Versuchsbericht zu

V7: γ - γ -Winkelkorrelation

Gruppe Ma-A-06

Chris Lippe (c_lipp02@wwu.de)

Jonathan Sigrist (j_sigrist@wwu.de)

 ${\rm Jannik\ Tim\ Zarnitz}\,({\tt j_zarn02@wwu.de})$

durchgeführt am 25.11.2019

Benjamin Hetz

5. Dezember 2019

Inhaltsverzeichnis

1	Einl	eitung	1	
2	Theorie			
	2.1	Schalenmodell des Kerns	2	
	2.2	Emission von γ -Strahlung	2	
	2.3	Auswahlregeln und Multipolstrahlung	2	
	2.4	Winkelverteilung bei γ - γ -Kaskaden	2	
	2.5	Szintillatoren	2	
	2.6	Photomultiplier	2	
3	Ver	suchsaufbau und -durchführung	3	
4	Dat	enanalyse	6	
	4.1	Diodenkennlinie	6	
	4.2	Bauteile der Hochfrequenztechnik	6	
5	Diskussion & Schlussfolgerung			
	5.1	Unsicherheiten	8	
Li	terat	ur	10	

1 Einleitung

Analog zum Schalenmodell für die Elektronen in der Atomhülle, lässt sich auch für den Atomkern ein solches definieren. Auch hier treten gegenüber dem Grundzustand angeregte Zustände auf, die durch verschiedene Quantenzahlen (Hauptquantenzahl, Kernspin, ...) gekennzeichnet sind. Nach α - und β -Zerfällen liegen die die Kerne oft in einem angeregten Zustand vor. Die "Abregung" geschieht meist über die Aussendung von γ -Quanten, also hoch-energetischen Photonen.

Durch die Detektion der emittierten Photonen lassen sich Rückschlüsse auf die Charakteristiken der angeregten Zustände ziehen. Konkret wird ein angeregter Kern untersucht der über ein Zwischenniveau und unter Aussendung von zwei Photonen in den Grundzustand zerfällt. Die Winkelverteilung ist charakteristisch für die statische Verteilung der magnetischen Drehimpulsquantenzahlen.

Ziel dieses Versuchs ist es, ein besseres Verständnis von Kernniveaus und ihren Quantenzahlen zu bekommen, sowie den Zusammenhang zu den korrespondierenden Winkelverteilungen der emittierten Photonen einer Zerfallskaskade zu untersuchen.

2 Theorie

Im Folgenden sollen zunächst die theoretischen Grundlagen für die nachfolgenden experimentellen Untersuchungen erörtert werden. Die vorgestellte Theorie basiert auf der ausgehändigten Versuchsanleitung [1].

- 2.1 Schalenmodell des Kerns
- 2.2 Emission von γ -Strahlung
- 2.3 Auswahlregeln und Multipolstrahlung
- 2.4 Winkelverteilung bei γ - γ -Kaskaden
- 2.5 Szintillatoren
- 2.6 Photomultiplier

3 Versuchsaufbau und -durchführung

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Aufbau

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

Durchführung

Consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at

vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

4 Datenanalyse

Dieser Abschnitt umfasst die Auswertung der aufgenommenen Daten.

4.1 Diodenkennlinie

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

$$U_k(L) = aW_k\left(B \cdot 10^{\frac{L}{10 \text{ dBm}}}\right),\tag{4.1}$$

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

4.2 Bauteile der Hochfrequenztechnik

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata

sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

Tabelle 1: Energieaufspaltungen aller sechs Peaks von Absorber C.

	$v_{\rm res}$	$\Delta v_{\rm iso}$	$\Delta E_{\rm iso}$
Peak 1	123	123	123
Peak 2	123	123	123
Peak 3	123	123	123
Peak 4	123	123	123
Peak 5	123	123	123
Peak 6	123	123	123

5 Diskussion & Schlussfolgerung

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita

kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

5.1 Unsicherheiten

Jegliche Unsicherheiten werden nach GUM bestimmt und berechnet. Die Gleichungen dazu finden sich in Abb. 1 und Abb. 2. Für die Unsicherheitsrechnungen wurde die Python Bibliothek uncertainties herangezogen, welche den Richtlinien des GUM folgt. Für die Unsicherheiten der Parameter in Annäherungskurven wurden die y-Unsicherheiten der anzunähernden Werte beachtet und die Methode der kleinsten Quadrate angewandt. Dafür steht in der Bibliothek die Methode scipy.optimize.curve fit() zur Verfügung.

Für digitale Messungen wird eine rechteckige Verteilung mit $\sigma_X = \frac{\Delta X}{2\sqrt{3}}$ und für analoges Ablesen wird eine Dreiecksverteilung mit $\sigma_X = \frac{\Delta X}{2\sqrt{6}}$ angenommen. Die jeweiligen ΔX sind im konkreten Abschnitt zu finden.

$$x = \sum_{i=1}^{N} x_i; \quad \sigma_x = \sqrt{\sum_{i=1}^{N} \sigma_{x_i}^2}$$

Abbildung 1: Formel für kombinierte Unsicherheiten des selben Typs nach GUM.

$$f = f(x_1, \dots, x_N); \quad \sigma_f = \sqrt{\sum_{i=1}^N \left(\frac{\partial f}{\partial x_i} \sigma_{x_i}\right)^2}$$

Abbildung 2: Formel für sich fortpflanzende Unsicherheiten nach GUM.

Literatur

[1] Autor unbekannt. " γ - γ -Winkelkorrelation". Versuchsanleitung, ausgehändigt an der WWU Münster.