

Coq Proof Assistant: Propositions and Proofs

Mirco Kocher

Logic and Theory Group
Institute of Computer Science and Applied Mathematics
Universität Bern

Minimal Propositional Logic

Basics

Definition

Example

Definition

Demo

Minimal Propositional Logic

Basics

Definition

Example

Definition

Demo

Minimal Propositional Logic

Basics

Definition

Example

Definition

Demo

Minimal Propositional Logic

Basics

Definition

Example

Definition

Minimal Propositional Logic

Basics

Definition

Example

Definition

Demo

Overview

Minimal Propositional Logic

Basics

Definition

Example

Definition

Demo

Overview

Minimal Propositional Logic

Basics

Definition

Example

Definition

Demo

$$(P \rightarrow Q)$$

- Classical logic
- Assign to every variable a denotation true or false
- Formula is valid iff true in all cases
- Question "is the proposition P true?"

$$(P \rightarrow Q)$$

- Classical logic
- Assign to every variable a denotation true or false
- Formula is valid iff true in all cases
- Question "is the proposition P true?"

$$(P \rightarrow Q)$$

- Classical logic
- Assign to every variable a denotation true or false
- Formula is valid iff true in all cases
- Question "is the proposition P true?"

$$(P \rightarrow Q)$$

- Classical logic
- Assign to every variable a denotation true or false
- Formula is valid iff true in all cases
- Question "is the proposition P true?"

Coq system

$$(P \rightarrow Q)$$

- Intuitionistic logic
- Obtain a proof of Q from a proof of P
- Arbitrary proof of P constructs a proof of G
- Question "what are the proof of P (if any)?"

Coq system

$$(P \rightarrow Q)$$

- Intuitionistic logic
- Obtain a proof of Q from a proof of P
- Arbitrary proof of P constructs a proof of Q
- Question "what are the proof of P (if any)?"

Coq system

$$(P \rightarrow Q)$$

- Intuitionistic logic
- Obtain a proof of Q from a proof of P
- Arbitrary proof of P constructs a proof of Q
- Question "what are the proof of P (if any)?"

$$(P \rightarrow Q)$$

- Intuitionistic logic
- Obtain a proof of Q from a proof of P
- Arbitrary proof of P constructs a proof of Q
- Question "what are the proof of P (if any)?"

OOOO O

Hypothesis

Hypothesis h:P

- Local declaration
- *h* is the name of the hypothesis
- P is its statement
- Synonymous to Variable h:P
- Use Hypotheses or
 - variables to declare several at a time

OOOO O

Hypothesis

Hypothesis h:P

- Local declaration
- h is the name of the hypothesis
- P is its statement
- Synonymous to Variable h:P
- Use Hypotheses or Variables

to declare several at a time

Hypothesis

Hypothesis h:P

- Local declaration
- h is the name of the hypothesis
- P is its statement
- Synonymous to Variable h:P
- Use
 Hypotheses
 or
 Variables
 - to declare several at a time

Hypothesis

Hypothesis h:P

- Local declaration
- h is the name of the hypothesis
- P is its statement
- Synonymous to Variable h:P
- Use
 Hypotheses
 or
 Variables

to declare several at a time

Hypothesis

Hypothesis h:P

- Local declaration
- *h* is the name of the hypothesis
- P is its statement
- Synonymous to Variable h:P
- Use

Hypotheses

or

Variables

to declare several at a time

Section

The section contains all Hypoteses / Variables from the Context

Start section sec1 with Section sec1

End section sec1 with End sec1

Section

The section contains all Hypoteses / Variables from the Context Start section sec1 with Section sec1

End section sec1 with

End sec1

OOOO O

Section

The section contains all Hypoteses / Variables from the Context Start section sec1 with Section sec1

End section sec1 with End sec1

Axiom x:P

- Global declaration
- Synonymous to Parameter x:P

Environment contains axioms

$$E, \Gamma \vdash \pi : P$$

Axiom

Axiom x:P

- Global declaration
- Synonymous to Parameter x:P

Environment contains axioms

$$E, \Gamma \vdash \pi : P$$

Axiom x:P

- Global declaration
- Synonymous to Parameter x:P

Environment contains axioms

$$E, \Gamma \vdash \pi : F$$

Axiom x:P

- Global declaration
- Synonymous to Parameter x:P

Environment contains axioms

$$E, \Gamma \vdash \pi : P$$

Axiom x:P

- Global declaration
- Synonymous to Parameter x:P

Environment contains axioms

$$E, \Gamma \vdash \pi : P$$

OOOO O

Goals and Tactics

Goals: what needs to be proven

Goal: $E, \Gamma \vdash P$

Construct a proof of P. Should be a well-formed term t in the environment E and context Γ Term t is called a solution

Tactics: commands to decompose this goal into simpler goals g ist input goal and $g_1, g_2, ..., g_k$ are output goals Possible to construct a solution of g from the solutions of goals g

Goals and Tactics

Goals: what needs to be proven

Goal: $E, \Gamma \vdash P$

Construct a proof of P. Should be a well-formed term t in the environment E and context Γ Term t is called a *solution*

Tactics: commands to decompose this goal into simpler goals g ist input goal and $g_1, g_2, ..., g_k$ are output goals Possible to construct a solution of g from the solutions of goals g

Goals and Tactics

Goals: what needs to be proven

Goal: $E, \Gamma \vdash P$

Construct a proof of P. Should be a well-formed term t in the environment E and context Γ

Term t is called a solution

Tactics: commands to decompose this goal into simpler goals g ist input goal and $g_1, g_2, ..., g_k$ are output goals Possible to construct a solution of g from the solutions of goals g

Goals and Tactics

Goals: what needs to be proven

Goal: $E, \Gamma \vdash P$

Construct a proof of P. Should be a well-formed term t in the environment E and context Γ Term t is called a *solution*

Tactics: commands to decompose this goal into simpler goals g ist input goal and $g_1, g_2, ..., g_k$ are output goals Possible to construct a solution of g from the solutions of goals g

Goals and Tactics

Goals: what needs to be proven

Goal: $E, \Gamma \vdash P$

Construct a proof of P. Should be a well-formed term t in the environment E and context Γ Term t is called a *solution*

Tactics: commands to decompose this goal into simpler goals

g ist input goal and $g_1, g_2, ..., g_k$ are output goals Possible to construct a solution of g from the solutions of goals g

Goals: what needs to be proven

Goal: $E, \Gamma \vdash P$

Construct a proof of P. Should be a well-formed term t in the environment E and context Γ Term t is called a *solution*

Tactics: commands to decompose this goal into simpler goals g ist input goal and $g_1, g_2, ..., g_k$ are output goals. Possible to construct a solution of g from the solutions of goals g

Goals and Tactics

Goals: what needs to be proven

Goal: $E, \Gamma \vdash P$

Construct a proof of P. Should be a well-formed term t in the environment E and context Γ Term t is called a *solution*

Tactics: commands to decompose this goal into simpler goals g ist input goal and $g_1, g_2, ..., g_k$ are output goals Possible to construct a solution of g from the solutions of goals g_i

Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p

- Transform the task of construction a proof into proving R with those hypotheses added
- $H:P\rightarrow Q$
- $H': Q \rightarrow R$ and
- p: P
- New subgoal: R

Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p

- Transform the task of construction a proof into proving R with those hypotheses added
- $H:P\rightarrow Q$
- $H': Q \rightarrow R$ and
- p : P
- New subgoal: R

Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p

- Transform the task of construction a proof into proving R with those hypotheses added
- H : P → Q
- $H': Q \rightarrow R$ and
- p: P
- New subgoal: R

Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p

- Transform the task of construction a proof into proving R with those hypotheses added
- H : P → Q
- $H': Q \rightarrow R$ and
- p: P
- New subgoal: R

Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p

- Transform the task of construction a proof into proving R with those hypotheses added
- H : P → Q
- $H': Q \rightarrow R$ and
- p: P
- New subgoal: R

Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p

- Transform the task of construction a proof into proving R with those hypotheses added
- H : P → Q
- $H': Q \rightarrow R$ and
- p : P
- New subgoal: R

Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p

- Transform the task of construction a proof into proving R with those hypotheses added
- H : P → Q
- $H': Q \rightarrow R$ and
- p : P
- New subgoal: R

Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p

- Transform the task of construction a proof into proving R with those hypotheses added
- H : P → Q
- $H': Q \rightarrow R$ and
- p : P
- New subgoal: R

Subgoal: R

Hypothesis $H':Q\to R$ and $H:P\to Q$

apply H

- Use the hypothesis H' to advance our proof
- Argument has to be a premise and a conclusion
- Creates new goal for the premise
- New subgoal: Q

Applying hypothesis H gives the new subgoal P

Subgoal: R

Hypothesis $H': Q \rightarrow R$ and $H: P \rightarrow Q$

apply H'

- Use the hypothesis H' to advance our proof
- Argument has to be a premise and a conclusion
- Creates new goal for the premise
- New subgoal: Q

Applying hypothesis H gives the new subgoal P

Subgoal: R

Hypothesis $H': Q \to R$ and $H: P \to Q$

apply H'

- Use the hypothesis H' to advance our proof
- Argument has to be a premise and a conclusion
- Creates new goal for the premise
- New subgoal: Q

Applying hypothesis H gives the new subgoal *F*

Subgoal: R

Hypothesis $H': Q \to R$ and $H: P \to Q$

apply H'

- Use the hypothesis H' to advance our proof
- Argument has to be a premise and a conclusion
- Creates new goal for the premise
- New subgoal: Q

Applying hypothesis H gives the new subgoal $\it P$

Subgoal: R

Hypothesis $H': Q \to R$ and $H: P \to Q$

apply H'

- Use the hypothesis H' to advance our proof
- Argument has to be a premise and a conclusion
- Creates new goal for the premise
- New subgoal: Q

Applying hypothesis H gives the new subgoal *F*

Subgoal: R

Hypothesis $H': Q \to R$ and $H: P \to Q$

apply H'

- Use the hypothesis H' to advance our proof
- Argument has to be a premise and a conclusion
- Creates new goal for the premise
- New subgoal: Q

Applying hypothesis H gives the new subgoal P

Subgoal: P

Hypothesis p: P

assumption

- Statement to proof is exactly statement of hypothesis p
- Succeeds without generating any new goal

No more subgoals

Subgoal: P

Hypothesis p: P

assumption

- Statement to proof is exactly statement of hypothesis p
- Succeeds without generating any new goal

No more subgoals

Subgoal: P

Hypothesis p: P

assumption

- Statement to proof is exactly statement of hypothesis p
- Succeeds without generating any new goal

No more subgoals

Subgoal: P

Hypothesis p: P

assumption

- Statement to proof is exactly statement of hypothesis p
- Succeeds without generating any new goal

No more subgoals

Subgoal: P

Hypothesis p: P

assumption

- Statement to proof is exactly statement of hypothesis p
- Succeeds without generating any new goal

No more subgoals

Qed

- Saves the theorem's name, statement and proof term
- Displays the sequence of tactics.

```
intros H H' p. apply H'. apply H. assumption.
```

Print theorem-name

```
theorem-name = fun (H:P -> Q)(H':Q -> R)(p:P) => H' (H p) : (P -> Q) -> (Q -> R) -> P -> R
```


Qed

- Saves the theorem's name, statement and proof term
- Displays the sequence of tactics.

```
intros H H' p.
apply H'.
apply H.
assumption.
```

Print theorem-name

```
theorem-name = fun (H:P -> Q)(H':Q -> R)(p:P) => H' (H p) : (P -> Q) -> (Q -> R) -> P -> R
```


Qed

- Saves the theorem's name, statement and proof term
- Displays the sequence of tactics.

```
intros H H' p. apply H'. apply H. assumption.
```

Print theorem-name

```
cheorem-name = fun (H:P -> Q)(H':Q -> R)(p:P) => H' (H p) : (P -> Q) -> (Q -> R) -> P -> R
```


Qed

- Saves the theorem's name, statement and proof term
- Displays the sequence of tactics.

```
intros H H' p. apply H'. apply H. assumption.
```

Print theorem-name

```
cheorem-name = fun (H:P -> Q)(H':Q -> R)(p:P) => H' (H p) : (P -> Q) -> (Q -> R) -> P -> R
```


Qed

- Saves the theorem's name, statement and proof term
- Displays the sequence of tactics.

```
intros H H' p. apply H'. apply H. assumption.
```

Print theorem-name

```
theorem-name = fun (H:P -> Q)(H':Q -> R)(p:P) => H' (H p) : (P -> Q) -> (Q -> R) -> P -> R
```


Transitivity

$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

Emphasis is everything

The following word is emphasized is a way that's clearly visible on a beamer. In case you want a stronger emphasis, it's **possible too**. Commands used for that are defined in preamble.tex, you can tweak the

visual style from one place.

OOOO

Columns and paragraphs

Arranging it in columns is also a possibility.

Note that column width can be custom.

Inference trees

You can use bussproofs to display inference rules and derivations:

$$\begin{array}{c|c} & T_2 \\ \hline T_1 & \bot \lor T_2 \\ \hline T_1 \land (\bot \lor T_2) & (\land) \end{array}$$

Note: it works like a stack.

