Multivariable Chain Rule

Theorem 1 (The Chain Rule). Let U and V be open subsets of \mathbb{R}^n and \mathbb{R}^m respectively. If the mappings $F \colon U \to \mathbb{R}^m$ and $G \colon V \to \mathbb{R}^k$ are differentiable at $\mathbf{a} \in U$ and $F(\mathbf{a}) \in V$ respectively, then their composition $H = G \circ F$ is differentiable at \mathbf{a} , and

$$dH_{\mathbf{a}} = dG_{F(\mathbf{a})} \circ dF_{\mathbf{a}}.$$

In terms of derivatives, we therefore have

$$DH(\mathbf{a}) = DG(F(\mathbf{a})) \cdot DF(\mathbf{a}).$$

In brief, the differential of the composition is the composition of the differentials; the derivative of the composition is the product of the derivatives.

We shall now apply the chain rule to generalize some of the basic results of single-variable calculus.

Theorem 2. Let U be a connected open subset of \mathbb{R}^n . Then the differentiable mapping $F: U \to \mathbb{R}^m$ is constant on U if and only if $DF(\mathbf{x}) = 0$ for all $\mathbf{x} \in U$.

Corollary 3. Let F and G be two differentiable mappings of the connected set $U \subset \mathbb{R}^n$ into \mathbb{R}^m . If $DF(\mathbf{x}) = DG(\mathbf{x})$ for all $\mathbf{x} \in U$, then there exists $\mathbf{c} \in \mathbb{R}^m$ such that

$$F(\mathbf{x}) = G(\mathbf{x}) + \mathbf{c}$$

for all $\mathbf{x} \in U$. That is, F and G differ only by a constant.

Theorem 4 (Mean Value Theorem).

Next we are going to use the mean value theorem to prove that the second partial derivatives D_iD_if and D_iD_if are equal under appropriate conditions.

Theorem 5. Let f be a real-valued function defined on the open set U in \mathbb{R}^n . If the first and second partial derivatives of f exist and are continuous on U, then $D_iD_jf = D_jD_if$ on U.