Fishtank RFP – PETRA Migration

Proposed Architecture

Migration Process

Preparation

We have been notified of the following dependencies:

- Dependency: DNS Solution: As part of the setup of the VPC, DNS is also set up therefore this should not be an issue
- Dependency: Active Directory Solution: We recommend utilising the AWS Directory Service, which lets you run Microsoft Active Directory as a managed service. By default, each AWS Managed Microsoft AD has a minimum of two domain controllers, each deployed in a separate Availability Zone (AZ) for resiliency and fault tolerance. All domain controllers are exclusively yours with nothing shared with any other AWS customer. AWS provides operational management to monitor, update, backup, and recover domain controller instances. You administer users, groups, computer and group policies using standard Active Directory tools from a Windows computer joined to the AWS Managed Microsoft AD domain.
- Firewall Dependencies:

Port	Source	Destination	Comment	Solution
HTTPS	WebServers	Internet	Webservers use HTTPS	The internet gateway and NAT
			to the internet	Gateway will be a priority to set
				up, to allow for an internet
				connection
9000	WebServers	AppServers	PETRAweb talks to	Once subnets and instances are
			PETRAapp over port	set up, an elastic network
			9000	interface will be set up to allow
				for communication between
				the servers
Unknown	AppServers	Database		We recommend utilising the
				Amazon Aurora Service, as it
				will manage the connections
				for the user and therefore the
				onus for port usage is not
				placed on the user
3389	WebServers	Internet	RDP port, for admin	A Remote Desktop Interface
			use	will be set up in each of the
3389	AppServers	Internet	RDP port, for admin	public subnets we intend to
			use	launch which will allow for
3389	Database	Internet	RDP port, for admin	interactions with the required
			use	instances. AWS Secrets
				Manager will also be set up to
				ensure the security of these
				Admin roles in conjunction with
				AWS IAM (Identity Access
				Management) service
All	All servers	Active	All servers need access	The AWS Managed MS
		Directory	to the companies AD	Directory Service will be a
			server on all ports	priority for migration, this
				should also address the issue
				with the legacy

Strategy- Replatforming

For this application we recommend a "Replatform" migration approach for this application, as AWS offers MySQL and Windows compatible services. This will significantly reduce the complexity of the migration and reduce the time to deployment. Further optimizations where the PETRA app requires refactoring can occur in the future, and after migration these optimizations will be easier to assess and implement.

NOTE: We recommend retaining the printer servers on premise and utilising the Amazon Appflow service, which will allow you to issue workflows to the servers from your VPC, ensuring a smooth integration

Step 1 – Set up VPC Infrastructure

- 1. Create a VPC
- 2. Set up a public subnet to host your web servers, and the appropriate security group that allows for HTTPS traffic
- 3. Set up a private subnet to host your app servers
- 4. Set up a separate private subnet to host your Aurora databases

- 5. Create a public security group
- 6. Create publicly accessible EC2 instance with appropriate IAM roles and key pair
- 7. Create NAT gateway
- 8. Create Route table for the private subnet
- 9. Create a private security group for the app subnet and another security group for the database subnet
- 10. Launch the private EC2 instances for the app server
- 11. Launch the AWS Managed MS Directory Service
- 12. Set up Route 53 Resolver
- 13. Launch the aurora service
- 14. Launch the Amazon FSx for Windows File Server

Step 2 – Development/Testing

Before Migrating your production environment to the cloud, it would be appropriate to undergo some Testing to ensure connections are in place and the VPC was set up correctly, once verification of connections and services has been complete – we can proceed with the migration of the production environments

Step 3 – Migration of Existing Architecture

This will be a homogenous database migration therefore no schema conversion is necessary, and the databases can be migrated using the native tools. Amazon provides an AWS Database Migration Service which can facilitate this migration with ease.

Step 4 - Refine/Optimize

Once migration is complete, utilize AWS' various tools for optimizing your cloud set up, the AWS Cost Optimizer is a tool which will generate recommendations based on your usage over time, allowing you to further improve performance and reduce the costs of your cloud deployments.

Pricing

Cloud Costs

Service/Resource	Monthly Cost (USD)	
Business Support Plan	601.75	
Amazon Aurora MySQL - Compatible	510.53	
AWS Directory Service	93.36	
AWS Secrets Manager	1.20	
AWS Systems Manager	51.16	
Amazon FSx for Windows File Server	366.92	
Amazon Virtual Private Cloud (VPC) ³	3,653.22	
Amazon EC2 – App Servers	772.20	
Amazon EC2 – Web Servers	471.61	
Amazon Elastic IP	20.60	
Amazon AppFlow	72.71	
AWS Application Migration Service	0.00	
Total Cloud Monthly Cost 1, 2	6,619.26	

¹ For further cost breakdown please navigate to

https://calculator.aws/#/estimate?id=7ccb4f6efad109ab7049bdb2b80a287896e40fd1

Human Resource Costs

Role	Daily Rate (\$)	# of resources	Number of days	Total Cost (\$)
		recommended	required	
Business Analyst	508.89	1	7	3562.23
Cloud Consultant	2544.45	1	7	17811.15
Solution	1272.22	1		8905.54
Architect				
Server Migration	826.95	1	30	24808.50
Engineer				
Database	954.17	1	30	28625.10
Migration				
Engineer				
First/Second line	318.06	1	90 days	28625.40
Cloud Support				
Total Cost				112337.90

Final Cost for the Year

\$112337.90 + (\$6,619.26 x 12) = \$191769.00*

² This quoted price could decrease significantly; we have overestimated the initial resources your enterprise would require ensuring no service loss. The CPU usage will be monitored over time and AWS Cost Optimizer will provide recommendations on how to further reduce your cloud spend.

³ The VPC will only need to be built once and will serve any future migrations – therefore future migrations will be significantly cheaper as the VPC is already set up.

⁴ This pricing method has utilised a "Reserved Instance" model which saves up to 72% in costs, this requires a 1-year commitment. One strategy we would recommend is that you could use the on-demand instance model for a much shorter period, which will allow diagnostic data to be acquired through AWS monitoring – this could result in a more cost-efficient solution, rather than overpaying for a year. This would mean the first month is significantly more expensive but result in overall net reduction in cost for the year.

^{*}Please note that the final total could vary, once data gathering can begin upon a successful migration – as the resources will be optimized for lower spending/higher performance.