Theory of Computation Paper Code: CS-202

Content

- Formal Language
- Grammar
- Equivalence of Grammar

Kleen or Star Closure Σ^*

If w is a string, then w^n stands for the string obtained by repeating w n times.

$$w^0 = \lambda$$

 Σ^* =set of string obtained by concatening zero or more symbols from Σ .

If
$$\Sigma = \{a,b\}$$

$$\Sigma^{0}=\{\lambda\}$$

$$\Sigma^{l}=\{a,b\}$$

$$\Sigma^{2}=\{aa,ab,ba,bb\}.$$

$$\sum^* = \{ \sum^0 U \sum^1 U \sum^2 U \dots ... \}$$

$$\Sigma^+ = \Sigma^* - \{\lambda\}$$

Note: Σ is finite by assumption, Σ^* and Σ^+ will always be infinite.

Language

Language is defined as a subset of Σ^* .

Any set of strings on the alphabet Σ can be considered as a language

```
Example 1: \Sigma = \{a,b\}

\Sigma^* = \{\lambda, a, b, aa, ab, ba, aaa, aab, .....\}

Then the set S = \{a, aa, aab\} is a language on \Sigma.
```

Example 2: $L=\{a^nb^n: n\geq 0\}$ is also a language on Σ . The strings ab, aabb, aaabbb $\in L$ While abb $\notin L$.

Language (Continue...)

Note: Since languages are sets, so the union, intersection and difference of two languages are immediately defined.

Operations on languages

Set operations:

$$\begin{array}{l} L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\} \text{ is union} \\ L_1 \cap L_2 = \{x \mid x \in L_1 \text{ and } x \in L_2\} \text{ is intersection} \\ L_1 - L_2 = \{x \mid x \in L_1 \text{ and } x \not\in L_2\} \text{ is difference} \\ \overline{L} = \Sigma^* - L \text{ is complement} \end{array}$$

String operations:

```
\begin{split} L^R &= \{w^R \mid w \in L\} \ \text{ is "reverse of language"} \\ L_1L_2 &= \{xy \mid x \in L_1, \, y \in L_2\} \text{ is "concatenation of languages"} \end{split}
```

$$L^* = L^0 \cup L^1 \cup L^2 \dots$$
 is "Kleene star" or "star closure" $L^+ = L^1 \cup L^2 \dots$ is positive closure

Grammars

A grammar G is defined as a quadruple:

$$G = (V, T, S, P)$$

Where V is a finite set of objects called variables T is a finite set of objects called terminal symbols $S \in V$ is a special symbol called the Start symbol P is a finite set of productions or "production rules"

Sets Vand T are nonempty and disjoint

All production rules are of the form

$$X \rightarrow Y$$

Where,
$$X \in (V \cup T)^+$$

 $Y \in (V \cup T)^*$

& the productions are applied as follows:

Suppose

$$w=uXv$$

and
$$X \rightarrow y$$

$$\Rightarrow$$
 z=uyv

$$W \Longrightarrow Z$$

We say that w derives z or z is derived from w.

A production can be used wherever it is applicable, if

$$w_1 \Rightarrow w_2 \Rightarrow w_3 \Rightarrow w_4 \Rightarrow \dots \Rightarrow w_n$$

we say that \Rightarrow $w_1 \stackrel{*}{\Rightarrow} w_n$

Here, * indicates that an unspecified number of steps (including zero) can be taken to derive $\mathbf{w_n}$ from $\mathbf{w_1}$.

Note:

- 1. By applying the production rules in a different order, a given grammar can normally generate many strings.
- 2. The set of all such strings is the language defined or generated by the grammar.

Grammars

What is the relationship between a language and a grammar?

Let
$$G = (V, T, S, P)$$

The set

$$L(G) = \{w \in T^* : S \stackrel{*}{\Rightarrow} w\}$$

is the language generated by G.

If $w \in L(G)$ then the sequence

$$S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow w_3 \Rightarrow w_4 \Rightarrow \dots \Rightarrow w_n \Rightarrow w$$

is a derivation of the sentence w.

The strings S, w_1 , w_2 , w_n which contain variable as well as terminals are called "sentential form" of the derivation and 'w' which contain all terminal is called sentence.

Consider the grammar

$$G_1 = (\{S\}, \{a,b\}, S, P)$$

With P is given by

- 1. S→aSb
- 2. $S \rightarrow \lambda$

$$1 \qquad 1 \qquad 2$$

Then $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

So we can write

S⇒aabb

String aabb is a sentence and aaSbb is a sentential form.

So,
$$L(G_1) = \{a^n b^n : n \ge 0\}$$

Consider the grammar

$$G_2 = (\{S,A\},\{a,b\},S,P_1)$$

With P_1 given by

- 1. $S \rightarrow aAb$
- 2. $S \rightarrow \lambda$
- 3. $A \rightarrow aAb$
- 4. $A \rightarrow \lambda$

Then $S \Rightarrow aAb \Rightarrow aaAbb \Rightarrow aabb$

So we can write

S⇒aabb

String aabb is a sentence and aaAbb is a sentential form.

So, $L(G_2) = \{a^n b^n : n \ge 0\}$

Equivalence of grammar

 Two grammars are equivalent if they generate the same language.

In the above example G₁ and G₂ are equivalent

Find the grammar that generates language

$$L = \{a^nb^{n+1}: n \ge 0\}$$

Let
$$G = (\{S,A\},\{a,b\},S,P)$$

With P:

- 1. $S \rightarrow Ab$
- 2. $A \rightarrow aAb$
- 3. $A \rightarrow \lambda$

Take $\Sigma = \{a,b\}$ and let $n_a(w)$ and $n_b(w)$ denotes the number of a's and b's in the string w

The grammar G with production

- 1. $S \rightarrow SS$
- 2. $S \rightarrow aSb$
- 3. $S \rightarrow bSa$
- 4. $S \rightarrow \lambda$

Generate L(G).

$$L = \{w : n_a(w) = n_b(w)\}$$

Suggested readings

- 1. An introduction to FORMAL LANGUAGES and AUTOMATA by PETER LINZ.
- 2. Introduction to Automata Theory, Languages, And Computation by JOHN E. HOPCROFT, RAJEEV MOTWANI, JEFFREY D. ULLMAN
- 3. Theory of computer science: automata, languages and computation by K.L.P MISHRA