2024 高等概率论期末考试

杨赛赛

2025.1.2

满分 130 分,第一到五题 20 分,第六题 30 分。

问题 1. 设 X 为概率空间 $(\Omega, \mathcal{F}, \Pr)$ 上的一可积随机变量,而 \mathcal{L} 为 \mathcal{F} 的若干子 σ 代数组成的一个 σ 代数族。证明下面一族随机变量是一致可积的:

$$\{ \mathbb{E}[X \mid \mathcal{G}] : \mathcal{G} \in \mathcal{L} \}$$

问题 2. 证明一列概率测度 $\{\mu_n\}_{n>1}$ 弱收敛到另一概率测度 μ 当且仅当:

$$\lim_{n \to \infty} \int_{\mathbb{R}} f \, \mathrm{d}\mu_n = \int_{\mathbb{R}} f \, \mathrm{d}\mu, \ \forall f \in C_c^{\infty}(\mathbb{R})$$

其中 $C_c^{\infty}(\mathbb{R})$ 表示 \mathbb{R} 上的光滑紧支撑函数族。

问题 3. 一列概率测度 $\{\mu_n\}_{n\geq 1}$ 弱收敛到另一概率测度 μ 。而 μ_n 对应的特征函数为 ϕ_n , μ 对应的特征函数为 ϕ 。证明 ϕ_n 在 [-1,1] 上一致收敛到 ϕ 。

问题 4. 设 $\{X_n\}_{n\geq 1}$ 为一列随机变量,且 $X_n \sim \mathcal{N}(0,\sigma_n^2), \forall n \in \mathbb{N}^+$ 。若存在另一随机变量 X,使得 $X_n \overset{d}{\to} X$ 。证明 X 存在有限的方差 σ^2 ,且有 $\sigma_n^2 \to \sigma^2, \ n \to \infty$ 。

问题 5. 设 $\{X_n\}_{n\geq 1}$ 是一列独立同分布的随机变量,且其分布都是均值为 1 的 Poisson 分布。设 $S_n = X_1 + \cdots + X_n$,对于任何的 a > 1,计算如下极限:

$$\lim_{n\to\infty} \frac{1}{n} \log \Pr(S_n > na)$$

问题 6. 设 $\{X_n\}_{n\geq 1}$ 是一列独立同分布的随机变量,且有:

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i \xrightarrow{d} \mathcal{N}(0,1)$$

(i) 设 $\{Y_n\}_{n\geq 1}$ 为另一列独立同分布的随机变量,并且 $\{X_n\}_{n\geq 1}$, $\{Y_n\}_{n\geq 1}$ 相互独立,证明:

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i + Y_i) \xrightarrow{d} \mathcal{N}(0,2)$$

(ii) 证明 $\mathbb{E}[X_1^2] < +\infty$ (提示: 存在常数 c > 0 使得: $t^2 \mathbb{E}[X_1^2; |X_1| < 1/t] \le c(1 - \text{Re}(\phi(t))), \forall t \in \mathbb{R}^+$)。

(iii) 证明
$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{\Pr} 0$$
,与 $\mathbb{E}[X_1] = 0$ 。