Paper Reading

Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation in Natural Language Generation. (ICLR 2023)

LLM Group: XUE Boyang

Nov. 20th, 2023

Introduction

Motivation

- ➤ Why do we need uncertainty estimates?
 - Uncertainty estimation: how we can **trust** the natural language **generations** of LMs (Fig. 1).
- ➤ What's the challenges in uncertainty estimation of LLM generations?
 - LMs output token-likelihoods which represents lexical confidence, lacking of meanings of sentences.

Measuring uncertainty in sentences is challenging because of 'semantic equivalence'—different sentences can mean the same thing (Fig. 2).

Introduction

> Framework

- **Background** on uncertainty estimation.
- > Challenges in uncertainty estimation for NLG.
- ➤ **Methodology**: Semantic uncertainty.
- **Experiments**: Empirical evaluation on free-form QA tasks.

> Contributions

- > Explain why uncertainty in NLG is different from other settings (Challenges in details).
- > Introduce semantic entropy —— uncertainty measure over semantically-equivalent samples.
- > Present how to balance the trade-off between sampling diverse and accurate generations.

Background

> Uncertainty Estimation: Prediction Entropy

$$PE(x) = H(Y|x) = -\int p(y|x) \ln p(y|x) \, dy$$

- **➤** Uncertainty Type
 - Aleatoric Uncertainty: **inherent variation** of inputs, parameters, or data distributions.
 - > Epistemic Uncertainty: results from missing information.
- > Direct Application of LM Uncertainty
 - \triangleright Product of the conditional probabilities of new tokens given past tokens $\log p(s|x) = \sum_i \log p(s_i|s_{i},x)$.
 - > Prompt the generative LLM itself to estimate its own uncertainty.

Challenges

- Semantic Equivalence in Language Outputs
 - > Linguists distinguish text's meaning—its semantic content—from its syntactic and lexical form.

		Equivalence		
Sentence A	Sentence B	Lexical	Syntactic	Semantic
Paris is the capital of France.	Paris is the capital of France.	✓	✓	√
	Berlin is the capital of France.		\checkmark	
	France's capital is Paris.			\checkmark

- A system can be reliable even with many different ways to say the same thing but answering with inconsistent meanings shows poor reliability.
- \triangleright For the space of semantic equivalence classes \mathcal{C} the sentences in the set $c \in \mathcal{C}$ that shares some meaning

$$p(c|x) = \sum_{\mathbf{s} \in c} p(\mathbf{s}|x) = \sum_{\mathbf{s} \in c} \prod_{i} p(s_i|\mathbf{s}_{< i}, x)$$

Challenges

- > Sampling The Extremely High-Dimensional Language-Space
 - \triangleright The output-space of natural language has $\mathcal{O}(|\mathcal{T}|^N)$ dimensions.
 - Lack a normalized probability density function over sentences.
- > Variable Length Generations
 - The joint likelihood of a sequence of length *N* shrinks exponentially in *N*, so longer sentences tend to contribute more to entropy.
 - Although length-normalizing the log-probabilities, sometimes longer sentences may well be usually more uncertain (when the goal is to exactly match a typically short reference answer).

Methodology

> Semantic Uncertainty

- ➤ **Key Point**: Uncertainty over **meanings** is more important for most situations than uncertainty over the exact tokens used to express those meanings. (token event-space → semantic event-space)
- > A novel uncertainty estimation algorithm for semantic entropy
 - a) Generation: Sample M sequences $\{s^{(1)}, \dots, s^{(M)}\}$ from the predictive distribution of a LLM given x.
 - b) Clustering: Cluster the sequences which mean the same thing by bi-directional entailment algorithm.
 - c) Entropy Estimation: Approximate semantic entropy by summing probabilities that share a meaning and compute resulting entropy.
- > How The Semantic Entropy Addresses The Challenges of NLG
 - ➤ Address the semantic invariance by converting uncertainty estimation into meaning-space.
 - ➤ Address unequal token importance by reducing the effect of the likelihoods of unimportant tokens.

Methodology

- > Semantic Uncertainty
 - > Clustering by Semantic Equivalence
 - ➤ Using bi-directional entailment (NLI model: Deberta-large model fine-tuned on the NLI data set MNLI), if and only if they entail (i.e. logically imply) each other given context.

- > Clustering by Semantic Equivalence
 - \triangleright Computational Cost Even though requires requires $\binom{M}{2}$ comparisons in the worst-case, the computational cost is small compared to the cost of generating sequences (Generally M < 20 and Deberta-Large model only has 1.5B parameters).

Methodology

> Semantic Entropy

 \triangleright Compute the semantic entropy (SE) as the entropy over the meaning-distribution.

$$SE(x) = -\sum_{c} p(c|x) \log p(c|x) = -\sum_{c} \left(\left(\sum_{\mathbf{s} \in c} p(\mathbf{s}|x) \right) \log \left[\sum_{\mathbf{s} \in c} p(\mathbf{s}|x) \right] \right)$$

When some of the answers are semantically equivalent ("Paris" and "It's Paris") the semantic entropy does a better job of capturing the actually low uncertainty.

Answer s	Likelihood $p(\mathbf{s} \mid x)$	Semantic likelihood $\sum_{\mathbf{s} \in c} p(\mathbf{s} \mid x)$	Answer s	Likelihood $p(\mathbf{s} \mid x)$	Semantic likelihood $\sum_{\mathbf{s} \in c} p(\mathbf{s} \mid x)$
Paris Rome	0.5 0.4	0.5 0.4	Paris It's Paris	0.5 0.4	0.9
London	0.1	0.1	London	0.1	0.1
Entropy	0.31	0.31	Entropy	0.31	0.16

Experiments

> Experimental Settings

- ➤ **Performance Evaluation:** Receiver operator characteristic curve (AUROC) The correct answers has a higher uncertainty score —— whether to trust an answer to a question.
- ➤ **Models:** GPT-like OPT varying from 2.7B, 6.7B, 13B and 30B parameters.
- > Datasets: CoQA (Open-book QA); TriviaQA (Closed-book QA).

Correctness of QA evaluation: fuzzy matching criterion $\mathcal{L}(\mathbf{s}, \mathbf{s}') = \mathbf{1}(\text{RougeL}(\mathbf{s}, \mathbf{s}') > 0.3)$

- **Baselines Methods:**
 - **Predictive entropy:** The predictive entropy of the output distribution PE(x) = H(Y|x).
 - > Length-normalized predictive entropy: Divides the joint log-probability by the sequence length.
 - \triangleright p(True): By 'asking' the model if its answer is correct and measuring the probability of being True.
 - \triangleright Lexical similarity: Average answer similarity of the answer set A: $\frac{1}{c}\sum_{i=1}^{|A|}\sum_{j=1}^{|A|}$ RougeL (s_i, s_j) .

Experiments

> Semantic Entropy Uncertainty

➤ Semantic entropy predicts model accuracy better than baselines on the free-form question answering data set TriviaQA and CoQA.

Experiments

- > Hyperparameters for Effective Sampling
 - > Temperature: average correctness vs. diversity of samples.

Discussion & Conclusion

- ➤ Many natural language problems display a crucial invariance: sequences of distinct tokens mean the same thing.
- ➤ Introduce semantic entropy —— the entropy of the distribution over meanings rather than sequences—and show that this is more predictive of model accuracy on QA than strong baselines.
- For semantic entropy, this work introduces a novel bidirectional entailment clustering algorithm which uses a smaller natural language inference model.
- ➤ Prospective 1 semantic equivalence can pave the way towards progress in settings like summarization where correctness requires more human evaluation.
- ➤ Prospective 2 semantic likelihoods could also be extended to other tools for probabilistic uncertainty like mutual information, potentially offering new strategies for NLG uncertainty.

Thank you!