Wiktor Kuchta

7/4d

Niech f to endomorfizm $\mathbb Q$ jako grupy abelowej. Zauważmy, że dla $p/q \in \mathbb Q$ mamy

$$qf\left(\frac{p}{q}\right) = f(p) = pf(1),$$

więc

$$f\left(\frac{p}{q}\right) = \frac{p}{q}f(1).$$

Każdy taki homomorfizm jest wyznaczony jednoznacznie przez wartość dla 1, więc mamy bijekcję $f\mapsto f(1)$ między $\operatorname{End}(\mathbb{Q})$ a \mathbb{Q} . Ponadto

$$(f \circ g)(1) = f(g(1)) = f(1) \cdot g(1),$$

$$(f+g)(1) = f(1) + g(1),$$

zatem jest to izomorfizm. W szczególności $\operatorname{End}(\mathbb{Q})$ jest ciałem.

Grupa abelowa $\mathbb Q$ nie jest cykliczna, więc nie jest $\mathbb Z$ -modułem prostym.