MATH 223 - Linear Algebra

Richard Ni

McGill University

Table of Contents

1	Con	e 1
	1.1	Addition of Complex Numbers
	1.2	Multiplication
	1.3	Division
	1.4	Euler's Formula

Office Hours - Monday (11-12h), Thursday (14-15h), After Class ($30\mathrm{min})$ @ Burnside 926

1 Complex Numbers

New Number System (C) - all complex numbers (all z) Standard Number System (R) - all real numbers ex. 1 + 2i, 5 + 11i, $\sqrt{2}$ + $\frac{11}{7}$ i

 \rightarrowtail you need **two** real numbers to denote **one** complex number

 \star General Form: $\mathbf{z} = \mathbf{x} + \mathrm{i} \mathbf{y}$

Ring: Addition and multiplication operations in a set

Field: Ring with division

1.1 Addition of Complex Numbers

ex.
$$(1 + 3i) + (2 + 5i) = 3 + 8i$$

Simply add them up

1.2 Multiplication

ex.
$$(1 + 2i)(1 + 3i) = i + 5i + 6i^2$$

Gauss Fact: Add the rule $i^2 = -1$

$$= -5 + 5i$$

1.3 Division

Complex Conjugate: $\bar{z} = x$ - iy

 \rightarrowtail $\mathbf{z}\bar{z}$ is a real number

$$\rightarrow$$
 $|\mathbf{z}| = \sqrt{z\bar{z}} = \text{radius}$

Division of Complex Numbers

$$\frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{x-iy}{x^2+y^2} = \frac{x}{x^2+y^2} - (\frac{y}{x^2+y^2})i$$

1.4 Euler's Formula

$$\mathbf{e}^{i\theta} = \cos^2(\theta) + i\sin^2(\theta)$$

$$z = re^{i\theta}$$