

Figure 1 4-HQ, 4-oxo-DHQ and 4-oxo-DHTP antiviral compounds

(Figure 1 continue)

(Figure 1 continue)

(Figure 1 continue)

Compound No.15

Compound 17

Figure 2. The HSV1 (KOS Strain) DNA Polymerase Amino Acid 823 is Critical for Resistance to 4-Hydroxyquinolines and Related Compounds

Schematic of HSV1 polymerase illustrating the conserved regions A and I-VI found in class 2 polymerases. Also shown are the amino acid sequence for the highly conserved herpesvirus domain in region III which surrounds the HSV1 amino acid 823.

Figure 3 Serial Passage of HSV-1 in Presence of 20 μ M compound 17

Figure 4 Comparison of Wild type HSV-1 and HSV-2 DNA Polymerases Amino Acid Sequences Aligned by Amino Acid Homology*

	HSV2-MS	MFCAAGGPTS	PGGKSAARAA	SGFFAPHNPR	GATQTAPPPC	RRQNFYNPHL	-50
	HSV2-186	MFCAAGGPAS	PGGKSAARAA	SGFFAPHNPR	GATQTAPPPC	RRQNFYNPHL	-50
5	HSV1-Kos	MFSGGGGPLS	PGGKSAARAA	SGFFAPAGPR	GAGR.GPPPC	LRQNFYNPYL	-49
	HSV1-Patton	MFSGGGGPLS	PGGKSAARAA	SGFFAPAGPR	GAGR.GPPPC	LRQNFYNPYL	-49
	HSV1-DJL	MFSGGGGPLS	PGGKSAARAA	SGFFAPAGPR	GAGR.GPPPC	LRQNFYNPYL	-49
	HSV1-F	MFSGGGGPLS	PGGKSAARAA	SGFFAPAGPR	GAGR.GPPPC	LRQNFYNPYL	-49
10	HSV2-MS	AQTGTQPKAP	GPAQRHTYY	ECDEFRFIAP	RSLDEDAPAE	QRTGVHDGRL	-100
	HSV2-186	AQTGTQPKAP	GPAQRHTYY	ECDEFRFIAP	RSLDEDAPAE	QRTGVHDGRL	-100
	HSV1-Kos	APVGTQQKPT	GPTQRHTYY	ECDEFRFIAP	RVLDEDAPPE	KRAGVHDGHL	-99
	HSV1-Patton	APVGTQQKPT	GPTQRHTYY	ECDEFRFIAP	RVLDEDAPPE	KRAGVHDGHL	-99
	HSV1-DJL	APVGTQQKPT	GPTQRHTYY	ECDEFRFIAP	RVLDEDAPPE	KRAGVHDGHL	-99
15	HSV1-F	APVGTQQKPT	GPTQRHTYY	ECDEFRFIAP	RVLDEDAPPE	KRAGVHDGHL	-99
	HSV2-MS	RRAPKVYCGG	DERDVLRVGP	EGFWPRLRL	WGGADHAPKG	FDPTVTVFHV	-150
	HSV2-186	RRAPKVYCGG	DERDVLRVGP	EGFWPRLRL	WGGADHAPEG	FDPTVTVFHV	-150
	HSV1-Kos	KRAPKVYCGG	DERDVLRVGS	GGFWPRRSRSL	WGGVDHAPAG	FNPTVTVFHV	-149
20	HSV1-Patton	KRAPKVYCGG	DERDVLRVGS	GGFWPRRSRSL	WGGVDHAPAG	FNPTVTVFHV	-149
	HSV1-DJL	KRAPKVYCGG	DERDVLRVGS	GGFWPRRSRSL	WGGVDHAPAG	FNPTVTVFHV	-149
	HSV1-F	KRAPKVYCGG	DERDVLRVGS	GGFWPRRSRSL	WGGVDHAPAG	FNPTVTVFHV	-149
	HSV2-MS	YDILEHVEHA	YSMRAAQLHE	RFMDAITPAG	TVITLLGLTP	EGHRVAHVHY	-200
25	HSV2-186	YDILEHVEHA	YSMRAAQLHE	RFMDAITPAG	TVITLLGLTP	EGHRVAHVHY	-200
	HSV1-Kos	YDILENVEHA	YGMRAAQFHA	RFMDAITPTG	TVITLLGLTP	EGHRVAHVHY	-199
	HSV1-Patton	YDILENVEHA	YGMRAAQFHA	RFMDAITPTG	TVITLLGLTP	EGHRVAHVHY	-199
	HSV1-DJL	YDILENVEHA	YGMRAAQFHA	RFMDAITPTG	TVITLLGLTP	EGHRVAHVHY	-199
	HSV1-F	YDILENVEHA	YGMRAAQFHA	RFMDAITPTG	TVITLLGLTP	EGHRVAHVHY	-199
30	HSV2-MS	GTRQFYFMNK	AEVDRHLQCR	APRDLCERLA	AALRESPGAS	FRGISADHFE	-250
	HSV2-186	GTRQFYFMNK	AEVDRHLQCR	APRDLCERLA	AALRESPGAS	FRGISADHFE	-250
	HSV1-Kos	GTRQFYFMNK	EEVDRHLQCR	APRDLCERLA	AALRESPGAS	FRGISADHFE	-249
	HSV1-Patton	GTRQFYFMNK	EEVDRHLQCR	APRDLCERLA	AALRESPGAS	FRGISADHFE	-249
35	HSV1-DJL	GTRQFYFMNK	EEVDRHLQCR	APRDLCERLA	AALRESPGAS	FRGISADHFE	-249
	HSV1-F	GTRQFYFMNK	EEVDRHLQCR	APRDLCERLA	AALRESPGAS	FRGISADHFE	-249
	HSV2-MS	AEVVERADVY	YYETRPTLYY	RVFVRSGRAL	AYLCDNFCPA	IRKYEGGVDA	-300
	HSV2-186	AEVVERADVY	YYETRPTLYY	RVFVRSGRAL	AYLCDNFCPA	IRKYEGGVDA	-300
40	HSV1-Kos	AEVVERTDVY	YYETRPALFY	RVYVRSGRVL	SYLCDNFCPA	IKKYEGGVDA	-299
	HSV1-Patton	AEVVERTDVY	YYETRPALFY	RVYVRSGRVL	SYLCDNFCPA	IKKYEGGVDA	-299
	HSV1-DJL	AEVVERTDVY	YYETRPALFY	RVYVRSGRVL	SYLCDNFCPA	IKKYEGGVDA	-299
	HSV1-F	AEVVERTDVY	YYETRPALFY	RVYVRSGRVL	SYLCDNFCPA	IKKYEGGVDA	-299
	HSV2-MS	TTRFILDNPG	FVTFGWYRLK	PGRGNAPAQP	RPPTAFTGTSS	DVEFNCTADN	-350
	HSV2-186	TTRFILDNPG	FVTFGWYRLK	PGRGNAPAQP	RPPTAFTGTSS	DVEFNCTADN	-350
	HSV1-Kos	TTRFILDNPG	FVTFGWYRLK	PGRNNNTLAQP	RAPMAFGTSS	DVEFNCTADN	-349
	HSV1-Patton	TTRFILDNPG	FVTFGWYRLK	PGRNNNTLAQP	RAPMAFGTSS	DVEFNCTADN	-349
45	HSV1-DJL	TTRFILDNPG	FVTFGWYRLK	PGRNNNTLAQP	RAPMAFGTSS	DVEFNCTADN	-349
	HSV1-F	TTRFILDNPG	FVTFGWYRLK	PGRNNNTLAQP	RAPMAFGTSS	DVEFNCTADN	-349
	HSV2-MS	LAVEGAMCDL	PAYKLMCFDI	ECKAGGEDEL	AFPVVAERPED	LVIQISCLLY	-400
	HSV2-186	LAVEGAMCDL	PAYKLMCFDI	ECKAGGEDEL	AFPVVAERPED	LVIQISCLLY	-400
	HSV1-Kos	LAIEGGMSDL	PAYKLMCFDI	ECKAGGEDEL	AFPVAGHPED	LVIQISCLLY	-399
55	HSV1-Patton	LAIEGGMSDL	PAYKLMCFDI	ECKAGGEDEL	AFPVAGHPED	LVIQISCLLY	-399
	HSV1-DJL	LAIEGGMSDL	PAYKLMCFDI	ECKAGGEDEL	AFPVAGHPED	LVIQISCLLY	-399
	HSV1-F	LAIEGGMSDL	PAYKLMCFDI	ECKAGGEDEL	AFPVAGHPED	LVIQISCLLY	-399
	HSV2-MS	DLSTTALEHI	LLFSLGSCDL	PESHLSLAS	RGLPAPVVLE	FDSEFEMLLA	-450
	HSV2-186	DLSTTALEHI	LLFSLGSCDL	PESHLSLAS	RGLPAPVVLE	FDSEFEMLLA	-450
	HSV1-Kos	DLSTTALEHV	LLFSLGSCDL	PESHNLNEAA	RGLPTPVVLE	FDSEFEMLLA	-449
	HSV1-Patton	DLSTTALEHV	LLFSLGSCDL	PESHNLNEAA	RGLPTPVVLE	FDSEFEMLLA	-449
60	HSV1-DJL	DLSTTALEHV	LLFSLGSCDL	PESHNLNEAA	RGLPTPVVLE	FDSEFEMLLA	-449
	HSV1-F	DLSTTALEHV	LLFSLGSCDL	PESHNLNEAA	RGLPTPVVLE	FDSEFEMLLA	-449

	HSV2-MS	FMTFVKOYGP	EFVTGYNIIIN	FDWPFLVTLKL	TEIYKVPLDG	YGRMNNGRGVF	-500
	HSV2-186	FMTFVKQYGP	EFVTGYNIIIN	FDWPFLVTLKL	TEIYKVPLDG	YGRMNNGRGVF	-500
	HSV-Kos	FMTLVKQYGP	EFVTGYNIIIN	FDWPFLLAKL	TDIYKVPLDG	YGRMNNGRGVF	-499
5	HSV1-Patton	FMTLVKQYGP	EFVTGYNIIIN	FDWPFLLAKL	TDIYKVPLDG	YGRMNNGRGVF	-499
	HSV1-DJL	FMTLVKQYGP	EFVTGYNIIIN	FDWPFLLAKL	TDIYKVPLDG	YGRMNNGRGVF	-499
	HSV1-F	FMTLVKQYGP	EFVTGYNIIIN	FDWPFLLAKL	TDIYKVPLDG	YGRMNNGRGVF	-499
	HSV2-MS	RVWDIGQSHF	QKRSKIKVNG	MVNIDMYGII	TDKVKLSSYK	LNAVAEAVLK	-550
10	HSV2-186	RVWDIGQSHF	QKRSKIKVNG	MVNIDMYGII	TDKVKLSSYK	LNAVAEAVLK	-550
	HSV-Kos	RVWDIGQSHF	QKRSKIKVNG	MVNIDMYGII	TDKIKLSSYK	LNAVAEAVLK	-549
	HSV1-Patton	RVWDIGQSHF	QKRSKIKVNG	MVNIDMYGII	TDKIKLSSYK	LNAVAEAVLK	-549
	HSV1-DJL	RVWDIGQSHF	QKRSKIKVNG	MVNIDMYGII	TDKIKLSSYK	LNAVAEAVLK	-549
	HSV1-F	RVWDIGQSHF	QKRSKIKVNG	MVNIDMYGII	TDKIKLSSYK	LNAVAEAVLK	-549
15	HSV2-MS	DKKKDLSYRD	IPAYYASGPA	QRGVIGEYCV	QDSLLVGQLF	FKFLPHLELS	-600
	HSV2-186	DKKKDLSYRD	IPAYYASGPA	QRGVIGEYCV	QDSLLVGQLF	FKFLPHLELS	-600
	HSV-Kos	DKKKDLSYRD	IPAYYAAGPA	QRGVIGEYCI	QDSLLVGQLF	FKFLPHLELS	-599
	HSV1-Patton	DKKKDLSYRD	IPAYYAAGPA	QRGVIGEYCI	QDSLLVGQLF	FKFLPHLELS	-599
20	HSV1-DJL	DKKKDLSYRD	IPTYYYAAGPA	QRGVIGEYCI	QDSLLVGQLF	FKFLPHLELS	-599
	HSV1-F	DKKKDLSYRD	IPAYYAAGPA	QRGVIGEYCI	QDSLLVGQLF	FKFLPHLELS	-599
	HSV2-MS	AVARLAGINI	TRTIYDGQQI	RVFTCLRLA	GQKGFFILPDT	QGRFRGLDKE	-650
25	HSV2-186	AVARLAGINI	TRTIYDGQQI	RVFTCLRLA	GQKGFFILPDT	QGRFRGLDKE	-650
	HSV-Kos	AVARLAGINI	TRTIYDGQQI	RVFTCLRLA	DQKGFFILPDT	QGRFRGAGGE	-649
	HSV1-Patton	AVARLAGINI	TRTIYDGQQI	RVFTCLRLA	DQKGFFILPDT	QGRFRGAGGE	-649
	HSV1-DJL	AVARLAGINI	TRTIYDGQQI	RVFTCLRLA	DQKGFFILPDT	QGRFRGAGGE	-649
	HSV1-F	AVARLAGINI	TRTIYDGQQI	RVFTCLRLA	DQKGFFILPDT	QGRFRGGGE	-649
30	HSV2-MS	APKRPAVPRG	EGERPGDGNG	DEDKDDDE..	DEDGDERE.E	VARETGGRHV	-697
	HSV2-186	APKRPAVPRG	EGERPGDGNG	DEDKDDDEDG	DEDGDERE.E	VARETGGRHV	-697
	HSV-Kos	APKRPAARE	DEERP.....	EEEGEDEDER	EEGGGEREPE	GARETAGRHV	-694
	HSV1-Patton	APKRPAARE	DEERP.....	EEEGEDEDER	EEGGGEREPE	GARETAGRHV	-694
	HSV1-DJL	APKRPAARE	DEERP.....	EEEGEDENER	EEGGGEREPE	GARETAGRHV	-694
35	HSV1-F	APKRPAARE	DEERP.....	EEEGEDEDER	EEGGGEREPE	GARETAGRHV	-694
	HSV2-MS	GYQGARVLDP	TSGFHVDPPV	VFDFASLYPS	IIQAHNLCS	TLSLRPEAVA	-747
	HSV2-186	GYQGARVLDP	TSGFHVDPPV	VFDFASLYPS	IIQAHNLCS	TLSLRPEAVA	-749
	HSV-Kos	GYQGARVLDP	TSGFHVPNPVV	VFDFASLYPS	IIQAHNLCS	TLSLRADAVA	-744
40	HSV1-Patton	GYQGARVLDP	TSGFHVPNPVV	VFDFASLYPS	IIQAHNLCS	TLSLRADAVA	-744
	HSV1-DJL	GYQGARVLDP	TSGFHVPNPVV	VFDFASLYPS	IIQAHNLCS	TLSLRADAVA	-744
	HSV1-F	GYQGARVLDP	TSGFHVPNPVV	VFDFASLYPS	IIQAHNLCS	TLSLRADAVA	-744
	HSV2-MS	HLEADRDL	IEVGGRRLLFF	VKAHVRESLL	SILLRDWLAM	RKQIRSRIPQ	-797
45	HSV2-186	HLEADRDL	IEVGGRRLLFF	VKAHVRESLL	SILLRDWLAM	RKQIRSRIPQ	-799
	HSV-Kos	HLEAGKDYL	IEVGGRRLLFF	VKAHVRESLL	SILLRDWLAM	RKQIRSRIPQ	-794
	HSV1-Patton	HLEAGKDYL	IEVGGRRLLFF	VKAHVRESLL	SILLRDWLAM	RKQIRSRIPQ	-794
	HSV1-DJL	HLEAGKDYL	IEVGGRRLLFF	VKAHVRESLL	SILLRDWLAM	RKQIRSRIPQ	-794
	HSV1-F	HLEAGKDYL	IEVGGRRLLFF	VKAHVRESLL	SILLRDWLAM	RKQIRSRIPQ	-794
50	HSV2-MS	STPEEAVLLD	KQQAAIKVVC	NSVYGFITGVQ	HGLLPCLHVA	ATVTTIGREM	-847
	HSV2-186	SPPEEAVLLD	KQQAAIKVVC	NSVYGFITGVQ	HGLLPCLHVA	ATVTTIGREM	-849
	HSV-Kos	SSPEEAVLLD	KQQAAIKVVC	NSVYGFITGVQ	HGLLPCLHVA	ATVTTIGREM	-844
	HSV1-Patton	SSPEEAVLLD	KQQAAIKVVC	NSVYGFITGVQ	HGLLPCLHVA	ATVTTIGREM	-844
55	HSV1-DJL	SSPEEAVLLD	KQQAAIKVVC	NSVYGFITGVQ	HGLLPCLHVA	ATVTTIGREM	-844
	HSV1-F	SSPEEAVLLD	KQQAAIKVVC	NSVYGFITGVQ	HGLLPCLHVA	ATVTTIGREM	-844
	HSV2-MS	LLATRAYVHA	RWAEEFDQLLA	DFPEAAGMRA	PGPYSMRIIY	GDTDSIFVLC	-897
	HSV2-186	LLATRAYVHA	RWAEEFDQLLA	DFPEAAGMRA	PGPYSMRIIY	GDTDSIFVLC	-899
60	HSV-Kos	LLATREYVHA	RWAEEFEQLLA	DFPEAADMRA	PGPYSMRIIY	GDTDSIFVLC	-894
	HSV1-Patton	LLATREYVHA	RWAEEFEQLLA	DFPEAADMRA	PGPYSMRIIY	GDTDSIFVLC	-894
	HSV1-DJL	LLATREYVHA	RWAEEFEQLLA	DFPEAADMRA	PGPYSMRIIY	GDTDSIFVLC	-894
	HSV1-F	LLATREYVHA	RWAEEFEQLLA	DFPEAADMRA	PGPYSMRIIY	GDTDSIFVLC	-894
65	HSV2-MS	RGLTAAGLVA	MGDKMASHIS	RALFLPPIKL	ECEKTFTKLL	LIAKKKYIGV	-947

	HSV2-186	RGLTAAGLVA MGDKMASHIS RALFLPPIKL ECEKTFTKLL LIAKKKYIGV -949
	HSV-Kos	RGLTAAGLTA MGDKMASHIS RALFLPPIKL ECEKTFTKLL LIAKKKYIGV -944
	HSV1-Patton	RGLTAAGLTA MGDKMASHIS RALFLPPIKL ECEKTFTKLL LIAKKKYIGV -944
	HSV1-DJL	RGLTAAGLTA VGDKMASHIS RALFLPPIKL ECEKTFTKLL LIAKKKYIGV -944
5	HSV1-F	RGLTAAGLTA VGDKMASHIS RALFLSPIKL ECEKTFTKLL LIAKKKYIGV -944
	HSV2-MS	I CGGKMLIKG VDLVRKNNCA FINRTSRALV DLLFYDDTVS GAAAALAERP -997
	HSV2-186	I CGGKMLIKG VDLVRKNNCA FINRTSRALV DLLFYDDTVS GAAAALAERP -999
	HSV-Kos	I YGGKMLIKG VDLVRKNNCA FINRTSRALV DLLFYDDTVS GAAAALAERP -994
10	HSV1-Patton	I YGGKMLIKG VDLVRKNNCA FINRTSRALV DLLFYDDTVS GAAAALAERP -994
	HSV1-DJL	I YGGKMLIKG VDLVRKNNCA FINRTSRALV DLLFYDDTVS GAAAALAERP -994
	HSV1-F	I YGGKMLIKG VDLVRKNNCA FINRTSRALV DLLFYDDTVS GAAAALAERP -994
	HSV2-MS	AEEWLARPLP EGLQAFGAVL VDAHRRITDP ERDIQDFVLT AELSRHPRAY -1047
15	HSV2-186	AEEWLARPLP EGLQAFGAVL VDAHRRITDP ERDIQDFVLT AELSRHPRAY -1049
	HSV-Kos	AEEWLARPLP EGLQAFGAVL VDAHRRITDP ERDIQDFVLT AELSRHPRAY -1044
	HSV1-Patton	AEEWLARPLP EGLQAFGAVL VDAHRRITDP ERDIQDFVLT AELSRHPRAY -1044
	HSV1-DJL	AEEWLARPLP EGLQAFGAVL VDAHRRITDP ERDIQDFVLT AELSRHPRAY -1044
	HSV1-F	AEEWLARPLP EGLQAFGAVL VDAHRRITDP ERDIQDFVLT AELSRHPRAY -1044
20	HSV2-MS	TNKR LAHLTV YYKLMARRAQ VPSIKDRIPY VIVAQTREVE ETVARLAALR -1097
	HSV2-186	TNKR LAHLTV YYKLMARRAQ VPSIKDRIPY VIVAQTREVE ETVARLAALR -1099
	HSV-Kos	TNKR LAHLTV YYKLMARRAQ VPSIKDRIPY VIVAQTREVE ETVARLAALR -1094
	HSV1-Patton	TNKR LAHLTV YYKLMARRAQ VPSIKDRIPY VIVAQTREVE ETVARLAALR -1094
25	HSV1-DJL	TNKR LAHLTV YYKLMARRAQ VPSIKDRIPY VIVAQTREVE ETVARLAALR -1094
	HSV1-F	TNKR LAHLTV YYKLMARRAQ VPSIKDRIPY VIVAQTREVE ETVARLAALR -1094
	HSV2-MS	ELDAAAPGDE PAPPAALPSP AKRPRETPSH ADPPGGASKP RKLLVSELAE -1147
	HSV2-186	ELDAAAPGDE PAPPAALPSP AKRPRETPSH ADPPGGASKP RKLLVSELAE -1149
30	HSV-Kos	ELDAAAPGDE PAPPAALPSP AKRPRETPSH ADPPGGASKP RKLLVSELAE -1144
	HSV1-Patton	ELDAAAPGDE PAPPAALPSP AKRPRETPSP ADPPGGASKP RKLLVSELAE -1144
	HSV1-DJL	ELDAAAPGDE PAPPAALPSP AKRPRETPSP ADPPGGASKP RKLLVSELAE -1144
	HSV1-F	ELDAAAPGDE PAPPAALPSP AKRPRETPSH ADPPCGASKP RKLLVSELAE -1144
	HSV2-MS	DPGYAIARGV PLNTDYYFSH LLGAACVTFK ALFGNNAKIT ESLLKRFIPE -1197
	HSV2-186	DPGYAIARGV PLNTDYYFSH LLGAACVTFK ALFGNNAKIT ESLLKRFIPE -1199
	HSV-Kos	DPAYAIAHGV ALNTDYYFSH LLGAACVTFK ALFGNNAKIT ESLLKRFIPE -1194
	HSV1-Patton	DPAYAIAHGV ALNTDYYFSH LLGAACVTFK ALFGNNAKIT ESLLKRFIPE -1194
	HSV1-DJL	DPAYAIAHGV ALNTDYYFSH LLGAACVTFK ALFGNNAKIT ESLLKRFIPE -1194
40	HSV1-F	DPAYAIAHGV ALNTDYYFSH LLGAACVTFK ALFGNNAKIT ESLLKRFIPE -1194
	HSV2-MS	TWHPPDDVAA RLRAAGFGPA GAGATAEETR RMLHRAFDTL A* -1238
	HSV2-186	TWHPPDDVAA RLRAAGFGPA GAGATAEETR RMLHRAFDTL A* -1240
	HSV-Kos	VWHPPDDVAA RLRAAGFGAV GAGATAEETR RMLHRAFDTL A* -1235
45	HSV1-Patton	VWHPPDDVTA RLRAAGFGAV GAGATAEETR RMLHRAFDTL A* -1235
	HSV1-DJL	VWHPPDDVAA RLRTAGFGAV GAGATAEETR RMLHRAFDTL A* -1235
	HSV1-F	VWHPPDDVAA RLRAAGFGAV GAGATAEETR RMLHRAFDTL A* -1235

*Amino acid alignment demonstrates difference in amino acid's sequences.

50 *The gaps “....” indicate missing amino acids relative to other strains.

*Wild HSV2-MS is listed as SEQ. ID NO 14.

*Wild HSV2-186 is listed as SEQ. ID NO 15.

*Wild HSV-Kos is listed as SEQ. ID NO 16.

*Wild HSV1-Patton is listed as SEQ. ID NO 17.

55 *Wild HSV1-DJL is listed as SEQ. ID NO 18.

*Wild HSV1-F is listed as SEQ. ID NO 19.

Figure 5 DNA and amino acid sequence list

SEQ. ID. NO. 1 DNA sequence of DNA polymerase gene for HSV2-MS-M1

5 1 ATGTTTGTG CCGCGGGCGG CCCGACTTCC CCCGGGGGGA AGTCGGCGGC
 51 TCGGGCGGCG TCTGGGTTT TTGCCCCCA CAACCCCCGG GGAGGCCACCC
 10 101 AGACGGCACC GCCGCCTTGC CGCCGGCAGA ACTTCTACAA CCCCCACCTC
 151 GCTCAGACCG GAACGCAGCC AAAGGCCCCC GGGCCGGCTC AGGCCATAC
 201 GTACTACAGC GAGTGCACG AATTTCGATT TATCGCCCCG CGTCGCTGG
 15 251 ACGAGGACGC CCCCAGGGAG CAGCGCACCG GGGTCCACGA CGGCCGCCTC
 301 CGGCGCGCCC CTAAGGTGTA CTGCGGGGG GACGAGCGCG ACGTCCTCCG
 20 351 CGTGGGCCCG GAGGGCTTCT GGCCGCGTCG CTTGCGCCTG TGGGGCGGTG
 401 CGGACCATGC CCCCAAGGGG TTCGACCCCA CCGTCACCGT CTTCCACGTG
 451 TACGACATCC TGGAGCACGT GGAACACCGC TACAGCATGC GCGCCGCCA
 25 501 GCTCCACGAG CGATTATGG ACGCCATCAC GCCCAGGGG ACCGTATCA
 551 CGCTTCTGGG TCTGACCCCC GAAGGCCATC GCGTCGCCGT TCACGTCTAC
 30 601 GGCACCGGGC AGTACTTTA CATGAACAAG GCGGAGGTGG ATCGGCACCT
 651 GCAGTGCCGT GCCCCCGCG ATCTCTGCGA GCGCCTGGCG GCGGCCCTGC
 701 GCGAGTCGCC GGGGGCGTCG TTCCGCGGA TCTCCGCGGA CCACCTCGAG
 35 751 GCGGAGGTGG TGGAGCGCGC CGACGTGTAC TATTACGAAA CGCGCCCGAC
 801 CCTGTACTAC CGCGTCTTCG TCGAAGCGG GCGCGCGCTG GCCTACCTGT
 40 851 GCGACAACCT TTGCCCCCG ATCAGGAAGT ACGAGGGGG CGTCGACGCC
 901 ACCACCCGGT TTATCCTGGA CAACCCGGGG TTTGTCACCT TCGGCTGGTA
 951 CCGCCTCAAG CCCGGCCGCG GGAACCGGCC GGCCCAACCG CGCCCCCGA
 45 1001 CGCGTTCGG AACCTCGAGC GACGTGAGT TTAAC TGAC GCGGACAAC
 1051 CTGGCCGTCG AGGGGGCCAT GTGTGACCTG CGGCCTACA AGCTCATGTG
 50 1101 CTTCGATATC GAATGCAAGG CCGGGGGGGA GGACGAGCTG GCCTTCCGG
 1151 TCGCGGAACG CCCGGAAGAC CTCGTACATCC AGATCTCCTG TCTGCTCTAC
 1201 GACCTGTCCA CCACCGCCCT CGAGCACATC CTCCTGTTT CGCTCGGATC
 55 1251 CTGCGACCTC CCCGAGTCCC ACCTCAGCGA TCTCGCCTCC AGGGGCCTGC

1301 CGGCCCGT CGTCCTGGAG TTTGACAGCG AATTCGAGAT GCTGCTGGCC
 1351 TTCATGACCT TCGTCAAGCA GTACGGCCCC GAGTCGTGA CCGGGTACAA
 5 1401 CATCATCAAC TTGACTGGC CCTTCGTCC GACCAAGCTG ACGGAGATCT
 1451 ACAAGGTCCC GCTCGACGGG TACGGGCGCA TGAACGGCCG GGGTGTGTC
 1501 CGCGTGTGGG ACATCGGCCA GAGCCACTT CAGAACGCGA GCAAGATCAA
 10 1551 GGTGAACGGG ATGGTGAACA TCGACATGTA CGGCATCATC ACCGACAAGG
 1601 TCAAACCTCTC CAGCTACAAG CTGAACGCCG TCGCCGAGGC CGTCTTGAAG
 15 1651 GACAAGAAGA AGGATCTGAG CTACCGCGAC ATCCCCGCCT ACTACGCCCTC
 1701 CGGGCCCGCG CAGCGCGGG TGATCGGCGA GTATTGTGTG CAGGACTCGC
 1751 TGCTGGTCGG GCAGCTGTT TCAGTTTGAC TTCAAGTTTC TGCCGCACCT GGAGCTTCC
 20 1801 GCCGTCGCGC GCCTGGCGGG CATCAACATC ACCCGCACCA TCTACGACGG
 1851 CCAGCAGATC CGCGTCTTCA CGTGCCTCCT GCGCCTGCG GGCCAGAAGG
 25 1901 GCTTCATCCT GCCGGACACC CAGGGGCGGT TTCGGGGCCT CGACAAGGAG
 1951 GCGCCAAGC GCCCGGCCGT GCCTGGGGGG GAAGGGGAGC GGCCGGGGGA
 2001 CGGGAACGGG GACGAGGATA AGGACGACGA CGAGGACGAG GACGGGGACG
 30 2051 AGCGCGAGGA GGTCGCGCGC GAGACCGGGG GCCGGCACGT TGGGTACCAG
 2101 GGGGCCGGG TCCTCGACCC CACCTCCGGG TTTCACGTCG ACCCCGTGGT
 35 2151 GGTGTTGAC TTTGCCAGCC TGTACCCAG CATCATCCAG GCCCACAAACC
 2201 TGTGCTTCAG TACGCTCTCC CTGCGGCCCG AGGCCGTCGC GCACCTGGAG
 2251 CGGGACCGGG ACTACCTGGA GATCGAGGTG GGGGGCCGAC GGCTGTTCTT
 40 2301 CGTGAAGGCC CACGTACGCG AGAGCCTGCT GAGCATCCTG CTGCGCGACT
 2351 GGCTGGCCAT GCGAAAGCAG ATCCGCTCGC GGATCCCCCA GAGCACCCCC
 45 2401 GAGGAGGCCG TCCTCCTCGA CAAGCAACAG GCCGCCATCA AGGTGGTGTG
 2451 CAACTCGGTG TACGGGTTCA CCGGGGCGCA GCACGGTCTT CTGCCCTGCC
 2501 TGCACGTGGC CGCCACCGTG ACGACCATCG GCCGCGAGAT GCTCCTCGCG
 50 2551 ACGCGCGCGT ACGTGCACGC GCGCTGGCG GAGTCGATC AGCTGCTGGC
 2601 CGACTTCCG GAGGCGGCCG GCATGCGCGC CCCCGGTCCG TACTCCATGC
 55 2651 GCATCATCTA CGGGGACACG GACTCCATT TCGTTTGTG CCGCGGCCTC
 2701 ACGGCCCGCG GCCTGGTGGC CATGGGCGAC AAGATGGCGA GCCACATCTC
 2751 GCGCGCGCTG TTCCCTCCCCC CGATCAAGCT CGAGTGCAGAA AAAACGTTCA

2801 CCAAGCTGCT GCTCATCGCC AAGAAAAAGT ACATCGGCGT CATCTGCAGG
2851 GGCAAGATGC TCATCAAGGG CGTGGATCTG GTGCGAAAA ACAACTGCGC
5 2901 GTTTATCAAC CGCACCTCCA GGGCCCTGGT CGACCTGCTG TTTTACGACG
2951 ATACCGTATC CGGAGCGGCC GCCGCGTTAG CCGAGCGCCC CGCAGAGGAG
10 3001 TGGCTGGCGC GACCCCTGCC CGAGGGACTG CAGGCCTTCG GGGCCGTCC
3051 CGTAGACGCC CATCGCGCA TCACCGACCC GGAGAGGGAC ATCCAGGACT
15 3101 TTGTCCCTCAC CGCCGAACCTG AGCAGACACC CGCGCGCGTA CACCAACAAG
3151 CGCCTGGCCC ACCTGACGGT GTATTACAAG CTCATGGCCC GCCGCGCGCA
3201 GGTCCCCGTCC ATCAAGGACC GGATCCCGTA CGTGATCGT GCCCAGACCC
20 3251 GCGAGGTTAGA GGAGACGGTC GCGCGGCTGG CCGCCCTCCG CGAGCTAGAC
3301 GCCGCCGCC CAGGGGACGA GCCCGCCCCC CCAGCGGCC TGCCCTCCCC
3351 GGCCAAGCGC CCCCGGGAGA CGCCGTCGCA TGCCGACCCC CCAGGGAGGCG
25 3401 CGTCCAAGGCC CCGCAAGCTG CTGGTGTCCG AGCTGGCGGA GGATCCCGGG
3451 TACGCCATCG CCCGGGGCGT TCCGCTAAC ACGGACTATT ACTTCTCGCA
30 3501 CCTGCTGGGG GCGGCCTGCG TGACGTTCAA GGCCCTGTT GGAAATAACG
3551 CCAAGATCAC CGAGAGTCTG TTAAAGAGGT TTATTCCGA GACGTGGCAC
3601 CCCCCGGACG ACGTGGCCGC GCGGCTCAGG GCCGCGGGGT TCGGGCCGGC
35 3651 GGGGGCCGGC GCTACGGCGG AGGAAACTCG TCGAATGTTG CATAGAGCCT
3701 TTGATACTCT AGCATGA

SEQ. ID. NO. 2 Amino acid sequence of DNA polymerase for HSV2-MS-M1

1 MFCAAGGPTS PGGKSAARAA SGFFAPHNPR GATQTAPPPC RRQNFYNPHL
 5 51 AQTGTQPKAP GPAQRHTYYS ECDEFRFLAP RSLDEDAPAE QRTGVHDGRL
 10 101 RRAPKVYCGG DERDVLRVGP EGFWPRLRL WGGADHAPKG FDPTVTVFHV
 15 151 YDILEHVEHA YSMRAAQLHE RFMDAITPAG TVITLLGLTP EGHRVAVHVY
 20 201 GTRQYFYMNK AEVDRHLQCR APRDLCERLA AALRESPGAS FRGISADHFE
 25 251 AEVVERADVY YYETRPTLYY RVFVRSGRAL AYLCDNFCPA IRKYEGGVDA
 30 301 TTRFIELDNPG FVTFGWYRLK PGRGNAPAQP RPPTAFTSS DVEFNCTADN
 35 351 LAVEGAMCDL PAYKLMCFDI ECKAGGEDEL AFPVAERPED LVIQISCLLY
 40 401 DLSTTALEHI LLFSLGSCDL PESHLSDLAS RGLPAPVVLE FDSEFEMLLA
 45 451 FMTFVKQYGP EFVTGYNIIN FDWPFWLTKL TEIYKVPLDG YGRMNGRGVF
 50 501 RVWDIGQSHF QKRSKIKVNG MVNIDMYGII TDKVKLSSYK LNAVAEAVLK
 55 551 DKKKDLDSYRD IPAYYASGPA QRGVIGEYCV QDSLLVGQLF FKFLPHLELS
 60 601 AVARLAGINI TRTIYDGQQI RVFTCLLRLA GQKGFLPDT QGRFRGLDKE
 65 651 APKRPAPVRG EGERPGDGNG DEDKDDDEDE DGDEREEVAR ETGGRHVGYQ
 70 701 GARVLDPTSG FHVDPPVVFD FASLYPSIIQ AHNLCFSTLS LRPEAVAHLE
 75 751 ADRDYLEIEV GGRRLLFFVKA HVRESLLSIL LRDWLAMRKQ IRSRIPQSTP
 80 801 EEAVALDKQQ AAIKVVCNSV YGFTGAQHGL LPCLHVAATV TTIGREMLLA
 85 851 TRAYVHARWA EFDQLLADFP EAAGMRAPGP YSMRIIYGDT DSIFVLCRGL
 90 901 TAAGLVAMGD KMASHISRAL FLPPIKLECE KTFTKLLLIA KKKYIGVICG
 95 951 GKMLIKGVDL VRKNNCAFIN RTSRALVDLL FYDDTVSGAA AALAERPAEE
 100 1001 WLARPLPEGL QAFGAVLVDA HRRITDPERD IQDFVLTAEL SRHPRAYTNK
 105 1051 RLAHLTVYYK LMARRAQVPS IKDRIPYVIV AQTREVEETV ARLAALRELD
 110 1101 AAAPGDEPAP PAALPSPAKR PRETPSHADP PGGASKPRKL LVSELAEDPG
 115 1151 YAIARGVPLN TDYYFSHLLG AACVTFKALF GNNAKITESL LKRFIPETWH
 120 1201 PPDDVAARLR AAGFGPAGAG ATAEEETRRML HRAFDTLA*

SEQ.ID.NO. 3 DNA sequence of DNA polymerase gene for HSV2-186-M1

1 ATGTTTGTG CCGCGGGCGG CCCGGCTTCC CCCGGGGGGA AGTCGGCGGC
 5 51 TCGGGCGGCG TCTGGGTTTT TTGCCCCCCA CAACCCCCGG GGAGGCCACCC
 10 101 AGACGGCACC GCCGCCTTGC CGCCGGCAGA ACTTCTACAA CCCCCCACCTC
 15 151 GCTCAGACCG GAACGCAGCC AAAGGCCCCC GGGCCGGCTC AGGCCATAC
 20 201 GTACTACAGC GAGTGCAGC AATTTCGATT TATCGCCCCG CGTCGCTGG
 25 251 ACGAGGACGC CCCCGCGGAG CAGCGCACCG GGGTCCACGA CGGCCGCCTC
 30 301 CGGCGCGCCC CTAAGGTGTA CTGCGGGGGG GACGAGCGCG ACGTCCTCCG
 35 351 CGTGGGCCCG GAGGGCTTCT GGCGCGTCTG CTTGCGCCTG TGGGGCGGTG
 40 401 CGGACCATGC CCCCGAGGGG TTCGACCCCA CCGTCACCGT CTTCCACGTG
 45 451 TACGACATCC TGGAGCACGT GGAACACGCG TACAGCATGC GCGCCGCCA
 50 501 GCTCCACGAG CGATTATGG ACGCCATCAC GCCCCCGGG ACCGTCATCA
 55 551 CGCTTCTGGG TCTGACCCCC GAAGGCCATC GCGTCGCCGT TCACGTCTAC
 60 601 GGCACCGGGC AGTACTTTA CATGAACAAG GCGGAGGTGG ATCGGCACCT
 65 651 GCAGTGCCGT GCCCGCGCG ATCTCTGCGA GCGCCTGGCG GCGGCCCTGC
 70 701 GCGAGTCGCC GGGGGCGTCG TTCCGCGGCA TCTCCGCGGA CCACTCGAG
 75 751 GCGGAGGTGG TGGAGCGCGC CGACGTGTAC TATTACGAAA CGCGCCGAC
 80 801 CCTGTACTAC CGCGTCTTCG TGCGAAGCGG GCGCGCGCTG GCCTACCTGT
 85 851 GCGACAACCTT TTGCCCCCGG ATCAGGAAGT ACGAGGGGGG CGTCGACGCC
 90 901 ACCACCCGGT TTATCCTGGA CAACCCGGGG TTTGTCACCT TCGGCTGGTA
 95 951 CCGCCTCAAG CCCGGCCCGG GGAACCGCGC GGCCCAACCG CGCCCCCGA
 100 1001 CGGCGTTCGG AACCTCGAGC GACGTGAGT TTAACTGCAC GGCGGACAAC
 105 1051 CTGGCCGTG AGGGGGCCAT GTGTGACCTG CCGGCCTACA AGCTCATGTG
 110 1101 CTTCGATATC GAATGCAAGG CCGGGGGGGG GGACGAGCTG GCCTTCCGG
 115 1151 TCGCGGAACG CCCGGAAGAC CTCGTCATCC AGATCTCCTG TCTGCTCTAC
 120 1201 GACCTGTCCA CCACCGCCCT CGAGCACATC CTCCGTGTTT CGCTCGGATC
 125 1251 CTGCGACCTC CCCGAGTCCC ACCTCAGCGA TCTCGCCTCC AGGGGCCTGC
 130 1301 CGGCCCCCGT CGTCCTGGAG TTTGACAGCG AATTGAGAT GCTGCTGGCC
 135 1351 TTCATGACCT TCGTCAAGCA GTACGGCCCC GAGTCGTGA CGGGGTACAA
 140 1401 CATCATCAAC TTCGACTGGC CCTTCGTCC GACCAAGCTG ACGGAGATCT

1451 ACAAGGTCCC GCTCGACGGG TACGGGCGCA TGAACGGCCG GGGTGTGTT
 1501 CGCGTGTGGG ACATCGGCCA GAGCCACTT CAGAACGCA GCAAGATCAA
 5 1551 GGTGAACGGG ATGGTGAACA TCGACATGTA CGGCATCATC ACCGACAAGG
 1601 TCAAACCTCTC CAGCTACAAG CTGAACGCCG TCGCCGAGGC CGTCTTGAAG
 10 1651 GACAAGAAGA AGGATCTGAG CTACCGCGAC ATCCCCGCCT ACTACGCCCTC
 1701 CGGGCCCGCG CAGCGCGGGG TGATCGCGA GTATTGTGTG CAGGACTCGC
 1751 TGCTGGTCGG GCAGCTGTT TCAGTTC TTCAAGTTTC TGCCGCACCT GGAGCTTCC
 15 1801 GCCGTCGCGC GCCTGGCGGG CATCAACATC ACCCGCACCA TCTACGACGG
 1851 CCAGCAGATC CGCGTCTTCA CGTGCCTCCT GCGCCTGCG GGCCAGAAGG
 20 1901 GCTTCATCCT GCCGGACACC CAGGGCGGT TTCGGGGCCT CGACAAGGAG
 1951 GCGCCAAGC GCCCGGCCGT GCCTCGGGGG GAAGGGGAGC GGCGGGGGGA
 2001 CGGGAACGGG GACGAGGATA AGGACGACGA CGAGGACGGG GACGAGGACG
 25 2051 GGGACGAGCG CGAGGAGGTC GCGCGCGAGA CCGGGGGCCG GCACGTTGGG
 2101 TACCAGGGGG CCCGGGTCTT CGACCCCACC TCCGGGTTTC ACGTCGACCC
 30 2151 CGTGGTGGTG TTTGACTTTG CCAGCCTGTA CCCCAGCATC ATCCAGGCC
 2201 ACAACCTGTG CTTCAGTACG CTCTCCCTGC GGCCCGAGGC CGTCGCGCAC
 2251 CTGGAGGCGG ACCGGGACTA CCTGGAGATC GAGGTGGGGG GCCGACGGCT
 35 2301 GTTCTTCGTG AAGGCCACG TACGCGAGAG CCTGCTGAGC ATCCTGCTGC
 2351 GCGACTGGCT GGCCATGCGA AAGCAGATCC GCTCGCGGAT CCCCCAGAGC
 40 2401 CCCCCCGAGG AGGCCGTCTT CCTCGACAAG CAACAGGCCG CCATCAAGGT
 2451 GGTGTGCAAC TCGGTGTACG GGTTCACCGG GGCGCAGCAC GGTCTTCTGC
 2501 CCTGCCTGCA CGTGGCCGCC ACCGTGACGA CCATCGGCCG CGAGATGCTC
 45 2551 CTCGCGACGC GCGCGTACGT GCACGCGCGC TGGGCGGAGT TCGATCAGCT
 2601 GCTGGCCGAC TTTCCGGAGG CGGCCGGCAT GCGCGCCCCC GGTCCGTACT
 50 2651 CCATGCGCAT CATCTACGGG GACACGGACT CCATTTCTGT TTTGTGCCGC
 2701 GGCCTCACGG CCGCGGGCCT GGTGGCCATG GGCGACAAGA TGGCGAGCCA
 2751 CATCTCGCGC GCGCTGTTCC TCCCCCGAT CAAGCTCGAG TGCGAAAAAA
 55 2801 CGTTCACCAA GCTGCTGCTC ATCGCCAAGA AAAAGTACAT CGGCGTCATC
 2851 TGCGGGGCA AGATGCTCAT CAAGGGCGTG GATCTGGTGC GCAAAAACAA

00221.US1

2901 CTGCGCGTTT ATCAACCGCA CCTCCAGGGC CCTGGTCGAC CTGCTGTTT
2951 ACGACGATAC CGTATCCGGA GCGGCCGCCG CGTTAGCCGA GCGCCCCGCA
5 3001 GAGGAGTGGC TGGCGCGACC CCTGCCGAG GGACTGCAGG CGTCGGGGC
3051 CGTCCTCGTA GACGCCATC GGCGCATCAC CGACCCGGAG AGGGACATCC
3101 AGGACTTTGT CCTCACCGCC GAACTGAGCA GACACCCGCG CGCGTACACC
10 3151 AACAAAGCGCC TGGCCCACCT GACGGTGTAT TACAAGCTCA TGGCCCGCCG
3201 CGCGCAGGTC CCGTCCATCA AGGACCGGAT CCCGTACGTG ATCGTGGCCC
15 3251 AGACCCGCGA GGTAGAGGAG ACGGTCGCGC GGCTGGCCGC CCTCCCGAG
3301 CTAGACGCGG CCGCCCCAGG GGACGAGCCC GCCCCCCCAG CGGCCCTGCC
3351 CTCCCCGGCC AAGCGCCCCC GGGAGACGCC GTCGCATGCC GACCCCCCGG
20 3401 GAGGCGCGTC CAAGCCCCGC AAGCTGCTGG TGTCCGAGCT GGCGGAGGAT
3451 CCCGGGTACG CCATCGCCCG GGGCGTTCCG CTCAACACGG ACTATTACTT
3501 CTCGCACCTG CTGGGGCGG CCTGCGTGAC GTTCAAGGCC CTGTTGGAA
3551 ATAACGCCAA GATCACCGAG AGTCTGTTAA AGAGGTTAT TCCCGAGACG
3601 TGGCACCCCC CGGACGACGT GGCGCGCGG CTCAGGGCCG CGGGGTTCGG
30 3651 GCCGGCGGGG GCCGGCGCTA CGGCGGAGGA AACCTCGTCGA ATGTTGCATA
3701 GAGCCTTGA TACTCTAGCA TGA

35

SEQ.ID.NO. 4 Amino acid sequence of DNA polymerase for HSV2-186-M1

5 1 MFCAAGGPAS PGGKSAARAA SGFFAPHNPR GATQTAPPPC RRQNFYNPHL
 51 51 AQTGTQPKAP GPAQRHTYYS ECDEFRFIAP RSLDEDAPAE QRTGVHDGRL
 101 101 RRAPKVYCGG DERDVLRVGP EGFWPRLRL WGGADHAPEG FDPTVTVFHV
 10 151 YDILEHVEHA YSMRAAQLHE RFMDAITPAG TVITLLGLTP EGHRVAVHVY
 201 201 GTRQYFYMNK AEVDRHLQCR APRDLCERLA AALRESPGAS FRGISADHFE
 15 251 AEVVERADVY YYETRPTLYY RVFVRSGRAL AYLCDNFCPA IRKYEGGVDA
 301 301 TTRFILDNPNG FVTFGWYRLK PGRGNAPAQP RPPTAFTSS DVEFNCTADN
 20 351 LAVEGAMCDL PAYKLMCFDI ECKAGGEDEL AFPVAERPED LVIQISCLLY
 401 401 DLSTTALEHI LLFSLGSCDL PESHLSDLAS RGLPAPVVLE FDSEFEMILLA
 451 451 FMTFKVKQYGP EFVTGYNIIN FDWPFVLTKL TEIYKVPLDG YGRMNGRGVF
 25 501 RVWDIGQSHF QKRSKIKVNG MVNIDMYGII TDKVKLSSYK LNAVAEAVLK
 551 551 DKKKDLSYRD IPAYYASGPA QRGVIGEYCV QDSLLVGQLF FKFLPHLELS
 601 601 AVARLAGINI TRTIYDGQQI RVFTCLLRLA GQKGFILPDT QGRFRGLDKE
 30 651 APKRPAPVRG EGERPGDGNG DEDKDDDEDG DEDGDEREV ARETGGRHVG
 701 701 YQGARVLDPT SGFHVDPVVV FDFASLYPSI IQAHNLCFST LSLRPEAVAH
 35 751 LEADRDXLEI EVGGRRLLFFV KAHVRESLLS ILLRDWLAMR KQIRSRIQS
 801 801 PPEEAVIDDK QQAAIKVVCN SVYGFTGAQH GLLPCLHVAA TVTTIGREML
 40 851 LATRAYVHAR WAEFDQLLAD FPEAAGMRAP GPYSMRIIYG DTDSIFVLCR
 901 901 GLTAAGLVAM GDKMASHISR ALFLPPIKLE CEKTFTKLLL IAKKKYIGVI
 951 951 CGGKMLIKGV DLVRKNNCAF INRTSRALVD LLFYDDTVSG AAAALAERPA
 45 1001 EEWLARPLPE GLQAFGAVLV DAHRRITDPE RDIQDFVLTA ELSRHPRAYT
 1051 1051 NKRLAHLTVY YKLMARRAQV PSIKDRIPYV IVAQTREVEE TVARLAALRE
 1101 1101 LDAAAPGDEP APPAALPSPA KRPRETPSHA DPPGGASKPR KLLVSELAED
 50 1151 PGYAIARGVP LNTDYYFSHL LGAACVTFKA LFGNNAKITE SLLKRFIPET
 1201 1201 WHPPDDVAAR LRAAGFGPAG AGATAEETRR MLHRAFDTLA *
 55

SEQ.ID.NO. 5 DNA sequence of DNA polymerase gene for HSV1-KOS-M1

1 ATGTTTCCG GTGGCGGCCGG CCCGCTGTCC CCCGGAGGAA AGTCGGCGGC
 5 51 CAGGGCGGCG TCCGGGTTTT TTGCGCCCGC CGGCCCTCGC GGAGCCGGCC
 10 101 GGGGACCCCC GCCTGTTTG AGGCAAAACT TTTACAACCC CTACCTCGCC
 151 CCAGTCGGGA CGAACAGAA GCCGACCGGG CCAACCCAGC GCCATACGTA
 10 201 CTATAGCGAA TGCGATGAAT TTCGATTAT CGCCCCGCGG GTGCTGGACG
 251 AGGATGCCCG CCCGGAGAAG CGCGCCGGGG TGACAGACGG TCACCTCAAG
 15 301 CGCGCCCCCA AGGTGTACTG CGGGGGGGAC GAGCGCGACG TCCTCCGCGT
 351 CGGGTCGGGC GGCTCTGGC CGCGCGCTC GCGCCTGTGG GGCGGCGTGG
 401 ACCACGCCCGG GGCGGGGTTTC AACCCCACCG TCACCGTCTT TCACGTGTAC
 20 451 GACATCCTGG AGAACGTGGA GCACGCGTAC GGCATGCGCG CGGCCAGTT
 501 CCACGCGCGG TTTATGGACG CCATCACACC GACGGGGACC GTCATCACGC
 25 551 TCCTGGGCCT GACTCCGGAA GGCCACCGGG TGGCCGTTCA CGTTTACGGC
 601 ACGCGGCAGT ACTTTACAT GAACAAGGAG GAGGTTGACA GGCACCTACA
 651 ATGCCGCGCC CCACGAGATC TCTGCGAGCG CATGCCGCG GCCCTGCGCG
 30 701 AGTCCCCGGG CGCGTCGTTTC CGCGGCATCT CCGCGGACCA CTTCGAGGCG
 751 GAGGTGGTGG AGCGCACCGA CGTGTACTAC TACGAGACGC GCCCCGCTCT
 35 801 GTTTACCGC GTCTACGTCC GAAGCGGGCG CGTGCTGTCG TACCTGTGCG
 851 ACAACTTCTG CCCGGCCATC AAGAAGTACG AGGGTGGGGT CGACGCCACC
 901 ACCCGGTTCA TCCTGGACAA CCCCGGGTTTC GTCACCTTCG GCTGGTACCG
 40 951 TCTCAAACCG GGCGGAACA ACACGCTAGC CCAGCGCGG GCCCCGATGG
 1001 CCTTCGGGAC ATCCAGCGAC GTCGAGTTA ACTGTACGGC GGACAACCTG
 45 1051 GCCATCGAGG GGGGCATGAG CGACCTACCG GCATACAAGC TCATGTGCTT
 1101 CGATATCGAA TGCAAGGCGG GGGGGGAGGA CGAGCTGGCC TTTCCGGTGG
 1151 CGGGGCACCC GGAGGACCTG GTTATTCAAGA TATCCTGTCT GCTCTACGAC
 50 1201 CTGTCCACCA CCGCCCTGGA GCACGTCCTC CTGTTTCGC TCGGTTCTG
 1251 CGACCTCCCC GAATCCCACC TGAACGAGCT GGCGGCCAGG GGCCTGCCA
 55 1301 CGCCCGTGGT TCTGGAATTG GACAGCGAAT TCGAGATGCT GTTGGCCTTC
 1351 ATGACCCCTTG TGAAACAGTA CGGCCCCGAG TTCGTGACCG GGTACAACAT
 1401 CATCAACTTC GACTGGCCCT TCTTGCTGGC CAAGTTGACG GACATTACA

1451 AGGTCCCCCT GGACGGGTAC GGCCGCATGA ACGGCCGGGG CGTGTTCGC
 1501 GTGTGGGACA TAGGCCAGAG CCACCTCCAG AAGCGCAGCA AGATAAAGGT
 5 1551 GAACGGCATG GTAACATCG ACATGTACGG GATCATAACC GACAAGATCA
 1601 AGCTCTCGAG CTACAAGCTC AACGCCGTGG CCGAAGCCGT CCTGAAGGAC
 10 1651 AAGAAGAAGG ACCTGAGCTA TCGCGACATC CCCGCCTACT ACGCCGCCGG
 1701 GCCCGCGCAA CGCGGGGTGA TCGCGAGTA CTGCATACAG GATTCCCTGC
 1751 TGGTGGGCCA GCTGTTTTT AAGTTTTGC CCCATCTGGA GCTCTCGGCC
 15 1801 GTCGCGCGCT TGGCGGGTAT TAACATCACC CGCACCATCT ACGACGGCCA
 1851 GCAGATCCGC GTCTTACGT GCCTGCTGCG CCTGGCCGAC CAGAAGGGCT
 20 1901 TTATTCTGCC GGACACCCAG GGGCGATTAA GGGCGCCGG GGGGGAGGCG
 1951 CCCAAGCGTC CGGCCGCAGC CCGGGAGGAC GAGGAGCGGC CAGAGGAGGA
 2001 GGGGGAGGAC GAGGACGAAC GCGAGGAGGG CGGGGGCGAG CGGGAGCCGG
 25 2051 AGGGCGCGCG GGAGACCGCC GGCCGGCACG TGGGGTACCA GGGGGCCAGG
 2101 GTCCTTGACC CCACTCCGG GTTTCACGTG AACCCCGTGG TGGTGTTCGA
 30 2151 CTTTGCCAGC CTGTACCCCA GCATCATCCA GGCCCACAAC CTGTGCTTCA
 2201 GCACGCTCTC CCTGAGGGCC GACGCAGTGG CGCACCTGGA GGCGGGCAAG
 2251 GACTACCTGG AGATCGAGGT GGGGGGGCGA CGGCTGTTCT TCGTCAAGGC
 35 2301 TCACGTGCGA GAGAGCCTCC TCAGCATCCT CCTGCGGGAC TGGCTCGCCA
 2351 TGCGAAAGCA GATCCGCTCG CGGATTCCCC AGAGCAGCCC CGAGGAGGCC
 40 2401 GTGCTCCTGG ACAAGCAGCA GGCCGCCATC AAGGTCGTGT GTAACCTCGGT
 2451 GTACGGGTTTC ACGGGAGCGC AGCACGGACT CCTGCCGTGC CTGCACGTTG
 2501 CCGCGACGGT GACGACCATC GGCGCGAGA TGCTGCTCGC GACCCGCGAG
 45 2551 TACGTCCACG CGCGCTGGC GGCCTTCGAA CAGCTCCTGG CCGATTCCCC
 2601 GGAGGGCGGCC GACATGCGCG CCCCCGGGCC CTATTCCATG CGCATCATCT
 50 2651 ACGGGGACAC GGACTCCATA TTTGTGCTGT GCCGCCGCCT CACGGCCGCC
 2701 GGGCTGACGG CCATGGCGA CAAGATGGCG AGCCACATCT CGCGCGCGCT
 2751 GTTTCTGCC CCCATCAAAC TCGAGTGCAG AAAGACGTT ACCAAGCTGC
 55 2801 TGCTGATCGC CAAGAAAAAG TACATCGCG TCATCTACGG GGGTAAGATG
 2851 CTCATCAAGG GCGTGGATCT GGTGCGAAA AACAACTGCG CGTTTATCAA

00221.US1

2901 CCGCACCTCC AGGGCCCTGG TCGACCTGCT GTTTACGAC GATACCGTAT
2951 CCGGAGCGGC CGCCGCGTTA GCCGAGCGCC CCGCAGAGGA GTGGCTGGCG
5 3001 CGACCCCTGC CCGAGGGACT GCAGGCGTTC GGGGCCGTCC TCGTAGACGC
3051 CCATCGGCGC ATCACCGACC CGGAGAGGGA CATCCAGGAC TTTGTCCCTCA
3101 CCGCCGAACt GAGCAGACAC CCGCGCGCGT ACACCAACAA GCGCCTGGCC
10 3151 CACCTGACGG TGTATTACAA GCTCATGGCC CGCCGCGCGC AGGTCCCGTC
3201 CATCAAGGAC CGGATCCC GT ACGTGATCGT GGCCCAGACC CGCGAGGTAG
15 3251 AGGAGACGGT CGCGCGGCTG GCCGCCCTCC GCGAGCTAGA CGCCGCCGCC
3301 CCAGGGGACG AGCCC GCCCC CCCC CGCGGCC CTGCCCTCCC CGGCCAAGCG
3351 CCCCCGGGAG ACGCCGTCGC ATGCCGACCC CCCGGGAGGC GCGTCCAAGC
20 3401 CCCGCAAGCT GCTGGTGTCC GAGCTGGCCG AGGATCCCGC ATACGCCATT
3451 GCCCACGGCG TCGCCCTGAA CACGGACTAT TACTTCTCCC ACCTGTTGGG
25 3501 GGC GGCGTGC GTGACATTCA AGGCCCTGTT TGGGAATAAC GCCAAGATCA
3551 CCGAGAGTCT GTTAAAAAGG TTTATTCCCG AAGTGTGGCA CCCCCCGGAC
3601 GACGTGGCCG CGCGGCTCCG GGCCGCAGGG TTCGGGGCGG TGGGTGCCGG
30 3651 CGCTACGGCG GAGGAAACTC GTCGAATGTT GCATAGAGCC TTTGATACTC
3701 TAGCATGA

35

SEQ.ID.NO. 6 Amino acid sequence of DNA polymerase for HSV1-KOS-M1

1 MFSGGGGPLS PGGKSAARAA SGFFAPAGPR GAGRGPPLC RQNFYNPYLA
 5 51 PVGTQQKPTG PTQRHTYYSE CDEFRIAPR VLDEDAPPEK RAGVHDGHLK
 101 RAPKVYCGGD ERDVLRVGSG GFWPRRSRLW GGVDHAPAGF NPTVTVFHVY
 10 151 DILENVEHAY GMRAAQFHAR FMDAITPTGT VITLLGLTPE GHRVAHVYG
 201 TRQYFYMNKE EVDRHLQCRA PRDLCERMAA ALRESPGASF RGISADHFEA
 15 251 EVVERTDVYY YETRPALFYR VYVRSGRVLS YLCDNFCPAI KKYEGGVDAT
 301 TRFILDNPFG VTFGWYRLKP GRNNNTLAQPR APMAFGTSSD VEFNCTADNL
 351 AIEGGMSDLP AYKLMCFDIE CKAGGEDELA FPVAGHPEDL VIQISCLLYD
 20 401 LSTTALEHVL LFSLGSCDLP ESHLNELAAR GLPTPVVLEF DSEFEMLLAF
 451 MTLVKQYQPE FVTGYNINF DWPFLLAKLT DIYKVPLDGY GRMNGRGVFR
 501 VWDIGQSHFQ KRSKIKVNGM VNIDMYGIIT DKIKLSSYKL NAVAEAVLKD
 25 551 KKKDLSYRDI PAYYAAGPAQ RGVIGEYCIQ DSLLVGQLFF KFLPHLELSA
 601 VARLAGINIT RTIYDGQQIR VFTCLLRLAD QKGFILPDTQ GRFRGAGGEA
 30 651 PKRPAAARED EERPEEEGED EDEREEGGGE REPEGARETA GRHVGYQGAR
 701 VLDPTSGFHV NPVVVFDFAS LYPSSIQAHN LCFSTLSLRA DAVAHLLEAGK
 751 DYLEIEVGGGR RLFFVKAHVR ESLLSILLRD WLAMRKQIRS RIPQSSPEEA
 35 801 VLLDKQQAAI KVVCNSVYGF TGAQHGLLPC LHVAATVTTI GREMLLATRE
 851 YVHARWAAFE QLLADFPPEAA DMRAPGPYSM RIYGDTDSI FVLCRGLTAA
 40 901 GLTAMGDKMA SHISRALFLP PIKLECEKTF TKLLLIAKKK YIGVITYGGKM
 951 LIKGVDLVRK NNCAFINRTS RALVDLLFYD DTVSGAAAAL AERPAEEWLA
 1001 RPLPEGLQAF GAVLVDAHRR ITDPERDIQD FVLTAELSRH PRAYTNKRLA
 45 1051 HLTVYYKLMA RRAQVPSIKD RIPPYVIVAQT REVEETVARL AALRELDAAA
 1101 PGDEPAPPAA LPSPAKRPRE TPSHADPPGG ASKPRKLLVS ELAEDPAYAI
 50 1151 AHGVALNTDY YFSHLLGAAC VTFKALFGNN AKITESLLKR FIPEVWHPPD
 1201 DVAARLRAAG FGAVGAGATA EETRRMLHRA FDTLA*

SEQ.ID.NO. 7 DNA sequence of HSV polymerase gene for HSV1-F-M1

1 ATGTTTCCG GTGGCGGCGG CCCGCTGTCC CCCGGAGGAA AGTCGGCGGC
 5 51 CAGGGCGGCG TCCGGGTTTT TTGCGCCCGC CGGCCCTCGC GGAGCCGGCC
 10 101 GGGGACCCCC GCCTTGCTTG AGGCAAAACT TTTACAACCC CTACCTCGCC
 15 151 CCAGTCGGGA CGCAACAGAA GCCGACCGGG CCAACCCAGC GCCATACGTA
 20 201 CTATAGCGAA TGCGATGAAT TTCGATTCA CGCCCCGCGG GTGCTGGACG
 25 251 AGGATGCCCG CCCGGAGAAG CGCGCCGGGG TGCACGACGG TCACCTCAAG
 30 301 CGCGCCCCCA AGGTGTACTG CGGGGGGAC GAGCGCGACG TCCTCCCGT
 35 351 CGGGTCGGGC GGCTTCTGGC CGCGGCGCTC GCGCCTGTGG GGCGCGTGG
 40 401 ACCACGCCCGG GGCGGGGTTTC AACCCCACCG TCACCGTCTT TCACGTGTAC
 45 451 GACATCCTGG AGAACGTGGA GCACGCGTAC GGCATGCGCG CGGCCCAGTT
 50 501 CCACGCGCGG TTTATGGACG CCATCACACC GACGGGGACC GTCATCACGC
 55 551 TCCTGGGCCT GACTCCGGAA GGCCACCGGG TGGCCGTTCA CGTTTACGGC
 60 601 ACGCGGCAGT ACTTTTACAT GAACAAGGAG GAGGTCGACA GGCACCTACA
 65 651 ATGCCGCGGCC CCACGAGATC TCTGCGAGCG CATGGCCGCG GCCCTGCGCG
 70 701 AGTCCCCGGG CGCGTCGTTTC CGCGGCATTT CCGCGGACCA CTTCGAGGCG
 75 751 GAGGTGGTGG AGCGCACCGA CGTGTACTAC TACGAGACGC GCCCCGCTCT
 80 801 GTTTTACCGC GTCTACGTCC GAAGCGGGCG CGTGTGTGCG TACCTGTGCG
 85 851 ACAACTTCTG CCCGGCCATC AAGAAGTACG AGGGTGGGGT CGACGCCACC
 90 901 ACCCGGTTCA TCCTGGACAA CCCCCGGGTTTC GTCACCTTCG GCTGGTACCG
 95 951 TCTCAAACCG GGCGGAACA ACACGCTAGC CCAGCCGCGG GCCCCGATGG
 100 1001 CCTTCGGGAC ATCCAGCGAC GTCGAGTTA ACTGTACGGC GGACAACCTG
 105 1051 GCCATCGAGG GGGGCATGAG CGACCTACCG GCATACAAGC TCATGTGCTT
 110 1101 CGATATCGAA TGCAAGGCGG GGGGGGAGGA CGAGCTGGCC TTTCCGGTGG
 115 1151 CGGGGCACCC GGAGGACCTG GTCATCCAGA TATCCTGTCT GCTCTACGAC
 120 1201 CTGTCCACCA CCGCCCTGGA GCACGTCTC CTGTTTTCGC TCGGTTCCCTG
 125 1251 CGACCTCCCC GAATCCCACC TGAACGAGCT GGCGGCCAGG GGCCTGCCCA
 130 1301 CGCCCGTGGT TCTGGAATTG GACAGCGAAT TCGAGATGCT GTTGGCCTTC
 135 1351 ATGACCCCTTG TGAAACAGTA CGGCCCCGAG TTCGTGACCG GGTACAACAT
 140 1401 CATCAACTTC GACTGGCCCT TCTTGCTGGC CAAGCTGACG GACATTACAG
 145 1451 AGGTCCCCCT GGACGGGTAC GGCGCATGA ACGGCCGGGG CGTGTTCGC
 150 1501 GTGTGGGACA TAGGCCAGAG CCACTTCCAG AAGCGCAGCA AGATAAAGGT

	1551	GAACGGCATG GTGAACATCG ACATGTACGG GATTATAACC GACAAGATCA
5	1601	AGCTCTCGAG CTACAAGCTC AACGCCGTGG CCGAAGCCGT CCTGAAGGAC
	1651	AAGAAGAAGG ACCTGAGCTA TCGCGACATC CCCGCCTACT ACGCCGCCGG
	1701	GCCCCGCGCAA CGCGGGGTGA TCGCGAGTA CTGCATACAG GATTCCCTGC
10	1751	TGGTGGGCCA GCTGTTTTT AAGTTTTGC CCCATCTGGA GCTCTGGCC
	1801	GTCGCGCGCT TGGCGGGTAT TAACATCACC CGCACCATCT ACGACGGCCA
15	1851	GCAGATCCGC GTCTTACGT GCCTGCTGCG CCTGGCCGAC CAGAAGGGCT
	1901	TTATTCTGCC GGACACCCAG GGGCGATTAA GGGGCGGCCGG GGGGGAGGCG
	1951	CCCAAGCGTC CGGCCGCAGC CCGGGAGGAC GAGGAGCGGC CAGAGGAGGA
20	2001	GGGGGAGGAC GAGGACGAAC GCGAGGAGGG CGGGGGCGAG CGGGAGCCGG
	2051	AGGGCGCGCG GGAGACCGCC GGCCGGCACG TGGGGTACCA GGGGGCCAGG
25	2101	GTCCTTGACC CCACTTCCGG GTTTCATGTG AACCCCGTGG TGGTGTTCGA
	2151	CTTTGCCAGC CTGTACCCCA GCATCATCCA GGCCCACAAC CTGTGCTTCA
	2201	GCACGCTCTC CCTGAGGGCC GACGCAGTGG CGCACCTGGA GGCGGGCAAG
30	2251	GACTACCTGG AGATCGAGGT GGGGGGGCGA CGGCTGTTCT TCGTCAAGGC
	2301	TCACGTGCGA GAGAGCCTCC TCAGCATCCT CCTGCGGGAC TGGCTGCCA
	2351	TGCGAAAGCA GATCCGCTCG CGGATTCCCC AGAGCAGCCC CGAGGAGGCC
35	2401	GTGCTCCTGG ACAAGCAGCA GGCCGCCATC AAGGTCGTGT GTAACTCGGT
	2451	TTACGGGTTTC ACGGGAGCGC AGCACGGACT CCTGCCGTGC CTGCACGTTG
40	2501	CCGCGACGGT GACGACCATC GGCCGCGAGA TGCTGCTCGC GACCCGCGAG
	2551	TACGTCCACG CGCGCTGGC GGCTTCGAA CAGCTCCTGG CCGATTCCC
45	2601	GGAGGCGGCC GACATGCGCG CCCCCGGGCC CTATTCCATG CGCATCATCT
	2651	ACGGGGACAC GGACTCCATC TTTGTGCTGT GCCGCGGCCT CACGGCCGCC
	2701	GGGCTGACGG CCGTGGCGA CAAGATGGCG AGCCACATCT CGCGCGCGCT
50	2751	GTTTCTGTCC CCCATCAAAC TCGAGTGCAGA AAAGACGTTT ACCAAGCTGC
	2801	TGCTGATCGC CAAGAAAAAG TACATCGCG TCATCTACGG GGGTAAGATG
	2851	CTCATCAAGG GCGTGGATCT GGTGCGAAA AACAACTGCG CGTTTATCAA
55	2901	CCGCACCTCC AGGGCCCTGG TCGACCTGCT GTTTTACGAC GATACCGTAT
	2951	CCGGAGCGGC CGCCGCGTTA GCGAGCGCC CCGCAGAGGA GTGGCTGGCG
60	3001	CGACCCCTGC CCGAGGGACT GCAGGCGTTT GGGGCCGTCC TCGTAGACGC
	3051	CCATCGCGC ATCACCGACC CGGAGAGGGA CATCCAGGAC TTTGTCCCTCA
65	3101	CCGCCGAACG GAGCAGACAC CCGCGCGCGT ACACCAACAA GCGCCTGGCC

3151 CACCTGACGG TGTATTACAA GCTCATGGCC CGCCGCGCGC AGGTCCCGTC
3201 CATCAAGGAC CGGATCCCGT ACGTGATCGT GGCCCAGACC CGCGAGGTAG
5 3251 AGGAGACGGT CGCGCGGCTG GCCGCCCTCC GCGAGCTCGA CGCCGCCGCC
3301 CCAGGGGACG AGCCCCCCCC CCCCGCGGCC CTGCCCTCCC CGGCCAAGCG
10 3351 CCCCCGGGAG ACGCCGTTGC ATGCCGACCC CCCGGGAGGC GCGTCCAAGC
3401 CCCGCAAGCT GCTGGTGTCC GAGCTGGCCG AGGATCCCGC ATACGCCATT
3451 GCCCACGGCG TCGCCCTGAA CACGGACTAT TACTTCTCCC ACCTGTTGGG
15 3501 GGC GGCGTGC GTGACATTCA AGGCCCTGTT TGGGAATAAC GCCAAGATCA
3551 CCGAGAGTCT GTTAAAAAGG TTTATTCCCG AAGTGTGGCA CCCCCCGGAC
3601 GACGTGGCCG CGCGGCTCCG GGCCGCAGGG TTCCGGGCGG TGGGTGCCGG
20 3651 CGCTACGGCG GAGGAAACTC GTCGAATGTT GCATAGAGCC TTTGATACTC
3701 TAGCATGA

SEQ.ID.NO. 8 Amino acid sequence of DNA polymerase for HSV1-F-M1

1 MFSGGGGPLS PGGKSAARAA SGFFAPAGPR GAGRGPPLC RQNFYNPYLA
 5 51 PVGTQQKPTG PTQRHTYYSE CDEFRFIAPR VLDEDAPPEK RAGVHDGHLK
 101 RAPKVYCGGD ERDVLRVGSG GFWPRRSRLW GGVDHAPAGF NPTVTVFHVY
 151 DILENVEHAY GMRAAQFHAR FMDAITPTGT VITLLGLTPE GHRAVAVHVG
 201 TRQYFYMNKE EVDRHLQCRA PRDLCEMAA ALRESPGASF RGISADHFEA
 251 EVVERTDVYY YETRPALFYR VYVRSGRVLS YLCDNFCPAI KKYEGGVDAT
 301 TRFILDNPFG VTFGWYRLKP GRNNNTLAQPR APMAFGTSSD VEFNCTADNL
 351 AIEGGMSDLP AYKLMLCFDIE CKAGGEDELA FPVAGHPEDL VIQISCLLYD
 401 LSTTALEHVL LFSLGSCDLP ESHLNELAAR GLPTPVVLEF DSEFEMLLAF
 451 MTLVKQYQPE FVTGYNINF DWPFLLAKLT DIYKVPLDGY GRMNGRGVFR
 501 VWDIGQSHFQ KRSKIKVNGM VNIDMYGIIT DKIKLSSYKL NAVAEAVLKD
 551 KKKDLSYRDI PAYYAAGPAQ RGVIGEYCIQ DSLLVGQLFF KFLPHLELSA
 601 VARLAGINIT RTIYDGQQIR VFTCLLRLAD QKGFILPDTQ GRFRGGGGEA
 651 PKRPAAARED EERPEEEGED EDEREEGGGE REPEGARETA GRHVGYQGAR
 701 VLDPTSGFHV NPVVVFDFAS LYPSSIQAHN LCFSTLSLRA DAVAHLEAGK
 751 DYLEDIEVGGRLFFFKAHVR ESLLSILLRD WLAMRKQIRS RIPQSSPEEA
 801 VLLDKQQAAI KVVCNSVYGF TGAQHGLLPC LHVAATVTTI GREMLLATRE
 851 YVHARWAAFE QLLADFPEAA DMRAPGPYSM RITYGDTDSI FVLCRGLTAA
 901 GLTAVGDKMA SHISRALFLS PIKLECEKTF TKLLLIAKKK YIGVIYGGKM
 951 LIKGVDLVRK NNCAFINRTS RALVDLLFYD DTVSGAAAAL AERPAEEWLA
 1001 RPLPEGLQAF GAVLVDAHRR ITDPERDIQD FVLTAELSRH PRAYTNKRLA
 1051 HLTVYYKLMA RRAQVPSIKD RIPYVIVAQT REVEETVARL AALRELDAAA
 1101 PGDEPAPPAA LPSPAKRPRE TPLHADPPGG ASKPRKLLVS ELAEDPAYAI
 1151 AHGVALNTDY YFSHLLGAAC VTFKALFGNN AKITESLLKR FIPEVWHPPD
 1201 DVAARLRAAG FGAVGAGATA EETRRMLHRA FDTLA*

SEQ.ID.NO. 9 DNA sequence of HSV polymerase gene for HSV1-DJL-M1

1 ATGTTTCCG GTGGCGGCCGG CCCGCTGTCC CCCGGAGGAA AGTCGGCGGC
 5 51 CAGGGCGGCG TCCGGGTTTT TTGCGCCCGC CGGCCCTCGC GGAGCCGGCC
 10 101 GGGGACCCCC GCCTGTGG AGGCAAAACT TTTACAACCC CTACCTCGCC
 151 CCAGTCGGGA CGAACAGAA GCCGACCGGG CCAACCCAGC GCCATACGTA
 10 201 CTATAGCGAA TGCGATGAAT TTCGATTAT CGCCCCGCGG GTGCTGGACG
 251 AGGATGCCCG CCCGGAGAAG CGCGCCGGGG TGCACGACGG TCACCTCAAG
 15 301 CGCGCCCCCA AGGTGTACTG CGGGGGGGAC GAGCGCGACG TCCTCCGCGT
 351 CGGGTCGGGC GGCTCTGGC CGCGCGCTC GGCCTGTGG GGCGGCGTGG
 401 ACCACGCCCG GGCGGGGTTTC AACCCCCACCG TCACCGTCTT TCACGTGTAT
 20 451 GACATCCTGG AGAACGTGGA GCACGCGTAC GGCATGCGCG CGGCCAGTT
 501 CCACGCGCGG TTTATGGACG CCATCACACC GACGGGGACC GTCATCACGC
 25 551 TCCTGGGCCT GACTCCGGAA GGCCACCGGG TGGCCGTTCA CGTTACGGC
 601 ACGCGGCAGT ACTTTACAT GAACAAGGAG GAGGTTGACA GGCACCTACA
 651 ATGCCCGGCC CCACGAGATC TCTGCGAGCG CATGCCGCG GCCCTGCGCG
 30 701 AGTCCCCGGG CGCGTCGTTT CGCGGCATCT CCGCGGACCA CTTCGAGGCG
 751 GAGGTGGTGG AGCGCACCGA CGTGTACTAC TACGAGACGC GCCCCGCTCT
 35 801 GTTTACCGC GTCTACGTCC GAAGCGGGCG CGTGCTGTCG TACCTGTGCG
 851 ACAACTTCTG CCCGGCCATC AAGAAGTACG AGGGTGGGGT CGACGCCACC
 901 ACCCGGTTCA TCCTGGACAA CCCGGGGTTTC GTCACCTTCG GCTGGTACCG
 40 951 TCTCAAACCG GGCGGAACA ACACGCTAGC CCAGCGCGG GCCCGATGG
 1001 CCTTCGGGAC ATCCAGCGAT GTCGAGTTA ACTGTACGGC GGACAACCTG
 45 1051 GCCATCGAGG GGGGCATGAG CGACCTACCG GCATACAAGC TCATGTGCTT
 1101 CGATATCGAA TGCAAGGCGG GGGGGGAGGA CGAGCTGGCC TTTCCGGTGG
 1151 CGGGGCACCC GGAGGACCTG GTCATCCAGA TATCCTGTCT GCTCTACGAC
 50 1201 CTGTCCACCA CCGCCCTGGA GCACGTCCCTC CTGTTTCGC TCGGTTCTG
 1251 CGACCTCCCC GAATCCCACC TGAACGAGCT GGCGGCCAGG GGCGTGCCTA
 55 1301 CGCCCGTGGT TCTGGAATTG GACAGCGAAT TCGAGATGCT GTTGGCCTTC
 1351 ATGACCCCTTG TGAAACAGTA CGGCCCCGAG TTCGTGACCG GGTACAACAT

1401 AATCAACTTC GACTGGCCCT TCTTGCTGGC CAAGCTGACG GACATTACA
 1451 AGGTCCCCCT GGACGGGTAC GGCGCATGA ACGGCCGGGG CGTGTTCGC
 5 1501 GTGTGGGACA TAGGCCAGAG CCACTTCCAG AAGCGCAGCA AGATAAAGGT
 1551 GAACGGCATG GTGAACATCG ACATGTACGG GATTATAACC GACAAGATCA
 1601 AGCTCTCGAG CTACAAGCTC AACGCCGTGG CGAAGCCGT CCTGAAGGAC
 10 1651 AAGAAGAAGG ACCTGAGCTA TCGCGACATC CCCACCTACT ACGCCGCCGG
 1701 GCCCGCGCAA CGCGGGGTGA TCGCGAGTA CTGCATACAG GATTCCCTGC
 15 1751 TGGTGGGCCA GCTGTTTTT AAGTTTTGC CCCATCTGGA GCTCTGGCC
 1801 GTCGCGCGCT TGGCGGGTAT TAACATCACC CGCACCATCT ACGACGGCCA
 1851 GCAGATCCGC GTCTTACGT GCCTGCTGGC CCTGGCCGAC CAGAAGGGCT
 20 1901 TTATTCTGCC GGACACCCAG GGGCGATTAA GGGGCGCCGG GGGGGAGGCG
 1951 CCCAAGCGTC CGGCCGCAGC CCAGGAGGAC GAGGAGCGGC CAGAGGAGGA
 25 2001 GGGGGAGGAC GAGAACGAAC GCGAGGAGGG CGGGGGCGAG CGGGAGCCGG
 2051 AGGGCGCGCG GGAGACCGCC GGCCGGCACG TGGGGTACCA GGGGGCCAGG
 2101 GTCCTTGACC CCACTTCCGG GTTTCACGTG AACCCCGTGG TGGTGTTCGA
 30 2151 CTTTGCCAGC CTGTACCCCA GCATCATCCA GGCCCACAAC CTGTGCTTCA
 2201 GCACGCTCTC CCTGAGGGCC GACGCAGTGG CGCACCTGGA GGCGGGCAAG
 35 2251 GACTACCTGG AGATCGAGGT GGGGGGGCGA CGGCTGTTCT TCGTCAAGGC
 2301 TCACGTGCGA GAGAGCCTCC TCAGCATCCT CCTGCGGGAC TGGCTCGCCA
 2351 TGCAGAAAGCA GATCCGCTCG CGGATTCCCC AGAGCAGCCC CGAGGAGGCC
 40 2401 GTGCTCCTGG ACAAGCAGCA GGCGGCCATC AAGGTCGTGT GTAACCTCGGT
 2451 TTACGGGTTACGGAGCGC AGCACGGACT CCTGCCGTGC CTGCACGTTG
 45 2501 CCGCGACGGT GACGACCATC GGCGCGAGA TGCTGCTCGC GACCCCGAG
 2551 TACGTCCACG CGCGCTGGC GGCTTCGAA CAGCTCCTGG CCGATTCCCC
 2601 GGAGGCAGGCC GACATGCGCG CCCCCGGGCC CTATTCCATG CGCATCATCT
 50 2651 ACGGGGACAC GGACTCCATA TTTGTGCTGT GCCGCGGCCCT CACGGCCGCC
 2701 GGGCTGACGG CCGTGGCGA CAAGATGGCG AGCCACATCT CGCGCGCGCT
 55 2751 GTTCTGCC CCCATCAAAC TCGAGTGCAG AAAGACGTTCA ACCAAGCTGC
 2801 TGCTGATCGC CAAGAAAAAG TACATCGCGC TCATCTACGG GGGTAAGATG
 2851 CTCATCAAGG GCGTGGATCT GGTGCGAAA AACAACTGCG CGTTTATCAA

2901 CCGCACCTCC AGGGCCCTGG TCGACCTGCT GTTTACGAC GATACCGTAT
2951 CCGGAGCGGC CGCCGCGTTA GCCGAGCGCC CCGCAGAGGA GTGGCTGGCG
5 3001 CGACCCCTGC CCGAGGGACT GCAGGCGTTC GGGGCCGTCC TCGTAGACGC
3051 CCATCGGCGC ATCACCGACC CGGAGAGGGA CATCCAGGAC TTTGTTCTCA
10 3101 CCGCCGAACt GAGCAGACAC CCGCGCGCGT ACACCAACAA GCGCCTGGCC
3151 CACCTGACGG TGTATTACAA GCTCATGGCC CGCCGCGCGC AGGTCCC GT
15 3201 CATCAAGGAC CGGATCCC GT ACGTGATCGT GGCCCAGACC CGCGAGGTAG
3251 AGGAGACGGT CGCGCGGCTG GCCGCCCTCC GCGAGCTAGA CGCCGCCG
3301 CCAGGGGACG AGCCGCC CCCCCGCGGCC CTGCCCTCCC CGGCCAAGCG
20 3351 CCCCCGGGAG ACGCCGTCGC CTGCCGACCC CCCGGGAGGC GCGTCCAAGC
3401 CCCGCAAGCT GCTGGTGTCC GAGCTGGCCG AGGATCCC GC ATACGCCATT
3451 GCCCACGGCG TCGCCCTGAA CACGGACTAT TACTTCTCCC ACCTGTTGGG
25 3501 GGCGCGTGC GTGACATTCA AGGCCCTGTT TGGGAATAAC GCCAAGATCA
3551 CCGAGAGTCT GTTAAAAAGG TTTATTCCCG AAGTGTGGCA CCCCCCGGAC
30 3601 GACGTGGCCG CGCGGCTCCG GACCGCAGGG TTCGGGGCGG TGGGTGCCGG
3651 CGCTACGGCG GAGGAAACTC GTCGAATGTT GCATAGAGCC TTTGATACTC
3701 TAGCATGA
35

SEQ.ID.NO. 10 Amino acid sequence of DNA polymerase for HSV1-DJL-M1

1 MFSGGGGPLS PGGKSAARAA SGFFAPAGPR GAGRGPPL RQNFYNPYLA
 5 51 PVGTQQKPTG PTQRHTYYSE CDEFRFIAPR VLDEDAPPEK RAGVHDGHLK
 101 RAPKVYCGGD ERDVLRVGSG GFWPRRSRLW GGVDHAPAGF NPTVTVFHVY
 151 DILENVEHAY GMRAAQFHAR FMDAITPTGT VITLLGLTPE GHRVAVHVYG
 10 201 TRQYFYMNKE EVDRHLQCRA PRDLCERMAA ALRESPGASF RGISADHFEA
 251 EVVERTDVYY YETRPALFYR VYVRSGRVLS YLCDNFCPAI KKYEGGVDAT
 15 301 TRFILDNPFGF VTFGWYRLKP GRNNNTLAQPR APMAFGTSSD VEFNCTADNL
 351 AIEGGMSDLP AYKLMCFDIE CKAGGEDELA FPVAGHPEDL VIQISCLLYD
 401 LSTTALEHVL LFSLGSCDLP ESHLNELAAR GLPTPVVLEF DSEFEMLLAF
 20 451 MTLVKQYGPE FVTGYNINF DWPFLLAKLT DIYKVPLDGY GRMNGRGVFR
 501 VWDIGQSHFQ KRSKIKVNGM VNIDMYGIIT DKIKLSSYKL NAVAЕAVLKD
 25 551 KKKDLSYRDI PTYYAAGPAQ RGVIGEYCIQ DSLLVGQLFF KFLPHLELSA
 601 VARLAGINIT RTIYDGQQIR VFTCLLRLAD QKGFILPDTQ GRFRGAGGEA
 651 PKRPAAARED EERPEEEGED ENEREEGGGE REPEGARETA GRHVGYQGAR
 30 701 VLDPTSGFHV NPVVVFDFAS LYPSSIQAHN LCFSTLSLRA DAVAHEAGK
 751 DYLEDVGGR RLFFVKAHVR ESLLSILLRD WLAMRKQIRS RIPQSSPEEA
 35 801 VLLDKQQAAI KVVCNSVYGF TGAQHGLLPC LHVAATVTTI GREMLLATRE
 851 YVHARWAAFE QLLADFPEAA DMRAPGPYSM RIYGDTSI FVLCRGLTAA
 901 GLTAVGDKMA SHISRALFLP PIKLECEKTF TKLLLIAKKK YIGVITYGGKM
 40 951 LIKGVDLVRK NNCAFINRTS RALVDLLFYD DTVSGAAAAL AERPAEEWLA
 1001 RPLPEGLQAF GAVLVDAHRR ITDPERDIQD FVLTAELSRH PRAYTNKRLA
 45 1051 HLTVYYKLMA RRAQVPSIKD RIPYVIVAQT REVEETVARL AALRELDAAA
 1101 PGDEPAPPAA LPSPAKRPRE TPSPADPPGG ASKPRKLLVS ELAEDPAYAI
 1151 AHGVALNTDY YFSHLLGAAC VTFKALFGNN AKITESLLKR FIPEVWHPPD
 50 1201 DVAARLRTAG FGAVGAGATA EETRRMLHRA FDTLA*

SEQ.ID.NO. 11 DNA sequence of DNA polymerase gene for HMCV-AD169-M1

1 ATGTTTTCA ACCCGTATCT GAGCGGCCGG GTGACCGGCG GTGCGGTCGC
 5 51 GGGTGGCCGG CGTCAGCGTT CGCAGCCGG CTCCGCGCAG GGCTCGGGCA
 10 101 AGCGGCCGCC ACAGAAACAG TTTTGAGA TCGTCCGCG AGGTGTCATG
 151 TTCGACGGTC AGACGGGTT GATCAAGCAT AAGACGGGAC GGCTGCCTCT
 10 201 CATGTTCTAT CGAGAGATTA AACATTGTT GAGTCATGAC ATGGTTTGGC
 251 CGTGTCCCTTG GCGCGAGACC CTGGTGGTC GCGTGGTGGG ACCTATTCGT
 15 301 TTTCACACCT ACGATCAGAC GGACGCCGTG CTCTCTTCG ACTCGCCGA
 351 AAACGTGTCG CCGCGCTATC GTCAGCATCT GGTGCCCTCG GGGAACGTGT
 401 TGCGTTCTT CGGGGCCACA GAACACGGCT ACAGTATCTG CGTCAACGTT
 20 451 TTCGGGCAGC GCAGCTACTT TTACTGTGAG TACAGCGACA CCGATAAGGCT
 501 GCGTGAGGTC ATTGCCAGCG TGGCGAAGT AGTGCCCGAA CCGCGGACGC
 25 551 CATA CGCCGT GTCTGTCACG CCGGCCACCA AGACCTCCAT CTATGGGTAC
 601 GGGACCGCAGC CCGTGCCCCGA TTTGCAGTGT GTGTCTATCA GCAACTGGAC
 651 CATGCCAGA AAAATCGGCG AGTATCTGCT GGAGCAGGGT TTTCCCGTGT
 30 701 ACGAGGTCCG TGTGGATCCG CTGACCGT TGGTCATCGA TCGGCGGATC
 751 ACCACGTTCG GCTGGTGCTC CGTGAATCGT TACGACTGGC GGCAGCAGGG
 35 801 TCGCGCGTCG ACTTGTGATA TCGAGGTAGA CTGCGATGTC TCTGACCTGG
 851 TGGCTGTGCC CGACGACAGC TCGTGGCCGC GCTATCGATG CCTGTCCCTC
 901 GATATCGAGT GCATGAGCGG CGAGGGTGGT TTTCCCTGCG CCGAGAACGTC
 40 951 CGATGACATT GTCATTCAA TCTCGTGCCT GTGCTACGAG ACGGGGGGAA
 1001 ACACCGCCGT GGATCAGGGG ATCCCAAACG GGAACGATGG TCGGGGCTGC
 45 1051 ACTTCGGAGG GTGTGATCTT TGGGCACTCG GGTCTTCATC TCTTACGAT
 1101 CGGCACCTGC GGGCAGGTGG GCCCAGACGT GGACGTCTAC GAGTTCCCTT
 1151 CCGAATACGA GCTGCTGCTG GGCTTATGC TTTCTTCA ACGGTACGCG
 50 1201 CGGGCCTTG TGACCGGTTA CAACATCAAC TCTTTGACT TGAAGTACAT
 1251 CCTCACGCGT CTCGAGTACC TGTATAAGGT GGACTCGCAG CGCTTCTGCA
 55 1301 AGTTGCCTAC GGCGCAGGGC GGCGTTCT TTTACACAG CCCCGCCGTG
 1351 GGTTTAAGC GGCAGTACGC CGCCGCTTT CCCTCGGCTT CTCACAACAA

1401 TCCGGCCAGC ACGGCCGCCA CCAAGGTGTA TATTGCGGGT TCGGTGGTTA
 1451 TCGACATGTA CCCTGTATGC ATGGCCAAGA CTAACTCGCC CAACTATAAG
 5 1501 CTCAACACTA TGGCCGAGCT TTACCTGCGG CAACGCAAGG ATGACCTGTC
 1551 TTACAAGGAC ATCCCGCGTT GTTTCGTGGC TAATGCCAG GGC CGCGCCC
 1601 AGGTAGGCCG TTACTGTCTG CAGGACGCCG TATTGGTGCG CGATCTGTTC
 10 1651 AACACCATTA ATTTCACTA CGAGGCCGGG GCCATCGCGC GGCTGGCTAA
 1701 AATTCCGTTG CGGCGTGTCA TCTTGACGG ACAGCAGATC CGTATCTACA
 15 1751 CCTCGCTGCT GGACGAGTGC GCCTGCCCGC ATTTATCCT GCCCAACCAC
 1801 TACAGCAAAG GTACGACGGT GCCCGAAACG AATAGCGTTG CTGTGTCACC
 1851 TAACGCTGCT ATCATCTCTA CCGCCGCTGT GCCCGGCGAC GCGGGTTCTG
 20 1901 TGGCGGCTAT GTTCAGATG TCGCCGCCCT TGCAATCTGC GCCGTCCAGT
 1951 CAGGACGGCG TTTCACCCGG CTCCGGCAGT AACAGTAGTA GCAGCGTCGG
 25 2001 CGTTTCAGC GTCGGCTCCG GCAGTAGTGG CGCGTCCGG GTTTCCAACG
 2051 ACAATCACGG CGCCGGCGGT ACTGCGGCCGG TTTCGTACCA GGGCGCCACG
 2101 GTGTTTGAGC CCGAGGTGGG TTACTACAAC GACCCCGTGG CCGTGGTCA
 30 2151 CTTTGCCAGC CTCTACCCCT CCATCATCAT GGCCCACAAC CTCTGCTACT
 2201 CCACCTGCT GGTGCCGGGT GGCGAGTACC CTGTGGACCC CGCGACGTA
 2251 TACAGCGTCA CGCTAGAGAA CGCGTGACC CACCGCTTG TCGTGCTTC
 2301 GGTGCGCGTC TCGGTGCTCT CGGAACGTGCT CAACAAGTGG GTTTGCAGC
 2351 GGCGTGCCTG GCGCGAATGC ATGCGCGAGT GTCAAGACCC TGTGCCCGT
 40 2401 ATGCTGCTCG ACAAGGAACA GATGGCGCTC AAAGTAACGT GCAACGCTTT
 2451 CTACGGTTTT ACCGGCGCGC TGAACGGTAT GATGCCGTGT CTGCCCATCG
 45 2501 CCGCCAGCAT CACGCGCATC GGTCGCGACA TGCTAGAGCG CACGGCGCGG
 2551 TTCATCAAAG ACAACTTTTC AGAGCCGTGT TTTTGACAA ATTGTTTAA
 2601 TCAGGAAGAC TATGTAGTGG GAACGCGGGA GGGGGATTG GAGGAGAGCA
 50 2651 GCGCGTTACC GGAGGGGCTC GAAACATCGT CAGGGGGCTC GAACGAACGG
 2701 CGGGTGGAGG CGCGGGTCAT CTACGGGGAC ACGGACAGCG TGTTGTCCG
 2751 CTTTCGTGGC CTGACGCCGC AGGCTCTGGT GGCGCGTGGG CCCAGCCTGG
 2801 CGCACTACGT GACGGCCTGT CTTTTGTGG AGCCCGTCAA GCTGGAGTTT
 2851 GAAAAGGTCT TCGTCTCTCT TATGATGATC TGCAAGAAC GTTACATCGG

2901 CAAAGTGGAG GGCGCCTCGG GTCTGAGCAT GAAGGGCGTG GATCTGGTGC
2951 GCAAGACGGC CTGCGAGTTC GTCAAGGGCG TCACCGTGA CGTCCTCTCG
5
3001 CTGCTCTTG AGGATCGCGA GGTCTCGGAA GCAGCCGTGC GCCTGTCGCG
3051 CCTCTCACTC GATGAAGTCA AGAAGTACGG CGTGCCACGC GGTTTCTGGC
10
3101 GTATCTTACG CCGCTTGGTG CAGGCCCGCG ACGATCTGTA CCTGCACCGT
3151 GTGCGTGTGCG AGGACCTGGT GCTTTCGTGCG GTGCTCTCTA AGGACATCTC
3201 GCTGTACCGT CAATCTAACCG TGCCGCACAT TGCCGTATT AAGCGATTGG
15
3251 CGGCCCGTTC TGAGGAGCTA CCCTCGGTGCG GGGATCGGGT CTTTACGTT
3301 CTGACGGCGC CCGGTGTCCG GACGGCGCCG CAGGGTTCCCT CCGACAACGG
20
3351 TGATTCTGTA ACCGCCGGCG TGTTTCCCG GTCGGACGCG ATTGATGGCA
3401 CGGACGACGA CGCTGACGGC GGCGGGGTAG AGGAGAGCAA CAGGAGAGGA
3451 GGAGAGCCGG CAAAGAAGAG GGCGCGGAAA CCACCGTCGG CCGTGTGCAA
25
3501 CTACGAGGTA GCCGAAGATC CGAGCTACGT GCGCGAGCAC GGCGTGCCA
3551 TTCACGCCGA CAAGTACTTT GAGCAGGTTTC TCAAGGCTGT AACTAACGTG
30
3601 CTGTCGCCCCG TCTTCCCAGG CGCGAAACC GCGCGCAAGG ACAAGTTTT
3651 GCACATGGTG CTGCCGCCGC GCTTGCACCT GGAGCCGGCT TTTCTGCCGT
35
3701 ACAGTGTCAA GGCGCACGAA TGCTGTTGA

SEQ. ID. NO. 12 Amino acid sequence of DNA polymerase for HCMV-AD169-M1

1 MFFNPYLSGG VTGGAVAGGR RQRSQPGSAQ GSGKRPPQKQ FLQIVPRGVM
 5 51 FDGQTGLIKH KTGRPLLMFY REIKHLLSHD MVWPCPWRET LVGRVVGP
 101 FHTYDQTDAT LFFDSPENVS PRYRQHLVPS GNVLRFQGAT EHGYSCVNV
 10 151 FGQRSYFYCE YSDTDRLREV IASVGELVPE PRTPYAVSVT PAKTSIYGY
 201 GTRPVPDLQC VSISNWTMAR KIGEYLLEQG FPVYEVRVDP LTRLVIDRRI
 251 TTFGWCSVNR YDWRQQGRAS TCDIEVDCDV SDLVAVPDDS SWPRYRCLSF
 15 301 DIECMSGEgg FPCAEKSDDI VIQISCVCYE TGGNTAVDQG IPNGNDGRGC
 351 TSEGVIFGHS GLHLFTIGTC GQVGPDVDVY EFPSEYELL GFMLFFQRYA
 20 401 PAFVTGYNIN SFDLKYILTR LEYLYKVDSQ RFCKLPTAQG GRFFLHSPAV
 451 GFKRQYAAAF PSASHNNPAS TAATKVYIAG SVVIDMYPVC MAKTNSPNYK
 501 LNTMAELYLR QRKDDLSYKD IPRCFVANAE GRAQVGRYCL QDAVLVRDLF
 25 551 NTINFHYEAG AIARLAKIPL RRVIFDGQQI RIYTSLLDEC ACRDFILPNH
 601 YSKGTTVPET NSVAVSPNAA IISTAAVPGD AGSVAAMFQM SPPLQSAPSS
 30 651 QDGVS PGSGS NSSSSVGVFS VGSGSSGGVG VSNDNHGAGG TAAVSYQGAT
 701 VFEPEVGYYN DPVAVFDFAS LYPsiIMAHN LCYSTLLVPG GEYPVDPADV
 751 YSVTLENGVT HRFVRASVRV SVLSELLNKW VSQRRAVREC MRECQDPVRR
 35 801 MLLDKEQMAL KVTCNAFYGF TGALNGMMPC LPIAASITRI GRDMLERTAR
 851 FIKDNFSEPC FLHNFFNQED YVVGTRREGDS EESSALPEG ETSSGGSNER
 40 901 RVEARVITYGD TDSVFVFRG LTPQALVARG PSLAHYVTAC LFVEPVKLEF
 951 EKVFVSLMMI CKKRYIGKVE GASGLSMKGV DLVRKTACEF VKGVTRDVLS
 1001 LLFEDREVSE AAVRLSRLSL DEVKKYGVPR GFWRILRRLV QARDDLYLHR
 45 1051 VRVEDLVLSS VLSKDISLYR QSNLPHIAVI KRLAARSEEL PSVGDRVFYV
 1101 LTAPGVRTAP QGSSDNGDSV TAGVVSRSDA IDGTDDDADG GGVEESNRRG
 50 1151 GEPAKKRARK PPSAVCNYEV AEDPSYVREH GVPIHADKYF EQVLKAVTNV
 1201 LSPVFFPGGET ARKDKFLHMV LPRLHLEPA FLPYSVKAHE CC*

Figure 6
SEQ.ID.NO.13 Amino acid sequence of DNA polymerase for HCMV-AD169

5 1 MFFNPYLSGG VTGGAVAGGR QRQSQPGSAQ GSGKRPPQKQ FLQIVPRGVM
 51 51 FDGQTGLIKH KTGRPLPLMFY REIKHLLSHD MVWPCPWRET LVGRVVGPIR
 10 101 FHTYDQTDAT LFFDSPENVS PRYRQHLVPS GNVLRFFGAT EHGYSCIVNV
 10 151 FGQRSYFYCE YSDTDRRLREV IASVGELVPE PRTPYAVSVT PATKTSIYGY
 15 201 GTRPVPDLC VSIISNWTMAR KIGEYLLEQG FPVYEVRVDP LTRLVIDRRI
 15 251 TTFGWCSVNR YDWRQQGRAS TCDIEVDCDV SDLVAVPDDS SWPRYRCLSF
 20 301 DIECMSGEgg FFPCAEKSDDI VIQISCVCYE TGGNTAVDQG IPNGNDGRGC
 20 351 TSEGVIIFGHS GLHLFTIGTC GQVGPDVDVY EFPSEYELL GFMLFFQRYA
 20 401 PAFVTGYNIN SFDLKYLTR LEYLYKVDSQ RFCKLPTAQG GRFFLHSPAV
 25 451 GFKRQYAAAF PSASHNNPAS TAATKVYIAG SVVIDMYPVC MAKTNSPNYK
 25 501 LNTMAELYLR QRKDDLSYKD IPRCFVANAE GRAQVGRYCL QDAVLVRDLF
 25 551 NTINFHYEAG AIARLAKIPL RRVIFDGQQI RIYTSLLDEC ACRDFILPNH
 30 601 YSKGTTVPET NSVAVSPNAA IISTAAVPGD AGSVAAMFQM SPPLQSAPSS
 30 651 QDGVSPGSGS NSSSSVGVFS VGSGSSGGVG VSNDNHGAGG TAAVSYQGAT
 35 701 VFEPEVGYYN DPVAVFDFAS LYPSIIMAHN LCYSTLLVPG GEYPVDPADV
 35 751 YSVTLENGVT HRFVRASRVV SVLSELLNKW VSQRRAVREC MRECQDPVRR
 40 801 MLLDKEQMAL KVTCNAFYGF TGVVNGMMPC LPIAASITRI GRDMLERTAR
 40 851 FIKDNFSEPC FLHNFFNQED YVVGTRREGDS EESSALPEG ETSSGGSNER
 40 901 RVEARVIYGD TDSVFVRFRG LTPQALVARG PSLAHYVTAC LFVEPVKLEF
 45 951 EKVFVSLMMI CKKRYIGKVE GASGLSMKGKV DLVRKTACEF VKGVTRDVLS
 45 1001 LLFEDREVSE AAVRLSRLSL DEVKKYGVPR GFWRILRRLV QARDDLYLHR
 50 1051 VRVEDLVLSS VLSKDISLYR QSNLPHIAVI KRLAARSEEL PSVGDRVFYV
 50 1101 LTAPGVRTAP QGSSDNGDSV TAGVVSRSDA IDGTDDDADG GGVEESNRRG
 50 1151 GEPACKRARK PPSAVCNYEV AEDPSYVREH GVPIHADKYF EQVLKAVTNV
 55 1201 LSPVFPGET ARKDKFLHMV LPRLHLEPA FLPYSVKAHE CC*

55