]: y_prd_adb_prb = adb_p.predict_proba(X_test)[:,1]
y_prd_adb_prb
```

Out[43]: array([0.47447542, 0.49921235, 0.50175257, ..., 0.49218003, 0.49828127, 0.47720076])

```
In [44]: fpr_a,tpr_a,ther_a = roc_curve(y_test,y_prd_adb_prb)
```

```
In [45]: auc_a = roc_auc_score(y_test,y_prd_adb_prb)
auc_a
```

Out[45]: 0.9132175427516053

```
In [46]: plot_roc_curve(fpr_a,tpr_a,auc_a)
```


In []: