print("Exploring Sleep Health and Lifestyle Patterns Through Python Data Analysis")

Afonso Duarte Do Fundo Ruela Branco Carreira (107988)

Beatriz Nunes Lavado (102495)

Tomás Vasconcelos Branco Serras Geraldes (107508)

print("Index")

zz²

U1Introduction

UZData Processing and Explanation

03
Code Structure

U4
Exploratory Data
Analysis (EDA)

05 Conclusions

01 print("Introduction")

- Physical health
- Cognitive function
- Emotional well-being

Physiological metrics

Sleep patterns

Environmental conditions

02print("Data Processing and Explanation")

```
# Função para categorizar a pressão sistólica

def categorizar_pressao(leitura):
    sistolica = int(leitura.split('/')[0])

if 110 <= sistolica < 120:
    return "110-119"
    elif 120 <= sistolica < 130:
        return "120-129"
    elif 130 <= sistolica < 140:
        return "130-139"
    else:
        return "140-149"

# Aplicando a função e criando a nova coluna 'BloodPressureGroups'
df['BloodPressureGroups'] = df['Blood Pressure'].apply(categorizar_pressao)</pre>
```

```
shape = df.shape
print('The dataset has {} observations and {} variables'.format(shape[0],shape[1]))
```

The dataset has 374 observations and 12 variables

Gender Stress Level

Age BMI Category

Occupation Blood Pressure

Sleep Duration Heart Rate

Quality of Sleep Daily Steps

Physical Act. Level Sleep Disorder

02print("Data Processing and Explanation")

```
#vars numericas
estatistica1=df.describe().round(2).drop('count')
print(tabu(estatistica1, headers='keys', tablefmt='fancy_grid'))

#vars categoricas
estatistica2=df.describe(include='0').drop('count').drop('Blood Pressure',axis=1)
estatistica2['Sleep Disorder']=df['Sleep Disorder'].describe()
print(tabu(estatistica2,headers='keys',tablefmt='fancy_grid'))
```

	Age	Sleep Duration	Quality of Sleep
mean	42.18	7.13	7.31
std	8.67	0.8	1.2
min	27	5.8	4
25%	35.25	6.4	6
50%	43	7.2	7
75%	50	7.8	8
max	59	8.5	9

Gender	Sleep Disorder
2	3
Male	None
189	219
	2 Male

(04 print("Code Structure")

Libraries

Pandas- Reading data;

Matplotlib.pyplot and **Seaborn-** Plot visualization.

```
import pandas as pd
ficheiro = "Sleep_health_and_lifestyle_dataset.csv"
df = pd.read_csv(ficheiro)
```

```
import matplotlib.pyplot as plt
plt.subplot(1, 2, 1)
plt.figure(figsize=(12, 6))
plt.xlabel()
```

```
import seaborn as sns
sns.heatmap()
sns.boxplot()
```

Functions

- Perform the descriptive statistics, generating plots, and saving output files;
- Called by the main function as needed.

```
def datasetStr():
    # ESTATISTICA DESCRITIVA
    print("Showing the first 5 observations...")
    print(df.head())
    # print(df.columns)
```

saveOnFile():

```
BMI_order = df['BMI Category'].value_counts().index

# Abrir o arquivo em modo de escrita (irá sobrescrever ou criar um novo :
with open('Dados_e_gráficos_Projeto.txt', 'w', encoding="utf-8") as file:
# Escrever título e primeiras observações (head)
file.write('### First 5 Observations of the DataFrame ###\n')
file.write(str(df.head())) # Salva as primeiras 5 linhas
file.write('\n\n') # Espaço entre seções
```

Main function

- Defines the user menu;
- Starts the program.

```
print("\n\nExploring Sleep Health and Lifestyle Patterns Through Pyt
    print("----")
   print("Sleep is a physiological need present in animals, but it
        "To learn more about the work, the following options are ava:
    # fazer contxtualização sobre o sono
    print("1 - Contextualization about sleep.")
    # Ver os nomes, ver medias, medianas, sd, etc; ver gráficos de
    print("2 - Study variables. (see graphics and dispersion measure
   print("3 - Most relevant variables' associations")
    if resposta == "1":
        print("Sleep is an essential biological process that allo
    elif resposta == "2":
        mostrarVariaveis()
    elif resposta == "3":
        mostraCorrs()
    elif resposta == "4":
        datasetStr()
    elif resposta == "5":
        saveOnFile()
```

05 print("EDA")

```
df_numeric = df.select_dtypes(include=['number'])
corr = df_numeric.corr().round(2)
plt.figure(figsize = (10,5))
sns.heatmap(corr, annot = True, cmap = 'viridis')
```

```
plt.xticks(rotation=30, ha='right')
plt.yticks(rotation=0)
plt.show()
```


05 print("EDA")

.....Next step: inferential statistics (for example, chi-squared independence test Showed significant dependence between sleep quality and sleep disorders)

06 print("Conclusions")

 The data processing and EDA in Python were successful, giving useful insights into the relationships between key variables like Sleep Duration, Quality of Sleep, and Sleep Disorders.

- The user-friendly menu provides a quick and easy way to explore relationships between variables, helping users gain initial insights without needing advanced technical skills.
- In the future, **inferential statistics** and **machine learning techniques** could be used to improve the analysis and get stronger conclusions.

Thank you...

Let's go check the code!

Afonso Duarte Do Fundo Ruela Branco Carreira (107988)

Beatriz Nunes Lavado (102495)

Tomás Vasconcelos Branco Serras Geraldes (107508)

