第一章 线性规划

第四节 单纯形法

- 典式
 - ▶ 迭代原理
 - 单纯形法举例
 - 两阶段法

$$(LP) \min S = CX$$

$$AX = b \qquad R(A) = m$$
$$X \ge 0$$

基变量个数与 方程个数一致

$$A = (p_1, p_2, \dots, p_m, p_{m+1}, p_{m+2}, \dots, p_n) = (B, N)$$
 $B^{-1}b \ge 0$ $B($ 可行基)

$$X = (x_1, x_2, \dots, x_m, x_{m+1}, x_{m+2}, \dots, x_n)^T = \begin{pmatrix} X_B \\ X_N \end{pmatrix}$$

$$C = (c_1, c_2, \dots, c_m, c_{m+1}, c_{m+2}, \dots, c_n) = (C_B, C_N)$$

复习

$$(LP)\min S = CX \qquad C = (C_B, C_N)$$

$$AX = b \qquad A = (B, N) \qquad X = \begin{pmatrix} X_B \\ X_N \end{pmatrix}$$

$$X \ge 0$$

$$AX = b \longrightarrow (B, N) {X_B \choose X_N} = b \longrightarrow BX_B + NX_N = b$$

$$\longrightarrow X_B + B^{-1}NX_N = B^{-1}b \longrightarrow X_B = B^{-1}b - B^{-1}NX_N$$

$$S = CX = (C_B, C_N) \begin{pmatrix} X_B \\ X_N \end{pmatrix} = C_B X_B + C_N X_N$$
$$= C_B (B^{-1}b - B^{-1}NX_N) + C_N X_N$$
$$= C_B B^{-1}b + (C_N - C_B B^{-1}N)X_N$$

复习
$$C-C_BB^{-1}A \ge 0 \Leftrightarrow C_N-C_BB^{-1}N \ge 0$$

$$\min S = CX$$

$$AX = b$$

$$X \ge 0$$

定理1-1(最优性判别定理)

对于 (LP) 的基 B, 若有 $X_B^* = B^{-1}b \ge 0$ 且 $C - C_B B^{-1} A \ge 0$ $(C_N - C_B B^{-1} N \ge 0)$,则基本可行解

$$X^* = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
 是(XP)的最优解,称为最优基本可行解,

B称为最优基。检验数向量 非基变量检验数向量

第一章 线性规划

一. 典式

- 典式的向量形式
 - 典式的分量形式
 - 典式的表格形式(单纯形表)

基本可行解

1. 典式的向量形式 $S = CX = C_B B^{-1}$ 一个典式唯一地对

$$(LP)\min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$X \ge 0$$

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$
 基本可行解

$$\min S = C_B B^{-1}b + (C_N - C_B B^{-1}N)X_N$$

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = X_B$$

$$X_B + B^{-1}NX_N = B^{-1}b$$

$$X = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$$

$$X = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$$

$$X = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$$

$$S = C_B B^{-1}b$$

称为(LP)的以 x_1, x_2, \dots, x_m 为基变量的典式 典式的向量形式

阿里:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$
 $\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_j \ge 0, \quad j = 1, 2, 3, 4 \end{cases}$ $\lim S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $X_B + B^{-1} N X_N = B^{-1} b$ $X_B \ge 0, \quad X_N \ge 0$
$$\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$$
 $\lim S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$ $X_B \ge 0, \quad X_N \ge 0$
$$\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$$
 $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 + 2x_3 + x_4 = 2 \end{cases}$ $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 + x_4$

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0, \quad X_N \ge 0$$

$$B^{-1}(A,b) = B^{-1} \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & B & 2 & 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & E_1 & B^{-1} & 0 & B \end{pmatrix} b$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases} \begin{cases} x_1 - 2x_3 + x_4 = 0 \\ x_2 + 2x_3 + 0x_4 = 1 \end{cases}$$

$$C_B B^{-1} b = (1,1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1 \quad C_N - C_B B^{-1} N = (2,2) - (1,1) \begin{pmatrix} -2 & 1 \\ 2 & 0 \end{pmatrix} = (2,1)$$

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N = 1 + (2,1) \binom{x_3}{x_4} = 1 + 2x_3 + x_4$$

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$$

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0, \ X_N \ge 0$$

$$x_1 + 2x_2 + 2x_3 + x_4 = 2$$

 $x_j \ge 0, \quad j = 1, 2, 3, 4$ $A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & B_2 & 2 & N_1 \\ x_1 & x_2 & x_3 & x_4 \end{pmatrix}$ $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $R(A) = 2$

$$B^{-1}(A,b) = B^{-1} \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & B & 2 & 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & E_1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 0 & 1 \end{pmatrix} b \quad C_B B^{-1} b = 1$$

典式(基变量为 x_1, x_2):

$$\min S = 1 + 2x_3 + x_4$$

$$\begin{cases} x_1 & -2x_3 + x_4 = 0 \\ x_2 + 2x_3 + 0x_4 = 1 \\ x_j \ge 0, j = 1, 2, 3, 4 \end{cases}$$

基本可行解:

$$X = (0,1,0,0)^T$$

基本可行解:
$$X = (0,1,0,0)^T \qquad X = \begin{pmatrix} B^{-1}b \geq 0 \\ 0 \end{pmatrix}$$

$$S = C_{R}B^{-1}b$$

基变量: 只出现在其中

个方程中,且系数为1。

可行基 🕽 典式 基本可行解

2. 典式的分量形式

$$\boldsymbol{X}_{\boldsymbol{B}} + \boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{X}_{\boldsymbol{N}} = \boldsymbol{B}^{-1} \boldsymbol{b}$$

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0, \quad X_N \ge 0$$

$$A = (p_1, p_2, \dots, p_m, p_{m+1}, p_{m+2}, \dots, p_n) = (B, N)$$
 $B^{-1}b \ge 0$ $B($ 可行基 $)$ N

$$B^{-1}N = (B^{-1}p_{m+1}, B^{-1}p_{m+2}, \dots, B^{-1}p_n)$$

$$B^{-1}b = \begin{pmatrix} y_{10} \\ y_{20} \\ \vdots \\ y_{m0} \end{pmatrix} \ge 0 \qquad = \begin{pmatrix} y_{1m+1} & y_{1m+2} & \cdots & y_{1n} \\ y_{2m+1} & y_{2m+2} & \cdots & y_{2n} \\ \vdots & & & \ddots & \ddots \\ y_{mm+1} & y_{mm+2} & \cdots & y_{mn} \end{pmatrix}$$

线性规划1-4

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$$

$$x_1 \ge 0, \quad i = 1, 2, 3, 4$$

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0, \quad X_N \ge 0$$

典式(基变量为 x_1, x_2):

$$\min S = 1 + 2x_3 + x_4$$

$$\begin{cases} x_1 & -2x_3 + x_4 = 0 \\ x_2 + 2x_3 + 0x_4 = 1 \\ x_j \ge 0, j = 1, 2, 3, 4 \end{cases}$$

$$\mathbf{B}^{-1}\mathbf{b} = \begin{pmatrix} y_{10} \\ y_{20} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$B^{-1}N = B^{-1}(p_3, p_4)$$

$$= (B^{-1}p_3, B^{-1}p_4)$$

$$= \begin{pmatrix} y_{13} & y_{14} \\ y_{23} & y_{24} \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 2 & 0 \end{pmatrix}$$

$$X_{B} + B^{-1}NX_{N} = B^{-1}b$$

$$B^{-1}b = \begin{pmatrix} y_{10} \\ y_{20} \\ \vdots \\ y_{m0} \end{pmatrix} \ge 0 \quad B^{-1}N = \begin{pmatrix} y_{1m+1} & y_{1m+2} & \cdots & y_{1n} \\ y_{2m+1} & y_{2m+2} & \cdots & y_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ y_{mm+1} & y_{mm+2} & \cdots & y_{mn} \end{pmatrix}$$

$$X = (x_{1}, x_{2}, \cdots, x_{m}, x_{m+1}, x_{m+2}, \cdots, x_{n})^{T} = \begin{pmatrix} X_{B} \\ X_{N} \end{pmatrix}$$

$$\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{pmatrix} + \begin{pmatrix} y_{1m+1} & y_{1m+2} & \cdots & y_{1n} \\ y_{2m+1} & y_{2m+2} & \cdots & y_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ y_{mn} \end{pmatrix} \begin{pmatrix} x_{m+1} \\ x_{m+2} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} y_{10} \\ y_{20} \\ \vdots \\ y_{m0} \end{pmatrix}$$

$$X_B + B^{-1}NX_N = B^{-1}b$$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} + \begin{pmatrix} y_{1m+1} & y_{1m+2} & \cdots & y_{1n} \\ y_{2m+1} & y_{2m+2} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \ddots \\ y_{mm+1} & y_{mm+2} & \cdots & y_{mn} \end{pmatrix} \begin{pmatrix} x_{m+1} \\ x_{m+2} \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_{10} \\ y_{20} \\ \vdots \\ y_{m0} \end{pmatrix}$$

$$\begin{cases} x_1 + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \dots + y_{1n}x_n = y_{10} \\ x_2 + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \dots + y_{2n}x_n = y_{20} \end{cases}$$

$$x_m + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \dots + y_{mn}x_n = y_{m0}$$

[5]:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \end{cases}$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$$

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0, \ X_N \ge 0$$

$$x_1 + 2x_2 + 2x_3 + x_4 = 2$$

 $x_j \ge 0, \quad j = 1, 2, 3, 4$
 $A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & B & 2 & 2 & 1 \\ 1 & x_2 & x_3 & x_4 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 2 \end{pmatrix} R(A) = 2$

$$B^{-1}(A,b) = B^{-1} \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & B & 2 & 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & E_1 & B^{-1} & 0 & B \end{pmatrix} b \quad C_B B^{-1} b = 1$$

典式(基变量为 x_1, x_2):

$$\min S = 1 + 2x_3 + x_4$$

$$\begin{cases} x_1 & -2x_3 + x_4 = 0 \\ x_2 + 2x_3 + 0x_4 = 1 \end{cases} \longleftarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} -2 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$x_j \ge 0, j = 1, 2, 3, 4$$

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0 \quad X_N \ge 0$$

$$\min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$C = (c_1, c_2, \dots, c_m, c_{m+1}, c_{m+2}, \dots, c_n) = (C_B, C_N)$$

$$C_B$$

$$\boldsymbol{B}^{-1}\boldsymbol{b} = \begin{pmatrix} \boldsymbol{y}_{10} \\ \boldsymbol{y}_{20} \\ \vdots \\ \boldsymbol{y}_{m0} \end{pmatrix}$$

$$B^{-1}b = \begin{pmatrix} y_{10} \\ y_{20} \\ \vdots \\ y_{m0} \end{pmatrix} \qquad B^{-1}N = \begin{pmatrix} y_{1m+1} & y_{1m+2} & \cdots & y_{1n} \\ y_{2m+1} & y_{2m+2} & \cdots & y_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ y_{mm+1} & y_{mm+2} & \cdots & y_{mn} \end{pmatrix}$$

$$C_B B^{-1} b = y_{00}$$
 $(C_N - C_B B^{-1} N) = (y_{0m+1}, y_{0m+2}, \dots, y_{0n})$

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \\ x_j \ge 0, \quad j = 1, 2, 3, 4 \end{cases}$$

$$\lim_{N \to \infty} S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0, \quad X_N \ge 0$$

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & x_2 & x_3 & x_4 \end{pmatrix}$$

$$b = \begin{pmatrix} 1 \\ 2 \end{pmatrix} R(A) = 2$$

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0, \quad X_N \ge 0$$

$$B^{-1}(A,b) = B^{-1} \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & B & 2 & 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & E_1 & B^{-1} & 0 & P \end{pmatrix} b$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases} \begin{cases} x_1 - 2x_3 + x_4 = 0 \\ x_2 + 2x_3 + 0x_4 = 1 \end{cases}$$

$$C_B B^{-1} b = (1,1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1 \quad C_N - C_B B^{-1} N = (2,2) - (1,1) \begin{pmatrix} -2 & 1 \\ 2 & 0 \end{pmatrix} = (2,1)$$

$$\min S = C_B B^{-1} b + (C_N - C_N)$$

$$X_B + B^{-1} N X_N = B$$

$$X_B \ge 0 \quad X_N \ge 0$$

 $\min S = C_R B^{-1} b + (C_N - 1.$ 每个方程都有且仅有一个基变 $X_B + B^{-1}NX_N = I$ $X_B \ge 0$ $X_N \ge$

2. 非基变量的系数是其检验数。

min
$$S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \cdots + y_{0n}x_n$$
 典式的分
$$x_1 + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \cdots + y_{1n}x_n = y_{10}$$
 量形式
$$x_2 + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \cdots + y_{2n}x_n = y_{20}$$

$$\dots$$

$$x_m + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \cdots + y_{mn}x_n = y_{m0}$$

$$x_j \ge 0, j = 1, 2, \cdots n$$

$$C_B B^{-1} b = y_{00} \qquad C_N - C_B B^{-1} N = (y_{0m+1}, y_{0m+2}, \cdots, y_{0n})$$

线性规划1-4

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$$

$$x_1 + 2x_2 + 2x_3 + x_4 - x_i \ge 0, \quad j = 1,2,3,4$$

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0, \ X_N \ge 0$$

$$x_{1} + 2x_{2} + 3x_{3} + x_{4} = 2$$

$$x_{1} + 2x_{2} + 2x_{3} + x_{4} = 2$$

$$x_{j} \ge 0, \quad j = 1, 2, 3, 4$$

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & B & 2 & 2 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad R(A) = 2$$

$$B^{-1}(A,b) = B^{-1} \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & B & 2 & 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & E_1 & B^{-1} & 0 & B \end{pmatrix} b \quad C_B B^{-1} b = 1$$

典式(基变量为 x_1, x_2):

$$\min S = 1 + 2x_3 + x_4$$

$$\begin{cases} x_1 & -2x_3 + x_4 = 0 \\ x_2 + 2x_3 + 0x_4 = 1 \\ x_j \ge 0, j = 1, 2, 3, 4 \end{cases}$$

基本可行解:

$$X = (0,1,0,0)^T$$

目标值:
$$S=1$$

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N
X_B + B^{-1} N X_N = B^{-1} b
X_B \ge 0 \quad X_N \ge 0$$

$$X_N = \begin{pmatrix} x_{m+1} \\ x_{m+2} \\ \vdots \\ x_n \end{pmatrix}$$

$$\min S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \cdots + y_{0n}x_n$$
 典式的分
$$x_1 + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \cdots + y_{1n}x_n = y_{10}$$
 量形式
$$x_2 + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \cdots + y_{2n}x_n = y_{20}$$

$$\dots$$

$$x_m + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \cdots + y_{mn}x_n = y_{m0}$$

$$x_j \ge 0, j = 1, 2, \cdots n$$

$$C_B B^{-1}b = y_{00} \qquad C_N - C_B B^{-1}N = (y_{0m+1}, y_{0m+2}, \cdots, y_{0n})$$

$$C_N - C_B B^{-1} N = (y_{0m+1}, y_{0m+2}, \dots, y_{0n})$$

$$\min S = CX
AX = b
X \ge 0$$

$$\begin{split} &C_{N} - C_{B}B^{-1}N \\ &= (c_{m+1}, c_{m+2}, \cdots c_{n}) - C_{B}B^{-1}(p_{m+1}, p_{m+2}, \cdots, p_{n}) \\ &= (c_{m+1}, c_{m+2}, \cdots c_{n}) - (C_{B}B^{-1}p_{m+1}, C_{B}B^{-1}p_{m+2}, \cdots, C_{B}B^{-1}p_{n}) \\ &= (c_{m+1} - C_{B}B^{-1}p_{m+1}, c_{m+2} - C_{B}B^{-1}p_{m+2}, \cdots, c_{n} - C_{B}B^{-1}p_{n}) \end{split}$$

$$y_{0m+1} = c_{m+1} - C_B B^{-1} p_{m+1}$$
 非基变量 x_j 的检验数
$$y_{0m+2} = c_{m+2} - C_B B^{-1} p_{m+2}$$

$$\vdots$$

$$y_{0n} = c_n - C_B B^{-1} p_n$$

$$j = m+1, m+2, \dots, n$$

典式的分量形式:
$$y_{00} = C_B B^{-1} b$$
 $y_{0j} = c_j - C_B B^{-1} p_j$

$$\min S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \dots + y_{0n}x_n$$

$$(x_1 + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \dots + y_{1n}x_n = y_{10})$$

$$x_2 + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \dots + y_{2n}x_n = y_{20}$$

$$x_m + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \dots + y_{mn}x_n = y_{m0}$$

$$x_{j} \geq 0, j = 1, 2, \dots n$$

基本可行解:
$$X^{0} = (y_{10}, y_{20}, \dots, y_{m0}, 0, 0, 0, \dots, 0)^{T} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$

目标值:
$$S^0 = y_{00} = C_R B^{-1} b$$

$$3. - y_{00} = -S + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \dots + y_{0n}x_{n}$$

$$\min S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \dots + y_{0n}x_{n}$$

$$x_{1} + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \dots + y_{1n}x_{n} = y_{10}$$

$$x_{2} + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \dots + y_{2n}x_{n} = y_{20}$$

$$x_{m} + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \dots + y_{mn}x_{n} = y_{m0}$$

		x_1	\boldsymbol{x}_2	•••	\boldsymbol{x}_{m}	x_{m+1}	X_{m+2}	• • •	\boldsymbol{x}_n
y_{0j}	$-y_{00}$	0	0	• • •	0	y_{0m+1}	y_{0m+2}	• • •	y_{0n}
							y_{1m+2}		
x_2	<i>y</i> ₂₀	0	1	• • •	0	y_{2m+1}	y_{2m+2}	• • •	y_{2n}
\dot{x}_m	y_{m0}	0	0	• • •	1	y_{mm+1}	y_{mm+}	2	y_{mn}

单纯形表:

$$y_{0j} = c_j - C_B B^{-1} p_j \quad C - C_B B^{-1} A^{-1}$$

$$B^{-1}b \quad C - C_B B^{-1} A = (C_B, C_N) - C_B B^{-1} (B, N)$$

$$= (C_B, C_N) - (C_B, C_B B^{-1} N)$$

$$= (0, C_N - C_B B^{-1} N)$$

$$= (0, 0, \dots, 0, y_{0m+1}, y_{0m+2}, \dots, y_{0m})$$

单纯形表:
$$S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \cdots + y_{0n}x_n$$

$$B^{-1}b \ge 0 \qquad x_1 x_2 \cdots x_m x_{m+1} x_{m+2} \cdots x_n$$

基本可行解: $X^0 = (y_{10}, y_{20}, \cdots, y_{m0}, \mathbf{0}, \mathbf{0}, \cdots, \mathbf{0})^{T_{=}} \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \ge 0$

目标值:
$$S^0 = y_{00} = C_B B^{-1} b$$

例:
$$\min S = x_1 + x_2 + 2x_3 + 2x_4$$

$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 = 1 \\ x_1 + 2x_2 + 2x_3 + x_4 = 2 \end{cases}$$

$$x_i \ge 0, \quad j = 1, 2, 3, 4$$

单纯形表:

		\boldsymbol{x}_1	\boldsymbol{x}_{2}	x_3	x_4	
y_{0j}	-1	0	0	2	1	
x_1	0	1	0	-2	1	
\boldsymbol{x}_{2}	1	0	1	2	0	

$$\min S = 1 + 2x_3 + x_4
\begin{cases}
x_1 & -2x_3 + x_4 = 0 \\
x_2 + 2x_3 + 0x_4 = 1 \\
x_j \ge 0, j = 1, 2, 3, 4
\end{cases}$$

基本可行解:

$$X = (0,1,0,0)^T$$

目标值: S=1

第一章 线性规划

第四节 单纯形法

- ✓典式
- 迭代原理
 - 单纯形法举例
 - ■两阶段法

单纯形法的迭代思想:

顶点1 顶点3 目标值↓ 顶点2 基本可 基本可 基本可 目标值↓ 行解1 行解2 行解3 单纯 单纯 单纯 目标值↓ 形表2 形表3 形表1

二. 迭代原理:

1. 初始单纯形表

		x_1	$x_2 \cdots x_p \cdots x_m$	X_{m+1}	$X_{m+2} \cdots X_q \cdots X_n$		
y_{0j}	$-y_{00}$	0	00 0	y_{0m+1}	$y_{0m+2} \dots y_{0q} \dots y_{0n}$		
	y_{10}	1	00 0	y_{1m+1}	$y_{1m+2} \dots y_{1q} \dots y_{1n}$		
\mathcal{X}_2	\mathcal{Y}_{20}	0	100	y_{2m+1}	$y_{2m+2} \cdot \cdot \cdot y_{2q} \cdot \cdot y_{2n}$		
	y_{p0}				$y_{pm+2} \dots y_{pq} \dots y_{pn}$		
\mathcal{X}_{m}	y_{m0}	0	0 · · · 1	y_{mm+1}	y_{mm+2} . y_{mq} . y_{mn}		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
X	$X^{0} = (y_{10}, y_{20}, \dots, y_{p0}, \dots y_{m0}, 0, 0, \dots 0, \dots 0)^{T}$						

初始基本可行解

二. 迭代原理:

2. 判断当前基本可行解是否是最优解:

- 1)若 $C-C_BB^{-1}A \ge 0$ 或 $C_N-C_BB^{-1}N \ge 0$,
 即非基变量 x_j 的检验数 $y_{0j} = c_j C_BB^{-1}p_j$ 都 ≥ 0 ,
 则 X^0 是最优解。
- 2) 若有某些检验数 $y_{0j} < 0$,例如: $y_{0q} < 0 (m+1 \le q \le n)$,则 X^0 不是最优解(在非退化情况下)。

1) 单纯形表
$$y_{0j} = c_j - C_B B^{-1} p_j \ge 0$$
 $C - C_B B^{-1} A \ge 0$

$$x_1 x_2 \cdots x_p \cdots x_m x_{m+1} x_{m+2} \cdots x_q \cdots x_n$$

$$y_{0j} - y_{00} = 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad y_{0m+1} \quad y_{0m+2} \cdots y_{0q} \cdots y_{0n}$$

$$x_1 \quad y_{10} \quad 1 \quad 0 \quad 0 \quad 0 \quad y_{1m+1} \quad y_{1m+2} \cdots y_{1q} \quad y_{1n}$$

$$x_2 \quad y_{20} \quad 0 \quad 1 \quad 0 \quad 0 \quad y_{2m+1} \quad y_{2m+2} \cdots y_{2q} \cdots y_{2n}$$

$$x_p \quad y_{p0} \quad 0 \quad 0 \quad 1 \quad 0 \quad y_{pm+1} \quad y_{pm+2} \cdots y_{pq} \cdots y_{pn}$$

$$x_m \quad y_{m0} \quad 0 \quad 0 \quad 1 \quad y_{mm+1} \quad y_{mm+2} \cdots y_{mq} \cdots y_{mn}$$

$$x_m \quad y_{m0} \quad 0 \quad 0 \quad y_{2m+1} \quad y_{2m+2} \cdots y_{2q} \cdots y_{2n}$$

$$x_m \quad y_{m0} \quad 0 \quad 0 \quad y_{2m+1} \quad y_{2m+2} \cdots y_{2q} \cdots y_{2n}$$

$$x_m \quad y_{m0} \quad 0 \quad 0 \quad y_{2m+1} \quad y_{2m+2} \cdots y_{2q} \cdots y_{2n}$$

$$x_m \quad y_{m0} \quad 0 \quad 0 \quad y_{2m+1} \quad y_{2m+2} \cdots y_{2q} \cdots y_{2n}$$

$$x_m \quad y_{m0} \quad 0 \quad 0 \quad y_{2m+1} \quad y_{2m+2} \cdots y_{2q} \cdots y_{2n}$$

$$x_m \quad y_{m0} \quad 0 \quad 0 \quad y_{2m+1} \quad y_{2m+2} \cdots y_{2q} \cdots y_{2n}$$

$$x_m \quad y_{m0} \quad 0 \quad 0 \quad y_{2m+1} \quad y_{2m+2} \cdots y_{2q} \cdots y_{2n}$$

$$x_m \quad y_{m0} \quad 0 \quad 0 \quad y_{2m+1} \quad y_{2m+2} \cdots y_{2q} \cdots y_{2n}$$

$$x_m \quad y_{m0} \quad 0 \quad 0 \quad y_{2m+1} \quad y_{2m+2} \cdots y_{2q} \cdots y_{2n}$$

$$x_m \quad y_{m0} \quad 0 \quad 0 \quad y_{2m+1} \quad y_{2m+2} \cdots y_{2q} \cdots y_{2n}$$

$$x_m \quad y_{m0} \quad 0 \quad y_{2m+1} \quad y_{2m+2} \cdots y_{2q} \cdots y_{2n}$$

$$x_m \quad y_{m0} \quad 0 \quad 0 \quad y_{2m+1} \quad y_{2m+2} \cdots y_{2q} \cdots y_{2n}$$

$$x_m \quad y_{m0} \quad$$

最优解

2) 单纯形表

		\mathcal{X}_1	$X_2 \cdots X_p \cdots X_m \ X_{m+1} \ X_{m+2} \cdots X_q \cdots X_n$			
y_{0j}	$-y_{00}$	0	$0 \cdots 0 \cdots 0 y_{0m+1} y_{0m+2} \cdots y_{0q} < 0 y_{0n}$			
X_1	y_{10}	1	$0 \cdots 0 \cdots 0 y_{1m+1} y_{1m+2} \cdots y_{1q} \cdots y_{1n}$			
\mathcal{X}_2	\mathcal{Y}_{20}	0	$1 \cdots 0 \cdots 0 y_{2m+1} y_{2m+2} \cdots y_{2q} \cdots y_{2n}$			
\mathcal{X}_{p}	y_{p0}	0	$0 \cdots 1 \cdots 0 y_{pm+1} y_{pm+2} \cdots y_{pq} \cdots y_{pn}$			
\mathcal{X}_{m}	y_{m0}	0	$0 \cdots 0 \cdots 1 \mathcal{Y}_{mm+1} \mathcal{Y}_{mm+2} \cdots \mathcal{Y}_{mq} \cdots \mathcal{Y}_{mn}$ $\chi_{2} \cdots \chi_{p} \cdots \chi_{m} \chi_{m+1} \chi_{m+2} \cdots \chi_{q} \cdots \chi_{n}$			
\boldsymbol{B}	$^{-1}b\geq 0$	X_1	$X_2 \cdots X_p \cdots X_m X_{m+1} X_{m+2} \cdots X_q \cdots X_n$			
$X^{0} = (y_{10}, y_{20}, \dots, y_{p0}, \dots y_{m0}, 0, 0, \dots 0, \dots 0)^{T}$						
不旦旱米級						

不是最优解

二. 迭代原理:

3. 转移到新的基本可行解:

- 确定进基变量
 - ■确定离基变量
 - 进行换基运算

1.典式的向量形式:

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0 \quad X_N \ge 0$$

$\min S = CX$ AX = b $X \ge 0$

2.典式的分量形式:

$$\min S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \dots + y_{0n}x_n$$

$$x_1 + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \dots + y_{1n}x_n = y_{10}$$

$$x_2 + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \dots + y_{2n}x_n = y_{20}$$

$$\dots$$

$$x_m + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \dots + y_{mn}x_n = y_{m0}$$

$$x_j \ge 0, j = 1, 2, \dots n$$

1) 确定进基变量:

$$\min S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \dots + y_{0q}x_{q} + \dots + y_{0n}x_{n}$$

$$x_{1} \quad x_{2} \dots x_{p} \dots x_{m} \quad x_{m+1}x_{m+2} \quad x_{q} \dots x_{n}$$

$$X^{0} = (y_{10}, y_{20}, \dots, y_{p0}, \dots y_{m0}, 0, 0 \dots, 0, \dots 0)^{T} \quad S^{0} = y_{00}$$

$$X^{1} = (y'_{10}, y'_{20}, \dots, y'_{p0}, \dots y'_{m0}, 0, 0 \dots, \theta > 0 0)^{T}$$

$$S^{1} = y_{00} + y_{0q}\theta \quad \langle S^{0} = y_{00} \downarrow \quad x_{q}$$

$$x_{q}$$

$$x_{q}$$

$$x_{q}$$

$$x_{q}$$

$$x_{q}$$

$$x_{q}$$

$$x_{q}$$

$$x_{q}$$

确定进基变量的准则:

将检验数<0的非基变量进基做基变量,可使新的基本可行解目标函数值下降。

确定进基变量的准则:

如果有不止一个负检验数,则有两种方法确定进基变量 x_q :

1. Bland 规则:
$$q = \min\{j | y_{0j} < 0, j = 1, 2, \dots, n\}$$

2. 最负检验数法:
$$y_{0q} = \min\{y_{0j} | y_{0j} < 0, j = 1, 2, \dots, n\}$$

单纯形表

		$x_1 x_2 \cdots x_p \cdots x_m x_{m+1} x_{m+2} \cdots x_q \cdots x_n$
		$0 0 \cdots 0 y_{0m+1} y_{0m+2} \cdots y_{0q} < 0 y_{0n}$
$\overline{x_1}$	y_{10}	1 0 0 0 y_{1m+1} y_{1m+2} y_{1q} y_{1n}
\mathcal{X}_2	\mathcal{Y}_{20}	1 0 0 0 y_{1m+1} y_{1m+2} y_{1q} y_{1n} 0 1 0 0 y_{2m+1} y_{2m+2} y_{2q} y_{2n}
\mathcal{X}_{p}	y_{p0}	$0 0 \cdots 1 \cdots 0 y_{pm+1} y_{pm+2} \cdots y_{pq} \cdots y_{pn}$
\mathcal{X}_{m}	y_{m0}	$0 0 \cdots 0 \cdots 1 y_{mm+1} y_{mm+2} \cdots y_{mq} \cdots y_{mn}$

$$X_1 \ X_2 \cdots X_p \cdots X_m X_{m+1} \ X_{m+2} \cdots X_q \cdots X_n$$

 $X^0 = (y_{10}, y_{20}, \dots, y_{p0}, \dots y_{m0}, 0, 0, \dots 0, \dots 0)^T$

采用Bland规则方法确定进基变量 x_q .

3. 转移到新的基本可行解:

- ✓确定进基变量
- 确定离基变量
 - ■进行换基运算

1.典式的向量形式:

$$\min S = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

$$X_B + B^{-1} N X_N = B^{-1} b$$

$$X_B \ge 0 \quad X_N \ge 0$$

$\min S = CX$ AX = b $X \ge 0$

2.典式的分量形式:

$$\min S = y_{00} + y_{0m+1}x_{m+1} + y_{0m+2}x_{m+2} + \dots + y_{0n}x_n$$

$$x_1 + y_{1m+1}x_{m+1} + y_{1m+2}x_{m+2} + \dots + y_{1n}x_n = y_{10}$$

$$x_2 + y_{2m+1}x_{m+1} + y_{2m+2}x_{m+2} + \dots + y_{2n}x_n = y_{20}$$

$$\dots$$

$$x_m + y_{mm+1}x_{m+1} + y_{mm+2}x_{m+2} + \dots + y_{mn}x_n = y_{m0}$$

$$x_j \ge 0, j = 1, 2, \dots n$$

2) 确定离基变量:

$$X_{1} \quad X_{2} \dots X_{p} \dots X_{m} \quad X_{m+1} X_{m+2} \quad X_{q} \dots X_{n}$$

$$X_{0}^{0} = (y_{10}, y_{20}, \dots, y_{p0}, \dots y_{m0}, 0, 0 \dots, 0, \dots 0)^{T} \quad S^{0} = y_{00}$$

$$X^{1} = (y'_{10}, y'_{20}, \dots, y'_{p0}, \dots y'_{m0}, 0, 0 \dots, \theta > 0 0)^{T}$$

$$S^{1} = y_{00} + y_{0q} \theta < S^{0} = y_{00} \downarrow \quad y_{0q} < 0$$

$$(x_1 + y_{1m+1}x_{m+1} + \dots + y_{1q}x_q + \dots + y_{1n}x_n = y_{10} \quad x_1 = y_{10} - y_{1q}\theta \ge 0$$

$$(x_2 + y_{2m+1}x_{m+1} + \dots + y_{2q}x_q + \dots + y_{2n}x_n = y_{20} \quad x_2 = y_{20} - y_{2q}\theta \ge 0$$

$$x_{m} + y_{mm+1}x_{m+1} + \dots + y_{mq}x_{q} + \dots + y_{mn}x_{n} = y_{m0}y_{m} = y_{m0} - y_{mq}\theta \ge 0$$

$$x_{j} \ge 0, j = 1, 2, \dots n$$

2) 确定离基变量:

$$X_{1} \quad X_{2} \dots X_{p} \dots X_{m} \quad X_{m+1}X_{m+2} \quad X_{q} \dots X_{n}$$

$$X_{0} = (y_{10}, y_{20}, \dots, y_{p0}, \dots y_{m0}, 0, 0 \dots, 0, \dots 0)^{T} \quad S^{0} = y_{00}$$

$$X^{1} = (y'_{10}, y'_{20}, \dots, y'_{p0}, \dots y'_{m0}, 0, 0 \dots, \theta > 0 \quad 0)^{T} \quad S^{1} = y_{00} + y_{0q}\theta \downarrow$$

$$X^{1} = (y'_{10}, y'_{20}, \dots, 0, \dots y'_{m0}, 0, 0 \dots, \frac{y_{p0}}{y_{pq}}, 0)^{T} \quad y_{0q} < 0$$

$$X^{1} = (y'_{10}, y'_{20}, \dots, 0, \dots y'_{m0}, 0, 0 \dots, \frac{y_{p0}}{y_{pq}}, 0)^{T} \quad y_{2q} > 0)$$

$$X_{p} = y_{p0} - y_{pq}\theta \ge 0 \longrightarrow \theta \le \frac{y_{p0}}{y_{pq}} (y_{pq} > 0)$$

$$X_{p} = y_{m0} - y_{mq}\theta \ge 0 \longrightarrow \theta \le \frac{y_{p0}}{y_{pq}} (y_{pq} > 0)$$

$$X_{p} = y_{m0} - y_{mq}\theta \ge 0 \longrightarrow \theta \le \frac{y_{p0}}{y_{pq}} (y_{pq} > 0)$$

$$X_{p} \approx y_{p0} + y_{p0} = y_{p$$

线性规划1-4

单纯形表

第一种情况:假设 $y_{1q}, y_{2q}, y_{pq}, y_{mq} > 0$

$$\theta = \min\{\frac{y_{10}}{y_{1q}}, \frac{y_{20}}{y_{2q}}, \frac{y_{p0}}{y_{pq}}, \frac{y_{m0}}{y_{mq}}\} = \frac{y_{p0}}{y_{pq}} \Rightarrow x_p$$
称为离基变量

单纯形表

			X_1	$x_2 \cdots x_p \cdots x_m$	X_{m+1}	$x_{m+2} \cdots x_q \cdots x_n$
	y_{0j}	$-y_{00}$	0	00 0	y_{0m+1}	$y_{0m+2} \cdot \cdot \cdot y_{0q} < 0 y_{0n}$
	X_1	y ₁₀	1	00 0	y_{1m+1}	$y_{1m+2} \dots y_{1q} \dots y_{1n}$
	\mathcal{X}_2	y ₂₀	0	100	y_{2m+1}	$y_{2m+2} \cdots y_{2q} \cdots y_{2n}$
(lacksquare	y_{p0}	0	0 1 0	y_{pm+1}	$y_{pm+2} \dots y_{pq} \dots y_{pn}$
	\mathcal{X}_{m}	y_{m0}	0	0 · · · 1	y_{mm+1}	y_{mm+2} . y_{mq} . y_{mn}

第二种情况: 若 $y_{iq} \leq 0, i = 1, 2, \dots, m$,则对 θ 没限制,

$$y'_{10} = y_{10} - y_{1q}\theta \ge 0$$

$$y'_{20} = y_{20} - y_{2q}\theta \ge 0$$

$$y'_{m0} = y_{m0} - y_{mq}\theta \ge 0$$

$$\overrightarrow{\mathbb{M}} \quad S^1 = y_{00} + y_{0q} \theta \xrightarrow[\theta \to +\infty]{} -\infty,$$

即(LP)没有有限的最优解。

第三种情况: 无穷多最优解判别条件:

$$X_{1} \quad X_{2} \dots X_{p} \dots X_{m} \quad X_{m+1} X_{m+2} \quad X_{q} \dots X_{n}$$

$$X^{0} = (y_{10}, y_{20}, \dots, y_{p0}, \dots y_{m0}, 0, 0 \dots, 0, \dots 0)^{T} \quad S^{0} = y_{00}$$

$$X^{1} = (y'_{10}, y'_{20}, \dots, y'_{p0}, \dots y'_{m0}, 0, 0 \dots, \theta > 0 \quad 0)^{T} \quad S^{1} = y_{00} + y_{0q} \theta$$

$$y'_{10} = y_{10} - y_{1q} \theta \ge 0$$

$$y'_{20} = y_{20} - y_{2q} \theta \ge 0$$

$$y'_{20} = y_{p0} - y_{pq} \theta \ge 0$$

 $\lfloor y'_{m0} = y_{m0} - y_{mq}\theta \ge 0$

非基变量 x_q 的检验数 $y_{0q} = 0$, 则 $S^1 = y_{00} + y_{0a}\theta = y_{00} \Rightarrow$ 最优值

例:

若对于某个基本可行解, 所有检验数都非负, 存在一个非基变量的检验数=0,则(LP) 有无穷多 个最优解。

线性规划1-4

3. 转移到新的基本可行解:

- ✓确定进基变量
- ✓确定离基变量
- 进行换基运算

3) 换基运算:

	TY C	· ·							v_{10}	$= y_{10} -$	$\cdot \mathbf{v}_{1} \stackrel{\mathcal{J}}{=} p$	<u>U</u>
		\mathcal{X}_1	\mathcal{X}_{2}	2••	x_p	• • • .	\mathcal{X}_{m}	x_{m+1}	χ_{p}	J 10	$-y_{1q}\frac{y_{pq}}{y_{pq}}$	q
y_{0j}	$-y_{00}$										0) y_{0}	
X_1	y_{10}	1	0	• •	• 0	• • •	0	y_{1m+1}	y_{1m+2}	y_{1q}	0. . <i>y</i> ₁₁	n
\mathcal{X}_2	\mathcal{Y}_{20}	0	1	• •	• 0	• • •	0	y_{2m+1}	y_{2m+2}	$\cdots y_{2q}$	0 · y ₂	n
- X	y_{p0}										<mark>.</mark>	
\mathcal{X}_{m}	y_{m0}	0	0	• • •	0	• • •	1	y_{mm+1}	y_{mm+}	y_m	$q \mathbf{O} \cdot \mathcal{Y}_{mi}$	n

y_{n0}

因为 x_q 代替 x_p 成为第p 个方程的基变量,所以它只能出现在第p个方程中,且系数为1,不能出现在其他方程中,检验数也为0。

3. 转移到新的基本可行解:

- ✓确定进基变量
- ✓确定离基变量
- ✓进行换基运算

二. 迭代原理:

迭代原理:

$$S^{1} = y_{00} + y_{0q}\theta < S^{0} = y_{00}$$

送代原理:

$$X_{1} X_{2} X_{p} X_{m} X_{m+1} X_{m+2} X_{q} X_{n}$$

$$X^{0} = (y_{10}, y_{20}, \dots, y_{p0}, \dots y_{m0}, 0, 0, \dots, 0, \dots 0)^{T}$$

$$X^{1} = (y'_{10}, y'_{20}, \dots, 0, \dots, y'_{m0}, 0, 0, \dots, y'_{p0}, \dots)^{T}$$

初始基本可行解 X^0

$$\boldsymbol{B}_0 = (\boldsymbol{p}_1, \boldsymbol{p}_2, \cdots \boldsymbol{p}_p \cdots \boldsymbol{p}_m)$$

 X^0 是最 优解

$$y_{0j} = c_j - C_B B^{-1} p_j \ge 0$$

确定进基变量 x_a

$$q = \min\{j | y_{0j} < 0, j = 1, 2, \dots, n\}$$

确定离基变量 x_n

$$\theta = \min\{\frac{y_{i0}}{y_{iq}} | y_{iq} > 0, 1 \le i \le m\} = \frac{y_{p0}}{y_{pq}}$$

换基运算

若 $y_{ij} \leq 0$, (LP)没有有限的最优解。

新的基本可行解 X^1

$$\boldsymbol{B}_{1}=(\boldsymbol{p}_{1},\boldsymbol{p}_{2},\cdots\boldsymbol{p}_{q}\cdots\boldsymbol{p}_{m})$$

第一章 线性规划

第四节 单纯形法

- ✓典式
- ✓迭代原理
- 单纯形法举例
 - ■两阶段法

例1-10 求解线性规划问题: 典式 $c_i X C_B B (6p0, 0,0)$ $3,4 B^{-1}b$

$$\min S = x_1 - 2x_2 + x_3 - 3x_4$$

$$\min S = x_1 - 2x_2 + x_3 - 3x_4$$

$$B_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$+x_4 = 6$$

 $+x_4 \le 3$ 标准形
 $-x_4 \le 4$
= 1,2,3,4

$$\mathbf{B_0} = \begin{pmatrix}
\mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{1}
\end{pmatrix} + x_4 = 6
+ x_4 \le 3
- x_4 \le 4
- x_2 + 6x_3 - x_4 + x_6 = 4
x_1 + x_2 + 3x_3 + x_4 = 6
- 2x_2 + x_3 + x_4 + x_5 = 3
- x_2 + 6x_3 - x_4 + x_6 = 4
x_j \ge 0, j = 1,2,3,4,5,6$$

È	色
L	Ŧ
	T.
H	1
	Ė

1			·	x_1	x_2	x_3	\mathcal{X}_4	X_5	x_6
	C_{B}	X_{B}	-6	0	-3	-2	-4	0	0
	1	X_B X_1	6	1	1	3	1	0	0
	0	X_5	3	0	-2	1	1	1	0
	0			0	-1	6	-1	0	1

$$y_{0i} = c_j - C_B B^{-1} p_j \ge 0$$
 $C - C_B B^{-1} A \ge 0$

$$X_{1} \quad X_{2} \quad X_{3} \quad X_{4} \quad X_{5} \quad X_{6}$$

$$X^{0} = (\mathbf{6}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{3}, \mathbf{4})^{T} B_{0} = (\mathbf{p}_{1}, \mathbf{p}_{5}, \mathbf{p}_{6}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\boldsymbol{B}_0 = (\boldsymbol{p}_1, \boldsymbol{p}_5, \boldsymbol{p}_6) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

表		x_1	x_2	x_3	\mathcal{X}_4	\mathcal{X}_{5}	\mathcal{X}_{6}
$X_{\scriptscriptstyle B}$	-6	0	-3	-2	-4	0	0
x_2	6	1	1	3	1	0	0
x_5	15	2	0	7	3	1	0
X_6	10	1	0	9	0	0	1

$$x_1$$
 x_2 x_3 x_4 x_5 x_6
 $X^0 = (\mathbf{6}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{3}, \mathbf{4})^T$ $S^0 = \mathbf{6}$

表		X_1	\mathcal{X}_2	x_3	\mathcal{X}_4	\mathcal{X}_{5}	\mathcal{X}_{6}
$X_{\scriptscriptstyle B}$	-6	0	-3	-2	-4	0	0
x_2	6	1	1	3	1	0	0
X_5	15	2	0	7	3	1	0
X_6	10	1	0	9	0	0	1

$$x_1$$
 x_2 x_3 x_4 x_5 x_6
 $X^0 = (\mathbf{6}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{3}, \mathbf{4})^T$ $S^0 = \mathbf{6}$

表		X_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_{5}	x_6
X_{B}	12	3	0	7	-1	0	0
x_2	6	1	1	3	1	0	0
X_5	15	2	0	7	3	1	0
X_6	10	1	0	9	0	0	1

$$x_1$$
 x_2 x_3 x_4 x_5 x_6
 $X^0 = (\mathbf{6}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{3}, \mathbf{4})^T$ $S^0 = \mathbf{6}$

表		X_1	\mathcal{X}_2	\mathcal{X}_3	x_4	\mathcal{X}_{5}	\mathcal{X}_{6}
X_{B}	12	3	0	7	-1	0	0
X_2	1	1/3	1	$\frac{2}{3}$	0	$-\frac{1}{3}$	0
x_4	5	$\frac{2}{3}$	0	7/3	1	1/3	0
X_6	10	1	0	9	0	0	1

$$X_1$$
 X_2 X_3 X_4 X_5 X_6
 $X^0 = (6, 0, 0, 0, 3, 4)^T$ $S^0 = 6$
 $X^1 = (0, 6, 0, 0, 15,10)^T$ $S^1 = -12$

表		X_1	x_2	\mathcal{X}_3	x_4	\mathcal{X}_{5}	X_6
$X_{\scriptscriptstyle B}$	17	11/3	0	28/3	0	1/3	Q
X_2	1	1/3	1	2/3	0	$-\frac{1}{3}$	0
X_4	5	2/3	0	7/3	1	1/3	0
X_6	10	1	0	9	0	0	1

$$X_1$$
 X_2 X_3 X_4 X_5 X_6
 $X^0 = (6, 0, 0, 0, 3, 4)^T$ $S^0 = 6$
 $X^1 = (0, 6, 0, 0, 15, 10)^T$ $S^1 = -12$

	ι_2	1	/3	1	/3	Ŏ	-½	0
Ĵ	x_4	5	2/3	0	7/3	1	1/3	0
\int	χ_6	10	1	0	9	0	0	1

$$A = \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & 0 \\ 0 & -2 & 1 & 1 & 1 & 0 \\ 0 & -1 & 6 & -1 & 0 & 1 \end{pmatrix}, B^* = (p_2, p_4, p_6) = \begin{pmatrix} 1 & 1 & 0 \\ -2 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}$$

例1-11 求解线性规划问题:
$$y_{0j} = c_j - C_B B^{-1} p_j \quad y_{00} = C_B B^{-1} b$$

 $\max S = x_1 + 3x_2 + 4x_3 \quad \min(-S) = -x_1 - 3x_2 - 4x_3$
 $3x_1 + 5x_2 - 4x_3 \le 10$
 $-2x_1 + 3x_2 + x_3 \le 5$
 $x_j \ge 0, j = 1, 2, 3$
 $x_j \ge 0, j = 1, 2, 3, 4, 5$

			C_{j}	-1	-3	-4	0	0
单结				x_1	x_2	x_3	\mathcal{X}_4	x_5
纯	C_{B}	X_{B}	0	-1	-3	-4	0	0
^代 形表	0	X_4	10	3	5	-4	1	0
	0	X_5	5	-2	3	1	0	1

$$x_1$$
 x_2 x_3 x_4 x_5
 $X^0 = (\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{10}, \mathbf{5})^T$ $S^0 = \mathbf{0}$

		x_1	\mathcal{X}_2	x_3	X_4	X_5
X_{B}	10/3	0	$-\frac{4}{3}$	_16/3	1/3	0
x_1	10/3	1	5/3	$-\frac{4}{3}$	1/3	0
X_5	35/3	0	19/3	$-\frac{5}{3}$	2/3	1

$$x_1$$
 x_2 x_3 x_4 x_5
 $X^0 = (\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{10}, \mathbf{5})^T$ $S^0 = \mathbf{0}$

$$y_{0j} = c_j - C_B B^{-1} p_j \ge 0$$
 $C - C_B B^{-1} A \ge 0$

		x_1	x_2	\mathcal{X}_3	\mathcal{X}_4	X_5
$X_{\scriptscriptstyle B}$	10/3	0	$-\frac{4}{3}$	$-\frac{16}{3}$	1/3	0
x_1	10/3	1	5/3	$-\frac{4}{3}$	1/3	0
X_5	35/3	0	19/3	$-\frac{5}{3}$	2/3	1

$$x_1$$
 x_2 x_3 x_4 x_5
 $X^0 = (\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{10}, \mathbf{5})^T$ $S^0 = \mathbf{0}$
 $X^1 = (10/3, \mathbf{0}, \mathbf{0}, \mathbf{0}, \frac{35/3}{3})^T$ $S^1 = -\frac{10}{3}$

$$y_{0j} = c_j - C_B B^{-1} p_j \ge 0$$
 $C - C_B B^{-1} A \ge 0$

		x_1	\mathcal{X}_2	x_3	\mathcal{X}_4	X_5
$X_{\scriptscriptstyle B}$	10/3	0	$-\frac{4}{3}$	-16/3	1/3	0
x_1	10/3	1	5/3	$-\frac{4}{3}$	1/3	0
X_5	35/3	0	19/3	$-\frac{5}{3}$	2/3	1

$$X^{2}$$
 $S^{2} = y_{00} + y_{0q}\theta = -\frac{10}{3} - \frac{16}{3}\theta \xrightarrow{\theta \to +\infty} -\infty$

该问题没有有限的最优解

$$X^{0} = (0, 0, 0, 10, 5)^{T}$$
 $S^{0} = 0$

$$X^{1} = (10/3, \mathbf{0}, \mathbf{0}, \frac{35}{3})^{T} S^{1} = -10/3$$

第一章 线性规划

第四节 单纯形法

- ✓典式
- ✓迭代原理
- ✓ 单纯形法举例
- ■两阶段法

作业: 第1章 6(1)(2)(3)