FEATURE SPACES III

Prof. Alexander Huth 10/19/2017

HOMEWORKS

- * Homework 1 will be graded/returned by next Thursday (10/26)
- * Homework 2 out next Thursday (10/26)

SYSTEM IDENTIFICATION

* Linearized model

$$Y = \mathbb{L}(X)\beta$$

Let's invent some L's

LANGUAGE

"Now this is a story all about how my life got flippedturned upside down..." syntax ▶semantics words *****narrative emotion waveform phonemes intonation spectrum articulation

LINEARIZING TRANSFORMATIONS

* Simplest version: time-invariant L

LEXICAL SEMANTICS

- * Let's create an L that captures wordlevel semantic information
- * Unlike the _{awful} syntax models, this model will be *time-invariant*

LEXICAL SEMANTICS

X' now 100 this 010 is 001 " a 000 story 000

 \sum_{features}

time

somehow each column captures something about the meaning of the corresponding word

:

* Latent Semantic Analysis (LSA)

Latent Semantic Analysis (LSA)

documents

Spun
$$\alpha_{ij}^{(106-1010)}$$

Contains $\alpha_{ij}^{(106-1010)}$

Often the entries are normalized

Often the normalized

$$a_{ij} = \frac{\mathrm{tf}_{ij} - \text{\# word i in doc j}}{\log_2 \frac{n}{1 + \mathrm{d}f_i} - \text{\# docs with word i}} \text{``tf-idf''}$$

* Latent Semantic Analysis (LSA)

E

•

X

Z'

embedding matrix'

* word matrix' =

semantic stimulus matrix'

REMINDER FROM A FEW WEEKS AGO...

TIKHONOV REGRESSION

* this is equivalent to TIKHONOV REGRESSION on the WORDS with a prior determined by the WORD EMBEDDING

$$\frac{1}{\sigma^2} \Sigma_\beta = (C^T C)^{-1} = E^T E$$

$$\frac{1}{\sigma^2} \Sigma_\beta =$$

* i.e. the prior covariance between two words' weights is equal to the dot product of their embedding vectors

Mikolov et al. (2013)

Country and Capital Vectors Projected by PCA

https://deeplearning4j.org/word2vec

difficult

husband

potato

remember

- * The corpus was used to build a 985 x 10,470 matrix M
 - $*M_{i,j}$ is the number of times target i occurs within 15 words of word j
- * Then log-transform: $M^*_{i,j} = log(M_{i,j}+1)$
- * Then z-score each row, then each column
- * ... yielding 985-D vector representation of each word in the lexicon


```
correlation
                         word
with "finger"
             1.00, 'finger'
             0.81, 'fingers'
             0.67, 'hand'
             0.67, 'nose'
             0.66, 'arm'
             0.64, 'mouth'
             0.64, 'stick'
             0.63, 'neck'
             0.63, 'forehead'
             0.62, 'tongue'
```


ENGLISH-1000 VS LSA

model performance on held-out data

ENGLISH-1000 VS WORD2VEC

model performance on held-out data

NEXT TIME

- * Model comparison
- * Variance partitioning