UNIVERSIDADE DE CAXIAS DO SUL

Sistemas Digitais I

Professora: Marilda Spindola

Exercícios de karnaugh

- 1) Três braços automáticos alimentam uma esteira com peças mecânicas. A esteira (saída do processo) funciona da seguinte maneira:
- A esteira pára sempre que não houver braços operando;
- A esteira funciona normalmente quando 2 ou 3 braços estiverem funcionando. Considere o estado "parado" como sendo nível zero. Encontre a função que representa o sistema por minitermos e por máxitermos.

Α	В	С	ESTEIRA
0	0	0	<mark>0</mark>
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Esteira min = (/A .B.C) + (A./B .C) + (A.B./C) + (A.B.C)Esteira máx = (A+B+C) . (A+B+C) . (A+B+C) . (A+B+C)

- 1) Três braços automáticos alimentam uma esteira com peças mecânicas. A esteira (saída do processo) funciona da seguinte maneira:
- A esteira pára sempre que não houver braços operando;
- A esteira funciona normalmente quando 2 ou 3 braços estiverem funcionando. Considere o estado "parado" como sendo nível zero. Encontre o CKT equivalente deste sistema através do Mapa de Karnaugh.

Α	В	С	ESTEIRA
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2) Um sistema de segurança possui 4 pontos de sensoriamento. A saída é habilitada em zero sempre que um dos sensores atuarem. Faça por maxitermo o CKT equivalente e após construa o mapa de karnaugh equivalente e também seu novo CKT.

Α	В	С	D	Saída
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	

Α	В	С	D	Saída
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

2) Um sistema de segurança possui 4 pontos de sensoriamento. A saída é habilitada em zero sempre que um dos sensores atuarem. Faça por maxitermo o CKT equivalente e após construa o mapa de karnaugh equivalente e também seu novo CKT.

3) Um CKT funciona da seguinte maneira: Quando a terceira entrada C está em nível 1, a saída é dada por: **S = (A + /B)** Quando a terceira entrada C está em nível 0, a saída é dada por: **S = (A . B)** Encontre o CKT equivalente deste sistema através do Mapa de Karnaugh

Α	В	С	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

3) Um CKT funciona da seguinte maneira: Quando a terceira entrada C está em nível 1, a saída é dada por: **S = (A V /B)** Quando a terceira entrada C está em nível 0, a saída é dada por: **S = (A Λ B)** Encontre o CKT equivalente deste sistema através do Mapa de Karnaugh

4) Em um sistema de controle computacional, as variáveis de entrada A, B e C são controladas por uma quarta variável D. As saídas manifestam-se segundo os níveis de D. Quando D está em nível 0, a saída é composta pela combinação de A, B e C, segundo a função: S = (A . B) + (/A . /B) . /C Quando D está em nível 1, a saída é composta por: S = (A + /B) . (/A . B) + /C Encontre os CKTs equivalentes através do Mapa de Karnaugh.

Α	В	С	D	Saída
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0

Α	В	С	D	Saída
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Saida=(/C.D) + (/A./B/C) + (A.B./D)

4) Em um sistema de controle computacional, as variáveis de entrada A, B e C são controladas por uma quarta variável D. As saídas manifestam-se segundo os níveis de D. Quando D está em nível 0, a saída é composta pela combinação de A, B e C, segundo a função: S = (A . B) + (/A . /B) . /C Quando D está em nível 1, a saída é composta por: S = (A + /B) . (/A . B) + /C Encontre os CKTs equivalentes através do Mapa de Karnaugh.

Α	В	С	D	E	F	G	н
0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	0
0	0	1	1	1	1	0	1
0	1	0	0	1	1	0	0
0	1	0	1	1	0	1	1
0	1	1	0	1	0	1	0
0	1	1	1	1	0	0	1

Α	В	С	D	E	F	G	Н
1	0	0	0	1	0	0	0
1	0	0	1	0	1	1	1
1	0	1	0	0	1	1	0
1	0	1	1	0	1	0	1
1	1	0	0	0	1	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	0	1	0
1	1	1	1	0	0	0	1

(/A.D) + (/A.C)E = (A./B./C./D) + (/A.(B+D+C))

E = (A./B./C./D) + (/A.B) +

Α	В	С	D	E	F	G	Н
0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	0
0	0	1	1	1	1	0	1
0	1	0	0	1	1	0	0
0	1	0	1	1	0	1	1
0	1	1	0	1	0	1	0
0	1	1	1	1	0	0	1

Α	В	С	D	E	F	G	Н
1	0	0	0	1	0	0	0
1	0	0	1	0	1	1	1
1	0	1	0	0	1	1	0
1	0	1	1	0	1	0	1
1	1	0	0	0	1	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	0	1	0
1	1	1	1	0	0	0	1

F = (B./C./D) + (/B.D) + (/B.C)

Α	В	С	D	Е	F	G	Н
0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	0
0	0	1	1	1	1	0	1
0	1	0	0	1	1	0	0
0	1	0	1	1	0	1	1
0	1	1	0	1	0	1	0
0	1	1	1	1	0	0	1

Α	В	С	D	E	F	G	Н
1	0	0	0	1	0	0	0
1	0	0	1	0	1	1	1
1	0	1	0	0	1	1	0
1	0	1	1	0	1	0	1
1	1	0	0	0	1	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	0	1	0
1	1	1	1	0	0	0	1

$$G = (/C.D) + (C./D)$$

$$G = (C XOR D)$$

Α	В	С	D	E	F	G	Н
				<u> </u>	•		11
0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	0
0	0	1	1	1	1	0	1
0	1	0	0	1	1	0	0
0	1	0	1	1	0	1	1
0	1	1	0	1	0	1	0
0	1	1	1	1	0	0	1

Α	В	С	D	Е	F	G	Н
1	0	0	0	1	0	0	0
1	0	0	1	0	1	1	1
1	0	1	0	0	1	1	0
1	0	1	1	0	1	0	1
1	1	0	0	0	1	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	0	1	0
1	1	1	1	0	0	0	1

$$H = D$$

				_		
Α	В	С	D	U	М	С
0	0	0	0	0	0	1
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	0	0	1
0	1	1	0	0	0	1
0	1	1	1	0	0	1

Α	В	С	D	U	М	С
1	0	0	0	0	0	1
1	0	0	1	0	1	0
1	0	1	0	0	1	0
1	0	1	1	0	1	0
1	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	1	0	0	1	0
1	1	1	1	1	1	0

U = A.B.C.D

Α	В	С	D	U	М	С
0	0	0	0	0	0	1
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	0	0	1
0	1	1	0	0	0	1
0	1	1	1	0	0	1

Α	В	С	D	U	М	С
1	0	0	0	0	0	1
1	0	0	1	0	1	0
1	0	1	0	0	1	0
1	0	1	1	0	1	0
1	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	1	0	0	1	0
1	1	1	1	1	1	0

U = (A.B) + (A.D) + (A.C)

Α	В	С	D	U	М	С
0	0	0	0	0	0	1
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	0	0	1
0	1	1	0	0	0	1
0	1	1	1	0	0	1

Α	В	С	D	U	М	С
1	0	0	0	0	0	1
1	0	0	1	0	1	0
1	0	1	0	0	1	0
1	0	1	1	0	1	0
1	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	1	0	0	1	0
1	1	1	1	1	1	0

$$U = (A./B./C./D) + (/A)$$

7) Considere que tem um dispositivo com uma saída Z e quatro entradas A, B, C e D. A saída é colocada em 1 quando nas entradas existem mais 1s do que 0s e, caso contrário, é colocada em 0. Se o número de entradas = 1 for igual ao número de entradas a 0, então a saída é igual ao complemento da entrada A. Construa a tabela de verdade do circuito enunciado. A partir do respectivo mapa de Karnaugh determine a função simplificada e desenhe o diagrama lógico.

Α	В	С	D	Z
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	1
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	

Α	В	С	D	Z
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Z = C.D + B.D + B.C

7) Considere que tem um dispositivo com uma saída Z e quatro entradas A, B, C e D. A saída é colocada em 1 quando nas entradas existem mais 1s do que 0s e, caso contrário, é colocada em 0. Se o número de entradas a 1 for igual ao número de entradas a 0 então a saída é igual ao complemento da entrada A. Construa a tabela de verdade do circuito enunciado. A partir do respectivo mapa de Karnaugh determine a função simplificada e desenhe o diagrama lógico.

