

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт информационных технологий Кафедра вычислительной техники (ВТ)

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №2

«Графический ввод схемы и симуляция в САПР QUARTUS II и описание логических схем при помощи языка AHDL» по дисциплине «Архитектура вычислительных машин и систем»

Выполнил студент группы ИКБО-15-22 Оганнисян Григор Амбрацумович
Принял преподаватель кафедры ВТ Рыжова Анастасия Андреевна
Практическая работа выполнена «__» _____ 2022 г.

«Зачтено» «__» _____ 2022 г.

Содержание

Цель работы	3
Постановка задачи	3
Теоретический блок	4
Таблица истинности	5
Реализация схем и кодов	7
Вывод	

Цель работы

Спроектировать логическую схему при помощи графического редактора САПР QUARTUS II. Исследовать работу схемы с использованием сигнального редактора САПР QUARTUS II.

Практическое применение навыков описания цифровых схем с помощью языка описания аппаратуры AHDL. Смоделировать логическую схему при

помощи текстового редактора САПР QUARTUS II.

Постановка задачи

Нарисовать логический узел в графическом редакторе и сделать его описание при помощи текстового редактора, произвести симуляцию работы, зарисовать диаграммы работы и по их результатам заполнить таблицу истинности схемы.

№ варианта: 22 (3хсотрате A<B)

Теоретический блок

Мультиплексор — комбинационная схема, обладающая N адресными входами, 2^N информационными входами, одним (необязательным) разрешающим входом и одним выходом. Это управляемый переключатель, в котором сигнал с одного из информационных входов подается на выход под управлением адресных входов по следующему принципу: сигнал подается с того информационного входа, номер которого в виде двоичного числа подан на адресные.

Мультиплексоры традиционно применяются:

- В качестве коммутатора N к 1 для преобразования параллельного кода в последовательный (для поочередного подключения многих источников информации к одному потребителю).
- «Ленивая» реализация логических функций при возможности пренебрежения минимизацией

Таблица истинности

Таблица 1 – Таблица истинности

A0	A1	A2	ВО	B1	B2	A <b< th=""></b<>
0	0	0	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	0	1
0	0	0	0	1	1	1
0	0	0	1	0	0	1
0	0	0	1	0	1	1
0	0	0	1	1	0	1
0	0	0	1	1	1	1
0	0	1	0	0	0	0
0	0	1	0	0	1	0
0	0	1	0	1	0	1
0	0	1	0	1	1	1
0	0	1	1	0	0	1
0	0	1	1	0	1	1
0	0	1	1	1	0	1
0	0	1	1	1	1	1
0	1	0	0	0	0	0
0	1	0	0	0	1	0
0	1	0	0	1	0	0
0	1	0	0	1	1	1
0	1	0	1	0	0	1
0	1	0	1	0	1	1
0	1	0	1	1	0	1
0	1	0	1	1	1	1
0	1	1	0	0	0	0
0	1	1	0	0	1	0
0	1	1	0	1	0	0
0	1	1	0	1	1	0
0	1	1	1	0	0	1
0	1	1	1	0	1	1
0	1	1	1	1	0	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	0	0	0	1	0
1	0	0	0	1	0	0
1	0	0	0	1	1	0
1	0	0	1	0	0	0
1	0	0	1	0	1	1
1	0	0	1	1	0	1
1	0	0	1	1	1	1
1	0	1	0	0	0	0
1	0	1	0	0	1	0

1	0	1	0	1	0	0
1	0	1	0	1	1	0
1	0	1	1	0	0	0
1	0	1	1	0	1	0
1	0	1	1	1	0	1
1	0	1	1	1	1	1
1	1	0	0	0	0	0
1	1	0	0	0	1	0
1	1	0	0	1	0	0
1	1	0	0	1	1	0
1	1	0	1	0	0	0
1	1	0	1	0	1	0
1	1	0	1	1	0	0
1	1	0	1	1	1	1
1	1	1	0	0	0	0
1	1	1	0	0	1	0
1	1	1	0	1	0	0
1	1	1	0	1	1	0
1	1	1	1	0	0	0
1	1	1	1	0	1	0
1	1	1	1	1	0	0
1	1	1	1	1	1	0

Реализация схем и кодов

Рисунок 1 — Логическая схема

Рисунок 2 — Временная диаграмма для логической схемы

Рисунок 3 – Код, реализующий логическую схему

Рисунок 4 — Временная диаграмма для кода

Вывод

Были закреплены и применены навыки по работе с графическим и текстовым редакторами САПР QUARTUS II. Реализована логическая схема в обоих редакторах, произведена симуляция работы, зарисована диаграмма работы и построена таблица истинности. Результаты, полученные в первой работе, совпали с результатами второй.