1. Given a linear system x = Ax and a quadratic function $V(x) = x^T P x$, where P is an $n \times n$ symmetric matrix. Derive the conditions for P under which V will be a Lyapunov function for exponential stability that satisfies $||x(t)||^2 \le \beta c^t ||x(0)||^2$, where $c \in (0, 1)$.

Solution: If V(x) is a Lyapunov function, and system is asymptotically stable, we know V is PD, which implies $P \succ 0$. $L_f V$ is ND

$$L_f V = 2(Px)^T A x = x^T (PA + A^T P) x \tag{1}$$

This means $PA + A^TP$ is ND.

In fact we can say V is a Lyapunov function for exponential stability iff for any $Q \succ 0$, there exists unique positive definite matrix P as the solution of

$$PA + A^T P = -Q (2)$$

necessity

If V is a Lyapunov function for exponential stability, we know the system is exponential stable. So $Re(\lambda_i) < 0$ for all eigenvalues of A. We can construct a solution for P:

$$P = \int_0^\infty e^{A^T t} Q e^{At} dt \tag{3}$$

which is symmetric. Now we show (3) will converge. The system is exponential, so we have $||x(t)|| \le c||x(0)||e^{-\lambda t}$, and it is the same with system $\dot{x}' = A^T x'$. And we know $x(t) = e^{At}x(0)$ and $x'(t) = e^{At}x'(0)$.

$$P = \int_{0}^{\infty} e^{A^{T}t} Q e^{At} dt$$

$$\leq \int_{0}^{\infty} \|e^{A^{T}t}\| \|Q\| \|e^{At}\|$$

$$= \int_{0}^{\infty} \alpha_{1} e^{-\lambda_{1}t} \|Q\| \alpha_{2} e^{-\lambda_{2}t} < \infty$$
(4)

And it's not hard to verify (3) is a solution of (2):

$$\int_0^\infty e^{A^T t} Q e^{At} A dt + \int_0^\infty A^T e^{A^T t} Q e^{At} = \int_0^\infty \frac{d}{dt} (e^{A^T t} Q e^{At}) dt$$

$$= e^{A^T t} Q e^{At} \Big|_0^\infty$$

$$= -Q$$
(5)

Furthermore, the solution of the (2) is unique. Let P' be any other solution for (2), we

have

$$P = \int_0^\infty e^{A^T t} Q e^{At} dt$$

$$= -\int_0^\infty e^{A^T t} (P'A + A^T P') e^{At} dt$$

$$= -\int_0^\infty \frac{d}{dt} (e^{A^T t} P' e^{At}) dt$$

$$= -e^{A^T t} P' e^{At} \Big|_0^\infty$$

$$= P'$$

$$(6)$$

which show the uniqueness of solution of (2). And we can see (3) is well defined for $\forall Q \in S_{++}^n$.

• sufficiency If $P \succ 0$, $V(x) \succ 0$. And

$$L_f V = 2(Px)^T A x = x^T (PA + A^T P) x = -x^T Q x < 0$$
 (7)

Meanwhile, this is a Exponential Lyapunov Function: $\exists k_1 = \lambda_{\min}(P), k_2 = \lambda_{\max}(P), k_3 = \lambda_{\min}(Q)/\lambda_{\max}(P), \alpha = 2$ such that

$$k_1 ||x||^{\alpha} \le V(x) \le k_2 ||x||^{\alpha}$$

 $L_f V(x) \le -k_3 V(x)$ (8)

which satisfies $||x(t)||^2 \le \beta c^t ||x(0)||^2$, where $c = 1/e \in (0,1)$.

2. Show that the system $\dot{x} = f(x) = \begin{cases} \dot{x}_1 = -x_1 + x_1 x_2 \\ \dot{x}_2 = -x_2 \end{cases}$ is globally asymptotically stable. (hint: try $V(x) = \ln(1 + x_1^2) + x_2^2$ as a Lyapunov function)

Solution: Let f(x) = 0, we can get the unique equilibrium $x_1 = 0, x_2 = 0$. Let $V(x) = \ln(1 + x_1^2) + x_2^2$ be a Lyapunov function candidate. We know that V(x) = 0 iff $x_1 = 0, x_2 = 0$, which means V > 0. Consider L_fV :

$$L_f V = \begin{bmatrix} \frac{2x_1}{1+x_1^2} & 2x_2 \end{bmatrix} \begin{bmatrix} -x_1 + x_1 x_2 \\ -x_2 \end{bmatrix}$$

$$= \frac{2x_1(-x_1 + x_1 x_2)}{1+x_1^2} - 2x_2^2$$

$$= \frac{-2x_1^2 - 2x_2^2 - 2x_1^2 x_2^2 + 2x_1^2 x_2}{1+x_1^2}$$

$$= -2\frac{x_1^2(1-x_2) + x_2^2 + x_1^2 x_2^2}{1+x_1^2}$$

$$= -2\frac{x_1^2((x_2 - \frac{1}{2})^2 + \frac{3}{4}) + x_2^2}{1+x_1^2}$$

$$= -2\frac{x_1^2((x_2 - \frac{1}{2})^2 + \frac{3}{4}) + x_2^2}{1+x_1^2}$$
(9)

which indicates L_fV is ND. So V(x) is a Lyapunov function and this system is asymptotically stable.

Furthermore, $V(x) \to \infty$ as $||x|| \to \infty$. So the system is globally asymptotically stable. \square

3. Consider a discrete time system x(k+1) = Ax(k) + Bu(k), with linear feedback law u(k) = -Kx(k). Write down the closed-loop dynamics, and derive conditions for $V(x) = x^T P x$ to be discrete time Lyapunov function for asymptotic closed-loop stability.

Solution: The closed-loop system is

$$x(k+1) = (A - BK)x(k) \tag{10}$$

And we have

$$\Delta_f V(x) = V(f(x)) - V(x) = x^* (A - BK)^* P(A - BK) x - x^* Px$$
(11)

Similar to problem 1. Define $A_c = A - BK$. We set $V(x) = x^T P x$, and we have V(x) is the discrete time Lyapunov function for asymptotic closed-loop stability iff for any $Q \succ 0$, there exists a unique $P \succ 0$ to

$$A_c^T P A_c - P = -Q (12)$$

necessity

If the system is asymptotically stable, all eigenvalues of A_c is in the unit circle, i.e. $|\lambda| < 1$. We can construct a solution for (12)

$$P = \sum_{k=0}^{\infty} (A^T)^k Q A^k \tag{13}$$

which is PD. And it will converge because of follows:

 $A_c = P^{-1}JP$, where is the jordan form of A. A_c has finite dimension, so J^k will be diagonal as $k \to \infty$. So we have

$$\|(A_c^T)^k\| = \|A_c^k\| \le \|P^{-1}\| \|J^k\| \|P\| \le \alpha \|\lambda\|_{\max}$$
(14)

where λ is the eigenvalue of A_c . So for P

$$||P|| \leq \sum_{k=0}^{\infty} ||(A^{T})^{k}|| ||Q|| ||A^{k}||$$

$$\leq \sum_{k=0}^{\infty} ||\lambda||_{\max}^{2} ||Q||$$

$$= \frac{\alpha^{2} ||Q||}{1 - ||\lambda||_{\max}^{2}} < \infty$$
(15)

It is not hard to verify (13) is a solution of (12):

$$A_c^T P A - P = \sum_{k=1}^{\infty} (A^T)^k Q A^k - \sum_{k=0}^{\infty} (A^T)^k Q A^k = -Q$$
 (16)

To show (13) is unique, let P' be another solution of (12), we have

$$P = \sum_{k=0}^{\infty} (A^{T})^{k} Q A^{k}$$

$$= \sum_{k=0}^{\infty} (A^{T})^{k} (P' - A_{c}^{T} P' A_{c}) A^{k}$$

$$= \sum_{k=0}^{\infty} (A^{T})^{k} P' A^{k} - \sum_{k=1}^{\infty} (A^{T})^{k} P' A^{k}$$

$$- P'$$
(17)

which show the uniqueness.

• sufficiency If $P \succ 0$, $V(x) \succ 0$. And

$$L_f V = 2(Px)^T A x = x^T (A_c^T P A_c - P) x = -x^T Q x \prec 0$$
(18)

which shows $L_f V$ is ND.

4. Show that the PSD cone is acute, i.e., $\forall A, B \in S^n_+$, we have $tr(AB) \geq 0$. (Hint: decompose A using unitary matrix Q, i.e. $A = Q\Lambda Q^T$, and then use the same Q to define another matrix $C = QBQ^T$. The trace tr(AB) can be computed directly in terms of the entries in C and Λ)

Solution:

We know A can be decomposed as

$$A = Q^T \Lambda Q \tag{19}$$

where $QQ^T = I$. Define $C = QBQ^T$, we have $B = Q^TCQ$, so

$$AB = Q^T \Lambda Q Q^T C Q = Q^T \Lambda C Q \tag{20}$$

Consider $x^T A B x$, set y = Q x

$$x^{T}ABx = x^{T}Q^{T}\Lambda CQx = y^{T}\Lambda Cy = y^{T}\begin{bmatrix} \lambda_{1} & & \\ & \vdots & \\ & & \lambda_{n} \end{bmatrix} Cy \ge \lambda_{\min}y^{T}Cy$$
 (21)

where $\lambda_k \geq 0$ is the k-th pivot in Λ . We know C is also PD, which means $x^T A B x \geq 0$.

We set $x = e_i$, where e_i is basic unit vector i.e. $e_i = [0, \dots, i-th, 1, \dots, 0]$. So we have

$$tr(AB) = \sum_{i=1}^{n} e_i^T AB e_i \ge 0$$
(22)

So the PSD cone is acute.

5. Given a symmetric matrix $A \in S^n$, let $\lambda_{\min}(A)$ and $\lambda_{\max}(A)$ be the smallest and largest eigenvalues of A. Show that

$$\begin{cases} \lambda_{\min}(A) \ge \mu \\ \lambda_{\max}(A) \le \beta \end{cases} \Leftrightarrow \mu I \le A \le \beta I$$

Solution:

First we need know $\lambda_{\min}(A)x^Tx \leq x^TAx \leq \lambda_{\max}(A)x^Tx$, which can be related with spectral norm of matrix. Here we give the proof by lagrange multiplier (or you can directly use $A = Q\Lambda Q^T$ to proof). we can see $\alpha = x^TAx/(x^Tx)$ is only changed by the direction of x and A is finite, so α is bounded. Without loss of generality, set $x^Tx = 1$

$$L = x^T A x + \lambda (x^T x - 1) \tag{23}$$

Let the partial derivative equals to zero we can get the condition for extreme value:

$$Ax = -\lambda x \tag{24}$$

which means the extreme value is the eigenvalues of A when x is the eigenvector. So we have

$$\lambda_{\min}(A)x^Tx \le x^TAx \le \lambda_{\max}(A)x^Tx$$

• If $\begin{cases} \lambda_{\min}(A) \geq \mu \\ \lambda_{\max}(A) \leq \beta \end{cases}$, we have

$$x^{T}(A - \mu I)x = x^{T}Ax - \mu x^{T}x \ge \lambda_{\min}(A)x^{T}x - \mu x^{T}x \ge 0$$
(25)

and

$$x^{T}(\beta I - A)x = \beta x^{T}x - x^{T}Ax \ge \beta x^{T}x - \lambda_{\max}(A)x^{T}x \ge 0$$
(26)

So $\mu I \leq A \leq \beta I$.

• If $\mu I \leq A \leq \beta I$, we have

$$x^T (A - \mu I)x \ge 0 \tag{27}$$

Set x as the eigenvector of A

$$\lambda x^T x - \mu x^T x \ge 0 \tag{28}$$

which leads $\lambda \geq \mu$, so we have $\lambda_{\min}(A) \geq \mu$. Have the same procedure on $A \leq \beta I$ we can get $\lambda_{\max}(A) \leq \beta$.

6. Suppose $f_i: \mathbb{R}^n \to \mathbb{R}, i = 1, 2$ are convex. Show that the pointwise maximum function $f(x) = \max\{f(x), f(x)\}$ is also convex.

Solution: Pick any $x_1, x_2 \in \mathbb{R}^n$, $\alpha \in (0, 1)$

$$\alpha f(x_1) + (1 - \alpha)f(x_2) = \alpha \max\{f_1(x_1), f_2(x_1)\} + (1 - \alpha) \max\{f_1(x_2), f_2(x_2)\}$$

$$\geq \alpha f_1(x_1) + (1 - \alpha)f_1(x_2)$$

$$\geq f_1(\alpha x_1 + (1 - \alpha)x_2)$$
(29)

similarly

$$\alpha f(x_1) + (1 - \alpha)f(x_2) = \alpha \max\{f_1(x_1), f_2(x_1)\} + (1 - \alpha) \max\{f_1(x_2), f_2(x_2)\}$$

$$\geq \alpha f_2(x_1) + (1 - \alpha)f_2(x_2)$$

$$\geq f_2(\alpha x_1 + (1 - \alpha)x_2)$$
(30)

That means

$$\alpha f(x_1) + (1-\alpha)f(x_2) \ge \max\{f_1(\alpha x_1 + (1-\alpha)x_2), f_2(\alpha x_1 + (1-\alpha)x_2)\} = f(\alpha x_1 + (1-\alpha)x_2)$$
(31) which verifies this is a convex function.