Частично упорядоченные множества

В этом листке для термина "частично упорядоченное множество" будем использовать сокращение **чум**. Биекция $f\colon A\to B$ между **чум**ами называется их изоморфизмом, если она сохраняет порядок, т. е. для любых $x,y\in A$ неравенства $x\le y$ и $f(x)\le f(y)$ равносильны. **Чум** A вкладывается **чум** B, если существует изоморфизм между A и подмножеством множества B.

1. Докажите, что чум вкладывается в множество своих подмножеств.

Элемент x чум M называется *минимальным*, если нет ни одного элемента y такого, что $y \lneq x$.

- 2. Найдите все минимальные элементы $\mathbb{N}\setminus\{1\}$ с отношением порядка "|".
- 3. Докажите, что для любого **чум** M равносильны следующие условия:
 - (a) Mинимальности: в любом непустом подмножестве $N \subset M$ есть хотя бы один минимальный элемент (минимальный в N, а не во всём M);
 - (b) Обрыва убывающих цепей: любая убывающая последовательность $a_1 \geq a_2 \geq \ldots \geq \ldots$ элементов M стабилизируется, т.е. $a_n = a_{n+1}$ при всех n, начиная с некоторого номера;
 - (c) Индуктивности: Если условию $\mathfrak P$ удовлетворяют все минимальные элементы и из справедливости $\mathfrak P$ для всех элементов, меньших про-извольного элемента a, следует справедливость $\mathfrak P$ для a; то все элементы множества M обладают свойством $\mathfrak P$.

Цепи и антицепи

Пусть задан **чум** M, uenbo (ahmuuenbo) называется его подмножество, состоящее из попарно сравнимых (несравнимых) элементов.

- 4. **Теорема Мирского.** Докажите, что в конечном **чум** наибольшая длина цепи равна наименьшему количеству антицепей, на которые можно это **чум** разбить.
- 5. **Теорема Дилуорса.** Докажите, что в конечном **чум** наибольшая длина антицепи равна наименьшему количеству цепей, на которые можно это **чум** разбить.
- 6. **Лемма Шпернера.** Докажите, что максимально возможное количество подмножеств n-элементного множества, ни одно из которых не содержит другое, равно $C_n^{[n/2]}$.
- 7. Дано натуральное число n. Японским треугольником назовём фигуру треугольного вида, в которой в для каждого $i=\overline{1,n}$ ряд под номером i содержит ровно i кругов, ровно один из которых красный. Путём ниндзя в Японском треугольнике назовём последовательность, состоящую из n кругов, которая начинается из верхнего ряда, а каждый следующий круг выбирается из двух, расположенных непосредственно под текущим. Найдите наибольшее число k такое, что в каждом пути ниндзя есть по крайней мере k красных кругов.