Sistemi Operativi: Prof.ssa A. Rescigno

Anno Acc. 2019-2020

I Prova in itinere – 28 Ottobre 2019 **(teoria)**

Università di Salerno

- 1. Codice comportamentale. Durante questo esame si deve lavorare da soli. Non si puó consultare materiale di nessun tipo. Non si puó chiedere o dare aiuto ad altri studenti.
- 2. **Istruzioni.** Rispondere alle domande. Per la brutta usare i fogli posti alla fine del plico (NON si possono usare fogli aggiuntivi); le risposte verranno corrette solo se inserite nello spazio ad esse riservate oppure viene indicata con chiarezza la posizione alternativa. Per essere accettata per la correzione la risposta deve essere ordinata e di facile lettura. TUTTE le risposte vanno GIUSTIFICATE. Ciascuna risposta non giustificata vale ZERO.

Nome e Cognome:	
Matricola:	
Firma	

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	Tot	bonus
/30	/20	/50	/10

1. 30 punti

Un hard disk ha la capienza di 2^{26} byte ed è formattato in blocchi da 1 Kb. Si assuma che un file pluto la cui taglia é 7Kb sia allocato su tale hard disk, che il suo FCB sia giá presente in memoria principale e che b sia il numero del primo blocco di pluto. Giustificando le risposte, rispondere ai quesiti seguenti.

- 1) Assumendo che:
- $\bullet \bullet$ lo spazio libero sia gestito attraverso una bitmap (vettore di bit), giá presente in memoria principale, e che
- $\bullet \bullet \:$ sia adottata allocazione linkata dire
- 1a) "quanti accessi a disco" sono necessari e
- 1b) "come viene eventualmente modificata la bitmap" e
- 1c) come vengono modificate le informazioni di pluto nel FCB (relativamente al recupero dei suoi blocchi),

nel caso si voglia cancellare il primo blocco di pluto e leggere il contenuto dell'ultimo blocco di pluto

- 2) Assumendo che:
- $\bullet \bullet$ lo spazio libero sia gestito attraverso una lista linkata, dove c é il numero del primo blocco della lista, e che
- $\bullet \bullet \:$ sia adottata allocazione contigua dire
- 1a) "quanti accessi a disco" sono necessari e
- 1b) "come viene eventualmente modificata la lista linkata dei blocchi liberi" e
- 1c) come vengono modificate le informazioni di pluto nel FCB (relativamente al recupero dei suoi blocchi),

nel caso si voglia cancellare il primo blocco di pluto ed modificare il contenuto del terzo blocco di pluto

- 3) Assumendo che:
- $\bullet \bullet \:$ si adotti una organizzazione del file
system simile a Unix, dove il FCB sia del tipo seguente: attributi
- ind. blocco 0
- ind. blocco 1
- ind. blocco indirizzi indirezione singola
- ind. blocco indirizzi indirezione doppia
- (3.1) "quanti blocchi" sono necessari per memorizzare pluto (compresi eventuali blocchi indice)

(3.2) "quale é la taglia massima" che pluto può raggiungere in tale sistema?

- 4) Assumendo che:
- •• si adotti una FAT per l'allocazione dei file di tale sistema.

Dato il seguente frammento di FAT,

Entry	Contenuto
b-4	/
b-3	b+7
b-2	2
b-1	b-3
b	b+5
b+1	b+7
b+2	8
b+3	7
b+4	b-2
b+5	b-1
b+6	100
b+7	b + 8
b+8	b-4

dire

- 1a) "la sequenza di accessi alla FAT" necessari e
- 1b) "quanti accessi al disco" sono necessari e
- 1c) "come viene eventualmente modificata la FAT"

nel caso si voglia modificare il contenuto del quarto blocco di pluto

2. 20 punti

Si assuma che in un sistema lo scheduling della CPU sia gestito mediante 2 code multiple con feedback denominate A e B.

La coda di arrivo di un processo sia A; alla fine del primo CPU burst, e solo dopo aver fatto la sua operazione di I/O, un processo approda nella coda B.

Gli algoritmi di scheduling adottati all'interno di ciascuna coda sono i seguenti:

- la coda A adotta lo **SJF con prelazione**;
- la coda B adotta il RR con quanto di tempo di 2msec;

Inoltre, le operazioni di I/O avvengono tutte su "uno stesso dispositivo" il cui scheduling é gestito attraverso un algoritmo FIFO.

Nella tabella sottostante sono elencati i processi che arrivano nel sistema. Per ciascun processo sono riportati: il tempo di arrivo, l'entitá dei CPU burst ed I/O burst che richiede.

Processo	T. di Arrivo	1º CPU burst	I/O burst	2º CPU burst
P_1	0	7	4	3
P_2	2	6	-	-
P_3	4	1	4	3

- a) Si descriva la sequenza di esecuzione dei processi utilizzando il diagramma di Gantt.
- b) Si calcoli il tempo di attesa in coda di ciascun processo.
- c) Assumendo che il processo P_2 abbia usato esattamente la quantità di CPU richiesta (6, come descritto nella tabella), calcolare quale sarebbe la stima del prossimo CPU burst che il processo P_2 avrebbe potuto chiedere. Giustificare la riposta.

3. (bonus) 10 punti

Si consideri un disco dotato di una sola testina e 100 traccie. Si consideri inoltre che lo spostamento da una traccia alla adiacente richieda 1ms. Si supponga che al tempo 0ms mentre la testina si trova sulla traccia 18 e si sta muovendo verso la traccia 99, le richieste in sospeso siano (i tempi indicati sono in ms):

traccia	25	6	10	66	51	97
tempo di arrivo	0	4	12	26	70	67

- a) Determinare come vengono servite le richieste seguendo le strategie: SCAN
- b) Valutare, i tempi di attesa di ogni richiesta. [Si ricordi che il tempo di attesa di una richiesta é dato dal tempo intercorso tra l'arrivo della richiesta e il servizio della stessa.]