Exercise 11.5 Let $x_1, \ldots, x_n \in \mathbb{N}$. For each of the following problems, either (a) design and analyze a polynomial time algorithm (the faster the better), or (b) prove that a polynomial time algorithm would imply a polynomial time algorithm for SAT.²

²You can use the solution of one subproblem to solve another, as long as there's no circular dependencies overall.

Exercise 11.5.1. The partition problem asks if one can partition x_1, \ldots, x_n into two parts such that the sums of each part are equal.

Solution. \Box

Josh Park, Amy Kang, Diya Singh Prof. Kent Quanrud

 $\begin{array}{c} \text{CS 390ATA} \\ \text{Homework 5 (11.5)} \end{array}$

Spring 2025 Page 2

Exercise 11.5.2. The 3-partition problem asks if one can partition x_1, \ldots, x_n into 3 parts such that the sums of each part are all equal.

Josh Park, Amy Kang, Diya Singh Prof. Kent Quanrud CS 390ATA Homework 5 (11.5) Spring 2025 Page 3

Exercise 11.5.3. The any-k-partition problem asks if one can partition x_1, \ldots, x_n into k parts, for any integer $k \geq 2$, such that the sums of each part are all equal.

Josh Park, Amy Kang, Diya Singh Prof. Kent Quanrud

CS 390ATA Homework 5 (11.5)

Spring 2025 Page 4

Exercise 11.5.4. The *almost-partition problem* asks if one can partition x_1, \ldots, x_n into two parts such that the two sums of each part differ by at most 1.

Exercise 11.5.5. ³Let n be even. The perfect partition problem asks if one can partition x_1, \ldots, x_n into two parts such that

- (a) Each part has the same sum.
- (b) Each part contains the same number of x_i 's.

³IMO, this one is the trickiest.