

PseudoLab study Al Application with LLM

# 8.1 효율적인 배치 전략

- 일반 배치(naive batching) 또는 정적 배치(static batching)
  - 한번에 N개의 입력을 받아 모두 추론이 끝날 때 까지 기다리는 방식
  - 가장 기본적인 방식

| T1 | T2 | Т3 | T4 | T5  | T6  | T7  | T8  |
|----|----|----|----|-----|-----|-----|-----|
| B1 | B1 | B1 | B1 | End |     |     |     |
| B2 | B2 | B2 | B2 | B2  | B2  | B2  | End |
| В3 | В3 | В3 | B3 | В3  | End |     |     |
| B4 | B4 | B4 | B4 | B4  | B4  | End |     |

T8이 지나가야 새로운 문장 추론 시작!

### 8.1 효율적인 배치 전략

- 연속 배치(continuous batching)
  - 한번에 들어온 배치 데이터의 추론이 모두 끝날때까지 기다리지 않고 하나의 토큰 생성이 끝날 때마다 생성이 종료된 문장은 제거하고 새로운 문장을 추가한다.

| T1 | T2 | Т3 | T4 | T5  | T6  | T7  | T8  |
|----|----|----|----|-----|-----|-----|-----|
| B1 | B1 | B1 | B1 | End | B5  | B5  | B5  |
| B2 | B2 | B2 | B2 | B2  | B2  | B2  | End |
| В3 | В3 | В3 | B3 | В3  | End | B6  | В6  |
| B4 | B4 | B4 | B4 | B4  | B4  | End | В7  |

- 플래시어텐션(FlashAttention)
  - 트랜스포머가 더 긴 시퀀스를 처리하도록 만들기 위해 개발되었다.
  - 어텐션 연산과정을 변경해 학습 과정에서 필요한 메모리를 시퀀스 길이에 비례하도록 개선
  - 블록 단위로 어텐션 연산을 수행하고 전체 어텐션 행렬을 쓰거나 읽지 않는 방식으로 어텐션 연산의 속도를 높였다.



- 플래시어텐션(FlashAttention)
  - 트랜스포머가 더 긴 시퀀스를 처리하도록 만들기 위해 개발되었다.
  - 어텐션 연산과정을 변경해 학습 과정에서 필요한 메모리를 시퀀스 길이에 비례하도록 개선
  - 블록 단위로 어텐션 연산을 수행하고 전체 어텐션 행렬을 쓰거나 읽지 않는 방식으로 어텐션 연산의 속도를 높였다.



- 플래시어텐션2
  - 플래시어텐션 개선해 2배 정도 속도 향상
    - 순전파에서 최대 GPU 처리량의 73%
    - 역전파에서 63% 사용하도록 하ㅏㅁ
  - 개선한 부분
    - 행렬 곱셈이 아닌 연산 줄이기
    - 시퀀스 길이 방향의 병렬화 추가

- 플래시어텐션2

FP16 BF16 행렬 곱셈 연산

최대 312 TFLOPS

FP32 비 행렬 곱셈 연산

최대 19.5 TFLOPS

이 연산을 최대한 효율적으로 수행한다.

- 플래시어텐션 2







- 플래시어텐션 2



- 상대적 위치 인코딩
  - 토큰의 절대적인 위치에 따라 임베딩을 더하는 것이 아니라 토큰과 토큰 사이의 상대적인 위치 정보를 추가
  - 토큰의 상대적 위치에 따라 입력 문장의 의미가 달라지는지 학습할 수 있도록 한다.

작은 강아지가 공을 물고 뛰어다닌다

어제 저녁에 공원에서 작은 강아지가

- 상대적 위치 인코딩
  - RoPE(Rotary Positional Encoding)
    - 토큰 사이의 위치 정보가 두 임베딩 사이의 각도를 통해 모델에 반영
  - ALiBI(Attention with Linear Biases)
    - 어텐션 행렬에 오른쪽에서 왼쪽으로 갈수록 더 작은 값을 더하는 방식





작은 강아지가 공을 물고 뛰어다닌다

어제 저녁에 공원에서 작은 강아지가

- 상대적 위치 인코딩
  - RoPE(Rotary Positional Encoding)
    - 토큰 사이의 위치 정보가 두 임베딩 사이의 각도를 통해 모델에 반영
  - ALiBI(Attention with Linear Biases)
    - 어텐션 행렬에 오른쪽에서 왼쪽으로 갈수록 더 작은 값을 더하는 방식



- 상대적 위치 인코딩
  - RoPE(Rotary Positional Encoding)
    - 토큰 사이의 위치 정보가 두 임베딩 사이의 각도를 통해 모델에 반영
  - ALiBI(Attention with Linear Biases)
    - 어텐션 행렬에 오른쪽에서 왼쪽으로 갈수록 더 작은 값을 더하는 방식





- 커널 퓨전
  - 반복적으로 수행하는 연산에 대해 연산을 하나로 묶어 오버헤드를 줄인다.



- 페이지 어텐션
  - 중간에서 논리적 메모리와 물리적 메모리를 연결하는 블록테이블을 관리
  - 실제로는 물리적으로 연속된 메모리를 사용하지 않으면서도 논리적 메모리에서는 서로 연속적이도록 만든다.
  - 동일한 입력 프롬프트에서 여러 개의 출력을 생성하는 병렬 샘플링에서 입력 프롬프트에 대한 메모리를 공유함으로써 메모리 절약





- 추측 디코딩
  - 쉬운 단어는 더 작고 효율적인 모델이 예측하고 어려운 단어는 더 크고 성능이 좋은 모델이 예측하는 방식
  - 추론 수행 모델
    - 작은 드래프트 모델(draft model)
      - K개의 토큰을 먼저 생성
    - 큰 타깃 모델(target model)
      - 드래프트 모델이 생성한 K개의 토큰이 타깃 모델이 추론했다면 생성했을 결과와 동일한지 계산해 동일하다면 승인하고 동일하지 않다면 거절한다.

- 추측 디코딩 추론 과정



#### - 장점

- 원본 모델에 비해 훨씬 작은 드래프트 모델의 추가 만으로 원본 모델의 성능을 그대로 유지하면서 속도를 **2**배 이상 높일 수 있다.

#### - 단점

- 2개의 모델을 이용하기에 시스템 복잡도가 올라간다.
- 이를 해결하기 위해 하나의 원본 모델 내에서 여러 토큰을 예측하는 Medusa가 있다.