

Charles E. Hall, Jr.
Siegfried H. Lehnigk
Guttalu R. Viswanath
Research Directorate
Research, Development, and
Engineering Center

MARCH 1989

U.S.ARMY MISSILE COMMAND

Redstone Arsenal, Alabama 35898-5000

Cleared for public release; distribution is unlimited.

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

TECHNICAL REPORT RD-RE-89-5

MAXIMUM-LIKELIHOOD PARAMETER ESTIMATION OF A GENERALIZED GUMBEL DISTRIBUTION

Charles E. Hall, Jr.
Siegfried H. Lehnigk
and
Guttalu R. Viswanath*

(07.27.400)

Accesion For

Research Directorate U.S. Army Missile Command Redstone Arsenal, AL 35898-5248 NTIS CRA&I MIDTIC TAB DUNannounced Dustrication Distribution / Avair bility Codes

Distribution / Special Distribution / Special

MARCH 1989

Cleared for public release; distribution is unlimited.

*Work performed for the U.S. Army under U.S. Army Summer Faculty Research and Engineering Program. Permanent address: Department of Mathematics and Computer Science, South Carolina State College, Orangeburg, SC 29117

SECURITY	CLASSIFICATION OF	THIS	PAGE
	CENTS SIL TEST TIGHT OF		, <u> </u>

REPORT (OCUMENTATIO	N PAGE	·		Sorm Approved CAMB No. 0704-0188 Exp. Date: Sun 30-1986
1a REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16 RESTRICTIVE MARKINGS			
2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION	AVAILABILITY	OF REPORT	distribution
26 DECLASSIFICATION / DOWNGRADING SCHEDU	is unlimit		, crease,	, arser ibacton	
4 PERFORMING ORGANIZATION REPORT NUMBE TR-RD-RE-89-5	R(S)	5 MONITORING	ORGANIZATION	REPORT NO	MBEP(S)
6a. NAME OF PERFORMING ORGANIZATION Research Directorate RD&E Center	6b OFFICE SYMBOL (If applicable) AMSMI-RD-RE-OP	7a NAME OF M	ONITORING ORG	ANIZATION	
6c. ADDRESS (City, State, and ZIP Code) U.S. Army Missile Command Redstone Arsenal, AL 35898-5		76 ADDRESS (C)	ty. Stare, and Zli	P Code)	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9 PROCUREMEN	T INSTRUMENT I	DENTIFICAT	ION NUMBER
8c. ADDRESS (City, State, and ZIP Code)	<u> </u>	10. SOURCE OF	UNDING NUMBI	ERS	
	;	PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO
1) FITLE (Include Security Classification) Maximum-Likelihood Parameter	Estimation of a	Generalized	l Gumbel Di	stributi	ion
12 PERSONAL AUTHOR(S) C. E. Hall, Jr., S. H. Lehnig	yk, and G. R. Vi	swanath			
13a TYPE OF REPORT 13b TIME CO Final FROM Ma	OVERED TO Feb 89	14. DATE OF REPO 1989/03		h, Day) 15	PAGE COUNT 55
16. SUPPLEMENTARY NOTATION					
17 COSATI CODES	18. SUBJECT TERMS (C				
FIELD GROUP SUB-GROUP	Extreme Value Estimation, M				, Density
A microcomputer-based algorithm for estimation of the three parameters of a generalized Gumbel (extreme value type I) distribution class is presented. The parameters are shift, scale, and shape. The classical Gumbel distribution results if the shape parameter is equal to unity. Three-parameter as well as two-parameter (shape equal to unity) estimation can be performed for given histogram data. Parameter estimation is accomplished by means of the maximum-likelihood principle. The derivative equations which result from the associated logarithmic likelihood function are used. A more comprehensive presentation of generalized Gumbel distribution estimation which also allows treatment of population data and which includes moment estimates and maximum-likelihood estimates by direct optimization of the logarithmic likelihood function will be presented elsewhere.					
20 DISTRIBUTION AVAILABILITY OF ABSTRACT DUNCLASSIFIED/UNLIMITED SAME AS F 223 NAME OF RESPONSIBLE INDIVIDUAL	RPT DFIC USERS	21 MINERAL SELECTION UNCLASSIFIED CLASSIFICATION 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL			FICE SYMBOL
S. H. Lehnigk		(205) 876-3	3526		I-RD-RE-OP
DD FORM 1473, 84 MAR 83 AF	R edition may be used un	til exhausted	SECURITY	Y CLASSIFIC	ATION OF THIS PAGE

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

SUMMARY

A microcomputer-based algorithm for estimation of the three parameters of a generalized Gumbel (extreme value type I) distribution class is presented. The parameters are shift, scale, and shape. The classical Gumbel distribution results if the shape parameter is equal to unity. Three-parameter as well as two-parameter (shape equal to unity) estimation can be performed for given histogram data.

Parameter estimation is accomplished by means of the maximum-likelihood principle. The derivative equations which result from the associated logarithmic likelihood function are used. A more comprehensive presentation of generalized Gumbel distribution estimation which also allows treatment of population data and which includes moment estimates and maximum-likelihood estimates by direct optimization of the logarithmic likelihood function will be presented elsewhere.

TABLE OF CONTENTS

		Page
SUMM	ARY	iii
I.	INTRODUCTION	1
11.	DIFFUSION CHARACTER OF THE GENERALIZED GUMBEL DISTRIBUTION	3
111.	DATA SETS	4
IV.	THE LOGARITHMIC LIKELIHOOD FUNCTION	5
V.	MAXIMUM-LIKELIHOOD ESTIMATION	6
VI.	PROPERTIES OF $g(\lambda,\beta)$ AND $h(\lambda,\beta)$	10
VII.	THE PARAMETER ESTIMATION ALGORITHM	14
VIII.	EXAMPLES	16
IX.	TABLES	17
×.	PROGRAM LISTING	29
REFEI	RENCES	45

LIST OF TABLES

Number	<u> Title</u>	Page
1.1	Annual Maximum Twenty-Four Hour Rainfalls (in Points) at Sidney, Australia, 1859-1945	19
1.2	Class Intervals and Number of Classes for Groupings $G_{\mathcal{V}}$ (ν =1,, 5)	19
1.3G ₁	Grouped Frequency Data for Grouping G ₁	19
1.3G ₂	Grouped Frequency Data for Grouping G2	20
1.3G ₃	Grouped Frequency Data for Grouping Gz	20
1.364	Grouped Frequency Data for Grouping G4	21
1.365	Grouped Frequency Data for Grouping G5	21
1.461	Three- and Two-Parameter Estimates for Grouping G ₁	22
1.462	Three- and Two-Parameter Estimates for Grouping G ₂	22
1.463	Three- and Two-Parameter Estimates for Grouping G3	23
1.4G4	Three- and Two-Parameter Estimates for Grouping G4	23
1.4G ₅	Three- and Two-Parameter Estimates for Grouping G5	24

LIST OF TABLES (Concluded)

Number	<u> Title</u>	Page
2.1	Annual Maxima of Rainfall (in Inch) in 24 Hours at Camden Square, London, 1860-1948	24
2.2	Three- and Two-Parameter Estimates	25
3.1	Greatest Ages of Men	25
3.2	Three- and Two-Parameter Estimates	26
4.1	Greatest Ensemble Ages	26
4.2	Three- and Two-Parameter Estimates	27

I. INTRODUCTION

The Gumbel distribution (extreme value type I for maximum values) [5: Chap. 3.5]. [6: Chap. 21.4] is defined by its probability density function (PDF)

$$f(x;\lambda,b) = b^{-1} \exp(-(e^{-\xi} + \xi)), \quad \xi = (x-\lambda)b^{-1}, \quad x \in \mathbb{R}$$
, (1.1)

or by its cumulative distribution function (CDF)

$$F(x;\lambda,b) = \exp - e^{-\xi} , \qquad (1.2)$$

with parameters shift $\lambda \in R$, and scale b > 0. It is of considerable importance in various statistical data interpretation problems. Its CDF (I.2) forms the basis of a simple, highly popular, but not very reliable, linear regression procedure for the estimation of the parameters λ and b. With u = log (- log F) it leads to the linear function

$$u = -b^{-1}x + \lambda b^{-1}$$
.

Therefore, if a set of data $\{x_{\mathcal{V}}, F_{\mathcal{V}}\}$ is Gumbel distributed, the points $(x_{\mathcal{V}}, u_{\mathcal{V}} = \log (-\log F_{\mathcal{V}}))$ are located on a straight line in the (x,u)-plane. In other words, if for a given data set $\{x_{\mathcal{V}}, F_{\mathcal{V}}\}$, the points $(x_{\mathcal{V}}, u_{\mathcal{V}})$ seem to be located on a straight line, the unknown parameters of the Gumbel PDF (I.1) can be determined by means of a least-squares algorithm [5; Chap. 8.1].

A more reliable parameter estimation approach can be based on the maximum-likelihood (ML) principle [14; Chap. 12.5], [8; Chap. 5.4] which leads to a simple algorithm relative to the Gumbel PDF (1.1). It is suggested, however, to apply the ML principle to a more general PDF class, namely

$$f(x;\lambda,\beta,b) = \frac{\exp(\beta \log \beta)}{b \Gamma(\beta)} \exp{-\beta \left(e^{-\xi} + \xi\right)}, \quad \xi = (x-\lambda)b^{-1}, \quad x \in \mathbb{R}.$$

It depends on the parameters shift $\lambda \in R$, shape $\beta > 0$, and scale b > 0. Introduction of the shape parameter β makes the PDF class (*) much more flexible than the original Gumbel class (1.1) which is contained in (*) as a special case for shape $\beta = 1$.

The CDF of (*) is given by

$$F(x;\lambda,\beta,b) = \int_{-\infty}^{x} f(t;\lambda,\beta,b) dt = \frac{1}{\Gamma(\beta)} \Gamma(\beta,\beta \exp{-\xi})$$

where $\Gamma(\infty,z)$ is the incomplete Gamma function with lower integration limit z [3: 8.350.2]. Of course, this CDF leads to the linear relationship explained above only if $\beta = 1$, i.e., in general, a simple geometric parameter estimation technique is no longer

available. It may be of interest to note, however, that it is possible to show that log $(1 - \Gamma(b\xi - \lambda))$ is asymptotically linear in ξ as $\xi \uparrow \infty$. This can be seen by expressing the incomplete Gamma function in terms of the degenerate hypergeometric function [3: 8.351.2].

It is the objective of this report to show that parameter estimation for the three-parameter generalized Gumbel class (*) via the ML principle can be accomplished by means of a reliable algorithm which is more efficient than those currently available for the classical Gumbel class (1.1).

Questions of hypothesis justification and goodness of fit are outside the framework of this report and, thus, are not addressed here.

11. DIFFUSION CHARACTER OF THE GENERALIZED GUMBEL DISTRIBUTION

It is well known [9], [10], that the function

$$g(x,t) = \frac{\sigma}{c \Gamma((1-p)\sigma^{-1})} \xi^{-p} \exp{-\xi^{\sigma}}, \quad \xi = xc^{-1}, \quad (II.1)$$

x > 0, t > 0, $\sigma > 0$, p < 1, with

$$c = c(t) = \begin{cases} \left[\alpha \sigma^2 t \right]^{1/\sigma}, & \tau = 0, \\ \left[\alpha \sigma \tau^{-1} \left(1 - \exp - \sigma \tau t \right) \right]^{1/\sigma}, & \tau \neq 0, \end{cases}$$
 (11.2)

is the delta function initial condition (at x = 0, t = 0) solution of the autonomous Fokker-Planck equation

$$\left[A(x) \, z(x,t) \right]_{XX} - \left[D(x) \, z(x,t) \right]_{X} - z_{t}(x,t) = 0 , \, x > 0, \, t > 0 .$$

$$A(x) = \alpha x^{2-\sigma}, \, \alpha > 0 \qquad \text{(diffusion coefficient),}$$

$$D(x) = \alpha (2-\sigma-p)x^{1-\sigma} - \tau x \qquad \text{(drift coefficient)} .$$

With $t = t_0 > 0$ in (11.2) considered as a parameter, the function (11.1) becomes the hypergamma PDF with parameters $c = c(t_0) > 0$, p < 1, $\sigma > 0$ [10], [11].

The transformation $x = \exp{-\vartheta^{-1}y}$ [5: (5.6)] generates from (11.1) the function

$$f(y,t) = g(\exp - \sqrt[3]{y},t) |dx/dy|$$

which, after y has been replaced by x, is of the form

$$f(x,t) = \frac{1}{b \Gamma(\beta) c^{\sigma\beta}} \exp -\left(c^{-\sigma} e^{-\xi} + \beta \xi\right), \quad \xi = xb^{-1}, \quad (II.4)$$

 $b = \sigma^{-1} \sigma$, $\beta = (1-p)\sigma^{-1}$, and c = c(t) given in (II.2). For any fixed $t = t_0 > 0$ and with $c(t_0) = \beta^{-1}/\sigma$, this function becomes identical with (1.4) (for $\lambda = 0$).

The transformation $x = \exp{-\vartheta^{-1}y}$ applied to the differential equation (11.3) leads (after y has again been replaced by x) to the autonomous Fokker-Planck equation

$$\begin{bmatrix} A^{\mathsf{M}}(x) \, w(x,t) \end{bmatrix}_{\mathsf{XX}} - \begin{bmatrix} D^{\mathsf{M}}(x) \, w(x,t) \end{bmatrix}_{\mathsf{X}} - w_{\mathsf{T}}(x,t) = 0 ,$$

$$A^{\mathsf{M}}(x) = \alpha \sigma^{2} b^{2} \exp b^{-1} x ,$$

$$D^{\mathsf{M}}(x) = \alpha \sigma^{2} b \left(1 - \beta \right) \exp b^{-1} x + \sigma \tau b ,$$

$$(11.5)$$

of which the function (II.4) is a solution. By means of different parameter designations the function (II.4) can also be transformed so that it becomes a nonlinear similarity solution of (II.5) [12: Secs. 2,3].

The particular case 1 - p = σ reduces the PDF (II.1) to the Weibull PDF [11], and (II.4) becomes the Gumbel PDF with β = 1.

III. DATA SETS

It will be assumed that the given statistical data are of the general form of a set of ordered pairs $\{x_{\nu},\,f_{a\nu}\}$ $\{\nu=1,\,...\,M\}$ with $x_1 < x_2 < ... < x_M$, and $M \le N = \sum_{\nu=1}^{M} f_{a\nu}$, $f_{a\nu}$ being the absolute (integer valued) frequency of the observation x_{ν} . In standard statistical terminology data given in this particular form are called histogram data.

It will furthermore be assumed that, for histogram estimation, the x_{ν} 's are the midpoints of class intervals $[a+(\nu-1)\Delta a, a+\nu\Delta a)$, $a\in R$, $\Delta a>0$, i.e., $x_{\nu}=a+(\nu-1/2)\Delta a$, and that $f_{a\nu}\geq 0$, $f_{a1}\geq 1$, $f_{aM}\geq 1$. Other estimation problems, such as population estimation and different approaches will be presented elsewhere.

IV. THE LOGARITHMIC LIKELIHOOD FUNCTION

For the generalized Gumbel PDF (*) with parameter vector $P = (\lambda, \beta, D)$ and with the abbreviation

$$\rho_{\nu}(\lambda) = x_{\nu} - \lambda$$

the likelihood function takes the particular form

$$L(P) = \beta^{N\beta} b^{-N} \Gamma^{-N}(\beta) \exp{-\beta} \left[\sum_{\nu=1}^{M} f_{a\nu} \exp{-b^{-1} \rho_{\nu}} + \sum_{\nu=1}^{M} f_{a\nu} b^{-1} \rho_{\nu} \right].$$

The function

$$\Phi(P) = N^{-1} \log L(P)$$

$$= \beta \log \beta - \log b - \log \Gamma(\beta) - \beta \sum_{\nu=1}^{M} f_{\nu} \left(b^{-1} \rho_{\nu} + \exp - b^{-1} \rho_{\nu} \right) , \qquad (IV.1)$$

where $f_{\nu} = N^{-1}f_{a\nu}$ denotes the relative frequencies of the x_{ν} 's with $\Sigma^{M}_{\nu=1}f_{\nu}=1$. is the logarithmic likelihood function (LLF) of the generalized Gumbel distribution class (*).

The ML principle asserts that the optimal parameter values (if they exist) relative to the given data are the coordinates of the point $\hat{P} = (\hat{\lambda}, \beta, \hat{b})$ in the open parameter space $P: \{\lambda \in R, \beta > 0, b > 0\}$ at which the LLF $\phi(P)$ takes it global maximum.

V. MAXIMUM-LIKELIHOOD ESTIMATION

In this report ML estimation of the parameters of the PDF class (*) will be done by means of the derivative equations which result from equating to zero the first partial derivatives of the LLF $\Phi(P)$ given in (IV.1). They are of the form

$$\frac{\partial \Phi}{\partial \lambda} = \beta b^{-1} \left[1 - \sum_{\nu=1}^{M} f_{\nu} \exp - b^{-1} \rho_{\nu} \right] = 0 ,$$

$$\frac{\partial \Phi}{\partial \beta} = \log \beta + 1 - \Psi(\beta) - \sum_{\nu=1}^{M} f_{\nu} \left(b^{-1} \rho_{\nu} + \exp - b^{-1} \rho_{\nu} \right) = 0 ,$$

$$\frac{\partial \Phi}{\partial b} = -b^{-1} + \beta b^{-2} \sum_{\nu=1}^{M} f_{\nu} \rho_{\nu} \left(1 - \exp - b^{-1} \rho_{\nu} \right) = 0.$$

where $\psi(x) = d \log \Gamma(x)/dx$ is the psi function [3; 8.362]. Their appearance can be simplified by introduction of the functions

$$A(\lambda,b) = \sum_{\nu=1}^{M} f_{\nu} \exp - b^{-1} \rho_{\nu} > 0$$
,

$$B(\lambda,b) = \sum_{\nu=1}^{M} f_{\nu} \times_{\nu} \exp - b^{-1} \rho_{\nu} > 0.$$

Then, with the mean

$$\bar{x} = \sum_{\nu=1}^{M} f_{\nu} x_{\nu} = \text{const.}$$
, $0 < \bar{x} < x_{M}$,

they take the form

$$1 - A = 0$$
,

$$\log \beta + 1 - \psi(\beta) - b^{-1} (\overline{x} - \lambda) - A = 0 ,$$

$$-b + \beta (\bar{x} - \lambda - B + \lambda A) = 0 . \tag{V.1}$$

By means of the first one, A can be eliminated from the other two so that only the equations

$$r(\beta) - b^{-1}(\overline{x} - \lambda) = 0 ,$$

$$-b + \beta(\overline{x} - B) = 0 .$$

$$(\vee .2)$$

remain. The function

$$r(\beta) = \log \beta - \psi(\beta)$$

which appears here is positive for $\beta > 0$ and is strictly convex and decreasing, $r(\beta) \uparrow \infty$ as $\beta \downarrow 0$, $r(\beta) \downarrow 0$ as $\beta \uparrow \infty$, as can be verified by means of the Laplace integral representation for $r(\beta)$ [3: 8.361.8]. The first one of these equations allows one to express b in terms of β and λ ,

$$b = b(\lambda, \beta) = \left(\frac{\pi}{\lambda} - \lambda\right) / r(\beta) > 0. \tag{V.3}$$

Thus, b can be eliminated from equations (V.1) and (V.2). Setting

$$A(\lambda,b) = A(\lambda,b(\lambda,\beta) = Q(\lambda,\beta) = \sum_{\nu=1}^{M} f_{\nu} T_{\nu}(\lambda,\beta) > 0 , \qquad (\vee.4)$$

$$B(\lambda,b) = B(\lambda,b(\lambda,\beta) = R(\lambda,\beta) = \sum_{\nu=1}^{M} f_{\nu} T_{\nu}(\lambda,\beta) > 0 , \qquad (V.5)$$

with

$$T_{\nu}(\lambda,\beta) = \exp -\left[\rho_{\nu}(\bar{x}-\lambda)^{-1}r(\beta)\right](\nu=1,...,M)$$

one obtains

$$q(\lambda,\beta) = \left[\bar{x} - R(\lambda,\beta)\right] \beta r(\beta) - (\bar{x} - \lambda) = 0 \tag{V.6}$$

$$h(\lambda, \beta) = 1 - Q(\lambda, \beta) = 0. \tag{V.7}$$

If $(\hat{\lambda}, \hat{\beta})$ is a solution of this system of equations, then \hat{b} follows from (V.3) for $\lambda = \hat{\lambda}$, $\beta = \hat{\beta}$. The objective, therefore, is to develop an efficient numerical algorithm for the solution of equations (V.6) and (V.7). Properties of the functions $g(\lambda, \beta)$ and $h(\lambda, \beta)$ which are essential for this purpose will be investigated in Section VI.

Two observations relative to the shift parameter λ are of importance. Relation (V.3) requires that $\lambda < \bar{x}$ for the scale parameter to be positive. Furthermore, if $\lambda \leq x_1 = \min\{x_{\nu}\}$, then $(x_{\nu} - \lambda)$ ($\bar{x} - \lambda)^{-1} > 0$ for $\nu \geq 2$ so that $Q(\lambda, \beta) < 1$ which contradicts (V.7). Consequently, in (V.6) and (V.7), λ is restricted to the interval $x_1 < \lambda < \bar{x}$). It should also be observed that the positive function $\beta r(\beta)$ which appears in (V.6) is less than unity for $\beta > 0$. This follows from the integral representation for $r(\beta)$ mentioned earlier.

The special case that the shape parameter β is assumed to be unity will be discussed next. In this situation, the LLF (IV.1) reduces to

$$\Phi(\lambda,b) = -\log b - \sum_{\nu=1}^{M} f_{\nu} \left(b^{-1} \rho_{\nu} + \exp - b^{-1} \rho_{\nu} \right).$$

The derivative equations now lead to

$$1 - A = 0$$
,
 $-b - B + x = 0$,

with A and B, functions of x and b, defined as before. The first equation can be solved for $\boldsymbol{\lambda}$,

$$\lambda = -b \log \sum_{\nu=1}^{M} f_{\nu} \exp -b^{-1} x_{\nu}$$
 (V.8)

and λ can be eliminated from B so that

$$B = \left[\sum_{\nu=1}^{M} f_{\nu} \exp - b^{-1} x_{\nu} \right]^{-1} \sum_{\nu=1}^{M} f_{\nu} x_{\nu} \exp - b^{-1} x_{\nu}.$$

Therefore, the second equation becomes an equation in just one unknown,

$$g(b) = \overline{x} - b - \left[\sum_{\nu=1}^{M} f_{\nu} \exp - b^{-1} x_{\nu} \right]^{-1} \sum_{\nu=1}^{M} f_{\nu} x_{\nu} \exp - b^{-1} x_{\nu} = 0 .$$
 (V.9)

It is easily seen that g'(b) is negative for b > 0 and that $g(b) \uparrow \bar{x} - x_1 > 0$ as $b \downarrow 0$, and $g(b) \downarrow -\infty$ as $b \uparrow \infty$. It should also be observed that (V.9) implies that $\hat{b} < \bar{x}$ if $g(\hat{b}) = 0$.

By the property of the function g(b) just discussed, equation (V.9) has exactly one positive root \hat{b} . It immediately gives the corresponding value $\hat{\lambda}$ for the shift parameter from (V.8) for $b = \hat{b}$. ML estimation for the two-parameter Gumbel distribution is, therefore, easily accomplished by the solution of the single equation (V.9).

VI. PROPERTIES OF $g(\lambda,\beta)$ AND $h(\lambda,\beta)$

This section contains a description of properties of the functions $g(\lambda,\beta)$ and $h(\lambda,\beta)$ which are essential for the design of an efficient solution algorithm for the system of equations (V.6) and (V.7). The function $h(\lambda,\beta)$ will be considered first.

By means of the substitution

$$y = \exp - \left(\overline{x} - \lambda\right)^{-1} r(\beta) , \qquad (\forall i.1)$$

which takes the functions T_{ν} (λ,β) appearing in (V.4) and (V.5) into

$$T_{\nu}(\lambda,\beta) = y^{\times_{\nu} - \lambda}$$
,

equation (V.7) changes into

$$h(\lambda,\beta) = 1 - y^{-\lambda} \sum_{\nu=1}^{M} f_{\nu} y^{\nu} = 0$$
 (VI.2)

It is equivalent to the equation

$$f(y) = y^{\lambda-x_1} - \sum_{\nu=1}^{M} f_{\nu} y^{\nu-x_1} = u(y) - v(y) = 0$$
.

For fixed λ in the interval (x_1, \bar{x}) , $y = y(\beta)$ becomes a one-to-one mapping of $(0, \infty)$ into (0,1). Clearly, $f(y) \to 0$ as $y \uparrow 1$ (i.e., as $\beta \uparrow \infty$). Furthermore,

$$u'(1) = \lambda - x_1 > 0$$
,

$$v'(1) = \sum_{\nu=2}^{M} f_{\nu}(x_{\nu} - x_{1}) = \overline{x} - x_{1} > 0.$$

Since $\bar{x} - x_1 > \lambda - x_1 > 0$, it follows that v'(1) > u'(1) > 0. This implies that 0 < v(y) < u(y) for y < 1, y sufficiently close to 1. Consequently f(y) > 0 for y < 1, y sufficiently close to 1, and, hence, $h(\lambda,\beta) > 0$ for β sufficiently large. Furthermore, $h(\lambda,\beta) \downarrow 0$ as $\beta \uparrow \infty$.

Next, $u(y) \downarrow 0$, $v(y) \downarrow f_1$, as $y \downarrow 0$. Therefore, $f(y) \rightarrow -f_1$ as $y \downarrow 0$, and hence, $h(\lambda,\beta) \downarrow -\infty$ as $\beta \downarrow 0$. Consequently, for every fixed $\lambda \in (x_1, \bar{x})$, the function $h(\lambda,\beta)$ has an odd number of positive zeros.

It can now be shown that, for every fixed λ ϵ (x₁, \bar{x}), equation (V.7) has exactly one positive simple root $\hat{\beta}$. The derivative of h(λ , β) with respect to β is of the form

$$\frac{\partial h}{\partial \beta} = -\frac{r}{\bar{x} - \lambda} \left(\lambda Q - R \right) = -\frac{r}{\bar{x} - \lambda} q(\beta)$$
, (VI.3)

R and Q defined in (V.4) and (V.5), respectively. The factor $-(\bar{x}-\lambda)^{-1}$ r is positive for every $\beta > 0$. Suppose the second factor

$$q(\beta) = -\sum_{\nu=1}^{M} f_{\nu} T_{\nu} (x_{\nu} - \lambda)$$

has two distinct positive zeros, $0 < \beta_1 < \beta_2$. By Rolle's Theorem, $q'(\beta)$ must have a zero in the interval (β_1, β_2) . But

$$q'(\beta) = -r' \sum_{\nu=1}^{m} r_{\nu} T_{\nu} \frac{\left(x_{\nu} - \lambda\right)^{2}}{\tilde{x} - \lambda} > 0$$

for every $\beta > 0$. Therefore, $q(\beta)$ has at most one positive zero. By properties of h discussed earlier, $\partial h/\partial \beta$ has at least one positive zero. Therefore, the function $q(\beta)$, which is equivalent to $\partial h/\partial \beta$, has exactly one positive zero, say, β_0 . Since h has an odd number of positive zeros and since $h(\lambda,\beta) < 0$ for small values of $\beta > 0$ and $h(\lambda,\beta) > 0$ for large values of β , it follows that $h(\lambda,\beta)$ has exactly one positive zero, say, $\beta_h(\lambda)$, such that $0 < \beta_h(\lambda) < \beta_0$. The zero β_h is simple since $q(\beta_h) \neq 0$. For, if $q(\beta_h) = 0$, $q(\beta)$ would have two distinct zeros.

It is now possible to show that the positive function $\beta_h(\lambda)$, the unique zero of $h(\lambda,\beta)$ for given $\lambda \in (x_1,\bar{x})$, implicitly defined by equation (V.7), is strictly monotonically increasing in the interval (x_1,\bar{x}) . Let $\hat{\lambda}$ and $\hat{\beta}=\beta_h(\hat{\lambda})$ be such that $h(\hat{\lambda},\hat{\beta})=0$. By the implicit function theorem there exists a function $\beta_h(\lambda)$ such that $h(\lambda,\beta_h(\lambda))=0$ on some interval (λ_1,λ_2) which contains $\hat{\lambda}$. Since $q(\beta_h(\lambda))$ $(q(\beta)$ having been defined in (VI.3)) is different from zero, in fact

$$q(\beta_{h}(\lambda)) = \lambda Q(\lambda, \beta_{h}(\lambda)) - R(\lambda, \beta_{h}(\lambda)) = \lambda - R(\lambda, \beta_{h}(\lambda)) > 0$$
 (VI.4)

for every $\lambda \in (x_1, \bar{x})$, the function $\beta_h(\lambda)$ can be continued from (λ_1, λ_2) as a differentiable function to the entire interval (x_1, \bar{x}) .

Its derivative is defined by the identity

$$\frac{d}{d\lambda} h\left(\lambda, \beta_h(\lambda)\right) = \frac{r\left(\beta_h(\lambda)\right)}{\left(\bar{x} - \lambda\right)^2} \left[\bar{x} - R\left(\lambda, \beta_h(\lambda)\right)\right] + \frac{r'\left(\beta_h(\lambda)\right)}{\bar{x} - \lambda} \left[\lambda - R\left(\lambda, \beta_h(\lambda)\right)\right] \frac{d\beta_h(\lambda)}{d\lambda} = 0. \tag{V1.5}$$

Since $\Sigma^{M}_{\nu=1}$ f_{ν} T_{ν} (λ , $\beta_h(\lambda)$) = 1, it follows from Tchebychef's inequality that \bar{x} - R(λ , $\beta_h(\lambda)$) > 0 for every λ ϵ (x_1 , \bar{x}). Furthermore, by (VI.4), λ - R(λ , $\beta_h(\lambda)$) > 0. Therefore, (VI.5) implies that $d\beta_h(\lambda)/d\lambda$ > 0 for λ ϵ (x_1 , \bar{x}). That is to say, $\beta_h(\lambda)$ is strictly monotonically increasing in the interval (x_1 , \bar{x}).

The following facts concerning the function $\beta_h(\lambda)$ should finally be observed. By (VI.5), its derivative is given by

$$\frac{d\beta_{h}(\lambda)}{d\lambda} = \frac{r(\beta_{h}(\lambda))[\bar{x} - R(\lambda, \beta_{h}(\lambda))]}{-r'(\beta_{h}(\lambda))(\bar{x} - \lambda)[\lambda - R(\lambda, \beta_{h}(\lambda))]}.$$
 (V1.6)

The positive function $[\bar{x} - R(\lambda, \beta_h(\lambda))][\lambda - R(\lambda, \beta_h(\lambda))]^{-1} \downarrow 1$ as $\lambda \uparrow \bar{x}$. The positive function $r(\beta_h(\lambda))[-r'(\beta_h(\lambda))]^{-1}$ can be expressed in the form

$$\frac{\mathbf{r}(\mathbf{x})}{-\mathbf{r}(\mathbf{x})} = \frac{\mathbf{x}\mathbf{r}(\mathbf{x})}{\mathbf{x}\mathbf{v}(\mathbf{x}) - 1} \tag{V1.7}$$

Since $\beta_h(\lambda)$ is positive and strictly monotonically increasing, the argument $x=\beta_h(\lambda)$ in (VI.7) cannot go to zero as $\lambda\uparrow\bar{x}$. Furthermore, for x>0, the numerator xr(x) in (VI.7) is bounded above by unity, and $xr(x)\downarrow 1/2$ as $x\downarrow\infty$. This limit relation can be established by means of the Laplace integral representation of r(x) mentioned before and by application of Theorem 14.1.3 in [2]. The denominator function in (VI.7) is positive for x>0, and $x\psi'(x)\downarrow0$ as $x\uparrow\infty$. This limit relation can be verified by use of an integral representation of $\psi'(x)$ [15; Chap. 12.32]. Consequently, as (VI.6) shows, $\beta'_h(\lambda)\uparrow\infty$ as $\lambda\uparrow\bar{x}$, i.e., $\beta_h(\lambda)$ has a singularity at $\lambda=\bar{x}$.

Now suppose $\beta_h(\lambda)$ would approach a finite limit as $\lambda\uparrow\bar{x}$. Then, as (VI.1) shows, $y\downarrow 0$ as $\lambda\uparrow\bar{x}$, i.e., the second term in (VI.2) will not remain finite as $\lambda\uparrow\bar{x}$. This establishes a contradiction to the identity (VI.2) with $\beta=\beta_h(\lambda)$ and λ sufficiently close to \bar{x} . Therefore, $\beta_h(\lambda)\uparrow\infty$ as $\lambda\uparrow\bar{x}$. For this reason, numerical solution of equation (V.7) may fail for λ close to \bar{x} .

Equation (V.6) will now be considered. The transformation (VI.1) changes it into

$$g(\lambda,\beta) = -\left[\overline{x} - y^{-\lambda} \sum_{\nu=1}^{M} f_{\nu} \times_{\nu} y^{\times \nu}\right] \beta(y) \log y - 1 = 0.$$

An equivalent equation is

$$\left[\bar{x} y^{\lambda - x_1} - \sum_{\nu=1}^{M} f_{\nu} x_{\nu} y^{x_{\nu} - x_1} \right] \beta(y) \log y + y^{\lambda - x_1} = 0$$
 (vi.8)

in which λ is considered fixed in the interval (x,\bar{x}) . The function $\beta(y)$ cannot be explicitly expressed in terms of y. However, it is only necessary to know that

$$\beta(y) \log y = -\left(\overline{x} - \lambda\right)^{-1} \beta r(\beta) \rightarrow \begin{cases} -\left(\overline{x} - \lambda\right)^{-1} \text{ as } \beta \downarrow 0, \text{ i.e., as } y \downarrow 0, \\ -\left[2\left(\overline{x} - \lambda\right)\right]^{-1} \text{ as } \beta \uparrow \infty, \text{ i.e., as } y \uparrow 1. \end{cases}$$

The second limit relation has essentially been established already in connection with (VI.7). The first one follows from the fact that $xr(x) \uparrow 1$ as $x \downarrow 0$ [3; 8.362.2].

It can now be seen that the left-hand side of (VI.8) approaches positive values as $y \downarrow 0$ and as $y \uparrow 1$. This implies that, for fixed $\lambda \in (x_1, \bar{x})$, the equation $g(\lambda, \beta) = 0$ has an even number of positive roots. There may exist values of $\lambda \in (x_1, \bar{x})$ for which $g(\lambda, \beta) = 0$ has no positive roots at all. As a matter of fact, a more careful investigation of equation (VI.8) reveals that there may exist numbers λ_1 and λ_2 , $x_1 < \lambda_2 < \bar{x}$, such that $g(\lambda, \beta) = 0$ has no real roots for $\lambda \in (\lambda_1, \lambda_2)$.

VII. THE PARAMETER ESTIMATION ALGORITHM

Estimation of the parameters of the generalized Gumbel distribution class (*), Section I, for a given set of histogram data $\{(x_{\mathcal{V}}, f_{\mathcal{V}}\} \ (\nu=1, ..., M), x_{\mathcal{V}} = a + (\nu-1/2)\Delta a$, is based on the solution of the derivative equations (Section V) of the associated LLF (IV.1). The algorithm presented in this report covers the three-parameter unknown case as well as the two-parameter unknown case in which the shape parameter β is assumed to be equal to unity.

In the three-parameter case the equations $g(\lambda,\beta)=0$ (V.6), and $h(\lambda,\beta)=0$ (V.7) must be solved. Their solution $(\hat{\lambda},\beta)$ determines the scale parameter \hat{b} by (V.3). In the two-parameter case the single equation g(b)=0 (V.9) must be solved. Its solution \hat{b} determines the shift parameter $\hat{\lambda}$ by (V.8).

1. The Three-Parameter Case

Suppose that $(\hat{\lambda}, \hat{\beta})$ is a solution of the system of equations (V.6) and (V.7) with $\hat{\lambda} \in (x_1, \bar{x})$ and $\hat{\beta} = \beta_h(\hat{\lambda}) > 0$, and that the graphs of the functions implicitly defined by g = 0 and h = 0 have a proper intersection at $(\hat{\lambda}, \hat{\beta})$. Then there are numbers λ_L and λ_R , $x_1 < \lambda_L < \hat{\lambda} < L_R < \bar{x}$, and numbers $\beta_L = \beta_h(\lambda_L)$ and $\beta_R = \beta_h(\lambda_R)$, $0 < \beta_L < \beta_R$, such that $h(\lambda_L, \beta_L) = 0$, $h(\lambda_R, \beta_R) = 0$ and $g(\lambda_L, \beta_L) g(\lambda_R, \beta_R) < 0$. Since $\beta_h(\lambda)$ is strictly monotonically increasing (Section VI), the solution point $(\hat{\lambda}, \hat{\beta})$ of the equations (V.6) and (V.7) is boxed in the interior of the rectangle in the first quadrant of the (λ, β) plane defined by the points (λ_L, β_L) , (λ_L, β_R) , (λ_R, β_L) , (λ_R, β_R) .

Boxing of the solution point $(\hat{\lambda}, \hat{\beta})$ requires the solution of the equation $h(\lambda, \beta) = 0$ only and evaluation of the sign of the function $g(\lambda, \beta)$.

The root $\beta_L(\lambda)$ of $h(\lambda,\beta)=0$ is first bracketed by sign change detection along the search sequence $\beta_{\mathcal{V}}=10^{-1}~(1.618)^{\mathcal{V}}~(\nu=0,1,2,...,19).$ Brent's method [13; Chap. 7.3] is then used to calculate the root. In the numerical algorithm it is actually not the equation h=0 which is solved but the equivalent equation f=0 given in Sec. VI. The range of f is bounded for f=00, whereas the range of f=01 is not bounded below near f=02. The use of f=03 instead of f=04 eliminates possible overflow problems for small values of f=05. The parameter estimation algorithm is aborted if no root f=03 is found in the interval f=04. Shape parameter values outside this interval would lead to nearly pathological densities.

To obtain λ values for boxing the solution of equations (V.6) and (V.7), the β roots of $h(\lambda,\beta)=0$ are calculated along a sequence $\{\lambda^{(0)},\lambda^{(0)}_R,\lambda^{(0)}_L,\lambda^{(1)}_R,\lambda^{(1)}_{R},\lambda^{(1)}_{R$

$$\lambda_{R}^{(\nu)} = \lambda^{(0)} + 2^{\nu-1} \Delta a \left(2^{\nu} + 99\right)^{-1}$$
.

$$\lambda_{L}^{(\nu)} = \lambda^{(0)} - 2^{\nu} \left(\lambda^{(0)} - x_1\right) \left(2^{\nu} + 99\right)^{-1} \quad (\nu = 0, 1, 2, ..., 30).$$

The first of these subsequences converges up to \bar{x} , the second down to x_1 as $v \uparrow \infty$. Let $\beta^{(0)}$, $\beta^{(v)}_R$, $\beta^{(v)}_L$, be the corresponding roots of h = 0.

The sign of $g(\lambda,\beta)$ is evaluated at the points $(\lambda^{(0)},\beta^{(0)}),(\lambda^{(\nu)}_R,\beta^{(\nu)}_R)$, and $(\lambda^{(\nu)}_L,\beta^{(\nu)}_L)$. The process is terminated if at two successive points, either in the $\{\lambda^{(\nu)}_R\}$ or in the $\{\lambda^{(\nu)}_L\}$ subsequence, the product of the g functions is negative, i.e., if boxing of $(\hat{\lambda},\hat{\beta})$ has been achieved.

The boxing rectangle is subsequently refined by bisection of the λ interval until the accuracy requirement $(\Delta\lambda < 10^{-7})$ \cap $(\Delta\beta < 10^{-7})$ is satisfied. Monotonicity of the function $\beta_h(\lambda)$ is not exploited in the actual numerical algorithm because of the interplay between the one-dimensional Brent's method and the two-dimensional boxing process.

2. The Two-Parameter Case

The root \hat{b} of equation (V.9), g(b)=0, is first bracketed by evaluation of $g(b_{\mathcal{V}})$ along the search sequence $b_{\mathcal{V}}=10^{-1}~(1.618)^{\mathcal{V}}~(\nu=0,1,2,...,19)$. The reason for the restriction of b to this interval is analogous to that given earlier for β .

Remark. For computational convenience the transformation $x_{\nu} \rightarrow x_{\nu} - x_{1}$ is applied before the start of the actual computations. It affects only the shift parameter. The algorithm calculates the relative shift value $\hat{\lambda}_{0}$ and returns the true shift value $\hat{\lambda} = \hat{\lambda}_{0} + x_{1}$.

VIII. EXAMPLES

To demonstrate the algorithm a number of examples are presented. Accompanying tables are given in Section IX.

Example 1

N = 87 observations of annual 24-hour maximum rainfalls (in points) at Sidney, Australia, over the period 1859-1945 are given in Table 1.1 [7]. Grouping into histogram absolute frequency data has been performed on the data of Table 1.1 in five different ways, G_{ν} , as displayed in the second columns of Tables 1.3 G_{ν} (ν =1, ..., 5). The first column shows the class interval numbers ν . The class interval data are given in Table 1.2.

Parameter estimation has been performed with three and with two ($\beta=1$) parameters. The results are shown in Tables 1.4G_{ν} ($\nu=1,\ldots,5$).

The estimated parameter values are used to calculate the expected absolute frequencies from the PDF (*). For the three-parameter estimates they are given in the third columns of Tables $1.3G_{\mathcal{V}}$, and for the two-parameter estimates in the fifth columns. Next to the calculated frequencies in Tables $1.3G_{\mathcal{V}}$ are shown the chisquare values. As mentioned in the Introduction, no significance will be attached to them within the framework of this report.

Example 2

A total of N = 89 observations of frequencies of annual maxima of rainfall (in inch) in 24 hours at Camden Square, London, over the period 1860-1948 [1; Chap. 8.7] have been grouped into M = 12 class intervals $[a + (\nu-1)\Delta a, a + \nu\Delta a)$ with a = 1/2, $\Delta a = 1/4$. The data are given in Table 2.1. The results of the three-parameter and two-parameter estimates are shown in Table 2.2. The calculated expected frequencies together with the corresponding chi-square values are displayed in Table 2.1.

Example 3

This example concerns the distribution of the greatest ages of men [4: Sec. 1, Table 1, 2nd ed.]. A total of N = 52 observations have been grouped into M = 9 class intervals [a + $(\nu-1)\Delta a$, a + $\nu\Delta a$) with a = 95.5 and Δa = 1. Table 3.1 shows the given data. Calculated results are shown in Table 3.2 (parameters) and in Table 3.1 (frequencies and chi-square values).

Example 4

The last example deals with the ensemble distribution of the greatest ages of men and women [4; Sec. 1, Table 1, 4th col.]. The total number of observations is N = 104 corresponding to M = 11 class intervals $[a + (\nu-1)\Delta a, a + \nu\Delta a), a = 95.5, \Delta a = 1$. Table 4.1 shows the given data. The results are presented in Tables 4.2 and 4.1.

IX. TABLES

Table 1.1 Annual Maximum Twenty-Four Hour Rainfalls (in Points) at Sidney, Australia, 1859-1945.

370	752	662	190	375	395	3 5 5	ر (8 د
865	618	445	403	324	280	មមា	اے جاتی۔
389	281	489	25 3	5 69	204	425	640
433	645	485	468	283	275	83 6	966
z/95	434	330	310	236	487	273	605
30	423	441	637	157	477	364	363
నర్ ^న చెప్పిన	57 1 342	177 316	475 653	%ଅଞ 488	441 414	652 418	337 374
250 250 230	188 322 33 3	484 380 154	4 5 9 3 3 5 11 0 5	489 263 330	239 216 192	391 339 420	3 0 2 575

Table 1.2 Class Intervals and Number of Classes for Groupings $G_{\mathcal{V}}$ (ν =1, ..., 5)

	G ₁	G ₂	GЗ	G4	⁶ 5
а	150	125	150	100	125
Δа	100	100	50	75	75
м	10	10	20	14	14

Table 1.3G₁ Grouped Frequency Data for Grouping G₁

GUMBEL DISTAIBUTION CALCULATIONS Data file is LNGDSET1.DAT

		3 Para	Estimate	2 Para	Estimate
V	f(abs)	f(cal)	X**2	f(c a l)	X**2
1	1 1	10.41	. 0 3	9.56	.22
2	23	25.08	. 17	22.20	. 03
3	23	20.91	. 21	22.35	.02
4	10	13.10	.73	15.15	1.75
5	10	7.60	. 76	8.51	. 26
6	4	4.32	. 02	4.37	. 03
7	4	2.44	1.00	2.15	1.58
8	1	1.38	. 10	1.04	. 00
9	Ø	. 28	. 78	. 5 0	.50
10	1	. 44	. 72	. 24	2.46
Totals	87	86.43		86.08	

Table 1.3 G_2 Grouped Frequency Data for Grouping G_2

GUMBEL DISTRIBUTION CALCULATIONS Data file is LNGDSET2.DAT

		3 Para	Estimote	2 Para	Estimate
V	f(abs)	f(cal)	X**2	f(cal)	X**2
1	8	6.79	. 22	6.79	.22
2	18	20.64	. 34	19.70	. 15
3	25	22.61	. 25	22.74	. 23
4	16	16.10	. 20	16.78	. 04
5	2	9.56	.68	9.97	.89
6	2	5.25	.58	5.34	. 52
7	3	2.79	. 02	2.71	. Ø3
8	2	1.47	. 19	1.35	. 32
9	0	. 77	. 27	. 66	.66
10	1	. 40	. 91	. 32	1.43
Totals	87	86.38		86.35	

Table 1.3G3 Grouped Frequency Data for Grouping G3

GUMBEL DISTRIBUTION CALCULATIONS Data file is LNGDSET3.DAT

		3 Para	Estimate		Estimate
v	f(abs)	f(cal)	X#*2	f(cal)	X**2
1	6	3.13	2.63	3.20	2.46
2	5	7.28	.71	6.74	. 45
3	8	10.80	. 72	10.04	.42
4	15	12.16	. 66	11.77	. 89
5	12	11.56	. 02	11.69	. Ø 1
6	1 1	9.90	. 12	10.36	. 04
7	10	7.95	. 53	8.49	.27
8	Ø	€.14	6.14	6.59	6.59
ġ	5	4.63	.03	4.93	. 00
10	5	3.44	.71	3.59	. 55
1 1	3	2.53	. Ø9	2.57	. 07
12	1	1.85	. 39	1.82	. 37
13	3	1.35	2.02	1.28	2.32
14	1	. 98	. 00	. 89	.01
15	1	. 71	. 11	.62	.23
16	0	.52	. 52	. 43	.43
17	Ø	. 38	. 38	. 30	. 30
18	Ø	. 27	. 27	. 21	.21
19	Ø	.20	. 20	. 14	. 14
20	1	. 14	5.11	. 10	8.34
Totals	87	85 .93		85.74	

Table 1.3G4 Grouped Frequency Data for Grouping G4

GUMBEL DISTRIBUTION CALCULATIONS Data file is LNGDSET4.DAT

		3 Para Es	timate		Estimate
V	f(abs)	f(cal)	X##5	f(cal)	X##2
1	2	1.84	. Ø 1	2.08	.00
2	9	8.91	. 00	8.55	. 0 2
3	15	16.12	. Ø8	15.46	. 0 1
4	20	17.39	. 39	17.35	.40
	13	14.32	. 12	14.76	. 21
5	8	10.23	.48	10.70	. 6 8
6	7	6.28	. 0 1	7.06	.00
7	•	4.33	. 65	4.41	. 57
8	6 3	2.70	.03	2.67	. 04
9	-	1.67	. 06	1.59	. 10
10	2		. 00	. 94	. 00
1 1	1	1.03			. 55
12	0	. 63	. 63	. 55	
13	Ø	. 39	. 39	. 32	. 32
14	1	. 24	2.47	. 19	3.56
lotals	87	86.57		86.62	

Table 1.3G5 Grouped Frequency Data for Grouping G5

GUMBEL DISTRIBUTION CALCULATIONS Data file is LNGDSETS.DAT

		3 Pala Es	timate	2 Para	Estimate
V	f(abs)	f(cal)	X**2	f(c a l)	X**2
1	6	3.98	1.02	4.05	.93
2	8	12.24	1.47	11.76	1.20
3	20	17.51	. 35	17.16	. 47
4	17	16.70	. Ø 1	16.88	. 00
5	16	12.82	. 79	13.23	. 58
6	4	8.78	2.60	9. 0 9	2.85
7	6	5.66	.02	5.80	. Ø 1
8	4	3.53	. Ø6	3.54	. 06
y 9	3	2.16	. 32	2.11	. 38
10	1	1.31	.07	1.24	. 05
11	1	.79	. 05	. 72	.11
12	, Ø	. 48	. 48	. 42	.42
13	ø	.29	. 29	. 24	. 24
14	1	, 17	3.94	. 14	5.33
Totals	87	86.43		86.38	

Table 1.4G₁ Three- and Two-Parameter Estimates for Grouping G₁

Lambda = .315619E+003 b = .762429E+002 Beta = .436916E+000 ******************************

Table 1.4G₂ Three- and Two-Parameter Estimates for Grouping G₂

Lambda = .346930E+003 b = .138075E+003 Beta = .100000E+001

经精大设备特殊保存的基础存储的基础存储的基础存储的的现在分词

Table 1.4G₃ Three- and Two-Parameter Estimates for Grouping G₃

Lambda = .331387E+003 b = .102870E+003 Beta = .661333E+000 ************************

Table 1.4G4 Three- and Two-Parameter Estimates for Grouping G4

Table 1.4G5 Three- and Two-Parameter Estimates for Grouping G5

Lembda = .336333E+003 b = .118707E+003 Beta = .805587E+000 ****************************

Lambda = .344157E+003 b = .135811E+003 Beta = .100000E+001 ************************

Table 2.1 Annual Maxima of Rainfall (in Inch) in 24 Hours at Camden Square, London, 1860-1948

GUMBEL DISTRIBUTION CALCULATIONS Data file is GLDSET2.DAT

		3 Para	Estimate	2 Para	Estimate
V	f(abs)	f(cal)	X** 2	f(cal)	X**2
1	4	3.58	. 05	3.86	. 99
2	18	19.31	. 09	18.34	. Ø 1
3	24	25.08	. 05	25.07	. 05
4	24	18.43	1.68	19.21	1.19
5	10	10.79	. 06	11.26	. 14
6	4	5.77	.54	5.82	. 57
7	2	2.97	. 32	2.84	. 25
8	Ø	1.51	1.51	1.35	1.35
9	Ø	. 76	. 76	.63	.63
10	2	. 3 8	6.79	. 30	9.82
1 1	0	. 19	. 19	. 14	. 14
12	1	. 10	8.37	. 06	13.69
Totals	89	88.87		88.89	

Table 2.2 Three- and Two-Parameter Estimates

Lambda = .110330E+001 b = .325831E+000 Beta = .100000E+001

Table 3.1 Greatest Ages of Men

GUMBEL DISTRIBUTION CALCULATIONS Data file is GLDSET1.DAT

		3 Para	Estimate	2 Para	Estimate
V	f(abs)	f(cal)	X**2	f(cal)	X**2
1	1	1.56	. 20	1.37	. 10
2	8	5.57	1.06	5.94	.71
3	9	9.80	. 06	10.38	. 18
4	9	10.93	. 34	10.93	
5	10	9.12	. 09	8.69	. 34
6	5	6.31	. 27	5.98	. 20
7	2	3.88	.91	3.67	. 14
8	7	2.21	10.41	2.18	.76
9	1	1.20	.03	· · -	10.70
Totals	52	50.57	. 03	1.25 50.31	. 05

Table 3.2 Three- and Two-Parameter Estimates

Lambda = .988081E+002 b = .224240E+001 Beta = .156860E+001

Table 4.1 Greatest Ensemble Ages

GUMBEL DISTRIBUTION CALCULATIONS Data file is GLDSET3.DAT

		3 Para	Estimate	2 Para	Estimate
v	f(abs)	f(cal)	X**2	f(cal)	X**2
1	1	1.99	.49	1.20	. 03
2	11	2.39	1.77	8.12	1.02
3	15	15.56	.02	18.31	.60
4	18	21.27	. 5 0	22.29	.83
5	22	20.93	. 0 5	19.23	. 40
6	15	16.04	.07	13.69	. 12
7	10	10.16	. 00	8.76	. 18
8	8	5.57	1.06	5.28	1.41
9	3	2.73	. 03	3.07	. 00
10	0	1.23	1.23	1.76	1.76
1 1	1	.52	. 44	. 99	.00
Totals	104	103.39		102.70	

Table 4.2 Three- and Two-Parameter Estimates

Input file ie GLDSET3.DAT This is a 3 parameter fit *************************** THE FINAL VALUES Lambda = .393298E+001 Ь .366330E+001 • .389615E+001 Beta ****************************** Input file is GLDSET3.DAT This is a 2 parameter fit ******************************** THE FINAL VALUES Lambde = .347478E+001 .171638E+001 ь = . 198898E+001 Beta

X. PROGRAM LISTING

```
C
        Research Directorate, RDEC, USA MICOM
C
        Dr. C E Hall, Jr.
C
        1 Sept 1988
C
        mod 4 Jan 89
        IMPLICIT DOUBLE PRECISION (A-H, 0-2)
        COMMON /GGG/ NCL, FREL(225), RHO(225), XC(225), SUMA, SUMB, XBAH
        COMMON /SSS/ DSHIFT, NTOT, ALPHA, J20A3
        CHARACTER*30 FILENAME
        CHARACTER*75 COMMENT
C
        Send standard output to the printer
        OPEN(7, FILE = 'PRN')
C
        Open input file
        CALL HISTORD(FILENAME, DELTAA)
        Output the results both to the screen and to the output file
С
        WRITE(7,*) ' Input file is ', FILENAME
C
        I/O for a two or three parameter fit
        WRITE(*,'(A\)') ' Enter desired parameter fit, 2 or 3-'
        READ( *, *) J2083
        WRITE(7,'(A,I2,A)') ' This is a ',J20R3, ' parameter fit'
C
        Calculate XBAR
        CALL CALXBAR
        IF (J20A3.EQ.3) THEN
c
           Calculate the roots of g(.) and h(.)
           IEAA = 0
           CALL ROUTG(XROOT, YROGT, IERR)
           IF (IERR.NE.0) GOTO 900
С
           Calculate the value of b
           TEMP1 = DLOG(YROOT) - PSI(YROOT)
           TEMP2 = XBAR - XROOT
           BVAL = TEMP2 / TEMP1
           RLAM = XROOT - DSHIFT
        ELSE
С
           Scale 8VAL to match HOOTH routine
           IF (XC(NCL).GT.70.D0) THEN
              ALPHA = XC(NCL) / 70.00
            ELSE
               ALPHA = 1.00
           ENDIF
           Solve for BNAL, via HODIH
           CALL ROOTH(X, BVAL, IERR)
            IF (IEAR.NE.Ø) GOTO 900
C
           Calculate ALAM and set BETA (YROOT)
           BVAL = BVAL # ALPHA
            SUM1 = 0.00
            00 100 ICNT = 1, NCL
               SUM1 = SUM1 + FREL(ICNT) , DEXP(XC(ICNT)/BVAL)
120
           CONTINUE
```

```
RLAM - (-1.00) * BVAL * DLOG(SUM1) - DSHIFT
           YROOT = 1.00
        ENDIF
С
        Write values to the screen
        WRITE(7,*) / ***************************
        WRITE(7,*) ' THE FINAL VALUES '
        WRITE( 2, ₺)
        WRITE(7,'('' Lambda = '', E15.6E3)') RLAM
WRITE(7,'('' b = '', E15.6E3)') BVAL
WRITE(7,'('' Beta = '', E15.6E3)') YROOT
        WRITE(7,'(''
WRITE(7,'(''
        WRITE(7,*) * *****************************
        GOTO 999
        ERHOR
С
900
        CALL ERRMESS(IERR)
999
        CLOSE(7)
        END
C
        This subroutine reads histogram data and calculates relative freq
        SUBROUTINE HISTORD(FILENAME, DELTAA)
        IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
        COMMON /GGG/ NCL, FREL(225), RHO(225), XC(225), SUMA, SUMB, XBAR
        COMMON /SSS/ DSHIFT, NTOT, ALPHA, J20R3
        DIMENSION IFAB(120)
        CHARACTER#30 FILENAME
        WAITE(*,'(A\)') ' Enter the input file name -'
        READ( $, '(A) ') FILENAME
        OPEN(8, FILE = FILENAME, STATUS = 'OLD')
С
        Read absolute frequencies
        READ(8, '(A) ') COMMENT
        READ(8,*) A, DELTAA
        READ(8, *) NUMCLASS
        BEAD(8,*) (IFAB(ICNT), ICNT=1, NUMCLASS)
        NCL = NUMCLASS
        NTOT = 0
         DO 100 JCHT = 1, NUMCLASS
                 NTOT - NTOT + IFAB(JCNT)
120
         CONTINUE
         00 200 JCNT # 1, NUMCLASS
                 FAEL(JONT) = DBLE(IFAB(JONT)) / DBLE(NTOT)
200
         CONTINUE
```

```
C
      Calculate the XC
      DSHIFT = ((~ DELTAA) / 2.000) - A
      DO 300 JCNT=1, NUMCLASS
             XC(JCNT) = DBLE(JCNT-1) * DELTAA
300
      CONTINUE
      RETURN
      END
      C
             ERRMESS writes error messeges to the terminal
C
      SUBROUTINE ERRMESS(IERR)
      IF (IEAA.EQ.0) GOTO 500
      WAITE(*,*) ' TERMINAL ERROR!!!'
      IF (IERR.EQ.1) THEN
             WRITE(*,*)' No zerocrossing found for W0'
      ELSEIF (IERA.EQ.2) THEN
             WRITE(*,*)' Root of h not bracketted'
      ELSEIF (IERR.EQ.3) THEN
             WRITE(*,*)' h does not converge to a zero'
      ELSEIF (IERR.EQ.4) THEN
             WRITE(*,*)' g-h root intersection not found'
       ENDIF
500
      RETURN
       END
       ť.
O
       45
             GFUNC(X,BETA) Calculates the derivative g(c,beta)
С
       25
             1 Sept 88
C
             mod 2 Dec 88
C
             Aes. Dir., C. E. Hall, Jr.
       C
       FUNCTION GRUNC(X, BETA)
       IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
       COMMON /GGG/ NCL, FREL(225), AHO(225), XC(225), SUMA, SUMB, XBAR
       COMMON /SSS/ DSHIFT, NTOT, ALPHA, J20R3
       ASHIFT = X
       CALL SUMAB(XSHIFT, BETA)
       SBETA = DLOG(BETA) - PSI(BETA)
       GFUNC = (DBLE(NTOT) *XBAR-SUMB) *BETA*SBETA -
      (GBLE(NTOT) *XBAR - DBLE(NTOT) *XSHIFT)
       RETURN
```

END

```
C
С
              HFUNC(BETA) Calculates the derivative h(c,beta)
С
              1 Sept 88
C
              13 Oct 88 mod for three function root finding
С
              Res. Dir., C. E. Hall, Jr.
C
       FUNCTION HFUNC(X, BETA)
       IMPLICIT DOUBLE PRECISION (A-H,O-Z)
       COMMON /GGG/ NCL, FREL(225), RHO(225), XC(225), SUMA, SUMB, XBAE
       COMMON /SSS/ DSHIFT, NTOT, ALPHA, J20R3
       XSHIFT = X
       IF (J2083.EQ.3) THEN
              SBETA = DLOG(BETA) - PSI(BETA)
              YLOG = SBETA / (XSHIFT - XBAA)
              SUM = 0.00
              DO 100 JCNT=1, NCL
                SUM = SUM+FREL(JCNT) *DEXP(YLOG*(XC(JCNT)-XC(1)))
100
              CONTINUE
              HFUNC = DEXP(YLOG*(XSHIFT-XC(1))) - SUM
       ELSEIF (J20R3.EQ.2) THEN
              BVAL = BETA * ALPHA
               TEMP1 = 0.00
               TEMP2 = 0.00
               DO 200 JCNT = 1,NCL
                      TERM = FREL(JCNT) / DEXP(XC(JCNT)/BVAL)
                      TEMP1 = TEMP1 + TERM
                      TEMP2 = TEMP2 + TERM * XC(JCNT)
200
               CONTINUE
              HFUNC = XBAR - BVAL - TEMP2 / TEMP1
       ENDIF
       RETURN
       END
        。""这点点就是我的,我们,我<mark>我们对你们的教育</mark>的,我们就是这种<mark>的特殊的,我们的教育的,我们</mark>的对外的,我们的人们的,我们就是这种的人们。"
C
С
        40
               SUMAB(X,BETA) Calculates the series sums A and B
С
               1 Sept 88
С
               Res. Dir., C. E. Hall, Jr.
        С
        SUBROUTINE SUMAB( X, BETA)
        IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
```

```
COMMON /GGG/ NCL, FREL(225), RHO(225), XC(225), SUMA, SUMB, XBAR
      COMMON /SSS/ DSHIFT, NTOT, ALPHA, J20R3
      XSHIFT = X
      SBETA - DLOG(BETA) - PSI(BETA)
       SUMA = 0.00
       SUMB = 0.00
       DO 410 J = 1, NCL
              SUMA - SUMA + DBLE(NTOT) *FREL(J) * DEXP( ( (XSHIFT - XC(J) )
                     (XBAR - XSHIFT) ) * SBETA )
              SUMB = SUMB + DBLE(NTOT) *FREL(J) * XC(J) * DEXP(
                     ( (XSHIFT - XC(J)) / (XBAR - XSHIFT) ) * SBETA )
       CONTINUE
410
       RETURN
       END
C
       *********************************
       PSI2 CALCULATES VALUE OF PSI FUNTION FOR GIVEN ARGUMENT
С
       FUNCTION PSI(YTX)
     IMPLICIT DOUBLE PRECISION(A-H.O-Z)
     DATA U, T1, T2, T3, T4, T5/100, 1200, 1000, 2100, 2000, 1100/
     H=0.00
     XTX = YTX
       goto 200
100
       A=R+U/XTX
       XTX=XTX+U
200
       IF (XTX.LE.2D1) goto 100
     Q=U/(XTX#XTX)
     PSI=Q*(Q*(Q*(-Q/T5+U/T4)-U/T3)+U/T2)
      PSI=DLOG(XTX) - R-U/(2D0*XTX) + (PSI-U)*Q/T1
     RETURN
     END
SUBROUTINE SETLIM(XMIN, XCEN, XMAX, DELXPOS, DELXNEG)
       IMPLICIT DOUBLE PHECISION (A-H, 0-Z)
       COMMON /SSS/ DSHIFT, NTOT, ALPHA, J20R3
       COMMON /GGG/ NCL, FREL(225), RHO(225), XC(225), SUMA, SUMB, XBAH
       XMIN = 0.00
       XMAX = XBAH
        XCEN = XMAX - 0.500 * ( XC(2)-XC(1) )
```

```
DELXPOS - XMAX - XCEN
      DELXNEG = XCEN - XMIN
      RETURN
      END
C
      C
             CALXBAR(.) calculates XBAR for the gumbel
             distribution
C
             2 Dec 88
C
             C E Hall, Jr, Research Directorate, HDEC, MICOM
С
      SUBROUTINE CALXBAR
      IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
      COMMON /GGG/ NCL, FREL(225), RHO(225), XC(225), SUMA, SUMB, XBAR
      COMMON /SSS/ DSHIFT, NTOT, ALPHA, J20R3
С
      Calculate the moments
      XBAR = 0.00
      DO 100 ICNT=1,NCL
             XBAR = XBAR + FREL(ICNT) * XC(ICNT)
100
      CONTINUE
      RETURN
      END
      С
             · 查看有价值有价值的价值的证明的价值的价值的有价值的有价值的证明的证明的价值的可能的的。
             ROOTG(XROOT, YROOT, IERR)
С
      *
ε
             31 Aug 88
С
             Aes. Dir., C E Hall, Jr.
      SUBROUTINE ROOTG(XROOT, YROOT, IERA)
      IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
      CALL RIGBRACK(XA, YA, XB, YB, IERR, IØFLAG)
      IF (IØFLAG.NE.0) GOTO 100
      IF (IERA.NE.Ø ) GOTO 200
      CALL BIS4RTG(XA, YA, XB, YB, XROOT, YROOT, IERR)
      GOTO 200
100
      AX = IDDHX
      YROOT = YA
200
      AETUAN
      END
C
      С
             CVALUE( JCNT, DELXPOS, DELXNEG, XPOS, XNEG)
C
             This subroutine calculates the positive and negative
\Gamma
             shift values.
```

```
С
               31 Aug 88
C
               Res. Dir., C. E. Hall, Jr.
       SUBROUTINE CVALUE(JCNT, DELXPOS, DELXNEG, XPOS, XNEG, XCEN)
       IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
       TERM - DEXP( DBLE(JCNT) *DLOG(2.000) )
       XPOS = XCEN + TERM * DELXPOS / ( TERM + 99.000 )
       XNEG = XCEN - TERM * DELXNEG / ( TERM + 99.000 )
       RETURN
       END
       С
С
               RTGBRACK( . )
C
       ×
               This subroutine brackets the root of the function g
С
       쏬
               31 Aug 88
C
               Res. Dir., C. E. Hall, Jr.
       SUBROUTINE RTGBRACK(XA, YA, XB, YB, IERR, IØFLAG)
       IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
        JCNT = Ø
        IØFLAG = Ø
        IRLFLG = 0
        MAXJ = 30
        CALL SETLIM(XMIN, XCEN, XMAX, DELXPOS, DELXNEG)
        XC = XCEN
        CALL ROOTH(XC, YC, IERA)
        IF( IERR.NE.0) GOTO 400
        ZC = GFUNC(XC, YC)
        IF (ZC.EQ.0.00) GOTO 390
C
        Calculation loop
200
        JCNT = JCNT + 1
        CALL CVALUE(JCNT, DELXPOS, DELXNEG, XPOS, XNEG, XCEN)
С
        Check positive c shift
        IF ((IALFLG.EQ.2).OR.(IALFLG.EQ.3)) GOTO 225
        CALL ROOTH(XPOS, YP, IERR)
        IF (IEAR.NE.0) THEN
               IERR = 0
               IALFLG = IALFLG + 2
               GOTO 225
        ENDIF
        ZP = GFUNC(XPOS, YP)
        IF (ZP.EQ.0.00) GOTO 390
        IF ((ZP*ZC).LT.0.D0) GOTO 350
```

```
С
       Check negative c shift
225
       IF ((IALFLG.EQ.1).OA.(IALFLG.EQ.3)) GOTO 250
       CALL ROOTH( XNEG, YN, IERR)
       IF (IERR.NE.0) THEN
               TERR - 0
              IALFLG = IALFLG + 1
              GOTO 250
       ENDIF
       ZN = GFUNC(XNEG, YN)
       IF (ZN.EQ.0.D0) GOTO 395
       IF ((ZN*ZC).LT.0.D0) GOTO 360
250
       IF ((IRLFLG.NE.3).AND.(JCNT.LT.MAXJ)) GOTO 200
       IERR = 4
       GOTO 400
C
       Sign change in positive j-1,j bracket
350
       XB = XPOS
       YE = YP
       JMIN1 = JCNT -1
       CALL CVALUE(JMIN1, DELXPOS, DELXNEG, XA, XNEG, XCEN)
       CALL ROOTH(XA, YA, IERR)
       GOTO 400
С
       Sign change in negative j, j-1 bracket
360
       XA = XNEG
       YA = YN
       JMIN1 = JCNT - 1
       CALL CVALUE(JMIN1, DELXPOS, DELXNEG, XPOS, XB, XCEN)
       CALL ROOTH(XB, YB, IERR)
       GGTO 400
C
       Zero found
390
       IØFLAG ≈ 1
       XA = XPOS
       1A = YP
       GOTO 400
С
       Zero found
395
       IOFLAG = 1
       XA = XNEG
       YA = YN
400
       RETURN
       END
       C
С
       -36
               BIS4RTG - Bisects the interval until delta X, and
С
       *
                      delta Y are both less than 1.0E-7
С
               31 Aug 88
C
               Res. Dir., C. E. Hall, Jr.
С
```

```
SUBROUTINE BIS4RTG(XA, YA, XB, YB, XM, YM, IERR)
       IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
       TOL = 1.00-07
       ZA = GFUNC(XA, YA)
       ZB = GFUNC(XB, YB)
       Bisection loop
100
       XC = (XA + XB) / 2.000
       CALL HOOTH(XC, YC, IERR)
       IF (IEAR.NE.0) GOTO 300
       ZC = GFUNC(XC,YC)
       IF (ZC.EQ.0.D0) GOTO 250
       IF ((ZC*ZA).GT.0.D0) THEN
               XA = XC
              ·YA = YC
               ZA = ZC
       ELSE
               XB = XC
               YB = YC
               ZB = ZC
       ENDIF
       DELTAX = DABS(XB-XA)
       DELTAY = DABS(YB-YA)
       IF( (DELTAX.GE.TOL) .OR. (DELTAY.GE.TUL) ) GOTO 100
       XM = (XA + XB) / 2.00
       YM = (YA + YB) / 2.00
       GOTO 300
C
       Exact zero found
250
       XM = XC
        YM = YC
       RETURN
300
       END
       С
С
               ATHBRACK - Root H Bracketing Subroutine
\mathcal{C}
               This subroutine brackets the root of only the H function
C
               31 Aug 88
С
               Res. Dir., Dr. C. E. Hall, Jr.
        你们的我们的你会接受的特殊的的。
        SUBROUTINE RTHBRACK(XV, YA, ZA, YB, ZB, IERH)
        IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
C
        Set starting parameters
```

```
YØ - 0.100
        DUPFAC = 1.618D0
        MAXITER = 19
        IEAA - 0
        Set initial values
C
        YA = Y0
        ZA = HFUNC(XV, YA)
        ITEA = 0
С
        Evaluation loop
100
        ITER = ITER + 1
        YB = YA * DUPFAC
        ZB = HFUNC(XV, YB)
        IF (ZB.EQ.0.D0) GOTO 150
        IF ((ZA*ZB).LT.0.D0) GOTO 150
        YA = YB
        ZA = ZB
        IF (ITER.LT.MAXITER) GOTO 100
        MAXITER exceeded set error flag
        IEAA = 4
150
        RETURN
        · 这种性性的原因,我们们的种种的特殊性性的,我们们们们们的种种种种种种的种种的特殊性的特殊性的,我们们们们们们们们们们的,可以可以可以可以可以可以可以可以可以
С
                HOOTH - Finds the root of h
С
С
                31 Aug 88
        * Res. Dir., Dr. C. E. Hall, Jr.
Ü
        SUBROUTINE ROOTH(XV, YROOT, IERR)
        IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
        CALL RTHBRACK(XV, YA, ZA, YB, ZB, IERR)
        1F(IERR.NE.0) GOTO 200
        CALL BROOT(XV, YA, ZA, YB, ZB, YROOT, IERR)
200
        RETURN
        END
      SUBROUTINE BROOT(XV, YA, ZA, YB, ZB, YROOT, IERR)
      IMPLICIT DOUBLE PRECISION (P-Z)
      DOUBLE PRECISION EPSI, HFUNC
      PARAMETER (MAXIT=100, EPSI=3.D-8)
      ZC=ZB
      DO 510 NIT=1, MAXIT
        IF (ZB*ZC.GT.0D0) THEN
```

```
YC=YA
         ZC=ZA
         YD=YB-YA
         YE-YD
       ENDIF
       IF(DABS(ZC).LT.DABS(ZB)) THEN
         YA-YB
         YB=YC
         YC=YA
         ZA=ZB
         ZB=ZC
         ZC=ZA
       ENDIF
       TOL1=2.D0*EPSI*DABS(Y8)+.500*EPSI
       YM=.500*(YC-YB)
      IF (DABS(YM).LE.TOL1.OR.ZB.EQ.000) THEN
         YROOT=YB
        RETURN
      ENDIF
      IF(DABS(YE).GE.TOL1.AND.DABS(ZA).GT.DABS(ZB)) THEN
         S=ZB/ZA
         IF(YA.EQ.YC) THEN
           T=2004YM*S
           Q=100~S
        ELSE
           Q=ZA/ZC
           A=ZB/ZC
           I=S*(200*YM*Q*(Q-A)-(YB-YA)*(A-1.00))
           Q=(Q-1.D0)*(R-1.D0)*(S-1.D0)
        ENDIF
        IF( T.GT.Ø.DØ) Q=-Q
        T=DABS( T)
        Y3=3DØ#YM#Q-DABS(TOL1#Q)
        IF(2.D0*T.LT.DMIN1(Y3,DABS(YE*Q))) THEN
           YE=YD
          YD=T/Q
        ELSE
          YD=YM
           YE=YD
        ENDIF
      ELSE
        YD = YM
        YE=YO
      ENDIF
      YA=YB
      ZA = ZB
      IF(DABS(YD).GT.TOL1) THEN
        0Y+8Y=6Y
      ELSE
        YB=YB+DSIGN(TOL1,YM)
      ENDIF
      ZB=HFUNC(XV, YB)
510 CONTINUE
    IEAA=5
    RETURN
    END
```

```
C
C
               This program calculates the gumbel pdf from the
C
               gumbel parameters
С
       4
               powell's method.
C
       卷
               Dr. C. E. Hall, Jr.
С
       *
               Res. Dir., RDEC, MICOM
Ĉ
               17 Oct 1988
С
               mod 5 Dec 1988
C
        IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
        CHARACTER*30 FILENAME
        COMMON /GGG/ NCL, FREL(225), RHO(225), XC(225)
        COMMON /SSS/ XSHIFT, NTOT, J20R3
        OPEN(7, FILE='PRN')
        WRITE(*,*) ' 3 Parameters'
        WRITE(*,'(A\)') ' Enter the Lambda-'
        A∈AD( * .*) ALAMØ
        WRITE(*,'(A\)') ' Enter b-'
        READ( *, *) SIGMA0
        WRITE(*,'(A\)') ' Enter Beta-'
        READ( *, *) RMUØ
        WHITE(*,*) ' 2 Parameters'
        WAITE(*,'(A\)') ' Enter the Lambda-'
        READ(*,*) BLAM1
        WRITE(*,'(A\)') ' Enter b-'
        AEAD( *, *) SIGMA1
        AMU1 = 1.00
        Set parameter for unshift XC's
С
        J20R3 = 2
        XSHIFT = 0.00
        CALL HISTORD(FILENAME, DELTAA)
С
        WRITE HEADER TO PRINTER
                               GUMBEL DISTRIBUTION CALCULATIONS!
        WRITE(7,4) '
        WRITE(7,'(A,1X,A)') '
                                      Data file is ',FILENAME
        WAITE(2, 1(1X) 1)
        WAITE( 2,900)
        FORMAT (1X,30X,'3 Para Estimate',7X,' 2 Para Estimate')
900
        WRITE(7,910)
        FORMAT (13X, 1Hv, 5X, 6Hf(abs), 5X, 6Hf(cal), 6X, 4HX**2, 6X,
910
          6Hf(cal),6X,4HX**2)
        ISY1 = 0
        SY2 = 0.00
        SY3 = 0.00
```

```
DO 500 ICNT=1, NCL
               Y1 = DBLE(NTOT) * FREL(ICNT)
               Y2 = DBLE(NTOT) *PDF(XC(ICNT), RLAMØ, SIGMAØ, RMUØ) *DELTAA
                Y3 = DBLE(NTOT) *PDF(XC(ICNT), RLAM1, SIGMA1, RMU1) *DELTAA
               SY2 = SY2 + Y2
                SY3 = SY3 + Y3
               DEL1 = (Y1 - Y2) * (Y1 - Y2) / Y2
                DEL2 = (Y1 - Y3) * (Y1 - Y3) / Y3
                IY1 = NINT(Y1)
                ISY1 = ISY1 + IY1
                WAITE(2,901) ICNT, IY1, Y2, DEL1, Y3, DEL2
                FORMAT (12X, I3, 7X, I3, 1X, 4(5X, F6.2))
901
        CONTINUE
500
        WRITE (7,902) ISY1,SY2,SY3
        FORMAT( 12X, 'Totals'4X, I3, 6X, F6.2, 16X, F6.2)
902
        WRITE(2, '(1H1)')
        CLOSE(2)
        END
        С
        This subroutine reads histogram data and calculates relative freq
        SUBROUTINE HISTORD(FILENAME, DELTAA)
        IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
        COMMON /GGG/ NCL, FAEL(225), AHO(225), XC(225)
        COMMON /SSS/ XSHIFT, NTOT, J20A3
        UIMENSIUN IFAB( 120)
        CHARACTER*30 FILENAME
        WRITE(*,'(A\)') ' Enter the input file name -'
        READ(*,'(A)') FILENAME
        OPEN(8, FILE = FILENAME, STATUS = 'OLD')
С
        Head absolute frequencies
        AEAD(8, '(A) ') COMMENT
        READ(8,*) A, DELTAA
        READ(8, *) NUMCLASS
        AEAD(8,*) (IFAB(ICNT),ICNT=1,NUMCLASS)
        NUL = NUMBERS
        NTOT = 0
        DO 100 JCNT = 1, NUMCLASS
                NTOT = NTOT + IFAB(JCNT)
190
        CONTINUE
        DO 200 JCNT = 1, NUMCLASS
                FHEL(JCNT) = DBLE(IFAB(JCNT)) / DBLE(NTOT)
200
        CONTINUE
```

```
С
       Calculate the XC
       IF (J2083.EQ.2) THEN
              XSHIFT = (-1.D0) * XSHIFT
              DO 250 ICNT - 1, NUMCLASS
                    XC(ICNT) = A+( D8LE(ICNT) -0.5D0) *DELTAA+XSHIFT
250
              CONTINUE
       ELSE
              XSHIFT = (( - DELTAA) / 2.000) - A
              DO 300 JCNT=1, NUMCLASS
                     XC(JCNT) = DBLE(JCNT-1) # DELTAA
300
              CONTINUE
       ENDIF
       RETURN
       END
С
       · 我就会没有要要的我们的,我们就是我们的,我们就没有我们的,我们就会会的,我们就会会的,我们就会会会的,我们也会会会会会会的。
С
              The Gumbel Probability Density function
C
       FUNCTION PDF(X, RLAMDA, 88, BETA)
       IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
       XI = (X - ALAMDA) / BB
       F1 = BETA * DLOG(BETA) - DLOG(BB) - GALOG(BETA)
       F2 = BETA * ( DEXP( -1.D0 * XI ) + XI )
       PDF = DEXP(F1 - F2)
       RETURN
       END
       C
              LN GAMMA
C
       FUNCTION GALOG(QTEMP)
       IMPLICIT DOUBLE PRECISION (G,Q-Z)
       PARAMETER (U=1.D0, XMLIM=14.D0)
       GALOG = 999.9999
       IF ( QTEMP.EQ. Ø. DØ) RETURN
       X - UTEMP
       XMJC≕U
112
       XMUL = XMUL = X
       x = x + u
       IF(X.LT.XMLIM) GOTO 110
       0 = X * X
       Y=(U/21.D0+((-1.D0)/28.D0+5.D0/(99.D0*Q))/Q)/Q
       Y=(5.D0+(U/(-6.D0)+Y)/Q)/(60.D0*X)-X*(U-DLOG(X))
       GALOG=Y+DLOG(DSQRT(8.DØ#DATAN(U)/X)) -DLOG(XMUL)
       RETURN
       END
```

REFERENCES

- 1. Brooks, C. E. P. and Carruthers, N., <u>Handbook of Statistical Methods in Meteorology</u>, Her Majesty's Stationary Office, London, 1953.
- 2. Doetsch, G., <u>Handbuch der Laplace-Transformation.</u> Vol. I, Birkh**ä**user, Basel, 1950.
- 3. Gradshteyn, I.S. and Ryzhik, I. M., <u>Table of Integrals</u>. Series, and <u>Products</u>. Academic Press, New York, 1965.
- 4. Gumbel, E. J., Les plus grands âges en Suisse, <u>J. Statist. Rev. Econ. Suisse</u> 70 Fasc. 4 (1934), 602-614.
- 5. Hahn, G. H. and Shapiro, S. S., <u>Statistical Models in Engineering</u>, John Wiley, New York, 1967.
- 6. Johnson, N. L. and Kotz, S., <u>Continuous Univariate Distributions</u>, Vol. 1, Houghton Mifflin, Boston, 1970.
- 7. Lambert, J. A., "Estimation of Parameters in the Three-Parameter Lognormal Distribution," <u>Australian J. of Stat.</u> 6 (1964), 29-32.
- 8. Law, A. M. and Kelton, W. D., <u>Simulation Modeling and Analysis</u>. McGraw-Hill, New York, 1982.
- 9. Lehnigk, S. H., "Initial Condition Solutions of the Generalized Feller Equation," <u>J.</u>
 Appl. Math. Phus. (ZAMP) 29 (1978), 273-294.
- 10. Lehnigk, S. H., "On a Class of Probability Distributions," <u>Math. Meth. in the Appl.</u> Sci. 9 (1987), 210-219.
- 11. Lehnigk, S. H., "Maximum-Likelihood Estimation of the Parameters of a Four-Parameter Class of Probability Distributions," <u>Proc. Edin. Math. Soc.</u> 31 (1988), 271–283.
- 12. Lehnigk, S. H., "Conservative Similarity Solutions of the One-Dimensional Autonomous Parabolic Equation," <u>J. Appl. Math. Phys. (ZAMP)</u> 27 (1976), 385-391.
- 13. Press, V. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., <u>Numerical</u> <u>Recipes</u>, Cambridge University Press, New York, 1987.
- 14. Roussas, G. G., <u>A First Course in Mathematical Statistics</u>. Addison-Wesley, Reading, 1973.
- 15. Whittaker, E. T. and Watson, G. N., <u>A Course of Modern Analysis</u>. Cambridge University Press, Cambridge, 1958.

DISTRIBUTION

	<u>Copies</u>
Mr. Carl B. Bates Math Stat Team, CSCA-ASA US Army Concepts Analysis Agency 8120 Woodmont Avenue Bethesda, MD 20814-2797	1
COL Frank Giordano Department of Mathematics US Military Academy West Point, NY 10996	1
Dr. Dennis M. Tracey Mechanics of Materials Division US Army Materials & Mechanics Research Center Watertown, MA 02172	1
Director Ballistic Research Laboratory ATTN: AMXBR-SECAD, Dr. Malcolm Taylor Aberdeen Proving Ground, MD 21005-5066	1
Commander Harry Diamond Laboratories ATTN: DELHD-NW-RA (Dr. Timothy M. Geipe) 2800 Powder Mill Road Adelphi, MD 20783-1197	1
Commander Materiel Readiness Support Activity ATTN: AMXMD-E Mr. Willard F. Stratton Chief, Readiness Division Lexington, Kentucky 40511-5101	1
Commander US Army Tank-Automotive Command ATTN: AMSTA-ZSS (Dr. William Jackson) Warren, MI 48397-5000	1
Commander Instrumentation Directorate ATTN: STEWS-ID-P (Mr. Robert E. Green) White Sands Missile Range, NM 88002	1
Commander US Army Materiel Systems Analysis Activity ATTN: AMXSY-MP (Mr. Herbert Cohen)	1

DISTRIBUTION (Continued)

	Copies
Dr. Douglas B. Tank Chief, Department of Biostatistics/Applied Math Division of Biometrics & Medical Info Processing Walter Reed Army Institute of Research Washington, DC 20012	1
Dr. Edmund H. Inselmann US Army Combined Arms Studies & Analysis Activity ATTN: ATOR-CAQ Ft. Leavenworth, KS 66027-5230	1
Dr. Carl Russell ATTN: CSTE-ASO-A USA Operational Test & Evaluation Agency 5600 Columbia Pike Falls Church, VA 22041-5115	1
IIT Research Institute ATTN: GACIAC 10 W. 35th Street Chicago, IL 60616	1
US Army Materiel System Analysis Activity ATTN: AMXSY-MP Aberdeen Proving Ground, MD 21005	1
Dr. Guttalu R. Viswanath Department of Mathematics and Computer Science South Carolina State College Orangeburg, SC 29117	10
AMSMI-RD, Dr. McCorkle Dr. Stephens	1
Dr. Rhoades AMSMI-RD-SS, Dr. Grider AMSMI-RD-ST, Dr. Mixon AMSMI-RD-TE AMSMI-RD-BA, Mr. Ciliax AMSMI-RD-RE-OP, Dr. Lehnigk AMSMI-RD-RE-OP, Dr. Hall AMSMI-RD-CS-R AMSMI-RD-CS-T AMSMI-GC-IP, Mr. Bush	2 2 2 10 10 15 1