Bap. 1 (7305)

- **1.** Запишите столбец координат элемента $f(x) = 5x^2 4x$ в базисе $e_1(x) = x^2, \ e_2(x) = x, \ e_3(x) = 1.$
- **2.** Является ли набор векторов $e_1 = (-1, -3, -1)^T$, $e_2 = (1, 1, 2)^T$, $e_3 = (3, 1, 7)^T$ базисом в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (7, -8, 7)^T$ в базисе $f_1 = (0, 1, -2)^T$, $f_2 = (1, -1, 1)^T$, $f_3 = (-2, 2, -1)^T$.
- 4. Пусть V евклидово пространство всех многочленов над $\mathbb R$ степени $\leqslant 2$ со скалярным произведением $(f,g)=\sum\limits_{k=0}^2 p(k)q(k).$ Найдите ортогональный базис пространства V.
- **5.** Найти координаты столбца $x = (3, 3, -4)^T$ в ортогональном базисе $f_1 = (1, -1, 1)^T$, $f_2 = (-1, -3, -2)^T$, $f_3 = (-5, -1, 4)^T$
- **6.** Являются ли ортогональными многочлены 4x+1 и x+1 относительно скалярного произведения (f,g)=f(0)g(0)+f(1)g(1)?

Bap. 3 (7305)

- 1. Запишите столбец координат элемента $f(x) = -4x^2 6x + 8$ в базисе $e_1(x) = x^2$, $e_2(x) = x$, $e_3(x) = 1$.
- **2.** Является ли набор векторов $e_1 = (-5, -1, 1)^T,$ $e_2 = (-3, 3, 1)^T, e_3 = (-5, 8, 2)^T$ базисом в \mathbb{R}^3 ?
- 3. Найти координаты столбца $x = (0,2,7)^T$ в базисе $f_1 = (1,-2,-3)^T$, $f_2 = (-1,2,4)^T$, $f_3 = (2,-3,-4)^T$.
- 4. Пусть V евклидово пространство всех многочленов над $\mathbb R$ степени $\leqslant 2$ со скалярным произведением $(f,g)=\sum\limits_{k=0}^2 p(k)q(k).$ Найдите ортогональный базис пространства V.
- **5.** Даны столбцы $a = (3, -3, -1, -1)^T$ и $b = (-2, 2, 4, 4)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- **6.** Являются ли ортогональными многочлены 3x-1 и x+2 относительно скалярного произведения (f,g)=f(-1)g(-1)+f'(-1)g'(-1)?

Bap. 2 (7305)

- 1. Запишите столбец координат элемента $\begin{pmatrix} 8 & 4 \\ 9 & 6 \end{pmatrix}$ в базисе $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- **2.** Является ли набор векторов $e_1 = (2, -2, 1)^T$, $e_2 = (6, -7, 3)^T$, $e_3 = (1, -3, 1)^T$ базисом в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (0, -3, -5)^T$ в базисе $f_1 = (1, 2, 2)^T, \quad f_2 = (0, 1, 2)^T, \quad f_3 = (1, 1, 1)^T.$
- 4. Пусть V евклидово пространство всех многочленов над $\mathbb R$ степени $\leqslant 2$ со скалярным произведением $(f,g)=\sum\limits_{k=0}^2 p(k)q(k).$ Найдите ортогональный базис пространства V.
- 5. Найти координаты столбца $x = (-4, -4, 3)^T$ в ортогональном базисе $f_1 = (-2, -4, -1)^T$, $f_2 = (-3, 1, 2)^T$, $f_3 = (-1, 1, -2)^T$ 6. Являются ли ортогональными многочлены $2x^2 + 3x 2$
- 6. Являются ли ортогональными многочлены $2x^2+3x-2$ и $-2x^2+2x+1$, если скалярное произведение (f,g) задано как сумма произведений коэффициентов f и g при соответствующих степенях x?

Bap. 4 (7305)

- 1. Запишите столбец координат элемента $\begin{pmatrix} 1 & -6 \\ 4 & -8 \end{pmatrix}$ в базисе $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- **2.** Является ли набор векторов $e_1 = (-7, -3, 8)^T,$ $e_2 = (2, 1, -3)^T, e_3 = (4, 3, -8)^T, e_4 = (3, -1, 1)^T$ линейно независимым и/или системой образующих в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (4, -9, 0)^T$ в базисе $f_1 = (1, -1, 1)^T$, $f_2 = (2, -1, 2)^T$, $f_3 = (1, 1, 2)^T$.
- 4. Пусть V линейное пространство всех многочленов над $\mathbb R$ степени $\leqslant 5$, а ν билинейная форма на V, заданная формулой $\nu(p,q) = \sum\limits_{k=1}^n p(k)q(k)$. При каких значениях n форма ν является скалярным произведением на V?
- **5.** Даны столбцы $a = (3, 2, -4, 2)^T$ и $b = (-5, -4, 5, 5)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- 6. Являются ли ортогональными многочлены x-2 и x+1 относительно скалярного произведения $(f,g)=\int_0^3 f(x)g(x)\,dx?$

Bap. 5 (7305)

- 1. Запишите столбец координат элемента $f(x) = -4x^2 8x 5$ в базисе $e_1(x) = 1,$ $e_2(x) = x, \, e_3(x) = x^2.$
- **2.** Является ли набор векторов $e_1 = (-2, -2, -6)^T, e_2 = (3, 1, 1)^T, e_3 = (2, 1, 2)^T$ базисом в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (9,6,0)^T$ в базисе $f_1 = (1,1,0)^T$, $f_2 = (-3,-3,1)^T$, $f_3 = (1,2,-1)^T$.
- **4.** Пусть V евклидово пространство всех матриц размера 5×6 со скалярным произведением $(A,B)={
 m Tr}\,A^TB.$ Найдите ортогональный базис пространства V.
- **5.** Найти координаты столбца $x = (3, -5, -3)^T$ в ортогональном базисе $f_1 = (1, -1, 2)^T$, $f_2 = (-4, -2, 1)^T$, $f_3 = (1, -3, -2)^T$
- 6. Являются ли ортогональными многочлены 2x+1 и 4x-3 относительно скалярного произведения (f,g)=f(0)g(0)+f(1)g(1)?

Bap. 7 (7305)

- **1.** Запишите столбец координат элемента $f(x) = -3x^2 + 3x 5$ в базисе $e_1(x) = x^2$, $e_2(x) = x$, $e_3(x) = 1$.
- **2.** Является ли набор векторов $e_1 = (-5,2,2)^T,$ $e_2 = (-3,1,-1)^T, \ e_3 = (-2,1,2)^T$ базисом в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (6, 9, -8)^T$ в базисе $f_1 = (1, 2, -1)^T, f_2 = (1, 2, 0)^T, f_3 = (-1, -1, 2)^T.$ **4.** Пусть V линейное пространство всех многочленов
- 4. Пусть V линейное пространство всех многочленов над $\mathbb R$ степени $\leqslant 5$, а ν билинейная форма на V, заданная формулой $\nu(p,q) = \sum\limits_{k=1}^n p(k)q(k)$. При каких значениях n форма ν является скалярным произведением на V?
- **5.** Найти координаты столбца $x = (5,1,-3)^T$ в ортогональном базисе $f_1 = (-2,-3,1)^T$, $f_2 = (-3,3,3)^T$, $f_3 = (-4,1,-5)^T$
- 6. Являются ли ортогональными многочлены x-4 и x-3 относительно скалярного произведения (f,g)=f(-1)g(-1)+f'(-1)g'(-1)?

Bap. 6 (7305)

- 1. Запишите столбец координат элемента $\begin{pmatrix} -8 & -7 \\ 8 & -8 \end{pmatrix}$ в базисе $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- **2.** Является ли набор векторов $e_1 = (-7, 2, -2)^T,$ $e_2 = (2, 2, 1)^T, e_3 = (7, 4, 3)^T, e_4 = (-5, -2, -2)^T$ линейно независимым и/или системой образующих в \mathbb{R}^{3} ?
- **3.** Найти координаты столбца $x = (7, -9, 5)^T$ в базисе $f_1 = (1, -1, 1)^T$, $f_2 = (-1, 1, 0)^T$, $f_3 = (-3, 4, -1)^T$. **4.** Пусть V евклидово пространство всех мат-
- **4.** Пусть V евклидово пространство всех матриц размера 5×6 со скалярным произведением $(A,B)={
 m Tr}\,A^TB.$ Найдите ортогональный базис пространства V.
- **5.** Найти координаты столбца $x = (5,4,4)^T$ в ортогональном базисе $f_1 = (3,2,-1)^T,$ $f_2 = (-2,1,-4)^T,$ $f_3 = (-1,2,1)^T$
- **6.** Являются ли ортогональными многочлены $3x^2-4x+1$ и x^2-x-1 , если скалярное произведение (f,g) задано как сумма произведений коэффициентов f и g при соответствующих степенях x?

Bap. 8 (7305)

- 1. Запишите столбец координат элемента $\begin{pmatrix} 3 & 2 \\ 9 & -4 \end{pmatrix}$ в базисе $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- **2.** Является ли набор векторов $e_1 = (3, 2, -2, 1)^T,$ $e_2 = (7, 8, -5, 3)^T, e_3 = (8, 6, -5, 3)^T$ линейно независимым и/или системой образующих в \mathbb{R}^4 ?
- **3.** Найти координаты столбца $x = (-2, 2, -2)^T$ в базисе $f_1 = (0, 1, -1)^T$, $f_2 = (1, -2, 3)^T$, $f_3 = (1, -1, 3)^T$.
- **4.** Пусть V евклидово пространство всех матриц размера 5×6 со скалярным произведением $(A,B) = {\rm Tr}\, A^T B$. Найдите ортогональный базис пространства V.
- **5.** Даны столбцы $a = (5,3,3,-3)^T$ и $b = (-5,-5,-2,2)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- 6. Являются ли ортогональными многочлены x-3 и -x+1 относительно скалярного произведения $(f,g)=\int_0^3 f(x)g(x)\,dx?$

Bap. 9 (7305)

- **1.** Запишите столбец координат элемента $f(x)=2x^2+8x+3$ в базисе $e_1(x)=1,\ e_2(x)=x,\ e_3(x)=x^2.$
- **2.** Является ли набор векторов $e_1 = (-2,1,1)^T$, $e_2 = (-8,3,-1)^T$, $e_3 = (5,-1,5)^T$, $e_4 = (3,-1,1)^T$ линейно независимым и/или системой образующих в \mathbb{R}^{3} ?
- 3. Найти координаты столбца $x = (-1, -6, 2)^T$ в базисе $f_1 = (1, 3, -2)^T$, $f_2 = (1, 3, -1)^T$, $f_3 = (0, 1, -1)^T$.
- **4.** Пусть V евклидово пространство всех многочленов над \mathbb{R} степени $\leqslant 2$ со скалярным произведением $(f,g)=\int\limits_0^1 f(t)g(t)\,dt.$ Найдите ортогональный базис пространства V.
- **5.** Даны столбцы $a = (2, -1, -3, -2)^T$ и $b = (-4, 3, 5, 5)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- **6.** Являются ли ортогональными многочлены x-1 и x-2 относительно скалярного произведения (f,g)=f(0)g(0)+f(1)g(1)?

Bap. 11 (7305)

- **1.** Запишите столбец координат элемента $f(x) = -10x^2 8x + 6$ в базисе $e_1(x) = x^2$, $e_2(x) = x$, $e_3(x) = 1$.
- **2.** Является ли набор векторов $e_1 = (-3, 8, -6)^T$, $e_2 = (3, -5, 7)^T$, $e_3 = (2, -3, 6)^T$, $e_4 = (1, -2, 2)^T$ линейно независимым и/или системой образующих в \mathbb{R}^3 ?
- 3. Найти координаты столбца $x = (-2,5,2)^T$ в базисе $f_1 = (0,1,-1)^T, f_2 = (1,-3,1)^T, f_3 = (-1,4,-1)^T.$ 4. Пусть V евклидово пространство всех мат-
- 4. Пусть V евклидово пространство всех матриц размера 5×6 со скалярным произведением $(A,B)={
 m Tr}\,A^TB$. Найдите ортогональный базис пространства V.
- **5.** Даны столбцы $a = (2, 2, -1, 2)^T$ и $b = (3, 5, -3, -3)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- **6.** Являются ли ортогональными многочлены x+1 и x-2 относительно скалярного произведения (f,g)=f(1)g(1)+f'(1)g'(1)?

Bap. 10 (7305)

- 1. Запишите столбец координат элемента $\begin{pmatrix} -7 & 9 \\ -1 & 0 \end{pmatrix}$ в базисе $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- **2.** Является ли набор векторов $e_1 = (1, -1, 1, 1)^T,$ $e_2 = (-1, 1, -2, -1)^T, e_3 = (-4, 4, -1, -3)^T$ линейно независимым и/или системой образующих в \mathbb{R}^4 ?
- **3.** Найти координаты столбца $x=(5,2,2)^T$ в базисе $f_1=(1,0,1)^T, \ f_2=(-1,1,-1)^T, \ f_3=(-2,-1,-1)^T.$
- 4. Пусть V линейное пространство всех многочленов над $\mathbb R$ степени $\leqslant 5$, а ν билинейная форма на V, заданная формулой $\nu(p,q) = \sum\limits_{k=1}^n p(k)q(k)$. При каких значениях n форма ν является скалярным произведением на V?
- **5.** Даны столбцы $a = (-2,3,-1,-1)^T$ и $b = (3,-3,-5,5)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- **6.** Являются ли ортогональными многочлены $3x^2-3x+1$ и $3x^2+4x+3$, если скалярное произведение (f,g) задано как сумма произведений коэффициентов f и g при соответствующих степенях x?

Bap. 12 (7305)

- 1. Запишите столбец координат элемента $\begin{pmatrix} -3 & -4 \\ 3 & -7 \end{pmatrix}$ в базисе $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$
- **2.** Является ли набор векторов $e_1 = (-4, 3, -5)^T,$ $e_2 = (-5, 3, -3)^T, e_3 = (-1, 1, -2)^T$ базисом в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (-5, -4, -2)^T$ в базисе $f_1 = (1, 1, 2)^T$, $f_2 = (-1, -1, -1)^T$, $f_3 = (0, 1, 4)^T$.
- 4. Пусть V евклидово пространство всех многочленов над \mathbb{R} степени $\leqslant 2$ со скалярным произведением $(f,g)=\int\limits_0^1 f(t)g(t)\,dt.$ Найдите ортогональный базис пространства V.
- **5.** Даны столбцы $a = (-2, -5, -2, -1)^T$ и $b = (-1, -4, -5, -2)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- **6.** Являются ли ортогональными многочлены x-1 и x+2 относительно скалярного произведения $(f,g)=\int_0^3 f(x)g(x)\,dx?$

Bap. 13 (7305)

- 1. Запишите столбец координат элемента $f(x) = -8x^2 + 4x - 8$ в базисе $e_1(x) = 1,$ $e_2(x) = x, e_3(x) = x^2.$
- Является набор векторов $e_1=(3,-8,-8,-1)^T, \quad e_2=(1,-1,-1,-2)^T, \ e_3=(1,-2,-2,-1)^T$ линейно независимым и/или системой образующих в \mathbb{R}^4 ?
- **3.** Найти координаты столбца $x = (-1, -5, -8)^T$ в базисе $f_1 = (0, 1, 1)^T, \quad f_2 = (1, 3, 3)^T, f_3 = (-1, -2, -1)^T$
- **4.** Пусть V линейное пространство всех многочленов над $\mathbb R$ степени $\leqslant 5$, а u – билинейная форма на V, заданная формулой $u(p,q) = \sum\limits_{k=1}^n p(k)q(k)$. При каких значениях n форма ν является скалярным произведением на V?
- **5.** Найти координаты столбца $x = (-2, -4, -2)^T$ в ортогональном базисе $f_2 = (-3,1,2)^T, f_3 = (2,2,2)^T$ 6. Являются ли ортогональными многочлены x-1
- и -x относительно скалярного произведения (f,g) = f(0)g(0) + f(1)g(1)?

Bap. 15 (7305)

- 1. Запишите столбец координат элемента $f(x) = -10x^2 + 6x + 10$ в базисе $e_2(x) = x, e_3(x) = x^2.$
- **2.** Является ли набор векторов $e_1 = (3, -1, 1)^T,$ $e_2 = (-7, 5, -3)^T,$ $e_3 = (-5, 3, -2)^T,$ $e_4 = (-5, 3, -2)^T$ линейно независимым и/или системой образующих в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (0,1,5)^T$ в базисе $f_1 = (1, -2, -3)^T$, $f_2 = (0, 1, 1)^T$, $f_3 = (1, -1, -1)^T$.
- **4.** Пусть V евклидово пространство всех матриц размера 5×6 со скалярным произведением $(A,B) = \operatorname{Tr} A^T B$. Найдите ортогональный базис пространства V.
- **5.** Даны столбцы $a = (-3, -3, -2, 5)^T$ $b = (-1, 5, 5, -5)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- **6.** Являются ли ортогональными многочлены 4x-1и -x-4 относительно скалярного произведения (f,g) = f(0)g(0) + f'(0)g'(0)?

Bap. 14 (7305)

- 1. Запишите столбец координат элемента $\begin{pmatrix} 4 & -1 \\ -1 & 8 \end{pmatrix}$ в базисе $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$
- **2.** Является ли набор векторов $e_1 = (-3,3,1,1)^T,$ $e_2 = (1,-5,-3,-1)^T, \ e_3 = (-2,4,2,1)^T$ линейно независимым и/или системой образующих в \mathbb{R}^4 ?
- **3.** Найти координаты столбца $x = (1, -2, 9)^T$ в базисе
- $f_1 = (0,1,-2)^T, f_2 = (1,2,-1)^T, f_3 = (-1,-2,2)^T.$ 4. Пусть V линейное пространство всех многочленов над $\mathbb R$ степени $\leqslant 5$, а u — билинейная форма на V, заданная формулой $\nu(p,q) = \sum\limits_{k=1}^n p(k)q(k)$. При каких значениях n форма ν является скалярным произведением на V?
- **5.** Даны столбцы $a = (3, 2, -4, -2)^T$ и $b = (5, -3, -4, -4)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- **6.** Являются ли ортогональными многочлены $x^2 3$ и $x^2 - x - 1$, если скалярное произведение (f, q) задано как сумма произведений коэффициентов f и q при соответствующих степенях x?

Bap. 16 (7305)

- **1.** Запишите столбец координат элемента $\begin{pmatrix} 0 & 7 \\ 8 & -1 \end{pmatrix}$ в базисе $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$,
- **2.** Является ли набор векторов $e_1 = (-2, 1, -2)^T,$ $e_2 = (-3, 1, 1)^T, \ e_3 = (-5, 1, 7)^T, \ e_4 = (-3, 2, -7)^T$ линейно независимым и/или системой образующих в
- **3.** Найти координаты столбца $x = (1, -1, 4)^T$ в базисе $f_1 = (1, 2, 0)^T$, $f_2 = (2, 4, 1)^T$, $f_3 = (-1, -1, -1)^T$.
- **4.** Пусть V евклидово пространство всех многочленов над \mathbb{R} степени $\leqslant 2$ со скалярным произведением $(f,g)=\int\limits_0^{\cdot}f(t)g(t)\,dt.$ Найдите ортогональный базис пространства V.
- $a = (1, -4, -3, 2)^T$ **5.** Даны столбцы $b = (-1, -2, -5, 4)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- **6.** Являются ли ортогональными многочлены x-1и x-3 относительно скалярного произведения $(f,g)=\int_0^3 f(x)g(x)\,dx?$

Bap. 17 (7305)

- 1. Запишите столбец координат элемента $f(x) = -10x^2 5x + 1$ в базисе $e_1(x) = 1$, $e_2(x) = x$, $e_3(x) = x^2$.
- **2.** Является ли набор векторов $e_1 = (7, -6, -3)^T,$ $e_2 = (-5, 6, 1)^T, e_3 = (-2, 2, 1)^T, e_4 = (-3, 3, 1)^T$ линейно независимым и/или системой образующих в \mathbb{R}^{3} ?
- 3. Найти координаты столбца $x = (-4,5,7)^T$ в базисе $f_1 = (1,-1,-1)^T, f_2 = (0,1,1)^T, f_3 = (-1,2,3)^T.$
- 4. Пусть V евклидово пространство всех многочленов над \mathbb{R} степени $\leqslant 2$ со скалярным произведением $(f,g)=\int\limits_0^1 f(t)g(t)\,dt.$ Найдите ортогональный базис пространства V.
- **5.** Найти координаты столбца $x = (-2, -3, -4)^T$ в ортогональном базисе $f_1 = (-1, 2, 3)^T$, $f_2 = (4, -1, 2)^T$, $f_3 = (-1, -2, 1)^T$ **6.** Являются ли ортогональными многочлены 3x 1
- **6.** Являются ли ортогональными многочлены 3x-1 и x-2 относительно скалярного произведения (f,g)=f(0)g(0)+f(1)g(1)?

Bap. 19 (7305)

- 1. Запишите столбец координат элемента $f(x) = -5x^2 + 3x 6$ в базисе $e_1(x) = 1$, $e_2(x) = x$, $e_3(x) = x^2$.
- **2.** Является ли набор векторов $e_1 = (2, -2, 1)^T,$ $e_2 = (1, 3, -1)^T, e_3 = (1, 3, -1)^T$ базисом в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (-3, -4, 6)^T$ в базисе $f_1 = (0, 1, -1)^T, f_2 = (1, 2, -4)^T, f_3 = (1, 2, -3)^T.$
- 4. Пусть V евклидово пространство всех многочленов над \mathbb{R} степени $\leqslant 2$ со скалярным произведением $(f,g)=\int\limits_0^1 f(t)g(t)\,dt.$ Найдите ортогональный базис пространства V.
- **5.** Найти координаты столбца $x = (-5,1,5)^T$ в ортогональном базисе $f_1 = (-3,-1,-2)^T,$ $f_2 = (-2,4,1)^T,$ $f_3 = (-1,-1,2)^T$
- **6.** Являются ли ортогональными многочлены x+1 и x+1 относительно скалярного произведения (f,g)=f(0)g(0)+f'(0)g'(0)?

Bap. 18 (7305)

- 1. Запишите столбец координат элемента $\begin{pmatrix} -8 & 9 \\ -5 & -1 \end{pmatrix}$ в базисе $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$
- **2.** Является ли набор векторов $e_1 = (-2, 6, 5)^T$, $e_2 = (1, -2, -2)^T$, $e_3 = (3, 1, -3)^T$, $e_4 = (2, 3, -1)^T$ линейно независимым и/или системой образующих в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (6, -3, 8)^T$ в базисе $f_1 = (1, -1, 0)^T$, $f_2 = (3, -2, 3)^T$, $f_3 = (3, -2, 4)^T$. **4.** Пусть V евклидово пространство всех многочленов
- 4. Пусть V евклидово пространство всех многочленов над $\mathbb R$ степени $\leqslant 2$ со скалярным произведением $(f,g)=\sum\limits_{k=0}^2 p(k)q(k).$ Найдите ортогональный базис пространства V.
- **5.** Даны столбцы $a = (3, -2, -5, -3)^T$ и $b = (-5, 4, 3, 3)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- **6.** Являются ли ортогональными многочлены $2x^2-4x-3$ и x^2-x , если скалярное произведение (f,g) задано как сумма произведений коэффициентов f и g при соответствующих степенях x?

Bap. 20 (7305)

- 1. Запишите столбец координат элемента $\begin{pmatrix} 7 & 2 \\ 7 & 7 \end{pmatrix}$ в базисе $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- **2.** Является ли набор векторов $e_1 = (-1, 1, -8)^T$, $e_2 = (-2, -3, -8)^T$, $e_3 = (1, 2, 3)^T$ базисом в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (-2,3,3)^T$ в базисе $f_1 = (1,-3,2)^T$, $f_2 = (1,-3,3)^T$, $f_3 = (1,-2,1)^T$.
- 4. Пусть V евклидово пространство всех матриц размера 5×6 со скалярным произведением $(A,B)={
 m Tr}\,A^TB.$ Найдите ортогональный базис пространства V.
- **5.** Даны столбцы $a=(2,3,2,-2)^T$ и $b=(-4,-5,2,1)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- **6.** Являются ли ортогональными многочлены 3x+4 и x+4 относительно скалярного произведения $(f,g)=\int_0^3 f(x)g(x)\,dx?$

Bap. 21 (7305)

- 1. Запишите столбец координат элемента $f(x) = -5x^2 + 7x 9$ в базисе $e_1(x) = 1,$ $e_2(x) = x, e_3(x) = x^2.$
- **2.** Является ли набор векторов $e_1 = (-2,5,5)^T,$ $e_2 = (1,-2,-2)^T,$ $e_3 = (-1,1,1)^T,$ $e_4 = (3,-3,-3)^T$ линейно независимым и/или системой образующих в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (4,5,-7)^T$ в базисе $f_1 = (1,3,-2)^T, f_2 = (-1,-2,2)^T, f_3 = (1,0,-1)^T.$ **4.** Пусть V евклидово пространство всех многочленов
- 4. Пусть V евклидово пространство всех многочленов над \mathbb{R} степени $\leqslant 2$ со скалярным произведением $(f,g)=\sum\limits_{k=0}^2 p(k)q(k).$ Найдите ортогональный базис пространства V.
- **5.** Найти координаты столбца $x = (4, 4, -5)^T$ в ортогональном базисе $f_1 = (-2, 2, 4)^T$, $f_2 = (2, 4, -1)^T$, $f_3 = (3, -1, 2)^T$
- 6. Являются ли ортогональными многочлены x-2 и x-2 относительно скалярного произведения (f,g)=f(0)g(0)+f(1)g(1)?

Bap. 23 (7305)

- 1. Запишите столбец координат элемента $f(x) = 10x^2 3x 1$ в базисе $e_1(x) = 1$, $e_2(x) = x$, $e_3(x) = x^2$.
- **2.** Является ли набор векторов $e_1 = (2, -1, 1)^T,$ $e_2 = (-2, -3, -2)^T, e_3 = (1, 1, 1)^T$ базисом в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (3,2,2)^T$ в базисе $f_1 = (1,1,2)^T$, $f_2 = (-1,-1,-1)^T$, $f_3 = (1,2,3)^T$.
- 4. Пусть V евклидово пространство всех многочленов над $\mathbb R$ степени $\leqslant 2$ со скалярным произведением $(f,g)=\sum\limits_{k=0}^2 p(k)q(k).$ Найдите ортогональный базис пространства V.
- **5.** Найти координаты столбца $x = (-3, -3, -3)^T$ в ортогональном базисе $f_1 = (3, -1, 2)^T$, $f_2 = (1, -5, -4)^T$, $f_3 = (1, 1, -1)^T$
- **6.** Являются ли ортогональными многочлены x+2 и 2x-1 относительно скалярного произведения (f,g)=f(0)g(0)+f'(0)g'(0)?

Bap. 22 (7305)

- 1. Запишите столбец координат элемента $\begin{pmatrix} -4 & -7 \\ -7 & 9 \end{pmatrix}$ в базисе $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$
- **2.** Является ли набор векторов $e_1 = (3,1,3)^T,$ $e_2 = (-4,-2,-8)^T, e_3 = (-5,-2,-7)^T$ базисом в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (-3, -8, -4)^T$ в базисе $f_1 = (1, 2, 1)^T$, $f_2 = (-2, -4, -1)^T$, $f_3 = (-1, -1, 0)^T$.
- 4. Пусть V евклидово пространство всех многочленов над \mathbb{R} степени $\leqslant 2$ со скалярным произведением $(f,g)=\sum\limits_{k=0}^2 p(k)q(k).$ Найдите ортогональный базис пространства V.
- **5.** Найти координаты столбца $x = (-4, -5, 2)^T$ в ортогональном базисе $f_1 = (4, 4, -2)^T$, $f_2 = (-1, 2, 2)^T$, $f_3 = (2, -1, 2)^T$
- 6. Являются ли ортогональными многочлены $x^2 + x + 1$ и $x^2 2x + 1$, если скалярное произведение (f,g) задано как сумма произведений коэффициентов f и g при соответствующих степенях x?

Bap. 24 (7305)

- 1. Запишите столбец координат элемента $\begin{pmatrix} -9 & 1 \\ -7 & 3 \end{pmatrix}$ в базисе $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- **2.** Является ли набор векторов $e_1 = (2, -1, 7)^T,$ $e_2 = (1, -3, 1)^T, e_3 = (1, -1, 3)^T, e_4 = (1, -2, 2)^T$ линейно независимым и/или системой образующих в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (-2, -1, 1)^T$ в базисе $f_1 = (1, 2, -1)^T, f_2 = (0, 1, 1)^T, f_3 = (1, 1, -1)^T.$
- 4. Пусть V линейное пространство всех многочленов над $\mathbb R$ степени $\leqslant 5$, а ν билинейная форма на V, заданная формулой $\nu(p,q)=\sum\limits_{k=1}^n p(k)q(k)$. При каких значениях n форма ν является скалярным произведением на V?
- **5.** Даны столбцы $a = (1, -1, -1, -1)^T$ и $b = (4, -3, 2, -3)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- **6.** Являются ли ортогональными многочлены x-2 и -x относительно скалярного произведения $(f,g)=\int_0^3 f(x)g(x)\,dx?$

Bap. 25 (7305)

- **1.** Запишите столбец координат элемента f(x) = -4x + 4 в базисе $e_1(x) = 1$, $e_2(x) = x$, $e_3(x) = x^2$.
- **2.** Является ли набор векторов $e_1 = (1,1,-3)^T,$ $e_2 = (2,3,-5)^T, e_3 = (-1,2,4)^T, e_4 = (2,6,-3)^T$ линейно независимым и/или системой образующих в \mathbb{R}^{3} ?
- **3.** Найти координаты столбца $x=\left(0,-5,-7\right)^T$ в базисе $f_1=\left(0,1,2\right)^T, \ f_2=\left(1,1,2\right)^T,$ $f_3=\left(-1,-2,-3\right)^T.$
- 4. Пусть V евклидово пространство всех многочленов над $\mathbb R$ степени $\leqslant 2$ со скалярным произведением $(f,g)=\sum\limits_{k=0}^2 p(k)q(k).$ Найдите ортогональный базис пространства V.
- **5.** Даны столбцы $a = (-1, 2, -3, 2)^T$ и $b = (2, 2, 4, -4)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- **6.** Являются ли ортогональными многочлены x и x+4 относительно скалярного произведения (f,g)=f(0)g(0)+f(1)g(1)?

Bap. 27 (7305)

- 1. Запишите столбец координат элемента $f(x) = -8x^2 + 3x 8$ в базисе $e_1(x) = x^2,$ $e_2(x) = x, \, e_3(x) = 1.$
- **2.** Является ли набор векторов $e_1 = (-2, 4, -1)^T,$ $e_2 = (-2, 3, -1)^T, \ e_3 = (-1, 3, 5)^T, \ e_4 = (1, -1, 2)^T$ линейно независимым и/или системой образующих в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (-6, -3, 7)^T$ в базисе $f_1 = (1, 1, -1)^T$, $f_2 = (3, 3, -2)^T$, $f_3 = (1, 2, 0)^T$.
- 4. Пусть V евклидово пространство всех многочленов над \mathbb{R} степени $\leqslant 2$ со скалярным произведением $(f,g)=\int\limits_0^1 f(t)g(t)\,dt.$ Найдите ортогональный базис пространства V.
- **5.** Найти координаты столбца $x = (-2, -4, -5)^T$ в ортогональном базисе $f_1 = (4, 5, -1)^T$, $f_2 = (-2, 1, -3)^T$, $f_3 = (3, -3, -3)^T$
- 6. Являются ли ортогональными многочлены x-2 и -3x-4 относительно скалярного произведения (f,g)=f(-1)g(-1)+f'(-1)g'(-1)?

Bap. 26 (7305)

- 1. Запишите столбец координат элемента $\begin{pmatrix} 8 & -1 \\ -6 & 1 \end{pmatrix}$ в базисе $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- **2.** Является ли набор векторов $e_1 = (-2, 1, -1)^T,$ $e_2 = (1, 1, -2)^T, e_3 = (-6, -3, 7)^T$ базисом в \mathbb{R}^3 ?
- 3. Найти координаты столбца $x = (1,5,3)^T$ в базисе $f_1 = (1,3,3)^T$, $f_2 = (-1,-2,-2)^T$, $f_3 = (0,-3,-2)^T$.
- 4. Пусть V линейное пространство всех многочленов над $\mathbb R$ степени $\leqslant 5$, а ν билинейная форма на V, заданная формулой $\nu(p,q) = \sum\limits_{k=1}^n p(k)q(k)$. При каких значениях n форма ν является скалярным произведением на V?
- **5.** Даны столбцы $a = (1,1,1,1)^T$ и $b = (2,4,-3,5)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- **6.** Являются ли ортогональными многочлены $2x^2+2x-1$ и x^2+1 , если скалярное произведение (f,g) задано как сумма произведений коэффициентов f и g при соответствующих степенях x?

Bap. 28 (7305)

- 1. Запишите столбец координат элемента $\begin{pmatrix} 5 & 3 \\ -7 & -7 \end{pmatrix}$ в базисе $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ e_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ e_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$
- **2.** Является ли набор векторов $e_1 = (8, -8, 3)^T,$ $e_2 = (2, -3, 1)^T, e_3 = (6, -5, 2)^T$ базисом в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (-4, -4, -2)^T$ в базисе $f_1 = (1, 1, 0)^T$, $f_2 = (1, 2, 2)^T$, $f_3 = (1, 2, 3)^T$.
- 4. Пусть V евклидово пространство всех матриц размера 5×6 со скалярным произведением $(A,B) = {\rm Tr}\,A^TB$. Найдите ортогональный базис пространства V.
- **5.** Найти координаты столбца $x = (3,5,1)^T$ в ортогональном базисе $f_1 = (-5,5,-5)^T$, $f_2 = (1,3,2)^T$, $f_3 = (-5,-1,4)^T$
- **6.** Являются ли ортогональными многочлены x и x-4 относительно скалярного произведения $(f,g)=\int_0^2 f(x)g(x)\,dx?$

Bap. 29 (7305)

- 1. Запишите столбец координат элемента $f(x) = 8x^2 x 6$ в базисе $e_1(x) = 1, \ e_2(x) = x, \ e_3(x) = x^2.$
- **2.** Является ли набор векторов $e_1 = (3, -2, -3)^T,$ $e_2 = (-2, 3, 1)^T, e_3 = (-1, 1, 1)^T$ базисом в \mathbb{R}^3 ?
- 3. Найти координаты столбца $x=(2,6,-7)^T$ в базисе $f_1=(0,1,-1)^T,\, f_2=(1,2,-4)^T,\, f_3=(1,2,-3)^T.$ 4. Пусть V евклидово пространство всех многочленов
- 4. Пусть V евклидово пространство всех многочленов над $\mathbb R$ степени $\leqslant 2$ со скалярным произведением $(f,g)=\sum\limits_{k=0}^2 p(k)q(k).$ Найдите ортогональный базис пространства V.
- **5.** Даны столбцы $a = (-2, -2, -1, -4)^T$ и $b = (-4, -3, 1, -3)^T$. Разложить b в сумму двух ортогональных столбцов так, чтобы один из них был параллелен a.
- 6. Являются ли ортогональными многочлены 2x+3 и x+2 относительно скалярного произведения (f,g)=f(0)g(0)+f(1)g(1)?

Bap. 30 (7305)

- 1. Запишите столбец координат элемента $\begin{pmatrix} 0 & -5 \\ -1 & -3 \end{pmatrix}$ в базисе $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- **2.** Является ли набор векторов $e_1 = (1, -1, -3)^T,$ $e_2 = (1, -6, -2)^T,$ $e_3 = (1, -3, -2)^T,$ $e_4 = (1, -4, -2)^T$ линейно независимым и/или системой образующих в \mathbb{R}^3 ?
- **3.** Найти координаты столбца $x = (-1, 8, -9)^T$ в базисе $f_1 = (0, 1, -1)^T$, $f_2 = (1, -2, 1)^T$, $f_3 = (-1, 1, 1)^T$.
- 4. Пусть V линейное пространство всех многочленов над $\mathbb R$ степени $\leqslant 5$, а ν билинейная форма на V, заданная формулой $\nu(p,q) = \sum\limits_{k=1}^n p(k)q(k)$. При каких значениях n форма ν является скалярным произведением на V?
- **5.** Найти координаты столбца $x = (-4, -2, -3)^T$ в ортогональном базисе $f_1 = (4, 4, -4)^T$, $f_2 = (1, 4, 5)^T$, $f_3 = (-3, 2, -1)^T$
- **6.** Являются ли ортогональными многочлены $4x^2 x + 1$ и $x^2 3x + 4$, если скалярное произведение (f,g) задано как сумма произведений коэффициентов f и g при соответствующих степенях x?