3

2.1212

0.121]

0.1216

0.1224

		测度力和传感器灵敏度	<u> </u>
测量次数	片础质量	增重计读数 U/V	减重时读数U/V
1	0.000	0.0000	-0.000}
12 to to the	0.500	0.0129	10.0118
3	1.000	0.0274	3. 5 269
4	1.500	0.0414	0.0396
σ	2,000	0.0549	0.0527
6	2500	0.0679	6.066 P
7 3	}, 0∞	0.0808	0.0794
A &	\$700	0.3944	

		冰号声到	内外径	
河量次数	D,	1cm	Dz/cm	***************************************
:19		3.480	3.300	٤)
2		3.490	3.290	344444411
3		3.492	3.300	***************************************

		测生水的	表面张力多数	
洲最级数	u./v	U2/V	0U/V	
1	0,1238	0.0868	0.0370	
2	0. 1227	0.0866	0.0411	

0.0348

0.0348

0.0346

9280.0

6.0864

0.0869

0.0870

0.0866

实验目的	器处如夹
(1)学习代益器的定构方法。	DU467/1 液体表面
12)观察用拉脱法测液体表面张力时的物理。	见别,加深对构理规
律的认识。	
(3)测量室温下水和其他液体的表面张力系数	(A)
	ON SEA TO THE
和内外经各3次。深度结果与下. 野职企实	
表面张力及表面张力系数	V-11.0
1.表面张力: 为于间存在相多作用力。处于液体表面层的	的分子,其上层空间的分子
对它的吸引力小于海体下层空间(液体)	部)的多子对它的吸引力,
所形成的含为方向垂直指向液体内部。	这种含为称为表面张力,
使得液体表面具有收缩的趋势。	
2、表面张力系数:数值上等于单位长度上的表面张力,	
计算公式为f=xL,其中x为表面张力	
拉脱法测表面张为系数	V *
①将吊环与为敏任慈器相连,没入	
②缓慢向上拉动吊环,由于表面张	
拉为会逐渐增大,最终达到最	
	的为吊环及其影对液体的各重力
G 多当这为超过F,时,水村水线,吊	环不再废表面张力的作用。
此时有 F2 = 6 % 埃上,可得	$f = F_1 - F_2$
另外长夜 由于吊环为空心,因此会形成两个液面交界不同的液面。	J 得 $f = \alpha L = \alpha \pi (D_1 + D_2)$,
其中D.为吊环的内径、D.为局环的外径。	
同时,实验所使用的分额代感。器并不直接显示适力的大小	,而是以数字电压表形式显示。
当任然最所受益力改变一个时,数字好成成的京教改变山	1. 可得击: 古,其中B为
力敏自愈黑的灵敏度 (通常是已知的),可以通过对对羽城 取至上述的 武子可得,表面张力系数 × = 元(D)	0.得。 、水中的理算
\$460.0 PSc.	e kri.o

0,0345

9161.0

DH4607A液体表面张力系数测定分、游标卡尺

实验步骤与数据记录

① 食品开加强地 厂加油。调节在座水车。

②用游型卡尺测量吊环的内,外径各三次。测量结果如下:

		And the second s	the same of the sa	The second secon	Contract of the last of the la
	测量次数	Di/cm	D.	D2/cm	$\bar{\mathcal{D}}_2$
4	हर्ष्ट्रांबाक्ष स	3.480	医安果	3,300	干妆。
大门	₹£0 \$ 0₹3	3.490	3.48	3.290	3.297
	+=35.5.45	3.492	マダー下	3.302	EJ ST

③调节力敏任意器高度,将吊车打在任务器基础上,对测定仪调零。

④将7个质量均为 o. 「 g 的片码 依次放入吊盘中, 给加入测定仪的读数 Uo ~ U7; 凌者放入第 8个片码, 待电压表读数稳定后, 西低次从吊盘中

取走片3马,况本该数以了一山。。测于是言果如下三人

自由	测量次数	片码质量/9	可管	更可读数 U	/V A	时读数U1/	V 身均值U/V
		0.000	Uo	0.0000	llo'	-0.0008	-0.0004
4.2	1.大力之·30	文 0.50011大	di Una	0.0129	经的经行	0.0118	0.0124
X .	3	1.000	U2	0.0274	_ ' \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.0269	0.0272
1/5-	月至一次一个一个	1.500	UB	0.0414	7 创造6	0.0396	0.0405
	1,	2.000	U4-	0.0549	U41	7520.0	8520.0
e (2	32. 29. A. J.	2.500	T USE	0.0679	Urta	0.0668	0.0674
	7	3.00	16	0.0808	16	0.0794	0.080
	2 5	-3. Two= 7 6	1117 5	0.0944	= = (07')	BUR	

① 连明针转动液面高度调节螺钉将治案降至最低。将局环技充行蒸器,进分上。

调节吊环水平,对测定公调零。测量结果如下: \

-	111	J		, , – .		
£& /5	河岸次数	Jun /V	Ui/V	a U/V	au/V	国时,实验所被国的力敏行為
10000000000000000000000000000000000000	# 1a = 1	0.1278 0.0138	8680.01	0.0370	数序数E	专行总器所要起力效要占户的
	2000 114 A	0.1227	0.0866	0.041	. (fà 65 5	方数色总器的系统美元通信
1 1 1 m	证据3个用下	0.1515	0.0864	0.0348	796.0	那一个你的太王立刻
	4	0.121	0.0869	0.0348		15 1 2 1 4 4 1
	ţ	0.1216	0.0870	0.0346		
	6	0.1224	0.0866	8280.0		

实验数据处理	金貨 能 健 與
① 计算力数任益器 系敏度 (B)	公式的对外工作或注意器的正数量的各名:
由原始数据得多差统出。出	(1) 10 16 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16
our = 4-4-11 =0.0414V	① 与标准值的加速引送事约为12.1%_
8U2 = Ur - U2 = 0.0402 V	B≈ 2.748 V/N
∠U3 = Ū6 - Ū3 = 0.0396 V	7 计算得 B=0.0249 V/f=2.745 V/N_
012 Oliteralis	金 首 銀 美
3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	上找用克法测量的设备表演
致有 9岁 27 仍有相違。	0.000多种类:一对政党基础、法总的契
②计算水的表面张为系数 ×	M Š Š Ė
カ d = U, -U2 (2) (2) (D,+D2) B	蒙蒙哲中———————————————————————————————————
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 X/O 1 /V/ 1
$\alpha = \frac{\Delta U}{\pi(\bar{D}_1 + \bar{D}_2) \cdot R} \approx 0.0$	$0.623 \text{N/m} = \frac{1}{2} \times \frac{10^{-2} \text{M/m}}{10^{-2} \text{M/m}}$
7、 / 清 / 珠 :	B. 媒作相关: 湖水均匀段: 是打.
可透過沒不为歷。导致深得等可这九屆	
①计算相对误差 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
で生。标准値 T=20°C の=7. E= 16.23×10²-7.2×10²1 ×100,	$2\times10^{2}N/m$
$E = \frac{10.23 \times 10^{-1} \times 10^{-1}}{7.2 \times 10^{-2}} \times 10^{-1}$	% ≈ 13 = / -
≈13. I %	
	2. 沒许奧透 研究的这表面张力系数与没一
	而然。使用或的汤克,利用B对应录效的
拉衛水遇。納意不同為是了	从水面地陷入东的方中。16 过程在
	的日间,研究其实化和特色。
	以居使了为福坐市,表面民力系数公
位如信,判例以与职了之间的大致关	使用最小二乘法可裁立国建行技业

实验结论	实验数据处理
①成功标定了力敏任感光的灵敏度约为 2.	
①测量得出水的表面张力系数势约为 0.0	
③与标准值的相对误差约为13.5%。	误差较大,可能存在多处误差未源。
B 2 2.742 V/W	QU. = Ur - Us = 0. 402 V
Will Burney How Therein	V 1860,0 = (1) - (1) = (N a
实验讨论	distribution elle
1. 拉脱法测量的误差来源	7 No - 1
①仪器相关: 为政传卷器:标定的对	致度与实际,但有偏差,
	测量范围内可能并非安全线性;
行感器零	点读数 随时间或温度变化。
表现: 最级可能不平均	无格的周亚· \$ (10+10)~
观量时产生的	溪走。
③操作相关: 润湿性问题: 吊环-	不透答:
	1接触自不为零,导致测得重122力减小。
	速度过快或过慢。\$P\$ 5 x fax 通刊 (12)
	The state of the s
报	1 1 2 4 、 5 0 C = T 自) またが、0.45 30 子 1 な こここここここここここここここここここここここここここここここここ
1.00 ° ·	20182
2、设计县登研究测定表面张力系数与温》	
仍然使用按照法,利用已标定灵敏。	的力敏任慈器测量将金属吊环.
从水面拉肠所需的力好。通过精确	
的女值,研究其变化规律。	
以温度「为横坐标,表面采力彩数公	为纵坐标、经制 d-T-散总图。
	L执后,到断以与取了之间的大致关系。

思考题	桑牙檢測
(1)如果金属吊环、不清洁含给测量带来什么的表面张力是偏大还是偏小?	影响?在此情况下所测得
⊕ } = 0.00 .0	C 00 (C)
金属吊环不清洁会导致润湿不良,使得的各分数价度。	吸量到的最大起胞加减小最
62 0 W V ATT DI ON 18/17/17/17/18/2	
(1) 另析液柱即将拉斯南数字电压表演数	A. 63/东西。
在达到最大拉力对应的临界形状后,液	
态继续发生变化,无法再发维持了前的3	校大季夏季向下的 趁力, 因此表面
张力贡献的重直拉力为量开始成人、导致各	数字电压表的读数从峰值下降
3) 还可以用哪些方法对为敏传感器灵敏度	的 实验数据进行处理?
①最小二乘法线性回归	*
②平均逐般求灵敏度	