FIT2093: Tutorial 5

FIT2093: Tutorial 5

Symmetric Key Cryptography

Review

- 1. What is the purpose of the S-boxes in DES?
- 2. What is the difference between a block cipher and a stream cipher?
- 3. What is triple encryption?
- 4. How many keys are used in triple encryption?
- 5. Does a substitution need to be a permutation of the plaintext symbols? Why or why not?
- 6. Explain why the product of two relatively simple ciphers, such as a substitution and a transposition, can achieve a high degree of security.
- 7. What is a meet-in the-middle attack?

Problems

- 1. Why is it not desirable to reuse a stream cipher key?
- 2. Stream Cipher:

What is the value of ciphertext if: Plaintext: 1010101010100 Keystream: 1100110001001

- 3. Perform encryption and decryption using TPC for Plaintext "25" and key [1,6].
- 4. The role of the S-boxes in the function F of DES is illustrated in Figure 1 and 2. The substitution consists of a set of eight S-boxes, each of which accepts 6 bits as input and produces 4 bits as output. These transformations are defined in Table 1, which is interpreted as follows: The first and last bits of the input to box S_i form a 2-bit binary number to select one of four substitutions defined by the four rows in the table for S_i . The middle four bits select one of the sixteen columns. Find the output for the following input:
 - a. S_1 (011001)
 - b. S_5 (000000)
 - c. S₆ (111111)
- 5. Why do some block cipher modes of operation only use encryption while others use both encryption and decryption?

- 6. For each of the modes ECB, CBC, CTR shown in Figures 6.3, 6.4 and 6.7 respectively:
 - a. Identify which decrypted plaintext blocks P_x will be corrupted if there is an error in block C_4 of the transmitted ciphertext.
 - b. Assuming that the ciphertext contains N blocks, and there was a bit error in the source version of P_3 , identify through how many ciphertext blocks this error is propagated.
- 7. Is it possible to perform encryption operations in parallel on multiple blocks of plaintext in OFB mode which is shown in Figure 6.6? How about decryption?
- 8. If a bit error occurs in the transmission of a ciphertext charater in 8-bit CFB mode shown in Figure 6.5, how far does the error propagate?
- 9. Consider a block cipher algorithm with the following properties:
 - Input and output block length of 64 bits and the key size is 56 bits
 - Given a key K, the key scheduling requires 2 microseconds (2 x 10 -6 secs)
 - After the key scheduling produces all the sub-keys (if required), the encryption of a single block of 64 bits block takes 0.5 microseconds.

Compute the following information:

- a. The total time required (of course in microseconds) to encrypt 1MBytes (2 20 bytes) of data.
- b. Given 2 values C and M such that $C = E_K(M)$ under the unknown key value K, how many years (at most) are required to crack the cipher on a single computer.

Figure 1 Single Round of DES Algorithm

Figure 2 Calculation of F(R, K)

Table 1 Definition of DES S-Boxes

	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
\mathbf{s}_1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
s_2	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
	0	14	7	11	10	4	13	ì	5	8	12	6	9	3	2	15
	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
	Г						1.5	5	1	13	12	7	11	4	2	8
\mathbf{s}_3	10 13	0 7	9	14 9	6	3 4	15 6	10	1 2	8	5	14	1.2	11	15	1
33	1											12	5	10		7
	13	6 10	4 13	9 0	8 6	15 9	3 8	0 7	11 4	1 15	2 14	3	5 11	5	14 2	12
	1	10	13	· ·	0	7	0	,		1.7	17		11			14
	7	13	14	3	0	6	9	10	<u> </u>	2	8	5	11	12	4	15
s_4	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
- 4	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
	L															
	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
s_5	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
	12	I	10	15	9	2	6	8	0	13	3	4	14	7	5	11
s_6	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
	4	3	2	12	9		15	10	11	14	<u> </u>	7	6	0	8	13
	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
s_7	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
37	İ	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
	6	4 11	13	8	12	3 4	10	7	9	5	0	15	14	2	3	12
		11	1.3		<u> </u>		10					io	1-7	<u>.</u>		
	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
\mathbf{s}_8	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
o	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
	1 '		•		-				-	-						
	2	3	14	7	4	10	8	13	15	12	9	0	3	5	6	11

Figure 6.3 Electronic Codebook (ECB) Mode

Figure 6.4 Cipher Block Chaining (CBC) Mode

Figure 6.7 Counter (CTR) Mode

Figure 6.6 s-bit Output Feedback (OFB) Mode

Figure 6.5 s-bit Cipher Feedback (CFB) Mode