## **Azka Rehman**

Linkedin: linkedin/Azkarehman Github: github.com/Azkarehman

Personal-email: azkarehman 2598@gmail.com

Official-email: <u>azka@healthhub.kr</u> Current Residence: Seoul, South Korea



#### **Education:**

**National University of Science and Technology (NUST)** 

2016-2020

#### Islamabad, Pakistan

BS in Electrical Engineering – CGPA:3.23/4.0

- Featured Courses: Artificial Intelligence, Computer Vision
- Thesis: Chest X-Ray abnormality detection using Deep learning

## **Language Certifications:**

**IELTS Academic (International English Language Testing System)** 

December 2021

British Council (International English Course)

Overall Score: 7.0

#### **Research Publication:**

<u>Dual-Stage Deeply Supervised Attention-based Convolutional Neural Networks for Mandibular</u> Canal Segmentation in CBCT Scans

Azka Rehman, Muhammad Usman, Rabeea Jawaid, Shi Sub Byon, Sung Hyun Kim, Byoung Dai Lee, Byung il Lee, Yeong Gil Shin

(In-Proceeding)

# MEDS-Net: Self-Distilled Multi-Encoders Network with Bi-Direction Maximum Intensity projections for Lung Nodule Detection - Github

Azka Rehman, Muhammad Usman, Rabeea Jawaid, Shi Sub Byon, Sung Hyun Kim, Byoung Dai Lee, Byung il Lee, Yeong Gil Shin

(In-Proceeding)

## **Research and Development Experience:**

## AI Research Engineer, Healthhub.kr, Seoul, South Korea

2021/01- Present

- **Research, experiment, and implement** the state-of-the-art (SOTA) ML/DL algorithms in the field of medical image analysis.
- **Development** of computer vision and deep learning based medical diagnosis solutions.
- Responsible for **integrating** the developed AI solutions with the **Healthhub DICOMLINK** and improving the pipeline
- Responsible for mentoring and training the fresh employees

#### **Projects:**

- Named Entity Recognition in Electronic Medical Records (NLP)

  Python, Keras
  - ➤ The goal of the project is extraction of medicine names in patient discharge summaries as part of the Harvard Medical School n2c2 challenge.
  - ➤ We purposed a hybrid rule base LSTM model for medical name entity recognition. The architecture consisted of a CRF based BiLSTM neural network with rule based False positive reduction. To incorporate unknown words during inference we used FastText model.
  - > Our hybrid model achieved f1 score of 92.499.
  - > I contributed towards experimentation and architecture design

## • Mandibular canal segmentation in CBCT scans – Python, Keras

- Aims to segment the mandibular canal and efficiently visualize it to assist in surgical planning.
- > Conducted exploratory data analysis to identify scans with different HU values.
- Researched and developed a model to localize the mandibular region.
- Segmentation of mandibular canal using Residual UNet with multi-dimensional inputs
   Developed different algorithms to generate two different dental arches (i.e. one for panorama view and one for parasagittal view generation).
- > Segmentation of teeth was also performed to report the minimum distance between mandibular canal and tooth is informed depending on the doctor's selected ROI.

## KL Grade Classification using Knee Xray Images – Python, Keras

- To classify the Kellgren Lawrence Grade in Knee Xrays.
- Utilized OAI
- Conducted experiments on <u>convolutional neural networks</u> in Keras using distillation technique with hyperparameters tuning which resulted in improving accuracy around 7%
- ➤ Identified faulty data and handled class unbalancing problem which improved the performance by 3%
- > Successfully **developed and deployed** the KL Grade classification pipeline to HealthHub AI Marketplace.

## • Lung Nodule Classification based on Texture in 3D CT scans – Python, Scikit Learn

- Utilized LIDC-IDRI dataset
- Malignancy of nodule depends on texture as well as other factors. In this project, the texture as well as malignancy of lung nodule was determined.
- > Statistically analyzed the HU values of different classes of nodule
- ➤ Conducted research about the suitable Image processing technique which solves the problem of texture classification
- Conducted research about multiple machine learning models to improve the performance of classification

#### Automatic Garment Size Estimation Using Image processing - Python, Keras

- ➤ Industrial Project in which target was to segment the cloth as well as get the measurements of cloths in physical measurements
- > Dataset provided by the factory involved in the project.
- ➤ Built and improved light-weight Statistical Model for cloth segmentation which is used to determine Garment sizes with an accuracy of ~90-95%
- Developed a technique to calculate and utilize the pixel spacing information to get measurements in physical length
- > Developed an API to integrate this solution at web end.

#### • 3D Segmentation of Human Spine - Python, Keras, Pytorch

- > Conducted feasibility analysis of the project
- ➤ Utilized Verse19 and Verse20 Public Datasets
- ➤ Preprocessed the <u>3D image</u> data using **SimpleITK** to match the input requirements of the model
- ➤ Implemented and trained several techniques mentioned in research papers on the subject ➤ Conducting experiments on **convolutional neural network** models in Keras with hyperparameters tuning to develop a pipeline for 3D segmentation of human spine

## Integration of AI Modules: – Python, Flask

- ➤ Overcame the barrier at communication end by developing a **scalable worker** (**API**) pipeline to integrate the AI modules developed by AI team using Flask
- ➤ Created and integrated SQL database with worker

- ➤ Worked closely with the AI team and communicated with Web team to integrate solutions such as mandibular canal segmentation, liver tumor segmentation, smart fit, lung nodule segmentation etc.
- ➤ **Developed RESTful APIs** to integrate HTRAMS AI module which reduced the manual work by ~70%
- Python GUI Python, Tkinter
  - Development of python GUI for Hyundai Motors Clients to easily analyze the results of AI solutions
  - > Developed a python GUI for internal testing of developed AI products.
- Smartfit for Mammograms Python, SITK
  - ➤ Automatic alignment of different views of mammograms on <u>HPACS</u>
  - ➤ Utilized dataset from Healthhub Human Imaging Center database
  - ➤ Development of handcrafted image processing-based algorithm to classify different views such as CC, MLO etc
  - > Development of algorithm to detect mammary papilla and align the views according to detected point.

#### **Technical Skills:**

**Programming Languages: Python** 

Deep Learning: Keras, TensorFlow, PyTorch, ScikitLearn

Image Processing/ Medical Images: SimpleITK, OpenCV, Pydicom, Nibabel, Scikit-Image, Scipy

Leadership: Project Lead, Community Service Group Lead

## **Training and Certifications:**

- Neural Networks and Deep learning by Andrew NG-Coursera
- Structuring Machine Learning Projects by Andrew NG-Coursera
- Image Processing with Keras in Python -DataCamp
- Advanced Deep Learning with Keras -DataCamp
- Introduction to Deep Learning with Pytorch -DataCamp
- Python for data science and machine learning bootcamp –Udemy
- NLP Natural language processing with python Udemy

### Languages:

English | Urdu | Punjabi

#### **Extracurricular activities: Volunteer**

## work:

Led a 10-member team to facilitate underprivileged members of society, including laborers and daily-wage workers. Conducted Iftar drives, raised charity funds by participating in a Bake Sale. Visited Bagh Baan Old Age Home and Hassan Academy (Special Children school) and conducted an event to educate the students.

**Hobbies:** Badminton | Art work | Reading | Korean seasons