

Modelagem Molecular Aplicada à Descoberta de Fármacos

MSc. Ana Luiza Martins Karl
(a): almkarl(a)Incc.br

PETRÓPOLIS, 2025

Conteúdo programado

] Introdução

2 Identificação de alvos

Obtenção de modelos

Preparação das estruturas

Docking e
Triagem Virtual

_ Prática

Conteúdo programado

) Introdução

2 Identificação de alvos

Obtenção de modelos

Preparação das estruturas

Docking e
Triagem Virtual

_ Prática

O7 Introdução

Como a modelagem molecular auxilia no desenvolvimento de fármacos?

Sec XIX

O que mudou?

Avanços tecnológicos Integração com a computação

Quantidade de dados

Capacidade de processamento

Diminuição dos custos

Decisões baseadas em conhecimento

O que mudou?

Número de entradas no UniProtKB/TrEMBL

O que mudou?

Desenvolvimento de Fármacos

2-5 anos 5 - 10 anos

Desenvolvimento de Fármacos

Alvo molecular

Modelagem Molecular

Sintomas da covid-19*

^{*}Pessoas infectadas não necessariamente apresentam todos os sintomas. Em alguns casos, podem não ter nenhum deles.

Fontes: Heloisa Ravagnani (SBI - DF), Paulo Sergio Ramos (Fiocruz Recife), OMS, NHS, CDC

^{**}Caso apresente este sintoma, procure um hospital ou serviço de saúde.

Alvo molecular

Modelagem Molecular

SARS-CoV-2

Alvo molecular

Modelagem Molecular

Alvo molecular

Modelagem Molecular

Alvo molecular

Modelagem Molecular

Alvo molecular

Modelagem Molecular

PROTEASE PRINCIPAL

Alvo molecular

Modelagem Molecular

ALVO MOLECULAR (RECEPTOR)

PEQUENAS MOLÉCULAS QUÍMICAS (LIGANTES)

ATOM	1	N	MET	A	1	12.850	-7.068	39.523	1.00 69.41	N
ATOM	2	CA	MET	A	1	13.375	-6.064	40.442	1.00 70.57	C
ATOM	3	C	MET	A	1	12.434	-5.800	41.618	1.00 68.11	C
ATOM	4	0	MET	A	1	11.263	-6.193	41.598	1.00 61.92	0
ATOM	5	CB	MET	A	1	13.690	-4.761	39.697	1.00 61.10	C
ATOM	6	CG	MET	A	1	12.758	-4.456	38.532	1.00 55.09	C

Modelagem molecular

Conjunto de técnicas computacionais que utilizam representações matemáticas e algoritmos para simular/prever a estrutura, dinâmica e interações de moléculas, auxiliando na compreensão de processos químicos e biológicos.

O2 Identificação de alvos

Como selecionar um alvo molecular?

Relembrando... Dogma Central da Biologia Molecular

Relembrando... Dogma Central da Biologia Molecular

Doença de Alzheimer

Doença de Alzheimer

Identificação de alvos terapêuticos

- Identificação de genes associados a doenças
- Descoberta de biomarcadores
- Validação funcional de variantes genéticas
- Mapeamento de vias biológicas

Integração das ciências ômicas: genômica, transcriptômica, proteômica etc.

Identificação de alvos terapêuticos

Validação biológica

Estudos de perda ou ganho de função, Knockout ou knockdown do gene do alvo, uso de compostos ´químicos e peptídeos, cultura de células, etc.

Validação funcional

Avaliação de mudanças em vias metabólicas, verificação de mudanças em células ou organismos, como proliferação celular, apoptose, inflamação, etc.

Validação clínica

Identificação de biomarcadores associados ao alvo, ensaios clínicos em humanos

Obtenção de modelos

Representando o sistema molecular

As moléculas são descritas computacionalmente através de arquivos texto onde estão contidas as informações dos átomos que as compõem, assim como suas ligações.

No caso dos sistemas biológicos, os formatos mais comuns dessa representação são:

- PDB (Protein Data Bank file format);
- MOL/MOL2;
- XYZ;
- Topology files (PSF, PRMTOP)

As moléculas são descritas computacionalmente através de arquivos texto onde estão contidas as informações dos átomos que as compõem, assim como suas ligações.

ATOM	1	N	MET	Α	1	12.850	-7.068	39.523	1.00 69.41	N
ATOM	2	CA	MET	A	1	13.375	-6.064	40.442	1.00 70.57	C
ATOM	3	C	MET	A	1	12.434	-5.800	41.618	1.00 68.11	C
ATOM	4	0	MET	A	1	11.263	-6.193	41.598	1.00 61.92	0
ATOM	5	CB	MET	A	1	13.690	-4.761	39.697	1.00 61.10	C
ATOM	6	CG	MET	A	1	12.758	-4.456	38.532	1.00 55.09	C

Estruturas tridimensionais experimentalmente preditas no Protein Data Bank*

191.011

Difração de Raios-x em Cristais

24.154

Microscopia eletrônica

Ressonância magnética nuclear

*Dados de 20 de janeiro de 2025

▲ Alto custo▲ Condições experimentais difíceis de serem alcançadas

Estruturas tridimensionais experimentalmente preditas no *Protein Data Bank**

•

191.011

24.154

14.338

Difração de Raios-x em Cristais

Microscopia eletrônica

Ressonância magnética nuclear

Métodos computacionais para a predição de modelos tridimensionais

Postulado de Anfinsen (hipótese da termodinâmica): toda a informação necessária para o enovelamento de uma proteína está contida em sua sequência de aminoácidos.

Sequências primárias

Computação

Estrutura tridimensional

Métodos computacionais para a predição de modelos tridimensionais

<40% identidade de sequência

>40% identidade de sequência

Baseados em forças físicas Baseados em dados empíricos

CASP

Critical Assessment of Protein Structure Prediction (CASP) é uma competição de métodos para a predição de estruturas de proteínas

Desde 1994 - 16 edições

Modeller - método template-based Robetta - método ab initio AlphaFold (2022) - 92,4% sucesso na predição

AlphaFold

*Google DeepMind

Article

Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2

Received: 11 May 2021

Accepted: 12 July 2021

Published online: 15 July 2021

Open access

Check for updates

John Jumper^{1,4}, Richard Evans^{1,4}, Alexander Pritzel^{1,4}, Tim Green^{1,4}, Michael Figurnov^{1,4}, Olaf Ronneberger^{1,4}, Kathryn Tunyasuvunakool^{1,4}, Russ Bates^{1,4}, Augustin Židek^{1,4}, Anna Potapenko^{1,4}, Alex Bridgland^{1,4}, Clemens Meyer^{1,4}, Simon A. A. Kohl^{1,4}, Andrew J. Ballard^{1,4}, Andrew Cowie^{1,4}, Bernardino Romera-Paredes^{1,4}, Stanislav Nikolov^{1,4}, Rishub Jain^{1,4}, Jonas Adler¹, Trevor Back¹, Stig Petersen¹, David Reiman¹, Ellen Clancy¹, Michal Zielinski¹, Martin Steinegger^{2,3}, Michalina Pacholska¹, Tamas Berghammer¹, Sebastian Bodenstein¹, David Silver¹, Oriol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Pushmeet Kohli¹ & Demis Hassabis¹.^{4,5}

AlphaFold

Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

https://doi.org/10.1038/s41586-024-07487-w

Received: 19 December 2023

Accepted: 29 April 2024

Published online: 8 May 2024

Open access

Check for updates

Josh Abramson^{1,7}, Jonas Adler^{1,7}, Jack Dunger^{1,7}, Richard Evans^{1,7}, Tim Green^{1,7}, Alexander Pritzel^{1,7}, Olaf Ronneberger^{1,7}, Lindsay Willmore^{1,7}, Andrew J. Ballard¹, Joshua Bambrick², Sebastian W. Bodenstein¹, David A. Evans¹, Chia-Chun Hung², Michael O'Neill¹, David Reiman¹, Kathryn Tunyasuvunakool¹, Zachary Wu¹, Akvilė Žemgulytė¹, Eirini Arvaniti³, Charles Beattie³, Ottavia Bertolli³, Alex Bridgland³, Alexey Cherepanov⁴, Miles Congreve⁴, Alexander I. Cowen-Rivers³, Andrew Cowie³, Michael Figurnoy³, Fabian B. Fuchs³, Hannah Gladman³, Rishub Jain³, Yousuf A. Khan^{3,5}, Caroline M. R. Low⁴, Kuba Perlin³, Anna Potapenko³, Pascal Savy⁴, Sukhdeep Singh³, Adrian Stecula⁴, Ashok Thillaisundaram³, Catherine Tong⁴, Sergei Yakneen⁴, Ellen D. Zhong^{3,6}, Michal Zielinski³. Augustin Žídek³. Victor Bapst^{1,8}. Pushmeet Kohli^{1,8}. Max Jaderberg^{2,8}. Demis Hassabis^{1,2,8™} & John M. Jumper^{1,8™}

Alpha Fold: metodologia

Alpha Fold 3

Alpha Fold 3

Alpha Fold 3

Alpha Fold Server

Obtenção de modelos tridimensionais

230.083

1.068.577

Estruturas experimentalmente preditas no *PDB**

Estruturas preditas computacionalmente no *PDB**

mãos na massa

Acesse: https://www.rcsb.org/

Modelando as condições experimentais

Ao simular computacionalmente a interação entre átomos, é fundamental definir as condições experimentais que reproduzam o ambiente onde essa interação naturalmente ocorreria.

As estruturas obtidas experimental ou computacionalmente podem conter erros como:

- Átomos ausentes
- Resíduos de aminoácidos incompletos ou faltantes
- Erros na coordenação de cofatores e íons
- Erros de coordenadas ou com ligações incorretas

Além disso, é preciso considerar:

- Adição de hidrogênios
- Protonação e carga dos resíduos
- Remoção de águas não estruturais e outros solventes.
- Verificar posição e carga de cofatores
- Correção de tautômeros e estados de ionização de ligantes

A correta parametrização do sistema é essencial para garantir bons resultados

"Todos os modelos estão errados, alguns são úteis" George Box

Lembre-se: os experimentos de modelagem molecular são baseados nas leis da física, especialmente nas da mecânica clássica. Por isso, é fundamental que os tipos de átomos e suas cargas estejam devidamente definidos.

Docking molecular e Triagem Virtual

Realizando experimentos de docking

Previsão dos detalhes do reconhecimento molecular receptor-ligante

Baseado no modelo chave-fechadura, proposto por Emil Fischer (1894)

Baseado no modelo chave-fechadura, proposto por Emil Fischer (1894)

Previsão dos detalhes do reconhecimento molecular receptor-ligante

Dois principais componentes:

- Método de busca;
- Função de Avaliação;

Previsão dos detalhes do reconhecimento molecular receptor-ligante

Dois principais componentes:

Método de busca;

Previsão dos detalhes do reconhecimento molecular receptor-ligante

Dois principais componentes:

Função de Avaliação;

Triagem Virtual: docking em larga escala

Identifica compostos promissores para interagir com um alvo biológico

- Docking de milhares de moléculas químicas;
- Alto custo computacional milhares de simulações;
- Filtragem e seleção de compostos químicos para as etapas posteriores;

Triagem Virtual: docking em larga escala

Identifica compostos promissores para interagir com um alvo biológico

- Docking de milhares de moléculas químicas;
- Alto custo computacional milhares de simulações;
- Filtragem e seleção de compostos químicos para as etapas posteriores;

Reposicionamento de fármacos

Identificação de novos alvos para medicamentos conhecidos

Dinâmica molecular

Simula o comportamento de átomos e moléculas ao longo do tempo com base em leis da física clássica

- Alto custo computacional;
- Grande capacidade de previsão da dinâmica do sistema ao longo do tempo;
- Estimação da estabilidade e energia de ligação do complexo;
- Grande quantidade de dados;

New machine learning and physics-based scoring functions for drug discovery

<u>Isabella A. Guedes, André M. S. Barreto, Diogo Marinho, Eduardo Krempser, Mélaine A. Kuenemann, Olivier</u>
<u>Sperandio, Laurent E. Dardenne</u>
<u>Maria A. Miteva</u>

Scientific Reports 11, Article number: 3198 (2021) Cite this article

New machine learning and physics-based scoring functions for drug discovery

Isabella A. Guedes, André M. S. Barreto, Diogo Marinho, Eduardo Krempser, Mélaine A. Kuenemann, Olivier

Sperandio, Laurent E. Dardenne [™] & Maria A. N

Scientific Reports 11, Article number: 3198 (202

SOFTWARE

Open Access

GNINA 1.0: molecular docking with deep learning

Andrew T. McNutt¹, Paul Francoeur¹, Rishal Aggarwal², Tomohide Masuda¹, Rocco Meli³, Matthew Ragoza¹, Jocelyn Sunseri¹ and David Ryan Koes^{1*}

New machine learning and physics-based scoring functions for drug discovery

Scientific Reports 11, Article number: 3198 (2021)

GNINA 1.0: molecular docking with deep learning

MACHINE LEARNING AND DEEP LEARNING | January 25, 2021

Accelerating *De Novo* Drug Design against Novel Proteins Using Deep Learning

Sowmya Ramaswamy Krishnan, Navneet Bung, Gopalakrishnan Bulusu*, and Arijit Roy*

New machine learning and physics-based scoring functions for drug discovery

Scientific Reports 11, Article number: 3198 (2021)

GNIN learni

Accelerating *De Novo* Drug Design aga

Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking

Francesco Gentile¹, Jean Charle Yaacoub^{1,3}, James Gleave^{1,3}, Michael Fernandez¹, Anh-Tien Ton¹, Fuqiang Ban¹, Abraham Stern² and Artem Cherkasov¹

New machine learning and physics-based scoring

of ultra-large chemical libraries with

Sowmya Ramaswamy Krishnan, Navneet Bung, Gopalakrishnan Bulusu*, and Arijit Roy*
deep docking

Francesco Gentile ¹, Jean Charle Yaacoub ^{1,3}, James Gleave ^{1,3}, Michael Fernandez ¹, Anh-Tien Ton ¹, Fuqiang Ban ¹, Abraham Stern ² and Artem Cherkasov ^{1⊠}

New machine learning and physics-based functions term disg discovery

<u>Isabella A. Guedes, André M. S. Barreto, Diogo Marinho, Eduardo Krempser, M</u>

Sp**Reviewa**ntialeent E. Dardenne [™] & Maria A. Miteva [™]

https:/

machine learning for functional protein design

Structural bioinformatics

ADMET-Al: a machine learning ADMET platform for evaluation of large-scale chemical libraries

Kyle Swanson © 1.2.*, Parker Walther 3, Jeremy Leitz 2, Souhrid Mukherjee 2, Joseph C. Wu 4, Rabindra V. Shivnaraine 2.*, James Zou © 1.5.*

¹Department of Computer Science, Stanford University, 353 Jane Stanford Way, Stanford, CA 94305, USA ²Greenstone Biosciences, 3160 Porter Drive, Suite 140, Palo Alto, CA 94304, USA

³Carleton College. One North College Street. Northfield. MN 55057, USA

⁴Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA

⁵Department of Biomedical Data Science, Stanford University, 1265 Welch Road, Stanford, CA 94305, USA

*Corresponding author. Department of Computer Science, Stanford University, 353 Jane Stanford Way, Stanford, CA 94305, USA.

E-mait: swansonk@stanford.edu (K.S.); Greenstone Biosciences, 3160 Porter Drive, Suite 140, Palo Alto, CA 94304, USA. E-mait: robinshiv@greenstonebio.com (R.V.S.); Department of Computer Science, Stanford University, 353 Jane Stanford Way, Stanford, CA 94305, USA. E-mait: jamesz@stanford.edu (J.Z.)
Associate Editor: Alfonso Valencia

PROTOCOL

Received: 1 July 2023 Pascal Notin^{1,2,5}, Nathan Rollins^{3,5}, Yarin Gal², Chris Sander^{1,4}

https://doi.org/10.1038/s41596-021-00659-2

Maccopyet: 5 January 2024 ND DEEP LEAR Debora Marks 2 Africa evy J. McNutt¹, Paul Francoeur¹, Rishal Aggarwal², Tomohide Masuda¹, Rocco Meli³, Matthew Ragoza¹,

Check for updates

Accelerating De Novo Drug Design against Will liabilite liagns expensibled virtual screening of ultra-large chemical libraries with

deep docking

Francesco Gentile ¹, Jean Charle Yaacoub ^{1,3}, James Gleave ^{1,3}, Michael Fernandez ¹, Anh-Tien Ton ¹, Fuqiang Ban Abraham Stern and Artem Cherkasov ¹

New machine learning and physics-based scaping T-Al: a machine learning ADMET platform for evaluation of large-scale chemical libraries functions team by discovery

Sp**Reviewartisle**ent E. Dardenne [™] & Maria A. Miteva [™]

Machine learning for functional

Kyle Swanson 61,2,*, Parker Walther, Jeremy Leitz, Souhrid Mukherjee, Joseph C. Wu, Rabindra V. Shivnaraine^{2,*}, James Zou (15,*)

Department of Biomedical Data Science, Stanford University, 1265 Welch Road, Stanford, CA 94305, USA

(R.V.S.); Department of Computer Science, Stanford University, 353 Jane Stanford Way, Stanford, CA 94305, USA, E-mail; jamesz@stanford.edu (J.Z.)

pubs.acs.org/JCTC

TorchMD: A Deep Learning Framework for Molecular Simulations

Stefan Doerr, Maciej Majewski, Adrià Pérez, Andreas Krämer, Cecilia Clementi, Frank Noe, Toni Giorgino, and Gianni De Fabritiis*

eave^{1,3}, Michael Fernandez¹,

Cite This: J. Chem. Theory Comput. 2021, 17, 2355-2363

mãos na massa

Acesse: github.com/aluizakarl/mcEA02_eamc2025

Obrigada!

@: almkarl@lncc.br; almk.karl@gmail.com

https://github.com/aluizakarl

