Física Quântica II

Exercícios

Exercício 3: Operadores de criação e destruição para o momento angular

a) Mostre, da definição do operador módulo quadrado do momento angular $\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$, que se pode escrever este operador como

$$\hat{\boldsymbol{L}}^2 = \frac{1}{2}(\hat{L}_+\hat{L}_- + \hat{L}_-\hat{L}_+) + \hat{L}_z^2. \tag{17}$$

Pista: Utilizando as definições $\hat{L}_{\pm} = \hat{L}_x \pm i\hat{L}_y$, expresse \hat{L}_x e \hat{L}_y em termos de \hat{L}_{\pm} e substitua na definição de \hat{L}^2 .

b) Na aula teórica, mostramos que

$$\hat{L}_{\pm} \mid l \, m \rangle = \hbar \sqrt{l(l+1) - m(m \pm 1)} \mid l \, m \pm 1 \rangle.$$
 (18)

Utilize esta fórmula para demonstrar que no multipleto em que o módulo quadrado do momento angular é igual a l(l+1) (com l inteiro ou semi-inteiro) e $|m| \leq l$ podemos escrever todos os estados $|lm\rangle$ à custa de $|ll\rangle$ como

$$|lm\rangle = \hbar^{m-l} \sqrt{\frac{(l+m)!}{(2l)!(l-m)!}} \hat{L}_{-}^{l-m} |ll\rangle.$$
 (19)

Pista: Aplique indução, também funciona num espaço de dimensão finita.

- c) Sejam \hat{A} e \hat{B} operadores lineares, com \hat{B} um operador hermítico. Suponha que $[\hat{B},\hat{A}]=-c\hat{A}$ em que c é um número real. Mostre que se $|b\rangle$ é um autoestado de \hat{B} com valor próprio b então $\hat{A} |b\rangle$ é também um autoestado de \hat{B} , com valor próprio b-c.
- **d)** Inversamente, mostre que o operador adjunto (ou conjugado) de \hat{A} , \hat{A}^{\dagger} , quando aplicado a $\mid b \rangle$ produz um autoestado de \hat{B} com valor próprio b+c.

Estes operadores são conhecidos como operadores *escada* ou operadores de destruição e criação.

Pista: Considere a aplicação dos comutadores $[\hat{B}, \hat{A}]$ e $[\hat{B}, \hat{A}^{\dagger}]$ a $|b\rangle$, levando em conta que para operadores lineares genéricos, \hat{C} e \hat{D} , se tem $(\hat{C}\hat{D})^{\dagger} = \hat{D}^{\dagger}\hat{C}^{\dagger}$.

e) Suponha agora que $\hat{B}=\hat{A}^{\dagger}\hat{A}$ (não é este o caso no exemplo do momento angular).

Mostre que \hat{B} é hermítico. Mostre ainda que, com um rescaling adequado, $\hat{A} = \alpha \hat{a}$, $\hat{A}^{\dagger} = \overline{\alpha} \hat{a}^{\dagger}$, em que α é um dado número complexo e $\overline{\alpha}$ é o seu conjugado, é sempre possível escrever $\hat{B} = |\alpha|^2 \hat{n}$, com $\hat{n} = \hat{a}^{\dagger} \hat{a}$, e $[\hat{n}, \hat{a}] = -\hat{a}$. Mostre que $[\hat{a}, \hat{a}^{\dagger}] = \hat{1}$. Em que contexto passado já encontrou tais operadores?

f) Mostre que existe um autoestado de \hat{n} com valor próprio mínimo, maior ou igual a zero. Mostre que esse valor próprio é de facto igual a 0. Prove, utilizando indução, que o estado normalizado, com valor próprio de \hat{n} igual a $n \geq 0$, em que n é um inteiro, se pode escrever $|n\rangle = \frac{1}{\sqrt{n!}}(\hat{a}^{\dagger})^n |0\rangle$, em que $|0\rangle$ é o estado próprio com valor próprio 0.

Exercício 4: Operador quadrado do módulo do momento angular orbital em coordenadas esféricas

a) Utilizando as fórmulas (13) e (14) da folha de problemas anterior, e a fórmula (17) acima, mostre que se obtém a seguinte expressão para \hat{L}^2 enquanto operador diferencial

$$\hat{\boldsymbol{L}}^2 = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} \right] . \tag{20}$$

Pista: Não se esqueça que funções da variável θ (resp. φ) não comutam com o operador diferencial $\frac{\partial}{\partial \theta}$ (resp. $\frac{\partial}{\partial \varphi}$).

- b) Na última folha de problemas, afirmamos que $Y_{ll}(\theta,\varphi)=c_l(\sin\theta)^l\,e^{il\varphi}$ é função própria de $\hat{\boldsymbol{L}}^2$ com valor próprio $\hbar^2 l(l+1)$ e de \hat{L}_z com valor próprio $\hbar l$ (e em que c_l é uma constante de normalização, cujo valor determinamos).
 - Utilizando a expressão (13) para \hat{L}_z , e a expressão (20) para $\hat{\boldsymbol{L}}^2$, mostre explicitamente que assim é.
- c) Mostre que $\overline{Y}_{lm}(\theta,\varphi)$, a função complexa conjugada de $Y_{lm}(\theta,\varphi)$, é função própria de \hat{L}_z com valor próprio $-\hbar m$. Como é evidentemente função própria de \hat{L}^2 e está normalizada, concluímos que, a menos de um factor de fase irrelevante, $Y_{l-m}(\theta,\varphi) = \overline{Y}_{lm}(\theta,\varphi)$. Pista: Considere o complexo conjugado de $\hat{L}_z Y_{lm}(\theta,\varphi) = -i\hbar \frac{\partial Y_{lm}(\theta,\varphi)}{\partial \varphi}$.
- d) Temos, do exercício 2, para l=2, que $Y_{22}(\theta,\varphi)=\sqrt{\frac{15}{32\pi}}(\sin\theta)^2\,e^{2i\varphi}$. Por aplicação sucessiva de \hat{L}_- a esta expressão, e com recurso à fórmula (18), determine os restantes harmónicos esféricos deste multipleto $Y_{21}(\theta,\varphi),\,Y_{20}(\theta,\varphi),\,Y_{2-1}(\theta,\varphi)$ e $Y_{2-2}(\theta,\varphi)$.

Pista: Note que, usando a alínea anterior, só precisa de percorrer metade do caminho ;-)...

e) Mostre que $Y_{20}(\theta, \varphi)$ está devidamente normalizado.