

Term End Examination - November 2013

Course : MAT101 - Multivariable Calculus and Differential Slot: F2+TF2

Equations

Class NBR : 2210/2245/2259/2273/2278/2281/2331/2338/2354/2374/2389

Time : Three Hours Max.Marks:100

PART – A (10 X 3 = 30 Marks) Answer <u>ALL</u> Questions

Investigate the continuity of the function:

$$f(x,y) = x^2 - 3y, if(x,y) \neq (1,2)$$

= 0 if (x,y) = (1,2)

2. Find the derivative of $f(x, y) = x^2 + 3xy$ with respect to x, given that $y=\sin^{-1}x$.

3. If $x = r \cos\theta$ and $y = r \sin\theta$ then find $\frac{\partial(r, \theta)}{\partial(x, y)}$.

4. Prove that $\beta(m+1,n) + \beta(m,n+1) = \beta(m,n)$

5. Find the value of 'K' if $\overline{F} = (x+2y)\overline{i} + (Ky+4z)\overline{j} + (5z+6x)\overline{k}$ is solenoidal.

6. Find a unit normal vector to the surface $x^3 + y^3 + 3xyz = 3$ at the point (1,2,-1).

- 7. Show that e^x and xe^x are independent solutions of $(D^2 2D + 1)u = 0$ in any interval.
- 8. Find the general solution of $(D^4 1)y = 0$.
- 9. Evaluate $\int_{0}^{\infty} t e^{-2t} \sin t dt$.
- 10. If $L\{f(t)\} = \frac{e^{-1/s}}{s}$, find $L\{e^{-t}f(3t)\}$.

PART - B (5 X 14 = 70 Marks)

Answer any **FIVE** Questions

11. (a) Prove that $u = x^2 + y^2 - 3axy$ is maximum or minimum at x=y=a according as a is [4] negative or positive.

(b) Expand $\ln(x^2 + y^2)$ about (1, 1) up to quadratic terms.

(c) The temperature of a point (x, y) on a unit circle is given by T(x,y)=1+xy. Find the **[6]** temperature of the two hottest points on the circle.

[4]

12. (a) Find by double integration, the area between the parabola $y=4x-x^2$ and the line y=x. [4]

(b) Show that if
$$a > 1$$
, $\int_{0}^{\infty} \frac{x^{a}}{a^{x}} dx = \frac{\Gamma(a+1)}{(\log a)^{a+1}}$. [5]

(c) Prove that
$$\int_{0}^{\infty} e^{-x^{2}-2ax} dx = \frac{\sqrt{\pi}}{2} e^{a^{2}} [1 - erf(a)].$$
 [5]

13. (a) Show that the area bounded by any simple closed curve C is given by [7]

 $\frac{1}{2} \oint_C (xdy - ydx)$ and hence find the area of the ellipse $x = a\cos\theta$; $y = b\sin\theta i$

- (b) Using Stroke's theorem, evaluate $\oint_C zdx + xdy + ydz$, where C is the trace of the Cylinder $x^2 + y^2 = 1$ in the plane y + z = 2. Orient C counter clockwise as viewed from above.
- 14. (a) Let D be the region bounded by the hemisphere $x^2 + y^2 + (z-1)^2 = 9$, $1 \le z \le 4$, and the plane z = 1. Verify the divergence theorem if F = xi + yj + (z-1)k.
 - (b) Apply the method of variation of parameters to solve $y'' + 3y' + 2y = x^2$. [7]
- 15. (a) Solve by the method of undetermined coefficients: $\frac{d^2y}{dx^2} + 4y = x^2\sin 2x$. [7]
 - (b) Solve $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = \log x$, subject to the condition that when x = 1, y = 0 and $\frac{dy}{dx} = 0$.
- 16. (a) Show that $L\left\{\frac{e^{-at}-e^{-bt}}{t}\right\} = ln\left(\frac{s+b}{s+a}\right)$ and hence evaluate $\int_{0}^{\infty} \frac{e^{-2t}-e^{-8t}}{t} dt$. [4]
 - (b) Solve $\frac{dy}{dt} + 3y + 2\int_{0}^{t} y \, dt = t$ for which y(0) = 0. [5]
 - (c) Find the Laplace inverse of $\frac{s}{(s^2+1)(s+1)^2}$ using convolution theorem. [5]
- 17. (a) By triple integration, determine the volume of sphere $x^2+y^2+z^2=c^2$. [7]
 - (b) Solve $\frac{dx}{dt} + x = \sin \omega t$; x(0)=2 using Laplace transform technique. [7]

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$