Notes on GTM251

Yuandong Li

November 5, 2023

Contents

1	\mathbf{Intr}	roduction
	1.1	History
	1.2	CFSG
	1.3	After CFSG
		1.3.1 Permutation group theory
		1.3.2 Maximal subgroups of simple groups
		e Alternating Groups
	2.1	Introduction

https://math.stackexchange.com/
this file on github
Latex code is here
pdf file is here

1 Introduction

Pace:

```
Lesson 1: Chapter 1 (Overview)

Lesson 2: \S2.1-\S2.4 (Group action, A_n)

Lesson 3: \S2.5-\S2.7 (O'Nan-Scott, maximal subgroups of S_n and A_n, cover)

Lesson 4: \S3.1-\S3.3 (PSL_n(q))

Lesson 5: \S3.4 (forms: bilinear, sesquilinear, quadratic)

Lesson 6: \S3.5 (PSp_{2m}(q))

Lesson 7: \S3.6 (PSU_n(q))

Lesson 8: \S3.7 (P\Omega_m(q), odd q)

Lesson 9: \S3.8 (P\Omega_{2n}(q), even q)

Lesson 10: \S3.10 (maximal subgroups of classical groups)
```

References:

Main: The finite simple groups - Wilson (GTM 251)

Perm.: Permutation Groups - J.D. Dixon, B. Mortimer (GTM 163)

Finite permutation groups - Wielandt

Class.: The Subgroup Structure of the Finite Classical Groups - Kleidman & Liebeck

The Maximal Subgroups of the Low-Dimensional Finite Classical Groups - J.N. Bray, et al.

[Notes] Classical Groups without Orthogonal (2021fall) - C.H. Li, P.C. Hua

More: (notes and papers to be referred)

1.1 History

Galois(1830s): A_n , PSL₂(p), realized the importance

Jordan-Hölder: $1 = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_{n-1} \triangleleft G_n = G$, where G_i/G_{i-1} is simple

Camille Jordan (1870): $PSL_n(q)$

Sylow theorem (1872): the first tools for classifying finite simple groups

Mathieu(1860s): M_{11} , M_{12} , M_{22} , M_{23} , M_{24}

L.E. Dickson(1901): classical groups, inspired by Lie algebras

Chevalley(1955): a uniform construction of $\mathrm{PSL}_{n+1}(q),\,\mathrm{P}\Omega_{2n+1}(q),\,\mathrm{PSp}_{2n}(q),\,\mathrm{P}\Omega_{2n}^+(q)$

"twisting": ${}^{3}D_{4}(q)$, ${}^{2}E_{6}(q)$

Feit-Thompson(1963): odd order is soluble, hence nonab. FSG has an involution

1960s: proof of CSFG began

1970s: 20 sporadic simple groups dicovered

1980s: CSFG was "almost" complete

3 generations of proof of CSFG:

1. 1982 Gorenstein, abandon after vol 1, too long, bugs in quasithin case

2. 1992 Lyons, Solomon, vol 1-6 done, bug fixed, vol 7? also too long

3. Aschbacher, et al., find some geometric characters to simplify the proof, fusion system?

1.2 CFSG

Every finite simple group is isomorphic to one of the followings:

- (i) a cyclic group C_p of prime order p;
- (ii) an alternating group A_n for $n \geq 5$;
- (iii) a classical group:
 - linear: $PSL_n(q)$, $n \ge 2$, except $PSL_2(2)$ and $PSL_2(3)$;
 - unitary: $PSU_n(q)$, $n \ge 3$, except $PSU_3(2)$;
 - symplectic: $PSp_{2n}(q)$, $n \ge 2$, except $PSp_4(2)$;
 - orthogonal: $P\Omega_{2n+1}(q)$, $n \geq 3$, q odd; $P\Omega_{2n}^+(q)$, $P\Omega_{2n}^-(q)$, $n \geq 4$;

where q is a power p^a of a prime p;

(iv) an exceptional group of Lie type:

$$G_2(q), q \ge 3$$
; $F_4(q)$; $E_6(q)$; ${}^2E_6(q)$; ${}^3D_4(q)$; $E_7(q)$; $E_8(q)$

with q a prime power, or

$$^{2}B_{2}(2^{2n+1}), \ ^{2}G_{2}(3^{2n+1}, \ ^{2}F_{4}(2^{2n+1}), \ n \ge 1;$$

or the Tits group ${}^2F_4(2)'$;

- (v) one of 26 sporadic simple groups:
 - the five Mathieu groups M_{11} , M_{12} , M_{22} , M_{23} , M_{24} ;
 - the seven Leech lattice groups Co₁, Co₂, Co₃, McL, HS, Suz, J₂;
 - the three Fischer groups Fi_{22} , Fi_{23} , Fi'_{24} ;
 - the five Monstrous groups M, B, Th, HN, He;
 - the six pariahs J_1 , J_3 , J_4 , O'N, Ly, Ru.

Conversely, every group in this list is simple, and the only repetitions in this list are:

$$PSL_{2}(4) \cong PSL_{2}(5) \cong A_{5};$$

$$PSL_{2}(7) \cong PSL_{3}(2);$$

$$PSL_{2}(9) \cong A_{6};$$

$$PSL_{4}(2) \cong A_{8};$$

$$PSU_{4}(2) \cong PSp_{4}(3).$$

introduction, construction, orders, simplicity, action(reveal subgroup structure)

1.3 After CFSG

1.3.1 Permutation group theory

Classify

- ullet multiply-transitive groups
- 2-transitive groups
- primitive permutation groups (O'Nan-Scott Thm): reduce to AS case

1.3.2 Maximal subgroups of simple groups

 A_n : O'Nan-Scott, Liebeck-Praeger-Saxl (The symmetric difference set of AS subgroups and maximal subgroups of A_n is listed out, while listing their intersection is impossible.)

Classical: began with Aschbacher,1984, see Kleidman-Liebeck and Low-dimension.

Exceptional: Done recently by David Craven, see arXiv

Sporadic: Done. See a survey by Wilson and recent work on arXiv for the Monster.

2 The Alternating Groups

2.1 Introduction

 $\operatorname{Aut}(A_n)\cong S_n$ for $n\geq 7$ but for n=6 there is an exceptional outer automorphism of S_6 .hahahssww subgroup structure (O'Nan-Scott Thm) ddsss hahah