4 Definizione di processi di Markov

Processi stazionari e processi di Markov . 4.1, p. 15 Equazione di C-K 4.2, p. 15 Continuità dei processi stocastici 4.3, p. 16 Forma differenziale di C-K 4.4, p. 16

4.1 Processi stazionari e processi di Markov

Probabilità di un processo

Prendiamo un oggetto vittima di un processo stocastico dipendente dal tempo e mettiamoci in un sistema di coordinate spaziali x.

Possiamo descrivere completamente il processo con la sequenza di P_n definite come:

$$P_n(x_1, t_1; x_2, t_2; \dots; x_n, t_n).$$

Ovvero la densità di probabilità che l'oggetto si trovi in x_1 al tempo t_1 , x_2 al tempo t_2 etc...

Per descrivere il moto non basta la densità di probabilità allo step n-esimo ma serve l'intera sequenza P_1, P_2, \dots

Scegliamo una base spazio temporale $(\overline{x} = (x, t))$, le proprietà delle P_n sono:

- $P_n \geq 0$.
- Simmetria: $P_n(\overline{x}_1; \overline{x}_2; \ldots) = P_n(\overline{x}_2; \overline{x}_1)$.
- Completezza:

$$\int P_n(\overline{x}_1;\ldots;\overline{x}_n)dx_n = P_{n-1}(\overline{x}_1;\ldots;\overline{x}_{n-1}).$$

• Norma: $\int P_1(\overline{x}_1)dx_1 = 1$

Possiamo calcolare il valor medio di una quantità nel seguente modo:

$$\langle x(t_1) \cdot \dots \cdot x(t_n) \rangle =$$

$$= \int_{\mathbb{R}^n} dx_1 \dots dx_n P_n(\overline{x}_1; \dots; \overline{x}_n) x_1 \dots x_n.$$

Processi stazionari

Un processo si dice stazionario se $\forall n$:

$$P_n(x_1, t_1; \dots; x_n, t_n) =$$

$$= P_n(x_1, t_1 + \Delta t; \dots; x_n, t_n + \Delta t).$$

Probabilità condizionata

Ipotizziamo che all'istante t_i l'oggetto si trovi in $x \in [x_i, x_i + \Delta x]$ (con $i \in [1, k]$).

Allora la probabilità che l'oggetto si trovi in un istante successivo t_{k+l} in un intervallo $[x_{k+l}, x_{k+l} + \Delta x]$ è:

$$P_{k+l}(\overline{x}_1; ...; \overline{x}_{k+l}) =$$

$$= P_k(\overline{x}_1; ...; \overline{x}_k) \cdot P_{l|k}(\overline{x}_{k+1}; ...; \overline{x}_{k+l} | \overline{x}_1; ...; \overline{x}_k).$$

Con $P_{l|k}$ probabilità di trovarsi in un intorno di x_{k+l} condizionata dai primi k step.

Esempio 4.1.1 (Prob. condizionata dal primo step). Ipotizziamo di avere la probabilità di essere in x_1 al tempo t_1 , vogliamo trovare la probabilità di essere in x_2 al tempo t_2 :

$$P_2(\overline{x}_1; \overline{x}_2) = P_{1|1}(\overline{x}_2|\overline{x}_1) \cdot P_1(\overline{x}_1).$$

Processi di Markov

Un processo si dice Markoviano se le sole conoscenze di P_1 e di $P_{1|1}$ sono sufficienti per studiare l'intera evoluzione del processo.

$$P_{1|n-1}(\overline{x}_n|\overline{x}_1;\ldots;\overline{x}_{n-1}) = P_{1|1}(\overline{x}_n|\overline{x}_{n-1}).$$

Fisicamente un processo di questo tipico indica che il sistema è senza memoria.

4.2 Equazione di C-K

L'equazione di Chapman-Kolmogorov si applica ai processi Markoviani. Si parte dalla seguente identità:

$$\sum_{R}^{\Omega} P(A \cap B \cap C) = P(A \cap C).$$

Per un processo Markoviano (con ordinamento $t_1 < t_2 < t_3$) l'equazione per la P_3 è:

$$P_3(\overline{x}_1; \overline{x_2}; \overline{x}_3) = P_{1|1}(\overline{x}_3|\overline{x}_2)P_{1|1}(\overline{x}_2|\overline{x}_1)P_1(\overline{x}_1).$$

Integrando rispetto alla coordinata x_2 e sfruttando la completezza delle P_n si ha:

$$\int P_3(\overline{x}_1; \overline{x_2}; \overline{x}_3) dx_2 = P_2(\overline{x}_1; \overline{x}_3) = P_{1|1}(\overline{x}_3|\overline{x}_1) P_1(\overline{x}_1).$$

Mettendo tutto insieme e semplificando ambo i lati la $P_1(\overline{x}_1)$:

Equazione di Chapman-Kolmogorov

$$P_{1|1}(x_3|x_1) = \int P_{1|1}(x_3|x_2) P_{1|1}(x_2|x_1) dx_2.$$

Quindi un processo Markoviano rispetta l'equazione di Chapman-Kolmogorov, tuttavia non vale il viceversa!

4.3 Continuità dei processi stocastici

Definizione 4.3.1 (Processo continuo). Un processo stocastico si dice continuo se $\forall \epsilon > 0$:

$$\lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{\Sigma_{\epsilon}} dx_1 P_{1|1}(x_1, t + \Delta t | x_2, t) = 0.$$

$$\Sigma_{\epsilon}:\{|x_1-x_2|>\epsilon\}.$$

In pratica serve che il cammino descritto dal processo sia continuo, la distanza tra due punti del processo deve andare a 0 più rapidamente di Δt .

I processi Markoviani non sono necessariamente continui:

Esempio 4.3.1 (Pollaio). Il numero di uova prodotte in un pollaio in un giorno può essere schematizzato come processo markoviano: dipende soltanto dal numero di galline presenti nel pollaio il giorno prima.

Questo processo non può essere continuo: è possibile mandare il Δt a 0 ma non possiamo fare altrettanto con x, ovvero il numero di uova. Infatti in questo caso il numero di uova è discreto.

In generale i processi a salti discreti non possono essere continui.

Esempio 4.3.2 (Moto Browniano). Calcoliamo l'equivalente della $P_{1|1}$ nel moto Browniano, nella lezione 1 abbiamo visto che:

$$P(x, t + \Delta t) = \int P(x - \Delta, t) f(\Delta) d\Delta.$$

Con $f(\Delta)$: probabilità di fare un salto lungo Δ nell'intervallo di tempo Δt .

Definendo la quantità $y = x - \Delta$ intuitivamente la $f(\Delta)$ corrisponde alla probabilità condizionata:

$$f(\Delta) = P_{1|1}(x, t + \Delta t | y, t).$$

Essendo un oggetto Gaussiano la $f(\Delta)$ avrà la seguente struttura:

$$f(\Delta) = \frac{1}{\sqrt{4\pi D\Delta t}} \exp\left(-\frac{1}{4D\Delta t} (x - y)^2\right).$$

In altre parole $f(\Delta)$ è proprio un propagatore. Si può quindi calcolare il limite nella definizione di continuità di un processo stocastico (conti saltabili):

$$\lim_{\Delta t \to 0} \frac{1}{(\Delta t)^{3/2}} \int_{|x-y| > \epsilon} \exp\left(-\frac{(x-y)^2}{4D\Delta t}\right) dx \sim$$

$$\sim \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{\epsilon/\sqrt{2\Delta t}}^{\infty} e^{-t^2} dt \sim \lim_{\Delta t \to 0} \frac{\operatorname{erf}\left(\frac{\epsilon}{\sqrt{2\Delta t}}\right)}{\Delta t}$$

$$\sim \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left(\frac{\exp\left(-\frac{\epsilon^2}{2\Delta t}\right)}{\epsilon/\sqrt{2\Delta t}}\right) = 0.$$

Quindi il moto Browniano è un processo continuo.

Esempio 4.3.3 (Moto di Cauchy). Il moto di Cauchy presenta una struttura per la probabilità di salto (condizionata) del seguente tipo:

$$P_{1|1}(x, t + \Delta t|z, t) = \frac{\Delta t}{\pi} \frac{1}{(x-z)^2 + (\Delta t)^2}.$$

E si può dimostrare che:

$$\lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{\Sigma_{\epsilon}} \frac{\Delta t dx}{\pi \left[\left(x - z \right)^2 + \left(\Delta t \right)^2 \right]} = \infty.$$

Di conseguenza il moto di Cauchy non è continuo.

Figura 1.3: Processo di Brown e Processo di Cauchy a confronto Link al codice in Julia).

4.4 Forma differenziale di C-K

Ipotizziamo di avere un processo stocastico Markoviano quindi per cui è possibile scrivere l'equazione di Chapman-Kolmogorov. Ipotizziamo che tale processo sia scomponibile ¹ in una parte continua ed una non continua.

Si può dimostrare che un processo di questo tipo è descritto dalla seguente forma differenziale:

Forma differenziale di Chapman Kolmogorov

$$\partial_t P(\boldsymbol{z}, t | \boldsymbol{y}, t') = -\Gamma + \Phi$$
 (4.1)

In cui Γ è la parte contenente il processo continuo:

$$\begin{split} \Gamma &= -\sum_{i} \partial_{z_{i}} \left[A_{i}(\boldsymbol{z},t) P(\boldsymbol{z},t|\boldsymbol{y},t') \right] + \\ &+ \sum_{i,J} \frac{1}{2} \partial_{z_{i}Z_{J}}^{2} \left[B_{iJ}(\boldsymbol{z},t) P(\boldsymbol{z},t|\boldsymbol{y},t') \right]. \end{split}$$

Qui abbiamo un primo termine "deterministico" (con la A) che determina soltanto uno spostamento dell'oggetto ed un termine di diffusione (quello in B). Nella Φ abbiamo invece il processo discontinuo:

$$\Phi = \int d\mathbf{x} \left[\omega(\mathbf{z}|\mathbf{x}, t) P(\mathbf{x}, t|\mathbf{y}, t') + -\omega(\mathbf{x}|\mathbf{z}, t) P(\mathbf{z}, t|\mathbf{y}, t') \right].$$

¹Ipotesi per cui si può scomporre sul Gardiner

Il termine Φ somiglia molto al termine della equazione di Volterra che abbiamo visto nella prima lezione (prob. di trovarsi in z è data dalla probabilità di finire in z da una posizione x diminuito la prob. di scappare in x dalla posizione z).

La potenza della equazione è la sua generalità: se sappiamo che un processo è Markoviano (magari per la fisica che ci sta dietro) allora l'equazione di evoluzione delle prob. nel tempo sarà necessariamente quella sopra.

Esempio 4.4.1
$$(A = B = 0, \text{ quindi } \Gamma = 0)$$
.

$$\partial_t P = \Phi.$$

Considerando il rapporto incrementale con passo Δt :

$$P(z, t + \Delta t | y, t) = P(z, t | y, t) + \Delta t \cdot \Phi.$$

Sfruttiamo la proprietà ovvia:

$$P(\boldsymbol{z}, t | \boldsymbol{y}, t) = \delta(\boldsymbol{y} - \boldsymbol{z}).$$

Allora possiamo sviluppare Φ al primo ordine in Δt l'espressione di Φ (in 1D):

$$\Phi = \int \omega(z|x,t)P(x,t|y,t')dx +$$

$$-\int \omega(x|z,t)P(z,t|y,t')dx \simeq$$

$$\simeq \int \left[\omega(z|x,t)\delta(x-y) - \omega(x|z,t)\delta(z-y)\right]dx =$$

$$= \omega(z|y) - \delta(z-y)\int dx\omega(x|y).$$

Soluzione della forma diff. con termini continui

$$P(z, t + \Delta t | y, t) =$$

$$= \delta(z - y) \left[1 - \Delta t \int dx \omega(x|z) \right] + \Delta t \cdot \omega(z|y).$$
(4.2)

Riconosciamo nella equazione 4.2 un primo termine (con la δ) che corrisponde alla probabilità di essere già in z diminuito della probabilità di andar via, il secondo termine $(\Delta t\omega(z|y))$ corrisponde invece alla probabilità di finire in z arrivando da y.