2022

Exercise I

- 1. Given $\mathcal{L}_1, \mathcal{L}_2 \in \mathsf{DTIME}(f(n))$, prove that $\mathcal{L}_1 \cup \mathcal{L}_2 \in \mathsf{DTIME}(f(n))$.
- 2. Given $\mathcal{L} \in \mathsf{DTIME}(f(n))$, prove that $\bar{\mathcal{L}} \in \mathsf{DTIME}(f(n))$.
- 3. Given $\mathcal{L}_1, \mathcal{L}_2 \in \mathsf{NTIME}(f(n))$, prove that $\mathcal{L}_1 \cup \mathcal{L}_2 \in \mathsf{NTIME}(f(n))$.
- 4. Prove that if $\mathsf{P} = \mathsf{NP}$, then $\forall k, \Sigma_k^\mathsf{P} \subseteq P$ and $\Pi_k^\mathsf{P} \subseteq \mathsf{P}$.
- 5. Reminder: $\mathsf{PH} = \bigcup_{k \in \mathbb{N}} \Sigma_k^\mathsf{P}$. Prove that if there exists a problem \mathcal{P} that is PH -complete, then $\exists k$ such that $\mathsf{PH} \subseteq \Sigma_k^\mathsf{P}$.

Exercise II

We call HornSAT the decision problem: "Given a Horn formula φ , determine whether φ is satisfiable or not." Recall that a Horn formula is a conjunction of Horn clauses, *i.e.* clauses with at most one positive literal (either one positive literal: $x_1 \vee \neg x_2 \vee \cdots \vee \neg x_n$; or no positive literal at all: $\neg x_1 \vee \neg x_2 \vee \cdots \vee \neg x_n$).

1. Prove that $HornSAT \in P$.

Exercise III

A pseudo-Boolean (PB) constraint is an (in)equality of the form

$$\sum_{i} w_{i} l_{i} \# k$$

where w_i is a natural number, l_i is a literal (*i.e.* either a Boolean variable, or the negation of a Boolean variable), k is a natural number, and $\# \in \{<, \le, =, >, >\}$. The pseudo-Boolean satisfaction problem (PB-SAT) is then

PB-SAT : "Given a set of PB constraints, is there an interpretation that satisfies all the constraints?"

For instance,

$$3a + 2b \geqslant 3$$
$$a + b = 1$$

is satisfied by the interpretation $\omega = \{a\}$:

$$3 \times 1 + 2 \times 0 \geqslant 3$$
$$1 + 0 = 1$$

1. Prove that PB-SAT is NP-complete.

Exercise IV

In propositional logic, a tautology is a formula which is always true: it means that any interpretation is a model of the formula. We also say that the formula is valid.

Complexity of Tautology We call VALID the problem "Given a propositional formula φ , is φ valid?".

1. Prove that Valid is coNP-complete.

^{1.} If this is true, we say that the polynomial hierarchy collapses to $\mathsf{P}.$

^{2.} If this is true, we say that the polynomial hierarchy collapses to its k^{th} level.