Matematyka dyskretna (L)

Katarzyna Paluch

Instytut Informatyki, Uniwersytet Wrocławski

2023

Szachownica i domino

Z szachownicy 8×8 wycinamy jedno pole z narożnika.

Czy tak zdeformowaną szachownicę można pokryć kostkami domina, jeśli każda taka kostka obejmuje dwa pola szachownicy?

Szachownica i domino

Z szachownicy 8×8 wycinamy dwa pola z przeciwległych narożników.

Czy taką szachownicę można pokryć kostkami domina?

Szachownica i pchły

W środku każdego pola szachownicy 5×5 siedzi pchła. Na sygnał każda z pcheł przeskakuje na jakieś sąsiadujące pole. Dwa pola są sąsiadujące, jeśli mają wspólny bok.

Czy istnieje strategia gwarantująca, że na każdym polu ponownie znajdzie się dokładnie jedna pchła?

Zasada szufladkowa Dirichleta

Zasada szufladkowa

Niech $k, s \in N > 0$.

Jeśli wrzucimy k kulek do s szuflad (Dirichleta) a kulek jest więcej niż szuflad (k > s), to w którejś szufladzie znajdą się przynajmniej 2 kulki.

Zasada szufladkowa Dirichleta

Zasada szufladkowa

Niech A i B będą skończonymi zbiorami.

Wówczas, jeśli |A| > |B|, to nie istnieje funkcja różnowartosciowa z $A \le B$.

Zasada szufladkowa Dirichleta

Zasada szufladkowa

Niech $k, s \in N > 0$.

Jeśli wrzucimy $k > s \cdot i$ kulek do s szuflad (Dirichleta), to w którejś szufladzie znajdą się przynajmniej i+1 kulki.

Krzesła i ludzie

W rzędzie stoi 12 krzeseł. Zajmuje je 9 osób.

Pokaż, że w każdym przypadku jakieś 3 sąsiadujące krzesła zostaną zajęte.

Liczba znajomych

Pokaż, że w dwolnej grupie n osób ($n \in N$) znajdą się 2 osoby o takiej samej liczbie znajomych (z tej grupy).

Dwukolorowa płaszczyzna

Każdy punkt płaszczyzny kolorujemy na jeden z dwóch kolorów: szmaragdowy lub koralowy.

Pokaż, że w każdym przypadku jakieś dwa punkty w odległości 1 będą tego samego koloru.

55 liczb

Wybieramy 55 liczb naturalnych takich, że:

$$1 \le x_1 < x_2 < \dots x_{55} \le 100.$$

Pokaż, że jakkolwiek byśmy je nie wybrali, jakieś dwie będą różnić się o 9.

Funkcja modulo

Niech $n, d \in Z$ i $d \neq 0$.

$$n \mod d = n - \lfloor \frac{n}{d} \rfloor d$$

$$n \mod d = r \Leftrightarrow 0 \le r < d \land \exists_{k \in \mathbb{Z}} n = kd + r$$

Funkcja modulo - własności

$$(a+b) \mod n = (a \mod n + b \mod n) \mod n$$

 $(a \cdot b) \mod n = ((a \mod n) \cdot (b \mod n)) \mod n$

Przystawanie modulo:

$$a \equiv_n b \Leftrightarrow a \mod n = b \mod n$$

$$a+b \equiv_n a \mod n + b \mod n$$

 $a \cdot b \equiv_n (a \mod n) \cdot (b \mod n)$

Podzielność

Niech
$$n, d \in Z$$
 i $d \neq 0$.
 $d \mid n \Leftrightarrow \exists_{k \in Z} \ n = kd$

$$d|n \Leftrightarrow n \mod d = 0$$
$$d|n \Leftrightarrow n \equiv_d 0$$

Podzielność- własności

$$d|n_1 \wedge d|n_2 \Rightarrow d|(n_1+n_2)$$

Czy zachodzi implikacja w drugą stronę?

Podzielność przez 7

Pokaż, że wśród dowolnych 8 liczb całkowitych różnica jakichś dwóch dzieli się przez 7.

Potęgi 3

Pokaż, że istnieją dwie potęgi 3, których różnica dzieli się przez 2023.

Na ile sposobów można wrzucić n (nierozróżnialnych) kulek do k (rozróżnialnych) szuflad?

Na ile sposobów można wrzucić n kulek do k szuflad?

Zakodujmy każdy rozrzut za pomocą zer i jedynek, tzn. jako ciąg zerojedynkowy.

Na ile sposobów można wrzucić n kulek do k szuflad?

Zakodujmy każdy rozrzut za pomocą zer i jedynek, tzn. jako ciąg zerojedynkowy.

Użyjemy n zer - reprezentują kulki i k-1 jedynek, które są oddzielaczami. Interpretacja: ilość zer między (i-1)szą i i-tą jedynką to ilość kulek w i-tej szufladzie.

Przykład: 0011000 oznacza 2-kulki w pierwszej, 0 kulek w drugiej, 3 kulki w trzeciej.

Na ile sposobów można wrzucić n kulek do k szuflad? Na tyle, ile jest ciągów złożonych z n zer i k-1 jedynek.

Każdy taki ciąg ma długość n+k-1. Trzeba wybrać k-1 miejsc spośród n+k-1, na których postawimy jedynkę.

Odpowiedź: $\binom{n+k-1}{k-1}$

Dwumian Newtona

Wzór dwumienny Newtona

Dla $n \in N$ zachodzi:

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

Dwumian Newtona

Wzór dwumienny Newtona

Dla $n \in N$ zachodzi:

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

Dowód kombinatoryczny:

$$(x+y)^n = \sum_{i=0}^n \alpha_i x^i y^{n-i} (x+y)^n = (x+y)(x+y) \cdots (x+y) = x^n + y^n + \sum_{i=1}^{n-1} \alpha_i x^i y^{n-i}$$

Mamy 2^n mnożeń.

 α_i to liczba sposobów, na jakie możemy wybrać i spośród n nawiasów, w których w mnożeniu uczestniczyć będzie x (a nie y)

Trójmian

Jak rozwinąć sumę $(x + y + z)^n$? Ile wynosi współczynnik przy składniku $x^i y^j z^{n-i-j}$?

Na ile sposobów można wrzucić n (nierozróżnialnych) kulek do k (rozróżnialnych) szuflad tak, by żadna szuflada nie była pusta?

Podzielność przez 100

lle co najmniej liczb całkowitych trzeba wylosować, by mieć gwarancję, że różnica lub suma jakichś dwóch jest podzielna przez 100?

Podłoga w równaniach

lle rozwiązań dla parametru c ma równanie $(n+1)x - \lfloor nx \rfloor = c$?

Podłoga własności

Czy dla każdego
$$x > 0$$
 zachodzi: $|\log_3(x)| = |\log_3(|x|)|$?