BÀI TẬP ĐẠO HÀM CƠ BẢN

- Câu 1: Mệnh đề nào sau đây sai?
 - A. Nếu hàm số y = f(x) liên tục tại x_0 thì có đạo hàm tại điểm đó.
 - B. Đạo hàm của hàm số y=f(x) tại điểm x_0 là hệ số góc của tiếp tuyến M_0T của đồ thị hàm số y = f(x) tại điểm $M_0(x_0; f(x_0))$.
 - C. Nếu hàm số y = f(x) có đạo hàm tại x_0 thì nó liên tục tại điểm đó.
 - D. Hàm số y = f(x) được gọi là có đạo hàm trên khoảng (a;b) nếu nó có đạo hàm tại mọi điểm *x* trên khoảng đó.
- Câu 2: Xét ba mệnh đề sau:
 - (1) Nếu hàm số f(x) có đạo hàm tại điểm $x = x_0$ thì f(x) liên tục tại điểm đó.
 - (2) Nếu hàm số f(x) liên tục tại điểm $x = x_0$ thì f(x) có đạo hàm tại điểm đó.
 - (3) Nếu f(x) gián đoạn tại $x = x_0$ thì f(x) không có đạo hàm tại điểm đó.

Trong các mệnh đề trên, có bao nhiều mệnh đề đúng?

A. 1.

Cho hàm số y = f(x) có đạo hàm tại x_0 là $f'(x_0)$. Khẳng định nào sau đây **sai**? Câu 3:

A.
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
.

B.
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
.

C.
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x + x_0) - f(x_0)}{x - x_0}$$
.

D.
$$f'(x_0) = \lim_{a \to 0} \frac{f(x_0 + a) - f(x_0)}{a}$$
.

Cho các hàm số u = u(x) và v = v(x) là các hàm số có đạo hàm tại mọi điểm thuộc khoảng xác Câu 4: định của các hàm số đó. Xét các khẳng định sau:

(1):
$$(u-v)'=u'-v'$$
.

(2):
$$(uv)' = u'.v'.$$

(3):
$$\left(\frac{1}{v}\right)' = -\frac{1}{v^2}, (v(x) \neq 0).$$

(4):
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}, \left(v(x) \neq 0\right).$$

Số khẳng định sai là

A. 0.

C. 1.

D. 2.

Đạo hàm của hàm số $y = 3x^3 - 2x^2 + 2019$ là Câu 5:

A.
$$y' = 6x^2 - 4x$$
.

B.
$$y' = 9x^2 + 4x$$
.

C.
$$y' = 9x^2 - 4x$$
.

D.
$$y' = 9x^2 - 2x$$
.

Cho hàm số f(x) = ax + b với a,b là hai số thực bất kì. Khẳng định nào sau đây đúng? Câu 6:

A.
$$f'(x) = a + b$$
.

B.
$$f'(x) = a + 1$$
.

C.
$$f'(x) = a$$
.

D.
$$f'(x) = b$$
.

Tính đạo hàm f'(x) của hàm số $f(x) = \frac{2x+1}{x-1}$. Câu 7:

A.
$$f'(x) = \frac{1}{(x-1)^2}$$

B.
$$f'(x) = \frac{3}{(x-1)^2}$$
.

A.
$$f'(x) = \frac{1}{(x-1)^2}$$
. B. $f'(x) = \frac{3}{(x-1)^2}$. C. $f'(x) = -\frac{1}{(x-1)^2}$. D. $f'(x) = -\frac{3}{(x-1)^2}$.

D.
$$f'(x) = -\frac{3}{(x-1)^2}$$
.

Cho hàm số $f(x) = -2x^2 + 1$. Tính f'(1). Câu 8:

A. -3.

Cho hàm số $y = x^3 - 2x^2 + x + 1$. Tập nghiệm của bất phương trình y' > 0 là Câu 9:

A.
$$\left(-\infty; \frac{1}{3}\right] \cup \left[1; +\infty\right)$$
.

B.
$$\left(\frac{1}{3};1\right)$$
.

$$A. \left(-\infty; \frac{1}{3}\right] \cup \left[1; +\infty\right). \qquad B. \left(\frac{1}{3}; 1\right). \qquad \qquad C. \left(-\infty; \frac{1}{3}\right) \cup \left(1; +\infty\right). \quad D. \left[\frac{1}{3}; 1\right].$$

Câu 10: Cho các hàm số f(x), g(x) có đạo hàm trên \mathbb{R} và thỏa mãn f(3)=0, g(3)=1, g'(3)=f'(3)=2. Đạo hàm của hàm số h(x)=f(x).g(x) tại $x_0=3$ bằng A. 2. B. 4. C. 6. D. 15.

Câu 11: Cho hàm số y = f(x) liên tục và có đạo hàm trên \mathbb{R} . Kết quả $\lim_{x \to 1} \frac{f(x) - 1}{x^2 - 1}$ bằng

A. f'(1). B. 2f'(1). C. $\frac{f'(1)}{2}$. D. -f'(1)

Câu 12: Cho hàm số y = f(x) liên tục và có đạo hàm trên \mathbb{R} thỏa mãn f(1) = 1, f'(1) = 2. Kết quả $\lim_{x \to 1} \frac{f(x) - \sqrt[3]{3x + 5}}{x - 1}$ bằng

A. $-\frac{5}{4}$. B. $\frac{3}{4}$. C. $-\frac{1}{4}$. D. $\frac{3}{2}$.

Câu 13: Cho hàm số $f(x) = -3x^2 + 2x - 2$. Giá trị y'(-1) bằng
A. 4. B. -4. C. 8. D. 6.

Câu 14: Cho hàm số y = f(x) có đạo hàm tại điểm x_0 . Khẳng định nào sau đây đúng?

A. Tiếp tuyến của đồ thị hàm số y = f(x) tại điểm $M_0(x_0; f(x_0))$ có phương trình là $y = f'(x_0)(x - x_0) + f(x_0)$.

B. Tiếp tuyến của đồ thị hàm số y = f(x) tại điểm $M_0(x_0; f(x_0))$ có phương trình là $y = f(x_0)(x + x_0) + f'(x_0)$.

C. Tiếp tuyến của đồ thị hàm số y = f(x) tại điểm $M_0(x_0; f(x_0))$ có phương trình là $y = f(x_0)(x - x_0) + f'(x_0)$.

D. Tiếp tuyến của đồ thị hàm số y = f(x) tại điểm $M_0(x_0; f(x_0))$ có phương trình là $y = f'(x_0)(x + x_0) + f(x_0)$.

Câu 15: Hệ số góc của tiếp tuyến của đồ thị hàm số $y = x^3 + 2x^2 + 1$ tại điểm có hoành độ bằng -1 là A k = -7. B k = 1. C k = 3. D k = -1.

Câu 16: Tiếp tuyến của đồ thị hàm số $y = \frac{-x+1}{3x-2}$ tại giao điểm của đồ thị hàm số với trục tung có hệ số góc là

A. -1. B. $\frac{1}{4}$. C. $-\frac{5}{4}$. D. $-\frac{1}{4}$.

Câu 17: Cho hàm số $f(x) = x^3 - 3x^2 - 9x + 2018$. Tìm tập nghiệm của phương trình f'(x) = 0. A. $S = \{1; 3\}$. B. $S = \{-1; -3\}$. C. $S = \{1; -3\}$. D. $S = \{-1; 3\}$.

Câu 18: Đạo hàm của hàm số $y = x^2 - 3\sqrt{x} + \frac{1}{x}$ với x > 0 là

A. $y' = 2x - \frac{3}{2\sqrt{x}} - \frac{1}{x^2}$. B. $y' = 2x + \frac{3}{2\sqrt{x}} + \frac{1}{x^2}$. C. $y' = 2x - \frac{3}{2\sqrt{x}} + \frac{1}{x^2}$. D. $y' = 2x + \frac{3}{2\sqrt{x}} - \frac{1}{x^2}$.

Câu 19: Cho hàm số $f(x) = x^3 - 2x^2 - mx - 10$ (với m là tham số). Tìm tất cả các giá trị thực của m để $f'(x) \ge 0$ với mọi x.

Chayena	C D7.10 117 (1V)			1001111
	A. $m \ge \frac{4}{3}$.	B. $m \ge -2$.	C. <i>m</i> ≤ 1.	D. $m \le -\frac{4}{3}$.
Câu 20:	Có bao nhiều điểm M thuộc đồ thị hàm số $f(x) = x^3 + 1$ sao cho tiếp tuyến của đồ thị hàm số			
	f(x) tại M song song với đường thẳng $d: y = 3x - 1$?			
	A.3.	B.2.	C.0.	D.1.
Câu 21:	Phương trình tiếp tuyến của đồ thị hàm số $y = x^4 - x^2 + 2$ tại điểm có hoành độ bằng -1 là			
	A. $y = -2x$.	B. $y = -2x - 2$.	C. $y = -2x + 4$.	D. $y = -2x - 4$.
Câu 22:	Cho hàm số $y = f(x)$ liên tục tại x_0 . Khẳng định nào sau đây đúng?			
	A. $\lim_{x \to x_0} \frac{f(x)}{x - x_0} = f'(x_0)$.		B. $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \frac{1}{x - x_0}$	$f'(x_0)$.
	C. $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x} = f$	(x_0) .	D. $\lim_{x \to x_0} \frac{f(x) - x_0}{x - x_0} = f'(x)$	(x_0) .
Câu 23:	Cho hàm số $y = x^3$ có đồ thị là (C) . Phương trình tiếp tuyến của (C) tại điểm $A(2;8)$ là			
	A. $y = 12x + 16$.	B. $y = -12x - 16$.	C. $y = -12x + 16$.	D. $y = 12x - 16$.
Câu 24:	Cho hàm số $f(x) = ax^3 + \frac{b}{x}$ có $f'(1) = 1$ và $f'(2) = -2$. Khi đó $f'(\sqrt{2})$ bằng			
	A. $-\frac{12}{5}$.	B. $-\frac{2}{5}$.	C. 2.	D. $\frac{12}{5}$.
Câu 25:	Cho hàm số $y = \frac{x^2 + 2x + 2}{x + 1}$. Tập nghiệm của bất phương trình $y' < 0$ là			
	A. (-2;0).	B. $(-\infty;-2)\cup(0;+\infty)$.	C. $(-2;0) \setminus \{-1\}$.	D. (0;2).
Câu 26:	Xét ba mệnh đề sau:			
	(1) Nếu hàm số $f(x)$ có đạo hàm tại điểm $x = x_0$ thì $f(x)$ liên tục tại điểm đó.			
	(2) Nếu hàm số $f(x)$ liên tục tại điểm $x = x_0$ thì $f(x)$ có đạo hàm tại điểm đó.			
	(3) Nếu $f(x)$ gián đoạn tại $x = x_0$ thì $f(x)$ không có đạo hàm tại điểm đó.			
	Trong các mệnh đề trên, có bao nhiều mệnh đề đúng?			
	A. 1.	B. 3.	C. 2.	D. 0.
Câu 27:	Cho hai hàm số $f(x) = \frac{-1}{x^2 + 1}$ và $g(x) = \frac{x^2}{x^2 + 1}$. Mệnh đề nào sau đây đúng?			
	A. $f'(x) = g'(x)$.	B. $f'(x) = -g'(x)$.	C. $1 + f'(x) = g'(x)$.	D. $f'(x) = 1 + g'(x)$.
Câu 28:	Cho hàm số $y = f(x)$ có đạo hàm trên \mathbb{R} và thỏa mãn $3f(x) + xf'(x) = x^3$, $\forall x \in \mathbb{R}$. Đạo hàm			
	của hàm số $h(x) = x^3.f$	(x) tại $x_0 = 1$ bằng		
	A. 1.	B. 2.	C. 3.	D. 6.
Câu 29:	Cho hàm số $f(x) = x^3$	$-3x^2 + 12$. Tập hợp tất	cả các giá trị x thỏa m	$\tilde{a}n f'(x) < 0 là$
	A. $(-\infty;0)\cup(2;+\infty)$.	B. (-2;0).	C. (0;2).	D. $(-\infty;-2)\cup(0;+\infty)$.
Câu 30:	Đạo hàm của $y = x^2(2x+1)(5x-3)$ là biểu thức có dạng $ax^3 + bx^2 + cx$. Tổng $a+b+c$ bằng			
	A. 24.	B. 31.	C. 34.	D. 51.

_____HÉT_____ Huế, 16h00 Ngày 19 tháng 3 năm 2022

LỜI GIẢI CHI TIẾT

Câu 1: Mệnh đề nào sau đây sai?

A. Nếu hàm số y = f(x) liên tục tại x_0 thì có đạo hàm tại điểm đó.

B. Đạo hàm của hàm số y = f(x) tại điểm x_0 là hệ số góc của tiếp tuyến M_0T của đồ thị hàm số y = f(x) tại điểm $M_0(x_0; f(x_0))$.

C. Nếu hàm số y = f(x) có đạo hàm tại x_0 thì nó liên tục tại điểm đó.

D. Hàm số y = f(x) được gọi là có đạo hàm trên khoảng (a;b) nếu nó có đạo hàm tại mọi điểm *x* trên khoảng đó.

Câu 2: Xét ba mệnh đề sau:

(1) Nếu hàm số f(x) có đạo hàm tại điểm $x = x_0$ thì f(x) liên tục tại điểm đó.

(2) Nếu hàm số f(x) liên tục tại điểm $x = x_0$ thì f(x) có đạo hàm tại điểm đó.

(3) Nếu f(x) gián đoạn tại $x = x_0$ thì f(x) không có đạo hàm tại điểm đó.

Trong các mệnh đề trên, có bao nhiều mệnh đề đúng?

A. 1.

Cho hàm số y = f(x) có đạo hàm tại x_0 là $f'(x_0)$. Khẳng định nào sau đây **sai**? Câu 3:

A.
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
.

B.
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
.

C.
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x + x_0) - f(x_0)}{x - x_0}$$
.

D.
$$f'(x_0) = \lim_{a \to 0} \frac{f(x_0 + a) - f(x_0)}{a}$$
.

Cho các hàm số u = u(x) và v = v(x) là các hàm số có đạo hàm tại mọi điểm thuộc khoảng xác Câu 4: định của các hàm số đó. Xét các khẳng định sau:

(1):
$$(u-v)'=u'-v'$$
.

(2):
$$(uv)' = u'.v'.$$

(3):
$$\left(\frac{1}{v}\right)' = -\frac{1}{v^2}, (v(x) \neq 0).$$

(4):
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}, \left(v(x) \neq 0\right).$$

Số khẳng định sai là

A. 0.

B. 3.

C. 1.

D. 2.

Đạo hàm của hàm số $y = 3x^3 - 2x^2 + 2019$ là Câu 5:

A.
$$y' = 6x^2 - 4x$$
.

B.
$$y' = 9x^2 + 4x$$
.

C.
$$y' = 9x^2 - 4x$$
.

D.
$$y' = 9x^2 - 2x$$
.

Cho hàm số f(x) = ax + b với a,b là hai số thực bất kì. Khẳng định nào sau đây đúng? Câu 6:

A.
$$f'(x) = a + b$$
.

B.
$$f'(x) = a + 1$$
.

C.
$$f'(x) = a$$
.

D.
$$f'(x) = b$$
.

Lời giải:

Ta có: f'(x) = a.

⇒Chon đáp án C.

Tính đạo hàm f'(x) của hàm số $f(x) = \frac{2x+1}{x-1}$. **Câu 7:**

A.
$$f'(x) = \frac{1}{(x-1)^2}$$
.

B.
$$f'(x) = \frac{3}{(x-1)^2}$$
.

C.
$$f'(x) = -\frac{1}{(x-1)^2}$$
.

A.
$$f'(x) = \frac{1}{(x-1)^2}$$
. B. $f'(x) = \frac{3}{(x-1)^2}$. C. $f'(x) = -\frac{1}{(x-1)^2}$. D. $f'(x) = -\frac{3}{(x-1)^2}$.

Cho hàm số $f(x) = -2x^2 + 1$. Tính f'(1). Câu 8:

A. -3.

B. 5.

C. 4.

D. -4.

Câu 9: Cho hàm số $y = x^3 - 2x^2 + x + 1$. Tập nghiệm của bất phương trình y' > 0 là

A.
$$\left(-\infty; \frac{1}{3}\right] \cup \left[1; +\infty\right)$$
. B. $\left(\frac{1}{3}; 1\right)$.

C.
$$\left(-\infty; \frac{1}{3}\right) \cup \left(1; +\infty\right)$$
. D. $\left[\frac{1}{3}; 1\right]$.

Câu 10: Cho các hàm số f(x), g(x) có đạo hàm trên \mathbb{R} và thỏa mãn f(3) = 0, g(3) = 1, g'(3) = f'(3) = 2. Đạo hàm của hàm số $h(x) = f(x) \cdot g(x)$ tại $x_0 = 3$ bằng

A. 2.

B. 4.

C. 6.

D. 15.

Lời giải:

Ta có h'(x) = f'(x).g(x) + f(x).g'(x).

Suy ra h'(3) = f'(3).g(3) + f(3).g'(3) = 2.1 + 0.2 = 2.

Câu 11: Cho hàm số y = f(x) liên tục và có đạo hàm trên \mathbb{R} . Kết quả $\lim_{x \to 1} \frac{f(x) - 1}{x^2 - 1}$ bằng

A. f'(1).

B. 2f'(1).

C. $\frac{f'(1)}{2}$.

D. -f'(1).

Câu 12: Cho hàm số y = f(x) liên tục và có đạo hàm trên \mathbb{R} thỏa mãn f(1) = 1, f'(1) = 2. Kết quả $\lim_{x \to 1} \frac{f(x) - \sqrt[3]{3x + 5}}{x - 1}$ bằng

A. $-\frac{5}{4}$.

B. $\frac{3}{4}$.

C. $-\frac{1}{4}$.

D. $\frac{3}{2}$.

Câu 13: Cho hàm số $f(x) = -3x^2 + 2x - 2$. Giá trị y'(-1) bằng

A. 4.

В. –4

C. 8

D. 6.

Câu 14: Cho hàm số y = f(x) có đạo hàm tại điểm x_0 . Khẳng định nào sau đây đúng?

A. Tiếp tuyến của đồ thị hàm số y = f(x) tại điểm $M_0(x_0; f(x_0))$ có phương trình là $y = f'(x_0)(x - x_0) + f(x_0)$.

B. Tiếp tuyến của đồ thị hàm số y = f(x) tại điểm $M_0(x_0; f(x_0))$ có phương trình là $y = f(x_0)(x + x_0) + f'(x_0)$.

C. Tiếp tuyến của đồ thị hàm số y = f(x) tại điểm $M_0(x_0; f(x_0))$ có phương trình là $y = f(x_0)(x - x_0) + f'(x_0)$.

D. Tiếp tuyến của đồ thị hàm số y = f(x) tại điểm $M_0(x_0; f(x_0))$ có phương trình là $y = f'(x_0)(x + x_0) + f(x_0)$.

Câu 15: Hệ số góc của tiếp tuyến của đồ thị hàm số $y = x^3 + 2x^2 + 1$ tại điểm có hoành độ bằng -1 là A. k = -7. B. k = 1. C. k = 3. D. k = -1.

Câu 16: Tiếp tuyến của đồ thị hàm số $y = \frac{-x+1}{3x-2}$ tại giao điểm của đồ thị hàm số với trục tung có hệ số góc là

A. -1.

B. $\frac{1}{4}$.

C. $-\frac{5}{4}$.

D. $-\frac{1}{4}$.

Lời giải:

Giao điểm của đồ thị với trục tung là: $M\left(0; -\frac{1}{2}\right)$.

Ta có $y' = \frac{-1}{(3x-2)^2}$. Khi đó hệ số góc cần tìm là $k = y'(x_M) = -\frac{1}{4}$.

Cho hàm số $f(x) = x^3 - 3x^2 - 9x + 2018$. Tìm tập nghiệm của phương trình f'(x) = 0.

A.
$$S = \{1, 3\}$$
.

B.
$$S = \{-1, -3\}$$
.

C.
$$S = \{1; -3\}$$
.

D.
$$S = \{-1, 3\}$$
.

Đạo hàm của hàm số $y = x^2 - 3\sqrt{x} + \frac{1}{x}$ với x > 0 là

A.
$$y' = 2x - \frac{3}{2\sqrt{x}} - \frac{1}{x^2}$$
. B. $y' = 2x + \frac{3}{2\sqrt{x}} + \frac{1}{x^2}$. C. $y' = 2x - \frac{3}{2\sqrt{x}} + \frac{1}{x^2}$. D. $y' = 2x + \frac{3}{2\sqrt{x}} - \frac{1}{x^2}$.

Câu 19: Cho hàm số $f(x) = x^3 - 2x^2 - mx - 10$ (với m là tham số). Tìm tất cả các giá trị thực của m để $f'(x) \ge 0$ với mọi x.

A.
$$m \ge \frac{4}{3}$$
.

B.
$$m \ge -2$$
. C. $m \le 1$.

D.
$$m \le -\frac{4}{3}$$
.

Lời giải:

Ta có:
$$f(x) = x^3 - 2x^2 - mx - 10 \Rightarrow f'(x) = 3x^2 - 4x - m \Rightarrow f'(x) \ge 0; \forall x \in \mathbb{R} \Leftrightarrow 3x^2 - 4x - m \ge 0; \forall x \in \mathbb{R} \Leftrightarrow \Delta' = 4 + 3m \le 0 \Leftrightarrow m \le -\frac{4}{3}.$$

⇒Chọn đáp án D.

Có bao nhiều điểm M thuộc đồ thị hàm số $f(x) = x^3 + 1$ sao cho tiếp tuyến của đồ thị hàm số Câu 20: f(x) tại M song song với đường thẳng d: y = 3x - 1?

Lời giải:

Gọi $M(a; a^3 + 1)$ là điểm thuộc đồ thị hàm số $f(x) = x^3 + 1(C)$.

Ta có $f'(x) = 3x^2 \Rightarrow$ phương trình tiếp tuyến của (C) tại M là:

$$y = 3a^{2}(x-a) + a^{3} + 1 \iff y = 3a^{2}x - 2a^{3} + 1(\Delta)$$
.

$$\Delta //d \Leftrightarrow \begin{cases} 3a^2 = 3 \\ -2a^3 + 1 \neq -1 \end{cases} \Leftrightarrow \begin{cases} a = \pm 1 \\ a \neq 1 \end{cases} \Rightarrow a = -1.$$

Vậy, có duy nhất điểm M thỏa mãn yêu cầu là M(-1;0).

Câu 21: Phương trình tiếp tuyến của đồ thị hàm số $y = x^4 - x^2 + 2$ tại điểm có hoành độ bằng -1 là

A.
$$y = -2x$$
.

B.
$$y = -2x - 2$$
.

C.
$$y = -2x + 4$$
.

D.
$$y = -2x - 4$$
.

Cho hàm số y = f(x) liên tục tại x_0 . Khẳng định nào sau đây đúng? Câu 22:

A.
$$\lim_{x \to x_0} \frac{f(x)}{x - x_0} = f'(x_0)$$
.

B.
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

C.
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x} = f'(x_0)$$
.

D.
$$\lim_{x \to x_0} \frac{f(x) - x_0}{x - x_0} = f'(x_0)$$
.

Câu 23: Cho hàm số $y = x^3$ có đồ thị là (C). Phương trình tiếp tuyến của (C) tại điểm A(2;8) là

A.
$$y = 12x + 16$$
.

B.
$$y = -12x - 16$$
.

C.
$$y = -12x + 16$$
.

D.
$$y = 12x - 16$$
.

Cho hàm số $f(x) = ax^3 + \frac{b}{x}$ có f'(1) = 1 và f'(2) = -2. Khi đó $f'(\sqrt{2})$ bằng

A.
$$-\frac{12}{5}$$
.

B.
$$-\frac{2}{5}$$

Lời giải:

Ta có
$$f'(x) = 3ax^2 - \frac{b}{x^2}$$
.

Theo đề
$$\begin{cases} f'(1)=1\\ f'(2)=-2 \end{cases}$$
 nên ta có hệ phương trình: $\begin{cases} 3a-b=1\\ 12a-\frac{b}{4}=-2 \end{cases} \Leftrightarrow a=-\frac{1}{5}, \ b=-\frac{8}{5}.$

Khi đó
$$f'(\sqrt{2}) = 6a - \frac{b}{2} = 6 \cdot \left(-\frac{1}{5}\right) - \left(\frac{-8}{5 \cdot 2}\right) = -\frac{2}{5}$$
.

Cho hàm số $y = \frac{x^2 + 2x + 2}{x + 1}$. Tập nghiệm của bất phương trình y' < 0 là

A.
$$(-2;0)$$
.

B.
$$(-\infty; -2) \cup (0; +\infty)$$
. C. $(-2; 0) \setminus \{-1\}$.

C.
$$(-2;0) \setminus \{-1\}$$
.

Câu 26: Xét ba mệnh đề sau:

- (1) Nếu hàm số f(x) có đạo hàm tại điểm $x = x_0$ thì f(x) liên tục tại điểm đó.
- (2) Nếu hàm số f(x) liên tục tại điểm $x = x_0$ thì f(x) có đạo hàm tại điểm đó.
- (3) Nếu f(x) gián đoạn tại $x = x_0$ thì f(x) không có đạo hàm tại điểm đó.

Trong các mệnh đề trên, có bao nhiều mệnh đề đúng?

A. 1.

D. 0.

Lòi giải:

Ta có: (2) sai vì Nếu hàm số f(x) liên tục tại $x = x_0$ thì chưa thể suy ra nó có đạo hàm tại điểm đó. Ví dụ : Hàm số f(x) = |x| liên tục tại x = 0 nhưng không có đạo hàm tại điểm đó.

⇒Chọn đáp án C.

Cho hai hàm số $f(x) = \frac{-1}{x^2 + 1}$ và $g(x) = \frac{x^2}{x^2 + 1}$. Mệnh đề nào sau đây đúng? Câu 27:

$$A. f'(x) = g'(x).$$

B.
$$f'(x) = -g'(x)$$
.

A.
$$f'(x) = g'(x)$$
.

B. $f'(x) = -g'(x)$.

C. $1 + f'(x) = g'(x)$.

D. $f'(x) = 1 + g'(x)$.

D.
$$f'(x) = 1 + g'(x)$$

Lời giải:

Ta có
$$f'(x) = \frac{(x^2 + 1)'}{(x^2 + 1)^2} = \frac{2x}{(x^2 + 1)^2}$$
 và $g'(x) = \frac{2x(x^2 + 1) - x^2 \cdot 2x}{(x^2 + 1)^2} = \frac{2x}{(x^2 + 1)^2}$.

Suy ra f'(x) = g'(x).

Cách khác: Ta có
$$g(x) = \frac{x^2}{x^2 + 1} = 1 - \frac{1}{x^2 + 1} = 1 + f(x)$$
 nên $g(x)' = f(x)'$.

Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và thỏa mãn $3f(x) + xf'(x) = x^3$, $\forall x \in \mathbb{R}$. Đạo hàm Câu 28: của hàm số $h(x) = x^3 \cdot f(x)$ tại $x_0 = 1$ bằng

A. 1.

B. 2.

C. 3.

D. 6.

Lời giải:

Ta có
$$h'(x) = (x^3)' \cdot f(x) + x^3 \cdot f'(x) = 3x^2 f(x) + x^3 \cdot f'(x) = x^2 [3f(x) + x \cdot f'(x)] = x^2 \cdot x^3 = x^5$$
.

Suy ra $h'(1) = 1^5 = 1$.

Câu 29: Cho hàm số $f(x) = x^3 - 3x^2 + 12$. Tập hợp tất cả các giá trị x thỏa mãn f'(x) < 0 là

A. $(-\infty;0) \cup (2;+\infty)$. B. (-2;0).

C. (0;2).

D. $(-\infty;-2)\cup(0;+\infty)$.

Câu 30: Đạo hàm của $y = x^2(2x+1)(5x-3)$ là biểu thức có dạng $ax^3 + bx^2 + cx$. Tổng a+b+c bằng

A. 24.

B. 31.

C. 34.

D. 51.

Lời giải:

Ta có $y = x^2 (2x+1)(5x-3) = 10x^4 - x^3 - 3x^2 \longrightarrow y' = 40x^3 - 3x^2 - 6x$.

Suy ra a = 40, b = -3, c = -6. Vậy a + b + c = 40 - 3 - 6 = 31.

HÉT

Huế, 16h00 Ngày 19 tháng 3 năm 2022