Homework 4

Aasim Zahoor

September 23, 2020

1 Problems

 $\mathbf{Link} \ \mathtt{https://github.com/AasimZahoor/Comp_methods.git}$

Problem 1

This function returns an array where the first element is dP/dr (non relativistic hydrostatic equation)and second one is dM/dr. The variables of the returned functions are P, M_{enc} and r. The arguments of this function are:

 $k1 = G * u_e/l^{3/5}$

 $k2 = 4 * pi * u_e/l^{3/5}$

G= Gravitational constant,

c= speed of light,

l= K(the constant multiplied to rho in the relation between P and rho)

 $u_e = 2.$

Note: Units given as arguments should be in CGS units.

Approach

We have been asked to solve non relativistic hydrostatic equation for given density range and plot M_{enc} V/s r. I have chosen the density values to be $[10^4, 5*10^4, 10^5, 5*10^5, 10^6]$. The max radius is 10^{10} cm and the step size is 10^6 cm.

Figure 1: It is observed maximum mass in reached at lesser radius as density is increased.

Problem 2

This function returns an array where the first element is dP/dr (TOV) and second one is dM/dr. The variables of the returned functions are P, M_{enc} and r. The arguments of this function are:

G= Gravitational constant, c= speed of light, $l=K(the\ constant\ multiplied\ to\ rho\ in\ the\ relation\ between\ P\ and\ rho).$ Note: Units given as arguments should be in CGS units.

Approach

We have been asked to solve TOV equation for given density range and plot M_{enc} V/s r. I have chosen the density values to be $[10^{14}, 5*10^{14}, 10^{15}, 5*10^{15}, 10^{16}]$. The max radius is 20km and the step size is 10 m.

Figure 2: It is observed maximum mass in reached at lesser radius as density is increased.

Problem 3

In the code for Problem 3 I have defined one function. It is:

• func(G,c,l)

This function returns an array where the first element is dP/dr (TOV) and second one is dM/dr. The variables of the returned functions are P, M_{enc} and r. The arguments of this function are:

G= Gravitational constant,

c= speed of light,

l= K(the constant multiplied to rho in the relation between P and rho). Note: Units given as arguments should be in CGS units.

Approach

We have been asked to find mass of the Star given radius and using the TOV equation. I approached this problem by assuming density to be $10^{(16)}g/cm^3$ and then using the TOV equation and dM_{enc}/dr and RK-4 solver to find the values of M and P at different R. Then I found the maximum mass in the returned mass array. I made the code run till r = 13.02km with a step size of 100 cm. Here are the graphs and output:

Figure: The graphs for problem 3

Figure 3: The output for problem