# SMART INDIA HACKATHON 2024



- Problem Statement ID SIH1607
- Problem Statement Title A Smart AI-based solution for traffic management on routes with heavy traffic from different directions with real time monitoring and adaptation of traffic light timings.
- Theme Smart Automation
- PS Category Software
- Team Name THENEXUSSS
- GitHub Link -

https://github.com/asmitgh/team-nexus





# AI BASED TRAFFIC MANAGEMENT SYSTEM



# **Detailed Explanation Of The Proposed Solution:**

#### • AI-Based Traffic Light Control

- Uses machine learning algorithms to adjust traffic light timings dynamically.
- Continuously adapts to real-time traffic conditions rather than following fixed schedules.

#### • Real-Time Traffic Monitoring

- Gathers data from sensors, cameras, and GPS devices at intersections.
- Analyzes traffic volume, speed, and patterns to detect congestion early.

#### • Dynamic Adjustment of Traffic Light Timings

- AI adjusts signal durations based on traffic density, optimizing the flow at congested intersections.
- Prioritizes heavily trafficked routes and adapts in real time.

#### • Multi-Directional Traffic Management

- Balances traffic flow from different directions,
  redistributing signal time according to real-time demand.
- Minimizes delays by ensuring efficient traffic movement from all directions.

### • Environmental Impact Reduction

- Reduces vehicle idle times, decreasing fuel consumption and emissions.
- Smoother traffic flow leads to fewer stop-and-go movements, further reducing pollution.

#### • Real-Time Data Integration

- The system continuously processes live traffic data, allowing accurate and timely decisions.
- Minimizes inefficiencies typically caused by static, preprogrammed traffic systems.

# **Future Aspects**

# 1. **GPS Integration**

• Track vehicle locations to optimize traffic light timings.

# 2. User App:

- Provide live updates on signals and traffic for better route planning.
- 3. Autonomous Vehicle Support:
- Seamless interaction with self-driving cars for efficient flow.

## 4. Vehicle-to-Infrastructure (V2I):

• Real-time communication between vehicles and traffic signals.

# **5. Smart City Expansion:**

• Integrate with other smart infrastructure systems like parking and emergency services.

# **6. Predictive Traffic Management:**

• Use data to forecast and prevent congestion.

#### 7. Cloud-Based Control:

• Centralize monitoring and traffic control across cities.

# 8. Environmental Tracking:

• Monitor and report on reduced emissions and fuel savings.

# **How it Addresses the Problem**

- Traffic Congestion Reduction: The system constantly analyzes traffic in real time and adjusts accordingly, significantly reducing bottlenecks at busy intersections.
- Minimizing Delays: By dynamically controlling the traffic lights based on realtime data, delays are reduced for all vehicles, ensuring smoother traffic flow and improving efficiency.
- Optimization for Peak Hours: During rush hours or periods of high traffic density, the AI system can allocate more time to high-demand routes, easing congestion during these peak times.
- **Real-Time Adaptation:** Unlike traditional systems that rely on pre-programmed light intervals, the AI model adapts instantly to the current conditions, which is crucial for intersections with unpredictable or fluctuating traffic patterns.
- Scalability: The system can be scaled across multiple intersections or integrated into a city's larger traffic management framework, making it versatile for a wide range of urban areas with heavy traffic.



**Simulation Window** 



# TECHNICAL APPROACH







**PYTHON** 















**OPEN CV** 

**PYTORCH** 

**SCIKIT-LEARN** 

**PANDAS** 

**Detailed Flowchart:** 

YOLOV5







# FEASIBILITY AND VIABILITY



# **Use Case Diagram**



# **Potential Challenges and Risks:**

- Real-Time Performance: Maintaining low-latency processing while handling multiple video streams.
- Detection Accuracy: Handling variations in lighting, weather, and video quality for accurate vehicle detection.
- Scalability: Adapting the solution to work with different numbers of lanes and varying traffic patterns.

# **Strategies for Overcoming These Challenges:**

- Optimization: Use ThreadPoolExecutor and frame skipping techniques to optimize real-time performance.
- Model Fine-Tuning: Fine-tune the YOLOv5 model using additional training data to improve detection accuracy under different conditions.



Model Detection Figure 1



**Model Detection Figure 2** 



# IMPACT AND BENEFITS



#### **Benefits of Our Model**

### **Reduced Traffic Congestion**

- Dynamically adjusts traffic light timings to prevent bottlenecks and reduce waiting times.
- Optimizes vehicle flow at congested intersections, ensuring smoother commutes.

#### **Improved Traffic Efficiency**

• Balances traffic across multiple directions, improving movement during peak hours.

#### **Environmental Benefits**

• Decreases idle time, leading to lower fuel consumption and reduced greenhouse gas emissions.

### **Real-Time Responsiveness**

• Adapts to changing traffic conditions in real-time, ensuring timely responses to sudden congestion or traffic incidents.

#### **Enhanced Public Safety**

- Reduces the likelihood of traffic accidents by improving flow and minimizing sudden stops at intersections.
- Ensures safer driving conditions by managing traffic flow smoothly.

#### **Scalable and Future-Proof**

- Can be easily integrated into existing traffic infrastructure and scaled to additional intersections or road networks.
- Supports future smart city initiatives with flexible, data-driven traffic management.

#### **Economic Efficiency**

- Saves costs associated with congestion, including fuel expenses, vehicle wear, and time lost in traffic.
- Increases overall productivity by minimizing time spent commuting.

# **Advantages of the Proposed Solution**

#### **Enhanced Traffic Flow**

• Dynamically adjusts traffic lights based on real-time data, improving overall vehicle movement and reducing congestion in busy intersections.

## **Real-Time Decision Making**

• The AI-driven system processes live traffic data for immediate adjustments, similar to autonomous vehicle decision-making, ensuring efficient traffic handling.

# **Improved Precision and Efficiency**

• Uses advanced machine learning techniques to detect, prioritize, and manage traffic, ensuring accurate decisions for controlling light signals based on the traffic density.

# **Support for Autonomous Vehicles**

• Integrates well with autonomous vehicle technology by providing real-time traffic data, helping self-driving cars make decisions such as when to stop, turn, or accelerate safely.

### **Real-Time Detection of Traffic Participants**

• The system can detect both static and dynamic objects such as vehicles, barriers, and traffic cones, crucial for adapting to changing conditions in urban traffic environments.

# **Optimized for Indian Traffic Conditions**

• Trained on a custom dataset that includes images from Indian traffic scenarios, making it highly suitable for handling complex, congested, and often unpredictable traffic patterns.

### **Higher Accuracy with YOLOv5-NEXUS**

• Achieves better precision (81%), recall (80%), and mAP (83%) compared to traditional models, offering more reliable and efficient traffic management.





# RESEARCH AND REFERENCES

- <u>Ultralytics YOLOv5 Repository:</u>
  - https://github.com/ultralytics/yolov5
- OpenCV Documentation:
  - https://docs.opencv.org/4.x/index.html
- PyTorch Documentation:
  - https://pytorch.org/docs/stable/index.html
- https://universe.roboflow.com/rutviknirma/emergency-vehicles-j7cjr/dataset/2
- <a href="https://www.researchgate.net/figure/YOLOv5-algorithm-structure-diagram-fig1-362571247">https://www.researchgate.net/figure/YOLOv5-algorithm-structure-diagram-fig1-362571247</a>
- https://www.mdpi.com/1424-8220/23/18/7761
- <a href="https://www.sciencedirect.com/topics/computer-science/yolov5">https://www.sciencedirect.com/topics/computer-science/yolov5</a>