Algorithms – Chapter 14 Augmenting Data Structures

Juinn-Dar Huang Professor jdhuang@mail.nctu.edu.tw

October 2008 Rev. '11, '12, '15, '16, '18, '19, '20

Augmenting Existing Data Structures

- In general, you just need "textbook" data structures
- You rarely have to create an entirely new type of data structure
 - if you do, let me know ☺
- Most often, you augment a data structure to meet the requirement of desired application

Augmenting RB Trees, Part 1

- Augmenting an RB tree such that
 - you can quickly find the ith smallest element, O(Ign)
 - you can quickly find the rank of a given element, O(Ign)

Order-Statistic Trees

- An order-statistic tree
 - is an RB tree
 - additional field size[x] for each node x
 - size[x] = # of internal nodes in the subtree rooted at x
 (including x) → size[x] = size[left[x]] + size[right[x]] + 1

Retrieving an Element

OS-SELECT(x, i)

```
1 r \leftarrow size[left[x]] + 1
```

Time Complexity: O(Ign)

- 2 if i = r
- **then** return x
- elseif i < r
- **then** return OS-SELECT(left[x], i)
- else return OS-SELECT(right[x], i r)

Initial call: OS-SELECT(root[T], i)

Determining the Rank

OS-RANK(T, x)

```
1 r \leftarrow size[left[x]] + 1
```

Time Complexity: O(Ign)

```
2 \quad y \leftarrow x
```

- 3 **while** $y \neq root[T]$
- 4 **do if** y = right[p[y]]
- 5 **then** $r \leftarrow r + size[left[p[y]]] + 1$
- 6 $y \leftarrow p[y]$
- 7 return r

Maintaining Subtree Sizes (1/2)

 Given the correct size, OS-SELECT and OS-RANK can work quickly and properly

 Need to maintain subtree sizes during node insertion and deletion operations without increasing time complexity

Maintaining Subtree Sizes (2/2)

Insertion

- increment size[x] for each node x on the path from the root down to the inserted node
- make proper modifications during rotation operations

Deletion

- decrement size[x] of each node x on the path from the deleted node up to the root
- make proper modifications during rotation operations

Updating Subtree Sizes

 Adding 2 more lines to LEFT-ROTATE(T, x) (Chap 13, p.11)

12 $size[y] \leftarrow size[x]$ 13 $size[x] \leftarrow size[left[x]] + size[right[x]] + 1$

The change to RIGHT-ROTATE is similar ($x \Leftrightarrow y$)

Augmenting a Data Structure

Four steps

- choose an underlying data structure (RB tree in this case)
- determine additional information to be maintained (field size for each node)
- verify that the additional information can be maintained for the fundamental modifying operations on the underlying data structure (insertion, deletion)
- develop new desired operations (OS-SELECT, OS-RANK)

Augmenting an RB Tree (1/2)

Theorem 1

- Let f be a field that augments a red-black tree T of n nodes
- Suppose that the contents of f for a node x can be computed using only the information in nodes x, left[x], and right[x], including f[left[x]] and f[right[x]].
- Then, we can maintain the values of f in all nodes of T during insertion and deletion without asymptotically affecting the $O(\lg n)$ performance of these operations

Augmenting an RB Tree (2/2)

Proof:

- A change to f[x] propagates only to ancestors of x
- That is, updating f[x] may require f[p[x]] to be updated, but nothing else!

 The process terminates at the root and the tree height is O(Ign)

- A closed interval $[t_1,t_2]$ can be represented as an object i, with fields $low[i] = t_1$ (the low endpoint) and $high[i] = t_2$ (the high endpoint)
- The intervals i and i overlap if $i \cap i \neq \emptyset$
 - if $low[i] \le high[i']$ and $low[i'] \le high[i]$
- Any two intervals i and i' satisfy the interval trichotomy

Interval Trichotomy

- That is, exactly one of the following three properties holds:
 - -i and i overlap
 - -i is to the left of i' (i.e., high[i] < low[i'])
 - -i is to the right of i (i.e., high[i'] < low[i])

Interval Trees

- An interval tree is a red-black tree that maintains a dynamic set of elements, with each element x containing an interval int[x]
- Interval trees support
 - INTERVAL-INSERT(T, x)
 - INTERVAL-DELETE(T, x)
 - INTERVAL-SEARCH(T, i)
 - returns a pointer to an element x in T s.t. int[x] overlaps i, or the nil[T] if no such element exists

Augmenting Process (1/3)

- Step 1: (Underlying DS)
 - RB tree
 - main data field int[x] for each node x
 - represents an interval [low[int[x]], high[int[x]]]
 - key → low[int[x]]
 - an inorder traversal lists all the intervals in sorted order by low endpoint
- Step 2: (Adding extra information)
 - each node x contains a value max[x],
 which is the maximum value of any interval (high)
 endpoint stored in the subtree rooted at x

An Example Interval Tree (1/2)

An Example Interval Tree (2/2)

Augmenting Process (2/3)

- Step 3: (Maintaining extra information)
 - max[x] can be updated as max[x] = max(high[int[x]], max[left[x]], max[right[x]])while performing rotation operations
 - by Theorem 1, insertion and deletion can still be finished in O(Ign) time

Augmenting Process (3/3)

Step 4: (Developing new operations)

```
INTERVAL-SEARCH(T, i)

1  x \leftarrow root [T]

2  while x \neq nil[T] and i does not overlap int[x]

3  do if left[x] \neq nil[T] and max[left[x]] \geq low[i]

4  then x \leftarrow left[x]

5  else x \leftarrow right[x]
```

Proof

Go to Line 5: (Right side)
Reason:
there is no left subtree or
max[left[x]] < low[i]

For each interval i' in x's left subtree (if any): high[i'] ≤ max[left[x]] < low[i]


```
Go to Line 4: (Left side)
Reason: max[ left[x] ] ≥ low[i]

如果存在有解 → 左子樹存在有解

→ 如果左子樹無解 → (左右子樹)皆不存在有解
∃ an interval i' in x's left subtree s.t.
high[i'] = max[ left[x] ] ≥ low[i] , and
if no solution in x's left subtree →
high[i] < low[i']
Then, ∀ interval i" in x's right subtree →
low[i''] ≥ low[i'] > high[i]
→ no solution in x's right subtree
```