CS 344: Design and Analysis of Computer Algorithms

(Spring 2022 — Sections 5,6,7,8)

Lecture 20: Single-Source Shortest Path: Bellman-Ford, Dijkstra

The Single-Source Shortest Path Problem

For a graph G=(V,E) (directed or undirected) with weights w_e over each edge e

- For a graph G=(V,E) (directed or undirected) with weights w_e over each edge e
- Let P_{st} be any path between vertices s and t

- For a graph G=(V,E) (directed or undirected) with weights w_e over each edge e
- Let P_{st} be any path between vertices s and t

- For a graph G=(V,E) (directed or undirected) with weights w_e over each edge e
- Let P_{st} be any path between vertices s and t
- Weight of the path:

$$- w(P_{st}) = \sum_{e \in P} w_e$$

- For a graph G=(V,E) (directed or undirected) with weights w_e over each edge e
- Let P_{st} be any path between vertices s and t
- Weight of the path:

$$- w(P_{st}) = \sum_{e \in P} w_e$$

- Shortest s-t Path:
 - The path with minimum weight
 - P_{st} that minimizes $w(P_{st})$
- Distance of s to t, dist(s, t):
 - Weight of shortest path from s to t

- Shortest s-t Path:
 - The path with minimum weight
 - P_{st} that minimizes $w(P_{st})$
- Distance of s to t, dist(s, t):
 - Weight of shortest path from s to t

- Shortest s-t Path:
 - The path with minimum weight
 - P_{st} that minimizes $w(P_{st})$
- Distance of s to t, dist(s, t):
 - Weight of shortest path from s to t

Single-Source Shortest Path Problem

Input:

- A graph G=(V,E) (undirected or directed)
- Weights w_e on each edge e
- A single vertex s called source

Output:

- The distance of s to all other vertices: dist(s, v) for all $v \in V$

From SSSP to Finding Shortest Paths

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- We update values like this:
 - for any edge (u,v), if $d[v] > d[u] + w_{uv}$ set $d[v] \leftarrow d[u] + w_{uv}$

- We update values like this:
 - for any edge (u,v), if $d[v] > d[u] + w_{uv}$ set $d[v] \leftarrow d[u] + w_{uv}$

- We update values like this:
 - for any edge (u,v), if $d[v] > d[u] + w_{uv}$ set $d[v] \leftarrow d[u] + w_{uv}$

- We update values like this:
 - for any edge (u,v), if $d[v] > d[u] + w_{uv}$ set $d[v] \leftarrow d[u] + w_{uv}$

Proof of Correctness

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- Define dist_i(s, v) as the weight of shortest path from s to v using at most i edges
- Inductive statement: For any i, after i-th run of the for-loop entirely, $d[v] \leq dist_i(s, v)$

Runtime Analysis

- Let d[s] = 0 and $d[v] = +\infty$ for $v \in V \{s\}$
- For every edge (u,v) in the graph:
 - If $d[v] > d[u] + w_{uv}$ update $d[v] \leftarrow d[u] + w_{uv}$
- If no update happened in the for-loop terminate, otherwise run the for-loop again.

- We can have at most n iterations of the for-loop
- (By the proof of correctness)
- Each iteration takes O(m) time
- So total runtime is O(mn)

- Is extremely simple
- Is extremely agile and can be used in different settings:
 - Distributed algorithms or computer networks
- But its runtime is too slow
- We will see another algorithm with much faster runtime

- Is extremely simple
- Is extremely agile and can be used in different settings:
 - Distributed algorithms or computer networks
- But its runtime is too slow
- We will see another algorithm with much faster runtime

 Btw, Bellman-Ford is a dynamic programming algorithm — in fact, perhaps the first serious one ever invented!

- Is a much faster algorithm for SSSP than Bellman-Ford
- Is almost, but not quite, the same as Prim's algorithm for MST
 - But note that SSSP is an entirely different problem than MST

- Let mark[1:n] = false for all vertices
- Let mark[s] = true, d[s]=0 and H be edges incident on s
- While H is not empty:
 - Remove edge e=(u,v) with minimum value of $d[u] + w_{uv}$ from H
 - If mark[v] = true, ignore this edge and go to next iteration of the while-loop
 - Otherwise, set $d[v] = d[u] + w_{uv}$ and mark[v] = true, and insert all edges e incident on v with value $d[v] + w_e$ to H

- Let mark[1:n] = false for all vertices
- Let mark[s] = true, d[s]=0 and H be edges incident on s
- While H is not empty:
 - Remove e=(u,v) with minimum value of $d[u] + w_{uv}$ from H
 - If mark[v] = true, ignore this edge and go to next iteration of the while-loop
 - Otherwise, set $d[v] = d[u] + w_{uv}$ and mark[v] = true, and insert all edges e incident on v with value $d[v] + w_e$ to H

Proof of Correctness

- Let mark[1:n] = false
- Let mark[s] = true, d[s]=0 and H be edges incident on s
- While H is not empty:
 - Remove e=(u,v) with minimum value of $d[u] + w_{uv}$ from H
 - If mark[v] = true, go to next iteration of the while-loop
 - Otherwise, set $d[v] = d[u] + w_{uv}$ and mark[v] = true, and insert all edges e incident on v with value $d[v] + w_e$ to H

- Define C = marked vertices
- Inductive statement: In each iteration of while-loop
- For $v \in C$, dist(s, v) = d[v]
- For $u \in C$ and $v \in V C$, dist(s, u) < dist(s, v)

Runtime

- Let mark[1:n] = false
- Let mark[s] = true, d[s]=0 and H be edges incident on s
- While H is not empty:
 - Remove e=(u,v) with minimum value of $d[u] + w_{uv}$ from H
 - If mark[v] = true, go to next iteration of the while-loop
 - Otherwise, set $d[v] = d[u] + w_{uv}$ and mark[v] = true, and insert all edges e incident on v with value $d[v] + w_e$ to H

- Exactly as in Prim's algorithm using a min-heap for H
- So runtime is $O(n + m \log m)$

Summary

Summary

- SSSP: Single-Source Shortest Path
 - Also finds the path using a simple O(n+m) time algorithm
- Bellman-Ford Algorithm:
 - Extremely simple algorithm
 - But slow: O(nm) time only
- Dijkstra's Algorithm:
 - Faster: O(n+m logm) time