Математический анализ

Широков Николай Алексеевич 1

 $07.09.2023 - \dots$

 $^{^1}$ "Записал Сергей Киселев, Гараев Тагир"

Оглавление

1		троение множества вещественных чисел	2
	1.1	Множества	2
		Сечения	
	1.3	Сумма сечений	3
		Теоремы сечений	
2	Алі	оритмы	6
	2.1	Продолжение	6
	2.2	Число е	11

Глава 1

Построение множества вещественных чисел

Лекция 1: Введение

14.09.2023

1.1 Множества

```
Определение 1. Множества X и У равны, если: \forall a \in X : a \in Y
```

 $\forall a \in X : a \in I$ $\forall b \in Y : b \in X$

Определение 2. $X \subset Y$ если:

 $\forall a \in X : a \in Y$

Определение 3. 1. $a \in A \cup B \Leftrightarrow a \in A \lor a \in B$

 $2. \ a \in A \cap B \Leftrightarrow a \in A \wedge a \in B$

3. $a \in A \setminus B \Leftrightarrow a \in A \land a \notin B$

Определение 4. (Декартово произведение множеств)

 $A \times B = \{(a, b) : \forall a \in A, \forall \in B\}; A, B \neq \emptyset$

Определение 5. $F:A \to B$ - функция, такая, что: $\forall a \in A$ сопостовляет $b = F(a) \in B$

1.2 Сечения

Определение 6. Множество $\alpha \subset \mathbb{Q}$ называется сечением, если:

• I. $\alpha \neq \emptyset$

- II. если $p \in \alpha$, то q
- III. в α нет наибольшего

Пример. 1. $p^* = \{r \in \mathbb{Q} : r < p\}$ - нет наибольшего 2. $\sqrt{2} = \{p \in \mathbb{Q} : p \le 0 \lor p > 0 \land p^2 < 2\}$

Теорема 1. (Утверждение 1) Если $p \in \alpha \land q \notin \alpha$, то q > p

Доказательство. Если $p \in \alpha$ и $q \leq p$, то из (II.) следует. что $q \in \alpha$

Теорема 2. (Утверждение 2) $\alpha < \beta \land \beta < \gamma \Rightarrow \alpha < \gamma$

Доказательство.
$$\begin{cases} \alpha < \beta \Rightarrow \exists p \in \beta, p \notin \alpha \\ \beta < \gamma \Rightarrow \exists p \in \gamma, q \notin \beta \end{cases} \Rightarrow p < q \Rightarrow \alpha < \gamma$$

Доказательство. Предположим, что $\alpha < \beta$ и $\beta < \alpha$, тогда: $\begin{cases} \exists p \in \alpha, p \notin \beta \\ \exists q \in \beta, q \notin \alpha \end{cases} \Rightarrow \begin{cases} p > q \\ q > p \end{cases}$ - Противоречие, тогда $\alpha \neq \beta$

1.3 Сумма сечений

Теорема 4. Пусть α, β - сечения, тогда: $\alpha + \beta = \{p + q : p \in \alpha, q \in \beta\}$ - тоже сечение.

Доказательство. • (I.) Пусть $\exists s \notin \alpha, \exists t \notin \beta, \text{ тогда}$

$$\forall p \in \alpha, q \in \beta : \begin{cases} p < s \\ q < t \end{cases} \Rightarrow p + q < s + t \Rightarrow \alpha + \beta \neq \mathbb{Q}$$

$$\begin{split} \bullet & \text{ (II.)} \\ & r \in \alpha + \beta, r_1 < r \\ & r = p + q, p \in \alpha, q \in \beta \\ & r_1 = p + q_1, r_1 < r \Rightarrow q_1 < q \Rightarrow q_1 \in \beta \Rightarrow p + q_1 \in \alpha + \beta \end{split}$$

• (III.) $\exists p_1 \in \alpha, p > p_1 \Rightarrow p_1 + q > p + q = r, p_1 + q \in \alpha + \beta \text{ - нет наибольшего}$

Теорема 5. (Свойства суммы сечений)

- 1. $\alpha + \beta = \beta + \alpha$
- 2. $(\alpha + \beta) + \gamma = \alpha + (\beta + \beta)$
- 3. $\alpha + 0^* = \alpha$, где $0^* = \{ p \in \mathbb{Q} : p < 0 \}$

Доказательство. Свойства 1 и 2 справедливы в силу коммутативности и ассоциативности рациональных чисел.

Докажем свойство 3:

- 1. Пусть $p \in \alpha, q \in 0^*$, тогда: $p + q , т.е. <math>\alpha + 0^* \subset \alpha$
- 2. Пусть $p\in\alpha$, тогда: $\exists p_1>p\Rightarrow p_1\in\alpha, p=p_1+(p-p_1)$, при том $p_1\in\alpha, p-p_1\in0^*\Rightarrow p\in\alpha+0^*\Rightarrow\alpha\subset\alpha+0^*$

$$\begin{cases} \alpha \subset \alpha + 0^* \\ \alpha + 0^* \subset \alpha \end{cases} \Rightarrow \alpha = \alpha + 0^*$$

1.4 Теоремы сечений

Теорема 6. (Теорема 2) Пусть α - сечение, $r \in \mathbb{Q}^+$, тогда $\exists p \in \alpha \land q \notin \alpha$: q - не наименьшее верхнее (не входящее в сечение) число q-p=r

Доказательство. Пусть $p_0 \in \alpha, p_1 = p_0 + r$

- 1. Возможно, $p_1 \notin \alpha$, тогда:
 - (a) если p_1 не наименьшее в верхнем классе, то $q=p_1$
 - (b) если же наименьшее, то $p = p_0 + \frac{r}{2}, q = p_1 + \frac{r}{2}$
- 2. Если $p_1 \in \alpha$, тогда:

Положим $p_n=p_1+nr$ для $n=0,1,2,\ldots$ Тогда $\exists !m:$ $p_m\in\alpha$ и $p_{m+1}\notin\alpha$

- (a) Если p_{m+1} не наименьшее в верхнем классе, то выберем $p=p_m, q=p_{m+1}$
- (b) Если же наименьшее, то $p = p_m + \frac{r}{2}, q = p_{m+1} + \frac{r}{2}$

Теорема 7. (Существование противоположного элемента) Пусть α - сечение, тогда $\exists ! \beta : \alpha + \beta = 0^*$

Доказательство. (нужно доказать единственность и существование)

Глава 1. ПОСТРОЕНИЕ МНОЖЕСТВА ВЕЩЕСТВЕННЫХ ЧИСЕЛ 4

1. Докажем единственность: пусть $\exists \beta_1, \beta_2$, удовлетворяющие условию, тогда:

$$\beta_2 = 0^* + \beta_2 = (\alpha + \beta_1) + \beta_2 = (\alpha + \beta_2) + \beta_1 = 0^* + \beta_1 = \beta_1$$

2. Докажем существование: пусть

 $\beta = \{p : -p \notin \alpha, -p \text{ не является наименьшим в верхнем классе } \alpha\}$

- (I.) Очевидно, что $\beta \neq \emptyset$, \mathbb{Q}
- (II.) Возьмем $p \in \beta, q -p \Rightarrow -q$ в верхнем классе α , но не наименьшее $\Rightarrow q \in \beta$
- (III.) Если $p \in \beta$, то -p не наименьшее в верхнем классе α , значит $\exists q: -q < -p$ и $-q \notin \alpha$ Положим $r = \frac{p+q}{2}$, тогда: $-q < -r < -p \Rightarrow$ -r не наименьшее в верхнем классе α . Значит, нашли такое r > p, что $r \in \beta$

Теперь проверим, что $\alpha + \beta = 0^*$:

- 1. Возьмем $p\in\alpha, q\in\beta$ По определению $\beta:-q\notin\alpha\underset{\mathrm{Yfb.}\ 1}{\Rightarrow}-q>p\Leftrightarrow p+q<0\Rightarrow p+q\in0^*\Rightarrow\alpha+\beta\subset0^*$
- 2. Возьмем по Теореме (2) $q-p=r\Leftrightarrow p-q=-r\in 0^*$ т.к. $q\notin \alpha$, то $-q\in \beta$, значит $p-q=p+(-q)\in \alpha+\beta\Rightarrow 0^*\subset \alpha+\beta$

$$\begin{cases} \alpha + \beta \subset 0^* \\ 0^* \subset \alpha + \beta \end{cases} \Rightarrow \alpha + \beta = 0^*$$

Глава 2

Алгоритмы

Лекция 3: Продолжение

27.09.2023

2.1 Продолжение

```
5. \ x_n \neq c \forall n, x_n \to a, a \neq 0 => \frac{1}{x_n} \to \frac{1}{a} \\ |a+b| \leq |a| + |b| <=> |a| \geq |a+b| - |b| \\ \varepsilon_0 = \frac{|a|}{2} > 0 \\ => \exists N \text{ т.ч. } \forall n > N \text{ выполняется} \\ |x_n - a| < \varepsilon_0 = \frac{|a|}{2} => |x_n| \geq |a| - |x_n - a| > |a| - \frac{|a|}{2} = \frac{|a|}{2} \\ \forall \varepsilon \exists N_1 \text{ т.ч. } \forall n > N_1 \text{ (1)} \\ |x_n - a| < \varepsilon \text{ (2)} \\ N_0 = \max(N, N_1)n > N_0 \\ |\frac{1}{x_n} - \frac{1}{a}| = |\frac{a - x_n}{x_n a} = \frac{1}{|a|} \cdot \frac{1}{|x_n|} \cdot |x_n - a| < \\ (1, 2) \\ < \frac{1}{|a|} \cdot \frac{2}{|a|} \cdot \varepsilon \\ 6. \ x_n = 1, \text{ как в 5., } y_n \to b => \\ \frac{y_n}{x_n} \to \frac{b}{a} \\ \frac{y_n}{x_n} = y_n \cdot \frac{1}{x_n} \text{ 4., 5} \\ 7. \ x_n \leq y_n \forall n, x || n \to a, y_n b => a \leq b
```

Доказательство. Предположим, что это не так.

Пусть а \neq (доказали что неверно) b (?) $\varepsilon_0 = \frac{1-b}{2} > 0$ $=> \exists N_1 \text{ т.ч. } \forall n > N_1$ $|x_n - a| < \varepsilon_0 \text{ (3)}$ $\text{м } existsN_2 \text{ т.ч } \forall n > N_2$ $|y_n - b| < \varepsilon_0 \text{ (4)}$ $n = N_1 + N_2 + 1$ $|x_n - a| < \varepsilon_0 <=> x_n \in (a - \varepsilon_0, a + \varepsilon_0) \text{ (3')}$ $|y_n - b| < \varepsilon_0 <=> y_n \in (b - \varepsilon_0, b + \varepsilon_0) \text{ (4')}$ $(3'), (4') => y_n < b + \varepsilon_0 = b + \frac{a-b}{2} = \frac{a+b}{2} = a \frac{a-b}{2}$ $= a - \varepsilon_0 < x_n$ $y_n < x_n$

a < b

```
(a,b) = \{ x \in R : a < x < b \}
 [a,b] = \{x \in R : a \le x \le b\}
 [a,b) = \{x \in R : a \le x < b\} \ (a,b] = \{x \in R : a < x \le b\}
Расширенное множество вещественных чисел
+\infty, -\infty
\forall x \in \mathbb{R} \ x < +\infty, x > -\infty
 (\mathbf{a}, \infty) = \{ x \in \mathbb{R} : x > a \}
[\mathbf{a}, \infty) = \{x \in \mathbb{R} : x \ge a\}
 (-\infty, a] = \{x \in \mathbb{R} : x < a\}
 (-\infty, a] = \{x \in \mathbb{R} : x \le a\}
8. \xi_n \leq \psi_n \leq \zeta_n \forall n
\xi \to a, \zeta_n \to a => \psi_n \to a
\forall \varepsilon > 0 \exists N_1 т.ч. \forall n > N_1
|x_n - 1| < \varepsilon \leftrightarrow x_n \in (a - \varepsilon, a + \varepsilon) (5)
и \exists N_2 т.ч. \forall n > N_2
 |\zeta_n - a| < \varepsilon \leftrightarrow \zeta_n \in (a - \varepsilon, a + \varepsilon) (6)
(5), (6) = \forall n > N, N = max(N_1, N_2)
a - \varepsilon < x_n \le y_n \le \zeta_n < a + \varepsilon, r.e. y_n \in (a - \varepsilon, a + \varepsilon) \leftrightarrow |y_n - a| < \varepsilon
Определение 7. (Бесконечные пределы)
     \{x_n\}_{n=1}^{\infty}
     x_n \to \infty \ n \to \infty
     \lim x_n = +\infty
     если \forall L \in \mathbb{R} \exists N т.ч. \forall n > N
     выполнено x_n > L(7)
     \{y_n\}_{n=1}^{\infty}
     y_n \to -\infty \ n \to \infty
     \lim_{n \to \infty} y_n = -\infty,
     \forall L_0 \in R, \exists N_0 \text{ т.ч. } \forall n > N_0
     y_n < L_0 (8)
     (возможно сокращение записи n-> далее.)
Единообразная запись определения пределов
a \in \mathbb{R}
w(a) = (a - \varepsilon, a + \varepsilon)
Окрестность +\infty
w(+\infty) = (L, \infty), L \in \mathbb{R}
Окрестность -\infty
w(-\infty) = (-\infty, L)
Пусть имеется некая \alpha \in \overline{\mathbb{R}}
Пусть имеется некая последовательность \{x_n\}_{n=1}^{\infty}
x_n \to \alpha \ n \to \infty
если \forall w(\alpha)
\exists N т.ч. \forall n > N выполнено x_n \in 2(\alpha)(q)
Свойства бесконечных пределов
 \{a_n\}_{n=1}^{\infty}, a \to +\infty
 \{b_n\}_{n=1}^{\infty}, b \to -\infty
```

1.
$$c \neq 0$$
, a) $ca_n \to +\infty$, $cb_n \to -\infty$
6) $c < 0 => ca_n \to -\infty$, $cb_n \to +\infty$

2.
$$x_n \to x$$
, $x \in \mathbb{R} \cup \{+\infty\} => a_n + x_n \to +\infty$
 $y_n \to y$, $y \in \mathbb{R} \cup \{-\infty\} => b_n + y_n \to -\infty$

3.
$$a_n, b_n, x_n, y_n, u_{\varepsilon} 2$$

 $x > 0 \Longrightarrow a_n x_n \to +\infty, b_n x_n \to -\infty$
 $y < 0 \Longrightarrow a_n y_n \to -\infty, b_n y_n \to +\infty$

4. если
$$a_n \neq 0, a_n \neq 0 \forall n => \frac{1}{a_n} \to 0, \frac{1}{b_n} \to 0$$
 Если $x_n > 0, x_n \to 0 => \frac{1}{x_n} \to +\infty$ если $y_n < 0, y_n \to 0 => \frac{1}{y_n} \to -\infty$

5.
$$x_n \leq y_n \forall n, x \to \alpha, y_n \to \beta, \alpha, \beta \in \overline{\mathbb{R}}$$

 $=> \alpha \leq \beta$
 $+\infty = +\infty$
 $-\infty = -\infty$
 $-\infty < +\infty$
 $\alpha \in \overline{\mathbb{R}} => y_n \to \alpha$

Доказательство. $x \in \mathbb{R}$

если последоавтельность имеет предел, то она ограничена (было) нужно сформулировать с дополнительными словами

Пусть $\{x_n\}_{n=1}^{\infty}$ имеет конечный предел

$$\exists M$$
 т.ч. $|x_n - x| < M \forall n$ $=> x_n > x - M \forall n \ (10)$

(док-ть всё)

 $\exists N$ т.ч. $\forall n>N$ будет выполнено $a_n>L$ (11) (10), (11) => $a_n+x_n>L+x-M$

$$(10), (11) => a_n + x_n > L + x - M$$

Остальные свойства доказываются аналогично

Дополнительно о терминологии и обозначениях

если $x_n \to 0$, то говорят что x_n - бесконечно малая последовательность если $|a_n| \to +\infty$, то говорят что a_n - бесконечно большая последовательность

Обозначение. о - о малое

О - О Большое

след. читать только слева направо.

Обозначение.
$$x_n = o(1), \text{ если } x_n \to 0$$
 если $\exists M > 0$ т.ч. $|y_n| \le M \forall n,$ $y_n = O(1)$

```
\begin{array}{l} \{a_n\}_{n=1}^\infty,\ \{b_n\}_{n=1}^\infty,\ b_n\neq 0 \forall n\\ a_n=0(b_n),\ \text{если}\ \frac{a_n}{b_n}\to 0 \end{array}
\{c_n\},\{d_n\}
c_n = O(d_n), если \exists M_1 т.ч. |C_n| \leq M_1 |d_n|
предположим =, что a_n = \lambda_n b_n, \lambda_n \to 0
Тогда пишут, что a = o(b)n
\frac{a_n}{b_n} = \lambda_n
```

Определение 8. (монотонные последовательности) $\{a_n\}_{n=1}^{\infty}$ монотонно возрастает, если $a_n \leq a_{n+1} \forall n$

Будем говорить, что строго возрастает, если $a_n < a_{n+1}$ $\{b_n\}_{n=1}^\infty$ монотонно убывает, если $b_n \geq b_{n+1}$ $\{b_n\}_{n=1}^\infty$ строго монотонно убывает, если $b_n>b_{n+1}$ $\{n\}_{n=1}^{\infty}$

Если есть некоторая поледовательнотсть c_n говорят что монотонна если либо монотонно возрастает, либо монотонно убывает.

Последовательность c_n называется строго монотонной, если она строго монотонно возрастает либо строго монотонно убывает.

Теорема 8. Теорема о пределе монотонной последовательности $\{C_n\}_{n=1}^{\infty}$ $\exists \lim_{n \to \infty} c_n \in \mathbb{R}$

Для того чтобы монотонно возрастающая последовательность имела конечный предел необходимо и достаточно чтобы последовательность была ограничена снизу

Для того чтобы монотонно убывающая последовательность имела конечный предел.

 $C_m \leq \lim_{n \to \infty} C_n \forall m$ $C_{m} \geq \lim_{n \to \infty} C_{n}$ $C_{m} < \lim_{n \to \infty} C_{n}$ $C_{M} \geq \lim_{n \to \infty} C_{n}$ $C_{M} \lim_{n \to \infty} C_{n}$

Доказательство. Рассмотрим ситуация, когда C_m монотонно возрастает. Предположим вначалае, что проследовательность C_m не ограни-

 $\{C_n\}_{n=1}^{\infty}$ не огр. сверху $\forall L \in \mathbb{R}$

Посколько мы предполгаем что последовательность не ограничена сверху значит найжется такой лемент послежовательности больший чем L

 $\exists N$ т.ч. $C_N > L$

Потому что в противоположном случае L была бы верхней границей $\forall n>N$ тогда, справедливо следующее неравенство $C_n\geq C_{n-1}\geq$ $C_{n-2} \ge \dots \ge C_N + 1 \ge C_N > L$

мы взяли любое L и по нему нашли такое N большое, что при любом n > N полуается что с с номером n Больше чем lambda это означает что по определению предела предел $\lim C_n = +\infty$

```
Если последовательность возрастает и не ограничена сверху у нее
есьт пределе и этот предел равен + бесконечности
```

другой вариант: последовательность возрастает и огранчена сверху

Пусть $C_n \leq C_{n+1} n \exists M .. e_n \leq M \forall n$

рассмотрим множество всех элементов последовательности

 $E = \{ \alpha \in \mathbb{R} : \exists n \in \mathbb{N} \text{ т.ч. } \alpha = C_n \}$

Это предположение означает что Е ограничено сверху

в таком случае мы имеем неравенство $C_n \leq C \forall n \ (12)$

Теперь возьмем $\forall \varepsilon > 0$

 $C-\varepsilon$ - это не верхняя граница

$$\exists N$$
 т.ч. $C_N > C - \varepsilon$ (13)

Воспользуемся монотонностью последовательности С

Давайте возьмем $\forall n > N$

$$(13) = C_n \ge C_{n-1} \ge \dots \ge C_{N+1} \ geqC_N > C - \varepsilon \ (14)$$

Посмотрим на соотношение 12, 14

$$C - \varepsilon < C_N \le C < C + \varepsilon \Longrightarrow |C_n - C| < \varepsilon$$
 (15)

Это соотношение означает что

$$(15) = > C = \lim_{n \to \infty} C_n$$

Предел существует, являющийся вещественным числом.

мы доказали что если последовательность ограничена сверху, то существует предел и выполенно такое неравенство.

Если последовательность строго монотонна, то неравенство будет стро-

Доказательство.
$$C_{n_0} < C_{n_0+1} \le c => C_{n_0} < C$$

Если $\exists \lim_{n \to \infty} C_n = C \in R \Longrightarrow \exists M$

т.ч.
$$|C_n - C| \le M => C_n \le C + M \forall n$$

для убывающих доказывается аналогично.

Теорема 9. (Теорема о ложных промежутках) $[a_n, b_n] \supset [a_{n+1}, b_{n+1}] \forall n$

Предположим, что $b_n - a_n \to 0 \ (17) \ n->\infty$

Промежутки замкнутые

 $=> \exists! c \in [a_n, b_n], \forall n \ (18)$

Доказательство. $a_n \le a_{n+1}, b_n \ge b_{n+q} \forall n \ (19)$

 $a_1 \le a_2 \le \dots \le a_n < b_n \le b_{n-1} \le \dots \le b_2 \le b_1$ (19)

 $a_1 \le a_n \le b_n \le b_1 \forall n$

T.e. $a_n < b_1, b_n > a$, (20)

(19), (20) $=>\exists \lim_{n\to\infty} = a \in \mathbb{R}$ и $\exists \lim_{n\to\infty} b_n = b \in \mathbb{R}$ (21)

 $a_n < b_n$ => $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$ (22)

 $(21), (22) => a \le b (23)$

 $a_n \le a \forall n \ b_n \ge \forall n$

```
=>b-a\le b_n-a_n\forall n (25) 0\le b-a=>\lim_{n\to\infty}(b-a)\le \lim_{n\to\infty}(b_n-a_n)=0 \ (26) (23), (26) =>a=b=\det c (24), (27)=> a_n\le c\le b_n\forall n, \text{ т.e. } c\in [a_n,b_n] \ (27') Пусть \exists c_1\ne c т.ч. c_1\in [a_n,b_n]\forall n \ (28) c< c_1 Тогда, 27' и 28=> что a_n\le c< c_1\le b_n\forall n \ (30) (29) =>c_1-c\le b_n-a_n\forall n \ (30) (30) =>\lim_{n\to\infty}(c_1-c)\le \lim_{n\to\infty}(b_n-a_n)=0 \ 0< c_1-c= Предположение о том что найдется ещё какой-то c_1 неверно теорема доказана.
```

Замечание. В этой теореме рассматриваются замкнутые Промежутки

Пример.
$$a_n = O \forall n, b_n = \frac{1}{n}$$
 $(a_{n+1}, b_{n+1}) = (0, \frac{1}{n+1}) \subset (0, \frac{1}{n}) = (a_n, b_n)$ $b_n - a_n = \frac{1}{n} \to 0 \ n \to \infty$ $\nexists C \in \mathbb{R}$ т.ч. $c \in (0, \frac{1}{n}) \forall n$

в каком месте доказательства предыдущей теоремы мы пользовались тем что промежутки замкнуты?

2.2 Число *е*

```
е x_n = (1 + \frac{1}{n})^n \ y_n = (1 + \frac{1}{n})^{n+1} \ x_n < y_n \forall n \ (1) x_n строго возрастает (2) y_n строго убывает (3) x_n \to e, y_n \to e 2 < e < 3 y_n = (1 + \frac{1}{n})x_n > x_n Pассмотрим \frac{y_n - 1}{y_n} = \frac{(\frac{n}{n-1})^n}{(\frac{n+1}{n})^{n+1}} = (\frac{n}{n-1})^n \cdot (\frac{n}{n+1})^n + 1 \frac{n}{n+1} \cdot (\frac{1}{n-1})^n \cdot (\frac{1}{n+1})^n = \frac{n}{n+1} \cdot (\frac{n^2}{n^2-1})^n = \frac{n}{n+1} \cdot (\frac{n^2-1+1}{n^2-1})^n = \frac{n}{n+1} \cdot (1 + \frac{1}{n^2-1})^n > (n^2 - 1 = \}x) x > 0, n \ge 2 \ (1 + x)^n > 1 + nx \ ( неравенство бернулли) > \frac{n}{n+1} (1 + \frac{n}{n^2-1}) = \frac{n}{n+1} \cdot \frac{n^2-1+n}{n^2-1} = = \frac{n^3+n^2-n}{n^3+n^2-n-1} > 1 \frac{y_{n-1}}{y_n} > 1 y_{n-1} > y_n (a+b)^n = \sum_{k=0}^n C_n^k a^{n-k}b^k
```

$$\begin{split} C_n^k &= \frac{n!}{k!(n-k!)} \\ C_n^0 &= C_n^n = 1 \\ C_n^1 &= C_n^{n-1} = n \\ x_n &= \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n C_n^k \left(\frac{1}{n}\right)^k = 1 \cdot 1 + n \cdot \frac{1}{n} + \sum_{k=2}^n C_n^k \frac{1}{n^k} \\ &= 2 + \sum_{k=2}^n \frac{n!}{k!(n-k)!} \cdot \frac{1}{n^k} = 2 + \sum_{k=1}^n \frac{1}{k!} \cdot \frac{(n-k+1) \cdot \dots \cdot n}{n^k} \\ &= 2 + \sum_{k=2}^n \frac{1}{k!} \left(1 - \frac{k-1}{n}\right) \\ &= 2 + \sum_{k=2}^n \frac{1}{k!} \left(1 - \frac{k-1}{n}\right) \\ &= 2 + \sum_{n=2}^n \frac{1}{k!} \left(1 - \frac{k-1}{n}\right) \left(1 - \frac{k-2}{n}\right) \cdot \left(1 - \frac{1}{n}\right) \ (5) \\ &\frac{n-k+1}{n} = 1 - \frac{k-1}{n} \\ &\frac{n-k+2}{n} = 1 - \frac{k-2}{n} \\ &\dots \\ &\dots \\ &\frac{n-k+k}{n} = 1 - \frac{k-k}{n} = 1 \\ &\frac{n!}{(n-k)!} = \frac{(n-k)!(n-k+1) \cdot \dots \cdot n}{(n-k)!} = (n-k+1) \cdot \dots \cdot n \\ &n \geq 3 \\ &a = 1, b = \frac{1}{n} \\ &1^{n-k} = 1 \end{split}$$