

Biomecatrónica

Introducción a los sistemas de control

¿Qué es un sistema de control?

Un sistema de control consta de **subsistemas** y **procesos** (o **plantas**) ensamblados con el propósito de obtener una **salida** deseada con el **desempeño** deseado, dada una **entrada** específica

Sistema de control

Sistema de control

Lazo abierto

Lazo cerrado

¿Qué hace la realimentación?

Ventajas de realimentar

- La salida se puede manipular para que siga una trayectoria dada
- Menor sensibilidad a cambios en los parámetros
- Menor sensibilidad a perturbaciones
- Facilidad para alcanzar transientes y estados estacionarios deseados

Desventajas de realimentar

- El sistema se puede desestabilizar
- Pérdida de ganancia
- Requiere de componentes de precisión en el lazo de realimentación

Escuelas de control

Control clásico (40s y 50s)

- Sistemas y especificaciones de rendimiento en el dominio de la frecuencia
- Diseño iterativo mediante ajuste fino (ensayo-error)
- Solo sistemas SISO
- No se garantiza diseño óptimo

Control moderno (60s y 70s)

- Sistemas y especificaciones de rendimiento en el dominio del tiempo
- Sistemas SISO y MIMO
- Leyes de control por lo general óptimas