

INDIRIZZI IP

Formato da una stringa di 32 bit

Identificatore a livello 3 della gerarchia ISO-OSI

INDIRIZZO IP

La prima parte dell'indirizzo identifica la rete

La seconda parte dell'indirizzo identifica un host all'interno della rete

SUDDIVIZIONE

SUDDIVISIONE

11000000.10101000.00000000.00000011

Rete Host

PERCHÈ?

È importante saper riconoscere la rete di appartenenza di un indirizzo IP per capire se possiamo contattare l'host destinatario a livello 2 o livello 3

Suddividere gli host in più reti ci permette di:

- Limitare il dominio di broadcast di livello 2.
- Segregare il traffico

METODI PER LA SUDDIVIZIONE

Classful

Definizione di classi statiche nelle quali la suddivisione fra porzione di rete e host e definita staticamente

Classless

Lascia al gestore di rete la possibilità di definire quale porzione dell'indirizzo IP dedicare alla rete e quale all'host

CLASSFUL

Classe A

- 8 bit rete
- 24 bit host

Classe B

- 16 bit rete
- 16 bit host

Classe C

- 24 bit rete
- 8 bit host

IP PRIVATI

Classe A

- 10.0.0.0 **-** 10.255.255.255
- Una sola rete con 16M di host

Classe B

- 172.16.0.0 **-** 172.31.255.255
- 16 reti da 65536 host

Classe C

- 192.168.0.0 **-** 192.168.255.255
- 256 reti da 256 host

CLASSLES

Definendo una netmask andiamo a suddividere l'indirizzo IP in parte dedicata alla rete e parte dedicata agli host

NETMASK

Sequenza di 32 bit con tutti i bit a 1 in corrispondenza della porzione di indirizzo dedicata alla rete:

11000000.10101000.00000000.00000000

NETMASK

Sequenza di 32 bit con tutti i bit a 1 in corrispondenza della porzione di indirizzo dedicata alla rete:

11000000.10101000.00000000.00000000

192.168.0.0 255.255.255.192

NETMASK

Ha una porzione con tutti i bit a 1 (porzione di rete), la seconda con tutti i bit a 0.

Quindi i possibili valori decimali sono:

128	1000 0000
192	1100 0000
224	1110 0000
240	1111 0000
248	1111 1000
252	1111 1100
254	1111 1110
255	1111 1111

RAPPRESENTAZIONE NETMASK

IP like	Mask Length
255.255.255.0	/24
255.255.255.254	/31
255.255.252	/30
255.255.192.0	/18

INDIRIZZI SPECIALI DA ASSEGNARE IN UNA RETE

Indirizzo di rete

 Parte dell'indirizzo dedicata agli host ha tutti i bit settati a 0

Indirizzo di broadcast

 Parte dell'indirizzo dedicata agli host ha tutti I bit settati a 1

ESEMPIO CLASSE C

Indirizzo di rete

11000000.10101000.00000000.00000000

192.168.0.0

Indirizzo di broadcast

11000000.10101000.00000000.11111111

192.168.0.255

ESEMPIO CLASSLESS

Netmask

1111111111111111111111100.0000000

255.255.252.0

Indirizzo di rete

11000000.10101000.00000000.00000000

192.168.0.0

Indirizzo di broadcast

11000000.10101000.00000011.11111111

192.168.3.255

ALGORITMO INOLTRO PACCHETTO

L'host sorgente controlla se l'host destinazione appartiene alla stessa rete:

Appartiene alla stessa rete

 Il pacchetto può essere inoltrato a livello 2

Non appartiene alla stessa rete

 Il pacchetto deve essere inoltrato al ruter che si occuperà di recapitarlo al destinatario

L'host C cerca di contattare l'host E

L'host C cerca di contattare l'host E:

1. L'host C verifica se E appartiene alla stessa rete:

Host C 10000011.00000010.00000011

Host E 10000011.00000010.00000001

2. La porzione di IP dedicata alla rete è uguale quindi C può contattare E a livello 2

MAC E	MACC	131.2.1.1	131.2.1.3	Upper Layers
···· -		. •		

L'host C cerca di contattare l'host A

L'host C cerca di contattare l'host A:

1. L'host C verifica se A appartiene alla stessa rete:

2. La porzione di IP dedicata alla rete è diversa quindi C per contattare A deve inoltrare la trama al router

MACK MACC ISI.Z.Z.I ISI.Z.I.S Upper Layers	MAC R	MAC C	131.2.2.1	131.2.1.3	Upper Layers
--	-------	-------	-----------	-----------	--------------

 Il router si occuperà di inoltrare la trama nella rete corretta (eventualmente contattando a sua volta un altro router)

MAC	С	MAC R	131.2.2.1	131.2.1.3	Upper Layers
-----	---	-------	-----------	-----------	--------------