Today

- Finish up basic trees
 - code for model algorithm
 - multiple predictor variables
 - inference algorithm
- Ensemble methods
 - bagging (bootstrap aggregation)

Code

- ants_tree.R
- model algorithm
- translate pseudocode to R

> head(ants)

	habitat	latitude	elevation	richness
1	forest	41.97	389	6
2	forest	42.00	8	16
3	forest	42.03	152	18
4	forest	42.05	1	17
5	forest	42.05	210	9
6	forest	42.17	78	15

All 3 predictors

Inference

- k-fold CV
- Can tune tree parameters
 - e.g. tree depth
- or tree complexity: regularization
 - training: complexity penalty
 - e.g. loss = SSQ + α T
 - where α is a tuning parameter, T is number of leaves
 - "pruning" (first fit complex tree, then prune it)

Ensemble methods

- Train many models (ensemble)
- Average the models to predict
- Averaging reduces prediction variance

e.g.
$$Var(\bar{y}) = \frac{\sigma_y^2}{n}$$

variance of the mean of y is less than the variance of y

Bagging

- Bootstrap
 - form new datasets by resampling from the data
 - sample with replacement
- Aggregate
 - average over bootstrapped model fits

Bagging algorithm

for many repetitions
resample the data with replacement
train the base model
record prediction
final prediction = mean of predictions

Base model: can be any type of model

Bagged regression tree

```
# Bagging algorithm
boot_reps <- 500
n <- nrow(forest_ants)
nx <- nrow(grid_data)
boot_preds <- matrix(rep(NA, nx*boot_reps), nrow=nx, ncol=boot_reps)
# for many repetitions
for ( i in 1:boot_reps ) {
# resample the data (rows) with replacement
    boot_indices <- sample(1:n, n, replace=TRUE)
    boot_data <- forest_ants[boot_indices,]
# train the base model
    boot_train <- tree(richness ~ latitude, data=boot_data)
# record prediction
    boot_preds[,i] <- predict(boot_train, newdata=grid_data)
}
bagged_preds <- rowMeans(boot_preds)</pre>
```

