The Hyperbolic Functions

Introduction

The hyperbolic functions $\cosh x$, $\sinh x$, $\tanh x$ etc are certain combinations of the exponential functions e^x and e^{-x} . The notation implies a close relationship between these functions and the trigonometric functions $\cos x$, $\sin x$, $\tan x$ etc. The close relationship is algebraic rather than geometrical. For example, the functions $\cosh x$ and $\sinh x$ satisfy the relation

$$\cosh^2 x - \sinh^2 x = 1$$

which is very similar to the trigonometric identity $\cos^2 x + \sin^2 x = 1$. (In fact any trigonometric identity has an equivalent hyperbolic function identity).

The hyperbolic functions are not introduced because they are a mathematical nicety. These combinations of exponentials do arise naturally and sufficiently often to warrant sustained study. For example, the shape of a chain hanging under gravity is well described by $\cosh x$ and the deformation of uniform beams can be expressed in terms of hyperbolic tangents.

Prerequisites

Before starting this Section you should ...

- ① have a good knowledge of the exponential function
- 2 have knowledge of odd and even functions
- ③ have familiarity with the definitions of $\tan x$, $\sec x$, $\csc x$ and of trigonometric identities

Learning Outcomes

After completing this Section you should be able to ...

- \checkmark understand how hyperbolic functions are defined in terms of exponential functions
- ✓ be able to obtain hyperbolic function identities and manipulate expressions involving hyperbolic functions

1. Constructing even and odd functions

A given function f(x) can always be split into two parts, one of which is even and one of which is odd. To do this write f(x) as $\frac{1}{2}[f(x) + f(x)]$ and then simply add and subtract $\frac{1}{2}f(-x)$ to this to give

$$f(x) = \frac{1}{2}[f(x) + f(-x)] + \frac{1}{2}[f(x) - f(-x)]$$

The term $\frac{1}{2}[f(x) + f(-x)]$ is **even** because when x is replaced by -x we have $\frac{1}{2}[f(-x) + f(x)]$ which is the same as the original. However, the term $\frac{1}{2}[f(x) - f(-x)]$ is **odd** since, on replacing x by -x we have $\frac{1}{2}[f(-x) - f(x)] = -\frac{1}{2}[f(x) - f(-x)]$ which is the negative of the original.

Separate the function $x^2 - 3^x$ into odd and even parts.

First, define f(x) and find f(-x).

Your solution

$$f(x) =$$

$$f(-x) =$$

$$x_{-x} = x_{-x} = (x_{-x})$$
, $x_{-x} = x_{-x} = (x_{-x})$

Now construct $\frac{1}{2}[f(x) + f(-x)], \frac{1}{2}[f(x) - f(-x)]$

Your solution

$$\frac{1}{2}[f(x) + f(-x)] =$$

$$\frac{1}{2}[f(x) - f(-x)] =$$

$$\frac{1}{2}[f(x) - f(-x)] = \frac{1}{2}(x^2 - 3^x - x^2 + 3^{-x}) = \frac{1}{2}(3^{-x} - 3^x)$$
. This is the odd part of $f(x)$.

$$\frac{1}{2}[f(x)+f(-x)]=\frac{1}{2}(x^2-3^x+x^2-3^{-x})=x^2-\frac{1}{2}(3^x+3^{-x}).$$
 This is the even part of $f(x)$.

The odd and even parts of the exponential function

Using the approach outlined above we see that the even part of e^x is

$$\frac{1}{2}(e^x + e^{-x})$$

and the odd part of e^x is

$$\frac{1}{2}(e^x - e^{-x})$$

We give these new functions special names: $\cosh x$ (pronounced 'cosh' x) and $\sinh x$ (pronounced 'shine' x)

Key Point

$$\cosh x = \frac{1}{2}(e^x + e^{-x}) \qquad \qquad \sinh x = \frac{1}{2}(e^x - e^{-x})$$

$$\sinh x = \frac{1}{2}(e^x - e^{-x})$$

 $\cosh x$ and $\sinh x$ are called hyperbolic functions

These two relations, when added and subtracted, give

$$e^x = \cosh x + \sinh x$$
 and $e^{-x} = \cosh x - \sinh x$

The hyperbolic functions are closely related to the trigonometric functions $\cos x$ and $\sin x$. Indeed, this explains the notation that we use. The hyperbolic cosine is written 'cos' with a 'h' to get cosh and the hyperbolic sine is written 'sin' with a 'h' to get sinh. The graphs of cosh x and sinh x are shown in the following diagram.

Note that $\cosh x > 0$ for all values of x and that $\sinh x$ only vanishes when x = 0.

2. Hyperbolic identities

The hyperbolic functions $\cosh x$, $\sinh x$ satisfy similar (but not identical) identities to those satisfied by $\cos x$, $\sin x$. We note first, some basic notation similar to that employed with trigonometric functions:

$$\cosh^n x$$
 means $(\cosh x)^n$ $\sinh^n x$ means $(\sinh x)^n$ $n \neq -1$

In the special case that n=-1 we **do not** use $\cosh^{-1}x$ and $\sinh^{-1}x$ to mean $\frac{1}{\cosh x}$ and $\frac{1}{\sinh x}$ respectively. (The notation $\cosh^{-1}x$ and $\sinh^{-1}x$ is reserved for the **inverse functions** of $\cosh x$ and $\sinh x$ respectively).

First find an expression for $\cosh^2 x$ in terms of the exponential functions e^x , e^{-x} .

Your solution

$$\cosh^2 x = \left[\frac{1}{2}(e^x + e^{-x})\right]^2 =$$

$$\cosh_{5}x = \frac{1}{4}(\epsilon_{x} + \epsilon_{-x})_{5} = \frac{1}{4}[(\epsilon_{x})_{5} + 5\epsilon_{x}\epsilon_{-x} + (\epsilon_{-x})_{5}] = \frac{1}{4}[\epsilon_{5x} + 5\epsilon_{x-x} + \epsilon_{-5x}] = \frac{1}{4}[\epsilon_{5x} + 5\epsilon_{-5x}]$$

Similarly, find an expression for $\sinh^2 x$ in terms of e^x , e^{-x}

Your solution

$$\sinh^2 x = \left[\frac{1}{2}(e^x - e^{-x})\right]^2 =$$

$$\sup_{z} x = \frac{1}{4} (e^{x} - e^{-x})^{2} = \frac{1}{4} [(e^{x})^{2} - 2e^{x}e^{-x} + (e^{-x})^{2}] = \frac{1}{4} [e^{2x} - 2e^{x-x} + e^{-2x}] = \frac{1}{4} [e^{2x} - 2 + e^{-2x}]$$

Finally determine $\cosh^2 x - \sinh^2 x$.

Your solution

$$\cosh^2 x - \sinh^2 x = \frac{1}{4} [e^{2x} + 2 + e^{-2x}] - \frac{1}{4} [e^{2x} - 2 + e^{-2x}] = \frac{1}{4} [e^{2x} - 2 + e^{-2x}] = \frac{1}{4} [e^{2x} - 2 + e^{-2x}]$$

$$\cos p^2 x - \sinh^2 x = 1$$

As an alternative to the calculation in this guided exercise we could, instead, use the relations

$$e^x = \cosh x + \sinh x$$
 $e^{-x} = \cosh x - \sinh x$

and so, remembering the algebraic identity: $(a + b)(a - b) = a^2 - b^2$ we see that

$$(\cosh x + \sinh x)(\cosh x - \sinh x) = e^x e^{-x} = 1$$
 that is $\cosh^2 x - \sinh^2 x = 1$

Key Point

The fundamental identity relating hyperbolic functions is:

$$\cosh^2 x - \sinh^2 x = 1$$

This is the hyperbolic function equivalent of the trigonometric identity: $\cos^2 x + \sin^2 x = 1$

Show that $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$.

First, find $\cosh x \cosh y$ in terms of exponentials.

Your solution

$$\cosh x \cosh y = \left(\frac{e^x + e^{-x}}{2}\right) \left(\frac{e^y + e^{-y}}{2}\right) =$$

$$= \frac{\sqrt[4]}{1} (\epsilon_{x+3} + \epsilon_{-x+3} + \epsilon_{x-3} + \epsilon_{-x-3})$$

$$\operatorname{cosp} x \operatorname{cosp} \hat{n} = \left(\frac{5}{\epsilon_x + \epsilon_{-x}} \right) \left(\frac{5}{\epsilon_3 + \epsilon_{-3}} \right) = \frac{\sqrt[4]}{1} [\epsilon_x \epsilon_3 + \epsilon_{-x} \epsilon_3 + \epsilon_{x} \epsilon_{-3} + \epsilon_{-x} \epsilon_{-3}]$$

Now find $\sinh x \sinh y$

Your solution

$$\sinh x \sinh y = \left(\frac{e^x - e^{-x}}{2}\right) \left(\frac{e^y - e^{-y}}{2}\right) =$$

$$(a_{-x-\partial} + a_{-x}\partial - a_{+x}\partial - a_$$

Now find $\cosh x \cosh y + \sinh x \sinh y$ and express the result in terms of a hyperbolic function.

Your solution

 $\cosh x \cosh y + \sinh x \sinh y =$

$$\cosh x \cosh y + \sinh x \sinh y = \frac{1}{2} (e^{x+y} + e^{-(x+y)})$$
 which we recognise as $\cosh(x+y)$

Other hyperbolic function identities can be found in a similar way. The most commonly used hyperbolic identities are listed in the following keypoint.

Key Point

- $\bullet \quad \cosh^2 \sinh^2 = 1$
- $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$
- $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$
- $\sinh 2x = 2\sinh x \cosh y$
- $\cosh 2x = \cosh^2 x + \sinh^2 x$ or $\cosh 2x = 2\cosh^2 1$ or $\cosh 2x = 1 + 2\sinh^2 x$

3. Related hyperbolic functions

Once the trigonometric functions $\cos x$, $\sin x$ are introduced then related functions are also introduced; $\tan x$, $\sec x$, $\csc x$ through the relations:

$$\tan x = \frac{\sin x}{\cos x}$$
 $\sec x = \frac{1}{\cos x}$ $\csc x = \frac{1}{\sin x}$

$$\sec x = \frac{1}{\cos x}$$

$$\csc x = \frac{1}{\sin x}$$

In an exactly similar way we introduce hyperbolic functions $\tanh x$, sech x and cosech x (again the notation is obvious: take the 'trigonometric' name and append the letter 'h'). These functions are defined in the following keypoint

Key Point

Related hyperbolic functions:

$$\tanh x = \frac{\sinh x}{\cosh x}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}$$

$$\operatorname{sech} x = \frac{1}{\cosh x} \qquad \operatorname{cosech} x = \frac{1}{\sinh x}$$

Show that

(a)
$$\sinh(x - y) = \sinh x \cosh y - \cosh x \sinh y$$

(b)
$$1 - \tanh^2 x = \operatorname{sech}^2 x$$

(a) Use the identity $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$ and replace y by -y.

Your solution

$$\sinh(x - y) =$$

$$\sinh(x - y) = \sinh x \cosh(-y) + \cosh x \sinh(-y).$$

Now obtain expressions for $\cosh(-y)$ and $\sinh(-y)$.

Your solution

$$\cosh(-y) =$$

$$\sinh(-y) =$$

$$\cosh(-y) = \cosh y$$
 since \cosh is even. Also $\sinh(-y) = -\sinh y$ since $\sinh y$ since $\sinh y$

Now complete the problem

Your solution

$$\sinh(x - y) = \sinh x \cosh(-y) + \cosh x \sinh(-y) =$$

$$\sup (x - h) = \sup x \cosh x - h$$

(b) Use the identity $\cosh^2 x - \sinh^2 x = 1$.

Your solution

$$\cosh^2 x - \sinh^2 x = 1$$
 so

$$1 - \frac{\sinh^2 x}{\cosh^2 x} = \frac{1}{\cosh^2 x}$$

Dividing both sides by $\cosh^2 x$ gives

Exercises

- 1. Express
- (a) $2 \sinh x + 3 \cosh x$ in terms of e^x and e^{-x} .
- (b) $2\sinh 4x 7\cosh 4x$ in terms of e^{4x} and e^{-4x} .
- 2. Express
- (a) $2e^x e^{-x}$ in terms of $\sinh x$ and $\cosh x$.
- (b) $\frac{7e^x}{(e^x-e^{-x})}$ in terms of sinh x and cosh x, and then in terms of coth x.
- (c) $4e^{-3x} 3e^{3x}$ in terms of $\sin 3x$ and $\cosh 3x$.
- 3. Using only the cosh and sinh keys on your calculator find the values of
- (a) $\tanh 0.35$, (b) $\operatorname{cosech2}$, (c) $\operatorname{sech}(0.6)$.

Answers 1. (a)
$$\frac{5}{2}e^{x} - \frac{1}{2}e^{-x}$$
 (b) $-\frac{5}{2}e^{4x} - \frac{9}{2}e^{-4x}$
2. (a) $\cosh x + 3 \sinh x$, (b) $\frac{5}{2} \cosh x + \sinh x$, (c) $\frac{7(\cosh x + \sinh x)}{2 \sinh x}$, $\frac{7}{2}(\coth x + 1)$ (c) $\cosh 3x - 7 \sinh 3x$
3. (a) $\cosh 4x + 3 \cosh 4x$, (b) $6x + 3 \cosh 4x$ (c) $6x + 3 \cosh 4x$ (d) $6x + 3 \cosh 4x$ (e) $6x + 3 \cosh 4x$ (f) $6x + 3 \cosh 4x$ (f) $6x + 3 \cosh 4x$ (g) $6x + 3 \cosh 4x$ (h) $6x + 3 \cosh 4x$ (h)