

Solutions to Exercises

Inequalities (Unit 1)

1. By the AM-GM inequality, we have $\frac{1+a_i}{2} \geq \sqrt{1 \cdot a_i}$, i.e. $1+a_i \geq 2\sqrt{a_i}$ for all i . Hence

$$\begin{aligned} 2^n &= (1+a_1)(1+a_2) \cdots (1+a_n) \\ &\geq (2\sqrt{a_1})(2\sqrt{a_2}) \cdots (2\sqrt{a_n}) \\ &= 2^n \sqrt{a_1 a_2 \cdots a_n} \end{aligned}$$

Dividing both side by 2^n , we have $1 \geq \sqrt{a_1 a_2 \cdots a_n}$, so that $a_1 a_2 \cdots a_n \leq 1$.

2. By the AM-GM inequality, we have $\frac{1}{2} \left(\frac{a_1^2}{a_2} + a_2 \right) \geq \sqrt{\frac{a_1^2}{a_2} \cdot a_2}$, i.e. $\frac{a_1^2}{a_2} \geq 2a_1 - a_2$.

Similarly, we have $\frac{a_2^2}{a_3} \geq 2a_2 - a_3$, $\frac{a_3^2}{a_4} \geq 2a_3 - a_4$ and so on. Hence

$$\begin{aligned} \frac{a_1^2}{a_2} + \frac{a_2^2}{a_3} + \cdots + \frac{a_n^2}{a_1} &\geq (2a_1 - a_2) + (2a_2 - a_3) + \cdots + (2a_n - a_1) \\ &= (2a_1 + 2a_2 + \cdots + 2a_n) - (a_2 + a_3 + \cdots + a_n + a_1) \\ &= a_1 + a_2 + \cdots + a_n \end{aligned}$$

Alternative Solution

Without loss of generality, assume $a_1 \geq a_2 \geq \cdots \geq a_n$. Then we have

$$a_1^2 \geq a_2^2 \geq \cdots \geq a_n^2 \quad \text{and} \quad \frac{1}{a_1} \leq \frac{1}{a_2} \leq \cdots \leq \frac{1}{a_n}.$$

Using the fact that Random Sum \geq Reverse Sum, we have

$$\frac{a_1^2}{a_2} + \frac{a_2^2}{a_3} + \cdots + \frac{a_n^2}{a_1} \geq \frac{a_1^2}{a_1} + \frac{a_2^2}{a_2} + \cdots + \frac{a_n^2}{a_n} = a_1 + a_2 + \cdots + a_n.$$

3. Let $x = 1 - a$, $y = 1 - b$ and $z = 1 - c$.

Then $a + b + c = 2$ implies $a = 2 - b - c = 2 - (1 - y) - (1 - z) = y + z$.

Similarly, we have $b = z + x$ and $c = x + y$.

Hence the original inequality becomes $\frac{(x+y)(y+z)(z+x)}{xyz} \geq 8$, or $(x+y)(y+z)(z+x) \geq 8xyz$.

By the AM-GM inequality, we have $\frac{x+y}{2} \geq \sqrt{xy}$, i.e. $x+y \geq 2\sqrt{xy}$.

Similarly, $y+z \geq 2\sqrt{yz}$ and $z+x \geq 2\sqrt{zx}$.

Consequently, $(x+y)(y+z)(z+x) \geq (2\sqrt{xy})(2\sqrt{yz})(2\sqrt{zx}) = 8xyz$, completing the proof.

4. Without loss of generality, assume $a \geq b \geq c$. Then

$$\frac{1}{b+c} \geq \frac{1}{a+c} \geq \frac{1}{a+b}.$$

Using the fact that Direct Sum \geq Random Sum, we have

$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \geq \frac{b}{b+c} + \frac{c}{a+c} + \frac{a}{a+b}$$

Taking another random sum, we have

$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \geq \frac{c}{b+c} + \frac{a}{a+c} + \frac{b}{a+b}.$$

Adding the above two inequalities, we have

$$2\left(\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b}\right) \geq \frac{b+c}{b+c} + \frac{a+c}{a+c} + \frac{a+b}{a+b} = 3,$$

so that $\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \geq \frac{3}{2}$.

Alternative Solution

By the Cauchy-Schwarz inequality, we have

$$\left(\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b}\right)[a(b+c) + b(c+a) + c(a+b)] \geq (a+b+c)^2.$$

Hence it suffices to prove that

$$\frac{(a+b+c)^2}{a(b+c) + b(c+a) + c(a+b)} \geq \frac{3}{2}.$$

By the AM-GM inequality,

$$\begin{aligned} 2(a^2 + b^2 + c^2) &= 2a^2 + 2b^2 + 2c^2 + 4ab + 4bc + 4ca \\ &= (a^2 + b^2) + (b^2 + c^2) + (c^2 + a^2) + 4ab + 4bc + 4ca \\ &\geq 2ab + 2bc + 2ca + 4ab + 4bc + 4ca \\ &= 3[a(b+c) + b(c+a) + c(a+b)] \end{aligned}$$

so that the desired inequality follows.

5. Let $b_1 < b_2 < \dots < b_n$ be a permutation of a_1, a_2, \dots, a_n in ascending order.

Since a_1, a_2, \dots, a_n are distinct positive integers, we have $b_i \geq i$ for all i .

Using the fact that $1 \geq \frac{1}{2^2} \geq \dots \geq \frac{1}{n^2}$ and that Random Sum \geq Reverse Sum, we have

$$\begin{aligned} a_1 + \frac{a_2}{2^2} + \dots + \frac{a_n}{n^2} &\geq b_1 + \frac{b_2}{2^2} + \dots + \frac{b_n}{n^2} \\ &\geq 1 + \frac{2}{2^2} + \dots + \frac{n}{n^2} \\ &= 1 + \frac{1}{2} + \dots + \frac{1}{n} \end{aligned}$$

Inequalities (Unit 2)

1. Setting $z = x + y$ and taking cube root on both sides, the original inequality becomes

$$x^2 + y^2 + (x+y)^2 \geq 3 \cdot \sqrt[3]{2} x^{\frac{2}{3}} y^{\frac{2}{3}} (x+y)^{\frac{2}{3}}.$$

Now, using the AM-GM inequality twice, we have

$$\begin{aligned} x^2 + y^2 + (x+y)^2 &= \frac{x^2 + y^2}{2} + \frac{x^2 + y^2}{2} + (x+y)^2 \\ &\geq \frac{x^2 + y^2}{2} + \frac{2xy}{2} + (x+y)^2 \\ &= \frac{3}{2}(x+y)^2 \\ &= \frac{3}{2}(x+y)^{\frac{4}{3}}(x+y)^{\frac{2}{3}} \\ &\geq \frac{3}{2}(2\sqrt{xy})^{\frac{4}{3}}(x+y)^{\frac{2}{3}} \\ &= 3 \cdot \sqrt[3]{2} x^{\frac{2}{3}} y^{\frac{2}{3}} (x+y)^{\frac{2}{3}} \end{aligned}$$

Hence the original inequality is proved.

2. Without loss of generality, assume $x \geq y \geq z$. Let $z = \frac{1}{3} - k$. Then $0 \leq k \leq \frac{1}{3}$.

Using the facts that $x+y = \frac{2}{3} + k$ and $xy \leq \left(\frac{x+y}{2}\right)^2 = \left(\frac{1}{3} + \frac{k}{2}\right)^2$, we get

$$\begin{aligned} xy + yz + zx - 3xyz &\leq z(x+y) + \left(\frac{x+y}{2}\right)^2 (1-3z) \\ &= \left(\frac{1}{3} - k\right) \left(\frac{2}{3} + k\right) + \left(\frac{1}{3} + \frac{k}{2}\right)^2 (3k) \\ &= \frac{2}{9} + \frac{3}{4}k^3 \\ &\leq \frac{2}{9} + \frac{3}{4}\left(\frac{1}{3}\right)^3 \\ &\leq \frac{1}{4} \end{aligned}$$

Alternative Solution

Note that

$$\begin{aligned}
xy + yz + zx - 3xyz &= xy(1-z) + yz(1-x) + xz(1-y) \\
&= xy(x+y) + yz(y+z) + xz(z+x) \\
&= x^2(y+z) + y^2(x+z) + z^2(y+x) \\
&= x^2(1-x) + y^2(1-y) + z^2(1-z)
\end{aligned}$$

Since $x^2(1-x) - \frac{x}{4} = -\frac{x}{4}(1-2x)^2 \leq 0$, we have $x^2(1-x) \leq \frac{x}{4}$.

Similarly, $y^2(1-y) \leq \frac{y}{4}$ and $z^2(1-z) \leq \frac{z}{4}$. Consequently,

$$xy + yz + zx - 3xyz = x^2(1-x) + y^2(1-y) + z^2(1-z) \leq \frac{x}{4} + \frac{y}{4} + \frac{z}{4} = \frac{1}{4}.$$

3. After some trial, we find that equality holds when the two triangles on the left hand side are similar, i.e. when

$$\frac{x}{x'} = \frac{y}{y'} = \frac{z}{z'}.$$

This is clearly the equality condition for the Cauchy-Schwarz inequality. Therefore, we attempt to use the Cauchy-Schwarz inequality to solve the problem.

Now we must express the area of a triangle in terms of its side lengths. Clearly, we should use the Heron's formula, which states that the area of a triangle with side lengths a, b, c is

$$\sqrt{s(s-a)(s-b)(s-c)},$$

where $s = \frac{a+b+c}{2}$. Hence the original inequality becomes

$$\begin{aligned}
&\sqrt[4]{s(s-x)(s-y)(s-z)} + \sqrt[4]{s'(s'-x')(s'-y')(s'-z')} \\
&\leq \sqrt[4]{(s+s')(s+s'-x-x')(s+s'-y-y')(s+s'-z-z')}
\end{aligned}$$

with $s = \frac{x+y+z}{2}$ and $s' = \frac{x'+y'+z'}{2}$. Now, using the Cauchy-Schwarz inequality twice, we

have

$$\begin{aligned}
&\sqrt[4]{s(s-x)(s-y)(s-z)} + \sqrt[4]{s'(s'-x')(s'-y')(s'-z')} \\
&\leq \sqrt{\left[\sqrt{s(s-x)} + \sqrt{s'(s'-x')}\right] \cdot \left[\sqrt{(s-y)(s-z)} + \sqrt{(s'-y')(s'-z')}\right]} \\
&\leq \sqrt{\sqrt{(s+s')(s-x+s'-x')} \cdot \sqrt{(s-y+s'-y')(s-z+s'-z')}} \\
&= \sqrt[4]{(s+s')(s+s'-x-x')(s+s'-y-y')(s+s'-z-z')}
\end{aligned}$$

and so the original inequality is proved.

4. Let $a_{2004} = 1 - a_1 - a_2 - \cdots - a_{2003}$. Then $a_1 + a_2 + \cdots + a_{2004} = 1$ and

$$\frac{a_1 a_2 \cdots a_{2003} (1 - a_1 - a_2 - \cdots - a_{2003})}{(a_1 + a_2 + \cdots + a_{2003})(1 - a_1)(1 - a_2) \cdots (1 - a_{2003})} = \frac{a_1 a_2 \cdots a_{2004}}{(1 - a_1)(1 - a_2) \cdots (1 - a_{2004})}.$$

By the AM-GM inequality,

$$\begin{aligned} & (1 - a_1)(1 - a_2) \cdots (1 - a_{2004}) \\ &= (a_2 + a_3 + \cdots + a_{2004})(a_1 + a_3 + \cdots + a_{2004}) \cdots (a_1 + a_2 + \cdots + a_{2003}) \\ &\geq \left(2003 \cdot \sqrt[2003]{a_2 a_3 \cdots a_{2004}}\right) \left(2003 \cdot \sqrt[2003]{a_1 a_3 \cdots a_{2004}}\right) \cdots \left(2003 \cdot \sqrt[2003]{a_1 a_2 \cdots a_{2003}}\right) \\ &= 2003^{2004} a_1 a_2 \cdots a_{2004} \end{aligned}$$

Hence we have $\frac{a_1 a_2 \cdots a_{2004}}{(1 - a_1)(1 - a_2) \cdots (1 - a_{2004})} \leq \frac{1}{2003^{2004}}$.

Furthermore, equality holds when $a_1 = a_2 = \cdots = a_{2004} = \frac{1}{2004}$.

Therefore, the answer is $\frac{1}{2003^{2004}}$.

5. By the Cauchy-Schwarz inequality, $\sum_{k=1}^n \left(\frac{a_k^2}{a_k + b_k} \right) \cdot \sum_{k=1}^n (a_k + b_k) \geq \left(\sum_{k=1}^n a_k \right)^2$.

$$\text{Hence } \sum_{k=1}^n \left(\frac{a_k^2}{a_k + b_k} \right) \geq \frac{\left(\sum_{k=1}^n a_k \right)^2}{\sum_{k=1}^n (a_k + b_k)} = \frac{\left(\sum_{k=1}^n a_k \right)^2}{2 \cdot \sum_{k=1}^n a_k} = \sum_{k=1}^n \left(\frac{a_k}{2} \right).$$

Alternative Solution

For real numbers a and b , we have $(a+b)^2 \geq (2\sqrt{ab})^2 = 4ab$, so $\frac{ab}{a+b} \leq \frac{a+b}{4}$. Hence

$$\begin{aligned}
\sum_{k=1}^n \left(\frac{a_k^2}{a_k + b_k} \right) &= \sum_{k=1}^n \left(\frac{a_k^2 + a_k b_k - a_k b_k}{a_k + b_k} \right) \\
&= \sum_{k=1}^n a_k - \sum_{k=1}^n \left(\frac{a_k b_k}{a_k + b_k} \right) \\
&\geq \sum_{k=1}^n a_k - \sum_{k=1}^n \left(\frac{a_k + b_k}{4} \right) \\
&= \sum_{k=1}^n a_k - \sum_{k=1}^n \left(\frac{2a_k}{4} \right) \\
&= \sum_{k=1}^n \left(\frac{a_k}{2} \right)
\end{aligned}$$

6. Let $x = a + b - c$, $y = b + c - a$ and $z = c + a - b$. Then the original inequality becomes

$$\sqrt{x} + \sqrt{y} + \sqrt{z} \leq \sqrt{\frac{x+y}{2}} + \sqrt{\frac{y+z}{2}} + \sqrt{\frac{z+x}{2}}.$$

By the AM-GM inequality, we have

$$\left(\frac{\sqrt{x} + \sqrt{y}}{2} \right)^2 = \frac{x+y+2\sqrt{xy}}{4} = \frac{x+y}{4} + \frac{\sqrt{xy}}{2} \leq \frac{x+y}{4} + \frac{x+y}{4} = \frac{x+y}{2}$$

and hence $\frac{\sqrt{x} + \sqrt{y}}{2} \leq \sqrt{\frac{x+y}{2}}$. Similarly, we have

$$\frac{\sqrt{y} + \sqrt{z}}{2} \leq \sqrt{\frac{y+z}{2}} \text{ and } \frac{\sqrt{z} + \sqrt{x}}{2} \leq \sqrt{\frac{z+x}{2}}.$$

Adding these three inequalities, we have

$$\sqrt{x} + \sqrt{y} + \sqrt{z} \leq \sqrt{\frac{x+y}{2}} + \sqrt{\frac{y+z}{2}} + \sqrt{\frac{z+x}{2}},$$

thereby proving the original inequality.

Finally, equality in the above application of AM-GM inequality occurs if $\sqrt{x} = \sqrt{y}$, i.e. $x = y$. Similarly we must have $y = z$ and $z = x$. If $x = y$, then $a + b - c = b + c - a$, hence $2a = 2c$ and $a = c$. Similarly, we must have $a = b$ and $b = c$. That is, equality holds if and only if $a = b = c$.

7. By the Cauchy-Schwarz inequality, we have

$$(x^2 + y^2 + z^2)(1^2 + 1^2 + 1^2) \geq (x + y + z)^2$$

which gives $x + y + z \leq \sqrt{3(x^2 + y^2 + z^2)}$. On the other hand, the AM-GM inequality asserts that

$$xy + yz + zx \geq 3(xy whole)^{\frac{2}{3}} \text{ and } \sqrt{x^2 + y^2 + z^2} \geq \sqrt{3}(xyz)^{\frac{1}{3}}.$$

Consequently, we have

$$\begin{aligned} \frac{xyz(x + y + z + \sqrt{x^2 + y^2 + z^2})}{(x^2 + y^2 + z^2)(xy + yz + zx)} &\leq \frac{xyz(\sqrt{3(x^2 + y^2 + z^2)} + \sqrt{x^2 + y^2 + z^2})}{(x^2 + y^2 + z^2)(xy + yz + zx)} \\ &= \frac{xyz(\sqrt{3} + 1)(\sqrt{x^2 + y^2 + z^2})}{(x^2 + y^2 + z^2)(xy + yz + zx)} \\ &= \frac{(\sqrt{3} + 1)xyz}{(\sqrt{x^2 + y^2 + z^2})(xy + yz + zx)} \\ &\leq \frac{(\sqrt{3} + 1)xyz}{\sqrt{3}(xyz)^{\frac{1}{3}} \cdot 3(xy whole)^{\frac{2}{3}}} \\ &= \frac{\sqrt{3} + 1}{3\sqrt{3}} \\ &= \frac{3 + \sqrt{3}}{9} \end{aligned}$$

8. By the rearrangement inequality, we have $a^3 + b^3 \geq a^2b + ab^2 = ab(a + b)$.

Similarly, we have $b^3 + c^3 \geq bc(b + c)$ and $c^3 + a^3 \geq ca(c + a)$. Consequently,

$$\begin{aligned} &\frac{1}{a^3 + b^3 + abc} + \frac{1}{b^3 + c^3 + abc} + \frac{1}{c^3 + a^3 + abc} \\ &\leq \frac{1}{ab(a + b) + abc} + \frac{1}{bc(b + c) + abc} + \frac{1}{ca(c + a) + abc} \\ &= \frac{1}{ab(a + b + c)} + \frac{1}{bc(a + b + c)} + \frac{1}{ca(a + b + c)} \\ &= \frac{1}{abc} \end{aligned}$$

9. Let $a - 1 = x^2$, $b - 1 = y^2$ and $c - 1 = z^2$ for some positive non-negative x, y, z . Then the original inequality becomes

$$x + y + z \leq \sqrt{(z^2 + 1)[(x^2 + 1)(y^2 + 1) + 1]}.$$

By the Cauchy-Schwarz inequality, we have

$$x + y = x \cdot 1 + 1 \cdot y \leq \sqrt{(x^2 + 1)(y^2 + 1)}.$$

Similarly, we have

$$x + y + z \leq \sqrt{[(x+y)^2 + 1](z^2 + 1)} \leq \sqrt{[(x^2 + 1)(y^2 + 1) + 1](z^2 + 1)}$$

and proof is complete.

10. (a) When $n = 2$ and $x_1 = x_2 = 1$, $C \geq \frac{1(1)(1^2 + 1^2)}{(1+1)^4} = \frac{1}{8}$.

On the other hand, when $C = \frac{1}{8}$, the inequality holds for all real numbers $x_1, \dots, x_n \geq 0$

since

$$\begin{aligned} \frac{1}{8} \left(\sum_{1 \leq i \leq n} x_i \right)^4 &= \frac{1}{8} \left[\left(\sum_{1 \leq i \leq n} x_i \right)^2 \right]^2 \\ &= \frac{1}{8} \left[\left(\sum_{1 \leq i \leq n} x_i^2 \right) + 2 \left(\sum_{1 \leq i < j \leq n} x_i x_j \right) \right]^2 \\ &\geq \frac{1}{8} \left[2 \sqrt{2 \left(\sum_{1 \leq i < j \leq n} x_i x_j \right) \left(\sum_{1 \leq i \leq n} x_i^2 \right)} \right]^2 && \text{(AM-GM inequality)} \\ &= \left(\sum_{1 \leq i < j \leq n} x_i x_j \right) \left(\sum_{1 \leq i \leq n} x_i^2 \right) \\ &= \sum_{1 \leq i < j \leq n} x_i x_j (x_1^2 + x_2^2 + \dots + x_n^2) \\ &\geq \sum_{1 \leq i < j \leq n} x_i x_j (x_i^2 + x_j^2) \end{aligned}$$

Hence the required least constant C is $\frac{1}{8}$.

(b) Consider the term with $i = 1$ and $j = 2$ in the last two expressions in (a).

We have $x_1 x_2 (x_1^2 + x_2^2 + \dots + x_n^2) \geq x_1 x_2 (x_1^2 + x_2^2)$.

This equality holds if and only if $x_3 = x_4 = \dots = x_n$.

As the choice of i and j is arbitrary, if any $(n - 2)$ of the x_i 's are zero, then equality in the last inequality holds, and vice versa

When $(n - 2)$ of the x_i 's are zero, the inequality is reduced to the case of $n = 2$.

Consider the application of AM-GM inequality in (a).

Equality holds if and only if $x_1^2 + x_2^2 = 2x_1x_2$, or $(x_1 - x_2)^2 = 0$, i.e. $x_1 = x_2$.

Hence equality of the original inequality holds if and only if any $(n - 2)$ of the x_i 's are zero and the remaining two x_i 's are equal (possibly to zero).

Inequalities (Unit 3)

1. By Heron's formula, $T = \sqrt{\left(\frac{a+b+c}{2}\right)\left(\frac{-a+b+c}{2}\right)\left(\frac{a-b+c}{2}\right)\left(\frac{a+b-c}{2}\right)}$.

Putting this into the original inequality, the original inequality can be simplified as follows:

$$\begin{aligned} a^2 + b^2 + c^2 &\geq \sqrt{3(a+b+c)(-a+b+c)(a-b+c)(a+b-c)} \\ a^4 + b^4 + c^4 + 2a^2b^2 + 2b^2c^2 + 2c^2a^2 &\geq 3[(b+c)^2 - a^2][a^2 - (b-c)^2] \\ a^4 + b^4 + c^4 + 2a^2b^2 + 2b^2c^2 + 2c^2a^2 &\geq 3[2bc + (b^2 + c^2 - a^2)][2bc - (b^2 + c^2 - a^2)] \\ a^4 + b^4 + c^4 + 2a^2b^2 + 2b^2c^2 + 2c^2a^2 &\geq 3[2a^2b^2 + 2b^2c^2 + 2c^2a^2 - a^4 - b^4 - c^4] \\ 4a^4 + 4b^4 + 4c^4 &\geq 4a^2b^2 + 4b^2c^2 + 4c^2a^2 \end{aligned}$$

By the AM-GM inequality, we have

$$\begin{aligned} 4a^4 + 4b^4 + 4c^4 &= (2a^4 + 2b^4) + (2b^4 + 2c^4) + (2c^4 + 2a^4) \\ &\geq (2\sqrt{2a^4 \cdot 2b^4}) + (2\sqrt{2b^4 \cdot 2c^4}) + (2\sqrt{2c^4 \cdot 2a^4}) \\ &= 4a^2b^2 + 4b^2c^2 + 4c^2a^2 \end{aligned}$$

thereby proving the last inequality and hence the original inequality. It is clear in the application of the AM-GM inequality that equality holds if and only if $a = b = c$.

Alternative Solution

Without loss of generality, assume that the angle opposite the side a is acute. Suppose that the altitude from this vertex, whose length we denote by h , is of distances m and n from the remaining 2 vertices, with $b = \sqrt{h^2 + m^2}$ and $c = \sqrt{h^2 + n^2}$. WLOG, assume that $m \geq n$. Then $a = m+n$ or $m-n$.

For $a = m+n$, the original inequality becomes

$$(m+n)^2 + (h^2 + m^2) + (h^2 + n^2) \geq 4\sqrt{3} \cdot \frac{(m+n)h}{2}.$$

Rewriting this as a quadratic equality in h , we have

$$h^2 - \sqrt{3}(m+n)h + (m^2 + mn + n^2) \geq 0.$$

The discriminant of the quadratic function on the left is

$$\Delta = [\sqrt{3}(m+n)]^2 - 4(1)(m^2 + mn + n^2) = -(m-n)^2 \leq 0.$$

Since the coefficient of h^2 is positive, this means $h^2 - \sqrt{3}(m+n)h + (m^2 + mn + n^2) \leq 0$ for all h , as desired. Equality holds when $m = n$, which means $b = c$. By symmetry, we need $a = b = c$.

For $a = m-n$, the argument is the same as above, with n replaced by $-n$.

2. Rewrite the given inequality as $c^2 = a^2 + b^2 - 2ab \cos 60^\circ$.

Hence we see that a, b, c are the side lengths of a triangle where the angle opposite the side with length c is equal to 60° .

In a triangle, a side opposite a larger angle is longer. Since $60^\circ = 180^\circ \div 3$, one other angle of the triangle must be at least 60° and the remaining angle must be at most 60° . In other words, if we assume (without loss of generality) that $a \geq b$, then we must have $a \geq c$ and $b \leq c$.

From this, we see that $a - c$ is positive while $b - c$ is negative, so that $(a - c)(b - c) \leq 0$.

3. By the Cauchy-Schwarz inequality, we have

$$\left(\frac{BC}{PD} + \frac{CA}{PE} + \frac{AB}{PF} \right) (BC \cdot PD + CA \cdot PE + AB \cdot PF) \geq (BC + CA + AB)^2.$$

Hence

$$\frac{BC}{PD} + \frac{CA}{PE} + \frac{AB}{PF} \geq \frac{(BC + CA + AB)^2}{BC \cdot PD + CA \cdot PE + AB \cdot PF}.$$

The right hand side of the above inequality is a constant, since the numerator is the square of the perimeter while the denominator is twice the area.

Equality holds if and only if

$$\frac{BC}{PD} : \frac{CA}{PE} : \frac{AB}{PF} = (BC \cdot PD) : (CA \cdot PE) : (AB \cdot PF),$$

or $PD = PE = PF$. In other words, the expression in the question is minimum when (and only when) P is the incentre of ΔABC .

4. Let $x = \frac{AI}{AA'}$, $y = \frac{BI}{BB'}$ and $z = \frac{CI}{CC'}$. The inequality to be proved is then $\frac{1}{4} \leq xyz \leq \frac{8}{27}$.

Note that

$$\begin{aligned} & x + y + z \\ &= \frac{AI}{AP} + \frac{BI}{BQ} + \frac{CI}{CR} \\ &= \frac{[ABI] + [CAI]}{[ABC]} + \frac{[BAI] + [BCI]}{[ABC]} + \frac{[CAI] + [CBI]}{[ABC]} \\ &= \frac{2([ABI] + [BCI] + [CAI])}{[ABC]} \\ &= \frac{2[ABC]}{[ABC]} \\ &= 2 \end{aligned}$$

Hence the AM-GM inequality asserts that

$$xyz \leq \left(\frac{x+y+z}{3} \right)^3 = \left(\frac{2}{3} \right)^3 = \frac{8}{27},$$

thereby proving the right-hand inequality.

To prove the left-hand inequality, we first make some additional observation as follows. Let D, E, F be the mid-points of BC, CA, AB respectively. We claim that I lies in ΔDEF . Assuming the claim, we draw a line through I parallel to BC cutting AB at S . Since $\Delta ASI \sim \Delta ABA'$, we have

$$x = \frac{AI}{AA'} = \frac{AS}{AB} > \frac{AF}{AB} = \frac{1}{2}.$$

Similarly, we have $y > \frac{1}{2}$ and $z > \frac{1}{2}$.

Now we return to the proof of the claim, namely, that I lies in ΔDEF . Indeed, the angle bisector theorem yields

$$\frac{AI}{IA'} = \frac{AB}{BA'} \text{ and } \frac{BA'}{A'C} = \frac{AB}{AC},$$

so that $\frac{BA'}{BC} = \frac{AB}{AB+AC}$ and hence $\frac{AI}{IA'} = \frac{AB+AC}{BC} > \frac{BC}{BC} = 1$ by the triangle inequality. Hence

I is ‘below’ EF in the figure, and the same is true with respect to DF and DE , thereby establishing the claim.

Consequently, we may write

$$x = \frac{1}{2} + \alpha, \quad y = \frac{1}{2} + \beta \quad \text{and} \quad z = \frac{1}{2} + \gamma$$

for some $\alpha, \beta, \gamma > 0$. Then we have

$$\begin{aligned} xyz &= \left(\frac{1}{2} + \alpha \right) \left(\frac{1}{2} + \beta \right) \left(\frac{1}{2} + \gamma \right) \\ &= \frac{1}{8} + \frac{1}{4}(\alpha + \beta + \gamma) + \frac{1}{2}(\alpha\beta + \beta\gamma + \gamma\alpha) + \alpha\beta\gamma \\ &> \frac{1}{8} + \frac{1}{4}(\alpha + \beta + \gamma) \\ &= \frac{1}{8} + \frac{1}{4} \left(\frac{1}{2} \right) \\ &= \frac{1}{4} \end{aligned}$$

and hence proving the left-hand inequality.

5. Let $AB = BC = CD = a$ and $DE = EF = FA = b$. As shown in the figure, construct equilateral triangles ABX and DEY . Since $\angle AXB = \angle DYE = 60^\circ$, $AX = XB = BD = a$ and $DY = YE = EA = b$, the two hexagons $ABCDEF$ and $AXBDEY$ are congruent and so $CF = XY$.

Since

$$\angle AXB + \angle AGB = 180^\circ = \angle DHE + \angle DYE,$$

$AXBG$ and $DYEH$ are cyclic quadrilaterals.

Hence by the Ptolemy's theorem,

$$AB \cdot XG = AX \cdot BG + XB \cdot AG,$$

which is equivalent to $aXG = aBG + aAG$, or

$$XG = BG + AG.$$

Similarly, we have $YH = DH + EH$ and hence

$$AG + GB + GH + DH + HE = XG + GH + YH \geq XY = EF.$$

6. As shown in the figure, extend BC and EF to draw a rectangle $PQRS$ enclosing the hexagon. Since opposite sides of the hexagon are parallel, opposite angles are equal (i.e. $\angle A = \angle D$, $\angle B = \angle E$ and $\angle C = \angle F$). Let a, b, c, d, e, f denote the lengths of AB , BC , CD , DE , EF and FA respectively. We have

$$\begin{aligned} 2BF &\geq PA + AS + QD + DR \\ &= a \sin B + f \sin F + c \sin C + d \sin E \\ &= a \sin B + f \sin C + c \sin C + d \sin B \end{aligned}$$

Hence

$$R_A = \frac{BF}{2 \sin A} = \frac{1}{4} \left(\frac{a \sin B}{\sin A} + \frac{f \sin C}{\sin A} + \frac{c \sin C}{\sin A} + \frac{d \sin B}{\sin A} \right).$$

Similarly, we have

$$R_C = \frac{1}{4} \left(\frac{c \sin A}{\sin C} + \frac{b \sin B}{\sin C} + \frac{e \sin B}{\sin C} + \frac{f \sin A}{\sin C} \right)$$

and

$$R_E = \frac{1}{4} \left(\frac{e \sin C}{\sin B} + \frac{d \sin A}{\sin B} + \frac{a \sin A}{\sin B} + \frac{b \sin C}{\sin B} \right).$$

Adding these inequalities and using the fact that $\frac{x}{y} + \frac{y}{x} \geq 2 \sqrt{\frac{x}{y} \cdot \frac{y}{x}} = 2$ for $x, y > 0$, we have

$$R_A + R_C + R_E \geq \frac{1}{4} (2a + 2b + 2c + 2d + 2e + 2f) = \frac{p}{2}$$

as desired.