Key - Linear Models IVR

Biometry

Question 5.1

- a. The indicator variable is named TAME where TAME=1 if the pronghorn is in the "tame" group and TAME=0 if it is in the "diet-curtailed" group.
- b. The full model is $\mu_{GROWTH} = \alpha + \beta_1 TIME + \delta_1 TAME + \gamma_1 TAME * TIME$
- c. The submodels for both groups are shown in the table below

Group	Tame=	Submodel ($\mu_{GROWTH} =$)	
Diet-curtailed	0	$= \alpha + \beta_1 TIME$	
Tame	1	$= (\alpha + \delta_1) + (\beta_1 + \gamma_1)TIME$	

- d. Interpretations of the coefficients are listed below.
 - α is the intercept of diet-curtailed (reference) group
 - β_1 is the slope of diet-curtailed (reference) group
 - δ_1 is the difference in intercept of tame and diet-curtailed groups (i.e., tame-dietcurtailed)
 - γ_1 is the difference in slopes of tame and diet-curtailed groups (i.e., tame-dietcurtailed)
- e. The models for the "parallel lines test" are shown below

$$H_O: \mu_{GROWTH|...} = \alpha + \beta_1 TIME + \delta_1 TAME$$

$$H_A: \mu_{GROWTH|...} = \alpha + \beta_1 TIME + \delta_1 TAME + \gamma_1 TAME * TIME$$

f. The models for the "equal-intercepts test" (assuming parallele lines) are shown below

$$\begin{split} H_O: \mu_{GROWTH|\dots} &= \alpha + \beta_1 TIME \\ H_A: \mu_{GROWTH|\dots} &= \alpha + \beta_1 TIME + \delta_1 TAME \end{split}$$

[Turn the Page]

Question 5.2

- a. The three required indicator variables are shown below
 - FOUR = 1 if in the "four-day starved" group, FOUR = 0 otherwise
 - EIGHT = 1 if in the "eight-day starved" group, EIGHT = 0 otherwise
 - STEEN = 1 if in the "sixteen-day starved" group, STEEN = 0 otherwise
- b. The full model is

$$\mu_{stomvol} = \alpha + \beta_1 intake + \delta_1 FOUR + \delta_2 EIGHT + \delta_3 STEEN$$
$$+ \gamma_1 FOUR * intake + \gamma_2 EIGHT * intake + \gamma_3 STEEN * intake$$

c. The sub-models for all four groups are shown in the table below

Group	FOUR=	EIGHT=	STEEN=	Submodel $(\mu_{stomvol} =)$
1-day starved	0	0	0	$= \alpha + \beta_1 intake$
4-day starved	1	0	0	$= (\alpha + \delta_1) + (\beta_1 + \gamma_1) intake$
8-day starved	0	1	0	$= (\alpha + \delta_2) + (\beta_1 + \gamma_2) intake$
16-day starved	0	0	1	$= (\alpha + \delta_3) + (\beta_1 + \gamma_3) intake$

- d. Interpretations of the coefficients are listed below.
 - α is the intercept of the 1-day starved (reference) group
 - β_1 is the slope of the 1-day starved (reference)group
 - δ_1 is the difference in the intercepts of the 4-day and 1-day starved groups
 - γ_1 is the difference in the slopes of the 4-day and 1-day starved groups
 - δ_2 is the difference in the intercepts of the 8-day and 1-day starved groups
 - γ_2 is the difference in the slopes of the 8-day and 1-day starved groups
 - δ_3 is the difference in the intercepts of the 16-day and 1-day starved groups
 - γ_3 is the difference in the slopes of the 16-day and 1-day starved groups
- e. Models for the "parallel lines test" are shown below

$$\begin{split} H_O: \mu_{stomvol} &= \alpha + \beta_1 intake + \delta_1 FOUR + \delta_2 EIGHT + \delta_3 STEEN \\ H_A: \mu_{stomvol} &= \alpha + \beta_1 intake + \delta_1 FOUR + \delta_2 EIGHT + \delta_3 STEEN \\ &+ \gamma_1 FOUR * intake + \gamma_2 EIGHT * intake + \gamma_3 STEEN * intake \end{split}$$

f. Models for the "equal-intercepts test" (assuming parallel lines) are shown below

$$\begin{split} H_O: \mu_{stomvol} &= \alpha + \beta_1 intake \\ H_A: \mu_{stomvol} &= \alpha + \beta_1 intake + \delta_1 FOUR + \delta_2 EIGHT + \delta_3 STEEN \end{split}$$