

FILTRO PEAK RECTIFIER

Questo filtro consiste essenzialmente in un **condensatore in parallelo** alla resistenza di carico, ponendo un condensatore in questa configurazione, quando siamo nella semionda positiva, il diodo fa passare la corrente che **carica** il condensatore; quando siamo nella semionda negativa, oppure quando siamo in una regione di voltaggio al di sotto della soglia del diodo (diodo reale) il condensatore si **scarica** sulla resistenza di carica.

Sia la scarica del condensatore è descritta da esponenziali decrescenti con **costante di tempo** *tau=RC*; capiamo quindi che il tempo di scarica del condensatore è dettato sia dalla capacità del condensatore stesso sia dal carico collegato ad esso.

È quindi evidente che la costante RC debba essere **molto maggiore** del periodo della sinusoide in ingresso; in questo modo il condensatore impiega molto tempo a scaricarsi, rendendo il segnale in uscita quanto più costante possibile.

Înfatti, se la costante RC fosse troppo piccola, il condensatore si scaricherebbe molto velocemente, andando ad evidenziare la "non costanza" dell'input.

SEMIONDA POSITIVA

Non e altro che la config. "BUFFER" =0 A = 1 =D (V₀ = V_i)

INFATTI)

 $V_0 = V_0' - 0.7 = 0$ $V_0' = V_0 + .7v$

Dalla teoria degli opamps: Vo = Aol (V+ -V-)

$$= D \quad A_{OL}(V_{+} - V_{-}) = V_{O} + . ?_{V} - O \quad (V_{+} - V_{-}) = \frac{V_{O} + . ?_{V}}{A_{OL}}$$

Ma AoL = 10 =0 V+-V- = Vot. 7 ~ 0 =0 V+ = V- =0 V- e collegato a Vo =0 (Vo = Vin) Vo seque l'input

SEMIONDA NEGATIVA

Se il diodo non conduce, l'opamp opero nello configurazione nel onello aperto =0 $A = 10^5/10^6 \cong \infty$

Siccome il diodo non conduce in X abbieno $V_x = 0$, e siccome V_- e collegato a X, on the V_- = 0.

Se il diodo nou conduce vuol elize che: $A = V_A + B$ $V_B > V_A$ ma nel nostro caso $V_X = V_B = 0 = 0$ $V_A = (V_0 < 0)$

 $V_X = U_B = \emptyset = \emptyset$

Questo è possibile solo quando l'input non invertente è negativo

LIMITATORI - CLIPPER R.C. Ideale: $\begin{cases} V_0 = \mathcal{K} \cdot V_i & \text{per} \quad V_0 \in \left[\frac{L}{\kappa} ; \frac{L^{\dagger}}{\kappa} \right] \\ V_0 = L^{\dagger} & \text{per} \quad V_0 > \frac{L^{\dagger}}{\kappa} \\ V_0 = L^{-} & \text{Per} \quad V_0 \leqslant \frac{L}{\kappa} \end{cases}$ "Half Clipper" LKT: V: = VR + Vo me Vo = VD = 0.7 V (Per V; >VD = 0.7v ~~ Vo = 0 perche' il olivolo olivento un C.C. = No d.d.P. Per $V_i < V_D = 0.7v \sim V_0 = V_i - V_R = V_i$ Diodo e un Ca. - 0 iR=0 = 0 VR=0 Vi/Vo Vo 0.4v_ Vi

