

2-echelon lastmile delivery with lockers and occasional couriers

Mathematical Optimisation

Andrea Gonzato, Ionut Alexandru Pascariu

Sections

- 1. Problem Description
- 2. Mathematical Formulation
- 3. Implementation
- 4. Results & Conclusions

01 Problem Description

The paper

Transportation Research Part E 162 (2022) 102714

Contents lists available at ScienceDirect

Transportation Research Part E

journal homepage: www.elsevier.com/locate/tre

2-echelon lastmile delivery with lockers and occasional couriers

André Gustavo dos Santos a,d,*, Ana Viana b,d, João Pedro Pedroso c,d

b Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, Porto 4200-072, Portugal

^c Universidade do Porto, Faculdade de Ciências, Rua do Campo Alegre 1021/1055, Porto 4169-007, Portugal

d INESC TEC, Rua Dr. Roberto Frias, Porto 4200, Portugal

Delivery Problem

Objective: minimize transport costs

Warehouse

- Point of origin of parcels
- Unique
- Infinite capacity

Lockers

- Spot where to collect and help to distribute packages
- Limited capacity
- L = len(lockers)

locker capacity =
$$W_l = \left[0.8 \cdot \frac{|C|}{|L|}\right]$$

Customers

- Customers partition:
 - Locker Customer (CL)[30%]
 - Occasional Couriers (OC)
 - Door to door Customers (CD)[70%]
 - S_k: served by the OCs
- C = len(customers)

 $c \in S_k$ if and only if: $d_{a_k,c} + d_{c,k} \le 1.5 \cdot d_{a_k,k}$

Vehicles

- Vehicles type:
 - Professional (PF)
 - Local Fleet (LF)
 - Locker supply

PF capacity	Q	$\lceil 0.5 \cdot C_D \rceil$
LF capacity	\mathbf{Q}^l	$\lceil 0.6 \cdot W_l \rceil$
Locker supply capacity	\mathbf{Q}^L	$\lceil 0.8 \cdot \sum_{l} W_{l} \rceil$

02

Mathematical Formulation

Parameters

Table 1

Default delivery costs, proportional to the distance d_{ij} associated to arc (i, j).

Туре	Symbol	Standard cost
PF	c_{ij}	$\pi \times d_{ij}$, where $\pi = 1.00$
LF	c_{ij}^{l}	$\pi^l \times d_{ij}$, where $\pi^l = 0.85$
Supply	c_{ij}^{L}	$\pi^L \times d_{ij}$, where $\pi^L = 0.75$
Compensation	p_{ck}	$\rho \times d_{a_k,c}$, where $\rho = 0.50$

Table 3

Default values for customers' characterization.

Parameter	Symbol	Standard value
Demand	q_i	1
Locker	a_k	The closest to customer k
OC's coverage	δ	1.5, i.e., a max detour of 50%

Decision Variables

The following decision variables are used:

- $x_{ij}, x_{ij}^L, x_{ij}^l$: 1, if arc (i, j) is traversed by the PF, the locker supplying vehicles or the LF associated to locker l, respectively; 0, otherwise.
- $y_{ij}, y_{ij}^L, y_{ij}^l$: load on each type of vehicle when traversing arc (i, j).
- z_c : 1, if customer c is served by the PF; 0, otherwise.
- z_c^l : 1, if customer c is served by the LF associated to locker l; 0, otherwise.
- z_l^L : 1, if locker *l* is served by a supply route; 0, otherwise.
- w_{ck} : 1, if customer c is outsourced to OC k; 0, otherwise.

Delivery Problem

Objective: minimize transport costs

Single Period Problem Objective Function

$$\min \sum_{i,j \in O \cup L} c_{ij}^L x_{ij}^L + \sum_{k \in C_L} \sum_{c \in S_k} p_{ck} w_{ck} + \sum_{i,j \in O \cup C_D} c_{ij} x_{ij} + \sum_{l \in L} \sum_{i,j \in \{l\} \cup C_D} c_{ij}^l x_{ij}^l$$

$$\min \sum_{i,j \in O \cup L} c_{ij}^L x_{ij}^L + \sum_{k \in OC} \sum_{c \in S_k} p_{ck} w_{ck} + \sum_{i,j \in O \cup C_D} c_{ij} x_{ij} + \sum_{l \in L} \sum_{i,j \in \{l\} \cup C_D} c_{ij}^l x_{ij}^l$$

Single Period Problem The constraints of the paper

Customers' service

$$z_c + \sum_{k \in C_L \mid c \in S_k} w_{ck} + \sum_{l \in L} z_c^l = 1,$$

$$\sum_{c \in S_k} w_{ck} \le 1,$$

$$\sum_{k \in C_L \mid a_k = l} \left(q_k + \sum_{c \in S_k} q_c w_{ck} \right) + \sum_{c \in C_D} q_c z_c^l \le W_l z_l^L,$$

$$\forall c \in C_D$$

$$\forall k \in C_L$$

$$\forall l \in L$$

Single Period Problem Our constraints

Customers' service

$$z_{c} + \sum_{k \in OC \mid c \in S_{k}} w_{ck} + \sum_{l \in L} z_{c}^{l} = 1$$

$$\sum_{c \in S_{k}} w_{ck} \le 1$$

$$\sum_{k \in C_{L} \mid a_{k} = l} q_{k} + \sum_{k \in OC \mid a_{k} = l} \sum_{c \in S_{k}} q_{c} w_{ck} + \sum_{c \in C_{D}} q_{c} z_{c}^{l} \le W_{l} z_{l}^{L}$$

$$\forall c \in C_D$$

$$\forall k \in OC$$

$$\forall l \in L$$

Single Period Problem The constraints of the paper

Professional fleet constraints

$$\begin{split} \sum_{j \in C_D \cup O} x_{ij} &= \sum_{j \in C_D \cup O} x_{ji} = z_i, & \forall i \in C_D \\ \sum_{j \in C_D} x_{oj} - \sum_{j \in C_D} x_{jo} &= 0 \\ \sum_{j \in C_D \cup O} y_{ji} - \sum_{j \in C_D \cup O} y_{ij} &= q_i z_i, & \forall i \in C_D \\ \sum_{j \in C_D} y_{jo} - \sum_{j \in C_D} y_{oj} &= \sum_{i \in C_D} -q_i z_i \\ y_{ij} &\leq Q x_{ij}, & \forall i, j \in C_D \cup O \\ y_{jo} &= 0, & \forall i \in C_D \end{split}$$

Single Period Problem The constraints of the paper

Supply routes constraints

$$\begin{split} \sum_{j \in L \cup O} x_{ij}^L &= \sum_{j \in L \cup O} x_{ji}^L = z_i^L, & \forall i \in L \\ \sum_{j \in L} x_{oj}^L - \sum_{j \in L} x_{jo}^L &= 0 \\ \sum_{j \in L \cup O} y_{ji}^L - \sum_{j \in L \cup O} y_{ij}^L &= \sum_{k \mid a_k = i} \left(q_k + \sum_{c \in S_k} q_c w_{ck} \right) + \sum_{c \in C_D} q_c z_c^i, & \forall i \in L \\ \sum_{j \in L} y_{jo}^L - \sum_{j \in L} y_{oj}^L &= -\sum_{i \in L} \left(\sum_{k \mid a_k = i} \left(q_k + \sum_{c \in S_k} q_c w_{ck} \right) + \sum_{c \in C_D} q_c z_c^i \right) \\ y_{ij}^L &\leq Q^L x_{ij}^L, & \forall i, j \in L \cup O \\ y_{io}^L &= 0, & \forall i \in L \end{split}$$

Single Period Problem Our constraints

Supply routes constraints

$$\begin{split} \sum_{j \in L \cup O} x_{ij}^L &= \sum_{j \in L \cup O} x_{ji}^L = z_i^L, & \forall i \in L \\ \sum_{j \in L} x_{oj}^L - \sum_{j \in L} x_{jo}^L &= 0 \\ \sum_{j \in L \cup O} y_{ji}^L - \sum_{j \in L \cup O} y_{ij}^L &= \sum_{k \in C_L \mid a_k = i} q_k + \sum_{k \in OC \mid a_k = i} \sum_{c \in S_k} q_c w_{ck} + \sum_{c \in C_D} q_c z_c^i \\ \sum_{j \in L} y_{jo}^L - \sum_{j \in L} y_{oj}^L &= -\sum_{i \in L} (\sum_{k \in C_L \mid a_k = i} q_k + \sum_{k \in OC \mid a_k = i} \sum_{c \in S_k} q_c w_{ck} + \sum_{c \in C_D} q_c z_c^i) \\ y_{ij}^L &\leq Q^L x_{ij}^L, & \forall i, j \in L \cup O \\ y_{ic}^L &= 0, & \forall i \in L \end{split}$$

Single Period Problem The constraints of the paper

Local fleet constraints $(\forall l \in L)$

$$\begin{split} \sum_{j \in C_D \cup \{l\}} x_{ij}^l &= \sum_{j \in C_D \cup \{l\}} x_{ji}^l = z_i^l, & \forall i \in C_D \\ \sum_{j \in C_D} x_{lj}^l - \sum_{j \in C_D} x_{jl}^l &= 0 \\ \sum_{j \in C_D \cup \{l\}} y_{ji}^l - \sum_{j \in C_D \cup \{l\}} y_{ij}^l &= q_i z_i^l, & \forall i \in C_D \\ \sum_{j \in C_D} y_{jl}^l - \sum_{j \in C_D} y_{lj}^l &= \sum_{i \in C_D} -q_i z_i^l & \\ y_{ij}^l &\leq Q^l x_{ij}^l, & \forall i, j \in C_D \cup \{l\} \\ y_{il}^l &= 0, & \forall i \in C_D \end{split}$$

3 new constraints

$$x_{ii} = 0$$
 $\forall i \in C_D \cup O$
 $x_{ii}^l = 0$ $\forall l \in L \forall i \in C_D \cup l$
 $x_{ii}^L = 0$ $\forall i \in L \cup O$

Multi Period Problem

- C_L^l : set of locker customers of locker $l \in (L \cup O)$ that did not show up;
- C_D^l : set of door-to-door customers whose parcels remained in locker $l \in L \cup O$ (due to no-show of OCs); notice that C_D^o is the set of door-to-door customers that in a previous period were assigned to an OC associated to the warehouse that did not show-up;
- $\hat{C}_D^l \subseteq C_D^l$: subset of door-to-door customers that must be served in that period;

Multi Period Problem Objective Function

$$\min \sum_{i,j \in O \cup L} c_{ij}^L x_{ij}^L + \sum_{k \in C_L \cup C_L^*} \sum_{c \in S_k} p_{ck} w_{ck} + \sum_{i,j \in O \cup C_D \cup C_D^o} c_{ij} x_{ij} + \sum_{l \in L} \sum_{i,j \in \{l\} \cup C_D \cup C_D^o \cup C_D^l} c_{ij}^l x_{ij}^l$$

Multi Period Problem Objective Function

Table 8
Instances' size: total and per period.

ID Bas	Base	Total			Days	Per day		
		N	L	C_L	C_D	\overline{D}	$\overline{C_L^d}$	C_D^d
R2	rat575	575	2	150	422	20	7–8	21–22
R3	rat575	575	3	180	391	20	9	19-20
D2	dsj1000	1000	2	200	797	30	6–7	26-27
D4	dsj1000	1000	4	240	755	30	8	25-26
N3	nrw1379	1379	3	375	1000	40	9-10	25
N4	nrw1379	1379	4	450	924	40	11-12	23-24

Multi Period Problem Objective Function

$$\min \sum_{i,j \in O \cup L} c_{ij}^L x_{ij}^L + \sum_{k \in C_L \cup C_L^*} \sum_{c \in S_k} p_{ck} w_{ck} + \sum_{i,j \in O \cup C_D \cup C_D^o} c_{ij} x_{ij} + \sum_{l \in L} \sum_{i,j \in \{l\} \cup C_D \cup C_D^o \cup C_D^l} c_{ij}^l x_{ij}^l$$

$$Obj_{d_i} = min \sum_{i,j \in O \cup L} c_{ij}^L x_{ij}^L + \sum_{k \in OC^{d_i}} \sum_{c \in S_k^{d_i}} p_{ck} w_{ck} + \sum_{i,j \in O \cup C_D^{d_i} \cup C_D^{d_{i-1}}} c_{ij} x_{ij} + \sum_{l \in L} \sum_{i,j \in l \cup C_D^{d_i} \cup C_D^{d_{i-1}}} c_{ij}^l x_{ij}^l$$

Multi Period Problem

The constraints of the paper

$$\begin{split} z_c + \sum_{k \in C_L \cup C_L^* \mid c \in S_k} w_{ck} + \sum_{l \in L} z_c^l &= 1, & \forall c \in C_D \cup C_D^o \\ \sum_{k \in (C_L \mid a_k = l) \cup C_L^l \mid c \in S_k} w_{ck} + z_c^l &= 1, & \forall l \in L, c \in C_D^l \\ z_c^l &= 1, & \forall l \in L, c \in C_D^l \\ z_c + \sum_{l \in L} z_c^l &= 1, & \forall c \in C_D^o \\ \sum_{k \in C_L \mid a_k = l} w_{ck} &\leq 1, & \forall k \in C_L \cup C_L^* \\ \sum_{k \in C_L \mid a_k = l} \left(q_k + \sum_{c \in S_k} q_c w_{ck} \right) + \sum_{c \in C_D} q_c z_c^l + \sum_{k \in C_L^l} \sum_{c \in S_k} q_c w_{ck} &\leq \left(W_l - \sum_{k \in C_L^l} q_k - \sum_{c \in C_D^l} q_c \right) z_l^L, & \forall l \in L \end{split}$$

Multi Period Problem Our problem interpretation

Day i

OC may include CL of the previous day

Sk include only the Sk of the current day

ĈD are all the CD of the previous day

Multi Period Problem The constraints of the paper

$$\begin{split} z_c + \sum_{k \in C_L \cup C_L} w_{ck} + \sum_{l \in L} z_c^l &= 1, & \forall c \in C_D \cup C_D^o \\ \sum_{k \in (C_L \mid a_k = l) \cup C_L^l \mid c \in S_k} w_{ck} + z_c^l &= 1, & \forall l \in L, c \in C_D^l \\ z_c^l &= 1, & \forall l \in L, c \in \hat{C}_D^l \\ z_c + \sum_{l \in L} z_c^l &= 1, & \forall c \in \hat{C}_D^o \\ \sum_{k \in C_L \mid a_k = l} \left(q_k + \sum_{c \in S_k} q_c w_{ck} \right) + \sum_{c \in C_D} q_c z_c^l + \sum_{k \in C_l^l} \sum_{c \in S_k} q_c w_{ck} \leq \left(W_l - \sum_{k \in C_L^l} q_k - \sum_{c \in C_D^l} q_c \right) z_l^L, & \forall l \in L \end{split}$$

 $\forall l \in L$

Multi Period Problem Our constraints

$$\sum_{k \in C_L^{d_i} | a_k = l} q_k + \sum_{k \in OC^{d_i} | a_k = l} \sum_{c \in S_k^{d_i}} q_c w_{ck} + \sum_{c \in C_D^{d_i}} q_c z_c^l \leqslant (W_l - \sum_{k \in C_L^{d_{i-1}}} q_k - \sum_{c \in C_D^{d_{i-1}}} q_c) z_l^L$$

$$\forall l \in L$$

03 Implementation

Tools

- python
- Solver
 - Xpress
 - o Gurobi
- GitHub

Structure (1/2) .py files

- Classes:
 - location
 - customer
 - door_to_door_customer
 - locker_customer
 - o store
 - vehicle
 - vehicle_type (Enum)
- Executors:
 - single_period_executor
 - single_period_of_multi_period_executor
 - multi_period_executor

Structure (2/2) python notebooks

- single period
 - single_period_problem_xpress
 - single_period_problem_gurobi
- multi period
 - multi period gurobi
- scalability analysis
 - scalability_single_period_analysis
 - scalability_multi_period_analysis

04 Results & Conclusions

Custom instance problem representation

Different solvers: same solution

Gurobi and Xpress both have the same results with the <u>custom instance</u> problem

Objective: 1.978326002278e+02

Not all lockers need to be supplied

Single period model scalability

Multi-period model scalability

Conclusions

- Occasional couriers (OC) reduce transport costs
- Resolution of the model has an exponential complexity

References

[1] source code: https://github.com/AndreaGonzato/package-delivery-optimisation-problem

[2] paper: https://www.sciencedirect.com/science/article/pii/S1366554522001053

Thanks for the attention