Средства и системы параллельного программирования

кафедра СКИ сентябрь – декабрь 2021 г.

Лектор доцент Н.Н.Попова

Лекция 11 15 ноября 2021 г.

Тема

- Параллельные алгоритмы матричного умножения.
 Алгоритмы Кеннона и Фокса.
- Эффективность алгоритма Кеннона.

Идея алгоритма Кеннона

 Алгоритм Кеннона определяет порядок суммирования членов во внутреннем цикле:

$$C(i,j) = \sum_{k=0}^{s-1} A(i, (i+j+k) \mod s) * B((i+j+k) \mod s, j)$$

таким образом, чтобы в каждом процессе на каждом шаге алгоритма находился один из блоков матриц А и В. Предусматривается первоначальное распределение блоков матриц таким образом, чтобы минимизировать обмены блоками в процессе выполнения алгоритма.

Алгоритм Кеннона

Cannon's Matrix Multiplication Algorithm

A(0,0)	A(0,1)	A(0,2)
A(1,1)	A(1,2)	A(1,0)
A(2,2)	A(2,0)	A(2,1)

A(0,1)	A(0,2)	A(0,0)
A(1,2)	A(1,0)	A(1,1)
A(2,0)	A(2,1)	A(2,2)

A(0,2)	A(0,0)	A(0,1)
A(1,0)	A(1,1)	A(1,2)
A(2,1)	A(2,2)	A(2,0)

B(0,0)	B(1,1)	B(2,2)	
B(1,0)	B(2,1)	B(0,2)	^
B(2,0)	B(0,1)	B(1,2)	,

B(1,0)	B(2,1)	B(0,2)	
B(2,0)	B(0,1)	B(1,2)	
B(0,0)	B(1,1)	B(2,2)	

B(2,0)	B(0,1)	B(1,2)	
B(0,0)	B(1,1)	B(2,2)	1
B(1,0)	B(2,1)	B(0,2)	

Initial A, B

A, B after skewing

A, B after shift k=1

A, B after shift k=2

Схема алгоритма Кеннона

Схема алгоритма Кеннона

Циклический сдвиг влево каждой строки матрицы A на 1 так, чтобы на место A(i,j) была записана подматрица A(i,(j+1) mod s)

Циклический сдвиг вверх каждого столбца матрицы B на 1 так, чтобы на место B(i,j) была записана подматрица B((i+1) mod s,j)

end for

end for

```
// определение процессной решетки
dims[0] = dims[1] = sqrt(P);
periods[0] = periods[1] = 1;
MPI_Cart_Create(comm,2,dims,periods,1,&comm_2d);
// определение координат процесса в решетке
MPI_Comm_rank(comm_2d, &my2drank);
MPI_Cart_coords(comm_2d, my2drank, 2, mycoords);
// определение соседей в решетке
MPI_Cart_shift(comm_2d, 0, -1, &rightrank, &leftrank);
MPI_Cart_shift(comm_2d, 1, -1, &downrank, &uprank);
nlocal = n/dims[0];
```

```
/* Начальное распределение блоков матрицы A:
    сдвиг влево на і позиций */

MPI_Cart_shift(comm_2d, 0, -mycoords[0], &shiftsource, &shiftdest);

MPI_Sendrecv_replace(a, nlocal*nlocal, MPI_DOUBLE, shiftdest, 1, shiftsource, 1, comm_2d, &status);

/* Начальное распределение блоков матрицы B:
    сдвиг вверх на ј позиций */

MPI_Cart_shift(comm_2d, 1, -mycoords[1], &shiftsource, &shiftdest);

MPI_Sendrecv_replace(b, nlocal*nlocal, MPI_DOUBLE, shiftdest, 1, shiftsource, 1, comm_2d, &status);
```

```
/* Main Computation Loop */
for(i=0; i<dims[0]; i++){
 MatrixMultiply(nlocal,a,b,c); /* c=c+a*b*/
 /* Shift matrix a left by one */
 MPI_Sendrecv_replace(a, nlocal*nlocal, MPI_DOUBLE, leftrank, 1, rightrank,
    1, comm_2d, &status);
 /* Shift matrix b up by one */
 MPI_Sendrecv_replace(b, nlocal*nlocal, MPI_DOUBLE, uprank, 1,
    downrank, 1, comm_2d, &status);
```

```
MPI_Cart_shift(comm_2d, 0, +mycoords[0], &shiftsource, &shiftdest);
MPI_Sendrecv_replace(a, nlocal*nlocal, MPI_DOUBLE, shiftdest, 1, shiftsource, 1, comm_2d, &status);
MPI_Cart_shift(comm_2d, 1, +mycoords[1], &shiftsource, &shiftdest);
MPI_Sendrecv_replace(b, nlocal*nlocal, MPI_DOUBLE, shiftdest, 1, shiftsource, 1, comm_2d, &status);
```

/* Restore original distribution of a and b */

Блочный алгоритм Фокса

- Аналогично алгоритму Кеннона: создание 2-мерной процессной решетки, распределение блоков матриц А, В, С по процессам
- Основная идея: вместо начального перераспределения всех блоков матриц по процессам используется диагональный блок матрицы А процессной строки, в которой находится этот элемент, и находящийся в процессе блок матрицы В.
- Далее на каждом шаге алгоритма по процессной строке широковещательной передачей раздается очередной блок матрицы А и блок матрицы В, как в алгоритме Кеннона
- При оценке времени выполнения время передачи между соседними процессами блока матрицы А, заменяется на широковещательную операцию рассылки блока по √Р процессам

Алгоритм Фокса

	i	te and planious that Po ii 's algorithm is superjor
	a ₀₀	$c_{00} + = a_{00}b_{00}$ $c_{01} + = a_{00}b_{01}$ $c_{02} + = a_{00}b_{02}$
Stage 0	$-a_{11}$	$c_{10} += a_{11}b_{10}$ $c_{11} += a_{11}b_{11}$ $c_{12} += a_{11}b_{12}$
	a_{22}	$c_{20} += a_{22}b_{20}$ $c_{21} += a_{22}b_{21}$ $c_{22} += a_{22}b_{22}$
	a_{01}	$c_{00} += a_{01}b_{10}$ $c_{01} += a_{01}b_{11}$ $c_{02} += a_{01}b_{12}$
Stage 1	a_{12}	$c_{10} += a_{12}b_{20}$ $c_{11} += a_{12}b_{21}$ $c_{12} += a_{12}b_{22}$
	<i>a</i> ₂₀ /	$c_{20} + = a_{20}b_{00}$ $c_{21} + = a_{20}b_{01}$ $c_{22} + = a_{20}b_{02}$
	a_{02}	$c_{00} += a_{02}b_{20}$ $c_{01} += a_{02}b_{21}$ $c_{02} += a_{02}b_{22}$
Stage 2	a_{10}	$c_{10} + = a_{10}b_{00}$ $c_{11} + = a_{10}b_{01}$ $c_{12} + = a_{10}b_{02}$
	$ a_{21}$	$c_{20} += a_{21}b_{10}$ $c_{21} += a_{21}b_{11}$ $c_{22} += a_{21}b_{12}$

Алгоритм Фокса

$$Cij = AioBoj + Ai1B1j + Ai2B2j Ai,n-1Bn-1, j$$

■ Шаг 0

Процесс
$$(i, j)$$
: $Cij = Aii x Bij$

Шаг 1

Процесс
$$(i, j)$$
: $Cij = Cij + A_{i,i+1} \times B_{i+1,j}$

Шаг k

Алгоритм Фокса

Шаг 1. Широковещательная рассылка диагонального элемента каждой строки матрицы A по всем процессорам своей строки.

Каждый процессор (і, і) выполняет

$$C(i,j) = A(i,i)*B(i,j)$$

Столбец матрицы В циклически сдвигается вверх по своему столбцу, замещая элемент В(i, j).

Шаг 2. Широковещательная рассылка элемента матрицы A, находящегося справа от диагонального, по всем процессорам своей строки.

Каждый процессор (і, ј) выполняет

$$C(i,j) = C(i,i)+A(i+1,i)*B(i+1,j)$$

Столбец матрицы **В циклически сдвигается вверх** по своему столбцу

Шаг k. Широковещательная рассылка очередного (i+k) mod s элемента строки матрицы A по всем процессорам своей строки. Каждый процессор (i,j) выполняет:

 $C(i,j) = C(i,j) + A(i,(i+k) \mod s)*B((i+k) \mod s,j)$

Столбец матрицы В циклически сдвигается вверх по своему столбцу, замещая собой текущий элемент В(i,j)

Алгоритм Фокса (1)

```
typedef struct {
  int p; /* Общее число процессов */
  MPI_Comm comm; /* Коммуникатор для сетки */
  MPI_Comm row_comm; /* Коммуникатор строки */
  MPI_Comm col_comm; /* Коммуникатор столбца */
  int q; /* Порядок сетки */
  int my_row; /* Номер строки */
  int my_col; /* Номер столбца */
  int my_rank; /* Ранг процесса в коммуникаторе сетки */
  } GRID-INFO-TYPE;
```

Алгоритм Фокса (2)

```
void Setvup_grid(GRID_INFO_TYPE* grid) {
 int old_rank;
 int dimensions[2];
 int periods[2];
 int coordinates[2];
 int varying-coords[2];
 /* Настройка глобальной информации о сетке */
 MPI_Comm_size(MPI_COMM_WORLD, &(grid->p));
 MPI_Comm_rank(MPI_COMM_WORLD, &old_rank);
 grid \rightarrow q = (int) sqrt((double) grid \rightarrow p);
 dimensions[0] = dimensions[1] = grid->q;
 periods[0] = periods[1] = 1;
 MPI_Cart_create(MPI_COMM_WORLD, 2, dimensions,
   periods, 1, &(grid->comm));
```

Алгоритм Фокса (3)

```
MPI_Comm_rank(grid->comm, &(grid->my_rank));
MPI_Cart_coords(grid->comm, grid->my_rank, 2, coordinates);
grid->my_row = coordinates[0];
grid->my_col = coordinates[1];
/* Настройка коммуникаторов для строк и столбцов */
 varying_coords[0] = 0; varying_coords[1] = 1;
 MPI_Cart_sub(grid->comm, varying_coords, &(grid-
  >row_comm));
 varying_coords[0] = 1; varying_coords[1] = 0;
 MPI_Cart_sub(grid->comm, varying_coords, &(grid-
   >col comm));
} /* Setup_grid */
```

Алгоритм Фокса (4)

```
void Fox(int n, GRID_INFO_TYPE* grid, LOCAL_MATRIX_TYPE*
  local_A, LOCAL_MATRIX_TYPE* local_B,
  LOCAL_MATRIX_TYPE* local_C)
 LOCAL_MATRIX_TYPE* temp_A;
 int step;
 int bcast root;
 int n_bar; /* порядок подматрицы = n/q */
 int source;
 int dest;
 int tag = 43;
 MPI_Status status;
 n_bar = n/grid->q;
 Set_to_zero(local_C);
```

Алгоритм Фокса (5)

```
/* Вычисление адресов для циклического сдвига В */
 source = (grid->my\_row + 1) % grid->q;
 dest = (grid->my\_row + grid->q-1) \% grid->q;
 /* Выделение памяти для рассылки блоков А */
 temp_A = Local_matrix_allocate(n_bar);
/* Основной цикл */
 for (step = 0; step < grid->q; step++) {
  bcast_root = (grid->my_row + step) % grid->q;
  if (bcast_root == grid->my_col) {
   MPI_Bcast(local_A, 1, DERIVED_LOCAL_MATRIX,
   bcast_root, grid->row_comm);
   Local_matrix_multiply(local_A, local_B, local_C);
```

Алгоритм Фокса (6)

```
} else {
  MPI_Bcast(temp_A, 1, DERIVED_LOCAL_MATRIX,
  bcast root,
    grid->row_comm);
  Local_matrix_multiply(temp_A, local_B, local_C);
MPI_Send(local_B, 1, DERIVED_LOCAL_MATRIX, dest, tag,
  grid->col_comm);
MPI_Recv(local_B, 1, DERIVED_LOCAL_MATRIX, source, tag,
  grid->col_comm, &status);
 } /*for*/
}/*Fox*/
```

Модели оценки коммуникационных операций

- Модель Хокни (1994)
 - R. W. Hockney. The communication challenge for mpp: Intel paragon and meiko cs-2. Parallel Computing, 20:389–398, 1994.
- Упрощения: сообщения непрерывные, в сети нет других передач, сообщение передается непосредственно в буфер в памяти принимающего процесса

Latency & Bandwith

- Модель:
 - в случае коротких сообщений во времени передачи доминирует latency
 - в случае длинных сообщений bandwith
- Critical message size = latency * bandwith

Производительность двухточечных операций МРІ. Модель Хокни.

Время передачи = latency + размер сообщения / bandwidth α β=1/bandwith

- Latency время запуска обмена = время пересылки нулевого сообщения, не зависит от размера сообщения
- Bandwith пропускная способность, число байт в секунду
- Цена обмена = latency * bandwith число байт, которые могли бы быть переданы за время запуска обмена.
- Если размер сообщения >> цены обмена производительность канала обмена близка к пропускной способности канала

Модели оценки коммуникационных операций. Модель LogP.

- Модель: LogP model (Culler et al, 1993)
- 4 параметра:
 - L латентность сети
 - о накладные системные расходы (message splitting and packing,buffer management, connection, . . .) для сообщения размера w
 - g минимальное время между пересылкой двух пакетов сообщения размера w
 - Р число процессоров

David Culler, Richard Carp, David Pattwrson et al LogP:Towards a Realistic Model of Parallel Computatio Communications of the ACM, Vol. 39, No. 11, pp. 78-85

Оценка времени выполнения коллективных операций. Линейный алгоритм.

- Простой линейный broadcast:
 - Один процесс рассылает данные всем Р процессам, по s байт каждому процессу:

$$T(s) = P * (\alpha + \beta s) = \mathcal{O}(P)$$

Оценка времени выполнения коллективных операций. К-нарное дерево.

- Процесс, рассылающий сообщения (процесс root), рассылает сообщение k соседям, которые дальше рассылают его другим k соседям и т.д.
- Время передачи в этом случае:

$$T(s) = \lceil \log_k(P) \rceil \cdot (k-1) \cdot (\alpha + \beta \cdot s) = \mathcal{O}(\log(P))$$

Эффективность алгоритма Кеннона

```
forall i=0 to s-1 ... s = sqrt(p) 
 циклический сдвиг строки i матрицы A на i ... t \le s^*(\alpha + \beta^*n^2/p) 
 forall i=0 to s-1 
 циклический сдвиг столбца i матрицы B на i ... t \le s^*(\alpha + \beta^*n^2/p) 
 for k=0 to s-1 
 forall i=0 to s-1 and j=0 to s-1 
 C(i,j) = C(i,j) + A(i,j)^*B(i,j) ... t = 2^*(n/s)^3 = 2^*n^3/p^{3/2} 
 left-circular-shift each row of A by 1 ... t = \alpha + \beta^*n^2/p 
 up-circular-shift each column of B by 1 ... t = \alpha + \beta^*n^2/p
```

°Общее время Total Time = $2*n^3/p^{3/2} + 4*s*\alpha + 4*\beta*n^2/p$

Эффективность Parallel Efficiency = 2*n3 / (p * Total Time) = 1/(1 + a * 2*(s/n)3 + b * 2*(s/n))

Стремится к 1 при n/s = n/sqrt(p) растет

° Лучше, чем 1D распределение, при котором Efficiency = 1/(1 + O(p/n))

Ограничения алгоритмов Фокса и Кеннона

- Трудно обобщаются для случаев:
 - р не полный квадрат
 - А и В не квадратные
 - Размерности А, В не делятся нацело на s=sqrt(p)
- Требуется дополнительная память для хранения копий блоков