Álgebra Linear Exame de qualificação

Nome	∋ ∶		
$\mathbf{R}\mathbf{A}$: _		

Exercícios:

1. Seja

$$A = \begin{pmatrix} 7 & 1 & -8 & -1 \\ 0 & 3 & 0 & 0 \\ 4 & 2 & -5 & -1 \\ 0 & -4 & 0 & -1 \end{pmatrix}.$$

Encontre uma matriz invertível P tal que $P^{-1}AP=J$ seja uma matriz de Jordan.

- 2. Se f e g sao duas formas quadraticas em x_1, \ldots, x_n sobre os reáis, e f e positiva definida, então podemos reduzir simultaneamente as duas em soma de quadrados?
- 3. Seja A uma matriz com coeficientes reais. Se pensarmos A com coeficientes complexos, seja $A = SJS^{-1}$, onde S é invertível e J é a forma canônica de Jordan de A. Prove que o número e o tamanho dos blocos de Jordan de todo autovalor λ de A são iguais aos de $\overline{\lambda}$, o complexo conjugado de λ .
- 4. Sejam V e W espaços vetoriais de dimensão finita. Prove que Hom(V,W) é canônicamente isomorfo a $V^*\otimes W$.
- 5. Seja V espaço vetorial tal que $\dim(V)=3$ e seja $B=\{e_1,e_2,e_3\}$ uma sua base. Seja $A:V\to V$ uma transformação linear. Escreva a matriz de $\Lambda^2A:\Lambda^2V\to\Lambda^2V$ com respeito à base $e_1\Lambda e_2,\,e_1\Lambda e_3,\,e_2\Lambda e_3$ de Λ^2V dada a matriz de A com respeito a B.

Departamento de Matemática - IMECC - Unicamp Exame de Análise no \mathbb{R}^n 31 de Julho de 2015

$\mathbf{Nome:}$	RA:	

Questão 1. (2,5)

- (a) Sejam $U \subset \mathbb{R}^n$ aberto, $f: U \to \mathbb{R}$ diferenciável e M > 0 uma constante. Mostre que se $\left|\frac{\partial f}{\partial x_i}(x)\right| \leq M$, para todo $x \in U$ e i = 1, ..., n, então $f(\Omega)$ é limitado quando $\Omega \subset U$ é limitado e convexo.
- (b) Sejam $1 < \theta < \infty$ e $f: U \to \mathbb{R}^m$, onde $U \subset \mathbb{R}^n$ é um aberto conexo. Assuma que

$$|f(x) - f(y)| \le K |x - y|^{\theta}$$
 para todo $x, y \in U$,

onde K > 0 é uma constante. Mostre que f é constante em U.

Questão 2. (2,5)

- (a) Demonstre o teorema da aplicação inversa usando o teorema da aplicação implícita.
- (b) Mostre que se $f: \mathbb{R}^3 \to \mathbb{R}^2$ é de classe C^1 , então f não é injetora.
- (c) Seja f um difeomorfismo de classe C^1 . Mostre que se f é uma aplicação de classe C^r então f é um difeomorfismo de classe C^r .

Questão 3. (1,5) Seja $U \subset \mathbb{R}^2$ um aberto e $f: U \to \mathbb{R}$ uma função de classe C^2 . Use o teorema de Fubini para mostrar que

$$\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y), \text{ para todo } x,y \in U.$$

Questão 4. (2,0) Seja $\Omega \subset \mathbb{R}^n$ um aberto limitado tal que a fronteira $\partial\Omega$ é uma superfície conexa de classe C^{∞} . Assuma que $F : \mathbb{R}^n \to \mathbb{R}^n$ é um campo de classe C^1 .

(a) Usando o Teorema de Stokes (em sua forma mais geral), mostre que

$$\int_{\Omega} div(F)dx = \int_{\partial \Omega} (F \cdot n)dS.$$

- (b) Mostre que se $div(F) \equiv 0$ então F é tangente a $\partial \Omega$ em algum ponto.
- (c) Seja $u: \mathbb{R}^n \to \mathbb{R}$ de classe C^2 . Mostre que

$$\int_{\Omega} \Delta u dx = \int_{\partial \Omega} \frac{\partial u}{\partial n} dS,$$

onde $\Delta u = div(\nabla u) = \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i^2}$ e $\frac{\partial u}{\partial n}$ denota a derivada normal de u em $\partial \Omega$.

Questão 5. (1,5)

- (a) Seja $\omega = ydx + (z\cos(yz) + x)dy + y\cos(yz)dz$. Mostre que ω é uma forma fechada. Ela é exata?
- (b) Sejam ω_1 e ω_2 formas diferenciais de classe C^{∞} em uma variedade diferenciável M de classe C^{∞} . Mostre que $\omega_1 \wedge \omega_2$ é exata, se ω_1 é fechada e ω_2 é exata.

Exame de Qualificação - Topologia Geral - 29-07-2015

RA/Nome:

1. Mostre:

- (a) Todo subespaço compacto de um espaço de Hausdorff é fechado.
- (b) Um subespaço fechado de um espaço topológico compacto é compacto.
- 2. Seja $f: X \to Y$, com Y Hausdorff. Então f é contínua se, e somente se, o gráfico de f,

$$graf(f) = \{(x, f(x)); x \in X\},\$$

é fechado em $X \times Y$.

- 3. Considere a relação de equivalência \sim em $[0,2\pi] \times [0,2\pi]$ dada por $(x,y) \sim (x',y')$ se, e só se, (x-x' é múltiplo inteiro de 2π e y=y') ou (y-y' é múltiplo inteiro de 2π e x=x'). Seja $T=[0,2\pi]\times [0,2\pi]/\sim$ (com a topologia quociente). Descreva a aplicacação quociente e mostre que T é homeomorfo a $S^1\times S^1$.
- 4. Calcule o grupo fundamental de S^2 e \mathbb{RP}^2 .
- 5. (a) Dada uma aplicação contínua $f: X \to Y$ e uma aplicação de recobrimento $p: Z \to Y$, enuncie uma condição necessária e suficiente para a existência de uma aplicação $g: X \to Z$ tal que $p \circ g = f$.
 - (b) Prove que toda aplicação contínua $f:\mathbb{RP}^2\to S^1$ é homotópica a uma constante.