Logica e Sistemas Digitais - 8

Circuitos Sequenciais

Departamento de Engenharia de Electrónica e Telecomunicações e de Computadores Lisboa

Mário Araújo

2016-1

REGISTO SIMPLES (REGISTER):

Colecção de 2 ou mais Flip-flops (ou Latches) com sinais de relógio CLK (ou de Enable) e de CLR_L (Clear) comuns que permitem armazenar **n** bits de informação.

Existem também registos formados por **Latches**. Nos registos de deslocamento (adiante) o uso de **Latches** D é proibido devido às suas características de transparência.

Registo com 8 flip-flops D:

- Entradas e saídas paralelo
- Controlo de escrita WR (WRITE)
- Controlo de apagamento CLR_L (CLEAR).

Funções:

- Carregamento paralelo
 (PARALLEL LOAD ou WRITE) –
 armazenamento de informação paralelo.
- Controlo de apagamento da informação registada (CLEAR ou RESET assíncrono).

- Os flip-flops D são negative-edge triggered mas existe um buffer-inversor interno que os torna positive-edge triggered relativamente ao CLK externo.
- Os sinais CLK e CLR_L possuem buffers internos (a verde) para que um dispositivo externo alimentador destas entradas veja apenas uma carga unitária em vez de 4 para não diminuir significativamente o seu fanout.
- O controlo de apagamento CLR_L (Clear ou Reset) da informação registada faz uso das linhas de CLR_L assíncronas de cada flipflop D.

Pág. 148

Estrutura interna de um registo latch de 8 bits com saídas tri-state.

Os registos podem ser construídos com flip-flops **edge-triggered** – caso do slide anterior – ou com dispositivos do tipo **latch**, caso deste registo.

A utilização de **buffers tri-state** nas saídas permite que vários registos possam partilhar o mesmo barramento (**bus**) de saída.

O módulo registo aqui evocado dispõe de sinais de controlo **OE** (**OUTPUT ENABLE** ou **RD** - **READ**) e **WR** (**WRITE**).

WR: Quando activo leva os latches a tomar o estado correspondente aos dados presentes nas entradas D. Quando inactivo os latches mantêm o estado anterior.

OE (ou RD): Quando activo coloca em baixa impedância sobre a saída do registo o estado de cada latch constituinte. Quando inactivo mantém em alta impedância as saídas do módulo.

Símbolo lógico do registo latch

Lógica e Sistemas Digitais - 8

Data OUT (DO)

de 8 bits com saídas tri-state.

Instituto Superior de Engenharia de Lisboa

DIAGRAMAS TEMPORAIS PARA A OPERAÇÃO DE ESCRITA EM LATCH E EM FLIP-FLOP

Símbolos lógicos, estrutura interna e formas de onda relativas a uma acção de memorização num registo latch de 4 bits — lado esquerdo — e registo edge-triggered de 4 bits — lado direito.

t_{pw} (**Pulse Width**): duração mínima do sinal de escrita Enable (E) ou Clock (CLK).

 t_{su} (Data Setup): intervalo de tempo mínimo a observar entre o estabelecimento de informação estável na

entrada de dados e o momento da memorização.

th (Data Hold): intervalo mínimo de tempo durante o qual ainda se torna necessário manter a informação

estável na entrada de dados após o desaparecimento do sinal.

t_{pd} (**Propagation Delay**): tempo máximo de propagação entre um sinal na entrada de dados e o seu reflexo na saída

do circuito.

Os registos estão ligados por um **barramento** (**bus**) de dados **bidireccional** - a entrada DI e saída DO dos dados são feitas pelos mesmos pinos como mostrado.

O interesse em usar os mesmos pinos para os dados a ler e a escrever é o de reduzir o número de pinos, o que é útil em memórias de grande capacidade.

Nas aplicações de ligação de memórias a microprocessadores o barramento de dados é normalmente bidireccional.

A interligação mostrada permite a transferência de dados entre quaisquer dois registos.

A acção **READ** (**OE**_i activo) de cada registo i deverá ter a natureza **latch** – os dados têm que se manter presentes em baixa impedância no barramento o tempo suficiente para se estabilizarem.

A acção **Write** (**WR**_i activo) de cada registo i pode tomar a natureza **latch** ou **edge-triggered**.

Existem memórias RAM de várias tecnologias: as mais comuns são as RAMs dinâmicas (DRAM) que baseiam o seu funcionamento na carga acumulada por elementos capacitivos. As RAM estáticas (SRAM) são constituídas por registos — slide seguinte.

As localizações de uma memória RAM estática comportam-se como latches D, e não como flip-flops D. Cada vez que o sinal WR é activado, os dados de entrada fluem através de cada latch, e o valor armazenado é o valor presente quando o latch fecha.

Estrutura conceptual interna de uma RAM 4x8 (RANDOM ACCESS MEMORY) sintetizada a partir de 4 módulos D-latch de 8 bits cada um, com comandos READ (RD) e WRITE (WR), descodificador e portas lógicas, com um único barramento de dados bidireccional e saídas TRI-STATE.

IO DATA BUS (bidireccional)

O descodificador 2-to-4 activa um dos 4 sinais de saída de modo a habilitar para leitura ou escrita cada célula (registo) da linha correspondente ao endereço A_O-A₁ aplicado.

Símbolo lógico

da RAM.

Operações de acesso:

READ (leitura)

- CS_L e OE_L activos a 0, WE_L inibido a 1;
- endereço colocado em A₀-A₁;
- saídas presentes em D0.

WRITE (escrita)

- CS_L e WE_L activados, OE_L inibido a 1;
- endereço colocado em A₀-A₁;
- palavra de n bits em DI armazenada no endereço seleccionado (Latch Enabled).

Para permitir a expansão da memória de um sistema, é usual as RAMs (tal como as ROMs) disponibilizarem um sinal de entrada **CS (Chip Select)**, para inibição/desinibição: quando desactivo torna a RAM insensível aos sinais de escrita e leitura e coloca o barramento de dados em alta impedância.

RAM ESTÁTICA COM BARRAMENTOS DE DADOS UNIDIRECCIONAL E BIDIRECCIONAL

OF

WF

CS

A memória RAM é constituída por 2ⁿ registos de **b** bits cada. A cada registo corresponde um endereço próprio que permite a sua invocação para escrita ou leitura.

A RAM tem um barramento de endereço (ADDRESS BUS) unidireccional, constituído por **n** bits que codificam em binário o endereço.

O barramento de dados (DATA BUS) pode ser constituído por dois barramentos unidireccionais de **b** bits, sendo um para escrita e o outro para leitura (como em cima), ou um único barramento bidireccional para leitura e escrita (como em baixo).

O número de linhas **b** que constituem o barramento de dados é igual ao número de bits de cada registo.

OPERAÇÃO DE ESCRITA:

- (1) Colocar o endereço nas linhas de endereço A_{0..n-1};
- (2) Colocar os dados nas linhas de entrada de dados (DI ou DIO);
- (3) Activar CS Le WE L

OPERAÇÃO DE **L**EITURA:

- (1) Colocar o endereço nas linhas de endereço $A_{0..n-1}$;
- (2) Activar CS_L e OE_L.

OUTPUT ENABLE L

WRITE ENABLE L

CHIP SELECT L

Símbolo lógico de uma RAM 2ⁿ x b com

barramento DATA BUS comum bidireccional.

COMUNICAÇÃO DE DADOS ENTRE REGISTOS

COMUNICAÇÃO **PARALELO** (8 linhas de dados).

COMUNICAÇÃO **SÉRIE** (bit a bit) (uma linha de dados e uma linha de Clock).

Na transferência de dados **EM PARALELO** entre um **registo-fonte** RG_A e um **registo-destino** RG_B os dados são movidos de uma só vez através de linhas múltiplas (8 na figura). É necessário activar simultaneamente :

- O sinal OE_A (READ) no registo-fonte RG_A.
- O sinal WR_B (WRITE) no registo-destino RG_B. Este sinal só deverá ser desactivado decorrido o tempo suficiente para estabilização de dados no barramento. Só posteriormente deverá ser desactivado o sinal OE_A (READ) no registo-fonte para garantir que os dados sejam adequadamente recolhidos pelo registo-destino.

Na transferência de dados EM SÉRIE entre um registo-fonte RG_A e um registo-destino RG_B os dados são movidos sequencialmente, um bit de cada vez por cada impulso de relógio, através de uma linha única de dados.

Para os 8 bits da figura serão necessários 8 impulsos de relógio. Os registos são do tipo **REGISTO DE DESLOCAMENTO** (SHIFT REGISTER).

- O circuito 74x174 é semelhante ao 74x175 com mais 2 FF-D (6-bits com eliminação das saídas QN).
- O circuito 74x373 usa D-Latches com Enable (E) e não FF-Ds. A saída de cada um é intersectada por um **Tri-State Buffer.**
- No circuito 74x374 de 8-bits a saída de cada FF-D é também intersectada por um **Tri-State Buffer**. Quando OE (Output Enable) está activo o estado dos flip-flops está presente nas saídas (que permanecem em alta impedância caso contrário).
- O circuito 74x377 necessita de Enable_L activo (0) e de uma transição de CLK para carregar novos dados.

Símbolo lógico da PAL assinalando os pinos de entrada e saída utilizados.

Considerou-se um registo de 8 bits com ENABLE. A descrição da funcionalidade é feita pela declaração das funções associadas às entradas dos flip-flops do registo. O ENABLE funciona como OUTPUT ENABLE.

```
Register ;
Name
        p22v10 ;
Device
/* ******* TNPIT PINS **********/
PIN 1 = Clk ;
PIN 2 = enable ; /* Output Enable */
PIN [3..10] = [D0..7] /* Data Inputs */
PIN 11 = clear ;
PIN 13 = preset ;
/* ********* OUTPUT PINS *********/
PIN [21..14] = [Q0..7] ; /*
FIELD output = [00..7];
FIELD data = [D0..7];
/* ********
output.sp = preset;
output.ar = !clear;
output.OE = enable;
output.d = data;
```

Troço de código CUPL para um REGISTO de 8 bits.

Se o comando output.d fosse descrito do modo alternativo em baixo o ENABLE funcionaria também como CLOCK ENABLE:

output.d = data & enable # output & !enable

Representação da lógica interna para a oitava célula do registo 74 x 377.

O circuito74 x 377 é um registo edge-triggered como o seu par 74 x 374, mas não possui saídas tristate. Em vez dessa característica possui no pino (1) um sinal de **ENABLE** ACTIVE-LOW (EN_L ou G_L).

Verifica-se pela lógica que: EN_L = 0: 8D ⇒ 8Q : o flip-flop regista o valor da entrada na próxima transição ascendente de Clock.

EN_L = 1: 8Q ⇒ 8Q : o flip-flop mantém o valor presente na saída na próxima transição ascendente de Clock.

OCTAL D-TYPE
FLIP-FLOPS
WITH COMMON ENABLE
AND CLOCK

SAÍDA SÉRIE

Função DESLOCAMENTO (SHIFT):

- · Atrasa a informação na saída série;
- Armazena informação na saída paralelo.

$$Q_i^+ \leftarrow Q_{(i-1)}$$

- O registo evolui segundo uma das sequências de 8 estados da figura.
- O valor de cada estado está representado no interior de cada círculo (nó).
- A existência de 8 estados de contagem é devida à utilização de 3 flip-flops.
- O valor na entrada série RIN é mostrado em cada arco de transição entre estados.

Sequências de estados possíveis.

MODOS DE **F**UNCIONAMENTO

Iniciação assíncrona a 0 de todos os flip-flops (enquanto CLR estiver a 1); **CLEAR:**

SHIFT RIGHT: Deslocamento à direita (quando Right/Left_L estiver a 1);

Deslocamento à esquerda (quando Right/Left L estiver a 0); SHIFT LEFT:

Transferência em paralelo, **síncrona** com CLK, dos valores presentes nas entradas de dados para as saídas. PARALLEL LOAD:

Estrutura interna típica de um registo de deslocamento bidireccional de 3 bits.

1Q, 2Q, 3Q: saídas de dados em paralelo.

SRG3 – registo de deslocamento de 3 bits.

ENTRADAS SAÍDAS

CLK: Clock, impulso de relógio.

LOAD/SHIFT L: Entrada de controle que distingue entre LOAD (1), e SHIFT (0).

RIGHT/LEFT_L: Entrada de controle que distingue entre RIGHT (1), e LEFT (0).

LEFT IN, RIGHT IN: Entradas de dados série.

Clear, entrada de controle assíncrona. CLR:

1D, 2D, 3D: Entradas de dados paralelo.

ENTRADAS

- Clock (impulso de relógio). • CLK:
- J e K': Entradas de dados série (SERIAL INPUTS).
- LD_L: Load síncrono.
- CLR L: Clear ou Master Reset assíncrono.
- A, B, C, D: Entrada de dados paralelo (PARALLEL INPUTS).

SAÍDAS

- QA, QB, QC, QD: Saída de dados (PARALLEL OUTPUTS).
- QD': QD negado.

RIN: Right In LIN: Left In

R/L L: Right/Left

ROUT: Right Out

Configuração dos pinos.

estão disponíveis As entradas J-K' exteriormente, para permitir maior versatilidade de utilização.

Só há dois modos de operação, Load e Shift Right (convenção: D está à direita).

Para o Shift Left há que interligar as saídas com as entradas do modo indicado ao lado.

Interligação dos pinos do circuito 74 x 195 para permitir acções shift-right e shift-left.

	ENTRADAS							Saídas						
74 x 195	CONTROLE		SÉ	SÉRIE PARALELO			SAIDAS							
Modo de Operação	CLK	CLR_L	LD_L	J	K'	А	В	С	D	QA+	QB+	QC+	QD+	(QD+)'
RESET Assíncrono	-	0	-	-	-	-	-	-	-	0	0	0	0	1
PARALLEL LOAD Síncrono	1	1	0	-	-	a	b	С	d	а	b	С	d	ď'
SHIFT RIGHT, Reset 1.º flip-flop	1	1	1	0	0	-	-	-	-	0	QA	QB	QC	QC'
SHIFT RIGHT, Mantém 1.º flip-flop	1	1	1	0	1	-	-	-	-	QA	QA	QB	QC	QC'
SHIFT RIGHT, Inverte 1.º flip-flop	1	1	1	1	0	-	-	-	-	QA'	QA	QB	QC	QC'
SHIFT RIGHT, Preset 1.º flip-flop	1	1	1	1	1	-	-	-	-	1	QA	QB	QC	QC'

Tabela funcional.

ENTRADAS

• CLK: Clock

• LIN (LEFT IN) Entrada de dados série (Serial Input LEFT).

• RIN (RIGHT IN): Entrada de dados série (SERIAL INPUT RIGHT).

• **SO** e **S1**: Pinos de selecção do modo de funcionamento.

• CLR_L: CLEAR OU MASTER RESET assíncrono (iniciação a 0).

• A, B, C, D: Entrada de dados paralelo (PARALLEL INPUTS).

SAÍDAS

• QA, QB, QC, QD: Saída de dados (PARALLEL OUTPUTS).

Configuração dos pinos.

S0 e **S1** são entradas de controle que seleccionam a função do SHIFT-REGISTER. Convenção: **D está à direita**.

UNIVERSAL (OU MULTIMODO) significa um conjunto de atributos como entrada e saída paralelo (PARALLEL-IN, PARALLEL-OUT), entradas série (LIN e RIN) e saídas série nos flip-flops dos extremos, e funções de manutenção (HOLD), carregamento (LOAD) e deslocamento (SHIFT) com bidireccionalidade (SHIFT-RIGHT e SHIFT-LEFT).

FUNÇÃO	ENTR				OXIMO ESTADO		
FUNÇAU	S1	SO	QA ⁺	QB ⁺	QC ⁺	QD ⁺	
HOLD	0	0	QA	QB	QC	QD	
SHIFT RIGHT	0	1	RIN	QA	QB	QC	
SHIFT LEFT	1	0	QB	QC	QD	LIN	
LOAD (SYNC)	1	1	Α	В	С	D	

Tabela funcional para o circuito 74 x 194.

SHIFT REGISTER DE 8 BITS EM PAL 22V10

```
ShiftRegister ;
Name
Device
        p22v10 ;
/* **********
                          Entradas
                                     ****** * * * * * /
                     /* Clock */
PIN 1 = clock;
PIN[6..4] = [S2..0]; /* Número de Shifts a efectuar */
PIN 2 = enable;
                    /* Output Enable das Saídas */
PIN 3 = sin;
                    /* Serial-in Left */
                     /* Clear Sincrono */
PIN 8 = clr;
/* **********
                         Saídas
                                  ***********
PIN [22..15]=[07..0]; /* Saídas do Registo */
/****
         Declarações e Variáveis Intermédias
                                                *****/
field shift = [S2..0]; /* Número de Shifts */
field output = [07..0]; /* Saidas */
output.sp = 'h'00;
output.ar = 'h'00;
output.oe = enable; /* Controle tri-state */
/* ********
                   Equações Lógicas
                                       *****
output.d = !clr&([Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0] & shift:0
 # [Q0, Q7, Q6, Q5, Q4, Q3, Q2, Q1] & shift:1
 # [Q1, Q0, Q7, Q6, Q5, Q4, Q3, Q2] & shift:2
 # [Q2, Q1, Q0, Q7, Q6, Q5, Q4, Q3] & shift:3
 # [Q3, Q2, Q1, Q0, Q7, Q6, Q5, Q4] & shift:4
                                                  Troço de código
 # [04, 03, 02, 01, 00, 07, 06, 05] & shift:5
                                                  CUPL para um SHIFT
 # [Q5, Q4, Q3, Q2, Q1, Q0, Q7, Q6] & shift:6
                                                  REGISTER de 8 bits
 # [Q6, Q5, Q4, Q3, Q2, Q1, Q0, Q7] & shift:7);
                                                  com CLEAR síncrono.
append output.d=!clr&sin&'b'10000000;
```


Símbolo lógico da PAL assinalando os pinos de entrada e saída utilizados.

O deslocamento é realizado na direcção Q7 → Q0 e o número de de posições a deslocar de cada vez é indicado pelo valor binário de S0..S1.

Tabela parcial evidenciando as sequências a ser detectadas.

O circuito efectua constantemente a leitura de palavras com 4 bits e torna activas:

- a saída X quando a palavra lida corresponde à sequência 1001;
- a saída Y quando as palavras lidas pertencem ao intervalo [1010 a 1101].

O bit menos significativo é primeiro a ser lido e a saída é válida apenas em cada quatro impulsos de relógio.

APLICAÇÃO DE SHIFT-REGISTERS — TRANSMISSÃO SÉRIE DE INFORMAÇÃO

Canal de comunicação série com conversão **paralelo-série** na fonte e **série-paralelo** no destino:

- A informação é recolhida em paralelo das entradas P_i para as saídas Q_i do registo-fonte com LOAD_L activo (0).
- A informação é transferida em série para o local de recepção em 4 impulsos de clock com LOAD_L inactivo (1).
- A informação é recolhida em paralelo e fica disponível nas saídas
 Q_i do registo de destino ao fim de 4 impulsos de relógio.

FONTE				Destino				
1	1,	0	1		0	0	0	0
0	1	1	0	A	1	0	0	0
0	0	1	1		0	1	0	0
0	0	0	1		1	0	1	0
0	0	0	0		1	1	0	1

Exemplo para uma sequência de estados dos flip-flops ao longo dos 4 impulsos de relógio que comandam a comunicação.

Transmissão bit a bit de uma sequência de 8 bits de informação ao ritmo dos impulsos de relógio com conversão paralelo-série no emissor e série-paralelo no receptor através dos circuitos 74x194.

Instituto Superior de Engenharia de Lisboa

A ligação de n flip-flops em cascata, dos quais um está a 1 e os outros a 0, como registo de deslocamento, pode também ser usada como um contador simples, usando um mínimo de hardware. O contador é designado **Contador em Anel** (**Ring Counter**).

Evolui segundo a sequência de 4 estados na tabela, repetindo-a.

O contador é muito rápido (não existem portas lógicas entre flip flops), mas é ineficiente em termos do número total de estados de contagem disponíveis (só usa n estados dos 2ⁿ estados disponíveis).

É necessário inicializá-lo num dos n estados de contagem como mostra o diagrama em baixo.

Diagrama lógico de um contador em anel com um único 1 circulante realizado com flip-flopd tipo D.

	Α	В	С	D
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	1
1	1	0	0	0

Tabela de sequência de estados.

Diagrama de evolução de estados.

Diagrama lógico de um contador em anel com um único 1 circulante realizado com o circuito 74 x 194.

ACÇÕES:

LOAD de 0001 com Q0 = QD = D = 1, todos os outros bits a 0; SO = S1 = 1;

SHIFT LEFT direcção QD \rightarrow QA na sequência de 4 estados possíveis: 0001, 0010, 0100, 1000, 0001, ...; S0=0 e S1=1.

O contador não é robusto. Uma falha no circuito (por captação de ruído excessivo, por exemplo) pode:

- Levar a única saída activa a 1 a tomar o valor 0. O circuito passa ao estado 0000 e fica nesse estado por tempo indeterminado; ou
- Inserir um 1 extra criando por exemplo o estado 0101. O circuito seguirá um ciclo de estados incorrectos e permanecerá nesse ciclo por tempo indeterminado deixando de funcionar como contador em anel.

Diagrama lógico do contador em anel **auto-corrector** com um único 1 circulante, realizado em modo SHIFT RIGHT com o circuito 74x194.

Este contador é **AUTO-CORRECTOR** (**SELF-CORRECTING**).

Usa um NOR de 3 entradas que impõe a sequência correcta ao fim de um máximo de 3 impulsos de relógio – no caso do contador se encontrar num estado inválido, como se verifica pelo diagrama de evolução de estados.

Diagrama de evolução de estados mostrando os estados inválidos.

Instituto Superior de Engenharia de Lisboa

APLICAÇÃO DE SHIFT-REGISTERS – GERADOR DE CÓDIGO CÍCLICO (JOHNSON OU MOEBIUS)

O CONTADOR DE JOHNSON é semelhante ao CONTADOR EM ANEL, mas a realimentação é feita através da negação do último bit (em vez da ligação directa ao último bit, como no contador em anel). Com n flip-flops o contador JOHNSON usa apenas 2n dos 2ⁿ estados disponíveis.

Diagrama lógico de um contador **Johnson** de 4 bits implementado à custa de flip-flops D.

	Α	В	С	D
0	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1
0	0	0	0	0

Tabela de sequência de estados.

Diagrama temporal de formas de onda nas saídas Q_A a Q_D.

Diagrama de evolução de estados.

Instituto Superior de Engenharia de Lisboa

Um contador Linear Feedback
Shift Register (LFSR) é
constituído por um registo de
deslocamento de n bits e por
uma função de realimentação.
estrurada a partir de portas XOR.

Um LFSR produz sequências cíclicas com quase o máximo número de estados : **2**ⁿ-**1** dos **2**ⁿ estados possíveis – a configuração zero é excluída.

Os contadores LFSR pertencem a uma classe importante de geradores de códigos cíclicos que recebe também a designação de MAXIMUM LENGTH GENERATOR (MLG) ou de GERADOR DE RUÍDO PSEUDO-ALEATÓRIO.

Têm particular interesse nas técnicas de teste e de caracterização de sistemas, de codificação de canal e de criptografia.

Por convenção, as saídas x_0 a x_n são sempre numeradas na direcção e do modo indicado na figura - n é o número de flip-flops.

Realização de um LFSR com 3 flip-flops.

$$x_3 = x_0 \oplus x_1$$

Equação de realimentação de um LFSR de 3 bits.

Sequência máxima de estados de comprimento $2^3 - 1 = 7$ para um contador LFSR de 3 flip-flops (configuração 0 excluída).

	X ₂	X ₁	X ₀
1	0	0	1
4	1	0	0
2	0	1	0
5	1	0	1
6	1	1	0
7	1	1	1
3	0	1	1
1	0	0	1

EQUAÇÕES DE REALIMENTAÇÃO DOS LINEAR FEEDBACK SHIFT REGISTER (LFSR)

Por exemplo, a cifra utilizada no Standard Europeu GSM de comunicações móveis utiliza três LFSRs (de 19, 22 e 23 bits).

A construção de contadores LFSR é baseado na teoria dos Campos de Galois (do nome do matemático francês Evariste Galois) — o funcionamento de um LFSR corresponde a operações num campo de Galois com 2ⁿ elementos.

Évariste Galois 1811 - 1832

Pela teoria dos Campos de Galois pode demonstrar-se que para qualquer valor de n há pelo menos uma equação de realimentação que faz o contador LFSR evoluir através de todos os 2ⁿ-1 estados antes da repetição. A sequência assim obtida é uma sequência de comprimento máximo (MAXIMUM LENGTH).

n (nº de FFs)	Expressão de X _n
2	X1 ⊕ X0
3	X1 ⊕ X0
4	X1 ⊕ X0
5	X2 ⊕ X0
6	X1 ⊕ X0
7	X3 ⊕ X0
8	$X4 \oplus X3 \oplus X2 \oplus X0$
9	X4 ⊕ X0
10	X3 ⊕ X0

Equação de Realimentação para vários valores de n .

APLICAÇÃO DE SHIFT-REGISTERS — SOMADOR SÉRIE DE 4 BITS

O primeiro impulso de CLK provoca:

- a inicialização dos SHIFT REGISTER de 4 bits (SRG4) com LD/SR_L = 1, carregando neles os operandos A e B e
- · o carregamento de CIN no flip-flop D.

De seguida, com LD/SR_L = 0, por cada CLK é registada no bit Q_0 do Shift Register de 4 bits da direita, a soma S_i de um bit A_i do operando A ($A_{1..4}$), com um bit B_i do operando B ($B_{1..4}$), e um bit Carry-IN (C_i) — proveniente da propagação do Carry-OUT de peso anterior, ou do C_{IN} inicial . O somador FA (Full Adder) realiza a operação de soma.

O CARRY-OUT (C_{i+1}) proveniente de FA é registado na saída Q do flip-flop D para ser adicionado aos bits de peso seguinte dos operandos A e B.

Ao fim de 4 impulsos de CLK o resultado R (R_{1..4}) da adição estará presente nas saídas do SHIFT REGISTER da direita (Q_{3..0}), e o C_{OUT} final na saída do flip-flop D.

CONTADOR ASSÍNCRONO POR PULSAÇÃO (RIPPLE COUNTER)

CONTADORES são registos com funções adicionais. O **módulo** do contador é o número de estados no ciclo de contagem. Um contador com m-estados é designado **contador módulo-m**, ou **divisor por m**.

Contador binário assíncrono de 4 bits sintetizado a partir de flip-flops T.

- Para a construção do contador assíncrono não são necessários componentes adicionais para além dos flip-flops.
- Cada entrada de CLK está ligada à saída QN do flip-flop anterior. O contador diz-se **assíncrono** porque os flip-flops que o constituem não transitam em simultâneo.
- Cada bit do contador muda sse o bit Q precedente mudar de 1 para 0 e QN mudar de 0 para 1.
- Há um tempo de trânsito cumulativo ao longo dos sucessivos flip-flops as inversões não são simultâneas, são decaladas, e o período do sinal de CLK não pode ser inferior ao tempo cumulativo de propagação dos vários flip-flops.
- Este contador tem a desvantagem da limitação da frequência do CLK: para uma frequência de relógio demasiado elevada, o circuito deixa de funcionar correctamente por dependência dos **atrasos de propagação** do sinal.

	QA	QB	QC	QD
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	1 →	1	0	0
4	0	0	1	0
5	1	0	1	0
6	0	1	1	0
7	1 →	1 →	1	0
8	0	0	0	1
9	1	0	0	1
10	0	1	0	1
11	1	1	0	1
12	0	0	1	1
13	1	0	1	1
14	0	1	1	1
15	1	1	1	1

Tabela de evolução de estados em contagem crescente.

O termo **ripple** é empregue no sentido de propagação: a informação de **carry** 'propaga-se' do LSB para o MSB, um bit de cada vez.

CONTADOR SÍNCRONO

8-30

O Contador diz-se **síncrono** porque todos os flip-flops que o constituem (no exemplo flip-flops T) estão ligados ao mesmo sinal CLK e transitam em simultâneo. Cada flip-flop T comuta sse todos os bits Q de **ordem inferior** estiverem a 1. É possível construir este contador nas duas versões apresentadas, paralelo e série:

Contador binário síncrono paralelo sintetizado a partir de flip-flops T.

Contador binário síncrono série sintetizado a partir de flip-flops T.

- O flip-flop A inverte sempre.
- O flip-flop B inverte de 2 em 2 impulsos de CLK quando o FF anterior se encontra no estado 1.
- O flip-flop C inverte de 4 em 4 quando os 2 anteriores se encontrarem no estado 1.
- O flip-flop D inverte de 8 em 8 quando os 3 anteriores se encontrarem no estado 1 e assim sucessivamente.
- O comportamento descrito para 4 bits é garantido pela existência de portas AND (diferindo na forma como são concatenadas).
- A estrutura do contador de n=4 bits é facilmente generalizável para contadores módulo 2ⁿ.

Na versão à esquerda o contador diz-se **síncrono paralelo** — permite frequências mais elevadas e menor tempo de trânsito porque utiliza um único nível de portas AND: cada entrada T é gerada por uma porta AND própria sem recurso a portas de ordem inferior. A limitação advém do facto de o **fan-in** das portas AND ir aumentando sucessivamente até à última porta, que terá n-1 entradas se o contador tiver n bits.

Na versão à direita o contador diz-se **síncrono série** – aproveitando os produtos parciais já realizados, é possível modificar a estrutura do contador anterior para serem usadas apenas portas AND de 2 entradas, mantendo a funcionalidade.

Pretende-se realizar um contador binário síncrono de 3 bits, com contagem crescente e decrescente (**Up/Down**), com inibição de contagem através de um sinal **CE** (**COUNT ENABLE**), suportando as acções **LOAD assíncrono** (LD) e **CLEAR assíncrono** (CLR). O contador é baseado num registo formado por 3 flip-flops T (em vez de 4 como no slide anterior) e possui as entradas e saídas descritas no símbolo lógico. A sua construção será feita por fases para melhor compreensão da estrutura interna.

Símbolo lógico do contador.

ENTRADAS

• CLK: Clock

• UP/DN_L: Count-Up com 1, Count-Down com 0.

• LD/CT_L: LOAD (assincrono) com 1, Count com 0.

• **CE**: **COUNT ENABLE**, torna efectivo ou inibe o CLK.

• CLR: CLEAR (OU MASTER RESET assíncrono).

• A, B, C: Entradas de informação paralelo.

Estrutura genérica do diagrama de estados de cada ciclo.

U=UP

D=Down.

SAÍDAS

- CY_L: CARRY, associado a contagem crescente, assume o valor 0 na contagem 7 se em UP e CLK=0.
- **BW_L**: **Borrow**, associado a contagem decrescente, assume o valor 0 na contagem 0 se em DN e CLK=0.
- RC_L: RIPPLE Carry, assume o valor na contagem 7 ou na contagem 0, se CLK=0 e se o contador estiver Enabled (CE=1) .
- TC: TERMINAL COUNT, também designado de Max/MIN, activo na contagem 7 se em Up, ou na contagem 0 se em Down, e se CE=1.
- QA, QB, QC: saídas de informação paralelo correspondentes ao estado do contador.

Instituto Superior de Engenharia de Lisboa

1.ª FASE

Contador UP paralelo com inibição de contagem através de CE (Count Enable).

Diagrama lógico para o contador de contagem crescente.

Diagrama de estados para o contador crescente.

2.ª FASE

Contador **Down** paralelo com inibição de contagem através de CE (Count Enable).

Diagrama lógico para o contador de contagem decrescente.

Diagrama de estados para o contador decrescente.

3.ª FASE (Fig. da esquerda)

Adição da acção **Up/Down** conseguida à custa de um MUX 2x1 comandado por um bit de controlo **Up/Dn_L** que escolhe as saídas Q (UP) ou QN (DOWN) de cada FF-T do seguinte modo:

Adição de um Multiplexer para a conjugação dos modos ce contagem UP e Down.

Adição de lógica adicional para as acções de LOAD e CLEAR.

LOAD (de C em QD):

Se CLR = 0 e $LD/CT_L = 1$:

P = C, CL = C' logo QC = C.

4.ª FASE (Fig. da direita exemplificada para a variável de entrada C e saída QC)

Adição das acções **LOAD** e **CLEAR** (prioritário em relação ao **LOAD**) **assíncronas**, conseguidas através da manipulação das entradas assíncronas Preset (P) e Clear (CL) de cada FF-T por meio dos sinais de controlo **LD/CT L** e **CLR** e lógica adicional como indicado.

A quantidade lógica por bit num contador deste tipo é fixa e corresponde a:

1 flip-flop T, 3 portas AND, 1 porta OR, 1 porta NOT e 1 MUX 2x1 - não está contabilizada a lógica geradora das saídas de controle – slide seguinte.

Instituto Superior de Engenharia de Lisboa

4.ª FASE

Adição da lógica geradora das saídas de controle.

Estrutura interna do último andar do contador.

$$CY_L = \{ QA \cdot QB \cdot QC \cdot CE \cdot CLK' \cdot UP/DN_L \}'$$

$$BW_L = \{ QA' \cdot QB' \cdot QC' \cdot CE \cdot CLK' \cdot (UP/DN_L)' \}'$$

$$TC = [(QA \cdot QB \cdot QC) + (QA' \cdot QB' \cdot QC')] \cdot CE$$

$$RC_L = \{ TC \cdot CLK' \}'$$

Circuitos Sequenciais

Equações lógicas descritivas das saídas do contador.

A saída **TC** (**TERMINAL COUNT**) também designada de **MAX/MIN** indica, quando activa, que o contador atingiu um dos extremos de contagem:

- 7 na contagem crescente,
- 0 na contagem decrescente.

É utilizada para ligação à entrada **CE** (**COUNT ENABLE**) de outro módulo para concatenação **síncrona** em cascata.

A saída RC_L (RIPPLE CARRY) corresponde à intersecção de TC com CLK'. Utilizada para propagação do CLK ao contador de peso seguinte em concatenação assíncrona.

Estrutura interna do contador de 3 bits com as funcionalidades estabelecidas.

ENTRADAS

• CLK: Clock

• UP/DN_L: Count-Up com 1, Count-Down com 0.

• LD/CT_L: LOAD (assíncrono) com 1, COUNT com 0.

• **CE**: **COUNT ENABLE**, torna efectivo ou inibe o CLK.

• CLR: CLEAR (OU MASTER RESET assíncrono).

• A, B, C: Entradas de informação paralelo.

SAÍDAS

- CY_L: CARRY, associado a contagem crescente, assume o valor 0 na contagem 7 se em UP e CLK=0.
- **BW_L**: **Borrow**, associado a contagem decrescente, assume o valor 0 na contagem 0 se em DN e CLK=0.
- RC_L: RIPPLE Carry, assume o valor na contagem 7 ou na contagem 0, se CLK=0 e se o contador estiver Enabled (CE=1).
- TC: TERMINAL COUNT, também designado de Max/Min, activo na contagem 7 se em Up, ou na contagem 0 se em Down, e se CE=1.
- QA, QB, QC: saídas de informação paralelo correspondentes ao estado do contador.

ENTRADA DE CONTROLE CLEAR EM VARIANTES ASSÍNCRONA E SÍNCRONA

Há módulos MSI, como o contador 74 x 163 (descrito adiante), em que as acções CLEAR e LOAD são ambas síncronas. O 74 x 163 utiliza internamente FF D em vez de FF T, para facilitar essas acções. A estrutura típica de uma célula de um bit de um contador semelhante ao 74 x 163 será do tipo da Fig. :

QC é a saída do contador para a célula exemplificada, e C a entrada para LOAD.

A porta XOR, essencial à lógica de concatenação, realiza a função de contagem, uma vez que se recorre a flip-flop D e não a flip-flop T. O contador 74 x 163 só conta em modo UP, pelo que da célula não consta o MUX de saída do contador anterior ligado à selecção UP/Down.

Há aplicações que requerem uma entrada de CLEAR **assíncrona**, e contadores MSI que a possuem. O circuito contador 74 x 161 é em tudo semelhante ao circuito 74 x 163, e só difere na acção CLEAR, que é feita em modo assíncrono. Esta acção será suportada pelo próprio flip-flop D e a estrutura da célula será do tipo:

CLEAR assíncrono
LOAD síncrono

Efeitos na Temporização de uma Entrada de Controle em Modo Assíncrono e Síncrono

Uma operação CLEAR assíncrona é realizada imediatamente após a aplicação da entrada, é independente do CLK, e a acção é realizada durante todo o tempo em que a entrada se mantiver activa. A operação síncrona só se realiza na transição de CLK se essa entrada estiver activa. Exemplifica-se a diferença:

Contador Módulo-5 – Diagrama de Estados e Tabela de Transição de Estados

Diagrama de transição de estados.

	ESTADO ACTUAL			ESTAD	O SEG	GUINTE			
	QC	QB	QA	QC+	QB ⁺	QA ⁺			
0	0	0	0	0	1	0			
1	0	0	1	_	_	_			
2	0	1	0	0	1	1			
3	0	1	1	1	0	1			
4	1	0	0	_	_	_			
5	1	0	1	1	1	0			
6	1	1	0	0	0	0			
7	1	1	1	_	_	_			

Tabela de transição de estados assinalando os estados inválidos a (cor).

O contador repete 5 estados numa sequência que não é a do código binário puro.

- A existência de 5 estados de contagem impõe, pelo menos, a utilização de 3 flip-flops.
- O processo de síntese passa pela definição da tabela de transição de estados do circuito, derivada do diagrama de transição de estados, e prossegue com a determinação das entradas dos flip-flops como função do estado anterior, através da construção de mapas de Karnaugh.
- Como não são utilizados todos os estados disponíveis, pode verificar-se a ocorrência de
 estados inválidos fora da sequência de contagem que podem acontecer devido a
 ruído eléctrico no circuito, a valores da fonte de alimentação fora da gama especificada,
 ou à não imposição de estado inicial no arrangue (power-up).
- Se o contador se encontrar num estado inválido pode entrar na sequência de contagem pretendida ou ficar indefinidamente fora dela (Locked-out).
- Um contador Auto-corrector (Self-correcting) impõe a transição de qualquer estado inválido para um estado dentro da sequência de contagem explorando a existência de don't cares (indiferenças).
- Este contador será auto-corrector. A escolha das indiferenças nos mapas de Karnaugh do próximo slide conduzem a uma minimização do circuito. Levam a que a sequência de contagem para cada um dos estados inválidos 1, 4 e 7, até à entrada no ciclo, seja:

$$1 \rightarrow 6$$
; $4 \rightarrow 2$; $7 \rightarrow 4 \rightarrow 2$

• Está garantida a entrada na sequência especificada ao fim de um máximo de 2 impulsos de relógio: o caso mais desfavorável é o caso do estado 7, que demora 2 impulsos, enquanto que os restantes demoram 1.

Contador Módulo-5 – Estados Inválidos e Programação dos Flip-flops

Mapa de atribuição de estados.

$$Q_A^+ = Q_B Q_C'$$

$$Q_B^+ = Q_B' + Q_A' Q_C'$$

$$Q_C^+ = Q_A$$

Mapas e equações lógicas do ESTADO SEGUINTE de cada flip-flop.

	ESTADO ACTUAL			ESTAD	O SEG	O SEGUINTE			
	QC	QB	QA	QC+	QB ⁺	QA ⁺			
0	0	0	0	0	1	0			
1	0	0	1	1	1	0			
2	0	1	0	0	1	1			
3	0	1	1	1	0	1			
4	1	0	0	0	1	0			
5	1	0	1	1	1	0			
6	1	1	0	0	0	0			
7	1	1	1	1	0	0			

Tabela de Transição de Estados depois da atribuição das indiferenças.

Diagrama de Transição de Estados mostrando a natureza auto-correctora do circuito.

Diagrama lógico do circuito Contador Módulo-5 evoluindo na sequência 0-2-3-5-6-0 e implementado com flip-flops D.

Diagrama temporal de formas de onda nas saídas QA, QB e QC do Contador.

Equações lógicas do ESTADO SEGUINTE.

Num projecto com flip-flops do tipo D, as entradas D serão iguais aos valores do ESTADO SEGUINTE Q⁺ para cada bit.

ENTRADAS

- CU: Count-Up, clock da contagem crescente.
- CD: Count-Down, clock da contagem decrescente.
- CLR: Clear ou Master Reset assíncrono.
- LD_L: Load assincrono.
- A, B, C, D: entradas de dados em paralelo (Parallel Inputs).

SAÍDAS

- **CY_L**: **Carry**, associado a contagem crescente.
- **BW_L**: **Borrow**, associado a contagem decrescente.
- Q_A, Q_B, Q_C, Q_D: saída de dados em paralelo (Parallel Outputs).

$$CY_L = (QA \cdot QB \cdot QC \cdot QD \cdot CU')'$$

 $BW_L = (QA' \cdot QB' \cdot QC' \cdot QD' \cdot CD')'$

Equações lógicas descritivas das saídas de controle do contador.

Configuração dos pinos dos circuitos 74x192 e 74x193.

Os contadores 74x193 e 74x192 são pino-a-pino compatíveis e diferem entre si no módulo de contagem – **binário** no contador 193, **BCD** (decade) no 192.

Circuitos Sequenciais

Instituto Superior de Engenharia de Lisboa

ENTRADAS

• CLK: Clock.

• ENP: Enable Count Parallel.

• ENT: Enable Count Trickle.

• CLR L: Clear ou Master Reset síncrono.

LD_L: Parallel Load síncrono.

• A, B, C, D: Entradas de dados em paralelo (Parallel Inputs).

SAÍDAS

 TC: Terminal Count, também designado por alguns fabricantes por RCO – Ripple Carry Output

• QA, QB, QC, QD: Saídas de dados em paralelo (Parallel Outputs).

O contador fica **enabled** sse ENP e ENT estiverem ambos a 1. TC fica a 1 quando ENT=1 e o contador atingir o último estado de contagem (1111) — este contador só conta em modo crescente.

Ligar a saída TC de um contador à entrada ENT de um segundo permite incrementar este segundo de uma unidade sempre que o primeiro passe do último para o primeiro estado (roll over).

Configuração dos pinos dos circuitos 74x161 e 74x163.

Configuração dos pinos do circuito 74x169.

Os contadores 74x163 e 74x161 são compatíveis pino-a-pino. Diferem entre si no sincronismo das entradas LD_L e CLR_L (assíncronas no 74x161, síncronas no 74 x163).

O contador 74x169 possui uma lógica interna de geração do próximo estado mais desenvolvida que lhe permite actuar em modo crescente/decrescente. O pino 1 em vez de CLEAR assume agora a função de controle de direcção UP/Down, e os sinais de controle ENP, ENT e TC (RCO) são **active-low**. A lógica da saída **TC_L** para o contador x169 será:

 $TC_L = (QA \cdot QB \cdot QC \cdot QD \cdot (UP/DN_L) ENT_L' + QA' \cdot QB' \cdot QC' \cdot QD' \cdot (UP/DN_L)' ENT_L')'$

Os contadores estão em modo **free-running**. As formas de onda das saídas são representadas com uma inclinação para relembrar que na vida real não ocorrem em tempo zero relativamente ao impulso de relógio CLK. A saída **TC** (**TERMINAL COUNT**) do circuito 74x163 detecta o estado 15, é **active-high** e tem a duração de um período inteiro de relógio, enquanto que a saída CY_L (**CARRY**) do circuito 74x193 detecta também o estado 15, é **active-low** e tem a duração de meio período de relógio.

CONCATENAÇÃO DE MÓDULOS CONTADORES DE 4 BITS

- O contador mais significativo U2 só é habilitado quando o contador U1 atinge o último estado de contagem (15). Neste estado, quando se verificar a próxima transição de CLK, U2 passará para o estado 1 e U1 passará novamente para o primeiro estado (0).
- Para manter o carácter síncrono da interligação os contadores possuem um relógio comum sendo que o Enable de contagem de U2 (ENP e ENT ambos a 1) depende da sinalização da chegada ao estado 15 de U1 através da activação da sua saída TC.

Diagrama lógico de um contador síncrono de **módulo-256** implementado por ligação síncrona de dois contadores 74 x 163 de módulo-16.

CONTADOR DE 4 BITS EM PAL 22V10

```
4-Bit Counter;
Name
Device
         p22v10 ;
        INPUT PINS ****/
             clk
PIN
             load
PIN
             !clear
PIN
             enable
PIN
PIN [5..8] = [D0..3]
/* **** OUTPUT PINS *****/
PIN
     14
               tc
                     [Q0..3];
     [18..15]
PIN
```

```
Troço de código
CUPL para um
CONTADOR
crescente de 4 bits
com CLEAR e LOAD
síncronos.
```


Símbolo lógico da

PAL assinalando os pinos de entrada e saída utilizados.

/* ***** BODY ****** */
<pre>field in = [D03];</pre>
<pre>field output = [Q03];</pre>
<pre>field mode = [!clear, load, enable];</pre>
<pre>clr = mode:[03];</pre>
<pre>idle = mode:4;</pre>
<pre>count = mode:5;</pre>
ld = mode:[67];
output.AR = 'b'0;
output.SP = 'b'0;
Sequence output{
<pre>\$repeat i=[015]</pre>
<pre>present 'h'{i}</pre>
<pre>if count next 'h'{(i+1)%16};</pre>
<pre>if clr next `h'{0};</pre>
<pre>if idle next 'h'{i};</pre>
\$repend
}
tc= output: 'h'f;
<pre>append output.D = in & load ;</pre>

Tabela funcional e modos de funcionamento dependentes da configuração das entradas.

Mode	CLEAR_L (3)	LOAD (2)	ENABLE (4)	FUNÇÃO
03	0	-	_	CLEAR
4	1	0	0	IDLE
5	1	0	1	COUNT
67	1	1	_	LOAD

15 14 13 Diagrama de transição de estados.

Diagrama lógico do contador módulo-10 e da lógica auxiliar.

A saída **Terminal Count** (TC) detecta o estado 15 e é usada para forçar o próximo estado a 6, recomeçando a contagem módulo-10 até 15 como patente no diagrama temporal.

A forma de onda em TC tem um décimo da frequência do sinal CLK.

LOAD síncrono – carregamento em

paralelo do número 6.

Diagrama temporal da saída TC nos vários estados do contador.

Diagrama lógico do contador e da lógica auxiliar.

A saída **terminal count** (TC) não é utilizada nesta aplicação. A detecção do estado 12 (1100) é feita com uma porta NAND de apenas 2 entradas (em vez das 4 usuais) — genericamente, para se detectar uma contagem **n** num contador binário que conta de **0** a **n** basta utilizar um AND dos bits que são 1 nessa contagem.

LOAD síncrono -

Diagrama temporal da entrada LD_L nos vários estados do contador.

Diagrama de blocos do contador e da lógica auxiliar.

Diagrama de transição de estados evidenciando os estados 3, 7 e 11 em que se fará a acção LOAD, e a traço interrompido os estados inválidos 4, 8 e 12.

O contador está normalmente em modo de contagem crescente, com as entradas de Enable (ENP e ENT) activas a 1.

Há que detectar (descodificar) o estado actual (E_A) 3, 7 e 11 para se fazer, na próxima transição de CLK, o carregamento síncrono em paralelo (LOAD) dos números 5, 9 e 13 respectivamente, correspondentes a cada estado seguinte (E_s).

Estados E _A em que LD_L está activo									
E _A	Q_D	Q_{C}	Q_B	Q _A	Es	D	С	В	Α
3	0	0	1	1	5	0	1	0	1
7	0	1	1	1	9	1	0	0	1
11	1	0	1	1	13	1	1	0	1

E_A – Estado actual E_S – Estado seguinte

Na acção LOAD, A e B tomarão sempre os valores 0 e 1 respectivamente.

Tabela de transição de estados (elaborada para os estados actuais 3, 7, 11).

Mapa de Karnaugh e equação lógica do sinal LD (LOAD) interpretado como active-high.

Diagrama lógico do contador evidenciando os circuitos $\textbf{E}_{\textbf{A}} \ \textbf{e} \ \textbf{E}_{\textbf{S}} \ \textbf{como} \ \textbf{denotados} \ \textbf{no} \ \textbf{diagrama} \ \textbf{de} \ \textbf{blocos}.$

$$C = Q_C'$$

$$D = Q_C + Q_D$$

Mapas de Karnaugh e equações das entradas C e D para a acção de LOAD. Os valores das entradas A e B são fixos (1 e 0 respectivamente) como se verifica pela tabela do slide anterior.

$$LD = \Sigma (3, 7, 11) = Q_A Q_B (Q_C' + Q_D')$$

O sinal LD da equação lógica em cima é invertido na implementação final por ser de natureza **active-low** (LD_L).

LSD – 8 ÍNDICE 1 8-51

- 1. LSD-8 CIRCUITOS SEQUENCIAIS
- 2. Registo Simples de Carregamento Paralelo
- 3. 74x175 Quad D-type Positive Edgde-triggered Flip-flop with Clear
- 4. Registo de Carregamento Paralelo com Saídas Tri-state
- 5. Diagramas Temporais para a Operação de Escrita em Latch e em Flip-flop
- 6. Registos com Barramento de Dados Bidireccional
- 7. RAM Estática Estrutura Interna
- 8. RAM Estática com Barramentos de Dados Unidireccional e Bidireccional
- 9. Comunicação de Dados entre Registos
- 10. Símbolos Lógicos de Registos MSI Tradicionais
- 11. Registo de 8 bits em PAL 22V10
- 12. 74x377 Octal D-type Positive Edgde-triggered Flip-flop with Data Enable
- Registo de Deslocamento (Shift Register)
- 14. Registo de Deslocamento Bidireccional
- 15. 74x195 4-Bit Parallel Access Shift Register
- 16. 74x195 Estrutura Interna
- 17. 74x194 4-bit Universal Shift Register
- 18. Shift Register de 8 Bits em PAL 22V10
- 19. Aplicação de Shift-Registers detecção de sequências
- 20. Aplicação de Shift-Registers Transmissão Série de Informação
- 21. Transmissão Série de Informação com Conversão Paralelo-série e Série-paralelo
- 22. Aplicação de Shift-Registers Contador em Anel
- 23. Contador em Anel com 74x194
- 24. Contador em Anel Auto-corrector com 74x194
- 25. Aplicação de Shift-Registers Gerador de Código Cíclico (Johnson ou Moebius)

LSD – 8 ÍNDICE 2

- Aplicação de Shift-Registers Contador Linear Feedback Shift Register (LFSR)
- 27. Equações de Realimentação dos Linear Feedback Shift Register (LFSR)
- 28. Aplicação de Shift-Registers Somador Série de 4 bits
- 29. Contador Assíncrono por Pulsação (Ripple Counter)
- 30. Contador Síncrono
- 31. Contador Síncrono Programável de 3 bits
- 32. Contador Síncrono Programável de 3 bits Up e Down
- 33. Contador Síncrono Programável de 3 bits com Load e Clear
- 34. Contador Programável de 3 bits Último Andar e Saídas de Controle
- 35. Estrutura Interna de um Contador Síncrono Programável de 3 bits
- 36. Entrada de Controle Clear em Variantes Assíncrona e Síncrona
- 37. Efeitos na Temporização de uma Entrada de Controle em Modo Assíncrono e Síncrono
- 38. Contador Módulo-5 Diagrama de Estados e Tabela de Transição de Estados
- 39. Contador Módulo-5 Estados Inválidos e Programação dos Flip-flops
- 40. Contador Módulo-5 Diagramas Lógico e Temporal
- 41. 74x192/3 Up/Down 4-bit Decade/Binary Counters
- 42. 74x163 Synchronous Presettable 4-bit Binary Counter
- 43. Diagrama Temporal observado nas Entradas e Saídas do Contador 74x163
- 44. Contadores 74x163 e 74x193 Diagrama Temporal dos Sinais TC e CY_L
- 45. Concatenação de Módulos Contadores de 4 Bits
- 46. Contador de 4 bits em PAL 22V10
- 47. Contador Módulo-10 com Sequência de Contagem Repetitiva 6..15
- 48. Contador Módulo-7 com Sequência de Contagem Repetitiva 6..12
- 49. Contador com Sequência de Contagem 0 a 15 sem passar pelas contagens 4, 8 e 12
- 50. Contador com Sequência de Contagem 0 a 15 sem passar pelas contagens 4, 8 e 12

Instituto Superior de Engenharia de Lisboa

- 51. LSD 8 Índice 1
- 52. LSD 8 Índice 2
- 53. LSD 8 Índice 3

