FICHE MÉTHODE 17

Additionner des vecteurs/des forces

Une force, qui modélise une action mécanique, est représentée par un vecteur.

Caractéristiques et notations

Un **vecteur** est un segment orienté (une flèche), ayant pour extrémités un point de départ et un point d'arrivée. Il est caractérisé par une **direction**, un **sens** et une **norme**.

2 Vecteurs opposés

Deux vecteurs sont **opposés** s'ils ont la même direction, la même norme, et un sens opposé.

$$\vec{u} = -\vec{v}$$
 ou $\vec{u} + \vec{v} = \vec{0}$

3 Addition de deux vecteurs

On doit additionner \vec{u} et \vec{v} .

a. Méthode des triangles

Placer l'origine de \vec{v} au niveau de la flèche de \vec{u} puis relier l'origine de \vec{u} à la flèche de \vec{v} pour obtenir la somme.

b. Conséquences

Si trois vecteurs mis bout à bout forment une boucle, on peut dire que :

$$\vec{u} + \vec{v} + \vec{w} = \vec{0}$$

Cas des vecteurs forces

a. Un exemple de force

Une balle de masse *m* qui chute est soumise à l'action de la Terre modélisée par son

poids P caractérisé par :

- sa direction : la verticale ;
- son sens : vers le bas ;
- sa norme : $P = m \cdot g$, avec g l'intensité de pesanteur.

b. Équilibre

Une balle posée sur une table est à l'équilibre : le poids \vec{P} qui modélise l'action de la Terre sur la balle et la force \vec{R} qui modélise l'action de la table sur la balle sont représentés par des vecteurs opposés.

On dit que les forces se compensent : $\vec{P} + \vec{R} = \vec{0}$.

c. Forces qui se compensent

Une balle à l'équilibre sur un plan incliné est soumise à trois actions mécaniques :

- l'action de la Terre, modélisée par le poids \vec{P} ;
- l'action de la table, modélisée par la force R;
- les frottements, modélisés par la force \vec{F} .

La balle est à l'équilibre, donc $\vec{P} + \vec{F} + \vec{R} = \vec{0}$, et $\vec{P} + \vec{R} = -\vec{F}$. Pour déterminer \vec{F} , on utilise la **méthode des triangles** :

