《第 15 章 磁介质的磁化》

_	选择题
---	-----

1. 磁介质有三种,用相对磁导率 μ_r (A) 顺磁质 μ_r >0,抗磁质 μ_r <0, (B) 顺磁质 μ_r >1,抗磁质 μ_r =1, (C) 顺磁质 μ_r >1,抗磁质 μ_r <1,	铁磁质 $\mu_r >> 1$. 铁磁质 $\mu_r >> 1$. 铁磁质 $\mu_r >> 1$.			
(D) 顺磁质 μ_r < 0,抗磁质 μ_r < 1,	铁皦, $\mu_r > 0$.	[]	
2. 用顺磁质作成一个空心圆柱形细密四种说法中哪种正确? (A) 管外和管内空腔处的磁感强(B) 介质中的磁感强度比空腔处(C) 介质中的磁感强度比空腔处(D) 介质中的磁感强度与空腔处	的磁感强度大. 的磁感强度小.	当导线中通	i以稳恒电流印	讨,下述
	用JHAA心 五人又有自 寸。]]	
 3. 圆柱形无限长载流直导线置于均匀导率为μ_r (μ_r>1),则与导线接触的磁(A) (1 - μ_r)I. (C) μ_rI. 		的稳恒电流。 [为 <i>I</i> ,磁介质的]	的相对磁
	电流,则曲线上各点的 $ar{H}$ 必为零. $ar{F}$,则该曲线所包围传导电流的代数:	和为零.]	
5. 用细导线均匀密绕成长为 l 、半名匀磁介质. 若线圈中载有稳恒电流 I_{\bullet} (A) 磁感强度大小为 $B = \mu_0 \mu_r N I_{\bullet}$ (B) 磁感强度大小为 $B = \mu_r N I_{\bullet} I_{\bullet}$ (C) 磁场强度大小为 $H = \mu_0 N I_{\bullet}$ (D) 磁场强度大小为 $H = N I_{\bullet} I_{\bullet}$,则管中任意一点的 7.	,管内充满	相对磁导率为	J <i>μ</i> , 的均
		[]	

二 填空题

2. 图示为三种不同的磁介质的 B~	\sim H 关系曲线,其中虚线表示的是 B =		
$\mu_0 H$ 的关系. 说明 a、b、c 各代表明	那一类磁介质的 B~H 关系曲线:	$B \wedge a$	
a 代表	的 B~H 关系曲线.		
b 代表	的 B~H 关系曲线.	_b	
c 代表	的 <i>B~H</i> 关系曲线.	0 c H	
	空气的磁化率 $\chi_m=3.04\times10^{-4}$,那么此 	之处磁场强度 H=	,
	, v	스타크 V	
4. 把一铁磁质加热到居里点以上,	然后冷却,则该铁磁质不显示磁性,这	区是因为	
	当在空间外加一磁场时	f,随着磁场强度的增加,i	亥铁磁
质达到磁饱和状态,这是因为		_•	
5. 软磁材料的特点是	,它们适	于用来制造	
	等.		

三 计算题

1. 一根同轴线由半径为 R_1 的长导线和套在它外面的内半径为 R_2 、外半径为 R_3 的同轴导体圆筒组成.中间充满磁导率为 μ 的各向同性均匀非铁磁绝缘材料,如图. 传导电流 I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的. 求同轴线内外的磁感强度大小 B 的分布.

2. 螺绕环中心周长 l=10 cm,环上均匀密绕线圈 N=200 匝,线圈中通有电流 I=0.1 A. 管内充满相对磁导率 $\mu_r=4200$ 的磁介质. 求管内磁场强度和磁感强度的大小.

 3. 一铁环的中心线周长为 0.3 m, 横截面积为 1.0×10⁻⁴ m², 在环上密绕 300 匝表面绝缘的导线, 当导线通有电流 3.2×10⁻² A 时, 通过环的横截面的磁通量为 2.0×10⁻⁶ Wb. 求: (1) 铁环内部的磁场强度; (2) 铁环内部的磁场强度; (3) 铁的磁化率; (4) 铁环的磁化强度.
四 研讨题
1. 顺磁质和铁磁质的磁导率明显地依赖于温度,而抗磁质的磁导率则几乎与温度无关,为什么?
2. 在实际问题中用安培环路定理 $\oint_L \vec{H} \cdot d\vec{l} = \sum I_0$ 计算由铁磁质组成的闭合环路,在得出 H 后,如何进一步求出对应的 B 值呢?
3. [CCBP 练习题] 说明顺磁质磁化的过程,用图片显示磁介质磁化后分子磁矩的排列方向,还要显示宏观磁化电流的方向。