Assignment MA2001

Vector Differential calculus Chapter 1

- If $\vec{r}(t) = r\cos(\omega t)\vec{i} + r\sin(\omega t)\vec{j}$ is the position vector of a point at time t, $\vec{v}(t)$ is the velocity vector of $\vec{r}(t)$ and $\vec{a}(t)$ is the acceleration vector of $\vec{r}(t)$, show that
 - (a) $\vec{r} \cdot \vec{v} = 0$,

(b) $\vec{r} \times \vec{v} = \text{constant vector}$,

- (c) $\vec{a} = \omega^2 \vec{r}$.
- (a) Compute the divergence and curl of the vector functions: 2.
 - (i) $\vec{v} = e^x \cos y \vec{i} + xy^2 \vec{j} + yz^3 \vec{k}$
 - (ii) $\vec{v} = yz\vec{i} + 3zx\vec{j} + z\vec{k}$
 - (b) (i) Find div(grad f), for $f(x, y, z) = 1 x^2 4y^2 + 2z^2$
 - (ii) Find $\nabla \times \nabla (\nabla \cdot \vec{v})$, for $\vec{v}(x, y, z) = e^{x} \vec{i} + e^{y} \vec{j} + e^{z} \vec{k}$
 - (c) Verify the formula $div(f\vec{v}) = f div \vec{v} + \vec{v} \cdot grad f$ for $f = e^{xyz}$ and $\vec{v} = x\vec{i} + y\vec{j} + z\vec{k}$.
 - (d) Prove that for any vector fields \vec{v} and \vec{w} on \mathbf{R}^3 ,
 - $curl(\vec{v} + \vec{w}) = curl \vec{v} + curl \vec{w}$
 - (ii) $div(curl \vec{v}) = 0$
- It is given that $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and $\vec{p} = a\vec{i} + b\vec{j} + c\vec{k}$ is a constant vector and $\vec{u} = (\vec{p} \cdot \vec{r})\vec{r}$.
 - (a) Evaluate $\vec{u} = (\vec{p} \cdot \vec{r})\vec{r}$.
 - (b) Show that
- (i) $\nabla \cdot \vec{u} = 4\vec{p} \cdot \vec{r}$, (ii) $\nabla \times \vec{u} = \vec{p} \times \vec{r}$, (iii) $\nabla \times (\vec{p} \times \vec{r}) = 2\vec{p}$.
- Let $\vec{F}(x, y, z) = (x + 2y + az)\vec{i} + (bx 3y z)\vec{j} + (4x + cy + 2z)\vec{k}$ be a vector field on \mathbb{R}^3 , where a, b and c are real constants.
 - (a) Find the values of a, b and c such that \vec{F} is irrotational.
 - (b) With the values of a, b and c obtained in (a), determine a potential function φ on \mathbb{R}^3 for which $\nabla \varphi = \vec{F}$.
- Let $\vec{G}(x, y, z) = 3yz\vec{i} + x^2\vec{j} + x\cos y\vec{k}$ be a vector field on \mathbb{R}^3 .
 - (a) Show that \vec{G} is solenoidal.
 - (b) Find a vector field $\vec{F}(x, y, z) = f_1(x, y, z)\vec{i} + f_2(x, y, z)\vec{j}$ on \mathbf{R}^3 such that $\nabla \times \vec{F} = \vec{G}$.
- (a) A vector field \vec{F} is said to be **solenoidal** if $\nabla \cdot \vec{F} = 0$. Let $\vec{F} = (y+z)\vec{i} + (x+z)\vec{j} + (x+y)\vec{k}$. 6. Show that \vec{F} is solenoidal.
 - (b) As a consequence of \vec{F} being solenoidal, there exists a vector field \vec{H} such that $\vec{F} = \nabla \times \vec{H}$. Find a vector field $\vec{H} = h_1(x, y, z)\vec{i} + h_2(x, y, z)\vec{j} + h_3(x, y, z)\vec{k}$ with $h_2(x, y, z) \equiv 0$ such that $\vec{F} = \nabla \times \vec{H}$.
 - (c) Observe that if φ is a scalar field and $\overrightarrow{H}, \overrightarrow{F}$ are vector fields such that $\overrightarrow{F} = \nabla \times \overrightarrow{H}$, then we have $\nabla \times (\overrightarrow{H} + \nabla \varphi) = \nabla \times \overrightarrow{H} + \nabla \times \nabla \varphi = \nabla \times \overrightarrow{H} = \overrightarrow{F} \cdot \cdot \cdot \cdot \cdot (I) .$

Using (b) and observation (I), find a vector field $\vec{G} = g_1(x, y, z)\vec{i} + g_2(x, y, z)\vec{j} + g_3(x, y, z)\vec{k}$ such that $\vec{F} = \nabla \times \vec{G}$ and $g_2(x, y, z) = 2y$.