Lecture 34: VAE Applications

Instructor: Sergei V. Kalinin

Autoencoders

Loss: reconstruction loss

Encoding, Decoding, and Latent Space

Latent distribution: Encoding the data via low dimensional vector Latent representation: Decoding images from uniform grid in latent space

Conditional VAE

Note the trends in the latent representation for each digit: disentanglement of the representations

Introduce the **cards** data set:

- Classical 4 hands (diamonds, clubs, pikes, hearts)
- Interesting similarities (pikes and hearts)
- And invariances on affine transforms (e.g. diamonds)

Cards 1: Low R (12 deg) and low S (1 deg)

Cards 2: Low R (12 deg) and high S (20

Cards 3: High R (120 deg) and Low S (1 deg)

Cards 4: High R (120 deg) and high S (20 deg)

- Shear, rotations, and translations are **known** factors of variability (or traits) in data
- Can VAE disentangle representations and discover these factors of variability

Example of data

Cards 1: Low rotation (12 deg) and low shear (1 deg)

Cards 1: Low rotation (12 deg) and low shear (1 deg)

Example of data

Cards 2: Low rotation (12 deg) and high shear (20 deg)

Cards 2: Low rotation (12 deg) and high shear (20 deg)

Example of data

Cards 3: High rotation (120 deg) and low shear (1 deg)

Cards 3: High rotation (120 deg) and low shear (1 deg)

Example of data

Cards 4: High rotation (120 deg) and high shear (20 deg)

Cards 4: High rotation (120 deg) and high shear (20 deg)

Cards 1: Low rotation (12 deg) and low shear (1 deg)

Cards 1: Low rotation (12 deg) and low shear (1 deg)

Cards 2: Low rotation (12 deg) and high shear (20 deg)

Cards 2: Low rotation (12 deg) and high shear (20 deg)

Example of data

Latent representation

Cards 3: High rotation (120 deg) and low shear (1 deg)

Cards 3: High rotation (120 deg) and low shear (1 deg)

Example of data

Cards 4: High rotation (120 deg) and high shear (20 deg)

Cards 4: High rotation (120 deg) and high shear (20 deg)

Describing the building blocks

- The classical physical descriptions (symmetry, etc) can be defined locally only in Bayesian sens
- We can argue that local descriptors are simple, if not necessarily known
- And the rules that guide their emergence are also simple, if not known

Continuous translational symmetry

Atom based descriptions

Localized subimages

Off to chemically-disordered systems

rVAE analysis at different time steps

There is nothing as beautiful as training VAE

Unsupervised discovery of molecules

Exploring the latent space structure

