Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Machine Learning for Anomaly Detection: A Systematic Review

Ali Bou Nassif¹, Manar Abu Talib², Qassim Nasir³, Fatima Mohamad Dakalbab²

¹Department of Computer Engineering, University of Sharjah, Sharjah, UAE

²Department of Computer Science, University of Sharjah, Sharjah, UAE

³Department of Electrical Engineering, University of Sharjah, Sharjah, UAE

Corresponding author: A. Nassif (anassif@sharjah.ac.ae).

"This work was supported by University of Sharjah"

ABSTRACT Anomaly detection has been used for decades to identify and extract anomalous components from data. Many techniques have been used to detect anomalies. One of the increasingly significant techniques is Machine Learning (ML), which plays an important role in this area. In this research paper, we conduct a Systematic Literature Review (SLR) which analyzes ML models that detect anomalies in their application. Our review analyzes the models from four perspectives; the applications of anomaly detection, ML techniques, performance metrics for ML models, and the classification of anomaly detection. In our review, we have identified 290 research articles, written from 2000-2020, that discuss ML techniques for anomaly detection. After analyzing the selected research articles, we present 43 different applications of anomaly detection found in the selected research articles. Moreover, we identify 29 distinct ML models used in the identification of anomalies. Finally, we present 22 different datasets that are applied in experiments on anomaly detection, as well as many other general datasets. In addition, we observe that unsupervised anomaly detection has been adopted by researchers more than other classification anomaly detection systems. Detection of anomalies using ML models is a promising area of research, and there are a lot of ML models that have been implemented by researchers. Therefore, we provide researchers with recommendations and guidelines based on this review.

INDEX TERMS Anomaly Detection, Machine Learning, Security and Privacy Protection.

I. INTRODUCTION

Detecting anomalies is a major issue that has been studied for centuries. Numerous distinct methods have been developed and used to detect anomalies for different applications. Anomaly detection refers to "the problem of finding patterns in data that do not conform to expected behavior" [1], [2]. The detection of anomalies is widely used in a broad variety of applications. Examples of these include fraud detection, loan application processing, and monitoring of medical conditions, An example of a medical application is heart rate monitors [3]. Other widely used applications of detecting anomalies include cyber security intrusion detection [4]-[6], fault detection for aviation safety study, streaming, and hyperspectral imagery, etc. The importance of detecting anomalies in various application domains concerns the risk that unprotected data may represent significant, critical, and actionable information. For instance, detecting an anomalous computer network traffic pattern may expose an attack from a hacked computer [7]. Another example would be the detection of anomalies in the transaction data of a credit card, which may indicate theft [8]. Besides, detecting an anomaly from an airplane sensor may result in the detection of a fault in some of the components of the aircraft.

Anomaly is defined at an abstract level as a pattern, not in line with the ordinary anticipated behavior. Anomalies are classified into three main categories [1], [9], [10]:

- 1. **Point Anomalies**: If a single data instance can be considered anomalous for the remainder of the data, the instance is called a point anomaly and is regarded as the simplest anomaly form.
- 2. **Contextual Anomalies**: If in a particular context a data instance is anomalous, but not in another context, it is called a contextual anomaly. There are two attributes of contextual anomalies: contextual attributes and behavioral attributes. The first attribute is applied to determine an instance's context (or neighborhood). For example, the

longitude and latitude of a location are contextual attributes in spatial datasets. Moreover, time is a contextual attribute in time series data that determines an instance's position on the entire sequence. The second attribute is considered as attributes of behavior where it defines an instance's noncontextual features. For example, the amount of rainfall that occurs at any location in a spatial dataset describing the world's average rainfall is a behavioral attribute.

The preference for using the technique of contextual anomaly detection is determined by the significance of the contextual abnormalities in the target area. The availability of qualitative attributes is another significant aspect. In some instances, it is easy to identify a context, and thus it makes sense to apply a contextual detection technique. In other instances, it is not possible to establish a sense such that certain methods are difficult to use.

3. **Collective anomalies**: If a set of associated data instances is anomalous for the entire dataset, it is called a collective anomaly.

Statistical anomaly detection techniques are some of the oldest algorithms used to detect anomalies [10]. Statistical methods build a statistical model for the ordinary behavior of the data provided. A statistical inference test may then be carried out to detect whether or not an instance belongs to this model. Several methods are used to conduct statistical anomaly detection [11]. This includes proximity based, parametric, non-parametric, and semi-parametric methods.

Machine learning (ML) techniques are increasingly being used as one of the approaches to detect anomalies. ML is the effort to "automate the process of knowledge acquisition from examples" [12]. The technique is used to build a model that distinguishes between ordinary and abnormal classes. Anomaly detection can therefore be split into three broad categories based on the training data function used to build the model. The three broad classes are [1], [13]:

- Supervised anomaly detection: In this class, both the normal and anomalous training datasets contain labeled instances. In this model, the approach is to build a predictive model for both anomaly and normal classes and then compare these two models. However, in this mode, two issues occur. First, the number of anomalies in the training set is much lower when compared with normal instances. Second, precise and representative labels are challenging to identify, particularly for the anomaly class.
- Semi-supervised anomaly detection: Training here includes only ordinary class cases. Therefore, anything that cannot be classified as ordinary is marked as anomalous. Semi-supervised techniques presume that training data have labeled instances for the normal class alone. Since they do

not need anomaly class labels, they are more common than supervised methods.

• Unsupervised anomaly detection: In this case, training datasets are not required for the methods. Therefore, those methods imply that normal instances are much more common than anomalies in test datasets. However, if the assumption fails, it leads to a high false alarm rate for this technique.

Many semi-supervised techniques can be adapted to operate in an unsupervised mode by using unlabeled dataset samples as training data. Such adaptation assumes that there are very few anomalies in the test data and these few anomalies are robust to the model learning during training.

This study's primary objective is to conduct a systematic review that represents a comprehensive study of ML techniques for anomaly detection and their applications. Moreover, this review studies the accuracy of the ML models and the percentage of research papers that apply supervised, semi-supervised, or unsupervised anomaly detection classification. We believe that this review will enable researchers to have a better understanding of the different anomaly detection methods and guide them in reviewing the recent research done on this subject.

To the best of our knowledge, there are very few Systematic Literature Reviews (SLR) on detecting anomalies through machine learning techniques, which has motivated this work. Research articles were read thoughtfully and were selected, based on Kitchenham and Charter's methodology [14]., with regards to (i) the main prediction research work done in anomaly detection, (ii) the ML algorithms used in anomaly detection, (iii) the estimation and accuracy of ML models proposed, and (iv) the strength and weaknesses of the ML technique used.

The remainder of this paper is divided into six sections: Section 2 provides information on related work. Section 3 describes the methodology used in this research. Section 4 lists the results and discussions. Section 5 addresses the limitations of this review. Finally, Section 6 contains a discussion and suggestions for future work.

A. Literature Review

Detection of anomalies is an important issue that has been investigated in various fields of study and implementation. Many detection methods for anomalies have been created specifically for certain applications, while others are more generic. For example, Chandola et al. [1] provided an extensive survey of anomaly detection techniques and applications. A board review of different techniques of Machine learning as well as non-machine learning, such as statistical and spectral detection methods, was discussed in detail. Moreover, the survey presents several applications of anomaly detection. Examples include cyber intrusion detection, fraud detection, medical anomaly detection, industrial damage detection, image processing detection,

textual anomaly detection, and sensor networks. The same authors introduced another survey [10] on the topic of anomaly detection for discrete sequence. The authors provided a comprehensive and structured overview of the existing research on the problem of detecting anomalies in discrete/symbolic sequences. In addition, Hodge and Austin [15] presented an overall study of machine learning and statistical anomaly detection methodologies. Also, the authors discussed comparatively the advantages and disadvantages of each method. On the other hand, Agrawal and Agrawal [8] proposed a survey on anomaly detection using data mining techniques.

Several surveys were mainly focused on detecting anomalies in specific domains and applications, such as [16] where the authors presented an overall survey of wide clustering based fraud detection and also compared those techniques from several perspectives. In addition, Sodemann et al. [17] presented anomaly detection in automated surveillance, where they provided different models and classification algorithms. The authors examined research studies according to the problem domain, approach, and method. Moreover, Zuo [18], provided a survey of the three most widely used techniques of anomaly detection in the field of geochemical data processing; Fractal/multi-fractal models, compositional data analysis, and machine learning (ML), but the author focuses mainly on machine learning techniques. On the other hand, He et al. [19] surveyed the framework of log based anomaly detection. The authors reviewed six representative anomaly detection methods and evaluated each one. The authors also compared and contrasted the precision and effectiveness of two representative datasets of the production log. Furthermore, Ibidunmoye et al. [20] provided an overview of anomaly detection and bottleneck identification as they related to the performance of computing systems. The authors identified the fundamental elements of the problem and then classified the existing solutions.

Anomaly intrusion detection was the focus of many researchers. For instance, Yu [21] presented a comprehensive study on anomaly intrusion detection techniques such as statistical, machine learning, neural networks, and data mining detection techniques. Also, Tsai et al. [22] reviewed intrusion detection, but the authors focused on machine learning techniques. They provided an overview of machine learning techniques designed to solve intrusion detection problems written between 2000 and 2007. Moreover, the authors compared related work based on the types of classifier design, dataset, and other metrics. Similarly, Patcha and Park [23] presented an extensive study of anomaly detection and intrusion detection techniques, and Buczak and Buvan [24] surveyed machine learning and data mining methods for cyber intrusion detection. They provided a description of each method and addressed the challenges of using machine learning and data mining in cyber security.

Finally, Satpute et al. [25] presented a combination of various machine learning techniques with particle swarm optimization to improve the efficiency of detecting anomalies in network intrusion systems.

The detection of network anomalies has been an important area of research [26], [27] Therefore, many surveys focused on that topic. For example, Bhuyan et al. [11] presented a comprehensive study of network anomaly detection. They identified the kinds of attacks that are usually encountered by intrusion detection systems and then described and compared the effectiveness of different anomaly detection methods. In addition, the authors discussed network defenders' tools. Similarly, Gogoi et al. [7] surveyed an extensive study of well-known distance based, density based techniques as well as supervised and unsupervised learning in network anomaly detection. On the other hand, Kwon et al. [28] mainly focused on deep learning techniques, such as restricted Boltzmann machine based deep belief networks, deep recurrent neural networks, as well as machine learning methods appropriate to network anomaly detection. In presented experiments the authors demonstrated the practicality of using deep learning techniques in network traffic analysis.

Our systematic review is different from those described above, as we are presenting an extensive research study on detecting anomalies through machine learning techniques. Table 6 in Appendix A summarizes the related work and displays the differences between it and our work.

Our study differs from the related work in various aspects, such as:

- 1. Machine learning techniques are included, and the model types of techniques include supervised, semi-supervised, or unsupervised anomaly detection.
 - 2. Precision comparison of each technique
- 3. A comprehensive approach is presented which includes the advantages and disadvantages of each technique.
- 4. Covers the period from 2000 to 2020, which is quite recent.

II. METHODOLOGY

In this study, we conducted a Systematic Literature Review (SLR) based on Kitchenham and Charters methodology [14]. The method includes the stages of planning and conducting research, and reporting. There are several phases in each stage. The planning phase is divided into six different stages. The first stage is to identify study questions that are based on the review's objectives. The second stage, in relation to specifying the proper search terms, is developing the search strategy, for collecting research papers related to the topic that fulfill the research questions. The third stage is to identify the study selection procedures, which include the exclusion and inclusion rules. In the fourth stage, rules are identified for quality assessment to be used to filter the collected study papers. The fifth stage involves detailing an

extraction strategy to answer the research questions that were specified before. Finally, the sixth stage involves synthesizing the data obtained. We followed the review protocol, and this is demonstrated in the following subsections.

Error! Reference source not found. below illustrates this

Figure 1 Research Methodology

research methodology.

A. Research Questions

This SLR intends to summarize, clarify and examine the ML techniques and implementations that were applied in anomaly detection from 2000 through 2020

inclusive. The following four research questions (RQs) are raised for this purpose:

1.RQ1: What is the main prediction about research work done in anomaly detection?

RQ1 aims to identify the prediction research work that is done in anomaly detection, whether the prediction is an ML.

2.RQ2: What kinds of ML algorithms are being applied in anomaly detection?

RQ2 aims at specifying the ML methods that have been applied in the detection of anomalies.

3.RQ3: What is the overall estimation and accuracy of machine learning models?

RQ3 is concerned with ML model estimation. Estimation accuracy is the main performance metric for models of ML. This question focuses on the following three elements of estimation accuracy: dataset building, performance metric, and accuracy value.

4.RQ4: What is the percentage of papers that address unsupervised, semi-supervised, or supervised anomaly detection?

RQ4 aims to present the percentage of collected research papers that use unsupervised, semisupervised anomaly detection techniques.

B. Search Strategy

We followed the following procedure to construct the search term:

- 1) Main search terms are identified from the research questions.
- 2) New terms were defined to replace main terms such as intrusion, outliers, and synonyms.
- 3) Boolean operators (ANDs and ORs) are used to limit the search results.
- 4) The search terms that are used in this review are related to anomaly detection and machine learning.

Below are the digital libraries that we used in this search (journals and conference papers):

- Google Scholar
- ACM Digital Library
- Springer
- Elsevier
- IEEE Explorer

According to our inclusion/exclusion criteria, 290 papers were used in this review. They include 95 journal papers and 195 conference papers.

C. Study Selection

In the beginning, we collected 350 papers based on the search terms mentioned earlier. Later, we filtered those papers to verify that only papers related to the topic were included in our review. The filtration process was discussed among the co-authors at planned periodic meetings. The filtration and selection processes are explained below:

Step 1: Remove all the duplicated articles that were collected from the different digital libraries.

Step 2: Apply inclusion and exclusion criteria to avoid any irrelevant papers.

Step 3: Remove review papers from the collected papers.

Step 4: Apply quality assessment rules to include only the qualified papers that ensure the best answer for our research questions.

Step 5: Search for additional related papers from references in the collected papers from step 4 and repeat step 4 on the new added articles.

The applied inclusion and exclusion criteria in this review are discussed in Table 1. In the end, after conducting the filtration steps, 290 papers were observed for this review.

D. Quality Assessment Rules (QARs)

The QARs were the final step in the identification of the final list of papers to be included in this review. The QARs are essential to guaranteeing and assessing the quality of the

Table 1 Inclusion & Exclusion Criteria

Inclusion criteria	Exclusion criteria
Include only journals and	Exclude papers with no clear publication
conference papers.	information.
Include anomaly detection	Exclude articles that include machine
applications.	learning not related to anomaly detection.
Use machine learning	Exclude all digital resources, which do not
techniques to identify anomalies.	discuss anomaly detection techniques.
Include studies that compare machine learning techniques.	Exclude papers with predator journals
Consider articles published	
between 2000 and 2019.	

research papers. Therefore 10 QARs are identified and each

is given a value of 1 mark out of 10. The score of each QAR is selected as follows: "fully answered" = 1, "above average" = 0.75, "average" = 0.5, "below average" = 0.25, "not answered" = 0. The summation of the marks obtained for the 10 QARs is the score of the article. Moreover, if the result is 5 or higher, we consider the article; otherwise, we exclude it. Moreover, we choose the score 5 as it represents the middle point of the good quality articles and it answers our intended research questions.

QAR1: Are the study objectives clearly recognized? QAR2: Are the anomaly detection techniques well defined and deliberated?

Table 2. Selected Papers' Quality Assessment Results

Result	No. of papers	Paper ID
3.5	1	A217 (Discarded)
4.75	1	A24 (Discarded)
5	6	A12, A43, A127, A163, A192, A208
5.25	1	A205
5.5	3	A141, A166, A201
5.75	4	A68, A147, A178, A195
6	6	A118, A173, A175, A183, A259, A278
6.25	8	A32, A134, A168, A187, A197, A28, A248, A282
6.5	7	A13, A25, A31, A33, A122, A174, A211
6.75	10	A11, A21, A22, A35, A36, A56, A57, A144, A186, A238
7	12	A3, A4, A30, A44, A62, A74, A77, A130, A140, A176, A200, A242
7.25	14	A26, A29, A58, A66, A67, A75, A101, A157, A224, A226, A227, A231, A266, A269
7.5	12	A20, A61, A72, A138, A142, A148, A153, A213, A244, A272, A280, A283
7.75	16	A1, A7, A19, A23, A41, A48, A53, A73, A135, A177, A181, A240, A261, A275, A281, A285
8	11 A27, A70, A92, A94, A105, A112, A164, A176, A185, A188, A268	
8.25	16	A8, A16, A49, A76, A96, A149, A156, A169, A171, A182, A193, A207, A233, A267, A271, A286
8.5	23	A2, A9, A10, A18, A40, A42, A51, A52, A59, A60, A63, A64, A83, A124, A139, A143, A150, A161, A170, A184, A203, A243, A255
8.75	31	A103, A109, A123, A126, A136, A14, A146, A17, A189, A209, A212, A215, A225, A229, A234, A250, A260, A263, A279, A38, A39,A45, A46, A47, A5, A54, A71, A79, A82, A95, A99
9	32	A100, A106, A117, A120, A133, A137, A145, A15, 155, A159, A165, A180, A214, A219, A228, A230, A246, A251, A252, A265, A276, A284, A34 A37, A50, A55, A65, A86, A89, A91, A93, A98
9.25	23	A104, A107, A108, A113, A114, A115, A125, A128, A129, A160, A191, A198, A223, A239, A247, A249, A258, A6, A78, A80, A81, A84, A85
9.5	23	A110, A116, A131, A154, A158, A162, A190, A194, A204, A206, A216, A218, A220, A221, A222, A254, A262, A273, A69, A87, A90, A97, A287
9.75	A102 A111 A119 A121 A132 A167 A172 A196 A199 A202 A232 A235 A237 A241 A257 A2	
10	10	A151, A152, A210, A236, A245, A253, A256, A277, A288, A290

Figure 1. Anomaly Detection Applications Iteration Per Year

QAR3: Is the specific application of anomaly detection clearly defined?

QAR4: Does the paper cover practical experiments using the proposed technique?

QAR5: Are the experiments well designed and justifiable?

QAR6: Are the experiments applied on sufficient datasets?

QAR7: Are estimation accuracy criteria reported?

QAR8: Is the proposed estimation method compared with other methods?

QAR9: Are the techniques of analyzing the outcomes suitable?

QAR10: Overall, does the study enrich the academic community or industry?

E. Data Extraction Strategy

In this step, our aim was to analyze the final list of papers to extract the required information for answering the four research questions. Consequently, we extracted the following information from each paper: paper number, title of the paper, publication year of the paper, publication type, anomaly application type, RQ1, RQ2, RQ3, and RQ4. Due to the unstructured nature of information, extraction was challenging. For instance, for associated methods such as "J48" or "C4.5," researchers would use distinct terminologies. It is essential to note that the four research questions were not answered by all papers.

F. Synthesis of Extracted Data

In order to synthesize the information obtained from the chosen papers, we used various processes to aggregate evidence to answer the RQs. The following describes in detail the method of synthesis we followed: We used the technique of narrative synthesis to tabulate the information obtained in accordance with RQ1 and RQ2. We use binary

Table 3. Anomaly Detection Applications among Articles

Application	Freq.	Application	Freq.
Intrusion Detection	68	Finance Domain	2
network anomaly detection	66	Road Anomaly	2
anomaly detection	29	temperature anomaly	2
data	11	water treatment system	2
video anomaly detection	10	Automotive CAN bus	1
Mobile ad-hoc networks	8	Power Quality Measurements	1
Cloud computing	7	anti forensic	1
Hyperspectral Imagery	7	Botnets	1
medical application	7	corpus anomaly detection	1
sensor network	6	digits	1
Time Series	6	Electrical Substation Circuits	1
smart environment	5	electroencephalography	1
System Log	5	evolving connectionist systems	1
Space Craft	4	Gas Turbine Combustor	1
Artificial immune system	3	Web Service	1
SCADA System	3	Internet of Things (IoT)	1
wireless network security	3	manufacturing process	2
Cyber Physical System	3	Maritime domain	1
Advanced Monitoring Systems	2	netflow records	1
Aviation	2	Online Anomaly Prediction	1
energy consumption	2	vessel tracks	1
Fault Diagnosis	2		

Figure 2. Machine Learning Techniques Observed

outcomes to analyses the results for the information obtained (quantitative) in RQ3 and RQ4, which came from different papers with distinct accuracy calculation methods that are presented in a comparable way.

III. RESULTS AND DISCUSSIONS

In this section, we address the outcomes of this review. This subsection gives an overview of the selected papers of this review. The results of each research question are addressed in detail in the following five sections. A total of 290 studies were chosen which implemented machine learning for anomaly detection. These research articles were published between 2000 and 2020. The list of these papers is included in Table 7 in Appendix A. As explained earlier, a quality assessment criterion is used to stream the articles on the basis of the marks obtained. Research articles of grade 5 or higher (out of 10) have been taken into consideration. Moreover, the frequency of the QAR score of the selected paper is listed in Table 2.

A. Anomaly Detection Applications

In this section, we address RQ1 which aims to identify the prediction research work that has been done in anomaly detection.

Anomaly detection techniques are mainly divided into two classifications: machine learning based, and non-machine learning based. The non-machine learning based techniques can be classified into statistical and knowledge based. Regarding this review, there are 274 articles that discuss the detection of anomalies through machine learning techniques. On the other hand, there are 16 articles that focus on non-machine learning based techniques.

Detection of anomalies can be used in a wide variety of applications. In this review, we identified 43 different applications in the selected papers. The list of these applications appears in Table 3.

As shown in Table 3, the review indicates that intrusion detection, network anomaly detection, general anomaly detection, and data applications are the studies applied most

Figure 3. Feature Selection/Extraction Techniques Observed in the Literature

Figure 4. Utilized Datasets in Collected Research Articles

often in the anomaly detection area. In addition, the table contains comprehensive information on the frequency with which anomaly detection application is used by the selected articles.

Moreover, the review shows that researchers began to adopt more applications of anomaly detection between 2011 and 2020. For further information on results, Figure 2 illustrates the distribution of anomaly detection application per year during the period considered.

B. Types of Machine Learning Techniques

In this section, we address RQ2, which aims at specifying the machine learning techniques that have been used to detect anomalies between 2000 and 2020.

As a fundamental point of this review, the most frequently used ML methods in anomaly detection are identified along with an evaluation of these methods. The evaluation of the methods considers all the phases of the method's experiment, such as the feature selection phase, extraction phase, etc.

As shown in Figure 3, we identified 28 ML techniques that had been applied by researchers in the development of models to detect anomalies on their application. These techniques can be divided into six categories: classification,

ensemble, optimization, rule system, clustering, and regression. Those ML techniques are used in two forms: standalone or hybrid models. Hybrid models are obtained by combining two or more ML techniques. Table 4 represents the frequency of ML techniques among the collected research articles. According to Table 4 in Appendix A, it can be seen that a lot of researchers used to combine more than one ML technique. This includes A2 (DBN with one class SVM), A23 (SVM with GA), and A14 (SVM with K-Medoids clustering). Moreover, SVM is the most used technique as either standalone or in hybrid models.

Feature selection/extraction has been discovered extensively in the literature and it is a significant move towards discarding irrelevant data, which helps to enhance and improve the precision and computational efficiency of the suggested models. Figure 4 demonstrates 21 different feature selection/extraction techniques that are being applied. Moreover, we notice that PCA and CFS are the feature selection techniques being used most often in anomaly detection. Even though this step is very important, most of the research articles did not include it. While some research articles did apply this step, the techniques were not discussed.

Table 5 in Appendix A represents some of the research articles that mentioned the strength or weakness of their proposed machine learning model. Therefore, Table 5 shows the research article number, the machine learning technique, and the strength or weakness if mentioned.

C. Overall Estimation and Accuracy of ML Models

In this section, we address RQ3 which is concerned with the estimation of ML models. Estimation accuracy is the primary performance metric for machine learning models. This question focuses on the following four aspects of estimation accuracy: performance metric, accuracy value, dataset for construction, and model validation methods.

Since building a ML model relies on the dataset, we reviewed the data source of ML models for anomaly detection utilized in the selected research articles. Moreover, we identified 22 different datasets that have been used in the experiments of related articles and many other general datasets. The datasets can be classified as synthetic data, real life data, and virtualized data. Figure 5 demonstrates the frequency of utilized datasets in the collected research articles. As shown in Figure 5, the most frequently used dataset in the selected research papers was real life dataset, according to anomaly detection application. In addition, 48 research papers utilized KDD Cup 1999 virtualized dataset and 38 research papers adopted benchmark datasets.

In addition to datasets, ML models should also be evaluated with performance metrics. We found 276 papers that clearly presented the performance metrics of their proposed models. Figure 6 shows that the performance metric used most was True Positive Rate (TPR), which is also known as detection date, sensitivity, and recall. It measures the anomalies that are correctly classified. Moreover, 116 papers used False Positive Rate (FPR) as a performance metric. This metric measures anomalies that are falsely classified, and it can be known as false alarm rate as well. Furthermore, Accuracy (Acc), precision, and were F-score applied often by researchers as a performance metric. Acc is the percentage of anomalies that were correctly classified. Adding more, AUC measures the whole two dimensional area under the entire ROC curve. ROC curve is one of the strongest metrics used to efficiently assess intrusion detection systems performance, and it is a graphical tool that illustrates accuracy across FPS. On the other hand, Precision is usually associated with Fscore and recall, and it measures the ratio of anomalies that are correctly classified as an attack. In addition, we find that 64 of the 290 papers used only one performance metric, and most of those papers used only accuracy or AUC, which is not sufficient to determine the quality performance of the ML model. On the other hand, papers like A10 and A69 used 7 to 9 performance metrics to represent the performance of their ML models. Furthermore, a lot of papers present computational performance metrics in addition to performance metrics, such as CPU utilization, execution

Figure 5. Frequency of Performance Metrics among

Figure 6. Percentage of Anomaly Detection Type

time, training time, testing time, and computational time. Table 8 in appendix A presents each paper ID and the proposed ML model along with the performance and computational metrics applied. Moreover, it presents anomaly detection types whether it is supervised, unsupervised, and semi-supervised. As well as the dataset used for that model.

D. Percentage of Unsupervised, Semi-Supervised or Supervised Anomaly Detection Techniques

In this section, we address RQ4, which aims to present the percentage of collected research papers that use supervised, semi-supervised, or unsupervised anomaly detection methods.

Figure 7. Anomaly Detection Classification Type per Year

As previously mentioned, anomaly detection can be divided into three broad classes depending on the feature of the training data that is applied to construct the model. The three broad classes are unsupervised anomaly detection, semisupervised anomaly detection, and supervised anomaly detection. For this RQ we reviewed the classification type of anomaly detection techniques used in research articles. According to Figure 7, 27% of the selected papers applied unsupervised anomaly detection type, making it the most used technique among the research articles. On the other hand, 18% applied supervised anomaly detection, while 7% applied both supervised and unsupervised anomaly detection classification. In contrast, 5% of research articles adopted semi-supervised learning. Furthermore, 1% applied semisupervised with unsupervised anomaly detection. Surprisingly, 42% of the research articles did not mention the classification type of the anomaly detection they applied.

According to Figure 8, the unsupervised anomaly detection type has been applied from 2002 until 2020. As for supervised anomaly detection type, it was adopted by researchers in 2002 and has been used until the present time. Supervised and unsupervised anomaly detection types were utilized from 2005 to 2019. In contrast, supervised and semisupervised anomaly detection types were adopted only in 2013 and 2018. Similarly, unsupervised and semi-supervised anomaly detection types have only been used twice, in 2011 and 2016. It can be seen then, that combining semisupervised learning with either supervised or unsupervised learning was not adopted by many researchers compared to the supervised anomaly detection type or unsupervised anomaly detection type. For further information on results, Table 8 in Appendix A present the anomaly detection type of each research article.

IV. LIMITATION OF THIS REVIEW

This systematic literature review is limited to journal and conference papers related to ML in the field of anomaly

detection. We excluded several non-relevant research papers by implementing our search approach in the first stages of the review. This ensured that the research papers chosen met the research requirements. However, we believe that this review would have been further enhanced by drawing on additional sources. Moreover, the same concept applies to quality assessment since we applied a strict QAR.

V. CONCLUSION

This systematic literature review studied anomaly detection through machine learning techniques (ML). It reviewed ML models from four perspectives: the application of anomaly detection type, the type of ML technique, the ML model accuracy estimation, and the type of anomaly detection (supervised, semi-supervised, and unsupervised). The review investigated the relevant studies that were published from 2000-2020. We queried 290 research articles that answered the four research questions (RQs) raised in this review.

The findings of RQ1 were that we identified 43 different applications of anomaly detection in the selected papers. We observed that intrusion detection, network anomaly detection, general anomaly detection, and data applications are the studies most often applied in the anomaly detection area. Furthermore, between 2011 and 2019 researchers started to adopt more applications for anomaly detection. As for RQ2, we demonstrated 29 different ML models that have been applied by researchers, with the most commonly used being SVM. Moreover, we noted an interest in building hybrid models. In addition, we identified that PCA and CFS are the most commonly used among 21 feature selection/extraction techniques. In RQ3 we presented the performance metrics applied by each research paper, and we found that 64 of the 290 papers used accuracy or AUC as their main performance metric, which is not efficient enough. Furthermore, we identified 22 different datasets that have been used in the experiments of related articles as well as many other general datasets, and most of the experiments

used real life dataset as training or testing datasets for their models. Lastly, in RQ4 we counted the classification type of anomaly detection used in selected research articles. We found that 27% of the selected papers applied unsupervised anomaly detection type, making it the most used approach among the research articles. The next most utilized approach was applied supervised anomaly detection, at 18%, followed by 7% of the papers which applied both supervised and unsupervised anomaly detection classification.

Based on this review, we recommend that researchers conduct more research on ML studies of anomaly detection to gain more evidence on ML model performance and efficiency. Moreover, researchers are also encouraged to create a general structure for introducing experiments on ML models. Moreover, since we found research papers that did not mention feature selection/extraction type, this field is important for improvement. Furthermore, some of the research papers reported their results using one performance metric, such as accuracy, which needs more improvement and more consideration. We also noticed that several researchers used old databases in conducting their research. We recommend researchers use more recent datasets.

ACKNOWLEDGMENT

The corresponding author Dr. Ali Bou Nassif and co-authors would like to thank the University of Sharjah and OpenUAE Research and Development Group for funding this research study. We are also grateful to our research assistants who helped in collecting, summarizing, and analyzing the research articles for this SLR study.

"Conflict of Interest: The authors declare that they have no competing interests".

"**Informed consent:** This study does not involve any experiments on animals or humans".

Authors' information

ALI BOU NASSIF is currently the Assistant Dean of Graduate Studies at the University of Sharjah, UAE. Ali is also an Associate Professor in the department of Computer Engineering, as well as an Adjunct Research Professor at Western

University, Canada. He obtained a Master's degree in Computer Science and a Ph.D. degree in Electrical and Computer Engineering from Western University, Canada in 2009 and 2012, respectively. Ali's research interests include the applications of statistical and artificial intelligence models in different areas such as software

engineering, electrical engineering, e-learning, security, networking, signal processing and social media. Ali has published more than 65 refereed conference and journal papers. Ali is a registered professional engineer (P.Eng) in Ontario, as well as a member of IEEE Computer Society.

MANAR ABU TALIB is teaching at the University of Sharjah in the UAE. Dr. Abu Talib's research interest includes software engineering with substantial experience and knowledge in conducting research in software

measurement, software quality, software testing, ISO 27001 for Information Security and Open Source Software. Manar is also working on ISO standards for measuring the functional size of software and has been involved in developing the Arabic version of ISO 19761 (COSMIC-FFP measurement method). She published more than 50 refereed conferences, journals, manuals and technical reports. She is the ArabWIC VP of Chapters in Arab Women in Computing Association (ArabWIC), Google Women Tech Maker Lead, Co-coordinator of OpenUAE Research & Development Group and the International Collaborator to Software Engineering Research Laboratory in Montreal, Canada.

QASSIM NASIR is currently an associate professor at the University of Sharjah since 2009 and the chairman of scientific publishing unit. Dr. Nasir current research interests are in telecommunication and network security such as in CPS, IoT. He also conducts

research in drone and GPS jamming as well. He is a co-coordinator in OpenUAE research group which focuses on blockchain performance and security, and the use of artificial intelligence in security applications. Prior to joining the University of Sharjah, Dr. Nasir was working with Nortel Networks, Canada, as a senior system designer in the network management group for OC-192 SONET. Dr. Nasir was visiting professor at Helsinki University of Technology, Finland, during the summers of 2002 to 2009, and GIPSA lab, Grenoble France to work on a Joint research project on "MAC protocol and MIMO" and "Sensor Networks and MIMO" research projects. Dr. Nasir has published over 90 refereed conferences, journals, book chapter, and technical reports.

FATIMA DAKALBAB is a student pursuing her MSc. in Computer Science and a graduate research assistant at the University of Sharjah in the UAE. Fatima earned her bachelor's degree in information technology Multimedia with a 3.92/4 GPA. She is currently working as a graduate research assistant in OpenUAE Research and

Development Group. Her interest in research includes conducting systematic literature review research study on I research interest includes inter-blockchain communication, Internet of things (IoT), and Machine learning in anomaly detection. Moreover, Fatima is currently a member of the Sharjah Google Developer Group (GDG) and Arab Women in Computing Association (ArabWIC) since 2016. In addition to being a Events & Workshops Co-Coordinator in the student chapter in UAE for Association for Computing Machinery (ACM).

APPENDIX

Table 4. Machine Learning Techniques Among Research Articles

Technique	Freq.	Technique2	Freq.2	Technique3	Freq.3
SVM	23	CNN + DBN + SAE + LSTM	1	LR + DT + SVM + PCA	1
Cluster	11	CNN + LSTM + DNN	1	LR + RF	1
NN	8	СРМ	1	LSTM + NN	1
OCSVM	8	CSI + KNN	1	LSTM + RNN	1
AE	8	CVM	1	LSTM + RT	1
Naïve Bayes	6	DBN + RBM	1	multiple kernel	1
DT	5	DBN + SVM	1	naïve Bayes + adaboost	1
Ensemble	5	DBSCAN + Clustering	1	Naïve Bayes + DT	1
ELM	4	DCM	1	naïve Bayes + DT + J48	1
KNN	4	DCNN + LSTM	1	Naïve Bayes + K-Means Clustering	1
PCA	4	D-Markov + KNN	1	negative selection	1
RT	4	DNN	1	negative selection + C4.5 + naïve Bayes	1
DBN	3	DNN + RF + VAE	1	negative selection + MP	1
GAN	3	DRBM	1	negative selection + NN	1
HMM	3	DRBM + SVM	1	negative selection + SVM	1
LSTM	3	DT + K-Means Clustering	1	NN + SOM	1
n-gram	3	DT + NN	1	NN + SVM	1
RF	3	DT + RF + ANN	1	NOF	1
RNN	3	ensemble + clustering	1	OCSVM + LSTM	1
SVM + RBF	3	Ensemble + SVM	1	PCA + NN	1
				-	
BN	2	FFNN + LSTM	1	RBM + AE	1
ENN	2	Fuzzy + C-means	1	Regression	2
FRaC	2	fuzzy + GA	1	RF + DT + SVM + Naïve bayes + NN	1
fuzzy	2	fuzzy + SVM	1	RF + Entropy	1
GA	2	fuzzy K-Means Clustering + ANN	1	RF + LR	1
Gaussian model	2	GA + SOM + SVM	1	RF + RT	1
нтм	2	GA + SVM	1	RLS + ELM + NN	1
IF	2	GAN + LSTM + RNN	1	RNN + LSTM	1
kernel	2	Gaussian mixture + PCA	1	RVM + Bayesian Network	1
KNN + OCSVM	2	HMM + Naïve Bayes	1	SAE	1
Naïve Bayes + KNN	2	HMM + SVM	1	sequence algorithm	1
RLS	2	J48 / C4.5	1	single window	1
SOM	2	J48 + Naïve bayes	2	SOM + K-Means	1
SOM + J48/C4.5	2	J48 + Naïve Bayes + SMO	1	SVM + C4.5	1
SVM + Entropy	2	k-means and Skip-gram	1	SVM + Cluster	1
SVM + SOM	2	Kernel + PCA	1	SVM + DNN	1
TR	2	kernel + regression	1	SVM + DT	1
wrappers	2	K-mean + SMO network	1	SVM + ensemble	1
AE + ANN	1	k-Means + C4.6	1	SVM + entropy + Adaboost	1
AE + ensemble + SVM + RF	1	K-means + cluster	1	SVM + GA	1
AE + K-Means	1	K-means + DT	1	SVM + GA + KNN	1
ANN	1	K-means + SVM	1	SVM + Kernel	1
Bayesian network	1	K-means cluster	1	SVM + K-Medoids clusting	1
•	1	k-means	1	SVM + Random Forest	1
boosting	1	+ clustering	1	SVIVI T Natioutil FuleSt	1
CESVM	1	KNN + SVM	1	SVM + RF	1
CFS	1	LE	1	SVM + SVR network	1
CNN	1	LOF	1	TCM-KNN	1
RF + KNN + DT	1	FCM + KNN	1	TD	1
OCSVM + LOF	1	DT + RF + KNN + Boosting DT	1	Sub-Space Clustering (SSC) and One Class	1
0004141 - 201		S M Mark . Doostille D1		Support Vector Machine (OCSVM)	1

Table 5. Machine Learning Techniques Strength and Weakness

ID	ML technique	Strength and Weakness
A1	SVM	Weakness: * Soft margin SVM can't be used for novel attacks because it needs preacquired learning info * One-class SVM is difficult to use in real world because of high false positive rate
A8	k-Means clustering + C4.5 decision tree	Weakness: Cascading the k-Means clustering method with C4.5 decision tree learning alleviates two problems in k-Means clustering: 1) the Forced Assignment problem and 2) the Class Dominance problem.
А9	SVM + decision trees (DT) + Simulated annealing (SA)	Strength: SVM and SA can find the best selected features to elevate the accuracy of anomaly intrusion detection, and by analyzing the informatioon from using KDD'99 dataset DT, and SA can obtain rules for new attacks and can really improve accuraacy of classification
A87	Niche Clustering	Strength: UNC can handle noise
A88	Naïve Bayes with adaboost	Strength: low computation time
A90	Relevance Vector Machine (RVM) and Dynamic Bayesian Network	Strength: Their model is good for limit checking
A93	one class SVM (OCSVM)	Strength: No need for sample data with free anomalies
A94	SVM + DNN	Weakness: Dificulties in detecting gradual changes of sensor methods and detecting anomalous actuator behavior Strength: SVM takes approximatly 30 mins only to train
A97	Recursive Least Squares (RLS)	Weakness: low True Positive Rate
A98	OneClassSVM + Local Outlier Factor LOF + isolation forest + Elliptic Envelope	Weakness: Their model requires large aamount of data with good coverage Strength: Good performance and very effective in anomaly detecion
A105	SVM	Strength: SVM reduces computing complexity
A107	LERAD +CLAD	Weakness: LERAD assumes the training data are free of attacks Clad does not aim to generate a concise model and doesnt explain alerts well
A108	LR RF	Weakness: High detection accuracy Strength: Low categorizing accuracy

A111	centered	Strength:
	hyperellipsoidal support vector	CESVM is flexible in terms of parameter selection
	machine CESVM	parameter selection
A116	one class SVM	Strength:
7.220	(OCSVM)	One-Class SVM achieves better
	,	accuracy rates than the conventional
		anomaly detectors.
A117	PCA	Strength:
		PCA substantially reduces the
		effectiveness of poisoning for a variety
		of scenarios and maintains a
		significantly better balance between false positives and false negatives than
		the original method when under attack
A119	Fuzzy Rough C-means	Strength:
7123	ruzzy nough e meuns	FRCM integrates the advantage of
		Fuzzy set theory and rough set theory
		that the improved algorithm to
		network intrusion detection
A121	Extreme learning	Strength:
	machine (ELM)	ELM hidden layer parameters are
A422	mandam Court (DC)	assigned randomly
A122	random forest (RF)	Strength: In random forests algorithm, there is
		no need for crossvalidation or a test
		set to get an unbiased estimate of the
		test error. Since each tree is
		constructed using the bootstrap
		sample
A123	convolutional neural	Strength:
	network (CNN) + long	The combination of CNN and+C14
	short-term memory (LSTM) + deep neural	LSTM can effectively extract features
	network (DNN)	
A125	LibSVM	Strength:
		LibSVM is simple to use and high
		precision
A128	Extreme Learning	Strength:
	Machine (ELM)	ELM for the single hidden layer feed
4420	CVAA and CVA	forward neural networks.
A130	SVM and SVR	
		Strength:
		Their model can be used to avoid
		Their model can be used to avoid difficulties of using linear functions in
		Their model can be used to avoid
		Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space
		Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space and optimization problem is transformed into dual convex quadratic programming
A131	Decision Tree (DT)	Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space and optimization problem is transformed into dual convex quadratic programming Strength:
A131		Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space and optimization problem is transformed into dual convex quadratic programming Strength: By tracking the nodes from the root of
A131		Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space and optimization problem is transformed into dual convex quadratic programming Strength: By tracking the nodes from the root of the tree based on the feature values of
A131		Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space and optimization problem is transformed into dual convex quadratic programming Strength: By tracking the nodes from the root of the tree based on the feature values of an example, we can get the predicted
A131		Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space and optimization problem is transformed into dual convex quadratic programming Strength: By tracking the nodes from the root of the tree based on the feature values of
-	Decision Tree (DT)	Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space and optimization problem is transformed into dual convex quadratic programming Strength: By tracking the nodes from the root of the tree based on the feature values of an example, we can get the predicted class of it. Weakness:
-	Decision Tree (DT)	Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space and optimization problem is transformed into dual convex quadratic programming Strength: By tracking the nodes from the root of the tree based on the feature values of an example, we can get the predicted class of it.
-	Decision Tree (DT)	Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space and optimization problem is transformed into dual convex quadratic programming Strength: By tracking the nodes from the root of the tree based on the feature values of an example, we can get the predicted class of it. Weakness: Low complexity classification learning
-	Decision Tree (DT)	Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space and optimization problem is transformed into dual convex quadratic programming Strength: By tracking the nodes from the root of the tree based on the feature values of an example, we can get the predicted class of it. Weakness: Low complexity classification learning technique on present hardware speed
A141	Decision Tree (DT) rule based decision tree (RBDT)	Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space and optimization problem is transformed into dual convex quadratic programming Strength: By tracking the nodes from the root of the tree based on the feature values of an example, we can get the predicted class of it. Weakness: Low complexity classification learning technique on present hardware speed and easy analysis is required to estimate the decision on classified patterns.
-	Decision Tree (DT)	Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space and optimization problem is transformed into dual convex quadratic programming Strength: By tracking the nodes from the root of the tree based on the feature values of an example, we can get the predicted class of it. Weakness: Low complexity classification learning technique on present hardware speed and easy analysis is required to estimate the decision on classified patterns. Strength:
A141	Decision Tree (DT) rule based decision tree (RBDT)	Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space and optimization problem is transformed into dual convex quadratic programming Strength: By tracking the nodes from the root of the tree based on the feature values of an example, we can get the predicted class of it. Weakness: Low complexity classification learning technique on present hardware speed and easy analysis is required to estimate the decision on classified patterns. Strength: - SOM discover the hidden structure or
A141	Decision Tree (DT) rule based decision tree (RBDT)	Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space and optimization problem is transformed into dual convex quadratic programming Strength: By tracking the nodes from the root of the tree based on the feature values of an example, we can get the predicted class of it. Weakness: Low complexity classification learning technique on present hardware speed and easy analysis is required to estimate the decision on classified patterns. Strength: - SOM discover the hidden structure or pattern in the training data
A141	Decision Tree (DT) rule based decision tree (RBDT)	Their model can be used to avoid difficulties of using linear functions in the high dimensional feature space and optimization problem is transformed into dual convex quadratic programming Strength: By tracking the nodes from the root of the tree based on the feature values of an example, we can get the predicted class of it. Weakness: Low complexity classification learning technique on present hardware speed and easy analysis is required to estimate the decision on classified patterns. Strength: - SOM discover the hidden structure or

A155	naïve Bayesian classifier	Weakness: - false positive rate needs to be improved Strength: - One of the simplest and effective classifiers
A160	one class extreme learning machine Kernel (ELMk)	Strength: Fast learning and better generalization
A168	D-Markov machine with symbolic false nearest neighbors	Strength: The efficiency of numerical computation is significantly enhanced relative to what can be achieved by direct analysis of the original time series data
A170	correlational paraconsistent machine (CPM)	Weakness: Applications often face uncertainties and inconsistencies when required to characterize and analyze network traffic. Most of the time, the processed data may be incomplete or permeated with noise
A171	Negative selection + multilayer neural network (backprogagation) + evolutionary algorithm	Strength: Their model does not depend on any specific type of classification algorithm
A174	LERAD	Weakness: LERAD issues false alarms, because unusual events are not always hostile Strength: Can sometimes detect previously unknown attacks
A176	Adaboost + SVM + Entropy	Adaboost Weakness: Poor behavior on noisy data, the low level of noise in our data makes the learning conditions ideal Entropy strength: Much more robust to noise Overall Strength: Scalable algorithms that are guaranteed to converge with predictable performance
A180	SVM + GA with Neural Kernel	Strength: Efficient optimization of both features and parameters for detection models
A185	Stacked Autoencoder (SAE)	Strength: Their model self learns the features necessary to detect network anomalies and is able to perform attack classification accurately
A187	k-means clustering	Strength: K-means only requires pairwise distance of data, and the algorithm does not require the distance to be metric
A188	SOM + J.48 decision tree	Strength: Model is very robust, fast and simple.
A189	LSTM, NN	Strength: Their model adapts to new log paterns over time
A190	two-class SVM with a Radial Basis Function (RBF) kernel	perform in a continuous monitoring situation
A192	Bayesian estimation	Weakness: Model has high false alarm rate

A193	evolutionary neural networks	Strength: -Evolutionary approach can reduce the learning time as well as it has advantage that the near optimal network structure can be obtained ENN does not require trial and error cycles for designing the network structure and the near optimal structure can be obtained automatically
A194	3D convolutiona AutoEncoder	Strength: Highly effective in various computer vision tasks, as well as anomaly detection
A198	Auto encoder based on Artificial Neural networks	Strength: Efficiently reconstruct inputs that closely resemble normal network traffic but poorly reconstructs anomalous or attack inputs
A199	Random Forest algorithm and regression tree	Strength: Enhance the generalisation of the learning algorithm and can thereby produce better results than when using single classifiers
A202	swarm intelligence- based clustering	Strength: Model has increased detection accuracy and efficiency. As well as intersting properties such as flexibility, robustness, decentralization and self- organization
A204	Ensemble learning + AE+ SVR + RF	Strength: Reduced false alarm rate, and improved sensitivity
A209	Stochastic gradient boosting	Strength: Stochastic gradient boosting highly improve the quality of the top ranked items
A213	Recurrent Neural Networks (RNN)	Strength: RNN is capable of learning complex temporal sequence
A218	K-mean + SMO	Weakness: Takes more time than simple classification or clustering
A219	most relevant principal components + neural networks	Strength: adapt to the dynamics in a time window and at the same time consider the values of cloud performance metrics in previous windows
A225	Fuzzy Adaptive Resonance Theory + Evolving Fuzzy Neural Networks + SVM	Strength: can significantly reduce the false alarm rate while the attack detection rate remains high
A229	Conditional anomaly detection	Strength: takes into account the difference between the userspecified environmental and indicator attributes during the anomaly detection process "anomaly."
A231	Bayesian Networks	Strength: can learn cyclical baselines for gas concentrations, thus reducing false alarms usually caused by flatline thresholds
A232	Naive Bayes with adaboost	Strength: AdaBoost's computational complexity is generally lower than SOM, ANN and SVM.

[22]

2009

A233	Negative and positive selection + C4.5 and Naïve Bayes	Strength: the increased ability of classifiers in identifying both previously known and innovative anomalies, and the maximal degradation of overfitting phenomenon	
A240	Deep Neural Network	have an inherent problem linked to model visibility and interpretation nal Weakness:	
A253	fully convolutional neural network		
A255	Neural networks	Strength: Neural networks are based on the concepts of statistical pattern recognition and have emerged as a practical technology	
A259	Frequent itemset mining (FIM) + C5.0 + decision tree	Strength: conceptually simple and, therefore, easy to understand and configure by a network operator	
A275	LSTM-RNN	Strength: ability to learn the behavior of a training set, and in this stage it acts like a time series anomaly detection model	
A277	Ensemble learning	Strength: known to produce more robust results. For example, bootstrap aggregating (or bagging) tends to reduce problems related to overfitting to the training data	

Table 6. Related Work Summary

Tuble of Related Work Building			
Year	Summary	Differences between their review and ours	
2004	This survey provides an overview of the techniques of outlier detection: classification-based, clustering based, nearest neighbour based, and statistical.	It covers outlier detection techniques, but it was published in 2004. Moreover, our work shows the estimation accuracy of ML models as well the type of anomaly detection.	
2007	In this survey, the authors provide a comprehensive review of techniques and solutions in anomaly detection. They indicate methods for statistical identification of anomalies, anomaly detection based on machine learning, sequence analysis based on system call, etc.	It covers anomaly detection techniques before 2007. Ours covers work up to 2019.	
2009	This survey is similar to [15]. The authors include several techniques of machine learning and non-machine learning. They also include anomaly detection applications.	This survey covered machine learning techniques before 2009. Our work includes additionally, an estimation of the accuracy of each ML model as well as the	
	2004 2007	This survey provides an overview of the techniques of outlier detection: classification-based, clustering based, nearest neighbour based, and statistical. In this survey, the authors provide a comprehensive review of techniques and solutions in anomaly detection. They indicate methods for statistical identification of anomalies, anomaly detection based on machine learning, sequence analysis based on system call, etc. This survey is similar to [15]. The authors include several techniques of machine learning and nonmachine learning and nonmachine learning. They also include anomaly	

	[7]	2011	network anomaly identification. They classified the methods into: Distance-based, density-based, and machine learning.	learning based techniques before 2011, while ours covers the period up to 2019.
	[10]	2012	In this survey, the authors present a detailed overview of detecting anomalies in discrete/symbolic sequence. They reveal the strength and weaknesses of techniques discussed prior to 2012.	It covers anomaly detection for discrete sequence in particular. In contrast, our work is more general.
	[21]	2012	The authors present anomaly intrusion detection methods in this survey and clarify its evolution. Machine learning methods, neural network, computer immunology, and data mining were included.	It covers anomaly intrusion techniques until 2012. Our study covers research up to 2019.
	[17]	2012	In this survey, the authors provide anomaly detection techniques in automated surveillance. They provide different models and classification algorithms such as dynamic Bayesian network, Bayesian topic models, artificial neural network, clustering, decision tree, and fuzzy reasoning.	In specific, it includes anomaly detection methods in automated surveillance. Our work, on the other hand, is more general.
_	[11]	2013	In this survey, the authors addressed the causes and aspects of network anomalies. They add performance metrics and intrusion detection systems evaluation and provide a list of tools and research issues.	It covers network anomaly detection in particular. Our work differs in that it is more general, and includes an estimation of the accuracy of each ML model as well the type of anomaly detection used.
	[25]	2013	In this survey, the authors present machine learning methods in network intrusion detection system with particle swarm optimization for anomaly detection. They provide intrusion detection system types and present each technique's advantages and disadvantages.	It covers machine learning and particle swarm optimization techniques up to 2013
	[20]	2015	In this survey, the authors provide a comprehensive analysis of performance anomaly detection and identification of bottleneck.	It covers anomaly detection and performance of bottlenecks in particular. On the other hand, our work is more

In computing systems, they general, and includes the

In this survey, 55 associated studies on single, hybrid and ensemble classifiers are

reviewed by the authors.

Furthermore, a comparison is provided between the

In this survey, the authors provide a comprehensive

outlier detection method for

studies.

type of anomaly detection.

anomaly

techniques

covers

between 2000 and 2007.

It covers distance-based,

density-based and machine

It

intrusion

[9]

2019

		identified various types of common anomalies and the techniques and strategies for detecting them.	estimation accuracy of each ML model as well the type of anomaly detection used.
[16]	2015	In this survey, the authors review various clustering-based anomaly detection techniques and they provide comparison between the techniques.	It covers the techniques of fraud detection in particular. Our work is more general, and it includes an estimation of the accuracy of each ML model as well the type of anomaly detection used.
[8]	2015	Data mining methods are presented in this survey under four task classes: learning association rule, clustering, classification, and regression.	It includes various anomaly detection methods that focus on data mining methods.
[19]	2016	The authors provide six techniques for identification of anomalies in this survey. They compare their accuracy and effectiveness. They also published an open-source toolkit of the techniques used for identification of anomalies that were discussed in the survey.	It covers anomaly detection in system log analysis in particular. In contrast, our work is more general, and it includes an estimation of the accuracy of each ML model as well as the type of anomaly detection.
[24]	2016	This article includes an extensive overview of the techniques of machine learning and data mining for intrusion detection cyber analytics, discussions, difficulties and some recommendations.	It includes both machine learning and intrusion detection methods, butour research
[18]	2017	The authors present the methods of machine learning that define geochemical anomalies in this survey. In addition, the survey discusses techniques of analysis such as principle component analysis (PCA) and the analysis of the factor.	It covers geochemical Anomalies in particular. However, our work is more general, and focuses on ML techniques and their performance.
[28]	2017	The authors present an overview of methods of detection of anomalies and deep learning techniques in this survey. They also address the feasibility of using deep learning to detect network anomalies.	It includes deep learning methods for detecting anomalies in network intrusion systems, while our research
[29]	2018	In this survey, the authors examine the most significant elements of anomaly detection in five areas: anomalies in network traffic, types of network data, and categories of intrusion detection technologies, techniques and systems detection, and open issues of unresolved problems.	It covers network anomaly detection in particular. Our work is more general and includes an estimation of the accuracy of each ML model as well the type of anomaly detection.
[30]	2018	In this survey, the authors present a comprehensive understanding of anomaly detection, techniques, to	It includes the detection of anomalies for cyber security and safety of connected vehicles. On the

detection

ensure both the cyber safety of security and connected vehicles. In addition, they researched 65 research articles and established a novel taxonomy, then classified the articles. In this survey, the authors present an explanation of other hand, our work is more general, including the accuracy of evaluation of each ML model, as well as the type of identification of anomalies.

the articles.

In this survey, the authors present an explanation of important contexts of real-time big data processing, detection of anomalies, and machine learning algorithms. They acknowledge the real-time big data processing research challenges in detecting

anomalies.

It includes the detection of anomalies in the real-time processing of big data. In contrast, our work is more general, and it includes an estimation of the accuracy of each ML, model as well the type of anomaly detection.

VOLUME XX, 2017 3

techniques to connected vehicles. On the

D	TITLE	TYPE	YEAR	REFS
.1	"A hybrid machine learning approach to network anomaly detection"	Jour.	2007	[31]
.2	"High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning"	Jour.	2016	[32]
3	"Network anomaly detection with the restricted Boltzmann machine"	Conf.	2013	[13]
4	"Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety case study"	Conf.	2010	[33]
5	"Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery"	Conf.	2017	[3]
5	"Enhancing one-class support vector machines for unsupervised anomaly detection"	Jour.	2013	[34]
7	"The practice on using machine learning for network anomaly intrusion detection"	Conf.	2011	[35]
8	"Network Anomaly Detection by Cascading K-Means Clustering and C4.5 Decision Tree algorithm"	Conf.	2012	[36]
9	"An intelligent algorithm with feature selection and decision rules applied to anomaly intrusion detection"	Jour.	2012	[37]
10	"An analysis of supervised tree based classifiers for intrusion detection system"	Conf.	2013	[38]
11	"A novel hybrid intrusion detection method integrating anomaly detection with misuse detection"	Jour.	2013	[39]
12	"Performance Metric Selection for Autonomic Anomaly Detection on Cloud Computing Systems"	Conf.	2011	[40]
13	"A novel unsupervised classification approach for network anomaly detection by k- Means clustering and ID3 decision tree learning methods"	Jour.	2009	[41]
14	"Anomaly detection using Support Vector Machine classification with k-Medoids clustering"	Conf.	2012	[42]
15	"A comparative analysis of SVM and its stacking with other classification algorithm for intrusion detection"	Conf.	2016	[43]
16	"FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection"	Jour.	2011	[44]
17	"AnyOut: Anytime Outlier Detection on Streaming Data"	Conf.	2012	[45]
18	"Real-Time Anomaly Detection Framework for Many-Core Router through Machine- Learning Techniques"	Jour.	2016	[46]
19	"Ensemble-learning Approaches for Network Security and Anomaly Detection"	Conf.	2017	[47]
20	"Anomaly Detection Using an Ensemble of Feature Models"	Conf.	2011	[48]
21	"Network intrusion detection with Fuzzy Genetic Algorithm for unknown attacks"	Conf.	2013	[49]
22	"Intrusion detection in SCADA systems using machine learning techniques"	Conf.	2014	[50]
23	"A machine learning framework for network anomaly detection using SVM and GA"	Conf.	2005	[51]
24	"Anomaly-based network intrusion detection: Techniques, systems and challenges"	Jour.	2008	[52]
25	"Evolutionary neural networks for anomaly detection based on the behavior of a program"	Conf.	2005	[53]
26	"Anomaly detection in aircraft data using Recurrent Neural Networks (RNN)"	Conf.	2016	[54]
27	"Centered Hyperspherical and Hyperellipsoidal One-Class Support Vector Machines for Anomaly Detection in Sensor Networks"	Conf.	2010	[55]
28	"Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction"	Conf.	2014	[56]
29	"Hybrid Approach for Detection of Anomaly Network Traffic using Data Mining Techniques"	Conf.	2012	[57]
30	"Intrusion Detection System (IDS): Anomaly Detection Using Outlier Detection Approach"	Conf.	2015	[58]
31	"Flow-based anomaly detection in high-speed links using modified GSA-optimized neural network"	Jour.	2012	[59]
32	"Anomaly detection in vessel tracks using Bayesian networks"	Jour.	2013	[60]
33	"Opprentice: Towards Practical and Automatic Anomaly Detection Through Machine Learning"	Conf.	2015	[61]
34	"Unsupervised Clustering Approach for Network Anomaly Detection"	Conf.	2012	[62]
35	"Fuzzy logic-based anomaly detection for embedded network security cyber sensor"	Conf.	2011	[63]
36	"Sequential anomaly detection based on temporal-difference learning: Principles, models and case studies"	Jour.	2009	[64]
37	"Analysis of network traffic features for anomaly detection"	Jour.	2014	[65]
38	"Anomaly Detection System in Cloud Environment Using Fuzzy Clustering Based ANN"	Jour.	2015	[66]
39	"A Hybrid Network Anomaly and Intrusion Detection Approach Based on Evolving	Conf.	2014	[67]

A41	"Unsupervised real-time anomaly detection for streaming data"	Jour.	2017	[69]
A42	"Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model"	Jour.	2017	[70]
A43	"MADAM: A Multi-level Anomaly Detector for Android Malware"	Conf.	2012	[71]
A44	"Anomaly Detection Through a Bayesian Support Vector Machine"	Jour.	2010	[72]
A45	"Sleep stage classification using unsupervised feature learning"	Jour.	2012	[73]
A46	"Toward a more practical unsupervised anomaly detection system"	Jour.	2011	[74]
A47	"A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks"	Jour.	2017	[75]
A48	"An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection"	Jour.	2011	[76]
149	"Anomaly Detection in GPS Data Based on Visual Analytics"	Conf.	2010	[77]
150	"A data mining approach for fault diagnosis: An application of anomaly detection algorithm"	Jour.	2014	[78]
51	"Systematic construction of anomaly detection benchmarks from real data"	Jour.	2013	[79]
52	"Anomaly detection in streaming environmental sensor data: A data-driven modeling	Jour.	2009	[80]
153	approach" "Anomaly Detection in Medical Wireless Sensor Networks using Machine Learning Algorithms"	Conf.	2015	[81]
54	"Anomaly intrusion detection based on PLS feature extraction and core vector machine"	Jour.	2012	[82]
155	"Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery"	Jour.	2017	[83]
56	"A close look on n-grams in intrusion detection: anomaly detection vs. classification"	Conf.	2013	[84]
57	"Robust tensor subspace learning for anomaly detection"	Jour.	2011	[85]
.58	"Anomaly Detection with Robust Deep Autoencoders"	Conf.	2017	[86]
.59	"UBL: unsupervised behavior learning for predicting performance anomalies in virtualized cloud systems"	Conf.	2012	[87]
.60	"Direct Robust Matrix Factorizatoin for Anomaly Detection"	Conf.	2011	[88]
61	"Anomaly Detection via Online Oversampling Principal Component Analysis"	Jour.	2012	[89]
.62	"Generic and Scalable Framework for Automated Time-series Anomaly Detection"	Conf.	2015	[90]
.63	"Sensor fault and patient anomaly detection and classification in medical wireless sensor networks"	Conf.	2013	[91]
64	"Anomaly Detection for Hyperspectral Images Based on Robust Locally Linear Embedding"	Jour.	2010	[92]
165	"A Robust Nonlinear Hyperspectral Anomaly Detection Approach"	Jour.	2014	[93]
166	"Anomaly detection based on eccentricity analysis"	Conf.	2014	[94]
.67	"Data stream anomaly detection through principal subspace tracking"	Jour.	2010	[95]
.68	"A Neural Network Based Anomaly Intrusion Detection System"	Conf.	2011	[96]
.69	"Network anomaly detection through nonlinear analysis"	Jour.	2010	[97]
.70	"Frequency-based anomaly detection for the automotive CAN bus"	Conf.	2015	[98]
.71	"Context-Aware Activity Recognition and Anomaly Detection in Video"	Conf.	2012	[99]
72	"An Anomaly Detection Framework for Autonomic Management of Compute Cloud Systems"	Conf.	2010	[100]
.73	"Anomaly detection on time series" "Self-adaptive and dynamic clustering for online anomaly detection"	Conf. Jour.	2010 2011	[101] [102]
75	"An anomaly-based botnet detection approach for identifying stealthy botnets"	Conf.	2011	[102]
.76	"Anomaly detection in ECG time signals via deep long short-term memory networks"	Conf.	2015	[104]
.77	"Detecting anomalies in people's trajectories using spectral graph analysis"	Jour.	2013	[104]
.78	"Hybrid Deep-Learning-Based Anomaly Detection Scheme for Suspicious Flow	Jour.	2019	[103]
.79	Detection in SDN: A Social Multimedia Perspective" "An intelligent intrusion detection system (IDS) for anomaly and misuse detection in	Jour.	2005	[107]
.80	computer networks" "Learning classifiers for misuse and anomaly detection using a bag of system calls	Conf.	2005	[108]
81	representation" "Anomaly detection based on unsupervised niche clustering with application to network	Conf.	2004	[109]
82	intrusion detection" "A Discriminative Framework for Anomaly Detection in Large Videos"	Conf.	2016	[110]
.83	"Anomaly Detection by Using CFS Subset and Neural Network with WEKA Tools"	Conf.	2018	[111]
	, ,			. ,

A84	"Online Learning and Sequential Anomaly Detection in Trajectories"	Jour.	2013	[112]
A85 A86	"Expected similarity estimation for large-scale batch and streaming anomaly detection" "Self-Taught Anomaly Detection With Hybrid Unsupervised/Supervised Machine Learning in Optical Networks"	Jour. Jour.	2016 2019	[113] [114]
A87	"Anomaly detection based on unsupervised niche clustering with application to network intrusion detection"	Conf.	2004	[109]
188	"Two-tier network anomaly detection model: a machine learning approach"	Jour.	2015	[115]
89	"Real-time network anomaly detection system using machine learning"	Conf.	2015	[116]
190	"Telemetry-mining: a machine learning approach to anomaly detection and fault diagnosis for space systems"	Conf.	2006	[117]
.91	"Machine learning-based anomaly detection for post-silicon bug diagnosis"	Conf.	2013	[118]
.92	"Improving one-class SVM for anomaly detection"	Conf.	2003	[119]
.93	"Machine Learning Approach for IP-Flow Record Anomaly Detection"	Conf.	2011	[120]
194	"Anomaly Detection for a Water Treatment System Using Unsupervised Machine Learning"	Conf.	2017	[121]
.95	"Network anomaly detection based on TCM-KNN algorithm"	Conf.	2007	[122]
196	"Seeing the invisible: forensic uses of anomaly detection and machine learning"	Jour.	2008	[123]
197	"Anomaly Detection in Sensor Systems Using Lightweight Machine Learning"	Conf.	2013	[124]
198	"Anomaly Detection on Shuttle data using Unsupervised Learning Techniques"	Conf.	2019	[125]
100	"Weighting technique on multi-timeline for machine learning-based anomaly detection system"	Conf.	2015	[126]
100	"Anomaly Detection for Key Performance Indicators Through Machine Learning"	Conf.	2018	[127]
101	"Unsupervised Anomaly Detection in Time Series Using LSTM-Based Autoencoders"	Conf.	2019	[128]
102	"Research and application of One-class small hypersphere support vector machine for network anomaly detection" "Anomaly detection in network traffic using extreme learning machine"	Conf.	2011	[129]
104	"Deep Learning for Network Anomalies Detection"	Conf.	2010	[130]
105	"Using Immune Algorithm to Optimize Anomaly Detection Based on SVM"	Conf.	2016	[131]
105		Conf.		
100	"Detecting Anomalies in Application Performance Management System with Machine Learning Algorihms" "Learning Rules and Clusters for Anomaly Detection in Network Traffic"	Jour.	2019	[133]
108	"Machine Learning for Anomaly Detection and Categorization in Multi-Cloud Environments"	Conf.	2017	[135]
109	"An Anomaly Detection Scheme Based on Machine Learning for WSN"	Conf.	2009	[136]
110	"Enhanced Network Anomaly Detection Based on Deep Neural Networks"	Jour.	2018	[137]
1111	"CESVM: Centered Hyperellipsoidal Support Vector Machine Based Anomaly Detection"	Conf.	2008	[138]
1112	"Anomaly Detection in Electrical Substation Circuits via Unsupervised Machine Learning"	Conf.	2016	[139]
113	"An anomaly intrusion detection method using the CSI-KNN algorithm"	Conf.	2008	[140]
A114 A115	"K-Means+ID3: A Novel Method for Supervised Anomaly Detection by Cascading K-Means Clustering and ID3 Decision Tree Learning Methods" "Toward a ralichle anomaly based intension detection is real world anvironments."	Jour.	2007	[141]
	"Toward a reliable anomaly-based intrusion detection in real-world environments"	Jour.	2016	[142]
116	"Anomaly intrusion detection using one class SVM" "ANTIDOTE: understanding and defending against poisoning of anomaly detectors"	Conf.	2004 2009	[143] [144]
1118	"Network traffic anomaly detection using clustering techniques and performance	Conf.	2013	[145]
119	comparison" "Anomaly-Based Intrusion Detection using Fuzzy Rough Clustering"	Conf.	2006	[146]
120	"The Anomaly Detection by Using DBSCAN Clustering with Multiple Parameters"	Conf.	2011	[147]
121	"Anomaly detection in traffic using L1-norm minimization extreme learning machine"	Jour.	2015	[148]
122	"Anomaly Based Network Intrusion Detection with Unsupervised Outlier Detection"	Conf.	2006	[149]
123	"Web traffic anomaly detection using C-LSTM neural networks"	Jour.	2018	[150]
124	"Android anomaly detection system using machine learning classification"	Conf.	2015	[148]
125	"Anomaly Detection Using LibSVM Training Tools"	Conf.	2008	[151]
126	"Unsupervised SVM Based on p-kernels for Anomaly Detection"	Conf.	2006	[152]
127	"A Method for Anomaly Detection of User Behaviors Based on Machine Learning"	Jour.	2006	[153]
	•			

A128	"Anomaly-Based Intrusion Detection Using Extreme Learning Machine and Aggregation of Network Traffic Statistics in Probability Space"	Jour.	2018	[154]
A129	"Ramp loss one-class support vector machine; A robust and effective approach to anomaly detection problems"	Jour.	2018	[155]
A130	"Estimation of subsurface temperature anomaly in the Indian Ocean during recent global surface warming hiatus from satellite measurements: A support vector machine approach"	Jour.	2015	[156]
A131	"Anomaly Detection Model Based on Hadoop Platform and Weka Interface"	Conf.	2016	[157]
A132	"Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches"	Jour.	2019	[158]
A133	"Deep and Machine Learning Approaches for Anomaly-Based Intrusion Detection of Imbalanced Network Traffic"	Jour.	2018	[159]
134	"Anomaly Detection in Computer Security and an Application to File System Accesses"	Conf.	2005	[160]
135	"Network traffic anomaly detection using machine learning approaches"	Conf.	2012	[161]
136	"ManetSVM: Dynamic anomaly detection using one-class support vector machine in MANETs"	Conf.	2013	[162]
137	"Semi-Supervised Anomaly Detection for EEG Waveforms Using Deep Belief Nets"	Conf.	2010	[163]
138	"Using Machine Learning for Behavior-Based Access Control: Scalable Anomaly Detection on TCP Connections and HTTP Requests"	Conf.	2013	[164]
139	"Applying machine learning classifiers to dynamic android malware detection at scale"	Conf.	2013	[165]
A140	"Big Data Analytics for User-Activity Analysis and User-Anomaly Detection in Mobile Wireless Network"	Jour.	2017	[166]
1141	"Anomaly detection using machine learning with a case study"	Conf.	2014	[167]
1142	"Octopus-IIDS: An anomaly based intelligent intrusion detection system"	Conf.	2010	[168]
A143 A144	"A hybrid method based on genetic algorithm, self-organised feature map, and support vector machine for better network anomaly detection"	Conf.	2013	[169]
	"Anomaly Detection Support Vector Machine and Its Application to Fault Diagnosis"	Conf.	2008	[170]
1145	"Evaluation of Machine Learning-based Anomaly Detection Algorithms on an Industrial Modbus/TCP Data Set"	Conf.	2018	[171]
146	"Network Anomaly Traffic Detection Method Based on Support Vector Machine"	Conf.	2016	[172]
147	"Anomaly detection of spacecraft based on least squares support vector machine"	Conf.	2011	[173]
A148 A149	"A Model Based on Hybrid Support Vector Machine and Self-Organizing Map for Anomaly Detection" "Anomaly detection in wide area network meshes using two machine learning algorithms"	Conf. Jour.	2010	[174]
1150		Conf.	2019	
151	"Image Anomaly Detection with Generative Adversarial Networks"		2019	[176]
152	"Performance evaluation of BGP anomaly classifiers"	Conf.		[177]
	"An uncertainty-managing batch relevance-based approach to network anomaly detection"	Jour.	2015	[178]
153	"Energy Consumption Data Based Machine Anomaly Detection"	Conf.	2014	[167]
154	"A Novel Algorithm for Network Anomaly Detection Using Adaptive Machine Learning"	Conf.	2017	[179]
155	"Thermal anomaly prediction in data centers"	Conf.	2010	[180]
156	"On the symbiosis of specification-based and anomaly-based detection"	Jour.	2010	[181]
157	"A holistic smart home demonstrator for anomaly detection and response"	Conf.	2015	[182]
158	"Online Anomaly Detection in Crowd Scenes via Structure Analysis"	Jour.	2014	[183]
A159	"Hierarchical Temporal Memory Based Machine Learning for Real-Time, Unsupervised Anomaly Detection in Smart Grid: WiP Abstract"	Conf.	2020	[184]
160	"One-class extreme learning machines for gas turbine combustor anomaly detection"	Conf.	2016	[185]
161	"Recurrent Neural Network Attention Mechanisms for Interpretable System Log Anomaly Detection"	Conf.	2018	[186]
162	"Anomaly detection based on profile signature in network using machine learning technique"	Conf.	2016	[187]
A163	"Nonlinear structure of escape-times to falls for a passive dynamic walker on an irregular slope: Anomaly detection using multi-class support vector machine and latent state extraction by canonical correlation analysis"	Conf.	2011	[188]
164	"A Self-Adaptive Deep Learning-Based System for Anomaly Detection in 5G Networks"	Jour.	2018	[189]
165	"RoADS: A Road Pavement Monitoring System for Anomaly Detection Using Smart Phones"	Conf.	2016	[190]
166	"Unitary Anomaly Detection for Ubiquitous Safety in Machine Health Monitoring"	Conf.	2012	[191]
167	"An HMM-Based Anomaly Detection Approach for SCADA Systems"	Conf.	2016	[192]
168	"Symbolic time series analysis for anomaly detection: A comparative evaluation"	Jour.	2005	[193]
	, and the same of			[]

A169	"Anomaly Detection Using Real-Valued Negative Selection"	Jour.	2003	[194]
A170	"Anomaly detection using the correlational paraconsistent machine with digital signatures of network segment"	Jour.	2017	[195]
A171	"Combining negative selection and classification techniques for anomaly detection"	Conf.	2002	[196]
172	"A Geometric Framework for Unsupervised Anomaly Detection"	Jour.	2002	[197]
173	"Monitoring Smartphones for Anomaly Detection"	Jour.	2008	[198]
174	"Learning rules for anomaly detection of hostile network traffic"	Conf.	2003	[199]
175	"System Anomaly Detection: Mining Firewall Logs"	Conf.	2006	[200]
176	"Rule-Based Anomaly Detection on IP Flows"	Conf.	2009	[201]
177	"Is negative selection appropriate for anomaly detection?"	Conf.	2005	[202]
178	"Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm"	Jour.	2018	[203]
179	"Stealthy poisoning attacks on PCA-based anomaly detectors"	Jour.	2009	[204]
180	"Fusions of GA and SVM for Anomaly Detection in Intrusion Detection System"	Conf.	2005	[205]
181	"Deep Learning Anomaly Detection as Support Fraud Investigation in Brazilian Exports and Anti- Money Laundering"	Conf.	2016	[206]
183	"At DO: An Anomaly Detection Method for Spacecraft Using Relevance Vector Learning"	Conf.	2005	[207]
184	"ADMIT: anomaly based data mining for intrusions"	Conf.	2009	[208]
184	"ADMIT: anomaly-based data mining for intrusions"	Conf.	2002	[209]
186	"IEEE 802.11 Network Anomaly Detection and Attack Classification: A Deep Learning Approach" "Defying the gravity of learning curve: a characteristic of nearest neighbour anomaly detectors"	Conf. Jour.	2017	[210]
187	"Detecting Anomaly in Videos from Trajectory Similarity Analysis"	Conf.	2007	[211]
188	"An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer	Jour.	2007	[107]
100	networks"	Jour.	2003	[107]
189	"DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning"	Conf.	2017	[213]
190	"Anomaly detection in earth dam and levee passive seismic data using support vector machines and automatic feature selection"	Jour.	2017	[214]
191	"MS-LSTM: A multi-scale LSTM model for BGP anomaly detection"	Conf.	2016	[215]
192	"SAD: web session anomaly detection based on parameter estimation"	Jour.	2004	[216]
193	"Evolutionary Learning Program's Behavior in Neural Networks for Anomaly Detection"	Conf.	2004	[217]
194	"Spatio-Temporal AutoEncoder for Video Anomaly Detection"	Conf.	2017	[218]
195 196	"Robust feature selection and robust PCA for internet traffic anomaly detection"	Conf.	2012	[219]
196	"Deep Anomaly Detection with Deviation Networks"	Conf.	2019	[220]
	"Machine learning and transport simulations for groundwater anomaly detection"	Jour.	2020	[221]
198 199	"Unsupervised machine learning for network-centric anomaly detection in IoT"	Conf.	2019	[222]
	"Hybrid Machine Learning for Network Anomaly Intrusion Detection"	Conf.	2020	[223]
200 201	"An anomaly prediction framework for financial IT systems using hybrid machine learning methods" "Kernel Eigenspace Separation Transform for Subspace Anomaly Detection in Hyperspectral	Jour. Jour.	2019	[224]
	Imagery"			
202	"An unsupervised anomaly intrusion detection algorithm based on swarm intelligence"	Conf.	2005	[226]
203	"Maritime situation analysis framework: Vessel interaction classification and anomaly detection"	Conf.	2015	[227]
204	"An ensemble learning framework for anomaly detection in building energy consumption"	Jour.	2017	[228]
205 206	"Ensemble methods for anomaly detection and distributed intrusion detection in Mobile Ad-Hoc Networks" "Unsupervised Anomaly Intrusion Detection via Localized Bayesian Feature Selection"	Jour. Conf.	2008	[229]
207	· · · · · · · · · · · · · · · · · · ·			
	"McPAD: A multiple classifier system for accurate payload-based anomaly detection"	Jour.	2009	[231]
208	"Detecting errors within a corpus using anomaly detection"	Conf.	2000	[232]
209	"Efficient Top Rank Optimization with Gradient Boosting for Supervised Anomaly Detection"	Conf.	2017	[233]
210	"Semi-supervised learning based big data-driven anomaly detection in mobile wireless networks"	Jour.	2018	[234]
211	"Wireless Anomaly Detection Based on IEEE 802.11 Behavior Analysis"	Jour.	2015	[235]

A212	"Spatial anomaly detection in sensor networks using neighborhood information"	Jour.	2017	[236]
A213	"Anomaly Detection in Cyber Physical Systems Using Recurrent Neural Networks"	Conf.	2017	[237]
A214	"Control variable classification, modeling and anomaly detection in Modbus/TCP SCADA systems"	Jour.	2015	[238]
A215	"A hybrid approach for efficient anomaly detection using metaheuristic methods"	Jour.	2015	[239]
A216	"Experience Report: System Log Analysis for Anomaly Detection"	Conf.	2016	[19]
A217	"Towards Learning Normality for Anomaly Detection in Industrial Control Networks"	Conf.	2013	[240]
A218	"Anomaly detection approach using hybrid algorithm of data mining technique"	Conf.	2017	[241]
A219	"Adaptive Anomaly Identification by Exploring Metric Subspace in Cloud Computing Infrastructures"	Conf.	2013	[242]
A220	"Towards reliable data feature retrieval and decision engine in host-based anomaly detection systems"	Conf.	2015	[243]
A221	"Using an Ensemble of One-Class SVM Classifiers to Harden Payload-based Anomaly Detection Systems"	Conf.	2006	[244]
A222	"An anomaly detection method to detect web attacks using Stacked Auto-Encoder"	Conf.	2018	[245]
A223	"Anomaly Detection Enhanced Classification in Computer Intrusion Detection"	Conf.	2002	[246]
A224	"Simple, state-based approaches to program-based anomaly detection"	Jour.	2002	[247]
A225	"Adaptive anomaly detection with evolving connectionist systems"	Jour.	2007	[248]
A226	"Enhancing Anomaly Detection Using Temporal Pattern Discovery"	Jour.	2009	[249]
A227	"Anomaly Detection in IPv4 and IPv6 networks using machine learning"	Conf.	2015	[250]
A228	"A training-resistant anomaly detection system"	Jour.	2018	[251]
A229	"Conditional Anomaly Detection"	Jour.	2007	[252]
A230	"An anomaly detection in smart cities modeled as wireless sensor network"	Conf.	2016	[253]
A231	"Spatiotemporal Anomaly Detection in Gas Monitoring Sensor Networks"	Conf.	2008	[254]
A232	"Using Naive Bayes with AdaBoost to Enhance Network Anomaly Intrusion Detection"	Conf.	2010	[255]
A233	"Applying both positive and negative selection to supervised learning for anomaly detection"	Conf.	2005	[256]
A234	"Real-time camera anomaly detection for real-world video surveillance"	Conf.	2011	[257]
A235	"Network Anomaly Detection with Stochastically Improved Autoencoder Based Models"	Conf.	2017	[258]
A236	"Learning deep event models for crowd anomaly detection"	Jour.	2017	[259]
A237	"GANomaly: Semi-supervised Anomaly Detection via Adversarial Training"	Conf.	2018	[260]
A238	"Mote-Based Online Anomaly Detection Using Echo State Networks"	Conf.	2009	[261]
A239	"Genetic algorithm with different feature selection techniques for anomaly detectors generation"	Conf.	2013	[262]
A240	"RawPower: Deep Learning based Anomaly Detection from Raw Network Traffic Measurements"	Conf.	2018	[263]
A241	"Network security and anomaly detection with Big-DAMA, a big data analytics framework"	Conf.	2017	[264]
A242	"An efficient hidden Markov model training scheme for anomaly intrusion detection of server applications based on system calls"	Conf.	2004	[265]
A243	"An anomaly detection framework for BGP"	Conf.	2011	[266]
A244	"Semantic anomaly detection in online data sources"	Conf.	2002	[267]
A245	"A framework for efficient network anomaly intrusion detection with features selection"	Conf.	2018	[268]
A246	"Cross-Layer Based Anomaly Detection in Wireless Mesh Networks"	Conf.	2009	[269]
A247	"Reducing calculation requirements in FPGA implementation of deep learning algorithms for online anomaly intrusion detection"	Conf.	2017	[270]
A248	"Anomaly detection in network traffic using K-mean clustering"	Conf.	2016	[271]
A249	"Stream-based Machine Learning for Network Security and Anomaly Detection"	Conf.	2018	[272]
A250	"Multivariate Online Anomaly Detection Using Kernel Recursive Least Squares"	Conf.	2007	[273]
A251	"A Hybrid Autoencoder and Density Estimation Model for Anomaly Detection"	Conf.	2016	[274]
A252	"Optimizing false positive in anomaly based intrusion detection using Genetic algorithm"	Conf.	2016	[275]
A253	"Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes"	Jour.	2018	[276]
A254	"Group Anomaly Detection Using Deep Generative Models"	Conf.	2019	[277]

1255	"Anomaly Detection in IaaS Clouds"	Conf.	2013	[278]
1256	"An ensemble framework of anomaly detection using hybridized feature selection approach (HFSA)"	Conf.	2015	[279]
257	"Anomaly detection combining one-class SVMs and particle swarm optimization algorithms"	Jour.	2011	[280]
258	"Anomaly detection through on-line isolation Forest: An application to plasma etching"	Conf.	2017	[281]
259	"Practical anomaly detection based on classifying frequent traffic patterns"	Conf.	2012	[282]
260	"A hybrid model for anomaly-based intrusion detection in SCADA networks"	Conf.	2018	[283]
261	"CH-SVM Based Network Anomaly Detection"	Conf.	2007	[284]
262	"MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks"	Conf.	2019	[285]
263	"Anomaly Detection from Network Logs Using Diffusion Maps"	Conf.	2011	[286]
264	"A Deep Learning Approach for Network Anomaly Detection Based on AMF-LSTM"	Conf.	2018	[287]
265	"Reducing Features of KDD CUP 1999 Dataset for Anomaly Detection Using Back Propagation Neural Network"	Conf.	2015	[288]
266	"Online Anomaly Prediction for Robust Cluster Systems"	Conf.	2009	[289]
267	"A study on anomaly detection ensembles"	Jour.	2017	[290]
268	"Big data analytics for network anomaly detection from netflow data"	Conf.	2017	[291]
269	"An anomaly-based network intrusion detection system using Deep learning"	Conf.	2017	[292]
270	"An Empirical Evaluation of Deep Learning for Network Anomaly Detection"	Conf.	2018	[293]
271	"Network Anomaly Detection Using Random Forests and Entropy of Traffic Features"	Conf.	2013	[294]
272	"Quarter Sphere Based Distributed Anomaly Detection in Wireless Sensor Networks"	Conf.	2007	[295]
273	"Anomaly based intrusion detection using meta ensemble classifier"	Conf.	2012	[296]
274	"Applying Machine Learning to Anomaly-Based Intrusion Detection Systems"	Conf.	2019	[297]
275	"Collective Anomaly Detection Based on Long Short-Term Memory Recurrent Neural Networks"	Conf.	2016	[298]
276	"AD-IoT: Anomaly Detection of IoT Cyberattacks in Smart City Using Machine Learning"	Conf.	2019	[299]
277	"Less is More: Building Selective Anomaly Ensembles"	Jour.	2016	[300]
278 279	"The best of both worlds: a framework for the synergistic operation of host and cloud anomaly-based IDS for smartphones" "A-GHSOM: An adaptive growing hierarchical self-organizing map for network anomaly	Conf. Jour.	2014	[301]
200	detection"			
280	"Single-image splicing localization through autoencoder-based anomaly detection"	Conf.	2017	[303]
281 282	"Efficacy of Hidden Markov Models Over Neural Networks in Anomaly Intrusion Detection" "An approach to spacecraft anomaly detection problem using kernel feature space"	Conf.	2006 2005	[304] [305]
283	"Machine Learning in Anomaly Detection: Example of Colluded Applications Attack in Android	Conf.	2019	[306]
284	Devices" "Optimal virtual machine selection for anomaly detection using a swarm intelligence approach"	Jour.	2019	[307]
285	"Anomaly Detection in Power Quality Measurements Using Proximity-Based Unsupervised	Conf.	2019	[308]
296	Machine Learning Techniques"			
286	"Network-Wide Traffic Anomaly Detection and Localization Based on Robust Multivariate Probabilistic Calibration Model"	Jour.	2015	[309]
287	"Machine learning for anomaly detection and process phase classification to improve safety and maintenance activities."	Jour.	2020	[310]
288	"Anomaly detection based on machine learning in IoT-based vertical plant wall for indoor climate control."	Jour.	2020	[311]
289	"Anomaly detection in electronic invoice systems based on machine learning"	Conf.	2020	[312]
290	"Anomaly detection in wireless sensor network using machine learning algorithm"	Jour.	2020	[313]
291	"A Hybrid Unsupervised Clustering-Based Anomaly Detection Method"	Jour.	2020	[314]

A292	"Network traffic anomalies detection and identification with flow monitoring"	Conf.	2008	[315]
A293	"Network Traffic Anomaly Detection and Prevention, Concepts"	Jour.	2017	[316]
A294	"Network Traffic Anomaly Detection Based on Information Gain and Deep Learning"	Conf.	2019	[317]
A295	"Detecting Anomalies in Network Traffic Using Maximum Entropy Estimation"	Conf.	2005	[318]
A296	"Network traffic anomalies detection and identification with flow monitoring"	Conf.	2008	[315]
A297	"Network Traffic Anomaly Detection and Prevention, Concepts"	Jour.	2017	[316]

Table 8. Performance Metrics Among Selected Papers

		Metrics Among Selected I			
ID	Type	ML Model	Performance Metrics	value	Dataset
			Detection Rate (DR)	87.74	
A1	supervised and	enhanced SVM	False Positive Rate (FPR)	10.2	MIT Lincoln Lab
	unsupervised		False Negative Rate (FNR)	NA	
			Processing Time (PT)	27.27	1 110 1
			Area Under Curve (AUC)	0.9863	six real life data set from UCI
A2	unsupervised	DBN with 1SVM	Accuracy (ACC)	0.0625	machine learning repository and two synthetic "Banana" and
			Testing Time	0.2093	"Smiley"
A3	semi-supervised	DRBM	Accuracy (ACC)	0.94	KDD99
AJ	sciii-supervised	DRBM	Statistics Discrete	19	KDD))
A4	semi-supervised	multipule kernel	Statistics Continouss	94	Flight Data Recorders
714	seim supervised	пиприс кетег	Statistics Heterogneous	114	I fight Data Recorders
			Precision Precision	0.8834	
			Recall	0.7277	
A5	unsupervised	Generative Adversarial	Sensitivity	0.7279	real-life-datasets
		Network (GAN)	Specificity	0.8928	
			Area Under Curve (AUC)	0.89	
		1 077	Area Under Curve (AUC)	0.9972	
A6	unsupervised	eta one-class SVM	CPU execution	27.48±0.25 ms	UCI machine learning repository
	supervised and	710		(99.6298% -	VID DOG
A7	unsupervised	J48	Accuracy (ACC)	99.9767%)	KDD99
			F-Score	94	
			True Positive Rate (TPR)	99.6	
A8	supervised	k-Means with C4.5	False Positive Rate (FPR)	0.1	KDD99
			Accuracy (ACC)	95.8	
			Precision	95.6	
A9	na	SVM + DT + SA	Accuracy (ACC)	99.96%	KDD99
			Mean Absolute Error (MAE)	0.0321	
			Root Mean squared Error (RMSE)	0.0321	
			Kappa Statistics	0.8926	
			Error Measure	0.254	
A10	supervised	Random Tree	Recall	0.968	NSL-KDD 99
			Precision	0.968	
			F-Score	0.968	
			False Alarm Rate(FAR)	0.074	
			Accuracy (ACC)	0.9974	
A11	na	one class SVM with	False Positive Rate (FPR)		NSL-KDD 99
АП	11a	C4.5	Testing Time	11.2	NSL-RDD //
A12	semi-supervised	decision tree	NA	NA	NA
			Sensitivity	0.961538	
		ID3 decision tree + k-	Specificity	0.999747	real evaluation test bed network
A13	unsupervised	Means clustering	Negative likelihood	0.038471	datasets
		Wiedlis clustering	Positive Predictive Ratio	0.981567	datasets
			Negative Predictive Ratio	0.999444	
		SVM + K-Medoids	Accuracy (ACC)	99.79	Kyoto2006+ data set and KDD
A14	unsupervised	clustering	Detection Rate (DR)	99.87	Cup 1999
			False Alarm Rate(FAR)	0.99	
			Accuracy (ACC)	97.5	
		arns -	Sensitivity	93.49	
A15	supervised	SVM + Random Forest	Specificity	98.38	NSL-KDD99 dataset
			Precision	97.6	
			Recall	97.6	
410	semi-supervised	ED C	A H I G (4170)		1101
A16	and	FRaC	Area Under Curve (AUC)	1	UCI machine learning repository
A 17	unsupervised	Cl-, (A man Harden Course (AHC)	0.006	LICI
A17	supervised	Cluster	Area Under Curve (AUC)	0.996	UCI machine learning repository
A 10	supervised and	CATA	Accuracy (ACC)	95% to 97%	"Golden Dataset" for Real-Time
A18	unsupervised	SVM	Precision	NA	Anomaly Detection
	*		Recall	NA 0.000	<u> </u>
4.10		Super Learner ensemble	Area Under Curve (AUC)	0.999	MANY
A19	supervised	learning model	False Positive Rate (FPR)	5%	MAWILab dataset
1.00		Ŭ	Detection Rate (DR)	97%	TIOT 11 1
A20	semi-supervised	FRaC	Area Under Curve (AUC)	0.9	UCI machine learning repository
4.01	. ,	C (1 1 1.1	Detection Rate (DR)	97.92	KDD00 1
A21	supervised	fuzzy genetic algorithm	False Negative Rate (FNR)	4.10%	KDD99 dataset
1.00		1 077.5	False Positive Rate (FPR)	1.13%	
A22	supervised	one-class SVM	Accuracy (ACC)	98.8796	network dataset

			Correction Rate	94.7	
A23	supervised and	SVM + GA	False Positive Rate (FPR)	5.23	MIT Lincoln Lab
A23	unsupervised	SVM + GA			WIII LIIICOIII Lab
424		NT A	False Negative Rate (FNR)	NA	N/A
A24	supervised	NA	NA P. (EAR)	NA 0.7	NA
A25	supervised	evolutionary neural	False Alarm Rate(FAR)	0.7	1999 DARPA IDEVAL dataset
	•	networks	Detection Rate (DR)	100%	
	semi-supervised	Recurrent Neural	Precision	1	
A26	and	Networks (RNN)	Recall	0.818	X-Plane simulation
	unsupervised	11001101110 (101111)	F-Score	0.89	
A27	NA	(CESVM) and	Detection Rate (DR)	80%	UCI machine learning repository
AZI	INA	(QSSVM)	Area Under Curve (AUC)	0.9932	OCI machine rearming repository
120	umaumamiaa d	outoanaa dan	Area Under Curve (AUC)	0.9764	spacecrafts' telemetry data and
A28	unsupervised	autoencoder			generated data from Lorenz system
4.20	27.4	CVD 4 F	Correctly Classification rate (CCR)	97.25%	MITTEL 1 (DARRA 1000)
A29	NA	SVM + Entropy	Misclassified Rate (MR)	2.75%	MIT Lincoln (DARPA, 1999)
			Detection Rate (DR)	2400	
A30	NA	Neighborhood Outlier	CPU Utilization	10%	KDD cup 99 dataset
7130	1111	Factor (NOF)	Testing Time	95000 ms	
			Correctly Classification rate (CCR)	97.76	
		modified gravitational	Misclassified Rate (MR)	2.48	
A31	supervised	search algorithm		0.21	NA
	_	(MGSA)	False Alarm Rate(FAR)		_
			Error Rate	2.24	
1			Area Under Curve (AUC)	0.727	real world Automated
A32	unsupervised	Bayesian networks	False Positive Rate (FPR)	NA	Identification System
			True Positive Rate (TPR)	NA	·
A33	supervised	random forest	Precision	0.89	KPI data
A 2.1	umaumamuiaa d	Chastanina alaanithma	Accuracy (ACC)	80.15%	NCI KDD
A34	unsupervised	Clustering algorithms	False Positive Rate (FPR)	21.14%	NSL-KDD
			Correctly Classification rate (CCR)	99.36%	set of network data recorded from
			False Negative Rate (FNR)	0.90%	an experimental test-bed
A35	unsupervised	Fuzzy Rule Based	Testing Time	0.212 ms	mimicking the environment of a
		, , , , , , , , , , , , , , , , , , ,	Testing Time	0.212 1113	critical infrastructure control
					system.
A36	supervised	TD	False Alarm Rate(FAR)	0.002951	real life time data
1100	Supervised	12	Accuracy (ACC)	99.21±0.04	Tour me unit data
		filters and regerssion	Area Under Curve (AUC)	0.997±0.001	-
A37	supervised	wrappers	Recall	99.16±0.12	NSL-KDD
		wrappers	Precision	99.10±0.12 99.57±0.05	-
				99.94	
		F 16 1	Precision		4
4.20	274	Fuzzy Means clustering	Recall	97.2	DARRAL WRD
A38	NA	algorithm and Artificial	Recall F-Score	97.2 99.32	DARPA's KDD cup dataset 1999
A38	NA		Recall F-Score Detection Rate (DR)	97.2 99.32 99.96	DARPA's KDD cup dataset 1999
A38	NA	algorithm and Artificial Neural Network	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR)	97.2 99.32 99.96 0.2	DARPA's KDD cup dataset 1999
	supervised and	algorithm and Artificial Neural Network evolving Spiking Neural	Recall F-Score Detection Rate (DR)	97.2 99.32 99.96	
A38	·	algorithm and Artificial Neural Network	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC)	97.2 99.32 99.96 0.2 99.90%	DARPA's KDD cup dataset 1999 KDD Cup 1999 data
	supervised and	algorithm and Artificial Neural Network evolving Spiking Neural	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC)	97.2 99.32 99.96 0.2	
	supervised and	algorithm and Artificial Neural Network evolving Spiking Neural	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC)	97.2 99.32 99.96 0.2 99.90%	
	supervised and	algorithm and Artificial Neural Network evolving Spiking Neural Network	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC)	97.2 99.32 99.96 0.2 99.90%	
A39	supervised and unsupervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51%	KDD Cup 1999 data
A39	supervised and unsupervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TNR) False Positive Rate (FPR)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48%	KDD Cup 1999 data
A39	supervised and unsupervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TNR) False Positive Rate (FPR) False Negative Rate (FNR)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51%	KDD Cup 1999 data
A39	supervised and unsupervised unsupervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TNR) False Positive Rate (FPR) False Negative Rate (FNR) Prediticion Error	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA	KDD Cup 1999 data DARPA KDDCUP'99 dataset
A39 A40	supervised and unsupervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TNR) False Positive Rate (FPR) False Negative Rate (FNR)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48%	KDD Cup 1999 data
A39 A40	supervised and unsupervised unsupervised unsupervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TNR) False Positive Rate (FPR) False Negative Rate (FNR) Prediticion Error CPU Utilization	97.2 99.32 99.96 0.2 99.90% 97.51% 99.48% 0.51% 2.48% NA	KDD Cup 1999 data DARPA KDDCUP'99 dataset
A39 A40 A41	supervised and unsupervised unsupervised unsupervised supervised and	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TNR) False Positive Rate (FNR) False Negative Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA NA	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB)
A39 A40	supervised and unsupervised unsupervised unsupervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TNR) False Positive Rate (FNR) False Negative Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (TPR)	97.2 99.32 99.96 0.2 99.90% 97.51% 99.48% 0.51% 2.48% NA NA NA 99.9 0.997	KDD Cup 1999 data DARPA KDDCUP'99 dataset
A39 A40 A41	supervised and unsupervised unsupervised unsupervised supervised and	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TNR) False Positive Rate (FPR) False Negative Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (TPR) False Positive Rate (TPR)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA NA NA 99.9 0.997 0.003	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB)
A39 A40 A41	supervised and unsupervised unsupervised unsupervised supervised and	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TNR) False Positive Rate (FPR) False Negative Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (FPR) False Positive Rate (FPR) CPU Utilization	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA NA NA 99.9 0.997 0.003 7%	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB)
A39 A40 A41 A42 A43	supervised and unsupervised unsupervised unsupervised supervised and unsupervised NA	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory (HTM) K-Nearest Neighbors	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TPR) False Positive Rate (FPR) False Negative Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (FPR) False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA NA NA 99.9 0.997 0.003 7% 0.000171	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB) NSL-KDD dataset
A39 A40 A41 A42	supervised and unsupervised unsupervised unsupervised supervised and unsupervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory (HTM)	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TPR) False Positive Rate (FPR) False Negative Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (FPR) False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) Accuracy (ACC)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA NA NA 99.9 0.997 0.003 7%	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB) NSL-KDD dataset NA NA
A39 A40 A41 A42 A43	supervised and unsupervised unsupervised unsupervised supervised and unsupervised NA supervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory (HTM) K-Nearest Neighbors	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TPR) False Positive Rate (FPR) False Negative Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (FPR) False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA NA NA 99.9 0.997 0.003 7% 0.000171	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB) NSL-KDD dataset NA NA Benchmark Dataset and Home
A39 A40 A41 A42 A43 A44	supervised and unsupervised unsupervised unsupervised supervised and unsupervised NA	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory (HTM) K-Nearest Neighbors CALCEsvm	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TNR) False Positive Rate (FPR) False Negative Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (TPR) False Positive Rate (FPR) Accuracy (ACC) True Positive Rate (TPR) False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) Accuracy (ACC) Accuracy (ACC) Accuracy (ACC)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA NA NA 99.9 0.097 0.003 7% 0.000171 94% 72.2±9.7	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB) NSL-KDD dataset NA NA
A39 A40 A41 A42 A43 A44	supervised and unsupervised unsupervised unsupervised supervised and unsupervised NA supervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory (HTM) K-Nearest Neighbors CALCEsvm	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TNR) False Positive Rate (FPR) False Negative Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (TPR) False Positive Rate (TPR) False Negative Rate (TPR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (TPR) False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) Accuracy (ACC) Accuracy (ACC) Accuracy (ACC)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA NA NA 99.9 0.097 0.003 7% 0.000171 94% 72.2±9.7 100%	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB) NSL-KDD dataset NA NA Benchmark Dataset and Home
A39 A40 A41 A42 A43 A44 A45	supervised and unsupervised unsupervised unsupervised supervised and unsupervised NA supervised unsupervised unsupervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory (HTM) K-Nearest Neighbors CALCEsvm DBN	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TPR) False Positive Rate (FPR) False Negative Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (TPR) False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) Accuracy (ACC) Accuracy (ACC) Accuracy (ACC) Accuracy of normal data (ACC) Accuracy of attack data (ACC)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA NA NA 99.9 0.097 0.003 7% 0.000171 94% 72.2±9.7 100% 79%	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB) NSL-KDD dataset NA NA Benchmark Dataset and Home Sleep Dataset
A39 A40 A41 A42 A43 A44	supervised and unsupervised unsupervised unsupervised supervised and unsupervised NA supervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory (HTM) K-Nearest Neighbors CALCEsvm	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TPR) False Positive Rate (FPR) False Negative Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (TPR) False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) Accuracy (ACC) Accuracy (ACC) Accuracy (ACC) Accuracy of normal data (ACC) False Negative Rate (FNR)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA NA NA 0.99.9 0.097 0.003 7% 0.000171 94% 72.2±9.7 100% 79% 0.10%	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB) NSL-KDD dataset NA NA Benchmark Dataset and Home
A39 A40 A41 A42 A43 A44 A45	supervised and unsupervised unsupervised unsupervised supervised and unsupervised NA supervised unsupervised unsupervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory (HTM) K-Nearest Neighbors CALCEsvm DBN	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TNR) False Positive Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (TPR) False Positive Rate (FPR) False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) Accuracy (ACC) Accuracy (ACC) Accuracy (ACC) Accuracy of normal data (ACC) Accuracy of attack data (ACC) False Negative Rate (FNR) False Positive Rate (FNR)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA NA NA 99.9 0.097 0.003 7% 0.000171 94% 72.2±9.7 100% 79%	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB) NSL-KDD dataset NA NA Benchmark Dataset and Home Sleep Dataset
A39 A40 A41 A42 A43 A44 A45	supervised and unsupervised unsupervised unsupervised supervised and unsupervised NA supervised unsupervised unsupervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory (HTM) K-Nearest Neighbors CALCEsvm DBN	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TPR) False Positive Rate (FPR) False Negative Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (TPR) False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) Accuracy (ACC) Accuracy (ACC) Accuracy (ACC) Accuracy of normal data (ACC) False Negative Rate (FNR)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA NA NA 0.99.9 0.097 0.003 7% 0.000171 94% 72.2±9.7 100% 79% 0.10%	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB) NSL-KDD dataset NA NA Benchmark Dataset and Home Sleep Dataset
A39 A40 A41 A42 A43 A44 A45	supervised and unsupervised unsupervised unsupervised supervised and unsupervised NA supervised unsupervised unsupervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory (HTM) K-Nearest Neighbors CALCEsvm DBN	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TNR) False Positive Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (TPR) False Positive Rate (FPR) False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) Accuracy (ACC) Accuracy (ACC) Accuracy (ACC) Accuracy of normal data (ACC) Accuracy of attack data (ACC) False Negative Rate (FNR) False Positive Rate (FNR)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA NA NA 99.9 0.097 0.003 7% 0.000171 94% 72.2±9.7 100% 79% 0.10% 20.50%	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB) NSL-KDD dataset NA NA Benchmark Dataset and Home Sleep Dataset
A39 A40 A41 A42 A43 A44 A45	supervised and unsupervised unsupervised unsupervised supervised and unsupervised NA supervised unsupervised unsupervised unsupervised unsupervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory (HTM) K-Nearest Neighbors CALCEsvm DBN cluster + 1-SVM	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TNR) False Positive Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (TPR) False Positive Rate (FPR) False Positive Rate (FPR) CPU Utilization Accuracy (ACC) True Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) Accuracy (ACC) Accuracy (ACC) Accuracy (ACC) Accuracy (ACC) Accuracy of normal data (ACC) Accuracy of attack data (ACC) False Negative Rate (FNR) False Positive Rate (FPR) Detection Rate (DR)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA NA NA 0.99.9 0.0997 0.003 7% 0.000171 94% 72.2±9.7 100% 79% 0.10% 20.50% 97.09%	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB) NSL-KDD dataset NA NA NA Benchmark Dataset and Home Sleep Dataset real traffic data
A39 A40 A41 A42 A43 A44 A45 A46	supervised and unsupervised unsupervised unsupervised supervised and unsupervised NA supervised unsupervised unsupervised supervised supervised supervised supervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory (HTM) K-Nearest Neighbors CALCEsvm DBN cluster + 1-SVM	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TPR) False Positive Rate (FPR) False Negative Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (TPR) False Positive Rate (FPR) False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) Accuracy (ACC) Accuracy (ACC) Accuracy (ACC) Accuracy of normal data (ACC) Accuracy of attack data (ACC) False Negative Rate (FNR) False Positive Rate (FPR) Detection Rate (DR) Accuracy (ACC) False Positive Rate (FPR)	97.2 99.32 99.96 0.2 99.90% 97.51% 97.51% 99.48% 0.51% 2.48% NA NA NA 99.9 0.0997 0.003 7% 0.000171 94% 72.2±9.7 100% 79% 0.10% 20.50% 97.09% 81.29% 0.07	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB) NSL-KDD dataset NA NA Benchmark Dataset and Home Sleep Dataset real traffic data benchmark NSL-KDD dataset
A39 A40 A41 A42 A43 A44 A45	supervised and unsupervised unsupervised unsupervised supervised and unsupervised NA supervised unsupervised unsupervised unsupervised unsupervised	algorithm and Artificial Neural Network evolving Spiking Neural Network deep belief network using Logistic Regression Hierarchical Temporal Memory (HTM) K-Nearest Neighbors CALCEsvm DBN cluster + 1-SVM	Recall F-Score Detection Rate (DR) False Alarm Rate(FAR) Accuracy (ACC) Accuracy (ACC) True Positive Rate (TPR) True Negative Rate (TNR) False Positive Rate (FNR) Prediticion Error CPU Utilization Accuracy (ACC) True Positive Rate (TPR) False Positive Rate (FPR) False Positive Rate (FPR) CPU Utilization Accuracy (ACC) True Positive Rate (FPR) CPU Utilization False Positive Rate (FPR) Accuracy (ACC) Accuracy (ACC) Accuracy (ACC) Accuracy (ACC) False Negative Rate (FNR) False Positive Rate (FNR) Detection Rate (DR) Accuracy (ACC)	97.2 99.32 99.96 0.2 99.90% 97.90% 97.51% 99.48% 0.51% 2.48% NA NA NA 99.9 0.997 0.003 7% 0.000171 94% 72.2±9.7 100% 79% 0.10% 20.50% 97.09% 81.29%	KDD Cup 1999 data DARPA KDDCUP'99 dataset Benchmark dataset (NAB) NSL-KDD dataset NA NA NA Benchmark Dataset and Home Sleep Dataset real traffic data

A49	supervised	conditional random field	Accuracy (ACC)	0.81	GPS data
-	•		Query by Committee	0.9	
A50	supervised	SVM Isolation Forest model	Accuracy (ACC)	97% 17	NSF I/UCR Center
		(IF)	Area Under Curve (AUC)	17	
A51	NA	Ensemble Gaussian	Area Under Curve (AUC)	14	benchmark dataset
		Mixture Model (egmm)			
		NC + MLP + LC +AD	False Positive Rate (FPR)	5.18%	
A52	NA	NC + MLP + LC+ AD	False Negative Rate (FNR)	5.30%	UCI machine learning repository
A32	IVA	NC + MLP + LC + ADAM	False Positive Rate (FPR)	6.38%	OCI machine learning repository
		NC + MLP + LC + ADAM	False Negative Rate (FNR)	0.00%	
A53	NA	Random Forest (RF) +	Mean Absolute Error(MAE)	0.0145	real medical datasets
	·	Linear Regression (LR)	Testing Time	1.43 s	
			CPU Execution Time	2.72 s 21	
A54	NA	core Vector Machine	Support Vector Detection Rate (DR)	99.74%	KDD'99 dataset
			Accuracy (ACC)	99.74%	
			Accuracy (ACC)	98.28	Airborne Visible/Infrared Imaging
A55	NA	convolutional neural	Testing Time	483 s	Spectrometer and AVIRIS sensor
		network	Tosting Time	.00 5	data
A 5 6	NI A	CVIM	True Positive Rate (TPR)	81.50%	DADDA IDC avaluation dataset
A56	NA	SVM	False Positive Rate (FPR)	0.01	DARPA IDS evaluation dataset
A57	NA	NA	similarity measurment	NA	two video sequence
	supervised and		F-Score	0.64	
A58	unsupervised	neural network	Recall	0.64	MNIST dataset
		~ 10.0	Precision	0.64	
A59	unsupervised	Self Organizing Map (SOM)	True Positive Rate (TPR)	98%	IBM Systems and MemLeak and
	•	(SOM)	False Positive Rate (FPR)	1.70% 0.805	NetHog dataset
A60	unsupervised	DRMF	Precision Testing Time	23.760 s	simulation and real-world data set
			Area Under Curve (AUC)	0.9987	
			CPU Execution Time	2.697 s	
A61	NA	PCA	True Positive Rate (TPR)	0.9133±0.0327	KDD data set
			False Positive Rate (FPR)	0.0697±0.0188	
A62	unsupervised	Extensible Generic	Accuracy (ACC)	0.9	real and synthetic data
A63	NA	decision tree (DT) and	True Positive Rate (TPR)	100%	real patient datasets from
	I NA				F31 1 1 1 1
1100	·	linear regression (LR)	False Positive Rate (FPR)	7.40%	Physionet database
			False Positive Rate (FPR) Testing Time	7.40%	data from Hyperion on the EO-1
A64	NA	linear regression (LR) Linear Embedding (LE)			data from Hyperion on the EO-1 satellite and HYDICE on an
A64	·	Linear Embedding (LE)	Testing Time	29.1	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform
A64 A65	unsupervised	Linear Embedding (LE) kernel + regression	Testing Time Area Under Curve (AUC)	29.1 0.89669	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data
A64 A65 A66	unsupervised NA	Linear Embedding (LE) kernel + regression NA	Area Under Curve (AUC) NA	29.1 0.89669 NA	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA
A64 A65 A66 A67	unsupervised NA NA	Linear Embedding (LE) kernel + regression	Area Under Curve (AUC) NA F-Score	29.1 0.89669 NA 0.86	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets
A64 A65 A66	unsupervised NA	Linear Embedding (LE) kernel + regression NA	Area Under Curve (AUC) NA F-Score Detection Rate (DR)	29.1 0.89669 NA 0.86 90%	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA
A64 A65 A66 A67	unsupervised NA NA	Linear Embedding (LE) kernel + regression NA NA	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR)	29.1 0.89669 NA 0.86 90% 3%	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets
A64 A65 A66 A67	unsupervised NA NA	Linear Embedding (LE) kernel + regression NA NA	Area Under Curve (AUC) NA F-Score Detection Rate (DR)	29.1 0.89669 NA 0.86 90%	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets
A64 A65 A66 A67	unsupervised NA NA	Linear Embedding (LE) kernel + regression NA NA	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR)	29.1 0.89669 NA 0.86 90% 3% 98.24%	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets
A64 A65 A66 A67	unsupervised NA NA	Linear Embedding (LE) kernel + regression NA NA	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR)	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46%	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets
A64 A65 A66 A67 A68	unsupervised NA NA NA	Linear Embedding (LE) kernel + regression NA NA neural network	Testing Time Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE)	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99
A64 A65 A66 A67 A68	unsupervised NA NA NA	Linear Embedding (LE) kernel + regression NA NA neural network	Testing Time Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99
A64 A65 A66 A67 A68	unsupervised NA NA NA	Linear Embedding (LE) kernel + regression NA NA neural network	Testing Time Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC)	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset
A64 A65 A66 A67 A68	unsupervised NA NA NA	Linear Embedding (LE) kernel + regression NA NA neural network SVM	Testing Time Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Area Under Curve (AUC)	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949 0.9905	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset
A64 A65 A66 A67 A68	unsupervised NA NA NA NA supervised	Linear Embedding (LE) kernel + regression NA NA neural network	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Area Under Curve (AUC) Testing Time	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949 0.9905 0.4 s	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset
A64 A65 A66 A67 A68	unsupervised NA NA NA NA supervised	Linear Embedding (LE) kernel + regression NA NA neural network SVM	Testing Time Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Area Under Curve (AUC)	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949 0.9905 0.4 s (video clips)	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset
A64 A65 A66 A67 A68	unsupervised NA NA NA NA supervised	Linear Embedding (LE) kernel + regression NA NA neural network SVM	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Testing Time Area Under Curve (AUC)	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949 0.9905 0.4 s (video clips) 79.8%	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset
A64 A65 A66 A67 A68 A69	unsupervised NA NA NA NA NA NA NA	Linear Embedding (LE) kernel + regression NA NA neural network SVM one-class support vector	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Area Under Curve (AUC) Testing Time	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949 0.9905 0.4 s (video clips) 79.8% (continuous	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset CAN bus data from a 2011 Ford Explorer
A64 A65 A66 A67 A68 A69 A70	unsupervised NA	Linear Embedding (LE) kernel + regression NA NA neural network SVM one-class support vector	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Testing Time Area Under Curve (AUC)	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949 0.9905 0.4 s (video clips) 79.8% (continuous videos) 68.5%	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset CAN bus data from a 2011 Ford Explorer VIRATGroundDataset
A64 A65 A66 A67 A68 A69 A70 A71	unsupervised NA NA NA NA NA NA NA unsupervised	Linear Embedding (LE) kernel + regression NA NA neural network SVM one-class support vector SVM Bayesian Network + PCA	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Testing Time Area Under Curve (AUC) Area Under Curve (AUC) Area Under Curve (AUC) Area Under Curve (AUC)	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949 0.9905 0.4 s (video clips) 79.8% (continuous	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset CAN bus data from a 2011 Ford Explorer
A64 A65 A66 A67 A68 A69 A70	unsupervised NA	Linear Embedding (LE) kernel + regression NA NA neural network SVM one-class support vector	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Testing Time Area Under Curve (AUC) Area Under Curve (AUC) Area Under Curve (AUC)	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.9905 0.4 s (video clips) 79.8% (continuous videos) 68.5% NA	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset CAN bus data from a 2011 Ford Explorer VIRATGroundDataset NA
A64 A65 A66 A67 A68 A69 A70 A71 A72 A73	unsupervised NA NA NA NA NA NA NA unsupervised unsupervised NA NA NA NA NA NA NA NA NA N	Linear Embedding (LE) kernel + regression NA NA NA neural network SVM one-class support vector SVM Bayesian Network + PCA k-NN	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Area Under Curve (AUC) Testing Time Area Under Curve (AUC) Area Under Curve (AUC) Area Under Curve (AUC) Area Under Curve (AUC) Area Under Curve (AUC) Area Under Curve (AUC) Detection Rate (DR)	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949 0.9905 0.4 s (video clips) 79.8% (continuous videos) 68.5% NA 0.225 0.0966	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset CAN bus data from a 2011 Ford Explorer VIRATGroundDataset NA UCR time series
A64 A65 A66 A67 A68 A69 A70 A71	unsupervised NA NA NA NA NA NA NA unsupervised	Linear Embedding (LE) kernel + regression NA NA neural network SVM one-class support vector SVM Bayesian Network + PCA	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Area Under Curve (AUC) Testing Time Area Under Curve (AUC) Area Under Curve (AUC) Area Under Curve (AUC) False Alarm Rate(FAR) Computational Cost Detection Rate (DR) False Positive Rate (FPR)	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949 0.9905 0.4 s (video clips) 79.8% (continuous videos) 68.5% NA 0.225 0.025	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset CAN bus data from a 2011 Ford Explorer VIRATGroundDataset NA UCR time series classification/clustering page KDD cup 99 dataset and Kyoto data set
A64 A65 A66 A67 A68 A69 A70 A71 A72 A73 A74	unsupervised NA NA NA NA NA NA NA supervised NA NA unsupervised supervised unsupervised	Linear Embedding (LE) kernel + regression NA NA NA neural network SVM one-class support vector SVM Bayesian Network + PCA k-NN SOM + k-means	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Area Under Curve (AUC) Testing Time Area Under Curve (AUC) Area Under Curve (AUC) Area Under Curve (AUC) Area Under Curve (AUC) Area Under Curve (AUC) Area Under Curve (AUC) Detection Rate (DR)	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949 0.9905 0.4 s (video clips) 79.8% (continuous videos) 68.5% NA 0.225 0.0966	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset CAN bus data from a 2011 Ford Explorer VIRATGroundDataset NA UCR time series classification/clustering page KDD cup 99 dataset and Kyoto data set database produced by Domain-IP
A64 A65 A66 A67 A68 A69 A70 A71 A72 A73	unsupervised NA NA NA NA NA NA NA unsupervised unsupervised NA NA NA NA NA NA NA NA NA N	Linear Embedding (LE) kernel + regression NA NA NA neural network SVM one-class support vector SVM Bayesian Network + PCA k-NN	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Area Under Curve (AUC) Testing Time Area Under Curve (AUC) Area Under Curve (AUC) Area Under Curve (AUC) False Alarm Rate(FAR) Computational Cost Detection Rate (DR) False Positive Rate (FPR) Detection Rate (DR)	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949 0.9905 0.4 s (video clips) 79.8% (continuous videos) 68.5% NA 0.225 0.025 0.966 0.13 100%	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset CAN bus data from a 2011 Ford Explorer VIRATGroundDataset NA UCR time series classification/clustering page KDD cup 99 dataset and Kyoto data set
A64 A65 A66 A67 A68 A69 A70 A71 A72 A73 A74	unsupervised NA NA NA NA NA NA NA supervised NA NA unsupervised supervised unsupervised	Linear Embedding (LE) kernel + regression NA NA NA neural network SVM one-class support vector SVM Bayesian Network + PCA k-NN SOM + k-means	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Area Under Curve (AUC) Testing Time Area Under Curve (AUC) Area Under Curve (AUC) Area Under Curve (AUC) False Alarm Rate(FAR) Computational Cost Detection Rate (DR) False Positive Rate (FPR) Detection Rate (DR) F-Score	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949 0.9905 0.4 s (video clips) 79.8% (continuous videos) 68.5% NA 0.225 0.025 0.026 0.13 100% 0.9645	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset CAN bus data from a 2011 Ford Explorer VIRATGroundDataset NA UCR time series classification/clustering page KDD cup 99 dataset and Kyoto data set database produced by Domain-IP
A64 A65 A66 A67 A68 A69 A70 A71 A72 A73 A74	unsupervised NA NA NA NA NA NA NA India supervised NA NA NA NA Unsupervised unsupervised unsupervised NA	Linear Embedding (LE) kernel + regression NA NA NA neural network SVM one-class support vector SVM Bayesian Network + PCA k-NN SOM + k-means cluster	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Area Under Curve (AUC) Testing Time Area Under Curve (AUC) Area Under Curve (AUC) False Alarm Rate(FAR) Computational Cost Detection Rate (DR) False Positive Rate (FPR) Detection Rate (DR) F-Score Precision	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949 0.9905 0.4 s (video clips) 79.8% (continuous videos) 68.5% NA 0.225 0.025 0.0266 0.13 100% 0.9645 0.975	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset CAN bus data from a 2011 Ford Explorer VIRATGroundDataset NA UCR time series classification/clustering page KDD cup 99 dataset and Kyoto data set database produced by Domain-IP Mapping component
A64 A65 A66 A67 A68 A69 A70 A71 A72 A73 A74	unsupervised NA NA NA NA NA NA NA supervised NA NA unsupervised supervised unsupervised	Linear Embedding (LE) kernel + regression NA NA NA neural network SVM one-class support vector SVM Bayesian Network + PCA k-NN SOM + k-means	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Area Under Curve (AUC) Testing Time Area Under Curve (AUC) Area Under Curve (AUC) Area Under Curve (AUC) False Alarm Rate(FAR) Computational Cost Detection Rate (DR) False Positive Rate (FPR) Detection Rate (DR) F-Score Precision Recall	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949 0.9905 0.4 s (video clips) 79.8% (continuous videos) 68.5% NA 0.225 0.025 0.966 0.13 100% 0.9645 0.975 0.4647	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset CAN bus data from a 2011 Ford Explorer VIRATGroundDataset NA UCR time series classification/clustering page KDD cup 99 dataset and Kyoto data set database produced by Domain-IP
A64 A65 A66 A67 A68 A69 A70 A71 A72 A73 A74	unsupervised NA NA NA NA NA NA NA India supervised NA NA NA NA Unsupervised unsupervised unsupervised NA	Linear Embedding (LE) kernel + regression NA NA NA neural network SVM one-class support vector SVM Bayesian Network + PCA k-NN SOM + k-means cluster	Area Under Curve (AUC) NA F-Score Detection Rate (DR) Positive rate (PR) Correctly Classification rate (CCR) Misclassified Rate (MR) Precision Recall Mean Absolute Error(MAE) Kappa Statistics Area Under Curve (AUC) Area Under Curve (AUC) Testing Time Area Under Curve (AUC) Area Under Curve (AUC) False Alarm Rate(FAR) Computational Cost Detection Rate (DR) False Positive Rate (FPR) Detection Rate (DR) F-Score Precision	29.1 0.89669 NA 0.86 90% 3% 98.24% 1.46% 0.985 1 0.015 0.646 0.949 0.9905 0.4 s (video clips) 79.8% (continuous videos) 68.5% NA 0.225 0.025 0.0266 0.13 100% 0.9645 0.975	data from Hyperion on the EO-1 satellite and HYDICE on an airborne platform nonlinear synthetic data NA Abilene datasets and ISP datasets KDD'99 DARPA dataset CAN bus data from a 2011 Ford Explorer VIRATGroundDataset NA UCR time series classification/clustering page KDD cup 99 dataset and Kyoto data set database produced by Domain-IP Mapping component

A77	unsupervised	NA	NA	NA	Edinburgh Informatics Forum Pedestrian Database
			Detection Rate (DR)	99.04	i edestrian Database
			False Positive Rate (FPR)	1.31	
A78	supervised	RBM and SVM	Accuracy (ACC)	99.98	real-time and benchmark datasets
			Precision	99.03	_
			F-Score	99.5	
			Detection Rate (DR)	99.90%	
A79	supervised and	SOM + J.48	Correctly Classification rate (CCR)	99.84	KDD cup 99 dataset
	unsupervised		False Positive Rate (FPR)	1.25	
		one class Naive	Accuracy (ACC)	99.28%	MIT Lincoln Labs and University
A80	unsupervised	Bayes algorithm and K-	Detection Rate (DR)	100%	of New Mexico (UNM)) system
		Means clustering	False Positive Rate (FPR)	1.29	call sequences
			Accuracy (ACC)	95.7	synthetic and real data sets
A81	unsupervised	clustering	Detection Rate (DR)	96.32	(KDDCup'99 data set and
			False Positive Rate (FPR)	7.75	Wisconsin Breast Cancer and Indian Diabetes)
			Area Under Curve (AUC)	0.91	Avenue Dataset and Subway
A82	unsupervised	NA			surveillance dataset and the
7102	unsupervised	1171			Personal Vacation Dataset and the
					UMN Unusual Activity Dataset
			CPU Utilization	13%	trained data of about two thousand
	supervised and		Detection Rate (DR)	83%	connection records and test data includes five thousand connection
A83	unsupervised and	Neural network + CFS	Testing Time	110000 ms	records and a group of forty-one
	unsupervised				derived features received from
					every connection
			Accuracy (ACC)	88.3	i
A84	supervised and	SHNN-CAD	F-Score	0.75	four different labeled trajectory
	unsupervised		Detection Delay	10.3	datasets
			Area Under Curve (AUC)	1.85	smaller benchmark
A85		kernel methods	Accuracy (ACC)	1.7	datasetswithknownanomalyclasse
A85	unsupervised	(EXPoSE)			and KDD'99 cup and forest cover
			False Negative Rate (FNR)	0.91	type
A86	supervised and	DCM and DCRM	False Positive Rate (FPR)	0.07	testbed
1100	unsupervised	Dem una Derum	Freq. of validation	29.82	
		a	accuracy	96.99%	synthetic and real data set
A87	unsupervised	Niche Clustering			KDDCup'99
A88	NA	Naïve Bayes, KNN	Detection Rate (DR)	83.24	NSL-KDD
7.00	IVA	TVaive Bayes, KiVIV	False Alarm Rate(FAR)	4.83	NSL-RDD
A89	NA	SVM	cross-validation	90.3	na
		Relevance Vector	Ratio of Thruster, Estimated	na	
A90	NA	Machine (RVM) and	Outputs of All Thrusters		Rendezvous Simulation
		Dynamic Bayesian			
		Network	Anomaly mean	0.76	
A91	NA	temporal relations	Anomaly standard deviation	0.76	real data of raw sensor data and synthetic data of instances of a
A91	INA	temporar relations	Anomaly threshold	0.14	predefined set of activities
A92	NA	One-class SVM	Accuracy (ACC)	96%	1999 DARPA audit logs
1172	11/1	One class by IVI	Accuracy (ACC)	93.8	Ç
A93	unsupervised	OCSVM	False Positive Rate (FPR)	0.1	Flame website dataset plus
.173	ansaper viseu	005,141	True Negative Rate (TNR)	100	extending it with their own
			Precision	98.2	
A94	NA	SVM	Recall	69.9	SWaT testbed
		DNN	F-Score	80.2	
107	37.4		True Positive Rate (TPR)	99.48	W00 C 1000
A95	NA	TCM-KNN	True Negative Rate (TNR)	2.81	KSS Cup 1999
A96	NA	na	Detection Rate (DR)	100	generated dataset
A97	NA	Recursive Least Squares	True Positive Rate (TPR)	21	3 synthetic datasets and the real-
A91	NA	(RLS)	True Negative Rate (TNR)	4.9	world datase
		OneClassSVM	Precision	99%	
		Local Outlier Factor	Recall	99%	Shuttle dataset
A98	unsupervised	LOF	F-Score	99%	satellite dataset
		isolation forest			Success damest
		Elliptic Envelope	F.G.		
A 00	D.T.A.	knearest neighbor, and	F-Score	na	1100
A99	NA	one-class support vector			real life time data
		machine	Dragician	020/	
A 100	NT A	LSTM	Precision	92%	
A100	NA	Gradient Boosting Regression Trees	Recall F-Score	63.94% 89.37	na
		I IVERTERMON LICEN	1 1-5core	1 07.37	1

A101	unsupervised	OneClassSVM LSTM	Accuracy (ACC)	87%	DCASE	
A102	NA	One-class small hypersphere support vector machine classifier (OCSHSVM)	Precision Recall	98.17% 97.16%	NSL-KDD	
A103	NA	ELM	Accuracy (ACC)	99.94%	NSL-KDD	
A104	unsupervised		Accuracy (ACC)	995	KDD99	
	3.3.3.p. 2.3.2.2	AE K-Means	Precision Detection Time	99% 25.43s		
A105	NA	SVM	Accuracy (ACC)	96.57%	na	
			Precision	80.64%		
A106	NA	xgboost	Recall	78.23%	real world dataset	
			F-Score	79%		
A107	NA	LERAD CLAD	na	na	DARPA 99	
A108	supervised	LR + RF	Accuracy (ACC)	99%	UNSW	
	•		categorizing Accuracy False Positive Rate (FPR)	93.60%		
A109	NA	Bayesian	Detection Rate (DR)	99%	DAPRA 1998	
A110	NA	DCNN + LSTM	Accuracy (ACC)	89%	NSLKDD	
		centered hyperellipsoidal	Detection Rate (DR)	80%		
A111	NA	support vector machine CESVM	False Positive Rate (FPR)	10%	real world dataset	
A112	unsupervised	na	Detection Rate (DR)	92.06%	RTDS	
	27.4	CCI INDI	Detection Rate (DR)	94.60%	WDD00	
A113	NA	CSI-KNN	False Positive Rate (FPR) Accuracy (ACC)	3% 95.10%	KDD99	
			Accuracy (ACC) Accuracy (ACC)	96.24%		
			False Positive Rate (FPR)	0.03%	NAD	
A114	NA	K-means	True Positive Rate (TPR)	0.76%	DED	
		ID3 Decision Tree	F-Score	na	MSD	
			Precision	na		
		Decision Tree	Accuracy (DT):	99.36%		
	NA		FP (DT): FN (DT):	1.29% 0.00%	DARPA1998	
A115			Accuracy (NB)	95.23%		
		Naïve Bayes	FP (NB)	8.57%		
		uj	FN (NB)	0.97%		
		nsupervised once class SVM	Accuracy	95.50%		
A116	unsupervised		Detection rate	93.30%	UNM dataset	
			False Alarm:	2.30% 0.85	_	
			Correlation: Detection Rate (DR)	na		
A117	NA	PCA	False Negative Rate (FNR)	na	Abilene (Internet2 backbone)	
		Fuzzy c-means	AUC	na		
A118	NA	clustering (FCM) + K- means clustering and Gaussian mixture Model (GMM)	na	na	Netflow data	
			Accuracy (ACC)	82.46%		
A119	unsupervised	Fuzzy Rough C-means	Detection Rate (DR)	91.45%	KDDCup'99	
	<u>.</u>	, , , , , , , , , , , , , , , , , , , ,	False Alarm Rate(FAR) correlation	24.80% 0.556	_	
			Detection Rate (DR)	0.961		
A120	NA	DBSCAN Clustering	False Alarm Rate(FAR)	0.362	KDD Cup 1999	
A121	NA	Extreme learning	Recall	0.98897	synthetic datasets and three UCI	
71121	1471	machine	Accuracy (ACC) False Positive Rate (FPR)	0.9513 na	datasets	
A122	unsupervised	random forest	Detection Rate (DR)	na	KDD Cup 1999	
		convolutional neural	Accuracy (ACC)	98.60%		
A123	NA	network (CNN), long short-term memory (LSTM), and deep neural network (DNN)	Recall	89.70%	Yahoo S5 Webscope Dataset	
		neural net	neural network (DIVIN)			•
A 10.4	DT A	CLIM	Accuracy (ACC)	85.60%	m 110 1 4	
A124	NA	SVM	True Positive Rate (TPR)	na	real life dataset	
A124	NA unsupervised	SVM			real life dataset KDD Cup 1999	

					Multidisciplinary : Rapid Review : Open Access Journal
A126	unsupervised	SVM and P-kernel	Detection Rate (DR) False Positive Rate (FPR)	98% 6%	KDD Cup 1999
A127	NA	sequence-matching	False Positive Rate (FPR) True Positive Rate (TPR)	1.5 92.8	Purdue University dataset
A128	supervised	algorithm Extreme Learning	Detection Rate (DR)	91%	ISCX-IDS 2012 dataset
	supervised	Machine (ELM) one-class support vector	Misclassified Rate (MR) Accuracy (ACC)	9% 98.59	
A129	semisupervised	machine with ramp lose function	Detection Rate (DR) False Alarm Rate(FAR)	98.25 1.25	NSL-KDD and UNSW-NB15 and UCI repository
A130	supervised	SVM and SVR	Mean Absolute Error(MAE)	na	The Argo datasets
A131	NA	decision tree	Accuracy (ACC) Precision Recall ROC Area	90% 0.0973 0.9074 0.9073	KDD Cup 1999
A132	NA	Decision Tree, Random Forest, and ANN	Accuracy (ACC) Precision Recall F-Score	99.40% 0.99 0.99 0.99	DS2OS traffic traces
A133	NA	deep neural network (DNN), random forest (RF), variational autoencoder (VAE)	Accuracy (ACC)	99.99%	CIDDS-001
A134	unsupervised	Probabilistic Anomaly DQetection, File Wrapper	Detection Rate False Positive Rate (FPR)	95% 2%	real life dataset
A135	supervised	naive Bayes and knearest	F-Score Precision Recall ROC Area	na na na	real life dataset
A136	NA	one-class support vector	Detection Rate (DR)	95.61%	real life dataset
A137	semisupervised	machine (OCSVM) Deep Belief Nets	Falses Alarm Rate (FAR) F-Score Recall	2.14% 0.4752 ± 0.0044 0.5514	real life dataset
A138	supervised	KMeans clustering and SVM SMO	Precision True Positive Rate (TPR) False Positive Rate (FPR)	0.4175 na na	WHOIS data
A139	NA	Bayes net	Detection Rate (DR) True Positive Rate (TPR) False Positive Rate (FPR)	81.25% 97.30% 31.03%	Google play dataset
A140	unsupervised	k-means clustering and hierarchical clustering	Mean Squared Error(MSE)	na	real life dataset
A141	supervised	rule based decision tree (RBDT)	False Positive Rate Detection Rate (DR)	0.13% na	real life dataset
A142	NA	Kohonen neural network (KNN) and support vector machine (SVM)	Detection Rate (DR)	83.90%	KDD Cup 1999
A143	supervised and unsupervised	Genetic Algorithm, Self- Organised Feature Map, and Support Vector Machine	Detection Rate (DR) False Positive rate (FPR) False Negative Rate (FNR)	88.28 9.17 15.75	KDD Cup 1999
A144	NA	SVM	Standard deviations	0.826	automobile dataset and UCI benchmark datasets
A145	supervised	Support Vector Machine Random Forest	Accuracy (ACC) F-Score Accuracy (ACC)	0,999 701 0,999 851 0,999 936	synthetic data set
			F-Score Detection Rate (DR)	0,999 968 na	VIDD C. 1555
A146 A147	supervised unsupervised	SVM+entropy Least Squares Support	ROC Area	na na	KDD Cup 1999
A148	unsupervised	Vector Machine Support Vector Machine and Self-Organizing	Detection Rate	92.30%	KDD Cup 1999
A149	supervised	Map Boosted Decision Tree, Neural Network	Accuracy (ACC) ROC Area	0.928 na	Simulated Dataset and Real-world Dataset
	1			1	

A150	unsupervised	Generative Adversarial Networks	AUC	0.641	real life dataset
			F-Score	0.88	
A151	NA	SVM-RBF	Matthews correlation coefficient	0.867	Slammer, Nimda, Code Red I
11101	1,112	5 (111 112)	ROC Area	0.907	Similar, Timon, Code Red T
			Precision-Recall	0.8	
			Accuracy (ACC)	0.941	
			Sensitivity	0.893	
		a batch relevance-based	Specificity	0.967	
A152	supervised	fuzzyfied learning	Precision	0.936	NSL-KDD
	•	algorithm	F-Score	0.914	
			correlation	0.87	
			ROC Area	0.93	
		Artifical Neural Network	Error Ratio	0.059	
A153	semisupervised	and Mahalanobis distance based statistical approach	na	na	Real and synthesized energy consumption data
			Detection Rate (DR)	0.9336	
		Adaptive Network	Accuracy (ACC)	0.9666	
A154	semisupervised	Anomaly Detection	False Alarm Rate(FAR)	0.0159	Kyoto University's 2006+
		Algorithm	F-Score	0.9148	
			ROC Area	na	
		naïve Bayesian	Total Events	252	
A155	NA	classifier	True Positive Rate (TPR)	29 (17.7%)	real life dataset
			Average Prediction Time	12.2s	
	supervised and		Detection Rate (DT)	100%	
A156	unsupervised	SVM	False Positive Rate (FPR)	8%	synthetic dataset
	unsupervised	random forest, t	Accuracy (ACC)	85%	
A157	unsupervised	distributed stochastic neighbor embedding (t- SNE)	Accuracy (ACC)	3370	real life dataset
A158	NA	structure analysis	AUC	0.9967	UMN Dataset
			Accuracy (ACC) - standard	96%	
A159	unsupervised	Hierarchical Temporal Memory (HTM)	Accuracy (ACC) - reward few false positive	96%	μPMU Dataset
		namory (TTTT2)	Accuracy (ACC) - reward few false negative	98%	
A160	unsupervised	one class extreme learning machine Kernel (ELMk)	AUC	0.9706±0.0029	real life dataset
A161	unsupervised	Recurrent Neural	AUC - word	0.984	LANL Dataset
A101	unsupervised	Network + LSTM	AUC - character	0.977	LANL Dataset
			Accuracy (ACC)	98%	
			True Positive Rate (TPR)	99.4987	
A 1.C2	NT A	Genetic Algorithms +	False Positive Rate (FPR)	1.7806	VDD C 1000
A162	NA	SVM	True Negative Rate (TNR)	98.2194	KDD Cup 1998
			False Negative Rate (FNR)	0.5013	
			Mean Squared Error(MSE)	0.0167	
A163	NA	Canonical Correlation Analysis (CCA) + Support Vector Machines (SVMs)	Mean Squared Error(MSE)	7.5	novel dataset
		Convolutional Neural	precision	0.95	
			Recall	0.38	
A164	supervised and unsupervised	Networks (CNN), Deep Belief Networks (DBN), Stacked	F-Score	0.54	CTU dataset and real life dataset
	unsuperviseu	AutoEncoders (SAE), Long Short-Term Memory Recurrent Networks (LSTM),			
A165	supervised	SVM	Accuracy (ACC)	90%	real life dataset
A166	NA	Gaussian models	na	na	na
A167	NA	Hidden Markov Model	Detection Rate (DR)	99.60%	real life dataset
A168	NA	D-Markov machine with symbolic false nearest neighbors	na	na	na

					Multidisciplinary : Rapid Review : Open Access Journal
		real-value negative	Detection Rate (DR)	na	
A169	unsupervised	selection + multilayer perceptron	False Alarm Rate(FAR)	na	MIT -Darpa 98, MIT- Darpa 99
		correlational	True Positive Rate (TPR)	95%	
A170	unsupervised	paraconsistent machine	False Positive Rate (FPR)	4%	real life dataset
	1	(CPM)	ROC Area	na	
		Negative selection +	Detection Rate (DR)	100%	
		multilayer neural	True Positive Rate (TPR)	100	Inia datasati Catasa Vincinias
A171	NA	network	False Positive Rate (FPR)	0	Iris dataset: Setosa, Virginica, Versicolor
		(backprogagation) +	True Negative Rate (TNR)	50	Versicolor
		evolutionary algorithm	False Negative Rate (FNR)	0	
		* Cluster-based	Detection Rate	na	
A172	unsupervised	Estimation	False Positive Rate	na	KDD CUP 1999, 1999 Lincoln
		* K-nearest neighbor * One Class SVM	ROC Area	na	Labs DARPA
A173	NA	na	Accuracy (ACC)	about 80%	real-time data from smartphone
			False Alarm Rate(FAR)	na	1999
A174	NA				DARPA/Lincoln and real-time
		LERAD			dataset
			Correctly Classification rate (CCR)	99.92%	
A175	NA		Incorrectly classified instance	na	real life dataset
11170	1,112		Kappa Statistics	na	Tour Mre duideet
		Clustering	Mean Absoulte Error	na	
		* Adaboost		0.00	1110
A176	supervised	* SVM * Entropy	AUC, Average Precision	0.99	real life dataset
		* Епиору		V-detector	
A177	supervised	negative selection	detection rate, false alarm rate	99.98	Fisher Iris
A1//	superviseu	SVM	detection rate, raise ararm rate	ocSVM100	Fisher IIIs
A178	unsupervised	Cluster	confusion matrix	na	generated dataset
		Principal Components		iiu	
A179	unsupervised	Analysis	ROC, FPR, TPR	na	real life dataset
A180	NA	SVM + GA with Neural Kernel	detection rate	99%	KDD Cup 1999
A181	unsupervised	AutoEncoder	mean squared error	na	real life dataset
A182	NA	relevance vector regression and autoregression	false alarms rate, detection rate	na	telemetry data obtained from an orbital rendezvous simulation
A183	NA	One class SVM	False alarm probability, Path loss exponent, Transmission ISR, Number of unauthorized transmitters	na	real life dataset
1.101			detection rate	80.3%	nine UNIX users from Purdue
A184	unsupervised	clustering	false positive rate	15.30%	University
A185	supervised	a Stacked Auto-encoder	accuracy	98.67%	real life dataset
A186	unsupervised	Name of the late o	accuracy	na	CoverType, Mulcross, Smtp, U2R,
A 107	_	Nearest neighbour	•		etc
A187	supervised	k-means clustering	na dataction rate	99.90%	real life dataset
A188	semi-	SOM 1.40 d!-!-	detection rate	99.90%	KDD Cup 00
A188	supervisesd	SOM + J.48 decision	false positive rate		KDD Cup 99
		tree	False Positive Rate (FPR)	1.25% 833	
	semi-		False Positive Rate (FPR) False Negative Rate (FNR)	619	1
A189	semi- supervisesd		F-Score False Negative Rate (FNR)	96%	real life dataset
	supervisesu	LSTM, NN	detection rate (DR)	99.99%	
		two-class SVM with a	Accuracy (ACC)	94%	
		Radial	Accuracy (ACC)	J+70	experimental laboratory earth
A190	unsupervised	Basis Function (RBF)	F-Score	96%	embankments
		kernel	1 23010	2070	Cinoankinonto
A191	NA	LSTM	accuarcy	99.50%	Code Red, Nimda, Slammer
A192	NA	Bayesian	accuracy, false alarm, learning time	accuracy: 99%	real life dataset
		estimation			
A193	supervised	evolutionary neural networks	Detection rate, False Alarm rate	na	1999 DARPA
A194	unsupervised	3D convolutiona	AUC	91.2	UCSD pedestrian dataset, . The
	unsuper viseu	AutoEncoder	EER	16.7	UMN dataset
A195	unsupervised	PCA	recall, FPR, Precision	na	real life dataset
A196	semi-supervised		AUC-ROC,	0.916±0.004	real-world dataset
	DOLLI BUDGI VISCU	Neural Network	AUC-PR(Precision-Recall)	0.574±0.008	Tour world dataset

A197	supervised	1-SVM	na	na	synthetic data and data in public domains such as: Colorado Water Watch
			Precision	0.996	
A 100		Auto encoder based on			benign
A198	unsupervised	Artificial Neural	recall	0.999	I TD
		networks	F-Score	0.997	IoT traffic
			accuracy, false alarm rate, precision, recall, f1-measure	95.73	
			False Alarm Rate(FAR)	11.86	
A199	supervised	Random Forest	precision	78.65	UNSW-NB15
		algorithm and regression	recall	78.65	
		tree	F-Score	78.65	
		four single classifers	Precision	0.8803	
		(DT, RF, kNN and	Recall	0.7017	
		GBDT) and Linear	F-Score	0.8376	System Log of server clusters in a
A200	NA	Regression	F-Score		
				Biz Business	financial company
		GBDT: gradient		Type	
		boosting Decision Tree			
A201	NA	non linear Mercer kernel	ROC curves	na	simulated data and real HYDICE
		function			images
		swarm	Detection Rate (DR)	92%	
A202	unsupervised	intelligence-based	False Positive Rate (FPS)	10%	KDD Cup 1999
11202	unsuper vised	clustering	raise rositive rate (115)	10/0	1100 Cap 1777
			precision	86.16%	massive real-world datasets from
4.000	37.4	Hidden Markov Model	recall	80.07%	AIS
A203	NA	and Support Vector	F-Score	83.00%	vessel tracking in coastal waters of
		Machine	accuarcy	96.70%	North America
		Ensemble learning	True Positive Rate (TPR)	98.1	
		Autoencoder	False Positive Rate (FPR)	1.98	
A204	NA	Support vector			real-world data provided by
A204	NA		AUC	na	Powersmiths
		regression Random forest			
		Kandom forest			simulated MANET and real life
A205	NA	anaamhla Laluatarina	ROC	na	dataset
		ensemble + clustering	A	95.2	dataset
A206	unsupervised	D : : :	Accuracy (EDD)	85.2	KDD Cup 1999
	1	Bayesian mixture	False Positive Rate (FPR)	7.3	•
A207	unsupervised	ensemble of one class SVM	AUC, ROC	na	DARPA'99, GATECH
		S V IVI	Error Rate	44%	
			System Error	202 out 4000	
A208	NA	Naive Bayes		40 out of 4000	real life dataset
			unsure		
			corpus error	158 out of 4000	
			AUC-ROC	0.8661 ±	
A209	supervised	Stochastic gradient		0.0150	real life dataset
		boosting	Precision	0.8351 ±	
				0.0100	
			Accuracy (ACC)	92.79%	
			Error Rate (ER)	7.21%	
A210	semi-supervised	Gaussian model	F-Score	94.26%	call detail records of real cellular
A210	senn-supervised	Gaussian model	False Positive Rate (FPR)	14.13%	network
			Precision	92.34%	
			Recall	97.05%	
			Detection Rate (DR)	99%	
A211	supervised		False Positive Rate (FPR)	0.10%	Channel 6
	Super viseu	n-gram	ROC Area	na	dataset
		recursive least squares	ROCTHOL	114	
		(RLS) + online			
		sequential extreme			
A212	unsupervised	learning machin (OS-	Precision, Recall, F-measure	na	real world dataset
	•	ELM) + single-layer			
		feed-forward neural			
		network			
		(SLFN)			g
		D			Secure Water
A213	unsupervised	Recurrent Neural	Cumulative Sum, false positive rate	na	Threateness (T. d. 1707)
		Networks	T. D. W. D. (TDD)	020/	Treatment Testbed (SWaT)
A214	NA	Single-window classification	True Positive Rate (TPR) False Positive Rate (FPR)	93%	real life traffic dataset
		cloccitication	Haise Positive Rate (FPR)	0.86%	
A215	NA	negative selection-based	Accuracy (ACC)	96.10%	KDD Cup 1999

					Multidisciplinary : Rapid Review : Open Access Journal
A216	supervised + unsupervised	Supervised: Logistic regression, Decision tree, and Support vector machine (SVM) Unsupervised: Log Clustering, PCA, Invariants Mining	Accuracy, Recall, Precision, F- measure	na	HDFS and BGL
A217	unsupervised	n-grams	efficiency, stability, scaling	na	na
11217	unsupervised	ii grainio	Detection Rate (DR)	94.48%	
A218	supervised	K-mean + SMO	False Alarm Rate(FAR)	1.20%	NSL-KDD
			Accuracy (ACC)	97.37%	***
		most relevant principal	True Positive Rate (TPR)	91.40%	
A219	NA	components + neural networks	False Positive Rate (FPR)	3.70%	real life dataset
A220	supervised	KNN	Detection Rate (DR) False Alarm Rate(FAR)	78% 21%	ADFA-LD
A221	unsupervised	Ensemble of One-Class SVM	desired false positive rate (DFP), real false positive rate (RFP), DR, AUC	na	real life dataset
A222	uncunorviced		Accuracy (ACC) Detection Rate (DR)	88.32 88.34	CSIC 2010 data set
AZZZ	unsupervised		Precision-Recall	80.79	CSIC 2010 data set
		Isolation Forest	F-Score	84.12	
		support vector machines	Detection Rate (DR)	90.30%	
A223	supervised	with a radial basis kernel (SVM-RBF)	False Positive Rate (FPR)	0.50%	DARPA/KDD-99
A224	NA	program behavior traces	FP, Recall	na	1998/1999 Dataset
			False Positive Rate (FPR)	3.73%	_
		Fuzzy Adaptive	Hit Rate	80.00%	4
		Resonance Theory	Cost	0.424	4
4 225	unsupervised	Evolving Fuzzy Neural	False Positive Rate (FPR)	2.61%	KDD C 1000
A225		Networks	Hit Rate	76.00%	KDD Cup 1999
			Cost False Positive Rate (FPR)	0.397	
		SVM	Hit Rate	80.00%	
			Cost	1.14	
			Anomaly mean	0.76	real and synthetic dataset
A226	NA		Anomaly standard deviation	0.14	
71220	1171	Temporal relationships	Anomaly threshold	0.99	Tour and symmetre dataset
		Naive Bayes	Accuracy (ACC)	78.941	
	37.4	Decision table	Accuracy (ACC)	94.41	TEND 1
A227	NA	J48	Accuracy (ACC)	97.62	KDD dataset
		PART	Accuracy (ACC)	97.5179	
A228	NA	Stream clustering-based	detection rate	na	Digital Corpora, 2008, 2009, and real dataset
A229	unsupervised	conditional anomaly detection	Precision-Recall	0.72	KDD CUP 1999
A230	NA	neural network Neuro- fuzzy method	Accuracy (ACC)	86.72%	real time data collected by the city of Aarhus, Denmark
		Binary Support Vector Machines	Accuracy (ACC)	98.65%	,
A231	unsupervised	Bayesian Networks	Prediction errors	na	real time data
A232	supervised	Naive Bayes with	False Positive Rate (FPR)	4.23%	KDD Cup 1999
	1	adaboost	Detection Rate (DR)	84.32%	1
A233	supervised	negative and positive selection + C4.5 and Naïve Bayes	True Positive Rate (TPR) False Positive Rate (FPR)	0.997 0.028	UCI data repository
		_	Precision	96.55%	
A234	NA	Online Kalman Filtering	Recall	98.25%	real time dataset
			False Alarm Rate(FAR)	11.11%	
			Accuracy (ACC)	88.65%	4
A235	NA		Precision	96.48%	NSL-KDD
		A . 5	Recall	83.08%	4
		Auto Encoder	F-Score	89.28%	
1226	uno::===1	door Ci	AUC Accuracy (ACC)	92.50%	UCSD Ped1 Dataset, Avenue
A236	unsupervised	deep Gaussian mixture	Accuracy (ACC)	75.40%	Dataset
A237	semi-supervised	model + PCANet Generative Adversarial	Equal Error Rate (EER) AUC	15.10% AUC: 0.882	CIFAR10 Dataset, MNIST Dataset
		Networks			

A238	supervised	Echo State Networks	False negative, false positive, Detection rate	na	real life dataset	
A239	NA	Genetic algorithm (GA)	accuracy	accuracy: 85.38%	NSL-KDD	
A240	NA	Deep Neural Network	Detection Rate (DR)	70%	real life dataset	
	·	CART Decision Trees	False Alarm Rate(FAR)	< 3%		
A241	supervised and unsupervised	(CART), Random Forest (RF), Support Vector Machines (SVM), Naive Bayes (NB) and Neural Networks (MLP)	ROC	ROC: 0.997	MAWILab	
A242	NA	Hidden Markov Model	training time	na	"inetd" and "sride" dataset	
A243	NA	SVM	classified, actual	na	real time dataset	
A244	unsupervised	augmented Daikon and Mean. Daikon	TP, TN, FP, FN	na	stock quote data sources	
A245	supervised and unsupervised	J48 + Naïve Bayes	accuracy, TP, TN, FP, FN	88%	UNSW-NB15	
		J48	Detection Rate (DR) False Alarm Rate(FAR)	99.8 0.1	_	
A246	NA	BayseNet	Detection Rate (DR)	99.9	real time dataset	
12 10	1121	Daybortot	False Alarm Rate(FAR)	0	- Car time dataset	
		SMO	Detection Rate (DR)	98.6		
		D. D.I. CM 1	False Alarm Rate(FAR) Accuracy (ACC)	2.9 94%	MINIST	
A247	semi-supervised	Deep Belief Network and Restricted	Accuracy (ACC) Accuracy (ACC)	94%	NSL-KDD	
A247	seiii-superviseu	Boltzmann Machine	Accuracy (ACC)	95%	HTTP CSIC 2010	
A248	unsupervised	K-means clustering	na	na na	KDD cup 1999	
A240	unsupervised		AUC Area	0.96	KDD cup 1777	
		K-NN	Accuracy (ACC)	85.60%	7	
		Hoeffding Adaptive	AUC Area	0.79		
4.2.40	27.4	Trees (HAT)	Accuracy (ACC)	99.60%		
A249	NA	NA	NA Adaptive Random	AUC Area	0.99	MAWILab
		Forests (ARF)	Accuracy (ACC)	98.20%		
		Stochastic Gradient	AUC Area	0.99		
		Descent (SGD)	Accuracy (ACC)	99.30%		
	supervised and		Detected	25		
A250	unsupervised	Kernel Recursive Least	Missed	9	network-wide traffic datasets	
	1	Squares	FALSE	0		
		Autoencoder + Kernel density estimation model (OCKDE)	AUC Area	0.987		
A251	NA	Autoencoder + Centroid (OCCEN)	AUC Area	0.986	NSL-KDD	
		Once class classifier Autoencoder (OCAE)	AUC Area	0.971		
		rutoencouci (OCAE)	False Positive Rate (FPR)	1.2		
A252	NA	Genetic algorithm (GA)	True Positive Rate (TPR)	96.49	KDD Cup 1999	
			AUC-EER-Exit	90.2/16	UCSD (Ucsd anomaly detection	
A253	supervised and unsupervised	fully convolutional neural network	AUC-EER-Entrance	90.4/17	dataset, 2017) and Subway benchmarks (Adam et al., 2008)	
		Adversarial autoencoder (AAE)	Area Under Precision Recall Curve (AUPRC)	1		
A254	NA	variational autoencoder (VAE)	Area Under Precision Recall Curve (AUPRC)	1	synthetic data, cifar-10, Pixabay,	
A255	supervised	Neural networks	Detection Error Rate,	0,01375%	simulation dataset	
			True Positive Rate (TPR)	98		
A256	NA		False Positive Rate (FPR)	0.021	NSL-KDD	
A230	IVA	1,7	F-Score	98		
		ensemble	ROC Area	99.6		
A257	supervised and unsupervised	one class SVM + particle swarm optimization	AUC	0.952	UCI data set	
A258	NA	Isolation Forest	Precision Recall	92.50% 82.84%	real life dataset	
		frequent item-set mining	Accuracy (ACC)	> 98%		
A259	supervised	(FIM) + C5.0 + decision tree	False Positive Rate (FPR)	< 1%	real life dataset	
	•	•	•	•		

A260	supervised	J48 classifier + Bayes Net	accuracy, precision, recall, F-value	99.50%	real life dataset
A261	NA	convex-hull SVM	ROC curve	na	KDD'99
			Precision	70	
			Recall	95.4	SWaT
A262	NA	GAN to train LSTM-	F-Score	0.81	
A202	IVA	RNNs	Precision	53.75	
			Recall	74.92	WADI
			F-Score	0.62	
A263	NA	n-grams	Accuracy (ACC)	0.999	real life dataset
71203	1471	ii grains	Precision	0.998	rear me dataset
			Precision	0.98	
A264	NA		Recall	0.91	CICIDS2017
		Attention-base Multi-	F-Score	0.94	
		Flow LSTM	Flows	348631	
			Accuracy (ACC)	91%	
A265	NA		Precision	0.996699	KDD Cup 1999
		Back Propagation Neural	Recall	0.90059	<u> </u>
		Network	F-Score	0.94615	
A266	NA	Bayesian Learning + Markov models	true positive rate, false positive rate, accuracy	na	real life dataset
A267	unsupervised	greedy	AUC, True postive rate, false positive rate, ROC curve	AUC: 0.84	ALOI and synthetic data from MNIST and UCI datasets
		ensemble	•		
A268	unsupervised	clustering-based	Accuarcy (ACC)	96%	public data
A269	unsupervised and supervised	Restricted Boltzmann Machines (RBM) and	na	na	KDD Cup 1999
	1	Autoencoder	A (AGG)	000/	
			Accuracy (ACC)	99%	
A270	unsupervised		Precision	98.30%	NSL-KDD and Kyoto-Honeypot
		r am r	Recall	99.60%	3
		LSTM	F-Score	99.00%	
			Precision	0.83	
A271	NA	Random Forests and	Recall	0.85	DARPA 1999 dataset
		Entropy	F-Score	0.84	
A272	NA	one-class quarter sphere SVM	detection rate, false positive rate	na	real life dataset
A273	NA	ensamble	Accuracy (ACC)	na	UCI
			Precision	0.9992	
A274	unsupervised	Random Forest	Recall	0.9969	NSL-KDD
		Classifier	F-Score	0.998	
A275	NA	LSTM-RNN	classification accuracy	na	KDD 1999 dataset
			Accuracy (ACC)	99.34%	
A276	NA		Precision	0.98	UNSW-NB15
AZIO	11//1		Recall	0.98	UNSW-NB13
		Random Forest	F-Score	0.98	
A277	unsupervised and supervised	ensamble	Accuracy (ACC)	na	UCI
			Accuracy (ACC)	99.60%	SMS- real life dataset
A278	NA		Accuracy (ACC)	99.10%	iDMA- real life dataset
A2/8	INA		Accuracy (ACC)	99.20%	iTL- real life dataset
		Random Forest	Accuracy (ACC)	80.60%	Touchstroke- real life dataset
	· 		Accuracy (ACC)	97.12%	TD-Sim
A 270	11002mam:! 1		False Positive Rate (FPR)	2.60%	TD-Sim
A279	unsupervised	growing hierarchical self	Accuracy (ACC)	99.63%	KDD Cup 1999
		organizing map	False Positive Rate (FPR)	1.80%	KDD Cup 1999
A 200			true positive rate, false positive	F-measure:	
A280	unsupervised	Autoencoder	rate, F-measure	0.418 (basic)	synthetic dataset
			normal Generalization	80	
			Intrusive Generaliztion	83]
A281	NA	Hidden Markov Models	Overall Generaliztio	81.48	Computer Immune Systems
	INA		False Positive Rate	20	benchmark data
			False Negative Rate	17	
			Probability Density Function,		
A282	NA	Kernel PCA	Thruster Duty	na	telemetry data
			Accuracy (ACC)	96.41%	
4.000	37.4	LSTM	F-Score	0.98	120 1
A283	NA	EUEN IN I	Accuracy (ACC)	94.49%	real life dataset
		FFNN	F-Score	0.97	
		· · · · · · · · · · · · · · · · · · ·			

		Neural network,	Precision	95.70%	
A284	NA	Analogous Particle	System Efficiency	5.60%	real life dataset
		swarm optimization	Error Rate	0.0403	
A285	unsupervised	Local Outlier Factor (LOF)	True Positive Rate	na	real life time series dataset
			Precision	99.90%	
		Decision Forest	Recall	99.90%	
A286	supervised		F-score	0.9999	real life dataset
A280	supervised		Precision	99.21%	real file dataset
		Decision Jungle	Recall	99.21%	
			F-score	0.9921	
		supervised autoencoder (AE)	Mean Absolute Error(MAE)	2.9	real life dataset
	supervised		Mean Squared Error(MSE)	15.8	
A287			AUC	0.9969	
			True Positive Rate (TPR)	98.6	
			False Positive Rate (FPR)	0.9	1
A288	supervised	k-means and Skip-gram	accuracy	98	real life dataset
			Detection Rate (DR)	86%	
			AUC	0.54	
A289	na	Locally Weighted	F1-score	0.86	real life dataset
A289	па	Projection Regression	Precision	0.85	real file dataset
			Accuracy (ACC)	0.91	
			Error rate	16%	
		Sub-Space Clustering	Detection Rate (DR)	0.9	
A290	unaunanziaad	(SSC) and One Class	False Alarm Rate(FAR)	0.0905	NSL-KDD dataset
A290	unsupervised	Support Vector Machine (OCSVM)			NSL-KDD dataset

REFERENCES

- V. Chandola, A. Banerjee, and V. Kumar, "Anomaly Detection: A Survey," *ACM Comput. Surv.*, vol. 41, no. 3, pp. 71–97, 2009, doi: 10.1145/1541880.1541882.
- [2] M. Injadat, F. Salo, A. B. Nassif, A. Essex, and A. Shami, "Bayesian Optimization with Machine Learning Algorithms Towards Anomaly Detection," in 2018 IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–6, doi: 10.1109/GLOCOM.2018.8647714.
- [3] T. Schlegl, P. Seeb ock, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery, vol. 10265, no. 2. Cham: Springer International Publishing, 2017.
- [4] F. Salo, M. Injadat, A. B. Nassif, A. Shami, and A. Essex, "Data mining techniques in intrusion detection systems: A systematic literature review," *IEEE Access*. 2018, doi: 10.1109/ACCESS.2018.2872784.
- [5] F. Salo, M. N. Injadat, A. Moubayed, A. B. Nassif, and A. Essex, "Clustering Enabled Classification using Ensemble Feature Selection for Intrusion Detection," 2019, doi: 10.1109/ICCNC.2019.8685636.
- [6] F. Salo, A. B. Nassif, and A. Essex, "Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection," *Comput. Networks*, vol. 148, pp. 164–175, Jan. 2019, doi: 10.1016/J.COMNET.2018.11.010.
- [7] P. Gogoi, D. K. Bhattacharyya, B. Borah, and J. K. Kalita, "A survey of outlier detection methods in network anomaly identification," *Comput. J.*, vol. 54, no. 4, pp. 570–588, 2011, doi: 10.1093/comjnl/bxr026.
- [8] S. Agrawal and J. Agrawal, "Survey on anomaly detection using data mining techniques," *Procedia Comput. Sci.*, vol. 60, no. 1, pp. 708–713, 2015, doi: 10.1016/j.procs.2015.08.220.
- [9] R. A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani, I. A. Targio Hashem, E. Ahmed, and M. Imran, "Real-time big data processing for anomaly detection: A Survey," *Int. J. Inf. Manage.*, vol. 45, no. February, pp. 289–307, 2019, doi: 10.1016/j.ijinfomgt.2018.08.006.
- [10] V. Chandola, A. Banerjee, and V. Kumar, "Anomaly Detection for Discrete Sequences: A Survey," *IEEE Trans. Knowl. Data Eng.*, vol. 24, no. 5, pp. 1–16, 2012.
- [11] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, "Network

- Anomaly Detection: Methods, Systems and Tools," *IEEE Commun. Surv. TUTORIALS, Accept. Publ.*, pp. 1–34, 2013, [Online]. Available: http://ieeexplore.ieee.org/document/6524462/.
- [12] I. Bose and R. K. Mahapatra, "Business data mining A machine learning perspective," *Inf. Manag.*, vol. 39, no. 3, pp. 211–225, 2001, doi: 10.1016/S0378-7206(01)00091-X.
- [13] U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis, "Network anomaly detection with the restricted Boltzmann machine," *Neurocomputing*, vol. 122, pp. 13–23, 2013, doi: 10.1016/j.neucom.2012.11.050.
- [14] B. Kitchenham and S. Charters, "Guidelines for performing Systematic Literature reviews in Software Engineering Version 2.3," *Engineering*, vol. 45, no. 4ve, p. 1051, 2007, doi: 10.1145/1134285.1134500.
- [15] V. Hodge and J. Austin, "A Survey of Outlier Detection Methodologies," *Artif. Intell. Rev.*, no. 1969, pp. 85–126, 2004, doi: 10.4324/9781315744988.
- [16] M. Ahmed, A. N. Mahmood, and M. R. Islam, "A survey of anomaly detection techniques in financial domain," *Futur. Gener. Comput. Syst.*, vol. 55, pp. 278–288, 2015, doi: 10.1016/j.future.2015.01.001.
- [17] A. A. Sodemann, M. P. Ross, and B. J. Borghetti, "A review of anomaly detection in automated surveillance," *IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.*, vol. 42, no. 6, pp. 1257–1272, 2012, doi: 10.1109/TSMCC.2012.2215319.
- [18] R. Zuo, "Machine Learning of Mineralization-Related Geochemical Anomalies: A Review of Potential Methods," *Nat. Resour. Res.*, vol. 26, no. 4, pp. 457–464, 2017, doi: 10.1007/s11053-017-9345-4.
- [19] S. He, J. Zhu, P. He, and M. R. Lyu, "Experience Report: System Log Analysis for Anomaly Detection," *Proc. - Int. Symp. Softw. Reliab. Eng. ISSRE*, pp. 207–218, 2016, doi: 10.1109/ISSRE.2016.21.
- [20] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth, "Performance Anomaly Detection and Bottleneck Identification," ACM Comput. Surv., vol. 48, no. 1, pp. 1–35, 2015, doi: 10.1145/2791120.
- [21] Y. Yu, "A survey of anomaly intrusion detection techniques," *J. Comput. Sci. Coll.*, pp. 9–17, 2012, [Online]. Available: http://dl.acm.org/citation.cfm?id=2379707.
- [22] C. F. Tsai, Y. F. Hsu, C. Y. Lin, and W. Y. Lin, "Intrusion detection by machine learning: A review," Expert Syst. Appl.,

- vol. 36, no. 10, pp. 11994–12000, 2009, doi: 10.1016/j.eswa.2009.05.029.
- [23] A. Patcha and J. M. Park, "An overview of anomaly detection techniques: Existing solutions and latest technological trends," *Comput. Networks*, vol. 51, no. 12, pp. 3448–3470, 2007, doi: 10.1016/j.comnet.2007.02.001.
- [24] A. L. Buczak and E. Guven, "A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection," vol. 18, no. October, pp. 1153–1176, 2016, doi: 10.1109/COMST.2015.2494502.
- [25] K. Satpute, S. Agrawal, J. Agrawal, and S. Sharma, "A Survey on Anomaly Detection in Network Intrusion Detection System Using Swarm Optimization Based Machine Learning Techniques," in *International Conference on Frontiers of Intelligent Computing*, 2013, vol. 199, pp. 441–452, doi: 10.1007/978-3-642-35314-7.
- [26] V. Sharma, R. Kumar, W. H. Cheng, M. Atiquzzaman, K. Srinivasan, and A. Y. Zomaya, "NHAD: Neuro-Fuzzy Based Horizontal Anomaly Detection in Online Social Networks," *IEEE Trans. Knowl. Data Eng.*, 2018, doi: 10.1109/TKDE.2018.2818163.
- [27] P. Zhao, Y. Zhang, M. Wu, S. C. H. Hoi, M. Tan, and J. Huang, "Adaptive Cost-Sensitive Online Classification," *IEEE Trans. Knowl. Data Eng.*, 2019, doi: 10.1109/TKDE.2018.2826011.
- [28] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, "A survey of deep learning-based network anomaly detection," *Cluster Comput.*, pp. 1–13, 2017, doi: 10.1007/s10586-017-1117-8.
- [29] G. Fernandes, J. J. P. C. Rodrigues, L. F. Carvalho, J. F. Al-Muhtadi, and M. L. Proença, "A comprehensive survey on network anomaly detection," *Telecommun. Syst.*, vol. 70, no. 3, pp. 447–489, 2018, doi: 10.1007/s11235-018-0475-8.
- [30] G. K. Rajbahadur, A. J. Malton, A. Walenstein, and A. E. Hassan, "A Survey of Anomaly Detection for Connected Vehicle Cybersecurity and Safety," *IEEE Intell. Veh. Symp. Proc.*, vol. 2018-June, no. Iv, pp. 421–426, 2018, doi: 10.1109/IVS.2018.8500383.
- [31] T. Shon and J. Moon, "A hybrid machine learning approach to network anomaly detection," *Inf. Sci. (Ny).*, vol. 177, no. 18, pp. 3799–3821, 2007, doi: 10.1016/j.ins.2007.03.025.
- [32] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, "High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning," *Pattern Recognit.*, vol. 58, pp. 121–134, 2016, doi: 10.1016/j.patcog.2016.03.028.
- [33] M. Field, S. Das Bryanlmatthewsnasagov, N. C. Oza, B. L. Matthews, and A. N. Srivastava, "Multiple Kernel Learning for Heterogeneous Anomaly Detection: Algorithm and Aviation Safety Case Study Categories and Subject Descriptors," Computing, pp. 47–55, 2007.
- [34] M. Amer, M. Goldstein, and S. Abdennadher, "Enhancing oneclass support vector machines for unsupervised anomaly detection," pp. 8–15, 2013, doi: 10.1145/2500853.2500857.
- [35] Y. X. Meng, "The practice on using machine learning for network anomaly intrusion detection," *Proc. - Int. Conf. Mach. Learn. Cybern.*, vol. 2, pp. 576–581, 2011, doi: 10.1109/ICMLC.2011.6016798.
- [36] A. P. Muniyandi, R. Rajeswari, and R. Rajaram, "Network anomaly detection by cascading k-Means clustering and C4.5 decision tree algorithm," *Procedia Eng.*, vol. 30, no. 2011, pp. 174–182, 2012, doi: 10.1016/j.proeng.2012.01.849.
- [37] S. W. Lin, K. C. Ying, C. Y. Lee, and Z. J. Lee, "An intelligent algorithm with feature selection and decision rules applied to anomaly intrusion detection," *Appl. Soft Comput. J.*, vol. 12, no. 10, pp. 3285–3290, 2012, doi: 10.1016/j.asoc.2012.05.004.
- [38] S. Thaseen and C. A. Kumar, "An analysis of supervised tree based classifiers for intrusion detection system," *Proc. 2013 Int. Conf. Pattern Recognition, Informatics Mob. Eng. PRIME 2013*, pp. 294–299, 2013, doi: 10.1109/ICPRIME.2013.6496489.
- [39] G. Kim, S. Lee, and S. Kim, "A novel hybrid intrusion detection method integrating anomaly detection with misuse detection," *Expert Syst. Appl.*, vol. 41, no. 4 PART 2, pp. 1690–1700, 2014, doi: 10.1016/j.eswa.2013.08.066.

- [40] S. Fu, "Performance metric selection for autonomic anomaly detection on cloud computing systems," GLOBECOM - IEEE Glob. Telecommun. Conf., 2011, doi: 10.1109/GLOCOM.2011.6134532.
- [41] Y. Yasami and S. P. Mozaffari, "A novel unsupervised classification approach for network anomaly detection by k-Means clustering and ID3 decision tree learning methods," 2010, doi: 10.1007/s11227-009-0338-x.
- [42] R. Chitrakar and H. Chuanhe, "Anomaly detection using Support Vector Machine classification with k-Medoids clustering," *Asian Himalayas Int. Conf. Internet*, pp. 1–5, 2012, doi: 10.1109/AHICI.2012.6408446.
- [43] N. Chand, P. Mishra, C. R. Krishna, E. S. Pilli, and M. C. Govil, "A comparative analysis of SVM and its stacking with other classification algorithm for intrusion detection," *Proc. - 2016 Int. Conf. Adv. Comput. Commun. Autom. ICACCA 2016*, 2016, doi: 10.1109/ICACCA.2016.7578859.
- [44] K. Noto, C. Brodley, and D. Slonim, "FRaC: A feature-modeling approach for semi-supervised and unsupervised anomaly detection," *Data Min. Knowl. Discov.*, vol. 25, no. 1, pp. 109– 133, 2012, doi: 10.1007/s10618-011-0234-x.
- [45] I. Assent, P. Kranen, C. Baldauf, and T. Seidl, "AnyOut: Anytime outlier detection on streaming data," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7238 LNCS, no. PART 1, pp. 228–242, 2012, doi: 10.1007/978-3-642-29038-1_18.
- [46] A. Kulkarni, Y. Pino, M. French, and T. Mohsenin, "Real-Time Anomaly Detection Framework for Many-Core Router through Machine-Learning Techniques," ACM J. Emerg. Technol. Comput. Syst., vol. 13, no. 1, pp. 1–22, 2016, doi: 10.1145/2827699.
- [47] J. Vanerio and P. Casas, "Ensemble-learning Approaches for Network Security and Anomaly Detection," pp. 1–6, 2017, doi: 10.1145/3098593.3098594.
- [48] K. Noto, C. Brodley, and D. Slonim, "Anomaly detection using an ensemble of feature models," Proc. - IEEE Int. Conf. Data Mining, ICDM, pp. 953–958, 2010, doi: 10.1109/ICDM.2010.140.
- [49] P. Jongsuebsuk, N. Wattanapongsakorn, and C. Charnsripinyo, "Network intrusion detection with Fuzzy Genetic Algorithm for unknown attacks," *Int. Conf. Inf. Netw.*, pp. 1–5, 2013, doi: 10.1109/ICOIN.2013.6496342.
- [50] L. A. Maglaras and J. Jiang, "Intrusion detection in SCADA systems using machine learning techniques," *Proc. 2014 Sci. Inf. Conf. SAI 2014*, pp. 626–631, 2014, doi: 10.1109/SAI.2014.6918252.
- [51] T. Shon, Y. Kim, C. Lee, and J. Moon, "A machine learning framework for network anomaly detection using SVM and GA," 2005, doi: 10.1109/IAW.2005.1495950.
- [52] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E. Vázquez, "Anomaly-based network intrusion detection: Techniques, systems and challenges," *Comput. Secur.*, vol. 28, no. 1–2, pp. 18–28, 2009, doi: 10.1016/j.cose.2008.08.003.
- [53] Sang-Jun Han and Sung-Bae Cho, "Evolutionary neural networks for anomaly detection based on the behavior of a program," *IEEE Trans. Syst. Man Cybern. Part B*, vol. 36, no. 3, pp. 559–570, 2006, doi: 10.1109/tsmcb.2005.860136.
- [54] A. Nanduri and L. Sherry, "Anomaly Detection in Aircraft Data using Recurrent Neural Networks (RNN)," in 2016 Integrated Communications Navigation and Surveillance (ICNS), 2016, pp. 1–8, doi: 10.1109/ICNSURV.2016.7486356.
- [55] S. Rajasegarar, C. Leckie, J. C. Bezdek, and M. Palaniswami, "Centered hyperspherical and hyperellipsoidal one-class support vector machines for anomaly detection in sensor networks," *IEEE Trans. Inf. Forensics Secur.*, 2010, doi: 10.1109/TIFS.2010.2051543.
- [56] USACE, "Distribution Restriction Statement Approved for public release; distribution is," *Engineer*, vol. 2, 1994.
- [57] B. Agarwal and N. Mittal, "Hybrid Approach for Detection of Anomaly Network Traffic using Data Mining Techniques," *Procedia Technol.*, vol. 6, pp. 996–1003, 2012, doi: 10.1016/j.protcy.2012.10.121.

- [58] J. Jabez and B. Muthukumar, "Intrusion detection system (ids): Anomaly detection using outlier detection approach," *Procedia Comput. Sci.*, vol. 48, no. C, pp. 338–346, 2015, doi: 10.1016/j.procs.2015.04.191.
- [59] M. Sheikhan and Z. Jadidi, "Flow-based anomaly detection in high-speed links using modified GSA-optimized neural network," *Neural Comput. Appl.*, vol. 24, no. 3–4, pp. 599–611, 2014, doi: 10.1007/s00521-012-1263-0.
- [60] S. Mascaro, A. E. Nicholson, and K. B. Korb, "Anomaly detection in vessel tracks using bayesian networks," *Int. J. Approx. Reason.*, vol. 55, pp. 84–98, 2013, doi: 10.1016/j.ijar.2013.03.012.
- [61] D. Liu et al., "Opprentice: Towards Practical and Automatic Anomaly Detection Through Machine Learning," *Internet Meas. Conf.*, pp. 51–78, 2015, doi: 10.2307/j.ctt1zkjzr0.7.
- [62] I. Syarif, A. Prugel-bennett, and G. Wills, "Unsupervised Clustering Approach for Network Anomaly Detection," pp. 135– 145, 2012.
- [63] O. Linda, M. Manic, T. Vollmer, and J. Wright, "Fuzzy logic based anomaly detection for embedded network security cyber sensor," *IEEE SSCI 2011 Symp. Ser. Comput. Intell. - CICS* 2011 2011 IEEE Symp. Comput. Intell. Cyber Secur., pp. 202– 209, 2011, doi: 10.1109/CICYBS.2011.5949392.
- [64] X. Xu, "Sequential anomaly detection based on temporal-difference learning: Principles, models and case studies," Appl. Soft Comput. J., vol. 10, no. 3, pp. 859–867, 2010, doi: 10.1016/j.asoc.2009.10.003.
- [65] F. Iglesias and T. Zseby, "Analysis of network traffic features for anomaly detection," *Mach. Learn.*, vol. 101, no. 1–3, pp. 59– 84, 2015, doi: 10.1007/s10994-014-5473-9.
- [66] N. Pandeeswari and G. Kumar, "Anomaly Detection System in Cloud Environment Using Fuzzy Clustering Based ANN," Mob. Networks Appl., vol. 21, no. 3, pp. 494–505, 2016, doi: 10.1007/s11036-015-0644-x.
- [67] K. Demertzis and I. Lazaros, "A Hybrid Network Anomaly and Intrusion Detection Approach Based on Evolving Spiking Neural Network Classification," *Int. Conf. E-Democracy*, vol. 441, pp. 11–23, 2014, doi: 10.1007/978-3-319-11710-2.
- [68] K. Alrawashdeh and C. Purdy, "Toward an online anomaly intrusion detection system based on deep learning," Proc. - 2016 15th IEEE Int. Conf. Mach. Learn. Appl. ICMLA 2016, pp. 195– 200, 2017, doi: 10.1109/ICMLA.2016.167.
- [69] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, "Unsupervised real-time anomaly detection for streaming data," *Neurocomputing*, vol. 262, pp. 134–147, 2017, doi: 10.1016/j.neucom.2017.04.070.
- [70] S. Aljawarneh, M. Aldwairi, and M. B. Yassein, "Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model," *J. Comput. Sci.*, vol. 25, pp. 152–160, 2018, doi: 10.1016/j.jocs.2017.03.006.
- [71] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra, "MADAM: A multi-level anomaly detector for android malware," *Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)*, vol. 7531 LNCS, pp. 240–253, 2012, doi: 10.1007/978-3-642-33704-8-21.
- [72] V. A. Sotiris, P. W. Tse, and M. G. Pecht, "Anomaly Detection Through a Bayesian Support Vector Machine," vol. 59, no. 2, pp. 277–286, 2010.
- [73] M. Längkvist, L. Karlsson, and A. Loutfi, "Sleep Stage Classification Using Unsupervised Feature Learning," Adv. Artif. Neural Syst., 2012, doi: 10.1155/2012/107046.
- [74] J. Song, H. Takakura, Y. Okabe, and K. Nakao, "Toward a more practical unsupervised anomaly detection system," *Inf. Sci.* (Ny)., vol. 231, pp. 4–14, 2013, doi: 10.1016/j.ins.2011.08.011.
- [75] C. Yin, Y. Zhu, J. Fei, and X. He, "A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks," *IEEE Access*, vol. 5, pp. 21954–21961, 2017, doi: 10.1109/ACCESS.2017.2762418.
- [76] C. A. Catania, F. Bromberg, and C. G. Garino, "An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection," *Expert Syst. Appl.*, vol. 39, no. 2, pp. 1822–1829, 2012, doi: 10.1016/j.eswa.2011.08.068.

- [77] Z. Liao, Y. Yu, and B. Chen, "Anomaly detection in GPS data based on visual analytics," VAST 10 - IEEE Conf. Vis. Anal. Sci. Technol. 2010, Proc., pp. 51–58, 2010, doi: 10.1109/VAST.2010.5652467.
- [78] A. Purarjomandlangrudi, A. H. Ghapanchi, and M. Esmalifalak, "A data mining approach for fault diagnosis: An application of anomaly detection algorithm," *Meas. J. Int. Meas. Confed.*, vol. 55, pp. 343–352, 2014, doi: 10.1016/j.measurement.2014.05.029.
- [79] A. F. Emmott, S. Das, T. Dietterich, A. Fern, and W.-K. Wong, "Systematic construction of anomaly detection benchmarks from real data," pp. 16–21, 2013, doi: 10.1145/2500853.2500858.
- [80] D. J. Hill and B. S. Minsker, "Anomaly detection in streaming environmental sensor data: A data-driven modeling approach," *Environ. Model. Softw.*, vol. 25, no. 9, pp. 1014–1022, 2010, doi: 10.1016/j.envsoft.2009.08.010.
- [81] G. Pachauri and S. Sharma, "Anomaly Detection in Medical Wireless Sensor Networks using Machine Learning Algorithms," *Procedia Comput. Sci.*, vol. 70, pp. 325–333, 2015, doi: 10.1016/j.procs.2015.10.026.
- [82] X. S. Gan, J. S. Duanmu, J. F. Wang, and W. Cong, "Anomaly intrusion detection based on PLS feature extraction and core vector machine," *Knowledge-Based Syst.*, vol. 40, pp. 1–6, 2013, doi: 10.1016/j.knosys.2012.09.004.
- [83] W. Li, G. Wu, and Q. Du, "Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery," *IEEE Geosci. Remote Sens. Lett.*, vol. 14, no. 5, pp. 597–601, 2017, doi: 10.1109/LGRS.2017.2657818.
- [84] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck, "A close look on n-grams in intrusion detection," Proc. 2013 ACM Work. Artif. Intell. Secur. - AISec '13, pp. 67–76, 2013, doi: 10.1145/2517312.2517316.
- [85] J. Li, G. Han, J. Wen, and X. Gao, "Robust tensor subspace learning for anomaly detection," *Int. J. Mach. Learn. Cybern.*, vol. 2, no. 2, pp. 89–98, 2011, doi: 10.1007/s13042-011-0017-0.
- [86] C. Zhou and R. C. Paffenroth, "Anomaly Detection with Robust Deep Autoencoders," pp. 665–674, 2017, doi: 10.1145/3097983.3098052.
- [87] D. J. Dean, H. Nguyen, and X. Gu, "UBL: Unsupervised Behavior Learning for Predicting Performance Anomalies in Virtualized Cloud Systems," *Proc. 9th Int. Conf. Auton. Comput.* - ICAC '12, pp. 191–200, 2012, doi: 10.1145/2371536.2371572.
- [88] L. Xiong, X. Chen, and J. Schneider, "Direct robust matrix factorization for anomaly detection," *Proc. - IEEE Int. Conf. Data Mining, ICDM*, pp. 844–853, 2011, doi: 10.1109/ICDM.2011.52.
- [89] Y. J. Lee, Y. R. Yeh, and Y. C. F. Wang, "Anomaly detection via online oversampling principal component analysis," *IEEE Trans. Knowl. Data Eng.*, vol. 25, no. 7, pp. 1460–1470, 2013, doi: 10.1109/TKDE.2012.99.
- [90] N. Laptev, S. Amizadeh, and I. Flint, "Generic and Scalable Framework for Automated Time-series Anomaly Detection," pp. 1939–1947, 2015, doi: 10.1145/2783258.2788611.
- [91] O. Salem, A. Guerassimov, A. Mehaoua, A. Marcus, and B. Furht, "Sensor Fault and Patient Anomaly Detection and Classification in Medical Wireless Sensor Networks," *IEEE Int. Conf. Commun.*, vol. 7, no. 4, pp. 272–284, 2013, doi: 10.5626/JCSE.2013.7.4.272.
- [92] L. Ma, M. M. Crawford, and J. Tian, "Anomaly detection for hyperspectral images based on robust locally linear embedding," *J. Infrared, Millimeter, Terahertz Waves*, vol. 31, no. 6, pp. 753– 762, 2010, doi: 10.1007/s10762-010-9630-3.
- [93] R. Zhao, B. Du, and L. Zhang, "A robust nonlinear hyperspectral anomaly detection approach," *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.*, vol. 7, no. 4, pp. 1227–1234, 2014, doi: 10.1109/JSTARS.2014.2311995.
- [94] P. Angelov, "Anomaly detection based on eccentricity analysis," IEEE SSCI 2014 - 2014 IEEE Symp. Ser. Comput. Intell. - EALS 2014 2014 IEEE Symp. Evol. Auton. Learn. Syst. Proc., pp. 1–8, 2014, doi: 10.1109/EALS.2014.7009497.
- [95] P. H. dos Santos Teixeira and R. L. Milidiú, "Data stream anomaly detection through principal subspace tracking," p. 1609,

- 2010, doi: 10.1145/1774088.1774434.
- [96] S. T. Faraj Al-Janabi and H. A. Saeed, "A neural network based anomaly intrusion detection system," *Proc. - 4th Int. Conf. Dev.* eSystems Eng. DeSE 2011, pp. 221–226, 2011, doi: 10.1109/DeSE.2011.19.
- [97] F. Palmieri and U. Fiore, "Network anomaly detection through nonlinear analysis," *Comput. Secur.*, vol. 29, no. 7, pp. 737–755, 2010, doi: 10.1016/j.cose.2010.05.002.
- [98] A. Taylor, N. Japkowicz, and S. Leblanc, "Frequency-based anomaly detection for the automotive CAN bus," 2015 World Congr. Ind. Control Syst. Secur. WCICSS 2015, pp. 45–49, 2016, doi: 10.1109/WCICSS.2015.7420322.
- [99] Y. Zhu, N. M. Nayak, and A. K. Roy-Chowdhury, "Context-aware activity recognition and anomaly detection in video," *IEEE J. Sel. Top. Signal Process.*, vol. 7, no. 1, pp. 91–101, 2013, doi: 10.1109/JSTSP.2012.2234722.
- [100] D. Smith, Q. Guan, and S. Fu, "An anomaly detection framework for autonomic management of compute cloud systems," *Proc. - Int. Comput. Softw. Appl. Conf.*, pp. 376–381, 2010, doi: 10.1109/COMPSACW.2010.72.
- [101] M. Teng, "Anomaly Detection on Time Series," *IEEE Int. Conf. Prog. Informatics Comput.*, pp. 603–608, 2010, [Online]. Available: http://arxiv.org/abs/1708.02975.
- [102] S. Lee, G. Kim, and S. Kim, "Self-adaptive and dynamic clustering for online anomaly detection," *Expert Syst. Appl.*, vol. 38, no. 12, pp. 14891–14898, 2011, doi: 10.1016/j.eswa.2011.05.058.
- [103] S. Arshad, M. Abbaspour, M. Kharrazi, and H. Sanatkar, "An anomaly-based botnet detection approach for identifying stealthy botnets," ICCAIE 2011 2011 IEEE Conf. Comput. Appl. Ind. Electron., no. Iccaie, pp. 564–569, 2011, doi: 10.1109/ICCAIE.2011.6162198.
- [104] S. Chauhan and L. Vig, "Anomaly detection in ECG time signals via deep long short-term memory networks," *Proc. 2015 IEEE Int. Conf. Data Sci. Adv. Anal. DSAA 2015*, 2015, doi: 10.1109/DSAA.2015.7344872.
- [105] S. Calderara, U. Heinemann, A. Prati, R. Cucchiara, and N. Tishby, "Detecting anomalies in people's trajectories using spectral graph analysis," *Comput. Vis. Image Underst.*, 2011, doi: 10.1016/j.cviu.2011.03.003.
- [106] S. Garg, K. Kaur, N. Kumar, and J. J. P. C. Rodrigues, "Hybrid deep-learning-based anomaly detection scheme for suspicious flow detection in SDN: A social multimedia perspective," *IEEE Trans. Multimed.*, vol. 21, no. 3, pp. 566–578, 2019, doi: 10.1109/TMM.2019.2893549.
- [107] O. Depren, M. Topallar, E. Anarim, and M. K. Ciliz, "An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks," *Expert Syst. Appl.*, vol. 29, no. 4, pp. 713–722, 2005, doi: 10.1016/j.eswa.2005.05.002.
- [108] D. Kang, D. Fuller, and V. Honavar, "Learning Classifiers for Misuse Detection Using a Bag of System Calls Represent ation," Work. Inf. Assur. Secur., pp. 511–516, 2005.
- [109] E. Leon, O. Nasraoui, and J. Gomez, "Anomaly detection based on unsupervised niche clustering with application to network intrusion detection," 2004, doi: 10.1109/cec.2004.1330898.
- [110] A. Del Giorno, J. A. Bagnell, and M. Hebert, "A Discriminative Framework for Anomaly Detection in Large Videos," *Comput. Vis. – ECCV 2016*, vol. 9905, pp. 334–349, 2016, doi: 10.1007/978-3-319-46448-0.
- [111] J. Jabez, S. Gowri, S. Vigneshwari, J. A. Mayan, and S. Srinivasulu, "Anomaly Detection by Using CFS Subset and Neural Network with WEKA Tools," *Inf. Commun. Technol. Intell. Syst.*, vol. 106, pp. 675–682, 2019, doi: 10.1007/978-981-13-1742-2.
- [112] R. Laxhammar and G. Falkman, "Online learning and sequential anomaly detection in trajectories," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 36, no. 6, pp. 1158–1173, 2014, doi: 10.1109/TPAMI.2013.172.
- [113] M. Schneider, W. Ertel, and F. Ramos, "Expected similarity estimation for large-scale batch and streaming anomaly detection," *Mach. Learn.*, vol. 105, no. 3, pp. 305–333, 2016, doi: 10.1007/s10994-016-5567-7.

- [114] X. Chen, B. Li, R. Proietti, Z. Zhu, S. Member, and S. J. Ben Yoo, "Self-taught Anomaly Detection with Hybrid Unsupervised/Supervised Machine Learning in Optical Networks."
- [115] H. H. Pajouh, G. H. Dastghaibyfard, and S. Hashemi, "Two-tier network anomaly detection model: a machine learning approach," J. Intell. Inf. Syst., 2017, doi: 10.1007/s10844-015-0388-x.
- [116] S. Zhao, M. Chandrashekar, Y. Lee, and D. Medhi, Real-Time Network Anomaly Detection System Using Machine Learning.
- [117] T. Yairi, Y. Kawahara, R. Fujimaki, Y. Sato, and K. Machida, "Telemetry-mining: A machine learning approach to anomaly detection and fault diagnosis for space systems," in *Proceedings* - SMC-IT 2006: 2nd IEEE International Conference on Space Mission Challenges for Information Technology, 2006, vol. 2006, pp. 466–473, doi: 10.1109/SMC-IT.2006.79.
- [118] A. Deorio, Q. Li, M. Burgess, and V. Bertacco, Machine Learning-based Anomaly Detection for Post-silicon Bug Diagnosis. .
- [119] K. L. Li, H. K. Huang, S. F. Tian, and W. Xu, "Improving oneclass SVM for anomaly detection," in *International Conference* on Machine Learning and Cybernetics, 2003, vol. 5, pp. 3077– 3081, doi: 10.1109/icmlc.2003.1260106.
- [120] C. Wagner, J. François, R. State, and T. Engel, "Machine learning approach for IP-flow record anomaly detection," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011, vol. 6640 LNCS, no. PART 1, pp. 28–39, doi: 10.1007/978-3-642-20757-0_3.
- [121] J. Inoue, Y. Yamagata, Y. Chen, C. M. Poskitt, and J. Sun, "Anomaly Detection for a Water Treatment System Using Unsupervised Machine Learning."
- [122] Y. Li, B. Fang, L. Guo, and Y. Chen, "Network anomaly detection based on TCM-KNN algorithm," in *Proceedings of the* 2nd ACM Symposium on Information, Computer and Communications Security, ASIACCS '07, 2007, pp. 13–19, doi: 10.1145/1229285.1229292.
- [123] F. Maggi, S. Zanero, and V. Iozzo, "Seeing the invisible: Forensic uses of anomaly detection and machine learning," in *Operating Systems Review (ACM)*, Apr. 2008, vol. 42, no. 3, pp. 51–58, doi: 10.1145/1368506.1368514.
- [124] H. H. W. J. Bosman, A. Liotta, G. Iacca, and H. J. Wörtche, "Anomaly detection in sensor systems using lightweight machine learning," in *Proceedings - 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2013*, 2013, pp. 7–13, doi: 10.1109/SMC.2013.9.
- [125] S. Shriram and E. Sivasankar, "Anomaly Detection on Shuttle data using Unsupervised Learning Techniques," in *Proceedings* of 2019 International Conference on Computational Intelligence and Knowledge Economy, ICCIKE 2019, 2019, pp. 221–225, doi: 10.1109/ICCIKE47802.2019.9004325.
- [126] K. Limthong, Y. Ji, K. Fukuda, and S. Yamada, "Weighting Technique on Multi-timeline for Machine Learning-based Anomaly Detection System Disaster Preparation and Response via Big Data Analysis and Robust Networking View project Application Offloading Based on R-OSGi in Mobile Cloud Computing View proj," ieeexplore.ieee.org, doi: 10.1109/CCCS.2015.7374168.
- [127] J. Shi, G. He, and X. Liu, "Anomaly Detection for Key Performance Indicators Through Machine Learning," in Proceedings of 2018 6th IEEE International Conference on Network Infrastructure and Digital Content, IC-NIDC 2018, 2018, pp. 1–5, doi: 10.1109/ICNIDC.2018.8525714.
- [128] O. I. Provotar, Y. M. Linder, and M. M. Veres, "Unsupervised Anomaly Detection in Time Series Using LSTM-Based Autoencoders," in 2019 IEEE International Conference on Advanced Trends in Information Theory, ATIT 2019 Proceedings, 2019, pp. 513–517, doi: 10.1109/ATIT49449.2019.9030505.
- [129] S. Kumar, S. Nandi, and S. Biswas, "Research and application of One-class small hypersphere support vector machine for network anomaly detection," 2011, doi:

- 10.1109/COMSNETS.2011.5716425.
- [130] Y. Imamverdiyev and L. Sukhostat, "Anomaly detection in network traffic using extreme learning machine," 2017, doi: 10.1109/ICAICT.2016.7991732.
- [131] A. Dawoud, S. Shahristani, and C. Raun, "Deep learning for network anomalies detection," in *Proceedings - International Conference on Machine Learning and Data Engineering*, iCMLDE 2018, 2019, pp. 117–120, doi: 10.1109/iCMLDE.2018.00035.
- [132] H. G. Zhou and C. De Yang, "Using immune algorithm to optimize anomaly detection based on SVM," in *Proceedings of* the 2006 International Conference on Machine Learning and Cybernetics, 2006, vol. 2006, pp. 4257–4261, doi: 10.1109/ICMLC.2006.259008.
- [133] Y. Shi and K. Miao, "Detecting anomalies in application performance management system with machine learning algorithms," in 2019 IEEE 3rd International Conference on Electronic Information Technology and Computer Engineering, EITCE 2019, 2019, pp. 1797–1800, doi: 10.1109/EITCE47263.2019.9094916.
- [134] P. K. Chan, M. V. Mahoney, and M. H. Arshad, "Learning Rules and Clusters for Anomaly Detection in Network Traffic," in *Managing Cyber Threats*, Springer-Verlag, 2005, pp. 81–99.
- [135] T. Salman, D. Bhamare, A. Erbad, R. Jain, and M. Samaka, "Machine Learning for Anomaly Detection and Categorization in Multi-Cloud Environments," Proc. - 4th IEEE Int. Conf. Cyber Secur. Cloud Comput. CSCloud 2017 3rd IEEE Int. Conf. Scalable Smart Cloud, SSC 2017, pp. 97–103, 2017, doi: 10.1109/CSCloud.2017.15.
- [136] Z. Xiao, C. Liu, and C. Chen, "An anomaly detection scheme based on machine learning for WSN," in 2009 1st International Conference on Information Science and Engineering, ICISE 2009, 2009, pp. 3959–3962, doi: 10.1109/ICISE.2009.235.
- [137] S. Naseer et al., "Enhanced network anomaly detection based on deep neural networks," *IEEE Access*, vol. 6, pp. 48231–48246, 2018, doi: 10.1109/ACCESS.2018.2863036.
- [138] S. Rajasegarar, C. Leckie, and M. Palaniswami, "CESVM: Centered hyperellipsoidal support vector machine based anomaly detection," in *IEEE International Conference on Communications*, 2008, pp. 1610–1614, doi: 10.1109/ICC.2008.311.
- [139] A. Valdes, R. Macwan, and M. Backes, "Anomaly detection in electrical substation circuits via unsupervised machine learning," in *Proceedings - 2016 IEEE 17th International Conference on Information Reuse and Integration, IRI 2016*, 2016, pp. 500– 505, doi: 10.1109/IRI.2016.74.
- [140] L. Kuang and M. Zulkemine, "An anomaly intrusion detection method using the CSI-KNN algorithm," in *Proceedings of the* ACM Symposium on Applied Computing, 2008, pp. 921–926, doi: 10.1145/1363686.1363897.
- [141] S. R. Gaddam, V. V. Phoha, and K. S. Balagani, "K-Means+ID3: A novel method for supervised anomaly detection by cascading k-Means clustering and ID3 decision tree learning methods," *IEEE Trans. Knowl. Data Eng.*, vol. 19, no. 3, pp. 345–354, 2007, doi: 10.1109/TKDE.2007.44.
- [142] E. K. Viegas, A. O. Santin, and L. S. Oliveira, "Toward a reliable anomaly-based intrusion detection in real-world environments," *Comput. Networks*, vol. 127, pp. 200–216, 2017, doi: 10.1016/j.comnet.2017.08.013.
- [143] Y. Wang, J. Wong, and A. Miner, "Anomaly intrusion detection using one class SVM," in *Proceedings fron the Fifth Annual IEEE System, Man and Cybernetics Information Assurance Workshop, SMC*, 2004, pp. 358–364, doi: 10.1109/iaw.2004.1437839.
- [144] B. I. P. Rubinstein et al., "Antidote: Understanding and defending against poisoning of anomaly detectors," in Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC, 2009, pp. 1–14, doi: 10.1145/1644893.1644895.
- [145] D. Liu, C. H. Lung, I. Lambadaris, and N. Seddigh, "Network traffic anomaly detection using clustering techniques and performance comparison," 2013, doi:

- 10.1109/CCECE.2013.6567739.
- [146] W. Chimphlee, A. H. Abdullah, M. Noor, M. Sap, S. Srinoy, and S. Chimphlee, "Anomaly-Based Intrusion Detection using Fuzzy Rough Clustering," 2006.
- [147] T. M. Thang and J. Kim, "The anomaly detection by using DBSCAN clustering with multiple parameters," 2011, doi: 10.1109/ICISA.2011.5772437.
- [148] Y. Wang, D. Li, Y. Du, and Z. Pan, "Anomaly detection in traffic using L1-norm minimization extreme learning machine," *Neurocomputing*, vol. 149, no. Part A, pp. 415–425, 2015, doi: 10.1016/j.neucom.2014.04.073.
- [149] J. Zhang and M. Zulkernine, "Anomaly Based Network Intrusion Detection with Unsupervised Outlier Detection," 2006.
- [150] T.-Y. Kim and S.-B. Cho, "Web traffic anomaly detection using C-LSTM neural networks," *Expert Syst. Appl.*, vol. 106, pp. 66–76, 2018, doi: 10.1016/j.eswa.2018.04.004.
- [151] C. H. Lin, J. C. Liu, and C. H. Ho, "Anomaly detection using LibSVM training tools," in *Proceedings of the 2nd International Conference on Information Security and Assurance, ISA 2008*, 2008, vol. 2, no. 4, pp. 166–171, doi: 10.1109/ISA.2008.12.
- [152] Kunlun Li and Guifa Teng, "Unsupervised SVM Based on pkernels for Anomaly Detection," 2006, doi: 10.1109/icicic.2006.371.
- [153] X. G. Tian, L. Z. Gao, C. L. Sun, M. Y. Duan, and E. Y. Zhang, "A method for anomaly detection of user behaviors based on machine learning," *J. China Univ. Posts Telecommun.*, vol. 13, no. 2, 2006, doi: 10.1016/S1005-8885(07)60105-8.
- [154] B. G. Atli, Y. Miche, A. Kalliola, I. Oliver, S. Holtmanns, and A. Lendasse, "Anomaly-Based Intrusion Detection Using Extreme Learning Machine and Aggregation of Network Traffic Statistics in Probability Space," *Cognit. Comput.*, vol. 10, no. 5, pp. 848–863, Oct. 2018, doi: 10.1007/s12559-018-9564-y.
- [155] S. Mojtaba, H. Bamakan, Y. Tian, M. Mirzabagheri, H. Wang, and Q. Qu, "ARTICLE IN PRESS JID: NEUCOM [m5G; Ramp loss one-class support vector machine; A robust and effective approach to anomaly detection problems," *Elsevier*, 2018, doi: 10.1016/j.neucom.2018.05.027.
- [156] H. Su, X. Wu, X.-H. Yan, and A. Kidwell, "Estimation of subsurface temperature anomaly in the Indian Ocean during recent global surface warming hiatus from satellite measurements: A support vector machine approach Deeper Ocean Remote Sensing View project Sea Ice Remote Sensing View project Estima," *Elsevier*, 2015, doi: 10.1016/j.rse.2015.01.001.
- [157] B. Cui and S. He, "Anomaly detection model based on hadoop platform and weka interface," in *Proceedings - 2016 10th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS 2016*, 2016, pp. 84–89, doi: 10.1109/IMIS.2016.50.
- [158] M. Hasan, M. M. Islam, M. I. I. Zarif, and M. M. A. Hashem, "Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches," *Internet of Things*, vol. 7, p. 100059, 2019, doi: 10.1016/j.iot.2019.100059.
- [159] R. Abdulhammed, M. Faezipour, A. Abuzneid, and A. Abumallouh, "Deep and Machine Learning Approaches for Anomaly-Based Intrusion Detection of Imbalanced Network Traffic," *IEEE Sensors Lett.*, vol. 3, no. 1, 2019, doi: 10.1109/LSENS.2018.2879990.
- [160] S. J. Stolfo, S. Hershkop, L. H. Bui, R. Ferster, and K. Wang, "Anomaly detection in computer security and an application to file system accesses," in *Lecture Notes in Computer Science* (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2005, vol. 3488 LNAI, pp. 14– 28, doi: 10.1007/11425274_2.
- [161] K. Limthong and T. Tawsook, "Network traffic anomaly detection using machine learning approaches," ieeexplore.ieee.org, 2012, doi: 10.1109/NOMS.2012.6211951.
- [162] F. Barani and S. Gerami, "ManetSVM: Dynamic anomaly detection using one-class support vector machine in MANETs," 2013, doi: 10.1109/ISCISC.2013.6767325.
- [163] B. Litt, D. Wulsin, J. Blanco, and R. Mani, "Semi-Supervised Anomaly Detection for EEG Waveforms Using Deep Belief

- Nets," ieeexplore.ieee.org, 2011, doi: 10.1109/ICMLA.2010.71.

 A. Adler, M. J. Mayhew, J. Cleveland, M. Atighetchi, and R. Greenstadt, "Using Machine Learning for Behavior-Based Access Control: Scalable Anomaly Detection on TCP Connections and HTTP Requests."
- [165] B. Amos, H. Turner, and J. White, "Applying machine learning classifiers to dynamic android malware detection at scale," 2013 9th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2013, pp. 1666–1671, 2013, doi: 10.1109/IWCMC.2013.6583806.
- [166] M. S. Parwez, D. B. Rawat, and M. Garuba, "Big data analytics for user-activity analysis and user-anomaly detection in mobile wireless network," *IEEE Trans. Ind. Informatics*, vol. 13, no. 4, pp. 2058–2065, 2017, doi: 10.1109/TII.2017.2650206.
- [167] G. Shah and A. Tiwari, "Anomaly detection in IIoT: A case study using machine learning," in ACM International Conference Proceeding Series, 2018, pp. 295–300, doi: 10.1145/3152494.3156816.
- [168] P. M. Mafra, V. Moll, J. Da Silva Fraga, and A. O. Santin, "Octopus-IIDS: An anomaly based intelligent intrusion detection system," in *Proceedings - IEEE Symposium on Computers and Communications*, 2010, pp. 405–410, doi: 10.1109/ISCC.2010.5546735.
- [169] S. Anil and R. Remya, "A hybrid method based on genetic algorithm, self-organised feature map, and support vector machine for better network anomaly detection," 2013, doi: 10.1109/ICCCNT.2013.6726604.
- [170] R. Fujimaki, "Anomaly detection support vector machine and its application to fault diagnosis," in *Proceedings - IEEE International Conference on Data Mining, ICDM*, 2008, pp. 797–802, doi: 10.1109/ICDM.2008.69.
- [171] S. Duque Anton *et al.*, "Evaluation of Machine Learning-based Anomaly Detection Algorithms on an Industrial Modbus/TCP Data Set "Evaluation of Machine Learning-based Anomaly Detection Algo-rithms on an Industrial Modbus/TCP Data Set CCS CONCEPTS Security and privacy → Intrusion," *dl.acm.org*, vol. 41, no. 9, pp. 1–41, Aug. 2018, doi: 10.1145/3230833.3232818.
- [172] G. Yan, "Network Anomaly Traffic Detection Method Based on Support Vector Machine," in *Proceedings - 2016 International Conference on Smart City and Systems Engineering, ICSCSE* 2016, 2017, pp. 3–6, doi: 10.1109/ICSCSE.2016.0011.
- [173] L. Xiong, H. D. Ma, H. Z. Fang, K. X. Zou, and D. W. Yi, "Anomaly detection of spacecraft based on least squares support vector machine," 2011, doi: 10.1109/PHM.2011.5939470.
- [174] F. Wang, Y. Qian, Y. Dai, and Z. Wang, "A model based on hybrid support vector machine and self-organizing map for anomaly detection," in 2010 WRI International Conference on Communications and Mobile Computing, CMC 2010, 2010, vol. 1, pp. 97–101, doi: 10.1109/CMC.2010.9.
- [175] J. Zhang, R. Gardner, and I. Vukotic, "Anomaly detection in wide area network meshes using two machine learning algorithms," *Futur. Gener. Comput. Syst.*, vol. 93, pp. 418–426, Jan. 2019, doi: 10.1016/j.future.2018.07.023.
- [176] L. Deecke, R. Vandermeulen, L. Ruff, S. Mandt, and M. Kloft, "Image anomaly detection with generative adversarial networks," in *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, 2019, vol. 11051 LNAI, pp. 3–17, doi: 10.1007/978-3-030-10925-7_1.
- [177] M. Ćosović, S. Obradović, and L. Trajković, "Performance Evaluation of BGP Anomaly Classifiers."
- [178] G. D'Angelo, F. Palmieri, M. Ficco, and S. Rampone, "An uncertainty-managing batch relevance-based approach to network anomaly detection," *Appl. Soft Comput. J.*, vol. 36, pp. 408–418, 2015, doi: 10.1016/j.asoc.2015.07.029.
- [179] D. Ashok Kumar and S. R. Venugopalan, "A novel algorithm for network anomaly detection using adaptive machine learning," in Advances in Intelligent Systems and Computing, 2018, vol. 564, pp. 59–69, doi: 10.1007/978-981-10-6875-1_7.
- [180] M. Marwah, R. Sharma, and C. Bash, "Thermal anomaly prediction in data centers," 2010, doi: 10.1109/ITHERM.2010.5501330.

- [181] N. Stakhanova, S. Basu, and J. Wong, "On the symbiosis of specification-based and anomaly-based detection," *Comput. Secur.*, 2010, doi: 10.1016/j.cose.2009.08.007.
- [182] J. Lundstrom, W. O. De Morais, and M. Cooney, "A holistic smart home demonstrator for anomaly detection and response," in 2015 IEEE International Conference on Pervasive Computing and Communication Workshops, PerCom Workshops 2015, 2015, pp. 330–335, doi: 10.1109/PERCOMW.2015.7134058.
- [183] Y. Yuan, J. Fang, and Q. Wang, "Online Anomaly Detection in Crowd Scenes via Structure Analysis," *IEEE Trans. Cybern.*, vol. 45, no. 3, 2015, doi: 10.1109/TCYB.2014.2330853.
- [184] A. Barua, D. Muthirayan, P. P. Khargonekar, and M. A. Al Faruque, "Hierarchical Temporal Memory Based Machine Learning for Real-Time, Unsupervised Anomaly Detection in Smart Grid: WiP Abstract," in *Proceedings 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems*, *ICCPS 2020*, 2020, pp. 188–189, doi: 10.1109/ICCPS48487.2020.00027.
- [185] W. Yan, "One-class extreme learning machines for gas turbine combustor anomaly detection," in *Proceedings of the International Joint Conference on Neural Networks*, 2016, vol. 2016-Octob, pp. 2909–2914, doi: 10.1109/IJCNN.2016.7727567.
- [186] A. Brown, B. Hutchinson, A. Tuor, and N. Nichols, "Recurrent neural network attention mechanisms for interpretable system log anomaly detection," Jun. 2018, doi: 10.1145/3217871.3217872.
- [187] K. Atefi, S. Yahya, A. Rezaei, and S. H. B. M. Hashim, "Anomaly detection based on profile signature in network using machine learning technique," in *Proceedings - 2016 IEEE* Region 10 Symposium, TENSYMP 2016, 2016, pp. 71–76, doi: 10.1109/TENCONSpring.2016.7519380.
- [188] H. Suetani, A. M. Ideta, and J. Morimoto, "Nonlinear structure of escape-times to falls for a passive dynamic walker on an irregular slope: Anomaly detection using multi-class support vector machine and latent state extraction by canonical correlation analysis," in *IEEE International Conference on Intelligent Robots and Systems*, 2011, pp. 2715–2722, doi: 10.1109/IROS.2011.6048434.
- [189] L. Fernandez Maimo, A. L. Perales Gomez, F. J. Garcia Clemente, M. Gil Perez, and G. Martinez Perez, "A Self-Adaptive Deep Learning-Based System for Anomaly Detection in 5G Networks," *IEEE Access*, vol. 6, pp. 7700–7712, 2018, doi: 10.1109/ACCESS.2018.2803446.
- [190] F. Seraj, J. Van Der Zwaag, P. Havinga, A. Dilo, and T. Luarasi, "RoADS: A Road Pavement Monitoring System for Anomaly Detection Using Smart Phones," *Springer*, vol. 9546, pp. 128– 146, 2016, doi: 10.1007/978-3-319-29009-6_7.
- [191] M. Amar, I. Gondal, and C. Wilson, "Unitary anomaly detection for ubiquitous safety in machine health monitoring," in *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, 2012, vol. 7667 LNCS, no. PART 5, pp. 361–368, doi: 10.1007/978-3-642-34500-5_43.
- [192] K. Stefanidis and A. G. Voyiatzis, "An HMM-based anomaly detection approach for SCADA systems," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016, vol. 9895 LNCS, pp. 85–99, doi: 10.1007/978-3-319-45931-8_6.
- [193] S. C. Chin, A. Ray, and V. Rajagopalan, "Symbolic time series analysis for anomaly detection: A comparative evaluation \$," *Signal Processing*, vol. 85, pp. 1859–1868, 2005, doi: 10.1016/j.sigpro.2005.03.014.
- [194] F. A. González and D. Dasgupta, "Anomaly detection using real-valued negative selection," in *Genetic Programming and Evolvable Machines*, Dec. 2003, vol. 4, no. 4, pp. 383–403, doi: 10.1023/A:1026195112518.
- [195] E. H. Pena, L. F. Carvalho, S. Barbon Jr, J. JPC Rodrigues, and M. Lemes Proença Jr, "Anomaly detection using the correlational paraconsistent machine with digital signatures of network segment," *Inf. Sci. (Ny).*, vol. 420, pp. 313–328, 2017,

- doi: 10.1016/j.ins.2017.08.074.
- [196] F. Gonzalez, D. Dasgupta, and R. Kozma, "Combining negative selection and classification techniques for anomaly detection," in Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, 2002, vol. 1, pp. 705–710, doi: 10.1109/CEC.2002.1007012.
- [197] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, "A Geometric Framework for Unsupervised Anomaly Detection," 2002, pp. 77–101.
- [198] A. D. Schmidt, F. Peters, F. Lamour, C. Scheel, S. A. Çamtepe, and Ş. Albayrak, "Monitoring smartphones for anomaly detection," *Mob. Networks Appl.*, vol. 14, no. 1, pp. 92–106, Feb. 2009, doi: 10.1007/s11036-008-0113-x.
- [199] M. V Mahoney and P. K. Chan, "Learning rules for anomaly detection of hostile network traffic," in *Proceedings - IEEE International Conference on Data Mining, ICDM*, 2003, pp. 601–604, doi: 10.1109/icdm.2003.1250987.
- [200] R. Winding, T. Wright, and M. Chapple, "System anomaly detection: Mining firewall logs," 2006, doi: 10.1109/SECCOMW.2006.359572.
- [201] N. Duffield, P. Haffner, B. Krishnamurthy, and H. Ringberg, "Rule-based anomaly detection on IP flows," in *Proceedings - IEEE INFOCOM*, 2009, pp. 424–432, doi: 10.1109/INFCOM.2009.5061947.
- [202] T. Stibor, P. Mohr, and J. Timmis, "Is negative selection appropriate for anomaly detection?," in GECCO 2005 - Genetic and Evolutionary Computation Conference, 2005, pp. 321–328, doi: 10.1145/1068009.1068061.
- [203] L. Scime and J. Beuth, "Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm," *Addit. Manuf.*, vol. 19, pp. 114–126, 2018, doi: 10.1016/j.addma.2017.11.009.
- [204] B. I. P. Rubinstein *et al.*, "Stealthy poisoning attacks on PCA-based anomaly detectors," in *Performance Evaluation Review*, Oct. 2009, vol. 37, no. 2, pp. 73–74, doi: 10.1145/1639562.1639592.
- [205] D. D. Kim, S.-Y. Ohn, D. Kim, H. Nguyen, S. Ohn, and J. Park, "Fusions of GA and SVM for Anomaly Detection in Intrusion Detection System Software Defined Networking based Moving Target Defense View project Decomposition of convex structuring elements View project Fusions of GA and SVM for Anomaly Detection in Intrusi," *LNCS*, vol. 3498, no. III, pp. 415–420, 2005, doi: 10.1007/11427469_67.
- [206] E. L. Paula, M. Ladeira, R. N. Carvalho, and T. Marzagão, "Deep learning anomaly detection as suppor fraud investigation in Brazilian exports and anti-money laundering," in *Proceedings* - 2016 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016, 2017, pp. 954–960, doi: 10.1109/ICMLA.2016.73.
- [207] R. Fujimaki, T. Yairi, and K. Machida, "An anomaly detection method for spacecraft using relevance vector learning," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2005, vol. 3518 LNAI, pp. 785–790, doi: 10.1007/11430919_92.
- [208] S. Liu, Y. Chen, W. Trappe, L. J. Greenstein, and N. Brunswick, ALDO: An Anomaly Detection Framework for Dynamic Spectrum Access Networks.
- [209] K. Sequeira and M. Zaki, "ADMIT: Anomaly-based data mining for intrusions," in *Proceedings of the ACM SIGKDD* International Conference on Knowledge Discovery and Data Mining, 2002, pp. 386–395.
- [210] V. L. L. Thing, "IEEE 802.11 network anomaly detection and attack classification: A deep learning approach," 2017, doi: 10.1109/WCNC.2017.7925567.
- [211] K. M. Ting, T. Washio, J. R. Wells, and S. Aryal, "Defying the gravity of learning curve: a characteristic of nearest neighbour anomaly detectors," *Mach. Learn.*, vol. 106, no. 1, pp. 55–91, 2017, doi: 10.1007/s10994-016-5586-4.
- [212] Y. Zhou, S. Yan, and T. S. Huang, "DETECTING ANOMALY IN VIDEOS FROM TRAJECTORY SIMILARITY ANALYSIS."

- [213] M. Du, F. Li, G. Zheng, and V. Srikumar, "DeepLog: Anomaly detection and diagnosis from system logs through deep learning," in *Proceedings of the ACM Conference on Computer* and Communications Security, Oct. 2017, pp. 1285–1298, doi: 10.1145/3133956.3134015.
- [214] W. Fisher, T. Camp, V. V Krzhizhanovskaya, W. D. Fisher, and T. K. Camp, "Anomaly Detection in Earth Dam and Levee Passive Seismic Data Using Support Vector Machines and Automatic Feature Selection Modeling the Human Innate Immune System: in-silico studies View project Anomaly detection in earth dam and levee passive seismic da," Artic. J. Comput. Sci., vol. 20, pp. 143–153, 2017, doi: 10.1016/j.jocs.2016.11.016.
- [215] M. Cheng, Q. Li, J. Lv, W. Liu, and J. Wang, "Multi-Scale LSTM Model for BGP Anomaly Classification," *IEEE Trans. Serv. Comput.*, 2018, doi: 10.1109/TSC.2018.2824809.
- [216] S. Cho and S. Cha, "SAD: Web session anomaly detection based on parameter estimation," *Comput. Secur.*, vol. 23, no. 4, pp. 312–319, 2004, doi: 10.1016/j.cose.2004.01.006.
- [217] S. J. Han, K. J. Kim, and S. B. Cho, "Evolutionary learning program's behavior in neural networks for anomaly detection," *Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)*, vol. 3316, pp. 236–241, 2004, doi: 10.1007/978-3-540-30499-9_35.
- [218] Y. Zhao, B. Deng, C. Shen, Y. Liu, H. Lu, and X. S. Hua, "Spatio-temporal AutoEncoder for video anomaly detection," in MM 2017 - Proceedings of the 2017 ACM Multimedia Conference, Oct. 2017, pp. 1933–1941, doi: 10.1145/3123266.3123451.
- [219] C. Pascoal, M. Rosário De Oliveira, R. Valadas, P. Filzmoser, P. Salvador, and A. Pacheco, Robust Feature Selection and Robust PCA for Internet Traffic Anomaly Detection.
- [220] G. Pang, C. Shen, and A. Van Den Hengel, "Deep Anomaly Detection with Deviation Networks," dl.acm.org, pp. 353–362, Jul. 2019, doi: 10.1145/3292500.3330871.
- [221] J. Liu, J. Gu, H. Li, and K. H. Carlson, "Machine learning and transport simulations for groundwater anomaly detection," *J. Comput. Appl. Math.*, vol. 380, 2020, doi: 10.1016/j.cam.2020.112982.
- [222] R. Bhatia, S. Benno, J. Esteban, T. V. Lakshman, and J. Grogan, "Unsupervised machine learning for network-centric anomaly detection in IoT," in Big-DAMA 2019 - Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine Learning and Artificial Intelligence for Data Communication Networks, Part of CoNEXT 2019, Dec. 2019, pp. 42–48, doi: 10.1145/3359992.3366641.
- [223] Z. Chkirbene, S. Eltanbouly, M. Bashendy, N. Alnaimi, and A. Erbad, "Hybrid Machine Learning for Network Anomaly Intrusion Detection," in 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies, ICIoT 2020, 2020, pp. 163–170, doi: 10.1109/ICIoT48696.2020.9089575.
- [224] J. Wang et al., "An anomaly prediction framework for financial IT systems using hybrid machine learning methods," Artic. J. Ambient Intell. Humaniz. Comput., 2019, doi: 10.1007/s12652-019-01645-z.
- [225] H. Goldberg, H. Kwon, and N. M. Nasrabadi, "Kernel eigenspace separation transform for subspace anomaly detection in hyperspectral imagery," *IEEE Geosci. Remote Sens. Lett.*, vol. 4, no. 4, pp. 581–585, Oct. 2007, doi: 10.1109/LGRS.2007.903083.
- [226] Y. Feng, Z. F. Wu, K. G. Wu, Z. Y. Xiong, and Y. Zhou, "An unsupervised anomaly intrusion detection algorithm based on swarm intelligence," in 2005 International Conference on Machine Learning and Cybernetics, ICMLC 2005, 2005, pp. 3965–3969, doi: 10.1109/icmlc.2005.1527630.
- [227] H. Y. Shahir, U. Glasser, A. Y. Shahir, and H. Wehn, "Maritime situation analysis framework: Vessel interaction classification and anomaly detection," in *Proceedings 2015 IEEE International Conference on Big Data, IEEE Big Data 2015*, 2015, pp. 1279–1289, doi: 10.1109/BigData.2015.7363883.
- [228] D. B. Araya, K. Grolinger, H. F. ElYamany, M. A. M. Capretz, and G. Bitsuamlak, "An ensemble learning framework for

- anomaly detection in building energy consumption," *Energy Build.*, vol. 144, pp. 191–206, 2017, doi: 10.1016/j.enbuild.2017.02.058.
- [229] J. B. D. Cabrera, C. Gutiérrez, and R. K. Mehra, "Ensemble methods for anomaly detection and distributed intrusion detection in Mobile Ad-Hoc Networks," *Inf. Fusion*, vol. 9, no. 1, pp. 96–119, 2008, doi: 10.1016/j.inffus.2007.03.001.
- [230] W. Fan, N. Bouguila, and D. Ziou, "Unsupervised anomaly intrusion detection via localized Bayesian feature selection," in Proceedings - IEEE International Conference on Data Mining, ICDM, 2011, pp. 1032–1037, doi: 10.1109/ICDM.2011.152.
- [231] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee, "McPAD: A Multiple Classifier System for Accurate Payload-based Anomaly Detection."
- [232] E. Eskin, "Detecting Errors within a Corpus using Anomaly Detection."
- [233] J. Frery, A. Habrard, M. Sebban, O. Caelen, and L. He-Guelton, "Efficient Top Rank Optimization with Gradient Boosting for Supervised Anomaly Detection," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10534 LNAI, pp. 20–35, doi: 10.1007/978-3-319-71249-9_2.
- [234] B. Hussain, Q. Du, and P. Ren, "Semi-supervised learning based big data-driven anomaly detection in mobile wireless networks," in *China Communications*, 2018, vol. 15, no. 4, pp. 41–57, doi: 10.1109/CC.2018.8357700.
- [235] H. Alipour, Y. B. Al-Nashif, P. Satam, and S. Hariri, "Wireless Anomaly Detection Based on IEEE 802.11 Behavior Analysis," *IEEE Trans. Inf. Forensics Secur.*, vol. 10, no. 10, pp. 2158– 2170, 2015, doi: 10.1109/TIFS.2015.2433898.
- [236] H. H. Bosman, G. Iacca, A. Tejada, H. J. Wörtche, and A. Liotta, "Spatial anomaly detection in sensor networks using neighborhood information," *Inf. Fusion*, vol. 33, pp. 41–56, 2017, doi: 10.1016/j.inffus.2016.04.007.
- [237] S. Adepu, Y. Xiang, M. Tan, J. Goh, and L. Z. Shan, "Anomaly Detection in Cyber Physical Systems Using Recurrent Neural Networks Cyber Physical System Protection View project Advancing Security of Public Infrastructure using Resilience and Economics View project Anomaly Detection in Cyber Physical Systems u," ieeexplore.ieee.org, 2017, doi: 10.1109/HASE.2017.36.
- [238] N. Erez and A. Wool, "Control variable classification, modeling and anomaly detection in Modbus/TCP SCADA systems," Int. J. Crit. Infrastruct. Prot., vol. 10, pp. 59–70, 2015, doi: 10.1016/j.ijcip.2015.05.001.
- [239] T. F. Ghanem, W. S. Elkilani, and H. M. Abdul-kader, "A hybrid approach for efficient anomaly detection using metaheuristic methods," *J. Adv. Res.*, vol. 6, no. 4, pp. 609–619, 2015, doi: 10.1016/j.jare.2014.02.009.
- [240] F. Schuster, A. Paul, and H. König, "Towards learning normality for anomaly detection in industrial control networks," in *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, 2013, vol. 7943 LNCS, pp. 61–72, doi: 10.1007/978-3-642-38998-6_8.
- [241] S. M. A. M. Gadal and R. A. Mokhtar, "Anomaly detection approach using hybrid algorithm of data mining technique," 2017, doi: 10.1109/ICCCCEE.2017.7867661.
- [242] Q. Guan and S. Fu, "Adaptive anomaly identification by exploring metric subspace in cloud computing infrastructures," in *Proceedings of the IEEE Symposium on Reliable Distributed* Systems, 2013, pp. 205–214, doi: 10.1109/SRDS.2013.29.
- [243] W. Haider, J. Hu, and M. Xie, "Towards reliable data feature retrieval and decision engine in host-based anomaly detection systems," in *Proceedings of the 2015 10th IEEE Conference on Industrial Electronics and Applications, ICIEA 2015*, 2015, pp. 513–517, doi: 10.1109/ICIEA.2015.7334166.
- [244] R. Perdisci, G. Gu, and W. Lee, "Using an Ensemble of One-Class SVM Classifiers to Harden Payload-based Anomaly Detection Systems."
- [245] A. M. Vartouni, S. S. Kashi, and M. Teshnehlab, An Anomaly Detection Method to Detect Web Attacks Using Stacked Auto-

- Encoder. 2018.
- [246] M. Fugate and J. R. Gattiker, "Anomaly detection enhanced classification in computer intrusion detection," in *Lecture Notes* in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2002, vol. 2388, pp. 186–197, doi: 10.1007/3-540-45665-1_15.
- [247] C. C. Michael and A. Ghosh, "Simple, State-Based Approaches to Program-Based Anomaly Detection," ACM Trans. Inf. Syst. Secur., vol. 5, no. 3, pp. 203–237, 2002, doi: 10.1145/545186.545187.
- [248] Y. Liao, V. R. Vemuri, and A. Pasos, "Adaptive anomaly detection with evolving connectionist systems," *J. Netw. Comput. Appl.*, vol. 30, no. 1, pp. 60–80, 2007, doi: 10.1016/j.jnca.2005.08.005.
- [249] V. R. Jakkula, A. S. Crandall, and D. J. Cook, "Enhancing anomaly detection using temporal pattern discovery," in Advanced Intelligent Environments, Springer US, 2009, pp. 175– 194.
- [250] B. Vrat, N. Aggarwal, and S. Venkatesan, "Anomaly Detection in IPv4 and IPv6 networks using machine learning," 2016, doi: 10.1109/INDICON.2015.7443752.
- [251] S. Muller, J. Lancrenon, C. Harpes, Y. Le Traon, S. Gombault, and J.-M. Bonnin, "A Training-Resistant Anomaly Detection System."
- [252] S. Xiuyao, W. Mingxi, C. Jermaine, and S. Ranka, "Conditional anomaly detection," *IEEE Trans. Knowl. Data Eng.*, vol. 19, no. 5, pp. 631–644, May 2007, doi: 10.1109/TKDE.2007.1009.
- [253] R. Jain and H. Shah, "An anomaly detection in smart cities modeled as wireless sensor network," 2017, doi: 10.1109/ICONSIP.2016.7857445.
- [254] X. R. Wang, J. T. Lizier, O. Obst, M. Prokopenko, and P. Wang, "Spatiotemporal anomaly detection in gas monitoring sensor networks," in *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, 2008, vol. 4913 LNCS, pp. 90–105, doi: 10.1007/978-3-540-77690-1_6.
- [255] W. Li and Q. X. Li, "Using naive Bayes with AdaBoost to enhance network anomaly intrusion detection," in *Proceedings -*3rd International Conference on Intelligent Networks and Intelligent Systems, ICINIS 2010, 2010, pp. 486–489, doi: 10.1109/ICINIS.2010.133.
- [256] X. Hang and H. Dai, "Applying both positive and negative selection to supervised learning for anomaly detection," in GECCO 2005 - Genetic and Evolutionary Computation Conference, 2005, pp. 345–352, doi: 10.1145/1068009.1068064.
- [257] Y. K. Wang, C. T. Fan, K. Y. Cheng, and P. S. Deng, "Real-time camera anomaly detection for real-world video surveillance," in *Proceedings International Conference on Machine Learning and Cybernetics*, 2011, vol. 4, pp. 1520–1525, doi: 10.1109/ICMLC.2011.6017032.
- [258] R. C. Aygun and A. G. Yavuz, "Network Anomaly Detection with Stochastically Improved Autoencoder Based Models," in Proceedings - 4th IEEE International Conference on Cyber Security and Cloud Computing, CSCloud 2017 and 3rd IEEE International Conference of Scalable and Smart Cloud, SSC 2017, 2017, pp. 193–198, doi: 10.1109/CSCloud.2017.39.
- [259] Y. Feng, Y. Yuan, and X. Lu, "Learning deep event models for crowd anomaly detection," *Neurocomputing*, vol. 219, pp. 548– 556, 2017, doi: 10.1016/j.neucom.2016.09.063.
- [260] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, "GANomaly: Semi-supervised Anomaly Detection via Adversarial Training," in *Lecture Notes in Computer Science* (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, vol. 11363 LNCS, pp. 622–637, doi: 10.1007/978-3-030-20893-6_39.
- [261] M. Chang, A. Terzis, and P. Bonnet, "Mote-based online anomaly detection using echo state networks," in *Lecture Notes* in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2009, vol. 5516 LNCS, pp. 72–86, doi: 10.1007/978-3-642-02085-8 6.

3

[262] A. Sayed et al., Genetic Algorithm with Different Feature

VOLUME XX 2017

- Selection Techniques for Anomaly Detectors Generation. .
- [263] G. Marín, P. Casas, and G. Capdehourat, "RawPower: Deep learning based anomaly detection from raw network traffic measurements," in SIGCOMM 2018 - Proceedings of the 2018 Posters and Demos, Part of SIGCOMM 2018, Aug. 2018, pp. 75–77, doi: 10.1145/3234200.3234238.
- [264] / Casas, P.; Soro, F.; Vanerio, J.; Settanni, and G.; D'alconzo, "Network security and anomaly detection with Big-DAMA, a big data analytics framework," ieeexplore.ieee.org, pp. 1–7, 2017, doi: 10.1109/CloudNet.2017.8071525.
- [265] X. D. Hoang and J. Hu, "An efficient hidden markov model training scheme for anomaly intrusion detection of server applications based on system calls," in *Proceedings - IEEE International Conference on Networks, ICON*, 2004, vol. 2, pp. 470–474, doi: 10.1109/ICON.2004.1409210.
- [266] I. O. De Urbina Cazenave, E. Köşlük, and M. C. Ganiz, "An anomaly detection framework for BGP," in INISTA 2011 2011 International Symposium on INnovations in Intelligent SysTems and Applications, 2011, pp. 107–111, doi: 10.1109/INISTA.2011.5946083.
- [267] O. Raz, P. Koopman, and M. Shaw, "Semantic anomaly detection in online data sources," in *Proceedings - International Conference on Software Engineering*, 2002, pp. 302–312, doi: 10.1145/581339.581378.
- [268] H. M. Anwer, M. Farouk, and A. Abdel-Hamid, "A framework for efficient network anomaly intrusion detection with features selection," in 2018 9th International Conference on Information and Communication Systems, ICICS 2018, 2018, vol. 2018-Janua, pp. 157–162, doi: 10.1109/IACS.2018.8355459.
- [269] X. Wang, J. S. Wong, F. Stanley, and S. Basu, "Cross-layer based anomaly detection in wireless mesh networks," in Proceedings - 2009 9th Annual International Symposium on Applications and the Internet, SAINT 2009, 2009, pp. 9–15, doi: 10.1109/SAINT.2009.11.
- [270] K. Alrawashdeh and C. Purdy, "Reducing calculation requirements in FPGA implementation of deep learning algorithms for online anomaly intrusion detection," in Proceedings of the IEEE National Aerospace Electronics Conference, NAECON, 2018, vol. 2017-June, pp. 57–62, doi: 10.1109/NAECON.2017.8268745.
- [271] R. Kumari, Sheetanshu, M. K. Singh, R. Jha, and N. K. Singh, "Anomaly detection in network traffic using K-mean clustering," in 2016 3rd International Conference on Recent Advances in Information Technology, RAIT 2016, 2016, pp. 387–393, doi: 10.1109/RAIT.2016.7507933.
- [272] P. Mulinka and P. Casas, "Stream-based machine learning for network security and anomaly detection," in Big-DAMA 2018 -Proceedings of the 2018 Workshop on Big Data Analytics and Machine Learning for Data Communication Networks, Part of SIGCOMM 2018, Aug. 2018, pp. 1–7, doi: 10.1145/3229607.3229612.
- [273] T. Ahmed, M. Coates, and A. Lakhina, "Multivariate Online Anomaly Detection Using Kernel Recursive Least Squares."
- [274] V. L. Cao, M. Nicolau, and J. McDermott, "A hybrid autoencoder and density estimation model for anomaly detection," in *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, 2016, vol. 9921 LNCS, pp. 717–726, doi: 10.1007/978-3-319-45823-6_67.
- [275] D. Narsingyani and O. Kale, "Optimizing false positive in anomaly based intrusion detection using Genetic algorithm," in Proceedings of the 2015 IEEE 3rd International Conference on MOOCs, Innovation and Technology in Education, MITE 2015, 2016, pp. 72–77, doi: 10.1109/MITE.2015.7375291.
- [276] M. Sabokrou, M. Fayyaz, M. Fathy, Z. Moayed, and R. Klette, "Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes," *Comput. Vis. Image Underst.*, vol. 172, pp. 88–97, 2018, doi: 10.1016/j.cviu.2018.02.006.
- [277] R. Chalapathy, E. Toth, and S. Chawla, "Group anomaly detection using deep generative models," in *Lecture Notes in Computer Science (including subseries Lecture Notes in*

- Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, vol. 11051 LNAI, pp. 173–189, doi: 10.1007/978-3-030-10925-7_11.
- [278] F. Doelitzscher, M. Knahl, C. Reich, and N. Clarke, "Anomaly detection in IaaS Clouds," in *Proceedings of the International Conference on Cloud Computing Technology and Science*, CloudCom, 2013, vol. 1, pp. 387–394, doi: 10.1109/CloudCom.2013.57.
- [279] F. M. Shah, N. F. Haq, and A. Rahman Onik, "An Ensemble Framework of Anomaly Detection Using Hybridized Feature Selection Approach (HFSA)," ieeexplore.ieee.org, 2015, doi: 10.1109/IntelliSys.2015.7361264.
- [280] J. Tian, H. Gu, J. Tian, and · H Gu, "Anomaly detection combining one-class SVMs and particle swarm optimization algorithms," *Springer*, vol. 61, no. 1–2, pp. 303–310, Jul. 2010, doi: 10.1007/s11071-009-9650-5.
- [281] G. A. Susto, A. Beghi, and S. McLoone, "Anomaly Detection through on-line Isolation Forest: An application to plasma etching," in 2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 2017, pp. 89–94, doi: 10.23919/mipro.2017.7966552.
- [282] I. Paredes-Oliva, I. Castell-Uroz, P. Barlet-Ros, X. Dimitropoulos, and J. Solé-Pareta, "Practical Anomaly Detection based on Classifying Frequent Traffic Patterns," 2012.
- [283] I. Ullah and Q. H. Mahmoud, "A hybrid model for anomaly-based intrusion detection in SCADA networks," in *Proceedings 2017 IEEE International Conference on Big Data, Big Data 2017*, 2017, vol. 2018-Janua, pp. 2160–2167, doi: 10.1109/BigData.2017.8258164.
- [284] X. Q. Zhang and C. H. Gu, "CH-SVM based network anomaly detection," in *Proceedings of the Sixth International Conference* on Machine Learning and Cybernetics, ICMLC 2007, 2007, vol. 6, pp. 3261–3266, doi: 10.1109/ICMLC.2007.4370710.
- [285] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S. K. Ng, "MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, vol. 11730 LNCS, pp. 703–716, doi: 10.1007/978-3-030-30490-4_56.
- [286] T. Sipola, A. Juvonen, and J. Lehtonen, "Anomaly detection from network logs using diffusion maps," in *IFIP Advances in Information and Communication Technology*, 2011, vol. 363 AICT, no. PART 1, pp. 172–181, doi: 10.1007/978-3-642-23957-1 20.
- [287] M. Zhu, K. Ye, Y. Wang, and C. Z. Xu, "A deep learning approach for network anomaly detection based on AMF-LSTM," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11276 LNCS, pp. 137–141, doi: 10.1007/978-3-030-05677-3_13.
- [288] B. Shah and B. H. Trivedi, "Reducing features of KDD CUP 1999 dataset for anomaly detection using back propagation neural network," in *International Conference on Advanced Computing and Communication Technologies, ACCT*, 2015, vol. 2015-April, pp. 247–251, doi: 10.1109/ACCT.2015.131.
- [289] X. Gu and H. Wang, "Online Anomaly Prediction for Robust Cluster Systems."
- [290] A. Chiang, E. David, Y. J. Lee, G. Leshem, and Y. R. Yeh, "A study on anomaly detection ensembles," *J. Appl. Log.*, vol. 21, pp. 1–13, 2017, doi: 10.1016/j.jal.2016.12.002.
- [291] D. S. Terzi, R. Terzi, and S. Sagiroglu, "Big data analytics for network anomaly detection from netflow data," in 2nd International Conference on Computer Science and Engineering, UBMK 2017, 2017, pp. 592–597, doi: 10.1109/UBMK.2017.8093473.
- [292] N. T. Van, T. N. Thinh, and L. T. Sach, "An anomaly-based network intrusion detection system using Deep learning," in Proceedings - 2017 International Conference on System Science and Engineering, ICSSE 2017, 2017, pp. 210–214, doi: 10.1109/ICSSE.2017.8030867.
- [293] R. K. Malaiya, D. Kwon, S. C. Suh, H. Kim, I. Kim, and J. Kim,

VOLUME XX 2017

- "An Empirical Evaluation of Deep Learning for Network Anomaly Detection," *IEEE Access*, vol. 7, pp. 140806–140817, 2019, doi: 10.1109/ACCESS.2019.2943249.
- [294] D. Yao, M. Yin, J. Luo, and S. Zhang, "Network anomaly detection using Random Forests and entropy of traffic features," in *Proceedings - 2012 4th International Conference on Multimedia and Security, MINES 2012*, 2012, pp. 926–929, doi: 10.1109/MINES.2012.146.
- [295] S. Rajasegarar, C. Leckie, M. Palaniswami, and J. C. Bezdek, "Quarter sphere based distributed anomaly detection in wireless sensor networks," in *IEEE International Conference on Communications*, 2007, pp. 3864–3869, doi: 10.1109/ICC.2007.637.
- [296] D. Boro, B. Nongpoh, and D. K. Bhattacharyya, "Anomaly based intrusion detection using meta ensemble classifier," in Proceedings of the 5th International Conference on Security of Information and Networks, SIN'12, 2012, pp. 143–147, doi: 10.1145/2388576.2388596.
- [297] F. Yihunie, E. Abdelfattah, and A. Regmi, "Applying Machine Learning to Anomaly-Based Intrusion Detection Systems," May 2019, doi: 10.1109/LISAT.2019.8817340.
- [298] L. Bontemps, V. L. Cao, J. McDermott, and N. A. Le-Khac, "Collective anomaly detection based on long short-term memory recurrent neural networks," in *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, 2016, vol. 10018 LNCS, pp. 141–152, doi: 10.1007/978-3-319-48057-2_9.
- [299] I. Alrashdi, A. Alqazzaz, E. Aloufi, R. Alharthi, M. Zohdy, and H. Ming, "AD-IoT: Anomaly detection of IoT cyberattacks in smart city using machine learning," in 2019 IEEE 9th Annual Computing and Communication Workshop and Conference, CCWC 2019, 2019, pp. 305–310, doi: 10.1109/CCWC.2019.8666450.
- [300] S. Rayana and L. Akoglu, "Less is more: Building selective anomaly ensembles," ACM Trans. Knowl. Discov. Data, vol. 10, no. 4, May 2016, doi: 10.1145/2890508.
- [301] D. Damopoulos, G. Kambourakis, and G. Portokalidis, "The best of both worlds. A framework for the synergistic operation of host and cloud anomaly-based IDS for smartphones," 2014, doi: 10.1145/2592791.2592797.
- [302] D. Ippoliti and X. Zhou, "A-GHSOM: An adaptive growing hierarchical self organizing map for network anomaly detection," J. Parallel Distrib. Comput., vol. 72, no. 12, pp. 1576–1590, 2012, doi: 10.1016/j.jpdc.2012.09.004.
- [303] D. Cozzolino and L. Verdoliva, "Single-image splicing localization through autoencoder-based anomaly detection," 2017, doi: 10.1109/WIFS.2016.7823921.
- [304] M. Al-Subaie and M. Zulkernine, "Efficacy of Hidden Markov Models over neural networks in anomaly intrusion detection," in Proceedings - International Computer Software and Applications Conference, 2006, vol. 1, pp. 325–332, doi: 10.1109/COMPSAC.2006.40.
- [305] R. Fujimaki, T. Yairi, and K. Machida, "An approach to spacecraft anomaly detection problem using Kernel Feature Space," in *Proceedings of the ACM SIGKDD International* Conference on Knowledge Discovery and Data Mining, 2005, pp. 401–410, doi: 10.1145/1081870.1081917.
- [306] I. Khokhlov, M. Perez, and L. Reznik, "Machine learning in anomaly detection: Example of colluded applications attack in android devices," in *Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA* 2019, 2019, pp. 1328–1333, doi: 10.1109/ICMLA.2019.00216.
- [307] A. Selvaraj, R. Patan, A. H. Gandomi, G. G. Deverajan, and M. Pushparaj, "Optimal virtual machine selection for anomaly detection using a swarm intelligence approach," *Appl. Soft Comput. J.*, vol. 84, 2019, doi: 10.1016/j.asoc.2019.105686.
- [308] R. Punmiya, O. Zyabkina, S. Choe, and J. Meyer, "Anomaly detection in power quality measurements using proximity-based unsupervised machine learning techniques," 2019, doi: 10.1109/PQ.2019.8818236.
- [309] Y. Li, X. Luo, Y. Qian, and X. Zhao, "Network-wide traffic anomaly detection and localization based on robust multivariate

- probabilistic calibration model," *Math. Probl. Eng.*, 2015, doi: 10.1155/2015/923792.
- [310] E. Quatrini, F. Costantino, G. Di Gravio, and R. Patriarca, "Machine learning for anomaly detection and process phase classification to improve safety and maintenance activities," *J. Manuf. Syst.*, vol. 56, pp. 117–132, Jul. 2020, doi: 10.1016/j.jmsy.2020.05.013.
- [311] Y. Liu, Z. Pang, M. Karlsson, and S. Gong, "Anomaly detection based on machine learning in IoT-based vertical plant wall for indoor climate control," *Build. Environ.*, vol. 183, p. 107212, Oct. 2020, doi: 10.1016/j.buildenv.2020.107212.
- [312] P. Tang *et al.*, "Anomaly detection in electronic invoice systems based on machine learning," *Inf. Sci. (Ny).*, vol. 535, pp. 172–186, Oct. 2020, doi: 10.1016/j.ins.2020.03.089.
- [313] I. G. A. Poornima and B. Paramasivan, "Anomaly detection in wireless sensor network using machine learning algorithm," *Comput. Commun.*, vol. 151, pp. 331–337, Feb. 2020, doi: 10.1016/j.comcom.2020.01.005.
- [314] G. Pu, L. Wang, J. Shen, and F. Dong, "A hybrid unsupervised clustering-based anomaly detection method," *Tsinghua Sci. Technol.*, vol. 26, no. 2, pp. 146–153, Apr. 2021, doi: 10.26599/TST.2019.9010051.
- [315] A. N. Huy, V. N. Tam, I. K. Dong, and D. Choi, "Network traffic anomalies detection and identification with flow monitoring," 2008, doi: 10.1109/WOCN.2008.4542524.
- [316] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, Network Traffic Anomaly Detection and Prevention. 2017.
- [317] X. Lu, P. Liu, and J. Lin, "Network traffic anomaly detection based on information gain and deep learning," in ACM International Conference Proceeding Series, Apr. 2019, pp. 11– 15, doi: 10.1145/3325917.3325946.
- [318] Y. Gu, A. McCallum, and D. Towsley, "Detecting anomalies in network traffic using maximum entropy estimation," 2005, doi: 10.1145/1330107.1330148.