Data Pipeline in Practice

Marco Morales marco.morales@columbia.edu

Nana Yaw Essuman nanayawce@gmail.com

GR5069
Topics in Applied Data Science
for Social Scientists
Spring 2020
Columbia University

RECAP: A Data Science Project

- Three aims of a data science project
 - a) reproducibility
 - anyone should be able to arrive to your same results
 - b) portability
 - anyone should be able to pick up where you left off on any machine
- crucial tenets for collaborative work
 - c) scalability
 - your project should also work for larger data sets and/or be on the path of automation

RECAP: Structuring DS projects some basic principles...

- 1. use **scripts for everything** you do
 - NEVER do things manually
- 2. organize your scripts in a sequence
 - separate activities in sections
 - keep an early section for definitions
 - call other scripts when necessary
- 3. write **efficient** (aka lazy) code
 - turn code used multiple times into functions
 - re-use functions: make them generic enough
- 4. rely on **version control** (git)

RECAP: Structuring DS projects

a thin layer...

```
project\
 -- src
 |-- features <- code to transform/append data
   |-- visualizations <- code to create visualizations
 -- data
   l-− raw
                <- original, immutable data dump
   I-- interim
                 <- intermediate transformed data</p>
   |-- processed <- final processed data set
 -- reports
   |-- documents <- documents synthesizing the analysis
                 <- images generated by the code
    I-- figures
 -- references
                 <- data dictionaries, explanatory materials
 -- README.md
                <- high-level project description
 -- TODO
                 <- future improvements, bug fixes (opt)
 -- LabNotebook
                   <- chronological records of project (opt)
```

Sources: Cookiecutter for Data Science, ProjectTemplate

data collection

why is data collection important?

- understand your products and systems better
- provides means for organizations to make better data-informed decisions
- helps identify opportunities or gaps in a product or system
- measures how your consumers interact with your products or system
- understanding your potential market

In God we trust, all others bring data.

-William E. Deming

types of data

unstructured data

- does not have a predefined data model or is not organized in a pre-defined manner
- examples of unstructured data include audio, video files or No-SQL databases.

structured data

- pre-defined data model and ready to analyze
- examples of structured data are Excel files or SQL databases
- most traditional form of data storage

levels of datasets

- first party datasets
 - data generated by your own product or systems
 - the most useful and valuable data you can collect about your consumers

second party datasets

- someone else's first-party data but useful to your organization
- arrangement with trusted partners who are willing to share their customer data with you (and vice versa)

third party datasets

- data that is widely accessible to competitors, so you aren't gaining unique advantage
- great for demographic, behavioral, and contextual targeting
- data that you buy from outside sources that are not the original collectors of that data (data aggregators)

Data Ingestion Pipeline

data storage

evolution of data storage

ways of storing data

- object storage
 - is a way of structuring stored data so that it's characterized as objects that can be manipulated in different ways by hardware and network storage systems
 - the objects are not in a file-folder hierarchy
 - object stores are scalable, fast data retrieval and cost effective

distributed file system

- a file system with data stored on a server. The data is accessed and processed as if it was stored on the local client machine
- convenient to share information and files among users on a network in a controlled and authorized way

relational databases

- uses a structure that allows us to identify and access data in relation to another piece of data in the database
- data in a relational database is organized into tables

ways of storing data - cont'd

- NoSQL databases
 - a non-relational way of storing data
 - mostly used to store documents, key-value pair data
 - storing a large volume of data, and you don't want to lock yourself into a schema

hands-on workshop

Data Pipeline in Practice

Marco Morales marco.morales@columbia.edu

Nana Yaw Essuman nanayawce@gmail.com

GR5069
Topics in Applied Data Science
for Social Scientists
Spring 2020
Columbia University