中国剩余定理

定理 2': 线性同余方程组

$$\begin{cases} x \equiv c_1 \pmod{m_1} \\ x \equiv c_2 \pmod{m_2} \\ \vdots \\ x \equiv c_s \pmod{m_s} \end{cases}$$

$$(1)$$

在 $mod\ M=m_1m_2\cdots m_s$ 意义下有唯一的解,其中 m_1,m_2,\cdots,m_s 两两互素, $s\geq 2$,

证明:存在性: 令 $n_i = \frac{M}{m_i}$

由 m_1, m_2, \dots, m_s 两两互素, 知 $(n_1, m_i) = 1$

对 $1 \le i \le s, n_i y_i \equiv 1 \pmod{m_i}$ 有唯一解(标注: 这里不知道为什么,待解决) $y_i \equiv n_i^{-1} \pmod{m_i}$

可以验证 $x_0 \equiv c_1 n_1 y_1 + c_2 n_2 y_2 + \cdots + c_s n_s y_s \pmod{M}$ 满足方程组

例如,由于 n_2, n_3, \cdots, n_s 都被 m_1 整除,故 $x_0 \equiv c_1 n_1 y_1 + 0 + \cdots + 0 \equiv c_1 n_1 y_1 \equiv c_1 \pmod{m_1}$

唯一性: 假设 x 和 y 都满足这个线性同余方程组,则

$$\begin{cases} x - y \equiv 0 \pmod{m_1} \\ x - y \equiv 0 \pmod{m_2} \\ \vdots \\ x - y \equiv 0 \pmod{m_s} \end{cases}$$

$$(2)$$

由 m_1, m_2, \cdots, m_s 两两互素, 知 $m_1 m_2 \cdots m_s \mid x - y$

故 $x \equiv y \pmod{M}$

例:解同余方程组

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$$
(3)

解: 己知 $c_1 = 2, c_2 = 3, c_3 = 2$

 $m_1 = 3, m_2 = 5, m_3 = 7$

 $M = 3 \times 5 \times 7 = 105$

 $n_1 = 35, n_2 = 21, n_3 = 15$

解

$$\begin{cases} 35y_1 \equiv 1 \pmod{3} \\ 21y_2 \equiv 1 \pmod{5} \\ 15y_3 \equiv 1 \pmod{7} \end{cases}$$
 (4)

得

$$\begin{cases} y_1 \equiv 2 \pmod{3} \\ y_2 \equiv 1 \pmod{5} \\ y_3 \equiv 1 \pmod{7} \end{cases}$$

$$(5)$$

 $\therefore x_0 \equiv 2 \times 35 \times 2 + 3 \times 21 \times 1 + 2 \times 15 \times 1 \equiv 233 \equiv 23 \pmod{105}$