

Prática de Eletrônica Digital 1 - FGA0071

Curso de Graduação em Engenharia Eletrônica - Faculdade Gama - Universidade de Brasília

Prática de Eletrônica Digital 1. Código: FGA0071.

Professor: Henrique Marra Taira Menegaz e-mail: henriquemenegaz@unb.br

Prática de Eletrônica Digital 1 - FGA0071

Curso de Graduação em Engenharia Eletrônica - Faculdade Gama - Universidade de Brasília

Prática de Eletrônica Digital 1. Código: FGA0071.

Professor: Henrique Marra Taira Menegaz e-mail: henriquemenegaz@unb.br

EXPERIMENTO DE PROTOBOARD

REGISTRADORES

1 REGRAS DE APRESENTAÇÃO

Este experimento deve ser apresentado presencialmente ao professor em sala de aula, **nos horários das aulas, somente**. O prazo final de apresentação será a aula seguinte à aula deste experimento.

Não há necessidade de apresentação de pré-relatório nem de relatório. No entanto, só será pontuado o que estiver operando corretamente.

2 Nота

O experimento receberá nota entre 0 e 10 pontos.

3 Projeto

Implemente, na protoboard, um registrador universal com o CI 74194. A Figura 1 apresenta o esquemático desse CI e a Tabela 1 a sua tabela funcional. A entrada MR é o CLEAR (pino 1), CP é a entrada de *clock* (pino 11), DN são quatro entradas de dados para carregamento paralelo (pinos 3 a 6), S1 e S0 (pinos 10 e 9) são entradas seletoras (escolhem o modo de operação) e DSR e DSL (pinos 2 e 7) são, respectivamente, o bit a ser carregado nos deslocamentos à direita e à esquerda. Esse CI tem seguintes 5 modos de operação:.

- 1. Reset: Se MR=0, então as saídas são colocadas em 0.
- 2. Hold: Se MR = 1 e S1=S0=0, as saídas permanecem inaltareadas.

- 3. Deslocalmento à esquerda: Se MR = 1 e S1=1 e S0=0, então, no próximo pulso da entrada de clock (CP na Tabela 1), então o valor da saída sofrerá um descolomento à esquerda de 1 bit e o bit mais à direita receberá o valor de DSL (pino 7).
- 4. Deslocalmento à direita: Se MR = 1 e S1=0 e S0=1, então, no próximo pulso da entrada de clock, então o valor da saída sofrerá um descolomento à direita de 1 bit e o bit mais à esquerda receberá o valor de DSR (pino 2).
- 5. Carregamento paralelo: Se MR = 1 e S1=1 e S0=1, então, no próximo pulso da entrada de clock, a saída receberá o valor de Dn (entradas paralelas ABCD, pinos 3 a 6).

Figura 1. Esquemático do CI 74194.

Tabela 1. Tabela funcional do CI 74194.

Operating mode	Inputs			Outputs							
	CP	MR	S1	S0	DSR	DSL	Dn	Q0	Q1	Q2	Q3
Reset (clear)	X	L	X	X	X	X	X	L	L	L	L
Hold (do nothing)	X	Н	1	1	X	X	×	q0	q1	q2	q3
Shift left	1	н	h	1	X	1	×	q1	q2	q3	L
	1	н	h	1	X	h	×	q1	q2	q3	н
Shift right	1	н	1	h	1	×	X	L	q0	q1	q2
	1	н	1	h	h	X	×	Н	q0	q1	q2
Parallel load	1	Н	h	h	X	X	dn	d0	d1	d2	d3

Tabela 2. Tabela funcional com destaque ao deslocamento à esquerda.

Operating mode	Inputs								Outputs				
	CP	MR	S1	S0	DSR	DSL	Dn	Q0	Q1	Q2	Q3		
Reset (clear)	X	L	×	X	X	X	X	L	L	L	L		
Hold (do nothing)	X	н	L	T.	X	X	X	q0	q1	q2	q3		
Shift left	1	н	h	1	X	1	X	q1	q2	q3	L		
	1	Н	h	1	X	h IN	X	q1	q2	q3OUT	Н		
Shift right	1	Н	1	h	1	X	X	L	q0	q1	q2		
	1	н	1	h	h	X	X	Н	q0	q1	q2		
Parallel load	1	н	h	h	Х	X	dn	d0	d1	d2	d3		

Tabela 3. Tabela funcional com destaque ao deslocamento à esquerda.

Operating mode	Inputs	3	Outputs								
	CP	MR	S1	S0	DSR	DSL	Dn	Q0	Q1	Q2	Q3
Reset (clear)	X	L	×	X	X	x	X	L	L	L	L
Hold (do nothing)	X	Н	1	1	X	X	X	q0	q1	q2	q3
Shift left	1	Н	h	1	X	1	X	q1	q2	q3	L
	1	Н	h	1	X	h	X	q1	q2	q3	Н
Shift right	1	н	I.	h	1	X	X	L	q0	q1	q2
	1	Н	1	h	h IN	X	X	Н	TUO	q1	q2
Parallel load	1	н	h	h	х	X	dn	d0	d1	d2	d3

Tabela 4. Tabela funcional com destaque ao carregamento paralelo.

Operating mode	Inputs								Outputs				
	CP	MR	S1	S0	DSR	DSL	Dn	Q0	Q1	Q2	Q3		
Reset (clear)	Х	L	X	X	X	X	X	L ↑	L ↑	L ↑	L ↑		
Hold (do nothing)	X	Н	L	1	×	X	×	q0	q1	q2	q3		
Shift left	1	Н	h	1	X	1	×	q1	q2	q3	L		
	↑	Н	h	Í.	X	h	×	q1	q2	q3	н		
Shift right	1	Н	L	h	1	X	X	L	q0	q1	q2		
	1	Н	L	h	h	X	×	Н	q0	q1	q2		
Parallel load	1	н	h	h	X	Х	dn	d0	d1	d2	d3		

Como o CI 74194 funciona com pulsos, requer-se implementar um circuito gerador de pulsos. Para isso usaremos o timer NE 555, cujo esquemático está mostrado na Figura 2. Esse CI pode ser usado em diversas configurações, mas usaremos somente a sua configuração astável, esquematizada na Figura 3. A saída deve ser conectada à entrada de *clock* do 74194.

Figura 2. Esquemático do CI NE 555.

Figura 3. Esquemático do NE 555 em configuração astável.

Siga as seguintes instruções para a montagem desse circuito:

- 1. Conecte LEDs ligados a resistores adequados (p.e. 220Ω) e às saídas do 74194.
- 2. Utilize chaves apenas para as entradas seletoras S1 e S0 do 74194.
- 3. Para as entradas de dados do 74194 (A, B, C, D, DSL e DSR) e o CLEAR, utilize fios ligados diretamente aos níveis 0 ou 1. Com isso, evitamos utilizar muitas chaves e poluir o circuito demasiadamente.
- 4. Para o circuito da Figura 3, utilize $R1 = 10k\Omega$, $R2 = 100k\Omega$ e $C = 2,2\mu F$;

A pontuação será da seguinte maneira:

- 1. Correta implementação do gerador de pulsos: 5 pts.
- 2. Correta implementação do registrador universal: 5 pts.

3.1 MATERIAL UTILIZADO

Protoboard, fonte de alimentação, jumpers (fios) e multímetro.

- Chaves de 3 pinos: 2 (para as seletoras).
- CI 74194 (registrador universal): 1.
- NE 555 (temporizador)
- Resistor de $10 k\Omega$ (cores: marrom, preto, laranja): 1.
- Resistor de 100 $k\Omega$ (cores: marrom, preto, amarelo): 1.
- Capacitor de cerâmica 101 (0.1 nF): 1.
- Capacitor Eletrolítico de $2,2\mu F$: 1.
- Resistor de 220 Ω (cores: vermelho, vermelho, marrom): 4.
- LED: 4.

4 BIBLIOGRAFIA

- Thomas L. Floyd, Sistemas Digitais: Fundamentos e Aplicações, 9ª edição, Bookman, 2007.
- Mordka, SZAJNBERG. Eletrônica Digital Teoria, Componentes e Aplicações. Grupo GEN, 2014.