Correlations between EEG and blood glucose metabolism: *A pilot study*

Anup Pillai

Research Associate

University of Ottawa

Aims of the project

Explore potential correlations between EEG and blood glucose

Find features that exhibit high correlation with the target signal

Visualization for easy interpretation and understanding by clinicians

Preprocessing and visualizing EEG

EEG spectrogram

Visualizing EEG power in different frequency bands

Visualizing the time evolution of signal power in different EEG channels

Delta

Visualizing the time evolution of signal power in different EEG channels

Theta

Visualizing the time evolution of signal power in different EEG channels

Alpha

Blood glucose levels measured during EEG

Correlating Z-scored EEG with blood glucose levels

Linear correlation between EEG powers in different channels & blood glucose levels

Visualizing EEG versus blood glucose correlation using a heatmap

Positive correlation of DC potentials with blood glucose levels

Inspecting the statistical significance of correlations across all EEG Channels

Significance for correlation (R) between EEG power & blood glucose

Strong correlation of DC potentials with blood glucose levels

EEG gamma power from C3 was found to be significantly correlated with changes in blood glucose levels

Correlation between EEG C3-Ref Gamma power & blood glucose

Conclusions & Future directions

Significant correlations were observed with EEG and blood glucose measurements

Review methodologies for analyzing and quantifying ERPs with behavioral aspects such as perception and attention

Explore different machine learning techniques with EEG data

Explore deep convolutional networks for signal classification

Continue the more detailed analysis by making use of public EEG repositories containing labeled data