

AWS Foundation

Introduction to VPC

Agenda

1 WHAT IS AMAZON VPC

6 SECURITY IN VPC

11 VPC ENDPOINTS

2 IP ADDRESS AND CIDR NOTATIONS

7 DEMO 3: SECURITY

12 VPC PRICING

3 DEMO 1: VPC

8 TYPES OF VPC

13 DESIGN PATTERNS

4 COMPONENTS OF VPC

9 SUBNETS

14 SUMMARY

5 DEMO 2: NAT GATEWAY

10 VPC PEERING

15 QUIZ

What is Amazon

What is Amazon VPC

Virtual Private Cloud

Amazon VPC – Lets you create a logically isolated section of the AWS cloud where you can launch AWS services in the Virtual Network which you defined.

VPCs span all Availability Zones in a Region

What is Amazon VPC

IP Address and CIDR

Notations

Copyright IntelliPaat, All rights reserved

IP Addressing

IP Addressing

IP address range for CIDR

CIDR Classes

Firewall

- Firewall is a system made to prevent unauthorized traffic to and from your PRIVATE network/computer/server by Allowing or Denying those traffic.
- Allowing and denying traffic are mentioned by Rules, also called firewall rules.

Firewall

Types

- Stateful: No additional rules are needed for response traffic.
- Stateless: Rules have to be mentioned for both request and response.

Copyright IntelliPaat, All rights reserved

Demo 1: VPC

Creating VPC and Subnets

- Create VPC with CIDR block 24.8.0.0/20 (myVPC) in the Region N. Virginia.
- Create 3 subnets in the VPC created above. All 3 subnets should be in different Availability Zones.
 - 1) myVPC-subnet-1A
 - 2) myVPC-subnet-1B
 - 3) myVPC-subnet-1C
- myVPC-subnet-1A should be PUBLIC subnet. myVPC-subnet-1B, myVPC-subnet-1C should be PRIVATE subnets.
- 4) Launch two EC2 instances in each of the subnets 1A and 1B created above.
- 5) Launch one instance in the subnet 1C.

Copyright IntelliPaat, All rights reserved

Components of VPC

Route Tables

Internet Gateway

Network Address Translation (NAT)

Security — (Security Groups and NACL)

Network Interface

- Interface between a computer and an internet network.
- ★ Network IO happens via N/W interface cards
- ★ N/W interfaces contain Elastic IP, Public IP, Private IP, Security Groups

Elastic Network Interface – It is a Virtual Network Interface and it contains all of the attribute below

Elastic Network Interface

Network interface can be:

- ★ Created to an Instance
- ★ Attached to an Instance
- Detached from an Instance
- Re-attached to another instance.

Multiple IP Addresses

- ★ Network interface can have an additional Secondary IP address attached to it.
- ★ IP address can be assigned to n/w interfaces attached to a running or stopped instance.

Route Tables

- » Route table tells a machine/network where traffic is directed.
- » Directions are defined by "routes" in Route Tables.
- Each subnet must be associated with a Route.
- » All VPCs come with an implicit router and a main route table which can be modified.

Destination	Target		
5.8.13.21	Local		
0.0.0.0/0	IGW		
6.4.2.1/32	IGW		

Internet Gateways

An internet gateway is a horizontally scaled, redundant, and highly available VPC component that allows communication between instances in your VPC and the internet

Purpose of an Internet Gateway

- Created to an Instance
- Attached to an Instance
- Detached from an Instance
- Re-attached to another instance.

Network Address Translation

- Internet cannot initiate any connection to the instances via NAT.
- NAT devices enable instances in the Private Subnet to connect to Internet and brings responses back to the instances.
- NAT devices are created in Public Subnet.

Destination	Target		
10.20.1.0/24	Local		
0.0.0.0/0	NAT gateway		

Network Address Translation

NAT Gateway vs NAT Instance

NAT Gateway	NAT Instance			
Implemented with redundancy.	Failover has to be managed manually using scripts.			
Supports Burst up to 10 Gbps.	Depends on the bandwidth of the instance type.			
Entirely managed by AWS.	Has to be managed by the customer.			
No size.	Instance type and size can be selected.			
Only NACLs can be used to filter traffic.	Both Security Groups and NACLs can be used.			
Elastic IP has to be associated.	Both Elastic IP and Public IP can be used.			

Demo 2: NAT Gateway

Copyright IntelliPaat, All rights reserved

Demo 2: NAT Gateway

SG and NACL – 3 Tier Architecture

- 1) Use the public and private subnet which was created in the previous demo.
- 2) Spin up 1 instance each on public and private subnets "pub" and "priv".
- 3) Setup NACLs to control traffic. "pub" should be able to ssh to "priv".
- 4) Try to install "httpd" service using command "sudo yum install -y httpd".
- 5) Create and attach a NAT gateway to pubic subnet.
- 6) Modify route tables and NW ACL rules to allow "priv" to install httpd from internet.
- 7) Attach a public IP to "priv".
- 8) Try to ssh to priv from local machine. Failure shows that NAT does not allow request from internet to go into instances in private subnet.

Copyright IntelliPaat, All rights reserved

Security

Security Groups

/miguifeet

A security group acts as a virtual firewall for your instance to control inbound and outbound traffic

Outbound EC2 inst1

Inbound EC2 inst2

Туре	Protocol	Port	Destinatio n
SSH	TCP	22	5.8.13.21
Туре	Protocol	Port	Source
SSH	TCP	22	1.1.2.3

TO 5.8.13.21

FROM 1.1.2.3

Security

Network ACLs

- » Network Access Control Lists
- Optional layer of security for your VPC that acts as a firewall
- Controls traffic in and out of one or more subnets

subnet1	Rule No	o. Type	Protoco	l Port	Destination	Allow/Deny	
Outbound	100	SSH	TCP	22	5.8.13.0/24	ALLOW	
Outbound	200	ALL Traffic	S ALL	ALL	0.0.0.0/0	DENY	
subnet1	Rule No.	Туре	Protocol	Port	Source	Allow/Deny	
Inbound	50	ALL Traffic	ALL	ALL	0.0.0.0/0	DENY	
Inbound	100	SSH	TCP	1024-65535	5.8.13.0/24	ALLOW	
subnet1	Rule No.	Туре	Protocol	Port nellipaat	Source	Allow/Deny	
Inbound	100	SSH	TCP	1024-65535	5.8.13.0/24	ALLOW	
Inbound	200	ALL Traffic	ALL	ALL	0.0.0.0/0	DENY	

Copyright IntelliPaat, All rights reserved

Network ACLs

Type – inst1	Rule No.	Туре	Protocol	Port	Source	Allow/Deny
Inbound	100	SSH	TCP	22	1.1.2.0/24	ALLOW
Inbound	200	ALL Traffic	ALL	Intellipaat ALL-lipaat	0.0.0.0/0	DENY
Type – inst1	Rule No.	Туре	Protocol	Port	Destination	Allow/Deny
Outbound	100	SSH	TCP	1024-65535	1.1.2.0/24	ALLOW
Outbound	liped 200	ALL Traffic		ALL 4	MeliPCO.0.0.0/0	DENY

Demo 3: Security

Demo 3: Security

SG and NACL – 3 Tier Architecture

- Create a VPC "3tier-architecture" with CIDR 10.20.0.0/16. Create 3 subnets 1 public web and 2 private app and db.
- 2) Launch "web1" and "web2" instances in Subnet "web".
- 3) Launch "app1" and "app2" in Subnet "app".
- 4) Launch "db1" in Subnet "db".
- 5) "web1" and "web2" are basic httpd web servers and should be connectable from internet on ports 22 (SSH) and 80 (HTTP). Test it.
- 6) "app1" and "app2" should only be connectable from "web1" and "web2" using Private IP addresses over port 22 (SSH).
- 7) "db1" should be connectable only from "app1" and "app2" using Private IP address over port 22 (SSH).

Types of VPC

Default and Non-default VPC

Default VPC

- EC2-VPC platform only it comes with a default
 VPC that has a default
 subnet in each
 Availability Zone
- A default VPC has the benefits of the advanced features provided by EC2-VPC, and is ready for you to use

Non-default VPC

- Regardless of which platforms your account supports, you can create your own VPC, and configure it as you need
- Subnets created here are called as non-default subnets

Subnets

Subnets

- » Subnet is dividing a large network into multiple smaller logical networks.
- Each subnet is a separate network on its own. Machines in one subnet cannot talk to machines in other subnet directly. Route through the main router has to be taken.

Subnets

- » Public Subnet has internet gateway associated with it.
- » Private subnet does not have any route to Internet Gateway.

Demo 4: VPC Architecture

Demo 4: Architecture

- Network connection between two VPCs which enables traffic flow between them using Private IP addresses.
- ★ Peering connections can be created between VPCs in the same or different accounts and between VPCs in the same or different regions.

VPC Peering Scenarios

Two VPCs (with same n/w address) peered with 2 subnets in the same VPC.

Route Table	Destination	Target
Subnet X in VPC A	172.16.0.0/16	Local
	10.0.0.0/16	pcx-aaaabbbb
Subnet Y in VPC A	172.16.0.0/16	Local
	10.0.0.0/16	pcx-aaaacccc
VPC B	10.0.0.0/16	Local
	172.16.0.0/24	pcx-aaaabbbb
VPC C	10.0.0.0/16	Local
	172.16.1.0/24	рсх-аааасссс

VPC Peering Scenarios

Two VPCs peered with specific subnets.

Route Table	Destination	Target
Subnet B in VPC B	10.0.0.0/16	Local
	172.16.0.0/24	pcx-aaaabbbb
VPC A	172.16.0.0/24	Local
	10.0.0.0/16	рсх-аааасссс

Destination	Target
172.16.0.0/16	Local
10.0.1.0/24	pcx-aaaabbbb
10.0.0.0/24	pcx-aaaacccc

VPC Peering Scenarios

One VPC peered with two VPCs using Longest Prefix Match.

	7/12012	ři Dlenenti
Route Table	Destination	Target
VPC A	172.16.0.0/16	Local
	10.0.0.77/32	pcx-aaaabbbb
telliPaat	10.0.0.0/16	pcx-aaaacccc
VPC B	10.0.0.0/16	Local
	172.16.0.0/16	pcx-aaaabbbb
VPC C	10.0.0.0/16	Local
	172.16.0.0/16	рсх-аааасссс

VPC Endpoints

Interface Endpoint – Powered by PrivateLink.

VPC Pricing (us-east-1)

- Free tier: Entirely free except for VPN and NAT Gateway.
- Only VPN connection and NAT Gateway are priced.
- VPN: \$0.05 per VPN connection per hour.
- NAT Gateway: \$0.045 per hour, \$0.045 per GB of data processed per hour.
- Visit https://aws.amazon.com/vpc/pricing/ for details.

VPC Pricing (us-east-1)

\$43.4/month

Design Patterns

Design Patterns

Design Patterns

Summary

Summary

- IP addresses and CIDR notation
- Firewall
- Components of VPC
- VPC Peering and VPC Endpoints
- VPC pricing and Design Patterns

elliPaat

Quiz

1. What functions of an AWS VPC is stateless?

A. Security Group

B. Network Access Control Lists

C. AWS Firewall

D. Peering No

2. Newly Created subnet in Default VPC is called?

- A. Default Subnet
- B. Non Default Subnet
- C. Subnet
- D. Default VPC

3. Security Group operates at which layer?

A. VPC

B. Account

C. Subnet

D. Instance

4. How many subnets are allowed per VPC?

Intellipaat

A. 500

B. 200

C. 100

D. No Limitation

5. ACL evaluates the rules starting with the highest numbered rule.

A. True

B. False

US: 1-800-216-8930 (TOLL FREE)

support@intellipaat.com

24X7 Chat with our Course Advisor