

Pulsed Neutron Source for DUNE Far Detector Calibration

Jingbo Wang
South Dakota School of Mines & Technology

April 5, 2021 Practice Talk

Outline

- Deep Underground Neutrino Experiment
- DUNE Calibration Challenge
- Pulsed Neutron Source Calibration System
- DD Generator Test
- Summary

- Long-baseline neutrino experiment
 - Internal collaboration: >30 countires
 - 1300 km baseline
 - Neutrino/antineutrino beams
 - Near Detector complex
 - Large LArTPC far detector: 70 kton mass (40 kton fidicual mass), 1.5 km underground

- Physics program
 - Neutrino oscillation:
 - CP-violating angle δ_{CP}
 - Neutrino mass hierarchy
 - 3-flavor paradigm: θ_{23} octant, ...
 - Supernova neutrino
 - Beyond Standard Model physics: nucleon decay, sterile neutrino, nonstandard interactono, ...

DUNE Calibration is Challenging

- The stringent physics requirements for DUNE are unprecedented
 - Energy scale 2% or better is required for oscillation physics
 - energy scale <5% and energy resolution <10% are required for low-energy physics: supernova, solar physics
- DUNE far detector calibration is challenging
 - Deep underground → only 177 stopping muons and 146 Michel electrons /day/10 kt
 - Large volume → spatial coverage is limited by the source deployment locations

Pulsed Neutron Source

Could use an external Pulsed Neutron Source (PNS) system

- Neutron-based calibrations were used by SNO and Super-K
- One of the main strategies in DUNE Technical Design Report

Deuterium-Deuterium (DD) neutron generator $^2H + ^2H \rightarrow ^3H + n + Q(2.5~MeV)$

Neutron Moderator

- **DD generator** → 2.5 MeV neutrons
- Pre-moderator → efficiently reduce energy down to below 1 MeV
- Energy filter → reduce neutron energy down to <100 keV level</p>
- Pb reflector → Increase neutron yield
- Thermal absorber → suppress thermal neutrons
- Li-Polyethylene shield → radiation protection

How Can Neutrons Help?

 Neutron's average fractional energy loss per scatter is 4.8% in Ar-40

Example: for a 70 keV neutron, the energy loss is 3.4 keV on average

- Most neutrons above 57 keV will fall into the anti-resonance where the effective scattering length is about 30 m
- Neutrons need a few scatters to escape the 10-keV-wide antiresonance at 57 keV.
- Neutron capture on Ar-40 emits6.1 MeV gamma cascade

"standard candle" calibration signals

Neutron Transport in DUNE-size TPC

- One source covers about 1/3 the DUNE far detector module. Having several sources is sufficient to cover the entire detector volume
- Measure the energy response at low energy (6.1 MeV)
 - Provide energy scale and resolution as a function of position and time
 - Access various detector response parameters: electron lifetime...
 - Test supernova trigger efficiency

Advantages Using PNS System

- External deployment: no need to open the cryostat seal
 - Easy setup. No contamination to argon purity, no field distortion
- External pulsed trigger: use a pulsed DD generator
 - Pulsed trigger allows reconstruction of neutron capture location
 - Adjustable pulse width from 0-1000 μs. Adjustable pulse rate from 0-200 kHz.
 - Maximum neutron yield of 10⁶-10⁸ /s. Expect to complete a calibration run within one day
- Wide coverage: neutrons can travel long distance
 - Fractional energy loss per elastic scatter is 4.8%
 - 10-keV wide anti-resonance at 57 keV
 - Can cover an enormous volume of the DUNE far detector
- Multi-gamma output: neutron capture emits 6.1 MeV gamma cascade
 - Fixed energy deposition as a "standard candle"

DD Generator Test @CERN

DD generator test was done at ProtoDUNE-SP in July 2020

- A DD generator test was performed in 2020 during ProtoDUNE Run-1 at CERN
- Goal: verify the neutron transport model and develop neutron capture analysis algorithms

DDG installation location; DDG; DDG inside the shielding; roof feedthrough at which DDG is deployed

(Images from M. Fanì, DUNE Collab. Meeting, Sep 2020)

DDG Data Analysis

- Data was taken over 10 days with different trigger modes and neutron intensities
- Cosmic ray backgrounds are removed to reveal the neutron activities.
- Stay tuned

Work done by Y. Bezawada

Peak Time vs Channel ID plot for one event; Before and after cosmic removal respectively

 The complete Pulsed Neutron Source system will be tested in ProtoDUNE Run-2 operation in 2022

Vertical space point distribution

Other Supporting Measurements

To better understand the neutron transport and capture, we did two experiment at Los Alamos National Laboratory:

- Argon Capture Experiment at DANCE (ACED)
 - measured the thermal neutron capture cross-section and the correlated-gamma cascade
- Argon Resonant Transport Interaction Experiment (ARTIE)
 - measured the neutron-argon total cross-section around 57 keV

Summary

- DUNE far detector calibration is challenging
- External Pulsed Neutrons Source can be used to calibrate the energy response of liquid argon TPC
- DD generator test was done during ProtoDUNE Run-I at CERN.
- Test of a complete PNS system will be done at ProtoDUNE Run-II