Let $\mathbf{AB} \in \mathbb{R}^{n \times n}$, and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$.

Operation	Operations				
	Full matrix	Sparse matrix (m non zero entries)			
$\mathbf{x}^T\mathbf{y}$	n(*) + n - 1(+) = 2n - 1	2n-1			
$\mathbf{x}(+/-)\mathbf{y}$	n	n			
$\alpha \mathbf{x}$	n	n			
Ax	$(n(*) + n - 1(+))n (r) = 2n^2 - n$	(m(*) + m - 1(+))n (r) = 2mn - n			
AB		$[(m(*) + m - 1(+))n (r)]m (c) = 2m^2n - nm$			
$\mathbf{A} \in \mathbb{R}^{m imes n} \mathbf{B} \in \mathbb{R}^{n imes p}$					
AB	mp(2n-1)				
$\mathbf{A} = \mathbf{L}\mathbf{L}^T$	$1/3n^3$				
$\mathbf{L}\mathbf{x} = \mathbf{y}$	n^2				
$\mathbf{L}^T\mathbf{x}=\mathbf{y}$	n^2				

For each matrix vector multiplication we have n multiplications and n-1 additions

Algorithm 3 CG method, solving $Ax = b$.	Operations	
	Full matrix	Sparse matrix
Give an initial guess \mathbf{x}^0 .		
Compute $\mathbf{r}^0 = \mathbf{b} - \mathbf{A}\mathbf{x}^0$ and set $\mathbf{p}^0 = \mathbf{r}^0$.	$2n^2$	2mn
for $k = 0,,$ until convergence		
$\alpha^k = \frac{(\mathbf{r}^k, \mathbf{r}^k)}{(\mathbf{A}\mathbf{p}^k, \mathbf{p}^k)}$	$2n^2 + 3n - 2$	2nm + 3n - 2
$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{p}^k$	2n	2n
$\mathbf{r}^{k+1} = \mathbf{r}^k - \alpha^k \mathbf{A} \mathbf{p}^k$	$2n^2 + n$	2nm+n
$\beta^k = \frac{(\mathbf{r}^{k+1}, \mathbf{r}^{k+1})}{(\mathbf{r}^k, \mathbf{r}^k)}$	4n - 1	4n - 1
$\mathbf{p}^{k+1} = \mathbf{r}^{k+1} + \beta^k \mathbf{p}^k$	2n	2n
end		
Total each k	$4n^2 + 12n - 3$	4nm + 12n - 3

Algorithm 4 ICCG method, solving $Ax = b$.	Operations	
Split preconditioner	Full matrix	Sparse matrix
Give an initial guess \mathbf{x}^0 .		
Compute $\mathbf{r}^0 = \mathbf{b} - \mathbf{A}\mathbf{x}^0$.	$2n^2$	2mn
Compute $\hat{\mathbf{r}}^0 = \mathbf{L}^{-1}\mathbf{r}^0$.	n^2	nm
Compute $\hat{\mathbf{p}}^0 = \mathbf{L}^{-T}\hat{\mathbf{r}}^0$.	n^2	nm
for $k = 0,,$ until convergence		
$\alpha^k = \frac{(\mathbf{r}^k, \mathbf{r}^k)}{(\mathbf{A}\mathbf{p}^k, \mathbf{p}^k)}$	$2n^2 + 3n - 2$	2nm + 3n - 2
$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{p}^k$	2n	2n
$\mathbf{r}^{k+1} = \mathbf{r}^k - \alpha^k \mathbf{L}^{-1} \mathbf{A} \mathbf{p}^k$	$3n^2 + n$	3nm + n
$\beta^k = \frac{(\mathbf{r}^{k+1}, \mathbf{r}^{k+1})}{(\mathbf{r}^k, \mathbf{r}^k)}$	4n-1	4n - 1
$\mathbf{p}^{k+1} = \mathbf{L}^{-T} \mathbf{r}^{k+1} + \beta^k \mathbf{p}^k$	$n^2 + 2n$	nm + 2n
end		
Total each k	$6n^2 + 12n - 3$	6nm + 12n - 3

Algorithm 4 ICCG method, solving $Ax = b$.	Operations	
Split preconditioner	Full matrix	Sparse matrix
Give an initial guess \mathbf{x}^0 .		
Compute $\mathbf{r}^0 = \mathbf{b} - \mathbf{A}\mathbf{x}^0$.	$2n^2$	2mn
Compute $\hat{\mathbf{r}}^0 = \mathbf{L}^{-1}\mathbf{r}^0$.	n^2	nm
Compute $\hat{\mathbf{p}}^0 = \mathbf{L}^{-T}\hat{\mathbf{r}}^0$.	n^2	nm
for $k = 0,,$ until convergence		
$\alpha^k = \frac{(\mathbf{r}^k, \mathbf{r}^k)}{(\mathbf{A}\mathbf{p}^k, \mathbf{p}^k)}$	$2n^2 + 3n - 2$	2nm + 3n - 2
$\mathbf{x}^{k+1} = \hat{\mathbf{x}}^k + \alpha^k \mathbf{p}^k$	2n	2n
$\mathbf{r}^{k+1} = \mathbf{r}^k - \alpha^k \mathbf{L}^{-1} \mathbf{A} \mathbf{p}^k$	$3n^2 + n$	3nm + n
$\beta^k = \frac{(\mathbf{r}^{k+1}, \mathbf{r}^{k+1})}{(\mathbf{r}^k, \mathbf{r}^k)}$	4n-1	4n - 1
$\mathbf{p}^{k+1} = \mathbf{L}^{-T} \mathbf{r}^{k+1} + \beta^k \mathbf{p}^k$	$n^2 + 2n$	nm + 2n
end		
Total each k	$6n^2 + 12n - 3$	6nm + 12n - 3