Modeling Heterogeneity in Microbial Population Dynamics

Helena Herrmann

MSc Computational Systems Biology School of Computing Science, Newcastle University, UK

Supervision by Dr Conor Lawless Institute for Cell and Molecular Sciences, Newcastle University, UK

April 15th, 2016

Microbial Growth Models

Diagram of what is considered a typical microbial growth curve

Setting the Scene

Growth Rate

A measure of how quickly cells are progressing through the cell cycle

- Key model parameter when capturing population dynamics
- Important component of evolutionary fitness
- Subject to great selective forces
- Applications in food security, microbial infection modeling, tumorigenesis dynamics, etc.

Research Problem

Growth rate is typically measured at the population scale.

- Assume that observations at that scale apply to individual cells.
- Assume that all members of the population behave in the same way...
- Increasing evidence that, even among isogenic populations, there is considerable heterogeneity in growth rates.

Prior Observations

μ QFA data by Lawless:

- Little evidence for a lag phase when looking at individual lineages.
- Cells divide almost immediately, with some clones dividing more quickly than others.

- It may thus be plausible that population-level observations of a lag phase are the results of competition between clonal cell lineages.
- We hope to demonstrate that the lag phase can be apparent at the population level, despite being absent at the single cell level, due to inter-lineage variability in growth rate.

Data, data and more data

Data sets which will be used to capture growth rate heterogeneity:

- μ QFA data produced by Lawless (unpublished),
- High-throughput microscopy assay data by Levy et al. 2012,
- 3 High-throughput microscopy assay data by Ziv et al. 2013.

Proposed Research: Aims

- Find a model which best captures heterogeneity in microbial growth curves through single lineage observations.
- Explore the implications which such a model may have on the interpretation of various growth phases.
- \bullet Repeat the $\mu {\rm QFA}$ experiments with the aim of validating model predictions.

Proposed Research: Aims

- Find a model which best captures heterogeneity in microbial growth curves through single lineage observations.
- Explore the implications which such a model may have on the interpretation of various growth phases.
- \bullet Repeat the $\mu {\rm QFA}$ experiments with the aim of validating model predictions.

Proposed Research: Aims

- Find a model which best captures heterogeneity in microbial growth curves through single lineage observations.
- Explore the implications which such a model may have on the interpretation of various growth phases.
- \bullet Repeat the $\mu {\rm QFA}$ experiments with the aim of validating model predictions.

Helena Herrmann Project Proposal April 15th, 2016 7 / 11

Proposed Research: Objectives

- Data accessibility
- Model development
- Parameter inference workflows

- Model fit
- Mechanistic insights
- Submission

- Logistic deterministic model;
- Standard Gillespie stochastic model;
- Hybrid model combining deterministic and stochastic models.
- birth-only models
- lower bound for time sampling
- switch to a non-dividing stage

Helena Herrmann Project Proposal April 15th, 2016

Summary

Can we find a stochastic model that **reduces the apparent heterogeneity** of growth rates in data?

Does explicit modeling of cell lineages give rise to an **apparent lag phase** at the population level?

How is sampling from different phases affected by heterogeneity?

Research Significance

Microbiology is progressing to become a data-rich science

- Limiting factors in scientific advances often no longer rest in the amount of available data...
- ...but in the quantitative analyses performed on them.
- This project makes efficient use of a vast range of existing, expensive, experimental data sets.

Single-lineage stochastic, deterministic and hybrid models

- First time that these models will be considered along-side each other.
- If we are be able to reduce the apparent heterogeneity in population parameters...
- ...the explored mechanistic implications and the developed models will have vast applications (e.g. experimental design, risk assessments, tumorigenesis, etc.).

Any Questions?

Helena Herrmann Project Proposal April 15th, 2016