PARAMETER ESTIMATION WITH NEURAL NETWORKS SUBJECT TO PDE CONSTRAINTS

Consider

(1)
$$\nabla \cdot (k(x)\nabla u(x)) = 0$$

subject to the appropriate BCs.

Here, k(x) is the unknown coefficient. We assume that N_k measurements of k and N_u measurements of u are available: $k^*(x_i)$ $(i = 1, ..., N_k)$ and $u^*(x_i)$ $(i = 1, ..., N_u)$.

Define NNs for k(x) and u(x), $\hat{k}(x;\gamma) = \mathcal{N}\mathcal{N}_k(x;\gamma)$ and $\hat{u}(x;\theta) = \mathcal{N}\mathcal{N}_u(x;\theta)$. Substituting this in the government equation yields:

(2)
$$f(x; \gamma, \theta) = \nabla \cdot (\hat{k}(x)\nabla \hat{u}(x)) = \mathcal{N}\mathcal{N}(x; \gamma, \theta).$$

Then, we define the loss function as:

$$\mathcal{L}(\theta, \gamma) = \frac{1}{N_k} \sum_{i=1}^{N_k} (\hat{k}(x_i; \gamma) - k^*(x_i))^2 + \frac{1}{N_u} \sum_{i=1}^{N_u} (\hat{u}(x_i; \theta) - u^*(x_i))^2 + \frac{1}{N_c} \sum_{i=1}^{N_c} f(x_i; \gamma, \theta)^2$$

In the last term, the N_c collocation points could be chosen uniformly or non-uniformly depending on the problem.