Kommentare zu den Lehrveranstaltungen Mathematik

Wintersemester 2012/13

Foto: Prof. Dr. Hans Rudolf Lerche

Stand: 13. Juni 2012

Inhaltsverzeichnis

Allgemeine Hinweise zur Planung des Studiums	4
Hinweise zum 1. Semester	5
Hinweise zum 3. Semester (Lehramt)	6
Ausschlussfristen	7
Arbeitsgebiete für Diplomarbeiten und Wissenschaftliche Arbeiten (Lehramt)	8
Sprechstunden	9
Informationen zum Vorlesungsangebot in Straßburg im akademischen Jahr	ก
2012/2013	Э
Vorlesungen15Stochastik (1. Teil der zweisemestrigen Veranstaltung)1Numerik (1. Teil der zweisemestrigen Veranstaltung)1Mehrfachintegrale1Algebra und Zahlentheorie1Analysis III2Einführung in die Theorie und Numerik partieller Differentialgleichungen2Funktionentheorie II (Modulformen)2Wahrscheinlichkeitstheorie2Algebraische Gruppen2Algebraische Topologie2Differentialgeometrie2Mengenlehre: Kardinalzahlenarithmetik2Modelltheorie2Theorie und Numerik partieller Differentialgleichungen I2Stochastische Prozesse3Futures and Options3Mean curvature flow3Discontinuous Galerkin finite element methods for elliptic and parabolic problems3Nichtstandard Analysis3	678901234567890123
Fachdidaktik Didaktik der Algebra und Analysis 3 Theatrale Methoden im Mathematikunterricht 3 Medieneinsatz im Mathematikunterricht 3 Schulmathematische Themen mit Geogebra 3	6 7 8 9
Praktische Übungen Numerik (1. Teil der zweisemestrigen Veranstaltung)	2 3
Proseminare Kombinatorik und Stochastik	6 7

Impressum	
Kolloquium der Mathematik	
Internationales Forschungsseminar Algebraische Geometrie	
Kolloquia	
Hedging Derivatives	 •
Homotopietyp der Kobordismuskategorie	
Lesekurs: Algebraische Zahlentheorie	
Projektseminare	
Statistische Modelle in der klinischen Epidemiologie	 •
Game theory	
Modelltheorie	
Darstellungstheorie	
Statistik und Finanzmathematik	
Differentialformen	
Theorie und Numerik für partielle Differentialgleichungen	
Algebraische Geometrie	
Seminare	
Matrixgruppen und ihre Darstellungstheorie	 •
Matrice and a second ileas Descrite III and II and	

Allgemeine Hinweise zur Planung des Studiums

Liebe Studierende der Mathematik,

zur sinnvollen Planung Ihres Studiums sollten Sie spätestens ab Beginn des 3. Semesters die Studienberatungsangebote des Mathematischen Instituts in Anspruch nehmen (allgemeine Studienberatung des Studiengangkoordinators, Studienfachberatung der einzelnen Abteilungen, Mentorenprogramm). Im Rahmen des Mentorenprogramms der Fakultät wird Ihnen in der Regel am Ende Ihres 3. Semester ein Dozent oder eine Dozentin als Mentor zugewiesen, der oder die Sie zu Beratungsgesprächen einladen wird. Die Teilnahme an diesem Programm wird nachdrücklich empfohlen.

Unabhängig hiervon sollten Sie folgende Planungsschritte beachten:

• Im Bachelor-Studiengang:

Spätestens am Ende des ersten Studienjahrs: Wahl des Anwendungsfaches Ende des 3. Semesters: Planung des weiteres Studienverlaufs Beginn des 5. Semesters: Wahl geeigneter Veranstaltungen zur Vorbereitung der Bachelor-Arbeit

• Im Lehramts-Studiengang nach alter Prüfungsordnung (Beginn vor WS 10/11):

Nach Abschluss der Zwischenprüfung, d.h. im allgemeinen nach dem 4. Semester, sollten Sie einen oder mehrere Dozenten der Mathematik aufsuchen, um mit diesen über die Gestaltung des zweiten Studienabschnitts zu sprechen und um sich zur Wahl des Studienschwerpunkts beraten zu lassen.

Hingewiesen sei auch auf die Studienpläne der Fakultät zu den einzelnen Studiengängen unter http://www.math.uni-freiburg.de/lehre/studiengaenge/index.de.html. Sie enthalten Informationen über die Schwerpunktgebiete in Mathematik sowie Empfehlungen zur Organisation des Studiums. Bitte beachten Sie, dass es im Lehramtsstudiengang je nach Studienbeginn Unterschiede in Bezug auf die Anforderungen gibt.

Zahlreiche Informationen zu Prüfungen und insbesondere zur online-Prüfunganmeldung finden Sie auf den Internetseiten des Prüfungsamts. Einige Hinweise zur Orientierungsprüfung folgen auf den nächsten Seiten.

Die Teilnahme an Seminaren setzt in der Regel den vorherigen Besuch einer oder mehrerer Kurs- oder Spezialvorlesungen voraus. Die Auswahl dieser Vorlesungen sollte rechtzeitig erfolgen. Eine Beratung durch Dozenten oder Studienberater der Mathematik erleichtert Ihnen die Auswahl.

Inwieweit der Stoff mittlerer oder höherer Vorlesungen für Diplom- oder Staatsexamensprüfungen ausreicht bzw. ergänzt werden sollte, geht entweder aus den Kommentaren hervor oder muss rechtzeitig mit den Prüfern abgesprochen werden. Eine Liste der Arbeitsgebiete der Professorinnen und Professoren finden Sie vor dem Sprechstundenverzeichnis.

IHR STUDIENDEKAN MATHEMATIK

WS 2012/13

An die Studierenden des 1. Semesters

Alle Studierende der Mathematik (außer im Erweiterungsfach Mathematik im Lehramtsstudiengang) müssen eine Orientierungsprüfung in Mathematik ablegen. Dazu müssen Sie bis zum Ende des zweiten Fachsemesters die folgenden Prüfungsleistungen erbringen:

im Lehramtsstudiengang nach WPO (Studienbeginn vor WS 2010/2011), HF:

- 1) wahlweise ein Übungsschein zu einer der Vorlesungen Analysis I oder Analysis II und
- 2) wahlweise ein Übungsschein zu einer der Vorlesungen Lineare Algebra I oder Lineare Algebra II

im Lehramtsstudiengang nach GymPO (Studienbeginn ab WS 2010/2011), HF $\underline{\text{oder}}$ BF zu Musik/bildende Kunst:

die Modulteilprüfung Analysis I oder die Modulteilprüfung Lineare Algebra I. Welche der beiden Prüfungen als Orientierungsprüfung zählt, muss bei der Prüfungsanmeldung festgelegt werden. Eine nachträgliche Festlegung ist nicht möglich.

Bitte beachten Sie auch die exemplarischen Studienabläufe im Modulhandbuch, siehe http://www.math.uni-freiburg.de/lehre/dokumente/modulhandbuch-la-mathe.pdf

im Studiengang "Bachelor of Science in Mathematik":

die Modulteilprüfungen Analysis I und Lineare Algebra I.

Bitte informieren Sie sich am Aushangsbrett des Prüfungsamts Mathematik (Eckerstr. 1, 2. OG, Zi. 239/240) über den Ablauf des Prüfungsverfahrens.

An die Studierenden des 3. Semesters Lehramt nach WPO

(HF, Studienbeginn bis WS 2009/2010)

Wir empfehlen, die Zwischenprüfung in Mathematik nach dem 3. Semester oder zu Beginn des 4. Semesters abzulegen.

Prüfungsgegenstände der zwei Teilprüfungen sind:

Mathematik I: Lineare Algebra I, II und Stoff im Umfang einer weiterführenden, mindestens zweistündigen Vorlesung,

Mathematik II: Analysis I, II und Stoff im Umfang einer weiterführenden, mindestens zweistündigen Vorlesung.

Bei einer der Prüfungen müssen die Kenntnisse aus der weiterführenden Vorlesung dem Umfang einer vierstündigen Vorlesung entsprechen.

Im Wintersemester werden die folgenden Vorlesungen angeboten, die in der Zwischenprüfung als weiterführende Vorlesung im Sinne der Prüfungsordnung vor allem in Frage kommen:

Numerik (1. Teil der zweisemestrigen Veranstaltung) (S. Bartels)
Stochastik (1. Teil der zweisemestrigen Veranstaltung) (E. Eberlein)
Analysis III (G. Wang)
Algebra und Zahlentheorie (S. Kebekus)

Studierenden, die ihr Studium und ihre Prüfungsvorbereitung anhand anderer Vorlesungen oder anhand von Literatur planen, wird dringend geraten, dies in Kontakt mit einer Dozentin oder einem Dozenten der Mathematik zu tun.

Bitte nutzen Sie die Angebote der Studienberatung.

Gegebenenfalls ist auch ein Gespräch mit dem Vorsitzenden des Prüfungsausschusses zweckmäßig.

Studierende, die sich am Ende der Vorlesungszeit einer Prüfung unterziehen wollen, müssen sicherstellen, dass sie rechtzeitig die erforderlichen Scheine erworben haben.

An die Studierenden des 3. Semesters Lehramt nach GymPO

(HF, auch HF zu Musik/bildende Kunst, Studienbeginn ab WS 2010/2011)

Die Zwischenprüfung besteht aus den mündlichen Prüfungen über Analysis I und II sowie über Lineare Algebra I und II. Sie sollte bis zum Ende des vierten Fachsemesters abgelegt werden.

WS 2012/13

Ausschlussfristen für bisherige Studiengänge

Zum WS 2008/09 wurde an der Universität Freiburg der Diplomstudiengang Mathematik sowie der Studiengang Magister Scientiarum aufgehoben; bereits zum WS 2007/08 wurde der Studiengang Magister Artium aufgehoben, einige Teilstudiengänge davon bereits früher.

Für in diesen Studiengängen immatrikulierte Studierende sowie für Quereinsteiger gelten folgende Ausschlussfristen, bis zu denen die Zulassung zur Abschlussprüfung erlangt werden muss (Ausnahme: Magister Artium, siehe unten). Eine Fristverlängerung ist unter keinen Umständen möglich.

Diplomstudiengang Mathematik:

Diplomvorprüfung: nicht mehr möglich

Baccalaureus-Prüfung: Zulassung spätestens am 30. September 2016 Diplomprüfung: Zulassung spätestens am 30. September 2016

Magister-Studiengänge:

Zwischenprüfung: nicht mehr möglich

Magister Scientiarum: Zulassung spätestens am 31. März 2014

Magister Artium: Abschluss des Studiums letztmalig zum 31. Juli 2014

Sofern ein Magister-Artium-Studiengang aufgrund der Fächerkombination Teilstudiengänge enthält, die bereits vor dem WS 2007/08 aufgehoben wurden, gelten u. U. andere Fristen.

Arbeitsgebiete für Bachelor-, Master-, Diplomarbeiten und Wissenschaftliche Arbeiten Lehramt

Die folgende Liste soll einen Überblick geben, aus welchen Gebieten die Professorinnen und Professoren des Mathematischen Instituts zur Zeit Themen für Examensarbeiten vergeben. Die Angaben sind allerdings sehr global; für genauere Informationen werden persönliche Gespräche empfohlen.

Prof. Dr. V. Bangert: Differentialgeometrie und dynamische Systeme

Prof. Dr. S. Bartels: Angewandte Mathematik, Partielle Differentialgleichungen und Numerik

Prof. Dr. E. Eberlein: Wahrscheinlichkeitstheorie, Mathematische Statistik und Finanzmathematik

Prof. Dr. S. Goette: Differentialgeometrie, Topologie und globale Analysis

Prof. Dr. A. Huber-Klawitter: Algebraische Geometrie und Zahlentheorie

Prof. Dr. S. Kebekus: Algebra, Funktionentheorie, Komplexe und Algebraische Geometrie

Prof. Dr. D. Kröner: Angewandte Mathematik, Partielle Differentialgleichungen und Numerik

Prof. Dr. E. Kuwert: Partielle Differentialgleichungen, Variationsrechnung

Prof. Dr. H. R. Lerche: Wahrscheinlichkeitstheorie, Mathematische Statistik und Finanzmathematik

Prof. Dr. H. Mildenberger: Mathematische Logik, darin insbesondere: Mengenlehre und unendliche Kombinatorik

Prof. Dr. P. Pfaffelhuber: Stochastik, Biomathematik

Prof. Dr. L. Rüschendorf: Wahrscheinlichkeitstheorie, Mathematische Statistik und Finanzmathematik

Prof. Dr. M. Růžička: Angewandte Mathematik und Partielle Differentialgleichungen

Prof. Dr. M. Schumacher: Medizinische Biometrie und Angewandte Statistik

Prof. Dr. W. Soergel: Algebra und Darstellungstheorie

Prof. Dr. G. Wang: Partielle Differentialgleichungen, Variationsrechnung

Prof. Dr. K. Wendland: Funktionentheorie, Komplexe Geometrie und Analysis, Mathematische Physik

Prof. Dr. M. Ziegler: Mathematische Logik, Modelltheorie

Nähere Beschreibungen der Arbeitsgebiete finden Sie auf der Internet-Seite http://www.math.uni-freiburg.de/personen/dozenten.de.html

Mathematik – Sprechstunden (Stand: 22. Oktober 2012)

Abteilungen: AM-Angewandte Mathematik, D-Dekanat, Di-Didaktik, ML-Mathematische Logik, PA-Prüfungsamt, RM-Reine Mathematik, MSt-Mathematische Stochastik

Adressen: E $1-{\rm Eckerstr.}$ 1, HH $10-{\rm Hermann-Herder-Str.}$ 10

Name	Abt.	Abt. Raum/Str.	Tel.	Sprechstunde
Alessandroni, Dr. Roberta	RM	$206/\mathrm{E}1$	5551	Do 10:00–11:00 und n.V.
Bangert, Prof. Dr. Victor	$_{ m RM}$	335/E1	5562	Di 14:00 – 15:00 und n.V.
Bartels, Prof. Dr. Sören	AM	207/HH10	5647	Di 12:00–13:00
Bäurer, Patrick	MSt	223/E1	2670	Di 08:00–10:00, Do 08:00–10:00
Bürker, OStR Dr. Michael	Di	131/E1	5616	Di 11:00 – 12:00 und n.V.
Caycedo, Dr. Juan Diego	ML	304/E1	5609	Mi 12:00–13:00 und n.V.
				Studienfachberatung Mathematische Logik
Chen, B.Sc. Zhengxiang	$_{ m RM}$	204/E1	5615	Di 15:15 – 16:15 und n.V.
Daube, DiplMath. Johannes	AM	210/HH10	5627	Do 14:00 – 17:00
Depperschmidt, Dr. Andrej	MSt	229/E1	2668	Mo 09:00–12:00
Dziuk, Prof. Dr. Gerhard	AM	/HH10		Kontakt über Sekretariat: Frau Ruf Tel. 203–5629
Eberlein, Prof. Dr. Ernst	MSt	247/E1	2660	Mi 11:00 – 12:00
				Studiendekan
Eckstein, DiplMath. Sarah	AM	144/E1	5679	wird noch mitgeteilt
Engenhorst, DiplPhys. Magnus	RM	324/E1	5568	Do 13:00 – 16:00 u.n.V.
Fabert, Dr. Oliver	RM	329/E1	5578	Di 13:00–14:00
Frank, DiplMath. Johannes	RM	325/E1	5549	Mi $15:00 - 16:00$ und n.V.
Fritz, DiplPhys. Hans	AM	211/HH10	5654	Di $11:00 - 12:00$ und n.V.
Gerhart, DiplMath.oec. Christoph	MSt	224/E1	5671	Mo 09:00–10:00, Di 09:12:00

Name	Abt.	Raum/Str.	Tel.	Sprechstunde
Gersbacher, DiplMath. Christoph	$_{ m AM}$	222/HH10	5645	Do 11:00 – 12:00 und n.V. Studienfachberatung Angewandte Mathematik
Goette, Prof. Dr. Sebastian	$_{ m RM}$	340/E1	5571	Mi 13:15 – 14:00 und n.V. (Sprechstunde in Prüfungsangelegenheiten bitte nur Mi 10:30 - 12:00 im Prüfungsamt Raum 240)
Graf, DiplMath. Patrick	RM	408/E1	5589	Di 14:00 – 16:00 und n.V.
Greb, Dr. Daniel	RM	425/E1	5547	Do 16:00 – 17:00 und n.V.
Huber-Klawitter, Prof. Dr. Annette	$_{ m RM}$	434/E1	5560	Kontakt über Sekretariat (vormittags, Tel. 5546) Gleichstellungsbeauftragte der Fakultät für Mathematik und Physik
Hörmann, Dr. Fritz	RM	421/E1	5550	Do 11:00 – 12:00 und n.V.
Junker, PD Dr. Markus	D	423/E1	5537	Di 11:00 – 12:00 und n.V. Allgemeine Studienberatung und Prüfungsberatung
				Studiengangkoordinator, Assistent des Studiendekans
Kebekus, Prof. Dr. Stefan	RM	432/E1	5536	Di 10:00 – 11:00 und n.V.
				stellv. GDir Math. Institut
Kiesel, DiplMath. Swen	MSt	$227/\mathrm{E}1$	2299	Mi 10:00–12:00 und 14:00–16:00
Kitchen, Ph.D. Sarah	RM	$422/\mathrm{E1}$	5555	Mi $12:00 - 13:00$ and Do $12:00 - 14:00$
Kränkel, DiplMath. Mirko	AM	$222/\mathrm{HH}10$	5645	n.V.
Kröner, Prof. Dr. Dietmar	\overline{AM}	215/HH10	5637	Di 13:00 – 14:00 und n.V.
Kuwert, Prof. Dr. Ernst	RM	208/E1	5585	Mi 13:45 – 14:45 und n.V.
Kühn, DiplMath. Janine	MSt	231/E1	2666	Do 10:00–14:00
Lerche, Prof. Dr. Hans Rudolf	MSt	233/E1	5662	Di 11:00 – 12:00
Ludwig, PD Dr. Ursula	RM	$328/\mathrm{E}1$	2559	Di $14:00 - 15:00$ und n.V.
Maahs, DiplMath. Ilse	MSt	231a/E1	5663	Do 16:00–18:00 und Fr 16:00–18:00

Name	Abt.	Raum/Str.	Tel.	Sprechstunde
Magni, Dr. Annibale	RM	214/E1	5582	Mi 11:00–12:00 und n.V.
Mildenberger, Prof. Dr. Heike	ML	310/E1	5603	Di 13:00 – 14:00 und n.V.
Motto Ros, Dr. Luca	ML	311/E1	5613	n.V.
Müller, DiplMath. Thomas	$\overline{\mathrm{AM}}$	228/HH10	5635	Di 10:30 – 11:30 und n.V.
Nolte, Dr. Martin	$\overline{\mathrm{AM}}$	204/HH10	5630	Di 11:00 – 12:00 u. n. V.
Nägele, DiplMath. Philipp	$\overline{\mathrm{AM}}$	147/E1	5682	n.V.
Pfaffelhuber, Prof. Dr. Peter	MSt	241/E1	2999	Mi 15:00–16:00
Pohl, DiplMath. Volker	MSt	244/E1	5674	Di 09:00–12:00
Pokalyuk, DiplMath. Cornelia	MSt	229/E1	5668	Di 14:00 – 16:00 und Mi 14:00–16:00
Prüfungssekretariat	PA	239/240/E1	5576/5574	Mi 10:00 - 11:30 und n.V.
Prüfungsvorsitz (Prof. Dr. S. Goette) PA	PA	240/E1	5574	Mi 10:30 - 12:00
				ausschließlich in Prüfungsangelegenheiten und nur im Prüfungsamt Raum 240
Röttgen, DiplMath. Nena	RM	327/E1	5561	Mi 14:00 – 17:00 und n.V.
Rüschendorf, Prof. Dr. Ludger	MSt	242/E1	5665	Di 11:00–12:00 und n.V.
Růžička, Prof. Dr. Michael	$\overline{\mathrm{AM}}$	145/E1	5680	Mi 13:00 – 14:00 und n.V.
				Prodekan und GDir Math. Institut
Scheidegger, Dr. Emanuel	RM	329/E1	5578	Mi 16:00–19:00 und n.V.
Schumacher, DiplMath. Andrea	$\overline{\mathrm{AM}}$	228/HH10	5635	Di 10:30 – 11:30
Serbus, Jeff	ML	305/E1	5611	Di $12:00 - 14:00$
Soergel, Prof. Dr. Wolfgang	RM	429/E1	5540	Do 11:30 – 12:30 und n.V.
Steinhilber, DiplMath. Jan	$_{ m AM}$	211/HH10	5654	Di $11:00 - 12:00$ und n.V.
Stich, DiplMath. Dominik	MSt	248/E1	5673	Mo 13:00–14:00 und Mi 13:00–14:00
				Studienfachberatung Mathematische Stochastik
Wang, Prof. Dr. Guofang	RM	$209/\mathrm{E}1$	5584	Mi 11:15–12:15 Uhr

Name	Abt.	Raum/Str.	Tel.	Sprechstunde
Weisshaupt, PD Dr. Heinz	MSt	110/E1	7077	nach Vereinbarung
Wendland, Prof. Dr. Katrin	$_{ m RM}$	337/E1	5563	dienstags 13:00 – 14:00 u. n. V.
Wendt, Dr. Matthias	$_{ m RM}$	436/E1	5544	$Mi \ 11:00-12:00$
				Studienfachberatung Reine Mathematik
Wolf, DiplMath. Viktor	MSt	228/E1	5672	Do 10:00–11:00 und 16:00–17:00
Wolke, Prof. Dr. Dieter	$_{ m RM}$	419/E1	5538	Mi 13:00 – 14:00
Ziegler, Prof. Dr. Martin	ML	313/E1	5610	nach vorheriger Vereinbarung unter Tel. 5602
				Auslandsbeauftragter

Informationen zum Vorlesungsangebot in Straßburg im akademischen Jahr 2012/2013

In **Straßburg** gibt es ein großes Institut für Mathematik. Es ist untergliedert in eine Reihe von Equipes, siehe:

http://www-irma.u-strasbg.fr/rubrique127.html

Seminare und Arbeitsgruppen (groupes de travail) werden dort angekündigt.
Grundsätzlich stehen alle dortigen Veranstaltungen im Rahmen von EUCOR

Grundsätzlich stehen alle dortigen Veranstaltungen im Rahmen von **EUCOR** allen Freiburger Studierenden offen. Credit Points können angerechnet werden. Insbesondere eine Beteiligung an den Angeboten des M2 (zweites Jahr Master, also fünftes Studienjahr) ist hochwillkommen. Je nach Vorkenntnissen sind sie für Studierende ab dem 3. Studienjahr geeignet.

Programme Master 2. Mathématique fondamentale. Année 2012/2013

Le but du programme est surtout de présenter les sujets indispensables dans tous les domaines de la mathématique contemporaine, et qui n'était pas inclus dans les cours précédents. Il laisse l'introduction aux domaines de recherches avancés aux dernières séances des cours, directeurs de mémoires ainsi que à la semaine spéciale.

Premier trimestre. Cinq cours fondamentaux, 35 heures/cours.

- 1. Carlo Gasbarri. Géométrie algébrique et algèbre commutative.
- 2. Pierre Guillot. Topologie algébrique.
- 3. Alexandru Oancea. Géométrie symplectique et de contact.
- 4. Daniel Panazzolo. Équations différentielles.
- 5. Pierre Py. Groupes de Lie. Réseaux.

Deuxième trimestre. Cinq ou six cours fondamentaux et spéciaux, 25 heures/cours.

- 1. Martin Bordemann. Systèmes intégrables.
- 2. Viatcheslav Kharlamov. Éléments de la géométrie énumérative.
- 3. Gianluca Pacienza. Surfaces de Riemann.
- 4. Chloé Perin. Géométrie hyperbolique.
- 5. Claude Sabbah. Théorie de Hodge.

Dependances des cours :

Semaine spéciale. Sujet : Algèbre et géométrie amassées.

Trois mini-cours (4 heures/cours) introduisant les algèbres et variétés amassées de points de vue algébrique, géométrique et groupe-théorique et 8 exposés sépares sur les applications dans les domaines des cours, en particulier groupes de Lie et réseaux, géométrie hyperbolique, surfaces de Riemann, systèmes intégrables etc, géométrie algébrique etc. Responsables: Claire Amiot, Pierre Baumann, Vladimir Fock.

Les variétés amassées (cluster varieties) sont des variétés construites de façon récursive combinatoire a partir d'une matrice antisymétrisable. L'algèbre amassées (cluster algebras) sont des algèbres de fonctions régulières là-dessus. Parmi ces variétés se trouvent les variétés grassmanniennes variétés de drapeaux, variétés de caractères et beaucoup d'autres variétés qui jouent un rôle important en géométrie et théorie des représentations. Il s'est avéré rapidement que les algèbres et variétés amassées intervenait également dans de nombreux autres sujets, par exemple dans

- la géométrie de Poisson;
- les systèmes dynamiques intégrables;
- les espaces de Teichmüller supérieurs;
- la K-théorie de Milnor;
- la théorie des immeubles;
- la combinatoire et en particulier l'étude de polyèdres tels les associaèdres de Stasheff;
- la géométrie algébrique (commutative ou non commutative) et en particulier l'étude des conditions de stabilité de Bridgeland, les algèbres Calabi-Yau, les invariants de Donaldson-Thomas;
- la théorie des représentations des carquois et des algèbres de dimension finie, voir par exemple les articles de synthèse.

Termine: Die erste Vorlesungsperiode ist Ende September bis Mitte Dezember, die zweite Januar bis April. Eine genauere Terminplanung wird es erst im September geben. Die Stundenpläne sind flexibel. In der Regel kann auf die Bedürfnisse der Freiburger eingegangen werden. Einzelheiten sind durch Kontaktaufnahme vor Veranstaltungsbeginn zu erfragen.

Fahrtkosten können im Rahmen von EUCOR bezuschusst werden. Am schnellsten geht es mit dem Auto, eine gute Stunde. Für weitere Informationen und organisatorische Hilfen stehe ich gerne zur Verfügung.

Ansprechpartner in Freiburg: Prof. Dr. Stefan Kebekus

stefan.kebekus@math.uni-freiburg.de

Ansprechpartner in Straßburg: **Prof. Vladimir Fock**, Koordinator des M2

fock@math.u-strasbg.fr

oder die jeweils auf den Webseiten genannten Kursverantwortlichen.

Vorlesungen

Vorlesung: Stochastik (1. Teil der zweisemestrigen Veranstaltung)

Dozent: Prof. Dr. Ernst Eberlein

Zeit/Ort: Mo 16–18 Uhr, HS Rundbau, Albertstr. 21

Übungen: 2std. (14tägl.) n.V.

Tutorium: N.N.

Web-Seite: http://www.stochastik.uni-freiburg.de/Vorlesungen

Inhalt:

Dies ist Teil 1 der im Bachelor- und Lehramtsstudiengang vorgesehenen zweisemestrigen Vorlesung zur Stochastik. Ziel der Vorlesung ist es, Grundideen der Stochastik auf elementarem Niveau darzustellen und an einfachen Beispielen und Problemen zu erproben. Mit dem Begriff elementar soll ausgedrückt werden, dass keine spezifisch maßtheoretischen Kenntnisse erforderlich sind. Vorausgesetzt werden die Grundvorlesungen über Analysis und Linearer Algebra. Inhaltlich befaßt sich die Vorlesung mit wahrscheinlichkeitstheoretischen und im weiteren Verlauf auch mit statistischen Themen.

Der zweite Teil der Veranstaltung schließt sich im SS 2013 an. Dann finden parallel zur Vorlesung praktische Übungen statt.

Literatur:

- 1.) K. L. Chung: Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse. Springer-Verlag, 1978.
- 2.) H. Dinges, H. Rost: Prinzipien der Stochastik. Teubner, 1982.
- 3.) E. Eberlein: Einführung in die Stochastik. Skript zur Vorlesung
- 4.) W. Feller: An Introduction to Probability Theory and Its Applications I. John Wiley, 1968 (third edition).
- 5.) H.-O. Georgii: Stochastik. De Gruyter, 2007 (3. Auflage)
- 6.) K. Krickeberg, H. Ziezold: Stochastische Methoden. Springer-Verlag, 1995 (4. Auflage).

Typisches Semester: 3. Semester

ECTS-Punkte: (für beide Teile zusammen) 9 Punkte

Notwendige Vorkenntnisse: Grundvorlesungen Lineare Algebra und Analysis

Folgeveranstaltungen: Stochastik (2. Teil) im SS 2013

Studienleistung: regelmäßige und erfolgreiche Teilnahme an den Übungen

Prüfungsleistung: Klausur am Ende des 2. Teils Sprechstunde Dozent: Mi 11–12 Uhr, Zi. 247, Eckerstr. 1

Abteilung für Angewandte Mathematik

WS 2012/13

Vorlesung: Numerik (1. Teil der zweisemestrigen Veranstaltung)

Dozent: Prof. Dr. S. Bartels

Zeit/Ort: Mi, 10–12 Uhr, HS Weismann-Haus, Albertstraße 21a

Übungen: 2-stündig (14-täglich) n.V.

Tutorium: N.N.

Web-Seite: http://aam.uni-freiburg.de/bartels/numa2012

Inhalt:

Die Numerik ist eine Teildisziplin der Mathematik, die sich mit der praktischen Lösung mathematischer Aufgaben beschäftigt. Dabei werden Probleme in der Regel nicht exakt sondern approximativ gelöst. Typische Beispiele sind die Bestimmung von Nullstellen einer Funktion oder die Lösung linearer Gleichungssysteme. In der Vorlesung werden einige grundlegende numerische Algorithmen vorgestellt und im Hinblick auf Rechenaufwand sowie Genauigkeit untersucht. Die Vorlesung ist der erste Teil eines zweisemestrigen Kurses. Der Besuch der begleitenden praktischen Übungen wird empfohlen. Diese finden 14-täglich im Wechsel mit der Übung zur Vorlesung statt.

Literatur:

- 1.) R. Plato: Numerische Mathematik kompakt. Vieweg, 2006.
- 2.) R. Schaback, H. Wendland: Numerische Mathematik. Springer, 2004.
- 3.) J. Stoer, R. Burlisch: Numerische Mathematik I, II. Springer, 2007, 2005.

Typisches Semester: 3. Semester

ECTS-Punkte: (für Teile 1 und 2 der Vorlesung zusammen) 9 Punkte Notwendige Vorkenntnisse: Grundvorlesungen Lineare Algebra und Analysis Folgeveranstaltungen: Numerik (2. Teil im Sommersemester 2013)

Studienleistung: Aktive Teilnahme an den Übungen

Prüfungsleistung: Klausur nach dem 2. Teil

Sprechstunde Dozent: Di, 12–13 Uhr, Zimmer 209, Hermann-Herder-Str. 10, und n.V.

Sprechstunde Assistentin: Wird in der Vorlesung bekannt gegeben

WS 2012/13

Vorlesung: Mehrfachintegrale

Dozent: Prof. Dr. Sebastian Goette

Zeit/Ort: Do 13–16 Uhr, HS Weismann-Haus, Albertstr. 21a

Beginn: Do 10.1.2013

Übungen: 2std. n.V.

Tutorium: N. N.

Web-Seite: http://home.mathematik.uni-freiburg.de/goette/

Inhalt:

Das mehrdimensionale Riemann-Integral ist eine direkte Verallgemeinerung des Riemann-Integrals aus der Analysis-Vorlesung. Es erlaubt, stetige Funktionen über geeignete "einfache" kompakte Gebiete im \mathbb{R}^n zu integrieren. Wir beweisen in diesem Kontext den Satz von Fubini und die Transformationsformel. Außerdem führen wir Oberflächenintegrale ein. Wenn die Zeit reicht, lernen wir elementare Formen der Integralsätze von Stokes und Gauß kennen.

Literatur wird in der Vorlesung angegeben.

Typisches Semester: 5. Semester (nach Ende des Praxissemesters)

ECTS-Punkte: 2 Punkte

Notwendige Vorkenntnisse: Analysis I, II, Lineare Algebra I

Studienleistung: Regelmäßige Teilnahme an den Übungen

Sprechstunde Dozent: n.V., Zi. 340, Eckerstr. 1

Kommentar: Diese Veranstaltung richtet sich ausschließlich an Studieren-

de des Lehramts. Bachelor-Studierende können keine ECTS-

Punkte erwerben.

WS 2012/13

Vorlesung: Algebra und Zahlentheorie

Dozent: Prof. Dr. Stefan Kebekus

Zeit/Ort: Di, Do 10–12 Uhr, HS Weismann-Haus, Albertstr. 21 a

Übungen: 2std. n.V.

Tutorium: N. N.

Web-Seite: http://home.mathematik.uni-freiburg.de/

Inhalt:

Diese Vorlesung setzt die Lineare Algebra fort. Behandelt werden Gruppen, Ringe, Körper sowie Anwendungen in der Zahlentheorie und Geometrie. Höhepunkte der Vorlesung sind die Klassifikation endlicher Körper, die Unmöglichkeit der Winkeldreiteilung mit Zirkel und Lineal, die Nicht-Existenz von Lösungsformeln für allgemeine Gleichungen fünften Grades und das quadratische Reziprozitätsgesetz.

Literatur:

1.) Michael Artin: Algebra

Typisches Semester: ab dem 3. Semester

ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Lineare Algebra I und II

Studienleistung: aktive und erfolgreiche Teilnahme an den Übungen

Prüfungsleistung: Klausur

Sprechstunde Dozent: Di, 9–10 Uhr, Zi. 432, Eckerstr. 1

WS 2012/13

Vorlesung: Analysis III

Dozent: Guofang Wang

Zeit/Ort: Mo, Mi 8–10 Uhr, HS II, Albertstr. 23b

Übungen: 2-stündig n.V.

Tutorium: Dr. Roberta Alessandroni

Web-Seite: http://home.mathematik.uni-freiburg.de/wang

Inhalt:

Gegenstand der Vorlesung ist die Maß- und Integrationstheorie nach Lebesgue. Es wird ein abstrakter Aufbau der Maßtheorie vorgestellt, der in etwa dem Buch von Elstrodt folgt. Die Definition und Berechnung von Volumen und Integral im \mathbb{R}^n werden dabei ebenfalls ausführlich behandelt. Insbesondere werden Oberflächenintegrale eingeführt und der Integralsatz von Gauß bewiesen. Wenn die Zeit reicht, soll auch die Fouriertransformation diskutiert werden.

Der Stoff der Vorlesung ist für eine Vertiefung in den Gebieten Analysis, Angewandte Mathematik, Stochastik und Geometrie relevant. Auch für Studierende der Physik kann der Inhalt von Interesse sein.

Literatur:

- 1.) J. Elstrodt: Maß- und Integrationstheorie, 2. Auflage, Springer 1999
- 2.) H. Amann & J. Escher: Analysis III, Birkhäuser 2001
- 3.) E. Kuwert: Analysis III, Skript

Typisches Semester: ab 3. Semester ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Analysis I, II und Lineare Algebra I

Nützliche Vorkenntnisse: Lineare Algebra II

Sprechstunde Dozent: Mi, 11:15–12:15 Uhr, Zi. 209, Eckerstr. 1 Sprechstunde Assistentin: Mi. 9:00–12:00 Uhr, Zi. 206, Eckerstr. 1

Abteilung für Angewandte Mathematik

WS 2012/13

Vorlesung: Einführung in die Theorie und Numerik partieller

Differentialgleichungen

Dozent: Prof. Dr. D. Kröner

Zeit/Ort: Mo, Mi 10–12 Uhr, HS II, Albertstr. 23 b

Übungen: 2-std. n. V.

Tutorium: J. Daube

Web-Seite: http://portal.uni-freiburg.de/aam

Inhalt:

Partielle Differentialgleichungen sind Gleichungen, die einen Zusammenhang zwischen einer Funktion u, deren partiellen Ableitungen und weiteren gegebenen Funktionen beinhalten, z. B.

$$-\partial_{xx}u(x,y) - \partial_{yy}u(x,y) = f(x,y)$$
 für $(x,y) \in \Omega$,

wobei Ω eine Teilmenge des \mathbb{R}^2 ist. Diese Differentialgleichung ist vom elliptischen Typ und steht im Mittelpunkt der Vorlesung. Das zu lösende Problem besteht nun darin, zu gegebenen Funktionen $f:\Omega\to\mathbb{R}^2$ und $g:\partial\Omega\to\mathbb{R}^2$ eine Funktion $u:\Omega\to\mathbb{R}^2$ zu finden, welche die obige Differentialgleichung löst und die Randbedingung

$$u(x,y) = g(x,y)$$
 auf $\partial \Omega$

erfüllt.

Partielle Differentialgleichungen treten oft als Modelle für physikalische Vorgänge auf. Das obige Beispiel beschreibt z. B. die Temperaturverteilung u in einem Raum Ω , wenn der Raum gemäß der Funktion f aufgeheizt wird und die Wände $(\partial\Omega)$ des Raumes auf der Temperatur g gehalten werden.

Da sich eine explizite Lösung nur in Spezialfällen finden lässt, muss man sich zunächst auf die Untersuchung der Frage, ob es überhaupt Lösungen gibt und wenn ja, wie viele, beschränken. Der nächste Schritt, der den Schwerpunkt der Vorlesung bildet, ist die numerische Berechnung von Näherungslösungen mit Hilfe der Finite-Elemente-Methode. Neben der Darstellung des Verfahrens steht die Herleitung von Fehlerabschätzungen im Vordergrund. Parallel zu der Vorlesung werden eine Übung und eine praktische Übung (siehe Kommentar zur praktischen Übung) angeboten.

Literatur:

1.) D. Braess, Finite Elemente, Springer, Berlin (2007).

2.) G. Dziuk, Theorie und Numerik partieller Differentialgleichungen, De Gruyter (2010).

Typisches Semester: 5. Semester ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Analysis und Lineare Algebra

Sprechstunde Dozent: Di, 13–14 Uhr und n. V., Zi. 215, Hermann-Herder-Str. 10 Do, 14–17 Uhr und n. V., Zi. 210, Hermann-Herder-Str. 10

Vorlesung: Funktionentheorie II (Modulformen)

Dozent: Dr. habil. Emanuel Scheidegger

Zeit/Ort: Di, Do, 8–10 Uhr, HS II, Albertstr. 23b

Übungen: zweistündig nach Vereinbarung

Tutorium: Magnus Engenhorst

Inhalt:

Modulformen sind komplex-analytische Funktionen auf der oberen komplexen Halbebene, welche eine bestimmte Funktionalgleichung und eine Wachstumsbedingung im Unendlichen erfüllen. Letztere garantiert, daß Modulformen eine Art Fourierreihen-Entwicklung besitzen. Die Theorie der Modulformen gehört also in den Bereich der komplexen Analysis, aber ihre zentrale Bedeutung liegt in ihrem Zusammenhang zur Zahlentheorie und zur Geometrie. Daher resultieren auch die meisten ihrer Anwendungen.

Oft können Zählprobleme dadurch gelöst werden, indem man eine erzeugende Funktion aufstellt und deren Eigenschaften untersucht. In günstigen Situationen ist diese Funktion eine Modulform. Ihre Fourier-Koeffizienten sind dann die Lösung des Zählproblems. Daher rührt auch die Hauptanwendung von Modulformen in der Physik. Die Anzahl der Zustände eines quantenmechanischen Systems mit vorgegebenen Quantenzahlen wird durch die sogenannte Zustandssumme beschrieben, welche in günstigen Fällen eine Modulform ist.

Die wohl faszinierendste Anwendung der Theorie der Modulformen ist der Beweis von Fermats letztem Satz, der besagt, daß $a^n + b^n = c^n$ für n > 2 keine ganzzahlige Lösung außer a = b = 0 besitzt. Zugrunde liegt die Tatsache, daß die komplexe Kurve $y^2 = x(x - a^n)(x - b^n)$ sehr viele Symmetrien besitzt und durch Modulformen eindeutig beschrieben werden kann. Solche Kurven heißen elliptische Kurven und sind das zentrale geometrische Objekt in der Theorie der Modulformen.

Das Ziel der Vorlesung ist es, eine elementare Einführung in die Konzepte der Modulformen und elliptischen Kurven zu geben mit Schwergewicht auf expliziten Rechnungen, während abstrakte Konzepte der Zahlentheorie weniger berücksichtigt werden.

Die Vorlesung wird wahrscheinlich mit einem Seminar fortgesetzt.

Literatur:

- 1.) Neil Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, 2nd edition, 1993
- 2.) Don Zagier, Elliptic Modular Forms and Their Applications, in The 1-2-3 of Modular Forms, Springer, 2008
- 3.) Fred Diamond, Jerry Shurman, A First Course in Modular Forms, Springer, 2005
- 4.) Martin Eichler, Don Zagier, The Theory of Jacobi Forms, Birkhäuser, 1985

Typisches Semester: ab 5. Semester ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Funktionentheorie

Nützliche Vorkenntnisse: Topologie

Sprechstunde Dozent: Mi, 16–17 Uhr, Zi. 329, Eckerstr. 1

Vorlesung: Wahrscheinlichkeitstheorie

Dozent: Prof. Dr. H. R. Lerche

Zeit/Ort: Di, Fr 14–16, HS Weismann-Haus, Albertstr. 21a

Übungen: 2-stündig n.V.

Tutorium: N.N.

Web-Seite: http://www.stochastik.uni-freiburg.de/Vorlesungen

Inhalt:

Die Wahrscheinlichkeitheorie beschreibt mathematisch zufällige Vorgänge. Legt man die Axiomatisierung von Kolmogorov zugrunde, so ist sie eine mathematische Theorie, deren Formulierung mit Hilfe der Maßtheorie geschieht. Die Vorlesung gibt eine systematische Einführung in diese Theorie. Sie ist grundlegend für alle weiterführenden Lehrveranstaltungen aus dem Bereich der Stochastik.

Vor allem werden die klassischen Grenzwertsätze behandelt, wie Kolmogorovs 0-1 Gesetz, das Gesetz der großen Zahlen und der zentrale Grenzwertsatz. Neben bedingten Erwartungen sollen auch Martingale behandelt werden.

Literatur:

- 1.) Georgii, H.-O.: Stochastik, Walter de Gruyter, 2007
- 2.) Klenke, A.: Wahrscheinlichkeitstheorie, Springer, 2006
- 3.) Shiryaev, A.: Probability, 2. Auflage, Springer 1996
- 4.) Williams, D.: Probability with Martingales, Cambridge University Press, 1991

Typisches Semester: ab 4. Semester ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Analysis I u. II, Lineare Algebra I u. II

Prüfungsleistung: Klausur

Folgeveranstaltungen: WS 2013/2014: Stochastische Prozesse Sprechstunde Dozent: Di, 11–12 Uhr, Zi. 233, Eckerstr. 1

WS 2012/13

Vorlesung: Algebraische Gruppen

Dozent: Prof. Dr. W. Soergel

Zeit/Ort: Mo, Mi, 8–10 Uhr, SR 404, Eckerstr. 1

Übungen: 2std. n.V.

Tutorium: Ph.D. S. Kitchen

Inhalt:

Die Vorlesung "Algebraische Gruppen" baut auf der Vorlesung "Einführung in die kommutative Algebra und algebraische Geometrie" auf. Zunächst soll die allgemeine Theorie vorgestellt werden, wie sie etwa in den Büchern von Springer, Humphreys und Borel dargestellt wird, insbesondere die Klassifikation der reduktiven algebraischen Gruppen. Anschließend will ich auf Fragen der Darstellungstheorie dieser Gruppen eingehen.

Literatur:

- 1.) T. A. Springer, Algebraic Groups
- 2.) J. Humphreys, Algebraic Groups
- 3.) A. Borel, Algebraic Groups

Typisches Semester: ab 5. Semester ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Kommutative Algebra & Algebraische Geometrie Sprechstunde Dozent: Do, 11:30–12:30 Uhr und n.V., Zi. 429, Eckerstr. 1

Vorlesung: Algebraische Topologie

Dozentin: Dr. Oliver Fabert

Zeit/Ort: Di und Do 12–14 Uhr im HS II, Albertstr. 23 b

Übungen: zweistündig nach Vereinbarung

Tutorium: Patrick Graf

Web-Seite:

Inhalt:

Die algebraische Topologie untersucht topologische Räume und stetige Abbildungen mit algebraischen Hilfsmitteln. Sie wird in vielen Bereichen der Mathematik von der Differentialgeometrie über die komplexe und algebraische Geometrie bis hin zur Gruppentheorie verwendet.

In der algebraischen Topologie werden Räumen Gruppen zugeordnet und den Abbildungen werden Homomorphismen zugeordnet. So entsteht ein algebraisches Abbild des topologischen Sachverhalts, welches oft leichter zu verstehen ist und zur Lösung des ursprünglichen topologischen Problems beitragen kann. Ein Beispiel hierfür haben Sie schon in der Vorlesung Topologie kennengelernt: die Fundamentalgruppe.

Im ersten Teil der Vorlesung werden wir ein weiteres Beispiel kennenlernen: die singuläre Homologie eines Raumes. Im zweiten Teil der Vorlesung werden wir ihr Dual, die singuläre Kohomologie, einführen und studieren. Diese ist eng mit der singulären Homologie verwandt, besitzt aber interessante zusätzliche Strukturen wie das Cup-Produkt.

Themen der Vorlesung werden sein: Simpliziale und singuläre Homologie,, Berechnungen und Anwendungen der Homologie, Eilenberg-Steenrod-Axiome für Homologietheorien, Kohomologie und das Cup-Produkt, Mannigfaltigkeiten und Poincaré-Dualität, Beziehung zwischen Homotopie und Homologie.

Literatur:

- 1.) A. Hatcher: Algebraic Topology, Cambridge University Press, 2002; http://www.math.cornell.edu/~hatcher/AT/ATpage.html
- 2.) R. Stöcker, H. Zieschang: Algebraische Topologie: Eine Einführung, Teubner, Stuttgart (1988)

Typisches Semester: ab 5. Semester ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Anfängervorlesungen, Topologie Sprechstunde Dozentin: Di, 14–15 Uhr, Zi. 328, Eckerstr. 1

Vorlesung: Differentialgeometrie

Dozent: Prof. Dr. Victor Bangert

Zeit/Ort: Mo, Mi, 12–14 Uhr, Hörsaal II, Albertstr. 23b

Übungen: 2-std. n.V.

Tutorium: Nena Röttgen

Web-Seite: http://www.mathematik.uni-freiburg.de/geometrie/lehre/

ws2012/vorlesung/differentialgeometrie/index.de.html

Inhalt:

Zunächst werden die grundlegenden Begriffe und Methoden der Differentialgeometrie vorgestellt, die auch für Teile der Analysis und der theoretischen Physik wichtig sind: Differenzierbare Mannigfaltigkeiten und Tensorfelder. Darauf aufbauend wird eine Einführung in das größte Teilgebiet der Differentialgeometrie, die Riemannsche Geometrie, gegeben. Insbesondere werden Geodätische und der Riemannsche Krümmungstensor eingeführt und die geometrische Bedeutung des Riemannschen Krümmungstensors erklärt.

Literatur:

- 1.) J. M. Lee: Introduction to Smooth Manifolds. Springer (GTM 218), 2003
- 2.) M. P. do Carmo: Riemannian Geometry. Birkhäuser, Boston 1992
- 3.) J. M. Lee: Riemannian Manifolds. An Introduction to Curvature. Springer (GTM 176), 1997

Typisches Semester: ab 5. Semester ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Analysis I–III, Lineare Algebra I und II

Nützliche Vorkenntnisse: Topologie

Folgeveranstaltungen: (Bachelor-)Seminar, Differentialgeometrie II

Sprechstunde Dozent: Di, 14–15 Uhr, Zi. 335, Eckerstr. 1 Sprechstunde Assistent: Do, 14–17 Uhr, Zi. 327, Eckerstr. 1

Abteilung für Mathematische Logik

WS 2012/13

Vorlesung: Mengenlehre: Kardinalzahlenarithmetik

Dozentin: Heike Mildenberger

Zeit/Ort: Mi, 10–12, SR 404, Eckerstr. 1; Fr, 10–12, HS II, Albert-

straße 23b

Übungen: zweistündig, nach Vereinbarung

Tutorium: Jeff Serbus

Web-Seite: http://home.mathematik.uni-freiburg.de/mildenberger/

veranstaltungen/ws12/mengenlehre.html

Inhalt:

Diese Mengenlehrevorlesung wird der Kombinatorik auf der Basis von ZFC gewidmet sein. Die Vorlesung setzt keine früheren Mengenlehrevorlesungen von Herrn Dr. Motto Ros oder mir voraus.

Wir werden hauptsächlich Kardinalzahlenarithmetik studieren. Dazu gehören Schlüsse auf der Basis von ZFC über die Kardinalzahlexponentation. Seit den 1980er Jahren entwickelt Shelah hierzu ein nützliches technisches Hilfmittel, die Untersuchung der möglichen Konfinalitäten geeigneter Ultraprodukte. Das Gebiet ist auch unter dem Namen "pcf theory" bekannt, der von **p**ossible **c**ofinalities kommt. Das bekannteste Ergebnis lautet: Wenn $2^{\aleph_0} < \aleph_{\omega}$, so $\aleph_{\omega}^{\aleph_0} < \aleph_{\omega_4}$. Über die Schärfe der Obergrenze in der Konklusion ist immer noch wenig bekannt, es könnte sogar \aleph_{ω_1} sein.

Literatur:

- 1.) Abraham, U. und Magidor, M., Cardinal arithmetic. Handbook of Set Theory. Vols. 1, 2, 3, 1149–1227, Springer 2010.
- 2.) Burke, M. und Magidor, M., Shelah's pcf theory and its applications. Ann. Pure Appl. Logic $50 \ (1990)$, no. 3, 207-254.
- 3.) Holz, M., Steffens K., Weitz, E., Introduction to Cardinal Arithmetic, Birkhäuser 1999.
- 4.) Kojman, M., The A,B,C of pcf, http://www.cs.bgu.ac.il/~kojman/paperslist.html
- 5.) Shelah, S., Cardinal Arithmetic, The Clarendon Press 1994.

Typisches Semester: mittleres oder höheres

ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Mathematische Logik

Folgeveranstaltungen: Seminar

Sprechstunde Dozentin: Di, 13–14 Uhr, Zi. 310, Eckerstr. 1

Sprechstunde Assistent: wird noch bekanntgegeben

Abteilung für Mathematische Logik

WS 2012/13

Vorlesung: Modelltheorie

Dozenten: Markus Junker und Martin Ziegler

Zeit/Ort: Di 14–16 Uhr, Fr 14–16 Uhr, SR 404, Eckerstr. 1

Übungen: 2-std. n.V.

Tutorium: Juan Diego Caycedo

Web-Seite: http://home.mathematik.uni-freiburg.de/ziegler/

veranstaltungen/ws12-modell1.html

Inhalt:

Die Modelltheorie untersucht den Zusammenhang zwischen formalen Eigenschaften einer Theorie T erster Stufe und den algebraischen Eigenschaften ihrer Modelle.

Die Theorie der algebraisch abgeschlossenen Körper z.B. hat Quantorenelimination: jede Formel ist äquivalent zu einer quantorenfreien Formel. Diese für die algebraische Geometrie wichtige Eigenschaft lässt sich mit Hilfe des *Quantoreneliminationkriteriums* leicht der Modellklasse ansehen.

Eine Theorie heißt \aleph_0 -kategorisch, wenn alle Modelle der Mächtigkeit \aleph_0 (d.h. die abzählbaren Modelle) isomorph sind. Hauptbeispiel: Die Theorie der dichten linearen Ordnungen. Wir werden den Satz von Ryll-Nardzewski beweisen: T ist genau dann \aleph_0 -kategorisch, wenn es für jedes n bis auf T-Äquivalenz nur endlich viele Formeln in den Variablen x_1, \ldots, x_n gibt.

Der viel tiefer liegende Satz von Baldwin-Lachlan charakterisiert die ℵ₁-kategorischen Theorien. Dabei wird eine Strukturtheorie entwickelt, die die Modelle solcher Theorien in ähnlicher Weise durch eine Dimension bestimmt, wie algebraisch abgeschlossene Körper (das Hauptbeispiel) durch ihren Transzendenzgrad bestimmt sind. Die Europäische Kredittransfersystempunktzahl ist 9.

Literatur:

- 1.) K. Tent, M. Ziegler Model Theory. 2012
- 2.) M. Ziegler *Modelltheorie I* (Skript) (http://sunpool.mathematik.uni-freiburg.de/home/ziegler/skripte/modell1.pdf)
- 3.) D. Marker Model Theory
- 4.) W. Hodges A shorter Model Theory

Typisches Semester: 5. Semester ECTS-Punkte: 9 Punkte

Nützliche Vorkenntnisse: Mathematische Logik

Folgeveranstaltungen: Vorlesung Modelltheorie 2, Seminar Modelltheorie Sprechstunde Dozent: nach Vereinbarung, Zi. 423/Zi. 313, Eckerstr 1

Abteilung für Angewandte Mathematik

WS 2012/13

Vorlesung: Theorie und Numerik partieller Differential-

gleichungen I

Dozent: Prof. Dr. S. Bartels

Zeit/Ort: Di und Do, 10–12 Uhr, SR 226, Hermann-Herder-Str. 10

Übungen: 2-stündig n.V.

Tutorium: N.N.

Web-Seite: http://aam.uni-freiburg.de/bartels/cpde2012

Inhalt:

In der Vorlesung werden numerische Verfahren zur approximativen Lösung zeitabhängiger und nichtlinearer partieller Differentialgleichungen untersucht. Insbesondere werden typische Beispiele nicht-konvexer Variationsprobleme, nicht-glatter Optimierungsprobleme, singular gestörter parabolischer Gleichungen und Probleme mit nicht-linearen Nebenbedingungen diskutiert. Die Verfahren basieren meist auf Finite-Elemente-Diskretisierungen im Ort und Differenzenquotienten zur Approximation von Zeitableitungen bei Gradientenflüssen. Im Rahmen der Übungen werden neben theoretischen Aufgaben einfache MATLAB-Programme für die Realisierung der Methoden modifiziert.

Literatur:

- 1.) D. Braess: Finite Elemente. Springer, 2007.
- 2.) S. Brenner, R. Scott: Finite Elements. Springer, 2008.
- 3.) L. C. Evans: Partial Differential Equations. AMS, 2010.
- 4.) H. W. Alt: Lineare Funktionalanalysis. Springer, 2006.
- 5.) M. Dobrowolski: Angewandte Funktionalanalysis. Springer, 2005.
- 6.) P. Knabner, L. Angermann: Numerical Methods for Elliptic and Parabolic PDEs. Springer, 2000.
- 7.) C. Grossmann, H.-G. Roos: Numerische Behandlung partieller Differentialgleichungen. Springer, 2005.

Typisches Semester: 7. Semester ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Vorlesung Einführung in die Theorie und Numerik partieller

Differentialgleichungen

Nützliche Vorkenntnisse: Vorlesungen zu Funktionalanalysis und partiellen Differential-

gleichungen

Studienleistung: Aktive Teilnahme an den Übungen

Prüfungsleistung: Mündliche Prüfung

Sprechstunde Dozent: Di, 12–13 Uhr, Zi. 209, Hermann-Herder-Str. 10, und n.V.

Sprechstunde Assistentin: Wird in der Vorlesung bekannt gegeben

Vorlesung: Stochastische Prozesse

Dozent: Prof. Dr. Ludger Rüschendorf

Zeit/Ort: Di, Do 10–12 Uhr, HS II, Albertstr. 23 b

Übungen: **2std. nach Vereinbarung**

Tutorium: N.N.

Web-Seite: http://www.stochastik.uni-freiburg.de/Vorlesungen

Inhalt:

Die Vorlesung ist die erste Veranstaltung im Studiengang Master of Science Mathematik, Studienschwerpunkt Wahrscheinlichkeitstheorie, Finanzmathematik und Statistik. Themen der Vorlesung sind zunächst Martingale und Markovketten in diskreter Zeit. Da-

Themen der Vorlesung sind zunächst Martingale und Markovketten in diskreter Zeit. Danach werden Prozesse in stetiger Zeit eingeführt. Insbesondere werden die Brownsche Bewegung, Lévy- und Markov-Prozesse besprochen. Am Ende der Vorlesung werden der Satz von Donsker über Verteilungskonvergenz gegen die Brownsche Bewegung sowie deren Anwendungen behandelt.

Literatur:

- 1.) A. Klenke. Wahrscheinlichkeitstheorie. Springer 2006
- 2.) O. Kallenberg. Foundations of Modern Probability (Probability and Its Applications). Springer 2002
- 3.) D. Williams. Probability with Martingales (Cambridge Mathematical Textbooks). Cambridge University Press 1991

Typisches Semester: 1. Semester im Master

ECTS-Punkte: 9 Punkte

Master-Studiengang: geeignet für das Modul Angewandte Mathematik

Notwendige Vorkenntnisse: Wahrscheinlichkeitstheorie

Sprechstunde Dozent: Mi, 11–12 Uhr, Zi. 242, Eckerstr. 1

Vorlesung: Futures and Options

Dozent: JProf. Dr. Eva Lütkebohmert-Holtz

Zeit/Ort: Do, 10–12 Uhr, HS 2121, KG II

Zeitraum: 25.10.2012-14.02.2013

Übungen: Di, 14–16 Uhr, HS 2121, KG II

Zeitraum: 23.10.2012-12.02.2013

Web-Seite: www.prim.uni-freiburg.de/

Inhalt:

The second revolution in mathematical finance following the Markowitz mean-variance theory of risk and return and the capital asset pricing model concerns the option pricing theory of Black, Scholes and Merton from 1973 and the risk-neutral valuation theory that grew from it. In this course we introduce financial models in discrete as well as in continuous time and explain the basic principles of risk-neutral valuation of derivatives. Besides futures and standard put and call options of European and American type a number of more sophisticated derivatives and exotic options are introduced as well. We also discuss interest-rate sensitive instruments such as swaps as well as credit derivatives such as credit default swaps.

The course, which is taught in English, is offered for students in their second year of the Integrated Master Program in the profile Finance but is also open to other master students in both economics and mathematics.

Literatur:

- 1.) Chance, D. M., Brooks, R.: An Introduction to Derivatives and Risk Management, 8th ed., South-Western, 2009.
- 2.) Hull, J. C.: Options, Futures, and other Derivatives, 7th ed., Prentice Hall, 2009.
- 3.) Bielecki, T. R.; Rutkowski, M., Credit Risk: Modeling, Valuation and Hedging, Springer, 2002.
- 4.) Strong, R. A.: Derivatives. An Introduction, 2nd ed., South-Western, 2004.

Typisches Semester: ab 5. Semester ECTS-Punkte: 6 Punkte

Notwendige Vorkenntnisse: Principles of Finance Sprechstunde Dozentin: nach Vereinbarung

WS 2012/13

Vorlesung: Mean curvature flow

Dozent: Dr. Roberta Alessandroni

Zeit/Ort: Do 14–16 Uhr, SR 127, Eckerstr. 1

Übungen: 2std. nach Vereinbarung

Tutorium: N. N.

Web-Seite: http://home.mathematik.uni-freiburg.de/alessandroni/

Inhalt:

The topic of this course is the mean curvature flow for smooth embedded hypersurfaces in the (n+1)-dimensional Euclidean space. We will discuss the case of compact convex surfaces: short time existence of solutions, maximum and comparison principle, preservation of convexity, regularity and convergence to a round point. Particular attention will be given also to selfsimilar and translating solutions to the mean curvature flow and to its 1-dimensional version, the curve shortening flow.

The course addresses to Master and PhD students with basic knowledge of differential geometry.

Literatur:

- 1.) G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom. **20** (1984) 237–266.
- 2.) K. Ecker, Regularity theory for mean curvature flow, Progress in nonlinear differential equations and their applications, 75, Birkhäuser, Boston, 2004.

Typisches Semester: Master ECTS-Punkte: 6 Punkte

Nützliche Vorkenntnisse: Differentialgeometrie

Sprechstunde Dozent: Do, 10–11 Uhr, Zi. 206, Eckerstr. 1

Abteilung für Angewandte Mathematik

WS 2012/13

Vorlesung: Discontinuous Galerkin finite element methods

for elliptic and parabolic problems

Dozent: Dr. Ioannis Toulopoulos

Zeit/Ort: Fr 14–16 Uhr, SR 226, Herrmann-Herder-Str. 10

Übungen: 2std. nach Vereinbarung

Tutorium: N. N.

Web-Seite: http://portal.uni-freiburg.de/aam

Inhalt:

The topic of this course is an introduction of discontinuous Galerkin finite element method for solving steady and time-dependent elliptic or parabolic type problems. The objective of this course is to present the students the basic theoretical tools and implementation details (programming) on the computer of the method in case of using interior penalty terms. Concerning the theoretical part, we will discuss stability, error estimates e.t.c. and for the implementation part we will insist on simulating convection dominated problems. The course will be taught in English, is offered for Master-Diploma students of Applied Mathematics Department which have some basic knowledge in C/C++ programming would be useful but not necessary. Master students from other similar graduate programs are welcome.

Literatur:

- 1.) B. Riviere: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, SIAM, Huston-Texas 2008
- 2.) D. A. Di Pietro and A. Ern: Mathematical Aspects of Discontinuous Galerkin Methods, Springer, 2010

Notwendige Vorkenntnisse: Theorie und Numerik partieller Differentialgleichungen

Nützliche Vorkenntnisse: Grundkenntnisse in C/C++ Programierung

Sprechstunde Dozent: Fr, 16:00–17:00 Uhr, Raum 223, Hermann-Herder-Str.10

Vorlesung: Nichtstandard Analysis

Dozent: PD Dr. Dr. Heinz Weisshaupt

Zeit/Ort: Do 14–16 Uhr, HS II, Albertstr. 23 b

Übungen: Bei hinreichendem Interesse können zusätzlich Übungen

angeboten werden.

Inhalt:

Nichtstandard-Analysis ist eine mathematische Methode, welche auf der Hinzufügung eines zusätzlichen Prädikates zur mathematischen Sprache beruht. Dies erlaubt es infinitesimale wie auch unbeschränkte Größen exakt zu definieren. Hieraus ergeben sich neue oftmals wesentlich intuitivere Beweise bekannter Resultate, wie auch die Möglichkeit auf relativ elementarem Wege neue mathematische Resultate zu beweisen.

Auf diese Weise lassen sich unter anderem folgende Themen behandeln:

- Rechnen mit infinitesimalen Größen, Differentiale und Integrale
- Fundamentalsatz der Algebra
- Brouwerscher Fixpunktsatz
- Unendliche Kombinatorik
- Darstellung Boolscher Algebren
- Charakterisierungen topologischer Räume
- Invariante Mittel auf \mathbb{Z}
- Darstellung von Distributionen und Approximationssätze
- Operator theorie
- Gewöhnliche und partielle Differentialgleichungen
- Modelle der Brownschen Bewegung und stochastische Differentialgleichungen
- Grenzwertsätze der Stochastik

Die Vorlesung behandelt nach einer Einführung in die Grundlagen der Nichtstandard Analysis Themen aus obigen Bereichen.

Literatur:

- 1.) Robert Goldblatt: Lectures on the Hyperreals, Lecture Notes in Mathematics, Volume 188 (1998)
- 2.) Alain Robert: Nonstandard Analysis, John Wiley (1988)
- 3.) Nonstandard Analysis in Practice (Universitext), Herausgeber: Francine Diener und Marc Diener, Springer Berlin Heidelberg (2010)

Typisches Semester: Ab dem 5. Semester geeignet. Auch für höhere Semester.

Notwendige Vorkenntnisse: Analysis, lineare Algebra; Grundkenntnisse in Logik oder axio-

matischer Mengenlehre.

Sprechstunde Dozent: Nach Absprache

Fachdidaktik

Vorlesung: Didaktik der Algebra und Analysis

Dozent: M. Kramer

Zeit/Ort: Mo, 14–16 Uhr oder Di, 10–12 Uhr, SR 404, Eckerstr. 1

Übungen: Übungen dazu - (14täglich) n.V.

Web-Seite: http://home.mathematik.uni-freiburg.de/didaktik

Inhalt:

Die Vorlesungen über Didaktik bestehen aus zwei Teilen: Didaktik der Algebra und Analysis (WS) und Didaktik der Geometrie und Stochastik (SS).

Eine scharfe Abgrenzung der Einzelthemen ist im schulischen Kontext wenig hilfreich. So wird z.B. die Projektion auf den ersten Blick der Geometrie zugeordnet, andererseits entsteht durch die Projektion einer Drehbewegung die Sinus- bzw. Kosinusfunktion. Im Sinne einer ganzheitlichen und vernetzenden Didaktik werden in der Vorlesung viele Bezüge zwischen den einzelnen innermathematischen Disziplinen geschaffen.

Erörtert werden didaktische Methoden der Algebra und der Analysis, die didaktische Bedeutung des Materials im schulischen Kontext sowie die Bedeutung von kooperativem Lernen (Gruppenarbeit). An konkreten Beispielen wird ein konstruktivistischer Vermittlungsansatz im Kontext der bildungsplanspezifischen Inhalte (lernen, begründen, problemlösen und kommunizieren) aufgezeigt.

Die Vorlesung legt Wert darauf, dass die dargestellte Didaktik konkret und interaktiv erlebt wird. Die Folge ist ein ständiger Rollenwechsel des Hörers: Einerseits erlebt er die Dinge aus der Schülerperspektive, auf der anderen Seite schlüpft er in die Rolle des reflektierenden Lehrers.

Literatur:

- 1.) Büchter, A., Henn, H.-W.: Elementare Analysis Von der Anschauung zur Theorie; Spektrum-Verlag
- 2.) Danckwerts, R., Vogel, D.: Analysis verständlich unterrichten; Spektrum-Verlag
- 3.) Kramer, M.: Mathematik als Abenteuer; Aulis Verlag
- 4.) Padberg, F.: Didaktik der Arithmetik, BI Wissenschaftsverlag
- 5.) Spektrum der Wissenschaft (Zeitschrift): Mathematische Unterhaltungen I–III; Spektrum-Verlag
- 6.) Spitzer, Manfred: Geist im Netz Modelle für Lernen, Denken und Handeln; Spektrum Akademischer Verlag, Heidelberg
- 7.) Vollrath, H.-J.: Algebra in der Sekundarstufe; Spektrum-Verlag

Typisches Semester:

ECTS-Punkte:

Notwendige Vorkenntnisse:

Sprechstunde Dozent:

3. Semester

3. Punkte

keine

n.V.

Kommentar: Die Vorlesung wird doppelt abgehalten, beide Termine finden

statt.

Seminar: Theatrale Methoden im Mathematikunterricht

Dozent: M. Kramer

Zeit/Ort: Mi 10–13 Uhr, SR 127, Eckerstr. 1

Vorbesprechung: Do, 26.7.2012, 13:30 Uhr, SR 404, Eckerstr. 1

Teilnehmerliste: Interessenten sollen sich bitte in eine bei Frau Schuler ausliegende

Liste eintragen, Zi. 132, Di–Do, 9–13 und 14–16:30 Uhr

Web-Seite: http://home.mathematik.uni-freiburg.de/didaktik

Inhalt:

Theatrale Methoden helfen den Handlungsspielraum des Lehrers entscheidend zu vergrößern. So werden Schüler zu Punkten in Schaubildern oder erfahren Symmetrie und Projektion in einer handlungs- und erlebnisorientierten Didaktik. Nicht zuletzt wird die pädagogische Dimension der Mathematik aufgezeigt.

Das Seminar besteht aus drei Teilen:

- 1. Theaterpädagogische Grundlagen (Körper und Raum, Rollen, Status, Chorusarbeit, ...)
- 2. Exemplarische Anwendung theatraler Elemente auf konkrete Inhalte im Mathematikunterricht der SEK I und SEK II
- 3. Jeder Teilnehmer entwickelt zu einem selbst gewählten Thema eine theatrale Herangehensweise oder Übung, welche interaktiv mit den anderen Teilnehmern nachempfunden wird. Dabei müssen die mathematischen Themen nicht zwingend aus dem schulischen Kontext stammen. Entscheidend sind vielmehr die Herangehensweise und die mathematische Richtigkeit der interaktiven Übung.

Literatur:

- 1.) BAUER, Joachim: Warum ich fühle, was du fühlst; Heyne Verlag, München 2006
- 2.) GRELL, Jochen: Techniken des Lehrerverhaltens; Beltz Verlag, Weinheim und Basel, 8. Auflage 1978
- 3.) KLIPPERT, Heinz: Kommunikationstraining; Beltz Verlag, Weinheim und Basel, 7. Auflage 2000
- 4.) KRAMER, Martin: Schule ist Theater, Schneider-Hohengehren, Esslingen am Neckar, 2008
- 5.) SCHULZ VON THUN, Friedemann: Miteinander reden Bd. 3; Rowohlt Taschenbuch Verlag, Reinbek bei Hamburg, Sonderausgabe März 2005
- 6.) SPITZER, Manfred: Lernen Gehirnforschung und die Schule des Lebens; Spektrum Akademischer Verlag, Heidelberg 2009
- 7.) WELLHÖFER, Peter R.: Gruppendynamik und soziales Lernen; Lucius & Lucius, Stuttgart, 2001, zweite Auflage

Typisches Semester: ab 3. Semester ECTS-Punkte: 4 Punkte Notwendige Vorkenntnisse: keine sprechstunde Dozent: n.V.

WS 2012/13

Seminar: Medieneinsatz im Mathematikunterricht

Dozent: J. Kury

Zeit/Ort: Do, 14–15 Uhr, SR 125, Eckerstr. 1 und Do, 15–17 Uhr,

Didaktik, Zi. 131, Eckerstr. 1

Vorbesprechung: Mi, 25.7.2012, 17 Uhr, Didaktik, Zi. 131, Eckerstr. 1

Web-Seite: http://home.mathematik.uni-freiburg.de/didaktik/

Inhalt:

Der Einsatz von Unterrichtsmedien im Mathematikunterricht gewinnt sowohl auf der Ebene der Unterrichtsplanung, wie auch der der Unterrichtsrealisierung an Bedeutung. Vor dem Hintergrund konstruktivistischer Lerntheorien zeigt sich, dass der reflektierte Einsatz unter anderem von Computerprogrammen die mathematische Begriffsbildung nachhaltig unterstützen kann. So erlaubt beispielsweise das Experimentieren mit Computerprogrammen mathematische Strukturen zu entdecken, ohne dass dies von einzelnen Routineoperationen (wie z.B. Termumformung) überdeckt würde. Es ergeben sich daraus tiefgreifende Konsequenzen für den Mathematikunterricht. Von daher setzt sich dieses Seminar zum Ziel, den Studierenden die notwendigen Entscheidungs- und Handlungskompetenzen zu vermitteln, um zukünftige Mathematiklehrer auf ihre berufliche Tätigkeit vorzubereiten. Ausgehend von ersten Überlegung zur Unterrichtsplanung werden anschließend Computer und Handheld hinsichtlich ihres jeweiligen didaktischen Potentials untersucht. Die dabei exemplarisch vorgestellten Systeme sind:

- dynamische Geometrie Software: Geogebra
- Tabellenkalkulation: Excel
- Handheld: GTR (Ti83), CAS (TI-Nspire, Mathematics)
- Software (elektronisches Schulbuch) und Lernprograme aus dem Internet

Jeder Studierende soll eine Unterrichtssequenz ausarbeiten, die gegebenenfalls während einer Unterrichtsstunde erprobt wird.

Typisches Semester: ab dem 1. Semester

ECTS-Punkte: 4 Punkte

Nützliche Vorkenntnisse: Kenntnisse aus den Anfängervorlesungen

Sprechstunde Dozent: n.V. per E-Mail an jkury@gmx.de

Seminar: Schulmathematische Themen mit Geogebra

Dozent: Dr. Gerhard Metzger

Zeit/Ort: Fr, 10–13 Uhr, SR 127, Eckerstr. 1

Tutorium: N. N.

Vorbesprechung: Di, 24.07.2012, 13:00 Uhr, Didaktik, Zi. 131, Eckerstr 1

Teilnehmerliste: Interessenten sollen sich bitte in eine bei Frau Schuler ausliegende

Liste eintragen, Zi. 132, Di-Do, 9-13 und 14-16:30 Uhr

Web-Seite: http://home.mathematik.uni-freiburg.de/didaktik/

Inhalt:

Geogebra ist eine dynamische Geometriesoftware, die die Möglichkeiten von Computeralgebrasystemen und Dynamischer Geometriesoftware verbindet. Sie wird immer stärker auch im Unterricht eingesetzt.

In diesem Seminar sollen konkrete, unterrichtsrelevante Beispiele aus allen Jahrgangsstufen fachwissenschaftlich und fachdidaktisch aufgearbeitet werden. An ihnen werden Kenntnisse über den Einsatz von Geogebra vermittelt. Dabei wird auch stets der sinnvolle Einsatz von Geogebra thematisiert. Die Erstellung eigener Arbeitsblätter wird angestrebt.

Mögliche Themen sind z. B. der Einsatz von Geogebra im Geometrieunterricht, bei der Behandlung von Extremwert- und Optimierungsaufgaben, bei der Einführung von Ableitung und Integral und im Stochastikunterricht.

Typisches Semester: ab dem 1. Semester

ECTS-Punkte: 4 Punkte

Nützliche Vorkenntnisse: Kenntnisse aus den Anfängervorlesungen

Sprechstunde Dozent: n.V. per E-Mail an gerhard-metzger@t-online.de

Praktische Übungen

Abteilung für Angewandte Mathematik

WS 2012/13

Prakt. Übung zu: Numerik (1. Teil der zweisemestrigen Veranstaltung)

Dozent: Prof. Dr. S. Bartels

Zeit/Ort: Di 10–12 Uhr oder Mi 16–18 Uhr oder Do 14–16 Uhr oder

Do 16–18 Uhr oder Fr 10–12 Uhr,

CIP-Pool 201, Hermann-Herder-Str. 10, 2-std. (14-täglich)

Tutorium: N.N.

Web-Seite: http://aam.uni-freiburg.de/bartels/numa2012

Inhalt:

In der praktischen Übung zur Numerik-Vorlesung sollen die in der Vorlesung entwickelten und analysierten Algorithmen praktisch umgesetzt und getestet werden. Dies wird in der Programmiersprache C sowie mit Hilfe der kommerziellen Software MATLAB zur Lösung und Visualisierung mathematischer Probleme geschehen. Elementare Programmierkenntnisse werden vorausgesetzt.

Literatur:

- 1.) R. Plato: Numerische Mathematik kompakt. Vieweg, 2006.
- 2.) R. Schaback, H. Wendland: Numerische Mathematik. Springer, 2004.
- 3.) J. Stoer, R. Burlisch: Numerische Mathematik I, II. Springer, 2007, 2005.

Typisches Semester: 3. Semester

ECTS-Punkte: (für Teile 1 und 2 zusammen) 3 Punkte

Notwendige Vorkenntnisse: Vorlesung Numerik (parallel)

Sprechstunde Dozent: Di, 12–13 Uhr, Zi. 209, Hermann-Herder-Str. 10, und n.V.

Sprechstunde Assistent: Wird in der Vorlesung bekannt gegeben

Abteilung für Angewandte Mathematik

WS 2012/13

Prakt. Übung zu: Einführung in die Theorie und Numerik partieller

Differentialgleichungen

Dozent: Prof. Dr. D. Kröner

Zeit/Ort: Mo 16–18 Uhr, CIP-Pool Raum 201, Hermann-Herder-Str.

10

Übungen: 2-std. n. V.

Tutorium: Ch. Gersbacher

Web-Seite: http://portal.uni-freiburg.de/aam

Inhalt:

In den praktischen Übungen sollen die in der Vorlesung "Einführung in die Theorie und Numerik partieller Differentialgleichungen" vorgestellten numerischen Verfahren zur Lösung partieller Differentialgleichungen implementiert werden. Ziel ist die Erstellung eines effizienten, selbstadaptiven Programmpakets zur Berechnung von Näherungslösungen elliptischer Differentialgleichungen mit Hilfe der Finite-Elemente-Methode. Programmierkenntnisse in C werden vorausgesetzt und im Rahmen der praktischen Übungen weiter ausgebaut. Zusätzlich findet eine Einführung in die in der Arbeitsgruppe verwendeten Programmpakete statt. Studierenden, die vorhaben, in der Angewandten Mathematik eine Zulassungs-, Master- oder Diplomarbeit zu schreiben, wird die Teilnahme an den praktischen Übungen empfohlen.

Literatur:

- 1.) D. Braess, Finite Elemente, Springer, Berlin (2007).
- 2.) H. R. Schwarz, Methode der Finiten Elemente, Teubner, Stuttgart (1991).
- 3.) G. Dziuk, Theorie und Numerik partieller Differentialgleichungen, De Gruyter (2010).

Typisches Semester: 5. Semester ECTS-Punkte: 3 Punkte

Sprechstunde Dozent: Di, 13–14 Uhr und n. V., Zi. 215, Hermann-Herder-Str. 10 Sprechstunde Assistent: Fr, 14–16 Uhr und n. V., Zi. 222, Hermann-Herder-Str. 10

Abteilung für Angewandte Mathematik

WS 2012/13

Prakt. Übung zu: Kompaktkurs zur Einführung in die Software-

Bibliothek DUNE

Dozent: Prof. Dr. D. Kröner

Zeit/Ort: 08.10.-12.10.2012., 9-12 und 13.30-16.30 Uhr, SR 226,

Hermann-Herder-Str. 10

Tutorium: Ch. Gersbacher

Web-Seite: http://portal.uni-freiburg.de/aam

Inhalt:

Die Softwarebibliothek DUNE (Distributed and Unified Numerics Environment) ist eine modulare Toolbox zur numerischen Lösung partieller Differentialgleichungen. Sie wird seit mehreren Jahren unter Mitwirkung von Mitgliedern der Abteilung für Angewandte Mathematik entwickelt.

Der einwöchige Kompaktkurs gibt eine grundlegende Einführung in die DUNE-Schnittstellen und das Diskretisierungsmodul DUNE-FEM. Ziel ist die Implementierung von Finite-Elemente- und Finite-Volumen-Verfahren zur Lösung von Systemen partieller Differentialgleichungen von elliptischem, parabolischem oder hyperbolischem Typ.

Studierenden, die vorhaben, eine praktische Zulassungs-, Master- oder Diplomarbeit am Lehrstuhl von Professor Kröner zu schreiben, wird die Teilnahme an dem Kurs empfohlen. Programmierkenntnisse in C++, wie sie etwa in den praktischen Übungen zur Vorlesung "Einführung in die Theorie und Numerik partieller Differentialgleichungen" vermittelt werden, werden vorausgesetzt.

Proseminare

Proseminar: Kombinatorik und Stochastik

Dozent: Prof. Dr. Hans Rudolf Lerche

Zeit/Ort: Di 16–18 Uhr, SR 127, Eckerstr. 1

Tutorium: N.N.

Vorbesprechung: Fr, 20.07.2012, 13 Uhr, Zi. 232, Eckerstr. 1

Teilnehmerliste: Eintrag in eine Liste im Sekretariat (Zi. 226 bzw. 245, Eckerstr. 1)

ab 02. Juli bis zum 19. Juli 2012.

Web-Seite: http://www.stochastik.uni-freiburg.de

Inhalt:

Das Proseminar behandelt grundlegende Ergebnisse der Kombinatorik. Vereinfacht gesprochen geht es dabei um Abzählen. Es zeigt sich aber schnell, dass Zählen oft schwerer ist, als man zunächst glaubt. Man sieht dies etwa an folgendem (von Reverend Kirkman 1851 formuliertem) Problem:

Man führe 15 Schulmädchen an 7 Sonntagen in jeweils 5 Dreierreihen so spazieren, dass jedes Paar an genau einem Sonntag in einer Reihe zusammentrifft.

Der besondere Reiz der Kombinatorik besteht darin, dass man mit elementaren Hilfsmitteln bei einfach zu formulierenden Fragen bereits zu tiefen Resultaten gelangen kann. Bei Bedarf werden auch Themen aus der Stochastik vergeben.

Literatur:

- 1.) Aigner, M.: Diskrete Mathematik. Braunschweig: Vieweg 2001
- 2.) Cameron, P.: Combinatorics. Cambridge: Cambridge University Press 1996
- 3.) Jacobs, K. und Jungnickel, D.: *Einführung in die Kombinatorik*. Berlin: De Gruyter 2003 (2. Aufl.)

Typisches Semester: 5. Semester

Notwendige Vorkenntnisse: Analysis I und Lineare Algebra I Sprechstunde Dozent: Di 11–12 Uhr, Zi. 231, Eckerstr. 1

Abteilung für Mathematische Logik

WS 2012/13

Proseminar: Kombinatorik und Mengenlehre

Dozentin: Heike Mildenberger

Zeit/Ort: Di 16–18 Uhr, SR 318, Eckerstr. 1

Tutorium: Luca Motto Ros

Vorbesprechung: Di, 24.7.2012, 13 Uhr, Zi. 310, Eckerstr. 1

Teilnehmerliste: Bitte tragen Sie sich bis zum 13.7.2012 in eine bei Frau Wagner-

Klimt in Zimmer 312 ausliegende Liste ein

Web-Seite: http://home.mathematik.uni-freiburg.de/mildenberger/

veranstaltungen/ws12/proseminar.html

Inhalt:

Zur Kombinatorik gehört traditionell eine breit gefächerte Sammlung von Techniken: Abzählalgorithmen, endliche Mengen, Partitionen, Permutationen, etwas Graphentheorie, endliche Geometrien. Im Proseminar werden wie eine Auswahl davon studieren und unser Augenmerk auch auf nützliche Anwendungen richten: Versuchsanordnung, fehlerkorrigierende Codes, kryptographische Techniken, dem Computer überlassbare, d.h. leicht berechenbare Probleme. Die vorkommenden Mengen sind meistens endlich oder abzählbar. Die benötigten theoretischen Voraussetzungen sind im Vergleich zu anderen Fächern recht einfach. Bei Interesse können wir uns jedoch auch einigen komplexeren Themen widmen.

Literatur:

- 1.) Cameron, P., Combinatorics, Topics, Techniques, Algorithms, Cambridge University Press 1994.
- 2.) Jacobs, K. und Jungnickel, D., Einführung in die Kombinatorik, 2. Auflage, de Gruyter 2004.
- 3.) Lint, J. H. v. und Wilson R. D., A Course in Combinatorics, Second Edition, Cambridge University Press 2001.

Typisches Semester: 3. bis 5. Semester

ECTS-Punkte: 3 Punkte

Notwendige Vorkenntnisse: die Anfängervorlesungen

Sprechstunde Dozentin: Di, 13–14 Uhr, Zi. 310, Eckerstr. 1

Sprechstunde Assistent: wird noch bekanntgegeben

Abteilung für Reine Mathematik

WS 2012/13

Proseminar: Fourier-Analysis

Dozent: Guofang Wang

Zeit/Ort: Mi 14–16 Uhr, SR 125, Eckerstr. 1

Tutorium: Z. X. Chen

Vorbesprechung: Mi, 25.07.2012, 14:15 Uhr, SR 125, Eckerstr. 1

Web-Seite: http://home.mathematik.uni-freiburg.de/wang

Inhalt:

In diesem Proseminar diskutieren wir die Fourierreihen

$$\sum_{n} a_n \cos(nx) + b_n \sin(nx)$$

mit dem Buch "Fourier Analysis. An Introduction" von Stein und Shakarchi, das erste Buch von der Serie "Princeton Lectures in Analysis". Einen Kommentar über das Buch finden Sie in MathSciNet http://www.ams.org/mathscinet/search/publdoc.html?pg1=IID&s1=166825&vfpref=html&r=21&mx-pid=1970295

Fourierreihen haben zahllose Anwendungen in fast allen Gebieten der Mathematik.

Literatur:

1.) Stein and Shakarchi, FOURIER ANALYSIS. AN INTRODUCTION, Princeton Lectures in Analysis, 2003

Typisches Semester: 2. oder 4. Semester

ECTS-Punkte: 3 Punkte

Notwendige Vorkenntnisse: Analysis I und II

Sprechstunde Dozent: Mi 11:13–12:15 Uhr, Zi. 209/210, Eckerstr. 1 Sprechstunde Assistent: Mi 11:13–12:15 Uhr, Zi. 204, Eckerstr. 1

WS 2012/13

Proseminar: Quadratische Formen

Dozent: M. Wendt

Zeit/Ort: Di, 14–16 Uhr, SR 125, Eckerstr. 1

Tutorium: M. Wendt

Vorbesprechung: Di, 24.07.2012, 13–14 Uhr, SR 318, Eckerstr. 1

Teilnehmerliste: bei Frau Gilg, Zi. 433, Eckerstr. 1, Mo-Fr 8-12 Uhr

Web-Seite: http://home.mathematik.uni-freiburg.de/arithmetische-

geometrie/wendt.html

Inhalt:

Die Klassifikation von (nicht-ausgearteten) symmetrischen Bilinearformen auf komplexen bzw. reellen Vektorräumen ist aus der linearen Algebra bekannt: über $\mathbb C$ ist die Dimension des Vektorraums die einzige Invariante, über $\mathbb R$ braucht man nach dem Sylvesterschen Trägheitssatz zusätzlich den Index, also die Dimension eines maximalen positiv definiten Teilraums.

Im Proseminar soll es um die kompliziertere Frage gehen, wie symmetrische Bilinearformen auf Vektorräumen über $\mathbb Q$ klassifiziert werden können. Als Zwischenschritt fragt man nach der Klassifikation von symmetrischen Bilinearformen über endlichen Körper und sogenannten p-adischen Körpern. Diese Aussagen werden dann mit Hilfe des Lokal-Global-Prinzips von Hasse und Minkowski zu einer Aussage über den rationalen Zahlen "zusammengesetzt". Mit den dabei entwickelten Methoden ist es möglich, rationale Lösungen für allgemeine quadratische Gleichungen zu finden – ein Spezialfall ist der Drei-Quadrate-Satz von Gauß.

Sowohl die Klassifikation von symmetrischen Bilinearformen als auch das Lokal-Global-Prinzip sind gute Einstiegspunkte in fortgeschrittenere zahlentheoretische Themen.

Literatur:

1.) J.-P. Serre. A Course in Arithmetic. Graduate Texts in Mathematics 7. Springer-Verlag, 1973.

Typisches Semester: 3. Semester ECTS-Punkte: 3 Punkte

Notwendige Vorkenntnisse: Lineare Algebra, Analysis Studienleistung: regelmäßige Teilnahme

Prüfungsleistung: Vortrag

Sprechstunde Dozent: Mi, 11–12 Uhr, Zi. 436, Eckerstr. 1

Proseminar: Matrixgruppen und ihre Darstellungstheorie

Dozent: Dr. Daniel Greb

Zeit/Ort: Mi, 10–12 Uhr, SR 125, Eckerstr. 1

Vorbesprechung: Der Termin wird bis zum 17.7.2012 auf der Web-Seite des

Dozenten (s.u.) bekanntgegeben

Teilnehmerliste: Eine Anmeldeliste liegt vormittags (8–12 Uhr) bei Frau Gilg, Zi. 433,

Eckerstr. 1 aus. Bitte tragen Sie sich bis Freitag, 27.7.2012, ein.

Web-Seite: http://home.mathematik.uni-freiburg.de/dgreb/index.html

Inhalt:

Symmetriegruppen spielen in vielen Gebieten der Mathematik und theoretischen Physik eine wichtige Rolle. In vielen Fällen lassen sich diese Symmetriegruppen als Gruppen von Matrizen realisieren.

In diesem Seminar werden wird die wichtigsten Beispiele klassischer Matrixgruppen, wie die allgemeinen und speziellen linearen Gruppen, die orthogonalen Gruppen und die symplektischen Gruppen, kennenlernen und ihre Darstellungstheorie studieren.

Literatur:

- 1.) Hein: Einführung in die Struktur- und Darstellungstheorie der klassischen Gruppen, Springer, 1990.
- 2.) Hall: Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Springer, 2003.
- 3.) Baker: Matrix Groups: An Introduction to Lie Group Theory, Springer, 2002.
- 4.) Stillwell: Naive Lie Theory, Springer, 2008.

Typisches Semester: ab 3. Semester

Notwendige Vorkenntnisse: Lineare Algebra I/II, Analysis I/II

Prüfungsleistung: Regelmäßige Teilnahme, Vortrag mit kurzer Ausarbeitung

Sprechstunde Dozent: Do, 16–17 Uhr, Zi. 425, Eckerstr. 1

Seminare

Abteilung für Reine Mathematik

WS 2012/13

Seminar: Algebraische Geometrie

Dozent: Prof. Dr. Stefan Kebekus

Zeit/Ort: Di 16–18 Uhr, SR 125, Eckerstr. 1

Tutorium: Dr. Daniel Greb

Teilnehmerliste: Interessenten melden sich bitte gegen Ende des SS12 bei Prof.

Kebekus.

Web-Seite: http://home.mathematik.uni-freiburg.de/

Inhalt:

Im Seminar werden weiterführende Fragen aus der birationalen Geometrie der algebraischen Flächen behandelt. Je nach Vorkenntnissen der Teilnehmer wird es eine Einführung in die höherdimensionale Theorie geben.

Das Seminar richtet sich an fortgeschrittene Studenten, die eine Abschlussarbeit in der Arbeitsgruppe Kebekus/Greb/Küronya erwägen.

Literatur:

- 1.) Beauville, Arnaud. Complex algebraic surfaces. Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid. Second edition. London Mathematical Society Student Texts, 34. Cambridge University Press, Cambridge, 1996. x+132 pp. ISBN: 0-521-49510-5; 0-521-49842-2,
- 2.) Reid, Miles. Chapters on algebraic surfaces. Complex algebraic geometry (Park City, UT, 1993), 3–159, IAS/Park City Math. Ser., 3, Amer. Math. Soc., Providence, RI, 1997.
- 3.) Debarre, Olivier. Higher-dimensional algebraic geometry. Universitext. Springer-Verlag, New York, 2001. xiv+233 pp. ISBN: 0-387-95227-6

Typisches Semester: ab dem 5. Semester

Notwendige Vorkenntnisse: Vorlesungen zur algebraischen Geometrie

Sprechstunde Dozent: Di, 9–10 Uhr, Zi. 432, Eckerstr. 1

Sprechstunde Assistent: n.V., Zi. 425, Eckerstr. 1

Abteilung für Angewandte Mathematik

WS 2012/13

Seminar: Theorie und Numerik für partielle Differential-

gleichungen

Dozent: Prof. Dr. D. Kröner

Zeit/Ort: Mi 14–16 Uhr, SR 226, Hermann-Herder-Str. 10

Tutorium: Th. Müller

Web-Seite: http://portal.uni-freiburg.de/aam

Inhalt:

Dieses Seminar richtet sich insbesondere an Studierende im Masterstudiengang bzw. Hauptstudium. Wir werden aufbauend auf den Vorlesungen zur Theorie und Numerik für partielle Differentialgleichungen weiterführende Resultate besprechen.

Typisches Semester: ab 5. Semester

Notwendige Vorkenntnisse: Einführung in die Theorie und Numerik für partielle Differen-

tialgleichungen

Sprechstunde Dozent: Di, 13–14 Uhr und n. V., Zi. 215, Hermann-Herder-Str. 10

Sprechstunde Assistent: Di, 10–12 Uhr, Zi. 228, Hermann-Herder-Str. 10

Seminar: Differential formen

Dozent: Prof. Dr. Ernst Kuwert

Zeit/Ort: Mo 14–16 Uhr, SR 125, Eckerstr. 1

Tutorium: Dr. Annibale Magni

Vorbesprechung: Fr, 20.07.2012 um 12:15 Uhr, SR 125, Eckerstr. 1

Teilnehmerliste: im Sekretariat, Zi. 207, Eckerstr. 1

Web-Seite: http://home.mathematik.uni-freiburg.de/analysis/

Inhalt:

Im Seminar soll das Konzept der Differentialform auf einer differenzierbaren Mannigfaltigkeit erarbeitet werden. Parallel sollen topologische Anwendungen diskutiert werden, zum Beispiel die Poincaré-Dualität und der Satz von Hodge. Einige der Vorträge können zu einer Bachelor-Arbeit führen.

Literatur:

- 1.) Bott, R., Tu, L. W., Differential Forms in Algebraic Topology, Graduate Texts in Mathematics 82, Springer-Verlag, New York-Berlin, 1982.
- 2.) Warner, F. W., Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., Glenview, Ill.-London, 1971.

Typisches Semester: Ab 5. Semester Notwendige Vorkenntnisse: Analysis III

Nützliche Vorkenntnisse: Vorlesung Topologie

Sprechstunde Dozent: Mi, 11:00–12:00 Uhr, Zi. 208, Eckerstr. 1 Sprechstunde Assistent: Mi, 14:00-15:00 Uhr, Zi. 214, Eckerstr. 1

Seminar: Statistik und Finanzmathematik

Dozent: Prof. Dr. Ludger Rüschendorf

Zeit/Ort: Mi 14–16 Uhr, SR 127, Eckerstr. 1

Tutorium: N.N.

Vorbesprechung: Di, 24.07.2012, 13:30 Uhr, Zi. 232, Eckerstr. 1

Teilnehmerliste: Bitte tragen Sie sich bis zum 17.07.2012 in eine Liste ein, die im

Sekretariat der Stochastik (Zi. 226/245, Eckerstr. 1) ausliegt.

Web-Seite: http://www.stochastik.uni-freiburg.de/

Inhalt:

In dem Seminar sollen einige Themen der mathematischen Risikoanlayse behandelt weden, bwbei je nach Zusammensetzung der Teilnehmer die Schwerpunkte mehr auf der Statistik oder auf der Finanzmathematik liegen können.

Typisches Semester: 2.–4. Semester im Master

Notwendige Vorkenntnisse: Mathematische Statistik oder Stochastische Integration und

Finanz mathematik

Sprechstunde Dozent: Mi, 11–12 Uhr, Zi. 242, Eckerstr. 1

Seminar: Darstellungstheorie

Dozent: Prof. Dr. W. Soergel

Zeit/Ort: Fr, 8–10 Uhr, SR 404, Eckerstr. 1

Tutorium: Ph.D. S. Kitchen

Vorbesprechung: Mo, 16.07.2012, 16:15 Uhr, SR 119, Eckerstr. 1

Inhalt:

Im Seminar zur Darstellungstheorie soll zunächst die Darstellunstheorie von Köchern besprochen werden und insbesondere der Satz von Gabriel, der diejenigen Köcher klassifiziert, die in jeder Dimension bis auf Isomorphismus nur endlich viele Darstellungen zulassen. Anschließend wollen wir uns mit den Hall-Algebren dieser Köcher beschäftigen. Für die ersten Vorträge reichen Kenntnisse im Umfang der Grundvorlesungen über lineare Algebra aus, später werden weitergehende Kenntnisse in Algebra benötigt. Als Grundlage werden wir eine Vorlesungsausarbeitung von Crawley-Boevey "Lectures on Representations of Quivers" http://www.maths.leeds.ac.uk/~pmtwc/quivlecs.pdf studieren und sie mit Grundlagen und weiterführenden Resultaten anreichern.

Typisches Semester: ab 5. Semester

Notwendige Vorkenntnisse: Lineare Algebra I und II

Sprechstunde Dozent: Do, 11:30–12:30 Uhr und n.V., Zi. 429, Eckerstr. 1

Abteilung für Mathematische Logik

WS 2012/13

Seminar: Modelltheorie

Dozent: Martin Ziegler

Zeit/Ort: Do, 8–10 Uhr, SR 318, Eckerstr.1

Tutorium: Juan Diego Caycedo

Vorbesprechung: Mi, 25.07.2012, 10:15 Uhr, SR 318, Eckerstr. 1

Web-Seite: http://home.mathematik.uni-freiburg.de/ziegler/

veranstaltungen/ws12-seminar.html

Inhalt:

Das Seminar geht über

Nichtstandardmethoden in der Theorie der Polynomideale.

Sei K ein Körper und I ein Ideal in $K[X_1, \ldots, X_n]$, mit Erzeugenden f_1, \ldots, f_m . I besteht also aus allen Polynomen der Form

$$f = h_1 f_1 + \cdots h_m f_m,$$

für beliebige Polynome h_i . Grete Herrmann hat in [1] gezeigt, dass sich für gegebenes f ausrechnen lässt, ob f in I liegt oder nicht, weil man die Grade der h_i in Abhängigkeit von n und von den Graden der Erzeugenden a priori beschränken kann. Desweiteren lässt sich (für algebraische abgeschlossene K) ausrechnen, ob die f_i ein Primideal erzeugen.

L. van den Dries und K. Schmidt haben in [2] einen einfachen modelltheoretische Beweis für diese Resultate angegeben. Diese Arbeit wird zuerst im Seminar besprochen. Dann lesen wir die neue Arbeit [3] von Harrison-Trainor et al., die entsprechende Fragen für Ideale in Differentialpolynomringen über Differentialkörpern behandelt.

Literatur:

- 1.) Matthew Harrison-Trainor, Jack Klys, Rahim Moosa Nonstandard methods for bounds in differential polynomial rings arxiv.org, arXiv:1105.0600v1 [math.AC], 2011
- 2.) G. Hermann Die Frage der endlich vielen Schritte in der Theorie der Polynomideale Mathematische Annalen, 95(1):736–788, 1926
- 3.) L. van den Dries and K. Schmidt Bounds in the theory of polynomial rings over fields. A nonstandard approach Inventiones Mathematicae, 76:77–91, 1984.

Typisches Semester: 4.–6. Semester

Notwendige Vorkenntnisse: Anfängervorlesungen der Mathematik und möglichst eine Vor-

lesung über Mathematische Logik oder Modelltheorie

Sprechstunde Dozent: nach Vereinbarung, Zi. 313, Eckerstr 1

Abteilung für Mathematische Logik

WS 2012/13

Seminar: Game theory

Dozent: Dr. Luca Motto Ros

Zeit/Ort: Mi 14–16 Uhr, HS II, Albertstraße 23b

Tutorium: Dr. Giorgio Laguzzi

Vorbesprechung: 24.10, 14:15 Uhr, HS II, Albertstraße 23b

Web-Seite: http://home.mathematik.uni-freiburg.de/mottoros/

ws1213gametheory.html

Inhalt:

Infinite games are a sort of abstract infinitary formulation of the well-known two-players games that one easily encounters in real life, like chess, checkers, and so on. Despite their very simple definition, in the last 50 years they have proven to be a remarkably powerful and versatile technique, with many applications in various areas of mathematics, including topology, set theory, measure theory, inner model theory, and so on. In this seminar we will study this method from both the theoretical point of view (determinacy and its interactions with the other axioms of set theory), and the applied one (connections with topological and measure-theoretic properties, Wadge theory, and so on).

Literatur:

- 1.) Alessandro Andretta, Wadge Degrees, available at http://home.mathematik.uni-freiburg.de/mottoros/ws1213gametheory.html.
- 2.) Alexander A. Kechris, Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
- 3.) Yiannis N. Moschovakis. *Descriptive Set Theory*. North Holland, Amsterdam, New York, Oxford, 1980.
- 4.) Robert A. Van Wesep. Wadge degrees and descriptive set theory. In Alexander S. Kechris and Yiannis N. Moschovakis, editors, *Cabal Seminar* 76-77, number 689 in Lecture Notes in Mathematics. Springer-Verlag, 1978.

Typisches Semester: mittleres Notwendige Vorkenntnisse: keine

Sprechstunde Dozent: nach Vereinbarung, Eckerstraße 1, Raum 311

Sprechstunde Assistent: nach Vereinbarung, Eckerstraße 1

Institut für

Medizinische Biometrie und Medizinische Informatik

WS 2012/13

Seminar: Statistische Modelle in der klinischen Epidemio-

logie

Dozent: Prof. Martin Schumacher

Zeit/Ort: Mi, 10–11:30 Uhr; HS Med. Biometrie und Med. Informa-

tik, Stefan-Meier-Str. 26

Tutorium: N.N.

Vorbesprechung: Mi, 18.07.2012, 12:00–13:00 Uhr

mit Hinweisen auf einführende Literatur

Teilnehmerliste: Vorherige Anmeldung per email an sec@imbi.uni-freiburg.de ist

erwünscht.

Web-Seite: http://portal.uni-freiburg.de/imbi/lehre/WS12_13/

hauptseminar

Inhalt:

Moderne statistische Methoden und Modellierungstechniken im Bereich der Biostatistik adressieren komplexe Fragestellungen in den biomedizinischen Wissenschaften, wie z.B. die Einbeziehung hochdimensionaler molekularer Daten in Studien zur Ätiologie, Diagnose/Prognose und Therapie. Eine Auswahl solcher Problemstellungen soll in den Seminarvorträgen vorgestellt werden, die sich an kürzlich erschienenen Originalarbeiten orientieren. Zu Beginn des Seminars werden ein oder zwei Übersichtsvorträge stehen, die als Einführung in die Thematik dienen. Das Hauptseminar ist terminlich und inhaltlich mit dem Oberseminar Medizinische Statistik abgestimmt.

Literatur wird in der Vorbesprechung bekannt gegeben.

Das Seminar beginnt am 24.10.2012 und endet mit dem 13.02.2012.

Typisches Semester: Seminar im Masterstudium

Notwendige Vorkenntnisse: gute Kenntnisse in Wahrscheinlichkeitstheorie und Mathema-

tischer Statistik

Sprechstunde Dozent: n.V.

Projektseminare

Abteilung für Reine Mathematik

WS 2012/13

Projektseminar: Lesekurs: Algebraische Zahlentheorie

Dozent: Prof. Dr. W. Soergel

Zeit/Ort: Di 10-12 in Raum 414 und Mi 14-16 in Raum 318, jeweils

Eckerstr. 1

Tutorium: Maximilian Schmidtke

Web-Seite: http://home.mathematik.uni-freiburg.de/arithmetische-

geometrie/lehre/ws12/lesekurs.html

Inhalt:

Seminar: Homotopietyp der Kobordismuskategorie

Dozent: M. Wendt

Zeit/Ort: Montags, 10-12 Uhr, SR 403, Eckerstrasse 1

Tutorium: M. Wendt

Web-Seite: http://home.mathematik.uni-freiburg.de/arithmetische-

geometrie/wendt.html

Inhalt:

Das Seminar setzt das Projektseminar "Homologie der stabilen Abbildungsklassengruppe" aus dem SS 2012 fort. Hauptanliegen ist das Studium der Arbeit von Galatius, Madsen, Tillmann und Weiss [GMTW] zum Homotopietyp der Kobordismuskategorie. Dies ist einer der wesentlichen Schritte im Beweis der Mumford-Vermutung. Mehr Informationen zum mathematischen Kontext sind im Programm auf der Webseite zu finden. Zielgruppe sind Doktoranden des GRK1821, Voraussetzungen sind algebraische Topologie und Differentialtopologie.

Literatur:

1.) S. Galatius, I. Madsen, U. Tillmann and M. Weiss. The homotopy type of the cobordism category. Acta Math. 202 (2009), no. 2, 195–239.

Notwendige Vorkenntnisse: algebraische Topologie, Differentialtopologie

Sprechstunde Dozent: Mi 8-12 Uhr, Zi. 436, Eckerstr. 1

Projektseminar: Hedging Derivatives

Dozent: Prof. Dr. Ludger Rüschendorf

Zeit/Ort: Di 16–18 Uhr, Raum 232, Eckerstr. 1

Tutorium: Viktor Wolf

Teilnehmerliste: Bei Interesse an der Teilnahme bitte bei Herrn Wolf anmel-

den (Abt. f. Math. Stochastik, Zi. 228, Eckerstr. 1; E-Mail:

wolf@stochastik.uni-freiburg.de).

Web-Seite: http://www.stochastik.uni-freiburg.de/

Inhalt:

Im WS 2012/13 findet ein Projektseminar (Leseseminar) zum Thema

Hedging Derivatives

statt. Für Teilnehmer sind einige Vorkenntnisse in Stochastischer Integration und Finanzmathematische Grundbegriffe erforderlich.

Termin: Dienstags 16 Uhr c.t., Raum 232, Eckerstraße 1

Beginn: 30.10.2012

Bei Interesse an der Teilnahme bitte bei Herrn Wolf anmelden (Abt. f. Math. Stochastik, Zi. 228, Eckerstr. 1; E-Mail: wolf@stochastik.uni-freiburg.de).

Typisches Semester: mittleres und höheres Semester

Notwendige Vorkenntnisse: Stochastische Integration und Finanzmathematik

Sprechstunde Assistent: nach Vereinbarung, Zi. 228, Eckerstr. 1

Kolloquia

Abteilung für Reine Mathematik

WS 2012/13

Forschungseminar: Internationales Forschungsseminar

Algebraische Geometrie

Dozent: Prof. Dr. Stefan Kebekus

Zeit/Ort: zwei Termine pro Semester, n.V., IRMA – Strasbourg,

siehe Website

Tutorium: Dr. Daniel Greb

Web-Seite: http://home.mathematik.uni-freiburg.de/kebekus/ACG/

Inhalt:

The Joint Seminar is a research seminar in complex and algebraic geometry, organized by the research groups in Freiburg, Nancy and Strasbourg. The seminar meets roughly twice per semester in Strasbourg, for a full day. There are about four talks per meeting, both by invited guests and by speakers from the organizing universities. We aim to leave ample room for discussions and for a friendly chat.

The talks are open for everyone. Contact one of the organizers if you are interested in attending the meeting. We have some (very limited) funds that might help to support travel for some junior participants.

Typisches Semester: Endphase des Haupt- oder Masterstudiums

Sprechstunde Dozent: Di, 9–10 Uhr, Zi. 432, Eckerstr. 1

Sprechstunde Assistent: n. V., Zi. 425, Eckerstr. 1

Mathematisches Institut

WS 2012/13

Veranstaltung: Kolloquium der Mathematik

Dozent: Alle Dozenten der Mathematik

Zeit/Ort: Do, 17:00 Uhr, HS II, Albertstr. 23 b

Inhalt:

Das Mathematische Kolloquium ist die einzige gemeinsame wissenschaftliche Veranstaltung des gesamten Mathematischen Instituts. Sie steht allen Interessierten offen und richtet sich neben den Mitgliedern und Mitarbeitern des Instituts auch an die Studierenden.

Das Kolloquium wird im Wochenprogramm angekündigt und findet in der Regel am Donnerstag um 17:00 Uhr im Hörsaal II in der Albertstr. 23 b statt.

Vorher gibt es um 16:30 Uhr im Sozialraum 331 in der Eckerstraße 1 den wöchentlichen Institutstee, zu dem der vortragende Gast und alle Besucher eingeladen sind.

Weitere Informationen unter http://home.mathematik.uni-freiburg.de/kolloquium/

${\bf Impressum}$

Herausgeber:

Mathematisches Institut

Eckerstr. 1 79104 Freiburg Tel.: 0761-203-5534

E-Mail: institut@math.uni-freiburg.de