

复变函数与积分变换

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.github.io

例

求下列集合在映照 $w=z^2$ 下的像.

(1) 线段 0 < |z| < 2, $\arg z = \pi/2$.

例

求下列集合在映照 $w=z^2$ 下的像.

- (1) 线段 0 < |z| < 2, $\arg z = \pi/2$.
- (2) 双曲线 $x^2 y^2 = 4$.

例

求下列集合在映照 $w=z^2$ 下的像.

- (1) 线段 0 < |z| < 2, $\arg z = \pi/2$.
- (2) 双曲线 $x^2 y^2 = 4$.
- (3) 扇形区域 $0 < \arg z < \pi/4, 0 < |z| < 2.$

例

求下列集合在映照 $w=z^2$ 下的像.

- (1) 线段 0 < |z| < 2, $\arg z = \pi/2$.
- (2) 双曲线 $x^2 y^2 = 4$.
- (3) 扇形区域 $0 < \arg z < \pi/4, 0 < |z| < 2.$

例

求下列集合在映照 $w=z^2$ 下的像.

- (1) 线段 0 < |z| < 2, $\arg z = \pi/2$.
- (2) 双曲线 $x^2 y^2 = 4$.
- (3) 扇形区域 $0 < \arg z < \pi/4, 0 < |z| < 2.$

例

求下列集合在映照 $w=z^2$ 下的像.

- (1) 线段 0 < |z| < 2, $\arg z = \pi/2$.
- (2) 双曲线 $x^2 y^2 = 4$.
- (3) 扇形区域 $0 < \arg z < \pi/4, 0 < |z| < 2.$

例

求下列集合在映照 $w=z^2$ 下的像.

- (1) 线段 0 < |z| < 2, $\arg z = \pi/2$.
- (2) 双曲线 $x^2 y^2 = 4$.
- (3) 扇形区域 $0 < \arg z < \pi/4, 0 < |z| < 2.$

- (1) 设 $z = re^{\frac{\pi i}{2}} = ir$, 则 $w = z^2 = -r^2$. 因此它的像是线段 0 < |w| < 4, $\arg w = \pi$.
- (2) 由于 $w = u + iv = z^2 = (x^2 y^2) + 2xyi$.

例

求下列集合在映照 $w=z^2$ 下的像.

- (1) 线段 0 < |z| < 2, $\arg z = \pi/2$.
- (2) 双曲线 $x^2 y^2 = 4$.
- (3) 扇形区域 $0 < \arg z < \pi/4, 0 < |z| < 2.$

- (1) 设 $z = re^{\frac{\pi i}{2}} = ir$, 则 $w = z^2 = -r^2$. 因此它的像是线段 0 < |w| < 4, $\arg w = \pi$.
- (2) 由于 $w = u + iv = z^2 = (x^2 y^2) + 2xyi$.

例

求下列集合在映照 $w=z^2$ 下的像.

- (1) 线段 0 < |z| < 2, $\arg z = \pi/2$.
- (2) 双曲线 $x^2 y^2 = 4$.
- (3) 扇形区域 $0 < \arg z < \pi/4, 0 < |z| < 2.$

- (1) 设 $z = re^{\frac{\pi i}{2}} = ir$, 则 $w = z^2 = -r^2$. 因此它的像是线段 0 < |w| < 4, $\arg w = \pi$.
- (2) 由于 $w = u + iv = z^2 = (x^2 y^2) + 2xyi$. 因此 $u = x^2 y^2 = 4, v = 2xy$.

例

求下列集合在映照 $w=z^2$ 下的像.

- (1) 线段 0 < |z| < 2, $\arg z = \pi/2$.
- (2) 双曲线 $x^2 y^2 = 4$.
- (3) 扇形区域 $0 < \arg z < \pi/4, 0 < |z| < 2$.

解答

- (1) 设 $z = re^{\frac{\pi i}{2}} = ir$, 则 $w = z^2 = -r^2$. 因此它的像是线段 0 < |w| < 4, $\arg w = \pi$.
- (2) 由于 $w=u+{\rm i}v=z^2=(x^2-y^2)+2xy{\rm i}$. 因此 $u=x^2-y^2=4, v=2xy$. 可以说明 当 u=4 时, 对任意 $v,u+{\rm i}v$ 都是该双曲线上某一点的像.

-1945-

例

求下列集合在映照 $w=z^2$ 下的像.

- (1) 线段 0 < |z| < 2, $\arg z = \pi/2$.
- (2) 双曲线 $x^2 y^2 = 4$.
- (3) 扇形区域 $0 < \arg z < \pi/4, 0 < |z| < 2$.

- (1) 设 $z = re^{\frac{\pi i}{2}} = ir$, 则 $w = z^2 = -r^2$. 因此它的像是线段 0 < |w| < 4, $\arg w = \pi$.
- (2) 由于 $w=u+{\rm i}v=z^2=(x^2-y^2)+2xy{\rm i}$. 因此 $u=x^2-y^2=4, v=2xy$. 可以说明 当 u=4 时, 对任意 v, $u+{\rm i}v$ 都是该双曲线上某一点的像. 所以这条双曲线的像是直线 ${\rm Re}\,w=4$.
- (3) 设 $z = re^{i\theta}$, 则 $w = r^2 e^{2i\theta}$.

例

求下列集合在映照 $w=z^2$ 下的像.

- (1) 线段 0 < |z| < 2, $\arg z = \pi/2$.
- (2) 双曲线 $x^2 y^2 = 4$.
- (3) 扇形区域 $0 < \arg z < \pi/4, 0 < |z| < 2$.

- (1) 设 $z = re^{\frac{\pi i}{2}} = ir$, 则 $w = z^2 = -r^2$. 因此它的像是线段 0 < |w| < 4, $\arg w = \pi$.
- (2) 由于 $w=u+{\rm i}v=z^2=(x^2-y^2)+2xy{\rm i}$. 因此 $u=x^2-y^2=4, v=2xy$. 可以说明 当 u=4 时, 对任意 v, $u+{\rm i}v$ 都是该双曲线上某一点的像. 所以这条双曲线的像是直线 ${\rm Re}\,w=4$.
- (3) 设 $z = re^{i\theta}$, 则 $w = r^2 e^{2i\theta}$.

例

求下列集合在映照 $w=z^2$ 下的像.

- (1) 线段 0 < |z| < 2, $\arg z = \pi/2$.
- (2) 双曲线 $x^2 y^2 = 4$.
- (3) 扇形区域 $0 < \arg z < \pi/4, 0 < |z| < 2$.

- (1) 设 $z = re^{\frac{\pi i}{2}} = ir$, 则 $w = z^2 = -r^2$. 因此它的像是线段 0 < |w| < 4, $\arg w = \pi$.
- (2) 由于 $w=u+{\rm i}v=z^2=(x^2-y^2)+2xy{\rm i}$. 因此 $u=x^2-y^2=4, v=2xy$. 可以说明 当 u=4 时, 对任意 v, $u+{\rm i}v$ 都是该双曲线上某一点的像. 所以这条双曲线的像是直线 ${\rm Re}\,w=4$.
- (3) 设 $z=r\mathrm{e}^{\mathrm{i}\theta}$, 则 $w=r^2\mathrm{e}^{2\mathrm{i}\theta}$. 因此它的像是扇形区域 $0<\arg w<\pi/2,0<|w|<4$.