Ejercicios entregados	P1	P2	Р3	P4	P5	Р6
(marcar con una X)						

Grado en Ingeniería Informática y doble grado en Informática/Matemáticas Circuitos electrónicos – Curso 2014/2015 – Examen final – 13 de enero de 2015

ENTREGAR CADA EJERCICIO EN PÁGINAS SEPARADAS

1.- (2 puntos) Obtener la potencia máxima transferida a la Resistencia R en el circuito de la figura.

2.- (2 *puntos*) Determinar la expresión sinusoidal de la corriente que pasa por el condensador del circuito.

- 3.- (1,5 puntos) Dado el filtro del siguiente esquema, deducir:
 - a) La ganancia de tensión, $A_V(j\omega) = v_o/v_i$, expresada en forma polar (módulo/argumento);
 - b) El valor máximo del módulo de la ganancia de tensión, $|A_V(j\omega_0)| \equiv |A_V|_{máx}$, y la frecuencia ω_0 a la que se observa dicho máximo;
 - c) Las tendencias asintóticas del módulo de la ganancia de tensión, cuando $\omega \rightarrow 0$ y cuando $\omega \rightarrow \infty$.

CONTINÚA

- 4.- (1,5 puntos) Siendo ideal el amplificador operacional (AO) del circuito del esquema, y conocidas R_1 , R_2 y R_3 :
 - a) Demostrar que el circuito de la figura se comporta como una fuente de corriente respecto de R_L , es decir, que i_L depende de v_i , pero no de R_L ;
 - b) Deducir las corrientes suministradas por la fuente v_i y por el propio AO (i_i e i_{AO} , respectivamente).

5.- (1,5 *puntos*) Suponiendo para los dos diodos el modelo del interruptor y justificando su estado determinar I y v.

6.- (1,5 puntos) Calcular i_C , i_B e i_E para cada transistor de la figura si ambos se encuentran en activa. Tomar $V_{BE}=0.7V$, $\beta_1=100$ y $\beta_2=50$.

