Chapter 10 — Discrete random variables

Exercise 10.2 - Bernoulli distributions

- 1 a This is not a Bernoulli distribution as a successful outcome is not specified.
 - **b** This is a Bernoulli distribution as a success is getting a hole in one and a failure is not getting a hole in one.
 - c This is a Bernoulli distribution as a success is withdrawing an ace and a failure is withdrawing any other card.
- 2 a This is a Bernoulli distribution as the arthritis drug is either successful or not.
 - **b** This is a Bernoulli distribution as the child is either a girl
 - c This is not a Bernoulli distribution as the probability of success is unknown.
 - **d** This is a Bernoulli distribution as the next person either subscribes or not.
- **3 a** The friend does not replace the ball before I choose a ball, so this cannot be a Bernoulli distribution.
 - **b** There are 6 outcomes not 2, so this is not a Bernoulli distribution.
 - c The probability of success is unknown so this is not a Bernoulli distribution.

Exercise 10.3 - Bernoulli random variables

1 0			
1 a	x	0	1
	P(X = x)	0.58	0.42
	$\Gamma(\Lambda = \lambda)$	0.50	0.42

- **b** E(X) = 0.42
- **c** i $Var(X) = 0.58 \times 0.42 = 0.2436$
 - ii $SD(X) = \sqrt{0.2436} = 0.4936$
- **2 a** E(Z) = p = 0.63
 - **b** $Var(Z) = p(p-1) = 0.63 \times 0.37 = 0.2331$
 - c SD(Z) = $\sqrt{0.2331}$ = 0.4828

•	3.1020		
3 a	y	0	1
	P(Y = y)	0.32	0.68

- **b i** E(Y) = p = 0.68
 - ii $Var(Y) = p(p-1) = 0.68 \times 0.32 = 0.2176$
 - iii $SD(Y) = \sqrt{0.2176} = 0.4665$
- \mathbf{c} $\mu 2\sigma = 0.68 2(0.4665) = -0.253$ $\mu + 2\sigma = 0.68 + 2(0.4665) = 1.613$ $P(\mu - 2\sigma \le Y \le \mu + 2\sigma) = P(-0.253 \le Y \le 1.613)$

= P(Y = 0) + P(Y = 1)= 1

4 a 0 1 0.11 0.89 P(X = x)

- **b i** E(X) = p = 0.89
 - ii $Var(X) = p(p-1) = 0.89 \times 0.11 = 0.0979$
 - **iii** SD(*X*) = $\sqrt{0.0979}$ = 0.3129

c
$$\mu - 2\sigma = 0.89 - 2(0.3129) = 0.2642$$

 $\mu + 2\sigma = 0.89 + 2(0.3129) = 1.5158$
 $P(\mu - 2\sigma \le X \le \mu + 2\sigma) = P(0.2642 \le X \le 1.5158)$
 $= P(X = 1)$
 $= 0.89$

5 a
$$Var(X) = p(1-p) = 0.21$$

 $p - p^2 = 0.21$
 $0 = p^2 - p + 0.21$
Therefore $p = \frac{1 \pm \sqrt{(-1)^2 - 4(1)(0.21)}}{2(1)}$
 $p = \frac{1 \pm \sqrt{1 - 0.84}}{2}$
 $p = \frac{1 \pm 0.4}{2}$

p = 0.3 or 0.7But p > 1 - p so p = 0.7

- **b** E(X) = p = 0.7
- **6 a** SD(Y) = 0.4936 $Var(Y) = 0.4936^2 = 0.2436$
 - **b** Var(Y) = p(1 p) = 0.2436 $p - p^2 = 0.2436$ $0 = p^2 - p + 0.2436$ Therefore $p = \frac{1 \pm \sqrt{(-1)^2 - 4(1)(0.21)436}}{1 \pm \sqrt{(-1)^2 - 4(1)(0.21)436}}$

$$p = \frac{1 \pm \sqrt{1 - 0.9744}}{2}$$

$$p = \frac{1 \pm 0.16}{2}$$

$$p = \frac{0.84}{2} \text{ or } \frac{1.16}{2}$$

p = 0.42 or 0.58

But p > 1 - p so p = 0.58

- **c** E(Y) = p = 0.58
- 7 a P(breast cancer) = 0.0072

b	z	0	1
	P(Z=z)	0.9928	0.0072

- $\mu = E(Z) = 0.0072$ $Var(Z) = p(p-1) = 0.0072 \times 0.9928 = 0.0071$ $\sigma = SD(Z) = \sqrt{0.0071} = 0.0845$ $\mu - 2\sigma = 0.0072 - 2(0.0845) = -0.1618$ $\mu + 2\sigma = 0.0072 + 2(0.0845) = 0.1762$ $P(\mu - 2\sigma \le Z \le \mu + 2\sigma) = P(-0.1618 \le Z \le 0.1762)$ = P(Z = 0)= 0.9928
- 8 a 1 P(Y = y)0.67 0.33
 - **b** $\mu = E(Y) = p = 0.33$
 - **c** $Var(Y) = p(p-1) = 0.33 \times 0.67 = 0.2211$ $\sigma = SD(Y) = \sqrt{0.2211} = 0.4702$

$$\mu - 2\sigma = 0.33 - 2(0.4702) = -0.6104$$

$$\mu + 2\sigma = 0.33 + 2(0.4702) = 1.2704$$

$$P(\mu - 2\sigma \le Y \le \mu + 2\sigma) = P(-0.6104 \le Y \le 1.2704)$$

$$= P(Y = 0) + P(Y = 1)$$

$$= 1$$

9 a
$$Var(Z) = p(1-p) = 0.1075$$

 $p - p^2 = 0.1075$
 $0 = p^2 - p + 0.1075$
 $p = 0.1225$ or 0.8775

Since
$$p > 1 - p$$
. $p = 0.8775$.

b	Z	0	1
	P(Z=z)	0.1225	0.8775

c
$$E(Z) = p = 0.8775$$

10 a
$$SD(X) = 0.3316$$
 $Var(X) = 0.3316^2 = 0.11$

b
$$Var(Z) = p(1-p) = 0.11$$

 $p - p^2 = 0.11$
 $0 = p^2 - p + 0.11$
 $p = 0.1258$ or 0.8742

Since
$$p > 1 - p$$
, $p = 0.8742$.

Exercise 10.4 - Binomial distributions

- 1 a not binomial
 - **b** binomial (3 or not a 3)
 - c not binomial
 - d binomial (Tail or not Tail)
 - e not binomial
 - **f** binomial (Black or Red)
 - g not binomial

2
$$p = 0.07, n = 50, r = 5$$

 ${}^{50}C_5 (0.07)^5 (0.97)^{45}$
= 0.1359

binom pdf (50, 0.07, 5)

3
$$p = 0.4, n = 5, r = 4$$

 ${}^{5}C_{4}(0.4)^{4}(0.1)^{1}$
 $= 0.0768$
binom pdf $(5, 0.4, 4)$

4
$$p = \frac{1}{5}, n = 4$$

a
$$r = 1$$
, ${}^{4}C_{1} \left(\frac{1}{5}\right)^{1} \left(\frac{4}{5}\right)^{3} = 0.4096$
$$= \frac{256}{625}$$

b
$$r = 2$$
, ${}^{4}C_{2} \left(\frac{1}{5}\right)^{2} \left(\frac{4}{5}\right)^{2} = 0.1536$
$$= \frac{96}{625}$$

$$\mathbf{c} \quad x \ge 1, \ 1 - P(X = 0)$$
$$1 - {}^{4}C_{0} \left(\frac{1}{5}\right)^{0} \left(\frac{4}{5}\right)^{4} = 1 - 0.4096$$
$$= 0.5904$$
$$= \frac{369}{625}$$

5
$$p = 0.55, n = 8$$

a
$$r = 4$$
, ${}^{8}C_{4} (0.55)^{4} (0.45)^{4} = 0.2627$
binom pdf (8, 0.55, 4)

- **b** r = 8, ${}^{8}C_{8} (0.55)^{8} (0.45)^{0} = 0.0084$ binom pdf (8, 0.55, 8)
- **c** r = 5, ${}^{8}C_{5} (0.55)^{5} (0.45)^{3} = 0.2568$ binom pdf (8, 0.55, 5)
- **d** 3 oppose means 5 support. i.e., r = 50.2568
- **6** p = 0.4, n = 52, r = 26 binom pdf (52, 0.4, 26) = 0.0381**7** $p = \frac{5}{8}$, n = 20, r = 10 binom pdf $(20, \frac{5}{8}, 10) = 0.0924$
- **8 a** p of Channel 6 = 0.39 n = 10, r = 6 binom pdf (10, 0.39, 6) = 0.1023
 - **b** *p* of Channel 8 = 0.3 n = 10, r = 4 binom pdf (10, 0.3, 4) = 0.2001

9 a
$$Y \sim \text{Bi}\left(5, \frac{3}{7}\right)$$

$$P(Y = 0) = \left(\frac{4}{7}\right)^5 = \frac{1024}{16\,807} = 0.0609$$

$$P(Y = 1) = 5\left(\frac{4}{7}\right)^4 \left(\frac{3}{7}\right) = \frac{3840}{16\,807} = 0.2285$$

$$P(Y = 2) = 10\left(\frac{4}{7}\right)^3 \left(\frac{3}{7}\right)^2 = \frac{5760}{16\,807} = 0.3427$$

$$P(Y = 3) = 10\left(\frac{4}{7}\right)^2 \left(\frac{3}{7}\right)^3 = \frac{4320}{16\,807} = 0.2570$$

$$P(Y = 4) = 5\left(\frac{4}{7}\right) \left(\frac{3}{7}\right)^4 = \frac{1620}{16\,807} = 0.0964$$

$$P(Y = 5) = \left(\frac{3}{7}\right)^5 = \frac{243}{16\,807} = 0.0145$$

У	0	1	2	3	4	5
P(Y = y)	0.0609	0.2285	0.3427	0.2570	0.0964	0.0145

b
$$P(Y \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$$

= 0.0609 + 0.2285 + 0.3427 + 0.2570
= 0.8891

$$\mathbf{c} \quad P(Y \ge 1|Y \le 3) = \frac{P(Y \ge 1) \cap P(Y \le 3)}{P(Y \le 3)}$$

$$= \frac{P(X = 1) + P(X = 2) + P(X = 3)}{0.8891}$$

$$= \frac{0.2285 + 0.3427 + 0.2570}{0.8891}$$

$$= \frac{0.8282}{0.8891}$$

$$= 0.9315$$

d P(Miss, Bulls – eye, Miss, Miss) =
$$\frac{4}{7} \times \frac{3}{7} \times \frac{4}{7} \times \frac{4}{7}$$

= 0.0800

$$= 0.08$$

$$P(Z = 0) = (0.58)^{10} = 0.0043$$

$$P(Z = 1) = 10(0.58)^{9}(0.42) = 0.0312$$

$$P(Z = 2) = 45(0.58)^{8}(0.42)^{2} = 0.1017$$

$$P(Z = 3) = 120(0.58)^{7}(0.42)^{3} = 0.1963$$

$$P(Z = 4) = 210(0.58)^{6}(0.42)^{4} = 0.2488$$

$$P(Z = 5) = 252(0.58)^{5}(0.42)^{5} = 0.2162$$

$$P(Z = 6) = 210(0.58)^{4}(0.42)^{6} = 0.1304$$

$$P(Z = 7) = 4120(0.58)^{3}(0.42)^{7} = 0.0540$$

$$P(Z = 8) = 45(0.58)^{2}(0.42)^{8} = 0.0147$$

$$P(Z = 9) = 10(0.58)(0.42)^{9} = 0.0024$$

 $P(Z = 10) = (0.42)^{10} = 0.0002$

L												
b	z	0	1	2	3	4	5	6	7	8	9	10
	P(Z=z)	0.0043	0.0312	0.1017	0.1963	0.2488	0.2162	0.1304	0.0540	0.0147	0.0024	0.0002

11
$$X \sim \text{Bi}(n, 0.2)$$

$$P(X \ge 1) \ge 0.85$$

$$1 - P(X = 0) \ge 0.85$$

$$1 - 0.8^n \ge 0.85$$

$$1 - 0.85 \ge 0.8^n$$

$$n \ge 8.50$$

Thus nine tickets would be required.

12
$$X \sim \text{Bi}(n, 0.33)$$

$$P(X \ge 1) > 0.9$$

$$1 - P(X = 0) > 0.9$$

$$1 - 0.67^n > 0.9$$

$$1 - 0.9 > 0.67^n$$

They need to play six games.

13
$$X \sim \text{Bi}(15, 0.62)$$

a
$$P(X = 10) = {}^{10}C_{10}(0.62)^{10}(0.38)^{0} = 0.1997$$

b
$$P(X \ge 10) = 0.4665$$

c
$$P(X < 4|X \le 8) = \frac{P(X < 4)}{P(X \le 8)}$$

= $\frac{0.0011}{0.3295}$
= 0.0034

14 $X \sim \text{Bi}(8, 0.63)$

a	х	0	1	2	3	4	5	6	7	8
	P(X = x)	0.0004	0.0048	0.0285	0.0971	0.2067	0.2815	0.2397	0.1166	0.0248

b
$$P(X \le 7) = 1 - P(X = 8) = 1 - 0.0248 = 0.9752$$

c
$$P(X \ge 3|X \le 7) = \frac{P(X \ge 3) \cap P(X \le 7)}{P(X \le 7)}$$

= $\frac{P(3 \le X \le 7)}{0.9752}$
= $\frac{0.9416}{0.9752}$
= 0.9655

d
$$P(B', B, B, B, B, B) = 0.37 \times 0.63^5 = 0.0367$$

15
$$X \sim \text{Bi}(n, 0.75)$$

$$P(X \ge 1) \ge 0.95$$

$$1 - P(X = 0) \ge 0.95$$

$$1 - 0.25^n \ge 0.95$$

$$1 - 0.95 \ge 0.25^n$$

$$n \ge 2.16$$

Thus three shots would be required.

- **16 a** $X \sim \text{Bi}(12, 0.2)$
 - P(X = 3) = 0.2362
 - **b** $Y \sim \text{Bi}(14, 0.2362)$
 - $P(Y \ge 6) = 0.0890$

Exercise 10.5 - The mean and variance of a binomial distribution

1 a $X \sim \text{Bi}\left(25, \frac{1}{6}\right)$

$$E(X) = np = 25 \times \frac{1}{6} = 4\frac{1}{6} \simeq 4.1667$$

- **b** $Var(X) = np(1-p) = 25 \times \frac{1}{6} \times \frac{5}{6} = 3\frac{17}{36} \approx 3.472$
 - $SD(X) = \sqrt{3.472} = 1.8634$
- **2 a** E(Z) = np = 32.535
 - Var(Z) = np(1 p) = 9.02195
 - Re-iterating, we have
 - np = 32.535....[1]
 - np(1-p) = 9.02195....[2]
 - $[2] \div [1]$
 - $\frac{np(1-p)}{np} = \frac{9.02195}{32.535}$
 - 1 p = 0.2773
 - 1 0.2773 = p
 - 0.7227 = p
 - **b** Substitute p = 0.7227 into [1]:
 - 0.7227n = 32.535

$$n = \frac{32.535}{0.7227} = 45$$

- 3 $n = 10, p = \frac{1}{2}$
 - **a** E(X) = $10 \times \frac{1}{2} = 5$
 - **b** $Var(X) = 10 \times \frac{1}{2} \times \frac{1}{2} = 2.5$
 - **c** SD(X) = $\sqrt{2.5}$ = 1.58
- **4 a** $n = 20, p = \frac{12}{52} = \frac{3}{13}$

$$E(X) = 20 \times \frac{3}{13} = 4.62$$

- **b** $Var(X) = 20 \times \frac{3}{13} \times \frac{13}{13} = 3.55$
- **c** SD(X) = $\sqrt{3.55}$ = 1.88 **5 a** n = 20, $p = \frac{6}{10} = \frac{3}{5} = 0.6$
 - **b** $Var(X) = 20 \times 0.6 \times 0.4 = 4.8$
 - **c** SD(X) = $\sqrt{4.8}$ = 2.19
- **6 a** $n = 10, p = \frac{1}{6}$
 - $E(X) = 10 \times \frac{1}{6} = 1.67$
 - **b** $P(X > 1.67) = 1 P(X \le 2)$
 - $= 1 \text{binom pdf} \left(10, \frac{1}{6}, 2 \right)$
 - = 0.2248

- 7 n = 120, p = 0.8
 - **a** $E(X) = 120 \times 0.8 = 96$; Ninety-six are expected to die
 - **b** $E(X) = 120 \times 0.2 = 24$; Twenty-four are expected to live
- E(X) = 10 = np

$$Var(X) = 5 = np(1 - p)$$

$$5 = 10(1 - p)$$

$$\frac{1}{2} = p$$

- **a** $p = \frac{1}{2}$
- **b** $n = 10 \div \left(\frac{1}{2}\right) = 20$
- E(X) = 12 = np

$$Var(X) = 3 = np(1 - p)$$

$$3 = 12(1 - p)$$

$$\frac{3}{12} = 1 - p$$

$$p = \frac{3}{4}$$

- **a** $p = \frac{3}{4}$
- **b** $n = 12 \div \frac{3}{4}$
 - n = 16
- **10 a** $X \sim \text{Bi}(45, 0.72)$
 - **i** $E(X) = np = 45 \times 0.72 = 32.4$
 - ii $Var(Z) = np(1-p) = 45 \times 0.72 \times 0.28 = 9.072$
 - **b** $Y \sim \text{Bi}\left(100, \frac{1}{5}\right)$
 - **i** $E(Y) = np = 100 \times \frac{1}{5} = 20$
 - ii $Var(Y) = np(1-p) = 100 \times \frac{1}{5} \times \frac{4}{5} = 16$
 - **c** $Z \sim \text{Bi}\left(72, \frac{2}{9}\right)$
 - i $E(Z) = np = 72 \times \frac{2}{0} = 16$
 - ii $Var(Z) = np(1-p) = 72 \times \frac{2}{9} \times \frac{7}{9} = 12\frac{4}{9} \approx 12.4$
- 11 p = 0.04, n = 25
 - $E(X) = 25 \times 0.04$
 - $P(X \ge 2) = 1 P(X = 0) P(X = 1)$ = $1 - {}^{25}C_0(0.04)^{\circ}(0.96)^{25} - {}^{25}C_1(0.04)^1(0.96)^{24}$
- **12** $p = \frac{1}{2}$, 100 000
 - **a** $E(X) = 100\,000 \times \frac{1}{2}$
 - = 50000
 - **b** $Var(X) = 100\,000 \times \frac{1}{2} \times \frac{1}{2}$
 - = 25000
 - **c** SD(X) = $\sqrt{25000}$ = 158.11

13
$$n = 30, p = \frac{1}{5}$$

a
$$E(X) = 30 \times \frac{1}{5}$$

b Yoghurt B is extremely popular, since 15 is more than twice the expected number (6).

14 a Let
$$X \sim \text{Bi}(16, p)$$

$$E(X) = np = 10.16$$

$$E(X) = 16p = 10.16$$

$$p = \frac{10.16}{16} = 0.635$$

$$\mathbf{b} \quad \text{Var}(X) = np(1-p)$$

$$Var(X) = 16(0.635)(0.365)$$

$$Var(X) = 3.7084$$

$$SD(X) = \sqrt{3.7084} = 1.9257$$

15
$$X \sim \text{Bi}\left(10, \frac{1}{7}\right)$$

a
$$E(X) = np = 10 \times \frac{1}{7} = 1.4286$$

$$Var(X) = np(1-p) = 10 \times \frac{1}{7} \times \frac{6}{7} = 1.2245$$

Exercise 10.6 - Applications

1
$$Y \sim \text{Bi}(10, 0.3)$$

a
$$P(Y \ge 7) = \sum_{r=7}^{10} {10 \choose r} (0.3)^r (0.7)^{10-7}$$

 $P(Y = 7) = {10 \choose 7} (0.3)^7 (0.7)^3 = 0.009\,002$
 $P(Y = 8) = {10 \choose 8} (0.3)^8 (0.7)^2 = 0.001\,447$
 $P(Y = 9) = {10 \choose 9} (0.3)^9 (0.7)^1 = 0.000\,138$
 $P(Y = 10) = {10 \choose 10} (0.3)^{10} (0.7)^0 = 0.000\,006$

$$P(Y \ge 7) = 0.009\,002 + 0.001\,447 + 0.000\,138 + 0.000\,006$$
$$= 0.0106$$

b
$$E(Y) = np = 10 \times 3 = 3$$

 $Var(Y) = np(1 - p) = 10 \times 0.3 \times 0.7 = 2.1$
 $SD(Y) = \sqrt{2.1} = 1.4491$

- **2** $X \sim \text{Bi}(15, 0.3)$
 - **a** $P(X \le 5) = 0.7216$
 - **b** $E(X) = np = 15 \times 0.3 = 4.5$
 - **c** $Var(X) = np(1 p) = 15 \times 0.3 \times 0.7 = 3.15$ $SD(X) = \sqrt{3.15} = 1.7748$
- 3 p = 0.02, n = 30

a
$$E(X = 0) = {}^{27}C_0(0.02)^0(0.98)^{30}$$

= 0.5455

b
$$P(X = 1) = {}^{30}C_1(0.02)^1(0.98)^{29}$$

= 0.3340

$$\mathbf{c} \quad E(X) = 30 \times 0.02$$

= 0.6

d
$$P(X \le 1) = P(X = 0) + P(X = 1)$$

= 0.5455 + 0.3340
= 0.8795

e
$$p = 0.8795$$
 (accepted)
 $n = 10$
 $P(X = 10) = {}^{10}C_{10} (0.8795)^{10} (0.1205)^{0}$
 $= 0.2769$

- **4** $Z \sim \text{Bi}(12, 0.85)$
 - **a** $P(Z \le 8) = 0.0922$

a
$$P(Z \le 6) = 0.0922$$

b $P(Z \ge 5|Z \le 8) = \frac{P(Z \ge 5) \cap P(Z \le 8)}{P(Z \le 8)}$
 $= \frac{P(5 \le Z \le 8)}{0.0922}$
 $= \frac{0.09213}{0.0922}$
 $= 0.9992$

c i
$$E(Z) = np = 12 \times 0.85 = 10.2$$

ii
$$Var(Z) = np(1-p) + 12 \times 0.85 \times 0.15 = 1.53$$

 $SD(Z) = \sqrt{1.53} = 1.2369$

5 Let *Z* be the number of offspring with genotype XY.

$$Z \sim \text{Bi}\left(7, \frac{1}{2}\right)$$

Pr
$$(Z = 6) = {}^{7}C_{6}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{6} = \frac{7}{128} = 0.0547$$

6 Let *Z* be the number of chips that fail the test. $Z \sim \text{Bi}(250, 0.02)$

$$P(Z = 7) = {}^{250}C_7 (0.98)^{243} (0.02)^7 = 0.1051$$

7 a
$$X \sim \text{Bi}(3, p)$$

$$P(X = 0) = (1 - p)^3, P(X = 1) = 3 (1 - p)^2 p,$$

 $P(X = 2) = 3(1 - p)p^2, P(X = 3) = p^3$

х	0	1	2	3
P(X = x)	$(1-p)^3$	$3(1-p)^2p$	$3(1-p)p^2$	p^3

b
$$P(X = 0) = P(X = 1)$$

$$(1-p)^3 = 3(1-p)^2 p$$
$$(1-p)^3 - 3(1-p)^2 p = 0$$

$$(1-p)^2(1-p-3p) = 0$$

$$(1-p)^2(1-4p) = 0$$

$$(1-p)(1+p)(1-4p) = 0$$

$$1-p=0$$
, $1+p=0$ or $1-4p=0$
 $p=1$ $p=-1$ $1=4p$

$$p = \frac{1}{4}$$

$$\therefore p = \frac{1}{4} \text{ because } 0$$

c i
$$\mu = E(X) = np = 3 \times \frac{1}{4} = \frac{3}{4}$$

ii
$$Var(X) = np(1-p) = 3 \times \frac{1}{4} \times \frac{3}{4} = \frac{9}{16}$$

$$\sigma = \mathrm{SD}(X) = \sqrt{\frac{9}{16}} = \frac{3}{4}$$

8 a Let *X* be the number of people who suffer from anaemia. $X \sim \text{Bi} (100, 0.013)$

$$P(X \ge 5) = 0.0101$$

b
$$P(X = 4|X < 10) = \frac{P(X = 4)}{P(X < 10)}$$

$$P(X = 4) = 0.0319$$

$$P(X < 10) = 0.9999$$

$$P(X = 4|X < 10) = {P(X = 4) \over P(X < 10)} = {0.0319 \over 0.9999} = 0.0319$$

9
$$X \sim \text{Bi}(20, 0.2)$$

a
$$P(X \ge 10) = 0.0026$$

b
$$P(X \ge 10) = 1 \times 1 \times 1 \times 1 \times P(X \ge 6)$$

= 0.0817

10
$$X \sim \text{Bi}(6, 0.7)X = \text{kicking } 50 \text{ m}$$

a i
$$P(YYYNNN) = (0.7)^3 (0.3)^3$$

= 0.0093

ii
$$P(X = 3) = {}^{6}C_{3} (0.7)^{3} (0.3)^{3}$$

= 0.1852

iii
$$P(X \ge 3|1 \text{st kick})50 \text{ m}) = \frac{0.7 \times P(X \ge 2)}{0.7}$$

= $\frac{0.7 \times 0.1320}{0.7}$
= 0.1320

b
$$X \sim \text{Bi}(n, 0.95)$$

$$P(X \ge 1) \ge 0.95$$

$$1 - P(X = 0) \ge 0.95$$

$$1 - 0.3^n \ge 0.95$$

$$1 - 0.95 \ge 0.3^n$$

$$n$$
 ≥ 2.48

Therefore, 3 footballers are needed.

11
$$X \sim \text{Bi}(12, 0.85)$$

a
$$P(X \ge 9) = 0.9078$$

b
$$P(3M, 9G) = (0.15)^3 (0.85)^9 = 0.0008$$

c
$$P(X = 10 | \text{last } 9 \text{ are goals}) = \frac{P(X = 1) \times \text{last } 9 \text{ are goals}}{P(\text{last } 9 \text{ are goals})}$$
$$= \frac{0.057375 \times (0.85)^9}{(0.85)^9}$$
$$= 0.0574$$

12
$$X \sim \text{Bi}(n, 0.08)$$

$$P(X \ge 2) > 0.8$$

$$1 - (P(X = 0) + P(X = 1)) > 0.8$$

$$1 - 0.8 > P(X = 0) + P(X = 1)$$

$$0.2 > (0.92)^n + n(0.92)^{n-1}(0.08)$$

n = 36.4179 so at least 37 tickets must be bought.

13
$$X \sim \text{Bi}(10, p)$$

$$P(X \le 8) = 1 - P(X \ge 9)$$

$$= 1 - (P(X = 9) + P(X = 10))$$

$$= 1 - (10(1 - p)p^9 + p^{10})$$
If $P(X \le 8) = 0.9$ thus solve $0.9 = 1 - (10(1 - p)p^9 + p^{10})$

If
$$P(X \le 8) = 0.9$$
 thus solve $0.9 = 1 - (10(1 - p)p^9 + p^{10})$
 $0.9 = 1 - (10(1 - p)p^9 + p^{10})$

$$p^{10} + 10(1 - p)p^9 - 0.1 = 0$$

$$p = 0.6632$$

10.7 Review: exam practice

1 A:
$$n = 4$$
, $p = \frac{1}{6}$

B:
$$n = 10, p = \frac{1}{2}$$

C: n = 20, p = ? Not binomial.

D:
$$n = n, p = \frac{1}{13}$$

Answer is C

2
$$(1-p) = 0.35$$

$$p = 1 - 0.35$$

$$p = 0.65$$

$$E(X) = p = 0.65$$

$$Var(X) = p(1 - p)$$

$$= (0.65)(0.35)$$

$$= (0.65) (0.35)$$

 $= 0.2275$

Answer is C

3
$$E(X) = 12$$

$$\Rightarrow np = 12$$

$$SD(X) = 3$$

$$\Rightarrow \sqrt{n \, p \, (1 - p)} = 3$$

$$np\ (1-p) = 9$$

Substituting np = 12 gives:

$$12(1-p) = 9$$

$$1 - p = \frac{9}{12}$$

$$1 - \frac{9}{12} = p$$

$$p = \frac{3}{12} = 0.25$$

Answer is A

4
$$p = 0.45$$

$$1 - p = 0.55$$

$$n = 5$$

Let X be the number of times that the bus is on time

$$P(X \ge 1) = 1 - P(X < 1)$$

$$= 1 - P(X = 0)$$

$$= 1 - {5 \choose 0} (0.45)^0 (0.55)^5$$

$$= 1 - (0.55)^5$$

Answer is A

$$5 \quad \mu = \mathrm{E}(X) = np$$

$$= 15 \times \frac{1}{5}$$

$$\mu = 3$$

$$\sigma^2 = \text{Var}(X) = np(1-p)$$

$$=15\times\frac{1}{5}\times\left(1-\frac{1}{5}\right)$$

$$\sigma^2 = 2.4$$

Answer is D

6
$$p = \frac{1}{4}$$

$$(1-p) = \frac{3}{4}$$

$$n = 5$$

$$r = 3$$

$$r = 3$$

$$P(X) = {5 \choose 3} \left(\frac{1}{4}\right)^3 \left(\frac{3}{4}\right)^2$$

$$= 10 \times \frac{1}{64} \times \frac{9}{16}$$

$$= \frac{90}{1024} (\text{or } 0.0879)$$

7
$$p = \frac{1}{100}, n = 300$$

a
$$P(X = 0) = {300 \choose 0} \left(\frac{1}{100}\right)^0 \left(\frac{99}{100}\right)^{300}$$

= 0.0490

b
$$10 = n \times 0.2$$

 $n = 50$
9 $p = 0.6, n = 20$
 $E(X) = np$
 $= 20 \times 0.6$
 $= 12$

10
$$p = 0.86$$

 $Var(X) = p(1 - p)$
 $= 0.86(1 - 0.86)$
 $= 0.1204$
 $\approx 0.12 \text{ (correct to 2 decimal places)}$

= 0.03078

11
$$p = 0.7$$
; $n = 5$
 $P(X \le 1) = [P(X = 0) + P(X = 1)]$
 $= {5 \choose 0} (0.7)^0 (0.3)^5 + {5 \choose 1} (0.7)^1 (0.3)^4$
 $= 0.00243 + 0.02835$

12 a Let
$$X \sim \text{Bi} (16, p)$$

 $E(X) = np = 10.16$
 $E(X) = 16p = 10.16$
 $p = \frac{10.16}{16} = 0.635$

b
$$Var(X) = np(1 - p)$$

 $Var(X) = 16(0.635)(0.365)$
 $Var(X) = 3.7084$
 $SD(X) = \sqrt{3.7084} = 1.9257$

13 **a**
$$n = 20$$
, $p = 0.05$
E $(X) = 20 \times 0.05$
= 1

= 0.0003

b
$$P(X > 1) = 1 - P(X \le 1)$$

= 1 - $[P(X = 0) + P(X = 1)]$
= 1 - $[^{20}C_0 (0.05)^0 (0.95)^{20} + ^{20}C_1 (0.05)^1 (0.95)^{19}]$
= 1 - $[0.35849 + 0.37735]$
= 1 - 0.73584
= 0.26416
≈ 0.2642

c
$$P(X > 5) = 1 - P(X \le 5)$$

= $1 - [P(X = 0) + P(X = 1) + P(X = 2)$
+ $P(X = 3) + P(X = 4) + P(X = 5)]$
= $1 - [0.7358 + {}^{20}C_{2}(0.05)^{2}(0.95)^{18}$
+ ${}^{20}C_{3}(0.05)^{3}(0.95)^{17} + {}^{20}C_{4}(0.05)^{4}(0.95)^{16}$
+ ${}^{20}C_{5}(0.05)^{5}(0.95)^{15}]$
= $1 - [0.73584 + 0.18868 + 0.05958$
+ $0.01333 + 0.00224]$
= $1 - 0.9997$

14 **a**
$$n = 10$$
, $p = 0.1$
 $E(X) = np$
 $= 10 \times 0.1$
 $= 1$
b $P(X = 5) = {}^{10}C_5 (0.1)^5 (0.9)^5$
 $= 0.0015$
c $P(X \ge 2) = 1 - P(X < 2)$
 $= 1 - [P(X = 0) + P(X = 1)]$
 $= 1 - [{}^{10}C_0|(0.1)^0 (0.9)^{10} + {}^{10}C_1|(0.1)^1 (0.9)^9]$
 $= 1 - [0.348|68 + 0.387|42]$
 $= 1 - 0.7361$
 $= 0.2639$
d $n = 1000$, $p = 0.01$
 $E(X) = 1000 \times 0.01$
 $= 10$
15 $p = 1 - \frac{1}{5} = 0.8$; $n = 50$
 $0.96 \times 50 = 48$

$$0.96 \times 50 = 48$$

$$P(X \ge 48) = [P(X = 48) + P(X = 49) + P(X = 50)]$$

$$= {50 \choose 48} (0.8)^{48} (0.2)^{2} + {50 \choose 49} (0.8)^{49} (0.2)^{2}$$

$$+ {50 \choose 49} (0.8)^{50} (0.2)^{0}$$

$$= 0.001 092 736 + 0.000 178 405 + 0.000 014 272$$

$$= 0.0013$$

16 a
$$n = 150, p = 0.9$$

 $E(X) = 150 \times 0.9$
 $= 135$

b Probability of a free pizza =
$$q$$

= $1 - p$
= $1 - 0.9$
= 0.1

c Late deliveries =
$$150 - 135$$

= 15
Loss = 15×4

= 60

Saverio expects to lose \$60 this night.

17
$$P(X = 1 | X \ge 1) = \frac{P(X = 1)}{P(X \ge 1)}$$

$$= \frac{\binom{3}{1} p^{1} (1 - p)^{2}}{1 - P(X = 0)}$$

$$= \frac{3p (1 - p)^{2}}{1 - (1 - p)^{3}}$$

$$= \frac{3p(1-p)^2}{1-(1-p)^3}$$

$$P(X \le 8) = 0.9$$

$$P(X \ge 9) = 0.1$$

$$P(X = 9) + P(X = 10) = 0.1$$

$${}^{10}C_9(p)^9(1-p)^1 + {}^{10}C_{10}(p)^{10}(1-p)^0 = 0.1$$

$$10p^9 - 10p^{10} + p^{10} = 0.1$$

$$10p^9 - 9p^{10} = 0.1$$

$$p = 0.66315 \text{ or } p = 1.10665$$
but $0 \le p \le 1$

$$\therefore p = 0.6632$$

19
$$p = 0.15$$
; $r = 2$

$$P(X = 2) = 0.2759$$

$$\Rightarrow 0.2759 = \binom{n}{2} (0.15)^{2} (0.85)^{n-2}$$

$$0.2759 = \frac{n!}{(n-2)! \, 2!} (0.15)^{2} (0.85)^{n-2}$$

$$= \frac{n(n-1)}{2} \times (0.15)^{2} (0.85)^{n-2}$$

$$0.2759 \times \frac{2}{(0.15)^{2}} = n(n-1) (0.85)^{n-2}$$

$$0.2759 \times \frac{2}{(0.15)^{2}} = n(n-1) \frac{(0.85)^{n}}{(0.85)^{2}}$$

$$0.2759 \times \frac{2 \times (0.85)^{2}}{(0.15)^{2}} = n(n-1) (0.85)^{n}$$

$$17.7189 \approx n(n-1) (0.85)^{n}$$

By trial and error substituting values for n, determine that n = 10.

20
$$n = 5; r = 1; p = ?$$

$$P(X = 1) = {5 \choose 1} p^{1} (1 - p)^{4}$$

$$P(X = 1) = 5 p (1 - p)^{4}$$

Graphing this function using technology it can be seen that P(X = 1) is a maximum when p = 0.2

Alternatively, students may note that P(X = 1) will be a maximum when $\frac{\delta P(X = 1)}{\delta p} = 0$

Expanding terms using the binomial expansion:

$$P(X = 1) = 5p (1 - 4p + 6p^{2} - 4p^{3} + p^{4})$$

= 5p - 20p² + 30p³ - 20p⁴ + 5p⁵
$$P'(X - 1) = 5 - 40p + 90p^{2} - 80p^{3} + 25p^{4}$$

Graphing this derivative function shows that P'(X = 1) = 0 when p = 0.2 and p = 1

Only p = 0.2 satisfies the condition that 0 .Therefore, the probability that exactly 1 of the 5 chosen balls is striped is greatest when <math>p = 0.2