

ANALYSIS ON UNSW-NB15 DATASET

ARTIFICIAL INTELLIGENCE FOR CYBERSECURITY COURSE

A.Y. 21/22

Authors: Francesco Carli Gianluca Boschi

- UNSW-NB15 dataset contains a hybrid of real modern normal activities and synthetic attacks of nine different categories: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode and Worms.
- Each data object has 49 features, including a class label for binary classification.
- Several feature selection techniques have been carried out to select 42 features out of 49.
- Partition of the dataset configured as a **training set** and **a test set**, respectively with **175,341** records and **82,322** records.

Distribution in training set

Distribution in test set

Preprocessing

- Removing of attack_cat feature from training set and test set.
- Splitting of training set and test set in train_X, train_Y, test_X and test_Y.
- Removing null records.
- Transforming nominal/categoric features in binary features.
- Adding missing binary features with value at 0 in test set.
- Removing from test set those features that are not present in training set.
- Normalization of numeric features using z-score function.
- Sorting features of training set and test set in alphabetical order.

Logistic Regression

Decision Tree

Neural Network

(Two intermediate layer respectively with 10 and 5 neurons)

Random Forest

(Every tree has a max depth of 20)

PRECISION						
Binary Label	Logistic Regression	Decision Tree	Random Forest	Neural Network		
0 (Normal)	0.95	0.93	0.98	0.98		
1 (Attack)	0.75	0.82	0.91	0.80		

Gives information about false positive or false negative, based on the class of interest

RECALL						
Binary Label	Logistic Regression	Decision Tree	Random Forest	Neural Network		
0 (Normal)	0.61	0.75	0.71	0.70		
1 (Attack)	0.97	0.96	0.99	0.99		

$$Sensitivity = \frac{TP}{P}$$

$$Specificity = \frac{TN}{N}$$

Gives the true positive rate and true negative rate.

$$F1Score = 2 \frac{Precision \cdot Recall}{Precision + Recall}$$

Is the harmonic mean of precision and recall. Combines precision and recall into a single metric.

5

Rebalancing

- The training set is unbalanced on the class label: 119,341 records with label 1 (majority class) and 56,000 records with label 0 (minority class).
- This could be a problem since the previous models and their result will be affected and biased towards the majority class.
- Two different rebalancing techniques have been used to solve this issue.

Distribution in training set

Undersampling

- It is a rebalancing technique that keeps all the records of the minority class and decreases the size of the majority class.
- The simplest technique is **random undersampling**, in which some records of the majority class are removed in a random way.

Undersampling results

PRECISION						
Binary Label	Logistic Regression			Neural Network		
0 (Normal)	0.89	0.93	0.95	0.93		
1 (Attack)	0.80	0.85	0.88	0.87		
		RECALL				
Binary Label	Logistic Regression	Decision Tree	Random Forest	Neural Network		
0 (Normal)	0.72	0.80	0.84	0.82		
1 (Attack)	0.93	0.95	0.97	0.95		
		F1 - SCORE				
Binary Label	Logistic Regression	Decision Tree	Random Forest	Neural Network		
0 (Normal)	0.80	0.86	0.89	0.87		
1 (Attack)	0.86	0.90	0.92	0.91		

ACCURACY				
Logistic Regression	0,834			
Decision Tree	0,882			
Random Forest	0,910			
Neural Network	0,891			

Oversampling

- It is a rebalancing technique that increases the number of instances of the minority class, using different ways to create new artifical or synthetic instances.
- The simplest technique is **random oversampling**, in which several new instances are added to the minority class, chosing in a random way with replacement instead of duplicating them.

Oversampling results

PRECISION						
Binary Label	Logistic Regression	Decision Tree	Random Forest	Neural Network		
0 (Normal)	0.90	0.94	0.96	0.95		
1 (Attack)	0.80	0.82	0.87	0.87		
		RECALL				
Binary Label	Logistic Regression	Decision Tree	Random Forest	Neural Network		
0 (Normal)	0.72	0.74	0.82	0.82		
1 (Attack)	0.93	0.96	0.97	0.96		
		F1 - SCORE				
Binary Label	Logistic Regression	Decision Tree	Random Forest	Neural Network		
0 (Normal)	0.80	0.83	0.89	0.88		
1 (Attack)	0.86	0.89	0.92	0.91		

ACCURACY				
Logistic Regression	0,835			
Decision Tree	0,862			
Random Forest	0,904			
Neural Network	0,900			

K-Fold Cross Validation

- It has been used 10-fold cross validation to evaluate the performance of models
- Rebalancing increase the ratio of negative istances (0, *normal*) so we have an **increment on specificity and precision,** so the model has **now less falses**, because it works better on negative istances now.

UNDERSAMPLING								
	Logistic Regression		Decision Tree		Random Forest		Neural Network	
	Unbalanced	Rebalanced	Unbalanced	Rebalanced	Unbalanced	Rebalanced	Unbalanced	Rebalanced
Precision	0.897	0.928	0.933	0.945	0.940	0.964(+0.024)	0.941	0.963(+0.022)
Sensitivity	0.956	0.902	0.936	0.921	0.944	0.918(-0.026)	0.935	0.905(-0.030)
Specificity	0.766	0.854	0.865	0.89	0.880	0.933(+0.053)	0.881	0.930(+0.049)

OVERSAMPLING								
	Logistic Regression		Decision Tree		Random Forest		Neural Network	
	Unbalanced	Rebalanced	Unbalanced	Rebalanced	Unbalanced	Rebalanced	Unbalanced	Rebalanced
Precision	0.897	0.928	0.933	0.933	0.940	0.959(+0.019)	0.941	0.963(+0.022)
Sensitivity	0.956	0.903	0.936	0.937	0.944	0.923(-0.021)	0.935	0.908(-0.027)
Specificity	0.766	0.856	0.865	0.864	0.880	0.923(+0.043)	0.881	0.932(+0.051)

T-test

- It is a **statistic test** and it can be used to determine if two means of two sets of data are statistically different from each other.
- The **two best models** for each set of metrics have been selected in order to **compare their results** obtained from 10-fold cross validation.
- \circ The confidence value α has been set to 0.05

	SENSITIVITY				
Classifier	Mean of 10 values	Values from 10-fold cross validation			
Logistic Regression	0.959	0.906, 0.928, 0.935, 0.953, 0.986, 0.991, 0.986, 0.972, 0.985, 0.944			
Random Forest	0.944	0.841, 0.902, 0.903, 0.923, 0.971, 0.980, 0.972, 0.969, 0.992, 0.985			
T-Test Result	p-value: 0.427 → Cannot reject the null hypothesis Distributions are not statistically different				

T-Test: rebalanced dataset

For the rebalanced dataset we considered the **accuracy** and we check if some classifier is better than an other one.

	ACCURACY (UNDERSAMPLING)				
Two best classifier	Mean of 10 values Values from 10-fold cross validation				
Neural Network	0.914	0.84, 0.896, 0.901, 0.915, 0.924, 0.934, 0.967, 0.951, 0.903, 0.909			
Random Forest	0.92	0.867, 0.912, 0.909, 0.931, 0.932, 0.934, 0.972, 0.967, 0.904, 0.904			
T-Test Result	p-value: 0.540 → Cannot reject null hypothesis Distributions are not statistically different				

	ACCURACY (OVERSAMPLING)			
Two best classifier	Mean of 10 values	Values from 10-fold cross validation		
Decision Tree	0.911	0.898, 0.93, 0.93, 0.946, 0.895, 0.882, 0.979, 0.966, 0.845, 0.835		
Random Forest	0.923	0.871, 0.914, 0.912, 0.934, 0.928, 0.929, 0.974, 0.968, 0.898, 0.901		
T-Test Result	p-value: 0.508 → Cannot reject null hypothesis Distributions are not statistically differen			

References

- 1. Moustafa, Nour, and Jill Slay. "UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)." *Military Communications and Information Systems Conference (MilCIS)*, 2015. IEEE, 2015.
- 2. Moustafa, Nour, and Jill Slay. "The evaluation of Network Anomaly Detection Systems: Statistical analysis of the UNSW-NB15 dataset and the comparison with the KDD99 dataset." *Information Security Journal: A Global Perspective* (2016): 1-14.
- 3. Moustafa, Nour, et al. "Novel geometric area analysis technique for anomaly detection using trapezoidal area estimation on large-scale networks." *IEEE Transactions on Big Data (2017).*
- 4. Moustafa, Nour, et al. "Big data analytics for intrusion detection system: statistical decision-making using finite dirichlet mixture models. "Data Analytics and Decision Support for Cybersecurity. Springer, Cham, 2017. 127-156.
- 5. Sarhan, Mohanad, Siamak Layeghy, Nour Moustafa, and Marius Portmann. NetFlow Datasets for Machine Learning-Based Network Intrusion Detection Systems. In *Big Data Technologies and Applications: 10th EAI International Conference, BDTA 2020, and 13th EAI International Conference on Wireless Internet, WiCON 2020, Virtual Event, December 11, 2020, Proceedings* (p. 117). Springer Nature.

Thank you for your attention!