7.2.1 回帰のための RVM

平成 28 年 9 月 11 日

概 要

PRML の「7.2.1 回帰のための RVM」についての実装と考察

目 次

1	問題設定	2
2	アルゴリズム	2
3	コード	3
4	結果	3
	 4.1 ガウスカーネル 4.1.1 回帰結果 4.1.2 誤差 4.1.3 パラメータα,β 4.2 多項式カーネル 4.2.1 回帰結果 4.2.2 誤差 	4 6 7 7
5	4.2.3 パラメータ $lpha,~eta$	11 12

1 問題設定

回帰問題に RVM を適用する. メリットとしては、疎な解が得られるということである.

2 アルゴリズム

与えられた入力ベクトルxに対する実数うちの目標変数tの条件付分布を

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = N(t|y(\mathbf{x}), \beta^{-1})$$
 (7.76)

とする, ただし平均は,

$$y(\mathbf{x}) = \sum_{m=1}^{M} w_m \phi_m(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) \quad (7.77)$$

で与える. これを N このデータ点でまとめると,

$$p(\mathbf{t}|X,\mathbf{w},\beta) = \prod_{n=1}^{N} N(t_n|y(\mathbf{x}_n),\beta^{-1}) \quad (7.79)$$

となる.

次に事前分布を導入するが,ここで

$$p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{m=1}^{M} N(w_m|\mathbf{0}, \alpha_m^{-1}) \quad (7.80)$$

と、それぞれの要素に対して別々の精度パラメータを用意する.

線形ベイズモデルの畳込みは解析的に解けるため、重みベクトル W に対する事後分布は

$$p(\mathbf{w}|\mathbf{t}, X, \alpha, \beta) = N(t|\mathbf{m}, \Sigma)$$
 (7.81)

ここで,平均,分散は

$$\mathbf{m} = \beta \Sigma \Phi^T \mathbf{t}, \ \Sigma = (A + \beta \Phi^T \Phi)^{-1} \ (7.82), (7.83)$$

となる. ただし, Φ は $\phi_{nm} = \phi_m(\mathbf{x}_n)$, $A = diag(\alpha_n)$ である. パラメータ α , β はエビデンス近似によって求めることができ,

$$\alpha_i^{new} = \frac{\gamma_i}{m_i^2}, \ \beta^{new} = \frac{N - \sum_i \gamma_i}{\|\mathbf{t} - \Phi \mathbf{m}\|^2} \ (7.87), (7.88)$$

ただし,

$$\gamma_i = 1 - \alpha_i \Sigma_{ii}$$

であり、この再定義式を解き、収束した値を用いることで予測分布が導出でき

$$p(t|\mathbf{x}, X, \mathbf{t}, \alpha^*, \beta^*) = N(t|\mathbf{m}^T \phi(\mathbf{x}), \sigma^2(\mathbf{x}))$$
 (7.90)

ただし,

$$\mathbf{m} = \beta \Sigma \Phi^T \mathbf{t}, \ \sigma^2 = (\beta^*)^{-1} + \phi(\mathbf{x})^T \Sigma \phi(\mathbf{x}) \ (7.82), (7.91)$$

3 コード

RVM 回帰のコード (RVRpy).

```
def gaussian_basis(x,z):
        theta=0.5*M
        return np.exp(-theta*(x-z)**2)
#基底関数
P=np.zeros((N,M))
mu = [2*pi*(m+1/2)/(M-1) \text{ for m in range}(M-1)]
for n in range(N):
        for m in range(M-1):
                P[n,m]=gaussian_basis(x[n],mu[m])
sig=np.zeros((N,N))
mean=np.zeros(N)
A=np.zeros((M,M))
alpha=np.ones(M)
gamma=np.zeros(M)
beta=1
frag=0
roop=0
"""パラメータ決定"""
while frag==0:
        for m in range(M):
                A[m,m]=alpha[m]
        sig=inv(A+beta*dot(P.T,P))
        mean=beta*dot(sig,dot(P.T,t))
        temp1, temp2=alpha, beta
        for m in range(M):
                gamma[m]=1-alpha[m]*sig[m,m]
                 alpha[m]=min(gamma[m]/(mean[m]**2+1.7e-300),1.7e+300)
        beta = (N-np.sum(gamma))/(norm(t-dot(P,mean))**2)
        roop+=1
        if norm(temp1-alpha) < M*10**-6 and abs(temp2-beta) < 10**-6 or roop > 10000:
                frag=1
print("(N,M)=",N,M)
print("aplha=",alpha)
"""モデル"""
def model_f(z):
        psi=np.zeros(M)
        for m in range (M-1):
                psi[m]=gaussian_basis(z,mu[m])
        psi[M-1]=1
        return dot(mean,psi)
```

4 結果

4.1 ガウスカーネル

カーネル関数に

$$k(\mathbf{x}_n, \mathbf{x}_m) = exp(-\theta(x_n - \mu_m)^2)$$

を用いた. ただし、データ数は $N=20,50,100,200,\ M=5,10,30,50$ とし $\theta=0.5M$ を用いた.

4.1.1 回帰結果

 $\boxtimes 1: M = 5, N = 20, 50, 100, 200$

 \boxtimes 2: M = 10, N = 20, 50, 100, 200

 $\boxtimes 3: M = 30, N = 20, 50, 100, 200$

M が小さいときなんかずれてる, M が大きいときうまくいっている. N が小さすぎるとき過学習 気味になるが, そんなにひどくない

4.1.2 誤差

M	20	50	100	200
5	0.90	0.90	0.92	0.92
10	0.47	0.39	0.36	0.36
30	0.96	0.36	0.29	0.28
50	2.58	0.60	0.34	0.30

表 1: E_{RMS} の N,M との関係 (ガウスカーネル)

4.1.3 パラメータ α , β

N = 200, M = 50 のとき

aplha=

[1.03210215e+000	1.49000585e+002	1.47141069e+006	6.02614368e-001
	6.30596754e+004	1.25255259e+001	3.47664951e+012	1.85085088e+000
	4.30126648e+013	1.43348897e+008	5.26437717e-001	1.21340818e+014
	1.11325811e+006	1.65818835e-001	4.20639228e+001	6.87016589e-001
	3.54036047e-001	8.39562665e+002	5.79081271e-001	1.43347370e+000
	8.19627571e+011	1.34144803e+016	2.34625329e+011	0.00000000e+000
	1.48959166e+000	9.58470740e+001	1.29329993e+000	7.24692239e+010
	2.28664362e+000	2.09542540e+001	1.42045065e+008	2.26085804e+000
	1.04702641e+015	8.01543522e+016	9.58098158e-001	1.42506329e+001
	6.63228094e-001	5.05697092e+005	2.33233107e-001	1.38992358e+020
	2.91174331e-001	0.00000000e+000	2.64324376e-001	4.59027935e+007
	2.35069550e+000	8.74889763e+000	1.18464149e+008	4.06789084e+007
	1.31046021e+000	1.07236401e+173]		

beta= 9.93096269807

となった.

 α は絶対値が非常に大きくなる要素がいくつかある. RVM が効力を発揮している. β は元データの精度 (分散の逆数)1/0.3 $^2 \neq 11$ 程度になっていて正しいように思う.

4.2 多項式カーネル

カーネル関数に

$$k(\mathbf{x}_n, \mathbf{x}_m) = (x_n \mu_m + 1)^{\theta}$$

を用いた. ただし, データ数は N = 50,100 M = 10,30 とし $\theta = 2,3,7$ を用いた.

4.2.1 回帰結果

あまり面白い結果にならなかったので、一部のみ記す. $\theta = 2$ のとき

 $\boxtimes 5: M = 10, N = 50, 100$

 \boxtimes 6: M = 30, N = 50, 100

カーネルに依存し2次関数となり,回帰としては不十分.

 $\theta = 3$ のとき

 \boxtimes 7: M = 10, N = 50, 100

図 8: M = 30, N = 50, 100

カーネルに依存し3次関数となり,回帰としては不十分.

 $\theta = 7 O$ \geq $\stackrel{\circ}{>}$

 $\boxtimes 10: M = 30, N = 50, 100$

山,谷が6つなので,7次関数で精度よく回帰できると考えたが,多項式カーネルは絶対値が大きい領域での回帰を優先するため,絶対値の小さい領域では回帰に失敗している.

4.2.2 誤差

M	20	50	100	200
5	1.17	1.18	1.21	1.19
10	1.17	1.68	1.21	1.19
30	1.15	1.15	1.21	1.19
50	960	4.27	1.53	1.19

表 2: E_{RMS} の N,M との関係 (多項式カーネル, $\theta=2$)

M	20	50	100	200
5	0.98	0.80	0.79	0.78
10	1.02	0.80	0.79	0.78
30	0.95	0.79	0.79	0.78
50	0.86	0.78	0.79	0.78

表 3: E_{RMS} の N,M との関係 (多項式カーネル, $\theta = 3$)

M	20	50	100	200
5	0.81	0.77	0.76	0.73
10	0.83	0.76	0.69	0.69
30	0.84	0.76	0.69	0.70
50	0.84	0.74	0.69	0.89

表 4: E_{RMS} の N,M との関係 (多項式カーネル, $\theta = 7$)

カーネル関数の選び方で凡化性能に限界がある.

4.2.3 パラメータ α , β

 $N = 200, M = 50, \theta = 7$ のとき

aplha=

	-			
[1.18574425e-003	1.04139538e+001	3.31047546e-002	1.77882807e-001
	-3.47046296e+002	-4.61559521e+002	1.34322299e+000	2.79414730e+001
	-1.86062844e+010	-1.54567781e+003	-5.14047608e+002	3.10796253e+001
	1.04442733e+002	4.19904323e+009	8.05665954e+010	-2.31815061e+015
	-1.35174881e+011	-8.32538438e+014	-5.46911535e+015	9.69192473e+008
	1.69798816e+285	2.41211252e+010	6.40257997e+007	-3.78405631e+005
	-1.37882658e+013	4.17044230e+020	-2.33728519e+013	-9.73764337e+009
	-8.57214679e+011	1.03035660e+013	-3.35679197e+286	6.23052007e+008
	1.40643411e+021	1.12679081e+023	8.93861844e+007	-1.81746855e+019
	-1.13981069e+013	-1.74536866e+018	-5.66009253e+018	2.52728947e+015
	-8.56284273e+017	-1.85211323e+287	1.78936718e+017	6.42057977e+015
	7.43593241e+013	9.49429315e+017	-1.21732689e+287	1.78638340e+010
	-1.00451932e+014	1.60723899e-003]		

beta= 1.08546893411

となった.

ガウスカーネルのとき同様, α は絶対値が非常に大きくなる要素がいくつかある. RVM が効力を発揮している.

 β は元データの精度 (分散の逆数) $1/0.3^2 \neq 11$ より小さくなっていて、つまり分散が大きくなっていて、回帰は失敗していると考える.

5 まとめ

 α の一部の要素が非常に大きくなることが確かめられた, RVM のこの性質は疎な解を得るのにつながっている.