1. 三角函数的极限:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1$$

实例.

$$\lim_{x \to 0} \frac{\sin^3(2x)\cos(5x^{19})}{x\tan(5x^2)} = \lim_{x \to 0} \frac{\left[\frac{(\sin(2x))^3}{(2x)^3} \times (2x)^3\right]\cos(5x^{19})}{x\left[\frac{\tan(5x^2)}{5x^2} \times (5x^2)\right]}$$

$$= \lim_{x \to 0} \frac{\frac{(\sin(2x))^3}{(2x)^3} \cdot \cos(5x^{19})}{\frac{\tan(5x^2)}{5x^2}} \times \frac{(2x)^3}{x(5x^2)}$$

$$= \lim_{x \to 0} \frac{\left(\frac{\sin(2x)}{2x}\right)^3\cos(5x^{19})}{\frac{\tan(5x^2)}{5x^2}} \times \frac{8x^3}{5x^3} = \frac{8}{5}$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0$$

证明:

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = \lim_{x \to 0} \frac{1 - \cos(x)}{x} \times \frac{1 + \cos(x)}{1 + \cos(x)}$$

$$= \lim_{x \to 0} \frac{1 - \cos^2(x)}{x} \times \frac{1}{1 + \cos(x)}$$

$$= \lim_{x \to 0} \frac{\sin^2(x)}{x} \times \frac{1}{1 + \cos(x)}$$

$$= \lim_{x \to 0} \sin(x) \times \frac{\sin(x)}{x} \times \frac{1}{1 + \cos(x)}$$

$$= 0 \times 1 \times \frac{1}{1 + 1} = 0$$

对于任意的
$$x$$
, $-1 \leqslant \sin(x) \leqslant 1$ 和 $-1 \leqslant \cos(x) \leqslant 1$

面对 $x \to a$ 的极限, 而 $a \ne 0$ 时, 有一个很好的一般原则, 那就是用 t = x - a作替换, 将问题转化为 $t \to 0$

2. 三角函数的导数

$$\frac{d}{dx}\sin(x) = \cos(x)$$

$$\frac{d}{dx}\cos(x) = -\sin(x)$$

$$\frac{d}{dx}\tan(x) = \sec^2(x)$$

$$\frac{d}{dx}\cot(x) = -\csc^2(x)$$

$$\frac{d}{dx}\sec(x) = \sec(x)\tan(x)$$

$$\frac{d}{dx}\csc(x) = -\csc(x)\cot(x)$$