Marks: 15	CSE320: Data Communication	Assignment
ID: 23201416	Name: Amirun Nahin	Section: 02

Amplitude Shift Keying (ASK)

Binary ASK:

1. Determine the digital bit stream from the analog signal below. The signal was modulated using Binary ASK where 0 means signal element with no amplitude and 1 means signal element with amplitude of 3v.

 Draw the analog signal for the digital bit stream 010011 using Binary ASK where 0 means signal element with amplitude of 3v and 1 means signal element with amplitude of 6v. [frequency = 2 for each signal element and phase 0 rad]

Multi-level ASK

3. In a Multi level ASK, for each signal element, we want to send 2 bits at a time. We have used a carrier signal that has a frequency of 10 Hz (Each signal element has 2 cycles) and phase is 0 rad. If the amplitude changes according to the following table, draw the modulated signal for the bit sequence 1001010111

	Bit Pattern	Max Amplitude
	00	5v
	01	15v
١	10	10v
١	11	20v
ł		

4. For the following Multi-level ASK, find the bitstream form the signal below:

Bit Pattern	Amplitude	
00	1v	
01	3v	
10	2v	
11	4v	
, 1	1 1 2	_

Frequency Shift Keying (FSK)

Binary FSK:

5. Determine the digital bit stream from the analog signal below. The signal was modulated using Binary FSK where 0 means signal element with frequency of 2 and 1 means signal element with frequency of 4.

 $0 \rightarrow 2Hz$ $1 \rightarrow 4Hz$

6. Draw the analog signal for the digital bit stream 010011 using Binary FSK where 0 means signal element with frequency of 2 and 1 means signal element with frequency of 4. [Amplitude = 3v and phase 0 rad]

0 → 2Hz

Multi level FSK

7. In a Multi level FSK, for each signal element, we want to send 2 bits at a time. We have used a carrier signal that has an amplitude of 10v and phase is 0 degree. If the frequency changes according to the following table, draw the modulated signal for the bit sequence 1001010111

8. For the following Multi-level FSK, find the bitstream form the signal below:

Bit Pattern	Frequency (each signal element)
00	1
01	3
10	2
11	4

Phase Shift Keying (PSK)

Binary PSK

9. Determine the digital bit stream from the analog signal below. The signal was modulated using Binary PSK where 0 means signal element with phase of 0 rad and 1 means signal element with phase of π rad.

 $0 \rightarrow 0 \text{ rad}$ $1 \rightarrow \pi \text{ rad}$

10. Draw the analog signal for the digital bit stream 010011 using Binary PSK where 0 means signal element with phase of 0 rad and 1 means signal element with phase of π rad.

[Amplitude = 3v and freq = 2 (for each signal element)]

0 → o mad 1 → A mad

QPSK & Constellation Diagram:

11. Draw the constellation diagram for the QPSK given below:

bits	Phase
00	45°
10	135°
. 11	-135°/225°
01	-45°/315°

12. Draw the analog signal for the bit stream 1011001011 using the constellation diagram given below [frequency = 2 for each signal element]

