Optimisation transport optimal martingale

Latypov Schwartzman Righenzi Benmoussa

CentraleSupélec

Soutenance finale 27/01/2022

• Explosion du marché des options 1970 : besoin de couverture, appétit pour la spéculation, arbitrage croissants

- Explosion du marché des options 1970 : besoin de couverture, appétit pour la spéculation, arbitrage croissants
- Il est essentiel de valoriser correctement une option : valeur intrinsèque + valeur du temps

- Explosion du marché des options 1970 : besoin de couverture, appétit pour la spéculation, arbitrage croissants
- Il est essentiel de valoriser correctement une option : valeur intrinsèque + valeur du temps
- Modèles classiques : Black&Scholes&Merton, arbre binomiaux

- Explosion du marché des options 1970 : besoin de couverture, appétit pour la spéculation, arbitrage croissants
- Il est essentiel de valoriser correctement une option : valeur intrinsèque + valeur du temps
- Modèles classiques : Black&Scholes&Merton, arbre binomiaux
- Risque de modèle : prix suit une distribution log-normale

- Explosion du marché des options 1970 : besoin de couverture, appétit pour la spéculation, arbitrage croissants
- Il est essentiel de valoriser correctement une option : valeur intrinsèque + valeur du temps
- Modèles classiques : Black&Scholes&Merton, arbre binomiaux
- Risque de modèle : prix suit une distribution log-normale
- Model independent finance : résolution du problème de transport optimal martingale pour valoriser une option call

Problème initial

Définition

On considère un processus $(S_n)_{n=0,1,\dots,N}$ correspondant au prix d'un actif sous-jacent quelconque. On considère une option d'achat (call) d'une maturité T et de strike price K portant sur le sous-jacent définit précédemment. On rappelle que le profit réalisé par le détenteur du call est :

$$\max(S_N - K, 0)$$

puisque l'option n'est exercée que si $S_N > K$.

Cas N=2

Définition

On considère alors S_0 , S_1 et S_2 les trois prix du sous-jacent aux différents instants considérés.

Prix du call

Dans la suite on va supposer que le prix de l'option aux instants n = 1 et n = 2 est connu. On a ainsi :

$$Prix((S_1 - K)^+) = C_1(K)$$

$$Prix((S_2-K)^+)=C_2K)$$

Cas N=2

Combinaison de calls

Pour toutes fonctions du type $f(S_1)$ ou $g(S_2)$, ces options peuvent être approchées arbitrairement bien par des combinaisons linéaires de calls et donc achetées ou vendues sur des marchés à des prix respectifs

$$\int f(s)\mu_1 ds$$

et

$$\int g(s)\mu_2 ds$$

Cas N=2

Optimisation du prix (admis)

Optimiser $p = F(S_1, S_2)$, F fonction de prix, tel qu'il existe une stratégie menant au profit est équivalent à ce que le processus (S_0, S_1, S_2) soit une martingale sous une mesure martingale \mathbb{Q} .

Optimisation du prix (admis)

Soit $\mathbb Q$ une mesure martingale, alors $\mathbb Q$ est consistente avec le marché si et seulement si

$$\forall i \in \mathbb{N} \ s_i \sim \mu_i$$

où μ_i est une mesure.

Problème de transport optimal martingale

Transport optimal martingale

On considère une option call portant sur un actif sous-jacent. Sa fonction de prix est donnée par la fonction s. On considère le prix du sous-jacent aux instants 1 et 2, respectivement s_1 et s_2 . On définit $\mathcal{M}(\mu_1,\mu_2)=\{\mathbb{Q}:$ mesure martingale telle que $s_i\sim \mu_i\}$ et on veut trouver la solution du problème de maximisation (upper price bound problem) suivant

$$\max_{\mathbb{Q}\in\mathcal{M}(\mu_1,\mu_2)}\mathbb{E}_{\mathbb{Q}}(F(s_1,s_2))$$

Avec F la fonction de coût associée.

Problème discret

Paramètres

On considère que les distributions marginales sont discrètes :

$$\mu = \sum_{i=1}^{m} \alpha_i \delta_{x_i}$$

avec pour tout $i = 1, 2, ..., m : \alpha_i > 0$, $x_i \in \mathbb{R}$ et $\sum_{i=1}^m \alpha_i = 1$.

$$\nu = \sum_{i=1}^{n} \beta_{i} \delta_{y_{i}}$$

avec pour tout j=1,2,...n: $\beta_j>0$, $y_j\in\mathbb{R}$ et $\sum_{i=1}^n\beta_i=1$.

Problème discret

Problème discret

On peut utiliser la condition martingale pour établir le problème discret :

$$\begin{cases} \max \sum_{i=1}^{m} \sum_{j=1}^{n} q_{i,j} c_{i,j} \\ q_{i,j} \ge 0 \\ \sum_{j=1}^{n} q_{i,j} = \alpha_{i} \\ \sum_{i=1}^{m} q_{i,j} = \beta_{j} \\ \sum_{j=1}^{n} q_{i,j} (y_{j} - x_{i}) = 0 \end{cases}$$

Contraintes

On définit ainsi nos espaces de contraintes : C_1, C_2, C_3 :

$$C_1 = \{ P \in \mathbb{R}_+^{m \times n} : \sum_{j=1}^n P_{i,j} = \alpha_i, 1 \le i \le m \}$$

$$C_2 = \{ P \in \mathbb{R}_+^{m \times n} : \sum_{i=1}^m P_{i,j} = \beta_j, 1 \le j \le n \}$$

$$C_3 = \{ P \in \mathbb{R}_+^{m \times n} : \sum_{j=1}^n y_j P_{i,j} = x_i \alpha_i, 1 \le i \le m \}$$

Démarche

On va dans la suite considérer $\mathbb P$ comme une matrice $(P_{i,j})_{(i,j)}$ et nous allons nous intérresser au problème de maximisation d'une fonction linéaire $L:\mathbb R^{m\times n}\to\mathbb R$ définie telle que :

$$L : P \mapsto \sum_{i} \sum_{i} c_{i,j} P_{i,j}$$

Définition

La fonction strictement concave $H: \mathbb{R}_+^{m \times n} \to \mathbb{R}$ est définie de la manière suivante :

$$H : P \mapsto H(P) = -\sum_{i=1}^{m} \sum_{i=1}^{n} P_{i,j} \times (\log(P_{i,j}) - 1)$$

Définition de $L_{\epsilon}(P)$

Pour tout $\epsilon > 0$ et tout $P \in \mathbb{R}_+^{m \times n}$ on va définir :

$$L_{\epsilon}(P) = L(P) + \epsilon \times H(P)$$

Alors:

- $P \mapsto H(P)$ est strictement convave
- $P\mapsto L_{\epsilon}(P)$ est strictement concave

Ces deux points nous permettent dans la suite d'estimer le point qui annule la dérivée et d'utiliser la méthode des multiplicateurs de Lagrange.

Comparaison de L(P) et $L_{\epsilon}(P)$

On peut montrer qu'il est possible d'encadrer l'erreur faite en approchant L(P) par $L_{\epsilon}(P)$:

$$|\max_{P \in C_1 \cap C_2 \cap C_3} L_{\epsilon}(P) - \max_{P \in C_1 \cap C_2 \cap C_3} L(P)| \le C\epsilon$$

Avec $C=1-\sum_{i=1}^m \alpha_i \log(\alpha_i) + m \log(n)$ une constante. Cette erreur dépend de ϵ que l'on peut réduire pour augmenter la précision.

Divergence de Kullbeck-Leibler

Divergence de Kullbeck-Leibler

On définit la divergence de Kullbeck-Leibler de la manière suivante pour $P, q \in \mathbb{R}_+^{m \times n}$:

$$\mathit{KL}(P|q) = \sum_{i} \sum_{j} P_{i,j} (1 - \log(\frac{P_{i,j}}{q_{i,j}}))$$

Modification du problème

Nouvelle formulation des fonctions du problème

Dans la suite, nous définissons pour tout i = 1, 2, ..., m et tout j = 1, 2, ..., n :

$$q_{i,j} = \exp(\frac{C_{i,j}}{\epsilon}) \iff C_{i,j} = \epsilon \log(q_{i,j})$$

On peut alors montrer que la fonction L_{ϵ} peut s'exprimer sous la forme :

$$L_{\epsilon}(P) = \epsilon K L(P|q)$$

Optimisation de la divergence

On peut alors modifier notre problème d'optimisation à ϵ fixé :

$$\max_{P \in C_1 \cap C_2 \cap C_3} \mathit{KL}(P|q)$$

Projection et suite de compacts

Définition de la projection

Soient $P* \in \mathbb{R}_+^{m \times n}$ et $k \in \mathbb{N}$, on définit la projection de P* sur C_k par :

$$Proj_{C_k}(P*) = argmax_{P \in C_k} KL(P|P*)$$

Suite de compacts

Pour tout $k \in \mathbb{N}^*$, on définit la suite de compacts $(C_k)_{k \geq 1}$:

$$\begin{cases} C_1, C_2, C_3 \\ C_{k+3} = C_1 \\ C_{k+4} = C_2 \\ C_{k+5} = C_3 \end{cases}$$

Algorithme de projection itérative

Théorème de projection itérative de Bregman

Soit $(P^{(k)})_{k\geq 0}$ une suite dans $\mathbb{R}^{m\times n}_+$ définie par

$$\bullet \ P^{(0)} = q \in \mathbb{R}_+^{m \times n}$$

•
$$\forall k \geq 1, P^{(k)} = Proj_{C_k}(P^{(k-1)})$$

Alors

$$\lim_{k \to \infty} P^{(k)} = \operatorname{argmax}_{P \in C_1 \cap C_2 \cap C_3} \operatorname{KL}(P|q)$$

Calcul explicite des projecteurs

Méthode

Par exemple, pour l'espace C_1 , on pose le multiplicateur de Lagrange :

$$L(P, q, \lambda_1, ..., \lambda_m) = KL(P|q) + \sum_{i=1}^m \lambda_i \times (\sum_{j=1}^n P_{i,j} - \alpha_i)$$

On dérive ensuite par rapport à chaque variable pour dériver l'expression du projecteur sur C_1 . On procède de la même manière pour les autres espaces de contrainte.

Calcul explicite des projecteurs

Espace C_1

Pour tout i = 1, 2, ..., m et j = 1, 2, ..., n le maximiseur est :

$$P_{i,j}^{(l+1)} = \frac{\alpha_j P_{i,j}^{(l)}}{\sum_{j=1}^n P_{i,j}^{(l)}}$$

Espace C_2

Pour tout i = 1, 2, ..., m et j = 1, 2, ..., n le maximiseur est :

$$P_{i,j}^{(l+1)} = \frac{\beta_j P_{i,j}^{(l)}}{\sum_{i=1}^m P_{i,j}^{(l)}}$$

Calcul explicite des projecteurs

Espace C_3

Pas d'expression fermée. La solution est trouvable en calculant les coefficients λ_i de sorte que :

$$P_{i,j} = q_{i,j} \exp(\lambda_i y_j)$$

On calcule les λ_i en tant que racines d'un polynôme déterminé par les données du problème. On peut par exemple utiliser la méthode de Newton.

Implémentation du schéma numérique

- Utilisation de Python pour implémentation de la méthode numérique
- Spécifier le nombre de points de la discrétisation n et m
- Spécifier les poids associées à chaque Dirac par les coefficients α_i et β_i
- Les points de discrétisation sont également à être fixés dans notre algorithme
- Choix d'une valeur initiale

Implémentation du schéma numérique

Dans la suite nous prendrons les valeurs suivantes :

Choix des paramètres

- $P^{(0)} = (\frac{1}{mn})_{i,j}$
- $\forall i = 1, 2, ..., m : \alpha_i = \frac{1}{m}$
- $\forall j = 1, 2, ..., n : \beta_j = \frac{1}{n}$
- $\forall i = 1, 2, ..., m : x_i = \frac{i}{m}$
- $\forall j = 1, 2, ..., n : y_j = \frac{j}{n}$

Implémentation du schéma numérique

Conclusion

- Code fonctionnel : convergence vers une solution
- Vitesse plus ou moins rapide selon le choix de précision
- Le temps de résolution reste relativement important pour de grandes matrices

Implémentation directe

Scipy et CVXPY

- Utilisation des modules Scipy et CVXPY pour résoudre directement le système linéaire
- Scipy : sortie du domaine de définition de la variable, pas d'optimalité
- CVXPY : succès pour matrices carrées, temps de convergence très rapide
- CVXPY : échec pour matrices rectangulaires. Tentative en annexe 7 de corriger le code en agrandissant les matrices et vecteurs mais pas de succès

Conclusion

Conclusion

- Cheminement nous a permis d'effectuer une résolution numérique avec un language de programmation
- Implémentation du schéma réussie
- Schéma plus consistent mais moins rapide que résolution directe
- Ouverture : trouver une méthode pour réduire le nombre d'itérations et l'ordre de convergence

Compléments

Etudes complémentaires dans le rapport

- Discussion sur l'erreur de projection sur chaque espace de contrainte
- Discussion de l'implémentation de la méthode de Newton
- Comparaison des méthodes de recherche de zéro
- Vectorialisation du problème
- Annexes 1 à 7

Bibliographie I

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex optimization.

Journal of Machine Learning Research, 17(83):1–5, 2016.

Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd.

A rewriting system for convex optimization problems. *Journal of Control and Decision*, 5(1):42–60, 2018.

Akshay Agrawal, Steven Diamond, and Stephen Boyd. Disciplined geometric programming.

Optimization Letters, 13(5):961–976, 2019.

Bibliographie II

- Akshay Agrawal and Stephen Boyd.
 Disciplined quasiconvex programming.
 Optimization Letters, 2020.
 To appear.
 - Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico Kolter.

 Differentiable convex optimization layers.

 In Advances in Neural Information Processing Systems, pages 9558–9570, 2019.
 - Akshay Agrawal and Stephen Boyd.

 Differentiating through log-log convex programs.

 arXiv, 2020.

Bibliographie III

Wankere R. Mekwi.
Iterative methods for roots of polynomials.

Trinity, 2001.

Méthode de halley.

Wikipedia.