A Two-View based Multilayer Feature Graph for Robot Navigation

Haifeng Li[†], Dezhen Song^{*}, Yan Lu^{*}, Jingtai Liu[†]

* Texas A&M University, USA † Nankai University, China

Motivation & Introduction

- **Landmarks** for Robot Navigation
 - Artificial Landmark
 Bar codes, Colored geometric figures like squares or circles, etc.
 - Natural Landmark

Point Cloud

R. Valencia et al, 2009

Salient Points (SIFT)

S. Se et al, 2001

Line Segments

A. Gee and Mayol-Cuevas, 2006

Motivation & Introduction

Our Approach

- Data structure Multilayer Feature Graph (MFG)
- Method Feature fusion

Related Work

Navigation Sensors

- Sonar arrays
 - Elfes, 1987
- Laser range finder
 - Diosi and Kleeman, 2005
 - Nguyen et al, 2006
- Depth (RGB-D) camera
 - Henry et al, 2010
- Regular camera
 - Eade et al, 2006
 - Choi et al, 2008
- Combinations
 - Chen et al, 2004

Related Work

3D Reconstruction

- Voxels
 - Eisert et al, 1999
- Level-sets
 - Jin et al, 2005
 - Pons et al, 2005
- Polygon mesh
 - Yu et al, 2007
- Multiple depth maps
 - Szeliski, 1999

Related Work

Line Segment Matching

- Epipolar constraint
 - Schimid and Zisserman, 2000
- Color based method
 - Guerrero and Sagues, 2003
 - Wang et al, 2009
- Grouping based methods
 - Lourakis et al, 2000
- Point based line matching (PBLM)
 - Fan et al, 2010

Problem Description

Assumptions

- Rectilinear environments
- Gravity sensor
- Calibrated camera
- **Input:** Two views
- Output: Multilayer Feature Graph

MFG Layer 1&2: Raw Features

LSD (von Gioi et al, 2010)

SIFT (Lowe, 1999)

 $p_2 \in Ne(\iota_i), \ p_1 \notin Ne(\iota_i)$

MFG Layer 3: Ideal Lines

$$l_1 \in l_1, l_2 \in l_1$$

MFG Layer 4: Vertical Planes

Layer 4 – Vertical Planes

MFG Layer 5: Vanishing Points

Layer 5 – Vanishing Points

MFG Construction

♦ Parallelism Verification

- ➤ Vanishing point estimation
- ➤ Ideal line estimation
- Vanishing point matching

MFG Construction (cont'd)

♦ Collinearity Verification

- > Key point correspondences
- ➤ Point-based line matching (PBLM)

Similarity measurement: For SIFT pair (p_i, p_i) , if $p_i \in Ne(\iota_a)$, $p_i \in Ne(\iota_b)$ then the similarity between ι_a and ι_b increases by 1.

MFG Construction (cont'd)

♦ Collinearity Verification (cont'd)

- ➤ Ideal line matching by voting
- ➤ Line-guided line segment matching

MFG Construction (cont'd)

Coplanarity Verification

3D Plane $\pi = (\mathbf{n}^T, d)^T$ Line Homography: $l_i = \mathbf{H}^T l_i'$ where $\mathbf{H} = \mathbf{K}(\mathbf{R} - \mathbf{t}\mathbf{n}^T/d)\mathbf{K}^{-1}$

Experiment setup

Laptop PC, Windows XP, Matlab

Image data (first view, 640x480)

Experiment 1: Line Segment Matching

Experiment 1: Line Segment Matching

No.	PBLM		MFG		TM	CR	
	TM	CR	TM	CR	difference	difference	
1	224	93.3%	297	95.6%	73	2.3%	
2	157	94.9%	289	92.0%	132	-2.9%	
3	124	92.7%	178	96.2%	54	3.5%	
4	186	93.5%	282	96.1%	96	2.6%	
5	157	93.0%	274	95.3%	117	2.3%	
6	219	93.6%	302	94.0%	83	0.4%	
7	126	94.4%	189	94.7%	73	0.3%	
8	194	92.3%	314	95.5%	120	3.2%	

PBLM: Point based line matching (Fan et al, 2010)

TM: Total matches

CR : Correct ratio

Experiment 2: Vertical Plane Estimation

No.	π_1		π_2		π_3		π_4		
	mean	std. dev.	mean	std. dev.	mean	std. dev.	mean	std. dev.	
1	2.58	0.82	4.11	1.18				_	^
2	3.33	0.48	3.16	0.88				\bar{X} :—	$\hat{X}_i \ $
3	4.02	1.28	4.49	0.92			11	<u> </u>	$\frac{1+\int 1 }{ 1 }$
4	4.10	1.03	4.67	0.41				X	·
5	3.43	0.14	4.43	0.28	4.37	0.28		$II^{-1}J$	11
6	5.18	0.74	4.02	0.64	2.64	0.44			
7	4.08	0.16	4.18	0.43	5.20	0.47			
8	4.88	0.29	3.00	0.48	4.41	0.15	6.01	0.26	

Conclusions

- A novel multilayer feature graph for robot scene understanding and navigation
- A feature fusion approach for MFG construction
- Robustness and accuracy verified by experiments

Future Works

- MFG-based localization
- ➤ N-view(N>2) MFG construction
- Computation complexity analysis and efficient data structure development
- Distributed and parallel implementation
- Consider horizontal plane (ground plane)

Thank You! Q&A

Netbot Lab, Texas A&M University http://telerobot.cs.tamu.edu IRAIS, Nankai University http://robot.nankai.edu.cn