장 삼

로컬 영역 네트워크 - 토폴로지 및 아키텍처

제 목표

- 용어 LAN 토폴로지를 정의하고 버스, 스타, 반지, 무선 토폴로지를 식별합니다.
- 물리적 및 논리적 토폴로지의 차이점을 설명하십시오.
- 용어 LAN 아키텍처를 정의합니다.
- 이더넷 LAN 아키텍처를 설명하고 일반적인 이더넷 표준을 식별합니다.
- 이더넷 액세스 방법을 설명합니다.

제 목표 (계속)

- 무선 LAN 아키텍처를 설명하십시오.
- 무선 LAN 및 무선 PAN 기술과 역사를 토론한다.
- IEEE 802.11, 블루투스, 및 홈 RF에 대한 공통 기준 및 액세스 방법을 확인합니다.
- 무선 아키텍처의 기술 및 비즈니스 고려 사항을 토론한다.
- FDDI 및 ATM 표준, 접근 방법, 기술 및 비즈니스 측면을 확인합니다.

LAN 토폴로지

- 에이 LAN 토폴로지 나는 로컬 영역 네트워크의 기본 맵이나 레이아웃을이야.
- 네 일반적인 유형은 버스, 스타, 반지, 무선 있습니다.

 논리적 및 물리적 토폴로지는 LAN 설계에서 고려되어야한다.

LAN 토폴로지 (계속)

• 논리 토폴로지 랜의 개념의 레이아웃, 또는 데이터가 LAN를 통해 유동하는 방식을 정의한다.

• 물리적 토폴로지 LAN상의 LAN의 실제 물리적 레이아웃과 케이블, 컴퓨터, 프린터의 구성 및 기타 장치를 정의합니다.

LAN 토폴로지 - BUS

 에이 버스 토폴로지 공유 네트워크 매체로 구성되어 다양한 네트워크 장치가 부착 된, 모든 접속 장치는 네트워크상의 모든 데이터 전송을 듣는다.

 동축 케이블로 구현되는 버스 토폴로지 물리적 버스, 논리적 버스 둘 다.

간단한 버스 토폴로지

LAN 토폴로지 - BUS (계속)

- 버스 토폴로지의 장점 / 단점 :
 - 쉽고 구현 저렴. (광고주).
 - 케이블 세그먼트의 연결이 해제되거나 손상된 경우, 전체 네트워크를 사용할 수 없게됩니다. (Disadv).
 - 케이블 세그먼트가 실패 할 경우에 오류가있는 케이블 세그먼트 명백하지 않기 때문에 문제를 해결하기 어렵다. (Disadv).

LAN 토폴로지 - STAR

 스타 토폴로지 네트워크 장치, 데이터 전송 매체에 연결된 모든 장치 사이에 연결을 제공하는 중앙 장치로 구성된다.

• 일반적인 구현은 허브 나 스위치에 연결 UTP 케이블을 포함한다.

스타 토폴로지

LAN 토폴로지 - STAR (계속)

• 실제 스타 / 논리적 버스

- 물리적 스타 / 논리적 버스 토폴로지는 트위스트 페어 케이블과 사용 바퀴통 .
- 상기 허브에 연결되는 모든 컴퓨팅 장치는 즉시 논리 구성하는 데이터 버스를 듣는다.
- 고인 쌍 케이블을 통해 허브에 장치를 연결하는 실제의 물리적 레이아웃은 물리적 스타.

실제 스타 / 논리적 버스

LAN 토폴로지 - STAR (계속)

• 실제 스타 / 논리적 스타

- 트위스트 페어 케이블과를 사용 스위치.
- 별의 물리적 구성을 가지고 있습니다.
- 데이터의 흐름은 단지뿐만 아니라 구성을 논리적으로 별을 만드는받는 사람에 발산.

실제 스타 / 논리 스타

LAN 토폴로지 - STAR (계속)

- 실제 스타 장점 / 단점 :
 - LAN에 연결 중앙 집중식 장치를 통해입니다. (광고주).
 - 중앙 장치는 단일 장애 지점이 될 가능성이있다. (Disadv).
 - 하나 개의 케이블 세그먼트의 손실은 전체 네트워크를 가져 오지 않습니다. (광고주).

LAN 토폴로지 - RING

 안에 링 토폴로지 모든 네트워크 장치는 폐쇄 루프에 접속되고, 데이터는 링 주위 단방향 방식으로 디바이스 기기에서 흐른다.

링 토폴로지

LAN 토폴로지 - 링 (계속)

• 장점 단점:

- 스타 구성하지 않고, 장치 사이의 케이블에있는 틈은 전체 반지를 중단 할 수 있습니다. (Disadv).
- 첫 번째 고리가 실패하거나 손상된 경우 듀얼 링은 장애 복구 기능을 제공 할 수 있습니다.

LAN 토폴로지 - 무선

 무선 토폴로지 전송 매체로서 무선 주파수 대신 케이블을 사용한다.

- 무선 토폴로지는 LAN에 무선 장치를
 연결하기위한 액세스 포인트 대신 허브를
 사용합니다.
- 지리적 영역은 세포로 구분되며, 각 셀은 액세스 포인트가 포함되어 있습니다.

무선 토폴로지

LAN 토폴로지 - 무선 (계속)

- 무선 LAN의 물리적 토폴로지는 물리적 스타에 비교 될 수있다.
- 논리적 토폴로지는 논리적 버스에 비교 될 수있다.
- 하지만 무선 LAN에서 무선 장치는 항상 서로를들을 수 없습니다. 이 모든 장치는 LAN에있는 모든 다른 장치를들을 수있는 논리적 버스 토폴로지는 다르다.

LAN 토폴로지 - 무선 (계속)

• 장점 / 무선 단점 :

- 무선 LAN은 설치가 용이하다. (광고주).
- 어떤 케이블을 설치하지하거나 구멍을 드릴 수 있습니다. (광고주).
- 네트워크 장치는 세포에서 세포로 이동할 수 있습니다. (광고주).
- 네트워크 장치는 액세스 포인트의 몇 백 피트 이내에 위치해야합니다. (Disadv).
- 보안은 더 많은 관심이 필요합니다. (Disadv).

토폴로지 비교

TAE	BLE 3.1
Tope	ology
Con	parison

Topology Type	Where Commonly Used	Business Considerations
Physical bus/logical bus	10Base5 and 10Base2 Ethernet LANs	Old technology that is no longer implemented. Provided 10 Mbps bandwidth in its day
Physical star/logical bus	10/100Base-T Ethernet LANs	Uses UTP cabling and hubs to link computers in 10Base-T or 100Base-T LANs
Physical star/logical star	10/100Base-T switched Ethernet LANs	Uses UTP cabling and Ethernet switches to link computers
Physical star/logical ring	Token Ring LANs and FDDI backbones	Uses STP or UTP cabling to link Token Ring devices through a MSAU. Uses fiber-optic or UTP cabling to link FDDI backbones through an FDDI hub
Physical ring/logical ring	Token Ring LANs and FDDI backbones	Uses STP or UTP cabling to link Token Ring devices in a ring. Uses fiber-optic or UTP cabling to link FDDI devices in either a single or dual ring

LAN 아키텍처

• LAN 아키텍처 데이터 네트워크 미디어 매체에 배치되는 데이터 프레임의 구조를 액세스하는 방법이다.

LAN 아키텍처 -

ETHERNET

- 1970 년대 초에 시작되었다.
- 그것은 알로하 프로토콜로 알려진 네트워크에 의해 사용되는 데이터 전송 방식을 기반.
- 밥 Metcalfe는 그 발명에 적립된다.
- 첫 번째 이더넷 표준은 DIX로 알려졌다.
- 첫 번째 IEEE 이더넷 표준은 IEEE로 알려져있다 802.3
- 현대 랜 인기.
- 그것은 효과적이고 신뢰할 수있는 쉽게 구현할 수 및 비용입니다.
- 그것은 널리 인정 업계 표준입니다.

LAN 아키텍처 -이더넷 (계속)

- 이더넷은 원래의 thicknet (의 10Base5)에 배포하고 나중에도 thinnet (10베이스)했다.
- 10BASE-T는 UTP 케이블을 통해 10Mbps의베이스 밴드 이더넷이다.
- 100BASE-T는 UTP 케이블을 통해 100Mbps의베이스 밴드 이더넷이다.
- 다른 이더넷 표준은 표준 IEEE 802.3X 세트에 해당.

IEEE 802.3 이더넷 표준

TABLE 3.2	
IEEE 802.3	Ethernet
Standards	

Ethernet Standard	Media Type(s) Supported	Description	
10BASE5	Thicknet or thick Ethernet	10 Mbps Ethernet over thicknet with a maximum cable segment length of 500 meters	
10BASE2	Thinnet or thin Ethernet	10 Mbps Ethernet over thinnet with a maximum cable segment length of 185 meters ^a	
10BASE-T	Categories 3-6 UTP	10 Mbps Ethernet over UTP cabling, usually cat5. Uses two of the twisted pairs	
100BASE-TX	Categories 3-6 UTP	100 Mbps Ethernet over UTP cabling, usually cat5 or cat5e. Uses two of the twisted pairs	
100BASE-FX	Fiber-optic cable	100 Mbps Ethernet over fiber-optic cable	
100BASE-T4	Category 3 UTP	Obsolete. Was designed to use all four of the twisted pairs of cat3 UTP cabling	
1000BASE-T	Category 5-6 UTP	1 Gbps over cat 5 or greater. Uses all four of the cabling's twisted pairs. Generally implemented on cat5e or greater	
10GBase-LX4	SMF or MMF	10 Gbps over SMF or MMF	

*The 2 in 10Base2 is a representation of 200 meters, which is 185 meters rounded up.

LAN은 이더넷 액세스 방법을 아키텍처

- 이더넷은 CSMA / CD를 사용합니다.
- <u>캐리어 센스를 청</u>취 또는 네트워크 매체에 중립 전기 신호를 감지하는 네트워크 장비를 지칭한다.

• <u>다중 액세스는 모든 네</u>트워크 장치가 네트워크 미디어와 동일한 액세스 권한이 있는지 지정합니다.

LAN 아키텍처 - ETHERNET 액세스 메소드 (계속)

 충돌 감지 충돌을 검출하는 전송 장치는 충돌이 발생했음을 나타 내기 위해 다른 장치에 신호를 송출되도록.

 충돌이 발생하면, 네트워크 장치는 재전송을 시도하기 전에 임의의 시간을 기다립니다.

LAN 아키텍처 - ETHERNET 액세스 메소드 (계속)

• 장점과 CSMA / CD의 단점:

- 그것은 쉽게 구성 할 수이고 광범위한 표준화 및 구현이있다. (광고주).
- 더 많은 장치가 네트워크에 추가되면 충돌의 수를 증가. (Disadv).

ETHERNET : 기술 및 비즈니스 고려 사항

- 이더넷은 거리 제한이있다.
 - 예를 들어, 100 Mbps의 이더넷은 100 미터의 최대 세그먼트 길이 205m의 네트워크 범위를 갖는다.
- 이더넷은 업계 표준입니다.
 - 공급 업체는 새로운 제품을 개발하는 것을 계속한다.
 - 이더넷의 최신 버전은 이전 버전과 호환됩니다.
 - 풍부한 기술 지원.

LAN 아키텍처 -무선 전화

- 무선 아키텍처는 IEEE 802.11, 블루투스, 및 홈 RF 구성된다.
- IEEE 표준의 IEEE 802.11 계열 표준의 IEEE 802.15 (블루투스) 시리즈를 지원합니다.
- 홈 RF 워킹 그룹은 홈 RF를 지원합니다.

무선 IEEE 802.11 데이터 통신 표준

TABLE 3.4

Wireless IEEE 802.11

Data

Communications

Standards

IEEE 802.11 Standard	Description				
802.11	The basic standard with transmission rates up to 2 Mbps in the 2.4 GHz frequency range				
802.11a	Extension to the basic standard with transmission rates up to 54 Mbps in the 5 GHz frequency range				
802.11b	Extension to the basic 802.11 standard with transmission rates up to 11 Mbps in the 2.4 GHz frequency range				
802.11e	Provides Quality of Service (QoS) functionality to allow voice, video, and data transmission over wireless				
802.11g	Defines data transmission rates up to 54 Mbps in the 2.4 GHz frequency range				
802.11h	Allows compatibility with European regulations in the 5 GHz frequency range				
802.11i	Defines security protocols for 802.11 WLAN security				
IEEE 802.15 (B Standard	luetooth)				
802.15.1	The basic standard for wireless personal area networks (WPANs) based on the Bluetooth v1.1 SIG specification, which includes data rate at up to 1 Mbps operating in the 2.4 GHz frequency range and at distances spanning less than 10 meters				
802.15.1a	Update to the original standard to include the Bluetooth SIG v1.2 specs				
802.15.2	Defines the coexistence of 802.11 WLANs and 802.15 WPANs within the 2.4 GHz frequency range so that the signals do not interfere with each other				
802.15.3	Defines high-speed WPANs up to 55 Mbps for distances under 10 meters				
802.15.4	Defines WPANs with data transmission rates between 2 Kbps and 200 Kbps in the 2.4 GHz and 915 MHz frequency ranges				

LAN 아키텍처 - 무선 액세스 방법

- IEEE 802.11 의 DCF (Distributed Coordination Function)으로 알려진 충돌 회피의 방법을 사용한다.
- DCF 충돌 감지를 전달 전이중 채널에 대한 필요성을 감소시킨다.

LAN 아키텍처 - 무선 액세스 방법 (계속)

- 블루투스 제어 액세스 폴링 메커니즘을 사용한다.
- 장치는 블루투스에 하나 마스터 또는 슬레이브 장치로 자신을 확립 피코넷 및 임의의 두 장치 간의 통신은 마스터 디바이스에 의해 제어된다.
- 이 방법은 데이터 충돌을 방지하고, 상기 통신 채널의 효율적인
 사용을 보장한다.

LAN 아키텍처 - 무선 액세스 방법 (계속)

• 홈 RF 데이터의 종류에 따라 다양한 매체 접근 방식을 사용하는 송신된다.

- 타이밍 멀티미디어 전송에서와 같이 중요 여기서 TDMA가 사용된다.
- CSMA / CA는 배달의 타이밍에 따라 비판적으로 의존하지 않는 데이터 전송에 사용됩니다.

무선 기술 고려 사항

• 경쟁 표준 사이의 주파수 중첩.

 액세스 포인트의 위치는 사용자에 대한 최적의 범위를 제공하고, 이웃 액세스 포인트들과 겹치지한다.

아니오 액세스 포인트를 찾기 채널 오버랩

무선 사업시주의 사항

- 비용.
- 무선 어떤 아키텍처를 선택합니다.
- 표준은 기존의 "유선"기술과 수명과의 상호 운용성을 위해 중요하다.

 거리 및 속도 요구 사항은 비즈니스 요구 사항을 충족합니다.

무선 기술 비교

TABLE 3.5	Wireless Technology	WPAN or WLAN	Frequency Ranges	Data Rate (Mbps)	Common Operating Range
	802.11	WLAN	2.4 GHz and 5 GHz	2 to 54	Up to 150 feet
	Bluetooth	WPAN	2.4 GHz	Up to 55	Up to 10 meters
	HiperLAN2	WLAN	5 GHz	Up to 54	30 to 150 meters
	HomeRF	WPAN	2.4 GHz	Up to 10	Up to 150 feet

LAN 아키텍처 - FDDI

- FDDI 섬유는 데이터 인터페이스 분산
- 그것은 이전 데이터 전송 기술입니다.
- 그것은 1980 년대 초반에 뿌리 날짜입니다.
- 그것은 여전히 다양한 네트워크 환경에서 지원합니다.
- 한 번에 그것은 캠퍼스 환경에서 원격 무선 랜
 사이의 고속 연결을 위해 일반적으로 선택했다.

FDDI 듀얼 링 구성 및 네트워크 상호 접속

LAN 아키텍처 - FDDI (계속)

 FDDI는 기존 설치에서 유지 될 수 있지만, 높은 데이터 전송 속도가 필요하므로, 일반적으로 기가비트 (이상) 이더넷으로 대체됩니다.

LAN 아키텍처 - ATM

- ATM은 벨 연구소에서 1960 년대 후반으로 거슬러 올라간다 기술입니다.
- ATM은 고속 데이터, 음성 및 비디오 전송의 신뢰성 및 적시 납품을 필요로 네트워크에서 대기 시간이 짧은 데이터 전송을 제공합니다.

일반적으로 네트워크를 위해 예약되어 있습니다
 백본, 광역 네트워크 및 캐리어 서비스 네트워크.

LAN 아키텍처 - ATM (계속)

- ATM에 대한 비즈니스 고려 사항:
 - 널리 비용으로 인해 LAN과 이더넷과 같은 효율적인 경쟁에서는 사용되지 않습니다.
 - 수 LAN 설정에서 백본 연결을 사용하지만, 기가비트 (그리고 빠른 형태) 이더넷은 여기뿐만 아니라 효율적인 경쟁자된다.
 - ATM은 음성, 비디오 및 데이터 전송을위한 캐리어 서비스 네트워크들에서 광범위하게 사용된다.

LAN 아키텍처 개요

TABLE 3.6 LAN Architectures	LAN Architecture	Data Rates Supported	Topologies Supported	Common Usage
Summary	Ethernet Token ring	10, 100 Mbps, 1, 10 Gbps 4, 16, 100 Mbps	Bus, Star Ring, Star	LANs, LAN Backbones Legacy LANs
	Wireless LANs and WPANs	Up to 55 Mbps	Wireless	Short-range LAN connectivity
	FDDI	100 Mbps	Ring, Star	Legacy LAN backbones
	ATM	25, 155 Mbps	Star	LAN backbones