

Identificación de personas en áreas peligrosas

Autor:

Víctor Martín Torres

Director:

Nombre del Director (pertenencia)

${\rm \acute{I}ndice}$

1. Descripción técnica-conceptual del proyecto a realizar	. 5
2. Identificación y análisis de los interesados	. 6
3. Propósito del proyecto	. 7
4. Alcance del proyecto	. 7
5. Supuestos del proyecto	. 7
6. Requerimientos	. 7
7. Historias de usuarios (<i>Product backlog</i>)	. 8
8. Entregables principales del proyecto	. 8
9. Desglose del trabajo en tareas	. 9
10. Diagrama de Activity On Node	. 9
11. Diagrama de Gantt	. 10
12. Presupuesto detallado del proyecto	. 13
13. Gestión de riesgos	. 13
14. Gestión de la calidad	. 14
15. Procesos de cierre	. 15

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	28 de junio de 2021

Acta de constitución del proyecto

Buenos Aires, 28 de junio de 2021

Por medio de la presente se acuerda con el Ing. Víctor Martín Torres que su Trabajo Final de la Carrera de Especialización en Inteligencia Artificial se titulará "Identificación de personas en áreas peligrosas", consistirá esencialmente en utilizar un sistema de visión para prevenir accidentes en planta, identificando personas en áreas peligrosas, y tendrá un presupuesto preliminar estimado de 600 hs de trabajo y \$54000, con fecha de inicio 28 de junio de 2021 y fecha de presentación pública 15 de mayo de 2022.

Se adjunta a esta acta la planificación inicial.

Ariel Lutenberg Director posgrado FIUBA Fabricio Lopez TGS SA

Nombre del Director Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

Buscamos utilizar un sistema de visión para prevenir accidentes en planta, identificando personas en áreas peligrosas

- La misión del cliente es operar con seguridad
- El cliente busca dar soluciones integrales al transporte, asegurar disponibilidad de las instalaciones se inserta directamente en este modelo.
- ==;.Agregar modelo de negocio;==
- El desarrollo esta en iniciando con lo cual es el mejor momento para asegurar su éxito.
- Se busca satisfacer la necesidad de aumentar la seguridad del personal y las instalaciones.
- El aspecto de mayor innovación es brindar a plantas que buscan ser mas autónomas (menor cantidad de personal) una solución de seguridad que en este momento no se esta dando.

Las instalaciones dedicadas al proceso de transporte de gas cuentan con equipos dentro de edificios y fuera de edificios, en ambos casos las operación de los mismos compromete al personal con zonas calientes, equipos sometidos a alta presión y piezas móviles. En las tareas operativas como bloquear una válvula o habilitar un arrancador a gas es necesario entrar en contacto o estar en cercanía de estos elementos. Resulta de gran utilidad poder identificar que un personal de planta se encuentra realizando una tarea por ejemplo en el compresor axial de una turbina de gas, o bien operando una válvula de bypass con diferenciales de 20 kg/cm² de presión. En algunos casos se trabaja con cargas suspendidas o bien con estibajes de cargas pesadas, aquí también es importante identificar las zonas en las cuales puede o no encontrarse el personal de operaciones. También si es que la persona ha sufrido un accidente y se encuentra en posición horizontal. Igualmente importante es si se cuenta con los elementos de protección personal. Un sistema que identifique el personal en áreas peligrosas puede prevenir perjuicios a las instalaciones por malas operaciones pero sobre todo prevenir lesiones o pérdida de vidas al notificar al personal calificado de una situación específica. En la Figura 1 se muestra el diagrama en bloques del sistema. Se observan algunas de las áreas planteadas y los equipos de adquisición (cámaras y placas). Luego el procesamiento en una PC dedicada (en un futuro que sea una placa de procesamiento basada en FPGA). La información junto con las imágenes es guardada en un storage. Luego la identificación de la persona y el área es enviada al PLC para ser notificada en el SCADA de planta. El operador de planta será notificado de esta situación

El tamaño de la tipografía en TODAS las figuras debe ser adecuado para que NO pase lo que ocurre acá, donde el lector debe esforzarse para poder leer el texto. Los colores usados en el diagrama deben ser adecuados, tal que ayuden a comprender mejor el diagrama, preferentemente en la gama de colores pastel.

Figura 1. Diagrama en bloques del sistema

2. Identificación y análisis de los interesados

Nota: (borrar esto y todas las consignas en color rojo antes de entregar este documento).

Es inusual que una misma persona esté en más de un rol, incluso en proyectos chicos.

Si se considera que una persona cumple dos o más roles, entonces sólo dejarla en el rol más importante. Por ejemplo:

- Si una persona es Cliente pero también colabora u orienta, dejarla solo como Cliente.
- Si una persona es el Responsable, no debe ser colocado también como Miembro del equipo.

Pero en cambio sí es usual que el Cliente y el Auspiciante sean el mismo, por ejemplo.

Rol	Nombre y Apellido	Organización	Puesto
Auspiciante			
Cliente	Fabricio Lopez	TGS SA	
Impulsor			
Responsable	Víctor Martín Torres	FIUBA	Alumno
Colaboradores			
Orientador	Nombre del Director	pertenencia	Director Trabajo final
Equipo	miembro1		
	miembro2		
Opositores			
Usuario final			

El Director suele ser uno de los Orientadores.

No dejar celdas vacías; si no hay nada que poner en una celda colocar un signo "-".

No dejar filas vacías; si no hay nada que poner en una fila entonces eliminarla.

Es deseable listar a continuación las principales características de cada interesado.

Por ejemplo:

- Auspiciante: es riguroso y exigente con la rendición de gastos. Tener mucho cuidado con esto.
- Equipo: Juan Perez, suele pedir licencia porque tiene un familiar con una enfermedad. Planificar considerando esto.
- Orientador: María Gómez va a poder ayudar mucho con la definición de los requerimientos.

3. Propósito del proyecto

¿Por qué se hace el proyecto? ¿Qué se quiere lograr?

Se recomienda que sea solo un párrafo que empiece diciendo "El propósito de este proyecto es...".

4. Alcance del proyecto

¿Qué se incluye y que no se incluye en este proyecto?

Se refiere al trabajo a hacer para entregar el producto o resultado especificado.

Explicitar todo lo quede comprendido dentro del alcance del proyecto.

Explicitar además todo lo que no quede incluido ("El presente proyecto no incluye...")

5. Supuestos del proyecto

"Para el desarrollo del presente proyecto se supone que: ..."

- Supuesto 1
- Supuesto 2...

Por ejemplo, se podrían incluir supuestos respecto a disponibilidad de tiempo y recursos humanos y materiales, sobre la factibilidad técnica de distintos aspectos del proyecto, sobre otras cuestiones que sean necesarias para el éxito del proyecto como condiciones macroeconómicas o reglamentarias.

6. Requerimientos

Los requerimientos deben numerarse y de ser posible estar agruparlos por afinidad, por ejemplo:

- 1. Requerimientos funcionales
 - 1.1. El sistema debe...
 - 1.2. Tal componente debe...
 - 1.3. El usuario debe poder...
- 2. Requerimientos de documentación
 - 2.1. Requerimiento 1
 - 2.2. Requerimiento 2 (prioridad menor)
- 3. Requerimiento de testing...
- 4. Requerimientos de la interfaz...
- 5. Requerimientos interoperabilidad...
- 6. etc...

Leyendo los requerimientos se debe poder interpretar cómo será el proyecto y su funcionalidad.

Indicar claramente cuál es la prioridad entre los distintos requerimientos y si hay requerimientos opcionales.

No olvidarse de que los requerimientos incluyen a las regulaciones y normas vigentes!!!

Y al escribirlos seguir las siguientes reglas:

- Ser breve y conciso (nadie lee cosas largas).
- Ser específico: no dejar lugar a confusiones.
- Expresar los requerimientos en términos que sean cuantificables y medibles.

7. Historias de usuarios (*Product backlog*)

Descripción: En esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

El formato propuesto es: como [rol] quiero [tal cosa] para [tal otra cosa]."

Se debe indicar explícitamente el criterio para calcular los story points de cada historia

8. Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

- Manual de uso
- Diagrama de circuitos esquemáticos
- Código fuente del firmware
- Diagrama de instalación
- Informe final
- etc...

9. Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1
 - 1.1. Tarea 1 (tantas hs)
 - 1.2. Tarea 2 (tantas hs)
 - 1.3. Tarea 3 (tantas hs)
- 2. Grupo de tareas 2
 - 2.1. Tarea 1 (tantas hs)
 - 2.2. Tarea 2 (tantas hs)
 - 2.3. Tarea 3 (tantas hs)
- 3. Grupo de tareas 3
 - 3.1. Tarea 1 (tantas hs)
 - 3.2. Tarea 2 (tantas hs)
 - 3.3. Tarea 3 (tantas hs)
 - 3.4. Tarea 4 (tantas hs)
 - 3.5. Tarea 5 (tantas hs)

Cantidad total de horas: (tantas hs)

Se recomienda que no haya ninguna tarea que lleve más de 40 hs.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semicríticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color, como se muestra en el siguiente ejemplo:

Figura 2. Diagrama en $Activity\ on\ Node$

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa.
 https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 3, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Figura 3. Diagrama de gantt de ejemplo

Figura 4. Ejemplo de diagrama de Gantt rotado

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

COSTOS DIRECTOS						
Descripción	Cantidad	Valor unitario	Valor total			
SUBTOTAL	SUBTOTAL					
COSTOS INDIRECTOS						
Descripción	Cantidad	Valor unitario	Valor total			
SUBTOTAL						
TOTAL						

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).
 Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S):
- Ocurrencia (O):

Riesgo 3:

• Severidad (S):

- Ocurrencia (O):
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Para cada uno de los requerimientos del proyecto indique:

- Req #1: copiar acá el requerimiento.
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar
 - Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc. Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno. En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: - Indicar esto y quién financiará los gastos correspondientes.