Data Analytics

Yong Zheng

Illinois Institute of Technology Chicago, IL, 60616, USA

Schedule

- Quick Reviews
- One-Sample Hypothesis Testing
- Two-Sample Hypothesis Testing

Schedule

- Quick Reviews
 - Use Sample to Estimate Population
 - Input: Sample data and confidence level
 - Output: confidence interval

$$\bar{y} \pm z_{\alpha/2} \sigma_{\bar{y}} \approx \bar{y} \pm z_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$$

$$\bar{y} \pm t_{\alpha/2} s_{\bar{y}} = \bar{y} \pm t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$$

- Hypothesis Testing
 - Elements, steps and methods to make decisions
- One-Sample Hypothesis Testing
- Two-Sample Hypothesis Testing

Schedule

- Quick Reviews
- One-Sample Hypothesis Testing
- Two-Sample Hypothesis Testing

What is a hypothesis

- Hypothesis is a claim or assumption
- Example
 - Average age is 30
 - Average age is no more than 30
 - Average age in NYC is larger than the one in Chicago
- Hypothesis Testing is used to validate an hypothesis is true or false based on a confidence level

Elements in Hypothesis Testing

- Null Hypothesis, Ho
 This is the hypothesis we have doubts
- Alternative Hypothesis, Ha or H1
 This is the hypothesis which is counter to the null hypothesis. Usually it is what we want to support
- Test Statistics
 It is used to make decisions
- Level of significance, α The probability of rejecting H₀ giving H₀ is true

Elements in Hypothesis Testing

Rejection Region

If our test statistics faill into rejection region, we reject null hypothesis and accept the alternative hypothesis.

P-value

It is a probability value between 0 and 1 as evidence to reject the null hypothesis.

95% confidence level, we reject Ho if p-value<0.05

P-value = area under normal curve based on the test statistics

Types Hypothesis Testing: Based on Samples

- Hypothesis testing on one sample mean Monthly cell bill is \$42
 I do not think this is true
- Hypothesis testing on two sample means
 Monthly cell bill by ATT and T-Mobile is the same
 ATT is more expensive than T-Mobile

Elements in Hypothesis Testing: Based on Ha

One-sided or one-tailed statistical test

Two-sided or two-tailed statistical test

Steps in Hypothesis Testing

- 1. State the null hypothesis, H_0 and the alternative hypothesis, H_a
- Based on Ha, decide it is one-tailed or twotailed test
- 3. Choose the level of significance, α . Or, you can claim statistical confidence level, α = 1 confidence level
- 4. Determine the appropriate test statistic and sampling distribution depends on sample size
- Determine the critical values that divide the rejection and non-rejection regions

Steps in Hypothesis Testing

- 5. Make the statistical decision and state the managerial conclusion.
 - By using test statistics
 If it falls in the rejection area, we reject H0
 - By using p-value If the p-value $< \alpha$, we reject Ho and accept Ha
 - By using confidence interval
 Note, the acceptance region is the confidence interval based on the confidence level

The test statistic is:

$$Z_{\text{STAT}} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

The test statistic is:

$$t_{\text{STAT}} = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$$

Large-Sample ($n \ge 30$) Test of Hypothesis About μ

Test statistic: $z = (\bar{y} - \mu_0)/\sigma_{\bar{y}} \approx (\bar{y} - \mu_0)/(s/\sqrt{n})$

ONE-TAILED TESTS

TWO-TAILED TEST

$$H_0$$
: $\mu = \mu_0$ H_0 : $\mu = \mu_0$ H_0 : $\mu = \mu_0$ H_a : $\mu < \mu_0$ H_a : $\mu > \mu_0$ H_a : $\mu \neq \mu_0$

Rejection region: $z < -z_{\alpha}$ $z > z_{\alpha}$ $|z| > z_{\alpha/2}$

p-value: $P(z < z_c)$ $P(z > z_c)$ $2P(z > z_c)$ if z_c is positive $2P(z < z_c)$ if z_c is negative

Decision: Reject H_0 if $\alpha > p$ -value, or if test statistic falls in rejection region

where $P(z > z_{\alpha}) = \alpha$, $P(z > z_{\alpha/2}) = \alpha/2$, $z_c =$ calculated value of the test statistic, and $\alpha = P(\text{Type I error}) = P(\text{Reject } H_0 | H_0 \text{ true})$.

Small-Sample Test of Hypothesis About μ

Test statistic: $t = (\bar{y} - \mu_0)/(s/\sqrt{n})$

ONE-TAILED TESTS TWO-TAILED TEST

 $H_0: \mu = \mu_0$ $H_0: \mu = \mu_0$ $H_0: \mu = \mu_0$ $H_a: \mu < \mu_0$ $H_a: \mu > \mu_0$

Rejection region: $t < -t_{\alpha}$ $t > t_{\alpha}$ $|t| > t_{\alpha/2}$

p-value: $P(t < t_c)$ $P(t > t_c)$ $2P(t > t_c)$ if t_c is positive $2P(t < t_c)$ if t_c is negative

Decision: Reject H_0 if $\alpha > p$ -value, or if test statistic falls in rejection region where $P(t > t_{\alpha}) = \alpha$, $P(t > t_{\alpha/2}) = \alpha/2$, t_c = calculated value of the test statistic, and $\alpha = P(\text{Type I error}) = P(\text{Reject } H_0 | H_0 \text{ true})$.

Assumption: The population from which the random sample is drawn is approximately normal.

Steps in Hypothesis Testing

- 1. State the null hypothesis, H_0 and the alternative hypothesis, H_a
- Based on Ha, decide it is one-tailed or twotailed test
- 3. Choose the level of significance, α . Or, you can claim statistical confidence level, α = 1 confidence level
- 4. Determine the appropriate test statistic and sampling distribution depends on sample size
- Determine the critical values that divide the rejection and non-rejection regions

Steps in Hypothesis Testing

- 5. Make the statistical decision and state the managerial conclusion.
 - By using test statistics
 If it falls in the rejection area, we reject H0
 - By using p-value If the p-value $< \alpha$, we reject Ho and accept Ha
 - By using confidence interval
 Note, the acceptance region is the confidence interval based on the confidence level

Example: Room Price

The average cost of a hotel room in New York is said to be \$168 per night. To determine if this is true, a random sample of 25 hotels is taken and resulted in an \overline{X} of \$172.50 and an S of \$15.40. Test the appropriate hypotheses at α = 0.05.

(Assume the population distribution is normal)

 H_0 : $\mu = 168$

 H_1 : $\mu \neq 168$

The test statistic is:

$$Z_{\text{STAT}} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

The test statistic is:

$$t_{\text{STAT}} = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$$

Small-Sample Test of Hypothesis About μ

Test statistic: $t = (\bar{y} - \mu_0)/(s/\sqrt{n})$

ONE-TAILED TESTS TWO-TAILED TEST

 H_0 : $\mu = \mu_0$ H_0 : $\mu = \mu_0$ H_0 : $\mu = \mu_0$ H_a : $\mu < \mu_0$ H_a : $\mu > \mu_0$ H_a : $\mu \neq \mu_0$

Rejection region: $t < -t_{\alpha}$ $t > t_{\alpha}$ $|t| > t_{\alpha/2}$

p-value: $P(t < t_c)$ $P(t > t_c)$ $2P(t > t_c)$ if t_c is positive $2P(t < t_c)$ if t_c is negative

Decision: Reject H_0 if $\alpha > p$ -value, or if test statistic falls in rejection region

where $P(t > t_{\alpha}) = \alpha$, $P(t > t_{\alpha/2}) = \alpha/2$, t_c = calculated value of the test statistic, and $\alpha = P(\text{Type I error}) = P(\text{Reject } H_0 | H_0 \text{ true})$.

Assumption: The population from which the random sample is drawn is approximately normal.

Example: Room Price

$$H_0$$
: $\mu = 168$

 H_1 : $\mu \neq 168$

$$\alpha = 0.05$$

- lacktriangle σ is unknown, so
- use a t statistic
- Critical Value:

$$\pm t_{24,0.025} = \pm 2.0639$$

Do not reject H₀: insufficient evidence that true mean cost is different from \$168

Example: Room Price

 $\alpha/2 = .025$

 $\alpha/2 = .025$

$$H_0$$
: $\mu = 168$

 H_1 : $\mu \neq 168$

- $\alpha = 0.05$
- n = 25, df = 25-1=24
- σ is unknown, so
- use a t statistic
- Critical Value:

$$\pm t_{24,0.025} = \pm 2.0639$$

P-value = 0.1572 by two-tailed t-test and t = 1.46, df = 24; Do not reject H₀: Not statistically significant to reject H₀

Note About T-test

- As long as the sample size is not very small (even if n<30) and the population is not very skewed, the ttest can be used. Basically you must make sure the population follows normal distribution
- To evaluate the normality assumption:
 - Determine how closely sample statistics match the normal distribution's theoretical properties.
 - Construct a histogram or stem-and-leaf display or boxplot or a normal probability plot.
 - We will learn more (normal test or QQ-Plot) in the next week
- Online tools for you to calculate p-value http://www.socscistatistics.com/pvalues/Default.aspx

1. α and $\alpha/2$

ONE-TAILED TESTS

TWO-TAILED TEST

$$H_0: \mu = \mu_0 \qquad H_0: \mu = \mu_0 \qquad H_0: \mu = \mu_0$$

$$H_a: \mu < \mu_0 \qquad H_a: \mu > \mu_0 \qquad H_a: \mu \neq \mu_0$$

$$Rejection region: \qquad z < -z_\alpha \qquad z > z_\alpha \qquad |z| > z_{\alpha/2}$$

$$p\text{-value:} \qquad P(z < z_c) \qquad P(z > z_c) \qquad 2P(z > z_c) \text{ is } z > z_c$$

 $|z| > z_{\alpha/2}$ $|z| > z_{c}$ if z_c is positve $2P(z < z_c)$ if z_c is negative

1. α and $\alpha/2$

1) If n >= 30, normal distribution, z value

$$\bar{y}\pm z_{lpha/2}\sigma_{\bar{y}} pprox \bar{y}\pm z_{lpha/2}\left(rac{s}{\sqrt{n}}
ight)$$
 , $lpha$ = 1 – confidence level

2) Otherwise, t distribution, t value

$$\bar{y} \pm t_{\alpha/2} s_{\bar{y}} = \bar{y} \pm t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$$
 , α = 1 – confidence level

2. z_{α} and p-value

1) If n >= 30, normal distribution, z value

$$\bar{y}\pm z_{lpha/2}\sigma_{\bar{y}} pprox \bar{y}\pm z_{lpha/2}\left(rac{s}{\sqrt{n}}
ight)$$
 , $lpha$ = 1 – confidence level

2) Otherwise, t distribution, t value

$$\bar{y} \pm t_{\alpha/2} s_{\bar{y}} = \bar{y} \pm t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$$
 , α = 1 – confidence level

2. z_{α} and p-value

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767

2. z_{α} and p-value

2. z_{α} and p-value

Example: Case Study 1 Student Grades

Types Hypothesis Testing

- Hypothesis testing on one sample mean Monthly cell bill is \$42
 I do not think this is true
- Hypothesis testing on two sample means
 Monthly cell bill by ATT and T-Mobile is the same
 ATT is more expensive than T-Mobile

Dependency Between Two Samples

- Two Samples: Independent
 Students in ITMD525 are better than ones in ITMD527
 Population-1: students in ITMD525 with size n1
 Population-2: students in ITMD527 with size n2
 Note: n1 and n2 could be the same or different
- Two Samples: Paired
 Students perform better in ITMD525 than in ITMD527
 Population-1: Students enrolled in ITMD525
 Population-2: Students also enrolled in ITMD527
 Note: n1 and n2 must be the same same students!!

Dependency Between Two Samples

- If they are paired two samples
 - Sample size must be the same
 - You can organize the data in two columns, each column represents a list of values for a sample
 - Each row in the data can be referred to a same standard, such as the data related to a same person
 - Different rows have different standards

Two-Sample Test

Sample Statistics in Two-Sample Test

Table 1.13 Two-sample notation				
	Popu	Population		
	1	2		
Sample size	n_1	n_2		
Population mean	μ_1	μ_2		
Population variance	σ_1^2	σ_2^2		
Sample mean	$ar{y}_1$	\bar{y}_2		
Sample variance	s_1^2	s_2^2		

Two-Sample Test: Paired Samples

If you found it as two paired sample hypothesis testing, you should convert it to one sample hypothesis testing

Two-Sample Test: Paired Samples

Two Population Means, Paired Samples

Paired Difference Confidence Interval for $\mu_{\rm d}=\mu_1-\mu_2$

Large Sample

$$\bar{y}_{\rm d} \pm z_{\alpha/2} \frac{\sigma_{\rm d}}{\sqrt{n_{\rm d}}} \approx \bar{y}_{\rm d} \pm z_{\alpha/2} \frac{s_{\rm d}}{\sqrt{n_{\rm d}}}$$

Assumption: Sample differences are randomly selected from the population.

Small Sample

$$\bar{y}_{\rm d} \pm t_{\alpha/2} \frac{s_{\rm d}}{\sqrt{n_{\rm d}}}$$

where $t_{\alpha/2}$ is based on $(n_d - 1)$ degrees of freedom

Assumptions:

- 1. Population of differences has a normal distribution.
- 2. Sample differences are randomly selected from the population.

Two-Sample Test: Paired Samples

Paired Difference Test of Hypothesis for $\mu_d = \mu_1 - \mu_2$

ONE-TAILED TESTS

TWO-TAILED TEST

$$H_0$$
: $\mu_d = D_0$ H_0 : $\mu_d = D_0$ H_0 : $\mu_d = D_0$ H_a : $\mu_d < D_0$ H_a : $\mu_d > D_0$ H_a : $\mu_d \neq D_0$

Large Sample

Test statistic:
$$z = \frac{\bar{y}_{d} - D_{0}}{\sigma_{d}/\sqrt{n_{d}}} \approx \frac{\bar{y}_{d} - D_{0}}{s_{d}/\sqrt{n_{d}}}$$

Rejection Region:
$$z < -z_{\alpha}$$
 $z > z_{\rm d}$ $|z| > z_{\alpha/2}$

p-value:
$$P(z < z_c)$$
 $P(z > z_c)$ $2P(z > z_c)$ if z_c positive

 $2P(z < z_c)$ if z_c negative

Assumption: The differences are randomly selected from the population of differences.

Small Sample

Test statistic:
$$t = \frac{\bar{y}_d - D_0}{s_d / \sqrt{n_d}}$$

Rejection region:
$$t < -t_{\alpha}$$
 $t > t_{\alpha}$ $|t| > t_{\alpha/2}$

p-value:
$$P(t < t_c)$$
 $P(t > t_c)$ $2P(t > t_c)$ if t_c is positive $2P(t < t_c)$ if t_c is negative

Assumptions:

- 1. The relative frequency distribution of the population of differences is normal.
- 2. The differences are randomly selected from the population of differences.

Case Study 2: Complaints

• Assume you send your salespeople to a "customer service" training workshop. Has the training made a difference in the number of complaints? You collect the following data:

Salesperson	Number of Complaints: Before (1) After (2)		(2) - (1) <u>Difference,</u> <u>D</u> _i
C.B.	6	4	- 2
T.F.	20	6	-14
M.H.	3	2	- 1
R.K.	0	0	0
M.O.	4	0	<u>- 4</u>
			-21

$$\overline{D} = \frac{\sum D_i}{n}$$

$$= -4.2$$

$$S_D = \sqrt{\frac{\sum (D_i - \overline{D})^2}{n-1}}$$

$$= 5.67$$

Case Study 2: Complaints

Has the training made a difference in the number of complaints

(at the 0.01 level)?

$$H_0$$
: $\mu_D = 0$
 H_1 : $\mu_D \neq 0$

$$\alpha = .01$$
 $\overline{D} = -4.2$

$$t_{0.005} = \pm 4.604$$

d.f. = n - 1 = 4

Test Statistic:

$$t_{\text{STAT}} = \frac{\overline{D} - \mu_{\text{D}}}{S_{\text{D}} / \sqrt{n}} = \frac{-4.2 - 0}{5.67 / \sqrt{5}} = \boxed{-1.66}$$

Decision: Do not reject H_0 (t_{stat} is not in the rejection region)

Conclusion: There is insufficient of a change in the number of complaints.

Hypothesis in Two-Sample Test

Two Population Means, Independent Samples

Lower-tail test:

$$H_0: \mu_1 \ge \mu_2$$

 $H_1: \mu_1 < \mu_2$
i.e.,

$$H_0$$
: $\mu_1 - \mu_2 \ge 0$
 H_1 : $\mu_1 - \mu_2 < 0$

Upper-tail test:

$$H_0: \mu_1 \le \mu_2$$

 $H_1: \mu_1 > \mu_2$
i.e.,

$$H_0$$
: $\mu_1 - \mu_2 \le 0$
 H_1 : $\mu_1 - \mu_2 > 0$

Two-tail test:

$$H_0$$
: $\mu_1 = \mu_2$
 H_1 : $\mu_1 \neq \mu_2$
i.e.,

$$H_0$$
: $\mu_1 - \mu_2 = 0$
 H_1 : $\mu_1 - \mu_2 \neq 0$

Hypothesis in Two-Sample Test

Two Population Means, Independent Samples

Lower-tail test:

$$H_0: \mu_1 - \mu_2 \ge 0$$

$$H_1$$
: $\mu_1 - \mu_2 < 0$

Upper-tail test:

$$H_0$$
: $\mu_1 - \mu_2 \le 0$

$$H_1$$
: $\mu_1 - \mu_2 > 0$

Two-tail test:

$$H_0$$
: $\mu_1 - \mu_2 = 0$

$$H_1$$
: $\mu_1 - \mu_2 \neq 0$

Reject H_0 if $t_{STAT} < -t_{\alpha}$

Reject H_0 if $t_{STAT} > t_{\alpha}$

Reject H₀ if
$$t_{STAT} < -t_{\alpha/2}$$

or $t_{STAT} > t_{\alpha/2}$

- If they are independent, then follow the statistical way. But it is complicated.
- You do not need to remember the formula. We have statistical software to do that.

Two Population Means, Independent Samples

Large-Sample Confidence Interval for $(\mu_1 - \mu_2)$: Independent Samples

$$(\bar{y}_1 - \bar{y}_2) \pm z_{\alpha/2} \sigma_{(\bar{y}_1 - \bar{y}_2)^*} = (\bar{y}_1 - \bar{y}_2) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Assumptions: The two samples are randomly and independently selected from the two populations. The sample sizes, n_1 and n_2 , are large enough so that \bar{y}_1 and \bar{y}_2 each have approximately normal sampling distributions and so that s_1^2 and s_2^2 provide good approximations to σ_1^2 and σ_2^2 . This will be true if $n_1 \ge 30$ and $n_2 > 30$.

Two Population Means, Independent Samples

Large-Sample Test of Hypothesis About ($\mu_1 - \mu_2$): Independent Samples

Test statistic:
$$z = \frac{(\bar{y}_1 - \bar{y}_2) - D_0}{\sigma_{(\bar{y}_1 - \bar{y}_2)}} = \frac{(\bar{y}_1 - \bar{y}_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

ONE-TAILED TESTS

TWO-TAILED TEST

$$H_0$$
: $\mu_1 - \mu_2 = D_0$ H_0 : $\mu_1 - \mu_2 = D_0$ H_0 : $\mu_1 - \mu_2 = D_0$ H_a : $\mu_1 - \mu_2 < D_0$ H_a : $\mu_1 - \mu_2 > D_0$ H_a : $\mu_1 - \mu_2 \neq D_0$ H_a : $\mu_1 - \mu_2 \neq D_0$ μ_2 : μ_2 : $\mu_1 - \mu_2 \neq D_0$ μ_2 : $\mu_1 -$

Decision: Reject H_0 if $\alpha > p$ -value, or, if the test statistic falls in rejection region where D_0 = hypothesized difference between means, $P(z > z_\alpha) = \alpha$, $P(z > z_{\alpha/2}) = \alpha/2$, z_c = calculated value of the test statistic, and $\alpha = P(\text{Type I error}) = P(\text{Reject } H_0 | H_0 \text{ true})$.

Assumptions: Same as for the previous large-sample confidence interval

Two Population Means, Independent Samples

Small-Sample Confidence Interval for $(\mu_1 - \mu_2)$: Independent Samples

$$(\bar{y}_1 - \bar{y}_2) \pm t_{\alpha/2} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

where

$$s_{p}^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

is a "pooled" estimate of the common population variance and $t_{\alpha/2}$ is based on $(n_1 + n_2 - 2)$ df.

Assumptions:

- 1. Both sampled populations have relative frequency distributions that are approximately normal.
- 2. The population variances are equal.
- 3. The samples are randomly and independently selected from the populations.

Two Population Means, Independent Samples

Small-Sample Test of Hypothesis About $(\mu_1 - \mu_2)$: Independent Samples

Test statistic:
$$t = \frac{(\bar{y}_1 - \bar{y}_2) - D_0}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
 where $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$

ONE-TAILED TESTS

TWO-TAILED TEST

$$H_0: \mu_1 - \mu_2 = D_0 \quad H_0: \mu_1 - \mu_2 = D_0 \quad H_0: \mu_1 - \mu_2 = D_0 \\ H_a: \mu_1 - \mu_2 < D_0 \quad H_a: \mu_1 - \mu_2 > D_0 \quad H_a: \mu_1 - \mu_2 \neq D_0 \\ Rejection \ region: \ t < -t_\alpha \qquad \qquad z > t_\alpha \qquad \qquad |t| > z_{\alpha/2} \\ p\text{-}value: \qquad P(t < t_c) \qquad P(z > t_c) \qquad 2P(t > t_c) \ \text{if } t_c \ \text{is positive} \\ 2P(t < t_c) \ \text{if } t_c \ \text{is negative}$$

Decision: Reject H_0 if $\alpha > p$ -value, or, if test statistic falls in rejection region

where D_0 = hypothesized difference between means, $P(t > t_\alpha) = \alpha$, $P(t > t_\alpha)$ $t_{\alpha/2}$) = $\alpha/2$, t_c = calculated value of the test statistic, and α = P(Type I error) = P(Reject $H_0|H_0$ true).

Assumptions: Same as for the previous small-sample confidence interval. School of A

Case Study 1: Stocks

You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? You collect the following data:

	NYSE	<u>NASDAQ</u>
Number	21	25
Sample mean	3.27	2.53
Sample std dev	1.30	1.16

Assuming both populations are approximately normal with equal variances, is there a difference in mean yield ($\alpha = 0.05$)?

Case Study 1: Stocks

H0:
$$\mu_1 - \mu_2 = 0$$
 i.e. $(\mu_1 = \mu_2)$

H1:
$$\mu_1 - \mu_2 \neq 0$$
 i.e. $(\mu_1 \neq \mu_2)$

The test statistic is:

$$t = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{\left(3.27 - 2.53\right) - 0}{\sqrt{1.5021 \left(\frac{1}{21} + \frac{1}{25}\right)}} = 2.040$$

$$S_{p}^{2} = \frac{(n_{1}-1)S_{1}^{2} + (n_{2}-1)S_{2}^{2}}{(n_{1}-1) + (n_{2}-1)} = \frac{(21-1)1.30^{2} + (25-1)1.16^{2}}{(21-1) + (25-1)} = 1.5021$$

Case Study 1: Stocks

2.040

$$H_0$$
: $\mu_1 - \mu_2 = 0$ i.e. $(\mu_1 = \mu_2)$

$$H_1$$
: $\mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

$$\alpha$$
 = 0.05

$$df = 21 + 25 - 2 = 44$$

Critical Values: t = ± 2.0154

Test Statistic:

$$t = \frac{3.27 - 2.53}{\sqrt{1.5021 \left(\frac{1}{21} + \frac{1}{25}\right)}}$$

Decision:

Reject H_0 at $\alpha = 0.05$

Conclusion:

There is evidence of a difference in means.