Linear Algebra and Calculus refresher

★ Star 2,633

General notations

Definitions

Vector — We note $x \in \mathbb{R}^n$ a vector with n entries, where $x_i \in \mathbb{R}$ is the i^{th} entry:

$$x = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} \in \mathbb{R}^n$$

Matrix — We note $A \in \mathbb{R}^{m \times n}$ a matrix with n rows and m, where $A_{i,j} \in \mathbb{R}$ is the entry located in the i^{th} row and j^{th} column:

$$A = \left(egin{array}{ccc} A_{1,1} & \cdots & A_{1,n} \ dots & & dots \ A_{m,1} & \cdots & A_{m,n} \end{array}
ight) \in \mathbb{R}^{m imes n}$$

Remark: the vector x defined above can be viewed as a n imes 1 matrix and is more particularly called a column-vector.

Main matrices

Identity matrix — The identity matrix $I \in \mathbb{R}^{n \times n}$ is a square matrix with ones in its diagonal and zero everywhere else:

$$I=egin{pmatrix} 1&0&\cdots&0\ 0&\ddots&\ddots&dots\ dots&\ddots&\ddots&dots\ dots&\ddots&\ddots&0\ 0&\cdots&0&1 \end{pmatrix}$$

Remark: for all matrices $A \in \mathbb{R}^{n imes n}$, we have A imes I = I imes A = A.

Diagonal matrix — A diagonal matrix $D \in \mathbb{R}^{n \times n}$ is a square matrix with nonzero values in its diagonal and zero everywhere else:

$$D = egin{pmatrix} d_1 & 0 & \cdots & 0 \ 0 & \ddots & \ddots & dots \ dots & \ddots & \ddots & 0 \ 0 & \cdots & 0 & d_n \end{pmatrix}$$

Remark: we also note D as $\operatorname{diag}(d_1,\ldots,d_n)$.

Matrix operations

Multiplication

Vector-vector — There are two types of vector-vector products:

- inner product: for $x,y\in\mathbb{R}^n$, we have:

$$oxed{x^Ty = \sum_{i=1}^n x_i y_i \in \mathbb{R}}$$

- outer product: for $x \in \mathbb{R}^m, y \in \mathbb{R}^n$, we have:

$$egin{aligned} xy^T = \left(egin{array}{ccc} x_1y_1 & \cdots & x_1y_n \ dots & & dots \ x_my_1 & \cdots & x_my_n \end{array}
ight) \in \mathbb{R}^{m imes n} \end{aligned}$$

Matrix-vector — The product of matrix $A \in \mathbb{R}^{m \times n}$ and vector $x \in \mathbb{R}^n$ is a vector of size \mathbb{R}^n , such that:

$$egin{aligned} Ax = \left(egin{aligned} a_{r,1}^Tx \ dots \ a_{r,m}^Tx \end{array}
ight) = \sum_{i=1}^n a_{c,i}x_i \in \mathbb{R}^n \end{aligned}$$

where $a_{r,i}^T$ are the vector rows and $a_{c,j}$ are the vector columns of A, and x_i are the entries of x.

Matrix-matrix — The product of matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is a matrix of size $\mathbb{R}^{n \times p}$, such that:

$$egin{aligned} AB = egin{pmatrix} a_{r,1}^T b_{c,1} & \cdots & a_{r,1}^T b_{c,p} \ dots & dots \ a_{r,m}^T b_{c,1} & \cdots & a_{r,m}^T b_{c,p} \end{pmatrix} = \sum_{i=1}^n a_{c,i} b_{r,i}^T \in \mathbb{R}^{n imes p} \end{aligned}$$

where $a_{r,i}^T, b_{r,i}^T$ are the vector rows and $a_{c,j}, b_{c,j}$ are the vector columns of A and B respectively.

Other operations

Transpose — The transpose of a matrix $A \in \mathbb{R}^{m imes n}$, noted A^T , is such that its entries are flipped:

$$oxed{ orall i,j, \qquad A_{i,j}^T = A_{j,i} }$$

Remark: for matrices A, B, we have $(AB)^T = B^T A^T$.

Inverse — The inverse of an invertible square matrix A is noted A^{-1} and is the only matrix such that:

$$AA^{-1} = A^{-1}A = I$$

Remark: not all square matrices are invertible. Also, for matrices A,B, we have $(AB)^{-1}=B^{-1}A^{-1}$

Trace — The trace of a square matrix A, noted tr(A), is the sum of its diagonal entries:

$$\left| \operatorname{tr}(A) = \sum_{i=1}^n A_{i,i}
ight|$$

Remark: for matrices A,B, we have $\mathrm{tr}(A^T)=\mathrm{tr}(A)$ and $\mathrm{tr}(AB)=\mathrm{tr}(BA)$

Determinant — The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$, noted |A| or $\det(A)$ is expressed recursively in terms of $A_{\langle i, \backslash j}$, which is the matrix A without its i^{th} row and j^{th} column, as follows:

$$\det(A) = |A| = \sum_{j=1}^n (-1)^{i+j} A_{i,j} |A_{\setminus i,\setminus j}|$$

Remark: A is invertible if and only if |A|
eq 0. Also, |AB| = |A||B| and $|A^T| = |A|$.

Matrix properties

Definitions

Symmetric decomposition — A given matrix A can be expressed in terms of its symmetric and antisymmetric parts as follows:

$$A = \underbrace{\frac{A + A^T}{2}}_{ ext{Symmetric}} + \underbrace{\frac{A - A^T}{2}}_{ ext{Antisymmetric}}$$

Norm — A norm is a function $N:V\longrightarrow [0,+\infty[$ where V is a vector space, and such that for all $x,y\in V$, we have:

-
$$N(x+y) \leqslant N(x) + N(y)$$

-
$$N(ax) = |a| N(x)$$
 for a scalar

- if
$$N(x)=0$$
, then $x=0$

For $x \in V$, the most commonly used norms are summed up in the table below:

Norm	Notation	Definition	Use case
Manhattan, L^1	$\left \left x ight \right _{1}$	$\sum_{i=1}^n x_i $	LASSO regularization
Euclidean, L^2	$\left \left x\right \right _{2}$	$\sqrt{\sum_{i=1}^n x_i^2}$	Ridge regularization
p -norm, L^p	$\left \left x ight \right _{p}$	$\left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$	Hölder inequality
Infinity, L^∞	$\left \left x ight \right _{\infty}$	$\max_i x_i $	Uniform convergence

Linearly dependence — A set of vectors is said to be linearly dependent if one of the vectors in the set can be defined as a linear combination of the others.

Remark: if no vector can be written this way, then the vectors are said to be linearly independent.

Matrix rank — The rank of a given matrix A is noted $\operatorname{rank}(A)$ and is the dimension of the vector space generated by its columns. This is equivalent to the maximum number of linearly independent columns of A.

Positive semi-definite matrix — A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD) and is noted $A \succeq 0$ if we have:

$$oxed{A = A^T} \quad ext{and} \quad egin{equation} orall x \in \mathbb{R}^n, \quad x^TAx \geqslant 0 \end{aligned}$$

Remark: similarly, a matrix A is said to be positive definite, and is noted $A\succ 0$, if it is a PSD matrix which satisfies for all non-zero vector x, $x^TAx>0$.

Eigenvalue, eigenvector — Given a matrix $A \in \mathbb{R}^{n \times n}$, λ is said to be an eigenvalue of A if there exists a vector $z \in \mathbb{R}^n \setminus \{0\}$, called eigenvector, such that we have:

$$Az = \lambda z$$

Spectral theorem — Let $A \in \mathbb{R}^{n \times n}$. If A is symmetric, then A is diagonalizable by a real orthogonal matrix $U \in \mathbb{R}^{n \times n}$. By noting $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, we have:

$$oxed{\exists \Lambda ext{ diagonal}, \quad A = U \Lambda U^T}$$

Singular-value decomposition — For a given matrix A of dimensions $m \times n$, the singular-value decomposition (SVD) is a factorization technique that guarantees the existence of U $m \times m$ unitary, Σ $m \times n$ diagonal and V $n \times n$ unitary matrices, such that:

$$A = U\Sigma V^T$$

Matrix calculus

Gradient — Let $f:\mathbb{R}^{m \times n} \to \mathbb{R}$ be a function and $A \in \mathbb{R}^{m \times n}$ be a matrix. The gradient of f with respect to A is a $m \times n$ matrix, noted $\nabla_A f(A)$, such that:

$$oxed{\left(
abla_A f(A)
ight)_{i,j} = rac{\partial f(A)}{\partial A_{i,j}}}$$

Remark: the gradient of f is only defined when f is a function that returns a scalar.

Hessian — Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function and $x \in \mathbb{R}^n$ be a vector. The hessian of f with respect to x is a $n \times n$ symmetric matrix, noted $\nabla^2_x f(x)$, such that:

$$oxed{\left(
abla_x^2 f(x)
ight)_{i,j} = rac{\partial^2 f(x)}{\partial x_i \partial x_j}}$$

Remark: the hessian of f is only defined when f is a function that returns a scalar.

 ${f Gradient\ operations}$ — For matrices A,B,C, the following gradient properties are worth having in mind:

$$egin{align} egin{align} eg$$

(https://twitter.com/shervinea) in (https://linkedin.com/in/shervineamidi)

(https://github.com/shervinea)

(https://scholar.google.com/citations?user=nMnMTm8AAAAJ)

