

Politechnika Śląska

PROJEKT INŻYNIERSKI

Analiza błędów pomiaru położenia platformy mobilnej

Daniel CHYDZIŃSKI

Nr albumu: 296781

Kierunek: Automatyka i Robotyka **Specjalność:** Automatyka Procesowa

PROWADZĄCY PRACĘ
dr Aleksander Staszulonek
KATEDRA Automatyki i Robotyki

Wydział Automatyki, Elektroniki i Informatyki

Gliwice 2023

Tytuł pracy

Analiza błędów pomiaru położenia platformy mobilnej

Streszczenie

(Streszczenie pracy – odpowiednie pole w systemie APD powinno zawierać kopię tego streszczenia.)

Słowa kluczowe

(2-5 slow (fraz) kluczowych, oddzielonych przecinkami)

Thesis title

Mobile platform position errors analysis

Abstract

(Thesis abstract – to be copied into an appropriate field during an electronic submission – in English.)

Key words

(2-5 keywords, separated by commas)

Spis treści

1	Wstęp	1			
2	[Analiza tematu]	3			
3	Wymagania i narzędzia	5			
4	[Właściwy dla kierunku – np. Specyfikacja zewnętrzna]	7			
5	[Właściwy dla kierunku – np. Specyfikacja wewnętrzna]	9			
6	Weryfikacja i walidacja	11			
7	Podsumowanie i wnioski	13			
Bibliografia					
$\mathbf{S}_{\mathbf{I}}$	pis skrótów i symboli	19			
Źı	ródła	21			
Li	ista dodatkowych plików, uzupełniających tekst pracy	23			
Sı	pis rysunków	25			
$\mathbf{S}_{\mathbf{I}}$	pis tabel	27			

Wstęp

Robotyka to obszar badawczy i techniczny poświęcony teorii, konstrukcji oraz praktycznym zastosowaniom robotów. Elementami wykonawczymi układów zrobotyzowanych są najczęściej silniki lub siłowniki, te drugie nierzadko napędzane wewnętrznie silnikami. Rodzajem maszyny zamieniającej jeden rodzaj energii — w robotyce najczęściej elektryczną — na energię mechaniczną, czego celem jest wprawienie w ruch elementów ruchomych.

W przypadku prostych układów[def. 1], takich jak podajnik taśmowy napędzany pojedynczym silnikiem, dokładność[3] sterowania nie ma wysokiego priorytetu. Najważniejsze jest, by element znajdujący się na taśmie przejechał z punktu A do punktu B z pewną prędkością, a jego położeniem zajmą się inne czujniki. Jednak gdy silnik napędza ramię robota, pojazd lub drona, ważne jest, by utrzymywał stałą prędkość i/lub wykonywał określoną ilość obrotów.

Definicja 1 (Układ sterowania). *Układ służący do kontroli pożądanego urządzenia przy pomocy wybranego zasobu narzędzi, w tym zamkniętej pętli z ujemnym sprzężeniem zwrotnym/def. 2*].

Definicja 2 (Pętla). Typ struktury układu umożliwiający mu reakcję na informację zwrotną o jego stanie (sprzężenie zwrotne) pochodzącą z czujników.

Definicja 3 (Dokładność). Stopień zgodności pomiędzy rzeczywistymi wartościami a wartościami określonymi lub mierzonymi.

Z tego powodu, jednym z wyzwań, z jakimi mierzyli się pionierzy automatycy-robotycy jest dokładne sterowanie tworzonymi przez siebie układami. Jest to kwestia o tyle istotna, że gdy odpowiedź układu odbiega — nawet w niewielkim stopniu — od wartości zadanej, staje się on znacząco trudniejszy w użytkowaniu (sterowaniu), a w skrajnych przypadkach bezużyteczny. W przypadku ramienia robota, brak dokładności sterowania doprowadzi układ do osiągnięcia innej lokalizacji niż pożądana. W przypadku drona, prawdopodobnie całkowicie uniemożliwi lot z powodu nierówności sił nośnych. Zaś w przypadku po-

jazdów autonomicznych, przejechanie odległości innej niż zadana przez operatora. Jako rozwiązanie tego problemu, powstał poddział robotyki zwany odometrią [def. 4].

Definicja 4 (Odometria). Dział nauk technicznych na pograniczu robotyki i miernictwa, zajmujący się użyciem różnego rodzaju czujników w celu oszacowania położenia ruchomego układu względem pozycji startowej w przestrzeni fizycznej.

Współcześni automatycy-robotycy będący na początku swojej ścieżki edukacji/kariery, lub zajmujący się robotyką jedynie hobbystycznie, również mierzą się prędzej czy później z problemem dokładności sterowania układu. W obecnych czasach istnieje wiele sposobów rozwiązania go.

Celem niniejszej pracy inżynierskiej jest zaprojektowanie i wykonanie fizycznego modelu platformy mobilnej (zwanej dalej pojazdem) oraz aplikacji do jej kontroli. Następnie zastosowanie i przetestowanie eksperymentalne wybranej metody zwiększenia dokładności układu z użyciem ujemnego sprzężenia zwrotnego. Na końcu otrzymane wyniki zostaną przeanalizowane pod kątem użyteczności i skuteczności wybranej metody w warunkach rzeczywistych.

Praca podzielona została na następujące rozdziały[4]:

- Wstęp wprowadzenie do tematu, krótkie omówienie istoty problemu, zakres pracy, opis rozdziałów.
- 2. Analiza tematu omówienie tematu w kontekście aktualnego stanu wiedzy o poruszanym problemie (ang. state of art), oraz szczegółowe jego sformułowanie.
- 3. Założenia projektowe opis wymagań postawionych przy tworzeniu projektu wraz z uzasadnieniem wyboru, a także lista użytych narzędzi.
- 4. Projekt i wykonanie szczegółowe omówienie sposobu wykonania modelu pojazdu, układu elektronicznego, aplikacji, kodu mikroprocesora i narzędzi pobocznych. Każdemu elementowi odpowiada podrozdział.
- 5. Weryfikacja i walidacja zastosowane metody badawcze i wykonane eksperymenty, oraz napotkane i usunięte błędy.
- 6. Podsumowanie i wnioski skomentowanie uzyskanych wyników pod kątem osiągnięcia założonych celów, analiza i dalsze kroki.

[Analiza tematu]

- sformułowanie problemu
- osadzenie tematu w kontekście aktualnego stanu wiedzy (state of the art) o poruszanym problemie
- studia literaturowe [2, 3, 1] opis znanych rozwiązań (także opisanych naukowo, jeżeli problem jest poruszany w publikacjach naukowych), algorytmów,

Wzory

$$y = \frac{\partial x}{\partial t} \tag{2.1}$$

jak i pojedyncze symbole x i y składa się w trybie matematycznym.

Wymagania i narzędzia

- wymagania funkcjonalne i niefunkcjonalne
- przypadki użycia (diagramy UML) dla prac, w których mają zastosowanie
- opis narzędzi, metod eksperymentalnych, metod modelowania itp.
- metodyka pracy nad projektowaniem i implementacją dla prac, w których ma to zastosowanie

[Właściwy dla kierunku – np. Specyfikacja zewnętrzna]

Jeśli "Specyfikacja zewnętrzna":

- wymagania sprzętowe i programowe
- sposób instalacji
- sposób aktywacji
- kategorie użytkowników
- sposób obsługi
- administracja systemem
- kwestie bezpieczeństwa
- przykład działania
- scenariusze korzystania z systemu (ilustrowane zrzutami z ekranu lub generowanymi dokumentami)

Rysunek 4.1: Podpis rysunku po rysunkiem.

[Właściwy dla kierunku – np. Specyfikacja wewnętrzna]

Jeśli "Specyfikacja wewnętrzna":

- przedstawienie idei
- architektura systemu
- opis struktur danych (i organizacji baz danych)
- komponenty, moduły, biblioteki, przegląd ważniejszych klas (jeśli występują)
- przegląd ważniejszych algorytmów (jeśli występują)
- szczegóły implementacji wybranych fragmentów, zastosowane wzorce projektowe
- diagramy UML

Krótka wstawka kodu w linii tekstu jest możliwa, np. **int** a; (biblioteka listings). Dłuższe fragmenty lepiej jest umieszczać jako rysunek, np. kod na rys 5.1, a naprawdę długie fragmenty – w załączniku.

Rysunek 5.1: Pseudokod w listings.

Weryfikacja i walidacja

- sposób testowania w ramach pracy (np. odniesienie do modelu V)
- organizacja eksperymentów
- przypadki testowe zakres testowania (pełny/niepełny)
- wykryte i usunięte błędy
- opcjonalnie wyniki badań eksperymentalnych

Tabela 6.1: Nagłówek tabeli jest nad tabelą.

	metoda											
				alg. 3	alg. 4	$\gamma = 2$						
ζ	alg. 1	alg. 2	$\alpha = 1.5$	$\alpha = 2$	$\alpha = 3$	$\beta = 0.1$	$\beta = -0.1$					
0	8.3250	1.45305	7.5791	14.8517	20.0028	1.16396	1.1365					
5	0.6111	2.27126	6.9952	13.8560	18.6064	1.18659	1.1630					
10	11.6126	2.69218	6.2520	12.5202	16.8278	1.23180	1.2045					
15	0.5665	2.95046	5.7753	11.4588	15.4837	1.25131	1.2614					
20	15.8728	3.07225	5.3071	10.3935	13.8738	1.25307	1.2217					
25	0.9791	3.19034	5.4575	9.9533	13.0721	1.27104	1.2640					
30	2.0228	3.27474	5.7461	9.7164	12.2637	1.33404	1.3209					
35	13.4210	3.36086	6.6735	10.0442	12.0270	1.35385	1.3059					
40	13.2226	3.36420	7.7248	10.4495	12.0379	1.34919	1.2768					
45	12.8445	3.47436	8.5539	10.8552	12.2773	1.42303	1.4362					
50	12.9245	3.58228	9.2702	11.2183	12.3990	1.40922	1.3724					

Podsumowanie i wnioski

- uzyskane wyniki w świetle postawionych celów i zdefiniowanych wyżej wymagań
- kierunki ewentualnych danych prac (rozbudowa funkcjonalna ...)
- problemy napotkane w trakcie pracy

Bibliografia

- [1] Imię Nazwisko, Imię Nazwisko i Imię Nazwisko. "Tytuł artykułu konferencyjnego". W: *Nazwa konferecji.* 2006, s. 5346–5349.
- [2] Imię Nazwisko, Imię Nazwisko i Imię Nazwisko. "Tytuł artykułu w czasopiśmie". W: *Tytuł czasopisma* 157.8 (2016), s. 1092–1113.
- [3] Imię Nazwisko, Imię Nazwisko i Imię Nazwisko. Tytuł książki. Warszawa: Wydawnictwo, 2017. ISBN: 83-204-3229-9-434.
- [4] Politechnika Śląska. Wymagania do pracy inżynierskiej dla kierunku Automatyka i Robotyka. 2021. URL: https://www.polsl.pl/rau/wp-content/uploads/sites/42/2021/11/AiR_Wymagania_do_pracy_inzynierskiej.pdf (term. wiz. 27.12.2023).

Dodatki

Spis skrótów i symboli

```
DNA kwas deoksyrybonukleinowy (ang. deoxyribonucleic acid)
```

 $MVC \mod - \text{widok} - \text{kontroler (ang. } model-view-controller)$

 ${\cal N}\,$ liczebność zbioru danych

 $\mu\,$ stopnień przyleżności do zbioru

 $\mathbb E \,$ zbi
ór krawędzi grafu

 ${\cal L}\,$ transformata Laplace'a

Źródła

Jeżeli w pracy konieczne jest umieszczenie długich fragmentów kodu źródłowego, należy je przenieść w to miejsce.

Lista dodatkowych plików, uzupełniających tekst pracy

W systemie do pracy dołączono dodatkowe pliki zawierające:

- źródła programu,
- dane testowe,
- film pokazujący działanie opracowanego oprogramowania lub zaprojektowanego i wykonanego urządzenia,
- itp.

Spis rysunków

4.1	Podpis rysunku po rysunkiem	8
5.1	Pseudokod w listings	10

Spis tabel

6.1	Nagłówek tabeli	jest nad	tabela.		 							12