The Trace of a Matrix

The <u>trace</u> of a square matrix $\mathbf{A} = [a_{ij}]$ is

$$trace(A) = tr(A) = \sum_{i=1}^{n} a_{ii}.$$

For example,

$$tr\left(\begin{bmatrix} 5 & 3 & 5 \\ 4 & -1 & 2 \\ -3 & 8 & 7 \end{bmatrix}\right) = 5 - 1 + 7 = 11.$$

Some Simple Facts about Trace

Suppose $k, k_1, \dots, k_m \in \mathbb{R}$ and A, A_1, \dots, A_m are each $n \times n$ matrices.

Then

- $2 tr(kA) = k \cdot tr(A)$
- 3 $tr(A_1 + A_2) = tr(A_1) + tr(A_2)$
- $tr(\sum_{i=1}^{m} k_i \mathbf{A}_i) = \sum_{i=1}^{m} k_i \cdot tr(\mathbf{A}_i)$

Result A.17:

- (a) tr(AB) = tr(BA). This is known as the cyclic property of the trace.
- (b) If $A_{m \times n} = [a_{ij}]$, then

$$tr(A'A) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^{2}.$$

Proof of Result A.17: HW problem.

Suppose A is an $m \times n$ matrix of rank r. Prove that there exist matrices B and C such that

$$A = BC$$
 and $rank(B) = rank(C) = r$.

Proof:

Let $\mathbf{\textit{B}} = [\mathbf{\textit{b}}_1, \dots, \mathbf{\textit{b}}_r]$ where $\mathbf{\textit{b}}_1, \dots, \mathbf{\textit{b}}_r$ form a basis for $\mathcal{C}(\mathbf{\textit{A}})$.

Because b_1, \ldots, b_r form a basis, they are LI so that $rank(\mathbf{B}) = r$.

Let c_j be the vector of the coefficients of the linear combination of b_1, \ldots, b_r that gives the *j*th column of A.

Then A = BC, where $C = [c_1, \dots, c_n]$.

Finally, note that

$$r = rank(\mathbf{A}) = rank(\mathbf{BC}) \le rank(\mathbf{C}) \le r \Rightarrow rank(\mathbf{C}) = r$$
. \square

Suppose A is an $n \times n$ matrix such that AA = kA for some $k \in \mathbb{R}$. Prove that $tr(A) = k \cdot rank(A)$.

(Note that this result implies the trace of an idempotent matrix is equal to its rank.)

Proof:

Let r = rank(A). Let $\underset{n \times r}{B}$ and $\underset{r \times n}{C}$ be matrices of rank r such that A = BC. Then

$$BCBC = AA = kA = kBC = B(k_{r \times r})C.$$

Now B of full column rank implies $CBC = k \underset{r \times r}{I}C$, and C of full row rank implies $CB = k \underset{r \times r}{I}$.

Thus,

$$tr(\mathbf{A}) = tr(\mathbf{BC}) = tr(\mathbf{CB}) = tr(k \mathbf{I}) = k \cdot tr(\mathbf{I}) = k \cdot r = k \cdot rank(\mathbf{A}).$$

Prove that $tr(I - P_X) = n - rank(X)$.

Proof:

We know $I - P_X$ is idempotent. Thus, $tr(I - P_X) = rank(I - P_X)$.

We know $I-P_X$ is the orthogonal projection matrix onto $\mathcal{C}(X)^\perp = \mathcal{N}(X').$

Thus, $C(I - P_X) = \mathcal{N}(X')$, which has dimension n - rank(X).

Thus, $rank(I - P_X) = n - rank(X)$.

Alternate Proof:

Because P_X is idempotent, $tr(P_X) = rank(P_X)$.

Now note that $rank(P_X) = rank(X)$ because

$$rank(\textbf{\textit{P}}_{\textbf{\textit{X}}}) = rank(\textbf{\textit{X}}(\textbf{\textit{X}}'\textbf{\textit{X}})^{-}\textbf{\textit{X}}') \leq rank(\textbf{\textit{X}}) = rank(\textbf{\textit{P}}_{\textbf{\textit{X}}}\textbf{\textit{X}}) \leq rank(\textbf{\textit{P}}_{\textbf{\textit{X}}}).$$

(This also follows from $C(X) = C(P_X)$.)

Thus,
$$tr(I - P_X) = tr(I) - tr(P_X) = n - tr(P_X) = n - rank(X)$$
.