# **Pairs Trading**

Prof. Daniel P. Palomar
The Hong Kong University of Science and Technology (HKUST)

MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19, HKUST, Hong Kong

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
  - Pairs selection
  - Cointegration test
  - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
  - VECM
  - Factor models
  - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

- Cointegration
- 2 Basic Idea of Pairs Trading
- Obesign of Pairs Trading
  - Pairs selection
  - Cointegration test
  - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
  - VECM
  - Factor models
  - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

- Cointegration is a very interesting property that can be exploited in finance for trading.
- Idea: While it may be difficult to predict individual stocks, it may be easier to predict relative behavior of stocks.
- Illustrative example: A drunk man is wandering the streets (random walk) with a dog. Both paths of man and dog are nonstationary and difficult to predict, but the distance between them is mean-reverting and stationary.



- Everybody is familiar with the concept of correlation between two random variables:
  - correlation is high when they co-move
  - correlation is zero when they move independently
- So what is cointegration?
  - cointegration is high when two quantities move together or remain close to each other
  - cointegration is inexistent if the two quantities do not stay together
- In the financial context:
  - Cointegration of (log-)prices  $y_t$  refers to **long-term** co-movements.
  - Correlation of (log-)returns  $\Delta y_t = y_t y_{t-1}$  characterizes **short-term** co-movements in (log-)prices  $y_t$ .

D. Palomar (HKUST) Pairs Trading 5 / 67

<sup>&</sup>lt;sup>1</sup>Y. Feng and D. P. Palomar, *A Signal Processing Perspective on Financial Engineering*. Foundations and Trends in Signal Processing, Now Publishers, 2016.

• Example of high correlation with no cointegration:



• Indeed the returns are highly correlated, see scatter plot:



• Opposite example of high cointegration with no correlation:



• Indeed the returns are not correlated, see scatter plot:



- A time series is called integrated of order p, denoted as I(p), if the time series obtained
  - by differencing the time series p times is weakly stationary,
  - ullet while by differencing the time series p-1 times is not weakly stationary.
- Example: stock log-prices  $y_t$  are integrated of order I(1) because
  - log-prices are not stationary
  - but log-returns  $y_t y_{t-1}$  are stationary (at least for some period of time).
- A multivariate time series is said to be cointegrated if it has at least one linear combination being integrated of a lower order, e.g.,  $\mathbf{y}_t$  is not stationary but  $\mathbf{w}^T \mathbf{y}_t$  is stationary for some weights  $\mathbf{w}$ .

 Consider the following two nonstationary time series (e.g., log-prices of stocks):

$$y_{1t} = \gamma x_t + w_{1t}$$
$$y_{2t} = x_t + w_{2t}$$

with a stochastic common trend defined as a random walk:

$$x_t = x_{t-1} + w_t$$

where  $w_{1t}$ ,  $w_{2t}$ ,  $w_t$  are i.i.d. residual terms mutually independent.

- The coefficient  $\gamma$  is the secret ingredient here.
- ullet If  $\gamma$  is known, then we can define the so-called "spread"

$$z_t = y_{1t} - \gamma y_{2t} = w_{1t} - \gamma w_{2t}$$

which is stationary and mean reverting.

• Interestingly, the differences (i.e., log-returns)  $\Delta y_{1t}$  and  $\Delta y_{2t}$  can have an arbitrarily small correlation:

$$\rho = 1/\left(\sqrt{1 + 2\sigma_1^2/\sigma^2}\sqrt{1 + 2\sigma_2^2/\sigma^2}\right).$$

D. Palomar (HKUST) Pairs Trading 11/67

• The log-prices  $y_{1t}$  and  $y_{2t}$  are cointegrated and the spread  $z_t = y_{1t} - \gamma y_{2t}$  is stationary (assume  $\gamma = 1$ ):



- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
  - Pairs selection
  - Cointegration test
  - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
  - VECM
  - Factor models
  - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

### **Basic Idea of Pairs Trading**

- Recall that if two time series are cointegrated, then in the long term they remain close to each other.
- In other words, the spread  $z_t = y_{1t} \gamma y_{2t}$  is **mean reverting**.
- This mean-reverting property of the spread can be exploited for trading and it is commonly referred to as "pairs trading" or "statistical arbitrage".
- The idea behind pairs trading is to
  - short-sell the relatively overvalued stocks and buy the relatively undervalued stocks,

14 / 67

• unwind the position when they are relatively fairly valued.

### Trading the spread

- Suppose the spread  $z_t = y_{1t} \gamma y_{2t}$  is mean-reverting with zero mean.
- Stat-arb trading:
  - if spread is low  $(z_t < -s_0)$ , then stock 1 is undervalued and stock 2 overvalued:
    - buy the spread (i.e., buy stock 1 and short-sell stock 2)
    - unwind the positions when it reverts to zero after i time steps  $z_{t+i} = 0$
  - if spread is high  $(z_t > s_0)$ , then stock 1 is overvalued and stock 2 undervalued:
    - short-sell the spread (i.e., short-sell stock 1 and buy stock 2)
    - unwind the positions when it reverts to zero after i time steps  $z_{t+i} = 0$
- The profit, say, from buying low and unwinding at zero is  $z_{t+i} z_t = s_0$ . So easy!
- Indeed  $z_{t+i} z_t = -\gamma(y_{2,t+i} y_{2t}) + (y_{1,t+i} y_{1t})$ , so the whole process is like having used a portfolio with weights  $\mathbf{w} = \begin{bmatrix} 1 \\ -\gamma \end{bmatrix}$ .
- Recall that the return of a portfolio  $\mathbf{w}$  is  $\mathbf{w}^T \Delta \mathbf{y}_t$ .

### Trading the spread

• Illustration on how to trade the spread  $z_t = y_{1t} - \gamma y_{2t}$ :



<sup>&</sup>lt;sup>2</sup>G. Vidyamurthy, *Pairs Trading: Quantitative Methods and Analysis*. John Wiley & Sons. 2004.

D. Palomar (HKUST) Pairs Trading 16 / 67

### Pairs trading or statistical arbitrage

• Statistical arbitrage can be used in practice with profits:<sup>3</sup>



<sup>&</sup>lt;sup>3</sup>M. Avellaneda and J.-H. Lee, "Statistical arbitrage in the US equities market," *Quantitative Finance*, vol. 10, no. 7, pp. 761–782, 2010.

D. Palomar (HKUST) Pairs Trading 17 / 67

# But how to discover cointegrated pairs and $\gamma$ ?

- One interesting approach is based on a VECM modeling of the universe of stocks: From the parameter  $\beta$  contained in the low-rank matrix  $\Pi = \alpha \beta^T$  one can extract a cointegration subspace. After that, one can design some portfolio within that cointegration subspace.<sup>4</sup>
- A simpler approach to discover pairs is by brute force, i.e., try
  exhaustively different combinations of pairs of stocks and see if they
  are cointegrated.
- But, given a potential pair, how do we obtain the "secret"  $\gamma$ ?
- Easy! Just a simple LS regression!
- Recall that
  - $\bullet \ \gamma$  is needed to form the spread to be traded (i.e., portfolio)
  - ullet the spread mean  $\mu$  is needed to determine the thresholds for entering a trade and unwind later the position.

D. Palomar (HKUST) Pairs Trading 18 / 67

<sup>&</sup>lt;sup>4</sup>Z. Zhao and D. P. Palomar, "Mean-reverting portfolio with budget constraint," *IEEE Trans. Signal Process.*, vol. 66, no. 9, pp. 2342–2357, 2018.

- Cointegration
- Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
  - Pairs selection
  - Cointegration test
  - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
  - VECM
  - Factor models
  - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

## Design of a pairs trading strategy

- We first focus on pairs trading (i.e., statistical arbitrage between two stocks) as the example to introduce the main steps of statistical arbitrage.
- In practice, pairs trading contains three main steps<sup>5</sup>:
  - Pairs selection: identify stock pairs that could potentially be cointegrated.
  - **Cointegration test**: test whether the identified stock pairs are indeed cointegrated or not.
  - **Trading strategy design**: study the spread dynamics and design proper trading rules.

D. Palomar (HKUST) Pairs Trading 20 / 67

<sup>&</sup>lt;sup>5</sup>G. Vidyamurthy, *Pairs Trading: Quantitative Methods and Analysis*. John Wiley & Sons. 2004.

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
  - Pairs selection
  - Cointegration test
  - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
  - VECM
  - Factor models
  - Optimization of mean-reverting portfolio (MRP)
- 6 Summary

### Pairs selection: normalized price distance

 Normalized price distance<sup>6</sup> (as a rough proxy to measure cointegration):

$$\mathsf{NPD} riangleq \sum_{t=1}^T ( ilde{p}_{1t} - ilde{p}_{2t})^2$$

where the normalized price  $\tilde{p}_{1t}$  of stock 1 is given by  $\tilde{p}_{1t} = p_{1t}/p_{10}$ . The normalized prices of stock 2 defined similarly.

- One can easily (i.e., cheaply) compute the NPD for all the possible combination of pairs and select some pairs with smallest NPD as the potentially cointegrated pairs.
- Later one can use a more refined measure of cointegration (more computationally demanding).

D. Palomar (HKUST) Pairs Trading 22 / 67

<sup>&</sup>lt;sup>6</sup>E. Gatev, W. N. Goetzmann, and K. G. Rouwenhorst, "Pairs trading: Performance of a relative-value arbitrage rule," *Review of Financial Studies*, vol. 19, no. 3, pp. 797–827, 2006.

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
  - Pairs selection
  - Cointegration test
  - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
  - VECM
  - Factor models
  - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

# Least Squares (LS) regression

• If the spread  $z_t$  is stationary, it can be written as<sup>7</sup>

$$z_t = y_{1t} - \gamma y_{2t} = \mu + \epsilon_t$$

#### where

- $\bullet$   $\mu$  represents the equilibrium value and
- $\epsilon_t$  is a zero-mean residual.
- Equivalently, it can be written as

$$y_{1t} = \mu + \gamma y_{2t} + \epsilon_t$$

which now has the typical form of linear regression.

• Least squares (LS) regression over *T* observations:

$$\underset{\mu,\gamma}{\mathsf{minimize}} \quad \sum_{t=1}^{T} (y_{1t} - (\mu + \gamma y_{2t}))^2$$

<sup>&</sup>lt;sup>7</sup>G. Vidyamurthy, *Pairs Trading: Quantitative Methods and Analysis.* John Wiley & Sons. 2004.

### **Cointegration test**

- LS regression is used to estimate the parameters  $\mu$  and  $\gamma$ , obtaining the estimates  $\hat{\mu}$  and  $\hat{\gamma}$ .
- If  $y_{1t}$  and  $y_{2t}$  are I(1) and are cointegrated, then the estimates converge to the true values as the number of observations goes to infinity<sup>8</sup>.
- Using the estimated parameters  $\hat{\mu}$  and  $\hat{\gamma}$ , we can compute the residuals

$$\hat{\epsilon}_t = y_{1t} - \hat{\gamma} y_{2t} - \hat{\mu}.$$

- Then, one has to decide whether the spread is stationary, i.e.,  $\epsilon_t$  is stationary. In practice, the estimated residuals are used  $\hat{\epsilon}_t$
- There are many well-defined mathematical tests for the stationarity of  $\hat{\epsilon}_t$ , e.g., augmented Dicky-Fuller (ADF) test, Johansen test, etc.

<sup>&</sup>lt;sup>8</sup>R. F. Engle and C. W. J. Granger, "Co-integration and error correction: Representation, estimation, and testing," *Econometrica: Journal of the Econometric Society*, pp. 251–276, 1987.

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
  - Pairs selection
  - Cointegration test
  - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
  - VECM
  - Factor models
  - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

### **Optimum threshold**

- Once some identified pairs have passed the cointegration test, one still needs to decide the entry and exit thresholds to open and unwind the positions, respectively.
- For the sake of concreteness, we focus on studying the entry threshold:
  - ullet open positions when the spread diverges from its long-term mean by  $s_0$
  - unwind the position when it reverts to its mean
- ullet Thus, the key problem now is how to design the value of  $s_0$  such that the total profit is maximized.
- Total profit:

#### profit of each trade $\times$ number of trades

- profit of each trade is  $s_0$
- number of trades is related to the zero crossings, which can be analized theoretically as well as empirically.
- We focus now on estimating the number of trades.

# Optimum threshold $s_0$ : Parametric approach

- Suppose the spread follows a standard Normal distribution.
- The probability that the spread deviates above from the mean by  $s_0$  or more is

$$1-\Phi(s_0)$$

where  $\Phi(\cdot)$  is the c.d.f. of the standard Normal distribution.

• For a path with T days, the number of tradable events is

$$T(1-\Phi(s_0)).$$

- For each trade, the profit is  $s_0$  and then the total profit is  $s_0 T(1 \Phi(s_0))$ .
- Then the optimal threshold is  $s_0^* = \arg \max_{s_0} \{s_0 T(1 \Phi(s_0))\}.$
- In practice, one cannot know the true distribution but can estimate the distribution parameters.
- Then one can compute the total profit based on estimated distribution.

### Optimum threshold $s_0$ : Parametric approach

• Optimal threshold  $s_0^{\star}$  maximizes the total profit:



# Optimum threshold s<sub>0</sub>: Non-parametric approach

- Suppose the observed sample path has length  $T: z_1, z_2, \ldots, z_T$ .
- We consider J discretized threshold values as  $s_0 \in \{s_{01}, s_{02}, \dots, s_{0J}\}$  and the empirical trading frequency for the threshold  $s_{0i}$  is

$$\bar{f}_j = \frac{\sum_{t=1}^T \mathbf{1}_{\{z_t > s_{0j}\}}}{T}.$$

- The empirical values  $\bar{f}_j$  may not be a smoothed enough and the resulted profit function may not be accurate enough.
- Smooth the trading frequency function by regularization:

$$\underset{\mathbf{f}}{\mathsf{minimize}} \quad \sum_{j=1}^J (\overline{f}_j - f_j)^2 + \lambda \sum_{j=1}^{J-1} (f_j - f_{j+1})^2$$

# Optimum threshold s<sub>0</sub>: Non-parametric approach

• The problem can be rewritten as

$$\underset{\mathbf{f}}{\mathsf{minimize}} \quad \|\overline{\mathbf{f}} - \mathbf{f}\|_2^2 + \lambda \, \|\mathbf{D}\mathbf{f}\|_2^2$$

where

$$\mathbf{D} = egin{bmatrix} 1 & -1 & & & & & \ & 1 & -1 & & & & \ & & \ddots & \ddots & & \ & & & 1 & -1 \end{bmatrix} \in \mathbb{R}^{(J-1) imes J}.$$

- Setting the derivative of the objective w.r.t.  $\mathbf{f}$  to zero yields the optimal solution  $\mathbf{f}^* = (\mathbf{I} + \lambda \mathbf{D}^T \mathbf{D})^{-1} \overline{\mathbf{f}}$ .
- The optimal threshold is the one maximizes the total profit:

$$s_0^{\star} = \underset{s_{0j} \in \{s_{01}, s_{02}, \dots, s_{0J}\}}{\operatorname{arg max}} \{s_{0j}f_j\}.$$

## Optimum threshold s<sub>0</sub>: Non-parametric approach

• Optimal threshold  $s_0^{\star}$  maximizes the total profit:



- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
  - Pairs selection
  - Cointegration test
  - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
  - VECM
  - Factor models
  - Optimization of mean-reverting portfolio (MRP)
- 6 Summary

### LS regression for pairs trading

• If the spread  $z_t$  is stationary, it can be written as

$$z_t = y_{1t} - \gamma y_{2t} = \mu + \epsilon_t$$

where

- ullet  $\mu$  represents the equilibrium value and
- $\bullet$   $\epsilon_t$  is a zero-mean residual.
- Equivalently, it can be written as

$$y_{1t} = \mu + \gamma y_{2t} + \epsilon_t$$

which now has the typical form for linear regression.

• Least squares (LS) regression over T observations:

minimize 
$$\sum_{\mu,\gamma}^{T} (y_{1t} - (\mu + \gamma y_{2t}))^2$$

 By stacking the T observations in the vectors y<sub>1</sub> and y<sub>2</sub>, we can finally write:

minimize 
$$\|\mathbf{y}_1 - (\mu \mathbf{1} + \gamma \mathbf{y}_2)\|^2$$

# LS regression for pairs trading

- Using the estimated parameters  $\hat{\mu}$  and  $\hat{\gamma}$ , we can compute the residuals  $\hat{\epsilon}_t = y_{1t} \hat{\mu} \hat{\gamma}y_{2t}$ .
- Then, one has to decide whether the cointegration is acceptable or not so move to the trading part.
- There are many well-defined mathematical tests for the stationarity of  $\hat{\epsilon}_t$ , e.g., augmented Dicky-Fuller (ADF) test, Johansen test, etc.
- Total profit:

profit of each trade  $\times$  number of trades

- profit of each trade is s<sub>0</sub>
- number of trades is related to the zero crossings, which can be analized theoretically as well as empirically.
- Ideally, we want residuals with large amplitude (variance) as well as a strong mean reversion because they directly affect the profit.

D. Palomar (HKUST) Pairs Trading 35 / 67

### LS regression for pairs trading







# LS regression for pairs trading

• But also a bad case: 😞





# LS regression for pairs trading

- $\bullet$  The problem with the LS regression is that it assumes that  $\mu$  and  $\gamma$  are constant.
- In practice, they can change with time, resulting in a spread that drifts from equilibrim never to revert back with huge potential losses.
- ullet Thus, in practice,  $\mu$  and  $\gamma$  are time-varying and have to be tracked.
- How to track time-varying parameters?
- Of course... Kalman!!!
- Well, you can also try a rolling regression or exponential smoothing, but Kalman works better.

38 / 67

• Recall the previous static relationship for cointegrated series  $y_{1t}$  and  $y_{2t}$ :

$$y_{1t} = \mu + \gamma y_{2t} + \epsilon_t$$

• Let's make it time-varying:

$$y_{1t} = \mu_t + \gamma_t y_{2t} + \epsilon_t$$

• Let's further assume that the parameters  $\mu_t$  and  $\gamma_t$  change slowly over time:

$$\mu_{t+1} = \mu_t + \eta_{1t}$$
$$\gamma_{t+1} = \gamma_t + \eta_{2t}$$

Obviously, this fits nicely the Kalman framework!

#### Interlude: The Kalman filter

• Kalman filter consist of two equations that model the time-varying hidden state  $\mathbf{x}_t$  and the observations  $\mathbf{y}_t$ :

$$\mathbf{x}_{t+1} = \mathbf{T}_t \mathbf{x}_t + oldsymbol{\eta}_t \ \mathbf{y}_t = \mathbf{Z}_t \mathbf{x}_t + oldsymbol{\epsilon}_t$$

- The observation equation  $\mathbf{y}_t = \mathbf{Z}_t \mathbf{x}_t + \epsilon_t$  relates the observation  $\mathbf{y}_t$  to the hidden state  $\mathbf{x}_t$  as a linear relationship, where  $\mathbf{Z}_t$  is the time-varying observation matrix and  $\epsilon_t$  is a zero-mean Gaussian error  $\epsilon_t \sim \mathcal{N}\left(\mathbf{0},\mathbf{R}\right)$  with covariance matrix  $\mathbf{R}$ .
- The state transition equation  $\mathbf{x}_{t+1} = \mathbf{T}_t \mathbf{x}_t + \boldsymbol{\eta}_t$  expresses the transition of the hidden state from  $\mathbf{x}_t$  to  $\mathbf{x}_{t+1}$  as a linear relationship, where  $\mathbf{T}_t$  is the time-varying transition matrix and  $\boldsymbol{\eta}_t$  is a zero-mean Gaussian error  $\boldsymbol{\eta}_t \sim \mathcal{N}\left(\mathbf{0},\mathbf{Q}\right)$  with covariance matrix  $\mathbf{Q}$ .
- The Kalman filter is extremely versatile in modeling a variety of real-life processes.<sup>9</sup>

<sup>&</sup>lt;sup>9</sup>J. Durbin and S. J. Koopman, *Time Series Analysis by State Space Methods*, 2nd Ed. Oxford University Press, 2012.

Kalman filter (state transition equation and observation equation):

$$\mathbf{x}_{t+1} = \mathbf{T}\mathbf{x}_t + \boldsymbol{\eta}_t$$
 $y_{1t} = \mathbf{Z}_t\mathbf{x}_t + \epsilon_t$ 

where

- $\mathbf{x}_t \triangleq \left[ \begin{array}{c} \mu_t \\ \gamma_t \end{array} \right]$  is the hidden state
    $\mathbf{T} \triangleq \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$  is the state transition matrix
- $\eta_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$  is the i.i.d. state transition noise with  $\mathbf{Q} = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$
- $\mathbf{Z}_t \triangleq \begin{bmatrix} 1 & y_{2t} \end{bmatrix}$  is the observation coefficient matrix
- $\epsilon_t \sim \bar{\mathcal{N}}\left(0, \sigma_\epsilon^2\right)$  is the i.i.d. observation noise
- Note that this is a time-varying Kalman filter since  $\mathbf{Z}_t$  is time-varying.
- Parameters  $\sigma_1^2$ ,  $\sigma_2^2$ ,  $\sigma_\epsilon^2$  can be estimated using the EM algorithm using historical data for calibration.

• Log-prices of ETFs EWH and EWZ:



 $\bullet$  Tracking of  $\mu$  and  $\gamma$  by LS, rolling LS, and Kalman:



• Spreads achieved by LS, rolling LS, and Kalman:



#### Trading of spread from LS:



#### Trading of spread from rolling LS:



#### • Trading of spread from Kalman:



#### • Wealth comparison:



### Kalman filter in finance

- The Kalman filter can and has been used in many aspects of financial time-series modeling as one could expect.<sup>10</sup>
- Examples of univariate time series: rate of inflation, national income, level of unemployment, etc.
- Typical models include: local model, trend-cycle decompositions, seasonality, etc.
- Examples of multivariate time series: inflation and national income.
- Multiple time series allows for more sophisticated models including common factors, cointegration, etc.
- Also data irregularities can be easily handled, e.g., missing observations, outliers, mixed frequencies.
- Plenty of applications for nonlinear and non-Gaussian models as well, e.g., GARCH modeling and stochastic volatility modeling.

<sup>&</sup>lt;sup>10</sup>A. Harvey and S. J. Koopman, "Unobserved components models in economics and finance: The role of the Kalman filter in time series econometrics," *IEEE Control Systems Magazine*, vol. 29, no. 6, pp. 71–81, 2009.

### **Outline**

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
  - Pairs selection
  - Cointegration test
  - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
  - VECM
  - Factor models
  - Optimization of mean-reverting portfolio (MRP)
- 6 Summary

# From pairs trading to statistical arbitrage

- Pairs trading focuses on finding cointegration between two stocks.
- A more general idea is to extend this statistical arbitrage from two stocks to more stocks.
- The idea is still based on cointegration:

Try to construct a linear combination of the log-prices of multiple (more than two) stocks such that it is a **cointegrated mean-reversion** process.

- In the case of two assets, the spread is  $z_t = y_{1t} \gamma y_{2t}$ , which can be understood as a portfolio with weights:  $\mathbf{w} = \begin{bmatrix} 1 \\ -\gamma \end{bmatrix}$ .
- In the general case of many assets, one has to properly design the portfolio w.

D. Palomar (HKUST) Pairs Trading 51/67

### **Outline**

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
  - Pairs selection
  - Cointegration test
  - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
  - VECM
  - Factor models
  - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

#### **VECM**

- Denote the log-prices of multiple stocks as  $\mathbf{y}_t$  and the log-returns as  $\mathbf{r}_t = \Delta \mathbf{y}_t = \mathbf{y}_t \mathbf{y}_{t-1}$ .
- Most of the multivariate time-series models attempt to model the log-returns  $\mathbf{r}_t$  (because the log-prices are nonstationary whereas the log-returns are weakly stationary, at least over some time horizon).
- However, it turns out that differencing the log-prices may destroy part of the structure.
- The VECM<sup>11</sup> tries to fix that issue by including an additional term in the model:

$$\mathbf{r}_t = \phi_0 + \mathbf{\Pi} \mathbf{y}_{t-1} + \sum_{i=1}^{p-1} \tilde{\mathbf{\Phi}}_i \mathbf{r}_{t-i} + \mathbf{w}_t,$$

where the term  $\Pi y_{t-1}$  is called error correction term.

<sup>&</sup>lt;sup>11</sup>R. F. Engle and C. W. J. Granger, "Co-integration and error correction: Representation, estimation, and testing," *Econometrica: Journal of the Econometric Society*, pp. 251–276, 1987.

### VECM - Matrix Π

- The matrix  $\Pi$  is of extreme importance.
- Notice that from the model  $\mathbf{r}_t = \phi_0 + \mathbf{\Pi} \mathbf{y}_{t-1} + \sum_{i=1}^{p-1} \tilde{\mathbf{\Phi}}_i \mathbf{r}_{t-i} + \mathbf{w}_t$  one can conclude that  $\mathbf{\Pi} \mathbf{y}_t$  must be stationary even though  $\mathbf{y}_t$  is not!!!
- If that happens, it is said that  $\mathbf{y}_t$  is cointegrated.
- There are three possibilities for Π:
  - rank  $(\Pi) = 0$ : This implies  $\Pi = 0$ , thus  $\mathbf{y}_t$  is not cointegrated (so no mystery here) and the VECM reduces to a VAR model on the log-returns.
  - rank  $(\Pi) = N$ : This implies  $\Pi$  is invertible and thus  $\mathbf{y}_t$  must be stationary already.
  - $0 < \operatorname{rank}(\mathbf{\Pi}) < \mathcal{N}$ : This is the interestinc case and  $\mathbf{\Pi}$  can be decomposed as  $\mathbf{\Pi} = \alpha \boldsymbol{\beta}^T$  with  $\alpha, \beta \in \mathbb{R}^{N \times r}$  with full column rank. This means that  $\mathbf{y}_t$  has r linearly independent cointegrated components, i.e.,  $\boldsymbol{\beta}^T \mathbf{y}_t$ , each of which can be used for pairs trading.

54 / 67

### **Outline**

- Cointegration
- Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
  - Pairs selection
  - Cointegration test
  - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
  - VECM
  - Factor models
  - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

# Statistical arbitrage based on factor models

Suppose the stock i is cointegrated with some tradable factors:

$$y_{it} = \boldsymbol{\pi}_i^T \mathbf{y}_t^f + w_{it}$$

#### where

- yit is the log-price of the stock i,
- $\mathbf{y}_{t}^{f}$  is the log-price of the tradable factors,
- $\pi_i$  is the vector of loading coefficients
- w<sub>it</sub> is a stationary mean-reversion process.
- It can also be written in a factor model form:

$$r_{it} = \boldsymbol{\pi}_{i}^{T} \mathbf{f}_{t} + \varepsilon_{it}$$

#### where

- $r_{it} = y_{it} y_{i,t-1}$  is the log-return of stock i,
- $\mathbf{f}_t = \mathbf{y}_t^f \mathbf{y}_{t-1}^f$  is the log-returns of the tradable factors, and
- $\varepsilon_{it} = w_{it} w_{i,t-1}$  is the specific noise.

### Statistical arbitrage based on factor models

Recall the factor model form expression

$$r_{it} = \boldsymbol{\pi}_{i}^{T} \mathbf{f}_{t} + \varepsilon_{it}$$

- The idea now is to first properly select some tradable factors  $\mathbf{f}_t$  and then test whether the cumulative summation of the resulted specific noise  $\varepsilon_{it}$ , i.e.,  $w_{it} = \sum_{i=0}^{t} \varepsilon_{ij}$ , is stationary or not.
- If positive, then one can define a spread to be

$$z_{it} = w_{it} = \sum_{j=0}^{t} \left( r_{ij} - \boldsymbol{\pi}_{i}^{T} \mathbf{f}_{j} \right) = \begin{bmatrix} 1 & -\boldsymbol{\pi}_{i}^{T} \end{bmatrix} \left( \sum_{j=0}^{t} \begin{bmatrix} r_{ij} \\ \mathbf{f}_{j} \end{bmatrix} \right)$$
$$= \begin{bmatrix} 1 & -\boldsymbol{\pi}_{i}^{T} \end{bmatrix} \begin{bmatrix} y_{it} \\ \mathbf{y}_{t}^{f} \end{bmatrix}$$

### Statistical arbitrage based on factor models

- Some tradable examples  $^{12}$  of  $\mathbf{f}_t$  are the log-returns of
  - (explicit factors) the sector ETFs and/or
  - (hidden factors) several largest eigen-portfolios<sup>13</sup>
- Again, for each constructed cointegration component, one can study the spread and find the optimal trading thresholds as before.

58 / 67

D. Palomar (HKUST) Pairs Trading

<sup>&</sup>lt;sup>12</sup>M. Avellaneda and J.-H. Lee, "Statistical arbitrage in the US equities market," *Quantitative Finance*, vol. 10, no. 7, pp. 761–782, 2010.

<sup>&</sup>lt;sup>13</sup>A eigen-portfolio is a portfolio whose weight is a eigenvector of the covariance matrix of the stock returns.

### **Outline**

- Cointegration
- Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
  - Pairs selection
  - Cointegration test
  - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
  - VECM
  - Factor models
  - Optimization of mean-reverting portfolio (MRP)
- **6** Summary

# Mean-reverting portfolio (MRP)

- In the case of two assets, the spread is  $z_t = y_{1t} \gamma y_{2t}$ , which can be understood as a portfolio with weights:  $\mathbf{w} = \begin{bmatrix} 1 \\ -\gamma \end{bmatrix}$ .
- In the general case of many assets, one has to properly design the portfolio **w**.
- One interesting approach is based on a VECM modeling of the universe of stocks:
  - From the parameter  $\beta$  contained in the low-rank matrix  $\Pi = \alpha \beta^T$  one can simply use any column of  $\beta$  (even all of them)
  - ullet Even better, eta defines a cointegration subspace and we can then optimize the portfolio within that cointegration subspace. <sup>14</sup>

D. Palomar (HKUST) Pairs Trading 60 / 67

<sup>&</sup>lt;sup>14</sup>Z. Zhao and D. P. Palomar, "Mean-reverting portfolio with budget constraint," *IEEE Trans. Signal Process.*, vol. 66, no. 9, pp. 2342–2357, 2018.

# Mean-reverting portfolio (MRP)

- Consider the log-prices  $\mathbf{y}_t$  and use  $\boldsymbol{\beta}$  to extract several spreads  $\mathbf{s}_t = \boldsymbol{\beta}^T \mathbf{y}_t$ .
- Let's now use a portfolio **w** to extract the best mean-reverting spread from  $\mathbf{s}_t$  as  $z_t = \mathbf{w}^T \mathbf{s}_t$ .
- To design the the portfolio **w** we have two main objectives (recall that total profit equals: profit of each trade × number of trades):
  - we want large variance (profit of each trade):  $\mathbf{w}^T \mathbf{M}_0 \mathbf{w}$ , where  $\mathbf{M}_i = E\left[ (\mathbf{s}_t E[\mathbf{s}_t]) (\mathbf{s}_{t+i} E[\mathbf{s}_{t+i}])^T \right]$
  - we want strong mean reversion (number of trades): many proxies exist like the Portmanteau statistics or crossing statistics.

61 / 67

D. Palomar (HKUST) Pairs Trading

# Mean-reverting portfolio (MRP)

 For example, if we use the Portmanteau statistics as a proxy for the mean reversion, the problem formulation becomes:

minimize 
$$\sum_{i=1}^{p} \left( \frac{\mathbf{w}^{T} \mathbf{M}_{i} \mathbf{w}}{\mathbf{w}^{T} \mathbf{M}_{0} \mathbf{w}} \right)^{2}$$
 subject to 
$$\mathbf{w}^{T} \mathbf{M}_{0} \mathbf{w} = \nu$$
 
$$\mathbf{w} \in \mathcal{W}.$$

 Using other proxies, the formulation can be expressed more generally as<sup>15</sup>

minimize 
$$\mathbf{w}^T \mathbf{H} \mathbf{w} + \lambda \sum_{i=1}^p \left( \mathbf{w}^T \mathbf{M}_i \mathbf{w} \right)^2$$
 subject to  $\mathbf{w}^T \mathbf{M}_0 \mathbf{w} = \nu$   $\mathbf{w} \in \mathcal{W}$ .

D. Palomar (HKUST) Pairs Trading 62 / 67

<sup>&</sup>lt;sup>15</sup>Z. Zhao and D. P. Palomar, "Mean-reverting portfolio with budget constraint," *IEEE Trans. Signal Process.*, vol. 66, no. 9, pp. 2342–2357, 2018.

### MRP in practice

• Observe several stock log-prices and the spreads obtained from  $\beta$ :



### MRP in practice

• Observe several stock log-prices and the spreads obtained from  $\beta$ :



### **Outline**

- Cointegration
- 2 Basic Idea of Pairs Trading
- 3 Design of Pairs Trading
  - Pairs selection
  - Cointegration test
  - Optimum threshold
- 4 LS Regression and Kalman for Pairs Trading
- 5 From Pairs Trading to Statistical Arbitrage (StatArb)
  - VECM
  - Factor models
  - Optimization of mean-reverting portfolio (MRP)
- Summary

# **Summary**

- First of all, we have discovered the concept of cointegration.
- We have learned the basic idea of pairs trading for cointegrated assets:
  - searching for a cointegrated spread is the first step
  - making sure that the chosen spread remains cointegrated is key (cointegrated tests)
  - $\bullet$  obtaining the cointegration ratio  $\gamma$  and the entering and exiting thresholds are important details.
- We have learned of the use of Kalman (initially developed for tracking missiles) filtering for improved pairs trading.
- We have briefly explored the extension of pairs trading (for two stocks) to statistical arbitrage (for more than two stocks):
  - VECM modeling is an important multivariate time-series modeling tool
  - sophisticated portfolio designs on the cointegration subspace are possible.

### **Thanks**

For more information visit:

https://www.danielppalomar.com

