3.1. MOTIVATIONS: LINEAR COMBINATIONS, LINEAR INDEPENDENCE, RANK53

Actually, since w = u - v, the above system is equivalent to

$$(x_1 + x_3)u + (x_2 - x_3)v = b,$$

and because u and v are linearly independent, the unique solution in $x_1 + x_3$ and $x_2 - x_3$ is

$$x_1 + x_3 = 1$$

 $x_2 - x_3 = 1$,

which yields an infinite number of solutions parameterized by x_3 , namely

$$x_1 = 1 - x_3 x_2 = 1 + x_3.$$

In summary, a 3×3 linear system may have a unique solution, no solution, or an infinite number of solutions, depending on the linear independence (and dependence) or the vectors u, v, w, b. This situation can be generalized to any $n \times n$ system, and even to any $n \times m$ system (n equations in m variables), as we will see later.

The point of view where our linear system is expressed in matrix form as Ax = b stresses the fact that the map $x \mapsto Ax$ is a linear transformation. This means that

$$A(\lambda x) = \lambda(Ax)$$

for all $x \in \mathbb{R}^{3 \times 1}$ and all $\lambda \in \mathbb{R}$ and that

$$A(u+v) = Au + Av,$$

for all $u, v \in \mathbb{R}^{3\times 1}$. We can view the matrix A as a way of expressing a linear map from $\mathbb{R}^{3\times 1}$ to $\mathbb{R}^{3\times 1}$ and solving the system Ax = b amounts to determining whether b belongs to the image of this linear map.

Given a 3×3 matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix},$$

whose columns are three vectors denoted A^1, A^2, A^3 , and given any vector $x = (x_1, x_2, x_3)$, we defined the product Ax as the linear combination

$$Ax = x_1 A^1 + x_2 A^2 + x_3 A^3 = \begin{pmatrix} a_{11} x_1 + a_{12} x_2 + a_{13} x_3 \\ a_{21} x_1 + a_{22} x_2 + a_{23} x_3 \\ a_{31} x_1 + a_{32} x_2 + a_{33} x_3 \end{pmatrix}.$$

The common pattern is that the *i*th coordinate of Ax is given by a certain kind of product called an *inner product*, of a row vector, the *i*th row of A, times the column vector x:

$$(a_{i1} \ a_{i2} \ a_{i3}) \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = a_{i1}x_1 + a_{i2}x_2 + a_{i3}x_3.$$