

S1-Leitlinie – Vitamin-D-abhängige Rachitiden

Leitlinie der Deutschen Gesellschaft für Kinderendokrinologie und -diabetologie (DGKED) e.V.

in Zusammenarbeit mit:

der Deutschen Gesellschaft für Kinder- und Jugendmedizin (DGKJ) e.V.

AWMF-Register-Nummer Nr. 174-009

Klasse: S1

Version 3.0 (Überarbeitung Juni 2022)

Impressum

Herausgeber

Deutsche Gesellschaft für Kinderendokrinologie und -diabetologie (DGKED) e.V.

Federführende Fachgesellschaft

Deutsche Gesellschaft für Kinderendokrinologie und -diabetologie (DGKED) e.V.

Kontakt

Geschäftsstelle der DGKED e.V. Wolfgang Seel Chausseestraße 128-129 10115 Berlin

http://www.paediatrische-endokrinologie.de/

Tel: 030 / 28 04 68 04 Fax: 030 / 28 04 68 06 E-Mail: w.seel@dgked.de

Koordination der Leitlinienentwicklung der DGKED e.V.

Frau Prof. Dr. Susanne Bechtold Dalla-Pozza

Inhalt

Definition und Basisinformation	3
VDAR I	3
VDAR II	
Leitsymptome	4
Diagnostik	
Gebräuchliche Verfahren	4
Bewertung	4
Ausschlußdiagnostik	
Entbehrliche Diagnostik	Fehler! Textmarke nicht definiert.
Durchführung der Diagnostik	5
Therapie	5
VDAR I	5
VDAR II	5
Therapiedurchführung	6
Literatur	6
Verfahren zur Konsensbildung	Fehler! Textmarke nicht definiert.

S1 -Leitlinie 174-009: Vitamin-D-abhängige Rachitiden

AWMF-Register Nr.174/009 Klasse: S1

S1 -Leitlinie – Vitamin-D-abhängige Rachitiden

Leitlinie der Deutschen Gesellschaft für Kinderendokrinologie und -diabetologie (DGKED) e.V.in Zusammenarbeit mit: der Deutschen Gesellschaft für Kinder- und Jugendmedizin (DGKJ) e.V.

Vitamin-D-abhängige Rachitiden (E.55.0)

(VDAR I, II, III)

Definition und Basisinformation

Es handelt sich um angeborene Störungen des Vitamin-D-Stoffwechsels.

VDARIA

Mutationen im CYP27B1-Gen führen zu unterschiedlich starken Enzymaktivitätsverlusten der 1α-Hydroxylase. Die renale Synthese von 1,25(OH)₂D ist gestört. Bei Vorliegen einer VDAR IA tritt ein fehlendes Ansprechen auf die übliche Vitamin-D- und Kalziumtherapie im Rahmen der primären Rachitistherapie auf.

VDAR IB

Der VDAR IB liegen Mutationen im CYP2R1-Gen zugrunde. Diese führen zu einer Störung der 25-Vitamin-D-Hydroxylase, dem Schlüsselenzym, das die Umwandlung von Vitamin D in 25-Hydroxyvitamin D katalysiert.

VDAR IIA / IIB

Ursache der VDAR IIA ist ein Rezeptor- oder Postrezeptordefekt für 1,25(OH)₂D. Mutationen im Vitamin-D-Rezeptor-Gen (VDR) verhindern die Wirkung des aktiven Vitamin D am VDR.

Bei der VDAR IIB sind Klinik und Therapie nicht von der VDDR IIA Form zu unterscheiden, allerdings findet sich bei der VDAR IIB kein mutierter VDR-Rezeptor als Ursache, sondern eine Überexpression der heterogenen nukleären Ribonukleoproteine (hnRNPs) C1 und C2, Mitglieder der hnRNP-Familie, die die Bindung des VDR-RXR Heterodimer an das VDRE verhindert.

Beide Krankheitsbilder sind selten und folgen in der Regel einem autosomalrezessiven Erbgang. Sie zeichnen sich durch ein fehlendes Ansprechen auf die übliche Vitamin-D- und Kalziumtherapie aus.

VDAR III

Dieser hereditären Rachitisform liegen heterozygote aktivierende Mutationen im CYP3A4-Gen zugrunde. Die CYP3A4-Hydroxylase inaktiviert in der Leber die Vitamin D-Metabolite. Aktivierende Mutationen führen somit zu einer raschen und permanenten Erniedrigung der Vitamin D Metabolite 25-OHD und 1,25(OH)₂D und somit zum Bild der Rachitis.

Es wird ein autosomal dominanter Erbgang angenommen.

Leitsymptome

Alle Formen der hereditären Vitamin D-abhängigen Rachitiden ähneln in Klinik und in den radiologischen Veränderungen denen der Vitamin-D-Mangelrachitis. Bei der VDAR IIA haben etwa die Hälfte der Betroffenen eine Alopezie. Das fehlende Ansprechen auf übliche Therapie einer Vitamin-D-Mangel-Rachitis können Hinweise auf das Vorliegen einer VDAR I, VDAR II bzw. VDAR III sein.

Diagnostik

Gebräuchliche Verfahren

Labor: AP, S-Kalzium, S-Phosphat, S-Kreatinin, PTH, 25-OHD, 1,25(OH)₂D

Bildgebung:

Röntgenaufnahme Hand links. Zur Beurteilung des Schweregrades der Rachitis nach dem Thacher-Score (2000) zusätzliche Röntgenaufnahme des Knie links.

Molekulargenetischer Nachweis der VDAR I A/B, IIA/B und III möglich.

Bewertung

Abbildung 1:
Differentialdiagnose, Therapie und Ursache kalzipenischer Rachitiden

	Vitamin D-Mangel	VDAR Typ 1A	VDAR Typ 1B	VDAR Typ 2A	VDAR Typ 2B	VDAR Typ 3
S-Kalzium	n / \downarrow	Ţ	n / \downarrow	↓	↓	↓
S-Phosphat	n / ↓	n / ↓	n / ↓	n / \downarrow	n / ↓	n / ↓
AP	† † †	† † †	† † †	†††	† † †	† †
PTH	† † †	†	↑ ↑ ↑	† † †	† † †	† †
25-OHD	↓	n	↓	n	n	↓
1,25(OH) ₂ D	n / 🕇	↓	n / \downarrow	†	†	↓
Gendefekt		CYP27B1	CYP2R1	VDR	HNRNPC	CYP3A4
Chromosom		12q13.3	11p15.2	12q12-q14		7q28.1
Vererbung		AR	AR	AR	AR	AD
Therapie*	bis 12. Monat: 2000 IU Cholecalciferol / 0.5 g Kalzium / Tag 212. Lebensjahr: 3000-6000 IU Cholecalciferol / 0.5 – 1 g Kalzium / Tag ab 13. Lebensjahr: 6000 IU Cholecalciferol / 0.5 - 1 g Kalzium / Tag	0.3 – 2.0 ug Calcitriol / Tag Kalzium	0.3 – 2.0 ug Calcitriol / Tag Kalzium	initial: bis zu 50 ug Calcitriol / Tag und 0.5 -2.0 g Kalzium / Tag später: bis zu 5 g Kalzium /m² / Tag	initial: bis zu 50 ug Calcitriol / Tag und 0.5 -2.0 g Kalzium / Tag später: bis zu 5 g Kalzium /m² / Tag	1000 bis 50.000 IU Cholecalciferol pro Tag

^{*}Quellen zur Therapie: Munns CF 2016, Levine MA 2020

Ausschlußdiagnostik

Normale 1,25(OH)₂D-Serumspiegel sprechen gegen VDAR I, II und III.

Durchführung der Diagnostik

Kinder-/Jugendarzt, Pädiatrischer Endokrinologe/Diabetologe.

Therapie

VDARIA

Tägliche und lebenslängliche Therapie mit 0.3-2.0 ug Calcitriol, unter Kontrollen von S-Kalzium, Parathormon, AP und Kalzium/Kreatininwerten im Urin. In den Anfangsmonaten der Therapie ist die zusätzliche Gabe von Calcium zur Absättigung der Calciumspeicher ("hungry bone") erforderlich.

VDAR IB

Die Behandlung besteht mit 0.3-2.0 ug Calcitriol, täglich bei altersentsprechender Kalziumzufuhr mit der Nahrung.

VDAR IIA/B

Zunächst kann ein kurzzeitiger Behandlungsversuch mit 1,25(OH)₂D (hochdosiert bis zu 50 μg Calcitriol pro Tag per os, ggf Steigerung) und zusätzlichen Kalzium-Gaben

erfolgen unter Kontrollen von S-Kalzium, Parathormon, AP und Kalzium/Kreatininwerten im Urin. Bei fehlendem Therapieerfolg (kein Abfall der AP-und PTH-Konzentrationen) sollte die Therapie auf Kalzium oral (3-5 g/m²) umgestellt werden. Bei anhaltender Hypokalzämie und massiven AP- und PTH-Erhöhungen können in seltenen Fällen nächtliche Kalziuminfusionen zur Absättigung der Kalzium-Speicher der Knochen und zur Normalisierung des Knochenumsatzes erforderlich sein.

VDAR III

Die Behandlung der VDAR Typ 3 erfolgt mit Cholecalciferol (1000 bis 50.000 IU) pro Tag.

Therapiedurchführung

Kinder-/Jugendarzt, Pädiatrischer Endokrinologe/Diabetologe.

Literatur

Acar S, Demir K, Shi Y (2017) Genetic Causes of Rickets. J Clin Res Pediatr Endocrinol 9 (Suppl 2): 88-105

Brooks MH, Bell NH, Love Let al. (1978). Vitamin-D-dependent rickets type II. Resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med 298:996-999.

Hewison M, Rut AR, Kristjansson K et al. (1993) Tissue resistance to 1,25-dihydroxyvitamin D without a mutation of the vitamin D receptor gene. Clin Endocrinol (Oxf) 39:663-670.

Levine MA (2020) Diagnosis and Management of Vitamin D Dependent Rickets. Front. Pediatr. 8: 315

Molin A, Wiedemann A, Demers N et al. (2017) Vitamin D-dependent rickets type 1B (25-hydroxylase deficiency): a rare condition or a misdiagnosed condition? JBMR 32 (9): 1893-1899

Roizen J, Li D, O'Lear L et al. (2018) CYP3A4 causes vitamin D-dependent rickets type 3. J Clin Invest 128: 1913-1918

Thacher TD, Fischer PR, Pettifor JM, Lawson JO, Manaster BJ, Reading JC (2000) <u>Radiographic scoring</u> <u>method for the assessment of the severity of nutritional rickets.</u> J Trop Pediatr. 2000 46(3):132-9

Versionsnummer: 3.0

Versionsnummer: 1.0 von 2010 publiziert unter 027-039

Erstveröffentlichung: 01/2010

Überarbeitung von: 06/2022

Nächste Überprüfung geplant: 06/2027

Die AWMF erfasst und publiziert die Leitlinien der Fachgesellschaften mit größtmöglicher Sorgfalt - dennoch kann die AWMF für die Richtigkeit des Inhalts keine Verantwortung übernehmen. Insbesondere bei Dosierungsangaben sind stets die Angaben der Hersteller zu beachten!

Autorisiert für elektronische Publikation: AWMF online