- 1. Write each of the statements below using symbols:
 - (a) For every ϵ greater than 0 there exists a δ greater than 0 such that if the absolute value of x-y is less than δ , then the absolute value of f(x) f(y) is less than ϵ .
 - (b) If x is an element of a set S, then there is an element y in S with the property that there is an integer n such that $a \cdot y^n = x$ for any a in S.

Symbolic statement:

- (a)
- (b)
- 2. Find a counterexample to each of the following claims:
 - (a) Let $S \subseteq \mathbb{Z}$ be an infinite set. Then $\forall n \in S \exists m \in S$ such that $n+m \in S$.
 - (b) $(\forall x \in \mathbb{R})(\exists n \in \mathbb{Z})$ s.t. $(|n-x| < \frac{1}{10})$
 - (c) $(\forall a, b \in \mathbb{R})(a \cdot b > a)$

Counterexample:

- (a)
- (b)
- (c)
- 3. Find the negation of each of the statements below:
 - (a) Every good boy does fine.
 - (b) $(\forall n \in \mathbb{N})(\exists x \in A)(nx < 1)$
 - (c) $(\exists M \in \mathbb{R})(\forall x \in \mathbb{R})(|f(x))| \leq M$

Negation:

- (a)
- (b)
- (c)