Aplicación de modelos lineales generalizados: Caso Regresión Gamma para analizar información generada de estaciones meteorológicas.

Karla Reyes Maya Marcelo Sanchez Zaragoza

Computo Estadístico, CIMAT

Diciembre 7, 2021

- Descripción del proyecto.
 - Objetivos del proyecto.
 - Información utilizada.
- Modelo GML, caso: Gamma.

Descripción del problema

El caso consiste en el analisis de datos sobre información generada en estaciones meteorológicas. En particular sobre la precipitación en milímetros de 54 estaciones meteorológicas con información histórica de 302 semanas (aprox 6 años).

ESTACIONES METEOROLOGICAS									
10VCZ Boca del Rio	Ciudad Juarez	La Paz	Mexico Oriente	Morelia	Saltillo				
10VCZ Coatzacoalcos	Colima	Laguna	Mexico Reforma	Nogales	San Luis Potosi				
10VCZ Cordoba	Cuernavaca	Laredo	Mexico Satelite	Oaxaca	Tampico				
10VCZ Poza Rica	Culiacan	Leon	Mexico Valle	Obregon	Tijuana				
10VCZ Xalapa	Durango	Los Mochis	Monclova	Pachuca	Toluca				
Acapulco	Guadalajara Altos	Matamoros	Monterrey Centro	Piedras Negras	Tuxtla				
Aguascalientes	Guadalajara Chapala	Merida	Monterrey Norte	Puebla	Vallarta				
Cancun	Guadalajara Tequila	Mexicali	Monterrey Oriente	Queretaro	Villahermosa				
Chihuahua	Hermosillo	Mexico Ajusco	Monterrey Sur	Reynosa	Zacatecas				

Objetivos

Desarrollar un Modelo Lineal Generalizado Gamma con variables de regresión como: Media de la Precipitación, Tendencia y Estacionalidad que permita establecer un pronostico anual sobre el valor Máximo de Precipitación en cada una de las 54 estaciones meteorologías para el siguiente año.

Lo anterior se traduce en objetivos particulares como proporcionar una herramienta, a través de las estimaciones, que auxilie en la gestión y toma de decisiones como:

- Diseño pluvial en las ciudades
- Detección temprana de sequías

Datos Historicos

Semana	Plaza	Precipitación_MM
201553	Acapulco	0.007536232
201601	Acapulco	2.184099353
201602	Acapulco	0.132298137
201603	Acapulco	0
201604	Acapulco	0.188819876
201605	Acapulco	0.643229808
201606	Acapulco	0
:	:	:
202136	Acapulco	19.75043478
202137	Acapulco	32.45565217
202138	Acapulco	9.164720497
202139	Acapulco	36.24149068
202140	Acapulco	0

Cuadro: Visualización de los datos sin procesar para la Plaza meteorológica: Acapulco. El total de la semanas contempla de la semana 53 de 2015 a la semana 40 de 2021. Un aproximado de 6 años.

Tabla Por Año y Meses

Plaza	Año	Mes	Max_Precipitación_MM
Acapulco	2016	1	2.18409935
Acapulco	2016	2	1.20670807
Acapulco	2016	3	3.52956518
Acapulco	2016	4	0.53751553
Acapulco	2016	5	3.38608695
Acapulco	2016	6	8.00931668
Acapulco	2016	7	5.88645958
Acapulco	2016	8	17.1673294
Acapulco	2016	9	14.3450931
Acapulco	2016	10	4.02149069
Acapulco	2016	11	3.23018638
Acapulco	2016	12	0.64496894

Cuadro: Visualiación de los datos reducido por Año y Mes (con base en las semanas) y tomando el máximo de la precipitación mensual.

- 1 Descripción del proyecto.
 - Objetivos del proyecto.
 - Información utilizada.
- 2 Modelo GML, caso: Gamma.
- 3 Implementación.
- 4 Resultados.
- 5 Conclusiones.

GML Gamma

La distribución de densidad gamma viene dada por :

$$f(y) = \frac{1}{\Gamma(r)} \left(\frac{1}{\lambda}\right)^r e^{-y/\lambda} y^{r-1}; \quad y \ge 0, r > 0, \lambda > 0$$

$$\theta = \frac{1}{\lambda r} = -\frac{1}{\mu}$$

$$\mu = r\lambda$$

$$Var \ y = \frac{\mu^2}{r}$$

Función Liga

En la siguiente tabla se muestra algunos enlaces canonicos utilizados regularmente:

Distribución	Enlace Canonico
Normal	$\eta_i = \mu_i (identity\ link)$
Binomial	$\eta_i = ln(\frac{\pi_i}{1-\pi_i})$ (logistic link)
Poisson	$\eta_i = ln(\mu_i) (log\ link)$
Exponencial	$\eta_i = rac{1}{\mu_i} (\text{reciprocal link})$
Gamma	$\eta_i = \frac{1}{\mu_i}$ (reciprocal link)

- log link $\eta_i = log \ \mu_i$
- $\bullet \ \ \text{identity link} \ \eta_i = \mu_i$

Section 3

- 1 Descripción del proyecto.
 - Objetivos del proyecto.
 - Información utilizada.
- 2 Modelo GML, caso: Gamma.
- 3 Implementación.
- 4 Resultados.
- 6 Conclusiones.

Variables de regresión consideradas

Plaza	Max_Precipitacion_MM	Media_Precipitacion	Tendencia	mes_1	mes_2	mes_3	mes_4	mes_5	mes_6	mes_7	mes_8	mes_9	mes_10	mes_11	mes_12
Colima	6.79334039	1.70365196	2	1	0	0	0	0	0	0	0	0	0	0	0
Colima	0.17518797	0.08308271	3	0	1	0	0	0	0	0	0	0	0	0	0
Colima	3.14672401	0.94355533	4	0	0	1	0	0	0	0	0	0	0	0	0
Colima	0	0	5	0	0	0	1	0	0	0	0	0	0	0	0
Colima	2.09999997	1.29057465	6	0	0	0	0	1	0	0	0	0	0	0	0
Colima	9.01815243	6.61458105	7	0	0	0	0	0	1	0	0	0	0	0	0
Colima	14.4611171	11.9402792	8	0	0	0	0	0	0	1	0	0	0	0	0
Colima	14.4792693	11.8405745	9	0	0	0	0	0	0	0	1	0	0	0	0
Colima	20.6278197	11.9795059	10	0	0	0	0	0	0	0	0	1	0	0	0
Colima	5.56015044	4.15185284	11	0	0	0	0	0	0	0	0	0	1	0	0
Colima	8.46390972	3.55385604	12	0	0	0	0	0	0	0	0	0	0	1	0
Colima	0.04092374	0.01023094	13	0	0	0	0	0	0	0	0	0	0	0	1

Cuadro: Visualización de las variables de regresión, media mensual, tendencia(consecutiva) y estacionalidad(variable dummy).

Ejemplo GML Gamma

Ejemplo

```
Deviance Residuals:
 3 6197 -0 9759
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
Media_Precipitacion 0
mes_1
                     0.9570530 0.5446748
                                            1.757
                                                   0.0843
mes_2
                     0.5927439 0.5444550
                                            1.089
                                                   0.2809
mes_3
                                                   0.6066
                    0.2819681 0.5445674
                                           0.518
nes 4
                                           -2.814
                                                   0.0067 **
mes 5
                                                   0.3702
                     0.4929857 0.5458276
mes 6
                     1.2105318 0.6724313
                                            1 800
                                                   0.0771
mes 7
                     0.9601819 0.7203748
                                            1.333
                                                   0.1879
mes 8
                     0.6857190 0.7507112
                                           0.913
                                                   0.3649
mes 9
                     0.4912944 0.8787785
                                           0.559
                                                   0.5783
mes 10
                                            2.050
                                                   0.0450 *
mes 11
                                                    0.0122 *
Signif, codes: 0 **** 0.001 *** 0.01 ** 0.05 \. 0.1 \. 1
(Dispersion parameter for Gamma family taken to be 0.8886784)
   Null deviance: 260.60 on 70 degrees of freedom
Residual deviance: 131.47 on 57 degrees of freedom
ATC: 309 61
Number of Fisher Scoring iterations: 16
```

Figura: Resultado de ajustar el modelo para la vairable Max_Precipitación y las variables de regresión. Se observa que la variable de tendencia no resuta significativa, mientras que la varible Media Mensual de la Precipitación resulta muy sinificativa. Los meses significativos fueron Abril, Octubre y Noviembre.

Ejemplo GML Gamma

Ejemplo GML

Ejemplo GML Gamma

```
Deviance Residuals:
    Min
                  Median
-3.6277 -0.9946
                  0.0647
                           0.2941
                                   1.8860
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   -0.53211
                              0.38100 -1.397 0.16786
Media Precipitacion 0.22897
                              0.04868
                                        4.703 1.63e-05 ***
                    0.97531
                              0.53904
                                        1.809 0.07558
mes_1
                              0.53874
                                        1.103 0.27475
mes_2
                   0.59402
                              0.53872
                                        0.565 0.57449
mes_3
                   0.30419
                   -1.53314
                              0.53871 -2.846 0.00611 **
mes_4
                    0.49917
                              0.53956 0.925 0.35873
mes_5
                              0.66520
                                        1.824 0.07328
mes 6
                    0.95466
                              0.71258
                                        1.340 0.18556
mes_7
                    0.68038
                              0.74248
                                        0.916 0.36327
mes 8
                    0.49136
                              0.86930
mes 9
                                        0.565 0.57409
mes 10
                    1.20362
                              0.57760
                                        2.084 0.04159 *
mes 11
                    1.50697
                              0.57234
                                        2.633 0.01083 *
Signif, codes: 0 \*** 0.001 \** 0.01 \* 0.05 \' 0.1 \' 1
(Dispersion parameter for Gamma family taken to be 0.8704667)
   Null deviance: 260.60 on 70 degrees of freedom
Residual deviance: 131.49 on 58 degrees of freedom
AIC: 307.62
Number of Fisher Scoring iterations: 11
```

Figura: Resultado de ajustar el modelo para la vairable Max_Precipitación y las variables de regresión.

Proyección de la Media

Mediante Regresión

```
# La proyeccion se realizo mediante regresion
 nota: Im construye el modelo de regresion
# implicitamente con los casos completos
Im_media <- Im (Media_Precipitacion ~</pre>
                                  mes_1+mes_2+mes_3+
                                  mes_4+mes_5+mes_6+
                                  mes_7+mes_8+mes_9+
                                  mes_10+mes_11, predi_reg)
summary (Im_media)
new_mes_12 < - new_mes_12[12:25]
pred.1 <- predict (Im_media, new_mes_12)</pre>
```

Proyección de la Media

Media_Precipitacion	Tendencia	mes_1	mes_2	mes_3	mes_4	mes_5	mes_6	mes_7	mes_8	mes_9	mes_10	mes_11	mes_12	
0.244787849	74	1	0	0	0	0	0	0	0	0	0	0	0	
0.347882327	75	0	1	0	0	0	0	0	0	0	0	0	0	
0.139590964	76	0	0	1	0	0	0	0	0	0	0	0	0	
0.004249088	77	0	0	0	1	0	0	0	0	0	0	0	0	
0.031190102	78	0	0	0	0	1	0	0	0	0	0	0	0	
0.618933147	79	0	0	0	0	0	1	0	0	0	0	0	0	
1.746537182	80	0	0	0	0	0	0	1	0	0	0	0	0	
3.304952670	81	0	0	0	0	0	0	0	1	0	0	0	0	
3.511007297	82	0	0	0	0	0	0	0	0	1	0	0	0	
1.218307384	83	0	0	0	0	0	0	0	0	0	1	0	0	
0.978424905	84	0	0	0	0	0	0	0	0	0	0	1	0	
0.339959296	85	0	0	0	0	0	0	0	0	0	0	0	1	

Cuadro: Visualización de las proyecciones de la Media, la tendencia y las variables dummy de estacionalidad para la Estimación del Modelo GML Gamma.

Estimación del intervalo de confianza al 99 %

Los intervalos de incertidumbre (intervalos de confianza o de predicción) para valores ajustados son bastante fáciles si solo se trabaja con modelos lineales, pero cuando los modelos se vuelven más complejos, por ejemplo, modelos lineales generalizados, las facilidades para cuantificar la incertidumbre para las predicciones son más complicadas o inexistente.

Para calcular los intervalos de confianza se hace un intervalo en la escala del predictor lineal y luego aplicando la función de liga inversa g^{-1} del ajuste del modelo para transformar los intervalos de confianza del nivel lineal en el nivel de respuesta. Donde los intervalos están dados por:

$$g^{-1}\left(x'\hat{\beta} \pm z_{1-\alpha/2}\sqrt{\hat{\sigma}x'\left(X'X\right)^{-1}x}\right)$$

Proyección del Max. Precipitación por año

Proyección e Intervalo C.

```
# Hacemos la predicci n con las var.
# Media + estacionalidad
prediccion <- predict(regresion_sim , predi_reg_t ,</pre>
                          type="response")
mmaximos <-maximos$prediccion
maximo_ <- max(mmaximos)
Data_P <- data.frame(maximos)
# Usamos ciTools
conf <- add_ci(Data_P, regresion_sim ,</pre>
                 alpha = 0.1.
                 names = c("lwr", "upr"))
```

Section 4

- 1 Descripción del proyecto.
 - Objetivos del proyecto.
 - Información utilizada.
- 2 Modelo GML, caso: Gamma.
- 3 Implementación.
- 4 Resultados.
- 6 Conclusiones.

Intervalo C.
13.1273 46.9018
8.5375 24.4625
11.1664 62.1342
9.6294 32.1384
5.8311 10.0657
9.5791 17.9781
8.2395 13.2735
6.2751 22.4312
3.5714 7.5327
5.8311 10.0657
5.581 20.5403
9 5 4 8 2 8 3

Cuadro: Historico de la precipitación de 2015-21 así como la estimación para 2022 y e intervalo de confianza.

Figura: Residuales del modelo GML Gamma para la plaza 11 Colima.

Figura: Grafico de los Valores Máximos de Precipitación en los años 2015-2021 y el estimado para 2022.

Figura: Precipitaación Máx Historico para 2020.

Figura: Precipitación Máx Historico para 2021.

Figura: Precipitación Máx Estimada para 2022.

Contraste

	Plaza	Estimación	Intervalos	Registro
Ciu	idad Juarez	0.71	(0.4791-1.03)	0.49
Z	Zacatecas	1.36	(1.12-6.26)	1.5

Section 5

- 1 Descripción del proyecto.
 - Objetivos del proyecto.
 - Información utilizada.
- 2 Modelo GML, caso: Gamma.
- 3 Implementación.
- 4 Resultados
- 6 Conclusiones.

Conclusiones.

Respecto a la estimación del valor máximo de precipitación anual para las estaciones meteorologicas,

- La información de la media de la precipitación mensual resulto una variable significativa en la mayoría de los modelos.
- Mientras que en casi todos los casos, aúnque haya un coeficiente de tendencia negativo o positivo, no resultó realmente significativo aportando menor información.
- Así, sí la precipitación se une a la Media y a la estacionalidad para lograr una estimación del maximo mensual por año se obtuvieron mejores resultados

Gracias!:)