

Universidade Federal do Sul e Sudeste do Pará Faculdade de Computação e Engenharia Elétrica Inteligência Artificial

CAPÍTULO 4 – ALGORITMOS (Parte 2)

Prof. Dr. Elton Alves

AG

□Pontos importantes a definir:

- Representação dos indivíduos (Cromossomial);
- Estratégia de seleção;
- Operadores de busca

- □É uma maneira de traduzir a informação do nosso problema de maneira tratável pelo computador (Representação GENE).
- ☐Um cromossomo representa (codifica) um conjunto de parâmetros da função objetivo
- Exemplo: na função $f(x) = xsen(10\pi x) + 1$, um cromossomo codifica um valor do parâmetro x
- □Quanto mais adequada ao problema, melhores os resultados

- □ Representação mais comum é a binária
- Cromossomo = sequência de bits
- Cada gene é somente um bit
- Problemas numéricos

Exemplo: seja o problema de encontrar o mínimo da seguinte função, sendo que ambas as variáveis pertencem ao intervalo [-100, 100].

$$f(x) = \left| x * y \sin \frac{y\pi}{4} \right|$$

- Representar números reais como números binários
- A faixa de operação de cada uma das variáveis
- A precisão desejada.

☐ Conversão binária para Real (precisão máxima):

$$real = \inf_{i} + \frac{\sup_{i} - \inf_{i}}{2^{k} - 1} * r_{i}$$
 Valor conversão Binário -> Inteiro

- \square Exemplo: k=10 bits e faixa de operação de 2 a 10 $\implies \frac{10-2}{210-1} \approx 0$, 0078 (precisão)

☐ SOLUÇÃO: Convertendo para inteiro, temos:

$$s_1 = 1000101110110101000111$$

☐ Mapeando para o intervalo [-1, 2], temos

$$x = \min + (\max - \min) \frac{b_{10}}{2^{l} - 1}$$

$$b_{10} = (1000101110110101000111)_2 = 2288967$$

$$x_1 = -1 + (2+1)\frac{2.288.967}{(2^{22}-1)} = 0,637197$$

FUNÇÃO DE AVALIAÇÃO

- ☐ Também chamada de Função de Fitness/Custo
- ☐ Utilizada para determinar a qualidade de um indivíduo/solução
- ■Nota dada ao indivíduo
- · Será a base para o processo de seleção.
- □É um elo forte de ligação do GA com o problema
- ☐Ela deve ser tal que:
- Se o cromossomo C1 representa uma solução melhor que o C2,
- Então o valor da avaliação de C1 deve ser maior que de C2.

PROBLEMA

□Problema:

- Use um AG para encontrar o ponto máximo da função:

$$f(x) = x^2$$

- Com x sujeito as seguintes restrições:

$$0 \le x \le 31$$

CROMOSSO DO PROBLEMA

□Cromossomos binários com 5 bits:

0 = 00000

31 = 111111

□Aptidão

- Neste problema, a aptidão pode ser a própria função objetivo.
- Exemplo:

aptidão
$$(00011) = f(3) = 9$$

SELEÇÃO

□Seleção

- Imitação da seleção natural.
- Os melhores indivíduos (maior aptidão) são selecionados para gerar filhos através de crossover e mutação.
- Dirige o AG para as melhores regiões do espaço de busca.

☐ Tipos mais comuns de seleção

- Proporcional a aptidão.
- Torneio.
- Elitismo

Seleção dos Pais – Roleta Viciada

□É aleatória (mas quando possível, o conhecimento da aplicação pode ser utilizado para definir a população inicial).

Probabilidade de seleção proporcional a aptidão

$$p_i = \frac{f(x_i)}{\sum_{k=1}^{N} f(x_k)}$$

Seleção proporcional a aptidão (Roleta Viciada)

OBS: os mais fortes tem preferência para a reprodução, mas os fracos ainda possuem algumas chances.

SELEÇÃO POR TORNEIO

- □Consiste em selecionar uma série de indivíduos da população e fazer com que eles entrem em competição direta pelo direito de ser pai, usando como arma sua avaliação.
- □Tamanho do torneio (K)
 define quantos
 indivíduos vão competir
 (população)

Indivíduo	Fitness
x ₁	200
x ₂	100
х3	9500
х ₄	100
x ₅	100
x6	10000
х7	1
x8	40

Torneios

Convergência Genética

□Se deixarmos apenas os melhores indivíduos se reproduzirem, a população tenderá a ser composta de indivíduos cada vez mais semelhantes (faltará diversidade).

CROSSOVER E MUTAÇÃO

- □Combinam pais selecionados para produção de filhos.
- □Principais mecanismos de busca do AG.
- ☐ Permite explorar áreas desconhecidas do espaço de busca.

CROSSOVER DE UM PONTO

□O crossover é aplicado com uma dada probabilidade denominada <u>taxa de</u> <u>crossover (60% a 90%)</u>

Pais
$$\begin{cases} 110 & 0.1 \\ 0.1 & 1.1 \\ 0.1 & 1.1 \end{cases}$$
Filhos
$$\begin{cases} 110 & 1.1 \\ 0.1 & 1.1 \\ 0.1 & 1.1 \end{cases}$$

□Se o crossover é aplicado os pais trocam suas caldas gerando dois filhos, caso contrário os dois filhos serão cópias exatas dos pais.

MUTAÇÃO

- ☐ Mutação inverte os valores dos bits.
- \square A mutação é aplicada com dada probabilidade, denominada *taxa de mutação* (~1%), em cada um dos bits do cromossomo.
- ☐ A taxa de mutação não deve ser nem alta nem baixa, mas o suficiente para assegurar a diversidade de cromossomos na população.

Antes da 0 1 1 0 1 mutação

Depois 0 <u>0</u> 1 0 1

Aqui, apenas o 2o.bit passou no teste de probabilidade

PRIMEIRA GERAÇÃO DO PROBLEMA 1

PRIMEIRA GERAÇÃO DO PROBLEMA

cror	nossomos	х	f(x)	prob. de seleção
1	11011	27	729	29,1%
2	11001	25	625	24,9%
3	11001	25	625	24,9%
4	10111	23	529	21,1%

AS DEMAIS GERAÇÕES

			\boldsymbol{x}	f(x)
Camunda Cavação	1	11011	27	729
Segunda Geração	2	$1\ 1\ 0\ 0\ 0$	24	576
	3	$1\ 0\ 1\ 1\ 1$	23	529
	4	$1\ 0\ 1\ 0\ 1$	21	441
			x	f(x)
Terceira Geração	1	1 1 0 1 1	<i>x</i> 27	f(x)
Terceira Geração	1 2	1 1 0 1 1 1 0 1 1 1		
_	_		27	729

AS DEMAIS GERAÇÕES

			\boldsymbol{x}	f(x)
	1	11111	31	961
Quarta Geração	2	$1\ 1\ 0\ 1\ 1$	27	729
	3	$1\ 0\ 1\ 1\ 1$	23	529
	4	$1\ 0\ 1\ 1\ 1$	23	529
			x	f(x)
			x	f(x)
Quinta Geração	1	11111	<i>x</i> 31	f(x)
Quinta Geração	1 2	1 1 1 1 1 1 1 1 1 1		
Quinta Geração	-		31	961

CROSSOVER DE 2-PONTOS

```
pai_1 \ 010 011000 101011
 pai_2 \ 001_{001110}001101
filho<sub>1</sub> 010001110101011
filho<sub>2</sub> 001011000001101
```

CROSSOVER DE N-PONTOS

PROBLEMA – CAIXEIRO VIAJANTE

- Dado um numero de cidades, encontrar o caminho mais curto passando por todas as cidades uma única vez.
- □Função Objetivo = Distancia Total Percorrida

REPRESENTAÇÃO

CROSSOVER

□Crossover baseado em posição.

• São selecionadas *n* cidades. Cada filho mantem a posição das cidades selecionadas de um pai

MUTAÇÃO

☐Mutação baseada na troca de posição de uma cidade

☐Mutação baseada na troca da ordem de duas cidades

☐ Maximizar a função:

$$f(x) = \left| x * y \sin \frac{y\pi}{4} \right|, x e y [0, 15]$$

• Função Objetivo: g(x, y) = 1 + f(x, y).

Condições iniciais:

- 4 bits para cada variável (cromossomo de 8 bits).
- 1% para mutação
- População de 6 indivíduos.

☐População inicial, sorteada aleatoriamente:

Cromossomo	x	У	g(x,y)
01000011	4	3	9,5
00101001	2	9	13,7
10011011	9	11	71,0
00001111	0	15	1,0
10011001	5	5	18,7
11100011	14	3	30,7
Somatório das avaliações			114,6

□Seleção pela roleta para a próxima geração (6 números entre 0 e soma das avaliações)

Número sorteado	Cromossomo escolhido
12,8	00101001
65,3	10011011
108,3	10011001
85,3	10011011
1,8	01000011
119,5	11100011

□Crossover dos pais:

```
00101001 00111011
10011011 10001001
```

10011001 10011011 10011001

□Mutação

- Para cada um dos bits for sorteado um número entre 0 e 99 para realização da mutação.
- 10011001 \longrightarrow 10011000

• Processo segue para a próximas gerações....

Elitismo

- Os <u>n</u> melhores indivíduos de cada geração não devem "morrer" junto com a sua geração, mas sim passar para a próxima visando garantir que seus **genomas** sejam preservados.
- □O elitismo proporciona a manutenção do melhor indivíduo
 t na população t+1.

Algoritmo Genético com Phyton

□Problema 1

• Desenvolver um AG para calcular o mínimo da função f(x)=x2+3x+4 no intervalo de [-10, 10].

Atividade Avaliativa 4

- **□**Quantos pontos de cortes tem um cromossomo de 9 bits?
- □É possível, usando crossover de um ponto e tendo os pais 111111 e 000000, gerar o filho 001100? Justifique.
- □Quero fazer um AG para otimizar um parâmetro real dentro do intervalo [-1,1] com precisão de 0,001. Se escolher usar uma representação binária, quantos bits deve ter o cromossomo?
- **□Qual é o problema associado a se usar uma taxa de mutação muito alta?**