Elliptic Curves

Lei Bichang

Sep 19

Exercise 1

1. A point $(x,y) \in C_P$ is singular iff

$$\begin{cases} y^2 = P(x), \\ 2y = P'(x) = 0. \end{cases}$$
 (1)

If char $k \neq 2$, then the condition is equivalent to y = 0 and x being a multiple root of P. Hence C_P is smooth iff P has no multiple roots in k.

If char k = 2, then since k is algebraically closed, Eq. (1) can be satisfied whenever P' has a root in k. So C_P is smooth iff P' is a nonzero constant, which means that P(X) has degree 1.

2. The projective closure \bar{C}_P of C_P in $\mathbb{P}^2(k)$ is defined by

$$\frac{Y^2}{Z^2} = P\left(\frac{X}{Z}\right).$$

If char k=2 and \bar{C}_P is smooth, then P(X)=aX+b with $a\in k^{\times}$ and $b\in k$, so \bar{C}_P is defined by

$$Y^2 = aXZ + bZ^2.$$

Let $F := aXZ + bZ^2 - Y^2$. and $A = [x : y : 0] \in \bar{C}_P$. If x = 0, then $y^2 = 0$, which implies y = 0. Therefore $x \neq 0$, and thus

$$\frac{\partial F}{\partial Z}(A) = ax \neq 0.$$

Hence \bar{C}_P is smooth.

Now suppose char $k \neq 2$ and P has no multiple roots. Then \bar{C}_P is smooth iff all the points of \bar{C}_P on the chart $X \neq 0$ are smooth.

Wrong answer:

Let C' be the intersection of \bar{C}_P with the chart $X \neq 0$, $m := \deg P$ and $2n \geq m$ be an even integer. Let z := Z/X and $w := Z^{n-1}Y/X^n$, then $z^{2n}P(1/z) \in k[z]$, and C' is the affine plane curve

$$w^2 = z^{2n} P\left(\frac{1}{z}\right).$$

This is not C'. It cannot even embed into \mathbb{P}^2 . By assumption, write

$$P(X) = \prod_{i=1}^{m} (X - a_i)$$

with $a_i \in k$ distinct, then

$$z^{2n}P\left(\frac{1}{z}\right) = z^{2n-m} \prod_{i=1}^{m} (1 - a_i z).$$

Therefore, the polynomial $z^{2n}P\left(\frac{1}{z}\right)$ would have no multiple roots, if we choose n s.t. 2n is the smallest integer greater than or equal to m. Such n always exists, and taking such n tells us that C' is smooth. Hence, \bar{C}_P is smooth.

In conclusion, the projective closure \bar{C}_P is smooth iff P is smooth.

3. If char $k \mid d$, then C_P is smooth iff P has degree 1, and \overline{C}_P is smooth in this case.

If char $k \nmid d$, C_P is smooth iff P has no multiple roots. The projective closure \overline{C}_P is now defined by

$$\frac{Y^d}{Z^d} = P\left(\frac{X}{Z}\right).$$

Look at the affine curve $C' := C \cap \{[X:Y] \in \mathbb{P}^1 | X \neq 0\}$ again, and let n be the smallest integer s.t. $dn \geq \deg P, z := Z/X, w := Z^{n-1}Y/X$, then C' is the affine plane curve defined by

$$w^d = z^{dn} P\left(\frac{1}{z}\right).$$

This curve is smooth iff $dn = \deg P$ or $dn = \deg P + 1$. Therefore, \bar{C}_P is smooth iff P has no multiple roots, and d divides $\deg P$ or $\deg P + 1$.

Exercise 2

1. A point $[x, y, z] \in C$ is singular iff

$$\begin{cases}
x^3 + y^3 + z^3 + dxyz = 0, \\
3x^2 = -dyz, \\
3y^2 = -dxz, \\
3z^2 = -dxy.
\end{cases} \tag{2}$$

Note that if one of x, y, z is zero, the other two are also zero. Hence $xyz \neq 0$. Multiply the last three equations and divide the result by $(xyz)^2$, we get $d^3 = -27$.

Conversely, suppose $d^3 = -27$, then $d = -3\omega$ with $\omega \in \mu_3 \subset \bar{k}$. Note that $[1 : \omega : \omega]$ is a singular point on C, so C is not smooth.

2. Since $O = [1:-1:0] \in C(k)$, we can deduce that C is an elliptic curve once we know that the genus of C is $g_C = 1$.

Let

$$\pi: C \to \mathbb{P}^1$$
, $[x:y:z] \mapsto [x:y]$.

This rational map is nonconstant and have degree 3.

Consider $P = [x:1:z] \in C$ in the chart $Y \neq 0$. The corresponding affine curve C_0 is

$$z^3 + dxz + x^3 + 1 = 0 (3)$$

and the map is

$$\pi(x,z) = x$$

If π ramifies at P, then the equation, regarded as a polynomial in z, would have discriminant

$$-(4 \cdot (dx)^3 + 27 \cdot (x^3 + 1)^2) = 0. (4)$$

So x^3 is a solution to a quadratic equation with no multiple roots, and thus gives us 6 values of x s.t. P could possibly be a ramification point.

• If $d \neq 0$, then clearly $e_{\pi}(P) \neq 3$. Therefore, π has six ramification points of index 2 in C_0 .

• If d=0, then the solution to Eq. (4) are $x=-\omega$ with $\omega^3=1$, and Eq. (3) becomes

$$z^3 = 1$$
.

Hence, π has three ramification points $[-\omega:1:0]$ of degree 3.

On $C \setminus C_0$, $X^3 + Z^3 = 0$, so

$$C \setminus C_0 = \{ [1:0:-1], [1:0:-\omega], [1:0:-\omega^2] \},$$

where $\omega \in \mu_3$ and $\omega \neq 1$. Working on the chart $X \neq 0$, the corresponding affine curve is

$$z^3 + dyz + y^3 + 1$$

and the map is

$$\pi(y,z) = y.$$

So π does not ramify at the points in $C \setminus C_0$.

By Riemann-Hurwitz formula,

$$2q_C - 2 = 3 \cdot (-2) + 6 \cdot 1$$

when $d \neq 0$, or

$$2g_C - 2 = 3 \cdot (-2) + 3 \cdot 2$$

when d = 0. Therefore, $g_C = 1$.

Exercise 3

The curve E is given by a Weierstrass equation with $4 \cdot 1^3 + 27 \cdot 0 = 4 \neq 0$, so E together with $O := [0:1:0] \in E(\mathbb{F}_5)$ defines an elliptic curve over \mathbb{F}_5 .

Suppose that $[x:y:1] \in E(\mathbb{F}_5)$. Then $x(x^2+1)=x^3+x=y^2$ is a square in \mathbb{F}_5 , which is 0, 1 or 4=-1. Direct computation shows that

$$E(\mathbb{F}_5) = \{[0:0:1], [2:0:1], [-2:0:1], [0:1:0]\}.$$

Exercise 4

1. A point $(x,y) \in C_0$ is singular iff

$$\begin{cases} (1+x)^2(1+y)^2 = xy, \\ 2(1+x)(1+y)^2 = y, \\ 2(1+x)^2(1+y) = x. \end{cases}$$
 (5)

If y = 0, then Eq. (5) has no solution.

If $y \neq 0$, then char $k \neq 2$, and divide the 1st equation by the 2nd tells us that x = 1. By symmetry or a similar argument, we know that if $x \neq 0$ then y = 1. So singularity could only appear at (1,1), which indeed satisfies Eq. (5) only when char k = 3 or char k = 5. Therefore, C_0 is smooth iff char $k \neq 3$ or 5.

2. The curve \bar{C}_0 is defined by

$$(Z + X)^2 (Z + Y)^2 = XYZ^2.$$

The point $O := [1:0:0] \in \bar{C}_0$ is singular, because O lies in X = 1, while both $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$ vanish at O, where y = Y/X, z = Z/X, and $f = (z+1)^2(z+y)^2 + yz^2$.

3. The curve C is defined by

$$(Z+X)^{2}(Z'+Y)^{2} = XYZZ'.$$
(6)

The set $C \setminus C_0$ consists of the points on C with Z = 0 or Z' = 0.

Let Z = 0 in Eq. (6), we get

$$X^{2}(Z'+Y)^{2} = 0,$$

so X = 0 or Z' + Y = 0. But (X : Z) is a homogeneous coordinate of \mathbb{P}^1 , so X and Z cannot be zero simultaneously. Hence we have Z' + Y = 0, giving one point ([1 : 0], [1 : -1]). The case of Z' = 0 is similar, and the result is

$$C \setminus C_0 = \{O, O'\},\$$

where

$$O := ([1:0], [1:-1]), O' := ([1,-1], [1,0]).$$

4. Let C_0 be smooth. It suffices to check that O and O' are smooth. These points lie in the chart X = Y = 1. Let z = Z/X, z' = Z'/Y, then the defining equation becomes

$$(z+1)^2(z'+1)^2 = zz'. (7)$$

The affine curve defined by this equation is isomorphic to C_0 , so it is smooth. Therefore O and O' are smooth, and thus C is smooth.

5. Both O and O' are k-rational, so we just need to calculate the genus g_C of C. I assume char $k \neq 2$ from now on, because I don't know how to deal with char k = 2...

Let $f: E \to \mathbb{P}^1$ be the composition of the embedding $E \hookrightarrow \mathbb{P}^1 \times \mathbb{P}^1$ and the projection $\mathbb{P}^1 \times \mathbb{P}^1 \twoheadrightarrow \mathbb{P}^1$ to the first factor; i.e.,

$$f([X:Z],[Y,Z']) = [X:Z].$$

This map is nonconstant of degree 2. A point $(x, y) \in C_0$ is a ramification point for f iff y is a double root of the polynomial

$$(1+x)^2(1+Y)^2 - xY$$

in Y, i.e., the discriminant

$$(2(1+x)^2 - x)^2 - 4(1+x)^4 = -x(4x^2 + 7x + 4) = 0.$$

So f ramifies at three points in C_0 . In particular, f ramifies at (x,y) = (0,-1) and does not ramify at (x,y) = (-1,0). Then by looking at Eq. (7), we deduce immediately that f ramifies at O and does not ramify at O'.

Now we can apply the Riemann-Hurwitz formula to f, and obtain

$$2q_C - 2 = 2 \cdot (2 \cdot 0 - 2) + 4 \cdot (2 - 1),$$

given char $k \neq 2$. Hence $g_C = 1$.

Weierstrass equation. The equation of C_0 is

$$(1+x)^2y^2 + (2(1+x)^2 - x)y + (1+x)^2 = (1+x)^2y^2 + (2x^2 + 3x + 2)y + (1+x)^2.$$

Under the birational transformation

$$\mathbb{A}^2 \dashrightarrow \mathbb{A}^2, \ (x,y) \mapsto (x, 2(1+x)^2y + 2x^2 + 3x + 2),$$

the equation becomes

$$y^2 - (2x^2 + 3x + 2)^2 + 4(1+x)^4 = 0,$$

which reduces to

$$u^2 = -4x^3 - 7x^2 - 4x.$$