CX1104: Linear Algebra for Computing

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}}_{n \times n} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{m \times 1}$$

Chap. No : **6.3.1**

Lecture: Orthogonality

Topic: Gram-Schmidt for QR

Concept: Motivation and Review of Concepts

Instructor: A/P Chng Eng Siong

TAs: Zhang Su, Vishal Choudhari

Rev: ces-22July2020

Rev: 29th June 2020

Introducing A = QR

QR decomposition, given A (mxn) matrix, we can decompose it into the product of 2 matrixes,

$$A = QR$$

- Properties of Q:
 - -C(Q) == C(A)
 - $Q^TQ = I$, i.e Q has orthonormal column (BUT not necessary square)
 - QQ^T = projection matrix into col (A)
- R is a square upper triangle matrix and Depending if
 - A has independent col, then R is invertible,
 - A has dependent col, then R is NOT-invertible.

Warning: Theorem 12 is for A Having independent column.

THEOREM 12

The QR Factorization

If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as A = QR, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for Col A and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

$$A = [\mathbf{x}_1 \quad \cdots \quad \mathbf{x}_n] = [Q\mathbf{r}_1 \quad \cdots \quad Q\mathbf{r}_n] = QR$$

Q = columns are orthonormal

Ref: 1) https://en.wikipedia.org/wiki/QR decomposition

2) http://ee263.stanford.edu/lectures/qr.pdf

Motivation for QR

It has many applications, e.g, solving least squares:

$$Ax = y$$

$$QRx = y$$

$$Q^{T}QRx = Q^{T}y$$

$$Rx = Q^{T}y$$

Is can be easily solved because R is upper triangle (If R is not invertible, it will be more involved, see least squares chapter)

There are at least 3 approaches to realise QR decomposition, we will only introduce Gram-Schmidt orthogonalization to get Q first https://www.math.ucla.edu/~yanovsky/Teaching/Math151B/handouts/GramSchmidt.pdf https://towardsdatascience.com/can-qr-decomposition-be-actually-faster-schwarz-rutishauser-algorithm-a32c0cde8b9b

What does having same column space mean? C(Q) == C(A)

When we can convert

$$Ax = b$$

To

$$QRx = b$$

Then finding the solution x is easier and more efficient especially when A is large sized (e.g thousands of rows and columns)

The found solution x will be the same.

Figure 3.2: The column space C(A) is a plane containing the two columns. Ax = b is solvable when b is on that plane. Then b is a combination of the columns.

Interpretation: since C(Q) == C(A), then Columns of Q are orthonormal basis for range(A), since $Q^TQ = I$

Revision: Projecting y onto an orthogonal vs orthonormal basis

THEOREM 8

The Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} \tag{1}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p \tag{2}$$

and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

The vector $\hat{\mathbf{y}}$ in (1) is called the **orthogonal projection of y onto** W and often is written as $\operatorname{proj}_W \mathbf{y}$. See Figure 2. When W is a one-dimensional subspace, the formula for $\hat{\mathbf{y}}$ matches the formula given in Section 6.2.

FIGURE 2 The orthogonal projection of \mathbf{y} onto W.

Lay5e pg 350

Lay5e pg 353

The final theorem in this section shows how formula (2) for $proj_W y$ is simplified when the basis for W is an orthonormal set.

THEOREM 10

If $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then

$$\operatorname{proj}_{W} \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + (\mathbf{y} \cdot \mathbf{u}_{2})\mathbf{u}_{2} + \dots + (\mathbf{y} \cdot \mathbf{u}_{p})\mathbf{u}_{p}$$
(4)

If $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_p]$, then

$$\operatorname{proj}_{W} \mathbf{y} = UU^{T}\mathbf{y} \quad \text{for all } \mathbf{y} \text{ in } \mathbb{R}^{n}$$
 (5)

PROOF Formula (4) follows immediately from (2) in Theorem 8. Also, (4) shows that $\operatorname{proj}_W \mathbf{y}$ is a linear combination of the columns of U using the weights $\mathbf{y} \cdot \mathbf{u}_1$, $\mathbf{y} \cdot \mathbf{u}_2, \dots, \mathbf{y} \cdot \mathbf{u}_p$. The weights can be written as $\mathbf{u}_1^T \mathbf{y}, \mathbf{u}_2^T \mathbf{y}, \dots, \mathbf{u}_p^T \mathbf{y}$, showing that they are the entries in $U^T \mathbf{y}$ and justifying (5).

How to find Q from A?

What does Gram-Schmidt Process Do?

It orthogonalises a set of vectors!

Note:Q spans the same m-dimensional subspace of \mathbb{R}^m as that of A

Ref: http://www.seas.ucla.edu/~vandenbe/133A/lectures/qr.pdf Slide 6.7

See Matlab: https://www.mathworks.com/help/matlab/ref/qr.html

(economy QR factorization vs full QR decomposition)

More explanations of full vs economy qr: http://www.ece.northwestern.edu/local-apps/matlabhelp/techdoc/math_anal/mat_li23.html