Graphs (Part 2)

Graph representations and algorithms that operate on graphs

Connor Baker

Graphs (Part 2)

Road Map

- · Graph basics
 - Definitions and terms
 - Applications
- Graph representations
 - Adjacency matrix
 - Adjacency list
- · Graph algorithms
 - Graph traversal
 - Shortest path problem
 - Many more

Graph Representation

- Graph: a set of vertices V and edges E
- Representation: the way in which we store a graph in programs
 - Adjacency matrix: a 2D array A[n][n] where n=|V|
 - \star A[v][w] is the weight of (v,w)
 - * A[v][w] is infinity if v, w is not in the graph
 - Adjacency list
 - * A group of |V| linked lists
 - $\star~$ List $\vee :$ a list of all nodes w such that there is an edge (v,w)

Connor Baker 1 of 8

Adjacency Matrix

Figure 1: A comparison of features between undirected and directed graphs

Adjacency List

Using the same image as above for reference, we have the following adjacency lists:

- Undirected graph
 - $0 \rightarrow 1 \rightarrow 2$
 - $1 \rightarrow 0 \rightarrow 3$
 - $2 \rightarrow 0 \rightarrow 3$
 - $3 \rightarrow 1 \rightarrow 2$
- Directed graph
 - $0 \rightarrow 1 \rightarrow 2$
 - $1 \rightarrow 3$
 - $2 \rightarrow \text{null}$ (empty list)
 - $3 \rightarrow 2$

Complexity

• Adjacency matrix

Connor Baker 2 of 8

- Space cost: $O(|V|^2)$
- Initialization time: $O(|V|^2)$
- Fine with dense graphs, not so great for sparse ones
- Adjacency list
 - Space cost: O(|V| + |E|) = O(|E|)
 - Initialization time: linear from a list of edges
 - * Most cases, we skip the checking of duplicate edges (even though they might come with different edge weights)
- How do we add, remove, or find a node or edge?

Graph Representation Example

Figure 2: An abstract scenario of the data structures used in a shortest-path calculation, with an input graph taken from a file. The shortest weighted path from A to C is A to B to E to D to C (cost is 76). From Weiss, Figure 14.4

Graph Traversal and Searching

• Basis of many graph algorithms

Connor Baker 3 of 8

- The general idea
 - Given a starting point, visit, check, or update every vertex in a graph by following the given edges
- Application examples
 - Connected components
 - Topological sorting
 - Minimum spanning tree (MST)
 - Shortest path
 - Many more
- Procedure
 - Given a starting point, visit, check, or update every vertex in a graph by following the given edges
 - Order: which vertex do we visit next?
- · Basic approaches
 - *Breadth-first*: visit vertices in layers those closest to the start are visited first, and those most distant are visited last
 - Depth-first: from the starting vertex, explore as far as possible along each path before backtracking
 - Remember tree traversals? They're baaaaaaack!

Breadth-First Traversal

- Given the starting point ${\cal S}$
 - Visit all the nodes that are one edge away (S's direct neighbors)
 - Visit all nodes that are two edges away (neighbors of neighbors)
 - Visit all nodes that are three edges away (neighbors of neighbors)
 - ..
 - Repeat this until all nodes have been visited

Connor Baker 4 of 8

Traversal Example: Breadth-First

Figure 3: Example 1

- A breadth-first traversal starting with $0: \{0\}$
 - Visit all the nodes adjacent to 0: $\{0, 1, 2, 3\}$
 - Visit all the neighbors of those nodes: $\{0, 1, 2, 3, 4, 6\}$
 - Continue the process: $\{0, 1, 2, 3, 4, 6, 5\}$
 - We've reached all the nodes, so we can stop. We've also found that every node in this graph can be reached by a path of at most length 3.

Breadth-First Traversal Implementation

- Have we done something similar to this before?
 - Yes, and depending on your progress in Project 3 you might still be doing it.
- We can use a queue
 - Initialize by enqueueing the starting vertex
 - Mark it as visited when we enqueue
 - Process the vertives in a first-in first-out (FIFO) order:
 - \star Dequeue the first vertex v
 - * Enqueue v's neighbor that has not yet been visited or marked

Depth-First Traversal

- ullet Given the starting point S
 - Visit the first neighbor of ${\cal S}$
 - Visit the first neighbor of the first neighbor of ${\cal S}$
 - Visit the first neighbor fo the first neighbor of the first neighbor of ${\cal S}$

Connor Baker 5 of 8

– Repeat this process until there are no more nodes to go, then back, trying the second neighbor of ${\cal S}$

- Repeat that process until we've processed all of the neighbors of S

Traversal Example: Depth-First

Figure 4: Example 2

A depth-first traversal starting with 0: $\{0\}$

Pick one neighbor of 0: 1. Then the set of nodes visited is $\{0,1\}$.

- Pick one neighbor of 1: 4. Then the set of nodes visited is $\{0, 1, 4\}$.
 - Pick one neighbor of 4: 3. Then the set of nodes visited is $\{0, 1, 4, 3\}$.
 - * Pick one neighbor of 3: 2. Then the set of nodes visited is $\{0, 1, 4, 3, 2\}$.
 - Pick one neighbor of 2: 2 has no neighbors that we haven't visited already, so we backtrack to 3.
 - * Pick one neighbor of 3: 3 has no neighbors that we haven't visited already, so we backtrack to 4. Then the set of nodes visited is $\{0, 1, 4, 3, 2\}$.
 - Pick one neighbor of 4: 5. Then the set of nodes visited is $\{0, 1, 4, 3, 2, 5\}$.
 - * Pick one neighbor of 5: 6. Then the set of nodes visited is $\{0, 1, 4, 3, 2, 5, 6\}$.
 - · Pick one neighbor of 6: 6 has no neighbors that we haven't visited already, so we backtrack to 5
 - * Pick one neighbor of 5: 5 has no neighbors that we haven't visited already, so we backtrack to 4.
 - Pick one neighbor of 4: 4 has no neighbors that we haven't visited already, so we backtrack to 1.
- Pick one neighbor of 1:1 has no neighbors that we haven't visited already, so we backtrack to 0.

Pick one neighbor of 0: 0 has no neighbors that we haven't visited already, and we cannot backtrack further, so we're done.

Therefore, our result is $\{0, 1, 4, 3, 2, 5\}$.

Connor Baker 6 of 8

Depth-First Traversal Implementation

- Implementation qualms:
 - How do we implement backtracking?
 - * With recursion, or equivalently, a stack
 - Is a post-order tree traversal depth-first when applied to graphs? What about a pre-order traversal? What about an in-order traversal?
- Using recursion (or a stack)
 - We push nodes with unvisited neighbors onto the stack
 - Pick an unvisited neighbor to continue
 - * If there are no more unvisited neighbors, pop out the node and backtrack

Visualization

- · Breadth-first traversal
 - https://www.cs.usfca.edu/~galles/visualization/BFS.html
- Depth-first traversal
 - https://www.cs.usfca.edu/~galles/visualization/DFS.html

Shortest Path Problem

- Task: given a designated vertex S, find the shortest path for every vertex v starting from S
 - For an unweighted graph, length is measured by the number of edges of the path
 - For a weighted graph, length is measured by the sum of the weights of all the edges of the path
- Algorithms
 - Unweighted graph: breadth-first traversal (Weiss 14.2)
 - Positive-weighted graph: Dijkstra's algorithm (Weiss 14.3)
 - Negative-weighted graph: Bellman-Ford algorithm (Weiss 14.4)

Unweighted Shortest Path Problem

- The breadth first traversal already gives us a solution to this version of the problem!
 - 1. Start with vertex S
 - 2. Visit all the nodes adjacent to S (shortest path length = 1)
 - 3. Visit all the nodes not yet visited but adjacent to nodes visited in the last step (shortest path length = 2)
 - 4. Repeat step 3 with an increased path length, until all the nodes have been visited

Connor Baker 7 of 8

Shortest Path Example

Figure 5: Example 3

- Using a breadth-first traversal, and starting with 0: $\{0\}$

- Visit all the nodes adjacent to $0: \{0, 1, 2, 3\}$ (one edge away)

* Paths established: $\{0,1\}, \{0,3\}, \{0,2\}$

- Visit neighbors of neighbors: $\{0, 1, 2, 3, 4, 6\}$

* Paths established: $\{0,1\},\{0,3\},\{0,2\},\{0,1,4\},\{0,1,6\}$

– Visit neighbors of neighbors: $\{0,1,2,3,4,6,5\}$

* Paths established: $\{0,1\}, \{0,3\}, \{0,2\}, \{0,1,4\}, \{0,1,6\}, \{0,1,4,5\}$

Node	Prev	Dist	Adjacency List
0	0	0	1, 2, 3
1	0	1	0, 4, 6
2	0	1	0,3
3	0	1	0, 2, 4
4	1	2	1, 3, 5
5	4	3	4, 6
6	1	2	1, 5

Connor Baker 8 of 8