

Liberté Égalité Fraternité

CONCOURS INTERNE POUR L'ACCES AU CORPS DES INGENIEURS DE L'INDUSTRIE ET DES MINES

SESSION 2020

ÉPREUVE ÉCRITE D'ADMISSIBILITÉ N° 2 DU 1^{ER} DÉCEMBRE 2020

MATHEMATIQUES

(Durée : 4 heures - Coefficient : 1)

REMARQUES IMPORTANTES:

- L'usage d'une calculatrice n'est pas autorisé.
- Les copies doivent être rigoureusement anonymes et ne comporter aucun signe distinctif ni signature, même fictive, sous peine de nullité.
- Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.
- Le candidat s'assurera, à l'aide de la pagination, qu'il détient un sujet complet (le sujet comporte 4 pages)

TOUTE NOTE INFÉRIEURE À 10 SUR 20 EST ÉLIMINATOIRE

Épreuve de mathématiques

Les problèmes sont indépendants; les candidats veilleront à bien numéroter les réponses aux questions sur la copie. La calculatrice n'est pas autorisée pour cette épreuve.

Problème 1

L'objet de ce problème est de résoudre l'équation différentielle suivante

(E)
$$xy''(x) - (2x^2 + 1)y'(x) + 4x^3y(x) = 4x^4$$

dans laquelle l'inconnue y est une fonction de classe C^2 sur l'intervalle $I = \mathbb{R}_+^*$ ou \mathbb{R}_- (ce domaine sera étendu à la question 4).

<u>1.</u>

- <u>1.1</u> Quelle est la structure de l'ensemble des solutions de (E) sur \mathbb{R}_+^* ?
- 1.2 Justifier que pour tout $x_0 \in \mathbb{R}_+^*$ il existe une unique solution de (E) vérifiant $y(x_0) = 0$ et $y'(x_0) = 1$.
- **2.** Dans cette question on suppose que $I = \mathbb{R}_+^*$, on introduit le changement de variable $t = x^2$ et on pose z(t) = y(x).
- 2.1 Montrer que y est solution de (E) si et seulement si z est solution d'une équation différentielle (E') linéaire à coefficients constants.
 - 2.2 Déterminer les solutions de l'équation homogène associée à (E').
 - $\underline{2.3}$ En déduire les solutions de (E') sur \mathbb{R}_+^* .
 - <u>2.4</u> Expliciter les solutions de l'équation (E) sur \mathbb{R}_+^* .
- $\underline{\mathbf{3.}}$ Résoudre (E) sur \mathbb{R}_{-}^{*} .
- $\underline{4}$. Soit y_1 une solution de (E) sur \mathbb{R}_+^* et y_2 une solution de (E) sur \mathbb{R}_+^* ; on pose

$$y(x) = \begin{cases} y_1(x) & \text{si } x < 0 \\ y_2(x) & \text{si } x > 0. \end{cases}$$

- $\underline{4.1}$ À quelle condition y se prolonge-t-elle en une solution de (E) sur \mathbb{R} ?
- $\underline{4.2}$ La propriété de la question 1.2 s'applique-t-elle à ces solutions en $x_0=0$?

Problème 2

Pour tout $n \in \mathbb{N}$, on pose

$$a_n = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^n(t) dt.$$

- 1. Étude de la suite $(a_n)_{n\in\mathbb{N}}$
- $\underline{1.1}$ Montrer que la suite $(a_n)_{n\in\mathbb{N}}$ est positive et décroissante; préciser les valeurs de a_0 , a_1 et a_2 .

- $\underline{1.2}$ À l'aide d'une intégration par parties, établir une relation simple entre a_{n+1} et a_{n-1} pour tout $n \in \mathbb{N}^*$.
 - <u>1.3</u> Pour tout $n \in \mathbb{N}$, calculer $(n+1)a_na_{n+1}$.
 - 1.4 Montrer à l'aide des questions précédentes que

$$\forall n \in \mathbb{N}, \quad (n+1)a_{n+1}^2 \leqslant 2\pi \leqslant (n+1)a_n^2$$

et en déduire l'équivalent :

$$a_n \underset{n \to +\infty}{\sim} \sqrt{\frac{2\pi}{n}}.$$

2. On note f la fonction (d'une variable réelle) somme de la série entière dont les coefficients sont a_n :

$$f(x) = \sum_{n=0}^{\infty} a_n x^n.$$

- 2.1 Déterminer l'intervalle ouvert de convergence de cette série entière.
- 2.2 Montrer que, pour tous $n \in \mathbb{N}^*$ et $x \in]-1,1[$, la somme partielle d'ordre n de la série s'écrit

$$\sum_{k=0}^{n} a_k x^k = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g(x, t) dt$$

où g(x,t) est une expression que l'on explicitera.

2.3 En déduire que, pour $x \in]-1,1[$

$$f(x) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dt}{1 - x \cos(t)}.$$

2.4 Calculer cette intégrale et en déduire une expression de f(x) pour $x \in]-1,1[$ n'utilisant ni symbole de sommation ni intégrale.

Problème 3

Soit Ω un ensemble fini et \mathbb{P} une mesure de probabilités sur Ω . On considère également une fonction $f:]0;1] \to \mathbb{R}$ continue, décroissante et telle que

$$\begin{cases} \forall (x,y) \in]0;1]^2, & f(xy) = f(x) + f(y) \\ f(1) = 0. \end{cases}$$

Étant donné un événement A de Ω de probabilité non nulle, on appelle quantité d'information de A le nombre $S(A) = f(\mathbb{P}(A))$.

1. Questions préliminaires

- 1.1 Calculer la quantité d'information de l'événement certain.
- $\underline{1.2}$ Que peut-on dire de la quantité d'information de l'intersection de deux événements indépendants ?
- **2.** Fonctions f admissibles. L'objet de cette question est de déterminer les fonctions f vérifiant les conditions exigées. Soit f une telle fonction.

<u>2.1</u> Montrer que pour tout $x \in]0;1]$ on a

$$\frac{1}{x} \int_{\frac{x}{2}}^{x} f(t) dt = \frac{1}{2} f(x) + \int_{\frac{1}{2}}^{1} f(u) du$$

et en déduire que f est nécessairement dérivable.

 $\underline{2.2}$ Démontrer qu'il existe un réel a que l'on précisera tel que

$$\forall x \in]0;1], \quad f'(x) = \frac{a}{x}$$

et en déduire l'expression de f.

 $\underline{2.3}$ Étudier la réciproque : vérifier que ces fonctions satisfont les conditions exigées.

Dans toute la suite on prend $f = -\log_2$, c'est-à-dire $f(x) = -\frac{\ln x}{\ln 2}$

Définition

Étant donnée une variable aléatoire X sur Ω , on définit l'entropie de Shannon de X (ou simplement : entropie de X) comme

$$H(X) = \mathbb{E}\left[f(p(X))\right] = -\mathbb{E}\left[\log_2 p(X)\right]$$

où E désigne l'espérance mathématique et la fonction

$$\begin{array}{ccc} p: & X(\Omega) & \longrightarrow &]0;1] \\ & x & \longmapsto & \mathbb{P}\left(X=x\right) \end{array}$$

caractérise la loi de probabilité de X.

L'entropie de Shannon est donc la quantité moyenne d'information des événements du type $\{X = x\}$.

En informatique, une variable mal initialisée codée sur n bits est représentée par une variable aléatoire X dont l'ensemble des valeurs possibles est $\{0, \ldots, 2^n - 1\}$. Ainsi, si n = 8, les valeurs possibles d'un octet sont les entiers entre 0 et 255.

<u>3.</u> Soit $n \in \mathbb{N}^*$. Calculer l'entropie de X si sa loi est la loi (discrète) uniforme sur $\{0,\ldots,2^n-1\}$.

 $\underline{\mathbf{4.}}$ Dans cette question on va montrer que l'entropie de la loi discrète uniforme est l'entropie maximale, résultat connu sous le nom d'inégalité de Gibbs.

Soit donc X une variable aléatoire prenant ses valeurs dans $\{0, \dots, 2^n - 1\}$, chacune avec une probabilité non nulle. Pour plus de commodité, on pose $N = 2^n$.

4.1 Justifier que

$$\forall x \in \mathbb{R}_+^*, \quad \ln x \leqslant x - 1$$

 $\underline{4.2}$ En déduire que, pour tout $k \in \{0, \dots, N-1\}$

$$\mathbb{P}\left(X=k\right)\ln\frac{1}{N\,\mathbb{P}\left(X=k\right)}\leqslant\frac{1}{N}-\mathbb{P}\left(X=k\right)$$

puis

$$-\ln N - \sum_{k=0}^{N-1} \mathbb{P}\left(X = k\right) \ln(\mathbb{P}\left(X = k\right)) \leqslant 0.$$

4.3 Conclure.

Problème 4

Soit E un \mathbb{C} -espace vectoriel de dimension n; on note $\mathcal{L}(E)$ l'ensemble des endomorphismes de E. On rappelle que, pour $k \in \mathbb{N}^*$, la notation $\mathcal{M}_k(\mathbb{C})$ désigne l'espace des matrices carrées à k lignes et k colonnes et à coefficients complexes.

Pour $u \in \mathcal{L}(E)$, on définit le **commutant** de u comme l'ensemble

$$C(u) = \{ v \in \mathcal{L}(E) \text{ tels que } u \circ v = v \circ u \}.$$

De même, le commutant d'une matrice $M \in \mathcal{M}_n(\mathbb{C})$ est défini comme

$$\mathcal{C}(M) = \{ N \in \mathcal{M}_n(\mathbb{C}) \text{ telles que } M \mid N = N \mid M \}.$$

<u>1.</u>

1.1 Montrer que le commutant d'une matrice $M \in \mathcal{M}_n(\mathbb{C})$ est un espace vectoriel de dimension supérieure ou égale à 1.

 $\underline{1.2}$ Prouver que le commutant de la matrice diagonale comportant les entiers de 1 à n sur sa diagonale

$$M = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & n \end{pmatrix} = \text{Diag}(1, 2, \dots, n)$$

est l'ensemble des matrices diagonales. En déduire sa dimension.

2. Soient $u \in \mathcal{L}(E)$ et $v \in \mathcal{C}(u)$. Montrer que tout sous-espace propre de u est stable par v.

<u>3.</u> On suppose maintenant que u est diagonalisable et on note $\lambda_1, \ldots, \lambda_p$ ses valeurs propres, de multiplicités respectives n_1, \ldots, n_p . On note enfin, pour chaque $i \in \{1, \ldots, p\}$,

$$\mathcal{B}_i = (e_1^i, \dots, e_{n_i}^i)$$

une base du sous-espace propre de u associé à la valeur propre λ_i et $\mathcal B$ la base de E obtenue par concaténation des bases $\mathcal B_i$:

$$\mathcal{B} = \left(e_1^1, e_2^1, \dots, e_{n_1}^1, e_1^2, \dots, e_{n_2}^2, \dots, e_1^p, \dots, e_{n_p}^p\right).$$

 $\underline{3.1}$ Montrer que si $v\in\mathcal{C}(u),$ alors la matrice de v dans la base $\mathcal B$ est une matrice diagonale par blocs

$$\operatorname{Mat}_{\mathcal{B}}(v) = \operatorname{Diag}(V_1, \dots, V_p) = \begin{pmatrix} V_1 & 0 & \cdots & 0 \\ 0 & V_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & V_p \end{pmatrix}$$

dans laquelle chaque bloc diagonal V_i appartient à $\mathcal{M}_{n_i}(\mathbb{C})$.

3.2 Montrer la réciproque, c'est-à-dire que si $\mathrm{Mat}_{\mathcal{B}}(v)$ est de cette forme, alors $v \in \mathcal{C}(u)$.

3.3 En déduire, en fonction de n_1, \ldots, n_p , la dimension de $\mathcal{C}(u)$ et montrer qu'elle est toujours supérieure ou égale à n.