北京邮电大学 2016 年硕士研究生入学考试试题

考试科目:通信原理

请考生注意:①所有答案(包括选择题和填空题)一律写在答题纸上,否则 不计成绩。

②不允许考生使用计算器。

一. 单项选择题 (每空1分,共30分)

按下面的格式在答题纸上填写最佳答案

空格编号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
答案		所有?	答案一	- 律写	左答题	纸上,	否则	不计	成绩!	losso.
空格 编号	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
答案										
空格编号	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)
答案										

● 下列中(1)是解析信号。

A. $Re\{(2+3j)e^{j20\pi t}\}$ B.	. $(2+3j)e^{-j20\pi t}$ C.	$e^{-j2\pi t}$	D. $(2+3j)e^{j20\pi t}$
----------------------------------	----------------------------	----------------	-------------------------

• FM 鉴频器输出噪声的功率谱密度 $P_{n_o}(f)$ 与下列中的(2)成正比。

A. f^2	B. <i>f</i>	C. f ⁻¹	D. f ⁻²
		A CONTRACTOR OF THE CONTRACTOR	

• AM 解调输出信噪比 $\left(\frac{S}{N}\right)$ 。与 AM 的调制指数 a (0 < $a \le 1$) 有关。

具体来说, $\left(\frac{S}{N}\right)$ 是 a 的(3)函数。

А. 凸	B. 凹	C. 单调增	D. 单调减
------	------	--------	--------

• 设模拟基带信号m(t)的希尔伯特变换是 $\hat{m}(t)$,下列中的(4)是m(t)对载频 $\cos(2\pi f_c t)$ 进行上单边带调制后形成的已调信号。

A. $\operatorname{Re}\left\{m(t)e^{j2\pi f_{c}t}\right\}$	B. $\operatorname{Re}\left\{\left[m(t)+j\hat{m}(t)\right]e^{j2\pi f_{c}t}\right\}$
C. Re $\left\{ \left[m(t) - j\hat{m}(t) \right] e^{j2\pi f_{c}t} \right\}$	D. $\operatorname{Re}\left\{\hat{m}(t)e^{j2\pi f_c t}\right\}$

● 设基带调制信号的带宽是 4kHz, FM 已调信号的最大频偏是 8kHz,则 FM 已调信号的带宽近似是(5)kHz。

A. 4 B. 8 C. 16 D. 24

● 设发送数据速率是 10kb/s,则双极性 NRZ 码的主瓣带宽是(6)kHz。

A. 1 B. 5 C. 10 D. 20

● 下列中的(7)是一种常用的正交码。

A. m 序列 B. Gold 码 C. 沃尔什码 D. 格雷码

● 与 QPSK 相比, 采用 OQPSK 可以(8)。

A. 提高系统的频带利用率	B. 降低误比特率
C. 减小已调信号的包络起伏	D. 减小符号间干扰

• 设模拟基带信号 m(t) 的平均功率是 0.25W,则 AM 信号 $s(t) = A_c \left[1 + m(t) \right] \cos \left(2\pi f_c t + \theta \right)$ 的调制效率是(9)。

A. 1/5 B. 1/4 C. 1/3 D. 1/2

• AWGN 信道的带宽是 B (Hz),有用信号功率是 S (W),噪声单边功率谱密度是 N_0 (W/Hz),信道容量是(10) (bit/s)。

$A. B \log_2 \left(1 + \frac{S}{N_0}\right)$	$B. N_0 B \log_2 \left(1 + \frac{S}{N_0 B} \right)$
$C. B \ln \left(1 + \frac{S}{N_0 B} \right)$	D. $B\log_2\left(1+\frac{S}{N_0B}\right)$

● 某A律13 折线编码器的设计输入范围是[-8,+8]V, 若编码器输入的样值为+4.1V, 则编码器输出码组是(11)。

A. 11110001 B. 11110000 C. 01110000 D. 11100000

● 将二进制数排	居经过 HDB3 码编码	马后瓦	戈为…+1000+	1-1000X+1-1
其中的 X 是(<u>12)</u> 。			
A1	B. 0	C.	+1	D. 以上都不是
● 在第一类部分	分响应系统的相关编	码之	前进行预编码	马可以 <u>(13)</u> 。
A. 避免误码传播			B. 降低眼图中	中的峰值畸变
C. 使系统冲激响	应的拖尾按 $\frac{1}{t^2}$ 衰减		D. 降低功率记	普密度的旁瓣
● M 进制数字i	通信系统中,若满足	上下列	条件中的(14)	,则按似然概率最
大判决等效于	F按欧氏距离最近 判)决。		
A. M 个发送符号	先验等概	В.	信道传递函数	无失真
C. M 个星座点等	能量	D.	信道噪声是加	性高斯白噪声
● 在 AWGN 信	道中,对确定信号	g(t)	匹配的匹配滤泡	皮器的冲激响应是
	是最佳采样时刻。			
A. $g(t_0+t)$	B. $g(t_0-t)$	C	$g(t-t_0)$	D. $g(t_0)\delta(t)$
当信道特性²	下理想时,数字基常	节传轴	俞系统的总体作	专递函数将不满足
奈奎斯特准则	川, 此时可在接收端	使用	均衡器来减小	采样点的(16)。
A. 符号间干扰	B. 噪声方差	C.	噪声容限	D. 过零点畸变
● 某带通信号的	り频带范围是[7kHz,	12kH	[z],对其进行:	理想采样,不发生
频谱混叠的量			N.T.	
A. 10kHz	B. 12kHz	C. 2	0kHz	D. 24kHz
● 下列当中, (18)是(7,4)循环码的	生成	多项式。	
A. $x^3 + x$	B. $x^3 + x^2 + x + 1$	C.x	3+1	D. $x^3 + x + 1$
● 无线衰落信道	道的时延扩展越大,	则(1	9)越小。	
A. 相干时间	B. 相干带宽	C.3	8普勒扩展	D. 符号间干扰

● 下列星座图中,采用格雷码映射的是(20)。

A	00	01	10	11	В	00	11	01	10
C	00	01	11	10	D	11	00	01	10

• 与 BPSK 相比, DPSK 可以(21)。

A. 提高频带利用率	B. 采用差分相干解调	
C. 提高抗噪声性能	D. 降低包络起伏	

● 下图是产生 DS-BPSK 信号的原理框图。图中 d(t)是速率为 R_b 的信息信号,c(t) 是速率为 R_c 的扩频信号, $R_c = 16R_b$ 。图中 s(t) 的主瓣带宽是 d(t) 主瓣带宽的(22)倍。

A. 4	B. 8	C. 16	D. 32	
------	------	-------	-------	--

● 设信源符号 X 的概率分布为

$$\begin{pmatrix} X \\ P(x_i) \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ 0.5 & 0.25 & 0.125 & 0.125 \end{pmatrix}$$

下列中的(23)是其哈夫曼编码。

(A)	$\begin{pmatrix} x_1 \\ 1 \end{pmatrix}$	<i>x</i> ₂ 01	x_3 001	$\begin{pmatrix} x_4 \\ 000 \end{pmatrix}$	(B)	$\begin{pmatrix} x_1 \\ 1 \end{pmatrix}$	<i>x</i> ₂ 10	<i>x</i> ₃ 101	$\begin{pmatrix} x_4 \\ 010 \end{pmatrix}$	
(C)	$\begin{pmatrix} x_1 \\ 11 \end{pmatrix}$	x ₂ 01	<i>x</i> ₃ 00	$\begin{pmatrix} x_4 \\ 10 \end{pmatrix}$	(D)	$\begin{pmatrix} x_1 \\ 11 \end{pmatrix}$	x ₂ . 001	<i>x</i> ₃ 0	$\begin{pmatrix} x_4 \\ 1 \end{pmatrix}$	

• 信道传递函数为 $H(f) = |H(f)|e^{i\varphi(f)}$,称 $-\frac{1}{2\pi} \cdot \frac{d}{df} \varphi(f)$ 为(24)特性。

(A) 时延	(B) 相频	(C) 微分	(D) 群时延	
--------	--------	--------	---------	--

● 假设信道噪声相同、平均每比特的信号能量相同,下列调制方式中 误符号率最低的是(25)。

A. 2PSK B. 4ASK C.8PSK D. 16QM

● DSB-SC 利用平方环法提取载波,下列中正确的是(26)。

● (7,4)汉明码用于检错时,全部 127 个非零错误图样中伴随式为零的有 (27)个。

		CONTRACTOR DESCRIPTION OF THE PROPERTY OF THE		
A. 7	B. 15	C.21	D. 78	

● 在 CCITT 建议的准同步数字复接系列(欧洲、中国)中,基群的比特率是(28)kbit/s。

A. 64	B. 1544	C.2048	D. 8448	

● 下列当中, (29)是 4PAM 的眼图。

• 2FSK在 $[0,T_b]$ 内发送 $s_1(t) = \cos(2\pi f_0 t)$ 及 $s_2(t) = \cos[2\pi (f_0 + \Delta)t]$ 之一,其中 $f_0 \gg 1/T_b$ 。能使两个波形保持正交的最小频差为(30)。

A.
$$\Delta = \frac{1}{T_{b}}$$
 B. $\Delta = \frac{1}{2T_{b}}$ C. $\Delta = \frac{3}{2T_{b}}$ D. $\Delta = \frac{3}{4T_{b}}$

二. (12分)

设有随机序列 $\{A_k\}$,其元素以独立等概方式取值于 $\{\pm 1\}$ 。用此随机序列构造一个随机过程 $X(t)=\sum_{k=-\infty}^{\infty}A_k g(t-kT_s)$,其中 $g(t)=\mathrm{sinc}\left(\frac{t}{T_s}\right)$ 。试:

- (1) 求X(t)的均值E[X(t)];
- (2) 求X(t)的自相关函数 $R_X(t,\tau) = E[X(t)X(t+\tau)]$;
- (3) 求 $a(t)=g(t)g(t+\tau)$ 的傅氏变换A(f)在 $f=\pm \frac{1}{T_s},\pm \frac{2}{T_s},\cdots$ 处的值;
- (4) 判断X(t)是否广义平稳。

三. (12分)

图 1 $(f_c \gg B)$

功率谱密度为 $N_0/2$ 的高斯白噪声 $n_{\rm w}(t)$ 通过一个传递函数如图 1 所示的 带通滤波器后成为窄带噪声 $n(t)=n_c(t)\cos 2\pi f_c t - n_s(t)\sin 2\pi f_c t$,试:

- (1) 画出n(t)的功率谱密度图;
- (2) 画出n(t)的复包络 $n_L(t) = n_c(t) + j n_s(t)$ 的功率谱密度图;
- (3) 画出n(t)的同相分量 $n_c(t) = \text{Re}\{n_L(t)\}$ 的功率谱密度图;
- (4) 求出 $y(t) = n_c^2(t) + n_s^2(t)$ 的数学期望 E[y(t)];
- (5) $\sqrt{y(t)}$ 服从什么分布?

四. (12分)

图 2

在图 2 所示的 PAM 系统中,发送信号为 $s(t) = \sum_{k=-\infty}^{\infty} a_k g(t-kT_b)$,其中 a_k 以独立等概方式取值于 $\{\pm 1\}$,基带脉冲 g(t) 的能量谱密度 $E_g(f)$ 如上图 所示。s(t) 叠加了高斯白噪声 $n_w(t)$ 后通过冲激响应为 h(t) 的滤波器,然后在 $t = kT_b$ 时刻采样得到样值 y_k 。试:

- (1) 求发送信号 s(t)的功率谱密度;
- (2) 求发送信号 s(t)的平均功率、平均比特能量;
- (3) 求此系统的频带利用率;
- (4) 若接收滤波器设计为h(t)=g(-t),证明采样点无符号间干扰。

五. (12分)

图 3

某二进制传输系统在 $[0,T_b]$ 内发送 $s_1(t)$ 或 $s_2(t)$ 两种波形之一,如图 3 所示。发送信号叠加了功率谱密度为 $N_0/2$ 的高斯白噪声 $n_w(t)$ 后成为r(t),

再经过冲激响应分别为 $h_1(t)=s_1(T_b-t)$ 、 $h_2(t)=s_2(T_b-t)$ 的滤波器后在 $t=T_b$ 时刻采样,最后输出两个样值的差 y。试求:

- (1) $s_1(t)$ 的能量, $s_1(t)-s_2(t)$ 的能量;
- (2) $s_1(t)$ 与 $s_2(t)$ 之间的归一化相关系数;
- (3) 不考虑噪声,求发送 $s_1(t)$ 时y的值;
- (4) 设噪声在上、下支路的采样值分别是 Z_1 、 Z_2 ,求 $E\left[Z_1^2\right]$ 、 $E\left[\left(Z_1-Z_2\right)^2\right]$ 。

六. (12分)

图 4

图 4 是某 QPSK 解调器在归一化正交基下的判决域。图中每个星座点到 坐标轴的距离都是 2,阴影区的宽度也是 2。若接收信号落入阴影区,则 判决输出是 "e",否则按欧氏距离判为最近的星座点。假设信道白高斯 噪声的功率谱密度为 $N_0/2=1/2$ 。试求发送 s_1 条件下,判决输出为 s_1 、 s_2 、 s_3 以及 e 的概率。

七. (10分)

已知带通信道的频带范围是 100MHz~110MHz, 欲通过此信道传输 32Mb/s 的数据, 试给出系统设计,包括确定调制进制数、符号速率、滚降系数, 画出调制、解调框图。

八. (10分)

某 3 电平量化器的输入是 X,输出是 Y。已知 X 的概率密度函数为

$$f(x) = \begin{cases} \frac{2x}{9}, & 0 \le x \le 3\\ 0, & \text{if } 0 \le x \end{cases}$$

当 X 的值落在[0,1)、[1,2)、[2,3]时, Y 的值分别是 0.5、1.5、2.5。试求:

- (1) 量化输入信号的功率 $E[X^2]$;
- (2) 量化输出 Y各可能取值的出现概率;
- (3) 量化输出 Y 的平均功率 $E[Y^2]$;
- (4) 量化输出的均方误差 $E[(Y-X)^2]$ 。

九. (10分)

设 X、Y 是两个独立的二进制随机变量,均等概取值于 $\{\pm 1\}$ 。令 Z=X+Y,则 Z 是一个取值于 $\{-2,0,+2\}$ 的三进制随机变量。试求:

- (1) H(X) 、 <math>H(Y) 、 H(Z) ;
- (2) 联合熵 H(X,Y)、H(X,Y,Z)、H(X,Z);
- (3) 互信息I(X;Y)、I(X;Z)、I(X,Y;Z)。

十. (10分)

已知(7,4)线性分组码的生成矩阵为

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

- (1) 写出该码的监督矩阵 H:
- (2) 写出该码的最小码距;
- (3) 若接收码组为 y=(1101101), 计算相应的伴随式 (校正子) s 以及译码输出的码字 \hat{c} :
- (4) 若另有一个接收码组 $\tilde{y} \neq y$,其伴随式与y=(1101101)的伴随式相等,问 \tilde{y} 与y之间的汉明距离最小是多少?

十一. (10分)

已知某卷积码的生成多项式为 $g_1(x)=1+x+x^2$ 、 $g_2(x)=1+x^2$ 。编码器将 6 个输入比特 $u_0u_1\cdots u_5$ 补充尾比特 00 后进行编码,编码输出的 16 个比特经过 BSC 信道传输。试:

- (1) 画出编码器框图;
- (2) 画出该卷积码的网格图 (要求从全零状态出发,到全零状态结束):
- (3) 若维特比译码器收到的序列为 0001 1000 0000 1011, 写出最大似然路 径的累积汉明距度量以及所对应的编码器输入信息比特($u_0u_1\cdots u_s$)。

十二. (10分)

图 5 中两个 m 序列发生器的时钟速率都是 1000Hz。所产生的两个序列 $\{a_n\}$ 、 $\{b_n\}$ 周 期 都 是 7, 已 知 在 $n=0,1,2,\cdots,6$ 这 一 个 周 期 内 $a_0a_1\cdots a_6=1011100$, $b_0b_1\cdots b_6=0011101$ 。a(t)、b(t)分别是由 $\{a_n\}$ 、 $\{b_n\}$ 形成的幅度为±1的双极性 NRZ 信号。试画出(标出必要的数值):

- (1) m 序列发生器 1 和 m 序列发生器 2 的框图;
- (2) a(t)的自相关函数;
- (3) c(t)的波形;
- (4) c(t)的自相关函数。