

ANSI/TIA/EIA-95-B-1999 Approved: February 3, 1999

TIA/EIA STANDARD

Mobile Station-Base Station Compatibility Standard for Wideband Spread Spectrum Cellular Systems

TIA/EIA-95-B

(Upgrade and Revision of TIA/EIA-95-A)

MARCH 1999

TELECOMMUNICATIONS INDUSTRY ASSOCIATION

Representing the telecommunications industry in association with the Electronic Industries Alliance

3GPP2 C.S0005-0 Version 1.0 Version Date: July 1999

Upper Layer (Layer 3) Signaling Standard for cdma2000 Spread Spectrum Systems

COPYRIGHT

3GPP2 and its Organizational Partners claim copyright in this document and individual Organizational Partners may copyright and issue documents or standards publications in individual Organizational Partner's name based on this document. Requests for reproduction of this document should be directed to the 3GPP2 Secretariat at shoyler@tia.eia.org. Requests to reproduce individual Organizational Partner's documents should be directed to that Organizational Partner. See www.3gpp2.org for more information.

PREFACE

- These technical requirements form a compatibility standard for 800 MHz cellular mobile telecommunications systems and 1.8 to 2.0 GHz Code Division Multiple Access (CDMA)
- Personal Communications Services (PCS) systems. They ensure that mobile stations
- manufactured in accordance with this standard can obtain service from a system
- 5 manufactured in accordance with this standard. These requirements do not address the
- 6 quality or reliability of that service, nor do they cover equipment performance or
- 7 measurement procedures.
- 8 To ensure compatibility (see Note 1), both radio-system parameters and call-processing
- procedures must be specified. The sequence of call-processing steps that the mobile
- stations and base stations execute to establish calls has been specified along with the
- digital control messages and analog signals that are exchanged between the two stations.
- The base station is subject to fewer compatibility requirements than the dual-mode mobile
- station. Radiated power levels, both desired and undesired, are fully specified for dual-
- 14 mode mobile stations to control the RF interference that one mobile station can cause
- another. Base stations are fixed in location and their interference is controlled by proper
- layout and operation of the system in which the station operates. Detailed call-processing
- procedures are specified for mobile stations to ensure a uniform response to all base
- stations. Base station call procedures are not specified in detail because they are a part of
- the overall design of the individual system. However, the base station call-processing
- 20 procedures must be compatible with those specified for the mobile station. This approach
- 21 to writing the compatibility specification provides the system designer with sufficient
- 22 flexibility to respond to local service needs and to account for local topography and
- 23 propagation conditions.
- 24 This specification includes provisions for future service additions and expansion of system
- 25 capabilities.
- 26 This standard is divided into multiple parts. This part details the Layer 3 call processing
- 27 and procedures.

1	1. GENERAL1-1
2	1.1 Terms and Numeric Information1-1
3	1.1.1 Terms1-1
4	1.1.2 Numeric Information1-21
5	1.1.2.1 Reserved
6	1.1.2.2 CDMA Numeric Information1-22
7	1.2 Signaling Architecture1-40
8	1.3 Signaling and Functionality
9	1.3.1 Control Plane and Data Plane1-40
10	1.3.2 Interface to Layer 21-41
11	1.3.2.1 Message Control and Status Block (MCSB)1-41
12	1.3.2.2 Interface Primitives
13	1.3.3 Resource Control - Layer 3 Signaling Control Interface Primitives1-43
14	1.3.4. Functional Description
15	1.3.5. PDU Transmission and Reception1-52
16	2. REQUIREMENTS FOR MOBILE STATION CDMA OPERATION2-1
17	2.1 Reserved2-1
18	2.2 Reserved2-1
19	2.3 Security and Identification2-1
20	2.3.1 Mobile Station Identification Number2-1
21	2.3.1.1 Encoding of IMSI_M_S and IMSI_T_S2-3
22	2.3.1.2 Encoding of IMSI_M_11_12 and IMSI_T_11_122-5
23	2.3.1.3 Encoding of the MCC_M and MCC_T2-5
24	2.3.1.4 Mobile Directory Number2-5
25	2.3.2 Electronic Serial Number2-6
26	2.3.3 Station Class Mark2-6
27	2.3.4 Registration Memory2-6
28	2.3.5 Access Overload Class2-7
29	2.3.6 Reserved
30	2.3.7 Reserved
31	2.3.8 Home System and Network Identification2-8

1	2.3.9 Local Control Option	2-9
2	2.3.10 Preferred Operation Selection	2-9
3	2.3.10.1 Preferred System	2-9
4	2.3.10.2 Preferred CDMA or Analog	2-9
5	2.3.11 Discontinuous Reception	2-9
6 7	2.3.12 Authentication, Encryption of Signaling Information/User Data and Privacy	Voice 2-9
8	2.3.12.1 Authentication	2-9
9	2.3.12.1.1 Shared Secret Data (SSD)	2-10
10	2.3.12.1.2 Random Challenge Memory (RAND)	2-10
11	2.3.12.1.3 Call History Parameter (COUNT _{s-p})	2-10
12	2.3.12.1.4 Unique Challenge-Response Procedure	2-10
13	2.3.12.1.5 Updating the Shared Secret Data (SSD)	2-11
14	2.3.12.2 Signaling Message Encryption	2-15
15	2.3.12.2.1 Encrypted Messages on the f-dsch	2-16
16	2.3.12.2.2 Encrypted Messages on the r-dsch	2-18
17	2.3.12.3 Voice Privacy	2-21
18	2.3.13 Lock and Maintenance Required Orders	2-21
19	2.3.14 Mobile Station Revision Identification	2-21
20	2.3.15 Temporary Mobile Station Identity	2-22
21	2.3.15.1 Overview	2-22
22	2.3.15.2 TMSI Assignment Memory	2-23
23	2.4 Monitored Quantities and Statistics	2-24
24	2.5 Reserved	2-25
25	2.6 Call Processing	2-27
26	2.6.1 Mobile Station Initialization State	2-29
27	2.6.1.1 System Determination Substate	2-31
28	2.6.1.1.1 Custom System Selection Process	2-36
29	2.6.1.1.2 System Selection Using Current Redirection Criteria	2-37
30	2.6.1.1.3 System Selection Using System Reselection Criteria	2-38
31	2.6.1.1.4 Acquiring the Selected System	2-39

1	2.6.1.2 Pilot Channel Acquisition Substate2-39
2	2.6.1.3 Sync Channel Acquisition Substate2-39
3	2.6.1.4 Timing Change Substate2-41
4	2.6.2 Mobile Station Idle State2-43
5	2.6.2.1 Idle Procedures2-44
6	2.6.2.1.1 Paging Channel Monitoring Procedures2-44
7	2.6.2.1.1.1 General Overview2-44
8	2.6.2.1.1.1.1 General Overview for Individually Addressed Messages2-45
9	2.6.2.1.1.1.2 General Overview for Broadcast Messages2-47
10	2.6.2.1.1.2.1 Method 1: Multi-Slot Broadcast Message Transmission2-47
11	2.6.2.1.1.1.2.2 Method 2: Periodic Broadcast Paging2-48
12	2.6.2.1.1.2 Non-Slotted Mode Requirements2-49
13	2.6.2.1.1.3 Slotted Mode Requirements2-49
14	2.6.2.1.1.3.1 Monitoring Assigned Slots2-49
15	2.6.2.1.1.3.2 Determination of the Slot Cycle Index2-51
16	2.6.2.1.1.3.3 Slot Cycles for Broadcast Paging2-51
17	2.6.2.1.1.3.4 Monitoring Paging Channel Broadcasts2-52
18	2.6.2.1.1.3.5 Support of Broadcast Delivery Options2-53
19	2.6.2.1.1.4 Paging Channel Supervision2-53
20	2.6.2.1.2 Quick Paging Channel Monitoring Procedures2-53
21	2.6.2.1.2.1 Overview2-53
22	2.6.2.1.2.2 Requirements2-56
23	2.6.2.1.3 Registration2-57
24	2.6.2.1.4 Idle Handoff2-57
25	2.6.2.1.4.1 Pilot Search2-57
26	2.6.2.1.4.2 Idle Handoff Procedures2-59
27	2.6.2.1.5 Reserved2-62
28	2.6.2.1.6 System Reselection Procedures2-62
29	2.6.2.1.7 Slotted Timer Expiration2-63
30	2.6.2.2 Response to Overhead Information Operation2-63
31	2.6.2.2.1 System Parameters Message2-66
20	2.6.2.2.1.1 Stored Parameters

1	2.6.2.2.1.2 Paging Channel Assignment Change2-69
2	2.6.2.2.1.3 RESCAN Parameter
3	2.6.2.2.1.4 Roaming Status2-70
4	2.6.2.2.1.5 Registration
5	2.6.2.2.1.6 Slot Cycle Index2-70
6	2.6.2.2.1.7 PACA Disable for SID Change2-70
7	2.6.2.2.2 Access Parameters Message2-70
8	2.6.2.2.3 Neighbor List Message2-71
9	2.6.2.2.4 CDMA Channel List Message2-73
10	2.6.2.2.5 Extended System Parameters Message2-74
11 , ,	2.6.2.2.6 Global Service Redirection Message2-77
12	2.6.2.2.7 Extended Neighbor List Message2-78
13	2.6.2.2.8 General Neighbor List Message2-80
14	2.6.2.2.9 User Zone Identification Message2-83
15	2.6.2.2.10 Private Neighbor List Message2-83
16	2.6.2.2.11 Extended Global Service Redirection Message2-84
17	2.6.2.2.12 Extended CDMA Channel List Message2-85
18	2.6.2.3 Mobile Station Page Match Operation2-86
19	2.6.2.4 Mobile Station Order and Message Processing Operation2-87
20	2.6.2.5 Mobile Station Origination Operation2-95
21	2.6.2.6 Mobile Station Message Transmission Operation2-95
22	2.6.2.7 Mobile Station Power-Down Operation2-95
23	2.6.2.8 Mobile Station PACA Cancel Operation2-95
24	2.6.2.9 Mobile Station Resource Control Primitives Response Operation2-96
25	2.6.3 System Access State2-97
26	2.6.3.1 Access Procedures2-98
27	2.6.3.1.1 Access Attempts2-98
28	2.6.3.1.2 Reserved2-98
29	2.6.3.1.3 Handoffs2-98
30	2.6.3.1.3.1 Pilot Search2-99
31	2.6.3.1.3.2 Access Handoff2-100

1	2.6.3.1.3.3 Access Probe Handoff2-101
2	2.6.3.1.4 System Access State Exit Procedures2-102
3	2.6.3.1.5 Reserved2-103
4	2.6.3.1.6 Full-TMSI Timer2-103
5	2.6.3.1.7 Monitoring Pilots2-103
6	2.6.3.1.7.1 Generation of the Initial Access Handoff List2-103
7 ·	2.6.3.1.7.2 Update of the Access Handoff List2-104
8	2.6.3.1.7.3 Generation of the Other Reported List2-104
9	2.6.3.1.7.4 Update of OTHER_REPORTED_LIST2-104
0	2.6.3.1.8 Paging Channel Monitoring2-105
1	2.6.3.2 Update Overhead Information Substate2-106
2	2.6.3.3 Page Response Substate2-109
3	2.6.3.4 Mobile Station Order/Message Response Substate2-127
4	2.6.3.5 Mobile Station Origination Attempt Substate2-130
5	2.6.3.6 Registration Access Substate2-151
6	2.6.3.7 Mobile Station Message Transmission Substate2-156
17	2.6.3.8 PACA Cancel Substate2-160
18	2.6.4 Mobile Station Control on the Traffic Channel State2-162
19	2.6.4.1 Special Functions and Actions2-165
20	2.6.4.1.1 Forward Traffic Channel Power Control2-165
21	2.6.4.1.1.1 Forward Traffic Channel Power Control Initialization2-168
22	2.6.4.1.1.2 Processing the Power Control Parameters Message2-168
23	2.6.4.1.1.3 Processing the Power Control Message2-169
24	2.6.4.1.2 Service Configuration and Negotiation2-171
25	2.6.4.1.2.1 Use of Variables2-176
26	2.6.4.1.2.1.1 Maintaining the Service Request Sequence Number2-176
27	2.6.4.1.2.1.2 Maintaining the Service Negotiation Indicator Variable2-176
28	2.6.4.1.2.1.3 Maintaining the Service Option Request Number2-176
29	2.6.4.1.2.2 Service Subfunctions2-176
30	2.6.4.1.2.2.1 Normal Service Subfunction2-179
31	2.6.4.1.2.2.2 Waiting for Service Request Message Subfunction2-181
32	2.6.4.1.2.2.3 Waiting for Service Response Message Subfunction2-183

1	2.6.4.1.2.2.4 Waiting for Service Connect Message Subfunction2-186
2	2.6.4.1.2.2.5 Waiting for Service Action Time Subfunction2-188
3	2.6.4.1.2.2.6 SO Negotiation Subfunction2-190
4	2.6.4.1.3 Ordering of Messages2-192
5	2.6.4.1.4 Processing the In-Traffic System Parameters Message2-193
6	2.6.4.1.5 Message Action Times2-194
7	2.6.4.1.6 Long Code Transition Request Processing2-194
8	2.6.4.1.7 Power Up Function (PUF)2-195
9	2.6.4.1.7.1 Processing the Power Up Function Message2-196
10	2.6.4.1.7.2 Power Up Function Procedures2-197
11	2.6.4.1.7.2.1 PUF Probe On Serving Frequency2-197
12	2.6.4.1.7.2.2 PUF Probe On PUF Target Frequency2-198
13	2.6.4.1.7.3 Processing the Power Up Function Completion Message2-199
14	2.6.4.1.8 Forward Traffic Channel Supervision2-200
15	2.6.4.1.9 Processing the Extended Release Message2-200
16 17	2.6.4.1.10 Processing the Resource Allocation Message and Resource Allocation Mini Message2-201
18	2.6.4.1.11 Processing the Extended Release Mini Message2-202
19	2.6.4.1.12 Processing the Resource Control Primitives2-202
20	2.6.4.1.13 Special Message Processing when Resource Control is Supported2-203
21 22	2.6.4.1.13.1 Sending Primitives to Resource Control upon Initial Establishment of Service Option Connection(s)2-205
23 24	2.6.4.1.13.2 Sending Primitives to Resource Control upon Addition or Release of Service Option Connection(s)2-207
25	2.6.4.1.14 Processing the Service Configuration Record2-208
26	2.6.4.1.15 Processing the Non-Negotiable Service Configuration Record2-210
27	2.6.4.2 Traffic Channel Initialization Substate2-213
28	2.6.4.3 Alerting2-220
29	2.6.4.3.1 Waiting for Order Substate2-220
30	2.6.4.3.2 Waiting for Mobile Station Answer Substate2-227
31	2.6.4.4 Conversation Substate2-234
32	2.6.4.5 Release Substate2-242

C.S0005-0 v1.0

1	2.6.5 Registration	2-248
2	2.6.5.1 Forms of Registration.	2-248
3	2.6.5.1.1 Power-Up Registration	2-249
4	2.6.5.1.2 Power-Down Registration	2-249
5	2.6.5.1.3 Timer-Based Registration	2-249
6	2.6.5.1.4 Distance-Based Registration	2-250
7	2.6.5.1.5 Zone-Based Registration	2-251
8	2.6.5.1.6 Parameter-Change Registration	2-253
9	2.6.5.1.7 Ordered Registration	2-253
10	2.6.5.1.8 Implicit Registration	
11	2.6.5.1.9 Traffic Channel Registration	
12	2.6.5.1.10 User Zone Registration	
13	2.6.5.2 Systems and Networks	2-254
14	2.6.5.3 Roaming	2-255
15	2.6.5.4 Registration Timers and Indicators	
16	2.6.5.5 Registration Procedures	
17	2.6.5.5.1 Actions in the Mobile Station Initialization State	
18 19	2.6.5.5.1.1 Power-Up or Change to a Different Operating Mode, Band (Serving System, or PCS Frequency Block	Class, 2-257
20	2.6.5.5.1.2 Timer Maintenance	
21	2.6.5.5.1.3 Entering the Mobile Station Idle State	
22	2.6.5.5.2 Actions in the Mobile Station Idle State	
23	2.6.5.5.2.1 Idle Registration Procedures	
24	2.6.5.5.2.2 Processing the Registration Fields of the System Parameter	
25	2.6.5.5.2.3 Ordered Registration	
26	2.6.5.5.2.4 Power Off	
27	2.6.5.5.2.5 Full-TMSI Timer Expiration	
28	2.6.5.5.3 Actions in the System Access State	
29	2.6.5.5.3:1 Successful Access, Registration, or Implicit Registration	
30	2.6.5.5.3.2 Unsuccessful Access	
31	2.6.5.5.3.3 Power Off	•
32	2.6.5.5.4 Actions in the Mobile Station Control on the Traffic Channel S	

1	2.6.5.5.4.1 Traffic Channel Initialization
2	2.6.5.5.4.2 Timer Maintenance
3	2.6.5.5.4.3 Processing the Mobile Station Registered Message2-264
4	2.6.5.5.4.4 Power Off
5	2.6.6 Handoff Procedures2-266
6	2.6.6.1 Overview2-266
7	2.6.6.1.1 Types of Handoff2-266
8 ·	2.6.6.1.2 Pilot Sets
9	2.6.6.2 Requirements2-267
10	2.6.6.2.1 Pilot Search2-267
11	2.6.6.2.2 Pilot Strength Measurements2-270
12	2.6.6.2.3 Handoff Drop Timer2-270
13	2.6.6.2.4 Pilot PN Phase2-272
14	2.6.6.2.5 Handoff Messages2-272
15	2.6.6.2.5.1 Processing of Forward Traffic Channel Handoff Messages2-272
16	2.6.6.2.5.1.1 Processing of the Forward Supplemental Burst Assignment2-318
17	2.6.6.2.5.1.2 Processing of the Reverse Supplemental Burst Assignment2-322
18	2.6.6.2.5.2 Processing of Reverse Traffic Channel Handoff Messages2-323
19	2.6.6.2.6 Set Maintenance2-327
20	2.6.6.2.6.1 Maintenance of the Active Set2-327
21	2.6.6.2.6.2 Maintenance of the Candidate Set2-327
22	2.6.6.2.6.3 Maintenance of the Neighbor Set2-328
23	2.6.6.2.7 Soft Handoff2-329
24	2.6.6.2.7.1 Forward Traffic Channel Processing2-329
25	2.6.6.2.7.2 Reverse Traffic Channel Power Control During Soft Handoff2-329
26	2.6.6.2.7.3 Starting Periodic Search following Soft Handoff2-330
27	2.6.6.2.8 CDMA-to-CDMA Hard Handoff2-330
28	2.6.6.2.8.1 Hard Handoff without Return on Failure2-330
29	2.6.6.2.8.2 Hard Handoff with Return on Failure2-331
30	2.6.6.2.8.2.1 Restoring the Configuration2-336
34	2.6.6.2.8.3 Search of Pilots on the CDMA Candidate Frequency2-339

1	2.6.6.2.8.3.1 CDMA Candidate Frequency Single Search	2-339
2 .	2.6.6.2.8.3.2 Candidate Frequency Periodic Search	2-340
3	2.6.6.2.8.3.3 Candidate Frequency Pilot Measurements	2-344
4	2.6.6.2.8.3.4 Aborting CDMA Candidate Frequency Periodic Searc	h2-346
5	2.6.6.2.9 CDMA-to-Analog Handoff	2-347
6	2.6.6.2.10 Search of Analog Frequencies	2-347
7 .	2.6.6.2.10.1 Analog Frequencies Single Search	
8	2.6.6.2.10.2 Analog Frequencies Periodic Search	2-348
9	2.6.6.2.10.3 Analog Frequency Measurements	2-351
10	2.6.6.2.10.4 Aborting Analog Frequencies Periodic Search	2-354
11	2.6.6.2.11 Processing of Reverse Supplemental Code Channels and Re	
12	Supplemental Channels	
13	2.6.6.2.12 Periodic Serving Frequency Pilot Report Procedure	2-354
14	2.6.6.3 Examples	2-356
15	2.6.7 Hash Functions and Randomization	2-361
16	2.6.7.1 Hash Function	•
17	2.6.7.2 Pseudorandom Number Generator	2-362
18	2.6.8 CODE_CHAN_LIST _s Maintenance	
19	2.6.9 CDMA Tiered Services	2-364
20	2.6.9.1 Overview	2-364
21	2.6.9.1.1 Definition	2-364
22	2.6.9.1.2 Types of User Zones	
23	2.6.9.2 Requirements	2-366
24	2.6.9.2.1 User Zone Operation in the Mobile Station Idle State:	2-366
25	2.6.9.2.2 User Zone Operation in the Mobile Station Control on the Tr	•
26	State	•
27	2.7 PDU Formats for Mobile Stations	2-369
28	2.7.1.1 Reserved	2-370
29	2.7.1.2 Reserved	
30	2.7.1.3 PDU Formats on r-csch	
31	2.7.1.3.1 Reserved	2-370
32	2.7.1.3.2 PDU Contents	2-370

1	2.7.1.3.2.1 Registration Message2-371
2	2.7.1.3.2.2 Order Message2-374
3.	2.7.1.3.2.3 Data Burst Message2-375
4	2.7.1.3.2.4 Origination Message2-377
5	2.7.1.3.2.5 Page Response Message2-386
6	2.7.1.3.2.6 Authentication Challenge Response Message2-391
7	2.7.1.3.2.7 Status Response Message2-392
8	2.7.1.3.2.8 TMSI Assignment Completion Message2-393
9	2.7.1.3.2.9 PACA Cancel Message2-394
0	2.7.1.3.2.10 Extended Status Response Message2-395
11	2.7.1.3.2.11 Service Release Response Message2-397
12	2.7.1.3.2.12 Peer-to-Peer Resource Control Message2-398
13	2.7.2 r-dsch2-399
14	2.7.2.1 Reserved2-399
15	2.7.2.2 Reserved2-399
16	2.7.2.3 PDU Formats for Messages on r-dsch2-399
17	2.7.2.3.1 Reserved2-400
18	2.7.2.3.2 Message Body Contents2-401
19	2.7.2.3.2.1 Order Message2-402
20	2.7.2.3.2.2 Authentication Challenge Response Message2-403
21	2.7.2.3.2.3 Flash With Information Message2-404
22	2.7.2.3.2.4 Data Burst Message2-405
23	2.7.2.3.2.5 Pilot Strength Measurement Message2-407
24	2.7.2.3.2.6 Power Measurement Report Message2-409
25	2.7.2.3.2.7 Send Burst DTMF Message2-413
26	2.7.2.3.2.8 Status Message2-415
27	2.7.2.3.2.9 Origination Continuation Message2-416
28	2.7.2.3.2.10 Handoff Completion Message2-418
29	2.7.2.3.2.11 Parameters Response Message
30 .	2.7.2.3.2.12 Service Request Message2-420
24	2 7 2 3 2 13 Service Response Message2-422

CONTENTS .

1	2.7.2.3.2.14 Service Connect Completion Message	2-424
2	2.7.2.3.2.15 Service Option Control Message	2-425
3	2.7.2.3.2.16 Status Response Message	2-426
4	2.7.2.3.2.17 TMSI Assignment Completion Message	
5	2.7.2.3.2.18 Supplemental Channel Request Message	2-428
Ġ	2.7.2.3.2.19 Candidate Frequency Search Response Message	2-432
7	2.7.2.3.2.20 Candidate Frequency Search Report Message	2-435
8	2.7.2.3.2.21 Periodic Pilot Strength Measurement Message	2-440
9	2.7.2.3.2.22 Outer Loop Report Message	2-442
10	2.7.2.3.2.23 Resource Request Message	2-444
11	2.7.2.3.2.24 Resource Request Mini Message	2-445
12	2.7.2.3.2.25 Extended Release Response Message	2-446
13	2.7.2.3.2.26 Extended Release Response Mini Message	2-447
14 .	2.7.2.3.2.27 Pilot Strength Measurement Mini Message	2-448
15	2.7.2.3.2.28 Supplemental Channel Request Mini Message	2-449
16	2.7.2.3.2.29 Peer-to-Peer Resource Control Message	2-450
17	2.7.2.3.2.30 Peer-to-Peer Resource Control Mini Message	2-451
18	2.7.3 Orders	2-452
19	2.7.3.1 Base Station Challenge Order	
20	2.7.3.2 Service Option Request Order	2-458
21	2.7.3.3 Service Option Response Order	2-459
22	2.7.3.4 Mobile Station Reject Order	2-460
23	2.7.4 Information Records	2-463
24	2.7.4.1 Feature Indicator	2-465
25	2.7.4.2 Keypad Facility	2-466
26	2.7.4.3 Called Party Number	2-467
27	2.7.4.4 Calling Party Number	2-468
28	2.7.4.5 Reserved	2-470
29	2.7.4.6 Call Mode	
30	2.7.4.7 Terminal Information	2-472
31	2.7.4.8 Roaming Information	2-474
	2.7.4.9 Security Status	2-476

1	2.7.4.10 Connected Number2-477
2	2.7.4.11 IMSI
3	2.7.4.12 ESN
4	2.7.4.13 Band Class Information
5	2.7.4.14 Power Class Information2-481
6	2.7.4.15 Operating Mode Information
7	2.7.4.16 Service Option Information2-484
8	2.7.4.17 Multiplex Option Information2-485
9	2.7.4.18 Service Configuration2-490
10	2.7.4.19 Called Party Subaddress2-499
11	2.7.4.20 Calling Party Subaddress2-501
12	2.7.4.21 Connected Subaddress2-502
13	2.7.4.22 Power Control Information2-503
14	2.7.4.23 IMSI_M2-504
15	2.7.4.24 IMSI_T2-505
16	2.7.4.25 Capability Information2-506
17	2.7.4.26 Extended Record Type - International2-510
18	2.7.4.27 Channel Configuration Capability Information2-511
19.	2.7.4.27.1 FCH Type-specific Fields2-513
20	2.7.4.27.2 DCCH Type-Specific Fields2-516
21	2.7.4.27.3 FOR_SCH Type-Specific Fields2-518
22	2.7.4.27.4 REV_SCH Type-Specific Fields2-521
23	2.7.4.28 Extended Multiplex Option Information2-524
24	2.7.4.29 User Zone Update Request2-531
25	3.1 Reserved
26	3.2 Reserved
27	3.3 Security and Identification3-1
28	3.3.1 Authentication3-1
29	3.3.2 Encryption
30	3.3.3 Voice Privacy
31	3.4 Supervision

1	3.4.1 Access Channel3-1
2	3.4.2 Reverse Traffic Channel
3	3.5 Reserved
4	3.6 Call Processing
5	3.6.1 Pilot and Sync Channel Processing
6	3.6.1.1 Preferred Set of CDMA Channels
7	3.6.1.2 Pilot Channel Operation3-2
8	3.6.1.3 Sync Channel Operation
9	3.6.2 Paging Channel and Quick Paging Channel Processing
10	3.6.2.1 Paging Channel Procedures
11	3.6.2.1.1 CDMA Channel Determination3-3
12	3.6.2.1.2 Paging Channel Determination
13	3.6.2.1.3 Paging Slot Determination
14	3.6.2.1.4 Message Transmission and Acknowledgment Procedures3-4
15	3.6.2.2 Overhead Information
16	3.6.2.3 Mobile Station Directed Messages3-6
17	3.6.2.4 Broadcast Messages3-8
18	3.6.2.4.1 Broadcast Procedures for Slotted Mode
19	3.6.2.4.1.1 General Overview
20	3.6.2.4.1.2 Requirements for Sending Broadcast Messages3-9
21	3.6.2.4.1.2.1 Broadcast Delivery Options3-9
22	3.6.2.4.1.2.1.1 Method 1: Multi-Slot Broadcast Message Transmission3-9
23	3.6.2.4.1.2.1.2 Method 2: Periodic Broadcast Paging3-9
24	3.6.2.4.1.2.2 Duplicate Broadcast Message Transmission3-10
25	3.6.2.4.1.2.3 Periodic Broadcast Paging3-10
26	3.6.2.4.1.2.4 Broadcast Message Slot Determination3-10
27	3.6.2.5 Quick Paging Channel Processing3-11
28	3.6.2.5.1 Quick Paging Channel Determination3-11
29	3.6.2.5.2 Quick Paging Channel Slot Determination3-11
30	3.6.2.5.3 Paging Indicator Position Determination3-12
31	3.6.2.5.4 Configuration Change Indicator Position Determination3-12
	3.6.2.5.5. Passaryad Indicator Positions 3-12

1	3.6.2.6 Resource Control Primitives Processing3-13
2	3.6.3 Access Channel Processing3-14
3	3.6.3.1 Reserved
4	3.6.3.2 Reserved
5	3.6.3.3 Response to Page Response Message3-14
6	3.6.3.4 Response to Orders3-15
7	3.6.3.5 Response to Origination Message3-15
8	3.6.3.6 Response to Registration Message3-16
9	3.6.3.7 Response to Data Burst Message3-16
10	3.6.3.8 Response to Service Release Response Message3-16
11	3.6.3.9 Response to Peer-to-Peer Resource Control Message3-16
12	3.6.3.10 Service Redirection3-16
13	3.6.4 Traffic Channel Processing3-17
14	3.6.4.1 Special Functions and Actions3-17
15	3.6.4.1.1 Forward Traffic Channel Power Control3-17
16	3.6.4.1.2 Service Configuration and Negotiation
17	3.6.4.1.2.1 Use of Variables
18	3.6.4.1.2.1.1 Maintaining the Service Request Sequence Number3-23
19	3.6.4.1.2.1.2 Maintaining the Service Connect Sequence Number3-23
20	3.6.4.1.2.1.3 Assigning Service Option Connection References3-23
21	3.6.4.1.2.1.4 Maintaining the Service Negotiation Indicator Variable3-23
22	3.6.4.1.2.1.5 Maintaining the Service Option Request Number3-23
23	3.6.4.1.2.2 Service Subfunctions
24	3.6.4.1.2.2.1 Normal Service Subfunction3-26
25	3.6.4.1.2.2.2 Waiting for Service Request Message Subfunction3-27
26	3.6.4.1.2.2.3 Waiting for Service Response Message Subfunction3-29
27	3.6.4.1.2.2.4 Waiting for Service Action Time Subfunction3-31
28	3.6.4.1.2.2.5 Waiting for Service Connect Completion Message Subfunction 3-32
29	3.6.4.1.2.2.6 SO Negotiation Subfunction3-33
30	3.6.4.1.3 Ordering of Messages
	3 6 4 1 4 Massage Action Times 3-35

1	3.6.4.1.5 Long Code Transition Request Processing3-36
2	3.6.4.1.6 Processing Resource Request Messages3-36
3	3.6.4.1.7 Reserved
4	3.6.4.1.8 Processing the Resource Control Primitives3-37
5	3.6.4.1.9 Additional Operations when Resource Control is Supported3-40
6 7	3.6.4.1.9.1 Sending Primitives to Resource Control upon Initial Establishment of Service Option Connection(s)
8 9	3.6.4.1.9.2 Sending Primitives to Resource Control upon Addition or Release of Service Option Connection(s)
0	3.6.4.2 Traffic Channel Initialization Substate3-44
1	3.6.4.3 Alerting3-45
2	3.6.4.3.1 Waiting for Order Substate3-45
3	3.6.4.3.2 Waiting for Answer Substate3-50
4	3.6.4.4 Conversation Substate3-55
15	3.6.4.5 Release Substate3-61
16	3.6.5 Registration
17 .	3.6.5.1 Registration on the Paging and Access Channels3-66
18	3.6.5.2 Registration on the Traffic Channels
19	3.6.6 Handoff Procedures3-66
20	3.6.6.1 Overview
21	3.6.6.1.1 Types of Handoff
22	3.6.6.1.2 Active Set
23	3.6.6.2 Requirements3-67
24	3.6.6.2.1 Overhead Information
25	3.6.6.2.1.1 System Parameters
26	3.6.6.2.1.2 Neighbor List
27	3.6.6.2.1.3 Candidate Frequency Neighbor List
28	3.6.6.2.1.4 Candidate Frequency Search List
29 -	3.6.6.2.2 Call Processing During Handoff3-69
30	3.6.6.2.2.1 Processing the Pilot Strength Measurement Message3-69
31	3.6.6.2.2.2 Processing the Extended Handoff Direction Message3-69
32	3.6.6.2.2.3 Processing the Candidate Frequency Search Request Message3-71

1	3.6.6.2.2.4 Processing the Candidate Frequency Search Response Message3-71
2	3.6.6.2.2.5 Processing the Candidate Frequency Search Control Message3-71
3	3.6.6.2.2.6 Processing the Candidate Frequency Search Report Message3-71
4	3.6.6.2.2.7 Transmitting During Handoff3-72
5	3.6.6.2.2.8 Ordering Pilot Measurements From the Mobile Station3-72
6	3.6.6.2.2.9 Processing the Supplemental Channel Assignment Message3-72
7 .	3.6.6.2.2.10 Processing the General Handoff Direction Message3-75
8	3.6.6.2.2.11 Processing the Universal Handoff Direction Message3-80
9	3.6.6.2.2.12 Processing of Extended Supplemental Channel Assignment Message3-83
0	3.6.6.2.2.13 Processing of Forward Supplemental Channel Assignment Mini Message3-85
3	3.6.6.2.2.14 Processing of Reverse Supplemental Channel Assignment Mini Message
14	3.6.6.2.2.15 Processing of the Mobile Assisted Burst Operation Parameters Message
16	3.6.6.2.3 Active Set Maintenance3-88
17	3.6.6.2.4 Soft Handoff
18	3.6.6.2.4.1 Receiving During Soft Handoff3-88
19	3.6.6.2.4.2 Transmitting During Soft Handoff3-88
20	3.6.7 CDMA Tiered Services3-89
21	3.6.7.1 Overview3-89
22	3.6.7.1.1 Definition3-89
23	3.6.7.1.2 Types of User Zones3-89
24	3.6.7.2 Requirements3-89
25	3.6.7.2.1 User Zone Identification Message3-90
26	3.6.7.2.2 Private Neighbor List Message3-90
27	3.6.7.2.3 Flash With Information Message3-90
28	3.6.7.2.4 Feature Notification Message3-90
29	3.7 PDU Formats for Messages3-91
30	3.7.1 Reserved3-91
31	3.7.2 f-csch3-91
32	3 7 2 1 Reserved3-91

1	3.7.2.2 Reserved
2	3.7.2.3 PDU Formats for Messages on the f-csch
з.	3.7.2.3.1 Reserved
4	3.7.2.3.2 Message Body Contents
5	3.7.2.3.2.1 System Parameters Message3-94
6	3.7.2.3.2.2 Access Parameters Message3-102
7	3.7.2.3.2.3 Neighbor List Message
8	3.7.2.3.2.4 CDMA Channel List Message
9	3.7.2.3.2.5 Reserved
10	3.7.2.3.2.6 Reserved
11	3.7.2.3.2.7 Order Message
12	3.7.2.3.2.8 Channel Assignment Message
13	3.7.2.3.2.9 Data Burst Message
14	3.7.2.3.2.10 Authentication Challenge Message
15	3.7.2.3.2.11 SSD Update Message
16	3.7.2.3.2.12 Feature Notification Message
17	3.7.2.3.2.13 Extended System Parameters Message3-129
18	3.7.2.3.2.14 Extended Neighbor List Message
19	3.7.2.3.2.15 Status Request Message3-14
20	3.7.2.3.2.16 Service Redirection Message
21	3.7.2.3.2.17 General Page Message3-15
22	3.7.2.3.2.18 Global Service Redirection Message3-15
23	3.7.2.3.2.19 TMSI Assignment Message3-15
24	3.7.2.3.2.20 PACA Message3-16
25	3.7.2.3.2.21 Extended Channel Assignment Message3-16
26	3.7.2.3.2.22 General Neighbor List Message
27	3.7.2.3.2.23 User Zone Identification Message3-19
28	3.7.2.3.2.24 Private Neighbor List Message3-19
29	3.7.2.3.2.25 Service Release Message3-20
30	3.7.2.3.2.26 Sync Channel Message
31	3.7.2.3.2.27 Extended Global Service Redirection Message3-20
32	3.7.2.3.2.28 Extended CDMA Channel List Message3-21

1	3.7.3 f-dsch	3-212
2	3.7.3.1 Reserved	
3	3.7.3.2 Reserved	3-212
4	3.7.3.3 PDU Formats on the f-dsch	3-213
5	3.7.3.3.1 Reserved	3-214
6	3.7.3.3.2 Message Body Contents	3-214
7	3.7.3.3.2.1 Order Message	3-215
8	3.7.3.3.2.2 Authentication Challenge Message	3-216
9	3.7.3.3.2.3 Alert With Information Message	3-217
10	3.7.3.3.2.4 Data Burst Message	3-218
11	3.7.3.3.2.5 Reserved	3-220
12	3.7.3.3.2.6 Analog Handoff Direction Message	3-221
13	3.7.3.3.2.7 In-Traffic System Parameters Message	3-223
14	3.7.3.3.2.8 Neighbor List Update Message	3-227
15	3.7.3.3.2.9 Send Burst DTMF Message	3-228
16	3.7.3.3.2.10 Power Control Parameters Message	3-229
17	3.7.3.3.2.11 Retrieve Parameters Message	3-231
18	3.7.3.3.2.12 Set Parameters Message	3-232
19	3.7.3.3.2.13 SSD Update Message	3-233
20	3.7.3.3.2.14 Flash With Information Message	3-234
21	3.7.3.3.2.15 Mobile Station Registered Message	3-235
22	3.7.3.3.2.16 Status Request Message	3-237
23	3.7.3.3.2.17 Extended Handoff Direction Message	3-239
24	3.7.3.3.2.18 Service Request Message	3-246
25	3.7.3.3.2.19 Service Response Message	3-248
26	3.7.3.3.2.20 Service Connect Message	3-250
27	3.7.3.3.2.21 Service Option Control Message	3-253
28	3.7.3.3.2.22 TMSI Assignment Message	3-254
29	3.7.3.3.2.23 Service Redirection Message	3-255
30	3.7.3.3.2.24 Supplemental Channel Assignment Message	3-258
31	3.7.3.3.2.25 Power Control Message	3-267

1	3.7.3.3.2.26 Extended Neighbor List Update Message3-289
2	3.7.3.3.2.27 Candidate Frequency Search Request Message3-295
3	3.7.3.3.2.28 Candidate Frequency Search Control Message3-306
4	3.7.3.3.2.29 Power Up Function Message
5	3.7.3.3.2.30 Power Up Function Completion Message3-309
6	3.7.3.3.2.31 General Handoff Direction Message3-311
7	3.7.3.3.2.32 Resource Allocation Message
8	3.7.3.3.2.33 Resource Allocation Mini Message3-331
9	3.7.3.3.2.34 Extended Release Message3-332
10	3.7.3.3.2.35 Extended Release Mini Message
11	3.7.3.3.2.36 Universal Handoff Direction Message3-336
12	3.7.3.3.2.37 Extended Supplemental Channel Assignment Message3-365
13	3.7.3.3.2.38 Forward Supplemental Channel Assignment Mini Message3-378
14	3.7.3.3.2.39 Reverse Supplemental Channel Assignment Mini Message3-380
15	3.7.3.3.2.40 Mobile Assisted Burst Operation Parameters Message3-382
16	3.7.4 Orders
17	3.7.4.1 Base Station Challenge Confirmation Order
18	3.7.4.2 Service Option Request Order
19	3.7.4.3 Service Option Response Order
20	3.7.4.4 Status Request Order
21	3.7.4.5 Registration Accepted Order
22	3.7.4.6 Periodic Pilot Measurement Request Order
23	3.7.5 Information Records
24	3.7.5.1 Display3-400
25	3.7.5.2 Called Party Number3-401
26	3.7.5.3 Calling Party Number3-402
27	3.7.5.4 Connected Number3-404
28	3.7.5.5 Signal3-406
29	3.7.5.6 Message Waiting3-411
30 .	3.7.5.7 Service Configuration3-412
31	3.7.5.7.1 Channel Configuration for the Supplemental Channel Type-specific Field3-422
30	3 7 5 8 Called Party Subadddress3-424

1	3.7.5.9 Calling Party Subadddress	3-425
2	3.7.5.10 Connected Subadddress	3-426
3	3.7.5.11 Redirecting Number	3-427
4	3.7.5.12 Redirecting Subadddress	3-430
5	3.7.5.13 Meter Pulses	3-431
6`	3.7.5.14 Parametric Alerting	3-432
, . 7	3.7.5.15 Line Control	3-434
8	3.7.5.16 Extended Display	3-435
9	3.7.5.17 Extended Record Type - International	3-438
10	3.7.5.18 User Zone Update	3-439
11	3.7.5.19 User Zone Reject	3-440
12	3.7.5.20 Non negotiable System Configuration	3-442
13	F.1 Introduction	F-1
14	F.2 Mobile Station Indicators	F-2
15	F.2.1 Permanent Mobile Station Indicators	F-2
16	F.2.2 Semi-permanent Mobile Station Indicators	F-3
17	F.3 NAM Indicators	

1	Figure 1.3.1-1. IS-2000 Signaling – General Architecture1-4	1
2	Figure 2.3.1-1. IMSI Structure2-	1
3	Figure 2.3.1-2. IMSI_S Binary Mapping2-	2
4	Figure 2.3.12.1.1-1. Partitioning of SSD2-1	0
5	Figure 2.3.12.1.5-1. SSD Update Message Flow2-1	3
6	Figure 2.3.12.1.5-2. Computation of Shared Secret Data (SSD)2-1	4
7	Figure 2.3.12.1.5-3. Computation of AUTHBS2-1	4
8	Figure 2.3.15-1. TMSI Zone Example	3
9	Figure 2.6-1. Mobile Station Call Processing States2-2	8
10	Figure 2.6.1-1. Mobile Station Initialization State2-3	O
11	Figure 2.6.1.4-1. Mobile Station Internal Timing2-4	2
12	Figure 2.6.2.1.1.1-1. Mobile Station Idle Slotted Mode Structure Example2-4	6
13	Figure 2.6.2.1.1.1.2.1-1. Multi-Slot Broadcast Message Transmission Example2-4	8
14	Figure 2.6.2.1.1.1.2.2-1. Periodic Broadcast Paging Example2-4	9
15	Figure 2.6.2.1.2.1-1. Quick Paging Channel Timeline2-5	5
16	Figure 2.6.3-1. System Access State2-9	18
17	Figure 2.6.4-1. Mobile Station Control on the Traffic Channel State2-16	i 4
18	Figure 2.6.4.1.2.2-1. Mobile Station Service Subfunctions2-17	'8
19	Figure 2.6.4.1.7-1. Structure of PUF Attempt2-19)6
20	Figure 2.6.5.2-1. Systems and Networks Example	5
21 22	Figure 2.6.6.2.5.1.1-1. New Supplemental Channel Assignment Received while a Previous Supplemental Channel Assignment is in Progress2-32	
23 24	Figure 2.6.6.2.5.1.1-2. New Supplemental Channel Assignment Received before a Previous Supplemental Channel Assignment starts2-32	20
25 26	Figure 2.6.6.3-1. Handoff Threshold Example if P_REV_IN_USE _S is Less Than or Equal to Three, or SOFT_SLOPE _S is Equal to '000000'2-35	
27 28	Figure 2.6.6.3-2. Handoff Threshold Example if P_REV_IN_USE _s is Greater Than Three, and SOFT_SLOPE _s is Not Equal to '000000'2-35	58
29 30	Figure 2.6.6.3-3. Pilot Strength Measurements Triggered by a Candidate Pilot if P_REV_IN_USE _s = 3 or SOFT_SLOPE _s = '000000'2-35	59
31 32	Figure 2.6.6.3-4. Pilot Strength Measurements Triggered by a Candidate Pilot if P_REV_IN_USE _s > 3 and SOFT_SLOPE _s is Not Equal to 0000000'2-36	3C
33	Figure B-1A. Simple Call Flow, Mobile Station Origination Example Using Service Option	ŀ

1	Negotiation with Service Option 1B-1
2 3	Figure B-1B. Simple Call Flow, Mobile Station Origination Example Using Service Negotiation with Service Option 1
4 5	Figure B-2A. Simple Call Flow, Mobile Station Termination Example Using Service Option Negotiation with Service Option 1
6 7	Figure B-2B. Simple Call Flow, Mobile Station Termination Example Using Service Negotiation with Service Option 1
8	Figure B-3. Simple Call Flow, Mobile Station Initiated Call Disconnect Example B-5
9	Figure B-4. Simple Call Flow, Base Station Initiated Call Disconnect Example B-5
10	Figure B-5. Simple Call Flow, Three-Party Calling Example
11	Figure B-6. Simple Call Flow, Call-Waiting Example
12	Figure B-7. Call Processing During Soft Handoff
13	Figure B-8. Call Processing During Sequential Soft Handoff (Part 1 of 2)B-9
14	Figure B-8. Call Processing During Sequential Soft Handoff (Part 2 of 2) B-10
15	Figure B-9. PACA Call Processing (Part 1 of 2)B-11
16	Figure B-9. PACA Call Processing (Part 2 of 2)B-12
17	Figure B-10. Call Flow for Same Frequency Hard Handoff Failure Recovery
18	Figure B-11. Call Flow for Inter-Frequency Hard Handoff Failure Recovery without SearchB-1
19 20	Figure B-12. Call Flow for Inter-Frequency Handoff (Single Search Using Candidate Frequency Search Control Message) (Part 1 of 2)
21 22	Figure B-12. Call Flow for Inter-Frequency Handoff (Single Search Using Candidate Frequency Search Control Message) (Part 2 of 2)B-16
23 24	Figure B-13. Call Flow for Inter-Frequency Handoff (Periodic Search Using Candidate Frequency Search Control Message) (Part 1 of 3)B-17
25 26	Figure B-13. Call Flow for Inter-Frequency Handoff (Periodic Search Using Candidate Frequency Search Control Message) (Part 2 of 3)B-18
27 28	Figure B-13. Call Flow for Inter-Frequency Handoff (Periodic Search Using Candidate Frequency Search Control Message) (Part 3 of 3)B-19
29 30	Figure B-14. Call Flow for Inter-Frequency Handoff (Single Search Using General Handoff Direction Message) (Part 1 of 3)
31 32	Figure B-14. Call Flow for Inter-Frequency Handoff (Single Search Using General Handoff Direction Message) (Part 2 of 3)
33 34	Figure B-14. Call Flow for Inter-Frequency Handoff (Single Search Using General Handoff Direction Message) (Part 3 of 3)

1 2	Figure B-15.	Call Flow for Inter-Frequency Handoff (Periodic Search Using General Handoff Direction Message) (Part 1 of 4)
3	Figure B-15.	Call Flow for Inter-Frequency Handoff (Periodic Search Using General Handoff Direction Message) (Part 2 of 4)
5 6	Figure B-15.	Call Flow for Inter-Frequency Handoff (Periodic Search Using General Handoff Direction Message) (Part 3 of 4)
7 8	Figure B-15.	Call Flow for Inter-Frequency Handoff (Periodic Search Using General Handoff Direction Message) (Part 4 of 4)
9 10	Figure B-16.	Call Flow for Periodic Search on F2 from F1, Failed Handoff Attempt to F3, Continued Periodic Search of F2 from F1 (Part 1 of 3)
11 12	Figure B-16.	Call Flow for Periodic Search on F2 from F1, Failed Handoff Attempt to F3, Continued Periodic Search of F2 from F1 (Part 2 of 3)
13 14	Figure B-16.	Call Flow for Periodic Search on F2 from F1, Failed Handoff Attempt to F3, Continued Periodic Search of F2 from F1 (Part 3 of 3)
15 16	Figure B-17.	Call Flow for Periodic Search on F2 from F1, Successful Handoff to F3, Continued Periodic Search on F2 from F3 (Part 1 of 2)
17 18	Figure B-17.	Call Flow for Periodic Search on F2 from F1, Successful Handoff to F3, Continued Periodic Search on F2 from F3 (Part 2 of 2)
19 20	Figure B-18.	Simple Call Flow Mobile Station Origination Example with Transmission on Forward Supplemental Code Channels (Part 1 of 2)
21 22	Figure B-18.	Simple Call Flow Mobile Station Origination Example with Transmission on Forward Supplemental Code Channels (Part 2 of 2)
23 24	Figure B-19.	Simple Call Flow Mobile Station Origination Example with Transmission on Reverse Supplemental Code Channels (Part 1 of 2)
25 26	Figure B-19.	Simple Call Flow Mobile Station Origination Example with Transmission on Reverse Supplemental Code Channels (Part 2 of 2)
27 28	Figure B-20.	Simple Call Flow, Mobile Station Termination Example with Transmission on Forward Supplemental Code Channel(s) (Part 1 of 3) B-36
29 30	Figure B-20.	Simple Call Flow, Mobile Station Termination Example with Transmission on Forward Supplemental Code Channel(s) (Part 2 of 3) B-37
31 32	Figure B-20.	Simple Call Flow, Mobile Station Termination Example with Transmission on Forward Supplemental Code Channel(s) (Part 3 of 3) B-38
33 34	Figure B-21.	Simple Call Flow, Mobile Station Termination Example with Transmission on Reverse Supplemental Code Channel(s) (Part 1 of 3) B-39
35 36	Figure B-21.	Simple Call Flow, Mobile Station Termination Example with Transmission on Reverse Supplemental Code Channel(s) (Part 2 of 3)

1 2	Figure B-21.	Simple Call Flow, Mobile Station Termination Example with Transmission on Reverse Supplemental Code Channel(s) (Part 3 of 3)
3	Figure B-22.	Dormant/Null to Active State Transition (MS Initiated)
4	Figure B-23.	Dormant/Null to Active State Transition (BS Initiated)
5	Figure B-24.	Suspended to Active State Transition (MS Initiated)
6	Figure B-25.	Suspended to Active State Transition (BS Initiated) B-45
7	Figure B-26.	Connecting an Additional Service Option (MS Initiated)B-46
8	Figure B-27.	Connecting an Additional Service Option (BS Initiated) B-47
9	Figure B-28.	Releasing a Service Option that is not the last one connected (BS Initiated) B-48 $$
10	Figure B-29.	Active/Control Hold to Suspended State Transition (BS Initiated)B-49
11	Figure B-30.	Active/Control Hold to Dormant/Null State Transition (BS Initiated) B-50
12	Figure B-31.	Suspended to Dormant/Null State Transition (BS Initiated) B-51
13	Figure B-32.	Active to Control Hold State Transition (BS Initiated) B-52
14	Figure B-33.	Control Hold to Active State Transition (MS Initiated)
15	Figure B-34.	Control Hold to Active State Transition (BS Initiated) B-54
16 17 18	Figure B-35.	MS Requested Downward State Transition (includes Active to Control Hold, Active/Control to Suspended, Active/Control Hold to Dormant/Null, and Suspended to Dormant/Null)
19	Figure B-36.	Replacement of Service Option Connection due to Handoff
20 21 22	Figure B-37.	Error Scenario - Dormant/Null to Active or Suspended to Active State Transition (MS initiated or BS initiated) but peer Resource Control not in sync
23 24	Figure B-38.	Error Scenario - Suspended to Dormant/Null State Transition (BS initiated) but MS not in sync

xxv

1	Table 1.3.3-1. Primitives sent to the Layer 3 Signaling Control by the Resource Control	1-49
2	Table 1.3.3-2. Primitives sent to the Resource Control by the Layer 3 Signaling Control	1-50
3	Table 1.3.3-3. Additional primitives exchanged between the Resource Control and the Layer 3 Signaling Control	-51
5	Table 2.3.1.1-1. Decimal to Binary Conversion Table	2-3
6	Table 2.3.1.1-2. BCD Mapping	2-4
7	Table 2.3.3-1. Station Class Mark	2-6
8	Table 2.3.5-1. ACCOLC _p Mapping for ACCOLC 0 through ACCOLC 9	2-8
9	Table 2.3.5-2. ACCOLC _p Mapping for ACCOLC 10 through ACCOLC 15	2-8
10	Table 2.3.12.1-1. Auth_Signature Input Parameters2	:-10
11	Table 2.4-1. Monitored Quantities and Statistics	:-24
12	Table 2.6.6.2.1-1. Searcher Window Sizes	268
13	Table 2.6.6.2.1-2. Search Window Offset2-	268
14	Table 2.6.6.2.3-1. Handoff Drop Timer Expiration Values2-	271
15	Table 2.6.6.2.5.1-1. Search Parameter Settings2-	280
16	Table 2.6.6.2.8.3.2-1. Search Period Values	342
17	Table 2.6.7.1-1. Hash Function Modifier2-	362
18	Table 2.7.1.3-1. Messages on r-csch	370
19 .	Table 2.7.1.3.2.1-1. Registration Type (REG_TYPE) Codes2-	371
20	Table 2.7.1.3.2.1-2. RETURN_CAUSE Codes2-	372
21	Table 2.7.1.3.2.4-1 REQUEST_MODE Codes	379
22	Table 2.7.1.3.2.4-2. Number Types2-	380
23	Table 2.7.1.3.2.4-3. Numbering Plan Identification2-	380
24	Table 2.7.1.3.2.4-4. Representation of DTMF Digits2-	381
25	Table 2.7.1.3.2.4-5. Encryption Algorithms Supported2-	382
26	Table 2.7.1.3.2.4-6. Channel Indicator2-	383
27	Table 2.7.1.3.2.5-1. Channel indicator2-	389
28	Table 2.7.2.3-1. Messages on r-dsch2-	400
29 -	Table 2.7.2.3.2.7-1. Recommended DTMF Pulse Width2-	413
30	Table 2.7.2.3.2.7-2. Recommended Minimum Inter-digit Interval2-	414
31	Table 2.7.2.3.2.12-1. REO PURPOSE Codes	420

1	Table 2.7.2.3.2.13-1. RESP_PURPOSE Codes2-422
2	Table 2.7.2.3.2.18-1. Channel Indicator2-431
3	Table 2.7.3-1. Order and Order Qualification Codes Used on the r-dsch and the r-csch (Part 1 of 4)2-453
5 6	Table 2.7.3-1. Order and Order Qualification Codes Used on the r-dsch and the r-csch (Part 2 of 4)2-454
7 8	Table 2.7.3-1. Order and Order Qualification Codes Used on the r-dsch and the r-csch (Part 3 of 4)2-455
9 10	Table 2.7.3-1. Order and Order Qualification Codes Used on the r-dsch and the r-csch (Part 4 of 4)2-456
11	Table 2.7.3.5-1. REJECTED_PDU_TYPE codes2-462
12	Table 2.7.4-1. Information Record Types (Part 1 of 2)2-463
13	Table 2.7.4-1. Information Record Types (Part 2 of 2)2-464
14	Table 2.7.4.1-1. Feature Identifiers2-465
15	Table 2.7.4.4-1. Presentation Indicators
16	Table 2.7.4.4-2. Screening Indicators
17	Table 2.7.4.15-1. OP_MODE for P_REV_IN_USE _S Less Than or Equal to Three2-482
18	Table 2.7.4.15-2. OP_MODE for P_REV_IN_USE _S Greater Than Three2-483
19	Table 2.7.4.17-1. Forward Fundamental Traffic Channel Transmission Rates for Rate Set 12-487
20	Table 2.7.4.17-2. Forward Fundamental Traffic Channel Transmission Rates for Rate Set 22-487
21	Table 2.7.4.17-3. Reverse Fundamental Traffic Channel Transmission Rates for Rate Set 12-488
22	Table 2.7.4.17-4. Reverse Fundamental Traffic Channel Transmission Rates for Rate Set 22-489
23	Table 2.7.4.18-1. FOR_TRAFFIC Codes2-493
24	Table 2.7.4.18-2. REV_TRAFFIC Codes2-494
25	Table 2.7.4.19-1. Subaddress Types2-499
26	Table 2.7.4.19-2. Odd/Even Indicator2-500
27	Table 2.7.4.25-1. Set of supported Reverse Pilot Gating Rates2-508
28	Table 2.7.4.27.1-1. Forward Channel Radio Configurations Supported2-514
29	Table 2.7.4.27.1-2. Reverse Channel Radio Configurations Supported2-515
30	Table 2.7.4.27.2-1. DCCH Frame Size Supported2-516
31	Table 2.7.4.27.3-1. Block Size2-519
22	Table 2.7.4.28-1 Forward Fundamental Channel Transmission Rates for Rate Set 1.2-526

1	Table 2.7.4.28-2. Forward Fundamental Channel Transmission Rates for Rate Set 2.2-527
2	Table 2.7.4.28-3. Reverse Fundamental Channel Transmission Rates for Rate Set 12-528
3	Table 2.7.4.28-4. Reverse Fundamental Channel Transmission Rates for Rate Set 22-528
4	Table 3.7.2.3-1. f_csch Messages3-92
5	Table 3.7.2.3.2.1-1. Value of Zone Timer
6	Table 3.7.2.3.2.1-2. Base Station Classes
7	Table 3.7.2.3.2.3-1. Neighbor Configuration Field
8	Table 3.7.2.3.2.8-1. Assignment Mode
9	Table 3.7.2.3.2.8-2. Message Encryption Modes
10	Table 3.7.2.3.2.8-3. Default Configuration
11	Table 3.7.2.3.2.13-1 Preferred MSID Types
12	Table 3.7.2.3.2.13-2. QPCH Indicator Data Rate3-137
13	Table 3.7.2.3.2.13-3 Quick Paging Channel Transmit Power Level3-137
14	Table 3.7.2.3.2.14-1. Neighbor Configuration Field3-140
15	Table 3.7.2.3.2.14-2. Search Priority Field
16	Table 3.7.2.3.2.15-1. Qualification Information Type
17	Table 3.7.2.3.2.15-2. Status Information Record Types3-143
18	Table 3.7.2.3.2.15-3. Operating Mode for MOB_P_REV Less Than or Equal to Three3-145
19	Table 3.7.2.3.2.15-4. Operating Mode for MOB_P_REV Greater Than Three3-145
 20	Table 3.7.2.3.2.16-1. Redirection Types
21	Table 3.7.2.3.2.16-2. Redirection Record Types
22	Table 3.7.2.3.2.16-3. SYS_ORDERING
23	Table 3.7.2.3.2.20-1. Purpose of PACA Message3-160
24	Table 3.7.2.3.2.20-2. Value of PACA State Timer
25	Table 3.7.2.3.2.21-1. Assignment Mode
26	Table 3.7.2.3.2.21-2. Default Configuration3-169
27	Table 3.7.2.3.2.21-3. Radio Configurations
28	Table 3.7.2.3.2.21-4. Channel Indicator
29	Table 3.7.2.3.2.21-5. Pilot Record Types
30	Table 3.7.2.3.2.21-6. OTD Transmit Power Level
24	Table 3 7 2 3 2 22-1. Search Mode Field

1	Table 3.7.2.3.2.22-2. Neighbor Configuration Field3-192
2	Table 3.7.2.3.2.22-3. Search Priority Field3-193
3	Table 3.7.2.3.2.22-4. Cellular System A/B
4	Table 3.7.2.3.2.22-5. Neighbor Pilot Record Types3-196
5	Table 3.7.2.3.2.26-1. Paging Channel Data Rate
6	Table 3.7.3.3-1. f-dsch Messages (Part 1 of 2)
7	Table 3.7.3.3-1. f-dsch Messages (Part 2 of 2)
8	Table 3.7.3.3.2.6-1. Analog Channel Type
9	Table 3.7.3.3.2.17-1. Dedicated Traffic Channel Preamble Length3-244
10	Table 3.7.3.3.2.18-1. REQ_PURPOSE Codes
11	Table 3.7.3.3.2.19-1. RESP_PURPOSE Codes
12	Table 3.7.3.3.2.25-1. Closed Loop Power Control Step Size
13	Table 3.7.3.3.2.25-2. Target Frame Error Rate
14	Table 3.7.3.3.2.25-3. RPC_ADJ_REC_TYPE and RPC_ADJ_REC_LEN fields3-274
15	Table 3.7.2.3.2.25-4. Type Specific Fields for RECORD_TYPE = '0000'3-275
16	Table 3.7.2.3.2.25-5. Type Specific Fields for RECORD_TYPE = '0001'
17	Table 3.7.2.3.2.25-6. Type Specific Fields for RECORD_TYPE = '0010'
18	Table 3.7.3.3.2.26-1. NGHBR_SRCH_MODE Field
19	Table 3.7.3.3.2.26-2. SEARCH_PRIORITY Field
20 .	Table 3.7.3.3.2.27-1. SEARCH_TYPE Codes
21	Table 3.7.3.3.2.27-2. SEARCH_MODE Types
22	Table 3.7.3.3.2.27-3. CF_NGHBR_SRCH_MODE Field3-301
23	Table 3.7.3.3.2.32-1. Channel Indicator
24	Table 3.7.3.3.2.34-1. Channel Indicator
25	Table 3.7.3.3.2.34-2 Actual Reverse Pilot Gating rate
26	Table 3.7.3.3.2.35-1. Channel Indicator
27	Table 3.7.3.3.2.36-1. Channel Indicator
28	Table 3.7.3.3.2.37-2. REV_WALSH_ID Field
29	Table 3.7.3.3.2.37-1. SCH Data Rate
30	Table 3.7.3.3.2.37-3. FOR_SCH_DURATION and REV_SCH_DURATION Fields3-371
31	Table 3.7.4-1. Order and Order Qualification Codes Used on the f-csch and the f-dsch

1	(Part 1 of 3)3-386
2	Table 3.7.4-1. Order and Order Qualification Codes Used on the f-csch and the f-dsch (Part 2 of 3)
4 5	Table 3.7.4-1. Order and Order Qualification Codes Used on the f-csch and the f-dsch (Part 3 of 3)
6	Table 3.7.4.4-1. Status Request ORDQ Values
7	Table 3.7.5-1. Information Record Types (Part 1 of 3)
8	Table 3.7.5-1. Information Record Types (Part 2 of 3)
9	Table 3.7.5-1. Information Record Types (Part 3 of 3)
10	Table 3.7.5.5-1. Signal Type
11	Table 3.7.5.5-2. Alert Pitch
12	Table 3.7.5.5-3. Tone Signals (SIGNAL_TYPE = '00')
13	Table 3.7.5.5-4. ISDN Alerting (SIGNAL_TYPE = '01')
14	Table 3.7.5.5-5. IS-54B Alerting (SIGNAL_TYPE = '10')
15	Table 3.7.5.7-1 FOR_TRAFFIC Codes
16	Table 3.7.5.7-2. REV_TRAFFIC Codes
17	Table 3.7.5.7-3. DCCH Frame Size
18	Table 3.7.5.7.1-1. Maximum Data Rate Values
19	Table 3.7.5.11-1. Redirection Reason
20	Table 3.7.5.16-1. Display Type
21	Table 3.7.5.16-2. Mandatory Control Tags and Display Text Tags3-436
22	Table 3.7.5.19-1. Rejection Action Indicators
23	Table 3.7.5.20-1. Reverse Pilot Gating rate
24	Table 3.7.5:20-2. Logical Resource Identifier
25	Table 3.7.5.20-3. Physical Resource Identifier
26	Table D-1. Time Limits (Part 1 of 4)
27	Table D-1. Time Limits (Part 2 of 4)
28	Table D-1. Time Limits (Part 3 of 4)
29	Table D-1. Time Limits (Part 4 of 4)
30	Table D-2. Other Constants
31	Table E-1. Retrievable and Settable Parameters (Part 1 of 10) E-2
32	Table F-1 Retrievable and Settable Parameters (Part 2 of 10) E-3

1	Table E-1. F	Retrievable and Settable Parameters (Part 3 of 10)	E-4
2	Table E-1.	Retrievable and Settable Parameters (Part 4 of 10)	E-5
3	Table E-1. F	Retrievable and Settable Parameters (Part 5 of 10)	E-6
4	Table E-1.	Retrievable and Settable Parameters (Part 6 of 10)	E-7
5	Table E-1. F	Retrievable and Settable Parameters (Part 7 of 10)	E-8
6	Table E-1.	Retrievable and Settable Parameters (Part 8 of 10)	E-9
7	Table E-1. F	Retrievable and Settable Parameters (Part 9 of 10)	E-10
8	Table E-1. F	Retrievable and Settable Parameters (Part 10 of 10)	E-11
9	Table F.2.1-	1. Permanent Mobile Station Indicators	F-2
10	Table F.2.2-	1. CDMA Semi-permanent Mobile Station Indicators	F-3
11	Table F.3-1.	NAM Indicators (Part 1 of 2)	F-4
12	Table F.3-1.	NAM Indicators (Part 2 of 2)	F-5

FOREWORD

- 1. General. This section defines the terms and numeric indications used in this
- 2 document. This section also describes the time reference used in the CDMA system and
- the tolerances used throughout the document.
- 2. Requirements for Mobile Station CDMA Operation. This section describes the
- 5 requirements for CDMA-analog dual-mode mobile stations operating in the CDMA mode.
- A mobile station complying with these requirements will be able to operate with CDMA
- base stations complying with this document.
- 8 3. Requirements for Base Station CDMA Operation. This section describes the
- 9 requirements for CDMA base stations. A base station complying with these requirements
- will be able to operate in the CDMA mode with mobile stations complying with this
- 11 document.
- 12 Annex A. Reserved.
- 13 Annex B. CDMA Call Flow Examples. This informative annex provides examples of
- simple call flows in the CDMA system.
- 15 Annex C. Reserved.
- Annex D. CDMA Constants. This normative annex contains tables that give specific
- values for the constant identifiers found in Section 2 and Section 3.
- Annex E. CDMA Retrievable and Settable Parameters. This normative annex describes
- the mobile station parameters that the base station can set and retrieve.
- 20 Annex F. Mobile Station Database. This informative annex describes a database model
- that can be used for dual-mode mobile stations complying with this document.

NOTES

- Compatibility, as used in connection with this standard, is understood to mean:
 Any mobile station is able to place and receive calls in any 800 MHz cellular system
 or 1.8 to 2.0 GHz CDMA PCS system. Conversely all systems are able to place and
 receive calls for any mobile station.
 - 2. The term "dual-mode mobile station" indicates a mobile station capable of both analog (FM) and spread spectrum (CDMA) operation.
 - 3. This compatibility specification is based on the specific United States spectrum allocation for cellular and PCS systems.
 - 4. Each mobile station is assigned a single unique 32-bit binary serial number (ESN) that cannot be changed by the subscriber without rendering the mobile station inoperative (see 2.3.2).
 - 5. "Base station" refers to the functions performed in the fixed network. These functions typically distributed among cells, sectors, and mobile switching centers.
 - 6. This standard uses the following verbal forms: "Shall" and "shall not" identify requirements strictly to be followed in order to conform with the standard and from which no deviation is permitted. "Should" and "should not" indicate that one of several possibilities is recommended as particularly suitable, without mentioning or excluding others; that a certain course of action is preferred but not necessarily required; or that (in the negative form) a certain possibility or course of action is discouraged but not prohibited. "May" and "need not" indicate a course of action permissible within the limits of the standard. "Can" and "cannot" are used for statements of possibility and capability, whether material, physical, or causal.
 - 7. Footnotes appear at various points in this specification to elaborate and further clarify items discussed in the body of the specification.
 - Unless indicated otherwise, this document presents numbers in decimal form.Binary numbers are distinguished in the text by the use of single quotation marks.
 - 9. The following operators define mathematical operations:
 - × indicates multiplication.

10

11

12

13

16

18

19

20

21

22

23

24

25

26

27

28

29

- $\lfloor x \rfloor$ indicates the largest integer less than or equal to x: $\lfloor 1.1 \rfloor = 1, \lfloor 1.0 \rfloor = 1$.
- [x] indicates the smallest integer greater or equal to x: [1.1] = 2, [2.0] = 2.
- |x| indicates the absolute value of x: |-17| = 17, |17| = 17.
- ⊕ indicates exclusive OR (modulo-2 addition).
- $\min (x, y)$ indicates the minimum of x and y.
- $\max (x, y)$ indicates the maximum of x and y.
- x mod y indicates the remainder after dividing x by y: x mod y = x $(y \times \lfloor x/y \rfloor)$.

NOTES

10. While communication between Layer 3 and Resource Control and between Layer 3 and Layer 2 is specified, there is no requirement to implement layering.

REFERENCES

- 1 The following standards contain provisions which, through reference in this text,
- 2 constitute provisions of this Standard. At the time of publication, the editions indicated
- were valid. All standards are subject to revision, and parties to agreements based on this
- Standard are encouraged to investigate the possibility of applying the most recent editions
- of the standards indicated below. ANSI and TIA maintain registers of currently valid
- 6 national standards published by them.
- American National Standards:

14

15

16

17

18

19

20

21

22

23

24

27

28

- 1.ANSI/EIA/TIA-691, ANSI Enhanced Analog IS-691, date pending.
- 2.ANSI T1.607-1990, Integrated Services Digital Network (ISDN)-Layer 3 Signaling
 Specification for Circuit Switched Bearer Service for Digital Subscriber Signaling
 System Number 1 (DSS1), July 1990.
- 3.ANSI TI.610-1994, Generic Procedures for the Control of ISDN Supplementary Services, August, 1994.
 - 4.ANSI J-STD-018, Recommended Minimum Performance Requirements for 1.8 to 2.0 GHz Code Division Multiple Access (CDMA) Personal Stations.
 - 5.ANSI J-STD-019, Recommended Minimum Performance Requirements for Base Stations Supporting 1.8 to 2.0 GHz Code Division Multiple Access (CDMA) Personal Stations.
 - 6.ANSI X3.4-1986, Coded Character Set 7-bit American National Standard Code for Information Interchange, 1992.
 - 7.TIA/EIA-97-C, Recommended Minimum Performance Standards for Base Stations Supporting Dual-Mode Spread Spectrum Mobile Stations, date pending.
 - 8.TIA/EIA-98-C, Recommended Minimum Performance Standards for Dual-Mode Spread Spectrum Mobile Stations, date pending.
- 9.TIA/EIA-553-A, Core Analog Standard 800 MHz Mobile Station Land Station
 Compatibility Specification with Authentication, date pending.
 - TIA/EIA-41-D, Cellular Radiotelecommunications Intersystem Operations, December 1997.
- 29 11. TIA/EIA-637-A, Short Message Services for Spread Spectrum Cellular Systems.
- 30 —Other Standards:
- 12. Common Cryptographic Algorithms, Revision C, 1997. An EAR-controlled document subject to restricted distribution. Contact the Telecommunications Industry Association, Arlington, VA.
- 13. ITU-T Recommendation E.163, Numbering Plan for the International Telephone Service, 1988. Note: merged with E.164.
- 14. ITU-T Recommendation E.164 (I.331), Numbering Plan for the ISDN Era, 1991.

REFERENCES

- 15. ITU-T Recommendation E.212, Identification Plan for Land Mobile Stations, 1988.
- 16. ITU-T Recommendation F.69, The International Telex Service-Service and Operational Provisions of Telex Destination Codes and Telex Network Identifications Codes, 1994.
- 5 17. ITU-T Recommendation G.162, Characteristics of Compandors for Telephony.
- 18. ITU-T Recommendation X.121, International Numbering Plan for Public Data Networks, 1992.
- 19. EIA/TIA/IS-54-B, Cellular System Dual-Mode Mobile Station Base Station
 Compatibility Standard, April 1992.
- 20. IEEE Standard 661-1979, Method for Determining Objective Loudness Ratings of Telephone Connections, 1979.
- 21. Interface Specification for Common Cryptographic Algorithms, Rev C, 1997.
 Contact the Telecommunications Industry Association, Arlington, VA.
- 14 22. TIA/EIA/IS-91, Mobile Station-Base Station Compatibility Standard for 800 MHz
 15 Analog Cellular, October 1994.
- 23. TIA/EIA/IS-125, Recommended Minimum Performance Standard for Digital
 Cellular Spread Spectrum Speech Service Option 1, May 1995.
- 24. TIA/EIA/IS-136, 800 MHz TDMA Cellular-Radio Interface-Mobile Station-Base
 Station Compatibility, December 1994.
- 25. TIA/EIA/IS-683-A, Over-the-Air Service Provisioning of Mobile Stations in Spread
 Spectrum Systems, June 1998.
- 26. TIA/EIA/IS-735, Enhancements to TIA/EIA-41-D & TIA/EIA-664 for Advanced Features in Wideband Spread Spectrum Systems, January 1998.
- 27. TSB16, Assignment of Access Overload Classes in the Cellular
 Telecommunications Services, March 1985.
- 28. TSB29-C, International Implementation of Wireless Telecommunication Systems
 Compliant with TIA/EIA-41, date pending.
- 29. TSB39-A, Message Type Assignments for the Extended Protocol Facility of
 ANSI/EIA/TIA-553, EIA/TIA/IS-54, TIA/EIA/IS-88 and TIA/EIA/IS-95, October
 1994.
- 30. TSB50, User Interface for Authentication Key Entry, March 1993.
- 31. TSB58-A, Administration of Parameter Value Assignments for TIA/EIA Wideband Spread Spectrum Standards.

1. GENERAL

1.1 Terms and Numeric Information

- 3 1.1.1 Terms
- 4 Abbreviated Alert. An abbreviated alert is used to remind the mobile station user that
- 5 previously selected alternative routing features are still active.
- 6 AC. See Authentication Center.
- 7 Access Attempt. The entire process of sending one message and receiving (or failing to
- 8 receive) an acknowledgment for that message, consisting of one or more access sub-
- attempts. See also Access Probe, Access Probe Sequence, and Access Sub-attempt.
- Access Channel. A Reverse CDMA Channel used by mobile stations for communicating to
- the base station. The Access Channel is used for short signaling message exchanges such
- as call originations, responses to pages, and registrations. The Access Channel is a slotted
- 13 random access channel.
- Access Channel Message. The information part of an access probe consisting of the
- message body, length field, and CRC.
- Access Channel Message Capsule. An Access Channel message plus the padding.
- Access Channel Preamble. The preamble of an access probe consisting of a sequence of
- all-zero frames that are sent at the 4800 bps rate.
- 19 Access Channel Request Message. An Access Channel message that is autonomously
- 20 generated by the mobile station. See also Access Channel Response Message.
- 21 Access Channel Response Message. A message on the Access Channel generated to
- reply to a message received from the base station.
- 23 Access Channel Slot. The assigned time interval for an access probe. An Access Channel
- 24 slot consists of an integer number of frames. The transmission of an access probe is
- performed within the boundaries of an Access Channel slot.
- 26 Access Entry Handoff. The act of transferring reception of the Paging Channel from one
- 27 base station to another, when the mobile station is transitioning from the Mobile Station
- Idle State to the System Access State.
- 29 Access Handoff. The act of transferring reception of the Paging Channel from one base
- station to another, when the mobile station is in the System Access State after an Access
- 31 Attempt.
- 32 Access Overload Class. See Overload Class.
- 33 Access Probe. One Access Channel transmission consisting of a preamble and a message.
- 34 The transmission is an integer number of frames in length and transmits one Access
- 35 Channel message. See also Access Probe Sequence, Access Sub-attempt, and Access
- 36 Attempt.

- Access Probe Handoff. A handoff that occurs while the mobile station is performing an
- 2 Access Attempt in the System Access State.
- 3 Access Probe Sequence. A sequence of one or more access probes on the Access
- 4 Channel. Other than the reported pilot information, the same Access Channel message
- 5 content is transmitted in every access probe of an access sub-attempt. See also Access
- 6 Probe, Access Sub-attempt, and Access Attempt.
- 7 Access Sub-attempt. A sequence of one or more access probe sequences on the Access
- 8 Channel transmitted to one pilot, containing the same message content other than the
- reported pilot information. See also Access Probe, Access Probe Sequence, and Access
- 10 Attempt.
- 11 Acknowledgment. A Layer 2 response by the mobile station or the base station
- confirming that a signaling message was received correctly.
- Action Time. The time at which the action implied by a message should take effect.
- Active Set. The set of pilots associated with the CDMA Channels containing Forward
- 15 Traffic Channels assigned to a particular mobile station.
- Active User Zone. A user zone in which the mobile station makes its presence known via
- an explicit registration in order to activate tiered service features. See also CDMA Tiered
- Services, User Zone, and Passive User Zone.
- Aging. A mechanism through which the mobile station maintains in its Neighbor Set the
- 20 pilots that have been recently sent to it from the base station and the pilots whose handoff
- 21 drop timers have recently expired.
- 22 A-key. A secret, 64-bit pattern stored in the mobile station and HLR/AC. It is used to
- 23 generate/update the mobile station's Shared Secret Data.
- Assured Mode. Mode of delivery that guarantees that a PDU will be delivered to the peer.
- 25 A PDU sent in assured mode is retransmitted by the LAC sublayer, up to a maximum
- 26 number of retransmissions, until the LAC entity at the sender receives an
- ²⁷ acknowledgement for the PDU. See also Confirmation of Delivery.
- Authentication. A procedure used by a base station to validate a mobile station's
- 29 identity.
- 30 Authentication Center (AC). An entity that manages the authentication information
- related to the mobile station.
- Authentication Response (AUTHR). An 18-bit output of the authentication algorithm. It
- 33 is used, for example, to validate mobile station registrations, originations and
- 34 terminations.
- 35 Autonomous Registration. A method of registration in which the mobile station registers
- without an explicit command from the base station.
- 37 Auxiliary Pilot Channel. A non-data-bearing, direct-sequence spread spectrum signal
- optionally transmitted by a CDMA base station.

- Auxiliary Transmit Diversity Pilot Channel. A pilot channel, counterpart to an Auxiliary
- Pilot Channel, that is transmitted by a CDMA base station from the non-primary antenna
- when orthogonal transmit diversity is employed.
- Bad Frames. Frames classified as insufficient frame quality or as 9600 bps primary traffic
- only, with bit errors. See also Good Frames.
- Band Class. A set of CDMA frequency assignments and a numbering scheme for these
- 7 channels. See also CDMA Frequency Assignment.
- Base Station. A fixed station used for communicating with mobile stations. Depending
- upon the context, the term base station may refer to a cell, a sector within a cell, an MSC,
- or other part of the cellular system. See also MSC.
- 11 Base Station Authentication Response (AUTHBS). An 18-bit pattern generated by the
- authentication algorithm. AUTHBS is used to confirm the validity of base station orders to
- update the Shared Secret Data.
- Base Station Random Variable (RANDBS). A 32-bit random number generated by the
- mobile station for authenticating base station orders to update the Shared Secret Data.
- Blank-and-Burst. The preemption of an entire Traffic Channel frame's primary traffic by
- signaling traffic or secondary traffic. Blank-and-burst is performed on a frame-by-frame
- 18 basis.
- 19 **BLOB.** Block of Bits.
- bps. Bits per second.
- Broadcast User Zone. A user zone that is identified to the mobile station by means of
- 22 broadcast messages. It corresponds to the RF coverage area of a particular set of cells and
- 23 sectors. See also CDMA Tiered Services and Mobile-Specific User Zone.
- 24 Call Disconnect. The process that releases the resources handling a particular call. The
- disconnect process begins either when the mobile station user indicates the end of the call
- by generating an on-hook condition or other call-release mechanism, or when the base
- station initiates a release.
- 28 Call History Parameter (COUNT). A modulo-64 event counter maintained by the mobile
- station and Authentication Center that is used for clone detection.
- ³⁰ Candidate Frequency. The frequency, either analog or CDMA, for which the base station
- specifies a search set, using a Candidate Frequency Search Request Message.
- Candidate Set. The set of pilots that have been received with sufficient strength by the
- mobile station to be successfully demodulated, but have not been placed in the Active Set
- by the base station. See also Active Set, Neighbor Set, and Remaining Set.
- cDMA. See Code Division Multiple Access.
- 36 CDMA Candidate Frequency. The Candidate Frequency specified for a search of CDMA
- 37 pilots.

- 1 CDMA Channel. The set of channels transmitted between the base station and the mobile
- stations within a given CDMA Frequency Assignment. See also Forward CDMA Channel
- 3 and Reverse CDMA Channel.
- 4 CDMA Channel Number. An 11-bit number that identifies a CDMA Frequency
- 5 Assignment.
- 6 CDMA Frequency Assignment. A particular choice of RF band center frequencies for the
- 7 Forward CDMA Channel and Reverse CDMA Channel that comprise a CDMA Channel.
- 8 CDMA Frequency Assignments are identified by CDMA Channel Numbers.
- 9 CDMA Preferred Set. The set of CDMA channel numbers in a CDMA system
- corresponding to Frequency Assignments that a mobile station will normally search to
- acquire a CDMA Pilot Channel. For CDMA cellular systems, the primary and secondary
- channels comprise the CDMA Preferred Set.
- 13 CDMA Tiered Services. System features and services that are based on location,
- potentially including private networks. User zones establish the availability of services.
- See also User Zone, Broadcast User Zone, Mobile-Specific User Zone, Active User Zone,
- and Passive User Zone.
- 17 Chip. See PN Chip.
- 18 Code Channel. A subchannel of a Forward CDMA Channel. A Forward CDMA Channel
- contains 64 code channels. Code channel zero is assigned to the Pilot Channel. Code
- 20 channels 1 through 7 may be assigned to either the Paging Channels or the Traffic
- 21 Channels. Code channel 32 may be assigned to either a Sync Channel or a Traffic
- 22 Channel. The remaining code channels may be assigned to Traffic Channels.
- 23 Code Division Multiple Access (CDMA). A technique for spread-spectrum multiple-
- 24 access digital communications that creates channels through the use of unique code
- 25 sequences.
- ²⁶ Code Symbol. The output of an error-correcting encoder. Information bits are input to
- 27 the encoder and code symbols are output from the encoder. See Convolutional Code.
- 28 Configuration Change Indicator. A one-bit datum, sent on the Quick Paging Channel.
- 29 Appearance of the Configuration Change Indicator in the Quick Paging Channel serves to
- 30 alert a slotted mode mobile station, operating in the idle state, that, after performing an
- 31 idle handoff, it should monitor the Paging Channel, in order to determine if it should
- update its stored parameters.
- Confirmation of Delivery. A notification sent by the LAC sublayer to Layer 3 at the
- sender, when the LAC entity at the sender receives the acknowledgment for a specific PDU
- sent in assured mode.
- Convolutional Code. A type of error-correcting code. A code symbol can be considered as
- 37 modulo 2 the convolution of the input data sequence with the impulse response of a
- 38 generator function.
- 39 CRC. See Cyclic Redundancy Code.

- 1 Cyclic Redundancy Code (CRC). A class of linear error detecting codes that generate
- 2 parity check bits by finding the remainder of a polynomial division. See also Frame
- 3 Quality Indicator.
- dBc. The ratio (in dB) of the sideband power of a signal, measured in a given bandwidth at
- a given frequency offset from the center frequency of the same signal, to the total inband
- 6 power of the signal.
- dBm. A measure of power expressed in terms of its ratio (in dB) to one milliwatt.
- 8 dBm/Hz. A measure of power spectral density. The ratio, dBm/Hz, is the power in one
- 9 Hertz of bandwidth, where power is expressed in units of dBm.
- dBW. A measure of power expressed in terms of its ratio (in dB) to one Watt.
- 11 Dedicated Control Channel. A portion of a Traffic Channel (Forward or Reverse) that
- carries a combination of user data, signaling, and power control information.
- Deinterleaving. The process of unpermuting the symbols that were permuted by the
- interleaver. Deinterleaving is performed on received symbols prior to decoding.
- 15 Discontinuous Transmission (DTX). A mode of operation in which a base station or a
- mobile station switches on and off its transmitter on a particular code channel
- autonomously. For the case of DTX operation on the Forward Dedicated Control Channel,
- the Forward Power Control Subchannel is still transmitted.
- 19 **Distance-Based Registration.** An autonomous registration method in which the mobile
- 20 station registers whenever it enters a cell whose distance from the cell in which the mobile
- station last registered exceeds a given threshold.
- 22 **DTMF.** See Dual-Tone Multifrequency.
- 23 Dual-Tone Multifrequency (DTMF). Signaling by the simultaneous transmission of two
- tones, one from a group of low frequencies and another from a group of high frequencies.
- Each group of frequencies consists of four frequencies.
- 26 Eh. A measure of the energy in a signal, at some point in a communication system, per
- information bit conveyed by that signal, or an average value of such energies. Its relevance
- 28 to system performance is most often expressed by its ratio to additive noise and
- interference, such as in E_b/N_0 or E_b/I_0 . Such ratios are dimensionless, and are usually
- 30 expressed in dB units.
- $E_{\rm c}/I_{\rm o}$. A notation used to represent a dimensionless ratio of the average power of some
- code-distinguished CDMA signal channel, typically a pilot, to the total power comprised of
- 33 signal plus interference, within the signal bandwidth. It is usually expressed in dB units.
- Effective Radiated Power (ERP). The product of the power supplied to the antenna and
- its gain relative to a half-wave dipole in a given direction.
- 36 **EIRP.** See Equivalent Isotropic Radiated Power.
- Electronic Serial Number (ESN). A 32-bit number assigned by the mobile station
- manufacturer, uniquely identifying the mobile station equipment.

- Encoder Tail Bits. A fixed sequence of bits added to the end of a block of data to reset the
- 2 convolutional encoder to a known state.
- 3 Equivalent Isotropically Radiated Power (EIRP). The product of the power supplied to
- the antenna and the antenna gain in a direction relative to an isotropic antenna.
- 5 Erasure Indicator Bit. A bit used in the Rate Set 2 Reverse Traffic Channel frame
- structure to indicate an erased Forward Fundamental Code Channel or Forward Dedicated
- 7 Control Channel frame.
- B . ERP. See Effective Radiated Power.
- **ESN.** See Electronic Serial Number.
- 10 **f-csch.** Forward common signaling logical channel.
- 11 **f-dsch.** Forward dedicated signaling logical channel.
- Fade Timer. A timer kept by the mobile station as a measure of Forward Traffic Channel
- continuity. If the fade timer expires, the mobile station drops the call.
- 14 Flash. An indication sent on the Reverse CDMA Channel indicating that the user directed
- the mobile station to invoke special processing.
- 16 Foreign NID Roamer. A mobile station operating in the same system (SID) but in a
- different network (NID) from the one in which service was subscribed. See also Foreign
- 18 SID Roamer and Roamer.
- Foreign SID Roamer. A mobile station operating in a system (SID) other than the one
- from which service was subscribed. See also Foreign NID Roamer and Roamer.
- Forward CDMA Channel. A CDMA Channel from a base station to mobile stations. The
- 22 Forward CDMA Channel contains one or more code channels that are transmitted on a
- 23 CDMA Frequency Assignment using a particular pilot PN offset. The code channels are
- associated with the Pilot Channel, Sync Channel, Paging Channels, and Traffic Channels.
- 25 The Forward CDMA Channel always carries a Pilot Channel and may carry up to one Sync
- 26 Channel, up to seven Paging Channels, and up to 63 Traffic Channels, as long as the total
- 27 number of channels, including the Pilot Channel, is no greater than 64.
- 28 Forward Dedicated Control Channel. A Dedicated Control Channel that is transmitted
- on the Forward CDMA Channel.
- 30 Forward Fundamental Channel. A Fundamental Channel that is transmitted on the
- Forward CDMA Channel.
- 32 Forward Pilot Channel. A non-data-bearing direct-sequence spread spectrum signal
- transmitted continuously by each CDMA base station. The Forward Pilot Channel allows a
- mobile station to acquire the timing of the Forward CDMA Channel, provides a phase
- reference for coherent demodulation, and provides a means for signal strength
- 36 comparisons between base stations for determining when to handoff. Different base
- stations are identified by different pilot PN sequence time phases. See also Pilot PN
- 38 Sequence, Pilot PN Sequence Offset.
- 39 Forward Supplemental Channel. A Supplemental Channel that is transmitted on the
- Forward CDMA Channel.

- Forward Supplemental Code Channel. A Supplemental Code Channel that is
- transmitted on the Forward CDMA Channel.
- 3 Forward Traffic Channel. One or more code channels used to transport user and
- 4 signaling traffic from the base station to the mobile station. See Forward Fundamental
- 5 Code Channel, Forward Dedicated Control Channel, Forward Fundamental Channel,
- 6 Forward Supplemental, and Forward Supplemental Code Channel.
- Forward Transmit Diversity Pilot Channel. A pilot channel transmitted by a CDMA base
- station from the non-primary antenna when orthogonal transmit diversity is employed.
- Frame. A basic timing interval in the system. For the Access Channel, Paging Channel,
- 10 Forward Supplemental Channel, Forward Supplemental Code Channel, Reverse
- Supplemental Channel, and Reverse Supplemental Code Channel, a frame is 20 ms long.
- For the Sync Channel, a frame is 26.666... ms long. For the Forward Fundamental
- 13 Channel, Forward Dedicated Control Channel, Reverse Fundamental Channel, and
- 14 Reverse Dedicated Control Channel, a frame is 5 or 20 ms long.
- 15 Frame Category. A classification of a received Traffic Channel frame based upon
- transmission data rate, the frame contents (primary traffic, secondary traffic, or signaling
- traffic), and whether there are detected errors in the frame.
- 18 Frame Offset. A time skewing of Traffic Channel frames from System Time in integer
- multiples of 1.25 ms. The maximum frame offset is 18.75 ms.
- 20 Frame Quality Indicator. The CRC check applied to 9.6 and 4.8 kbps Traffic Channel
- frames (for Rate Set 1) and 14.4, 7.2, 3.6 and 1.8 kbps Traffic Channel frames (for Rate Set
- 22 2).
- Full TMSI. The combination of TMSI_ZONE and TMSI_CODE. The full TMSI is a globally
- unique address for the mobile station.
- 25 Fundamental Channel. A portion of a Traffic Channel that can carry a combination of
- primary data, secondary data, signaling, and power control information.
- 27 Gating Rate Set. This specifies the set of supported reverse pilot gating rates. The base
- 28 station and the mobile station may support one or more gating rates.
- 29 **GHz.** Gigahertz (10⁹ Hertz).
- 30 Global Positioning System (GPS). A US government satellite system that provides
- location and time information to users. See Navstar GPS Space Segment / Navigation User
- 32 Interfaces ICD-GPS-200 for specifications.
- Good Frames. Frames not classified as bad frames. See also Bad Frames.
- 34 **GPS.** See Global Positioning System.
- 35 Handoff. The act of transferring communication with a mobile station from one base
- 36 station to another.
- 37 Hard Handoff. A handoff characterized by a temporary disconnection of the Traffic
- 38 Channel. Hard handoffs occur when the mobile station is transferred between disjoint
- 39 Active Sets, when the CDMA Frequency Assignment changes, when the frame offset

- changes, or when the mobile station is directed from a CDMA Traffic Channel to an analog
- voice channel. See also Soft Handoff.
- 3 Hash Function. A function used by the mobile station to select one out of N available
- 4 resources. The hash function distributes the available resources uniformly among a
- 5 random sample of mobile stations.
- 6 **HLR.** See Home Location Register.
- 7 Home Location Register (HLR). The location register to which a MIN/IMSI is assigned for
- 8 record purposes such as subscriber information.
- Home System. The cellular or PCS system in which the mobile station subscribes for
- 10 service.
- 11 Hopping Pilot Beacon. A pilot beacon that changes CDMA Frequency periodically to
- simulate multiple base stations operating on different frequencies. The transmission of
- the hopping pilot beacon is discontinuous on any CDMA Channel.
- 14 Idle Handoff. The act of transferring reception of the Paging Channel from one base
- station to another, when the mobile station is in the Mobile Station Idle State.
- 16 Implicit Registration. A registration achieved by a successful transmission of an
- origination or page response on the Access Channel.
- 18 IMSI. See International Mobile Station Identity.
- 19 IMSI_M. MIN-based IMSI using the lower 10 digits to store the MIN.
- 20 IMSI_O. Operational value of IMSI used by the mobile station for operation with the base
- 21 station.
- IMSI_T. True IMSI not associated with MIN. This could be 15 digits or fewer.
- 23 Interleaving. The process of permuting a sequence of symbols.
- 24 International Mobile Station Identity (IMSI). A method of identifying stations in the
- land mobile service as specified in ITU-T Recommendation E.212.
- **kHz.** Kilohertz (10³ Hertz).
- ksps. Kilo-symbols per second (10^3 symbols per second).
- Layering. A method of organization for communication protocols in which the transmitted
- or received information is transferred in pipeline fashion, within each station, in well-
- 30 defined encapsulated data units between otherwise decoupled processing entities
- ("layers"). A layer is defined in terms of its communication protocol to a peer layer in
- another entity and the services it offers to the next higher layer in its own entity.
- Layer 1. Layer 1 provides for the transmission and reception of radio signals between the
- base station and the mobile station. Also see Physical Layer.
- Layer 2. Layer 2 provides for the correct transmission and reception of signaling
- messages, including partial duplicate detection. Layer 2 makes use of the services
- provided by Layer 1. See also Layering and Layer 3.
- Layer 3. Layer 3 provides the control messaging for the cellular or PCS telephone system.

- Layer 3 originates and terminates signaling messages according to the semantics and
- timing of the communication protocol between the base station and the mobile station.
- Layer 3 makes use of the services provided by Layer 2. See also Layering and Layer 2.
- 4 Local Control. An optional mobile station feature used to perform manufacturer-specific
- 5 functions.
- 6 Logical Channel. A communication path between the mobile station and the base station,
- described in terms of the intended use of, and access to, the transferred data, and
- direction of transfer. A logical channel can be "mapped" to and from one or more physical
- e channels.
- Logical-to-physical Mapping. The technique for forming associations between logical and
- 11 physical channels.
- Long Code. A PN sequence with period 2^{42} 1 that is used for scrambling on the Forward
- 13 CDMA Channel and spreading on the Reverse CDMA Channel. The long code uniquely
- identifies a mobile station on both the Reverse Traffic Channel and the Forward Traffic
- 15 Channel. The long code provides limited privacy. The long code also separates multiple
- Access Channels on the same CDMA Channel. See also Public Long Code and Private
- 17 Long Code.
- Long Code Mask. A 42-bit binary number that creates the unique identity of the long
- code. See also Public Long Code, Private Long Code, Public Long Code Mask, and Private
- 20 Long Code Mask.
- LSB. Least significant bit.
- 22 Maximal Length Sequence (m-Sequence). A binary sequence of period 2ⁿ 1, n being a
- 23 positive integer, with no internal periodicities. A maximal length sequence can be
- generated by a tapped n-bit shift register with linear feedback.
- 25 MCC. See Mobile Country Code.
- Mcps. Megachips per second (10^6 chips per second).
- 27 MCSB. See Message Control and Status Block.
- 28 Mean Input Power. The total received calorimetric power measured in a specified
- bandwidth at the antenna connector, including all internal and external signal and noise
- 30 sources.
- 31 Mean Output Power. The total transmitted calorimetric power measured in a specified
- bandwidth at the antenna connector when the transmitter is active.
- 33 Message. A data structure that conveys control information or application information. A
- message consists of a length field (MSG_LENGTH), a message body (the part conveying the
- information), and a CRC.
- 36 Message Body. The part of the message contained between the length field
- 37 (MSG_LENGTH) and the CRC field.
- 38 Message Capsule. A sequence of bits comprising a single message and padding. The
- padding always follows the message and may be of zero length.

- Message Control and Status Block. In this document, a parameter block representing
- the PCI being transferred between Layer 3 and Layer 2.
- 3 Message CRC. The CRC check associated with a message. See also Cyclic Redundancy
- 4 Code.
- 5 Message Field. A basic named element in a message. A message field may consist of zero
- s or more bits.
- 7 Message Record. An entry in a message consisting of one or more fields that repeats in
- the message.
- MHz. Megahertz (10⁶ Hertz).
- MIN. See Mobile Identification Number.
- MNC. See Mobile Network Code.
- Mobile Country Code (MCC). A part of the E.212 IMSI identifying the home country. See
- 13 ITU-T Recommendation E.212.
- Mobile Directory Number. A dialable directory number that is not necessarily the same
- as the mobile station's air interface identification, i.e., MIN, IMSI_M or IMSI_T.
- Mobile Identification Number (MIN). The 34-bit number that is a digital representation
- of the 10-digit number assigned to a mobile station.
- Mobile Network Code (MNC). A part of the E.212 IMSI identifying the home network
- within the home country. See ITU-T Recommendation E.212.
- 20 Mobile Protocol Capability Indicator (MPCI). A 2-bit field used to indicate the mobile
- station's capabilities.
- 22 Mobile-Specific User Zone. A user zone that is identified by the mobile station. The
- mobile station may consider parameters such as the identity of the serving system, cell,
- 24 and sector, and the geographic location of that station in making the determination. See
- also CDMA Tiered Services, User Zone, Broadcast User Zone, Active User Zone, and
- 26 Passive User Zone.
- 27 Mobile Station. A station in the Public Cellular Radio Telecommunications Service
- 28 intended to be used while in motion or during halts at unspecified points. Mobile stations
- include portable units (e.g., hand-held personal units) and units installed in vehicles.
- 30 Mobile Station Class. A classification of mobile stations based on characteristics such as
- 31 slotted operation and transmission power. See Table 2.3.3-1 of TIA/EIA-553-A and Table
- 2.3.3-1 of this document.
- 33 Mobile Station Identification Number (MSIN). A part of the E.212 IMSI identifying the
- mobile station within its home network. See ITU-T Recommendation E.212.
- 35 Mobile Station Originated Call. A call originating from a mobile station.
- 36 Mobile Station Terminated Call. A call received by a mobile station (not to be confused
- with a disconnect or call release).
- ms. Millisecond (10^{-3} second).

- MSB. Most significant bit.
- 2 MSC. See Mobile Switching Center.
- 3 MSIN. See Mobile Station Identification Number.
- 4 Multiplex Option. The ability of the multiplex sublayer and lower layers to be tailored to
- provide special capabilities. A multiplex option defines such characteristics as the frame
- format, the maximum number of Supplemental Code Channels supported, and the rate
- 7 decision rules. See also Multiplex Sublayer.
- 8 Multiplex Sublayer. One of the conceptual layers of the system that multiplexes and
- demultiplexes primary traffic, secondary traffic, and signaling traffic.
- NAM. See Number Assignment Module.
- National Mobile Station Identity (NMSI). A part of the E.212 IMSI identifying the mobile
- station within its home country. The NMSI consists of the MNC and the MSIN. See ITU-T
- 13 Recommendation E.212.
- NDSS. See Network Directed System Selection.
- Neighbor Set. The set of pilots associated with the CDMA Channels that are probable
- candidates for handoff. Normally, the Neighbor Set consists of the pilots associated with
- 17 CDMA Channels that cover geographical areas near the mobile station. See also Active
- Set, Candidate Set, Remaining Set, and Private Neighbor Set.
- Network. A network is a subset of a cellular or PCS system, such as an area-wide cellular
- 20 network, a private group of base stations, or a group of base stations set up to handle a
- special requirement. A network can be as small or as large as needed, as long as it is fully
- contained within a system. See also System.
- 23 Network Directed System Selection (NDSS). A feature that allows the mobile station to
- 24 automatically register with a preferred system while roaming, or to be automatically
- directed by a service provider, typically the home service provider, to a suggested system,
- regardless of the frequency band class, cellular band, or PCS frequency block.
- 27 Network Identification (NID). A number that uniquely identifies a network within a
- cellular or PCS system. See also System Identification.
- NID. See Network Identification.
- NMSI. See National Mobile Station Identity.
- 31 Non-Autonomous Registration. A registration method in which the base station initiates
- registration. See also Autonomous Registration.
- Non-Slotted Mode. An operation mode of the mobile station in which the mobile station
- continuously monitors the Paging Channel.
- ns. Nanosecond (10⁻⁹ second).
- NULL. Any value that is not in the specified range of a field.
- Null Traffic Channel Data. One or more frames of a specified data sequence sent at the
- lowest agreed-upon rate of the negotiated rate set. Null Traffic Channel data may be sent

- when there is no primary, secondary, or signaling traffic available. Null Traffic Channel
- data serves to maintain the connectivity between the mobile station and the base station.
- 3 Number Assignment Module (NAM). A set of MIN/IMSI-related parameters stored in the
- 4 mobile station.
- 5 Numeric Information. Numeric information consists of parameters that appear as
- 6 numeric fields in messages exchanged by the base station and the mobile station and
- information used to describe the operation of the mobile station.
- 8 Optional Field. A field defined within a message structure that is optionally transmitted
- to the message recipient.
- Order. A type of message that contains control codes for either the mobile station or the
- 11 base station.
- ordered Registration. A registration method in which the base station orders the mobile
- station to send registration related parameters.
- Orthogonal Transmit Diversity (OTD). An optional method of transmission of the
- Forward CDMA Channel that uses two antennas, each transmitting a fraction of the code
- symbols. It can be used to enhance performance in the presence of multipath fading radio
- 17 propagation.
- 18 **OTD.** See Orthogonal Transmit Diversity
- Overhead Message. A message sent by the base station on the Paging Channel to
- 20 communicate base-station-specific and system-wide information to mobile stations.
- 21 Overload Class (OLC). The means used to control system access by mobile stations,
- 22 typically in emergency or other overloaded conditions. Mobile stations are assigned one
- 23 (or more) of sixteen overload classes. Access to the CDMA system can then be controlled
- on a per class basis by persistence values transmitted by the base station.
- PACA. Priority Access and Channel Assignment. See PACA Call.
- 26 PACA Call. A priority mobile station originated call for which no traffic channel or voice
- 27 channel was immediately available, and which has been queued for a priority access
- 28 channel assignment.
- 29 Packet. The unit of information exchanged between the service option applications of the
- base station and the mobile station.
- Padding. A sequence of bits used to fill from the end of a message to the end of a message
- capsule, typically to the end of the frame or half frame. All bits in the padding are '0'.
- 33 Paging. The act of seeking a mobile station when a call has been placed to that mobile
- 34 station.
- 25 Paging Channel. A code channel in a Forward CDMA Channel used for transmission of
- control information and pages from a base station to a mobile station.
- Paging Channel Slot. An 80 ms interval on the Paging Channel. Mobile stations
- operating in the slotted mode are assigned specific slots in which they monitor messages
- 39 from the base station.

- Paging Indicator. A one-bit datum, sent on the Quick Paging Channel. Quick paging
- 2 indicators are associated with mobile stations, in pairs, via a hashing algorithm.
- 3 Appearance of both of its indicators in its assigned Quick Paging Channel slot serves to
- alert a slotted mode mobile station, operating in the idle state, that it should monitor the
- 5 Paging Channel starting in the next slot. See also Quick Paging Channel.
- 6 Parameter-Change Registration. A registration method in which the mobile station
- registers when certain of its stored parameters change.
- Parity Check Bits. Bits added to a sequence of information bits to provide error detection,
- s correction, or both.
- 10 Passive User Zone. A user zone in which the implicit registration that takes place at call
- setup is sufficient to trigger a change in tiered service features. See also CDMA Tiered
- Services, User Zone, and Active User Zone.
- PCI. See Protocol Control Information.
- PCS. See Personal Communications Services.
- PCSC. See Personal Communications Switching Center.
- PCS System. See Personal Communications Services System.
- 17 **PDU.** See Protocol Data Unit.
- 18 Personal Communications Services System. A configuration of equipment that provides
- 19 PCS radiotelephone services.
- Personal Communications Services (PCS). A family of mobile and portable radio
- 21 communications services for individuals and businesses that may be integrated with a
- variety of competing networks. Broadcasting is prohibited and fixed operations are to be
- 23 ancillary to mobile operations.
- Personal Communications Switching Center (PCSC). See Mobile Switching Center
- 25 (MSC).
- 26 Physical Channel. A communication path between stations, described in terms of the RF
- 27 characteristics such as coding, power control policies, etc.
- 28 Physical Layer. The part of the communication protocol between the mobile station and
- the base station that is responsible for the transmission and reception of data. The
- 30 physical layer in the transmitting station is presented a frame by the multiplex sublayer
- and transforms it into an over-the-air waveform. The physical layer in the receiving station
- transforms the waveform back into a frame and presents it to the multiplex sublayer above
- 33 it.
- Pilot Beacon. A transmit-only base station that broadcasts a Pilot Channel, a Sync
- 35 Channel, optionally a Paging Channel, but no Forward Traffic Channels. The mobile
- station measures the pilot beacon to assist in CDMA hard handoffs and inter-frequency
- idle-mode handoffs.
- Pilot Channel. A non-data-bearing signal transmitted by a CDMA station. See Forward
- ³⁹ Pilot Channel, Transmit Diversity Pilot Channel, Auxiliary Pilot Channel, Auxiliary
- Transmit Diversity Pilot Channel, and Reverse Pilot Channel.

- Pilot PN Chip. One bit, or bit pair, of a pilot PN sequence, or the time interval
- 2 corresponding thereto.
- 3 Pilot PN Sequence. A pair of modified maximal length PN sequences used to spread the
- quadrature components of a CDMA Channel.
- 5 Pilot PN Sequence Offset. The time offset of a Forward Pilot Channel from CDMA System
- time, as transmitted by the base station, expressed modulo the pilot period.
- 7 Pilot PN Sequence Offset Index. The pilot PN sequence offset in units of 64 PN chips of a
- Forward Pilot Channel, relative to the zero offset pilot PN sequence.
- 9 Pilot Strength. The ratio of pilot power to total power in the signal bandwidth of a CDMA
- Forward or Reverse Channel. See also E_c/I_o .
- 11 PN. Pseudonoise.
- PN Chip. One bit in a PN sequence, or the time duration of such a bit. It corresponds to
- the smallest modulation interval in a CDMA system.
- PN Sequence. Pseudonoise sequence. A deterministic, periodic binary sequence having
- limited statistical similarity to a Bernoulli (coin-tossing).
- Power Control Bit. A bit sent on the Forward Power Control Subchannel or Reverse
- 17 Power Control Subchannel to signal the mobile station or base station to increase or
- decrease its transmit power.
- 19 Power Control Group. A 1.25 ms interval on the Forward Traffic Channel and the Reverse
- 20 Traffic Channel. See also Power Control Bit.
- 21 Power-Down Registration. An autonomous registration method in which the mobile
- 22 station registers on power-down.
- 23 Power Up Function. A method by which the mobile station increases its output power to
- support location services.
- 25 Power-Up Registration. An autonomous registration method in which the mobile station
- registers on power-up.
- 27 **PPM.** Parts per million.
- 28 Preamble. See Access Channel Preamble and Traffic Channel Preamble.
- 29 Primary CDMA Channel. A pre-assigned channel in a CDMA Cellular System used by the
- mobile station for initial acquisition. See also Secondary CDMA Channel.
- Primary Paging Channel (CDMA). The default code channel (code channel 1) assigned for
- paging on a CDMA Channel.
- 33 Primary Traffic. The main traffic stream carried between the mobile station and the base
- station on the Traffic Channel. See also Secondary Traffic and Signaling Traffic.
- Primitive. An atomic, well-defined method of transferring data and control information
- between two adjacent layers and sublayers. Conventionally represented as a function
- invocation with the data and/or control information as parameters.

- Private Long Code. The long code characterized by the private long code mask. See also
- 2 Long Code.
- 3 Private Long Code Mask. The long code mask used to form the private long code. See
- also Public Long Code Mask and Long Code.
- 5 Private Neighbor Set. The set of pilots associated with the private system base stations
- that are probable candidates for idle handoff. See also Active Set, Neighbor Set, Remaining
- 7 Set, and CDMA Tiered Services.
- Protocol Control Information (PCI). Data passed between adjacent layers in the protocol
- stack, together with the SDU, to assist a layer to properly encapsulate/decapsulate the
- 5DU. Examples of PCI in this document are the MCSB and the PCSB.
- Protocol Data Unit. Encapsulated data communicated between peer layers on the mobile
- station and base station. Unless specified otherwise, in this document PDU refers to the
- Layer 3 protocol data unit transferred at the interface between layer 3 and layer 2.
- Protocol Stack. Conceptual model of the layered architecture for communication
- protocols (see Layering) in which layers within a station are represented in the order of
- their numeric designation and requiring that transferred data be processed sequentially by
- each layer, in the order of their representation. Graphically, the "stack" is drawn
- vertically, with the layer having the lowest numeric designation at the base.
- Public Long Code. The long code characterized by the public long code mask.
- 20 Public Long Code Mask. The long code mask used to form the public long code. The
- 21 mask contains a permutation of the bits of the ESN, and also includes the channel
- 22 number when used for a Supplemental Code Channel. See also Private Long Code Mask
- 23 and Long Code.
- PUF. See Power Up Function.
- PUF Attempt. A sequence of PUF probes sent by the mobile station in response to a
- 26 Power Up Function Message.
- 27 PUF Probe. One or more consecutive frames on the Reverse Traffic Channel within which
- 28 the mobile station transmits the PUF pulse.
- PUF Pulse. Portion of PUF probe that may be transmitted at elevated output power.
- 30 PUF Target Frequency. The CDMA frequency assignment to which the base station
- directs a mobile station for transmitting the PUF probe.
- Punctured Code. An error-correcting code generated from another error-correcting code
- 33 by deleting (i.e., puncturing) code symbols from the coder output.
- Quick Paging. A feature that permits mobile stations to further conserve battery power
- beyond the savings achieved by slotted mode operation. See also Paging Indicator and
- 36 Configuration Change Indicator.
- ³⁷ Quick Paging Channel. An uncoded, on-off-keyed (OOK) spread spectrum signal sent by
- base stations to inform slotted mode mobile stations, operating in the idle state, whether
- 39 to monitor the Paging Channel. See also Quick Paging, Paging Indicator, and
- 40 Configuration Change Indicator.

- Quick Paging Channel Slot. An 80 ms interval on the Quick Paging Channel. See also
- Paging Indicator and Configuration Change Indicator.
- 3 Quick Repeats. Additional transmissions of identical copies of a message within a short
- 4 interval to increase the probability that the message is received correctly.
- 5 **r-csch**. Reverse common signaling logical channel.
- **r-dsch.** Reverse dedicated signaling logical channel.
- 7 Radio Configuration. A set of Forward Traffic Channel and Reverse Traffic Channel
- 8 transmission formats that are characterized by physical layer parameters such as
- transmission rates, modulation characteristics and spreading rate. See Table 3.1.3.1-1
- and Table 2.1.3.1-1 of 3GPP2 C.S0002-0.
- Radio Configuration Class. A group of Radio Configurations. All Radio Configurations,
- for the Forward Traffic Channel and the Reverse Traffic Channel, are divided into three
- classes by the types of pre-spreading symbols (BPSK and QPSK) and spreading rates. RC
- Class 1 consists of RC 1 and RC 2 for the Forward Traffic Channel and the Reverse Traffic
- 15 Channel. RC Class 2 consists of RC 3 and RC 4 of the Reverse Traffic Channel, and RC 3.
- RC 4 and RC 5 of the Forward Traffic Channel. RC Class 3 consists of RC 5 and RC 6 of
- the Reverse Traffic Channel, and RC 6, RC 7, RC 8, and RC 9 of the Forward Traffic
- 18 Channel.
- Rate Set. A set of Traffic Channel transmission formats that are characterized by physical
- 20 layer parameters such as transmission rates, modulation characteristics, and error
- 21 correcting coding schemes.
- **RC.** See Radio Configuration.
- 23 Registration. The process by which a mobile station identifies its location and parameters
- to a base station.
- 25 Registration Zone. A collection of one or more base stations treated as a unit when
- determining whether a mobile station should perform zone-based registration. See also
- User Zone, with which it should not be confused.
- 28 Release. A process that the mobile station and base station use to inform each other of
- 29 call disconnect.
- Remaining Set. The set of all allowable pilot offsets as determined by PILOT_INC,
- excluding the pilot offsets of the pilots in the Active Set, Candidate Set, and Neighbor Set.
- See also Active Set, Candidate Set, and Neighbor Set.
- 33 Request. A layer 3 message generated by either the mobile station or the base station to
- retrieve information, ask for service, or command an action.
- Response. A layer 3 message generated as a result of another message, typically a
- 36 request.
- 37 **Reverse CDMA Channel.** The CDMA Channel from the mobile station to the base station.
- From the base station's perspective, the Reverse CDMA Channel is the sum of all mobile
- station transmissions on a CDMA Frequency Assignment.
- 40 Reverse Dedicated Control Channel. A Dedicated Control Channel that is transmitted

- on the Reverse CDMA Channel.
- 2 Reverse Fundamental Channel. A Fundamental Channel that is transmitted on the
- 3 Reverse CDMA Channel.
- 4 Reverse Pilot Channel. A non-data-bearing direct-sequence spread spectrum signal
- 5 transmitted by each CDMA mobile station whenever the Enhanced Access Channel,
- 6 Reverse Common Control Channel, or Reverse Traffic Channel is enabled. The Reverse
- 7 Pilot Channel allows a base station to acquire the timing of the Reverse CDMA Channel
- and provides a phase reference for coherent demodulation. The Reverse Pilot Channel may
- be transmitted either continuously or in gated mode.
- 10 Reverse Supplemental Channel. A Supplemental Channel that is transmitted on the
- 11 Reverse CDMA Channel.
- Reverse Supplemental Code Channel. A Supplemental Code Channel that is transmitted
- on the Reverse CDMA Channel.
- Reverse Traffic Channel. A Traffic Channel on which data and signaling are transmitted
- from a mobile station to a base station. The Reverse Traffic Channel is composed zero or
- one Reverse Fundamental Channel, zero to seven Reverse Supplemental Code Channels,
- zero to two Reverse Supplemental Channels, and zero or one Reverse Dedicated Control
- 18 Channel.
- Roamer. A mobile station operating in a cellular system (or network) other than the one
- 20 from which service was subscribed. See also Foreign NID Roamer and Foreign SID
- 21 Roamer.
- 22 SAP. See Service Access Point.
- SCI. See Synchronized Capsule Indicator Bit.
- 24 SDU. See Service Data Unit.
- 25 Search Window. The range of PN sequence offsets that a mobile station searches for a
- 26 pilot.
- 27 Search Window Offset. PN sequence offset used by the mobile station to position the
- search window when searching for a pilot.
- 29 Secondary CDMA Channel. A pre-assigned channel in a CDMA Cellular System used by
- 30 the mobile station for initial acquisition. See also Primary CDMA Channel.
- 31 Secondary Traffic. An additional traffic stream that can be carried between the mobile
- station and the base station on the Traffic Channel. See also Primary Traffic and Signaling
- 33 Traffic.
- 34 Service Access Point. Conceptual point at the interface between two adjacent layers
- 35 where services are provided to the upper layer and data and protocol information is
- exchanged between layers.
- 37 Service Configuration. The common attributes used by the mobile station and the base
- station to build and interpret Traffic Channel frames. A service configuration consists of
- 39 Forward and Reverse Traffic Channel multiplex options, Forward and Reverse Traffic
- 40 Channel transmission rates, and service option connections.

- Service Data Unit. Data transferred between adjacent layers in the protocol stack.
- 2 Unless specified otherwise in this document SDU refers to the Layer 3 service data unit
- being transferred to/from Layer 2.
- 4 Service Negotiation. The procedures used by the mobile station and base station to
- s establish a service configuration. See also Service Option Negotiation.
- 6 Service Option. A service capability of the system. Service options may be applications
- such as voice, data, or facsimile. See TSB58-A.
- 8 Service Option Connection. A particular instance or session in which the service defined
- by a service option is used. Associated with a service option connection are a reference,
- which is used for uniquely identifying the service option connection, a service option,
- which specifies the particular type of service in use, a Forward Traffic Channel traffic type,
- which specifies what type of Forward Traffic Channel traffic is used to support the service
- option connection, and a Reverse Traffic Channel traffic type, which specifies what type of
- Reverse Traffic Channel traffic is used by the service option connection.
- Service Option Connection Reference. A designator used by the base station and
- mobile station to uniquely identify a particular service option connection.
- ¹⁷ Service Option Negotiation. The procedures used by the mobile station and base station
- to establish a service configuration. Service option negotiation is similar to service
- negotiation, but allows less flexibility for specifying the attributes of the service
- configuration. See also Service Negotiation.
- Service Redirection. The process by which the base station alters the system selection
- 22 made by a mobile station. It can be used temporarily during maintenance and testing to
- 23 divert subscribers to an alternate system.
- Serving Frequency. The CDMA frequency on which a mobile station is currently
- 25 communicating with one or more base stations.
- 26 Shared Secret Data (SSD). A 128-bit pattern stored in the mobile station (in semi-
- permanent memory) and known by the base station. SSD is a concatenation of two 64-bit
- subsets: SSD_A, which is used to support the authentication procedures, and SSD_B,
- which serves as one of the inputs to the process generating the encryption mask and
- 30 private long code.
- 31 Short Message Services (SMS). A suite of services such as SMS Text Delivery, Digital
- Paging (i.e., Call Back Number CBN), and Voice Mail Notification (VMN).
- 33 **SID.** See System Identification.
- 34 Signaling Traffic. Control messages that are carried between the mobile station and the
- base station on the Traffic Channel. See also Primary Traffic and Secondary Traffic.
- 38 Slotted Mode. An operation mode of the mobile station in which the mobile station
- 37 monitors only selected slots on the Paging Channel when in the Mobile Station Idle State.
- 38 Soft Handoff. A handoff occurring while the mobile station is in the Mobile Station Control
- 39 on the Traffic Channel State. This handoff is characterized by commencing

- communications with a new base station on the same CDMA Frequency Assignment before
- terminating communications with an old base station. See also Hard Handoff.
- **SOM.** Start-of-Message bit.
- sps. Symbols per second.

10

11

12

13

14

15

16

17

18

19

20

21 22

23

24

25

26

27

- 5 SSD. See Shared Secret Data.
- 6 Station Class Mark (SCM). An identification of certain characteristics of a mobile station.
- 7 Classes are defined in Table 2.3.3-1 of TIA/EIA-553-A and Table 6.3.3-1 of this document.
- Status Information. The following status information is used to describe mobile station
 operation when using the analog system:
 - Serving-System Status. Indicates whether a mobile station is tuned to channels associated with System A or System B.
 - First Registration ID Status. A status variable used by the mobile station in association with its processing of received Registration ID messages.
 - First Location Area ID Status. A status variable used by the mobile station in association with its processing of received Location Area ID messages.
 - Location Registration ID Status. A status variable used by the mobile station in association with its processing of power-up registrations and location-based registrations.
 - First Idle ID Status. A status variable used by the mobile station in association with its processing of the Idle Task.
- Local Control Status. Indicates whether a mobile station must respond to local control messages.
 - Roam Status. Indicates whether a mobile station is in its home system.
- Termination Status. Indicates whether a mobile station must terminate the call when it is on an analog voice channel.
 - Update Protocol Capability Status. Indicates whether the mobile station should report its protocol capability to the serving system.
- Supplemental Channel. An optional portion of a Traffic Channel (Forward or Reverse Radio Configurations 3 and above) that operates in conjunction with a Fundamental Channel in that Traffic Channel, and (optionally) with other Supplemental Channels to provide higher data rate services.
- 32 Supplemental Code Channel. An optional portion of a Traffic Channel (Forward or
- Reverse Radio Configurations 1 and 2) that operates in conjunction with a Fundamental
- ³⁴ Code Channel in that Traffic Channel, and (optionally) with other Supplemental Code
- ³⁵ Channels to provide higher data rate services. On this channel a combination of primary
- data, secondary data, or both (but never signaling information) are transmitted.
- 37 **Symbol.** See Code Symbol and Modulation Symbol.

- Sync Channel. Code channel 32 in the Forward CDMA Channel which transports the
- 2 synchronization message to the mobile station.
- 3 Sync Channel Superframe. An 80 ms interval consisting of three Sync Channel frames
- 4 (each 26.666... ms in length).
- 5 Synchronized Capsule Indicator Bit (SCI). The first bit in any Paging Channel half
- frame, which indicates whether a synchronized message capsule immediately follows.
- 7 System. A system is a cellular telephone service or personal communications service that
- covers a geographic area such as a city, metropolitan region, county, or group of counties.
- See also Network.
- System Identification (SID). A number uniquely identifying a cellular or PCS system.
- 11 System Time. The time reference used by the system. System Time is synchronous to
- UTC time (except for leap seconds) and uses the same time origin as GPS time. All base
- stations use the same System Time (within a small error). Mobile stations use the same
- System Time, offset by the propagation delay from the base station to the mobile station.
- ¹⁵ See also Universal Coordinated Time.
- 18 Target Frequency. The CDMA frequency assignment to which the base station directs a
- mobile station in a handoff using an Extended Handoff Direction Message, a General
- 18 Handoff Direction Message, or a Universal Handoff Direction Message.
- 19 Temporary Mobile Station Identity (TMSI). A temporary mobile station identification
- 20 assigned by the base station.
- Timer-Based Registration. A registration method in which the mobile station registers
- whenever a counter reaches a predetermined value. The counter is incremented an
- 23 average of once per 80 ms period.
- 24 Time Reference. A reference established by the mobile station that is synchronous with
- the earliest arriving multipath component used for demodulation.
- **TMSI.** See Temporary Mobile Station Identity.
- 27 TMSI Zone. The administrative zone that allows the TMSI to be reused. The TMSI_CODE
- 28 has to be unique within a TMSI zone but may be reused in a different TMSI zone. The
- TMSI zone is identified by the field TMSI_ZONE.
- 30 Traffic Channel. A communication path between a mobile station and a base station
- used for user and signaling traffic. The term Traffic Channel implies a Forward Traffic
- 32 Channel and Reverse Traffic Channel pair. See also Forward Traffic Channel and Reverse
- 33 Traffic Channel.
- 34 Traffic Channel Preamble. A sequence of all-zero frames that is sent by the mobile
- station on the Reverse Traffic Channel as an aid to Traffic Channel acquisition.
- 36 Unassured Mode. Mode of delivery that does not guarantee that a PDU will be delivered to
- 37 the peer. The LAC entity at the receiver does not acknowledge a PDU sent in unassured
- 38 mode.
- 39 Unique Challenge-Response Procedure. An exchange of information between a mobile
- station and a base station for the purpose of confirming the mobile station's identity. The

- procedure is initiated by the base station and is characterized by the use of a challenge-
- 2 specific random number (i.e., RANDU) instead of the random variable broadcast globally
- 3 (RAND).
- 4 Unique Random Variable (RANDU). A 24-bit random number generated by the base
- station in support of the Unique Challenge-Response procedure.
- 6 Universal Coordinated Time (UTC). An internationally agreed-upon time scale
- maintained by the Bureau International de l'Heure (BIH) used as the time reference by
- nearly all commonly available time and frequency distribution systems i.e., WWV, WWVH,
- 9 LORAN-C, Transit, Omega, and GPS.
- 10 User Zone. An area within which CDMA Tiered Services may be provided. It may
- correspond to an RF coverage area, or it may be established independent of RF topology.
- User Zones are classified as broadcast versus mobile-specific, and as active versus passive.
- See Broadcast User Zone, Mobile-Specific User Zone, Active User Zone, and Passive User
- Zone. See also Registration Zone, with which it should not be confused.
- User Zone Registration. An autonomous registration method in which the mobile station
- registers when it selects an active user zone while in the Idle State. See also Zone-Based
- 17 Registration, with which it should not be confused.
- 18 Upper Layers. General reference to Layer 3 and the layers above it.
- 19 User Zone Exit parameter. A parameter used by the mobile station to determine if it
- 20 should exit a User Zone.
- UTC. Universal Temps Coordiné. See Universal Coordinated Time.
- 22 Voice Privacy. The process by which user voice transmitted over a CDMA Traffic Channel
- is afforded a modest degree of protection against eavesdropping over the air.
- 24 Walsh Chip. The shortest identifiable component of a Walsh function. There are 2N
- 25 Walsh chips in one Walsh function where N is the order of the Walsh function. On the
- Forward CDMA Channel, one Walsh chip equals 1/1.2288 MHz, or 813.802... ns. On the
- 27 Reverse CDMA Channel, one Walsh chip equals 4/1.2288 MHz, or 3.255... μs.
- Walsh Function. One of 2^N time orthogonal binary functions (note that the functions are
- orthogonal after mapping '0' to 1 and '1' to -1).
- 30 Zone-Based Registration. An autonomous registration method in which the mobile
- station registers whenever it enters a zone that is not in the mobile station's zone list. See
- also User Zone Registration, with which it should not be confused.
- 33 Zone Timer. A timer used by the mobile station to remove outdated entries from its list of
- 34 zones in which it has previously registered.
- μ s. Microsecond (10⁻⁶ second).
- 36 1.1.2 Numeric Information
- 37 Numeric information is used to describe the operation of the mobile station. The following
- 38 subscripts are used to clarify the use of the numeric information:
 - "s" indicates a value stored in a mobile station's temporary memory.

- "sv" indicates a stored value that varies as a mobile station processes various tasks.
- "sl" indicates the stored limits on values that vary.
- "r" indicates a value received by a mobile station over a forward analog control channel or a CDMA Forward Channel.
- "p" indicates a value set in a mobile station's permanent security and identification memory.
- "s-p" indicates a value stored in a mobile station's semi-permanent security and identification memory.

1.1.2.1 Reserved

- 10 1.1.2.2 CDMA Numeric Information
- The following are internal values that are stored by the mobile station in temporary
- memory that are not sent over the air. See Annex F for values stored by the mobile station
- in permanent and semi-permanent memory.
- ACC_CHAN_s Number of Access Channels supported by the current Paging Channel.
- ACC_ENT_HO_ORDERs Access entry handoff permitted from the Mobile Station Order
- and Message Processing Operation of the Mobile Station Idle State.
- ACCESS_ENTRY_HO_s Idle handoff permitted when entering the System Access State.
- ACCESS_HO_s Handoff permitted after performing an access attempt while the mobile
- 19 station is in the System Access State.
- 20 ACCESS_HO_ALLOWEDs Handoff permitted to the corresponding neighbor base station
- while in the System Access State.
- 22 ACCESS_HO_LIST List of pilots to which access handoff or access probe handoff is
- 23 permitted.
- 24 ACC_HO_LIST_UPDs Access handoff list update permitted indicator.
- ²⁵ ACCESS_HO_MSG_RSP_s Access handoff permitted in the System Access State between
- the time that the mobile station receives a message and responds to that message.
- 27 ACCESS_PROBE_HO_s Access probe handoff permitted during an access attempt in the
- 28 Mobile Station Origination Attempt Substate or the Page Response Substate.
- 29 ACC_MSG_SEQ_s Last received Access Parameters Message sequence number.
- 30 ACC_PROBE_HO_OTHER_MSG_s Access probe handoff permitted for Access Channel
- messages other than the Origination Message and the Page Response Message.
- ACC_TMO_s Access Channel acknowledgment timeout, in units of 80 ms.
- 33 ACK_WAITING_s[i] Acknowledgment status indicator for message sequence number i. Set
- to YES if an acknowledgment is pending for the message; otherwise, set to NO.
- $ADD_INTERCEPT_S$ The intercept in the inequality criterion for adding a pilot to the
- 36 Active Set.

- 1 AGEs Neighbor list age. For each pilot in the Neighbor Set, the mobile station
- 2 increments this counter each time a Neighbor List Update Message or an Extended
- Neighbor List Updae Message is received. When AGEs exceeds NGBHR_MAX_AGE, the
- pilot is deleted from the Neighbor Set.
- 5 ALIGN_TIMING_USEDs Indicates whether the mobile station aligns the times of visits
- away from the Serving Frequency, as requested by the base station, in the periodic search
- 7 procedures.
- 8 ANALOG_CHANs Analog channel number for CDMA-to-analog handoff.
- ANALOG_NGHBR_LIST List containing information about neighboring analog systems.
- 10 AN_CHAN_TYPE_s Analog voice channel type.
- 11 ASSIGNED_QPAGECH_s Assigned Quick Paging Channel number.
- 12 **AUTH**₈ Current authentication mode.
- BAD_FRAMES_s Bad frames count. The number of received bad frames.
- BASE_CLASS_s Base station class of the current base station.
- BASE_ID_s Base station identification of the current base station.
- BASE_LAT_s Latitude of the current base station, in units of 0.25 seconds.
- BASE_LONG_s Longitude of the current base station, in units of 0.25 seconds.
- BEGIN_PREAMBLE_s A stored variable in the mobile station that contains the size of the
- preamble that shall be transmitted on a Reverse Supplemental Code Channel at the
- beginning of a Reverse Supplemental Code Channel transmission.
- **BKOFF**_s Access Channel probe sequence backoff range.
- 22 BLOB_FROM_RCs Block of bits received from the Resource Control. The contents of the
- 23 BLOB is transparent to Layer 3.
- 24 BLOB_FROM_MSG_s Block of bits received in an over-the-air message. The contents of
- 25 the BLOB is transparent to Layer 3.
- 28 BYPASS_ALERT_ANSWERs Mobile station termination bypass indicator. This is set to
- 27 '1' if the mobile station is to bypass the Waiting for Order Substate and the Waiting for
- 28 Mobile Station Answer Substate, and proceed directly to the Conversation Substate when
- Layer 3 receives a forward dedicated channel-acquired indication from Layer 2.
- 30 CDMABANDs. CDMA band class. The CDMA band class currently used by the mobile
- 31 station.
- 32 CDMACH_s CDMA Channel number. The CDMA Channel number currently used by the
- mobile station.
- 34 CF_CDMABANDs Candidate Frequency CDMA band class. The CDMA band class
- specified in the Candidate Frequency Search Request Message.
- 36 CF_CDMACH_S Candidate Frequency CDMA Channel number. The CDMA Channel
- 37 number specified in the Candidate Frequency Search Request Message.

- cF_PILOT_INCs PILOT_INC to be used by the mobile station after an inter-frequency
- hard handoff to the CDMA Candidate Frequency is successfully completed.
- 3 CF_SEARCH_PRIORITY_INCLs Candidate Frequency neighbor pilots' search priority
- 4 included indicator.
- 5 CF_SRCH_OFFSET_INCLs Candidate Frequency neighbor pilot search window offset
- 6 included indicator.
- 7 CF_SRCH_WIN_NGHBR_INCLs Candidate Frequency neighbor pilots' search window
- s included indicator.
- 9 CF_SRCH_WIN_Ns Search window size for the Candidate Frequency Search Set.
- 10 CF_SRCH_WIN_R_s Search window size to be used for the Remaining Set after an inter-
- frequency hard handoff to the CDMA Candidate Frequency is successfully completed.
- 12 **CF_T_ADD**_S Pilot detection threshold to be used on the CDMA Candidate Frequency.
- 13 CH_IND_FROM_MSG_s Physical channel indicator based on the value received in an over-
- the-air message. The least significant bit denotes the Fundamental Channel, the second
- least significant bit denotes the Dedicated Control Channel, and the most significant bit
- denotes the Continuous Reverse Pilot.
- 17 CH_IND_FROM_RCs Physical channel indicator based on the value received from the
- 18 Resource Control. The least significant bit denotes the Fundamental Channel, the second
- least significant bit denotes the Dedicated Control Channel, and the most significant bit
- 20 denotes the Continuous Reverse Pilot.
- 21 CHAN_LST_MSG_SEQ_s CDMA Channel List Message sequence number.
- 22 CODE_CHAN_LIST Code Channel List. A descriptive structure used to manage the
- 23 Forward Fundamental Channel, and Forward Supplemental Code Channels, if any,
- associated with the mobile station's Active Set.
- 25 COMPLETE_PUF_FRAMEs Number of power control groups required to make the PUF
- probe an integer number of frames.
- 27 COMPLETE_SEARCH_s Flag to indicate if the mobile station is to complete the search of
- 28 the Candidate Frequency Search Set after it has determined that the inter-frequency
- 29 handoff attempt to the CDMA Candidate Frequency is unsuccessful.
- 30 CONFIG_MSG_SEQs Current message sequence number for the System Parameters
- 31 Message, Neighbor List Message, Extended Neighbor List Message, General Neighbor List
- 32 Message, CDMA Channel List Message, Extended System Parameters Message, Global
- 33 Service Redirection Message, Private Neighbor List Message, User Zone Identification
- Message, Extended CDMA Channel List Message, Extended Global Service Redirection
- 35 Message.
- 36 CON_REF_FROM_RC_s Connection Reference received from the Resource Control.
- 37 COUNTER_ENABLEDs Timer-based registration indicator. Set to YES if timer-based
- registration is enabled; otherwise, set to NO.
- 39 CURR_ACC_MSG_SEQ Current Access Parameter Message sequence number.

- 1 CURRENT_ACTIVE_PILOTs Identifies the current pilot in the Active Set during an
- 2 access attempt.
- 3 CURRENT_PUF_PROBEs Number of the next PUF probe to be transmitted within the
- 4 PUF attempt.
- 5 DAYLT_s Daylight Savings Time indicator.
- 6 DECORR Hashing function input used to decorrelate hashing function applications for
- 7 the same mobile station.
- B DEFAULT_CONFIGs Mobile station current default configuration.
- 9 DELETE_FOR_TMSIs A storage variable in the mobile station that indicates whether the
- mobile station should delete its current TMSI if the TMSI was assigned in a different TMSI
- 11 zone.
- DIFF_RX_PWR_THRESH_s Threshold for the difference between the received power on
- the Serving Frequency and the received power on the CDMA Candidate Frequency for the
- mobile station to search for pilots on the CDMA Candidate Frequency.
- DISTANCE Distance from registered base station to current base station, used for
- distance-based registration.
- DROP_INTERCEPTs The intercept in the inequality criterion for dropping a pilot from
- 18 the Active Set.
- 19 **DSCC_s** Digital supervisory color code.
- 20 DTXs Discontinuous transmission mode for analog channel assignment and CDMA-to-
- 21 analog handoff.
- $EC_IO_THRESH_S$ Pilot E_C/I_O threshold used for system reselection.
- 23 EC_THRESH_s Pilot power threshold used for system reselection.
- **ENCRYPT_MODE**_s Current message encryption mode.
- 25 EXCL_P_REV_MS Exclude from redirection by MOB_P_REV indicator.
- EXT_NGHBR_LST_MSG_SEQs Extended Neighbor List Message sequence number.
- 27 EXT_CHAN_LST_s Extended CDMA Channel List Message sent indicator.
- 28 EXT_CHAN_LST_MSG_SEQ_s Extended CDMA Channel List Message sequence number.
- 29 EXT_GLOBAL_REDIRECTs Extended Global Service Redirection Message sent indicator.
- 30 EXT_GLOB_SERV_REDIR_MSG_SEQs Extended Global Service Redirection Message
- 31 sequence number.
- 32 EXT_SYS_PARAMETERs Extended System Parameters Message sent indicator.
- EXT_SYS_PAR_MSG_SEQ_s Extended System Parameters Message sequence number.
- FIRST_ACTIVE_PILOTs While the mobile station is in the System Access State, identifies
- the pilot to which the first access probe was transmitted, upon entering the System Access
- 36 State.

- FOR_DURATIONs A stored variable in the mobile station that contains the duration (in
- units of 80 ms) of a forward Supplemental Code Channel transmission that begins at time
- FOR_START_TIME_s.
- 4 FOR_FCH_RCs Forward Fundamental Channel Radio Configuration.
- 5 FOR_FRAME_40_MAX_RATEs The maximum data rate for the mobile station's
- transmission at 40 ms frame length on the Forward Supplemental Channel.
- 7 FOR_FRAME_80_MAX_RATEs The maximum data rate for the mobile station's
- transmission at 80 ms frame length on the Forward Supplemental Channel.
- 9 FOR_LINKED_HDM_SEQs Storage variable containing the most recent forward sequence
- number of the General Handoff Direction Message to which a Supplemental Channel
- 11 Assignment Message forward assignment was linked.
- FOR_NID_REG_s Foreign NID roamer autonomous registration enable.
- FOR_RC_s Forward Channel Radio Configuration.
- FOR_SCH_DURATIONs A stored variable in the mobile station which contains the
- duration of a forward Supplemental Channel transmission which begins at time
- 16 FOR_SCH_START_TIME_s.
- FOR_SCH_FRAME_LENGTH_s The Forward Supplemental Channel frame length.
- FOR_SCH_START_TIMEs A stored variable in the mobile station which contains the
- System Time, in units of time specified by START_TIME_UNITs, (modulo 32) at which the
- 20 mobile station shall start (or resume) processing Forward Supplemental Channels.
- FOR_SID_REG $_{\rm S}$ Foreign SID roamer autonomous registration enable.
- $_{22}$ FOR_START_TIMEs A stored variable in the mobile station that contains the System
- Time, in units of 80 ms, (modulo 64) at which the mobile station shall start (or resume)
- 24 processing Forward Supplemental Code Channels.
- 25 FPC_DCCH_CURR_SETPTs Current power control subchannel outer loop setpoint for
- the Forward Dedicated Control Channel.
- 27 FPC_DCCH_FER_s Target frame error rate for the Forward Dedicated Control Channel.
- FPC_DCCH_MAX_SETPTs Maximum value of the power control subchannel outer loop
- setpoint for the Forward Dedicated Control Channel.
- 30 FPC_DCCH_MIN_SETPTs Minimum value of the power control subchannel outer loop
- setpoint for the Forward Dedicated Control Channel.
- 32 FPC_DELTA_SCH_SETPTs The difference between the Fundamental Channel current
- 33 power control subchannel outer loop setpoint and the Supplemental Channel current
- 34 power control subchannel outer loop setpoint.
- 35 FPC_DELTA_SETPTs The difference between the Fundamental Channel current power
- control subchannel outer loop setpoint and the Dedicated Control Channel current power
- control subchannel outer loop setpoint.

- FPC_FCH_CURR_SETPTs Current power control subchannel outer loop setpoint for the
- 2 Forward Fundamental Channel.
- 3 FPC_FCH_FER_s Target frame error rate for the Forward Fundamental Channel.
- 4 FPC_FCH_MAX_SETPTs Maximum value of the power control subchannel outer loop
- setpoint for the Forward Fundamental Channel.
- FPC_FCH_MIN_SETPTs Minimum value of the power control subchannel outer loop
- setpoint for the Forward Fundamental Channel.
- FPC_MODE_s Forward power control operating mode.
- FPC_PRI_CHAN_s Primary power control subchannel measured channel.
- 10 FPC_SEC_CHANs Index of Forward Supplemental Channel to be measured by the
- secondary power control subchannel.
- FPC_SCH_CURR_SETPTs[i] Current power control subchannel outer loop setpoint for
- Forward Supplemental Channel i.
- FPC_SCH_FER_s[i] Target frame error rate for Forward Supplemental Channel i.
- FPC_SCH_MAX_SETPTs[i] Maximum value of the power control subchannel outer loop
- setpoint for Forward Supplemental Channel i.
- FPC_SCH_MIN_SETPTs[i] Minimum value of the power control subchannel outer loop
- setpoint for Forward Supplemental Channel i.
- 19 FPC_SETPT_THRESH_s Power control subchannel outer loop setpoint report threshold
- 20 for the Dedicated Control Channel.
- FPC_SETPT_THRESH_SCH_s Power control subchannel outer loop setpoint report
- 2 threshold for the Supplemental Channel.
- FRAME_OFFSET_s Current Traffic Channel frame offset, in units of 1.25 ms.
- ²⁴ GEN_NGHBR_LST_MSG_SEQ_s General Neighbor List Message sequence number.
- ²⁵ GLOBAL_REDIRECT_s Global Service Redirection Message sent indicator.
- ²⁶ GLOB_SERV_REDIR_MSG_SEQ_s Global Service Redirection Message sequence number.
- 27 GRANTED_MODE_s Mobile station current granted mode.
- 28 HASH_KEY Hashing function input that determines the return value. Derived from
- 29 IMSI_O.
- 30 HDM_SEQ_s Last received Extended Handoff Direction Message, General Handoff Direction
- Message, or Universal Handoff Direction Message sequence number.
- 32 HOME_REG_s Home (non-roaming) autonomous registration enable.
- 33 IGNORE_SCAMs Identifies whether a mobile station will process the reverse
- 34 supplemental channel assignment portion of the subsequent Supplemental Channel
- 35 Assignment Message.
- 38 IMSI_11_12s The 11th and 12th digits of the IMSI used for address matching.

- IMSI_O_ADDR_NUMs- The number of digits in the NMSI of the Operational IMSI (IMSI_O)
- 2 minus four.
- 3 IMSI_O_S_s The last 10-digits of Operational IMSI (IMSI_O).
- 4 IMSI_O_11_12_s The 11th and 12th digits of the Operational IMSI (IMSI_O).
- 5 INIT_PWR_s Initial power offset for Access Channel probes.
- 6 LC_STATE_s Long code state obtained from the Sync Channel Message.
- LP_SEC_s Leap seconds count (offset of CDMA system time from UTC).
- $\,^{8}$ $\,$ LTM_OFFs Local time offset from UTC, in units of 15 minutes.
- 9 MAX_CAP_SZ_s Maximum number of Access Channel frames in an Access Channel
- message capsule, less 3.
- 11 MAX_NUM_ALT_SOs The maximum number of alternative service option numbers that
- the mobile station is allowed to include in the Origination Message or in the Page Response
- 13 Message.
- MAX_NUM_PROBE_HOs The maximum number of times that a mobile station is
- permitted to perform an access probe handoff.
- MAX_PWR_PUFs Maximum number of PUF probes to be transmitted at maximum mobile
- station output power during a PUF attempt.
- 18 MAX_REQ_SEQs Maximum number of access probe sequences for an Access Channel
- 19 request.
- 20 MAX_RSP_SEQs Maximum number of access probe sequences for an Access Channel
- 21 response
- 22 MAX_SLOT_CYCLEs Maximum value of the slot cycle index allowed by the current base
- 23 station.
- MCC_s The Mobile Country Code used for address matching.
- 25 MCC_O_s The Mobile Country Code of IMSI_O.
- 26 MEMs Analog message encryption mode for CDMA-to-analog handoff.
- 27 $MIN_PILOT_EC_IO_THRESH_S$ Threshold for total E_c/I_o of pilots in the Serving
- 28 Frequency Active Set used in the Periodic Serving Frequency Pilot Report Procedure.
- 29 MIN_PILOT_PWR_THRESH_s Threshold for total E_c of pilots in the Serving Frequency
- 30 Active Set used in the Periodic Serving Frequency Pilot Report Procedure.
- MIN_P_REVs Minimum mobile station protocol revision level required for access to the
- 32 CDMA system.
- 33 MIN_TOTAL_PILOT_EC_IOs Total pilot strength threshold for the mobile station to
- attempt to demodulate the Forward Traffic Channel on the CDMA Candidate Frequency.
- MOB_TERMs Mobile station termination indicator. Set to '1' if the mobile station will
- accept mobile station terminated calls in its current roaming status.
- 37 MSG_PSIST_s Persistence modifier for Access Channel message transmissions.

- MS_LAT_s The latitude of the mobile station as estimated by the base station.
- MS_LOC_TSTAMP_s The time corresponding to the estimate of mobile station's latitude
- 3 and longitude.
- MS_LONG_s The longitude of the mobile station as estimated by the base station.
- MULT_NIDS_s Multiple NID storage indicator. Set to '1' if the mobile station may store
- 6 more than one entry in SID_NID_LIST_S for each SID.
- 7 MULT_SIDS_s Multiple SID storage indicator. Set to '1' if the mobile station may store
- entries in SID_NID_LIST_s having different SIDs.
- NAR_AN_CAP_s Narrow analog voice channel capability.
- NDSS_ORIGs NDSS Origination Indicator. Indicator used when the mobile station is
- NDSS-redirected while originating a call.
- NGHBR_BANDs Neighbor band class.
- NGHBR_CONFIG_s Neighbor base station channel allocation configuration.
- NGHBR_FREQs Neighbor CDMA channel number.
- NGHBR_LST_MSG_SEQ_s Neighbor List Message sequence number.
- NGHBR_MAX_AGEs Neighbor set maximum age for retention in the set.
- NGHBR_PNs Neighbor base station Pilot Channel PN sequence offset in units of 64 PN
- 18 chips.
- NGHBR_REC Record containing information about a neighbor base station (see also
- 20 NGHBR_REC_LIST).
- 21 NGHBR_REC_LIST Neighbor base station record list. A descriptive structure used to
- 22 manage the base station's information records about neighbor base stations (see also
- 23 NGHBR_REC).
- NGHBR_SET_ACCESS_INFOs Neighbor Set access handoff or access probe handoff
- information included indicator.
- NGHBR_SET_ENTRY_INFOs Neighbor Set access entry handoff information included
- 27 indicator.
- NGHBR_SET_SIZE_s Size of the Neighbor Set.
- 29 NGHBR_TIMING_INCL_s Indicates that hopping pilot beacon timing information is
- 30 included.
- NGHBR_TX_DURATIONs Hopping pilot beacon transmit time duration.
- NGHBR_TX_OFFSETs Hopping pilot beacon transmit time offset.
- NGHBR_TX_PERIOD_s Hopping pilot beacon transmit time period.
- NID_s Network identification. A network is a subset of the base stations within a cellular
- or PCS system.

- NOM_PWRs Nominal transmit power offset. A correction factor to be used by mobile
- stations in the open loop power estimate.
- 3 NUM_ANALOG_NGHBR_s Number of neighboring analog systems.
- 4 NUM_PREAMBLE_s Number of Traffic Channel preamble.
- 5 NUM_QPCH_s Number of Quick Paging Channels supported on the current CDMA
- 6 channel.
- NUM_REV_CODES_s A storage variable in the mobile station that contains the number of
- 8 Reverse Supplemental Code Channels that will be utilized in the next Reverse
- s Supplemental Code Channel transmission beginning at time REV_START_TIMEs. A value
- of 0 indicates no Reverse Supplemental Code Channel transmission will be permitted (i.e.,
- there is no pending Reverse Supplemental Code Channel transmission).
- NUM_STEPs Number of access probes in a single access probe sequence.
- 0THER_REPORTED_LIST List of other pilots that have pilot strengths exceeding T_ADD
- and that are not included in ACCESS_HO_LIST.
- PACAs PACA call indicator. Set to enabled to indicate that the mobile station is waiting
- for a priority access channel assignment; otherwise, set to disabled. In Sections 2 and 3,
- PACA_s = 0 is equivalent to setting PACA_s to disabled and PACA_s = 1 is equivalent to setting
- 18 PACA_S to enabled.
- 19 PACA_CANCEL PACA call cancel indicator. Set to '1' when the mobile station is directed
- by the user to cancel the PACA call; otherwise, set to '0'.
- PACA_SID_s PACA system identifier. Equal to the SID of the system on which the mobile
- 22 station originated a PACA call.
- PACA_TIMEOUT_s PACA state timer duration. Specifies how long the mobile station
- should wait for a PACA Message from the base station.
- PACKET_ZONE_ID_s Packet data services zone identifier of the base station.
- 26 PAGECH_S Current CDMA Paging Channel number.
- 27 PAGED Indicator for a page match detected while the mobile station is in the System
- 28 Access State.
- PAGE_CHAN_s Number of Paging Channels supported on the current CDMA channel.
- PAM_SZ_s Number of frames in the Access Channel preamble, less 1.
- PARAMETER_REG_s Parameter-change registration enable.
- PERIODIC_SEARCH_s Flag to indicate if the mobile station is to perform a periodic search
- on the Candidate Frequency.
- PGSLOT Value obtained from the hashing function, used to determine the mobile
- station's assigned Paging Channel slots.
- 36 PILOT_ARRIVAL Time of occurrence, as measured at the mobile station antenna
- 37 connector, of the earliest arriving usable multipath component of the pilot. The arrival
- time is measured relative to the mobile station's time reference.

- 1 PILOT_GATING_RATEs Reverse pilot gating rate on the Reverse Pilot Channel.
- PILOT_GATING_USE_RATE Reverse pilot gating rate enable indicator. It indicates
- 3 whether or not the Reverse Pilot Channel is gated.
- 4 PILOT_INCs Pilot PN sequence offset index increment. The interval between pilots, in
- 5 units of 64 PN chips, for base stations in a system.
- PILOT_PNs Pilot Channel PN sequence offset, in units of 64 PN chips, for a base station.
- PILOT_PN_PHASE Calculated Pilot Channel PN phase, in chips, including the PN
- sequence offset and the arrival time relative to the mobile station's time reference.
- PILOT_REPORTs Pilot reporting indicator.
- 10 **POWER_DOWN_REG**_s Power down registration enable indicator.
- 11 **POWER_UP_REG**_s Power up registration enable indicator.
- PPSMM_PERIODs The period used in the Periodic Serving Frequency Pilot Report
- 13 Procedure.
- PRAT_s Data rate of the Paging Channels.
- P_REV_s Protocol revision level supported by a base station.
- $P_REV_IN_USE_s$ Protocol revision level currently in use by a mobile station.
- PREF_MSID_TYPE_s Preferred mobile station identifier field type.
- PREVIOUS_ACTIVE_PILOTs Identifies the pilot, if any, which was in the Active Set
- immediately prior to the current pilot in the Active Set, during the current access attempt.
- 20 PRI_NGHBR_LIST_s Private Neighbor List Message sent indicator.
- PRI_NGHBR_PN Private Neighbor base station Pilot Channel PN sequence offset in units
- of 64 PN chips.
- PRI_NGHBR_REC Record containing information about a private neighbor base station
- 24 (see also PRI_NGHBR_REC_LIST).
- PRI_NGHBR_REC_LIST Private neighbor base station record list. A descriptive structure
- used to manage the base station's information records about private neighbor base
- zi stations (see also PRI_NGHBR_REC).
- PRI_NGHBR_LST_MSG_SEQ_s Private Neighbor List Message sequence number.
- PROBE_BKOFF_s Access Channel probe backoff range, in slots.
- PROBE_PN_RANs Range for hashing function selection of the delay prior to transmission
- of Access Channel probes. Value is log2(range + 1).
- PSIST_s Persistence value for the mobile station's overload class.
- PUF_FREQ_INCLs Flag to indicate whether the mobile station is to transmit a PUF probe
- on the serving frequency or on a target frequency.
- PUF_INIT_PWR_s Power increase (in dB) of the first PUF pulse in a PUF attempt.
- $PUF_INTERVAL_s$ Number of frames between the start of each PUF probe.

- PUF_PULSE_SIZE_s Duration of a PUF pulse in power control groups.
- PUF_PWR_STEP_s Amount (in dB) by which the mobile station is to increment the power
- 3 of a PUF pulse above nominal power from one PUF pulse to the next.
- 4 PUF_SETUP_SIZEs Number of power control groups within a PUF probe before the
- 5 transmission of the PUF pulse.
- PUF_SF_CDMABANDs Serving Frequency CDMA band class.
- PUF_SF_CDMACH_s Serving Frequency CDMA Channel number.
- PUF_TF_CDMABANDs Target Frequency CDMA band class.
- PUF_TF_CDMACH_s Target Frequency CDMA Channel number.
- PUF_TX_PWR_s Mobile station's output power for the PUF pulse.
- PWR_CNTL_STEPs Power control step size assigned by the base station that the mobile
- station is to use for closed loop power control.
- PWR_PERIOD_ENABLE_s Forward power control periodic reporting enabled indicator.
- PWR_REP_DELAYs Power report delay. The period that the mobile station waits
- following an autonomous Power Measurement Report before restarting frame counting for
- power control purposes.
- 17 PWR_REP_FRAMES_s Power control reporting frame count. The number of frames over
- which the mobile station is to count frame errors. Value is $2 \times \log_2(\text{frames} / 5)$.
- 19 PWR_REP_THRESH_s Power control reporting threshold. The number of bad frames to be
- 20 received in a measurement period before the mobile station is to generate a Power
- 21 Measurement Report Message.
- 22 PWR_STEP_s Power increment for successive access probes, in units of 1.0 dB.
- PWR_THRESH_ENABLEs Forward power control threshold reporting enabled indicator.
- 24 **QPAGECH**_s Current Quick Paging Channel number.
- 25 QPCH_CCI_SUPPORTEDs Flag to indicate if configuration change indicators are
- supported on the Quick Paging Channel.
- 27 QPCH_POWER_LEVEL_PAGEs Relative power level of the transmitted Quick Paging
- 28 Channel Paging Indicator modulation symbols, relative to the Forward Pilot Channel.
- 29 QPCH_POWER_LEVEL_CONFIGs Relative power level of the transmitted Quick Paging
- 30 Channel Configuration Change Indicator modulation symbols, relative to the Forward Pilot
- 31 Channel.
- 32 **QPCH_RATE**_s Indicator rate of the current Quick Paging Channel(s).
- 33 QPCH_SUPPORTEDs Flag to indicate if the Quick Paging Channel is supported by the
- 34 base station.
- RA Random access channel number. The Access Channel number generated (pseudo-
- 36 randomly) by the mobile station.
- 37 **RAND**_S Authentication random challenge value.

- RANDC The eight most-significant bits of the random challenge value used by the mobile
- 2 station.
- RANDOM_TIME Random time. A portion of SYS_TIME used to seed the random number
- 4 generator.
- 5 RC_CAP_REQUESTEDs Radio Configuration Capability indicator. When set to "1" the
- mobile station shall include the Radio Configuration capabilities that it supports in the
- Origination Message and Page Response Message.
- RC_REQ_PENDING Resource Control Request Pending Indicator. This flag, when set to
- 9 '1', indicates that a Resource Control initiated request is pending at the mobile station.
- REDIRECTIONs Service redirection indicator. Set to enabled to indicate that service
- redirection is currently in effect; otherwise, set to disabled.
- REDIRECT_REC_s Holds the service redirection criteria specified in the redirection record
- of the most recently received Global Service Redirection Message or Service Redirection
- 14 Message.
- 15 REG_COUNTs The timer-based registration counter.
- REG_COUNT_MAXs Timer-based registration count limit. The timer-based registration
- counter expiration value computed from REG_PRD_r.
- 18 REG_DISTs Registration distance. Distance from last registration that causes a
- distance-based registration to occur.
- $REG_ENABLED_S$ Autonomous registrations enabled indicator.
- 21 **REGISTERED**_s Mobile station registered indicator.
- 22 REG_PRD_s Registration period. The time interval between timer-based registrations.
- Value is $4 \times \log_2(\text{time } / 0.08 \text{ s})$.
- 24 REG_PSIST_s Persistence modifier for registration accesses (except ordered registrations).
- REG_ZONE_s Registration zone number of the base station.
- 26 REJECT_UZID_s User Zone identifier of the User Zone rejected by the base station.
- 27 RESELECT_INCLUDEDs System reselection information included indicator. When this
- is set to '1', the system reselection procedure is enabled.
- 29 RESUME_PREAMBLE_s A storage variable in the mobile station that contains the size of
- 30 the preamble that shall be transmitted on a Reverse Supplemental Code Channel at the
- beginning of transmission on a Reverse Supplemental Code Channel when resuming
- transmission following an interruption when discontinuous transmission is occurring.
- 33 RETRY_DELAYs A storage variable in the mobile station that contains the system time
- 34 prior to which the mobile station may not transmit any Supplemental Channel Request
- 35 Messages. A value of 0 indicates no retry delay is in effect, and a value of '11111111'
- 36 indicates an infinite retry delay.
- 37 RETURN_CAUSE_s Reason for the mobile station registering or accessing the system.

- 1 RETURN_IF_FAILs Return if fail indicator. Set to '1' to indicate that mobile station is to
- 2 return to the system from which it was redirected if it fails to acquire service on a system
- using specified redirection criteria. Otherwise, set to '0'.
- 4 RETURN_IF_HANDOFF_FAILs Return if handoff fail indicator. Indicates if the mobile
- station is to resume using the Active Set on the Serving Frequency following an
- 6 unsuccessful hard handoff attempt.
- 7 REV_DTX_DURATIONs Maximum duration of time in units of 20 ms that the mobile
- 8 station is allowed to stop transmitting on a Reverse Supplemental Code Channel or
- 9 Reverse Supplemental Channel within the reverse assignment duration.
- $REV_DURATION_s$ A stored variable in the mobile station that contains the duration (in
- units of 80 ms) of the Reverse Supplemental Code Channel transmission that will begin at
- time REV_START_TIME_s.
- 13 **REV_FCH_RCs** Reverse Fundamental Channel Radio Configuration.
- REV_FRAME_40_MAX_RATEs The maximum data rate for the mobile station's
- transmission at 40 ms frame length on the Reverse Supplemental Channel.
- 16 REV_FRAME_80_MAX_RATEs The maximum data rate for the mobile station's
- transmission at 80 ms frame length on the Reverse Supplemental Channel.
- 18 REV_LINKED_HDM_SEQs Storage variable containing the most recent reverse sequence
- number of the General Handoff Direction Message to which a Supplemental Channel
- 20 Assignment Message reverse assignment was linked.
- 21 **REV_RCs** Reverse Channel Radio Configuration.
- 22 REV_SCH_DTX_DURATIONs Maximum duration of time in units of 20 ms that the
- 23 mobile station is allowed to stop transmitting on a Reverse Supplemental Channel within
- 24 the reverse assignment duration.
- 25 REV_SCH_DURATION_s A stored variable in the mobile station which contains the
- 28 duration of the Reverse Supplemental Channel transmission which will begin at time
- 27 REV_SCH_START_TIME_S.
- 28 REV_SCH_FRAME_LENGTH_S The Reverse Supplemental Channel frame length.
- $REV_SCH_START_TIME_s$ A stored variable in the mobile station which contains the
- 30 System Time, in units of time specified by START_TIME_UNITs, (modulo 32) at which the
- mobile station shall start (or resume) processing Reverse Supplemental Channels.
- 32 REV_START_TIMEs A stored variable in the mobile station that contains the next 80 ms
- 33 frame boundary (modulo 64) on which the mobile station is assigned to start Reverse
- 34 Supplemental Code Channel transmission.
- 35 RN_HASH_KEYs Name of an internal variable having the same value as the mobile
- station's ESN. This variable is used by procedures defined in 3GPP2 C.S0003-0.
- 37 ROAM_INDIs Enhanced roaming indicator used for mobile station roaming condition
- 38 display.

- 1 RS Inter-probe sequence backoff. The delay in slots generated (pseudorandomly) by the
- mobile station following an unsuccessful access probe sequence or prior to the first access
- 3 probe in a response attempt.
- 4 RT Inter-probe backoff. The delay in slots generated (pseudorandomly) by the mobile
- station following an unacknowledged access probe.
- SCC_s SAT color code for analog channel assignment and CDMA-to-analog handoff.
- $_{7}$ SCAM_FOR_DURATION_MODE_s Indicator for a specific or an indefinite Forward
- 8 Supplemental Code Channel assignment duration.
- 9 SCAM_FOR_ORDERs The stop or start command set by a Supplemental Channel
- Assignment Message that is linked to a General Handoff Direction Message.
- $SCAM_REV_DURATION_MODE_s$ Indicator for a specific or an indefinite Reverse
- Supplemental Code Channel assignment duration.
- SCRM_SEQ_NUMs Storage variable containing the most recently transmitted
- Supplemental Channel Request Message sequence number.
- SEARCH_MODEs Search mode to be used in a periodic search on the Candidate
- 16 Frequency.
- SEARCH_OFFSETs Time offset of the start of the first search from the action time of the
- 18 Candidate Frequency Search Request Message or the Candidate Frequency Search Control
- Message that starts a search.
- 20 **SEARCH_PERIOD**₈ Period for search on the Candidate Frequency.
- 21 SEARCH_PRIORITY_s Neighbor Pilot Channel search priority.
- SEARCH_PRIORITY_INCL_s Search priorities included indicator.
- SEARCH_TIME_RESOLUTIONs Unit of delay used in the Candidate Frequency Search
- 24 Report Message to report the total and maximum times away from the Serving Frequency.
- 25 SERV_NEG_S Service negotiation indicator. Indicates whether the mobile station is to use
- service negotiation or service option negotiation.
- 27 SERV_REQ_NUMs Service request sequence number. Sequence number to use when
- requesting a new service configuration.
- SERVSYS_s Selected serving system indicator for Band Class 0. Set to SYS_A if the
- mobile station operates in system A; otherwise, set to SYS B.
- 31 SETTING_SEARCH_WIN SRCH_WIN_NGHBR Setting flag. Set to '1' if the mobile station
- shall set the SRCH_WIN_NGHBR field of each NGHBR_REC to SEARCH_WIN_Ns for all
- NGHBR_SET_SIZE_s entries upon receiving the *System Parameters Message*.
- 34 SF_ADD_INTERCEPTs Intercept of the handoff add criterion for the Serving Frequency,
- stored during hard handoff.
- 36 SF_CDMABANDs Serving Frequency CDMA band class, stored during hard handoff.
- 37 SF_CDMACH_s Serving Frequency CDMA Channel number, stored during hard handoff.

- SF_CODE_CHAN_LIST_s Serving Frequency Code Channel List, stored during hard
- 2 handoff.
- 3 SF_DROP_INTERCEPTs Intercept of the handoff drop criterion for the Serving
- 4 Frequency, stored during hard handoff.
- 5 SF_ENCRYPT_MODEs Message encryption indicator for the Serving Frequency, stored
- 6 during hard handoff.
- 7 SF_FRAME_OFFSETs Traffic Channel frame offset used on the Serving Frequency,
- stored during hard handoff.
- 9 SF_NOM_PWRs Nominal transmit power offset used on the Serving Frequency, stored
- o during hard handoff.
- 11 SF_NOM_PWR_EXTs -Extended nominal transmit power offset indicator for the Serving
- Frequency, stored during hard handoff.
- SF_P_REVs Protocol revision level supported by the base station on the Serving
- 14 Frequency.
- 55 SF_P_REV_IN_USEs Protocol revision level currently used by the mobile station on the
- 16 Serving Frequency.
- 17 SF_PRIVATE_LCMs Private long code mask indicator for the Serving Frequency, stored
- during hard handoff.
- SF_SERV_NEGs Service negotiation indicator for the Serving Frequency, stored during
- 20 hard handoff.
- $SF_SERVICE_CONFIG_s$ Service configuration record for the Serving Frequency.
- 22 SF_SOFT_SLOPEs Slope of the handoff add/drop criterion for the Serving Frequency,
- 23 stored during hard handoff.
- SF_SRCH_WIN_As Search window size for the Active Set and Candidate Set used on the
- 25 Serving Frequency, stored during hard handoff.
- 26 SF_SRCH_WIN_Ns Search window size for the Neighbor Set used on the Serving
- Frequency, stored during hard handoff.
- 28 SF_SRCH_WIN_Rs Search window size for the Remaining Set used on the Serving
- 29 Frequency, stored during hard handoff.
- $SF_T_ADD_S$ Pilot detection threshold used on the Serving Frequency, stored during hard
- 31 handoff.
- 32 SF_T_COMPs Active Set versus Candidate Set comparison threshold used on the Serving
- 33 Frequency, stored during hard handoff.
- 34 SF_T_DROPs Pilot drop threshold used on the Serving Frequency, stored during hard
- 35 handoff.
- 36 SF_T_TDROP_s Pilot drop timer value used on the Serving Frequency, stored during hard
- 37 handoff.

- SF_TOTAL_EC_THRESH_s Threshold for total E_c of pilots in the Serving Frequency Active
- 2 Set used in the Candidate Frequency periodic search procedures.
- $_3$ SF_TOTAL_EC_IO_THRESH_s Threshold for total E_c/I_o of pilots in the Serving Frequency
- 4 Active Set used in the Candidate Frequency periodic search procedures.
- 5 SID_s System identifier.
- 6 SID_NID_LIST_s Registration SID, NID list. The SID, NID pairs in which the mobile
- 5 station has registered.
- 8 SLOT_CYCLE_INDEX_s Slot cycle index. Equal to the smaller of SLOT_CYCLE_INDEX_D
- and the received maximum slot cycle index.
- SLOT_NUM Paging Channel slot number.
- SOFT_SLOPEs The slope in the inequality criterion for adding a pilot to the Active Set, or
- dropping a pilot from the Active Set.
- SO_FROM_RC_s Service Option received from the Resource Control.
- SO_REQ_s Service option request number. The number of the service option requested by
- the mobile station during service option negotiation.
- SRCH_OFFSET_INCL_s Neighbor pilot search window offset included indicator.
- 17 SRCH_OFFSET_NGHBR_s Neighbor pilot search window offset.
- SRCH_WIN_As Search window size for the Active Set and Candidate Set.
- SRCH_WIN_NGHBR_s Neighbor Pilot Channel search window size.
- 20 SRCH_WIN_NGHBR_INCLs Neighbor Pilot Channel search window size included
- 21 indicator.
- 22 SRCH_WIN_N_s Search window size for the Neighbor Set.
- 23 SRCH_WIN_R_s Search window size for the Remaining Set.
- 24 START_TIME_UNITs A stored variable in the mobile station which contains the time unit
- 25 used for determining FOR_SCH_START_TIME and REV_SCH_START_TIME on
- Supplemental Channels.
- 27 RC_SYNC_ID_s Resource Control Synchronization Identifier (see 3GPP2 C.S0003-0). This
- 28 4-bit parameter is used to ensure that, when the mobile station enters the Control on the
- 29 Traffic Channel State, the Resource Control at the mobile station and the Resource
- 30 Control at the base station are synchronized. When the mobile station and the base station
- release all the physical channels, this parameter is updated based on a random value
- 32 generated by the base station.
- 33 SYS_PAR_MSG_SEQs System Parameters Message sequence number.
- 34 SYS_TIMEs Current value of CDMA system time as received in the Sync Channel
- 35 Message.
- **TA** Acknowledgment response timeout.
- T_ADD_s Pilot detection threshold.

- T_COMP_s Active Set versus Candidate Set comparison threshold.
- **T_DROP**_s Pilot drop threshold.
- 3 **TEMP_SUB**'s User Zone temporary subscription flag.
- 4 TF_CDMABANDs Target Frequency CDMA band class. The CDMA band class specified
- s in the Extended Handoff Direction Message or the General Handoff Direction Message.
- 6 TF_CDMACH_s Target Frequency CDMA Channel number. The CDMA Channel number
- specified in the Extended Handoff Direction Message or the General Handoff Direction
- 8 Message.
- 9 TF_RESET_FPCs Flag to initialize the Forward Traffic Channel power control counters
- on the Target Frequency.
- 11 TF_RESET_L2s Flag to reset acknowledgment procedures on the Target Frequency.
- TF_T_ADDs Pilot detection threshold to be used on the Target Frequency.
- 13 TF_WAIT_TIMEs Maximum time that the mobile station may wait to receive a good frame
- when acquiring the CDMA Candidate Frequency.
- 15 **TMSI_ZONE**₈ TMSI zone number of the base station.
- TMSI_ZONE_LEN_s The number of octets in TMSI zone.
- 17 T_MULCHANs A storage variable in the mobile station that contains the Reverse
- Supplemental Code Channel neighbor pilot strength measurement offset.
- 19 **TOTAL_PUF_PROBES**_s Maximum number of PUF probes transmitted in a PUF attempt.
- **TOTAL_ZONES**_s Number of registration zones to be retained in ZONE_LIST_s.
- TOT_FRAMES_s Total frames received. The total number of received frames, counted for
- 22 Forward Traffic Channel power control.
- 23 **T_TDROP**_S Pilot drop timer value.
- 24 USE_FOR_HDM_SEQs Storage variable containing a flag indicating a pending
- 25 Supplemental Channel Assignment Message forward assignment that is linked to a
- 26 General Handoff Direction Message.
- 27 USE_REV_HDM_SEQs Storage variable containing a flag indicating a pending
- 28 Supplemental Channel Assignment Message reverse assignment that is linked to a General
- 29 Handoff Direction Message.
- 30 USE_T_ADD_ABORTs A storage variable in the mobile station that contains the Reverse
- 31 Supplement Code Channel assignment T_ADD abort indicator.
- **USE_TMSIs** Base station's preference of the use of TMSI.
- **USER_ZONE_IDs** User Zone Identification Message sent indicator.
- 34 USER_ZONE_ID_MSG_SEQ_s User Zone Identification Message sequence number.
- 35 UZ_EXIT_IN_USEs The User Zone Exit parameter that the mobile station received from
- 36 the User Zone Identification Message broadcast by the last base station of the old user
- 37 zone.

- UZ_EXIT_RCVDs The User Zone Exit parameter that the mobile station just received
- from the User Zone Identification Message broadcast by the currently serving base station.
- 3 **UZID**_s User Zone identifier.
- 4 UZ_REC Record containing information about a User Zone broadcast by the base station
- 5 (see also UZ_REC_LIST).
- 6 UZ_REC_LIST Broadcast User Zone record list. A descriptive structure used to manage
- the base station's information records about broadcast User Zones (see also UZ_REC).
- 8 **UZ_REV**_s User Zone update revision number.
- 9 VMACs Analog voice mobile station attenuation code for analog channel assignment or
- 10 CDMA-to-analog handoff.
- 11 ZONE_LIST_s Registration zone list. List of zones in which the mobile station has
- 12 registered.

ZONE_TIMER_s - Zone timer length.

11

12

1.2 Signaling Architecture

- Layer 3 signaling for cdma2000 is modeled as follows:
 - Planes. There are two planes: the Data Plane¹ (used for the signaling protocol) and the Control Plane (used for supervision of the protocol according to functional requirements).
- Protocol Layer. Layer 3 generates Layer 3 PDUs and passes these PDUs to Lower
 Layers, where proper encapsulation into Lower Layer PDUs is performed. On the
 receiving end, Lower Layer PDUs are decapsulated and the resulting SDUs are sent
 from Lower Layers to Layer 3 for processing.
- Service Access Points. SAPs and corresponding communication primitives are defined between the Layer 3 and Lower Layers over the data plane. No SAPs are defined for communications through the control plane.

1.3 Signaling and Functionality

- 1.3.1 Control Plane and Data Plane
- The general architecture is presented in two planes: Control Plane, where processing decisions are made, and Data Plane, where the PDUs are generated and processed and transferred. The Data Plane contains the protocol, and is layered.

¹ User traffic of various types also passes through the Data Plane, but further description is outside the scope of this document. Signaling is just another type of traffic whose users are the control entities in the base station and mobile station.

Figure 1.3.1-1. IS-2000 Signaling - General Architecture

1.3.2 Interface to Layer 2

2

13

14

15

16

- The interface between Layer 3 and Layer 2 is a Service Access Point (SAP). At the SAP,
- Layer 3 and Layer 2 exchange Service Data Units (SDU) and interface control information
- in the form of Message Control and Status Blocks (MCSB) using a set of primitives.
- 1.3.2.1 Message Control and Status Block (MCSB)
- The MCSB is a parameter block for the defined primitives, containing relevant information
- about an individual Layer 3 message (PDU), as well as instructions on how the message 9
- may be handled or how it is to be (for transmission), or was (for reception), processed by 10
- Layer 2. The MCSB is a conceptual construct and is not subject to detailed specification 11
- in this document; however, it is envisioned the MCSB will contain information such as: 12
 - The MSG_TAG. If the message is generated in response to a previously received message, the MSG_TYPE of the previously received message is also stored.
 - The length of the PDU.
- A unique instance identifier associated with the message, which enables identification of a message for notifications of delivery/non-delivery or recovery 17 procedures.
- Whether the message should be acknowledged at Layer 2 (i.e., delivered in assured mode or unassured mode). 20
- Whether notification of delivery is required. 21
- The identity of the addressee for the message. 22
- Whether the PDU delivered to Layer 3 is a duplicate (in cases where Layer 2 does 23 not discard duplicates). 24

C.S0005-0 v1.0

- Data needed by the authentication procedures (e.g., the CHARi fields of the
 Origination Message).
- Relevant PDU classification (e.g., registrations, originations), where processing at
 Layer 2 is sensitive to the kind of PDU being transferred.
- The encryption status of the logical channel.
- CDMA System Time corresponding to the frame in which the first or last bit of a message was received.
- Transmission instructions for Layer 2, such as an instruction to send a message with a certain priority (before, after, or by interrupting the transmission of other messages), an instruction regarding supervision, and so on.
- Abnormal conditions indications from Layer 2.

1.3.2.2 Interface Primitives

The following primitives are defined for communication between the Layer 3 and Layer 2:

15 Name:

L2-Data.Request

16 Type:

Request

17 Direction:

Layer 3 to Layer 2

18 Parameters:

PDU, MCSB

19 Action:

The PDU is handed to Layer 2 for delivery across the radio interface.

20

14

21 Name:

L2-Data.Confirm

22 Type:

Confirm

23 Direction:

Layer 2 to Layer 3

24 Parameters:

MCSB

25 Action:

Reception of the specified (in the MCSB) transmitted PDU was

acknowledged at Layer 2 by the addressee.

27

26

28 Name:

L2-Data.Indication

29 Type:

Indication

30 Direction:

Layer 2 to Layer 3

31 Parameters:

PDU, MCSB

32 Action:

The received PDU is handed to Layer 3.

33

34 Name:

L2-Condition.Notification

Type:

Indication

Direction:

Layer 2 to Layer 3

Parameters:

MCSB

Action:

Layer 3 is notified of a relevant event (e.g. abnormal condition) detected at

Layer 2. Details are indicated via the MCSB.

12 13

19

20

30

Name:

L2-Supervision.Request

Type:

Request

Direction:

Layer 3 to Layer 2

Parameters:

MCSB

Action: 11

Layer 2 executes a control command as directed by Layer 3. This could be, for example, an order to abandon retransmission of a message or an order for local reset for the message sequence number, acknowledgment sequence

number and duplicate detection.

- 15 1.3.3 Resource Control - Layer 3 Signaling Control Interface Primitives
- The interface primitives exchanged between the Resource Control and the Layer 3 16
- Signaling Control are listed in Table 1.3.3-1, Table 1.3.3-2, and Table 1.3.3-3. The 17
- 18 following primitives are defined:
 - SIG-Allocate (see Tables 1.3.3-1 and 1.3.3-2)
 - SIG-Release (see Tables 1.3.3-1 and 1.3.3-2)
- SIG-Send (see Table 1.3.3-3)
- SIG-Receive (see Table 1.3.3-3) 22
- 23 RC-Reset (see Table 1.3.3-3)
- SIG-UpdateServiceInfo (see Table 1.3.3-3) 24
- The SIG-Allocate. Request primitive carries four parameters: 25
- 1. List of Resources This is a set of tags that identify what resources the Resource 26 Control requires to be connected. The possible tags are as follows: 27
 - "SO_INSTANCE": The presence of this tag indicates that the SO parameter corresponds to a new service option connection request.
 - "FCH": Indicates Fundamental Channel.
- "DCCH": Indicates Dedicated Control Channel. 31
- "CONT_REV_PILOT": Indicates continuous reverse pilot. If present, it denotes 32 33 starting continuous reverse pilot operation.
- 2. SO (service option) This 16-bit field carries the service option number, so. If 34 NULL is indicated, it denotes that this parameter has no valid value. 35

3

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

30

31

32

33

34

35

36

37

- 3. CON_REF (connection reference) This 8-bit field carries the connection reference number, con_ref. For the SIG-Allocate.Request primitive, this parameter is always set to 'NULL", denoting that this parameter has no valid value.
- 4. BLOB This 7-bit field carries a block of bits, blob, to be delivered from the Resource Control at the mobile station (or the base station) to the peer Resource Control at the base station (or the mobile station). This field is not interpreted by Layer 3 and Layer 3 signaling transports this field transparently over the air.

When an SIG-Allocate Request primitive is received by the Layer 3 signaling control, the Layer 3 signaling takes the following actions based on the value of each of the parameters carried by the primitive:

- SIG-Allocate.Request(("SO_INSTANCE", ("FCH", "DCCH", or both)), so, NULL, blob):
 - Layer 3 establishes the Fundamental Channel, Dedicated Control Channel, or both as indicated.
 - Layer 3 connects the service option given by the service option number, so.
- Layer 3 initiates continuous reverse pilot operation.
 - Layer 3 of the requesting entity transports the blob parameter over the air to the peer entity, to be delivered to the Resource Control.
- SIG-Allocate.Request(("FCH", "DCCH", or both), so, NULL, blob):
 - Layer 3 establishes the Fundamental Channel, Dedicated Control Channel, or both as indicated.
- Layer 3 restores the stored service option connections.
 - Layer 3 initiates continuous reverse pilot operation.
 - Layer 3 of the requesting entity transports the blob parameter over the air to the peer entity, to be delivered to the Resource Control.
- SIG-Allocate.Request(("SO_INSTANCE"), so, NULL, blob):
 - Layer 3 connects the service option given by the service option number, so.
- Layer 3 of the receiving entity transports the blob parameter over the air to the peer entity, to be delivered to the Resource Control.
- SIG-Allocate Request({{"FCH" or "DCCH"} and/or "CONT_REV_PILOT"}, NULL, NULL, blob):
 - Layer 3 establishes the Fundamental Channel or the Dedicated Control Channel, if indicated.
- Layer 3 initiates continuous reverse pilot operation, if the "CONT_REV_PILOT" tag is present.
- Layer 3 of the requesting entity transports the blob parameter over the air to the peer entity, to be delivered to the Resource Control.
- It should be noted that, when a service option number is passed in a SIG-Allocate.Request

- primitive, it is intended as the service option connection to be established by Layer 3. The
- alternative service options and the service negotiation policy that might be required by the
- Layer 3 is assumed to be known to the Layer 3, although they are not explicitly passed in
- 4 the SIG-Allocate.Request primitive.

18

19

20

21

22

23

29

- The SIG-Release. Request primitive carries four parameters:
- List of Resources This is a set of tags that identify what resources the Resource Control requires to be released. The possible tags are as follows:
 - "SO_INSTANCE": The presence of this tag indicates that the CON_REF parameter carries a valid value.
 - "FCH": Indicates Fundamental Channel.
 - "DCCH": Indicates Dedicated Control Channel.
- "CONT_REV_PILOT": Indicates continuous reverse pilot. If present, it denotes turning-off the continuous reverse pilot operation (i.e. gated mode of operation).
- 2. SO (service option) This 16-bit field carries the service option number, so. For the SIG-Release Request primitive, this parameter is always set to 'NULL', denoting that this parameter has no valid value.
 - CON_REF (connection reference) This 8-bit field carries the connection reference number, con_ref. If NULL is indicated, it denotes that this parameter has no valid value.
 - 4. BLOB This 7-bit field carries a block of bits, blob, to be delivered from the Resource Control at the mobile station (or the base station) to the peer Resource Control at the base station (or the mobile station). This field is not interpreted by Layer 3 and Layer 3 signaling transports this field transparently over the air.
- When a SIG-Release Request primitive is received by the Layer 3 signaling control, the Layer 3 signaling takes the following actions based on the value of each of the parameters carried by the primitive:
- SIG-Release.Request(("SO_INSTANCE", {"FCH", "DCCH", or both}), NULL, con_ref, blob):
 - Layer 3 releases the Fundamental Channel, Dedicated Control Channel, or both as indicated.
- Layer 3 disconnects the service option with a connection reference given by the connection reference number, con_ref.
- Layer 3 of the requesting entity transports the blob parameter over the air to the peer entity, to be delivered to the Resource Control.
 - SIG-Release.Request(("FCH", "DCCH", or both), NULL, NULL, blob):

9

12

13

14

15

16

17

30

31

32

33

35

- Layer 3 releases the Fundamental Channel, Dedicated Control Channel, or both as indicated.
- Layer 3 of the requesting entity transports the blob parameter over the air to the peer entity, to be delivered to the Resource Control.
 - SIG-Release.Request(("SO_INSTANCE"), NULL, con_ref, blob):
 - Layer 3 disconnects the service option with a connection reference given by the connection reference number con_ref.
 - Layer 3 of the requesting entity transports the blob parameter over the air to the peer entity, to be delivered to the Resource Control.
- SIG-Release Request(({"FCH" or "DCCH"} and/or "CONT_REV_PILOT"), NULL, NULL, blob):
 - Layer 3 releases the Fundamental Channel or the Dedicated Control Channel, if indicated.
 - Layer 3 initiates gated reverse pilot operation, if the "CONT_REV_PILOT" tag is present.
 - Layer 3 of the requesting entity transports the blob parameter over the air to the peer entity, to be delivered to the Resource Control.
- Upon completion of the actions requested by the SIG-Allocate.Request or the SIG-Release.Request primtive, Layer 3 signaling control informs the Resource Control, at both the mobile station and the base station. If the original request came from the Resource Control at the mobile station (or the base station), then a SIG-Allocate.Confirm or a SIG-Release.Confirm primitive is sent to the Resource Control at the mobile station (or the base station) and a SIG-Allocate.Indication or a SIG-Release.Indication is sent to the Resource
- 24 Control at the base station (or mobile station), as appropriate.
- The SIG-Allocate.Confirm and SIG-Allocate.Indication primitives carry the following five parameters:
- List of Resources This is a set of tags that identify what resources were allocated.
 The possible tags are as follows:
 - "SO_INSTANCE": The presence of this tag indicates that both SO and CON_REF parameters carry a valid value.
 - "FCH": Indicates Fundamental Channel.
 - "DCCH": Indicates Dedicated Control Channel.
 - "CONT_REV_PILOT": Indicates continuous reverse pilot. If present, it denotes starting the continuous reverse pilot.
 - SSR_ID Signaling Service Reference Identifier. If a service option was connected, this field is set to the value of the forward traffic type assigned to that service option connection. If NULL is indicated, it denotes that this parameter has no valid

value.

15

16

18

19

20

23

24

25

- 3. SO (service option) If a service option was connected, this parameter carries the service option number connected. If NULL is indicated, it denotes that this parameter has no valid value.
- 5 4. CON_REF (connection reference) If a service option was connected, this parameter carries the connection reference number, con_ref, assigned to the service option connection by Layer 3 Signaling. If NULL is indicated, it denotes that this parameter has no valid value.
- 5. BLOB This parameter carries the 7-bit block of bits, blob, provided by the Resource Control.
- The SIG-Release.Confirm and SIG-Release.Indication primitives carry the following four parameters:
- List of Resources This is a set of tags that identify what resources were released.
 The possible tags are as follows:
 - "SO_INSTANCE": The presence of this tag indicates that the CON_REF parameter carries a valid value.
 - "FCH": Indicates Fundamental Channel.
 - "DCCH": Indicates Dedicated Control Channel.
 - "CONT_REV_PILOT": Indicates continuous reverse pilot. If present, it denotes turning-off the continuous reverse pilot operation (i.e. gated mode of operation).
- 2. SO (service option) This 16-bit field carries the service option number, so. This parameter is always set to 'NULL'', denoting that this parameter has no valid value.
 - CON_REF (connection reference) If a service option connection was released, this
 parameter carries the connection reference number, con_ref, of the released service
 option connection. If NULL is indicated, it denotes that this parameter has no valid
 value.
- 27 4. BLOB This parameter carries the 7-bit block of bits, blob, provided by the peer Resource Control. If NULL is indicated, it denotes that this parameter has no valid value.
- The SIG-Send.Request and SIG-Receive.Indication primitives carry one parameter, PP_BLOB. This 13-bit field carries a block of bits, pp_blob. This parameter is delivered to Layer 3 signaling by the Resource Control at the mobile station and is to be carried over the air, encapsulated within a *Peer-to-Peer Resource Control (Mini) Message*, to the base station, where it is delivered to the peer Resource Control by the Layer 3 signaling. This field is not interpreted by Layer 3 and Layer 3 signaling transports this field transparently

- over the air.
- The RC-Reset.Request primitive does not carry any parameters and is sent by the Layer 3
- 3 signaling to the Resource Control. It requests that the Resource Control reset the PLICFs
- associated with each service option connection since the base station Resource Control
- 5 PLICFs and the mobile station Resource Control PLICFs are out of sync.
- 6 The SIG-UpdateServiceInfo.Indication primitive is used to inform the Resource Control
- that a service option connection has been replaced by a new service option connection or
- 8 the traffic type of the service option connection has been changed. This primitive carries
- four parameters:

11

12

13

14

15

16

17

18

19

23

24

25

- 1. SSR_ID Signaling Service Reference Identifier. For the case of replacement of a service option connection, this field is set to the current value of the forward traffic type of the service option connection; for the case of change in the traffic type of the service option connection, this field is set to the previous value of the forward traffic type.
- 2. NEW_SSR_ID New Signaling Service Reference Identifier. For the case of replacement of a service option connection, this field is set to the current value of the forward traffic type of the service option connection; for the case of change in the traffic type of the service option connection, this field is set to the new value of the forward traffic type.
- 20 3. SO Service Option. For the case of replacement of a service option connection, this field is set to the new service option; for the case of change in the traffic type of the service option connection, this field is set to the current service option.
 - 4. CON_REF Connection Reference. For the case of replacement of a service option connection, this field is set to the new connection reference; for the case of change in the traffic type of the service option connection, this field is set to the current connection reference.

Table 1.3.3-1. Primitives sent to the Layer 3 Signaling Control by the Resource Control

Primitive	Parameters carried by the primitive				Valid Layer 3 states in which each primitive can be received, for the mobile station (MS) and the base station (BS)
	List of Resources	so	CON_REF	BLOB	
SIG- Allocate.	"SO_INSTANCE" and {"FCH", "DCCH", or both}	so	NULL	blob	MS - Mobile Station Idle State
Request					BS - Paging Channel Processing
	"FCH", "DCCH", or both	so	NULL	blob	MS – Mobile Station Idle State
					BS - Paging Channel Processing
	"SO_INSTANCE"	so	NULL	blob	MS - Mobile Station Control on the Traffic Channel State
					BS - Traffic Channel Processing
	{"FCH" or "DCCH"} and/or "CONT_REV_PILOT"	NULL	NULL	blob	MS - Mobile Station Control on the Traffic Channel State
·			·		BS - Traffic Channel Processing
SIG-Release.	"SO_INSTANCE" and	NULL	con_ref	blob	BS - Traffic Channel
Request	("FCH", "DCCH", or both)				Processing"
	"SO_INSTANCE"	NULL	con_ref	blob	BS - Paging Channel Processing or Traffic Channel Processing
	"FCH" or "DCCH" or both	NULL	NULL	blob	BS - Traffic Channel Processing
	("FCH" or "DCCH") and/or "CONT_REV_PILOT"	NULL	NULL	blob	BS - Traffic Channel Processing

1-49

Table 1.3.3-2. Primitives sent to the Resource Control by the Layer 3 Signaling Control

Primitive	Parameters carried by the primitive				
	List of Resources	SSR_ID	so	CON_REF	BLOB
SIG-Allocate. Confirm/ Indication	"SO_INSTANCE" and {"FCH", "DCCH", or both}	Forward traffic channel traffic	so	con_ref	blob
ļ		type			
	"FCH", "DCCH", or both	NULL	NULL	NULL	blob
	"SO_INSTANCE"	Forward traffic channel traffic type	so	con_ref	blob
	{"FCH"} and/or "CONT_REV_PILOT"	NULL	NULL	NULL	blob
SIG-Release.	"SO_INSTANCE" and ("FCH", "DCCH", or both)	n/a	NULL	con_ref	blob
Indication	(Tent, Deen, or Berry				
	"SO_INSTANCE"	n/a	NULL	con_ref	blob
	"FCH" or "DCCH" or both	n/a	NULL	NULL	blob
	("FCH") and/or "CONT_REV_PILOT"	n/a	NULL	NULL	blob

1-50

Table 1.3.3-3. Additional primitives exchanged between the Resource Control and the Layer 3 Signaling Control

Primitive	Parameters	Direction of Exchange	Valid Layer 3 states involved	Comments
SIG-Send. Request	PP_BLOB	Resource Control to Layer 3 Signaling Control at the mobile station	MS - "Idle State" or "Control on the Traffic Channel State"	When this primitive is received, Layer 3 signaling at the mobile station is to encapsulate the blob in a <i>Peer-to-Peer Resource Control (Mini) Message</i> and send it over the air to the base station.
SIG-Receive. Indication	PP_BLOB	Layer 3 Signaling Control to Resource Control at the base station	BS - "Paging Channel Processing" or "Traffic Channel Processing"	This primitive is sent when the Layer3 signaling at the base station receives the blob in a Peer-to-Peer Resource Control (Mini) Message over the air from the mobile station.
RC-Reset. Request	none	Layer 3 Signaling Control to Resource Control, at the mobile station and the base station	Any state	Layer 3 signaling sends this primitive to Resource Control to indicate that the Resource Control is to be reset.
SIG-Update ServiceInfo. Indication	SSR_ID, NEW_SSR_ ID, SO, CON_REF	Layer 3 Signaling Control to Resource Control, at the mobile station and the base station	MS - "Control on the Traffic Channel State" BS - "Traffic Channel Processing"	This primitive is sent to Resource Control if a service option connection is replaced by another or if the traffic type assigned to a service option connection has changed.

1-51

1.3.4. Functional Description

- 2 In the Data Plane, Layer 3 originates and terminates signaling data units according to the
- semantic and timing of the communication protocol between the base station and the
- 4 mobile station. From a semantic point of view the signaling data units are referred to as
- 5 "messages" (or "orders"). From a protocol point of view, the signaling data units are PDUs.
- 6 In general, the language of this specification does not explicitly distinguish between
- 7 semantics and the protocol viewpoints, and the terms "PDU" and "Message". It is
- e considered that the context provides enough information to allow the reader to make the
- appropriate distinctions.

10 1.3.5. PDU Transmission and Reception

- Layer 3 employs the services offered at the interface with Layer 2 to transfer PDUs to and
- 12 from the layer 3 entity.
- When requesting the transmission of a PDU, Layer 3 will typically specify whether the
- transfer will be performed in assured mode or in unassured mode (for example, by setting
- the proper parameters in the MCSB argument of the L2-Data. Request primitive). For
- transmission in assured mode, layer 3 may specify if confirmation of delivery of the PDU is
- 17 required.
- Layer 2 guarantees that an assured mode PDU received from the transmitting Layer 3
- entity is delivered to the receiving Layer 3 entity. Each assured mode PDU is delivered to
- 20 the receiving Layer 3 entity only once and without errors. Additionally, if the transmitting
- Layer 3 entity requests confirmation of delivery of an assured mode PDU, Layer 2 will send
- 22 an indication to the transmitting Layer 3 entity (for example by using the L2-Data.Confirm
- primitive) when Layer 2 receives an acknowledgment for that PDU. If Layer 2 is not able to
- 24 deliver an assured mode PDU, it sends an indication of the failure to Layer 3 which can
- 25 then take corrective action.
- Layer 2 does not guarantee that an assured mode PDU received from the transmitting
- 27 Layer 3 entity is delivered to the receiving Layer 3 entity. Thus, Layer 2 acknowledgments
- 28 may not be required for unassured mode PDUs. To increase the probability of delivery of
- unassured mode PDUs, Layer 3 may request Layer 2 to send those PDUs multiple times in
- quick repeat sequence and rely on the duplicate detection capabilities of the receiver to
- 31 achieve uniqueness of delivery.
- Layer 3 can also request Layer 2 to perform a reset of the Layer 2 ARQ procedures (for
- example, by using the L2-Supervision. Request primitive).

2. REQUIREMENTS FOR MOBILE STATION CDMA OPERATION

- 2 This section defines requirements that are specific to CDMA mobile station equipment and
- operation. A CDMA mobile station may support operation in one or more band classes.
- 4 2.1 Reserved
- 5 2.2 Reserved
- 6 2.3 Security and Identification
- 7 2.3.1 Mobile Station Identification Number
- Mobile stations operating in the CDMA mode are identified by the International Mobile
- Station Identity (IMSI).² Mobile Stations shall have two different identifiers, IMSI_T and
- 10 IMSI_M. The IMSI consists of up to 15 numerical characters (0-9). The first three digits of
- the IMSI are the Mobile Country Code (MCC), and the remaining digits are the National
- 12 Mobile Station Identity (NMSI). The NMSI consists of the Mobile Network Code (MNC) and
- the Mobile Station Identification Number (MSIN). The IMSI structure is shown in Figure
- 14 2.3.1-1.

16 17

Figure 2.3.1-1. IMSI Structure

18 19 20

An IMSI that is 15 digits in length is called a class 0 IMSI (the NMSI is 12 digits in length);

an IMSI that is less than 15 digits in length is called a class 1 IMSI (the NMSI is less than

22 12 digits in length).

² See *CCITT Blue Book*, Volume II-Fascicle II.2, Recommendation E.212, November 1988.

- IMSI_M is an IMSI that contains a MIN in the lower ten digits of the NMSI. An IMSI_M can be a class 0 or a class 1 IMSI. If the IMSI_M is not programmed, the mobile station shall
- set the four least-significant digits of the IMSI_M to the value of the ESNp, converted
- 4 directly from binary to decimal, modulo 10000, and the mobile station shall set the other
- 5 digits to 0.
- 6 IMSI_T is an IMSI that is not associated with the MIN assigned to the mobile station. An
- 7 IMSI_T can be a class 0 or class 1 IMSI. If the IMSI_T is not programmed, the mobile
- s station shall set the four least-significant digits of the IMSI_T to the value of the ESNp,
- converted directly from binary to decimal, modulo 10000, and the mobile station shall set
- the other digits to 0.
- When operating in the CDMA mode the mobile station shall set its operational IMSI value,
- 12 IMSI_O, to either the IMSI_M or the IMSI_T depending on the capabilities of the base
- station (See 2.6.2.2.5).
- An IMSI_S is a 10-digit (34-bit) number derived from the IMSI. When an IMSI has ten or
- more digits, IMSI_S is equal to the last ten digits. When an IMSI has fewer than ten digits,
- the least significant digits of IMSI_S are equal to the IMSI and zeros are added to the most
- significant side to obtain a total of ten digits. A 10-digit IMSI_S consists of 3- and 7-digit
- of the state to obtain a total of ten digital. A 10-digit involve Consists of 0- and 1-digit
- parts, called IMSI_S2 and IMSI_S1, respectively, as illustrated in Figure 2.3.1-2. IMSI_S is
- mapped into a 34-bit number (see 2.3.1.1). The IMSI_S derived from IMSI_M is designated
- 20 IMSI_M_S. The IMSI_S derived from IMSI_T is designated IMSI_T_S. The IMSI_S derived
- from IMSI_O is designated IMSI_O_S.
- 22 The mobile station shall have memory to store the 34-bit IMSI_M_Sp and the 34-bit
- 23 IMSI_T_Sp. IMSI_M_Sp is represented by the 10-bit IMSI_M_S2p and the 24 bit
- 24 IMSI_M_S1 $_p$. IMSI_T_S $_p$ is represented by the 10-bit IMSI_T_S2 $_p$ and the 24 bit
- IMSI_T_S1p.

27 28

29 30

31

32

Figure 2.3.1-2. IMSI_S Binary Mapping

When an IMSI has 12 or more digits, IMSI_11_12 is equal to the 11th and 12th digits of the IMSI. When an IMSI has fewer than 12 digits, digits with a value equal to zero are

- added to the most significant side to obtain a total of 12 digits and the IMSI_11_12 is equal to the 11th and 12th digits of the resulting number.
- IMSI_11_12 is encoded as described in 2.3.1.2. The mobile station shall have memory to store the 7-bit IMSI_M_11_12p and the 7-bit IMSI_T_11_12p.
- The 3-digit MCC is encoded as described in 2.3.1.3. The mobile station shall have memory
- to store the 10-bit MCC_ M_p and the 10-bit MCC_ T_p .
- If the mobile station has a class 1 IMSI_T, or IMSI_M, it shall have memory to store $IMSI_T_ADDR_NUM_p$ and $IMSI_M_ADDR_NUM_p$. $IMSI_T_ADDR_NUM_p$ is equal to the
- $_{\rm 9}$ $\,$ number of digits in the NMSI minus four. IMSI_M_ADDR_NUM_p is equal to the number of
- digits in the NMSI of the IMSI_M minus four.
- 2.3.1.1 Encoding of IMSI_M_S and IMSI_T_S
- The IMSI_M_S and IMSI_T_S binary mapping is defined as follows:
 - The first three digits of the IMSI_M_S and the first three digits of the IMSI_T_S are mapped into ten bits (corresponding to IMSI_M_S2_p and IMSI_T_S2_p, respectively) by the following coding algorithm:
 - a. Represent these three digits as D_1 D_2 D_3 with the digit equal to zero being given the value of ten.
 - b. Compute $100 \times D_1 + 10 \times D_2 + D_3 111$.
 - c. Convert the result in step b to binary by the standard decimal-to-binary conversion as shown in Table 2.3.1.1-1.

Table 2.3.1.1-1. Decimal to Binary Conversion Table

Decimal Number	Binary Number	
0	000000000	
1	000000001	
2	000000010	
3	000000011	
4	000000100	
•		
•	•	
•	•	
998	1111100110	
999	1111100111	

13

17

19

20

11 12

13 14

15

16

17 18

19

20

21

22

23

- The second three digits of IMSI_M_S and the second three digits of IMSI_T_S are mapped into the ten most significant bits of IMSI_M_S1p and IMSI_T_S1p, respectively, by the coding algorithm indicated in 1.
 - 3. The last four digits of IMSI_M_S and the last four digits of IMSI_T_S are mapped into the 14 least significant bits of IMSI_M_S1p and IMSI_T_S1p, respectively, as follows:
 - a. The thousands digit is mapped into four bits by a Binary-Coded-Decimal (BCD) conversion, as shown in Table 2.3.1.1-2.
 - b. The last three digits are mapped into ten bits by the coding algorithm indicated in 1

Table	2.3.1	.1-2.	BCD	Mapping
				TATEL

Decimal Digit	Binary Number
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
0	1010

The following example illustrates the IMSI_T_S2 $_p$ and IMSI_T_S1 $_p$ calculation procedure. Let the IMSI_T be the 9-digit number 123456789. Since the IMSI_T has fewer than ten digits, the nine least significant digits of the IMSI_T_S are equal to the IMSI_T digits and the most significant IMSI_T_S digit is set to zero. So the 10-digit IMSI_T_S is 012 345 6 789. IMSI_T_S2 $_p$ and IMSI_T_S1 $_p$ are calculated as follows:

- IMSI_T_S2 $_p$. The ten-bit IMSI_T_S2 $_p$ is derived from the first three digits of the IMSI_T_S (i.e., 012):
- a. D1 = 10; D2 = 1; D3 = 2.
- b. $100 \times D1 + 10 \times D2 + D3 111 = 100 \times 10 + 10 \times 1 + 2 111 = 901$.
- c. 901 in binary is '11 1000 0101'.
- Therefore, $IMSI_T_S2_p$ is '11 1000 0101'.

- IMSI_T_S1_p. The ten most significant bits of IMSI_T_S1_p are derived from the second three digits of the IMSI_T_S (i.e., 345):
- a. D1=3; D2=4; D3=5.
- b. $100 \times D1 + 10 \times D2 + D3 111 = 100 \times 3 + 10 \times 4 + 5 111 = 234$.
- c. 234 in binary is '0011 1010 10'.
- The next four most significant bits of IMSI_T_S1p are derived from the thousands digit of
- 7 the IMSI_T_S (i.e., 6) by BCD conversion: 6 in BCD is '0110'.
- The ten least significant bits of IMSI_T_S1p are derived from the last three digits of the
- 9 IMSI_T_S (i.e., 789):
- a. $D_1 = 7$; $D_2 = 8$; $D_3 = 9$.
- b. $100 \times D_1 + 10 \times D_2 + D_3 111 = 100 \times 7 + 10 \times 8 + 9 111 = 678$.
- c. 678 in binary is '10 1010 0110'.
- Therefore, IMSI_T_S1p is '0011 1010 1001 1010 1010 0110'.
- 2.3.1.2 Encoding of IMSI_M_11_12 and IMSI_T_11_12
- The IMSI_M_11_12 and IMSI_T_11_12 binary mapping is defined as follows:
- 1. Represent the 11th digit as D₁₁ and the 12th digit as D₁₂ with the digit equal to zero being given the value of ten.
- 18 2. Compute $10 \times D_{12} + D_{11} 11$.
- 3. Convert the result in step 2 to binary by a standard decimal-to-binary conversion as described in Table 6.3.1.1-1 and limit the resulting number to the 7 least significant bits.
- 2 2.3.1.3 Encoding of the MCC_M and MCC_T
- The MCC_M and MCC_T binary mapping is defined as follows:
- 1. Represent the 3-digit Mobile Country Code as D₁ D₂ D₃ with the digit equal to zero being given the value of ten.
- 2. Compute $100 \times D_1 + 10 \times D_2 + D_3 111$.
- 27 3. Convert the result in step (2) to binary by a standard decimal-to-binary conversion as described in Table 2.3.1.1-1.
- 29 2.3.1.4 Mobile Directory Number
- 30 A Mobile Directory Number (MDN) is a dialable number associated with the mobile station
- through a service subscription. A Mobile Directory Number is not necessarily the same as
- the mobile station identification on the air interface, i.e., MIN, IMSI_M or IMSI_T. An MDN
- 33 consists of up to 15 digits. The mobile station should have memory to store at least one
- 34 Mobile Directory Number (see Table F.3-1).

2.3.2 Electronic Serial Number

- 2 The ESN is a 32-bit binary number that uniquely identifies the mobile station to any
- wireless system. The ESN value is available to procedures in the mobile station as the
- $_{4}$ $\,$ value of the variable ESN_p. The value of the variable RN_HASH_KEY_s is the same as the
- value of the variable ESN_p, and need not be stored separately.

6 2.3.3 Station Class Mark

- 7 Class-of-station information referred to as the station class mark (SCMp) must be stored in
- a mobile station. The digital representation of this class mark for Band Class 0 and Band
- Class 1 is specified in Table 2.3.3-1.

10

Table 2.3.3-1. Station Class Mark

Function	Bit(s)	Setting	
Extended SCM Indicator	7	Band Class 0 Band Class 1	0XXXXXXX 1XXXXXXX
Dual Mode	6	CDMA Only Dual Mode	X0XXXXXX X1XXXXXX
Slotted Class	5	Non-Slotted Slotted	XX0XXXXX XX1XXXXX
IS-54 Power Class	4	Always 0	XXX0XXXX
25 MHz Bandwidth	3	Always 1	XXXX1XXX
Transmission	2	Continuous Discontinuous	XXXXX0XX XXXXX1XX
Power Class for Band Class 0 Analog Operation	1 - 0	Class I Class II Class III Reserved	XXXXXX00 XXXXXX01 XXXXXX10 XXXXXX11

12

13

14

15

If the mobile station supports analog mode operation in Band Class 0, the mobile station shall set the Power Class function bits to reflect its analog power class at Band Class 0, regardless of the band class in which it is operating; otherwise, the mobile station shall set

these bits to '00'.

17 2.3.4 Registration Memory

- The mobile station shall have memory to store one element in the zone-based registration
- list ZONE_LIST_{s-p} (see 2.6.5.1.5 and 2.6.5.5). This stored element shall include both
- 20 REG_ZONE and the corresponding (SID, NID) pair. The data retention time under power-
- off conditions shall be at least 48 hours. If, after 48 hours, the data integrity cannot be
- guaranteed, then the entry in ZONE_LIST_{s-p} shall be deleted upon power-on.

- The mobile station shall have memory to store one element in the system/network registration list SID_NID_LIST_{s-p} (see 2.6.5.1.5 and 2.6.5.5). The data retention time
- under power-off conditions shall be at least 48 hours. If, after 48 hours, the data integrity
- cannot be guaranteed, then the entry in SID_NID_LIST_{s-p} shall be deleted upon power-on.
- 5 The mobile station shall have memory to store the distance-based registration variables
- BASE_LAT_REG_{s-p}, BASE_LONG_REG_{s-p}, and REG_DIST_REG_{s-p} (see 2.6.5.1.4 and
- 7 2.6.5.5). The data retention time under power-off conditions shall be at least 48 hours. If,
- after 48 hours, the data integrity cannot be guaranteed, then REG_DIST_REG_s-p shall be
- set to zero upon power-on.
- 10 2.3.5 Access Overload Class
- The 4-bit access overload class indicator $(ACCOLC_p)$ is used to identify which overload class controls access attempts by the mobile station and is used to identify redirected
- overload classes in global service redirection.
- The mobile station shall store 4-bit access overload class (ACCOLC $_p$). Mobile stations that are not for test or emergency use should be assigned to overload classes ACCOLC 0
- through ACCOLC 9. For mobile stations that are classified as overload classes ACCOLC 0
- through ACCOLC 9, the mobile station's 4-bit access overload class indicator (ACCOLC_p)
- shall be automatically derived from the last digit of the associated decimal representation
- Strain be automatically derived from the last digit of the associated decimal representation
- of the IMSI_M by a decimal to binary conversion as specified in Table 2.3.5-1. When a
- mobile station's IMSI_M is updated, the mobile station shall re-calculate the ACCOLC_p as
- indicated above. Mobile stations designated for test use should be assigned to ACCOLC
- 2 10; mobile stations designated for emergency use should be assigned to ACCOLC 11.
- 23 ACCOLC 12 through ACCOLC 15 are reserved.³ Programming the 4-bit ACCOLC_p for
- overload classes ACCOLC 10 through ACCOLC 15 as specified in Table 2.3.5-2 shall
 - require a special facility only available to equipment manufacturers and system operators.
- 26 The content of ACCOLC_p shall not be visible through the mobile station's display.

³ For more information, refer to TSB16.

Table 2.3.5-1. ACCOLC_p Mapping for ACCOLC 0 through ACCOLC 9

Last Digit of the Decimal Representation of the IMSI	ACCOLCp
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Table 2.3.5-2. ACCOLC_p Mapping for ACCOLC 10 through ACCOLC 15

Overload Class	ACCOLCp
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

- 5 2.3.6 Reserved
- 6 2.3.7 Reserved
- 7 2.3.8 Home System and Network Identification
- $_{8}$ In addition to the HOME_SID $_{p}$ parameter that the mobile station stores for 800 MHz
- analog operation, the mobile station shall provide memory to store at least one home
- (SID_p, NID_p) pair. The mobile station shall also provide memory to store the 1-bit
- parameters MOB_TERM_HOME_p, MOB_TERM_FOR_SID_p, and MOB_TERM_FOR_NID_p
- 12 (see 2.6.5.3).

- 2.3.9 Local Control Option
- 2 If the mobile station supports the local control option, a means shall be provided within
- the mobile station to enable or disable the local control option.
- 4 2.3.10 Preferred Operation Selection
- 5 2.3.10.1 Preferred System
- If the mobile station supports operation in Band Class 0 (see 3GPP2 C.S0002-0), a means
- shall be provided within the mobile station to identify the preferred system. In addition,
- the mobile station may provide a means for allowing operation only with System A or only
- with System B.
- 2.3.10.2 Preferred CDMA or Analog
- If the mobile station supports operation in Band Class 0 (see 3GPP2 C.S0002-0), a means
- may be provided within the mobile station to identify the preferred operation type as either
- 13 CDMA mode or analog mode. In addition, the mobile station may provide a means for
- allowing operation only in the preferred mode.
- 2.3.11 Discontinuous Reception
- 16 The mobile station shall provide memory to store the preferred slot cycle index,
- SLOT_CYCLE_INDEX_p (see 2.6.2.1.1.3.2).
- 2.3.12 Authentication, Encryption of Signaling Information/User Data and Voice Privacy
- 2.3.12.1 Authentication
- 20 Authentication is the process by which information is exchanged between a mobile station
- 21 and base station for the purpose of confirming the identity of the mobile station. A
- 22 successful outcome of the authentication process occurs only when it can be
- 23 demonstrated that the mobile station and base station possess identical sets of shared
- 24 secret data.
- 25 The authentication algorithms are described in "Common Cryptographic Algorithms." The
- 26 interface (input and output parameters) for the algorithms is described in "Interface
- 27 Specification for Common Cryptographic Algorithms." Table 2.3.12.1-1 summarizes the
- setting of the input parameters of the Auth_Signature procedure for each of its uses in this
- 29 standard.
- For authentication purposes, the mobile station shall use IMSI_M if it is programmed;
- otherwise, the mobile station shall use IMSI_T. The base station uses the IMSI selected
- 32 according to the same criteria.

Procedure	RAND_CHALLENGE	ESN	AUTH_ DATA	SSD_ AUTH	SAVE_ REGISTERS
Unique Challenge (2.3.12.1.4)	RANDU and 8 LSBs of IMSI_S2	ESNp	IMSI_S 1	SSD_A	FALSE
Base Station Challenge (2.3.12.1.5)	RANDBS	ESN _p	IMSI_S 1	SSD_A _ NEW	FALSE

Table 2.3.12.1-1. Auth_Signature Input Parameters

2.3.12.1.1 Shared Secret Data (SSD)

- SSD is a 128-bit quantity that is stored in semi-permanent memory in the mobile station
- and is readily available to the base station. As depicted in Figure 2.3.12.1.1-1, SSD is
- partitioned into two distinct subsets. Each subset is used to support a different process.

Contents	SSD_A	SSD_B	
Length (bits)	64	64	

Figure 2.3.12.1.1-1. Partitioning of SSD

SSD_A is used to support the authentication procedures and SSD_B is used to support voice privacy (see 2.3.12.3) and message encryption (see 2.3.12.2). SSD is generated according to the procedure specified in 2.3.12.1.5. The SSD shall not be accessible to the user.

- 2.3.12.1.2 Random Challenge Memory (RAND)
- RAND is a 32-bit value held in the mobile station. When operating in CDMA mode, it is
- equal to the RAND value received in the last Access Parameters Message (see 3.7.2.3.2.2)
- of the CDMA f-csch.
- 18 RANDs is used in conjunction with SSD_A and other parameters, as appropriate, to
- authenticate mobile station originations, terminations and registrations.
- 20 2.3.12.1.3 Call History Parameter (COUNT_{S-D})
- 21 COUNT_{S-P} is a modulo-64 count held in the mobile station. COUNT_{S-P} is updated by the
- 22 mobile station when a Parameter Update Order is received on the f-dsch (see 3.7.4).
- 23 2.3.12.1.4 Unique Challenge-Response Procedure
- 24 The Unique Challenge-Response Procedure is initiated by the base station and can be
- carried out either on the f-csch and r-csch, or on the f-dsch and r-dsch. The procedure is
- 26 as follows:

- The base station generates the 24-bit quantity RANDU and sends it to the mobile station
- in the Authentication Challenge Message on either the f-csch or f-dsch. Upon receipt of the
- 3 Authentication Challenge Message, the mobile station shall set the input parameters of the
- 4 Auth_Signature procedure (see "Interface Specification for Common Cryptographic
- Algorithms," section 2.3) as illustrated in Figure 2.3.12.1.4-1. The 24 most significant bits
- 6 of the RAND_CHALLENGE input parameter shall be filled with RANDU, and the 8 least
- significant bits of RAND_CHALLENGE shall be filled with the 8 least significant bits of
- 8 IMSI_S2.
- The mobile station shall set the SAVE_REGISTERS input parameter to FALSE.
- 10 The mobile station shall then execute the Auth_Signature procedure. The 18-bit output
- AUTH_SIGNATURE shall be used to fill the AUTHU field of the Authentication Challenge
- 12 Response Message, which shall be sent to the base station.
- 13 The base station computes the value of AUTHU in the same manner as the mobile station,
- but using its internally stored value of SSD_A. The base station compares its computed
- value of AUTHU to the value received from the mobile station. If the comparison fails, the
- base station may deny further access attempts by the mobile station, drop the call in
- progress, or initiate the process of updating SSD (see 2.3.12.1.5).
- 2.3.12.1.5 Updating the Shared Secret Data (SSD)
- 19 SSD is updated using the SSD_Generation procedure (see "Interface Specification for
- 20 Common Cryptographic Algorithms," section 2.2.1), initialized with mobile station specific
- information, random data, and the mobile station's A-key. The A-key is 64 bits long. It is
- assigned to the mobile station and is stored in the mobile station's permanent security and
- 23 identification memory. The A-key is known only to the mobile station and to its associated
- 24 Home Location Register/Authentication Center (HLR/AC) (see TIA/EIA-41-D). Non-
- 25 manual methods, such as described in TIA/EIA/IS-683-A, are preferred for entry of the A-
- 26 key into the mobile station. TSB50 describes a manual method of entry that may be used
- when automated methods are not available.
- The SSD update procedure is performed as follows (see Figure 2.3.12.1.5-1):
- 29 The base station sends an SSD Update Message on either the f-csch or the f-dsch. The
- 30 RANDSSD field of the SSD Update Message contains the same value used for the HLR/AC
- 31 computation of SSD.
- 32 Upon receipt of the SSD Update Message the mobile station shall set the input parameters
- of the SSD_Generation procedure (see "Interface Specification for Common Cryptographic
- Algorithms," section 2.2.1) as illustrated in Figure 2.3.12.1.5-2. The mobile station shall
- then execute the SSD_Generation procedure. The mobile station shall set SSD_A_NEW
- and SSD_B_NEW to the outputs of the SSD_Generation procedure.
- 37 The mobile station shall then select a 32-bit random number, RANDBS, and shall send it
- to the base station in a Base Station Challenge Order on the r-csch or r-dsch.
- Both the mobile station and the base station shall then set the input parameters of the
- 40 Auth_Signature procedure (see "Interface Specification for Common Cryptographic

- Algorithms," section 2.3) as illustrated in Figure 2.3.12.1.5-3 and shall execute the
- 2 Auth_Signature procedure.
- 3 The mobile station and base station shall set the SAVE_REGISTERS input parameter to
- 4 FALSE.
- 5 The mobile station and base station shall execute the Auth_Signature procedure. AUTHBS
- 6 is set to the 18-bit result AUTH_SIGNATURE. The base station sends its computed value
- of AUTHBS to the mobile station in a Base Station Challenge Confirmation Order on the f-
- 8 csch or the f-dsch.
- 9 Upon receipt of the Base Station Challenge Confirmation Order the mobile station shall
- compare the received value of AUTHBS to its internally computed value. (If the mobile
- station receives a Base Station Challenge Confirmation Order when an SSD update is not in
- progress, the mobile station shall respond with an SSD Update Rejection Order.)
- 13 If the comparison is successful, the mobile station shall execute the SSD_Update
- procedure (see "Interface Specification for Common Cryptographic Algorithms," section
- 2.2.2) to set SSD_A and SSD_B to SSD_A_NEW and SSD_B_NEW, respectively. The mobile
- station shall then send an SSD Update Confirmation Order to the base station, indicating
- successful completion of the SSD update.
- 18 If the comparison is not successful, the mobile station shall discard SSD_A_NEW and
- 19 SSD_B_NEW. The mobile station shall then send an SSD Update Rejection Order to the
- 20 base station, indicating unsuccessful completion of the SSD update.
- Upon receipt of the SSD Update Confirmation Order, the base station sets SSD_A and
- 22 SSD_B to the values received from the HLR/AC (see EIA/TIA/IS-41).
- If the mobile station fails to receive the Base Station Challenge Confirmation Order within
- ²⁴ T_{64m} seconds of when the acknowledgment to the Base Station Challenge Order was
- received, the mobile station shall discard SSD_A_NEW and SSD_B_NEW. The mobile
 - station shall then terminate the SSD update process.

- If this message is received while first-idle ID status is disabled, location-registration ID status is disabled, first-registration ID status is enabled, first-location-area ID status is enabled, and the mobile station is tuned to a control channel different from LRCC_s, then the mobile station shall set first-registration ID status to disabled.
 - The mobile station must set $REGID_s$ to the value of the REGID field of the received message. If the first-registration ID status is enabled, the location-registration ID status is disabled, and $SID_s = SID_{s-p}$, the mobile station must do the following:
 - set the first-registration ID status to disabled (see 2.6.1.1.2).
 - if autonomous registration is enabled, the mobile station must enter the Autonomous Registration Update Task (see 2.6.3.11), supplying a "success" indication.
 - the mobile station shall continue to process information in the overhead message stream.

Otherwise, the mobile station shall set the first-registration ID status to disabled (see 2.6.1.1.2) and proceed as follows:

- If DIGITAL_REG_{s-p} = '00000001', the mobile station must perform the following:
 - Set DIGITAL_REG_{s-p} = '00000000'

10

11

12

13

14

15

16

18

19

20

21

22

26

27

28

29

30

32

33

34

35

- If autonomous registration is enabled, the mobile station shall set the first-registration ID status to disabled (see 2.6.1.1.2) and then enter the System Access Task with a "registration" indication (see 2.6.3)
- If SID_S equals the SID_{S-p} value stored in the registration memory or if CDMA_MODE_S = 1, the mobile station must perform the following:
 - If $CDMA_MODE_S = 1$, the mobile station must perform the following:
 - + Set CDMA_MODE_S = 0.
 - + Generate a random number distributed uniformly in the interval 0 to 8 × MAX_REDIRECT_DELAY_S seconds, and if quantized, with granularity no greater than 1 ms. The mobile station must set its redirect delay timer to this random number and continue to process messages in the overhead message train.
 - Otherwise, if the redirect delay timer is inactive, the mobile station must perform the following:
 - The mobile station must use the following (or an equivalent) algorithm to review the NXTREG_{s-p} associated with the SID_{s-p} to determine if REGID_s has cycled through zero:
 - + If UPDATE_NEXTREG_s = 1, set NXTREG_{s-p} to REGID_s + REGINCR_s and reset UPDATE_NEXTREG_s to 0.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

32

33

35

36

37

38

39

- + If NXTREG_{s-p} is greater than or equal to REGID_s + REGINCR_s + 5, then NXTREG_{s-p} must be replaced by the greater of 0 or NXTREG_{s-p} 2^{20} .
- + Otherwise do not change NXTREG_{s-p}.
- The mobile station must then compare REGID_s with the NXTREG_{s-p} associated with the SID_{s-p}.
 - + If REGID_s is greater than or equal to NXTREG_{s-p} and autonomous registration is enabled, the mobile station must set the first-registration ID status to disabled (see 2.6.1.1.2) and then enter the System Access Task with a "registration" indication (see 2.6.3).
 - If REGID_s is greater than or equal to NXTREG_{s-p} and autonomous registration is not enabled, then set NXTREG_{s-p} equal to REGID_s.
 - + Otherwise, the mobile station must ignore the message and continue to process messages in the overhead message train.
- If SID_s is not equal to the SID_{s-p} value stored in the registration memory, the mobile station must perform the following:
 - If autonomous registration is enabled, the mobile station shall set the first-registration ID status to disabled (see 2.6.1.1.2). The mobile station shall then enter the System Access Task with a "registration" indication supplied (see 2.6.3).
 - Otherwise, the mobile station must ignore the message and continue to process messages in the overhead message train.
- 9. CDMA Capability Message: The mobile station must perform the following:
 - If PACA_S = 1, the mobile station should ignore the CDMA Capability Message
 and continue to process messages in the overhead message train.
 - If CDMA_AVAIL equals '1', REDIRECTIONs equals disabled, and the preferred mode of operation is CDMA, the mobile station may exit this task and enter the *System Determination Substate* of the *Mobile Station Initialization State* with a CDMA available indication (see 6.6.1.1).
 - If CDMA_AVAIL equals '1', REDIRECTIONs equals enabled, the IGNORE_CDMA field of REDIRECT_RECs equals '0', and the preferred mode of operation is CDMA, the mobile station may exit this task and enter the *System Determination Substate* of the *Mobile Station Initialization State* with a CDMA available indication (see 6.6.1.1).
 - If ADD_CDMA_AVAIL equals '1', REDIRECTION_S equals disabled, and the preferred mode of operation is CDMA, the mobile station may exit this task and enter the *System Access Task* with a CDMA query indication (see 2.6.3).
 - If ADD_CDMA_AVAIL equals '1', REDIRECTIONs equals enabled, the IGNORE_CDMA field of REDIRECT_RECs equals '0', and the preferred mode of operation is CDMA, the mobile station may exit this task and enter the System Access Task with a CDMA query indication (see 2.6.3).

- If the mobile station has previously attempted and failed to acquire a CDMA system five consecutive times as a result of receiving a CDMA Capability Message, the mobile station shall ignore the CDMA Capability Message until immediately before the next autonomous registration attempt or until the next mobile station power-up.
 - If REDIRECTION_S equals enabled, and the IGNORE_CDMA field of REDIRECT_REC_S equals '1', the mobile station shall ignore the CDMA Capability Message.
 - 10. Rescan Message: See the corresponding section of TIA/EIA-553-A.
 - 11. Any Other Message: Ignore message.

2.6.2.2 Page Match

9

10

11

15

16

17

18

19

20

22

23

25

29

30

31

32

- The mobile station must monitor mobile station control messages for page messages (see 3.7.1.1).
 - If the ROAM status is disabled, the mobile station must attempt to match MIN1_p to MIN1_r for one-word messages and both MIN1_p and MIN2_p to MIN1_r and MIN2_r , respectively, for two-word messages. All decoded MIN bits must match to cause the mobile station to respond to the message.
 - If the ROAM Status is enabled, the mobile station must attempt to match both MIN1_p and MIN2_p to MIN1_r and MIN2_r, respectively. All decoded MIN bits must match to cause the mobile station to respond to the order.

21 When a match occurs,

- If PACA_s = 1, the mobile station must set PACA_s = 0 and must indicate to the user that the PACA call has been canceled.
- The mobile station must enter the System Access Task with a "page response" indication (see 2.6.3).

₂₆ 2.6.2.3 Order

- In addition to the requirements described in the corresponding section of TIA/EIA-553-A, the mobile station must respond as shown to the following orders:
 - PACA message: If PACA_S = 0, the mobile station must ignore the message.
 If PACA_S = 1, the mobile station must perform the following:
 - If the message is a response to an Origination order (PURPOSE_r = '0000'), the mobile station must ignore the message.
- If the message is to provide the queue position of the PACA call (PURPOSE_r = '0001'), the mobile station must indicate to the user that the PACA call is still queued, and must indicate the current queue position (Q_POS_r) of the call. The mobile station shall remain in the current task.

ANSI/TIA/EIA-95-B

- If the message is to instruct the mobile station to re-originate the PACA call (PURPOSE_r = '0010'), the mobile station must enter the System Access Task (see 2.6.3) with a "PACA response" indication and re-originate the PACA call.
 - If the message is to cancel the PACA call (PURPOSE_r = '0011'), the mobile station must set PACA_s = 0, indicate to the user that the PACA call has been canceled, and enter the Serving System Determination Task (see 2.6.3.12).

7 2.6.2.4 Call Initiation

- When the user initiates a call, the mobile station must perform the following:
- If $PACA_S = 1$, the mobile station must set $PACA_S = 0$ and must indicate to the user that the PACA call has been canceled.
 - The System Access Task (see 2.6.3) must be entered with an "origination" indication.
- 13 2.6.2.5 Reserved

12

22

- See the corresponding section of TIA/EIA-553-A.
- 15 2.6.2.6 Power Down
- See the corresponding section of TIA/EIA-553-A.
- 17 2.6.2.7 PACA Cancellation
- 18 The mobile station PACA Cancel Operation is performed when the user directs the mobile
- station to cancel the PACA call.
- 20 If $PACA_S = 1$, the mobile station must perform the following:
- Set $PACA_S = 0$,
 - Indicate to the user that the PACA call has been canceled,
- Enter the System Access Task (see 2.6.3) with a "PACA cancel" indication.
- 24 2.6.3 System Access
- 2.6.3.1 Set Access Parameters
- $_{\infty}$ If a mobile station power down occurs during a system access and PDREG_S = 1 the mobile
- 27 station must terminate its access procedures and initiate an autonomous registration by
- entering the System Access Task (see 2.6.3) with a "power down registration" indication.
- 29 When the System Access Task is started, a timer, called the access timer, must be set as
- ∞ follows:

- If this is an origination or PACA response, to a maximum of 12 seconds.
- If this is a page response or PACA cancel, to a maximum of 6 seconds.
- If this is an order response, to a maximum of 6 seconds.

- If this is a registration other than power down registration, to a maximum of 6 seconds.
- If this is a power down registration, to a maximum of 3 seconds.
 - If this is a Base Station Challenge, to a maximum of 12 seconds.
- If this is a CDMA query, to a maximum of 6 seconds.
- The mobile station must set $IDHO_S = 0$ and the last-try code (LT_S) to '0', set
- UPDATE_NEXTREGs to '0', and then enter the Scan Access Channels Task (see 2.6.3.2).
- 8 2.6.3.2 Scan Access Channels
- 9 See the corresponding section of TIA/EIA-553-A.
- 2.6.3.3 Retrieve Access Attempt Parameters
- 11 The mobile station must set the maximum-number-of-seizure-attempts allowed
- (MAXSZTR_{SI}) to a maximum of 10, and the maximum-number-of-busy-occurrences
- 13 (MAXBUSY_{SI}) to a maximum of 10.

16

18

- 14 The mobile station must then initialize the following to zero:
 - Number of busy occurrences (NBUSY_{sv})
 - Number of unsuccessful seizure attempts (NSZTR_{SV})
- The mobile station must then examine the read control-filler bit (RCF_s).
 - If RCF_S = 0, the mobile station must then within 400 ms (+100 ms, -0 ms) set DCC_S to the value in the DCC field of a received message, set SDCC1_S and SDCC2_S to 0, and set the power level (PL_S) to 0.
- If $RCF_s = 1$, the mobile station must then within 1000 ms (+100 ms, -0 ms) read a Control-Filler Message, set DCC_s , WFOM_s, SDCC1_s and SDCC2_s to the values in the DCC, WFOM, SDCC1 and SDCC2 fields of the message, respectively, and set PL_s to the power level given by Table 2.1.2.2-1 for the value of the CMAC field of the message and the mobile station power class (see 2.1.2.2, 2.3.3, and 3.7.1.2.4).
- If the DCC field or the Control-Filler Message is not received within the time allowed, then the mobile station must examine the access timer. If the access timer has expired, the mobile station must enter the Serving-System Determination Task (see 2.6.3.12). If the access timer has not expired, the mobile station must enter the Alternate Access Channel Task (see 2.6.3.13).
- The mobile station must then set BIS_s to '1' and examine the WFOM_s bit.
- If PACA_S = 1 or WFOM_S = 1, the mobile station must enter the Update Overhead Information Task (see 2.6.3.4).

ANSI/TIA/EIA-95-B

If WFOM_S = 0, the mobile station must wait a random delay. Each time it waits a random delay, a random delay must be generated with the time uniformly distributed in the interval 0 to 92 ±1 ms and, if quantized, with granularity no more than 1 ms. The mobile station must then enter the Seize Reverse Control Channel Task (see 2.6.3.5).

6 2.6.3.4 Update Overhead Information

If this task is not completed within 1.5 seconds, the mobile station must exit this task and enter the Serving-System Determination Task (see 2.6.3.12). If the Update Overhead Information Task is completed, the mobile station must enter the Seize Reverse Control Channel Task (see 2.6.3.5).

The mobile station must receive an overhead message train (see 3.7.1.2).

- Authentication bit (AUTH_s): Set AUTH_s to the value in the AUTH field.
- Extended Protocol bit (EP_s): If the mobile station is capable of supporting Extended Protocol, set EP_s to the value in the EP field.

If the access is a registration, an origination, a PACA response, or a page response, the mobile station shall perform the following:

- Update System Identification (SID_r). Set the 14 most significant bits of SID_r to the value of the SID1 field. Set the least significant bit of SID_r to '1' if the serving-system status is enabled; otherwise, set the bit to '0'.
- If the access is a registration, the mobile station must compare SID_r with SID_s . If SID_r is not equal to SID_s , the mobile station must exit the Update Overhead Information Task and enter the Serving System Determination Task (see 2.6.3.12). Otherwise, the mobile station shall continue to process this task.
- If this access is an origination or a page response, the mobile station must compare SID_r with SID_{s-p} . If SID_r does not equal SID_{s-p} , the mobile station must set $RAND_s$ equal to zero.
- If the access is a PACA response and SID_r is not equal to SID_s and $PACA_s = 1$, the mobile station must set $PACA_s = 0$ and must indicate to the user that the PACA call has been canceled. The mobile station must enter the Serving System Determination Task (see 2.6.3.12).

The mobile station must act as indicated below in response to the following global action messages, if received in the message train:

- Overload Control Message:
 - If this access is an origination, the mobile station must examine the value of the overload class field (OLC) identified by ACCOLC_p. If the identified OLC field is set to '0', the mobile station must exit this task and enter the Serving-System Determination Task (see 2.6.3.12); if the identified OLC field is set to '1', the mobile station must continue to respond to messages in the overhead message train.

- Otherwise, the mobile station must continue to respond to messages in the overhead message train.
- Access Type Parameters Message:

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

30

33

35

- The mobile station must set the busy-idle status bit (BIS_s) to the value of the BIS field of the received message.
 - The mobile station must set PCI_HOME_s to the value of the PCI_HOME field of the received message.
 - The mobile station must set PCI_ROAM_s to the value of the PCI_ROAM field of the received message.
 - The mobile station must set BSPC_s to the value of the BSPC field of the received message.
 - The mobile station must set BSCAPs to the value of the BSCAP field of the received message.
 - + If BSCAP_s indicates that the system supports TIA/EIA-553-A or later revisions of the core analog air interface standard.
 - + If PCSID ≠ SID_S
 - + If Roam status is enabled and PCI_ROAM_S = 1 or
 - + If Roam status is disabled and PCI_HOME_s = 1
 - + Then, the mobile station shall Update Protocol Capability ID status to enabled and set PCSID_s = SID_s.
 - Random Challenge A Message: The mobile station must set the corresponding portion of its internal RAND1_s to the value of the RAND1_A field in the Global Action Message (see 2.3.12.1.2 for updating of RAND).
 - Random Challenge B Message: The mobile station must set the corresponding portion of its internal RAND1_s to the value of the RAND1_B field in the Global Action Message (see 2.3.12.1.2 for updating of RAND).
 - Access Attempt Parameters Message: The mobile station must update the following parameters:
 - If this access is a page response,
 - Maximum number of seizure tries allowed (MAXSZTR_{SI}) must be set to the value of the MAXSZTR-PGR field of the received message.
 - + Maximum number of busy occurrences allowed (MAXBUSY_{SI}) must be set to the value of the MAXBUSY-PGR field of the received message.
 - Otherwise,
 - + Maximum number of seizure tries allowed (MAXSZTR_{SI}) must be set to the value of the MAXSZTR-OTHER field of the received message.

- Maximum number of busy occurrences allowed (MAXBUSY_{SI}) must be set to the value of the MAXBUSY-OTHER field of the received message.
- If the access is a registration access, the mobile station must respond as indicated to the registration identification message, if received in the overhead message train:
- The mobile station must set REGIDs to the value of the REGID field in the message.
- After the overhead message train is received and processed as required above, the mobile station must wait a random time. Each time this task is executed, a different random delay
- must be generated, distributed uniformly in the interval 0 to 750 ms, and if quantized, with
- 9 granularity no greater than 1 ms. At the end of the delay, the mobile station must enter
- the Seize Reverse Control Channel Task (see 2.6.3.5).
- 2.6.3.5 Seize Reverse Control Channel
- See the corresponding section of TIA/EIA-553-A.
- 2.6.3.6 Delay After Failure
- See the corresponding section of TIA/EIA-553-A.
- 2.6.3.7 Service Request
- The mobile station must continue to send its message to the base station. The information that must be sent is as follows (with the formats given in 2.7.1):
- Word A must always be sent.
- 19 If:
- $-E_{s} = 1$, or
- $-LT_{S} = 1$, or
- AUTH_S = 1, or
- the ROAM status is enabled, or
- the ROAM status is disabled and EX_p = 1, or
- the access is an "order confirmation," or
- ≥ the access is a "registration," or
- 27 the access is a "capability registration," or
- the access is a "CDMA query," or
- the access is a "base station challenge," or
- — the mobile station was paged with a two-word Mobile Station Control Message,
- 31 Or
- RCF = 1,
- 33 Word B must be sent.

Word C must be sent as per the following table:

3

10

11

12

13

14

15

16

17

19

20

21

23

24

	Type of System Access						
S _s Bit	Registration, Origination, PACA Cancel, PACA Response, or Page Response where AUTH _S = 0	Registration, Origination, PACA Cancel, PACA Response, or Page Response where AUTH _S = 1	Unique Challenge Order Confirmation	Base Station Challenge			
0	Send no Word C	Send Authentication Word C	Send Unique Challenge Order Confirmation Word C	Send Base Station Challenge Word C			
1	Send Serial Number Word C	Send Serial Number Word C and Authentication Word C	Send Serial Number Word C and Unique Challenge Order Confirmation Word C	Send Serial Number Word C and Base Station Challenge Word C			

- If the access is a "capability registration" and update-protocol-capability ID status is enabled, Protocol Capability Registration Word C must be sent and update-protocolcapability ID status must be disabled.
- If the access is a "registration" and Update Protocol Capability ID status is enabled, Protocol Capability Registration Word C must be sent and Update Protocol Capability ID status must be disabled.
- If the access is an "origination" or "PACA response", word D must be sent.
- If the access is an "origination" or a "PACA response" and 9 to 16 digits were dialed, word E must be sent.
- If the access is an "origination" or a "PACA response" and 17 to 32 digits were dialed, word F and G will be required.

When the mobile station has sent its complete message, it must continue to send unmodulated carrier for a nominal duration of 25 ms and then turn off the transmitter.

The next task to be entered depends on the type of access by the mobile station:

- If the access is an order confirmation or a PACA cancel, the mobile station must enter the Serving-System Determination Task (see 2.6.3.12).
- If the access is an origination, the mobile station must enter the Await Message Task (see 2.6.3.8).
- If the access is a page response, the mobile station must enter the Await Message Task (see 2.6.3.8).
 - If the access is a registration request other than a power down registration the mobile station must enter the Await Registration Confirmation Task (see 2.6.3.9). If the registration is a power down registration the mobile station shall power down.

- If the access is a base station challenge, the mobile station must enter the Await Message Task (see 2.6.3.8).
- If the access is a PACA response or a PCI order confirmation, the mobile station must enter the Await Message Task (see 2.6.3.8).
 - If the access is a CDMA query, the mobile station must enter the Await Message Task (see 2.6.3.8).

2.6.3.8 Await Message

18

19

20

21

23

25

26

27

28

29

30

31

32

33

35

36

39

- 8 If this task is not completed within 10 seconds for a Base Station Challenge or within 5
- seconds for all other messages and orders, the mobile station must exit this task and enter
- the Serving System Determination Task (see 2.6.3.12).
- 11 The mobile station must monitor mobile station control messages (see 3.7.1.1). If the
- mobile station sent Word B as part of the Service Request (see 2.6.3.7), then the mobile
- station must attempt to match $MIN1_p$ and $MIN2_p$ to $MIN1_r$ and $MIN2_r$, respectively;
- otherwise, the mobile station must attempt to match only MIN1p to MIN1r.
- The mobile station must respond as indicated to any of the following messages if all decoded MIN bits match.
- 17 If the access is an origination, PACA response, or page response:
 - Initial Voice Channel Designation Message (see 3.7.1.1): The mobile station must update the parameters as set in the message, delete all entries from SID_NID_LIST_S, ZONE_LIST_S, SID_NID_LIST_S-p, and ZONE_LIST_S-p, and set REGISTERED_S to NO. If $R_S=1$ the mobile station must enter the Autonomous Registration Update Task (see 2.6.3.11), supplying a "success" indication. Then enter the Confirm Initial Voice Channel Task (see 2.6.4.2). If PACA_S=1, the mobile station must set PACA_S=0 and must indicate to the user that the PACA call is in process.
 - PACA Message (see 3.7.1.1): If PACA_S = 0, the mobile station must perform the following:
 - If the message is in response to an origination (PURPOSE_r = '0000'), the mobile station must set PACA_s to enabled and indicate to the user that the call has been queued as a PACA call. Also, the mobile station must indicate to the user the current queue position (Q_POS_r) of the PACA call, then enter the Idle Task (see 2.6.2).
 - If the message is not in response to an origination, the mobile station must ignore the message.
 - If PACA_S = 1, the mobile station must perform the following:
 - If the message is in response to an origination (PURPOSE_r = '0000'), the mobile station must ignore the message.
 - If the message is to provide the queue position of the PACA call (PURPOSE $_r$ = '0001'), the mobile station must indicate to the user that the PACA call is still queued, indicate the current queue position (Q_POS $_r$) of the call, and remain in the current task.

- If the message is to instruct the mobile station to re-originate the PACA call (PURPOSE_r = '0010'), the mobile station must enter the System Access Task (see 2.6.3) with an "PACA response" indication and re-originate the PACA call.
 - If the message is to cancel the PACA call (PURPOSE_r = '0011'), the mobile station must set $PACA_S = 0$, indicate to the user that the PACA call has been canceled, and enter the Serving-System Determination Task (see 2.6.3.12).
- *Directed-Retry Message* (see 3.7.1.1): If the mobile station is equipped for directed retry, it must respond to the Directed-Retry Message as follows:

If the mobile station encounters the start of a new message before it receives all four words of the Directed-Retry Message, it must exit this task and enter the Serving-System Determination Task (see 2.6.3.12).

The mobile station must set the last-try code (LT_S) according to the ORDQ field of the message:

— If ORDQ = '000', set LT_S to '0'.

9

10

11

12

13

15

16

17

18

19

20

21

22

25

26

28

29

30

31

33

35

— If ORDQ = '001', set LT_s to '1'.

The mobile station must then clear $CCLIST_s$ and examine each CHANPOS field in Words 3 and 4 of the message. For each nonzero CHANPOS field, the mobile station must calculate a corresponding channel number according to the following algorithm:

- If LOCAL/MSG_TYPE = '00000' and the serving-system status is enabled, subtract CHANPOS from FIRSTCHA_s + 1.
- If LOCAL/MSG_TYPE = '00000' and the serving-system status is disabled, add CHANPOS to FIRSTCHA_s - 1.
- If LOCAL/MSG_TYPE = '00001' and the serving-system status is enabled, set FIRSTCHA_S to the first dedicated control channel for System A (834.990 MHz/879.990 MHz) and subtract CHANPOS from FIRSTCHA_S + 1. The mobile must also set AUTH_S to '0'.
- If LOCAL/MSG_TYPE = '00001' and the serving-system status is disabled, set FIRSTCHA_S to the first dedicated control channel for System B (835.020 MHz/880.020 MHz) and add CHANPOS to FIRSTCHA_S - 1. The mobile must also set AUTH_S to '0'.
- If LOCAL/MSG_TYPE = '00010' and the serving-system status is enabled, set FIRSTCHAs to the first dedicated control channel for System A (834.990 MHz/879.990 MHz) and subtract CHANPOS from FIRSTCHAs + 1. The mobile must also set AUTHs to '1'.
- If LOCAL/MSG_TYPE = '00010' and the serving-system status is disabled, set FIRSTCHAs to the first dedicated control channel for System B (835.020 MHz/880.020 MHz) and add CHANPOS to FIRSTCHAs 1. The mobile must also set AUTHs to '1'.

The mobile station must then determine whether each channel number is within the set allocated to cellular systems, and if so, list the channel number in $CCLIST_s$.

After completing its response to the Directed-Retry Message, the mobile station must examine the access timer. If the access timer has expired, the mobile station must enter the Serving-System Determination Task (see 2.6.3.12). If the access timer has not expired, the mobile station must enter the Directed-Retry Task (see 2.6.3.14).

If the access is an origination or PACA response:

- Intercept: If PACA_S = 1, the mobile station must set PACA_S = 0, must indicate to the user that the PACA call has been canceled, and enter the Serving-System Determination Task (see 2.6.3.12). Otherwise, the mobile station must enter the Serving-System Determination Task (see 2.6.3.12).
- Reorder: If PACA_S = 1, the mobile station must set PACA_S = 0, must indicate to the user that the PACA call has been canceled, and enter the Serving-System Determination Task (see 2.6.3.12). Otherwise, the mobile station must enter the Serving-System Determination Task (see 2.6.3.12).

If the access is a page response:

• *Release*: The mobile station must enter the Serving-System Determination Task (see 2.6.3.12).

If the access is a PCI order confirmation:

- *Release*: The mobile station must enter the Serving-System Determination Task (see 2.6.3.12).
- Message Waiting Order: If the mobile station is capable of performing Message Waiting Notification, the mobile station shall indicate the presence of messages waiting based on the information contained in the message type field of the Message Waiting order (i.e., 0 for clear or no messages, other non-zero values indicate the number of messages waiting). The mobile station then enters the System Access Task (see 2.6.3) with an "order confirmation" indication.

If the access is a CDMA Query:

• CDMA Info Order: The mobile station should exit this task and enter the System Determination Substate of the Mobile Station Initialization State with an additional CDMA available indication (see 6.6.1.1).

If the access is a Base Station Challenge:

Base Station Challenge Order Confirmation: The mobile station compares the
AUTHBS received in the Base Station Challenge Order Confirmation message to that
computed internally. The mobile station must then acknowledge receipt of the SSD
Update Order by the SSD Update Order Confirmation message with a success or
failure indication as described in 2.3.12.1.8 by entering the System Access Task (see
2.6.3) with an "order response" indication (see 2.6.3.1). If the mobile station fails to
receive the Base Station Challenge Order Confirmation within 10 seconds of when

- the Base Station Challenge Order was transmitted, terminate the SSD update process.
- 3 If the access is an origination and the user terminates a call during this task, the
- termination status must be enabled so that the call can be released on a voice channel (see
- 5 2.6.4.4) instead of on a control channel.
- 6 2.6.3.9 Await Registration Confirmation
- 7 In addition to the requirements in this section, see the corresponding section of
- 8 TIA/EIA-553-A.
- 9 If the mobile station receives an Order Confirmation (see 3.7.1.1) message, it shall delete all
- entries from SID_NID_LIST_s, ZONE_LIST_s, SID_NID_LIST_{s-p}, and ZONE_LIST_{s-p}, and set
- 11 REGISTERED_S to NO as the first action it takes.
- 2.6.3.10 Action on Registration Failure
- 13 In addition to the requirements in this section, see the corresponding section of
- 14 TIA/EIA-553-A.
- The mobile station shall delete all entries from SID_NID_LIST_S, ZONE_LIST_S,
- $_{16}$ SID_NID_LIST_{S-p}, and ZONE_LIST_{S-p}, and set REGISTERED_S to NO as the first action it
- 17 takes.
- 2.6.3.11 Autonomous Registration Update
- 19 In addition to the requirements in this section, see the corresponding section of
- ₂₀ TIA/EIA-553-A.
- The mobile station shall set CDMA_MODE_s = 0 and DIGITAL_REG_{s-p} = '000000000' as the
- 22 first action it takes.
- If a "success" indication was supplied to this task and $CPA_S = 1$, the mobile station must
- set LRCC_s equal to the current control channel.
- 2.6.3.12 Serving-System Determination
- 26 If this task is entered as a result of a power down registration attempt the mobile station
- must immediately power down. Otherwise, the mobile station shall proceed as follows:
- If REDIRECTION_s equals disabled, and either the preferred mode of operation is
- 29 CDMA or the serving-system status does not correspond to the preferred system,
- the mobile station may enter the System Determination Substate of the Mobile
- Station Initialization State with a reselection indication (see 6.6.1.1); otherwise, it
- must enter the Paging Channel Selection Task (see 2.6.1.2).
- 2.6.3.13 Alternate Access Channel
- See the corresponding section of TIA/EIA-553-A.
- 2.6.3.14 Directed Retry
- See the corresponding section of TIA/EIA-553-A.

- 2.6.4 Mobile Station Control on the Analog Voice Channel
- In addition to the requirements in this section, see the corresponding section of
- 3 TIA/EIA-553-A.
- 2.6.4.1 Loss of Radio-Link Continuity
- 5 See the corresponding section of TIA/EIA-553-A.
- 6. 2.6.4.2 Confirm Initial Voice Channel
- 7 In addition to the requirements in this section, see the corresponding section of
- 8 TIA/EIA-553-A.
- 9 Within 100 ms of the receipt of a Channel Assignment Message (see 7.7.2.3.2.8) containing
- 10 ASSIGN_MODE = '011' and AN_CHAN_TYPE = '00', or an Extended Channel Assignment
- 11 Message (see 7.7.2.3.2.21) containing ASSIGN_MODE = '011' and AN_CHAN_TYPE = '00',
- the mobile station must execute the procedures in the corresponding section of
- 13 TIA/EIA-553-A.
- 14 2.6.4.3 Alerting
- In addition to the requirements in this section, see the corresponding section of
- 16 TIA/EIA-553-A.

22

23

24

25

26

27

28

30

33

35

36

- 2.6.4.3.1 Waiting for Order
- In addition to the requirements in this section, see the corresponding section of TIA/EIA-553-A.
- When this task is entered, in addition to the actions described in the corresponding section of TIA/EIA-553-A, the following may occur:
 - If this task is entered as a result of receiving an Analog Handoff Direction Message (see 6.6.6.2.9), the mobile station must use the VMAC, ANALOG_CHAN, and SCC values obtained from the Analog Handoff Direction Message to perform the following operations: adjust power level, tune to new channel, adjust to new SAT, and set SCC_s to the value of the SCC field of the message (see 2.4.1). The mobile station must then turn on the transmitter, and reset the fade timer. The mobile station must set the message encryption mode to that indicated by the MEM value obtained from the Analog Handoff Direction Message. The mobile station may compare the SID value obtained from the Analog Handoff Direction Message with HOME_SID_p. If SID_r = HOME_SID_p, the mobile station may set the ROAM status to disabled. If SID_r is not equal to HOME_SID_p, the mobile station may set the ROAM status to enabled. The mobile station must remain in the Waiting for Order Task.
 - Within 100 ms of the receipt of any of the orders listed either below (see 3.7.2) or in the corresponding section of TIA/EIA-553-A, the mobile station must compare SCC_s to the present SAT color code (PSCC) field in the received message. If SCC_s is not equal to PSCC, the order must be ignored. If $SCC_s = PSCC$, the action to be taken for each order is as follows:

— Alert With Info SMS: Within 750 ms the mobile station must send an Alert With Info SMS Order Confirmation message. Remain in the Waiting for Order Task. If the value of the TASK_TM field of the received message is '0', reset the order timer to 10 seconds; otherwise reset the order timer to 600 ms.

Process the Alert With Info SMS message as follows:

B

- + If the value of the B/F field of the received message is '11', the INFO_DATA field of the received message contains an unsegmented SMS teleservice message. The mobile station may discard any incomplete SMS teleservice message being reassembled, and should pass the INFO_DATA field of the received message to the SMS teleservice. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '1'. If the teleservice reports an error, set the ERROR_CLASS and CAUSE_CODE fields of the Alert With Info SMS Order Confirmation Message to report the teleservice error.
- + If the value of the B/F field of the received message is '10', the mobile station may discard any incomplete SMS teleservice message being reassembled, and must store the INFO_DATA field of the received message as the first segment of an SMS teleservice message being reassembled. Store the value of the SEQ_NO field of the received message in SEQ_NO_S. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '0'.
- + If the value of the B/F field of the received message is '00' and a segmented SMS teleservice message is being reassembled, compare the value of the SEQ_NO field of the received message to SEQ_NO_S. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '0'. Take action as follows:
 - o If (SEQ_NO $_{\rm S}$ + 1) modulo 8 is equal to the value of the SEQ_NO field of the received message, store the INFO_DATA field of the received message as the next segment of the SMS teleservice message being reassembled, and increment SEQ_NO $_{\rm S}$, modulo 8.
 - o If SEQ_NO_s is equal to the value of the SEQ_NO field of the received message, the mobile station may discard the INFO_DATA field of the received message.
 - o If neither SEQ_NO_S nor (SEQ_NO_S + 1) modulo 8 is equal to the value of the SEQ_NO field of the received message, the mobile station may discard the INFO_DATA field of the received message and may discard the incomplete SMS teleservice message being reassembled.
- + If the value of the B/F field of the received message is '00', and no segmented SMS teleservice message is being reassembled, the mobile station may discard the INFO_DATA field of the received message. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '0'.

- + If the value of the B/F field of the received message is '01' and a segmented SMS teleservice message is being reassembled, store the INFO_DATA field of the received message as the last segment of the SMS teleservice message and pass the complete SMS teleservice message to the SMS teleservice. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '1'. If the teleservice reports an error, set the ERROR_CLASS and CAUSE_CODE fields of the Alert With Info SMS Order Confirmation Message to report the teleservice error.
- + If the value of the B/F field of the received message is '01', and no segmented SMS teleservice message is being reassembled, the mobile station may discard the INFO_DATA field of the received message. Set the ERROR_CLASS and CAUSE_CODE fields of the Alert With Info SMS Order Confirmation Message to report an error due to reception of an incomplete message. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '0'.

2.6.4.3.2 Waiting for Answer

- In addition to the requirements in this section, see the corresponding section of TIA/EIA-553-A.
- When this task is entered, in addition to the actions described in the corresponding section of TIA/EIA-553-A, the following may occur:
 - If this task is entered as a result of receiving an Analog Handoff Direction Message (see 6.6.6.2.9), the mobile station must use the VMAC, ANALOG_CHAN, and SCC values obtained from the Analog Handoff Direction Message to perform the following operations: adjust power level, tune to new channel, adjust to new SAT, and set SCC_s to the value of the SCC field of the message (see 2.4.1). The mobile station must then turn on the transmitter, reset the fade timer, and turn on the signaling tone. The mobile station must set the message encryption mode to that indicated by the MEM value obtained from the Analog Handoff Direction Message. The mobile station may compare the SID value obtained from the Analog Handoff Direction Message with HOME_SID_p. If SID_r = HOME_SID_p, the mobile station may set the ROAM status to disabled. If SID_r is not equal to HOME_SID_p, the mobile station may set the ROAM status to enabled. The mobile station must remain in the Waiting for Answer Task.
 - Within 100 ms of the receipt of any of the orders listed either below or in the corresponding section of TIA/EIA-553-A, the mobile station must compare SCC_s to the PSCC field in the received message. If SCC_s is not equal to PSCC, the order must be ignored. If SCC_s = PSCC, the action to be taken for each order is as follows:
 - Alert With Info SMS: Within 750 ms the mobile station must send an Alert With Info SMS Order Confirmation message. Remain in the Waiting for Answer Task.
 Process the Alert With Info SMS message as follows:

- + If the value of the B/F field of the received message is '11', the INFO_DATA field of the received message contains an unsegmented SMS teleservice message. The mobile station may discard any incomplete SMS teleservice message being reassembled, and should pass the INFO_DATA field of the received message to the SMS teleservice. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '1'. If the teleservice reports an error, set the ERROR_CLASS and CAUSE_CODE fields of the Alert With Info SMS Order Confirmation Message to report the teleservice error.
- + If the value of the B/F field of the received message is '10', the mobile station may discard any incomplete SMS teleservice message being reassembled, and must store the INFO_DATA field of the received message as the first segment of an SMS teleservice message being reassembled. Store the value of the SEQ_NO field of the received message in SEQ_NO_S. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '0'.

- + If the value of the B/F field of the received message is '00' and a segmented SMS teleservice message is being reassembled, compare the value of the SEQ_NO field of the received message to SEQ_NO_s. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '0'. Take action as follows:
 - o If (SEQ_NO_s + 1) modulo 8 is equal to the value of the SEQ_NO field of the received message, store the INFO_DATA field of the received message as the next segment of the SMS teleservice message being reassembled, and increment SEQ_NO_s, modulo 8.
 - o If SEQ_NO_S is equal to the value of the SEQ_NO field of the received message, the mobile station may discard the INFO_DATA field of the received message.
 - o If neither SEQ_NO $_{\rm S}$ nor (SEQ_NO $_{\rm S}$ + 1) modulo 8 is equal to the value of the SEQ_NO field of the received message, the mobile station may discard the INFO_DATA field of the received message and may discard the incomplete SMS teleservice message being reassembled.
- + If the value of the B/F field of the received message is '00', and no segmented SMS teleservice message is being reassembled, the mobile station may discard the INFO_DATA field of the received message. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '0'.
- + If the value of the B/F field of the received message is '01' and a segmented SMS teleservice message is being reassembled, store the INFO_DATA field of the received message as the last segment of the SMS teleservice message and pass the complete SMS teleservice message to the SMS teleservice. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '1'. If the teleservice reports an error, set the ERROR_CLASS and CAUSE_CODE fields of the Alert With Info SMS Order Confirmation Message to report the teleservice error.

+ If the value of the B/F field of the received message is '01', and no segmented SMS teleservice message is being reassembled, the mobile station may discard the INFO_DATA field of the received message. Set the ERROR_CLASS and CAUSE_CODE fields of the Alert With Info SMS Order Confirmation Message to report an error due to reception of an incomplete message. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '0'.

2.6.4.4 Conversation

- In addition to the requirements in this section, see the corresponding section of TIA/EIA-553-A.
 - When this task is entered, in addition to the actions described in the corresponding section of TIA/EIA-553-A, the following may occur:
 - If this task is entered as a result of receiving an *Analog Handoff Direction Message* (see 6.6.6.2.9), the mobile station must use the VMAC, ANALOG_CHAN, and SCC values obtained from the *Analog Handoff Direction Message* to perform the following operations: adjust power level, tune to new channel, adjust to new SAT, and set SCC_s to the value of the SCC field of the message (see 2.4.1). The mobile station must then turn on the transmitter, and reset the fade timer. The mobile station must set the message encryption mode to that indicated by the MEM value obtained from the *Analog Handoff Direction Message*. The mobile station may compare the SID value obtained from the *Analog Handoff Direction Message* with HOME_SID_p. If $SID_r = HOME_SID_p$, the mobile station may set the ROAM status to disabled. If SID_r is not equal to $HOME_SID_p$, the mobile station may set the ROAM status to enabled. The mobile station must remain in the Conversation Task.
 - Within 100 ms of the receipt of any of the orders listed either below or in the corresponding section of TIA/EIA-553-A, the mobile station must compare SCCs to the PSCC field in the received message. If SCCs is not equal to PSCC, the order must be ignored. If SCCs = PSCC, the mobile station must take the following steps. Except for the audit order, mobile stations capable of discontinuous-transmission operation (see 2.3.11) must inhibit discontinuous transmission for 1.5 seconds; that is, for at least 1.5 seconds the mobile station must remain in the DTX-high state. Upon receipt of the audit order, mobile stations capable of discontinuous transmission must inhibit discontinuous transmission for at least 5 seconds. Immediately after determining that SCCs = PSCC a mobile station not capable of discontinuous transmission but in the DTX-high state must take the actions specified below for each order.

If the mobile station is capable of discontinuous transmission and is in the DTX-low state or the transition state when the order arrives, the mobile station must enter the DTX-high state and wait 200 ms. Then it must take the actions specified below for each order.

 Alert With Info SMS: Within 750 ms the mobile station must send an Alert With Info SMS Order Confirmation message. Remain in the Conversation Task. Process the Alert With Info SMS message as follows:

q

- + If the value of the B/F field of the received message is '11', the INFO_DATA field of the received message contains an unsegmented SMS teleservice message. The mobile station may discard any incomplete SMS teleservice message being reassembled, and should pass the INFO_DATA field of the received message to the SMS teleservice. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '1'. If the teleservice reports an error, set the ERROR_CLASS and CAUSE_CODE fields of the Alert With Info SMS Order Confirmation Message to report the teleservice error.
- + If the value of the B/F field of the received message is '10', the mobile station may discard any incomplete SMS teleservice message being reassembled, and must store the INFO_DATA field of the received message as the first segment of an SMS teleservice message being reassembled. Store the value of the SEQ_NO field of the received message in SEQ_NO_S. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '0'.
- + If the value of the B/F field of the received message is '00' and a segmented SMS teleservice message is being reassembled, compare the value of the SEQ_NO field of the received message to SEQ_NO_s. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '0'. Take action as follows:
 - o If (SEQ_NO_S + 1) modulo 8 is equal to the value of the SEQ_NO field of the received message, store the INFO_DATA field of the received message as the next segment of the SMS teleservice message being reassembled, and increment SEQ_NO_S, modulo 8.
 - o If SEQ_NO_s is equal to the value of the SEQ_NO field of the received message, the mobile station may discard the INFO_DATA field of the received message.
 - o If neither SEQ_NO_S nor (SEQ_NO_S + 1) modulo 8 is equal to the value of the SEQ_NO field of the received message, the mobile station may discard the INFO_DATA field of the received message and may discard the incomplete SMS teleservice message being reassembled.
- + If the value of the B/F field of the received message is '00', and no segmented SMS teleservice message is being reassembled, the mobile station may discard the INFO_DATA field of the received message. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '0'.
- + If the value of the B/F field of the received message is '01' and a segmented SMS teleservice message is being reassembled, store the INFO_DATA field of the received message as the last segment of the SMS teleservice message and pass the complete SMS teleservice message to the SMS teleservice. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '1'. If the teleservice reports an error, set the ERROR_CLASS and CAUSE_CODE fields of the Alert With Info SMS Order Confirmation Message to report the teleservice error.

- + If the value of the B/F field of the received message is '01', and no segmented SMS teleservice message is being reassembled, the mobile station may discard the INFO_DATA field of the received message. Set the ERROR_CLASS and CAUSE_CODE fields of the Alert With Info SMS Order Confirmation Message to report an error due to reception of an incomplete message. Set the B/F field of the Alert With Info SMS Order Confirmation Message to '0'.
- ₈ 2.6.4.5 Release
- 9 See the corresponding section of TIA/EIA-553-A.
- 10 2.6.4.6 Power Down
- See the corresponding section of TIA/EIA-553-A.
- 12 2.7 Signaling Formats
- In addition to the requirements in this section, see the corresponding section of
- 14 TIA/EIA-553-A.
- 2.7.1 Reverse Analog Control Channel (RECC)
- In addition to the requirements in this section, see the corresponding section of
- 17 TIA/EIA-553-A.
- 2.7.1.1 Reverse Analog Control Channel (RECC) Messages
- 19 In addition to the requirements in this section, see the corresponding section of
- 20 TIA/EIA-553-A.
- In addition to the message formats shown in the corresponding section of TIA/EIA-553-A,
- the following word(s) may be transmitted over the reverse control channel:

Word C - PCI Report Word

2

Information Element	Length (bits)
F = 0	1
NAWC	3
MSPC	4
MSCAP	3
CLIC	1
MWNC	1
SMSC	2
PACAC	1
ENCRYPTION_SUPPORTED	4
RSVD = 000000	16
Р	12

The interpretation of the data fields (not already defined in the corresponding section of TIA/EIA-553-A) is as follows:

 Calling Line Identification Capability. Set to '0' to indicate not CLIC EP (Extended Protocol) CLI capable. Set to '1' to indicate EP-CLI capable. Message Waiting Notification Capability. Set to '0' to indicate **MWNC** not EP capable. Set to '1' to indicate EP-Voice Mail Status capable. 10 Short Message Service Capability. **SMSC** 11 00 - Not SMS capable, 12 01 - AWI SMS order capable, 13 10 - EP-SMS capable, 14 11 - AWI SMS and EP-SMS capable. 15 - PACA capability. Set to '0' to indicate not PACA capable. Set **PACAC** 16 to '1' to indicate PACA capability. 17 **ENCRYPTION_-**18 Encryption algorithms supported by the mobile station. SUPPORTED 19 If AUTH is equal to '0', the mobile station shall set this field to 20 '0000'. Otherwise, the mobile station shall set this field as 21 specified in table 6.7.1.3.2.4-5. 22

- 2.7.2 Reverse Analog Voice Channel (RVC)
- In addition to the requirements in this section, see the corresponding section of TIA/EIA-553-A.

- 2.7.2.1 Reverse Analog Voice Channel (RVC) Messages
- In addition to the requirements in this section, see the corresponding section of
- 3 TIA/EIA-553-A.
- In addition to the RVC messages listed in the corresponding section of TIA/EIA-553-A,
- ${\mathfrak s}$ formats are shown for the following RVC message types:
 - Alert With Info SMS Order Confirmation
 - PCI Report Message
- Alert With Info SMS Order Confirmation Message

Information Element	Length (bits)
F = 1	1
NAWC = 00	2
T = 1	1
LOCAL/MSG_TYPE = 00001	5
ORDQ = 000	3
ORDER = 10001	. 5
B/F	1
ERROR_CLASS	2
CAUSE_CODE	8
SEQ_NO	3
RSVD = 00000	5
P	12

PCI Report Message

Information Element	Length (bits)
F = 1	1
NAWC = 00	2
T = 1	1
MSG_TYPE	. 5
ORDQ = 100	3
ORDER = 11010	5
MSPC	4
MSCAP	3
CLIC	1
MWNC	1
SMSC	2
PACAC	1
RSVD = 0000000	7
P	12

The interpretation of the data fields (not already defined in the corresponding section of TIA/EIA-553-A is as follows:

5 6 7 8 9	B/F	·	Begin/Final. This field is used to indicate whether the ERROR_CLASS and CAUSE_CODE fields include the teleservice processing result for an SMS teleservice message. If no teleservice processing result is included, this field shall be set to '0'. If a teleservice processing result is included, this field shall be set to '1'.
11	ERROR_CLASS	_	Error report class.
12			If there is no error, this field shall be set to '00'.
13 14 15	·		If the error is caused by a temporary condition, this field shall be set to '10'. If the error is caused by a permanent condition, this field shall be set to '11'.
16 17	CAUSE_CODE	_	Cause code. This field provides the delivery status of SMS user data (see 3.4.3.6 of TIA/EIA/IS-637).
18 19 20	SEQ_NO		Sequence number. This field contains the SEQ_NO of the Alert With Info SMS message that is being acknowledged by the mobile station.
21 22 23	CLIC	_	Calling Line Identification Capability. Set to '0' to indicate not EP (Extended Protocol) CLI capable. Set to '1' to indicate EP-CLI capable.

1 2 3	MWNC		Message Waiting Notification Capability. Set to '0' to indicate EP-Voice Mail Stacapable.	
4	SMSC	_	Short Message Service Capability.	
5			00 - Not SMS capable,	
6			01 - AWI SMS order capable,	
7			10 - EP-SMS capable,	
8			11 - AWI SMS and EP-SMS capable.	
9	PACAC		PACA capability. Set to '0' to indicate not PACA capable. to '1' to indicate PACA capability.	Set

3 REQUIREMENTS FOR BASE STATION ANALOG OPERATION

- Section 3 references TIA/EIA-553-A to describe core analog mode operation. Only those
- analog capabilities that support the CDMA dual-mode of operation are described in detail
- 4 here. Subsection numbers in Section 3 of this standard correspond to subsection numbers
- 5 in TIA/EIA-553-A. A reference in this standard to a particular subsection in
- 6 TIA/EIA-553-A applies to that subsection and all subsequent subsections beneath it.
- However, text in a subsection of Section 3 of this standard shall take precedence over any
- text in the corresponding subsection text in TIA/EIA-553-A.
- Base stations optionally implementing PACA service in the analog mode shall support PACA
- Message and PACA Cancel delivery (see 3.6.2, 3.6.3, 3.6.4 and 3.7.1) on the control
- 11 channel.

12 3.1 Transmitter

- In addition to the requirements in this section, see the corresponding section of
- 14 TIA/EIA-553-A.
- 15 3.1.1 Frequency Parameters
- See the corresponding section of TIA/EIA-553-A.
- 3.1.2 Power Output Characteristics
- See the corresponding section of TIA/EIA-553-A.
- 3.1.3 Modulation Characteristics
- 20 3.1.3.1 Analog Voice Signals
- 21 The (FM) modulator is preceded by the following five voice-processing stages (in the order
- 2 listed):
- Transmit Audio Level Adjustment
- Compressor
- Pre-Emphasis
- Deviation Limiter
- Post Deviation-Limiter Filter
- 28 Pending the generation of a complete speech transmission plan for dual-mode cellular
- systems, the following requirements shall be met to ensure compatibility with the
- w transmission plan for fixed digital speech networks.
- 3.1.3.1.1 Compressor
- ∞ See the corresponding section of TIA/EIA-553-A.

- 3.1.3.1.2 Pre-emphasis
- See the corresponding section of TIA/EIA-553-A.
- 3 3.1.3.1.3 Deviation Limiter
- See the corresponding section of TIA/EIA-553-A.
- 5 3.1.3.1.4 Post Deviation-Limiter Filter
- 6 See the corresponding section of TIA/EIA-553-A.
- 3.1.3.1.5 Transmit Level Adjustment
- The base station shall set the transmit level so that a 1004 Hz tone at a level of -18 dBm0
- at the network interface produces a ±2.9 kHz peak frequency deviation of the transmitted
- carrier. Measurement techniques are described in TIA/EIA-97-B.
- 3.1.3.2 Wideband Data Signals
- See the corresponding section of TIA/EIA-553-A.
- 3.1.4 Limitations on Emissions
- 14 3.1.4.1 Bandwidth Occupied
- See the corresponding section of TIA/EIA-553-A. Measurement techniques are defined in
- 16 TIA/EIA-97-B.
- 17 3.1.4.2 Conducted Spurious Emissions
- 18 Refer to TIA/EIA-97-B.
- 19 3.1.4.3 Radiated Spurious Emissions
- 20 Refer to TIA/EIA-97-B.
- 21 3.1.4.4 Intermodulation
- 22 Radiated products from co-located transmitters shall not exceed FCC spurious and
- amonic level requirements that would apply to any of the transmitters operated singly.
- 24 3.2 Receiver
- a In addition to the requirements in this section, see the corresponding section of
- 26 TIA/EIA-553-A.
- zi 3.2.1 Frequency Parameters
- 28 See the corresponding section of TIA/EIA-553-A.
- 23.2.2 Demodulation Characteristics
- ∞ See the corresponding section of TIA/EIA-553-A.

- 3.2.2.1 Analog Voice Signals
- The demodulator is followed by the following three voice-signal processing stages:
- De-emphasis
- Expandor

- Receive Audio Level Adjustment
- 6 Pending the generation of a complete speech transmission plan for dual-mode cellular
- 7 systems, the following requirements shall be met to ensure compatibility with the
- transmission plan for fixed digital speech networks.
- 9 3.2.2.1.1 De-emphasis
- See the corresponding section of TIA/EIA-553-A.
- 11 3.2.2.1.2 Expandor
- See the corresponding section of TIA/EIA-553-A.
- 3.2.2.1.3 Audio Level Adjustment
- The base station shall set the audio level so that a received 1004 Hz tone with a ±2.9 kHz
- peak frequency deviation produces a level of -18 dBm0 at the network interface.
- 16 Measurement techniques are described in TIA/EIA-97-B.
- 3.2.3 Limitations on Emissions
- 18 Refer to TIA/EIA-97-B.
- 3.2.4 Other Receiver Parameters
- 20 System performance is predicated upon receivers meeting TIA/EIA-97-B.
- 21 3.3 Security and Identification
- 22 In addition to the requirements in this section, see the corresponding section of
- 23 TIA/EIA-553-A.
- 24 3.3.1 Authentication
- See the corresponding section of TIA/EIA-553-A.
- 26 3.3.2 Encryption
- 27 If the base station supports mobile station authentication (see 3.3.1), it may also support
- 28 message encryption by providing the capability to send encrypted control messages and to
- perform the operations of encryption and decryption as specified in 2.3.12.2.
- 3.4 Supervision
- See the corresponding section of TIA/EIA-553-A.

3.5 Malfunction Detection

2 Reserved.

3 3.6 Call Processing

- 4 In addition to the requirements in this section, see the corresponding section of
- 5 TIA/EIA-553-A.
- 6 3.6.1 Overhead Functions for Mobile Station Initiation
- ⁷ See the corresponding section of TIA/EIA-553-A.
- 8 3.6.2 Mobile Station Control on the Control Channel
- 9 3.6.2.1 Overhead Information
- In addition to the overhead information defined in the corresponding section of TIA/EIA-553-A, the following overhead information is sent as required in messages appended to a System Parameter Overhead Message (see 3.7.1.2 for messages formats):
 - CDMA capability. A system may indicate that it is capable of CDMA operation by sending the CDMA Capability Global Action Message with the CDMA_AVAIL field set to '1'. If CDMA_AVAIL is set to '1', the base station must set the CDMA_FREQ field to the channel number of the CDMA frequency assignment that the mobile station is to acquire. A system may also indicate the availability of additional CDMA systems by sending the CDMA Capability Global Action Message with the ADD_CDMA_AVAIL field set to '1'.
- 20 3.6.2.2 Page

13

14

15

16

17

18

- In addition to the requirements in this section, see the corresponding section of
- 22 TIA/EIA-553-A.
- 23 3.6.2.3 Order
- In addition to the orders and order confirmations defined in the corresponding section of
- 25 TIA/EIA-553-A, the following orders and order confirmations may be transmitted:
- PACA Message.
- PCI Query order.
- CDMA Info order.
- 29 3.6.2.4 Local Control
- ∞ See the corresponding section of TIA/EIA-553-A.
- 3.6.3 Base Station Support of System Access by Mobile Stations
- 2 3.6.3.1 Overhead Information
- See the corresponding section of TIA/EIA-553-A.

- 3.6.3.2 Reverse Control Channel Seizure by Mobile Stations
- See the corresponding section of TIA/EIA-553-A.
- 3 3.6.3.3 Response to Mobile Station Messages
- In addition to the mobile station message responses defined in the corresponding section of
- TIA/EIA-553-A, the following response to mobile station messages may be sent:
 - PACA response. Send one of the following orders:
 - Initial voice channel designation,
 - Directed retry,
- Intercept,

6

- 10 Reorder.
- Order message. When the base station receives a Base Station Challenge Order from the mobile station, it should perform the authentication procedure as defined in 2.3.12.1.8. The base station must then send the order confirmation to the mobile station containing the algorithm output. When the base station receives a CDMA Query Order from the mobile station, it must send the CDMA Info Order to the mobile station. For all other orders, the base station should send one of the following orders:
- Order confirmation,
- Release.
- 3.6.4 Mobile Station Control on Voice Channel
- See the corresponding section of TIA/EIA-553-A.
- 22 3.6.4.1 Loss of Radio-Link Continuity
- Reserved.

- 24 3.6.4.2 Initial Voice Channel Confirmation
- See the corresponding section of TIA/EIA-553-A.
- 26 3.6.4.3 Alerting
- 27 3.6.4.3.1 Waiting for Order
- 28 When the mobile station confirms the initial voice channel designation after having been
- paged, it enters this task. In addition to the orders listed in the corresponding section of
- math TIA/EIA-553-A, the following orders can be sent to the mobile station, with the resultant
- confirmation and action to be taken as follows:
 - Handoff (to Digital Traffic Channel). Requires further study.

• Alert with Info SMS. Within 750 ms, the mobile station confirms the order by sending an Alert With Info SMS Order Confirmation message. The SEQ_NO received in the Alert With Info SMS Order Confirmation message, SEQ_NO_r, is compared to the SEQ_NO transmitted in the last Alert With Info SMS message, SEQ_NO_S. If the comparison results in a match, the base station may transmit the next pending Alert With Info SMS message. If the comparison results in a mismatch, the base station must not transmit any new Alert With Info SMS messages and may retransmit the unacknowledged Alert With Info SMS message until that outstanding Alert With Info SMS message is received as indicated by a match of SEQ_NO_r and SEQ_NO_s. Then, if the channel was allocated to deliver SMS messages, the base station should send a Release order. Otherwise the base station must remain in the Waiting for Order Task.

3.6.4.3.2 Waiting for Answer

When this task is entered, an alert timer may be set. In addition to the orders listed in the corresponding section of TIA/EIA-553-A, the following orders can be sent with the confirmation and action to be taken as follows:

- · Handoff (to Digital Traffic Channel). Requires further study.
- Alert with Info SMS. Within 750 ms, the mobile station confirms the order by sending an Alert With Info SMS Order Confirmation message. The SEQ_NO received in the Alert With Info SMS Order Confirmation message, SEQ_NO_r, is compared to the SEQ_NO transmitted in the last Alert With Info SMS message, SEQ_NO_s. If the comparison results in a match, the base station may transmit the next pending Alert With Info SMS message. If the comparison results in a mismatch, the base station must not transmit any new Alert With Info SMS messages and may retransmit the unacknowledged Alert With Info SMS message until that outstanding Alert With Info SMS message is received as indicated by a match of SEQ_NO_r and SEQ_NO_s. Then, if the channel was allocated to deliver SMS messages, the base station should send a Release order. Otherwise the base station must remain in the Waiting for Answer Task.

3.6.4.4 Conversation

6

10

11

12

13

27

- While the base station is in the Conversation Task, in addition to the orders listed in the
- corresponding section of TIA/EIA-553-A, the following orders can be sent to the mobile
- station, with confirmation and action to be taken as follows:
- Alert with Info SMS. Within 750 ms, the mobile station confirms the order by sending an Alert With Info SMS Order Confirmation message. The SEQ_NO received in the Alert With Info SMS Order Confirmation message, SEQ_NO_r, is compared to the SEQ_NO transmitted in the last Alert With Info SMS message, SEQ_NO_s. If the comparison results in a match, the base station may transmit the next pending Alert With Info SMS message. If the comparison results in a mismatch, the base station must not transmit any new Alert With Info SMS messages and may retransmit the unacknowledged Alert With Info SMS message until that outstanding Alert With Info SMS message is received as indicated by a match of SEQ_NO_r and SEQ_NO_s. The base station must remain in the Conversation Task.
- If the call is mobile station originated and it is re-originated using the PACA message (PURPOSE_r = '0010'), the base station should send an Alert With Information message.
- 3.6.5 Delivery of Character Information
- See 3.7.2.2 of this standard, titled "Calling Number Identification (CNI)".

19 3.7 Signaling Formats

- 20 In addition to the requirements in this section, see the corresponding section of
- 21 TIA/EIA-553-A for operation in the analog mode.
- 2 3.7.1 Forward Analog Control Channel
- See the corresponding section of TIA/EIA-553-A.
- 24 3.7.1.1 Mobile Station Control Message
- In addition to the message formats defined in the corresponding section of TIA/EIA-553-A,
- the Mobile Station Control Message can contain the following words:

Word 3 - PACA Word

Information Element	Length (bits)
$T_1T_2 = 10$	2
SCC = 11	2 .
PURPOSE	4
Q_POS	8
RSVD	12
P	12

2 Word 3 - First CDMA Info Word

Information Element	Length (bits)
$T_1T_2 = 10$	2
SCC = 11	2
BAND_CLASS	5
CDMA_FREQ	11
RSVD	- 8
P	12

Word 4 - Second CDMA Info Word

Information Element	Length (bits)
$T_1T_2 = 10$	2
SCC = 11	2
SID	15
RSVD	9
Р	12

- The interpretation of the data fields (not already defined in the corresponding section of TIA/EIA-553-A) is as follows:
- PURPOSE Purpose of PACA message. The base station must set this field to the appropriate PURPOSE code from Table 3.7.1.1-2 to
- indicate the purpose of the message.

 Q_POS PACA queue position. If the PURPOSE field of this message is set to '0000' or '0001', the base station must set this field to the queue position of the PACA call. If the queue position is unknown, the base station must set this field to '00000000'. If the queue position exceeds 255, the base station must set this field to '111111111'.

1	CDMA_FREQ	CDMA frequency. The base station must set this field to the
2		CDMA Channel number of the CDMA frequency assignment to
3 .		acquire.
4	SID	System identification. The base station must set this field to
5		the system identification of the CDMA system.

Table 3.7.1.1-1. Order, Order Qualification, and Message Type Codes

Order Code	Qual Code	Message Type	Function		
10001	000	00001	Alert With Info SMS		
00010	010	00000	PACA Message (or PACA Response)		
00011	100	00000	PACA Cancel		
11010	000	10000	CDMA Query Order/CDMA Info Order		
[Base	[Base station initiated messages only - Mobile Station Authentication and Privacy]				
10111	001	00000	Message Encryption Mode Order with Basic Message Encryption enable indication		
10111	010	00000	Message Encryption Mode Order with Enhanced Message Encryption enable indication		

The order and order qualification codes defined in Table 3.7.1.1-1 are in addition to the codes defined in TIA/EIA-553-A, Table 3.7.1-1. All other codes are reserved.

Table 3.7.1.1-2. PACA PURPOSE Codes

PURPOSE Code	Function
0000	Indicates that the purpose of the PACA message is to respond to an Origination Message.
0001	Indicates that the purpose of the PACA message is to provide the queue position of the PACA call.
0010	Indicates that the purpose of the PACA message is to instruct the mobile station to re-originate the PACA call.
0011	Indicates that the purpose of the PACA message is to cancel the PACA call.

13

9

- 3.7.1.2 Overhead Message
- See the corresponding section of TIA/EIA-553-A.
- 3 3.7.1.2.1 System Parameter Overhead Message
- In addition to the requirements in this section, see the corresponding section of
- 5 TIA/EIA-553-A for operation in the analog mode.
- Note: The base station shall set EP = '0' in Word 1 of the System Parameter Overhead
 Message, except when implementing the optional procedures in Section 5 (see 5.1).
- 8 3.7.1.2.2 Global Action Overhead Message
- In addition to the Global Action Overhead Messages listed in this section, see the corresponding section of TIA/EIA-553-A for operation in the analog mode.
- 12 CDMA Capability Global Action Message

-11

13

16

17

18

Information Element	Length (bits)	
$T_1T_2 = 11$, 2	
DCC	2	
ACT = 0100	4	
CDMA_FREQ	11	
CDMA_AVAIL	1 .	
ADD_CDMA_AVAIL	1	
RSVD = 000	3	
END	1	
OHD = 100	3	
P	12	

The interpretation of the data fields (not already defined in the corresponding section of TIA/EIA-553-A) is as follows:

CDMA_FREQ — Channel number of the CDMA frequency assignment to acquire.

CDMA AVAIL — Set to '1' if Band Class 0 CDMA is available.

19 ADD_CDMA_AVAIL — Set to '1' if additional CDMA systems are available.

- 20 3.7.1.2.3 Registration ID Message
- In addition to the definitions in this section, see the corresponding section of TIA/EIA-553-A for operation in the analog mode.

Table 3.7.1.2.3-1. Global Action Message Types

Action Code	Туре	
0100	CDMA Capability	

- The Global Action Message codes defined in Table 3.7.1.2.3-1 are in addition to the codes
- 5 defined in Table 3.7.1-4 of TIA/EIA-553-A.
- 6 3.7.1.2.4 Control-Filler Message
- ⁷ See the corresponding section of TIA/EIA-553-A for operation in the analog mode.
- 8 3.7.1.3 Data Restrictions
- ⁹ See the corresponding section of TIA/EIA-553-A for operation in the analog mode.
- 3.7.2 Forward Analog Voice Channel
- See the corresponding section of TIA/EIA-553-A.
- 12 3.7.2.1 Mobile Station Control Message
- In addition to the Mobile Station Control Message defined in this section, see the corresponding section of TIA/EIA-553-A for operation in the analog mode.

6 Word 2 - First Alert With Info SMS Word

Information Element	Length (bits)		
$T_1T_2 = 01$	2		
RL_W	7		
SEQ_NO	3		
B/F	2		
TASK_TM	1		
RSVD = 00000	5		
INFO_DATA	8		
· P	12		

17

Word 3 - Second Alert With Info SMS Word

Information Element	Length (bits)
$T_1T_2 = 01$	2
RSVD = 00	2
INFO_DATA	24
P	12

Word N - (N-1)th Alert With Info SMS Word

Information Element	Length (bits)
$T_1T_2 = 01$	2
RSVD = 00	. 2
INFO_DATA	24
P	12

The interpretation of the data fields (not already defined in the corresponding section of TIA/EIA-553-A) is as follows:

RL_W — The remaining length, in 'Words', of the Alert With Info SMS word.

SEQ_NO — Sequence number. This field contains the modulo-8 sequence number of the Alert With Info SMS message. This field shall be initialized to '000', and reset to '000' when transmitting a new SMS teleservice message.

If an SMS teleservice message spans more than one Alert With Info SMS message, the sequence number shall be incremented by 1, modulo 8, for each additional Alert With Info SMS message that is a segment of the SMS teleservice message.

B/F — Begin/Final. This field is used to specify whether the SMS teleservice message has been segmented into multiple Alert With Info SMS messages. If the SMS teleservice message is completely contained in a single Alert With Info SMS message, this field shall be set to '11'. For an SMS teleservice message contained in multiple Alert With Info SMS messages, the first segment shall have a value of '10', intermediate segments shall have a value of '00' and the final segment shall have a value of '01'. A mobile station must assemble messages for receipt by the SMS teleservice.

14.

2 3 4 5	TASK_TM	_	Task Timer. This field is included in the Alert With Info SMS message to specify the Waiting for Order Task timeout period. A value of '0' indicates a 10-second order timer shall be used by the mobile station, and a value of '1' indicates that a 600 ms order timer shall be used.
.	INFO_DATA		Info data. This field contains the SMS teleservice message data (see TIA/EIA/IS-637).

8 3.7.2.2 Calling Number Identification (CNI)

13

Whenever two instances of CNI need to be sent to a mobile station on the Forward Analog
Voice Channel then the base station shall transmit the second instance of CNI using a
"Flash With Info" message. This allows for PI and SI information to be uniquely specified
for each instance of CNI.

No text.

4 REQUIREMENTS FOR MOBILE STATION ANALOG OPTIONS

3

² See the corresponding section of TIA/EIA-691 for optional extended protocol services.

No text.

5 REQUIREMENTS FOR BASE STATION ANALOG OPTIONS

 $_{\rm 2}$ $\,$ See the corresponding section of TIA/EIA-691 for optional extended protocol services.

2 No text.

6 REQUIREMENTS FOR MOBILE STATION CDMA OPERATION

- 2 This section defines requirements that are specific to CDMA mobile station equipment and
- operation. A CDMA mobile station may support operation in one or more band classes.
- See Section 2 and Section 4 for analog cellular mobile station requirements.

5 6.1 Transmitter

- 6 6.1.1 Frequency Parameters
- 7 6.1.1.1 Channel Spacing and Designation
- в 6.1.1.1.1 Cellular Band
- The Band Class 0 system designators for the mobile station and base station shall be as
- specified in Table 6.1.1.1.1-1.
- Mobile stations supporting Band Class 0 shall be capable of transmitting in Band Class 0.
- The channel spacings, CDMA channel designations, and transmit center frequencies of
- 13 Band Class 0 shall be as specified in Table 6.1.1.1.1-2. Mobile stations supporting Band
- 14 Class 0 shall support operations on channel numbers 1013 through 1023, 1 through 311,
- 356 through 644, 689 through 694, and 739 through 777 inclusive as shown in Table
- 16 6.1.1.1.1-3.
- 17 Channel numbers for the Primary CDMA Channel and the Secondary CDMA Channel are
- 18 given in 6.1.1.1.1-4.

Table 6.1.1.1.1.1 Band Class 0 System Frequency Correspondence

	Transmit Frequency Band (MHz)						
System Designator	Mobile Station	Base Station					
Α	824.025-835.005 844.995-846.495	869.025-880.005 889.995-891.495					
В	835.005-844.995 846.495-848.985	880.005-889.995 891.495-893.985					

21

19

Table 6.1.1.1.2. CDMA Channel Number to CDMA Frequency Assignment Correspondence for Band Class 0

Transmitter	CDMA Channel Number	CDMA Frequency Assignment, MHz
Mobile Station	1 ≤ N ≤ 777	0.030 N + 825.000
٠	1013 ≤ N ≤ 1023	0.030 (N-1023) + 825.000
Base Station	1 ≤ N ≤ 777	0.030 N + 870.000
	1013 ≤ N ≤ 1023	0.030 (N-1023) + 870.000

Table 6.1.1.1.1-3. CDMA Channel Numbers and Corresponding Frequencies for Band Class 0

			ency Band (MHz)	
Block Designator	Valid CDMA Frequency Assignments	CDMA Channel Number	Mobile Station	Base Station
A" (1 MHz)	Not Valid Valid	991-1012 1013-1023	824.040-824.670 824.700-825.000	869.040-869.670 869.700-870.000
A (10 MHz)	Valid Not Valid	1-311 312-333	825.030-834.330 834.360-834.990	870.030-879.330 879.360-879.990
B (10 MHz)	Not Valid Valid Not Valid	334-355 356-644 645-666	835.020-835.650 835.680-844.320 844.350-844.980	880.020-880.650 880.680-889.320 889.350-889.980
A' (1.5 MHz)	Not Valid Valid Not Valid	667-688 689-694 695-716	845.010-845.640 845.670-845.820 845.850-846.480	890.010-890.640 890.670-890.820 890.850-891.480
B' (2.5 MHz)	Not Valid Valid Not Valid	717-738 739-777 778-799	846.510-847.140 847.170-848.310 848.340-848.970	891.510-892.140 892.170-893.310 893.340-893.970

Table 6.1.1.1.1-4. CDMA Preferred Set of Frequency Assignments for Band Class 0

System Designator	Preferred Set Channel Numbers			
A	283 (Primary) and 691 (Secondary)			
В	384 (Primary) and 777 (Secondary)			

6.1.1.1.2 PCS Band

- The Band Class 1 block designators for the mobile station and base station shall be as
- 3 specified in Table 6.1.1.1.2-1.
- 4 Mobile stations supporting Band Class 1 shall be capable of transmitting in Band Class 1.
- The channel spacings, CDMA channel designations, and transmit center frequencies of
- 6 Band Class 1 shall be as specified in Table 6.1.1.1.2-2. Mobile stations supporting Band
- Class 1 shall support operations on channel numbers 25 through 1175 as shown in Table
- 8 6.1.1.1.2-3. Note that certain channel assignments are not valid and others are
- conditionally valid. Transmission on conditionally valid channels is permissible if the
- adjacent block is allocated to the same licensee or if other valid authorization has been
- 11 obtained.
- A preferred set of CDMA frequency assignments is given in Table 6.1.1.1.2-4 (see 6.6.1).

13 14

Table 6.1.1.1.2-1. Band Class 1 System Frequency Correspondence

	Transmit Frequency Band (MHz)					
Block Designator	Mobile Station	Base Station				
A	1850-1865	1930-1945				
D	1865–1870	1945-1950				
В	1870-1885	1950-1965				
E	1885–1890	1965–1970				
F	1890-1895	1970-1975				
С	1895-1910	1975-1990				

15 16

17

Table 6.1.1.1.2-2. CDMA Channel Number to CDMA Frequency Assignment Correspondence for Band Class 1

Transmitter	CDMA Channel Number	Center Frequency of CDMA Channel in MHz
Mobile Station	0 ≤ N ≤ 1199	1850.000 + 0.050 N
Base Station	0 ≤ N ≤ 1199	1930.000 + 0.050 N

Table 6.1.1.1.2-3. CDMA Channel Numbers and Corresponding Frequencies for Band Class 1

			Transmit Frequency Band (MHz)		
Block Designator	Valid CDMA Frequency Assignments	CDMA Channel Number	Mobile Station	Base Station	
A (15 MHz)	Not Valid Valid Cond. Valid	0-24 25-275 276-299	1850.000-1851.200 1851.250-1863.750 1863.800-1864.950	1930.000-1931.200 1931.250-1943.750 1943.800-1944.950	
D (5 MHz)	Cond. Valid Valid Cond. Valid	300-324 325-375 376-399	1865.000-1866.200 1866.250-1868.750 1868.800-1869.950	1945.000-1946.200 1946.250-1948.750 1948.800-1949.950	
B (15 MHz)	Cond. Valid Valid Cond. Valid	400-424 425-675 676-699	1870.000-1871.200 1871.250-1883.750 1883.800-1884.950	1950.000-1951.200 1951.250-1963.750 1963.800-1964.950	
E (5 MHz)	Cond. Valid Valid Cond. Valid	700–724 725–775 776–799	1885.000-1886.200 1886.250-1888.750 1888.800-1889.950	1965.000–1966.200 1966.250–1968.750 1968.800–1969.950	
F (5 MHz)	Cond. Valid Valid Cond. Valid	800–824 825–875 876–899	1890.000-1891.200 1891.250-1893.750 1893.800-1894.950	1970.000-1971.200 1971.250-1973.750 1973.800-1974.950	
C (15 MHz)	Cond. Valid Valid Not Valid	900-924 925-1175 1176-1199	1895.000-1896.200 1896.250-1908.750 1908.800-1909.950	1975.000-1976.200 1976.250-1988.750 1988.800-1989.950	

Table 6.1.1.1.2-4. CDMA Preferred Set of Frequency Assignments for Band Class 1

Block Designator	Preferred Set Channel Numbers					
A	25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275					
D	325, 350, 375					
В	425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675					
E	725, 750, 775					
F	825, 850, 875					
С	925, 950, 975, 1000, 1025, 1050, 1075, 1100, 1125, 1150, 1175					

- 6.1.1.2 Frequency Tolerance
- When operating in Band Class 0, the mobile station shall meet the requirements in Section
- ₃ 10.1.1 of TIA/EIA-98-B. When operating in Band Class 1, the mobile station shall meet the
- requirements in Section 4.1.1 of ANSI J-STD-018.
- 5 6.1.2 Power Output Characteristics
- 6 All power levels are referenced to the mobile station antenna connector unless otherwise
- 7 specified.
- 8 6.1.2.1 Maximum Output Power
- 9 When operating in Band Class 0, the mobile station shall meet the requirements in
- Sections 10.4.5 and 11.1 of TIA/EIA-98-B. When operating in Band Class 1, the mobile
- station shall meet the requirements in Sections 4.4.5 and 5.1 of ANSI J-STD-018.
- The mobile station shall be capable of transmitting at the minimum specified power level
- when commanded to maximum output power except when transmitting on one or more
- Reverse Supplemental Code Channels. The mobile station shall not exceed the maximum
- specified power levels under any circumstances.
- 6.1.2.2 Output Power Limits
- 6.1.2.2.1 Minimum Controlled Output Power
- When operating in Band Class 0, the mobile station shall meet the requirements in Section
- 19 10.4.6 of TIA/EIA-98-B. When operating in Band Class 1, the mobile station shall meet the
- 20 requirements in Section 4.4.6 of ANSI J-STD-018.
- 21 6.1.2.2.2 Gated Output Power
- 2 6.1.2.2.2.1 Gated Output Power Normal Operation
- 23 A mobile station operating in Band Class 1 shall use the gated output power requirements
- in this Standard in lieu of the those given in ANSI J-STD-018.
- When operating in variable data rate transmission mode, the mobile station transmits at
- nominal controlled power levels only during gated-on periods, each defined as a power
- control group (see 6.1.3.1.7.1). Given an ensemble of power control groups for the
- Fundamental Code Channel, all with the same mean output power, the time response of
- $_{20}$ the ensemble average shall be within the limits shown in Figure 6.1.2.2.2.1-1. During
- gated-off periods, between the transmissions of power control groups, the mobile station
- shall reduce its mean output power for the Fundamental Code Channel either by at least
- 20 dB with respect to the mean output power of the most recent power control group, or to
- the transmitter noise floor, whichever is the greater power. The transmitter noise floor
- $_{34}$ should be less than -60 dBm/1.23 MHz and shall be less than -54 dBm/1.23 MHz.

Figure 6.1.2.2.2.1-1. Transmission Envelope Mask (Average Gated-on Power Control Group)

6.1.2.2.2 Gated Output Power During a Serving Frequency PUF Probe

- If the mobile station transmits gated-off power control groups during the PUF recovery time, the mobile station shall reduce its mean output power either by at least 20 dB with respect to the mean output power of the power control group prior to the final power control group of the PUF Setup time, or to the transmitter noise floor, whichever is the greater power.
- 6.1.2.2.3 Standby Output Power

5

6

8

9

- The mobile station shall disable its transmitter except when transmitting an access probe when in the *System Access State* or when in the *Mobile Station Control on the Traffic Channel State* (see 6.6.3 and 6.6.4).
- When the transmitter of a mobile station supporting Band Class 0 is disabled, the output noise density of the mobile station shall be less than -60 dBm/1.23 MHz for all frequencies within the mobile station's transmit band between 824 and 849 MHz.
- When the transmitter of a mobile station supporting Band Class 1 is disabled, the output noise density of the mobile station shall be less than -60 dBm/1.23 MHz for all frequencies within the mobile station's transmit band between 1850 and 1910 MHz.

6.1.2.3 Controlled Output Power

- The mobile station shall provide two independent means for output power adjustment:
- open loop estimation performed by the mobile station and closed loop correction involving
- both the mobile station and the base station.
- 5 Accuracy requirements on the controlled range of mean output power (see 6.1.2.4) need not
- 6 apply for the following three cases: mean output power levels exceeding the minimum EIRP
- ₇ at the maximum output power for the corresponding mobile station class (see
- 8 TIA/EIA-98-B); mean output power levels less than the minimum controlled output power
- (see 6.1.2.2.1); or mean input power levels exceeding -25 dBm within the 1.23 MHz CDMA
- 10 bandwidth.

11

16

17

18

19

20

21

22

23

24

25

27

6.1.2.3.1 Estimated Open Loop Output Power

In the following equations, mean power is referenced to the nominal CDMA Channel bandwidth of 1.23 MHz. The offset power is summarized in Table 6.1.2.3.1-1.

Table 6.1.2.3.1-1. Open Loop Power Offsets

Band Class	Offset Power		
. 0	-73		
1	-76		

For open loop probing on the Access Channel (with closed loop correction inactive) the mobile station shall transmit the first probe at a mean output power level defined by $^{\rm l}$

mean output power (dBm) = - mean input power (dBm)

- + offset power
- + interference correction
- + NOM_PWR 16 × NOM_PWR_EXT
- + INIT_PWR.

where interference correction = min(max(-7-ECIO,0),7) and ECIO is the E_c/I_0 (dB) of the active set pilot, measured within the previous 500 ms.

The mobile station shall update the mean output power for subsequent probes in an access probe sequence by incrementing each probe power by a value equal to PWR_STEP_S plus the

 $^{^1}$ The purpose of having two parameters is to distinguish between their use. If INIT_PWR were 0, then NOM_PWR - $_{16}$ × NOM_PWR_EXT would be the correction that should provide the correct received power at the base station. NOM_PWR - $_{16}$ × NOM_PWR_EXT allows the open loop estimation process to be adjusted for different operating environments. INIT_PWR is the adjustment that is made to the first Access Channel probe so that it should be received at somewhat less than the required signal power. This conservatism partially compensates for occasional, partially decorrelated path losses between the Forward CDMA Channel and the Reverse CDMA Channel. For example, the constant -76 is equal to $10 \times \log_{10} (10^{-7.6} \ mW^2)$. For simplicity, the constant is expressed as -76 with no units.

```
mean input power change plus the interference correction change from the previous access
2
     The initial transmission on the Reverse Traffic Channel shall be at a mean output power
     defined by
        mean output power (dBm) = - mean input power (dBm)
                                     + offset power
                                     + interference correction from the last access probe
                                     + NOM_PWR - 16 × NOM_PWR_EXT
                                     + INIT_PWR
                                     + the sum of all access probe corrections (dB).
10
     Once the first power control bit has been received after initializing Reverse Traffic Channel
11
     transmissions, the mean output power for normal operation shall be defined by
12
        mean output power (dBm) = - mean input power (dBm)
.13
                                     + offset power
14
                                     + interference correction from the last access probe
15
                                     + NOM_PWR - 16 × NOM_PWR_EXT
16
                                     + INIT_PWR
17
                                     + the sum of all access probe corrections (dB)
18
                                     + the sum of all closed loop power control corrections (dB)
19
                                     + 10 \times \log_{10} (1 + reverse\_supplemental\_channels) (dB).
20
     During a PUF pulse, the mean output power shall be defined by
21
        mean output power (dBm) = -mean input power (dBm)
22
                                     + offset power
23
                                     + interference correction from the last access probe
24
                                     + NOM_PWR - 16 × NOM_PWR_EXT
25
                                     + INIT_PWR
26
                                     + the sum of all access probe corrections (dB)
27
                                     + the sum of all closed loop power control corrections (dB)
28
                                     + PUF_INIT_PWRs
                                     + (CURRENT_PUF_PROBE<sub>s</sub> × PUF_PWR_STEP<sub>s</sub>).
30
     The value of reverse_supplemental_channels is the number of Reverse Supplemental Code
31
     Channels on which the mobile station is transmitting.
32
     The values for NOM_PWR, NOM_PWR_EXT, INIT_PWR, and the step size of a single access
33
     probe correction PWR_STEP are system parameters specified in the Access Parameters
34
     Message (see 7.7.2.3.2.2) and are obtained by the mobile station prior to transmitting. If as
     the result of an Extended Handoff Direction Message (see 7.7.3.3.2.17) or a General Handoff
36
     Direction Message (see 7.7.3.3.2.31) the NOM_PWR and NOM_PWR_EXT values change, the
37
     mobile station shall use the NOM_PWR and NOM_PWR_EXT values from the Extended
38
     Handoff Direction Message or the General Handoff Direction Message.
39
     The total range of the NOM_PWR - 16 x NOM_PWR_EXT correction is -24 to +7 dB. While
40
     operating in Band Class 0, NOM_PWR_EXT is set to 0, making the total range of the
41
     correction from -8 to +7 dB. The range of the INIT_PWR parameter is -16 to +15 dB, with a
42
```

- nominal value of 0 dB. The range of the PWR_STEP parameter is 0 to 7 dB. The accuracy
- of the adjustment to the mean output power due to NOM_PWR, NOM_PWR_EXT, INIT_PWR,
- or a single access probe correction of PWR_STEP shall be ±0.5 dB or ±20%, whichever is
- 4 greater.
- 5 The mobile station shall support a total combined range of initial offset parameters, closed
- 6 loop corrections, as determined by NOM_PWR, NOM_PWR_EXT, INIT_PWR, access probe
- 7 corrections, and closed loop power control corrections of at least ±32 dB for mobile stations
- operating in Band Class 0 and ±40 dB for mobile stations operating in Band Class 1.
- The mobile station shall not begin to increase power for a PUF pulse earlier than one power
- control group before the beginning of the PUF pulse. The mean output power should reach
- the PUF pulse power by the beginning of the PUF pulse, and shall reach the PUF pulse
- power by the end of the first power control group of the PUF pulse. After the end of a PUF
- pulse transmitted on the serving frequency, the mean output power shall return to either
- the gated-on or gated-off level by the end of the first power control group of the PUF
- recovery time. After the end of a PUF pulse transmitted on a PUF target frequency, the
- mobile station shall disable the transmitter by the end of the first power control group of
- 17 the PUF recovery time.
- During a PUF pulse, the mobile station shall support power increases from the nominal up
- to the maximum output power. Immediately following the PUF pulse, the mobile station
- shall decrement its output power to the nominal power or to the gated-off power level with
- 21 respect to the nominal output power.
- 22 The values for PUF_INIT_PWRs and PUF_PWR_STEPs are specified in the Power Up Function
- 22 Message and are set when the mobile station processes the Power Up Function Message, as
- specified in 6.6.4.1.7.1. The value of CURRENT_PUF_PROBEs is set during the processing
- of the Power Up Function Message. The total range of PUF_INIT_PWRs is 0 to 63 dB. The
- total range of PUF_PWR_STEPs is 0 to 31 dB. The total range of CURRENT_PUF_PROBEs is
- 27 1 to 16. The accuracy of the adjustment to the mean output power due to PUF_INIT_PWR_s
- to to the deduce, of the disjustment to the mean surput power due to tot _inti_i mig
- \pm + (CURRENT_PUF_PROBE_s × PUF_PWR_STEP_s) shall be \pm 1/3 of that value (in dB), or \pm 3
- 29 dB, whichever is greater, unless the resulting mean output power exceeds the mobile
- station's maximum output power. If the output power exceeds the mobile station's
- maximum output power, the mean output power shall be within 3 dB of the maximum
- ∞ output power. See Figure 6.1.2.3.1-1.

Where X = PUF_INIT_PWR_S + (CURRENT_PUF_PROBEs × PUF_PWR_STEP_S)

Figure 6.1.2.3.1-1. Power Up Function Transmission Envelope Mask

Prior to application of access probe corrections, closed loop power control corrections, and with INIT_PWR set to zero, the mobile station's estimated open loop mean output power should be within ± 6 dB and shall be within ± 9 dB of the value determined by the following relationship:

```
mean output power (dBm) = - mean input power (dBm)
+ offset power
+ interference correction from the last access probe
+ NOM_PWR - 16 × NOM_PWR_EXT.
```

This requirement shall be met over the full range of NOM_PWR - $16 \times NOM_PWR_EXT$ (from -8 to +7 dB for Band Class 0 and -24 to +7 dB for Band Class 1).

6.1.2.3.2 Closed Loop Output Power

For closed loop correction on the Reverse Traffic Channel (with respect to the open loop estimate), the mobile station shall adjust its mean output power level in response to each valid power control bit (see 7.1.3.1.8) received on the Forward Fundamental Code Channel. A power control bit shall be considered valid if it is received in the second 1.25 ms time slot following a time slot in which the mobile station transmitted (see 7.1.3.1.8), except during a PUF probe. During a PUF probe, the mobile station shall consider a power control bit to be valid if it is received on the serving frequency in the second 1.25 ms time slot following a time slot in which the mobile station transmitted at the nominal power on the serving frequency. The mobile station shall consider a power control bit to be invalid if it is received in the second 1.25 ms time slot following a time slot in which the mobile station transmitter was gated off, changing power levels to increase power for the PUF pulse,

transmitting at the PUF pulse power level, or changing power levels to decrease power after the PUF pulse.

Δ.

If the mobile station supports only Multiplex Option 1, only Multiplex Option 2, or only Multiplex Option 1 and Multiplex Option 2 on the Reverse Traffic Channel, then the mobile station may support any power control step size in Table 6.1.2.3.2-1 as its minimum power control step size. Otherwise, the mobile station shall support 0.5 dB or a smaller power control step size in Table 6.1.2.3.2-1 as its minimum power control step size. The mobile station shall also support all step sizes in Table 6.1.2.3.2-1 that are greater than its minimum supported power control step size. The nominal change in mean output power level per single power control bit shall be as specified in Table 6.1.2.3.2-1 corresponding to PWR_CNTL_STEP_s. The total changed closed loop mean output power shall be the accumulation of the level changes. The mobile station shall lock the accumulation of valid level changes and shall ignore received power control bits related to gated-off periods when the transmitter is disabled. The total changed closed loop mean output power shall be applied to the total transmit power for the mobile station.

Table 6.1.2.3.2-1. Closed Loop Power Control Step Size

PWR_CNTL_STEP	Power Control Step Size (dB nominal)	Tolerance (dB)
0	1	±0.5
1	0.5	±0.3
2	0.25	±0.2

The change in mean output power per single power control bit shall be within the tolerance specified in Table 6.1.2.3.2-1 for the corresponding power control step size. For the $1.0~\mathrm{dB}$ step size, the change in mean output power level per $10~\mathrm{valid}$ power control bits of the same sign shall be within $\pm 2.0~\mathrm{dB}$ of $10~\mathrm{times}$ ($10~\mathrm{dB}$) the nominal change. For a $0.5~\mathrm{dB}$ step size, the change in mean output power level per $20~\mathrm{valid}$ power control bits of the same sign shall be within $\pm 2.5~\mathrm{dB}$ of $20~\mathrm{times}$ ($10~\mathrm{dB}$) the nominal change. For a $0.25~\mathrm{dB}$ step size, the change in mean output power level per $40~\mathrm{valid}$ power control bits of the same sign shall be within $\pm 3.0~\mathrm{dB}$ of $40~\mathrm{times}$ ($10~\mathrm{dB}$) the nominal change. A '0' power control bit implies an increase in transmit power; a '1' power control bit implies a decrease in transmit power.

The mobile station shall provide a closed loop adjustment range greater than ±24 dB around its open loop estimate. If the mobile station is unable to transmit at the requested output power, the mobile station shall terminate transmission on at least one active Reverse Supplemental Code Channel not later than the transmission of the next 20 ms frame to maintain the requested output power on the Fundamental Code Channel.

See 6.6.6.2.7.2 for combining power control bits received from different multipath components or from different base stations during handoff.

- 6.1.2.4 Power Transition Characteristics
- 2 6.1.2.4.1 Open Loop Estimation
- A mobile station operating in Band Class 1 shall use the open loop estimation equations in
- this Standard, in lieu of the values stated in ANSI J-STD-018.
- Following a step change in mean input power, ΔP_{in} , the mean output power of the mobile
- station shall transition to its final value in a direction opposite in sign to ΔP_{in} , with
- 7 magnitude contained between mask limits defined by:
- 8 (a) upper limit:
- 9 for 0 < t < 24 ms: max $[1.2 \times |\Delta P_{in}| \times (t/24), |\Delta P_{in}| \times (t/24) + 2.0 \text{ dB}] + 1.5 \text{ dB},^2$
- for $t \ge 24$ ms: max $[1.2 \times |\Delta P_{in}|, |\Delta P_{in}| + 0.5 \text{ dB}] + 1.5 \text{ dB};$
- 11 (b) lower limit:
- for t > 0: max $[0.8 \times |\Delta P_{in}| \times [1 e^{(1.25 t)/36}] 2.0 \text{ dB}, 0] 1 \text{ dB};$
- where t is expressed in units of milliseconds, ΔP_{in} is expressed in units of dB, and max [x,y]
- is the maximum of x and y. These limits shall apply for a step change ΔP_{in} of ± 20 dB or
- less. The absolute value of the change in mean output power due to open loop power
- 16 control shall be a monotonically increasing function of time. If the change in mean output
- power consists of discrete increments, no single increment shall exceed 1.2 dB. See 6.1.2.3
- for the valid range of the mobile station's mean output power.
- 6.1.2.4.2 Closed Loop Correction
- Following the reception of a valid closed loop power control bit, the mean output power of
- the mobile station shall be within 0.3 dB of the final value in less than 500 µs for the 1.0
- dB step size. For power control step sizes of 0.5 dB and 0.25 dB, the mean output power of
- the mobile station should be within 0.15 and 0.1 dB respectively, of the final value in less
- 24 than 500 μs.
- 25 6.1.3 Modulation Characteristics
- 26 6.1.3.1 Reverse CDMA Channel Signals
- 27 The Reverse CDMA Channel is composed of Access Channels and Reverse Traffic Channels.
- 28 A Reverse Traffic Channel is further subdivided into a single Fundamental Code Channel
- 29 and zero through seven Supplemental Code Channels. These channels shall share the
- same CDMA frequency assignment using direct-sequence CDMA techniques. Figure
- same CDMA frequency assignment using direct-sequence CDMA techniques. Figure 6.1.3.1-1 shows an example of all of the signals received by a base station on the Reverse
- 22 CDMA Channel. Each Code Channel of a Reverse Traffic Channel is identified by a distinct
- user long code sequence; each Access Channel is identified by a distinct Access Channel
- long code sequence. Multiple Reverse CDMA Channels may be used by a base station in a
- 35 frequency division multiplexed manner.

² The mask limits allow for the effect of alternating closed loop power control bits.

- The Reverse CDMA Channel has the overall structure shown in Figures 6.1.3.1-2 through
- 2 6.1.3.1-7. Data transmitted on the Reverse CDMA Channel is grouped into 20 ms frames.
- All data transmitted on the Reverse CDMA Channel is convolutionally encoded, block
- 4 interleaved, modulated by the 64-ary orthogonal modulation, and direct-sequence spread
- 5 prior to transmission.

8

REVERSE CDMA CHANNEL (1.23 MHz channel received by base station) Access Access Access Access Channel Channel Channel Channel Traffic Traffic associated with Paging Ch P associated with Paging Ch P associated with Paging Ch I associated with Paging Ch I Chan 1 Chan T Fundamental Code Channel Supplemental Code Channel 1 Supplemental Code Channel S Addressed by Long Code PNs

Figure 6.1.3.1-1. Example of Logical Reverse CDMA Channels Received at a Base Station

Figure 6.1.3.1-2. Reverse CDMA Channel Structure for the Access Channel

Figure 6.1.3.1-3. Reverse CDMA Channel Structure for Fundamental Code Channels with Rate Set 1

Figure 6.1.3.1-4. Reverse CDMA Channel Structure for Fundamental Code Channels with Rate Set 2

6-16

Figure 6.1.3.1-5. Reverse CDMA Channel Structure for Supplemental Code Channels with Rate Set 1

Figure 6.1.3.1-6. Reverse CDMA Channel Structure for Supplemental Code Channels with Rate Set 2

Figure 6.1.3.1-7. Reverse Traffic Channel Structure Including Fundamental Code Channel and Multiple Supplemental Code Channels with Rate Set 1 and Rate Set 2

· з

- After adding the frame quality indicator and Encoder Tail Bits as shown in Figures 6.1.3.1-
- 2 through 6.1.3.1-4, the data frames may be transmitted on the Reverse Traffic Code
- 3 Channel(s) at data rates of 9600, 4800, 2400, or 1200 bps for Rate Set 1 or at rates of
- 4 14400, 7200, 3600, or 1800 bps for Rate Set 2.
- 5 The Fundamental Code Channel of the Reverse Traffic Channel may use any data rate in its
- 6 rate set. The transmission duty cycle on the Fundamental Code Channel of the Reverse
- 7 Traffic Channel varies with the transmission date rate.
- B Specifically, the transmission duty cycle for 14400 and 9600 bps frames is 100 percent, the
- s transmission duty cycle for 7200 and 4800 bps frames is 50 percent, the transmission duty
- cycle for 3600 and 2400 bps frames is 25 percent, and the transmission duty cycle for 1800
- and 1200 bps frames is 12.5 percent as shown in Tables 6.1.3.1.1-1 and 6.1.3.1.1-2. Since
- the duty cycle for transmission varies proportionately with the data rate, the actual burst
- transmission rate is fixed at 28,800 code symbols per second.
- Since six code symbols are modulated as one of 64 modulation symbols for transmission,
- the modulation symbol transmission rate is fixed at 4800 modulation symbols per second.
- 16 This results in a fixed Walsh chip rate of 307.2 kcps. The rate of the spreading PN
- sequence is fixed at 1.2288 Mcps, so that each Walsh chip is spread by four PN chips.
- Tables 6.1.3.1.1-1 and 6.1.3.1.1-2 define the signal rates for the various transmission rates
- on the Reverse Traffic Channel.
- 20 The numerology is similar for the Access Channel except that the transmission rate is fixed
- at 4800 bps after adding eight Encoder Tail Bits (see 6.1.3.2.2). Each code symbol is
- 22 repeated once, and the transmission duty cycle is 100 percent. Table 6.1.3.1.1-3 defines
- 23 the signal rates on the Access Channel.

6.1.3.1.1 Modulation Parameters

29

- The modulation parameters for the Code Channels in the Reverse Traffic Channel are
- shown in Tables 6.1.3.1.1-1 and 6.1.3.1.1-2. Note that only the full rate (9600 bps for Rate
- 27 Set 1 and 14400 bps for Rate Set 2) are permitted on Supplemental Code Channels. The
- modulation parameters for the Access Channel are shown in Table 6.1.3.1.1-3.

6-20

Table 6.1.3.1.1-1. Reverse Traffic Channel Modulation Parameters for Rate Set 1

		Data Rate (bps)			:	
Parameter	9600	4800*	2400*	1200*	Units	
PN Chip Rate	1.2288	1.2288	1.2288	1.2288	Mcps	
Code Rate	1/3	1/3	1/3	1/3	bits/code symbol	
Transmit Duty Cycle	100.0	50.0	25.0	12.5	%	
Code Symbol Repetition	1	2	4	8	repeated code symbols/code symbol	
Repeated Code Symbol Rate	28,800	28,800	28,800	28,800	sps	
Modulation	6	6	6	6	repeated code symbols/modulation symbol	
Modulation Symbol Rate	4800	4800	4800	4800	sps	
Walsh Chip Rate	307.20	307.20	307.20	307.20	kcps	
Modulation Symbol Duration	208.33	208.33	208.33	208.33	μs	
PN Chips/Repeated Code Symbol	42.67	42.67	42.67	42.67	PN chips/repeated code symbol	
PN Chips/Modulation Symbol	256	256	256	256	PN chips/modulation symbol	
PN Chips/Walsh Chip	4	4	4	4	PN chips/Walsh chip	
* Applicable to the Fundamental Code Channel only.						

Table 6.1.3.1.1-2. Reverse Traffic Channel Modulation Parameters for Rate Set 2

	[Data Ra				
Parameter	14400	7200*	3600*	1800*	Units	
PN Chip Rate	1.2288	1.2288	1.2288	1.2288	Mcps	
Code Rate	1/2	1/2	1/2	1/2	bits/code symbol	
Transmit Duty Cycle	100.0	50.0	25.0	12.5	%	
Code Symbol Repetition	1	2	4	8	repeated code symbols/code symbol	
Repeated Code Symbol Rate	28,800	28,800	28,800	28,800	sps	
Modulation	6	6	6	6	repeated code symbols/modulation symbol	
Modulation Symbol Rate	4800	4800	4800	4800	sps	
Walsh Chip Rate	307.20	307.20	307.20	307.20	kcps	
Modulation Symbol Duration	208.33	208.33	208.33	208.33	μs	
PN Chips/Repeated Code Symbol	42.67	42.67	42.67	42.67	PN chips/repeated code symbol	
PN Chips/Modulation Symbol	256	256	256	256	PN chips/modulation symbol	
PN Chips/Walsh Chip	4	4	4	4	PN chips/Walsh chip	
* Applicable to the Fundamental Code Channel only.						

Table 6.1.3.1.1-3. Access Channel Modulation Parameters

	Data Rate (bps)	
Parameter	4800	Units
PN Chip Rate	1.2288	Mcps
Code Rate	1/3	bits/code symbol
Code Symbol Repetition	2	repeated code symbols/code symbol
Transmit Duty Cycle	100.0	%
Repeated Code Symbol Rate	28,800	sps
Modulation	6	repeated code symbols/modulation symbol
Modulation Symbol Rate	4800	sps
Walsh Chip Rate	307.20	kcps
Modulation Symbol Duration	208.33	μς
PN Chips/Repeated Code Symbol	42.67	PN chips/repeated code symbol
PN Chips/Modulation Symbol	256	PN chips/modulation symbol
PN Chips/Walsh Chip	. 4	PN chips/Walsh chip

6.1.3.1.2 Data Rates

- The Access Channel shall support fixed data rate operation at 4800 bps.
- The Reverse Traffic Channels data rates are grouped into sets called rate sets. Rate Set 1
- 6 contains four elements, specifically 9600, 4800, 2400, and 1200 bps. Only full rate (9600
- bps) may be utilized on Rate Set 1 Supplemental Code Channels. Rate Set 2 contains four
- elements, specifically 14400, 7200, 3600, and 1800 bps. Only full rate (14400 bps) may be
- utilized on Rate Set 2 Supplemental Code Channels.
- The mobile station shall support Rate Set 1 on the Reverse Traffic Channel. The mobile
- station may support Rate Set 2 on the Reverse Traffic Channel. The mobile station shall
- support variable data rate operation with all four elements of each supported rate set.
- 13 The mobile station shall always support the Fundamental Code Channel for any supported
- rate set. The mobile station may support Supplemental Code Channels for any supported
- rate set. Support for Supplemental Code Channels is determined via multiplex option
- negotiation (see 6.1.3.3.13 and 6.1.3.3.14).

6.1.3.1.3 Convolutional Encoding

- 2 The mobile station shall convolutionally encode the data transmitted on the code channels
- of the Reverse Traffic Channel and on the Access Channel prior to interleaving. The
- 4 convolutional code shall have a constraint length of 9. For the Access Channel and Rate
- 5 Set 1 of the Reverse Traffic Channel code channels, the convolutional code rate shall be
- 6 1/3. For Rate Set 2 of the Reverse Traffic Channel code channels, the convolutional code
- 7 rate shall be 1/2.

11

12

13

14

15

16

17

18

19

20

- 6 Convolutional encoding involves the modulo-2 addition of selected taps of a serially time-
- 9 delayed data sequence. The length of the data sequence delay is equal to K-1, where K is
- the constraint length of the code.

6.1.3.1.3.1 Rate 1/3 Convolutional Code

The generator functions for this code shall be g_0 equals 557 (octal), g_1 equals 663 (octal), and g_2 equals 711 (octal). This code generates three code symbols for each data bit input to the encoder. These code symbols shall be output so that the code symbol (c_0) encoded with generator function g_0 shall be output first, the code symbol (c_1) encoded with generator function g_1 shall be output second, and the code symbol (c_2) encoded with generator function g_2 shall be output last. The state of the convolutional encoder, upon initialization, shall be the all-zero state. The first code symbol output after initialization shall be a code symbol encoded with generator function g_0 . The encoder for this code is illustrated in Figure 6.1.3.1.3.1-1.

Figure 6.1.3.1.3.1.1. K = 9, Rate 1/3 Convolutional Encoder

24

6.1.3.1.3.2 Rate 1/2 Convolutional Code

The generator functions for this code shall be g_0 equals 753 (octal) and g_1 equals 561 (octal). This code generates two code symbols for each data bit input to the encoder. These code symbols shall be output so that the code symbol (c_0) encoded with generator function g_0 shall be output first and the code symbol (c_1) encoded with generator function g_1 shall be output last. The state of the convolutional encoder, upon initialization, shall be the all-zero state. The first code symbol output after initialization shall be a code symbol encoded with generator function g_0 . The encoder for this code is illustrated in Figure 6.1.3.1.3.2-1.

Figure 6.1.3.1.3.2-1. K = 9, Rate 1/2 Convolutional Encoder

6.1.3.1.4 Code Symbol Repetition

Code symbols output from the convolutional encoder are repeated before being interleaved when the data rate is lower than 9600 bps for Rate Set 1 and 14400 bps for Rate Set 2.

Code symbol repetition on the code channels of the Reverse Traffic Channel is only used as an expedient method for describing the operation of the block interleaver specified in 6.1.3.1.5 and the data burst randomizer specified in 6.1.3.1.7.2. Implementations other than code symbol repetition that achieve the same result are allowed.

The code symbol repetition rate on the code channels of the Reverse Traffic Channel varies with data rate. Code symbols shall not be repeated for the 14400 and 9600 bps data rates. Each code symbol at the 7200 and 4800 bps data rates shall be repeated 1 time (each symbol occurs two consecutive times). Each code symbol at the 3600 and 2400 bps data rates shall be repeated three times (each symbol occurs four consecutive times). Each code symbol at the 1800 and 1200 bps data rates shall be repeated seven times (each symbol occurs eight consecutive times). For all of the data rates, this results in a constant repeated code symbol rate of 28800 code symbols per second. On the code channels of the Reverse Traffic Channel these repeated code symbols shall not be transmitted multiple times. Rather, the repeated code symbols shall be input to the block interleaver function,

- and all but one of the code symbol repetitions shall be deleted prior to actual transmission
- due to the variable transmission duty cycle.
- For the Access Channel, which has a fixed data rate of 4800 bps, each code symbol shall be
- 4 repeated 1 time (each symbol occurs 2 consecutive times). On the Access Channel, both
- 5 repeated code symbols shall be transmitted.
- 6 6.1.3.1.5 Block Interleaving
- 7 The mobile station shall interleave all repeated code symbols on the code channels of the
- 8 Reverse Traffic Channel and on the Access Channel prior to modulation and transmission.
- A block interleaver spanning 20 ms shall be used. The interleaver shall be an array with 32
- rows and 18 columns (i.e., 576 cells). Repeated code symbols shall be written into the
- interleaver by columns filling the complete 32×18 matrix. Tables 6.1.3.1.5-1 through
- 6.1.3.1.5-4 illustrate the ordering of write operations of code symbols into the interleaver
- array for the four transmission data rates of each rate set.
- Reverse Traffic Channel repeated code symbols shall be output from the interleaver by
- $_{15}$ rows. For Rate Set 1, the interleaver rows from the leftmost to the rightmost column shall $_{\sim 8}$
- be output in the following order:
- 17 At 9600 bps:
- 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
- 19 At 4800 bps:
- 20 1 3 2 4 5 7 6 8 9 11 10 12 13 15 14 16 17 19 18 20 21 23 22 24 25 27 26 28 29 31 30 32
- 21 At 2400 bps:
- 2 1 5 2 6 3 7 4 8 9 13 10 14 11 15 12 16 17 21 18 22 19 23 20 24 25 29 26 30 27 31 28 32
- 23 At 1200 bps:
- 24 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16 17 25 18 26 19 27 20 28 21 29 22 30 23 31 24 32
- For Rate Set 2, the interleaver rows shall be output in the following order:
- 26 At 14400 bps:
- 27 1 2 3 4 5 6 7 8 9 10 1.1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
- 28 At 7200 bps:
- 29 1 3 2 4 5 7 6 8 9 11 10 12 13 15 14 16 17 19 18 20 21 23 22 24 25 27 26 28 29 31 30 32
- ∞ At 3600 bps:
- 31 1 5 2 6 3 7 4 8 9 13 10 14 11 15 12 16 17 21 18 22 19 23 20 24 25 29 26 30 27 31 28 32
- 2 At 1800 bps:
- 33 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16 17 25 18 26 19 27 20 28 21 29 22 30 23 31 24 32

Access Channel repeated code symbols shall be output from the interleaver by rows. The interleaver rows shall be output in the following order:³

1 17 9 25 5 21 13 29 3 19 11 27 7 23 15 31 2 18 10 26 6 22 14 30 4 20 12 28 8 24 16 32

Table 6.1.3.1.5-1. Reverse Traffic Channel Interleaver Memory (Write Operation) for 9600 and 14400 bps

³ This is a bit-reversed readout of the row addresses. If there is a binary counter $c_4c_3c_2c_1c_0$, counting from 0 through 31, and n is a 5-bit binary number, $n = a_4a_3a_2a_1a_0$, where $a_4 = c_0$, $a_3 = c_1$, $a_2 = c_2$, $a_1 = c_3$, $a_0 = c_4$, then the row address is given by n+1.

Table 6.1.3.1.5-2. Reverse Traffic Channel for 4800 and 7200 bps or Access Channel for 4800 bps Interleaver Memory (Write Operation)

```
81 97 113 129 145 161 177 193 209 225 241 257 273
 1 17
                    81 97 113 129 145 161 177 193 209 225 241 257 273
    17
        33
            49
                65
                    82 98 114 130 146 162 178 194 210 226 242 258 274
 2
   18
        34
            50
                66
                        98 114 130 146 162 178 194 210 226 242 258 274
            50
                    82
    18
        34
                66
                        99 115 131 147 163 179 195 211 227 243 259 275
                    83
    19
        35
            51
                67
                        99 115 131 147 163 179 195 211 227 243 259 275
 3
    19
        35
            51
                67
                    83
                    84 100 116 132 148 164 180 196 212 228 244 260 276
            52
                68
    20
        36
                    84 100 116 132 148 164 180 196 212 228 244 260 276
· 4
    20
        36
            52
                68
                    85 101 117 133 149 165 181 197 213 229 245 261 277
            53
 5
    21
        37
                69
                    85 101 117 133 149 165 181 197 213 229 245 261 277
            53
 5
    21
        37
                69
                    86 102 118 134 150 166 182 198 214 230 246 262 278
 6
            54
                    86 102 118 134 150 166 182 198 214 230 246 262 278
    22
        38
            54
                70
                    87 103 119 135 151 167 183 199 215 231 247 263 279
 7
    23
        39
            55
                71
                    87 103 119 135 151 167 183 199 215 231 247 263 279
 7
        39
            55
    23
                    88 104 120 136 152 168 184 200 216 232 248 264 280
 8
    24
        40
            56
                    88 104 120 136 152 168 184 200 216 232 248 264 280
                72
 8
    24
        40
            56
                    89 105 121 137 153 169 185 201 217 233 249 265 281
 9
    25
        41
            57
                73
                    89 105 121 137 153 169 185 201 217 233 249 265 281
 9
        41
            57 .
                    90 106 122 138 154 170 186 202 218 234 250 266 282
    26
        42
            58
                74
10
                    90 106 122 138 154 170 186 202 218 234 250 266 282
    26
        42
            58
                74
10
                    91 107 123 139 155 171 187 203 219 235 251 267 283
                75
        43
            59
11
    27
                    91 107 123 139 155 171 187 203 219 235 251 267 283
11
    27
        43
            59
                    92 108 124 140 156 172 188 204 220 236 252 268 284
            60
                76
12
    28
        44
                    92 108 124 140 156 172 188 204 220 236 252 268 284
                76
12
    28
        44
            60
                    93 109 125 141 157 173 189 205 221 237 253 269 285
        45
            61
13
    29
                    93 109 125 141 157 173 189 205 221 237 253 269 285
            61
                77
13
    29
        45
                    94 110 126 142 158 174 190 206 222 238 254 270 286
14 30
        46
            62
                78
                    94 110 126 142 158 174 190 206 222 238 254 270 286
14
    30
        46
            62
                78
                    95 111 127 143 159 175 191 207 223 239 255 271 287
15 31
            63
                    95 111 127 143 159 175 191 207 223 239 255 271 287
        47
            63
                79
15 31
                80 96 112 128 144 160 176 192 208 224 240 256 272 288
        48 . 64
16 32
        48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288
   32
```

Table 6.1.3.1.5-3. Reverse Traffic Channel Interleaver Memory (Write Operation) for 2400 and 3600 bps

1	9	17	25	33	41	49	57	65	73	81	89	97			121		
1	9	17	25	33	41	49	57	65	73	81	89	97			121		
1	9	17	25	33	41	49	57	65	73	81	89				121		
1	9	17	25	33	41	49	57	65	73	81	89		•		121		
2	10	18	26	34	42	50	58	66	74	82	90	98			122		
2	10	18	26	34	42	50	58	66	74	82	90	98			122		
2	10	18	26	34	42	50	58	66	74	82	90	98			122		
2	10	18	26	34	42	50	58	66	74	82	90	98			122		
3	11	19	27	35	43	51	59	67	75	83	91				123		
3	11	19	27	35	43	51	59	67	75	83	91	99			123		
3	11	19	27	35	43	51	59	67	75	83	91	99			123		
3	11	19	27	35	43	51	59	67	75	83	91	99			123		
4	12	20	28	-36	44	52	60	68	76	84	92				124		
4	12	20	28	36	44	52	60	68	76	84					124		
4	12	20	28	36	44	52	60	68	76	84					124		
4	12	20	28	36	44	52	60	68	76 -	84							140.
5	13	21	29	37	45	53	61	69	77	85					125		
5	13	21	29	37	45	53	61	69	77	85					125		
5	13	21	29	37	45	53	61	69	77 .	85					125		
5	13	21	29	37	45	53	61	69	77	85					125		
6	14	22	30	38	46	54	62	70	78	86					126		
6	14	22	30	38	46	54	62	70	78	86					126		
6	14	22	30	38	46	54	62	70	78	86					126		
6	14	22	30	38	46	54	62	70	78	86					126		
7	15	23	31	39	47	55	63	71	79	87					127		
7	15	23	31	39	47	55	63	71	79	87					127		
7	15	23	31	. 39	47	55	63	71	79	87					127		
. 7	15	23	31	39	47	55	63	71	79	87	95				127		•
8	· 16	24	32	40	48	56	64	72	80	88	96				128		
8	16	24	32	40	48	56	64	72	80	88					128		
8.	16	24	32	40	48	56	64	72	80	88					128		
8	16	24	32	40	48	56	64	72	80	. 88	96	104	112	120	128	136	144

Table 6.1.3.1.5-4. Reverse Traffic Channel Interleaver Memory (Write Operation) for 1200 and 1800 bps

6.1.3.1.6 Orthogonal Modulation

- 2 Modulation for the Reverse CDMA Channel shall be 64-ary orthogonal modulation. One of
- 3 64 possible modulation symbols is transmitted for each six repeated code symbols. The
- 4 modulation symbol shall be one of 64 mutually orthogonal waveforms generated using
- Walsh functions. These modulation symbols are given in Table 6.1.3.1.6-1 and are
- numbered 0 through 63. The modulation symbols shall be selected according to the
- 7 following formula:
- Modulation symbol index = $c_0 + 2c_1 + 4c_2 + 8c_3 + 16c_4 + 32c_5$,
- where c5 shall represent the last (or most recent) and c0 the first (or oldest) binary valued
- 10 ('0' and '1') repeated code symbol of each group of six repeated code symbols that form a
- modulation symbol index.
- The 64 by 64 matrix shown in Table 6.1.3.1.6-1 can be generated by means of the following
- 13 recursive procedure:

$$\mathbf{H}_1 = 0, \qquad \qquad \mathbf{H}_2 = \begin{matrix} 0 & 0 \\ 0 & 1 \end{matrix},$$

15

16

$$\mathbf{H}_{4} = \begin{matrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{matrix} \qquad \mathbf{H}_{2N} = \begin{matrix} \mathbf{H}_{N} & \mathbf{H}_{N} \\ \mathbf{H}_{N} & \overline{\mathbf{H}}_{N} \end{matrix}$$

- where N is a power of 2 and $\overline{\mathbf{H}}_{N}$ denotes the binary complement of \mathbf{H}_{N} .
- The period of time required to transmit a single modulation symbol shall be equal to
- 1/4800 second (208.333... μ s). The period of time associated with one-sixty-fourth of the
- modulation symbol is referred to as a Walsh chip and shall be equal to 1/307200 second
- 21 (3.255... μs).
- 22 Within a modulation symbol, Walsh chips shall be transmitted in the order of 0, 1, 2, ...,
- za 63.

Table 6.1.3.1.6-1. 64-ary Orthogonal Symbol Set

Walsh Chip within Symbol

		0 1	23	4 :	5 6	7 8	3 9	1 1	1 2	1 :	1 1	1	1 1 7 8	1 2	2 2	2 2	2 2		2 2					3 :			3 3			4 4		4	4 4	4 6 6	4	4 4 8 9	5	5 5 1 2	5 5							6623	
	0 1 2	0 1	00	0	١0	1 0		0 1	0	0 () 1	0	0 0 1 0 0 1	1 () 1	0	1 0) 1	0	1	0	1 0	1	0	1 0	1	0 1	0	1	0 '1	0	1	0 0	0	1	0 0	0		0 0	0	1 0) 1	0	1 0) 1	0 0	
	3	01	_	0				10	0				1 1	de			0 0	1 (q				0		0					1								1							10	
	5 6 7		01		0	ďα	0 (1 1		1 (0 0	0	1 0 0 1 1 1	1	ı	0	olo	0 (1	1	1	10	0	000	ו כ	1	1 1		þ	0 0	0	i	1 (0	0	0 0	1		1	0 (0 0	0	1			1 0 0 0 0 1	
	8	0 0 0 1	00	0 (0 0	0 1 1 1	1 0	1 1 1 C	1	1 0	1 I 1 O	0	0 0 1 0	10	0 0	0	0	1 1	1	1	1 1	1 1 0 1	0	0	0 0	0	0 0	0 0	0	1 1	1 1	1	1 1 1 (1	1	0 C	0	10	0 (0 0	0 i		1	1 0	1 1	11	
	10	0 1	10	0					1	0 0	1	0	0 1 1 1 0 0	q) 1	1	<u>o</u> :	1 0	0 (ì	1 (0 0	1	0	1 1	0	0 1	1	d		0 (1	1 (0 (1	0 1	1	00					0		1 0	00	
	13 14	0 1		1 (1 0		0		O) 1	ō	10	1			1 1 0 1 0 1	ı		q	0	1 0 0 1	1	0	i O	1	1 (1 (þ	1 (1 (1 1	1 1 0	0	0 (0 1 0 (0	1	0 1 0 1	0	1 1		1 (0 1					01	
M	15 16		00	-		o c		0 C	0		0 0	1	11	1	1 1	1	1	ı	1	1	1	1 1	1		O C	0	0 (0	q	0 0	00	이	0 0	0 (0	0 1	1	01	1	1	1 1	1	1	1	1 1	1 1	
O D U	18 19		11			1 0) 1) 0) 1	1 1			1 1	1	0 1 1 0 0 0		l 0 l 1 l 0	0	0 1	1	0	þ	1		0	0	0 1	1		1	1	0 0		1	0 1 0 0 0 1	1	1	1 1 1 1	0	- 1	0	0	- 1	l 1	Ō		l 1 l 0	000	
L A T	20 21 22	0 1	00	1 (1 1	o o			1				1 1 0 1 1 0	do	00	0	1 1	C		q	0		1	000	1 0	ì		1	q	0 1	0	1	1 1 1 (1		_		0 0		0 1	1 1 1 1				0 0 0 1 1 1	
O I	23 24	0 1	00	1 (0 (10	1			0 (- 1		00	-1) 1	-	0 1	1 0	_	1	Ó		0	0	1 1	0	1 (- 1			- 1	-	0				0 1		0	- 1		10	
N S	25 26	00			1	1 1		0 0			0 (1	0 1 1 0 0 0			0		0	1	1	0		1	0	0 1	1		1	1	1 1		이		0	- 1		0 0	d ı	0 1 0	0		0 0	1	- 1		01	
Y M	28 29	-	0 0	-	1	1 1 0 1	1	1 1	ō	0 0	00	1	1 1	10	0 0	0	0 0) (0	q	1	1 1	1	000	0 0	0	1	1 1	1	1 1	1	1	0 (0	0	1 1	1	10	0 0		olo	_	0	0 1	1 0	11	
B O	30 31	_	10	1 (1 1		0 1	0	0 1	١0	1.	0 0	10) 1	1	_) 1	1	q	1 (1 0	1	0	1 1	0	1 (0 (- 1	_	0	1	0 (1 0	1 1 1 C	0	10	0 (1 0	0 0		1 1 0 1	0	0 0 0 1	
L	32 33 34	0 1 0 0		0 1	0	1 0) 1	0 1	0	0 (1 (0 1	1	0	0 0 1 0 0 1	1 () i) 0	0	1 0) 1	0	1	0	0 0 1 0 0 1	1	1 (0	1 1 1 (1 1) 1			1 1 0				1	1 1 1 (1 1	0	_1			0 1		1 0		1 1 1 0 1 1	1000	
N D E		0 1 0 0 0 1		1 1	1	10	0 (1 0 0 0 0 1	1	1 1 1 1 0 1	1	0	0 0	Q.		1	1 () (0	q	l	1 1	1	1	1 1	1		0 (q	1 1	1	1	0 (0 (0	1 1	1	10	0	0	0 1	1	1	1 (0 0	00	
X	38	0 0 0 1	1 1	1 1	0	d a	0	1 1 1 0	1	1 0	0 (0 (10 01 11	1 1	1	0	olo) C	1	1	1	1 0 0 0	0	1	1 0	0	0, 1 0 0 0 1) 1	1	1 1	0 0	이	0 () 1	1	1 1		qq) 1) 0) 1	1	1 1	1	0	olo	0 (0 1 1 1 1 0	
	40 41 42	00		0 0	0	0 1		1 1 1 0 0 0		0 1	- 1	0	001	10	0 0	0	0 1 1	-	1 1 0	100		1 1 0 1 1 0					1 1 1 0 1 1		q	0 1		1	0 0		0	1 1	1 1 0	1 1 0 1			1 0) 1		1 (00	
	43	01	10	0 1	1 (0 i 1 i	_	0 1 1 1	1	0.0		0	11	<u>d</u> c						1	1 (0 0	1	10		1	10	0 (1	0 1	1	0			0	1 (- 1	0	0) 1	1	- 1		1 1 1 0 1 1	
	45 46 47		0 1 1 1 1 0	ı	0.	- 1	0 1 0	_			1		0 1	1 1	0	0	0 1		0	þ	0 0 0	0 1	1 0	1	0 1 0 0 0	0	0 I 0 I 0 I	1	1	0 1 0 0 0 1) 1	1	1 (- 1	1 0	0		0 1		- 1 -) 1) 0) 1	1	1 1	0	10	
	48		0 0	0 0	0 (o o	_	0 0	0	00		1	1 1	1 1	0	1	1 1	1	1	1	1	1 1 1 1 0 1	1	1	1 1	1	1 1	1	i	1 1	1	10	1 1	1	1	0 0		00	0 0	-	-	0	0	- 1 -	0 0	00	
		00	10		1.0	d o		10	0	1 1	0	1 (1 1	0	0	1 1	0	0	1	1 (0 0	1	1 (0 0	1	1 (0 (1	1 (0 (1	1 (0	1		1	qc		1 (1 (1	old		10	
	53 54	0 I 0 0	0 1 1 1	1 (0 (00	0	0 I 1 1	1	0 I 1 C	0	1 (1 0	d d) 1) 0	0	$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	0	0	d	0	1 0 0 1	1	1 () 1 I ()	0	0 1	0	1 1	10	0	0	0 1 0 0	0	1	0 1 0 0	0	1 1	0	0 () 1) 0	0	1 1	0	1 d 0 d	
	55 56 57	00	0 0	0 0	0 (0 1	1	1 1	1	1 1	1	1	1 1	1 1	1	1	1 0	0 (0	q	0 (0 0	0	1	1 1	1	1 1	1	1	o c	0 (0	0 0	0	0	0 0	Ō	qc	0 (Ō (Ō] ī	1	1	1 1	1	1 1	
	58 59	0 0	1 1 1 0	0 C 0 1	1 (1 1 0 1	0	0 0 0 1	1 1	1 C 0 C	0 0	1 (0 0	0 1 1 1	0	0 0	1 C	0 () 1 1	1	0 (0	0 1 1 1	1 0	1 1 (0 0	0	1 1	0 0	1	0 C	1	1 0	0 (0 1	1	1	0 C 0 1	1	100	0 0	1 1 (1 1	1 0	0	0 1	0	0 0 0 1	
	60 61 62	0 1	01	i c) [(ol 1	0	10	0	1 0) 1	1 (1 (do	1	0	ıld) 1	0	ıl	1 (0 1	0	1 () 1	ol	0 1	0	I	0 1	0	1	1 (1	ol	0 1	0	1 1	0	1 (ol 1	Ó	1 (olo	1	0 1	
	62 63	01	10	1 (0	1 1	0	0 1	0	1 1	0] (00) 1	1 (0 0) [1	q	1	0 0	1	1	0 0	i	0 1	1 1	ď	0 (1	0	1 (0.0	1	0 1	1	d i	0	0	1 1	0	0	1 C) 1	1 1 1 0	

6-32

6.1.3.1.7 Variable Data Rate Transmission

2 6.1.3.1.7.1 Rates and Gating

- The Reverse Code Channel interleaver output stream is time-gated to allow transmission of certain interleaver output symbols and deletion of others. This process is illustrated in Figure 6.1.3.1.7.1-1. As shown in the figure, the duty cycle of the transmission gate varies with the transmit data rate. When the transmit data rate is 9600 or 14400 bps, the transmission gate allows all interleaver output symbols to be transmitted. When the transmit data rate is 4800 or 7200 bps, the transmission gate allows one-half of the interleaver output symbols to be transmitted, and so forth. The gating process operates by dividing the 20 ms frame into 16 equal length (i.e., 1.25 ms) periods, called power control groups (PCG). Certain power control groups are gated-on (i.e., transmitted), while other groups are gated-off (i.e., not transmitted).
- The assignment of gated-on and gated-off groups, referred to as the data burst randomizing function, is specified in 6.1.3.1.7.2. The gated-on power control groups are pseudo randomized in their positions within the frame. The data burst randomizer ensures that every code symbol input to the repetition process is transmitted exactly once. During the gated-off periods, the mobile station shall comply with the requirement in 6.1.2.2.2, thus reducing the interference to other mobile stations operating on the same Reverse CDMA Channel.
- The data burst randomizer is not used during a PUF probe (see 6.1.1.7.3).
- When transmitting on the Access Channel, the code symbols are repeated once (each symbol occurs twice) prior to transmission. The data burst randomizer is not used when the mobile station transmits on the Access Channel. Therefore, both copies of the repeated code symbols are transmitted as shown in Figure 6.1.3.1.7.1-2.

≈ 6.1.3.1.7.2 Data Burst Randomizing Algorithm

33

34

35

The data burst randomizer generates a masking pattern of '0's and '1's that randomly masks out the redundant data generated by the code repetition. The masking pattern is determined by the data rate of the frame and by a block of 14 bits taken from the long code. These 14 bits shall be the last 14 bits of the long code used for spreading in the previous to the last power control group of the previous frame (see Figure 6.1.3.1.7.1-1). In other words, these are the 14 bits which occur exactly one power control group (1.25 ms) before each Reverse Code Channel frame boundary. These 14 bits are denoted as

 $b_0 \quad b_1 \quad b_2 \quad b_3 \quad b_4 \quad b_5 \quad b_6 \quad b_7 \quad b_8 \quad b_9 \quad b_{10} \quad b_{11} \quad b_{12} \quad b_{13},$ where b_0 represents the oldest bit, and b_{13} represents the latest bit.⁴

⁴ In order to randomize the position of the data bursts, only 8 bits are strictly necessary. The algorithm described here uses 14 bits to assure that the slots used for data transmission at the quarter rate are a subset of the slots used at the half rate, and that the slots used at the one-eighth rate are a subset of the slots used at the quarter rate.

Figure 6.1.3.1.7.1-1. Reverse CDMA Channel Variable Data Rate Transmission Example

Figure 6.1.3.1.7.1-2. Access Channel Transmission Structure

Each 20 ms Reverse Code Channel frame shall be divided into 16 equal length (i.e.,

1.25 ms) power control groups numbered from 0 to 15 as shown in Figure 6.1.3.1.7.1-1.

The data burst randomizer algorithm shall be as follows:

Data Rate Selected: 9600 or 14400 bps

10

12

13

15

16

17

Transmission shall occur on power control groups numbered:

```
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15.
```

Data Rate Selected: 4800 or 7200 bps

Transmission shall occur on power control groups numbered:

$$b_0$$
, $2 + b_1$, $4 + b_2$, $6 + b_3$, $8 + b_4$, $10 + b_5$, $12 + b_6$, $14 + b_7$.

Data Rate Selected: 2400 or 3600 bps

Transmission shall occur on power control groups numbered:

```
2 + b_1 if b_8 = '1';
                         if b_8 = 0,
              bο
18
                                                       6 + b_3 if b_9 = '1';
                         if b_9 = '0',
              4 + b_2
                                             or
                                                      10 + b_5 if b_{10} = '1';
              8 + b_{\dot{a}}
                         if b_{10} = 0,
                                             or
              12 + b_6 if b_{11} = 0,
                                                      14 + b_7 if b_{11} = '1'.
                                             or
21
```

6-35

- Data Rate Selected: 1200 or 1800 bps
- 2 Transmission shall occur on power control groups numbered:

```
if (b_8, b_{12}) = (0, 0), or
              bη
              2 + b_1
                             if (b_8, b_{12}) = ('1', '0'), or
              4 + b_2
                             if (b_9, b_{12}) = (0, 1), or
              6 + b_3
                             if (b_9, b_{12}) = ('1', '1');
              8 + b_4
                             if (b_{10}, b_{13}) = (0, 0), or
              10 + b_5
                             if (b_{10}, b_{13}) = (1, 0), or
              12 + b_6
                             if (b_{11}, b_{13}) = (0, 1), or
                             if (b_{11}, b_{13}) = ('1', '1').
              14 + b_7
10
```

6.1.3.1.7.3 Gating During a PUF Probe

- The mobile station shall transmit as gated-on all power control groups during the PUF setup and PUF pulse portions of a PUF probe, except when the transmitter is disabled.
- If the transmitter is enabled during the PUF recovery portion of a PUF probe, the mobile station shall either transmit all power control groups as gated-on, or else gate off (not transmit) all power control groups.
- 6.1.3.1.8 Direct Sequence Spreading

- Direct sequence spreading using the long code shall be applied to the Reverse Code Channels and to the Access Channel. For the Reverse Code Channels, this spreading operation involves modulo-2 addition of the data burst randomizer output stream and the long code. For the Access Channel, this spreading operation involves modulo-2 addition of the 64-ary orthogonal modulator output stream and the long code.
- This long code shall be periodic with period 2^{42} -1 chips and shall satisfy the linear recursion specified by the following characteristic polynomial:

25
$$p(x) = x^{42} + x^{35} + x^{33} + x^{31} + x^{27} + x^{26} + x^{25} + x^{22} + x^{21} + x^{19} + x^{18} + x^{17} + x^{16} + x^{10} + x^{7} + x^{6} + x^{5} + x^{3} + x^{2} + x^{1} + 1.$$

- Each PN chip of the long code shall be generated by the modulo-2 inner product of a 42-bit mask and the 42-bit state vector of the sequence generator as shown in Figure 6.1.3.1.8-1.
- 2 The time alignment of the long code generator shall be as shown in Figure 1.2-1.
- The mask used for the long code varies depending on the channel type on which the mobile station is transmitting. See Figure 6.1.3.1.8-2.
- when transmitting on the Access Channel, the mask shall be as follows:
 - M₄₁ through M₃₃ shall be set to '110001111',
- M₃₂ through M₂₈ shall be set to the Access Channel number chosen (see 6.6.3.1.1.2),

- M₂₇ through M₂₅ shall be set to the code channel number for the associated Paging Channel (the range is 1 through 7),
- M₂₄ through M₉ shall be set to the BASE_ID value (see 7.7.2.3.2.1) for the current base station, and
 - M₈ through M₀ shall be set to the PILOT_PN value for the current CDMA Channel (see 7.7.1.3 and Figure 6.1.3.1.8-2).

When a mobile station is transmitting on *n* code channels (i.e., the Fundamental Code Channel, and n - 1 Supplemental Code Channels) of the Reverse Traffic Channel, the mobile station shall use on each of the code channels one of two long code masks unique to that code channel; either a public long code mask unique to the mobile station's ESN or a private long code mask.

For the public long code mask, bits M_{31} through M_0 shall be set to a permutation of the mobile station's ESN as follows:

```
ESN = (E_{31}, E_{30}, E_{29}, E_{28}, E_{27}, E_{26}, E_{25}, \dots E_{2}, E_{1}, E_{0})

Permuted ESN = (E_{0}, E_{31}, E_{22}, E_{13}, E_{4}, E_{26}, E_{17}, E_{8}, E_{30}, E_{21}, E_{12}, E_{3}, E_{25}, E_{16}, E_{7}, E_{29}, E_{20}, E_{11}, E_{2}, E_{24}, E_{15}, E_{6}, E_{28}, E_{19}, E_{10}, E_{1}, E_{23}, E_{14}, E_{5}, E_{27}, E_{18}, E_{9}).
```

- Bits M_{41} through M_{32} shall be set to '1100011000'.
- The private long code mask shall be as specified in Annex A.
- The Reverse Fundamental Code Channel shall be assigned the channel number 0, and each of the n-1 Reverse Supplemental Code Channels shall be assigned the numbers 1 through n-1. Bits M₃₉ through M₃₇ of the public or private long code mask for assigned code channel i, $0 \le i \le (n-1) \le NUM_REV_CODES_s$ shall be XORed with the value i. NUM_REV_CODES_s is the currently active number of channels received in a Supplemental Channel Assignment Message or General Handoff Direction Message. The resulting public long code mask is shown in Figure 6.1.3.1.8-2.

 $^{^{5}}$ This permutation prevents high correlation between long codes corresponding to consecutive ESNs.

Figure 6.1.3.1.8-1. Long Code Generator

Figure 6.1.3.1.8-2. Long Code Mask Format

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Whenever a mobile station is transmitting on i Reverse Supplemental Code Channels, the mobile station shall transmit on each Reverse Supplemental Code Channel with code channel indices 1 to i (as shown in Figure 6.1.3.1.8-2). If the mobile station reduces the number of Reverse Supplemental Code Channels in use (e.g., due to transmitter power limitations, lack of data to send, or when directed by the base station to use fewer Reverse Supplemental Code Channels), the mobile station shall discontinue transmission on the Reverse Supplemental Code Channels with the highest code channel indices first. If REV_DTX_DURATIONs is not equal to '1111' and the mobile station stops using a Reverse Supplemental Code Channel for a period of time longer than REV_DTX_DURATIONs \times 20 ms, then the mobile station shall not resume transmission on that Reverse Supplemental Code Channel until a subsequent Supplemental Channel Assignment Message or a General Handoff Direction Message containing a reverse assignment is received. Similarly, if a mobile station increases the number of Reverse Supplemental Code Channels in use from j to j + 1 (e.g., due to resumption of transmission when discontinuous transmission is permitted, or when directed by the base station to use more Reverse Supplemental Code Channels), the mobile station shall add the Reverse Supplemental Code Channel with code channel index j + 1 before adding code channels with any larger index.

6.1.3.1.9 Quadrature Spreading

- Following the direct sequence spreading, the Access Channel and the Fundamental and 2
- Supplemental Code Channels of the Reverse Traffic Channel are spread in quadrature as 3
- shown in Figures 6.1.3.1-2, 6.1.2.1-3, and 6.1.3.1-4. The sequences used for this
- spreading shall be the zero-offset I and Q pilot PN sequences used on the Forward CDMA 5
- Channel (see 7.1.3.2.1). These sequences are periodic with period 2¹⁵ chips and shall be 6
- based on the following characteristic polynomials, respectively: 7

8
$$P_1(x) = x^{15} + x^{13} + x^9 + x^8 + x^7 + x^5 + 1$$

(for the in-phase (I) sequence) 9

and 10

11

12

13

14

20

21

22

23

24

$$P_{O}(x) = x^{15} + x^{12} + x^{11} + x^{10} + x^{6} + x^{5} + x^{4} + x^{3} + 1$$

(for the quadrature-phase (Q) sequence).

The maximum length linear feedback shift register sequences, {i(n)} and {q(n)}, based on the above polynomials are of period 2¹⁵-1 and can be generated by using the following linear recursions: 15

- $i(n) = i(n-15) \oplus i(n-10) \oplus i(n-8) \oplus i(n-7) \oplus i(n-6) \oplus i(n-2)$ 16
- (based on $P_I(x)$ as the characteristic polynomial) 17

18 and

$$q(n) = q(n-15) \oplus q(n-12) \oplus q(n-11) \oplus q(n-10) \oplus q(n-9) \oplus q(n-5) \oplus q(n-4) \oplus q(n-3)$$

(based on $P_O(x)$ as the characteristic polynomial),

where i(n) and q(n) are binary-valued ('0' and '1') and the additions are modulo-2. In order to obtain the I and Q pilot PN sequences (of period 2^{15}), a '0' is inserted in $\{i(n)\}$ and $\{g(n)\}$ after 14 consecutive '0' outputs (this occurs only once in each period); therefore, the pilot PN sequences have one run of 15 consecutive '0' outputs instead of 14.

- The mobile station shall align the I and Q pilot PN sequences such that the first chip on 25
- every even second mark as referenced to the transmit time reference (see 6.1.5.1) is the '1' 26
- after the 15 consecutive '0's (see Figure 1.2-1). 27
- The pilot PN sequences repeat every 26.666... ms (= $2^{15}/1228800$ seconds). There are 28
- exactly 75 repetitions in every 2 seconds. 29
- The data spread by the Q pilot PN sequence shall be delayed by half a PN chip time 30
- (406.901 ns) with respect to the data spread by the I pilot PN sequence. 31
- After baseband filtering (see 6.1.3.1.10), the binary data ('0's and '1's), I and Q shown in 32
- Figures 6.1.3.1-2, 6.1.3.1-3, and 6.1.3.1-4, shall be mapped into phase according to Table 33
- 6.1.3.1.9-1. The resulting signal constellation and phase transition are shown in Figure 34
- 6.1.3.1.9-1. 35

Table 6.1.3.1.9-1. Reverse CDMA Channel I and Q Mapping

I	Q	Phase
0	0	π/4
1	0	3π/4
1	1	-3π/4
0	1	-π/4

Figure 6.1.3.1.9-1. Reverse CDMA Channel Signal Constellation and Phase Transition

6.1.3.1.10 Baseband Filtering

3

5

14

Following the spreading operation, the I and Q impulses are applied to the inputs of the I 7

- and Q baseband filters as shown in Figures 6.1.3.1-2, 6.1.3.1-3, and 6.1.3.1-4. The
- baseband filters shall have a frequency response S(f) that satisfies the limits given in 9
- Figure 6.1.3.1.10-1. Specifically, the normalized frequency response of the filter shall be 10
- contained within $\pm \delta_1$ in the passband $0 \le f \le f_p$ and shall be less than or equal to $-\delta_2$ in the 11
- stopband $f \ge f_S$. The numerical values for the parameters are δ_1 = 1.5 dB, δ_2 = 40 dB, 12
- $f_D = 590 \text{ kHz}$, and $f_S = 740 \text{ kHz}$. 13

Figure 6.1.3.1.10-1. Baseband Filters Frequency Response Limits

Let s(t) be the impulse response of the baseband filter. Then s(t) should satisfy the following equation:

Mean Squared Error =
$$\sum_{k=0}^{\infty} [\alpha s(kT_S - \tau) - h(k)]^2 \le 0.03,$$

where the constants α and τ are used to minimize the mean squared error. The constant T_S is equal to 203.451... ns, which equals one quarter of the duration of a PN chip. The values of the coefficients h(k), for k < 48, are given in Table 6.1.3.1.10-1; h(k) = 0 for k \geq 48. Note that h(k) equals h(47 - k).

Table 6.1.3.1.10-1. Coefficients h(k)

k	h(k)		
0, 47	-0.025288315		
1, 46	-0.034167931		
2, 45	-0.035752323		
3, 44	-0.016733702		
4, 43	0.021602514		
5, 42	0.064938487		
6, 41	0.091002137		
7, 40	0.081894974		
8, 39	0.037071157		
9, 38	-0.021998074		
10, 37	-0.060716277		
11, 36	-0.051178658		
12, 35	0.007874526		
13, 34	0.084368728		
14, 33	0.126869306		
15, 32	0.094528345		
16, 31	-0.012839661		
17, 30	-0.143477028		
18, 29	-0.211829088		
19, 28	-0.140513128		
20, 27	0.094601918		
21, 26	0.441387140		
22, 25	0.785875640		
23, 24	1.0		

6.1.3.1.11 Multi-Channel Carrier Phase Offset

- The phase offset ϕ_i represents the angular offset between the i^{th} Supplemental Code
- 3 Channel and the Fundamental Code Channel as shown in Figure 6.1.3.1-7. The phase
- offset ϕ_i of Supplemental Code Channel *i* shall take the values given in Table 6.1.3.1.11-1.

Table 6.1.3.1.11-1. Supplemental Code Channel Carrier Phase Offsets

Supplemental Code Channel i	Carrier Phase Offset ϕ_i (radian)
1	π/2
2	π/4
3	3π/4
4	0
5	π/2
6	π/4
7.	3π/4

6.1.3.2 Access Channel

- The Access Channel is used by the mobile station to initiate communication with the base
- station and to respond to Paging Channel messages. An Access Channel transmission is a
- coded, interleaved, and modulated spread-spectrum signal. The Access Channel uses a
- random-access protocol (see 6.6.3.1.1). Access Channels are uniquely identified by their
- long codes (see 6.1.3.1.8).

6.1.3.2.1 Access Channel Time Alignment and Modulation Rate

- 15 The mobile station shall transmit information on the Access Channel at a fixed data rate of
- 4800 bps. An Access Channel frame shall be 20 ms in duration. An Access Channel frame
- shall begin only when System Time is an integral multiple of 20 ms (see Figure 1.2-1).
- The synchronization, timing, and structure of the Access Channel are specified in 6.6.3.1.1
- and 6.7.1.1.
- 20 The Reverse CDMA Channel may contain up to 32 Access Channels numbered 0 through
- 21 31 per supported Paging Channel. At least one Access Channel exists on the Reverse
- 22 CDMA Channel for each Paging Channel on the corresponding Forward CDMA Channel.
- Each Access Channel is associated with a single Paging Channel.

- 6.1.3.2.2 Access Channel Frame Structure
- 2 Each Access Channel frame contains 96 bits (20 ms frame at 4800 bps). Each Access
- Channel frame shall consist of 88 information bits and eight Encoder Tail Bits (see Figure
- 4 6.1.3.2.2-1).

8

Access
Channel Frame Format

100 ms)

88 bits

88 8

8 10 ms)

11 minormation Bits

T

T - Encoder Tail Bits

Figure 6.1.3.2.2-1. Access Channel Frame Structure

6.1.3.2.2.1 Access Channel Preamble

- The Access Channel preamble shall consist of frames of 96 zeros that are transmitted at the
- 11 4800 bps rate. The Access Channel preamble is transmitted to aid the base station in
- acquiring an Access Channel transmission (see 6.7.1.1).
- 6.1.3.2.3 Access Channel Convolutional Encoding
- The Access Channel data shall be convolutionally encoded as specified in 6.1.3.1.3.
- When generating Access Channel data, the encoder shall be initialized (see 6.1.3.1.3.1) at
- the end of each 20 ms frame.
- 6.1.3.2.4 Access Channel Code Symbol Repetition
- Each code symbol output from the convolutional encoder on the Access Channel shall be
- repeated once (each code symbol occurs two consecutive times) as specified in 6.1.3.1.4.
- 20 6.1.3.2.5 Access Channel Interleaving
- 21 The repeated code symbols on the Access Channel shall be interleaved as specified in
- 2 6.1.3.1.5.
- 26.1.3.2.6 Access Channel Modulation
- The Access Channel data shall be modulated as specified in 6.1.3.1.6.
- ≈ 6.1.3.2.7 Access Channel Gating
- 25 The mobile station shall not gate off any power control group while transmitting on the
- Z7 Access Channel as specified in 6.1.3.1.7.1.

ANSI/TIA/EIA-95-B

- 6.1.3.2.8 Access Channel Direct Sequence Spreading
- The Access Channel shall be spread by the long code as specified in 6.1.3.1.8.
- 3 6.1.3.2.9 Access Channel Quadrature Spreading
- 4 The Access Channel shall be quadrature spread by the pilot PN sequences as specified in
- 5 6.1.3.1.9.
- 6 6.1.3.2.10 Access Channel Baseband Filtering
- The Access Channel shall be filtered as specified in 6.1.3.1.10.
- 8 6.1.3.3 Reverse Traffic Channel
- The Reverse Traffic Channel is used for the transmission of user and signaling information
- to the base station during a call. The Reverse Traffic Channel contains one Reverse
- Fundamental Code Channel and may contain one to seven Reverse Supplemental Code
- 12 Channels.
- 6.1.3.3.1 Reverse Traffic Channel Time Alignment and Modulation Rates
- 14 The mobile station shall transmit information on the Reverse Fundamental Code Channel
- of the Reverse Traffic Channel at variable data rates of 9600, 4800, 2400, and 1200 bps for
- Rate Set 1. If information or preamble is being transmitted on one or more Reverse
- Supplemental Code Channels, the mobile station shall transmit only at 9600 bps on the
- 18 Reverse Fundamental Code Channel. When transmitting on Reverse Supplemental Code
- 19 Channels, the mobile station shall transmit information on Reverse Supplemental Code
- 20 Channel(s) at 9600 bps for Rate Set 1.
- 21 The mobile station may transmit information on the Fundamental Code Channel of the
- Reverse Traffic Channel at 14400, 7200, 3600, and 1800 bps for Rate Set 2. If information
- or preamble is being transmitted on one or more Reverse Supplemental Code Channels, the
- 24 mobile station shall transmit only at 14400 bps on the Reverse Fundamental Code
- Channel. When transmitting on Reverse Supplemental Code Channels, the mobile station
- shall transmit information on Reverse Supplemental Code Channel(s) at 14400 bps for Rate
- 27 Set 2.
- 28 The Reverse Traffic Channel frame shall be 20 ms in duration. When variable data rate
- 2 transmission on a Fundamental Code Channel is indicated, the data rate within a rate set
- shall be selected on a frame-by-frame (i.e., 20 ms) basis.
- The mobile station shall transmit Reverse Supplemental Code Channels within 3/8 of a PN
- chip (305.1758 ns) of the Reverse Fundamental Code Channel.
- A mobile station shall support Traffic Channel frames which are offset. The amount of time
- offset is specified by the FRAME_OFFSET parameter (see the Channel Assignment Message
- in 7.7.2.3.2.8, the Extended Channel Assignment Message in 7.7.2.3.2.19, the General
- 36 Handoff Direction Message in 7.7.3.3.2.31, and the Extended Handoff Direction Message in

- 7.7.3.3.2.17).6 A zero-offset Reverse Traffic Channel frame shall begin only when System
- 2 Time is an integral multiple of 20 ms (see Figure 1.2-1). An offset frame shall begin $1.25 \times$
- FRAME_OFFSET ms later than the zero-offset Traffic Channel frame. The mobile station
- shall transmit frames on Supplemental Code Channels in time alignment with the
- 5 Fundamental Code Channel (i.e., the same frame offset shall be applied to Supplemental
- 6 Code Channels). The interleaver block for the Reverse Code Channels shall be aligned with
- the Reverse Traffic Channel frame.
- 6.1.3.3.2 Reverse Traffic Channel Frame Structure
- 9 Table 6.1.3.3.2-1 summarizes the Reverse Traffic Channel bit allocations.
- Reverse Traffic Channel frames sent with Rate Set 1 at the 9600 bps transmission rate
- shall consist of 192 bits. These 192 bits shall be composed of 172 information bits followed
- by 12 frame quality indicator (CRC) bits and eight Encoder Tail Bits as shown in
- 13 Figure 6.1.3.3.2-1.
- Reverse Traffic Channel frames sent with Rate Set 1 at the 4800 bps transmission rate
- shall consist of 96 bits. These 96 bits shall be composed of 80 information bits followed by
- eight frame quality indicator (CRC) bits and eight Encoder Tail Bits as shown in
- Figure 6.1.3.3.2-1.
- 18 Reverse Traffic Channel frames sent with Rate Set 1 at the 2400 bps transmission rate
- shall consist of 48 bits. These 48 bits shall be composed of 40 information bits followed by
- 20 eight Encoder Tail Bits as shown in Figure 6.1.3.3.2-1.
- 21 Reverse Traffic Channel frames sent with Rate Set 1 at the 1200 bps transmission rate
- shall consist of 24 bits. These 24 bits shall be composed of 16 information bits followed by
- eight Encoder Tail Bits as shown in Figure 6.1.3.3.2-1.
- 24 Reverse Traffic Channel frames sent with Rate Set 2 at the 14400 bps transmission rate
- shall consist of 288 bits. These 288 bits shall be composed of one Erasure Indicator bit
- followed by 267 information bits, 12 frame quality indicator (CRC) bits, and eight Encoder
- Tail Bits as shown in Figure 6.1.3.3.2-2.
- 28 Reverse Traffic Channel frames sent with Rate Set 2 at the 7200 bps transmission rate
- shall consist of 144 bits. These 144 bits shall be composed of one Erasure Indicator bit
- of followed by 125 information bits, ten frame quality indicator (CRC) bits, and eight Encoder
- Tail Bits as shown in Figure 6.1.3.3.2-2.
- Reverse Traffic Channel frames sent with Rate Set 2 at the 3600 bps transmission rate
- shall consist of 72 bits. These 72 bits shall be composed of one Erasure Indicator bit

⁶ The Reverse Traffic Channel time offset is the same as the Forward Traffic Channel time offset.

⁷ The frame quality indicator supports two functions at the receiver. The first function is to determine whether the frame is in error. The second function is to assist in the determination of the data rate of the received frame. Other parameters may be needed for rate determination in addition to the frame quality indicator, such as symbol error rate evaluated at the four data rates of the rate set.

ANSI/TIA/EIA-95-B

- followed by 55 information bits, eight frame quality indicator (CRC) bits, and eight Encoder
- 2 Tail Bits as shown in Figure 6.1.3.3.2-2.
- Reverse Traffic Channel frames sent with Rate Set 2 at the 1800 bps transmission rate
- 4 shall consist of 36 bits. These 36 bits shall be composed of one Erasure Indicator bit
- followed by 21 information bits, six frame quality indicator (CRC) bits, and eight Encoder
- 6 Tail Bits as shown in Figure 6.1.3.3.2-2.
- 7 The fundamental data block supplied by the multiplex option shall be transmitted on the
- ⁸ Fundamental Code Channel, and a supplemental data block, if supplied by the multiplex
- option (see 6.1.3.3.13 and 6.1.3.3.14), shall be transmitted on a Supplemental Code
- 10 Channel.

11

12

Table 6.1.3.3.2-1. Reverse Traffic Channel Frame Structure Summary

		Number of Bits per Frame				
Rate Set	Transmission Rate (bps)	Total	Erasure Indicator	Information	Frame Quality Indicator	Encoder Tail
1	9600	192	0	172	12	8
	4800*	96	0	80	8	8
	2400*	48	0	40	. 0	8
	1200*	24	0	16	0	8
2	14400	288	1	267	12	8
	7200*	144	1	125	10	8
	3600*	72	1	55	8	8
	1800*	36	1	21	6	8

^{*} Applicable to Reverse Fundamental Code Channel only; not permitted on Reverse Supplemental Code Channels.

Notation

F - Frame Quality Indicator (CRC)

T - Encoder Tail Bits

Figure 6.1.3.3.2-1. Reverse Traffic Channel Frame Structure for Rate Set 1

Notation

R/E - Reserved/Erasure Indicator Bit

F - Frame Quality Indicator (CRC)

T - Encoder Tail Bits

Figure 6.1.3.3.2-2. Reverse Traffic Channel Frame Structure for Rate Set 2

- 6.1.3.3.2.1 Reverse Traffic Channel Frame Quality Indicator
- Each frame with Rate Set 2 and the 9600 and 4800 bps frames of Rate Set 1 shall include a
- frame quality indicator. This frame quality indicator is a CRC. No frame quality indicator
- 4 is used for the 2400 and 1200 bps transmission rates of Rate Set 1.
- 5 The frame quality indicator (CRC) shall be calculated on all bits within the frame, except
- the frame quality indicator itself and the Encoder Tail Bits. The 9600 bps transmissions
- with Rate Set 1 and the 14400 bps transmissions with Rate Set 2 shall use a 12-bit frame
- quality indicator. The 7200 bps transmissions with Rate Set 2 shall use a 10-bit frame
- 9 quality indicator.

15

16

17

18

19

20

21

22

23

24

26

28

30

33

34

- The 4800 bps transmissions with Rate Set 1 and the 3600 bps transmissions with Rate Set
- 2 shall use an 8-bit frame quality indicator. The 1800 bps transmissions with Rate Set 2
- shall use a 6-bit frame quality indicator.
- The generator polynomials for the frame quality indicator shall be as follows:

$$g(x) = x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^4 + x + 1$$
 for the 12-bit frame quality indicator,

$$g(x) = x^{10} + x^9 + x^8 + x^7 + x^6 + x^4 + x^3 + 1$$
 for the 10-bit frame quality indicator,

$$g(x) = x^8 + x^7 + x^4 + x^3 + x + 1$$
 for the 8-bit frame quality indicator, and

$$g(x) = x^6 + x^2 + x + 1$$
 for the 6-bit frame quality indicator.

The frame quality indicators shall be computed according to the following procedure using the logic shown in Figures 6.1.3.3.2.1-1 through 6.1.3.3.2.1-4:

- Initially, all shift register elements shall be set to logical one and the switches shall be set in the up position.
- The register shall be clocked a number of times equal to the number of Erasure Indicators and information bits in the frame with those bits as input. For Rate Set 1, where the frame quality indicator is used, the number of information bits per frame is 172 and 80 for the 9600 and 4800 bps transmission rates, respectively. For Rate Set 2, the number of Erasure Indicator and information bits per frame is 268, 126, 56, and 22 for the 14400, 7200, 3600, and 1800 bps transmission rates, respectively.
- The switches shall be set in the down position so that the output is a modulo-2 addition with a '0' and the successive shift register inputs are '0'.
- The register shall be clocked an additional number of times equal to the number of bits in the frame quality indicator (i.e., 12, 10, 8, or 6).
 - These additional bits shall be the frame quality indicator bits.
 - The bits shall be transmitted in the order calculated.

Figure 6.1.3.3.2.1-1. Reverse Traffic Channel Frame Quality Indicator Calculation for the 12-Bit Frame Quality Indicator

Figure 6.1.3.3.2.1-2. Reverse Traffic Channel Frame Quality Indicator Calculation for the 10-Bit Frame Quality Indicator

Figure 6.1.3.3.2.1-3. Reverse Traffic Channel Frame Quality Indicator Calculation for the 8-Bit Frame Quality Indicator

Figure 6.1.3.3.2.1-4. Reverse Traffic Channel Frame Quality Indicator Calculation for the 6-Bit Frame Quality Indicator

- 6.1.3.3.2.2 Reverse Traffic Channel Encoder Tail Bits
- The last eight bits of each Reverse Traffic Channel frame are called the Encoder Tail Bits.
- These eight bits shall be set to '0'.

- 6.1.3.3.2.3 Traffic Channel Preamble 8
- The Traffic Channel preamble shall consist of a frame of all zeros that is transmitted with a 9
- 100% transmission duty cycle. The Traffic Channel preamble shall not include the frame 10
- quality indicator. For Rate Set 1, the Traffic Channel preamble shall consist of 192 zeros 11
- that are transmitted at the 9600 bps rate. For Rate Set 2, the Traffic Channel preamble 12
- shall consist of 288 zeros that are transmitted at the 14400 bps rate. 13
- The Traffic Channel preamble is transmitted on the Reverse Fundamental Code Channel to 14
- aid the base station in performing acquisition of the Reverse Traffic Channel. 15
- 6.1.3.3.2.3.1 Reverse Supplemental Code Channel Preamble 16
- The mobile station shall transmit the Supplemental Code Channel preamble on each 17
- Reverse Supplemental Code Channel at the beginning of transmission on Reverse 18
- Supplemental Code Channels. 19
- The Supplemental Code Channel preamble shall consist of BEGIN_PREAMBLEs frames of 20
- all zeros that are transmitted with a 100% transmission duty cycle. 21
- BEGIN_PREAMBLE parameter may be set by the base station in an In-Traffic System 22
- Parameters Message, the General Handoff Direction Message, or the Supplemental Channel 23
- Assignment Message. The Supplemental Code Channel preamble shall not include the 24
- frame quality indicator. For Rate Set 1, each frame of the Reverse Supplemental Code 25
- Channel preamble shall consist of 192 zeros that are transmitted at the 9600 bps rate. For 26
- Rate Set 2, each frame of the Reverse Supplemental Code Channel preamble shall consist 27
- of 288 zeros that are transmitted at the 14400 bps rate. 28

ANSI/TIA/EIA-95-B

- 6.1.3.3.2.3.2 Reverse Supplemental Code Channel Discontinuous Transmission Preamble
- 2 If the currently connected service option permits discontinuous Reverse Supplemental Code
- 3 Channel transmission, then the mobile station may resume transmission following a break
- 4 in Reverse Supplemental Code Channel transmission. When transmission on a Reverse
- 5 Supplemental Code Channel is resumed, the mobile station shall transmit the
- 6 Discontinuous Transmission preamble. The Supplemental Code Channel Discontinuous
- 7 Transmission preamble shall not be transmitted by the mobile station at the beginning of
- transmission on Reverse Supplemental Code Channels following a Reverse Supplemental
- 9 Code Channel assignment (see 6.1.3.3.2.3.1).
- 10 The Supplemental Code Channel Discontinuous Transmission preamble shall consist of
- 11 RESUME_PREAMBLE_s frames of all zeros that are transmitted with a 100% transmission
- duty cycle. The RESUME_PREAMBLE_s parameter may be set by the base station in an In-
- 13 Traffic System Parameters Message, General Handoff Direction Message, or Supplemental
- 14 Channel Assignment Message. The Supplemental Code Channel Discontinuous
- 15 Transmission preamble shall not include the frame quality indicator. For Rate Set 1, each
- frame of the Reverse Supplemental Code Channel preamble shall consist of 192 zeros that
- are transmitted at the 9600 bps rate. For Rate Set 2, each frame of the Reverse
- Supplemental Code Channel Discontinuous Transmission preamble shall consist of 288
- zeros that are transmitted at the 14400 bps rate.
- 20 6.1.3.3.2.4 Reserved
- 21 6.1.3.3.3 Reverse Traffic Channel Convolutional Encoding
- 22 The Fundamental and Supplemental Code Channels of the Reverse Traffic Channel data
- shall be convolutionally encoded as specified in 6.1.3.1.3.
- 24 When generating Reverse Traffic Channel data, the encoder shall be initialized (see
- 6.1.3.1.3) at the end of each 20 ms frame.
- 26.1.3.3.4 Reverse Traffic Channel Code Symbol Repetition
- ²⁷ Fundamental Code Channel code symbol repetition shall be as specified in 6.1.3.1.4.
- 28 6.1.3.3.5 Reverse Traffic Channel Interleaving
- 2 The code symbols on the Fundamental and Supplemental Code Channels of the Reverse
- mathemathcharper Traffic Channel shall be interleaved as specified in 6.1.3.1.5.
- 6.1.3.3.6 Reverse Traffic Channel Modulation
- 22 The Fundamental and Supplemental Code Channels of the Reverse Traffic Channel data
- shall be modulated as specified in 6.1.3.1.6.
- 34 6.1.3.3.7 Reverse Traffic Channel Gating
- 35 The mobile station shall perform the data burst randomizing function as specified in
- 6.1.3.1.7 while transmitting on the Reverse Fundamental Code Channel.

- 6.1.3.3.8 Reverse Traffic Channel Direct Sequence Spreading
- 2 The Fundamental and Supplemental Code Channels of the Reverse Traffic Channel shall be
- spread by the long code as specified in 6.1.3.1.8.
- 4 6.1.3.3.9 Reverse Traffic Channel Quadrature Spreading
- 5 The Fundamental and Supplemental Code Channels of the Reverse Traffic Channel shall be
- 6 quadrature spread by the pilot PN sequences as specified in 6.1.3.1.9.
- 6.1.3.3.10 Reverse Traffic Channel Baseband Filtering
- 8 The Reverse Traffic Channel shall be filtered as specified in 6.1.3.1.10.
- 9 6.1.3.3.11 Multiplex Option 1 Information
- Multiplex Option 1 applies to Rate Set 1. It provides for the transmission of primary traffic
- and either signaling or secondary traffic. Signaling traffic may be transmitted via blank-
- and-burst with the signaling traffic using all of the frame or via dim-and-burst with the
- primary traffic and signaling traffic sharing the frame. Multiplex Option 1 also supports
- the transmission of secondary traffic. When primary traffic is available, secondary traffic is
- transmitted via dim-and-burst with the primary traffic and secondary traffic sharing the
- frame. When primary traffic is not available, secondary traffic is transmitted via blank-
- and-burst with the secondary traffic using all of the frame. The information bit structures
- for primary and signaling traffic are specified in 6.1.3.3.11.1; the information bit structures
- for secondary traffic are specified in 6.1.3.3.11.2. Table 6.1.3.3.11-1 shows the information
- bit structures supported by Multiplex Option 1.
- 21 The mobile station shall support Multiplex Option 1. The mobile station shall support the
- 22 transmission of primary traffic and signaling traffic using the information bit structures
- specified in 6.1.3.3.11.1. The mobile station may support secondary traffic, and if so, the
- mobile station shall also use the information bit structures specified in 6.1.3.3.11.2.

Table 6.1.3.3.11-1. Reverse Traffic Channel Information Bits for Multiplex Option 1

•		Format Bits						
Transmit Rate (bits/sec)		Mixed Traffic Mode Type (MM) (TT)		Traffic Mode (TM)	Primary Traffic (bits/frame)	Signaling Traffic (bits/frame)	Secondary Traffic (bits/frame)	
		,0,	-	-	171	0	0	
		'1'	,0,	,00,	80	88	. 0	
		'1'	,0,	'01'	40	128	0	
		'1'	,0,	··'10'	16	152	0	
9600		'1'	,0,	'11'	0	168	0	
	*['1'	'1'	,00,	80	0	88	
. :	*['1'	'1'	'01'	40	. 0	128	
,	*['1'	'1'	'10'	16	0 .	152	
,	*['1'	'1'	'11'	0	0	168	
4800			-		80	0	0	
2400		-		_	40	0	0	
1200	\int		_	_	16	. 0	0	

Note: Mobile station support of the secondary traffic structures, marked with *, is optional.

^{6.1.3.3.11.1} Primary and Signaling Traffic with Multiplex Option 1

⁴ The mobile station shall support the information bit structures described in

⁵ Table 6.1.3.3.11-1 and Figure 6.1.3.3.11.1-1.

Figure 6.1.3.3.11.1-1. Information Bits for Primary Traffic and Signaling Traffic for Multiplex Option 1 (Part 1 of 2)

Figure 6.1.3.3.11.1-1. Information Bits for Primary Traffic and Signaling

Traffic for Multiplex Option 1 (Part 2 of 2)

- 6.1.3.3.11.2 Secondary Traffic with Multiplex Option 1
- 2 If the mobile station supports secondary traffic, the mobile station shall use the information
- bit structures described in Table 6.1.3.3.11-1 and Figure 6.1.3.3.11.2-1.

Notation

MM - Mixed Mode Bit TT - Traffic Type Bit TM - Traffic Mode Bits

Figure 6.1.3.3.11.2-1. Information Bits for Secondary Traffic for Multiplex Option 1

- 6.1.3.3.11.3 Use of Various Information Bit Formats for Multiplex Option 1
- When neither primary traffic nor secondary traffic is available, the mobile station shall
- 3 transmit signaling traffic using only blank-and-burst frames. When not transmitting
- 4 signaling traffic, the mobile station shall transmit only null Traffic Channel data (see
- 5 6.1.3.3.11.5).
- 6 When primary traffic is available and secondary traffic is not available, the mobile station
- shall use the information formats specified in 6.1.3.3.11.1. The mobile station should use
- the dim-and-burst information formats specified in 6.1.3.3.11.1 for signaling traffic.
- 9 When primary traffic is not available and secondary traffic is available, the mobile station
- shall use the information formats specified in 6.1.3.3.11.2 to transmit secondary traffic.
- The mobile station shall use the blank-and-burst format specified in 6.1.3.3.11.1 for
- signaling traffic. The mobile station shall transmit null Traffic Channel data when neither
- secondary traffic nor signaling traffic is available.
- 14 When both primary traffic and secondary traffic are available, the mobile station shall use
- the information formats specified in 6.1.3.3.11.1 and 6.1.3.3.11.2. The mobile station shall
- not transmit null Traffic Channel data. The mobile station should use the dim-and-burst
- information formats specified in 6.1.3.3.11.1 for signaling traffic.
- 6.1.3.3.11.4 Control of Service Options for Multiplex Option 1
- Multiplex Option 1 controls the number of bits that the service option supplies for a frame.
- 20 The mobile station shall use the following rules when primary traffic is available: If
- 21 signaling traffic is to be transmitted in a frame, Multiplex Option 1 shall either restrict
- 22 primary traffic to zero bits (for a blank-and-burst frame) or to less than 171 bits (for a dim-
- and-burst frame). If secondary traffic is to be transmitted in a frame, Multiplex Option 1
- 24 may restrict primary traffic to less than 171 bits but shall allow primary traffic at least 16
- bits for the frame. In all other cases, Multiplex Option 1 shall allow primary traffic at either
- 26 16, 40, 80, or 171 bits for a frame.
- 27 6.1.3.3.11.5 Null Traffic Channel Data
- 28 Null Traffic Channel data shall consist of primary traffic only frames, sent at the lowest
- megotiated transmission rate, with all primary traffic bits set equal to '1'.
- 30 The mobile station transmits null Traffic Channel data when there is no primary, no
- secondary, and no signaling traffic available. Null Traffic Channel data serves as a "keep-
- ²² alive" operation so that the base station can maintain connectivity with the mobile station.
- 33 6.1.3.3.12 Multiplex Option 2 Information
- Multiplex Option 2 applies to Rate Set 2. It provides for the transmission of primary traffic.
- secondary traffic, and signaling traffic. Signaling traffic may be transmitted via blank-and-
- burst with the signaling traffic using all of the frame, via dim-and-burst with the primary
- so traffic and signaling traffic sharing the frame, or via dim-and-burst with the primary traffic,
- secondary traffic, and signaling traffic sharing the same frame. When primary traffic is
- 39 available, secondary traffic is transmitted via dim-and-burst with the primary traffic.

- secondary traffic, and possibly signaling traffic sharing the frame. When primary traffic is
- 2 not available, secondary traffic is transmitted via blank-and-burst with the secondary
- traffic using all of the frame. The information bit structures for primary and signaling
- traffic are specified in 6.1.3.3.12.1; the information bit structures for secondary traffic are
- s specified in 6.1.3.3.12.2. Table 6.1.3.3.12-1 shows the information bit structures
- supported by Multiplex Option 2.
- 7 The mobile station may support Multiplex Option 2. If the mobile station supports
- 8 Multiplex Option 2 it shall support the transmission of primary traffic and signaling traffic
- using the information bit structures specified in 6.1.3.3.12.1. The mobile station may
- support secondary traffic; and, if so, the mobile station shall also use the information bit
- structures specified in 6.1.3.3.12.2.

Table 6.1.3.3.12-1. Reverse Traffic Channel Information Bits for Multiplex Option 2

	Format Bits					
Transmit Rate (bits/sec)	Mixed Frame Mode Mode (MM) (FM)		Primary Traffic (bits/frame)	Signaling Traffic (bits/frame)	Secondary Traffic (bits/frame)	
	,0,	_	266	0	0	
	'1'	,0000,	124	138	0	
	'1'	'0001'	54	208	0	
	'1'	,0010,	20	242	.0	
14400	'1'	'0011'	0	262	0	
*	'1'	'0100'	. 124	0	138	
*	'1'	'0101'	54	0	208	
*	'1'	'0110'	20	0	242	
. *	'1'	'0111'	0	0	262	
*	'1'	'1000'	20	222	20	
	,0,	_	124	0	. 0	
	'1'	,000,	54	67	0	
	'1'	'001'	20	101	0	
7200	'1'	'010'	0	121	0	
*	'1'	'011'.	54	0	67.	
*	'1'	'100'	20	. 0	101	
*	· '1'	'101'	0	0	121	
*	'1'	'110'	20	81	20	
	,0,	<u> </u>	54	0	0	
	.1,	,00,	20	32 .	0	
3600	'1'	'01'	0 .	52	0	
*	'1'	'10'	20	0	32	
*	'1'	'11'	0	0	52	
1800	,0,	_	20	0	0	
*	'1'		0	0	20	

Note: Mobile station support of the secondary traffic structures, marked with *, is optional.

- 6.1.3.3.12.1 Primary and Signaling Traffic with Multiplex Option 2
- If the mobile station supports Multiplex Option 2, the mobile station shall use the
- information bit structures described in Table 6.1.3.3.12-1 and Figure 6.1.3.3.12.1-1.
- 4 6.1.3.3.12.2 Secondary Traffic with Multiplex Option 2
- If the mobile station supports Multiplex Option 2 and secondary traffic, the mobile station
- shall use the information bit structures described in Table 6.1.3.3.12-1 and
- 7 Figure 6.1.3.3.12.2-1.

Figure 6.1.3.3.12.1-1. Information Bits for Primary Traffic and Signaling Traffic for Multiplex Option 2 (Part 1 of 2)

Figure 6.1.3.3.12.1-1. Information Bits for Primary Traffic and Signaling Traffic for Multiplex Option 2 (Part 2 of 2)

Figure 6.1.3.3.12.2-1. Information Bits for Secondary Traffic for Multiplex Option 2 (Part 1 of 2)

Figure 6.1.3.3.12.2-1. Information Bits for Secondary Traffic for Multiplex Option 2 (Part 2 of 2)

- 6.1.3.3.12.3 Use of Various Information Bit Formats for Multiplex Option 2
- 2 When neither primary traffic nor secondary traffic is available, the mobile station shall
- stransmit signaling traffic using only blank-and-burst frames. When not transmitting
- signaling traffic, the mobile station shall transmit only null Traffic Channel data (see
- s 6.1.3.3.12.5).
- 6 When primary traffic is available and secondary traffic is not available, the mobile station
- shall use the information formats specified in 6.1.3.3.12.1. The mobile station should use
- the dim-and-burst information formats specified in 6.1.3.3.12.1 for signaling traffic.
- 9 When primary traffic is not available and secondary traffic is available, the mobile station
- shall use the information formats specified in 6.1.3.3.12.2 to transmit secondary traffic.
- The mobile station shall use the blank-and-burst formats specified in 6.1.3.3.12.1 for
- signaling traffic. The mobile station shall transmit null Traffic Channel data when neither
- secondary traffic nor signaling traffic is available.
- When both primary traffic and secondary traffic are available, the mobile station shall use
- the information formats specified in 6.1.3.3.12.1 and 6.1.3.3.12.2. The mobile station shall
- not transmit null Traffic Channel data. The mobile station should use the dim-and-burst
- information formats specified in 6.1.3.3.12.2 for signaling traffic.
- 6.1.3.3.12.4 Control of Service Options for Multiplex Option 2
- Multiplex Option 2 controls the number of bits that the service option supplies for a frame.
- 20 The mobile station shall use the following rules when primary traffic is available: If
- 21 signaling traffic is to be transmitted in a frame, Multiplex Option 2 shall either restrict
- 22 primary traffic to zero bits (for a blank-and-burst frame) or to less than 266 bits (for a dim-
- and-burst frame). If secondary traffic is to be transmitted in a frame, Multiplex Option 2
- 24 may restrict primary traffic to less than 266 bits but shall allow primary traffic at least 20
- bits for the frame. In all other cases, Multiplex Option 2 shall allow primary traffic either
- 20, 54, 124, or 266 bits for a frame.
- 27 6.1.3.3.12.5 Null Traffic Channel Data
- Null Traffic Channel data shall consist of frames containing primary traffic only, sent at the
- 29 lowest negotiated transmission rate, with all primary traffic bits set equal to '1'.
- The mobile station transmits null Traffic Channel data when there is no primary, no
- secondary, and no signaling traffic available. Null Traffic Channel data serves as a "keep-
- alive" operation so that the base station can maintain connectivity with the mobile station.
- ₃₃ 6.1.3.3.13 Multiplex Options 3, 5, 7, 9, 11, 13, and 15 Information
- Multiplex Options 3, 5, 7, 9, 11, 13, and 15 apply to Rate Set 1. Multiplex Options 2n + 1,
- n = 1 to 7, provide one fundamental data block and up to n supplemental data blocks to
- the Reverse Traffic Channel per 20 ms, as shown in Table 6.1.3.3.13-1.

Table 6.1.3.3.13-1. Number of Data Blocks Provided by Multiplex Options 3, 5, 7, 9, 11, 13, and 15

3

11

12

13

14

15

17

18

20

21

22

24

Multiplex Option	Number of Fundamental Data Blocks	Maximum Number of Supplemental Data Blocks		
3	1	1		
5	1	2		
7	1	3		
9	1	4		
11	1	5		
13	. 1	6		
15	1	7		

The number of data blocks provided shall not exceed the number allowed for the multiplex option.

Multiplex Options 3, 5, 7, 9, 11, 13, and 15 provide for the transmission of primary traffic, secondary traffic, and signaling traffic. The mobile station shall transmit signaling traffic, when available, only in the fundamental data block via the blank-and-burst format with the signaling traffic using all of the fundamental data block or via the dim-and-burst format

with primary traffic and signaling traffic sharing the fundamental data block.

Primary traffic and secondary traffic may be transmitted in the fundamental data block or in supplemental data blocks. When primary traffic is available, secondary traffic may be transmitted in the fundamental data block via the dim-and-burst format with the primary traffic and secondary traffic sharing the fundamental data block. When primary traffic is not available, secondary traffic may be transmitted in the fundamental data block via the blank-and-burst format with the secondary traffic using all of the fundamental data block. When primary traffic is transmitted in a supplemental data block, the mobile station shall use the information bit structures specified in 6.1.3.3.13.1 for 9600 bps with primary traffic only. When secondary traffic is transmitted in a supplemental data block, the blank-and-burst format shall be used with the secondary traffic using all of the supplemental data block. Primary and secondary traffic shall not share a supplemental data block. When at least one supplemental data block is transmitted, the mobile station shall use the information bit structures specified in Figure 6.1.3.3.13.1-1 with 9600 bps for the fundamental data block.

The information bit structures for primary and signaling traffic for Multiplex Options 3, 5, 7, 9, 11, 13, and 15 are specified in 6.1.3.3.13.1. The information bit structures for secondary traffic are specified in 6.1.3.3.13.2. Table 6.1.3.3.13-2 shows the information bit structures supported by Multiplex Options 3, 5, 7, 9, 11, 13, and 15.

The mobile station may support Multiplex Options 3, 5, 7, 9, 11, 13, and 15. If the mobile station supports Multiplex Option 3, 5, 7, 9, 11, 13, or 15, the mobile station shall support the transmission of primary traffic and signaling traffic using the information bit structures

ANSI/TIA/EIA-95-B

4

5

specified in 6.1.3.3.13.1. The mobile station may support secondary traffic; and if so, the mobile station shall also use the information bit structures specified in 6.1.3.3.13.2.

Table 6.1.3.3.13-2. Reverse Traffic Channel Information Bits for Multiplex Options 3, 5, 7, 9, 11, 13, and 15

	Format Bits					·	
Transmit Rate (bits/sec)	Mixed Mode (MM)	Traffic Type (TT)	Traffic Mode (TM)	Primary Traffic (bits/ block)	Signaling Traffic (bits/ block)	Secondary Traffic (bits/block)	Permitted in Supplemental Data Blocks
	,0,	-	-	171	0	0	Y
	'1'	,0,	,00,	80	88	0	N
	'1'	,0,	'01'	40	128	0	N
	'1'	,0,	'10'	16	152	0	N .
9600	'1'	,0,	'11'	0	168	0	N
*	'1'	'1'	,00,	80	0	88	· N
*	'1'	'1'	'01'	40	. 0	128	N
*	'1'	'1'	'10'	16	0	152	N
· *	'1'	'1'	'11'	0	0	168	Y
4800	-	-		80	0	. 0	N
2400	-	_	-	40	0	0	N
1200	_		-	16	0 .	0	N

Note: Mobile station support of the secondary traffic structures, marked with *, is optional.

6.1.3.3.13.1-1.

6

^{6.1.3.3.13.1} Primary and Signaling Traffic with Multiplex Options 3, 5, 7, 9, 11, 13, and 15

If the mobile station supports Multiplex Option 3, 5, 7, 9, 11, 13, or 15, the mobile station

shall support the information bit structures described in Table 6.1.3.3.13-2 and Figure

^{*}Applicable to the fundamental data block only; not permitted in the supplemental data blocks.

Figure 6.1.3.3.13.1-1. Information Bits for Primary Traffic and Signaling Traffic for Multiplex Options 3, 5, 7, 9, 11, 13, and 15 (Part 1 of 2)

Note: All formats are applicable to the fundamental data block; supplemental data blocks support only the "9600 bps Primary Traffic Only" format.

Figure 6.1.3.3.13.1-1. Information Bits for Primary Traffic and Signaling Traffic for Multiplex Options 3, 5, 7, 9, 11, 13, and 15 (Part 2 of 2)

- 6.1.3.3.13.2 Secondary Traffic with Multiplex Options 3, 5, 7, 9, 11, 13, and 15
- If the mobile station supports Multiplex Option 3, 5, 7, 9, 11, 13, or 15, and the mobile
- station supports secondary traffic, the mobile station shall use the information bit
- structures described in Table 6.1.3.3.13-2 and Figure 6.1.3.3.13.2-1.

^{*}Applicable to the fundamental data blocks only; not permitted in supplemental data blocks.

Figure 6.1.3.3.13.2-1. Information Bits for Secondary Traffic for Multiplex Options 3, 5, 7, 9, 11, 13, and 15

- 6.1.3.3.13.3 Use of Various Information Bit Formats for Multiplex Options 3, 5, 7, 9, 11,
- 2 13, and 15
- When neither primary traffic nor secondary traffic is available, the mobile station shall not
- 4 transmit the supplemental data blocks. If signaling traffic is available, it shall be
- 5 transmitted in the fundamental data block using only the blank-and-burst format. When
- 6 not transmitting signaling traffic, the mobile station shall transmit null Traffic Channel
- 7 data in the fundamental data block (see 6.1.3.3.13.5).
- 8 When primary traffic is available and secondary traffic is not available, the mobile station
- may transmit the fundamental data block, the supplemental data blocks, or both. For the
- fundamental data block, the mobile station shall use the information formats specified in
- 6.1.3.3.13.1. If signaling traffic is also available, the mobile station should use the dim-
- and-burst information formats specified in 6.1.3.3.13.1 for signaling traffic in the
- 13 fundamental data block. When transmitting primary traffic in the supplemental data
- blocks, the mobile station shall use the information bit structures specified in 6.1.3.3.13.1
- for 9600 bps with primary traffic only.
- When primary traffic is not available and secondary traffic is available, the mobile station
- may transmit the fundamental data block, the supplemental data blocks, or both. For the
- fundamental data block, the mobile station shall use the information formats specified in
- 6.1.3.3.13.2 to transmit secondary traffic. If signaling traffic is also available, the mobile
- station shall use the blank-and-burst format specified in 6.1.3.3.13.1 for signaling traffic in
- the fundamental data block. When transmitting secondary traffic in the supplemental data
- blocks, the mobile station shall use the information bit structures specified in 6.1.3.3.13.2
- with secondary traffic only.
- 24 When both primary traffic and secondary traffic are available, the mobile station may
- transmit the primary traffic in the fundamental data block, the supplemental data blocks.
- or both. The mobile station may transmit the secondary traffic in the fundamental data
- block sharing the block with the primary traffic, in the supplemental data blocks, or both.
- 28 The mobile station shall use the information formats specified in 6.1.3.3.13.1 and
- 26.1.3.3.13.2 for the fundamental data block and supplemental data blocks. The mobile
- station shall not transmit null Traffic Channel data on the Reverse Traffic Channel. When
- signaling traffic is also available, the mobile station should use the dim-and-burst
- 2 information formats specified in 6.1.3.3.13.1 for signaling traffic in the fundamental data
- з block.
- 6.1.3.3.13.4 Control of Service Options for Multiplex Options 3, 5, 7, 9, 11, 13, and 15
- Multiplex Options 3, 5, 7, 9, 11, 13, and 15 control the number of bits that the service
- options supply to the Reverse Traffic Channel for a 20 ms frame and the number of
- supplemental data blocks allowed in each 20 ms time interval.
- 38 The mobile station shall use the following rules on the fundamental data block when
- many traffic is available: If signaling traffic is to be transmitted in a frame, the multiplex
- option shall either restrict primary traffic to zero bits (for a blank-and-burst block) or to
- fewer than 171 bits (for a dim-and-burst block) in the fundamental data block. If
- secondary traffic is to be transmitted in a frame, the multiplex option may restrict primary

- traffic to fewer than 171 bits, but shall allow primary traffic at least 16 bits in the
- 2 fundamental data block. In all other cases, the multiplex option shall allow primary traffic
- either 16, 40, 80, or 171 bits for the fundamental data block.
- The mobile station may transmit 171 bits of primary traffic or 168 bits of secondary traffic
- 5 in a supplemental data block.
- 6 6.1.3.3.13.5 Null Traffic Channel Data
- 7 Null Traffic Channel data shall consist of frames with only fundamental data block which
- 8 contains primary traffic only, sent at the lowest negotiated transmission rate, with all
- 9 primary traffic bits set equal to '1'.
- The mobile station transmits null Traffic Channel data on the Reverse Traffic Channel when
- there is no primary, no secondary, and no signaling traffic available. Null Traffic Channel
- data serves as a "keep-alive" operation so that the base station can maintain connectivity
- with the mobile station.
- 6.1.3.3.14 Multiplex Options 4, 6, 8, 10, 12, 14, and 16 Information
- Multiplex Options 4, 6, 8, 10, 12, 14, and 16 apply to Rate Set 2. Multiplex Options 2n, n =
- 2 to 8, provide one fundamental data block and up to n 1 supplemental data blocks to the
- 17 Reverse Traffic Channel per 20 ms, as shown in Table 6.1.3.3.14-1.

20

Table 6.1.3.3.14-1. Number of Data Blocks Provided by Multiplex Options 4, 6, 8, 10, 12, 14, and 16

Multiplex Option	Number of Fundamental Data Blocks	Maximum Number of Supplemental Data Blocks
4	1	1
6	1	2
8	1	3
10	1	4
12	1	5
14	1	6
. 16	1	. 7

- The number of data blocks provided shall not exceed the number allowed for the multiplex option.
- Multiplex Options 4, 6, 8, 10, 12, 14, and 16 provide for the transmission of primary traffic, secondary traffic, and signaling traffic.
- 25 The mobile station shall transmit signaling traffic, when available, only in the fundamental
- data block via the blank-and-burst format with the signaling traffic using all of the
- 28 fundamental data block, via the dim-and-burst format with the primary traffic and

- signaling traffic sharing the fundamental data block, or via the dim-and-burst format with
- the primary traffic, secondary traffic, and signaling traffic sharing the same fundamental
- 3 data block.
- 4 Primary traffic and secondary traffic may be transmitted in the fundamental data block or
- in supplemental data blocks. When primary traffic is available, secondary traffic may be
- 6 transmitted in the fundamental data block via the dim-and-burst format with the primary
- traffic and secondary traffic sharing the fundamental data block. When primary traffic is
- not available, secondary traffic may be transmitted in the fundamental data block via the
- blank-and-burst format with the secondary traffic using all of the fundamental data block.
- When primary traffic is transmitted in a supplemental data block, the mobile station shall
- use the information bit structures specified in 6.1.3.3.14.1 for 14400 bps with primary
- traffic only. When secondary traffic is transmitted in a supplemental data block, the blank-
- and-burst format shall be used with the secondary traffic using all of the supplemental
- data block. Primary and secondary traffic shall not share a supplemental data block.
- When at least one supplemental data block is transmitted, the mobile station shall use the
- information bit structures specified in Figure 6.1.3.3.14.1-1 with 14400 bps for the
- 17 fundamental data block.
- The information bit structures for primary and signaling traffic for Multiplex Options 4, 6,
- 8, 10, 12, 14, and 16 are specified in 6.1.3.3.14.1. The information bit structures for
- secondary traffic are specified in 6.1.3.3.14.2. Table 6.1.3.3.14-2 shows the information bit
- 21 structures supported by Multiplex Options 4, 6, 8, 10, 12, 14, and 16.
- 22 The mobile station may support Multiplex Options 4, 6, 8, 10, 12, 14, and 16. If the mobile
 - station supports Multiplex Option 4, 6, 8, 10, 12, 14, or 16, the mobile station shall
- support the transmission of primary traffic and signaling traffic using the information bit
- structures specified in 6.1.3.3.14.1. The mobile station may support secondary traffic; and
 - if so, the mobile station shall also use the information bit structures specified in
- 27 6.1.3.3.14.2.

23

Table 6.1.3.3.14-2. Reverse Traffic Channel Information Bits for Multiplex Options 4, 6, 8, 10, 12, 14, and 16

·	Forma	t Bits				
Transmit Rate (bits/sec)	Mixed Mode (MM)	Frame Mode (FM)	Primary Traffic (bits/block)	Signaling Traffic (bits/ block)	Secondary Traffic (bits/ block)	Permitted on Supplementa Data Blocks
	, 0,	-	266	0	0	Y
	'1'	,0000,	124	138	Ö	N
	'1'	'0001'	54	208	0	Ņ
·	'1'	'0010'	20	242	. 0	N
14400	'1'	'0011'	0	262	0	N
*	'1'	'0100'	124	0	138	N
. *	'1'	'0101'	54	0	208	N
*	'1'	'0110'	20	0	242	N
*	' 1'	'0111'	0 .	0	262	Y
*	. '1'	,1000,	20	222	20	N
	,0,	_	124	0	0	N
	'1'	,000,	54	67	. 0	N
	'1'	'001'	20	101	0	N
7200	'1'	'010'	0	121	0	N
*	'1'	'011'	54	0	67	N
. *	'1'	'100'	20	0	101	N
*.	'1'	'101'	0	. 0	121	N
*	'1'	'110'	20	81	20	N
·	,0,		54	. 0	0	N
	'1'	,00,	20	32	0	N
3600	'1'	'01'	0	52	0	N
*	'1'	'10'	20	0	32	N
*	'1'	'11'	0	0	52	N
1800	'0'	τ,	20	0	0 .	N
*	'1'	-	0	0	20	N

6-77

- 6.1.3.3.14.1 Primary and Signaling Traffic with Multiplex Options 4, 6, 8, 10,
- 2 12, 14, and 16
- 3 If the mobile station supports Multiplex Option 4, 6, 8, 10, 12, 14, or 16, the mobile station
- shall use the information bit structures described in Table 6.1.3.3.14-2 and Figure
- 5 6.1.3.3.14.1-1.

^{*}Applicable to the fundamental data block only; not permitted in the supplemental data blocks.

Figure 6.1.3.3.14.1-1. Information Bits for Primary Traffic and Signaling Traffic for Multiplex Options 4, 6, 8, 10, 12, 14, and 16 (Part 1 of 2)

Note: All formats are applicable to the fundamental data block; supplemental data blocks support only the "14400 bps Primary Traffic Only" format.

Figure 6.1.3.3.14.1-1. Information Bits for Primary Traffic and Signaling Traffic for Multiplex Options 4, 6, 8, 10, 12, 14, and 16 (Part 2 of 2)

- 6.1.3.3.14.2 Secondary Traffic with Multiplex Options 4, 6, 8, 10, 12, 14, and 16
- If the mobile station supports Multiplex Option 2, 4, 6, 8, 10, 12, 14, or 16, and the mobile
- station supports secondary traffic, the mobile station shall use the information bit
- structures described in Table 6.1.3.3.14-2 and in Figure 6.1.3.3.14.2-1.

*Applicable to the fundamental data block only; not permitted in the supplemental data blocks.

Figure 6.1.3.3.14.2-1. Information Bits for Secondary Traffic for Multiplex Options 4, 6, 8, 10, 12, 14, and 16 (Part 1 of 2)

- Note: All formats are applicable to the fundamental data block; supplemental data blocks support only the "14400 bps Primary Traffic Only" and the "14400 bps blank-and-burst with secondary traffic
- 3 only" formats.
- Figure 6.1.3.3.14.2-1. Information Bits for Secondary Traffic for Multiplex Options 4, 6, 8, 10, 12, 14, and 16 (Part 2 of 2)

- 6.1.3.3.14.3 Use of Various Information Bit Formats for Multiplex Options 4, 6, 8, 10, 12,
- 2 14, and 16
- When neither primary traffic nor secondary traffic is available, the mobile station shall not
- transmit on the Reverse Supplemental Code Channels. If signaling traffic is available, it
- shall be transmitted on the Reverse Fundamental Code Channel using only blank-and-
- 6 burst frames. When not transmitting signaling traffic, the mobile station shall transmit
- 7 null Traffic Channel data on the Reverse Fundamental Code Channel (see 6.1.3.3.14.5).
- When only primary traffic is available, the mobile station shall transmit the primary traffic
- 9 in the fundamental data block or in the fundamental data block and in the supplemental
- data blocks. For the fundamental data block, the mobile station shall use the information
- formats specified in 6.1.3.3.14.1. If signaling traffic is also available, the mobile station
- $_{12}$ should use the dim-and-burst information formats specified in 6.1.3.3.14.1 for signaling
- traffic in the fundamental data block. When transmitting primary traffic in the
- supplemental data blocks, the mobile station shall use the "14400 bps primary traffic only"
- 15 format specified in 6.1.3.3.14.1.
- When only secondary traffic is available, the mobile station shall transmit the secondary 16 traffic in the fundamental data block or in the fundamental data block and in the 17 supplemental data blocks. For the Reverse Fundamental Code Channel, the mobile station 18 shall use the information formats specified in 6.1.3.3.14.1.2 to transmit secondary traffic. 19 If signaling traffic is also available, the mobile station shall use the blank-and-burst format 20 specified in 6.1.3.3.14.1 for signaling traffic in the fundamental data block. When 21 transmitting secondary traffic in the supplemental data blocks, the mobile station shall use 22 the "14400 bps blank-and-burst with secondary traffic format specified in 6.1.3.3.14.2. 23 When both primary traffic and secondary traffic are available and signaling traffic is not 24 available, the mobile station shall transmit in the fundamental data block or in the 25 fundamental data block and in the supplemental data blocks. The mobile station may 26 transmit the secondary traffic in the fundamental data block sharing the block with the 27 primary traffic, in the supplemental data blocks, or both. The mobile station shall use the information formats specified in 6.1.3.3.14.1 and 6.1.3.3.14.2 for the fundamental data 29 block and supplemental data blocks. The mobile station shall not transmit null Traffic 30 Channel data on the Reverse Traffic Channel. When signaling traffic is also available, the 31 mobile station should use the dim-and-burst information formats specified in 6.1.3.3.14.1 32 for signaling traffic in the fundamental data block. 33
- 6.1.3.3.14.4 Control of Service Options for Multiplex Options 4, 6, 8, 10, 12, 14, and 16
- Multiplex Options 4, 6, 8, 10, 12, 14, and 16 control the number of bits that the service
- options supply to the Reverse Traffic Channel for a 20 ms frame and the number of
- supplemental data blocks allowed in each 20 ms time interval.
- 38 The mobile station shall use the following rules on the fundamental data block when
- mary traffic is available: If signaling traffic is to be transmitted in a frame, the multiplex
- 40 option shall either restrict primary traffic to zero bits (for a blank-and-burst block) or to
- fewer than 266 bits (for a dim-and-burst block) in the fundamental data block. If
- 42 secondary traffic is to be transmitted in a frame, the multiplex option may restrict primary

- traffic to fewer than 266 bits, but shall allow primary traffic at least 20 bits in the
- fundamental data block. In all other cases, the multiplex option shall allow primary traffic
- either 20, 54, 124, or 266 bits for the fundamental data block.
- The mobile station may transmit 266 bits of primary traffic or 262 bits of secondary traffic
- 5 in a supplemental data block.
- 6 6.1.3.3.14.5 Null Traffic Channel Data
- 7 Null Traffic Channel data shall consist of frames with only fundamental data block which
- 8 contains primary traffic only, sent at the lowest negotiated transmission rate, with all
- 9 primary traffic bits set equal to '1'.
- The mobile station transmits null Traffic Channel data on the Reverse Traffic Channel when
- there is no primary, no secondary, and no signaling traffic available. Null Traffic Channel
- data serves as a "keep-alive" operation, so that the base station can maintain connectivity
- with the mobile station.
- 6.1.4 Limitations on Emissions
- 6.1.4.1 Conducted Spurious Emissions
- The mobile station shall meet the spurious emissions requirements at all transmit power
- 17 levels. The mobile station shall meet the spurious emission requirements with an
- inoperative antenna assembly.
- ₁₉ 6.1.4.1.1 Cellular Band

23

24

25

27

- ∞ When transmitting in the cellular band, the spurious emissions between 819 and 854 MHz
- shall be less than the limits specified in Table 6.1.4.1.1-1.8

Table 6.1.4.1.1-1. Band Class 0 Transmitter Spurious Emission Limits

For Δf Greater Than	Emission Limit
885 kHz	less stringent of -42 dBc / 30 kHz or -54 dBm / 1.23 MHz
1.98 MHz	less stringent of -54 dBc / 30 kHz or -54 dBm / 1.23 MHz
3.125 MHz	-13 dBm / 100 kHz

Note: All frequencies in the measurement bandwidth shall satisfy the restrictions on $|\Delta f|$ where Δf = center frequency - closer measurement edge frequency. The -13 dBm / 100 kHz emission limit is based on ITU Category A emission limits.

⁸ The spurious emission limits are required to be met up to 5 MHz outside of the allocation.

- In addition, spurious emissions in each 1.23 MHz band located anywhere in the mobile
- station receive band between 869 and 894 MHz shall be less than -80 dBm. These
- requirements shall apply to measurements made at the mobile station antenna connector.
- 4 Current FCC rules shall also apply.
- 5 6.1.4.1.2 PCS Band
- When transmitting in the PCS band, the spurious emissions between 1845 and 1915 MHz shall be less than the limits specified in Table 6.1.4.1.2-1.9

Table 6.1.4.1.2-1. Band Class 1 Transmitter Spurious Emission Limits

For ∆f Greater Than	Emission Limit	
1.25 MHz	less stringent of -42 dBc / 30 kHz or -54 dBm / 1.23 MHz	
1.98 MHz	less stringent of -50 dBc / 30 kHz or -54 dBm / 1.23 MHz	
2.25 MHz	-13 dBm / 1 MHz	

Note: All frequencies in the measurement bandwidth shall satisfy the restrictions on $|\Delta f|$ where Δf = center frequency - closer measurement edge frequency. The -13 dBm / 1 MHz emission limit is based on FCC rules which are more stringent than ITU Category A emission limits.

14 15

16

17

10

11

12

13

- In addition, spurious emissions in each 1.23 MHz band located anywhere in the mobile station receive band between 1930 and 1990 MHz shall be less than -80 dBm. These requirements shall apply to measurements made at the mobile station antenna connector.
- 6.1.4.2 Radiated Spurious Emissions
- Radiated spurious emissions (from sources other than the antenna connector) shall meet levels corresponding to the conducted spurious requirements listed in 6.1.4.1.
- 21 6.1.5 Synchronization and Timing
- 2 6.1.5.1 Time Reference
- Figure 1.2-1 illustrates the nominal relationship between the mobile station and base station transmit and receive time references. The mobile station shall establish a time reference which is utilized to derive timing for the transmit chip, symbol, frame slot, and system timing. Under steady state conditions, the mobile station time reference shall be within $\pm 1~\mu s$ of the time of occurrence of the earliest multipath component being used for demodulation as measured at the mobile station antenna connector. If another multipath

⁹ The spurious emission limits are required to be met up to 5 MHz outside of the allocation

- component (belonging to the same Pilot Channel or to a different Pilot Channel) becomes
- the earliest arriving multipath component to be used, the mobile station time reference
- shall track to the new component. If the difference between the mobile station time
- reference and the time of occurrence of the earliest arriving multipath component being
- used for demodulation, as measured at the mobile station antenna connector, is less than
- 6 ±1 μs, the mobile station may track its time reference to the earliest arriving multipath
- component being used for demodulation.
- 8 When receiving the Forward Traffic Channel, the mobile station time reference shall be
- 9 used as the transmit time of the Reverse Traffic Channel. If a mobile station time reference
- correction is needed, it shall be no faster than 1/4 chip (203.451 ns) in any 200 ms period
- and no slower than 3/8 PN chip (305.18 ns) per second.
- When receiving the Paging Channel, the mobile station time reference shall be used as the
- transmit time of the Access Channel. If a mobile station time reference correction is needed
- before transmitting an access probe, the mobile station shall correct the time reference
- before it transmits the access probe; there is no limitation on the speed of the correction. If
- a mobile station time reference correction is needed while transmitting an access probe, it
- shall be no faster than 1/4 chip (203.451 ns) in any 200 ms period and no slower than
- ¹⁸ 3/8 PN chip (305.18 ns) per second.
- 6.1.6 Transmitter Performance Requirements
- 20 System performance is predicated on transmitters meeting the requirements set forth in
- 21 TIA/EIA-98-B for mobile stations supporting Band Class 0 and ANSI J-STD-019 for mobile
- 2 stations supporting Band Class 1.

6.2 Receiver

- 6.2.1 Frequency Parameters
- 3 6.2.1.1 Channel Spacing and Designation
- 4 Channel spacing and designation for the mobile station reception shall be as specified in
- 6.1.1.1. Valid channels for CDMA operations shall be as specified in 6.1.1.1.
- 6 6.2.2 Demodulation Characteristics
- 7 6.2.2.1 Processing
- 8 The mobile station demodulation process shall perform complementary operations to the
- base station modulation process on the Forward CDMA Channel (see 7.1.3).
- The mobile station shall support Forward Multiplex Option 1. The mobile station may
- support Forward Multiplex Option 2.
- If a mobile station supports Forward Multiplex Option 2n-1, where n = 2, 3, 4, 5, 6, 7, or 8, 12
- then the mobile station shall also support Forward Multiplex Option(s) 2i-3, for i=2,3,...n.
- If a mobile station supports Forward Multiplex Option 2n, where n=2, 3, 4, 5, 6, 7, or 8,
- then the mobile station shall also support Forward Multiplex Option(s) 2i-2, for i=2, 3, ...n.
- 16 The mobile station shall support Rate Set 1 on the forward Traffic Channel. If a mobile
- station supports Forward Multiplex Option 2, the mobile station shall support Rate Set 2
- on the Forward Traffic Channel.
- When the mobile station receives a Rate Set 2 frame with the Reserved/Flag Bit in the
- 20 Forward Fundamental Code Channel set to '1' in frame i, the mobile station need not
- process the Forward Supplemental Code Channels in frame i + 2 (see 7.1.3.5.2.5).
- 22 Otherwise, the mobile station shall process the assigned Forward Supplemental Code
- 23 Channels.
- 24 The mobile station shall provide a minimum of four processing elements that can be
- a directed independently from each other. At least three elements shall be capable of
- tracking and demodulating multipath components of the Forward CDMA Channel. These
- 27 elements shall be capable of tracking and demodulating the Forward Fundamental Code
- 28 Channel and all of the Forward Supplemental Code Channels supported by the mobile
- 22 station. At least one element shall be a "searcher" element capable of scanning and
- estimating the signal strength at each pilot PN sequence offset.
- 31 When the mobile station begins monitoring its assigned slot of the Paging Channel, the
- mobile station should initialize the convolutional code decoder to minimize the message

- error rate of the first message which is received at the beginning of the mobile station's assigned Paging Channel slot. 10
 - 3 6.2.2.2 Forward Traffic Channel Frame Categorization
- 6.2.2.2.1 Forward Traffic Channel Frame Categorization for Multiplex Options 1, 3, 5, 7, 9,
- 5 11, 13, and 15

12

15

18

- 6 The mobile station shall classify received Forward Fundamental Code Channel frames (see
- 7.1.3.5.12 and 7.1.3.5.14) into the following 14 categories when Multiplex Option 1, 3, 5, 7,
- 8 9, 11, 13, or 15 is used:
 - 1. 9600 bps frame, primary traffic only or null Traffic Channel data only
- 2. 9600 bps frame, dim-and-burst with Rate 1/2 primary and signaling traffic
 - 3. 9600 bps frame, dim-and-burst with Rate 1/4 primary and signaling traffic
 - 4. 9600 bps frame, dim-and-burst with Rate 1/8 primary and signaling traffic
- 5. 9600 bps frame, blank-and-burst with signaling traffic only
 - 6. 4800 bps frame, primary traffic or null Traffic Channel data only
 - 7. 2400 bps frame, primary traffic or null Traffic Channel data only
- 8. 1200 bps frame, primary traffic or null Traffic Channel data only
- 9. 9600 bps frame, primary traffic only, with bit errors 11
 - 10. Frame with insufficient frame quality 12
 - 11. 9600 bps frame, dim-and-burst with Rate 1/2 primary and secondary traffic
 - 12. 9600 bps frame, dim-and-burst with Rate 1/4 primary and secondary traffic
- 21 13. 9600 bps frame, dim-and-burst with Rate 1/8 primary and secondary traffic
- 22 14. 9600 bps frame, blank-and-burst with secondary traffic only
- Frames in categories 9 and 10 are bad frames; all frames otherwise categorized are considered good frames.
- Mobile stations that do not implement secondary traffic services are not required to implement categories 11 through 14.

¹⁰ This allows the mobile station to take advantage of the four padding bits sent prior to the beginning of the slot (see 7.7.2.1.2). This can be achieved by assigning the greatest likelihood to 16 possible states and the least likelihood to the remaining states.

¹¹ Certain service options, which can be connected to the multiplex sublayer, can satisfactorily handle some bit errors. This category is used when the frame quality indicator (CRC) fails but other parameters indicate a 9600 bps frame has been received.

¹² This category is used when the mobile station is unable to decide on the data rate of the received frame or when the mobile station detects a frame in error which does not belong to category 9.

- The mobile station shall classify received Forward Supplemental Code Channel frames into
- the following 3 categories when Multiplex Option 1, 3, 5, 7, 9, 11, 13, or 15 is used:
- 9600 bps frame primary traffic only
- 2. 9600 bps frame secondary traffic only
- Frame with insufficient frame quality
- 6 Frames received and classified as category 3 frames are considered bad frames; all frames
- 7 otherwise categorized are considered good frames.
- Mobile stations that do not implement secondary traffic services are not required to
- 9 implement category 2.
- 6.2.2.2.2 Forward Traffic Channel Frame Categorization for Multiplex Options 2, 4, 6, 8,
- 11 10, 12, 14, and 16

21

- 12 The mobile station shall classify received Forward Fundamental Code Channel frames (see
- 7.1.3.5.13 and 7.1.3.5.15) into the following 26 categories when Multiplex Option 2, 4, 6, 8,
- 10, 12, 14, or 16 is used:
- 1. 14400 bps frame, primary traffic only or null Traffic Channel data only
- 2. 14400 bps frame, dim-and-burst with Rate 1/2 primary and signaling traffic
- 3. 14400 bps frame, dim-and-burst with Rate 1/4 primary and signaling traffic
- 4. 14400 bps frame, dim-and-burst with Rate 1/8 primary and signaling traffic
- 5. 14400 bps frame, blank-and-burst with signaling traffic only
- 6. 14400 bps frame, dim-and-burst with Rate 1/2 primary and secondary traffic
 - 7. 14400 bps frame, dim-and-burst with Rate 1/4 primary and secondary traffic
- 8. 14400 bps frame, dim-and-burst with Rate 1/8 primary and secondary traffic
- 9. 14400 bps frame, blank-and-burst with secondary traffic only
- 10. 14400 bps frame, dim-and-burst with Rate 1/8 primary, secondary traffic, and signaling traffic
- 25 11. 7200 bps frame, primary traffic only or null Traffic Channel data only
 - 12. 7200 bps frame, dim-and-burst with Rate 1/4 primary and signaling traffic
- 28 13. 7200 bps frame, dim-and-burst with Rate 1/8 primary and signaling traffic
- 29 14. 7200 bps frame, blank-and-burst with signaling traffic only
- 30 15. 7200 bps frame, dim-and-burst with Rate 1/4 primary and secondary traffic
- 16. 7200 bps frame, dim-and-burst with Rate 1/8 primary and secondary traffic
- 22 17. 7200 bps frame, blank-and-burst with secondary traffic only
- 18. 7200 bps frame, dim-and-burst with Rate 1/8 primary, secondary traffic, and signaling traffic

- 19. 3600 bps frame, primary traffic only or null Traffic Channel data only
- 20. 3600 bps frame, dim-and-burst with Rate 1/8 primary and signaling traffic
- 3 21. 3600 bps frame, blank-and-burst with signaling traffic only
- 22. 3600 bps frame, dim-and-burst with Rate 1/8 primary and secondary traffic
- 5 23. 3600 bps frame, blank-and-burst with secondary traffic only
- 24. 1800 bps frame, primary traffic only or null Traffic Channel data only
- 25. 1800 bps frame, blank-and-burst with secondary traffic only
- 8 26. Frame with insufficient frame quality¹³
- Frames in category 26 are bad frames; all frames otherwise categorized are considered good frames.
- Mobile stations that do not implement secondary traffic services are not required to implement categories 6 through 10, 15 through 18, 22, 23, and 25.
- The mobile station shall classify received Forward Supplemental Code Channel frames into the following 3 categories when Multiplex Option 2, 4, 6, 8, 10, 12, 14, or 16 is used:
 - 1. 14400 bps frame primary traffic only
 - 2. 14400 bps frame secondary traffic only
 - 3. Frame with insufficient frame quality
- Frames received and classified as category 3 frames are considered bad frames; all frames otherwise categorized are considered good frames.
- Mobile stations that do not implement secondary traffic services are not required to implement category 2.
- 2 6.2.2.3 Erasure Indicator Bit

16

17

27

29

30

31

32

- If Rate Set 2 is used on the Reverse Traffic Channel, then during continuous operation on the Fundamental Code Channel of the Forward and Reverse Traffic Channels the mobile station shall set the Reserved/Erasure Indicator Bit of the Reverse Fundamental Code Channel (see Figure 6.1.3.3.2-2) as follows:
 - The mobile station shall set the Reserved/Erasure Indicator Bit to '1' in the second transmitted frame following the reception of a bad frame on the Fundamental Code Channel of the Forward Traffic Channel as shown in Figure 6.2.2.3-1.
 - The mobile station shall set the Reserved/Erasure Indicator Bit to '0' in the second transmitted frame following the reception of a good frame on the Forward Fundamental Code Channel of the Forward Traffic Channel as shown in Figure 6.2.2.3-1.

¹³ This category is used when the mobile station is unable to decide on the data rate of the received frame or when errors are detected.

6

7

9

10

11

12

13

15

16

17

18

19

20 21 Channel (see Figure 6.1.3.3.2-2) as follows:

- When the mobile station temporarily suspends reception of the Fundamental Code Channel of the Forward Traffic Channel in order to tune to another frequency (such as during a PUF probe, a hard handoff with return on failure, or a Candidate Frequency search), the mobile station shall set the Reserved/Erasure Indicator Bit of the Reverse Fundamental Code
 - In the first two frames after the mobile station re-enables its transmitter, the mobile station shall send Reserved/Erasure Indicator Bits corresponding to the two most recently received frames. One or both of these Reserved/Erasure Indicator Bits could be for frames that were received before the mobile station tuned to the other frequency, and were stored by the mobile station before the visit.
 - After transmitting the first two frames, if the number of frames missed on the Reverse Traffic Channel (due to the mobile station's visit away from the Serving Frequency) is less than that on the Forward Traffic Channel, the mobile station shall set the Reserved/Erasure Indicator Bit to '0', until it receives two frames on the Forward Traffic Channel.
 - The mobile station shall then set subsequent Reserved/Erasure Indicator Bits as described above for continuous operation.

If Rate Set 2 is used on the Reverse Traffic Channel, the mobile station shall set the Reserved/Erasure Indicator Bit of the Reverse Supplemental Code Channel (see Figure 6.1.3.3.2-2) to '0'.

Figure 6.2.2.3-1. Erasure Indicator Bit Timing

24

- 6.2.2.4 Forward Traffic Channel Time Alignment
- The Forward Traffic Channel frame time alignment is specified in 7.1.3.5.1. A mobile
- 3 station shall support offset Forward Traffic Channel frames.
- 4 6.2.3 Limitations on Emissions
- 5 When operating in Band Class 0, the mobile station shall meet the requirements in Section
- 9.5.1 of TIA/EIA-98-B. When operating in Band Class 1, the mobile station shall meet the
- 7 requirements in Section 4.5.1 of ANSI J-STD-018.
- 6.2.4 Receiver Performance Requirements
- 9 System performance is predicated on receivers meeting the requirements set forth in
- 10 TIA/EIA-98-B for CDMA cellular systems and ANSI J-STD-018 for CDMA PCS systems.

11 6.3 Security and Identification

NMSI

IMSI

- 6.3.1 Mobile Station Identification Number
- Mobile stations operating in the analog mode are identified by the mobile identification number (MIN) (see 2.3.1).
- 15 Mobile stations operating in the CDMA mode are identified by the International Mobile
- Station Identity (IMSI)..¹⁴ Mobile Stations shall have two different identifiers, IMSI_T and
- 17 IMSI_M. The IMSI consists of up to 15 numerical characters (0-9). The first three digits of
- $_{18}$ the IMSI are the Mobile Country Code (MCC), and the remaining digits are the National
- Mobile Station Identity (NMSI). The NMSI consists of the Mobile Network Code (MNC) and
- ∞ the Mobile Station Identification Number (MSIN). The IMSI structure is shown in Figure
- 21 6.3.1-1.

22

MCC MNC MSIN

→ 3 digits → NMSI → IMSI (≤15 digits) → MCC Mobile Country Code MNC Mobile Network Code MSIN Mobile Station Identification Number

Figure 6.3.1-1. IMSI Structure

¹⁴ See *CCITT Blue Book*, Volume II-Fascicle II.2, Recommendation E.212, November 1988.

National Mobile Station Identity

International Mobile Station Identity

- An IMSI that is 15 digits in length is called a class 0 IMSI (the NMSI is 12 digits in length);
- an IMSI that is less than 15 digits in length is called a class 1 IMSI (the NMSI is less than
- 3 12 digits in length).
- 4 IMSI_M is an IMSI that contains a MIN in the lower ten digits of the NMSI. An IMSI_M can
- be a class 0 or a class 1 IMSI. If the IMSI_M is not programmed, the mobile station shall
- set the four least-significant digits of the IMSI_M to the value of the ESNp, converted
- directly from binary to decimal, modulo 10000. The other digits shall be set to 0.
- 8 IMSI_T is an IMSI that is not associated with the MIN assigned to the mobile station. An
- 9 IMSI_T can be a class 0 or class 1 IMSI. If the IMSI_T is not programmed, the mobile
- station shall set the four least-significant digits of the IMSI_T to the value of the ESN_p,
- converted directly from binary to decimal, modulo 10000. The other digits shall be set to 0.
- When operating in the CDMA mode the mobile station shall set its operational IMSI value,
- 13 IMSI_O, to either the IMSI_M or the IMSI_T depending on the capabilities of the base
- station (See 6.6.2.2.5).
- An IMSI_S is a 10-digit (34-bit) number derived from the IMSI. When an IMSI has ten or
- more digits, IMSI_S is equal to the last ten digits. When an IMSI has fewer than ten digits,
- the least significant digits of IMSI_S are equal to the IMSI and zeros are added to the most
- significant side to obtain a total of ten digits. A 10-digit IMSI_S consists of 3- and 7-digit
- parts, called IMSI_S2 and IMSI_S1, respectively, as illustrated in Figure 6.3.1-2. IMSI_S is
- mapped into a 34-bit number (see 6.3.1.1). The IMSI_S derived from IMSI_M is designated
- 21 IMSI_M_S. The IMSI_S derived from IMSI_T is designated IMSI_T_S. The IMSI_S derived
- ²² from IMSI_O is designated IMSI_O_S.
- The mobile station shall have memory to store the 34-bit $IMSI_M_S_D$ and the 34-bit
- 24 IMSI_T_S_p. IMSI_M_S_p is represented by the 10-bit IMSI_M_S2_p and the 24 bit
- $_{25}$ IMSI_M_S1_p. IMSI_T_S_p is represented by the 10-bit IMSI_T_S2_p and the 24 bit
- 26 IMSI_T_S1p.

Figure 6.3.1-2. IMSI_S Binary Mapping

30 31

32

28

29

27

When an IMSI has 12 or more digits, IMSI_11_12 is equal to the 11th and 12th digits of the IMSI. When an IMSI has fewer than 12 digits, digits with a value equal to zero are added to

- the most significant side to obtain a total of 12 digits and the IMSI_11_12 is equal to the
- 2 11th and 12th digits of the resulting number.
- IMSI_11_12 is encoded as described in 6.3.1.2. The mobile station shall have memory to
- store the 7-bit $IMSI_M_11_12_p$ and the 7-bit $IMSI_T_11_12_p$.
- 5 The 3-digit MCC is encoded as described in 6.3.1.3. The mobile station shall have memory
- to store the 10-bit MCC $_{\rm Mp}$ and the 10-bit MCC $_{\rm Tp}$.
- If the mobile station has a class 1 IMSI_T, or IMSI_M, it shall have memory to store
- IMSI_T_ADDR_NUMp and IMSI_M_ADDR_NUMp. IMSI_T_ADDR_NUMp is equal to the
- number of digits in the NMSI minus four. IMSI_M_ADDR_NUMp is equal to the number of
- digits in the NMSI of the IMSI_M minus four.
- 6.3.1.1 Encoding of IMSI_M_S and IMSI_T_S
- The IMSI_M_S and IMSI_T_S binary mapping is defined as follows:
 - The first three digits of the IMSI_M_S and the first three digits of the IMSI_T_S are mapped into ten bits (corresponding to IMSI_M_S2_p and IMSI_T_S2_p, respectively) by the following coding algorithm:
 - a. Represent these three digits as D_1 D_2 D_3 with the digit equal to zero being given the value of ten.
 - b. Compute $100 \times D_1 + 10 \times D_2 + D_3 111$.
 - c. Convert the result in step b to binary by the standard decimal-to-binary conversion as described in Table 6.3.1.1-1.

Table 6.3.1.1-1. Decimal to Binary Conversion Table

Decimal Number	Binary Number	
0	0000000000	
1	000000001	
2	000000010	
3	0000000011	
4	000000100	
	•	
•	•	
•	•	
998	1111100110	
999	1111100111	

13

14

2

10

11

12

13

14

15

16

17

18

19

20

21

- The second three digits of IMSI_M_S and the second three digits of IMSI_T_S are mapped into the ten most significant bits of IMSI_M_S1_p and IMSI_T_S1_p, respectively, by the coding algorithm described in 1.
 - 3. The last four digits of IMSI_M_S and the last four digits of IMSI_T_S are mapped into the 14 least significant bits of IMSI_M_S1_p and IMSI_T_S1_p, respectively, as follows:
 - a. The thousands digit is mapped into four bits by a Binary-Coded-Decimal (BCD) conversion, as specified in Table 6.3.1.1-2.
 - b. The last three digits are mapped into ten bits by the coding algorithm described in 1.

Table 6.3.1.1-2. BCD Mapping

Decimal Digit	Binary Number
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
0	1010

The following example illustrates the IMSI_T_S2 $_p$ and IMSI_T_S1 $_p$ calculation procedure. Let the IMSI_T be the 9-digit number 123456789. Since the IMSI_T has fewer than ten digits, the nine least significant digits of the IMSI_T_S are equal to the IMSI_T digits and the most significant IMSI_T_S digit is set to zero. So the 10-digit IMSI_T_S is 012 345 6 789. IMSI_T_S2 $_p$ and IMSI_T_S1 $_p$ are calculated as follows:

- IMSI_T_S2_p. The ten-bit IMSI_T_S2_p is derived from the first three digits of the IMSI_T_S (i.e., 012):
 - a. D1 = 10; D2 = 1; D3 = 2.
 - b. $100 \times D1 + 10 \times D2 + D3 111 = 100 \times 10 + 10 \times 1 + 2 111 = 901$.
- c. 901 in binary is '11 1000 0101'.
- Therefore, $IMSI_T_S2_D$ is '11 1000 0101'.
- IMSI_T_S1_p. The ten most significant bits of IMSI_T_S1_p are derived from the second three digits of the IMSI_T_S (i.e., 345):

- a. D1 = 3; D2 = 4; D3 = 5.
- b. $100 \times D1 + 10 \times D2 + D3 111 = 100 \times 3 + 10 \times 4 + 5 111 = 234$.
- c. 234 in binary is '0011 1010 10'.
- The next four most significant bits of IMSI_T_S1p are derived from the thousands digit of
- the IMSI_T_S (i.e., 6) by BCD conversion: 6 in BCD is '0110'.
- The ten least significant bits of IMSI_T_S1p are derived from the last three digits of the
- 7 IMSI_T_S (i.e., 789):

18

19

22

- a. $D_1 = 7$; $D_2 = 8$; $D_3 = 9$.
- b. $100 \times D_1 + 10 \times D_2 + D_3 111 = 100 \times 7 + 10 \times 8 + 9 111 = 678$.
- c. 678 in binary is '10 1010 0110'.
- Therefore, IMSI_T_S1p is '0011 1010 1001 1010 1010 0110'.
- 12 6.3.1.2 Encoding of IMSI_M_11_12 and IMSI_T_11_12
- The IMSI_M_11_12 and IMSI_T_11_12 binary mapping is defined as follows:
 - Represent the 11th digit as D₁₁ and the 12th digit as D₁₂ with the digit equal to zero being given the value of ten.
- 2. Compute $10 \times D_{12} + D_{11} 11$.
 - 3. Convert the result in step 2 to binary by a standard decimal-to-binary conversion as described in Table 6.3.1.1-1 and limit the resulting number to the 7 least significant bits.
- 6.3.1.3 Encoding of the MCC_M and MCC_T
- The MCC_M and MCC_T binary mapping is defined as follows:
 - Represent the 3-digit Mobile Country Code as D₁ D₂ D₃ with the digit equal to zero being given the value of ten.
 - 2. Compute $100 \times D_1 + 10 \times D_2 + D_3 111$.
- 3. Convert the result in step (2) to binary by a standard decimal-to-binary conversion as described in Table 6.3.1.1-1.
- z 6.3.1.4 Mobile Directory Number
- 28 A Mobile Directory Number (MDN) is a dialable number associated with the mobile station
- 2 through a service subscription. A Mobile Directory Number is not necessarily the same as
- ∞ the mobile station identification on the air interface, i.e., MIN, IMSI_M or IMSI_T. An MDN
- consists of up to 15 digits. The mobile station should have memory to store at least one
- ∞ Mobile Directory Number (see Table F.3-1).
- **33** 6.3.2 Electronic Serial Number
- 34 The ESN is a 32-bit binary number that uniquely identifies the mobile station to any
- wireless system.

- 6.3.3 Station Class Mark
- See 2.3.3 when operating in the 800 MHz analog mode.
- 3 Class-of-station information referred to as the station class mark (SCM_p) must be stored in
- a mobile station. The digital representation of this class mark for Band Class 0 and Band
- 5 Class 1 is specified in Table 6.3.3-1.

Table 6.3.3-1. Station Class Mark

Function	Bit(s)	Setting	
Extended SCM Indicator	7	Band Class 0 Band Class 1	0XXXXXXX 1XXXXXXX
Dual Mode	6	CDMA Only Dual Mode	X0XXXXXX X1XXXXXX
Slotted Class	5	Non-Slotted Slotted	XX0XXXXX XX1XXXXX
IS-54 Power Class	4	Always 0	XXX0XXXX
25 MHz Bandwidth	3	Always 1	XXXX1XXX
Transmission	2	Continuous Discontinuous	XXXXX0XX XXXXX1XX
Power Class for Band Class 0 Analog Operation	1 - 0	Class I Class II Class III Reserved	XXXXXX00 XXXXXX01 XXXXXX10 XXXXXX11

- If the mobile station supports analog mode operation in Band Class 0, the mobile station
- shall set the Power Class function bits to reflect its analog power class at Band Class 0,
- regardless of the band class on which it is operating; otherwise, the mobile station shall set
- these bits to '00'.
- 6.3.4 Registration Memory
- See 2.3.4 when operating in the 800 MHz analog mode.
- 15 The mobile station shall have memory to store one element in the zone-based registration
- list ZONE_LIST_{S-D} (see 6.6.5.1.5 and 6.6.5.5). This stored element shall include both
- REG_ZONE and the corresponding (SID, NID) pair. The data retention time under power-off
- conditions shall be at least 48 hours. If, after 48 hours, the data integrity cannot be
- $_{19}$ guaranteed, then the entry in $ZONE_LIST_{S-p}$ shall be deleted upon power-on.
- The mobile station shall have memory to store one element in the system/network
- registration list SID_NID_LIST_{S-p} (see 6.6.5.1.5 and 6.6.5.5). The data retention time under
- 2 power-off conditions shall be at least 48 hours. If, after 48 hours, the data integrity cannot
- ∞ be guaranteed, then the entry in SID_NID_LIST_{S-D} shall be deleted upon power-on.

- The mobile station shall have memory to store the distance-based registration variables
- 2 BASE_LAT_REG_{s-p}, BASE_LONG_REG_{s-p}, and REG_DIST_REG_{s-p} (see 6.6.5.1.4 and
- 6.6.5.5). The data retention time under power-off conditions shall be at least 48 hours. If,
- after 48 hours, the data integrity cannot be guaranteed, then REG_DIST_REG_{s-p} shall be
- 5 set to zero upon power-on.
- 6 6.3.5 Access Overload Class

- See 2.3.5 when operating in the 800 MHz analog mode.
- 8 The 4-bit access overload class indicator (ACCOLC_p) is used to identify which overload
- class controls access attempts by the mobile station and is used to identify redirected
- overload classes in global service redirection.
- The mobile station shall store 4-bit access overload class (ACCOLC_p). Mobile stations that 11 are not for test or emergency use should be assigned to overload classes ACCOLC 0 12 through ACCOLC 9. For mobile stations that are classified as overload classes ACCOLC 0 13 through ACCOLC 9, the mobile station's 4-bit access overload class indicator (ACCOLC_D) 14 shall be automatically derived from the last digit of the associated decimal representation of 15 the IMSI_M by a decimal to binary conversion as specified in Table 6.3.5-1. When a mobile 16 station's IMSI_M is updated, the mobile station shall re-calculate the ACCOLCp as 17 indicated above. Mobile stations designated for test use should be assigned to ACCOLC 10; 18 mobile stations designated for emergency use should be assigned to ACCOLC 11. ACCOLC 19 12 through ACCOLC 15 are reserved. 15 Programming the 4-bit ACCOLC_D for overload 20 classes ACCOLC 10 through ACCOLC 15 as specified in Table 6.3.5-2 shall require a 21 special facility only available to equipment manufacturers and system operators. 22
- The content of ACCOLC_p shall not be visible through the mobile station's display.

¹⁵ For more information, refer to TSB16.

Table 6.3.5-1. ACCOLC_p Mapping for ACCOLC 0 through ACCOLC 9

Last Digit of the Decimal Representation of the IMSI	ACCOLC _p
0	0000
1	0001
2	0010
. 3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Table 6.3.5-2. ACCOLC_p Mapping for ACCOLC 10 through ACCOLC 15

Overload Class	ACCOLC _p	
10	1010	
11	1011	
12 .	1100	
13	1101	
14	1110	
15	1111	

- 5 6.3.6 Reserved
- 6 6.3.7 Reserved
- 6.3.8 Home System and Network Identification
- $_{\text{B}}$ $\,$ In addition to the HOME_SID_{p} parameter that the mobile station stores for 800 MHz analog
- operation (see 2.3.8), the mobile station shall provide memory to store at least one home
- (SID_p, NID_p) pair. The mobile station shall also provide memory to store the 1-bit
- parameters $MOB_TERM_HOME_p$, $MOB_TERM_FOR_SID_p$, and $MOB_TERM_FOR_NID_p$ (see
- 12 6.6.5.3).

- 1 6.3.9 Local Control Option
- If the mobile station supports the local control option, a means shall be provided within the
- mobile station to enable or disable the local control option.
- 4 6.3.10 Preferred Operation Selection
- 5 6.3.10.1 Preferred System
- 6 If the mobile station supports operation in Band Class 0, a means shall be provided within
- the mobile station to identify the preferred system. In addition, the mobile station may
- provide a means for allowing operation only with System A or System B.
- 6.3.10.2 Preferred CDMA or Analog
- 10 If the mobile station supports operation in Band Class O, a means may be provided within
- the mobile station to identify the preferred operation type as either CDMA mode or analog
- mode. In addition, the mobile station may provide a means for allowing operation only in
- the preferred mode.
- 6.3.11 Discontinuous Reception
- 15 The mobile station shall provide memory to store the preferred slot cycle index,
- SLOT_CYCLE_INDEX_D (see 6.6.2.1.1.3.2).
- 6.3.12 Authentication, Encryption of Signaling Information/User Data and Voice Privacy
- 18 6.3.12.1 Authentication
- Authentication is the process by which information is exchanged between a mobile station
- and base station for the purpose of confirming the identity of the mobile station. A
- successful outcome of the authentication process occurs only when it can be demonstrated
- 2 that the mobile station and base station possess identical sets of shared secret data.
- 23 The authentication algorithms are described in "Common Cryptographic Algorithms." The
- interface (input and output parameters) for the algorithms is described in "Interface
- Specification for Common Cryptographic Algorithms." Table 6.3.12.1-1 summarizes the
- setting of the input parameters of the Auth_Signature procedure for each of its uses in this
- 27 standard.
- 28 For authentication purposes, the mobile station shall use IMSI_M if it is programmed;
- otherwise, the mobile station shall use IMSI_T.The base station uses the IMSI selected
- 20 according to the same criteria.

Table 6.3.12.1-1. Auth_Signature Input Parameters

Procedure	RAND_CHALLENGE	ESN	AUTH_ DATA	SSD_ AUTH	SAVE_ REGISTERS
Registration (6.3.12.1.4)	RANDs	ESN _p	IMSI_S1	SSD_A	FALSE
Unique Challenge (6.3.12.1.5)	RANDU and 8 LSBs of IMSI_S2	ESN _p	IMSI_S1	SSD_A	FALSE
Originations (6.3.12.1.6)	RANDs	ESN _p	Digits	SSD_A	TRUE
Terminations (6.3.12.1.7)	RANDs	ESN _p	IMSI_S1	SSD_A	TRUE
Mobile Station Data Bursts (6.3.12.1.8)	RAND _s	ESN _p	Digits	SSD_A	FALSE
Base Station Challenge (6.3.12.1.9)	RANDBS	ESN _p	IMSI_S1	SSD_A_ NEW	FALSE
TMSI Assignment (6.3.12.1.10)	RAND _s	ESN _p	IMSI_S1	SSD_A	FALSE
PACA Cancellation (6.3.12.1.11)	RAND _s	ESN _p	IMSI_S1	SSD_A	FALSE

6.3.12.1.1 Shared Secret Data (SSD)

10

11

13

- 4 SSD is a 128-bit quantity that is stored in semi-permanent memory in the mobile station
- and is readily available to the base station. As depicted in Figure 6.3.12.1.1-1, SSD is
- partitioned into two distinct subsets. Each subset is used to support a different process.

Contents	SSD_A	SSD_B	
Length (bits)	64	64	

Figure 6.3.12.1.1-1. Partitioning of SSD

SSD_A is used to support the authentication procedures and SSD_B is used to support voice privacy (see 6.3.12.3) and message encryption (see 6.3.12.2). SSD is generated according to the procedure specified in 6.3.12.1.9. The SSD shall not be accessible to the user.

- 6.3.12.1.2 Random Challenge Memory (RAND)
- See 2.3.12.1.2 when operating in 800 MHz analog mode.
- RAND is a 32-bit value held in the mobile station. When operating in CDMA mode, it is
- equal to the RAND value received in the last Access Parameters Message (see 7.7.2.3.2.2) of
- 5 the CDMA Paging Channel.
- 6 RAND_S is used in conjunction with SSD_A and other parameters, as appropriate, to
- authenticate mobile station originations, terminations and registrations.
- 8 6.3.12.1.3 Call History Parameter (COUNT_{s-p})
- See 2.3.12.1.3 when operating in 800 MHz analog mode.
- Count_{S-D} is a modulo-64 count held in the mobile station. COUNT_{S-D} is updated by the
- mobile station when a Parameter Update Order is received on the CDMA Forward Traffic
- 12 Channel (see 7.7.4).
- 6.3.12.1.4 Authentication of Mobile Station Registrations
- The following authentication procedures shall be performed when AUTH_s is set to '01'
- 15 (standard authentication mode), and the mobile station attempts to register (by sending a
- 16 Registration Message on the Access Channel).
- 17 The mobile station shall set the input parameters of the Auth_Signature procedure (see
- "Interface Specification for Common Cryptographic Algorithms," section 2.3) as illustrated
- in Figure 6.3.12.1.4-1.
- ²⁰ The mobile station shall set the SAVE_REGISTERS input parameter to FALSE.
- 21 The mobile station shall then execute the Auth_Signature procedure. The 18-bit output
- 2 AUTH_SIGNATURE shall be used to fill the AUTHR field of the Registration Message. The
- 22 RANDC (eight most significant bits of RAND) and COUNT fields of the message shall be
- 24 filled with the current values stored in the mobile station.
- The base station compares the received value of RANDC to the most significant eight bits of
- 26 its internally stored value of RAND.
- The base station may also compare the received value of COUNT with its internally stored
- value associated with the received IMSI/ESN.
- 29 The base station computes the value of AUTHR in the same manner as the mobile station,
- but using its internally stored value of SSD_A. The base station compares its computed
- value of AUTHR to the value received from the mobile station.
- 22 If any of the comparisons fail, the base station may deem the registration attempt
- unsuccessful, initiate the Unique Challenge-Response Procedure (see 6.3.12.1.5) or
- commence the process of updating SSD (see 6.3.12.1.9).

Figure 6.3.12.1.4-1. Computation of AUTHR for Authentication of Mobile Station Registrations

- 5 6.3.12.1.5 Unique Challenge-Response Procedure
- 6 The Unique Challenge-Response Procedure is initiated by the base station and can be
- 7 carried out either on the Paging and Access Channels, or on the Forward and Reverse
- 8 Traffic Channels. The procedure is as follows:
- The base station generates the 24-bit quantity RANDU and sends it to the mobile station in
- the Authentication Challenge Message on either the Paging Channel or the Forward Traffic
- 11 Channel. Upon receipt of the Authentication Challenge Message, the mobile station shall
- set the input parameters of the Auth_Signature procedure (see "Interface Specification for
- Common Cryptographic Algorithms," section 2.3) as illustrated in Figure 6.3.12.1.5-1. The
- 24 most significant bits of the RAND_CHALLENGE input parameter shall be filled with
- 15 RANDU, and the 8 least significant bits of RAND_CHALLENGE shall be filled with the 8
- least significant bits of IMSI_S2.
- The mobile station shall set the SAVE_REGISTERS input parameter to FALSE.
- The mobile station shall then execute the Auth_Signature procedure. The 18-bit output
- 49 AUTH_SIGNATURE shall be used to fill the AUTHU field of the Authentication Challenge
- 20 Response Message, which shall be sent to the base station.
- The base station computes the value of AUTHU in the same manner as the mobile station.
- but using its internally stored value of SSD_A. The base station compares its computed
- 22 value of AUTHU to the value received from the mobile station. If the comparison fails, the
- 24 base station may deny further access attempts by the mobile station, drop the call in
- progress, or initiate the process of updating SSD (see 6.3.12.1.9).

Figure 6.3.12.1.5-1. Computation of AUTHU for the Unique **Challenge-Response Procedure**

6.3.12.1.6 Authentication of Mobile Station Originations

When AUTHs is set to '01' (standard authentication mode), and the mobile station attempts 6

to originate a call (by sending an Origination Message on the Access Channel), the following

authentication procedures shall be performed:

to Table 6.7.1.3.2.4-4.

11

17

18

19

20

21

22

23

24

25

26

27

The mobile station shall set the input parameters of the Auth_Signature procedure (see "Interface Specification for Common Cryptographic Algorithms," section 2.3) as illustrated 10 in Figure 6.3.12.1.6-1. The AUTH_DATA input parameter shall contain the last six digits contained in the CHAR $_{
m i}$ fields of the *Origination Message*, encoded as follows: If a CHAR $_{
m i}$ 12 field represents one of the digits 0-9, * or #, the digit shall be encoded according to 13 Table 6.7.1.3.2.4-4. If the CHAR_i field represents any other character, the CHAR_i field shall be converted to its decimal equivalent (treated as an unsigned binary number), and the 15 digit shall be the least significant decimal digit of the decimal equivalent, encoded according 16

If fewer than six digits are included in the Origination Message, the most significant bits of IMSI_S1 shall be used to replace the missing digits. The exact procedure is that IMSI_S1 is used to initially fill the AUTH_DATA input parameter and then the last dialed digits entered by the subscriber are used to replace all or part of this initial value. If a full 6 digits are dialed, the first digit of the 6 that were dialed is used as the most significant 4 bits of AUTH_DATA, the second digit is the next less-significant 4 bits of AUTH_DATA, and so forth. If fewer than 6 digits are dialed, then the least significant 4 bits of AUTH_DATA are the last dialed digit, the second-last dialed digit becomes the next more-significant 4 bits of AUTH DATA, and so on up to the first of the dialed digits.

The mobile station shall set the SAVE_REGISTERS input parameter to TRUE.

- The mobile station shall then execute the Auth_Signature Procedure. The 18-bit output
- 2 AUTH_SIGNATURE shall be used to fill the AUTHR field of the Origination Message. The
- RANDC (eight most significant bits of RAND) and COUNT fields of the message shall be
- filled with the current values stored in the mobile station.
- The base station compares the received value of RANDC to the most significant eight bits of
- 6 its internally stored value of RAND.
- 7 The base station may also compare the received value of COUNT with its internally stored
- value associated with the received IMSI/ESN.
- The base station computes the value of AUTHR in the same manner as the mobile station,
- but using its internally stored value of SSD_A. The base station compares its computed
- 11 value of AUTHR to the value received from the mobile station.
- 12 If the comparisons executed at the base station are successful, the base station may initiate
- the appropriate channel assignment procedures. After channel assignment, the base
- station may issue a Parameter Update Order on the Forward Traffic Channel, updating the
- value of $COUNT_{S-D}$ in the mobile station.
- 16 If any of the comparisons fail, the base station may deny service, initiate the Unique
- 17 Challenge-Response Procedure (see 6.3.12.1.5) or commence the process of updating SSD
- 18 (see 6.3.12.1.9).

19

Figure 6.3.12.1.6-1. Computation of AUTHR for Authentication of Mobile Station Originations

23

20

21

- 6.3.12.1.7 Authentication of Mobile Station Terminations
- 2 When AUTHs is set to '01' (standard authentication mode), and the mobile station responds
- to a page (by sending a Page Response Message on the Access Channel), the following
- authentication procedures shall be performed:
- 5 The mobile station shall set the input parameters of the Auth_Signature procedure (see
- ⁶ "Interface Specification for Common Cryptographic Algorithms," section 2.3) as illustrated
- 7 in Figure 6.3.12.1.7-1.
- The mobile station shall set the SAVE_REGISTERS input parameter to TRUE.
- The mobile station shall then execute the Auth_Signature procedure. The 18-bit output
- 10 AUTH_SIGNATURE shall be used to fill the AUTHR field of the Page Response Message.
- 11 The RANDC (eight most significant bits of RAND) and COUNT fields of the message shall be
- filled with the current values stored in the mobile station.
- 13 The base station compares the received value of RANDC to the eight most significant bits of
- its internally stored value of RAND.
- The base station may also compare the received value of COUNT with its internally stored
- value associated with the received IMSI/ESN.
- 17 The base station computes the value of AUTHR in the same manner as the mobile station,
- but using its internally stored value of SSD_A. The base station compares its computed
- value of AUTHR to the value received from the mobile station.
- If the comparisons executed at the base station are successful, the base station may initiate
- 21 the appropriate channel assignment procedures. After channel assignment, the base
- station may issue a Parameter Update Order on the Forward Traffic Channel, updating the
- ∞ value of COUNT_{S-D} in the mobile station.
- 24 If any of the comparisons fail, the base station may deny service, initiate the Unique
- 25 Challenge Response Procedure (see 6.3.12.1.5) or commence the process of updating SSD
- ж (see 6.3.12.1.9).

Figure 6.3.12.1.7-1. Computation of AUTHR for Authentication of Mobile Station Terminations

- 5 6.3.12.1.8 Authentication of Mobile Station Data Bursts
- 6 When AUTH_S is set to '01' (standard authentication mode), and the mobile station attempts
- to send a Data Burst Message on the Access Channel, the following authentication
- 8 procedures shall be performed:
- 9 The mobile station shall set the input parameters of the Auth_Signature procedure (see
- "Interface Specification for Common Cryptographic Algorithms," section 2.3) as illustrated
- in Figure 6.3.12.1.8-1.
- The AUTH_DATA input is generated by first filling the AUTH_DATA parameter with the 24
- bits of IMSI_S1 and then replacing part or all of the pre-filled value with up to six 4-bit
- digits that are provided by the procedure (according to BURST_TYPE) requesting the Data
- 15 Burst Message.

19

20

21

22

23

24

- Specifically, the mobile station shall generate the AUTH_DATA input as follows:
 - 1. Let AUTH_DATA = IMSI_S1.
 - 2. The requesting procedure shall supply a sequence of digits that is 0 to 6 digits in length. Each digit shall be represented as a 4-bit binary value, encoded according to Table 6.7.1.3.2.4-4.
 - 3. The least significant digit in the sequence shall replace the least significant four bits of AUTH_DATA, the next-least significant digit in the sequence shall replace the next-least significant four bits of AUTH_DATA and so on until all of the supplied digits in the sequence have been incorporated into the value of AUTH_DATA.
 - The mobile station shall set the SAVE_REGISTERS input parameter to FALSE.

- The mobile shall then execute the Auth_Signature Procedure. The 18-bit output
- 2 AUTH_SIGNATURE shall be used to fill the AUTHR field of the Data Burst Message. The
- RANDC (eight most significant bits of RAND) and COUNT fields of the message shall be
- filled with the current values stored in the mobile station.
- 5 The base station compares the received value of RANDC to the most significant eight bits of
- 6 its internally stored value of RAND.
- 7 The base station may also compare the received value of COUNT with its internally stored
- 8 value associated with the received IMSI/ESN.
- 9 The base station computes the value of AUTHR in the same manner as the mobile station,
- but using its internally stored value of SSD_A, and by generating the AUTH_DATA input in
- the same manner as described above for the mobile station. The base station compares its
- computed value of AUTHR to the value received from the mobile station.
- 13 If the comparisons executed at the base station are successful, the base station may
- 14 process the message.
- 15 If any of the comparisons fail, the base station may ignore the message, initiate the Unique
- 16 Challenge-Response Procedure (see 6.3.12.1.5) or commence the process of updating SSD
- 17 (see 6.3.12.1.9).

20

21

Figure 6.3.12.1.8-1. Computation of AUTHR for Authentication of Mobile Station Data Bursts

6-109

- 6.3.12.1.9 Updating the Shared Secret Data (SSD)
- 2 SSD is updated using the SSD_Generation procedure (see "Interface Specification for
- 3 Common Cryptographic Algorithms," section 2.2.1), initialized with mobile station specific
- information, random data and the mobile station's A-key. The A-key is 64 bits long. It is
- assigned to the mobile station and is stored in the mobile station's permanent security and
- 6 identification memory. The A-key is known only to the mobile station and to its associated
- 7 Home Location Register/Authentication Center (HLR/AC) (see EIA/TIA-41). Non-manual
- methods, such as described in EIA/TIA-683-A, are preferred for entry of the A-key into the
- 9 mobile station. TSB50 describes a manual method of entry that may be used when
- automated methods are not available.
- The SSD update procedure is performed as follows (see Figure 6.3.12.1.9-1):
- The base station sends an SSD Update Message on either the Paging Channel or the
- Forward Traffic Channel. The RANDSSD field of the SSD Update Message contains the
- same value used for the HLR/AC computation of SSD.
- Upon receipt of the SSD Update Message the mobile station shall set the input parameters
- of the SSD_Generation procedure (see "Interface Specification for Common Cryptographic
- Algorithms," section 2.2.1) as illustrated in Figure 6.3.12.1.9-2. The mobile station shall
- then execute the SSD_Generation procedure. The mobile station shall set SSD_A_NEW and
- SSD_B_NEW to the outputs of the SSD_Generation procedure.
- 20 The mobile station shall then select a 32-bit random number, RANDBS, and shall send it to
- the base station in a Base Station Challenge Order on the Access Channel or Reverse Traffic
- 22 Channel.
- Both the mobile station and the base station shall then set the input parameters of the
- 24 Auth_Signature procedure (see "Interface Specification for Common Cryptographic
- Algorithms," section 2.3) as illustrated in Figure 6.3.12.1.9-3 and shall execute the
- 26 Auth_Signature procedure.
- 27 The mobile station and base station shall set the SAVE_REGISTERS input parameter to
- 28 FALSE.
- 29 The mobile station and base station shall execute the Auth_Signature procedure. AUTHBS
- is set to the 18-bit result AUTH_SIGNATURE. The base station sends its computed value of
- 31 AUTHBS to the mobile station in a Base Station Challenge Confirmation Order on the Paging
- 22 Channel or the Forward Traffic Channel.
- Upon receipt of the Base Station Challenge Confirmation Order the mobile station shall
- compare the received value of AUTHBS to its internally computed value. (If the mobile
- station receives a Base Station Challenge Confirmation Order when an SSD update is not in
- progress, the mobile station shall respond with an SSD Update Rejection Order.)
- 37 If the comparison is successful, the mobile station shall execute the SSD_Update procedure
- (see "Interface Specification for Common Cryptographic Algorithms," section 2.2.2) to set
- SSD_A and SSD_B to SSD_A_NEW and SSD_B_NEW, respectively. The mobile station shall
- then send an SSD Update Confirmation Order to the base station, indicating successful
- completion of the SSD update.

- 1 If the comparison is not successful, the mobile station shall discard SSD_A_NEW and
- 2 SSD_B_NEW. The mobile station shall then send an SSD Update Rejection Order to the
- base station, indicating unsuccessful completion of the SSD update.
- 4 Upon receipt of the SSD Update Confirmation Order, the base station sets SSD_A and
- 5 SSD_B to the values received from the HLR/AC (see EIA/TIA/IS-41).
- 6 If the mobile station fails to receive the Base Station Challenge Confirmation Order within
- 7 T_{64m} seconds of when the acknowledgment to the Base Station Challenge Order was
- received, the mobile station shall discard SSD_A_NEW and SSD_B_NEW. The mobile
- station shall then terminate the SSD update process.

Figure 6.3.12.1.9-1. SSD Update Message Flow

Figure 6.3.12.1.9-2. Computation of Shared Secret Data (SSD)

Figure 6.3.12.1.9-3. Computation of AUTHBS

- 6.3.12.1.10 Authentication of Temporary Mobile Station Identity (TMSI) Assignment
- 2 See 6.3.15 for an overview of TMSI.
- $_3$ The following authentication procedures shall be performed when AUTH_S is set to '01'
- 4 (standard authentication mode), and the mobile station responds to a TMSI assignment (by
- sending a TMSI Assignment Completion Message on the Access Channel).
- 6 The mobile station shall set the input parameters of the Auth_Signature procedure (see
- ⁷ "Interface Specification for Common Cryptographic Algorithms," section 2.3) as illustrated
- 8 in Figure 6.3.12.1.10-1.
- The mobile station shall set the SAVE_REGISTERS input parameter to FALSE.
- The mobile station shall then execute the Auth_Signature procedure. The 18-bit output
- AUTH SIGNATURE shall be used to fill the AUTHR field of the TMSI Assignment Completion
- 12 Message. The RANDC (eight most significant bits of RAND) and COUNT fields of the
- message shall be filled with the current values stored in the mobile station.
- The base station compares the received value of RANDC to the eight most significant bits of
- its internally stored value of RAND.
- 16 The base station may also compare the received value of COUNT with its internally stored
- value associated with the received IMSI/ESN.
- The base station computes the value of AUTHR in the same manner as the mobile station,
- but using its internally stored value of SSD_A. The base station compares its computed
- value of AUTHR to the value received from the mobile station.
- 21 If any of the comparisons fail, the base station may deem the TMSI assignment
- unsuccessful, initiate the Unique Challenge-Response Procedure (see 6.3.12.1.5) or
- commence the process of updating SSD (see 6.3.12.1.9).

Figure 6.3.12.1.10-1. Computation of AUTHR for Authentication of TMSI Assignment

- 4 6.3.12.1.11 Authentication of PACA Cancellation
- 5 The following authentication procedures shall be performed when AUTH_S is set to '01'
- s (standard authentication mode), and the mobile station cancels a PACA call (by sending a
- 7 PACA Cancel Message on the Access Channel).
- The mobile station shall set the input parameters of the Auth_Signature procedure (see
- 9 "Interface Specification for Common Cryptographic Algorithms," section 2.3) as illustrated
- in Figure 6.3.12.1.11-1.

- 11 The mobile station shall set the SAVE_REGISTERS input parameter to FALSE.
- The mobile station shall then execute the Auth_Signature procedure. The 18-bit output
- AUTH_SIGNATURE shall be used to fill the AUTHR field of the PACA Cancel Message. The
- RANDC (eight most significant bits of RAND) and COUNT fields of the message shall be
- filled with the current values stored in the mobile station.
- 16 The base station compares the received value of RANDC to the eight most significant bits of
- its internally stored value of RAND.
- The base station may also compare the received value of COUNT with its internally stored
- value associated with the received IMSI/ESN.
- The base station computes the value of AUTHR in the same manner as the mobile station,
- but does so using its internally stored value of SSD_A. The base station compares its
- 22 computed value of AUTHR to the value received from the mobile station.
- 2 If any of the comparisons fail, the base station may deem the PACA cancellation
- unsuccessful, initiate the Unique Challenge-Response Procedure (see 6.3.12.1.5) or
- commence the process of updating SSD (see 6.3.12.1.9).

Figure 6.3.12.1.11-1. Computation of AUTHR for Authentication of PACA Cancellation

6.3.12.2 Signaling Message Encryption

- 7 In an effort to enhance the authentication process and to protect sensitive subscriber
- $_{8}$ information (such as PINs), a method is provided to encrypt certain fields of selected Traffic
- 9 Channel signaling messages. See Annex A for the list of messages and fields to be encrypted.
- 11 The message encryption algorithm is described in "Common Cryptographic Algorithms."
- The availability of encryption algorithm information is governed under the U.S. Export
- Administration Regulations. TIA acts as the focal point and facilitator for making such
- information available.
- 15 Messages shall not be encrypted if authentication is not performed (AUTH_s is set to '00').
- See "Interface Specification for Common Cryptographic Algorithms" for details of the
- initialization and use of the encryption procedure.
- Signaling message encryption is controlled for each call individually. The mobile station
- identifies its encryption capability in the ENCRYPTION_SUPPORTED field in the Origination
- Message and the Page Response Message as shown in 6.7.1.3.2.4-5. The initial encryption
- 21 mode for the call is established by the value of the ENCRYPT_MODE field in the Channel
- 2 Assignment Message or in the Extended Channel Assignment Message. If ENCRYPT_MODE
- is set to '00', message encryption is off. To turn encryption on after channel assignment,
- the base station sends one of the following Forward Traffic channel messages to the mobile
- s station:

- Extended Handoff Direction Message with the ENCRYPT_MODE field set to '01' or '10'
- General Handoff Direction Message with the ENCRYPT_MODE field set to '01' or '10'
- Analog Handoff Direction Message with the MEM field set to '1'
- Message Encryption Mode Order with the ENCRYPT_MODE field set to '01' or '10'
- 6 To turn signaling message encryption off, the base station sends one of the following
- Forward Traffic Channel messages to the mobile station:
 - Extended Handoff Direction Message with the ENCRYPT_MODE field set to '00'
- General Handoff Direction Message with the ENCRYPT_MODE field set to '00'
- Analog Handoff Direction Message with the MEM field set to '0'
 - Message Encryption Mode Order with the ENCRYPT_MODE field set to '00'
- Every Reverse Traffic Channel message contains an ENCRYPTION field which identifies the message encryption mode active at the time the message was created (see 6.7.2.3.1.2).
- 14 6.3.12.3 Voice Privacy
- Voice privacy is provided in the CDMA system by means of the private long code mask used
- for PN spreading (see 6.1.3.1.8).
- 17 The generation of the private long code mask for the Fundamental Code Channel is
- 18 specified in Annex A.
- Voice privacy is provided on the Traffic Channels only. All calls are initiated using the
- public long code mask for PN spreading (see 6.1.3.1.8). The mobile station user may
- 21 request voice privacy during call setup using the Origination Message or Page Response
- Message, and during Traffic Channel operation using the Long Code Transition Request
- 23 Order.
- 24 The transition to private long code mask shall not be performed if authentication is not
- performed (AUTH_S is set to '00' or mobile station unable to perform authentication).
- To initiate a transition to the private or public long code mask, either the base station or
- 27 the mobile station sends a Long Code Transition Request Order on the Traffic Channel. The
- mobile station actions in response to receipt of this order are specified in 6.6.4, and the
- base station actions in response to receipt of this order are specified in 7.6.4.
- me The base station can also cause a transition to the private or public long code mask by
- sending the Extended Handoff Direction Message or the General Handoff Direction Message
- with the PRIVATE_LCM bit set appropriately.
- The mobile station shall have memory to store the lock reason code (LCKRSN_P_{S-D}) received
- in the Lock Until Power-Cycled Order. The data retention time under power-off conditions
- 36 shall be at least 48 hours.

- The mobile station shall have memory to store the maintenance reason code (MAINTRSN_{S-p})
- received in the Maintenance Required Order. The data retention time under power-off
- 3 conditions shall be at least 48 hours.
- There are no requirements on the use of the lock and maintenance reason codes, and
- 5 interpretation and use are implementation dependent.
- 6 6.3.14 Mobile Station Revision Identification
- 7 The mobile station shall provide memory to store the following parameters sent in the
- 8 Status Message, the Status Response Message, or the Extended Status Response Message
- 9 (Terminal Information information record):
 - Mobile manufacturer code (MOB_MFG_CODE_p)
- Manufacturer's model number (MOB_MODEL_p)
- Firmware revision number (MOB_FIRM_REV_p)
- In addition, the mobile station shall provide memory to store the following parameter for each supported band class:
 - Protocol revision number (MOB_P_REV_D)
- 6.3.15 Temporary Mobile Station Identity
- 17 6.3.15.1 Overview

10

15

- The Temporary Mobile Station Identity (TMSI) is a temporary locally assigned number used
- for addressing the mobile station. The mobile station obtains a TMSI when assigned by the
- base station. The TMSI as a number does not have any association with the mobile
- station's IMSI, ESN, or directory number all of which are permanent identifications.
- A TMSI zone is an arbitrary set of base stations for the administrative assignment of TMSIs.
- 23 A TMSI_CODE is uniquely assigned to a mobile station inside a TMSI zone. A TMSI zone is
- 24 identified by the TMSI_ZONE field. The same TMSI_CODE may be reused to identify a
- different mobile station in a different TMSI zone. The pair (TMSI_ZONE, TMSI_CODE) is a
- 25 globally unique identity for the mobile station. This pair is called the full TMSI. The
- 27 TMSI_CODE can be two, three, or four octets in length. The TMSI_ZONE can range from 1
- 28 to 8 octets in length. Figure 6.3.15-1 shows an example of a TMSI_ZONE where the
- 29 TMSI_ZONE is a subset of the NID (see 6.6.5.2).

Figure 6.3.15-1. TMSI Zone Example

The base station sends a TMSI Assignment Message to assign a TMSI. In response, the

mobile station sends a TMSI Assignment Completion Message. The base station instructs

- the mobile station to delete the TMSI by sending a *TMSI Assignment Message* with all the bits in the TMSI_CODE field set equal to '1'.
- 8 The TMSI expiration time is used to automatically delete the assigned TMSI. The mobile
- station obtains the expiration time when the TMSI is assigned in the TMSI Assignment
- 10 Message. The mobile station compares the expiration time to the current System Time
- when it powers up and periodically during operation.
- Whenever the mobile station sends its full TMSI, the mobile station sets a timer, called the
- 13 full-TMSI timer. If the full-TMSI timer expires, the mobile station deletes the TMSI by
- setting all bits in the TMSI_CODE field to '1'.

6.3.15.2 TMSI Assignment Memory

15

- 16 The mobile station shall provide memory to store the following parameters:
 - 4-bit assigning TMSI zone length (ASSIGNING_TMSI_ZONE_LEN_{S-D})
 - 8-octet assigning TMSI zone (ASSIGNING_TMSI_ZONE_{S-D})

- 4-octet TMSI code (TMSI_CODE_{s-p})
- 3-octet TMSI expiration time (TMSI_EXP_TIME_{s-p})

6.4 Supervision

2

3

- This section details the supervision mechanisms in CDMA. The time and numerical
- 5 constant values (e.g., T_{30m} and N_{2m}) are given in Annex D.
- 6 6.4.1 Pilot Channel
- The mobile station shall monitor the Pilot Channel at all times except when not receiving in
- the slotted mode. The mobile station shall measure the strength of the Pilot Channel as
- 9 specified in 6.6.6.2.2.
- 6.4.2 Sync Channel
- 11 The mobile station shall check the CRC of all received Sync Channel messages (see
- 7.7.1.2.2). The mobile station shall consider any message with a CRC that checks to be
- valid. The mobile station shall ignore any message which is not valid.
- 14 6.4.3 Paging Channel
- 15 The mobile station shall check the CRC of all received Paging Channel messages (see
- 7.7.2.2.2). The mobile station shall consider any message with a CRC that checks to be
- valid. The mobile station shall ignore any message which is not valid.
- 18 If the mobile station is operating in the Mobile Station Idle State, it shall monitor the Paging
- 19 Channel as specified in 6.6.2.1.1. The mobile station shall set a timer for T_{30m} seconds
- whenever it begins to monitor the Paging Channel. The mobile station shall reset the timer
- for T_{30m} seconds whenever it receives a valid message on the Paging Channel, whether
- addressed to the mobile station or not. The mobile station shall disable the timer when it is
- not monitoring the Paging Channel. If the timer expires, the mobile station shall declare a
- loss of the Paging Channel.
- When in the System Access State, the mobile station shall monitor the Paging Channel at
- 26 all times.

32

- 27 Whenever a valid message is received on the Paging Channel, whether addressed to the
- mobile station or not, the mobile station shall reset a timer for T_{72m} seconds if:
 - ACCESS_HO_s is equal to '1' and ACCESS_HO_LIST contains more than one pilot,
- $_{\rm 30}$ $\,$ ACC_HO_LIST_UPD_S is equal to '1', and Access Probe Handoff is supported by the
- mobile station, or
 - ACC_HO_LIST_UPD_s is equal to '0' and the following conditions are met:
 - ACCESS_HO_LIST contains more than one pilot
- Access Probe Handoff is supported by the mobile station and is enabled by the base station.

- Otherwise, the mobile station shall reset a timer for T_{40m} seconds (see 6.6.3.1.7). If the
- timer expires, the mobile station shall declare a loss of the Paging Channel.
- 3 If the timer for monitoring the Paging Channel in System Access State is set to T_{40m} and no
- valid Paging Channel message is received until T72m seconds have elapsed, the mobile
- station shall disable the transmitter and shall continue to monitor the Paging Channel until
- the timer T_{40m} expires. If the mobile station is in the process of transmitting an access
- $_{7}$ probe when T_{72m} seconds have elapsed, the mobile station shall finish transmitting the
- access probe before disabling the transmitter.
- 9 If a valid Paging Channel message is received before the timer T_{40m} expires, the mobile
- station shall disable the timer T_{40m} , re-enable the transmitter and resume operation. If
- the mobile station is resuming an access sub-attempt (see 6.6.3.1.1.1) interrupted by
- temporary loss of the Paging Channel, the mobile station shall resume operation from the
- beginning of the interrupted access probe sequence of the access sub-attempt. The mobile
- station shall transmit the first probe of the new access probe sequence immediately after
- re-enabling the transmitter. The mobile station shall not resume an interrupted access
- 16 attempt more than once.

24

25

6.4.4 Forward Traffic Channel

- 18 The mobile station shall check the CRC of all received Forward Traffic messages (see
- 7.7.3.2.2). The mobile station shall consider any message with a CRC that checks to be
- valid. The mobile station shall ignore any message which is not valid.
- 21 When in the Mobile Station Control on the Traffic Channel State, the mobile station shall
- 22 continuously monitor the Forward Fundamental Code Channel, except:
 - During a PUF probe in which it transmits on a PUF target frequency (see 6.6.4.1.7),
 - During a search of pilots on a CDMA Candidate Frequency (see 6.6.6.2.8.3),
 - During a search of analog frequencies (see 6.6.6.2.10).
- 25 If the mobile station receives N_{2m} consecutive bad frames on the Forward Fundamental
- 27 Code Channel (see 6.2.2.2), it shall disable its transmitter. Thereafter, if the mobile station
- 28 receives N_{3m} consecutive good frames on the Forward Fundamental Code Channel, the
- 20 mobile station should re-enable its transmitter.
- 30 The mobile station shall establish a Forward Traffic Channel fade timer. The timer shall be
- enabled when the mobile station first enables its transmitter when in the Traffic Channel
- 22 Initialization Substate of the Mobile Station Control on the Traffic Channel State. The fade
- $_{3m}$ timer shall be reset for T_{5m} seconds whenever N_{3m} consecutive good frames are received on
- 34 the Forward Fundamental Code Channel. The mobile station shall disable the fade timer
- when it tunes to a PUF target frequency, and shall re-enable the fade timer at the end of
- 36 the PUF probe. If the timer expires, the mobile station shall disable its transmitter and
- declare a loss of the Forward Traffic Channel.
- 38 The mobile station also enables, disables, and resets the fade timer when it performs a hard
- handoff or a periodic search, as described in 6.6.6.2.8 and 6.6.6.2.10.

6.4.5 Accumulated Statistics

2 6.4.5.1 Accumulated Access Channel Statistics

- The mobile station shall maintain the counters shown in Table 6.4.5.1-1. Each counter
- shall be 16 bits long. The mobile station shall initialize each counter described herein to
- 5 zero upon power-on; the mobile station shall not re-initialize any counter described herein
- at any other time except upon command from the base station. Each counter shall be
- 7 maintained modulo 2¹⁶.
- The mobile station shall increment the ACC_1 counter for each Access Channel request
- message it generates. The mobile station shall increment the ACC_2 counter for each
- 10 Access Channel response messages it generates. The mobile station shall increment the
- 11 ACC_i counter during the i minus one transmission of an access probe in the access
- attempt, for i equals three to seven. The mobile station shall increment ACC_8 if the access
- attempt is unsuccessful due to the transmission of MAX_REQ_SEQ or MAX_RSP_SEQ
- probe sequences.

15 16

Table 6.4.5.1-1. Accumulated Access Channel Statistics

Counter Identifier	Length (bits)	Description
ACC_1	16	Number of Access Channel request messages generated by layer 3
ACC_2	16	Number of Access Channel response messages generated by layer 3
ACC_3	16	Number of times that an access probe was transmitted at least twice
ACC_4	16	Number of times that an access probe was transmitted at least three times
ACC_5	16	Number of times that an access probe was transmitted at least four times
ACC_6	16	Number of times that an access probe was transmitted at least five times
ACC_7	16	Number of times that an access probe was transmitted at least six times
ACC_8	16	Number of unsuccessful access attempts

- 6.4.5.2 Accumulated Reverse Traffic Channel Statistics
- The mobile station shall maintain the counters shown in Table 6.4.5.2-1 when supporting
- Multiplex Option 1 and in Table 6.4.5.2-2 when supporting Multiplex Option 2.
- 4 Each time the mobile station transmits a frame on the Reverse Fundamental Code Channel
- using the Multiplex Option 1, 3, 5, 7, 9, 11, 13 or 15, the mobile station shall increment
- the counter in Table 6.4.5.2-1 which corresponds to the type of frame. Similarly, each time
- the mobile station transmits a frame on the Reverse Fundamental Code Channel using
- 8 Multiplex Option 2, 4, 6, 8, 10, 12, 14, or 16, the mobile station shall increment the
- 9 counter in Table 6.4.5.2-2 which corresponds to the type of frame.
- 10 If the mobile station supports reverse Multiplex Options 3 through 16, the mobile station
- shall maintain the counters shown in Tables 6.4.5.2-3 in addition to counters shown in
- Table 6.4.5.2-1 and Table 6.4.5.2-2. Each time a frame is transmitted on one of the
- 13 Reverse Supplemental Code Channels, the mobile station shall increment the counter given
- in Table 6.4.5.2-3 which corresponds to the number of the Supplemental Code Channel
- and frame type transmitted.
- Each counter shall be 24 bits long. The mobile station shall initialize each counter
- described herein to zero upon power-on: the mobile station shall not re-initialize any
- counter described herein at any other time except upon command from the base station.
- Each counter shall be maintained modulo 2^{24} .
- Each time a Multiplex Option 1 Reverse Traffic Channel frame or Multiplex Option 2
- 21 Reverse Traffic Channel frame is transmitted, the mobile station shall increment the
- 22 counter corresponding to the multiplex option and the type of frame.

Table 6.4.5.2-1. Accumulated Reverse Fundamental Code Channel Statistics for Multiplex Options 1, 3, 5, 7, 9, 11, 13, and 15

Counter Identifier	Length (bits)	Type of Frame
MUX1_REV_1	24	9600 bps frame, primary traffic only or null Traffic Channel data only
MUX1_REV_2	24	9600 bps frame, dim-and-burst with Rate 1/2 primary and signaling traffic
MUX1_REV_3	24	9600 bps frame, dim-and-burst with Rate 1/4 primary and signaling traffic
MUX1_REV_4	24	9600 bps frame, dim-and-burst with Rate 1/8 primary and signaling traffic
MUX1_REV_5	24	9600 bps frame, blank-and-burst with signaling traffic only
MUX1_REV_6	24	4800 bps frame, primary traffic or null Traffic Channel data only
MUX1_REV_7	24	2400 bps frame, primary traffic or null Traffic Channel data only
MUX1_REV_8	24	1200 bps frame, primary traffic or null Traffic Channel data only
MUX1_REV_9	0	Reserved
MUX1_REV_10	0	Reserved
MUX1_REV_11	24.	9600 bps frame, dim-and-burst with Rate 1/2 primary and secondary traffic
MUX1_REV_12	24	9600 bps frame, dim-and-burst with Rate 1/4 primary and secondary traffic
MUX1_REV_13	24	9600 bps frame, dim-and-burst with Rate 1/8 primary and secondary traffic
MUX1_REV_14	24	9600 bps frame, blank-and-burst with secondary traffic only

Table 6.4.5.2-2. Accumulated Reverse Fundamental Code Channel Statistics for Multiplex Options 2, 4, 6, 8, 10, 12, 14, and 16 (Part 1 of 2)

Counter Identifier	Length (bits)	Type of Frame
MUX2_REV_1	24	14400 bps frame, primary traffic only or null Traffic Channel data only
MUX2_REV_2	24	14400 bps frame, dim-and-burst with Rate 1/2 primary and signaling traffic
MUX2_REV_3	. 24	14400 bps frame, dim-and-burst with Rate 1/4 primary and signaling traffic
MUX2_REV_4	24	14400 bps frame, dim-and-burst with Rate 1/8 primary and signaling traffic
MUX2_REV_5	24	14400 bps frame, blank-and-burst with signaling traffic only
MUX2_REV_6	24	14400 bps frame, dim-and-burst with Rate 1/2 primary and secondary traffic
MUX2_REV_7	24	14400 bps frame, dim-and-burst with Rate 1/4 primary and secondary traffic
MUX2_REV_8	24	14400 bps frame, dim-and-burst with Rate 1/8 primary and secondary traffic
MUX2_REV_9	24	14400 bps frame, blank-and-burst with secondary traffic only
MUX2_REV_10	24	14400 bps frame, dim-and-burst with Rate 1/8 primary, secondary traffic, and signaling traffic
MUX2_REV_11	24	7200 bps frame, primary traffic only or null Traffic Channel data only
MUX2_REV_12	24	7200 bps frame, dim-and-burst with Rate 1/4 primary and signaling traffic
MUX2_REV_13	24	7200 bps frame, dim-and-burst with Rate 1/8 primary and signaling traffic
MUX2_REV_14	24	7200 bps frame, blank-and-burst with signaling traffic only
MUX2_REV_15	24	7200 bps frame, dim-and-burst with Rate 1/4 primary and secondary traffic
MUX2_REV_16	24	7200 bps frame, dim-and-burst with Rate 1/8 primary and secondary traffic

Table 6.4.5.2-2. Accumulated Reverse Fundamental Code Channel Statistics for Multiplex Options 2, 4, 6, 8, 10, 12, 14, and 16 (Part 2 of 2)

Counter Identifier	Length (bits)	Type of Frame
MUX2_REV_17	24	7200 bps frame, blank-and-burst with secondary traffic only
MUX2_REV_18	24	7200 bps frame, dim-and-burst with Rate 1/8 primary, secondary traffic, and signaling traffic
MUX2_REV_19	24	3600 bps frame, primary traffic only or null Traffic Channel data only
MUX2_REV_20	24	3600 bps frame, dim-and-burst with Rate 1/8 primary and signaling traffic
MUX2_REV_21	24	3600 bps frame, blank-and-burst with signaling traffic only
MUX2_REV_22	24	3600 bps frame, dim-and-burst with Rate 1/8 primary and secondary traffic
MUX2_REV_23	24	3600 bps frame, blank-and-burst with secondary traffic only
MUX2_REV_24	24	1800 bps frame, primary traffic only or null Traffic Channel data only
MUX2_REV_25	24	1800 bps frame, blank-and-burst with secondary traffic only
MUX2_REV_26	, 0	Reserved

Table 6.4.5.2-3. Accumulated Reverse Supplemental Code Channel Statistics for Reverse Multiplex Options 3 through 16

Counter Identifier	Length (bits)	Type of Frame
SUPP1_REV_P	24	9600 bps or 14400 bps frame, primary traffic only
SUPP1_REV_S	24	9600 bps or 14400 bps frame, blank-and-burst with secondary traffic only
SUPP2_REV_P	24	9600 bps or 14400 bps frame, primary traffic only
SUPP2_REV_S	24	9600 bps or 14400 bps frame, blank-and-burst with secondary traffic only
SUPP3_REV_P	24	9600 bps or 14400 bps frame, primary traffic only
SUPP3_REV_S	24	9600 bps or 14400 bps frame, blank-and-burst with secondary traffic only
SUPP4_REV_P	24	9600 bps or 14400 bps frame, primary traffic only
SUPP4_REV_S	24	9600 bps or 14400 bps frame, blank-and-burst with secondary traffic only
SUPP5_REV_P	24	9600 bps or 14400 bps frame, primary traffic only
SUPP5_REV_S	24	9600 bps or 14400 bps frame, blank-and-burst with secondary traffic only
SUPP6_REV_P	24	9600 bps or 14400 bps frame, primary traffic only
SUPP6_REV_S	24	9600 bps or 14400 bps frame, blank-and-burst with secondary traffic only
SUPP7_REV_P	24	9600 bps or 14400 bps frame, primary traffic only
SUPP7_REV_S	24	9600 bps or 14400 bps frame, blank-and-burst with secondary traffic only

6.4.5.3 Accumulated Paging Channel Statistics

- 2 The mobile station shall maintain the counters shown in Table 6.4.5.3-1. The counters
- shall have the length as specified in Table 6.4.5.3-1. The mobile station shall initialize each
- 4 counter described herein to zero upon power-on; the mobile station shall not re-initialize
- 5 any counter described herein at any other time except upon command from the base
- station. Each counter shall be maintained modulo 2^{Length}, where Length is specified in
- 7 Table 6.4.5.3-1.

The mobile station shall increment the counter PAG_1 for each Paging Channel message

9 CRC that it tests. The mobile station shall increment the counter PAG_2 for each invalid

Paging Channel message. The mobile station shall increment the counter PAG_3¹⁶ for each

record or message that it receives addressed to the mobile station. The PAG_3 counter

shall not be incremented for messages detected as duplicates or for acknowledgments. The

mobile station shall increment the counter PAG_4 for each Paging Channel half frame (see

7.7.2.1.2) that it receives. The mobile station shall increment the counter PAG_5 for each

Paging Channel half frame that contains any part of a valid message. The mobile station

shall increment the counter PAG_6 each time that it declares a loss of the Paging Channel

(see 6.4.3). The mobile station shall increment the counter PAG_7 for each idle handoff it

18 performs.

12

13

15

16

Table 6.4.5.3-1. Accumulated Paging Channel Statistics

Counter Identifier	Length (bits)	Description
PAG_1	24	Number of Paging Channel messages the mobile station attempted to receive
PAG_2	24	Number of Paging Channel messages the mobile station received with a CRC that does not check
PAG_3	16	Number of Paging Channel messages or records the mobile station received that were addressed to it
PAG_4	24	Number of Paging Channel half frames received by the mobile station
PAG_5	24	Number of Paging Channel half frames that contain any part of a message with a CRC that checks
PAG_6	⁻ 16	Number of times that the mobile station declared a loss of the Paging Channel
PAG_7	16	Number of mobile station idle handoffs

²⁰

¹⁶ PAG_3 counts those messages processed by layer 3.

- 6.4.5.4 Accumulated Forward Traffic Channel Statistics
- The mobile station shall maintain the counters shown in Table 6.4.5.4-1 when supporting
- Multiplex Option 1 and in Table 6.4.5.4-2 when supporting Multiplex Option 2.
- Each time a mobile station categorizes a Multiplex Option 1, 3, 5, 7, 9, 11, or 15 Forward
- 5 Traffic Channel frame which is received on the Fundamental Code Channel (see 6.2.2.2),
- the mobile station shall increment the counter shown in Table 6.4.5.4-1 which corresponds
- to the type of frame. Similarly, each time a mobile station categorizes a Multiplex Option 2,
- 4, 6, 8, 10, 12, 14 or 16 Forward Traffic Channel frame which is received on the
- Fundamental Code Channel (see 6.2.2.2), the mobile station shall increment the counter
- shown in Table 6.4.5.4-2 which corresponds to the type of frame.
- If the mobile station supports forward Multiplex Options 3 through 16, the mobile station
- shall maintain the counters shown in Tables 6.4.5.4-3 in addition to counters shown in
- Table 6.4.5.4-1 and Table 6.4.5.4-2. Each time a frame is received on one of the Forward
- Supplemental Code Channels, the mobile station shall increment the counter given in Table
- 6.4.5.4-3 which corresponds to the number of the Supplemental Code Channel and frame
- type received.
- Each counter shall be 24 bits long. The mobile station shall initialize each counter
- described herein to zero upon power-on: the mobile station shall not re-initialize any
- counter described herein at any other time except upon command from the base station.
- Each counter shall be maintained modulo 2^{24} .
- 21 The accumulation shall stop when the mobile station exits the Mobile Station Control on the
- 2 Traffic Channel State.

Table 6.4.5.4-1. Accumulated Forward Fundamental Code Channel Statistics for Multiplex Options 1, 3, 5, 7, 9, 11,13, and 15

Counter Identifier	Length (bits)	Type of Frame
MUX1_FOR_1	24	9600 bps frame, primary traffic only or null Traffic Channel data only
MUX1_FOR_2	24	9600 bps frame, dim-and-burst with Rate 1/2 primary and signaling traffic
MUX1_FOR_3	24	9600 bps frame, dim-and-burst with Rate 1/4 primary and signaling traffic
MUX1_FOR_4	24	9600 bps frame, dim-and-burst with Rate 1/8 primary and signaling traffic
MUX1_FOR_5	24	9600 bps frame, blank-and-burst with signaling traffic only
MUX1_FOR_6	24	4800 bps frame, primary traffic or null Traffic Channel data only
MUX1_FOR_7	24	2400 bps frame, primary traffic or null Traffic Channel data only
MUX1_FOR_8	24	1200 bps frame, primary traffic or null Traffic Channel data only
MUX1_FOR_9	24	9600 bps frame with bit errors
MUX1_FOR_10	24	Frame quality insufficient to decide upon rate
MUX1_FOR_11	24	9600 bps frame, dim-and-burst with Rate 1/2 primary and secondary traffic
MUX1_FOR_12	24	9600 bps frame, dim-and-burst with Rate 1/4 primary and secondary traffic
MUX1_FOR_13	24	9600 bps frame, dim-and-burst with Rate 1/8 primary and secondary traffic
MUX1_FOR_14	24	9600 bps frame, blank-and-burst with secondary traffic only

Table 6.4.5.4-2. Accumulated Forward Fundamental Code Channel Statistics for Multiplex Options 2, 4, 6, 8, 10, 12, 14, and 16 (Part 1 of 2)

Counter Identifier	Length (bits)	Type of Frame
MUX2_FOR_1	24	14400 bps frame, primary traffic only or null Traffic Channel data only
MUX2_FOR_2	24	14400 bps frame, dim-and-burst with Rate 1/2 primary and signaling traffic
MUX2_FOR_3	24	14400 bps frame, dim-and-burst with Rate 1/4 primary and signaling traffic
MUX2_FOR_4	. 24	14400 bps frame, dim-and-burst with Rate 1/8 primary and signaling traffic
MUX2_FOR_5	24	14400 bps frame, blank-and-burst with signaling traffic only
MUX2_FOR_6	24	14400 bps frame, dim-and-burst with Rate 1/2 primary and secondary traffic
MUX2_FOR_7	24	14400 bps frame, dim-and-burst with Rate 1/4 primary and secondary traffic
MUX2_FOR_8	24	14400 bps frame, dim-and-burst with Rate 1/8 primary and secondary traffic
MUX2_FOR_9	24	14400 bps frame, blank-and-burst with secondary traffic only
MUX2_FOR_10	24	14400 bps frame, dim-and-burst with Rate 1/8 primary, secondary traffic, and signaling traffic
MUX2_FOR_11	24	7200 bps frame, primary traffic only or null Traffic Channel data only
MUX2_FOR_12	24	7200 bps frame, dim-and-burst with Rate 1/4 primary and signaling traffic
MUX2_FOR_13	24	7200 bps frame, dim-and-burst with Rate 1/8 primary and signaling traffic
MUX2_FOR_14	24	7200 bps frame, blank-and-burst with signaling traffic only
MUX2_FOR_15	24	7200 bps frame, dim-and-burst with Rate 1/4 primary and secondary traffic

Table 6.4.5.4-2. Accumulated Forward Fundamental Code Channel Statistics for Multiplex Options 2, 4, 6, 8, 10, 12, 14, and 16 (Part 2 of 2)

Counter Identifier	Length (bits)	Type of Frame
MUX2_FOR_16	24	7200 bps frame, dim-and-burst with Rate 1/8 primary and secondary traffic
MUX2_FOR_17	24	7200 bps frame, blank-and-burst with secondary traffic only
MUX2_FOR_18	24	7200 bps frame, dim-and-burst with Rate 1/8 primary, secondary traffic, and signaling traffic
MUX2_FOR_19	24	3600 bps frame, primary traffic only or null Traffic Channel data only
MUX2_FOR_20	24	3600 bps frame, dim-and-burst with Rate 1/8 primary and signaling traffic
MUX2_FOR_21	24	3600 bps frame, blank-and-burst with signaling traffic only
MUX2_FOR_22	24	3600 bps frame, dim-and-burst with Rate 1/8 primary and secondary traffic
MUX2_FOR_23	24	3600 bps frame, blank-and-burst with secondary traffic only
MUX2_FOR_24	24	1800 bps frame, primary traffic only or null Traffic Channel data only
MUX2_FOR_25	24	1800 bps frame, blank-and-burst with secondary traffic only
MUX2_FOR_26	24	Frame with insufficient frame quality

Table 6.4.5.4-3. Accumulated Forward Supplemental Code Channel Statistics for Multiplex Options 3 through 16

	Length	_
Counter Identifier	(bits)	Type of Frame
SUPP1_FOR_P	24	9600 bps or 14400 bps frame, primary traffic only
SUPP1_FOR_S	24	9600 bps or 14400 bps frame, blank-and-burst with secondary traffic only
SUPP2_FOR_P	24	9600 bps or 14400 bps frame, primary traffic only
SUPP2_FOR_S	24	9600 bps or 14400 bps frame, blank-and-burst with secondary traffic only
SUPP3_FOR_P	24 .	9600 bps or 14400 bps frame, primary traffic only
SUPP3_FOR_S	24	9600 bps or 14400 bps frame, blank-and-burst with secondary traffic only
SUPP4_FOR_P	24	9600 bps or 14400 bps frame, primary traffic only
SUPP4_FOR_S	24	9600 bps or 14400 bps frame, blank-and-burst with secondary traffic only
SUPP5_FOR_P	24	9600 bps or 14400 bps frame, primary traffic only
SUPP5_FOR_S	24	9600 bps or 14400 bps frame, blank-and-burst with secondary traffic only
SUPP6_FOR_P	24	9600 bps or 14400 bps frame, primary traffic only
SUPP6_FOR_S	24	9600 bps or 14400 bps frame, blank-and-burst with secondary traffic only
SUPP7_FOR_P	24	9600 bps or 14400 bps frame, primary traffic only
SUPP7_FOR_S	24	9600 bps or 14400 bps frame, blank-and-burst with secondary traffic only

- 6.4.5.5 Accumulated Layer Two Statistics
- The mobile station shall maintain the counters shown in Table 6.4.5.5-1. Each counter
- 3 shall be 16 bits long. The mobile station shall initialize each counter described herein to
- 4 zero upon power-on; the mobile station shall not re-initialize any counter described herein
- at any other time except upon command from the base station. Each counter shall be
- 6 maintained modulo 216.
- When the mobile station transmits a Reverse Traffic Channel message requiring an
- acknowledgment for the ith time, for i equals one to three it shall increment the counter
- 9 LAYER2_RTCi.
- The mobile station shall increment the counter LAYER2_RTC4 each time it aborts using the
- $_{11}$ Traffic Channel because the timeout expired after the N_{1m} transmission of a message
- requiring an acknowledgment.
- 13 The mobile station shall increment the counter LAYER2_RTC5 for each transmission of a
- message not requiring an acknowledgment on the Reverse Traffic Channel. This count
- shall include all transmissions, including those that were repeated multiple times or those
- carrying an identical layer 3 content.

Table 6.4.5.5-1. Accumulated Layer 2 Statistics

Counter Identifier	Length (bits)	Description
LAYER2_RTC1	16	Number of messages requiring acknowledgment that were transmitted at least once on the Reverse Traffic Channel
LAYER2_RTC2	16	Number of messages requiring acknowledgment that were transmitted at least twice on the Reverse Traffic Channel
LAYER2_RTC3	16	Number of messages requiring acknowledgment that were transmitted at least three times on the Reverse Traffic Channel
LAYER2_RTC4	16	Number of times that the mobile station aborted a call as a result of the timeout expiring after the N_{1m} transmission of a message requiring acknowledgment
LAYER2_RTC5	16	Number of times a message not requiring an acknowledgment was sent on the Reverse Traffic Channel

- 6.4.5.6 Other Monitored Quantities and Statistics
- The mobile station shall store the value described in Table 6.4.5.6-1.

Table 6.4.5.6-1. Other Monitored Quantities and Statistics

Quantity Identifier	Length (bits)	Description
OTHER_SYS_TIME		The SYS_TIME field from the most recently received Sync Channel Message

5

6.5 Malfunction Detection

6.5.1 Malfunction Timer

The mobile station shall have a malfunction timer that is separate from and independent of all other functions and that runs continuously whenever power is applied to the transmitter of the mobile station. Sufficient reset commands shall be interspersed throughout the mobile station logic program to ensure that the timer never expires as long as the proper sequence of operations is taking place. If the timer expires, a malfunction shall be assumed and the mobile station shall be inhibited from transmitting. The maximum time allowed for expiration of the timer is T_{67m} seconds.

6.5.2 False Transmission

A protection circuit must be provided to minimize the possibility of false transmitter operation caused by component failure within the mobile station.

6.5.3 Response to Base Station Orders

To ensure that a mobile station transmits a spread spectrum signal which does not adversely affect system capacity, the mobile station shall respond to the *Lock Until Power-Cycled Order* and *Maintenance Required Order* from the base station as specified in 6.6.2.4, 6.6.3.2 through 6.6.3.7, and 6.6.4.3 through 6.6.4.5. It is the responsibility of the base station to detect a mobile station transmission malfunction and to send the appropriate message.

No text.

6.6 Call Processing

- This section describes mobile station call processing. It contains frequent references to the
- messages that flow between the mobile station and base station. While reading this
- section, it may be helpful to refer to the message formats (see 6.7 and 7.7), and to the
- 5 message flow examples (see Annex B).
- 6 The mobile station shall ignore fields at the end of messages which do not exist in the
- 7 protocol revision supported by the mobile station.
- The values for the time and numerical constants used in this section (e.g., T20m, N4m) are
- 9 specified in Annex D.

11

12

13

14

15

16

17

- As illustrated in Figure 6.6-1, mobile station call processing consists of the following states:
 - Mobile Station Initialization State In this state, the mobile station selects and acquires a system.
 - *Mobile Station Idle State* In this state, the mobile station monitors messages on the Paging Channel.
 - System Access State In this state, the mobile station sends messages to the base station on the Access Channel.
 - Mobile Station Control on the Traffic Channel State In this state, the mobile station communicates with the base station using the Forward and Reverse Traffic Channels.
- After power is applied to the mobile station, it shall enter the System Determination Substate of the Mobile Station Initialization State with a power-up indication (see 6.6.1.1).

Figure 6.6-1. Mobile Station Call Processing States

- 6.6.1 Mobile Station Initialization State
- In this state, the mobile station first selects a system to use. If the selected system is a
- CDMA system, the mobile station proceeds to acquire and then synchronize to the CDMA
- system. If the selected system is an analog system, the mobile station begins analog mode
- 5 operation (see 2.6.1).
- 6 As illustrated in Figure 6.6.1-1, the Mobile Station Initialization State consists of the
- 7 following substates:

12

13

14

- *System Determination Substate* In this substate, the mobile station selects which system to use.
 - *Pilot Channel Acquisition Substate* In this substate, the mobile station acquires the Pilot Channel of a CDMA system.
- Sync Channel Acquisition Substate In this substate, the mobile station obtains system configuration and timing information for a CDMA system.
 - *Timing Change Substate* In this substate, the mobile station synchronizes its timing to that of a CDMA system.
- While in the *Mobile Station Initialization State*, the mobile station shall update all active registration timers as specified in 6.6.5.5.1.2.

Figure 6.6.1-1. Mobile Station Initialization State

- 1 6.6.1.1 System Determination Substate
- In this substate, the mobile station selects the system to use.
- Upon entering the System Determination Substate, the mobile station shall initialize
- registration parameters as specified in 6.6.5.5.1.1.
- 5 If the mobile station enters the System Determination Substate with a power-up indication,
- the mobile station shall set $RAND_S$ to 0 (see 2.3.12.1.2), PACA_S to disabled, PACA_CANCEL
- to '0', the PACA state timer to disabled, NDSS_ORIG $_{
 m S}$ to disabled, MAX_REDIRECT_DELAY $_{
 m S}$
- $_{
 m 8}$ to 31, and REDIRECTIONs to disabled. If the mobile station supports analog mode
- operation in Band Class 0, the mobile station shall set the First-Idle ID status to enabled
- (see 2.6.3.11). The mobile station shall select a system in accordance with the custom
- system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected system
- 12 (see 6.6.1.1.4).

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

- If the mobile station enters the *System Determination Substate* with any indication other than a power-up indication and PACA_s is equal to enabled, the mobile station shall set
- PACAs to disabled, PACA_CANCEL to '0', the PACA state timer to disabled, and should
- indicate to the user that the PACA call has been canceled.
- 17 If the mobile station enters the *System Determination Substate* with an acquisition failure indication, the mobile station shall perform the following:
 - If REDIRECTIONs is equal to enabled, the mobile station shall attempt to select
 another system in accordance with the current redirection criteria (see 6.6.1.1.2). If
 the mobile station is able to select another system, the mobile station shall attempt
 to acquire the selected system (see 6.6.1.1.4). Otherwise, if the mobile station has
 exhausted all possible selections using the current redirection criteria, the mobile
 station shall perform the following:
 - The mobile station shall set REDIRECTIONs to disabled.
 - The mobile station shall set RETURN_CAUSEs to '0001'.
 - If RETURN_IF_FAILs is equal to '1', the mobile station shall attempt to select the system from which it was redirected, and shall attempt to acquire the selected system (see 6.6.1.1.4). The precise process for determining how to select the system from which the mobile station was redirected is left to the mobile station manufacturer.
 - If RETURN_IF_FAILs is equal to '0', the mobile station shall select a system other than the system from which it was redirected in accordance with the custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected system (see 6.6.1.1.4). The precise process that the mobile station uses to avoid selecting the system from which it was redirected is left to the mobile station manufacturer.
 - If REDIRECTIONs is equal to disabled, the mobile station shall select a system in accordance with the custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected system (see 6.6.1.1.4).

- If the mobile station enters the System Determination Substate with a new system 1
- indication, the mobile station shall set REDIRECTIONs to disabled. If NDSS_ORIGs is 2
- enabled, the mobile station shall set NDSS_ORIGs to disabled and should indicate to the
- user that the call origination has been canceled. The mobile station shall select a system in
- accordance with the custom system selection process (see 6.6.1.1.1), and shall attempt to
- acquire the selected system (see 6.6.1.1.4). 6
- If the mobile station enters the System Determination Substate with a CDMA available 7
- indication, the mobile station shall set $REDIRECTION_S$ to disabled. If $NDSS_ORIG_S$ is
- enabled, the mobile station shall set NDSS_ORIGs to disabled and should indicate to the
- user that the call origination is canceled. The mobile station should set CDMACH_s to the 10
- CDMA Channel (CDMA FREQ) specified in the CDMA Capability Global Action Message and 11
- should attempt to acquire a CDMA system on the specified CDMA channel (see 6.6.1.1.4). 12
- If the mobile station does not attempt to acquire a CDMA system on the specified CDMA 13
- Channel, the mobile station shall select a system in accordance with the custom system 14
- selection process (see 6.6.1.1.1), and shall attempt to acquire the selected system (see 15
- 6.6.1.1.4). 16
- If the mobile station enters the System Determination Substate with an additional CDMA 17
- available indication, the mobile station shall set REDIRECTIONs to disabled. 18
- ${
 m NDSS_ORIG_S}$ is enabled, the mobile station shall set ${
 m NDSS_ORIG_S}$ to disabled and should 19
- indicate to the user that the call origination is canceled. The mobile station should set 20
- CDMACH_s to the CDMA Channel (CDMA_FREQ) specified in the CDMA Info Order and 21
- should attempt to acquire a CDMA system on the specified CDMA channel (see 6.6.1.1.4). 22
- If the mobile station does not attempt to acquire a CDMA system on the specified CDMA 23
- Channel, the mobile station shall select a system in accordance with the custom system 24
- selection process (see 6.6.1.1.1), and shall attempt to acquire the selected system (see 25
- 6.6.1.1.4). 26
- If the mobile station enters the System Determination Substate with a reselection indication, 27
- the mobile station shall set REDIRECTIONs to disabled. If NDSS_ORIGs is enabled, the 28
- mobile station shall set NDSS_ORIGs to disabled and should indicate to the user that the 29
- call origination is canceled. The mobile station shall select a system in accordance with the 30
- custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected 31
- system (see 6.6.1.1.4). 32
- If the mobile station enters the System Determination Substate with a system reselection
- indication, the mobile station shall set $REDIRECTION_s$ to disabled. If $NDSS_ORIG_s$ is 34
- enabled, the mobile station shall set NDSS_ORIGs to disabled and should indicate to the 35
- user that the call origination is canceled. The mobile station should attempt to select a 36
- system available for system reselection as specified in 6.6.1.1.3, and should attempt to
- acquire the selected system (see 6.6.1.1.4). The precise process for determining how to 38
- select such a system is left to the mobile station manufacturer. If the mobile station does 39
- not attempt to select such a system, the mobile station shall select a system in accordance
- 40
- with the custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the 41
- selected system (see 6.6.1.1.4). 42
- If the mobile station enters the System Determination Substate with a rescan indication, the
- mobile station shall set REDIRECTIONs to disabled. If NDSS_ORIGs is enabled, the mobile

station shall set NDSS_ORIG_S to disabled and should indicate to the user that the call origination is canceled. The mobile station shall select a system in accordance with the custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected system (see 6.6.1.1.4).

If the mobile station enters the *System Determination Substate* with a protocol mismatch indication, the mobile station shall perform the following:

- If REDIRECTIONs is equal to enabled, the mobile station shall attempt to select another system in accordance with the current redirection criteria (see 6.6.1.1.2). If the mobile station is able to select another system, the mobile station shall attempt to acquire the selected system (see 6.6.1.1.4). Otherwise, if the mobile station has exhausted all possible selections using the current redirection criteria, the mobile station shall perform the following:
 - The mobile station shall set REDIRECTIONs to disabled.

- The mobile station shall set RETURN_CAUSE_s to '0010'.
- If RETURN_IF_FAILs is equal to '1', the mobile station shall attempt to select the system from which it was redirected, and shall attempt to acquire the selected system (see 6.6.1.1.4). The precise process for determining how to select the system from which the mobile station was redirected is left to the mobile station manufacturer.
- If RETURN_IF_FAIL_S is equal to '0', the mobile station shall select a system other than the system from which it was redirected in accordance with the custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected system (see 6.6.1.1.4). The precise process for determining how to avoid the system from which the mobile station was redirected is left to the mobile station manufacturer.
- If REDIRECTIONs is equal to disabled, the mobile station shall select a system in accordance with the custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected system (see 6.6.1.1.4).

If the mobile station enters the $System\ Determination\ Substate$ with a system lost indication, the mobile station shall set REDIRECTIONs to disabled. If NDSS_ORIGs is enabled, the mobile station shall set NDSS_ORIGs to disabled and should indicate to the user that the call origination is canceled. The mobile station should attempt to select the same system that was lost, and should attempt to acquire the selected system (see 6.6.1.1.4). The precise process for determining how to select the same system is left to the mobile station manufacturer. If the mobile station does not attempt to select the same system, the mobile station shall select a system in accordance with the custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected system (see 6.6.1.1.4).

If the mobile station enters the $System\ Determination\ Substate$ with a lock indication, the mobile station shall set REDIRECTIONs to disabled. If NDSS_ORIGs is enabled, the mobile station shall set NDSS_ORIGs to disabled and should indicate to the user that the call origination is canceled. The mobile station shall select a system in accordance with the

- custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected
- 2 system (see 6.6.1.1.4).
- 3 If the mobile station enters the System Determination Substate with an unlock indication,
- the mobile station shall set REDIRECTIONs to disabled. If NDSS_ORIGs is enabled, the
- mobile station shall set NDSS_ORIGs to disabled and should indicate to the user that the
- 6 call origination is canceled. The mobile station shall select a system in accordance with the
- custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected
- 8 system (see 6.6.1.1.4).
- 9 If the mobile station enters the System Determination Substate with an access denied
- indication, the mobile station shall set REDIRECTIONs to disabled. If NDSS_ORIGs is
- enabled, the mobile station shall set NDSS_ORIGs to disabled and should indicate to the
- user that the call origination is canceled. The mobile station shall select a system in
- accordance with the custom system selection process (see 6.6.1.1.1), and shall attempt to
- acquire the selected system (see 6.6.1.1.4).
- 15 If the mobile station enters the System Determination Substate with an NDSS off indication,
- the mobile station shall set REDIRECTIONs to disabled. If NDSS_ORIGs is enabled, the
- mobile station shall set NDSS_ORIG_s to disabled and should indicate to the user that the
- call origination is canceled. The mobile station shall select a system in accordance with the
- custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected
- 20 system (see 6.6.1.1.4).
- $_{21}$ If the mobile station enters the $System\ Determination\ Substate$ with a release indication and
- 22 REDIRECTIONs is equal to enabled, the mobile station shall attempt to select the same
- system on which the release occurred, and shall attempt to acquire the selected system (see
- 6.6.1.1.4). The precise process for determining how to select the same system is left to the
- mobile station manufacturer. If REDIRECTIONs is equal to disabled, the mobile station
- shall select a system in accordance with the custom system selection process (see
- 27 6.6.1.1.1), and shall attempt to acquire the selected system (see 6.6.1.1.4). If NDSS_ORIGS
- is enabled, the mobile station shall set NDSS_ORIG_S to disabled.
- 29 If the mobile station enters the System Determination Substate with an error indication, the
- mobile station shall set REDIRECTIONs to disabled. If NDSS_ORIGs is enabled, the mobile
- station shall set NDSS_ORIG_S to disabled and should indicate to the user that the call
- origination is canceled. The mobile station shall select a system in accordance with the
- custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected
- 34 system (see 6.6.1.1.4).
- If the mobile station enters the System Determination Substate with a redirection indication,
- the mobile station shall set REDIRECTIONs to enabled. The mobile station shall delete all
- entries from the ZONE_LIST_S and SID_NID_LIST_S. The mobile station shall select a system
- in accordance with the current redirection criteria (see 6.6.1.1.2), and shall attempt to
- acquire the selected system (see 6.6.1.1.4).
- 40 If the mobile station enters the System Determination Substate with a registration rejected
- indication, the mobile station shall perform the following:
 - If REDIRECTIONs is equal to enabled, the mobile station shall perform the following:

- The mobile station shall set REDIRECTION_s to disabled.
- The mobile station shall set RETURN_CAUSEs to '0011'.

3

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

- If RETURN_IF_FAILs is equal to '1', the mobile station shall attempt to select the system from which it was redirected, and shall attempt to acquire the selected system (see 6.6.1.1.4). The precise process for determining how to select the system from which the mobile station was redirected is left to the mobile station manufacturer.
- If RETURN_IF_FAILs is equal to '0', the mobile station shall select a system other than the system from which it was redirected in accordance with the custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected system (see 6.6.1.1.4). The precise process for determining how to avoid the system from which the mobile station was redirected is left to the mobile station manufacturer.
- If REDIRECTIONs is equal to disabled, the mobile station shall select a system in accordance with the custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected system (see 6.6.1.1.4).

If the mobile station enters the *System Determination Substate* with a wrong system indication, the mobile station shall perform the following:

- If REDIRECTIONs is equal to enabled, the mobile station shall attempt to select
 another system in accordance with the current redirection criteria (see 6.6.1.1.2). If
 the mobile station is able to select another system, the mobile station shall attempt
 to acquire the selected system (see 6.6.1.1.4). Otherwise, if the mobile station has
 exhausted all possible selections using the current redirection criteria, the mobile
 station shall perform the following:
 - The mobile station shall set REDIRECTIONs to disabled.
 - The mobile station shall set RETURN_CAUSEs to '0100'.
 - If RETURN_IF_FAIL_S is equal to '1', the mobile station shall attempt to select the system from which it was redirected, and shall attempt to acquire the selected system (see 6.6.1.1.4). The precise process for determining how to select the system from which the mobile station was redirected is left to the mobile station manufacturer.
 - If RETURN_IF_FAIL_s is equal to '0', the mobile station shall select a system other than the system from which it was redirected in accordance with the custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected system (see 6.6.1.1.4). The precise process for determining how to avoid the system from which the mobile station was redirected is left to the mobile station manufacturer.
- If REDIRECTION_S is equal to disabled, the mobile station shall select a system in accordance with the custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected system (see 6.6.1.1.4).

- 1

2

3

10

12

13

14

17

18

19

20

22

23

24

28

30

32

33

- If the mobile station enters the *System Determination Substate* with a wrong network indication, the mobile station shall perform the following:
 - If REDIRECTION_S is equal to enabled, the mobile station shall attempt to select another system in accordance with the current redirection criteria (see 6.6.1.1.2). If the mobile station is able to select another system, the mobile station shall attempt to acquire the selected system (see 6.6.1.1.4). Otherwise, if the mobile station has exhausted all possible selections using the current redirection criteria, the mobile station shall perform the following:
 - The mobile station shall set REDIRECTIONs to disabled.
 - The mobile station shall set RETURN_CAUSE_s to '0101'.
 - If RETURN_IF_FAILs is equal to '1', the mobile station shall attempt to select the system from which it was redirected, and shall attempt to acquire the selected system (see 6.6.1.1.4). The precise process for determining how to select the system from which the mobile station was redirected is left to the mobile station manufacturer.
 - If RETURN_IF_FAIL_s is equal to '0', the mobile station shall select a system other than the system from which it was redirected in accordance with the custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected system (see 6.6.1.1.4). The precise process for determining how to avoid the system from which the mobile station was redirected is left to the mobile station manufacturer.
 - If REDIRECTION_S is equal to disabled, the mobile station shall select a system in accordance with the custom system selection process (see 6.6.1.1.1), and shall attempt to acquire the selected system (see 6.6.1.1.4).
- **5** 6.6.1.1.1 Custom System Selection Process
- The precise process for custom system selection is left to the mobile station manufacturer.
- 27 It is typically influenced by a set of expressed user preferences, such as the following:
 - System A (or B) only (Band Class 0 only)
 - System A (or B) preferred (Band Class 0 only)
 - CDMA (or analog) system only
- CDMA (or analog) system preferred
 - 800 MHz (or 1.8 GHz) band only (CDMA system)
 - 800 MHz (or 1.8 GHz) band preferred (CDMA system)
- The mobile station shall perform the custom system selection process as follows:
 - The mobile station shall determine which system to use.
- If the mobile station is to use a CDMA system, it shall set CDMABAND_S to the band class (see TSB58-A) for the selected system.

- If the mobile station is to use a CDMA system with CDMABAND_S = '00000', it shall perform the following:
 - If the mobile station is to use System A, it shall set SERVSYS_s to SYS_A. If the mobile station is to use System B, it shall set SERVSYS_s to SYS_B.
 - The mobile station shall set CDMACH_S either to the Primary or Secondary CDMA Channel number (see 7.1.1.1) for the selected serving system (SERVSYS_S). If the mobile station fails to acquire a CDMA system on the first CDMA Channel it tries, the mobile station should attempt to acquire on the alternate CDMA Channel (Primary or Secondary) before attempting other alternatives.
- If the mobile station is to use a CDMA system with CDMABAND_S = '00001', it shall set CDMACH_S to the CDMA Channel number (see 6.1.1.1.2) for the selected system.
- If the mobile station is to use System A of the 800 MHz analog system, it shall set SERVSYS_s to SYS_A. If the mobile station is to use System B of the 800 MHz analog system, it shall set SERVSYS_s to SYS_B.
- 6.6.1.1.2 System Selection Using Current Redirection Criteria

10

11

21

22

23

24

25

33

34

35

- To perform system selection using current redirection criteria, the mobile station shall use information received either in a *Service Redirection Message* or a *Global Service Redirection Message* and stored in the variable REDIRECT_REC_S.
- If the RECORD_TYPE field of REDIRECT_REC_s is equal to '00000001' and the mobile station supports Band Class 0, the mobile station shall perform system selection as follows:
 - If the SYS_ORDERING field is equal to '000', the mobile station shall make sequential system selections as follows:
 - The mobile station shall set SERVSYS_s either to SYS_A or SYS_B. The precise process for determining how many system selections to make and for determining whether to use SYS_A or SYS_B is left to the mobile station manufacturer.
- If the SYS_ORDERING field is equal to '001', the mobile station shall select no more than one system selection as follows:
 - The mobile station shall set SERVSYS_s to SYS_A.
- If the SYS_ORDERING field is equal to '010', the mobile station shall make at most one system selection as follows:
 - The mobile station shall set SERVSYS_S to SYS_B.
 - If the SYS_ORDERING field is equal to '011', the mobile station shall make at most two sequential system selections as follows:
 - For the first system selection, the mobile station shall set SERVSYS_s to SYS_A.
 - For the second system selection, the mobile station shall set SERVSYS_s to SYS_B.

10

11

12

13

14

15

16

17

18

20

21

22

23

25

26

27

28

29

30

31

32

33

34

35

36

37

- If the SYS_ORDERING field is equal to '100', the mobile station shall make at most 2 sequential system selections as follows:
 - For the first system selection, the mobile station shall set SERVSYS_S to SYS_B.
- For the second system selection, the mobile station shall set SERVSYS_s to SYS_A.
- If the SYS_ORDERING field is equal to '101', the mobile station shall make at most 2 sequential system selections as follows:
 - For the first system selection, the mobile station shall set SERVSYS_s either to SYS_A or SYS_B. The precise process for determining whether to use SYS_A or SYS_B first is left to the mobile station manufacturer.
 - For the second system selection, the mobile station shall set SERVSYS_s to SYS_B if SYS_A was used for the first selection, or to SYS_A if SYS_B was used for the first selection.

If the RECORD_TYPE field of REDIRECT_REC_s is equal to '00000010', the mobile station shall perform system selection as follows:

- If the BAND_CLASS field is equal to '00000' and the mobile station supports CDMA mode operation in Band Class 0, the mobile station shall make at most *n* sequential system selections, where *n* is equal to the value of the NUM_CHANS field, as follows:
 - For the *ith* system selection, where *i* ranges from 1 to *n*, the mobile station shall set CDMACH_S to the value of the *ith* occurrence of the CDMA_CHAN field and shall set CDMABAND_S to 0.
- If the BAND_CLASS field is equal to '00001' and the mobile station supports CDMA mode operation in Band Class 1, the mobile station shall make at most *n* sequential system selections, where *n* is equal to the value of the NUM_CHANS field, as follows:
 - For the ith system selection, where i ranges from 1 to n, the mobile station shall set CDMACH_S to the value of the ith occurrence of the CDMA_CHAN field and shall set CDMABAND_S to 1.
- 6.6.1.1.3 System Selection Using System Reselection Criteria
- The precise process for selecting a system using system reselection criteria is left to the mobile station manufacturer. The mobile station should use information received in the Extended Neighbor List Message or the General Neighbor List Message to perform the system reselection process as follows:
 - If there are pilots in the Neighbor List on a different frequency assignment than that
 of the mobile station, the mobile station may select the CDMA system consisting of
 these neighbor pilots. If the mobile station is to use a CDMA system, it shall set
 CDMABAND_S to the band class (see TSB58-A) for the selected system and shall set
 CDMACH_S to the CDMA Channel number (see 6.1.1.1.2) for the selected system.

6-148

- If NUM_ANALOG_NGHBR_S is not equal to '000', the mobile station may select an analog system as specified by ANALOG_NGHBR_LIST. If the mobile station is to use System A of the 800 MHz analog system, it shall set SERVSYS_S to SYS_A. If the mobile station is to use System B of the 800 MHz analog system, it shall set SERVSYS_S to SYS_B.
- 6 6.6.1.1.4 Acquiring the Selected System

10

- 7 The mobile station shall attempt to acquire the selected system as follows:
 - If the selected system is an analog system, the mobile station shall enter the Initialization Task (see 2.6.1).
 - If the selected system is a CDMA system, the mobile station shall enter the *Pilot Channel Acquisition Substate*.
- 2 6.6.1.2 Pilot Channel Acquisition Substate
- In this substate, the mobile station acquires the Pilot Channel of the selected CDMA system.
- Upon entering the *Pilot Channel Acquisition Substate*, the mobile station shall tune to the CDMA Channel number equal to CDMACH_S, shall set its code channel for the Pilot Channel (see 7.1.3.1.9), and shall search for the Pilot Channel for no longer than T_{20m} seconds (see Annex D). If the mobile station acquires the Pilot Channel, the mobile station shall enter
- the Sync Channel Acquisition Substate.
- 20 If the mobile station determines that it is unlikely to acquire the Pilot Channel within T_{20m}
- seconds, the mobile station may enter the System Determination Substate with an
- 22 acquisition failure indication (see 6.6.1.1). The time, to either acquire the Pilot Channel or
- determine that Pilot Channel acquisition is unlikely, shall not exceed T20m seconds (see
- 24 Annex D), after which the mobile station shall enter the System Determination Substate
- with an acquisition failure indication (see 6.6.1.1).
- 26 6.6.1.3 Sync Channel Acquisition Substate
- In this substate, the mobile station receives and processes the Sync Channel Message to
- 28 obtain system configuration and timing information.
- 29 Upon entering the Sync Channel Acquisition Substate, the mobile station shall set its code
- ∞ channel for the Sync Channel (see 7.1.3.1.9).
- If the mobile station does not receive a valid Sync Channel Message (see 6.4.2) within T_{21m}
- seconds, the mobile station shall enter the System Determination Substate with an
- acquisition failure indication.
- If the mobile station receives a valid Sync Channel Message within T_{21m} seconds but the
- protocol revision level supported by mobile station (MOB_P_REV_p of the current band class)
- is less than the minimum protocol revision level supported by the base station
- 37 (MIN_P_REV_r), the mobile station shall enter the System Determination Substate with a
- ⇒ protocol mismatch indication (see 6.6.1.1).

- If the mobile station receives a valid Sync Channel Message within T21m seconds but the
- value of the PRAT_r field is designated as reserved by the protocol revision level supported by
- the mobile station (MOB_P_REV_p of the current band class), the mobile station shall enter
- the System Determination Substate with a protocol mismatch indication (see 6.6.1.1).
- If the mobile station receives a valid Sync Channel Message within T21m seconds and the
- 6 protocol revision level supported by the mobile station (MOB_P_REV_p of the current band
- 7 class) is greater than or equal to the minimum protocol revision level supported by the base
- station (MIN_P_REV_r), the mobile station shall store the following information from the
- 9 message:

11

17

19

25

26

- Protocol revision level (P_REV_s = P_REV_r)
- Minimum protocol revision level (MIN_P_REV_s = MIN_P_REV_r)
- System identification ($SID_s = SID_r$)
- Network identification $(NID_s = NID_r)$
- Pilot PN sequence offset index (PILOT_PN_s = PILOT_PN_r)
- Long code state (LC_STATE_s = LC_STATE_t)
- System Time (SYS_TIME_s = SYS_TIME_r)
 - Paging Channel data rate (PRAT_S = PRAT_r)
 - Protocol revision level currently in use (P_REV_IN_USE_s = the lesser value of P_REV_s and MOB_P_REV_p of the current band class)
- The mobile station shall ignore any fields at the end of the *Sync Channel Message* which are not defined according to the protocol revision level (MOB_P_REV_p) of the current band class) being used by the mobile station.
- The mobile station may store the following information from the message:
 - Number of leap seconds that have occurred since the start of System Time (LP_SEC_s = LP_SEC_r)
 - Offset of local time from System Time (LTM_OFF_s = LTM_OFF_r)
 - Daylight savings time indicator (DAYLT_s = DAYLT_r)
- 28 If REDIRECTIONs and NDSS_ORIGs are equal to disabled, the mobile station may enter the
- System Determination Substate with a reselection indication (see 6.6.1.1).
- 30 If REDIRECTION_S is equal to enabled, the EXPECTED_SID field of REDIRECT_REC_S is not
- $_{31}$ equal to 0, and SID $_{r}$ is not equal to EXPECTED_SID, the mobile station shall enter the
- System Determination Substate with a wrong system indication (see 6.6.1.1). If
- REDIRECTION_S is equal to enabled, the EXPECTED_NID field of REDIRECT_REC_S is not
- 34 equal to 65535, and NID_r is not equal to EXPECTED_NID, the mobile station shall enter the
- System Determination Substate with a wrong network indication.
- $_{36}$ If CDMACH_S is different from CDMA_FREQ_r, the mobile station shall set CDMACH_S
- = CDMA_FREQ_r. The mobile station shall then tune to the CDMA Channel.
- 38 The mobile station shall enter the *Timing Change Substate*.

- 6.6.1.4 Timing Change Substate
- Figure 6.6.1.4-1 illustrates the mobile station timing changes that occur in this substate.
- The mobile station synchronizes its long code timing and system timing to those of the
- 4 CDMA system, using the PILOT_PN_s, LC_STATE_s, and SYS_TIME_s values obtained from the
- $_{5}$ received Sync Channel Message. SYS_TIME $_{
 m S}$ is equal to the System Time (see 1.2)
- corresponding to 320 ms past the end of the last 80 ms superframe (see Figure 7.1.3.2.1-1)
- of the received Sync Channel Message minus the pilot PN sequence offset. LC_STATEs is
- equal to the system long code state (see 6.1.3.1.8) corresponding to SYS_TIME_s.
- In the Timing Change Substate, the mobile station shall synchronize its long code timing to
- the CDMA system long code timing derived from LC_STATE_s, and synchronize its system
- timing to the CDMA system timing derived from SYS_TIME_S.
- 12 The mobile station shall:

14

20

21

22

23

24

- Set PAGECH_s to the Primary Paging Channel (see 7.1.3.4);
- Set PAGE_CHAN_s to '1';
- Set the stored message sequence numbers CONFIG_MSG_SEQ_S,
 SYS_PAR_MSG_SEQ_S, ACC_MSG_SEQ_S, NGHBR_LST_MSG_SEQ_S,
 GEN_NGHBR_LST_MSG_SEQ_S, EXT_NGHBR_LST_MSG_SEQ_S,
 CHAN_LST_MSG_SEQ_S, EXT_SYS_PAR_MSG_SEQ_S, and
 GLOB_SERV_REDIR_MSG_SEQ_S variables to NULL (see 6.6.2.2);
 - Set IMSI_11_12_s and MCC_s to NULL;
 - Perform registration initialization as specified in 6.6.5.5.1.3; and
 - If the bits of TMSI_CODE_{s-p} are not all equal to '1' and if SYS_TIME_s exceeds TMSI_EXP_TIME_{s-p} \times 2¹², the mobile station shall set all the bits of TMSI_CODE_{s-p} to '1'.
- The mobile station shall enter the Mobile Station Idle State.

6-151

Figure 6.6.1.4-1. Mobile Station Internal Timing

6.6.2 Mobile Station Idle State

- $_{5}$ In this state, the mobile station monitors the Paging Channel. The mobile station can
- receive messages, receive an incoming call (mobile station terminated call), initiate a call
 - (mobile station originated call), cancel a PACA call, initiate a registration, or initiate a
- 8 message transmission.

17

18

19

20

21

22

23

- 9 Upon entering the Mobile Station Idle State, the mobile station shall set its code channel to
- $_{\rm 10}$ $\,$ PAGECH $_{\rm S},$ shall set the Paging Channel data rate as determined by ${\rm PRAT}_{\rm S}$ and shall
- perform Paging Channel supervision as specified in 6.4.3.
- 12 If REDIRECTIONs, PACAs, and NDSS_ORIGs are equal to disabled, the mobile station may
- exit the Mobile Station Idle State at any time and enter the System Determination Substate of
- the Mobile Station Initialization State with a reselection indication (see 6.6.1.1).
- While in the *Mobile Station Idle State*, the mobile station shall perform the following procedures:
 - The mobile station shall perform Paging Channel monitoring procedures as specified in 6.6.2.1.1.
 - The mobile station shall perform message acknowledgment procedures as specified in 6.6.2.1.2.
 - The mobile station shall perform registration procedures as specified in 6.6.2.1.3.
 - The mobile station shall perform idle handoff procedures as specified in 6.6.2.1.4.
 - The mobile station shall perform system reselection procedures as specified in 6.6.2.1.6.

- The mobile station shall perform the Response to Overhead Information Operation as specified in 6.6.2.2 whenever the mobile station receives a system overhead message (System Parameters Message, CDMA Channel List Message, Extended System Parameters Message, Neighbor List Message, Extended Neighbor List Message, General Neighbor List Message, Global Service Redirection Message, or Access Parameters Message).
- The mobile station shall perform the Mobile Station Page Match Operation as specified in 6.6.2.3 whenever it receives a General Page Message.
 - The mobile station shall perform the *Mobile Station Order and Message Processing Operation* as specified in 6.6.2.4 whenever a message or order directed to the mobile station is received other than a *General Page Message*.
 - The mobile station shall set NDSS_ORIG_s to disabled if directed by the user to cancel the call origination.
 - The mobile station shall perform the Mobile Station Origination Operation as specified in 6.6.2.5 if directed by the user to initiate a call, or if NDSS_ORIG_S is equal to enabled.
 - The mobile station shall perform the Mobile Station PACA Cancel Operation as specified in 6.6.2.8, if PACA_s is equal to enabled and any of the following conditions are met:
 - PACA_CANCEL is equal to '1'; or

11

12

13

14

15

16

19

20

21

22

23

24

25

26

27

28

29

30

31

- The mobile station is directed by the user to cancel the PACA call.
- If the PACA state timer expires, the mobile station shall perform the following:
 - The mobile station should enter the *Update Overhead Information Substate* of the *System Access State* (see 6.6.3) with an origination indication within T_{33m} seconds to re-originate the PACA call.
 - Otherwise, the mobile station shall perform the Mobile Station PACA Cancel Operation as specified in 6.6.2.8.
- If the mobile station supports *Data Burst Message* transmission, it shall perform the *Mobile Station Message Transmission Operation* as specified in 6.6.2.6 if directed by the user to transmit a message.
- The mobile station shall perform the *Mobile Station Power-Down Operation* as specified in 6.6.2.7 if directed by the user to power down.
- If the bits of TMSI_CODE_{S-p} are not all equal to '1' and if System Time (in 80 ms units) exceeds TMSI_EXP_TIME_{S-p} \times 2¹², the mobile station shall set all the bits of TMSI_CODE_{S-p} to '1' within T_{66m} seconds.
- If the full-TMSI timer expires or has expired, the mobile station shall set all the bits of TMSI_CODE_{s-p} to '1'. The mobile station shall update the registration variables as described in 6.6.5.5.2.5.

- 6.6.2.1 Idle Procedures
- 2 6.6.2.1.1 Paging Channel Monitoring Procedures
- 3 6.6.2.1.1.1 General Overview
- 4 The Paging Channel is divided into 80 ms slots called Paging Channel slots. Paging and
- 5 control messages for a mobile station operating in the non-slotted mode can be received in
- any of the Paging Channel slots; therefore, the non-slotted mode of operation requires the
- 7 mobile station to monitor all slots.
- 8 6.6.2.1.1.1.1 General Overview for Individually Addressed Messages
- 9 The Paging Channel protocol provides for scheduling the transmission of messages for a
- specific mobile station in certain assigned slots. Support of this feature is optional and
- may be enabled by each mobile station. A mobile station that monitors the Paging Channel
- only during certain assigned slots is referred to as operating in the slotted mode. During
- the slots in which the Paging Channel is not being monitored, the mobile station can stop
- or reduce its processing for power conservation. A mobile station may not operate in the
- slotted mode in any state except the Mobile Station Idle State.
- A mobile station operating in the slotted mode generally monitors the Paging Channel for
- one or two slots per slot cycle. The mobile station can specify its preferred slot cycle using
- the SLOT_CYCLE_INDEX field in the Registration Message, Origination Message, or Page
- Response Message. The mobile station can also specify its preferred slot cycle using the
- SLOT_CYCLE_INDEX field of the Terminal Information record of the Status Response
- 21 Message or the Extended Status Response Message. In addition, the mobile station can
- also specify its preferred slot cycle using the SLOT_CYCLE_INDEX field of the Terminal
- 23 Information record of the Status Response Message or the Status Message when in the
- Mobile Station Control on the Traffic Channel State. The length of the slot cycle, T, in units
- of 1.28 seconds, is given by

26

- $T = 2^{i}$.
- where i is the selected slot cycle index (see 6.6.2.1.1.3).
- A mobile station operating in the slotted mode may optionally monitor additional slots to
- receive broadcast messages and/or broadcast pages (see 6.6.2.1.1.3.3 and 6.6.2.1.1.3.4).
- $_{\infty}$ There are 16 x T slots in a slot cycle.
- 31 SLOT_NUM is the Paging Channel slot number, modulo the maximum length slot cycle
- 22 (2048 slots). That is, the value of SLOT_NUM is
 - $SLOT_NUM = \lfloor t/4 \rfloor \mod 2048$,
- where t is the System Time in frames. For each mobile station, the starting times of its slot
- cycles are offset from the slot in which SLOT_NUM equals zero by a fixed, randomly
- selected number of slots as specified in 6.6.2.1.1.3.

¹ The minimum length slot cycle consists of 16 slots of 80 ms each, hence 1.28 seconds.

- Figure 6.6.2.1.1.1-1 shows an example for a slot cycle length of 1.28 seconds, in which the
- computed value of PGSLOT (see 6.6.2.1.1.3) is equal to 6, so that one of the mobile station's
- slot cycles begins when SLOT_NUM equals 6. The mobile station begins monitoring the
- Paging Channel at the start of the slot in which SLOT_NUM equals 6. The next slot in
- which the mobile station must begin monitoring the Paging Channel is 16 slots later, i.e.,
- 6 the slot in which SLOT_NUM is 22.

A - Reacquisition of CDMA System

10

11

12

13

14

15

16

17

18

20

21

22

6 - Mobile Station's Assigned Paging Channel Slot

Figure 6.6.2.1.1.1-1. Mobile Station Idle Slotted Mode Structure Example

A *General Page Message* contains four fields, CLASS_0_DONE, CLASS_1_DONE, TMSI_DONE, and ORDERED_TMSIS, which indicate when a mobile station operating in the slotted mode may stop monitoring the Paging Channel.

When CLASS_0_DONE is set to '1' during a mobile station's assigned slot and the mobile station is operating in the slotted mode, no further messages or records addressed by a class 0 IMSI will be directed to the mobile station during the current slot. When CLASS_1_DONE is set to '1' during a mobile station's assigned slot and the mobile station is operating in the slotted mode, no further messages or records addressed by a class 1 IMSI will be directed to the mobile station during the current slot. Similarly, when TMSI_DONE is set to '1' during a mobile station's assigned slot and the mobile station is operating in the slotted mode, no further messages or records addressed by a TMSI will be directed to the mobile station during the current slot.

- The field ORDERED_TMSIS, which when set to '1' during a mobile station's assigned slot, indicates that the base station has ordered TMSI page records directed to mobile stations operating in the slotted mode so that the resulting TMSI_CODE values are in ascending order in the General Page Messages in the slot.
- A mobile station which is operating in the slotted mode, has a class 0 IMSI assigned, and does not have a TMSI assigned (all the bits of $TMSI_CODE_{s-p}$ are equal to '1') may stop

- monitoring the Paging Channel after processing a General Page Message containing
- 2 CLASS_0_DONE equal to '1'. Similarly, a mobile station which is operating in the slotted
- mode, has a class 1 IMSI assigned, and does not have a TMSI assigned (all the bits of
- TMSI_CODE_{s-p} are equal to '1') may stop monitoring the Paging Channel after processing a
- 5 General Page Message containing CLASS_1_DONE equal to '1'.
- 6 A mobile station which is operating in the slotted mode, has a class 0 IMSI assigned, and
- has a TMSI assigned (the bits of TMSI_CODEs-p are not all equal to '1') may stop
- monitoring the Paging Channel after processing a General Page Message containing both
- 9 CLASS_0_DONE equal to '1' and TMSI_DONE equal to '1'. Similarly, a mobile station which
- is operating in the slotted mode, has a class 1 IMSI assigned, and has a TMSI assigned (the
- bits of TMSI_CODE_{s-p} are not all equal to '1') may stop monitoring the Paging Channel after
- processing a General Page Message containing both CLASS_1_DONE equal to '1' and
- 13 TMSI_DONE equal to '1'.
- 14 If ORDERED_TMSIS is equal to '1' and CLASS_0_DONE is equal to '1', a mobile station.
- which has a class 0 IMSI assigned, and is operating in the slotted mode and has a TMSI
- assigned (the bits of TMSI_CODE_{s-p} are not all equal to '1') may stop monitoring the Paging
- 17 Channel after processing a page record with a TMSI_CODE value of higher numerical value
- than $TMSI_CODE_{S-D}$.
- 19 If ORDERED_TMSIS is equal to '1' and CLASS_1_DONE is equal to '1', a mobile station
- which has a class 1 IMSI assigned, is operating in the slotted mode and has a TMSI
- 21 assigned (the bits of TMSI_CODEs-p are not all equal to '1') may stop monitoring the Paging
- 22 Channel after processing a page record with a TMSI_CODE value of higher numerical value
- α than TMSI_CODE_{s-p}.
- The mobile station continues to monitor the Paging Channel for one additional slot unless,
- within its assigned slot, the mobile station receives a General Page Message containing the
- appropriate indicator permitting it to stop monitoring the Paging Channel (CLASS_0_DONE,
- 27 CLASS_1_DONE, TMSI_DONE, or ORDERED_TMSIS equal to '1', whichever is appropriate).
- 28 This allows the base station to carry over a message begun in the assigned slot into the
- g following slot if necessary.

∞ 6.6.2.1.1.1.2 General Overview for Broadcast Messages

- The Paging Channel protocol provides two methods for the transmission of broadcast
- messages. Each method enables mobile stations operating in the slotted mode or in the
- non-slotted mode to receive broadcast messages. A broadcast message on the Paging
- Channel is a Data Burst Message which has a broadcast address type. A mobile station
- operating in the slotted mode has assigned slots which it monitors to receive paging
- channel messages (see 6.6.2.1.1.1). A broadcast page is a record within a General Page
- 37 Message which has a broadcast address type. A base station may transmit a broadcast
- page in an assigned slot to inform mobile stations monitoring that slot that a broadcast
- message will be transmitted in a predetermined subsequent slot. A slot which a mobile
- station monitors in order to receive either a broadcast page or a broadcast message is
- referred to as a broadcast slot.

- 6.6.2.1.1.1.2.1 Method 1: Multi-Slot Broadcast Message Transmission
- According to this method, a broadcast message is sent in a sufficient number of assigned
- 3 slots such that it may be received by all mobile stations that are operating in the slotted
- 4 mode.
- Figure 6.6.2.1.1.1.2.1-1 shows an example for the case when the maximum slot cycle index
- is equal to 0. In this example, the broadcast message fits in a single slot. The Data Burst
- Message is transmitted in 16 consecutive slots.

Figure 6.6.2.1.1.1.2.1-1. Multi-Slot Broadcast Message Transmission Example

6.6.2.1.1.1.2.2 Method 2: Periodic Broadcast Paging

According to this method, mobile stations configured to receive broadcast messages monitor a specific broadcast slot (the first slot of a broadcast paging cycle; see 6.6.2.1.1.3.3.). There are two methods of sending broadcast messages used with Periodic

16 Broadcast Paging.

If all of the broadcast messages to be transmitted fit within the first slot of a broadcast paging cycle, they may all be transmitted in this broadcast slot. If there is a single broadcast message to be transmitted, it may be transmitted beginning in this broadcast slot.

Alternately, one or more broadcast pages may be transmitted in the first slot of a broadcast paging cycle. Each broadcast page is associated with a subsequent broadcast slot. For each broadcast page, an associated broadcast message may be transmitted in the associated subsequent broadcast slot. The broadcast slot for the associated broadcast message is determined according to the position of the broadcast page within the *General Page Message* transmitted in the first slot of the broadcast paging cycle.

Figure 6.6.2.1.1.1.2.2-1 shows an example of Periodic Broadcast Paging when the broadcast index is set to 1. A *General Page Message* containing three broadcast pages is transmitted in the first slot of the broadcast paging cycle. For each of the three broadcast pages, a *Data Burst Message* is transmitted in a subsequent slot.

30

10

11

12

17

18

20

21

22

23

24

25

26

27

28

Figure 6.6.2.1.1.1.2.2-1. Periodic Broadcast Paging Example

6.6.2.1.1.2 Non-Slotted Mode Requirements

- A mobile station operating in the non-slotted mode shall monitor the Paging Channel at all
- times. If the mobile station declares loss of the Paging Channel (see 6.4.3), the mobile
- 5 station shall enter the System Determination Substate of the Mobile Station Initialization
- 8 State with a system lost indication (see 6.6.1.1).
- The mobile station shall operate in the non-slotted mode when PACAs is equal to enabled.
- When a mobile station monitors the Paging Channel in any state other than the Mobile
- 11 Station Idle State, it shall operate in the non-slotted mode.
- 6.6.2.1.1.3 Slotted Mode Requirements
- The mobile station shall not operate in the slotted mode unless bit 5 of the station class
- mark is set to '1' (see 6.3.3).

- The mobile station shall not operate in the slotted mode when PACA_S is equal to enabled.
- During operation in the slotted mode, the mobile station shall ensure that its stored
- configuration parameter values are current (see 6.6.2.2). The mobile station shall not
- operate in the slotted mode if its configuration parameters are not current.
- 19 If the mobile station declares a loss of the Paging Channel (see 6.4.3), the mobile station
- shall enter the System Determination Substate of the Mobile Station Initialization State with
- a system lost indication (see 6.6.1.1).
- 2 6.6.2.1.1.3.1 Monitoring Assigned Slots
- 2 For each of its assigned slots, the mobile station shall begin monitoring the Paging Channel
- in time to receive the first bit of the slot. If the mobile station is not configured to receive
- broadcast addresses, the mobile station shall continue to monitor the Paging Channel until
- one of the following conditions is satisfied:

- The mobile station has a class 0 IMSI assigned, all the bits of TMSI_CODE_{S-p} are equal to '1', and the mobile station receives a *General Page Message* with CLASS_0_DONE set to '1'; or
- The mobile station has a class 1 IMSI assigned, all the bits of TMSI_CODE_{s-p} are equal to '1', and the mobile station receives a *General Page Message* with CLASS_1_DONE set to '1'; or

12

13

15

16

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35

40

- The mobile station has a class 0 IMSI assigned, the bits of TMSI_CODE_{S-p} are not all equal to '1', and the mobile station receives a *General Page Message* with CLASS_0_DONE set to '1' and TMSI_DONE set to '1'; or
- The mobile station has a class 1 IMSI assigned, the bits of TMSI_CODE_{s-p} are not all equal to '1', and the mobile station receives a *General Page Message* with CLASS_1_DONE set to '1' and TMSI_DONE set to '1'; or
- The mobile station has a class 0 IMSI assigned, the bits of TMSI_CODE_{s-p} are not all equal to '1', and the mobile station receives a *General Page Message* with CLASS_0_DONE set to '1', ORDERED_TMSIS set to '1' and a record with TMSI code value greater than TMSI_CODE_{s-p}; or
- The mobile station has a class 1 IMSI assigned, the bits of TMSI_CODE_{S-p} are not all equal to '1', and the mobile station receives a *General Page Message* with CLASS_1_DONE set to '1', ORDERED_TMSIS set to '1' and a record with TMSI_CODE value greater than TMSI_CODE_{S-p}; or
 - The mobile station monitors the assigned slot and the slot following the assigned slot, and the mobile station receives at least one valid message (see 6.4.3).

If the mobile station is configured to receive broadcast addresses, the mobile station shall continue to monitor the Paging Channel until one of the preceding conditions is satisfied and should monitor the Paging Channel until it has received a *General Page Message* with BROADCAST_DONE equal to '1'.

For each broadcast slot monitored to receive broadcast pages or broadcast messages which is not one of its assigned slots, the mobile station should begin monitoring the Paging Channel in time to receive the first bit of the broadcast slot. The mobile station should continue to monitor the Paging Channel until one of the following conditions is satisfied:

- The mobile station receives a General Page Message with BROADCAST_DONE set to '1'; or
- The mobile station monitors the Paging Channel to receive all messages beginning in the broadcast slot and in the slot following the broadcast slot, and the mobile station receives at least one valid message (see 6.4.3).

To determine its assigned slots, the mobile station shall use the hash function specified in 6.6.7.1 to select a number, PGSLOT, in the range 0 to 2047 (spanning the maximum slot cycle length, which is 163.84 seconds). The mobile station's assigned slots shall be those slots in which

 $(\lfloor t/4 \rfloor - PGSLOT) \mod (16 \times T) = 0,$

- where t is the System Time in frames and T is the slot cycle length in units of 1.28 seconds
- 2 given by

- $T=2^{i}$
- where i is the slot cycle index.
- 5 6.6.2.1.1.3.2 Determination of the Slot Cycle Index
- 6 If the SID and NID of the current base station (SIDs and NIDs, as stored from the System
- 7 Parameters Message) do not match any entry of SID_NID_LISTs, the mobile station shall
- use a slot cycle index no greater than the smaller of MAX_SLOT_CYCLE_INDEXs and 1;
- otherwise, the mobile station shall use a slot cycle index no greater than
- 10 SLOT_CYCLE_INDEX_S (see 6.6.2.2.1.6).
- If the mobile station is directed by the user to modify the preferred slot cycle index
- (SLOT_CYCLE_INDEX_p), the mobile station shall perform parameter-change registration
- (see 6.6.5.1.6).
- 6.6.2.1.1.3.3 Slot Cycles for Broadcast Paging
- Distribution of broadcast messages relies on specially defined Paging Channel slot cycles.
- 16 The definitions are as follows:
- 17 Maximum paging cycle: A maximum paging cycle is a Paging Channel slot cycle (see
- 6.6.2.1.1.3.1) having a duration of **M** slots such that:
- 19 $\mathbf{M} = 2^{i} \times 16, \ 0 \le i \le 7$
- where $i = MAX_SLOT_CYCLE_INDEX_S$ as received in the System Parameters Message.
- 21 The first slot of each maximum paging cycle is any Paging Channel slot in which
- where t represents system time in frames.
- 24 Broadcast paging cycle: A broadcast paging cycle is a Paging Channel slot cycle (see
- \mathbf{z} 6.6.2.1.1.3.1) having a duration of \mathbf{B} + 3 slots where:
- **B** = $2^i \times 16$, $1 \le i \le 7$
- where i = BCAST_INDEXs as received in the Extended System Parameters Message, or set
- by default when the Extended System Parameters Message is not sent.
- 29 The first slot of each broadcast paging cycle is any Paging Channel slot in which
- $\lfloor t/4 \rfloor \mod (\mathbf{B} + 3) = 0,$
- where t represents system time in frames.

- 6.6.2.1.1.3.4 Monitoring Paging Channel Broadcasts
- The following requirements apply to mobile stations supporting the reception of broadcast
- 3 messages.
- 4 If BCAST_INDEXs is equal to '000', the mobile station shall monitor only its assigned
- 5 Paging Channel slots (see 6.6.2.1.1.3.1).
- 6 If BCAST_INDEXs is not equal to '000', and the mobile station is configured to receive
- 7 messages addressed to broadcast addresses, the mobile station should also monitor the
- ⁸ Paging Channel beginning with the first slot of each broadcast paging cycle (see
- 9 6.6.2.1.1.3.3).

15

16

17

18

19

20

21

22

23

24

25

26

27

28

- If the mobile station receives a broadcast page containing a burst type and broadcast address that the mobile station has been configured to receive (see 6.6.2.3), the mobile station should monitor the slot in which the corresponding broadcast Paging Channel message will be sent, determined as follows:
 - The mobile station shall consider a broadcast page to have been received in the paging slot in which the *General Page Message* containing the broadcast page began.
 - If BCAST_INDEX_s is not equal to '000', the paging slot containing the broadcast page is defined as the reference slot.
 - Let n represent the ordinal number of the broadcast page relative to other broadcast pages that are contained in the same *General Page Message* (n = 1, 2, 3,...). The mobile station should monitor the Paging Channel slot that occurs $n \times 3$ paging slots after the reference slot.
 - After receiving a broadcast message or a broadcast page and a corresponding broadcast Paging Channel message when BCAST_INDEX_S is not equal to '000', the mobile station should discard all further broadcast pages and all further broadcast Paging Channel messages containing the same BURST_TYPE and BC_ADDR fields that are received within $4 \times (\mathbf{B} + 3)$ paging slots of the first paging slot in the broadcast paging cycle in which the broadcast page or broadcast message was first received. ($\mathbf{B} + 3$ is the duration of the broadcast paging cycle as defined in 6.6.2.1.1.3.3).
- ∞ 6.6.2.1.1.3.5 Support of Broadcast Delivery Options
- A mobile station configured to receive broadcast messages shall support reception of broadcast messages transmitted using Multi-Slot Broadcast Message Transmission (see
- broadcast messages transmitted using Multi-Slot Broadca
 7.6.2.4.1.2.1.1).
- A mobile station configured to receive broadcast messages shall support reception of broadcast messages transmitted using Periodic Broadcast Paging (see 7.6.2.4.1.2.1.2).
- 36 6.6.2.1.2 Acknowledgment Procedures
- 37 Acknowledgment procedures facilitate the reliable exchange of messages between the base
- station and the mobile station. The mobile station uses the fields ACK_TYPE
- (acknowledgment address type), ACK_SEQ (acknowledgment sequence number), MSG_SEQ
- 40 (message sequence number), ACK_REQ (acknowledgment required), and VALID_ACK (valid

- acknowledgment) to support this mechanism. These fields are referred to as layer 2 fields,
- and the acknowledgment procedures are referred to as layer 2 procedures. All other
- message fields and the processing thereof are referred to as pertaining to layer 3. (See
- Annex C for further discussion of layering.)
- 5 Acknowledgments of messages received on the Paging Channel shall be sent on the Access
- 6 Channel (see 6.6.3).

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

31

- 7 When sending a message that includes an acknowledgment, the mobile station shall set the
- 8 VALID_ACK field to '1' and shall set the ACK_TYPE and ACK_SEQ fields equal to the
- 9 ADDR_TYPE and MSG_SEQ fields, respectively, of the message being acknowledged. For
- acknowledgment of a General Page Message, the mobile station shall set the ACK_SEO field
- 11 equal to the MSG_SEQ field and shall set the ACK_TYPE field according to the
- 12 PAGE_CLASS field of the record addressed to the mobile station as follows:
 - If the PAGE_CLASS is equal to '00' or '01', the mobile station shall set the ACK_TYPE field to '010'.
 - If the PAGE_CLASS is equal to '10', the mobile station shall set the ACK_TYPE field to '011'.

When sending a message that does not include an acknowledgment, the mobile station shall set the VALID_ACK field to '0' and shall set the ACK_TYPE and ACK_SEQ fields equal to the ADDR_TYPE and MSG_SEQ fields, respectively, of the last message received that required acknowledgment. If no such message has been received, the mobile station shall set the ACK_TYPE field to '000' and shall set the ACK_SEQ field to '111'.

Unless otherwise specified in the requirements for processing a specific message, the mobile station shall transmit an acknowledgment in response to any message received that is addressed to the mobile station and that has the ACK_REQ field set to '1'. The mobile station shall transmit a *Page Response Message* including an acknowledgment in response to each record of a *General Page Message* addressed to the mobile station.². If a specific message is required in response to any other message requiring acknowledgment, the acknowledgment shall be included with the response. If no specific message is required to be transmitted in response to a received message requiring acknowledgment, the mobile station shall include the acknowledgment in a *Mobile Station Acknowledgment Order* (see 6.7.3).

If no message requiring acknowledgment has been received, the mobile station shall not include an acknowledgment in any transmitted message until a message is received that requires acknowledgment. After a message including an acknowledgment has been sent, the mobile station shall not include an acknowledgment in any subsequent transmitted message until another message is received that requires acknowledgment.

- 37 The mobile station shall detect duplicate received messages by the following rules.
- 38 The mobile station shall consider two messages or records (except records in General Page
- Messages) to be duplicates if all of the following are true:

² This message does not have an ACK_REO field.

- · The messages (records) were received on the same Paging Channel; and
- The messages (records) contain the same values in the ADDR_TYPE, MSG_SEQ and ACK_REQ fields;³ and
 - The messages (records) were received within T_{4m} seconds (see Annex D) of each other (see Figure 6.6.2.1.2-1); and
 - An address match was declared (see 6.6.2.1.5) for both messages (records).
- The mobile station shall consider two page records (as contained in *General Page Messages*) to be duplicates if all of the following are true:
 - The records were received on the same Paging Channel; and
 - · The records contain the same values in the MSG_SEQ field; and
 - The records were received in messages received within T_{4m} seconds of each other (see Figure 6.6.2.1.2-1), or in the same message; and
 - A page match was declared (see 6.6.2.3) for both records.
- The mobile station shall then discard, without further processing, any message or page record that is a duplicate of one previously received.
- Paging Channels shall be considered different if any of the following is true:
 - · The Paging Channels are transmitted by different base stations, or
 - The Paging Channels are transmitted on different code channels (see 7.1.3.4.8), or
 - The Paging Channels are transmitted on different CDMA Channels (see 7.1.1.1).
 - The mobile station shall consider messages to be different if they are not duplicates according to the rules given above. The mobile station shall process all messages that are considered to be different.

11

· 12

13

17

18

19

20

21

³ Separate sequence numbers are used for messages requiring acknowledgement and messages not requiring acknowledgement on the Paging Channel.

Figure 6.6.2.1.2-1. Time Interval for Duplicate Message Detection

4 6.6.2.1.3 Registration

- While in the Mobile Station Idle State, the mobile station shall perform the registration
- 6 procedures specified in 6.6.5.5.2.1.
- 7 6.6.2.1.4 Idle Handoff
- 8 6.6.2.1.4.1 Pilot Search
- An idle handoff occurs when a mobile station has moved from the coverage area of one base
- station into the coverage area of another base station during the Mobile Station Idle State.
- If the mobile station detects a Pilot Channel signal from another base station, that is
- sufficiently stronger than that of the current base station, the mobile station determines
- that an idle handoff should occur.
- Pilot Channels are identified by their offsets relative to the zero offset pilot PN sequence (see
- 5 7.1.3.2.1). Pilot offsets are grouped into sets describing their status with regard to pilot
- 16 searching.

19

20

21

22

23

24

25

26

- The following sets of pilot offsets are defined for a mobile station in the Mobile Station Idle
- State. Each pilot offset is a member of only one set.
 - Active Set: The pilot offset of the Forward CDMA Channel whose Paging Channel is being monitored.
 - Neighbor Set: The offsets of the Pilot Channels that are likely candidates for idle handoff. The members of the Neighbor Set are specified in the Neighbor List Message, Extended Neighbor List Message, and the General Neighbor List Message.
 - Remaining Set: The set of all possible pilot offsets in the current system (integer
 multiples of PILOT_INCs) on the current CDMA frequency assignment, excluding the
 pilots in the Neighbor Set and the Active Set.
 - The mobile station shall support a Neighbor Set size of at least N_{8m} pilots (see Annex D).

- In the Mobile Station Idle State, the mobile station shall continuously search for the
- 2 strongest Pilot Channel signal on the corresponding CDMA frequency assignment whenever
- 3 it monitors the Paging Channel.

11

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

- The mobile station may search other frequencies and band classes. For example, if a pilot
- in the Neighbor List is on a different frequency assignment than that of the mobile station,
- this frequency should be included in the search criteria. Search performance criteria are
- defined in TIA/EIA-98-B and ANSI J-STD-018.
- 8 This search should be governed by the following:
 - Active Set: The search window size for the pilot in the Active Set shall be the number of PN chips specified in Table 6.6.6.2.1-1 corresponding to SRCH_WIN_As. The mobile station should center the search window for the pilot of the Active Set around the earliest arriving usable multipath component of the pilot. If the mobile station receives a value greater than or equal to 13 for SRCH_WIN_A_r, it may store and use the value 13 in SRCH_WIN_A_s.
 - Neighbor Set: The search window size for each pilot in the Neighbor Set shall be the number of PN chips specified in Table 6.6.6.2.1-1 corresponding to SRCH_WIN_NGHBR_s field of the NGHBR_REC for the pilot. The mobile station should center the search window for each pilot in the Neighbor Set around the pilot's PN sequence offset using timing defined by the mobile station's time reference (see 6.1.5.1). The mobile station should use the SEARCH_PRIORITY field of the NGHBR_REC for the corresponding pilot to schedule its neighbor search.
 - If the mobile station supports hopping pilot beacons and the TIMING_INCL field of the NGHBR_REC for the corresponding pilot is equal to '1', then the mobile station shall use the information included in the NGHBR_TX_OFFSET, NGHBR_TX_DURATION, and NGHBR_TX_PERIOD fields of the NGHBR_REC for the corresponding pilot to schedule the time for searching the neighbor.
 - Remaining Set: The search window size for each pilot in the Remaining Set shall be
 the number of PN chips specified in Table 6.6.6.2.1-1 corresponding to
 SRCH_WIN_R_S. The mobile station should center the search window for each pilot
 in the Remaining Set around the pilot's PN sequence offset using timing defined by
 the mobile station's time reference (see 6.1.5.1). The mobile station should only
 search for Remaining Set pilots whose pilot PN sequence offset indices are equal to
 integer multiples of PILOT_INC_S.
- If the mobile station determines that one of the Neighbor Set or Remaining Set Pilot Channel signals is sufficiently stronger (see TIA/EIA-98-B and ANSI J-STD-018) than the Pilot Channel of the Active Set, the mobile station should perform an idle handoff as specified in 6.6.2.1.4.2.
- A mobile station operating in slotted mode, which is successfully demodulating the Paging
- ³⁹ Channel, should not perform an idle handoff while it is required to monitor its assigned slot
- 40 (see 6.6.2.1.1.3.1).

15

16

17

19

20

22

23

24

25

26

28

30

31

33

35

36

6.6.2.1.4.2 Idle Handoff Procedures

- While performing an idle handoff, the mobile station shall operate in the non-slotted mode
- until the mobile station has received at least one valid message on the new Paging Channel.
- 4 Following the reception of this message the mobile station may resume slotted mode
- operation in accordance with 6.6.2.1.1.3. After performing an idle handoff, the mobile
- 6 station shall discard all unprocessed messages received on the old Paging Channel.
- 7 If the new base station is listed in NGHBR_REC_LIST for the old base station (see 6.6.2.2.3,
- 8 6.6.2.2.7, and 6.6.2.1.4.1), the mobile station shall use the corresponding 3-bit
- 9 NGHBR_CONFIG field to determine the actions required to transition to the new base
- station. If the new base station is not listed in NGHBR_REC_LIST, the mobile station shall
- perform the handoff operation using the same procedure as for a pilot in NGHBR_REC_LIST
- with the NGHBR_CONFIG field set to '011'.
- 13 If the NGHBR_CONFIG field is '000', the mobile station shall perform the following:
 - The mobile station shall set ACC_MSG_SEQs and CURR_ACC_MSG_SEQ to NULL (see 6.6.2.2) and shall set PILOT_PNs to the pilot offset index of the base station transmitting the new Paging Channel.
 - The mobile station shall set CONFIG_MSG_SEQs to NULL.
 - If the mobile station has not stored configuration parameters for the new Paging Channel, or if the stored information is not current (see 6.6.2.2), the mobile station shall set SYS_PAR_MSG_SEQ_s, NGHBR_LST_MSG_SEQ_s, EXT_NGHBR_LST_MSG_SEQ_s, CHAN_LST_MSG_SEQ_s, EXT_SYS_PAR_MSG_SEQ_s, and GLOB_SERV_REDIR_MSG_SEQ_s to NULL.
 - If the stored information for the new Paging Channel is current, the mobile station shall set NGHBR_REC_LIST to the stored information for the new Paging Channel.
 - The mobile station shall begin monitoring the Paging Channel of the new base station, using the same code channel and CDMA Channel.
 - If PACA_S is equal to enabled, the mobile station shall enter the *Update Overhead Information Substate* of the *System Access State* (see 6.6.3) with an origination indication within T_{33m} seconds to re-originate the PACA call using the new base station.
- 22 If the NGHBR_CONFIG field is '001', the mobile station shall perform the following:
 - The mobile station shall set ACC_MSG_SEQ_s and CURR_ACC_MSG_SEQ to NULL
 and shall set PILOT_PN_s to the pilot offset index of the base station transmitting the
 new Paging Channel.
 - The mobile station shall set CONFIG_MSG_SEQ_s to NULL.

- If the mobile station has not stored configuration parameters for the Primary Paging Channel of the new base station, or if the stored information is not current (see 6.6.2.2), the mobile station shall set SYS_PAR_MSG_SEQ_S,
 NGHBR_LST_MSG_SEQ_S, EXT_NGHBR_LST_MSG_SEQ_S,
 GEN_NGHBR_LST_MSG_SEQ_S, CHAN_LST_MSG_SEQ_S, EXT_SYS_PAR_MSG_SEQ_S,
 and GLOB_SERV_REDIR_MSG_SEQ_S to NULL.
- If the stored information for the new Paging Channel is current, the mobile station
 shall set NGHBR_REC_LIST to the stored information for the new Paging Channel.
 The mobile station shall set PAGE_CHAN_S to '1' and PAGECH_S to the Primary Paging
 Channel.
 - The mobile station shall begin monitoring the Primary Paging Channel of the new base station, using the same CDMA Channel.
 - If PACA_S is equal to enabled, the mobile station shall enter the *Update Overhead Information Substate* of the *System Access State* (see 6.6.3) with an origination indication within T_{33m} seconds to re-originate the PACA call using the new base station.
 - If the NGHBR_CONFIG field is '010', the mobile station shall perform the following:
 - The mobile station shall set ACC_MSG_SEQ_s and CURR_ACC_MSG_SEQ to NULL
 and shall set PILOT_PN_s to the pilot offset index of the base station transmitting the
 new Paging Channel.
 - The mobile station shall set CONFIG_MSG_SEQ_s to NULL.

12

15

16

17

18

19

20

21

30

31

32

33

35

36

37

- If the mobile station has not stored configuration parameters for the Primary Paging Channel of the new base station, or if the stored information is not current (see 6.6.2.2), the mobile station shall set SYS_PAR_MSG_SEQ_S,
 NGHBR_LST_MSG_SEQ_S, EXT_NGHBR_LST_MSG_SEQ_S,
 GEN_NGHBR_LST_MSG_SEQ_S, CHAN_LST_MSG_SEQ_S, EXT_SYS_PAR_MSG_SEQ_S, and GLOB_SERV_REDIR_MSG_SEQ_S to NULL.
- If the stored information for the new Paging Channel is current, the mobile station shall set NGHBR_REC_LIST to the stored information for the new Paging Channel.
 - The mobile station shall set PAGE_CHAN_s to '1' and PAGECH_s to the Primary Paging Channel. The mobile station shall set CDMACH_s to the first CDMA Channel given in the CDMA Channel List Message for the old base station, tune to the new CDMA channel, and begin monitoring the Primary Paging Channel of the new base station.
 - If PACA_S is equal to enabled, the mobile station shall enter the *Update Overhead Information Substate* of the *System Access State* (see 6.6.3) with an origination indication within T_{33m} seconds to re-originate the PACA call using the new base station.
- 38 If the NGHBR_CONFIG field is '011', the mobile station shall perform the following:
 - Set mobile station enter the System Determination Substate of the Mobile Station Initialization State with a new system indication (see 6.6.1.1).

- 6.6.2.1.5 Address Recognition for Other than the General Page Message
- When the mobile station monitors the Paging Channel, the mobile station shall use the
- 3 following rules to determine an address match.
- 4 6.6.2.1.5.1 ESN Addressed Messages
- 5 If the ADDR_TYPE is equal to '001' (the address is an ESN address), the mobile station shall
- 6 declare an address match if the addressed ESN equals the mobile station's ESN.
- 7 6.6.2.1.5.2 IMSI Addressed Messages
- 8 If the ADDR_TYPE is equal to '000' (the address is an IMSI_S address), the mobile station
- shall declare an address match if the mobile station's IMSI_O is set to the IMSI_M (see
- 6.3.1), and IMSI_O_S_s is equal to the value of the IMSI_S subfield received in the ADDRESS
- 11 field (see 7.7.2.3.1).

14

15

16

18

19

20

24

25

26

27

28

- If the ADDR_TYPE is equal to '010' (the address is an IMSI address), the mobile station shall use the following procedures:
 - If IMSI_CLASS is equal to '0' and IMSI_CLASS_0_TYPE is equal to '00', the mobile station shall declare an address match if the following conditions are met:
 - The mobile station's IMSI_O is a class 0 IMSI (see 6.3.1),
- IMSI_O_11_12 $_{\rm S}$ is equal to IMSI_11_12 $_{\rm S}$,
 - IMSI_O_S_s is equal to the IMSI_S received in the IMSI class 0 type specific subfield (see 7.7.2.3.1), and
 - MCC_O_S is equal to MCC_S.
- If IMSI_CLASS is equal to '0' and IMSI_CLASS_0_TYPE is equal to '01', the mobile station shall declare an address match if the following conditions are met:
 - The mobile station's IMSI_O is a class 0 IMSI,
 - IMSI_O_S_s is equal to the IMSI_S received in the IMSI class 0 type specific subfield (see 7.7.2.3.1),
 - IMSI_O_11_12_s is equal to the IMSI_11_12 received in the IMSI class 0 type specific subfield (see 7.7.2.3.1), and
 - The MCC_O_s is equal to MCC_s.
- If IMSI_CLASS is equal to '0' and IMSI_CLASS_0_TYPE is equal to '10', the mobile station shall declare an address match if the following conditions are met:
 - The mobile station's IMSI_O is a class 0 IMSI,
- $_{32}$ = IMSI_O_S_s is equal to the IMSI_S received in the IMSI class 0 type specific subfield (see 7.7.2.3.1),
 - IMSI_O_11_12_s is equal to IMSI_11_12_s, and
- MCC_O_s is equal to the MCC received in the IMSI class 0 type specific subfield (see 7.7.2.3.1).

- If IMSI_CLASS is equal to '0' and IMSI_CLASS_0_TYPE is equal to '11', the mobile station shall declare an address match if the following conditions are met:
- The mobile station's IMSI_O is a class 0 IMSI,
- IMSI_O_S_s is equal to the IMSI_S received in the IMSI class 0 type specific subfield (see 7.7.2.3.1),
- IMSI_O_11_12_s is equal to the IMSI_11_12 received in the IMSI class 0 type specific subfield (see 7.7.2.3.1), and
 - MCC_O_S is equal to the MCC received in the IMSI class 0 type specific subfield (see 7.7.2.3.1).
 - If IMSI_CLASS is equal to '1' and IMSI_CLASS_1_TYPE is equal to '0', the mobile station shall declare an address match if the following conditions are met:
 - The mobile station's IMSI_O is a class 1 IMSI (see 6.3.1),
 - IMSI_O_S_s is equal to the IMSI_S received in the IMSI class 1 type specific subfield (see 7.7.2.3.1),
 - IMSI_O_11_12_s is equal to the IMSI_11_12 received in the IMSI class 1 type specific subfield (see 7.7.2.3.1),
 - MCC_O_s is equal to MCC_s, and

11

12

15

16

17

18

19

25

26

31

36

- The IMSI_O_ADDR_NUM_s is equal to IMSI_ADDR_NUM received in the IMSI class 1 type specific subfield (see 7.7.2.3.1).
- If IMSI_CLASS is equal to '1' and IMSI_CLASS_1_TYPE is equal to '1', the mobile station shall declare an address match if the following conditions are met:
 - The mobile station's IMSI_O is a class 1 IMSI,
- IMSI_O_S_s is equal to the IMSI_S received in the IMSI class 1 type specific
 subfield (see 7.7.2.3.1),
 - IMSI_O_11_12_s is equal to the IMSI_11_12 received in the IMSI class 1 type specific subfield (see 7.7.2.3.1),
- MCC_O_S is equal to the MCC received in the IMSI class 1 type specific subfield (see 7.7.2.3.1), and
- The IMSI_O_ADDR_NUM_s is equal to IMSI_ADDR_NUM received in the IMSI class 1 type specific subfield (see 7.7.2.3.1).

6.6.2.1.5.3 TMSI Addressed Messages

- If the ADDR_TYPE is equal to '011' (the address is a TMSI address), the mobile station shall declare an address match if the following conditions are met:
- The bits of TMSI_CODE_{s-p} are not all equal to '1' and the received ADDR_LEN is less than or equal to four:
 - ASSIGNING_TMSI_ZONE_LEN_{s-p} is equal to TMSI_ZONE_LEN_s,

11

12

18

22

- The least significant ASSIGNING_TMSI_ZONE_LEN_{s-p} octets of ASSIGNING_TMSI_ZONE_{s-p} are equal to TMSI_ZONE_s,
- The received ADDRESS (TMSI_CODE_ADDR) is equal to the ADDR_LEN least significant octets of TMSI_CODE_{s-p}, and
- Each of the four minus ADDR_LEN most significant octets of TMSI_CODE_{s-p} are equal to '00000000'.
- The bits of TMSI_CODE_{s-p} are not all equal to '1' and the received ADDR_LEN is greater than four:
 - The ASSIGNING_TMSI_ZONE_LEN_{s-p} most significant octets of the received ADDRESS (TMSI_ZONE) are equal to the least significant ASSIGNING_TMSI_ZONE_LEN_{s-p} octets of TMSI_ZONE_{s-p},
 - ADDR_LEN minus four is equal to ASSIGNING_TMSI_ZONE_LEN_{s-p}, and
- The least significant four octets of ADDRESS (TMSI_CODE_ADDR) are equal to TMSI_CODE_{s-p}.
- 6.6.2.1.5.4 Broadcast Addressed Messages
- If the ADDR_TYPE is equal to '101' (the address is a broadcast address), the mobile station shall declare an address match if the following conditions are met:
 - The mobile station is configured to receive broadcast addresses;
 - The message is a Data Burst Message;
- The ADDRESS field of the *Data Burst Message* is equal to a broadcast address that the mobile station is configured to receive; and
 - The BURST_TYPE field of the Data Burst Message is equal to a burst type that the mobile station is configured to receive.
- 24 6.6.2.1.6 System Reselection Procedures
- The mobile station shall enter the System Determination Substate of the Mobile Station
- 26 Initialization State with a system reselection indication (see 6.6.1.1) if the following are true:
 - RESELECT_INCLUDED_S is equal to '1';
- The following inequality is satisfied:
 - $-20 \times log_{10} (E_c/I_o) < EC_IO_THRESH_s$
- where E_c/I_0 is the measured E_c/I_0 of the active pilot; and
- The following inequality is satisfied:
- pilot_power < EC_THRESH_s -115
- where $pilot_power$ (dBm/1.23 MHz) = 20 × log₁₀ (E_c/I_o) (dB) + mean input power (dBm/1.23 MHz) and E_c/I_o is the measured E_c/I_o of the active pilot.

- 6.6.2.2 Response to Overhead Information Operation
- 2 The overhead messages on the Paging Channel are:
- System Parameters Message
 - Access Parameters Message
- Neighbor List Message
- CDMA Channel List Message
- Extended System Parameters Message
- Global Service Redirection Message
- Extended Neighbor List Message
- General Neighbor List Message
- The Response to Overhead Information Operation is performed whenever the mobile station receives an overhead message. The mobile station updates internally stored information from the received message's data fields.
- Configuration parameters and access parameters are received in the configuration messages and the *Access Parameters Message*. The configuration messages are:
 - System Parameters Message
- Neighbor List Message

station are current.

18

- CDMA Channel List Message
- Extended System Parameters Message
- Global Service Redirection Message
- Extended Neighbor List Message
- General Neighbor List Message
- Associated with the set of configuration messages sent on each Paging Channel is a 23 configuration message sequence number (CONFIG_MSG_SEQ). When the contents of one 24 or more of the configuration messages change, the configuration message sequence number 25 is incremented. For each of the configuration messages received, the mobile station stores 26 the configuration message sequence number contained in the configuration message NGHBR_LIST_MSG_SEQ_s, EXT_NGHBR_LST_MSG_SEQ_s, (SYS_PAR_MSG_SEQ_s, 28 GEN_NGHBR_LST_MSG_SEQ_s, CHAN_LIST_MSG_SEQ_s, EXT_SYS_PAR_MSG_SEQ_s, or 29 GLOB_SERV_REDIR_MSG_SEQs). The mobile station also stores the most recently 30 received configuration message sequence number (CONFIG_MSG_SEQs) contained in any 31 message (see 6.6.2.2.1, 6.6.2.2.3, 6.6.2.2.4, 6.6.2.2.5, 6.6.2.2.6, 6.6.2.2.7, 6.6.2.2.8, and 32 6.6.2.3). The mobile station examines the stored values of the configuration message 33 sequence numbers to determine whether the configuration parameters stored by the mobile 34
- The field EXT_SYS_PARAMETER in the System Parameters Message, when set equal to '0',
- 37 indicates that the base station is not sending the Extended System Parameters Message.

- When the mobile station receives the System Parameters Message with the
- 2 EXT_SYS_PARAMETER field set equal to '0', the mobile station shall set
- 3 EXT_SYS_PAR_MSG_SEQs to CONFIG_MSG_SEQs to indicate that the Extended System
- 4 Parameters Message is current.
- 5 The field GEN_NGBR_LST in the System Parameters Message, when set equal to '0',
- 6 indicates that the base station is not sending the General Neighbor List Message. When the
- mobile station receives the System Parameters Message with the GEN_NGBR_LST field set
- equal to '0', the mobile station shall set the GEN_NGBR_LST_MSG_SEQs to
- 9 CONFIG_MSG_SEQ_s to indicate that the *General Neighbor List Message* is current.
- The field EXT_NGBR_LST in the System Parameters Message, when set equal to '0',
- indicates that the base station is not sending the Extended Neighbor List Message. When
- the mobile station receives the System Parameters Message with the EXT_NGBR_LST field
- set equal to '0', the mobile station shall set EXT_NGBR_LST_SEQ_s to CONFIG_MSG_SEQ_s
- to indicate that the Extended Neighbor List Message is current.
- 15 The field GLOBAL_REDIRECT in the System Parameters Message, when set equal to '0',
- indicates that the base station is not sending the Global Service Redirection Message. When
- the mobile station receives the System Parameters Message with the GLOBAL_REDIRECT
- field set equal to '0', the mobile station shall set GLOB_SERV_REDIR_MSG_SEQ_S to
- 19 CONFIG_MSG_SEQ_S to indicate that the Global Service Redirection Message is current.
- 20 The configuration message sequence number is also included in the General Page Message.
- 21 This allows the mobile station to determine whether the stored configuration parameters
- 22 are current without waiting for a configuration message.
- 22 Access Parameters Messages are independently sequence-numbered by the ACC_MSG_SEQ
- field. The mobile station stores the most recently received Access Parameters Message
- 25 sequence number (ACC_MSG_SEQ_S).
- 26 Paging Channels shall be considered different if they are transmitted by different base
- 27 stations, if they are transmitted on different code channels, or if they are transmitted on
- 28 different CDMA Channels. Configuration and access parameters from one Paging Channel
- shall not be used while monitoring a different Paging Channel except for registration and
- authentication parameters while the mobile station is performing an access probe handoff
- or access handoff. The mobile station shall ignore any overhead message whose PILOT_PN_r
- 22 field is not equal to the pilot offset index (PILOT_PNs) of the base station whose Paging
- 33 Channel is being monitored.
- 34 The mobile station may store the configuration parameters from Paging Channels it has
- recently monitored. When a mobile station starts monitoring a Paging Channel that it has
- 36 recently monitored, the mobile station can determine whether the stored parameters are
- 37 current by examining the CONFIG_MSG_SEQs in a configuration message or a General
- 38 Page Message.
- 39 The mobile station shall use a special value, NULL, to be stored in place of sequence
- 40 numbers for messages that have not been received or are marked as not current. The
- special value NULL shall be unequal to any valid message sequence number.

- The mobile station shall consider the stored configuration parameters to be current only if all of the following conditions are true:
- All stored configuration message sequence numbers (SYS_PAR_MSG_SEQ_s,
 NGHBR_LIST_MSG_SEQ_s, EXT_NGHBR_LIST_MSG_SEQ_s, CHAN_LIST_MSG_SEQ_s,
 EXT_SYS_PAR_MSG_SEQ_s, GEN_NGHBR_LIST_MSG_SEQ_s and
 GLOB_SERV_REDIR_MSG_SEQ_s) are equal to CONFIG_MSG_SEQ_s; and
- CONFIG_MSG_SEQ_s is not equal to NULL; and
- No more than T_{31m} seconds (see Annex D) have elapsed since the mobile station
 last received a valid message on the Paging Channel for which the parameters were stored.
- If the configuration parameters are not current, the mobile station shall process the stored parameters upon receipt of the configuration messages as described in 6.6.2.2.1, 6.6.2.2.3, 6.6.2.2.4, 6.6.2.2.5, 6.6.2.2.6, 6.6.2.2.7, and 6.6.2.2.8.
- 6.6.2.2.1 System Parameters Message
- Whenever a System Parameters Message is received on the Paging Channel, the configuration message sequence number, CONFIG_MSG_SEQ $_{r}$, shall be compared to that stored in SYS_PAR_MSG_SEQ $_{s}$. If the comparison results in a match, the mobile station
- may ignore the message. If the comparison results in a mismatch, then the mobile station
- shall process the remaining fields in the message as described in 6.6.2.2.1.1, 6.6.2.2.1.2,
- 20 6.6.2.2.1.3, 6.6.2.2.1.4, 6.6.2.2.1.5, and 6.6.2.2.1.6.
- 21 If PAGE_CHAN, REG_PRD, BASE_LAT, BASE_LONG, or PWR_REP_THRESH are not within
- 2 the valid ranges specified in 7.7.2.3.2.1, then the mobile station shall ignore the System
- 22 Parameters Message that contains them.
- 24 If BAND_CLASS is equal to '00001' and if either EXT_SYS_PARAMETERS_r is not equal to '1'
- or EXT_NGHBR_LST_r is not equal to '1', or both, the mobile station shall ignore the System
- 26 Parameters Message containing these fields.
- 27 6.6.2.2.1.1 Stored Parameters
- 28 The mobile station shall store the following parameters:
- Configuration message sequence number
 (CONFIG_MSG_SEQ_S = CONFIG_MSG_SEQ_r,
 SYS_PAR_MSG_SEQ_S = CONFIG_MSG_SEQ_r)
- Base station identification (BASE_ID_S = BASE_ID_r)
- Base station class (BASE_CLASS_s = BASE_CLASS_r)
- Maximum slot cycle index
 (MAX_SLOT_CYCLE_INDEX_S = MAX_SLOT_CYCLE_INDEX_T)
- Home registration indicator (HOME_REG_s = HOME_REG_r)
- SID roamer registration indicator (FOR_SID_REG_s = FOR_SID_REG_r)
- NID roamer registration indicator (FOR_NID_REG_s = FOR_NID_REG_r)

- Power-up registration indicator (POWER_UP_REG_s = POWER_UP_REG_r)
 Power-down registration indicator (POWER_DOWN_REG_s = POWER_DOWN_REG_r)
 Parameter-change registration indicator (PARAMETER_REG_s = PARAMETER_REG_r)
- Search window size for the Active Set and Candidate Set
 (SRCH_WIN_A_S = SRCH_WIN_A_r)
- Search window size for the Neighbor Set (SRCH_WIN_N_s = SRCH_WIN_N_r)
- Search window size for the Remaining Set (SRCH_WIN_R_s = SRCH_WIN_R_r)
- Maximum age for retention of Neighbor Set members
 (NGHBR_MAX_AGE_s = NGHBR_MAX_AGE_r)
- Power control reporting threshold (PWR_REP_THRESH_s = PWR_REP_THRESH_r)
- Power control reporting frame count (PWR_REP_FRAMES_s = PWR_REP_FRAMES_r)
- Threshold report mode indicator
 (PWR_THRESH_ENABLE_s = PWR_THRESH_ENABLE_r)
- Periodic report mode indicator (PWR_PERIOD_ENABLE_s = PWR_PERIOD_ENABLE_r).
- Power report delay (PWR_REP_DELAY_s = PWR_REP_DELAY_r)
- Pilot detection threshold (T_ADD_S = T_ADD_T)
- Pilot drop threshold (T_DROP_s = T_DROP_r)
 - Active Set versus Candidate Set comparison threshold (T_COMP_s = T_COMP_r)
- Drop timer value (T_TDROP_s = T_TDROP_r)

18

- Extended System Parameters Message sent
 (EXT_SYS_PARAMETERs = EXT_SYS_PARAMETERr)
- Global Service Redirection Message sent

 (GLOBAL_REDIRECT_s = GLOBAL_REDIRECT_r)
- Extended Neighbor List Message sent
 (EXT_NGHBR_LST_s = EXT_NGHBR_LST_r)
- General Neighbor List Message sent
 (GEN_NGHBR_LST_r)

The mobile station shall also store the following parameters if the mobile station is not in the Origination Attempt Substate or Page Response Substate:

- System identification (SID_s = SID_r)
- Network identification (NID_S = NID_r)
- Registration zone (REG_ZONE_S = REG_ZONE_r)
- Number of registration zones to be retained (TOTAL_ZONES_s = TOTAL_ZONES_s)
- Zone timer length (ZONE_TIMER_s = ZONE_TIMER_r)
- Multiple SID storage indicator (MULT_SIDS_s = MULT_SIDS_r)

- Multiple NID storage indicator (MULT_NIDS_s = MULT_NIDS_r)
- Registration period (REG_PRD_s = REG_PRD_r)
- Base station latitude (BASE_LAT_s = BASE_LAT_r)
 - Base station longitude (BASE_LONG_S = BASE_LONG_r)
 - Registration distance (REG_DIST_s = REG_DIST_r)
- 6 If EXT_SYS_PARAMETERs is equal to '0', then the mobile station shall perform the following:
- Set EXT_SYS_PAR_MSG_SEQ_s to CONFIG_MSG_SEQ_s,
- Set BCAST_INDEX_s to MAX_SLOT_CYCLE_INDEX_s,
- Set IMSI_O to IMSI_M by setting IMSI_O_S_s to IMSI_M_S_p (i.e., setting IMSI_O_S1_s to IMSI_M_S1_p and IMSI_O_S2_s to IMSI_M_S2_p), MCC_O_s to MCC_M_p,
 IMSI_O_11_12_s to IMSI_M_11_12_p, and IMSI_O_ADDR_NUM_s to IMSI_M_ADDR_NUM_p,
 - Set RESELECT_INCLUDED_S to '0',

29

35

- Set P_REV_S to '00000011' for Band Class 0 or P_REV_S to '00000001' for Band Class
 1, and
- Set P_REV_IN_USE_s to the lesser value of P_REV_s and MOB_P_REV_p of the current
 band class.
- If $GLOBAL_REDIRECT_s$ is equal to '0', then the mobile station shall set $GLOB_SERV_2$ _REDIR_MSG_SEQ_s to CONFIG_MSG_SEQ_s.
- If EXT_NGHBR_LSTs is equal to '0', then the mobile station shall set $EXT_NGHBR_LST_MSG_SEQ_S$ to $CONFIG_MSG_SEQ_S$.
- 23 If GEN_NGHBR_LST_s is equal to '0', then the mobile station shall perform the following:
 - Set GEN_NGHBR_LST_MSG_SEQ_s to CONFIG_MSG_SEQ_s.
- Set the SRCH_WIN_NGHBR field of NGHBR_REC to SRCH_WIN_N_s for all entries.
- Set the TIMING_INCL field of NGHBR_REC to '0' for all entries.
- Set NUM_ANALOG_NGHBR_s to '000' and ANALOG_NGHBR_LIST to NULL.
- If EXT_NGHBR_LST_s is equal to '0':
 - Set the SEARCH_PRIORITY field of the NGHBR_REC to '10' (high) for all entries.
- Set the NGHBR_BAND field of the NGHBR_REC to CDMABAND_s for all entries.
- Set the NGHBR_FREQ field of the NGHBR_REC to CDMACH_S for all entries.
- 22 If GEN_NGHBR_LST_s is equal to '1', GEN_NGHBR_LST_MSG_SEQ_s is equal to '2' CONFIG_MSG_SEQ_s, and SETTING_SEARCH_WIN is equal to '1', the mobile station shall perform the following:
 - Set the SRCH_WIN_NGHBR field of each NGHBR_REC to SEARCH_WIN_N_S for all NGHBR_SET_SIZE_S entries.

- Set SETTING_SEARCH_WIN to '0'.
- The mobile station shall ignore any fields at the end of the System Parameters Message
- which are not defined according to the protocol revision level (MOB_P_REVp of the current
- 4 band class) being used by the mobile station.
- 5 6.6.2.2.1.2 Paging Channel Assignment Change
- 6 If the number of Paging Channels specified in the System Parameters Message
- 7 (PAGE_CHAN_r) is different from PAGE_CHAN_s, the mobile station shall use the hash
- 8 algorithm specified in 6.6.7.1 to select a new Paging Channel number in the range 1 to
- 9 PAGE_CHAN_r. The mobile station shall store the new Paging Channel number as
- PAGECH_S. The mobile station shall then set PAGE_CHAN_S to PAGE_CHAN_{Γ}. The mobile
- station shall set ACC_MSG_SEQ_S to NULL. If the mobile station has not stored
- configuration parameters for the new Paging Channel, or if the stored parameters are not
- current (see 6.6.2.2), the mobile station shall set CONFIG_MSG_SEQ_s, SYS_PAR_MSG-
- SEQs, NGHBR_LST_MSG_SEQs, EXT_NGHBR_LST_MSG_SEQs,
- GEN_NGHBR_LST_MSG_SEQs, CHAN_LST_MSG_SEQs, EXT_SYS_PAR_MSG_SEQs, and
- GLOB_SERV_REDIR_MSG_SEQ_S to NULL. The mobile station shall then begin monitoring
- the new Paging Channel as specified in 6.6.2.1.1.
- 6.6.2.2.1.3 RESCAN Parameter
- $_{19}$ If the RESCAN_r field in the System Parameters Message equals '1', the mobile station shall
- enter the System Determination Substate of the Mobile Station Initialization State with a
- rescan indication (see 6.6.1.1).
- 2 6.6.2.2.1.4 Roaming Status
- 23 The mobile station shall determine the roaming status for the mobile station (see 6.6.5.3).
- The mobile station should indicate to the user whether the mobile station is roaming.
- 25 6.6.2.2.1.5 Registration
- 26 The mobile station shall update stored variables and perform other registration procedures
- as specified in 6.6.5.5.2.2.
- 28 6.6.2.2.1.6 Slot Cycle Index
- 29 The mobile station shall set SLOT_CYCLE_INDEXs to the smaller of: the preferred slot cycle
- ∞ index SLOT_CYCLE_INDEX_p and the maximum slot cycle index
- $MAX_SLOT_CYCLE_INDEX_S$. If the mobile station is operating in the slotted mode, it shall
- set its slot cycle length as described in 6.6.2.1.1.3.
- 33 6.6.2.2.1.7 PACA Disable for SID Change
- 34 If PACA_s is equal to enabled, and SID_s is not equal to PACA_SID_s, the mobile station shall
- set PACAs to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and
- should indicate to the user that the PACA call has been canceled.

- 6.6.2.2.2 Access Parameters Message
- Whenever an Access Parameters Message is received on the Paging Channel, the sequence
- number, ACC_MSG_SEQ_r, shall be compared to ACC_MSG_SEQ_s. If the comparison
- results in a match, the mobile station may ignore the message. If the comparison results in
- a mismatch, then the mobile station shall process the remaining fields in the message as
- 6 follows.

- 7 If PROBE_PN_RAN, MAX_REQ_SEQ, or MAX_RSP_SEQ are not within the valid ranges
- specified in 7.7.2.3.2.2, then the mobile station shall ignore the Access Parameters Message
- 9 that contains them.
- 10 The mobile station shall store the following parameters:
 - Access Parameters Message sequence number (ACC_MSG_SEQs = ACC_MSG_SEQr)
- Number of Access Channels (ACC_CHAN_S = ACC_CHAN_T)
- Nominal transmit power offset (NOM_PWR_s = NOM_PWR_r)
- Initial power offset for access (INIT_PWR_s = INIT_PWR_r)
- Power increment (PWR_STEP_s = PWR_STEP_r)
- Number of access probes (NUM_STEP_s = NUM_STEP_r)
- Maximum Access Channel message capsule size (MAX_CAP_SZ_S = MAX_CAP_SZ_T)
- Access Channel preamble length (PAM_SZ_s = PAM_SZ_r)
- Persistence modifier for Access Channel attempts for registrations which are not responses to the Registration Request Order (REG_PSIST_s = REG_PSIST_r)
- Persistence modifier for Access Channel attempts for message transmissions
 (MSG_PSIST_S = MSG_PSIST_r)
- Time randomization for Access Channel probes (PROBE_PN_RAN_s = PROBE_PN_RAN_r)
- Acknowledgment timeout (ACC_TMO_s = ACC_TMO_r)
- Access Channel probe backoff range (PROBE_BKOFF_s = PROBE_BKOFF_r)
- Access Channel probe sequence backoff range (BKOFF_s = BKOFF_r)
- Maximum number of probe sequences for an Access Channel request
 (MAX_REQ_SEQ_S = MAX_REQ_SEQ_F)
- Maximum number of probe sequences for an Access Channel response $(MAX_RSP_SEQ_S = MAX_RSP_SEQ_r)$
- If CDMABANDs is equal to '0', the mobile station shall set extended nominal transmit power NOM_PWR_EXTs to '0'; otherwise, the mobile station shall store extended nominal transmit power (NOM_PWR_EXTs = NOM_PWR_EXTr).
- The mobile station shall also store the following parameters if the mobile station is not in the Origination Attempt Substate or Page Response Substate:

- Authentication mode (if AUTH_r is equal to '00' or '01', then AUTH_s = AUTH_r; otherwise AUTH_s = '01')
 - Random challenge value (RAND_s = RAND_r)
- The mobile station shall ignore any fields at the end of the Access Parameters Message
- which are not defined according to the protocol revision level (MOB_P_REVp of the current
- 6 band class) being used by the mobile station.
- 7 The mobile station shall store the persistence parameter number according to the following
- 8 rule: If the mobile station's access overload class is in the range 0-9, set PSIST_s equal to
- PSIST(0-9)_r, otherwise set PSIST_s equal to PSIST(n)_r, where n is equal to the mobile station
- 10 access overload class.
- The mobile station shall set CURR_ACC_MSG_SEQ to ACC_MSG_SEQs.
- 6.6.2.2.3 Neighbor List Message
- Whenever a valid Neighbor List Message is received on the current Paging Channel
- $(PAGECH_S)$, the configuration message sequence number, CONFIG_MSG_SEQ_r, shall be
- compared to that stored in NGHBR_LST_MSG_SEQs. If the comparison results in a match,
- the mobile station shall ignore the message. If the comparison results in a mismatch, then
- the mobile station shall process the remaining fields in the message as follows.
- 18 If the PILOT_INC field is not within the valid range specified in 7.7.2.3.2.3, then the mobile
- station shall ignore the Neighbor List Message that contains it.
- The mobile station shall store the following parameters:
- Configuration message sequence number
 (CONFIG_MSG_SEQ_S = CONFIG_MSG_SEQ_T)
- NGHBR_LST_MSG_SEQ_s = CONFIG_MSG_SEQ_t)
 - Pilot PN sequence offset increment (PILOT_INC_s = PILOT_INC_r)
- The mobile station shall set NGHBR_SET_SIZEs to the number of neighboring base stations
- contained in the Neighbor List Message.
- For each of the neighboring base stations contained in the Neighbor List Message, the
- 28 mobile station shall do the following:

29

30

31

35

36

- If the ith occurrence of NGHBR_CONFIG_r is equal to '000', '001', or '010', set the NGHBR_CONFIG field of NGHBR_REC[i] to the ith occurrence of NGHBR_CONFIG_r; otherwise, set the NGHBR_CONFIG field of NGHBR_REC [i] to '011'.
- $_{2}$ Set the NGHBR_PN field of NGHBR_REC [i] to the ith occurrence of NGHBR_PN_r.
- If GEN_NGHBR_LST_MSG_SEQ_s is not equal to CONFIG_MSG_SEQ_s, the mobile station shall perform the following:
 - Set the SEARCH_PRIORITY field of the NGHBR_REC to '10' (high) for all NGHBR_SET_SIZE_s entries.
 - Set the NGHBR_BAND field of NGHBR_REC to CDMABANDs for all NGHBR_SET_SIZEs entries.

- Set the NGHBR_FREQ field of NGHBR_REC to CDMACH_s for all NGHBR_SET_SIZE_s entries.
- Set the SRCH_WIN_NGHBR field of NGHBR_REC to SRCH_WIN_N_s for all NGHBR_SET_SIZE_s entries.
 - Set NUM_ANALOG_NGHBR_s to '000' and set ANALOG_NGHBR_LIST to NULL.
- The mobile station shall set the ACCESS_ENTRY_HO field of the NGHBR_REC to '0' for all NGHBR_SET_SIZEs entries if any of the following conditions are met:
 - EXT_SYS_PARAMETER_s is equal to '0',

10

13

36

37

- NGHBR_SET_ENTRY_INFO_s is equal to '0', or
- EXT_SYS_PAR_MSG_SEQ_s is not equal to CONFIG_MSG_SEQ_s.

The mobile station shall set the ACCESS_HO_ALLOWED field of the NGHBR_REC to '0' for all NGHBR_SET_SIZE_S entries if any of the following conditions are met:

- EXT_SYS_PARAMETERs is equal to '0',
- NGHBR_SET_ACCESS_INFO_s is equal to '0', or
- EXT_SYS_PAR_MSG_SEQ_s is not equal to CONFIG_MSG_SEQ_s.
- The mobile station shall update the idle handoff Neighbor Set (see 6.6.2.1.4) so that it consists only of pilot offsets listed in the Neighbor List Message. If the Neighbor List Message contains more pilot offsets than the mobile station can store, the mobile station shall store the pilot offsets beginning at the start of the Neighbor List Message, up to the limits of the mobile station's Neighbor Set storage capacity.
- 21 6.6.2.2.4 CDMA Channel List Message
- Whenever a CDMA Channel List Message is received on the Paging Channel, the configuration message sequence number, CONFIG_MSG_SEQ_r, shall be compared to that stored in CHAN_LST_MSG_SEQ_s. If the comparison results in a match, the mobile station may ignore the message. If the comparison results in a mismatch, then the mobile station shall process the remaining fields in the message as follows.
- 27 The mobile station shall store the following parameters:
- Configuration message sequence number
 (CONFIG_MSG_SEQ_S = CONFIG_MSG_SEQ_r)
 CHAN_LST_MSG_SEQ_S = CONFIG_MSG_SEQ_r)
- The mobile station shall use the hash algorithm specified in 6.6.7.1 and the number of channels listed in the *CDMA Channel List Message* to determine the CDMA Channel (frequency assignment) for its Paging Channel. If the CDMA frequency assignment has changed (the computed CDMA Channel is different from CDMACH_S), the mobile station shall perform the following actions:
 - Set CDMACH_s to the new CDMA Channel.
 - Set PAGE_CHAN_S to '1'.

- Set PAGECH_s to the Primary Paging Channel.
- Set CONFIG_MSG_SEQ_s, SYS_PAR_MSG_SEQ_s, NGHBR_LST_MSG_SEQ_s,
- CHAN_LST_MSG_SEQ_s, EXT_NGHBR_LST_MSG_SEQ_s,
- 4 GEN_NGHBR_LST_MSG_SEQ_s, EXT_SYS_PAR_MSG_SEQ_s,
- 5 GLOB_SERV_REDIR_MSG_SEQs; and ACC_MSG_SEQs to NULL.
 - Tune to the new CDMA Channel.

6.6.2.2.5 Extended System Parameters Message

- 8 Whenever an Extended System Parameters Message is received on the Paging Channel, the
- configuration message sequence number, CONFIG_MSG_SEQ_r, shall be compared to that
- stored in EXT_SYS_PAR_MSG_SEQs. If the comparison results in a match, the mobile
- station may ignore the message. If the comparison results in a mismatch, then the mobile
- station shall process the remaining fields in the message as follows.
- If the protocol revision level supported by mobile station (MOB_P_REV_p) is less than the
- minimum protocol revision level supported by the base station $(MIN_P_REV_r)$, the mobile
- 15 station shall enter the System Determination Substate of the Mobile Station Initialization
- State with a protocol mismatch indication (see 6.6.1.1). Otherwise, the mobile station shall
- store the following parameters:

22

23

25

26

- Configuration message sequence number
 (CONFIG_MSG_SEQ_S = CONFIG_MSG_SEQ_r,
 EXT_SYS_PAR_MSG_SEQ_S = CONFIG_MSG_SEQ_r)
 - Preferred Access Channel MSID Type (PREF_MSID_TYPE_s) = PREF_MSID_TYPE_t)
 - Broadcast slot cycle index (BCAST_INDEX_s = BCAST_INDEX_r)
 - The mobile station shall set its operational IMSI, IMSI_O, as follows:
 - If $IMSI_T_SUPPORTED_r$ is equal to '0', the mobile station shall set $IMSI_O$ to $IMSI_M_p$.
 - If IMSI_T_SUPPORTED_r is equal to '1' and the mobile station's IMSI_T_p has been programmed, the mobile station shall set IMSI_O to IMSI_T_p.
 - If IMSI_T_SUPPORTED_r is equal to '1' and the mobile station's IMSI_T_p has not been programmed, the mobile station shall set IMSI_O to IMSI_M_p.
 - If IMSI_O has been changed, the mobile station shall set SYS_PAR_MSG_SEQ_s and CHAN_LST_MSG_SEQ_s to NULL and set PAGE_CHAN_s to '001'.
- If MCC_r = '11111111111' and $IMSI_1_1_2_r$ = '11111111', the mobile station shall set the $IMSI_0$ to $IMSI_m_p$ and store:
 - Mobile Country Code (MCC_s = MCC_{Mp}) and
- = IMSI 11th and 12th digits (IMSI_11_12_s = IMSI_M_11_12_p);
- otherwise, the mobile station shall store:
 - Mobile Country Code (MCC_s = MCC_r) and

- IMSI 11th and 12th digits (IMSI_11_12_s = IMSI_11_12_r).
- If IMSI_O is set to the IMSI_M, the mobile station shall set:
- IMSI_O_S_s to IMSI_M_S_p (i.e., IMSI_O_S1_s to IMSI_M_S1_p and IMSI_O_S2_s to IMSI_M_S2_p)
- IMSI_O_11_12_s to IMSI_M_11_12_p
- MCC_O_s to MCC_M_p
 - IMSI_O_ADDR_NUM_S to IMSI_M_ADDR_NUM_D
- If IMSI_O is set to the IMSI_T, the mobile station shall set:
- IMSI_O_S_S to IMSI_T_S_p (i.e., IMSI_O_S1_S to IMSI_T_S1_p and IMSI_O_S2_S to IMSI_T_S2_p).
- $IMSI_O_11_12_s$ to $IMSI_T_11_12_p$
- MCC_O_s to MCC_T_p

- IMSI_O_ADDR_NUM_S to IMSI_T_ADDR_NUM_D
- Protocol revision level (P_REV_s = P_REV_r) if included in the message; otherwise,
 P_REV_s = '00000011' for Band Class 0 and P_REV_s = '00000001' for Band Class 1.
- Minimum protocol revision level (MIN_P_REV_S = MIN_P_REV_r) if included in the message; otherwise, MIN_P_REV_S = '00000010' for Band Class 0 and MIN_P_REV_S = '00000001' for Band Class 1.
- Protocol revision level currently in use ($P_REV_IN_USE_S =$ the lesser value of P_REV_S and $MOB_P_REV_p$ of the current band class)
- Slope of the handoff add/drop criterion (SOFT_SLOPE_s = SOFT_SLOPE_r) if included in the message; otherwise, SOFT_SLOPE_s = '000000'.
- Intercept of the handoff add criterion (ADD_INTERCEPT_s)
- Intercept of the handoff drop criterion (DROP_INTERCEPT_s) = DROP_INTERCEPT_r)
- Delete foreign TMSI (DELETE_FOR_TMSI_S = DELETE_FOR_TMSI_I)
- Use TMSI (USE_TMSI_s = USE_TMSI_r)
- TMSI zone length (TMSI_ZONE_LEN_S = TMSI_ZONE_LEN_T)
- TMSI zone number (TMSI_ZONE_s = TMSI_ZONE_r)
- Maximum number of alternative service options (MAX_NUM_ALT_SO_S = MAX_NUM_ALT_SO_r) if included in the message; otherwise, MAX_NUM_ALT_SO_S = '000'.
- System reselection indicator (RESELECT_INCLUDED_s = RESELECT_INCLUDED_r) if included in the message; otherwise, RESELECT_INCLUDED_s = '0'.
- Pilot reporting indicator (PILOT_REPORT_s = PILOT_REPORT_r)

1

18

19

21

28

- Neighbor Set access entry handoff information indicator (NGHBR_SET_ENTRY_INFO_s = NGHBR_SET_ENTRY_INFO_r) if included in the 2 message; otherwise, NGHBR_SET_ENTRY_INFO_S = '0'.
- Neighbor Set access handoff information indicator (NGHBR_SET_ACCESS_INFOs = NGHBR_SET ACCESS_INFO_r) if included in the message; otherwise, $NGHBR_SET_ACCESS_INFO_S = '0'.$
- If P_REV_IN_USEs has been changed, the mobile station shall set ACC_MSG_SEQs,
- CURR_ACC_MSG_SEQ, SYS_PAR_MSG_SEQs, EXT_NGHBR_LST_MSG_SEQs, 8
- GEN_NGHBR_LST_MSG_SEQs, and GLOB_SERV_REDIR_MSG_SEQs to NULL.
- If NGHBR_SET_ENTRY_INFO is equal to '1', the mobile station shall store the access entry 10 handoff in order and message processing operation indicator (ACC_ENT_HO_ORDERs = 11
- ACC_ENT_HO_ORDER_r. 12
- If the mobile station supports packet data service options and PACKET_ZONE_ID is 13
- included in the message, the mobile station shall store the packet data services zone 14
- identifier ($PACKET_ZONE_ID_S = PACKET_ZONE_ID_T$); otherwise, the mobile station shall set 15
- PACKET_ZONE_IDs to '00000000'. 16
- If RESELECT_INCLUDEDs is equal to '1', the mobile station shall store: 17
 - Pilot power threshold (EC_THRESH_s = EC_THRESH_r)
 - Pilot E_C/I_O threshold (EC_IO_THRESH_S = EC_IO_THRESH_I)
- If NGHBR_SET_ACCESS_INFOs is equal to '1', the mobile station shall store: 20
 - Access handoff permitted indicator (ACCESS_ HO_s = ACCESS_ HO_r)
- Access probe handoff permitted indicator (ACCESS_PROBE_HO_S = 22 ACCESS_PROBE_HO_r) 23
- If ACCESS_PROBE_HOs is equal to '1', access handoff list update permitted indicator (ACC_HO_LIST_UPD $_{S}$ = ACC_HO_LIST_UPD $_{r}$) 25
- Maximum number of times that the mobile station is permitted to perform an access 26 probe handoff (MAX_NUM_PROBE_HO_s = MAX_NUM_PROBE_HO_r) 27
 - Access handoff permitted for message response indicator (ACCESS_HO_MSG_RSP_S = ACCESS_HO_MSG_RSP_r)
- Access probe handoff permitted for other messages indicator 30 $(ACC_PROBE_HO_OTHER_MSG_s = ACC_PROBE_HO_OTHER_MSG_r)$ 31
- If NGHBR_SET_ENTRY_INFOs or NGHBR_SET_ACCESS_INFOs is equal to '1', the mobile 32 station shall store the size of the Neighbor Set (NGHBR_SET_SIZE_s = NGHBR_SET_SIZE_r). 33
- If NGHBR_SET_ENTRY_INFOs is equal to '0', then for all NGHBR_SET_SIZEs occurrences of 34
- ACCESS_ENTRY_HO, the mobile station shall set the ACCESS_ENTRY_HO field of 35
- NGHBR_REC[i] to '0'. 36
- If NGHBR_SET_ENTRY_INFOs is equal to '1', then for all NGHBR_SET_SIZEs occurrences of 37
- ACCESS_ENTRY_HO, the mobile station shall set the ACCESS_ENTRY_HO field of 38
- NGHBR_REC[i] to the ith occurrence of ACCESS_ENTRY_HOr. 39

- If NGHBR_SET_ACCESS_INFOs is equal to '0', then for all NGHBR_SET_SIZEs occurrences
- of ACCESS_HO_ALLOWED, the mobile station shall set the ACCESS_HO_ALLOWED field of
- NGHBR_REC[i] to '0'.
- If NGHBR_SET_ACCESS_INFOs is equal to '1', then for all NGHBR_SET_SIZEs occurrences
- of ACCESS_HO_ALLOWED, the mobile station shall set the ACCESS_HO_ALLOWED field of
- NGHBR_REC[i] to the ith occurrence of ACCESS_HO_ALLOWED_r.
- The mobile station shall set all bits of TMSI_CODE_{s-p} to '1' if all of the following conditions
- are met:

12

13

24

26

27

32

- The bits of TMSI_CODE_{s-p} are not all equal to '1',
- DELETE_FOR_TMSI_s is equal to '1', and 10
 - ASSIGNING_TMSI_ZONE_LEN_{S-p} is not equal to TMSI_ZONE_LEN_S, or the least significant ASSIGNING_TMSI_ZONE_LEN_{s-p} octets of ASSIGNING_TMSI_ZONE_{s-p} are not equal to TMSI_ZONE_S.
- 6.6.2.2.6 Global Service Redirection Message 14
- Whenever a Global Service Redirection Message is received on the Paging Channel, the configuration message sequence number, CONFIG_MSG_SEQ_r, shall be compared to that 16 stored in GLOB_SERV_REDIR_MSG_SEQs. If the comparison results in a match, the 17 mobile station may ignore the message. If the comparison results in a mismatch, the mobile station shall store the following parameters: 19
- Configuration message sequence number 20 $(CONFIG_MSG_SEQ_s = CONFIG_MSG_SEQ_r)$ 21 $GLOB_SERV_REDIR_MSG_SEQ_s = CONFIG_MSG_SEQ_t$ 22
- If DELETE_TMSI_r is equal to '1', the mobile station shall set all the bits of 23 $TMSI_CODE_{s-p}$ to '1'.
- Set CDMA_MODEs to 1
 - Set DIGITAL_REG_{s-p} to '00000000'
 - Max delay upon redirection (MAX_REDIRECT_DELAY_s = MAX_REDIRECT_DELAY_r)
- If the subfield corresponding to the access overload class, ACCOLCp, of the mobile station 28 is set equal to '1' in the REDIRECT_ACCOLCr field of the received message, the mobile 29 station shall store the following parameters and then shall enter the System Determination 30
- Substate of the Mobile Station Initialization State with a redirection indication (see 6.6.1.1): 31
 - Return if fail indicator (RETURN_IF_FAIL_s = RETURN_IF_FAIL_r)
 - Redirection record (REDIRECT_REC_s = redirection record from received message)
- 6.6.2.2.7 Extended Neighbor List Message 34
- Whenever a valid Extended Neighbor List Message is received on the current Paging 35
- Channel (PAGECH_s), the configuration message sequence number, CONFIG_MSG_SEQ_r, 36
- shall be compared to that stored in EXT_NGHBR_LST_MSG_SEQ_s. If the comparison 37
- results in a match, the mobile station may ignore the message. If the comparison results in 38

- a mismatch, then the mobile station shall process the remaining fields in the message as
- 2 follows.

10

16

17

18

19

25

.26

27

28

31

- 3 If the PILOT_INC field is not within the valid range specified in 7.7.2.3.2.3, then the mobile
- station shall ignore the Extended Neighbor List Message that contains it.
- 5 The mobile station shall store the following parameters:
- Configuration message sequence number
 (CONFIG_MSG_SEQ_s = CONFIG_MSG_SEQ_r,
 EXT_NGHBR_LST_MSG_SEQ_s = CONFIG_MSG_SEQ_r,
- 9 NGHBR_LST_MSG_SEQ_S = CONFIG_MSG_SEQ_r)
 - Pilot PN sequence offset increment (PILOT_INC_s = PILOT_INC_r)
- The mobile station shall set NGHBR_SET_SIZE_s to the number of neighboring base stations contained in the *Extended Neighbor List Message*.
- For each of the neighboring base stations contained in the *Extended Neighbor List Message*, if FREQ_INCL_r equals '0', or if FREQ_INCL_r equals '1' and NGHBR_BAND_r is supported, the
- mobile station shall do the following:
 - If the ith occurrence of NGHBR_CONFIG_r is equal to '000', '001', or '010', set the NGHBR_CONFIG field of NGHBR_REC[i] to the ith occurrence of NGHBR_CONFIG_r; otherwise, set the NGHBR_CONFIG field of NGHBR_REC [i] to '011'.
 - Set the NGHBR_PN field of NGHBR_REC[i] to the ith occurrence of NGHBR_PN_r.
- Set the SEARCH_PRIORITY field of NGHBR_REC[i] to the ith occurrence of SEARCH_PRIORITY_r.
- For each of the neighboring base stations contained in the *Extended Neighbor List Message*, if FREQ_INCL_r equals '1' and NGHBR_BAND_r is supported, the mobile station shall also do the following:
 - Set the NGHBR_BAND field of NGHBR_REC[i] to the ith occurrence of NGHBR_BAND_r.
 - Set the NGHBR_FREQ field of NGHBR_REC[i] to the ith occurrence of NGHBR_FREQ_r.
- For each of the neighboring base stations contained in the *Extended Neighbor List Message*, if FREQ_INCL_r equals '0', the mobile station shall also do the following:
 - Set the NGHBR_BAND field of NGHBR_REC[i] to CDMABANDs.
 - Set the NGHBR_FREQ field of NGHBR_REC[i] to CDMACH_s.
- If GEN_NGHBR_LST_MSG_SEQ_s is not equal to CONFIG_MSG_SEQ_s, the mobile station shall do the following:
 - Set the SRCH_WIN_NGHBR field of NGHBR_REC to SRCH_WIN_N_s for all NGHBR_SET_SIZE_s entries.
- Set NUM_ANALOG_NGHBR_s to '000' and set ANALOG_NGHBR_LIST to NULL.

- The mobile station shall set the ACCESS_ENTRY_HO field of the NGHBR_REC to '0' for all NGHBR_SET_SIZE_s entries if any of the following conditions are met:
 - EXT_SYS_PARAMETER_s is equal to '0',
 - NGHBR_SET_ENTRY_INFO_s is equal to '0', or
 - EXT_SYS_PAR_MSG_SEQ_s is not equal to CONFIG_MSG_SEQ_s.
- The mobile station shall set the ACCESS_HO_ALLOWED field of the NGHBR_REC to '0' for all NGHBR_SET_SIZE_s entries if any of the following conditions are met:
 - EXT_SYS_PARAMETER_s is equal to '0',
 - NGHBR_SET_ACCESS_INFO_S is equal to '0', or
 - EXT_SYS_PAR_MSG_SEQ_s is not equal to CONFIG_MSG_SEQ_s.
- The mobile station shall update the idle handoff Neighbor Set (see 6.6.2.1.4) so that it consists only of pilot offsets listed in the Extended Neighbor List Message. If the Extended Neighbor List Message contains more pilot offsets than the mobile station can store, the mobile station shall store the pilot offsets beginning at the start of the Extended Neighbor List Message, up to the limits of the mobile station's Neighbor Set storage capacity.
- 6.6.2.2.8 General Neighbor List Message

25

26

27

- Whenever a valid General Neighbor List Message is received on the current Paging Channel (PAGECH_S), the configuration message sequence number, CONFIG_MSG_SEQ_r shall be compared to that stored in GEN_NGHBR_LST_MSG_SEQ_s. If the comparison results in a mismatch, then the mobile station shall process the remaining field in the message as follows.
- If the PILOT_INC field is not within the valid range specified in 7.7.2.3.2.3, then the mobile station shall ignore the *General Neighbor List Message* that contains it.
- 24 The mobile station shall store the following parameters:
 - Configuration message sequence number (CONFIG_MSG_SEQ_s = CONFIG_MSG_SEQ_r, GEN_NGHBR_LST_MSG_SEQ_s= CONFIG_MSG_SEQ_r).
 - Pilot PN sequence offset increment (PILOT_INC_s = PILOT_INC_r).
- If NGHBR_CONFIG_PN_INCL_r is equal to '1' and FREQ_FIELDS_INCL_r is equal to '1', the mobile station shall store the following parameters:
- Configuration message sequence number
 (EXT_NGHBR_LST_MSG_SEQ_s = CONFIG_MSG_SEQ_r,
 NGHBR_LST_MSG_SEQ_s = CONFIG_MSG_SEQ_r).
- The mobile station shall set NGHBR_SET_SIZE_s to the number of neighboring base stations contained in the *General Neighbor List Message*.
- For each of the neighboring base stations contained in the General Neighbor List Message, if FREQ_INCL_r equal '0', or if FREQ_INCL_r equal '1' and NGHBR_BAND_r is supported, the
- mobile station shall do the following:

10

13

15

17

19

22

23

25

26

27

32

- If NGHBR_CONFIG_PN_INCL_r is equal to '1', set the NGHBR_CONFIG and NGHBR_PN fields as follows:
- If the ith occurrence of NGHBR_CONFIG_r is equal to '000', '001', or '010', set the NGHBR_CONFIG field of NGHBR_REC[i] to the ith occurrence of NGHBR_CONFIG_r; otherwise, set the NGHBR_CONFIG field of NGHBR_REC[i] to '011'.
 - Set the NGHBR_PN field of NGHBR_REC[i] to the ith occurrence of NGHBR_PN_r.
 - If NGHBR_SRCH_MODE_r = '00' or '10' and EXT_NGHBR_LST_MSG_SEQ_S is not equal to CONFIG_MSG_SEQ_r, set SEARCH_PRIORITY field of each NGHBR_REC to '10' (high) for all NGHBR_SET_SIZE_S entries.
 - If NGHBR_SRCH_MODE_r = '01' or '11', set the SEARCH_PRIORITY field of NGHBR_REC[i] to the ith occurrence of SEARCH_PRIORITY_r.
 - If NGHBR_SRCH_MODE_r = '00' or '01', set the SRCH_WIN_NGHBR field of each NGHBR_REC to SEARCH_WIN_S for all NGHBR_SET_SIZE_s entries if SYS_PAR_MSG_SEQ_s is equal to CONFIG_MSG_SEQ_s; otherwise, set SETTING_SEARCH_WIN to '1'.
 - If NGHBR_SRCH_MODE_r = '10' or '11', set the SRCH_WIN_NGHBR field of NGHBR_REC[i] to the ith occurrence of SRCH_WIN_NGHBR_r.
- If USE_TIMING_r is equal to '1', set the TIMING_INCL field of NGHBR_REC[i] to the
 ith occurrence of TIMING_INCL_r; otherwise, set the TIMING_INCL field of
 NGHBR_REC to '0' for all entries.
 - For each of the neighboring base stations contained in the *General Neighbor List Message*, if FREQ_FIELDS_INCL_r equals '1', FREQ_INCL_r equals '1', and NGHBR_BAND_r is supported, the mobile station shall also perform the following:
 - Set the NGHBR_BAND field of NGHBR_REC[i] to the ith occurrence of NGHBR_BAND_r.
 - Set the NGHBR_FREQ field of NGHBR_REC[i] to the ith occurrence of NGHBR_FREQ_r.
- For each of the neighboring base stations contained in the *General Neighbor List Message*, if USE_TIMING_r is equal to '1' and TIMING_INCL_r equals '1', the mobile station shall also perform the following:
 - Set the NGHBR_TX_OFFSET field of NGHBR_REC[i] to the ith occurrence of NGHBR_TX_OFFSET_r.
 - If GLOBAL_TIMING_INCL_r is equal to '1', then the mobile station shall:
 - Set the NGHBR_TX_DURATION field of NGHBR_REC to GLOBAL_TX_DURATION_r for all entries.
 - Set the NGHBR_TX_PERIOD field of NGHBR_REC to GLOBAL_TX_PERIOD_r for all entries.
 - If GLOBAL_TIMING_INCL_r is equal to '0', then the mobile station shall:

- Set the NGHBR_TX_DURATION field of NGHBR_REC[i] to the ith occurrence of NGHBR_TX_DURATION_r.
- Set the NGHBR_TX_PERIOD field of NGHBR_REC[i] to the ith occurrence of NGHBR_TX_PERIOD_r.
- For each of the neighboring base stations contained in the *General Neighbor List Message*, if $FREQ_FIELDS_INCL_r$ equals '1' and $FREQ_INCL_r$ equals '0', or if $FREQ_FIELDS_INCL_r$ equals '0' and $EXT_NGHBR_LST_MSG_SEQ_S$ is not equal to $CONFIG_MSG_SEQ_r$, the mobile station shall also do the following:
 - Set the NGHBR_BAND field of NGHBR_REC[i] to CDMABANDs.
 - Set the NGHBR_FREQ field of NGHBR_REC[i] to CDMACHs.

The mobile station shall set the ACCESS_ENTRY_HO field of the NGHBR_REC to '0' for all NGHBR_SET_SIZE_s entries if any of the following conditions are met:

EXT_SYS_PARAMETERs is equal to '0'

10

13

14

15

16

17

18

20

21

22

23

24

25

30

31

32

33

- NGHBR_SET_ENTRY_INFO_s is equal to '0', or
- EXT_SYS_PAR_MSG_SEQ_s is not equal to CONFIG_MSG_SEQ_s.

The mobile station shall set the ACCESS_HO_ALLOWED field of the NGHBR_REC to '0' for all NGHBR_SET_SIZE_s entries if any of the following conditions are met:

- EXT_SYS_PARAMETERs is equal to '0'
- NGHBR_SET_ACCESS_INFO_S is equal to '0', or
- EXT_SYS_PAR_MSG_SEQ_s is not equal to CONFIG_MSG_SEQ_s.

The mobile station shall update the idle handoff Neighbor Set (see 6.6.2.1.4) so that it consists only of pilot offsets listed in the *General Neighbor List Message*. If the *General Neighbor List Message* contains more pilot offsets than the mobile station can store, the mobile station shall store the pilot offsets beginning at the start of the *General Neighbor List Message*, up to the limits of the mobile station's Neighbor Set storage capacity.

- The mobile station shall set NUM_ANALOG_NGHBR_s to NUM_ANALOG_NGHBR_r, the number of neighboring analog systems contained in the *General Neighbor List Message*. For each of the neighboring analog systems contained in the *General Neighbor List Message*, the mobile station shall perform the following:
 - Set the BAND_CLASS field of ANALOG_NGHBR_LIST[i] to the ith occurrence of BAND_CLASS_r.
 - Set the SYS_A_B field of ANALOG_NGHBR_LIST[i] to the ith occurrence of SYS_A_B_r.

6.6.2.3 Mobile Station Page Match Operation

The Mobile Station Page Match Operation is performed whenever the mobile station receives a General Page Message. The mobile station searches each message to determine whether it contains the IMSI or TMSI assigned to the mobile station. If so, the mobile station transmits a Page Response Message on the Access Channel. If configured to receive broadcast messages, the mobile station also searches each General Page Message to

10

13

14

15

16

17

18

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

- determine whether it contains a burst type and broadcast address that the mobile station
- has been configured to receive. If so, the mobile station performs the broadcast page
- procedures described in 6.6.2.1.1.3.4.
- 4 The mobile station shall compare the configuration message sequence number,
- 5 CONFIG_MSG_SEQ_r, to CONFIG_MSG_SEQ_s. If the comparison results in a mismatch,
- then the mobile station shall set CONFIG_MSG_SEQ_s to CONFIG_MSG_SEQ_r. The mobile
- 7 station shall also compare the Access Parameters Message sequence number,
- ACC_MSG_SEQ_r, with that stored in ACC_MSG_SEQ_s. If the comparison results in a
- 9 mismatch, then the mobile station shall set ACC_MSG_SEQ_s to NULL (see 6.6.2.2). The
 - mobile station shall set CURR_ACC_MSG_SEQ to ACC_MSG_SEQs.
- The mobile station shall process the records in the *General Page Message* in the order they occur using the following procedures:
 - The mobile station shall ignore all remaining bits in the message if a page record has:
 - PAGE_CLASS equal to '01' and PAGE_SUBCLASS equal to '10' or '11', or
 - PAGE_CLASS equal to '11' and PAGE_SUBCLASS equal to '01', '10', or '11'.
 - If PAGE_CLASS is equal to '00' and PAGE_SUBCLASS is equal to '00', the mobile station shall process the record and shall declare a page match if all the following conditions are met:
 - The mobile station's IMSI_O is a class 0 IMSI (see 6.3.1),
 - IMSI_O_S_s is equal to the IMSI_S received in the page record,
 - IMSI_O_11_12_s is equal to IMSI_11_12_s,
 - MCC_O_s is equal to MCC_s:
 - If PAGE_CLASS is equal to '00' and PAGE_SUBCLASS is equal to '01', the mobile station shall process the record and shall declare a page match if all the following conditions are met:
 - The mobile station's IMSI_O is a class 0 IMSI,
 - IMSI_O_S_s is equal to the IMSI_S received in the page record,
 - IMSI_O_11_12s is equal to the IMSI_11_12 received in the page record, and
 - MCC_O_s is equal to MCC_s.
 - If PAGE_CLASS is equal to '00' and PAGE_SUBCLASS is equal to '10', the mobile station shall process the record and shall declare a page match if all the following conditions are met:
 - The mobile station's IMSI_O is a class 0 IMSI,
 - IMSI_O_S_s is equal to the IMSI_S received in the page record,
 - IMSI_O_11_12_s is equal to IMSI_11_12_s, and
 - MCC_O_S is equal to the MCC received in the page record.

- If PAGE_CLASS is equal to '00' and PAGE_SUBCLASS is equal to '11', the mobile station shall process the record and shall declare a page match if all the following conditions are met:
- The mobile station's IMSI_O is a class 0 IMSI,
- IMSI_O_S_s is equal to the IMSI_S received in the page record,
- IMSI_O_11_12s is equal to the IMSI_11_12 received in the page record, and
- MCC_O_s is equal to the MCC received in the page record.
- If PAGE_CLASS is equal to '01' and PAGE_SUBCLASS is equal to '00', the mobile station shall process the record and shall declare a page match if all the following conditions are met:
 - The mobile station's IMSI_O is a class 1 IMSI (see 6.3.1),
 - IMSI_O_S_s is equal to the IMSI_S received in the page record,
 - IMSI_O_11_12_s is equal to the IMSI_11_12 received in the page record,
 - MCC_O_s is equal to MCC_s, and

12

13

14

17

18

19

21

26

27

28

- IMSI_O_ADDR_NUM_S is equal to the IMSI_ADDR_NUM received in the page
 record.
 - If PAGE_CLASS is equal to '01' and PAGE_SUBCLASS is equal to '01', the mobile station shall process the record and shall declare a page match if all the following conditions are met:
- The mobile station's IMSI_O is a class 1 IMSI,
 - IMSI_O_S_S is equal to the IMSI_S received in the page record,
- $_{2}$ IMSI_O_11_12_S is equal to the IMSI_11_12 received in the page record,
- MCC_Os is equal to the MCC received in the page record, and
- IMSI_O_ADDR_NUM_S is equal to the IMSI_ADDR_NUM received in the page
 record.
 - If PAGE_CLASS is equal to '10' and PAGE_SUBCLASS is equal to '00', the mobile station shall process the record and shall declare a page match if all the following conditions are met:
 - The bits of TMSI_CODE_{s-p} are not all equal to '1',
- ASSIGNING_TMSI_ZONE_LEN_{s-p} is equal to TMSI_ZONE_LEN_s,
- The least significant ASSIGNING_TMSI_ZONE_LEN_{s-p} octets of ASSIGNING_TMSI_ZONE_{s-p} are equal to TMSI_ZONE_s, and
- \sim TMSI_CODE_{s-p} is equal to the TMSI_CODE_ADDR received in the page record.
- If PAGE_CLASS is equal to '10' and PAGE_SUBCLASS is equal to '01', the mobile station shall process the record and shall declare a page match if all the following conditions are met:

8

10

11

12

13

17

19

20 21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

- The bits of TMSI_CODE_{s-p} are not all equal to '1',
- ASSIGNING_TMSI_ZONE_LEN_{s-p} is equal to TMSI_ZONE_LEN_s,
- The least significant ASSIGNING_TMSI_ZONE_LEN_{s-p} octets of ASSIGNING_TMSI_ZONE_{s-p} are equal to TMSI_ZONE_s,
 - The most significant octet of TMSI_CODE_{s-p} is equal to '00000000', and
 - The least significant 24 bits of TMSI_CODE_{s-p} are equal to the TMSI_CODE_ADDR received in the page record.
 - If PAGE_CLASS is equal to '10' and PAGE_SUBCLASS is equal to '10', the mobile station shall process the record and shall declare a page match if all the following conditions are met:
 - The bits of TMSI_CODE_{s-p} are not all equal to '1',
 - ASSIGNING_TMSI_ZONE_LEN_{s-p} is equal to TMSI_ZONE_LEN_s,
 - The least significant ASSIGNING_TMSI_ZONE_LEN_{s-p} octets of ASSIGNING_TMSI_ZONE_{s-p} are equal to TMSI_ZONE_s,
 - The two most significant octets of TMSI_CODE_{s-p} are both equal to '00000000', and
 - The least significant 16 bits of TMSI_CODE_{s-p} are equal to the TMSI_CODE_ADDR received in the page record.
 - If PAGE_CLASS is equal to '10' and PAGE_SUBCLASS is equal to '11', the mobile station shall process the record and shall declare a page match if the following conditions are met:
 - The bits of TMSI_CODE_{s-p} are not all equal to '1',
 - ASSIGNING_TMSI_ZONE_LEN_{s-p} is equal to the TMSI_ZONE_LEN received in the page record,
 - The least significant ASSIGNING_TMSI_ZONE_LEN_{s-p} octets of ASSIGNING_TMSI_ZONE_{s-p} are equal to the TMSI_ZONE received in the page record,
 - TMSI_CODE_{s-p} is equal to the TMSI_CODE_ADDR received in the page record.
 - If the mobile station is configured to receive broadcast messages, then for each record of the page message with PAGE_CLASS equal to '11' and PAGE_SUBCLASS equal to '00', the mobile station shall compare the BURST_TYPE and BC_ADDR fields to the burst types and broadcast addresses that the mobile station has been configured to receive. If the record contains a burst type and broadcast address that the mobile station has been configured to receive, the mobile station should perform the broadcast page procedures described in 6.6.2.1.1.3.4. The mobile station shall not declare a page match for a page record with PAGE_CLASS equal to '11' and PAGE_SUBCLASS equal to '00'.

- If a page match is declared, the mobile station shall enter the Update Overhead Information
- Substate of the System Access State (see 6.6.3.2) with a page response indication within
- 3 T_{33m} seconds after the page message is received.
- 4 If a page match is declared and the mobile station determines that it should be monitoring
- a neighboring base station, the mobile station may perform an access entry handoff to the
- 6 neighboring base station, if all of the following conditions hold:
 - The neighboring base station is listed in NGHBR_REC.
 - The ACCESS_ENTRY_HO field of the NGHBR_REC corresponding to the neighboring base station is equal to '1'.
- None of CONFIG_MSG_SEQ_s, SYS_PAR_MSG_SEQ_s, NGHBR_LST_MSG_SEQ_s, EXT_NGHBR_LST_MSG_SEQ_s, GEN_NGHBR_LST_MSG_SEQ_s, CHAN_LST_MSG_SEQ_s, and EXT_SYS_PAR_MSG_SEQ_s are equal to NULL.
- Otherwise, the mobile station shall not perform an access entry handoff to the neighboring base station.
- The mobile station need not perform an access entry handoff to a base station operating on another frequency.
- If the mobile station performs an access entry handoff, it shall follow the procedures specified in 6.6.2.1.4.2 and shall perform the access entry handoff before entering the
- 19 Update Overhead Information Substate of the System Access State (see 6.6.3.2).
- 20 If PACA is enabled, and if the mobile station performs an access entry handoff, the mobile
- station shall respond to the General Page Message first, and shall then re-originate the
- 22 PACA call on the new base station.
- 2 6.6.2.4 Mobile Station Order and Message Processing Operation
- 24 During the Mobile Station Order and Message Processing Operation, the mobile station
- processes all messages except overhead messages (see 6.6.2.2) and page messages (see
- 26 6.6.2.3).

34

35

10

11

- 27 The mobile station shall set CURR_ACC_MSG_SEQ to NULL.
- 28 The mobile station shall perform address matching as described in 6.6.2.1.5. If an address
- match is declared, the mobile station shall process the message; otherwise, the mobile
- station shall ignore the message.
- 31 The following cases occur for messages received on the Paging Channel whose ADDRESS
- general field matches the mobile station's identification data:
 - If the message is a Data Burst Message that is addressed to a broadcast address the
 mobile station has been configured to receive, the mobile station shall process the
 message but shall not acknowledge the message nor return an error message.

6

10

11

12 13

14

15

16

17

18

19

20

21

35

36

37

38 39

- If the message requires acknowledgment, and is not the Lock Until Power-Cycled 1 Order or the Unlock Order, the mobile station shall acknowledge the message as 2 specified in 6.6.2.1.2. The mobile station shall enter the Update Overhead Information Substate of the System Access State with an order/message response indication within T_{33m} seconds, unless otherwise specified for a particular message. 5
 - If the message does not require acknowledgment, the mobile station shall transmit a response only if it is required by the message or order. If a response is required, the mobile station shall enter the Update Overhead Information Substate of the System Access State with an order/message response indication within T_{33m} seconds, unless otherwise specified for a particular message.

If the mobile station is to enter the Update Overhead Information Substate of the System Access State with an order/message response indication and the mobile station determines that it should be monitoring a neighboring base station, the mobile station may perform an access entry handoff to the neighboring base station, if all of the following conditions hold:

- The neighboring base station is listed in NGHBR_REC.
- The ACCESS_ENTRY_HO field of the NGHBR_REC corresponding to the neighboring base station is equal to '1'.
 - ACC_ENT_HO_ORDERs is equal to '1'.
 - None of CONFIG_MSG_SEQ_s, SYS_PAR_MSG_SEQ_s, NGHBR_LST_MSG_SEQ_s, EXT_NGHBR_LST_MSG_SEQs, GEN_NGHBR_LST_MSG_SEQs, CHAN_LST_MSG_SEQ_s, and EXT_SYS_PAR_MSG_SEQ_s are equal to NULL.
- Otherwise, the mobile station shall not perform an access entry handoff to the neighboring 22 base station. 23
- The mobile station need not perform an access entry handoff to a base station operating on 24 another frequency. 25
- If the mobile station performs an access entry handoff, it shall follow the procedures 26 specified in 6.6.2.1.4.2 and shall perform the access entry handoff before entering the 27 Update Overhead Information Substate of the System Access State (see 6.6.3.2). If PACA is 28 enabled and the mobile station performs an access entry handoff, the mobile station shall 29 respond to the order/message first and then re-originate the PACA call in the new base 30
- 31 The following directed messages and orders can be received. If any field value of the 32 message or order is outside its permissible range, the mobile station shall send a Mobile 33
- Station Reject Order with ORDQ equal to '00000100' (message field not in valid range). 34
 - 1. Abbreviated Alert Order: The mobile station may alert the user.
 - 2. Audit Order

station.

3. Authentication Challenge Message: The mobile station shall process the message and shall respond with an Authentication Challenge Response Message as specified in 6.3.12.1.5, regardless of the value of AUTH_s. The mobile station shall enter the

- Update Overhead Information Substate of the System Access State with an order/message response indication within T_{32m} seconds.
- 4. Base Station Acknowledgment Order

11

12

13

15

16

17

18

19

20

21

23

25

26

27

28

29

30

31

32

33

35

36

37

38

39

- 5. Base Station Challenge Confirmation Order: The mobile station shall process the message and shall respond with an SSD Update Confirmation Order or SSD Update Rejection Order as specified in 6.3.12.1.9. The mobile station shall enter the Update Overhead Information Substate of the System Access State with an order/message response indication within T_{32m} seconds.
- Channel Assignment Message: The mobile station shall process the message as follows:
 - If ASSIGN_MODE_r equals '001', the mobile station shall perform the following actions: If the message requires acknowledgment, the mobile station shall send an acknowledgment (see 6.6.3.1.2) using the access channel procedure specified in 6.6.3.1.1. If a CDMA channel (CDMA_FREQ) is specified in the assignment, the mobile station shall set CDMACH_s = CDMA_FREQ_r, tune to the new frequency assignment, and measure the strength of each pilot listed in the assignment using the Neighbor Set search procedures specified in 6.6.6.2.1 and 6.6.6.2.2. The mobile station shall set CONFIG_MSG_SEQs and $ACC_MSG_SEQ_S$ to NULL (see 6.6.2.2) and shall set PILOT $_PN_S$ to the pilot PN sequence offset of the strongest pilot in the list (PILOT_PN_r). If the mobile station has not stored configuration parameters for the Primary Paging Channel of the new base station, or if the stored information is not current (see 6.6.2.2). the mobile station shall set SYS_PAR_MSG_SEQs, NGHBR_LST_MSG_SEQs, EXT_NGHBR_LST_MSG_SEQs, GEN_NGHBR_LST_MSG_SEQs, CHAN_LST-_MSG_SEQ $_{ extsf{S}}$, EXT_SYS_PAR_MSG_SEQ $_{ extsf{S}}$, and GLOB_SERV_REDIR_MSG_SEQ $_{ extsf{S}}$ to NULL. The mobile station shall set PAGE_CHANs to '1' and PAGECHs to the Primary Paging Channel. The mobile station shall then begin monitoring the Primary Paging Channel of the selected base station.
 - If ASSIGN_MODE_r equals '101' and FREQ_INCL_r equals '0', the mobile station shall perform the following actions: If the message requires an acknowledgment, the mobile station shall send an acknowledgment (see 6.6.3.1.2) using the access procedure specified in 6.6.3.1.1. The mobile station shall measure the strength of each pilot listed in the assignment using the Neighbor Set search procedures specified in 6.6.6.2.1 and 6.6.6.2.2, set PILOT_PN_s to the pilot PN sequence offset of the strongest pilot in the list (PILOT_PN_r), and set CONFIG- $_MSG_SEQ_S$ and $ACC_MSG_SEQ_S$ to NULL (see 6.6.2.2). If the mobile station has not stored configuration parameters for the Primary Paging Channel of the new base station, or if the stored information is not current (see 6.6.2.2), the mobile station shall set SYS_PAR_MSG_SEQ_s, NGHBR_LST_MSG_SEQ_s, EXT_NGHBR_LST_MSG_SEQ_s, GEN_NGHBR_LST_MSG_SEQ_s, CHAN_LST- $_MSG_SEQ_S$, EXT $_SYS_PAR_MSG_SEQ_S$, and GLOB $_SERV_REDIR_MSG_SEQ_S$ to NULL. The mobile station shall set PAGE_CHANs to '1' and PAGECHs to the Primary Paging Channel. The mobile station shall then begin monitoring the Primary Paging Channel of the selected base station.

10

11

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

- If ASSIGN_MODE_r equals '101', FREQ_INCL_r equals '1', and the band class is not supported by the mobile station, the mobile station shall enter the *Update Overhead Information Substate* of the *System Access State* with an order/message response indication within T_{33m} seconds and send a *Mobile Station Reject Order* with ORDQ field set to '00000110' (capability not supported by the mobile station).
- If $ASSIGN_MODE_r$ equals '101', $FREQ_INCL_r$ equals '1', and the band class is supported by the mobile station, the mobile station shall perform the following actions: If the message requires an acknowledgment, the mobile station shall send an acknowledgment (see 6.6.3.1.2) using the access procedure specified in 6.6.3.1.1. The mobile station shall set CDMACH_s = CDMA_FREQ_r and CDMABAND_S = BAND_CLASS_r. Then the mobile station shall tune to the new frequency assignment, measure the strength of each pilot listed in the assignment using the Neighbor Set search procedures specified in 6.6.6.2.1 and 6.6.6.2.2, set PILOT_PNs to the pilot PN sequence offset of the strongest pilot in the list (PILOT_PN_r), and set CONFIG_MSG_SEQ_s and ACC_MSG_SEQ_s to NULL (see 6.6.2.2). If the mobile station has not stored configuration parameters for the Primary Paging Channel of the new base station, or if the stored information is not current (see 6.6.2.2), the mobile station shall set SYS_PAR_MSG_SEQ_S, $NGHBR_LST_MSG_SEQ_s$, $EXT_NGHBR_LST_MSG_SEQ_s$, GEN_NGHBR_LST_MSG_SEQ_s, CHAN_LST_MSG_SEQ_s, EXT_SYS_PAR_MSG_SEQs, and GLOB_SERV_REDIR_MSG_SEQs to NULL. The mobile station shall set PAGE_CHANs to '1' and PAGECHs to the Primary Paging Channel. The mobile station shall then begin monitoring the Primary Paging Channel of the selected base station.
- If ASSIGN_MODE_r is not equal to '001' or '101', the mobile station shall enter
 the *Update Overhead Information Substate* of the *System Access State* with an
 order/message response indication within T_{33m} seconds and send a *Mobile*Station Reject Order with ORDQ field set to '00000010' (message not accepted in
 this state).
- 7. Data Burst Message
- 8. Extended Channel Assignment Message: The mobile station shall process the message as follows:

If ASSIGN_MODE_r equals '001', FREQ_INCL_r equals '0', the mobile station shall perform the following actions: If the message requires an acknowledgment, the mobile station shall send an acknowledgment (see 6.6.3.1.2) using the access procedure specified in 6.6.3.1.1. The mobile station shall measure the strength of each pilot listed in the assignment using the Neighbor Set search procedures specified in 6.6.6.2.1 and 6.6.6.2.2 set PILOT_PNs to the pilot PN sequence offset of the strongest pilot in the list (PILOT_PN_r), and set CONFIG_MSG_SEQ_S and ACC_MSG_SEQ_s to NULL (see 6.6.2.2). If the mobile station has not stored configuration parameters for the Primary Paging Channel of the new base station, or if the stored information is not current (see 6.6.2.2), the mobile station shall set SYS_PAR_MSG_SEQ_s, NGHBR_LST_MSG_SEQ_s, EXT_NGHBR_LST_MSG_SEQ_s, GEN_NGHBR_LST_MSG_SEQ_s, EXT_SYS_PAR_MSG_SEQs, and GLOB_SERV_REDIR_MSG_SEQs to NULL. The mobile station shall set PAGE_CHANs to "1" and PAGECHs to the Primary Paging Channel. The mobile station shall then begin monitoring the Primary Paging Channel of the selected base station.

3

8

10

11

12

13

15

16

17

20

21

23

26

27

28

29

30

31

30

33

34

35

36

37

38

39

- If ASSIGN_MODE_r equals '001', FREQ_INCL_r equals '1', and the band class is not supported by the mobile station, the mobile station shall enter the *Update Overhead Information Substate* of the *System Access State* with an order/message response indication within T_{33m} seconds and send a *Mobile Station Reject Order* with ORDQ field set to '00000110' (capability not supported by the mobile station).
- If ASSIGN_MODE_r equals '001', FREQ_INCL_r equals '1', and the band class is supported by the mobile station, the mobile station shall perform the following actions: If the message requires an acknowledgment, the mobile station shall send an acknowledgment (see 6.6.3.1.2) using the access procedure specified in 6.6.3.1.1. The mobile station shall set CDMACH_s = CDMA_FREQ_r and $CDMABAND_S = BAND_CLASS_r$. The mobile station shall set CONFIG_MSG_SEQ_S and ACC_MSG_SEQ_S to NULL (see 6.6.2.2). Then the mobile station shall tune to the new frequency assignment, measure the strength of each pilot listed in the assignment using the Neighbor Set search procedures specified in 6.6.6.2.1 and 6.6.6.2.2, and set PILOT_PNs to the pilot PN sequence offset of the strongest pilot in the list (PILOT_PN_r). If the mobile station has not stored configuration parameters for the Primary Paging Channel of the new base station, or if the stored information is not current (see 6.6.2.2), the mobile station shall set SYS_PAR_MSG_SEQ_s, NGHBR_LST_MSG_SEQ_s, EXT_NGHBR_LST_MSG_SEQs, GEN_NGHBR_LST_MSG_SEQs, CHAN_LST_MSG_SEQ_s, EXT_SYS_PAR_MSG_SEQ_s, and $\label{eq:GLOB_SERV_REDIR_MSG_SEQS} \ to \ NULL. \ \ The \ mobile \ station \ shall \ set$ PAGE_CHAN_s to '1' and PAGECH_s to the Primary Paging Channel. The mobile station shall then begin monitoring the Primary Paging Channel of the selected base station.

- If ASSIGN_MODE_r is not equal to '001', the mobile station shall enter the *Update Overhead Information Substate* of the *System Access State* with an order/message response indication within T_{33m} seconds and send a *Mobile Station Reject Order* with ORDQ field set to '00000010' (message not accepted in this state).
- 9. Feature Notification Message
- 10. Local Control Order
- 11. Lock Until Power-Cycled Order: The mobile station shall record the reason for the Lock Until Power-Cycled Order in the mobile station's semi-permanent memory (LCKRSN_Ps-p equals the least significant four bits of ORDQr). After a mobile station receives this order, it shall not enter the System Access State (see 6.6.3) until it has received an Unlock Order or until after power-cycling the mobile station (i.e., after the next mobile station power-up). This requirement shall take precedence over any other mobile station requirement specifying entry to the System Access State. The mobile station should notify the user of the locked condition. The mobile station shall exit the Mobile Station Idle State and enter the System Determination Substate of the Mobile Station Initialization State with a lock indication (see 6.6.1.1). This allows the mobile station to operate in an alternate operating mode while locked.
- 12. Maintenance Required Order: The mobile station shall record the reason for the Maintenance Required Order in the mobile station's semi-permanent memory (MAINTRSN_{S-p} equals the least significant four bits of ORDQ_r). If the mobile station has previously received a Lock Until Power-Cycled Order, it shall remain in the locked condition; otherwise the mobile station shall remain in the unlocked condition. The mobile station should notify the user of the maintenance required condition.
- 13. PACA Message: If P_REV_IN_USEs is less than or equal to four, and if the mobile station does not support PACA capability, the mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000110' (message requires a capability that is not supported by the mobile station); otherwise, the mobile station shall process the message as follows:
 - If PACA_s is equal to disabled, the mobile station shall enter the *Update Overhead Information Substate* of the *System Access State* with an order/message response indication within T_{33m} seconds and shall send a *Mobile Station Reject Order* with the ORDQ field set to '00000010' (message not accepted in this state).
 - If PACA_s is equal to enabled, the mobile station shall perform the following:
 - If the purpose of the message is to respond to an Origination Message (PURPOSE_r is equal to '0000'), the mobile station shall enter the Update Overhead Information Substate of the System Access State with an order/message response indication within T_{33m} seconds and send a Mobile Station Reject Order with the ORDQ field set to '00000010' (message not accepted in this state).

6-196

- If the purpose of the message is to provide the queue position of the PACA call (PURPOSE_r is equal to '0001'), the mobile station shall set the PACA state timer to the duration shown in Table 7.7.2.3.2.20-2, corresponding to the value of PACA_TIMEOUT_S, should indicate to the user that the PACA call is still queued, and should indicate the current queue position (Q_POS_r) of the call.
- If the purpose of the message is to instruct the mobile station to re-originate the PACA call (PURPOSE_r is equal to '0010'), the mobile station shall set the PACA state timer to the duration shown in Table 7.7.2.3.2.20-2 corresponding to the value of PACA_TIMEOUT_s, and the mobile station shall enter the *Update Overhead Information Substate* of the *System Access State* (see 6.6.3) with a PACA response indication within T_{33m} seconds to reoriginate the PACA call.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

41

- If the purpose of the message is to cancel the PACA call (PURPOSE_r is equal to '0011'), the mobile station shall set PACA_s to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
- 14. Registration Accepted Order: If $ORDQ_r$ is equal to '00000101', the mobile station shall set $ROAM_INDI_s = ROAM_INDI_r$ and should display the roaming condition.
- 15. Registration Rejected Order: This order indicates that normal service is not available on this system. The mobile station shall disable the full-TMSI timer. If the received order specifies to delete the TMSI (ORDQ = '00000100'), the mobile station shall set all the bits of the TMSI_CODE_{s-p} to '1'. The mobile station shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with a registration rejected indication (see 6.6.1.1).
- 16. Registration Request Order: The mobile station shall process the message and perform registration procedures as specified in 6.6.5.5.2.3.
- 17. Service Redirection Message: The mobile station shall process the message as follows:
 - If the mobile station is directed to an unsupported operation mode or band class, the mobile station shall respond with a *Mobile Station Reject Order* with ORDQ equal to '00000110' (message requires a capability that is not supported by the mobile station).
 - If DELETE_TMSI_r is equal to '1', the mobile station shall set all the bits of TMSI_CODE_{s-p} to '1'. The mobile station shall disable the full-TMSI timer.
 - The mobile station shall set RETURN_IF_FAIL_s = RETURN_IF_FAIL_r.
 - If RECORD_TYPE_r is equal to '00000000', the mobile station shall enter the
 System Determination Substate of the Mobile Station Initialization State with an
 NDSS off indication (see 6.6.1.1); otherwise, the mobile station shall store the
 redirection record received in the message as REDIRECT_REC_s and shall enter
 the System Determination Substate of the Mobile Station Initialization State with a
 redirection indication (see 6.6.1.1).

5

11

12

13

15

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

40

41

42

- 18. SSD Update Message: The mobile station shall process the message and shall respond with a Base Station Challenge Order as specified in 6.3.12.1.9. The mobile station shall enter the Update Overhead Information Substate of the System Access State with an order/message response indication within T_{32m} seconds.
- 19. Status Request Message: The mobile station shall process the message. If P_REV_IN_USEs is less than or equal to three, the mobile station shall respond with a Status Response Message. If P_REV_IN_USEs is greater than three, the mobile station shall respond with an Extended Status Response Message. The mobile station shall enter the Update Overhead Information Substate of the System Access State with an order/message response indication within T_{33m} seconds. If the message does not specify any qualification information (QUAL_INFO_TYPE_r is equal to '00000000'), the mobile station shall include the requested information records in the response. If the message specifies a band class (QUAL_INFO_TYPE $_r$ is equal to '00000001'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) in the response. If the message specifies a band class and an operating mode (QUAL_INFO_TYPEr is equal to '00000010'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) and operating mode (OP_MODE_r) in the response. If the message specifies a band class or a band class and an operating mode which is not supported by the mobile station, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00000110' (message requires a capability that is not supported by the mobile station). If the response to this message exceeds the allowable length, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00001000' (response message would exceed the allowable length). If the message specifies an information record which is not supported by the mobile station for the specified band class and operating mode, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00001001' (information record is not supported for the specified band class and operating mode).
- 20. TMSI Assignment Message: The mobile station shall store the TMSI zone and code as follows:
 - The mobile station shall store the length of the TMSI zone field by setting ASSIGNING_TMSI_ZONE_LEN_{s-p} to TMSI_ZONE_LEN_r,
 - The mobile station shall store the assigning TMSI zone number by setting the ASSIGNING_TMSI_ZONE_LEN_{s-p} least significant octets of ASSIGNING_TMSI_ZONE_{s-p} to TMSI_ZONE_r, and
 - The mobile station shall store the TMSI code by setting TMSI_CODE_{s-p} to TMSI_CODE_r.

The mobile station shall set the TMSI expiration time by setting TMSI_EXP_TIME_s-p to TMSI_EXP_TIME_r. The mobile station shall disable the full-TMSI timer. The mobile station shall then respond with a TMSI Assignment Completion Message within T_{56m} seconds.

6-198

- 21. Unlock Order: After receiving this order, the mobile station is no longer locked. The mobile station should notify the user that the locked condition has been removed. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with an unlock indication (see 6.6.1.1).
- 5 The mobile station shall ignore all other messages and orders.
- 6.6.2.5 Mobile Station Origination Operation
- 7 The Mobile Station Origination Operation is performed when the mobile station is directed by
- the user to initiate a call, or if the Mobile Station Idle State is entered with NDSS_ORIGS
- 9 enabled.

14

- If the mobile station is directed by the user to initiate a call, the mobile station shall perform the following:
 - If PACA_s is equal to enabled, the mobile station shall set PACA_s to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
 - The mobile station shall set CURR_ACC_MSG_SEQ to NULL.
- The mobile station shall enter the *Update Overhead Information Substate* of the *System Access State* (see 6.6.3) with an origination indication within T_{33m} seconds.
- 6.6.2.6 Mobile Station Message Transmission Operation
- 9 Support of this operation is optional. If the mobile station supports the Mobile Station
- 20 Message Transmission Operation, the operation is performed when the user directs the
- mobile station to transmit a Data Burst Message.
- ${f z}$ If the mobile station supports this operation, the mobile station shall set
- CURR_ACC_MSG_SEQ to NULL.
- 24 If the mobile station supports this operation, the mobile station shall enter the *Update*
- Solution Substate of the System Access State (see 6.6.3.2) with a message
- 26 transmission indication within T_{33m} seconds.
- 27 6.6.2.7 Mobile Station Power-Down Operation
- 28 The Mobile Station Power-Down Operation is performed when the user directs the mobile
- station to power down.
- makes The mobile station shall update stored parameters and perform other registration
- procedures as specified in 6.6.5.5.2.4.
- 22 If no power-down registration is performed (see 6.6.5.5.2.4), the mobile station may power
- з down.
- 34 6.6.2.8 Mobile Station PACA Cancel Operation
- 35 The Mobile Station PACA Cancel Operation is performed when the user directs the mobile
- station to cancel a PACA call.
- If PACAs is equal to enabled, the mobile station shall perform the following:

- The mobile station shall set PACAs to disabled.
- The mobile station shall set PACA_CANCEL to '0', if PACA_CANCEL is equal to '1'.
- The mobile station shall disable the PACA state timer.
- The mobile station should indicate to the user that the PACA call has been canceled.
- The mobile station shall set CURR_ACC_MSG_SEQ to NULL.
- The mobile station shall enter the *Update Overhead Information Substate* of the *System Access State* (see 6.6.3) with a PACA cancel indication within T_{33m} seconds.
- 6.6.3 System Access State

15

16

22

- In this state, the mobile station sends messages to the base station on the Access Channel(s) and receives messages from the base station on the Paging Channel.
- As illustrated in Figure 6.6.3-1, the *System Access State* consists of the following substates:
- Update Overhead Information Substate In this substate, the mobile station
 monitors the Paging Channel until it has a current set of overhead messages.
 - Mobile Station Origination Attempt Substate In this substate, the mobile station sends an Origination Message to the base station.
 - Page Response Substate In this substate, the mobile station sends a Page Response Message to the base station.
 - Mobile Station Order/Message Response Substate In this substate, the mobile station sends a response to a message received from the base station.
- Registration Access Substate In this substate, the mobile station sends a
 Registration Message to the base station.
 - Mobile Station Message Transmission Substate In this substate, the mobile station sends a Data Burst Message to the base station.
- PACA Cancel Substate In this substate, the mobile station sends a PACA Cancel Message to the base station.

6-200

Figure 6.6.3-1. System Access State

- 4 6.6.3.1 Access Procedures
- 6.6.3.1.1 Access Attempts
- 6 6.6.3.1.1.1 Overview

- The mobile station transmits on the Access Channel using a random access procedure.
- Many parameters of the random access procedure are supplied by the base station in the
- Access Parameters Message.
- The entire process of sending one message and receiving (or failing to receive) an
- acknowledgment for that message is called an access attempt (see Figure 6.6.3.1.1.1-1 and
- the example in Figure 6.6.3.1.1.1-2). One access attempt consists of one or more access
- sub-attempts (see Figure 6.6.3.1.1.1-1). Each transmission in the access sub-attempt is
- called an access probe. Each access probe consists of an Access Channel preamble and an
- Access Channel message capsule (see Figure 6.6.3.1.1.1-1 and Table 6.6.3.1.1.1-1).
- When the mobile station stops transmitting access probes of an access attempt to one pilot
- and begins transmitting access probes of an access attempt to another pilot, it is said to

9

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 30

31

32

33

34

35

36

37

38

39

perform an access probe handoff (see 6.6.3.1.3.3). The portion of an access attempt which 1 begins when the mobile station begins transmitting access probes to one pilot, and ends 2 when the mobile station either performs an access probe handoff or receives an acknowledgment for that message is called an access sub-attempt.

Within an access sub-attempt, access probes are grouped into access probe sequences. 5 The Access Channel used for each access probe sequence is chosen pseudorandomly from 6 among all the Access Channels associated with the current Paging Channel. If there is only one Access Channel associated with the current paging channel, all access probes within an access probe sequence are transmitted on the same Access Channel. If there is more than one access channel associated with the current Paging Channel, all access probes within an access probe sequence may be transmitted on the different Access Channels associated with the current Paging Channel. Each access probe sequence consists of up to 12 1 + NUM_STEP_s access probes. The first access probe of each access probe sequence is transmitted at a specified power level relative to the nominal open loop power level. Each subsequent access probe is transmitted at a power level that is adjusted by the PWR_STEPs plus the mean input power change plus the interference correction change from the previous access probe (see 6.1.2.3.1).

The timing of access probes and access probe sequences is expressed in terms of Access Channel slots (see 6.7.1.1). The transmission of an access probe begins at the start of an Access Channel slot. There are two types of messages sent on the Access Channel: a response message (one that is a response to a base station message) or a request message (one that is sent autonomously by the mobile station). Different procedures are used for sending a response message and for sending a request message. The timing of the start of each access probe sequence is determined pseudorandomly. For every access probe sequence, a backoff delay, RS, from 0 to 1 + BKOFF_s slots is generated pseudorandomly.

For request access probe sequences only, an additional delay is imposed by the use of a persistence test that determines the value of the Persistence Delay, PD⁴ (see 6.6.3.1.1.2). For each slot after the backoff delay, RS, the mobile station performs a pseudorandom test, with parameters that depend on the reason for the access attempt and the access overload class, ACCOLC_p, of the mobile station. If the test passes, the first access probe of the sequence begins in that slot. If the test fails, the access probe sequence is deferred until at least the next slot.

Timing between access probes of an access probe sequence is also generated pseudorandomly. After transmitting each access probe, the mobile station waits a specified period, $TA = (2 + ACC_TMO_S) \times 80$ ms, from the end of the slot to receive an acknowledgment from the base station. If an acknowledgment is received, the access attempt ends. If no acknowledgment is received and the mobile station transmits all access probes within an access probe sequence on the same Access Channel associated with the current Paging Channel, the next access probe is transmitted after an additional backoff

⁴ A persistence test is not needed for response access attempts, because the base station controls the arrival rate of response messages directly by controlling the rate at which it transmits messages requiring responses.

- delay, RT, from 0 to $1 + PROBE_BKOFF_s$ slots. If no acknowledgment is received and the
- 2 mobile station pseudorandomly selects an Access Channel from among all Access Channels
- associated with the current Paging Channel, the next access probe is transmitted after an
- additional backoff delay, RT, from 0 to PROBE_BKOFFs slots.
- 5 The precise timing of the Access Channel transmissions in an access attempt is determined
- 6 by a procedure called PN randomization. For each access sub-attempt, the mobile station
- computes a delay, RN, from 0 to 2 PROBE_PN_RAN 1 PN chips using a (non-random) hash
- function that depends on its ESN. The mobile station delays its transmit timing by RN
- 9 PN chips. This transmit timing adjustment includes delay of the direct sequence spreading
 - long code and of the quadrature spreading I and Q pilot PN sequences, so it effectively
- increases the apparent range from the mobile station to the base station.⁵

⁵ This increases the probability that the base station will be able to separately demodulate transmissions from multiple mobile stations in the same Access Channel slot, especially when many mobile stations are at a similar range from the base station. Use of a non-random algorithm for PN randomization permits the base station to separate the PN randomization from the actual propagation delay from the mobile station, so it can accurately estimate the timing of Reverse Traffic Channel transmissions from the mobile station.

Figure 6.6.3.1.1.1-1. Access Attempt (Part 1 of 2)

Figure 6.6.3.1.1.1-1. Access Attempt (Part 2 of 2)

Table 6.6.3.1.1.1-1. Calculated, Random, and Hashed Variables

Var- iable	Name	Generation	Range	Units
IP	Initial Open-Loop Power	IP = - mean input power (dBm) + offset power + NOM_PWR - 16 × NOM_PWR_EXT + INIT_PWR + interference correction	See 6.1.2.1 6.1.2.2.1	dBm
PD	Persistence Delay	Delay continues slot-by-slot until persistence test (run every slot) passes.		slots
PI	Power Increment	PI = PWR_STEP _S + change in mean input power + change in interference correction	_	dB
RA	Access Channel Number	Random between 0 and ACC_CHAN _s ; generated before every access probe sequence or every access probe.	0 to 31	
RN	PN Randomization Delay	Hash using ESN between 0 and 2PROBE_PN_RAN - 1; generated once at the beginning of each access sub-attempt.	0 to 511	chips
RS	Sequence Backoff	Random between 0 and 1 + BKOFF _s ; generated before every sequence of an access sub-attempt (except the first sequence).	0 to 16	slots
RT	Probe Backoff	Random between 0 and 1 + PROBE_BKOFF _s ; generated before subsequent probes if the mobile station transmits all access probes within an access probe sequence on the same Access Channel. Random between 0 and PROBE_BKOFF _s ; generated before subsequent probes if the mobile station pseudorandomly selects an Access Channel from among all Access Channels associated with the current Paging Channel.	0 to 16	slots
TA	Ack Response Timeout	$TA = 80 \times (2 + ACC_TMO_S)$; timeout from end of slot.	.160 to 1360	ms

Figure 6.6.3.1.1.1-2. Access Procedure Example

6.6.3.1.1.2 Requirements

- 2 Each time the mobile station performs an access sub-attempt, it shall compute a number,
- RN, from 0 to 2PROBE_PN_RAN 1, using the hashing technique described in 6.6.7.1. For
- the duration of this access sub-attempt, the mobile station shall delay its transmit timing
- (see 6.1.3.2.1), including long code direct sequence spreading (see 6.1.3.2.8) and I and Q
- pilot PN sequence quadrature spreading (see 6.1.3.2.9), by RN PN chips.
- When the mobile station performs an access sub-attempt, it shall transmit one or more
- 8 access probe sequences. If the access sub-attempt is an Access Channel request, the
- mobile station shall transmit no more than MAX_REQ_SEQs access probe sequences to the
- pilot for the access sub-attempt; if the access sub-attempt is an Access Channel response,
- the mobile station shall transmit no more than MAX_RSP_SEQs access probe sequences to
- the pilot for the access sub-attempt.
- Before transmitting each access probe sequence, the mobile station shall generate a
- random number, RA, from 0 to ACC_CHANs using the procedure described in 6.6.7.2. If
- the mobile station transmits all access probes within an access probe sequence on the
- same Access Channel, the mobile station shall use this random number, RA, as the Access
- 17 Channel number, ACN, in the Access Channel long code mask for all access probes in that
- access probe sequence (see 6.1.3.1.8).
- Before transmitting each access probe within an access probe sequence, if there is more
- 20 than one Access Channel associated with the current Paging Channel, the mobile station
- should generate a random number, RA, from 0 to ACC_CHANs, using the procedure
- described in 6.6.7.2. The mobile station shall use this random number, RA, as the Access
- 23 Channel number, ACN, in the Access Channel long code mask for that access probe in that
- 24 access probe sequence (see 6.1.3.1.8).
- Before transmitting each access probe sequence of an access sub-attempt other than the
- first access probe sequence of the access sub-attempt, the mobile station shall generate a
- 27 random number, RS, from 0 to (BKOFF_s + 1), using the procedure described in 6.6.7.2.
- The mobile station shall delay the transmission of the access probe sequence for RS slots.
- 29 If the access attempt is an Access Channel request, then before transmitting the first
- access probe in each access probe sequence, and after the delay of RS if applicable, the
- mobile station shall perform a persistence test for each Access Channel slot. The mobile
- station shall transmit the first access probe of a probe sequence in a slot only if the test
- passes for that slot. To perform the persistence test, the mobile station shall generate a
- random number RP, 0 < RP < 1, using the technique described in 6.6.7.2. The persistence
- test is said to pass when RP is less than the current value of P for the type of this access
- attempt. If P equals 0, the mobile station shall end the access attempt, declare an access
- attempt failure and update its registration variables using SID_s, NID_s, REG_ZONE_s, and
- 20NE_TIMERs that were stored from the first base station to which the mobile station sent
- an Access Probe, as specified in 6.6.5.5.3.2, and enter the System Determination Substate of
- the Mobile Station Initialization State with an access denied indication (see 6.6.1.1).
- If the Access Channel request is a registration, P shall be computed by

$$P = \begin{cases} 2^{-PSIST_S/4} \times 2^{-REG} - PSIST_S & \text{if } PSIST_S \neq 63 \\ 0 & \text{otherwise} \end{cases}$$
 ACCOLC_p = 0, 1, ..., 9

$$P = \begin{cases} 2^{-PSIST_S} \times 2^{-REG} - PSIST_S & \text{if } PSIST_S \neq 7 \\ 0 & \text{otherwise} \end{cases}$$
 ACCOLC_p = 10, 11, ..., 15

- where PSISTs and REG_PSISTs are the stored values of these parameters from the Access
- 5 Parameters Message.
- 6 If the Access Channel request is a message transmission, P shall be computed by

$$P = \begin{cases} 2^{-PSIST_{S}/4} \times 2^{-MSG_{-}PSIST_{S}} & \text{if } PSIST_{S} \neq 63 \\ 0 & \text{otherwise} \end{cases}$$
 ACCOLC_p = 0, 1, ..., 9

$$P = \begin{cases} 2^{-PSIST_S} \times 2^{-MSG} - PSIST_S & \text{if } PSIST_S \neq 7 \\ 0 & \text{otherwise} \end{cases}$$
 ACCOLC_p = 10, 11, ..., 15

- where PSIST_s and MSG_PSIST_s are the stored values of these parameters from the *Access Parameters Message*.
- 12 If the Access Channel request is other than a registration or a message transmission, P 13 shall be computed by

$$P = \begin{cases} 2^{-PSIST_S/4} & \text{if } PSIST_S \neq 63 \\ 0 & \text{otherwise} \end{cases}$$
 ACCOLC_p = 0, 1, ..., 9

$$P = \begin{cases} 2^{-PSIST_S} & \text{if } PSIST_S \neq 7 \\ 0 & \text{otherwise} \end{cases}$$
 ACCOLC_p = 10, 11, ..., 15

- where PSIST_s is the stored value of this parameter from the *Access Parameters Message*.
- The mobile station shall transmit the first probe in each access probe sequence at the power level specified in 6.1.2.3.1. The mobile station shall transmit each subsequent probe in the access probe sequence at a power level PWR_STEP_s dB greater than that of the previous probe. The mobile station should update the pilot identities and strengths as described in 6.6.3.1.7. Between access probes, the mobile station shall disable its transmitter.
- After transmitting each probe, the mobile station shall wait $TA = (2 + ACC_TMO_s) \times 80 \text{ ms}$
- ${f z}$ from the end of the Access Channel slot. If no acknowledgment is received within TA
- seconds, the mobile station shall perform the following:

6

10

11

12

13

14

15

16

18

· 17

- If NUM_STEPs or fewer access probes have been transmitted in this access probe sequence, and if the mobile station transmits all access probes within an access probe sequence on the same Access Channel, the mobile station shall generate a random number, RT, from 0 to 1 + PROBE_BKOFF, using the procedure described in 6.6.7.2. If NUM_STEPs or fewer access probes have been transmitted in this access probe sequence, and if the mobile station pseudorandomly selects an Access Channel among all Access Channels associated with the current Paging Channel, the mobile station shall generate a random number, RT, from 0 to PROBE_BKOFFs, using the procedure described in 6.6.7.2. The mobile station shall delay RT additional Access Channel slots, and shall then transmit the next access probe.
 - Otherwise, if fewer than MAX_REQ_SEQs (for a request access) or MAX_RSP_SEQs
 (for a response access) access probe sequences have been transmitted in this access
 sub-attempt, the mobile station shall begin the randomization procedures for
 another access probe sequence.
 - Otherwise, the mobile station shall declare an access attempt failure and update its registration variables using SID_s, NID_s, REG_ZONE_s, and ZONE_TIMER_s that were stored from the first base station to which the mobile station transmitted an Access Probe, as specified in 6.6.5.5.3.2 and enter the *System Determination Substate* of the *Mobile Station Initialization State* with a system lost indication (see 6.6.1.1).
- The mobile station may delay or cancel the transmission of access probes within an access attempt in the event of a loss of the Paging Channel (see 6.4.3).
- 2 6.6.3.1.2 Acknowledgment Procedures
- The acknowledgment procedures facilitate the reliable exchange of messages between the base station and the mobile station. The mobile station uses the fields ACK_TYPE (acknowledgment address type), ACK_SEQ (acknowledgment sequence number), MSG_SEQ (message sequence number), ACK_REQ (acknowledgment required), and VALID_ACK (valid acknowledgment) to support this mechanism. These fields are referred to as layer 2 fields, and the acknowledgment procedures are referred to as layer 2 procedures. All other
- message fields and the processing thereof are referred to as pertaining to layer 3. (See
- Annex C for further discussion of layering.)
- The mobile station shall perform duplicate detection and process duplicate messages as specified in 6.6.2.1.2.
- The mobile station shall set the ACK_TYPE, ACK_SEQ and VALID_ACK fields of all messages sent on the Access Channel as specified in 6.6.2.1.2.
- The mobile station shall generate a single set of MSG_SEQ numbers for messages sent on
- the Access Channel. The mobile station shall set the MSG_SEQ field to '000' in the first
- message sent on the Access Channel after powering on. The mobile station may set the
- MSG_SEQ field to '000' in the first message sent on the Access Channel after a transition
- 59 from analog mode to CDMA mode, or from another CDMA band class. The mobile station
- shall increment MSG_SEQ, modulo 8, for each new access attempt, even if the contents of
- the new message are identical to those of the previous message.

- The mobile station shall monitor the Paging Channel while in the System Access State.
- When the mobile station receives a message with the VALID_ACK field set to '1' and the
- 3 ACK_SEQ field set to the MSG_SEQ number of the message currently being sent, the
- 4 mobile station shall consider the current message to have been acknowledged and shall
- 5 end the access attempt.
- 6 If no message requiring acknowledgment has been received, the mobile station shall not
- include an acknowledgment in any transmitted message until a message is received that
- requires acknowledgment. After a message including an acknowledgment has been sent,
- the mobile station shall not include an acknowledgment in any subsequent transmitted
- message until another message is received that requires acknowledgment.
- Unless otherwise specified in the requirements for processing a specific message, the
- mobile station shall transmit an acknowledgment in response to any message received that
- is addressed to the mobile station and that has the ACK_REQ field set to '1'. If a specific
- message is required in response to a message requiring acknowledgment, the
- acknowledgment shall be included with the response. If no specific message is required to
- be transmitted in response to a received message requiring acknowledgment, the mobile
- station shall include the acknowledgment in a Mobile Station Acknowledgment Order (see
- 18 6.7.3).
- The mobile station shall not begin a new access attempt until the previous access attempt
- 20 has ended.
- 21 6.6.3.1.3 Handoffs
- 2 While in the System Access State, the mobile station shall continue its pilot search
- 23 (see 6.6.3.1.3.1), and may perform access handoffs (see 6.6.3.1.3.2) or access probe
- 24 handoffs (see 6.6.3.1.3.3).
- 25 6.6.3.1.3.1 Pilot Search
- The following sets of pilot offsets are defined for a mobile station in the System Access
- 27 State. Each pilot offset is a member of only one set.
- Active Set: The pilot offset of the Forward CDMA Channel whose Paging Channel is
 being monitored.
- Neighbor Set: The pilots that are not currently in the Active Set and are likely candidates for access handoff or access probe handoff. The members of the Neighbor Set are specified in the Neighbor List Message, the Extended Neighbor List
- Message, and the General Neighbor List Message.
- Remaining Set: The set of all possible pilot offsets in the current system (integer multiples of PILOT_INC_s) on the current CDMA frequency assignment, excluding the pilots in the Neighbor Set and the Active Set.
- 6.6.3.1.3.2 Access Handoff
- 38 The mobile station is permitted to perform an access handoff to use the Paging Channel
- with the best pilot strength and an associated Access Channel. The mobile station is
- 40 permitted to perform an access handoff when waiting for a response from the base station

- or before sending a response to the base station. An access handoff is permitted after an
- 2 access attempt while the mobile station is in the Page Response Substate or the Mobile
- Station Origination Attempt Substate.
- 4 When the mobile station declares a loss of the Paging Channel, the mobile station shall
- 5 perform an access handoff while waiting for a response from the base station in the System
- 6 Access State if the mobile station is not performing an access attempt and all of the
- 7 following conditions hold:

11

12

13

14

15

16

18

25

26

27

29

30

31

32

33

34

35

- The new base station is in the list ACCESS_HO_LIST,
- ACCESS_HO_s is equal to '1', and
- The mobile station is in the Page Response Substate or the Mobile Station Origination Attempt Substate.

When the mobile station declares a loss of the Paging Channel, the mobile station shall perform an access handoff after receiving a message and before responding to that message while in the *System Access State* if the mobile station is not performing an access attempt and all of the following conditions hold:

- The new base station is in the list ACCESS_HO_LIST,
- ACCESS_HO_s is equal to '1',
 - ACCESS_HO_MSG_RSP_s is equal to '1', and
- The mobile station is in the *Page Response Substate* or the *Mobile Station Origination* ∞ Attempt Substate.

When the mobile station declares an insufficiency of the Paging Channel, the mobile station may perform an access handoff while waiting for a response from the base station in the System Access State if the mobile station is not performing an access attempt and all of the following conditions hold:

- The new base station is in the list ACCESS_HO_LIST,
- ACCESS_HO_s is equal to '1', and
- The mobile station is in the Page Response Substate or the Mobile Station Origination Attempt Substate.

When the mobile station declares an insufficiency of the Paging Channel, the mobile station may perform an access handoff after receiving a message and before responding to that message while in the *System Access State* if the mobile station is not performing an access attempt and all of the following conditions hold:

- The new base station is in the list ACCESS_HO_LIST,
- ACCESS_HO_S is equal to '1',
- ACCESS_HO_MSG_RSP_S is equal to '1', and
- The mobile station is in the Page Response Substate or the Mobile Station Origination

 Attempt Substate.

- Before the mobile station transmits an access probe to the new base station, the mobile
- station shall update the parameters based on the System Parameters Message, the Access
- ³ Parameters Message and the Extended System Parameters Message on the associated new
- 4 Paging Channel and process the parameters from the messages (see 6.6.2.2.1, 6.6.2.2.2,
- and 6.6.2.2.5). The mobile station shall update the parameters based on the Neighbor List
- Message, Extended Neighbor List Message or the General Neighbor List Message on the
- associated new Paging Channel and process the parameters from the message (see
- 6.6.2.2.3, 6.6.2.2.7, and 6.6.2.2.8). If the mobile station receives a Global Service
- Redirection Message (see 6.6.2.2.6) which directs the mobile station away from the new
- base station, the mobile station shall not access the new base station. The mobile station
- shall process these messages only once after each access handoff.
- 12 If ACCESS_PROBE_HOs is equal to '0' and ACCESS_HOs is equal to '1', the mobile station
- may monitor other Paging Channels which are in ACCESS_HO_LIST for T42m seconds after
- the mobile station declares a loss of the original Paging Channel during an access attempt.
- 6.6.3.1.3.3 Access Probe Handoff

22

23

33

- The mobile station is permitted to perform an access probe handoff when the mobile station
- is in the Page Response Substate or the Mobile Station Origination Attempt Substate.
- 18 The mobile station may perform an access probe handoff during an access attempt to a
- pilot in ACCESS_HO_LIST when the message being sent is the Origination Message or the
- Page Response Message if all of the following conditions hold:
 - ACCESS_PROBE_HO_s is equal to '1',
 - The mobile station is in the Page Response Substate or the Mobile Station Origination Attempt Substate, and
 - The mobile station has performed fewer than (MAX_NUM_PROBE_HO_s +1) access probe handoffs during the current access attempt.
- The mobile station may also perform an access probe handoff during an access attempt to a pilot in ACCESS_HO_LIST when the message being sent is a message other than the Origination Message or the Page Response Message if all of the preceding conditions hold and ACC_PROBE_HO_OTHER_MSG_S is equal to '1'.
- The mobile station may also perform an access probe handoff during an access attempt to a pilot not in ACCESS_HO_LIST when the message being sent is the *Origination Message* or the *Page Response Message* if all of the following conditions hold:
 - ACC_HO_LIST_UPDs is equal to '1',
 - ACCESS_PROBE_HO_S is equal to '1',
- The new pilot is stronger than any pilot in ACCESS_HO_LIST,
- The new pilot has the corresponding ACCESS_HO_ALLOWED field in the NGHBR_REC equal to '1',
- Inclusion of the new pilot in ACCESS_HO_LIST does not cause the Access Channel
 message to exceed the maximum capsule size,

- Inclusion of the new pilot in ACCESS_HO_LIST does not cause the number of 1 members to exceed N_{13m} . 2
 - The mobile station is in the Page Response Substate or the Mobile Station Origination Attempt Substate, and
 - The mobile station has performed fewer than (MAX_NUM_PROBE_HOs +1) access probe handoffs during the current access attempt.
- The mobile station may also perform an access probe handoff during an access attempt to a 7
- pilot in ACCESS_HO_LIST when the message being sent is a message other than the
- Origination Message or the Page Response Message if all of the preceding conditions hold
- and ACC_PROBE_HO_OTHER_MSGs is equal to '1'. 10
- If the above conditions are met, the mobile station may perform an access probe handoff 11
- when the mobile station declares a loss of the Paging Channel (see 6.4.3); the mobile 12
- station may also perform an access probe handoff after the TA timer expires (see 13
- 6.6.3.1.1.1) and the mobile station declares an insufficiency of the Paging Channel. 14
- Before the mobile station transmits an access probe to the new base station, the mobile 15
- station shall update the parameters based on the System Parameters Message, the Access 16
- Parameters Message and the Extended System Parameters Message on the associated new 17
- Paging Channel and process the parameters from the message (see 6.6.2.2.1, 6.6.2.2.2, and 18
- 6.6.2.2.5). The mobile station shall update the parameters based on the Neighbor List 19
- Message, Extended Neighbor List Message, or the General Neighbor List Message on the 20
- 21
- associated new Paging Channel and process the parameters from the message (see
- 6.6.2.2.3, 6.6.2.2.7, and 6.6.2.2.8). If the mobile station receives a Global Service 22
- Redirection Message (see 6.6.2.2.6) which directs the mobile station away from the new 23
- base station, the mobile station shall not access the new base station. The mobile station 24
- shall process these messages only once per access sub-attempt during an access attempt. 25
- If the mobile station performs an access probe handoff, the mobile station shall restart the 26
- access attempt probe sequence number on the new pilot, starting with the first probe of the 27
- first probe sequence of the access sub-attempt. The mobile station shall not reset its 28
- access probe handoff count until the access attempt ends. 29
- The mobile station shall abort the access attempt if the length of the message to be sent 30
- exceeds MAX_CAP_SIZE of the new base station. The mobile station may monitor other 31
- Paging Channels which are in ACCESS_HO_LIST for T_{42m} seconds. 32
- 6.6.3.1.4 System Access State Exit Procedures 33
- Upon exiting the System Access State, the mobile station shall abort any access attempt in 34
- progress and discard the associated message. The mobile station shall then disable the 35
- System Access State timer. 36
- 6.6.3.1.5 Access Channel Address Composition 37
- When in the System Access State, the mobile station shall determine the type of address to 38
- use for all Access Channel messages as follows (see 6.7.1.3.1.1):

- The mobile station shall set MSID_TYPE equal to '000' and shall use IMSI_O_S_s equal to IMSI_M_S_p and the ESN as the mobile station identifier if PREF_MSID_TYPE_s is equal to '00', and USE_TMSI_s is equal to '0'.
 - The mobile station shall set MSID_TYPE to '001' and shall use the ESN as the mobile station identifier if neither IMSI_M nor IMSI_T has been assigned to the mobile station.
 - The mobile station shall set MSID_TYPE to '010' and shall use the IMSI_O as the mobile station identifier if the following conditions are met:
 - The mobile station has been assigned either an IMSI_T, or an IMSI_M, or both;
 - PREF_MSID_TYPE_s is equal to '10'; and
 - USE_TMSI_s is equal to '0' or all the bits of TMSI_CODE_{s-p} are equal to '1'.
 - The mobile station shall set MSID_TYPE to '011' and shall use both the IMSI_O and the ESN as the mobile station identifier if the following conditions are met:
 - The mobile station has been assigned either an IMSI_T, or an IMSI_M, or both;
 - PREF_MSID_TYPE_s is equal to '11'; and
 - USE_TMSI_s is equal to '0' or all the bits of TMSI_CODE_{s-p} are equal to '1'.
- The mobile station shall set MSID_TYPE to '101' and shall use the TMSI as the mobile station identifier if the following conditions are met:
 - The mobile station has been assigned either an IMSI_T, or an IMSI_M, or both;
 - The bits of TMSI_CODE_{s-p} are not all equal to '1';
 - PREF_MSID_TYPE_s is equal to '10' or '11'; and
- USE_TMSI_s is equal to-'1'.

11

12

13

14

15

16

18

20

21

23

24

25

26

32

33

When the IMSI_O is used in the MSID field, the mobile station shall use the following procedures:

- The mobile station shall set IMSI_CLASS to '0' and IMSI_CLASS_0_TYPE to '00' if all
 of the following conditions are met:
 - The mobile station's IMSI_O is a class 0 IMSI,
 - IMSI_O_11_12_s is equal to IMSI_11_12_s, and
- MCC_O_s is equal to MCC_s.
- The mobile station shall set IMSI_CLASS to '0' and IMSI_CLASS_0_TYPE to '01' if all of the following conditions are met:
 - The mobile station's IMSI_O is a class 0 IMSI,
 - IMSI_O_11_12_s is not equal to IMSI_11_12_s, and
 - MCC_O_s is equal to MCC_s.
- The mobile station shall set IMSI_CLASS to '0' and IMSI_CLASS_0_TYPE to '10' if all of the following conditions are met:

- The mobile station's IMSI_O is a class 0 IMSI,
- IMSI_O_11_12_s is equal to IMSI_11_12_s and
- MCC_O_s is not equal to MCC_s.
- The mobile station shall set IMSI_CLASS to '0' and IMSI_CLASS_0_TYPE to '11' if all
 of the following conditions are met:
 - The mobile station's IMSI_O is a class 0 IMSI,
- IMSI_O_11_12_s is not equal to IMSI_11_12_s, and
- MCC_O_s is not equal to MCC_s
- The mobile station shall set IMSI_CLASS to '1' and IMSI_CLASS_1_TYPE to '0' if all
 of the following conditions are met:
 - The mobile station's IMSI_O is a class 1 IMSI, and
- MCC_O_s is equal to MCC_s.

12

13

14

17

18

19

20 21

24

27

28

30

- The mobile station shall set IMSI_CLASS to '1' and IMSI_CLASS_1_TYPE to '1' if all
 of the following conditions are met:
 - The mobile station's IMSI_O is a class 1 IMSI, and
 - MCC_O_s is not equal to MCC_s.

When the TMSI is used in the MSID field, the mobile station shall use the following procedures (see 6.7.1.3.1.1):

- The mobile station shall set MSID_LEN to 4 and include all four octets of TMSI_CODE_{s-p} if all of the following conditions are met:
 - ASSIGNING_TMSI_ZONE_LEN_{s-p} is equal to TMSI_ZONE_LEN_s,
 - The least significant ASSIGNING_TMSI_ZONE_LEN_{s-p} octets of ASSIGNING_TMSI_ZONE_{s-p} are equal to TMSI_ZONE_s, and
 - The most significant octet of TMSI_CODE_{s-p} is not equal to '000000000'.
- The mobile station shall set MSID_LEN to 3 and shall include the three least significant octets of TMSI_CODE_{s-p} if all of the following conditions are met:
 - ASSIGNING_TMSI_ZONE_LEN_{s-p} is equal to TMSI_ZONE_LEN_s,
 - The least significant ASSIGNING_TMSI_ZONE_LEN_{s-p} octets of ASSIGNING_TMSI_ZONE_{s-p} are equal to TMSI_ZONE_s,
 - The most significant octet of TMSI_CODE_{s-p} is equal to '00000000', and
 - The next most significant octet of TMSI_CODE_{s-p} is not equal to '00000000'.
- The mobile station shall set MSID_LEN to 2 and shall include the two least significant octets of TMSI_CODE_{s-p} if all of the following conditions are met:
 - ASSIGNING_TMSI_ZONE_LEN_{s-D} is equal to TMSI_ZONE_LEN_s,

- The least significant ASSIGNING_TMSI_ZONE_LEN_{s-p} octets of ASSIGNING_TMSI_ZONE_{s-p} are equal to TMSI_ZONE_s, and
- The two most significant octets of TMSI_CODE_{s-p} are both equal to '00000000'.
- The mobile station shall set MSID_LEN to 4 + ASSIGNING_TMSI_ZONE_LEN_{S-p} and shall include the ASSIGNING_TMSI_ZONE_LEN_{S-p} least significant octets of ASSIGNING_TMSI_ZONE_{S-p} plus all four octets of TMSI_CODE_{S-p} if the following condition is met:
 - ASSIGNING_TMSI_ZONE_LEN_{s-p} is not equal to TMSI_ZONE_LEN_s, or
- The least significant ASSIGNING_TMSI_ZONE_LEN_{s-p} octets of ASSIGNING_TMSI_ZONE_{s-p} are not equal to TMSI_ZONE_s.

11 6.6.3.1.6 Full-TMSI Timer

- Whenever the mobile station sends its full TMSI, the mobile station enables a timer, called the full-TMSI timer. If the full-TMSI timer expires, the mobile station deletes the TMSI by
- setting all of the bits in the $TMSI_CODE_{S-p}$ field to '1'.
- The mobile station shall maintain the full-TMSI timer. The mobile station shall provide a means for enabling or disabling the full-TMSI timer.
- If the mobile station sends a message with an address including the ASSIGNING_TMSI_ZONE_{S-p} and the full-TMSI timer is disabled, the mobile station shall enable the full-TMSI timer with a duration equal to $T_{69m} + 2.56 \times 2^{i}$ seconds where i is equal to SLOT_CYCLE_INDEX_S.

21 6.6.3.1.7 Reporting Pilots

30

31

32

- The mobile station assists the base station in the Traffic Channel assignment process by reporting the pilot strength of the pilot in the mobile station's Paging Channel Active Set (see 6.6.3.1.3.1). The mobile station can report other pilots on the same frequency using ACCESS_HO_LIST and OTHER_REPORTED_LIST.
- 26.6.3.1.7.1 Generation of the Initial Access Handoff List
- ACCESS_HO_LIST is created immediately before transmitting the first access probe after entering the *System Access State*. When it is created, ACCESS_HO_LIST is defined as the set of pilots for which the following apply:
 - The strength of all members exceeds T_ADD.
 - Each member other than the Active Set pilot has the corresponding ACCESS_HO_ALLOWED field in the NGHBR_REC equal to '1'.
- Includes the Active Set pilot that the mobile station monitors when the mobile station enters the *System Access State*.
 - As a list, meets the following sizing conditions:
- All members can be contained in the Access Channel message without exceeding the maximum capsule size.

- The number of members shall not exceed N_{13m}.
- 2 If more than one set of pilots exist that meet the above criteria, the mobile station shall
- 3 include in the initial ACCESS_HO_LIST the set of pilots that meet the above criteria and
- 4 whose members have the greatest pilot strength.
- 5 6.6.3.1.7.2 Update of the Access Handoff List
- 6 When the mobile station performs an access probe handoff to a pilot which was not
- 7 previously included in ACCESS_HO_LIST (see 6.6.3.1.3.3), it adds the pilot to
- 8 ACCESS_HO_LIST.
- 9 The mobile station can add one or more new pilots other than the Active Set pilot to
- ACCESS_HO_LIST before transmitting an access probe if ACC_HO_LIST_UPDs is equal to
- 11 '1'.

16

17

18

19

20

22

23

24

25

34

- When it is updated before transmitting a subsequent access probe, ACCESS_HO_LIST is defined as the set of pilots for which the following apply:
 - The strength of all members to which access probes have not been transmitted exceeds T_ADD.
 - Each member other than the pilot to which the first access probe in the System Access State was transmitted has the corresponding ACCESS_HO_ALLOWED field in the NGHBR_REC equal to '1'.
 - Includes the Active Set pilot to which the next access probe will be transmitted.
 - Includes all pilots to which access probes have been transmitted since entering the System Access State.
 - As a list, meets the following sizing conditions:
 - All members can be contained in the Access Channel message without exceeding the maximum capsule size.
 - The number of members shall not exceed N_{13m}.
- If more than one set of pilots exist, excluding members to which access probes have been
- zz transmitted since transmitting the first access probe in the System Access State, that meet
- the above criteria, the mobile station shall include in ACCESS_HO_LIST a set of pilots that
- meet the above criteria, excluding members to which access probes have been transmitted
- since transmitting the first access probe in the System Access State, and whose members
- 31 have the greatest pilot strength.
- 2 6.6.3.1.7.3 Generation of the Other Reported List
- 33 OTHER_REPORTED_LIST is defined as the set of pilots for which the following apply:
 - The strength of all members exceeds T_ADD.
 - No member is included in ACCESS_HO_LIST.
 - All members can be contained in the Access Channel message without exceeding the maximum capsule size.

- Has a dynamic number of members which may change for any access probe of an access attempt.
- The number of members shall not exceed N_{13m} minus the number of pilots in ACCESS_HO_LIST.
- 5 If more than one set of pilots exist that meet the above criteria, the mobile station shall
- 6 include in OTHER_REPORTED_LIST the set of pilots that meets the above criteria and
- whose members have the greatest pilot strength.
- 8 6.6.3.1.7.4 Update of the Other Reported List
- 9 Before transmitting each access probe, the mobile station shall generate
- 0 OTHER_REPORTED_LIST according to section 6.6.3.1.7.3, using the latest pilot strength
- information available from its searcher element (see 6.2.2.1). If the mobile station updates
- 12 ACCESS_HO_LIST before transmitting an access probe, it shall update
- OTHER_REPORTED_LIST after updating ACCESS_HO_LIST.
- 6.6.3.1.7.5 Setting of Pilot Reporting Fields in Access Channel Messages
- 15 The mobile station shall report the pilot strength of the pilot in the mobile station's Paging
- 16 Channel Active Set in all Access Channel messages except the Status Response Message. If
- PILOT_REPORTs is equal to '1', the mobile station shall report other pilots which are in
- 18 ACCESS_HO_LIST and OTHER_REPORTED_LIST in all Access Channel messages. If
- 19 PILOT_REPORTs is equal to '0', the mobile station shall report other pilots which are in
- a ACCESS_HO_LIST and OTHER_REPORTED_LIST only in the Origination Message and in
- the Page Response Message.
- The mobile station shall compute the strength of a pilot as specified in 6.6.6.2.2. The
- mobile station shall compute the PILOT_PN_PHASE as specified in 6.6.6.2.4. For the pilot
- in the Active Set, the mobile station shall include ACTIVE_PILOT_STRENGTH in Access
- Example 2 Channel messages. For additional reported pilots, the mobile station shall include the
- 26 PILOT_STRENGTH and PILOT_PN_PHASE in Access Channel messages. The mobile station
- 27 shall set ACCESS_HO_EN to '1' for each additional pilot which is included in
- 28 ACCESS_HO_LIST (see 6.7.1.3.1.3).
- 29 The mobile station shall set ACCESS_ATTEMPTED for each reported pilot to '1' if at least
- one access probe of the access attempt has been transmitted to that pilot; otherwise, the
- mobile station shall set this field to 'O'. If the mobile station transmits more than one
- access probe to a pilot, the mobile station shall report that pilot only once in Access
- 33 Channel messages.
- The mobile station should evaluate the identities and strengths of pilots being reported for
- subsequent Access Channel probes. The mobile station should update
- active_PILOT_STRENGTH of the pilot in the Active Set. The mobile station should update
- 37 PILOT_STRENGTH and PILOT_PN_PHASE fields of all other pilots in ACCESS_HO_LIST,
- and PILOT_STRENGTH and PILOT_PN_PHASE fields of pilots in OTHER_REPORTED_LIST
- and the NUM_ADD_PILOTS field for subsequent Access Channel probes accordingly.
- 40 The mobile station shall use the same MSG_SEQ for each access probe of an Access
- 41 Attempt.

ANSI/TIA/EIA-95-B

- The mobile station shall indicate the first accessed pilot and the previous accessed pilot to
- which an access probe was transmitted. The first accessed pilot is the pilot to which the
- 3 first access probe in the System Access State was transmitted. The previous accessed pilot
- 4 is the pilot to which an access probe was transmitted immediately prior to the pilot in the
- 5 current Active Set (see 6.7.1.3.1.3).
- 6 6.6.3.2 Update Overhead Information Substate
- 7 In this substate, the mobile station monitors the Paging Channel until it has received the
- 8 current configuration messages. The mobile station compares sequence numbers to
- determine whether all of the configuration messages are up-to-date. To make sure it has
- the latest access parameters, the mobile station receives at least one message containing
- the ACC_MSG_SEQ field (except in case of a page response, since the initiating General
- Page Message contains ACC_MSG_SEQ), and waits, if necessary, for an Access Parameters
- 13 Message.
- Upon entering the Update Overhead Information Substate, the mobile station shall set the
- System Access State timer to a value of T_{41m} seconds. The mobile station shall set PAGED
- 16 to NO.

23

25

26

27

28

33

34

35

36

37

- 17 If the System Access State timer expires while in this substate, the mobile station shall
- enter the System Determination Substate of the Mobile Station Initialization State with a
- system lost indication (see 6.6.1.1).
- While in the Update Overhead Information Substate, the mobile station shall monitor the
- Paging Channel. If the mobile station declares a loss of the Paging Channel (see 6.4.3), the
- 2 mobile station shall perform the following:
 - If PACA_s is equal to enabled, the mobile station shall set PACA_s to disabled and PACA_CANCEL to 0, shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
 - The mobile station shall declare an access attempt failure and update its registration variables as specified in 6.6.5.5.3.2.
 - The mobile station shall enter the Mobile Station Idle State.
- If PACA_S is equal to enabled, the mobile station shall set PACA_CANCEL to '1' when the user directs the mobile station to cancel a PACA call.
- If the mobile station receives any of the following messages, it shall process the message as follows:
 - 1. System Parameters Message: The mobile station shall process the parameters from the message (see 6.6.2.2.1).
 - 2. Access Parameters Message: The mobile station shall process the parameters from the message (see 6.6.2.2.2).
 - 3. *Neighbor List Message*: The mobile station shall process the parameters from the message (see 6.6.2.2.3).
- 4. *CDMA Channel List Message*: The mobile station shall process the parameters from the message (see 6.6.2.2.4).

5. Extended System Parameters Message: The mobile station shall process the parameters from the message (see 6.6.2.2.5).

- 6. Global Service Redirection Message: The mobile station shall process the parameters from the message (see 6.6.2.2.6).
 - 7. Extended Neighbor List Message: The mobile station shall process the parameters from the message (see 6.6.2.2.7).
 - 8. *General Neighbor List Message*: The mobile station shall process the parameters from the message (see 6.6.2.2.8).
 - 9. Lock Until Power-Cycled Order: If the ADDRESS field matches the corresponding mobile station identification data, the mobile station shall record the reason for the Lock Until Power-Cycled Order in the mobile station's semi-permanent memory (LCKRSN_P_{S-p} equals the least-significant four bits of ORDQ_r). The mobile station should notify the user of the locked condition. The mobile station shall then enter the System Determination Substate of the Mobile Station Initialization State with a lock indication (see 6.6.1.1), and shall not enter the System Access State again until after the next mobile station power-up or until it has received an Unlock Order. This requirement shall take precedence over any other mobile station requirement specifying entry to the System Access State.
 - 10. General Page Message: If CURR_ACC_MSG_SEQ is equal to NULL, the mobile station shall set CURR_ACC_MSG_SEQ to ACC_MSG_SEQ_r. The mobile station shall compare CONFIG_MSG_SEQ_s to CONFIG_MSG_SEQ_r. If the comparison results in a mismatch, the mobile station shall set CONFIG_MSG_SEQ_s to CONFIG_MSG_SEQ_r. The mobile station may ignore the rest of the message. If this substate was not entered with an origination or page response indication, the mobile station may also determine whether there is a page match. If the mobile station attempts to determine whether there is a page match, it shall use the procedure as defined in 6.6.2.3. If a match is declared, the mobile station shall set PAGED to YES.

If the mobile station receives a message which is not included in the above list, the mobile station shall ignore the message.

When the stored configuration parameters are current (see 6.6.2.2) and CURR_ACC_MSG_SEQ and ACC_MSG_SEQs are equal and are not NULL, the mobile station shall disable the *System Access State* timer and shall do one of the following:

 If PAGED is equal to YES, the mobile station shall determine whether the message resulting in the page match was received on the current Paging Channel. If the message was received on the current Paging Channel, the mobile station shall enter the Page Response Substate; otherwise, the mobile station shall enter the Mobile Station Idle State.

3

7

10

12

13

14

15

16

17

18

19

20

22

23

25

26

27

28

29

30

32

- If this substate was entered with a page response indication and the mobile station
 has not performed an access entry handoff, the mobile station shall determine
 whether the message resulting in the page match was received on the current
 Paging Channel. If the message was received on the current Paging Channel, the
 mobile station shall enter the Page Response Substate; otherwise, the mobile station
 shall enter the Mobile Station Idle State.
 - If this substate was entered with a page response indication and the mobile station has performed an access entry handoff, the mobile station shall enter the Page Response Substate.
 - If this substate was entered with a page response retransmission indication, the mobile station shall enter the *Page Response Substate*.
 - If this substate was entered with an origination indication, the mobile station shall enter the *Mobile Station Origination Attempt Substate* with an origination indication.
 - If this substate was entered with a PACA response indication, the mobile station shall enter the *Mobile Station Origination Attempt Substate* with a PACA response indication.
 - If this substate was entered with an order/message response indication and the
 mobile station has not performed an access entry handoff, the mobile station shall
 determine whether the message resulting in the response was received on the
 current Paging Channel. If the message was received on the current Paging
 Channel, the mobile station shall enter the Mobile Station Order/Message Response
 Substate; otherwise, the mobile station shall discard the response and enter the
 Mobile Station Idle State.
 - If this substate was entered with an order/message response indication and the mobile station has performed an access entry handoff, the mobile station shall enter the Mobile Station Order/Message Response Substate.
 - If this substate was entered with a registration indication, the mobile station shall enter the *Registration Access Substate*.
 - If this substate was entered with a message transmission indication, the mobile station shall enter the *Mobile Station Message Transmission Substate*.
 - If this substate was entered with a PACA cancel indication, the mobile station shall enter the PACA Cancel Substate.

3 6.6.3.3 Page Response Substate

- In this substate, the mobile station sends a Page Response Message in response to a
- 35 General Page Message from a base station. If a base station responds to the Page Response
- 36 Message with an authentication request, the mobile station responds in this substate.
- Upon entering the Page Response Substate, the mobile station shall send a Page Response
- Message, using the access procedures specified in 6.6.3.1.1.2. If message authentication is
- enabled (see 6.3.12.1), the mobile station shall calculate the values of the AUTHR and
- 40 RANDC fields using the current value of RANDs.

- While in this substate, the mobile station shall monitor the Paging Channel. The mobile
- station may perform an access probe handoff or access handoff as described in 6.6.3.1.3.2
- and 6.6.3.1.3.3. If the mobile station declares a loss of the Paging Channel (see 6.4.3)
- during an access attempt, the mobile station may perform an access probe handoff;
- otherwise, it shall declare an access attempt failure and shall perform the following actions:
 - The mobile station shall update its registration variables as specified in 6.6.5.5.3.2,
 - The mobile station shall set SYS_PAR_MSG_SEQ_s and ACC_MSG_SEQ_s to NULL,
 - If PACA_s is equal to enabled, the mobile station shall set PACA_s to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
 - · The mobile station shall disable its transmitter, and

12

17

18

19

22

23

25

26

27

36

37

38

• The mobile station shall enter the *Mobile Station Idle State*.

If the mobile station receives an acknowledgment to any message sent by the mobile station in this substate, the mobile station shall end the access attempt. After the access attempt is ended, the mobile station shall perform an access handoff if all of the following conditions hold:

- · The mobile station declares a loss of the Paging Channel, and
- The mobile station is permitted to perform an access handoff (see 6.6.3.1.3.2), and there are pilots other than the active pilot in the access handoff list (see 6.6.3.1.3.2).
- 21 If the mobile station declares a loss of the Paging Channel and does not perform an access handoff, the mobile station shall perform the following:
 - The mobile station shall set SYS_PAR_MSG_SEQ_s and ACC_MSG_SEQ_s to NULL,
 - If PACA_S is equal to enabled, the mobile station shall set PACA_S to disabled and PACA_CANCEL to 0, shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled,
 - · The mobile station shall disable its transmitter, and
 - The mobile station shall enter the Mobile Station Idle State.
- If PACA_S is equal to enabled, the mobile station shall set PACA_CANCEL to '1' when the user directs the mobile station to cancel a PACA call.
- If the access attempt for the *Page Response Message* ends with the receipt of an acknowledgment from a base station, the mobile station shall update its registration variables with respect to the first base station to which an access probe was sent after entering the *System Access State* as specified in 6.6.5.5.3.1.
- If the *System Access State* timer expires while in this substate, the mobile station shall perform the following:
 - If PACA_S is equal to enabled, the mobile station shall set PACA_S to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.

ANSI/TIA/EIA-95-B

2

5

6

7

31

32

33

34

35

36

37

38

39

- The mobile station shall set SYS_PAR_MSG_SEQ_s and ACC_MSG_SEQ_s to NULL, and shall enter the Mobile Station Idle State.
- The mobile station shall set and disable the System Access State timer as follows:
 - The mobile station shall disable the timer whenever it begins an access attempt.
 - The mobile station shall set the timer to T_{42m} seconds whenever it ends an access attempt.
 - The mobile station shall disable the timer whenever it exits the System Access State.
- If a mobile station receives any message with a MSG_TYPE specified in Table 7.7.2.3-1 other than a *Channel Assignment Message* or an *Extended Channel Assignment Message* addressed to the mobile station, it shall process the ACK_SEQ and VALID_ACK fields of layer 2 as specified in 6.6.3.1.2. If, after processing the ACK_SEQ and VALID_ACK fields, an access attempt is still in progress, the mobile station shall ignore the ACK_REQ field of layer 2 and the layer 3 fields of the message; otherwise, the mobile station shall process the ACK_REQ field as described in 6.6.3.1.2 and the layer 3 fields of the message as described below.
- If a mobile station receives a *Channel Assignment Message* or an *Extended Channel Assignment Message* addressed to the mobile station, the mobile station shall process the ACK_REQ field as described in 6.6.3.1.2 and shall process the message as described below.
- If the mobile station has not received an acknowledgment from the base station before receiving the *Channel Assignment Message* or the *Extended Channel Assignment Message*, the mobile station shall end any access attempt in progress and shall update its registration variables with respect to the first base station to which an access probe was transmitted after entering the *System Access State*, as specified in 6.6.5.5.3.1.
- If the mobile station is to exit the *System Access State* as a result of processing the layer 3 fields of a message requiring an acknowledgment, the mobile station shall send an acknowledgment (see 6.6.3.1.2) using the access procedures specified in 6.6.3.1.1 and then exit the *System Access State*.
- The following directed messages and orders can be received. If any field value of the message or order is outside its permissible range, the mobile station may send a *Mobile Station Reject Order* with ORDQ equal to '00000100' (message field not in valid range).
 - 1. Authentication Challenge Message: The mobile station shall respond to the message as specified in 6.3.12.1.5, regardless of the value of AUTH_s, using the access procedures specified in 6.6.3.1.1.2.
 - 2. Base Station Challenge Confirmation Order: The mobile station shall respond to the message as specified in 6.3.12.1.9, using the access procedures specified in 6.6.3.1.1.2.
 - 3. Channel Assignment Message: The mobile station shall process the message as follows:
 - If ASSIGN_MODE_r equals '000', the mobile station shall perform the following actions:

- The mobile station shall store the frame offset (FRAME_OFFSET_s = FRAME_OFFSET_r), the message encryption mode indicator (ENCRYPT_MODE_s = ENCRYPT_MODE_r), and, if FREQ_INCL_r equals '1', the frequency assignment (CDMACH_s = CDMA_FREQ_r).
 - The mobile station shall set SERV_NEGs to disabled.

11

12

13

15

17

18

19

20

21

25

26

27

29

30

31

32

33

35

37

38

- If PACA_S is equal to enabled, the mobile station shall set PACA_S to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
- The mobile station shall initialize CODE_CHAN_LIST as described in 6.6.8.
- The mobile station shall enter the Traffic Channel Initialization Substate of the Mobile Station Control on the Traffic Channel State.
- If ASSIGN_MODE_r equals '001', the mobile station shall perform the following actions:
 - If the message requires an acknowledgment, the mobile station shall send an acknowledgment (see 6.6.3.1.2) using the access procedures specified in 6.6.3.1.1. Then, if $FREQ_INCL_r$ equals '1', the mobile station shall set $CDMACH_S = CDMA_FREQ_r$, tune to the new frequency assignment, and measure the strength of each pilot listed in the assignment using the Neighbor Set search procedures specified in 6.6.6.2.1 and 6.6.6.2.2.
 - The mobile station shall set CONFIG_MSG_SEQ_S and ACC_MSG_SEQ_S to NULL (see 6.6.2.2) and shall set PILOT_PN_S to the pilot PN sequence offset of the strongest pilot in the list (PILOT_PN_r).
 - If the mobile station has not stored configuration parameters for the Primary Paging Channel of the new base station, or if the stored information is not current (see 6.6.2.2), the mobile station shall set SYS_PAR_MSG_SEQ_s, NGHBR_LST_MSG_SEQ_s, EXT_NGHBR_LST_MSG_SEQ_s, GEN_NGHBR_LIST_MSG_SEQ_s, CHAN_LST_MSG_SEQ_s, EXT_SYS_PAR_MSG_SEQ_s, and GLOB_SERV_REDIR_MSG_SEQ_s to NULL.
 - The mobile station shall set PAGE_CHAN_s to '1' and PAGECH_s to the Primary Paging Channel. The mobile station shall then begin monitoring the Primary Paging Channel of the selected base station.
 - If RESPOND_r is equal to '1', the mobile station shall enter the *Update* Overhead Information Substate with a page response retransmission indication within T_{34m} seconds after receiving the Channel Assignment Message.
 - If RESPOND_r is equal to '0', the mobile station shall enter the *Mobile Station Idle State* within T_{34m} seconds after receiving the *Channel Assignment Message*.
- If $ASSIGN_MODE_r$ equals '010', the mobile station shall perform the following actions:

15

16

17

18

20

21

23

26

27

31

32

If the mobile station does not support analog operation in the requested band class, the mobile station shall send a *Mobile Station Reject Order* with ORDQ field set to '00000110' (capability not supported by the mobile station) and shall remain in the *Page Response Substate*.
 If the mobile station supports analog operation in the requested band class, the mobile station shall perform the following actions:

 If USE_ANALOG_SYS_r equals '1', the mobile station shall set SERVSYS_s to SYS_B

if ANALOG_SYS_r is equal to '1'.

- + If PACA_s is equal to enabled, the mobile station shall set PACA_s to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
- + If RESPOND_r equals '0', the mobile station shall enter the analog Initialization Task with a wait-for-page indication (see 2.6.1). If RESPOND_r equals '1', the mobile station shall enter the analog Initialization Task with a page response indication (see 2.6.1).
- If ASSIGN_MODE_r equals '011', the mobile station shall perform the following actions:
 - If the mobile station does not support analog operation in the requested band class, the mobile station shall send a *Mobile Station Reject Order* with ORDQ field set to '00000110' (capability not supported by the mobile station) and remain in the *Page Response Substate*.
 - If the mobile station supports analog operation in the requested band class:
 - + If PACA_s is equal to enabled, the mobile station shall set PACA_s to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
 - + If the analog channel type is '00', the mobile station shall store the system identification (SID_S = SID_r), voice mobile station attenuation code (VMAC_S = VMAC_r), voice channel number (ANALOG_CHAN_S = ANALOG_CHAN_r), SAT color code (SCC_S = SCC_r), and message encryption mode indicator (MEM_S = MEM_r), shall set DTX_S to '00' and shall enter the Confirm Initial Voice Channel Task (see 2.6.4.2) with a page response indication.
 - + If the analog channel type is not '00':

- o If the mobile station supports narrow analog mode, the mobile station shall store the system identification (SID_S = SID_r), voice mobile station attenuation code (VMAC_S = VMAC_r), voice channel number (ANALOG_CHAN_S = ANALOG_CHAN_r), message encryption mode indicator (MEM_S = MEM_r), analog channel type (AN_CHAN_TYPE_S = AN_CHAN_TYPE_r) and the digital SAT code (DSCC_S = DSCC_MSB_r × 4 + SCC_r), shall set DTX_S to '00', and shall enter the Confirm Initial Narrow Analog Voice Channel Task (see 2.6.5.2A of IS-91) with a page response indication.
 - o If the mobile station does not support narrow analog mode, the mobile station shall send a *Mobile Station Reject Order* with the ORDQ field set to '00000110' (capability not supported by the mobile station) and the mobile station shall remain in the *Page Response Substate* of the *System Access State*.
- If ASSIGN_MODE_r equals '100', the mobile station shall perform the following actions:

11

12

13

16

20

21

22

23

25

27

29

30

32

33

35

36

37

- If PACA_s is equal to enabled, the mobile station shall set PACA_s to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
- If GRANTED_MODE_r equals '00', and the multiplex option and rate set combination specified in the DEFAULT_CONFIG field is not supported by the mobile station, the mobile station shall send a *Mobile Station Reject Order* with ORDQ field set to '00000110' (capability not supported by the mobile station) and remain in the *Page Response Substate*.
- If FREQ_INCL_r equals '0', the mobile station shall perform the following actions:
 - + The mobile station shall store the frame offset (FRAME_OFFSET_S = FRAME_OFFSET_r), the message encryption mode indicator (ENCRYPT_MODE_s = ENCRYPT_MODE_r), the granted mode (GRANTED_MODE_s = GRANTED_MODE_r), and default configuration (DEFAULT_CONFIG_s = DEFAULT_CONFIG_r).
 - + The mobile station shall set SERV_NEG_s to enabled.
 - + The mobile station shall initialize CODE_CHAN_LIST as described in 6.6.8 and shall then enter the *Traffic Channel Initialization Substate* of the *Mobile Station Control on the Traffic Channel State*.
- If FREQ_INCL_r equals '1', the mobile station shall perform the following actions:
 - + If the band class is not supported by the mobile station, the mobile station shall send a *Mobile Station Reject Order* with ORDQ field set to '00000110' (capability not supported by the mobile station) and shall remain in the *Page Response Substate*.

3

10

11

12

13

15

16

17

18

19

20

21

22

23

24

27

28

30

31

33

36

38

39

- + If the band class is supported by the mobile station, the mobile station shall perform the following actions:
 - The mobile station shall store the frame offset (FRAME_OFFSET_s = FRAME_OFFSET_r), the message encryption mode indicator (ENCRYPT_MODE_s = ENCRYPT_MODE_r), the bypass indicator (BYPASS_ALERT_ANSWER_s = BYPASS_ALERT_ANSWER_r), the granted mode (GRANTED_MODE_s = GRANTED_MODE_r), the default configuration (DEFAULT_CONFIG_s = DEFAULT_CONFIG_r), the band class (CDMABAND_s = BAND_CLASS_r), and the frequency assignment (CDMACH_s = CDMA_FREQ_r).
 - o The mobile station shall initialize CODE_CHAN_LIST as described in 6.6.8, and shall set SERV_NEG_S to enabled.
 - o The mobile station shall then tune to the new frequency assignment and shall enter the *Traffic Channel Initialization Substate* of the *Mobile Station Control on the Traffic Channel State*.
- If ASSIGN_MODE_r equals '101', the mobile station shall perform the following actions:
 - If FREQ_INCL_r equals '0', the mobile station shall perform the following actions:
 - + If the message requires an acknowledgment, the mobile station shall send an acknowledgment (see 6.6.3.1.2) using the access procedures specified in 6.6.3.1.1. Then, the mobile station shall set CONFIG_MSG_SEQ_S and ACC_MSG_SEQ_S to NULL (see 6.6.2.2) and shall set PILOT_PN_S to the pilot PN sequence offset of the strongest pilot in the list (PILOT_PN_r).
 - + If the mobile station has not stored configuration parameters for the Primary Paging Channel of the new base station, or if the stored information is not current (see 6.6.2.2), the mobile station shall set SYS_PAR_MSG_SEQ_s, NGHBR_LST_MSG_SEQ_s, EXT_NGHBR_LST_MSG_SEQ_s, GEN_NGHBR_LIST_MSG_SEQ_s, CHAN_LST_MSG_SEQ_s, EXT_SYS_PAR_MSG_SEQ_s, and GLOB_SERV_REDIR_MSG_SEQ_s to NULL.
 - + The mobile station shall set PAGE_CHAN_S to '1' and PAGECH_S to the Primary Paging Channel. The mobile station shall then begin monitoring the Primary Paging Channel of the selected base station.
 - + If RESPOND_r is equal to '1', the mobile station shall enter the *Update* Overhead Information Substate with a page response retransmission indication within T_{34m} seconds after receiving the Channel Assignment Message or, if ACK_REQ is equal to '1', after sending the acknowledgment to the Channel Assignment Message.

If RESPOND_r is equal to '0', the mobile station shall enter the Mobile

Station Idle State within T34m seconds after receiving the Channel 2 Assignment Message, or, if ACK_REQ is equal to '1', after sending the acknowledgment to the Channel Assignment Message. If FREQ_INCL_r equals '1', the mobile station shall perform the following actions: If the band class is not supported by the mobile station, the mobile station shall send a Mobile Station Reject Order with ORDQ field set to '00000110' (capability not supported by the mobile station) and shall remain in the Page Response Substate. 10 If the band class is supported by the mobile station, the mobile station 11 shall perform the following actions: 12 If the message requires an acknowledgment, the mobile station shall 13 send an acknowledgment (see 6.6.3.1.2) using the access procedures 14 specified in 6.6.3.1.1. Then, the mobile station shall set CONFIG-15 _MSG_SEQ_s and ACC_MSG_SEQ_s to NULL (see 6.6.2.2) and shall set 16 PILOT_PNs to the pilot PN sequence offset of the strongest pilot in the 17 list (PILOT_PN_r). If the mobile station has not stored configuration parameters for the 19 Primary Paging Channel of the new base station, or if the stored 20 information is not current (see 6.6.2.2), the mobile station shall set 21 SYS_PAR_MSG_SEQ_s, NGHBR_LST_MSG_SEQ_s, 22 EXT_NGHBR_LST_MSG_SEQs, GEN_NGHBR_LIST_MSG_SEQs, 23 CHAN_LST_MSG_SEQs, EXT_SYS_PAR_MSG_SEQs, and 24 GLOB_SERV_REDIR_MSG_SEQs to NULL. 25 The mobile station shall store the band class (CDMABAND_S = 26 BAND_CLASS_r) and the frequency assignment 27 $(CDMACH_S = CDMA_FREQ_r).$ 28 The mobile station shall set PAGE_CHAN_s to '1' and PAGECH_s to the 29 Primary Paging Channel. The mobile station shall then begin 30 monitoring the Primary Paging Channel of the selected base station. 31 If RESPOND_r is equal to '1', the mobile station shall enter the *Update* 32 Overhead Information Substate with a page response retransmission 33 indication within T_{34m} seconds after receiving the *Channel* 34 Assignment Message or, if ACK_REQ is equal to '1', after sending the 35 acknowledgment to the Channel Assignment Message. 36 If RESPOND_r is equal to '0', the mobile station shall enter the *Mobile* 37 Station Idle State within T_{34m} seconds after receiving the Channel 38 Assignment Message, or, if ACK_REQ is equal to '1', after sending the

4. Data Burst Message

39

40

acknowledgment to the Channel Assignment Message.

11

12

14

15

16

17

18

19

20

21

22

23

25

28

29

30

31

33

34

35

36

37

39

40

- 5. Extended Channel Assignment Message: The mobile station shall process the message as follows:
 - If ASSIGN_MODE_r equals '000', the mobile station shall perform the following actions:
 - If PACA_s is equal to enabled, the mobile station shall set PACA_s to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
 - If FREQ_INCL_r equals '0', the mobile station shall perform the following actions:
 - + The mobile station shall store the frame offset (FRAME_OFFSET_s = FRAME_OFFSET_r); the message encryption mode indicator (ENCRYPT_MODE_s = ENCRYPT_MODE_r); the bypass indicator (BYPASS_ALERT_ANSWER_s = BYPASS_ALERT_ANSWER_r); the granted mode (GRANTED_MODE_s = GRANTED_MODE_r); the default configuration (DEFAULT_CONFIG_s = DEFAULT_CONFIG_r); and the occurrences of PILOT_PN and PWR_COMB for each included member of the Active Set.
 - + The mobile station shall initialize CODE_CHAN_LIST as described in 6.6.8, and shall set SERV_NEG_s to enabled.
 - + The mobile station shall then enter the *Traffic Channel Initialization*Substate of the Mobile Station Control on the *Traffic Channel State*.
 - If FREQ_INCL_r equals '1', and the band class is not supported by the mobile station, the mobile station shall send a *Mobile Station Reject Order* with ORDQ field set to '00000110' (capability not supported by the mobile station) and remain in the *Page Response Substate*.
 - If FREQ_INCL_r equals '1', and the band class is supported by the mobile station, the mobile station shall perform the following actions:
 - + The mobile station shall store the frame offset (FRAME_OFFSET_S = FRAME_OFFSET_r); the message encryption mode indicator (ENCRYPT_MODE_S = ENCRYPT_MODE_r); the bypass indicator (BYPASS_ALERT_ANSWER_S = BYPASS_ALERT_ANSWER_r); the granted mode (GRANTED_MODE_S = GRANTED_MODE_r); the default configuration (DEFAULT_CONFIG_S = DEFAULT_CONFIG_r); the band class (CDMABAND_S = BAND_CLASS_r); the frequency assignment (CDMACH_S = CDMA_FREQ_r); and the occurrences of PILOT_PN and PWR_COMB_IND for each included member of the Active Set.
 - The mobile station shall initialize CODE_CHAN_LIST as described in 6.6.8, and shall set SERV_NEG_s to enabled.
 - + The mobile station shall then tune to the new frequency assignment and shall enter the *Traffic Channel Initialization Substate* of the *Mobile Station Control on the Traffic Channel State*.

- If GRANTED_MODE_r equals '00', and the multiplex option and rate set specified in the DEFAULT_CONFIG field is not supported by the mobile station, the mobile station shall send a *Mobile Station Reject Order* with ORDQ field set to '00000110' (capability not supported by the mobile station) and shall remain in the *Page Response Substate*.
- If ASSIGN_MODE_r equals '001', the mobile station shall perform the following actions:

3

8

9

10

11

12

13

15

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

- If FREQ_INCL_r equals '0', the mobile station shall perform the following actions:
 - + If the message requires an acknowledgment, the mobile station shall send an acknowledgment (see 6.6.3.1.2) using the access procedures specified in 6.6.3.1.1. Then, the mobile station shall set CONFIG_MSG_SEQs and ACC_MSG_SEQs to NULL (see 6.6.2.2) and shall set PILOT_PNs to the pilot PN sequence offset of the strongest pilot in the list (PILOT_PNr). If the mobile station has not stored configuration parameters for the Primary Paging Channel of the new base station, or if the stored information is not current (see 6.6.2.2), the mobile station shall set SYS_PAR_MSG_SEQs, NGHBR_LST_MSG_SEQs, EXT_NGHBR_LST_MSG_SEQs, GEN_NGHBR_LIST_MSG_SEQs, CHAN_LST_MSG_SEQs, EXT_SYS_PAR_MSG_SEQs, and GLOB_SERV_REDIR_MSG_SEQs to NULL.
 - + The mobile station shall set PAGE_CHAN_S to '1' and PAGECH_S to the Primary Paging Channel. The mobile station shall then begin monitoring the Primary Paging Channel of the selected base station.
 - + If RESPOND_r is equal to '1', the mobile station shall enter the *Update Overhead Information Substate* with a page response retransmission indication within T_{34m} seconds after receiving the *Extended Channel Assignment Message* or, if ACK_REQ is equal to '1', after sending the acknowledgment to the *Extended Channel Assignment Message*.
 - + If RESPOND_r is equal to '0', the mobile station shall enter the *Mobile Station Idle State* within T_{34m} seconds after receiving the *Extended Channel Assignment Message*, or, if ACK_REQ is equal to '1', after sending the acknowledgment to the *Extended Channel Assignment Message*.
- If FREQ_INCL_r equals '1', and the band class is not supported by the mobile station, the mobile station shall send a *Mobile Station Reject Order* with ORDQ field set to '00000110' (capability not supported by the mobile station) and remain in the *Page Response Substate*.
- If FREQ_INCL_r equals '1', and the band class is supported by the mobile station, the mobile station shall perform the following actions:

3

10

13

15

17

18

19

20

21

24

26

27

30

32

33

35

36

38

39

- + If the message requires an acknowledgment, the mobile station shall send an acknowledgment (see 6.6.3.1.2) using the access procedures specified in 6.6.3.1.1. Then, the mobile station shall set CONFIG_MSG_SEQ_S and ACC_MSG_SEQ_S to NULL (see 6.6.2.2) and shall set PILOT_PN_S to the pilot PN sequence offset of the strongest pilot in the list (PILOT_PN_r).
- + If the mobile station has not stored configuration parameters for the Primary Paging Channel of the new base station, or if the stored information is not current (see 6.6.2.2), the mobile station shall set SYS_PAR_MSG_SEQ_s, NGHBR_LST_MSG_SEQ_s, EXT_NGHBR_LST_MSG_SEQ_s, GEN_NGHBR_LST_MSG_SEQ_s, CHAN_LST_MSG_SEQ_s, EXT_SYS_PAR_MSG_SEQ_s, and GLOB_SERV_REDIR_MSG_SEQ_s to NULL.
- The mobile station shall store the band class (CDMABAND_S = BAND_CLASS_r) and the frequency assignment (CDMACH_S = CDMA_FREQ_r).
- + The mobile station shall set PAGE_CHAN_s to '1' and PAGECH_s to the Primary Paging Channel. The mobile station shall then begin monitoring the Primary Paging Channel of the selected base station. If RESPOND_r is equal to '1', the mobile station shall enter the *Update Overhead Information Substate* with a page response retransmission indication within T_{34m} seconds after receiving the *Extended Channel Assignment Message* or, if ACK_REQ is equal to '1', after sending the acknowledgment to the *Extended Channel Assignment Message*.
- + If RESPOND_r is equal to '0', the mobile station shall enter the *Mobile Station Idle State* within T_{34m} seconds after receiving the *Extended Channel Assignment Message*, or, if ACK_REQ is equal to '1', after sending the acknowledgment to the *Extended Channel Assignment Message*.
- If ASSIGN_MODE_r equals '010', the mobile station shall perform the following actions:
 - If the mobile station does not support analog operation in the requested band class, the mobile station shall send a *Mobile Station Reject Order* with ORDQ field set to '00000110' (capability not supported by the mobile station) and remain in the *Page Response Substate*.
 - If the mobile station supports analog operation in the requested band class, the mobile station shall perform the following actions:
 - + If PACA_S is equal to enabled, the mobile station shall set PACA_S to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.

- 1 2 3 4
- 6 7 8
- 12 13 14
- 15 16
- 19 20 21

- + If RESPOND_r equals '0', and USE_ANALOG_SYS_r equals '1', the mobile station shall set SERVSYS_s to SYS_A if ANALOG_SYS_r is equal to '0', or set SERVSYS_s to SYS_B if ANALOG_SYS_r is equal to '1'. The mobile station shall then enter the analog Initialization Task with a wait-forpage indication (see 2.6.1).
- + If RESPOND_r equals '1', and USE_ANALOG_SYS_r equals '1', the mobile station shall set SERVSYS_s to SYS_A if ANALOG_SYS_r is equal to '0', or set SERVSYS_s to SYS_B if ANALOG_SYS_r is equal to '1'. The mobile station shall then enter the analog Initialization Task with a page response indication (see 2.6.1).
- + If RESPOND_r equals '0', and USE_ANALOG_SYS_r equals '0' the mobile station shall enter the analog Initialization Task with a wait for page indication (see 2.6.1).
- + If RESPOND_r equals '1', and USE_ANALOG_SYS_r equals '0' the mobile station shall enter the analog Initialization Task with a page response indication (see 2.6.1).
- If ASSIGN_MODE_r equals '011', the mobile station shall perform the following actions:
 - If the mobile station does not support analog operation in the requested band class, the mobile station shall send a *Mobile Station Reject Order* with ORDQ field set to '00000110' (capability not supported by the mobile station) and remain in the *Page Response Substate*.
 - If the mobile station supports analog operation in the requested band class, and the analog channel type is '00', the mobile station shall store the system identification (SID_S = SID_r), voice mobile station attenuation code (VMAC_S = VMAC_r), voice channel number (ANALOG_CHAN_S = ANALOG_CHAN_r), SAT color code (SCC_S = SCC_r), and message encryption mode indicator (MEM_S = MEM_r), shall set DTX_S to '00', and shall enter the Confirm Initial Voice Channel Task (see 2.6.4.2) with a page response indication. If PACA_S is equal to enabled, the mobile station shall set PACA_S to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.

- If the mobile station supports analog operation in the requested band class, the analog channel type is not '00', and the mobile supports narrow analog mode, the mobile station shall store the system identification (SID_S = SID_r), voice mobile station attenuation code (VMAC_S = VMAC_r), voice channel number (ANALOG_CHAN_S = ANALOG_CHAN_r), message encryption mode indicator (MEM_S = MEM_r), analog channel type (AN_CHAN_TYPE_S = AN_CHAN_TYPE_r) and the digital SAT code (DSCC_S = DSCC_MSB_r × 4 + SCC_r), shall set DTX_S to '00', and shall enter the Confirm Initial Narrow Analog Voice Channel Task (see 2.6.5.2A of IS-91) with a page response indication. If PACA_S is equal to enabled, the mobile station shall set PACA_S to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
- If ASSIGN_MODE_r equals '011', the mobile station supports analog operation in
 the requested band class, the analog channel type is not '00', and the mobile
 station does not support narrow analog mode, the mobile station shall send a
 Mobile Station Reject Order with the ORDQ field set to '00000110' (capability not
 supported by the mobile station) and the mobile station shall remain in the Page
 Response Substate of the System Access State.
- 6. Feature Notification Message
- 7. Local Control Order
- 8. Lock Until Power-Cycled Order: The mobile station shall disable its transmitter and record the reason for the Lock Until Power-Cycled Order in the mobile station's semi-permanent memory (LCKRSN_P_{S-p} equals the least significant four bits of ORDQ_r). The mobile station should notify the user of the locked condition. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a lock indication (see 6.6.1.1), and shall not enter the System Access State again until after the next mobile station power-up or until it has received an Unlock Order. This requirement shall take precedence over any other mobile station requirement specifying entry to the System Access State.
- 9. Maintenance Required Order: The mobile station shall record the reason for the Maintenance Required Order in the mobile station's semi-permanent memory (MAINTRSN_{s-p} equals the least significant four bits of ORDQ_r). The mobile station shall remain in the unlocked condition. The mobile station should notify the user of the maintenance required condition.
- 10. Registration Accepted Order: If $ORDQ_r = '00000101'$, the mobile station shall set $ROAM_INDI_S = ROAM_INDI_r$ and should display the roaming condition.
- 11. Registration Rejected Order: This order indicates that normal service is not available on this system. The mobile station shall disable the full-TMSI timer. If the received order specifies to delete the TMSI (ORDQ = '00000100'), the mobile station shall set all the bits of the TMSI_CODE_{S-p} to '1'. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a registration rejected indication (see 6.6.1.1).

6-234

12. Release Order: If NDSS_ORIGs is equal to enabled, the mobile station shall set NDSS_ORIGs to disabled, and should indicate to the user that the call origination 2 has been canceled. The mobile station shall enter the Mobile Station Idle State or the System Determination Substate of the Mobile Station Initialization State with a release indication (see 6.6.1.1). If the mobile station enters the Mobile Station Idle State, and if PACAs is equal to enabled, the mobile station shall set PACAs to disabled and PACA CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.

3

9

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37 38

39

40 41

42

- 13. Service Redirection Message: The mobile station shall process the message as follows:
 - If the mobile station is directed to an unsupported operation mode or band class, the mobile station shall respond with a Mobile Station Reject Order with ORDQ equal to '00000110' (message requires a capability that is not supported by the mobile station).
 - If DELETE_TMSI_r is equal to '1', the mobile station shall set all the bits of $TMSI_CODE_{S-D}$ to '1'. The mobile station shall disable the full-TMSI timer.
 - The mobile station shall set RETURN_IF_FAIL_s = RETURN_IF_FAIL_r.
 - If RECORD_TYPE_r is equal to '00000000', the mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with an NDSS off indication (see 6.6.1.1); otherwise, the mobile station shall store the redirection record received in the message as REDIRECT_RECs and shall enter the System Determination Substate of the Mobile Station Initialization State with a redirection indication (see 6.6.1.1).
- 14. SSD Update Message: The mobile station shall respond to the message as specified in 6.3.12.1.9, using the access procedures specified in 6.6.3.1.1.2.
- 15. Status Request Message: The mobile station shall disable the System Access State timer and respond to the message using the access procedures specified in 6.6.3.1.1.2. If P_REV_IN_USE_s is less than or equal to three, the mobile station shall respond with a Status Response Message. If P_REV_IN_USEs is greater than three, the mobile station shall respond with an Extended Status Response Message. If the message does not specify any qualification information (QUAL_INFO_TYPE_r is equal to '00000000'), the mobile station shall include the requested information records in the response. If the message specifies a band class (QUAL_INFO_TYPE_r is equal to '00000001'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) in the response. If the message specifies a band class and an operating mode (QUAL_INFO_TYPE_r is equal to '0000010'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) and operating mode (OP_MODE_r) in the response. If the message specifies a band class or a band class and an operating mode which is not supported by the mobile station, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00000110' (message requires a capability that is not supported by the mobile station). If the response to this message exceeds the allowable length, the mobile station shall send

12

13

19

20

21

22 23

27

29

31

32

a Mobile Station Reject Order with ORDQ set to '00001000' (response message would exceed the allowable length). If the message specifies an information record which is not supported by the mobile station for the specified band class and operating mode, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00001001' (information record is not supported for the specified band class and operating mode).

- 16. TMSI Assignment Message: The mobile station shall store the TMSI zone and code as follows:
 - The mobile station shall store the length of the TMSI zone field by setting ASSIGNING_TMSI_ZONE_LEN_{s-p} to TMSI_ZONE_LEN_r;
 - The mobile station shall store the assigning TMSI zone number by setting the ASSIGNING_TMSI_ZONE_LEN_{s-p} least significant octets of ASSIGNING_TMSI_ZONE_{s-p} to TMSI_ZONE_r, and
 - The mobile station shall store the TMSI code by setting TMSI_CODE_{s-p} to TMSI_CODE_r.

The mobile station shall set the TMSI expiration time by setting TMSI_EXP_TIME_s-p to TMSI_EXP_TIME_r. The mobile station shall disable the full-TMSI timer. The mobile station shall then respond with a TMSI Assignment Completion Message within T_{56m} seconds.

17. Any other message: If the mobile station receives any other message with a MSG_TYPE specified in Table 7.7.2.3-1, it shall process all layer 2 fields of the message and shall ignore all other fields. The mobile station shall ignore all other messages.

If the mobile station performs an access probe handoff or access handoff and receives any of the following messages, it shall process the message as specified in 6.6.3.1.3.2 and 6.6.3.1.3.3:

- 1. System Parameters Message
- 2. Access Parameters Message
- 3. Neighbor List Message
- 4. Extended System Parameters Message
 - 5. Extended Neighbor List Message
 - 6. General Neighbor List Message
- 33 6.6.3.4 Mobile Station Order/Message Response Substate
- In this substate, the mobile station sends a message that is a response to a message
- received from the base station. If the base station responds to the mobile station's message
- with an authentication request, the mobile station responds in this substate.
- Upon entering the Mobile Station Order/Message Response Substate, the mobile station
- shall send the response message using the access procedures specified in 6.6.3.1.1.2.

- While in this substate, the mobile station shall monitor the Paging Channel. If the mobile station declares a loss of the Paging Channel (see 6.4.3), the mobile station shall perform the following:
 - If PACA_s is equal to enabled, the mobile station shall set PACA_s to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
 - The mobile station shall declare an access attempt failure and update its registration variables as specified in 6.6.5.5.3.2.
 - The mobile station shall disable its transmitter.

10

30

31

32

33

34

35

36

37

• The mobile station shall enter the Mobile Station Idle State.

If the mobile station receives an acknowledgment to any message sent by the mobile station in this substate, it shall end the access attempt, send an acknowledgment if required, send a response in this substate if required, and shall then enter the *Mobile Station Idle State*.

If PACA_s is equal to enabled, the mobile station shall set PACA_CANCEL to '1' when the user directs the mobile station to cancel a PACA call.

If a mobile station receives any message with a MSG_TYPE specified in Table 7.7.2.3-1 addressed to the mobile station, it shall process the ACK_SEQ and VALID_ACK fields of layer 2 as specified in 6.6.3.1.2. If, after processing the ACK_SEQ and VALID_ACK fields, an access attempt is still in progress, the mobile station shall ignore the ACK_REQ field of layer 2 and the layer 3 fields of the message; otherwise, the mobile station shall process the ACK_REQ field as described in 6.6.3.1.2 and the layer 3 fields of the message as described below.

If the mobile station is to exit the *System Access State* as a result of processing the layer 3 fields of a message requiring an acknowledgment, the mobile station shall send an acknowledgment (see 6.6.3.1.2) using the access procedures specified in 6.6.3.1.1 and then exit the *System Access State*.

The following directed messages and orders can be received. If any field value of the message or order is outside its permissible range, the mobile station may send a *Mobile Station Reject Order* with ORDQ equal to '00000100' (message field not in valid range).

- 1. Authentication Challenge Message: The mobile station shall respond to the message as specified in 6.3.12.1.5, regardless of the value of AUTH_s, using the access procedures specified in 6.6.3.1.1.2.
- 2. Base Station Challenge Confirmation Order: The mobile station shall respond to the message as specified in 6.3.12.1.9, using the access procedures specified in 6.6.3.1.1.2.
- 3. Data Burst Message
- 4. Feature Notification Message
- 35. Local Control Order
- 6. Lock Until Power-Cycled Order: The mobile station shall disable its transmitter and record the reason for the Lock Until Power-Cycled Order in the mobile station's semi-

- permanent memory (LCKRSN_P_{S-p} equals the least significant four bits of ORDQ_r). The mobile station should notify the user of the locked condition. The mobile station shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with a lock indication (see 6.6.1.1), and shall not enter the *System Access State* again until after the next mobile station power-up or until it has received an *Unlock Order*. This requirement shall take precedence over any other mobile station requirement specifying entry to the *System Access State*.
 - 7. Maintenance Required Order: The mobile station shall record the reason for the Maintenance Required Order in the mobile station's semi-permanent memory (MAINTRSN_{S-p} equals the least significant four bits of $ORDQ_r$). The mobile station shall remain in the unlocked condition. The mobile station should notify the user of the maintenance required condition.
 - 8. Registration Accepted Order: If $ORDQ_r = '00000101'$, the mobile station shall set $ROAM_INDI_S = ROAM_INDI_r$ and should display the roaming condition.
 - 9. Registration Rejected Order: This order indicates that normal service is not available on this system. The mobile station shall disable the full-TMSI timer. If the received order specifies to delete the TMSI (ORDQ = '00000100'), the mobile station shall set all the bits of the TMSI_CODE_{s-p} to '1'. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a registration rejected indication (see 6.6.1.1).
 - 10. Service Redirection Message: The mobile station shall process the message as follows:
 - If the mobile station is directed to an unsupported operation mode or band class, the mobile station shall respond with a *Mobile Station Reject Order* with ORDQ equal to '00000110' (message requires a capability that is not supported by the mobile station).
 - If $DELETE_TMSI_r$ is equal to '1', the mobile station shall set all the bits of $TMSI_CODE_{s-p}$ to '1'. The mobile station shall disable the full-TMSI timer.
 - The mobile station shall set RETURN_IF_FAIL_s = RETURN_IF_FAIL_r.
 - If RECORD_TYPE_r is equal to '00000000', the mobile station shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with an NDSS off indication (see 6.6.1.1); otherwise, the mobile station shall store the redirection record received in the message as REDIRECT_REC_s and shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with a redirection indication (see 6.6.1.1).
 - 11. SSD Update Message: The mobile station shall respond to the message as specified in 6.3.12.1.9, using the access procedures specified in 6.6.3.1.1.2.
 - 12. Status Request Message: The mobile station shall disable the System Access State timer and respond to the message using the access procedures specified in 6.6.3.1.1.2. If P_REV_IN_USE_s is less than or equal to three, the mobile station shall respond with a Status Response Message. If P_REV_IN_USE_s is greater than three, the mobile station shall respond with an Extended Status Response Message.

6-238

If the message does not specify any qualification information (QUAL_INFO_TYPE_r is equal to '00000000'), the mobile station shall include the requested information records in the response. If the message specifies a band class (QUAL_INFO_TYPE_r is equal to '00000001'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) in the response. If the message specifies a band class and an operating mode (QUAL_INFO_TYPE_r is equal to '00000010'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) and operating mode (OP_MODE_r) in the response. If the message specifies a band class or a band class and an operating mode which is not supported by the mobile station, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00000110' (message requires a capability that is not supported by the mobile station). If the response to this message exceeds the allowable length, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00001000' (response message would exceed the allowable length). If the message specifies an information record which is not supported by the mobile station for the specified band class and operating mode, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00001001' (information record is not supported for the specified band class and operating mode).

- 13. TMSI Assignment Message: The mobile station shall store the TMSI zone and code as follows:
 - The mobile station shall store the length of the TMSI zone field by setting ASSIGNING_TMSI_ZONE_LEN_{s-p} to TMSI_ZONE_LEN_r,
 - The mobile station shall store the assigning TMSI zone number by setting the ASSIGNING_TMSI_ZONE_LEN_{s-p} least significant octets of ASSIGNING_TMSI_ZONE_{s-p} to TMSI_ZONE_r, and
 - The mobile station shall store the TMSI code by setting $TMSI_CODE_{s-p}$ to $TMSI_CODE_r$.

The mobile station shall set the TMSI expiration time by setting TMSI_EXP_TIME_s-p to TMSI_EXP_TIME_r. The mobile station shall disable the full-TMSI timer. The mobile station shall then respond with a TMSI Assignment Completion Message within T_{56m} seconds.

- 14. Any other message: If the mobile station receives any other message with a MSG_TYPE specified in Table 7.7.2.3-1, it shall process all layer 2 fields of the message and shall ignore all other fields. The mobile station shall ignore all other messages.
- 37 6.6.3.5 Mobile Station Origination Attempt Substate
- makes In this substate, the mobile station sends an Origination Message. If the base station
- responds to the Origination Message with an authentication request, the mobile station
- 40 responds in this substate.
- Upon entering the Mobile Station Origination Attempt Substate, the mobile station shall
- 42 perform the following:

10

11 12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

30

32

33

35

8

9

10

11

12

13

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35 36

37 38

- If the substate was entered with an origination indication, the mobile station shall send the *Origination Message* as an Access Channel request using the access procedures specified in 6.6.3.1.1.2.
- If the substate was entered with a PACA response indication, the mobile station shall send the *Origination Message* as an Access Channel response using the access procedures specified in 6.6.3.1.1.2. The mobile station shall include the dialed digits from the previous origination attempt in the *Origination Message*.
- If the origination is a result of NDSS_ORIG_S being equal to enabled, the mobile station shall include in the *Origination Message* the dialed digits recorded from the previous origination attempt.
- The mobile station shall include in the Origination Message as many of the dialed digits as possible without exceeding the message capsule size. When calculating the number of dialed digits to be included in the Origination Message, the mobile station shall assume the following if P_REV_IN_USE is greater than three:
 - The number of additional reported pilots (NUM_ADD_PILOTS) is equal to five (see 6.6.3.1.7 and 6.7.1.3.1.3) so that up to five additional pilots may be reported in any access probe, and
 - The number of alternative service option numbers (NUM_ALT_SO) is less than or equal to the maximum alternative service option numbers (MAX_NUM_ALT_SO_s).

The mobile station shall not change the number of dialed digits in the *Origination Message* in subsequent access probes.

 If PACA_s is equal to enabled, the mobile station shall set the PACA_REORIG field of the *Origination Message* to '1'; otherwise, the mobile station shall set the field to '0'.

While in this substate, the mobile station shall monitor the Paging Channel. The mobile station may perform an access probe handoff or an access handoff as described in 6.6.3.1.3.2 and 6.6.3.1.3.3. If the mobile station declares a loss of the Paging Channel (see 6.4.3) during an access attempt, the mobile station may perform an access probe handoff; otherwise, it shall declare an access attempt failure and shall perform the following:

- The mobile station shall set SYS_PAR_MSG_SEQ_s and ACC_MSG_SEQ_s to NULL.
- If PACA_S is equal to enabled, the mobile station shall set PACA_S to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
- If NDSS_ORIG_s is equal to enabled, the mobile station shall set NDSS_ORIG_s to disabled, and should indicate to the user that the call origination is canceled.
- The mobile station shall update its registration variables as specified in 6.6.5.5.3.2.
- The mobile station shall disable its transmitter and enter the Mobile Station Idle State.

If the mobile station receives an acknowledgment to any message sent by the mobile station in this substate, it shall end the access attempt. After the access attempt is ended, the mobile station shall perform an access handoff if all of the following conditions hold:

The mobile station declares a loss of the Paging Channel,

2

3

9

10

11

12

13

15

16

17

18

19

20

22

23

25

26

27

28

29

30

31

32

33

34

35

36

37

• The mobile station is permitted to perform an access handoff (see 6.6.3.1.3.2) and there are pilots other than the active pilot in the access handoff list (see 6.6.3.1.3.2).

If the mobile station declares a loss of the Paging Channel and does not perform an access
 handoff, the mobile station shall perform the following:

- The mobile station shall set SYS_PAR_MSG_SEQ_s and ACC_MSG_SEQ_s to NULL.
- If PACA_S is equal to enabled, the mobile station shall set PACA_S to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
- If NDSS_ORIG_s is equal to enabled, the mobile station shall set NDSS_ORIG_s to disabled, and should indicate to the user that the call origination is canceled.
- The mobile station shall disable its transmitter and enter the Mobile Station Idle State.

If the access attempt for the *Origination Message* ends with the receipt of an acknowledgment from a base station, the mobile station shall update its registration variables with respect to the base station to which the first access probe was transmitted after entering the *System Access State* as specified in 6.6.5.5.3.1.

- 21 The mobile station shall set and disable the *System Access State* timer as follows:
 - The mobile station shall disable the timer whenever it begins an access attempt.
 - The mobile station shall set the timer to T_{42m} seconds whenever it ends an access attempt.
 - The mobile station shall disable the timer whenever it exits the System Access State.
 - If the *System Access State* timer expires while in this substate, the mobile station shall perform the following:
 - If PACA_S is equal to enabled, the mobile station shall set PACA_S to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
 - If NDSS_ORIG_s is equal to enabled, the mobile station shall set NDSS_ORIG_s to disabled, and should indicate to the user that the call origination is canceled.
 - The mobile station shall set SYS_PAR_MSG_SEQ_s and ACC_MSG_SEQ_s to NULL and enter the *Mobile Station Idle State*.
 - If the mobile station is directed by the user to disconnect the call, the mobile station shall perform the following actions:
 - The mobile station shall abort any access attempt in progress.

3

8

10

11

12

13

15

16

17

18

19

20

21

22

23

39

- The mobile station shall send the *Release Order* (normal release) as a message requiring acknowledgment using the access procedures specified in 6.6.3.1.1.2.
- After receiving the acknowledgment to the Release Order, the mobile station shall only process the layer 2 fields and enter the System Determination Substate of the Mobile Station Initialization State with a release indication (see 6.6.1.1).
- If the mobile station is directed by the user to power off, the mobile station shall perform the following actions:
 - The mobile station shall abort any access attempt in progress.
 - The mobile station shall send the Release Order (with power-down indication) as a message requiring acknowledgment using the access procedures specified in 6.6.3.1.1.2.
 - After receiving the acknowledgment to the *Release Order*, the mobile station shall only process the layer 2 fields and perform power-down registration procedures (see 6.6.5.1.2).
 - The mobile station may power off.
 - If a mobile station receives any message with a MSG_TYPE specified in Table 7.7.2.3-1 other than a *Channel Assignment Message* or an *Extended Channel Assignment Message* addressed to the mobile station, it shall process the ACK_SEQ and VALID_ACK fields of layer 2 as specified in 6.6.3.1.2. If, after processing the ACK_SEQ and VALID_ACK fields, an access attempt is still in progress, the mobile station shall ignore the ACK_REQ field of layer 2 and the layer 3 fields of the message; otherwise, the mobile station shall process the ACK_REQ field as described in 6.6.3.1.2 and the layer 3 fields of the message as described below.
- If a mobile station receives a *Channel Assignment Message* or an *Extended Channel Assignment Message* addressed to the mobile station, the mobile station shall process the ACK_REQ field as described in 6.6.3.1.2 and shall process the message as described below.
- If the mobile station has not received an acknowledgment from the base station before receiving the *Channel Assignment Message* or the *Extended Channel Assignment Message*, the mobile station shall end any access attempt in progress, and shall update its registration variables with respect to the first base station to which an access probe was transmitted after entering the *System Access State*, as specified in 6.6.5.5.3.1.
- If the mobile station is to exit the *System Access State* as a result of processing the layer 3 fields of a message requiring an acknowledgment, the mobile station shall send an acknowledgment (see 6.6.3.1.2) using the access procedures specified in 6.6.3.1.1 and then exit the *System Access State*.
- The following directed messages and orders can be received. If any field value of the message or order is outside its permissible range, the mobile station may send a *Mobile Station Reject Order* with ORDQ equal to '00000100' (message field not in valid range).
 - 1. Authentication Challenge Message: The mobile station shall respond to the message as specified in 6.3.12.1.5, regardless of the value of AUTH_S, using the access procedures specified in 6.6.3.1.1.2.

2. Base Station Challenge Confirmation Order: The mobile station shall respond to the message as specified in 6.3.12.1.9, using the access procedures specified in 6.6.3.1.1.2.

1.

2

5

6

10

11

12

13

14

15

16

17 18

19

20

21

23

26

27

28

29

30

31

32

34

35

36

37

38

39

40

- 3. Channel Assignment Message: The mobile station shall process the message as follows:
 - If ASSIGN_MODE_r equals '000', the mobile station shall perform the following actions:
 - The mobile station shall store the frame offset (FRAME_OFFSET_s = FRAME_OFFSET_r), the message encryption mode indicator (ENCRYPT_MODE_s = ENCRYPT_MODE_r), and, if FREQ_INCL_r equals '1', the frequency assignment (CDMACH_s = CDMA_FREQ_r).
 - If PACA_s is equal to enabled, the mobile station shall set PACA_s to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call is proceeding.
 - The mobile station shall initialize the CODE_CHAN_LIST as described in 6.6.8, shall set SERV_NEG_s to disabled, and shall enter the *Traffic Channel Initialization Substate* of the *Mobile Station Control on the Traffic Channel* State
 - If ASSIGN_MODE_r equals '001', the mobile station shall perform the following actions:
 - If the message requires an acknowledgment, the mobile station shall send an acknowledgment (see 6.6.3.1.2) using the access procedures specified in 6.6.3.1.1. Then, if a CDMA channel (CDMA_FREQ) is specified in the assignment, the mobile station shall set CDMACH_s = CDMA_FREQ_r, tune to the new frequency assignment, and measure the strength of each pilot listed in the assignment using the Neighbor Set search procedures specified in 6.6.6.2.1 and 6.6.6.2.2.
 - The mobile station shall set CONFIG_MSG_SEQ_s and ACC_MSG_SEQ_s to NULL (see 6.6.2.2) and shall set PILOT_PN_s to the pilot PN sequence offset of the strongest pilot in the list.
 - If the mobile station has not stored configuration parameters for the Primary Paging Channel of the new base station, or if the stored information is not current (see 6.6.2.2), the mobile station shall set SYS_PAR_MSG_SEQ_S, NGHBR_LST_MSG_SEQ_S, EXT_NGHBR_LST_MSG_SEQ_S, GEN_NGHBR_LST_MSG_SEQ_S, CHAN_LST_MSG_SEQ_S, EXT_SYS_PAR_MSG_SEQ_S, and GLOB_SERV_REDIR_MSG_SEQ_S to NULL.
 - The mobile station shall set PAGE_CHAN_s to '1' and PAGECH_s to the
 Primary Paging Channel. The mobile station shall then begin monitoring the
 Primary Paging Channel of the selected base station.
 - If RESPOND_r is equal to '1', the mobile station shall enter the *Update* Overhead Information Substate with an origination indication.

ANSI/TIA/EIA-95-B

10

11

13

14

15

16

18

19

20

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

- If ASSIGN_MODE_r equals '010', the mobile station shall perform the following actions:
 - If the mobile station does not support analog operation in the requested band class, the mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000110' (capability not supported by the mobile station) and the mobile station shall remain in the Mobile Station Origination Attempt Substate.
 - If the mobile station supports analog operation in the requested band class and RESPOND_r equals '1', the mobile station shall perform the following actions:
 - + If USE_ANALOG_SYS_r equals '0', the mobile station shall perform the following actions:
 - o If PACA_S is equal to enabled, the mobile station shall set PACA_S to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
 - o The mobile station shall enter the analog Initialization Task with an origination indication (see 2.6.1).
 - + If USE_ANALOG_SYS_r equals '1' the mobile station shall perform the following actions:
 - o The mobile station shall set SERVSYS_s to SYS_A if ANALOG_SYS_r is equal to '0', or shall set SERVSYS_s to SYS_B if ANALOG_SYS_r is equal to '1'.
 - o If PACA_S is equal to enabled, the mobile station shall set PACA_S to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
 - o The mobile station shall then enter the analog Initialization Task with an origination indication (see 2.6.1).
- If ASSIGN_MODE_r equals '011', the mobile station shall perform the following actions:
 - If the mobile station does not support analog operation in the requested band class, the mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000110' (capability not supported by the mobile station) and the mobile station shall remain in the Mobile Station Origination Attempt Substate.
 - If the mobile station supports analog operation in the requested band class:
 - + If the analog channel type is '00', the mobile station shall perform the following actions:

The mobile station shall store the system identification ($SID_s = SID_r$), the voice mobile station attenuation code ($VMAC_s = VMAC_r$), the voice channel number (ANALOG_CHAN_s = ANALOG_CHAN_r), the SAT color code ($SCC_s = SCC_r$), and the message encryption mode indicator $(MEM_S = MEM_r).$ The mobile station shall set DTX_s to '00'. If PACAs is equal to enabled, the mobile station shall set PACAs to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call is proceeding. 10 The mobile station shall enter the Confirm Initial Voice Channel Task 11 (see 2.6.4.2) with an origination indication. 12 If the analog channel type is not '00', the mobile station shall perform the following actions: If the mobile supports narrow analog mode, the mobile station shall 15 perform the following actions: 16 The mobile station shall store the system identification ($SID_s =$ 17 SID_r), the voice mobile station attenuation code (VMAC_S = 18 VMAC_r), the voice channel number (ANALOG_CHAN_S = 19 ANALOG_CHAN_r), the message encryption mode indicator (MEM_s 20 = MEM_r), the analog channel type (AN_CHAN_TYPE_s = 21 $AN_CHAN_TYPE_r$) and the digital SAT code (DSCC_s = DSCC_MSB_r 22 \times 4 + SCC_r). The mobile station shall set DTX_s to '00'. 24 If PACAs is equal to enabled, the mobile station shall set PACAs to 25 disabled, shall disable the PACA state timer, and should indicate 26 to the user that the PACA call is proceeding. 27 The mobile station shall enter the Confirm Initial Narrow Analog 28 Voice Channel Task (see 2.6.5.2A of TIA/EIA/IS-91-A) with an 29 origination indication. 30 If the mobile station does not support narrow analog mode, the 31 mobile station shall send a Mobile Station Reject Order with the 32 ORDQ field set to '00000110' (capability not supported by the mobile

33

35

36

37

If ASSIGN_MODE_r equals '100', the mobile station shall perform the following actions:

Origination Attempt Substate of the System Access State.

station) and the mobile station shall remain in the Mobile Station

ANSI/TIA/EIA-95-B If GRANTED_MODE_r equals '00', and the multiplex option or rate set specified in the DEFAULT_CONFIG field is not supported by the mobile 2 station, the mobile station shall send a Mobile Station Reject Order with ORDQ field set to '00000110' (capability not supported by the mobile station) and remain in Mobile Station Origination Attempt Substate. If FREQ_INCL_r equals '0', the mobile station shall perform the following actions: The mobile station shall store the frame offset (FRAME_OFFSET $_{s}$ = FRAME_OFFSET_r), the message encryption mode indicator $(ENCRYPT_MODE_s = ENCRYPT_MODE_r)$, the granted mode 10 $(GRANTED_MODE_s = GRANTED_MODE_r)$, and the default configuration 11 $(DEFAULT_CONFIG_s = DEFAULT_CONFIG_r).$ 12 The mobile station shall set SERV_NEG_s to enabled. If PACAs is equal to enabled, the mobile station shall set PACAs equal to 14 disabled and PACA_CANCEL to '0', shall disable the PACA state timer, 15 and should indicate to the user that the PACA call is proceeding. 16 The mobile station shall initialize CODE_CHAN_LIST as described in 17 6.6.8. 18 The mobile station shall then enter the Traffic Channel Initialization 19 Substate of the Mobile Station Control on the Traffic Channel State. 20 21 actions: 22 23 24 25

26

27

28

29

30

31

32

33

34

35

37

38

- If $FREQ_INCL_r$ equals '1', the mobile station shall perform the following
 - If the band class is not supported by the mobile station, the mobile station shall send a Mobile Station Reject Order with ORDQ field set to '00000110' (capability not supported by the mobile station) and remain in the Mobile Station Origination Attempt Substate.
 - If the band class is supported by the mobile station, the mobile station shall perform the following actions:
 - o The mobile station shall store the frame offset (FRAME_OFFSET_S = FRAME_OFFSET_r), the message encryption mode indicator $(ENCRYPT_MODE_s = ENCRYPT_MODE_r)$, the granted mode $(GRANTED_MODE_s = GRANTED_MODE_r)$, the default configuration $(DEFAULT_CONFIG_s = DEFAULT_CONFIG_r)$, the band class $(CDMABAND_s = BAND_CLASS_r)$, and the frequency assignment $(CDMACH_S = CDMA_FREQ_r).$
 - The mobile station shall set SERV_NEG_s to enabled.
 - If PACAs is equal to enabled, the mobile station shall set PACAs to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call is proceeding.

1 2				The mobile station shall initialize the CODE_CHAN_LIST as described in 6.6.8.
3 4 5			;	The mobile station shall then tune to the new frequency assignment and enter the <i>Traffic Channel Initialization Substate</i> of the <i>Mobile Station Control on the Traffic Channel State</i> .
6	•			$MODE_r$ equals '101', the mobile station shall perform the following
7		action		
8				2_INCL _r equals '0', the mobile station shall perform the following
9 .		act	tions	
10 11 12 13		+	send spec	be message requires an acknowledgment, the mobile station shall d an acknowledgment (see $6.6.3.1.2$) using the access procedures diffied in $6.6.3.1.1$. The mobile station shall set CONFIG_MSG_SEQ _S ACC_MSG_SEQ _S to NULL (see $6.6.2.2$) and shall set PILOT_PN _S to pilot PN sequence offset of the strongest pilot in the list (PILOT_PN _r).
15 16 17 18 19 20 21		+	Prin info SYS EXT CHA	ne mobile station has not stored configuration parameters for the mary Paging Channel of the new base station, or if the stored rmation is not current (see 6.6.2.2), the mobile station shall set _PAR_MSG_SEQ _s , NGHBR_LST_MSG_SEQ _s , C_NGHBR_LST_MSG_SEQ _s , GEN_NGHBR_LST_MSG_SEQ _s , AN_LST_MSG_SEQ _s , EXT_SYS_PAR_MSG_SEQ _s , and DB_SERV_REDIR_MSG_SEQ _s to NULL.
			:	
2		+ ,		mobile station shall set PAGE_CHAN _s to '1' and PAGECH _s to the
33 24	•			nary Paging Channel. The mobile station shall then begin monitoring Primary Paging Channel of the selected base station.
25		+	If R	$ESPOND_r$ is equal to '1', the mobile station shall enter the <i>Update</i>
26 27				rhead Information Substate with an origination indication within m seconds after:
28 29				receiving the <i>Channel Assignment Message</i> , if ACK_REQ is equal to '0', or
30 31				sending the acknowledgment to the <i>Channel Assignment Message</i> , if ACK_REQ is equal to '1'.
13		+		ESPOND _r is equal to '0', the mobile station shall enter the <i>Mobile</i> tion Idle State within T_{34m} seconds after:
34 35				receiving the <i>Channel Assignment Message</i> , if ACK_REQ is equal to '0', or
96 87				sending the acknowledgment to the <i>Channel Assignment Message</i> , if ACK_REQ is equal to '1'.
38		- If I		2_INCL _r equals '1', the mobile station shall perform the following

actions:

1 2 3 4	st '0	the band class is not supported by the mobile station, the mobile ation shall send a <i>Mobile Station Reject Order</i> with ORDQ field set to 0000110' (capability not supported by the mobile station) and remain the <i>Mobile Station Origination Attempt Substate</i> .
5 6		the band class is supported by the mobile station, the mobile station nall perform the following actions:
7 8 9 10 11	0	If the message requires an acknowledgment, the mobile station shall send an acknowledgment (see $6.6.3.1.2$) using the access procedures specified in $6.6.3.1.1$. The mobile station shall set CONFIG_MSG_SEQ_s and ACC_MSG_SEQ_s to NULL (see $6.6.2.2$) and shall set PILOT_PN_s to the pilot PN sequence offset of the strongest pilot in the list (PILOT_PN_r).
13 14 15 16 17 18	0	If the mobile station has not stored configuration parameters for the Primary Paging Channel of the new base station, or if the stored information is not current (see 6.6.2.2), the mobile station shall set SYS_PAR_MSG_SEQ_s, NGHBR_LST_MSG_SEQ_s, EXT_NGHBR_LST_MSG_SEQ_s, GEN_NGHBR_LST_MSG_SEQ_s, CHAN_LST_MSG_SEQ_s, EXT_SYS_PAR_MSG_SEQ_s, and GLOB_SERV_REDIR_MSG_SEQ_s to NULL.
20 21 22	0	The mobile station shall store the band class (CDMABAND _s = ** BAND_CLASS _r) and the frequency assignment (CDMACH _s = CDMA_FREQ _r).
23 24 25 26	0	The mobile station shall set PAGE_CHAN _s to '1' and PAGECH _s to the Primary Paging Channel. The mobile station shall then begin monitoring the Primary Paging Channel of the selected base station. If RESPOND _r is equal to '1', the mobile station shall enter the <i>Update</i>
27 28 29 30		 Overhead Information Substate with an origination indication within T_{34m} seconds after: receiving the Channel Assignment Message, if ACK_REQ is equal to '0', or
31 32		
33	o	If RESPOND _r is equal to '0', the mobile station shall enter the <i>Mobile Station Idle State</i> within T_{34m} seconds after:
35 36		
37 38		

4. Data Burst Message

5. Extended Channel Assignment Message: The mobile station shall process the message as follows:

2

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

31

32

33

34

35

36

38

- If ASSIGN_MODE_r equals '000', the mobile station shall perform the following actions:
 - If FREQ_INCL_r equals '0', the mobile station shall perform the following actions:
 - + The mobile station shall store the frame offset (FRAME_OFFSET_S = FRAME_OFFSET_r), the message encryption mode indicator (ENCRYPT_MODE_s = ENCRYPT_MODE_r), the granted mode (GRANTED_MODE_s = GRANTED_MODE_r), the default configuration (DEFAULT_CONFIG_s = DEFAULT_CONFIG_r), and the occurrences of PILOT_PN and PWR COMB for each included member of the Active Set.
 - + The mobile station shall set SERV_NEG_s to enabled.
 - + If PACA_s is equal to enabled, the mobile station shall set PACA_s equal to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call is proceeding.
 - + The mobile station shall initialize CODE_CHAN_LIST as described in 6.6.8.
 - + The mobile station shall then enter the *Traffic Channel Initialization*Substate of the Mobile Station Control on the *Traffic Channel State*.
 - If FREQ_INCL_r equals '1', the mobile station shall perform the following actions:
 - + If the band class is not supported by the mobile station, the mobile station shall send a *Mobile Station Reject Order* with ORDQ field set to '00000110' (capability not supported by the mobile station) and remain in the *Mobile Station Origination Attempt Substate*.
 - + If the band class is supported by the mobile station, the mobile station shall perform the following actions:
 - o The mobile station shall store the frame offset (FRAME_OFFSET_s = FRAME_OFFSET_r); the message encryption mode indicator (ENCRYPT_MODE_s = ENCRYPT_MODE_r); the granted mode (GRANTED_MODE_s = GRANTED_MODE_r); the default configuration (DEFAULT_CONFIG_s = DEFAULT_CONFIG_r); the band class (CDMABAND_s = BAND_CLASS_r); the frequency assignment (CDMACH_s = CDMA_FREQ_r); and the occurrences of PILOT_PN and PWR_COMB_IND for each included member of the Active Set.
 - o The mobile station shall set SERV_NEG_s to enabled.
 - The mobile station shall initialize CODE_CHAN_LIST as described in 6.6.8.

34

35

36

37

38

39

40

- The mobile station shall then tune to the new frequency assignment and enter the Traffic Channel Initialization Substate of the Mobile Station Control on the Traffic Channel State. If $GRANTED_MODE_r$ equals '00', and the multiplex option and rate set specified in the DEFAULT_CONFIG field is not supported by the mobile station, the mobile station shall send a Mobile Station Reject Order with ORDQ field set to '00000110' (capability not supported by the mobile station) and remain in the Mobile Station Origination Attempt Substate. If $ASSIGN_MODE_r$ equals '001', the mobile station shall perform the following actions: 10 If FREQ_INCL_r equals '0', the mobile station shall perform the following actions: 12 If the message requires an acknowledgment, the mobile station shall 13 send an acknowledgment (see 6.6.3.1.2) using the access procedures specified in 6.6.3.1.1. Then, the mobile station shall set CONFIG-15 _MSG_SEQs and ACC_MSG_SEQs to NULL (see 6.6.2.2) and shall set PILOT_PNs to the pilot PN sequence offset of the strongest pilot in the list 17 (PILOT_PN_r). 18 If the mobile station has not stored configuration parameters for the 19 Primary Paging Channel of the new base station, or if the stored 20 information is not current (see 6.6.2.2), the mobile station shall set 21 SYS_PAR_MSG_SEQ_s, NGHBR_LST_MSG_SEQ_s, EXT_NGHBR_LST_MSG_SEQs, GEN_NGHBR_LST_MSG_SEQs, 23 CHAN_LST_MSG_SEQs, EXT_SYS_PAR_MSG_SEQs, and 24 GLOB_SERV_REDIR_MSG_SEQ_s to NULL. The mobile station shall set $PAGE_CHAN_S$ to '1' and $PAGECH_S$ to the 26 Primary Paging Channel. The mobile station shall then begin monitoring 27 the Primary Paging Channel of the selected base station. 28 If RESPOND_r is equal to '1', the mobile station shall enter the *Update* 29 Overhead Information Substate with an origination indication within 30 T_{34m} seconds after: 31 32
 - o receiving the Extended Channel Assignment Message, if ACK_REQ is equal to '0', or
 - o sending the acknowledgment to the Extended Channel Assignment Message if ACK_REQ is equal to '1'.
 - + If RESPOND_r is equal to '0', the mobile station shall enter the Mobile Station Idle State within T_{34m} seconds after:
 - o receiving the Extended Channel Assignment Message, if ACK_REQ is equal to '0', or
 - o sending the acknowledgment to the *Extended Channel Assignment Message*, if ACK_REQ is equal to '1'.

- If FREQ_INCL_r equals '1', the mobile station shall perform the following actions:
 - + If the band class is not supported by the mobile station, the mobile station shall send a *Mobile Station Reject Order* with ORDQ field set to '00000110' (capability not supported by the mobile station) and remain in the *Mobile Station Origination Attempt Substate*.
- If the band class is supported by the mobile station, the mobile station shall perform the following actions:

11

12

13

15

16

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Δn

- + If the message requires an acknowledgment, the mobile station shall send an acknowledgment (see 6.6.3.1.2) using the access procedures specified in 6.6.3.1.1. Then, the mobile station shall set CONFIG-_MSG_SEQ_s and ACC_MSG_SEQ_s to NULL (see 6.6.2.2) and shall set PILOT_PN_s to the pilot PN sequence offset of the strongest pilot in the list (PILOT_PN_r).
- + If the mobile station has not stored configuration parameters for the Primary Paging Channel of the new base station, or if the stored information is not current (see 6.6.2.2), the mobile station shall set SYS_PAR_MSG_SEQ_s, NGHBR_LST_MSG_SEQ_s, EXT_NGHBR_LST_MSG_SEQ_s, GEN_NGHBR_LST_MSG_SEQ_s, CHAN_LST_MSG_SEQ_s, EXT_SYS_PAR_MSG_SEQ_s, and GLOB_SERV_REDIR_MSG_SEQ_s to NULL. The mobile station shall store the band class (CDMABAND_s = BAND_CLASS_r) and the frequency assignment (CDMACH_s = CDMA_FREQ_r).
- + The mobile station shall set PAGE_CHAN_s to '1' and PAGECH_s to the Primary Paging Channel. The mobile station shall then begin monitoring the Primary Paging Channel of the selected base station.
- + If RESPOND_r is equal to '1', the mobile station shall enter the *Update*Overhead Information Substate with an origination indication within T_{34m} seconds after receiving the Extended Channel Assignment Message or, if ACK_REQ_n is equal to '1', after sending the acknowledgment to the Extended Channel Assignment Message.
- If ASSIGN_MODE_r equals '010', the mobile station shall perform the following actions:
 - If the mobile station does not support analog operation in the requested band class, the mobile station shall send a Mobile Station Reject Order with ORDQ field set to '00000110' (capability not supported by the mobile station) and remain in the Mobile Station Origination Attempt Substate.
 - If the mobile station supports analog operation in the requested band class, the mobile station shall perform the following actions:
 - + If RESPOND_r equals '1' and USE_ANALOG_SYS_r equals '0', the mobile station shall enter the analog Initialization Task with an origination indication (see 2.6.1).

1		+	If RESPOND _r equals '1' and USE_ANALOG_SYS _r equals '1', the mobile station shall perform the following actions:
3 4 5			o The mobile station shall set SERVSYS _s to SYS_A if ANALOG_SYS _r is equal to '0', or set SERVSYS _s to SYS_B if ANALOG_SYS _r is equal to '1'.
6 . 7			o The mobile station shall then enter the analog Initialization Task with an origination indication (see 2.6.1).
8 9	•	If ASS	${\rm IGN_MODE_r}$ equals '011', the mobile station shall perform the following as:
10 11 12 13		ba th sta	the mobile station does not support analog operation in the requested and class, the mobile station shall send a <i>Mobile Station Reject Order</i> with e ORDQ field set to '00000110' (capability not supported by the mobile ation) and the mobile station shall remain in the <i>Mobile Station Origination tempt Substate</i> .
15			the mobile station supports analog operation in the requested band class, e mobile station shall perform the following actions:
17 18		+	If the analog channel type is '00', the mobile station shall perform the following actions:
19 20 21 22 23		·	o The mobile station shall store the system identification (SID _S = SID _r), voice mobile station attenuation code (VMAC _S = VMAC _r), voice channel number (ANALOG_CHAN _S = ANALOG_CHAN _r), SAT color code (SCC _S = SCC _r), and message encryption mode indicator (MEM _S = MEM _r).
24			o The mobile station shall set DTX_s to '00'.
25 26 27 28			o If PACA _S is equal to enabled, the mobile station shall set PACA _S to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call is proceeding.
29 30			o The mobile station shall enter the Confirm Initial Voice Channel Task (see 2.6.4.2) with an origination indication.
31 32 .		+	If the analog channel type is not '00', the mobile station shall perform the following actions:
33 34			o If the mobile supports narrow analog mode, the mobile station shall perform the following actions:
35 36 37 38 39			$\label{eq:side_system} \begin{array}{l} \text{The mobile station shall store the system identification (SID}_S = & \text{SID}_r), \text{ voice mobile station attenuation code (VMAC}_S = & \text{VMAC}_r), \\ \text{voice channel number (ANALOG_CHAN}_S = & \text{ANALOG_CHAN}_r), \\ \text{message encryption mode indicator (MEM}_S = & \text{MEM}_r), \text{ analog channel type (AN_CHAN_TYPE}_S = & \text{AN_CHAN_TYPE}_r) \text{ and the digital SAT code (DSCC}_S = & \text{DSCC_MSB}_r \times 4 + \text{SCC}_r).} \end{array}$

- The mobile station shall set DTX_s to '00'.
- If PACAs is equal to enabled, the mobile station shall set PACAs to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call is proceeding.
- o If the mobile station does not support narrow analog mode, the mobile station shall send a *Mobile Station Reject Order* with the ORDQ field set to '00000110' (capability not supported by the mobile station) and the mobile station shall remain in the *Mobile Station Origination Attempt Substate* of the *System Access State*.
- 6. Feature Notification Message: If $RELEASE_r$ is equal to '1', the mobile station shall enter the Mobile Station Idle State or the System Determination Substate of the Mobile Station Initialization State with a release indication (see 6.6.1.1).
- 7. Intercept Order: The mobile station shall enter the Mobile Station Idle State.
- 8. Local Control Order

- 9. Lock Until Power-Cycled Order: The mobile station shall disable its transmitter and record the reason for the Lock Until Power-Cycled Order in the mobile station's semi-permanent memory (LCKRSN_P_{S-p} equals the least significant four bits of ORDQ_r). The mobile station should notify the user of the locked condition. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a lock indication (see 6.6.1.1), and shall not enter the System Access State again until after the next mobile station power-up or until it has received an Unlock Order. This requirement shall take precedence over any other mobile station requirement specifying entry to the System Access State.
- 10. Maintenance Required Order: The mobile station shall record the reason for the Maintenance Required Order in the mobile station's semi-permanent memory (MAINTRSN_{s-p} equals the least significant four bits of ORDQ_r). The mobile station shall remain in the unlocked condition. The mobile station should notify the user of the maintenance required condition.
- 11. PACA Message: If P_REV_IN_USEs is less than or equal to four and the mobile station does not support PACA capability, the mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000110' (message requires a capability that is not supported by the mobile station); otherwise, the mobile station shall process the message as follows:
 - If PACA_s is equal to disabled, the mobile station shall perform the following actions:

1 2	-	If the purpose of the message is to respond to an <i>Origination Message</i> (PURPOSE _{r} is equal to '0000'), the mobile station shall perform the following
3		actions:
4		+ The mobile station shall set $PACA_S$ to enabled and shall set $PACA_SID_S$ to SID_S .
6		+ The mobile station shall set the PACA state timer to the duration shown in Table 7.7.2.3.2.20-2 corresponding to the value of PACA_TIMEOUT _S .
8 9 10		+ The mobile station should indicate to the user that the call has been queued as a PACA call, and should indicate the current queue position (Q_POS_r) of the call.
11		+ The mobile station shall enter the <i>Mobile Station Idle State</i> .
12	· .	If the purpose of the message is to cancel the PACA call (PURPOSE _{r} is equal to '0011'), the mobile station shall perform the following actions:
14 15 16		+ The mobile station shall set PACA _S to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
17		+ The mobile station shall enter the <i>Mobile Station Idle State</i> .
18	· _	If the purpose of the message is anything else (PURPOSE $_r$ is not equal to
19 20		'0000'), the mobile station shall ignore the message. The mobile station shall remain in the <i>Mobile Station Origination Attempt Substate</i> .
21	• If F	PACA _s is equal to enabled, the mobile station shall perform the following
22	act	tions:
23 24 25	~	If the purpose of the message is to respond to an <i>Origination Message</i> (PURPOSE _{r} is equal to '0000'), the mobile station shall perform the following actions:
26 27 28		+ The mobile station should indicate to the user that the PACA call is still queued, and should indicate to the user the current queue position (Q_POS_r) of the call.
29 30		+ The mobile station shall set the PACA state timer to the duration shown in Table 7.7.2.3.2.20-2 corresponding to the value of PACA_TIMEOUTs.
31		+ The mobile station shall enter the <i>Mobile Station Idle State</i> .
32	_	If the purpose of the message is to provide the queue position of the PACA
33 34		call (PURPOSE _r is equal to 0001), the mobile station shall perform the following actions:
35 36 37		+ The mobile station should indicate to the user that the PACA call is still queued, and should indicate the current queue position (Q_POS_r) of the call.
38 39		+ The mobile station shall set the PACA state timer to the duration shown in Table 7.7.2.3.2.20-2 corresponding to the value of PACA_TIMEOUT _s .

- The mobile station shall enter the Mobile Station Idle State.
- If the purpose of the message is to instruct the mobile station to re-originate the PACA call (PURPOSE_r is equal to '0010'), the mobile station shall remain in the Mobile Station Origination Attempt Substate.
- If the purpose of the message is to cancel the PACA call (PURPOSE_r is equal to '0011'), the mobile station shall perform the following actions:
 - + The mobile station shall set PACA_s to disabled, shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
 - + The mobile station shall enter the Mobile Station Idle State.

11

12

13

15

17

19

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

39

- 12. Registration Accepted Order: If ORDQ_r is equal to '00000101', the mobile station shall set ROAM_INDI_s to ROAM_INDI_r and should display the roaming condition.
- 13. Registration Rejected Order: This order indicates that normal service is not available on this system. The mobile station shall disable the full-TMSI timer. If the received order specifies to delete the TMSI (ORDQ = '00000100'), the mobile station shall set all the bits of the TMSI_CODE_{s-p} to '1'. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a registration rejected indication (see 6.6.1.1).
- 14. Release Order: If NDSS_ORIG_S is equal to enabled, the mobile station shall set NDSS_ORIG_S to disabled, and should indicate to the user that the call origination has been canceled. The mobile station shall enter the Mobile Station Idle State or the System Determination Substate of the Mobile Station Initialization State with a release indication (see 6.6.1.1). If the mobile station enters the Mobile Station Idle State, and if PACA_S is equal to enabled, the mobile station shall set PACA_S to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
- 15. Reorder Order: If NDSS_ORIG_s is equal to enabled, the mobile station shall set NDSS_ORIG_s to disabled, and should indicate to the user that the call origination has been canceled. If PACA_s is equal to enabled, the mobile station shall set PACA_s to disabled and PACA_CANCEL to '0', shall disable the PACA state timer,, and should indicate to the user that the PACA call has been canceled. The mobile station shall enter the Mobile Station Idle State.
- 16. Service Redirection Message: The mobile station shall process the message as follows:
 - If the mobile station is directed to an unsupported operation mode or band class, the mobile station shall respond with a *Mobile Station Reject Order* with ORDQ equal to '00000110' (message requires a capability that is not supported by the mobile station).
 - If DELETE $TMSI_r$ is equal to '1', the mobile station shall set all the bits of $TMSI_CODE_{s-p}$ to '1'.
 - The mobile station shall disable the full-TMSI timer.

3

10

12

13

14

15

16

17

19

21

22

23

24

25

26

27

28

29

30 31

32

33

34

35

36

37

38

39

40

41 42

- The mobile station shall set RETURN_IF_FAIL_s = RETURN_IF_FAIL_r.
- If RECORD_TYPE_r is '00000000', the mobile station shall set RETURN_IF_FAIL_s
 = RETURN_IF_FAIL_r, and enter the System Determination Substate of the Mobile
 Station Initialization State with an NDSS off indication (see 6.6.1.1); otherwise:
 - if REDIRECT_TYPE_r is '0', the mobile station shall store the redirection record received in the message as REDIRECT_REC_s and shall enter the System Determination Substate of the *Mobile Station Initialization State* with a redirection indication (see 6.6.1.1).
 - if REDIRECT_TYPE_r is '1', the mobile station shall store the redirection record received in the message as REDIRECT_REC_s and shall enable NDSS_ORIG_s, and shall record the dialed digits. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a redirection indication (see 6.6.1.1).
- 17. *SSD Update Message:* The mobile station shall respond to the message as specified in 6.3.12.1.9, using the access procedures specified in 6.6.3.1.1.2.
- 18. Status Request Message: The mobile station shall disable the System Access State timer and respond to the message using the access procedures specified in 6.6.3.1.1.2. If P_REV_IN_USE_s is less than or equal to three, the mobile station shall respond with a *Status Response Message*. If P_REV_IN_USE_s is greater than three, the mobile station shall respond with an Extended Status Response Message. If the message does not specify any qualification information (QUAL_INFO_TYPE_r is equal to '00000000'), the mobile station shall include the requested information records in the response. If the message specifies a band class (QUAL_INFO_TYPE_r is equal to '00000001'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) in the response. If the message specifies a band class and an operating mode (QUAL_INFO_TYPE_r is equal to '00000010'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) and operating mode (OP_MODE_r) in the response. If the message specifies a band class or a band class and an operating mode which are not supported by the mobile station, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00000110' (message requires a capability that is not supported by the mobile station). If the response to this message exceeds the allowable length, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00001000' (response message would exceed the allowable length). If the message specifies an information record which is not supported by the mobile station for the specified band class and operating mode, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00001001' (information record is not supported for the specified band class and operating mode).
- 19. TMSI Assignment Message: The mobile station shall store the TMSI zone and code as follows:
 - The mobile station shall store the length of the TMSI zone field by setting ASSIGNING_TMSI_ZONE_LEN_s-p to TMSI_ZONE_LEN_r,

- The mobile station shall store the assigning TMSI zone number by setting the ASSIGNING_TMSI_ZONE_LEN_{s-p} least significant octets of ASSIGNING_TMSI_ZONE_{s-p} to TMSI_ZONE_r, and
 - The mobile station shall store the TMSI code by setting TMSI_CODE_{s-p} to TMSI_CODE_r.

The mobile station shall set the TMSI expiration time by setting TMSI_EXP_TIME $_{s-p}$ to TMSI_EXP_TIME $_{r}$. The mobile station shall disable the full-TMSI timer. The mobile station shall then respond with a TMSI Assignment Completion Message within T_{56m} seconds.

20. Any other message: If the mobile station receives any other message with a MSG_TYPE specified in Table 7.7.2.3-1, it shall process all layer 2 fields of the message and shall ignore all other fields. The mobile station shall ignore all other messages.

If the mobile station performs an access probe handoff or access handoff and receives any of the following messages, it shall process the message as specified in 6.6.3.1.3.2 and 6.6.3.1.3.3:

- 1. System Parameters Message
- 2. Access Parameters Message
- 3. Neighbor List Message

10

11

12

13

14

15

16

17

18

19

20

22

33

34

35

36

- 4. Extended System Parameters Message
- 5. Extended Neighbor List Message
 - 6. General Neighbor List Message
- 20 6.6.3.6 Registration Access Substate
- In this substate, the mobile station sends a *Registration Message*. If the base station responds with an authentication request, the mobile station responds in this substate.
- Upon entering the Registration Access Substate, the mobile station shall send the Registration Message, using the access procedures specified in 6.6.3.1.1.2. If message authentication is enabled (see 6.3.12.1), the mobile station shall calculate the values of the
- AUTHR and RANDC fields using the current value of RANDs.
- While in this substate, the mobile station shall monitor the Paging Channel. If the mobile station declares a loss of the Paging Channel (see 6.4.3), the mobile station shall perform the following:
 - If PACA_s is equal to enabled, the mobile station shall set PACA_s to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
 - The mobile station shall declare an access attempt failure and update its registration variables as specified in 6.6.5.5.3.2.

.ANSI/TIA/EIA-95-B

1

A

10

11

12

18

19

20

22

29

- The mobile station shall disable its transmitter and enter the Mobile Station Idle State. 2
- If the mobile station receives an acknowledgment to any message sent by the mobile station 3 in this substate, it shall end the access attempt, send an acknowledgment if required, and shall then enter the Mobile Station Idle State unless: 5
 - If the registration access was initiated due to a user direction to power down, the mobile station shall update registration variables as specified in 6.6.5.5.3.3 and may power down. The power down may occur prior to the transmission of an acknowledgment that may have been required by the most recently received message.
 - If the message requires a response, the mobile station shall send a response to the message in this substate.
- If the access attempt for a Registration Message ends by the receipt of an acknowledgment 13 from the base station, the mobile station shall update its registration variables as specified in 6.6.5.5.3.1. 15
- If the mobile station is directed by the user to originate a call, the mobile station may 16 process the origination request as follows: 17
 - The mobile station shall abort any access attempt in progress.
 - If PACAs is equal to enabled, the mobile station shall set PACAs to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
 - The mobile station shall enter the Mobile Station Origination Attempt Substate with an origination indication.
- If PACAs is equal to enabled, the mobile station shall set PACA_CANCEL to '1' when the 24 user directs the mobile station to cancel a PACA call. 25
- If the mobile station receives a General Page Message, the mobile station may determine if 26 there is a page match (see 6.6.2.3). If a match is declared, the mobile station shall perform 27 the following: 28
 - The mobile station shall abort any access attempt in progress.
 - The mobile station shall enter the Page Response Substate.
- If a mobile station receives any message with a MSG_TYPE specified in Table 7.7.2.3-1 31 addressed to the mobile station, it shall process the ACK_SEQ and VALID_ACK fields of 32 layer 2 as specified in 6.6.3.1.2. If, after processing the ACK_SEQ and VALID_ACK fields, 33 an access attempt is still in progress, the mobile station shall ignore the ACK_REQ field of 34 layer 2 and the layer 3 fields of the message; otherwise, the mobile station shall process the 35 ACK_REQ field as described in 6.6.3.1.2 and the layer 3 fields of the message as described 36 below. 37
- If the mobile station is to exit the System Access State as a result of processing the layer 3 38
- fields of a message requiring an acknowledgment, the mobile station shall send an

- acknowledgment (see 6.6.3.1.2) using the access procedures specified in 6.6.3.1.1 and then exit the *System Access State*.
- The following directed messages and orders can be received. If any field value of the message or order is outside its permissible range, the mobile station may send a *Mobile*
- 5 Station Reject Order with ORDQ equal to '00000100' (message field not in valid range).
- Authentication Challenge Message: If the registration access was initiated due to a
 user direction to power down, the mobile station shall ignore the message;
 otherwise, the mobile station shall respond to the message as specified in
 6.3.12.1.5, regardless of the value of AUTH_s, using the access procedures specified
 in 6.6.3.1.1.2.
 - 2. Base Station Challenge Confirmation Order: If the registration access was initiated due to a user direction to power down, the mobile station shall ignore the message; otherwise, the mobile station shall respond to the message as specified in 6.3.12.1.9, using the access procedures specified in 6.6.3.1.1.2.
 - 3. Data Burst Message

- 4. Feature Notification Message
- Local Control Order
 - 6. Lock Until Power-Cycled Order: The mobile station shall disable its transmitter and record the reason for the Lock Until Power-Cycled Order in the mobile station's semi-permanent memory (LCKRSN_P_{S-p} equals the least significant four bits of ORDQ_r). The mobile station should notify the user of the locked condition. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a lock indication (see 6.6.1.1), and shall not enter the System Access State again until after the next mobile station power-up or until it has received an Unlock Order. This requirement shall take precedence over any other mobile station requirement specifying entry to the System Access State.
- 7. Maintenance Required Order: The mobile station shall record the reason for the Maintenance Required Order in the mobile station's semi-permanent memory (MAINTRSN $_{s-p}$ equals the least significant four bits of $ORDQ_r$). The mobile station shall remain in the unlocked condition. The mobile station should notify the user of the maintenance required condition.
- 8. PACA Message: If P_REV_IN_USEs is less than or equal to four and the mobile station does not support PACA capability, the mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000110' (message requires a capability that is not supported by the mobile station); otherwise, the mobile station shall process the message as follows:
- If PACA_s is equal to disabled, the mobile station shall send a *Mobile Station Reject*Order with the ORDQ field set to '00000010' (message not accepted in this state).
- \mathfrak{B} If PACAs is equal to enabled, the mobile station shall perform the following:

- If the purpose of the message is to respond to an Origination Message (PURPOSE_r is equal to '0000'), the mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000010' (message not accepted in this state).
- If the purpose of the message is to provide the queue position of the PACA call (PURPOSE_r is equal to '0001'), the mobile station shall set the PACA state timer to the duration shown in Table 7.7.2.3.2.20-2 corresponding to the value of PACA_TIMEOUT_s, should indicate to the user that the PACA call is still queued, and should indicate to the user the current queue position (Q_POS_r) of the call.
- If the purpose of the message is to instruct the mobile station to re-originate the PACA call (PURPOSE_r is equal to '0010'), the mobile station shall abort any access attempt in progress, shall set the PACA state timer to the duration shown in Table 7.7.2.3.2.20-2 corresponding to the value of PACA_TIMEOUT_S, and shall enter the *Mobile Station Origination Attempt Substate* with a PACA response indication.
- If the purpose of the message is to cancel the PACA call (PURPOSE_r is equal to '0011'), the mobile station shall set PACA_s to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
- 9. Registration Accepted Order: If $ORDQ_r = '00000101'$, the mobile station shall set $ROAM_INDI_S = ROAM_INDI_r$ and should display the roaming condition.
- 10. Registration Rejected Order: This order indicates that normal service is not available on this system. The mobile station shall disable the full-TMSI timer. If the received order specifies to delete the TMSI (ORDQ = '00000100'), the mobile station shall set all the bits of the TMSI_CODE_{S-p} to '1'. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a registration rejected indication (see 6.6.1.1).
- 11. Release Order: If NDSS_ORIG_s is equal to enabled, the mobile station shall set NDSS_ORIG_s to disabled, and should indicate to the user that the call origination has been canceled. The mobile station shall enter the Mobile Station Idle State or the System Determination Substate of the Mobile Station Initialization State with a release indication (see 6.6.1.1). If the mobile station enters the Mobile Station Idle State, and if PACA_s is equal to enabled, the mobile station shall set PACA_s to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
- 12. Service Redirection Message: The mobile station shall process the message as follows:
 - If the mobile station is directed to an unsupported operation mode or band class, the mobile station shall respond with a *Mobile Station Reject Order* with ORDQ equal to '00000110' (message requires a capability that is not supported by the mobile station).

6-260

- If DELETE_TMSI_r is equal to '1', the mobile station shall set all the bits of TMSI_CODE_{s-p} to '1'. The mobile station shall disable the full-TMSI timer.
- The mobile station shall set RETURN_IF_FAIL_s = RETURN_IF_FAIL_r.

- If RECORD_TYPE_r is equal to '00000000', the mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with an NDSS off indication (see 6.6.1.1); otherwise, the mobile station shall store the redirection record received in the message as REDIRECT_REC_s and shall enter the System Determination Substate of the Mobile Station Initialization State with a redirection indication (see 6.6.1.1).
- 13. SSD Update Message: If the registration access was initiated due to a user direction to power down, the mobile station shall ignore the message. Otherwise, the mobile station shall respond to the message as specified in 6.3.12.1.9, using the access procedures specified in 6.6.3.1.1.2.
- 14. Status Request Message: The mobile station shall disable the System Access State timer and respond to the message using the access procedures specified in 6.6.3.1.1.2. If P_REV_IN_USE_s is less than or equal to three, the mobile station shall respond with a Status Response Message. If P_REV_IN_USE_s is greater than three, the mobile station shall respond with an Extended Status Response Message. If the message does not specify any qualification information (QUAL_INFO_TYPE_r is equal to '00000000'), the mobile station shall include the requested information records in the response. If the message specifies a band class (QUAL_INFO_TYPE_r is equal to '00000001'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) in the response. If the message specifies a band class and an operating mode (QUAL_INFO_TYPE_r is equal to '00000010'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) and operating mode (OP_MODE_r) in the response.

If the message specifies a band class or a band class and an operating mode which are not supported by the mobile station, the mobile station shall send a *Mobile Station Reject Order* with ORDQ set to '00000110' (message requires a capability that is not supported by the mobile station). If the response to this message exceeds the allowable length, the mobile station shall send a *Mobile Station Reject Order* with ORDQ set to '00001000' (response message would exceed the allowable length). If the message specifies an information record which is not supported by the mobile station for the specified band class and operating mode, the mobile station shall send a *Mobile Station Reject Order* with ORDQ set to '00001001' (information record is not supported for the specified band class and operating mode).

- 15. TMSI Assignment Message: The mobile station shall store the TMSI zone and code as follows:
 - The mobile station shall store the length of the TMSI zone field by setting ASSIGNING_TMSI_ZONE_LEN_s-p to TMSI_ZONE_LEN_r;

ANSI/TIA/EIA-95-B

10

11

12

13

25

26

27

28

29

30

31

37

38

39

- The mobile station shall store the assigning TMSI zone number by setting the ASSIGNING_TMSI_ZONE_LEN_{s-p} least significant octets of ASSIGNING_TMSI_ZONE_{s-p} to TMSI_ZONE_r, and
 - The mobile station shall store the TMSI code by setting TMSI_CODE_{s-p} to TMSI_CODE_r.

The mobile station shall set the TMSI expiration time by setting TMSI_EXP_TIME_s-p to TMSI_EXP_TIME_r. The mobile station shall disable the full-TMSI timer. The mobile station shall then respond with a TMSI Assignment Completion Message within T_{56m} seconds.

- 16. Any other message: If the mobile station receives any other message with a MSG_TYPE specified in Table 7.7.2.3-1, it shall process all layer 2 fields of the message and shall ignore all other fields. The mobile station shall ignore all other messages.
- 6.6.3.7 Mobile Station Message Transmission Substate
- In this substate, the mobile station sends a *Data Burst Message*. If the base station responds with an authentication request, the mobile station responds in this substate.
- Support of this substate is optional.
- Upon entering the *Mobile Station Message Transmission Substate*, the mobile station shall transmit the *Data Burst Message* using the access procedures specified in 6.6.3.1.1.2. If message authentication is enabled (see 6.3.12.1), the mobile station shall calculate the
- values of the AUTHR and RANDC fields using the current value of RANDs.
- While in this substate, the mobile station shall monitor the Paging Channel. If the mobile station declares a loss of the Paging Channel (see 6.4.3), the mobile station shall perform the following:
 - If PACA_S is equal to enabled, the mobile station shall set PACA_S to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
 - The mobile station shall declare an access attempt failure and update its registration variables as specified in 6.6.5.5.3.2.
 - The mobile station shall disable its transmitter and enter the *Mobile Station Idle State*.
- If PACA_s is equal to enabled, the mobile station shall set PACA_CANCEL to '1' when the user directs the mobile station to cancel a PACA call.
- If the mobile station receives a *General Page Message*, the mobile station may determine whether there is a page match (see 6.6.2.3). If a match is declared, the mobile station shall perform the following:
 - The mobile station shall abort any access attempt in progress.
 - The mobile station shall enter the Page Response Substate.
 - The mobile station may store the Data Burst Message for later transmission.

- If a mobile station receives any message with a MSG_TYPE specified in Table 7.7.2.3-1
- addressed to the mobile station, it shall process the ACK_SEQ and VALID_ACK fields of
- layer 2 as specified in 6.6.3.1.2. If, after processing the ACK_SEQ and VALID_ACK fields,
- an access attempt is still in progress, the mobile station shall ignore the ACK_REQ field of
- layer 2 and the layer 3 fields of the message; otherwise, the mobile station shall process the
- ACK_REQ field as described in 6.6.3.1.2 and the layer 3 fields of the message as described
- below.

16

17

18

19

21

22

23

25

26

27

29

30

31

32

33

34

35

36

37

38

39

40

- If the mobile station is to exit the System Access State as a result of processing the layer 3
- fields of a message requiring an acknowledgment, the mobile station shall send an
- acknowledgment (see 6.6.3.1.2) using the access procedures specified in 6.6.3.1.1 and then 10
- exit the System Access State. 11
- The following directed messages and orders can be received. If any field value of the 12 message or order is outside its permissible range, the mobile station may send a Mobile 13
- Station Reject Order with ORDQ equal to '00000100' (message field not in valid range). 14
 - 1. Authentication Challenge Message: The mobile station shall respond to the message as specified in 6.3.12.1.5, regardless of the value of AUTH_s, using the access procedures specified in 6.6.3.1.1.2.
 - 2. Base Station Challenge Confirmation Order: The mobile station shall respond to the message as specified in 6.3.12.1.9, using the access procedures specified in 6.6.3.1.1.2.
 - 3. Data Burst Message
 - Local Control Order
 - 5. Lock Until Power-Cycled Order: The mobile station shall disable its transmitter and record the reason for the Lock Until Power-Cycled Order in the mobile station's semipermanent memory (LCKRSN $_{P_{S-p}}$ equals the least significant four bits of ORDQ $_r$). The mobile station should notify the user of the locked condition. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a lock indication (see 6.6.1.1), and shall not enter the System Access State again until after the next mobile station power-up or until it has received an Unlock Order. This requirement shall take precedence over any other mobile station requirement specifying entry to the System Access State.
 - 6. Maintenance Required Order: The mobile station shall record the reason for the Maintenance Required Order in the mobile station's semi-permanent memory $(MAINTRSN_{s-p}$ equals the least significant four bits of $ORDQ_r)$. The mobile station shall remain in the unlocked condition. The mobile station should notify the user of the maintenance required condition.
 - 7. PACA Message: If P_REV_IN_USEs is less than or equal to four and the mobile station does not support PACA capability, the mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000110' (message requires a capability that is not supported by the mobile station); otherwise, the mobile station shall process the message as follows:

11

12

14

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

38

39

If PACA_S is equal to disabled, the mobile station shall send a *Mobile Station Reject*Order with the ORDQ field set to '00000010' (message not accepted in this state).

If PACA_S is equal to enabled, the mobile station shall perform the following:

- If the purpose of the message is to respond to an Origination Message (PURPOSE_r is equal to '0000'), the mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000010' (message not accepted in this state).
- If the purpose of the message is to provide the queue position of the PACA call (PURPOSE_r is equal to '0001'), the mobile station shall set the PACA state timer to the duration shown in Table 7.7.2.3.2.20-2 corresponding to the value of PACA_TIMEOUT_S, should indicate to the user that the PACA call is still queued, and should indicate to the user the current queue position (Q_POS_r) of the call.
- If the purpose of the message is to instruct the mobile station to re-originate the PACA call (PURPOSE_r is equal to '0010'), the mobile station shall abort any access attempt in progress, shall set the PACA state timer to the duration shown in Table 7.7.2.3.2.20-2 corresponding to the value of PACA_TIMEOUT_s, and shall enter the *Mobile Station Origination Attempt Substate* with a PACA response indication.
- If the purpose of the message is to cancel the PACA call (PURPOSE_r is equal to '0011'), the mobile station shall set PACA_s to disabled and PACA_CANCEL to '0', shall disable the PACA state timer, and should indicate to the user that the PACA call has been canceled.
- Registration Accepted Order: If ORDQ_r = '00000101', the mobile station shall set ROAM_INDI_s = ROAM_INDI_r and should display the roaming condition.
- 9. Registration Rejected Order: This order indicates that normal service is not available on this system. The mobile station shall disable the full-TMSI timer. If the received order specifies to delete the TMSI (ORDQ = '00000100'), the mobile station shall set all the bits of the TMSI_CODE_{s-p} to '1'. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a registration rejected indication (see 6.6.1.1).
- 10. Service Redirection Message: The mobile station shall process the message as follows:
 - If the mobile station is directed to an unsupported operation mode or band class, the mobile station shall respond with a *Mobile Station Reject Order* with ORDQ equal to '00000110' (message requires a capability that is not supported by the mobile station).
 - If DELETE_TMSI_r is equal to '1', the mobile station shall set all the bits of TMSI_CODE_{s-p} to '1'. The mobile station shall disable the full-TMSI timer.
 - The mobile station shall set RETURN_IF_FAIL_s = RETURN_IF_FAIL_r.

6-264

- If RECORD_TYPE_r is equal to '00000000', the mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with an NDSS off indication (see 6.6.1.1); otherwise, the mobile station shall store the redirection record received in the message as REDIRECT_REC_s and shall enter the System Determination Substate of the Mobile Station Initialization State with a redirection indication (see 6.6.1.1).
- 11. SSD Update Message: The mobile station shall respond to the message as specified in 6.3:12.1.9, using the access procedures specified in 6.6.3.1.1.2.

ΔŊ

12. Status Request Message: The mobile station shall disable the System Access State timer and respond to the message using the access procedures specified in 6.6.3.1.1.2. If P_REV_IN_USE_s is less than or equal to three, the mobile station shall respond with a Status Response Message. If P_REV_IN_USE_s is greater than three, the mobile station shall respond with an Extended Status Response Message. If the message does not specify any qualification information (QUAL_INFO_TYPE_r is equal to '00000000'), the mobile station shall include the requested information records in the response. If the message specifies a band class (QUAL_INFO_TYPE_r is equal to '00000001'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) in the response. If the message specifies a band class and an operating mode (QUAL_INFO_TYPE_r is equal to '00000010'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) and operating mode (OP_MODE_r) in the response.

If the message specifies a band class or a band class and an operating mode which is not supported by the mobile station, the mobile station shall send a *Mobile Station Reject Order* with ORDQ set to '00000110' (message requires a capability that is not supported by the mobile station). If the response to this message exceeds the allowable length, the mobile station shall send a *Mobile Station Reject Order* with ORDQ set to '00001000' (response message would exceed the allowable length). If the message specifies an information record which is not supported by the mobile station for the specified band class and operating mode, the mobile station shall send a *Mobile Station Reject Order* with ORDQ set to '00001001' (information record is not supported for the specified band class and operating mode).

- 13. *TMSI Assignment Message:* The mobile station shall store the TMSI zone and code as follows:
 - The mobile station shall store the length of the TMSI zone field by setting ASSIGNING_TMSI_ZONE_LEN_s-p to TMSI_ZONE_LEN_r,
- The mobile station shall store the assigning TMSI zone number by setting the ASSIGNING_TMSI_ZONE_LEN_{s-p} least significant octets of ASSIGNING_TMSI_ZONE_{s-p} to TMSI_ZONE_r, and
 - The mobile station shall store the TMSI code by setting TMSI_CODE_{s-p} to TMSI_CODE_r.

5

6

- The mobile station shall set the TMSI expiration time by setting TMSI_EXP_TIME_{s-p} to TMSI_EXP_TIME_r. The mobile station shall disable the full-TMSI timer. The mobile station shall then respond with a TMSI Assignment Completion Message within T_{56m} seconds.
- 14. Any other message: If the mobile station receives any other message with a MSG_TYPE specified in Table 7.7.2.3-1, it shall process all layer 2 fields of the message and shall ignore all other fields. The mobile station shall ignore all other messages.

9 6.6.3.8 PACA Cancel Substate

- In this substate, the mobile station sends a *PACA Cancel Message*. If the base station responds with an authentication request, the mobile station responds in this substate.
- Upon entering the *PACA Cancel Substate*, the mobile station shall transmit the *PACA Cancel Message* using the access procedures specified in 6.6.3.1.1.2. If message authentication is enabled (see 6.3.12.1), the mobile station shall calculate the values of the AUTHR and RANDC fields using the current value of RAND_S.
- While in this substate, the mobile station shall monitor the Paging Channel. If the mobile station declares a loss of the Paging Channel (see 6.4.3), it shall declare an access attempt failure and update its registration variables as specified in 6.6.5.5.3.2, disable its transmitter and enter the *Mobile Station Idle State*. If the mobile station receives an acknowledgment to any message sent by the mobile station in this substate, it shall end the access attempt, send an acknowledgment if required, send a response in this substate if required, and shall then enter the *Mobile Station Idle State*.
- If the mobile station receives a *General Page Message*, the mobile station may determine if there is a page match (see 6.6.2.3). If a match is declared, the mobile station shall abort any access attempt in progress and shall enter the *Page Response Substate*.
- If a mobile station receives any message with a MSG_TYPE specified in Table 7.7.2.3-1 addressed to the mobile station, it shall process the ACK_SEQ and VALID_ACK fields of layer 2 as specified in 6.6.3.1.2. If, after processing the ACK_SEQ and VALID_ACK fields, an access attempt is still in progress, the mobile station shall ignore the ACK_REQ field of layer 2 and the layer 3 fields of the message; otherwise, the mobile station shall process the ACK_REQ field as described in 6.6.3.1.2 and the layer 3 fields of the message as described below.
- If the mobile station is to exit the *System Access State* as a result of processing the layer 3 fields of a message requiring an acknowledgment, the mobile station shall send an acknowledgment (see 6.6.3.1.2) using the access procedures specified in 6.6.3.1.1 and then exit the *System Access State*.
- The following directed messages and orders can be received. If any field value of the message or order is outside its permissible range, the mobile station may send a *Mobile Station Reject Order* with ORDQ equal to '00000100' (message field not in valid range).

- Authentication Challenge Message: The mobile station shall respond to the message as specified in 6.3.12.1.5, regardless of the value of AUTH_s, using the access procedures specified in 6.6.3.1.1.2.
- 2. Base Station Challenge Confirmation Order: The mobile station shall respond to the message as specified in 6.3.12.1.9, using the access procedures specified in 6.6.3.1.1.2.
 - 3. Data Burst Message

- 4. Local Control Order
- 5. Lock Until Power-Cycled Order: The mobile station shall disable its transmitter and record the reason for the Lock Until Power-Cycled Order in the mobile station's semi-permanent memory (LCKRSN_P_{S-p} equals the least significant four bits of ORDQ_r). The mobile station should notify the user of the locked condition. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a lock indication (see 6.6.1.1), and shall not enter the System Access State again until after the next mobile station power-up or until it has received an Unlock Order. This requirement shall take precedence over any other mobile station requirement specifying entry to the System Access State.
- 6. Maintenance Required Order: The mobile station shall record the reason for the Maintenance Required Order in the mobile station's semi-permanent memory (MAINTRSN_{s-p} equals the least significant four bits of ORDQ_r). The mobile station shall remain in the unlocked condition. The mobile station should notify the user of the maintenance required condition.
- 7. PACA Message: The mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000010' (message not accepted in this state).
- 8. Registration Accepted Order: If $ORDQ_r = '00000101'$, the mobile station shall set $ROAM_INDI_S = ROAM_INDI_r$ and should display the roaming condition.
- 9. Registration Rejected Order: This order indicates that normal service is not available on this system. The mobile station shall disable the full-TMSI timer. If the received order specifies to delete the TMSI (ORDQ = '00000100'), the mobile station shall set all the bits of the TMSI_CODE_{s-p} to '1'. The mobile station shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with a registration rejected indication (see 6.6.1.1).
- 10. Service Redirection Message: The mobile station shall process the message as follows:
 - If the mobile station is directed to an unsupported operation mode or band class, the mobile station shall respond with a *Mobile Station Reject Order* with ORDQ equal to '00000110' (message requires a capability that is not supported by the mobile station).
 - If DELETE_TMSI_r is equal to '1', the mobile station shall set all the bits of TMSI_CODE_{s-p} to '1'. The mobile station shall disable the full-TMSI timer.
 - The mobile station shall set RETURN_IF_FAIL_s = RETURN_IF_FAIL_r.

В

- If RECORD_TYPE_r is equal to '00000000', the mobile station shall enter the
 System Determination Substate of the Mobile Station Initialization State with an
 NDSS off indication (see 6.6.1.1); otherwise, the mobile station shall store the
 redirection record received in the message as REDIRECT_REC_s and shall enter
 the System Determination Substate of the Mobile Station Initialization State with a
 redirection indication (see 6.6.1.1).
- 11. SSD Update Message: The mobile station shall respond to the message as specified in 6.3.12.1.9, using the access procedures specified in 6.6.3.1.1.2.
- 12. Status Request Message: The mobile station shall disable the System Access State timer and respond to the message using the access procedures specified in 6.6.3.1.1.2. If P_REV_IN_USE_s is less than or equal to three, the mobile station shall respond with a Status Response Message. If P_REV_IN_USE_s is greater than three, the mobile station shall respond with an Extended Status Response Message. If the message does not specify any qualification information (QUAL_INFO_TYPE_r is equal to '00000000'), the mobile station shall include the requested information records in the response. If the message specifies a band class (QUAL_INFO_TYPE_r is equal to '00000001'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) in the response. If the message specifies a band class and an operating mode (QUAL_INFO_TYPE_r is equal to '00000010'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) and operating mode (OP_MODE_r) in the Status Response Message.

If the message specifies a band class or a band class and an operating mode which is not supported by the mobile station, the mobile station shall send a *Mobile Station Reject Order* with ORDQ set to '00000110' (message requires a capability that is not supported by the mobile station). If the response to this message exceeds the allowable length, the mobile station shall send a *Mobile Station Reject Order* with ORDQ set to '00001000' (response message would exceed the allowable length). If the message specifies an information record which is not supported by the mobiles station for the specified band class and operating mode, the mobile station shall send a *Mobile Station Reject Order* with ORDQ set to '00001001' (information record is not supported for the specified band class and operating mode).

- 13. TMSI Assignment Message: The mobile station shall store the TMSI zone and code as follows:
 - The mobile station shall store the length of the TMSI zone field by setting ASSIGNING_TMSI_ZONE_LEN_{s-p} to TMSI_ZONE_LEN_r,
 - The mobile station shall store the assigning TMSI zone number by setting the ASSIGNING_TMSI_ZONE_LEN_{s-p} least significant octets of ASSIGNING_TMSI_ZONE_{s-p} to TMSI_ZONE_r, and
 - The mobile station shall store the TMSI code by setting TMSI_CODE_{s-p} to TMSI_CODE_r.

- The mobile station shall set the TMSI expiration time by setting TMSI_EXP_TIME_{s-p} to TMSI_EXP_TIME_r. The mobile station shall disable the full-TMSI timer. The mobile station shall then respond with a *TMSI Assignment Completion Message* within T_{56m} seconds.
- 14. Any other message: If the mobile station receives any other message with a MSG_TYPE specified in Table 7.7.2.3-1, it shall process all layer 2 fields of the message and shall ignore all other fields. The mobile station shall ignore all other messages.
- 9 6.6.4 Mobile Station Control on the Traffic Channel State

15

16

17

18

.-19

20

21

22

- In this state, the mobile station communicates with the base station using the Forward and Reverse Traffic Channels.
- As illustrated in Figure 6.6.4-1, the *Mobile Station Control on the Traffic Channel State* consists of the following substates:
 - Traffic Channel Initialization Substate In this substate, the mobile station verifies that it can receive the Forward Traffic Channel and begins transmitting on the Reverse Traffic Channel.
 - Waiting for Order Substate In this substate, the mobile station waits for an Alert With Information Message.
 - Waiting for Mobile Station Answer Substate In this substate, the mobile station waits for the user to answer the call.
 - Conversation Substate In this substate, the mobile station exchanges Traffic
 Channel frames with the base station in accordance with the current service
 configuration.
 - Release Substate In this substate, the mobile station disconnects the call.

Figure 6.6.4-1. Mobile Station Control on the Traffic Channel State

- 6.6.4.1 Special Functions and Actions
- 2 The mobile station performs special functions and actions in one or more of the substates
- of the Mobile Station Control on the Traffic Channel State.
- 4 6.6.4.1.1 Forward Traffic Channel Power Control
- 5 To support Forward Traffic Channel power control, the mobile station reports frame error
- 6 rate statistics to the base station. If the base station enables periodic reporting, the mobile
- 5 station reports frame error rate statistics at specified intervals. If the base station enables
- threshold reporting, the mobile station reports frame error rate statistics when the frame
- 9 error rate reaches a specified threshold.6
- The mobile station shall maintain a counter (TOT_FRAMES_s) for the total number of frames
- received on the Forward Fundamental Code Channel and a counter (BAD_FRAMES_s) for the
- number of received bad frames on the Forward Fundamental Code Channel, where bad
- frames are defined in 6.2.2.2.
- The mobile station shall perform the following for each received frame:
 - The mobile station shall increment TOT_FRAMES_s by 1.
 - If the received frame is bad, the mobile station shall increment BAD_FRAMES_s by 1.
 - If either

16

17

18

20

21

22

23

26

27

28

- PWR_THRESH_ENABLE_s is equal to '1' and BAD_FRAMES_s is equal to PWR_REP_THRESH_s or
- PWR_PERIOD_ENABLEs is equal to '1' and TOT_FRAMESs is equal to $\lfloor (2^{(PWR_REP_FRAMES_S/2)} \times 5) \rfloor$,

then the mobile station shall send a *Power Measurement Report Message* to the base station. The mobile station should send the *Power Measurement Report Message* as a message not requiring acknowledgment. After sending a *Power Measurement Report Message*, the mobile station shall set TOT_FRAMES_s and BAD_FRAMES_s to zero and shall not increment either counter for a period of PWR_REP_DELAY_s \times 4 frames following the first transmission of the message.

- If TOT_FRAMES_s is equal to $\lfloor (2^{(PWR_REP_FRAMES_s/2)} \times 5) \rfloor$, the mobile station shall set TOT_FRAMES_s and BAD_FRAMES_s to zero.
- ∞ 6.6.4.1.1.1 Forward Traffic Channel Power Control Initialization
- To initialize Forward Traffic Channel power control, the mobile station shall set TOT_FRAMES_s and BAD_FRAMES_s to zero.

 $^{^6}$ Periodic reporting and threshold reporting may be independently enabled or disabled by the base station.

18

19

20

21

22

24

25

26

27

28

30

31

32

33

34

35

36

37

38

39

- 6.6.4.1.1.2 Processing the Power Control Parameters Message
- The mobile station shall store the following parameters from the *Power Control Parameters*Message:
 - Power control reporting threshold (PWR_REP_THRESH_S = PWR_REP_THRESH_I)
- Power control reporting frame count (PWR_REP_FRAMES_s = PWR_REP_FRAMES_r)
- Threshold report mode indicator
 (PWR_THRESH_ENABLE_s = PWR_THRESH_ENABLE_r)
 - Periodic report mode indicator (PWR_PERIOD_ENABLE_s = PWR_PERIOD_ENABLE_t)
- Power report delay (PWR_REP_DELAY_s = PWR_REP_DELAY_r)
- The mobile station shall set TOT_FRAMES_s and BAD_FRAMES_s to zero.
- 6.6.4.1.2 Service Configuration and Negotiation
- During Traffic Channel operation, the mobile station and base station communicate through the exchange of Forward and Reverse Traffic Channel frames. The mobile station and base station use a common set of attributes for building and interpreting Traffic Channel frames. This set of attributes, referred to as a service configuration, consists of the following:
 - 1. Forward and Reverse Multiplex Options: These control the way in which the information bits of the Forward and Reverse Traffic Channel frames, respectively, are divided into various types of traffic, such as signaling traffic, primary traffic and secondary traffic. Associated with each multiplex option is a rate set which specifies the frame structures and transmission rates supported by the multiplex option (see, for example, 6.1.3.3.11). Multiplex Option 3 through 16 also indicates the capability for supporting Supplemental Code Channel transmission on the Forward and Reverse Traffic Channels. Invocation of Supplemental Code Channel operation on the Forward or Reverse Traffic Channels occurs by the Supplemental Channel Request Message, the Supplemental Channel Assignment Message, and the General Handoff Direction Message). The multiplex option used for the Forward Traffic Channel can be the same as that used for the Reverse Traffic Channel, or it can be different.
 - 2. Forward and Reverse Traffic Channel Transmission Rates: These are the transmission rates actually used for the Forward and Reverse Traffic Channels respectively. The transmission rates for the Forward Traffic Channel can include all of the transmission rates supported by the rate set associated with the Forward Traffic Channel multiplex option, or a subset of the supported rates. Similarly, the transmission rates used for the Reverse Traffic Channel can include all rates supported by the rate set associated with the Reverse Traffic Channel multiplex option, or a subset of the supported rates. The transmission rates used for the Forward Traffic Channel can be the same as those used for the Reverse Traffic Channel, or they can be different.

6-272

3. Service Option Connections: These are the services in use on the Traffic Channel. It is possible that there is no service option connection, in which case the mobile station and base station use the Forward and Reverse Traffic Channels to send only signaling traffic and null Traffic Channel data; or there can be one or multiple service option connections.

1

2

3

6

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Associated with each service option connection are a service option, a Forward Traffic Channel traffic type, a Reverse Traffic Channel traffic type and a service option connection reference. The associated service option formally defines the way in which traffic bits are processed by the mobile station and base station. The associated Forward and Reverse Traffic Channel traffic types specify the types of traffic used to support the service option. A service option can require the use of a particular type of traffic, such as primary or secondary, or it can accept more than one traffic type. A service option can be one-way, in which case it can be supported on the Forward Traffic Channel only or the Reverse Traffic Channel only. Alternatively, a service option can be two-way, in which case it can be supported on the Forward and Reverse Traffic Channels simultaneously. Connected service options can also invoke operation on Supplemental Code Channels in either one or both of the Forward and Reverse Traffic Channels by negotiating a multiplex option that supports operation on Supplemental Code Channels (Multiplex Options 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16), and by using the appropriate Supplemental Code Channel assignment messages (i.e., the Supplemental Channel Request Message, the Supplemental Channel Assignment Message, and the General Handoff Direction Message). After Supplemental Code Channels have been assigned by the base station, the connected service option can transmit primary and/or secondary traffic on Supplemental Code Channels. The associated service option connection reference provides a means for uniquely identifying the service option connection. The reference serves to resolve ambiguity when there are multiple service option connections in use.

The mobile station can request a default service configuration associated with a service option at call origination, and can request new service configurations during Traffic Channel operation. A requested service configuration can differ greatly from its predecessor or can be very similar. For example, the mobile station can request a service configuration in which all of the service option connections are different from those of the existing configuration; or the mobile station can request a service configuration in which the existing service option connections are maintained with only minor changes, such as a different set of transmission rates or a different mapping of service option connections to Forward and Reverse Traffic Channel traffic types.

If the mobile station requests a service configuration that is acceptable to the base station, they both begin using the new service configuration. If the mobile station requests a service configuration that is not acceptable to the base station, the base station can reject the requested service configuration or propose an alternative service configuration. If the base station proposes an alternative service configuration, the mobile station can accept or reject the base station's proposed service configuration, or propose yet another service configuration. This process, called service negotiation, ends when the mobile station and

- the base station find a mutually acceptable service configuration, or when either the mobile station or the base station rejects a service configuration proposed by the other.
- 3 It is also possible for the base station to request a default service configuration associated
- with a service option when paging the mobile station and to request new service
- 5 configurations during Traffic Channel operation. The service negotiation proceeds as
- 6 described above, but with the roles of the mobile station and base station reversed.
- For CDMA mode operation in Band Class 0, the mobile station and base station can also
- 8 use an alternative method for negotiating a service configuration known as service option
- 9 negotiation. Service option negotiation is similar to service negotiation, but offers less
- of flexibility for specifying the attributes of the service configuration. During service option
- negotiation, the base station or the mobile station specifies only which service option is to
- be used. There is no facility for explicitly specifying the multiplex options, traffic types or
- transmission rates to be used on the Forward and Reverse Traffic Channels in conjunction
- with the service option. Instead, implicit service configuration attributes are assumed. In
- particular, the Forward and Reverse multiplex options and transmission rates are assumed
- to be the default multiplex options and transmission rates associated with the requested
- service option, and the traffic type for both the Forward and Reverse Traffic Channels is
- assumed to be primary traffic; furthermore, a service configuration established using
- service option negotiation is restricted to having only a single service option connection.
- 20 At mobile station origination and termination, the type of negotiation to use, either service
- negotiation or service option negotiation, is indicated in the Channel Assignment Message.
- 2 Service negotiation is always used after the mobile station receives an Extended Channel
- 23 Assignment Message. If a CDMA-to-CDMA hard handoff occurs during the call, the type of
- 24 negotiation to use following the handoff is indicated in the Extended Handoff Direction
- Message or the General Handoff Direction Message.

28

30

31

32

33

34

36

37

38

39

ΔŊ

41

- For CDMA mode operation in Band Class 1, only service negotiation is to be used.
 - The following messages are used to support service negotiation:
 - Service Request Message: The mobile station can use this message to propose a
 service configuration, or to accept or reject a service configuration proposed in a
 Service Response Message. The base station can use this message to propose a
 service configuration, or to reject a service configuration proposed in a Service
 Response Message.
 - 2. Service Response Message: The mobile station can use this message to accept or reject a service configuration proposed in a Service Request Message, or to propose an alternative service configuration. The base station can use this message to reject a service configuration proposed in a Service Request Message, or to propose an alternative service configuration.
 - 3. Service Connect Message: The base station can use this message to accept a service configuration proposed in a Service Request Message or Service Response Message, and to instruct the mobile station to begin using the service configuration.
 - 4. Service Connect Completion Message: The mobile station can use this message to acknowledge the transition to a new service configuration.

- 5. Service Option Control Message: The mobile station and base station can use this message to invoke service-option-specific functions.
- 6. Extended Channel Assignment Message: The base station can use this message to accept or reject the initial service configuration proposed by the mobile station in an Origination Message or a Page Response Message.
- The following messages are used to support service option negotiation:

11

12

13

16

17

18

19

20

21

22

23

25

26

27

28

29

31

32

33

34

35

- Service Option Request Order: The mobile station and base station can use this
 message either to request a service option or to suggest an alternative service
 option.
- 2. Service Option Response Order: The mobile station and base station can use this message to accept or to reject a service option request.
- 3. Service Option Control Order: The mobile station and base station can use this message to invoke service option specific functions.
- The following messages are used to support both service negotiation and service option negotiation:
 - 1. *Origination Message*: The mobile station can use this message to propose an initial service configuration.
 - 2. Channel Assignment Message: The base station can use this message to accept or to reject the initial service configuration proposed by the mobile station in an Origination Message or a Page Response Message and to indicate which type of negotiation, either service negotiation or service option negotiation, is to be used during the call.
 - 3. Extended Handoff Direction Message: The base station can use this message to indicate which type of negotiation, either service negotiation or service option negotiation, is to be used following a CDMA-to-CDMA hard handoff.
 - 4. General Handoff Direction Message: The base station can use this message to indicate which type of negotiation, either service negotiation or service option negotiation, is to be used following a CDMA-to-CDMA hard handoff. The base station can use this message to accept a service configuration proposed in a Service Request Message or Service Response Message. The base station can also use this message to instruct the mobile station to begin using the service configuration.
 - 5. General Page Message: The base station can use this message to propose an initial service configuration.
 - 6. Page Response Message: The mobile station can use this message to accept or to reject the initial service configuration proposed by the base station in a General Page Message, or to propose an alternative initial service configuration.
 - 7. Status Request Message: The base station can use this message to request service capability information from the mobile station.

ANSI/TIA/EIA-95-B

2

3

- 8. Status Response Message: The mobile station can use this message to return the service capability information requested by the base station in a Status Request Message.
- Extended Status Response Message: The mobile station can use this message to return the service capability information requested by the base station in a Status Request Message.

7 6.6.4.1.2.1 Use of Variables

- 8 6.6.4.1.2.1.1 Maintaining the Service Request Sequence Number
- The mobile station shall maintain a service request sequence number variable,
- 50 SERV_REQ_NUMs for use with service negotiation. Upon entering the Mobile Station
- 11 Control on the Traffic Channel State, the mobile station shall set SERV_REQ_NUM_S to 0.
- Each time the mobile station sends a new Service Request Message, it shall set the
- SERV_REQ_SEQ field of the message to the current value of SERV_REQ_NUMs, and shall
- then set SERV_REQ_NUM_S equal to (SERV_REQ_NUM_S + 1) modulo 8.
- 6.6.4.1.2.1.2 Maintaining the Service Negotiation Indicator Variable
- The mobile station shall maintain a service negotiation indicator variable, SERV_NEG_S, to
- indicate which type of negotiation to use, either service negotiation or service option
- negotiation. The mobile station shall set SERV_NEG_s to enabled whenever service
- negotiation is to be used, and shall set SERV_NEG_s to disabled whenever service option
- 20 negotiation is to be used. The precise rules for setting SERV_NEG_s are specified in 6.6.4.2
- 21 and 6.6.6.2.5.1.
- ²² For CDMA operation in Band Class 1, the mobile station shall set SERV_NEG_S to enabled.
- 6.6.4.1.2.1.3 Maintaining the Service Option Request Number
- 24 The mobile station shall maintain a service option request number variable, SO_REQ_s, for
- use with service option negotiation. The mobile station shall set SO_REQ_s to a special
- walue, NULL, if the mobile station does not have an outstanding service option request. If
- 27 the mobile station has an outstanding service option request, the mobile station shall set
- SO_REQ_s to the number of the service option associated with the outstanding request.
- 29 6.6.4.1.2.2 Service Subfunctions
- As illustrated in Figure 6.6.4.1.2.2-1, the mobile station supports service configuration and negotiation by performing the following set of service subfunctions:
- Normal Service Subfunction While this subfunction is active, the mobile station
 processes service configuration requests from the user and from the base station.
 - Waiting for Service Request Message Subfunction While this subfunction is active, the mobile station waits to receive a Service Request Message.
- Waiting for Service Response Message Subfunction While this subfunction is active, the mobile station waits to receive a Service Response Message.

 Waiting for Service Connect Message Subfunction - While this subfunction is active, the mobile station waits to receive a Service Connect Message or a General Handoff Direction Message containing a service configuration record.

2

6

9

- Waiting for Service Action Time Subfunction While this subfunction is active, the mobile station waits for the action time associated with a new service configuration and then sends a Service Connect Completion Message.
- *SO Negotiation Subfunction* While this subfunction is active, the mobile station supports service option negotiation with the base station. This subfunction is only used while operating in Band Class 0.
- The *SO Negotiation Subfunction* supports service option negotiation. All of the other service subfunctions support service negotiation.
- 12 At any given time during Traffic Channel operation, only one of the service subfunctions is active. For example, when the mobile station first enters the Traffic Channel Initialization 13 Substate of the Mobile Station Control on the Traffic Channel State, the Normal Service 14 Subfunction, the Waiting for Service Connect Message Subfunction or the SO Negotiation 15 Subfunction is active. Each of the other service subfunctions may become active in 16 response to various events which occur during the Traffic Channel substates. Typically, 17 the mobile station processes events pertaining to service configuration and negotiation in accordance with the requirements for the active service subfunction, however, some Traffic 19 Channel substates do not allow for the processing of certain events pertaining to service 20 configuration and negotiation, or specify requirements for processing such events which 21 supersede the requirements of the active service subfunction. 22

6-277

Figure 6.6.4.1.2.2-1. Mobile Station Service Subfunctions

- 6.6.4.1.2.2.1 Normal Service Subfunction
- 2 While this subfunction is active, the mobile station processes service configuration requests
- 3 from the user and from the base station.

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

29

30

31

33

34

.35

36

38

- While the *Normal Service Subfunction* is active, the mobile station shall perform the following:
 - The mobile station shall process Forward and Reverse Traffic Channel frames in accordance with the current service configuration. The mobile station shall discard any Forward Traffic Channel frame which has a format that is not supported by the mobile station. The mobile station may discard any type of Forward Traffic Channel traffic that is not signaling traffic and is not part of the current service configuration.
 - To initiate service negotiation for a new service configuration, the mobile station shall send a Service Request Message to propose the new service configuration. The mobile station shall activate the Waiting for Service Response Message Subfunction.
 - For any service option connection that is part of the current service configuration, the mobile station may send a *Service Option Control Message* to invoke a service option specific function in accordance with the requirements for the associated service option.
 - If SERV_NEG_s changes from enabled to disabled (see 6.6.6.2.5.1), the mobile station shall activate the *SO Negotiation Subfunction*.
 - If the mobile station receives one of the following service negotiation messages, the mobile station shall process the message according to the specified requirements:
 - 1. Service Connect Message: If the mobile station accepts the service configuration specified in the message, the mobile station shall activate the Waiting for Service Action Time Subfunction; otherwise, the mobile station shall send a Mobile Station Reject Order (ORDQ = '00000111') within T_{56m} seconds.
 - 2. Service Option Control Message: If the service option connection specified by the message is part of the current service configuration, and the service option specified by the message is the same as the service option associated with the service option connection, the mobile station shall interpret the action time of the message as specified in 6.6.4.1.5, and shall process the message in accordance with the requirements for the service option; otherwise, the mobile station shall send a Mobile Station Reject Order (ORDQ = '00000111') within T_{56m} seconds.
 - 3. Service Request Message: The mobile station shall process the message as follows:
 - If the purpose of the message is to reject a proposed service configuration, the mobile station shall send a *Mobile Station Reject Order* (ORDQ = '00000010') within T_{56m} seconds.

ANSI/TIA/EIA-95-B

2

10

11

12

13

14

15

16

18

19

20

21

22

23

24

26

27

35

- If the purpose of the message is to propose a service configuration, the mobile station shall process the message as follows:
 - + If the mobile station accepts the proposed service configuration, the mobile station shall send a *Service Response Message* to accept the proposed service configuration within T_{59m} seconds. The mobile station shall activate the *Waiting for Service Connect Message Subfunction*.
 - + If the mobile station does not accept the proposed service configuration and does not have an alternative service configuration to propose, the mobile station shall send a *Service Response Message* to reject the proposed service configuration within T_{59m} seconds.
 - + If the mobile station does not accept the proposed service configuration and has an alternative service configuration to propose, the mobile station shall send a *Service Response Message* to propose the alternative service configuration within T_{59m} seconds. The mobile station shall activate the *Waiting for Service Request Message Subfunction*.
- 4. Service Response Message: The mobile station shall send a Mobile Station Reject Order (ORDQ = '00000010') within T_{56m} seconds.
- 5. General Handoff Direction Message: If the mobile station accepts the service configuration specified in the message, the mobile station shall activate the Waiting for Service Action Time Subfunction; otherwise, the mobile station shall send a Mobile Station Reject Order (ORDQ = '00000111') within T_{56m} seconds.
- If the mobile station receives one of the following service option negotiation messages, the mobile station shall send a *Mobile Station Reject Order* (ORDQ = '00000010') within T_{56m} seconds:
 - 1. Service Option Request Order
 - 2. Service Option Response Order
 - 3. Service Option Control Order
- 28 6.6.4.1.2.2.2 Waiting for Service Request Message Subfunction
- While this subfunction is active, the mobile station waits to receive a Service Request Message.
- Upon activation of the Waiting for Service Request Message Subfunction, the mobile station shall set the subfunction timer for T_{68m} seconds.
- While the *Waiting for Service Request Message Subfunction* is active, the mobile station shall perform the following:
 - If the subfunction timer expires, the mobile station shall activate the *Normal Service Subfunction*.

- The mobile station shall process Forward and Reverse Traffic Channel frames in accordance with the current service configuration. The mobile station shall discard any Forward Traffic Channel frame which has a format that is not supported by the mobile station. The mobile station may discard any type of Forward Traffic Channel traffic that is not signaling traffic and is not part of the current service configuration.
 - The mobile station shall not initiate service negotiation for a new service configuration.

В

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

31

32

33

34

35

36

37

38

- For any service option connection that is part of the current service configuration, the mobile station may send a Service Option Control Message to invoke a service option specific function in accordance with the requirements for the associated service option.
- If SERV_NEG_s changes from enabled to disabled (see 6.6.6.2.5.1), the mobile station shall activate the *SO Negotiation Subfunction*.
- If the mobile station receives one of the following service negotiation messages, the mobile station shall process the message according to the specified requirements:
 - Service Connect Message: If the mobile station accepts the service configuration specified in the message, the mobile station shall activate the Waiting for Service Action Time Subfunction; otherwise, the mobile station shall send a Mobile Station Reject Order (ORDQ = '00000111') within T_{56m} seconds and shall activate the Normal Service Subfunction.
 - 2. Service Option Control Message: If the service option connection specified by the message is part of the current service configuration, and the service option specified by the message is the same as the service option associated with the service option connection, the mobile station shall interpret the action time of the message as specified in 6.6.4.1.5, and shall process the message in accordance with the requirements for the service option; otherwise, the mobile station shall send a Mobile Station Reject Order (ORDQ = '00000111') within T_{56m} seconds.
 - 3. Service Request Message: The mobile station shall process the message as follows:
 - If the purpose of the message is to reject a proposed service configuration, the mobile station shall activate the *Normal Service Subfunction*.
 - If the purpose of the message is to propose a service configuration, the mobile station shall process the message as follows:
 - + If the mobile station accepts the proposed service configuration, the mobile station shall send a *Service Response Message* to accept the proposed service configuration within T_{59m} seconds. The mobile station shall activate the *Waiting for Service Connect Message Subfunction*.

ANSI/TIA/EIA-95-B

10

11

12

13

14

15

16

17

18

19

20

21

22

23

32

33

34

35

36

37

- + If the mobile station does not accept the proposed service configuration and does not have an alternative service configuration to propose, the mobile station shall send a *Service Response Message* to reject the proposed service configuration within T_{59m} seconds. The mobile station shall activate the *Normal Service Subfunction*.
- + If the mobile station does not accept the proposed service configuration and has an alternative service configuration to propose, the mobile station shall send a *Service Response Message* to propose the alternative service configuration within T_{59m} seconds. The mobile station shall reset the subfunction timer for T_{68m} seconds.
- 4. Service Response Message: The mobile station shall send a Mobile Station Reject Order (ORDQ = '00000010') within T_{56m} seconds.
- 5. General Handoff Direction Message: If the message contains a service configuration record, and if the mobile station accepts the service configuration specified in the message, the mobile station shall activate the Waiting for Service Action Time Subfunction; otherwise, the mobile station shall send a Mobile Station Reject Order (ORDQ = '00000111') within T_{56m} seconds, and shall activate the Normal Service Subfunction.
- If the mobile station receives one of the following service option negotiation messages, the mobile station shall send a *Mobile Station Reject Order* (ORDQ = '00000010') within T_{56m} seconds:
 - 1. Service Option Request Order
 - 2. Service Option Response Order
 - 3. Service Option Control Order
- 6.6.4.1.2.2.3 Waiting for Service Response Message Subfunction
- While this subfunction is active, the mobile station waits to receive a Service Response Message.
- Upon activation of the *Waiting for Service Response Message Subfunction*, the mobile station shall set the subfunction timer for T_{68m} seconds.
- While the *Waiting for Service Response Message Subfunction* is active, the mobile station shall perform the following:
 - If the subfunction timer expires, the mobile station shall activate the *Normal Service Subfunction*.
 - The mobile station shall process Forward and Reverse Traffic Channel frames in accordance with the current service configuration. The mobile station shall discard any Forward Traffic Channel frame which has a format that is not supported by the mobile station. The mobile station may discard any type of Forward Traffic Channel traffic that is not signaling traffic and is not part of the current service configuration.

 The mobile station shall not initiate service negotiation for a new service configuration.

- For any service option connection that is part of the current service configuration, the mobile station may send a Service Option Control Message to invoke a service option specific function in accordance with the requirements for the associated service option.
- If SERV_NEG_s changes from enabled to disabled (see 6.6.6.2.5.1), the mobile station shall activate the SO Negotiation Subfunction.
- If the mobile station receives one of the following service negotiation messages, the mobile station shall process the message according to the specified requirements:
 - 1. Service Connect Message: If the mobile station accepts the service configuration specified in the message, the mobile station shall activate the Waiting for Service Action Time Subfunction; otherwise, the mobile station shall send a Mobile Station Reject Order (ORDQ = '00000111') within T_{56m} seconds and shall activate the Normal Service Subfunction.
 - 2. Service Option Control Message: If the service option connection specified by the message is part of the current service configuration, and the service option specified by the message is the same as the service option associated with the service option connection, the mobile station shall interpret the action time of the message as specified in 6.6.4.1.5, and shall process the message in accordance with the requirements for the service option; otherwise, the mobile station shall send a *Mobile Station Reject Order* (ORDQ = '00000111') within T56m seconds.
 - 3. Service Request Message: The mobile station shall process the message as follows:
 - If the purpose of the message is to reject a proposed service configuration, the mobile station shall send a *Mobile Station Reject Order* (ORDQ = '00000010') within T_{56m} seconds.
 - If the purpose of the message is to propose a service configuration, the mobile station shall discontinue processing the service configuration requested by the user and shall process the message as follows:
 - + If the mobile station accepts the proposed service configuration, the mobile station shall send a *Service Response Message* to accept the proposed service configuration within T_{59m} seconds. The mobile station shall activate the *Waiting for Service Connect Message Subfunction*.
 - + If the mobile station does not accept the proposed service configuration and does not have an alternative service configuration to propose, the mobile station shall send a *Service Response Message* to reject the proposed service configuration within T_{59m} seconds. The mobile station shall activate the *Normal Service Subfunction*.

- + If the mobile station does not accept the proposed service configuration and has an alternative service configuration to propose, the mobile station shall send a *Service Response Message* to propose the alternative service configuration within T_{59m} seconds. The mobile station shall activate the *Waiting for Service Request Message Subfunction*.
- 4. Service Response Message: The mobile station shall process the message as follows:
 - If the service request sequence number (SERV_REQ_SEQ_r) from the message does not match the sequence number of the Service Request Message for which the mobile station is expecting a response, the mobile station shall not process the other layer 3 fields of the message.
 - If the purpose of the message is to reject the service configuration proposed in the corresponding *Service Request Message*, the mobile station shall activate the *Normal Service Subfunction*. The mobile station may indicate to the user that the requested service configuration has been rejected.
 - If the purpose of the message is to propose a service configuration, the mobile station shall process the message as follows:
 - + If the mobile station accepts the proposed service configuration, the mobile station shall send a *Service Request Message* to accept the proposed service configuration within T_{59m} seconds. The mobile station shall activate the *Waiting for Service Connect Message Subfunction*.
 - + If the mobile station does not accept the proposed service configuration and does not have an alternative service configuration to propose, the mobile station shall send a *Service Request Message* to reject the proposed service configuration within T_{59m} seconds. The mobile station shall activate the *Normal Service Subfunction*.
 - + If the mobile station does not accept the proposed service configuration and has an alternative service configuration to propose, the mobile station shall send a *Service Request Message* to propose the alternative service configuration within T_{59m} seconds. The mobile station shall reset the subfunction timer for T_{68m} seconds.
- 5. General Handoff Direction Message: If the message contains a service configuration record and the mobile station accepts the service configuration specified in the message, the mobile station shall activate the Waiting for Service Action Time Subfunction; otherwise, the mobile station shall send a Mobile Station Reject Order (ORDQ = '00000111') within T_{56m} seconds and shall activate the Normal Service Subfunction.
- If the mobile station receives one of the following service option negotiation messages, the mobile station shall send a *Mobile Station Reject Order* (ORDQ = '00000010') within T_{56m} seconds:
 - 1. Service Option Request Order

- 2. Service Option Response Order
- 3. Service Option Control Order
- ₃ 6.6.4.1.2.2.4 Waiting for Service Connect Message Subfunction
- 4 . While this subfunction is active, the mobile station waits to receive a Service Connect
- 5 Message.

10

11

13

17

18

20

21

22

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

- Upon activation of the *Waiting for Service Connect Message Subfunction*, the mobile station shall set the subfunction timer for T_{65m} seconds.
- While the *Waiting for Service Connect Message Subfunction* is active, the mobile station shall perform the following:
 - If the subfunction timer expires, the mobile station shall activate the *Normal Service Subfunction*.
 - The mobile station shall process Forward and Reverse Traffic Channel frames in accordance with the current service configuration. The mobile station shall discard any Forward Traffic Channel frame which has a format that is not supported by the mobile station. The mobile station may discard any type of Forward Traffic Channel traffic that is not signaling traffic and is not part of the current service configuration.
 - The mobile station shall not initiate service negotiation for a new service configuration.
 - For any service option connection that is part of the current service configuration, the mobile station may send a Service Option Control Message to invoke a service option specific function in accordance with the requirements for the associated service option.
 - If SERV_NEG_s changes from enabled to disabled (see 6.6.6.2.5.1), the mobile station shall activate the *SO Negotiation Subfunction*.
 - If the mobile station receives one of the following service negotiation messages, the mobile station shall process the message according to the specified requirements:
 - 1. Service Connect Message: If the mobile station accepts the service configuration specified in the message, the mobile station shall activate the Waiting for Service Action Time Subfunction; otherwise, the mobile station shall send a Mobile Station Reject Order (ORDQ = '00000111') within T_{56m} seconds and shall activate the Normal Service Subfunction.
 - 2. Service Option Control Message: If the service option connection specified by the message is part of the current service configuration, and the service option specified by the message is the same as the service option associated with the service option connection, the mobile station shall interpret the action time of the message as specified in 6.6.4.1.5, and shall process the message in accordance with the requirements for the service option; otherwise, the mobile station shall send a Mobile Station Reject Order (ORDQ = '00000111') within T_{56m} seconds.

10

12

13

14

15

17

18

19

20

21

22

23

25

26

28

30

31

33

35

- Service Request Message: The mobile station shall process the message as follows:
 - If the purpose of the message is to reject a proposed service configuration, the mobile station shall send a *Mobile Station Reject Order* (ORDQ = '00000010') within T_{56m} seconds.
 - If the purpose of the message is to propose a service configuration, the mobile station shall process the message as follows:
 - + If the mobile station accepts the proposed service configuration, the mobile station shall send a *Service Response Message* to accept the proposed service configuration within T_{59m} seconds. The mobile station shall reset the subfunction timer for T_{65m} seconds.
 - + If the mobile station does not accept the proposed service configuration and does not have an alternative service configuration to propose, the mobile station shall send a *Service Response Message* to reject the proposed service configuration within T_{59m} seconds. The mobile station shall activate the *Normal Service Subfunction*.
 - + If the mobile station does not accept the proposed service configuration and has an alternative service configuration to propose, the mobile station shall send a *Service Response Message* to propose the alternative service configuration within T_{59m} seconds. The mobile station shall activate the *Waiting for Service Request Message Subfunction*.
- 4. Service Response Message: The mobile station shall send a Mobile Station Reject Order (ORDQ = '00000010') within T_{56m} seconds.
- 5. General Handoff Direction Message: If the message contains a service configuration record and the mobile station accepts the service configuration specified in the message, the mobile station shall activate the Waiting for Service Action Time Subfunction; otherwise, the mobile station shall send a Mobile Station Reject Order (ORDQ = '00000111') within T_{56m} seconds and shall activate the Normal Service Subfunction.
- If the mobile station receives one of the following service option negotiation messages, the mobile station shall send a *Mobile Station Reject Order* (ORDQ = '00000010') within T_{56m} seconds:
 - 1. Service Option Request Order
 - 2. Service Option Response Order
 - 3. Service Option Control Order
- 6.6.4.1.2.2.5 Waiting for Service Action Time Subfunction
- While this subfunction is active, the mobile station waits for the action time associated with
- a new service configuration. If the action time was specified by a Service Connect Message,
- the mobile station shall send the Service Connect Completion Message at the action time.

- While the *Wait for Service Action Time Subfunction* is active, the mobile station shall perform the following:
 - Prior to the action time associated with the Service Connect Message or General
 Handoff Direction Message containing a service configuration record, the mobile
 station shall process Forward and Reverse Traffic Channel frames in accordance
 with the current service configuration. The mobile station shall discard any
 Forward Traffic Channel frame which has a format that is not supported by the
 mobile station. The mobile station may discard any type of Forward Traffic Channel
 traffic that is not signaling traffic and is not part of the current service
 configuration.

- At the action time associated with the Service Connect Message or General Handoff
 Direction Message containing a service configuration record, the mobile station shall
 begin to use the service configuration specified by the Service Connect Message or
 General Handoff Direction Message containing a service configuration record as the
 current service configuration and shall begin to process Forward and Reverse Traffic
 Channel frames accordingly. If the action time was specified by a Service Connect
 Message, the mobile station shall send a Service Connect Completion Message within
 T56m seconds after the action time. The mobile station shall exit this subfunction
 and activate the Normal Service Subfunction.
 - The mobile station shall not initiate service negotiation for a new service configuration.
- For any service option connection that is part of the current or pending service configuration, the mobile station may send a Service Option Control Message to invoke a service option specific function in accordance with the requirements for the associated service option.
- If SERV_NEG_S changes from enabled to disabled (see 6.6.6.2.5.1), the mobile station shall activate the *SO Negotiation Subfunction*.
- If the mobile station receives one of the following service negotiation messages, the mobile station shall process the message according to the specified requirements:
 - 1. Service Connect Message: The mobile station shall send a Mobile Station Reject Order (ORDQ = '00000010') within T_{56m} seconds.
 - 2. Service Option Control Message: If the service option connection specified by the message is part of the current or pending service configuration, and the service option specified by the message is the same as the service option associated with the service option connection, the mobile station shall interpret the action time of the message as specified in 6.6.4.1.5, and shall process the message in accordance with the requirements for the service option; otherwise, the mobile station shall send a Mobile Station Reject Order (ORDQ = '00000111') within T_{56m} seconds.
 - 3. Service Request Message: The mobile station shall send a Mobile Station Reject Order (ORDQ = '00000010') within T_{56m} seconds.

11

15

24

25

26

27

28

29

30

31

30

33

34

35

36

37

38

39

- Service Response Message: The mobile station shall send a Mobile Station Reject Order (ORDQ = '00000010') within T_{56m} seconds.
 - 5. General Handoff Direction Message: If the message contains a service configuration record and the mobile station accepts the service configuration specified in the message, the mobile station shall remain in this subfunction until the action time specified in the message, and shall begin to use the service configuration specified by the General Handoff Direction Message at the action time; otherwise, the mobile station shall send a Mobile Station Reject Order (ORDQ = '00000010') within T_{56m} seconds.
- If the mobile station receives one of the following service option negotiation messages, the mobile station shall send a *Mobile Station Reject Order* (ORDQ = '00000010') within T_{56m} seconds:
 - 1. Service Option Request Order
 - 2. Service Option Response Order
 - 3. Service Option Control Order
- 6.6.4.1.2.2.6 SO Negotiation Subfunction
- The SO Negotiation Subfunction is only supported for mobile stations operating in Band Class 0.
- Upon activation of the SO Negotiation Subfunction, the mobile station shall delete from the current service configuration any service option connection which does not use primary traffic on both the Forward and Reverse Traffic Channels.
- While the SO Negotiation Subfunction is active, the mobile station shall perform the following:
 - If the current service configuration includes a service option connection, the mobile station shall process the received primary traffic bits in accordance with the requirements for the service option associated with the service option connection; otherwise, the mobile station shall discard the received primary traffic bits.
 - If the current service configuration includes a service option connection, the mobile station shall transmit primary traffic bits in accordance with the requirements for the service option associated with the service option connection; otherwise, the mobile station shall transmit null Traffic Channel data.
 - If the current service configuration includes a service option connection, the mobile station may send a *Service Option Control Order* to invoke a service option specific function in accordance with the requirements for the service option associated with the service option connection.
 - To initiate service option negotiation, the mobile station shall set SO_REQ_S to the number of the requested service option and shall send a *Service Option Request Order* containing the requested service option number.
 - If SERV_NEG_s changes from disabled to enabled (see 6.6.6.2.5.1), the mobile station shall set SO_REQ_s to NULL and shall activate the *Normal Service Subfunction*.

 If the mobile station receives a Service Option Request Order, it shall process the order as follows:

- If the mobile station accepts the requested service option, the mobile station shall set SO_REQ_s to NULL and shall send a Service Option Response Order accepting the requested service option within T_{58m} seconds. The mobile station shall interpret the message action time of the Service Option Request Order in accordance with the requirements for the requested service option and shall begin using the service configuration implied by the requested service option in accordance with those requirements. The implied service configuration shall include the default Forward and Reverse multiplex options and transmission rate sets associated with the requested service option, and shall include one service option connection for which the service option connection reference is 1, the service option is the requested service option, and the Forward and Reverse Traffic Channel types are both primary traffic.
- If the mobile station does not accept the requested service option and has an alternative service option to request, the mobile station shall set SO_REQ_s to the alternative service option number and shall send a Service Option Request Order requesting the alternative service option within T_{58m} seconds.
- If the mobile station does not accept the requested service option and does not have an alternative service option to request, the mobile station shall set SO_REQ_s to NULL and shall send a Service Option Response Order to reject the request within T_{58m} seconds. The mobile station shall continue to use the current service configuration.
- If the mobile station receives a *Service Option Response Order*, it shall process the order as follows:
 - If the service option number specified in the order is equal to SO_REQ_s, the mobile station shall set SO_REQ_s to NULL. The mobile station shall interpret the message action time of the Service Option Response Order in accordance with the requirements for the specified service option, and shall begin using the service configuration implied by the specified service option in accordance with those requirements. The implied service configuration shall include the default Forward and Reverse multiplex options and transmission rate sets associated with the specified service option, and shall include one service option connection for which the service option connection reference is 1, the service option is the specified service option, and the Forward and Reverse Traffic Channel types are both primary traffic.
 - If the order indicates a service option rejection, the mobile station shall set SO_REQ_s to NULL. The mobile station shall continue to use the current service configuration.

3

10

11

12

13

15

17

18

19

20

21

- If the order does not indicate a service option rejection and the service option specified in the order is not equal to SO_REQs, the mobile station shall set SO_REQs to NULL and shall send a Mobile Station Reject Order (ORDQ = '00000100') within T_{58m} seconds. The mobile station shall continue to use the current service configuration.
 - If the mobile station receives a Service Option Control Order, it shall process the order as follows:
 - If the current service configuration includes a service option connection, the mobile station shall interpret the message action time of the Service Option Control Order in accordance with the requirements for the service option associated with the service option connection and shall process the Service Option Control Order in accordance with those requirements;
 - otherwise, the mobile station shall send a Mobile Station Reject Order (ORDQ = '00000001') within T_{56m} seconds.
 - If the mobile station receives one of the following service negotiation messages, the mobile station shall send a Mobile Station Reject Order (ORDQ = '00000010') within T_{56m} seconds:
 - 1. Service Connect Message
 - 2. Service Option Control Message
 - 3. Service Request Message
 - 4. Service Response Message
- 6.6.4.1.3 Acknowledgment Procedures 22
- The acknowledgment procedures facilitate the reliable exchange of messages between the 23
- base station and the mobile station. The mobile station uses the fields ACK_SEQ
- (acknowledgment sequence number), MSG_SEQ (message sequence number) and 25
- ACK_REQ (acknowledgment required indicator) to detect duplicate messages and provide a
- reference for acknowledgments. These message fields are referred to as layer 2 fields, and 27
- the acknowledgment procedures are referred to as layer 2 procedures. All other message 28
- fields are referred to as layer 3 fields, and the processing of layer 3 fields is referred to as 29
- layer 3 processing. (See Annex C for further discussion of layering.) 30
- On both the Forward Traffic Channel and the Reverse Traffic Channel, the procedure for 31
- messages requiring acknowledgment is a selective repeat scheme in which a message is 32
- retransmitted only if an acknowledgment for it is not received. 33
- 6.6.4.1.3.1 Messages Requiring Acknowledgment 34
- A Traffic Channel message requires acknowledgment when the ACK_REQ field is set to '1'. 35
- 6.6.4.1.3.1.1 Transmitting Messages and Receiving Acknowledgments 36
- The Layer 2 protocol does not guarantee delivery of messages in any order. If the mobile 37
- station requires that the base station receive a set of messages in a certain order, the 38

- mobile station shall wait for an acknowledgment of each message before transmitting the
- 2 next message in the set. For messages requiring acknowledgment whose relative ordering
- is not important, the mobile station may transmit up to four such messages before
- receiving an acknowledgment for the first message.
- 5 The mobile station shall store a message sequence number for messages requiring
- acknowledgment (MSG_SEQ_ACKs). The mobile station shall store an acknowledgment
- status indicator (ACK_WAITINGs[n], where n is 0 through 7) for each possible value of the
- Reverse Traffic Channel message MSG_SEQ field. The mobile station shall not send a new
- message requiring acknowledgment when ACK_WAITINGs[(MSG_SEQ_ACKs + 4) mod 8] is
- 10 equal to YES.

13

14

15

16

17

- 11 The mobile station shall perform the following procedures:
 - When the mobile station receives any message on the Forward Traffic Channel, it shall set ACK_WAITING_s[ACK_SEQ_r] to NO.
 - When the mobile station sends a new message requiring acknowledgment on the Reverse Traffic Channel, it shall set ACK_WAITING_s[MSG_SEQ_ACK_s] to YES and shall set the MSG_SEQ field of the message to MSG_SEQ_ACK_s. The mobile station shall then increment MSG_SEQ_ACK_s, modulo 8.
- The mobile station shall not retransmit a message for which it has received an acknowledgment.
- 20 If the mobile station has not received an acknowledgment within T_{1m} seconds after
- 21 transmitting the message, the mobile station shall retransmit the message (see
- 22 Figure 6.6.4.1.3.1.1-1). If the mobile station retransmits a message, the mobile station
- shall use the same MSG_SEQ number for the retransmission. The mobile station shall not
- $_{24}$ retransmit a message sooner than T_{1m} seconds after the previous transmission of the same
- 25 message.
- 25 The mobile station shall store a retransmission counter (RETRY_COUNTs) for each
- 27 transmitted message requiring acknowledgment. The mobile station shall set
- 28 RETRY_COUNTs to zero prior to the first transmission of the message. After each
- 22 transmission of the message, the mobile station shall increment RETRY_COUNT_S if no
- $_{\infty}$ acknowledgment is received. When RETRY_COUNT_s is equal to N_{1m}, the mobile station
- 31 shall declare an acknowledgment failure.

Figure 6.6.4.1.3.1.1-1. Time Limit for Acknowledgment of Reverse Traffic Channel Messages

- 6.6.4.1.3.1.2 Receiving Messages and Returning Acknowledgments
- 6 Messages received on the Forward Traffic Channel contain MSG_SEQ fields that are
- incremented using the same rules as messages transmitted on the Reverse Traffic Channel.
- 8 Separate sequence numbers are maintained for Forward Traffic Channel Messages that
- 9 require acknowledgment and for messages that do not require acknowledgment.
- The mobile station acknowledges a received message by transmitting a message with the
- ACK_SEQ field set equal to the MSG_SEQ field of the received message. A message
- transmitted with the ACK_SEQ field set in this manner is referred to as including an
- acknowledgment of the received message.
- Whenever a message requiring acknowledgment is received, the mobile station shall set the
- ACK_SEQ field of subsequent Reverse Traffic Channel messages to MSG_SEQ_r. If no
- message has been received, the mobile station shall set this field to '111'.
- 17 After receiving a message requiring acknowledgment, the mobile station shall transmit a
- $_{18}$ message including an acknowledgment within $T_{2\,m}$ seconds as shown in
- ¹⁹ Figure 6.6.4.1.3.1.2-1.
- When a received message requires acknowledgment and no message is available within T_{2m}
- seconds after the message is received, the mobile station shall transmit a Mobile Station
- 22 Acknowledgment Order including the acknowledgment. The Mobile Station Acknowledgment
- 20 Order shall be sent as a message not requiring acknowledgment.

3

Figure 6.6.4.1.3.1.2-1. Time Limit for Acknowledgment of Forward Traffic Channel Messages

For duplicate message detection, the mobile station shall store a received status indicator for each possible value of the Forward Traffic Channel message MSG_SEQ field (MSG_SEQ_RCVD_S[n], where n is 0 through 7). The mobile station shall perform the following procedures:

- When a message requiring acknowledgment is received with message sequence number MSG_SEQ_r , and $MSG_SEQ_RCVD_s[MSG_SEQ_r]$ is equal to NO, the mobile station shall process the message as a new message. The mobile station shall then set $MSG_SEQ_RCVD_s[MSG_SEQ_r]$ to YES, and shall set $MSG_SEQ_RCVD_s[(4 + MSG_SEQ_r) \bmod 8]$ to NO.
- When a message requiring acknowledgment is received with message sequence number MSG_SEQ_r, and MSG_SEQ_RCVD_s[MSG_SEQ_r] is equal to YES, the mobile station shall acknowledge the message but shall not perform any further processing of the message.

6.6.4.1.3.2 Messages Not Requiring Acknowledgment

6

10

11

12

13

14

15

16

- A Traffic Channel message does not require acknowledgment when the ACK_REQ field is set to '0'.
- The mobile station shall store a message sequence number for messages not requiring acknowledgment (MSG_SEQ_NOACKs). For each new message sent that does not require acknowledgment, the mobile station shall set the MSG_SEQ_field of the message to MSG_SEQ_NOACKs and shall then increment MSG_SEQ_NOACKs, modulo 8. The mobile
- station shall not retransmit messages not requiring acknowledgment.
- $_{2\!\!2\!\!2}$ The mobile station shall consider all messages received within T_{3m} seconds that do not
- 27 require acknowledgment and have the same MSG_SEQ number to be duplicates, as shown

10

12

13

15

16

17

18

19

20

21

25

26

in Figure 6.6.4.1.3.2-1. If the mobile station receives multiple copies of a message as determined by the MSG_SEQ number, it shall discard the duplicate copies.

Figure 6.6.4.1.3.2-1. Time Window for Detecting Duplicate Messages Not Requiring Acknowledgment

6.6.4.1.3.3 Acknowledgment Procedures Reset

- The mobile station shall reset the acknowledgment procedures as follows:
 - Message sequence number reset.
 - If ACK_WAITING_S[n] is equal to YES for any n, the mobile station should save the corresponding messages and retransmit them after completing the reset of the acknowledgment procedures. For each such message the mobile station shall set the retransmission counter (RETRY_COUNT_S) to zero.
 - The mobile station shall set both MSG_SEQ_ACK_s and MSG_SEQ_NOACK_s to 0, and shall set ACK_WAITING_s[n] to NO for all values of n from 0 to 7.
 - Acknowledgment sequence number reset. The mobile station shall set the ACK_SEQ field of all Reverse Traffic Channel messages to '111' until the first message requiring acknowledgment is received.
 - Duplicate detection reset. The mobile station shall set MSG_SEQ_RCVD_s[n] to NO for all values of n from 0 to 7.
- 2 6.6.4.1.4 Processing the In-Traffic System Parameters Message
- The mobile station shall store the following parameters from the *In-Traffic System*Parameters Message:
 - System identification (SID_s = SID_r)
 - Network identification (NID_s = NID_r)

- Search window size for the Active Set and the Candidate Set
 (SRCH_WIN_A_S = SRCH_WIN_A_r)
- Search window size for the Neighbor Set (SRCH_WIN_N_s = SRCH_WIN_N_r)
- Search window size for the Remaining Set (SRCH_WIN_R_s = SRCH_WIN_R_r)
- Pilot detection threshold (T_ADD_s = T_ADD_r)
- Pilot drop threshold (T_DROP_s = T_DROP_r)
- Active Set versus Candidate Set comparison threshold (T_COMP_s = T_COMP_r)
- Drop timer value (T_TDROP_s = T_TDROP_r)
- Maximum age for retention of Neighbor Set members
 (NGHBR_MAX_AGE_s = NGHBR_MAX_AGE_r)
- Protocol revision level (P_REV_s = P_REV_r), and protocol revision level currently in use (P_REV_IN_USE_s = min (P_REV_s, MOB_P_REV_p of the current band class))
- Slope of the handoff add/drop criterion (SOFT_SLOPE_s = SOFT_SLOPE_r)
 - Intercept of the handoff add criterion (ADD_INTERCEPT_s = ADD_INTERCEPT_r)
- Intercept of the handoff drop criterion (DROP_INTERCEPT_s = DROP_INTERCEPT_r)
- If included, Reverse Supplemental Code Channel transmission offset threshold (T_MULCHAN_s = T_MULCHAN_r)
- If included, Reverse Supplemental Code Channel beginning of transmission preamble length (BEGIN_PREAMBLE_S = BEGIN_PREAMBLE_r)
 - If included, Reverse Supplemental Code Channel discontinuous transmission resumption preamble length (RESUME_PREAMBLE_s = RESUME_PREAMBLE_r)
- If the mobile station supports packet data service options, the mobile station shall store the packet data services zone identifier (PACKET_ZONE_ ID_s = PACKET_ $ZONE_ID_r$).
- The mobile station shall determine its roaming status (see 6.6.5.3). The mobile station should indicate to the user whether the mobile station is roaming.
- 26 6.6.4.1.5 Message Action Times

20

- 27 A Forward Traffic Channel message without a USE_TIME field or with a USE_TIME field set
- to '0' has an implicit action time. A message whose USE_TIME field is set to '1' has an
- explicit action time which is specified in the ACTION_TIME field of the message. A message
- with an explicit action time is called a pending message.
- Unless otherwise specified, a message having an implicit action time shall take effect no
- later than the first 80 ms boundary (relative to System Time) occurring at least 80 ms after
- the end of the frame containing the last bit of the message. A message with an explicit
- action time shall take effect when System Time (in 80 ms units) modulo 64 becomes equal
- to the message's ACTION_TIME field. The difference in time between ACTION_TIME and
- the end of the frame containing the last bit of the message shall be at least 80 ms.

- The mobile station shall support two pending messages at any given time, not including
- pending Service Option Control Orders or Service Option Control Messages. The number of
- pending Service Option Control Orders or Service Option Control Messages that the mobile
- station is required to support is specific to the service option (see the relevant service option
- 5 description). In addition, the mobile station shall support one pending Power Up Function
- 6 Message.
- 7 6.6.4.1.6 Long Code Transition Request Processing
- B The mobile station performs these procedures upon receiving a Long Code Transition
- 9 Request Order.
- 10 If the Long Code Transition Request Order requests a transition to the private long code, and
- the mobile station is able to generate the private long code (see 6.3.12.3), and the mobile
- station accepts the request, the mobile station shall send a Long Code Transition Response
- Order (ORDQ = '00000011') within T_{56m} seconds. The mobile station shall use the private
- long code on both the Forward Traffic Channel and the Reverse Traffic Channel. The
- mobile station shall begin using the private long code using the explicit action time (see
- 6.6.4.1.5) specified in the message. The mobile station should indicate to the user that the
- voice privacy mode is active. If the Long Code Transition Request Order requests a private
- long code transition, and the mobile station is not able to generate the private long code or
- the mobile station does not accept the request, the mobile station shall send a Long Code
- $_{20}$ Transition Response Order (ORDQ = '00000010') within T_{56m} seconds.
- 21 If the Long Code Transition Request Order requests a transition to the public long code and
- the mobile station accepts the request, the mobile station shall send a Long Code Transition
- \mathbb{Z} Response Order (ORDQ = '00000010') within T_{56m} seconds. The mobile station shall use
- the public long code on both the Forward Traffic Channel and the Reverse Traffic Channel.
- The mobile station shall begin using the public long code using the explicit action time (see
- 6.6.4.1.5) specified in the message. The mobile station should indicate to the user that the
- voice privacy mode is inactive. If the Long Code Transition Request Order requests a public
- long code transition, and the mobile station does not accept the request, the mobile station
- shall send a Long Code Transition Response Order (ORDQ = '00000011') within T_{56m}
- 30 seconds.
- 6.6.4.1.7 Power Up Function (PUF)
- Figure 6.6.4.1.7-1 illustrates the general structure of a PUF attempt. A PUF pulse is the
- 33 interval during which the mobile station transmits at the specified power level while
- executing the Power Up Function.
- A PUF probe is one or more consecutive Traffic Channel frames. A PUF probe consists of
- three parts: PUF setup, PUF pulse, and PUF recovery. PUF_SETUP_SIZE is the duration of
- the PUF setup part, in power control groups. PUF_PULSE_SIZE is the duration of the PUF
- pulse, in power control groups. The PUF recovery period occupies the remainder of the last
- 39 frame of the PUF probe.
- 40 A PUF attempt is a sequence of PUF probes sent by the mobile station in response to a
- Power Up Function Message. A PUF attempt begins at an offset frame boundary within 80

- ms of the ACTION_TIME specified in the *Power Up Function Message*. A PUF attempt can be terminated in one of four ways:
 - The mobile station receives a Power Up Function Completion Message.

10

11 12

13

14

15

- The mobile station has transmitted the maximum number of PUF probes specified in the *Power Up Function Message*.
 - The mobile station has transmitted the maximum number of probes allowed at its maximum output power.
 - The mobile station receives a new Power Up Function Message.

Figure 6.6.4.1.7-1. Structure of PUF Attempt

6.6.4.1.7.1 Processing the Power Up Function Message

The mobile station shall send a *Mobile Station Reject Order* with the ORDQ field set to '00000110' (message requires a capability that is not supported by the mobile station) if any of the following conditions are detected:

2

3

5

15

16

17

18

23

24

25

27

28

29

30

- PUF_FREQ_INCL_r is set to '1' and PUF_BAND_CLASS_r is not supported by the mobile station.
 - PUF_FREQ_INCL_r is set to '1' and the mobile station is unable to re-tune to the PUF Target Frequency during (PUF_SETUP_SIZE_r + 1) power control groups.
 - P_REV_IN_USE_s is less than or equal to four and the mobile station does not support the Power Up Function.

The mobile station shall send a *Mobile Station Reject Order* with the ORDQ field set to '00001100' (invalid frequency assignment), if the frequency assignment specified in the message is the same as the Serving Frequency (PUF_FREQ_INCL $_r$ is equal to '1', PUF_BAND_CLASS $_r$ is equal to CDMABAND $_s$ and PUF_CDMA_FREQ $_r$ is equal to CDMACH $_s$).

If the mobile station is processing a PUF probe, the mobile station shall wait for the PUF probe to complete. It shall then terminate the current PUF attempt. The mobile station shall store the following parameters:

- Maximum number of PUF probes transmitted at full power level (MAX_PWR_PUF_s = MAX_PWR_PUF_r + 1)
- Total number of PUF probes (TOTAL_PUF_PROBES_s = TOTAL_PUF_PROBES_r + 1)
- PUF interval (PUF_INTERVAL_s = PUF_INTERVAL_r)
- Number of PUF setup power control groups (PUF_SETUP_SIZE_S =
 PUF_SETUP_SIZE_r + 1)
- Number of PUF pulse power control groups (PUF_PULSE_SIZE_s = PUF_PULSE_SIZE_r
 +1)
 - Power increase of initial PUF pulse (PUF_INIT_PWR_s = PUF_INIT_PWR_r)
 - Power increase for each successive PUF pulse (PUF_PWR_STEP_s) = PUF_PWR_STEP_r)
 - Frequency included indicator (PUF_FREQ_INCL_s = PUF_FREQ_INCL_r)
- 26 If PUF_FREQ_INCL_S equals '1', the mobile station shall store the following:
 - PUF probe Target Frequency CDMA Channel number (PUF_TF_CDMACH_s = PUF_CDMA_FREQ_r)
 - PUF probe Target Frequency CDMA band class (PUF_TF_CDMABAND_S = PUF_BAND_CLASS_r)
- The mobile station shall set $CURRENT_PUF_PROBE_s$ equal to 0.
- The mobile station shall then begin the PUF attempt at the time specified in 6.6.4.1.7.2.
- ∞ 6.6.4.1.7.2 Power Up Function Procedures
- 34 The mobile station shall process the initial PUF probe beginning at the start of the frame
- which starts ACTION_TIME_FRAME_r \times 20 ms + FRAME_OFFSET_s \times 1.25 ms after the
- System Time specified by ACTION_TIME_r. The mobile station shall process additional PUF

- probes beginning at intervals of PUF_INTERVALs frames from the beginning of the initial
- 2 PUF probe.
- 3 The mobile station shall transmit the PUF probes as described in 6.6.4.1.7.2.1 and
- 4 6.6.4.1.7.2.2.

10

11

12

13

15

16

17

18

19

26

27

29

- 5 6.6.4.1.7.2.1 PUF Probe On Serving Frequency
- 6 The mobile station shall process each PUF probe as follows:
- The mobile station shall use closed loop power control procedures as specified in 6.1.2.3.2.1.
 - The mobile station shall use the gated output procedures specified in 6.1.2.2.2.2 and 6.1.3.1.7.3.
 - The mobile station shall control its mean output power as specified in 6.1.2.3.1.
 - The mobile station shall monitor its output power during the PUF pulse, and should
 monitor its output power at least once during each power control group of the PUF
 pulse. If the mobile station detects that the transmit power level specified in
 6.1.2.3.1 is equal to or greater than the maximum power output of the mobile
 station at any tine during a PUF pulse, the mobile station shall decrement
 MAX_PWR_PUF_S by one for that PUF pulse.
 - The mobile station shall transmit the traffic channel preamble for the duration of the PUF probe on the Reverse Fundamental Code Channel.
- After the processing of each PUF probe, the mobile station shall increment CURRENT_PUF_PROBE_S by 1. If MAX_PWR_PUF_S is equal to 0, the mobile station shall terminate the PUF attempt. If CURRENT_PUF_PROBE_S equal to TOTAL_PUF_PROBE_S, the mobile station shall terminate the PUF attempt.
- 6.6.4.1.7.2.2 PUF Probe On PUF Target Frequency
- The mobile station shall process each PUF probe as follows:
 - The mobile station shall use closed loop power control procedures as specified in 6.1.2.3.2.2.
- The mobile station shall use the gated output procedures specified in 6.1.3.1.7.3.
 - The mobile station shall control its mean output power as specified in 6.1.2.3.1.
- The mobile station shall store the following Serving Frequency parameters from its current configuration:
 - CDMA Band Class (PUF_SF_CDMABAND_s)
- Frequency assignment (PUF_SF_CDMACH_s)

7

10

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

29

30

31

32

- The mobile station shall monitor its output power during the PUF pulse, and should monitor its output power at least once during each power control group of PUF pulse. If the mobile station detects that the transmit power level specified in 6.1.2.3.1 is equal to or greater than the maximum power output of the mobile station at any time during a PUF pulse, the mobile station shall decrement the MAX_PWR_PUF_S by one for that PUF pulse.
 - At the beginning of the PUF probe, the mobile station shall disable its transmitter, stop processing the Forward Supplemental Code Channel (if any), disable all corrections to the mobile station time reference (see 6.1.5.1), tune to the CDMA channel specified by PUF_TF_CDMACH_S, and PUF_TF_CDMABAND_S and re-enable its transmitter.
 - The mobile station shall transmit the traffic channel preamble on the Reverse Fundamental Code Channel during the PUF pulse at PUF_TX_PWR_s.
 - The mobile station should disable its transmitter immediately after the end of the PUF pulse, and shall disable its transmitter before the end of the first power control group after the PUF pulse. It shall then tune to its assigned CDMA channel as given by CDMACH_S AND CDMABAND_S.
 - If the interval between the time that the mobile station tunes to the PUF Target Frequency and the time that it re-tunes to the Serving Frequency is equal to or greater than $(N_{2m} \times 0.02)$ seconds, the mobile station shall wait to receive N_{3m} consecutive good frames.
 - The mobile station shall then re-enable its transmitter and re-enable any adjustments to the mobile station time reference.
 - If Rate Set 2 is in use on the Reverse Traffic Channel, the mobile station shall set the Reserved/Erasure Indicator Bit as specified in 6.2.2.3.
 - If the Forward Supplemental Channel assignment has not expired while the mobile station has tuned to the PUF Target Frequency, then the mobile station shall resume processing the Forward Supplemental Code Channels after re-tuning to the Serving Frequency.
 - If the Reverse Supplemental Channel assignment has not expired while the mobile station has tuned to the PUF Target Frequency, then the mobile station may resume transmitting the Reverse Supplemental Code Channels after re-tuning to the Serving Frequency.
- After the processing of each PUF probe, the mobile station shall increment CURRENT_PUF_PROBE_s by one. If MAX_PWR_PUF_s is equal to 0, the mobile station shall terminate the PUF attempt. If CURRENT_PUF_PROBE_s is equal to TOTAL_PUF_PROBE_s, the mobile station shall terminate the PUF attempt.
- 6.6.4.1.7.3 Processing the Power Up Function Completion Message
- The mobile station shall terminate any PUF attempt no later than the completion of the
- 40 current probe in progress and shall discard any pending Power Up Function Message. If
- LOC_INDr is equal to '1', the mobile station may store the following parameters:

- Mobile Station Latitude (MS_LAT_s = MS_LAT_r)
- Mobile Station Longitude (MS_LONG_s = MS_LONG_r)
- Time stamp (MS_LOC_TSTAMP_s) = MS_LOC_TSTAMP_r)
- 4 6.6.4.2 Traffic Channel Initialization Substate
- In this substate, the mobile station verifies that it can receive the Forward Traffic Channel
- and begins transmitting on the Reverse Traffic Channel.
- 7 Upon entering the Traffic Channel Initialization Substate, the mobile station shall perform
- 8 the following:

11

13

14

15

17

19

20

21

- The mobile station shall perform registration initialization as specified in 6.6.5.5.4.1.
 - The mobile station shall reset the acknowledgment procedures as specified in 6.6.4.1.3.3.
 - The mobile station shall initialize Forward Traffic Channel power control as specified in 6.6.4.1.1.1.
 - The mobile station shall set the following variables to their initial default values given below:
 - Default power control step size (PWR_CNTL_STEP_s = '000')
 - Default begin preamble for Reverse Supplemental Code Channels (BEGIN_PREAMBLE_s = '000')
 - Default resume preamble for Reverse Supplemental Code Channels (RESUME_PREAMBLE_s = '000')
- Default start time for Reverse Supplemental Code Channel assignment
 (REV_START_TIME_s = NULL)
- Default Supplemental Channel Request Message retry delay
 (RETRY_DELAY_S = '00000000')
- Default pilot strength reporting offset
 (T_MULCHAN_s = '000')
- Default start time for forward Supplemental Code Channel Assignment
 (FOR_START_TIME_S = NULL)
- Default number of Reverse Supplemental Code Channels
 (NUM_REV_CODES_S = '000')
- Default reverse use T_ADD abort indicator (USE_T_ADD_ABORT_s = '0')
- Default Supplemental Channel Request Message sequence number
 (SCRM_SEQ_NUM_S = NULL)

1 2	-	Default indicator to ignore Supplemental Channel Assignment Message (IGNORE_SCAM _S = '0')
3 4	-	Default maximum wait time on the CDMA Candidate Frequency (CF_WAIT_TIME _S = '1111')
5 6	-	Default search period for the candidate search (SEARCH_PERIOD _S = '1111')
7 8	-	Default search window size for the Candidate Frequency Search Set (CF_SRCH_WIN_N _s)
9		Default search window size for the Remaining Set on the CDMA Candidate Frequency (CF_SRCH_WIN_R $_{\rm S}$ = SRCH_WIN_R $_{\rm S}$)
11 12	-	Default pilot PN sequence offset increment for the CDMA Candidate Frequency (CF_PILOT_INC $_S$)
13 14	. <u>-</u>	Default Candidate Frequency search priorities indicator (CF_SEARCH_PRIORITY_INCL _S = '0')
15 16	-	Default Candidate Frequency search window size included indicator (CF_SRCH_WIN_NGHBR_INCL _s = '0')
17 18	-	Default periodic search indicator (PERIODIC_SEARCH _S = '0')
19 20	_	Default return-if-handoff-fail indicator (RETURN_IF_HANDOFF_FAIL _s = '0')
21 . 22		Default total pilot E_c/I_o threshold (MIN_TOTAL_PILOT_EC_IO _S = '00000')
23 24	-	Default total pilot E_c threshold (SF_TOTAL_EC_THRESH _S = '11111')
25 26	-	Default total pilot E_c/I_0 threshold (SF_TOTAL_EC_IO_THRESH _s = '11111')
27 28	-	Default received power difference threshold (DIFF_RX_PWR_THRESH _s = '00000')
29 30	-	Default maximum wait time on the CDMA Target Frequency (TF_WAIT_TIME _S = '1111')
31 32	-	Default Candidate Frequency Search Set (Candidate Frequency Search Set is empty)
33 34	-	Default Analog Frequency Search Set (Analog Frequency Search Set is empty)
35 36	-	Default Candidate Frequency CDMA band (CF_CDMABAND _s = NULL)
37 38		Default Candidate Frequency CDMA channel (CF_CDMACH _S = NULL)

- If the ASSIGN_MODE_r field from the Channel Assignment Message equals '000', the mobile station shall set SERV_NEG_s to disabled.
- If the ASSIGN_MODE_r field from the Channel Assignment Message equals '100', the mobile station shall set SERV_NEG_s to enabled. For operation in Band Class 1, SERV_NEG_s is always equal to enabled.
 - The mobile station shall determine the service configuration as follows:

10

11

12

14

16

17

19

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

- If SERV_NEG_S equals disabled, the initial service configuration shall include Multiplex Option 1 and Rate Set 1 for both the Forward and Reverse Traffic Channels, and shall include no service option connections.
- If SERV_NEG_s equals enabled, GRANTED_MODE_s equals '00', the initial service configuration shall include the multiplex option and rate set for the Forward and Reverse Traffic Channels as specified by DEFAULT_CONFIG_s, and shall include no service option connections.
- If SERV_NEG_s equals enabled and GRANTED_MODE_s equals '01' or '10', the initial service configuration shall include the default Forward and Reverse Traffic Channel multiplex options and transmission rates corresponding to the service option requested by the mobile station in the *Origination Message*, in the case of a mobile station originated call, or the *Page Response Message*, in the case of a mobile station terminated call, and shall include no service option connections.
- If SERV_NEG_s equals disabled, the mobile station shall perform the following:
 - + If the call is mobile station originated and the *Origination Message* requests a special service option, the mobile station shall set SO_REQ_S to the special service option number.
 - + If the call is mobile station originated and the *Origination Message* does not request a special service option, the mobile station shall set SO_REQ_s to 1 (the default service option number).
 - + If the call is mobile station terminated, the mobile station shall set SO_REQ_S to the service option number requested in the *Page Response Message*.

While in the *Traffic Channel Initialization Substate*, the mobile station shall perform the following:

- The mobile station shall monitor Forward Traffic Channels associated with one or more pilots in the Active Set.
- The mobile station shall perform pilot strength measurements as specified in 6.6.6.2.2, but shall not send *Pilot Strength Measurement Messages*.
- The mobile station shall perform registration timer maintenance as specified in 6.6.5.5.4.2.
- If the bits of TMSI_CODE_{s-p} are not all equal to '1' and if System Time (in 80 ms units) exceeds TMSI_EXP_TIME_{s-p} \times 2¹², the mobile station shall set all the bits of TMSI_CODE_{s-p} to '1' within T_{66m} seconds.

3

12

14

15

16

17

18

19

20

21

22 23

24

25

27

28

29

30

31

32

33

34

35

36

37

38

39

- If the full-TMSI timer expires or has expired, the mobile station shall set all the bits of TMSI_CODE_{s-p} to '1'. The mobile station shall update the registration variables as described in 6.6.5.5.2.5.
- If the mobile station does not support the assigned CDMA Channel (see 6.2.1.1) or all of the assigned Forward Traffic code channels (see 7.1.3.1.8), the mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with an error indication (see 6.6.1.1).
- If the mobile station supports the assigned CDMA Channel and the assigned Forward Traffic code channels, the mobile station shall perform the following:
 - The mobile station shall tune to the assigned CDMA Channel.
 - The mobile station shall set its code channel for the assigned Forward Traffic code channel.
 - The mobile station shall set its Forward and Reverse Traffic Channel frame offsets to the assigned frame offset as determined by FRAME_OFFSET_s.
 - The mobile station shall set its Forward and Reverse Traffic Channel long code masks to the public long code mask (see 6.1.3.1.8).

If the mobile station does not receive N_{5m} consecutive good frames within T_{50m} seconds after entering this substate, the mobile station shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with a system lost indication (see 6.6.1.1).

If the mobile station receives N_{5m} consecutive good frames within T_{50m} seconds after entering this substate, the mobile station shall perform the following additional functions while it remains in the *Traffic Channel Initialization Substate*:

- The mobile station shall perform Forward Traffic Channel supervision as specified in 6.4.4. If a loss of the Forward Traffic Channel is declared, the mobile station shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with a system lost indication (see 6.6.1.1).
- The mobile station shall adjust its transmit power as specified in 6.1.2.3.
- The mobile station shall transmit the Traffic Channel preamble as specified in 6.1.3.3.2.3.
- The mobile station shall process Forward Traffic Channel signaling traffic and shall discard other types of Forward Traffic Channel traffic.
- The mobile station shall perform the acknowledgment procedures as specified in 6.6.4.1.3. If an acknowledgment failure is declared, the mobile station shall disable its transmitter and enter the System Determination Substate of the Mobile Station Initialization State with a system lost indication (see 6.6.1.1).

When there are multiple PILOT_PNs from the Extended Channel Assignment Message, the mobile station should provide diversity combining of the Forward Traffic Channel associated with all PILOT_PNs while attempting to receive N_{5m} consecutive good frames with T_{50m} seconds after entering this substate.

6-304

- The mobile station should provide diversity combining of the Forward Traffic Channels
- associated with pilots in the Active Set, if the mobile station receives multiple pilots in the
- 3 Extended Channel Assignment Message.
- If the mobile station does not receive a Base Station Acknowledgment Order within T51m
- seconds after the first occurrence of receiving N_{5m} consecutive good frames, the mobile
- station shall disable its transmitter and enter the System Determination Substate of the
- 7 Mobile Station Initialization State with a system lost indication (see 6.6.1.1).
- If the mobile station receives a Base Station Acknowledgment Order within T51m seconds
- $_{\rm 9}$ $\,$ after the first occurrence of receiving N_{5m} consecutive good frames, the mobile station shall
- 10 perform the following:

12

13

15

16

18

19

20

21

22

29

31

32

33

34

- If SERV_NEG_s equals disabled, the mobile station shall activate the SO Negotiation Subfunction.
 - If SERV_NEG_s equals enabled and the GRANTED_MODE_s is '00' or '01', the mobile station shall activate the *Normal Service Subfunction*.
 - If SERV_NEG_s equals enabled and the GRANTED_MODE_s is '10', the mobile station shall activate the *Waiting for Service Connect Message Subfunction*.
 - If the call is mobile station terminated, and BYPASS_ALERT_ANSWER_s is '1', the
 mobile station shall enter the *Conversation Substate*. If the call is mobile station
 terminated and BYPASS_ALERT_ANSWER_s is '0', the mobile station shall enter the
 Waiting for Order Substate.
 - If the call is mobile station originated, the mobile station shall enter the *Conversation Substate*.
- 2 6.6.4.3 Alerting
- 24 6.6.4.3.1 Waiting for Order Substate
- In this substate, the mobile station waits for an Alert With Information Message.
- Upon entering the Waiting for Order Substate, the mobile station shall set the substate timer for T_{52m} seconds.
- 28 While in the Waiting for Order Substate, the mobile station shall perform the following:
 - If the substate timer expires, the mobile station shall disable its transmitter and enter the *System Determination Substate* of the *Mobile Station Initialization State* with a system lost indication (see 6.6.1.1).
 - The mobile station shall perform Forward Traffic Channel supervision as specified in 6.4.4. If a loss of the Forward Traffic Channel is declared, the mobile station shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with a system lost indication (see 6.6.1.1).
 - The mobile station shall adjust its transmit power as specified in 6.1.2.3.
 - The mobile station shall perform Forward Traffic Channel power control as specified in 6.6.4.1.1.

- The mobile station shall perform handoff processing as specified in 6.6.6.
- The mobile station shall process Forward and Reverse Traffic Channel frames in accordance with requirements for the active service subfunction (see 6.6.4.1.2.2).
- The mobile station shall perform registration timer maintenance as specified in 6.6.5.5.4.2.
 - If the mobile station is directed by the user to transmit a message, the mobile station shall send a *Data Burst Message*.
 - If the mobile station is directed by the user to request a new service configuration, the mobile station shall initiate service negotiation or service option negotiation in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
 - The mobile station may send a Service Option Control Message or Service Option Control Order to invoke a service option specific function in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
 - If the mobile station is directed by the user to request a private long code transition
 and has the long code mask (see 6.3.12.3), the mobile station shall send a Long
 Code Transition Request Order (ORDQ = '00000001') as a message requiring
 acknowledgment.
 - If the mobile station is directed by the user to request a public long code transition, the mobile station shall send a *Long Code Transition Request Order* (ORDQ = '00000000') as a message requiring acknowledgment.
 - If the mobile station is directed by the user to operate in analog mode, allowing operation in either wide or narrow analog mode, the mobile station shall send the Request Analog Service Order as a message requiring acknowledgment.
 - If the mobile station is directed by the user to operate in wide analog mode, the
 mobile station shall send the Request Wide Analog Service Order as a message
 requiring acknowledgment.
 - If the mobile station is directed by the user to operate in narrow analog mode, the mobile station shall send the Request Narrow Analog Service Order as a message requiring acknowledgment.
 - If the mobile station is directed by the user to power down, the mobile station shall enter the *Release Substate* with a power-down indication (see 6.6.4.5).
 - The mobile station shall perform the acknowledgment procedures as specified in 6.6.4.1.3. If an acknowledgment failure is declared, the mobile station shall disable its transmitter and enter the *System Determination Substate* of the *Mobile Station Initialization State* with a system lost indication (see 6.6.1.1).
 - If the mobile station receives a message which is included in the following list and
 every message field value is within its permissible range, the mobile station shall
 process the message as described below and in accordance with the message's
 action time (see 6.6.4.1.5).

6-306

- 1. Alert With Information Message: If the message contains a Signal information record, the mobile station should alert the user in accordance with the Signal information record; otherwise, the mobile station should use standard alert as defined in 7.7.5.5. The mobile station shall enter the Waiting for Mobile Station Answer Substate (see 6.6.4.3.2).
- 2. Analog Handoff Direction Message: If the analog mode directed by the base station is supported by the mobile station, the mobile station shall process the message as specified in 6.6.6.2.9, and enter the Waiting For Order Task (see 2.6.4.3.1 for handoff to a wide analog channel and 2.6.5.3.1A of TIA/EIA/IS-91-A for handoff to an 800 MHz narrow analog channel). If the mobile station is directed to an unsupported operation mode or band class, the mobile station shall respond with a Mobile Station Reject Order with ORDQ equal to '00000110' (message requires a capability that is not supported by the mobile station).
- 3. Audit Order

12

13

14

15

16

17

18

19

20

21

22

23

24

27

29

30

33

35

37

41

- 4. Authentication Challenge Message: The mobile station shall reset the substate timer for T_{52m} seconds. The mobile station shall then process the message and respond as specified in 6.3.12.1.5 within T_{32m} seconds, regardless of the value of $AUTH_{5}$.
- 5. Base Station Acknowledgment Order
- Base Station Challenge Confirmation Order: The mobile station shall reset the substate timer for T_{52m} seconds. The mobile station shall then process the message and respond with an SSD Update Confirmation Order or SSD Update Rejection Order as specified in 6.3.12.1.9 within T_{32m} seconds.
- 7. Candidate Frequency Search Control Message: The mobile station shall process the message as specified in 6.6.6.2.5.1.
- 8. Candidate Frequency Search Request Message: The mobile station shall process the message as specified in 6.6.6.2.5.1.
- 9. Data Burst Message
- 10. Extended Handoff Direction Message: If the band class is not specified in the message or the specified band class is supported by the mobile station, the mobile station shall process the message as specified in 6.6.6.2.5.1. The mobile station shall reset the substate timer for T_{52m} seconds.
- 11. Extended Neighbor List Update Message: The mobile station shall process the message as specified in 6.6.6.2.6.3.
- 12. General Handoff Direction Message: If the band class is not specified in the message or the specified band class is not supported by the mobile station, the mobile station shall process the message as specified in 6.6.6.2.5.1. The mobile station shall reset the substate timer for T_{52m} seconds. If the message contains a service configuration record, the mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).

6-307

- 13. *In-Traffic System Parameters Message*: The mobile station shall process the message as specified in 6.6.4.1.4.
- 14. Local Control Order
- 15. Lock Until Power-Cycled Order: The mobile station shall disable its transmitter and record the reason for the Lock Until Power-Cycled Order in the mobile station's semi-permanent memory (LCKRSN_P_{S-p} equals the least significant four bits of ORDQ_r). The mobile station should notify the user of the locked condition. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a lock indication (see 6.6.1.1), and shall not enter the System Access State again until after the next mobile station power-up or until it has received an Unlock Order. This requirement shall take precedence over any other mobile station requirement specifying entry to the System Access State.
- 16. Long Code Transition Request Order: The mobile station shall process the message as specified in 6.6.4.1.6.
- 17. Maintenance Order: The mobile station shall enter the Waiting for Mobile Station Answer Substate.
- 18. Maintenance Required Order: The mobile station shall record the reason for the Maintenance Required Order in the mobile station's semi-permanent memory (MAINTRSN_{s-p} equals the least significant four bits of ORDQ_r). The mobile station shall remain in the unlocked condition. The mobile station should notify the user of the maintenance required condition.
- 19. Message Encryption Mode Order: The mobile station shall process the message as specified in 6.3.12.2.
- 20. *Mobile Station Registered Message:* The mobile station shall process the message as specified in 6.6.5.5.4.3.
- 21. *Neighbor List Update Message:* The mobile station shall process the message as specified in 6.6.6.2.6.3.
- 22. Parameter Update Order: The mobile station shall reset the substate timer for T_{52m} seconds. The mobile station shall increment COUNT_{s-p} (see 2.3.12.1.3). The mobile station shall send a Parameter Update Confirmation Order within T_{56m} seconds. The mobile station shall set the ORDQ field of the Parameter Update Confirmation Order to the same value as the ORDQ field of the Parameter Update Order.
- 23. *Pilot Measurement Request Order*: The mobile station shall process the order as specified in 6.6.6.2.5.1.
- 24. Power Control Message: If PWR_CNTL_STEP_r corresponds to a power control step size (see 6.1.2.3.2) supported by the mobile station, the mobile station shall store the power control step size (PWR_CNTL_STEP_s = PWR_CNTL_STEP_r).
- 25. *Power Control Parameters Message:* The mobile station shall process the message as specified in 6.6.4.1.1.2.

- 26. Power Up Function Message: The mobile station shall process the message as specified in 6.6.4.1.7.1.
 - 27. Power Up Function Completion Message: The mobile station shall process the message as specified in 6.6.4.1.7.3.
 - 28. *Release Order:* The mobile station shall enter the *Release Substate* with a base station release indication (see 6.6.4.5).
 - 29. Retrieve Parameters Message: The mobile station shall send, within T_{56m} seconds, a Parameters Response Message.
 - 30. Service Connect Message: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).

12

13

14

15

16

17

18

19

21

22 23

24

26

27

29

30

31

33

35

- 31. Service Option Control Message: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 32. Service Option Control Order: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 33. Service Option Request Order: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 34. Service Option Response Order: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 35. Service Request Message: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 36. Service Response Message: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 37. Set Parameters Message: If the mobile station can set all of the parameters specified by the PARAMETER_ID fields in the message, the mobile station shall set them; otherwise, the mobile station shall send, within T_{56m} seconds, a Mobile Station Reject Order.
- 38. *SSD Update Message*: The mobile station shall reset the substate timer for T_{52m} seconds. The mobile station shall then process the message and respond with a *Base Station Challenge Order* as specified in 6.3.12.1.9 within T_{32m} seconds.

3

10

12

13

15

16

17

18

19 20

22

25

27

29

30 31

32 33

34

35

36

37

38 39

40

- 39. Status Request Message: The mobile station shall send, within T56m seconds, a Status Response Message. If the message does not specify any qualification information (QUAL_INFO_TYPE_r is equal to '00000000'), the mobile station shall include the requested information records in the Status Response Message. If the message specifies a band class (QUAL_INFO_TYPE_r is equal to '00000001'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) in the Status Response Message. If the message specifies a band class and an operating mode (QUAL_INFO_TYPE_r is equal to '00000010'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) and operating mode (OP_MODE_r) in the Status Response Message. If the message specifies a band class or a band class and an operating mode which is not supported by the mobile station, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00000110' (message requires a capability that is not supported by the mobile station). If the response to this message exceeds the allowable length, the mobile station shall send a Mobile Station Reject Order with ORDO set to '00001000' (response message would exceed the allowable length). If the message specifies an information record which is not supported by the mobile station for the specified band class and operating mode, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00001001' (information record is not supported for the specified band class and operating mode).
- 40. Status Request Order: If CDMABAND_S is equal to '00000', the mobile station shall send, within T_{56m} seconds, a Status Message. The mobile station shall respond with information corresponding to the current band class and operating mode.
- 41. Supplemental Channel Assignment Message: The mobile station shall process the message as specified in 6.6.2.5.1.
- 42. *TMSI Assignment Message:* The mobile station shall store the TMSI zone and code as follows:
 - The mobile station shall store the length of the TMSI zone field by setting ASSIGNING_TMSI_ZONE_LEN_{s-p} to TMSI_ZONE_LEN_r,
 - The mobile station shall store the assigning TMSI zone number by setting the ASSIGNING_TMSI_ZONE_LEN_{s-p} least significant octets of ASSIGNING_TMSI_ZONE_{s-p} to TMSI_ZONE_r, and
 - The mobile station shall store the TMSI code by setting TMSI_CODE $_{s\mbox{-}p}$ to TMSI_CODE $_{r\mbox{-}}$

The mobile station shall set the TMSI expiration time by setting TMSI_EXP_TIME $_{s-p}$ to TMSI_EXP_TIME $_{r}$. The mobile station shall disable the full-TMSI timer. The mobile station shall then respond with a *TMSI Assignment Completion Message* within T $_{56m}$ seconds.

- If the mobile station receives any other message with a MSG_TYPE specified in Table 7.7.3.3-1, it shall process all layer 2 fields of the message. If the mobile station receives a message that is not included in the above list, cannot be processed, or requires a capability which is not supported, the mobile station shall discard the message and send a *Mobile Station Reject Order* (ORDQ set to the applicable reason code as determined from Table 6.7.3-1) within T_{56m} seconds.
 - If the bits of TMSI_CODE_{s-p} are not all equal to '1' and if System Time (in 80 ms units) exceeds TMSI_EXP_TIME_{s-p} \times 2¹², the mobile station shall set all the bits of TMSI_CODE_{s-p} to '1' within T_{66m} seconds.
 - If the full-TMSI timer expires or has expired, the mobile station shall set all the bits of TMSI_CODE_{s-p} to '1'. The mobile station shall update the registration variables as described in 6.6.5.5.2.5.
- 6.6.4.3.2 Waiting for Mobile Station Answer Substate

11

20

21

22

23

24

26

27

28

29

- In this substate, the mobile station waits for the user to answer or forward the mobile station terminated call.
- Upon entering the Waiting for Mobile Station Answer Substate, the mobile station shall set the substate timer for T_{53m} seconds.
- While in the *Waiting for Mobile Station Answer Substate*, the mobile station shall perform the following:
 - If the substate timer expires, the mobile station shall disable its transmitter and enter the *System Determination Substate* of the *Mobile Station Initialization State* with a system lost indication (see 6.6.1.1).
 - The mobile station shall perform Forward Traffic Channel supervision as specified in 6.4.4. If a loss of the Forward Traffic Channel is declared, the mobile station shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with a system lost indication (see 6.6.1.1).
 - The mobile station shall adjust its transmit power as specified in 6.1.2.3.
 - The mobile station shall perform Forward Traffic Channel power control as specified in 6.6.4.1.1.
 - The mobile station shall perform handoff processing as specified in 6.6.6.
- The mobile station shall process Forward and Reverse Traffic Channel frames in accordance with requirements for the active service subfunction (see 6.6.4.1.2.2).
- The mobile station shall perform registration timer maintenance as specified in 6.6.5.5.4.2.
- If the mobile station is directed by the user to answer the call, the mobile station shall send a *Connect Order* to the base station as a message requiring acknowledgment. The mobile station shall enter the *Conversation Substate*.
 - If the mobile station is directed by the user to transmit a message, the mobile station shall send a Data Burst Message.

3

10

11

12

13

15

16

17

19

20 21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

40

- If the mobile station is directed by the user to request a new service configuration, the mobile station shall initiate service negotiation or service option negotiation in 2 accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
 - If the mobile station is directed by the user to forward the incoming call, the mobile station shall send a Flash With Information Message with a Feature Indicator information record (see 6.7.4.1).
 - The mobile station may send a Service Option Control Message or Service Option Control Order to invoke a service option specific function in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
 - If the mobile station is directed by the user to request a private long code transition and has the long code mask (see 6.3.12.3), the mobile station shall send a Long Code Transition Request Order (ORDQ = '00000001') as a message requiring acknowledgment.
 - If the mobile station is directed by the user to request a public long code transition, the mobile station shall send a Long Code Transition Request Order (ORDQ = '00000000') as a message requiring acknowledgment.
 - If the mobile station is directed by the user to operate in analog mode, allowing operation in either wide or narrow analog mode, the mobile station shall send the Request Analog Service Order as a message requiring acknowledgment.
 - If the mobile station is directed by the user to operate in wide analog mode, the mobile station shall send the Request Wide Analog Service Order as a message requiring acknowledgment.
 - If the mobile station is directed by the user to operate in narrow analog mode, the mobile station shall send the Request Narrow Analog Service Order as a message requiring acknowledgment.
 - If the mobile station is directed by the user to power down, the mobile station shall enter the Release Substate with a power-down indication (see 6.6.4.5).
 - The mobile station shall perform the acknowledgment procedures as specified in 6.6.4.1.3. If an acknowledgment failure is declared, the mobile station shall disable its transmitter and enter the System Determination Substate of the Mobile Station Initialization State with a system lost indication (see 6.6.1.1).
 - If the mobile station receives a message which is included in the following list and every message field value is within its permissible range, the mobile station shall process the message as described below and in accordance with the message's action time (see 6.6.4.1.5).
 - 1. Alert With Information Message: The mobile station shall reset the substate timer for T53m seconds. If the Alert With Information Message does not contain a Signal information record, the mobile station should use standard alert as defined in 7.7.5.5.

6-312

- 2. Analog Handoff Direction Message: If the analog mode directed by the base station is supported by the mobile station, the mobile station shall process the message as specified in 6.6.6.2.9 and enter the Waiting For Answer Task (see 2.6.4.3.2 for handoff to a wide analog channel and 2.6.5.3.2A of TIA/EIA/IS-91-A for handoff to an 800 MHz narrow analog channel). If the mobile station is directed to an unsupported operation mode or band class, the mobile station shall respond with a Mobile Station Reject Order with ORDQ equal to '00000110' (message requires a capability that is not supported by the mobile station).
- Audit Order

12

13

14

15

16

18

19 20

21

22

23

25 26

27

28

29

31

32

33

- 4. Authentication Challenge Message: The mobile station shall process the message and respond as specified in 6.3.12.1.5 within T_{32m} seconds, regardless of the value of AUTH_s.
- 5. Base Station Acknowledgment Order
- Base Station Challenge Confirmation Order: The mobile station shall process the message and respond with an SSD Update Confirmation Order or SSD Update Rejection Order as specified in 6.3.12.1.9 within T_{32m} seconds.
- 7. Candidate Frequency Search Control Message: The mobile station shall process the message as specified in 6.6.6.2.5.1.
- 8. Candidate Frequency Search Request Message: The mobile station shall process the message as specified in 6.6.6.2.5.1.
- 9. Data Burst Message
- 10. Extended Handoff Direction Message: If the band class is not specified in the message or the specified band is supported by the mobile station, the mobile station shall process the message as specified in 6.6.6.2.5.1.
- 11. Extended Neighbor List Update Message: The mobile station shall process the message as specified in 6.6.6.2.6.3.
- 12. General Handoff Direction Message: If the band class is not specified in the message or the specified band is supported by the mobile station, the mobile station shall process the message as specified in 6.6.6.2.5.1. If the message contains a service configuration record, the mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 13. *In-Traffic System Parameters Message:* The mobile station shall process the message as specified in 6.6.4.1.4.
- 14. Local Control Order

13

16

18

19

20

21

22

23

24

25

26

27

30

31

32

35

36

37

39

40

- 15. Lock Until Power-Cycled Order: The mobile station shall disable its transmitter and record the reason for the Lock Until Power-Cycled Order in the mobile station's semi-permanent memory (LCKRSN_P_{S-p} equals the least-significant four bits of ORDQ_r). The mobile station should notify the user of the locked condition. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a lock indication (see 6.6.1.1), and shall not enter the System Access State again until after the next mobile station power-up or until it has received an Unlock Order. This requirement shall take precedence over any other mobile station requirement specifying entry to the System Access State.
- 16. Long Code Transition Request Order: The mobile station shall process the message as specified in 6.6.4.1.6.
- Maintenance Order: The mobile station shall reset the substate timer for T_{53m} seconds.
- 18. Maintenance Required Order: The mobile station shall record the reason for the Maintenance Required Order in the mobile station's semi-permanent memory (MAINTRSN_{s-p} equals the least-significant four bits of ORDQ_r). The mobile station shall remain in the unlocked condition. The mobile station should notify the user of the maintenance required condition.
- 19. Message Encryption Mode Order: The mobile station shall process the message as specified in 6.3.12.2.
- Mobile Station Registered Message: The mobile station shall process the message as specified in 6.6.5.5.4.3.
- 21. *Neighbor List Update Message*: The mobile station shall process the message as specified in 6.6.6.2.6.3.
- 22. Parameter Update Order: The mobile station shall increment COUNT_{s-p} (see 2.3.12.1.3). The mobile station shall send a Parameter Update Confirmation Order within T_{56m} seconds. The mobile station shall set the ORDQ field of the Parameter Update Confirmation Order to the same value as the ORDQ field of the Parameter Update Order.
- 23. Pilot Measurement Request Order: The mobile station shall process the order as specified in 6.6.6.2.5.1.
- 24. Power Control Message: If $PWR_CNTL_STEP_r$ corresponds to a power control step size (see 6.1.2.3.2) supported by the mobile station, the mobile station shall store the power control step size ($PWR_CNTL_STEP_s = PWR_CNTL_STEP_r$).
- 25. *Power Control Parameters Message*: The mobile station shall process the message as specified in 6.6.4.1.1.2.
- 26. *Power Up Function Message*: The mobile station shall process the message as specified in 6.6.4.1.7.1.
- 27. Power Up Function Completion Message: The mobile station shall process the message as specified in 6.6.4.1.7.3.

- 28. Release Order: The mobile station shall enter the Release Substate with a base station release indication (see 6.6.4.5).
 - 29. Retrieve Parameters Message: The mobile station shall send, within T_{56m} seconds, a Parameters Response Message.
 - 30. Service Connect Message: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
 - 31. Service Option Control Message: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
 - 32. Service Option Control Order: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).

12

20

21

22

23

24

25

26

27

28

29

30

31

- 33. Service Option Request Order: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 34. Service Option Response Order: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 35. Service Request Message: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 36. Service Response Message: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 37. Set Parameters Message: If the mobile station can set all of the parameters specified by the PARAMETER_ID fields in the message, the mobile station shall set them; otherwise, the mobile station shall send, within T_{56m} seconds, a Mobile Station Reject Order.
- 38. SSD Update Message: The mobile station shall process the message and respond with a Base Station Challenge Order as specified in 6.3.12.1.9 within T_{32m} seconds.

12

13

15

16

18

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

- 39. Status Request Message: The mobile station shall send, within T56m seconds, a Status Response Message. If the message does not specify any qualification information (QUAL_INFO_TYPE_r is equal to '00000000'), the mobile station shall include the requested information records in the Status Response Message. If the message specifies a band class (QUAL_INFO_TYPE_r is equal to '00000001'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) in the Status Response Message. If the message specifies a band class and an operating mode (QUAL_INFO_TYPE_r is equal to '00000010'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) and operating mode (OP_MODE_r) in the Status Response Message. If the message specifies a band class or a band class and an operating mode which is not supported by the mobile station, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00000110' (message requires a capability that is not supported by the mobile station). If the response to this message exceeds the allowable length, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00001000' (response message would exceed the allowable length). If the message specifies an information record which is not supported by the mobile station for the specified band class and operating mode, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00001001' (information record is not supported for the specified band class and operating mode).
 - 40. Status Request Order: If CDMABANDs is equal to '00000', the mobile station shall send, within T_{56m} seconds, a Status Message. The mobile station shall respond with information corresponding to the current band class and operating mode.
 - 41. Supplemental Channel Assignment Message: The mobile station shall process the message as specified in 6.6.6.2.5.1.
 - 42. *TMSI Assignment Message*: The mobile station shall store the TMSI zone and code as follows:
 - The mobile station shall store the length of the TMSI zone field by setting ASSIGNING_TMSI_ZONE_LEN_{s-p} to TMSI_ZONE_LEN_r,
 - The mobile station shall store the assigning TMSI zone number by setting the ASSIGNING_TMSI_ZONE_LEN_{s-p} least significant octets of ASSIGNING_TMSI_ZONE_{s-p} to TMSI_ZONE_r, and
 - The mobile station shall store the TMSI code by setting TMSI_CODE_{s-p} to TMSI_CODE_r.

The mobile station shall set the TMSI expiration time by setting $TMSI_EXP_TIME_{s-p}$ to $TMSI_EXP_TIME_{r}$. The mobile station shall disable the full-TMSI timer. The mobile station shall then respond with a *TMSI Assignment Completion Message* within T_{56m} seconds.

- If the mobile station receives any other message with a MSG_TYPE specified in
 Table 7.7.3.3-1, it shall process all layer 2 fields of the message. If the mobile
 station receives a message that is not included in the above list, cannot be
 processed, or requires a capability which is not supported, the mobile station shall
 discard the message and send a *Mobile Station Reject Order* (ORDQ set to the
 applicable reason code as determined from Table 6.7.3-1) within T_{56m} seconds.
- If the bits of $TMSI_CODE_{s-p}$ are not all equal to '1' and if System Time (in 80 ms units) exceeds $TMSI_EXP_TIME_{s-p} \times 2^{12}$, the mobile station shall set all the bits of $TMSI_CODE_{s-p}$ to '1' within T_{66m} seconds.
 - If the full-TMSI timer expires or has expired, the mobile station shall set all the bits of $TMSI_CODE_{s-p}$ to '1'. The mobile station shall update the registration variables as described in 6.6.5.5.2.5.

6.6.4.4 Conversation Substate

10

11

12

17

18

20

21

22

23

24

25

26

37

38

- In this substate, the mobile station exchanges Traffic Channel frames with the base station in accordance with the current service configuration.
- 16 Upon entering the *Conversation Substate*, the mobile station shall perform the following:
 - If SERV_NEG_s equals enabled, the call is mobile station originated, and GRANTED_MODE_s is equal to '00' or '01', the mobile station should initiate service negotiation to request a service configuration in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
 - While in the Conversation Substate, the mobile station shall perform the following:
 - The mobile station shall perform Forward Traffic Channel supervision as specified in 6.4.4. If a loss of the Forward Fundamental Code Channel is declared, the mobile station shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with a system lost indication (see 6.6.1.1).
 - The mobile station shall adjust its transmit power as specified in 6.1.2.3.
- The mobile station shall perform Forward Traffic Channel power control as specified in 6.6.4.1.1.
 - The mobile station shall perform handoff processing as specified in 6.6.6.
- The mobile station shall process Forward and Reverse Traffic Channel frames in accordance with requirements for the active service subfunction (see 6.6.4.1.2.2).
- The mobile station shall perform registration timer maintenance as specified in 6.6.5.5.4.2.
- The mobile station shall send an *Origination Continuation Message* as a message requiring acknowledgment within T_{54m} seconds after entering the *Conversation*Substate if any of the following conditions occur:
 - The mobile station originated the call and did not send all the dialed digits in the Origination Message.
 - There is more than one calling party number associated with the mobile station.

В

- A calling party subaddress is used in the call.
- A called party subaddress is used in the call.

If more than one calling party number is associated with the mobile station, the mobile station shall include the calling party number being used in the calling party number information record in the *Origination Continuation Message*. If only one calling party number is associated with the mobile station, the mobile station shall not include the calling party number information record in the *Origination Continuation Message*. If a calling party subaddress is used, the mobile station shall include the calling party subaddress information record in the *Origination Continuation Message*: otherwise, the mobile station shall omit the calling party subaddress information record in the *Origination Continuation Message*: otherwise, the mobile station shall omit the calling party subaddress information record in the *Origination Continuation Message*: otherwise, the mobile station shall omit the calling party subaddress information record.

- If the mobile station is directed by the user to transmit a message, the mobile station shall send a *Data Burst Message*.
- If the mobile station is directed by the user to request a new service configuration, the mobile station shall initiate service negotiation or service option negotiation in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- The mobile station may send a *Service Option Control Message* or *Service Option Control Order* to invoke a service option specific function in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- If the mobile station is directed by the user to request a private long code transition and has the long code mask (see 6.3.12.3), the mobile station shall send a *Long Code Transition Request Order* (ORDQ = '00000001') as a message requiring acknowledgment.
- If the mobile station is directed by the user to request a public long code transition, the mobile station shall send a *Long Code Transition Request Order* (ORDQ = '00000000') as a message requiring acknowledgment.
- If the mobile station is directed by the user to issue a flash, the mobile station shall build a Flash With Information Message with the collected digits or characters contained in a Keypad Facility information record, if needed, and shall send the message to the base station as a message requiring acknowledgment.
- If the mobile station is directed by the user to send burst DTMF digits, the mobile station shall build the *Send Burst DTMF Message* with the dialed digits and shall send the message as a message requiring acknowledgment. The mobile station sending multiple *Send Burst DTMF Messages* shall preserve relative ordering of these messages (see 6.6.4.1.3.1.1). The mobile station should attempt to preserve the user timing as much as possible, using recommended values of DTMF_ON_LENGTH (see Table 6.7.2.3.2.7-1) and DTMF_OFF_LENGTH (see Table 6.7.2.3.2.7-2).

6-318

- If the mobile station is directed by the user to send a continuous DTMF digit, the mobile station shall build the Continuous DTMF Tone Order with the dialed digit and 2 shall send the order as a message requiring acknowledgment. When the mobile 3 station is directed by the user to cease sending the continuous DTMF digit, the mobile station shall send the Continuous DTMF Tone Order (ORDQ = '11111111') as 5 a message requiring acknowledgment. The mobile station sending multiple Continuous DTMF Tone Orders shall preserve relative ordering of these messages (see 6.6.4.1.3.1.1). The mobile station shall send the Continuous DTMF Tone Order with A the ORDQ set to '11111111' indicating the completion of the current continuous DTMF digit before sending the Continuous DTMF Tone Order for another digit or the 10 Send Burst DTMF Message. 11
 - If the mobile station is directed by the user to operate in analog mode, allowing
 operation in either wide or narrow analog mode, the mobile station shall send the
 Request Analog Service Order as a message requiring acknowledgment.
 - If the mobile station is directed by the user to operate in wide analog mode, the mobile station shall send the Request Wide Analog Service Order as a message requiring acknowledgment.
 - If the mobile station is directed by the user to operate in narrow analog mode, the mobile station shall send the *Request Narrow Analog Service Order* as a message requiring acknowledgment.
 - If the mobile station is directed by the user to disconnect the call, the mobile station shall enter the *Release Substate* with a mobile station release indication (see 6.6.4.5).
 - If the mobile station is directed by the user to power down, the mobile station shall enter the *Release Substate* with a power-down indication (see 6.6.4.5).
 - The mobile station shall perform the acknowledgment procedures as specified in 6.6.4.1.3. If an acknowledgment failure is declared, the mobile station shall disable its transmitter and shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with a system lost indication (see 6.6.1.1).
 - The mobile station may send a *Supplemental Channel Request Message* in accordance with requirements for the currently connected service option.
 - If the mobile station receives a message which is included in the following list and every message field value is within its permissible range, the mobile station shall process the message as described below and in accordance with the message's action time (see 6.6.4.1.5).
 - 1. Alert With Information Message: If the message contains a Signal information record with the SIGNAL_TYPE field set to '01' or '10', or if the message does not contain a Signal information record, the mobile station shall enter the Waiting For Mobile Station Answer Substate. The mobile station should alert the user in accordance with the Signal information record. If the Alert With Information Message does not contain a Signal information record, the mobile station should use standard alert as defined in 7.7.5.5.

6-319

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

29

30

31

32

33

34

35

36

37

39

40

- 2. Analog Handoff Direction Message: If the analog mode directed by the base station is supported by the mobile station, the mobile station shall process the message as specified in 6.6.6.2.9 and shall enter the Conversation Task (see 2.6.4.4 for handoff to a wide analog channel and 2.6.5.4A of TIA/EIA/IS-91-A for handoff to an 800 MHz narrow analog channel). If the mobile station is directed to an unsupported operation mode or band class, the mobile station shall respond with a Mobile Station Reject Order with ORDQ equal to '00000110' (message requires a capability that is not supported by the mobile station).
- 3. Audit Order

10

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

29

30

31

32

33

34

35

36

- Authentication Challenge Message: The mobile station shall process the message and shall respond as specified in 6.3.12.1.5 within T_{32m} seconds, regardless of the value of AUTH_s.
- 5. Base Station Acknowledgment Order
- Base Station Challenge Confirmation Order: The mobile station shall process the message and shall respond with an SSD Update Confirmation Order or SSD Update Rejection Order as specified in 6.3.12.1.9 within T_{32m} seconds.
- 7. Candidate Frequency Search Control Message: The mobile station shall process the message as specified in 6.6.6.2.5.1.
- 8. Candidate Frequency Search Request Message: The mobile station shall process the message as specified in 6.6.6.2.5.1.
- 9. *Continuous DTMF Tone Order:* Support of this order by the mobile station is optional.
- 10. Data Burst Message
- 11. Extended Handoff Direction Message: If the band class is not specified in the message, or if the specified band class is supported by the mobile station, the mobile station shall process the message as specified in 6.6.6.2.5.1.
- 12. Extended Neighbor List Update Message: The mobile station shall process the message as specified in 6.6.6.2.6.3.
- 13. Flash With Information Message
- 14. General Handoff Direction Message: If the band class is not specified in the message or the specified band is supported by the mobile station, the mobile station shall process the message as specified in 6.6.6.2.5.1. If the message contains a service configuration record, the mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 15. *In-Traffic System Parameters Message*: The mobile station shall process the message as specified in 6.6.4.1.4.
- 16. Local Control Order

- 17. Lock Until Power-Cycled Order: The mobile station shall disable its transmitter and record the reason for the Lock Until Power-Cycled Order in the mobile station's semi-permanent memory (LCKRSN_Ps-p equals the least-significant four bits of ORDQr). The mobile station should notify the user of the locked condition. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a lock indication (see 6.6.1.1), and shall not enter the System Access State again until after the next mobile station power-up or until it has received an Unlock Order. This requirement shall take precedence over any other mobile station requirement specifying entry to the System Access State.
 - 18. Long Code Transition Request Order: The mobile station shall process the message as specified in 6.6.4.1.6.

11

12

13

15

16

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

37

39

40

- 19. Maintenance Order: The mobile station shall enter the Waiting for Mobile Station Answer Substate.
- 20. Maintenance Required Order: The mobile station shall record the reason for the Maintenance Required Order in the mobile station's semi-permanent memory (MAINTRSN_{s-p} equals the least-significant four bits of ORDQ_r). The mobile station shall remain in the unlocked condition. The mobile station should notify the user of the maintenance required condition.
- 21. Message Encryption Mode Order: The mobile station shall process the message as specified in 6.3.12.2.
- 22. *Mobile Station Registered Message:* The mobile station shall process the message as specified in 6.6.5.5.4.3.
- 23. *Neighbor List Update Message*: The mobile station shall process the message as specified in 6.6.6.2.6.3.
- 24. Parameter Update Order: The mobile station shall increment COUNT_{S-p} (see 2.3.12.1.3). The mobile station shall send a Parameter Update Confirmation Order within T_{56m} seconds. The mobile station shall set the ORDQ field of the Parameter Update Confirmation Order to the same value as the ORDQ field of the Parameter Update Order.
- 25. *Pilot Measurement Request Order:* The mobile station shall process the order as specified in 6.6.6.2.5.1.
- 26. Power Control Message: If $PWR_CNTL_STEP_r$ corresponds to a power control step size (see 6.1.2.3.2) supported by the mobile station, the mobile station shall store the power control step size ($PWR_CNTL_STEP_s = PWR_CNTL_STEP_r$).
- 27. Power Control Parameters Message: The mobile station shall process the message as specified in 6.6.4.1.1.2.
- 28. Power Up Function Message: The mobile station shall process the message as specified in 6.6.4.1.7.1.
- 29. Power Up Function Completion Message: The mobile station shall process the message as specified in 6.6.4.1.7.3.

11

13

15

17

18

19

20

23

25

26

27

29

36

- 30. Release Order: The mobile station shall enter the Release Substate with a base station release indication (see 6.6.4.5).
 - 31. Retrieve Parameters Message: The mobile station shall send, within T_{56m} seconds, a Parameters Response Message.
 - 32. Send Burst DTMF Message: Support of this order by the mobile station is optional.
 - 33. Service Connect Message: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
 - 34. Service Option Control Message: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
 - 35. Service Option Control Order: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
 - 36. Service Option Request Order: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
 - 37. Service Option Response Order: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
 - 38. Service Redirection Message: The mobile station shall process the message as follows:
 - If RECORD_TYPE_r is equal to '00000000', the mobile station shall do the following:
 - The mobile station shall set RETURN_IF_FAIL_s = RETURN_IF_FAIL_t.
 - If DELETE_TMSI_r is equal to '1', the mobile station shall set all the bits of TMSI_CODE_{s-p} to '1'.
 - The mobile station shall disable the full-TMSI timer.
 - The mobile station shall enter the Release Substate with an NDSS off indication (see 6.6.1.1).

If RECORD_TYPE_r is not equal to '00000000', REDIRECT_TYPE_r is '1', and the mobile station supports the band class and operating mode specified in the message, the mobile station shall do the following:

- The mobile station shall store the redirection record received in the message as REDIRECT_REC_s.
- The mobile station shall enable NDSS_ORGS_s and shall record the dialed digits.
- The mobile station shall set RETURN_IF_FAIL_s = RETURN_IF_FAIL_t.

- If DELETE_TMSI_r is equal to '1', the mobile station shall set all the bits of TMSI_CODE_{s-p} to '1'.
- The mobile station shall disable the full-TMSI timer.

The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a redirection indication (see 6.6.1.1).

Otherwise, the mobile station shall discard the message and send a *Mobile Station Reject Order (*ORDQ set to the applicable reason code as determined from Table 6.7.3-1) within T_{56m} seconds.

- 39. Service Request Message: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 40. Service Response Message: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 41. Set Parameters Message: If the mobile station can set all of the parameters specified by the PARAMETER_ID fields in the message, the mobile station shall set them; otherwise, the mobile station shall send, within T_{56m} seconds, a Mobile Station Reject Order.
- 42. SSD Update Message: The mobile station shall process the message and respond with a Base Station Challenge Order as specified in 6.3.12.1.9 within T_{32m} seconds.
- 43. Status Request Message: The mobile station shall send, within T_{56m} seconds, a Status Response Message. If the message does not specify any qualification information (QUAL_INFO_TYPE_r is equal to '00000000'), the mobile station shall include the requested information records in the Status Response Message. If the message specifies a band class (QUAL_INFO_TYPE_r is equal to '00000001'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) in the Status Response Message. If the message specifies a band class and an operating mode (QUAL_INFO_TYPE_r is equal to '00000010'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) and operating mode (OP_MODE_r) in the Status Response Message.

If the message specifies a band class or a band class and an operating mode which is not supported by the mobile station, the mobile station shall send a *Mobile Station Reject Order* with ORDQ set to '00000110' (message requires a capability that is not supported by the mobile station).

If the response to this message exceeds the allowable length, the mobile station shall send a *Mobile Station Reject Order* with ORDQ set to '00001000' (response message would exceed the allowable length).

2

10

12

13

15

16

17

18

19

21

22

25

26

28

29

30

31

32

33

34

35

36

40

If the message specifies an information record which is not supported by the mobile station for the specified band class and operating mode, the mobile station shall send a *Mobile Station Reject Order* with ORDQ set to '00001001' (information record is not supported for the specified band class and operating mode).

- 44. Status Request Order: If CDMABAND_S is equal to '00000', the mobile station shall send a Status Message within T_{56m} seconds. The mobile station shall respond with information corresponding to the current band class and operating mode.
- 45. Supplemental Channel Assignment Message: The mobile station shall process the message as specified in 6.6.6.2.5.1.
- 46. TMSI Assignment Message: The mobile station shall store the TMSI zone and code as follows:
 - The mobile station shall store the length of the TMSI zone field by setting ASSIGNING_TMSI_ZONE_LEN_{s-p} to TMSI_ZONE_LEN_r,
 - The mobile station shall store the assigning TMSI zone number by setting the ASSIGNING_TMSI_ZONE_LEN_{s-p} least significant octets of ASSIGNING_TMSI_ZONE_{s-p} to TMSI_ZONE_r, and
 - The mobile station shall store the TMSI code by setting TMSI_CODE_{s-p} to TMSI_CODE_r.

The mobile station shall set the TMSI expiration time by setting TMSI_EXP_TIME $_{s-p}$ to TMSI_EXP_TIME $_{r}$. The mobile station shall disable the full-TMSI timer. The mobile station shall then respond with a TMSI Assignment Completion Message within T_{56m} seconds.

If the bits of TMSI_CODE_{s-p} are not all equal to '1', and if System Time (in 80 ms units) exceeds TMSI_EXP_TIME_{s-p} × 2^{12} , the mobile station shall set all the bits of TMSI_CODE_{s-p} to '1' within T_{66m} seconds.

If the full-TMSI timer expires or has expired, the mobile station shall set all the bits of $TMSI_CODE_{s-p}$ to '1'. The mobile station shall update the registration variables as described in 6.6.5.5.2.5.

• If the mobile station receives any other message with a MSG_TYPE specified in Table 7.7.3.3-1, it shall process all layer 2 fields of the message. If the mobile station receives a message that is not included in the above list, cannot be processed, or requires a capability which is not supported, the mobile station shall discard the message and send a *Mobile Station Reject Order* (ORDQ set to the applicable reason code as determined from Table 6.7.3-1) within T_{56m} seconds.

6.6.4.5 Release Substate

- In this substate, the mobile station confirms the call disconnect.
- 39 Upon entering the Release Substate, the mobile station shall perform the following:
 - The mobile station shall set the substate timer for T_{55m} seconds.

- If the mobile station enters the Release Substate with a power-down indication, the
 mobile station shall send a Release Order (ORDQ = '00000001'), and shall perform
 power-down registration procedures (see 6.6.5.5.4.4).
 - If the mobile station enters the *Release Substate* with a mobile station release indication, the mobile station shall send a *Release Order* (ORDQ = '00000000'), and set RETURN_CAUSEs to '0000'.
 - If the mobile station enters the *Release Substate* with a base station release indication, the mobile station shall send a *Release Order* (ORDQ = '00000000'). The mobile station shall disable its transmitter, set RETURN_CAUSEs to '0000', and shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with a release indication (see 6.6.1.1).
 - If the mobile station enters the *Release Substate* with a redirection indication, the mobile station shall send a *Release Order* (ORDQ = '00000000') and shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with a redirection indication (see 6.6.1.1).
 - If the mobile station enters the *Release Substate* with an NDSS off indication, the mobile station shall send a *Release Order* (ORDQ = '00000000'), and shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with an NDSS off indication (see 6.6.1.1).
 - While in the Release Substate, the mobile station shall perform the following:

11

12

15

17

19

20

21

22

23

25

26

28

29

30

31

34

- If the substate timer expires, the mobile station shall disable its transmitter and shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with a release indication (see 6.6.1.1).
 - The mobile station shall perform Forward Traffic Channel supervision as specified in 6.4.4. If a loss of the Forward Traffic Channel is declared, the mobile station shall enter the *System Determination Substate* of the *Mobile Station Initialization State* with a release indication (see 6.6.1.1).
- The mobile station shall adjust its transmit power as specified in 6.1.2.3.
- The mobile station shall perform Forward Traffic Channel power control as specified in 6.6.4.1.1.
 - The mobile station shall perform handoff processing as specified in 6.6.6.
- The mobile station shall transmit null Traffic Channel data on the Reverse Traffic Channel (see 6.1.3.3), except when transmitting signaling traffic.
 - The mobile station shall process Forward Traffic Channel signaling traffic and shall discard other types of Forward Traffic Channel traffic.
- The mobile station shall perform registration timer maintenance as specified in 6.6.5.5.4.2.

- The mobile station shall perform the acknowledgment procedures as specified in 6.6.4.1.3. If an acknowledgment failure is declared, the mobile station shall disable its transmitter and enter the *System Determination Substate* of the *Mobile Station Initialization State* with a release indication (see 6.6.1.1).
 - If the mobile station receives a message which is included in the following list, and if every message field value is within its permissible range, the mobile station shall process the message as described below and in accordance with the message's action time (see 6.6.4.1.5):
 - 1. Alert With Information Message: The mobile station shall enter the Waiting for Mobile Station Answer Substate. If the Alert With Information Message does not contain a Signal information record, the mobile station should use standard alert as defined in 7.7.5.5.
 - 2. Base Station Acknowledgment Order
 - 3. Candidate Frequency Search Control Message: The mobile station shall process the message as specified in 6.6.6.2.5.1.
 - 4. Candidate Frequency Search Request Message: The mobile station shall process the message as specified in 6.6.6.2.5.1.
 - 5. Data Burst Message
 - 6. Extended Handoff Direction Message: The mobile station shall process the message as specified in 6.6.6.2.5.1.
 - 7. Extended Neighbor List Update Message: The mobile station shall process the message as specified in 6.6.6.2.6.3.
 - 8. General Handoff Direction Message: The mobile station shall process the message as specified in 6.6.6.2.5.1. If the message contains a service configuration record, the mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
 - 9. *In-Traffic System Parameters Message*: The mobile station shall process the message as specified in 6.6.4.1.4.
 - 10. Local Control Order
 - 11. Lock Until Power-Cycled Order: The mobile station shall disable its transmitter and record the reason for the Lock Until Power-Cycled Order in the mobile station's semi-permanent memory (LCKRSN_Ps-p equals the least-significant four bits of ORDQr). The mobile station should notify the user of the locked condition. The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a lock indication (see 6.6.1.1), and shall not enter the System Access State again until after the next mobile station power-up or until it has received an Unlock Order. This requirement shall take precedence over any other mobile station requirement specifying entry to the System Access State.

- 12. Maintenance Required Order: The mobile station shall record the reason for the Maintenance Required Order in the mobile station's semi-permanent memory (MAINTRSN_{s-p} equals the least-significant four bits of ORDQ_r). The mobile station shall remain in the unlocked condition. The mobile station should notify the user of the maintenance required condition.
 - 13. *Mobile Station Registered Message:* The mobile station shall process the message as specified in 6.6.5.5.4.3.

я

10

12

13

15

16

17

18

19

20

22

23

24

25

28

29

30

31

32

33

35

- 14. Neighbor List Update Message: The mobile station shall process the message as specified in 6.6.6.2.6.3.
- 15. Power Control Message: If $PWR_CNTL_STEP_r$ corresponds to a power control step size (see 6.1.2.3.2) supported by the mobile station, the mobile station shall store the power control step size ($PWR_CNTL_STEP_s = PWR_CNTL_STEP_r$).
- 16. Power Control Parameters Message: The mobile station shall process the message as specified in 6.6.4.1.1.2.
- 17. Power Up Function Message: The mobile station shall process the message as specified in 6.6.4.1.7.1.
- 18. Power Up Function Completion Message: The mobile station shall process the message as specified in 6.6.4.1.7.3.
- 19. Release Order: The mobile station shall disable its transmitter. If the mobile station enters the Release Substate with a power-down indication, the mobile station may power down; otherwise, the mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a release indication (see 6.6.1.1).
- 20. Retrieve Parameters Message: The mobile station shall send, within T_{56m} seconds, a Parameters Response Message.
- 21. Service Option Control Message: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 22. Service Option Control Order: The mobile station shall process the message in accordance with the requirements for the active service subfunction (see 6.6.4.1.2.2).
- 23. Service Redirection Message: The mobile station shall disable its transmitter. If the mobile station enters the Release Substate with a power-down indication, the mobile station may power down; otherwise, the mobile station shall process the message as follows:
 - If RECORD_TYPE_r is '00000000', the mobile station shall do the following:
 - The mobile station shall set RETURN_IF_FAIL_s = RETURN_IF_FAIL_r.
 - If DELETE_TMSI $_r$ is equal to '1', the mobile station shall set all the bits of TMSI_CODE $_{s-p}$ to '1'.
 - The mobile station shall disable the full-TMSI timer.

1

2

3

6

8

10

11

12

13

15

16

17

18

19

20

21

22

23

25

26

27

30

31

32

33

35

37

38

- The mobile station shall enter the *Release Substate* with an NDSS off indication (see 6.6.1.1).
- If RECORD_TYPE is not equal to '00000000', REDIRECT_TYPE_r is '1', and the mobile station supports the band class and operating mode specified in the message, the mobile station shall do the following:
 - The mobile station shall store the redirection record received in the message as REDIRECT_REC_s.
 - The mobile station shall set RETURN_IF_FAIL_S = RETURN_IF_FAIL_T.
 - If DELETE_TMSI $_r$ is equal to '1', the mobile station shall set all the bits of TMSI_CODE $_{s-p}$ to '1'.
 - The mobile station shall disable the full-TMSI timer.
 - The mobile station shall enter the System Determination Substate of the Mobile Station Initialization State with a redirection indication (see 6.6.1.1).
- Otherwise, the mobile station shall discard the message and send a Mobile Station Reject Order (ORDQ set to the applicable reason code as determined from Table 6.7.3-1) within T_{56m} seconds.
- 24. Status Request Message: The mobile station shall send, within T_{56m} seconds, a Status Response Message. If the message does not specify any qualification information (QUAL_INFO_TYPE_r is equal to '00000000'), the mobile station shall include the requested information records in the Status Response Message. If the message specifies a band class (QUAL_INFO_TYPE $_r$ is equal to '00000001'), the mobile station shall only include the requested information records for the specified band class ($BAND_CLASS_r$) in the Status Response Message. If the message specifies a band class and an operating mode (QUAL_INFO_TYPE_r is equal to '00000010'), the mobile station shall only include the requested information records for the specified band class (BAND_CLASS_r) and operating mode (OP_MODE_r) in the Status Response Message. If the message specifies a band class or a band class and an operating mode which are not supported by the mobile station, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00000110' (message requires a capability that is not supported by the mobile station). If the response to this message exceeds the allowable length, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00001000' (response message would exceed the allowable length). If the message specifies an information record which is not supported by the mobile station for the specified band class and operating mode, the mobile station shall send a Mobile Station Reject Order with ORDQ set to '00001001' (information record is not supported for the specified band class and operating mode).
- 25. Status Request Order: The mobile station shall send, a Status Message within T56m seconds. The mobile station shall respond with information corresponding to the current band class and operating mode.

- 26. Supplemental Channel Assignment Message: The mobile station shall process the message as specified in 6.6.6.2.5.1.
 - 27. TMSI Assignment Message: The mobile station shall store the TMSI zone and code as follows:
 - The mobile station shall store the length of the TMSI zone field by setting ASSIGNING_TMSI_ZONE_LEN_{s-p} to TMSI_ZONE_LEN_r;
 - The mobile station shall store the assigning TMSI zone number by setting the ASSIGNING_TMSI_ZONE_LEN_{s-p} least significant octets of ASSIGNING_TMSI_ZONE_{s-p} to TMSI_ZONE_r, and
 - The mobile station shall store the TMSI code by setting TMSI_CODE_{s-p} to TMSI_CODE_r.

The mobile station shall set the TMSI expiration time by setting TMSI_EXP_TIME $_{s-p}$ to TMSI_EXP_TIME $_{r}$. The mobile station shall disable the full-TMSI timer. The mobile station shall then respond with a TMSI Assignment Completion Message within T $_{56m}$ seconds.

If the bits of TMSI_CODE_{s-p} are not all equal to '1', and if System Time (in 80 ms units) exceeds TMSI_EXP_TIME_{s-p} × 2^{12} , the mobile station shall set all the bits of TMSI_CODE_{s-p} to '1' within T_{66m} seconds.

If the full-TMSI timer expires or has expired, the mobile station shall set all the bits of $TMSI_CODE_{s-p}$ to '1'. The mobile station shall update the registration variables as described in 6.6.5.5.2.5.

• If the mobile station receives any other message with a MSG_TYPE specified in Table 7.7.3.3-1, it shall process all layer 2 fields of the message. If the mobile station receives a message that is not included in the above list or cannot be processed, the mobile station shall discard the message and send a Mobile Station Reject Order (ORDQ set to the applicable reason code as determined from Table 6.7.3-1) within T_{56m} seconds.

6.6.5 Registration

2

3

11

12

13

15

16

17

18

20

21

22

23

24

25

26

27

28

29

38

39

- 6.6.5.1 Forms of Registration
- Registration is the process by which the mobile station notifies the base station of its
- location, status, identification, slot cycle, and other characteristics. The mobile station
- 22 informs the base station of its location and status so that the base station can efficiently
- page the mobile station when establishing a mobile station terminated call. For operation
- in the slotted mode, the mobile station supplies the SLOT_CYCLE_INDEX parameter so that
- the base station can determine which slots the mobile station is monitoring. The mobile
- station supplies the station class mark and the protocol revision number so that the base
- 37 station knows the capabilities of the mobile station.
 - The CDMA system supports nine different forms of registration:
 - Power-up registration. The mobile station registers when it powers on, switches from using a different PCS frequency block, switches from using a different band

2

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

- class, switches from using an alternative operating mode, or switches from using the analog system.
- Power-down registration. The mobile station registers when it powers off if previously registered in the current serving system.
- 3. Timer-based registration. The mobile station registers when a timer expires.
- Distance-based registration. The mobile station registers when the distance between the current base station and the base station in which it last registered exceeds a threshold.
 - 5. Zone-based registration. The mobile station registers when it enters a new zone.
 - Parameter-change registration. The mobile station registers when certain of its stored parameters change or when it enters a new system.
 - 7. Ordered registration. The mobile station registers when the base station requests it.
 - 8. Implicit registration. When a mobile station successfully sends an *Origination Message* or *Page Response Message*, the base station can infer the mobile station's location. This is considered an implicit registration.
 - 9. Traffic Channel registration. Whenever the base station has registration information for a mobile station that has been assigned to a Traffic Channel, the base station can notify the mobile station that it is registered.
 - The first five forms of registration, as a group, are called autonomous registration and are enabled by roaming status (see 6.6.5.3). Parameter-change registration is independent of roaming status. Ordered registration is initiated by the base station through an *Order Message*. Implicit registration does not involve the exchange of any registration messages between the base station and the mobile station. The base station can obtain registration information by sending the *Status Request Message* to the mobile station on either the Paging Channel or the Forward Traffic Channel. The base station can obtain limited registration information by sending the *Status Request Order* to the mobile station on the Forward Traffic Channel. The mobile station can be notified that it is registered through the *Mobile Station Registered Message*.
- Any of the various forms of autonomous registration and parameter-change registration can be enabled or disabled. The forms of registration that are enabled and the corresponding
- registration parameters are communicated in the System Parameters Message.
- $_{22}$ In addition, the mobile station may enable or disable autonomous registration for each type of roaming described in 6.6.5.3.
- 34 6.6.5.1.1 Power-Up Registration
- 25 Power-up registration is performed when the mobile station is turned on. To prevent
- multiple registrations when power is quickly turned on and off, the mobile station delays
- To Tom seconds before registering, after entering the Mobile Station Idle State.
- 38 The mobile station shall maintain a power-up/initialization timer. While the power-
- wup/initialization timer is active, the mobile station shall not make registration access
- 40 attempts.

- 6.6.5.1.2 Power-Down Registration
- 2 Power-down registration is performed when the user directs the mobile station to power off.
- 3 If power-down registration is performed, the mobile station does not power off until after
- completing the registration attempt.
- 5 The mobile station does not perform power-down registration if it has not previously
- registered in the system that corresponds to the current SID_s and NID_s (see 6.6.5.5.2.4).
- 7 6.6.5.1.3 Timer-Based Registration
- 8 Timer-based registration causes the mobile station to register at regular intervals. Its use
- also allows the system to automatically deregister mobile stations that did not perform a
- 10 successful power-down registration. Timer-based registration uses a Paging Channel slot
- counter (equivalent to a timer with time increments of 80 ms). Timer-based registration is
- performed when the counter reaches a maximum value (REG_COUNT_MAXs) that is
- controlled by the base station via the REG_PRD field of the System Parameters Message.
- The base station disables timer-based registration by setting REG_PRD to zero.
- The mobile station shall maintain a timer-based registration counter (REG_COUNT_S). The
- mobile station shall compute and store the timer expiration count (REG_COUNT_MAX $_S$) as

$$REG_COUNT_MAX_s = \lfloor 2^{REG_PRD/4} \rfloor.$$

- The mobile station shall maintain an indicator of timer-based registration timer enable status (COUNTER_ENABLED_S).
- 20 The counter is reset when the mobile station powers on and when the mobile station
- switches from different band classes, different serving systems, different PCS frequency
- blocks, and alternate operating modes. The counter is also reset after each successful
- 23 registration.

- Whenever the mobile station changes COUNTER_ENABLEDs from NO to YES, it shall set
- REG_COUNTs to a pseudorandom value between 0 and REG_COUNT_MAXs 1, using the
- pseudorandom number generator specified in 6.6.7.2.
- 27 If the mobile station is operating in the non-slotted mode, it shall increment the timer-
- based registration counter once per 80 ms whenever COUNTER_ENABLEDs equals YES. If
- 2 the mobile station is operating in slotted mode, it may increment the timer-based
- registration counter when it begins to monitor the Paging Channel (see 6.6.2.1.1.3). A
- mobile station operating in the slotted mode shall increment the counter by the same
- amount that the counter would have been incremented if the mobile station had been
- ∞ operating in the non-slotted mode.⁷
- ₃₄ 6.6.5.1.4 Distance-Based Registration
- Distance-based registration causes a mobile station to register when the distance between
- the current base station and the base station in which it last registered exceeds a

 $^{^{7}}$ For example, if the mobile station uses a 2.56 second slot cycle, then it may increment the counter by 32 every time it becomes active.

- threshold. The mobile station determines that it has moved a certain distance by
- 2 computing a distance measure based on the difference in latitude and longitude between
- 3 the current base station and the base station where the mobile station last registered. If
- this distance measure exceeds the threshold value, the mobile station registers.
- $_{5}$ The mobile station stores the base station latitude (BASE_LAT_REG_s-p), the base station
- longitude (BASE_LONG_REG_s-p) and the registration distance (REG_DIST_REG_s-p), of the
- base station whose Access Channel was used for the mobile station's last registration (see
- 6.3.4). The mobile station shall compute the current base station's distance from the last
- 9 registration point (DISTANCE) as:

DISTANCE =
$$\left[\frac{\sqrt{(\Delta \text{lat})^2 + (\Delta \text{long})^2}}{16}\right]$$
,

- 11 where
- $\Delta lat = BASE_LAT_s BASE_LAT_REG_{s-p}$
- 13 and
- $\Delta long = (BASE_LONG_s BASE_LONG_REG_{s-p}) \times cos (\pi/180 \times BASE_LAT_REG_{s-p}/14400).$
- The mobile station shall compute DISTANCE with an error of no more than $\pm 5\%$ of its true
- value when |BASE_LAT_REG_{s-p}/14400| is less than 60 and with an error of no more than
- $_{17}$ $\pm 7\%$ of its true value when $|BASE_LAT_REG_{s-p}/14400|$ is between 60 and 70.8
- 6.6.5.1.5 Zone-Based Registration
- Registration zones are groups of base stations within a given system and network. A base
- station's zone assignment is identified by the REG_ZONE field of the System Parameters
- 21 Message.
- 2 Zone-based registration causes a mobile station to register whenever it moves into a new
- zone, not on its internally stored list of visited registration zones. A zone is added to the list
- whenever a registration (including implicit registration) occurs, and is deleted upon
- expiration of a timer. After a system access, timers are enabled for every zone except one
- that was successfully registered by the access.
- 27 A mobile station can be registered in more than one zone. Zones are uniquely identified by
- a zone number (REG_ZONE) plus the SID and NID of the zone.
- The mobile station shall store a list of the zones in which the mobile station has registered
- ∞ (ZONE_LIST_s). Each entry in ZONE_LIST_s shall include the zone number (REG_ZONE) and
- $_{31}$ the (SID, NID) pair for the zone. The mobile station shall be capable of storing at least N_{9m}
- entries in ZONE_LIST_s. A base station shall be considered to be in ZONE_LIST_s only if the
- base station's REG_ZONE, SID and NID are found in an entry in ZONE_LIST_s. The mobile
- 34 station provides storage for one entry of ZONE_LISTs in semi-permanent memory,
- $_{35}$ ZONE_LIST_{s-p} (see 6.3.4).

 $^{^{8}}$ BASE_LAT and BASE_LONG are given in units of 1/4 seconds. BASE_LAT/14400 and BASE_LONG/14400 are in units of degrees.

- The mobile station shall maintain a zone list entry timer for each entry in $ZONE_LIST_S$.
- When an entry in ZONE_LIST_S is removed from the list, the corresponding zone list entry
- timer shall be disabled. The timer duration shall be as determined from the stored value of
- $_4$ ZONE_TIMER_s using Table 7.7.2.3.2.1-1. The mobile station shall provide a means to
- examine each timer's value while the timer is active, so that the age of list entries can be
- 6 compared.
- If the mobile station supports Band Class 1, the mobile station shall maintain an identifier
- of the PCS frequency block for each entry in ZONE_LIST_s (see 6.1.1.1). When the mobile
- station adds a zone to ZONE_LISTs, the mobile station shall include the identifier for the
- ₁₀ PCS frequency block.⁹
- If the mobile station supports multiple band classes, the mobile station shall maintain an
- identifier of the band class for each entry in ZONE_LIST_s (see 6.1.1.1). When the mobile
- 13 station adds a zone to ZONE_LIST_s, the mobile station shall include the identifier for the
- 14 band class.

23

24

25

- 15 The base station controls the maximum number of zones in which a mobile station may be
- 16 considered registered, by means of the TOTAL_ZONES field of the System Parameters
- Message. When an entry is added to the zone list, or if TOTAL_ZONES is decreased, the
- mobile station removes entries from the zone list if there are more entries than allowed by
- the setting of TOTAL_ZONES.
- Whenever $ZONE_LIST_s$ contains more than $TOTAL_ZONES_s$ entries, the mobile station
- shall delete the excess entries according to the following rules:
 - If TOTAL_ZONES_s is equal to zero, the mobile station shall delete all entries.
 - If TOTAL_ZONES_s is not equal to zero, the mobile station shall delete those entries
 having active zone list entry timers, starting with the oldest entry, as determined by
 the timer values, and continuing in order of decreasing age until no more than
 TOTAL_ZONES_s entries remain.
- The mobile station shall store a list of the systems/networks in which the mobile station has registered (SID_NID_LIST_S). Each entry in SID_NID_LIST_S shall include the (SID, NID)
- pair for the system/network. The mobile station shall be capable of storing N_{10m} entries in $SID_NID_LIST_s$. A base station shall be considered to be in the $SID_NID_LIST_s$ only if the
- base station's SID and NID are found in an entry in SID_NID_LIST_S. The mobile station
- base station's SID and NID are round in all entry in SID_NID_LISTs. The mostle station's shall provide storage for one entry of SID_NID_LISTs in semi-permanent memory
- \mathfrak{S} (SID_NID_LIST_{s-p}).
- If the mobile station supports Band Class 1, the mobile station shall maintain an identifier of the PCS frequency block for each entry in $SID_NID_LIST_S$ (see 6.1.1.1). When the mobile
- of the PCS frequency block for each entry in SID_NID_LISTs (see 0.11.11). Which the income station adds an entry to SID_NID_LISTs, the mobile station shall include the identifier for
- 37 the PCS frequency block.

⁹ The mobile station need not maintain a separate identifier for Band Class 0, as the least significant bit of the SID identifies the serving system.

- If the mobile station supports multiple band classes, the mobile station shall maintain an
- identifier of the band class for each entry in SID_NID_LIST_S (see 6.1.1.1). When the mobile 2
- station adds an entry to SID_NID_LISTs, the mobile station shall include the identifier for
- the band class.

10

13

14

15

16

17

18

19

20

21

22

23

24

25

27

28

32

33

- The mobile station shall maintain a SID/NID list entry timer for each entry in
- When an entry in SID_NID_LISTs is removed from the list, the SID_NID_LIST_S.
- corresponding SID/NID list entry timer shall be disabled. The timer duration shall be as
- determined from the stored value of ZONE_TIMERs using Table 7.7.2.3.2.1-1. The mobile
- station shall provide a means to examine each timer's value while the timer is active, so 9 that the age of list entries can be compared.
- Whenever SID_NID_LISTs contains more than N10m entries, the mobile station shall delete 11 the excess entries according to the following rule: 12
 - The mobile station shall delete those entries having active SID/NID list entry timers, starting with the oldest entry, as determined by the timer values, and continuing in order of decreasing age.
 - Whenever MULT_SIDS_s is equal to '0' and SID_NID_LIST contains entries with different SIDs, the mobile station shall delete the excess entries according to the following rules:
 - If the SID/NID entry timer for any entry is disabled, the mobile station shall delete all entries not having the same SID as the entry whose timer is disabled;
 - Otherwise, the mobile station shall delete all entries not having the same SID as the newest entry in SID_NID_LIST, as determined by the timer values.
 - Whenever MULT_NIDSs is equal to '0', and SID_NID_LIST contains more than one entry for any SID, the mobile station shall delete the excess entries for each SID according to the following rules:
 - If the SID/NID entry timer for any entry is disabled, the mobile station shall delete all entries for that SID except the entry whose timer is disabled;
 - For all other SIDs, the mobile station shall delete all entries for each SID except the newest entry, as determined by the timer values.
- 6.6.5.1.6 Parameter-Change Registration 29
- Parameter-change registration is performed when a mobile station modifies any of the 30 following stored parameters: 31
 - The preferred slot cycle index (SLOT_CYCLE_INDEX_p)
 - The station class mark (SCM_D)
- The call termination enabled indicators (MOB_TERM_HOME_D, 34 $MOB_TERM_FOR_SID_{D}$, and $MOB_TERM_FOR_NID_{D}$) 35
- Parameter-change registration is also performed when any of the following capabilities 36 supported by the mobile station changes: 37
 - The band classes

- The power classes
- The rate sets
- The operating modes
- Parameter-change registration is performed whenever there is no entry in the mobile
- station's SID_NID_LISTs that matches the base station's SID and NID.
- 6 Parameter-change registration is independent of the roaming status of the mobile station. 10
- 7 Whenever a parameter changes, the mobile station shall delete all entries from
- 8 SID_NID_LIST_S.
- 9 6.6.5.1.7 Ordered Registration
- 10 The base station can command the mobile station to register by sending a Registration
- 11 Request Order. Ordered registration is performed in the Mobile Station Order and Message
- Processing Operation (6.6.2.4). Requirements are specified in 6.6.5.5.2.3.
- 6.6.5.1.8 Implicit Registration
- Whenever an Origination Message or Page Response Message is sent, the base station can
- infer the location of the mobile station. This is considered an implicit registration.
- Requirements are specified in 6.6.5.5.3.
- 6.6.5.1.9 Traffic Channel Registration
- While a mobile station is assigned a Traffic Channel, the mobile station is notified that it is
- 19 registered through the Mobile Station Registered Message. Requirements are specified in
- 20 6.6.5.5.4.3.
- 21 6.6.5.2 Systems and Networks
- A base station is a member of a cellular or PCS system and a network. A network is a
- subset of a system.
- 24 Systems are labeled with an identification called the system identification or SID; networks
- within a system are given a network identification or NID. A network is uniquely identified
- by the pair (SID, NID). The SID number 0 is a reserved value. The NID number 0 is a
- 27 reserved value indicating all base stations that are not included in a specific network. The
- NID number 65535 (2^{16} -1) is a reserved value the mobile station may use for roaming
- status determination (see 6.6.5.3) to indicate that the mobile station considers the entire
- 30 SID (regardless of NID) as home (non-roaming).
- Figure 6.6.5.2-1 shows an example of systems and networks. SID i contains three
- ∞ networks labeled t, u, and v. A base station in system i that is not in one of these three
- metworks is in NID 0.

¹⁰ The indicator REG_ENABLED does not govern parameter-change registration.

Figure 6.6.5.2-1. Systems and Networks Example

6.6.5.3 Roaming

The mobile station has a list of one or more home (non-roaming) (SID, NID) pairs. A mobile station is roaming if the stored (SID $_{\rm S}$, NID $_{\rm S}$) pair (received in the *System Parameters Message*) does not match one of the mobile station's non-roaming (SID, NID) pairs. Two types of roaming are defined: A mobile station is a foreign NID roamer if the mobile station is roaming and there is some (SID, NID) pair in the mobile station's (SID, NID) list for which SID is equal to SID $_{\rm S}$. A mobile station is a foreign SID roamer if there is no (SID, NID) pair in the mobile station's (SID, NID) list for which SID is equal to SID $_{\rm S}$ ¹¹. The mobile station may use the special NID value 65535 to indicate that the mobile station considers all NIDs within a SID to be non-roaming (i.e., that the mobile station is not roaming when operating with any base station in that system).

The mobile station shall store three 1-bit parameters in its permanent memory (see 6.3.8). These parameters are MOB_TERM_HOME_p, MOB_TERM_FOR_SID_p, and MOB_TERM_FOR_NID_p. The mobile station shall set MOB_TERM_HOME_p to '1' if the mobile station is configured to receive mobile station terminated calls when using a home (SID, NID) pair; otherwise MOB_TERM_HOME_p shall be set to '0'. The mobile station shall set MOB_TERM_FOR_SID_p to '1' if the mobile station is configured to receive mobile station terminated

¹¹ For example, suppose a mobile station has the following SID, NID list: (2, 3), (2, 0), (3, 1). If the base station (SID, NID) pair is (2, 3), then the mobile station is not roaming because the (SID, NID) pair is in the list. If the base station (SID, NID) pair is (2, 7), then the mobile station is a foreign NID roamer, because the SID 2 is in the list, but the (SID, NID) pair (2, 7) is not in the list. If the base station (SID, NID) pair is (4, 0), then the mobile station is a foreign SID roamer, because SID 4 is not in the list.

- calls when it is a foreign SID roamer; otherwise MOB_TERM_FOR_SIDp shall be set to '0'.
- The mobile station shall set MOB_TERM_FOR_NID_p to '1' if the mobile station is configured
- to receive mobile station terminated calls when it is a foreign NID roamer; otherwise
- 4 MOB_TERM_FOR_NID_p shall be set to '0'.
- 5 The mobile station determines the registration status using these parameters and the
- 6 HOME_REG, FOR_NID_REG, and FOR_SID_REG fields of the System Parameters Message.
- 7 The mobile station shall store a mobile station call termination enabled indicator,
- 8 MOB_TERMs. The mobile station shall set MOB_TERMs to YES if any of the following
- 9 conditions is met:

11

13

14

18

19

20

21

22

23

28

29

- The mobile station is not roaming, and MOB_TERM_HOMEp is equal to '1'; or
- The mobile station is a foreign NID roamer and MOB_TERM_FOR_NID_p is equal to
- The mobile station is a foreign SID roamer and MOB_TERM_FOR_SID $_p$ is equal to '1'; otherwise the mobile station shall set MOB_TERM $_s$ to NO.

The mobile station shall store a registration status indicator, REG_ENABLED_S. The indicator REG_ENABLED_S shall be set to YES if any of the following conditions is met for the mobile station:

- The mobile station is not roaming, and both HOME_REG_s and MOB_TERM_HOME_p are equal to '1'; or
- The mobile station is a foreign NID roamer and both FOR_NID_REG_s and MOB_TERM_FOR_NID_p are equal to '1'; or
 - The mobile station is a foreign SID roamer and both FOR_SID_REG_s and MOB_TERM_FOR_SID_p are equal to '1'; otherwise the mobile station shall set REG_ENABLED_s to NO.
- The mobile station performs autonomous registrations if REG_ENABLEDs is YES.
- 6.6.5.4 Registration Timers and Indicators
- 27 The mobile station shall provide the following registration timers:
 - Power-up/initialization timer (see 6.6.5.1.1).
 - Timer-based registration timer (see 6.6.5.1.3).
- Zone list entry timers (see 6.6.5.1.5).
- SID/NID list entry timers (see 6.6.5.1.5).
- The mobile station shall provide a means of enabling and disabling each timer. When a timer is disabled, it shall not be considered expired. A timer that has been enabled is referred to as active.

- 6.6.5.5 Registration Procedures
- 2 6.6.5.5.1 Actions in the Mobile Station Initialization State
- 3 6.6.5.5.1.1 Power-Up or Change to a Different Operating Mode, Band Class, Serving
- 4 System, or PCS Frequency Block
- 5 Upon power-up, the mobile station shall perform the following actions:
- Delete all entries of ZONE_LIST_s.
- If ZONE_LIST_{s-p} contains an entry, copy the entry to ZONE_LIST_s and disable the corresponding entry timer.
 - Delete all entries of SID_NID_LIST_s.
- If SID_NID_LIST_{s-p} contains an entry, copy the entry to SID_NID_LIST_s and disable the corresponding entry timer.
- Set the registered flag (REGISTERED_S) to NO.
- Set timer-based registration enable status (COUNTER_ENABLED_s) to NO.
- Set autonomous registration enable status (REG_ENABLED_s) to NO.
 - Set RETURN_CAUSE_s to '0000'.
- Upon switching from using CDMA in a different band class, from using CDMA in a different Band Class 0 serving system, from using CDMA in a different Band Class 1 frequency block, or from using the 800 MHz analog system, the mobile station shall perform the
- following actions:

11

· 15

20

- Set timer-based registration enable status (COUNTER_ENABLED_s) to NO.
- Set autonomous registration enable status (REG_ENABLED_S) to NO.
 - Set RETURN_CAUSE_s to '0000'.
- 23 6.6.5.5.1.2 Timer Maintenance
- While in the Mobile Station Initialization State, the mobile station shall update all active
- registration timers (see 6.6.5.4). If any timer expires while in this state, the mobile station
- shall preserve the expiration status so that further action can be taken in the Mobile Station
- 27 Idle State.
- 28 6.6.5.5.1.3 Entering the Mobile Station Idle State
- Before entering the *Mobile Station Idle State* from the *Mobile Station Initialization State*, the mobile station shall perform the following action:
- If REGISTEREDs is equal to NO, enable the power-up/initialization timer with an expiration time of T_{57m} seconds (see 6.6.5.1.1) only when the mobile station is entering this state with a power-up indication.

- 6.6.5.5.2 Actions in the Mobile Station Idle State
- Requirements in this section and its subsections apply only when the mobile station is in
- 3 the Mobile Station Idle State.
- 4 6.6.5.5.2.1 Idle Registration Procedures
- 5 These procedures are performed whenever the mobile station is in the Mobile Station Idle
- 6 State (see 6.6.2.1.3).
- While in the Mobile Station Idle State, the mobile station shall update all active registration
- 8 timers (see 6.6.5.4).

14

15

16

17

18

19

24

25

26

27

29

- 9 If the power-up/initialization timer has expired or is disabled, the mobile station shall
- perform the following actions in the order given. If any action necessitates a registration,
- the mobile station shall enter the Update Overhead Information Substate of the System
- Access State (see 6.6.3) with a registration indication.
 - The timer-based registration timer shall be enabled (COUNTER_ENABLED_s = YES) and the timer count (REG_COUNT_s) shall be set to a pseudorandom number as specified in 6.6.5.1.3, if the following conditions are met:
 - a. COUNTER_ENABLEDs is equal to NO; and
 - b. The stored configuration parameters are current (see 6.6.2.2); and
 - c. REG_ENABLED_s is equal to YES; and
 - d. REG_PRD_s is not equal to zero.
- 2. If any zone list entry timer (see 6.6.5.1.5) has expired, the mobile station shall delete the corresponding entry from ZONE_LIST_S.
- 3. If any SID/NID list entry timer (see 6.6.5.1.5) has expired, the mobile station shall delete the corresponding entry from SID_NID_LIST_S.
 - 4. The mobile station shall perform power-up registration, as specified in 6.6.5.1.1, if all the following conditions are met:
 - a. POWER_UP_REGs is equal to '1'; and
 - b. The stored configuration parameters are current (see 6.6.2.2); and
 - c. REGISTEREDs is equal to NO, and
 - d. REG_ENABLEDs is equal to YES.
- 5. The mobile station shall perform parameter-change registration (see 6.6.5.1.6) if all the following conditions are met:
 - a. PARAMETER_REG $_{s}$ is equal to '1'; and
 - b. The stored configuration parameters are current (see 6.6.2.2); and
- $_{34}$ c. There is no entry of SID_NID_LIST_s whose SID and NID fields match the stored SID_s and NID_s.

10

11

12

13

15

16

17

18

19

22

25

26

27

28

29

30

- 6. The mobile station shall perform timer-based registration (see 6.6.5.1.3) if all the following conditions are met:
 - a. COUNTER_ENABLED_S is equal to YES; and
 - The stored configuration parameters are current (see 6.6.2.2); and
 - c. REG_ENABLEDs is equal to YES; and
 - d. REG_COUNTs is greater than or equal to REG_COUNT_MAXs.
 - 7. The mobile station shall perform distance-based registration (see 6.6.5.1.4) if all the following conditions are met:
 - a. REG_DIST_s is not equal to zero; and
 - b. The stored configuration parameters are current (see 6.6.2.2); and
 - c. REG_ENABLEDs is equal to YES; and
 - d. The current base station's distance from the base station in which the mobile station last registered (see 6.6.5.1.4) is greater than or equal to REG_DIST_REG_{s-p}.
 - 8. The mobile station shall perform zone-based registration (see 6.6.5.1.5) if all the following conditions are met:
 - a. TOTAL_ZONES_s is not equal to zero; and
 - b. The stored configuration parameters are current (see 6.6.2.2); and
 - c. REG_ENABLEDs is equal to YES; and
- d. There is no entry of ZONE_LIST_S whose SID, NID and REG_ZONE fields match the stored SID_S, NID_S and REG_ZONE_S.
 - 6.6.5.5.2.2 Processing the Registration Fields of the System Parameters Message
- When the mobile station processes the *System Parameters Message*, it shall perform the following actions:
 - 1. If REG_PRD_s is equal to zero, the mobile station shall set $COUNTER_ENABLED_s$ to NO.
 - 2. If REG_PRD_s is not equal to zero, the mobile station shall set $REG_COUNT_MAX_s$ as specified in 6.6.5.1.3.
 - 3. The mobile station shall update its roaming status and set REG_ENABLED $_{\rm S}$ as specified in 6.6.5.3.
 - If ZONE_LIST_s contains more than TOTAL_ZONES_s entries, the mobile station shall delete the excess entries according to the rules specified in 6.6.5.1.5.
 - 5. If MULT_SIDS_s is equal to '0' and SID_NID_LIST contains entries with different SIDs, delete the excess entries according to the rules specified in 6.6.5.1.5.
- 6. If MULT_NIDS_s is equal to '0' and SID_NID_LIST contains more than one entry for any SID, delete the excess entries according to the rules specified in 6.6.5.1.5.

- 6.6.5.5.2.3 Ordered Registration
- Ordered registration is performed after receiving a Registration Request Order while in the
- Mobile Station Order and Message Processing Operation (see 6.6.2.4).
- The mobile station shall enter the Update Overhead Information Substate of the System
- 5 Access State with a registration indication within T33m seconds after the Registration
- 6 Request Order is received.
- 7 6.6.5.5.2.4 Power Off
- B These procedures are performed when the mobile station is directed by the user to power
- 9 off.

12

13

14

- 10 The mobile station shall perform the following actions:
 - If an entry of ZONE_LIST_S does not have an active timer, copy that entry to ZONE_LIST_{S-p}; otherwise, delete any entry in ZONE_LIST_{S-p}.
 - If an entry of SID_NID_LIST_S does not have an active timer, copy that entry to SID_NID_LIST_{S-p}; otherwise, delete any entry in SID_NID_LIST_{S-p}.
- The mobile station shall perform power-down registration (see 6.6.5.1.2) by entering the System Access State with a registration indication within T_{33m} seconds after the user directs the mobile station to power off, if all the following conditions are true:
- REG_ENABLED_s equals YES; and
- POWER_DOWN_REG_s equals '1'; and
- There is an entry of SID_NID_LIST_s for which the SID and NID fields are equal to SID_s and NID_s; and
 - The power-up/initialization timer (see 6.6.5.1.1) is disabled or has expired.
- 6.6.5.5.2.5 Full-TMSI Timer Expiration
- When the mobile station sets all the bits of TMSI_CODE_{s-p} to '1' upon expiration of the full-
- 25 TMSI timer (see 6.6.2), the mobile station shall delete all entries from SID_NID_LIST_S and
- ZONE_LIST_S.
- 27 6.6.5.5.3 Actions in the System Access State
- 28 Requirements in this section and its subsections apply only when the mobile station is in
- 20 the System Access State.
- ∞ 6.6.5.5.3.1 Successful Access, Registration, or Implicit Registration
- 31 These procedures shall be performed after the mobile station receives an acknowledgment
- for a Registration Message, Origination Message, or Page Response Message sent on the
- 33 Access Channel (see 6.6.3.1.2).
 - Disable the power-up/initialization timer (see 6.6.5.1.1).
- If the mobile station supports the 800 MHz analog mode, set the First-Idle ID status to enabled (see 2.6.3.11).

11

12

13

15

16

17

18

20

21

25

26

27

28

29

33

- Set DIGITAL_REG_{s-p} to '00000001'.
- Set REG_COUNT_s to zero.
- Set REGISTERED_s to YES.
- Delete all entries from ZONE_LIST_S belonging to a different band class (see 6.1.1.1)
 than CDMABAND_S.
- If CDMABAND = '00000', delete all entries from ZONE_LIST_S that have a SID from a different serving system than SERVSYS_S.
- If CDMABAND = '00001', delete all entries from ZONE_LIST_s belonging to a different PCS frequency block (see 6.1.1.1) than the PCS frequency block associated with SID_s.
 - Add REG_ZONE_s, SID_s, and NID_s to ZONE_LIST_s if not already in the list. If required, include the band class identifier and block identifier for the current band and PCS frequency block as specified in 6.6.5.1.5.
 - Disable the zone list entry timer for the entry of ZONE_LIST_s containing REG_ZONE_s, SID_s, and NID_s. For any other entry of ZONE_LIST_s whose entry timer is not active, enable the entry timer with the duration specified by ZONE_TIMER_s (see 6.6.5.1.5).
 - If ZONE_LIST_s contains more than TOTAL_ZONES_s entries, delete the excess entries
 according to the rules specified in 6.6.5.1.5.
- Delete all entries from SID_NID_LIST_S belonging to a different band class (see 6.1.1.1) than CDMABAND_S
- If CDMABAND = '00000', delete all entries from SID_NID_LIST_S that have a SID from a different serving system than SERVSYS_S.
 - If CDMABAND = '00001', delete all entries from SID_NID_LIST_S belonging to a
 different PCS frequency block (see 6.1.1.1) than the PCS frequency block associated
 with SID_S.
 - Add SID_s and NID_s to SID_NID_LIST_s if not already in the list. If required, include
 the band class identifier and block identifier for the current band and PCS
 frequency block as specified in 6.6.5.1.5.
- Disable the SID/NID list entry timer for the entry of SID_NID_LIST_S containing SID_S, and NID_S. For any other entry of SID_NID_LIST_S whose entry timer is not active, enable the entry timer with the duration specified in 6.6.5.1.5.
 - If SID_NID_LIST_s contains more than N_{10m} entries, delete the excess entries
 according to the rules specified in 6.6.5.1.5.
- If MULT_SIDS_s is equal to '0' and SID_NID_LIST contains entries with different SIDs, delete the excess entries according to the rules specified in 6.6.5.1.5.
- If MULT_NIDS_s is equal to '0' and SID_NID_LIST contains more than one entry for any SID, delete the excess entries according to the rules specified in 6.6.5.1.5.

- Set the stored location of last registration (BASE_LAT_REG_s-p and BASE_LONG- $_{
 m REG_{S-p}}$) to the current base station's location (BASE_LAT_S and BASE_LONG_S). Set the stored registration distance (REG_DIST_REG_s-p) to the current base station's registration distance (REG_DIST_s).
- These procedures shall be performed after the mobile station receives an acknowledgment for any other message:
 - If the mobile station supports the 800 MHz analog mode, set the First-Idle ID status to enabled (see 2.6.3.11).
- Set DIGITAL_REG_{s-p} to '00000001'.

21

22

23

26

27

28

36

37

38

- Delete all entries from ZONE_LIST_s belonging to a different band class (see 6.1.1.1) than CDMABAND_s. 11
- Delete all entries from ZONE_LIST_s belonging to a different band class (see 6.1.1.1) than CDMABAND_s. 13
 - If CDMABAND = '00000', delete from ZONE_LIST_s all entries from ZONE_LIST_s that have a SID from a different serving system than SERVSYSs.
- If CDMABAND = '00001', delete all entries from ZONE_LIST_s belonging to a different 16 PCS frequency block (see 6.1.1.1) than the PCS frequency block associated with 17 SID_{S} .
- For any entry of ZONE_LIST_s not matching REG_ZONE_s, SID_s, and NID_s and not having an active entry timer, enable the entry timer with the duration specified by 20 $ZONE_TIMER_s$ (see 6.6.5.1.5).
 - Delete all entries from SID_NID_LIST_s belonging to a different band class (see 6.1.1.1) than CDMABAND_S.
- If CDMABAND = '00000', delete from SID_NID_LIST_s all entries from SID_NID_LIST_s 24 that have a SID from a different serving system than SERVSYS_s. 25
 - If CDMABAND = '00001', delete all entries from SID_NID_LIST_s belonging to a different PCS frequency block (see 6.1.1.1) than the PCS frequency block associated with SID_s.
- For any entry of SID_NID_LISTs not matching SIDs and NIDs and not having an 29 active entry timer, enable the entry timer with the duration specified by 30 ZONE_TIMER_s (see 6.6.5.1.5). 31

6.6.5.5.3.2 Unsuccessful Access 32

- These procedures are performed when the mobile station declares an access attempt failure 33 when in the System Access State (see 6.6.3). 34
- The mobile station shall perform the following actions: 35
 - If the mobile station supports the 800 MHz analog mode, set the First-Idle ID status to enabled (see 2.6.3.11).
 - Set DIGITAL_REG_{s-p} to '00000001'.

8

11

12

13

18

19

- Delete all entries from ZONE_LIST_s belonging to a different band class (see 6.1.1.1) than CDMABANDs. 2
- If CDMABAND = '00000', delete from ZONE_LIST_s all entries from ZONE_LIST_s that have a SID from a different serving system than SERVSYSs.
- If CDMABAND = '00001', delete all entries from ZONE_LIST_S belonging to a different PCS frequency block (see 6.1.1.1) than the PCS frequency block associated with SID_s .
 - For any entry of ZONE_LIST_s not matching REG_ZONE_s, SID_s, and NID_s and not having an active entry timer, enable the entry timer with the duration specified by ZONE_TIMER_s (see 6.6.5.1.5).
 - Delete all entries from SID_NID_LIST_s belonging to a different band class (see 6.1.1.1) than CDMABAND_S.
 - If CDMABAND = '00000', delete from SID_NID_LIST_s all entries from SID_NID_LIST_s that have a SID from a different serving system than SERVSYS_s.
- If CDMABAND = '00001', delete all entries from SID_NID_LIST_s belonging to a 15 different PCS frequency block (see 6.1.1.1) than the PCS frequency block associated 16 with SID_s. 17
 - Delete from SID_NID_LIST_S all entries that have a SID from a different serving system than SERVSYS_s.
- For any entry of SID_NID_LISTs not matching SIDs and NIDs and not having an 20 active entry timer, enable the entry timer with the duration specified by 21 $ZONE_TIMER_s$ (see 6.6.5.1.5). 22
- 6.6.5.5.3.3 Power Off 23
- These procedures are performed when the mobile station is directed by the user to power 24 25
- The mobile station shall perform the following actions: 26
- If an entry of ZONE_LIST_s does not have an active timer, copy that entry to 27 ZONE_LIST_{s-p}; otherwise, delete any entry in ZONE_LIST_{s-p}. 28
 - If an entry of SID_NID_LISTs does not have an active timer, copy that entry to $SID_NID_LIST_{S-p}$; otherwise, delete any entry in $SID_NID_LIST_{S-p}$.
- 6.6.5.5.4 Actions in the Mobile Station Control on the Traffic Channel State 31
- Requirements in this section and its subsections apply only when the mobile station is in 32 the Mobile Station Control on the Traffic Channel State.
- 33
- 6.6.5.5.4.1 Traffic Channel Initialization 34
- Upon entering the Traffic Channel Initialization Substate of the Mobile Station Control on the 35
- Traffic Channel State, the mobile station shall set COUNTER_ENABLEDs to NO. 36

- 6.6.5.5.4.2 Timer Maintenance
- While in the Mobile Station Control on the Traffic Channel State, the mobile station shall
- 3 update all active registration timers.
- If a zone list entry timer expires, the mobile station shall delete the corresponding entry
- from ZONE_LISTs. If a SID/NID list entry timer expires, the mobile station shall delete the
- 6 corresponding entry from SID_NID_LIST_s.
- 6.6.5.5.4.3 Processing the Mobile Station Registered Message
- The mobile station receives the Mobile Station Registered Message on the Forward Traffic
- 9 Channel when the mobile station is considered registered for the base station whose
- location and other parameters are included in the message.
- 11 The mobile station shall store the following parameters:
- System identification ($SID_S = SID_r$)

21

23

24

- Network identification (NID_s = NID_r)
- Registration zone (REG_ZONE_s = REG_ZONE_r)
- Number of registration zones to be retained (TOTAL_ZONES_s = TOTAL_ZONES_r)
- Zone timer length (ZONE_TIMER_s = ZONE_TIMER_r)
- Multiple SID storage indicator (MULT_SIDS_s = MULT_SIDS_r)
- Multiple NID storage indicator (MULT_NIDS_s = MULT_NIDS_r)
- Base station latitude (BASE_LAT_s = BASE_LAT_r)
- Base station longitude (BASE_LONG_s = BASE_LONG_r)
 - Registration distance (REG_DIST_s = REG_DIST_r)
- The mobile station shall perform the following actions:
 - If the mobile station supports the 800 MHz analog mode, set the First-Idle ID status to enabled (see 2.6.3.11).
- Set DIGITAL_REG_{s-p} to '00000001'.
 - Add REG_ZONE_s, SID_s, and NID_s to ZONE_LIST_s if not already in the list. If required, include the band class identifier and block identifier for the current band and PCS frequency block as specified in 6.6.5.1.5.
- Delete all entries from ZONE_LIST_S belonging to a different band class (see 6.1.1.1)
 than CDMABAND_S.
- Disable the zone list entry timer for the entry of ZONE_LIST_s containing
 REG_ZONE_s, SID_s, and NID_s. For any other entry of ZONE_LIST_s whose entry timer
 is not active, enable the entry timer with the duration specified by ZONE_TIMER_s
 (see 6.6.5.1.5).
- If ZONE_LIST_s contains more than TOTAL_ZONES_s entries, delete the excess entries according to the rules specified in 6.6.5.1.5.

2

3

10

12

13

15

16

17

18

19

20

21

25

26

27

28

29

30

31

- Delete all entries from SID_NID_LIST_S belonging to a different band class (see 6.1.1.1) than CDMABAND_S.
- Add SID_S and NID_S to SID_NID_LIST_S if not already in the list. If required, include
 the band class identifier and block identifier for the current band and PCS
 frequency block as specified in 6.6.5.1.5.
- Disable the SID/NID list entry timer for the entry of SID_NID_LIST_s containing SID_s, and NID_s. For any other entry of SID_NID_LIST_s whose entry timer is not active, enable the entry timer with the duration specified in 6.6.5.1.5.
 - If SID_NID_LIST_s contains more than N_{10m} entries, delete the excess entries
 according to the rules specified in 6.6.5.1.5.
 - If MULT_SIDS_s is equal to '0' and SID_NID_LIST contains entries with different SIDs, delete the excess entries according to the rules specified in 6.6.5.1.5.
 - If $MULT_NIDS_s$ is equal to '0' and SID_NID_LIST contains more than one entry for any SID, delete the excess entries according to the rules specified in 6.6.5.1.5.
 - Set the stored location of last registration (BASE_LAT_REG_{S-p} and BASE_LONG-_REG_{S-p}) to the base station's location (BASE_LAT_S and BASE_LONG_S). Set the stored registration distance (REG_DIST_REG_{S-p}) to the base station's registration distance (REG_DIST_S).
 - Update its roaming status and set MOB_TERMs as specified in 6.6.5.3. The mobile station should indicate to the user whether the mobile station is roaming.

6.6.5.5.4.4 Power Off

- These procedures are performed when the mobile station is directed by the user to power off.
- 24 The mobile station shall perform the following actions:
 - If an entry of ZONE_LIST_S does not have an active timer, copy that entry to ZONE_LIST_{S-p}; otherwise, delete the entry in ZONE_LIST_{S-p} if ZONE_LIST_{S-p} contains an entry.
 - If an entry of SID_NID_LIST_s does not have an active timer, copy that entry to SID_NID_LIST_{s-p}; otherwise, delete the entry in SID_NID_LIST_{s-p} if SID_NID_LIST_{s-p} contains an entry.

6.6.6 Handoff Procedures

This section presents an overview and mobile station requirements for handoffs occurring while the mobile station is in the *Mobile Station Control on the Traffic Channel State* (see 6.6.4). Mobile station requirements for handoffs occurring while the mobile station is in the *Mobile Station Idle State* are specified in 6.6.2.1.4.

6.6.6.1 Overview

5

A

11

12

33

34

35

37

38

39

6.6.6.1.1 Types of Handoff 2

- The mobile station supports the following three handoff procedures while in the Mobile 3
- Station Control on the Traffic Channel State:
 - Soft Handoff: A handoff in which the mobile station commences communications with a new base station without interrupting communications with the old base station. Soft handoff can only be used between CDMA Channels having identical frequency assignments. Soft handoff provides diversity of Forward Traffic Channels and Reverse Traffic Channel paths on the boundaries between base stations.
 - CDMA-to-CDMA Hard Handoff: A handoff in which the mobile station is transitioned between disjoint sets of base stations, different band classes, different frequency assignments, or different frame offsets.
 - CDMA-to-Analog Handoff: A handoff in which the mobile station is directed from a CDMA traffic channel to an analog voice channel.
- The mobile station shall support soft handoffs on the same frequency assignment (see 15 6.6.6.2.7). The mobile station shall support CDMA-to-CDMA hard handoffs between band 16 classes on which it supports CDMA operation (see 6.6.6.2.8). The mobile station shall 17 support CDMA-to-analog handoffs from band classes on which it supports CDMA operation 18 to band classes on which it supports analog operation (see 6.6.6.2.9). 19

6.6.6.1.2 Pilot Sets 20

- Within section 6.6.6 the term pilot refers to a Pilot Channel identified by a pilot sequence 21
 - offset (see 7.1.3.2.1) and a frequency assignment (see 7.1.1.1). A pilot is associated with
- 22 the Forward Traffic Channels in the same Forward CDMA Channel. All pilots in a pilot set 23
- have the same CDMA frequency assignment. 24
- The mobile station searches for pilots on the current CDMA frequency assignment to detect 25
- the presence of CDMA Channels and to measure their strengths. When the mobile station 26
- detects a pilot of sufficient strength that is not associated with any of the Forward Traffic 27
- Channels assigned to it, it sends a Pilot Strength Measurement Message to the base station. 28 The base station can then assign a Forward Traffic Channel associated with that pilot to 29
- the mobile station and direct the mobile station to perform a handoff. 30
- The pilot search parameters and the rules for Pilot Strength Measurement Message 31 transmission are expressed in terms of the following sets of pilots: 32
 - Active Set: The pilots associated with the Forward Traffic Channels assigned to the mobile station.
 - Candidate Set: The pilots that are not currently in the Active Set but have been received by the mobile station with sufficient strength to indicate that the associated Forward Traffic Channels could be successfully demodulated.
 - Neighbor Set: The pilots that are not currently in the Active Set or the Candidate Set and are likely candidates for handoff.

2

13

14

15

16

17

25

26

28

29

30

31

32

33

- Remaining Set: The set of all possible pilots in the current system on the current CDMA frequency assignment, excluding the pilots in the Neighbor Set, the Candidate Set, and the Active Set. This set of possible pilots consists of pilots whose pilot PN sequence offset indices are integer multiples of PILOT_INCs.
- The base station may direct the mobile station to search for pilots on a different CDMA
- 6 frequency to detect the presence of CDMA Channels and to measure their strengths. The
- 7 mobile station reports the results of the search to the base station using the Candidate
- 8 Frequency Search Report Message. Depending upon the pilot strength measurements
- 9 reported in the Candidate Frequency Search Report Message, the base station can direct the
- mobile station to perform an inter-frequency hard handoff.
- 11 The pilot search parameters are expressed in terms of the following sets of pilots on the CDMA Candidate Frequency:
 - Candidate Frequency Neighbor Set: A list of pilots on the CDMA Candidate Frequency.
 - Candidate Frequency Search Set: A subset of the Candidate Frequency Neighbor Set that the base station may direct the mobile station to search.
 - 6.6.6.2 Requirements
- ₁₈ 6.6.6.2.1 Pilot Search
- For the pilot sets defined in 6.6.6.1.2, the base station sets the search window (range of PN
- offsets) in which the mobile station is to search for usable multipath components (i.e.,
- 21 multipath components that the mobile station can use for demodulation of the associated
- 22 Forward Traffic Channel) of the pilots in the set.
- 23 Search performance criteria are defined in TIA/EIA-98-B and ANSI J-STD-018.
- This search shall be governed by the following:
 - Active Set and Candidate Set: The search procedures for pilots in the Active Set and Candidate Set shall be identical. The search window size 12 for each pilot in the Active Set and Candidate Set shall be the number of PN chips specified in Table 6.6.6.2.1-1 corresponding to SRCH_WIN_As. The mobile station should center the search window for each pilot of the Active Set and Candidate Set around the earliest arriving usable multipath component of the pilot. If the mobile station receives a value greater than or equal to 13 for SRCH_WIN_Ar, it may store and use the value 13 in SRCH_WIN_As.

6-348

. ...

 $^{^{12}}$ The table defines the entire search range. For example, SRCH_WIN_As = 6 corresponds to a 28 PN chip search window or ± 14 PN chips around the search window center.

Table 6.6.6.2.1-1. Searcher Window Sizes

SRCH_WIN_A SRCH_WIN_N SRCH_WIN_NGHBR SRCH_WIN_R CF_SRCH_WIN_N	Window Size (PN chips)	SRCH_WIN_A SRCH_WIN_N SRCH_WIN_NGHBR SRCH_WIN_R CF_SRCH_WIN_N	Window Size (PN chips)
0	4	8	60
1	6	9	80
2	8	10	100
3	10	11	130
4	14	12	160
5	20	13	226
6	28	14	320
7	40	15	452

• Neighbor Set: If SRCH_WIN_NGHBR_INCL_s is equal to '1', the search window size for each pilot in the Neighbor Set shall be the number of PN chips specified in Table 6.6.6.2.1-1, corresponding to SRCH_WIN_NGHBR_s associated with the pilot being searched. If SRCH_WIN_NGHBR_INCL_s is equal to '0', the search window size for each pilot in the Neighbor Set shall be the number of PN chips specified in Table 6.6.6.2.1-1 corresponding to SRCH_WIN_N_s. The mobile station should center the search window for each pilot in the Neighbor Set around the pilot's PN sequence offset, using timing defined by the mobile station's time reference (see 6.1.5.1). If SEARCH_PRIORITY_INCL_s is equal to '1', the mobile station should use SEARCH_PRIORITY_s for the corresponding pilot to schedule its neighbor search. If the mobile station supports hopping pilot beacons and the TIMING_INCL field of the NGHBR_REC for the corresponding pilot is equal to '1', then the mobile station shall use the information included in the NGHBR_TX_OFFSET, NGHBR_TX_DURATION, and NGHBR_TX_PERIOD fields of the NGHBR_REC for the corresponding pilot to schedule the time for searching the neighbor.

• Remaining Set: The search window size for each pilot in the Remaining Set shall be the number of PN chips specified in Table 6.6.6.2.1-1 corresponding to SRCH_WIN_R_s. The mobile station should center the search window for each pilot in the Remaining Set around the pilot's PN sequence offset, using timing defined by the mobile station's time reference (see 6.1.5.1). The mobile station should only search for Remaining Set pilots whose pilot PN sequence offset indices are equal to integer multiples of PILOT_INC_s.

2

3

10

11

12

19

26

27

28

30

31

32

33

34

35

36

37

39

• Candidate Frequency Search Set: If CF_SRCH_WIN_NGHBRN_INCLs is equal to '1', the search window size for each pilot in the candidate frequency search set shall be the number of PN chips specified in Table 6.6.6.2.1-1, corresponding to SRCH_WIN_NGHBRs associated with the pilot being searched. If CF_SRCH_WIN_NGHBR_INCLs is equal to '0', the search window size for each pilot in the Candidate Frequency Search Set shall be the number of PN chips specified in Table 6.6.6.2.1-1 corresponding to CF_SRCH_WIN_Ns. The mobile station should center the search window for each pilot in the Candidate Frequency Search Set around the pilot's PN sequence offset using timing defined by the mobile station's time reference (see 6.1.5.1). If CF_SEARCH_PRIORITY_INCLs is equal to '1', the mobile station should use SEARCH_PRIORITYs associated with each pilot to schedule a search of its Candidate Frequency Search Set.

6.6.6.2.2 Pilot Strength Measurements

- The mobile station assists the base station in the handoff process and in the Reverse
- Supplemental Code Channel operation by measuring and reporting the strengths of
- 16 received pilots.
- The mobile station should use the searcher element (see 6.2.2.1) to compute the strength of
- a pilot by adding the ratios of received pilot energy per chip, E_c, to total received spectral
 - density (noise and signals), I_0 , of at most k usable multipath components, where k is the
- number of demodulating elements (see 6.2.2.1) supported by the mobile station.
- 6.6.6.2.3 Handoff Drop Timer
- The mobile station shall maintain a handoff drop timer for each pilot in the Active Set and Candidate Set.
- If $P_REV_IN_USE_s$ is less than or equal to three or $SOFT_SLOPE_s$ is equal to '000000', the mobile station shall perform the following:
 - For the Candidate Set, the mobile station shall start the timer whenever the strength of the corresponding pilot becomes less than T_DROP_s. The mobile station shall reset and disable the timer if the strength of the corresponding pilot exceeds T_DROP_s.
 - For the Active Set, the mobile station shall start the timer whenever the strength of the corresponding pilot becomes less than T_DROP_s. The mobile station shall start the timer even if the timer has previously expired. The mobile station shall reset and disable the timer if the strength of the corresponding pilot exceeds T_DROP_s.
 - If $P_REV_IN_USE_s$ is greater than three and $SOFT_SLOPE_s$ is not equal to '000000', the mobile station shall perform the following:
 - For the Candidate Set, the mobile station shall start the timer whenever the strength of the corresponding pilot becomes less than T_DROP_s. The mobile station shall reset and disable the timer if the strength of the corresponding pilot exceeds T_DROP_s.

• For the Active Set, the mobile station shall sort the N_A pilots in the Active Set in order of increasing strengths, i.e., $PS_1 < PS_2 < PS_3 < ... < PS_{NA}$ where the strength PS is as defined in 6.6.6.2.2. The mobile station shall start the timer whenever the strength PS_i satisfies the following inequality:

$$10 \times log_{10}PS_{i} < max(\frac{SOFT_SLOPE_{S}}{8} \times 10 \times log_{10}\sum_{j>i}PS_{j} + \frac{DROP_INTERCEPT_{S}}{2}, \frac{T_DROP_{S}}{2})$$

$$i = 1, 2, ..., PS_{N_{A}-1}$$

For the Active Set, the mobile station shall start the timer even if the timer has previously expired. The mobile station shall reset and disable the timer whenever the above inequality

is not satisfied for the corresponding pilot.

5

10

11

12

13

14

15

If T_TDROP_S equals zero, the mobile station shall consider the timer expired within 100 ms of enabling it. Otherwise, the mobile station shall consider the timer expired within 10% of the timer expiration value shown in Table 6.6.6.2.3.-1 corresponding to T_TDROP_S . If T_TDROP_S changes, the mobile station shall begin using the new value for all handoff drop timers within 100 ms.

Table 6.6.6.2.3-1. Handoff Drop Timer Expiration Values

T_TDROP	Timer Expiration (seconds)	T_TDROP	Timer Expiration (seconds)
0	≤ 0.1	8	27
.1	1	9	39
2	2	10	55
3	4	11	79
4	6	12	112
5	9	13	159
6	13	14	225
7	19	15	319

The mobile station shall indicate the status of the handoff drop timer for all pilots in the Active Set and Candidate Set when transmitting a *Pilot Strength Measurement Message*.

- 6.6.6.2.4 Pilot PN Phase
- The mobile station shall measure the arrival time, PILOT_ARRIVAL, for each pilot reported
- 3 to the base station. The pilot arrival time shall be the time of occurrence, as measured at
- the mobile station antenna connector, of the earliest arriving usable multipath component
- of the pilot. The arrival time shall be measured relative to the mobile station's time
- 6 reference (see 6.1.5.1) in units of PN chips. The mobile station shall compute the reported
- pilot PN phase, PILOT_PN_PHASE, as
 - $PILOT_PN_PHASE = (PILOT_ARRIVAL + (64 \times PILOT_PN)) \mod 2^{15}$
- where PILOT_PN is the PN sequence offset index of the pilot (see 7.1.3.2.1).
- 6.6.6.2.5 Handoff Messages

R

10

14

15

16

17

18

19

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

- 6.6.6.2.5.1 Processing of Forward Traffic Channel Handoff Messages
- 12 If the mobile station receives any of the following messages, then the mobile station shall process the message as described.
 - Pilot Measurement Request Order: The mobile station shall send, within T_{56m} seconds, a Pilot Strength Measurement Message.
 - 2. Analog Handoff Direction Message: The mobile station shall process the message as specified in 6.6.6.2.9.
 - 3. Neighbor List Update Message: The mobile station shall process the message as specified in 6.6.6.2.6.3 and set SEARCH_PRIORITY_INCLs and SRCH_WIN_NGHBR_INCLs to '0', and set TIMING_INCL for each of the neighboring base stations in the Neighbor List Update Message to '0'.
 - 4. Extended Handoff Direction Message: The mobile station shall process the message as follows:
 - The mobile station shall send a *Mobile Station Reject Order* with the ORDQ field set to '00000110' (capability not supported), if the mobile station does not support the band class specified in the *Extended Handoff Direction Message*.

When the message takes effect, the mobile station shall perform the following:

- Update the Active Set, Candidate Set, and Neighbor Set in accordance with the
 Extended Handoff Direction Message processing (see 6.6.6.2.6.1, 6.6.6.2.6.2, and
 6.6.6.2.6.3).
- Discontinue use of all Forward Traffic Channels associated with pilots not listed in the Extended Handoff Direction Message.
- The mobile station shall update the Code Channel List, CODE_CHAN_LIST_S, as specified in 6.6.8.
- If the mobile station is currently processing Forward Supplemental Code Channels, then it shall continue processing the Forward Supplemental Code Channels using the updated Code Channel List, CODE_CHAN_LIST_S.
- If HARD_INCLUDED is equal to '1', perform the following actions:

			•	
1			If FRAME_OFFSET _r is not equal to FRAME_OFFSET _s , change the frame	
2			offset on all of the code channels of the Forward Traffic Channel and of the Reverse Traffic Channel.	
4			If RESET_L2 _r is equal to '1', reset the acknowledgment procedures as	
5			specified in 6.6.4.1.3.3. The acknowledgment procedures shall be reset	
6			immediately after the action time of the Extended Handoff Direction Message	}.
7			If RESET_FPC _r is equal to '1', initialize the Forward Traffic Channel power	
8			control counters as specified in 6.6.4.1.1.1.	
9 10	٠		If SERV_NEG_TYPE _r is equal to '1', set SERV_NEG _s to enabled; otherwise se SERV_NEG _s to disabled. For operation in Band Class 1, SERV_NEG _s is	:t
11			always equal to enabled.	
12 13			Use the long code mask specified by the PRIVATE_LCM _r (see 6.3.12.3) and indicate to the user the voice privacy mode status.	
14			Process the ENCRYPT_MODE field as specified in 6.3.12.2.	
15		•	Store the following parameters from the current configuration:	
16			Serving frequency assignment (SF_CDMACH _s = CDMACH _s)	•
17			- Serving frequency band class (SF_BAND_CLASS _s = BAND_CLASS _s)	
18		•	Serving Frequency frame offset (SF_FRAME_OFFSET _s = FRAME_OFFSET _s)	
19		•	If HARD_INCLUDED is not equal to '1', set NUM_PREAMBLE _s = '000'.	
20		•	Store the following parameters from the Extended Handoff Direction Message:	
21 22			 Extended Handoff Direction Message sequence number (HDM_SEQ_s = HDM_SEQ_r) 	
23			- If SEARCH_INCLUDED is equal to '1', then store the following:	
24 25			 Search window size for the Active Set and Candidate Set (SRCH_WIN_A_S = SRCH_WIN_A_r) 	
26			+ Pilot detection threshold $(T_ADD_s = T_ADD_r)$	
27			+ Pilot drop threshold $(T_DROP_S = T_DROP_r)$	
28 29		*	 Active Set versus Candidate Set comparison threshold (T_COMP_s = T_COMP_r) 	
30			+ Drop timer value (T_TDROP _s = T_TDROP _r)	
31			- If HARD_INCLUDED is equal to '1', then store the following:	
32			+ Frame offset (FRAME_OFFSET _s = FRAME_OFFSET _r)	
33			+ Nominal power setting of the target cell (NOM_PWR _s = NOM_PWR _r)	
.34 35			 Hard handoff traffic channel preamble count required before transmitti Handoff Completion Message (NUM_PREAMBLE_s = NUM_PREAMBLE_r) 	ng

+ CDMA band class (CDMABAND_S = BAND_CLASS_r)

37

38

3 .		$NOM_PWR_EXT_S = NOM_PWR_EXT_r$; otherwise, $NOM_PWR_EXT_S = 0$)
4		 One occurrence of PILOT_PN and PWR_COMB_IND for each included member of the Active Set.
6		- If ADD_LENGTH is not equal to '000', then store the following:
7		+ Protocol revision level (P_REV _s = P_REV _r)
8		 Protocol revision level currently in use (P_REV_IN_USE_s = the minimum value of P_REV_s and MOB_P_REV_p of the current band class)
10	•	 Disable return on failure (RETURN_IF_HANDOFF_FAIL_s = '0')
11		Perform a soft or hard handoff depending on the following conditions:
12 13 14 15	·	- If HARD_INCLUDED is set to '1' and BAND_CLASS _r is not equal to SF_CDMABAND _s , CDMA_FREQ _r is not equal to SF_CDMACH _s , or FRAME_OFFSET _r is not equal to SF_FRAME_OFFSET _s , or if the set of pilots specified by the message is disjoint from the Active Set prior to the action time of the message, the mobile station shall perform the following:
17 · 18		+ If a Periodic Serving Frequency Pilot Report Procedure is in progress, abort the procedure (see 6.6.6.2.12).
19 20 21		+ If a Candidate Frequency periodic search is in progress, abort the periodic search (see 6.6.6.2.8.3.4 and 6.6.6.2.10.4) and set PERIODIC_SEARCH _s to '0'.
22 23 24		+ Perform the actions specified in 6.6.6.2.8.1. If the message specifies more than one pilot, the mobile station shall also perform the actions specified in 6.6.6.2.7.1 and 6.6.6.2.7.2.
25		- Otherwise, the mobile station shall perform the actions specified in 6.6.6.2.7.
26 27	5.	Candidate <i>Frequency Search Request Message</i> : The mobile station shall process the message as follows:
28 29		The mobile station shall send a <i>Mobile Station Reject Order</i> with the ORDQ field set to '00000110' (capability not supported), if any of the following conditions is true:
30 31		• SEARCH_MODE $_r$ is not equal to '0000', and the mobile station does not support the capability specified by SEARCH_MODE $_r$, or
32 33		 P_REV_IN_USE_s is less than or equal to four, and the mobile station does not support mobile-assisted hard handoff.
34 35 36		If none of the above conditions is true, the mobile station shall perform the actions described in the remainder of this section to process the <i>Candidate Frequency Search Request Message</i> .

Frequency assignment (CDMACH_s = CDMA_FREQ_r)

Nominal power setting of the target cell (If CDMABAND_s = '00001', then

If $SEARCH_MODE_r$ is equal to '0000', the mobile station shall process the

Candidate Frequency Search Request Message as follows:

1 2 3 4	•	The mobile station shall send a <i>Mobile Station Reject Order</i> with the ORDQ field set to '00001100' (invalid frequency assignment), if the frequency assignment specified in the message is the same as the Serving Frequency (BAND_CLASS_r is equal to CDMABAND_s and CDMA_FREQ_r is equal to CDMACH_s).
5 6	•	The mobile station shall send a <i>Mobile Station Reject Order</i> with the ORDQ field set to '00001010' (search set not specified), if SEARCH_TYPE $_{\Gamma}$ is equal to '01' or
7 .		'11', and one of the following conditions is true:
8		 PILOT_UPDATE_r is equal to '0' and the Candidate Frequency Search Set
9		before the action time of the Candidate Frequency Search Request Message is empty, or
I 1		- $PILOT_UPDATE_r$ is equal to '1' and the message specifies an empty search
13 14 15	•	Set. The mobile station shall send a <i>Mobile Station Reject Order</i> with the ORDQ field set to '0001101' (search period too short), if SEARCH_TYPE $_r$ is equal to '11' and search_period is less than (max (fwd_time, rev_time) + T_{71m}) seconds, where
16		search_period, fwd_time and rev_time are defined below.
17		(In the following, if PILOT_UPDATE _r is equal to '1', rec_search_set is the set of
18 19 20		pilots specified in the <i>Candidate Frequency Search Request Message</i> with the corresponding SEARCH_SET field set to '1'; otherwise, <i>rec_search_set</i> is the Candidate Frequency Search Set before the action time of the <i>Candidate</i>
21		Frequency Search Request Message.)
22 23		$search_period$ = time period corresponding to SEARCH_PERIOD _r shown in Table 6.6.6.2.8.3.2-1
24 25 26 27 28 29 30		<pre>fwd_time = the mobile station's estimate of the total length of time, in</pre>
32 33 34 35 36 37		rev_time = the mobile station's estimate of the total length of time, in seconds, for which the mobile station will need to suspend its current Reverse Traffic Channel processing in order to tune to the Candidate Frequency, to search rec_search_set, and to retune to the Serving Frequency; if the mobile station searches rec_search_set in multiple visits, rev_time is the total time for all visits to the Candidate Frequency in a search period
39	•	If the mobile station does not send a Mobile Station Reject Order in response to

the $\it Candidate Frequency Search Request Message$, it shall perform the following:

2

3

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

29

30

31

32

33

35

36

- The mobile station shall send a Candidate Frequency Search Response Message as a message requiring an acknowledgment, within T_{56m} seconds of receiving the Candidate Frequency Search Request Message. The mobile station shall set the fields of the Candidate Frequency Search Response Message as follows:
 - + The mobile station shall set TOTAL_OFF_TIME_FWD and TOTAL_OFF_TIME_REV to its estimate of the total number of frames for which it will need to suspend its current Forward Traffic Channel processing and Reverse Traffic Channel processing, respectively, in order to tune to the Candidate Frequency, to search rec_search_set, and to retune to the Serving Frequency (see 6.6.2.8.3.2). If the mobile station searches rec_search_set in multiple visits to the Candidate Frequency, the mobile station shall report the total number of frames in all visits in a search period for which it will need to suspend its current Forward Traffic Channel and the Reverse Traffic Channel processing.
 - + The mobile station shall set MAX_OFF_TIME_FWD and MAX_OFF_TIME_REV to its estimate of the maximum number of frames for which it will need to suspend its current Forward Traffic Channel processing and Reverse Traffic Channel processing, respectively, during any single visit to tune to the Candidate Frequency, to search a subset of rec_search_set, and to re-tune to the Serving Frequency..¹³
- When the message takes effect, the mobile station shall perform the following actions:
 - + If any periodic search is in progress, the mobile station shall abort it (see 6.6.6.2.8.3.4 and 6.6.6.2.10.4).
 - + If SEARCH_TYPE_r is equal to '00', the mobile station may stop maintaining the average of the Serving Frequency received power that is used in the handoff and search procedures.
 - + If SEARCH_TYPE $_{\rm r}$ is equal to '01' or '11', and the mobile station uses received power measurements in the search procedure, it should start monitoring the received power on the Serving Frequency, if it is not already doing so. While it is tuned to the Serving Frequency, the mobile station should measure the received power once every frame (0.02 seconds), and should maintain an average of the received power over the last N_{12m} frames.
 - + Store the following parameters from the Candidate Frequency Search Request Message:

¹³ If the mobile station searches the entire Candidate Frequency Search Set in a single visit to the Candidate Frequency, TOTAL_OFF_TIME_FWD will be equal to MAX_OFF_TIME_FWD, and TOTAL_OFF_TIME_REV will be equal to MAX_OFF_TIME_REV.

1 2	o	Candidate Frequency Search Request Message sequence number $(CFSRM_SEQ_s = CFSRM_SEQ_r)$
3 4 5	ò	Periodic search flag: If SEARCH_TYPE $_r$ is equal to '11', the mobile station shall set PERIODIC_SEARCH $_s$ to '1'; otherwise, the mobile station shall set PERIODIC_SEARCH $_s$ to '0'.
6 7	0	Search period on the Candidate Frequency $(SEARCH_PERIOD_s = SEARCH_PERIOD_r)$
8 9 ·	0	Candidate Frequency search mode $(SEARCH_MODE_s = SEARCH_MODE_r)$
10 11	o	Band class for the Candidate Frequency (CF_CDMABAND _s = BAND_CLASS _r)
12 13	0	CDMA Channel number for the CDMA Candidate Frequency (CF_CDMACH _S = CDMA_FREQ _r)
14	0	Serving Frequency total pilot E_c threshold (SF_TOTAL_EC_THRESH _s)
16 17	0	Serving Frequency total pilot E_c/I_0 threshold (SF_TOTAL_EC_IO_THRESH _s)
18 19	0	Received power difference threshold (DIFF_RX_PWR_THRESH _s = DIFF_RX_PWR_THRESH _r)
20 21	O	Candidate Frequency Total pilot E_c/I_o threshold (MIN_TOTAL_PILOT_EC_IO _s = MIN_TOTAL_PILOT_EC_IO _r)
22	o	Pilot detection threshold on the CDMA Candidate Frequency $(CF_T_ADD_S = CF_T_ADD_r)$
24 25 26	0	Maximum time on the CDMA Candidate Target Frequency that the mobile station may wait to receive a good frame $(TF_WAIT_TIME_s = TF_WAIT_TIME_r)$
27 28	0	Pilot PN sequence offset increment on the CDMA Candidate Frequency (CF_PILOT_INC _s = CF_PILOT_INC _r)
29 .	0	Search window for pilots in the Neighbor Set on the CDMA Candidate Frequency (CF_SRCH_WIN_N _S = CF_SRCH_WIN_N _r)
31 32	o	Search window for pilots in the Remaining Set on the CDMA Candidate Frequency (CF_SRCH_WIN_ R_s = CF_SRCH_WIN_ R_r)
33	o	If PILOT_UPDATE is equal to '1', the mobile station shall set CF_SEARCH_PRIORITY_INCLs and CF_SRCH_WIN_NGHBR_INCLs to
35 36		the values corresponding to CF_NGHBR_SRCH_MODE shown in Table 6.6.6.2.5.1-1.
37 38 39	0	If PILOT_UPDATE is equal to '1', the mobile station shall replace the Candidate Frequency Neighbor Set with all neighbor pilots specified in the Candidate Frequency Search Request Message.

10

11

12

13

16

17

18

19

20

22

23

25

26

- o If PILOT_UPDATE is equal to '1' and CF_SEARCH_PRIORITY_INCLs is equal to '1', the mobile station shall store the search priority (SEARCH_PRIORITYs = SEARCH_PRIORITYr) associated with each of the neighboring base stations contained in the Candidate Frequency Neighbor Set.
- o If PILOT_UPDATE is equal to '1' and CF_SRCH_WIN_NGHBR_INCLs is equal to '1', the mobile station shall store the neighbor pilot channel search window size (SRCH_WIN_NGHBR_s = SRCH_WIN_NGHBR_r) associated with each of the neighboring base stations contained in the Candidate Frequency Neighbor Set.
- o If PILOT_UPDATE is equal to '1', the mobile station shall replace the Candidate Frequency Search Set with all flagged pilots (those with the corresponding SEARCH_SET field set to '1') specified in the Candidate Frequency Search Request Message.
- + The mobile station shall store the following parameters from its current configuration:
 - o CDMA band class (SF_CDMABANDs = CDMABANDs)
 - o Frequency Assignment (SF_CDMACH_S = CDMACH_{S)}
 - o Pilot detection threshold ($SF_T_ADD_s = T_ADD_s$)
- If SEARCH_TYPE_r is equal to '01', the mobile station shall perform a single search of the Candidate Frequency Search Set, as described in 6.6.6.2.8.3.1. If SEARCH_TYPE_r is equal to '11', the mobile station shall perform the periodic search procedures, as described in 6.6.6.2.8.3.2.

Table 6.6.6.2.5.1-1. Search Parameter Settings

NGHBR_SRCH MODE CF_NGHBR SRCH_MODE	SEARCH PRIORITY_INCL CF_SEARCH PRIORITY_INCL	SRCH_WIN NGHBR_INCL CF_SRCH WIN_NGHBR_INCL
. 00	0	0
01	1	. 0
10	0	1
11	1	1

If SEARCH_MODE_r is equal to '0001', and if the mobile station supports analog searching, the mobile station shall process the *Candidate Frequency Search Request Message* as follows:

 The mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '0001101' (search period too short), if SEARCH_TYPE_r is equal to '11' and search_period is less than (max (fwd_time, rev_time) + T_{71m}) seconds where search_period, fwd_time and rev_time are defined below.

(In the following, rec_search_set is the set of analog frequencies specified in the Candidate Frequency Search Request Message.)

 $search_period$ = time period corresponding to SEARCH_PERIOD_r shown in Table 6.6.6.2.8.3.2-1

- fwd_time = the mobile station's estimate of the total length of time, in seconds, for which the mobile station will need to suspend its current Forward Traffic Channel processing in order to tune to each analog frequency in rec_search_set and measure its strength, and to re-tune to the Serving Frequency; if the mobile station searches rec_search_set in multiple visits, fwd_time is the total time for all visits away from the Serving Frequency in a search period (see 6.6.6.2.10.2)
- rev_time = the mobile station's estimate of the total length of time, in seconds, for which the mobile station will need to suspend its current Reverse Traffic Channel processing in order to tune to each analog frequency in rec_search_set and measure its strength, and to re-tune to the Serving Frequency; if the mobile station searches rec_search_set in multiple visits, rev_time is the total time for all visits away from the Serving Frequency in a search period
- If the mobile station does not send a Mobile Station Reject Order in response to the Candidate Frequency Search Request Message, it shall perform the following:
 - The mobile station shall send a Candidate Frequency Search Response Message as a message requiring an acknowledgment, within T_{56m} seconds of receiving the Candidate Frequency Search Request Message. The mobile station shall set the fields of the Candidate Frequency Search Response Message as follows:
 - + The mobile station shall set TOTAL_OFF_TIME_FWD and TOTAL_OFF_TIME_REV to its estimate of the total number of frames for which it will need to suspend its current Forward Traffic Channel processing and Reverse Traffic Channel processing, respectively, in order to tune to each analog frequency in rec_search_set, and to re-tune to the Serving Frequency (see 6.6.6.2.8.3.2). If the mobile station searches rec_search_set in multiple visits away from the Serving Frequency, the mobile station shall report the total number of frames in all visits in a search period for which it will need to suspend its current Forward Traffic Channel and the Reverse Traffic Channel processing.

ANSI/TIA/E	IA-95-B
	+ The mobile station shall set MAX_OFF_TIME_FWD and MAX_OFF_TIME_REV to its estimate of the maximum number of frames for which it will need to suspend its current Forward Traffic Channel processing and Reverse Traffic Channel processing, respectively, during any single visit away from the Serving Frequency, to search a subset of rec_search_set, and to re-tune to the Serving Frequency.
-	When the message takes effect, the mobile station shall perform the following
	actions:
·	+ If any periodic search is in progress, the mobile station shall abort it (see 6.6.6.2.8.3.4 and 6.6.6.2.10.4).
	+ If SEARCH_TYPE _r is equal to '00', the mobile station may stop maintaining the average of the Serving Frequency received power that is used in the handoff and search procedures.

- + If SEARCH_TYPE_r is equal to '01' or '11', and the mobile station uses received power measurements in the search procedure, it should start monitoring the received power on the Serving Frequency, if it is not already doing so. While it is tuned to the Serving Frequency, the mobile station should measure the received power once every frame (0.02 seconds), and should maintain an average of the received power over the last N_{12m} frames.
- + Store the following parameters from the Candidate Frequency Search Request Message:
 - Candidate Frequency Search Request Message sequence number (CFSRM_SEQ_s = CFSRM_SEQ_r)
 - o Periodic search flag: If SEARCH_TYPE $_{\rm r}$ is equal to '11', the mobile station shall set PERIODIC_SEARCH $_{\rm s}$ to '1'; otherwise, the mobile station shall set PERIODIC_SEARCH $_{\rm s}$ to '0'.
 - o Search period for the analog frequencies search (SEARCH_PERIOD_S = SEARCH_PERIOD_r)
 - Candidate Frequency search mode (SEARCH_MODE_s = SEARCH_MODE_r)
 - Band class for the analog frequencies (CF_CDMABAND_s = BAND_CLASS_r)
 - Serving Frequency total pilot E_c threshold
 (SF_TOTAL_EC_THRESH_s) = SF_TOTAL_EC_THRESH_r)
 - o Serving Frequency total pilot $E_{\rm C}/I_{\rm O}$ threshold (SF_TOTAL_EC_IO_THRESH_r)

1 2	o Candidate Frequency Analog Search Set: The mobile station shall replace the Candidate Frequency Analog Search Set with the analog
3	frequencies included in the Candidate Frequency Search Request Message.
5 6 7 8.	 + If SEARCH_TYPE_r is equal to '01', the mobile station shall perform a single search of the Candidate Frequency Analog Search Set as described in 6.6.6.2.10.1. If SEARCH_TYPE_r is equal to '11', the mobile station shall perform the periodic search procedures described in 6.6.6.2.10.2. 6. Candidate Frequency Search Control Message: The mobile station shall process the
0	message as follows:
1 2 3 4	The mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000110' (capability not supported) if P_REV_IN_USE _s is less than or equal to four and the mobile station does not support mobile-assisted hard handoff; otherwise, the mobile station shall perform the actions described in the remainder of this section to process the Candidate Frequency Search Control Message.
16	If SEARCH_MODE _s is equal to '0000':
17 18 19	 The mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00001010' (search set not specified), if SEARCH_TYPE_r is not equal to '00 and the Candidate Frequency Search Set is empty.
20 21	• The mobile station shall send a <i>Mobile Station Reject Order</i> with the ORDQ field set to '00001011' (invalid search request), if SEARCH_TYPE _r is not equal to '00'
22 23	and the Candidate Frequency is the same as the Serving Frequency (CF_CDMABAND $_{\rm S}$ is equal to CDMABAND $_{\rm S}$ and CF_CDMACH $_{\rm S}$).
25 26 27	 The mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '0001101' (search period too short), if SEARCH_TYPE_r is equal to '11' and search_period is less than (max (fwd_time, rev_time) + T_{71m}) seconds, where
28 29	$search_period = time period corresponding to SEARCH_PERIOD_r shown in Table 6.6.6.2.8.3.2-1,$
30 31 32 33 34 35	fwd_time = the mobile station's estimate of the total length of time, in seconds, for which the mobile station will need to suspend its current Forward Traffic Channel processing in order to tune to the Candidate Frequency, to search the Candidate Frequency Search Set and to re-tune to the Serving Frequency; if the mobile station searches the Candidate Frequency Search Set in multiple visits, fwd_time is the total time for all visits to the
36 37	Candidate Frequency in a search period (see 6.6.6.2.8.3.2),

and

		rev_time = the mobile station's estimate of the total length of time, in seconds, for which the mobile station will need to suspend its current Reverse Traffic Channel processing in order to tune to the Candidate Frequency, to search the Candidate Frequency Search Set and to re-tune to the Serving Frequency; if the mobile station searches the Candidate Frequency Search Set in multiple visits, rev_time is the total time for all visits to the Candidate Frequency in a search period.
•	If M	the mobile station does not reject the <i>Candidate Frequency Search Control</i> essage, it shall perform the following actions when the message takes effect:
	-	If any periodic search is in progress, the mobile station shall abort it (see 6.6.6.2.8.3.4 and 6.6.6.2.10.4).
	_	If SEARCH_TYPE _r is equal to '00':
		+ The mobile station shall set PERIODIC_SEARCH _s to '0'.
		+ The mobile station may stop maintaining the average of the Serving Frequency received power that is used in the handoff and search procedures.
	· _	If SEARCH_TYPE $_{\rm r}$ is equal to '01' or '11', the mobile station shall store the
		following parameters from its current configuration:
		+ CDMA band class (SF_CDMABAND _s = CDMABAND _s)
		+ Frequency Assignment (SF_CDMACH _s = CDMACH _s)
		+ Pilot detection threshold (SF_T_ADD _S = T_ADD _S)
	_	If SEARCH_TYPE _r is equal to '01':
		+ The mobile station shall set PERIODIC_SEARCH _s to '0'.
		+ If mobile station uses received power measurements in the search procedure, it should start monitoring the received power on the Serving Frequency, if it is not already doing so. While it is tuned to the Serving

+ The mobile station shall perform a single search of the Candidate Frequency Search Set, as described in 6.6.6.2.8.3.1.

Frequency, the mobile station should measure the received power once

every frame (0.02 seconds), and should maintain an average of the

- If SEARCH_TYPE_r is equal to '11':
 - + The mobile station shall set PERIODIC_SEARCH_s to '1'.

received power over the last N_{12m} frames.

1 2 3 4 5 6	 If mobile station uses received power measurements in the search procedure, it should start monitoring the received power on the Serving Frequency, if it is not already doing so. While it is tuned to the Serving Frequency, the mobile station should measure the received power once every frame (0.02 seconds), and should maintain an average of the received power over the last N_{12m} frames. The mobile station shall perform the periodic search procedures for the Candidate Frequency Search Set, as described in 6.6.6.2.8.3.2.
9	est of the state o
10	If SEARCH_MODE _s is equal to '0001':
11	set to '00001010' (search set not specified), if SEARCH_TYPE $_{\rm r}$ is not equal to '00'
13	,
14 15 16	set to '0001101' (search period too short), if SEARCH_TYPE _r is equal to '11' and
17	Table 6 6 6 2 8 3 2-1
15 22 22 22 22 22 22 22 22 22 22 22 22 22	seconds, for which the mobile station will need to suspend its current Forward Traffic Channel processing in order to tune to each analog frequency in the Candidate Frequency Analog Search Set and measure its strength, and to re-tune to the Serving Frequency; if the mobile station searches the Candidate Frequency Analog Search Set in multiple visits, fwd_time is the total time for all visits away from the Serving Frequency in a
۱ 2	and
: :	seconds, for which the mobile station will need to suspend its current Reverse Traffic Channel processing in order to tune to each analog frequency in the Candidate Frequency Analog Search Set and measure its strength, and to re-tune to the Serving Frequency; if the mobile station searches the Candidate Frequency Analog Search Set in multiple visits, fwd_time is the total time for all visits away from the Serving Frequency in a search period (see 6.6.2.10.2).
	• If the mobile station does not reject the Candidate Frequency Search Control Message, it shall perform the following actions when the message takes effect:

6.6.6.2.8.3.4 and 6.6.6.2.10.4).

40

If any periodic search is in progress, the mobile station shall abort it (see

10

11

12

13

15

16

17

18

19

20

23

25

27

28

29

30

31

32

33

35

36

37

- If SEARCH_TYPE_r is equal to '00':
 - + The mobile station shall set PERIODIC_SEARCH_S to '0'.
 - The mobile station may stop maintaining the average of the Serving Frequency received power that is used in the handoff and search procedures.
- If SEARCH_TYPE $_{r}$ is equal to '01':
 - + The mobile station shall set PERIODIC_SEARCH_s to '0'.
 - + If mobile station uses received power measurements in the search procedure, it should start monitoring the received power on the Serving Frequency, if it is not already doing so. While it is tuned to the Serving Frequency, the mobile station should measure the received power once every frame (0.02 seconds), and should maintain an average of the received power over the last N_{12m} frames.
 - The mobile station shall perform a single search of the Candidate Frequency Analog Search Set, as described in 6.6.6.2.10.1.
- If SEARCH_TYPE_r is equal to '11':
 - + The mobile station shall set PERIODIC_SEARCH_S to '1'.
 - + If mobile station uses received power measurements in the search procedure, it should start monitoring the received power on the Serving Frequency, if it is not already doing so. While it is tuned to the Serving Frequency, the mobile station should measure the received power once every frame (0.02 seconds), and should maintain an average of the received power over the last N_{12m} frames.
 - + The mobile station shall perform the periodic search procedures for the Candidate Frequency Analog Search Set, as described in 6.6.6.2.10.2.
- 7. Extended Neighbor List Update Message: The mobile station shall update its neighbor set as specified in 6.6.2.6.3 and perform the following:
 - If NGHBR_SRCH_MODE_r is equal to '01' or '11', the mobile station shall store the search priority (SEARCH_PRIORITY_s = SEARCH_PRIORITY_r) associated with each of the neighboring base stations contained in the *Extended Neighbor List Updated Message* which are in the mobile's neighbor set.
 - If NGHBR_SRCH_MODE_r is equal to '10' or '11', the mobile station shall store the neighbor pilot channel search window size (SRCH_WIN_NGHBR_S = SRCH_WIN_NGHBR_r) associated with each of the neighboring base stations contained in the *Extended Neighbor List Updated Message* which are in the mobile's neighbor set.
 - The mobile station shall update the default search window size for its Neighbor Set (SRCH_WIN_N_S = SRCH_WIN_N_r).

• The mobile station shall set SEARCH_PRIORITY_INCLs and SRCH_WIN_NGHBR_INCLs to the value specified in Table 6.6.6.2.5.1-1 corresponding to NGHBR_SRCH_MODE_r.

2

10

11

12

13

15

16

17

18

19

20

21

22

23

25

26

27

28

29

30

31

32

33

34

35

37

38

40

41

42

- If USE_TIMING is equal to '1', the mobile station shall store the timing included flag (TIMING_INCL) associated with each of the neighboring base stations contained in the Extended Neighbor List Update Message which are in the mobile station neighbor set; otherwise the mobile station shall set the timing included flag (TIMING_INCL) associated with each of the neighboring base stations to '0'.
- If USE_TIMING is equal to '1' and TIMING_INCL $_r$ is equal to '1', the mobile station shall store the neighbor transmit time offset (NGHBR_TX_OFFSET = NGHBR_TX_OFFSET $_r$) associated with each of the neighboring base stations contained in the *Extended Neighbor List Update Message* which are in the mobile station neighbor set.
- If USE_TIMING is equal to '1' and the TIMING_INCL is equal to '1', then the mobile station shall perform the following:
 - If the GLOBAL_TIMING_INCL field is equal to '1', then the mobile station shall store the neighbor transmit time duration (NGHBR_TX_DURATION = GLOBAL_TX_DURATION_r) and the neighbor transmit time duration (NGHBR_TX_PERIOD = GLOBAL_TX_PERIOD_r) contained in the Extended Neighbor List Update Message.
 - If the GLOBAL_TIMING_INCL field is equal to '0', then the mobile station shall store the neighbor transmit time duration (NGHBR_TX_DURATION = NGHBR_TX_DURATION_r) and the neighbor transmit time duration (NGHBR_TX_PERIOD = NGHBR_TX_PERIOD_r) associated with each of the neighboring base stations contained in the Extended Neighbor List Update Message which are in the mobile station neighbor set.
- 8. Supplemental Channel Assignment Message: The mobile station shall process this message as follows:

The mobile station shall send a *Mobile Station Reject Order* with the ORDQ field set to the specified value if any of the following conditions is true, and shall not perform any other action described in this section for processing the *Supplemental Channel Assignment Message*:

- The mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000110' (capability not supported), if the number of forward or reverse Supplemental Code Channels specified in the Supplemental Channel Assignment Message is greater than the maximum number of Supplemental Code Channels supported by the mobile station.
- The mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000011' (message structure not acceptable), if both USE_REV_HDM_SEQ and EXPL_REV_START_TIME or both USE_FOR_HDM_SEQ and EXPL_FOR_START_TIME specified in the Supplemental Channel Assignment Message are set to '1'.

10

11

12

13

14

16

17

18

21

22

23

77

28

30

31

33

36

37

38

39

40

 The mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000100' (message field not in valid range), if PILOT_PN specified in the Supplemental Channel Assignment Message is not in the Active Set and explicit start time is specified in the Supplemental Channel Assignment Message.

If none of the above conditions is true, the mobile station shall perform the following.

- The mobile station shall store the following parameters from the Supplemental Channel Assignment Message:
 - Use General Handoff Direction Message forward sequence number indicator (USE_FOR_HDM_SEQ_s = USE_FOR_HDM_SEQ_r)
 - If USE_FOR_HDM_SEQ_r is equal to '1', then the mobile station shall store the following:
 - + The sequence number of the *General Handoff Direction Message* to which this messaged is linked for the Forward Supplemental Code Channel assignment (FOR_LINKED_HDM_SEQ_s = FOR_LINKED_HDM_SEQ_r)
 - + The forward Supplemental Code Channel assignment order (SCAM_FOR_ORDER_s = least significant bit of FOR_SUP_CONFIG_r)
 - + The forward duration assignment indicator $(SCAM_FOR_DURATION_MODE_S = USE_FOR_DURATION_r)$.
 - Use General Handoff Direction Message reverse sequence number indicator (USE_REV_HDM_SEQ_s = USE_REV_HDM_SEQ_r)
 - If USE_REV_HDM_SEQ_r is equal to '1', then the mobile station shall store the following:
 - + The sequence number of the *General Handoff Direction Message* to which this messaged is linked for the Reverse Supplemental Code Channel assignment (REV_LINKED_HDM_SEQ_s = REV_LINKED_HDM_SEQ_r)
 - The reverse duration assignment indicator (SCAM_REV_DURATION_MODE_s = USE_REV_DURATION_r).
- If USE_RETRY_DELAY_r is '0', then the mobile station shall store 0 as RETRY_DELAY_s. The mobile station may send subsequent Supplemental Channel Request Messages whenever RETRY_DELAY_s is set to 0.
- If USE_RETRY_DELAY_r is set to '1', the mobile station shall interpret the Supplemental Channel Assignment Message as an indication that the base station has specified a Supplemental Channel Request Message retry delay in RETRY_DELAY_r as follows:
 - The mobile station shall store the next system time 80 ms boundary + RETRY_DELAY $_{\rm r}$ × 320 ms as RETRY_DELAY $_{\rm s}$. The mobile station shall not send any subsequent Supplemental Channel Request Message until after the system time stored in RETRY_DELAY $_{\rm s}$. At the system time stored in RETRY_DELAY $_{\rm s}$, the mobile station shall reset RETRY_DELAY $_{\rm s}$ to 0.

1 2 3		-	If RETRY_DELAY _r is '00000000', then the mobile station shall store 0 as RETRY_DELAY _s . The mobile station may send subsequent <i>Supplemental Channel Request Messages</i> whenever RETRY_DELAY _s is set to 0.
4 5		-	If RETRY_DELAY _r is '11111111', then the mobile station shall store <i>infinity</i> as RETRY_DELAY _s , and the mobile station shall not send any further
6 7 8			Supplemental Channel Request Messages until the mobile station receives a new Supplemental Channel Assignment Message with no retry delay or a non-infinite retry delay specified, or until the mobile station receives a General Handoff Direction Message with a CLEAR_RETRY_DELAY indication
9 10	•		set.
11 12 13	•	Su	REV_INCLUDED _r is equal to '1', then the mobile station shall process Reverse pplemental Code Channel assignment information for the Supplemental annel Assignment Message. This information shall be processed as follows:
14 15		-	The mobile station shall store USE_T_ADD_ABORT _r , the Reverse Supplemental Code Channel assignment T_ADD abort indicator, as USE_T_ADD_ABORT _s .
17		-	The mobile station shall store REV_DTX_DURATION $_{\rm r}$, Reverse Supplemental Channel Discontinuous Transmission Duration, as REV_DTX_DURATION $_{\rm s}$.
19 20		-	If REV_PARMS_INCLUDED $_r$ is equal to '1', the mobile station shall store the following:
21			+ T_MULCHAN _S = T_MULCHAN _r
22			+ BEGIN_PREAMBLE _s = BEGIN_PREAMBLE _r
		-	+ RESUME_PREAMBLE _s = RESUME_PREAMBLE _r
23 24 25		-	If IGNORE_SCAM _S is equal to '1' and SCRM_SEQ_NUM _r is not present or is present and is not equal to SCRM_SEQ_NUM _S , then the mobile station shall
26 27			not process the remaining Reverse Supplemental Code Channel assignment information in this message.
28 29 30		-	If IGNORE_SCAM _s is equal to '1' and SCRM_SEQ_NUM _r is present and is equal to SCRM_SEQ_NUM _s , then the mobile station shall set IGNORE_SCAM _s to '0'.
31		_	The mobile station shall set REV_START_TIMEs as follows:
32 33			+ If EXPL_REV_START_TIME $_{\rm r}$ is equal to '1', the mobile station shall set the REV_START_TIME $_{\rm s}$ to REV_START_TIME $_{\rm r}$.
34 35 36			+ If USE_REV_HDM_SEQ $_r$ is equal to '1' and REV_LINKED_HDM_SEQ $_r$ is not equal to HDM_SEQ $_s$, the mobile station shall set the REV_START_TIME $_s$ to NULL.
37 38 39	.÷		 If USE_REV_HDM_SEQ_r is equal to '1', REV_LINKED_HDM_SEQ_r is equal to HDM_SEQ_s, then the mobile station shall set the REV_START_TIME_s to the implicit action time of the Supplemental

Channel Assignment Message.

If EXPL_REV_START_TIME $_r$ is equal to '0' and USE_REV_HDM_SEQ $_r$ is equal to '0', the mobile station shall set the REV_START_TIME $_{\mbox{\scriptsize S}}$ to the 2 next 80 ms boundary following the implicit action time of the Supplemental Channel Assignment Message. The mobile station shall set NUM_REV_CODES_s to NUM_REV_CODES_r. If $REV_START_TIME_s$ is not equal to NULL, the mobile station shall perform the following actions: If $NUM_REV_CODES_r$ is equal to '000', the mobile station shall stop transmitting the Reverse Supplemental Code Channels at the start time specified by REV_START_TIMEs. 10 If $NUM_REV_CODES_r$ is not equal to '000', the mobile station may start 11 transmitting on NUM_REV_CODES_s Reverse Supplemental Code 12 Channels at the start time specified by REV_START_TIMEs for a duration 13 of time specified by the following rules: 14 If USE_REV_DURATION_r is equal to '1', the mobile station shall set 15 $\ensuremath{\mathsf{REV_DURATION_s}}$ to $\ensuremath{\mathsf{REV_DURATION_r}}.$ The mobile station may 16 continue transmitting on the Reverse Supplemental Code Channels 17 for a period of (REV_DURATION_s \times 80) ms, or until it receives the 18 action time of a subsequent General Handoff Direction Message or a 19 Supplemental Channel Assignment Message that specifies a different 20 Reverse Supplemental assignment duration or start time. 21 If USE_REV_DURATION_r is equal to '0', the mobile station may 22 continue to transmit indefinitely on the Reverse Supplemental Code 23 Channels, or until it receives the action time of a subsequent General 24 Handoff Direction Message or a Supplemental Channel Assignment 25 Message that specifies a different Reverse Supplemental assignment 26 duration or start time. 27 If FOR_INCLUDED is equal to '1', then the mobile station shall process Forward 28 Supplemental Code Channel assignment information as follows: 29 The mobile station shall assign a value to FOR_START_TIMEs according to 30 the following rules: 31 If EXPL_FOR_START_TIME is equal to '1', the mobile station shall set the 32 $FOR_START_TIME_s$ to $FOR_START_TIME_r$. 33 If USE_FOR_HDM_SEQ $_r$ is equal to '1' and FOR_LINKED_HDM_SEQ $_r$ is 34 not equal to HDM_SEQs, the mobile station shall set the 35 FOR_START_TIME_s to NULL. 36 If USE_FOR_HDM_SEQ $_r$ is equal to '1', FOR_LINKED_HDM_SEQ $_r$ is 37 equal to HDM_SEQ_s , then the mobile station shall set the 38 $FOR_START_TIME_S$ to the implicit action time of the Supplemental 39 Channel Assignment Message. 40

If EXPL_FOR_START_TIME_r is equal to '0' and USE_FOR_HDM_SEQ_r equals '0', the mobile station shall set the FOR_START_TIMEs to the implicit action time of the Supplemental Channel Assignment Message. If $FOR_SUP_CONFIG_r$ is equal to '00' and $FOR_START_TIME_S$ is not equal to NULL, the mobile station should stop processing the Forward Supplemental Code Channels at the time specified by FOR_START_TIMEs. If $FOR_SUP_CONFIG_r$ is equal to '01' and $FOR_START_TIME_S$ is not equal to NULL, the mobile station shall start processing the Forward Supplemental Code Channels in the CODE_CHAN_LISTs at FOR_START_TIMEs for a period of time specified by the following rules: 10 If USE_FOR_DURATION is equal to '1', the mobile station shall set 11 FOR_DURATIONs to FOR_DURATIONr. The mobile station shall 12 continue processing the Forward Supplemental Code Channels for a 13 period of (FOR_DURATIONs \times 80) ms, or until it receives the action time 14 of a subsequent Supplemental Channel Assignment Message or a General 15 Handoff Direction Message that specifies a different Forward 16 Supplemental assignment duration or start time. 17 If $USE_FOR_DURATION_r$ is equal to '0', the mobile station shall continue 18 processing the Forward Supplemental Code Channels until it receives the 19 action time of a subsequent Supplemental Channel Assignment Message 20 or a General Handoff Direction Message that specifies a different Forward 21 Supplemental assignment duration or start time. 22 If $FOR_SUP_CONFIG_r$ is equal to '10', the mobile station shall perform the 23 following: The mobile station shall update the $CODE_CHAN_LIST_S$ as specified in 25 26 If $FOR_START_TIME_s$ is not equal to NULL the mobile station should 27 stop processing Forward Supplemental Code Channels at the time 28 specified by FOR_START_TIMEs. 29 If FOR_SUP_CONFIG $_r$ is equal to '11', the mobile station shall perform the 30 following: 31 The mobile station shall update the $CODE_CHAN_LIST_S$ as specified in 32 6.6.8. 33 If FOR_START_TIMEs is not equal to NULL, then the mobile station shall 34 start processing the Forward Supplemental Code Channels in the 35 $CODE_CHAN_LIST_sat$ the time specified by $FOR_START_TIME_s$ for a period of time specified by the following rules:

1			
2			
3			
4		•	
5			
6			
7			
8			
9		٠	
10			
11			
12			
13			
14			
. 15			
16			
17			
18			
. 19			
20			
21			
22			
23			
24			
25	•		
26			
27			
28			
29 30			
30			
31			
32	•		
33 34			
35			
. 36			
37 38			

- o If USE_FOR_DURATION_r is equal to '1', the mobile station shall set FOR_DURATION_s to FOR_DURATION_r. The mobile station shall continue processing the Forward Supplemental Code Channels for (FOR_DURATION_s × 80) ms, until it receives a subsequent Supplemental Channel Assignment Message or a General Handoff Direction Message that specifies a different Forward Supplemental assignment duration or start time.
- o If USE_FOR_DURATION_r is equal to '0', the mobile station shall continue processing the Forward Supplemental Code Channels until it receives a subsequent Supplemental Channel Assignment Message or a General Handoff Direction Message that specifies a different Forward Supplemental assignment duration or start time.
- 9. *General Handoff Direction Message*: The mobile station shall process the message as follows:

The mobile station shall send a *Mobile Station Reject Order* with the ORDQ field set to the specified value if any of the following conditions is true, and shall not perform any other action described in this section for processing the *General Handoff Direction Message*:

- The mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000110' (capability not supported), if the mobile station does not support the band class specified in the General Handoff Direction Message.
- The mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000110' (capability not supported), if the number of forward or reverse Supplemental Code Channels specified in the General Handoff Direction Message is greater than the maximum number of Supplemental Code Channels supported by the mobile station.
- The mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00000111' (message cannot be handled by the current mobile station configuration), if the mobile station does not support the service configuration specified in the General Handoff Direction Message.
- The mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00001010' (search set not specified), if the PERIODIC_SEARCH field is included in the General Handoff Direction Message and is set to '1', and the Candidate Frequency Search Set is empty.
- The mobile station shall send a Mobile Station Reject Order with the ORDQ field set to '00001101' (search period too short), if the PERIODIC_SEARCH field is included in the General Handoff Direction Message and is set to '1', and search_period is less than (max (fwd_time, rev_time) + T_{71m} seconds), where
 - $search_period$ = time period corresponding to SEARCH_PERIOD_S shown in Table 6.6.6.2.8.3.2-1,

and.

10

12

13

15

16

18

19

20

21

22

23

26

27

28

29

31

32

33

34

35

36

37

41

rev_time = the mobile station's estimate of the total length of time, in seconds, for which the mobile station will need to suspend its current Reverse Traffic Channel processing in order to tune to the CDMA Candidate Frequency, to search the Candidate Frequency Search Set, and to re-tune to the Serving Frequency; if the mobile station searches the Candidate Frequency Search Set in multiple visits, rev_time is the total time for all visits to the CDMA Candidate Frequency in a search period.

If none of the above conditions is true, the mobile station shall perform the actions described in the remainder of this section to process the *General Handoff Direction Message* at the action time of the message.

If EXTRA_PARMS is equal to '1', the mobile station shall store the return on failure indicator from the *General Handoff Direction Message* (RETURN_IF_HANDOFF_FAILs = RETURN_IF_HANDOFF_FAILr); otherwise the mobile station shall set RETURN_IF_HANDOFF_FAILs to '0'.

The mobile station shall set RETURN_IF_HANDOFF_FAIL_s to '0' (disable return on failure) if any of the following conditions is true:

- If P_REV_IN_USE_s is less than or equal to four and the mobile station does not support hard handoff with return on failure, or
- At least one of the pilots specified by the message is also included in the Active Set prior to the action time of the message, and one of the following conditions is true:
 - EXTRA_PARMS is equal to '0', or
 - EXTRA_PARMS is equal to '1', the message specifies the same frequency assignment as the Serving Frequency (BAND_CLASS_r is equal to CDMABAND_s and CDMA_FREQ_r is equal to CDMACH_s), and FRAME_OFFSET_r is equal to FRAME_OFFSET_s.

The mobile station shall store the following parameters from its current configuration:

- CDMA band class (SF_CDMABAND_S = CDMABAND_S)
- Frequency assignment (SF_CDMACH_s)

Frame Offset ($SF_FRAME_OFFSET_s = FRAME_OFFSET_s$) If RETURN_IF_HANDOFF_FAILs is equal to '1', the mobile station shall also store the following parameters from its current configuration: Protocol revision level $(SF_P_REV_S = P_REV_S)$ Protocol revision level in use on the Serving Frequency $(SF_P_REV_IN_USE_S = P_REV_IN_USE_S)$ Search window size for the Active Set and Candidate Set $(SF_SRCH_WIN_A_S = SRCH_WIN_A_S)$ Search window size for the Neighbor Set 10 $(SF_SRCH_WIN_N_S = SRCH_WIN_N_S)$ Search window size for the Remainder Set 12 $(SF_SRCH_WIN_R_S = SRCH_WIN_R_S)$ 13 Pilot detection threshold 14 $(SF_T_ADD_S = T_ADD_S)$ Pilot drop threshold 16 $(SF_T_DROP_S = T_DROP_S)$ 17 Active Set versus Candidate Set comparison threshold $(SF_T_COMP_S = T_COMP_S)$ 19 Drop timer value $(SF_T_TDROP_S = T_TDROP_S)$ 21 Soft slope for the dynamic add and drop thresholds $(SF_SOFT_SLOPE_S = SOFT_SLOPE_S)$ 23 Intercept for the dynamic add threshold 24 $(SF_ADD_INTERCEPT_S = ADD_INTERCEPT_S)$ 25 Intercept for the dynamic drop threshold 26 $(SF_DROP_INTERCEPT_S = DROP_INTERCEPT_S)$ 27 Private long code mask indicator: If the mobile station is using the private long 28 code mask on the Serving Frequency, it shall set SF_PRIVATE_LCMs to '1'; 29 otherwise, it shall set SF_PRIVATE_LCMs to '0'. 30 Service negotiation type 31 $(SF_SERV_NEG_S = SERV_NEG_S)$ 32 Service configuration record: 33 Store the current service configuration in SF_SERVICE_CONFIGs Message encryption mode: If message encryption is on, the mobile station shall set SF_ENCRYPT_MODEs to '1'; otherwise, the mobile station shall set 36 SF_ENCRYPT_MODEs to '0'.

- Extended nominal power setting of the current cell (SF_NOM_PWR_EXT_S = NOM_PWR_EXT_S)
- Nominal power setting of the current cell (SF_NOM_PWR_S = NOM_PWR_S)
- Power control step SF_PWR_CNTL_STEPs = PWR_CNTL_STEPs)
- Serving Frequency Active Set (SF Active Set = (For each pilot in the current Active Set: (PILOT_PN, PWR_COMB_IND)))
- Serving Frequency Code Channel List (SF_CODE_CHAN_LIST_s) = CODE_CHAN_LIST_s)

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

38

When the message takes effect, the mobile station shall perform the following actions:

- Update the Active Set, Candidate Set, and Neighbor Set in accordance with the *General Handoff Direction Message* processing (see 6.6.6.2.6.1, 6.6.6.2.6.2, and 6.6.6.2.6.3).
- Discontinue use of all Forward Traffic Channels associated with pilots not listed in the General Handoff Direction Message.
- If EXTRA_PARMS is equal to '1', perform the following actions:
 - If FRAME_OFFSET_r is not equal to FRAME_OFFSET_s, change the frame offset on all of the code channels of the Forward Traffic Channel and of the Reverse Traffic Channel.
 - If RESET_L2_r is equal to '1', and RETURN_IF_HANDOFF_FAIL_s is equal to '0', reset the acknowledgment procedures, as specified in 6.6.4.1.3.3. The mobile station shall reset the acknowledgment procedures immediately after the action time of the *General Handoff Direction Message*.
 - If RESET_FPC $_r$ is equal to '1' and RETURN_IF_HANDOFF_FAIL $_s$ is equal to '0', initialize the Forward Traffic Channel power control counters, as specified in 6.6.4.1.1.1.
 - If SERV_NEG_TYPE_r is equal to '1', set SERV_NEG_s to enabled; otherwise set SERV_NEG_s to disabled. For operation in Band Class 1, SERV_NEG_s is always equal to enabled.
 - Use the long code mask specified by the PRIVATE_LCM $_{\rm r}$ (see 6.3.12.3) and indicate to the user the voice privacy mode status.
 - Process the ENCRYPT_MODE field, as specified in 6.3.12.2.
- If EXTRA_PARMS is equal to '0', set the following variables to the values indicated:
 - Hard handoff traffic channel preamble count required before transmitting a Handoff Completion Message (NUM_PREAMBLE_s = '000')
 - Complete search flag (COMPLETE_SEARCH_s = '1')

1 2		 CDMA band class for the Target Frequency (TF_CDMABAND_S = SF_CDMABAND_S) 	
3		 Frequency assignment for the Target Frequency (TF_CDMACH_S = SF_CDMACH_S) 	
5 ·	•	Store the following parameters from the General Handoff Direction Message:	
6 7		 General Handoff Direction Message sequence number (HDM_SEQ_s = HDM_SEQ_r) 	
8		 If SEARCH_INCLUDED is equal to '1', store the following: 	
9 10	. '	 Search window size for the Active Set and Candidate Set (SRCH_WIN_A_s = SRCH_WIN_A_r) 	•
11 12		+ Pilot detection threshold (T_ADD _S = T_ADD _r)	
13 14		+ Pilot drop threshold (T_DROP _s = T_DROP _r)	
15 ·		 Active Set versus Candidate Set comparison threshold (T_COMP_s = T_COMP_r) 	
17		+ Drop timer value (T_TDROP _s = T_TDROP _r)	
19. 2 0		 Soft slope for the dynamic add and drop thresholds (SOFT_SLOPE_s = SOFT_SLOPE_r) 	
21 22		 Intercept for the dynamic add threshold (ADD_INTERCEPT_s = ADD_INTERCEPT_r) 	
23 24		 Intercept for the dynamic drop threshold (DROP_INTERCEPT_s = DROP_INTERCEPT_r) 	
25		 If EXTRA_PARMS is equal to '1', store the following: 	
26 27		 Protocol revision level (P_REV_S = P_REV_r), and protocol revision level currently in use (P_REV_IN_USE_S = min (P_REV_S, MOB_P_REV_p of the 	ne
28		current band class))	
29 30		 If the mobile station supports packet data service options, the packet data services zone identifier (PACKET_ZONE_ID_s = PACKET_ZONE_I 	t D _r)
31		+ Frame offset (FRAME_OFFSET _s = FRAME_OFFSET _r)	
32 33 34		 Acknowledgment procedures reset indicator (If RETURN_IF_HANDOFF_FAILs is equal to '1', set TF_RESET_L2s to RESET_L2r) 	•
. 35 36 37		 Indicator to initialize the Forward Traffic Channel power control cou (If RETURN_IF_HANDOFF_FAILs is equal to '1', set TF_RESET_FPCs RESET_FPCr) 	nters to
		Nominal power setting of the target cell $(NOM_PWR_S = NOM_PWR_r)$	

1 2 3			 Extended nominal power setting of the target cell (If CDMABAND_S = '00001', then NOM_PWR_EXT_S = NOM_PWR_EXT_r; otherwise, NOM_PWR_EXT_S = '0')
4 5			 Hard handoff traffic channel preamble count required before transmitting a Handoff Completion Message (NUM_PREAMBLE_s = NUM_PREAMBLE_r)
6 7			+ CDMA band class for the Target Frequency (TF_CDMABAND _s = BAND_CLASS _r)
8 9			 Frequency assignment for the Target Frequency (TF_CDMACH_s = CDMA_FREQ_r and CDMACH_s = CDMA_FREQ_r)
10			 Complete search flag (COMPLETE_SEARCH_S = COMPLETE_SEARCH_r)
11			 Periodic search flag (PERIODIC_SEARCH_s = PERIODIC_SEARCH_r)
12 13		•	 If REV_PARMS_INCLUDED is included and is equal to '1', the mobile station shall store the following:
14			 Reverse Supplemental Code Channel Request Message neighbor channel pilot strength offset (T_MULCHAN_s = T_MULCHAN_r)
16 17			 Reverse Supplemental Code Channel beginning of transmission preamble length (BEGIN_PREAMBLE_s = BEGIN_PREAMBLE_r)
18 19			 Reverse Supplemental Code Channel resumption of transmission preamble length (RESUME_PREAMBLE_s = RESUME_PREAMBLE_r)
20			 For each pilot included in the message, the mobile station shall store the following:
22	*		+ PILOT_PN, the pilot PN sequence offset index
	•		+ PWR_COMB_IND, the power control symbol combining indicator
23 _. 24			 If USE_PWR_CNTL_STEP is equal to '1' and PWR_CNTL_STEP_r corresponds
25 26			to a power control step size supported by the mobile station (see $6.1.2.3.2$), then the mobile station shall set PWR_CNTL_STEP _s to PWR_CNTL_STEP _r .
27 28		•	Set the pilot detection threshold for the Target Frequency and the Candidate Frequency:
29			- Set TF_T_ADD _s to T_ADD _s .
30 31 32			 If the Target Frequency is the same as the Candidate Frequency (TF_CDMABAND_S is equal to CF_CDMABAND_S and TF_CDMACH_S is equal to CF_CDMACH_S), set CF_T_ADD_S to T_ADD_S.
33 34		•	If FOR_INCLUDED is included and is equal to '0', the mobile station shall perform the following:
35 36			 The mobile station shall update the Code Channel List, CODE_CHAN_LISTs as specified in 6.6.8.

- If USE_FOR_HDM_SEQ_s is equal to '1' and FOR_LINKED_HDM_SEQ_s is equal to HDM_SEQ_r (this indicates that there is pending Forward Supplemental Code Channel assignment information, received in a Supplemental Channel Assignment Message, linked to this General Handoff Direction Message), then the mobile station shall perform the following actions:
 - + The mobile station shall set USE_FOR_HDM_SEQs to '0'.
 - + If SCAM_FOR_ORDERs is equal to '0', the mobile station shall stop processing all Forward Supplemental Code Channels at the action time of the *General Handoff Direction Message*.
 - + If SCAM_FOR_ORDER_S is equal to '1', the mobile station shall start processing the Forward Supplemental Code Channels specified in CODE_CHAN_LIST_S at the action time of the *General Handoff Direction Message*, for a period of time determined by the following rules:
 - o If SCAM_FOR_DURATION_MODE_s is equal to '1', the mobile station shall continue processing the Forward Supplemental Code Channels for a period of (FOR_DURATION_s × 80) ms, until it receives a subsequent *General Handoff Direction Message* or a *Supplemental Channel Assignment Message* that specifies a different Forward Supplemental Code Channel assignment.
 - o If SCAM_FOR_DURATION_MODE_s is equal to '0', the mobile station shall continue processing the Forward Supplemental Code Channels until it receives a subsequent Supplemental Channel Assignment Message or a General Handoff Direction Message that specifies a different Forward Supplemental Code Channel assignment.
- If USE_FOR_HDM_SEQ_s is equal to '0' or FOR_LINKED_HDM_SEQ_s is not equal to HDM_SEQ_r, and if the mobile station is currently processing Forward Supplemental Code Channels, it shall continue processing the Forward Supplemental Code Channels using the updated Code Channel List, CODE_CHAN_LIST_s.
- If FOR_INCLUDED is included and is equal to '1', then the mobile station shall process the Forward Supplemental Code Channel assignment information as follows:
 - The mobile station shall set USE_FOR_HDM_SEQ_s to '0'.
 - If FOR_START_TIME_s specifies a time which is after the action time of the General Handoff Direction Message, the mobile station shall cancel any pending Forward Supplemental Code Channel assignment and shall set FOR_START_TIME_s to NULL.
 - The mobile station shall update the Code Channel List, CODE_CHAN_LIST_s, in accordance with the value of FOR_SUP_CONFIG, as specified in 6.6.8.

- If FOR_SUP_CONFIG is equal to '00' or '10', the mobile station should stop processing Forward Supplemental Code Channels, if any, when the message takes effect.
- If FOR_SUP_CONFIG is equal to '01', the mobile station shall start processing the Forward Supplemental Code Channels in the updated Code Channel List, CODE_CHAN_LIST_s, at the action time of the message, for a period of time determined by the following rules:

- + If USE_FOR_DURATION is equal to '1', the mobile station shall set FOR_DURATIONs to FOR_DURATIONr. The mobile station shall continue processing the Forward Supplemental Code Channels for a period of (FOR_DURATIONs × 80) ms, until it receives a subsequent Supplemental Channel Assignment Message or a General Handoff Direction Message that specifies a different Forward Supplemental Code Channel assignment.
- + If USE_FOR_DURATION is equal to '0', the mobile station shall continue processing the Forward Supplemental Code Channels until it receives a subsequent Supplemental Channel Assignment Message or a General Handoff Direction Message that specifies a different Forward Supplemental Code Channel assignment.
- If FOR_SUP_CONFIG is equal to '11', the mobile station shall start processing the Forward Supplemental Code Channels in the updated Code Channel List, CODE_CHAN_LIST_s, at the action time of the message, for a period of time determined by the following rules:
 - + If USE_FOR_DURATION is equal to '1', the mobile station shall set $FOR_DURATION_S$ to $FOR_DURATION_T$. The mobile station shall continue processing the Forward Supplemental Code Channels for a period of $(FOR_DURATION_S \times 80)$ ms, until it receives a subsequent Supplemental Channel Assignment Message or a General Handoff Direction Message that specifies a different Forward Supplemental Code Channel assignment.
 - + If USE_FOR_DURATION is equal to '0', the mobile station shall continue processing the Forward Supplemental Code Channels until it receives a subsequent Supplemental Channel Assignment Message or a General Handoff Direction Message that specifies a different Forward Supplemental Code Channel assignment.
- If REV_INCLUDED is included and is equal to '0', the mobile station shall perform the following:
 - If USE_REV_HDM_SEQ_s is equal to '1' and REV_LINKED_HDM_SEQ_s is equal to HDM_SEQ_r (this indicates that there is pending Reverse Supplemental Code Channel assignment information, received in a Supplemental Channel Assignment Message, linked to this General Handoff Direction Message), the mobile station shall perform the following actions:

13

15

16

17

18

20

21

22

23

25

26

27

30

31

32

33

34

35

36

38

39

- ANSI/TIA/EIA-95-B If NUM_REV_CODESs is equal to '000', the mobile station shall stop transmitting on all Reverse Supplemental Code Channels at the action time of the message. If NUM_REV_CODESs is not equal to '000', the mobile station may start transmitting on NUM_REV_CODESs Reverse Supplemental Code Channels at the action time of the message, for a duration of time determined by the following rules: If SCAM_REV_DURATION_MODEs is equal to '1', the mobile station
 - may continue transmitting on the Reverse Supplemental Code Channels for a period of (REV_DURATION_S \times 80) ms, until it receives a subsequent General Handoff Direction Message or a Supplemental Channel Assignment Message that specifies a different Reverse Supplemental Code Channel assignment.
 - If $SCAM_REV_DURATION_MODE_s$ is equal to '0', the mobile station may continue transmitting on the Reverse Supplemental Code Channels until it receives a subsequent General Handoff Direction Message or a Supplemental Channel Assignment Message that specifies a different Reverse Supplemental Code Channel assignment.
 - The mobile station shall set USE_REV_HDM_SEQs to '0'.
 - If USE_REV_HDM_SEQs is equal to '0' or REV_LINKED_HDM_SEQs is not equal to HDM_SEQ_r, and if the previous Reverse Supplemental Code Channel assignment is still valid, the mobile station may continue to transmit on the Reverse Supplemental Code Channels according to the previously specified Reverse Supplemental Code Channel assignment.
 - If REV_INCLUDED is included and is equal to '1', then the mobile station shall process the Reverse Supplemental Code Channel assignment information as follows:
 - The mobile station shall set REV_DTX_DURATIONs to REV_DTX_DURATION_r.
 - The mobile station shall set USE_REV_HDM_SEQ_s to '0'.
 - If REV_START_TIMEs specifies a time which is after the action time of the General Handoff Direction Message, the mobile station shall cancel any pending Reverse Supplemental Code Channel assignment and shall set REV_START_TIME_s to NULL.
 - If CLEAR_RETRY_DELAY is equal to '1', the mobile station shall cancel any previously indicated retry delay and shall set RETRY_DELAYs to 0; otherwise, the mobile station shall continue to honor any previously active retry delay stored in RETRY_DELAYs.
 - The mobile station shall set NUM_REV_CODESs to NUM_REV_CODESr, and shall perform the following actions:

- 2 10 11 12 13 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 35 36 37 38 39 40 41
- If NUM_REV_CODES_S is equal to '000', the mobile station shall stop transmitting on all Reverse Supplemental Code Channels at the action time of the message.
- If NUM_REV_CODES_s is not equal to '000', the mobile station may start transmitting on NUM_REV_CODES_s Reverse Supplemental Code Channels at the action time of the message, for a duration of time determined by the following rules:
 - o If USE_REV_DURATION $_{\Gamma}$ is equal to '1', the mobile station shall set REV_DURATION $_{S}$ to REV_DURATION $_{T}$. The mobile station may continue transmitting on the Reverse Supplemental Code Channels for a period of (REV_DURATION $_{S} \times 80$) ms, until it receives a subsequent General Handoff Direction Message or a Supplemental Channel Assignment Message that specifies a different Reverse Supplemental Code Channel assignment.
 - o If USE_REV_DURATION is equal to '0', the mobile station may continue to transmit on the Reverse Supplemental Code Channels until it receives a subsequent General Handoff Direction Message or a Supplemental Channel Assignment Message that specifies a different Reverse Supplemental Code Channel assignment.
- The mobile station shall store USE_T_ADD_ABORT_r, the Reverse Supplemental Code Channel assignment T_ADD abort indicator, as USE_T_ADD_ABORT_s.
- The mobile station shall set IGNORE_SCAM_S to '0'.
- If PERIODIC_SEARCHs is equal to '0' and a periodic search is in progress, the mobile station shall abort the periodic search (see 6.6.2.8.3.4 and 6.6.6.2.10.4).
- Perform a soft or hard handoff depending upon the following conditions:
 - If EXTRA_PARMS is set to '1' and BAND_CLASS_r is not equal to SF_CDMABAND_s, CDMA_FREQ_r is not equal to SF_CDMACH_s, or FRAME_OFFSET_r is not equal to SF_FRAME_OFFSET_s; or if the set of pilots specified by the message is disjoint from the Active Set prior to the action time of the message, the mobile station shall do the following:
 - + If a Periodic Serving Frequency Pilot Report Procedure is in progress, abort the procedure (see 6.6.6.2.12).
 - + If a Candidate Frequency periodic search is in progress, the mobile station shall abort the periodic search (see 6.6.2.8.3.4 and 6.6.6.2.10.4).
 - + If RETURN_IF_HANDOFF_FAILs is equal to '0', the mobile station shall perform actions specified in 6.6.6.2.8.1. If the message specifies more than one pilot, the mobile station shall also perform actions specified in 6.6.6.2.7.1 and 6.6.6.2.7.2.

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26

27

30

31

32

33

34

35

37

+	If RETURN_IF_HANDOFF_FAILs is equal to '1', the mobile station shall perform actions specified in 6.6.6.2.8.2. If the message specifies more than one pilot, the mobile station shall also perform actions specified in 6.6.6.2.7.1 and 6.6.6.2.7.2.
Ç	therwise, the mobile station shall perform the actions specified in 6.6.6.2.7.
dic	Pilot Measurement Request Order: The mobile station shall perform the

following:

If the PPSMM timer is enabled, disable it.

- If ORDQ is equal to '111111111', the mobile station shall send a Periodic Pilot Strength Measurement Message to the base station within T_{56m} seconds.
- If ORDQ is not equal to '11111111', the mobile station shall perform the following:
 - Set the MIN_PILOT_PWR_THRESH_s to MIN_PILOT_PWR_THRESH_r received from the *Periodic Pilot Strength Measurement Request Order*.
 - Set the MIN_PILOT_EC_IO_THRESH_s to MIN_PILOT_EC_IO_THRESH_r received from the Periodic Pilot Strength Measurement Request Order.
 - Set PPSMM_PERIOD_S equal to the larger value of ORDQ and the total length of time, in units of 80 ms, required by the mobile station to update the pilot strength measurement of each pilot in the Active Set and the Candidate Set.
 - Perform the Periodic Serving Frequency Pilot Report Procedure as specified in 6.6.6.2.12.

6.6.6.2.5.2 Processing of Reverse Traffic Channel Handoff Messages

The mobile station sends the following messages on the Reverse Traffic Channel in support of handoff when its transmitter is enabled and following the receipt of the first Base Station Acknowledgment Order on the Forward Traffic Channel:

- Pilot Strength Measurement Message: The mobile station shall send an autonomous Pilot Strength Measurement Message as a message requiring an acknowledgment and containing measurements consistent with the event whenever any of the following events occur:
 - P_REV_IN_USE_s is less than or equal to three or SOFT_SLOPE_s is equal to '000000' and the strength of a Neighbor Set or Remaining Set pilot is found to be above T_ADD_s.
 - P_REV_IN_USE_s is greater than three, SOFT_SLOPE_s is not equal to '000000', and the strength PS, as specified in 6.6.6.2.2, of any Candidate Set pilot is found to satisfy the following inequality:

$$10 \times \log_{10} \text{PS} > \frac{\text{SOFT_SLOPE}_{S}}{8} \times 10 \times \log_{10} \sum_{i \in A} \text{PS}_{i} + \frac{\text{ADD_INTERCEPT}_{S}}{2}$$

where the summation is performed over all pilots currently in the Active Set and a *Pilot Strength Measurement Message* carrying this information has not been sent since the last *Extended Handoff Direction Message* or *General Handoff Direction Message* was received.

2

8

10

11

12

13

14

15

17

18

19

20

21

22

23

25

27

28

29

31

33

34

35

36

 P_REV_IN_USE_s is greater than three, SOFT_SLOPE_s is not equal to '000000', and the strength PS, as specified in 6.6.6.2.2, of any Neighbor Set or Remaining Set pilot is found to satisfy the following inequality:

$$10 \times \log_{10} \text{PS} > \max(\frac{\text{SOFT_SLOPE}_{\text{S}}}{8} \times 10 \times \log_{10} \sum_{i \in A} \text{PS}_{i} + \frac{\text{ADD_INTERCEPT}_{\text{S}}}{2}, \frac{\text{T_ADD}_{\text{S}}}{2})$$

where the summation is performed over all pilots currently in the Active Set.

- The strength of a Candidate Set pilot exceeds the strength of an Active Set pilot by T_COMP_S × 0.5 dB and a Pilot Strength Measurement Message carrying this information has not been sent since the last Extended Handoff Direction Message or General Handoff Direction Message was received.
- P_REV_IN_USE_S is less than or equal to three or SOFT_SLOPE_S is equal to '000000', the strength of a Candidate Set pilot exceeds the strength of an Active Set pilot by T_COMP_S × 0.5 dB, and a *Pilot Strength Measurement Message* carrying this information has not been sent since the last *Extended Handoff Direction Message* or *Handoff Direction Message* was received.
- $P_REV_IN_USE_S$ is greater than three, $SOFT_SLOPE_S$ is not equal to '000000', and the strength of a Candidate Set pilot exceeds the strength of an Active Set pilot by $T_COMP_S \times 0.5$ dB and satisfies the following inequality:

$$10 \times \log_{10} \text{PS} > \frac{\text{SOFT_SLOPE}_{S}}{8} \times 10 \times \log_{10} \sum_{i \in A} \text{PS}_{i} + \frac{\text{ADD_INTERCEPT}_{S}}{2}$$

where the summation is performed over all pilots currently in the Active Set and a *Pilot Strength Measurement Message* carrying this information has not been sent since the last *Extended Handoff Direction Message* or *General Handoff Direction Message* was received.

- The handoff drop timer of an Active Set pilot has expired and a Pilot Strength
 Measurement Message carrying this information has not been sent since the last
 Extended Handoff Direction Message or General Handoff Direction Message was
 received.
- 2. Handoff Completion Message: The mobile station shall send a Handoff Completion Message as a message requiring acknowledgment as follows:
 - If the handoff message (Extended Handoff Direction Message or General Handoff Direction Message) specifies a soft handoff, the mobile station shall send the Handoff Completion Message within T_{56m} seconds after the action time of the received handoff message.

2

10

11

12

13

16

17

18

19

20

21

22

23

24

25

27

28

29

30

31

32

33

34

35

36

37

38

40

41

42

- If the handoff message (Extended Handoff Direction Message or General Handoff Direction Message) specifies a hard handoff without return on failure (see 6.6.6.2.8.1), the mobile station shall send the Handoff Completion Message within T_{73m} seconds after the action time of the received handoff message.
- If the handoff message (General Handoff Direction Message) specifies a hard handoff with return on failure (see 6.6.6.2.8.2), the mobile station shall send the Handoff Completion Message within T_{56m} seconds after mobile station declares the handoff to be successful (see 6.6.6.2.8.2).
- Candidate Frequency Search Report Message: The mobile station shall send a Candidate Frequency Search Report Message as a message requiring an acknowledgment whenever any of the following events occur:
 - RETURN_IF_HANDOFF_FAILs is equal to '1', and a handoff attempt is
 unsuccessful (see 6.6.6.2.8.2). In this case, the mobile station shall send a
 Candidate Frequency Search Report Message within T_{56m} seconds after
 completing a search of all pilots in the Candidate Frequency Search Set and
 resuming the use of the Serving Frequency Active Set (see 6.6.6.2.8.2.1).
 - RETURN_IF_HANDOFF_FAILs is equal to '1', an inter-frequency handoff attempt
 is unsuccessful (see 6.6.6.2.8.2), and PERIODIC_SEARCHs is equal to '1'. In
 this case, the mobile station shall send a Candidate Frequency Search Report
 Message in a search period if the conditions specified in 6.6.6.2.8.3.2 are met.
 - The mobile station receives a Candidate Frequency Search Request Message or a Candidate Frequency Search Control Message with SEARCH_TYPE set to '01'. If none of the conditions requiring the mobile station to send a Mobile Station Reject Order is true (see 6.6.6.2.5.1), the mobile station shall send a Candidate Frequency Search Report Message, as described in 6.6.6.2.8.3.1 and 6.6.6.2.10.1.
 - The mobile station receives a Candidate Frequency Search Request Message or Candidate Frequency Search Control Message with SEARCH_TYPE set to '11', SEARCH_MODE_S is equal to '0000' and the Candidate Frequency Search Set is not empty. If none of the conditions requiring the mobile station to send a Mobile Station Reject Order is true (see 6.6.2.5.1), the mobile station shall send a Candidate Frequency Search Report Message in a search period if the conditions specified in 6.6.6.2.8.3.2 are met.
 - The mobile station receives a Candidate Frequency Search Request Message or Candidate Frequency Search Control Message with SEARCH_TYPE set to '11', SEARCH_MODE_S is equal to '0001' and the Candidate Frequency Analog Search Set is not empty. If none of the conditions requiring the mobile station to send a Mobile Station Reject Order is true (see 6.6.6.2.5.1), the mobile station shall send a Candidate Frequency Search Report Message in a search period if the conditions specified in 6.6.6.2.10.2 are met.
 - Periodic Pilot Strength Measurement Message: The mobile station shall send a Periodic Pilot Strength Measurement Message to the base station as a message not requiring acknowledgment, as specified in 6.6.6.2.5.1 and 6.6.6.2.12.

- 6.6.6.2.6 Set Maintenance
- 6.6.6.2.6.1 Maintenance of the Active Set 2
- The mobile station shall support a maximum Active Set size of N_{6m} pilots. The mobile 3
- station shall track the pilot strengths of all pilots in the Active Set.
- When the mobile station is first assigned Forward Traffic Channels, the mobile station shall
- initialize the Active Set to contain the pilots associated with the assigned Forward Traffic
- Channels. When the mobile station processes an Extended Handoff Direction Message or a
- General Handoff Direction Message it shall replace the pilots in the Active Set with the pilots
- listed in the message.

16

17

18

19

20

21

22

23

24

25

27

28

29

31

32

- 6.6.2.6.2 Maintenance of the Candidate Set 10
- The mobile station shall support a maximum Candidate Set size of N_{7m} pilots. 11
- When the mobile station is first assigned a Forward Traffic Channel, the mobile station 12 shall initialize the Candidate Set to contain no pilots. The mobile station shall adjust the 13 Candidate Set whenever any of the following events occur: 14
 - If the mobile station detects that the strength of a Neighbor Set pilot or a Remaining Set pilot exceeds T_ADDs, the mobile station shall add the pilot to the Candidate Set.
 - If the mobile station processes an Extended Handoff Direction Message or a General Handoff Direction Message which does not list a pilot in the current Active Set, and the handoff drop timer corresponding to that pilot has not expired, the mobile station shall add the pilot to the Candidate Set.
 - If P_REV_IN_USEs is greater than three, and SOFT_SLOPEs is not equal to '000000', the mobile station shall perform the following: If the mobile station processes a General Handoff Direction Message which does not list a pilot in the current Active Set, the handoff drop timer corresponding to that pilot has expired, and that pilot is found to be above T_DROPs, the mobile station shall add the pilot to the Candidate
 - If the mobile station processes an Extended Handoff Direction Message or a General Handoff Direction Message which lists a pilot in the current Candidate Set, the mobile station shall delete the pilot from the Candidate Set.
 - If the handoff drop timer corresponding to a Candidate Set pilot expires, the mobile station shall delete the pilot from the Candidate Set.
- If the mobile station adds a pilot to the Candidate Set, and the resulting Candidate 33 Set size exceeds N_{7m}, the mobile station shall delete from the Candidate Set the pilot whose handoff drop timer is closest to expiration. If more than one such pilot 35 exists, the mobile station shall delete one such pilot that has the lowest strength. If 36 no pilot in the Candidate Set has an enabled handoff drop timer, the mobile station 37 shall delete from the Candidate Set the pilot that has the lowest strength. 38

- 6.6.6.2.6.3 Maintenance of the Neighbor Set
- The mobile station shall support a Neighbor Set size of at least N_{8m} pilots.
- 3 When the mobile station is first assigned a Forward Traffic Channel, the mobile station
- shall initialize the Neighbor Set to contain all the pilots specified in the most recently
- received Neighbor List Message, Extended Neighbor List Message or General Neighbor List
- 6 Message.

17

18

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

37

38

- 7 The mobile station shall maintain a counter, AGEs, for each pilot in the Neighbor Set. The
- mobile station shall initialize this counter to zero when it moves the pilot from the Active
- 9 Set or the Candidate Set to the Neighbor Set. The mobile station shall initialize this
- counter to NGHBR_MAX_AGEs when it moves the pilot from the Remaining Set to the
- Neighbor Set. The mobile station shall increment AGEs for each pilot in the Neighbor Set
- upon receipt of a Neighbor List Update Message or an Extended Neighbor List Update
- Message. When the mobile station is first assigned to a Forward Traffic Channel, the
- mobile station shall set AGE_s for each pilot in the Neighbor Set to NGHBR_MAX_AGE_s.
- The mobile station shall adjust the Neighbor Set whenever any of the following events occur:
 - If the mobile station receives a Neighbor List Update Message or an Extended Neighbor List Update Message, it shall perform the following:
 - Increment AGEs for each pilot in the Neighbor Set.
 - Delete from the Neighbor Set all pilots whose AGE_s exceeds NGHBR_MAX_AGE_s.
 - Add to the Neighbor Set each pilot named in the message, if it is not already a pilot of the Active Set, Candidate Set, or Neighbor Set. If the mobile station can store in the Neighbor Set only k additional pilots, and more than k new pilots were sent in the Neighbor List Update Message, or the Extended Neighbor List Update Message the mobile station shall store the first k new pilots listed in the message.
 - If the handoff drop timer of a pilot in the Candidate Set expires, the mobile station shall add the pilot to the Neighbor Set.
 - If P_REV_IN_USE_s is less than or equal to three or SOFT_SLOPE_s is equal to '000000', the mobile station shall perform the following: If the mobile station processes an *Extended Handoff Direction Message* or a *General Handoff Direction Message* in which a pilot in the Active Set is not listed, and the handoff drop timer corresponding to the pilot has expired, the mobile station shall add the pilot to the Neighbor Set.
 - If P_REV_IN_USEs is greater than three, and SOFT_SLOPEs is not equal to '000000', the mobile station shall perform the following: If the mobile station processes an Extended Handoff Direction Message or a General Handoff Direction Message which does not list a pilot in the current Active Set, the handoff drop timer corresponding to that pilot has expired, and that pilot is found to be below T_DROPs, the mobile station shall add the pilot to the Neighbor Set.

- If the mobile station adds a pilot to the Candidate Set, and the resulting Candidate
 Set size exceeds the size supported by the mobile station, the mobile station shall
 add the deleted Candidate Set pilot to the Neighbor Set (see 6.6.6.2.6.2).
 - If the mobile station detects that the strength of a Neighbor Set pilot exceeds T_ADD_S, the mobile station shall delete the pilot from the Neighbor Set.
 - If the mobile station processes an *Extended Handoff Direction Message* or a *General Handoff Direction Message* which lists a pilot in the current Neighbor Set, the mobile station shall delete the pilot from the Neighbor Set.
 - If the mobile station adds a pilot to the Neighbor Set, and the resulting Neighbor Set size exceeds the size supported by the mobile station, the mobile station shall delete from the Neighbor Set the pilot whose AGE_s is the largest. If more than one such pilot exists, the mobile station shall delete one such pilot that has the lowest strength.

6.6.6.2.7 Soft Handoff

6

10

11

12

- 6.6.6.2.7.1 Forward Traffic Channel Processing
- All Forward Traffic Channels associated with pilots in the Active Set of the mobile station
- carry identical modulation symbols with the exception of the power control subchannel (see
- 7.1.3.1.8 and 7.6.6.2.4.2).
- When the Active Set contains more than one pilot, the mobile station should provide
- diversity combining of the associated Forward Traffic Channels. The mobile station shall
- provide for differential propagation delays from zero to at least 150 μs.
- 2 6.6.6.2.7.2 Reverse Traffic Channel Power Control During Soft Handoff
- 22 The Extended Handoff Direction Message or a General Handoff Direction Message identifies
- sets of Forward Fundamental Code Channels that carry identical closed loop power control
- subchannels. A set consists of one or more Forward Fundamental Code Channels with
- identical power control information.
- In each power control group containing valid power control bits (see 6.1.2.3.2), the mobile
- 28 station should provide diversity combining of the identical closed loop power control
- 29 subchannels and shall obtain at most one power control bit from each set of identical
- closed loop power control subchannels. If the power control bits obtained from all sets are
- equal to '0', the mobile station shall increase its power as specified in 6.1.2.3.2. If the
- power control bit obtained from any set is equal to '1', the mobile station shall decrease its
- 33 power as specified in 6.1.2.3.2.
- 6.6.6.2.7.3 Starting Periodic Search following Soft Handoff
- If the PERIODIC SEARCHs is equal to '1', a periodic search is not already in progress, and
- s the frequency assignment after handoff is different from the Candidate Frequency
- (CDMABANDs is not equal to CF_CDMABANDs or CDMACHs is not equal to CF_CDMACHs),
- 38 the mobile station shall do the following:

2

3

23

24

25

26

27

28

29

30

31

32

33

34

35

37

- If the mobile station uses received power measurements in the search procedure, it should start monitoring the received power on the Target Frequency and should maintain an average of the received power over the last N_{12m} frames.
 - The mobile station shall start a periodic search as described in 6.6.6.2.8.3.2.

5 6.6.6.2.8 CDMA-to-CDMA Hard Handoff

- The base station directs the mobile station to perform a CDMA-to-CDMA hard handoff by sending an *Extended Handoff Direction Message* or a *General Handoff Direction Message* in which the mobile station is transitioned between disjoint sets of base stations, different frequency assignments, or different frame offsets. If RETURN_IF_HANDOFF_FAIL_S is equal to '0', the mobile station performs the actions described in 6.6.6.2.8.1. If
- RETURN_IF_HANDOFF_FAILs is equal to '1', the mobile station performs the actions described in 6.6.6.2.8.2.

6.6.6.2.8.1 Hard Handoff without Return on Failure

- At the action time specified of the *Extended Handoff Direction Message* or *General Handoff Direction Message*, the mobile station shall disable its transmitter, reset the fade timer specified in 6.4.4, suspend incrementing TOT_FRAMES_s and BAD_FRAMES_s as specified in 6.6.4.1.1, and tune to the assigned Forward Traffic Channel. The mobile station shall perform acquisition of the pilots in the new Active Set.
- If a periodic Serving Frequency pilot report procedure is in progress, the mobile station shall abort it (see 6.6.6.2.12).
- The mobile station shall begin monitoring the assigned Forward Traffic Channel within the time specified below:
 - If the Extended Handoff Direction Message or General Handoff Direction Message specifies a CDMA frequency assignment different from the Serving Frequency and an Active Set containing pilots with pilot PN sequence offsets identical to those of the pilots in the Serving Frequency Active Set, the mobile station shall begin monitoring the assigned Forward Traffic Channel within T_{60m} seconds after the action time.
 - If the Extended Handoff Direction Message or General Handoff Direction Message specifies a CDMA frequency assignment different from the Serving Frequency and an Active Set containing a pilot with pilot PN sequence offset not equal to that of any pilot in the Serving Frequency Active Set, the mobile station shall begin monitoring the assigned Forward Traffic Channel within T_{61m} seconds after the action time.
 - If the Extended Handoff Direction Message or General Handoff Direction Message specifies a CDMA-to-CDMA hard handoff without changing the CDMA frequency assignment, the mobile station shall begin monitoring the assigned Forward Traffic Channel within T_{62m} seconds after the action time.
- Upon receiving N_{11m} consecutive good frames on the assigned Forward Traffic Channel, the mobile station shall re-enable its transmitter and transmit NUM_PREAMBLE_S frames of the Traffic Channel preamble followed by a *Handoff Completion Message*.

- Upon receiving N_{3m} consecutive good frames on the assigned Forward Traffic Channel, the
- mobile station shall resume incrementing TOT_FRAMES_s and BAD_FRAMES_s as specified
- 3 in 6.6.4.1.1.

9

10

11

12

15

16

17

18

19

21

22

23

24

26

27

28

29

30

31

32

33

34

35

- If the PERIODIC SEARCH_s is equal to '1', a periodic search is not already in progress, and
- 5 the frequency assignment after handoff is different from the Candidate Frequency
- 6 (CDMABANDs is not equal to CF_CDMABANDs or CDMACHs is not equal to CF_CDMACHs),
- 7 the mobile station shall do the following:
 - If the mobile station uses received power measurements in the search procedure, it should start monitoring the received power on the Target Frequency and should maintain an average of the received power over the last N_{12m} frames.
 - The mobile station shall start a periodic search as described in 6.6.6.2.8.3.2.

6.6.6.2.8.2 Hard Handoff with Return on Failure

At the action time specified in the General Handoff Direction Message, the mobile station shall do the following:

- The mobile station shall stop processing the Forward Fundamental Code Channel and the Forward Supplemental Code Channels (if any).
- The mobile station shall stop transmitting on the Reverse Fundamental Code Channel and on the Reverse Supplemental Code Channels (if any).
- The mobile station shall disable the fade timer (see 6.4.4) and the handoff drop timers corresponding to the Serving Frequency Active Set and Candidate Set (see 6.6.6.2.3), and shall suspend incrementing TOT_FRAMES_S and BAD_FRAMES_S (see 6.6.4.1.1).
- If Rate Set 2 is in use on the Reverse Traffic Channel, the mobile station shall store the erasure indicator bits for the last two frames received on the Forward Traffic Channel (see 6.2.2.3).
- The mobile station shall lock the accumulation of valid level changes in the closed loop mean output power and shall ignore received power control bits related to the period that the transmitter is disabled (see 6.1.2.3.2).
- If the Serving Frequency is different from the Target Frequency (CDMACH_S is not equal to TF_CDMACH_S or CDMABAND_S is not equal to TF_CDMABAND_S), the mobile station shall set CDMACH_S to TF_CDMACH_S and CDMABAND_S to TF_CDMABAND_S, and shall tune to the Target Frequency.

The mobile station shall not change its time reference (see 6.1.5) until the handoff is successfully completed (as described later in this section) or the mobile station resumes using the Serving Frequency Active Set (as described in 6.6.6.2.8.2.1).

- The mobile station shall maintain a handoff timer. The mobile station shall set the expiration time for the handoff timer to $(0.08 \times TF_WAIT_TIME_s)$ seconds and enable the timer at the action time of the General Handoff Direction Message.
- method The mobile station shall perform the following actions:

10

11

12

13

15

16

17

18

19

20

21

22

23

24

28

29

30

31

32

33

34

35

36

37

38

40

- If the Target Frequency is different from the Serving Frequency (TF_CDMABAND_S is not equal to SF_CDMABAND_S, or TF_CDMACH_S is not equal to SF_CDMACH_S), the mobile station shall measure the mean input power on the Target Frequency (target_freq_pwr, in dBm / 1.23 MHz) and may use target_freq_pwr along with the measurement of the average input power on the Serving Frequency (avg_serving_freq_pwr, in dBm / 1.23 MHz) in the handoff procedure. The mobile station may declare the handoff attempt to be unsuccessful if all of the following conditions are true:
 - DIFF_RX_PWR_THRESH_s is not equal to '00000',
 - the mobile station has been measuring the received power on the Serving Frequency for at least the last N_{12m} frames, and
 - (target_freq_pwr avg_serving_freq_pwr) is less than (-30 + 2 × DIFF_RX_PWR_THRESH_s) dB.

If the mobile station declares the handoff attempt to be unsuccessful, it shall restore the configuration to what it was before the handoff attempt (see 6.6.6.2.5.1) and send a Candidate Frequency Search Report Message as described in 6.6.6.2.8.2.1.

- The mobile station shall measure E_c/I_0 for each pilot in the Active Set using the procedures specified in 6.6.6.2.2, if any of the following conditions is true:
 - the Target Frequency is the same as the Serving Frequency (TF_CDMABAND_S is equal to SF_CDMABAND_S, and TF_CDMACH_S is equal to SF_CDMACH_S),
 - the mobile station does not use the power measurements in the handoff procedure,
 - DIFF_RX_PWR_THRESH_s is equal to '00000',
 - the mobile station has not been measuring the received power on the Serving Frequency for at least the last N_{12m} frames, or
 - (target_freq_pwr avg_servng_freq_pwr) is not less than (-30 + 2 \times DIFF_RX_PWR_THRESH_S) dB.

If the mobile station measures E_c/I_o for pilots in the Active Set, it shall compare the sum of the measured E_c/I_o for all pilots with the minimum total pilot E_c/I_o threshold (MIN_TOTAL_PILOT_EC_IO_s).

- If MIN_TOTAL_PILOT_EC_IO_S is not equal to '00000', and (-20 × \log_{10} (E_c/I_o)_{total}) is less than MIN_TOTAL_PILOT_EC_IO_S, where (E_c/I_o)_{total} is the sum of the measured E_c/I_o for the pilots in the Active Set. The mobile station shall declare the handoff attempt to be unsuccessful, and shall do the following:
 - If COMPLETE_SEARCH_S is equal to '1', and the Target Frequency is the same as the Candidate Frequency (TF_CDMABAND_S is equal to CF_CDMABAND_S, and TF_CDMACH_S is equal to CF_CDMACH_S), the mobile station shall measure the strength of each pilot in its Candidate Frequency Search Set using the procedures specified in 6.6.6.2.2.
 - Otherwise, the mobile station shall end the search.

The mobile station shall then restore its configuration to what it was before the handoff attempt (see 6.6.6.2.5.1) and send a *Candidate Frequency Search Report Message* as described in 6.6.6.2.8.2.1.

If MIN_TOTAL_PILOT_EC_IO_s is equal to '00000', or (- $20 \times log_{10}$ (E_c/I_o)total) is not less than MIN_TOTAL_PILOT_EC_IO_s, where (E_c/I_o)total is the sum of the measured E_c/I_o for the pilots in the Active Set, the mobile station shall attempt to demodulate the Forward Traffic Channel(s). If the Active Set contains more than one pilot, the mobile station shall perform the actions specified in 6.6.6.2.7. If the Target Frequency is the same as the Candidate Frequency (TF_CDMABAND_s is equal to CF_CDMABAND_s, and TF_CDMACH_s is equal to CF_CDMACH_s), and is different for the Serving Frequency (TF_CDMABAND_s is not equal to SF_CDMABAND_s, or TF_CDMACH_s is not equal to SF_CDMACH_s), the mobile station shall measure the strength of each pilot in its Candidate Frequency Search Set using the procedures specified in 6.6.6.2.2, while waiting for good frames on the Forward Traffic Channel(s). The mobile station shall wait for the first of the following events to occur:

- + The handoff timer expires and the mobile station has not received N_{11m} consecutive good frames on the Forward Traffic Channel. In this case, the mobile station shall declare the handoff attempt to be unsuccessful, and do the following:
 - o If COMPLETE_SEARCH_s is equal to '1', and if the Target Frequency is the same as the Candidate Frequency (TF_CDMABAND_s is equal to CF_CDMABAND_s, and TF_CDMACH_s is equal to CF_CDMACH_s), and the mobile station has not completed the search of all pilots in its Candidate Frequency Search Set, then it shall complete the search, i.e., it shall obtain at least one measurement of the strength of each pilot in its Candidate Frequency Search Set, using the search procedures specified in 6.6.6.2.8.3.
 - o Otherwise, the mobile station shall end the search.

The mobile station shall then restore its configuration to what it was before the handoff attempt (see 6.6.6.2.5.1) and send a *Candidate Frequency Search Report Message* as described in 6.6.6.2.8.2.1.

- + The mobile station receives N_{11m} consecutive good frames on the Forward Traffic Channel. In this case, the mobile station shall declare the handoff attempt to be successful, and do the following:
 - o The mobile station shall disable the handoff timer.
 - o If TF_RESET_L2s is equal to '1', the mobile station shall reset the acknowledgment procedures as specified in 6.6.4.1.3.3.
 - o If TF_RESET_FPC_s is equal to '1', the mobile station shall initialize the Forward Traffic Channel power control counters as specified in 6.6.4.1.1.1.

•		
1 2 . 3 4 5	0	If the Target Frequency is the same as the Candidate Frequency (TF_CDMABAND _S is equal to CF_CDMABAND _S , and TF_CDMACH _S is equal to CF_CDMACH _S) and is different from the Serving Frequency (TF_CDMABAND _S is not equal to SF_CDMABAND _S , or TF_CDMACH _S is not equal to SF_CDMACH _S), the mobile station shall do the following:
6 7 8 9		↑ The mobile station shall replace its Neighbor Set with its Candidate Frequency Neighbor Set, excluding the pilots in its Active Set. When the mobile station adds a pilot from its Candidate Frequency Neighbor Set to its Active Set, it shall maintain SEARCH_PRIORITYs and SRCH_WIN_NGHBRs associated with the pilot.
11 12 13		$\label{eq:continuous_station} \begin{array}{ll} \text{The mobile station shall set PILOT_INC}_s \text{ to CF_PILOT_INC}_s, \\ \text{SRCH_WIN_N}_s \text{ to CF_SRCH_WIN_N}_s, \text{ and SRCH_WIN_R}_s \text{ to} \\ \text{CF_SRCH_WIN_R}_s. \end{array}$
14 15 .		\Diamond The mobile station shall set SEARCH_PRIORITY_INCLs to CF_SEARCH_PRIORITY_INCLs, and SRCH_WIN_NGHBR_INCLs to CF_SRCH_WIN_NGHBR_INCLs.
17 18 19	o	The mobile station shall re-enable its transmitter. After re-enabling its transmitter, the mobile station shall transmit NUM_PREAMBLE _s frames of the Traffic Channel preamble followed by a <i>Handoff Completion Message</i> .
20 21 22 23	0	Upon receiving N _{3m} consecutive good frames on the assigned Forward Traffic Channel, the mobile station shall resume incrementing TOT_FRAMES _s and BAD_FRAMES _s as specified in 6.6.4.1.1.
24 25 26 27		If the Target Frequency is same as the Candidate Frequency (TF_CDMABAND _S is equal to CF_CDMABAND _S and TF_CDMACH _S is equal to CF_CDMACH _S), then the mobile station shall set PERIODIC_SEARCH _S to '0'.
28 29 30		If PERIODIC_SEARCH _s is equal to '0', the mobile station may stop maintaining the average of the Serving Frequency received power that is used in the handoff and search procedures.
31		If PERIODIC_SEARCH $_{\rm S}$ is equal to '1', the mobile station shall do the following:
33 34 35 36		\Diamond If the mobile station uses received power measurements in the search procedure, it should start monitoring the received power on the Target Frequency and should maintain an average of the received power over the last N_{12m} frames.
37 38		♦ The mobile station shall start a periodic search as described in 6.6.6.2.8.3.2.
39 40 .	o	The mobile station shall maintain its pilot sets using the procedures described in 6.6.6.2.6.

6.6.6.2.8.2.1 Restoring the Configuration

10

11

12

19

- If the mobile station declares a handoff attempt to be unsuccessful (see 6.6.6.2.8.2), it shall perform the following actions:
 - If the handoff timer is enabled, the mobile station shall disable it.
 - The mobile station shall restore the following parameters:
 - Message encryption mode: If SF_ENCRYPT_MODEs is equal to '0', the mobile station shall turn off message encryption; otherwise, it shall turn on message encryption.
 - Service configuration: The mobile station shall use the service configuration stored in SF_SERVICE_CONFIG_s to process Forward and Reverse Traffic Channel frames.
 - Protocol revision level (P_REV_S = SF_P_REV_S)
- Protocol revision level in use on the serving frequency (P_REV_IN_USE_s = SF_P_REV_IN_USE_s)
- Service negotiation type (SERV_NEG_S = SF_SERV_NEG_S)
 - Long code mask: If SF_PRIVATE_LCM_S is equal to '1', the mobile station shall use the private long code mask; otherwise, it shall use the public long code mask.
 - Search window size for the Active Set and Candidate Set (SRCH_WIN_A_S = SF_SRCH_WIN_A_S)
- Search window size for the Neighbor Set
 (SRCH_WIN_N_S = SF_SRCH_WIN_N_S)
- $\begin{array}{ccc} & & & Search \ window \ size \ for \ the \ Remaining \ Set \\ & & (SRCH_WIN_R_S = SF_SRCH_WIN_R_S) \end{array}$
- Pilot detection threshold (T_ADD_S = SF_T_ADD_S)
- Pilot drop threshold (T_DROP_S = SF_T_DROP_S)
- Soft slop for the dynamic add and drop threshold (SOFT_SLOPE_s =
 SF_SOFT_SLOPE_s)
- Intercept for the dynamic add threshold (ADD_INTERCEPT_S =
 SF_ADD_INTERCEPT_S)
- Intercept for the dynamic drop threshold (DROP_INTERCEPT_S = SF_DROP_INTERCEPT_S)
- Active Set versus Candidate Set comparison threshold ($T_COMP_s = SF_T_COMP_s$)
- Drop timer value (T_TDROP_S = SF_T_TDROP_S)
- Frame offset (FRAME_OFFSET_s = SF_FRAME_OFFSET_s)
- Nominal power setting (NOM_PWR_S = SF_NOM_PWR_S)

5

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

27

28

30

31

32

33

34

35 36

37

- Extended nominal power setting (NOM_PWR_EXT_s = SF_NOM_PWR_EXT_s)
- Power control step (PWR_CNTL_STEP_s = SF_PWR_CNTL_STEP_s)
 - CDMA band class (CDMABAND_s = SF_CDMABAND_s)
 - Frequency assignment (CDMACH_s = SF_CDMACH_s)
 - Active Set (For each pilot in the Serving Frequency Active Set: (PILOT_PN, PWR_COMB_IND))
 - Code channel list (CODE_CHAN_LIST_s = SF_CODE_CHAN_LIST_s)
 - The mobile station shall tune to the Serving Frequency and resume using the Serving Frequency Active Set as follows:
 - The mobile station shall resume processing the Forward Fundamental Code Channel.
 - The mobile station shall resume transmitting on the Reverse Fundamental Code Channel. The mobile station shall not resume transmitting on the Reverse Supplemental Code Channels.
 - When the mobile station resumes transmission on the Reverse Traffic Channel, it shall use the following rules to re-enable its transmitter:
 - + If the interval between the time that the mobile station disables its transmitter and the time that it resumes using the Serving Frequency Active Set is equal to or greater than $(N_{2m} \times 0.02)$ seconds, then the mobile station shall wait to receive N_{3m} consecutive good frames before it re-enables its transmitter.
 - + Otherwise, the mobile station shall re-enable its transmitter no later than $N_{3m} \times 0.02$ seconds after the mobile station tunes to the Serving Frequency. The mobile station should re-enable its transmitter earlier. After the mobile station re-enables its transmitter, the mean output power shall be as specified in 6.1.2.4.1 for a step change in input power. If the mobile station re-enables its transmitter earlier than $N_{3m} \times 0.02$ seconds after it tunes to the Serving Frequency, the initial mean output power shall be as specified in 6.1.2.3.1, where the initial mean input power estimate is either:
 - o within 6 dB of the actual mean input power, or
 - equal to the mean input power before the mobile station tuned to the Target Frequency.
 - The mobile station shall enable the fade timer and the handoff drop timers
 corresponding to the pilots in its Active Set and Candidate Set. The mobile station
 shall resume incrementing TOT_FRAMES_S and BAD_FRAMES_S as specified in
 6.6.4.1.1.
 - If Rate Set 2 is in use on the Reverse Traffic Channel, the mobile station shall set the erasure indicator bits as specified in 6.2.2.3.

- The mobile station shall send a Candidate Frequency Search Report Message within T_{56m} seconds. The mobile station shall report the contents of the Candidate Frequency Search Report Message as follows:
 - The mobile station shall report the two components of the Candidate Frequency in the CDMA_FREQ and BAND_CLASS fields.
 - The mobile station shall report the received power on the Target Frequency and on the Serving Frequency in the CF_TOTAL_RX_PWR and SF_TOTAL_RX_PWR fields, respectively.
 - For each pilot in the Target Frequency Active Set that measures above TF_T_ADD_S, the mobile station shall report its phase and strength in the fields PILOT_PN_PHASE and PILOT_STRENGTH, respectively.
 - If the Target Frequency is the same as the Candidate Frequency (TF_CDMABAND_S is equal to CF_CDMABAND_S, and TF_CDMACH_S is equal to CF_CDMACH_S), and is different form the Serving Frequency (TF_CDMABAND_S is not equal to SF_CDMABAND_S or TF_CDMACH_S is not equal to SF_CDMACH_S), the mobile station shall also report the strength of each pilot in the Candidate Frequency Search Set that measures above CF_T_ADD_S.
 - If PERIODIC_SEARCH_S is equal to '0', the mobile station may stop maintaining the average of the Serving Frequency received power that is used in the handoff and search procedures.
 - If PERIODIC_SEARCH_S is equal to '1' and the Candidate Frequency Search Set is not empty, the mobile station shall do the following:
 - If the mobile station uses received power measurements in the search procedure, it should start monitoring the received power on the Target Frequency and should maintain an average of the received power over the last N_{12m} frames.
 - The mobile station shall carry out the periodic search procedures described in 6.6.6.2.8.3.2.
 - 6.6.6.2.8.3 Search of Pilots on the CDMA Candidate Frequency
- If SEARCH_MODE_s is equal to '0000', the mobile station shall do the following: If PERIODIC_SEARCH_s is equal to '0', the mobile station shall search the Candidate Frequency Search Set once, as described in 6.6.6.2.8.3.1; otherwise, the mobile station shall search the Candidate Frequency Search Set periodically, as described in 6.6.6.2.8.3.2.
- 6.6.6.2.8.3.1 CDMA Candidate Frequency Single Search

10

11

12

13

15

16

18

19

20

21

22

23

24

25

26

27

28

29

38

- The mobile station does a single search of the Candidate Frequency Search Set by performing the following actions at the action time of the Candidate Frequency Search Control Message or the Candidate Frequency Search Request Message.
 - The mobile station shall measure the strength of all pilots in the Candidate Frequency Search Set in one or more visits to the Candidate Frequency, as described in 6.6.6.2.8.3.3.

ANSI/	TIA/EIA-95-B
•	The mobile station shall complete the measurements and send a Candidate Frequency Search Report Message within freshness_interval seconds after the action time of the Candidate Frequency Search Control Message, or the Candidate Frequency Search Request Message, where freshness_interval is determined as follows:
	 If the value of the TOTAL_OFF_TIME_FWD field or of the TOTAL_OFF_TIME_REV field of the last Candidate Frequency Search Response Message sent by the mobile station to the base station is greater than or equal to [(T_{70m} - T_{71m})/0.02], then
	freshness_interval = max (fwd_time, rev_time) + T71m seconds,
	where
	<pre>fwd_time = 0.02 seconds × (value of the TOTAL_OFF_TIME_FWD field of</pre>

and

10

15

16

17

18

19

20

21

22

23

24

25

26

27

28

31

32

33

rev_time = 0.02 seconds × (value of the TOTAL_OFF_TIME_REV field of the last Candidate Frequency Search Response Message sent by the mobile station).

- Otherwise,

freshness_interval = T70m seconds.

The mobile station shall set the fields of the *Candidate Frequency Search Report Message* as follows:

- The mobile station shall report the two components of the Candidate Frequency in the CDMA_FREQ and BAND_CLASS fields.
- The mobile station shall report the received power on the Candidate Frequency and on the Serving Frequency in the CF_TOTAL_RX_PWR and SF_TOTAL_RX_PWR fields, respectively.
- For each pilot in the Candidate Frequency Search Set that measures above CF_T_ADD_S, the mobile station shall report its phase and strength in the fields PILOT_PN_PHASE and PILOT_STRENGTH, respectively.
- The mobile station may stop maintaining the average of the Serving Frequency received power that is used in the handoff and search procedures.

6.6.6.2.8.3.2 Candidate Frequency Periodic Search

When the mobile station performs a periodic search, it periodically searches the Candidate
Frequency Search Set and reports the results to the base station in the Candidate
Frequency Search Report Message, as described in this section. The mobile station may
measure all pilots in the Candidate Frequency Search Set in one visit to the Candidate
Frequency, or it may visit the Candidate Frequency several times in a search period, each

- time measuring all or some of the pilots in the Candidate Frequency Search Set, as described in 6.6.6.2.8.3.3.
- 3 If SF_TOTAL_EC_THRESH_S is not equal to '11111', while tuned to the Serving Frequency,
- 4 the mobile station shall measure the total received power spectral density, in
- 5 mW/1.23 MHz, on the Serving Frequency at least once every frame (0.02 second) and shall
- maintain the average of the spectral density (spec_density) over the last N_{12m} frames.
- 7 (In the following, $(E_c/I_o)_{total}$ is the total E_c/I_o of the pilots in the Active Set, measured as
- specified in 6.6.6.2.2, and total_ec is defined as $(10 \times \log_{10} ((E_c/I_0)_{total} \times spec_density))$.)
- The mobile station shall maintain a periodic search timer as follows:

11

12

13

15

16

17

18

20

21

22

23

25

26

27

28

30

32

33

- When the mobile station starts a periodic search, it shall set the periodic search timer to the value in Table 6.6.6.2.8.3.2-1 corresponding to SEARCH_PERIODs and shall enable the timer.
 - When the periodic search timer expires, the mobile station shall reset the periodic search timer to the value in Table 6.6.6.2.8.3.2-1 corresponding to SEARCH_PERIODs and shall re-enable the timer.
 - If SF_TOTAL_EC_THRESH_s is not equal to '11111' and SF_TOTAL_EC_IO_THRESH_s is equal to '11111', the mobile station shall perform the following actions once per frame:
 - Disable the periodic search timer if $total_ec$ is not less than $(-120 + 2 \times SF_TOTAL_EC_THRESH_s)$.
 - Reset the expiration time of the periodic search timer to the value in Table 6.6.6.2.8.3.2-1 corresponding to SEARCH_PERIOD_S, and re-enable the timer if the following conditions are true:
 - the periodic search timer is disabled, and
 - + total_ec is less than (-120 + 2 × SF_TOTAL_EC_THRESH_s).
 - If $SF_TOTAL_EC_THRESH_S$ is equal to '11111' and $SF_TOTAL_EC_IO_THRESH_S$ is not equal to '11111', the mobile station shall perform the following actions once per frame:
 - Disable the periodic search timer if (-20 $\times \log_{10} (E_c/I_o)_{total}$) is not greater than SF TOTAL_EC_IO_THRESHs.
 - Reset the expiration time of the periodic search timer to the value in Table 6.6.6.2.8.3.2-1 corresponding to SEARCH_PERIOD_S, and re-enable the timer if the following conditions are true:
 - + the periodic search timer is disabled, and
 - + $(-20 \times log_{10} (E_c/l_o)_{total})$ is greater than SF_TOTAL_EC_IO_THRESH_S.
- If SF_TOTAL_EC_THRESH_S is not equal to '11111' and SF_TOTAL_EC_IO_THRESH_S

 is not equal to '11111', the mobile station shall perform the following actions once

 per frame:
 - Disable the periodic search timer if the following conditions are true:

10

11

12 13

15

16

17

18

20

21

22

23

25

26

27

- $total_ec$ is not less than (-120 + 2 × SF_TOTAL_EC_THRESH_s), and
- (-20 $\times \log_{10} \left(E_c/I_o \right)_{total} \right)$ is not greater than SF_TOTAL_EC_IO_THRESHs.
- Reset the expiration time of the periodic search timer to the value in Table 6.6.6.2.8.3.2-1 corresponding to SEARCH_PERIODs, and re-enable the timer if the following conditions are true:
 - the periodic search timer is disabled, and
 - total_ec is less than $(-120 + 2 \times SF_TOTAL_EC_THRESH_s)$, or $(-20 \times log_{10})$ $(E_c/I_o)_{total})$ is greater than SF_TOTAL_EC_IO_THRESH_s.
- If $SF_TOTAL_EC_THRESH_S$ is equal to '11111' and $SF_TOTAL_EC_IO_THRESH_S$ is equal to '11111', the mobile station shall maintain the periodic search timer independent of the total E_{C} and the total $E_{\text{C}}/I_{\text{0}}$ of the pilots in the Serving Frequency Active Set.

Table 6.6.6.2.8.3.2-1. Search Period Values

SEARCH_PERIOD _S	Search Period (seconds)	SEARCH_PERIOD _s	Search Period (seconds)
0	0.48	8	30
1	0.96	9	40
2	2	10	50
3	2.96	11	60
4	4	12	80
5	4.96	13	100
6	10	14	150
7.	20	15	200

If the periodic search timer is enabled, the mobile station shall perform the following actions before the timer expires:

- The mobile station shall measure the strength of all pilots in the Candidate Frequency Search Set at least once, as described in 6.6.6.2.8.3.3.
- The mobile station shall send a Candidate Frequency Search Report Message if MIN_TOTAL_PILOT_EC_IOs is equal to '00000' or if (- 20 \times log₁₀ (E_c/I_o)_{total}) is not less than MIN_TOTAL_PILOT_EC_IO_S, where $(E_c/I_0)_{total}$ is the sum of E_c/I_0 for all those pilots that measure above CF_T_ADDs in the current search period.

The mobile station shall report the contents of the Candidate Frequency Search Report Message as follows:

The mobile station shall report the two components of the Candidate Frequency in the CDMA_FREQ and BAND_CLASS fields.

- The mobile station shall report the received power on the Candidate Frequency and on the Serving Frequency in the CF_TOTAL_RX_PWR and SF_TOTAL_RX_PWR fields, respectively.
 For each pilot in the Candidate Frequency Search Set that measures above CF_T_ADD_S, the mobile station shall report its phase and strength in the fields PILOT_PN_PHASE and PILOT_STRENGTH, respectively.
 - The mobile station shall ensure that the strength measurement for all pilots in the Candidate Frequency Search Set were obtained within freshness_interval before the Candidate Frequency Search Report Message is sent, where freshness_interval is determined as follows:
 - If the value of the TOTAL_OFF_TIME_FWD field or of the TOTAL_OFF_TIME_REV field of the last Candidate Frequency Search Response Message sent by the mobile station to the base station is greater than or equal to $[(T_{70m} T_{71m})/0.02]$, then

freshness_interval = max (fwd_time, rev_time) + T_{71m} seconds,

where

11

13

15

17

18

19

20

21

22

23

25

26

27

28

29

30

31

32

33

35

37

38

39

and

rev_time = 0.02 seconds × (value of the TOTAL_OFF_TIME_REV field of the last Candidate Frequency Search Response Message sent by the mobile station).

- Otherwise.

freshness_interval = T_{70m} seconds.

6.6.6.2.8.3.3 Candidate Frequency Pilot Measurements

The mobile station measures the strength of all pilots in the Candidate Frequency Search Set in one or more visits to the Candidate Frequency. The mobile station shall perform the following actions each time it visits the Candidate Frequency to measure pilot strengths:

- The mobile station shall stop processing the Forward Fundamental Code Channel and the Forward Supplemental Code Channels (if any).
- The mobile station shall stop transmitting on the Reverse Fundamental Code Channel and on the Reverse Supplemental Code Channels (if any).
- The mobile station shall disable the fade timer (see 6.4.4) and the handoff drop timers corresponding to its current Active Set and Candidate Set (see 6.6.6.2.3), and shall suspend incrementing TOT_FRAMES_s and BAD_FRAMES_s (see 6.6.4.1.1).
- If Rate Set 2 is in use on the Reverse Traffic Channel, the mobile station shall store the erasure indicator bits for the last two frames received on the Forward Traffic Channel (see 6.2.2.3).

1

2

5

9

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

29

31

32

33

34

35

36

37

39

- The mobile station shall lock the accumulation of valid level changes in the closed loop mean output power and shall ignore received power control bits related to the period that the transmitter is disabled (see 6.1.2.3.2).
 - The mobile station shall set the following parameters:
 - CDMABAND_s = CF_CDMABAND_s
 - CDMACH_s = CF_CDMACH_s
 - $T_ADD_S = CF_T_ADD_S$

The mobile station shall tune to the Candidate Frequency.

- The mobile station shall not change its time reference (see 6.1.5) until it resumes using the Serving Frequency Active Set, as described below.
- The mobile station shall measure the mean input power on the Candidate
 Frequency (cand_freq_pwr, in dBm / 1.23 MHz), and may use cand_freq_pwr along
 with the measurement of the mean input power on the Serving Frequency
 (avg_serving_freq_pwr, in dBm / 1.23 MHz) in the search procedure as follows:
 - If DIFF_RX_PWR_THRESH_s is not equal to '00000', and (cand_freq_pwr avg_serving_freq_pwr) is less than (-30 + 2 x DIFF_RX_PWR_THRESH_s) dB, the mobile station may terminate the search for pilots in the current visit to the Candidate Frequency.
 - If DIFF_RX_PWR_THRESH_S is equal to '00000', the mobile station does not use the power measurements in the search procedure, or (cand_freq_pwr avg_serving_freq_pwr) is not less than (-30 + 2 × DIFF_RX_PWR_THRESH_S) dB, the mobile station shall measure $E_{\rm c}/I_0$ for all or some of the pilots in its Candidate Frequency Search Set, using the search procedures specified in 6.6.6.2.2.
- The mobile station shall restore the following parameters:
 - Pilot detection threshold (T_ADD_s = SF_T_ADD_s)
 - CDMA band class (CDMABAND_S = SF_CDMABAND_S)
 - Frequency assignment (CDMACH_s = SF_CDMACH_s)
- The mobile station shall tune to the Serving Frequency and shall resume using the Serving Frequency Active Set as follows:
 - The mobile station shall resume processing the Forward Fundamental Code Channel. If the Forward Supplemental Code Channel assignment has not expired, the mobile station shall resume processing the Forward Supplemental Code Channels (if any).
 - If the Reverse Supplemental Code Channel assignment has not expired, the mobile station may resume transmitting on the Reverse Supplemental Code Channels (if any).
- When the mobile station resumes transmission on the Reverse Traffic Channel, it shall use the following rules to re-enable its transmitter:

- + If the interval between the time that the mobile station disables its transmitter and the time that it resumes using the Serving Frequency Active Set is equal to or greater than $(N_{2m} \times 0.02)$ seconds, then the mobile station shall wait to receive N_{3m} consecutive good frames before it re-enables its transmitter.
- Otherwise, the mobile station shall re-enable its transmitter no later than $N_{3m} \times 0.02$ seconds after the mobile station tunes to the Serving Frequency. The mobile station should re-enable its transmitter earlier. After the mobile station re-enables its transmitter, the mean output power shall be as specified in 6.1.2.4.1 for a step change in input power. If the mobile station re-enables its transmitter earlier than $N_{3m} \times 0.02$ seconds after it tunes to the Serving Frequency, the initial mean output power shall be as specified in 6.1.2.3.1, where the initial mean input power estimate is either:
 - within 6 dB of the actual mean input power, or
 - o equal to the mean input power before the mobile station tuned to the Target Frequency.
- The mobile station shall enable the fade timer and the handoff drop timers corresponding to the pilots in its Active Set and Candidate Set. The mobile station shall resume incrementing TOT_FRAMES_S and BAD_FRAMES_S as specified in 6.6.4.1.1.
- If Rate Set 2 is in use on the Reverse Traffic Channel, the mobile station shall set the erasure indicator bits as specified in 6.2.2.3.
- 6.6.6.2.8.3.4 Aborting CDMA Candidate Frequency Periodic Search
- When the mobile station aborts a periodic search, it shall do the following:
 - The mobile station shall cancel any remaining visits to the Candidate Frequency in the current search period, and shall not send a *Candidate Frequency Search Report Message* for the current search period.
 - · The mobile station shall disable the periodic search timer.
 - The mobile station may stop maintaining the average of the Serving Frequency received power that is used in the handoff and search procedures.
- 6.6.6.2.9 CDMA-to-Analog Handoff

9

10

11

12

13

14

15

16

17

18

19

20

21

22

25

26

27

28

29

30

38

- The base station directs the mobile station to perform a CDMA-to-Analog handoff by sending an Analog Handoff Direction Message. If the mobile station has narrow analog capability, the base station may direct the handoff to a narrow analog channel.
- If the mobile station supports analog operation in the requested band class, the mobile station shall set DTX_s to '00' and store the following parameters from the Analog Handoff Direction Message.
 - System identification (SID_S = SID_r)
 - Voice mobile station attenuation code (VMAC_s = VMAC_r)

5

28

29

30

31

32

33

35

36

37

38

- Analog voice channel number (ANALOG_CHAN_s = ANALOG_CHAN_r)
- SAT color code (SCC_s = SCC_r)
- Message encryption mode indicator (MEM_s = MEM_r)
- Analog voice channel type (AN_CHAN_TYPE_s = AN_CHAN_TYPE_r)
 - Digital supervisory audio color code (DSCC_s = DSCC_MSB_r \times 4 + SCC_r)
- 6 If the mobile station does not support analog operation in the requested band class, the
- mobile station shall discard the message and send a Mobile Station Reject Order with the
- 8 ORDQ field set to '00000110' (capability not supported by the mobile station).
- 9 If the ACK_REQ field of the Analog Handoff Direction Message is set to '1', the mobile
- station shall acknowledge the message before the message action time, unless there is
- insufficient time to transmit a message containing the acknowledgment before the action
- time. Insufficient time is defined as an explicit action time shorter than the maximum
- implicit action time or too many outstanding messages remaining to be processed.
- At the action time specified by the Analog Handoff Direction Message (see 6.6.4.1.5), the
- mobile station shall disable its transmitter. The mobile station shall enable its transmitter
- $_{16}$ on the wide analog voice channel or optional narrow analog voice channel within T_{63m}
- seconds after the action time.
- 6.6.6.2.10 Search of Analog Frequencies
- 19 If SEARCH_MODEs is equal to '0001', and the mobile station supports analog searching,
- 20 the mobile station shall do the following: If PERIODIC_SEARCH_S is equal to '0', the mobile
- station shall search the Candidate Frequency Search Set once, as described in 6.6.6.2.10.1;
- 2 otherwise, the mobile station shall search the Candidate Frequency Analog Search Set
- periodically, as described in 6.6.6.2.10.2.
- 6.6.6.2.10.1 Analog Frequencies Single Search
- The mobile station does a single search of the Candidate Frequency Analog Search Set by
- performing the following actions at the action time of the Candidate Frequency Search
- 27 Control Message or the Candidate Frequency Search Request Message:
 - The mobile station shall measure the strength of all analog frequencies in the Candidate Frequency Analog Search Set in one or more visits away from the Serving Frequency, as described in 6.6.6.2.10.3.
 - The mobile station shall complete the measurements and send a Candidate
 Frequency Search Report Message within freshness_interval seconds after the action
 time of the Candidate Frequency Search Control Message or the Candidate
 Frequency Search Request Message, where freshness_interval is determined as
 follows:
 - If the value of the TOTAL_OFF_TIME_FWD field or of the TOTAL_OFF_TIME_REV field of the last Candidate Frequency Search Response Message sent by the mobile station to the base station is greater than or equal to [(T_{70m} T_{71m})/0.02], then

freshness_interval = max (fwd_time, rev_time) + T_{71m} seconds, where $fwd_time = 0.02 \text{ seconds} \times \text{(value of the TOTAL_OFF_TIME_FWD field of }$ the last Candidate Frequency Search Response Message sent by the mobile station), and rev_time = 0.02 seconds × (value of the TOTAL_OFF_TIME_REV field of the last Candidate Frequency Search Response Message sent by the mobile station). Otherwise, 10 freshness_interval = T_{70m} seconds. 11 The mobile station may stop maintaining the average of the Serving Frequency 12 received power that is used in the handoff and search procedures. 13 6.6.6.2.10.2 Analog Frequencies Periodic Search 14 When the mobile station performs a periodic search, it periodically searches the Candidate Frequency Analog Search Set, and reports the results to the base station in the Candidate 16 Frequency Search Report Message, as described in this section. The mobile station may 17 measure all analog frequencies in the Candidate Frequency Analog Search Set in one visit 18 away from the Serving Frequency, or it may make multiple visits in a search period, each 19 time measuring all or some of the analog frequencies in the Candidate Frequency Analog 20 Search Set, as described in 6.6.6.2.10.3. 21 If $SF_TOTAL_EC_THRESH_S$ is not equal to '11111', while tuned to the Serving Frequency, 22 the mobile station shall measure the total received power spectral density, in 23 mW/1.23 MHz, on the Serving Frequency at least once every frame (0.02 second) and shall 24 maintain the average of the spectral density (spec_density) over the last N_{12m} frames. 25 (In the following, $(E_c/I_o)_{total}$ is the total E_c/I_o of the pilots in the Active Set, measured as 26 specified in 6.6.6.2.2, and total_ec is defined as $(10 \times \log_{10} ((E_c/I_0)_{total} \times spec_density))$.) 27 The mobile station shall maintain a periodic search timer as follows: 28 When the mobile station starts a periodic search, it shall set the periodic search 29 timer to the value in Table 6.6.6.2.8.3.2-1 corresponding to SEARCH_PERIOD_S and 30 shall enable the timer. 31 When the periodic search timer expires, the mobile station shall reset the periodic 32 search timer to the value in Table 6.6.6.2.8.3.2-1 corresponding to 33 SEARCH_PERIODs and shall re-enable the timer. 34 If $SF_TOTAL_EC_THRESH_S$ is not equal to '11111' and $SF_TOTAL_EC_IO_THRESH_S$ 35 is equal to '11111', the mobile station shall perform the following actions once per 36 frame: 37

Disable the periodic search timer if total_ec is not less than

 $(-120 + 2 \times SF_TOTAL_EC_THRESH_s).$

6

10

11

12

13

14

15

16

18

19

20

21

22

23

25

26

27

28

29

30

31

32

33

34

- Reset the expiration time of the periodic search timer to the value in Table 6.6.6.2.8.3.2-1 corresponding to SEARCH_PERIOD_S, and re-enable the timer if the following conditions are true:
 - + the periodic search timer is disabled, and
 - + total_ec is less than (-120 + 2 x SF_TOTAL_EC_THRESH_s).
- If SF_TOTAL_EC_THRESH_s is equal to '11111' and SF_TOTAL_EC_IO_THRESH_s is not equal to '11111', the mobile station shall perform the following actions once per frame:
 - Disable the periodic search timer if (-20 \times log_{10} (E_c/I_o)_{total}) is not greater than SF_TOTAL_EC_IO_THRESH_s.
 - Reset the expiration time of the periodic search timer to the value in Table 6.6.6.2.8.3.2-1 corresponding to SEARCH_PERIOD_s, and re-enable the timer if the following conditions are true:
 - the periodic search timer is disabled, and
 - + $(-20 \times log_{10} (E_c/I_o)_{total})$ is greater than SF_TOTAL_EC_IO_THRESH_s.
- If SF_TOTAL_EC_THRESH_S is not equal to '11111' and SF_TOTAL_EC_IO_THRESH_S
 is not equal to '11111', the mobile station shall perform the following actions once
 per frame:
 - Disable the periodic search timer if the following conditions are true:
 - + total_ec is not less than (-120 + 2 × SF_TOTAL_EC_THRESH_s), and
 - + $(-20 \times log_{10} (E_c/I_o)_{total})$ is not greater than SF_TOTAL_EC_IO_THRESH_s.
 - Reset the expiration time of the periodic search timer to the value in Table 6.6.6.2.8.3.2-1 corresponding to SEARCH_PERIOD_s, and re-enable the timer if the following conditions are true:
 - + the periodic search timer is disabled, and
 - + $total_ec$ is less than (-120 + 2 × SF_TOTAL_EC_THRESH_s), or (-20 × log_{10} (E_c/ l_o)_{total}) is greater than SF_TOTAL_EC_IO_THRESH_s.
- If SF_TOTAL_EC_THRESH_S is equal to '11111' and SF_TOTAL_EC_IO_THRESH_S is equal to '11111', the mobile station shall maintain the periodic search timer independent of the total E_c and the total E_c/I_0 of the pilots in the Serving Frequency Active Set.
- If the periodic search timer is enabled, the mobile station shall perform the following actions before the timer expires:
 - The mobile station shall measure the strength of all analog frequencies in the Candidate Frequency Analog Search Set at least once, as described in 6.6.6.2.10.3.

- The mobile station shall set the fields of the Candidate Frequency Search Report
 Message as follows: The mobile station shall report the received power on the
 Serving Frequency in the TOTAL_RX_PWR_SF field. For each frequency in the
 Candidate Frequency Analog Search Set, the mobile station shall report its
 frequency and strength in the fields ANALOG_FREQ and SIGNAL_STRENGTH,
 respectively.
 - The mobile station shall ensure that the strength measurements for all analog frequencies in the Candidate Frequency Analog Search Set were obtained within freshness_interval before the Candidate Frequency Search Report Message is sent, where freshness_interval is determined as follows:
 - If the value of the TOTAL_OFF_TIME_FWD field or of the TOTAL_OFF_TIME_REV field of the last Candidate Frequency Search Response Message sent by the mobile station to the base station is greater than or equal to $[(T_{70m} T_{71m})/0.02])$, then

freshness_interval = max (fwd_time, rev_time) + T71m seconds,

where

R

10

11

12

13

14

15

16

17

18

19

20

21

22

25

26

31

32

33

35

36

37

and

rev_time = 0.02 seconds × (value of the TOTAL_OFF_TIME_REV field of the last Candidate Frequency Search Response Message sent by the mobile station).

Otherwise.

freshness_interval = T70m seconds.

6.6.6.2.10.3 Analog Frequency Measurements

The mobile station measures the strength of all analog frequencies in the Candidate Frequency Analog Search Set in one or more visits away from the Serving Frequency. The mobile station shall perform the following actions during each visit away from the Serving Frequency to measure analog frequency signal strengths:

- The mobile station shall stop processing the Forward Fundamental Code Channel and the Forward Supplemental Code Channels (if any).
- The mobile station shall stop transmitting on the Reverse Fundamental Code Channel and on the Reverse Supplemental Code Channels (if any).
- The mobile station shall disable the fade timer (see 6.4.4) and the handoff drop timers corresponding to its current Active Set and Candidate Set (see 6.6.6.2.3), and shall suspend incrementing TOT_FRAMES_s and BAD_FRAMES_s (see 6.6.4.1.1).

1

2

3

5

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

29

30

31

32

33

34

35

36

37

38

39

40

- If Rate Set 2 is in use on the Reverse Traffic Channel, the mobile station shall store the erasure indicator bits for the last two frames received on the Forward Traffic Channel (see 6.2.2.3).
- The mobile station shall lock the accumulation of valid level changes in the closed loop mean output power and shall ignore received power control bits related to the period that the transmitter is disabled (see 6.1.2.3.2).
- The mobile station shall tune to one of the analog frequencies in the Candidate Frequency Analog Search Set, and shall measure the mean input power on the analog frequency.
- The mobile station may tune to other frequencies in the Candidate Frequency
 Analog Search Set and make power measurements during this visit away from the
 Serving Frequency.
- The mobile station shall not change its time reference (see 6.1.5) until it resumes using the Serving Frequency Active Set, as described below.
- The mobile station shall tune to the Serving Frequency and resume using the Serving Frequency Active Set as follows:
 - The mobile station shall resume processing the Forward Fundamental Code Channel. If the Forward Supplemental Code Channel assignment has not expired, the mobile station shall resume processing the Forward Supplemental Code Channels (if any).
 - If the Reverse Supplemental Code Channel assignment has not expired, the mobile station may resume transmitting on the Reverse Supplemental Code Channels (if any).
 - When the mobile station resumes transmission on the Reverse Traffic Channel, it shall use the following rules to re-enable its transmitter:
 - + If the interval between the time that the mobile station disables its transmitter and the time that it resumes using the Serving Frequency Active Set is equal to or greater than $(N_{2m} \times 0.02)$ seconds, then the mobile station shall wait to receive N_{3m} consecutive good frames before it re-enables its transmitter.
 - Otherwise, the mobile station shall re-enable its transmitter no later than $N_{3m} \times 0.02$ seconds after the mobile station tunes to the Serving Frequency. The mobile station should re-enable its transmitter earlier. After the mobile station re-enables its transmitter, the mean output power shall be as specified in 6.1.2.4.1 for a step change in input power. If the mobile station re-enables its transmitter earlier than $N_{3m} \times 0.02$ seconds after it tunes to the Serving Frequency, the initial mean output power shall be as specified in 6.1.2.3.1, where the initial mean input power estimate is either:
 - o within 6 dB of the actual mean input power, or
 - o equal to the mean input power before the mobile station tuned to the Target Frequency.

- The mobile station shall enable the fade timer and the handoff drop timers
 corresponding to the pilots in its Active Set and Candidate Set. The mobile station
 shall resume incrementing TOT_FRAMES_s and BAD_FRAMES_s as specified in
 6.6.4.1.1.
 - If Rate Set 2 is in use on the Reverse Traffic Channel, the mobile station shall set the erasure indicator bits as specified in 6.2.2.3.

6.6.6.2.10.4 Aborting Analog Frequencies Periodic Search

2

5

·9

11

12

13

14

16

17 18

19

20

21 22

23

25

26 27

28

34 35

36

- When the mobile station aborts a periodic search, it shall do the following:
 - The mobile station shall cancel any remaining visits away from the Serving
 Frequency in the current search period and shall not send a Candidate Frequency
 Search Report Message for the current search period.
 - The mobile station shall disable the periodic search timer.
 - The mobile station may stop maintaining the average of the Serving Frequency received power that is used in the handoff and search procedures.

6.6.6.2.11 Processing of Reverse Supplemental Code Channels

- If USE_T_ADD_ABORTs is set to '1', and the strength of a Neighbor Set or Remaining Set pilot is found to be above T_ADD_s , then the mobile station shall terminate any active transmission on Reverse Supplemental Code Channels at the end of the current 20 ms frame. The mobile station shall do the following:
 - Any previously active Reverse Supplemental Code Channel assignment (via a Supplemental Channel Assignment Message or General Handoff Direction Message) shall be considered implicitly terminated, and the mobile station shall set NUM_REV_CODES_s to '000'.
 - The mobile station shall set IGNORE_SCAM_s to '1'.
 - The mobile station shall set SCRM_SEQ_NUMs to (SCRM_SEQ_NUMs + 1) mod 16.
 - The mobile station shall transmit a Supplemental Channel Request Message with USE_SCRM_SEQ_NUM set to '1', SCRM_SEQ_NUM set to SCRM_SEQ_NUMs, and SIZE_OF_REQ_BLOB set to '0000'.

29 6.6.6.2.12 Periodic Serving Frequency Pilot Report Procedure

- The mobile station shall continuously measure the total received power spectral density, in mW/1.23 MHz, on the Serving Frequency at least once every frame (0.02 seconds) and maintain the average value, $spec_density$, over the last N_{12m} frames. The mobile station shall maintain the PPSMM timer as follows:
 - When the mobile station starts a Periodic Serving Frequency Pilot Report Procedure, it shall set the PPSMM timer to PPSMM_PERIOD_s \times 0.08 seconds and shall enable the timer.

2

10

11

12

15

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

- When the PPSMM timer expires, the mobile station shall send a *Periodic Pilot Strength Measurement Message* (6.6.6.2.5.2) to the base station, reset the PPSMM timer to PPSMM_PERIODs \times 0.08 seconds and shall re-enable the timer.
- When the mobile station receives an Extended Handoff Direction Message or a
 General Handoff Direction Message directing the mobile station to perform a hard
 handoff (see 6.6.6.2.5.1), it shall abort the Periodic Serving Frequency Pilot Report
 Procedure and disable the PPSMM timer if it is enabled.
- If MIN_PILOT_PWR_THRESH_S is not equal to '11111' and MIN_PILOT_EC_IO_THRESH_S is equal to '11111', the mobile station shall perform the following actions once per frame:
 - Disable the PPSMM timer if the received total energy per PN chip, E_c , of the pilots in the Active Set is not less than (-120 + 2 × MIN_PILOT_PWR_THRESH_s), where the value of E_c is computed as $10 \times log_{10}$ (PS × $spec_density$) and PS is the total E_c/I_0 of the pilots in the Active Set measured as specified in 6.6.6.2.2.
 - Reset the expiration time of the PPSMM timer to PPSMM_PERIODs \times 0.08 seconds and re-enable the timer if the following conditions are true:
 - o the PPSMM timer is disabled, and
 - the received total energy per PN chip, E_c , of the pilots in the Active Set is less than (-120 + 2 × MIN_PILOT_PWR_THRESH_s).
- If MIN_PILOT_PWR_THRESH_S is equal to '11111' and MIN_PILOT_EC_IO_THRESH_S is not equal to '11111', the mobile station shall perform the following actions once per frame:
 - Disable the PPSMM timer if the total pilot strength of the pilots in the Active Set, PS, satisfies the condition that $(-20 \times log_{10}(PS))$ is not greater than MIN_PILOT_EC_IO_THRESH_S.
 - Reset the expiration time of the PPSMM timer to PPSMM_PERIODs \times 0.08 seconds and re-enable the timer if the following conditions are true:
 - o the PPSMM timer is disabled, and
 - o the total pilot strength of the pilots in the Active Set, PS, satisfies the condition that (-20 \times log₁₀(PS)) is greater than MIN_PILOT_EC_IO_THRESH_S.
- If MIN_PILOT_PWR_THRESH_S is not equal to '11111' and MIN_PILOT_EC_IO_THRESH_S is not equal to '11111', the mobile station shall perform the following actions once per frame:
 - Disable the PPSMM timer if the following conditions are true:
 - o the received total energy per PN chip, E_c , of the pilots in the Active Set is not less than (-120 + 2 × MIN_PILOT_PWR_THRESH_s), and
 - o the total pilot strength of the pilots in the Active Set, PS, satisfies the condition that (-20 \times log_10(PS)) is not greater than MIN_PILOT_EC_IO_THRESH_s.

- Reset the expiration time of the PPSMM timer to PPSMM_PERIOD_S × 0.08 seconds and re-enable the timer if the following conditions are true:
 - o the PPSMM timer is disabled, and
 - o the received total energy per PN chip, E_c , of the pilots in the Active Set is less than (-120 + 2 × MIN_PILOT_PWR_THRESH_S), or the total pilot strength of the pilots in the Active Set, PS, satisfies the condition that (-20 × $log_{10}(PS)$) is greater than MIN_PILOT_EC_IO_THRESH_S.
 - If MIN_PILOT_PWR_THRESH_S is equal to '11111' and MIN_PILOT_EC_IO_THRESH_S is equal to '11111', the mobile station shall maintain the PPSMM timer independent of the received power and the total $\rm E_c/I_0$ of the pilots.

11 6.6.6.3 Examples

- 12 The following examples illustrate typical message exchanges between the mobile station
- and the base station during handoff. Refer to Annex B for examples of call processing
- 14 during handoff.
- Figure 6.6.6.3-1 shows an example of the messages exchanged between the mobile station
- and the base station during a typical handoff process if P_REV_IN_USEs is less than or
- equal to three or $SOFT_SLOPE_s$ is equal to '000000'.
- Figure 6.6.6.3-2 shows an example of the messages exchanged between the mobile station
- and the base station during a typical handoff process if P_REV_IN_USEs is greater than
- ∞ three and SOFT_SLOPE_s is not equal to '000000'.
- Figure 6.6.6.3-3 illustrates the messaging triggered by a pilot of the Candidate Set as its
- 2 strength gradually rises above the strength of each pilot of the Active Set if P_REV_IN_USEs
- $_{20}$ is less than or equal to three, or SOFT_SLOPEs is equal to '000000'. Note that the mobile
- station reports that a Candidate Set pilot is stronger than an Active Set pilot only if the
- difference between their respective strengths is at least T_COMP \times 0.5 dB.
- Figure 6.6.6.3-4 illustrates the messaging triggered by a pilot of the Candidate Set as its
- $_{27}$ strength gradually rises above the strength of each pilot of the Active Set if P_REV_IN_USE_s
- $_{28}$ is greater than three and SOFT_SLOPE_s is not equal to '000000'. Note that the mobile
- station reports that a Candidate Set pilot is stronger than an Active Set pilot only if the
- $_{\infty}$ difference between their respective strengths is at least T_COMP \times 0.5 dB and Pilot P₀
- strength exceeds [(SOFT_SLOPE/8) \times 10 \times log₁₀(PS₁ + PS₂) + ADD_INTERCEPT/2].

12

13

15

- (1) Pilot strength exceeds T_ADD. Mobile station sends a *Pilot Strength Measurement Message* and transfers pilot to the Candidate Set.
- (2) Base station sends an Extended Handoff Direction Message or a General Handoff Direction Message.
- (3) Mobile station transfers pilot to the Active Set and sends a *Handoff Completion Message*.
- (4) Pilot strength drops below T_DROP. Mobile station starts the handoff drop timer.
- (5) Handoff drop timer expires. Mobile station sends a *Pilot Strength Measurement Message*.
- (6) Base station sends an Extended Handoff Direction Message or a General Handoff Direction Message.
- (7) Mobile station moves pilot from the Active Set to the Neighbor Set and sends a *Handoff Completion Message*.

Figure 6.6.6.3-1. Handoff Threshold Example if P_REV_IN_USEs is Less Than or Equal to Three, or SOFT_SLOPEs is Equal to '000000'

- (1) Pilot P_2 strength exceeds T_ADD. Mobile station transfers the pilot to the Candidate Set.
- (2) Pilot P_2 strength exceeds [(SOFT_SLOPE/8) × 10 × $log_{10}(PS_1)$ + ADD_INTERCEPT/2]. Mobile station sends a *Pilot Strength Measurement Message*.
- (3) Mobile station receives an Extended Handoff Direction Message or a General Handoff Direction Message, transfers the pilot P₂ to the Active Set, and sends a Handoff Completion Message.
- (4) Pilot P₁ strength drops below [(SOFT_SLOPE/8) \times 10 \times log₁₀(PS₂) + DROP_INTERCEPT/2]. Mobile station starts the handoff drop timer.

11

12

13

14

17

- (5) Handoff drop timer expires. Mobile station sends a Pilot Strength Measurement Message.
- (6) Mobile station receives an Extended Handoff Direction Message or a General Handoff Direction Message, transfers the pilot P₁ to the Candidate Set and sends a Handoff Completion Message.
- (7) Pilot P_1 strength drops below T_DROP. Mobile station starts the handoff drop timer.
- 15 (8) Handoff drop timer expires. Mobile station moves the pilot P₁ from the Candidate Set to the Neighbor Set.

Figure 6.6.6.3-2. Handoff Threshold Example if $P_REV_IN_USE_s$ is Greater Than Three, and $SOFT_SLOPE_s$ is Not Equal to '000000'

Candidate Set: Pilot Po

Active Set: Pilots P1, P2

 t_0 – Pilot Strength Measurement Message sent, P_0 > T_ADD

 t_1 – Pilot Strength Measurement Message sent, $P_0 > P_1 + T_COMP \times 0.5 \text{ dB}$

 t_2 – Pilot Strength Measurement Message sent, $P_0 > P_2 + T_COMP \times 0.5 \text{ dB}$

Figure 6.6.3-3. Pilot Strength Measurements Triggered by a Candidate Pilot if $P_REV_IN_USE_S \le 3$ or $SOFT_SLOPE_S = '000000'$


```
Candidate Set: Pilot Po
         Active Set: Pilots P1, P2
         to - Pilot Strength Measurement Message not sent because
          [10 \times \log_{10}(PS_0)] < [(SOFT\_SLOPE/8) \times 10 \times \log_{10}(PS_1 + PS_2) + ADD\_INTERCEPT/2]
          t<sub>1</sub> - Pilot Strength Measurement Message not sent because
          P_0 > [P_1 + T_COMP \times 0.5 dB] but
          [10 \times \log_{10}(PS_0)] < [(SOFT\_SLOPE/8) \times 10 \times \log_{10}(PS_1 + PS_2) + ADD\_INTERCEPT/2]
          t<sub>1</sub>' - Pilot Strength Measurement Message sent because
          [10 \times \log_{10}(PS_0)] > [(SOFT\_SLOPE/8) \times 10 \times \log_{10}(PS_1 + PS_2) + ADD\_INTERCEPT/2]
10
          t2 - Pilot Strength Measurement Message sent because
11
          P_0 > [P_2 + T_COMP \times 0.5 dB] and
12
          [10 \times \log_{10}(\mathsf{PS}_0)] > [(\mathsf{SOFT\_SLOPE/8}) \times 10 \times \log_{10}(\mathsf{PS}_1 + \mathsf{PS}_2) + \mathsf{ADD\_INTERCEPT/2}]
13
```

Figure 6.6.6.3-4. Pilot Strength Measurements Triggered by a Candidate Pilot if $P_REV_IN_USE_S > 3$ and $SOFT_SLOPE_S \neq '000000'$

6.6.7 Hash Functions and Randomization

₂ 6.6.7.1 Hash Function

- 3 Certain procedures require a uniform distribution of mobile stations among N resources.
- The following function returns an integer, using as arguments the mobile station's IMSI or
- 5 ESN, the number of resources N, and a modifier DECORR. The modifier serves to
- decorrelate the values obtained for the various applications from the same mobile station.
- 7 If the hashing function is to be used for determining the Access Channel PN
- Randomization, HASH_KEY shall be equal to the mobile station ESN. Otherwise,
- HASH_KEY shall be equal to the 32 least significant bits of IMSI_O_S1 + 2^{24} × IMSI_O_S2).

10 Define:

11

12

13

14

15

16

17

18

19

20

- Word L to be bits 0-15 of HASH_KEY
- Word H to be bits 16-31 of HASH_KEY

where bit 0 is the least significant bit of HASH_KEY. The hash value is computed as follows: 14

$$R = \lfloor N \times ((40503 \times (L \oplus H \oplus DECORR)) \mod 2^{16}) / 2^{16} \rfloor.$$

The mobile station shall choose the range N and the 16-bit modifier DECORR according to the application as shown in Table 6.6.7.1-1. In the table, HASH_KEY [0...11] denotes the 12 least significant bits of HASH_KEY.

Table 6.6.7.1-1. Hash Function Modifier

Return **DECORR** N Value **Application** 0 R + 1Number of channels in last CDMA CDMA Channel Channel List Message (up to 10) Number R + 1PAGE_CHANs from System 2 × HASH_KEY [0...11] Paging Channel Parameters Message (up to 7) Number R 6 × HASH_KEY[0...11] Paging Slot Number 2048 R $14 \times HASH_KEY[0...11]$ 2PROBE_PN_RANs where Access Channel PN PROBE PN_RANs is from Access Randomization Parameters Message (up to 512)

¹⁴ This formula is adapted from Knuth, Donald N., *The Art of Computer Programming*, 2 volumes, (Reading, MA, Addison-Wesley, 1998).

- 6.6.7.2 Pseudorandom Number Generator
- Where pseudorandom numbers are needed, a linear congruential generator shall be used.
- The mobile station shall implement the linear congruential generator defined by: 2 3

 $z_n = a \times z_{n-1} \mod m$

- 4 where $a = 7^5 = 16807$ and $m = 2^{31} - 1 = 2147483647$. z_n is the output of the generator. 15 5
- During the Mobile Station Initialization State, the mobile station shall seed its generator with

 $z_0 = (ESN \oplus RANDOM_TIME) \mod m$ 7

- where RANDOM_TIME shall be the least-significant 32-bits of SYS_TIME_s stored from the
- Sync Channel Message. If the initial value so produced is found to be zero, it shall be 8 9
- replaced with one. The mobile station shall compute a new z_n for each subsequent use. 10
- The mobile station shall use the value $u_n = z_n / m$ for those applications that require a 11
- binary fraction u_n , $0 < u_n < 1$. 12
- The mobile station shall use the value k_n = [N × z_n / m] for those applications that require 13
- a small integer k_n , $0 \le k_n \le N 1$. 14

25

26 27

28

29 30

31

32

- 6.6.8 CODE_CHAN_LIST_s Maintenance 15
- The $CODE_CHAN_LIST_S$ is a descriptive structure used to manage the Forward
- Fundamental Code Channel and Forward Supplemental Code Channels, if any, associated 16
- with the mobile station's Active Set. Associated with each member of the mobile station's 17
- Active Set, there is an ordered array of code channels. The first entry of the ordered array 18
- specifies the Forward Fundamental Code Channel associated with the pilot and the 19
- subsequent entries, if any, specify the Forward Supplemental Code Channels associated 20 21
- with the pilot. The CODE_CHAN_LISTs is the collection of ordered arrays of code channels
- for each member of the mobile station's Active Set. The ith entry in every array (of code 22 23
- channels associated with a member of the Active Set) corresponds to the ith code channel. 24
 - The mobile station shall maintain the CODE_CHAN_LIST_sas follows:
 - When the mobile station is first assigned a Forward Fundamental Code Channel, it shall initialize the $CODE_CHAN_LIST_S$ to contain the Forward Fundamental Code Channel for each member of the Active Set.
 - When the mobile station processes the Extended Handoff Direction Message, the mobile station shall update the CODE_CHAN_LIST_S as follows:
 - For each pilot listed in the Extended Handoff Direction Message which does not have a corresponding code channel in the CODE_CHAN_LIST_s, the mobile station shall add the code channel, CODE_CHAN, of that pilot to the $\mathsf{CODE}_\mathsf{CHAN}_\mathsf{LIST}_\mathsf{S},$ as the Forward Fundamental Code Channel for the pilot,

¹⁵ This generator has full period, ranging over all integers from 1 to m-1; the values 0 and m are never produced. Several suitable implementations can be found in Park, Stephen K. and Miller, Keith W., "Random Number Generators: Good Ones are Hard to Find," Communications of the ACM, vol. 31, no. 10, October 1988, pp. 1192-1201.

- The mobile station shall delete all information in the CODE_CHAN_LIST_S
 associated with a pilot that is not included in the Extended Handoff Direction
 Message.
- When the mobile station processes the General Handoff Direction Message, the
 mobile station shall update the CODE_CHAN_LIST_S to contain the Forward
 Fundamental Code Channel associated with each pilot included in the General
 Handoff Direction Message. The first code channel occurrence associated with each
 pilot included in the General Handoff Direction Message corresponds to the Forward
 Fundamental Code Channel. The mobile station shall do the following:
 - If $FOR_SUP_CONFIG_r$ is included and $FOR_SUP_CONFIG_r$ is equal to '10' or '11', the mobile station shall perform the following actions:
 - + For each pilot listed in the *General Handoff Direction Message*, the mobile station shall set the Forward Supplemental Code Channels (associated with the pilot) in the CODE_CHAN_LIST_S to the Forward Supplemental Code Channels specified in the *General Handoff Direction Message*.
 - + The mobile station shall delete all information in the CODE_CHAN_LIST_S associated with a pilot that is not included in the *General Handoff Direction Message*.
 - If FOR_SUP_CONFIG_r is equal to '00' or '01' or if FOR_SUP_CONFIG_r is not included in the *General Handoff Direction Message*, the mobile station shall not update Supplemental Code Channels associated with the pilots included in the *General Handoff Direction Message*. The mobile station shall perform the following actions:
 - + For each pilot listed in the *General Handoff Direction Message* which does not have a corresponding code channel in the CODE_CHAN_LIST_S, the mobile station shall add the code channel, CODE_CHAN, of that pilot to the CODE_CHAN_LIST_S, as the Forward Fundamental Code Channel for the pilot.
 - + The mobile station shall delete all information in the CODE_CHAN_LIST_S associated with a pilot that is not included in the *General Handoff Direction Message*.
- When the mobile station processes the Supplemental Channel Assignment Message it shall follow the following rules:
 - If FOR_SUP_CONFIG_r is equal to '10' or '11', the mobile station shall update the Forward Supplemental Code Channels for each pilot in the Active Set.
 - If the pilot is not listed in the Supplemental Channel Assignment Message, the mobile station shall delete all occurrences of Forward Supplemental Code Channels associated with the pilot from the Code Channel List.

- If a pilot is listed in the Supplemental Channel Assignment Message, then the mobile station shall set the Forward Supplemental Code Channels (associated with the pilot) in the CODE_CHAN_LIST_S to the Forward Supplemental Code Channels specified in the Supplemental Channel Assignment Message.
- If $FOR_SUP_CONFIG_r$ is equal to '00' or '01', the mobile station shall not update Supplemental Code Channels associated with the pilots included in the Supplemental Channel Assignment Message.

No text.

6.7 Signaling Formats

- This section describes the messages sent by the mobile station.
- 3 Some bits in the following message formats are marked as RESERVED. These bits allow for
- extensions to the basic message for future features and capabilities. The mobile station
- 5 sets all reserved bits to '0'.
- 6 All messages have a set of acknowledgment fields. These fields are ACK_SEQ, MSG_SEQ,
- ACK_REQ, and VALID_ACK for Access Channel messages and ACK_SEQ, MSG_SEQ, and
- a ACK_REQ for Reverse Traffic Channel messages.
- 9 In any multi-bit field of a signaling message, the most significant bit shall be transmitted
- 10 first.
- 11 6.7.1 Access Channel
- This section describes the messages sent by the mobile station on the Access Channel
- 13 (see 6.1.3.2).
- 6.7.1.1 Access Channel Structure
- An Access Channel slot is (3 + MAX_CAP_SZ) + (1 + PAM_SZ) Access Channel frames in
- length. An Access Channel slot begins and ends on an Access Channel frame boundary.
- Access Channel slots begin at Access Channel frames, in which
- t mod $(4 + MAX_CAP_SZ + PAM_SZ) = 0$,
- where t is the System Time in frames. Note that all Access Channels associated with a
- particular Paging Channel have the same slot size, and that all of the slots begin at the
- same time. Figure 6.7.1.1-1 shows an example of Access Channel slots. Figure 6.7.1.1-2
- 2 shows the Access Channel structure.
- The Access Channel slot length may differ from base station to base station. A mobile
- station shall determine the beginning and length of the Access Channel slot, prior to
- z transmission.
- 26 An Access Channel transmission consists of the Access Channel preamble and the Access
- 27 Channel Message capsule. An Access Channel transmission shall be an integer number of
- Access Channel frames in length, and shall not exceed 4 + MAX_CAP_SZ + PAM_SZ Access
- 2 Channel frames in length.
- mean On each Access Channel transmission, the mobile station shall transmit a preamble
- consisting of frames of 96 zeros (see 6.1.3.2.2.1), starting at the beginning of the slot (plus
- 2 PN randomization, as specified in 6.6.3.1.1.2) and 1 + PAM_SZ Access Channel frames in
- 23 length. The mobile station shall transmit an Access Channel Message capsule, immediately
- 34 following the preamble.

Figure 6.7.1.1-1. Example of Access Channel Slot Structure

Figure 6.7.1.1-2. Access Channel Structure

5

12

13

14

15

17

18

19

20

21

22

23

6.7.1.2 Access Channel Message Structure

- 2 An Access Channel Message capsule consists of an Access Channel Message and padding,
- as shown in Figure 6.7.1.2-1. The length of the Access Channel Message capsule shall be
- an integer number of Access Channel frames given by

$$CAP_SZ = \begin{bmatrix} 8 + Message Body Length + 30 \\ 88 \end{bmatrix}$$

- Each Access Channel Message shall consist of a length field (MSG_LENGTH), a message
- body, and a CRC, in that order. The message body size shall be selected so that CAP_SZ
- does not exceed 3 + MAX_CAP_SZ. The mobile station shall transmit the Access Channel
- 9 Message, immediately following the preamble.
- The mobile station shall transmit padding, consisting of zero or more '0' bits immediately following the *Access Channel Message*. The length of the padding shall be such that
 - 8 + Message Body Length + 30 + Padding Length = 88 × CAP_SZ.

Figure 6.7.1.2-1. Access Channel Message Structure

6.7.1.2.1 Access Channel MSG_LENGTH Field

The mobile station shall set the MSG_LENGTH field of each Access Channel signaling message to the length of the message in octets, including the MSG_LENGTH field, the message body, and the CRC, but not including the preamble or the padding. The MSG_LENGTH field shall be 8 bits in length. Consistent with a maximum MAX_CAP_SZ value of 7, the mobile station shall limit the maximum Access Channel Message length to 110 octets, or 880 bits; that is, the value of the MSG_LENGTH field shall not exceed 110.

- 6.7.1.2.2 Access Channel Message CRC
- A 30-bit CRC shall be computed for each Access Channel signaling message. The CRC
- shall include the MSG_LENGTH field and the message body. The generator polynomial for
- 4 the CRC shall be as follows:

17

$$g(x) = x^{30} + x^{29} + x^{21} + x^{20} + x^{15} + x^{13} + x^{12} + x^{11} + x^{8} + x^{7} + x^{6} + x^{2} + x + 1.$$

- The CRC shall be the value computed by the following procedure and the logic shown in Figure 6.7.1.2.2-1:
 - All shift register elements shall be initialized to logical one. 1
 - The switches shall be set in the up position.
 - The information bit count k shall be defined as 8 + message body length in bits.
- The register shall be clocked k times, with the length and message body of the message as the k input bits.
- The switches shall be set in the down position so that the output is a modulo-2 addition with a '1' and the successive shift register inputs are '0'.
 - The register shall be clocked an additional 30 times.
 - The 30 additional output bits shall be the CRC field.
 - The bits shall be transmitted in the order in which they appear at the output of the CRC encoder.

¹ Initialization of the register to ones causes the CRC for all-zero data to be non-zero.

Figure 6.7.1.2.2-1. Access Channel CRC Calculation

- 6.7.1.3 Access Channel Message Body Format
- The messages sent on the Access Channel are summarized in Table 6.7.1.3-1.

Table 6.7.1.3-1. Access Channel Messages

Message Name	Message Type (binary)	Section Number
Registration Message	00000001	6.7.1.3.2.1
Order Message	00000010	6.7.1.3.2.2
Data Burst Message	00000011	6.7.1.3.2.3
Origination Message	00000100	6.7.1.3.2.4
Page Response Message	00000101	6.7.1.3.2.5
Authentication Challenge Response Message	00000110	6.7.1.3.2.6
Status Response Message	00000111	6.7.1.3.2.7
TMSI Assignment Completion Message	00001000	6.7.1.3.2.8
PACA Cancel Message	00001001	6.7.1.3.2.9
Extended Status Response Message	00001010	6.7.1.3.2.10

6.7.1.3.1 Common Fields

- 6.7.1.3.1.1 Common Layer 2 and Identification Fields
- 8 All Access Channel messages share the following eight fields:

-	recess charact messages share the following eight fields.		
9	ACK_SEQ	-	Acknowledgment sequence number.
10		•	The mobile station shall set this field to the value of the
11	•		MSG_SEQ field from the most recently received Paging
12	•		Channel message requiring acknowledgment. If no such
13			message has been received, the mobile station shall set this
14			field to '111'. See 6.6.2.1.2.
15	MSG_SEQ	-	Message sequence number.
16			The mobile station shall set this field to the message sequence
17			number for this message. See 6.6.3.1.2.
18	ACK_REQ	_	Acknowledgment required indicator. This field indicates
19			whether this message requires an acknowledgment. The
20			mobile station shall set the ACK_REQ field of all messages
21			sent on the Access Channel to '1'.

VALID_ACK

Valid acknowledgment indicator.

To acknowledge a Paging Channel message, the mobile station shall set this field to '1'; otherwise, the mobile station shall set this field to '0'. See 6.6.2.1.2.

ACK_TYPE

Acknowledgment address type.

The mobile station shall set this field to the value of the ADDR_TYPE field, if present, from the most recently received Paging Channel message requiring acknowledgment. If the Paging Channel message contained no ADDR_TYPE field, or if no such message has been received, the mobile station shall set this field to '000'.

MSID_TYPE

Mobile station identifier field type.

The mobile station shall set this field to the value shown in Table 6.7.1.3.1.1-1 corresponding to the address type used by the mobile station.

16

17

11 12

13

14

15

Table 6.7.1.3.1.1-1. Address Types

Description	MSID_TYPE (binary)	MSID_LEN (octets)			
IMSI_S and ESN (Band Class 0 only)	000	9			
ESN	001	4			
IMSI	010	5 to 7			
IMSI and ESN	011	9 to 11			
TMSI	101	2 to 12			
All other MSID_TYPE values are reserved.					

18

19

22

23

MSID_LEN - Mobile station identifier field length.

Mobile station identifier.

The mobile station shall set this field to the number of octets included in the MSID field, as shown in Table 6.7.1.3.1.1-1.

MSID

The mobile station shall set this field to the mobile station identifier, using the identifier type specified in the MSID_TYPE field.

If MSID_TYPE is equal to '000', the MSID field shall consist of the following subfields:

Subfield	Length (bits)
MIN1	24
MIN2	10
ESN	32
RESERVED	6

If MSID_TYPE is equal to '001', the MSID field shall consist of the following subfield:

Subfield	Length (bits)
ESN	8 × MSID_LEN

If MSID_TYPE is equal to '010', the MSID field shall consist of the following subfields:

Subfield	Length (bits)	
IMSI_CLASS	1	
IMSI class specific subfields	7 + 8 × (MSID_LEN - 1)	

If MSID_TYPE is equal to '011', the MSID field shall consist of the following subfields:

Subfield	Length (bits)	
ESN	32	
IMSI_CLASS	1 .	
IMSI class specific subfields	7 + 8 × (MSID_LEN - 5)	

If MSID_TYPE is equal to '101', the MSID field shall consist of the following subfields:

Subfield	Length (bits)
TMSI_ZONE	If MSID_LEN is greater than four, 8 × (MSID_LEN - 4); otherwise, 0.
TMSI_CODE_ADDR	If MSID_LEN is greater than four, 32; otherwise, 8 × MSID_LEN.

3

6

8

9

11

12 13

1 2	If the MSID_TYPE is equalifields in the MSID field:	al to	o '000', the mobile station shall include the following four sub-
3 4	MIN1	_	First part (least significant 24 bits) of the mobile identification number (MIN).
5 6			The mobile station shall set this field to IMSI_M_S1 (see 6.3.1).
7 8	MIN2	-	Second part (most significant 10 bits) of the mobile identification number (MIN).
9 10			The mobile station shall set this field to IMSI_M_S2 (see 6.3.1).
11	ESN	-	Mobile station's electronic serial number.
12 13			The mobile station shall set this field to its electronic serial number. See 6.3.2.
14	RESERVED	_	Reserved bits.
15			The mobile station shall set this field to '000000'.
16 17	If the MSID_TYPE is equal in the MSID field:	al to	o '001', the mobile station shall include the following sub-fields
. 18	ESN	_	Mobile station's electronic serial number.
19 20			The mobile station shall set this field to its electronic serial number. See 6.3.2.
21 22	If the MSID_TYPE is equin the MSID field:	al to	o '010', the mobile station shall include the following sub-fields
		al to	o '010', the mobile station shall include the following sub-fields If the mobile station has been assigned a class 0 IMSI, the mobile station shall set this field to '0'; otherwise, the mobile station shall set this field to '1'.
22 23 24	in the MSID field:		If the mobile station has been assigned a class 0 IMSI, the mobile station shall set this field to '0'; otherwise, the mobile
22 23 24 25 26	in the MSID field: IMSI_CLASS		If the mobile station has been assigned a class 0 IMSI, the mobile station shall set this field to '0'; otherwise, the mobile station shall set this field to '1'.
22 23 24 25 26 27 28	in the MSID field: IMSI_CLASS IMSI class specific subfields	_	If the mobile station has been assigned a class 0 IMSI, the mobile station shall set this field to '0'; otherwise, the mobile station shall set this field to '1'. IMSI class specific subfields. The mobile station shall set this field to the appropriate class
22 23 24 25 26 27 28 29	in the MSID field: IMSI_CLASS IMSI class specific subfields If the MSID_TYPE is equ	_	If the mobile station has been assigned a class 0 IMSI, the mobile station shall set this field to '0'; otherwise, the mobile station shall set this field to '1'. IMSI class specific subfields. The mobile station shall set this field to the appropriate class specific subfields as described below.
22 23 24 25 26 27 28 29 30 31	in the MSID field: IMSI_CLASS IMSI class specific subfields If the MSID_TYPE is equin the MSID field:	_	If the mobile station has been assigned a class 0 IMSI, the mobile station shall set this field to '0'; otherwise, the mobile station shall set this field to '1'. IMSI class specific subfields. The mobile station shall set this field to the appropriate class specific subfields as described below. o '011', the mobile station shall include the following sub-fields
22 23 24 25 26 27 28 29 30 31 32	in the MSID field: IMSI_CLASS IMSI class specific subfields If the MSID_TYPE is equin the MSID field:	_	If the mobile station has been assigned a class 0 IMSI, the mobile station shall set this field to '0'; otherwise, the mobile station shall set this field to '1'. IMSI class specific subfields. The mobile station shall set this field to the appropriate class specific subfields as described below. O '011', the mobile station shall include the following sub-fields Mobile station's electronic serial number. The mobile station shall set this field to its electronic serial
22 23 24 25 26 27 28 29 30 31 32 33 34 36 36	in the MSID field: IMSI_CLASS IMSI class specific subfields If the MSID_TYPE is equ in the MSID field: ESN	_	If the mobile station has been assigned a class 0 IMSI, the mobile station shall set this field to '0'; otherwise, the mobile station shall set this field to '1'. IMSI class specific subfields. The mobile station shall set this field to the appropriate class specific subfields as described below. O '011', the mobile station shall include the following sub-fields Mobile station's electronic serial number. The mobile station shall set this field to its electronic serial number. See 6.3.2. If the mobile station has been assigned a class 0 IMSI, the mobile station shall set this field to '0'; otherwise, the mobile

If IMSI_CLASS is equal to '0', the mobile station shall use the IMSI class specific subfields shall be used:

IMSI Class Specific Subfield	Length (bits)
IMSI_CLASS_0_TYPE	2
IMSI class 0 type specific subfields	see Table 6.7.1.3.1.1-2

If IMSI_CLASS is equal to '1', the mobile station shall use the following IMSI class specific subfields shall be used:

IMSI Class Specific Subfield	Length (bits)	
IMSI_CLASS_1_TYPE	1	
IMSI class 1 type specific subfields	see Table 6.7.1.3.1.1-3	

If MSID_TYPE is equal to '101', the mobile station shall include the following sub-field in the MSID sub-fields:

TMSI_ZONE - TMSI zone.

If MSID_LEN is greater than four, the mobile station shall set this field to the ASSIGNING_TMSI_ZONE_LEN_s-p most significant octets of ASSIGNING_TMSI_ZONE_s-p, the assigning TMSI zone. If MSID_LEN is less than or is equal to four, the mobile station shall omit this field.

TMSI_CODE_ADDR

Temporary mobile station identity code address.

If TMSI_ZONE is included in the address, the mobile station shall set this field to the 32-bit TMSI code assigned to the mobile station.

If TMSI_ZONE is not included in the address, the mobile station shall set this field as follows:

- the most significant octet of the TMSI_CODE assigned to the mobile station is equal to '00000000' and the second most significant octet of the TMSI_CODE assigned to the mobile station is not equal to '00000000', the mobile station shall set TMSI_CODE_ADDR to the 24 least significant bits of the TMSI_CODE assigned to the mobile station.
- If the two most significant octets of the TMSI_CODE assigned to the mobile station are both equal to '00000000', the mobile station shall set TMSI_CODE_ADDR to the 16 least significant bits of the TMSI_CODE assigned to the mobile station.

.

In all other cases, the mobile station shall set TMSI_CODE_ADDR to the TMSI_CODE assigned to the mobile station.

4

2

If IMSI_CLASS is equal to '0', the mobile station shall include the following fields in the IMSI class specific subfields:

7 IMSI_CLASS_0_TYPE 8 The mobile station shall set this field as described in 6.6.2.1.5 (see Table 6.7.1.3.1.1-2).

9

10

Table 6.7.1.3.1.1-2. IMSI Class 0 Types

Description	IMSI_CLASS_ 0_TYPE (binary)	Length of IMSI Class 0 Type Specific Subfields (bits)
IMSI_S included	00	37
IMSI_S and IMSI_11_12 included	01	45
IMSI_S and MCC included	10	45
IMSI_S, IMSI_11_12; and MCC included	11	53

11 12

IMSI class 0 type specific subfields

IMSI class 0 type specific subfields.

The mobile station shall set the IMSI class 1 type specific subfields as described below:

14 15 16

13

If IMSI_CLASS is equal to '1', the mobile station shall include the following fields in the IMSI class specific subfields:

18 19 20

17

If IMSI_CLASS is equal to '0', and IMSI_CLASS_0_TYPE is equal to '00', then IMSI class 0 type specific subfields shall consist of:

IMSI Class 0 Type Specific Subfield	Length (bits)
RESERVED	3
IMSI_S	34

10 11

12 13

14 15 If IMSI_CLASS is equal to '0', and IMSI_CLASS_0_TYPE is equal to '01', then IMSI class 0 type specific subfields shall consist of:

IMSI Class 0 Type Specific Subfield	Length (bits)
RESERVED	4
IMSI_11_12	7
IMSI_S	34

If IMSI_CLASS is equal to '0', and IMSI_CLASS_0_TYPE is equal to '10', then IMSI class 0 type specific subfields shall consist of:

IMSI Class 0 Type Specific Subfield	Length (bits)
RESERVED	1 .
MCC	10
IMSI_S	34

If IMSI_CLASS is equal to '0', and IMSI_CLASS_0_TYPE is equal to '11', then IMSI class 0 type specific subfields shall consist of:

IMSI Class 0 Type Specific Subfield	Length (bits)
RESERVED	2
MCC	10
IMSI_11_12	7
IMSI_S	34

IMSI_CLASS_1_TYPE

The mobile station shall set this field as described in 6.6.2.1.5 (see Table 6.7.1.3.1.1-3).

Table 6.7.1.3.1.1-3. IMSI Class 1 Types

Description	IMSI_CLASS- _1_TYPE (binary)	Length of IMSI Class 1 Type Specific Subfields (bits)
IMSI_S and IMSI_11_12 included	0	46
IMSI_S, IMSI_11_12, and MCC included		54

IMSI class 1 type specific subfields

IMSI class 1 type specific subfields.

The mobile station shall set the IMSI class 1 type specific subfields as described below:

If IMSI_CLASS is equal to '1', and IMSI_CLASS_1_TYPE is equal to '0', then IMSI class 1 type specific subfields shall consist of:

IMSI Class 1 Type Specific Subfield	Length (bits)
RESERVED	2
IMSI_ADDR_NUM	3
IMSI_11_12	7
IMSI_S	34

If IMSI_CLASS is equal to '1', and IMSI_CLASS_1_TYPE is equal to '1', then IMSI class 1 type specific subfields shall consist of:

IMSI Class 1 Type Specific Subfield	Length (bits)
IMSI_ADDR_NUM	3
мсс	10
IMSI_11_12	7
IMSI_S	34

13

15

16

17

IfIMSI_CLASS is equal to '0', and IMSI_CLASS_0_TYPE is equal to '00', the mobile station shall include the following fields in IMSI class 0 type specific subfields:

RESERVED - Reserved bits.

The mobile station shall set these bits to '000'.

IMSI_S - Last ten digits of the IMSI.

The mobile station shall set this field to IMSI_S. See 6.3.1.

```
If IMSI_CLASS is equal to '0', and IMSI_CLASS_0_TYPE is equal to '01', the mobile station
     shall include the following fields in IMSI class 0 type specific subfields:
                RESERVED
                                   Reserved bits.
                                   The mobile station shall set these bits to '0000'.
                IMSI 11 12
                                   The 11th and 12th digits of IMSI.
                                   The mobile station shall set this field to IMSI_11_12.
                                   See 6.3.1.
                     IMSI_S
                                   Last ten digits of the IMSI.
                                   The mobile station shall set this field to IMSI_S. See 6.3.1.
     If IMSI_CLASS is equal to '0', and IMSI_CLASS_0_TYPE is equal to '10', the mobile station
10
     shall include the following fields in IMSI class 0 type specific subfields:
11
               RESERVED
                                   Reserved bit.
13
                                   The mobile station shall set this bit to '0'.
                      MCC
                                   Mobile Ccountry Code.
                                   The mobile station shall set this field to the MCC. See 6.3.1.
15
                    IMSI_S
                                   Last ten digits of the IMSI.
16
                                   The mobile station shall set this field to IMSI_S. See 6.3.1.
17
     IfIMSI_CLASS is equal to '0', and IMSI_CLASS_0_TYPE is equal to '11', the mobile station
18
     shall include the following fields in IMSI class 0 type specific subfields:
19
               RESERVED
                                   Reserved bits.
20
                                   The mobile station shall set these bits to '00'.
21
22
                      MCC
                                   Mobile Ccountry Code.
                                   The mobile station shall set this field to the MCC. See 6.3.1.
23
               IMSI_11_12
                                   The 11th and 12th digits of IMSI.
                                   The mobile station shall set this field to IMSI_11_12.
25
26
                                   See 6.3.1.
                    IMSI_S
27
                                   Last ten digits of the IMSI.
                                   The mobile station shall set this field to IMSI_S. See 6.3.1.
28
    If IMSI_CLASS is equal to '1', and IMSI_CLASS_1_TYPE is equal to '0', the mobile station
29
    shall include the following fields in IMSI class 1 type specific subfields:
30
               RESERVED
                                  Reserved bits.
31
                                   The mobile station shall set these bits to '00'.
32
        IMSI_ADDR_NUM
                                  Number of IMSI address digits.
33
                                  The mobile station shall set this field to four less than the
34
                                  number of digits in the NMSI. See 6.3.1.
35
               IMSI_11_12
                                  The 11th and 12th digits of IMSI.
36
                                  The mobile station shall set this field to IMSI_11_12.
37
                                  See 6.3.1.
```

Last ten digits of the IMSI. IMSI S The mobile station shall set this field to IMSI_S. See 6.3.1. If IMSI_CLASS is equal to '1', and IMSI_CLASS_1_TYPE is equal to '1', the mobile station shall include the following fields in IMSI class 1 type specific subfields: Number of IMSI address digits. IMSI_ADDR_NUM The mobile station shall set this field to four less than the 6 number of digits in the NMSI. See 6.3.1. Mobile Ccountry Code. **MCC** The mobile station shall set this field to the MCC. See 6.3.1. The 11th and 12th digits of IMSI. IMSI_11_12 10 The mobile station shall set this field to IMSI_11_12. 11 See 6.3.1. 12 Last ten digits of the IMSI. IMSI_S 13 The mobile station shall set this field to IMSI_S. See 6.3.1. 6.7.1.3.1.2 Common Authentication Fields 15 Most Access Channel messages share the same four fields related to authentication: 16 Authentication mode. AUTH MODE 17 If authentication information is not available, or if the base 18 station has indicated that authentication is not required 19 (AUTHs is set to '00'), the mobile station shall set this field to 20 '00'. If authentication is required by the base station and 21 authentication information is available, the mobile station 22 shall set this field to '01'. All other values are reserved. 23 Authentication data. **AUTHR** If the AUTH_MODE field is set to '01', the mobile station shall 25 set this field as specified in 6.3.12.1. If the AUTH_MODE field 26 is set to any other value, the mobile station shall omit this 27 field. Random challenge value. **RANDC** 29 If the AUTH_MODE field is set to '01', the mobile station shall 30 set this field as specified in 6.3.12.1. If the AUTH_MODE field 31 is set to any other value, the mobile station shall omit this 32 33 Call history parameter. COUNT If the AUTH_MODE field is set to '01', the mobile station shall 35 set this field to the current value of the COUNT_{s-p} parameter. If the AUTH_MODE field is set to any other value, the mobile 37 station shall omit this field. 38

6.7.1.3.1.3 Common Pilot Measurement Fields

Most Access Channel messages share the following fields related to reporting pilot strengths:

ACTIVE_PILOT-

3

5

6

8

10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25

26

27

28 29 _STRENGTH

Pilot strength.

The mobile station shall not include this field if $P_REV_IN_USE_s$ is less than or is equal to three. The mobile station shall include this field if $P_REV_IN_USE_s$ is greater than three. If this field is included, the mobile station shall set this field to

 $[-2 \times 10 \log_{10} PS]$,

where PS is the strength of the pilot in the Active Set, measured as specified in 6.6.6.2.2. If this value ($\lfloor -2 \times 10 \rfloor$ log₁₀ PS) is less than 0, the mobile station shall set this field to '000000'. If this value is greater than '111111', the mobile station shall set this field to '111111'.

FIRST_IS_ACTIVE

The active pilot is the first pilot on which an access probe was

The mobile station shall set this field to '1', if the pilot in the Active Set is the base station on which it began its access attempt. Otherwise, the mobile station shall set this field to '0'. See Table 6.7.1.3.1.3-1.

FIRST_IS_PTA

The first pilot is the previous to the active pilot on which an access probe was sent.

The mobile station shall set this field to '1', if the first pilot is the previous to the active on which an access probe was sent. Otherwise, the mobile station shall set this field to '0'. See Table 6.7.1.3.1.3-1.

6-433

Table 6.7.1.3.1.3-1. Access Attempted Ordering Flags

FIRST_IS _ACTIVE (binary)	FIRST_IS _PTA (binary)	Access Attempted Ordering
0	0	The pilot listed in the Active Set is not the first attempted or the previous to active pilot attempted. The first pilot listed in the additional list of pilots is the first pilot attempted during the access attempt. The second pilot listed is previous to active.
. 0	1	The pilot listed in the Active Set is not the first attempted or the previous to active pilot attempted. The first pilot listed in the additional list of pilots is both the first attempted and the previous to active.
1	0	The pilot listed in the Active Set is the first pilot attempted. If the first additional pilot listed has the ACCESS_ATTEMPTED field equal to '1', then it is the previous to active.
1	1	Reserved

NUM_ADD_PILOTS

Number of additional reported pilots.

The mobile station shall not include this field if $P_REV_IN_USE_S$ is less than or equal to three. The mobile station shall include this field if $P_REV_IN_USE_S$ is greater than three. If this field is included, the mobile station shall set this field to the number of pilots other than the pilot in the Active Set being reported. The mobile station shall report pilots which are in the ACCESS_HO_LIST and OTHER_REPORTED_LIST as described in 6.6.3.1.7.

10 11

12

13

14

15

16

17

18

19

3

If $P_REV_IN_USE_s$ is greater than three, the mobile station shall include NUM_ADD_PILOTS occurrences of the following four-field record (one for each additional pilot being reported).

PILOT_PN_PHASE

- Pilot measured phase.

The mobile station shall set this field to the phase of the pilot PN sequence, relative to the zero offset pilot PN sequence of this pilot, in units of one PN chip, as specified in 6.6.6.2.4.

PILOT_STRENGTH

Pilot strength.

The mobile station shall set this field to

 $[-2 \times 10 \log_{10} PS]$,

where PS is the strength of this pilot, measured as specified in 6.6.6.2.2. If this value ([-2 × 10 log₁₀ PS]) is less than 0, the mobile station shall set this field to '000000'. If this value is greater than '111111', the mobile station shall set this field to '111111'.

20 21

1	ACCESS_HO_EN	-	Access handoff enable.
2			If the pilot is in ACCESS_HO_LIST, the mobile station shall
3			set this field to '1'; otherwise, the mobile station shall set this
4			field to '0'.
5	ACCESS_ATTEMPTED	-	Access attempted flag.
6			The mobile station shall set this field to '1', if an access probe
7			has been sent on this pilot within the current access attempt;
8	•		otherwise, the mobile station shall set this field to '0'.

- 9 6.7.1.3.2 Message Body Contents
- The following sections specify the contents of the message body for each message that may be sent on the Access Channel:

- 6.7.1.3.2.1 Registration Message
- When the mobile station sends a Registration Message, it shall use the following variable-
- length message format:

Field	Length (bits)
MSG_TYPE ('00000001')	8
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
VALID_ACK	1
ACK_TYPE	3
MSID_TYPE	3
MSID_LEN	4
MSID	8 × MSID_LEN
AUTH_MODE	2
AUTHR	0 or 18
RANDC	0 or 8
COUNT	0 or 6
REG_TYPE	4
SLOT_CYCLE_INDEX	3
MOB_P_REV	8
SCM	8
MOB_TERM	1
RETURN_CAUSE	4
ACTIVE_PILOT_STRENGTH	6
FIRST_IS_ACTIVE	1
FIRST_IS_PTA	1
NUM_ADD_PILOTS	3

NUM_ADD_PILOTS occurrences of the following record:

PILOT_PN_PHASE	15
PILOT_STRENGTH	6
ACCESS_HO_EN	1
ACCESS_ATTEMPTED	1

eeded)

1	MSG_TYPE	-	Message type.
2			The mobile station shall set this field to '00000001'.
3	ACK_SEQ	_	Acknowledgment sequence number.
4			See 6.7.1.3.1.1.
5	MSG_SEQ	-	Message sequence number.
6			See 6.7.1.3.1.1.
7	ACK_REQ	-	Acknowledgment required indicator.
8			See 6.7.1.3.1.1.
9	VALID_ACK	_	Valid acknowledgment indicator.
10			See 6.7.1.3.1.1.
11	ACK_TYPE	-	Acknowledgment address type.
12			See 6.7.1.3.1.1.
13	MSID_TYPE	_	Mobile station identifier field type.
14			See 6.7.1.3.1.1.
15	MSID_LEN	-	Mobile station identifier field length.
16			See 6.7.1.3.1.1.
17	MSID	-	Mobile station identifier.
18			See 6.7.1.3.1.1.
19	AUTH_MODE	_	Authentication mode.
20			See 6.7.1.3.1.2.
21	AUTHR	_	Authentication data.
22			See 6.7.1.3.1.2.
23	RANDC	-	Random challenge value.
24			See 6.7.1.3.1.2.
25	COUNT	-	Call history parameter.
26 .			See 6.7.1.3.1.2.
27	REG_TYPE	-	Registration type.
28 29			This field indicates which type of event generated the registration attempt.
30			The mobile station shall set this field to the REG_TYPE value
31 32			shown in Table 6.7.1.3.2.1-1 corresponding to the event that caused this registration to occur (see 6.6.5.1).
-			

Table 6.7.1.3.2.1-1. Registration Type (REG_TYPE) Codes

REG_TYPE (binary)	Type of Registration				
0000	Timer-based (see 6.6.5.1.3)				
0001	Power-up (see 6.6.5.1.1)				
0010	Zone-based (see 6.6.5.1.5)				
0011	Power-down (see 6.6.5.1.2)				
0100	Parameter-change (see 6.6.5.1.6)				
0101	Ordered (see 6.6.5.1.7)				
0110	Distance-based (see 6.6.5.1.4)				
All other REG_TYPE values are reserved.					

_			
3	SLOT_CYCLE_INDEX	-	Slot cycle index.
4 5 6		,	If the mobile station is configured for slotted mode operation, the mobile station shall set this field to the preferred slot cycle index, SLOT_CYCLE_INDEX $_{\rm p}$ (see 6.6.2.1.1). Otherwise, the
7			mobile station shall set this field to '000'.
8	MOB_P_REV	-	Protocol revision of the mobile station.
9 10			The mobile station shall set this field to '00000100' or '00000101'. 2
11	SCM	_	Station class mark.
12 13			The mobile station shall set this field to its station class mark. See 6.3.3.
14	MOB_TERM	_	Mobile terminated calls accepted indicator.
15 16 17			If the mobile station is configured to accept mobile terminated calls while operating with the current roaming status (see 6.6.5.3), the mobile station shall set this bit to '1'. Otherwise, the mobile station shall set this bit to '0'.
18	RETURN_CAUSE	_	Reason of the mobile station registration or access.
19 20 21 22	RETURN_CAUSE	_	The mobile station shall set this field to the RETURN_CAUSE value shown in Table 6.7.1.3.2.1-2 corresponding to the service redirection failure condition (see 6.6.1.1).

² A protocol revision of '00000101' indicates that the mobile station complies with all of the requirements (per use of "shall") specified in this document. A protocol revision of '00000100' indicates that the mobile station complies with all of the requirements (per use of "shall") specified in this document, except those pertaining to one or more of the following: PACA, Power Up Function, mobile-assisted hard handoff, and analog TIA/EIA-553-A compatibility.

Table 6.7.1.3.2.1-2. RETURN_CAUSE Codes

RETURN_CAUSE (binary)	Redirect Failure Condition	
0000	Normal access.	
0001	Service redirection failed as a result of system not found.	
0010	Service redirection failed as a result of protocol mismatch.	
0011	Service redirection failed as a result of registration rejection.	
0100	Service redirection failed as a result of wrong SID.	
0101	Service redirection failed as a result of wrong NID.	
All other RETURN_CAUSE values are reserved.		

3	ACTIVE_PILOT STRENGTH		Pilot strength.
4	SIRENGIII	_	
5			See 6.7.1.3.1.3.
6	FIRST_IS_ACTIVE		The active pilot is the first pilot on which an access probe was sent.
8			See 6.7.1.3.1.3.
9 10	FIRST_IS_PTA	-	The first pilot is the previous to the active pilot on which an access probe was sent.
11	· · · · · · · · · · · · · · · · · · ·		See 6.7.1.3.1.3.
12	NUM_ADD_PILOTS	-	Number of additional reported pilots.
13	•		If PILOT_REPORTs equals to '1', see 6.7.1.3.1.3. If
14			PILOT_REPORT _s equals to '0', the mobile station shall set this
15			field to '000'.
16	The mobile station shall	l inc	lude NUM_ADD_PILOTS occurrences of the following four-field
17	record (one for each add	ditio	nal pilot being reported). The mobile station shall report pilots
18	which are in the ACC 6.6.3.1.7.	JES:	S_HO_LIST and OTHER_REPORTED_LIST as described in
19			The state of the s
20	PILOT_PN_PHASE	-	Pilot measured phase.
21	•		See 6.7.1.3.1.3.
22	PILOT_STRENGTH	-	Pilot strength.
23			See 6.7.1.3.1.3.
24	ACCESS_HO_EN	_	Access handoff enable.
25			See 6.7.1.3.1.3.

ANSI/TIA/EIA-95-B

1	ACCESS_ATTEMPTED	-	Access attempted flag.
2			See 6.7.1.3.1.3.
3	RESERVED	-	Reserved bits.
4			The mobile station shall add reserved bits as needed in order
5			to make the length of the entire message equal to an integer
6			number of octets. The mobile station shall set these bits
7			to '0'.

- 6.7.1.3.2.2 Order Message
- When the mobile station sends an Order Message on the Access Channel, it shall use the
- 3 following variable-length message format:

Field	Length (bits)
MSG_TYPE ('00000010')	8
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
VALID_ACK	1
ACK_TYPE	3
MSID_TYPE	3
MSID_LEN	4
MSID	8 × MSID_LEN
AUTH_MODE	2
ORDER	6
ADD_RECORD_LEN	3
Order-specific fields (if used)	8 × ADD_RECORD_LEN
ACTIVE_PILOT_STRENGTH	6
FIRST_IS_ACTIVE	1
FIRST_IS_PTA	1
NUM_ADD_PILOTS	3

NUM_ADD_PILOTS occurrences of the following record:

PILOT_PN_PHASE	15
PILOT_STRENGTH	6
ACCESS_HO_EN	1
ACCESS_ATTEMPTED	1

RESERVED	0 - 7 (as need	ed)

MSG_TYPE - Message type.

The mobile station shall set this field to '00000010'.

ACK_SEQ - Acknowledgment sequence number.

See 6.7.1.3.1.1.

ANSI/TIA/EIA-95-B

1	MSG_SEQ	-	Message sequence number.
2			See 6.7.1.3.1.1.
3	ACK_REQ	_	Acknowledgment required indicator.
4			See 6.7.1.3.1.1.
5	VALID_ACK	_	Valid acknowledgment indicator.
6			See 6.7.1.3.1.1.
7	ACK_TYPE	-	Acknowledgment address type.
8			See 6.7.1.3.1.1.
9	MSID_TYPE	-	Mobile station identifier field type.
10	• •		See 6.7.1.3.1.1.
11	MSID_LEN	-	Mobile station identifier field length.
12			See 6.7.1.3.1.1.
13	MSID	_	Mobile station identifier.
14	•		See 6.7.1.3.1.1.
15	AUTH_MODE	-	Authentication Mode.
16			The mobile station shall set this field to '00'.
17	ORDER	_	Order code.
18 19		,	The mobile station shall set this field to the ORDER code (see 6.7.3) for this type of <i>Order Message</i> .
20	ADD_RECORD_LEN	_	Additional record length.
21 22			The mobile station shall set this field to the number of octets in the order-specific fields included in this message.
23	order-specific fields	_	Order-specific fields.
24 25			The mobile station shall include order-specific fields as specified in 6.7.3.
26 27	ACTIVE_PILOT- _STRENGTH	_	Pilot strength.
28			See 6.7.1.3.1.3.
29 30	FIRST_IS_ACTIVE	-	The active pilot is the first pilot on which an access probe was sent.
31			See 6.7.1.3.1.3.
32 33	FIRST_IS_PTA	-	The first pilot is the previous to the active pilot on which an access probe was sent.
34			See 6.7.1.3.1.3.
35	NUM_ADD_PILOTS	-	Number of additional reported pilots.
36 37 38	·		If PILOT_REPORT _S equals to '1', see $6.7.1.3.1.3$. If PILOT_REPORT _S equals to '0', the mobile station shall set this field to '000'.

The mobile station shall include NUM_ADD_PILOTS occurrences of the following four-field record (one for each additional pilot being reported). The mobile station shall report pilots 2 which are in the ACCESS_HO_LIST and OTHER_REPORTED_LIST as described in 6.6.3.1.7. PILOT_PN_PHASE Pilot measured phase. See 6.7.1.3.1.3. PILOT_STRENGTH Pilot strength. See 6.7.1.3.1.3. Access handoff enable. ACCESS_HO_EN 9 See 6.7.1.3.1.3. 10 ACCESS_ATTEMPTED Access attempted flag. 11 See 6.7.1.3.1.3. 12 Reserved bits. RESERVED 13 The mobile station shall add reserved bits as needed in order 14 to make the length of the entire message equal to an integer 15 number of octets. The mobile station shall set these bits 16 to '0'.

6.7.1.3.2.3 Data Burst Message

- When the mobile station sends a Data Burst Message on the Access Channel, it shall use
- the following variable-length message format:

Field	Length (bits)
MSG_TYPE ('00000011')	8
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
VALID_ACK	1
ACK_TYPE	3
MSID_TYPE	3
MSID_LEN ·	4
MSID	8 × MSID_LEN
AUTH_MODE	2
AUTHR	0 or 18
RANDC	0 or 8
COUNT	0 or 6
MSG_NUMBER	8
BURST_TYPE	6
NUM_MSGS	8
NUM_FIELDS	8

NUM_FIELDS occurrences of the following field:

CHARi	8	

ACTIVE_PILOT_STRENGTH	6
FIRST_IS_ACTIVE	1
FIRST_IS_PTA	1
NUM_ADD_PILOTS	3

NUM_ADD_PILOTS occurrences of the following record:

PILOT_PN_PHASE	15
PILOT_STRENGTH	6
ACCESS_HO_EN	1
ACCESS_ATTEMPTED	1

RESERVED	0 - 7 (as needed)

1	MSG_TYPE	-	Message type.
2			The mobile station shall set this field to '00000011'.
3	ACK_SEQ	_	Acknowledgment sequence number.
4			See 6.7.1.3.1.1.
5	MSG_SEQ	_	Message sequence number.
6	•		See 6.7.1.3.1.1.
7	ACK_REQ	-	Acknowledgment required indicator.
į8			See 6.7.1.3.1.1.
9	VALID_ACK	_	Valid acknowledgment indicator.
10	•		See 6.7.1.3.1.1.
11	ACK_TYPE	_	Acknowledgment address type.
12			See 6.7.1.3.1.1.
13	MSID_TYPE	-	Mobile station identifier field type.
14			See 6.7.1.3.1.1.
15	MSID_LEN	-	Mobile station identifier field length.
. 16	•		See 6.7.1.3.1.1.
17	MSID	-	Mobile station identifier.
18			See 6.7.1.3.1.1.
19	AUTH_MODE	-	Authentication mode.
20	•		See 6.7.1.3.1.2.
21	AUTHR	-	Authentication data.
22			See 6.7.1.3.1.2.
23	RANDC	-	Random challenge value.
24			See 6.7.1.3.1.2.
25	COUNT	-	Call history parameter.
26			See 6.7.1.3.1.2.
27	MSG_NUMBER	-	Message number within the data burst stream.
28			The mobile station shall set this field to the number of this
29			message within the data burst stream.
30	BURST_TYPE	-	Data burst type.
31 32			The mobile station shall set the value of this field for the type of this data burst as defined in TSB58-A. If the mobile station
33	•		sets this field equal to '111110', it shall set the first two
34 35			CHARi fields of this message equal to EXTENDED_BURST_TYPE_INTERNATIONAL as described in
36			the definition of CHARi below. If the mobile station sets this
37 39			field equal to '111111', it shall set the first two CHARi fields of this message equal to the EXTENDED BURST TYPE as
38 39			described in the definition of CHARi below.

ANSI/TIA/EIA-95-B

NUM_MSGS

Number of messages in the data burst stream.

The mobile station shall set this field to the number of messages within this data burst stream.

NUM_FIELDS

Number of characters in this message.

The mobile station shall set this field to the number of CHARi fields included in this message.

CHARi - Character.

 The mobile station shall include NUM_FIELDS occurrences of this field. The mobile station shall set these fields to the corresponding octet of the data burst stream.

If the BURST_TYPE field of this message is equal to '111110', the first two CHARi octets shall represent a 16 bit EXTENDED_BURST_TYPE_INTERNATIONAL field, which is encoded as shown below. The first ten bits of this field contain a binary mapping of the Mobile Ccountry Code (MCC). Encoding of the MCC shall be as specified in 6.3.1.3. The remaining six bits of the EXTENDED_BURST_TYPE_INTERNATIONAL field shall specify the COUNTRY_BURST_TYPE. The mobile station shall set the value of the COUNTRY_BURST_TYPE according to the type of this data burst as defined in standards governed by the country where this data burst type is to be used.

Field	Length (bits)		
Mobile Country Code	10		
COUNTRY_BURST_TYPE	6		
Remaining CHARi fields	8 × (NUM_FIELDS - 2)		

If the BURST_TYPE field of this message is equal to '111111', the first two CHARi octets shall represent a single, 16 bit, EXTENDED_BURST_TYPE field, as shown below. The mobile station shall set the value of the EXTENDED_BURST_TYPE according to the type of this data burst as defined in TSB58-A.

Field	Length (bits)
EXTENDED_BURST_TYPE (first two CHARi fields)	16
Remaining CHARi fields	8 × (NUM_FIELDS - 2)

1 2	ACTIVE_PILOT- _STRENGTH	_	Pilot strength.
3			See 6.7.1.3.1.3.
4 5	FIRST_IS_ACTIVE	-	The active pilot is the first pilot on which an access probe was sent.
6.			See 6.7.1.3.1.3.
7 8	FIRST_IS_PTA		The first pilot is the previous to the active pilot on which an access probe was sent.
9			See 6.7.1.3.1.3.
10	NUM_ADD_PILOTS	-	Number of additional reported pilots.
11			If PILOT_REPORTs equals to '1', see 6.7.1.3.1.3. If
12			PILOT_REPORT _s equals to '0', the mobile station shall set this field to '000'.
14 15 16 17	record (one for each add	litio	lude NUM_ADD_PILOTS occurrences of the following four-field nal pilot being reported). The mobile station shall report pilots S_HO_LIST and OTHER_REPORTED_LIST as described in
	0.0.3.1.7.		
18	PILOT_PN_PHASE	_	Pilot measured phase.
		_	Pilot measured phase. See 6.7.1.3.1.3.
18		-	
18 19	PILOT_PN_PHASE		See 6.7.1.3.1.3.
18 19 20	PILOT_PN_PHASE	- -	See 6.7.1.3.1.3. Pilot strength.
18 19 20 21	PILOT_PN_PHASE PILOT_STRENGTH	- -	See 6.7.1.3.1.3. Pilot strength. See 6.7.1.3.1.3.
18 19 20 21 22	PILOT_PN_PHASE PILOT_STRENGTH	- · · · · · · · · · · · · · · · · · · ·	See 6.7.1.3.1.3. Pilot strength. See 6.7.1.3.1.3. Access handoff enable.
18 19 20 21 22 23	PILOT_PN_PHASE PILOT_STRENGTH ACCESS_HO_EN		See 6.7.1.3.1.3. Pilot strength. See 6.7.1.3.1.3. Access handoff enable. See 6.7.1.3.1.3.
18 19 20 21 22 23 24	PILOT_PN_PHASE PILOT_STRENGTH ACCESS_HO_EN	- · · · · · · · · · · · · · · · · · · ·	See 6.7.1.3.1.3. Pilot strength. See 6.7.1.3.1.3. Access handoff enable. See 6.7.1.3.1.3. Access attempted flag.
18 19 20 21 22 23 24 25	PILOT_PN_PHASE PILOT_STRENGTH ACCESS_HO_EN ACCESS_ATTEMPTED		See 6.7.1.3.1.3. Pilot strength. See 6.7.1.3.1.3. Access handoff enable. See 6.7.1.3.1.3. Access attempted flag. See 6.7.1.3.1.3.

- 6.7.1.3.2.4 Origination Message
- When the mobile station sends an Origination Message, it shall use the following variable-
- 3 length message format:

Field	Length (bits)
MSG_TYPE ('00000100')	8 .
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
VALID_ACK	1
ACK_TYPE	3
MSID_TYPĖ	3
MSID_LEN	4
MSID	8 × MSID_LEN
AUTH_MODE	2
AUTHR	0 or 18
RANDC	0 or 8
COUNT	0 or 6
MOB_TERM	1
SLOT_CYCLE_INDEX	3
MOB_P_REV	8
SCM	8
REQUEST_MODE	3
SPECIAL_SERVICE	1
SERVICE_OPTION	0 or 16
PM	1
DIGIT_MODE	1
NUMBER_TYPE	0 or 3
NUMBER_PLAN	0 or 4

(continues on next page)

Field	Length (bits)				
MORE_FIELDS	1				
NUM_FIELDS	8				
NUM_FIELDS occurrences of the following field:					
CHARi	4 or 8				
NAR_AN_CAP	1				
PACA_REORIG	1				
RETURN_CAUSE	4				
MORE_RECORDS	1				
ENCRYPTION_SUPPORTED	0 or 4				
PACA_SUPPORTED	1				
NUM_ALT_SO	3				
NUM_ALT_SO occurrences of the	following field:				
ALT_SO	16				
ACTIVE_PILOT_STRENGTH	6				
FIRST_IS_ACTIVE	1				
FIRST_IS_PTA	1				
NUM_ADD_PILOTS	3				
NUM_ADD_PILOTS occurrences of the following record:					
PILOT_PN_PHASE	15				
PILOT_STRENGTH	6				
ACCESS_HO_EN	1				
ACCESS_ATTEMPTED	1				
RESERVED	0 - 7 (as needed)				
	•				
Message type.					
The mobile station shall set this field to '00000100'.					
Acknowledgment sequence numb	oer.				
See 6.7.1.3.1.1.					

Message sequence number.

MSG_TYPE

ACK_SEQ

MSG_SEQ

1			See 6.7.1.3.1.1.
2	ACK_REQ	-	Acknowledgment required indicator.
3			See 6.7.1.3.1.1.
4	VALID_ACK	-	Valid acknowledgment indicator.
5			See 6.7.1.3.1.1.
6	ACK_TYPE	.	Acknowledgment address type.
7			See 6.7.1.3.1.1.
. 8	MSID_TYPE	-	Mobile station identifier field type.
9			See 6.7.1.3.1.1.
10	MSID_LEN	-	Mobile station identifier field length.
11	•		See 6.7.1.3.1.1.
12	MSID	_	Mobile station identifier.
13			See 6.7.1.3.1.1.
14	AUTH_MODE	_	Authentication mode.
15			See 6.7.1.3.1.2.
16	AUTHR	-	Authentication data.
17			See 6.7.1.3.1.2.
18	RANDC	-	Random challenge value.
19			See 6.7.1.3.1.2.
20	COUNT	_	Call history parameter.
21			See 6.7.1.3.1.2.
22	MOB_TERM	-	Mobile terminated calls accepted indicator.
23			If the mobile station is configured to accept mobile terminated
24 25			calls while operating with the current roaming status (see 6.6.5.3), the mobile station shall set this bit to '1'; otherwise,
26 ,			the mobile station shall set this bit to '0'.
27	SLOT_CYCLE_INDEX	_	Slot cycle index.
28	•		If the mobile station is configured for slotted mode operation,
29 30			the mobile station shall set this field to the preferred slot cycle index, $SLOT_CYCLE_INDEX_p$ (see 6.6.2.1.1); otherwise, the
31			mobile station shall set this field to '000'.

1	MOB_P_REV	-	Protocol revision of the mobile station.
2 3			The mobile station shall set this field to '00000100' or '00000101'. 3
4	SCM	-	Station class mark.
5 6			The mobile station shall set this field to the station class mark of the mobile station. See $6.3.3$.
7 8 9	REQUEST_MODE		Requested mode code. The mobile station shall set this field to the value shown in Table 6.7.1.3.2.4-1 corresponding to its current configuration.
10			•.

Table 6.7.1.3.2.4-1. REQUEST_MODE Codes

Value (binary)	Requested Mode
000	Reserved
001	CDMA only
010	Wide analog only
011	Either wide analog or CDMA only
100	Narrow analog only
101	Either narrow analog or CDMA only
110	Either narrow analog or wide analog only
111	Narrow analog or wide analog or CDMA

	,		·
13	SPECIAL_SERVICE	_	Special service option indicator.
14 15 16			To request a special service option, the mobile station shall set this field to '1'. To request the default service option (Service Option 1), the mobile station shall set this field to '0'.
17	SERVICE_OPTION	_	Requested service option for this origination.
18			If the SPECIAL_SERVICE field is set to '1', the mobile station
19			shall set this field to the value specified in TSB58-A.
20			corresponding to the requested service option. If the
21			SPECIAL_SERVICE field is set to '0', the mobile station shall
22	•		omit this field.
23	PM	_	Privacy mode indicator.

³ A protocol revision of '00000101' indicates that the mobile station complies with all of the requirements (per use of "shall") specified in this document. A protocol revision of '00000100' indicates that the mobile station complies with all of the requirements (per use of "shall") specified in this document, except those pertaining to one or more of the following: PACA, Power Up Function, mobile-assisted hard handoff, and analog TIA/EIA-553-A compatibility.

DIGIT_MODE

NUMBER_TYPE

2

11 12 13

10

15 16

17

14

to '1'; otherwise, the mobile station shall set this field to '0'. Digit mode indicator.

This field indicates whether the dialed digits are 4-bit DTMF codes or 8-bit ASCII codes using a specified numbering plan.

To request voice privacy, the mobile station shall set this field

To originate the call using the binary representation of DTMF digits, the mobile station shall set this field to '0'. To originate the call using ASCII characters, the mobile station shall set this field to '1'.

Type of number.

If the DIGIT_MODE field is set to '1', the mobile station shall set this field to the NUMBER_TYPE value shown in Table 6.7.1.3.2.4-2 corresponding to the type of the number as defined in ANSI T1.607-1990 §4.5.9. If the DIGIT_MODE field is set to '0', the mobile station shall omit this field.

Table 6.7.1.3.2.4-2. Number Types

Description	NUMBER_TYPE (binary)
Unknown	000
International number	001
National number	010
Network-specific number	011
Subscriber number	100
Reserved	101
Abbreviated number	110
Reserved for extension	111

18

19

20

21

22

23

25

NUMBER_PLAN

Numbering plan.

If the DIGIT_MODE field is set to '1', the mobile station shall set this field to the NUMBER_PLAN value shown in Table 6.7.1.3.2.4-3 corresponding to the requested numbering plan as defined in ANSI T1.607-1990, Section 4.5.9. If the DIGIT_MODE field is set to '0', the mobile station shall omit this field.

Table 6.7.1.3.2.4-3. Numbering Plan Identification

Description	NUMBER_PLAN (binary)		
Unknown	0000		
ISDN/Telephony numbering plan (CCITT E.164 and CCITT E.163)	0001		
Data numbering plan (CCITT X.121)	0011		
Telex numbering plan (CCITT F.69)	0100		
Private numbering plan	1001		
Reserved for extension	1111		
All other NUMBER_PLAN codes are reserved.			

2

10

11

12

13

14

15

16

17

18

19

MORE_FIELDS

More dialed digits indicator.

This field indicates whether additional dialed digits will be sent in a later *Origination Continuation Message*.

If all dialed digits will fit into this message, the mobile station shall set this field to '0'. If not, the mobile station shall set this field to '1'.

NUM_FIELDS

Number of dialed digits in this message.

The mobile station shall set this field to the number of dialed digits included in this message.

CHARi

A dialed digit or character.

The mobile station shall include NUM_FIELDS occurrences of this field. If the DIGIT_MODE field is set to '0', the mobile station shall set each occurrence of this field to the code value shown in Table 6.7.1.3.2.4-4 corresponding to the dialed digit. If the DIGIT_MODE field is set to '1', the mobile station shall set each occurrence of this field to the ASCII representation corresponding to the dialed digit, as specified in ANSI X3.4, with the most significant bit set to '0'.

Table 6.7.1.3.2.4-4. Representation of DTMF Digits

Digit	Code (binary)	Digit	Code (binary)		
1	0001	7	0111		
2	0010	8	1000		
3	3 0011		1001		
4 0100		0	1010		
5 0101		*	1011		
6 0110		#	1100		
	All other codes are reserved.				

2

10

11

12 13

14

15

16

17

18

20

21

22

23

NAR_AN_CAP

Narrow analog capability.

If the mobile station is capable of narrow analog operation, the mobile station shall set this bit to '1'; otherwise, the mobile station shall set this bit to '0'.

PACA_REORIG

PACA re-origination.

If this is a user directed origination, the mobile station shall set this field to '0'. If this is a PACA re-origination, the mobile station shall set this field to '1'.

RETURN_CAUSE

Reason for the mobile station registration or access.

The mobile station shall set this field to the RETURN_CAUSE value shown in Table 6.7.1.3.2.1-2 corresponding to the service redirection failure condition (see 6.6.1.1).

MORE_RECORDS

More records indicator.

This field indicates whether information records will be sent in a later *Origination Continuation Message*. If information records will be sent, the mobile station shall set this field to '1'; otherwise, the mobile station shall set this field to '0'.

ENCYPTION_-

Encryption algorithms supported by the mobile station.

SUPPORTED

If AUTH_MODE is equal to '00', the mobile station shall omit this field; otherwise, the mobile station shall set this field as specified in Table 6.7.1.3.2.4-5.

Table 6.7.1.3.2.4-5. Encryption Algorithms Supported

Description	ENCRYPTION_SUPPORTED (binary)		
Basic encryption supported	0000		
Basic and Enhanced encryption supported	0001		
Reserved	0010 - 1111		

PACA_SUPPORTED CDMA PACA Support Indication. This field identifies the mobile station's support for PACA in CDMA mode. If MOB_P_REV_p of the current band class is greater than four, the mobile station shall set this field to '1'; otherwise, the mobile station shall set this field as follows. If PACA in CDMA mode is supported, the mobile station shall set this field to '1'; otherwise, the mobile station shall set this field to '0'. 10 NUM_ALT_SO Number of alternative service options. 11 The mobile station shall set this field to the number of alternative service options it supports other than the one 13 specified in the SERVICE_OPTION field. The mobile station shall set this field to a value less than or equal to 15 $MAX_NUM_ALT_SO_s$. ALT SO Alternative service option. 17 The mobile station shall include NUM_ALT_SO occurrences of 18 this field. The mobile station shall set this field to the value 19 specified in TSB58-A, corresponding to the alternative service 20 option supported by the mobile station. 21 ACTIVE PILOT-22 Pilot strength. _STRENGTH 23 See 6.7.1.3.1.3. 24 FIRST_IS_ACTIVE The active pilot is the first pilot on which an access probe was 25 sent. 26 See 6.7.1.3.1.3. 27 The first pilot is the previous t to the active pilot on which an FIRST_IS_PTA access probe was sent. 29 See 6.7.1.3.1.3. 30 Number of additional reported pilots. 31 NUM_ADD_PILOTS See 6.7.1.3.1.3. 32

The mobile station shall include NUM_ADD_PILOTS occurrences of the following four-field record (one for each additional pilot being reported). The mobile station shall include pilots which are in the ACCESS_HO_LIST and OTHER_REPORTED_LIST as described in

33

ANSI/TIA/EIA-95-B

1	6.6.3.1.7. When calcul	atin	g the number of dialed digits to be included, the mobile station
2			ber of additional reported pilots (NUM_ADD_PILOTS) is equal to
3	five.		
4	PILOT_PN_PHASE	-	Pilot measured phase.
5			See 6.7.1.3.1.3.
6	PILOT_STRENGTH	-	Pilot strength.
7	•		See 6.7.1.3.1.3.
8	ACCESS_HO_EN	-	Access handoff enable.
9	·		See 6.7.1.3.1.3.
10	ACCESS_ATTEMPTED	. –	Access attempted flag.
11			See 6.7.1.4.1.3.
12	RESERVED	-	Reserved bits.
13			The mobile station shall add reserved bits as needed in order
14			to make the length of the entire message equal to an integer
15 16			number of octets. The mobile station shall set these bits to '0'.
17			

- 6.7.1.3.2.5 Page Response Message
- When the mobile station sends a Page Response Message, it shall use the following
- variable-length message format:

Field	Length (bits)
MSG_TYPE ('00000101')	8
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
VALID_ACK	1
ACK_TYPE	3
MSID_TYPE	3
MSID_LEN	4
MSID	8 × MSID_LEN
AUTH_MODE	2
AUTHR	0 or 18
RANDC	0 or 8
COUNT	0 or 6
MOB_TERM	1
SLOT_CYCLE_INDEX	3
MOB_P_REV	8
SCM	8
REQUEST_MODE	3
SERVICE_OPTION	16
PM	1
NAR_AN_CAP	1
ENCRYPTION_SUPPORTED	0 or 4
NUM_ALT_SO	3

NUM_ALT_SO occurrences of the following field:

ALT_SO	•	16

ACTIVE_PILOT_STRENGTH	6

(continues on next page)

Field	Length (bits)		
FIRST_IS_ACTIVE	1		
FIRST_IS_PTA	1		
NUM_ADD_PILOTS	3		

$NUM_ADD_PILOTS \ occurrences \ of \ the \ following \ record:$

PILOT_PN_PHASE	15 .
PILOT_STRENGTH	6
ACCESS_HO_EN	1
ACCESS_ATTEMPTED	1

RESERVED	0 - 7 (as needed)

MSG_TYPE Message type. The mobile station shall set this field to '00000101'. Acknowledgment sequence number. ACK_SEQ See 6.7.1.3.1.1. Message sequence number. MSG_SEQ. See 6.7.1.3.1.1. Acknowledgment required indicator. ACK_REQ See 6.7.1.3.1.1. Valid acknowledgment indicator. VALID_ACK See 6.7.1.3.1.1. Acknowledgment address type. ACK_TYPE See 6.7.1.3.1.1. Mobile station identifier field type. MSID_TYPE See 6.7.1.3.1.1. Mobile station identifier field length. MSID_LEN See 6.7.1.3.1.1. Mobile station identifier. **MSID** See 6.7.1.3.1.1. 20 Authentication mode. AUTH_MODE See 6.7.1.3.1.2. Authentication data. **AUTHR** See 6.7.1.3.1.2.

1	RANDC	_	Random challenge value.
2			See 6.7.1.3.1.2.
3	COUNT	-	Call history parameter.
4			See 6.7.1.3.1.2.
5	MOB_TERM	-	Mobile terminated calls accepted indicator.
6 7 8 9			If the mobile station is configured to accept mobile terminated calls while operating with the current roaming status (see 6.6.5.3), the mobile station shall set this bit to '1'. Otherwise, the mobile station shall set this bit to '0'.
10	SLOT_CYCLE_INDEX	-	Slot cycle index.
11 12 13 14			If the mobile station is configured for slotted mode operation, the mobile station shall set this field to the preferred slot cycle index, SLOT_CYCLE_INDEX $_p$ (see 6.6.2.1.1). Otherwise, the mobile station shall set this field to '000'.
15	MOB_P_REV	-	Protocol revision of the mobile station.
16 17			The mobile station shall set this field to '00000100' or '00000101'. 4
18	SCM	-	Station class mark.
19 . 20			The mobile station shall set this field to the station class mark of the mobile station. See 6.3.3.
21 22 23	REQUEST_MODE	-	Requested mode code. The mobile station shall set this field to the value shown in Table 6.7.1.3.2.4-1 corresponding to its current configuration.
24	SERVICE_OPTION	_	Service option.
25 26 27 28 29 30 31			If the mobile station accepts the service option specified in the <i>General Page Message</i> , it shall set this field to the service option number specified in that message if that message contained an explicit service option field: otherwise, the mobile station shall set this field to the default service option number or to '00000000000000001' if the <i>General Page Message</i> did not contain a service option field.
32 33 34 35 36			If the mobile station does not accept the service option specified in the <i>General Page Message</i> and has an alternative service option to request, it shall set this field to the service option code specified in TSB58-A corresponding to the alternative service option.
37 38			If the mobile station does not accept the service option specified in the <i>General Page Message</i> and does not have an

⁴ A protocol revision of '00000101' indicates that the mobile station complies with all of the requirements (per use of "shall") specified in this document. A protocol revision of '00000100' indicates that the mobile station complies with all of the requirements (per use of "shall") specified in this document, except those pertaining to one or more of the following: PACA, Power Up Function, mobile-assisted hard handoff, and analog TIA/EIA-553-A compatibility.

alternative service option to request, the mobile station shall set this field to '000000000000000' to reject the service 2 option specified by the General Page Message. PM Privacy mode indicator. To request voice privacy, the mobile station shall set this field to '1'; otherwise, the mobile station shall set this field to '0'. NAR_AN_CAP Narrow analog capability. If the mobile station is capable of narrow analog operation. the mobile station shall set this bit to '1'; otherwise, the mobile station shall set this bit to '0'. 10 ENCYPTION_SUP-Encryption algorithms supported by the mobile station. 11 **PORTED** If AUTH_MODE is equal to '00', the mobile station shall omit 12 this field; otherwise, the mobile station shall set this field as 13 specified in table 6.7.1.3.2.4-5. 14 NUM_ALT_SO Number of alternative service options. 15 The mobile station shall set this field to the number of alternative service options it supports other than the one 17 specified in the SERVICE_OPTION field. The mobile station 18 shall set this field to a value less than or equal to 19 MAX_NUM_ALT_SO_s. 20 ALT_SO Alternative service option. 21 The mobile station shall include NUM_ALT_SO occurrences of 22 this field. The mobile station shall set this field to the value 23 specified in TSB58-A, corresponding to the alternative service 24 option supported by the mobile station. 25 ACTIVE_PILOT-26 _STRENGTH Pilot strength. 27 See 6.7.1.3.1.3. 28 FIRST_IS_ACTIVE The active pilot is the first pilot on which an access probe was 29 sent. 30 See 6.7.1.3.1.3. 31 32 FIRST_IS_PTA The first pilot is the previous to the active pilot on which an access probe was sent. 33 See 6.7.1.3.1.3. 34 Number of additional reported pilots. 35 NUM_ADD_PILOTS See 6.7.1.3.1.3. 36 The mobile station shall include NUM_ADD_PILOTS occurrences of the following four-field 37 record (one for each additional pilot being reported). The mobile station shall report pilots 38 which are in the ACCESS_HO_LIST and OTHER_REPORTED_LIST as described in 39 6.6.3.1.7. 40 PILOT_PN_PHASE Pilot measured phase. 41 See 6.7.1.3.1.3. 42

1	PILOT_STRENGTH	-	Pilot strength.
2			See 6.7.1.3.1.3.
3	ACCESS_HO_EN	-	Access handoff enable.
4			See 6.7.1.3.1.3.
5	ACCESS_ATTEMPTED	-	Access attempted flag.
6			See 6.7.1.4.1.3.
7	RESERVED	-	Reserved bits.
8			The mobile station shall add reserved bits as needed, in order
9			to make the length of the entire message equal to an integer
10			number of octets. The mobile station shall set these bits
11			to '0'.

- 6.7.1.3.2.6 Authentication Challenge Response Message
- 2 When the mobile station sends an Authentication Challenge Response Message on the
- Access Channel, it shall use the following variable length message format:

Field	Length (bits)
MSG_TYPE ('00000110')	8
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
VALID_ACK	1
ACK_TYPE	3
MSID_TYPE	3
MSID_LEN	4
MSID	8 × MSID_LEN
AUTH_MODE	2
AUTHU	18
ACTIVE_PILOT_STRENGTH	6
FIRST_IS_ACTIVE	1
FIRST_IS_PTA	1
NUM_ADD_PILOTS	3

NUM_ADD_PILOTS occurrences of the following record:

PILOT_PN_PHASE	15
PILOT_STRENGTH	6
ACCESS_HO_EN	1
ACCESS_ATTEMPTED	1

RESERVED	0 - 7 (as needed)

MSG_TYPE - Message type.

The mobile station shall set this field to '00000110'.

ACK_SEQ - Acknowledgment sequence number.

See 6.7.1.3.1.1.

MSG_SEQ - Message sequence number.

See 6.7.1.3.1.1.

1	ACK_REQ	-	Acknowledgment required indicator.
2			See 6.7.1.3.1.1.
3	VALID_ACK	_	Valid acknowledgment indicator.
4			See 6.7.1.3.1.1.
5	ACK_TYPE	-	Acknowledgment address type.
6			See 6.7.1.3.1.1.
7	MSID_TYPE		Mobile station identifier field type.
8			See 6.7.1.3.1.1.
. 9	MSID_LEN	_	Mobile station identifier field length.
10			See 6.7.1.3.1.1.
11	MSID	_	Mobile station identifier.
12			See 6.7.1.3.1.1.
13	AUTH_MODE	_	Authentication Mode.
14	. ————————————————————————————————————		The mobile station shall set this field to '00'.
15	AUTHU	_	Authentication challenge response.
16 17			The mobile station shall set this field as specified in 6.3.12.1.5.
18 19	ACTIVE_PILOT- _STRENGTH	_	Pilot strength.
20 .			See 6.7.1.3.1.3.
21 22	FIRST_IS_ACTIVE	-	The active pilot is the first pilot on which an access probe was sent.
23			See 6.7.1.3.1.3.
24 25	FIRST_IS_PTA	-	The first pilot is the previous to the active pilot on which an access probe was sent.
26	•		See 6.7.1.3.1.3.
27	NUM_ADD_PILOTS	-	Number of additional reported pilots.
28 29 30			If PILOT_REPORT _s equals to '1', see $6.7.1.3.1.3$. If PILOT_REPORT _s equals to '0', the mobile station shall set this field to '000'.
31 32 33 34	record (one for each ad	lditi	clude NUM_ADD_PILOTS occurrences of the following four-field onal pilot being reported). The mobile station shall report pilots SS_HO_LIST and OTHER_REPORTED_LIST as described in
35	PILOT_PN_PHASE	-	Pilot measured phase.
36			See 6.7.1.3.1.3.
37	PILOT_STRENGTH	-	Pilot strength.
38			See 6.7.1.3.1.3.

ANSI/TIA/EIA-95-B

1	ACCESS_HO_EN	-	Access handoff enable.
2			See 6.7.1.3.1.3.
3	ACCESS_ATTEMPTED	-	Access attempted flag.
4			See 6.7.1.3.1.3.
5	RESERVED	-	Reserved bits.
6			The mobile station shall add reserved bits as needed in order
7			to make the length of the entire message equal to an integer
8			number of octets. The mobile station shall set these bits
9			to '0'.

6-464

- 6.7.1.3.2.7 Status Response Message
- When the mobile station sends a Status Response Message, it shall use the following
- yariable-length message format:

Field	Length (bits)	
MSG_TYPE ('00000111')	8	
ACK_SEQ	3	
MSG_SEQ	3	
ACK_REQ	1 -	
VALID_ACK	1	
ACK_TYPE	3	
MSID_TYPE	3	
MSID_LEN	4	
MSID	8 × MSID_LEN	
AUTH_MODE	2	
QUAL_INFO_TYPE	8	
QUAL_INFO_LEN	3	
Type-specific fields	8 × QUAL_INFO_LEN	

One or more occurrences of the following record:

RECORD_TYPE	8
RECORD_LEN	8
Type-specific fields	8 × RECORD_LEN

RESERVED	3

MSG_TYPE Message type. The mobile station shall set this field to '00000111'. ACK_SEQ Acknowledgment sequence number. See 6.7.1.3.1.1. MSG_SEQ Message sequence number. See 6.7.1.3.1.1. ACK_REQ Acknowledgment required indicator. 11 See 6.7.1.3.1.1. VALID_ACK Valid acknowledgment indicator. See 6.7.1.3.1.1.

1	ACK_TYPE	-	Acknowledgment address type.
2			See 6.7.1.3.1.1.
3	MSID_TYPE	_	Mobile station identifier field type.
4			See 6.7.1.3.1.1.
5	MSID_LEN	-	Mobile station identifier field length.
6			See 6.7.1.3.1.1.
7	MSID	-	Mobile station identifier.
,. B			See 6.7.1.3.1.1.
9	AUTH_MODE	_	Authentication Mode.
10			The mobile station shall set this field to '00'.
11	QUAL_INFO_TYPE	-	Qualification information type.
12 13			The mobile station shall set this field to the QUAL_INFO_TYPE field in the corresponding <i>Status Request Message</i> .
14	QUAL_INFO_LEN	-	Qualification information length.
15 16			The mobile station shall set this field to the QUAL_INFO_LEN field in the corresponding <i>Status Request Message</i> .
17	Type-specific fields	-	Type-specific fields.
18 19			The mobile station shall set these fields to the qualification information in the corresponding <i>Status Request Message</i> .
The mobile station shall include all the records requested in the corresponding <i>Status</i> Request Message. The mobile station shall include one occurrence of the following fields for each information record to be included:			
23	RECORD_TYPE	_	Information record type.
24 25 26			The mobile station shall set this field to the record type value shown in Table 7.7.2.3.2.15-2 corresponding to the type of this information record.
27	RECORD_LEN	-	Information record length.
28 29			The mobile station shall set this field to the number of octets included in the type-specific fields of this information record.
30	Type-specific fields	-	Type-specific fields.
31 32 33 34			The mobile station shall set these fields to the information as specified in 6.7.4 for the specific type of records. The mobile station shall only specify the information corresponding to the included qualification information.
35	RESERVED	-	Reserved bits.
36			The mobile station shall set this field to '000'.

- 6.7.1.3.2.8 TMSI Assignment Completion Message
- When the mobile station sends a TMSI Assignment Completion Message on the Access
- 3 Channel, it shall use the following variable-length message format:

Field	Length (bits)
MSG_TYPE ('00001000')	8 .
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
VALID_ACK	1
ACK_TYPE	3
MSID_TYPE	3
MSID_LEN	4
MSID	8 × MSID_LEN
AUTH_MODE	2
AUTHR	0 or 18
RANDC	0 or 8
COUNT	0 or 6
ACTIVE_PILOT_STRENGTH	6 .
FIRST_IS_ACTIVE	1
FIRST_IS_PTA	1
NUM_ADD_PILOTS	3

NUM_ADD_PILOTS occurrences of the following record:

PILOT_PN_PHASE	15
PILOT_STRENGTH	6
ACCESS_HO_EN	1
ACCESS_ATTEMPTED	1

RESERVED	0 - 7 (as needed)

MSG_TYPE - Message type.

The mobile station shall set this field to '00001000'.

ACK_SEQ - Acknowledgment sequence number.

See 6.7.1.3.1.1.

36

37

1	MSG_SEQ	-	Message sequence number.
2			See 6.7.1.3.1.1.
3	ACK_REQ	_	Acknowledgment required indicator.
4			See 6.7.1.3.1.1.
5	VALID_ACK	-	Valid acknowledgment indicator.
6			See 6.7.1.3.1.1.
7	ACK_TYPE	-	Acknowledgment address type.
8			See 6.7.1.3.1.1.
9	MSID_TYPE	_	Mobile station identifier field type.
10	•		See 6.7.1.3.1.1.
11	MSID_LEN	-	Mobile station identifier field length.
12			See 6.7.1.3.1.1.
13	MSID	-	Mobile station identifier.
14			See 6.7.1.3.1.1.
15	AUTH_MODE	-	Authentication mode.
16			See 6.7.1.3.1.2.
17	AUTHR	-	Authentication data.
18			See 6.7.1.3.1.2.
, 19	RANDC	-	Random challenge value.
20			See 6.7.1.3.1.2.
21	COUNT	-	Call history parameter.
22			See 6.7.1.3.1.2.
23	ACTIVE_PILOT-		
24	_STRENGTH	-	Pilot strength.
25			See 6.7.1.3.1.3.
26 27	FIRST_IS_ACTIVE	<u>-</u>	The active pilot is the first pilot on which an access probe was sent.
28			See 6.7.1.3.1.3.
29 30	FIRST_IS_PTA	-	The first pilot is the previous to the active pilot on which an access probe was sent.
31	·		See 6.7.1.3.1.3.
32	NUM_ADD_PILOTS	-	Number of additional reported pilots.
33 34 35			If PILOT_REPORT _S equals to '1', see $6.7.1.3.1.3$. If PILOT_REPORT _S equals to '0', the mobile station shall set this field to '000'.
~			

The mobile station shall include NUM_ADD_PILOTS occurrences of the following four-field record (one for each additional pilot being reported). The mobile station shall report pilots

1	which are in the ACC	CES	S_HO_LIST and OTHER_REPORTED_LIST as described in
2	6.6.3.1.7.		
3	PILOT_PN_PHASE	-	Pilot measured phase.
4			See 6.7.1.3.1.3.
5	PILOT_STRENGTH	_	Pilot strength.
6			See 6.7.1.3.1.3.
7	ACCESS_HO_EN		Access handoff enable.
8			See 6.7.1.3.1.3.
9	ACCESS_ATTEMPTED	-	Access attempted flag.
10			See 6.7.1.3.1.3.
11	RESERVED	-	Reserved bits.
12 13 14 15		•	The mobile station shall add reserved bits as needed in order to make the length of the entire message equal to an integer number of octets. The mobile station shall set these bits to '0'.

- 6.7.1.3.2.9 PACA Cancel Message
- When the mobile station sends a PACA Cancel Message, it shall use the following variable
- length message format:

Field	Length (bits)
MSG_TYPE ('00001001')	8
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
VALID_ACK	1
ACK_TYPE	3
MSID_TYPE .	3
MSID_LEN	4
MSID	8 × MSID_LEN
AUTH_MODE	2
AUTHR	0 or 18
RANDC	0 or 8
COUNT	0 or 6
ACTIVE_PILOT_STRENGTH	6
FIRST_IS_ACTIVE	1
FIRST_IS_PTA	1
NUM_ADD_PILOTS	3

NUM_ADD_PILOTS occurrences of the following record:

PILOT_PN_PHASE	15
PILOT_STRENGTH	6
ACCESS_HO_EN	1
ACCESS_ATTEMPTED	1

RESERVED	0 - 7 (as needed)

MSG_TYPE Message type. The mobile station shall set this field to '00001001'.

ACK_SEQ Acknowledgment sequence number.

See 6.7.1.3.1.1.

1	MSG_SEQ	-	Message sequence number.
2			See 6.7.1.3.1.1.
3	ACK_REQ	_	Acknowledgment required indicator.
4			See 6.7.1.3.1.1.
5	VALID_ACK	-	Valid acknowledgment indicator.
6			See 6.7.1.3.1.1.
7	ACK_TYPE	-	Acknowledgment address type.
8			See 6.7.1.3.1.1.
9	MSID_TYPE	-	Mobile station identifier field type.
10			See 6.7.1.3.1.1.
11	MSID_LEN	-	Mobile station identifier field length.
12			See 6.7.1.3.1.1.
13	MSID		Mobile station identifier.
14			See 6.7.1.3.1.1.
15	AUTH_MODE	_	Authentication mode.
16			See 6.7.1.3.1.2.
17	AUTHR	_	Authentication data.
18			See 6.7.1.3.1.2.
19	RANDC	_	Random challenge value.
20			See 6.7.1.3.1.2.
21	COUNT		Call history parameter.
22			See 6.7.1.3.1.2.
23 24	ACTIVE_PILOT- _STRENGTH	_	Pilot strength.
25	•		See 6.7.1.3.1.3.
26 27	FIRST_IS_ACTIVE	-	The active pilot is the first pilot on which an access probe was sent.
28	•		See 6.7.1.3.1.3.
29 30	FIRST_IS_PTA	-	The first pilot is the previous to the active pilot on which an access probe was sent.
31			See 6.7.1.3.1.3.
32	NUM_ADD_PILOTS	-	Number of additional reported pilots.
33 34 35			If PILOT_REPORT _S equals to '1', see $6.7.1.3.1.3$. If PILOT_REPORT _S equals to '0', the mobile station shall set this field to '000'.

The mobile station shall include NUM_ADD_PILOTS occurrences of the following four-field record (one for each additional pilot being reported). The mobile station shall report pilots

36

ANSI/TIA/EIA-95-B

1	which are in the ACC	CES	S_HO_LIST and OTHER_REPORTED_LIST as described in
2	6.6.3.1.7.		
3	PILOT_PN_PHASE	_	Pilot measured phase.
4			See 6.7.1.3.1.3.
5	PILOT_STRENGTH	· <u> </u>	Pilot strength.
6			See 6.7.1.3.1.3.
7	ACCESS_HO_EN	-	Access handoff enable.
8.			See 6.7.1.3.1.3.
9	ACCESS_ATTEMPTED	_	Access attempted flag.
10			See 6.7.1.3.1.3.
11	RESERVED	-	Reserved bits.
12			The mobile station shall add reserved bits as needed in order
13			to make the length of the entire message equal to an integer
14			number of octets. The mobile station shall set these bits
15			to '0'.

- 6.7.1.3.2.10 Extended Status Response Message
- When the mobile station sends an Extended Status Response Message, it shall use the
- following variable-length message format:

Field	Length (bits)
MSG_TYPE ('00001010')	8
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
VALID_ACK	1
ACK_TYPE	3
MSID_TYPE	3
MSID_LEN	4
MSID	8 × MSID_LEN
AUTH_MODE	2
QUAL_INFO_TYPE	8
QUAL_INFO_LEN	3
Type-specific fields	8 × QUAL_INFO_LEN
NUM_INFO_RECORDS	4

NUM_INFO_RECORDS occurrences of the following record:

RECORD_TYPE	8
RECORD_LEN	8
Type-specific fields	8 × RECORD_LEN

ACTIVE_PILOT_STRENGTH	6
FIRST_IS_ACTIVE	1
FIRST_IS_PTA	1
NUM_ADD_PILOTS	3

NUM_ADD_PILOTS occurrences of the following record:

PILOT_PN_PHASE	15
PILOT_STRENGTH	6
ACCESS_HO_EN	1
ACCESS_ATTEMPTED	1

RESERVED	0 - 7 (as needed)
<u> </u>	

1	MSG_TYPE	-	Message type.
2			The mobile station shall set this field to '00001010'.
3	ACK_SEQ	-	Acknowledgment sequence number.
4			See 6.7.1.3.1.1.
5	MSG_SEQ	-	Message sequence number.
6			See 6.7.1.3.1.1.
7	ACK_REQ	-	Acknowledgment required indicator.
8	•		See 6.7.1.3.1.1.
9	VALID_ACK	-	Valid acknowledgment indicator.
10			See 6.7.1.3.1.1.
11	ACK_TYPE	-	Acknowledgment address type.
12			See 6.7.1.3.1.1.
13	MSID_TYPE	-	Mobile station identifier field type.
14			See 6.7.1.3.1.1.
15 .	MSID_LEN	_	Mobile station identifier field length.
16		•	See 6.7.1.3.1.1.
17	MSID		Mobile station identifier.
18			See 6.7.1.3.1.1.
19	AUTH_MODE	_	Authentication Mode.
20			The mobile station shall set this field to '00'.
21	QUAL_INFO_TYPE	_	Qualification information type.
22 -			The mobile station shall set this field to the QUAL_INFO_TYPE field in the corresponding <i>Status Request Message</i> .
24	QUAL_INFO_LEN	_	Qualification information length.
25 26			The mobile station shall set this field to the QUAL_INFO_LEN field in the corresponding <i>Status Request Message</i> .
27	Type-specific fields	_	Type-specific fields.
28 29			The mobile station shall set these fields to the qualification information in the corresponding <i>Status Request Message</i> .
30	NUM_INFO_RECORDS	_	Number of information records included.
31 32 33 34			The mobile station shall set this field to the number of information records which are included. The mobile station shall include all the records requested in the corresponding Status Request Message.
35 36	The mobile station shall record which is included		lude one occurrence of the following fields for each information
37	RECORD_TYPE		Information record type.
38 39 40			The mobile station shall set this field to the record type value shown in Table 7.7.2.3.2.15-2 corresponding to the type of this information record.

RECORD_LEN	-	Information record length.
		The mobile station shall set this field to the number of octets included in the type-specific fields of this information record.
Type-specific fields	-	Type-specific fields.
		The mobile station shall set these fields to the information as specified in 6.7.4 for the specific type of records. The mobile station shall only specify the information corresponding to the included qualification information.
ACTIVE_PILOT-		The second second
_STRENGTH	-	Pilot strength.
		See 6.7.1.3.1.3.
FIRST_IS_ACTIVE	. -	The active pilot is the first pilot on which an access probe was sent.
		See 6.7.1.3.1.3.
FIRST_IS_PTA	-	The first pilot is the previous to the active pilot on which an access probe was sent.
		See 6.7.1.3.1.3.
NUM_ADD_PILOTS	-	Number of additional reported pilots.
		If PILOT_REPORTs is equal to '1', see $6.7.1.3.1.3$. If PILOT_REPORTs is equal to '0', the mobile station shall set this field to '000'.
The mobile station shall include NUM_ADD_PILOTS occurrences of the following four-field record (one for each additional pilot being reported). If the mobile station is unable to include all pilots which are in the ACCESS_HO_LIST and OTHER_REPORTED_LIST, the mobile station shall include the pilots in the ACCESS_HO_LIST and those pilots having the smallest PILOT_STRENGTH (largest $E_{\text{C}}/I_{\text{O}}$) (see 6.7.1.3.1.3).		
PILOT_PN_PHASE	-	Pilot measured phase.
		See 6.7.1.3.1.3.
PILOT_STRENGTH	-	Pilot strength.
		See 6.7.1.3.1.3.
ACCESS_HO_EN	-	Access handoff enable.
		See 6.7.1.3.1.3.
ACCESS_ATTEMPTED	-	Access attempted flag.
		See 6.7.1.3.1.3.
RESERVED	-	Reserved bits.
		The mobile station shall add reserved bits as needed in order to make the length of the entire message equal to an integer number of octets. The mobile station shall set these bits to '0'.
	Type-specific fields ACTIVE_PILOTSTRENGTH FIRST_IS_ACTIVE FIRST_IS_PTA NUM_ADD_PILOTS The mobile station shall record (one for each actinclude all pilots which mobile station shall include station shall include all pilots which mobile station shall include smallest PILOT_STRENGTH PILOT_PN_PHASE PILOT_STRENGTH ACCESS_HO_EN ACCESS_ATTEMPTED	ACTIVE_PILOTSTRENGTH - FIRST_IS_ACTIVE - FIRST_IS_PTA - NUM_ADD_PILOTS - The mobile station shall increcord (one for each addition include all pilots which are mobile station shall include smallest PILOT_STRENGTH PILOT_PN_PHASE - PILOT_STRENGTH - ACCESS_HO_EN - ACCESS_ATTEMPTED -

6.7.2 Reverse Traffic Channel

- 2 During Traffic Channel operation, the mobile station sends signaling messages to the base
- 3 station using the Reverse Traffic Channel.
- 4 6.7.2.1 Reverse Traffic Channel Structure
- 5 When sending a Reverse Traffic Channel Message, the mobile station shall send it as
- signaling traffic using the signaling traffic formats specified in 6.1.3.3.11 and 6.1.3.3.12.
- 7 The mobile station may use one or more Reverse Traffic Channel frames to send the
- 8 message.

19

20

21 22

23

24

25

26

27

- 9 The first signaling traffic bit in a Reverse Traffic Channel frame shall be a Start of Message
- (SOM) Bit. The mobile station shall set this bit to '1' if a Reverse Traffic Channel Message
- begins in the frame, or to '0' if the frame contains bits of a Reverse Traffic Channel Message
- that began in a previous frame. The mobile station shall use the remaining signaling traffic
- bits of the frame to send Reverse Traffic Channel Message bits. If the frame used to send
- the last bits of a message contains any unused signaling traffic bits, the mobile station
- shall set each of these bits, referred to as padding bits, to '0'.

6.7.2.2 Reverse Traffic Channel Message Structure

A Reverse Traffic Channel Message shall consist of a length field (MSG_LENGTH), a message body, and a CRC field, in that order (see Figure 6.7.2.2-1).

Figure 6.7.2.2-1. Reverse Traffic Channel Message Structure

6.7.2.2.1 Reverse Traffic Channel Message MSG_LENGTH Field

The mobile station shall set the MSG_LENGTH field of a *Reverse Traffic Channel Message* to the length, in octets, of the message, including the MSG_LENGTH field, the message body and the CRC field. The MSG_LENGTH field shall be 8 bits in length. The minimum value of the MSG_LENGTH field shall be 5.⁵

⁵ This accommodates the MSG_LENGTH field, the layer 2 fields present in the Message Body, and the CRC field.

- 6.7.2.2.2 Reverse Traffic Channel Message CRC Field
- The mobile station shall set the CRC field of a Reverse Traffic Channel Message to the CRC
- 3 computed for the message. The CRC computation shall include the MSG_LENGTH field
- and the message body. The CRC field shall be 16 bits in length.
- 5 The generator polynomial for the CRC shall be the standard CRC-CCITT polynomial:

$$g(x) = x^{16} + x^{12} + x^5 + 1.$$

- The CRC shall be equal to the value computed by the following procedure and the logic shown in Figure 6.7.2.2.2-1:
 - All shift register elements shall be initialized to logical one.⁶
 - The switches shall be set in the up position.

12

15

16

17

18

19

21

22

23

- The information bit count k shall be defined as 8 + message body length in bits.
- The register shall be clocked k times, with the length and message body of the message as the k input bits.
- The switches shall be set in the down position so that the output is a modulo-2 addition with a '1' and the successive shift register inputs are '0'.
- The register shall be clocked an additional 16 times.
- The 16 additional output bits shall be the CRC field.
- The bits shall be transmitted in the order in which they appear at the output of the CRC encoder.

Figure 6.7.2.2.1. Reverse Traffic Channel Message CRC Calculation

⁶ Initialization of the register to ones causes the CRC for all-zero data to be non-zero.

- 6.7.2.3 Reverse Traffic Channel Message Body Format
- The Reverse Traffic Channel Messages are summarized in Table 6.7.2.3-1.

Table 6.7.2.3-1. Reverse Traffic Channel Messages

	· · · · · · · · · · · · · · · · · · ·	
Message Name	Message Type (binary)	Section Number
Order Message	00000001	6.7.2.3.2.1
Authentication Challenge Response Message	00000010	6.7.2.3.2.2
Flash With Information Message	00000011	6.7.2.3.2.3
Data Burst Message	00000100	6.7.2.3.2.4
Pilot Strength Measurement Message	00000101	6.7.2.3.2.5
Power Measurement Report Message	00000110	6.7.2.3.2.6
Send Burst DTMF Message	00000111	6.7.2.3.2.7
Status Message	00001000	6.7.2.3.2.8
Origination Continuation Message	00001001	6.7.2.3.2.9
Handoff Completion Message	00001010	6.7.2.3.2.10
Parameters Response Message	00001011	6.7.2.3.2.11
Service Request Message	00001100	6.7.2.3.2.12
Service Response Message	00001101	6.7.2.3.2.13
Service Connect Completion Message	00001110	6.7.2.3.2.14
Service Option Control Message	00001111	6.7.2.3.2.15
Status Response Message	00010000	6.7.2.3.2.16
TMSI Assignment Completion Message	00010001	6.7.2.3.2.17
Supplemental Channel Request Message	00010010	6.7.2.3.2.18
Candidate Frequency Search Response Message	00010011	6.7.2.3.2.19
Candidate Frequency Search Report Message	00010100	6.7.2.3.2.20
Periodic Pilot Strength Measurement Message	00010101	6.7.2.3.2.21

6.7.2.3.1 Common Fields

10

11

12

13

14

15

16

17

18

19

20

22

23

25

26

27

28

29

30

- 6.7.2.3.1.1 Common Acknowledgment Fields
- 3 All Reverse Traffic Channel Messages share the same three acknowledgment fields:
 - ACK_SEQ Acknowledgment sequence number.

The mobile station shall set this field to the value of the MSG_SEQ field from the most recently received Forward Traffic Channel Message requiring acknowledgment. If no such message has been received, the mobile station shall set this field to '111'. See 6.6.4.1.3.

MSG_SEQ - Message sequence number.

The mobile station shall set this field to the message sequence number for this message. See 6.6.4.1.3.

ACK_REQ - Acknowledgment required indicator.

This field indicates whether this message requires an acknowledgment.

To indicate that this message requires acknowledgment, the mobile station shall set this field to '1'. To indicate that this message does not require acknowledgment, the mobile station shall set this field to '0'.

6.7.2.3.1.2 Common Encryption Field

21 All Reverse Traffic Channel Messages contain the following field:

ENCRYPTION - Message encryption indicator.

The mobile station shall set this field to the current message encryption mode, equal to the ENCRYPT_MODE field of the last received Channel Assignment Message, Extended Channel Assignment Message, Extended Handoff Direction Message, General Handoff Direction Message, or Message Encryption Mode Order. The value of this field and the encryption state of a message shall not change if the same message is retransmitted.

6.7.2.3.2 Message Body Contents

- 22 The following sections specify the contents of the message body for each message that may
- be sent on the Reverse Traffic Channel.

6.7.2.3.2.1 Order Message

When the mobile station sends an Order Message on the Reverse Traffic Channel, it shall

use the following variable-length message format:

Field	Length (bits)
MSG_TYPE ('00000001')	8
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
ENCRYPTION	2
ORDER	6.
ADD_RECORD_LEN	3
Order-specific fields (if used)	8 × ADD_RECORD_LEN
RESERVED	6

6	MSG_TYPE	-	Message type.
7			The mobile station shall set this field to '00000001'.
8	ACK_SEQ	_	Acknowledgment sequence number.
9 .			See 6.7.2.3.1.1.
10	MSG_SEQ	-	Message sequence number.
11			See 6.7.2.3.1.1.
12	ACK_REQ	-	Acknowledgment required indicator.
13			See 6.7.2.3.1.1.
14	ENCRYPTION	-	Message encryption indicator.
15			See 6.7.2.3.1.2.
16	ORDER	_	Order code.
17 18			The mobile station shall set this field to the ORDER code. See 6.7.3.
19	ADD_RECORD_LEN	_	Additional record length.
20 21			The mobile station shall set this field to the number of octets in the order-specific fields included in this message.
22	Order-specific fields	-	Order-specific fields.
23 24			The mobile station shall include order-specific fields as specified in 6.7.3.
25	RESERVED	· -	Reserved bits.
26			The mobile station shall set this field to '000000'.

- 6.7.2.3.2.2 Authentication Challenge Response Message
- 2 When the mobile station sends an Authentication Challenge Response Message on the
- Reverse Traffic Channel, it shall use the following fixed-length message format:

Field	Length (bits)
MSG_TYPE ('00000010')	8
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
ENCRYPTION	2
AUTHU	18
RESERVED	5

6	MSG_TYPE	_	Message type.
7			The mobile station shall set this field to '00000010'.
8	ACK_SEQ	-	Acknowledgment sequence number.
9			See 6.7.2.3.1.1.
10	. MSG_SEQ	_	Message sequence number.
11			See 6.7.2.3.1.1.
12	ACK_REQ	_	Acknowledgment required indicator.
13			See 6.7.2.3.1.1.
14	ENCRYPTION	_	Message encryption indicator.
15			See 6.7.2.3,1.2.
16	AUTHU	_	Authentication challenge response.
17	•		The mobile station shall set this field as specified in
18			6.3.12.1.5.
19	RESERVED	-	Reserved bits.
20			The mobile station shall set this field to '00000'.

6.7.2.3.2.3 Flash With Information Message

When the mobile station sends a Flash With Information Message, it shall use the following

variable-length message format:

Field	Length (bits)
MSG_TYPE ('00000011')	8
ACK_SEQ	. 3
MSG_SEQ	3
ACK_REQ	1
ENCRYPTION	2

Zero or more occurrences of the following record:

RECORD_TYPE	8
RECORD_LEN	8
Type-specific fields	8 × RECORD_LEN

RESERVED	7	

6	MSG_TYPE	_	Message type.
7			The mobile station shall set this field to '00000011'.
8	ACK_SEQ	- ,	Acknowledgment sequence number.
9			See 6.7.2.3.1.1.
10	MSG_SEQ	_	Message sequence number.
11			See 6.7.2.3.1.1.
12 ·	ACK_REQ	-	Acknowledgment required indicator.
13			See 6.7.2.3.1.1.
14	ENCRYPTION	-	Message encryption indicator.
15	·		See 6.7.2.3.1.2.

The mobile station shall include one occurrence of the following record for each information record to be included:

RECORD_TYPE - Information record type.

16

17

18

19

20

21

22

The mobile station shall set this field to the record type code shown in Table 6.7.4-1 corresponding to the type of this information record.

1	RECORD_LEN · ·	_	Information record length.
2			The mobile station shall set this field to the number of octets in the type-specific fields of this record.
3			If the type-specific fields of this record.
4	Type-specific fields	-	Type-specific fields.
5			The mobile station shall set these fields as specified in 6.7.4
6			for this type of information record.
7	RESERVED	-	Reserved bits.
8			The mobile station shall set this field to '0000000'.

6.7.2.3.2.4 Data Burst Message

When the mobile station sends a Data Burst Message on the Reverse Traffic Channel, it

shall use the following variable-length message format:

Field	Length (bits)
MSG_TYPE ('00000100')	8
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
ENCRYPTION	2
MSG_NUMBER	8
BURST_TYPE	6
NUM_MSGS	8
NUM_FIELDS	8

NUM_FIELDS occurrences of the following field:

CHARi	8	

<u> </u>		
RESERVED	1	

MSG_TYPE Message type. The mobile station shall set this field to '00000100'. ACK_SEQ Acknowledgment sequence number. See 6.7.2.3.1.1. MSG_SEQ Message sequence number. See 6.7.2.3.1.1. 11 ACK_REQ Acknowledgment required indicator. 12 See 6.7.2.3.1.1. 13 **ENCRYPTION** Message encryption indicator. 14 See 6.7.2.3.1.2. 15 MSG_NUMBER Message number within the data burst stream. 16 The mobile station shall set this field to the number of this 17 message within the data burst stream. 18

BURST_TYPE - Data burst type.

The mobile station shall set the value of this field for the type of this data burst as defined in TSB58-A. If the mobile station sets this field equal to '111110', it shall set the first two CHARi fields of this message equal to EXTENDED_BURST_TYPE_INTERNATIONAL as described in the definition of CHARi below. If the mobile station sets this field equal to '111111', it shall set the first two CHARi fields of this message equal to the EXTENDED BURST TYPE as described in the definition of CHARi below.

NUM_MSGS - Number of messages in the data burst stream.

The mobile station shall set this field to the number of messages within this data burst stream.

NUM_FIELDS - Number of characters in this message.

The mobile station shall set this field to the number of CHARi fields included in this message.

CHARi - Character.

The mobile station shall include NUM_FIELDS occurrences of this field. The mobile station shall set these fields to the corresponding octet of the data burst stream.

If the BURST_TYPE field of this message is equal to '111110'. the first two CHARi octets shall represent a 16 bit EXTENDED_BURST_TYPE_INTERNATIONAL field, which is encoded as shown below. The first ten bits of this field contain a binary mapping of the Mobile Ccountry Code (MCC) associated with the national standards organization administering the use of the remaining octets of the message. Encoding of the MCC shall be as specified in 6.3.1.3. The remaining six bits o f EXTENDED_BURST_TYPE_INTERNATIONAL field shall specify the COUNTRY_BURST_TYPE. The mobile station shall set the value of the COUNTRY_BURST_TYPE according to the type of this data burst as defined in standards governed by the country where this data burst type is to be used.

Field	Length (bits)	
Mobile Country Code	10	
COUNTRY_BURST_TYPE	6	
Remaining CHARi fields	8 × (NUM_FIELDS - 2)	

If the BURST TYPE field of this message is equal to '111111', the first two CHARi octets shall represent a single, 16 bit, EXTENDED BURST TYPE field, as shown below. The mobile station shall set the value of the EXTENDED BURST TYPE according to the type of this data burst as defined in TSB58-A.

39 40 41

8

10

11

12

13

15

16

18

20

21

22

24

25 26

27

29

30

31

33

35

6-485

Field	Length (bits)	
EXTENDED_BURST_TYPE (first two CHARi fields)	16	
Remaining CHARi fields	8 × (NUM_FIELDS - 2)	

RESERVED -

Reserved bits.

The mobile station shall set this field to '0'.

- 6.7.2.3.2.5 Pilot Strength Measurement Message
- When the mobile station sends a Pilot Strength Measurement Message, it shall use the
- 3 following variable-length message format:

Field	Length (bits)
MSG_TYPE ('00000101')	8
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
ENCRYPTION	2
REF_PN	9
PILOT_STRENGTH	6
KEEP	1

Zero or more occurrences of the following record:

PILOT_PN_PHASE	15
PILOT_STRENGTH	6
KEEP	1

RESERVED	0 - 7 (as needed)

5			
6 ·	MSG_TYPE	_	Message type.
7			The mobile station shall set this field to '00000101'.
8	ACK_SEQ	_	Acknowledgment sequence number.
9			See 6.7.2.3.1.1.
10	MSG_SEQ	_	Message sequence number.
11			See 6.7.2.3.1.1.
12	ACK_REQ	_	Acknowledgment required indicator.
13			See 6.7.2.3.1.1.
14	ENCRYPTION	-	Message encryption indicator.
15			See 6.7.2.3.1.2.
16	REF_PN	-	Time reference PN sequence offset.
17			The mobile station shall set this field to the PN sequence
18			offset of the pilot used by the mobile station to derive its time reference, relative to the zero offset pilot PN sequence in units
19 20	•		of 64 PN chips.

PILOT_STRENGTH - Pilot strength.

The mobile station shall set this field to

 $[-2 \times 10 \log_{10} PS]$,

where PS is the strength of the pilot used by the mobile station to derive its time reference (see 6.1.5.1), measured as specified in 6.6.6.2.2. If this value ([-2 × 10 log₁₀ PS]) is less than 0, the mobile station shall set this field to '000000'. If this value is greater than '111111', the mobile station shall set this field to '111111'.

KEEP - Keep pilot indicator.

If the handoff drop timer (see 6.6.6.2.3) corresponding to the pilot used by the mobile station to derive its time reference (see 6.1.5.1) has expired, the mobile station shall set this field to '0'; otherwise, the mobile station shall set this field to '1'.

If P_REV_IN_USEs is less than or equal to three or SOFT_SLOPEs is equal to '000000', the mobile station shall include one occurrence of the three-field record given below for each pilot in the Active Set and for each pilot in the Candidate Set, other than the pilot identified by the REF_PN field. If P_REV_IN_USEs is greater than three and SOFT_SLOPEs is not equal to '000000', the mobile station shall include one occurrence of the three-field record given below for each pilot in the Active Set, for each pilot in the Candidate Set whose strength exceeds T_ADD, and shall also include one occurrence of the three-field record given below for each pilot in the Candidate Set whose strength satisfies the following inequality:

$$10 \times log_{10} PS > \frac{SOFT_SLOPE_S}{8} \times 10 \times log_{10} \sum_{i \in A} PS_i + \frac{ADD_INTERCEPT_S}{2}$$

where the summation is performed over all pilots currently in the Active Set. The mobile station shall not include these fields for the pilot identified by the REF_PN field.

PILOT_PN_PHASE - Pilot measured phase.

The mobile station shall set this field to the phase of the pilot PN sequence relative to the zero offset pilot PN sequence of this pilot, in units of one PN chip, as specified in 6.6.6.2.4.

PILOT_STRENGTH - Pilot strength.

The mobile station shall set this field to

 $\lfloor -2 \times 10 \log_{10} PS \rfloor$,

where PS is the strength of this pilot, measured as specified in 6.6.6.2.2. If this value ([-2 × 10 log₁₀ PS]) is less than 0, the mobile station shall set this field to '000000'. If this value is greater than '111111', the mobile station shall set this field to '111111'.

1	KEEP	-	Keep pilot indicator.
2 3 4			If the handoff drop timer (see 6.6.6.2.3) corresponding to this pilot has expired, the mobile station shall set this field to '0'; otherwise, the mobile station shall set this field to '1'.
5			
6	RESERVED	-	Reserved bits.
7			The mobile station shall add reserved bits as needed in order
8			to make the length of the entire message equal to an integer
9			number of octets. The mobile station shall set these bits
10	•		to '0'.

18

19

20 21

22

- 6.7.2.3.2.6 Power Measurement Report Message
- When the mobile station sends a Power Measurement Report Message, it shall use the
- 3 following variable-length message format:

Field	Length (bits)
MSG_TYPE ('00000110')	8
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
ENCRYPTION	2
ERRORS_DETECTED	5
PWR_MEAS_FRAMES	10
LAST_HDM_SEQ	2
NUM_PILOTS	4

NUM_PILOTS occurrences of the following field:

PILOT_STRENGTH	6
----------------	---

RESERVED	0 - 7 (as needed)

MSG_TYPE Message type. The mobile station shall set this field to '00000110'. ACK_SEQ Acknowledgment sequence number. See 6.7.2.3.1.1. MSG_SEQ Message sequence number. See 6.7.2.3.1.1. 11 ACK_REQ Acknowledgment required indicator. 12 See 6.7.2.3.1.1. 13 **ENCRYPTION** Message encryption indicator. 14 See 6.7.2.3.1.2. 15 **ERRORS_DETECTED** Number of frame errors detected. 16

If the number of bad frames (see 6.2.2.2) received on the Forward Fundamental Code Channel within the measurement period is less than or equal to 31, the mobile station shall set this field to that number (BAD_FRAMES_s, see 6.6.4.1.1). If that number exceeds 31, the mobile station shall set this field to '11111'.

1 2	PWR_MEAS_FRAMES	-	Number of frames received on the Forward Fundamental Code Channel within the measurement period.
3 4 5			The mobile station shall set this field to the number of frames received on the Forward Fundamental Code Channel within the measurement period (TOT_FRAMES $_{\rm S}$, see 6.6.4.1.1).
6 7	LAST_HDM_SEQ	-	Extended Handoff Direction Message or a General Handoff Direction Message sequence number.
8 9 10 11 12 13 14			If an Extended Handoff Direction Message or a General Handoff Direction Message has been received during this call, the mobile station shall set this field to the value of the HDM_SEQ field from the Extended Handoff Direction Message or the General Handoff Direction Message that determined the current Active Set. If no Extended Handoff Direction Message or General Handoff Direction Message has been received during this call, the mobile station shall set this field to '11'.
16	· NUM_PILOTS	-	Number of pilots reported.
17 18			The mobile station shall set this field to the number of pilots in the current Active Set.
19	PILOT_STRENGTH	-	Pilot strength.
20 21 22 23 24 25			The mobile station shall include one occurrence of this field for each pilot in the Active Set. If the Active Set contains more than one pilot, the mobile station shall include the pilot strengths in the same order as in the Extended Handoff Direction Message or the General Handoff Direction Message that determined the current Active Set.
26			The mobile station shall set each occurrence of this field to
27			$[-2 \times 10 \log_{10} PS],$
28 29 30 31 32			where PS is the strength of the pilot, measured as specified in 6.6.6.2.2. If this value ($[-2 \times 10 \log_{10} PS]$) is less than 0, the mobile station shall set this field to '000000'. If this value is greater than '111111', the mobile station shall set this field to '111111'.
33	RESERVED	_	Reserved bits.
34 35 36 37	·		The mobile station shall add reserved bits as needed in order to make the length of the entire message equal to an integer number of octets. The mobile station shall set these bits to '0'.

6.7.2.3.2.7 Send Burst DTMF Message

When the mobile station sends a Send Burst DTMF Message, it shall use the following

variable-length message format:

Field	Length (bits)
MSG_TYPE ('00000111')	8
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
ENCRYPTION	2
NUM_DIGITS	8
DTMF_ON_LENGTH	3
DTMF_OFF_LENGTH	3

NUM_DIGITS occurrences of the following field:

DIGITi 4

RESERVED	0) - 7 (as needed)

MSG_TYPE Message type. The mobile station shall set this field to '00000111'. ACK_SEQ Acknowledgment sequence number. See 6.7.2.3.1.1. MSG_SEQ Message sequence number. See 6.7.2.3.1.1. ACK_REQ Acknowledgment required indicator. 12 See 6.7.2.3.1.1. 13 **ENCRYPTION** Message encryption indicator. See 6.7.2.3.1.2. **NUM_DIGITS** Number of DTMF digits. The mobile station shall set this field to the number of DTMF 17 digits included in this message. 18 DTMF_ON_LENGTH DTMF pulse width code. 19 The mobile station shall set this field to the DTMF_ON_LENGTH 20 value shown in Table 6.7.2.3.2.7-1 corresponding to the 21 requested width of DTMF pulses to be generated by the base 22 station.

Table 6.7.2.3.2.7-1. Recommended DTMF Pulse Width

DTMF_ON_LENGTH Field (binary)	Recommended Pulse Width	
000	95 ms	
001	150 ms	
010	200 ms	
011	250 ms	
100	300 ms	
101	350 ms	
All other DTMF_ON_LENGTH codes are reserved.		

DTMF_OFF_LENGTH

DTMF inter-digit interval code.

The mobile station shall set this field to the DTMF_OFF_LENGTH value shown in Table 6.7.2.3.2.7-2 corresponding to the requested minimum interval between DTMF pulses to be generated by the base station.

Table 6.7.2.3.2.7-2. Recommended Minimum Inter-digit Interval

DTMF_OFF_LENGTH Field (binary)	Recommended Minimum Inter-digit Interval	
000	60 ms	
001	100 ms	
010	150 ms	
011	200 ms	
All other DTMF_OFF_LENGTH codes are reserved.		

11

DIGITi - DTMF digit.

13 14 15

17

18

The mobile station shall include one occurrence of this field for each DTMF digit to be generated by the base station. The mobile station shall set each occurrence of this field to the code value shown in Table 6.7.1.3.2.4-4 corresponding to the dialed digit.

RESERVED

Reserved bits.

20 21 22 The mobile station shall add reserved bits as needed in order to make the length of the entire message equal to an integer number of octets. The mobile station shall set these bits to '0'.

6.7.2.3.2.8 Status Message

When the mobile station sends a Status Message, it shall use the following variable-length

message format:

Field	Length (bits)
MSG_TYPE ('00001000')	8
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1 .
ENCRYPTION	2
RECORD_TYPE	8
RECORD_LEN	8
Type-specific fields	8 × RECORD_LEN
RESERVED	7

J			
6	MSG_TYPE	_	Message type.
7			The mobile station shall set this field to '00001000'.
8	ACK_SEQ	-	Acknowledgment sequence number.
9			See 6.7.2.3.1.1.
10	MSG_SEQ	-	Message sequence number.
11			See 6.7.2.3.1.1.
12	ACK_REQ	-	Acknowledgment required indicator.
13	•		See 6.7.2.3.1.1.
14	ENCRYPTION	-	Message encryption indicator.
15			See 6.7.2.3.1.2.
16	RECORD_TYPE	_	Information record type.
17 18 19			The mobile station shall set this field to the record type value shown in Table 6.7.4-1 corresponding to the type of this information record.
20	RECORD_LEN	_	Information record length.
21 22			The mobile station shall set this field to the number of octets included in the type-specific fields of this information record.
23	Type-specific fields	_	Type-specific fields.
24 25			The mobile station shall set these fields as specified in 6.7.4 for this type of record.
26	RESERVED	_	Reserved bits.
27			The mobile station shall set this field to '0000000'.

- 6.7.2.3.2.9 Origination Continuation Message
- When the mobile station sends an Origination Continuation Message, it shall use the
- 3 following variable-length message format:

Field	Length (bits)
MSG_TYPE ('00001001')	8
ACK_SEQ	3
MSG_SEQ	3
ACK_REQ	1
ENCRYPTION	2
DIGIT_MODE	1
NUM_FIELDS	8

NUM_FIELDS occurrences of the following field:

CHARI	4 or 8
Clinid	4 01 8

Zero or more occurrences of the following record:

RECORD TYPE	8
RECORD_LEN	8
Type-specific fields	8 × RECORD_LEN

RESERVED	0 - 7 (as needed)

Message type. MSG_TYPE The mobile station shall set this field to '00001001'. Acknowledgment sequence number. ACK_SEQ See 6.7.2.3.1.1. MSG_SEQ Message sequence number. 10 See 6.7.2.3.1.1. ACK_REQ Acknowledgment required indicator. See 6.7.2.3.1.1. 13 Message encryption indicator. **ENCRYPTION** 14 See 6.7.2.3.1.2. 15 DIGIT_MODE Digit mode indicator. 16 The mobile station shall set this field to the DIGIT_MODE value from the Access Channel Origination Message for which 18 this message is a continuation.

33

34

Number of dialed digits in this message. NUM_FIELDS The mobile station shall set this field to the number of dialed 2 digits included in this message. A dialed digit or character. **CHARi** The mobile station shall include NUM_FIELDS occurrences of this field. The mobile station shall include occurrences of this 6 field for all dialed digits after those sent in the Access Channel Origination Message of which this message is a continuation. R If the DIGIT_MODE field is set to '0', the mobile station shall set each occurrence of this field to the code value shown in 10 Table 6.7.1.3.2.4-4 corresponding to the dialed digit. If the 11 DIGIT_MODE field is set to '1', the mobile station shall set 12 each occurrence of this field to the ASCII representation 13 corresponding to the dialed digit, as specified in ANSI X3.4, 14 with the most significant bit set to '0'. 15 If the MORE_RECORDS field in the last Access Channel Origination Message, of which this 16 message is a continuation, is set to '1', the mobile station shall include one or more 17 occurrences of the following three-field record; otherwise, the mobile station shall not 18 include the following record. 19 Information record type. RECORD_TYPE 20 The mobile station shall set this field to the record type value 21 shown in Table 6.7.4-1. 22 Information record length. RECORD_LEN 23 The mobile station shall set this field to the number of octets 24 in the type-specific fields included in this record. 25 Type-specific fields. Type-specific fields 26 The mobile station shall include type-specific fields as 27 specified in 6.7.4. 28 29 Reserved bits. RESERVED 30 The mobile station shall add reserved bits as needed in order 31 to make the length of the entire message equal to an integer

to '0'.

number of octets. The mobile station shall set these bits

- 6.7.2.3.2.10 Handoff Completion Message
- When the mobile station sends a Handoff Completion Message, it shall use the following
- variable-length message format:

Field	Length (bits)		
MSG_TYPE ('00001010')	8		
ACK_SEQ	3		
MSG_SEQ	3		
ACK_REQ	1		
ENCRYPTION	2		
LAST_HDM_SEQ	2		

One or more occurrences of the following field:

PILOT_PN	9

		<u> </u>
RESERVED	·	0 - 7 (as needed)

5			
6	MSG_TYPE	-	Message type.
7			The mobile station shall set this field to '00001010'.
8	ACK_SEQ	-	Acknowledgment sequence number.
9			See 6.7.2.3.1.1.
10	MSG_SEQ	-	Message sequence number.
11			See 6.7.2.3.1.1.
12	ACK_REQ	_	Acknowledgment required indicator.
13			See 6.7.2.3.1.1.
14	ENCRYPTION	-	Message encryption indicator.
15			See 6.7.2.3.1.2.
16	LAST_HDM_SEQ	-	Extended Handoff Direction Message or General Handoff
17			Direction Message sequence number.
18			The mobile station shall set this field to the value of the
19			HDM_SEQ field from the Extended Handoff Direction Message or the General Handoff Direction Message that determined the
20			current Active Set.
21			Current Active Set.

3

10

11

12

13

14

15

PILOT_PN - Pilot PN sequence offset.

The mobile station shall include one occurrence of this field for each pilot in the current Active Set. The mobile station shall set this field to the pilot PN sequence offset, relative to the zero offset pilot PN sequence in units of 64 PN chips, for this pilot. If the Active Set contains more than one pilot, the mobile station shall include the pilot offsets in the same order as in the Extended Handoff Direction Message or the General Handoff Direction Message that determined the current Active Set.

RESERVED - Reserved bits.

The mobile station shall add reserved bits as needed in order to make the length of the entire message equal to an integer number of octets. The mobile station shall set these bits to '0'.

- 6.7.2.3.2.11 Parameters Response Message
- When the mobile station sends a Parameters Response Message, it shall use the following
- 3 variable-length message format:

Field	Length (bits)		
MSG_TYPE ('00001011')	8		
ACK_SEQ	3		
MSG_SEQ	3		
ACK_REQ	1		
ENCRYPTION	2		

One or more occurrences of the following record:

PARAMETER_ID	16
PARAMETER_LEN	10
PARAMETER	0 or PARAMETER_LEN + 1

RESERVED	0 - 7 (as needed)
	<u></u>

5			
6	MSG_TYPE		Message type.
7			The mobile station shall set this field to '00001011'.
8	ACK_SEQ	_	Acknowledgment sequence number.
9	•		See 6.7.2.3.1.1.
10	MSG_SEQ	_	Message sequence number.
11			See 6.7.2.3.1.1.
12	ACK_REQ	_	Acknowledgment required indicator.
13		-	See 6.7.2.3.1.1.
14	ENCRYPTION		Message encryption indicator.
15		•	See 6.7.2.3.1.2.

11

12

13

14

15

17

18

19

20 21

22

23

24

25

26

The mobile station shall include one occurrence of the following three-field record for each occurrence of the PARAMETER_ID field in the Forward Traffic Channel Retrieve Parameters

Message to which this message is a response. See Annex E.

PARAMETER_ID - Parameter identification.

The mobile station shall set this field to the value of the PARAMETER_ID field for this parameter from the Retrieve Parameters Message to which this message is a response.

PARAMETER_LEN - Parameter length.

The mobile station shall set this field to the length shown in

Table E-1 corresponding to this PARAMETER_ID.

If the mobile station is unable to return the value of this

parameter, or if the parameter identification is unknown, the mobile station shall set this field to '1111111111.

PARAMETER - Parameter value.

The mobile station shall set this field equal to the value of the parameter shown in Table E-1 corresponding to the PARAMETER ID field of the record.

If the mobile station is unable to return the value of this parameter, or if the parameter identification is unknown, the mobile station shall omit this field.

RESERVED - Reserved bits.

The mobile station shall add reserved bits as needed in order to make the length of the entire message equal to an integer number of octets. The mobile station shall set these bits to '0'.