Max Wisniewski, Alexander Steen

Tutor: Ansgar Schneider

Aufgabe 1

Sei $A = (\mathbb{A}, \sqsubseteq)$ eine Struktur mit $\sqsubseteq \subseteq A \times A$ Halbordnung und minimalem Element $\bot \in \mathbb{A}$ bzgl. \sqsubseteq . Zu zeigen: \mathbb{A} endlich $\Rightarrow A$ ist cpo.

Da nach Voraussetzung bereits eine Halbordnung und ein minimales Element existiert, reicht es zu zeigen, dass für jede Kette $K \subseteq \mathbb{A}$ ein Supremum sup $K \in A$ existiert.

Beweis:

Sei A wie oben, \mathbb{A} endlich und $K \subseteq \mathbb{A}$ Kette. Da K ebenfalls endlich sein muss, gelte o.B.d.A. $K = \{k_1, k_2, \dots, k_n\}, n \in \mathbb{N}$, mit $k_1 \sqsubseteq k_2 \sqsubseteq \dots \sqsubseteq k_n$.

- (1) k_n ist obere Schranke von K, da $\forall 1 \leq i \leq n : k_i \sqsubseteq k_n$, da \sqsubseteq transitiv.
- (2) k_n ist kleinste obere Schranke von K:

Annahme: $\exists j < n \forall 1 \leq i \leq n : k_i \sqsubseteq k_j \text{ und } k_j \neq k_n \text{ (es gibt eine kleinere Schranke).}$ $\Rightarrow k_n \sqsubseteq k_j \notin \text{Widerspruch,}$

da bereits $k_j \sqsubseteq k_n$ nach Voraussetzung gilt und \sqsubseteq antisymmetrisch ist.

Aufgabe 2

O.B.d.A. sei $A = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}$ mit Halbordnung \subseteq . Dabei ist \emptyset der Knoten ganz unten, die einelementigen Mengen in der Mitte (v.l.n.r.) und die zweielementigen Mengen oben links bzw. oben rechts.

a) Ist $A ext{ ein cpo}$?

Ja, A ist ein cpo, da ein Minimum existiert (hier: \emptyset), eine Halbordnung existiert (hier: \subseteq) und A endlich ist. Aus Aufgabe 1 folgt, dass A ein cpo ist.

b) Ist A eine Kette?

Nein, da z.B. weder $\{a, b\} \subseteq \{b, c\}$ noch $\{b, c\} \subseteq \{a, b\}$ gilt.

c) Existiert $\sup A$ in A?

Nein, da kein Element $k \in A$ existiert, für das $\{a,b\} \subseteq k$ und $\{b,c\} \subseteq k$ gilt.

Aufgabe 3

Gesucht: Zwei Halbordnungen mit minimalem Element, die kein cpo sind.

- 1. (\mathbb{N}, \leq) hat kleinstes Element 0 aber z.B. die Kette $K = \mathbb{N}$ hat kein Supremum in \mathbb{N} .
- 2. $(\mathcal{P}(\mathbb{N}), \subseteq)$ hat kleinstes Element \emptyset , aber die (unendliche) Kette $\emptyset \subseteq \{0\} \subseteq \{0, 1\} \subseteq \{0, 1, 2\} \subseteq \dots$ hat kein Supremum in $\mathcal{P}(\mathbb{N})$.

Aufgabe 4

Die Funktion

$$f(x) = \begin{cases} 0 & \text{, falls } x = 1 \lor x = 3\\ f(x - 2) & \text{, sonst} \end{cases}$$

hat die Lösungen $\{x\mapsto n\cdot (-1)^x+n|\, n\geq 1\}$ und damit une
ndlich viele.