- 4.1 (a) Yes. M accepts 0100.
 - (b) No. *M* rejects 011.
 - (c) No. No input string is given.
 - (d) No. R is not a DFA.
 - (e) No. L(M) is not empty.
 - (f) Yes. By definition, L(M) = L(M).
- 4.2 We define the language EQ_{DR} as

$$EQ_{DR} = \{ \langle A, R \rangle \mid A \text{ is a DFA}, R \text{ is a regular expression, and } L(A) = L(R) \}$$

To show EQ_{DR} is decidable, we construct Turing machine M which decides EQ_{DR} .

 $M = \text{"On input } \langle A, R \rangle$

- 1. Construct DFA B which recognises R (see theorem 1.39).
- 2. Run $EQ_{DFA}\langle A,B\rangle$ (see theorem 4.5). If $EQ_{DFA}\langle A,B\rangle$ accepts, accept, else reject."
- 4.3 To show ALL_{DFA} is decidable, we construct Turing machine M which decides ALL_{DFA} :
 - M = "On input $\langle A \rangle$, where A is a DFA
 - 1. Construct DFA A' by running algorithm MINIMIZE on A (see problem 7.25).
 - 2. If A' consists of a single accepting state, accept, else reject."
- 4.4 To show $A\epsilon_{CFG}$ is decidable, we construct Turing machine M which decides $A\epsilon_{CFG}$:
 - M = "On input $\langle A \rangle$, where A is a CFG
 - 1. Construct CFG A' by converting A into Chomsky normal form (use algorithm described by theorem 2.9).
 - 2. If A' consists of a single rule with terminal ϵ , accept, else reject."