Banco de Dados II

Fábio Piovani Viviani - 2017006774 João Pedro Lopes Dias Ribeiro - 2017002176 Rodrigo de Andrade Porto - 2019000500 Thiago Geovane dos Santos - 2016014154 Ygor Salles Aniceto Carvalho - 2017014382

API - TMDb

O "The Movie Database" (TMDb) é um banco de dados de filmes, programas de TV e pessoas criado pela comunidade. Todos os dados foram adicionados pela comunidade desde 2008.

O serviço API da TMDb é direcionado para aqueles que estão interessados em usar filmes, programas de TV ou imagens e / ou dados de ator em seu aplicativo. Para fazer uso da API é necessário solicitar uma chave de acesso.

API - TMDb

Existem 3 maneiras de pesquisar e encontrar filmes, programas de TV e pessoas no TMDb. Eles estão descritos abaixo.

- /search A pesquisa baseada em texto é a forma mais comum. Você fornece uma string de consulta e a api fornece a correspondência mais próxima.
- /discover Às vezes é útil pesquisar filmes e programas de TV com base em filtros ou valores definíveis como classificações, certificações ou datas de lançamento. O método de descoberta torna isso fácil.
- /find A última, mas ainda muito útil, maneira de localizar dados é com IDs externos existentes. Por exemplo, se você souber o ID IMDB de um filme, programa de TV ou pessoa, poderá inserir esse valor neste método e retornaremos qualquer coisa que corresponda.

Requisição (exemplo)

https://api.themoviedb.org/3/discover/movie?api_key=<chave>&language=en-US&sort_by=popularity.desc&include_adult=false&include_video=false&page=1

```
"page": 1,
      "total pages": 500.
      "results": [
          "video": false,
          "vote_average": 5.6,
          "popularity": 1487.674,
9
          "vote count": 29,
          "release date": "2020-11-13",
          "adult": false,
          "backdrop_path": "/fTDzKoQIh1HeyjfpG5AHMi2jxAJ.jpg",
          "overview": "When Anna Wyncomb is introduced to an an underground,
          "genre_ids": [
           28,
            35
          "id": 682377,
          "original language": "en",
          "original_title": "Chick Fight",
          "poster_path": "/4Zocdxn006q2UbdKye2wgofLFhB.jpg",
          "title": "Chick Fight"
```

```
"video": false,
387
388
            "id": 624779.
            "popularity": 541.676,
389
390
            "vote count": 15,
            "release_date": "2020-10-14",
391
392
            "title": "VFW",
393
            "backdrop_path": "/h5sUE9jqoYrjsFjANJXL0gpZGye.jpg",
            "adult": false.
394
            "genre ids": [
395 +
396
              28.
              53.
397
398
              27
399
400
            "overview": "A typical night for veterans at a VFW turns into
401
            "original language": "en",
402
            "original title": "VFW",
403
            "poster_path": "/AnVD7Gn14uOTQhcc5xYZGQ9DRvS.jpg",
494
            "vote average": 5.1
405
406
        "total results": 10000
407
408
```

Requisição (exemplo)

https://api.themoviedb.org/3/person/10?api_key=<chave>&language=en-US

```
"adult": false,
      "also_known_as": [],
      "biography": "Robert \"Bob\" Peterson (born January 1961) is an American animator, screenwriter, direc
      "birthday": "1961-01-18",
      "deathday": null,
      "gender": 2,
      "homepage": null,
      "id": 10.
10
      "imdb id": "nm0677037",
     "known for department": "Acting",
12
     "name": "Bob Peterson",
13
     "place of birth": "Wooster, Ohio, USA",
     "popularity": 1.4,
14
15
      "profile path": "/1D5PtC97QwIks6xTjbJ1HNE8kbT.jpg"
16
```

Dados utilizados

A API disponibiliza o acesso a diversos dados, mas só os pertinentes a nossa aplicação foram selecionados para uso. Dados selecionados:

- Filmes
- Pessoas
- Companhias de Produção
- Créditos dos filmes
- Filmes populares
- Pessoas populares
- Países de Produção
- Coleções de filmes
- Gênero de filmes

Público-alvo do projeto

O público-alvo do projeto são pessoas com interesse em informações sobre filmes e pessoas ligadas ao ramo cinematográfico.

Tecnologias utilizadas

Primeira entrega

- Python
 - Bibliotecas utilizadas
 - Requests
 - Psycopg2
 - Pymongo

Tecnologias utilizadas

Segunda entrega

- PHP
- Laravel
 - Utilizado para implementar o front-end da aplicação.
- Tableau
 - Utilizado para realizar as consultas sql necessárias e formular os respectivos gráficos.
- Apache JMeter
 - Utilizado para realizar os testes de requisições nos bancos.

Consulta utilizada:

SELECT id, name, gender, popularity, place_of_birth, birthday, deathday, know_for_department **FROM public.people**;

- Quantidade máxima de usuários simultâneos: 240
- max_connections alterada para 10.000 nas configurações.

USUÁRIOS	MÉDIA DE LATÊNCIA
1	211,43 ms
48	647,72 ms
96	1804,86 ms
144	2967,21 ms
192	4213,59 ms
240 (máximo)	5363,45 ms

Gráfico 1 - Média de latência por usuários simultâneos realizando 1 requisição

USUÁRIOS	VAZÃO
1	0.85/seg
48	12.4/seg
96	16.9/seg
144	17.4/seg
192	21.9/seg
240 (máximo)	23.6/seg

Gráfico 2 - Usuários por vazão (vazão = número de requisições x tempo total)

REQUISIÇÕES	LATÊNCIA
230	5437.95 ms
16560	615,33 ms
33120	518,44 ms
50371	571,97 ms
66240	506,39 ms
82800 (máximo)	557,44 ms

Gráfico 3 - Quantidade de máxima de requisições por latência com 230 usuários fixos

TOTAL DE REQ.	REQ. POR USUÁRIO
230	1
16560	72
33120	144
50371	216
66240	288
82800 (máximo)	360

Gráfico 4 - Quantidade de requisições por usuário (configurado com 230 usuários fixos)

Resultados Jmeter - MongoDBT MD B

USUÁRIOS	MÉDIA DE LATÊNCIA
1	160,57 ms
68	483,91 ms
136	1017,23 ms
204	1976,67 ms
272	2651,49 ms
340 (máximo)	3514,28 ms

Gráfico 5 - Média de latência por usuários simultâneos realizando 1 requisição

^{*} No MongoDB, os testes foram realizados consultando apenas um dado da tabela people

Resultados Jmeter - MongoDBT M D B

USUÁRIOS	VAZÃO
1	5.7/seg
68	6.7/seg
136	8.2/seg
204	10.1/seg
272	12.8/seg
340 (máximo)	15.1/seg

Gráfico 6 - Usuários por vazão (vazão = número de requisições x tempo total)

^{*} No MongoDB, os testes foram realizados consultando apenas um dado da tabela people

Resultados Jmeter - MongoDBT M D B

REQUISIÇÕES	LATÊNCIA
250	3789.17 ms
41250	506,63 ms
82500	437,71 ms
123750	418,49 ms
165000	423,35 ms
206250 (máximo)	425,67 ms

Gráfico 7 - Quantidade de máxima de requisições por latência com **250 usuários fixos**

^{*} No MongoDB, os testes foram realizados consultando apenas um dado da tabela people

Aplicação

Aplicação

Aplicação

Principais ganhos do grupo

Relembrar conceitos básicos de SQL

Criar uma aplicação bem próxima do mundo real

 Aprender e colocar em prática os conceitos de banco orientado a documentos MongoDB

 Utilização da linguagem Python para criar a aplicação e como integrar frontend, backend e banco de dados

Aproveitar a utilização de ferramentas que auxiliam na geração de relatórios
 Ad-Hoc

Aprender a utilizar API's para facilitar o desenvolvimento de um sistema

 Aprender sobre a ferramenta JMeter para realizar avaliação de testes de performance

• Trabalhar em equipe, tendo uma experiência de como seria no mundo real

Principais dificuldades

Falta de familiaridade com relatórios.

 Tempo até dominar o suficiente das tecnologias para aplicar em nosso trabalho

Versões incompatíveis de uma tecnologia com outra

Gastar muito tempo com pesquisas no Youtube e fóruns da internet tanto em portugês quanto inglês.

Dúvidas?

Fábio Piovani Viviani - 2017006774 João Pedro Lopes Dias Ribeiro - 2017002176 Rodrigo de Andrade Porto - 2019000500 Thiago Geovane dos Santos - 2016014154 Ygor Salles Aniceto Carvalho - 2017014382

