CMPT 419/983: Theoretical Foundations of Reinforcement Learning

Lecture 2

Sharan Vaswani

September 15, 2023

Recap

- Input: K arms (possible actions), T rounds. $\mu_a := \mathbb{E}_{r \sim \nu_a}[r]$ is the (unknown) expected reward obtained by choosing action a.
- **Protocol**: In each round $t \in [T]$, the bandit algorithm chooses action $a_t \in [K]$ and observes reward $R_t \sim \nu_{a_t}$.
- **Objective**: Minimize Regret $(T) := \sum_{t=1}^{T} [\mu^* \mathbb{E}[R_t]] = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$
- Assumption: $\eta_t := R_t \mu_{a_t}$ is 1 sub-Gaussian i.e. for all $\lambda \in \mathbb{R}$, $\mathbb{E}[\exp(\lambda \eta_t)] \le \exp\left(\frac{\lambda^2}{2}\right)$.
- Concentration for sub-Gaussian r.v.: If X is centered and σ sub-Gaussian, then for any $\epsilon \geq 0$, $\Pr[X \geq \epsilon] \leq \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right)$. For n i.i.d r.v's X_i s.t. $\mathbb{E}[X_i] = \mu$, if $\hat{\mu} := \frac{1}{n} \sum_{i=1}^n X_i$ and $X_i \mu$ is σ sub-Gaussian, then $\Pr[|\hat{\mu} \mu| \geq \epsilon] \leq \exp\left(-\frac{n\epsilon^2}{2\sigma^2}\right)$
- Explore-then-Commit (ETC): Under a sub-Gaussian assumption, ETC results in $O(\sqrt{KT})$ regret when exploring for $m = O\left(\frac{1}{\Delta^2}\right)$ rounds, while it can only result in $O(T^{2/3})$ regret when m is set independent of Δ .

1

ϵ -greedy Algorithm

Algorithm ϵ -greedy (EG)

- 1: **Input**: $\{\epsilon_t\}_{t=1}^T$
- 2: for $t = 1 \rightarrow K$ do
- 3: Select arm $a_t = t$ and observe R_t
- 4: end for
- 5: Calculate empirical mean reward for arm $a \in [K]$ as $\hat{\mu}_a(K) := \frac{\sum_{t=1}^K R_t \, \mathcal{I}\{a_t = a\}}{N_a(K)}$
- 6: for $t = K + 1 \rightarrow T$ do
- 7: Select arm $\begin{cases} a_t = \arg\max_{a \in [K]} \hat{\mu}_a(t-1) \ w.p \ 1 \epsilon_t \\ a_t \sim \mathcal{U}\{1, 2, \dots, K\} \ w.p \ \epsilon_t \end{cases}$
- 8: Observe reward R_t and update for $a \in [K]$:

$$N_a(t) = N_a(t-1) + \mathcal{I}\left\{a_t = a\right\}$$
 ; $\hat{\mu}_a(t) = \frac{N_a(t-1)\,\hat{\mu}_a(t-1) + R_t\,\mathcal{I}\left\{a_t = a\right\}}{N_a(t)}$ 9: end for

• EG with $\epsilon_t = \epsilon$ can result in linear regret.

- Prove in Assignment 1!
- For K=2, EG with $\epsilon_t=O\left(\frac{1}{\Delta^2\,t}\right)$ incurs $O\left(\frac{\log(T)}{\Delta^2}\right)$ regret.

Upper Confidence Bound (UCB) Algorithm

• Based on the principle of *optimism in the face of uncertainty*.

Algorithm Upper Confidence Bound

- 1: Input: δ
- 2: For each arm $a \in [K]$, initialize $U_a(0, \delta) := \infty$.
- 3: for t=1 o T do
- 4: Select arm $a_t = \arg\max_{a \in [K]} U_a(t-1, \delta)$ (Choose the lower-indexed arm in case of a tie)
- 5: Observe reward R_t and update for $a \in [K]$:

$$N_a(t) = N_a(t-1) + \mathcal{I}\{a_t = a\}$$
 ; $\hat{\mu}_a(t) = \frac{N_a(t-1)\,\hat{\mu}_a(t-1) + R_t\,\mathcal{I}\{a_t = a\}}{N_a(t)}$

$$U_{a}(t,\delta) = \hat{\mu}_{a}(t) + \sqrt{\frac{2 \log(1/\delta)}{N_{a}(t)}}$$

6: end for

• Intuitively, UCB pulls a "promising" arm (with higher empirical mean $\hat{\mu}_a$) or one that has not been explored enough (with lower $N_a(t)$).

Claim: UCB with $\delta = \frac{1}{T^2}$ achieves the following problem-dependent bound on the regret,

$$\mathsf{Regret}(\mathsf{UCB}, T) \leq 2 \sum_{a=1}^K \Delta_a + \sum_{a \in [K] | \Delta_a > 0} \frac{16 \, \log(T)}{\Delta_a}$$

Proof: Without loss of generality, assume that arm 1 is the best arm. Using the regret decomposition, we know that Regret(UCB, T) = $\sum_a \Delta_a \mathbb{E}[N_a(T)]$. Define a threshold τ_a and $\hat{\mu}_{a,\tau_a}$ as the mean for arm a after pulling it for the first τ_a times. Define a "good" event G_a for each $a \neq 1$.

$$G_{a} = \left\{ \mu_{1} < \min_{t \in [T]} U_{1}(t, \delta) \right\} \cap \left\{ \hat{\mu}_{a, \tau_{a}} + \sqrt{\frac{2 \log(1/\delta)}{\tau_{a}}} < \mu_{1} \right\}$$

Consider two cases when bounding $\mathbb{E}[N_a(T)]$. Using the law of total expectation,

$$\mathbb{E}[N_{a}(T)] = \mathbb{E}[N_{a}(T)|G_{a}] \Pr[G_{a}] + \mathbb{E}[N_{a}(T)|G_{a}^{c}] \Pr[G_{a}^{c}]$$

$$\leq \underbrace{\mathbb{E}[N_{a}(T)|G_{a}]}_{\text{Term (i)}} + T \underbrace{\Pr[G_{a}^{c}]}_{\text{Term (ii)}} \qquad (N_{a}(T) \leq T \text{ for all } a, \Pr[G_{a}] \leq 1)$$

Recall that
$$G_a = \left\{ \mu_1 < \min_{t \in [T]} U_1(t,\delta) \right\} \cap \left\{ \hat{\mu}_{a,\tau_a} + \sqrt{\frac{2 \log(1/\delta)}{\tau_a}} < \mu_1 \right\}$$
. We will show (by contradiction) that Term (i) $= \mathbb{E}[N_a(T)|G_a] \leq \tau_a$. Suppose $\mathbb{E}[N_a(T)|G_a] > \tau_a$, then there is a round t s.t. $N_a(t-1) = \tau_a$, $a_t = a$. Since $a_t = \arg\max_a U_a(t-1,\delta)$, it follows that $U_a(t-1,\delta) > U_1(t-1,\delta)$. However, we know that, $U_a(t-1,\delta) = \hat{\mu}_a(t-1) + \sqrt{\frac{2 \log(1/\delta)}{N_a(t-1)}} = \hat{\mu}_a(t-1) + \sqrt{\frac{2 \log(1/\delta)}{T_a}}$

$$(\text{By assumption, } N_a(t-1) = \tau_a)$$

$$= \hat{\mu}_{a,\tau_a} + \sqrt{\frac{2\log(1/\delta)}{\tau_a}} \qquad (\text{Since arm a has been pulled τ_a times})$$

$$\leq \mu_1 < U_1(t-1,\delta) \,, \qquad (\text{Since we are conditioning on G_a})$$

which is a contradiction. Hence, $\mathbb{E}[N_a(T)|G_a] \leq \tau_a$.

Bounding Term (ii) =
$$\Pr[G_s^c] \le \Pr\left[\mu_1 \ge \min_{t \in [T]} U_1(t,\delta)\right] + \Pr\left[\hat{\mu}_{s,\tau_s} + \sqrt{\frac{2\log(1/\delta)}{\tau_s}} \ge \mu_1\right].$$

$$\left\{\mu_1 \ge \min_{t \in [T]} U_1(t,\delta)\right\} = \left\{\mu_1 \ge \min_{t \in [T]} \left\{\hat{\mu}_1(t) + \sqrt{\frac{2\log(1/\delta)}{N_1(t)}}\right\}\right\}$$

$$= \left\{\mu_1 \ge \min_{s \in [T]} \left\{\hat{\mu}_{1,s} + \sqrt{\frac{2\log(1/\delta)}{s}}\right\}\right\}$$

$$= \bigcup_{s=1}^T \left\{\mu_1 \ge \hat{\mu}_{1,s} + \sqrt{\frac{2\log(1/\delta)}{s}}\right\}$$

$$\implies \Pr\left[\mu_1 \ge \min_{t \in [T]} U_1(t,\delta)\right] \le \sum_{s=1}^T \Pr\left[\mu_1 \ge \hat{\mu}_{1,s} + \sqrt{\frac{2\log(1/\delta)}{s}}\right] \qquad \text{(Union Bound)}$$

$$\le \sum_{s=1}^T \delta = \delta T \qquad \text{(Using concentration for sub-Gaussian r.v's)}$$

Recall that Term (ii) = $\Pr[G_a^c] \le \delta T + \Pr\left[\hat{\mu}_{a,\tau_a} + \sqrt{\frac{2\log(1/\delta)}{\tau_a}} \ge \mu_1\right]$. Assume that τ_a is chosen such that $\Delta_a - \sqrt{\frac{2\log(1/\delta)}{\tau}} \ge \frac{\Delta_a}{2}$.

$$\Pr\left[\hat{\mu}_{a,\tau_{a}} + \sqrt{\frac{2\log(1/\delta)}{\tau_{a}}} \ge \mu_{1}\right] = \Pr\left[\hat{\mu}_{a,\tau_{a}} - \mu_{a} + \sqrt{\frac{2\log(1/\delta)}{\tau_{a}}} \ge \Delta_{a}\right] \le \Pr\left[\hat{\mu}_{a,\tau_{a}} - \mu_{a} \ge \frac{\Delta_{a}}{2}\right]$$

$$\le \exp\left(-\frac{\tau_{a}\Delta_{a}^{2}}{8}\right)$$

(Using concentration for sub-Gaussian r.v's)

Putting everything together,

$$\implies \Pr[G_a^c] \le \delta T + \exp\left(-\frac{\tau_a \Delta_a^2}{8}\right)$$

$$\implies \mathbb{E}[N_a(T)] \le \tau_a + T\left[\delta T + \exp\left(-\frac{\tau_a \Delta_a^2}{8}\right)\right]$$

Recall that
$$\mathbb{E}[N_a(T)] \leq \tau_a + T \left[\delta T + \exp\left(-\frac{\tau_a \Delta_a^2}{8}\right)\right]$$
.
$$\mathbb{E}[N_a(T)] \leq \frac{8\log(1/\delta)}{\Delta_a^2} + T \left[\delta T + \delta\right] \qquad \text{(Setting } \tau_a = \frac{8\log(1/\delta)}{\Delta_a^2}\text{)}$$
$$\leq \frac{8\log(1/\delta)}{\Delta_a^2} + 2\delta T^2$$
$$= \frac{16\log(T)}{\Delta_a^2} + 2 \qquad \text{(Setting } \delta = 1/\tau^2\text{)}$$
$$\implies \text{Regret(UCB, } T) = \sum_a \Delta_a \, \mathbb{E}[N_a(T)] = 2 \sum_{a=1}^K \Delta_a + \sum_{a=2}^K \frac{16\log(T)}{\Delta_a} \quad \Box$$

Claim: For $\Delta \leq 1$, UCB with $\delta = \frac{1}{T^2}$ achieves the following worst-case regret,

$$Regret(UCB, T) \le 2K + 8\sqrt{K T \log(T)}$$

Proof: Define C > 0 to be a constant to be tuned later. From the regret decomposition result,

$$\begin{aligned} \mathsf{Regret}(\mathsf{UCB},T) &= \sum_{a=1}^K \Delta_a \, \mathbb{E}[N_a(T)] = \sum_{a|\Delta_a < C} \Delta_a \, \mathbb{E}[N_a(T)] + \sum_{a|\Delta_a \geq C} \Delta_a \, \mathbb{E}[N_a(T)] \\ &\leq CT + \sum_{a|\Delta_a \geq C} \Delta_a \, \mathbb{E}[N_a(T)] \qquad \qquad (\mathsf{Since} \, \sum_{a=1}^K N_a(T) = T) \\ &\leq CT + \sum_{a|\Delta_a \geq C} \left[\frac{16 \log(T)}{\Delta_a} + 2\Delta_a \right] \qquad (\mathsf{From \; the \; previous \; slide}) \\ &\leq CT + \left[\frac{16K \, \log(T)}{C} + \sum_{a|\Delta_a \geq C} 2\Delta_a \right] \qquad (\mathsf{Setting} \, \, C = \sqrt{\frac{16K \log(T)}{T}}) \\ \implies \mathsf{Regret}(\mathsf{UCB},T) \leq 8\sqrt{K \, T \, \log(T)} + 2K\Delta_a \leq 2K + 8\sqrt{K \, T \, \log(T)} \end{aligned}$$

9

UCB vs ETC

- Similar to best-tuned ETC, UCB results in an $\tilde{O}(\sqrt{KT})$ problem-independent regret.
- ullet Unlike best-tuned ETC, UCB does not need to know the gaps Δ to set algorithm parameters, but does require knowledge of the horizon T.

Figure 1: For K=2,~T=1000, Gaussian rewards, comparing UCB and ETC(m) as a function of the gap Δ .

Improvements to UCB

- **Problem**: UCB requires knowledge of T and hence, the number of rounds needs to be fixed.
- Sol: Define UCB as $\hat{\mu}_a(t) + \sqrt{\frac{2 \log(f(t))}{N_a(t)}}$ where $f(t) := 1 + t \log^2(t)$. No dependence on T, but results in the same $O(\sqrt{KT \log(T)})$ worst-case regret. (see [LS20, Chapter 8])
- **Lower-Bound**: For a fixed T and for every bandit algorithm, there exists a stochastic bandit problem with rewards in [0,1] such that Regret $(T) = \Omega(\sqrt{KT})$. (see [LS20, Chapter 15]).
- **Problem**: UCB is sub-optimal by a $\sqrt{\log(T)}$ factor compared to the lower-bound. Is it possible to develop an algorithm that does not incur this log factor?
- Sol: [Lat18, MG17] propose modifications of UCB that achieve $O(\sqrt{KT})$ regret.

Stochastic Linear Bandits

Stochastic Linear Bandits

- MAB treat each arm (e.g. drug choice) independently. But the arms (and their rewards) can be dependent. E.g., drugs with similar chemical composition can have similar side-effects.
- Stochastic Linear Bandits can model linear dependence between different arms. For this, we require feature vectors $X_a \in \mathbb{R}^d$ for each arm $a \in [K]$.
- **Reward Model**: For an unknown vector $\theta^* \in \mathbb{R}^d$, the mean reward for arm a is given as: $\mu_a = \langle X_a, \theta^* \rangle$. Hence, arms with similar feature vectors will have similar mean rewards.
- Similar to the MAB setting, on pulling arm a_t at round t, we observe the reward $R_t = \mu_{a_t} + \eta_t = \langle X_t, \theta^* \rangle + \eta_t$. We will assume that η_t is conditionally 1 sub-Gaussian, i.e. if $\mathcal{H}_{t-1} := \{X_1, R_1, \dots, X_t\}$ is the *history* of interactions until round t, then for all $\lambda \in \mathbb{R}$, $\mathbb{E}[\exp(\lambda \eta_t)|\mathcal{H}_{t-1}] \le \exp(\lambda^2/2)$.
- Regret(T) := $\sum_{t=1}^{T} \left[\max_{a \in [K]} \langle X_a, \theta^* \rangle \mathbb{E}[R_t] \right] = T \max_{a \in [K]} \langle X_a, \theta^* \rangle \sum_{t=1}^{T} \mathbb{E}[R_t].$
- In the special case, when all the arms are independent, i.e. d=K and $\forall a \in [K]$, $X_a=e_a$ where $\forall i \in [d], i \neq a$, $e_a[i]=0$ and $e_a[a]=1$. Hence, $\mu_a=\theta_a^*$ and the linear bandit setup strictly generalizes MAB.

Stochastic Linear Bandits – Estimating $\hat{\mu}_a(t)$

At round t, we have collected the following data: $\{X_s, R_s\}_{s=1}^t$. **Q**: How do we estimate $\hat{\mu}_a(t)$?

By solving regularized ridge regression, i.e. for a regularization parameter $\lambda \geq 0$,

$$\hat{\theta}_{t} := \operatorname*{arg\,min}_{\theta} \left\{ \frac{1}{2} \sum_{s=1}^{t} \left[\left\langle X_{s}, \theta \right\rangle - R_{s} \right]^{2} + \frac{\lambda}{2} \left\| \theta \right\|^{2} \right\}$$

Setting the derivative to zero to solve the above minimization problem,

$$\sum_{s=1}^{t} \left[X_{s} \left[\langle X_{s}, \hat{\theta}_{t} \rangle - R_{s} \right] \right] + \lambda \hat{\theta}_{t} = 0$$

$$\implies \underbrace{\left[\sum_{s=1}^{t} X_{s} X_{s}^{T} + \lambda I_{d} \right]}_{:=V_{t} \in \mathbb{R}^{d \times d}} \hat{\theta}_{t} = \underbrace{\sum_{s=1}^{t} X_{s} R_{s}}_{:=b_{t} \in \mathbb{R}^{d \times 1}} \implies V_{t} \hat{\theta}_{t} = b_{t} \implies \hat{\theta}_{t} = V_{t}^{-1} b_{t}$$

Hence, the empirical mean for each arm after t rounds: $\hat{\mu}_{a} = \langle X_{a}, \hat{\theta}_{t} \rangle = X_{a}^{T} V_{t}^{-1} b_{t}$

Linear UCB

Algorithm Linear Upper Confidence Bound

- 1: Input: $\{\beta_t\}_{t=1}^T$, $V_0 = \lambda I_d \in \mathbb{R}^{d \times d}$
- 2: For each arm $a \in [K]$, initialize $U_a(0, \delta) := \infty$.
- 3: for $t=1 \rightarrow T$ do
- 4: Select arm $a_t = \arg\max_{a \in [K]} U_a(t-1, \delta)$ (Choose the lower-indexed arm in case of a tie)
- 5: Observe reward R_t and update:

$$\begin{aligned} V_t &= V_{t-1} + X_t X_t^T \quad ; \quad b_t = b_{t-1} + R_t X_t \quad ; \quad \hat{\theta_t} = V_t^{-1} b_t \\ U_{a}(t) &= \langle X_a, \hat{\theta}_t \rangle + \sqrt{\beta_t} \, \left\| X_a \right\|_{V_t^{-1}} \qquad \qquad \text{(where } \|x\|_A := \sqrt{x^{\mathsf{T}} A x} \text{)} \end{aligned}$$

6: end for

In the special case, when all the arms are independent, Linear UCB with $\beta_t = \beta = 2 \log(1/\delta)$ is equivalent to UCB, and hence, Linear UCB strictly generalizes UCB.

Prove this in Assignment 1!

Claim:
$$U_a(t) := \langle X_a, \hat{\theta}_t \rangle + \sqrt{\beta_t} \|X_a\|_{V_t^{-1}} = \max_{\theta \in \mathcal{C}_t} \langle \theta, X_a \rangle \text{ where } \mathcal{C}_t = \left\{ \theta \mid \left\| \theta - \hat{\theta}_t \right\|_{V_t}^2 \leq \beta_t \right\}.$$

 \mathcal{C}_t is an ellipsoid centered at $\hat{\theta}_t$ with the principle axes being the eigenvectors of V_t and the corresponding lengths being the reciprocal of the eigenvalues. As t increases, the eigenvalues of matrix V_t increases and the volume of the ellipsoid decreases.

Prove this in Assignment 1! For the subsequent proof, we will use this equivalence.

Claim: Assuming (i) $\|\theta^*\| \le 1$, (ii) $\|X_a\| \le 1$ for all a and (iii) $R_t \in [0,1]$, UCB with $\sqrt{\beta_t} = \sqrt{d\log\left(\frac{\lambda d + t}{\lambda d}\right) + 2\log(1/\delta)} + \sqrt{\lambda}$ achieves the following worst-case bound on the regret,

$$\mathsf{Regret}(\mathsf{LinUCB}, T) \leq O\left(d\sqrt{T}\log(T)\right)$$

Proof: Define a "good" event $G := \{ \forall t \in [T] | \theta^* \in \mathcal{C}_t := \left\{ \theta \mid \left\| \theta - \hat{\theta}_t \right\|_{V_t}^2 \leq \beta_t \right\}$, and denote the instantaneous expected regret at round t as $r_t = \max_a \langle X_a, \theta^* \rangle - \langle X_t, \theta^* \rangle$. Using the law of total expectation,

$$\begin{split} \text{Regret}(\mathsf{LinUCB}, T) &= \mathbb{E}[\mathsf{Regret}(\mathsf{LinUCB}, T) | G] \; \mathsf{Pr}[G] + \mathbb{E}[\mathsf{Regret}(T) | G^c] \; \mathsf{Pr}[G^c] \\ &\leq \mathbb{E}[\mathsf{Regret}(\mathsf{LinUCB}, T) | G] + T \; \mathsf{Pr}[G^c] \\ &\qquad \qquad (\mathsf{Regret}(\mathsf{LinUCB}, T) \leq T \; \mathsf{and} \; \mathsf{Pr}[G] \leq 1) \\ &= \sum_{t=1}^T \mathbb{E}[r_t | G] + T \; \mathsf{Pr}[G^c] \leq \sqrt{T \sum_{t=1}^T [\mathbb{E}[r_t | G]]^2 + T \; \mathsf{Pr}[G^c]} \\ &\qquad \qquad (\mathsf{Cauchy Schwarz inequality:} \; \langle x, y \rangle \leq \|x\| \; \|y\| \; \mathsf{with} \; x, y \in \mathbb{R}^T \; \mathsf{and} \; x[t] = 1, y[t] = r_t) \end{split}$$

Recall that Regret(LinUCB, T) $\leq \sqrt{T \sum_{t=1}^{T} [\mathbb{E}[r_t|G]]^2 + T \Pr[G^c]}$. Let us first bound $\mathbb{E}[r_t|G]$. If event G happens, then $\theta^* \in \mathcal{C}_t$. Hence, for all $a \in [K]$,

$$\langle \theta^*, X_a \rangle \leq \max_{\theta \in \mathcal{C}_a} \langle \theta, X_a \rangle = U_a(t) \leq U_{a_t}(t)$$

(Using the equivalence on Slide 15 and the algorithm)

$$\implies \max_{a \in [K]} \langle \theta^*, X_a \rangle \leq U_{a_t}(t) = \max_{\theta \in \mathcal{C}_t} \langle \theta, X_t \rangle = \langle \tilde{\theta}_t, X_t \rangle \qquad \qquad (\tilde{\theta}_t := \arg \max_{\theta \in \mathcal{C}_t} \langle \theta, X_t \rangle)$$

$$\implies \mathbb{E}[r_t|G] = \mathbb{E}[\max_{a} \langle X_a, \theta^* \rangle - \langle X_t, \theta^* \rangle |G] \le \langle \tilde{\theta}_t - \theta^*, X_t \rangle$$

$$\le \left\| \tilde{\theta}_t - \theta^* \right\|_{V_t} \|X_t\|_{V_t^{-1}}$$

(Cauchy Schwarz inequality with $x,y\in\mathbb{R}^d$ and $x=V_t^{1/2}\left(\tilde{\theta}_t-\theta^*\right),\ y=V_t^{-1/2}X_t$)

$$\leq \left[\left\| \tilde{\theta}_t - \hat{\theta_t} \right\|_{V_t} + \left\| \theta^* - \hat{\theta_t} \right\|_{V_t} \right] \left\| X_t \right\|_{V_t^{-1}}$$
 (Triangle inequality)

$$\implies \mathbb{E}[r_t|G] \le 2\sqrt{\beta_t} \, \left\|X_t\right\|_{V_t^{-1}} \tag{Since } \theta^*, \tilde{\theta}_t \in \mathcal{C}_t)$$

Putting everything together,

$$\begin{aligned} \mathsf{Regret}(\mathsf{LinUCB}, T) & \leq \sqrt{T \sum_{t=1}^{T} \left[\mathbb{E}[r_{t} | G] \right]^{2} + T \; \mathsf{Pr}[G^{c}]} \leq 2 \sqrt{T \sum_{t=1}^{T} \beta_{t} \; \|X_{t}\|_{V_{t}^{-1}}^{2}} + T \; \mathsf{Pr}[G^{c}] \\ & \leq 2 \sqrt{T \beta_{T} \sum_{t=1}^{T} \|X_{t}\|_{V_{t}^{-1}}^{2}} + T \; \mathsf{Pr}[G^{c}] \qquad (\mathsf{Since} \; \beta_{t} \leq \beta_{T} \; \mathsf{for \; all} \; t \in [T]) \end{aligned}$$

We will prove the following results: (i) $\sum_{t=1}^{T} \|X_t\|_{V_t^{-1}}^2 \le 2d \log \left(\frac{\lambda d+T}{\lambda d}\right)$ and (ii)

$$\sqrt{\beta_t} = \sqrt{d\log\left(\frac{\lambda d + t}{\lambda d}\right) + 2\log(T) + \sqrt{\lambda}}, \, \Pr[G^c] \le \frac{1}{T}.$$

Given these results,

$$\mathsf{Regret}(\mathsf{LinUCB}, T) \leq 2\sqrt{2d \ T \ \beta_T \ \log\left(\frac{\lambda d + T}{\lambda d}\right)} + 1 = O\left(d\sqrt{T}\log(T)\right) \quad \Box$$

Claim: If $||X_a|| \le 1$ for all a, $\sum_{t=1}^{T} ||X_t||_{V^{-1}}^2 \le 2d \log \left(\frac{\lambda d + T}{\lambda d}\right)$.

$$\begin{aligned} \text{Foof:} & V_t = V_{t-1} + X_t X_t^\mathsf{T} = V_{t-1}^{1/2} \left[I_d + V_{t-1}^{-1/2} X_t X_t^\mathsf{T} V_{t-1}^{-1/2} \right] V_{t-1}^{1/2} \\ & \Longrightarrow \det[V_t] = \det[V_{t-1}^{1/2}] \det \left[I_d + V_{t-1}^{-1/2} X_t X_t^\mathsf{T} V_{t-1}^{-1/2} \right] \det[V_{t-1}^{1/2}] \\ & \left(\det[XY] = \det[X] \det[Y] \right) \\ & = \det[V_{t-1}] \det \left[I_d + V_{t-1}^{-1/2} X_t \left[V_{t-1}^{-1/2} X_t \right]^\mathsf{T} \right] \left(\det[X^{1/2}] = \sqrt{\det[X]} \right) \\ & = \det[V_{t-1}] \left(1 + \left\| V_{t-1}^{-1/2} X_t \right\|^2 \right) = \det[V_{t-1}] \left(1 + \left\| X_t \right\|_{V_t^{-1}}^2 \right) \\ & \left(\text{Matrix Determinant Lemma: } \det[I_d + x x^\mathsf{T}] = 1 + x^\mathsf{T} x = 1 + \|x\|^2 \right) \\ & \Longrightarrow \ln \left(1 + \|X_t\|_{V_t^{-1}}^2 \right) = \ln \left(\frac{\det[V_t]}{\det[V_{t-1}]} \right) \end{aligned}$$

Recall that
$$\ln\left(1+\left\|X_{t}\right\|_{V_{t}^{-1}}^{2}\right)=\ln\left(\frac{\det\left[V_{t}\right]}{\det\left[V_{t-1}\right]}\right).$$

Hence, $\sum_{t=1}^{T} \ln\left(1 + \|X_t\|_{V_t^{-1}}^2\right) = \ln\left(\frac{\det[V_T]}{\det[V_0]}\right)$. For any $x \ge 0$, $x \le 2\ln(1+x)$. Hence, $\sum_{t=1}^{T} \|X_t\|_{V_t^{-1}}^2 \le 2\sum_{t=1}^{T} \ln(1 + \|X_t\|_{V_t^{-1}}^2)$, implying,

$$\implies \sum_{t=1}^{I} \|X_t\|_{V_t^{-1}}^2 \le 2 \ln \left(\left(\frac{(d\lambda + T)/d}{(\det[V_0])^{1/d}} \right)^d \right) = 2d \log \left(\frac{\lambda d + T}{\lambda d} \right) \quad \Box$$

Digression – (Super)-Martingales

Martingale: Sequence of random variables for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values.

A sequence of random variables – M_1, M_2, \ldots is a discrete-time martingale if for all t,

$$\mathbb{E}[|M_t|] \leq \infty$$
 ; $\mathbb{E}[M_t|M_1, M_2, \dots M_{t-1}] = M_{t-1}$

Example 1: An unbiased random walk

Example 2: Gambler's fortune: Suppose M_t is a gambler's fortune after t tosses of a fair coin, where the gambler wins \$1 if the coin comes up heads and loses \$1 if it comes up tails.

Super-Martingale: A sequence of random variables $-M_1, M_2, ...$ is a discrete-time super-martingale if for all t,

$$\mathbb{E}[|M_t|] \leq \infty$$
 ; $\mathbb{E}[M_t|M_1, M_2, \dots M_{t-1}] \leq M_{t-1}$

 $\begin{aligned} &\textbf{Claim: } \text{If (i) } \|\theta^*\| \leq 1 \text{ and (ii) } \|X_a\| \leq 1 \text{ for all } a \text{, for } \sqrt{\beta_t} = \sqrt{d \log \left(\frac{\lambda d + t}{\lambda d}\right)} + 2\log(T) + \sqrt{\lambda} \\ &\text{and } G := \{\forall t \in [T] | \theta^* \in \mathcal{C}_t := \left\{\theta \mid \left\|\theta - \hat{\theta}_t\right\|_{V_t}^2 \leq \beta_t\right\}, \ \Pr[G^c] \leq \frac{1}{T}. \end{aligned}$

Proof: Define $S_t := \sum_{s=1}^t \eta_s X_s$ and $K_t := \sum_{s=1}^t X_s X_s^\intercal$. We will prove the claim in 4 steps:

- (i) $\left\|\theta \hat{\theta}_t\right\|_{V_t} \le \left\|S_t\right\|_{V_t^{-1}} + \sqrt{\lambda}$.
- (ii) $M_t(z) = \exp\left(\langle z, S_t \rangle \frac{1}{2} \parallel z \parallel_{K_t}^2\right)$ is a non-negative super-martingale with $M_0(z) = 1$.
- (iii) Use the fact that a mixture of super-martingales given by $\bar{M}_t = \int_z M_t(z) h(z) \, dz$ is also a non-negative super-martingale for any probability density function h(z).
- (iv) Use the maximal inequality for super-martingales to bound $\Pr\left[\sup_{t\in[T]}\log(\bar{M}_t(z))\geq\log(1/\delta)\right] \text{ and hence bound } \left\|\theta-\hat{\theta}_t\right\|_{V_t}.$

Part (i): If
$$S_t := \sum_{s=1}^t \eta_s X_s$$
 and $K_t := \sum_{s=1}^t X_s X_s^{\mathsf{T}}$, then $\|\theta^* - \hat{\theta}_t\|_{V} \le \|S_t\|_{V_t^{-1}} + \sqrt{\lambda}$.

Proof:

Proof:

$$b_{t} = \sum_{s=1}^{t} X_{s} R_{s} = \sum_{s=1}^{t} X_{s} \left[\langle X_{s}, \theta^{*} \rangle + \eta_{s} \right]$$

$$= \sum_{s=1}^{t} X_{s}^{\mathsf{T}} X_{s} \theta^{*} + \sum_{s=1}^{t} X_{s} \eta_{s} = S_{t} + \sum_{s=1}^{t} X_{s}^{\mathsf{T}} X_{s} \theta^{*}.$$

$$\implies \hat{\theta}_{t} = V_{t}^{-1} b_{t} = V_{t}^{-1} S_{t} + V_{t}^{-1} \left[\sum_{s=1}^{t} X_{s}^{\mathsf{T}} X_{s} \right] \theta^{*}$$

$$\left\| \theta^{*} - \hat{\theta}_{t} \right\|_{V_{t}} = \left\| V_{t}^{-1} S_{t} + \left(V_{t}^{-1} K_{t} - I_{d} \right) \theta^{*} \right\|_{V_{t}} = \left\| S_{t} \right\|_{V_{t}^{-1}} + \sqrt{\theta^{*}} \left(V_{t}^{-1} K_{t} - I_{d} \right) \left(K_{t} - V_{t} \right) \theta^{*}$$

$$= \left\| S_{t} \right\|_{V_{t}^{-1}} + \sqrt{\lambda} \sqrt{\theta^{*}} \left(I_{d} - V_{t}^{-1} K_{t} \right) \theta^{*}$$

$$\implies \left\| \theta^{*} - \hat{\theta}_{t} \right\|_{V_{t}} \leq \left\| S_{t} \right\|_{V_{t}^{-1}} + \sqrt{\lambda} \left\| \theta^{*} \right\| \leq \left\| S_{t} \right\|_{V_{t}^{-1}} + \sqrt{\lambda} \quad \Box$$

Part (ii): If $S_t := \sum_{s=1}^t \eta_s X_s$ and $K_t := \sum_{s=1}^t X_s X_s^\mathsf{T}$, $M_t(z) = \exp\left(\langle z, S_t \rangle - \frac{1}{2} \|z\|_{K_t}^2\right)$ is a non-negative super-martingale with $M_0(z) = 1$.

Proof: It is clear that $M_t(z) = \exp\left(\langle z, S_t \rangle - \frac{1}{2} \|z\|_{\mathcal{K}_t}^2\right)$ is non-negative and $M_0(z) = 1$. By our assumption on the noise, $\mathbb{E}[\exp(\lambda \eta_t)|\mathcal{H}_{t-1}] \leq \exp\left(\frac{\lambda^2}{2}\right)$. Setting $\lambda = \langle z, X_t \rangle$, implies that

$$\mathbb{E}[\exp(\langle z, X_{t} \rangle \eta_{t}) | \mathcal{H}_{t-1}] \leq \exp\left(\frac{\|z\|_{X_{t}X_{t}^{\mathsf{T}}}^{2}}{2}\right) \implies \mathbb{E}\left[\exp(\langle z, X_{t} \rangle \eta_{t}) - \frac{\|z\|_{X_{t}X_{t}^{\mathsf{T}}}^{2}}{2} | \mathcal{H}_{t-1}\right] \leq 1 \text{ (*)}.$$

$$\mathbb{E}[M_{t}(z) | \mathcal{H}_{t-1}] = \mathbb{E}\left[\exp\left(\langle z, S_{t-1} + \eta_{t} X_{t} \rangle - \frac{1}{2} \|z\|_{K_{t-1} + X_{t}X_{t}^{\mathsf{T}}}^{2}\right) | \mathcal{H}_{t-1}\right]$$

$$= \mathbb{E}\left[\exp\left(\langle z, \eta_{t} X_{t} \rangle - \frac{1}{2} \|z\|_{X_{t}X_{t}^{\mathsf{T}}}^{2}\right) | \mathcal{H}_{t-1}\right] \mathbb{E}\left[\exp\left(\langle z, S_{t-1} \rangle - \frac{1}{2} \|z\|_{K_{t-1}}^{2}\right) | \mathcal{H}_{t-1}\right]$$

$$= M_{t-1}(z) \mathbb{E}\left[\exp\left(\langle z, \eta_{t} X_{t} \rangle - \frac{1}{2} \|z\|_{X_{t}X_{t}^{\mathsf{T}}}^{2}\right) | \mathcal{H}_{t-1}\right]$$

$$\implies \mathbb{E}[M_{t}(z) | \mathcal{H}_{t-1}] \leq M_{t-1}(z) \tag{Using (*)}$$

Fact 1: For a probability density h, if $M_t(z)$ is a non-negative super-martingale with $M_0(z)=1$, the "mixture" $\bar{M}_t:=\int_z M_t(z)\ h(z)\ dz$ is also a non-negative super-martingale with $\bar{M}_0=1$.

Fact 2: For a non-negative super-martingale \bar{M}_t s.t. $\bar{M}_0=1$, for any $\epsilon>0$, $\Pr[\sup_{t\in[T]}\bar{M}_t\geq\epsilon]\leq \frac{1}{\epsilon}$.

In order to construct \bar{M}_t , we will choose $h = \mathcal{N}(0, H^{-1})$ and $H = \lambda I_d$.

$$\bar{M}_{t} = \int_{z} M_{t}(z) h(z) dz = \frac{1}{\sqrt{(2\pi)^{d} \det[H^{-1}]}} \int_{z} \exp\left(\langle z, S_{t} \rangle - \frac{1}{2} \|z\|_{K_{t}}^{2} - \frac{1}{2} \|z\|_{H}^{2}\right) dz$$

From Fact 1, $ar{M}_t$ is a non-negative super-martingale, and hence using Fact 2 with $\epsilon=1/\delta$

$$\Pr\left[\sup_{t\in[T]}\bar{M}_t \geq \epsilon\right] = \Pr\left[\sup_{t\in[T]}\log(\bar{M}_t) \geq \log(\epsilon)\right] = \Pr\left[\sup_{t\in[T]}\log(\bar{M}_t) \geq \log(1/\delta)\right] \leq \delta$$

In the last part of the proof, we will relate \bar{M}_t to $\|S_t\|_{V_t^{-1}}$.

Recall that
$$\bar{M}_t = \int_z M_t(z) h(z) dz = \frac{1}{\sqrt{(2\pi)^d \det[H^{-1}]}} \int_z \exp\left(\langle z, S_t \rangle - \frac{1}{2} \|z\|_{K_t}^2 - \frac{1}{2} \|z\|_H^2\right) dz.$$

$$\langle z, S_t \rangle - \frac{1}{2} \|z\|_{K_t}^2 - \frac{1}{2} \|z\|_H^2 = \frac{1}{2} \|S_t\|_{(K_t + H)^{-1}}^2 - \frac{1}{2} \|z - (K_t + H)^{-1} S_t\|_{(K_t + H)}^2$$

$$\implies \int_z M_t(z) h(z) dz = \frac{\exp\left(\frac{1}{2} \|S_t\|_{V_t^{-1}}^2\right)}{\sqrt{(2\pi)^d \det[H^{-1}]}} \int_z \exp\left(-\frac{1}{2} \|z - V_t^{-1} S_t\|_{V_t}^2\right) dz$$

$$\implies \bar{M}_t = \frac{\exp\left(\frac{1}{2} \|S_t\|_{V_t^{-1}}^2\right)}{\sqrt{(2\pi)^d \det[H^{-1}]}} \sqrt{(2\pi)^d \det[V_t^{-1}]} = \sqrt{\frac{\det[H]}{\det[V_t]}} \exp\left(\frac{1}{2} \|S_t\|_{V_t^{-1}}^2\right)$$
(Integral of a Gaussian density)

Putting everything together, we know that for all $t \in [T]$, w.p $1 - \delta$, $\log(\bar{M}_t) \leq \log(1/\delta)$. Using the result from the previous slide, w.p $1 - \delta$, for all $t \in [T]$

$$\frac{1}{2} \|S_t\|_{V_t^{-1}}^2 + \frac{1}{2} \log \left(\frac{\det[H]}{\det[V_t]} \right) \le \log(1/\delta) \implies \|S_t\|_{V_t^{-1}} \le \sqrt{\log \left(\frac{\det[V_t]}{\lambda^d} \right)} + 2 \log(1/\delta)$$

$$\implies \|S_t\|_{V_t^{-1}} \le \sqrt{d \log \left(\frac{\lambda d + t}{\lambda d} \right) + 2 \log(1/\delta)}$$

From Part (i), we know that,

$$\left\|\theta^* - \hat{\theta}_t\right\|_{V_t} \le \|S_t\|_{V_t^{-1}} + \sqrt{\lambda} \le \underbrace{\sqrt{d\log\left(\frac{\lambda d + t}{\lambda d}\right) + 2\log(1/\delta) + \sqrt{\lambda}}}_{:=\sqrt{\beta_t}}$$

Hence, we have shown that w.p.
$$1-\frac{1}{T}$$
, $\left\|\theta^*-\hat{\theta}_t\right\|_{V_c}^2 \leq \beta_t$, and hence $\Pr[G^c] \leq \frac{1}{T}$

References i

Tor Lattimore, *Refining the confidence level for optimistic bandit strategies*, The Journal of Machine Learning Research **19** (2018), no. 1, 765–796.

Tor Lattimore and Csaba Szepesvári, Bandit algorithms, Cambridge University Press, 2020.

Pierre Ménard and Aurélien Garivier, *A minimax and asymptotically optimal algorithm for stochastic bandits*, International Conference on Algorithmic Learning Theory, PMLR, 2017, pp. 223–237.