RTFT Ch9 Schuer's Lemma

Date: April 13 Made by Eric

In this note, G is always a group.

In this note, V is always a vector space.

Definitions

Definition 1. Let $\mathbb{C}G$ be a group algebra

$$\mathbb{Z}(\mathbb{C}G) = \{ z \in \mathbb{C}G | \forall v \in \mathbb{C}G, vz = zv \}$$

Theorems

Theorem 1. Let V and W be two irreducible $\mathbb{C}G$ -module. Let ϕ be a $\mathbb{C}G$ -homomorphism from V to W

 ϕ is either an $\mathbb{C}G$ isomorphism or a trivial $\mathbb{C}G$ homomorphism

Proof. Because $N(\phi)$ is a submodule of V, and V is irreducible, we know either $N(\phi)=\{0\}$ or $N(\phi)=V$

Case 1: $N(\phi) = V$

 ϕ is a trivial $\mathbb{C}G$ -homomorphism

Case 2: $N(\phi) = \{0\}$

Because $R(\phi)$ is a submodule of W, we know either $R(\phi) = \{0\}$ or $R(\phi) = V$

If
$$R(\phi) = \{0\}$$
, then $N(\phi) = V \neq \{0\}$ CaC

So
$$R(\phi) = W$$

Then ϕ is an $\mathbb{C}G$ isomorphism

Theorem 2. (Schur's Lemma) Let V and W be two irreducible $\mathbb{C}G$ -module. Let ϕ be a $\mathbb{C}G$ isomorphism from V to W

$$\phi = \lambda I_V$$

Proof. Solve the characteristic polynomial of ϕ

We have an eigenvalue λ of ϕ

So
$$N(\phi - \lambda I_V) \neq \{0\}$$

Then $N(\phi - \lambda I_V) = V$

This give us $\forall v \in V, \phi v = \lambda I_V v = \lambda v$

Corollary 2.1. Let V e a non-trivial $\mathbb{C}G$ -module, where every $\mathbb{C}G$ -homomorphism ϕ from V to V satisfy $\phi = \lambda I_V$

V is irreducible

Proof. Assume *V* is reducible

Write $V = U \oplus W$, where U and W are both submodule

Let $\phi: V \to W$ be defined by $u + w \mapsto w$

 $\phi u = 0 \text{ and } \phi w = w \implies \phi \neq \lambda I_V, \forall \lambda \in \mathbb{C} \text{ CaC}$

Corollary 2.2. Let $\rho: G \to GL(n,\mathbb{C})$ be a representation of G. Let $S = \{A \in M_n(\mathbb{C}) | \forall g \in G, A\rho(g) = \rho(g)A\}$

 ρ is irreducible if and only if $\forall A \in S, A = \lambda I_n$

Proof. Let $V = \mathbb{C}^n$ be the $\mathbb{C}G$ -module defined by $gv = \rho(g)v$

 (\longleftarrow)

Let $\pi: V \to V$ be a $\mathbb{C}G$ -homomorphism and $g \in G$

$$\pi \rho(g)v = \rho(g)\pi v$$

Let E be the standard ordered basis of V, and $v \in V$

$$[\pi]_E \rho(g)v = [\pi]_E [\rho(g)v]_E = [\pi\rho(g)v]_E = [\rho(g)\pi v]_E = \rho(g)[\pi]_E v$$

So
$$[\pi]_E \rho(g) = \rho(g) [\pi]_E$$

Then $[\pi]_E \in S$

So $\pi = \lambda I_V$

 (\longrightarrow)

Let $A \in S$

$$A(qv) = A\rho(q)v = \rho(q)Av = q(Av)$$

So L_A is a $\mathbb{C}G$ -homomorphism on V

Because V is irreducible, $R(L_A) = \{0\}$ or V

If
$$R(L_A) = 0$$
, then $L_A = 0I_V$ and $A = O$

If $R(L_A) = V$, then L_A is an $\mathbb{C}G$ -isomorphism from V to V

By theorem 2, $L_A = \lambda I_V$, so $A = \lambda I_n$

Theorem 3. Let G be finite abelian, and V be an irreducible $\mathbb{C}G$ -module

$$dim(V) = 1$$

Proof. Assume dim(V) = n > 2

Let $g \in G$

$$\forall h \in G, hgv = (hg)v = (gh)v = ghv$$

This give us that g is a $\mathbb{C}G$ homomorphism from V to V, so by Schur's Lemma, we know that $\exists \lambda_g \in \mathbb{C}, g = \lambda_g I_V$

Let $\alpha = \{v_1, v_2\}$ be a basis of V

 $span(v_1)$ is a submodule of V, since $\forall g \in G, gv_1 = \lambda_g v_1 \in span(v_1)$

Theorem 4. Let V be a irreducible $\mathbb{C}G$ -module, and $\mathbb{C}G$ be a group algebra, and $z \in Z(\mathbb{C}G)$

 $\phi: v \mapsto zv$ is a $\mathbb{C}G$ -homomorphism, satisfy $\exists \lambda \in \mathbb{C}, \forall v \in V, \phi v = \lambda v$

Proof. Let $g \in G$

$$g\phi v = gzv = (gz)v = (zg)v = zgv = \phi gv$$

So ϕ is a $\mathbb{C}G$ -homomorphism

Because V is irreducible, by Schur's Lemma, $\exists \lambda \in \mathbb{C}, \forall v \in V, \phi v = \lambda v$

Theorem 5. If there exists a faithful irreducible $\mathbb{C}G$ -module, then Z(G) is cyclic Proof. Let $z \in Z(G)$

Because $\forall g \in G, zg = gz$, so $z \in \mathbb{Z}(\mathbb{C}G)$

We know there exists $\lambda \in \mathbb{C}$ s.t. $\forall v \in V, zv = \lambda v$

Let $\phi: Z(G) \to \mathbb{C}$ defined by $z \mapsto \lambda_z$, where $\forall v \in V, zv = \lambda_z v$ and $v \in V$

Let $z, l \in Z(G)$

$$zlv = \lambda_z lv = \lambda_z \lambda_l v$$
, so $\phi(zl) = \phi(z)\phi(l)$

This give us ϕ is a group homomorphism

$$\phi(z) = \phi(l) \implies \lambda_z = \lambda_l \implies lv = \lambda_l v = \lambda_z v = zv \implies z^{-1}lv = z^{-1}zv = v \implies z^{-1}l = e \implies z = l$$

 ϕ is one-to-one

Then
$$Z[G] \simeq \phi[Z(G)] \leq \mathbb{C}^*$$

Finite subgroup of \mathbb{C}^* is cyclic

REMARK:

Z(G) is not cyclic implies that no $\mathbb{C}G$ -module is both faithful and irreducible

But Z(G) is cyclic don't imply anything

Summary

- 1.Between two irreducible $\mathbb{C}G$ -module, a $\mathbb{C}G$ -homomorphism either be trivial or an isomorphism that have eigenspace as the whole space
- 2.To tell that one $\mathbb{C}G$ -module is irreducible, prove that every $\mathbb{C}G$ -homomorphism on it is a scaler multiplier
- 3. To tell that a $\mathbb{F}G$ -module is reducible, show that there exists one submodule
- 4. A Regular $\mathbb{F}G$ -module is faithful
- 5. A Permutation $\mathbb{F}G$ -module is faithful
- 6. A permutation $\mathbb{F}G$ -module that can be expressed as a direct sum of two permutation is reducible

Exercises

1.

Write down the irreducible representation over $\mathbb C$ of the group $C_2, C_3, C_2 \times C_2$