The register stores transferred from an external device via the serial interface to the TM1637 data address 00H-05H bytes of six units, respectively, and SGE and GRID pin chip LED lights are connected to the corresponding distribution in the following figure:

	- 40 -			
GND		1 ()	20	K2
SEG1/KS1		2	19	K1
SEG2/KS2		3	18	CLK
SEG3/KS3		4	17	DIO
SEG4/KS4		5	16	VDD
SEG5/KS5		6	15	GRID1
SEG6/KS6		7	14	GRID2
SEG7/KS7		8	13	GRID3
SEG8/KS8		9	12	GRID4
GRID6		10	11	GRID5
				J

Write LED display data, in accordance with the address from the display from low to high, from low to high data byte operation.

- display mode (8 segment × 6 bits), supporting digital output of the sun
- key scan (8 × 2bit), enhanced anti-jamming circuit identification keys
- brightness adjustment circuit (adjustable duty cycle of 8)
- two-wire serial interface (CLK, DIO)
- Oscillation mode: Built-in RC oscillator (450KHz +5%)
- Built-on reset circuit
- Built-in automatic blanking circuit
- Package: DIP20/SOP20

Symbol	Pin Name	Pin Number	Explanation
DIO	Data input / output	17	Serial data input / output, input data
	Out		changes SLCK low in
			SCLK high level is transmitted, one
			byte per chip will be in the first
			transmission
			Eight falling clock edges to generate an
			ACK
CLK	Clock Input	18	The rising edge of the input / output
			data
K1~K2	Key scan data input	19-20	The data input pin is latched after the
			end of the display period
SG1~SG8	Output (section)	2-9	Segment output (also used as key scan),
			N pipe open drain output
GRID6~GRID1	Output (bit)	10-15	Output, P tube open-drain output
VDD	Logic Supply	16	5V±10%
GND	Ground	1	

Key scan matrix is $8 \times 2bit$, as follows:

When the button is pressed, the key data read as follows:

	SG1	SG2	SG3	SG4	SG5	SG6	SG7	\$G8
K1	1110_11	0110_11	1010_11	0010_11	1100_11	0100_11	1000_11	0000_11
	11	11	11	11	11	11	11	11
K2	1111_01	0111_01	1011_01	0011_01	1101_01	0101_01	1001_01	0001_01
	11	11	11	11	11	11	11	11

Note: If no key is pressed, the key data is read: 1111_1111, low front, high in the post. Since the induction cooker and other kitchen appliances applications, due to interference Strong, in order to improve this problem, TM1637 resolved using negative edge triggered false triggering phenomenon, the so-called "jump key" phenomenon.

The register stores transferred from an external device via the serial interface to the TM1637 data address 00H-05H bytes of six units, respectively, and

SGE and GRID pin chip LED lights are connected to the corresponding distribution in the following figure:

Write LED display data, in accordance with the address from the display from low to high, from low to high data byte operation.

a byte (peracr	J11.						
SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	1
X	xHL (ι	_ow four)	2	xxHU (
ВО	B1	B2	В3	B4	B5	В6	В7	
	00	HL			00	GRID1		
	01	HL			01	GRID2		
	02	HL			02	GRID3		
	03	HL		4	03	GRID4		
	04	HL			04	GRID5		
	05	HL			05	HU		GRID6

Interface Description

Microprocessor data via a two-wire bus interface and TM1637 communication, when the input data when CLK is high, the signal on the DIO must remain unchanged; only on the clock

signal CLK is low, the signal can be changed on the DIO. Start condition input data is CLK Is high, DIO from high to low; termination condition is CLK is high, DIO from low to high. Data transfer TM1637 with the response signal ACK, when transferring data correctly, the falling edge of the eighth clock, the chip will generates an acknowledge signal ACK will DIO pin is pulled low, the release of DIO port line after the end of the ninth clock.

Command: read key commands; S0, S1, S2, K1, K2 constituting the key information is encoded, S0, S1, S2 is encoded SGn, K1, K2 to K1 and K2 key code, read the key, the clock frequency should be less than 250K, first read low, after reading high.

2, SRAM data write address is automatically incremented by 1 mode

Command1: Set Data
Command2: Set Address

Data1 ~ N: display data transmission

Command3: Control Display

3. write SRAM data fixed address mode

Command1: Set Data Command2: Set Address

Data1 ~ N: display data transmission

Command3: Control Display

Data Directive

Instruction is used to set the display mode and the LED drive status. In the first byte after the falling edge of the CLK input DIO as an instruction. After decoding, to take maximum B7, B6 to distinguish between the two bits different instructions.

B7	B6	Instruction
0	1	Data Command Set
1	0	Display Control Command Set
1	1	Address command set

If you send STOP command in the command or data transmission, the serial communication is initialized, and the instruction or data being transmitted is invalid (before or the data transfer instruction remains valid)

1, the data command set

This command is used to set the data write and read, B1 and B0 are not allowed to set 01 or 11 bits.

B7	B6	B5	B4	В3	B2	B1	B0	Function	Explanation
0	1	Do	not			0	0	Data read-write mode	Write data to the
		care	to					settings	display register
0	1	fill 0				1	0		Read key scan data
0	1				0			Address mode is set to	Automatic address
								increase	incrementing
0	1				1				Fixed address
0	1			0				Test mode setting	Normal mode
0	1			1				(internal use)	Test Mode

2, set address command set

B7	B6	B5	B4	В3	B2	B1	B0	Show address
1	1	Do	not	0	0	0	0	00H
1	1	care	to	0	0	0	1	01H
1	1	fill 0		0	0	1	0	02H
1	1			0	0	1	1	03H
1	1			0	1	0	0	04H
1	1			0	1	0	1	05H

This command is used to set the display address register; If the address is set 0C6H or higher, the data is ignored until a valid address is set;

On power-up, the address defaults to 00H.

3, the display control

B7	B6	B5	B4	В3	B2	B1	B0	Function	Explanation
1	0	Do	not		0	0	0	Extinction	Set the pulse width of 1/16
1	0	care	to fill		0	0	1	number of	Set the pulse width of 2/16
1	0	0			0	1	0	settings	Set the pulse width of 4/16
1	0				0	1	1		Set the pulse width of 10/16
1	0				1	0	0		Set the pulse width of 11/16
1	0				1	0	1		Set the pulse width of 12/16
1	0				1	1	0		Set the pulse width of 13/16
1	0				1	1	1		Set the pulse width of 14/16
1	0			0				Display	Showing Off
1	0			1				switch	Show On
								settings	

Display and key scan cycle

Program flow chart

1, using the address auto mode plus a program flowchart

2, using a fixed address programming flowcharts


```
Reference Program
* Copyright: Shenzhen Tian Microelectronics
* File name: TM1637
* Current Version: 1.0
* SCM Model: AT89S52
* Development Environment: Keil uVision3
* Crystal earthquake frequency: 11.0592M
* Program features: the TM1637 all filled with all the display data register
address 0xff, and open the display, and then read the key value.
* /
    # include <reg52.h>
    # include <intrins.h>
    / / Define port
    sbit clk = P1 ^2;
    sbit dio = P1 ^ 1;
    void Delay us (unsigned int i) // n us delay
        for (; i> 0; i--)
        _nop_ ();
    void I2CStart (void) // 1637 start
        clk = 1;
        dio = 1;
        Delay us (2);
        dio = 0;
    }
    void I2Cask (void) // 1637 Answer
        clk = 0;
        Delay us (5); // After the falling edge of the eighth clock delay 5us,
ACK signals the beginning of judgment
        while (dio);
        clk = 1;
        Delay_us (2);
        clk = 0;
    void I2CStop (void) // 1637 Stop
        clk = 0;
        Delay_us (2);
        dio = 0;
        Delay_us (2);
        clk = 1;
        Delay_us (2);
        dio = 1;
```

```
void I2CWrByte (unsigned char oneByte) // write a byte
     unsigned char i;
     for (i = 0; i < 8; i + +)
     {
           Clk = 0;
           if (oneByte & 0x01) // low front
           {dio = 1;}
           else \{dio = 0;\}
           Delay_us (3);
           oneByte = oneByte >> 1;
           clk = 1;
           Delay us (3);
     }
 / / / -------
unsigned char ScanKey (void) // read buttons \
     unsigned char rekey, rkey, i;
     I2CStart ();
     I2CWrByte (0x42); // read command buttons
     I2Cask ();
     dio = 1; // read keys before data lines pulled
     for (i = 0; i < 8; i + +) // start reading from the low
           Clk = 0;
           rekey = rekey >> 1;
           Delay us(30);
           clk=1;
           if(dio)
                 rekey=rekey|0x80;
           else
                 rekey=rekey|0x00;
           Delay us(30);
     I2Cask();
     I2CStop();
     return (rekey);
}
void SmgDisplay(void) // Write display register
{
     unsigned char i;
     I2CStart();
     I2CWrByte(0x40); //40H address is automatically incremented by 1 mode,
44H fixed address mode
     I2Cask();
     I2CStop();
     I2CStart();
     I2CWrByte(0xc0); // Set the first address
     I2Cask();
     for(i=0;i<6;i++) // Addresses from Canada, do not always write address</pre>
     {
           I2CWrByte(0xff); // Send data
           I2Cask();
     I2CStop();
     I2CStart();
     I2CWrByte(0x8f); // Open display, maximum brightness
```

Hardware connection diagram

The circuit diagram for the digital connection of positive digital

