

LISTING OF CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Original) A method for treating a human suffering from addictive behavior associated with 5HT2C receptor modulation, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of formula (I):

(I)

or stereoisomers or pharmaceutically acceptable salt forms thereof, wherein:

b is a single bond;

X is -CHR¹⁰- or -C(=O)-;

R¹ is selected from

H,

C(=O)R²,

C(=O)OR²,

C₁₋₈ alkyl,

C₂₋₈ alkenyl,

C₂₋₈ alkynyl,

C₃₋₇ cycloalkyl,

C₁₋₆ alkyl substituted with Z,

C₂₋₆ alkenyl substituted with Z,

C₂₋₆ alkynyl substituted with Z,

C₃₋₆ cycloalkyl substituted with Z,

aryl substituted with Z,

5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with Z;

C₁-3 alkyl substituted with Y,

C₂-3 alkenyl substituted with Y,

C₂-3 alkynyl substituted with Y,

C₁-6 alkyl substituted with 0-2 R²,

C₂-6 alkenyl substituted with 0-2 R²,

C₂-6 alkynyl substituted with 0-2 R²,

aryl substituted with 0-2 R², and

5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with 0-2 R²;

Y is selected from

C₃-6 cycloalkyl substituted with Z,

aryl substituted with Z,

5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with Z;

C₃-6 cycloalkyl substituted with -(C₁-3 alkyl)-Z,

aryl substituted with -(C₁-3 alkyl)-Z, and

5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with -(C₁-3 alkyl)-Z;

Z is selected from H,

-CH(OH)R²,

-C(ethylenedioxy)R²,

-OR²,

-SR²,

-NR²R³,

-C(O)R²,
-C(O)NR²R³,
-NR³C(O)R²,
-C(O)OR²,
-OC(O)R²,
-CH(=NR⁴)NR²R³,
-NHC(=NR⁴)NR²R³,
-S(O)R²,
-S(O)₂R²,
-S(O)₂NR²R³, and -NR³S(O)₂R²;

R², at each occurrence, is independently selected from

halo,
C₁₋₃ haloalkyl,
C₁₋₄ alkyl,
C₂₋₄ alkenyl,
C₂₋₄ alkynyl,
C₃₋₆ cycloalkyl,
aryl substituted with 0-5 R⁴²;
C₃₋₁₀ carbocyclic group substituted with 0-3 R⁴¹, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R³, at each occurrence, is independently selected from

H, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, and
C₁₋₄ alkoxy;

alternatively, R² and R³ join to form a 5- or 6-membered ring optionally substituted with -O- or -
N(R⁴)-;

R⁴, at each occurrence, is independently selected from H and C₁₋₄ alkyl;

R⁵ is H or C₁₋₄ alkyl;

R^{6a} and R^{6b}, at each occurrence, are independently selected from

H, -OH, -NR⁴⁶R⁴⁷, -CF₃, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₃₋₆ cycloalkyl, and
aryl substituted with 0-3 R⁴⁴;

R⁷ and R⁹, at each occurrence, are independently selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂, -NR⁴⁶R⁴⁷,
C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl, C₁₋₈ alkoxy, (C₁₋₄ haloalkyl)oxy,
C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,
C₁₋₄ alkyl substituted with 0-2 R¹¹,
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R⁸ is selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂,
C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl, C₁₋₈ alkoxy, (C₁₋₄ haloalkyl)oxy,
C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,
C₁₋₄ alkyl substituted with 0-2 R¹¹,

C₂-4 alkenyl substituted with 0-2 R¹¹,
C₂-4 alkynyl substituted with 0-1 R¹¹,
C₃-10 carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R¹⁰ is selected from H, -OH,

C₁-6 alkyl substituted with 0-1 R^{10B},
C₂-6 alkenyl substituted with 0-1 R^{10B},
C₂-6 alkynyl substituted with 0-1 R^{10B}, and
C₁-6 alkoxy;

R^{10B} is selected from

C₁-4 alkoxy,
C₃-6 cycloalkyl,
C₃-10 carbocyclic group substituted with 0-3 R³³,
phenyl substituted with 0-3 R³³, and
5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-2 R⁴⁴;

R¹¹ is selected from

H, halo, -CF₃, -CN, -NO₂,
C₁-8 alkyl, C₂-8 alkenyl, C₂-8 alkynyl, C₁-4 haloalkyl, C₁-8 alkoxy, C₃-10 cycloalkyl,
C₃-10 carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R¹², at each occurrence, is independently selected from

C₁₋₄ alkyl substituted with 0-1 R^{12a},
C₂₋₄ alkenyl substituted with 0-1 R^{12a},
C₂₋₄ alkynyl substituted with 0-1 R^{12a},
C₃₋₆ cycloalkyl substituted with 0-3 R³³,
phenyl substituted with 0-5 R³³;
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R^{12a}, at each occurrence, is independently selected from

phenyl substituted with 0-5 R³³;
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R¹³, at each occurrence, is independently selected from

H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring optionally substituted with -O-
or -N(R¹⁴)-;

alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10-membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S, wherein said bicyclic heterocyclic ring system is unsaturated or partially saturated, wherein said bicyclic heterocyclic ring system is substituted with 0-3 R¹⁶;

R¹⁴, at each occurrence, is independently selected from H and C₁₋₄ alkyl;

R¹⁵, at each occurrence, is independently selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

R¹⁶, at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,
C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl,
C₁₋₃ haloalkyl-oxy-, and C₁₋₃ alkyloxy-;

R³¹, at each occurrence, is independently selected from

H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, and C₁₋₄ alkyl;

R³³, at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,
C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl,
C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl-oxy-, C₁₋₄ alkyloxy-,
C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(=O)-, C₁₋₄ alkyl-C(=O)NH-, C₁₋₄ alkyl-OC(=O)-,
C₁₋₄ alkyl-C(=O)O-, C₃₋₆ cycloalkyl-oxy-, C₃₋₆ cycloalkylmethyl-oxy-;
C₁₋₆ alkyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy; and
C₂₋₆ alkenyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy;

R⁴¹, at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, =O;
C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl

C₁₋₄ alkyl substituted with 0-1 R⁴³,
aryl substituted with 0-3 R⁴², and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴², at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, SOR⁴⁵, SR⁴⁵, NR⁴⁶SO₂R⁴⁵, NR⁴⁶COR⁴⁵,

NR⁴⁶R⁴⁷, NO₂, CN, CH(=NH)NH₂, NHC(=NH)NH₂,

C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₃₋₆ cycloalkyl,

C₁₋₄ alkyl substituted with 0-1 R⁴³,

aryl substituted with 0-3 R⁴⁴, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴³ is C₃₋₆ cycloalkyl or aryl substituted with 0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H,
SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, C₁₋₄ alkyl, and C₁₋₄ alkoxy;

R⁴⁵ is C₁₋₄ alkyl;

R⁴⁶, at each occurrence, is independently selected from H and C₁₋₄ alkyl;

R⁴⁷, at each occurrence, is independently selected from H, C₁₋₄ alkyl,
-C(=O)NH(C₁₋₄ alkyl), -SO₂(C₁₋₄ alkyl),
-C(=O)O(C₁₋₄ alkyl), -C(=O)(C₁₋₄ alkyl), and -C(=O)H;

k is 1 or 2;

m is 0, 1, or 2;

n is 0, 1, 2, or 3;

provided when m is 0 or 1 then k is 1 or 2;

provided when m is 2 then k is 1;

provided that when R⁶ or R^{6a} is NH₂, then X is not -CH(R¹⁰); and

provided that when n=0, then R⁶ or R^{6a} is not NH₂ or -OH.

2. (Original) The method as defined in Claim 1 where in the compound administered:

X is -CHR¹⁰- or -C(=O)-;

R¹ is selected from

H,

C(=O)R²,

C(=O)OR²,

C₁₋₈ alkyl,

C₂₋₈ alkenyl,

C₂₋₈ alkynyl,

C₃₋₇ cycloalkyl,

C₁₋₆ alkyl substituted with 0-2 R²,

C₂₋₆ alkenyl substituted with 0-2 R²,

C₂₋₆ alkynyl substituted with 0-2 R²,

aryl substituted with 0-2 R², and

5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with 0-2 R²;

R², at each occurrence, is independently selected from

F, Cl, CH₂F, CHF₂, CF₃,

C₁₋₄ alkyl,

C₂-4 alkenyl,
C₂-4 alkynyl,
C₃-6 cycloalkyl,
phenyl substituted with 0-5 R⁴²;
C₃-10 carbocyclic group substituted with 0-3 R⁴¹, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R⁵ is H, methyl, ethyl, propyl, or butyl;

R^{6a} is selected from

H, -OH, -NR⁴⁶R⁴⁷, -CF₃,
C₁-4 alkyl, C₁-4 alkoxy, C₁-4 haloalkyl, and
aryl substituted with 0-3 R⁴⁴;

R^{6b} is H;

R⁷ and R⁹, at each occurrence, are independently selected from
H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂, -NR⁴⁶R⁴⁷,
C₁-8 alkyl, C₂-8 alkenyl, C₂-8 alkynyl, C₁-4 haloalkyl, C₁-8 alkoxy, (C₁-4
haloalkyl)oxy,
C₃-10 cycloalkyl substituted with 0-2 R³³,
C₁-4 alkyl substituted with 0-2 R¹¹,
C₃-10 carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,

$S(O)_2R^{12}$, $S(O)NR^{12}R^{13}$, $S(O)_2NR^{12}R^{13}$, $NR^{14}S(O)R^{12}$, $NR^{14}S(O)_2R^{12}$,
 $NR^{12}C(O)R^{15}$, $NR^{12}C(O)OR^{15}$, $NR^{12}S(O)_2R^{15}$, and $NR^{12}C(O)NHR^{15}$;

R^8 is selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂,
C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl, C₁₋₈ alkoxy, (C₁₋₄ haloalkyl)oxy,
C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,
C₁₋₄ alkyl substituted with 0-2 R¹¹,
C₂₋₄ alkenyl substituted with 0-2 R¹¹,
C₂₋₄ alkynyl substituted with 0-1 R¹¹,
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R^{10} is selected from H, -OH,

C₁₋₆ alkyl substituted with 0-1 R^{10B},
C₂₋₆ alkenyl substituted with 0-1 R^{10B},
C₂₋₆ alkynyl substituted with 0-1 R^{10B}, and
C₁₋₆ alkoxy;

R^{10B} is selected from

C₁₋₄ alkoxy,
C₃₋₆ cycloalkyl,

C₃-10 carbocyclic group substituted with 0-3 R³³,
phenyl substituted with 0-3 R³³, and
5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-2 R⁴⁴;

R¹¹ is selected from

H, halo, -CF₃, -CN, -NO₂,
C₁-8 alkyl, C₂-8 alkenyl, C₂-8 alkynyl, C₁-4 haloalkyl, C₁-8 alkoxy, C₃-10 cycloalkyl,
C₃-10 carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R¹², at each occurrence, is independently selected from

C₁-4 alkyl substituted with 0-1 R^{12a},
C₂-4 alkenyl substituted with 0-1 R^{12a},
C₂-4 alkynyl substituted with 0-1 R^{12a},
C₃-6 cycloalkyl substituted with 0-3 R³³,
phenyl substituted with 0-5 R³³;
C₃-10 carbocyclic group substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R^{12a}, at each occurrence, is independently selected from

phenyl substituted with 0-5 R³³;

C₃-10 carbocyclic group substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R¹³, at each occurrence, is independently selected from
H, C₁-4 alkyl, C₂-4 alkenyl, and C₂-4 alkynyl;

alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring optionally substituted with -O-
or -N(R¹⁴)-;

alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10-membered
bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the
group consisting of N, O, and S, wherein said bicyclic heterocyclic ring system is
unsaturated or partially saturated, wherein said bicyclic heterocyclic ring system is
substituted with 0-3 R¹⁶;

R¹⁴, at each occurrence, is independently selected from H and C₁-4 alkyl;

R¹⁵, at each occurrence, is independently selected from
H, C₁-4 alkyl, C₂-4 alkenyl, and C₂-4 alkynyl;

R¹⁶, at each occurrence, is independently selected from
H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,
C₁-4 alkyl, C₂-4 alkenyl, C₂-4 alkynyl, C₁-4 haloalkyl,
C₁-3 haloalkyl-oxy-, and C₁-3 alkyloxy-;

R³¹, at each occurrence, is independently selected from
H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, and C₁-4 alkyl;

R³³, at each occurrence, is independently selected from
H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,
C₁-6 alkyl, C₂-6 alkenyl, C₂-6 alkynyl,

C₃-6 cycloalkyl, C₁-4 haloalkyl, C₁-4 haloalkyl-oxy-, C₁-4 alkyloxy-,
C₁-4 alkylthio-, C₁-4 alkyl-C(=O)-, C₁-4 alkyl-C(=O)NH-, C₁-4 alkyl-OC(=O)-,
C₁-4 alkyl-C(=O)O-, C₃-6 cycloalkyl-oxy-, C₃-6 cycloalkylmethyl-oxy-;
C₁-6 alkyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy; and
C₂-6 alkenyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy;

R⁴¹, at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN;

C₂-8 alkenyl, C₂-8 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl

C₁-4 alkyl substituted with 0-1 R⁴³,

aryl substituted with 0-3 R⁴², and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴², at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, CH(=NH)NH₂,

NHC(=NH)NH₂,

C₂-6 alkenyl, C₂-6 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl, C₃-6 cycloalkyl,

C₁-4 alkyl substituted with 0-1 R⁴³,

aryl substituted with 0-3 R⁴⁴, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴³ is C₃-6 cycloalkyl or aryl substituted with 0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H,
SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, C₁-4 alkyl, and C₁-4 alkoxy;

R⁴⁵ is C₁-4 alkyl;

R⁴⁶, at each occurrence, is independently selected from H and C₁-4 alkyl;

R^{47} , at each occurrence, is independently selected from H and C1-4 alkyl;

k is 1 or 2;

m is 0, 1, or 2; and

n is 0, 1, 2, or 3.

3. (Original) The method as defined in Claim 2 where in the compound administered:

X is $-CHR^{10}-$;

R^1 is selected from

H,

$C(=O)R^2$,

$C(=O)OR^2$,

C1-6 alkyl,

C2-6 alkenyl,

C2-6 alkynyl,

C3-6 cycloalkyl,

C1-4 alkyl substituted with 0-2 R^2 ,

C2-4 alkenyl substituted with 0-2 R^2 , and

C2-4 alkynyl substituted with 0-2 R^2 ;

R^2 , at each occurrence, is independently selected from

C1-4 alkyl,

C2-4 alkenyl,

C2-4 alkynyl,

C3-6 cycloalkyl,

phenyl substituted with 0-5 R^{42} ;

C3-10 carbocyclic group substituted with 0-3 R^{41} , and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R⁵ is H, methyl, ethyl, propyl, or butyl;

R^{6a} is selected independently from

H, -OH, -NR⁴⁶R⁴⁷, -CF₃, C₁₋₃ alkyl, and C₁₋₃ alkoxy;

R^{6b} is H;

R⁷ and R⁹, at each occurrence, are independently selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂, -NR⁴⁶R⁴⁷,

C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,

C₁₋₄ alkyl substituted with 0-2 R¹¹,

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², and NR¹⁴S(O)₂R¹²;

R⁸ is selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂,

C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,

C₁₋₄ alkyl substituted with 0-2 R¹¹,

C₂-4 alkenyl substituted with 0-2 R¹¹,
C₂-4 alkynyl substituted with 0-1 R¹¹,
C₃-10 carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³; C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R¹⁰ is selected from H, -OH,

C₁-6 alkyl substituted with 0-1 R^{10B},
C₂-6 alkenyl substituted with 0-1 R^{10B},
C₂-6 alkynyl substituted with 0-1 R^{10B}, and
C₁-6 alkoxy;

R^{10B} is selected from

C₁-4 alkoxy,
C₃-6 cycloalkyl,
C₃-10 carbocyclic group substituted with 0-3 R³³,
phenyl substituted with 0-3 R³³, and
5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-2 R⁴⁴;

R¹¹ is selected from

H, halo, -CF₃, -CN, -NO₂, C₁-6 alkyl,
C₂-6 alkenyl, C₂-6 alkynyl, C₁-4 haloalkyl, C₁-6 alkoxy, C₃-10 cycloalkyl,
C₃-10 carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², and NR¹⁴S(O)₂R¹²;

R¹², at each occurrence, is independently selected from

C₁₋₄ alkyl substituted with 0-1 R^{12a},

C₂₋₄ alkenyl substituted with 0-1 R^{12a},

C₂₋₄ alkynyl substituted with 0-1 R^{12a},

C₃₋₆ cycloalkyl substituted with 0-3 R³³,

phenyl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R^{12a}, at each occurrence, is independently selected from

phenyl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R¹³, at each occurrence, is independently selected from

H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring optionally substituted with -O-
or -N(R¹⁴)-;

alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10-membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S, wherein said bicyclic heterocyclic ring system is unsaturated or partially saturated, wherein said bicyclic heterocyclic ring system is substituted with 0-3 R¹⁶;

R¹⁴, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R¹⁵, at each occurrence, is independently selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

R¹⁶, at each occurrence, is independently selected from H, OH, F, Cl, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, and trifluoromethoxy;

R³¹, at each occurrence, is independently selected from H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, and C₁₋₄ alkyl;

R³³, at each occurrence, is independently selected from H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl-oxy-, C₁₋₄ alkyloxy-, C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(=O)-, C₁₋₄ alkyl-C(=O)NH-, C₁₋₄ alkyl-OC(=O)-, C₁₋₄ alkyl-C(=O)O-, C₃₋₆ cycloalkyl-oxy-, C₃₋₆ cycloalkylmethyl-oxy-, C₁₋₆ alkyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy; and C₂₋₆ alkenyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy;

R⁴¹, at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl C₁₋₄ alkyl substituted with 0-1 R⁴³,

aryl substituted with 0-3 R⁴², and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴², at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, CH(=NH)NH₂,

NHC(=NH)NH₂,

C₂-6 alkenyl, C₂-6 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl, C₃-6 cycloalkyl,

C₁-4 alkyl substituted with 0-1 R⁴³,

aryl substituted with 0-3 R⁴⁴, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴³ is C₃-6 cycloalkyl or aryl substituted with 0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H,
SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, C₁-4 alkyl, and C₁-4 alkoxy;

R⁴⁵ is C₁-4 alkyl;

R⁴⁶, at each occurrence, is independently selected from H and C₁-4 alkyl;

R⁴⁷, at each occurrence, is independently selected from H and C₁-4 alkyl;

k is 1 or 2;

m is 0 or 1; and

n is 0, 1 or 2.

4. (Original) The method as defined in Claim 2 where in the compound
administered:

X is -CH₂-;

R¹ is selected from

H,
C₁₋₄ alkyl,
C₂₋₄ alkenyl,
C₂₋₄ alkynyl,
C₃₋₄ cycloalkyl,
C₁₋₃ alkyl substituted with 0-1 R²,
C₂₋₃ alkenyl substituted with 0-1 R², and
C₂₋₃ alkynyl substituted with 0-1 R²;

R², at each occurrence, is independently selected from

C₁₋₄ alkyl,
C₂₋₄ alkenyl,
C₂₋₄ alkynyl,
C₃₋₆ cycloalkyl,
phenyl substituted with 0-5 R⁴²;
C₃₋₆ carbocyclic group substituted with 0-3 R⁴¹, and
5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R⁵ is H, methyl, ethyl, propyl, or butyl;

R^{6a} is H, methyl, ethyl, methoxy, -OH, or -CF₃;

R^{6b} is H;

R⁷ and R⁹, at each occurrence, are independently selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂, -NR⁴⁶R⁴⁷,

C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, (C₁₋₄ haloalkyl)oxy,
C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,
C₁₋₄ alkyl substituted with 0-2 R¹¹,
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³, and
5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R⁸ is selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂,
C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, (C₁₋₄ haloalkyl)oxy,
C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,
C₁₋₄ alkyl substituted with 0-2 R¹¹,
C₂₋₄ alkenyl substituted with 0-2 R¹¹,
C₂₋₄ alkynyl substituted with 0-1 R¹¹,
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and
NR¹²C(O)NHR¹⁵;

R¹¹ is selected from

H, halo, -CF₃, -CN, -NO₂,
C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, (C₁₋₄ haloalkyl)oxy,
C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³, and
5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R¹², at each occurrence, is independently selected from

C₁₋₄ alkyl substituted with 0-1 R^{12a},
C₂₋₄ alkenyl substituted with 0-1 R^{12a},
C₂₋₄ alkynyl substituted with 0-1 R^{12a},
C₃₋₆ cycloalkyl substituted with 0-3 R³³,
phenyl substituted with 0-5 R³³;
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R^{12a}, at each occurrence, is independently selected from

phenyl substituted with 0-5 R³³;
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R¹³, at each occurrence, is independently selected from

H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring optionally substituted with -O-
or -N(R¹⁴);

alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10-membered
bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the
group consisting of one N, two N, three N, one N one O, and one N one S; wherein said
bicyclic heterocyclic ring system is unsaturated or partially saturated, wherein said
bicyclic heterocyclic ring system is substituted with 0-2 R¹⁶;

R¹⁴, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R¹⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R¹⁶, at each occurrence, is independently selected from

H, OH, F, Cl, CN, NO₂, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, and trifluoromethoxy;

R³¹, at each occurrence, is independently selected from

H, OH, halo, CF₃, methyl, ethyl, and propyl;

R³³, at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,
C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl,
C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl-oxy-, C₁₋₄ alkyloxy-,
C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(=O)-, C₁₋₄ alkyl-C(=O)NH-, C₁₋₄ alkyl-OC(=O)-,
C₁₋₄ alkyl-C(=O)O-, C₃₋₆ cycloalkyl-oxy-, C₃₋₆ cycloalkylmethyl-oxy-;
C₁₋₆ alkyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy; and
C₂₋₆ alkenyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy;

R⁴¹, at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN,
C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₃ alkoxy, C₁₋₃ haloalkyl, and C₁₋₃ alkyl;

R⁴², at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, CH(=NH)NH₂,
NHC(=NH)NH₂,
C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₃ alkoxy, C₁₋₃ haloalkyl, C₃₋₆ cycloalkyl, and C₁₋₃ alkyl;

R^{43} is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, or pyridyl, each substituted with 0-3 R^{44} ;

R^{44} , at each occurrence, is independently selected from H, halo, -OH, $NR^{46}R^{47}$, CO_2H , SO_2R^{45} , -CF₃, -OCF₃, -CN, -NO₂, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, and butoxy;

R^{45} is methyl, ethyl, propyl, or butyl;

R^{46} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R^{47} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

k is 1;

m is 1; and

n is 0, 1 or 2.

5. (Original) The method as defined in Claim 2 where in the compound administered:

X is -CH₂-;

R^1 is selected from

H,

C₁₋₄ alkyl,

C₂₋₄ alkenyl,

C₂₋₄ alkynyl,

C₃₋₄ cycloalkyl,

C₁₋₃ alkyl substituted with 0-1 R^2 ,

C₂₋₃ alkenyl substituted with 0-1 R^2 , and

C₂₋₃ alkynyl substituted with 0-1 R^2 ;

R^2 , at each occurrence, is independently selected from

C₁₋₄ alkyl,

C₂₋₄ alkenyl,

C₂₋₄ alkynyl,

C₃₋₆ cycloalkyl,

phenyl substituted with 0-5 R^{42} ;

C₃₋₆ carbocyclic group substituted with 0-3 R^{41} , and

5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from

the group consisting of N, O, and S substituted with 0-3 R^{41} ;

R^5 is H, methyl, ethyl, propyl, or butyl;

R^{6a} is H, methyl, ethyl, methoxy, -OH, or -CF₃;

R^{6b} is H;

R^7 and R^9 , at each occurrence, are independently selected from

H, F, Cl, -CH₃, -OCH₃, -CF₃, -OCF₃, -CN, and -NO₂,

R^8 is selected from

H, F, Cl, Br, -CF₃, -OCF₃, -OH, -CN, -NO₂,

C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₃₋₁₀ cycloalkyl substituted with 0-2 R^{33} ,

C₁₋₄ alkyl substituted with 0-2 R^{11} ,

C₂₋₄ alkenyl substituted with 0-2 R^{11} ,

C₂₋₄ alkynyl substituted with 0-1 R^{11} ,

C₃₋₁₀ carbocyclic group substituted with 0-3 R^{33} ,

aryl substituted with 0-5 R^{33} ,

5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and
NR¹²C(O)NHR¹⁵;

R¹¹ is selected from

H, halo, -CF₃, -CN, -NO₂,
C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, (C₁₋₄
haloalkyl)oxy,

C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³, and

5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R¹², at each occurrence, is independently selected from

C₁₋₄ alkyl substituted with 0-1 R^{12a},

C₂₋₄ alkenyl substituted with 0-1 R^{12a},

C₂₋₄ alkynyl substituted with 0-1 R^{12a},

C₃₋₆ cycloalkyl substituted with 0-3 R³³,

phenyl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R^{12a}, at each occurrence, is independently selected from

phenyl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R^{13} , at each occurrence, is independently selected from

H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

alternatively, R^{12} and R^{13} join to form a 5- or 6-membered ring optionally substituted with -O- or -N(R^{14})-;

alternatively, R^{12} and R^{13} when attached to N may be combined to form a 9- or 10-membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S; wherein said bicyclic heterocyclic ring system is selected from indolyl, indolinyl, indazolyl, benzimidazolyl, benzimidazolinyl, benztriazolyl, benzoxazolyl, benzoxazolinyl, benzthiazolyl, and dioxobenzthiazolyl; wherein said bicyclic heterocyclic ring system is substituted with 0-1 R^{16} ;

R^{14} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R^{15} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R^{16} , at each occurrence, is independently selected from

H, OH, F, Cl, CN, NO₂, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, and trifluoromethoxy;

R^{31} , at each occurrence, is independently selected from

H, OH, halo, CF₃, methyl, ethyl, and propyl;

R^{33} , at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,
C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl,
C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl-oxy-, C₁₋₄ alkyloxy-,
C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(=O)-, C₁₋₄ alkyl-C(=O)NH-, C₁₋₄ alkyl-OC(=O)-,
C₁₋₄ alkyl-C(=O)O-, C₃₋₆ cycloalkyl-oxy-, C₃₋₆ cycloalkylmethyl-oxy-;
C₁₋₆ alkyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy; and

C₂-6 alkenyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy;

R⁴¹, at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN,

C₂-4 alkenyl, C₂-4 alkynyl, C₁-3 alkoxy, C₁-3 haloalkyl, and C₁-3 alkyl;

R⁴², at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, CH(=NH)NH₂,

NHC(=NH)NH₂,

C₂-4 alkenyl, C₂-4 alkynyl, C₁-3 alkoxy, C₁-3 haloalkyl, C₃-6 cycloalkyl, and C₁-3 alkyl;

R⁴³ is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, or pyridyl, each substituted with 0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H, SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, and butoxy;

R⁴⁵ is methyl, ethyl, propyl, or butyl;

R⁴⁶, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R⁴⁷, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

k is 1;

m is 1; and

n is 0, 1 or 2.

6. (Original) The method as defined in Claim 2 where in the compound administered:

X is -CH₂-;

R¹ is selected from H,

C₁₋₅ alkyl substituted with 0-1 R²,

C₂₋₅ alkenyl substituted with 0-1 R², and

C₂₋₃ alkynyl substituted with 0-1 R²;

R² is C₃₋₆ cycloalkyl;

R⁵ is H, methyl, ethyl, or propyl;

R^{6a} is H, methyl, or ethyl;

R^{6b} is H;

R⁷ and R⁹, at each occurrence, are independently selected from

H, F, Cl, -CH₃, -OCH₃, -CF₃, -OCF₃, -CN, and -NO₂,

R⁸ is selected from

methyl substituted with R¹¹;

ethenyl substituted with R¹¹;

OR¹², SR¹², NR¹²R¹³, NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and

NR¹²C(O)NHR¹⁵;

R¹¹ is selected from

phenyl- substituted with 0-5 fluoro;

2-(H₃CCH₂C(=O))-phenyl- substituted with R³³;

2-(H₃CC(=O))-phenyl- substituted with R³³;

2-(HC(=O))-phenyl- substituted with R³³;

2-(H₃CCH(OH))-phenyl- substituted with R³³;

2-(H₃CCH₂CH(OH))-phenyl- substituted with R³³;
2-(HOCH₂)-phenyl- substituted with R³³;
2-(HOCH₂CH₂)-phenyl- substituted with R³³;
2-(H₃COCH₂)-phenyl- substituted with R³³;
2-(H₃COCH₂CH₂)-phenyl- substituted with R³³;
2-(H₃CCH(OMe))-phenyl- substituted with R³³;
2-(H₃COC(=O))-phenyl- substituted with R³³;
2-(HOCH₂CH=CH)-phenyl- substituted with R³³;
2-((MeOC=O)CH=CH)-phenyl- substituted with R³³;
2-(methyl)-phenyl- substituted with R³³;
2-(ethyl)-phenyl- substituted with R³³;
2-(i-propyl)-phenyl- substituted with R³³;
2-(F₃C)-phenyl- substituted with R³³;
2-(NC)-phenyl- substituted with R³³;
2-(H₃CO)-phenyl- substituted with R³³;
2-(fluoro)-phenyl- substituted with R³³;
2-(chloro)-phenyl- substituted with R³³;
3-(NC)-phenyl- substituted with R³³;
3-(H₃CO)-phenyl- substituted with R³³;
3-(fluoro)-phenyl- substituted with R³³;
3-(chloro)-phenyl- substituted with R³³;
4-(NC)-phenyl- substituted with R³³;
4-(fluoro)-phenyl- substituted with R³³;
4-(chloro)-phenyl- substituted with R³³;
4-(H₃CS)-phenyl- substituted with R³³;
4-(H₃CO)-phenyl- substituted with R³³;
4-(ethoxy)-phenyl- substituted with R³³;
4-(i-propoxy)-phenyl- substituted with R³³;
4-(i-butoxy)-phenyl- substituted with R³³;

4-(H₃CCH₂CH₂C(=O))-phenyl- substituted with R³³;
4-((H₃C)₂CHC(=O))-phenyl- substituted with R³³;
4-(H₃CCH₂C(=O))-phenyl- substituted with R³³;
4-(H₃CC(=O))-phenyl- substituted with R³³;
4-(H₃CCH₂CH₂CH(OH))-phenyl- substituted with R³³;
4-((H₃C)₂CHCH(OH))-phenyl- substituted with R³³;
4-(H₃CCH₂CH(OH))-phenyl- substituted with R³³;
4-(H₃CCH(OH))-phenyl- substituted with R³³;
4-(cyclopropyloxy)-phenyl- substituted with R³³;
4-(cyclobutyloxy)-phenyl- substituted with R³³; and
4-(cyclopentyloxy)-phenyl- substituted with R³³;

R¹² is selected from

phenyl- substituted with 0-5 fluoro;
2-(H₃CCH₂C(=O))-phenyl- substituted with R³³;
2-(H₃CC(=O))-phenyl- substituted with R³³;
2-(HC(=O))-phenyl- substituted with R³³;
2-(H₃CCH(OH))-phenyl- substituted with R³³;
2-(H₃CCH₂CH(OH))-phenyl- substituted with R³³;
2-(HOCH₂)-phenyl- substituted with R³³;
2-(HOCH₂CH₂)-phenyl- substituted with R³³;
2-(H₃COCH₂)-phenyl- substituted with R³³;
2-(H₃COCH₂CH₂)-phenyl- substituted with R³³;
2-(H₃CCH(OMe))-phenyl- substituted with R³³;
2-(H₃COC(=O))-phenyl- substituted with R³³;
2-(HOCH₂CH=CH)-phenyl- substituted with R³³;
2-((MeOC=O)CH=CH)-phenyl- substituted with R³³;
2-(methyl)-phenyl- substituted with R³³;
2-(ethyl)-phenyl- substituted with R³³;

2-(i-propyl)-phenyl- substituted with R³³;
2-(F₃C)-phenyl- substituted with R³³;
2-(NC)-phenyl- substituted with R³³;
2-(H₃CO)-phenyl- substituted with R³³;
2-(fluoro)-phenyl- substituted with R³³;
2-(chloro)-phenyl- substituted with R³³;
3-(NC)-phenyl- substituted with R³³;
3-(H₃CO)-phenyl- substituted with R³³;
3-(fluoro)-phenyl- substituted with R³³;
3-(chloro)-phenyl- substituted with R³³;
4-(NC)-phenyl- substituted with R³³;
4-(fluoro)-phenyl- substituted with R³³;
4-(chloro)-phenyl- substituted with R³³;
4-(H₃CS)-phenyl- substituted with R³³;
4-(H₃CO)-phenyl- substituted with R³³;
4-(ethoxy)-phenyl- substituted with R³³;
4-(i-propoxy)-phenyl- substituted with R³³;
4-(i-butoxy)-phenyl- substituted with R³³;
4-(H₃CCH₂CH₂C(=O))-phenyl- substituted with R³³;
4-((H₃C)₂CHC(=O))-phenyl- substituted with R³³;
4-(H₃CCH₂C(=O))-phenyl- substituted with R³³;
4-(H₃CC(=O))-phenyl- substituted with R³³;
4-(H₃CCH₂CH₂CH(OH))-phenyl- substituted with R³³;
4-((H₃C)₂CHCH(OH))-phenyl- substituted with R³³;
4-(H₃CCH₂CH(OH))-phenyl- substituted with R³³;
4-(H₃CCH(OH))-phenyl- substituted with R³³;
4-(cyclopropyloxy)-phenyl- substituted with R³³;
4-(cyclobutyloxy)-phenyl- substituted with R³³; and
4-(cyclopentyloxy)-phenyl- substituted with R³³;

R^{13} is H, methyl, or ethyl;

alternatively, R^{12} and R^{13} join to form a 5- or 6-membered ring selected from pyrrolyl, pyrrolidinyl, imidazolyl, piperidinyl, piperizinyl, methylpiperizinyl, and morpholinyl;

alternatively, R^{12} and R^{13} when attached to N may be combined to form a 9- or 10-membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S; wherein said bicyclic heterocyclic ring system is selected from indolyl, indolinyl, indazolyl, benzimidazolyl, benzimidazolinyl, benztriazolyl, benzoxazolyl, benzoxazolinyl, benzthiazolyl, and dioxobenzthiazolyl; wherein said bicyclic heterocyclic ring system is substituted with 0-1 R^{16} ;

R^{15} is H, methyl, ethyl, propyl, or butyl;

R^{16} , at each occurrence, is independently selected from H, OH, F, Cl, CN, NO₂, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, and trifluoromethoxy;

R^{33} , at each occurrence, is independently selected from H, F, Cl, -CH₃, -OCH₃, -CF₃, -OCF₃, -CN, and -NO₂;

k is 1;

m is 1; and

n is 1 or 2.

7. (Original) The method as defined in Claim 2 where the compound administered is a compound of Formula (I-a):

(I-a)

wherein:

b is a single bond;

X is -CH₂- , -CH(OH)-, or -C(=O)-;

R¹ is selected from

hydrogen, methyl, ethyl, n-propyl, n-butyl, s-butyl,
t-butyl, n-pentyl, n-hexyl, 2-propyl, 2-butyl, 2-pentyl, 2-hexyl, 2-methylpropyl, 2-methylbutyl, 2-methylpentyl, 2-ethylbutyl, 3-methylpentyl, 3-methylbutyl, 4-methylpentyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl,

2-propenyl, 2-methyl-2-propenyl, trans-2-but enyl,
3-methyl-butenyl, 3-butenyl, trans-2-pentenyl,
cis-2-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl,
3,3-dichloro-2-propenyl, trans-3-phenyl-2-propenyl,

cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl,

benzyl, 2-methylbenzyl, 3-methylbenzyl, 4-methylbenzyl, 2,5-dimethylbenzyl, 2,4-dimethylbenzyl, 3,5-dimethylbenzyl,
2,4,6-trimethyl-benzyl, 3-methoxy-benzyl, 3,5-dimethoxy-benzyl, pentafluorobenzyl, 2-phenylethyl, 1-phenyl-2-propyl, 4-phenylbutyl, 4-phenylbenzyl, 2-phenylbenzyl,

(2,3-dimethoxy-phenyl)C(=O)-, (2,5-dimethoxy-phenyl)C(=O)-, (3,4-dimethoxy-phenyl)C(=O)-,
(3,5-dimethoxy-phenyl)C(=O)-, cyclopropyl-C(=O)-,
isopropyl-C(=O)-, ethyl-CO₂-, propyl-CO₂-, t-butyl-CO₂-,
2,6-dimethoxy-benzyl, 2,4-dimethoxy-benzyl,
2,4,6-trimethoxy-benzyl, 2,3-dimethoxy-benzyl,
2,4,5-trimethoxy-benzyl, 2,3,4-trimethoxy-benzyl,
3,4-dimethoxy-benzyl, 3,4,5-trimethoxy-benzyl,
(4-fluoro-phenyl)ethyl,

-CH=CH₂, -CH₂-CH=CH₂, -CH=CH-CH₃, -C≡CH, -C≡C-CH₃, and
-CH₂-C≡CH;

R⁷, R⁸, and R⁹, at each occurrence, are independently selected from

hydrogen, fluoro, chloro, bromo, cyano, methyl, ethyl, propyl, isopropyl, butyl, t-butyl,
nitro, trifluoromethyl, methoxy, ethoxy, isopropoxy, trifluoromethoxy, phenyl,

methylC(=O)-, ethylC(=O)-, propylC(=O)-, isopropylC(=O)-, butylC(=O)-,
phenylC(=O)-,

methylCO₂-, ethylCO₂-, propylCO₂-, isopropylCO₂-, butylCO₂-, phenylCO₂-,

dimethylamino-S(=O)-, diethylamino-S(=O)-,
dipropylamino-S(=O)-, di-isopropylamino-S(=O)-, dibutylamino-S(=O)-, diphenylamino-S(=O)-,

dimethylamino-SO₂-, diethylamino-SO₂-, dipropylamino-SO₂-, di-isopropylamino-SO₂-,
dibutylamino-SO₂-,

diphenylamino-SO₂-,

dimethylamino-C(=O)-, diethylamino-C(=O)-,
dipropylamino-C(=O)-, di-isopropylamino-C(=O)-, dibutylamino-C(=O)-,
diphenylamino-C(=O)-,

2-chlorophenyl, 2-fluorophenyl, 2-bromophenyl, 2-cyanophenyl, 2-methylphenyl, 2-trifluoromethylphenyl,
2-methoxyphenyl, 2-trifluoromethoxyphenyl,

3-chlorophenyl, 3-fluorophenyl, 3-bromophenyl,
3-cyanophenyl, 3-methylphenyl, 3-ethylphenyl,
3-propylphenyl, 3-isopropylphenyl, 3-butylphenyl,
3-trifluoromethylphenyl, 3-methoxyphenyl,
3-isopropoxyphenyl, 3-trifluoromethoxyphenyl,
3-thiomethoxyphenyl,

4-chlorophenyl, 4-fluorophenyl, 4-bromophenyl,
4-cyanophenyl, 4-methylphenyl, 4-ethylphenyl,
4-propylphenyl, 4-isopropylphenyl, 4-butylphenyl,
4-trifluoromethylphenyl, 4-methoxyphenyl,
4-isopropoxyphenyl, 4-trifluoromethoxyphenyl,
4-thiomethoxyphenyl,

2,3-dichlorophenyl, 2,3-difluorophenyl, 2,3-dimethylphenyl,
2,3-ditrifluoromethylphenyl, 2,3-dimethoxyphenyl,
2,3-ditrifluoromethoxyphenyl,

2,4-dichlorophenyl, 2,4-difluorophenyl, 2,4-dimethylphenyl,
2,4-ditrifluoromethylphenyl, 2,4-dimethoxyphenyl,
2,4-ditrifluoromethoxyphenyl,

2,5-dichlorophenyl, 2,5-difluorophenyl, 2,5-dimethylphenyl,
2,5-ditrifluoromethylphenyl, 2,5-dimethoxyphenyl,
2,5-ditrifluoromethoxyphenyl,

2,6-dichlorophenyl, 2,6-difluorophenyl, 2,6-dimethylphenyl,
2,6-ditrifluoromethylphenyl, 2,6-dimethoxyphenyl,
2,6-ditrifluoromethoxyphenyl,

3,4-dichlorophenyl, 3,4-difluorophenyl, 3,4-dimethylphenyl,

3,4-ditrifluoromethylphenyl, 3,4-dimethoxyphenyl,
3,4-ditrifluoromethoxyphenyl,

2,4,6-trichlorophenyl, 2,4,6-trifluorophenyl,
2,4,6-trimethylphenyl, 2,4,6-tritrifluoromethylphenyl,
2,4,6-trimethoxyphenyl, 2,4,6-tritrifluoromethoxyphenyl,

2-chloro-4-CF₃-phenyl, 2-fluoro-3-chloro-phenyl,
2-chloro-4-CF₃-phenyl, 2-chloro-4-methoxy-phenyl,
2-methoxy-4-isopropyl-phenyl, 2-CF₃-4-methoxy-phenyl,
2-methyl-4-methoxy-5-fluoro-phenyl,
2-methyl-4-methoxy-phenyl, 2-chloro-4-CF₃O-phenyl,
2,4,5-trimethyl-phenyl, 2-methyl-4-chloro-phenyl,

methyl-C(=O)NH-, ethyl-C(=O)NH-, propyl-C(=O)NH-,
isopropyl-C(=O)NH-, butyl-C(=O)NH-, phenyl-C(=O)NH-,

4-acetylphenyl, 3-acetamidophenyl, 4-pyridyl, 2-furanyl,
2-thiophenyl, 2-naphthyl;

2-Me-5-F-phenyl, 2-F-5-Me-phenyl, 2-MeO-5-F-phenyl,
2-Me-3-Cl-phenyl, 3-NO₂-phenyl, 2-NO₂-phenyl,
2-Cl-3-Me-phenyl, 2-Me-4-EtO-phenyl, 2-Me-4-F-phenyl,
2-Cl-6-F-phenyl, 2-Cl-4-(CHF₂)O-phenyl,
2,4-diMeO-6-F-phenyl, 2-CF₃-6-F-phenyl,
2-MeS-phenyl, 2,6-diCl-4-MeO-phenyl,
2,3,4-triF-phenyl, 2,6-diF-4-Cl-phenyl,
2,3,4,6-tetraF-phenyl, 2,3,4,5,6-pentaF-phenyl,
2-CF₃-4-EtO-phenyl, 2-CF₃-4-iPrO-phenyl,
2-CF₃-4-Cl-phenyl, 2-CF₃-4-F-phenyl, 2-Cl-4-EtO-phenyl,
2-Cl-4-iPrO-phenyl, 2-Et-4-MeO-phenyl,
2-CHO-4-MeO-phenyl, 2-CH(OH)Me-4-MeO-phenyl,
2-CH(OMe)Me-4-MeO-phenyl, 2-C(=O)Me-4-MeO-phenyl,
2-CH₂(OH)-4-MeO-phenyl, 2-CH₂(OMe)-4-MeO-phenyl,

2-CH(OH)Et-4-MeO-phenyl, 2-C(=O)Et-4-MeO-phenyl,
(Z)-2-CH=CHCO₂Me-4-MeO-phenyl,
2-CH₂CH₂CO₂Me-4-MeO-phenyl,
(Z)-2-CH=CHCH₂(OH)-4-MeO-phenyl,
(E)-2-CH=CHCO₂Me-4-MeO-phenyl,
(E)-2-CH=CHCH₂(OH)-4-MeO-phenyl,
2-CH₂CH₂OMe-4-MeO-phenyl,
2-F-4-MeO-phenyl, 2-Cl-4-F-phenyl,
(2-Cl-phenyl)-CH=CH-, (3-Cl-phenyl)-CH=CH-,
(2,6-diF-phenyl)-CH=CH-, -CH₂CH=CH₂,
phenyl-CH=CH-, (2-Me-4-MeO-phenyl)-CH=CH-,
cyclohexyl, cyclopentyl, cyclohexylmethyl,
-CH₂CH₂CO₂Et, -(CH₂)₃CO₂Et, -(CH₂)₄CO₂Et,
benzyl, 2-F-benzyl, 3-F-benzyl, 4-F-benzyl,
3-MeO-benzyl, 3-OH-benzyl, 2-MeO-benzyl,
2-OH-benzyl, 2-CO₂Me-3-MeO-phenyl,
2-Me-4-CN-phenyl, 2-Me-3-CN-phenyl, 2-CF₃-4-CN-phenyl,
3-CHO-phenyl, 3-CH₂(OH)-phenyl, 3-CH₂(OMe)-phenyl,
3-CH₂(NMe₂)-phenyl, 3-CN-4-F-phenyl,
3-CONH₂-4-F-phenyl, 2-CH₂(NH₂)-4-MeO-phenyl-,
phenyl-NH-, (4-F-phenyl)-NH-, (2,4-diCl-phenyl)-NH-,
phenyl-C(=O)NH-, benzyl-NH-, (2-Me-4-MeO-phenyl)-NH-,
(2-F-4-MeO-phenyl)-NH-, (2-Me-4-F-phenyl)-NH-,
phenyl-S-, -NMe₂, 1-pyrrolidinyl, and
-N(tosylate)₂,

provided that two of R⁷, R⁸, and R⁹, are independently selected from hydrogen, fluoro, chloro, bromo, cyano, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, nitro, trifluoromethyl, methoxy, ethoxy, isopropoxy, and trifluoromethoxy;

m is 1; and

n is 0, 1 or 2.

8. (Original) The method as defined in Claim 7 where the compound administered is a compound of Formula (V):

(V)

wherein:

b is a single bond, wherein the bridge hydrogens are in a cis position;

R¹ is selected from

hydrogen, methyl, ethyl, n-propyl, n-butyl, s-butyl,
t-butyl, n-pentyl, n-hexyl, 2-propyl, 2-butyl, 2-pentyl, 2-hexyl, 2-methylpropyl, 2-methylbutyl, 2-methylpentyl, 2-ethylbutyl, 3-methylpentyl, 3-methylbutyl, 4-methylpentyl, 2-fluoroethyl, 2,2-difluoroethyl,
2,2,2-trifluoroethyl, 2-propenyl, 2-methyl-2-propenyl, trans-2-butenyl, 3-methyl-butenyl,
3-butenyl,
trans-2-pentenyl, cis-2-pentenyl, 4-pentenyl,
4-methyl-3-pentenyl, 3,3-dichloro-2-propenyl,
trans-3-phenyl-2-propenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl,
cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl,
-CH=CH₂, -CH₂-CH=CH₂, -CH=CH-CH₃, -C≡CH, -C≡C-CH₃,
and -CH₂-C≡CH;

R⁷ and R⁹, at each occurrence, are independently selected from hydrogen, fluoro, methyl, trifluoromethyl, and methoxy;

R⁸ is selected from

hydrogen, fluoro, chloro, bromo, cyano, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, nitro, trifluoromethyl, methoxy, ethoxy, isopropoxy, trifluoromethoxy, phenyl,

methylC(=O)-, ethylC(=O)-, propylC(=O)-, isopropylC(=O)-, butylC(=O)-, phenylC(=O)-,

methylCO₂-, ethylCO₂-, propylCO₂-, isopropylCO₂-, butylCO₂-, phenylCO₂-,

dimethylamino-S(=O)-, diethylamino-S(=O)-,

dipropylamino-S(=O)-, di-isopropylamino-S(=O)-, dibutylamino-S(=O)-, diphenylamino-S(=O)-,

dimethylamino-SO₂-, diethylamino-SO₂-, dipropylamino-SO₂-, di-isopropylamino-SO₂-,
, dibutylamino-SO₂-,

diphenylamino-SO₂-,

dimethylamino-C(=O)-, diethylamino-C(=O)-,

dipropylamino-C(=O)-, di-isopropylamino-C(=O)-, dibutylamino-C(=O)-,
diphenylamino-C(=O)-,

2-chlorophenyl, 2-fluorophenyl, 2-bromophenyl, 2-cyanophenyl, 2-methylphenyl, 2-trifluoromethylphenyl,

2-methoxyphenyl, 2-trifluoromethoxyphenyl,

3-chlorophenyl, 3-fluorophenyl, 3-bromophenyl,

3-cyanophenyl, 3-methylphenyl, 3-ethylphenyl,

3-propylphenyl, 3-isopropylphenyl, 3-butylphenyl,

3-trifluoromethylphenyl, 3-methoxyphenyl,

3-isopropoxyphenyl, 3-trifluoromethoxyphenyl,

3-thiomethoxyphenyl,

4-chlorophenyl, 4-fluorophenyl, 4-bromophenyl,

4-cyanophenyl, 4-methylphenyl, 4-ethylphenyl,

4-propylphenyl, 4-isopropylphenyl, 4-butylphenyl,

4-trifluoromethylphenyl, 4-methoxyphenyl,
4-isopropoxyphenyl, 4-trifluoromethoxyphenyl,
4-thiomethoxyphenyl,

2,3-dichlorophenyl, 2,3-difluorophenyl, 2,3-dimethylphenyl,
2,3-ditrifluoromethylphenyl, 2,3-dimethoxyphenyl,
2,3-ditrifluoromethoxyphenyl,

2,4-dichlorophenyl, 2,4-difluorophenyl, 2,4-dimethylphenyl,
2,4-ditrifluoromethylphenyl, 2,4-dimethoxyphenyl,
2,4-ditrifluoromethoxyphenyl,

2,5-dichlorophenyl, 2,5-difluorophenyl, 2,5-dimethylphenyl,
2,5-ditrifluoromethylphenyl, 2,5-dimethoxyphenyl,
2,5-ditrifluoromethoxyphenyl,

2,6-dichlorophenyl, 2,6-difluorophenyl, 2,6-dimethylphenyl,
2,6-ditrifluoromethylphenyl, 2,6-dimethoxyphenyl,
2,6-ditrifluoromethoxyphenyl,

3,4-dichlorophenyl, 3,4-difluorophenyl, 3,4-dimethylphenyl,
3,4-ditrifluoromethylphenyl, 3,4-dimethoxyphenyl,
3,4-ditrifluoromethoxyphenyl,

2,4,6-trichlorophenyl, 2,4,6-trifluorophenyl,
2,4,6-trimethylphenyl, 2,4,6-trifluoromethylphenyl,
2,4,6-trimethoxyphenyl, 2,4,6-trifluoromethoxyphenyl,

2-chloro-4-CF₃-phenyl, 2-fluoro-3-chloro-phenyl,
2-chloro-4-CF₃-phenyl, 2-chloro-4-methoxy-phenyl,
2-methoxy-4-isopropyl-phenyl, 2-CF₃-4-methoxy-phenyl,
2-methyl-4-methoxy-5-fluoro-phenyl,
2-methyl-4-methoxy-phenyl, 2-chloro-4-CF₃O-phenyl,
2,4,5-trimethyl-phenyl, 2-methyl-4-chloro-phenyl,

methyl-C(=O)NH-, ethyl-C(=O)NH-, propyl-C(=O)NH-,
isopropyl-C(=O)NH-, butyl-C(=O)NH-, phenyl-C(=O)NH-,

4-acetylphenyl, 3-acetamidophenyl, 4-pyridyl, 2-furanyl,
2-thiophenyl, 2-naphthyl;

2-Me-5-F-phenyl, 2-F-5-Me-phenyl, 2-MeO-5-F-phenyl,
2-Me-3-Cl-phenyl, 3-NO₂-phenyl, 2-NO₂-phenyl,
2-Cl-3-Me-phenyl, 2-Me-4-EtO-phenyl, 2-Me-4-F-phenyl,
2-Cl-6-F-phenyl, 2-Cl-4-(CHF₂)O-phenyl,
2,4-diMeO-6-F-phenyl, 2-CF₃-6-F-phenyl,
2-MeS-phenyl, 2,6-diCl-4-MeO-phenyl,
2,3,4-triF-phenyl, 2,6-diF-4-Cl-phenyl,
2,3,4,6-tetraF-phenyl, 2,3,4,5,6-pentaF-phenyl,
2-CF₃-4-EtO-phenyl, 2-CF₃-4-iPrO-phenyl,
2-CF₃-4-Cl-phenyl, 2-CF₃-4-F-phenyl, 2-Cl-4-EtO-phenyl,
2-Cl-4-iPrO-phenyl, 2-Et-4-MeO-phenyl,
2-CHO-4-MeO-phenyl, 2-CH(OH)Me-4-MeO-phenyl,
2-CH(OMe)Me-4-MeO-phenyl, 2-C(=O)Me-4-MeO-phenyl,
2-CH₂(OH)-4-MeO-phenyl, 2-CH₂(OMe)-4-MeO-phenyl,
2-CH(OH)Et-4-MeO-phenyl, 2-C(=O)Et-4-MeO-phenyl,
(Z)-2-CH=CHCO₂Me-4-MeO-phenyl,
2-CH₂CH₂CO₂Me-4-MeO-phenyl,
(Z)-2-CH=CHCH₂(OH)-4-MeO-phenyl,
(E)-2-CH=CHCO₂Me-4-MeO-phenyl,
(E)-2-CH=CHCH₂(OH)-4-MeO-phenyl,
2-CH₂CH₂OMe-4-MeO-phenyl,
2-F-4-MeO-phenyl, 2-Cl-4-F-phenyl,
(2-Cl-phenyl)-CH=CH-, (3-Cl-phenyl)-CH=CH-,
(2,6-diF-phenyl)-CH=CH-, -CH₂CH=CH₂,
phenyl-CH=CH-, (2-Me-4-MeO-phenyl)-CH=CH-,
cyclohexyl, cyclopentyl, cyclohexylmethyl,

-CH₂CH₂CO₂Et, -(CH₂)₃CO₂Et, -(CH₂)₄CO₂Et,
benzyl, 2-F-benzyl, 3-F-benzyl, 4-F-benzyl,
3-MeO-benzyl, 3-OH-benzyl, 2-MeO-benzyl,
2-OH-benzyl, 2-CO₂Me-3-MeO-phenyl,
2-Me-4-CN-phenyl, 2-Me-3-CN-phenyl, 2-CF₃-4-CN-phenyl,
3-CHO-phenyl, 3-CH₂(OH)-phenyl, 3-CH₂(OMe)-phenyl,
3-CH₂(NMe₂)-phenyl, 3-CN-4-F-phenyl,
3-CONH₂-4-F-phenyl, 2-CH₂(NH₂)-4-MeO-phenyl-,
phenyl-NH-, (4-F-phenyl)-NH-, (2,4-diCl-phenyl)-NH-,
phenyl-C(=O)NH-, benzyl-NH-, (2-Me-4-MeO-phenyl)-NH-,
(2-F-4-MeO-phenyl)-NH-, (2-Me-4-F-phenyl)-NH-,
phenyl-S-, -NMe₂, 1-pyrrolidinyl, and
-N(tosylate)₂; and

n is 0, 1 or 2.

9. (Original) The method as defined in Claim 1 where in the compound administered:

X is -CHR¹⁰- or -C(=O)-;

R¹ is selected from

C₁-6 alkyl substituted with Z,
C₂-6 alkenyl substituted with Z,
C₂-6 alkynyl substituted with Z,
C₃-6 cycloalkyl substituted with Z,
aryl substituted with Z,
5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with Z;

C₁-6 alkyl substituted with 0-2 R²,

C₂-6 alkenyl substituted with 0-2 R²,

C₂-6 alkynyl substituted with 0-2 R²,
aryl substituted with 0-2 R², and
5-6 membered heterocyclic ring system containing at least one heteroatom selected from
the group consisting of N, O, and S, said heterocyclic ring system substituted with
0-2 R²;

Z is selected from H,

- CH(OH)R²,
- C(ethylenedioxy)R²,
- OR²,
- SR²,
- NR²R³,
- C(O)R²,
- C(O)NR²R³,
- NR³C(O)R²,
- C(O)OR²,
- OC(O)R²,
- CH(=NR⁴)NR²R³,
- NHC(=NR⁴)NR²R³,
- S(O)R²,
- S(O)₂R²,
- S(O)₂NR²R³, and -NR³S(O)₂R²;

R², at each occurrence, is independently selected from

- C₁-4 alkyl,
- C₂-4 alkenyl,
- C₂-4 alkynyl,
- C₃-6 cycloalkyl,
- aryl substituted with 0-5 R⁴²;
- C₃-10 carbocyclic group substituted with 0-3 R⁴¹, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R³, at each occurrence, is independently selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, and C₁₋₄ alkoxy;

alternatively, R² and R³ join to form a 5- or 6-membered ring optionally substituted with -O- or -N(R⁴)-;

R⁴, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R⁵ is H, methyl, ethyl, propyl, or butyl;

R^{6a} is selected from

H, -OH, -NR⁴⁶R⁴⁷, -CF₃, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₃₋₆ cycloalkyl, and aryl substituted with 0-3 R⁴⁴;

R^{6b} is H;

R⁷, R⁸, and R⁹, at each occurrence, are independently selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂, -NR⁴⁶R⁴⁷, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl, C₁₋₈ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₁₋₄ alkyl substituted with 0-2 R¹¹,

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³¹;

OR^{12} , SR^{12} , $\text{NR}^{12}\text{R}^{13}$, C(O)H , C(O)R^{12} , $\text{C(O)NR}^{12}\text{R}^{13}$, $\text{NR}^{14}\text{C(O)R}^{12}$, C(O)OR^{12} ,
 OC(O)R^{12} , OC(O)OR^{12} , $\text{CH(=NR}^{14})\text{NR}^{12}\text{R}^{13}$, $\text{NHC(=NR}^{14})\text{NR}^{12}\text{R}^{13}$, S(O)R^{12} ,
 $\text{S(O)}_2\text{R}^{12}$, $\text{S(O)NR}^{12}\text{R}^{13}$, $\text{S(O)}_2\text{NR}^{12}\text{R}^{13}$, $\text{NR}^{14}\text{S(O)R}^{12}$, $\text{NR}^{14}\text{S(O)}_2\text{R}^{12}$,
 $\text{NR}^{12}\text{C(O)R}^{15}$, $\text{NR}^{12}\text{C(O)OR}^{15}$, $\text{NR}^{12}\text{S(O)}_2\text{R}^{15}$, and $\text{NR}^{12}\text{C(O)NHR}^{15}$;

R^{10} is selected from H, -OH,

C₁₋₆ alkyl substituted with 0-1 R^{10}B ,
C₂₋₆ alkenyl substituted with 0-1 R^{10}B ,
C₂₋₆ alkynyl substituted with 0-1 R^{10}B , and
C₁₋₆ alkoxy;

R^{10}B is selected from

C₁₋₄ alkoxy,
C₃₋₆ cycloalkyl,
C₃₋₁₀ carbocyclic group substituted with 0-3 R^{33} ,
phenyl substituted with 0-3 R^{33} , and
5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-2 R^{44} ;

R^{11} is selected from

H, halo, -CF₃, -CN, -NO₂,
C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl, C₁₋₈ alkoxy, C₃₋₁₀ cycloalkyl,
C₃₋₁₀ carbocyclic group substituted with 0-3 R^{33} ,
aryl substituted with 0-5 R^{33} ,
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R^{31} ;

OR^{12} , SR^{12} , $\text{NR}^{12}\text{R}^{13}$, C(O)H , C(O)R^{12} , $\text{C(O)NR}^{12}\text{R}^{13}$, $\text{NR}^{14}\text{C(O)R}^{12}$, C(O)OR^{12} ,
 OC(O)R^{12} , OC(O)OR^{12} , $\text{CH(=NR}^{14})\text{NR}^{12}\text{R}^{13}$, $\text{NHC(=NR}^{14})\text{NR}^{12}\text{R}^{13}$, S(O)R^{12} ,
 $\text{S(O)}_2\text{R}^{12}$, $\text{S(O)NR}^{12}\text{R}^{13}$, $\text{S(O)}_2\text{NR}^{12}\text{R}^{13}$, $\text{NR}^{14}\text{S(O)R}^{12}$, and $\text{NR}^{14}\text{S(O)}_2\text{R}^{12}$;

R^{12} , at each occurrence, is independently selected from

C₁₋₄ alkyl,

C₂₋₄ alkenyl,

C₂₋₄ alkynyl,

C₃₋₆ cycloalkyl,

phenyl substituted with 0-5 R^{33} ;

C₃₋₁₀ carbocyclic group substituted with 0-3 R^{33} , and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R^{31} ;

R^{13} , at each occurrence, is independently selected from

H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

alternatively, R^{12} and R^{13} join to form a 5- or 6-membered ring optionally substituted with -O- or -N(R^{14})-;

R^{14} , at each occurrence, is independently selected from H and C₁₋₄ alkyl;

R^{31} , at each occurrence, is independently selected from

H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, methyl, ethyl, and propyl;

R^{33} , at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷,

C₁₋₃ alkyl, C₂₋₃ alkenyl, C₂₋₃ alkynyl, C₃₋₅ cycloalkyl, C₁₋₃ haloalkyl, C₁₋₃ haloalkyl-oxy-, C₁₋₃ alkyloxy-, C₁₋₃ alkylthio-, C₁₋₃ alkyl-C(=O)-, and C₁₋₃ alkyl-C(=O)NH-;

R^{41} , at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, =O,

C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl

C₁₋₄ alkyl substituted with 0-1 R^{43} ,

aryl substituted with 0-3 R⁴², and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴², at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, SR⁴⁵, NR⁴⁶R⁴⁷, OR⁴⁸, NO₂, CN, CH(=NH)NH₂,
NHC(=NH)NH₂,

C₂-6 alkenyl, C₂-6 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl, C₃-6 cycloalkyl,

C₁-4 alkyl substituted with 0-1 R⁴³,

aryl substituted with 0-3 R⁴⁴, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴³ is C₃-6 cycloalkyl or aryl substituted with 0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H,
SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, C₁-4 alkyl, and C₁-4 alkoxy;

R⁴⁵ is C₁-4 alkyl;

R⁴⁶, at each occurrence, is independently selected from H and C₁-4 alkyl;

R⁴⁷, at each occurrence, is independently selected from H, C₁-4 alkyl,

-C(=O)NH(C₁-4 alkyl), -SO₂(C₁-4 alkyl),
-SO₂(phenyl), -C(=O)O(C₁-4 alkyl), -C(=O)(C₁-4 alkyl), and -C(=O)H;

R⁴⁸, at each occurrence, is independently selected from H, C₁-4 alkyl,

-C(=O)NH(C₁-4 alkyl), -C(=O)O(C₁-4 alkyl),
-C(=O)(C₁-4 alkyl), and -C(=O)H;

k is 1 or 2;

m is 0, 1, or 2; and

n is 0, 1 or 2.

10. (Original) The method as defined in Claim 9 where in the compound administered:

X is -CHR¹⁰- or -C(=O)-;

R¹ is selected from

C₂₋₅ alkyl substituted with Z,

C₂₋₅ alkenyl substituted with Z,

C₂₋₅ alkynyl substituted with Z,

C₃₋₆ cycloalkyl substituted with Z,

aryl substituted with Z,

5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with Z;

C₁₋₅ alkyl substituted with 0-2 R²,

C₂₋₅ alkenyl substituted with 0-2 R², and

C₂₋₅ alkynyl substituted with 0-2 R²;

Z is selected from H,

-CH(OH)R²,

-C(ethylenedioxy)R²,

-OR²,

-SR²,

-NR²R³,

-C(O)R²,

-C(O)NR²R³,

-NR³C(O)R²,

-C(O)OR²,

-OC(O)R²,
-CH(=NR⁴)NR²R³,
-NHC(=NR⁴)NR²R³,
-S(O)R²,
-S(O)₂R²,
-S(O)₂NR²R³, and -NR³S(O)₂R²;

R², at each occurrence, is independently selected from

C₁₋₄ alkyl,
C₂₋₄ alkenyl,
C₂₋₄ alkynyl,
C₃₋₆ cycloalkyl,
aryl substituted with 0-5 R⁴²;
C₃₋₁₀ carbocyclic group substituted with 0-3 R⁴¹, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R³, at each occurrence, is independently selected from

H, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, and
C₁₋₄ alkoxy;

alternatively, R² and R³ join to form a 5- or 6-membered ring optionally substituted with -O- or -
N(R⁴)-;

R⁴, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R⁵ is H, methyl, or ethyl;

R^{6a} is selected from

H, -OH, -NR⁴⁶R⁴⁷, -CF₃,

C₁-4 alkyl, C₂-4 alkenyl, C₂-4 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl, and C₃-6 cycloalkyl;

R^{6b} is H;

R⁷, R⁸, and R⁹, at each occurrence, are independently selected from

H, halo, -CF₃, -OCF₃, -OH, -OCH₃, -CN, -NO₂, -NR⁴⁶R⁴⁷,

C₁-6 alkyl, C₂-6 alkenyl, C₂-6 alkynyl, C₁-4 haloalkyl, C₁-6 alkoxy, (C₁-4 haloalkyl)oxy,

C₁-4 alkyl substituted with 0-2 R¹¹,

C₃-10 carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹², S(O)₂NR¹²R¹³, NR¹⁴S(O)₂R¹², NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹², NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R¹⁰ is selected from H, -OH, C₁-6 alkyl, C₁-4 alkoxy, and

C₁-2 alkyl substituted with 0-1 R^{10B};

R^{10B} is C₃-6 cycloalkyl or

phenyl substituted with 0-3 R³³;

R¹¹ is selected from

H, halo, -CF₃, -OCF₃, -OH, -OCH₃, -CN, -NO₂, -NR⁴⁶R⁴⁷,

C₁-6 alkyl, C₂-6 alkenyl, C₂-6 alkynyl, C₁-4 haloalkyl, C₁-6 alkoxy, (C₁-4 haloalkyl)oxy,

C₃-10 carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹²,
S(O)₂NR¹²R¹³, and NR¹⁴S(O)₂R¹²;

R¹², at each occurrence, is independently selected from

C₁₋₄ alkyl,

C₂₋₄ alkenyl,

C₂₋₄ alkynyl,

C₃₋₆ cycloalkyl,

phenyl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R¹³, at each occurrence, is independently selected from

H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring optionally substituted with -O-
or -N(R¹⁴)-;

R¹⁴, at each occurrence, is independently selected from H and C₁₋₄ alkyl;

R³¹, at each occurrence, is independently selected from

H, OH, halo, CF₃, methyl, and ethyl;

R³³, at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, methyl, and ethyl;

R^{41} , at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, =O,
C₂-8 alkenyl, C₂-8 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl,
C₁-4 alkyl substituted with 0-1 R⁴³,
aryl substituted with 0-3 R⁴², and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R^{42} , at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, SR⁴⁵, NR⁴⁶R⁴⁷, OR⁴⁸, NO₂, CN, CH(=NH)NH₂,
NHC(=NH)NH₂,
C₂-6 alkenyl, C₂-6 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl, C₃-6 cycloalkyl,
C₁-4 alkyl substituted with 0-1 R⁴³,
aryl substituted with 0-3 R⁴⁴, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R^{43} is C₃-6 cycloalkyl or aryl substituted with 0-3 R⁴⁴;

R^{44} , at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H,
SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, C₁-4 alkyl, and C₁-4 alkoxy;

R^{45} is C₁-4 alkyl;

R^{46} , at each occurrence, is independently selected from H and C₁-3 alkyl;

R^{47} , at each occurrence, is independently selected from H, C₁-4 alkyl,
-C(=O)NH(C₁-4 alkyl), -SO₂(C₁-4 alkyl),
-SO₂(phenyl), -C(=O)O(C₁-4 alkyl), -C(=O)(C₁-4 alkyl), and -C(=O)H;

R^{48} , at each occurrence, is independently selected from H, C₁₋₄ alkyl, -C(=O)NH(C₁₋₄ alkyl), -C(=O)O(C₁₋₄ alkyl), -C(=O)(C₁₋₄ alkyl), and -C(=O)H;

k is 1 or 2;

m is 0, 1, 2; and

n is 0, 1 or 2.

11. (Original) The method as defined in Claim 9 where in the compound administered:

X is -CH₂-;

R^1 is selected from

C₂₋₄ alkyl substituted with Z,

C₂₋₄ alkenyl substituted with Z,

C₂₋₄ alkynyl substituted with Z,

C₃₋₆ cycloalkyl substituted with Z,

aryl substituted with Z,

5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with Z;

C₂₋₄ alkyl substituted with 0-2 R^2 , and

C₂₋₄ alkenyl substituted with 0-2 R^2 ;

Z is selected from H,

-CH(OH) R^2 ,

-C(ethylenedioxy) R^2 ,

-OR²,

-SR²,

-NR²R³,

-C(O)R²,
-C(O)NR²R³,
-NR³C(O)R²,
-C(O)OR²,
-S(O)R²,
-S(O)₂R²,
-S(O)₂NR²R³, and -NR³S(O)₂R²;

R², at each occurrence, is independently selected from

phenyl substituted with 0-5 R⁴²;

C₃-10 carbocyclic group substituted with 0-3 R⁴¹, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from

the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R³, at each occurrence, is independently selected from

H, C₁-4 alkyl, C₂-4 alkenyl, C₂-4 alkynyl, and

C₁-4 alkoxy;

alternatively, R² and R³ join to form a 5- or 6-membered ring optionally substituted with -O- or -N(R⁴)-;

R⁴, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R⁵ is H;

R^{6a} is selected from H, -OH, -CF₃, methyl, ethyl, propyl, butyl, methoxy, and, ethoxy;

R^{6b} is H;

R⁷, R⁸, and R⁹, at each occurrence, are independently selected from

H, halo, -CF₃, -OCF₃, -OH, -OCH₃, -CN, -NO₂,

C₁-4 alkyl, C₁-4 haloalkyl, C₁-4 alkoxy, (C₁-3 haloalkyl)oxy, and
C₁-4 alkyl substituted with 0-2 R¹¹;

R¹¹ is selected from

H, halo, -CF₃, -OCF₃, -OH, -OCH₃, -CN, -NO₂,
C₁-4 alkyl, C₁-4 haloalkyl, C₁-4 alkoxy, and (C₁-3 haloalkyl)oxy;

R³³, at each occurrence, is independently selected from

H, OH, halo, CF₃, and methyl;

R⁴¹, at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, =O,
C₂-8 alkenyl, C₂-8 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl,
C₁-4 alkyl substituted with 0-1 R⁴³,
aryl substituted with 0-3 R⁴², and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴², at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, SR⁴⁵, NR⁴⁶R⁴⁷, OR⁴⁸, NO₂, CN, CH(=NH)NH₂,
NHC(=NH)NH₂,
C₂-6 alkenyl, C₂-6 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl, C₃-6 cycloalkyl,
C₁-4 alkyl substituted with 0-1 R⁴³,
aryl substituted with 0-3 R⁴⁴, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴³ is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, or pyridyl, each substituted with
0-3 R⁴⁴;

R^{44} , at each occurrence, is independently selected from H, halo, -OH, $NR^{46}R^{47}$, CO_2H , SO_2R^{45} , -CF₃, -OCF₃, -CN, -NO₂, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, and butoxy;

R^{45} is methyl, ethyl, propyl, or butyl;

R^{46} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R^{47} , at each occurrence, is independently selected from

H, methyl, ethyl, n-propyl, i-propyl, n-butyl,
i-butyl, -C(=O)NH(methyl), -C(=O)NH(ethyl),
-SO₂(methyl), -SO₂(ethyl), -SO₂(phenyl),
-C(=O)O(methyl), -C(=O)O(ethyl), -C(=O)(methyl),
-C(=O)(ethyl), and -C(=O)H;

R^{48} , at each occurrence, is independently selected from

H, methyl, ethyl, n-propyl, i-propyl, -C(=O)NH(methyl), -C(=O)NH(ethyl),
-C(=O)O(methyl), -C(=O)O(ethyl), -C(=O)(methyl), -C(=O)(ethyl), and -C(=O)H;

k is 1;

m is 0, 1, or 2; and

n is 0, 1 or 2.

12. (Original) The method as defined in Claim 9 where in the compound administered:

X is -CH₂-;

R^1 is selected from

ethyl substituted with Z,

propyl substituted with Z,
butyl substituted with Z,
propenyl substituted with Z,
butenyl substituted with Z,
ethyl substituted with R²,
propyl substituted with R²,
butyl substituted with R²,
propenyl substituted with R², and
butenyl substituted with R²;

Z is selected from H,

-CH(OH)R²,
-OR²,
-SR²,
-NR²R³,
-C(O)R²,
-C(O)NR²R³,
-NR³C(O)R²,
-C(O)OR²,
-S(O)R²,
-S(O)₂R²,
-S(O)₂NR²R³, and -NR³S(O)₂R²;

R², at each occurrence, is independently selected from

phenyl substituted with 0-3 R⁴²;
naphthyl substituted with 0-3 R⁴²;
cyclopropyl substituted with 0-3 R⁴¹;
cyclobutyl substituted with 0-3 R⁴¹;
cyclopentyl substituted with 0-3 R⁴¹;
cyclohexyl substituted with 0-3 R⁴¹;
pyridyl substituted with 0-3 R⁴¹;

indolyl substituted with 0-3 R⁴¹;
indolinyl substituted with 0-3 R⁴¹;
benzimidazolyl substituted with 0-3 R⁴¹;
benzotriazolyl substituted with 0-3 R⁴¹;
benzothienyl substituted with 0-3 R⁴¹;
benzofuranyl substituted with 0-3 R⁴¹;
phthalimid-1-yl substituted with 0-3 R⁴¹;
inden-2-yl substituted with 0-3 R⁴¹;
2,3-dihydro-1H-inden-2-yl substituted with 0-3 R⁴¹;
indazolyl substituted with 0-3 R⁴¹;
tetrahydroquinolinyl substituted with 0-3 R⁴¹; and
tetrahydro-isoquinolinyl substituted with 0-3 R⁴¹;

R³, at each occurrence, is independently selected from

H, methyl, and ethyl;

R⁵ is H;

R^{6a} is selected from H, -OH, methyl, and methoxy;

R^{6b} is H;

R⁷, R⁸, and R⁹, at each occurrence, are independently selected from H, F, Cl, methyl, ethyl, methoxy, -CF₃, and -OCF₃;

R⁴¹, at each occurrence, is independently selected from

H, F, Cl, Br, OH, CF₃, NO₂, CN, =O, methyl, ethyl, propyl, butyl, methoxy, and ethoxy;

R⁴², at each occurrence, is independently selected from

H, F, Cl, Br, OH, CF₃, SO₂R⁴⁵, SR⁴⁵, NR⁴⁶R⁴⁷, OR⁴⁸, NO₂, CN, =O, methyl, ethyl, propyl, butyl, methoxy, and ethoxy;

R⁴⁵ is methyl, ethyl, propyl, or butyl;

R⁴⁶, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R⁴⁷, at each occurrence, is independently selected from

H, methyl, ethyl, n-propyl, i-propyl, n-butyl,
i-butyl, -C(=O)NH(methyl), -C(=O)NH(ethyl),
-SO₂(methyl), -SO₂(ethyl), -SO₂(phenyl),
-C(=O)O(methyl), -C(=O)O(ethyl), -C(=O)(methyl),
-C(=O)(ethyl), and -C(=O)H;

R⁴⁸, at each occurrence, is independently selected from

H, methyl, ethyl, n-propyl, i-propyl, -C(=O)NH(methyl), -C(=O)NH(ethyl),
-C(=O)O(methyl), -C(=O)O(ethyl), -C(=O)(methyl), -C(=O)(ethyl), and -C(=O)H;

k is 1;

m is 0, 1, or 2; and

n is 0, 1 or 2.

13. (Original) The method as defined in Claim 9 where the compound administered is a compound of Formula (I-a):

wherein:

b is a single bond;

X is -CH₂-, CH(OH)-, or -C(=O)-

R¹ is selected from

- (CH₂)₃C(=O)(4-fluoro-phenyl),
- (CH₂)₃C(=O)(4-bromo-phenyl),
- (CH₂)₃C(=O)(4-methyl-phenyl),
- (CH₂)₃C(=O)(4-methoxy-phenyl),
- (CH₂)₃C(=O)(4-(3,4-dichloro-phenyl)phenyl),
- (CH₂)₃C(=O)(3-methyl-4-fluoro-phenyl),
- (CH₂)₃C(=O)(2,3-dimethoxy-phenyl),
- (CH₂)₃C(=O)(phenyl),
- (CH₂)₃C(=O)(4-chloro-phenyl),
- (CH₂)₃C(=O)(3-methyl-phenyl),
- (CH₂)₃C(=O)(4-t-butyl-phenyl),
- (CH₂)₃C(=O)(3,4-difluoro-phenyl),
- (CH₂)₃C(=O)(2-methoxy-5-fluoro-phenyl),
- (CH₂)₃C(=O)(4-fluoro-1-naphthyl),
- (CH₂)₃C(=O)(benzyl),
- (CH₂)₃C(=O)(4-pyridyl),
- (CH₂)₃C(=O)(3-pyridyl),
- (CH₂)₃CH(OH)(4-fluoro-phenyl),
- (CH₂)₃CH(OH)(4-pyridyl),
- (CH₂)₃CH(OH)(2,3-dimethoxy-phenyl),
- (CH₂)₃S(3-fluoro-phenyl),
- (CH₂)₃S(4-fluoro-phenyl),
- (CH₂)₃S(=O)(4-fluoro-phenyl),
- (CH₂)₃SO₂(3-fluoro-phenyl),
- (CH₂)₃SO₂(4-fluoro-phenyl),
- (CH₂)₃O(4-fluoro-phenyl),
- (CH₂)₃O(phenyl),

-(CH₂)₃O(3-pyridyl),
-(CH₂)₃O(4-pyridyl),
-(CH₂)₃O(2-NH₂-phenyl),
-(CH₂)₃O(2-NH₂-5-F-phenyl),
-(CH₂)₃O(2-NH₂-4-F-phenyl),
-(CH₂)₃O(2-NH₂-3-F-phenyl),
-(CH₂)₃O(2-NH₂-4-Cl-phenyl),
-(CH₂)₃O(2-NH₂-4-OH-phenyl),
-(CH₂)₃O(2-NH₂-4-Br-phenyl),
-(CH₂)₃O(2-NHC(=O)Me-4-F-phenyl),
-(CH₂)₃O(2-NHC(=O)Me-phenyl),
-(CH₂)₃NH(4-fluoro-phenyl),
-(CH₂)₃N(methyl)(4-fluoro-phenyl),
-(CH₂)₃CO₂(ethyl),
-(CH₂)₃C(=O)N(methyl)(methoxy),
-(CH₂)₃C(=O)NH(4-fluoro-phenyl),
-(CH₂)₂NHC(=O)(phenyl),
-(CH₂)₂NMeC(=O)(phenyl),
-(CH₂)₂NHC(=O)(2-fluoro-phenyl),
-(CH₂)₂NMeC(=O)(2-fluoro-phenyl),
-(CH₂)₂NHC(=O)(4-fluoro-phenyl),
-(CH₂)₂NMeC(=O)(4-fluoro-phenyl),
-(CH₂)₂NHC(=O)(2,4-difluoro-phenyl),
-(CH₂)₂NMeC(=O)(2,4-difluoro-phenyl),
-(CH₂)₃(3-indolyl),
-(CH₂)₃(1-methyl-3-indolyl),
-(CH₂)₃(1-indolyl),
-(CH₂)₃(1-indolinyl),
-(CH₂)₃(1-benzimidazolyl),
-(CH₂)₃(1H-1,2,3-benzotriazol-1-yl),
-(CH₂)₃(1H-1,2,3-benzotriazol-2-yl),
-(CH₂)₂(1H-1,2,3-benzotriazol-1-yl),

-(CH₂)₂(1H-1,2,3-benzotriazol-2-yl),
-(CH₂)₃(3,4 dihydro-1(2H)-quinolinyl),
-(CH₂)₂C(=O)(4-fluoro-phenyl),
-(CH₂)₂C(=O)NH(4-fluoro-phenyl),
-CH₂CH₂(3-indolyl),
-CH₂CH₂(1-phthalimidyl),
-(CH₂)₄C(=O)N(methyl)(methoxy),
-(CH₂)₄CO₂(ethyl),
-(CH₂)₄C(=O)(phenyl),
-(CH₂)₄(cyclohexyl),
-(CH₂)₃CH(phenyl)₂,
-CH₂CH₂CH=C(phenyl)₂,
-CH₂CH₂CH=CMe(4-F-phenyl),
-(CH₂)₃CH(4-fluoro-phenyl)₂,
-CH₂CH₂CH=C(4-fluoro-phenyl)₂,
-(CH₂)₂(2,3-dihydro-1H-inden-2-yl),
-(CH₂)₃C(=O)(2-NH₂-phenyl),
-(CH₂)₃C(=O)(2-NH₂-5-F-phenyl),
-(CH₂)₃C(=O)(2-NH₂-4-F-phenyl),
-(CH₂)₃C(=O)(2-NH₂-3-F-phenyl),
-(CH₂)₃C(=O)(2-NH₂-4-Cl-phenyl),
-(CH₂)₃C(=O)(2-NH₂-4-OH-phenyl),
-(CH₂)₃C(=O)(2-NH₂-4-Br-phenyl),
-(CH₂)₃(1H-indazol-3-yl),
-(CH₂)₃(5-F-1H-indazol-3-yl),
-(CH₂)₃(7-F-1H-indazol-3-yl),
-(CH₂)₃(6-Cl-1H-indazol-3-yl),
-(CH₂)₃(6-Br-1H-indazol-3-yl),
-(CH₂)₃C(=O)(2-NHMe-phenyl),
-(CH₂)₃(1-benzothien-3-yl),
-(CH₂)₃(6-F-1H-indol-1-yl),
-(CH₂)₃(5-F-1H-indol-1-yl),

-(CH₂)₃(6-F-2,3-dihydro-1H-indol-1-yl),
 -(CH₂)₃(5-F-2,3-dihydro-1H-indol-1-yl),
 -(CH₂)₃(6-F-1H-indol-3-yl),
 -(CH₂)₃(5-F-1H-indol-3-yl),
 -(CH₂)₃(5-F-1H-indol-3-yl),
 -(CH₂)₃(9H-purin-9-yl),
 -(CH₂)₃(7H-purin-7-yl),
 -(CH₂)₃(6-F-1H-indazol-3-yl),
 -(CH₂)₃C(=O)(2-NHSO₂Me-4-F-phenyl),
 -(CH₂)₃C(=O)(2-NHC(=O)Me-4-F-phenyl),
 -(CH₂)₃C(=O)(2-NHC(=O)Me-phenyl),
 -(CH₂)₃C(=O)(2-NHCO₂Et-4-F-phenyl),
 -(CH₂)₃C(=O)(2-NHC(=O)NHEt-4-F-phenyl),
 -(CH₂)₃C(=O)(2-NHCHO-4-F-phenyl),
 -(CH₂)₃C(=O)(2-OH-4-F-phenyl),
 -(CH₂)₃C(=O)(2-MeS-4-F-phenyl),
 -(CH₂)₃C(=O)(2-NHSO₂Me-4-F-phenyl),
 -(CH₂)₂C(Me)CO₂Me,
 -(CH₂)₂C(Me)CH(OH)(4-F-phenyl)₂,
 -(CH₂)₂C(Me)CH(OH)(4-Cl-phenyl)₂,
 -(CH₂)₂C(Me)C(=O)(4-F-phenyl),
 -(CH₂)₂C(Me)C(=O)(2-MeO-4-F-phenyl),
 -(CH₂)₂C(Me)C(=O)(3-Me-4-F-phenyl),
 -(CH₂)₂C(Me)C(=O)(2-Me-phenyl),
 -(CH₂)₂C(Me)C(=O)phenyl,

R^7 , R^8 , and R^9 , at each occurrence, are independently selected from

hydrogen, fluoro, chloro, bromo, cyano, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, nitro, trifluoromethyl, methoxy, ethoxy, isopropoxy, trifluoromethoxy, phenyl, benzyl,

$HC(=O)$ -, $methylC(=O)$ -, $ethylC(=O)$ -, $propylC(=O)$ -, $isopropylC(=O)$ -, $n-butylC(=O)$ -, $isobutylC(=O)$ -, $secbutylC(=O)$ -, $tertbutylC(=O)$ -, $phenylC(=O)$ -,

$methylC(=O)NH$ -, $ethylC(=O)NH$ -, $propylC(=O)NH$ -, $isopropylC(=O)NH$ -, $n-butylC(=O)NH$ -, $isobutylC(=O)NH$ -, $secbutylC(=O)NH$ -, $tertbutylC(=O)NH$ -, $phenylC(=O)NH$ -,

$methylamino$ -, $ethylamino$ -, $propylamino$ -, $isopropylamino$ -, $n-butylamino$ -, $isobutylamino$ -, $secbutylamino$ -, $tertbutylamino$ -, $phenylamino$ -,

provided that two of substituents R^7 , R^8 , and R^9 , are independently selected from hydrogen, fluoro, chloro, bromo, cyano, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, nitro, trifluoromethyl, methoxy, ethoxy, isopropoxy, and trifluoromethoxy;

k is 1 or 2;

m is 1 or 2; and

n is 0, 1 or 2.

14. (Original) The method as defined in Claim 13 where the compound administered is a compound of Formula (V-a):

wherein:

b is a single bond, wherein the bridge hydrogens are in a cis position;

R¹ is selected from

- (CH₂)₃C(=O)(4-fluoro-phenyl),
- (CH₂)₃C(=O)(4-bromo-phenyl),
- (CH₂)₃C(=O)(4-methyl-phenyl),
- (CH₂)₃C(=O)(4-methoxy-phenyl),
- (CH₂)₃C(=O)(4-(3,4-dichloro-phenyl)phenyl),
- (CH₂)₃C(=O)(3-methyl-4-fluoro-phenyl),
- (CH₂)₃C(=O)(2,3-dimethoxy-phenyl),
- (CH₂)₃C(=O)(phenyl),
- (CH₂)₃C(=O)(4-chloro-phenyl),
- (CH₂)₃C(=O)(3-methyl-phenyl),
- (CH₂)₃C(=O)(4-t-butyl-phenyl),
- (CH₂)₃C(=O)(3,4-difluoro-phenyl),
- (CH₂)₃C(=O)(2-methoxy-5-fluoro-phenyl),
- (CH₂)₃C(=O)(4-fluoro-1-naphthyl),
- (CH₂)₃C(=O)(benzyl),
- (CH₂)₃C(=O)(4-pyridyl),
- (CH₂)₃C(=O)(3-pyridyl),
- (CH₂)₃CH(OH)(4-fluoro-phenyl),
- (CH₂)₃CH(OH)(4-pyridyl),

-(CH₂)₃CH(OH)(2,3-dimethoxy-phenyl),
-(CH₂)₃S(3-fluoro-phenyl),
-(CH₂)₃S(4-fluoro-phenyl),
-(CH₂)₃S(=O)(4-fluoro-phenyl),
-(CH₂)₃SO₂(3-fluoro-phenyl),
-(CH₂)₃SO₂(4-fluoro-phenyl),
-(CH₂)₃O(4-fluoro-phenyl),
-(CH₂)₃O(phenyl) ,
-(CH₂)₃NH(4-fluoro-phenyl),
-(CH₂)₃N(methyl)(4-fluoro-phenyl),
-(CH₂)₃CO₂(ethyl),
-(CH₂)₃C(=O)N(methyl)(methoxy),
-(CH₂)₃C(=O)NH(4-fluoro-phenyl),
-(CH₂)₂NHC(=O)(phenyl),
-(CH₂)₂NMeC(=O)(phenyl),
-(CH₂)₂NHC(=O)(2-fluoro-phenyl),
-(CH₂)₂NMeC(=O)(2-fluoro-phenyl),
-(CH₂)₂NHC(=O)(4-fluoro-phenyl),
-(CH₂)₂NMeC(=O)(4-fluoro-phenyl),
-(CH₂)₂NHC(=O)(2,4-difluoro-phenyl),
-(CH₂)₂NMeC(=O)(2,4-difluoro-phenyl),
-(CH₂)₃(3-indolyl),
-(CH₂)₃(1-methyl-3-indolyl),
-(CH₂)₃(1-indolyl),
-(CH₂)₃(1-indolinyl),
-(CH₂)₃(1-benzimidazolyl),
-(CH₂)₃(1H-1,2,3-benzotriazol-1-yl),
-(CH₂)₃(1H-1,2,3-benzotriazol-2-yl),
-(CH₂)₂(1H-1,2,3-benzotriazol-1-yl),
-(CH₂)₂(1H-1,2,3-benzotriazol-2-yl),
-(CH₂)₃(3,4 dihydro-1(2H)-quinolinyl),
-(CH₂)₂C(=O)(4-fluoro-phenyl),

-(CH₂)₂C(=O)NH(4-fluoro-phenyl),
-CH₂CH₂(3-indolyl),
-CH₂CH₂(1-phthalimidyl),
-(CH₂)₄C(=O)N(methyl)(methoxy),
-(CH₂)₄CO₂(ethyl),
-(CH₂)₄C(=O)(phenyl),
-(CH₂)₄(cyclohexyl),
-(CH₂)₃CH(phenyl)₂,
-CH₂CH₂CH=C(phenyl)₂,
-CH₂CH₂CH=CMe(4-F-phenyl),
-(CH₂)₃CH(4-fluoro-phenyl)₂,
-CH₂CH₂CH=C(4-fluoro-phenyl)₂,
-(CH₂)₂(2,3-dihydro-1H-inden-2-yl),
-(CH₂)₃C(=O)(2-NH₂-phenyl),
-(CH₂)₃C(=O)(2-NH₂-5-F-phenyl),
-(CH₂)₃C(=O)(2-NH₂-4-F-phenyl),
-(CH₂)₃C(=O)(2-NH₂-3-F-phenyl),
-(CH₂)₃C(=O)(2-NH₂-4-Cl-phenyl),
-(CH₂)₃C(=O)(2-NH₂-4-OH-phenyl),
-(CH₂)₃C(=O)(2-NH₂-4-Br-phenyl),
-(CH₂)₃(1H-indazol-3-yl),
-(CH₂)₃(5-F-1H-indazol-3-yl),
-(CH₂)₃(7-F-1H-indazol-3-yl),
-(CH₂)₃(6-Cl-1H-indazol-3-yl),
-(CH₂)₃(6-Br-1H-indazol-3-yl),
-(CH₂)₃C(=O)(2-NHMe-phenyl),
-(CH₂)₃(1-benzothien-3-yl),
-(CH₂)₃(6-F-1H-indol-1-yl),
-(CH₂)₃(5-F-1H-indol-1-yl),
-(CH₂)₃(6-F-2,3-dihydro-1H-indol-1-yl),
-(CH₂)₃(5-F-2,3-dihydro-1H-indol-1-yl),
-(CH₂)₃(6-F-1H-indol-3-yl),

$-(CH_2)_3(5\text{-F-}1\text{H-indol-3-yl}),$
 $-(CH_2)_3(5\text{-F-}1\text{H-indol-3-yl}),$
 $-(CH_2)_3(9\text{H-purin-9-yl}),$
 $-(CH_2)_3(7\text{H-purin-7-yl}),$
 $-(CH_2)_3(6\text{-F-}1\text{H-indazol-3-yl}),$
 $-(CH_2)_3C(=O)(2\text{-NHSO}_2\text{Me-}4\text{-F-phenyl}),$
 $-(CH_2)_3C(=O)(2\text{-NHC}(=O)\text{Me-}4\text{-F-phenyl}),$
 $-(CH_2)_3C(=O)(2\text{-NHC}(=O)\text{Me-}4\text{-F-phenyl}),$
 $-(CH_2)_3C(=O)(2\text{-NHCO}_2\text{Et-}4\text{-F-phenyl}),$
 $-(CH_2)_3C(=O)(2\text{-NHC}(=O)\text{NHEt-}4\text{-F-phenyl}),$
 $-(CH_2)_3C(=O)(2\text{-NHCHO-}4\text{-F-phenyl}),$
 $-(CH_2)_3C(=O)(2\text{-OH-}4\text{-F-phenyl}),$
 $-(CH_2)_3C(=O)(2\text{-MeS-}4\text{-F-phenyl}),$
 $-(CH_2)_3C(=O)(2\text{-NHSO}_2\text{Me-}4\text{-F-phenyl}),$
 $-(CH_2)_2C(Me)CO_2Me,$
 $-(CH_2)_2C(Me)CH(OH)(4\text{-F-phenyl})_2,$
 $-(CH_2)_2C(Me)CH(OH)(4\text{-Cl-phenyl})_2,$
 $-(CH_2)_2C(Me)C(=O)(4\text{-F-phenyl}),$
 $-(CH_2)_2C(Me)C(=O)(2\text{-MeO-}4\text{-F-phenyl}),$
 $-(CH_2)_2C(Me)C(=O)(3\text{-Me-}4\text{-F-phenyl}),$
 $-(CH_2)_2C(Me)C(=O)(2\text{-Me-phenyl}),$
 $-(CH_2)_2C(Me)C(=O)\text{phenyl},$

R^7 , R^8 , and R^9 , at each occurrence, are independently selected from hydrogen, fluoro, chloro, bromo, cyano, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, nitro, trifluoromethyl, methoxy, ethoxy, isopropoxy, trifluoromethoxy, methylC(=O)-, ethylC(=O)-, propylC(=O)-, isopropylC(=O)-, methylC(=O)NH-, ethylC(=O)NH-, propylC(=O)NH-, isopropylC(=O)NH, methylamino-, ethylamino-, propylamino-, and isopropylamino-,

provided that two of substituents R^7 , R^8 , and R^9 , are independently selected from hydrogen, fluoro, chloro, methyl, trifluoromethyl, methoxy, and trifluoromethoxy;

m is 1 or 2; and

n is 0, 1 or 2.

15. (Original) The method as defined in Claim 1 where the compound administered is selected from the group:

(\pm)-*cis*-9-(cyclopropylcarbonyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-9-isobutyryl-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (\pm)-*cis*-2-(2-chlorophenyl)-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(2,4-dichlorophenyl)-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(3,4-dichlorophenyl)-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(2,3-dichlorophenyl)-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6*aH*)-carboxylate;

tert-butyl (\pm)-*cis*-2-[2-chloro-4-(trifluoromethyl)phenyl]-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6*aH*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(2-chloro-4-methoxyphenyl)-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6*aH*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(5-isopropyl-2-methoxyphenyl)-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6*aH*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(3-fluorophenyl)-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6*aH*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(2,4-dimethoxyphenyl)-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6*aH*)-carboxylate;

(\pm)-*cis*-2-(2-chlorophenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-(2,4-dichlorophenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-(3,4-dichlorophenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-(2,3-dichlorophenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-[2-chloro-4-(trifluoromethyl)phenyl]-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-(2-chloro-4-methoxyphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-(4-isopropyl-2-methoxyphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-(3-fluorophenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-(2,4-dimethoxyphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (\pm)-*cis*-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-10(7*aH*)-carboxylate;

tert-butyl (\pm)-*cis*-2-bromo-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-10(7*aH*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(2,3-dichlorophenyl)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-10(7*aH*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(3,4-dichlorophenyl)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-10(7*aH*)-carboxylate;

tert-butyl (\pm)-*cis*-2-[2-chloro-4-(trifluoromethyl)phenyl]-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-10(7*aH*)-carboxylate;

(\pm)-*cis*-2-(2,3-dichlorophenyl)-5,6,7*a*,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(\pm)-*cis*-2-(3,4-dichlorophenyl)-5,6,7*a*,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(\pm)-*cis*-2-[2-chloro-4-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4H-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

4-((\pm)-*cis*-2-(2-chlorophenyl)-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indol-9(6a*H*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((\pm)-*cis*-2-(2,4-dichlorophenyl)-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indol-9(6a*H*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((\pm)-*cis*-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quionolin-10(7a*H*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((\pm)-*cis*-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indol-9(6a*H*)-yl)-1-(4-fluorophenyl)-1-butanone;

(6a*S*,10a*R*)-2-(2-fluoro-4-methoxyphenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-[4-ethoxy-2-(trifluoromethyl)phenyl]-4,5,7,8,10,10a-hexahydropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-[4-ethoxy-2-(trifluoromethyl)phenyl]-4,5,6a,7,8,9,10,10a-octahydropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(4-chloro-2-fluorophenyl)-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)- 2-(4-chloro-2-fluorophenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-[4-isopropoxy-2-(trifluoromethyl)phenyl]-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-[4-isopropoxy-2-(trifluoromethyl)phenyl]-4,5,6a,7,8,9,10,10a-octahydropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-phenyl-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-phenyl-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(2-methylphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(2-methylphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-[2-(trifluoromethyl)phenyl]-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-[2-(trifluoromethyl)phenyl]-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(3,4-dimethoxyphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(3,4-dimethoxyphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(2,5-dichlorophenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(2,5-dichlorophenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(3,5-dichlorophenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(3,5-dichlorophenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(2-isopropyl-4-methoxyphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(2-isopropyl-4-methoxyphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(5-fluoro-4-methoxy-2-methylphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(5-fluoro-4-methoxy-2-methylphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(4-methoxy-2-methylphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(4-methoxy-2-methylphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(2-chloro-4-methoxyphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(2-chloro-4-methoxyphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(3-chloro-2-methylphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(3-chloro-2-methylphenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

2-[(6a*S*,10a*R*)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]-2-yl]-5-methoxybenzaldehyde;

(6a*S*,10a*R*)-2-(2,6-dichlorophenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

N-[4-[(6a*S*,10a*R*)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indol-2-yl]-3-(trifluoromethyl)phenyl]-*N*-methylamine;

4-[(6a*S*,10a*R*)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indol-2-yl]-3-(trifluoromethyl)phenylamine;

1-(2-[(6a*S*,10a*R*)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indol-2-yl]-5-methoxyphenyl)ethanol;

tert-butyl (\pm)-*cis*-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole-11(8a*H*)-carboxylate;

tert-butyl (8a*S*,12a*R*)-2-bromo-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole-11(8a*H*)-carboxylate;

(8a*S*,12a*R*)-2-(2,4-dichlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2,3-dichlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(3,4-dichlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(3,5-dichlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2,5-dichlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2,6-dichlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2-chlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(3-chlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(4-chlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(\pm)-*cis*-2-(2,6-difluorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2,6-difluorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2,3-difluorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(3,4-difluorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(3-fluorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-[2-chloro-4-(trifluoromethyl)phenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2-chloro-4-methoxyphenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2-fluoro-4-methoxyphenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(4-methoxy-2-methylphenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-[2-(trifluoromethyl)phenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-[4-isopropoxy-2-(trifluoromethyl)phenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-[2,4-bis(trifluoromethyl)phenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-[4-fluoro-2-(trifluoromethyl)phenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

4-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]-3-(trifluoromethyl)aniline;

4-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]-*N*-methyl-3-(trifluoromethyl)aniline;

2-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]benzaldehyde;

{2-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]phenyl}methanol;

2-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]-5-methoxybenzaldehyde;

{2-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]-5-methoxyphenyl}methanol;

4-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]-3-methylbenzonitrile;

1-{2-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]-5-methoxyphenyl}ethanol;

tert-butyl (7a*S*,11a*R*)-2-bromo-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-10(7*aH*)-carboxylate;

(7a*S*,11a*R*)-2-(2,4-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(3,4-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(3,5-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(2,5-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(2,6-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(2-chlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(3-chlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(4-chlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(2,6-difluorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(2,6-difluorophenyl)-10-methyl-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(2,3-difluorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(3,4-difluorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(3-fluorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[2-chloro-4-methoxyphenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[2-fluoro-4-methoxyphenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(4-methoxy-2-methylphenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

4-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]-3-(trifluoromethyl)phenol;

(7a*S*,11a*R*)-2-[2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[4-isopropoxy-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[2,4-bis(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[4-fluoro-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

4-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]-3-(trifluoromethyl)aniline;

4-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]-*N*-methyl-3-(trifluoromethyl)aniline;

4-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]-3-methylbenzonitrile;

2-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]benzaldehyde;

{2-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]phenyl}methanol;

2-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]-5-methoxybenzaldehyde;

{2-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]-5-methoxyphenyl}methanol;

(8a*S*,12a*R*)-2-[4-ethoxy-2-(trifluoromethyl)phenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3*b*]indole;

(7a*S*,11a*R*)-2-[4-ethoxy-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(8a*S*,12a*R*)-2-[3-chloro-2-methylphenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3*b*]indole;

(7a*S*,11a*R*)-2-[3-chloro-2-methylphenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[5-fluoro-2-methylphenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(\pm)-*cis*-2-(2,3-dichlorophenyl)-10-propyl-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(7a*S*,11a*R*)-2-(2,3-dichlorophenyl)-10-propyl-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(\pm)-*cis*-10-butyl-2-(2,3-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(7a*S*,11a*R*)-10-butyl-2-(2,3-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(7a*S*,11a*R*)-2-(2,3-dichlorophenyl)-10-(4-pentenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(7a*S*,11a*R*)-2-(2,3-dichlorophenyl)-10-(3-methyl-2-butenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(2,4-dichlorophenyl)-10-propyl-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(7a*S*,11a*R*)-10-butyl-2-(2,4-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(7a*S*,11a*R*)-2-(2,4-dichlorophenyl)-10-(4-pentenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(7a*S*,11a*R*)-2-(2,4-dichlorophenyl)-10-(3-methyl-2-butenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-10-(cyclobutylmethyl)-2-(2,3-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-10-methyl-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-10-ethyl-2-[4-methoxy-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-10-propyl-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-10-butyl-2-[4-methoxy-2-(trifluoromethyl)phenyl]-10-methyl-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-10-(4-pentenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-10-(3-methyl-2-butenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-10-(2-fluoroethyl)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(*7aS,11aR*)-10-(2,2-difluoroethyl)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(*7aS,11aR*)-10-(cyclobutylmethyl)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

4-((*7aS,11aR*)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(*7aH*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((*7aR,11aS*)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(*7aH*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((*7aS,11aR*)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(*7aH*)-yl)-1-(2-aminophenyl)-1-butanone;

4-((*7aR,11aS*)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(*7aH*)-yl)-1-(2-aminophenyl)-1-butanone;

(\pm)-*cis*-3-(5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(*7aH*)-yl)propyl 4-fluorophenyl ether;

4-((\pm)-*cis*-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(*7aH*)-yl)-1-(4-pyridinyl)-1-butanone;

(\pm)-*cis*-10-[3-(6-fluoro-1,2-benzisoxazol-3-yl)propyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(*7aS,11aR*)-10-[3-(6-fluoro-1,2-benzisoxazol-3-yl)propyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(\pm)-*cis*-4-(4,5,6,7,9,10,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-11(8*aH*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((8*aS,12aR*)-4,5,6,7,9,10,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-11(8*aH*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((8a*R*,12a*S*)-4,5,6,7,9,10,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-11(8a*H*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((\pm)-4,5,6,7,9,10,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-11(8a*H*)-yl)-1-(2-amino-4-fluorophenyl)-1-butanone;

4-((\pm)-*cis*-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(7a*H*)-yl)-1-(2-amino-4-fluorophenyl)-1-butanone ;

4-((7a*S*,11a*R*)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(7a*H*)-yl)-1-(2-amino-4-fluorophenyl)-1-butanone; and

4-((7a*R*,11a*S*)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(7a*H*)-yl)-1-(2-amino-4-fluorophenyl)-1-butanone.

16. (Original) The method as defined in Claim 1 where the compound administered is selected from the group:

4-[(\pm)-5,6,8,9,10,11,12,12a-octahydro-4*H*,7a*H*-azepino[4',5':4,5]pyrrolo [3,2,1-*ij*]quinolin-10-yl]-1-(4-fluorophenyl)-1-butanone;

4-[(\pm)-5,6,8,9,10,11,12,12a-octahydro-4*H*,7a*H*-azepino[4',5':4,5]pyrrolo [3,2,1-*ij*]quinolin-10-yl]-1-(2-amino-4-fluorophenyl)-1-butanone;

4-[(\pm)-4,5,6,7,9,10,11,12,13,13a-decahydro-11*H*-diazepino[4,5-*b*:3,2,1-*hi*]indol-11-yl]-1-(4-fluorophenyl)-1-butanone;

4-[(\pm)-4,5,6,7,9,10,11,12,13,13a-decahydro-11*H*-diazepino[4,5-*b*:3,2,1-*hi*]indol-11-yl]-1-(2-amino-4-fluorophenyl)-1-butanone;

tert-butyl (\pm)-*cis*-5,6,8,9,10,11,12,12a-octahydro-4*H*,7a*H*-azepino[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-11-carboxylate;

tert-butyl (\pm)-*cis*-2-bromo-5,6,8,9,10,11,12,12a-octahydro-4*H*,7*aH*-azepino[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-11-carboxylate; and

(\pm)-*cis*-2-[4-methoxy-2-(trifluoromethyl)phenyl]-5,6,8,9,10,11,12,12a-octahydro-4*H*,7*aH*-azepino[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline.

17. (Original) The method as defined in Claim 1 where the compound administered is selected from the group:

tert-butyl (\pm)-*cis*-2-bromo-4-oxo-4,5,6,7,9,10,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole-11(8*aH*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(2,4-dichlorophenyl)-4-oxo-4,5,6,7,9,10,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole-11(8*aH*)-carboxylate;

(\pm)-*cis*-2-(2,4-dichlorophenyl)-6,7,8*a*,9,10,11,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-4(5*H*)-one;

(8*aS*, 12*aR*)-2-(2,4-dichlorophenyl)-6,7,8*a*,9,10,11,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-4(5*H*)-one;

(8*aR*, 12*aS*)-2-(2,4-dichlorophenyl)-6,7,8*a*,9,10,11,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-4(5*H*)-one;

(8*aS*, 12*aR*)-2-(2,4-dichlorophenyl)-6,7,8*a*,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-4-ol; and

(8*aR*, 12*aS*)-2-(2,4-dichlorophenyl)-6,7,8*a*,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-4-ol.

18. (Original) A method for treating a human suffering from sleep disorders associated with 5HT2A receptor modulation, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of formula (I):

or stereoisomers or pharmaceutically acceptable salt forms thereof, wherein:

b is a single bond;

X is -CHR¹⁰- or -C(=O)-;

R¹ is selected from

H,

C(=O)R²,

C(=O)OR²,

C₁₋₈ alkyl,

C₂₋₈ alkenyl,

C₂₋₈ alkynyl,

C₃₋₇ cycloalkyl,

C₁₋₆ alkyl substituted with Z,

C₂₋₆ alkenyl substituted with Z,

C₂₋₆ alkynyl substituted with Z,

C₃₋₆ cycloalkyl substituted with Z,

aryl substituted with Z,

5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with Z;

C₁-3 alkyl substituted with Y,
C₂-3 alkenyl substituted with Y,
C₂-3 alkynyl substituted with Y,
C₁-6 alkyl substituted with 0-2 R²,
C₂-6 alkenyl substituted with 0-2 R²,
C₂-6 alkynyl substituted with 0-2 R²,
aryl substituted with 0-2 R², and
5-6 membered heterocyclic ring system containing at least one heteroatom selected from
the group consisting of N, O, and S, said heterocyclic ring system substituted with
0-2 R²;

Y is selected from

C₃-6 cycloalkyl substituted with Z,
aryl substituted with Z,
5-6 membered heterocyclic ring system containing at least one heteroatom selected from
the group consisting of N, O, and S, said heterocyclic ring system substituted with
Z;
C₃-6 cycloalkyl substituted with -(C₁-3 alkyl)-Z,
aryl substituted with -(C₁-3 alkyl)-Z, and
5-6 membered heterocyclic ring system containing at least one heteroatom selected from
the group consisting of N, O, and S, said heterocyclic ring system substituted with
-(C₁-3 alkyl)-Z;

Z is selected from H,

-CH(OH)R²,

-C(ethylenedioxy)R²,

-OR²,

-SR²,

-NR²R³,

-C(O)R²,

-C(O)NR²R³,

-NR³C(O)R²,

-C(O)OR²,
-OC(O)R²,
-CH(=NR⁴)NR²R³,
-NHC(=NR⁴)NR²R³,
-S(O)R²,
-S(O)₂R²,
-S(O)₂NR²R³, and -NR³S(O)₂R²;

R², at each occurrence, is independently selected from

halo,

C₁₋₃ haloalkyl,

C₁₋₄ alkyl,

C₂₋₄ alkenyl,

C₂₋₄ alkynyl,

C₃₋₆ cycloalkyl,

aryl substituted with 0-5 R⁴²;

C₃₋₁₀ carbocyclic group substituted with 0-3 R⁴¹, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R³, at each occurrence, is independently selected from

H, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, and

C₁₋₄ alkoxy;

alternatively, R² and R³ join to form a 5- or 6-membered ring optionally substituted with -O- or -
N(R⁴)-;

R⁴, at each occurrence, is independently selected from H and C₁₋₄ alkyl;

R⁵ is H or C₁₋₄ alkyl;

R^{6a} and R^{6b}, at each occurrence, are independently selected from

H, -OH, -NR⁴⁶R⁴⁷, -CF₃, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₃₋₆ cycloalkyl, and
aryl substituted with 0-3 R⁴⁴;

R⁷ and R⁹, at each occurrence, are independently selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂, -NR⁴⁶R⁴⁷,
C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl, C₁₋₈ alkoxy, (C₁₋₄ haloalkyl)oxy,
C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,
C₁₋₄ alkyl substituted with 0-2 R¹¹,
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R⁸ is selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂,
C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl, C₁₋₈ alkoxy, (C₁₋₄ haloalkyl)oxy,
C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,
C₁₋₄ alkyl substituted with 0-2 R¹¹,
C₂₋₄ alkenyl substituted with 0-2 R¹¹,
C₂₋₄ alkynyl substituted with 0-1 R¹¹,
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R¹⁰ is selected from H, -OH,

C₁₋₆ alkyl substituted with 0-1 R^{10B},

C₂₋₆ alkenyl substituted with 0-1 R^{10B},

C₂₋₆ alkynyl substituted with 0-1 R^{10B}, and

C₁₋₆ alkoxy;

R^{10B} is selected from

C₁₋₄ alkoxy,

C₃₋₆ cycloalkyl,

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,

phenyl substituted with 0-3 R³³, and

5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-2 R⁴⁴;

R¹¹ is selected from

H, halo, -CF₃, -CN, -NO₂,

C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl, C₁₋₈ alkoxy, C₃₋₁₀ cycloalkyl,

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR^{12} , SR^{12} , $\text{NR}^{12}\text{R}^{13}$, C(O)H , C(O)R^{12} , $\text{C(O)NR}^{12}\text{R}^{13}$, $\text{NR}^{14}\text{C(O)R}^{12}$, C(O)OR^{12} ,
 OC(O)R^{12} , OC(O)OR^{12} , $\text{CH(=NR}^{14})\text{NR}^{12}\text{R}^{13}$, $\text{NHC(=NR}^{14})\text{NR}^{12}\text{R}^{13}$, S(O)R^{12} ,
 $\text{S(O)}_2\text{R}^{12}$, $\text{S(O)NR}^{12}\text{R}^{13}$, $\text{S(O)}_2\text{NR}^{12}\text{R}^{13}$, $\text{NR}^{14}\text{S(O)R}^{12}$, $\text{NR}^{14}\text{S(O)}_2\text{R}^{12}$,
 $\text{NR}^{12}\text{C(O)R}^{15}$, $\text{NR}^{12}\text{C(O)OR}^{15}$, $\text{NR}^{12}\text{S(O)}_2\text{R}^{15}$, and $\text{NR}^{12}\text{C(O)NHR}^{15}$;

R^{12} , at each occurrence, is independently selected from

C_{1-4} alkyl substituted with 0-1 R^{12a} ,
 C_{2-4} alkenyl substituted with 0-1 R^{12a} ,
 C_{2-4} alkynyl substituted with 0-1 R^{12a} ,
 C_{3-6} cycloalkyl substituted with 0-3 R^{33} ,
phenyl substituted with 0-5 R^{33} ;
 C_{3-10} carbocyclic group substituted with 0-3 R^{33} , and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R^{31} ;

R^{12a} , at each occurrence, is independently selected from

phenyl substituted with 0-5 R^{33} ;
 C_{3-10} carbocyclic group substituted with 0-3 R^{33} , and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R^{31} ;

R^{13} , at each occurrence, is independently selected from

H, C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl;

alternatively, R^{12} and R^{13} join to form a 5- or 6-membered ring optionally substituted with -O-
or $-\text{N}(\text{R}^{14})-$;

alternatively, R^{12} and R^{13} when attached to N may be combined to form a 9- or 10-membered
bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the
group consisting of N, O, and S, wherein said bicyclic heterocyclic ring system is

unsaturated or partially saturated, wherein said bicyclic heterocyclic ring system is substituted with 0-3 R¹⁶;

R¹⁴, at each occurrence, is independently selected from H and C₁₋₄ alkyl;

R¹⁵, at each occurrence, is independently selected from

H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

R¹⁶, at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,
C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl,
C₁₋₃ haloalkyl-oxy-, and C₁₋₃ alkyloxy-;

R³¹, at each occurrence, is independently selected from

H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, and C₁₋₄ alkyl;

R³³, at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,
C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl,
C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl-oxy-, C₁₋₄ alkyloxy-,
C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(=O)-, C₁₋₄ alkyl-C(=O)NH-, C₁₋₄ alkyl-OC(=O)-,
C₁₋₄ alkyl-C(=O)O-, C₃₋₆ cycloalkyl-oxy-, C₃₋₆ cycloalkylmethyl-oxy-;
C₁₋₆ alkyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy; and
C₂₋₆ alkenyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy;

R⁴¹, at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, =O;
C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl
C₁₋₄ alkyl substituted with 0-1 R⁴³,
aryl substituted with 0-3 R⁴², and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴², at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, SOR⁴⁵, SR⁴⁵, NR⁴⁶SO₂R⁴⁵, NR⁴⁶COR⁴⁵,

NR⁴⁶R⁴⁷, NO₂, CN, CH(=NH)NH₂, NHC(=NH)NH₂,

C₂-6 alkenyl, C₂-6 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl, C₃-6 cycloalkyl,

C₁-4 alkyl substituted with 0-1 R⁴³,

aryl substituted with 0-3 R⁴⁴, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴³ is C₃-6 cycloalkyl or aryl substituted with 0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H,

SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, C₁-4 alkyl, and C₁-4 alkoxy;

R⁴⁵ is C₁-4 alkyl;

R⁴⁶, at each occurrence, is independently selected from H and C₁-4 alkyl;

R⁴⁷, at each occurrence, is independently selected from H, C₁-4 alkyl,

-C(=O)NH(C₁-4 alkyl), -SO₂(C₁-4 alkyl),

-C(=O)O(C₁-4 alkyl), -C(=O)(C₁-4 alkyl), and -C(=O)H;

k is 1 or 2;

m is 0, 1, or 2;

n is 0, 1, 2, or 3;

provided when m is 0 or 1 then k is 1 or 2;

provided when m is 2 then k is 1;

provided that when R⁶ or R^{6a} is NH₂, then X is not -CH(R¹⁰); and

provided that when n=0, then R⁶ or R^{6a} is not NH₂ or -OH.

19. (Original) The method as defined in Claim 18 where in the compound administered:

X is -CHR¹⁰- or -C(=O)-;

R¹ is selected from

H,

C(=O)R²,

C(=O)OR²,

C₁₋₈ alkyl,

C₂₋₈ alkenyl,

C₂₋₈ alkynyl,

C₃₋₇ cycloalkyl,

C₁₋₆ alkyl substituted with 0-2 R²,

C₂₋₆ alkenyl substituted with 0-2 R²,

C₂₋₆ alkynyl substituted with 0-2 R²,

aryl substituted with 0-2 R², and

5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with 0-2 R²;

R², at each occurrence, is independently selected from

F, Cl, CH₂F, CHF₂, CF₃,

C₁₋₄ alkyl,

C₂₋₄ alkenyl,

C₂₋₄ alkynyl,

C₃₋₆ cycloalkyl,

phenyl substituted with 0-5 R⁴²;
C₃-10 carbocyclic group substituted with 0-3 R⁴¹, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R⁵ is H, methyl, ethyl, propyl, or butyl;

R^{6a} is selected from

H, -OH, -NR⁴⁶R⁴⁷, -CF₃,
C₁-4 alkyl, C₁-4 alkoxy, C₁-4 haloalkyl, and
aryl substituted with 0-3 R⁴⁴;

R^{6b} is H;

R⁷ and R⁹, at each occurrence, are independently selected from
H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂, -NR⁴⁶R⁴⁷,
C₁-8 alkyl, C₂-8 alkenyl, C₂-8 alkynyl, C₁-4 haloalkyl, C₁-8 alkoxy, (C₁-4
haloalkyl)oxy,
C₃-10 cycloalkyl substituted with 0-2 R³³,
C₁-4 alkyl substituted with 0-2 R¹¹,
C₃-10 carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R⁸ is selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂,
C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl, C₁₋₈ alkoxy, (C₁₋₄ haloalkyl)oxy,
C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,
C₁₋₄ alkyl substituted with 0-2 R¹¹,
C₂₋₄ alkenyl substituted with 0-2 R¹¹,
C₂₋₄ alkynyl substituted with 0-1 R¹¹,
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R¹⁰ is selected from H, -OH,
C₁₋₆ alkyl substituted with 0-1 R^{10B},
C₂₋₆ alkenyl substituted with 0-1 R^{10B},
C₂₋₆ alkynyl substituted with 0-1 R^{10B}, and
C₁₋₆ alkoxy;

R^{10B} is selected from
C₁₋₄ alkoxy,
C₃₋₆ cycloalkyl,
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,
phenyl substituted with 0-3 R³³, and
5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-2 R⁴⁴;

R^{11} is selected from

H, halo, -CF₃, -CN, -NO₂,
C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl, C₁₋₈ alkoxy, C₃₋₁₀ cycloalkyl,
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R^{12} , at each occurrence, is independently selected from

C₁₋₄ alkyl substituted with 0-1 R^{12a},
C₂₋₄ alkenyl substituted with 0-1 R^{12a},
C₂₋₄ alkynyl substituted with 0-1 R^{12a},
C₃₋₆ cycloalkyl substituted with 0-3 R³³,
phenyl substituted with 0-5 R³³;
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R^{12a} , at each occurrence, is independently selected from

phenyl substituted with 0-5 R³³;
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R^{13} , at each occurrence, is independently selected from

H, C₁-4 alkyl, C₂-4 alkenyl, and C₂-4 alkynyl;

alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring optionally substituted with -O- or -N(R¹⁴)-;

alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10-membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S, wherein said bicyclic heterocyclic ring system is unsaturated or partially saturated, wherein said bicyclic heterocyclic ring system is substituted with 0-3 R¹⁶;

R¹⁴, at each occurrence, is independently selected from H and C₁-4 alkyl;

R¹⁵, at each occurrence, is independently selected from
H, C₁-4 alkyl, C₂-4 alkenyl, and C₂-4 alkynyl;

R¹⁶, at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,
C₁-4 alkyl, C₂-4 alkenyl, C₂-4 alkynyl, C₁-4 haloalkyl,
C₁-3 haloalkyl-oxy-, and C₁-3 alkyloxy-;

R³¹, at each occurrence, is independently selected from

H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, and C₁-4 alkyl;

R³³, at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,
C₁-6 alkyl, C₂-6 alkenyl, C₂-6 alkynyl,
C₃-6 cycloalkyl, C₁-4 haloalkyl, C₁-4 haloalkyl-oxy-, C₁-4 alkyloxy-,
C₁-4 alkylthio-, C₁-4 alkyl-C(=O)-, C₁-4 alkyl-C(=O)NH-, C₁-4 alkyl-OC(=O)-,
C₁-4 alkyl-C(=O)O-, C₃-6 cycloalkyl-oxy-, C₃-6 cycloalkylmethyl-oxy-;
C₁-6 alkyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy; and
C₂-6 alkenyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy;

R⁴¹, at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN;

C₂-8 alkenyl, C₂-8 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl

C₁-4 alkyl substituted with 0-1 R⁴³,

aryl substituted with 0-3 R⁴², and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴², at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, CH(=NH)NH₂,

NHC(=NH)NH₂,

C₂-6 alkenyl, C₂-6 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl, C₃-6 cycloalkyl,

C₁-4 alkyl substituted with 0-1 R⁴³,

aryl substituted with 0-3 R⁴⁴, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴³ is C₃-6 cycloalkyl or aryl substituted with 0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H,

SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, C₁-4 alkyl, and C₁-4 alkoxy;

R⁴⁵ is C₁-4 alkyl;

R⁴⁶, at each occurrence, is independently selected from H and C₁-4 alkyl;

R⁴⁷, at each occurrence, is independently selected from H and C₁-4 alkyl;

k is 1 or 2;

m is 0, 1, or 2; and

n is 0, 1, 2, or 3.

20. (Original) The method as defined in Claim 19 where in the compound administered:

X is -CHR¹⁰-;

R¹ is selected from

H,
C(=O)R²,
C(=O)OR²,
C₁₋₆ alkyl,
C₂₋₆ alkenyl,
C₂₋₆ alkynyl,
C₃₋₆ cycloalkyl,
C₁₋₄ alkyl substituted with 0-2 R²,

C₂₋₄ alkenyl substituted with 0-2 R², and
C₂₋₄ alkynyl substituted with 0-2 R²;

R², at each occurrence, is independently selected from

C₁₋₄ alkyl,
C₂₋₄ alkenyl,
C₂₋₄ alkynyl,
C₃₋₆ cycloalkyl,
phenyl substituted with 0-5 R⁴²;
C₃₋₁₀ carbocyclic group substituted with 0-3 R⁴¹, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R⁵ is H, methyl, ethyl, propyl, or butyl;

R^{6a} is selected independently from

H, -OH, -NR⁴⁶R⁴⁷, -CF₃, C₁₋₃ alkyl, and C₁₋₃ alkoxy;

R^{6b} is H;

R⁷ and R⁹, at each occurrence, are independently selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂, -NR⁴⁶R⁴⁷,

C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,

C₁₋₄ alkyl substituted with 0-2 R¹¹,

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², and NR¹⁴S(O)₂R¹²;

R⁸ is selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂,

C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,

C₁₋₄ alkyl substituted with 0-2 R¹¹,

C₂₋₄ alkenyl substituted with 0-2 R¹¹,

C₂₋₄ alkynyl substituted with 0-1 R¹¹,

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹², OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹², NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R¹⁰ is selected from H, -OH,

C₁₋₆ alkyl substituted with 0-1 R^{10B},

C₂₋₆ alkenyl substituted with 0-1 R^{10B},

C₂₋₆ alkynyl substituted with 0-1 R^{10B}, and

C₁₋₆ alkoxy;

R^{10B} is selected from

C₁₋₄ alkoxy,

C₃₋₆ cycloalkyl,

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,

phenyl substituted with 0-3 R³³, and

5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from

the group consisting of N, O, and S substituted with 0-2 R⁴⁴;

R¹¹ is selected from

H, halo, -CF₃, -CN, -NO₂, C₁₋₆ alkyl,

C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ haloalkyl, C₁₋₆ alkoxy, C₃₋₁₀ cycloalkyl,

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from

the group consisting of N, O, and S substituted with 0-3 R³¹;

OR^{12} , SR^{12} , $\text{NR}^{12}\text{R}^{13}$, C(O)H , C(O)R^{12} , $\text{C(O)NR}^{12}\text{R}^{13}$, $\text{NR}^{14}\text{C(O)R}^{12}$, C(O)OR^{12} ,
 OC(O)R^{12} , OC(O)OR^{12} , $\text{CH(=NR}^{14})\text{NR}^{12}\text{R}^{13}$, $\text{NHC(=NR}^{14})\text{NR}^{12}\text{R}^{13}$, S(O)R^{12} ,
 $\text{S(O)}_2\text{R}^{12}$, $\text{S(O)NR}^{12}\text{R}^{13}$, $\text{S(O)}_2\text{NR}^{12}\text{R}^{13}$, $\text{NR}^{14}\text{S(O)R}^{12}$, and $\text{NR}^{14}\text{S(O)}_2\text{R}^{12}$;

R^{12} , at each occurrence, is independently selected from

C_{1-4} alkyl substituted with 0-1 R^{12a} ,

C_{2-4} alkenyl substituted with 0-1 R^{12a} ,

C_{2-4} alkynyl substituted with 0-1 R^{12a} ,

C_{3-6} cycloalkyl substituted with 0-3 R^{33} ,

phenyl substituted with 0-5 R^{33} ;

C_{3-10} carbocyclic group substituted with 0-3 R^{33} , and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R^{31} ;

R^{12a} , at each occurrence, is independently selected from

phenyl substituted with 0-5 R^{33} ;

C_{3-10} carbocyclic group substituted with 0-3 R^{33} , and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R^{31} ;

R^{13} , at each occurrence, is independently selected from

H, C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl;

alternatively, R^{12} and R^{13} join to form a 5- or 6-membered ring optionally substituted with -O-
or $-\text{N}(\text{R}^{14})-$;

alternatively, R^{12} and R^{13} when attached to N may be combined to form a 9- or 10-membered
bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the
group consisting of N, O, and S, wherein said bicyclic heterocyclic ring system is
unsaturated or partially saturated, wherein said bicyclic heterocyclic ring system is
substituted with 0-3 R^{16} ;

R¹⁴, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R¹⁵, at each occurrence, is independently selected from

H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

R¹⁶, at each occurrence, is independently selected from

H, OH, F, Cl, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,
methyl, ethyl, methoxy, ethoxy, trifluoromethyl, and trifluoromethoxy;

R³¹, at each occurrence, is independently selected from

H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, and C₁₋₄ alkyl;

R³³, at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,
C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl,
C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl-oxy-, C₁₋₄ alkyloxy-,
C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(=O)-, C₁₋₄ alkyl-C(=O)NH-, C₁₋₄ alkyl-OC(=O)-,
C₁₋₄ alkyl-C(=O)O-, C₃₋₆ cycloalkyl-oxy-, C₃₋₆ cycloalkylmethyl-oxy-;
C₁₋₆ alkyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy; and
C₂₋₆ alkenyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy;

R⁴¹, at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN,

C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl

C₁₋₄ alkyl substituted with 0-1 R⁴³,

aryl substituted with 0-3 R⁴², and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from

the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴², at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, CH(=NH)NH₂, NHC(=NH)NH₂, C₂-6 alkenyl, C₂-6 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl, C₃-6 cycloalkyl, C₁-4 alkyl substituted with 0-1 R⁴³, aryl substituted with 0-3 R⁴⁴, and 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴³ is C₃-6 cycloalkyl or aryl substituted with 0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H, SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, C₁-4 alkyl, and C₁-4 alkoxy;

R⁴⁵ is C₁-4 alkyl;

R⁴⁶, at each occurrence, is independently selected from H and C₁-4 alkyl;

R⁴⁷, at each occurrence, is independently selected from H and C₁-4 alkyl;

k is 1 or 2;

m is 0 or 1; and

n is 0, 1 or 2.

21. (Original) The method as defined in Claim 19 where in the compound administered:

X is -CH₂-;

R¹ is selected from

H,

C₁-4 alkyl,

C₂-4 alkanyl,
C₂-4 alkynyl,
C₃-4 cycloalkyl,
C₁-3 alkyl substituted with 0-1 R²,
C₂-3 alkenyl substituted with 0-1 R², and
C₂-3 alkynyl substituted with 0-1 R²;

R², at each occurrence, is independently selected from

C₁-4 alkyl,
C₂-4 alkanyl,
C₂-4 alkynyl,
C₃-6 cycloalkyl,
phenyl substituted with 0-5 R⁴²;
C₃-6 carbocyclic group substituted with 0-3 R⁴¹, and
5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R⁵ is H, methyl, ethyl, propyl, or butyl;

R^{6a} is H, methyl, ethyl, methoxy, -OH, or -CF₃;

R^{6b} is H;

R⁷ and R⁹, at each occurrence, are independently selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂, -NR⁴⁶R⁴⁷,
C₁-4 alkyl, C₂-4 alkenyl, C₂-4 alkynyl, C₁-4 haloalkyl, C₁-4 alkoxy, (C₁-4
haloalkyl)oxy,
C₃-10 cycloalkyl substituted with 0-2 R³³,
C₁-4 alkyl substituted with 0-2 R¹¹,
C₃-10 carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³, and

5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R⁸ is selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂,
C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, (C₁₋₄
haloalkyl)oxy,
C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,
C₁₋₄ alkyl substituted with 0-2 R¹¹,
C₂₋₄ alkenyl substituted with 0-2 R¹¹,
C₂₋₄ alkynyl substituted with 0-1 R¹¹,
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³,
5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;
OR¹², SR¹², NR¹²R¹³, NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and
NR¹²C(O)NHR¹⁵;

R¹¹ is selected from

H, halo, -CF₃, -CN, -NO₂,
C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, (C₁₋₄
haloalkyl)oxy,
C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,
C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³, and
5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R¹², at each occurrence, is independently selected from

C₁₋₄ alkyl substituted with 0-1 R^{12a},
C₂₋₄ alkenyl substituted with 0-1 R^{12a},

C₂-4 alkynyl substituted with 0-1 R^{12a},
C₃-6 cycloalkyl substituted with 0-3 R³³,
phenyl substituted with 0-5 R³³;
C₃-10 carbocyclic group substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R^{12a}, at each occurrence, is independently selected from
phenyl substituted with 0-5 R³³;
C₃-10 carbocyclic group substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R¹³, at each occurrence, is independently selected from
H, C₁-4 alkyl, C₂-4 alkenyl, and C₂-4 alkynyl;

alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring optionally substituted with -O-
or -N(R¹⁴)-;

alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10-membered
bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the
group consisting of one N, two N, three N, one N one O, and one N one S; wherein said
bicyclic heterocyclic ring system is unsaturated or partially saturated, wherein said
bicyclic heterocyclic ring system is substituted with 0-2 R¹⁶;

R¹⁴, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R¹⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R¹⁶, at each occurrence, is independently selected from
H, OH, F, Cl, CN, NO₂, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, and
trifluoromethoxy;

R³¹, at each occurrence, is independently selected from

H, OH, halo, CF₃, methyl, ethyl, and propyl;

-R³³, at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,
C₁-6 alkyl, C₂-6 alkenyl, C₂-6 alkynyl,
C₃-6 cycloalkyl, C₁-4 haloalkyl, C₁-4 haloalkyl-oxy-, C₁-4 alkyloxy-,
C₁-4 alkylthio-, C₁-4 alkyl-C(=O)-, C₁-4 alkyl-C(=O)NH-, C₁-4 alkyl-OC(=O)-,
C₁-4 alkyl-C(=O)O-, C₃-6 cycloalkyl-oxy-, C₃-6 cycloalkylmethyl-oxy-;
C₁-6 alkyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy; and
C₂-6 alkenyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy;

R⁴¹, at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN,
C₂-4 alkenyl, C₂-4 alkynyl, C₁-3 alkoxy, C₁-3 haloalkyl, and C₁-3 alkyl;

R⁴², at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, CH(=NH)NH₂,
NHC(=NH)NH₂,
C₂-4 alkenyl, C₂-4 alkynyl, C₁-3 alkoxy, C₁-3 haloalkyl, C₃-6 cycloalkyl, and C₁-3
alkyl;

R⁴³ is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, or pyridyl, each substituted with
0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H,
SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, methyl, ethyl, propyl, butyl, methoxy, ethoxy,
propoxy, and butoxy;

R⁴⁵ is methyl, ethyl, propyl, or butyl;

R^{46} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R^{47} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

k is 1;

m is 1; and

n is 0, 1 or 2.

22. (Original) The method as defined in Claim 19 where in the compound administered:

X is -CH₂-;

R^1 is selected from

H,

C₁₋₄ alkyl,

C₂₋₄ alkenyl,

C₂₋₄ alkynyl,

C₃₋₄ cycloalkyl,

C₁₋₃ alkyl substituted with 0-1 R^2 ,

C₂₋₃ alkenyl substituted with 0-1 R^2 , and

C₂₋₃ alkynyl substituted with 0-1 R^2 ;

R^2 , at each occurrence, is independently selected from

C₁₋₄ alkyl,

C₂₋₄ alkenyl,

C₂₋₄ alkynyl,

C₃₋₆ cycloalkyl,

phenyl substituted with 0-5 R^{42} ;

C₃₋₆ carbocyclic group substituted with 0-3 R^{41} , and

5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R⁵ is H, methyl, ethyl, propyl, or butyl;

R^{6a} is H, methyl, ethyl, methoxy, -OH, or -CF₃;

R^{6b} is H;

R⁷ and R⁹, at each occurrence, are independently selected from H, F, Cl, -CH₃, -OCH₃, -CF₃, -OCF₃, -CN, and -NO₂,

R⁸ is selected from

H, F, Cl, Br, -CF₃, -OCF₃, -OH, -CN, -NO₂,

C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₃₋₁₀ cycloalkyl substituted with 0-2 R³³,

C₁₋₄ alkyl substituted with 0-2 R¹¹,

C₂₋₄ alkenyl substituted with 0-2 R¹¹,

C₂₋₄ alkynyl substituted with 0-1 R¹¹,

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R¹¹ is selected from

H, halo, -CF₃, -CN, -NO₂,

C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₃-10 cycloalkyl substituted with 0-2 R³³,
C₃-10 carbocyclic group substituted with 0-3 R³³,
aryl substituted with 0-5 R³³, and
5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R¹², at each occurrence, is independently selected from

C₁-4 alkyl substituted with 0-1 R^{12a},
C₂-4 alkenyl substituted with 0-1 R^{12a},
C₂-4 alkynyl substituted with 0-1 R^{12a},
C₃-6 cycloalkyl substituted with 0-3 R³³,
phenyl substituted with 0-5 R³³;
C₃-10 carbocyclic group substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R^{12a}, at each occurrence, is independently selected from

phenyl substituted with 0-5 R³³;
C₃-10 carbocyclic group substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R¹³, at each occurrence, is independently selected from

H, C₁-4 alkyl, C₂-4 alkenyl, and C₂-4 alkynyl;

alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring optionally substituted with -O-
or -N(R¹⁴)-;

alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10-membered
bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the
group consisting of N, O, and S; wherein said bicyclic heterocyclic ring system is selected

from indolyl, indolinyl, indazolyl, benzimidazolyl, benzimidazolinyl, benztriazolyl, benzoxazolyl, benzoxazolinyl, benzthiazolyl, and dioxobenzthiazolyl; wherein said bicyclic heterocyclic ring system is substituted with 0-1 R¹⁶;

R¹⁴, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R¹⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R¹⁶, at each occurrence, is independently selected from

H, OH, F, Cl, CN, NO₂, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, and trifluoromethoxy;

R³¹, at each occurrence, is independently selected from

H, OH, halo, CF₃, methyl, ethyl, and propyl;

R³³, at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,
C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl,
C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyl-oxy-, C₁₋₄ alkyloxy-,
C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(=O)-, C₁₋₄ alkyl-C(=O)NH-, C₁₋₄ alkyl-OC(=O)-,
C₁₋₄ alkyl-C(=O)O-, C₃₋₆ cycloalkyl-oxy-, C₃₋₆ cycloalkylmethyl-oxy-;
C₁₋₆ alkyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy; and
C₂₋₆ alkenyl substituted with OH, methoxy, ethoxy, propoxy, or butoxy;

R⁴¹, at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN,
C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₃ alkoxy, C₁₋₃ haloalkyl, and C₁₋₃ alkyl;

R⁴², at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, CH(=NH)NH₂,
NHC(=NH)NH₂,

C₂-4 alkenyl, C₂-4 alkynyl, C₁-3 alkoxy, C₁-3 haloalkyl, C₃-6 cycloalkyl, and C₁-3 alkyl;

R⁴³ is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, or pyridyl, each substituted with 0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H, SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, and butoxy;

R⁴⁵ is methyl, ethyl, propyl, or butyl;

R⁴⁶, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R⁴⁷, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

k is 1;

m is 1; and

n is 0, 1 or 2.

23. (Original) The method as defined in Claim 19 where in the compound administered:

X is -CH₂-;

R¹ is selected from H,

C₁-5 alkyl substituted with 0-1 R²,

C₂-5 alkenyl substituted with 0-1 R², and

C₂-3 alkynyl substituted with 0-1 R²;

R² is C₃-6 cycloalkyl;

R⁵ is H, methyl, ethyl, or propyl;

R^{6a} is H, methyl, or ethyl;

R^{6b} is H;

R⁷ and R⁹, at each occurrence, are independently selected from

H, F, Cl, -CH₃, -OCH₃, -CF₃, -OCF₃, -CN, and -NO₂,

R⁸ is selected from

methyl substituted with R¹¹;

ethenyl substituted with R¹¹;

OR¹², SR¹², NR¹²R¹³, NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and

NR¹²C(O)NHR¹⁵;

R¹¹ is selected from

phenyl- substituted with 0-5 fluoro;

2-(H₃CCH₂C(=O))-phenyl- substituted with R³³;

2-(H₃CC(=O))-phenyl- substituted with R³³;

2-(HC(=O))-phenyl- substituted with R³³;

2-(H₃CCH(OH))-phenyl- substituted with R³³;

2-(H₃CCH₂CH(OH))-phenyl- substituted with R³³;

2-(HOCH₂)-phenyl- substituted with R³³;

2-(HOCH₂CH₂)-phenyl- substituted with R³³;

2-(H₃COCH₂)-phenyl- substituted with R³³;

2-(H₃COCH₂CH₂)-phenyl- substituted with R³³;

2-(H₃CCH(OMe))-phenyl- substituted with R³³;

2-(H₃COC(=O))-phenyl- substituted with R³³;

2-(HOCH₂CH=CH)-phenyl- substituted with R³³;

2-((MeOC=O)CH=CH)-phenyl- substituted with R³³;
2-(methyl)-phenyl- substituted with R³³;
2-(ethyl)-phenyl- substituted with R³³;
2-(i-propyl)-phenyl- substituted with R³³;
2-(F₃C)-phenyl- substituted with R³³;
2-(NC)-phenyl- substituted with R³³;
2-(H₃CO)-phenyl- substituted with R³³;
2-(fluoro)-phenyl- substituted with R³³;
2-(chloro)-phenyl- substituted with R³³;
3-(NC)-phenyl- substituted with R³³;
3-(H₃CO)-phenyl- substituted with R³³;
3-(fluoro)-phenyl- substituted with R³³;
3-(chloro)-phenyl- substituted with R³³;
4-(NC)-phenyl- substituted with R³³;
4-(fluoro)-phenyl- substituted with R³³;
4-(chloro)-phenyl- substituted with R³³;
4-(H₃CS)-phenyl- substituted with R³³;
4-(H₃CO)-phenyl- substituted with R³³;
4-(ethoxy)-phenyl- substituted with R³³;
4-(i-propoxy)-phenyl- substituted with R³³;
4-(i-butoxy)-phenyl- substituted with R³³;
4-(H₃CCH₂CH₂C(=O))-phenyl- substituted with R³³;
4-((H₃C)₂CHC(=O))-phenyl- substituted with R³³;
4-(H₃CCH₂C(=O))-phenyl- substituted with R³³;
4-(H₃CC(=O))-phenyl- substituted with R³³;
4-(H₃CCH₂CH₂CH(OH))-phenyl- substituted with R³³;
4-((H₃C)₂CHCH(OH))-phenyl- substituted with R³³;
4-(H₃CCH₂CH(OH))-phenyl- substituted with R³³;
4-(H₃CCH(OH))-phenyl- substituted with R³³;

4-(cyclopropyloxy)-phenyl- substituted with R³³;
4-(cyclobutyloxy)-phenyl- substituted with R³³; and
4-(cyclopentyloxy)-phenyl- substituted with R³³;

R¹² is selected from

phenyl- substituted with 0-5 fluoro;
2-(H₃CCH₂C(=O))-phenyl- substituted with R³³;
2-(H₃CC(=O))-phenyl- substituted with R³³;
2-(HC(=O))-phenyl- substituted with R³³;
2-(H₃CCH(OH))-phenyl- substituted with R³³;
2-(H₃CCH₂CH(OH))-phenyl- substituted with R³³;
2-(HOCH₂)-phenyl- substituted with R³³;
2-(HOCH₂CH₂)-phenyl- substituted with R³³;
2-(H₃COCH₂)-phenyl- substituted with R³³;
2-(H₃COCH₂CH₂)-phenyl- substituted with R³³;
2-(H₃CCH(OMe))-phenyl- substituted with R³³;
2-(H₃COC(=O))-phenyl- substituted with R³³;
2-(HOCH₂CH=CH)-phenyl- substituted with R³³;
2-((MeOC=O)CH=CH)-phenyl- substituted with R³³;
2-(methyl)-phenyl- substituted with R³³;
2-(ethyl)-phenyl- substituted with R³³;
2-(i-propyl)-phenyl- substituted with R³³;
2-(F₃C)-phenyl- substituted with R³³;
2-(NC)-phenyl- substituted with R³³;
2-(H₃CO)-phenyl- substituted with R³³;
2-(fluoro)-phenyl- substituted with R³³;
2-(chloro)-phenyl- substituted with R³³;
3-(NC)-phenyl- substituted with R³³;
3-(H₃CO)-phenyl- substituted with R³³;

3-(fluoro)-phenyl- substituted with R³³;
3-(chloro)-phenyl- substituted with R³³;
4-(NC)-phenyl- substituted with R³³;
4-(fluoro)-phenyl- substituted with R³³;
4-(chloro)-phenyl- substituted with R³³;
4-(H₃CS)-phenyl- substituted with R³³;
4-(H₃CO)-phenyl- substituted with R³³;
4-(ethoxy)-phenyl- substituted with R³³;
4-(i-propoxy)-phenyl- substituted with R³³;
4-(i-butoxy)-phenyl- substituted with R³³;
4-(H₃CCH₂CH₂C(=O))-phenyl- substituted with R³³;
4-((H₃C)₂CHC(=O))-phenyl- substituted with R³³;
4-(H₃CCH₂C(=O))-phenyl- substituted with R³³;
4-(H₃CC(=O))-phenyl- substituted with R³³;
4-(H₃CCH₂CH₂CH(OH))-phenyl- substituted with R³³;
4-((H₃C)₂CHCH(OH))-phenyl- substituted with R³³;
4-(H₃CCH₂CH(OH))-phenyl- substituted with R³³;
4-(H₃CCH(OH))-phenyl- substituted with R³³;
4-(cyclopropyloxy)-phenyl- substituted with R³³;
4-(cyclobutyloxy)-phenyl- substituted with R³³; and
4-(cyclopentyloxy)-phenyl- substituted with R³³;

R¹³ is H, methyl, or ethyl;

alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring selected from pyrrolyl, pyrrolidinyl, imidazolyl, piperidinyl, piperizinyl, methylpiperizinyl, and morpholinyl;

alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10-membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S; wherein said bicyclic heterocyclic ring system is selected

from indolyl, indolinyl, indazolyl, benzimidazolyl, benzimidazolinyl, benztriazolyl, benzoxazolyl, benzoxazolinyl, benzthiazolyl, and dioxobenzthiazolyl; wherein said bicyclic heterocyclic ring system is substituted with 0-1 R¹⁶;

R¹⁵ is H, methyl, ethyl, propyl, or butyl;

R¹⁶, at each occurrence, is independently selected from

H, OH, F, Cl, CN, NO₂, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, and trifluoromethoxy;

R³³, at each occurrence, is independently selected from

H, F, Cl, -CH₃, -OCH₃, -CF₃, -OCF₃, -CN, and -NO₂;

k is 1;

m is 1; and

n is 1 or 2.

24. (Original) The method as defined in Claim 19 where the compound administered is a compound of Formula (I-a):

(I-a)

wherein:

b is a single bond;

X is -CH₂-, -CH(OH)-, or -C(=O)-;

R^1 is selected from

hydrogen, methyl, ethyl, n-propyl, n-butyl, s-butyl,
t-butyl, n-pentyl, n-hexyl, 2-propyl, 2-butyl, 2-pentyl, 2-hexyl, 2-methylpropyl, 2-methylbutyl, 2-methylpentyl, 2-ethylbutyl, 3-methylpentyl, 3-methylbutyl, 4-methylpentyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl,

2-propenyl, 2-methyl-2-propenyl, trans-2-butenyl,
3-methyl-butenyl, 3-butenyl, trans-2-pentenyl,
cis-2-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl,
3,3-dichloro-2-propenyl, trans-3-phenyl-2-propenyl,

cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl,

benzyl, 2-methylbenzyl, 3-methylbenzyl, 4-methylbenzyl, 2,5-dimethylbenzyl, 2,4-dimethylbenzyl, 3,5-dimethylbenzyl,
2,4,6-trimethyl-benzyl, 3-methoxy-benzyl, 3,5-dimethoxy-benzyl, pentafluorobenzyl, 2-phenylethyl, 1-phenyl-2-propyl, 4-phenylbutyl, 4-phenylbenzyl, 2-phenylbenzyl,

(2,3-dimethoxy-phenyl)C(=O)-, (2,5-dimethoxy-phenyl)C(=O)-, (3,4-dimethoxy-phenyl)C(=O)-,
(3,5-dimethoxy-phenyl)C(=O)-, cyclopropyl-C(=O)-, isopropyl-C(=O)-, ethyl-CO₂-, propyl-CO₂-, t-butyl-CO₂-,
2,6-dimethoxy-benzyl, 2,4-dimethoxy-benzyl, 2,4,6-trimethoxy-benzyl, 2,3-dimethoxy-benzyl,
2,4,5-trimethoxy-benzyl, 2,3,4-trimethoxy-benzyl, 3,4-dimethoxy-benzyl, 3,4,5-trimethoxy-benzyl,
(4-fluoro-phenyl)ethyl,

-CH=CH₂, -CH₂-CH=CH₂, -CH=CH-CH₃, -C≡CH, -C≡C-CH₃, and
-CH₂-C≡CH;

R^7 , R^8 , and R^9 , at each occurrence, are independently selected from

hydrogen, fluoro, chloro, bromo, cyano, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, nitro, trifluoromethyl, methoxy, ethoxy, isopropoxy, trifluoromethoxy, phenyl,

methylC(=O)-, ethylC(=O)-, propylC(=O)-, isopropylC(=O)-, butylC(=O)-, phenylC(=O)-,

methylCO₂-, ethylCO₂-, propylCO₂-, isopropylCO₂-, butylCO₂-, phenylCO₂-,

dimethylamino-S(=O)-, diethylamino-S(=O)-,

dipropylamino-S(=O)-, di-isopropylamino-S(=O)-, dibutylamino-S(=O)-, diphenylamino-S(=O)-,

dimethylamino-SO₂-, diethylamino-SO₂-, dipropylamino-SO₂-, di-isopropylamino-SO₂-, dibutylamino-SO₂-,

diphenylamino-SO₂-,

dimethylamino-C(=O)-, diethylamino-C(=O)-,

dipropylamino-C(=O)-, di-isopropylamino-C(=O)-, dibutylamino-C(=O)-, diphenylamino-C(=O)-,

2-chlorophenyl, 2-fluorophenyl, 2-bromophenyl, 2-cyanophenyl, 2-methylphenyl, 2-trifluoromethylphenyl,

2-methoxyphenyl, 2-trifluoromethoxyphenyl,

3-chlorophenyl, 3-fluorophenyl, 3-bromophenyl,

3-cyanophenyl, 3-methylphenyl, 3-ethylphenyl,

3-propylphenyl, 3-isopropylphenyl, 3-butylphenyl,

3-trifluoromethylphenyl, 3-methoxyphenyl,

3-isopropoxyphenyl, 3-trifluoromethoxyphenyl,

3-thiomethoxyphenyl,

4-chlorophenyl, 4-fluorophenyl, 4-bromophenyl,

4-cyanophenyl, 4-methylphenyl, 4-ethylphenyl,

4-propylphenyl, 4-isopropylphenyl, 4-butylphenyl,

4-trifluoromethylphenyl, 4-methoxyphenyl,
4-isopropoxyphenyl, 4-trifluoromethoxyphenyl,
4-thiomethoxyphenyl,

2,3-dichlorophenyl, 2,3-difluorophenyl, 2,3-dimethylphenyl,
2,3-ditrifluoromethylphenyl, 2,3-dimethoxyphenyl,
2,3-ditrifluoromethoxyphenyl,

2,4-dichlorophenyl, 2,4-difluorophenyl, 2,4-dimethylphenyl,
2,4-ditrifluoromethylphenyl, 2,4-dimethoxyphenyl,
2,4-ditrifluoromethoxyphenyl,

2,5-dichlorophenyl, 2,5-difluorophenyl, 2,5-dimethylphenyl,
2,5-ditrifluoromethylphenyl, 2,5-dimethoxyphenyl,
2,5-ditrifluoromethoxyphenyl,

2,6-dichlorophenyl, 2,6-difluorophenyl, 2,6-dimethylphenyl,
2,6-ditrifluoromethylphenyl, 2,6-dimethoxyphenyl,
2,6-ditrifluoromethoxyphenyl,

3,4-dichlorophenyl, 3,4-difluorophenyl, 3,4-dimethylphenyl,
3,4-ditrifluoromethylphenyl, 3,4-dimethoxyphenyl,
3,4-ditrifluoromethoxyphenyl,

2,4,6-trichlorophenyl, 2,4,6-trifluorophenyl,
2,4,6-trimethylphenyl, 2,4,6-tritrifluoromethylphenyl,
2,4,6-trimethoxyphenyl, 2,4,6-tritrifluoromethoxyphenyl,

2-chloro-4-CF₃-phenyl, 2-fluoro-3-chloro-phenyl,
2-chloro-4-CF₃-phenyl, 2-chloro-4-methoxy-phenyl,
2-methoxy-4-isopropyl-phenyl, 2-CF₃-4-methoxy-phenyl,
2-methyl-4-methoxy-5-fluoro-phenyl,
2-methyl-4-methoxy-phenyl, 2-chloro-4-CF₃O-phenyl,
2,4,5-trimethyl-phenyl, 2-methyl-4-chloro-phenyl,

methyl-C(=O)NH-, ethyl-C(=O)NH-, propyl-C(=O)NH-,
isopropyl-C(=O)NH-, butyl-C(=O)NH-, phenyl-C(=O)NH-,

4-acetylphenyl, 3-acetamidophenyl, 4-pyridyl, 2-furanyl,
2-thiophenyl, 2-naphthyl;

2-Me-5-F-phenyl, 2-F-5-Me-phenyl, 2-MeO-5-F-phenyl,
2-Me-3-Cl-phenyl, 3-NO₂-phenyl, 2-NO₂-phenyl,
2-Cl-3-Me-phenyl, 2-Me-4-EtO-phenyl, 2-Me-4-F-phenyl,
2-Cl-6-F-phenyl, 2-Cl-4-(CHF₂)O-phenyl,
2,4-diMeO-6-F-phenyl, 2-CF₃-6-F-phenyl,
2-MeS-phenyl, 2,6-diCl-4-MeO-phenyl,
2,3,4-triF-phenyl, 2,6-diF-4-Cl-phenyl,
2,3,4,6-tetraF-phenyl, 2,3,4,5,6-pentaF-phenyl,
2-CF₃-4-EtO-phenyl, 2-CF₃-4-iPrO-phenyl,
2-CF₃-4-Cl-phenyl, 2-CF₃-4-F-phenyl, 2-Cl-4-EtO-phenyl,
2-Cl-4-iPrO-phenyl, 2-Et-4-MeO-phenyl,
2-CHO-4-MeO-phenyl, 2-CH(OH)Me-4-MeO-phenyl,
2-CH(OMe)Me-4-MeO-phenyl, 2-C(=O)Me-4-MeO-phenyl,
2-CH₂(OH)-4-MeO-phenyl, 2-CH₂(OMe)-4-MeO-phenyl,
2-CH(OH)Et-4-MeO-phenyl, 2-C(=O)Et-4-MeO-phenyl,
(Z)-2-CH=CHCO₂Me-4-MeO-phenyl,
2-CH₂CH₂CO₂Me-4-MeO-phenyl,
(Z)-2-CH=CHCH₂(OH)-4-MeO-phenyl,
(E)-2-CH=CHCO₂Me-4-MeO-phenyl,
(E)-2-CH=CHCH₂(OH)-4-MeO-phenyl,
2-CH₂CH₂OMe-4-MeO-phenyl,
2-F-4-MeO-phenyl, 2-Cl-4-F-phenyl,
(2-Cl-phenyl)-CH=CH-, (3-Cl-phenyl)-CH=CH-,
(2,6-diF-phenyl)-CH=CH-, -CH₂CH=CH₂,
phenyl-CH=CH-, (2-Me-4-MeO-phenyl)-CH=CH-,
cyclohexyl, cyclopentyl, cyclohexylmethyl,

-CH₂CH₂CO₂Et, -(CH₂)₃CO₂Et, -(CH₂)₄CO₂Et,
 benzyl, 2-F-benzyl, 3-F-benzyl, 4-F-benzyl,
 3-MeO-benzyl, 3-OH-benzyl, 2-MeO-benzyl,
 2-OH-benzyl, 2-CO₂Me-3-MeO-phenyl,
 2-Me-4-CN-phenyl, 2-Me-3-CN-phenyl, 2-CF₃-4-CN-phenyl,
 3-CHO-phenyl, 3-CH₂(OH)-phenyl, 3-CH₂(OMe)-phenyl,
 3-CH₂(NMe₂)-phenyl, 3-CN-4-F-phenyl,
 3-CONH₂-4-F-phenyl, 2-CH₂(NH₂)-4-MeO-phenyl-,
 phenyl-NH-, (4-F-phenyl)-NH-, (2,4-diCl-phenyl)-NH-,
 phenyl-C(=O)NH-, benzyl-NH-, (2-Me-4-MeO-phenyl)-NH-,
 (2-F-4-MeO-phenyl)-NH-, (2-Me-4-F-phenyl)-NH-,
 phenyl-S-, -NMe₂, 1-pyrrolidinyl, and
 -N(tosylate)₂,

provided that two of R⁷, R⁸, and R⁹, are independently selected from hydrogen, fluoro, chloro, bromo, cyano, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, nitro, trifluoromethyl, methoxy, ethoxy, isopropoxy, and trifluoromethoxy;

m is 1; and

n is 0, 1 or 2.

25. (Original) The method as defined in Claim 24 where the compound administered is a compound of Formula (V):

(V)

wherein:

b is a single bond, wherein the bridge hydrogens are in a cis position;

R¹ is selected from

hydrogen, methyl, ethyl, n-propyl, n-butyl, s-butyl,
t-butyl, n-pentyl, n-hexyl, 2-propyl, 2-butyl, 2-pentyl, 2-hexyl, 2-methylpropyl, 2-methylbutyl, 2-methylpentyl, 2-ethylbutyl, 3-methylpentyl, 3-methylbutyl, 4-methylpentyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-propenyl, 2-methyl-2-propenyl, trans-2-butenyl, 3-methyl-butenyl, 3-butenyl, trans-2-pentenyl, cis-2-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl, 3,3-dichloro-2-propenyl, trans-3-phenyl-2-propenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, -CH=CH₂, -CH₂-CH=CH₂, -CH=CH-CH₃, -C≡CH, -C≡C-CH₃, and -CH₂-C≡CH;

R⁷ and R⁹, at each occurrence, are independently selected from hydrogen, fluoro, methyl, trifluoromethyl, and methoxy;

R⁸ is selected from

hydrogen, fluoro, chloro, bromo, cyano, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, nitro, trifluoromethyl, methoxy, ethoxy, isopropoxy, trifluoromethoxy, phenyl,

methylC(=O)-, ethylC(=O)-, propylC(=O)-, isopropylC(=O)-, butylC(=O)-, phenylC(=O)-,

methylCO₂-, ethylCO₂-, propylCO₂-, isopropylCO₂-, butylCO₂-, phenylCO₂-,

dimethylamino-S(=O)-, diethylamino-S(=O)-,

dipropylamino-S(=O)-, di-isopropylamino-S(=O)-, dibutylamino-S(=O)-, diphenylamino-S(=O)-,

dimethylamino-SO₂-, diethylamino-SO₂-, dipropylamino-SO₂-, di-isopropylamino-SO₂-,
, dibutylamino-SO₂-,
diphenylamino-SO₂-,

dimethylamino-C(=O)-, diethylamino-C(=O)-,
dipropylamino-C(=O)-, di-isopropylamino-C(=O)-, dibutylamino-C(=O)-,
diphenylamino-C(=O)-,

2-chlorophenyl, 2-fluorophenyl, 2-bromophenyl, 2-cyanophenyl, 2-methylphenyl, 2-trifluoromethylphenyl,
2-methoxyphenyl, 2-trifluoromethoxyphenyl,

3-chlorophenyl, 3-fluorophenyl, 3-bromophenyl,
3-cyanophenyl, 3-methylphenyl, 3-ethylphenyl,
3-propylphenyl, 3-isopropylphenyl, 3-butylphenyl,
3-trifluoromethylphenyl, 3-methoxyphenyl,
3-isopropoxyphenyl, 3-trifluoromethoxyphenyl,
3-thiomethoxyphenyl,

4-chlorophenyl, 4-fluorophenyl, 4-bromophenyl,
4-cyanophenyl, 4-methylphenyl, 4-ethylphenyl,
4-propylphenyl, 4-isopropylphenyl, 4-butylphenyl,
4-trifluoromethylphenyl, 4-methoxyphenyl,
4-isopropoxyphenyl, 4-trifluoromethoxyphenyl,
4-thiomethoxyphenyl,

2,3-dichlorophenyl, 2,3-difluorophenyl, 2,3-dimethylphenyl,
2,3-ditrifluoromethylphenyl, 2,3-dimethoxyphenyl,
2,3-ditrifluoromethoxyphenyl,

2,4-dichlorophenyl, 2,4-difluorophenyl, 2,4-dimethylphenyl,
2,4-ditrifluoromethylphenyl, 2,4-dimethoxyphenyl,
2,4-ditrifluoromethoxyphenyl,

2,5-dichlorophenyl, 2,5-difluorophenyl, 2,5-dimethylphenyl,
2,5-ditrifluoromethylphenyl, 2,5-dimethoxyphenyl,
2,5-ditrifluoromethoxyphenyl,

2,6-dichlorophenyl, 2,6-difluorophenyl, 2,6-dimethylphenyl,
2,6-ditrifluoromethylphenyl, 2,6-dimethoxyphenyl,
2,6-ditrifluoromethoxyphenyl,

3,4-dichlorophenyl, 3,4-difluorophenyl, 3,4-dimethylphenyl,
3,4-ditrifluoromethylphenyl, 3,4-dimethoxyphenyl,
3,4-ditrifluoromethoxyphenyl,

2,4,6-trichlorophenyl, 2,4,6-trifluorophenyl,
2,4,6-trimethylphenyl, 2,4,6-tritrifluoromethylphenyl,
2,4,6-trimethoxyphenyl, 2,4,6-tritrifluoromethoxyphenyl,

2-chloro-4-CF₃-phenyl, 2-fluoro-3-chloro-phenyl,
2-chloro-4-CF₃-phenyl, 2-chloro-4-methoxy-phenyl,
2-methoxy-4-isopropyl-phenyl, 2-CF₃-4-methoxy-phenyl,
2-methyl-4-methoxy-5-fluoro-phenyl,
2-methyl-4-methoxy-phenyl, 2-chloro-4-CF₃O-phenyl,
2,4,5-trimethyl-phenyl, 2-methyl-4-chloro-phenyl,

methyl-C(=O)NH-, ethyl-C(=O)NH-, propyl-C(=O)NH-,
isopropyl-C(=O)NH-, butyl-C(=O)NH-, phenyl-C(=O)NH-,

4-acetylphenyl, 3-acetamidophenyl, 4-pyridyl, 2-furanyl,
2-thiophenyl, 2-naphthyl;

2-Me-5-F-phenyl, 2-F-5-Me-phenyl, 2-MeO-5-F-phenyl,
2-Me-3-Cl-phenyl, 3-NO₂-phenyl, 2-NO₂-phenyl,
2-Cl-3-Me-phenyl, 2-Me-4-EtO-phenyl, 2-Me-4-F-phenyl,
2-Cl-6-F-phenyl, 2-Cl-4-(CHF₂)O-phenyl,
2,4-diMeO-6-F-phenyl, 2-CF₃-6-F-phenyl,

2-MeS-phenyl, 2,6-diCl-4-MeO-phenyl,
2,3,4-triF-phenyl, 2,6-diF-4-Cl-phenyl,
2,3,4,6-tetraF-phenyl, 2,3,4,5,6-pentaF-phenyl,
2-CF₃-4-EtO-phenyl, 2-CF₃-4-iPrO-phenyl,
2-CF₃-4-Cl-phenyl, 2-CF₃-4-F-phenyl, 2-Cl-4-EtO-phenyl,
2-Cl-4-iPrO-phenyl, 2-Et-4-MeO-phenyl,
2-CHO-4-MeO-phenyl, 2-CH(OH)Me-4-MeO-phenyl,
2-CH(OMe)Me-4-MeO-phenyl, 2-C(=O)Me-4-MeO-phenyl,
2-CH₂(OH)-4-MeO-phenyl, 2-CH₂(OMe)-4-MeO-phenyl,
2-CH(OH)Et-4-MeO-phenyl, 2-C(=O)Et-4-MeO-phenyl,
(Z)-2-CH=CHCO₂Me-4-MeO-phenyl,
2-CH₂CH₂CO₂Me-4-MeO-phenyl,
(Z)-2-CH=CHCH₂(OH)-4-MeO-phenyl,
(E)-2-CH=CHCO₂Me-4-MeO-phenyl,
(E)-2-CH=CHCH₂(OH)-4-MeO-phenyl,
2-CH₂CH₂OMe-4-MeO-phenyl,
2-F-4-MeO-phenyl, 2-Cl-4-F-phenyl,
(2-Cl-phenyl)-CH=CH-, (3-Cl-phenyl)-CH=CH-,
(2,6-diF-phenyl)-CH=CH-, -CH₂CH=CH₂,
phenyl-CH=CH-, (2-Me-4-MeO-phenyl)-CH=CH-,
cyclohexyl, cyclopentyl, cyclohexylmethyl,
-CH₂CH₂CO₂Et, -(CH₂)₃CO₂Et, -(CH₂)₄CO₂Et,
benzyl, 2-F-benzyl, 3-F-benzyl, 4-F-benzyl,
3-MeO-benzyl, 3-OH-benzyl, 2-MeO-benzyl,
2-OH-benzyl, 2-CO₂Me-3-MeO-phenyl,
2-Me-4-CN-phenyl, 2-Me-3-CN-phenyl, 2-CF₃-4-CN-phenyl,
3-CHO-phenyl, 3-CH₂(OH)-phenyl, 3-CH₂(OMe)-phenyl,
3-CH₂(NMe₂)-phenyl, 3-CN-4-F-phenyl,
3-CONH₂-4-F-phenyl, 2-CH₂(NH₂)-4-MeO-phenyl-,
phenyl-NH-, (4-F-phenyl)-NH-, (2,4-diCl-phenyl)-NH-,
phenyl-C(=O)NH-, benzyl-NH-, (2-Me-4-MeO-phenyl)-NH-,
(2-F-4-MeO-phenyl)-NH-, (2-Me-4-F-phenyl)-NH-,
phenyl-S-, -NMe₂, 1-pyrrolidinyl, and

-N(tosylate)2; and

n is 0, 1 or 2.

26. (Original) The method as defined in Claim 18 where in the compound administered:

X is -CHR¹⁰- or -C(=O)-;

R¹ is selected from

C₁₋₆ alkyl substituted with Z,

C₂₋₆ alkenyl substituted with Z,

C₂₋₆ alkynyl substituted with Z,

C₃₋₆ cycloalkyl substituted with Z,

aryl substituted with Z,

5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with Z;

C₁₋₆ alkyl substituted with 0-2 R²,

C₂₋₆ alkenyl substituted with 0-2 R²,

C₂₋₆ alkynyl substituted with 0-2 R², . . .

aryl substituted with 0-2 R², and

5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with 0-2 R²;

Z is selected from H,

-CH(OH)R²,

-C(ethylenedioxy)R²,

-OR²,

-SR²,

-NR²R³,
-C(O)R²,
-C(O)NR²R³,
-NR³C(O)R²,
-C(O)OR²,
-OC(O)R²,
-CH(=NR⁴)NR²R³,
-NHC(=NR⁴)NR²R³,
-S(O)R²,
-S(O)₂R²,
-S(O)₂NR²R³, and -NR³S(O)₂R²;

R², at each occurrence, is independently selected from

C₁₋₄ alkyl,
C₂₋₄ alkenyl,
C₂₋₄ alkynyl,
C₃₋₆ cycloalkyl,
aryl substituted with 0-5 R⁴²;
C₃₋₁₀ carbocyclic group substituted with 0-3 R⁴¹, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R³, at each occurrence, is independently selected from

H, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, and
C₁₋₄ alkoxy;

alternatively, R² and R³ join to form a 5- or 6-membered ring optionally substituted with -O- or -
N(R⁴)-;

R⁴, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R^5 is H, methyl, ethyl, propyl, or butyl;

R^{6a} is selected from

H, -OH, -NR⁴⁶R⁴⁷, -CF₃,

C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₃₋₆ cycloalkyl,
and

aryl substituted with 0-3 R⁴⁴;

R^{6b} is H;

R^7 , R^8 , and R^9 , at each occurrence, are independently selected from

H, halo, -CF₃, -OCF₃, -OH, -CN, -NO₂, -NR⁴⁶R⁴⁷,

C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl, C₁₋₈ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₁₋₄ alkyl substituted with 0-2 R¹¹,

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹²,
NR¹²C(O)R¹⁵, NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R^{10} is selected from H, -OH,

C₁₋₆ alkyl substituted with 0-1 R^{10B},

C₂₋₆ alkenyl substituted with 0-1 R^{10B},

C₂₋₆ alkynyl substituted with 0-1 R^{10B}, and

C₁₋₆ alkoxy;

R^{10B} is selected from

C₁₋₄ alkoxy,

C₃₋₆ cycloalkyl,

C₃₋₁₀ carbocyclic group substituted with 0-3 R^{33} ,

phenyl substituted with 0-3 R^{33} , and

5-6 membered heterocyclic ring system containing 1, 2, or 3 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-2 R^{44} ;

R^{11} is selected from

H, halo, -CF₃, -CN, -NO₂,

C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ haloalkyl, C₁₋₈ alkoxy, C₃₋₁₀ cycloalkyl,

C₃₋₁₀ carbocyclic group substituted with 0-3 R^{33} ,

aryl substituted with 0-5 R^{33} ,

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R^{31} ;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², OC(O)OR¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹²,
S(O)₂R¹², S(O)NR¹²R¹³, S(O)₂NR¹²R¹³, NR¹⁴S(O)R¹², and NR¹⁴S(O)₂R¹²;

R^{12} , at each occurrence, is independently selected from

C₁₋₄ alkyl,

C₂₋₄ alkenyl,

C₂₋₄ alkynyl,

C₃₋₆ cycloalkyl,

phenyl substituted with 0-5 R^{33} ;

C₃₋₁₀ carbocyclic group substituted with 0-3 R^{33} , and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R^{31} ;

R^{13} , at each occurrence, is independently selected from

H, C₁-4 alkyl, C₂-4 alkenyl, and C₂-4 alkynyl;

alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring optionally substituted with -O- or -N(R¹⁴)-;

R¹⁴, at each occurrence, is independently selected from H and C₁-4 alkyl;

R³¹, at each occurrence, is independently selected from

H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, methyl, ethyl, and propyl;

R³³, at each occurrence, is independently selected from

H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷,

C₁-3 alkyl, C₂-3 alkenyl, C₂-3 alkynyl, C₃-5 cycloalkyl, C₁-3 haloalkyl, C₁-3 haloalkyl-oxy-, C₁-3 alkyloxy-, C₁-3 alkylthio-, C₁-3 alkyl-C(=O)-, and C₁-3 alkyl-C(=O)NH-;

R⁴¹, at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, =O,

C₂-8 alkenyl, C₂-8 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl

C₁-4 alkyl substituted with 0-1 R⁴³,

aryl substituted with 0-3 R⁴², and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴², at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, SR⁴⁵, NR⁴⁶R⁴⁷, OR⁴⁸, NO₂, CN, CH(=NH)NH₂,
NHC(=NH)NH₂,

C₂-6 alkenyl, C₂-6 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl, C₃-6 cycloalkyl,

C₁-4 alkyl substituted with 0-1 R⁴³,

aryl substituted with 0-3 R⁴⁴, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴³ is C₃₋₆ cycloalkyl or aryl substituted with 0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H, SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, C₁₋₄ alkyl, and C₁₋₄ alkoxy;

R⁴⁵ is C₁₋₄ alkyl;

R⁴⁶, at each occurrence, is independently selected from H and C₁₋₄ alkyl;

R⁴⁷, at each occurrence, is independently selected from H, C₁₋₄ alkyl, -C(=O)NH(C₁₋₄ alkyl), -SO₂(C₁₋₄ alkyl), -SO₂(phenyl), -C(=O)O(C₁₋₄ alkyl), -C(=O)(C₁₋₄ alkyl), and -C(=O)H;

R⁴⁸, at each occurrence, is independently selected from H, C₁₋₄ alkyl, -C(=O)NH(C₁₋₄ alkyl), -C(=O)O(C₁₋₄ alkyl), -C(=O)(C₁₋₄ alkyl), and -C(=O)H;

k is 1 or 2;

m is 0, 1, or 2; and

n is 0, 1 or 2.

27. (Original) The method as defined in Claim 26 where in the compound administered:

X is -CHR¹⁰- or -C(=O)-;

R¹ is selected from

C₂₋₅ alkyl substituted with Z,

C₂-5 alkenyl substituted with Z,
C₂-5 alkynyl substituted with Z,
C₃-6 cycloalkyl substituted with Z,
aryl substituted with Z,
5-6 membered heterocyclic ring system containing at least one heteroatom selected from the group consisting of N, O, and S, said heterocyclic ring system substituted with Z;
C₁-5 alkyl substituted with 0-2 R²,
C₂-5 alkenyl substituted with 0-2 R², and
C₂-5 alkynyl substituted with 0-2 R²;

Z is selected from H,

-CH(OH)R²,
-C(ethylenedioxy)R²,
-OR²,
-SR²,
-NR²R³,
-C(O)R²,
-C(O)NR²R³,
-NR³C(O)R²,
-C(O)OR²,
-OC(O)R²,
-CH(=NR⁴)NR²R³,
-NHC(=NR⁴)NR²R³,
-S(O)R²,
-S(O)₂R²,
-S(O)₂NR²R³, and -NR³S(O)₂R²;

R², at each occurrence, is independently selected from

C₁-4 alkyl,
C₂-4 alkenyl,

C₂-4 alkynyl,
C₃-6 cycloalkyl,
aryl substituted with 0-5 R⁴²;
C₃-10 carbocyclic group substituted with 0-3 R⁴¹, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R³, at each occurrence, is independently selected from
H, C₁-4 alkyl, C₂-4 alkenyl, C₂-4 alkynyl, and
C₁-4 alkoxy;

alternatively, R² and R³ join to form a 5- or 6-membered ring optionally substituted with -O- or -
N(R⁴)-;

R⁴, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R⁵ is H, methyl, or ethyl;

R^{6a} is selected from

H, -OH, -NR⁴⁶R⁴⁷, -CF₃,
C₁-4 alkyl, C₂-4 alkenyl, C₂-4 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl, and C₃-6
cycloalkyl;

R^{6b} is H;

R⁷, R⁸, and R⁹, at each occurrence, are independently selected from
H, halo, -CF₃, -OCF₃, -OH, -OCH₃, -CN, -NO₂, -NR⁴⁶R⁴⁷,
C₁-6 alkyl, C₂-6 alkenyl, C₂-6 alkynyl, C₁-4 haloalkyl, C₁-6 alkoxy, (C₁-4
haloalkyl)oxy,
C₁-4 alkyl substituted with 0-2 R¹¹,
C₃-10 carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹²,
S(O)₂NR¹²R¹³, NR¹⁴S(O)₂R¹², NR¹⁴S(O)R¹², NR¹⁴S(O)₂R¹², NR¹²C(O)R¹⁵,
NR¹²C(O)OR¹⁵, NR¹²S(O)₂R¹⁵, and NR¹²C(O)NHR¹⁵;

R¹⁰ is selected from H, -OH, C₁₋₆ alkyl, C₁₋₄ alkoxy, and

C₁₋₂ alkyl substituted with 0-1 R^{10B};

R^{10B} is C₃₋₆ cycloalkyl or

phenyl substituted with 0-3 R³³;

R¹¹ is selected from

H, halo, -CF₃, -OCF₃, -OH, -OCH₃, -CN, -NO₂, -NR⁴⁶R⁴⁷,

C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ haloalkyl, C₁₋₆ alkoxy, (C₁₋₄
haloalkyl)oxy,

C₃₋₁₀ carbocyclic group substituted with 0-3 R³³,

aryl substituted with 0-5 R³³,

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

OR¹², SR¹², NR¹²R¹³, C(O)H, C(O)R¹², C(O)NR¹²R¹³, NR¹⁴C(O)R¹², C(O)OR¹²,
OC(O)R¹², CH(=NR¹⁴)NR¹²R¹³, NHC(=NR¹⁴)NR¹²R¹³, S(O)R¹², S(O)₂R¹²,
S(O)₂NR¹²R¹³, and NR¹⁴S(O)₂R¹²;

R¹², at each occurrence, is independently selected from

C₁₋₄ alkyl,

C₂₋₄ alkenyl,

C₂-4 alkynyl,
C₃-6 cycloalkyl,
phenyl substituted with 0-5 R³³;
C₃-10 carbocyclic group substituted with 0-3 R³³, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R³¹;

R¹³, at each occurrence, is independently selected from
H, C₁-4 alkyl, C₂-4 alkenyl, and C₂-4 alkynyl;

alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring optionally substituted with -O-
or -N(R¹⁴)-;

R¹⁴, at each occurrence, is independently selected from H and C₁-4 alkyl;

R³¹, at each occurrence, is independently selected from
H, OH, halo, CF₃, methyl, and ethyl;

R³³, at each occurrence, is independently selected from
H, OH, halo, CN, NO₂, CF₃, methyl, and ethyl;

R⁴¹, at each occurrence, is independently selected from
H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, =O,
C₂-8 alkenyl, C₂-8 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl,
C₁-4 alkyl substituted with 0-1 R⁴³,
aryl substituted with 0-3 R⁴², and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴², at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, SR⁴⁵, NR⁴⁶R⁴⁷, OR⁴⁸, NO₂, CN, CH(=NH)NH₂, NHC(=NH)NH₂, C₂-6 alkenyl, C₂-6 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl, C₃-6 cycloalkyl, C₁-4 alkyl substituted with 0-1 R⁴³, aryl substituted with 0-3 R⁴⁴, and 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴³ is C₃-6 cycloalkyl or aryl substituted with 0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H, SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, C₁-4 alkyl, and C₁-4 alkoxy;

R⁴⁵ is C₁-4 alkyl;

R⁴⁶, at each occurrence, is independently selected from H and C₁-3 alkyl;

R⁴⁷, at each occurrence, is independently selected from H, C₁-4 alkyl, -C(=O)NH(C₁-4 alkyl), -SO₂(C₁-4 alkyl), -SO₂(phenyl), -C(=O)O(C₁-4 alkyl), -C(=O)(C₁-4 alkyl), and -C(=O)H;

R⁴⁸, at each occurrence, is independently selected from H, C₁-4 alkyl, -C(=O)NH(C₁-4 alkyl), -C(=O)O(C₁-4 alkyl), -C(=O)(C₁-4 alkyl), and -C(=O)H;

k is 1 or 2;

m is 0, 1, 2; and

n is 0, 1 or 2.

28. (Original) The method as defined in Claim 26 where in the compound administered:

X is -CH₂-;

R¹ is selected from

C₂₋₄ alkyl substituted with Z,
C₂₋₄ alkenyl substituted with Z,
C₂₋₄ alkynyl substituted with Z,
C₃₋₆ cycloalkyl substituted with Z,
aryl substituted with Z,
5-6 membered heterocyclic ring system containing at least one heteroatom selected from
the group consisting of N, O, and S, said heterocyclic ring system substituted with
Z;
C₂₋₄ alkyl substituted with 0-2 R², and
C₂₋₄ alkenyl substituted with 0-2 R²;

Z is selected from H,

-CH(OH)R²,
-C(ethylenedioxy)R²,
-OR²,
-SR²,
-NR²R³,
-C(O)R²,
-C(O)NR²R³,
-NR³C(O)R²,
-C(O)OR²,
-S(O)R²,
-S(O)₂R²,
-S(O)₂NR²R³, and -NR³S(O)₂R²;

R², at each occurrence, is independently selected from
phenyl substituted with 0-5 R⁴²;

C₃-10 carbocyclic group substituted with 0-3 R⁴¹, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R³, at each occurrence, is independently selected from
H, C₁-4 alkyl, C₂-4 alkenyl, C₂-4 alkynyl, and
C₁-4 alkoxy;

alternatively, R² and R³ join to form a 5- or 6-membered ring optionally substituted with -O- or -
N(R⁴)-;

R⁴, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R⁵ is H;

R^{6a} is selected from H, -OH, -CF₃, methyl, ethyl, propyl, butyl, methoxy, and, ethoxy;

R^{6b} is H;

R⁷, R⁸, and R⁹, at each occurrence, are independently selected from
H, halo, -CF₃, -OCF₃, -OH, -OCH₃, -CN, -NO₂,
C₁-4 alkyl, C₁-4 haloalkyl, C₁-4 alkoxy, (C₁-3 haloalkyl)oxy, and
C₁-4 alkyl substituted with 0-2 R¹¹;

R¹¹ is selected from
H, halo, -CF₃, -OCF₃, -OH, -OCH₃, -CN, -NO₂,
C₁-4 alkyl, C₁-4 haloalkyl, C₁-4 alkoxy, and (C₁-3 haloalkyl)oxy;

R³³, at each occurrence, is independently selected from
H, OH, halo, CF₃, and methyl;

R⁴¹, at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, =O,
C₂-8 alkenyl, C₂-8 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl,
C₁-4 alkyl substituted with 0-1 R⁴³,
aryl substituted with 0-3 R⁴², and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴², at each occurrence, is independently selected from

H, CF₃, halo, OH, CO₂H, SO₂R⁴⁵, SR⁴⁵, NR⁴⁶R⁴⁷, OR⁴⁸, NO₂, CN, CH(=NH)NH₂,
NHC(=NH)NH₂,
C₂-6 alkenyl, C₂-6 alkynyl, C₁-4 alkoxy, C₁-4 haloalkyl, C₃-6 cycloalkyl,
C₁-4 alkyl substituted with 0-1 R⁴³,
aryl substituted with 0-3 R⁴⁴, and
5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from
the group consisting of N, O, and S substituted with 0-3 R⁴⁴;

R⁴³ is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, or pyridyl, each substituted with
0-3 R⁴⁴;

R⁴⁴, at each occurrence, is independently selected from H, halo, -OH, NR⁴⁶R⁴⁷, CO₂H,
SO₂R⁴⁵, -CF₃, -OCF₃, -CN, -NO₂, methyl, ethyl, propyl, butyl, methoxy, ethoxy,
propoxy, and butoxy;

R⁴⁵ is methyl, ethyl, propyl, or butyl;

R⁴⁶, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R⁴⁷, at each occurrence, is independently selected from

H, methyl, ethyl, n-propyl, i-propyl, n-butyl,
i-butyl, -C(=O)NH(methyl), -C(=O)NH(ethyl),
-SO₂(methyl), -SO₂(ethyl), -SO₂(phenyl),

-C(=O)O(methyl), -C(=O)O(ethyl), -C(=O)(methyl),
-C(=O)(ethyl), and -C(=O)H;

R⁴⁸, at each occurrence, is independently selected from

H, methyl, ethyl, n-propyl, i-propyl, -C(=O)NH(methyl), -C(=O)NH(ethyl), -C(=O)O(methyl), -C(=O)O(ethyl), -C(=O)(methyl), -C(=O)(ethyl), and -C(=O)H;

k is 1;

m is 0, 1, or 2; and

n is 0, 1 or 2.

29. (Original) The method as defined in Claim 26 where in the compound administered:

X is -CH₂-;

R¹ is selected from

ethyl substituted with Z,
propyl substituted with Z,
butyl substituted with Z,
propenyl substituted with Z,
butenyl substituted with Z,
ethyl substituted with R²,
propyl substituted with R²,
butyl substituted with R²,
propenyl substituted with R², and
butenyl substituted with R²;

Z is selected from H,

-CH(OH)R²,
-OR²,
-SR²,

-NR²R³,
-C(O)R²,
-C(O)NR²R³,
-NR³C(O)R²,
-C(O)OR²,
-S(O)R²,
-S(O)₂R²,
-S(O)₂NR²R³, and -NR³S(O)₂R²;

R², at each occurrence, is independently selected from

phenyl substituted with 0-3 R⁴²;
naphthyl substituted with 0-3 R⁴²;
cyclopropyl substituted with 0-3 R⁴¹;
cyclobutyl substituted with 0-3 R⁴¹;
cyclopentyl substituted with 0-3 R⁴¹;
cyclohexyl substituted with 0-3 R⁴¹;
pyridyl substituted with 0-3 R⁴¹;
indolyl substituted with 0-3 R⁴¹;
indolinyl substituted with 0-3 R⁴¹;
benzimidazolyl substituted with 0-3 R⁴¹;
benzotriazolyl substituted with 0-3 R⁴¹;
benzothienyl substituted with 0-3 R⁴¹;
benzofuranyl substituted with 0-3 R⁴¹;
phthalimid-1-yl substituted with 0-3 R⁴¹;
inden-2-yl substituted with 0-3 R⁴¹;
2,3-dihydro-1H-inden-2-yl substituted with 0-3 R⁴¹;
indazolyl substituted with 0-3 R⁴¹;
tetrahydroquinolinyl substituted with 0-3 R⁴¹; and
tetrahydro-isoquinolinyl substituted with 0-3 R⁴¹;

R^3 , at each occurrence, is independently selected from

H, methyl, and ethyl;

R^5 is H;

R^{6a} is selected from H, -OH, methyl, and methoxy;

R^{6b} is H;

R^7 , R^8 , and R^9 , at each occurrence, are independently selected from H, F, Cl, methyl, ethyl, methoxy, $-CF_3$, and $-OCF_3$;

R^{41} , at each occurrence, is independently selected from

H, F, Cl, Br, OH, CF_3 , NO_2 , CN, =O, methyl, ethyl, propyl, butyl, methoxy, and ethoxy;

R^{42} , at each occurrence, is independently selected from

H, F, Cl, Br, OH, CF_3 , SO_2R^{45} , SR^{45} , $NR^{46}R^{47}$, OR^{48} , NO_2 , CN, =O, methyl, ethyl, propyl, butyl, methoxy, and ethoxy;

R^{45} is methyl, ethyl, propyl, or butyl;

R^{46} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R^{47} , at each occurrence, is independently selected from

H, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, $-C(=O)NH(methyl)$, $-C(=O)NH(ethyl)$, $-SO_2(methyl)$, $-SO_2(ethyl)$, $-SO_2(phenyl)$, $-C(=O)O(methyl)$, $-C(=O)O(ethyl)$, $-C(=O)(methyl)$, $-C(=O)(ethyl)$, and $-C(=O)H$;

R^{48} , at each occurrence, is independently selected from

H, methyl, ethyl, n-propyl, i-propyl, -C(=O)NH(methyl), -C(=O)NH(ethyl), -C(=O)O(methyl), -C(=O)O(ethyl), -C(=O)(methyl), -C(=O)(ethyl), and -C(=O)H;

k is 1;

m is 0, 1, or 2; and

n is 0, 1 or 2.

30. (Original) The method as defined in Claim 26 where the compound administered is a compound of Formula (I-a):

(I-a)

wherein:

b is a single bond;

X is -CH₂-, CH(OH)-, or -C(=O)-

R¹ is selected from

- (CH₂)₃C(=O)(4-fluoro-phenyl),
- (CH₂)₃C(=O)(4-bromo-phenyl),
- (CH₂)₃C(=O)(4-methyl-phenyl),
- (CH₂)₃C(=O)(4-methoxy-phenyl),
- (CH₂)₃C(=O)(4-(3,4-dichloro-phenyl)phenyl),
- (CH₂)₃C(=O)(3-methyl-4-fluoro-phenyl),
- (CH₂)₃C(=O)(2,3-dimethoxy-phenyl),
- (CH₂)₃C(=O)(phenyl),
- (CH₂)₃C(=O)(4-chloro-phenyl),

-(CH₂)₃C(=O)(3-methyl-phenyl),
-(CH₂)₃C(=O)(4-t-butyl-phenyl),
-(CH₂)₃C(=O)(3,4-difluoro-phenyl),
-(CH₂)₃C(=O)(2-methoxy-5-fluoro-phenyl),
-(CH₂)₃C(=O)(4-fluoro-1-naphthyl),
-(CH₂)₃C(=O)(benzyl),
-(CH₂)₃C(=O)(4-pyridyl),
-(CH₂)₃C(=O)(3-pyridyl),
-(CH₂)₃CH(OH)(4-fluoro-phenyl),
-(CH₂)₃CH(OH)(4-pyridyl),
-(CH₂)₃CH(OH)(2,3-dimethoxy-phenyl),
-(CH₂)₃S(3-fluoro-phenyl),
-(CH₂)₃S(4-fluoro-phenyl),
-(CH₂)₃S(=O)(4-fluoro-phenyl),
-(CH₂)₃SO₂(3-fluoro-phenyl),
-(CH₂)₃SO₂(4-fluoro-phenyl),
-(CH₂)₃O(4-fluoro-phenyl),
-(CH₂)₃O(phenyl),
-(CH₂)₃O(3-pyridyl),
-(CH₂)₃O(4-pyridyl),
-(CH₂)₃O(2-NH₂-phenyl),
-(CH₂)₃O(2-NH₂-5-F-phenyl),
-(CH₂)₃O(2-NH₂-4-F-phenyl),
-(CH₂)₃O(2-NH₂-3-F-phenyl),
-(CH₂)₃O(2-NH₂-4-Cl-phenyl),
-(CH₂)₃O(2-NH₂-4-OH-phenyl),
-(CH₂)₃O(2-NH₂-4-Br-phenyl),
-(CH₂)₃O(2-NHC(=O)Me-4-F-phenyl),
-(CH₂)₃O(2-NHC(=O)Me-phenyl),
-(CH₂)₃NH(4-fluoro-phenyl),
-(CH₂)₃N(methyl)(4-fluoro-phenyl),
-(CH₂)₃CO₂(ethyl),

-(CH₂)₃C(=O)N(methyl)(methoxy),
-(CH₂)₃C(=O)NH(4-fluoro-phenyl),
-(CH₂)₂NHC(=O)(phenyl),
-(CH₂)₂NMeC(=O)(phenyl),
-(CH₂)₂NHC(=O)(2-fluoro-phenyl),
-(CH₂)₂NMeC(=O)(2-fluoro-phenyl),
-(CH₂)₂NHC(=O)(4-fluoro-phenyl),
-(CH₂)₂NMeC(=O)(4-fluoro-phenyl),
-(CH₂)₂NHC(=O)(2,4-difluoro-phenyl),
-(CH₂)₂NMeC(=O)(2,4-difluoro-phenyl),
-(CH₂)₃(3-indolyl),
-(CH₂)₃(1-methyl-3-indolyl),
-(CH₂)₃(1-indolyl),
-(CH₂)₃(1-indolinyl),
-(CH₂)₃(1-benzimidazolyl),
-(CH₂)₃(1H-1,2,3-benzotriazol-1-yl),
-(CH₂)₃(1H-1,2,3-benzotriazol-2-yl),
-(CH₂)₂(1H-1,2,3-benzotriazol-1-yl),
-(CH₂)₂(1H-1,2,3-benzotriazol-2-yl),
-(CH₂)₃(3,4 dihydro-1(2H)-quinolinyl),
-(CH₂)₂C(=O)(4-fluoro-phenyl),
-(CH₂)₂C(=O)NH(4-fluoro-phenyl),
-CH₂CH₂(3-indolyl),
-CH₂CH₂(1-phthalimidyl),
-(CH₂)₄C(=O)N(methyl)(methoxy),
-(CH₂)₄CO₂(ethyl),
-(CH₂)₄C(=O)(phenyl),
-(CH₂)₄(cyclohexyl),
-(CH₂)₃CH(phenyl)₂,
-CH₂CH₂CH=C(phenyl)₂,
-CH₂CH₂CH=CMe(4-F-phenyl),
-(CH₂)₃CH(4-fluoro-phenyl)₂,

-CH₂CH₂CH=C(4-fluoro-phenyl)2,
-(CH₂)₂(2,3-dihydro-1H-inden-2-yl),
-(CH₂)₃C(=O)(2-NH₂-phenyl),
-(CH₂)₃C(=O)(2-NH₂-5-F-phenyl),
-(CH₂)₃C(=O)(2-NH₂-4-F-phenyl),
-(CH₂)₃C(=O)(2-NH₂-3-F-phenyl),
-(CH₂)₃C(=O)(2-NH₂-4-Cl-phenyl),
-(CH₂)₃C(=O)(2-NH₂-4-OH-phenyl),
-(CH₂)₃C(=O)(2-NH₂-4-Br-phenyl),
-(CH₂)₃(1H-indazol-3-yl),
-(CH₂)₃(5-F-1H-indazol-3-yl),
-(CH₂)₃(7-F-1H-indazol-3-yl),
-(CH₂)₃(6-Cl-1H-indazol-3-yl),
-(CH₂)₃(6-Br-1H-indazol-3-yl),
-(CH₂)₃C(=O)(2-NHMe-phenyl),
-(CH₂)₃(1-benzothien-3-yl),
-(CH₂)₃(6-F-1H-indol-1-yl),
-(CH₂)₃(5-F-1H-indol-1-yl),
-(CH₂)₃(6-F-2,3-dihydro-1H-indol-1-yl),
-(CH₂)₃(5-F-2,3-dihydro-1H-indol-1-yl),
-(CH₂)₃(6-F-1H-indol-3-yl),
-(CH₂)₃(5-F-1H-indol-3-yl),
-(CH₂)₃(5-F-1H-indol-3-yl),
-(CH₂)₃(9H-purin-9-yl),
-(CH₂)₃(7H-purin-7-yl),
-(CH₂)₃(6-F-1H-indazol-3-yl),
-(CH₂)₃C(=O)(2-NHSO₂Me-4-F-phenyl),
-(CH₂)₃C(=O)(2-NHC(=O)Me-4-F-phenyl),
-(CH₂)₃C(=O)(2-NHC(=O)Me-phenyl),
-(CH₂)₃C(=O)(2-NHCO₂Et-4-F-phenyl),
-(CH₂)₃C(=O)(2-NHC(=O)NHEt-4-F-phenyl),
-(CH₂)₃C(=O)(2-NHCHO-4-F-phenyl),

$-(CH_2)_3C(=O)(2-OH-4-F-phenyl)$,
 $-(CH_2)_3C(=O)(2-MeS-4-F-phenyl)$,
 $-(CH_2)_3C(=O)(2-NHSO_2Me-4-F-phenyl)$,
 $-(CH_2)_2C(Me)CO_2Me$,
 $-(CH_2)_2C(Me)CH(OH)(4-F-phenyl)_2$,
 $-(CH_2)_2C(Me)CH(OH)(4-Cl-phenyl)_2$,
 $-(CH_2)_2C(Me)C(=O)(4-F-phenyl)$,
 $-(CH_2)_2C(Me)C(=O)(2-MeO-4-F-phenyl)$,
 $-(CH_2)_2C(Me)C(=O)(3-Me-4-F-phenyl)$,
 $-(CH_2)_2C(Me)C(=O)(2-Me-phenyl)$,
 $-(CH_2)_2C(Me)C(=O)phenyl$,

R^7 , R^8 , and R^9 , at each occurrence, are independently selected from

hydrogen, fluoro, chloro, bromo, cyano, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, nitro, trifluoromethyl, methoxy, ethoxy, isopropoxy, trifluoromethoxy, phenyl, benzyl,

$HC(=O)-$, $methylC(=O)-$, $ethylC(=O)-$, $propylC(=O)-$, $isopropylC(=O)-$, $n-butylC(=O)-$, $isobutylC(=O)-$, $secbutylC(=O)-$, $tertbutylC(=O)-$, $phenylC(=O)-$,

methylC(=O)NH-, ethylC(=O)NH-, propylC(=O)NH-, isopropylC(=O)NH-, n-butylC(=O)NH-, isobutylC(=O)NH-, secbutylC(=O)NH-, tertbutylC(=O)NH-, phenylC(=O)NH-,

methylamino-, ethylamino-, propylamino-, isopropylamino-, n-butylamino-, isobutylamino-, secbutylamino-, tertbutylamino-, phenylamino-,

provided that two of substituents R⁷, R⁸, and R⁹, are independently selected from hydrogen, fluoro, chloro, bromo, cyano, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, nitro, trifluoromethyl, methoxy, ethoxy, isopropoxy, and trifluoromethoxy;

k is 1 or 2;

m is 1 or 2; and

n is 0, 1 or 2.

31. (Original) The method as defined in Claim 30 where the compound administered is a compound of Formula (V-a):

wherein:

b is a single bond, wherein the bridge hydrogens are in a cis position;

R¹ is selected from

- (CH₂)₃C(=O)(4-fluoro-phenyl),
- (CH₂)₃C(=O)(4-bromo-phenyl),
- (CH₂)₃C(=O)(4-methyl-phenyl),
- (CH₂)₃C(=O)(4-methoxy-phenyl),

$-(CH_2)_3C(=O)(4\text{-}(3,4\text{-dichloro-phenyl})phenyl)$,
 $-(CH_2)_3C(=O)(3\text{-methyl-4-fluoro-phenyl})$,
 $-(CH_2)_3C(=O)(2,3\text{-dimethoxy-phenyl})$,
 $-(CH_2)_3C(=O)(phenyl)$,
 $-(CH_2)_3C(=O)(4\text{-chloro-phenyl})$,
 $-(CH_2)_3C(=O)(3\text{-methyl-phenyl})$,
 $-(CH_2)_3C(=O)(4\text{-t-butyl-phenyl})$,
 $-(CH_2)_3C(=O)(3,4\text{-difluoro-phenyl})$,
 $-(CH_2)_3C(=O)(2\text{-methoxy-5-fluoro-phenyl})$,
 $-(CH_2)_3C(=O)(4\text{-fluoro-1-naphthyl})$,
 $-(CH_2)_3C(=O)(benzyl)$,
 $-(CH_2)_3C(=O)(4\text{-pyridyl})$,
 $-(CH_2)_3C(=O)(3\text{-pyridyl})$,
 $-(CH_2)_3CH(OH)(4\text{-fluoro-phenyl})$,
 $-(CH_2)_3CH(OH)(4\text{-pyridyl})$,
 $-(CH_2)_3CH(OH)(2,3\text{-dimethoxy-phenyl})$,
 $-(CH_2)_3S(3\text{-fluoro-phenyl})$,
 $-(CH_2)_3S(4\text{-fluoro-phenyl})$,
 $-(CH_2)_3S(=O)(4\text{-fluoro-phenyl})$,
 $-(CH_2)_3SO_2(3\text{-fluoro-phenyl})$,
 $-(CH_2)_3SO_2(4\text{-fluoro-phenyl})$,
 $-(CH_2)_3O(4\text{-fluoro-phenyl})$,
 $-(CH_2)_3O(phenyl)$,
 $-(CH_2)_3NH(4\text{-fluoro-phenyl})$,
 $-(CH_2)_3N(methyl)(4\text{-fluoro-phenyl})$,
 $-(CH_2)_3CO_2(ethyl)$,
 $-(CH_2)_3C(=O)N(methyl)(methoxy)$,
 $-(CH_2)_3C(=O)NH(4\text{-fluoro-phenyl})$,
 $-(CH_2)_2NHC(=O)(phenyl)$,
 $-(CH_2)_2NMeC(=O)(phenyl)$,
 $-(CH_2)_2NHC(=O)(2\text{-fluoro-phenyl})$,
 $-(CH_2)_2NMeC(=O)(2\text{-fluoro-phenyl})$,

-(CH₂)₂NHC(=O)(4-fluoro-phenyl),
-(CH₂)₂NMeC(=O)(4-fluoro-phenyl),
-(CH₂)₂NHC(=O)(2,4-difluoro-phenyl),
-(CH₂)₂NMeC(=O)(2,4-difluoro-phenyl),
-(CH₂)₃(3-indolyl),
-(CH₂)₃(1-methyl-3-indolyl),
-(CH₂)₃(1-indolyl),
-(CH₂)₃(1-indolinyl),
-(CH₂)₃(1-benzimidazolyl),
-(CH₂)₃(1H-1,2,3-benzotriazol-1-yl),
-(CH₂)₃(1H-1,2,3-benzotriazol-2-yl),
-(CH₂)₂(1H-1,2,3-benzotriazol-1-yl),
-(CH₂)₂(1H-1,2,3-benzotriazol-2-yl),
-(CH₂)₃(3,4 dihydro-1(2H)-quinolinyl),
-(CH₂)₂C(=O)(4-fluoro-phenyl),
-(CH₂)₂C(=O)NH(4-fluoro-phenyl),
-CH₂CH₂(3-indolyl),
-CH₂CH₂(1-phthalimidyl),
-(CH₂)₄C(=O)N(methyl)(methoxy),
-(CH₂)₄CO₂(ethyl),
-(CH₂)₄C(=O)(phenyl),
-(CH₂)₄(cyclohexyl),
-(CH₂)₃CH(phenyl)₂,
-CH₂CH₂CH=C(phenyl)₂,
-CH₂CH₂CH=CMe(4-F-phenyl),
-(CH₂)₃CH(4-fluoro-phenyl)₂,
-CH₂CH₂CH=C(4-fluoro-phenyl)₂,
-(CH₂)₂(2,3-dihydro-1H-inden-2-yl),
-(CH₂)₃C(=O)(2-NH₂-phenyl),
-(CH₂)₃C(=O)(2-NH₂-5-F-phenyl),
-(CH₂)₃C(=O)(2-NH₂-4-F-phenyl),
-(CH₂)₃C(=O)(2-NH₂-3-F-phenyl),

-(CH₂)₃C(=O)(2-NH₂-4-Cl-phenyl),
-(CH₂)₃C(=O)(2-NH₂-4-OH-phenyl),
-(CH₂)₃C(=O)(2-NH₂-4-Br-phenyl),
-(CH₂)₃(1H-indazol-3-yl),
-(CH₂)₃(5-F-1H-indazol-3-yl),
-(CH₂)₃(7-F-1H-indazol-3-yl),
-(CH₂)₃(6-Cl-1H-indazol-3-yl),
-(CH₂)₃(6-Br-1H-indazol-3-yl),
-(CH₂)₃C(=O)(2-NHMe-phenyl),
-(CH₂)₃(1-benzothien-3-yl),
-(CH₂)₃(6-F-1H-indol-1-yl),
-(CH₂)₃(5-F-1H-indol-1-yl),
-(CH₂)₃(6-F-2,3-dihydro-1H-indol-1-yl),
-(CH₂)₃(5-F-2,3-dihydro-1H-indol-1-yl),
-(CH₂)₃(6-F-1H-indol-3-yl),
-(CH₂)₃(5-F-1H-indol-3-yl),
-(CH₂)₃(5-F-1H-indol-3-yl),
-(CH₂)₃(9H-purin-9-yl),
-(CH₂)₃(7H-purin-7-yl),
-(CH₂)₃(6-F-1H-indazol-3-yl),
-(CH₂)₃C(=O)(2-NHSO₂Me-4-F-phenyl),
-(CH₂)₃C(=O)(2-NHC(=O)Me-4-F-phenyl),
-(CH₂)₃C(=O)(2-NHC(=O)Me-4-F-phenyl),
-(CH₂)₃C(=O)(2-NHCO₂Et-4-F-phenyl),
-(CH₂)₃C(=O)(2-NHC(=O)NHEt-4-F-phenyl),
-(CH₂)₃C(=O)(2-NHCHO-4-F-phenyl),
-(CH₂)₃C(=O)(2-OH-4-F-phenyl),
-(CH₂)₃C(=O)(2-MeS-4-F-phenyl),
-(CH₂)₃C(=O)(2-NHSO₂Me-4-F-phenyl),
-(CH₂)₂C(Me)CO₂Me,
-(CH₂)₂C(Me)CH(OH)(4-F-phenyl)₂,

$-(CH_2)_2C(Me)CH(OH)(4\text{-Cl-phenyl})_2$,
 $-(CH_2)_2C(Me)C(=O)(4\text{-F-phenyl})$,
 $-(CH_2)_2C(Me)C(=O)(2\text{-MeO-4-F-phenyl})$,
 $-(CH_2)_2C(Me)C(=O)(3\text{-Me-4-F-phenyl})$,
 $-(CH_2)_2C(Me)C(=O)(2\text{-Me-phenyl})$,
 $-(CH_2)_2C(Me)C(=O)\text{phenyl}$,

R^7 , R^8 , and R^9 , at each occurrence, are independently selected from hydrogen, fluoro, chloro, bromo, cyano, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, nitro, trifluoromethyl, methoxy, ethoxy, isopropoxy, trifluoromethoxy, methylC(=O)-, ethylC(=O)-, propylC(=O)-, isopropylC(=O)-, methylC(=O)NH-, ethylC(=O)NH -, propylC(=O)NH-, isopropylC(=O)NH, methylamino-, ethylamino-, propylamino-, and isopropylamino-,

provided that two of substituents R^7 , R^8 , and R^9 , are independently selected from hydrogen, fluoro, chloro, methyl, trifluoromethyl, methoxy, and trifluoromethoxy;

m is 1 or 2; and

n is 0, 1 or 2.

32. (Original) The method as defined in Claim 18 where the compound administered is selected from the group:

(\pm)-*cis*-9-(cyclopropylcarbonyl)-4,5,6a,7,8,9,10,10a-octahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-9-isobutyryl-4,5,6a,7,8,9,10,10a-octahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (\pm)-*cis*-2-(2-chlorophenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(2,4-dichlorophenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(3,4-dichlorophenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(2,3-dichlorophenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

tert-butyl (\pm)-*cis*-2-[2-chloro-4-(trifluoromethyl)phenyl]-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(2-chloro-4-methoxyphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(5-isopropyl-2-methoxyphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(3-fluorophenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(2,4-dimethoxyphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(\pm)-*cis*-2-(2-chlorophenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-(2,4-dichlorophenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-(3,4-dichlorophenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-(2,3-dichlorophenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-[2-chloro-4-(trifluoromethyl)phenyl]-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-(2-chloro-4-methoxyphenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-(4-isopropyl-2-methoxyphenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-(3-fluorophenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

(\pm)-*cis*-2-(2,4-dimethoxyphenyl)-4,5,6a,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (\pm)-*cis*-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-10(7*aH*)-carboxylate;

tert-butyl (\pm)-*cis*-2-bromo-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-10(7*aH*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(2,3-dichlorophenyl)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-10(7*aH*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(3,4-dichlorophenyl)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-10(7*aH*)-carboxylate;

tert-butyl (\pm)-*cis*-2-[2-chloro-4-(trifluoromethyl)phenyl]-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-10(7*aH*)-carboxylate;

(\pm)-*cis*-2-(2,3-dichlorophenyl)-5,6,7*a*,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(\pm)-*cis*-2-(3,4-dichlorophenyl)-5,6,7*a*,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(\pm)-*cis*-2-[2-chloro-4-(trifluoromethyl)phenyl]-5,6,7*a*,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

4-((\pm)-*cis*-2-(2-chlorophenyl)-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indol-9(6*aH*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((\pm)-*cis*-2-(2,4-dichlorophenyl)-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indol-9(6*aH*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((\pm)-*cis*-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(7*aH*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((\pm)-*cis*-4,5,7,8,10,10a-hexahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indol-9(6*aH*)-yl)-1-(4-fluorophenyl)-1-butanone;

(6*aS*,10*aR*)-2-(2-fluoro-4-methoxyphenyl)-4,5,6*a*,7,8,9,10,10a-octahydropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-[4-ethoxy-2-(trifluoromethyl)phenyl]-4,5,7,8,10,10a-hexahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-[4-ethoxy-2-(trifluoromethyl)phenyl]-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(4-chloro-2-fluorophenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)- 2-(4-chloro-2-fluorophenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-[4-isopropoxy-2-(trifluoromethyl)phenyl]-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-[4-isopropoxy-2-(trifluoromethyl)phenyl]-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-phenyl-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-phenyl-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(2-methylphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(2-methylphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-[2-(trifluoromethyl)phenyl]-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-[2-(trifluoromethyl)phenyl]-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(3,4-dimethoxyphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(3,4-dimethoxyphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(2,5-dichlorophenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(2,5-dichlorophenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(3,5-dichlorophenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(3,5-dichlorophenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(2-isopropyl-4-methoxyphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(2-isopropyl-4-methoxyphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(5-fluoro-4-methoxy-2-methylphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(5-fluoro-4-methoxy-2-methylphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(4-methoxy-2-methylphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(4-methoxy-2-methylphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(2-chloro-4-methoxyphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(2-chloro-4-methoxyphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

tert-butyl (6a*S*,10a*R*)-2-(3-chloro-2-methylphenyl)-4,5,7,8,10,10a-hexahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole-9(6a*H*)-carboxylate;

(6a*S*,10a*R*)-2-(3-chloro-2-methylphenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido [4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

2-[(6a*S*,10a*R*)-4,5,6a,7,8,9,10,10a-octahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]-2-yl]-5-methoxybenzaldehyde;

(6a*S*,10a*R*)-2-(2,6-dichlorophenyl)-4,5,6a,7,8,9,10,10a-octahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indole;

N-[4-[(6a*S*,10a*R*)-4,5,6a,7,8,9,10,10a-octahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indol-2-yl]-3-(trifluoromethyl)phenyl]-*N*-methylamine;

4-[(6a*S*,10a*R*)-4,5,6a,7,8,9,10,10a-octahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indol-2-yl]-3-(trifluoromethyl)phenylamine;

1-(2-[(6a*S*,10a*R*)-4,5,6a,7,8,9,10,10a-octahdropyrido[4,3-*b*]pyrrolo[3,2,1-*hi*]indol-2-yl]-5-methoxyphenyl)ethanol;

tert-butyl (\pm)-*cis*-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole-11(8a*H*)-carboxylate;

tert-butyl (8a*S*,12a*R*)-2-bromo-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole-11(8a*H*)-carboxylate;

(8a*S*,12a*R*)-2-(2,4-dichlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2,3-dichlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(3,4-dichlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(3,5-dichlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2,5-dichlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2,6-dichlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2-chlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(3-chlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(4-chlorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(\pm)-*cis*-2-(2,6-difluorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2,6-difluorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2,3-difluorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(3,4-difluorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(3-fluorophenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-[2-chloro-4-(trifluoromethyl)phenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2-chloro-4-methoxyphenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(2-fluoro-4-methoxyphenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-(4-methoxy-2-methylphenyl)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-[2-(trifluoromethyl)phenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-[4-isopropoxy-2-(trifluoromethyl)phenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-[2,4-bis(trifluoromethyl)phenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

(8a*S*,12a*R*)-2-[4-fluoro-2-(trifluoromethyl)phenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole;

4-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]-3-(trifluoromethyl)aniline;

4-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]-*N*-methyl-3-(trifluoromethyl)aniline;

2-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]benzaldehyde;

{2-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]phenyl}methanol;

2-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]-5-methoxybenzaldehyde;

{2-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]-5-methoxyphenyl}methanol;

4-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]-3-methylbenzonitrile;

1-{2-[(8a*S*,12a*R*)-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-2-yl]-5-methoxyphenyl}ethanol;

tert-butyl (7a*S*,11a*R*)-2-bromo-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-10(7a*H*)-carboxylate;

(7a*S*,11a*R*)-2-(2,4-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(3,4-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(3,5-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(2,5-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(2,6-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(2-chlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(3-chlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(4-chlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(2,6-difluorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(2,6-difluorophenyl)-10-methyl-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(2,3-difluorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(3,4-difluorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(3-fluorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[2-chloro-4-methoxyphenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[2-fluoro-4-methoxyphenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(4-methoxy-2-methylphenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

4-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]-3-(trifluoromethyl)phenol;

(7a*S*,11a*R*)-2-[2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[4-isopropoxy-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[2,4-bis(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[4-fluoro-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

4-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]-3-(trifluoromethyl)aniline;

4-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]-*N*-methyl-3-(trifluoromethyl)aniline;

4-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]-3-methylbenzonitrile;

2-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]benzaldehyde;

{2-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]phenyl}methanol;

2-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]-5-methoxybenzaldehyde;

{2-[(7a*S*,11a*R*)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-2-yl]-5-methoxyphenyl}methanol;

(8a*S*,12a*R*)-2-[4-ethoxy-2-(trifluoromethyl)phenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3*b*]indole;

(7a*S*,11a*R*)-2-[4-ethoxy-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(8a*S*,12a*R*)-2-[3-chloro-2-methylphenyl]-4,5,6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3*b*]indole;

(7a*S*,11a*R*)-2-[3-chloro-2-methylphenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[5-fluoro-2-methylphenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(\pm)-*cis*-2-(2,3-dichlorophenyl)-10-propyl-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(7a*S*,11a*R*)-2-(2,3-dichlorophenyl)-10-propyl-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(\pm)-*cis*-10-butyl-2-(2,3-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(7a*S*,11a*R*)-10-butyl-2-(2,3-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(7a*S*,11a*R*)-2-(2,3-dichlorophenyl)-10-(4-pentenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(7a*S*,11a*R*)-2-(2,3-dichlorophenyl)-10-(3-methyl-2-butenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-(2,4-dichlorophenyl)-10-propyl-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(7a*S*,11a*R*)-10-butyl-2-(2,4-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(7a*S*,11a*R*)-2-(2,4-dichlorophenyl)-10-(4-pentenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline ;

(7a*S*,11a*R*)-2-(2,4-dichlorophenyl)-10-(3-methyl-2-but enyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-10-(cyclobutylmethyl)-2-(2,3-dichlorophenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-10-methyl-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-10-ethyl-2-[4-methoxy-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-10-propyl-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-10-butyl-2-[4-methoxy-2-(trifluoromethyl)phenyl]-10-methyl-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-10-(4-pentenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-10-(3-methyl-2-butenyl)-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-10-(2-fluoroethyl)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-10-(2,2-difluoroethyl)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-10-(cyclobutylmethyl)-2-[4-methoxy-2-(trifluoromethyl)phenyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

4-((7a*S*,11a*R*)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(7*aH*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((7a*R*,11a*S*)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(7*aH*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((7a*S*,11a*R*)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(7*aH*)-yl)-1-(2-aminophenyl)-1-butanone;

4-((7a*R*,11a*S*)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(7*aH*)-yl)-1-(2-aminophenyl)-1-butanone;

(\pm)-*cis*-3-(5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(7a*H*)-yl)propyl 4-fluorophenyl ether;

4-((\pm)-*cis*-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(7a*H*)-yl)-1-(4-pyridinyl)-1-butanone;

(\pm)-*cis*-10-[3-(6-fluoro-1,2-benzisoxazol-3-yl)propyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(7a*S*,11a*R*)-10-[3-(6-fluoro-1,2-benzisoxazol-3-yl)propyl]-5,6,7a,8,9,10,11,11a-octahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline;

(\pm)-*cis*-4-(4,5,6,7,9,10,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-11(8a*H*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((8a*S*,12a*R*)-4,5,6,7,9,10,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-11(8a*H*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((8a*R*,12a*S*)-4,5,6,7,9,10,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-11(8a*H*)-yl)-1-(4-fluorophenyl)-1-butanone;

4-((\pm)-4,5,6,7,9,10,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-11(8a*H*)-yl)-1-(2-amino-4-fluorophenyl)-1-butanone;

4-((\pm)-*cis*-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(7a*H*)-yl)-1-(2-amino-4-fluorophenyl)-1-butanone ;

4-((7a*S*,11a*R*)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(7a*H*)-yl)-1-(2-amino-4-fluorophenyl)-1-butanone; and

4-((7a*R*,11a*S*)-5,6,8,9,11,11a-hexahydro-4*H*-pyrido[3',4':4,5]pyrrolo[3,2,1-*ij*]quinolin-10(7a*H*)-yl)-1-(2-amino-4-fluorophenyl)-1-butanone.

33. (Original) The method as defined in Claim 18 where the compound administered is selected from the group:

4-[(\pm)-5,6,8,9,10,11,12,12a-octahydro-4*H*,7*aH*-azepino[4',5':4,5]pyrrolo [3,2,1-*ij*]quinolin-10-yl]-1-(4-fluorophenyl)-1-butanone;

4-[(\pm)-5,6,8,9,10,11,12,12a-octahydro-4*H*,7*aH*-azepino[4',5':4,5]pyrrolo [3,2,1-*ij*]quinolin-10-yl]-1-(2-amino-4-fluorophenyl)-1-butanone;

4-[(\pm)-4,5,6,7,9,10,11,12,13,13a-decahydro-11*H*-diazepino[4,5-*b*:3,2,1-*hi*]indol-11-yl]-1-(4-fluorophenyl)-1-butanone;

4-[(\pm)-4,5,6,7,9,10,11,12,13,13a-decahydro-11*H*-diazepino[4,5-*b*:3,2,1-*hi*]indol-11-yl]-1-(2-amino-4-fluorophenyl)-1-butanone;

tert-butyl (\pm)-*cis*-5,6,8,9,10,11,12,12a-octahydro-4*H*,7*aH*-azepino[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-11-carboxylate;

tert-butyl (\pm)-*cis*-2-bromo-5,6,8,9,10,11,12,12a-octahydro-4*H*,7*aH*-azepino[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline-11-carboxylate; and

(\pm)-*cis*-2-[4-methoxy-2-(trifluoromethyl)phenyl]-5,6,8,9,10,11,12,12a-octahydro-4*H*,7*aH*-azepino[3',4':4,5]pyrrolo[3,2,1-*ij*]quinoline.

34. (Original) The method as defined in Claim 18 where the compound administered is selected from the group:

tert-butyl (\pm)-*cis*-2-bromo-4-oxo-4,5,6,7,9,10,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole-11(8*aH*)-carboxylate;

tert-butyl (\pm)-*cis*-2-(2,4-dichlorophenyl)-4-oxo-4,5,6,7,9,10,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indole-11(8*aH*)-carboxylate;

(\pm)-*cis*-2-(2,4-dichlorophenyl)-6,7,8a,9,10,11,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-4(5*H*)-one;

(8a*S*, 12a*R*)-2-(2,4-dichlorophenyl)-6,7,8a,9,10,11,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-4(5*H*)-one;

(8a*R*, 12a*S*)-2-(2,4-dichlorophenyl)-6,7,8a,9,10,11,12,12a-octahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-4(5*H*)-one;

(8a*S*, 12a*R*)-2-(2,4-dichlorophenyl)-6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-4-ol; and

(8a*R*, 12a*S*)-2-(2,4-dichlorophenyl)-6,7,8a,9,10,11,12,12a-decahydroazepino[3,2,1-*hi*]pyrido[4,3-*b*]indol-4-ol.