Mathematik IV Numerik Lutz Gröll — Klausur SoSe 2021

TINF19B2 — Viel größere Fans des Gröll! 9. Juni 2021

Maximale Punktzahl: 59 Punkte

Bearbeitungszeit: 90 Minuten

Hilfsmittel: Taschenrechner + Formelblatt (siehe Ordner)

Datum: 09.06.2021

In korrektem Wortlaut rekonstruiert - Satzzeichen teilweise korrigiert. Format der folgenden Seiten ist dem der Klausur sehr ähnlich.

Aufgabe 1: (9 Punkte)

1. Notieren Sie die wichtigsten Schritte für das Erstellen eines numerischen Programms.

2. Nennen Sie 4 Verfahren zur numerischen Lösung eines Problems und stellen Sie das zugehörige analytische Problem (Beispiel) gegenüber.

Aufgabe 2: (11 Punkte)

- 1. Welchen Wert hat die Konditionszahl von $A=\begin{bmatrix}1&0\\3&4\end{bmatrix}$ in der Zeilensummennorm?
- 2. Formulieren Sie die Berechnung von $x=B^{-1}Cd$ in eine numerisch effiziente Formum.
- 3. Zeigen Sie an einem Beispiel, dass die Addition numerisch nicht assoziativ ist.
- 4. Nennen Sie die 3 Bedingungen für ein well-posed Problem.
- 5. Notieren Sie ein Least-Squares-Problem mit Tikhonov Regularisierung.
- 6. Warum kann es beim Lösen der Differentialgleichung $\dot{x_1} = x_2 k\sqrt{x_1}$ mit $x \geq 0$ sinnvoll sein, eine Modifikation des Vektorfelds vorzunehmen? Welche Lösung schlagen Sie vor?
- 7. Ein Algorithmus hat die Komplexität $\mathcal{O}(n^2)$. Heißt das, a) dass er weniger Aufwand als n^2 Operationen benötigt, b) mindestens n^2 Operationen benötigt, c) genau kn^2 mit $k \in \mathbb{N}$ Operationen benötigt oder ist d) keine der Aussagen richtig?
- 8. Wodurch sind Testmatrizen für numerische Leistungstests gekennzeichnet?

Aufgabe 3: (9 Punkte)

- 1. Nennen Sie eine praktische Anwendung, für die eine Interpolation nach Lagrange in Frage kommt.
- 2. Notieren Sie für $y = \frac{ax+b}{x^2+cx+d}$ einen linearen LS-Ansatz.
- 3. Wie viele Stützwerte benötigen Sie mindestens, um die Parameter aus Teilaufgabe 2 eindeutig bestimmen zu können?
- 4. Wie viele Funktionsaufrufe benötigen Sie mindestens für die numerische Approximation einer dritten Ableitung?
- 5. In welchem Konflikt stehen Ingenieure, die online eine Ableitung berechnen müssen?
- 6. Was halten Sie von $f_k'' = -\frac{1}{12}f_{k-3} + \frac{1}{3}f_{k-2} + \frac{1}{2}f_{k-1} \frac{5}{3}f_k + f_{k+1}$?
- 7. Kann für $x^3(x-1)=1$ der exakte Wert für $x\approx -0.8$ durch die Fixpunktiteration $x_{k+1}=\sqrt[3]{\frac{1}{x_k-1}}$ berechnet werden? Führen Sie hierzu eine Konvergenzbetrachtung durch.

8. Warum werden Eigenwerte von Matrizen numerisch nicht wie in der Algebra üblich über die charakteristische Gleichug bestimmt? Was macht man stattdessen?

Aufgabe 4: (9 Punkte)

- 1. Gegeben seien $A \in \mathbb{R}^{30 \times 10}, B \in \mathbb{R}^{10 \times 100}, C \in \mathbb{R}^{100}$. Berechnen Sie die Flops für A(BC).
- 2. Mit welchem Algorithmus können Sie die Funktionsaufrufe für eine rationale Funktion reduzieren?
- 3. Welche Vorraussetzung muss für eine Parallelisierung eines Programms vorliegen? Nennen Sie ein Beispiel, wo Prallelisierung auf 8 Rechnerkernen leicht anwendbar ist und viel bringt.
- 4. Schreiben Sie in Pseudocode einen Test, um numerische Bugs bei der Auswertung von $\tan x$ zu verhindern.
- 5. Was verstehen Sie unter Pivotisierung? Erklären Sie, worin der Nutzen dieser Technik liegt.
- 6. Weisen Sie nach, dass Matrizen vom Typ $A = \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix}$ die Möglichkeit bieten, konjugierte Eigenwerte in reeller Form darzustellen.
- 7. Bestimmen Sie ein ϵ , bis zu dem Sie sich x=1 nähern können, ohne dass die Kondition von $f(x)=\frac{1}{(x-1)^2}$ den Wert $\kappa=10^6$ übersteigt.

Aufgabe 5: (9 Punkte)

1. Leiten Sie das Newton-Verfahren zur Lösung von Optimierungsaufgaben her und geben Sie die recheneffiziente Version an.

- 2. Erklären Sie das Prinzip der Aktiven Mengenstrategie in der Optimierung.
- 3. Definieren Sie superlineare Konvergenz.
- 4. Warum ist das Newton-Verfahren zur Lösung von Aufgaben $c^Tx \to Min$ unter Ax = b und $Cx \le d$ nicht geeignet?
- 5. Wie viele zweite Ableitungen benötigen Sie beim Newton-Verfahren bei einem pparametrischen Problem?
- 6. Berechnen Sie den ersten Schritt der Newton-Raphson-Iteration zur Nullstellensuche von $f(x_1, x_2) = \begin{bmatrix} x_1^2 + x_2 \\ x_1x_2 + x_2^2 \end{bmatrix}$, wenn Sie mit $\begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ starten.

Aufgabe 6: (12 Punkte)

- 1. Formen Sie die Differenzialgleichung $y'''+x^2y=1$ so um, dass Sie sie mit dem Runge-Kutta-Verfahren integrieren könnten.
- 2. Notieren Sie für ein Cauchy-Problem eine Funktionsdefinition für das Lösen eines p-dimensionalen Differentialgleichungssystems erster Ordnung.
- 3. Berechnen Sie den Wert $y(\frac{3}{2})$ der Differentialgleichung y'=xy+x mit dem Runge-Kutta-4-Verfahren, wenn Ihr Anfangswert y(1)=2 ist. Wählen Sie die Schrittweite $h=\frac{1}{2}$.

4. Lösen Sie $Q = \int_0^1 (x-1)^3 dx$ analytisch. Anschließend lösen Sie das Problem mit der Trapezregel numerisch. Verwenden Sie die Schrittweite $h = \frac{1}{4}$.