0.1 Analysis of Space Complexity Components

Space complexity consists of several components, as shown in Table 1.

Table 1: Analysis of Space Complexity Components

Component	Description	Example	Complexity
Constant part	Memory that is always used and	Program instructions,	O(1)
(C)	independent of the input.	global variables	
Input space	Memory occupied by the inputs	Array of n integers \rightarrow	O(n)
(Sp(I))	of the program.	4n bytes	
Recursive stack	Memory used for each recursive	Recursive calls in	O(n)
(Sc(n))	function call.	sum(A, n)	
Auxiliary space	Temporary memory for computa-	Temporary variables	Problem-
	tions or auxiliary structures.	in calculations	dependent

0.1.1 Example: Summing an Array Using Recursion

The following code calculates the sum of an array using recursion:

```
 \begin{array}{l} \mathrm{int\ sum(int\ A[],\ int\ n)\ \{} \\ \\ \mathrm{if\ (n==0)} \\ \\ \mathrm{return\ 0;} \\ \\ \mathrm{return\ A[n-1]\ +\ sum(A,\ n-1);} \\ \\ \end{array}
```

Memory Analysis:

- Constant part (C): Memory for the function code and global variables, about 2000 bytes (fixed amount).
- Input space (Sp(I)): Array A of size n. If each element takes 4 bytes, this is 4n bytes.
- Recursive stack (Sc(n)): Each recursive call takes 16 bytes (return address + parameters), so 16n bytes.
- Auxiliary space: Minimal, since no extra structures are used.

Overall formula:

$$S(P) = C + Sp(I) + Sc(n) = 2000 + 4n + 16n$$

Numerical example: If n = 1000:

$$S(P) = 2000 + 4000 + 16000 = 22000$$
 bytes ≈ 22 KB

Stack Frames for sum(A, n)

Figure 1: Schematic of stack growth during recursive calls in sum(A, n)

0.2 Methods to Reduce Memory Usage

Several methods can be used to optimize memory usage, as summarized in Table 2.

0.2.1 What is a Sparse Matrix?

A sparse matrix is a matrix in which most of the elements are zero, and only a few elements are non-zero. Instead of storing the entire matrix, only the coordinates and values of the non-zero elements are stored, significantly reducing memory usage. This is widely used in applications like storing large graph matrices or sparse data in machine learning.

Table 2: Methods to Reduce Memory Usage

Method	Description	Example	Space
			Complex-
			ity
In-place algorithms	Data is modified in place	QuickSort	$O(\log n)$
	without requiring much extra		
	space.		
Optimized data	Data is stored in compressed or	Sparse matrix (storing	Much less
structures	efficient formats.	only non-zero values),	than nor-
		compact trees	mal
Dynamic program-	Storing only essential states in-	Storing only the	O(1)
ming optimization	stead of all states.	last two values in	
		Fibonacci	
Streaming algo-	Processing data as a stream	HyperLogLog, online	Sublinear
rithms	without storing the entire	averaging	
	dataset.		

0.2.2 Explanation of Streaming Algorithms

Streaming algorithms are used when the dataset is too large to store entirely. These algorithms process data as it arrives and maintain a small summary (sketch) that can be used to make accurate approximations.

- Example: Calculating the average without storing all data (keeping only the sum and count).
- Example: HyperLogLog algorithm for estimating the number of unique values in very large datasets.

Streaming Algorithm: Processing Large Data with Small Memory

Figure 2: Schematic of a streaming algorithm: data arrives as a stream and a small summary is maintained.