Natjecateljsko programiranje

Fakultet elektrotehnike i računarstva 2013/2014 Završni ispit

Stranica 1 od 1 Bodovi: 100

Vremensko ograničenje: 1s

Memorijsko ograničenje: 32 MB

Studenti

Autor: Anton Grbin, Gustav Matula

Najnovije istraživanje ponašanja studenata na predavanjima rezultiralo je sljedećim otkrićem: Glasnoća studenta tijekom boravka na predavanju može se modelirati linearnom funkcijom.

Drugim riječima, ako student uđe u dvoranu u trenutku $T_{dolazak}$ i iziđe u trenutku $T_{odlazak}$, njegova glasnoća za vrijeme t u intervalu [$T_{dolazak}, T_{odlazak}$] može se opisati kao $g(t) = g_{pocetno} + g_{pojacanje} \cdot (t - T_{dolazak})$, za zadane konstante $g_{pocetno}, g_{pojacanje}$, koje se razlikuju od studenta do studenta.

Glasnoća je aditivna funkcija, pa je tako glasnoća grupe studenata jednaka zbroju njihovih individualnih glasnoća.

Za N studenata poznati su trenuci $T_{odlazak}$ i $T_{odlazak}$, te konstante $g_{pocetno}$, $g_{pojacanje}$. Zanima nas **maksimalna postignuta glasnoća** na predavanju.

Ulaz

U prvom retku ulaza nalazi se prirodni broj N ($1 \le N \le 10^5$). U sljedećih N redaka nalazi se po četiri prirodna broja, $T_{dolazak}$, $T_{odlazak}$, $g_{pocetno}$, $g_{pojacanje}$, podaci o dolasku, odlasku i glasnoći svakog studenta ($0 \le T_{dolazak} \le T_{odlazak} \le 10^6$; $-10^6 \le g_{pocetno}$, $g_{pojacanje} \le 10^6$).

Izlaz

U prvi i jedini redak izlaza potrebno je ispisati maksimalnu glasnoću postignutu na predavanju.

Test primjeri

Standardni ulaz	Standardni izlaz
2	146
1 90 5 -5	
30 100 6 2	
3	14
1 10 0 1	
5 15 0 1	
20 30 0 -1	
1	100000000000
0 1000000 0 1000000	

Napomena: U svim test primjerima rješenje će biti nenegativno.