МЕЖГОСУДАРСТВЕННЫЙ COBET ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)
INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 32208-2013

ПРУЖИНЫ РЕССОРНОГО ПОДВЕШИВАНИЯ ЖЕЛЕЗНОДОРОЖНОГО ПОДВИЖНОГО СОСТАВА

Метод испытаний на циклическую долговечность

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении» (ВНИИНМАШ)
- 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 27 июня 2013 г. № 57-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального орган по стандартизации				
Азербайджан	AZ	Азстандарт				
Армения	AM	Минэкономики Республики Армения				
Беларусь	BY	Госстандарт Республики Беларусь				
Киргизия	KG	Кыргызстандарт				
Молдова	MD	Молдова-Стандарт				
Россия	RU	Росстандарт				
Узбекистан	υz	Узстандарт				

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 8 ноября 2013 г. № 1474-ст межгосударственный стандарт ГОСТ 32208—2013 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2014 г.
- 5 В настоящем стандарте реализованы требования технических регламентов Таможенного союза «О безопасности железнодорожного подвижного состава» и «О безопасности высокоскоростного железнодорожного транспорта», действующих на территории Республики Беларусь, Республики Казахстан и Российской Федерации, в части метода проверки подтверждения показателей циклической долговечности применительно к объекту технического регулирования пружинам рессорного подвешивания железнодорожного подвижного состава
 - 6 Стандарт подготовлен на основе применения ГОСТ Р 54326—2011
 - 7 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2014

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения.	٠.	 		 	-	 , 1
2 Нормативные ссылки	٠.	 		 		 . 1
3 Термины, определения и обозначения		 		 		 . 2
4 Требования безопасности		 		 		 . 2
5 Сущность метода		 		 		 . 3
6 Требования к условиям проведения испытаний		 		 		 . 3
7 Требования к испытательной установке		 		 		 . 3
8 Подготовка к испытанию	, ,	 		 		 . 3
9 Порядок проведения испытаний		 		 		 . 5
10 Правила обработки и оценки результатов		 		 	_	 . 6
11 Оформление результатов испытаний		 		 		 . 6
Приложение А (справочное) Параметры цикла напряжений (нагрузок, прогибов) .					 . 7
Приложение Б (справочное) Диаграмма амплитуд испытательных напряжений п (при $N_k = 0.5 \cdot 10^6$) из катаного прутка диаметром $d = 38$ мм, упроч						
Приложение В (справочное) Выбор режима испытаний на примере буксовых пр ловоза 2ТЭ25А при $N_k = 0.5 \cdot 10^6$			-			. 9
Приложение Г (справочное) Выбор режима испытаний на примере наружной пр ли 18-194 грузового вагона при $N_k = 0, 5 \cdot 10^6$						
Приложение Д (справочное) Диаграмма предельных амплитуд напряжений цик $6\cdot 10^5$ циклов для пружин из катаного прутка диаметром $d=36$ м						й
дробью		 		 		 11
Приложение Е (справочное) Характеристики изломов						 12

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ПРУЖИНЫ РЕССОРНОГО ПОДВЕШИВАНИЯ ЖЕЛЕЗНОДОРОЖНОГО ПОДВИЖНОГО СОСТАВА

Метод испытаний на циклическую долговечность

Springs of spring suspension of railway rolling stock. Method of fatigue life tests

Дата введения — 2014-06-01

1 Область применения

Настоящий стандарт устанавливает метод испытаний на циклическую долговечность пружин.

Требования настоящего стандарта распространяются на цилиндрические винтовые пружины сжатия (далее — пружины) из стали круглого сечения, работающие при продольных и комбинированных (продольных и поперечных) нагрузках в рессорном подвешивании железнодорожного подвижного состава.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 8.050—73 Государственная система обеспечения единства измерений. Нормальные условия выполнения линейных и угловых измерений

ГОСТ 8.051—81 Государственная система обеспечения единства измерений. Погрешности, допускаемые при измерении линейных размеров до 500 мм

ГОСТ 12.2.003—91 Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности

ГОСТ 25.507—85 Расчеты и испытания на прочность в машиностроении. Методы испытаний на усталость при эксплуатационных режимах нагружения. Общие требования

ГОСТ 1452—2011 Пружины цилиндрические винтовые тележек и ударно-тяговых приборов подвижного состава железных дорог. Технические условия

ГОСТ 23207—78 Сопротивление усталости. Основные термины, определения и обозначения

ГОСТ 25346—89 Основные нормы взаимозаменяемости. Единая система допусков и посадок. Общие положения, ряды допусков и основных отклонений

ГОСТ 31539—2012 Цикл жизненный железнодорожного подвижного состава. Термины и определения

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Издание официальное

3 Термины, определения и обозначения

- В настоящем стандарте применены термины и определения по ГОСТ 1452, ГОСТ 23207, ГОСТ 25346 и ГОСТ 31539, а также следующий термин с соответствующим определением:
- тарирование: Испытание пружин статическими нагрузками с целью построения зависимости величины деформации от нагрузки.
 - 3.2 В настоящем стандарте применены следующие обозначения:
 - диаметр прутка пружины, мм;
 - D средний диаметр пружины, мм;
 - D₁ наружный диаметр пружины, мм;
 - D₂ внутренний диаметр пружины, мм;
- I_1 высота пружины под расчетной статической нагрузкой от массы надрессорного строения единицы железнодорожного подвижного состава, мм;
- I_{по} минимальная высота, соответствующая максимальной продольной (осевой) деформации (прогибу) пружины под пробной нагрузкой, мм;
 - п число рабочих витков пружины;
 - F₁ расчетная статическая нагрузка на пружину, кН;

 - F_{пр} пробная нагрузка, кН; F_a амплитуда нагрузки при циклических испытаниях, кН;
 - s_1 продольная деформация (прогиб) пружины под расчетной статической нагрузкой F_1 , мм;
 - s_a амплитуда деформации цикла при испытаниях пружины, мм;
- т, касательное напряжение кручения на внутренней поверхности витка пружины, возникающее при приложении силы F₁, МПа;
 - т_{аи} амплитуда напряжений цикла при испытаниях на базе 0,5 · 10⁶ циклов нагружения, МПа;
- $au_{a \ npeg}$ предельная амплитуда напряжений цикла при испытаниях на базе $6\cdot 10^6$ циклов нагружения, МПа;
 - τ_{ai} текущее значение амплитуд напряжений цикла при испытаниях на базе 6 · 10 6 циклов. МПа:
 - au_a амплитуда напряжений (модальное значение) от динамической нагрузки в эксплуатации;
 - і индекс пружины;
 - к коэффициент, учитывающий кривизну витка;
- K_d коэффициент влияния действительных размеров поперечного сечения прутка на сопротивление усталости при числе циклов нагружения N.;
- K_{d_N} коэффициент влияния действительных размеров поперечного сечения прутка на сопротивление усталости при числе циклов нагружения N;
- К. коэффициент влияния состояния поверхности прутка и глубины обезуглероженного слоя на сопротивление усталости;
 - K_{ν} коэффициент влияния поверхностного упрочнения пружины на сопротивление усталости;
 - $k_{\rm g}$ расчетный коэффициент динамики пружины;
 - п
 а
 коэффициент запаса прочности по усталости;
 - N_{κ} контрольное число циклов нагружения (деформаций); $N_{\kappa} = 0.5 \cdot 10^6$.
 - Применяется при периодических и сертификационных испытаниях;
- И число циклов нагружения (деформаций); N = 6 · 10⁶ с построением кривой усталости. Применяется при приемочных и типовых испытаниях.

4 Требования безопасности

- 4.1 Оборудование и организация рабочих мест при испытаниях пружин должны соответствовать требованиям ГОСТ 12.2.003, а сигнальные цвета и знаки безопасности, информирующие и обращающие внимание обслуживающего персонала на потенциальную или действительную опасность, - национальным стандартам и нормативным документам, действующим на территории государства, принявшего стандарт1).
 - 4.2 Освещенность помещения при испытаниях должна быть не менее 400 лк.

¹⁾ На территории Российской Федерации действует ГОСТ Р 12.4.026—2001 Система стандартов безопасности труда. Цвета сигнальные, знаки безопасности и разметка сигнальная. Назначение и правила применения. Общие технические требования и характеристики. Методы испытаний.

4.3 Зона размещения пружин на испытательной установке для циклических испытаний должна быть оборудована ограждением, защищающим от осколков в случае их образования при изломе пружины.

5 Сущность метода

- 5.1 Сущность метода заключается в нагружении продольной циклической нагрузкой пружин, предварительно сжатых расчетной статической нагрузкой, до достижения определенного числа циклов напряжений (деформаций) или излома пружины (база испытаний N, или N).
- 5.2 Параметры цикла нагружения (амплитуды напряжения или деформации) рассчитывают, исходя из действительных размеров пружин (d, D), статической нагрузки, действующей на них, а также технологии обработки прутков и упрочнения поверхности готовых пружин.

6 Требования к условиям проведения испытаний

Перед измерениями размеров, перед статическими и циклическими испытаниями пружины должны быть размещены в помещении с температурой от 15 °C до 30 °C в течение четырех часов. Измерения размеров пружин проводят при одинаковой температуре пружины и измерительных средств. Отклонения размеров пружины от номинальных не должны превышать установленных в конструкторской документации на допуски при условии, что измерения проводят при нормальных условиях проведения линейных и угловых измерений в соответствии с ГОСТ 8.050, а погрешности измерений не превышают значений, установленных в ГОСТ 8.051.

7 Требования к испытательной установке

7.1 Определение деформаций (прогибов) пружин под статическими нагрузками проводят на испытательной установке (прессе), конструкция которой (го) должна обеспечивать продольное сжатие пружины статической нагрузкой в диапазоне от нуля до пробной нагрузки $F_{\rm np}$ с пределами допускаемой относительной погрешности не более ± 2 %.

П р и м е ч а н и е — Величина пробной нагрузки, являющаяся показателем стабильности режимов термообработки, должна быть указана в чертеже. Минимальную высоту полностью сжатой пружины с учетом неравномерности шага I_{по}, мм, вычисляют по формуле

$$I_{np} = (n+1,1)d.$$
 (1)

- 7.2 Циклическое нагружение пружин осуществляют на испытательной установке, обеспечивающей:
- осевое циклическое нагружение одной или более пружин одновременно по асимметричному знакопостоянному циклу напряжений, приведенному в приложении А;
- режимы испытаний по статическим деформациям s_1 (до 150 мм) или нагрузкам F_1 (до 70 кH) с относительной погрешностью не более $\pm~2~\%$ и амплитуды деформации s_a (до 75 мм) или нагрузки F_a (до 35 кH) с относительной погрешностью не более 5 %;
 - частоту циклов нагружения в соответствии с 9.3;
- автоматический подсчет и индикацию числа циклов при помощи счетного устройства с числом декад не менее семи и сохранением текущего значения числа циклов для электронного исполнения устройства при отключении его питания.

Испытательная установка должна быть аттестована в установленном порядке¹).

8 Подготовка к испытанию

- 8.1 Пружина, подлежащая испытанию, должна быть принята службой технического контроля предприятия-изготовителя в установленном порядке.
- 8.2 Измерение геометрических размеров, определение деформаций (прогибов) пружины под статическими нагрузками (тарирование) должно быть проведено до ее испытаний на циклическую долговечность.

¹⁾ На территории Российской Федерации в соответствии с законодательством Российской Федерации об обеспечении единства измерений.

Нагружение продольной статической нагрузкой проводят ступенчато до величины пробной нагрузки $F_{\rm np}$. Число ступеней нагружения должно быть не менее пяти. При каждом значении нагрузки проводят измерение высоты пружины. Данные заносят в таблицу и для каждой нагрузки вычисляют соответствующую деформацию пружины. Строят график зависимости деформации пружины от нагрузки s = f(F) и по этому графику определяют значение фактической деформации s_1 под статической нагрузкой F_1 .

8.3 Напряжение т₁, МПа, вычисляют, учитывая действительные размеры диаметра прутка, среднего диаметра пружины, по формуле

$$\tau_1 = \frac{8 \cdot 10^3 RF_3 D}{\pi d^3}.$$
 (2)

8.4 Значения D, мм, i и k вычисляют с учетом действительных размеров пружины d, D_1 или D_2 по формулам:

$$D = D_1 - d \, \mathsf{и} \mathsf{л} \mathsf{u} \tag{3}$$

$$D = D_2 - d, (4)$$

$$k = \frac{4i - 1}{4i - 4} + \frac{0,615}{i},\tag{5}$$

$$j = \frac{D}{d}$$
. (6)

8.5 Амплитуду напряжения цикла $\tau_{\rm a \ u}$, МПа, на базе $N_{\kappa}=0.5\cdot 10^6$ в случае проведения периодических и сертификационных испытаний вычисляют на основании диаграммы, приведенной в приложении Б, по формуле

$$\tau_{au} = (257 - 0.192 \tau_1) K_{du} K_{y}. \tag{7}$$

Значение К_{ди} выбирают по таблице 1.

Таблица 1

d, mm	K _{d n}	K _d	d, mm	Kaw	Ka	d, mm	Kdn	Kd
11	1,146	1,139	25	1,052	1,045	39	0,997	0,989
12	1,137	1,130	26	1,047	1,040	40	0,993	0,986
13	1,128	1,121	27	1,042	1,035	41	0,990	0,982
14	1,120	1,112	28	1,038	1,030	42	0,986	0,979
15	1,112	1,104	29	1,034 1,026 43 0.	1,034 1,026 43	1,026 43	43 0,983 44 0,979	
16	1,105	1,097	30	1,030	1,022	44		
17	1,098	1,090	31	1,026	1,018	45	0,976	0,968
18	1,091	1,083	32	1,022	1,014 46 0,97	46 0,972 47 0,969		
19	1,085	1,077	33	1,018	018 1,010 47			
20	1,079	1,071	34	1,014	1,007	48	0,966	0,958
21	1,073	1,065	35	1,011	1,003 49		0,963	0,955
22	1,067	1,060	36	1,007	1,000	50	0,960	0,952
23	1,062	1,055	37	1,004	0,996	51	0,958	0,950
24	1,057	1,050	38	1,000	0,993	52	0,956	0,948

Значения коэффициента K, принимают, исходя из применяемой технологии обработки поверхности прутка и глубины обезуглероженного слоя:

- 1,0 для пружин, изготовленных из механически необработанного прутка;
- 1,2 при удалении поверхностного слоя толщиной не более 1 мм на сторону и глубины обезуглероженного слоя, предельно допускаемой по ГОСТ 1452;
- 1,3 при удалении поверхностного слоя толщиной не менее 1,5 мм на сторону и глубины обезуглероженного слоя не более половины, допускаемой по ГОСТ 1452;

- 1,4 при удалении поверхностного слоя толщиной не менее 1,5 мм на сторону и полном отсутствии обезуглероженного слоя.
 - 8.6 Амплитуду напряжений цикла там, МПа, допускается задавать по:
 - амплитуде деформаций цикла $s_{\rm a}$, мм, вычисляемой по формуле

$$s_a = s_1 \frac{\tau_{a \mu}}{\tau_a} \tag{8}$$

по амплитуде циклической нагрузки F_a, кH, вычисляемой по формуле

$$F_a = F_1 \frac{\tau_{a,b}}{\tau_a}.$$
 (9)

Примеры расчета режимов нагружения по параметру амплитуды деформации цикла s_a при испытаниях буксовых пружин рессорного подвешивания тепловоза и пружин тележки грузового вагона приведены в приложениях В и Γ .

8.7 Предельную амплитуду напряжения цикла $\tau_{\text{а пред}}$, МПа, на базе $N=6\cdot 10^6$ с построением кривой усталости вычисляют на основании диаграммы, приведенной в приложении Д, по формуле

$$\tau_{a \text{ npeg}} = (172 - 0.094 \tau_1) K_d K_v K_v.$$
 (10)

Коэффициент К, принимают равным:

- 1,0 при отсутствии упрочнения пружины наклепом;
- 1,15 при упрочнении пружины наклепом.
- 8.8 Циклические испытания пружин проводят с построением кривой усталости (Велера) по параметру среднего напряжения цикла (τ_1 = const) по ГОСТ 25.507 с использованием значения $\tau_{a \text{ пред}}$, рассчитанного по формуле (10).

9 Порядок проведения испытаний

- 9.1 Пружину устанавливают на испытательную установку и сжимают статической нагрузкой до высоты L₁, полученной в результате тарирования пружины.
- 9.2 На испытательной установке задают рассчитанную по 8.5 (8.7) амплитуду напряжений цикла τ_{ax} (τ_{anpeg}) (по величине амплитуды деформаций s_a или амплитуды нагрузки F_a , рассчитанным по 8.6). С начала испытаний должен проводиться подсчет общего числа циклов нагружения.
 - 9.3 Частота циклов нагружения должна быть в пределах от 2 до 17 Гц.
- 9.4 После достижения контрольного числа циклов нагружения $N_{\rm k}$ при периодических испытаниях пружин без их разрушения испытание прекращают, а стабильность качества изготовления и возможность продолжения выпуска пружин считают подтвержденными. Допускается испытания продолжить до разрушения пружины с целью проведения оценки характера излома, металлографического анализа и разработки мероприятий по результатам испытания. Характеристики изломов пружин приведены в приложении E.

Число испытуемых пружин на базе N_к должно быть равно двум.

9.5 Приемочные испытания пружин на базе N = 6 ·10⁶ проводят методом Велера с построением кривой усталости, соответствующей зависимости

$$\tau_{anner}^{m}N = const,$$
 (11)

где m — показатель степени наклона кривой усталости.

Испытания методом Велера проводят в следующем порядке:

- наклонную ветвь кривой усталости определяют по результатам испытаний трех-пяти пружин на двух-трех уровнях напряжений τ_{a} , получая при этом соответствующее значение долговечности N_j . Значения τ_{a} , выбирают в интервале от 10 % до 50 % выше расчетного значения τ_{a} пред
- предельную амплитуду напряжений цикла уточняют по результатам испытаний пяти-семи пружин
 на уровнях напряжений выше и ниже (примерно на 10 МПа) предполагаемого расчетного (по формуле 9)
 значения та пред. За фактическое значение та пред принимают значение та, полученное путем статистической обработки результатов испытаний.

Без применения статистической обработки за фактическое значение т_{а пред} принимают максимальную амплитуду напряжений, при которой пружина выдержала установленное число циклов нагружения N. Число пружин для испытаний должно быть не менее 15.

9.6 Допускается прерывать испытания пружин на время не более двух суток.

10 Правила обработки и оценки результатов

- 10.1 Исходные данные и результаты испытания каждой пружины фиксируют в протоколе испытаний.
- 10.2 Пружины, прошедшие контрольное число циклов по 8.5 (8.7) без разрушения, считаются выдержавшими испытания.
 - 10.3 Кривые усталости по 8.7 строят в полулогарифмических координатах та; Ig N.
- 10.4 Полученное в результате испытаний по 8.8 фактическое значение $\tau_{a \text{ пред}}$ сравнивают с рассчитанным по формуле (10). Полученное фактическое значение $\tau_{a \text{ пред}}$ не должно быть меньше его расчетного значения.
- 10.5 Заключение о соответствии пружин по показателю циклической долговечности делают с учетом коэффициента запаса прочности по усталости, который определяется с учетом эксплуатационной нагруженности пружин по формуле

$$n_a - \frac{\tau_1 + \tau_{anpex}}{\tau_4 + \tau_a} \ge 1,0.$$
 (12)

При отсутствии экспериментальных данных определяется из соотношения

$$\tau_a = k_a \tau_1. \tag{13}$$

где $k_{\rm g}$ = 0,3 — для пружин буксовой ступени подвешивания локомотивов;

 $k_{\rm g} = 0.2...0,25$ — для пружин кузовной ступени подвешивания локомотивов и центральной ступени подвешивания вагонов;

 $k_{\rm g} = 0.35$ — для буксовой ступени подвешивания вагонов и тяжелонагруженных путевых машин.

П р и м е ч а н и е — Кривая усталости может быть использована для расчета долговечности (срока службы) пружин с учетом нагруженности их в эксплуатации.

11 Оформление результатов испытаний

По результатам испытаний составляют протокол, содержащий:

- обозначение пружины, наименование предприятия-изготовителя, сортамент проката и марку стали прутка, вид термообработки;
 - вид испытаний:
 - условия проведения испытаний;
- основные технические характеристики испытательной машины, ее заводской и (или) инвентарный номера, номер свидетельства аттестации и дату его выдачи;
- тип, марку средств измерения, основные технические характеристики, заводской и (или) инвентарный номера, номер свидетельства и дату последней поверки или калибровки;
 - параметры нагружения F_1 , s_1 , s_2 , частоту циклов нагружения;
 - число циклов до разрушения пружины или до конца испытания;
 - даты начала и окончания испытания;
 - заключение о соответствии пружин по показателю циклической долговечности;
- подписи исполнителей и ответственных за испытания, а в случае испытаний с целью сертификации — подпись руководителя испытательного центра (лаборатории).

Приложение A (справочное)

Параметры цикла напряжений (нагрузок, прогибов)

Рисунок А.1

Приложение Б (справочное)

Диаграмма амплитуд испытательных напряжений при испытаниях пружин (при $N_s = 0,5 \cdot 10^6$) из катаного прутка диаметром d = 38 мм, упрочненных дробью

1-5- ограничение по пределам текучести для пружин из сталей: 1-5 SC2, 60C2; 2-60C2A; 3-60C2XA; 4-60C2X Φ A; 5-65C2BA

Рисунок Б.1

Приложение В (справочное)

Выбор режима испытаний на примере буксовых пружин грузового тепловоза 2ТЭ25A при N_e = 0,5 - 10⁶

Размеры пружины, измеренные в соответствии с 8.1:

d = 42 mm;

 $D_s = 278 \, \text{mm}.$

В соответствии с чертежом статическая нагрузка на пружину F, = 45,5 кН.

По формулам (3), (4), (5) рассчитывают значения D, мм, / и k:

$$D = D_1 - d = 278 - 42 = 236 \text{ mm};$$
 (B.1)

$$i = \frac{D}{d} = \frac{236}{42} = 5.619;$$
 (B.2)

$$i = \frac{D}{d} = \frac{236}{42} = 5.619;$$

$$k = \frac{4i - 1}{4i - 4} + \frac{0.615}{i} = \frac{4 \cdot 5.619 - 1}{4 \cdot 5.619 - 4} + \frac{0.615}{5.619} = 1,272.$$
(B.3)

По результатам тарировки пружины определяют прогиб $s_1 = 60$ мм.

По формуле (2) рассчитывают т (:

$$\tau_1 = \frac{8 \cdot 10^3 k F_1 D}{\pi d^3} = \frac{8 \cdot 10^3 \cdot 1,272 \cdot 45,5 \cdot 236}{3,14 \cdot 42^3} = 470 \text{ M}\Pi a.$$
(B.4)

По таблице 1 определяют значение K_d : для d=42 мм $K_d=0.979$.

Пружины изготовлены из прутка с механически обработанной поверхностью, следовательно, принимают K = 1,2.

По формуле (7) рассчитывают амплитуду напряжений цикла так

$$\tau_{a,\mu} = (257 - 0.192\tau_1)K_dK_{\nu} = (257 - 0.192 \cdot 470)\bar{0}.\bar{9}86 \cdot 1.2 = 197.3 \text{ M}\Pi a.$$
 (B.5)

По формуле (8) рассчитывают амплитуду деформаций (прогибов) за:

$$s_{s0} = s_1 \frac{\tau_{BH}}{\tau_1} = 60 \frac{197.3}{470} = 25.2 \text{ mm}.$$
 (B.6)

Приложение Г (справочное)

Выбор режима испытаний на примере наружной пружины тележки модели 18-194 грузового вагона при N_v = 0,5 · 10⁶

Размеры пружины, измеренные в соответствии с 8.1:

 $d = 27 \, \text{MM};$

D, = 198 mm.

В соответствии с чертежом статическая нагрузка на пружину F, = 18,27 кН.

По формулам (3), (4), (5) рассчитывают значения D, мм, / и k:

$$D = D_1 - d = 198 - 27 = 171 \text{ mm},$$
 (F.1)

$$J = \frac{D}{d} = \frac{171}{97} = 6,333.$$
 (F.2)

$$I = \frac{D}{d} = \frac{171}{27} = 6,333. \tag{\Gamma.2}$$

$$K = \frac{4i - 1}{4i - 4} + \frac{0,615}{i} = \frac{4 \cdot 6,333 - 1}{4 \cdot 6,333 - 4} + \frac{0,615}{6,333} = 1,238. \tag{\Gamma.3}$$

По результатам тарировки пружины определяют прогиб под статической нагрузкой s, = 75,5 мм.

По формуле (2) рассчитывают значение т₁:

$$\tau_1 = \frac{8 \cdot 10^3 k F_1 D}{\pi d^3} = \frac{8 \cdot 10^3 \cdot 1238 \cdot 18,27 \cdot 171}{3,14 \cdot 27^3} = 501 \text{ M/ls}.$$
 (F.4)

По таблице определяют K_{d} - для d = 27 мм $K_{d} = 1,042$.

Пружины изготовлены из прутка с механически обработанной поверхностью, следовательно, принимают Ку = = 1,2.

По формуле (7) рассчитывают амплитуду напряжений цикла там:

$$\tau_{a,u} = (257 - 0.192\tau_4)K_aK_c = (257 - 0.192 \cdot 501)1,042 \cdot 1,2 = 201.1 \text{ M}\Pi a.$$
 (Γ.5)

По формуле (8) рассчитывают амплитуду деформаций (прогибов) sa:

$$s_{a} = s_{f} \frac{\tau_{aH}}{\tau_{1}} = 75.5 \frac{201.1}{501} = 30.3 \text{ MM}.$$
 (F.6)

Приложение Д (справочное)

Диаграмма предельных амплитуд напряжений цикла на базе испытаний 6 · 10⁶ циклов для пружин из катаного прутка диаметром *d* = 36 мм, не упрочненных дробью

f-S- ограничение по пределам текучести для пружин из сталей: f-5 55C2, 60C2; 2-60C2A; 3-60C2XA; 4-60C2X Φ A; 5-65C2BA

Рисунок Д.1

Приложение Е (справочное)

Характеристики изломов

При изломе пружин определяют:

- усталостный излом начало разрушения с внутренней стороны рабочего витка под углом примерно 45° к оси прутка без видимых дефектов в месте зарождения трещины.
- излом первого рабочего витка от контактного давления между ним и опорным витком при некачественном изготовлении оттянутых концов пружины. Высокое контактное давление между витками возникает при малом зазоре между рабочим витком и концом опорного витка, увеличенной толщине конца опорного витка, острых или волнистых выступах на поверхности опорного витка, обращенной к рабочему витку.
- излом опорного витка происходит из-за изогнутости его в вертикальной плоскости выше допускаемой и прижогов от шлифовального круга на опорной поверхности;
- начало разрушения от дефектов металлургического и технологического происхождения при неудовлетворительном качестве прутков или нарушениях режимов термообработки.

УДК 625.2.012.8:006.354

MKC 45.060.01

Ключевые слова: железнодорожный подвижной состав, пружины рессорного подвешивания, метод испытаний, цикличная долговечность

Редактор Н.В. Таланова
Технический редактор В.Н. Прусакова
Корректор И.А. Королева
Компьютерная верстка А.Н. Золотаревой

Сдано в набор 04.03.2014. Подписано в лечать 24.03.2014. Формат 60×84 /8. Гарнитура Ариал. Усл. печ. л. 1,86. Уч.-изд. л. 1,30. Тираж 64 экз. Зак. 510.

Издано и отпечатано во ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru

Северо-Западный завод металлоконструкций – http://www.szzmk.ru