WSR-98D DOPPLER WEATHER RADAR

DESCRIPTION OF BASE DATA FORMAT

Version V005

Beijing Metstar Radar Company

2014-03

修订记录

版本号	日期	修订者	内容
V001	2012-10-15	张持岸	初始版本
V002	2013-01-11	张持岸	更新
V003	2013-01-24	张持岸	完成草稿
V004	2013-10-29	孙召平	与代码同步
V005	2014-03-03	孙召平	更新和修订错误

Contents

修订记录	2
CHAPTER 1 INTRODUCTION	
1.1 Purpose and Scope	6
1.3 Background and Rules	6
1.4 Base Data Architecture	6
CHAPTER 2 PRODUCT COMMON HEADER	8
2.1 Introduction.	8
2.2 Generic Header Block	
2.3 Site Configuration Block	9
2.4 Task Configuration Block	10
2.5 Cut Configuration Block	11
CHAPTER 3 Base Data Radial Data	16
3.1 Basedata Radial Header Block	16
3.2 Base Data Moment Header Block	16

Figures and Tables	
Figure 1-1 Base Data Architecture	5
Table 2-1 Product Common Blocks	6
Table 2-2 Generic Header Block	6
Table 2-3 Generic Data Type List	6
Table 2-4 Site Configuration Block	7
Table 2-5 Task Configuration Block	8
Table 2-6 Cut Configuration Block	9
Table 2-7 Moments Type/Bit Mask Definition	11
Table 2-8 Filters Bit Mask Definition	12
Table 3-1 Basedata Radial Header Block	13
Table 3-2 Basedata Moment Header Block	13

CHAPTER 1 INTRODUCTION

1.1 Purpose and Scope

The document describes the format of WSR-98D Base Data. It can be used as interface and technical reference for development work on Base Data.

1.3 Background and Rules

Readers who read this document are assumed to have basic knowledge on Computer Science and C/C++ language. Weather Radar theory and experiences are also required to better understand the materials.

Data types are based on 32-bit little end computer system, data types used are defined here.

- INT 4 bytes integer
- SHORT 2 bytes integer
- •CHAR*N N bytes characters
- FLOAT 4 bytes float value, in format of IEEE754
- LONG 8 bytes integer

1.4 Base Data Architecture

WSR-98D Base Data is formatted in many blocks, each block contains a group of information. For example, Site Configuration block (see Table 2-4) is used to provide information on radar site, like site latitude, longitude and height of antenna.

All blocks are divided into 2 main segments – Product Common Blocks, Radial Data Block.

The Product Common Blocks are a set of blocks shared by all of different types of products and Base Data. It provides user with information on radar site and task, etc. Details of Product Common Blocks are provided in Chapter 2.

The Radial Data Blocks keeps moments data of weather. Radial Data Block consists of 3 sub blocks, Radial Header Block, Moment Header Block and Moment Data Block. Details of Radial Data Blocks are provided in Chapter 3.

The architecture of Base Data is described in Figure 1-1.

	GENERIC		
	HEADER		
	(32 Bytes)		
	SITE		
	CONFIGURATION		
	(128 Bytes)		
	TASK		
	CONFIGURATION		
Product Common	(256 Bytes)		
Blocks	CUT #1		
	CONFIGURATION		
	(256 Bytes)		
	CUT #N		
	CONFIGURATION		
	(256 Bytes)		
	RADIAL HEADER		
	(64 Bytes)		
	MOMENT HEADER #1		
	(32 Bytes)		
	MOMENT DATA #1		
	(N Bytes)		
	MOMENT HEADER #2		
	(32 Bytes)		
Radial 1	MOMENT DATA #2		
Tautai 1	(N Bytes)		
	(It Bytes)		
	•••		
	MOMENT HEADER #N		
	(32 Bytes)		
	MOMENT DATA #N		
	(N Bytes)		
	(14 Dytes)		
Radial N			
Kaulai IV			

Figure 1-1 Base Data Architecture

CHAPTER 2 PRODUCT COMMON HEADER

2.1 Introduction.

In order to illustrate meteorological products and base data, some common blocks are attached ahead of meteorological data. These common blocks provide detail information on radar site and task that generating raw data.

For most of WSR-98D meteorological products and Base Data, there all share these common blocks. Common blocks are described in Table 2-1.

Table 2-1 Product Common Blocks

BLOCK	BYTES	REMARKS
GENERIC HEADER	32	Generic Product Header, see Table 2-2
SITE CONFIG	128	Site Configuration, see Table 2-4
TASK CONFIG	256	Task Configuration, see Table 2-5
CUT CONFIG	256*N	Cut Configuration, see Table 2-6
		For some tasks, more than 1 cut can be included.

2.2 Generic Header Block

Generic Header Block is the first block of all product, it is a general summary block contains the summary information of the following other blocks. Generic Header Block keeps information like version of product format and data type.

Generic Header Block is described in Table 2-2.

Table 2-2 Generic Header Block

NO	FIELD	TYPE	UNIT	RANGE	REMARKS
	NAME	/BYTES			
01	Magic Word	INT	N/A	0x4D545352	Magic word for product
02	Major Version	SHORT	N/A	0 to 65536	Major Version
03	Minor Version	SHORT	N/A	0 to 65536	Minor Version
04	Generic Type	INT	N/A	2	Type of data, see Table 2-3
05	Product Type	INT	N/A	1 to 100	Type of Product, not used for Base Data
06	Reserved	16 Bytes	N/A	N/A	Reserved

Table 2-3 Generic Data Type List

PRODUCT TYPE	Generic NAME	REMARKS
1	Base Data	Base Data
2	Product	Meteorological Product

2.3 Site Configuration Block

Site Configuration Block is the second block of product, it provides information on radar site. All parameters related to radar site should be included in this block.

Site Code (No. 1 element in block) is the unique key of radar site, RPG and PUP can use this code to distinguish different radar sites.

Site Configuration Block is described in Table 2-4.

Table 2-4 Site Configuration Block

NO	FIELD NAME	TYPE /BYTES	UNIT	RANGE	REMARKS
01	Site Code	CHAR*8	N/A	ASCII	Site Code
					in characters
02	Site Name	CHAR*32	N/A	ASCII	Site Name or
					description
					in characters
03	Latitude	FLOAT	Degree	-90.0 to 90.0	Latitude of Radar Site
04	Longitude	FLOAT	Degree	-180.0 to	Longitude of Radar Site
				180.0	
05	Height	INT	Meters	0 to 65536	Height of antenna in
					meters
06	Ground	INT	Meters	0 to 65536	Height of ground in
					meters
07	Frequency	FLOAT	MHz	1.0 to	Radar operation
				999,000.0	frequency in MHz
08	Beam Width Hori	FLOAT	Degree	0.1 to 2.0	Antenna Beam Width
					Hori
09	Beam Width Vert	FLOAT	Degree	0.1 to 2.0	Antenna Beam Width
					Vert
10	Reserved	60 Bytes	N/A	N/A	

2.4 Task Configuration Block

Task Configuration Block provides information on radar scan task. Task can be PPI, RHI or Volume Coverage Pattern.

Task Configuration Block includes the general parameters or data of a task, for detail parameters of elevation or azimuth cut, the Cut Configuration Blocks provides more descriptions in detail.

For most tasks, more than 1 Cut is included, in which case more than 1 Cut Configuration Blocks are followed. Parameter Cut Number (No. 4 element in block) is the number of cut followed.

Task Configuration Block is described in Table 2-5.

Table 2-5 Task Configuration Block

NO	FIELD NAME	TYPE	UNIT	RANGE	REMARKS
01	Task Name	CHAR*32	N/A	ASCII	Name of the Task
					Configuration
02	Task Description	CHAR*128	N/A	ASCII	Description of Task
03	Polarization	INT	N/A	1 to 4	Polarization Type:
	Type				1 - Horizontal
					2 - Vertical
					3 - Simultaneously
					4 - Alternation
04	Scan Type	INT	N/A	1 to 3	Volume Scan Type
					0 - PPI Volume Scan
					1- Single PPI
					2 - Single RHI
					3 -Single Sector
					4 – Sector Volume Scan 5 – RHI Volume Scan
					6 – Manual Scan
					0 – Manuai Scan
05	Pulse Width	INT	Nanoseconds	1 to 10000	Pulse Width
06	Volume Start	INT	Seconds	UTC	Start time of volume
	Time				scan
07	Cut Number	INT	N/A	1 to 256	Number of Elevation or
					Azimuth cuts in the task
08	Horizontal Noise	FLOAT	dBm	-100.0 to 0.0	Noise level of
					horizontal channel
09	Vertical Noise	FLOAT	dBm	-100.0 to 0.0	Noise level of vertical
					channel
10	Horizontal	FLOAT	dB	0.0 to 200.0	System Reflectivity
	Calibration				Calibration Const for
					horizontal channel.
11	Vertical	FLOAT	dB	0.0 to 200.0	System Reflectivity
	Calibration				Calibration Const for
1.5					vertical channel.
12	Horizontal Noise	FLOAT	dB	0.0 to 800.0	System Reflectivity

	Temperature				Calibration Const for
					horizontal channel.
13	Vertical Noise	FLOAT	dB	0.0 to 800.0	System Reflectivity
	Temperature				Calibration Const for
					vertical channel.
14	Zdr Calibration	FLOAT	dB	-10.0 to 10.0	Reflectivity calibration
					difference of horizontal
					and vertical channel
15	Phase	FLOAT	Degree	-180.0 to	Phase calibration
	Calibration			180.0	difference of horizontal
					and vertical channel
16	LDR Calibration	FLOAT	dB	-60 to 0	LDR calibration
					difference of horizontal
					and vertical channel
17	Reserved	40 Bytes	N/A	N/A	

2.5 Cut Configuration Block

Cut Configuration Block provides information of a specified cut in task.

For most tasks, more than 1 cut may be included. The parameter "Cut Number" in Task Configuration block decides the number of cuts in the task. When there are many cuts in one task, cut configuration are stored in disk one by one follow the order of antenna scanning.

Cut Configuration Block is described in Table 2-6.

Table 2-6 Cut Configuration Block

NO	FIELD NAME	TYPE	UNIT	RANGE	REMARKS
01	Process Mode	INT	N/A	1 to 2	Main processing mode of signal processing algorithm. 1 - PPP 2 - FFT
02	Wave Form	INT	N/A	1 to 7	WSR-88D defined wave form 0 - CS 1 - CD 2 - CDX 3 - Rx Test 4 - BATCH 5 - Dual PRF 6 - Random Phase 7 - SZ
03	PRF #1	FLOAT	Hz	1 to 3000	Pulse Repetition Frequency #1. For wave form Batch and Dual PRF mode, it's the high PRF, for other modes it's the only PRF.
04	PRF #2	FLOAT	Hz	1 to 3000	Pulse Repetition Frequency #2.

	T	T		T	
					For wave form Batch and
					Dual PRF mode, it's the low
					PRF, for other modes it's not
					used.
05	Unfold Mode	INT	N/A	1~4	Dual PRF mode
					1 – Single PRF
					2-3:2 mode
					3-4:3 mode
					4 – 5:4 mode
06	Azimuth	FLOAT	Dograd	0.0 to 360.0	Azimuth degree for RHI scan
00	Aziiiiuuii	FLOAI	Degree	0.0 to 300.0	_
07	T1 .:	FLOAT	D	10.0	mode,
07	Elevation	FLOAT	Degree	-10.0 to	Elevation degree for PPI scan
			_	360.0	mode,
08	Start Angle	FLOAT	Degree	-10.0 to	Start azimuth angle for PPI
				360.0	Sector mode.
					Start (High) Elevation for
					RHI mode.
09	End Angle	FLOAT	Degree	-10.0 to	Stop azimuth angle for PPI
				360.0	Sector mode.
					Stop (Low) Elevation for
					RHI mode.
10	Angular	FLOAT	Degree	0.0 to 10.0	Radial angular resolution for
	Resolution				PPI scan.
11	Scan Speed	FLOAT	Deg/sec	0.0 to 36.0	Azimuth scan speed for PPI
	•				scan, Elevation scan speed
					for RHI mode.
12	Log Resolution	INT	Meter	1 to 5,000	Range bin resolution for
				, , , , , , , ,	surveillance data, reflectivity
					and ZDR, etc.
13	Doppler	INT	Meter	1 to 5,000	Range bin resolution for
10	Resolution	11,1	1.10001	1 10 0,000	Doppler data, velocity and
	Resolution				spectrum, etc.
14	Maximum Range	INT	Meter	1 to 500,000	Maximum range of scan
15	Maximum Range Maximum	INT	Meter	1 to 500,000	Maximum range of scan
13		1111	Wicter	1 10 300,000	Waximum range or sean
16	Range2	INT	Meter	1 to 500 000	Start range of soon
16	Start Range			1 to 500,000	Start range of scan
17	Sample #1	INT	N/A	2 to 512	Pulse sampling number #1.
					For wave form Batch and
					Dual PRF mode, it's for high
					PRF, for other modes it's for
	A 15				only PRF.
18	Sample #2	INT	N/A	2 to 512	Pulse sampling number #2.
					For wave form Batch and
					Dual PRF mode, it's for low
					PRF, for other modes it's not
					used.
19	Phase Mode	INT	N/A	1 to 3	Phase modulation mode.
					1 – Fixed Phase
					2 – Random Phase
					3 – SZ Phase
		1		_L	

20	Atmospheric Loss	FLOAT	dB/km	0.0 to 10.0	two-way atmospheric attenuation factor
21	Nyquist Speed	FLOAT	m/s	0-100	
22	Moments Mask	LONG	N/A	0 to 127	Bit mask indicates which moments are involved in the scan. See Table 2-7
23	Moments Size Mask	LONG	N/A	0 to 0xFFFFFFF	Bit mask indicates range length for moment data in Table 2-7. 0 for 1 byte, 1 for 2 bytes
24	Misc Filter Mask	INT	N/A	0 to 0xFFFF	Refer to Table 2-8
25	SQI Threshold	FLOAT	N/A	0.0 to 1.0	SQI Threshold for the scan
26	SIG Threshold	FLOAT	dB	0.0 to 20.0	SIG Threshold for the scan
27	CSR Threshold	FLOAT	dB	0.0 to 100.0	CSR Threshold for the scan
28	LOG Threshold	FLOAT	dB	0.0 to 20.0	LOG Threshold for the scan
29	CPA Threshold	FLOAT	N/A	0.0 to 100.0	CPA Threshold for the scan
30	PMI Threshold	FLOAT	N/A	0.0 to 1.0	PMI Threshold for the scan
31	Thresholds Reserved	8 Bytes	N/A	N/A	
32	dBT Mask	INT	N/A		Thresholds used for total reflectivity data. Bits mask start from "SQI Threshold", take is as LSB.
33	dBZ Mask	INT	N/A		Thresholds used for reflectivity data. Bits mask start from "SQI Threshold", take is as LSB.
34	Velocity Mask	INT	N/A		Thresholds used for velocity data. Bits mask start from "SQI Threshold", take is as LSB.
35	Spectrum Width Mask	INT	N/A		Thresholds used for reflectivity data. Bits mask start from "SQI Threshold", take is as LSB.
36	ZDR Mask	INT	N/A		Thresholds used for ZDR data. Bits mask start from "SQI Threshold", take is as LSB.
37	Mask Reserved	12 Bytes	N/A	N/A	Reserved for mask
38	Scan Sync	INT	N/A	N/A	Reserved
39	Direction	INT	N/A	1,2	Antenna rotate direction, 1= clockwise, 2=counter clockwise
40	Ground Clutter Classifier Type	SHORT	N/A		1 - All data is passed 2 - No data is passed

41	Ground Clutter Filter Type	SHORT	N/A		3 – Use Real Time GC Classifier 4 – use bypass map 0- none 1 -Adaptive FFT 4 - IIR
42	Ground Clutter Filter Notch Width	SHORT	m/s	0.1-10	Scaled by 10
43	Ground Clutter Filter Window	SHORT	N/A		-1-none 0 - rect 1- Hamming 2- Blackman 3- Adaptive
44	Twins	Char	N/A	1-32	Number of similar cut configurations ,reserved.
45	Spare	71 Bytes	N/A	N/A	

Table 2-7 Moments Type/Bit Mask Definition

BIT	MOMENT	REMARKS	
1(LSB)	dBT	Total Reflectivity, without clutter removed	
2	dBZ	Reflectivity after clutter removed	
3	V	Mean Radial Velocity	
4	W	Spectrum Width	
5	SQI	Signal Quality Index	
6	CPA	Clutter Phase Alignment	
7	ZDR	Differential Reflectivity	
8	LDR	Liner Differential Ratio	
9	CC	Cross Correlation Coefficient	
10	ФDР	Differential Phase	
11	KDP	Specific Differential Phase	
12	CP	Clutter Probability	
13	FLAG	Flag of RVP data	
14	HCL	Hydro Class	
15	CF	Clutter Flag	
16	SNR	Signal Noise Ratio	
32	Zc	Corrected Reflectivity	
33	Vc	Corrected Mean Radial Velocity	
34	Wc	Corrected Spectrum Width	
35	ZDRc	Corrected Differential Reflectivity	
others	Spared		

Table 2-8 Filters Bit Mask Definition

BIT FILTER		REMARKS				
0(LSB)	Interference Filter	Pulse interference filter Algorithm				
1	Censor Filter	WSR-88D Censor filter				
2 1D Surveillance Speckle		1 dimension (along radial) speckle filter				
	_	algorithm for reflectivity				

3	1D Doppler Speckle	1 dimension (along radial) speckle filter
		algorithm for Doppler data
4	2D Surveillance Speckle	2 dimension (3*3 Azimuth and Radial) speckle
		filter algorithm for reflectivity
5	2D Doppler Speckle	2 dimension (3*3 Azimuth and Radial) speckle
		filter algorithm for Doppler data
6~31	Spare	

CHAPTER 3 Base Data Radial Data

3.1 Basedata Radial Header Block

Table 3-1 Basedata Radial Header Block

	Table 3-1 Basedata Radial neader Block					
NO	FIELD	TYPE	UNIT	RANGE	REMARKS	
	NAME	/BYTES				
01	Radial State	INT	N/A	0 to 6	0= Cut Start	
					1=Intermediate Data	
					2=Cut End	
					3=Volume Start	
					4=Volume End	
02	Spot Blank	INT	N/A	0 to 1	0=Normal	
					1=Spot Blank	
03	Sequence	INT	N/A	1to 65536	Sequence Number	
	Number					
04	Radial Number	INT	N/A	1 to 400	Radial Number for each	
					cut	
05	Elevation	INT	N/A	1 to 50	Elevation Number	
	Number					
06	Azimuth	FLOAT	degree	0 to 360	Azimuth Angle	
0.5	771	TY 0 1 T		10 00		
07	Elevation	FLOAT	degree	-10 to 90	Elevation Angle	
08	Seconds	INT	second	N/A	Radial data time in	
00	Seconds	1111	second	IV/A	second	
09	microseconds	INT	Microsecond	N/A	Radial data time in	
	meroseconas	1111	Microsecona	14/11	microsecond (expect	
					seconds)	
10	Length of data	INT	bytes	1-	Length of data in this	
					radial, this header is	
					excluded.	
11	Moment Number	INT	N/A	1-64	Moments available in	
					this radial	
12	Reserved	20 Bytes	N/A	N/A	Reserved	

3.2 Base Data Moment Header Block

Table 3-2 Basedata Moment Header Block

NO	FIELD	TYPE	UNIT	RANGE	REMARKS
	NAME	/BYTES			
01	Data Type	INT	N/A	1 to 64	Moment data type, See Table 2-7
02	Scale	INT	N/A	0.0 to	Data coding scale Code = value*scale+offset

				32768.0	
03	Offset	INT	N/A	0 to 32768	Data coding offset
					Code = value*scale+offset
04	Bin Length	SHORT	Bytes	1 to 2	Bytes to save each bin of data
05	Flags	SHORT	N/A		Bit Mask of flags for data.
					Reserved now.
06	Length	INT	bytes		Length of data of current moment, this header is excluded.
07	Reserved	12 Bytes			