ANDVA

Total T_1 . T_2 . --- T_k . T_n .

Statutical model

$$y_{ij} = h_i + E_{ij}$$

 $= h + (h_i - h_i) + E_{ij}$
 $= h + d_i + E_{ij}$, $i = 1, - y + d_i + E_{ij}$
 $j = 1, - y + d_i$
 $E_{ij} = NSD(y_0^2)$

SS Treatment =
$$\sum_{i=1}^{k} n_i (5_i - 5_{ii})^2 = \sum_{i=1}^{k} \frac{T_{ii}^2}{n_i'} - \frac{T_{ii}^2}{N_i}$$

SS Emai = $\sum_{i=1}^{k} \sum_{j=1}^{k} (5_{ij} - 5_{ij})^2 = \sum_{i=1}^{k} \frac{T_{ii}^2}{n_i'} - \frac{T_{ii}^2}{N_i}$

ANOVA $h_0: h_1 = h_1 = --- = h_k$
 $h_1: addest one of them is defend

SOV ald. SS ms f

Therefore $k-1$ SS That $ms_{Best} = \frac{ss_{Bout}}{len}$ $ms_{Bout} = f_0$

Emai $N-k$ SS Em. $ms_{Ema} = \frac{ss_{Emi}}{N-k}$

Therefore $h_0: d = h_0 \le d$ $g = h_0 > f_0 >$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{j}^{2} + E_{ij}^{2}$$

$$V_{ij} = M + \alpha_{i}^{2} + \beta_{ij}^{2} + C_{ij}^{2} + C_{$$

Latin >	yen	,	kth colon	5∽.		1 tragmas
		4	tane v	2755/102	ſν	A
•	\mathcal{I}	A	B	C	\mathbb{D}	ß
jth Juon bus	丌	\square	II B C	D	A	C D
903	\prod	<u></u>	D A	A	ß	
	IV	D	A	B	C	
i,j,k = 1, -, 2						
	Yijk	= }	ナダ	+ P;	$+P_k$	+ eijk
						$(i,j,k) \in \mathcal{H}^2$
SSTre	et =	57	- 2 - in -	T.,		

SS Rows =
$$\frac{1}{3} \frac{T_{ij}^{2}}{3r} - \frac{T_{i}^{2}}{3r^{2}}$$

SS Colon = $\frac{1}{k} \frac{T_{ij}^{2}}{3r} - \frac{T_{i}^{2}}{3r^{2}}$

SS Total = $\frac{1}{k} \frac{T_{ij}^{2}}{3r} - \frac{T_{i}^{2}}{3r^{2}}$

SSEM = SSTOT - SSTOT - SSROW, - SSCORM

Greaco - Ladi Syrom?

Vijke = $\frac{1}{k} + \frac{1}{k} + \frac{1}{k$

 $H_0: M_1|_1 = M_1|_2 = -- = M_1|_b$ $SS_1 = 1 + T_1|_2 = T_1$

$$SS_{G} = \frac{1}{b} \sum_{j=1}^{b} T_{i,k} - \frac{T_{i,k}^{2}}{N} \qquad b-1$$

$$SS_{RWS} = \frac{1}{b} \sum_{j=1}^{b} T_{i,k}^{2} - \frac{T_{i,k}^{2}}{N} \qquad b-1$$

$$SS_{Colors} = \frac{1}{b} \sum_{j=1}^{b} T_{i,k}^{2} - \frac{T_{i,k}^{2}}{N} \qquad b-1$$

$$SS_{E} = SS_{Taple} - SS_{L} - SS_{G} - SS_{RWS} - SS_{Glum}$$

$$SS_{Table} = \sum_{i=1}^{b} \sum_{j=1}^{2} \sum_{j=1$$