RAJALAKSHMI ENGINEERING COLLEGE RAJALAKSHMI NAGAR, THANDALAM – 602 105

AI23331 FUNDAMENTALS OF MACHINE LEARNING

Laboratory Observation Note Book

Name: Aniketh J
Year / Branch / Section : 2 nd Year/ AIML / A
Register No. : 231501014
Semester : 3 rd Semester
Academic Year :

S.No.	Date	Title	Page No.	Teacher's Signature / Remarks
1.	/ /24	A PYTHON PROGRAM TO IMPLEMENT UNIVARIATE, BIVARIATE AND MULTIVARIATE REGRESSION		
2.	/ /24	A PYTHON PROGRAM TO IMPLEMENT SIMPLE LINEAR REGRESSION USING LEAST SQUARE METHOD		
3.	/ /24	A PYTHON PROGRAM TO IMPLEMENT LOGISTIC MODEL		
4.	/ /24	A PYTHON PROGRAM TO IMPLEMENT SINGLE LAYER PERCEPTRON		
5.	/ /24	A PYTHON PROGRAM TO IMPLEMENT MULTI LAYER PERCEPTRON WITH BACK PROPOGATION		
6.	/ /24	A PYTHON PROGRAM TO IMPLEMENT SVM CLASSIFIER MODEL		
7.	/ /24	A PYTHON PROGRAM TO IMPLEMENT DECISION TREE		
8.	/ /24	A PYTHON PROGRAM TO IMPLEMENT ADA BOOSTING		
9.	/ /24	A PYTHON PROGRAM TO IMPLEMENT KNN MODEL		
10.	/ /24	A PYTHON PROGRAM TO IMPLEMENT DIMENSIONALITY REDUCTION USING PCA		

Ex No: 1 Date:

A PYTHON PROGRAM TO IMPLEMENT UNIVARIATE, BIVARIATE AND MULTIVARIATE REGRESION

Aim:

To implement a python program using univariate, bivariate and multivariate regression features for a given iris dataset.

Algorithm:

Step 1: Import necessary libraries:

• pandas for data manipulation, numpy for numerical operations, and matplotlib.pyplot for plotting.

Step 2: Read the dataset:

- Use the pandas 'read_csv' function to read the dataset.
- Store the dataset in a variable (e.g., `data`).

Step 3: Prepare the data:

- Extract the independent variable(s) (X) and dependent variable (y) from the dataset.
- Reshape X and y to be 2D arrays if needed.

Step 4:Univariate Regression:

- For univariate regression, use only one independent variable.
- Fit a linear regression model to the data using numpy's polyfit function or sklearn's LinearRegression class.
- Make predictions using the model.
- Calculate the R-squared value to evaluate the model's performance.

Step 5: Bivariate Regression:

- For bivariate regression, use two independent variables.
- Fit a linear regression model to the data using numpy's `polyfit` function or sklearn's `LinearRegression` class.
- Make predictions using the model.
- Calculate the R-squared value to evaluate the model's performance.

Step 6: Multivariate Regression:

• For multivariate regression, use more than two independent variables.

- Fit a linear regression model to the data using sklearn's `LinearRegression` class.
- Make predictions using the model.
- Calculate the R-squared value to evaluate the model's performance.

Step 7: Plot the results:

- For univariate regression, plot the original data points (X, y) as a scatter plot and the regression line as a line plot.
- For bivariate regression, plot the original data points (X1, X2, y) as a 3D scatter plot and the regression plane.
- For multivariate regression, plot the predicted values against the actual values.

Step 8: Display the results:

- Print the coefficients (slope) and intercept for each regression model.
- Print the R-squared value for each regression model.

Step 9: Complete the program:

- Combine all the steps into a Python program.
- Run the program to perform univariate, bivariate, and multivariate regression on the dataset.

Code:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
df=pd.read_csv('/content/drive/MyDrive/Datasets/iris.csv')
df.head(150)
df.shape
df
df_Setosa=df.loc[df['species']=='setosa']
df_Virginica=df.loc[df['species']=='virginica']
df Versicolor=df.loc[df['species']=='versicolor']
```

```
df Setosa
#univariate for sepal width
plt.scatter(df Setosa['sepal width'],np.zeros like(df Setosa['sepal width']))
plt.scatter(df_Virginica['sepal_width'],np.zeros_like(df_Virginica['sepal_width'])
)
plt.scatter(df Versicolor['sepal width'],np.zeros like(df Versicolor['sepal widt
h']))
plt.xlabel('sepal width')
plt.show()
#univariate for sepal length
plt.scatter(df Setosa['sepal length'],np.zeros like(df Setosa['sepal length']))
plt.scatter(df Virginica['sepal length'],np.zeros like(df Virginica['sepal length'
]))
plt.scatter(df Versicolor['sepal length'],np.zeros like(df Versicolor['sepal leng
th']))
plt.xlabel('sepal length')
plt.show()
#univariate for sepal width
plt.scatter(df Setosa['petal width'],np.zeros like(df Setosa['petal width']))
plt.scatter(df Virginica['petal width'],np.zeros like(df Virginica['petal width'])
)
plt.scatter(df Versicolor['petal width'],np.zeros like(df Versicolor['petal widt
h']))
plt.xlabel('petal width')
plt.show()
#univariate for sepal length
plt.scatter(df_Setosa['petal_length'],np.zeros_like(df_Setosa['petal_length']))
```

```
plt.scatter(df Virginica['petal length'],np.zeros like(df Virginica['petal length']
))
plt.scatter(df Versicolor['petal length'],np.zeros like(df Versicolor['petal lengt
h']))
plt.xlabel('petal length')
plt.show()
#bivariate sepal.width vs petal.width
sns.FacetGrid(df,hue='species',height=5).map(plt.scatter,"sepal_width","petal_
width").add_legend();
plt.show()
#bivariate sepal.length vs petal.length
sns.FacetGrid(df,hue='species',height=5).map(plt.scatter,"sepal_length","petal_
length").add_legend();
plt.show()
#multivariate all the features
sns.pairplot(df,hue='species',size=2)
```

Output:

	_	_
	4	_
-	7	~

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

_		_
•		•
-	-	\mathbf{v}
	•	-

→		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa
	5	5.4	3.9	1.7	0.4	setosa
	6	4.6	3.4	1.4	0.3	setosa
	7	5.0	3.4	1.5	0.2	setosa
	8	4.4	2.9	1.4	0.2	setosa
	9	4.9	3.1	1.5	0.1	setosa
	10	5.4	3.7	1.5	0.2	setosa
	11	4.8	3.4	1.6	0.2	setosa

$\overline{\Rightarrow}$	12	4.8	3.0	1.4	0.1	setosa
	13	4.3	3.0	1.1	0.1	setosa
	14	5.8	4.0	1.2	0.2	setosa
	15	5.7	4.4	1.5	0.4	setosa
	16	5.4	3.9	1.3	0.4	setosa
	17	5.1	3.5	1.4	0.3	setosa
	18	5.7	3.8	1.7	0.3	setosa
	19	5.1	3.8	1.5	0.3	setosa
	20	5.4	3.4	1.7	0.2	setosa
	21	5.1	3.7	1.5	0.4	setosa
	22	4.6	3.6	1.0	0.2	setosa
	23	5.1	3.3	1.7	0.5	setosa
	24	4.8	3.4	1.9	0.2	setosa
0	25	5.0	3.0	1.6	0.2	setosa
→	26	5.0	3.4	1.6	0.4	setosa
	27	5.2	3.5	1.5	0.2	setosa
	28	5.2	3.4	1.4	0.2	setosa
	29	4.7	3.2	1.6	0.2	setosa
	30	4.8	3.1	1.6	0.2	setosa
	31	5.4	3.4	1.5	0.4	setosa
	32	5.2	4.1	1.5	0.1	setosa
	33	5.5	4.2	1.4	0.2	setosa
	34	4.9	3.1	1.5	0.1	setosa
	35	5.0	3.2	1.2	0.2	setosa
	36	5.5	3.5	1.3	0.2	setosa
	37	4.9	3.1	1.5	0.1	setosa
	38	4.4	3.0	1.3	0.2	setosa
	39	5.1	3.4	1.5	0.2	setosa
	40	5.0	3.5	1.3	0.3	setosa
	41	4.5	2.3	1.3	0.3	setosa
	42	4.4	3.2	1.3	0.2	setosa
	43	5.0	3.5	1.6	0.6	setosa

44	5.1	3.8	1.9	0.4	setosa
45	4.8	3.0	1.4	0.3	setosa
46	5.1	3.8	1.6	0.2	setosa
47	4.6	3.2	1.4	0.2	setosa
48	5.3	3.7	1.5	0.2	setosa
49	5.0	3.3	1.4	0.2	setosa

/usr/local/lib/python3.10/dist-packages/seaborn/axisgrid.py:2100: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning) <seaborn.axisgrid.PairGrid at 0x79f629c437c0>

Result:

Thus, the python program to implement univariate, bivariate and multivariate has been successfully implemented and the results have been verified and analysed.

Ex No: 2

Date:

A PYTHON PROGRAM TO IMPLEMENT SIMPLE LINEAR REGRESSION USING LEAST SQUARE METHOD

<u> Aim:</u>

To implement a python program for constructing a simple linear regression using least square method.

Algorithm:

Step 1: Import necessary libraries:

• pandas for data manipulation and matplotlib.pyplot for plotting.

Step 2: Read the dataset:

- Use the pandas `read_csv` function to read the dataset (e.g., headbrain.csv).
- Store the dataset in a variable (e.g., `data`).

Step 3: Prepare the data:

- Extract the independent variable (X) and dependent variable (y) from the dataset.
- Reshape X and y to be 2D arrays if needed.

Step 4: Calculate the mean:

• Calculate the mean of X and y.

Step 5: Calculate the coefficients:

• Calculate the slope (m) using the formula:

$$m = rac{\sum_{i=1}^{n} (X_i - ar{X})(y_i - ar{y})}{\sum_{i=1}^{n} (X_i - ar{X})^2}$$

• Calculate the intercept (b) using the formula: $b=ar{y}-mar{X}$

Step 6: Make predictions:

• Use the calculated slope and intercept to make predictions for each X value:

$$\hat{y} = mx + b$$

Step 7: Plot the regression line:

- Plot the original data points (X, y) as a scatter plot.
- Plot the regression line (X, predicted_y) as a line plot.

Step 8: Calculate the R-squared value:

- Calculate the total sum of squares (TSS) using the formula: $TSS = \sum_{i=1}^n (y_i \bar{y})^2$
- Calculate the residual sum of squares (RSS) using the formula: $RSS = \sum_{i=1}^n (y_i \hat{y}_i)^2$
- \bullet Calculate the R-squared value using the formula: $\mathit{R}^{2}=1-\frac{\mathit{RSS}}{\mathit{TSS}}$

Step 9: Display the results:

• Print the slope, intercept, and R-squared value.

Step 10: Complete the program:

- Combine all the steps into a Python program.
- Run the program to perform simple linear regression on the dataset.

Code:

from google.colab import drive drive.mount('/content/drive')

import pandas as pd import matplotlib.pyplot as plt import numpy as np

```
data =
pd.read csv('/content/drive/MyDrive/Datasets/headbrain.csv')
x, y = np.array(list(data['Head Size(cm^3)'])),np.array(list(data['Brain
Weight(grams)']))
print(x[:5], y[:5])
def get line(x, y):
 x_m, y_m = np.mean(x), np.mean(y)
 print(x m, y m)
x d, y d = x-x m, y-y m
 m = np.sum(x_d*y_d)/np.sum(x_d**2)
 c = y m - (m*x m)
 print(m, c)
 return lambda x : m*x+c
lin = get line(x, y)
X = np.linspace(np.min(x)-100, np.max(x)+100, 1000)
Y = np.array([lin(x) for x in X])
plt.plot(X, Y, color='red', label='Regression line')
plt.scatter(x, y, color='green', label='Scatter plot')
plt.xlabel('Head Size(cm^3)')
plt.ylabel('Brain Weight(grams)')
plt.legend()
plt.show()
X = np.linspace(np.min(x)-100, np.max(x)+100, 1000)
Y = np.array([lin(x) for x in X])
plt.plot(X, Y, color='red', label='Regression line')
plt.scatter(x, y, color='green', label='Scatter plot')
plt.xlabel('Head Size(cm^3)')
plt.ylabel('Brain Weight(grams)')
plt.legend()
plt.show()
```

```
def get_error(line_fuc, x, y):
    y_m = np.mean(y)
    y_pred = np.array([line_fuc(_) for _ in x])
    ss_t = np.sum((y-y_m)**2)
    ss_r = np.sum((y-y_pred)**2)
    return 1-(ss_r/ss_t)
    get_error(lin, x, y)

from sklearn.linear_model import LinearRegression
    x = x.reshape((len(x),1))
    reg=LinearRegression()
    reg=reg.fit(x, y)
    print(reg.score(x, y))
```

Output:

[4512 3738 4261 3777 4177] [1530 1297 1335 1282 1590]

3633.9915611814345 1282.873417721519 0.2634293394893993 325.5734210494428

0.639311719957

0.639311719957

Result:

Thus, the python program to Simple Linear Regression using Least Square Method has been successfully implemented and the results have been verified and analysed.

Ex no: 3

Date:

A PYTHON PROGRAM TO IMPLEMENT LOGISTIC MODEL

Aim:

To implement python program for the logistic model using suv car dataset.

Algorithm:

Step 1: Import Necessary Libraries:

- pandas for data manipulation
- sklearn.model_selection for train-test split
- sklearn.preprocessing for data preprocessing
- sklearn.linear_model for logistic regression
- matplotlib.pyplot for plotting

Step 2: Read the Dataset:

• Use pandas to read the suv_cars.csv dataset into a DataFrame.

Step 3: Preprocess the Data:

- Select the relevant columns for the analysis (e.g., 'Age', 'EstimatedSalary', 'Purchased').
- Encode categorical variables if necessary (e.g., using LabelEncoder or OneHotEncoder).
- Split the data into features (X) and target variable (y).

Step 4: Split the Data:

 Split the dataset into training and testing sets using train_test_split.

Step 5: Feature Scaling:

• Standardize the features using StandardScaler to ensure they have the same scale.

Step 6: Create and Train the Model:

- Create a logistic regression model using LogisticRegression from sklearn.linear_model.
- Train the model on the training data using the fit method.
 - Create a function named "Sigmoid ()" which will define the sigmoid values using the
 - formula (1/1+e-z) and return the computed value.
 - Create a function named "initialize()" which will initialize the values with zeroes and assign the value to "weights" variable, initializes with ones and assigns the value to variable "x" and returns both "x" and "weights".
 - Create a function named "fit" which will be used to plot the graph according to the training data.
 - Create a predict function that will predict values according to the training model created using the fit function.
 - Invoke the standardize() function for "x-train" and "x-test"

Step 7: Make Predictions:

- Use the trained model to make predictions on the test data using the predict method.
 - Use the "predict()" function to predict the values of the testing data and assign the value to "y_pred" variable.
 - Use the "predict()" function to predict the values of the training data and assign the value to "y_trainn" variable.
 - Compute f1_score for both the training and testing data and assign the values to "f1_score_tr" and "f1_score_te" respectively

Step 8: Evaluate the Model:

• Calculate the accuracy of the model on the test data using the score method.

```
(Accuracy = (tp+tn)/(tp+tn+fp+fn)).
```

• Generate a confusion matrix and classification report to further evaluate the model's performance.

Step 9: Visualize the Results:

 Plot the decision boundary of the logistic regression model (optional).

Code:

```
import pandas as pd
import numpy as np
from numpy import log,dot,exp,shape
from sklearn.metrics import confusion_matrix
data = pd.read_csv('/content/drive/MyDrive/suv_data.csv')
print(data.head())

x = data.iloc[:, [2, 3]].values
y = data.iloc[:, 4].values

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test=train_test_split(x,y,test_size=0.10, random_state=0)
```

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x train=sc.fit transform(x train)
x test=sc.transform(x test)
print (x train[0:10,:])
from sklearn.linear model import LogisticRegression
classifier=LogisticRegression(random state=0)
classifier.fit(x train,y train)
LogisticRegression (random state=0)
y pred = classifier.predict(x test)
print(y pred)
from sklearn.metrics import confusion matrix
cm = confusion matrix(y test, y pred)
print ("Confusion Matrix : \n", cm)
from sklearn.metrics import accuracy score
print ("Accuracy : ", accuracy score(y test, y pred))
from sklearn.model selection import train test split
x train, x test, y train, y test=train test split(x,y,test size=0.10,
random state=0)
def Std(input data):
  mean0 = np.mean(input data[:, 0])
```

```
sd0 = np.std(input data[:, 0])
  mean1 = np.mean(input data[:, 1])
  sd1 = np.std(input data[:, 1])
  return lambda x:((x[0]-mean0)/sd0, (x[1]-mean1)/sd1)
my std = Std(x)
my std(x train[0])
def standardize(X tr):
  for i in range(shape(X tr)[1]):
    X_{tr}[:,i] = (X_{tr}[:,i] - np.mean(X_{tr}[:,i]))/np.std(X_{tr}[:,i])
def F1_score(y,y_hat):
  tp,tn,fp,fn = 0,0,0,0
  for i in range(len(y)):
    if y[i] == 1 and y_hat[i] == 1:
         tp += 1
    elif y[i] == 1 and y hat [i] == 0:
         fn += 1
    elif y[i] == 0 and y hat[i] == 1:
         fp += 1
    elif y[i] == 0 and y hat [i] == 0:
         tn += 1
  precision = tp/(tp+fp)
  recall = tp/(tp+fn)
  f1 score = 2*precision*recall/(precision+recall)
```

```
return f1 score
class LogisticRegression:
  def sigmoid(self, z):
    sig = 1 / (1 + exp(-z))
    return sig
  def initialize(self, X):
    weights = np.zeros((shape(X)[1] + 1, 1))
    X = np.c_{[np.ones((shape(X)[0], 1)), X]}
    return weights, X
  def fit(self, X, y, alpha=0.001, iter=400):
    weights, X = self.initialize(X)
    def cost(theta):
       z = dot(X, theta)
       cost0 = y.T.dot(log(self.sigmoid(z)))
       cost1 = (1 - y).T.dot(log(1 - self.sigmoid(z)))
       cost = -((cost1 + cost0)) / len(y)
       return cost
    cost list = np.zeros(iter,)
    for i in range(iter):
```

```
weights = weights - alpha * dot(X.T, self.sigmoid(dot(X,
weights)) - np.reshape(y, (len(y), 1)))
       cost list[i] = cost(weights).item()
    self.weights = weights
     return cost list
  def predict(self, X):
    z = dot(self.initialize(X)[1], self.weights)
    lis = []
    for i in self.sigmoid(z):
       if i > 0.5:
         lis.append(1)
       else:
         lis.append(0)
     return lis
standardize(x train)
standardize(x test)
obj1 = LogisticRegression()
model = obj1.fit(x train, y train)
y_pred = obj1.predict(x_test)
y trainn = obj1.predict(x train)
f1_score_tr = F1_score(y_train, y_trainn)
f1 score te = F1 score(y test, y pred)
```

```
print(f1_score_tr)
print(f1_score_te)
conf_mat = confusion_matrix(y_test, y_pred)
accuracy = (conf_mat[0, 0] + conf_mat[1, 1]) / sum(sum(conf_mat))
print("Accuracy is : ", accuracy)
```

Output:

```
User ID Gender Age EstimatedSalary Purchased
      0 15624510
                     Male
                                           19000
      1 15810944
                                           20000
                                           43000
                                                          0
      2 15668575 Female
                           26
                                           57000
                                                          0
      3 15603246 Female
                           27
      4 15804002
                     Male
                                           76000
[[-1.05714987 0.53420426]
[ 0.2798728 -0.51764734]
[-1.05714987 0.41733186]
[-0.29313691 -1.45262654]
[ 0.47087604 1.23543867]
[-1.05714987 -0.34233874]
[-0.10213368 0.30045946]
[ 1.33039061  0.59264046]
[-1.15265148 -1.16044554]
[ 1.04388575  0.47576806]]
[0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0
0 0 1]
Confusion Matrix:
[[31 1]
[1 7]]
Accuracy: 0.95
(-1.017692393473028, 0.5361288690822568)
0.75833333333333334
0.823529411764706
Accuracy is: 0.925
```

Result: Thus, the python program to implement logistic model has been successfully implemented and the results have been verified and analyzed.

Ex. No.: 4

Date:

A PYTHON PROGRAM TO IMPLEMENT SINGLE LAYER PERCEPTRON

Aim:

To implement python program for the single layer perceptron.

Algorithm:

Step 1: Import Necessary Libraries:

• Import numpy for numerical operations.

Step 2: Initialize the Perceptron:

- Define the number of input features (input_dim).
- Initialize weights (W) and bias (b) to zero or small random values.

Step 3: Define Activation Function:

- Choose an activation function (e.g., step function, sigmoid, or ReLU).
- User Defined function sigmoid_func(x):
 - Compute 1/(1+np.exp(-x)) and return the value.
- User Defined function der(x):
 - Compute the product of value of sigmoid_func(x) and (1 sigmoid_func(x)) and return the value.

Step 4; Define Training Data:

• Define input features (X) and corresponding target labels (y).

Step 5: Define Learning Rate and Number of Epochs:

 Choose a learning rate (alpha) and the number of training epochs.

Step 6: Training the Perceptron:

- For each epoch:
 - For each input sample in the training data:

- Compute the weighted sum of inputs (z) as the dot product of input features and weights plus bias (z = np.dot(X[i], W) + b).
- Apply the activation function to get the predicted output (y pred).
- Compute the error (error = y[i] y_pred).
- Update the weights and bias using the learning rate and error (W += alpha * error * X[i]; b += alpha * error).

Step 7: Prediction:

• Use the trained perceptron to predict the output for new input data.

Step 8: Evaluate the Model:

• Measure the performance of the model using metrics such as accuracy, precision, recall, etc.

Code:

```
import numpy as np
       sklearn.metrics
from
                        import
                                 accuracy score, precision score,
recall score, f1 score
input dim=2
W=np.zeros(input dim)
b = 0.0
def sigmoid func(x):
  return 1/(1 + np.exp(-x))
def der(x):
  sigmoid = sigmoid func(x)
  return sigmoid * (1 - sigmoid)
np.random.seed(42)
x = np.array([[150,8],
```

```
[130,7],
       [180,6],
       [170,5]])
y = np.array([0,0,1,1])
alpha = 0.1
epochs = 10000
for epoch in range(epochs):
  for i in range(len(x)):
    z = np.dot(x[i], W) + b
    y pred = sigmoid func(z)
    error = y[i] - y_pred
    W += alpha * error * x[i]
    b += alpha * error
def predict(X):
  z = np.dot(X, W) + b
  return (sigmoid func(z) > 0.5).astype(int)
y pred = predict(x)
accuracy = accuracy_score(y, y_pred)
precision = precision_score(y, y_pred)
recall = recall score(y, y pred)
F1 score = f1 score(y, y pred)
print("Prediction:",y pred)
print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1 Score:", F1_score)
```

Output:

Prediction: [0 0 1 1]

Accuracy: 1.0

Precision: 1.0 Recall: 1.0 F1 Score: 1.0

Result:

Thus, the python program to implement single layer perceptron has been successfully implemented and the results have been verified and analysed.

Ex. No.: 5

Date:

A PYTHON PROGRAM TO IMPLEMENT MULTI LAYER PERCEPTRON WITH BACK PROPOGATION

Aim:

To implement multilayer perceptron with back propagation using python.

Algorithm:

Step 1: Import the Necessary Libraries

- Import pandas as pd.
- Import numpy as np.

Step 2: Read and Display the Dataset

- Use `pd.read_csv("banknotes.csv")` to read the dataset.
- Assign the result to a variable (e.g., 'data').
- Display the first ten rows using `data.head(10)`.

Step 3: Display Dataset Dimensions

• Use the `.shape` attribute on the dataset (e.g., `data.shape`).

Step 4: Display Descriptive Statistics

• Use the `.describe()` function on the dataset (e.g., `data.describe()`).

Step 5: Import Train-Test Split Module

• Import `train_test_split` from `sklearn.model_selection`.

Step 6: Split Dataset with 80-20 Ratio

- Assign the features to a variable (e.g., `X = data.drop(columns='target')`).
- Assign the target variable to another variable (e.g., 'y = data['target']').
- Use `train_test_split` to split the dataset into training and testing sets with a ratio of 0.2.
- Assign the results to `x_train`, `x_test`, `y_train`, and `y_test`.

Step 7: Import MLPClassifier Module

Import `MLPClassifier` from `sklearn.neural_network`.

Step 8: Initialize MLPClassifier

- Create an instance of `MLPClassifier` with `max_iter=500` and `activation='relu'`.
- Assign the instance to a variable (e.g., `clf`).

Step 9: Fit the Classifier

• Fit the model using `clf.fit(x_train, y_train)`.

Step 10: Make Predictions

- Use the `.predict()` function on `x test` (e.g., `pred = clf.predict(x test)`).
- Display the predictions.

Step 11: Import Metrics Modules

- Import `confusion matrix` from `sklearn.metrics`.
- Import `classification_report` from `sklearn.metrics`.

Step 12: Display Confusion Matrix

- Use `confusion matrix(y test, pred)` to generate the confusion matrix.
- Display the confusion matrix.

Step 13: Display Classification Report

- Use `classification_report(y_test, pred)` to generate the classification report.
- Display the classification report.

Step 14: Repeat Steps 9-13 with Different Activation Functions

- Initialize `MLPClassifier` with `activation='logistic'`.
- Fit the model and make predictions.
- Display the confusion matrix and classification report.
- Repeat for `activation='tanh'`.
- Repeat for `activation='identity'`.

Step 15: Repeat Steps 7-14 with 70-30 Ratio

- Use `train_test_split` to split the dataset into training and testing sets with a ratio of 0.3.
- Assign the results to `x_train`, `x_test`, `y_train`, and `y_test`.
- Repeat Steps 7-14 with the new training and testing sets.

Code:

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.neural network import MLPClassifier
from sklearn.metrics import classification report, confusion matrix
bnotes = pd.read csv('../content/drive/MyDrive/bank note data.csv')
print(bnotes.head(10))
x = bnotes.drop('Class', axis=1)
y = bnotes['Class']
print(x.head(2))
print(y.head(2))
def train and evaluate(activation, x_train, y_train, x_test, y_test):
  mlp = MLPClassifier(max iter=500, activation=activation)
  mlp.fit(x train, y train)
  pred = mlp.predict(x_test)
  print(f"Predictions using activation function '{activation}':\n{pred}\n")
  cm = confusion matrix(y test, pred)
  print(f"Confusion Matrix for '{activation}':\n{cm}\n")
  report = classification_report(y_test, pred)
  print(f"Classification Report for '{activation}':\n{report}\n")
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
for activation in ['relu', 'logistic', 'tanh', 'identity']:
  train and evaluate(activation, x train, y train, x test, y test)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)
```

for activation in ['relu', 'logistic', 'tanh', 'identity']: train_and_evaluate(activation, x_train, y_train, x_test, y_test)

Output:

```
∓
           Image.Var
                            Image.Skew
                                              Image.Curt
                                                 -2.80730 -0.44699
-2.45860 -1.46210
1.92420 0.10645
               3.62160
                                  8.6661
              4.54590
                                 8.1674
-2.6383
               3.86600
                                 9.5228
              3.45660
                                                 -4.01120 -3.59440
              0.32924
4.36840
                                 -4.4552
9.6718
                                                 4.57180 -0.98880
-3.96060 -3.16250
              3.59120
                                 3.0129
                                                  0.72888 0.56421
                                                 8.46360 -0.60216
-0.75345 -0.61251
                                  6.8100
              3.20320
                                  5.7588
           1.53560
Image.Var
3.6216
4.5459
                                              -2.27180 -0.73535
Image.Curt Entropy
-2.8073 -0.44699
-2.4586 -1.46210
                           9.1772
Image.Skew
8.6661
      Name: Class, dtype: int64
Predictions using activation function 'relu':
       0 0
1 1
0 1
                                                                               0 0 0
0 0 0
0 0 0
                                                                                         0 0
1 1
1 0
0 0
1 1
0 1
                                                                                                  0 0
0 1
1 1
                                                                                               1
0
0
                                                                                                        1
0
1
0
                                                                                            0 0 0 1
0 1 1 1
0 1 0 1
       [[143 0]
[ 0 132]]
      Classification Report for 'relu':
                            precision
                                                 recall f1-score
                                                                               support
₹
```

```
1.00
                   1.00
                          1.00
                                  143
             1.00
                   1.00
                          1.00
                                  132
                          1.00
                                  275
  accuracy
  macro avo
             1.00
                   1.00
                          1.00
                                  275
                          1.00
             1.00
                   1.00
                                  275
weighted avg
Predictions using activation function 'logistic':
[1\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0
1 1 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 0 1 0
10111011101100100001011111111010000
0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0]
Confusion Matrix for 'logistic':
[[143 0]
[ 0 132]]
Classification Report for 'logistic':
         precision
                  recall f1-score
                   1.00
                          1.00
             1.00
                   1.00
                          1.00
                                  132
                          1.00
                                  275
  accuracy
  macro avg
             1.00
                   1.00
                          1.00
                                  275
weighted avg
             1.00
                   1.00
                          1.00
                                  275
```

```
Predictions using activation function 'tanh':
  00010001110011000101111000011001011
  1 1 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 0 1 0
  0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0]
  Confusion Matrix for 'tanh':
  [[143 0]
[ 0 132]]
  Classification Report for 'tanh':
         precision
              recall f1-score support
           1.00
                1.00
                      1.00
                           132
                      1.00
                           275
    accuracy
           1.00
                1.00
                      1.00
   macro avq
                           275
  weighted avg
           1.00
                1.00
                      1.00
                           275
  Predictions using activation function 'identity':
  [1\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 1
  00010001110011000101111000011001011
  0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0]
Confusion Matrix for 'identity':
 [[141 2]
[ 0 132]]
 Classification Report for 'identity':
    precision recall f1-score
                        support
                0.99
           1.00
                     0.99
                           143
           0.99
                1.00
                     0.99
                           132
    accuracy
                     0.99
           0.99
                0.99
 macro avg
weighted avg
                     0.99
0.99
                           275
           0.99
                0.99
```

0 0 1 0

0 1 0 0 0 1 1

1 0

0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 1 0 1

1 0 0 0 1 0

Confusion Matrix for 'relu': [[239 0] [0 173]]

0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 1

```
Classification Report for 'relu':
                 precision
                              recall
                                      f1-score
                                                 support
               0
                                1.00
                                          1.00
                                                     239
                                                     173
              1
                      1.00
                                1.00
                                          1.00
       accuracy
                                          1.00
1.00
                                                     412
412
                                1.00
1.00
                      1.00
   macro avg
weighted avg
                      1.00
                                          1.00
                                                     412
   0 0
                                                             0
0
0
1
1
0
                                                                0
0
0
1
1
1
0
    0 1 0
1 1 1
1 0 0
0 0 1
```

Confusion Matrix for 'logistic': [[234 5] [0 173]]

•	D	
5	→ ▼	

Classification	Report for	'logisti	c':	
р	recision	recall	f1-score	support
0	1.00	0.98	0.99	239
1	0.97	1.00	0.99	173
accuracy			0.99	412
macro avg	0.99	0.99	0.99	412
weighted avg	0.99	0.99	0.99	412

[0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 1 1 1 011010000001 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0 0 10000000101 0 1 1 1 0 0 0 0 0 00101010001

Confusion Matrix for 'tanh': [[236 3] [0 173]]

```
Classification Report for 'tanh':
                  recall f1-score support
→
                   0.99
                         0.99
    accuracy
                         0.99
                               412
  macro avg
weighted avg
             0.99
                   0.99
                         0.99
  Predictions using activation function 'identity':
  Confusion Matrix for 'identity':
  [[233 6]
[ 2 171]]
  Classification Report for 'identity':
                  recall f1-score
          precision
                            support
                  0.97
             0.99
                         0.98
                         0.98
                               412
    accuracy
  macro avg
weighted avg
             0.98
                  0.98
                         0.98
                               412
             0.98
                   0.98
```

Result:

Thus, the python program to implement multi-layer perceptron has been successfully implemented and the results have been verified and analysed.

Ex no: 6 Date:

A PYTHON PROGRAM TO IMPLEMENT SVM CLASSIFIER MODEL

Aim:

To implement a SVM classifier model using python and determine its accuracy.

Algorithm:

Step 1: Import Necessary Libraries

- Import numpy as np.
- Import pandas as pd.
- Import SVM from sklearn.
- Import matplotlib.pyplot as plt.
- Import seaborn as sns.
- Set the font_scale attribute to 1.2 in seaborn.

Step 2: Load and Display Dataset

- Read the dataset (muffins.csv) using `pd.read_csv()`.
- Display the first five instances using the `head()` function.

Step 3: Plot Initial Data

- Use the `sns.Implot()` function.
- Set the x and y axes to "Sugar" and "Flour".
- Assign "recipes" to the data parameter.
- Assign "Type" to the hue parameter.
- Set the palette to "Set1".
- Set fit_reg to False.
- Set scatter kws to {"s": 70}.
- Plot the graph.

Step 4: Prepare Data for SVM

- Extract "Sugar" and "Butter" columns from the recipes dataset and assign to variable `sugar_butter`.
- Create a new variable 'type label'.
- For each value in the "Type" column, assign 0 if it is "Muffin" and 1 otherwise.

Step 5: Train SVM Model

- Import the SVC module from the svm library.
- Create an SVC model with kernel type set to linear.
- Fit the model using 'sugar_butter' and 'type_label' as the parameters.

Step 6: Calculate Decision Boundary

- Use the `model.coef_` function to get the coefficients of the linear model.
- Assign the coefficients to a list named `w`.
- Calculate the slope `a` as `w[0] / w[1]`.
- Use `np.linspace()` to generate values from 5 to 30 and assign to variable `xx`.
- Calculate the intercept using the first value of the model intercept and divide by `w[1]`.
- Calculate the decision boundary line `y` as `a * xx -(model.intercept_[0] / w[1])`.

Step 7: Calculate Support Vector Boundaries

- Assign the first support vector to variable `b`.
- Calculate 'yy down' as 'a * xx + (b[1] a * b[0])'.
- Assign the last support vector to variable 'b'.
- Calculate 'yy_up' using the same method.

Step 8: Plot Decision Boundary

- Use the `sns.Implot()` function again with the same parameters as in Step 3.
- Plot the decision boundary line `xx` and `yy`.

Step 9: Plot Support Vector Boundaries

- Plot the decision boundary with `xx`, `yy down`, and `'k--'`.
- Plot the support vector boundaries with `xx`, `yy_up`, and `'k--'`.
- Scatter plot the first and last support vectors.

Step 10: Import Additional Libraries

- Import `confusion_matrix` from `sklearn.metrics`.
- Import `classification report` from `sklearn.metrics`.
- Import 'train test split' from 'sklearn.model selection'.

Step 11: Split Dataset

- Assign `x_train`, `x_test`, `y_train`, and `y_test` using `train test split`.
- Set the test size to 0.2.

Step 12: Train New Model

- Create a new SVC model named 'model1'.
- Fit the model using the training data ('x train' and 'y train').

Step 13: Make Predictions

- Use the `predict()` function on `model1` with `x_test` as the parameter.
- Assign the predictions to variable `pred`.

Step 14: Evaluate Model

- Display the confusion matrix.
- Display the classification report.

Code:

import numpy as np

```
import pandas as pd
from sklearn import svm
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion matrix, classification report
from sklearn.model selection import train test split
sns.set(font_scale=1.2)
recipes = pd.read csv('recipes muffins cupcakes.csv')
print(recipes.head())
print(recipes.shape)
sns.Implot(x='Sugar', y='Flour', data=recipes, hue='Type', palette='Set1',
fit_reg=False, scatter_kws={"s": 70})
sugar butter = recipes[['Sugar', 'Flour']].values
type_label = np.where(recipes['Type'] == 'Muffin', 0, 1)
model = svm.SVC(kernel='linear')
model.fit(sugar_butter, type_label)
w = model.coef[0]
a = -w[0] / w[1]
xx = np.linspace(5, 30)
yy = a * xx - (model.intercept [0] / w[1])
b = model.support vectors [0]
yy_down = a * xx + (b[1] - a * b[0])
b = model.support vectors [-1]
yy_up = a * xx + (b[1] - a * b[0])
sns.Implot(x='Sugar', y='Flour', data=recipes,
                                                   hue='Type', palette='Set1',
fit reg=False, scatter kws={"s": 70})
plt.plot(xx, yy, linewidth=2, color='black')
plt.plot(xx, yy_down, 'k--')
plt.plot(xx, yy_up, 'k--')
plt.scatter(model.support_vectors_[:, 0], model.support_vectors_[:, 1], s=80,
facecolors='none')
```

```
x_train, x_test, y_train, y_test = train_test_split(sugar_butter, type_label,
test_size=0.2)
model1 = svm.SVC(kernel='linear')
model1.fit(x_train, y_train)
pred = model1.predict(x_test)

print(pred)
print(confusion_matrix(y_test, pred))
print(classification_report(y_test, pred, zero_division=1))
```

Output:

Sugar

Result:

Thus, the python program to implement SVM classifier model has been successfully implemented and the results have been verified and analysed.

Ex. No.: 7

Date:

A PYTHON PROGRAM TO IMPLEMENT DECISION TREE

Aim:

To implement a decision tree using a python program for the given dataset and plot the trained decision tree.

Algorithm:

Step 1: Import the Iris Dataset

1. Import 'load_iris' from 'sklearn.datasets'.

Step 2: Import Necessary Libraries

- 1. Import numpy as np.
- 2. Import matplotlib.pyplot as plt.
- 3. Import `DecisionTreeClassifier` from `sklearn.tree`.

Step 3: Declare and Initialize Parameters

- 1. Declare and initialize `n classes = 3`.
- 2. Declare and initialize `plot_colors = "ryb"`.

3. Declare and initialize `plot_step = 0.02`.

Step 4: Prepare Data for Model Training

- 1. Load the iris dataset using `load_iris()`.
- 2. Assign the dataset's data to variable 'X'.
- 3. Assign the dataset's target to variable `Y`.

Step 5: Train the Model

- 1. Create an instance of `DecisionTreeClassifier`.
- 2. Fit the classifier using `clf.fit(X, Y)`.

Step 6: Initialize Pair Index and Plot Graph

- 1. Loop through each pair of features using `for pairidx, pair in enumerate(combinations (range(X.shape[1]), 2)):`
- 2. Inside the loop, assign `X` with the selected pair of features (e.g., `X = iris.data[:, pair]`).
- 3. Assign 'Y' with the target list (e.g., 'Y = iris.target').

Step 7: Assign Axis Limits

- 1. Inside the loop, assign `x_min` with the minimum value of the selected feature minus 1 (e.g., `x_min, x_max = X[:, 0].min() 1, X[:, 0].max() + 1`).
- 2. Assign `x_max` with the maximum value of the selected feature plus 1.
- 3. Assign `y_min` with the minimum value of the second selected feature minus 1 (e.g., `y_min, y_max = X[:, 1].min() 1, X[:, 1].max() + 1`).
- 4. Assign 'y_max' with the maximum value of the second selected feature plus 1.

Step 8: Create Meshgrid

- 1. Use `np.meshgrid` to create a grid of values from `x_min` to `x_max` and `y_min` to `y_max` with steps of `plot_step`.
- 2. Assign the results to variables 'xx' and 'yy'.

Step 9: Plot Graph with Tight Layout

- 1. Use 'plt.tight layout()' to adjust the layout of the plots.
- 2. Set `h_pad=0.5`, `w_pad=0.5`, and `pad=2.5`.

Step 10: Predict and Reshape

- 1. Use the classifier to predict on the meshgrid (e.g., `Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])`).
- 2. Reshape 'Z' to the shape of 'xx'.

Step 11: Plot Decision Boundary

1. Use `plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu)` to plot the decision boundary with the "RdYlBu" color scheme.

Step 12: Plot Feature Pairs

1. Inside the loop, label the x-axis and y-axis with the feature names (e.g., `plt.xlabel(iris.feature_names[pair[0]])` and `plt.ylabel(iris.feature_names[pair[1]])`).

Step 13: Plot Training Points

1. Use `plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.RdYlBu, edgecolor='k', s=15)` to plot the training points with the "RdYlBu" color scheme, black edge color, and size 15.

Step 14: Plot Final Decision Tree

- 1. Set the title of the plot to "Decision tree trained on all the iris features" (e.g., `plt.title("Decision tree trained on all the iris features")`).
- 2. Display the plot using 'plt.show()'.

Code:

from sklearn.datasets import load_iris iris = load_iris() import numpy as np import matplotlib.pyplot as plt

from sklearn.tree import DecisionTreeClassifier

```
# Parameters
n classes = 3
plot colors = "ryb"
plot step = 0.02
for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2,
3]]):
# We only take the two corresponding features
X = iris.data[:, pair]
y = iris.target
# Train
clf = DecisionTreeClassifier().fit(X, y)
# Plot the decision boundary
plt.subplot(2, 3, pairidx + 1)
x min, x max = X[:, 0].min() - 1, X[:, 0].max() + 1
y min, y max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x min, x max, plot step),
np.arange(y_min, y_max, plot_step))
plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)
Z = clf.predict(np.c [xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu)
plt.xlabel(iris.feature names[pair[0]])
plt.ylabel(iris.feature names[pair[1]])
# Plot the training points
for i, color in zip(range(n classes), plot colors):
 idx = np.where(y == i)
 plt.scatter(X[idx, 0],X[idx,
1],c=color,label=iris.target names[i],cmap=plt.cm.RdYlBu,edgecolor=
"black",s=15)
```

```
plt.suptitle("Decision surface of decision trees trained on pairs of features")
plt.legend(loc="lower right", borderpad=0, handletextpad=0)
plt.axis("tight")
plt.show()
```

```
from sklearn.tree import plot_tree
plt.figure()
clf = DecisionTreeClassifier().fit(iris.data,iris.target)
plot_tree(clf, filled=True)
plt.title("Decision tree trained on all the iris features")
plt.show()
```

OUTPUT:

Decision Tree has been

successfully implemented and the results have been verified and analysed.

Ex. No.: 8

Date:

A PYTHON PROGRAM TO IMPLEMENT ADA BOOSTING

Aim:

To implement a python program for Ada Boosting.

Algorithm:

Step 1: Import Necessary Libraries

Import numpy as np.

Import pandas as pd.

Import DecisionTreeClassifier from sklearn.tree.

Import train_test_split from sklearn.model_selection.

Import accuracy score from sklearn.metrics.

Step 2: Load and Prepare Data

Load your dataset using pd.read_csv() (e.g., df = pd.read_csv('data.csv')).

Separate features (X) and target (y).

Split the dataset into training and testing sets using train test split().

Step 3: Initialize Parameters

Set the number of weak classifiers n estimators.

Initialize an array weights for instance weights, setting each weight to 1 / number of samples.

Step 4: Train Weak Classifiers

Loop for n_estimators iterations:

Train a weak classifier using DecisionTreeClassifier(max_depth=1) on the training data weighted by weights.

Predict the target values using the trained weak classifier.

Calculate the error rate err as the sum of weights of misclassified samples divided by the sum of all weights.

Compute the classifier's weight alpha using 0.5 * np.log((1 - err) / err).

Update the weights: multiply the weights of misclassified samples by np.exp(alpha) and the weights of correctly classified samples by np.exp(-alpha).

Normalize the weights so that they sum to 1.

Append the trained classifier and its weight to lists classifiers and alphas.

Step 5: Make Predictions

For each sample in the testing set:

Initialize a prediction score to 0.

For each trained classifier and its weight:

Add the classifier's prediction (multiplied by its weight) to the prediction score.

Take the sign of the prediction score as the final prediction.

Step 6: Evaluate the Model

Compute the accuracy of the AdaBoost model on the testing set using accuracy_score().

Step 7: Output Results

Print or plot the final accuracy and possibly other evaluation metrics.

Code:

```
import pandas as pd
import numpy as np
from mlxtend.plotting import plot_decision_regions
df = pd.DataFrame()
df['X1']=[1,2,3,4,5,6,6,7,9,9]
df['X2']=[5,3,6,8,1,9,5,8,9,2]
```

```
df['label']=[1,1,0,1,0,1,0,1,0,0]
import seaborn as sns
sns.scatterplot(x=df['X1'],y=df['X2'],hue=df['label'])
df['weights']=1/df.shape[0]
from sklearn.tree import DecisionTreeClassifier
dt1 = DecisionTreeClassifier(max depth=1)
x = df.iloc[:,0:2].values
y = df.iloc[:,2].values
# Step 2 - Train 1st Model
dt1.fit(x,y)
from sklearn.tree import plot tree
plot decision regions (x,y,clf=dt1, legend=2)
df['y pred'] = dt1.predict(x)
def calculate model weight(error):
 return 0.5*np.log((1-error)/(error))
# Step - 3 Calculate model weight
alpha1 = calculate model weight(0.3)
alpha1
# Step -4 Update weights
def update_row_weights(row,alpha=0.423):
  if row['label'] == row['y pred']:
    return row['weights']* np.exp(-alpha)
  else:
    return row['weights']* np.exp(alpha)
df['updated weights'] = df.apply(update row weights,axis=1)
df['normalized weights'] = df['updated weights'] /
df['updated weights'].sum() # Calculating normalized weights by
dividing updated weights by sum of all updated weights
```

```
df['normalized weights'].sum()
df['cumsum upper'] = np.cumsum(df['normalized weights'])
df['cumsum lower']=df['cumsum upper'] - df['normalized weights']
df[['X1','X2','label','weights','y_pred','updated weights','cumsum low
er','cumsum upper']]
def create new dataset(df):
  indices= []
  for i in range(df.shape[0]):
    a = np.random.random()
    for index,row in df.iterrows():
       if row['cumsum upper']>a and a>row['cumsum lower']:
         indices.append(index)
  return indices
index values = create new dataset(df)
index values
second_df = df.iloc[index_values,[0,1,2,3]]
second df
dt2 = DecisionTreeClassifier(max depth=1)
x = second df.iloc[:,0:2].values
y = second df.iloc[:,2].values
dt2.fit(x,y)
plot tree(dt2)
plot decision regions(x, y, clf=dt2, legend=2)
second_df['y_pred'] = dt2.predict(x)
second df
alpha2 = calculate model weight(0.1)
alpha2
```

```
# Step 4 - Update weights
def update row weights(row,alpha=1.09):
  if row['label'] == row['y pred']:
    return row['weights'] * np.exp(-alpha)
  else:
    return row['weights'] * np.exp(alpha)
second df['updated weights'] =
second df.apply(update row weights,axis=1)
second df
second df['normalized weights'] = second df['updated weights'] /
second df['updated weights'].sum()
second df['normalized weights'].sum()
second df['cumsum upper'] =
np.cumsum(second df['normalized weights'])
second df['cumsum lower'] = second df['cumsum upper'] -
second df['normalized weights']
second df[['X1','X2','label','weights','y pred','normalized weights','cu
msum lower', 'cumsum upper']]
alpha3 = calculate model weight(0.7)
alpha3
from sklearn.tree import DecisionTreeClassifier
print(alpha1,alpha2,alpha3)
dt3 = DecisionTreeClassifier(max_depth=2)
# Fit dt3 before making predictions
dt3.fit(x, y) # Assuming 'x' and 'y' are your training data from
previous cells.
query = np.array([1,5]).reshape(1,2)
dt1.predict(query)
dt2.predict(query)
```

```
dt3.predict(query)

alpha1*1 + alpha2*(1) + alpha3*(1)

np.sign(1.09)

query = np.array([9,9]).reshape(1,2)
dt1.predict(query)

dt2.predict(query)

dt3.predict(query)

alpha1*(1) + alpha2*(-1) + alpha3*(-1)

np.sign(-0.25)
```

Output:

	X1	X2	label	weights	y_pred	updated_weights	cumsum_lower	cumsum_upper
0	1	5	1	0.1	1	0.065508	0.000000	0.071475
1	2	3	1	0.1	1	0.065508	0.071475	0.142950
2	3	6	0	0.1	0	0.065508	0.142950	0.214425
3	4	8	1	0.1	0	0.152653	0.214425	0.380983
4	5	1	0	0.1	0	0.065508	0.380983	0.452458
5	6	9	1	0.1	0	0.152653	0.452458	0.619017
6	6	5	0	0.1	0	0.065508	0.619017	0.690492
7	7	8	1	0.1	0	0.152653	0.690492	0.857050
8	9	9	0	0.1	0	0.065508	0.857050	0.928525
9	9	2	0	0.1	0	0.065508	0.928525	1.000000

	X1	X2	label	weights
5	6	9	1	0.1
0	1	5	1	0.1
0	1	5	1	0.1
9	9	2	0	0.1
5	6	9	1	0.1
9	9	2	0	0.1
3	4	8	1	0.1
0	1	5	1	0.1
3	4	8	1	0.1
0	1	5	1	0.1

```
x[1] <= 3.5
y_1 = 0.32
y_2 = 0.32
y_3 = 0.32
y_4 = 0.0
y_4 =
```

0.999999999999999

-0.4236489301936017

0.42364893019360184 1.0986122886681098 -0.4236489301936017 -1.0

Result:

Thus the python program to implement ADA Boosting has been successfully implemented and the results have been verified and analyzed.

Ex. No.: 9

Date:

A PYTHON PROGRAM TO IMPLEMENT KNN MODEL

Aim:

To implement a python program using a KNN Algorithm in a model.

Algorithm:

1. Import Necessary Libraries

- Import necessary libraries: pandas, numpy, train_test_split from sklearn.model_selection, StandardScaler from sklearn.preprocessing, KNeighborsClassifier from sklearn.neighbors, and classification_report and confusion_matrix from sklearn.metrics.
- 2. Load and Explore the Dataset
 - Load the dataset using pandas.
 - Display the first few rows of the dataset using df.head().
 - Display the dimensions of the dataset using df.shape().
 - Display the descriptive statistics of the dataset using df.describe().
 - 0. Preprocess the Data

- Separate the features (X) and the target variable (y).
- Split the data into training and testing sets using train_test_split.
- Standardize the features using StandardScaler.
- 0. Train the KNN Model
- Create an instance of KNeighborsClassifier with a specified number of neighbors (k).
- For each data point, calculate the Euclidean distance to all other data points.
- Select the K nearest neighbors based on the calculated Euclidean distances.
- Among the K nearest neighbors, count the number of data points in each category.
- Assign the new data point to the category for which the number of neighbors is maximum.
- 0. Make Predictions
- Use the trained model to make predictions on the test data.
- Evaluate the Model
- Generate the confusion matrix and classification report using the actual and predicted values.
- Print the confusion matrix and classification report.

Code:

import numpy as np import matplotlib.pyplot as plt import pandas as pd

dataset = pd.read_csv('../input/mall-customers/Mall_Customers.csv')
X = dataset.iloc[:,[3,4]].values
print(dataset)

from sklearn.cluster import KMeans wcss =[] for i in range (1,11):

```
kmeans = KMeans(n clusters = i, init = 'k-means++', max iter = 300,
n init = 10, random state = 0)
  kmeans.fit(X)
  wcss.append(kmeans.inertia )
# Plot the graph to visualize the Elbow Method to find the optimal
number of cluster
plt.plot(range(1,11),wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
kmeans=KMeans(n clusters= 5, init = 'k-means++', max iter = 300,
n init = 10, random state = 0)
y_kmeans = kmeans.fit_predict(X)
y kmeans
type(y kmeans)
y kmeans
plt.scatter(X[y \text{ kmeans} == 0, 0], X[y \text{ kmeans} == 0, 1], s = 100, c =
'red', label = 'Cluster 1')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c =
'blue', label = 'Cluster 2')
plt.scatter(X[y \text{ kmeans} == 2, 0], X[y \text{ kmeans} == 2, 1], S = 100, C = 100
'green', label = 'Cluster 3')
plt.scatter(X[y \text{ kmeans} == 3, 0], X[y \text{ kmeans} == 3, 1], s = 100, c =
'cyan', label = 'Cluster 4')
```

```
plt.scatter(X[y \text{ kmeans} == 4, 0], X[y \text{ kmeans} == 4, 1], s = 100, c =
'magenta', label = 'Cluster 5')
plt.scatter(kmeans.cluster centers [:, 0], kmeans.cluster centers [:,
1], s = 300, c = 'yellow', label = 'Centroids')
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
plt.scatter(X[y \text{ kmeans} == 0, 0], X[y \text{ kmeans} == 0, 1], s = 100, c =
'red', label = 'Cluster 1')
plt.scatter(X[y \text{ kmeans} == 1, 0], X[y \text{ kmeans} == 1, 1], S = 100, C = 100
'blue', label = 'Cluster 2')
plt.scatter(X[y \text{ kmeans} == 2, 0], X[y \text{ kmeans} == 2, 1], s = 100, c =
'green', label = 'Cluster 3')
plt.scatter(X[y \text{ kmeans} == 3, 0], X[y \text{ kmeans} == 3, 1], s = 100, c =
'cyan', label = 'Cluster 4')
plt.scatter(X[y \text{ kmeans} == 4, 0], X[y \text{ kmeans} == 4, 1], s = 100, c =
'magenta', label = 'Cluster 5')
plt.scatter(kmeans.cluster centers [:, 0], kmeans.cluster centers [:,
1], s = 300, c = 'yellow', label = 'Centroids')
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
Output:- -
```

Result: -

Thus the python program to implement KNN model has been successfully implemented and the results have been verified and analyzed.

Ex. No.: 10

Date:

A PYTHON PROGRAM TO IMPLEMENT DIMENSIONALITY REDUCTION USING PCA

Aim:

To implement Dimensionality Reduction using PCA in a python program.

Algorithm:

Step 1: Import Libraries

Import necessary libraries, including pandas, numpy, matplotlib.pyplot, and sklearn.decomposition.PCA.

Step 2: Load the Dataset (iris dataset)

Load your dataset into a pandas DataFrame.

Step 3: Standardize the Data

Standardize the features of the dataset using StandardScaler from sklearn.preprocessing.

Step 4: Apply PCA

- Create an instance of PCA with the desired number of components.
- Fit PCA to the standardized data.
- Transform the data to its principal components using transform.

Step 5: Explained Variance Ratio

- Calculate the explained variance ratio for each principal component.
- Plot a scree plot to visualize the explained variance ratio.

Step 6: Choose the Number of Components

Based on the scree plot, choose the number of principal components that explain a significant amount of variance.

Step 7: Apply PCA with Chosen Components

Apply PCA again with the chosen number of components.

Step 8: Visualize the Reduced Data

- Transform the original data to the reduced dimension using the fitted PCA.
- Visualize the reduced data using a scatter plot.

Step 9: Interpretation

Interpret the results, considering the trade-offs between dimensionality reduction and information loss.

Code:

```
from sklearn import datasets
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import seaborn as sns
iris = datasets.load_iris()
df = pd.DataFrame(iris['data'], columns = iris['feature_names'])
df.head()
```

scalar = StandardScaler()

```
scaled_data = pd.DataFrame(scalar.fit_transform(df)) #scaling the
data
scaled_data
sns.heatmap(scaled_data.corr())

pca = PCA(n_components = 3)
pca.fit(scaled_data)
data_pca = pca.transform(scaled_data)
data_pca = pd.DataFrame(data_pca,columns=['PC1','PC2','PC3'])
data_pca.head()
sns.heatmap(data_pca.corr())
```

Output:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

mus the python program to implement Dimensionality Reduction using PCA has been successfully implemented and the results have been verified and analyzed.