

LONDON SCHOOL OF HYGIENE AND TROPICAL MEDICINE

MSC PROJECT REPORT 2017-2018

The timing of carbohydrate intake in UK adults, using the National Dietary and Nutrition Survey (NDNS) 2008-2014 programme

Supervisor: Professor Luigi PALLA

Submitted in part fulfillment of the requirements for the degree of MSc in Medical Statistics

Candidate number: 110765
Page count: XX page from Introduction to Conclusions

Declaration of Authorship

I, Chaochen WANG, declare that this thesis titled, "The timing of carbohydrate intake in UK adults, using the National Dietary and Nutrition Survey (NDNS) 2008-2014 programme" and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a MSc degree on Medical Statistics at this University.
- No part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:			
Date:			

Acknowledgements

I would like to thank my tutor and supervisor Professor Luigi PALLA, for his guidance, patience, and help while working on this project and also to Dr. Suzana Almoosawi for her invaluable nutritional academic insight, and suggestions.

Thanks to Raoul Mansukhani, for sharing his previous work and thoughts on the analyses, methodology in helpful discussions.

I would like to thank the team of the National Dietary and Nutrition Survey (NDNS) who have made their data available to the public for academic study.

I would like to thank all of the teachers, lecturers, staffs, and fellow course mates in the Department of Medical Statistics for providing their wonderful teaching techniques, sharing their excellent ideas that made this year such fruitful and enjoyable.

I also want to express my gratitude to my family for their unconditional support, understanding, and encouragement throughout this year.

"All models are wrong, but some are useful."

George E. P. Box

Abstract

The National Dietary and Nutrition Survey (NDNS) database of detailed four-day food diaries was used to ...

Contents

D	eclaration of Authorship	iii
A	cknowledgements	v
Αl	bstract	ix
1	IntroductionBackground	1 1 1 1
2	MethodsMain Section 1	3
Α	R code for importing and manipulating the data	5

List of Figures

List of Tables

xvii

List of Abbreviations

AIC Akaike Iinformation Criterion

aBICadjusted Bayesian Information CriterioncAICconsistent Akaike Information Criterion

BIC Bayesian Iinformation Criterion

EM Expectation Maximazation

LCA Latent Class Analysis

LTA Latent Transition Analysis

MAR Missing At Random

MCAR Missing Completely At Random

MNAR Missing Not At Random ML Maximum Likelihood

NDNS the National Dietary and Nutrition Survey

OR Odds Ratio

Chapter 1

Introduction

Background

The National Dietary and Nutrition Survey (NDNS)

Aims and objectives

Chapter 2

Methods

Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

Main Section 2

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie

gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volutpat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in. Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimentum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

Appendix A

R code for importing and manipulating the data

```
# NDNS analysis, data management -----
# Change the data path accordingly ------
setwd("/home/wangcc-me/Downloads/UKDA-6533-stata11_se/stata11_se/") # in Ubuntu
library(epiDisplay)
library(plyr)
library(tidyverse)
# Read the data into memory -----
library(haven)
data <- read_dta("ndns_rp_yr1-4a_foodleveldietarydata_uk.dta")</pre>
data56 <- read_dta("ndns_rp_yr5-6a_foodleveldietarydata.dta")</pre>
data78 <- read_dta("ndns_rp_yr7-8a_foodleveldietarydata.dta")</pre>
names (data)
names (data56)
names (data78)
names(data) [names(data) == "seriali"] <- "id"</pre>
names(data56)[names(data56) == "seriali"] <- "id"</pre>
names(data78)[names(data78) == "seriali"] <- "id"</pre>
# Extract the data we needed ------
df14d <- data[, c(113, 1, 2, 3, 5, 6, 7, 8, 9, 21, 24, 55, 57, 58,
   59, 60, 61, 62, 63, 64)]
var <- names(df14d)</pre>
df56d <- data56 %>% select(var)
df78d <- data78 %>% select(var)
dfs1 <- rbind(df14d, df56d, df78d)
dfs2 \leftarrow dfs1[dfs1$Age >= 19, ]
rm(data, data56, data78)
dfs2
# Calculate the time (minute and hour) when they eat -----
```

```
dfs2$MealTime_chr <- as.character(dfs2$MealTime)</pre>
dfs2$MealTime_hm <- unlist(strsplit(dfs2$MealTime_chr, " "))[c(FALSE,</pre>
    TRUE)]
dfs2$MealHourN <- as.numeric(unlist(strsplit(dfs2$MealTime_hm, ":"))[c(TRUE,</pre>
   FALSE, FALSE)])
dfs2$MealMinN <- as.numeric(unlist(strsplit(dfs2$MealTime_hm, ":"))[c(FALSE,</pre>
   TRUE, FALSE)])
dfs2$MealMinNO <- (60 * dfs2$MealHourN) + dfs2$MealMinN
dfs3 <- dfs2[order(dfs2$id, dfs2$DayNo, dfs2$MealMinNO), ]</pre>
length(unique(dfs3$id)) ## number of participants = 6155
# Create a subset data with only the first observation of each
# participant -----
NDNS <- dfs3[!duplicated(dfs3$id), ]</pre>
with(NDNS, tab1(SurveyYear, graph = FALSE, decimal = 2))
# #SurveyYear :
           # Frequency Percent Cum. percent
# NDNS Year 1 801 13.01
                                     13.01
# NDNS Year 2
                  812 13.19
                                      26.21
                  782 12.71
# NDNS Year 3
                                     38.91
                1055 17.14
# NDNS Year 4
                                    56.05
# NDNS Year 5
                  625 10.15
                                     66.21
# NDNS Year 6
                  663 10.77
                                     76.98
# NDNS Year 7
                  703 11.42
                                    88.40
# NDNS Year 8
                  714 11.60
                                    100.00
                 6155 100.00
                                  100.00
 # Total
# create a variable combine id and day No ------
dfs3 <- dfs3 %>%
mutate(id_dy = paste(id, DayNo, sep = "D"))
# For each subject, the total energy/carbohydrate intake for each eating
# time can be calculated -----
old <- Sys.time()</pre>
Energy <- ddply(dfs3, .(id_dy, id, SurveyYear, DayNo, Age, Sex,</pre>
                       DiaryDaysCompleted, MealHourN, DayofWeek),
               summarise,
               Tot_Energ = sum(EnergykJ),
               Tot_Carb = sum(Carbohydrateg),
               Tot_Sugar = sum(Totalsugarsg),
               Tot_Starch = sum(Starchg))
new <- Sys.time() - old</pre>
print(new)
# Time difference of 3.876385 mins
```

```
rm(df14d, df56d, df78d, dfs2)
# Calculate the energy from total carbohydrates ------
Energy <- Energy %>%
 mutate(KJcarbo = Tot_Carb * 16) %>%
 mutate(CarKJpercentage = KJcarbo/Tot_Energ) %>%
 mutate(Carbo = cut(CarKJpercentage, breaks = c(0, 0.26, 0.75, 2),
        right = FALSE)) %>% mutate(Carbo2 = cut(CarKJpercentage, breaks = c(0,
    0.26, 2), right = FALSE))
Energy0 <- Energy[!(Energy$Tot_Energ == 0), ]</pre>
          # some food consumption does not contain any carbohydrates
Energy0$Carbo <- factor(Energy0$Carbo, labels = c("Low_carb", "Med_carb",</pre>
    "High_carb"))
Energy0$Carbo2 <- factor(Energy0$Carbo2, labels = c("Low_carb", "Med_or_high_carb"))</pre>
# Generate data sets for each day -----
dta_day1 <- Energy0 %>%
 filter(DayNo == 1) %>%
  select(c("id", "Age",
    "Sex", "DayofWeek", "MealHourN", "Carbo", "Carbo2")) %>%
 mutate(DayofWeek = factor(DayofWeek,
    levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
        "Saturday", "Sunday")))
dta_day2 <- Energy0 %>%
  filter(DayNo == 2) %>%
  select(c("id", "Age",
    "Sex", "DayofWeek", "MealHourN", "Carbo", "Carbo2")) %>%
 mutate(DayofWeek = factor(DayofWeek,
    levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
        "Saturday", "Sunday")))
dta_day3 <- Energy0 %>%
  filter(DayNo == 3) %>%
  select(c("id", "Age",
    "Sex", "DayofWeek", "MealHourN", "Carbo", "Carbo2")) %>%
 mutate(DayofWeek = factor(DayofWeek,
    levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
        "Saturday", "Sunday")))
dta_day4 <- Energy0 %>%
  filter(DayNo == 4) %>%
  select(c("id", "Age",
    "Sex", "DayofWeek", "MealHourN", "Carbo", "Carbo2")) %>%
 mutate(DayofWeek = factor(DayofWeek,
    levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
        "Saturday", "Sunday")))
```

```
vecid1 \leftarrow unique(dta_day1$id) # n = 6153
vecid2 <- unique(dta_day2$id) # n = 6153</pre>
vecid3 \leftarrow unique(dta_day3$id) # n = 6151
vecid4 <- unique(dta_day4$id) # n = 6026
Noday1 <- setdiff(vecid, vecid1) # two subjects did not have day 1 data
Noday2 <- setdiff(vecid, vecid2) # two subjects did not have day 2 data
Noday3 <- setdiff(vecid, vecid3) # four subjects did not have day 3 data
Noday4 <- setdiff(vecid, vecid4) # 129 subjects did not have day 4 data
# Transform the data shape from long to wide ------
dta_d1_wide <- dta_day1[, -7] %>%
  spread(key = MealHourN, value = Carbo)
names(dta_d1_wide)[5:28] <- paste(rep("H", 24), 0:23, sep = "")
dta_d2_wide <- dta_day2[, -7] %>%
  spread(key = MealHourN, value = Carbo)
names(dta_d2_wide)[5:28] <- paste(rep("H", 24), 0:23, sep = "")
dta_d3_wide <- dta_day3[, -7] %>%
  spread(key = MealHourN, value = Carbo)
names(dta_d3_wide)[5:28] <- paste(rep("H", 24), 0:23, sep = "")
dta_d4_wide <- dta_day4[, -7] %>%
  spread(key = MealHourN, value = Carbo)
names(dta_d4_wide)[5:28] <- paste(rep("H", 24), 0:23, sep = "")
# recode NA to not eating -----
for (i in 5:ncol(dta_d1_wide))
  if (is.factor(dta_d1_wide[, i])) levels(dta_d1_wide[,
    i]) <- c(levels(dta_d1_wide[, i]), "Not_eating")</pre>
dta_d1_wide[is.na(dta_d1_wide)] <- "Not_eating"
for (i in 5:ncol(dta_d2_wide))
  if (is.factor(dta_d2_wide[, i])) levels(dta_d2_wide[,
    i]) <- c(levels(dta_d2_wide[, i]), "Not_eating")</pre>
dta_d2_wide[is.na(dta_d2_wide)] <- "Not_eating"
for (i in 5:ncol(dta_d3_wide))
  if (is.factor(dta_d3_wide[, i])) levels(dta_d3_wide[,
    i]) <- c(levels(dta_d3_wide[, i]), "Not_eating")</pre>
dta_d3_wide[is.na(dta_d3_wide)] <- "Not_eating"
for (i in 5:ncol(dta_d4_wide))
```

```
if (is.factor(dta_d4_wide[, i])) levels(dta_d4_wide[,
    i]) <- c(levels(dta_d4_wide[, i]), "Not_eating")
dta_d4_wide[is.na(dta_d4_wide)] <- "Not_eating"</pre>
```