XIII. Nemzetközi Magyar Matematika Verseny

Nagydobrony, 2004. márc. 15-20.

9. osztály

1. feladat: Egy kis erdei tavat egy forrás táplál friss vízzel. Egyszer megjelent egy 183 tagú elefántcsorda és egy nap alatt kiitta a tó vizét. Később, mikor újra megtelt a tó, egy 37 tagú csorda 5 nap alatt itta ki a vizet. Egy elefánt hány nap alatt inná ki a tó vizét?

Dr. Katz Sándor (Bonyhád)

- 1. feladat I. megoldása: Legyen a teli tó víztartalma S l, az egy napi növekmény a forrásokból n l. Mivel 183 elefánt 1 nap alatt issza ki a tó vizét, ez azt jelenti, hogy kiissza a már meglévő S litert és az egy nap alatt még hozzá befolyó n litert. Azaz 183 elefánt egy nap alatt S+n liter vizet iszik meg. Ekkor, feltételezve, hogy minden elefánt egyenlő mennyiséget iszik meg, egy nap alatt egy elefánt $\frac{S+n}{183}$ l vizet iszik meg. A másik feltételből 37 elefánt 5 nap alatt S+5n l-t iszik meg, ezért egy elefánt egy nap alatt $\frac{S+5n}{37.5} = \frac{S+5n}{185}$ l-t. Ebből adódik, hogy $\frac{S+n}{183} = \frac{S+5n}{185}$, ahonnan S=365n. Tehát 183 elefánt egy nap folyamán 365n+n=366n liter vizet iszik meg, amiből viszont az is következik, hogy egy elefánt egy nap alatt pontosan 2n litert iszik meg. Ez gyakorlatilag azt jelenti, hogy 1n litert fogyaszt el a teli tó vizéből és plusz azt az 1n litert, ami a nap folyamán befolyik a tóba. Mivel a teli tó tartalma 365n liter, ezért pontosan a 365. nap végére ürül ki teljesen a tó, ha csak egy elefánt iszik belőle.
- **2. feladat:** Az 1, 2, 3, ..., 2000, 2001, 2002, 2003, 2004 számokat valamilyen sorrendben egymás mellé írjuk. Lehet-e az így kapott új szám négyzetszám?

Dr. Kántor Sándorné (Debrecen)

2. feladat I. megoldása: Kiszámítjuk az új szám számjegyeinek összegét. Először összeadjuk a számjegyeket 1-től 1999-ig. Ezt legkönnyebben úgy tehetjük meg, ha a számokat tízes csoportonként táblázatszerűen egymás alá írjuk pl. a következő formában:

razarszer den 65, mas ara njan pr. a novemeze rermasan.									
0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109
110	111	112	113	114	115	116	117	118	119
1000	1001	1002	1003	1004	1005	1006	1007	1008	1009
1990	1991	1992	1993	1994	1995	1996	1997	1998	1999

Ez a táblázat 200 sort tartalmaz. Mind az egyesek, mind a tizesek, mind pedig a százasok helyén 200-szor szerepel a 0, 1, 2, 3, 4, 5, 6, 7, 8 és 9 számjegy. Ezért ezek összege $3 \cdot 200 \cdot (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) = 600 \cdot 45 = 27000$ Az ezresek helyén van 1000 db. egyes, ezek összege 1000. A további 5 szám számjegyeinek összege: 2 + 3 + 4 + 5 + 6 = 20 Végül az összeg 28020. De ez a szám osztható 3-mal és nem osztható 9-cel, ugyanis 2 + 8 + 2 = 12. Ebből következik, hogy a kapott szám **nem lehet négyzetszám**.

 $\bf 3.$ feladat: Az ABCD téglalapban AD = 3AB. Az E és F pontok AD-t három egyenlő részre osztják. Mennyi a BEA, BFA és BDA szögek összege?

Balázsi Borbála (Beregszász)

3. feladat I. megoldása: Ábrázoljuk az adott téglalapot, és rajzolunk mellé egy másikat, mely az első "megduplázása".

Azt találjuk, hogy $PLK \angle = BFA \angle$; $MLR \angle = BDA \angle$; KL = KM, ezért $KLM \angle = 45^\circ$ Végül $BEA \angle + BFA \angle + BDA \angle = KLM \angle + PLK \angle + MLR \angle = 90^\circ$.

4. feladat: Az a, b és c pozitív számok egy háromszög oldalainak hosszát jelölik, és érvényes rájuk a következő összefüggés: $3b^2 = 2(c^2 - a^2)$. Mekkora lehet a $\frac{b}{a}$ tört értéke?

Bogdán Zoltán (Cegléd)

4. feladat I. megoldása: A feltételből $2c^2=2a^2+3b^2\iff c^2=a^2+b^2+\frac{1}{2}b^2$. Látható, hogy $\frac{1}{2}b^2$ a cosinus tétel felírásában a $-2ab\cos\gamma$ helyét foglalja el. Ha az $\frac{1}{2}b^2=-2ab\cos\gamma$ egyenlőség mindkét oldalát ab-vel elosztjuk, a $\frac{b}{a}=-4\cos\gamma\leq 4$ összefüggést kapjuk. De a háromszög 180°-os szöget nem tartalmazhat, ezért az egyenlőség nem állhat fenn.

5. feladat: Igazolja, hogy a háromszög szögfelezőinek metszéspontja és a háromszög csúcsai közötti távolságok négyzeteinek összege nem kevesebb a háromszög kétszeres területénél!

Bencze Mihály (Brassó)

5. feladat I. megoldása: A szögfelezők metszéspontja a beírt kör középpontja. Az ábra jelöléseivel meghatározzuk az érintési pontok és a háromszög csúcsai közötti távolságokat. Az a-x+b-x=c egyenletből x-et kifejezve $x=\frac{a+b-c}{2}=\frac{a+b+c}{2}-c=p-c$ adódik, ahol p a háromszög félkerülete.

U. i. a másik két távolság p-a illetve p-b. A feladat szerint az $IA^2+IB^2+IC^2\geq 2T_{ABC}$ állítást kell igazolnunk. Pitagorasz tételét és az $a^2+b^2\geq 2ab$ közismert egyenlőtlenséget alkalmazva felírhatjuk:

$$IA^{2} = r^{2} + (p-a)^{2} \ge 2r(p-a)$$

 $IB^{2} = r^{2} + (p-b)^{2} \ge 2r(p-b)$

$$IC^{2} = r^{2} + (p - c)^{2} \ge 2r(p - c)$$
.

Másrészt $T_{ABC} = p \cdot r = (p - a + a) r = (p - a) r + ar$, ahonnan $(p - a) r = T_{ABC} - ar$. Ugyanígy:

$$(p-b) r = T_{ABC} - br$$

$$(p-c) r = T_{ABC} - cr.$$

Ezekből

$$IA^{2} + IB^{2} + IC^{2} \ge 2(T_{ABC} - ar + T_{ABC} - br + T_{ABC} - cr) =$$

= $2(3T_{ABC} - 2pr) = 2(3T_{ABC} - 2T_{ABC}) = 2T_{ABC}$

6. feladat: Bizonyítsa be, hogy ha p és q háromnál nagyobb prímszám, akkor $7p^2+11q^2-39$ nem prímszám.

Oláh György (Komárom)

6. feladat I. megoldása: Minden 3-nál nagyobb prímszám felírható vagy 6k+1, vagy 6k-1 alakban, ahol k pozitív egész. Legyen $p=6k\pm 1$ és $q=6m\pm 1$. Akkor

$$7p^{2} + 11q^{2} - 39 = 7(6k \pm 1)^{2} + 11(6m \pm 1)^{2} - 39 =$$

$$= 7(36k^{2} \pm 12k + 1) + 11(36m^{2} \pm 12m + 1) - 39 =$$

$$= 12(21k^{2} \pm k + 33m^{2} \pm m) - 21.$$

Ez osztható 3-mal és nagyobb 3-nál, tehát nem prímszám.

7. feladat: Oldja meg a $(p-x)^2 + \frac{2}{x} + 4p = \left(p + \frac{1}{x}\right)^2 + 2x$ egyenletet az egész számok halmazán, ha a p paraméter egész szám!

Bíró Bálint (Eger)

7. feladat I. megoldása: Végezzük el a kijelölt műveleteket: $p^2-2px+x^2+\frac{2}{x}+4p=p^2+\frac{2p}{x}+\frac{1}{x^2}+2x$. Ebből átrendezéssel:

$$x^{2} - \frac{1}{x^{2}} - 2\left(x - \frac{1}{x}\right) = 2p\left(x + \frac{1}{x}\right) - 4p,$$

vagy másképpen

$$\left(x - \frac{1}{x}\right)\left(x + \frac{1}{x}\right) - 2\left(x - \frac{1}{x}\right) = 2p\left(x + \frac{1}{x}\right) - 4p$$
$$\left(x + \frac{1}{x} - 2\right)\left(x - \frac{1}{x} - 2p\right) = 0.$$

Ebből vagy $x+\frac{1}{x}-2=0$, vagy $x-\frac{1}{x}-2p=0$. Az előbbi egyenletből x=1, és ez egész gyöke az egyenletnek bármely p esetében. Utóbbi egyenletből $x-\frac{1}{x}=2p$. Mivel x is és p is egész szám, ezért x csak 1 vagy -1 lehet. Az 1-et már előbb figyelembe vettük, x=-1 esetére p-nek nullának kell lennie.