Cortex-M0 Armマシン語表 (asm15、抜粋)

代入	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	cycles
Rd = u8	0	0	1	0	0		Rd					u	18				1
Rd = Rm	0	1	0	0	0	1	1 1 0 Rd3 Rm Rd2-0					1,3					

*Rd3とRd2-0の4bitでRdを指定する、RdがPCの時3cycles

演算	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	cycles
Rd += u8	0	0	1	1	0		Rd			•	•	ι	18	•	•		1
Rd -= u8	0	0	1	1	1		Rd					ι	18				1
Rd = PC + u8	1	0	1	0	0		Rd					ι	18				1
Rd += Rm	0	1	0	0	0	1	0	0	Rd3		R	m			Rd2-0)	1,3
Rd = Rn + u3	0	0	0	1	1	1	0		u3			Rn			Rd		1
Rd = Rn - u3	0	0	0	1	1	1	1		u3			Rn			Rd		1
Rd = Rn + Rm	0	0	0	1	1	0	0	Rm Rm				Rn			Rd		1
Rd = Rn - Rm	0	0	0	1	1	0	1	Rm				Rn			Rd		1
Rd = -Rm	0	1	0	0	0	0	1	0 0 1				Rm			Rd		1
Rd *= Rm	0	1	0	0	0	0	1	1	0	1		Rm			Rd		1
$Rd = Rm \ll u5$	0	0	0	0	0			u5				Rm			Rd		1
$Rd = Rm \gg u5$	0	0	0	0	1			u5				Rm			Rd		1
Rd <<= Rm	0	1	0	0	0	0	0	0	1	0		Rm			Rd		1
Rd >>= Rm	0	1	0	0	0	0	0	0	1	1		Rm			Rd		1
$Rd = \sim Rm$	0	1	0	0	0	0	1					Rm			Rd		1
Rd &= Rm	0	1	0	0	0	0	0					Rm			Rd		1
Rd I= Rm	0	1	0	0	0	0	1				Rm			Rd		1	
Rd ^= Rm	0	1	0	0	0	0	0	0	0	1		Rm			Rd		1

*Rd3とRd2-0の4bitでRdを指定する、Rd=PCの時3cycles

*Rd=PC+u8: u8は4byte単位

メモリアクセス	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	cycles
Rd = [Rn + u5]	0	1	1	1	1			u5				Rn			Rd		2
Rd = [Rn + u5]W	1	0	0	0	1			u5				Rn			Rd		2
Rd = [Rn + u5]L	0	1	1	0	1			u5				Rn			Rd		2
Rd = [PC + u8]L	0	1	0	0	1		Rd					U	8				2
Rd = [Rn + Rm]	0	1	0	1	1	1	0		Rm			Rn			Rd		2
Rd = [Rn + Rm]C	0	1	0	1	0	1	1		Rm			Rn			Rd		2
Rd = [Rn + Rm]W	0	1	0	1	1	0	1		Rm			Rn			Rd		2
Rd = [Rn + Rm]S	0	1	0	1	1	1	1		Rm			Rn			Rd		2
Rd = [Rn + Rm]L	0	1	0	1	1	0	0		Rm			Rn			Rd		2
[Rn + u5] = Rd	0	1	1	1	0			u5				Rn			Rd		2
[Rn + u5]W = Rd	1	0	0	0	0			u5				Rn			Rd		2
[Rn + u5]L = Rd	0	1	1	0	0			u5				Rn			Rd		2
[Rn + Rm] = Rd	0	1	0	1	0	1	0					Rn			Rd		2
[Rn + Rm]W = Rd	0	1	0	1	0	0	1	1 Rm				Rn			Rd		2
[Rn + Rm]L = Rd	0	1	0	1	0	0	0		Rm			Rn			Rd		2

*[]後の記号でメモリサイズと符号を表す(W:2byte、L:4byte、C:符号付き1byte、S:符号付き2byte)

*u5/u8:Wの場合2byte単位、Lの場合4byte単位となる

条件判断	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	cycles
Rn - u8	0	0	1	0	1		Rn		u8 1 Bn3 Bm							1	
Rn - Rm	0	1	0	0	0	1	0	1	Rn3					F	₹n2-0)	1
Rn - Rm	0	1	0	0	0	0	1	0	1	0					Rn		1
Rn + Rm	0	1	0	0	0	0	1	0	1	1	1 Rm				Rn		1
Rn & Rm	0	1	0	0	0	0	1	0	0	0		Rm		Rn			1

*Rn3とRn2-0の4bitでRnを指定する

分岐	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	cycles
IF 0 GOTO n8	1	1	0	1	0	0	0	0				r	18				1,3
IF !0 GOTO n8	1	1	0	1	0	0	0	1				r	18				1,3
IF cond GOTO n8	1	1	0	1		СО	nd					r	18				1,3
GOTO n11	1	1	1	0	0												3
GOTO Rm	0	1	0	0	0	1	1	1	0		R	m		0	0	0	3
GOSUB Rm	0	1	0	0	0	1	1	1	1		R	m		0	0	0	3
GOSUB n22	1	1	1	1	0	n22(21-11)								1			
-	1	1	1	1	1	n22(10-0)										3	
RET (=#4770)	0	1	0	0	0	1	1	1	0	1	1	1	0	0	0	0	3

*n8/n11/n22:飛び先との命令数の差分から-2した数を指定、分岐するとき3cycles

*cond:0-14 (EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL)!を付けて否定

スタック	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	cycles
PUSH {regs}	1	0	1	1	0	1	0	LR	R7	R6	R5	R4	R3	R2	R1	R0	1+N
POP {regs}	1	0	1	1	1	1	0	PC	R7	R6	R5	R4	R3	R2	R1	R0	1,4 +N
SP += u7	1	0	1	1	0	0	0	0	0				u7				1
SP -= u7	1	0	1	1	0	0	0	0	1				u7				1
Rd = SP + u8	1	0	1	0	1		Rd					U	18				1
Rd = [SP + u8]L	1	0	0	1	1		Rd					U	18				2
[SP + u8]L = Rd	1	0	0	1	0		Rd					U	18				2

*u7/u8:4byte単位

*PUSH:regsの大きいレジスタから順に、SPを減らしSPへ積む例)PUSH {R1,R2}

*POP:regsの小さいレジスタから順に、SPから読み込みSPを増やす例)POP {R1,R2}

*N:指定したレジスタの数、PCへPOPした場合4+Ncycles (それ以外は1+Ncycles)

特殊演算	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	cycles
Rd = REV(Rm)	1	0	1	1	1	0	1	0	0	0		Rm			Rd		1
Rd = REV16(Rm)	1	0	1	1	1	0	1	0	0	1		Rm			Rd		1
Rd = REVSH(Rm)	1	0	1	1	1	0	1	0	1	1	Rm Rm				Rd		1
Rd = ASR(Rm, u5)	0	0	0	1	0	u5				Rm			Rd		1		
ASR Rd, Rm	0	1	0	0	0	0	0	1	0	0	Rm Rm				Rd		1
BIC Rd, Rm	0	1	0	0	0	0	1	1	1	0		Rm			Rd		1
ROR Rd, Rm	0	1	0	0	0	0	0	1	1	1	1 Rm				Rd		1
ADC Rd, Rm	0	1	0	0	0	0	0	1	0	1	1 Rm				Rd		1
SBC Rd, Rm	0	1	0	0	0	0	0	1	1	0		Rm			Rd		1

*BIC:ビットクリア、ASR:符号付き右シフト、ROR:右ローテート

*REV:byteオーダー反転、REV16:byteオーダー反転(2byteずつ)、REVSH:符号付き16bitを反転32bit化

*ADC:キャリー付き足し算、SBC:キャリー付き引き算

メモリアクセス2	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	cycles
LDM Rn, {regs}	1	1	0	0	1		Rn		R7	R6	R5	R4	R3	R2	R1	R0	1+N
STM Rn, {regs}	1	1	0	0	0		Rn		R7	R6	R5	R4	R3	R2	R1	R0	1+N

*N:指定したレジスタの数(マルチメモリアクセス)

*LDM:アドレスRnからregsの小さいレジスタから順に読み込みRnを進める 例)LDM R0,{R1,R2} *STM:アドレスRnへregsの小さいレジスタから順に書き込みRnを進める 例)LDM R0,{R1,R2}

その他	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	cycles
NOP (=0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
CPSID (=#B672)	1	0	1	1	0	1	1	0	0	1	1	1	0	0	1	0	1
CPSIE (=#B662)	1	0	1	1	0	1	1	0	0	1	1	0	0	0	1	0	1
WFI (=#BF30)	1	0	1	1	1	1	1	1	0	0	1	1	0	0	0	0	2

*CPSID:割込禁止、CPSIE:割込許可、WFI:割込待ち、NOP:なにもしない(no operation) R0=R0<<0

- マシン語関連ツール <u>asm15</u> - Assembler for IchigoJam <u>cpuemu15</u> - IchigoJam マシン語エミュレーター alpha1 (<u>説明</u>) <u>armasm.pdf</u> - このドキュメントのPDF版
- 連載、IchigoJamではじめる、Armマシン語入門
- 1. はじめてのマシン語
- 2. ハンドアセンブルで超速計算!
- 3. マシン語メモリアクセスで画面超速表示!
- 4. マシン語でLEDを光らせよう!
- 5. 楽しさ広がるマルチバイトメモリアクセスとスタック
- 6. マシン語使いこなしTIPS
- 7. カジュアルに使うインラインマシン語
- 8. アセンブラを使って楽しよう
- 9. マシン語で高速SPI
- 10. マシン語を制するもの時間を制す
- 11. 画面をイチゴで埋め尽くす12の方法
- 12. レジスタ不足に上位レジスタとスタック操作

DATA: Cortex-M0プロセッサ - Arm (cycles)

Text: CC BY ichigojam.net