Vv256 Lecture 2

Dr Jing Liu

UM-SJTU Joint Institute

September 12, 2017

Every first-order linear equation

$$\alpha(t)\dot{y} + \beta(t)y = \gamma(t)$$

can be written in the following standard form since $\alpha(t) \neq 0$,

$$\dot{y} + P(t)y = Q(t)$$
 where $P(x) = \frac{\beta(t)}{\alpha(t)}$ and $Q(x) = \frac{\gamma(t)}{\alpha(t)}$

• For example,

$$(4+t^2)\dot{y} + 2ty = 4t \implies \dot{y} + \frac{2t}{4+t^2}y = \frac{4t}{4+t^2}$$

• Since it is a first-order equation, we could investigate it using a slope field.

$$\dot{y} = \Phi(t, y) = -\frac{2t}{4 + t^2}y + \frac{4t}{4 + t^2} = \frac{2t(2 - y)}{4 + t^2}$$

• For "simple" first-order differential equations, like this one,

$$(4+t^2)\dot{y} + 2ty = 4t$$

we can solve it by integrating both sides of the equation directly

$$\int \left[(4+t^2)\dot{y} + 2ty \right] dt = \int 4t \ dt \qquad \text{the product/chain rule in reverse}$$

$$\int \frac{d}{dt} \left[\left(4 + t^2 \right) y \right] dt = 2t^2 + C$$

$$(4+t^2)y = 2t^2 + C \implies y = \frac{2t^2 + C}{4+t^2}$$

• However, not every linear first-order equation can be solve in this way,

$$\alpha(t)\dot{y} + \beta(t)y = \gamma(t)$$

Q: When can we solve it in this way by directly integrating both sides?

Q: How can we solve the following equation?

$$\underbrace{(4+t^2)e^t}_{\alpha}\dot{y} + \underbrace{2te^t}_{\beta}y = 4te^t$$

ullet Note that eta is NOT the derivative of lpha, however, multiplying both sides by

$$\frac{1}{e^t}$$

we obtain the previous equation without changing the underlying solutions.

$$(4+t^2)\dot{y} + 2ty = 4t$$

Q: What does the above example suggest we shall do for a general equation of

$$\alpha(t)\dot{y} + \beta(t)y = \gamma(t)$$

• Suppose there exist a function μ of t such that

$$\mu\beta = \frac{d}{dt} \Big(\mu\alpha\Big)$$

where α and β are functions of t in front of \dot{y} and y, then

$$\alpha \dot{y} + \beta y = \gamma$$

$$\implies \mu \alpha \dot{y} + \mu \beta y = \mu \gamma$$

$$\left(\mu \alpha\right)\dot{y}+yrac{d}{dt}\Big(\mu \alpha\Big)=\mu \gamma$$
 the product/chain rule in reverse

$$\frac{d}{dt} \Big[(\mu \alpha) y \Big] = \mu \gamma \implies y = \frac{\int \mu \gamma \, dt}{\mu \alpha}$$

Exercise

Solve the following initial value problem

$$ty' + 2y = 4t^2, y(1) = 2$$

• The function μ is known as the integrating factor, we will show it always exists and has the form given in the next theorem for any linear first-order eq.

Theorem

For a linear first-order equation

$$\alpha(t)\dot{y} + \beta(t)y = \gamma(t)$$

the integrating factor for the equation is

$$\mu = \frac{A}{\alpha} \exp\left(\int \frac{\beta}{\alpha} \, dt\right),$$
 where A is an arbitrary constant.

and the general solution of the equation, which gives all possible solutions, is

$$y = \frac{\int \mu \gamma \ dt}{\mu \alpha}$$

Q: Why it is not a surprise to see the constant A?

Exercise

Find the solution of the initial-value problem,

$$\cos(t)\dot{y} + \sin(t)y = 2\cos^3(t)\sin(t) - 1, \qquad y\left(\frac{\pi}{4}\right) = 3\sqrt{2} \quad \text{for} \quad 0 \le t < \frac{\pi}{2}$$

 \bullet To prove the last theorem, we need to find μ for arbitrary α and β such that

$$(\mu\beta) = \frac{d}{dt}\Big(\mu\alpha\Big) = \dot{\mu}\alpha + \dot{\alpha}\mu$$

• Therefore the integrating factor is a solution to the differential equation

$$\alpha \dot{\mu} = (\beta - \dot{\alpha}) \,\mu$$

• This equation is a homogeneous linear first-order equation of μ .

$$\alpha \dot{\mu} - (\beta - \dot{\alpha}) \mu = 0$$

which is always separable and can be solved using the next theorem.

Definition

A first-order differential equation is called separable if it can be written in the form

$$\dot{y} = GF$$

where G is only a function of y and F is only a function of t.

• Note a separable equation is linear if and only if

$$G(y) = Cy$$
 or $G(y) = C$

 \bullet For any α and β , the function $\mu=0$ is always a solution to the equation

$$\alpha \dot{\mu} = (\beta - \dot{\alpha}) \, \mu$$

• But we are interested in non-trivial solutions, that is, not identically zero.

Theorem

If G(y) and F(x) are continuous, then a separable equation has the solution,

$$\int \frac{1}{G} \, dy = \int F \, dt$$

Proof

Given a separable equation $\dot{y} = GF$, we rearrange to obtain

$$\frac{1}{G(y)}\frac{dy}{dt} = F(t)$$

Write $\frac{1}{G(u)}$ and F(t) as the derivative of their antiderivative using FTC,

$$\frac{d}{dy} \left(\int_{y_0}^{y} \frac{1}{G(\eta)} d\eta \right) \frac{dy}{dt} = \frac{d}{dt} \left(\int_{t_0}^{t} F(\tau) d\tau \right)$$

Use the chain rule in reverse for the left-hand side

$$\frac{d}{dt} \left(\int_{y_0}^{y} \frac{1}{G(\eta)} d\eta \right) = \frac{d}{dt} \left(\int_{t_0}^{t} F(\tau) d\tau \right)$$

Two functions have the same derivative must only differ by an additive constant

$$\int_{y_0}^{y} \frac{1}{G(\eta)} d\eta = \int_{t_0}^{t} F(\tau) d\tau + C \iff \int \frac{1}{G} dy = \int F dt$$

• Let us see how this theorem leads to the formula for the integrating factor

$$\alpha \dot{\mu} = (\beta - \dot{\alpha}) \, \mu \implies \int \frac{1}{\mu} \, d\mu = \int \frac{\beta - \dot{\alpha}}{\alpha} \, dt$$

$$\implies \ln|\mu| = \int \frac{\beta}{\alpha} \, dt - \ln|\alpha|$$

• Exponentiating both sides of the last equation

$$|\mu| = \frac{1}{|\alpha|} \exp\left(\int \frac{\beta}{\alpha} dt\right) = \frac{1}{|\alpha|} \exp\left(\int \frac{\beta}{\alpha} dt + A_1\right)$$
$$= \frac{A_2}{|\alpha|} \exp\left(\int \frac{\beta}{\alpha} dt\right)$$
$$\implies \mu = \frac{A}{\alpha} \exp\left(\int \frac{\beta}{\alpha} dt\right)$$

• In the standard form a linear first-order equation has the general solution of

$$y = \frac{1}{\mu} \left(\int \mu Q \ dt + C \right)$$
 where $\mu = A \exp \left(\int P \ dt \right)$

Exercise

(a) Solve the following differential equation

$$\frac{dy}{dt} = -2ty$$

(b) Solve the following initial value problem

$$(1-y^2)\dot{y} = t^2, \qquad y(1) = 3$$

(c) Find all solutions of the following differential equation.

$$\dot{y} = y(1-y)$$

(d) Suppose an object of mass m is falling from rest near sea level. Assume the air resistance is proportional to the velocity of the object, and the drag coefficient is K. Derive a model for the motion of the object using Newton's second law, then solve it to find the velocity function.

ullet The equation governs the motion of a mass m falling near sea level is

$$m\dot{v} = mg - Kv$$

where g is the gravitational constant and K is the drag coefficient.

• It is a special/simple equation since the derivative in which can be expressed without any explicit reference to time

$$\dot{v} = \Phi(t, v) = \frac{mg - Kv}{m}$$

Definition

An autonomous first-order equation is any equation of the form

$$\dot{y} = G(y)$$

ullet Since there is no time t, all autonomous equations are separable.

$$\int \frac{1}{G(y)} \, dy = t + C$$

For our autonomous equation

$$\dot{v} = \frac{mg - Kv}{m}$$

there is one solution that has particular physical importance.

Definition

An equilibrium/steady solution is any constant function

$$y(t) = C$$

that is a solution to the differential equation.

Q: For the above equation of a falling mass, what does the equilibrium solution

$$v = \frac{mg}{K}$$

represent?

Notice the derivative of a constant function is always zero,

$$y(t) = C \implies \dot{y} = 0$$

thus we find equilibrium solutions by solving for y in the equation

$$\dot{y} = \Phi(t, y) = 0$$

So the equilibrium/steady velocity is

$$0 = \frac{mg - Kv}{m} \implies v = \frac{mg}{K}$$

 \bullet For a particular mass, e.g., an object of $m=10{\rm kg}$ and $K=2{\rm kg/s}$, $\$ we have

$$\dot{v} = 9.8 - \frac{v}{5}$$

the slope filed can be used to see the effect of having different initial velocity and the role that equilibrium solution plays.

- Solutions with different initial velocity converge to the equilibrium velocity.
 - (a) Equilibrium Velocity

(b) Stable Equilibrium

• We classify equilibrium solutions according to their behaviour as $t \to \infty$.

Definition

The equilibrium solution y(t) = c is

stable if all solutions with initial conditions y_0 near y=c

approach c as $t \to \infty$.

unstable if all solutions with initial conditions y_0 near y=c

diverge away from c as $t \to \infty$.

semi-stable if initial conditions y_0 on one side of c lead to solutions y(t) that approach c as $t\to\infty$, while on the other side of c diverge away from c.

Exercise

Find and classify the equilibrium solutions of

$$\dot{y} = (1 - y)(3 - y)$$