

DATA BOOK for CIVIL ENGINEERS By ELWIN E. SEELYE

VOLUME ONE — DESIGN, 417 pages. Illustrated. 93/8 x 113/4. Cloth.

VOLUME TWO — SPECIFICATIONS AND COSTS, 325 pages, Illustrated, 91/4 x 111/2. Cloth.

VOLUME THREE — FIELD PRACTICE. 306 pages. Illustrated. 47% x 8. Cloth.

FIELD PRACTICE

ELWYN E. SEELYE

COPYRIGHT, 1947
BY
ELWYN E. SEELYE

All Rights Reserved

This book or any part thereof must not be reproduced in any form without the written permission of the publisher.

PREFACE

Field practice embraces the inspection and sometimes supervision of construction of engineering works by a field man who may have the background of an inspector, a designer, a clerk-of-the-works, a contractor's superintendent, or a surveyor. If the inspection and supervision are performed in accordance with modern practice, the field man merits the dignity that is implied by the title of engineer.

Modern practice for field engineers comprises extensive technological advances, many of them made within the past decade. The purpose of this volume is to enable the inspector or field engineer to brief himself as to the essentials in the inspection and supervision of the work which he is to undertake. Its purpose is also to enable him to bring to the field the basic data which he will require.

For example, sampling of material for laboratory tests should be done in accordance with certain rules. The method of taking a concrete sample for a compression or flexure test is rigidly prescribed. Any deviation from the rules will detract from the validity of the test. Hence "Rules for Sampling" are included in this book.

Certain field tests, such as the concrete slump test, the penetration of asphalt test, and soil tests, are required to control the quality of construction. These tests should be performed according to certain rules; hence, "Instructions for Field Tests."

Field engineering includes the checking of material so that size, quality, and other properties are in accordance with plans and specifications. Therefore, tables such as the detailed dimensions of steel beams and of culvert pipe are included herein to enable an inspector to identify the exact size of a steel beam or the classification of a reinforced-concrete pipe.

A whole series of special tests have been developed in connection with the science of soil mechanics. A field engineer may be required to make these tests and to furnish information concerning them. In order that he may do so, detailed information is given to determine density, grain size, Atterberg limits, optimum moisture, field shear tests, C.B.R. values, and related data.

What items should be checked by an inspector? A check list for inspectors is included for such work as concrete, bituminous paving, steel, welding, and timber. Complete information for inspecting pile driving is also given. In addition, report forms are presented so arranged that the report becomes not only a progress report but also an inspector's

PREFACE

circcking list. This is illustrated by the steel inspector's reports, of which Part I is a list of items to be checked off by the inspector and Part II is a progress report.

The importance of surveying to field engineering has been recognized, and a section of this volume provides the data a construction surveyor requires. Under "Surveying" are stadia reduction tables, stakeout problems, curve data, railroad turnout data, earthwork tables, transit and level problems, azimuth determination, isogonic chart, instrument adjustments, tape data, plotting problems, mapping symbols, and tables of measure, trigonometric formulas, and trigonometric functions.

The identification of common building stone and timber is assisted by photographs of different types or species placed in juxtaposition to emphasize points of difference.

A few words on job power together with cuts of construction machinery are given to assist the field engineer in talking to the contractor in his own language.

ELWYN E. SEELYE

ACKNOWLEDGMENTS

In addition to the sources listed in the text, the author wishes to thank the following for their aid.

Dr. Arthur S. Tuttle, for his help and advice and for making available to the author his wide contacts for the collection of information.

Dean S. C. Hollister, of the College of Engineering, Cornell University, who has given the author advice and encouragement, particularly in regard to the general scope of the book.

Mr. Frank H. Alcott, of National Lumber Manufacturers Association.

Mr. L. E. Andrews, Regional Highway Engineer, Portland Cement Association.

Mr. Clinton L. Bogert.

Gilbert D. Fish.

Mr. E. M. Fleming, District Manager, Portland Cement Association.

Mr. Elliott Haller, of Haller Engineering Associates, Inc.

Mr. Prevost Hubbard and Mr. Bernard E. Gray, of The Asphalt Institute.

Mr. John Hoffine.

Mr. Elson T. Killam.

Mr. Ralph H. Mann, of American Wood-Preservers Association.

Mr. Edward A. Robinson, of Haller Engineering Associates, Inc.

Mr. John M. Stratton.

Mr. Russell Wise, C.E.

The author wishes to make special mention of the assistance received from the following members of his organization.

Mr. J. U. Wiesendanger for his work on general editing.

Colonel Burnside R. Value and Mr. A. L. Stevenson for general advice and counsel.

Messrs. E. G. Whitten, W. D. Bailey, V. J. Pacello, C. M. Throop, Patrick H. Murphy, A. H. Jorgensen, Laurence Vought, and S. D. Teetor. Miss Jean M. Luckett for her assistance in editing.

CONTENTS

PART I

INSPECTION

Typical Heavy Construction Equipment	PAGE 3
Concrete	
Field Sampling	10
Field Testing	12
Check List for Inspectors, Concrete—General	13
Check List for Inspectors, Concrete—Paving	19
Rules for Concrete Floors	21
Approximate Data on Concrete Mixes	23
Concrete Batching	24
Quantities for Concrete Mixes	25
Concrete Batching Computations	34
Concrete Reinforcement	39
Load Tests	42
Report on Concrete Structures—Field Inspection (Short Form)	43
Report on Concrete Structures—Field Inspection (Long Form)	44
Report on Concrete Test Specimens	45
Report on Concrete Test Beams	46
Report on Cement Analyses	47
Cement Shipping Report	48
Cement Simpping Report	48
Masonry	
	49
Check List for Inspectors	49
Lime for Mortar and Masonry	50
Identification of Building Stone	อบ
Structural Steel	
Check List for Inspectors	53
Structural Steel Sections	55
Wire and Sheet Metal Gages	58
Report on Structural Steel—Riveted or Bolted, Field Inspection	60
Report on Structural Steel—Riveted or Bolted, Shop Inspection,	00
	61
Part I	OI.
riveted and welded steel)	62
Steel Mill Report	63
	03
Welding	
Common Welding Processes	64
Welders' Qualification Test	65
Welding Positions	66
ir	50

CONTENTS

x	CONTENTS	
		PAGE
	Weld Characteristics	. 66
	Illustrations of Acceptable and Defective Welds	. 67
	Fillet Weld Gages Weld Penetration and Arc Crater Electrodes and Their Uses Check List for Inspectors Identification of Iron and Steel Penetration Structural Steel Welded Field Inspection	. 67
	Weld Penetration and Arc Crater	. 68
	Electrodes and Their Uses	. 68
	Check List for Inspectors	. 70
	Identification of Iron and Steel	. 71
	Report on Structural Steel—Welded, Field Inspection	. 72
	Report on Structural Steel—Welded, Field Inspection Report on Structural Steel—Welded, Shop Inspection, Part I	. 74
P	ridges	
_	_	m =
	Field Data Required for Rating Existing Bridges	. 75
	Inspection of Existing Bridges	. 75
	Inspection of Existing Bridges	. 78
	Existing Bridge Inspection Report	. 78
	Field Data for New Structure	. 80
P	ainting	
_	Check List for Inspectors	. 81
	Check hist for inspections	. 01
F	oundations on Soil	
	Method of Conducting a Load Test	. 82
	Presumptive Bearing Capacity of Soils	82
	Presumptive Bearing Capacity of Soils	84
_		
Pi	ile Driving	
	Check List for Inspectors and Data	. 84
	Bearing Power of Piles	86
	Values of E for McKiernan-Terry Pile Hammers	86
	Load Tests	87
	Report on Pile Driving	88
T:	mber	
	Wood Joists—Net Section	89
	Identification of Timber	90
	Check List for Inspectors	94
	Report on Wood Preservation	96
Ro	pes and Cable—Strengths	97
		-
۷a	rieties of Knots	98
Sa	ils	
		00
- 1	Surveying and Sampling Methods	99
1	Spacing and Depth of Borings and Test Fits of Test Roles	100 100
,	Size of Samples	100
,	Testing Equipment	101 105
	Typical Soil Profile Lap	
-	Plan and Log of Test Fits for Airneid	106
-	Boring Log	107
-	Identification of Principal Types	108
	Identification by Mechanical Grain Size Analyses	109
	Classification of Soils by Horizons	109
	P.R.A. Classification	110
	Classification of Soil Mixtures	112
(Classification of Soils by Origin	112

CONTENTS	x
	PAGE
Atterberg Limit Tests	113
Moisture Determination	118
Maximum Density Ontimum Moisture Proctor Needle Plesticity	,
Test California Bearing Ratio Field Density (Unit Weight) Test Bearing Values vs. Percentage of Compaction	117
California Bearing Ratio	120
Field Density (Unit Weight) Test	120
Bearing Values vs. Percentage of Compaction	123
Mechanical Analysis (Grain Size) Effective Size and Uniformity Coefficient Optimum Moisture—Maximum Density Report	124
Effective Size and Uniformity Coefficient	125
Optimum Moisture—Maximum Density Report	126
Report on Density Determination	127
Report on Soil Studies	128
Report on Soils Classification	129
California Bearing Ratio Report	130
Boring Log	131
Grain Size Classification Report	133
Aggregates	
Field Testing	134
Sieve Analysis	134
Approximate Absorption of Water by Aggregates	136
Sieve Analysis Report	
oxoro ixaarjaib xiopoit	
Grading	
Check List for Inspectors	138
•	
Bituminous Paving	
Field Sampling	139
Field or Plant Tests	140
Check List for Inspectors, Bituminous Paving—General	141
Check List for Inspectors, Plant-Mix Bituminous Paving	146
Use of Bituminous Materials	150
Quantities Required	152
Quantities Per Unit	155
Application Rate	157
Application Rate	158
Amounts of Material Per Square Yard	159
Daily Bituminous Report for Macadam, Bituminous Treatments,	
Mix-in-Place	160
Mix-in-Place	161
Plant Mix Rituminous Inspection—Daily Plant Report	162
Plant-Mix Bituminous Inspection—Daily Plant Report	162 163
Plant-Mix Bituminous Inspection—Daily Plant Report	163
Plant-Mix Bituminous Inspection—Daily Plant Report	
Plant-Mix Bituminous Inspection—Daily Plant Report Bituminous Paving Analyses Report Asphalt Report	163
Plant-Mix Bituminous Inspection—Daily Plant Report Bituminous Paving Analyses Report Asphalt Report Sanitary Construction	163 164
Plant-Mix Bituminous Inspection—Daily Plant Report Bituminous Paving Analyses Report Asphalt Report	163
Plant-Mix Bituminous Inspection—Daily Plant Report Bituminous Paving Analyses Report Asphalt Report Sanitary Construction Check List for Inspectors	163 164
Plant-Mix Bituminous Inspection—Daily Plant Report Bituminous Paving Analyses Report Asphalt Report Sanitary Construction Check List for Inspectors Pipe Laying	163 164 165
Plant-Mix Bituminous Inspection—Daily Plant Report Bituminous Paving Analyses Report Asphalt Report Sanitary Construction Check List for Inspectors Pipe Laying Cement-Asbestos Sewer Pipe (Transite)	163 164 165
Plant-Mix Bituminous Inspection—Daily Plant Report Bituminous Paving Analyses Report Asphalt Report Sanitary Construction Check List for Inspectors Pipe Laying Cement-Asbestos Sewer Pipe (Transite) Clay Pine Standard Strength	163 164 165 166 167
Plant-Mix Bituminous Inspection—Daily Plant Report Bituminous Paving Analyses Report Asphalt Report Sanitary Construction Check List for Inspectors Pipe Laying Cement-Asbestos Sewer Pipe (Transite) Clay Pine Standard Strength	163 164 165 166 167
Plant-Mix Bituminous Inspection—Daily Plant Report Bituminous Paving Analyses Report Asphalt Report Sanitary Construction Check List for Inspectors Pipe Laying Cement-Asbestos Sewer Pipe (Transite) Clay Pipe, Standard Strength Clay Pipe, Extra Strength Corrugated Metal Culvert Pipe	163 164 165 166 167 168 169
Plant-Mix Bituminous Inspection—Daily Plant Report Bituminous Paving Analyses Report Asphalt Report Sanitary Construction Check List for Inspectors Pipe Laying Cement-Asbestos Sewer Pipe (Transite) Clay Pine Standard Strength	163 164 165 166 167 168 169

xii CONTENTS

0: 1 10: 3 m 1 1 10 1 0 1 1 m	PAGE
Standard Strength Reinforced-Concrete Culvert Pipe	172
Extra-Strength Reinforced-Concrete Culvert Pipe	
Concrete Pipe, Weights and Laying Lengths	174
American Water Works Association Standard Cast-Iron Pipe	
Federal Specifications, WW-P-421 Standard	175
Standard Thicknesses and Weights of Cast-Iron Pit Cast Pipe	. 176
Approximate Quantities of Materials Used per Joint for Water Serv	
Steel Pipe, A.S.T.M. A53-44, Weights and Dimensions	178
Cement-Asbestos Water Pipe (Transite)	179
Check List for Inspectors	179
Report on Pipe Laying	181
Miscellaneous	
Inspector's Time Record	182
Inspector's Time Record	183
Report on Airfield Runways	184
Report on Airfield Runways	186
General Contractor's Daily Report	188
General Contractor's Daily Report	189
	100
PART II	
CHRITIMIC	
• SURVEYING	
Topographic Survey	193
Sample Notes	193
Stadia Tables	195
Construction Stakeouts	
Stakeout for Structures	197
Stakeout for Structures	198
Railroad Construction Stakeout	199
Airfield Construction Stakeout	. 199
Pipeline Stakeout	. 200
ripeinie Stakeout	201
Circular Curves	
Arc Definition	202
Deflections	
Externals	203
Minimum Curvature	201
Maximum Curvature	204
Tangent Offsets	. 204
Chord Definition	. 204
Radii, Deflections, Offsets, Ordinates, Chords and Arcs-100' Cho	
Minutes in Decimals of a Degree, Seconds in Decimals of a Min	ute 207
Functions of 1° Curve	208
Corrections for Tangents and Externals	208
Deflections and Chord Lengths for Circular Curves	209
Lengths of Circular Arcs for Unit Radius	210
Metric Curves	211
Short Radius Curres	012
Short-Radius Curves	213
Formulas for Areas	215

CON	TE	N	TS	1												xiii
Transition Curves																PAGE
Circular Curves with Spiral Transi	tio	as	٠		٠		•	•	•	•	•	•	٠		•	217
Spiral Layout		•	•	•	•	•	•	•	•			٠	٠		•	218
Company Development Lengths .		•	٠		٠	٠	٠	٠	•	٠	٠	٠	•		٠	219
General Problems		٠	•	٠	•	٠	•	•	٠			٠		٠	٠	220
Troperties of Spiral	•	•	٠		٠	•	•	٠	•		٠	٠				221
Layout of Control Points Functions of Transition for $L_s = 1$		٠		٠			٠	•	٠		٠			٠		223
Functions of Transition for $L_8 = 1$		٠	٠	:	•	. •			•	٠.	٠	٠	:	_	٠	224
Functions of Curves Transitional	11	arc	oug	çhe	ou	t-	-1	ar	ıge	ent	S	an	d	E	X-	00*
ternals for $L_{\varepsilon} = 1$. Spiral Layout by Offsets or Deflect		٠		٠	٠	•	•	٠	•	٠	٠	•				225
Spiral Layout by Onsets or Deflect	ion	S	٠	٠	٠	•	٠	-		٠	٠	٠	٠	٠	•	226
Vertical Curves																
Vertical Summit Curve																227
Vertical Sag Curve									Ċ					Ċ		228
Symmetrical Vertical Curves		i		•	•	Ċ	Ċ	·		•	Ċ	•	٠		Ċ	228
Unsymmetrical Vertical Curves						·	•		Ċ				•	Ċ	٠	229
Unsymmetrical Vertical Curves Parabolic Crown Ordinates		Ì										Ċ				229
																_
Railroad Turnouts and Crossovers .	•							•		٠	•	•	٠		٠	233
Earthwork Computations																
Methods of Finding Areas																234
Methods of Finding Areas Methods of Finding Volumes																234
Double End Area Volumes																236
Double End Area Volumes Prismoidal Corrections for $L = 100$)' S	tat	ioi	າຮ							-					240
Leveling					•											
•																242
Sample Notes	٠	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	242
Transit Problems																
Determination of Distance to Inacc	3688	ihl	e 1	20.	in	t.										243
Angles by Repetition																243
Laying off Angles by Repetition . Area by Double Meridian Distance	•			•	•	•	•	•	•	Ċ	•				Ċ	244
Area by Double Meridian Distance		Ċ	•	•	•	•		Ċ	Ċ	Ċ	Ĭ	٠	Ċ	Ĭ.		244
Omitted Side							•		·						i	247
Omitted Side	e S	iσ	hti	nջ	. 1	wi	th	Т	ra	ns	it	(I) Ooi	ub	le	
Centering)																248
Establishing a Line by Balancing-in	a wi	ith	T	ra	ns	it	(E	u	ki	ng	-iı	1)				248
Layout of Circular Curve							`									249
Layout of Circular Curve Sample Notes																250
Allowable Errors																
Leveling														•		250
Distances			٠							•			٠			251
Transit and Tape Traverses				•			•	٠	•	٠	•	•		•	•	251
Determination of True North																
Observation on Polaris																252
Isogonic Chart	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	254
1170g01110 Outate	•	•	•	•	•	•	•	•	•	•	•	•	•		•	_0I
Instruments and Their Adjustments																
Parts of Gurley Precise Transits																256
Parts for Gurley Dumpy Levels																257

xiv CONTENTS

PAGE
. 258
. 259
. 260
. 268
. 208
. 276
. 277
. 279
. 280
. 200
. 283
. 283
. 289
. 292
. 202
. 293
. 294
. 296
. 297
. 299

PART I INSPECTION

TYPICAL HEAVY CONSTRUCTION EQUIPMENT

Fig. 1. Lorain crane with attachments. Courtesy of the Thew Shovel Company.

Fig. 2. Four-wheel scraper. (Earth-moving, grading, excavation.) Courtesy of Bucyrus-Eric Company.

Fig. 3. Bulldozer. (Clearing, stripping, grading, earth-moving.) Courtesy of Bucyrus-Eric Company.

Fig. 4. Motor grader "motor patrol." (Shaping subgrades and surfaces, soil mixing.) Courtesy of the Galion Iron Works and Manufacturing ('ompany.

Fig. 5. Tamping roller "sheepsfoot." (Compacting fills.) Courtesy of the Baker Manufacturing Company.

Fig. 6. Eight-ton three-wheel roller. Courtesy of Huber Manufacturing Company.

Fig. 7. Five- to eight-ton tandem roller. Courtesy of Huber Manufacturing Company.

Fig. 8. Pulvi-Mix. (Mixing earth and stabilizing agents—pulverizing.) Courtesy of Seaman Motors,

Fig. 9. Trencher. (Trench excavation in earth.) Courtesy of the Parsons Company.

Fig. 10. Concrete paver. Courtesy of Ransome Machinery Company.

Fig. 11. Rex transit-mix truck. Courtesy of Chain Belt Company.

Fig. 12. Aggregate batching plant. Courtesy of Blaw-Knox Company.

Fig. 13. Finishing machine for roads and airports. Courtesy of Blaw-Knox . Company.

Fig. 14. Compressor. Courtesy of the Jaeger Machine Company.

CONCRETE FIELD SAMPLING

le Instructions	Sacked cement: compose sample from portions taken from 1 sack in 40. Bulk cement: sample from different locations with small scoop. Ship in container sealed airtight with paraffin.	Quarter aggregates by placing on canvas square or clean surface. Mix thoroughly. Form into conical pile. Flatten pile. Cut into 4 pie-shape parts. Discard 2 opposite quarters including dust. Remix remainder. Repeat till desired size, but not less than twice. Ship in strong, tight bag or box.	Wire pieces together and wrap in burlap.	Cut sample from 2 mats in each order. Ship crated.	If heavy edge wire type include edge in square. Ship crated.	y Ship crated. Seal cork type in waterproof paper.	Place in friction lid can. Ship crated or boxed.	Ship in small-mouth can with cork-lined serew top.
Size of Sample	8 lb. min.	Sand, 30 lb. Stone and slag, 100 lb. Gravel, 100 lb. ½-in. size	3 pieces of each size, 18 in. long min.	2 ft. by 2 ft.	2 ft. by 2 ft.	3 ft. long min. by full depth	1 qt. min.	1 qt. min.
When Sampled	Each 1600 sacks or 400 bbl.	Each source First shipment and if any change	Each 10 tons Each lot or ship- ment	Each order or each 500 mats	Each order or each 75,000 sq. ft.	Each 1000 sq. ft.	Each lot or ship- ment	Each lot or ship- ment
Material and Method	Gement, A.S.T.M.	Aggregates, A.S.T.M. D-75	Steel Reinforce- ment, A.S.T.M. A-15, 16, or 160	Bar or rod mats, A.S.T.M. A-184	Wire fabric, A.S.T.M. A-185 and A-82	Expansion joint filler, A.S.T.M. D-545	Joint sealer, A.A.S.H.O. M-18	Curing liquids, A.S.T.M. C-156

	FIELL) SAN	IPLI.
Concrete test cyl- inders, A.S.T.M. Concrete test cyl- inders, A.S.T.M. Correcte test cyl- inders, A.S.T.M. Correcte test cyl- inders, A.S.T.M. Corrected test cyl- inders, A.S.T.M. Inderson in the corrected in a care in	Use rigid wood or metal form (6-in. channels) lightly oiled or paraffined. Place concrete in 2 equal layers, each layer rodded 50 times per sq. ft. Spade sides and edges with trowel, and strike off top. Finish with cork float. Cover at once with damp burlap. After 24 hr. remove forms and cure moist at 60° to 75° F. for laboratory control. Paint identifying marks or symbols. Cure field control beams same as corresponding concrete. Pack in wet sawdust or burlap, and ship in strong box.	Ship in airtight container.	Ship in crated glass jar with glass stopper.
6 in. dia. by 12 in. high for aggregate 2 in. and under; 8 in. dia. by 16 in. high for aggregate over 2 in.	6 in. by 6 in. by 30 in. or 36 in.	1 qt. min.	2 gt.
As specified, or 4 for each 250 cu. yd. or 2000 sq. yd. of slabs	3 or 4 beams for every 2000 sq. yd. of pavement or slab	Each lot or ship- ment	Each source
Concrete test cylinders, A.S.T.M. C-31	Concrete test beams, A.S.T.M. C-78	Calcium chloride, A.S.T.M. D-98	Water, A.A.S.H.O. Each source T-26

MARKING SAMPLES—ALL MATERIALS

Place one tag inside container, and attach one tag firmly outside. Record all shipments and data in field book. Mark tags with name and address of laboratory; date; project; contractor; engineer; sampler; quantity represented; any special test desired if other than routine; vendor's or manufacturer's name and brand name if any; location or part of structure affected; sample number; address to send report; any other pertinent information. See Fig. 17 for sample tag.

Cement. Railroad car number; sacked or bulk; type; mil.

Aggregates. Kind; quantity in source; name of plant pit or quarry, and location.

Test Cylinders and Beams. Date molded; station or location in structure; mix proportions; W/C ratio, gallons per sack; cement, sacks per cubic yard; slump; unit weight, pounds per cubic foot; cement brand, type, mill, and car number; type and source Reinforcing. Lot number; markings on rods. of aggregate, by whom made.

Note. Use envelope-style tags with name and address of laboratory and shipper on envelope and complete data on tag or card inside envelope tag.

FIELD TESTING

Slump Test for Consistency, A.S.T.M. C-143. Use a standard slump cone made of No. 16 gage galvanized metal in the form of a frustum of a cone with the base 8 in. in diameter, the top 4 in. in diameter, and the altitude 12 in. Provide mold with foot pieces and handles.

Take 5 samples of concrete, and thoroughly mix to form test specimen. Sample from discharge stream of mixer, starting at beginning of discharge and repeating until batch is discharged. For paving concrete, samples may be taken from the batch deposited on the subgrade. Before placing concrete, dampen the cone and place on a flat, moist, non-absorbent surface. In placing each scoopful of concrete move the scoop around the top edge of the cone as the concrete slides from it, in order to insure symmetrical distribution of concrete within the cone. Fill the mold in 3 equal layers, rodding each layer with 25 strokes of a 56-in. ϕ rod 24 in. in length. bullet pointed at the lower end. Distribute the strokes in a uniform manner over the cross section of the cone and penetrate into the underlying layer. Rod the bottom layer throughout its depth. After the top layer has been rodded strike off the surface of the concrete with a trowel or board so that the cone is exactly filled. Immediately remove the cone from the concrete by raising it carefully in a vertical direction. Then measure the slump immediately by laying the 24-in, rod across the top of the cone and measuring down to the top of the sample. This is known as the slump, which is equal to 12 in. minus the height in inches, after subsidence, of the concrete specimen. The slump test should be made frequently, at least 3 or 4 times a day.

Unit Weight of Plastic Concrete, A.S.T.M. C-138. Use a calibrated bucket of minimum No. 11 gage metal, a 5%-in. by 24-in. bullet-pointed rod, and a scale accurate to 0.5% of total weight tested. Capacity of bucket should be ½0 cu. ft. for ½-in. maximum aggregate; ½ or ½ cu. ft. for 2-in. maximum aggregate, and 1 cu. ft. for 4-in. maximum aggregate. Place a representative sample (selected as described for slump test above) in the bucket in 3 equal layers, rodding each layer 25 strokes as described for slump test. Vibrated concrete shall be compacted in the measure by vibration. Strike off surface, taking care that measure is just level full. Weigh to nearest 0.1 lb., subtract weight of bucket, and compute net weight of concrete in pounds per cubic foot.

Note. It is suggested that the inspector carefully sample about 1 cu. ft. or more of concrete and run slump test, unit weight test, and mold cylinders and beams in one sequence of operations. Complete data will then be obtained.

COPYRIGHT, 1942

AMERICAN SOCIETY FOR TESTING MATERIALS

1916 RACE ST., PHILADELPHIA 3, PA.

Plate 1 1946 Book of A.S.T.M. Standards, Part II STANDARD METHOD OF TEST FOR ORGANIC IMPURITIES IN SANDS FOR CONCRETE

A.S.T.M DESIGNATION: C 40

Correct

than a truck load and which do not permit the aggregate to run down the slopes at the edge of the pile.

Incorrect Methods which permit the aggregate to roll down the slopes as it is added to the pile.

STOCKPILING OF SCREENED AGGREGATE (WHEN PERMITTED)

Correct Chimney surrounding material falling from end of conveyor belt to prevent wind from separating fine

and coarse materials. Openings provided as required to discharae materials at various elevations on the pile.

Incorrect Free fall of material from high end of stacker permitting wind to separate fine from coarse material.

UNFINISHED OR FINE AGGREGATE STORAGE (DRY MATERIALS)

Correct Full bottom sloping 50° from horizon'tal in all directions to outlet with corners of bin properly rounded.

Flat-bottom bins or those with any arrangement of slopes having corners or areas such that all material in bins will not flow readily through outlet without shoveling.

Incorrect

SLOPE OF AGGREGATE BIN BOTTOMS

Correct

Material drops vertically into bin directly over the discharge opening permitting discharge of more generally uniform material.

Incorrect Chuting material into bin on an angle. Material falling other than directly over opening not always uniform as discharaed.

FILLING OF AGGREGATE BINS

Correct Provides separate compartments of suitable size and depth, attached to and operating with each batch release gate.

Incorrect Cement dumped on or within aggregate may be blown away, partially prehydrated, or may slide into another batch in dumping.

PROVISION FOR CEMENT IN DRY-BATCH COMPARTMENTS

Correct Fall of cement controlled by enclosing in kinked canvas drop chute or telescopic flexible hose tremie.

Incorrect Free fall of cement into batch car or truck causes waste, and overlap of batches is common.

LOADING CEMENT FROM BATCHER

Fig. 16. Storage and handling of aggregates and cement. From Concrete Manual. U. S. Bureau of Reclamation.

CHECK LIST FOR INSPECTORS

CONCRETE—GENERAL

Inspectors' Equipment

Complete set of plans and specifications and approved set of reinforced-concrete working drawings.

Supply of required forms, sample tags, bags and boxes for samples. Balance, capacity 2 kg., sensitive to 0.1 gram.

Set of square-mesh sieves of specified aggregate sizes and cleaning brush.

Fruit jar pycnometer, Chapman flask or hot plate and pan for moisture content of aggregates.

12-oz. graduate bottle and 1 lb. of sodium hydroxide (caustic soda) for colorimetric test.

Pint milk bottle for silt and clay test.

6 in. by 12 in. metal or paraffined cardboard molds for concrete test cylinders and shipping boxes for same.

Slump cone, 5% in. by 24 in. tamping rod, and mason's trowel.

1/3 or 1/2 cu. ft. calibrated bucket and scale for unit weight tests, when specified.

Thermometer similar to Weston All-Metal type, 0 to 180° F. for cold-weather concreting.

6-ft. rule and 50-ft. steel tape.

Plumb bob and marking keel.

Field book and pencils for records and diary.

Fig. 17. Cloth tag for attaching to concrete test beams or cylinders.

Procedure in Inspection

Tested and Approved Materials. Cement, aggregates, reinforcing steel, and water tested and source approved before use.

Schedule of required field tests adhered to.

Prompt shipment of samples of materials delivered at site.

Prompt reporting of field tests.

Accurate and complete daily reports and records.

Removal of rejected materials from site of work.

Storage and Handling of Materials. Aggregates stockpiled in 2-ft. to 4-ft. layers on mats or planking.

Aggregate segregation avoided; see Fig. 16.

Cement protected from moisture and weather.

Cement handled to avoid loss by blowing or leakage, see Fig. 16.

Reinforcing steel protected from rusting, bending, or distortion and kept free from oil or grease.

Batch Plant Inspection

Batching Plant. Inspected and approved before use.

Daily check of weighing scales, accurate to tolerance of 0.004.

Use ten 50-lb. weights, check in 500-lb. increments to greatest batch weight or have scales checked and sealed by certified scale master.

Adequate visibility of weighing and batching.

Telltale dial or balance indicator for correct quantities in hoppers.

Positive shut-off for bulk cement.

Prompt removal of excess material in hoppers.

Protection for weighing equipment from dust or damage.

Oscillating beams normally horizontal with equal play.

Beam scale for each aggregate usually required.

Control of Concrete. Determine percentage of surface moisture in aggregates.

Check at least 3 times daily, or more often when slump of concrete or condition of aggregate changes.

Translate the design into batch weights, see p. 34.

Run trial batch to check on slump and unit weight of mixture.

Check on cement factor during operations to detect bulking due to voids, air entrainment, or batching inaccuracies.

Adjust batch weights to produce required cement content per cubic yard and yield of concrete per batch.

Check actual amount of cement used to concrete laid each day as check on dimensions of concrete and accuracy of batching.

Note. The inspector should not vary the mix furnished by the laboratory without authority from the project or resident engineer.

Transporting Materials. Record of batch weights and number of batches dispatched; check with mixer inspector daily.

Tight truck partitions high enough to prevent intermingling of aggregates and loss of cement. Separate cement partitions, when specified.

Required amount of cement placed in batch partitions.

Covers for batch trucks provided.

Cement carried in sacks if specified.

Field Inspection

Forms. Correct alignment and elevation.

Centering true and rigid with horizontal and diagonal bracing.

Tight enough to prevent mortar leakage.

Columns plumb, true, and cross braced.

Floor and beam centering crowned 1/4 in. per 16 ft. of span.

Beveled chamfer strips at angles and corners.

Inside of forms oiled or wetted. Oil applied before placing of reinforcing.

Check installation of bolts, sleeves, inserts, and embedded items against plan details.

Check cleaning and removal of debris through temporary openings.

Check slab depths, beam and column sizes.

Removal of Forms and Shoring. Record of date forms poured and date forms removed.

Forms not removed until concrete is set, should ring under a hammer blow; follow job specifications.

Reshores placed after forms removed.

Forms removed carefully, damage to green concrete avoided.

Inspect surface at once after form removal. Notify superior of serious defects.

Reinforcing Steel. Clean and free of scale, oil, and defects. Can be rubbed down with burlap sacks or wire brushes.

Accurately fabricated to plan dimensions.

Supports rigid, metal preferable; do not allow use of rocks, brickbats, old concrete fragments, etc., to support steel.

Check minimum clear spacing between bars; 1½ diameters for round bars and 2 times side dimension for square bars.

2-in. cover for steel in exposed exterior surfaces or as specified or detailed.

Check, from working drawings, the quantity, size, placing, bending, splicing, and location of reinforcing.

Check prebent steel against bending schedule upon delivery.

Mixing Concrete. Mixer in good condition and kept clean of hardened concrete.

Mixer blades not worn, and drum watertight.

Check drum speed, usually 200 to 225 peripheral feet per minute.

Check mixing time frequently; should be 1 to 112 minutes minimum.

No retempering of concrete. Mixer completely emptied before starting new batch.

Adherence to specified water content. Amount of mix water based on moisture content of aggregates obtained from batch plant inspector and correct amount added at mixer.

Check consistency; make slump test at least 2 or 3 times daily.

Check for full cement content in each batch if cement is batched at mixer.

Ready-Mixed Concrete, Transit Mixers. Strict adherence to job specifications.

Calibration of water-discharge mechanism plainly marked.

Error in water measurement should not exceed 1%.

Leakage in valves; should be tight when closed.

Drums should be watertight. Check specified revolutions, usually 50 to 150 allowed for mixing.

Number, arrangement, and dimensions of mixer blades checked against manufacturer's statement. Blades not worn more than 15% of stated width.

Main water tank provided against loss by leakage or surging. To discharge full volume for mixing in not more than 5 minutes.

Volume of concrete mixed not more than 58% gross volume of drum. (If concrete is central mixed and only transported in truck mixers, 80% of volume is usually allowed.)

All truck mixers inspected and approved.

Complete removal of wash water or remaining concrete after each mixer discharge.

Wash water transported in auxiliary tank with gage and watertight valve.

Adherence to specified mixing time and any restrictions on mixing en route.

Drum to be revolved during transfer of water into drum.

Adherence to correct amount of water. Inspector should approve adding additional water. If necessary to add water to discharge, dry cement should be added at required W/C ratio.

Concrete containing air-entraining agent not to be mixed en route.

For transit trucks the time of mixing should be from 5 minutes to 15 minutes or more, increasing with the volume of the truck and depending on the condition of the blades and whether or not it is a high dump truck.

Placing of Concrete. Forms inspected and approved before concreting. Steel reinforcing in place and inspected.

Earth under footings to be undisturbed, original soil.

Rock or ledge should be well cleaned off, washed, and with no dirt or loose rock fragments.

Footings shall be free from standing water.

Avoid segregation, rehandling or flowing.

Place each unit continuously, if possible, till completed.

Spading and vibrating to maximum subsidence without segregation and next to forms and joints.

Reinforcing bars shaken to insure bond with concrete.

Accumulated water removed; concrete not placed therein.

Avoid excessive vibration and manipulation.

In thin high sections avoid having concrete stick and harden on steel and forms above placing level.

Mold required number of test cylinders each day. See p. 11.

See that wood form spreaders are knocked out and not buried as concrete is placed.

Concrete placed as close to final position as possible in continuous horizontal layers.

Concrete not placed in or under water unless as specially specified or directed by engineer.

Construction Joints. Avoid if possible, or place as detailed on plans. If necessary at end of day's pour, install plumb, at right angles to plane of stress and in area of minimum shear.

Check on placing of dowels, keys, waterstops, and other details as shown on plans.

Floors. Check and remove laitance when concrete reaches required level. If excessive, cut down on mix water or overworking of concrete. Finish floor as specified.

Pumping and Conveying. Only if approved or specified.

Equipment cleaned before and after pouring.

Continuous flow of concrete; no segregation.

Exposed Surfaces. Retain original surface film and form marks; do not rub.

Fins and projections removed.

Small voids filled with 1:2 mortar.

Construction joints only as detailed on plans.

Metal ties, chairs and spacers covered with $1\frac{1}{2}$ in. of concrete.

Curing Concrete. Kept moist for 1 week minimum or sprayed with approved preparation.

Continuous saturation by sprays or wet fabric is preferred to intermittent sprinkling by hand. On vertical surfaces see that wet fabric is kept in contact with concrete.

Prompt application of curing materials as soon as possible after finishing concrete.

Cold-Weather Concreting. Do not heat cement. Aggregates and/or water heated to not over 175° F. No snow or frozen lumps in aggregate.

Check temperature of concrete as placed, not less than 60° F. or more than 100° F. Use immersion thermometer inserted in concrete near forms or surface.

Ice and snow removed from forms, place of deposit and reinforcement before placing concrete.

Frost Protection. Provided by full enclosure of concrete and temperature of not less than 60° F. maintained for 7 days or as specified. Keep humidity high in enclosure.

Or, by consent of engineer, provided by protecting surface with straw, hay, or fabric for 7 days. In buildings enclose story below and heat to 50° F. for 7 days.

Temperature protection gradually removed to prevent sudden freezing of concrete.

Accelerating Admixtures (Calcium Chloride). Use only if specified. Tested before use.

Delivered in moisture-proof bags or airtight drums.

Quantity used not over 2 lb. per sack of cement.

Dissolve 1 lb. per quart of water, and add not more than 2 qt. per sack of cement to mixing water. Subtract amount of solution from normal quantity of mixing water.

Dry calcium chloride not to be added to aggregate in mixer skip or placed in contact with dry cement.

For cold-weather placing and curing, provide same precautions as for plain cement.

High-Early-Strength Cement. Use only if specified. Mixing and placing same as standard cement.

Prompt finishing (delay will ruin finish).

Curing temperature maintained as specified (usually 70° F. for 2 days or 60° F. for 3 days).

Load Tests. May be required for faulty workmanship, violation of specification, or concrete suspected of having been frozen.

Notify superiors if necessary.

Pay Items

Accurate record kept of all pay items in contract, such as:

Volume of concrete placed and batches wasted.

Volume of openings or embedded structures if payment for such is not made.

Amount of reinforcing steel in pounds or tons actually placed.

Number and length of extra dowels and dowel holes drilled.

Embedded items or structures.

Any other contract pay items.

CHECK LIST FOR INSPECTORS

CONCRETE—PAVING

Procedure in Inspection

It is assumed that batching has been performed and inspected; see p. 14. For transit-mix concrete, see p. 16.

Field Inspection

Subgrade. Drainage, stability, compaction. Wet down ahead of placing. Moist, not muddy.

Grade and cross section. Full depth of pavement at all points.

Check ordinates to subgrade templates and scratch boards.

Forms. Approved type with true face, top, and base.

Connections rigid and true.

Alignment and grade.

Staked solidly with adequate base support.

Cleaned and oiled each time used.

Reinforcing and Joint Assemblies. Tested and approved reinforcing steel placed to secure final position shown on drawings.

Transverse joint assemblies at correct locations staked solidly. Accurate to line and perpendicular to subgrade. Joint material tight against forms or adjacent joint.

Approved dowels, painted and greased, held rigidly parallel to surface and axis of pavement. Correctly spaced. Approved expansion caps in place.

Correctly aligned longitudinal joints with correctly spaced tie bars held securely in place, normal to joint and parallel to surface.

Mixing and Placing Concrete. Full cement content of batch. Empty bags and count at end of each run to check cement factor. Provide against loss of bulk cement by blowing away.

Approved mixer with accurate timing and bell. Provision to lock discharge lever until mixing time is complete. Mixer drum not loaded more than 10% above rated capacity (29.7 cu. ft. for 27-E paver).*

Full mixing time for each batch after all ingredients are in drum. Check time frequently. Allow 1 minute minimum unless otherwise specified. Check specified revolutions of drum, usually 14 to 20 r.p.m., and peripheral speed.*

^{*} Does not apply to transit-mix concrete.

Specified slump concrete, not too harsh or too wet. Concrete workable and plastic consistency. If not specified use following slumps: ordinary batch mixer, $1\frac{1}{2}$ in. to 3 in.; if vibrated, 1 in. to $1\frac{1}{2}$ in.; transit mixers, $2\frac{1}{2}$ in. to 3 in. Use stiffest concrete that can be molded into forms and around reinforcing bars.

Thorough compaction of concrete. Spade or vibrate against forms and existing concrete. Do not vibrate or manipulate too much.

Daily check of cement content, yield, water cement ratio, adherence to design mix, aggregates, and cement used. Check of slump and unit weight, several tests daily.

Adequate protection at hand (burlap, cotton mats, tarpaulins, etc.), for sudden rain or drop in temperature. Assembled construction joint ready to install for stoppage over 30 minutes.

Uniform amount of concrete carried ahead of strike-off. Workmen to avoid walking on soft concrete or reinforcement assemblies. Deposit concrete in final position. Do not dump on joint assemblies.

Finishing and Curing. Surface finished at proper time with approved tools and appliances. Systematic checking with tested straightedge.

Ordinates checked to all screeds. For parabolic ordinates, see p. 229.

Overfinishing avoided, may produce scaling. High or low spots corrected.

Good workmanship on tooling of joints and edges; specified edge rounding radius and width of tooling.

Prompt application of approved curing agents. Curing for full period specified.

Care in removing forms and bending tie bars. Do not pry against green concrete.

Ample protection from traffic until cured.

Sealing Joints, Opening to Traffic. Careful cleaning and sealing of joints and cracks.

Final check for surface roughness, high joints, fractured slabs, flush sealing of joints. Correction and repair as directed.

Temporary shoulder for edge protection before traffic is allowed.

Adequate structural strength (usually flexural strength of 500 to 550 p.s.i. before opening). Test beams cured same as slab and broken by cantilever, center or ½ point loading. (The latter is recommended.)

Air-Entraining Cement. Check for minimum and maximum air content; see specification. (Usually 3 to 6% of weight of a theoretical air-free mix.) Check with standard unit weight test using ½ or ½ cu. ft. calibrated bucket; see p. 12. Excessive loss of weight may be due to following:

Overmixing of concrete. Check ready-mix and transit mix particularly. High sand-aggregate ratio.

High water-cement ratio.

Air pressure in mixing drum of transit mixers. Leave discharge door partly opened and vent end of drum with four ½ in. diameter holes kept open at all times. Report excessive air content to engineer.

Cold-Weather Concrete

Concrete not placed on frozen subgrade.

Aggregate and water heated to produce temperature of concrete, at placing, of 70° F. minimum and 100° F. maximum or as specified.

Curing temperature of 50° to 100° F. maintained for specified period. No admixtures or extra cement used unless specified.

Fig. 18. Rules for construction of monolithic floor.

Fig. 19. Rules for construction of bonded cement finish floor.

APPROXIMATE DATA ON CONCRETE MIXES

TABLE 1. WATER-CEMENT RATIO (W/C)/FOR VARIOUS STRENGTHS

WATER	CONTENT	W/C Ratio			
Gallons	W/C by $Vol.$	BY	W/C Ratio	STRENGTH OF	Concrete
per Sack	Cu. Ft.	ABSOLUTE	BY	ат 28 І	Days
of Cement	per Sack	Volume	Weight	Compressive	Flexural
5 max.	0.668	1.38	0.444	5000 p.s.i.	750 p.s.i.
6 max.	0.802	1.66	0.533	4000 p.s.i.	600 p.s.i.
7 max.	0.936	1.93	0.621	3200 p.s.i.	500 p.s.i.
8 max.	1.069	2.21	0.710	2500 p.s.i.	450 p.s.i.

Note: Strengths should be determined by trial mixes (when practicable) based on fixed W/C. To allow for field conditions the strength values shown in table should be reduced by about 20%.

TABLE 2. RECOMMENDED CONSISTENCY OR SLUMP OF CONCRETE

	SLUMP	IN INCHES
Type of Structure	Max.	Min.
Reinforced foundation walls and footings	5	2
Plain footings and substructure walls	4	1
Slabs, beams, columns, and reinforced wall	s 6	3
Pavement and mass concrete	3	1

TABLE 3. EXPOSED CONCRETE—MAXIMUM WATER CONTENT IN GALLONS PER SACK

Type or Location of Concrete	SEVERE AND MODERATE CLIMATE	Mild Climate
At waterline (intermittent saturation)		
Sea water	$5\frac{1}{2}$	51/2
Fresh water	6	6
	· ·	ū
Not at waterline but frequent wetting		21.4
Sea water	6	$6\frac{1}{2}$
Fresh water	$6\frac{1}{2}$	7
Ordinary exposed structures	$6\frac{1}{2}$	7
Completely submerged		
Sea water	$6\frac{1}{2}$	$6\frac{1}{2}$
Fresh water	7	7
Concrete deposited through water	$5\frac{1}{2}$	5½
Pavement slabs on ground		
Wearing slabs	$5\frac{1}{2}$	6
Base slabs	61/2	7

TABLE 4. RECOMMENDED PER CENT OF SAND TO TOTAL AGGREGATE

Crushed stone, max. 1½-in. size	38 to 42
Crushed stone, max. ¾-in. size	43 to 49
Gravel, max. 1½-in. size	36 to 40
Gravel, max. 34-in. size	39 to 44

Sand-Aggregate Ratio or percentage by weight or volume of sand to total aggregate in mix should be from 33 to 45%, with extreme limits of 28 and 49%. The most economical mix will be that with lowest sand-aggregate ratio producing the desired plasticity, workability, and consistency.

CONCRETE BATCHING

Quantities of Materials by Fuller's Rule

Batching by Volume-Aggregates Measured Damp and Loose.

Cement factor or
$$C = \frac{42}{1+s+a}$$

where C =sacks cement per cubic yard of concrete.

s = cubic feet of sand per sack of cement.

g = cubic feet of gravel or stone per sack of cement.

Volume of sand required per cubic yard of concrete, or S = 0.037Cs = 0.037Cs Volume of gravel or stone required per cubic yard of concrete, or G = 0.037Cg = $\frac{10.5}{1+s+a}$

Example. Given: 1:2:4 mix by volume.

Required: C, S, and G.

Solution:

$$C = \frac{42}{1+2+4} = \frac{42}{7} = 6$$
 sacks cement required per cubic yard of concrete

$$s = 0.037 \times 6 \times 2 = 0.44$$
 cu. yd. of sand required per cubic yard of concrete

$$G = 0.037 \times 6 \times 4 = 0.89$$
 cu. yd. of stone or gravel required per cubic yard of concrete

QUANTITIES FOR CONCRETE MIXES *

TABLE 5. 1-IN. GRAVEL USING NORMAL LEHIGH PORTLAND CEMENT

		d Strength,	r og. in.	28 Days	2000	2300	2700	1900 2800	. 3200	3600	3700	4000	4400	4400	4800	5200
		Estimate	ro. be	7 Days	1200	1400	1700	1900	2200	2500	2500	2800	3200	3100	3400	3700
		Added	Water,	Gal.	30.4	27.1	24.0	31.0	27.7	24.6	31.4	28.3	25.2	32.0	28.9	25.8
p.	By Volume		Gravel,	Cu. Ft.	18.6	19.0	19.3	18.8	19.2	19.6	19.0	19.4	19.8	19.1	19.5	19.9
Materials per Cubic Yard			Sand,	Cu. Ft.	17.1	17.4	17.8	15.9	16.2	16.6	14.8	15.1	15.4	13.7	14.0	14.3
Materials pe		1	Water,	Lb.	253	226	200	258	231	202	262	236	210	267	241	215
	By Weight		Gravel,	Lb.	1840	1880	1920	1860	1900	1940	1880	1920	1960	1890	1930	1970
			Sand,	Lb.	1520	1550	1580	1420	1440	1470	1320	1340	1370	1220	1240	1270
	<i>M/C</i>	Ratio,	Gal.	per Sack	9.75	00.6	8.25	7.80	7.20	09.9	6.50	00.9	5.50	5.57	5.14	4.71
		Concrete	Con-	sistency	Wet	Med.	Stiff	Wet	Med.	Stiff	Wet	Med.	Stiff	Wet	Med.	Stiff
	Sacks	Cement	per	Cu. Yd.	4	4	4	rO	ro	rG	9	9	9	7	2	7

Based on Portland Cement Association Test Data. These figures are for moist curing at 70° F. For data on concrete for lower temperatures, see Table 13.

* From Lehigh Portland Cement Company.

TABLE 6. 1-IN. GRAVEL USING LEHIGH EARLY-STRENGTH PORTLAND CEMENT

	•	28 Davs	2600	2900	3300	3600	4100	4500	4600	2000	5500	5400	5800	6200
	Estimated Strength, Lb. per Sq. In.	7 Davs	2000	2300	2700	2800	3200	3600	3700	4000	4400	4400	4800	5200
	Estimate Lb. per	3 Days	1300	1600	1900	2100	2400	2800	2800	3100	3400	3400	3700	4000
		1 Day	200	650	800	1000	1200	1400	1500	1700	1900	1800	2100	2400
_	Added	waver, Gal.	30.7	27.6	24.4	31.3	28.1	25.0	31.9	28.7	25.6	32.4	29.3	26.2
y Volume	Added	Gravei,	19.3	9.61	20.0	19.4	19.8	20.3	19.6	20.0	20.4	19.7	20.2	20.6
H	, i	Cu. Ft.	16.3	16.6	17.0	15.1	15.5	15.8	14.0	14.3	14.6	13.0	13.2	13.5
ct.	Added	waver, Lb.	256	230	203	261	234	208	266	239	213	270	244	218
By Weigh	Sond Current Worker	Glaver, Lb.	1910	1940	1980	1920	1960	2000	1940	1980	2020	1950	2000	2040
	- D	Lb.	1450	1480	1510	1350	1380	1400	1250	1280	1300	1150	1180	1200
2/41	Ratio,	per Sack	9.75	9.00	8.25	7.80	7.20	09.9	6.50	0.00	5.50	5.57	5.14	4.71
	Concrete	sistency	Wet	Med.	Stiff									
Sacks	Cement	Cu. Yd.	4	41	4	ž	тO	Ō	9	9	9	7	~	7

Based on Portland Cement Association Test Data. These figures are for moist curing at 70° F. For data on concrete for lower temperatures, see Table 13.

TABLE 7. 1-IN. STONE USING NORMAL LEHIGH PORTLAND CEMENT

		Estimated Strength, Lb. per Sq. In.	28 Days	2000	2300	2700	2800	3200	3600	3700	4000	4400	4400	4800	5200	
		Estimated Lb. per	7 Days	1200	1400	1700	1900	2200	2500	2500	2800	3200	3100	3400	3700	
		Added	Gal.	28.9	25.7	22.6	29.5	26.4	23.2	30.1	27.0	23.8	30.7	27.6	24.4	i
	By Volume	Stone	Cu. Ft.	16.3	16.6	16.9	16.5	16.9	17.2	16.8	17.1	17.5	16.9	17.3	17.7	
		1	Cu. Ft.	19.8	20.2	20.6	18.6	18.9	19.3	17.3	17.7	18.1	16.2	16.6	16.9	•
Materials per Cubic Yard		Added	Lb.	241	214	188	246	220	193	251	225	198	256	230	203	•
Materia	By Weight	Stone	Lb.	1610	1640	1680	1640	1670	1700	1660	1690	1730	1680	1710	1750	,
		S.	Lb.	1760	1800	1830	1650	1680	1720	1540	1580	1610	1440	1470	1500	
	D/ 41	Ratio,	per Sack	9.75	9.00	8.25	7.80	7.20	09.9	6.50	6.00	5.50	5.57	5.14	4.71	
		Concrete	sistency	Wet	Med.	Stiff	Wet	Med.	Stiff	Wet	Med.	Stiff	Wet	Med.	Stiff	
,	S. C. C.	Cement ner	Cu. Yd.	4	4	4	23	ಸರ	χ ς	9	9	9	7	7	7	

Based on Portland Cement Association Test Data. These figures are for moist curing at 70° F. For data on concrete for lower temperatures, see Table 13.

TABLE 8. 1-IN. STONE USING LEHIGH EARLY-STRENGTH PORTLAND CEMENT

	ogth, In	1	7 Days	2000	2300	2700	2800	3200	3600	3700	4000	4400	4400	4800	5200
	Estimated Strength,	, per pd.	3 Days	1300	1600	1900	2100	2400	2800	2800	3100	3400	3400	3700	4000
	Estir 1.1	ā	1 Day	200	650	800	1000	1200	1400	1500	1700	1900	1800	2100	2400
	Added	Water,	Gal.	29.3	26.2	22.9	30.0	8.92	23.5	30.6	27.4	24.2	31.1	28.0	24.8
y Volume		Stone,	Cu. Ft.	16.9	17.3	17.6	17.2	17.5	17.9	17.4	17.8	18.1	17.6	17.9	18.3
Д		Sand,	Cu. Ft.	19.0	19.4	19.8	17.8	18.2	18.5	16.6	17.0	17.3	15.5	15.8	16.1
	Added	Water,	Lb.	244	218	191	250	223	196	255	228	202	259	233	202
By Weight		Stone,	Lb.	1680	1710	1740 191	1700	1740	1770	1720	1760	1800	1740	1780	1810
		Sand,	Lb.	1690	1730	1760	1580	1620	1650	1480	1510	1540	1380	1410	1440
D/M	Ratio,	Gal.	per Sack	9.75	9.00	8.25	7.80	7.20	09.9	6.50	0.00	5.50	5.57	5.14	4.71
	Concrete	Con-	sistency	Wet	Med.	Stiff	Wet	Med.	Stiff	Wet	Med.	Stiff	Wet	Med.	Stiff
Sacks	Cement	per	Cu. Yd.	4	4	4	5	ro.	zo.	9	9	9	7	7	2

Based on Portland Cement Association Test Data. These figures are for moist curing at 70° F. For data on concrete for lower temperatures, see Table 19.

2-IN. GRAVEL USING NORMAL LEHIGH PORTLAND CEMENT TABLE 9.

		ed Strength,	er 5q. 1n.	28 Days	2300	2700	3000	3200	3600	4000	4000	4400	4900	4800	5200	2200	
		Estimated S	d or	7 Days	1400	1700	2000	2200	2500	2800	2800	3200	3500	3400	3700	3900	
							21.6										
3	By Volume		Gravel,	Cu. Ft.	20.3	20.7	21.1	20.5	20.9	21.3	20.6	21.1	21.5	20.8	21.2	21.7	
Ouble Lat			Sand,	Cu. Ft.	15.8	16.1	16.4	14.7	15.0	15.3	13.6	13.9	14.1	12.5	12.8	13.0	
אומים ביים אוניים		7	Water,	T.b.	233	202	180	238	211	185	242	216	190	247	221	195	
•	By Weight		Gravel,	Lb.	2010	2050	2090	2030	2070	2110	2040	2090	2130	2060	2100	2140	
			Sand,	Lb.	1410	1440	1460	1310	1330	1360	1210	1230	1260	1110	1140	1160	
	0/44	Ratio,	Gal.	per Sack	9.00	8.25	7.50	7.20	6.60	0.9	9.00	5.50	5.00	5.14	4.71	4.29	
		Concrete	Con-	sistency	Wet	Med.	Stiff										
	2,12,0	Cement	per	Cu. Yd.	4	4		z	rC	ro	. 9	9	9	2	7	2	

Based on Portland Cement Association Test Data. These figures are for moist curing at 70° F. For data on concrete for lower temperatures, see Table 13.

TABLE 10. 2-IN. GRAVEL USING LEHIGH EARLY-STRENGTH PORTLAND CEMENT

	Estimated Strength, Lb. per Sc. In.	For whi will	3 Days 7 Days	1600 2300	1900 2700	2200 3000	2400 3200	2800 3600	3100 4000	3100 4000	3400 4400	3800 4900	3700 4800	4000 5200	4300 5500
	Estin Lb		1 Day	650	800	1100	1200	1400	1700	1700	1900	2200	2100	2400	2600
	Added	Water,	Gal.	28.3	25.2	22.1	28.9	25.8	22.7	29.5	26.4	23.2	30.0	26.9	23.8
By Volume		Gravel,	Cu. Ft.	21.0	21.4	21.8	21.2	21.6	22.0	21.3	21.8	22.2	21.4	21.8	22.3
		Sand,	Cu. Ft.	15.0	15.3	15.6	13.9	14.2	14.5	12.8	13.1	13.3	11.8	12.0	12.3
	Added	Water,	Lb.	236	210	184	241	215	189	240	220	193	250	224	198
By Weight	-	Gravel,	Lb.	2080	2120	2160	2100	2140	2180	2110	2150	2200	2120	2160	2210
	-	Sand,	Ľþ.	1340	1360	1390	1240	1260	1290	1140	1160	1190	1050	1070	1000
IJ/ΔI	Ratio,	Gal.	per Sack	9.00	8.25	7.50	7.20	09.9	00.9	00.9	5.50	5.00	5.14	4.71	4.20
	Concrete	Con-	sistency	Wet	Med.	Stiff									
Sacks	Cement	per	Cu, Yd,	4	4	4	ĸ	ž	ĸ	9	9	9	7	7	7

Based on Portland Cement Association Test Duta. These figures are for moist curing at 70° F. For data on concrete for lower temperatures, see Table 13.

TABLE 11. 2-IN. STONE USING NORMAL LEHIGH PORTLAND CEMENT

	Estimated Strength, Lb. per Sq. In.	28 Days	2300	2700	3000	3200	3600	4000	4000	4400	4900	4800	5200	5500
,	Estimate Lb. pe	7 Days	1400	1700	2000	2200	2500	2800	2800	3200	3500	3400	3700	3900
	Added Woton	Gal.	26.5	23.4	20.2	27.1	24.0	20.8	27.7	24.6	21.4	28.3	25.2	22.0
By Volume	Stone Stone	Cu. Ft.	18.0	18.3	18.7	18.2	18.6	18.9	18.4	18.8	19.2	18.6	19.0	19.4
	Sand	Cu. Ft.	18.6	19.0	19.3	17.4	17.7	18.1	16.2	16.6	16.9	15.1	15.4	15.7
t e	Added													
By Weight	Ottono Ottono	Lb.												
	L 20	Lb.	1660	1690	1720	1550	1580	1610	1440	1470	1500	1340	1370	1400
D/ Al	Ratio,	per Sack	00.6	8.25	7.50	7.20	6.60	00.9	0.00	5.50	5.00	5.14	4.71	4.29
	Concrete	sistency	Wet	Med.	Stiff									
Sacks	Cement	Su. Yd.	4	4	4	ro	z.	īĊ	9	9	9	7	7	2

Based on Portland Cement Association Test Data. These figures are for moist curing at 70° F. For data on concrete for lower temveratures, see Table 13.

32 CONCRETE

2-IN. STONE USING LEHIGH EARLY-STRENGTH PORTLAND CEMENT TABLE 12.

Materials per Cubic Yard

	Estimated Strength, Lb. per Sq. In.	28 Davs	2900	3300	3800	4100	4500	2000	2000	5500	5800	5800	6200	0099
	d Strengtl r Sq. In.	7 Days	2300	2700	3000	3200	3600	4000	4000	4400	4900	4800	5200	5500
	Estimate Lb. pe	3 Days	1600	1900	2200	2400	2800	3100	3100	3400	3800	3700	4000	4300
		1 Day	650	800	1100	1200	1400	1700	1700	1900	2200	2100	2400	2600
_	Added	water, Gal.	26.9	23.8	20.5	27.6	24.4	21.2	28.1	25.0	21.8	28.7	25.6	22.4
y Volume	G. 50	Cu. Ff.	18.6	19.0	19.4	18.9	19.2	19.6	19.0	19.4	19.8	19.2	19.6	20.0
H	500	Cu. Ft.	17.8	18.2	18.5	16.6	17.0	17.3	15.5	15.8	16.1	14.3	14.6	14.9
it.	Sand Stone Weter	Lb.	224	198	171	230	203	177	234	208	182	239	213	187
By Weigh	Or or or	Lb.	1840	1880	1920	1870	1900	1940	1890	1920	1960	1900	1940	1980
	, g	Lb.	1590	1620	1650	1480	1510	1540	1380	1400	1430	1280	1300	1330
2/41	Ratio,	per Sack	9.00	8.25	7.50	7.20	09.9	9.00	6.00	5.50	2.00	5.14	4.71	4.29
	Concrete	sistency	Wet	Med.	Stiff	Wet	Med.	Stiff	Wet	Med.	Stiff	Wet	Med.	Stiff
Sacks	Cement	Cu. Yd.	4	4	4	ĸ	1 0	ro	9	9	9	7	_	7

Based on Portland Cement Association Test Data. These figures are for moist curing at 70° F. For data on concrete for lower temeratures, see Table 19.

Fig. 20. Age-strength relation for normal and high-early-strength portland cements. The strengths indicated should be obtained on average construction projects where all materials, including the water, are controlled. On important work, tests should be made with the materials to be used on the project to establish job curves and fix design values.

Approximate Quantity of Surface Water Carried by Average Aggregates * †

Very wet sand	¾ to 1 gal. per cu. ft.
Moderately wet sand	about ½ gal. per cu. ft.
Moist sand	about ¼ gal. per cu. ft.
Moist gravel or crushed rock	about ¼ gal. per cu. ft.

APPROXIMATE ABSORPTION OF AGGREGATES *

Average sand	1.0 per cent by weight
Pebbles and crushed limestone	1.0 per cent by weight
·Trap rock and granite	0.5 per cent by weight
Porous sandstone	7.0 per cent by weight
Very light and porous aggregate may be as high as	25 per cent by weight

- * From Portland Cement Association.
- † The coarser the aggregate, the less free water it will carry.

34 CONCRETE

MISCELLANEOUS DATA

TABLE 13. % OF 70° MOIST-CURED COMPRESSIVE STRENGTH NORMAL PORTLAND CEMENT

Placed and	4	⅓ Gal.	per Sa	ck		Gal. 1	er Sac	k		Gal. 1	er Sac	k
Cured at	1 d.	3 d.	7 d.	28 d.	1 d.	3 d.	7 d.	28 d.	1 d.	3 d.	7 d.	28 d.
60° F.	68%	78%	82%	83%	65%	74%	79%	82%	61%	71%	78%	78%
50° F.	28%	50%	60%	61%	22%	43%	52%	59%	14%	36%	51%	51%

% OF 70° MOIST-CURED COMPRESSIVE STRENGTH EARLY-STRENGTH PORTLAND CEMENT

60° F.	72%	88%	94%	94%	70%	78%	88%	93%	70%	85%	88%	94%
50° F.	38%	72%	80%	88%	34%	64%	75%	84%	32%	66%	73%	85%

Based on "Temperature Effects on Compressive Strengths of Concrete," Timms and Withey, A. C. I. Journal, Vol. VI, No. 2.

CONCRETE BATCHING COMPUTATIONS

Translating Design Mix into Batch Weights, Example Given by laboratory:

Design mix by proportional weights (saturated surface dry aggregates):

	PARTS BY
	WEIGHT
Cement	1
Sand	1.84
Stone (fine)	2.00
Stone (coarse)	1.80
Water $(W/C \text{ ratio by weight)}$ (4.8 gal. per sack)	0.426
Mix parts, total	7.066
Apparent (absolute) specific gravity of sand (without	
voids) saturated surface dry	2.63
Apparent (absolute) specific gravity of stone (without	
voids) saturated surface dry	2.63
Apparent (absolute) specific gravity of cement (without	
voids) saturated surface dry	3.10
Required slump	2 in. to 2½ in.
Determined by field test:	
Surface moisture in sand by weight	4%
Surface moisture in stone by weight	1%

Constants:

Weight of cement per sack	94 lb.
Loose volume of cement per sack	1 cu. ft.
Weight of water per gallon	8.345 lb.
Volume of water per gallon	7.5 cu. ft.
Weight of water per cubic foot	62.5 lb.

Computation of weight of each material required per sack of cement:

	Pounds
Cement	$1 \times 94 = 94.00$
Sand	$1.84 \times 94 = 172.96$
Fine stone	$2.00 \times 94 = 188.00$
Coarse stone	$1.80 \times 94 = 169.20$
Water	$4.8 \times 8.345 \text{ or } .426 \times 94 = 40.00$
Total weight of mate	rials per sack of cement = 664.16

Computation of yield of concrete per sack of cement:

SOLID VOLUME, CU. FT. 94.00 Cement 0.49 $\frac{}{3.10 \times 62.5}$ 172.96Sand 1.05 2.63×62.5 188.00 $\frac{2.63 \times 62.5}{2.63 \times 62.5} =$ Fine stone 1.14 169.20 Coarse stone 1.03 2.63×62.5 40.00_ Water 0.64Theoretical yield of concrete per sack of cement Theoretical unit weight of concrete per cubic foot $=\frac{664.16}{4.35}=152.7$ lb. Theoretical cement content per cubic yard or $=\frac{27}{4.35}=6.2$ sacks cement factor

Assuming that sacked cement is being used, batch weights are computed to utilize an even number of sacks as illustrated for a 6-sack batch. Note. Volume of concrete is usually not allowed to exceed 10% of rated capacity of mixer, and so a 6-sack batch in this case is selected for a 27-E paving mixer as theoretical yield for 6-sack cement = $4.35 \times 6 = 26.1$ cu. ft. of concrete. See Table 14 for batch weights.

TABLE 14. COMPUTATION OF BATCH WEIGHTS FOR A 6-SACK BATCH

	PARTS BY WEIGHT	Percentage of Each Aggregate	BATCH WEIGHTS SURFACE DRY	St	SURFACE MOISTURE BY TEST	Batch Weights Including Sur-
MATERIAL	FIED	AGGREGATE	очексаттья 6-Вад Ватсн, L.в.	8	LB.	FACE MOISTURE 6-BAG BATCH, LB.
Cement 1 Sand 1.84 Stone, fine 2.00 Stone, coarse 1.80 Water 0.42 Total batch weights	1 1.84 2.00 1.80 0.426	32.6 35.5 31.9	94×6 = 664 564×1.84 = 1038 564×2.00 = 1128 564×1.80 = 1015 564×0.426 = 240 3985	4	$0.04 \times 1038 = 42$ $0.01 \times 1128 = 11$ $0.01 \times 1015 = 10$ Total = 63	

 $177 \div 8.345 = 21.2$ gal. of water to be added at mixer

Adjust to required slump if necessary, but do not increase water/cement ratio. Resulting batch weights in last column should be posted at scales.

Check of Cement Factor during Operations, Example.

Given:

Total weight of materials per sack of cement = 664.16 lb. Actual weight of 1 cu. ft. of concrete by unit weight test of freshly mixed sample = 152.5 lb.

Computations:

Weight of 1-sack batch $\frac{664.16}{152.5} = 4.35$ cu. ft. yield per sack. Unit weight of concrete $\frac{152.5}{152.5} = 4.35$ cu. ft. yield per sack. Actual cement factor $= 27 \div 4.35 = 6.2$ sacks per cu. yd.

As the yield and cement factor check theoretically, no adjustment is necessary. (The air content of freshly mixed concrete made with normal portland cement is usually 0.5 to 1.0% and does not usually affect cement factor or yield enough to warrant adjustment.)

This check with normal portland-cement concrete is made to determine actual yield and cement factor when the cement factor may be running off as determined by the daily check of sacks used.

Actual sacks of cement used each day should be checked against theoretical quantity as follows: The volume of concrete is computed by dimensions. Required quantity of cement in sacks = theoretical cement factor × cubic yards of concrete. Example. Given: 1000 cu. yd. of concrete and cement factor = 6.2; cement used should be 6200 sacks. Overrun of 1½% usually allowed. Underrun usually due to one or more of the following:

- 1. Concrete laid deficient in width and depth; check and correct.
- 2. Excess of water or aggregate; check and correct.
- 3. Errors in batching or proportioning; check and correct.
- 4. Volume of concrete increased by voids; check and correct.

Air-Entraining Cement

When air-entraining portland cement is used, the volume of concrete is increased by the void content resulting from entrainment of air in the mix. The total yield must be determined in order to check with specification requirements.

It is desirable, and usually required, that the amount of entrained air shall be not less than 3% nor more than 6% by volume. For example, a normal portland cement mix producing a yield of 27.0 cu. ft. and requiring 6.2 bags of cement would, if air-entraining portland cement is substituted without further changes, increase the yield to approximately 28.1 cu. ft. if 4% air is entrained, in which case the cement factor would be reduced to 5.95 bags per cu. yd.

Specifications generally require that the same cement factor (yield of concrete) be maintained as for normal cement use. It is therefore necessary that other ingredients, usually sand and water, be reduced by such

amount that the same yield is secured. Other reasons for such adjustment are to maintain proper consistency, workability and freedom from excess mortar not required.

The amount of air-entrainment may be determined by comparing the actual weight of the fresh concrete with its air-free weight. Then the percentage of air (gravimetric method) is:

$$\left(\frac{\text{Diff. in wt.}}{\text{Air-free wt.}}\right) 100 = \% \text{ air}$$

If, in the above case, the actual unit weight in field is 144.0 and the airfree weight is 150.0 lb., then the percentage of air by above formula is:

$$\frac{(150 - 144)}{150} \, 100 = 4\%$$

In order to maintain correct yield the total batch weight for use with air-entraining portland cement is adjusted for trial purposes as follows:

Reduce sand by an amount equal to 3% of the total weight of all aggregates.

Reduce water by 1/4 gal. per bag of cement.

Measure unit weight of fresh concrete and divide into total batch weight for determining yield, air-entrainment, and cement factor.

The air-entrainment should be within the range of 3 to 6% in order to secure best results. Make any further adjustment necessary in water and sand and also in coarse aggregate, if desirable, to keep entrained air within this range and maintain desired cement factor.

Use following computation (from batch given above):

		Absolute Volume, Cu. Ft.
Cement	$\frac{94}{3.10 \times 62.5} =$	0.49
Sand	$\frac{172.9603(530.16)}{2.63 \times 62.5} =$	0.957
Fine stone	$\frac{188}{2.63 \times 62.5} =$	1.14
Coarse stone	$\frac{169.2}{2.63 \times 62.5} =$	1.03
Water	$\frac{40 - 2.09}{62.5} =$	0.606
Air (if adjustments in aggregate and water are correct)	=	0.127
Yield	=	4.35

Batch weight, 1 sack Unit weight by test $\frac{646.17}{148.6*} = 4.35$ cu. ft. yield per bag of cement. Cement factor = $27 \div 4.35 = 6.2$ bags per cu. yd. Sand-aggregate ratio $100(0.957) \div (3.127) = 30.6\%$.

CONCRETE REINFORCEMENT

TABLE 15. STANDARD STYLES OF AMERICAN ELECTRICALLY WELDED MESH

	OF WIRES		N STEEL & GAGE NO.	SECT. AREA OF FABRIC	
Long.	Trans.	Long.	Trans.	Long.	Trans.
2 2	16 、 16	1 2	7 8	0.377 .325	0.018 .015
2	16	3	8	.280	.015
2	16	4	9	.239	.013
3	16	2	8	.216	.016
2	16	5	10	.202	.011
3	16	$\begin{matrix} 3 \\ 6 \\ 4 \end{matrix}$	8	.187	.015
2	16		10	.174	.011
3	16		9	.159	.013
2	16	7	11	.148	.009
4	16	3	8	.140	.015
3	16	5	10	.135	.011
4	16	4	9	.120	.013
3	16	6	10	.116	.011
4	16	5	10	.101	.011
3	16	7	11	. 098	.009
4	16	6	10	. 087	.011
3	16	8	12	. 082	.007
4	16	7	11	. 074	. 009
4	12	8	12	. 062	. 009
4	12	9	12	. 052	. 009
4	12	10	12	. 043	. 009
4	12	12	12	. 026	. 009
6	6	7	7	. 049	. 049
4	4	4	4	.120	.120
4	4	6	6	.087	.087

See pp. 58 and 59 for gage data.

^{*} This is an assumed unit weight for purpose of this example. Actually, the unit weight may be higher or lower than this, in which event further adjustments of water or sand or also coarse aggregate must be made in order to maintain the desired cement factor and at the same time secure the necessary weight loss to insure proper air-entrainment.

TABLE 16. PROPERTIES OF REINFORCING BARS AND HOOK DIMENSIONS

Method of hooking bars as recommended by A.C.I.

			Wt. per				
Size	AREA	PERIMETER	LIN. FT.	\boldsymbol{P}	H	X	\boldsymbol{A}
$\frac{1}{4}'' \phi$	0.05	0.79	0.167	114"	134"	7∕8″	33/8"
3⁄8″ φ	0.11	1.18	0.376	17/8"	25%''	1,38"	5"
$\frac{1}{2}'' \phi$	0.20	1.57	0.668	$2\frac{1}{2}''$	$3\frac{1}{2}''$	134"	$6\frac{3}{4}''$
½″ □	0.25	2.00	0.850	$2\frac{1}{2}''$	$3\frac{1}{2}''$	134"	$63_{4}''$
5⁄8″ φ	0.31	1.96	1.043	31/8"	43/8"	21/8"	838"
$\frac{3}{4}'' \phi$	0.44	2.36	1.502	$3\frac{3}{4}''$	$5\frac{1}{4}''$	258"	10"
½″ φ	0.60	2.75	2.044	438"	$6\frac{1}{8}''$	3"	1134"
$1'' \phi$	0.79	3.14	2.670	5"	7"	$3\frac{1}{2}''$	1'138"
1"	1.00	4.00	3.400	5"	7"	312"	1'138"
1⅓″ □	1.27	4.50	4.303	55/8"	77/8"	378"	1'318"
1½"口	1.56	5.00	5.313	$6\frac{1}{4}''$	834"	438"	1′434″

TABLE 17. MINIMUM BEAM WIDTHS IN INCHES*

Size	No. o	F BARS	in Sing	LE LAY	er of F	EINFOR	CEMENT	Add for Each Addi-
of Bar	2	3	4	5	6	7	8	TIONAL BAR
$\frac{1}{2}$ " ϕ	6"	7½"	9"					112"
1/2" □	6½″	8″	10"					134"
5⁄8″ φ	6" \	8″	9½"	11"	121/2"			158"
$\frac{3}{4}'' \phi$	$6\frac{1}{2}''$	8½"	10½″	12"	14"			178"
½″ φ	7"	9"	11½″	$13\frac{1}{2}''$	16"	18"	20"	2316"
1″ φ	7½"	10"	$12\frac{1}{2}$	15"	171/2"	20"	22_{22}^{1}	$2^{1}2''$
1"	8″	11"	14"	17"	20"	23"	26"	3″
1⅓″ □	8½"	12"	15"	181/2"	22"	$25\frac{1}{2}''$	281/2"	338"
1¼″ □	9″	121/2"	16½″	20″	24"	27"	$31\frac{1}{2}''$	334"

^{*} Where specially anchored bars are used, haunch width may be narrowed.

TABLE 18. AREA OF STEEL PER FOOT OF WIDTH

RAD								SPACING	OF	BARS							
Size	*	41/2"	2,,	51/2"	,,9	61/2"	2	71/2"	,'8	81/2"	9′′	91/2"	10′′	101/2"	11"	111/2"	12″
$\frac{1}{4}$ " ϕ	0.15	0.13	0.12	0.11	0.10	0.00	0.08	0.08	0.02	0.0	0.02	0.06	90.0	90.0	0.02	0.09	0.05
$\phi_{\prime\prime}\%$	0.33	0.29	0.26	0.24	0.22	0.20	0.19	0.18	0.17	0.16	0.15	0.14	0.13	0.13	0.12	0.11	0,11
$\frac{1}{2}$ " ϕ	0.59	0.52	0.47	0.43	0.39	0.36	0.34	0.31	0.29	0.28	0.26	0.25	0.23	0.22	0.21	0.20	0.20
7″⊓	0.75	0.67	0.60	0.55	0.50	0.46	0.43	0.40	0.37	0.35	0.33	0.32	0.30	0.29	0.27	0.36	0.25
φ,,%	0.92	0.82	0.74	0.67	0.61	0.57	0.53	0.49	0.46	0.43	0.41	0.39	0.37	0.35	0.33	0.32	0.31
¾″¢	1.33	1.18	1.06	0.96	0.88	0.82	0.76	0.71	0.06	0.62	0.59	0.56	0.53	0.51	0.48	0.46	0.44
ϕ_{1} %	1.80	1.60	1.44	1.31	1.20	1.11	1.03	0.96	0.30	0.85	0.80	0.76	0.72	0.69	0.66	0.62	0.60
$1''\phi$	2.36	2.09	1.88	1.71	1.57	1.45	1.35	1.26	1.18	1.11	1.05	0.99	0.94	0.00	0.86	0.82	0.78
1,,0	3.00	2.67	2.40	2.18	2.00	1.85	1.71	1.60	1.50	1.41	1.33	1.26	1.20	1.14	1.09	1.04	1.00
13%"	3.8	3.37	3.04	2.76	2.53	2.34	2.17	2.02	1.90	1.79	1.69	1.60	1.52	1.45	1.38	1.32	1.27
1¼"□	4.69	4.17	3.75	3.41	3.13	2.89	2.68	2.50	2.34	2.21	2.08	1.97	1.87	1.79	1.70	1.63	1.56

LOAD TESTS

Permanent measurable deflections are a sign of weakness.

Fig. 21. Standard deflection magnifier for load tests.

Note. When the expense of safety shoring is too great, men conducting a load test may be protected by using a roller as a test load, the roller being towed from some safe distance. Level shots to measure deflection can be taken.

Engineer

. ' REPORT ON CONCRETE STRUCTURES

FIELD INSPECTION

(Short Form)

Report No		Da	ıte
ob		Те	mp
Reported to			
	Work In	ISPECTED	
	Location or Station	Reinforcement and Forms	Concrete
Footings			
Columns			
Beams			
Slabs			
Walls		1	
Aggregate inspe	cted		
	de		
Test cylinders n	nade		
Frost protection	checked		

Inspector

Engineer	

REPORT ON CONCRETE STRUCTURES

FIELD INSPECTION

 $(Long\ Form)$

Report No.					
				Temp.	
Reported to					
		Work Insp	PECTED		
	Ţ.,,	D : 6		Ya	rdage
	Location or Station	Reinforcement and Forms	Concrete	Today	Total to date incl.
Footings					
Columns					
Beams					
Slabs					
Walls					
Coarse aggre Fine aggrega	gate: size, ap te: grading,	d ppearance, cleanl silt content by b leanliness, tightn	iness, sound ottle sedime	ness	
		ecesses, concrete			
Slump tests:	cylinders an	d/or test beams			
	•				
		ater content, tin			
		on or rodding			
Form strippi	ng and resho	oring			
		-	Inst	pector	

Engineer

REPORT ON CONCRETE TEST SPECIMENS *

		To			DATA maker of sp	ecime	ens				
Project, name	and sy	mbol:					Distric	t:			
No. specimens i	n ship	11	Type of a Cyling Beams	ders:	nens: Cores: Diameter,	in.	Symbo	ls:			
Date placed:	Date				shipped:		Monoli	ith extracte	d from:		
Cubic yards rep	re-	Mixture	(by weig	ht):	Slump, in	.:		Sand. Togate rati	otal aggre- o % by vol.		
Theoretical unit	wt.: cu. ft.	Actual U		ght: u. ft.	Calculated tent:	d ai	r con-	Net actua	l W/C: gal./bag		
Admixture type	and a	mount:					Cement	Factor			
				%	Theoretic		cu. yd.	Actual: b	ags/cu. yd.		
				Cer	nent						
Cement Spec. S	S-C-	T	ype:		Brand:						
Mill name and	locatio	n:			Car numb	er:					
Type and Source of Aggregate											
Fine aggregate: Coarse aggregate:											
	By Whom Prepared (Inspector)										
LABORATORY DATA To be filled in by laboratory											
Specimen No. Date Tested:				Strength, p sive Streng	.s.i. th, p.	.s.i.					
			7-ID	7-Day 14		28	-Day	90-Day	180-Day		
			-								
						_					
		3.			1.00	4					
Date specimens	receiv	ea:			Tempera	ture	or specu	mens when	receivea:		
Remarks:		,									

^{*} From War Department Corps of Engineers, North Atlantic Division.

Engineer

REPORT ON CONCRETE TEST BEAMS

	,	т	70.4		exural rength		Rema	rks
No.	Date Cast	Loca- tion	Date Shipped	7-day	28-day	Slump	Den- sity	Percentage of Air Voids

Ing	pector	

Engineer
_

REPORT ON CEMENT ANALYSES *

								Repo	ort	
Time	of Set	Sound-	St				Igni-	Insol- uble	Mag-	Sul- furic
Initial	Final	ness	1	3	7	28	Loss	due	nesia	Anhy- dride
	•				-					
d to:	do do no	fulfill A	.s.T	.M.	Spe	c				
	Time Initial	Time of Set Initial Final .	Time of Set Soundness Initial Final	Time of Set Soundness Initial Final 1	Time of Set Soundness Initial Final	Time of Set Soundness Initial Final 1 3 7	Time of Set Soundness Initial Final 1 3 7 28	Time of Set Soundness Tensile Strength 1–3 Ignition Loss Initial Final	Time of Set Soundness Initial Final Soundness 1 3 7 28 Ignition Loss due Address Into the strength 1-3 and th	Time of Set Soundness Initial Final d to: we tests do do not fulfill A.S.T.M. Spec Type

^{*} Adapted from Haller Engineering Associates, Inc.

Engineer	

CEMENT SHIPPING REPORT *

Gentlemen:

Shipments of portland cement indicated have been mill inspected and sealed for your account.

Car Number	Seal	Contents Bbl.	Bin	Brand	Destination

Reported t	to:
------------	-----

Inspector

^{*} Adapted from Haller Engineering Associates, Inc.

MASONRY

CHECK LIST FOR INSPECTORS

MASONRY

Inspectors' Equipment

Complete set of plans, specifications, approved samples and shop drawings.

Set of sieves of specified sand sizes.

Plumb bob and line.

6-foot rule.

Procedure in Inspection

Prepare and ship samples of brick, concrete block, clay tile, sand lime bricks, cement, and sand lime to laboratory for test.

Perform sieve tests on sand for mortar at site.

Inspect brick. Discard underburned brick (sometimes called salmon brick), which is pale in color if a red brick. Compare brick with specifications. Face brick can best be checked from approved sample.

See that joints are according to specification.

If the engineer has built up a sample of wall, see that this is followed.

Check thickness of joints, type of pointing, and mortar against specifications.

Check lime against lime memorandum on pp. 49 and 50, particularly as to length of time after slaking.

Do not permit laying of brick in weather cold enough to freeze mortar. See specifications.

Check bonding of brickwork.

In warm weather, dry brick to be wetted.

All beds and vertical joints to be full without voids.

No voids permitted in interior of wall.

Check wall for plumbness and level courses.

All flashings, weep holes, and sills built in as required by plans and specifications.

Lift brick up that are laid. There should be sufficient suction to lift mortar with them.

LIME FOR MORTAR AND MASONRY

Lime is produced in two forms as follows:

1. High-calcium quicklime, which is sent to the job in powdered form of two different kinds: pulverized or granular, labeled as quicklime. One has no particular advantage over the other.

This lime is slaked by adding water similar to the method of preparing lump lime, and must be allowed to age 3 to 7 days.

One ton of quicklime will produce approximately 80 cu. ft. of stiff lime putty.

2. Hydrated lime, which is lime containing water in chemical combination. It is a calcium hydroxide and comes on the job labeled hydrated masons' lime. This lime also comes in two different kinds: (a) Ordinary hydrated lime. This product should be soaked in water for not less than 24 hours before using. (b) Pressure hydrated lime. This lime can safely be put in the mixer without any treatment whatever. It is used exactly the same as cement.

IDENTIFICATION OF BUILDING STONE

Granite is a coarse-grained, hard, igneous rock in which the different minerals give a speckled appearance.

True granite contains the following elements:

Quartz—a clear, hard crystal.

Feldspar, which looks like a yellowish tooth.

Hornblende-hard, black, shiny.

Mica-thin, flaky, transparent.

Pyrite, which looks like a yellowish metal.

Bastard granite contains some but not all of these crystals.

Both granites are excellent building materials although too much pyrite might cause stain and a possible breaking down of the stone by weathering.

Gneiss may be either sedimentary or igneous rock which has been metamorphosed, that is, compressed and worked under sufficient pressure and heat so that the structural changes were by plastic flow rather than by cracking.

In gneiss, the interlocking minerals are for the most part visible to the naked eye. The gneisses are banded. Gneiss is a satisfactory building material.

Gneisses merge into schists as the texture becomes finer.

Schists with a large percentage of mica are known as mica schists. As a building material they are subject to cleavage.

Trap rock is heavy, dark, and igneous. The origin of its name is steps as it tends to break into steplike blocks. Trap rock is an excellent building material.

Basalt is a dark igneous rock ranging from dark gray to black. Its texture is very fine. Basalt is an excellent building material.

Marble is a metamorphosed limestone and in its broken state shows shiny, smooth, crystalline surfaces. It is vulnerable to dissolving in certain atmospheres or water. Its hardness is medium. Marble may be made from either calcitic or dolomitic limestone. The dolomitic limestone does not effervesce with dilute acid. Marble has excellent durability and workability for buildings.

MASONRY 53

Frg. 21B.

Limestone is calcium carbonate rock of sedimentary origin. It is somewhat vulnerable and may be distinguished from magnesium carbonate limestone by the fact that it effervesces under a dilute solution of acid. which is not the case with the dolomite. Individual grains cannot be distinguished. Limestone is soft, easily worked, and a reasonably good building stone but vulnerable.

Sandstone, as its name implies, is made up of sand cemented with silica or lime. In general, the grains are distinguishable. Its reliability as a building material can be ascertained only after investigation; for instance, brownstone is a sandstone which has not always proved reliable.

Slates are metamorphosed shale and have cleavage planes along which the stone is split for commercial purposes. These cleavage planes occur at an angle to the bed planes. Slates are a satisfactory building material, particularly for roofs.

Shale comes from silt and clay and occurs in beds which tend to "shale" It is softer than limestone and unreliable as a building material.

Caution: Sedimentary stone should be laid on natural beds.

Definition: Porphyritic texture means a texture in which the larger minerals appear to be embedded in a matrix.

STRUCTURAL STEEL

CHECK LIST FOR INSPECTORS

STRUCTURAL STEEL

The following is based on the assumption that steel has been inspected in shop. If this has not been done, steel should be completely checked against shop details and for correct sections.

Inspectors' Equipment

Complete set of erection plans and specifications.

Details should not be necessary unless shop inspection was not made or unless necessary to show special field connections.

Steel tape.

6-ft. rule.

Plumb bob.

Rivet-testing hammer.

Steel handbook.

Necessary coveralls, helmet, gloves, etc.

Calipers, gages, etc.

Procedure in Inspection

Members should be checked for damage in shipment, such as bent plates, connection angles or members themselves, and condition of paint. This checking should be done before erection so that damaged pieces may be rejected or rectified by straightening or reinforcing.

Anchor bolts should be checked as to size, location, elevation, and plumbing.

Base plates and grillages should be checked for correct work, level, and proper grouting. In general, they should be leveled up so as to carry load direct to foundations or walls.

Columns resting on base plates, grillages, or girders and column splices should be checked for proper bearing of milled surfaces. Where column sections change in nominal section and milled fillers are used, they should be carefully inspected.

Minor corrections may be made with steel shims.

Plumbing of columns should be checked to specified tolerance before any riveting or permanent bolting of floors is done.

As erection proceeds, inspector should match pieces against erection plans to see that proper piece is in correct position. Usually material is properly marked, but where there is any doubt, section of member should be checked.

The inspector should make sure that rivets or turned bolts are used where called for on erection plans or specifications. If there is any question

as to what connection is to be used, inspector should check with engineer's office.

Rivets should be checked for size and tightness. The alignment of holes should be checked before driving. Where they are not true, holes should be reamed and larger rivets driven. If rivet is tight and has full head, it should be passed.

In no case should the following be allowed:

Burning of holes with torch. Gouging of holes with drift pins. Tightening of rivet by calking of head.

Rivets should be tested with small hammer. Strike rivet head with several good blows of hammer to see if it can be "floated" or moved up and down. Defective rivets should be marked with chalk. When a loose rivet is removed, it may loosen adjoining rivets. In small groups, it may be necessary to remove all the rivets in group. However, as a rivet shrinks in cooling, a slight vibration is not cause for condemning a rivet. Sufficient temporary bolts should be used to hold pieces tight together while riveting.

Bolted connections should be reasonably tight but should not be turned up so as to strip thread. Where washer, lock washer, lock nuts, etc., are called for, they should be checked.

Beams on walls should be checked for proper wall bearing and anchorage.

Inspector should cooperate with the erector in safeguarding structure from accidents during erection. He should see that derrick base is secured from horizontal thrust of boom in any direction. Steel carrying derricks should be strong enough and have sufficient connections for erection stresses involved. The erectors should be warned against such dangerous practices as lifting too heavy a load for the strength of counter ties of derrick, booming out too far and splicing of boom. Guying and bracing of steel in process of erection against wind pressure are important. Shrinkage of a wet rope should be allowed for.

Painting should be done according to specifications. Where shop paint has been removed during shipment, repainting should be done before erection. Field paint should be of different color from shop paint. All steel should be free from rust and scale and should be dry. Painting should not be permitted in freezing weather.

Inspector should be familiar with design of building if possible. In any event, he should confer with the engineer to see whether there are any special connections which should be watched. If, in the opinion of inspector, any part of the structure does not appear structurally sound, he should notify engineer.

374

.21

6.0

14.75 10.0

Ø

₩ŧ

238

.35

1.9

7.5

ard Section.

234

.33

8.0.8

9.5

STRUCTURAL STEEL SECTIONS TABLE 19.

	•											
	q	23,8	178	178	134		131	158		158	135	138
	g	စစ	9	ro	20		4	4		က	က	3
	**	.44	. 20	.32	. 19		.32	.18		.36	.26	.17
	8	5.8	4.3	3.5	3.0		2.3	1.9		1.4	1.2	1.
	Wt	13.0	8.3	9.0	6.7		7.25	5.4		0.9	2.0	4.1
	a	9	_	ō	_		4	_		٥	۰ -	-
	q	25%	238		235	23,8	234		234	234	21/8	
	р	6	6		8	œ	00		7	7	7	
	1	.45	.23		.49	8	.22		.42	.31	.21	
	S	13.5	10.5		10.9	9.0	8.1		7.7	6.9	6.0	
ect.	Wt	20 15	13.4		18.75	13.75	11.5		14.75	12.25	8.6	
Amer. Std. Channel Sect.	a	6	_		۰	۰-	_		1		_	
d. Cha	q	378	m m				ಣ	278	234	258		
r. St	р	12	2 2				91	10	20	10		
Am	7	.51	68.88				.67	52	88.	.24		
	S	26.9	23.9				20.6	18.1	15.7	13.4		
	Wt	30	25 20.7				30	22	8	15.3		
	a	ç	2 <u> </u>					9	_			
	q	434	44		334	318	338	438	_	418	41/8	4
	q	18	8 18		15	15	12	13		13	13	13
	7	5.8	3.4		.72	.52	.40	.79		.56	.45	.38
	S	74.5	63.7		53.6	46.2	41.7	48.1		41.7	88.6	36.5
	Wt	58	45.8		යි	40	33.9	S		4	35	31.8
	D	18				15				6	5 -	_

		_	_	_	_	_	_	_	_	_	_
Q	5	-				4	н			က	1
q	5	458		41/8	4		37,6	338		358	338
р	10	10		00	90		7	7		9	9
7	. 59	.31		.44	.27		.45	.25		.47	:23
Ø	29.3	24.4		16.0	14.2		12.0	10.4		8.7	7.3
Wt	35	25.4		23.0	18.4		20.0	15.3		17.25	12.5
a	10	I		00	I		7	Н		9	Н
q	614	9			969	5 3 3		57.2	574	278	9
р	18	18			15	15		12	12	12	12
1	17.	.46			. 55	.41		69	.46	.43	.35
S	101.9	88.4			64.2	58.9		50.3	44.8	87.8	36.0
Wt	20	54.7		_		_					81.8
a	18	Ι			15	H			12	H	_
q	00	17%	734	7.78	2			7.74	7	869	61/4
р	24	24	24	24	24			20	20	8	8
2	08	.62	.75	. 62	.50			8	.65	.64	.50
82	250.9	234.3	197.6	185.8	173.9			160.0	150.2	126.3	116.9
	t d b D Wt S t d b D Wt S t d b	t d b D Wt S t d b D Wt S t d b .80 24 8 18 70 101.9 .71 18 614 10 35 29.2 .59 10 5	t d b D Wt S t d b D Wt S t d b .80 24 8 18 70 101.9 .71 18 614 10 35 29.2 .59 10 55 .62 24 776 1 54.7 88.4 .46 18 6 1 25.4 24.4 .31 10 456	t d b D Wt S t d b D Wt S t d b D Wt S t d b .80 24 8 18 70 101.9 .71 18 614 10 35 29.2 .59 10 5 .02 24 774 1 54.7 88.4 .46 18 6 1 25.4 24.4 .31 10 456	t d b D Wt S t d b D Wt S t d b D Wt S t d b .80 24 88 18 70 101.9 .71 18 6¼ 10 35 29.2 .59 10 5 .75 24 7¼ 1 54.7 88.4 .46 18 6 1 25.4 24.4 .31 10 4½ .65 24 7¼ 8 7% 8 23.0 16.0 .44 8 4½	t d b D Wt S t d b D Wt S t d b D Wt S t d b .80 24 776 I 54.7 88.4 .46 I8 64 I 25.4 29.2 .59 IO 496 .70 24 776 I 54.7 88.4 .46 I8 6 I 25.4 24.4 .31 IO 496 .60 24 776 I 6 64.2 .55 I 18.4 14.2 .27 8 4 .60 24 776 I 16 60 64.2 .55 I 18.4 14.2 .27 8 4	t d b Wt S t d b D Wt S t d b D Wt S t d b 9 .80 24 775 1 54.7 18 64 16 25.4 31 10 456 6 .75 24 776 1 54.7 18 6 1 25.4 31 10 456 8 .62 24 776 15 60 64.2 .55 15 558 1 18.4 14.2 .27 8 4 9 .50 24 7 1 42.9 .41 15 558 1 18.4 14.2 .27 8 4	t d b D Wt S t d b D Wt S t d b D Wt S t d b .80 24 754 1 54.7 88.4 .46 18 64 1 25.4 29.2 .59 10 55 .62 24 774 1 88.4 .46 18 6 1 25.4 24.4 .31 10 456 .60 24 776 1 1 42.9 68.9 .41 15 55 1 18.4 14.2 .27 8 4 .50 24 7 1 1 42.9 58.9 .41 15 55 1 18.4 14.2 .27 8 4 .50 24 7 7 20.0 12.0 .45 7 37.6	t d b Wt S t d b D Wt S t d b D Wt S t d b .80 24 8 18 70 101.9 .71 18 64 1 25.4 .31 10 456 .75 24 736 1 54.7 88.4 .46 18 6 1 25.4 .31 10 456 .60 24 7 1 45.0 1 16.0 44 8 456 .50 24 7 1 1 42.9 88.9 .41 15 55 1 18.4 14.2 .27 8 4 .50 24 7 1 42.9 88.9 .41 15 55 7 20.0 12.0 45 7 336 .80 20 73 1 15.3 1	t d b Wt S t d b D Wt S t d b .02 24 774 1 54.7 88.4 .46 18 64 1 25.4 .31 10 454 .50 24 774 1 54.7 88.4 .46 18 6 1 25.4 .31 10 454 .50 24 774 1 25.4 .46 18 6 1 1 4 <td>t d b D Wt S t d b D Wt S t d b D Wt S t d b .80 24 775 1 54.7 88.4 .46 18 64 1 25.4 .31 10 45 .70 24 775 1 56.0 15 1 25.4 24.4 .31 10 45 .60 24 776 1 60 64.2 .55 15 1 18.4 14.2 .27 8 4 .60 24 7 1 1 42.9 68.9 .41 15 5 1 18.4 14.2 .27 8 4 .80 20 7 1 1 42.9 68.9 .41 15 7 20.0 12.0 .45 8 4 .80 20 7 <</td>	t d b D Wt S t d b D Wt S t d b D Wt S t d b .80 24 775 1 54.7 88.4 .46 18 64 1 25.4 .31 10 45 .70 24 775 1 56.0 15 1 25.4 24.4 .31 10 45 .60 24 776 1 60 64.2 .55 15 1 18.4 14.2 .27 8 4 .60 24 7 1 1 42.9 68.9 .41 15 5 1 18.4 14.2 .27 8 4 .80 20 7 1 1 42.9 68.9 .41 15 7 20.0 12.0 .45 8 4 .80 20 7 <

Wt

120 105.9 100 90 79.9

7. I

95 85 75 65.4

8=

	Nomenclature	
D = nominal depth in inches.	t = web thickness in inches.	I = American Standa
Wt = weight per foot in pounds.	d = actual depth in inches.	
S = Section modulus.	b = flange width in inches.	
S = Section modulus.	b = flange width in inches.	

TABLE 19. STRUCTURAL STEEL SECTIONS (Continued)

Bethlehem and Carnegie Structural Sections

	v	া অবস্থাক	1
	9	888888888000444 24488 25444	8 56 5444
	g	2 2 2 3 3 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3	8 66 54 4 4 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	*	75. 104. 104. 104. 104. 105. 105. 105. 105. 105. 105. 105. 105	37 32 26 26 26 27 17
			9 4 88 007
	ΣΩ	60.4 52.0 35.0 35.5 31.1 27.4 24.3 20.8 17.0 11.8 11.8 9.9	8 9 9 9 9 9
	Wt		34.3 2 20 20 116.6 116.6 118 8.5
		288 3 3 5 6 7 1 1 2 1 3 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1	
	a	∞ ≯	∞Ω ∞ \
	م	1.06 1436 1236 .90 1376 1235 .75 1336 1236 .62 1236 1236 .58 1236 1236 .59 1236 1236 .47 1236 1236 .43 1236 1236 .43 1236 1236	010 001 88 88 88 88 84 84 84 84 84 84 84 84 84 8
	g	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$.36 12 ½ .37 12 ½ .37 12 ½ .39 12 ½ .27 12 ½ .27 12 ½ .26 12 ½ .28 12 ½ .28 12 ½
		00512846788	22,22,33,34,23,33,33,33,33,33,33,33,33,33,33,33,33,
	20	263.2 222.2 182.5 163.4 144.5 134.7 125.0 1115.7 107.1 97.5	78.1 70.7 70.7 664.7 68.2 51.9 34.1 34.1 25.3 11.5 14.8
		9889141111988	
	W	190 1161 1133 1120 106 99 99 92 72 72 65	58 53 50 50 50 50 50 50 50 50 50 50 50 50 50
	a	24	112 ¥F
3		4403/40440	<u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>
1	q	163 165 165 163 163 164	1577733337777
	q	77. 41. 87 1834 1634, 65.91.77 1814 1655, 98.11.6618 1655, 98.41.41 1714 1634, 11.91.41 1714 1634, 11.91.41 1714 1634, 11.91.41 1714 1634, 11.91.41 1714 1634, 11.91.41 1634, 1635, 13.41 1634, 1635, 13.41 1634, 1635,	492.81.89 1634 1694 397.41.12 1644 16 367.81.00 1648 1558 352.61.00 1578 1558 333.2.08 1534 1534 334.2.08 1534 1534 310.0 89 1552 1558 310.0 89 1552 1558 324.9 381 1558 1558 325.3 78 1558 1558 227.3 78 1558 1558 226.7 78 1548 1552 226.7 68 1454 1552
		87 1 77 1 77 1 86 1 86 1 81 1 81 1 81 1	89 112 113 113 113 113 113 113 113 113 113
	-		M = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Ø	707.4 666.9 608.1 559.4 511.9 465.5	92.8 97.4 97.4 82.8 39.2 24.6 10.0 995.8 410.2
	د د	426 7 398 6 370 6 342 5 314 5 287 4 264 4	220 220 230 231 231 231 231 231 231 231 231 231 231
	Wt		
	D	4.4	¥1. ₩
	Q	14 14 14 14 14 14 14 14 14 14 14 14 14 1	3 16 3 3 3 3 3 3 3 4 4 4 8 14 8 14
		6.66 2434 14136 6.66 2434 14136 7.66 2434 14 1.66 2434 12136 1.66 2434 12136 1.67 2434 12 1.62 2434 13 1.62 2434 13 1.63 2434 13 1.63 2434 13 1.63 2434 13 1.64 23 24 1.64 2	1111
	<i>'8</i>	24.45 24.45 24.45 24.44 24.48 24.48 24.48 25.48 25.48 25.48 26.48	222222222222222222222222222222222222222
	7	99. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	9 22 22 22 43 44
	δ	, 413.5 372.5 330.7 299.1 274.4 248.9 220.9 1196.3	7.2 34.1 34.1 38.0 38.0 38.0 39.9
		· 148882222211	2 317.2. 66 21½ 1356 7 284.1. 69 21¼ 13 2 249.6. 55 21 1 13 1 16.7. 45 21⅓ 9 2 160.0. 50 20⅓ 9 3 150.7. 45 21⅓ 8¾ 8 139.9. 43 21⅙ 8⅓
	W	160 145 130 120 110 110 94 84 76	142 127 112 96 82 73 68 62
	D	24 ★	21 ₩F
	4	1105.1.94.8634.1695 11031.2.88.88945.1695 951.1.84.8945.1695 892.5.80.36.1649 835.5.768756.1649 621.2.778045.1245 647.1.68894.12 647.0.65.89	11.1.8333½1554 40.6.7733½1553 69.6.7133 86.4.6333½1156 46.8.0633¾111½ 04.8.0833½111½
		4 2 4 4 5 4 5 8 8 16 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	511111
	q	388888888888888888888888888888888888888	3333
	+2	48.88.95 25.75 26.68.99 26.68.99	. 83 . 71 . 71 . 63 . 60 . 58
		90112001121	0.00
	Ø	1105.1 1031.2 1031.2 892.5 835.5 663.6 621.2 579.1 541.0	811.1.740.6.669.6.4486.8
	W	300 280 280 260 245 245 230 1194 1182 170 1160	240 220 220 200 152 141 130
ŀ			
	Q	38	\$33

ක න න	4 44
6 6 6 5 7 8 5 7 8	4 44
.316 .256 .315 .245	.28
25.7 2.9 3.9 5.9	5.2 5.45 4.16
	7.4.
25 20 20 118.9 118.5	13
§α . Cc	4D 4H
*****	80 80 80 80 80 80 80 80 80 80 80 80 80 8
8 1038 8 1044 11044 11048 11048 11048 11048 11048	
00002888	10 18 10 18 10 19 10 14 10 18 10 14 10 18 10 18
7511381038 6811481036 681178104 531078104 551095104 461036104 411041078 311091058 311091058	25 10) 22 10) 22 10) 24 10) 24 10) 24 10) 24 10) 23 10 18 97
(
126.3 112.4 99.7 86.1 80.1 73.7 67.1 60.4 54.6	49.1 42.2 35.0 36.8 36.8 36.8 118.8 118.8 110.5
	5
112 100 100 77 72 66 66 49	25 25 25 25 25 25 25 25 25 25 25 25 25 2
10 ¥F	10 ¥
14 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	12 101/8 101/8 100/8 100 88 88 88 88 63/4 63/4
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	14 14 14 14 14 14 14 14 14 14 14 14 14 1
. 06 1434 1434 . 06 1458 1434 . 57 1442 1436 . 54 1438 1436 . 49 1434 1436 . 46 1438 1435 . 42 14	24. 24. 38. 38. 38. 48. 31. 31. 31.
004800	
216.0 202.0 189.4 176.3 163.6 150.6 138.1	130.9 121.1 112.3 103.0 92.2 77.8 77.8 62.7 62.7 64.6 48.5 41.8
136 127 119 111 111 103 95 87	81 47 86 86 81 86 83 84 88 88 88 88 88 88
14 WF	¥. ¥
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
1838 1838 1838 1838 1838 1838 1838 1838	1638 1638 1638 1638 1638 1634 1638 1638 1638
.59 18½ .55 183% .51 183% .47 183% .47 183% .44 18 .40 173% .39 18¾	. 53 1634 . 53 1634 . 53 1634 . 53 1634 . 44 16 . 41 1574 . 38 1634 . 38 1634 . 31 16
H 4 H F 4 O 8 4 O	
220 202 1184 1156 1156 117 117 117 117 117 117 117 117 117 11	168 1151 1157 1115 104 94 80 72 72 64 64
1114 105 96 85 77 70 70 64 65 65	98 88 73 73 74 74 75 76 76 76 76 76 76 76 76 76 76 76 76 76
18 WF	16 *F
2 2222	1438 14 14 14 10 10 10
3038 1518 3038 1518 2938 15 304 1032 304 1033 30 1033 2976 1033	234355
3038 3038 3038 3038 3038 3038 3038 3038	22222
9 .77 303\$ 155\$ 151\$ 11.71 303\$ 155\$ 155\$ 2 .65 297\$ 11.71 303\$ 165\$ 2 .65 297\$ 110\$ 2 .54 297\$ 110\$ 2	8.72 274 1418 5.66 274 1418 9.60 26/8 14 1.67 274 1018 8.52 74 1018
0-01-000	00,10,01,00,00
649.9 586.1 528.2 379.7 354.6 327.9 299.2	492.8 414.5 402.9 299.2 266.3 242.8
210 190 172 132 124 116 108	177 160 145 114 102 94
30 WF	¥27 ¥

NOMBNCLATURE

D = nominal depth in inches.

Wt = weight per foot in pounds.
S = section modulus.
t = web thickness in inches.
d = actual depth in inches.
b = flange width in inches.
B = Bethlehem Steel Co. Section.
C = U. S. Steel Corp. Section.

	*	
	r 1-1	.78 1.11 1.28 1.27 1.60 1.69 1.93 1.92 1.92
2/3/	Area	1.06 1.31 1.56 1.56 2.09 2.56 3.53 3.53 3.61 4.18
1	8 2-2	.25 .40 .59 .59 .73 1.0 1.2 1.4 1.6
	S 1-1	25.50 20.11.0 20.12.0 20.13.0
Ркоректива от Амедев	Size	2)3x2x 14 3)5x2x 14 3)5x3x 14 4x3x 14 4x3x 16 5x3)5x9 5x3)5x9 6x3,5x9 6x4x 36 6x4x 36 6x4x 36 6x4x 36 6x4x 36
Prop	r 3-3	.49 .59 .69 .69 .69 .79 .79 .1.19
	r 1-1	.77 .93 .93 1.09 1.25 1.24 1.24 1.56 1.88
	Area	1.19 1.44 1.78 1.69 2.09 1.94 2.40 3.61 4.36 5.06
	8 1-1	3.5 5.7 7.7 1.1 1.3 2.4 3.5 4.1 4.1 6.1
	Size	295x295x4 3x3x44 3x3x44 3x3x44 34x39x44 4x4x34 4x4x34 4x4x34 4x4x34 6x6x36 6x6x36 6x6x36 6x6x36 6x6x36

r 3-3

r 2-2

TABLE 20. WIRE AND SHEET METAL GAGES IN DECIMALS OF AN INCH*

Name of Gage	United	i States d Gage†	American Steel & Wire Co., and John A. Roebling Sons Co.	American or Brown & Sharpe Wire Gage	New Birming- ham Standard Sheet and Hoop Gage	British Imperial or English Legal Standard Wire Gage	Birming- ham or Stubs Iron Wire Gage	Name of Gage
Prin- cipal Use	Uncoated steel sheets and light plates		Steel wire except music wire	Non- ferrous sheets and wire	Iron and steel sheets and hoops	Wire	Strips, bands, hoops, and wire	Prin- cıpal Use
Gage No.	Weight, lb. per sq. ft.	Approx. Thick- ness, inches	Thickness, inches					
7/0's 6/0's	20.00 18.75	0.4902 .4596	0.4900 .4615	0.5800	0.6666 .625	0.500 .464		7/0's 6/0's
5/0's 4/0's 3/0's 2/0's 0 1 2 3	17.50 16.25 15.00 13.75 12.50 11.25 10.625 10.00 9.375	.4289 .3983 .3676 .3370 .3064 .2757 .2604 .2451 .2298	.4305 .3938 .3625 .3310 .3065 .2830 .2625 .2437 .2253	.5165 .4600 .4096 .3648 .3249 .2893 .2576 .2294 .2043	.5883 .5416 .500 .4452 .3964 .3532 .3147 .2804	.432 .400 .372 .348 .324 .300 .276 .252	0.500 .454 .425 .380 .340 .300 .284 .259	5/0's 4/0's 3/0's 2/0's 0 1 2 3
5 6 7 8 9	8.75 8.125 7.50 6.875 6.25 5.625	.2145 .1991 .1838 .1685 .1532 .1379	.2070 .1920 .1770 .1620 .1483 .1350	.1819 .1620 .1443 .1285 .1144 .1019	.2225 .1981 .1764 .1570 .1398 .1250	.212 .192 .176 .160 .144 .128	.220 .203 .180 .165 .148 .134	5 6 7 8 9
11 12 13 14.	5.00 4.375 3.75 3.125 2.8125	.1225 .1072 .0919 .0766 .0689	.1205 .1055 .0915 .0800 .0720	.0907 .0808 .0720 .0641 .0571	.1113 .0991 .0882 .0785 .0699	.116 .104 .092 .080 .072	.120 .109 .095 .083 .072	11 12 13 14 15
16 17 18 19 20	2.50 2.25 2.00 1.75 1.50	.0613 .0551 .0490 .0429 .0368	.0625 .0540 .0475 .0410 .0348	.0508 .0453 .0403 .0359 .0320	.0625 .0556 .0495 .0440 .0392	.064 .056 .048 .040 .036	.065 .058 .049 .042 .035	16 17 18 19 20

TABLE 20. WIRE AND SHEET METAL GAGES IN DECIMALS OF AN INCH (Continued)*

Name of Gage	United States		American Steel & Wire Co.,‡ and John A. Roebling Sons Co.	American or Brown & Sharpe Wire Gage	New Birming- ham Standard Sheet and Hoop Gage	British Imperial or English Legal Standard Wire Gage	Birming- ham or Stubs Iron Wire Gage	Name of Gage
Prin- cipal Use	Uncoated steel sheets and light plates		Steel wire except music wire	Non- ferrous sheets and wire	Iron and steel sheets and hoops	Wire	Strips, bands, hoops, and wire	Prin- cipal Use
Gage No.	Weight, lb. per sq. ft.	Approx. Thick- ness, inches	Thickness, inches					Gage No.
21	1.375	.0337	.0318	.0285	.0349	.032	.032	21
22	1.25	.0306	.0286	.0253	.0313	.028	.028	22
23	1.125	.0276	.0258	.0226	.0278	.024	.025	23
24	1.00	.0245	.0230	.0201	.0248	.022	.022	24
25	.875	.0214	.0204	.0179	.0220	.020	.020	25
26	.75	.0184	.0181	.0159	.0196	.018	.018	26
27	.6875	.0169	.0173	.0142	.0175	.0164	.016	27
28	.625	.0153	.0162	.0126	.0156	.0148	.014	28
29	. 5625	.0138	.0150	.0113	.0139	.0136	.013	29
30	.50	.0123	.0140	.0100	.0123	.0124	.012	30
31	.4375	.0107	.0132	.0089	.0110	.0116	.010	31
32	.4062	.0100	.0128	.0080	.0098	.0108	.009	32
33	.375	.0092	.0118	.0071	.0087	.0100	.008	33
34	.3438	.0084	.0104	.0063	.0077	.0092	.007	34
35	.3125	.0077	.0095	.0056	.0069	.0084	.005	35
36	.2812	.0069	.0090	.0050	.0061	.0076	.004	36
37	.2656	.0065	.0085	.0045	.0054	.0068		37
38	.25	.0061	.0080	.0040	.0048	.0060	- 1	38
39	.2344	.0057	.0075	.0035	.0043	.0052		39
40	.2188	.0054	.0070	.0031	.0039	.0048		40
	,							

^{*} From American Institute of Steel Construction.

[†] U.S. Standard Gage is officially a weight gage (in ounces per square foot) based on wrought iron at 480 lb. per cu. ft. The values tabulated above give the thickness of steel (at 489.6 lb. per cu. ft.) that will approximate the respective weights. The other gages are officially thickness gages.

Plates, over 6 in. to 48 in. wide, ¼ in. and thicker; over 48 in. wide, ¾ 6 in. and thicker. Sheets, 24 in. to 48 in. wide, under ¼ in. thick; over 48 in. wide, under ¾ 6 in. thick. Strip, 23½ 6 in. and narrower, under ¼ in. thick.

[‡] Formerly Washburn & Moen.

		_	_
~			
H:D	ກກ	PA1	•

REPORT ON STRUCTURAL STEEL—RIVETED OR BOLTED FIELD INSPECTION

)				
	Erected during this period	Erected to date	Plumbed	Riveted	Accepted
Columns					
Beams					
attention to	the following ers have been	:			-
	ases, leveled a				
_	plumbed where called f				
-	uality	-			
Every col	umn splice ha	s been inspec	eted for true b	earing	
	eams on seat g members			1/16 in. maxir	num of face
Remarks	(rejections, co	rrections, etc	3.)	·	

T3.	 	

REPORT ON STRUCTURAL STEEL—RIVETED OR BOLTED SHOP INSPECTION, PART I

Report No.	
Job	Date
Reported to	Where Inspected
Approved drawings used for insp	ection, shop drawings, erection plan,
Steel inspected for: Surface defects, folds, twists, straig	htness
All sections called for on plans Connections agree with details and	
	have full square-milled bearing
shown in contact for seats and rolled	
All skewed connecting angles and pl	lates have been bent hot
Rivets are tight and of correct dian The ends of beams bearing on seat co maximum from the face of column or	onnections will be not more than $^{1}1_{6}$ in.
connections and not more than $\frac{1}{4}$ in.	
	before paintingns or drawings
	taken for analysis
	r after accepting same
No member has been shipped witho	
	column schedule all members accepted
	sure proper alignment and fit, and free- ts between the component parts
Inspector will be able to state in fir	nal report that every member has been
Special requests have been attended	to
Remarks (rejections, corrections, at	tention to warning notes, etc.)
	•

Inspector

Engineer

REPORT ON STRUCTURAL STEEL

Shop Inspection, Part II (For both riveted and welded steel)

	to							
	Required	Being Fabricated	Finished					
Material				Date	R.R.	Car No.	Weights	
							,	
Remarks _								
				In	spector			

Inspector

* Adapted from Haller Engineering Associates, Inc.

WELDING

COMMON WELDING PROCESSES

Figures 22 and 23 indicate common welding processes and the action of the shielded arc electrode. In the electric arc welding process a metal electrode is melted and fuses with contiguous metal surfaces to be joined. The welding heat is obtained from the electric arc formed between the electrode and the parts to be welded. The temperature of the arc is approximately 10,000° F.

In the metal arc process if the direction of flow of current is through ground lead, into work, into electrode, into work lead, and back to machine, the circuit is known as electrode negative (straight polarity). With the electrode positive (reverse polarity) the direction of the flow of current is reversed. In alternating-current welding the direct-current generator is replaced by a transformer. Direct current with electrode positive (reverse polarity) is used for structural work except where deep penetration is required. The type of electrodes affects the polarity, as electrodes can be used only as shown in Table 21, p. 68, on account of the material of the covering.

Fig. 22. Welding processes. From H. Malcolm Priest, Practical Design of Welded Steel Structures, American Welding Society.

Fig. 23. Shielded are electrode. From H. Malcolm Priest, Practical Design of Welded Steel Structures, American Welding Society.

WELDERS' QUALIFICATION TEST USING FILLET WELDS

Take two bars 5 in. by ½ in. by 4 in., and weld as indicated in Fig. 24 in the desired position, that is, flat, horizontal, vertical, or overhead. Turn plates over and break with a blow by a sledge hammer. The weld should break cleanly along the center line, showing a clean cross section of weld material. Visual inspection of the weld and its fracture readily reveals any improper fusion between the weld and base metal or any lack of soundness.

Fig. 24. Test for weld soundness.

66 WELDING

Fig. 25. Welding positions. From H. Malcolm Priest, Practical Design of Welded Steel Structures, American Welding Society.

Fig. 26. Weld characteristics under certain conditions. From Gilbert D. Fish, Arc-Welded Steel Frame Structures, McGraw-Hill Book Company.

WELDS · 67

Desirable fillet weld profiles

Acceptable fillet weld profile

Defective fillet weld profiles

Acceptable butt weld profile

Defective butt weld profiles

Fig. 27. Illustrations of acceptable and defective welds as contained in A.W.S. Code. From Specifications for Design, Fabrication and Erection of Structural Steel for Buildings by Arc and Gas Welding, 1942, American Institute of Steel Construction.

Fig. 28. Fillet weld gages. From H. Malcolm Priest, Practical Design of Welded Steel Structures, American Welding Society.

68 WELDING

Fig. 29. Weld penetration and arc crater. From Gilbert D. Fish, Arc-Welded Steel Frame Structures, McGraw-Hill Book Company.

TABLE 21. ELECTRODES AND THEIR USES (A.W.S. SPEC.)

ELECTRODE CLASSIFI- CATION NUMBER	Capable of Producing Satisfactory Welds in Positions Shown	General Description	Remarks
E6010	F, V, OH, H *	Heavy covering, useful with direct current, electrode positive (reverse polarity) only.	These electrodes, called slow electrodes, are used in both shop and field. They produce a slower weld
E6011	$F,\ V,\ OH,\ H$	Heavy covering, useful with alternating current only.	than E6020 and E6030. The weld pool can be controlled in all posi- tions. E6010 is used
E6012	F, V, OH, H	Heavy covering, usually used with electrode negative (straight polarity), direct or alternating current.	for root pass of flat welds.
E6013	F, V, OH, H	Heavy covering, usually used with alternating current.	

ELECTRODE CLASSIFI- CATION NUMBER	CAPABLE OF PRODUCING SATISFACTORY WELDS IN POSITIONS SHOWN	General Desctripion	Remarks
E6020	F,H fillets	or alternating cur-	are usually used in shop and only in posi- tions indicated as weld pool has to be con-
E6030	F	Heavy covering, usually used with electrode positive (reverse polarity) on direct current, or with alternating current.	

^{*} F = flat; V = vertical; OH = overhead; H = horizontal.

TABLE 22. MAXIMUM SIZE OF ELECTRODES

		Pos			
Type Fillet Butt	Flat 1/4 in. 1/4 in.	Horizontal ⁵ 16 in. ³ 16 in.	Vertical \$\frac{3}{16} in. \$\frac{3}{16} in.	Overhead 3/16 in. 3/16 in.	Note: Maximum size of fillet weld in one pass is $5/6$ in., except that vertical welds can be $1/2$ in.

Electrodes for a single pass fillet weld and for root pass of a multilayer weld shall be of proper size to insure thorough fusion and penetration with freedom from slag incursions, but shall not exceed $\frac{5}{32}$ in. diameter for butt welds, vertical and overhead fillet welds.

Read off electrode container recommended current. Check vs. current being used.

To find current being used, time rate of electrode burn-off, find current from chart on following page.

EXAMPLE. Given 5/32 electrode and burn-off rate of 12 in. in 70 seconds. Enter chart at 70 seconds, proceed across to intersection with 5/32 in. curve, drop vertical to ampere scale, read 150 amperes.

70 WELDING

Chart to determine welding current by rate of electrode melt-off. From Procedure Handbook of Arc Welding—Design and Practice, The Lincoln Electric Company.

CHECK LIST FOR INSPECTORS

WELDING

See also "Check List for Inspectors, Structural Steel," p. 53.

Extra Equipment for Structural Welded Job

Welding gage.

Chipping hammer.

Wire brush.

Protective shield.

Procedure in Inspection

Qualifications of welder. If there is any question as to his qualifications, he should be required to make test pieces for inspector.

Conformity of electrodes to specifications or correct usage. See p. 68. For current actually used, see above chart.

Condition and capacity of welding equipment.

Quality of welds for overlap, color, porosity, slag inclusions, undercutting, uniformity, and workmanlike appearance.

Fitting up of members for tightness. In fillet welds when the gap exceeds 1/16 in., size of weld should be increased.

Sequence of welding in order to minimize residual stresses.

Condition of any tack welds which are to be fused with final welds. If any of these are not satisfactory, they should be removed.

Cleanliness of work, as good welds cannot be made on dirt, rust, or slag. In a multiple pass weld, slag must be chipped and wire brushed to shiny surface before next pass is made.

Weather conditions, as welding should not be done in temperature less than 0° F., or when surfaces are wet from condensation, rain, snow, or ice. Welder should be properly protected from wind. At temperatures between 0° F. and 32° F., surfaces must be heated. Material 1½ in. thick or over should be 70° F. minimum.

Conformity to approved plans for the following details:

Cross-sectional size, length, location, and omission. They should not be increased arbitrarily as longer welds sometimes introduce more restraint than calculated.

Operator at work at frequent intervals. If welding is not being properly done, he should be corrected. An experienced welder knows when he is making a good weld. He also knows whether equipment is working properly and will tell you.

IDENTIFICATION OF IRON AND STEEL

	White Cast Iron *	GRAY CAST IRON	Malleable † Iron	
Fracture	Very fine silvery white silky crystal- line formation	Dark gray	Dark gray	
Unfinished surface	Evidence of sand mold; dull gray	Evidence of sand mold; very dull gray	Evidence of sand mold; dull gray	
Newly machined Rarely machined		Fairly smooth; light gray	Smooth surface; light gray	
	WROUGHT IRON	Low-Carbon Steel and Cast Steel	High-Carbon Steel	
Fracture	Bright gray	Bright gray	Very light gray	
Unfinished surface	Light gray smooth	Dary gray; forging marks may be no- ticeable; cast—evi- dences of mold	Dark gray; rolling or forging lines may be noticeable	
Newly machined	Very smooth surface; light gray	Very smooth; bright gray	Very smooth; bright gray	

^{*} Very seldom used commercially.

[†] Malleable iron should always be bronze-welded.

 Engineer	

REPORT ON STRUCTURAL STEEL-WELDED

FIELD INSPECTION

Project Date Welding permit No Report No							
Welding contra							
Description of							
	Erected during this Period	Erected to Date	Plumbed	Welded	Accepted		
Columns							
Beams							
Weather and	or riveted temperature _ inst approved t						
Machines	S	lizes	Po	olarity			
	No. c						
	ployed: horizon	ntal		vertic	al		
All welders'	qualifications c	hecked	A	uthority _			
Has every we	elder marked j	oint with inc	dex number?				
Has inspector	r kept complet	e record of	welding?				
Has every we	eld been checke	ed for size?	777 1	_ Length? _			
Location?	Qua	lity?	Work	manship? _			
Number of it		welded:		ptea:			
Reasons for	rejections and			correction	of defective		
welds, and nam							
<u> </u>							
							

^{*} See p. 68.

Inspector has marked on plans all joints accepted including column splices using separate prints where plans cover two or more tiers
Before welding was the steel properly cleaned, and free from corrosion, water, oil, scale, dirt, paint, etc.?
Were proper methods employed when setting up the work to insure tight fit without displacement of component parts after welding, together with full penetration of the weld metal to the root of the joints?
Was inspector in full attendance at all times while welds or fusion was being made in the passing of metal from the electrode to the base metal?
Was each completed weld carefully examined for defects and irregularities such as: undercutting, overlaps, lack of fusion at edges, lack of penetration, place cracks adjacent to or behind weld, water cracks and cracks in weld metal, slag inclusions?
Remarks
Joints welded and accepted
Inspector has marked every weld group after accepting them.
Inspector

Engineer

REPORT ON STRUCTURAL STEEL—WELDED Shop Inspection, Part I (See p. 62 for Part II.)

Report No Date Date
Reported to Where inspected
Approved drawings used for inspection, shop drawings, erection plant joint details
Steel inspected for surface defects, fold, twists, straightnessAll sections are as called for on plans
Connections agree with details and for correct locationsAll members requiring bearing ends have full square-milled bearing
Stiffeners are full in contact at both ends for plate girders and at the end shown in contact for seats and rolled sections
All skewed connecting angles and plates have been bent hot
The ends of beams bearing on seat connections will be not more than ¹ / ₁₀ in. maximum from the face of column or supporting member
Painting is according to specifications or drawings Sample of shop coat paint taken for analysis Inspector has marked every member after accepting same No member has been shipped without inspector's mark except
Inspector has marked on plans and column schedule all members accepted
Inspector will be able to state in final report that every member has been covered
Every weld inspected for sizelength
location and quality Every welder has marked every weld group for identification All welders' qualifications checked Authority Number of welders Names
Make and capacity of machines Kind of current Make, grade, style No., and size of electrodes
Special requests have been attended to

Inspector

BRIDGES

Reports When under Construction

Structural steel see pp. 60 to 63.

Concrete see pp. 43 to 48.

Piles see p. 88. Timber see p. 96.

Other items

Field Data Required for Rating Existing Bridges if Plans Not Available

Sizes of all members.

All span and panel point dimensions.

Sketches of all joints including dimensions and sizes of bolts, rivets, pins, connection angles, washers, etc.

Data for dead-load computations such as material and thickness of floor construction.

Live loads from using railroad or proper highway department.

INSPECTION OF EXISTING BRIDGES *

Waterway. First show the area of the structure in square feet in the space provided.

Conditions in the streambed should be noted as to (1) adequacy of channel afforded by the existing structure; (2) probability of scour that may endanger the footings; and (3) presence of obstructions, such as drift logs, stumps, or old piers, that may be diverting the current so as to cause undermining of the footings. Also note any undergrowth or obstructions that can be removed to increase the adequacy of the waterway or to lessen the fire hazard of timber structures. Lastly, note whether stream-bank protection is necessary to keep the channel properly confined and thus to avoid endangering the bridge foundations or the end fills. Also note if there are any indications of unusual corrosiveness at the site.

Piers and Abutments. The type and material used should be listed.

Timber Piles. Piles supporting timber bridges should be inspected carefully at the ground line, where decay first sets in. A ¾-in. hexagonal steel bar about 4 ft. long, with one end sharpened to a long tapering point and the other end provided with a chisel face, is a very useful tool in such examinations. It can be jabbed into a pile to disclose deterioration not apparent on the surface and to determine the extent of sap rot. Piles in which the diameter of sound material has been reduced to 6 in. or less should be marked with vellow keel for replacement.

^{*} From Toncan Culvert Manuf. Assoc.

10 ይደነ በርፑን

Steel Tubular Piers. Steel tubular piers should be carefully examined for corrosion in rivets or bolt heads connecting the cylindrical sections. (The filling material in such steel cylinders is usually inferior and without strength in itself.) Also note whether there has been appreciable movement of the tubes due to impact of heavy loads on the structure; if so, additional footings or bracing may be needed. Note whether the steel tubes are out of plumb and if so whether this is due to undermining, to lack of proper bracing, or to inadequate support below. Examine base of tubes for exposed piling caused by scour.

Concrete Substructures. The pier shafts should be examined for damage from drift or ice. Examine exposed footings for rock pockets due to improper placement of concrete. Note extent of any undermining. Look for cracks, and note whether they are caused by unequal settlement, contraction, or fill pressure. Check abutments and adequacy of wing walls. Recommend placement of riprap and rock slope protection where necessary.

Concrete Structures

Culverts. Examine barrel and wing walls of culverts to find any harmful cracks due to settlement that should be grouted to prevent deterioration of the reinforcing steel. Also examine floor of barrel to note any upheaval which may cause failure of side walls due to excessive fill pressure; especially note this in culverts under high fills.

Beam-and-Slab Spans. Note condition of railing for damage by collision; sight alignment of railing for indication of settlement of the structure. On heavily traveled roads, the handrail should be kept clean in order to provide proper visibility for night driving and, if conditions warrant, should be painted with a cement wash coat. Examine beams for cracks that may be due to clogged expansion joints, settlement, or fill pressure at either end of bridge. Note any surface checking in deck, railing, curbs, or sidewalks that may allow water to seep in and cause disintegration by freezing action.

Steel Structures

On steel trusses note first the general alignment of the span to see whether the end posts and top chords are straight and in line. Any buckling indicates that the structure has been overloaded. Especially note this for light construction. Kinks in any one member may have been caused by damage in shipment, in erection, or by collision; the inspector should satisfy himself that any such kinks are not due to overstress.

For all pin-connected trusses, note whether eyebars in the same member are taking equal tension. Overloading or lack of proper camber adjustment may cause one eyebar to take all the stress, leaving the others loose on the pin. Especially note this for the diagonal and hip vertical members. Observe the structure under heavy loading, and note whether there is any excessive deflection or bowing in or out of the diagonal eyebar members which would indicate lack of proper counterbracing. Note condition of end shoes and rollers to see whether proper expansion is being provided for and whether the rollers are free to move.

Timber Structures

Timber Trusses. In inspecting a timber truss, first see if it has any noticeable sag. If sag is present note whether it is due to failure of splices, improper adjustment of vertical rods, or crushing of diagonal members. Examine all splices for splitting or cracking of the shear tables. Sound the rods with a hammer to note whether each is carrying the same amount of tension, and examine condition of caps and ends of diagonal members for signs of crushing. If the structure is very old, it will be advisable to use a ¾-in. auger bit to test out the center of the top and bottom chord members for heart rot at all panel points and splices; the floor beams at contact with bottom chords should also be bored. Decay will be found first at contact points and where rods go through timber members.

Other points to check on covered trusses will be the condition of the roof and housing. Be sure to examine truss bearings over the pier caps and the condition of caps over pier piling for crushing, and bore with auger bit where there is any doubt as to their soundness. Note whether all bolts through splices, packing blocks, and cross bracing are tight and in good order. The substructure of timber trestles should be examined as directed under "Piers and Abutments." Caps should be examined for any crushing over the posts or piling. Decay will always be found first at bearing contacts, and a testing bar or auger bit should be used on all doubtful timbers. A thorough boring test must be made on all timbers that have been in place more than 6 years.

Note condition of bulkheads at each end of the bridge for decay, height, and proper retention of approach fill. Check sway and longitudinal bracing to note whether any members are broken or decayed and whether additional bracing is required. In examining the superstructure, first go under the bridge, examine each span, and note (1) whether stringers are crushing, cracking, or splitting, (2) whether they have full bearing over the caps, and (3) whether bridging between stringers is in place. Note condition of under side of decking, and see whether all bolts are properly tightened or have become loose due to shrinkage of timbers.

Second, examine deck and handrail from roadway. Especially on high bridges, sound handrail posts with testing bar at contact with felloe guard, stringers, and railing to see that members are not badly decayed. Handrail should be kept painted for protection against decay and to provide visibility for night traffic; all decayed members must be replaced. Timber handrails require repainting about every 3 years.

78 BRIDGES

FIELD DATA FOR NEW SMALL BRIDGES

The following bridge inspection report on p. 80 is devoted to data that should be gathered in the field for the replacement of an existing small bridge with a new structure. All data requested in the heading is self-explanatory; however, it should be emphasized that, if the existing structure is noticeably too small or too large, then the area to be drained, expressed as drainage area in acres, should be as accurate as possible. Likewise, the correct value for c should be shown for use in the Talbot formula.

Fill in the data requested for the respective type; however, if a decision as to proper selection has not been made, it is advisable to list the data for both pipe and arches since very little extra time will be required to develop the additional information.

It is important that the profile of the stream bed and road and location sketch be as accurate as possible. Be sure to indicate on the location sketch any suggested desired change in location for the new structure.

Bridge No.	Route No			_ 1	Miles from		Toward
Bridge over		Туре		_	Date bu	ilt.	
							arance
	0, H-15, or H-20	Appı	oaches	_	Date ins	pec	eted
	0, H-15, or H-20 0-S16 or H 15-S12						
	1		OBSERVATION	B			
Waterway Area sq. ft.	Piers and Abutme		Concrete Struc tures and Floor		Steel Construction Type		Timber Spans and Floors
Adequacy Scour Districtions Undergrowth Channel shifting Revetments Other features	Undermining Settlement Cracking Disintegration Decay (lumber) Corrosion (steel) Other defects Piling foundations	?	Cracking Scaling Scour Settlement Disintegration Waterproofing Other defects		Condition of paint Corrosion Joints Loose rivets Camber End shoes Other defects Wear	_	Condition of paint Decay Wear (floors) Structural defects† Crushing at joints Splices Camber Other defects
For items needing e		th ci	rcle with a numb	er i	nserted to refer to c		cate "OK" or "Non- sponding remark list
			REWARKS				·
(Use second sheet of concrete whenev		not	sufficient; also, li	st c	auses of all defects s	ıch	as cracking and scal

RECOMMENDATIONS

(Furnish data on p. 80 when total replacement is recommended)

Item -	Estimated Cost			
tem	Maintenance	Improvements		

Note. List under maintenance and "Recommendations" all necessary channel clearing, revetments, bank protection, channel changes, stream-bed pavements, riprap work, underpinning or other foundation protection shoulder and slope protection, repairs to concrete work, painting, waterproofing, preservative treatments, repairs to roadway surfaces, repairs and renewals to timber and piling, and all other maintenance and repair work of whatever nature.

T	
Inspector	

^{*} From Toncan Culvert Manuf. Assoc.

[†] Under "Structural defects" note any tendency to warp, split, crack, etc.

FIELD DATA FOR NEW STRUCTURE *

Location		Width of roadway between outside of rails					
	Dame-Tien						
or shoulders Acres Talbot formula factor $c =$							
	Distance between stream bed and roadway						
Slone of emban	tmant	Type recommended					
biope of emban	Kineni	Pipe—Arch					
	Α	ATA FOR PIPE STRUCTURE					
Waterway area	required	sq. ft. Live load					
		of pipes Diameter					
Slope or skew _		Center line length					
Headwalls or ri	prap	Type of material in stream bed					
		_ Slope of stream					
	Additional Da	ATA FOR ARCH STRUCTURE					
Waterway area	required	sq. ft. Live load					
Cover over arch	n No	sq. ft. Live load					
Rise		Slope or skew					
	rth	Head walls or riprap					
Bearing power	of soil	Head walls or riprap Type of material in stream bed					
Recommended	material for abuta	nents, piers, and walls					
		low stream bed					
Elopo or suround		,,					
E Profile of stream	and road						
F+++++++++++++							
ENote. Indicate no	ormal and flood level of	f stream.					
Flanting sketch	ormal and flood level of						
ELOCUTION SKETCH							
Show angle of sk	ew of structure with	centerline of roadway.					
E SHOW dright of Sk	En or Structure Will	Corner in to 01 7 Oudway.					

Inspector

^{*} From Toncan Culvert Manuf. Assoc.

PAINTING

CHECK LIST FOR INSPECTORS

TREATMENT OF SURFACES FOR PAINTING

General Conditions

All surfaces to be painted shall be thoroughly dry.

No exterior painting to be done in rainy, damp, or frosty weather.

Permit no interior painting until surfaces have become thoroughly dry. (By artificial heating if necessary.)

Allow no painting on metal surfaces to be welded. If such surfaces have been painted, paint is to be removed.

All surfaces must be of material in compliance with specifications. Surfaces must be checked for shop coat where called for in specifications.

Surface Preparation

Metal Surfaces. Remove dirt and mud by brushing and/or washing. Remove grease and oil with benzine, naphtha, or turpentine.

Rust and scale to be removed with wire brush, steel scraper, or sand blasting.

Mill scale to be removed by burning.

Old paint to be removed by burning, scraping or paint remover.

Before painting over prime coat, check and reprime where necessary.

Before priming new galvanized metal wash with copper sulfate solution to remove grease and chemicals.

Before hot asphaltic applications, heat metal.

Where phosphoric acid treatment is specified, immerse material in caustic soda solution at 200° F. to remove grease and oils; rinse in hot water; immerse in 5% sulfuric acid pickle, then rinse in hot water.

Wood Surfaces. Remove dirt and dust with brush and rag.

Stop out all knots and sap streaks with shellac.

Putty nail holes, cracks, and other depressions after primer coat has thoroughly dried. Tint putty to match finish.

Old paint to be removed by sanding, wire brushing, scraping, or burning. Floors to be sanded or scraped.

Open-grained woods to be varnished to be given first an application of wood paste filler thinned with turpentine.

Masonry Surfaces. Dust, dirt, and excess material to be removed with stiff bristle or wire brush.

Remove salts from brickwork with zinc sulfate water solution, and brush off surface when dry.

All masonry surfaces to be allowed thorough period for curing.

Porous block to be primed with casein paste or resin sealer.

Cement floors to be prepared by acid etching with muriatic acid to

improve adhesion; acid to be washed off and floor dried before painting. Stucco and concrete to be cleaned with stiff fiber brush; traces of oil

Stucco and concrete to be cleaned with stiff fiber brush; traces of oil to be removed with abrasive stone or, if general, by light sand blasting. Sealer to be added to the paint.

Smooth dense concrete surfaces to be roughened by light sand blasting, muriatic acid etching, or rubbing with abrasive stone to improve adhesion.

Where cement paints are used on exterior concrete the surface to be dampened before application.

Plaster Surfaces. Allow 30 days for drying before painting.

Apply prime coat of sealer to clean dry surface.

Check prime coat for fading caused by hot spots (incomplete mixing of hydrated lime) and suction spots (thin spots and inadequate troweling).

FOUNDATIONS ON SOIL

Method of conducting a load test, N. Y. City code. See also Fig. 30, p. 83.

Procedure. Apply sufficient load uniformly on platform to produce a center load of four times the proposed "design load per square foot."

Center load equals load of platform times $\frac{b}{a+b}$.

Read settlement every 24 hours until no settlement occurs in 24 hours.

Add 50% more load and read settlement every 24 hours until no settlement occurs in 24 hours.

Settlement under proposed load should not show more than $\frac{3}{4}$ in., or increment of settlement under 50% overload should not exceed 60% of settlement under proposed load.

If the above limitations are not met, repeat test with reduced load.

TABLE 23. PRESUMPTIVE BEARING CAPACITY OF SOILS

	CAPACITY IN TONS
MATERIAL	PER SQ. FT.
Hard sound rock	40
Medium hard rock	25
Hard pan overlaying rock	10
Soft rock	8
Gravel	6
Coarse sand	4
Fine dry sand	3
Hard dry sand	3
Sand and clay, mixed or in layer	s 2
Firm clay	2
Fine and wet sand (confined)	2
Soft clay	1

Fig. 30. Load test on soil.

CHECK LIST FOR INSPECTORS

FOUNDATIONS

Inspector should determine from plans the type of soil on which the foundation design is based and check against actual conditions.

Shallow pipe borings under each footing should be made if there is a question about the underlying soils.

If there is any question in regard to soil bearing capacity, inspector should notify engineer, who may according to his judgment revise size of footings or require footings to be carried deeper. Soil test may be required.

Keep footings clear of water when concrete is poured.

Soil to be original strata and below loam or vegetation.

Bottom elevation of footing to be at least the elevation called for on plan. If necessary, owing to soil condition, elevation may be lowered for suitable bearing.

Keep record of actual elevation of footings installed.

Check slope between footings when elevations differ from plans or when determined in field. This slope should not be more than 2 horizontal to 1 vertical for compact soils but should be fixed by the engineer.

Conditions which may require sheeting where impossible to keep minimum slope should be watched.

Possible undermining of existing foundations should be checked.

Footings should be of size shown on plans.

Concrete for footing. See "Instructions to Inspectors, Concrete."

PILE DRIVING

CHECK LIST FOR INSPECTORS AND DATA

PILE DRIVING

Procedure in Inspection

Inspector should first determine from specifications the type of pile to be used, should familiarize himself with specifications, and should have approved drawings for his use in field.

Condition of pile or pile shells before driving.

Type of pile driver and size. Weight of striking part or ram and stroke.

Plumbing of pile or mandrel before driving.

Lateral tolerance of pile. Limit 3 in. from horizontal location.

Plumbness of pile. Limit 2% of pile length.

Pile shell just before concrete is poured with light for: buckling of shell, puncture of shell, water, ice, and snow.

Buckling of cast-in-place pile when another pile is being driven close. This can be detected by watching the concrete rise in shell. If concrete rises to any extent, pile should be replaced.

Heaving of pile when another pile is being driven close. This can be noticed by watching to see if the shell is being lifted out of ground. Condition may be relieved by driving an occasional open-end pipe pile.

Check concrete mix from specifications or drawings.

Protection of concrete against freezing.

Pile caps not laid on frozen ground.

Proper cutoff.

Injury to wood piles. Crushing or brooming of pile head or, in precast concrete piles, the cracking or disintegrating of concrete makes it impossible to drive piles properly as this dissipates the energy of the blow of hammer.

Possible telescoping or crushing of the middle of wooden piles as indicated by sudden loss of resistance.

Possible deflection of the foot of pile. This happens when pile hits a slanting surface of rock and then drives easier as result of the splitting or sliding of the bottom.

Driving Control. Check length of piles and blows per inch. Calculate required safe load on each pile as follows:

For drop hammer $P = \frac{2WH}{S+1}$; for single-acting steam hammer, P =

 $\frac{2WH}{S+0.1}$. The reason for the difference in the formulas is the extra speed

of the steam hammer, which affects consolidation time between blows. Both are gravity-type hammers.

P= safe load in pounds; W= weight of striking part in pounds; H= height of fall in feet or stroke in feet; S= average penetration in inches under last 5 blows.

Examples. Given W = 2000 lb., H = 15 ft. 0 in., S = 0.5 in. Required P using drop hammer

$$P = \frac{2 \times 2000 \times 15}{0.5 + 1} = 40,000 \text{ lb.}$$

Given W = 5000 lb., H = 3 ft. 0 in., S = 0.4 in. Required P using single-acting steam hammer

$$P = \frac{2 \times 5000 \times 3}{0.4 + 0.1} = 60,000 \text{ lb.}$$

TABLE 24. BEARING POWER OF PILES IN THOUSANDS OF POUNDS DRIVEN WITH SINGLE-ACTING STEAM PILE HAMMERS AS PER FORMULA GIVEN IN TEXT

	Weight											
	OF	LENGTH										
Size	STRIKING	OF		PEN	מיחים:	יתונים	מימוסו זי	Br.	יז זמר	J TNI	CHES	
OF	PART IN	STROKE	_	1 151	151162	11101	V 1 121				JII 11 15 15 15 15 15 15 15 15 15 15 15 15	_
Hammer	Pounds	in Feet	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
2	3000	2.42	73	48	36	29	24	20	18	16	14	13
1	5000	3.00	150	100	75	60	50	43	37	33	30	27
0	7500	3.25	244	162	122	97	81	69	60	54	48	44
\mathbf{OR}	9300	3.25	302	202	152	121	101	86	75	67	60	55

Safe load for piles driven by double-acting steam pile hammer though usually prohibited in specifications for friction piles may be checked by the following manufacturer's data:

Bearing Power of Piles Driven with McKiernan-Terry Pile Hammers.

By the Engineering News formula, $P=\frac{2E}{S+0.1}$, where P= safe load in pounds; E= energy or foot-pounds per blow (see Table 25); S= average penetration in inches for last 5 blows. The assumed safety factor of this formula is 6. E is computed from indicator diagram tests rather than from steam pressure.

TABLE 25. VALUES OF E FOR McKIERNAN-TERRY PILE HAMMERS

Size		OW AT GIVEN PER MINUTE	Size	FT-LB. BLOW AT GIVEN STROKES PER MINUTE			
OF	Strokes	Ft-Lb. per	OF	Strokes	Ft-Lb. per		
Hammer	per Min.	Blow = E	Hammer	per Min.	Blow = E		
7	225	4,150	9B2	100	3,700		
	195	3,720		105	4,200		
	170	3,280		110	4,750		
				115	5,350		
9B3	145	8,750		120	5,940		
	140	8,100		130	7,000		
	135	7,500		140	8,200		
	130	6,800					
			10B2	100	10,700		
10B3	105	13,100		105	12,000		
	100	12,000		110	13,500		
	95	10,900		115	15,000		
	90	9,550					
			11B2	100	15,600		
11 B 3	95	19,150		105	17,250		
	90	18,300		110	18,900		
	85	17,500		115	20,500		
	80	16,700		120	22,000		

TABLE 26. BEARING POWER OF PILES IN THOUSANDS OF POUNDS USING MAXIMUM E

PENETRA	- ,						
TION PER				Size of H	AMMER		
INCHES	7	9B3	10B3	11 B 3	9B2	10B2	11B2
0.1	41.5	87.5	131.0	191.5	82.0	150.0	220.8
0.2	27.6	58.3	87.3	127.6	54.6	100.0	147.2
0.3	20.7	43.7	65.5	95.7	41.0	75.0	110.4
0.4	16.6	35.0	52.4	76.6	32.8	60.0	88.3
0.5	13.8	29.1	43.6	63.8	27.3	50.0	73.6
0.6	11.8	25.0	37.4	54.7	23.4	42.9	63.2
0.7	10.3	21.8	32.7	47.8	20.5	37.5	55.3
0.8	9.2	19.4	29.1	42.5	18.2	33.3	49.1
0.9	8.3	17.5	26.2	38.3	16.4	30.0	44.1
1.0	7.5	15.9	23.8	34.8	14.9	27.3	40.1

Comments. The field engineer's checking criterion is the number of strokes per minute, rather than the steam pressure, and also penetration. If steam pressure falls off, the number of blows per minute cannot be delivered and the penetration falls off.

Load Tests

Conduct as follows. A suitable balanced platform shall be built on top of pile which has been in place for at least 2 days. If it is a concrete pile, the concrete should be thoroughly hardened. Place initial load equal to the proposed pile load using heavy material such as pig iron. Increase this load 25% after 12 hours, and 25% after 24 hours, thus the total load is 150% of proposed load.

Allow final load to remain at least 48 hours. Take readings before and after placing of each load and 12 and 24 hours after placing final load.

The total net settlement deducting rebound after removing load should not be more than 0.01 in. per ton of total test load.

on n	

REPORT ON PILE DRIVING

FIELD INSPECTION

Report	No							
Job						Da	te	
Reporte	d to _		····					
Hamme	r data							
Foot- ing No.	Pile No.	Pene- tration	No. Blows Last In.	No. Strokes per Min.	Bearing Capacity	_	Re- jected	Re- marks
,								
		•						
		•						
See fie	eld dra	wing No.		for field	ocation of	piles in t	his repor	t

Inspector

TIMBER

WOOD JOISTS—NET SECTION TABLE 27. SECTION MODULI = $bd^2/6$

80	143	209	289	380	485	802
Actual Size	× 93,	10 × 12 91/2 × 111/3	10 × 14 915 × 1815	10 × 16 913 × 15 35	× 17 ½	× 1915
	1932	916	1 9 3 5	3972	3973	9972
Nom. Size	10 × 10	10 × 13	10 × 1.	10 × 10	10 × 18	10 × 20
Ø	70.3	113	1		300	383
Actual Size	\times 4 196 \times 3956 3 3.66 3 \times 4 236 \times 356 5.76 4 \times 4 395 \times 395 7.94 6 \times 6 532 \times 534 27.7 8 \times 8 735 \times 775 70.3 10 \times 10 935 \times 935 143	$8.573 \times 6296 \times 59613.8 \ 4 \times 6396 \times 596 \ 19.1 \ 6 \times 859.7 \times 79.5 \ 51.68 \times 1079.5 \times 99.2113$	× 8 156 × 71/2 15.3 3 × 8 256 × 71/2 24.6 4 × 8 856 × 71/5 34.0 6 × 10 51/2 × 91/3 82.7 8 × 12 71/5 × 111/2 165	X 10 156 X 912 24.4 3 X 10 256 X 912 39.5 4 X 10 356 X 912 54.5 6 X 12 512 X 1111 121 8 X 14 713 X 1315 228	8 × 16 7½ × 15½ 800 10 × 18 9½ × 17½	$\times 14 \ 198 \times 1314 \ 49.4 \ 3 \times 14 \ 296 \times 1315 \ 79.7 \ 4 \times 14 \ 396 \times 1315 \ 110.0 \ 6 \times 16 \ 512 \times 1515 \ 220 \ 8 \times 18715 \times 1713 \ 383 \ 10 \times 20 \ 915 \times 1915 \ 2010 \ 2010 \times 1010 \$
Nom. Size	00 X 00	8 × 10	8 × 12	8 × 14	8 × 16	8 × 18
Ø	27.7	51.6	82.7	121	167	220
Actual Size	× 5½	× 73/2	× 91,	× 1135	× 13½	× 1535
	6534	8 5 1/2	10 5 3 5	12 5 15	14 5 3 5	16 51/2
Nom. Size	X 9	8 X	× 9	×	, X	X 9
ß	7.94	19.1	34.0	54.5	79.9	110.0
Actual Size	58 × 35%	56 × 556	198 × 735	548 × 84:	68 × 1115	68 × 1335
Nom. Size	4 × 4	4 × 63	4 × 83	4 × 10 3	4 × 12 3	4 × 14 3
83	5.75	13.8	24.6	39.5	67.9	79.7
Actual Size	58 × 358	38 × 598	%× 7½	58 × 915	× 12 198 × 1114 35.8 8 × 12 258 × 1114 57.9 4 × 12 358 × 1115 79.9 6 × 14 515 × 1814 167	% × 131/3
Nom. Size	3 × 42	3 × 62	3 X 8	3 × 10 2	8 × 12 2	3 × 14 2
Ø	3.56		15.3	24.4	35.8	49.4
Actual Size	1 × 358	1 × 558	1 × 7 1/2	5 X 9 9 5	\$ × 11 1/5	6 × 13 ½
Nom. A	× 4 156	× 6 158 × 558	× 8 15%	× 10 154	× 12 154	× 14 194

OU IIIIDET

HARDWOODS-RED OAK

Transverse Section

Radial Section

Tangential Section

This illustration is representative of the oaks, which are all very strong and suitable for the manufacture of anything from piles to furniture. The wood is very heavy, the white oak is the most resistant to decay.

HARDWOODS-MAPLE

Transverse Section

Radial Section

Tangential Section

This illustration is representative of the maples, an excellent flooring and furniture material but not used very much as structural timber.

CHECK LIST FOR INSPECTORS

WOOD AND TIMBER CONSTRUCTION

Inspectors' Equipment

Complete set of final structural plans, specifications, and approved shop details.

Copy of rules for stress grade of lumber.

6-foot rule.

Plumb bob.

Moisture meter.

Procedure in Inspection

Grade of lumber checked. Material should be stamped with grade shown on plans or called for in specifications. The inspector should familiarize himself with rules for grading of lumber to be used so that he may check grading if from appearance it looks incorrect.

Selection of already graded lumber checked. Select beams so as to avoid slope of grain in lower third of beam steeper than 1:20. Slope of grain in tension member of truss not to be steeper than 1:20. Avoid knots in lower edge of beams. By utilizing elsewhere or inverting pieces which do not conform, these results should be attained without waste.

Imperfections that may have occurred after grading, such as broken fibers due to transportation, decay, and moisture content, which should not be more than 20%, to be checked. Moisture content may be checked with moisture meter if available; otherwise inspector will have to accept manufacturer's certificate of moisture at time of grading plus visual inspection.

Increased checks, loose knots, and warping due to unsatisfactory seasoning watched.

Sizes, lengths and spacing of all members checked.

Bearing and anchorage of beam, girder, or joists on masonry checked.

Plumbing, base, cap, and splice details of columns, especially checking bearing at ends, checked.

All special details shown on plans carefully followed.

Correct fabrication of built-up member such as laminated members and trusses. All members with bolts and ring connectors should be fabricated with standard tools and strictly according to instructions furnished by manufacturer of same.

Drilling and grooving of ring connector members. Any material that is incorrectly drilled or grooved must be rejected as it is impossible to correct it.

Tightness of bolts in bolted or connected work. These should be tightened up so hard that washer makes a slight impression in wood surface but not so as to tear fibers. After construction until seasoning, bolts should be given a periodical inspection for tightness and at the same time timber should be inspected for further checking. This particularly applies to ring connectors or keyed work as ring or key tends to rotate as bolts loosen.

Alignment, bearing, or connection of trusses after erection. They should be straight and in a vertical position, and bearing or connection in accordance with plans.

Gluing of glued laminated members. This is usually done in a shop with proper facilities. Inspector should check to see that specifications are followed exactly with special attention to the following: type and quality of glue, mixing of glue, amount of glue used, method of applying, moisture content of lumber, curing of members, and temperatures of manufacturing space. In field watch for tendency of laminations to separate.

Retouching of cut, preserved members, see specifications.

3	•	
Hin	gineer	

REPORT ON WOOD PRESERVATION *

PLANT INSPECTION

Report for								
Material								
Project								
Producer								
Contractor				Specs				
Treatment No.				Report No			Date	
Charge No.				Preservati	ve			
Board feet				Treatment	specified		Process	
Lineal feet				Net retent	ion			
Cubic feet				Condition	of			
Steam		. hours	at	pounds ma	ximum press	ure	°F. maximun	n temperature
Vacuum		hours	at	inches max	imum pressu	re	°F. minimum	temperature
Air								
Preservative		hours	at	pounds ma	ximum press	ure	°F. average	temperature
Vacuum		hours	at	inches max	dmum mercu	ту	°F. minimum	temperature
Special operation	n							
Penetration				Specific gra	vity or prese	rvative		
No. Pieces	Size			Length	Total	Treated		Total to Date
Remarks:								
The above pre	eservat	ive and	trea	tment fulfil	ls the specific	ation.		
						Inspe	ctor	

^{*} Adapted from Haller Engineering Associates, Inc.

ROPES AND CABLE—STRENGTHS

WEIGHT AND STRENGTH OF MANILA AND SISAL ROPE *

Safe Working Strains, lb.	96 216 424 424 864 1,440 2,960 4,960
Ultimate Breaking Strength of Sisal Rop (Min. Government Allowance), Ib.	480 1,080 2,120 4,320 7,200 14,800 24,800
Safe Working Strains, lb.	120 270 270 530 1,080 1,800 3,700 6,200
Ultimate Breaking Strength of Manila Rope (Min. Govern- ment Allowance), lb.	600 1.350 2,650 5,400 18,500 31,000
Approx. Feet per Lb.	50.0 24.4 13.3 6.00 8.71 1.67
Circumference, in.	0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Diameter, in.	1,%/1%/4 72

^{*} Adapted from American Manufacturing Company.

WIRE ROPE 6 x 19 STANDARD HOISTING-PLOW STEEL *

Diameter, in.	23/4	21/4	2	178	134 158 132 138 134 138	15%	13%	13%	11/4	11/8	-	8/2	3.	8/8/	916	916 12	7/16	, '30
Breaking strength, tons of 2000 lb.	254.0	174.0	254.0 174.0 139.0 123.0	123.0	108.0 93.4	93.4	80.0 67.5	67.5	56.2	45.7	56.2 45.7 36.4 28.0 20.7 14.5 11.8 9.35 7.19	28.0	20.7	14.5	11.8	9.35	7.19	5.31

^{*} From John A. Roebling's Sons Company.

VARIETIES OF KNOTS

A great number of knots have been devised, of which only a few are illustrated, but those selected are the most frequently used. See Fig. 31.

Fig. 31. From American Manufacturing Company.

- a. Bowline. Makes a slip-proof loop. Popular because it is easy to untie.
- b. Timber hitch. For securing a line to logs or planks. For lifting or dragging.
- c. Clove hitch. For attaching rope to a fixed object, or small rope to a larger one.
- d. Blackwall hitch. A temporary hook tie. More secure with two turns around hook.

SOILS 99

SOILS

SURVEYING AND SAMPLING METHODS

TABLE 28. EXPLORATION AND SAMPLING METHODS *

Method	Material in Whioh Used	Penetration Method	Sampling Method	Type of Sample	Purpose or Value
Rod sounding or jet probing	All soils except hard- Driving 1 in, steel rod pan or boulders or 34 in, jet pipe with hand pump	Driving 1 in, steel rod or 34 in, jet pipe with hand pump	No sample		To obtain depth of nuck or soft strata. Location ledge or boul- ders. Otherwise valueless.
Wash borings		Washing inside 2½ in. driven casing with chopping bit on end	Sample recovered from sediment in wash water	Disturbed-sedimen- tary, coarse grains only	Depth to ledge or boulders; otherwise valueless. Results deceptive and dangerous.
Dry sample boring		pipe	Open-end pipe or split spoon sampler driven into soil	Disturbed but not separated	Density data from penetration of spoon. Fairly reliable and inexpensive.
Special sampling devices Cohesive soils	Cohesive soils	Driven casing or auger boring	By special sampling spoon or device	Undisturbed	To obtain samples for laboratory study
Auger boring	Cohesive soils. Cohesionless soils above ground water	Soil, wood or post hole; auger rotated by hand or machine and withdrawn	Sample recovered from soil brought up by auger	Disturbed but better than wash samples	To locate soil strata and ground water. Roads, airfields, canals, and railroads. Samples for visual inspection and soil profile.
Well or churn drilling	All soils including boulders, rock, and gravel	All soils including boul- ders, rock, and gravel power bower bound	Bailed sample of churned material or use of "clay socket"	"Clay socket" or "dry"	"Clay sooket" or "dry" Occasionally used for foundations.
Rotary drilling	•	Rotating bit	From circulating liquid	Fluid	Samples worthless
Core drill borings	Large boulders and solid rock	Diamond, shot, or saw- tooth cutters	Cores cut and recovered	Rock cores 78 in. and over in diameter	Best method to obtain type and condition of rock
Test pits and oaissons	All soils; below ground water use pneumatic caisson or lower water table	Excavate by hand or power; pit over 6 ft. sheeted or lagged	Bulk sample by hand; undisturbed sample with spoon; tube, on special device	Disturbed or undisturbed	Most satisfactory method; should supplement others. To obtain undisturbed sample cohesionless soil. Soil can be inspected in natural condition.
Geophysical, seismic, electric resistance, electric potential	No samples. Continuo vibrations. Mostly p	Continuous vibration or impulse Mostly patented methods.	from dynamite explosi	na. Device to register	Continuous vibration or impulse from dynamite explosion. Device to register Primary exploration will indicate Mostly patented methods. Interpretation uncertain.

* Adapted from "Low Dams" by Natural Resources Comm., based on Harvard Grad. Bug. School Pub. 208 by II. A. Mohr.

100 001110

SPACING AND DEPTH OF BORINGS AND TEST PITS OR TEST HOLES

Highways.* At 100 ft. stations plus additional necessary at culverts, bridges, weak zones, wide cuts and fills, muck deposits, borrow pits, and sources of base material. Depth not less than 3 ft. below subgrade. Locate ground water table, seepage sources, and direction of flow.

Airfields.† At 100-ft. to 1000-ft. spacing on center line, edge of pavement and edge of shoulders. Depth not less than 4 to 6 ft. below subgrade in cut or ground surface in fill. Not less than twice diameter of tire contact area nor less than frost penetration. Locate ground water table and seepage data. Make field load-bearing tests at time of survey (from 5 to 10 usual for each airfield).

Bridges, Dams, and Piers.[‡] Borings spaced as needed to bedrock or well below foundation level. Make borings at least 20 ft. into solid rock. Make 1 or more borings at each pier 50 ft. minimum into solid rock. Use open-pit exploration on land and in shallow water. Make soil bearing tests and pile loading tests.

Building Foundations, Towers, Chimneys, etc. \ddagger Borings spaced not over 50 ft. center to center. Depth 15 ft. to 20 ft. minimum below foundation level. Initial borings to depth = $2 \times$ width loaded area.

Core borings into rock greater than minimum design depth of rock required. Supplement borings with test pits, load tests, and test piles.

TABLE 29. SIZE OF SAMPLES

Visual inspection and record, 1 qt. mason jar. California bearing ratio, 125 lb.

Soil stabilization, 125 lb.

Physical constants and mech. analysis, 5–15 lb.

Aggregates for construction (concrete), 35 lb.

Moisture-density (Proctor tests), 10–35 lb.

Undisturbed sample, 12" to 2' long x 3" to 5" diam.

Rock core, usually 76" to 1½" diam.

Note. Seal undisturbed samples in tube with paraffin so structure and moisture content are not disturbed. Place bulk (disturbed) samples in bag or container tight enough so fines will not be lost.

Taking or g Sumples with wash buring Tig

Fig. 32. Split spoon sampler.

^{*} A.S.T.M. D-420, C.A.A. Specs. † P.R.A., U.S.E.D., A.A.F., C.A.A.

Fig. 33. Test pit (sheathed and braced). Krynine, Soil Mechanics, McGraw-Hill Book Company.

Other types used are 3" to 8" post hole augers for sands. 2" to 3" spiral auger for clay soils and muck. Wood augers for hard soils, glacial till, etc. 10" to 20" power driven augers for gravel, etc.

Soil Augers

Fig. 34. Soil auger.

10% , 501100

Fig. 36. Wash boring rig. After Mohr.

Fig. 37. Shallow sampler for cohesive soil. After Taylor.

Cylinder is worked into soil by hand. Sample is reversed, excess soil trimmed and sample sealed.

Fig. 38. Shallow sampling, cohesionless soil (sand). Krynine, Soil Mechanics, McGraw-Hill Book Company.

Fig. 39. Deep sampler, cohesive soils.

Fort Peck Sampler, U.S. Eng.

Note A suggested sampler is the one used by Providence U.S.E.D., "Clay Sampler Type C" - consists of 4¾ diameter brass tube 1/16" thick plus a piston.

Fig. 40. Piston-type sampler, cohesive soils.

Results of Soil Tests

									Textura!	Class	Silt loam	Silty clay loam	Clay and gravel	Plastic clay
			0.5 тт. 0.25 тт 0.05 тт 0.005тт 0 001 тт.	19	† 1	13	20		0	oroup	A-4	4-4	1-4	1-1
		ją.	005mm	28	19	18	7.3	ieve	Moisture Equivalent	Field	31	22	33	88
		es havir er than	mm 0.	90	85	42	88	5 mm. s	Mo: Equit	Centri- fuge	29	36	23 €	93 *
	Analysis	Per cent of particles having diameters smaller than	0.05	3	3	-	_	the 0	lage	Ratio	1.7	1.7	2.0	18
			0.25 mm	86	98	44	96	passing	Shrinkage	Limit	23	18	11	14
	Mechanical Analysis	Per	0.5 mm.	100	88	64	88	f particles	Plastic	Index	91	18	34	11
	M		2 mm.	100	100	53	100	roperties o	Lower Liquid Limit		38	22	53	101
		Layer		1	ç	*	5	Physical properties of particles passing the 05 mm. sieue		raher	1	'n	*	5
-		Identifi - cation	Number	16	11	18	19		Identifi-	Number	91	17	18	19

* Waterlogged

Sample number 18 - Layer 4 contains coarse gravel See description.

General Notes and Recommendations
Drainage is across the road from east to west

Oriquat ground guese excellent support, for fill Layers 1 and 8 are excellent subgard, for fill Chapter 1 and 8 are excellent subgrade materials Construct drain as shown on plan, profile, and cross saction Cut and waste layer 5 material to a dapth of about 2 feet below grade and backfill with layers 1 and 3. See plan, profile, and cross section Cut Berm ditch as shown in cross section

Cut backslopes not steeper than 2:1 Waste all maternal excavated from layers 4 and 5 Pavement design should include longitudinal and transverse crack control

Description of Layers

Lead is Readish brown mellow silt loam. Friable when dry but of pasty consistency when wet.

Layer 3

Grapish brown or mottled gray and rasty brown sitty olay loam or sitty clay of moderately compact structure. Domputchess increases with depth. Fradle when dry but plastic when wet. The compact nature of this layer does not seem to retard percolation to any degree. Layer 4: Similar to layer 5 but contains a very large quantity Similar to ingre 5 but contains a very large quantity of gravel varine in size from 114" to 2" with the largest

Similar to layer 5 but contains a very large quantity of gravel varying in size from 114" to 2" with the largest percentage between 314" and 112". The presence of gravel apparently does not affect the structure powertees or their debuguing. On applying skrinkinge cracke develop and soil shrinks away from gravel. This layer also includes a brown or grayish frown compact lefty which is at Iransition between or grayes and 5, and shrinks considerably on drying.

.

Motited blunsh gray and rusty brown plastic, sticky, and tenactous chip composed by impular structure particles are treagular in shape, easily crushed and when molded toke on the appearance and consistency of justic. Upper 3 feet of layer is very west, it blends gradually into a dense, plastic, cloddy structured bluish gray clay when return's the downward movement of y uner to his does not return's the downward movement of y uner to his does not plants when are well defined. White concretions, black, rasty brown and blood red stains are found throughout the algor. This material shrinks considerably on trying, leaving what shrinkage cracks and on exposure the larger clods shrinks considerably on trying, leaving what shrinkage cracks and on exposure the larger clods slake down to the smaller sized acticles. This layer

Fig. 41. Typical soil profile map as made for design and construction of road, runways, railroads, and canals. Adapted from Surveying and Sampling Soils for Highway Subgrades, A.S.T.M. 106 SOILS

L=16"for 3" I.D. or greater

This sampler disturbs soil. Freezing and core drilling have been used with success for undisturbed samples.

Fig. 42. Deep sampler, cohesionless soil. Krynine, Soil Mechanics, McGraw-Hill Book Company.

Fig. 43. Plan and log of test pits for airfield.

BORING LOG † (TYPICAL STRUCTURES)

Location Antigua Structure Hangar (See key plan) Sheet No. 1 of 2 Boring No _1_Datum_____ Boring Inspector Smith Date 1-3-41 Miscellaneous Data Sample or Spoon Casing Stratification ength of hole Description of Materials (Type, Color, & Consistency) Sample ! Weight of hammer
Aver. fall of hammer
El. of ground water
Remarks** Elevation Cegend Depth Penetrotion 73.7 0 Surface Brown sandy loam Few roots Trace of aravel 6 12" 1D Dry and friable 712 2-6 8 12" 32 18" 20 Fairly firm 12 Cohesionless Fine brown sand 10 66' 6.W. Trace of aravel 16 12" Resistance 16 12" 28 12" 30 increases with 647 9'-0 depth. Firm, hard, yellow, Becomes plastic silty clay. 12" 18' 40 18 20 when worked. 5D 380 12' 60 3 Chips of black slate Compact gravel, silt, 52.7 21-0 and sand "Hardpan" embedded in silt. Buff-colored Casing and rods 6C refused at 21'-0" limestone. Hard 80% core Bottom of hole 47.7 26-0 at 26'-0."

Note: Additional data may include: Key plan with contours, stations coordinates, and building outline; Benchmarks, date, drilling rig, casing dia.; length and diameter of sampler, Atterberg Limits, Mech. Analysis, density, water content.

Fig. 44.

† Caribbean Architect-Engineer.

recovery.

^{*}Write sample number at corresponding depth, designate dry samples by D, wash samples by W, undisturbed samples by U, and rock cores by C.

^{**}When drilling cores in rock record the percentage of recovery in each foot of penetration.

IDENTIFICATION OF PRINCIPAL TYPES TABLE 30. MAJOR DIVISIONS OF SOILS

Coarse-Grain	ed (Granular)	Fine-C	Grained	Org	ganic
Gravel	Sand	Silt	Clay	Muck	Peat

IDENTIFICATION-VISUAL AND BY TEXTURE

GRAVEL

Rounded or water-worn pebbles or bulk rock grains. No cohesion. No plasticity. Gritty and granular. Crunchy under foot. As a soil, over $\frac{1}{10}$ in. in size. As an aggregate, over $\frac{1}{10}$ in. in size.

SAND

Granular, gritty, loose grains, passing No. 10 and retained on No. 270 sieve. Individual grains readily seen and felt. No plasticity or cohesion. When dry, a cast formed in the hands will fall apart. When moist, a cast will crumble when touched. The coarse grains are rounded; the fine grains are visible and angular. As an aggregate for construction sand consists of mineral grains between 1/4 and 1/200 in.

SILT

Fine, barely visible grains, passing No. 270 sieve and over 0.005 mm. in size. Little or no plasticity. No cohesion. A dried cast is easily crushed in the hands. Permeable; movement of water through voids occurs easily and is visible. When mixed with water the grains will settle in from 30 minutes to 1 hour. Feels gritty when bitten. Will not form a ribbon. Care must be used to distinguish fine sand from silt and fine silt from clay.

CLAY

Invisible particles under 0.005 mm. (or 0.002 mm. in M.I.T. scale) in size. Cohesive. Highly plastic when moist. When pinched between the fingers will form a long, thin, flexible ribbon. Can be rolled into a thread to a pin point. When bitten with the teeth will not feel gritty. Will form hard lumps or clods when dry, difficult or impossible to crush in hands. Impermeable; no movement of water apparent through voids. Will remain suspended in water from 3 hours to indefinitely.

MUCK AND ORGANIC SILT

Thoroughly decomposed organic material with considerable mineral soil material. Usually black, with a few fibrous remains. Odorous when dried and burnt. Found as deposits in swamps, peat bogs, and muskeg. Easily identified. May contain some sand or silt.

PEAT

Partly decayed plant material. Mostly organic. Highly fibrous with visible plant remains.

Fig. 45. Identification by mechanical grain size analyses.

Notes. Mechanical analysis is necessary to identify soils into the various divisions and into PRA and Casagrande systems. In general, the value of soils as a foundation for structures and as a material of construction is determined by the grain sizes and the gradation of the soil mixture. Other widely used grain-size classifications are International, M.I.T., Natl. Pk. Serv., A.S.T.M.

CLASSIFICATION OF SOILS BY HORIZONS

Soil Profile: A vertical cross section of the soil layers from the surface downwards.

The upper layer, surface soil or top soil. The upper part is designated A_0 and is humus or organic debris. Indices are used for subdivision into transition zones as shown for A_1 , A_2 , etc. May range to 24 in. in depth.

The heavier-textured underlayer or subsoil. May range from 6 in. to 8 ft. in depth. May be subdivided into transition zones B_1 , B_2 , etc., as shown. The products of the leaching or eluviation of the A horizon may be deposited in horizon B.

The unweathered or incompletely weathered parent material.

Surface

A

A

Horizon

A

Horizon

C

C

Horizon

Horizon

Horizon

Fig. 46.

The underlying stratum such as hard rock, hard pan, sand, or clay.

Notes. Structures or pavements are not usually placed on A horizon soils. Also the organic content of these soils may adversely affect stabilization. In cuts the C horizon soil does not usually have as good bearing value as the more weathered B horizon. Foundations for heavy structures are preferably founded on the D horizon where it is bedrock or unyielding.

110 SOILS

P.R.A. CLASSIFICATION

TABLE 31. CHARACTERISTICS FOR IDENTIFYING P.R.A. SOIL GROUPS *

Established by Public Roads Administration and Highway Research Board. Classification as shown is latest modification. Extensively used by engineers for highways, airfields, and dams.

	Char	'	н]		instano o			H	Capill	B.I.E	erbe	H IJ
Group	Characteristics	Textural Class	Internal friction	Cohesion	Shrinkage	Expansion	Capillarity	Elasticity	Capillary rise	Liquid limit	Plasticity index	Shrinkage limit
A-1	Non- Plastic	Uniforml Granula to J	High	High	Not det	None	None	None	Low	25 max.	6 max.	14
.1	Plastic	Uniformly Graded Granular Coarse to Fine	High	High	Not detrimental				High	35 max.	4-9	14-20
V	Non- Plastic	Poomly Grad Coarse,	High	Low	Not significant	None	None	None	36" max.	35 max.	Non-plastic	15-25
A-2	Plastic	Poolly Graded Granular, Coarse, and Fine	High	High	Detrimental if poorly graded	Some	Some	Some	Over 36"	40 max.	15 max.	25 max.
	A-3	Clean Sand or Gravel	High	None	Not significa.nt	Slight		None	6" max.	Non-plastic	Non-plastic	Not
	A-4 and A-4-7 †	Silt or Silt Loam	Variable	Variable	Variable	Variable	Detrimental	Variable	High	40 max.	0-15	20-30
1	Page 6-A	Silt or Silt Loam	Variable	Low	Variable	High	High	Detrimental	High	Over 40	09-0	30-120
	A-6	Plastic Clay	Low	High	Detrimental	High	High	None	High	35 min.	18 min.	6-14
	A-7	Plastic Clay Loam	Low	High	Detrimental Detrimental	Detrimental	High	High	High	35 min.	12 min.	10-30
	A-8	Muck and Peat	Low	Low	Detrimental	Detrimental	Detrimental	Detrimental	Detrimental	35-400	09-0	30-120

Fiel	Field moisture equiva-	Not essential	Not essential	Not essential	Not essential	Not essential	30 max.	30-120	50 max.	30-100	30-400
S a	Centrifuge moisture equivalent	15 max.		12-25	25 max.	12 max.	Not essential	Not essential	Not essential Not essential Not essential		Not essential
Shri	Shrinkage ratio	1.7-	1.7-1.9	1.7-1.9	1.7-1.9	Not essential	1.5-1.7	0.7-1.5	1.7-2.0	1.7-2.0	0.3-1.4
Voh	Volume change	٩	0-10	970	9-0	None	0-16	0-16	17 min.	17 min.	4-200
Line	Lineal shrinkage	9	0-3	0-2	4	None	14	70	5 min.	5 min.	1-30
	% Sand	70-	70-85	55-80	55-80	75-100	55 max.	55 max.	55 max.	55 max.	55 max.
(sziZ	% Silt	10	10-20	0-45	0-45		High	Medium	Medium	Medium	Not significant
aisı	% Clay	5	5-10	0-45	0-45		Low	Low	30 min.	30 min.	
D) 3	% Passing No. 10	20-100	40-100								
aibe	% Passing No. 40	10-70	25-70								
GE	% Passing No. 200	3–25	8-25	Less than 35	Less than 35	0-10					

Subgrade or surface

Subgrade or surface

-Silt loam

Fra. 47. Classification of non-uniform subgrade soils.

Group B-2

Rapid succession of sail types, pockets of different sail types. Changes in sail profile or changes in sail structure. Non-uniform support. Group B-1

* Adapted from Public Roads Administration and Highway Research Board Publications. \uparrow A -4 or A-5 soil with A-7 characteristics.

CLASSIFICATION

TABLE 32. CLASSIFICATION OF SOIL MIXTURES *

^{*} Adapted from Soil Cement Laboratory Handbook, Portland Cement Assoc.

Note. Determine proportions of sand, silt and clay by sieve analysis or inspection.

(Natural soils seldom exist separately as gravel, sand, silt, clay, but are found as mixtures.)

TABLE 33. CLASSIFICATION OF SOILS BY ORIGIN

_	tesidual:	Rock weathered in place—Wacke, laterite, podzols, residual sands, clays and gravels. Organic accumulations—peat, muck, swamp soils, muskeg, humus, bog soils.						
Transported	Glacial	Moraines, eskers, drumlins, kames—till, drift, boulder clay, glacial sands and gravels.						
	Alluvial	Flood planes, deltas, bars—sedimentary clays and silts, alluvial sands and gravels.						
	Aeolian	Wind-borne deposits—blow sands, dune sands, loess, adobe.						
	Colluvial							
	Volcanic	Volcanic deposits—Dakota bentonite, volclay, volcanic ash, lava.						
	Fill	Man-made deposits—may range from waste and rubbish to carefully built embankments.						

Note. In general, residual or glacial deposits are preferable for heavy foundations. Important in soil surveys and engineering reports.

ATTERBERG LIMIT TESTS

Purpose. 1. To classify soils into P.R.A. or Casagrande Groups. 2. To assign soils a value as a foundation or construction material. 3. Construction control and laboratory reports. High values of L.L. and P.I. indicate high compressibility and low bearing capacity. High shrinkage values indicate excessive volume change.

The liquid limit (L.L.) of a soil is the water content at which the groove formed in a soil sample with a standard grooving tool will just meet when the dish is held in one hand and tapped lightly 10 blows with the heel of the other hand. In the machine method the L.L. is the water-content when the soil sample flows together for ½" along the groove with 25 shakes of the machine at 2 drops per sec.

Diameter of brass cup or evaporating dish about 41/2 in.

Size of sample: By hand 30 grams; by machine 100 grams.

Several trials are made, the moisture content being gradually increased. Blows are plotted against water content and the liquid limit is picked off from the curve as shown, or

$$\rm L.L. = \frac{Weight~of~water}{Weight~of~oven-dried~soil} \times 100$$

Adapted from Krynine, Soil Mechanics, McGraw-Hill Book Company.

Crank and cam device Grooving to produce 1 centimeter Tool drop of cup. Casagrande Liquid Limit Machine

Soil cake after test

Adapted from Hogentogler, Engineering Properties of Soil, McGraw-Hill Book Company.

Fig. 49. Liquid limit (L.L.), A.S.T.M. 0423, A.A.S.H.O. T-89.

The plastic limit (P.L.) is the lowest watercontent at which a thread of the soil can be just rolled to a diam. of ½ in. without cracking, crumbling, or breaking into pieces.

P.L. =
$$\frac{\text{Weight of water}}{\text{Wt. of oven-dried soil}} \times 100$$

Size of soil sample is 15 grams. Soil which cannot be rolled into a thread is recorded as non-plastic (N.P.):

Crumbling of soil thread below the plastic limit

Fig. 50. Plastic limit (P.L.), A.S.T.M. D424, A.A.S.H.O. T-90.

Base Course	Subgrade	Sub-base	Stab. Surf.	Soil Cement	Cem. Treated Base
No Shrinkage L.L. = 25 P.I. = 6 max.	Lineal Shrinkage 3% to 5%	L.L. = 35 P.I. = 15 max.	P.I. = 4 to 9	L.L. = 40 P.I. = 18 max.	L.L. = 25 P.I. = 6 to 9

The water content or moisture content is expressed as a percentage of the oven-dried weight of the soil sample. These soil constants are determined from the soil fraction passing the No. 40 (420-micron) sieve.

Plasticity Index (P.I.): A.A.S.H.O., T-91. Numerical difference between liquid limit (L.L.) and plastic limit (P.L.) or P.I. = L.L. - P.L. Example: Given L.L. = 28, P.L. = 24, P.I. = 4. Cohesionless soils are reported as non-plastic (N.P.). When plastic limit is equal to or greater than liquid limit the P.I. is reported as 0, see Table 31.

Shrinkage Ratio (R): = bulk specific gravity of the dried soil pat used in obtaining shrinkage limit.

$$R = \frac{\text{Weight of oven-dried soil pat in grams}}{\text{Volume of oven-dried soil pat in cc.}} \quad \text{or} \quad \frac{W_0}{V_0}$$

Shrinkage Limit(s): A.S.T.M., A.A.S.H.O., T-92. Water content at which there is no further decrease in volume with additional drying of the soil but at which an increase in water content will cause an increase in volume.

$$S = \left(\frac{1}{\text{Shrinkage ratio}} - \frac{1}{\text{Spec. gravity}}\right) \times 100.$$

Size of sample 30 grams.

Lineal Shrinkage is the decrease in one dimension of the soil mass when the water content is reduced to the shrinkage limit or the % change in length occurring when a moist sample has dried out.

MOISTURE DETERMINATION

Purpose: 1. To determine moisture content for optimum moisture and maximum density relations. 2. To determine the amount of water in aggregates for concrete, bituminous, and other mixtures.

Gravelly soils: Use pycnometer method, Fig. 51, or heat method described below.

Sandy soils: Use Chapman flask, Fig. 52, or heat method described below. Silts and clays: Use heat method described below.

Heat Method: For total moisture content or surface moisture content.

- 1. Obtain a representative sample. If a metric scale is available the sample should not be smaller than 100 grams. If an avoirdupois scale graduated by $\frac{1}{2}$ ounces is used, the sample should contain at least 50 ounces.
 - 2. Weigh sample and record weight.
- 3. Place sample in pan and spread to permit uniform drying. Set pan in oven or on top of stove in a second pan to prevent burning of soil.
- 4. Dry to constant weight when total moisture is to be found; dry until surface moisture disappears when surface moisture content is desired. Temperature should not exceed 105° C. (221° F.). Stir constantly to prevent burning.
- 5. After the sample has been dried to constant weight, remove from oven and allow to cool sufficiently to permit absorption of hygroscopic moisture. Weigh dried sample and record weight.
 - 6. Compute the moisture content as follows:

Per cent moisture =
$$\frac{\text{weight of wet soil} - \text{weight of dry soil}}{\text{weight of dry soil}} \times 100$$

116 SULLO

Fig. 51. Specific gravity and surface moisture content of aggregate, pycnometer method,

Use of the Chapman Flask:

Fill to the 200-ml. mark on the lower neck with water. Add 500 grams of moist soil and read the combined volume = V on upper scale. M = approximate percentage of surface moisture.

$$M = \frac{V - \frac{500}{\text{sp. gr.}} - 200}{200 + 500 - V} \times 100$$

Sp. gr. = the bulk specific gravity of the surface dry aggregate found by the equation $500 \div (V' - 200)$.

V' differs from V in that 500 grams of dry sample is added instead of 500 grams of a moist sample as in the case of V. This method is only practical for the surface moisture of relatively sandy soils.

Use stirring rod to eliminate air.

Fig. 52. Specific gravity and surface moisture content of aggregate, Chapman flask method.

MAXIMUM DENSITY, OPTIMUM MOISTURE, PROCTOR NEEDLE PLASTICITY TEST

Purpose of maximum density-optimum moisture test is to determine the percentage of moisture at which the maximum density can be obtained when soil is compacted in fill, earth dams, embankments, etc.

After the maximum density curve has been obtained, these samples may be subjected to the Proctor needle for resistance to penetration.

^{*} From A.S.T.M. Specifications.

Then subjecting soil at the site to the Proctor needle, the amount of compaction of soil at the site may be obtained. See Fig. 55(a).

Maximum Density, Optimum Moisture, as per A.S.T.M.-D698-A.A.S.H.O.-D: T-99.

Fig. 53.

Testing Procedure. 6 lb. \pm (3000 grams) of air-dried soil slightly damp and passing the No. 4 sieve is mixed thoroughly, then compacted in the mold in 3 equal layers, each layer receiving 25 blows from the rammer with a controlled drop of 1 ft. The collar is removed, the soil struck off level and the mold weighed.

(Wt. of soil plus mold – wt. of mold) \times 30

= wet weight per cubic foot or wet density

A 100-g. sample from the center of the mold is weighed, then dried at 230° F., and the moisture content is determined.

Pulverize 6-lb. sample, add about 1% water, and repeat test. Repeat until soil becomes saturated (about 5 times). Plot wet-density curve. See Fig. 54. Compute dry density by formula and plot curve:

Dry density =
$$\frac{\text{Wet wt., lb. per cu. ft.}}{\% \text{ moisture} + 100} \times 100$$

In Fig. 54 enter at top of dry density curve and read optimum moisture and maximum weight of soil 20.2% and 103.5 lb.

Fig. 54.

Modified A.A.S.H.O. Method.*

Same as above except:

- 1. Rammer to weigh 10 lb.
- 2. Rammer to have controlled drop of 18 in.
- 3. Soil compacted in mold in 5 equal layers, 25 blows to each layer. The highest dry density is recorded as laboratory unit weight.

Note. Modern air field compaction equipment can secure greater densities than can be obtained by the standard Proctor or A.A.S.H.O. Test. If field compaction or vibration will give greater densities on any job than the test, the higher density should be used to control compaction.

Proctor Needle Plasticity Test †

Five pounds of dry soil passing a No. 10 sieve is mixed thoroughly with just enough water to make it slightly damp, then compacted in the mold in 3 layers. Each layer is given 25 blows with the rammer dropped 1 ft. The soil is then struck off level with the cylinder, weighed, and the stability determined with the plasticity needle by measuring the force required to press it into the soil at the rate of $\frac{1}{2}$ in. per sec. A small portion of the soil is oven-dried to determine the moisture content. This procedure is repeated 3 to 6 or more times, each time adding about 1% more water until the soil becomes very wet. The density and plasticity needle readings are plotted against moisture content. See Fig. 54. Thu in Fig. 54 a needle reading of 400 gives a moisture content of 23%.

^{*} Engineering Manual, O.C.E., War Dept.

[†] Engineering News-Record, Aug. 31 to Sept. 28, 1933, R. R. Proctor.

120 SOILS

Fig. 55(b). Apparatus.

California Bearing Ratio

Purpose is to obtain relative resistance of a soil in place or soil to be placed and compacted to a specified degree to a standard broken stone layer. The resistance of the standard layer is given in the last column of the report form for California bearing ratio on p. 130.

For soil in place apply a 3 sq in. end area piston at a constant rate of penetration of 0.05 in. per minute to a total penetration of 0.5 in. The penetration force required per square inch at the values in the left-hand column of the report form for California bearing ratio on p. 130 is recorded and stated as a ratio of the corresponding values in the right-hand column of the report; usually the values for 0.1-in. deflection are used.

Laboratory determination is made by remolding the samples of the soil until it has the specified density using the A.S.T.M. or A.A.S.H.O. methods given above, except that 55 blows of the rammer are used instead of 25 and material is passed through a ¾-in. sieve instead of a No. 4 sieve. These samples are then loaded by means of the same piston and recorded as given above for the field test.

For the purpose of determining the effect of saturating conditions on the soil, tests may be made on soaked samples.

FIELD DENSITY (UNIT WEIGHT) TEST *

Purpose. 1. To obtain the natural density of soil in place (a) as an indication of its stability or bearing value as foundation, (b) to compute

* Adapted from Public Roads, Vol. 22, No. 12 by Harold Allen, Public Roads Administration.

the shrinkage or swell when the soil is removed and placed in embankment at a higher or lower density. 2. To determine the per cent of compaction being obtained to check against requirements of specifications.

Method of Determining Weight per Cubic Foot of Soil in Place. Calibrated Sand Method

The density of a soil layer may be determined by finding the weight of a disturbed sample and measuring the volume of the space occupied by the sample prior to removal. This volume may be measured by filling the space with a weighed quantity of a medium of predetermined weight per unit volume. Sand, heavy lubricating oil, or water in a thin rubber sack may be used.

- 1. Determine the weight per cubic foot of the dry sand by filling a measure of known volume. The height and diameter of the measure should be approximately equal, and its volume should be not less than 0.1 cu. ft. The sand should be deposited in the measure by pouring through a funnel or from a measure with a funnel spout from a fixed height. The measure is filled until the sand overflows and the excess is struck off with a straightedge. The weight of the sand in the measure is determined, and the weight per cubic foot computed and recorded.
- 2. Remove all loose soil from an area large enough to place a box similar to the one shown in Fig. 57 and cut a plane surface for bedding the box firmly. A dish pan with a circular hole in the bottom may be used.
- 3. With a soil auger or other cutting tools bore a hole the full depth of the compacted lift.
- 4. Place in pans all soil removed, including any spillage caught in the box. Remove all loose particles from the hole with a small can or spoon. Extreme care should be taken not to lose any soil.
 - 5. Weigh all soil taken from the hole, and record weight.
 - 6. Mix sample thoroughly, and take sample for water determination.
- 7. Weigh a volume of sand in excess of that required to fill the test hole, and record weight.
- 8. Deposit sand in test hole by means of a funnel or from a measure as illustrated in Fig. 57 by exactly the same procedure as was used in the determination of unit weight of sand until the hole is filled almost flush with original ground surface. Bring the sand to the level of the base course by adding the last increments with a small can or trowel and testing with a straightedge.
 - 9. Weigh remaining sand, and record weight.
- 10. Determine the moisture content of soil samples in percentage of dry weight of sample.

SOILS 122

11. Compute dry density from the following formulas:

$$Vol. soil = \frac{Wt. of sand to replace soil}{Wt. per cu. ft. of sand}$$

$$\% moisture = \frac{Wt. of moist. soil—Wt. of dry soil}{Wt. of dry soil} \times 100$$

$$Moist density = \frac{Weight of soil}{Volume of soil}$$

Moist density =
$$\frac{\text{Weight of soil}}{\text{Volume of soil}}$$

Dry density =
$$\frac{\text{Moist density}}{1 + \frac{\% \text{ of moisture}}{100}}$$

$$\%$$
 compaction = $\frac{\text{Dry density}}{\text{Maximum density}} \times 100$

Given: EXAMPLE.

Wt. per cubic foot of sand = 100 lb.

Wt. of moist soil from hole = 5.7 lb.

Moisture content of soil

= 4.5 lb.Wt. of sand to fill hole

Required: Density and per cent compaction.

Solution: Vol. soil =
$$\frac{4.5}{100}$$
 = 0.045 cu. ft.

Moist density = $\frac{5.7}{0.045}$ = 126.7 lb.

Dry density = $\frac{126.7}{1 + 15/100}$ = 110.0 lb.

Given maximum density = 115 lb. (from density test).

% compaction =
$$\frac{110}{115} \times 100 = 95.7\%$$

Note. In gravel soils material over 1/4 in. is screened out and correction made.

Chunk Sample Method. 1. Cut sample 4"-5" in diameter full depth of layer. 2. Determine per cent moisture. 3. Trim sample and weigh to ½ oz. 4. Immerse sample in hot paraffin, remove, cool, and weigh again. 5. Compute volume of paraffin using 55 lb. per cu. ft. 6. Compute volume of sample by weighing in water (correcting for volume of paraffin). Compute density data by formulas above.

Fig. 56. Field density determination apparatus, dry sand method.

Fig. 57. Field density test.

Fig. 58. Rubber sack inflated to fill hole with known volume of water.

Fig. 59. Pump and jar to fill hole with known volume of oil. S.A.E.-40.

TABLE 35. BEARING VALUES AND PER CENT COMPACTION REQUIRED

Max. Dry Density	Soil Rating	Recommended Compaction		
90 lb. and less	No good			
90 lb100 lb.	Very poor	95–100%		
100–110 lb.	Poor to very poor	95–100%		
110–120 lb.	Poor to fair	90-95%		
120-130 lb.	Good	90-95%		
130 lb. and over	Excellent	90–95%		

Note. Density or $\frac{Wt}{Vol}$ may be expressed as pound per cubic foot or grams per cubic centimeter. Density in grams per cubic centimeter = bulk specific gravity.

124 SOILS

MECHANICAL ANALYSIS (GRAIN SIZE)

Purpose. 1. To identify homogeneous soils in the major divisions. See pp. 108 and 109. 2. To classify soil mixtures occurring in a natural state, Table 32 & Fig. 46. 3. To classify soil into the P.R.A. or Casagrande groups. See pp. 110 and 111, also Vol. I, p. 3-06. 4. To design or control stabilized soil mixtures. 5. To determine frost heaving potentialities. 6. To determine effective size (D_{10}) and uniformity coefficient (Cu) for the design and control of filters and subdrainage backfill.

Sieve Analysis

Size of sample to be 400 to 750 grams—the coarser the material the larger the sample required.

Take sample by quartering or with sample splitter.

Grad. in grams of soil
per liter of suspension

Hydrometer analysis of grain
size is based upon Stokes' law
"Particles of equal specific
growity settle in water at a
rate which is in proportion
to the size of the particle"
Note:
This test requires laboratory
technique.

Hydrometer Test

Fig. 60. Mechanical analysis of soils.

Dry surface moisture by heating the quartered sample at less than 212° F., or boiling point of water at high altitudes, in open pan until surface water disappears and sample is apparently dry and will not lose more weight with additional heating.

Break up cakes with mortar and pestle. Record dry weight of sample.

Proceed to pass material through screens by placing sample in a stack of sieves, largest size on top, and shake vigorously with horizontal rotating motion balancing on bumper or pad until no more material will pass through each screen.

Weigh amount retained on each sieve, compute per cent of total weight of sample, and plot curve.

Washing is recommended for No. 200 sieves and smaller.

Partly immerse the largest sieve in a pan of water and agitate.

Take material and water from pan and repeat for next smaller size sieve. Agitate smallest sieve in several water baths until water remains clear. Air-dry portions retained in sieves, weigh, and plot curve.

Fig. 61. Typical grain size curve.

Fine

Silt

Clay

Coarse Sand

Effective size (D_{10}) of a soil is the particle size that is coarser than 10% (by weight) of the soil; that is, 10% of the soil consists of particles smaller than

the effective size (D_{10}) and 90% consists of larger particles. Example. In Fig 62, effective size (D_{10}) is 0.02 mm.

Uniformity coefficient (Cu) is computed by first determining the size that is coarser than 60% of the soil and dividing that size by the effective size (D_{10}) ,

i.e.,
$$Cu = \frac{60\% \text{ size}}{10\% \text{ size}}$$
.

eng.

Example. In chart, $Cu = \frac{0.5}{0.02} = 25$.

Gravel

Fig. 62. Effective size (D_{10}) and uniformity efficient (Cu).

Note. The Cu of filter backfill should not be over 20. The D_{10} of non-frost heaving uniform soil is 0.02 mm. minimum.

Engineer	

OPTIMUM MOISTURE-MAXIMUM DENSITY

LABORATORY TEST

Location	Soil sampler					
Date	Soil tester					
C	ontrol s	oil#				
Item	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6
Weight of cylinder + wet soil Weight of cylinder Weight of wet soil Weight of wet sample + pan Weight of pan						
Weight of wet sample						
Weight of dry sample + pan Weight of pan Weight of dry sample						
Weight of moisture						
% of moisture						
Wet density						
Dry density						

Optimum moisture =

Maximum density =

Engineer

TUTTLE, SEELYE, PLACE & RAYMOND

Report on Density Determination

Test No		Date			
Location		Depth			
Soil sampler	_	Density of standard sand	I		per ft.
	FIELD	Test	•		
				lb.	
Volume of field	l sample =				
	nd to fill hole and funnel of standard sand	 volume of sand in funnel 		cu.	ft.
Weight of cont	sample (moist) and concainer sample (moist)	tainer		lb.	
	Laborato	DRY TEST			
Soil Tester			Date	;	
Weight of cont	oratory sample (moist) ar tainer oratory sample (moist)	nd container		g.	
Weight of labo	ratory sample (dry) and	container			
-	cainer oratory sample (dry) sture in laboratory samp	le		g.	
% moisture =	weight of moisture in la	$\frac{\text{b. sample}}{\text{c. (dry)}} \times 100 =$		%	
Field density	weight of field sample	$\frac{\text{ample (moist)}}{(1 + \% \text{ moisture})} =$		lb. cu.	per ft.
% compaction	$= \frac{\text{field density}}{\text{maximum density}} \times$	100		%	
Computed by		Checked by			

128 SOILS

Engineer	

SOIL STUDIES *

	oort for Date terial Report No									
Project								Repor	. No	
Sample identification								Location	of Samp	les
Classification										
Hygroscopic moisture										
Gradation Pass. Ret. 1" 34" 34" ½2" 1½" 4 mesh 4 10 10 20 20 40 40 60 60 100 100 200 200 (wash)										
Hydrometer test % Finer #10 #200 0.005 mm. 0.001 mm.							Remarks:			
Liquid limit										
Plastic limit										
Plastic Index										
Specific gravity										
Absorption and Stabil Tests of Materials Us		Opt. Mois.	Wt.	sity /cu. t.	Bler	% aded oil	% Water	% Binder	7-day Absorp. %	7-day Stab. (lb.) Bottom

Inspector

^{*} From Haller Engineering Associates, Inc.

		Engineer					
	SOILS C	CLASSIFICATIO	N *				
Client Date Report No							
	[
Site							
Sample No.							
Location							
		SOIL TYPE					
Size (mm.)	%	%	%	1			
Gravel 2.0 +							
Sand 2.0 - 0.05							
Silt 0.05 - 0.005							
Clay 0.005 —							
	Sr	EVE ANALYSIS					
Sieve Diameter Size (mm.)	% Passing	% Passing	% Passing	% Passing			
2" 50.80							
11/2"							
1" 26.67				-			
34" 18.85							
34" 9.423							
No. 4 4.699							
No. 10 1.981							
No. 40 0.417							
No. 60 0.246							
No. 100 0.147							
No. 200 0.074							
	Hydro	OMETER ANALYSIS					
Size of Particle	% Smaller than	% Smaller than	% Smaller than	% Smaller than			
0.05 mm.							
0.005 mm.							
0.001 mm.							

Inspector

^{*} From Haller Engineering Associates, Inc.

 Engineer	

CALIFORNIA BEARING RATIO *

Client		_ Date		
			Report No	
Site				
Sample No.				
Location				
	Maximum De	nsity, Optimum	Moisture	
Optimum water con- tent (percentage of dry weight)				
Maximum density (pounds per cu. ft.)				
	Californi	a Bearing Test	Data	
Condition of Sample				
Penetration (inches)	Lb. per C/B Sq. In. Ratio	Lb. per C/B Sq. In. Ratio	Lb. per C'B Sq. In. Ratio	Standard
0.025				
0.050				
0.075				
0.10				1000
0.20				1500
0.30				
0.40				
0.50				
Unit dry weight (pounds per cu. ft.)				
Expansion %				
W	ATER CONTENTS-	Percentage of	DRY WEIGHT	
Unsoaked				
Soaked—Top 1 in.				
Soaked—Total				

Inspector

^{*} Adopted from Haller Engineering Associates, Inc.

Loc	BORING LOG * Location Structure Sheet No of								
Bor	ing N	Vo	_ Datum Be	oring	inspe	ector		_ Dat	se
Stra	Stratification		Description of		sing		ipler poon	0. †	
Elevation	Depth	Legend	Materials (Type, Color, and Consistency)	Blows	Penetration	Blows	Penetration	Sample No. †	Remarks ‡

[†] Write sample number at corresponding depth. Designate dry samples by

D, wash samples by W, undisturbed samples by U, rock cores by C.

‡ When drilling cores in rock, record the percentage of recovery in each foot of penetration.

^{*} From Caribbean Architect-Engineer.

BORING LOG

BORING LOG (Continued)

Location of boring Coordinates			
Drill No.			
Boring foreman			
Size and weight of casir	ıg	Depth	
Length of hole	Earth	Rock	
Type of rock drill used			
Weight of hammer			
Average fall of hammer		_	
Elevation of ground was	ter surface		
	Record of Work	<u> </u>	
Date			
Start			
Finish			
Hours			
Total Depth			
Weather			
Temperature			
	Bor	ing inspector	
Remarks			
•		<u> </u>	

Note. Mark samples with name of base, name of structure, hole number, sample number, depth, and material.

From the Haller Engineering Associates, Inc.

AGGREGATES

FIELD TESTING

Specific Gravity and Surface Moisture

Use fruit jar (see Fig. 51) and 2-kilo. (5-lb.) balance accurate to $\frac{1}{10}$ gram.

Specific Gravity. Weigh jar full of water. Empty jar, place therein 700 grams surface-dry sample. Fill jar with water and weigh. Determine specific gravity from nomograph. See Fig. 51.

Surface Moisture. Same procedure except 700-gram sample is moist aggregate to be tested.

Precautions. Roll submerged sample to remove air. Jar must be dry outside when weighed. Use eye-dropper to insure completely filling with water. Remove foam.

Surface Moisture, Heat Method. Heat a weighed sample at 212° F., in open pan until surface water disappears (3 to 10 minutes). Weigh again. The difference between the original and the final weight is calculated as per cent of surface moisture.

Total Moisture Content. Heat weighed sample in open pan above 212° F. for 30 minutes or to constant weight. The difference between the original and the final weights is calculated as per cent of total moisture.

TABLE 36. APPROXIMATE SURFACE MOISTURE

(Use only when testing is impracticable)

	PER CENT
CONDITION OF AGGREGATE	BY WEIGHT
Very wet sand	6 to 8
Average stock pile sand, drained	$3\frac{1}{2}$ to 4
Moist sand	2
Moist gravel or crushed rock	2

Tests of Gradation. Sieve Analysis, A.S.T.M. C-136

Quarter sample until sufficient material remains to give a dry sample as follows: sand under No. 10, 100 grams (0.2 lb.); sand under No. 4, 500 grams (1.1 lb.); coarse sand, 1000 grams (2.2 lb.); coarse aggregate under 1 in. maximum, 10 kg. (22 lb.); 2 in. maximum, 20 kg. (44 lb.); 3 in. maximum, 30 kg. (66 lb.). Use square- or round-aperture sieves as specified and of the sizes specified. If not specified, use square-mesh sieves as follows: bituminous aggregates, Nos. 200, 80, 40, 10, 4, $\frac{1}{2}$ in., $\frac{1}{2}$ in., $\frac{1}{2}$ in., 1 in., 1

balance or scale sensitive to 0.1% of sample weight. Set sieves in sequence with smallest size on bottom. Weighed sample is set on top sieve, and

sieves are vibrated by lateral and vertical motion with jarring action. Weigh amount retained on each sieve and in pan, and compute percentage.

Fineness Modulus

Add cumulative per cent retained on each of U. S. Standard Sieves listed above for concrete. Divide sum by 100; result equals fineness modulus.

Material Finer than No. 200 Sieve—Silt and Clay in Fine Aggregate, A.S.T.M. C-117

Use two sieves, No. 200 and No. 16, and a vessel large enough to contain the sample covered with water, and permit agitation. Select a moist sample large enough to weigh 500 grams (1.1 lb.) when dry. The sample after being dried to constant weight is placed in the container and covered with water. The contents of the container are agitated vigorously and the wash water is poured over the nested sieves, the No. 16 being on top. The operation is repeated until the wash water is clear. The washed aggregate is dried to constant weight and weighed to nearest 0.02%.

Fig. 63. Sieves.

% of minus No. 200 material

 $= \frac{\text{original dry weight - dry weight after washing}}{\text{original dry weight}} \times 100$

Approximate Amount of Silt and Clay

Place fine aggregate in a pint bottle to a height of 4 in.; then add water until the bottle is nearly full. Shake thoroughly, and allow to settle for 1 hr. or until the water is clear. Silt and clay will settle on top. The thickness of this layer should not be over $\frac{1}{2}$ in. Alternative: Place 5 oz. of sand in 12-oz. graduated bottle and add water until the mixture equals 10 oz. after shaking. Allow to settle as above. If silt and clay content is more than 3% or as specified, sand should be washed or additional laboratory tests made.

Organic Impurities in Fine Aggregate (Colorimetric Test), A.S.T.M. C-40

Fill a 12-oz. graduated prescription bottle to the 4½-oz. mark with the sample to be tested. Add a 3% solution of caustic soda, known as sodium

hydroxide, until the volume of sand and solution after shaking reaches the 7-oz. mark. Let the bottle stand for 24 hr., then observe the color of the liquid above the sand. If colorless or light amber color, the sand may be considered satisfactory. If it is light brown or darker, the sand should be sent to laboratory for additional tests.

Unit Weight of Aggregate, Dry Rodded Method, A.S.T.M. C-29

Use a calibrated bucket of minimum No. 11 gage metal, a 5%-in. by 24-in. bullet-pointed tamping rod, and a scale accurate to 0.5%. The capacity of the bucket in cubic feet should be as follows: ½-in. maximum aggregate size use ½ or ½ cu. ft.; 4-in. maximum aggregate size use 1 cu. ft. Aggregate should be room dry and thoroughly mixed. Fill the measure in 3 equal layers, rodding each layer 25 times. Strike off top layer and determine net weight. Calculate weight per cubic foot (unit weight). Note. In rodding use only enough force to penetrate the layer being rodded. The rod should not strike the bottom of the bucket.

Voids in Aggregate, A.S.T.M. C-30

$$\%$$
 of voids = $\frac{\text{(specific gravity of aggregate} \times 62.4) - \text{weight}}{\text{(specific gravity of aggregate} \times 62.4)} \times 100$

where weight equals the weight in pounds per cubic foot of the aggregate as determined by the unit weight test above (A.S.T.M. C-29). Specific gravity is determined by nomograph, p. 116, or by laboratory.

Absorption of Aggregates

The following table may be used as a guide for the field where A.S.T.M. Tests C-127 and C-128 are not practicable.

TABLE 37. APPROXIMATE ABSORPTION OF WATER BY AGGREGATES

	Per Cent
	BY WEIGHT
Average sand	1.0
Calcareous pebbles and crushed limestone	1.0
Trap rock and granite	0.5
Porous sandstone	7.0

TUTTLE, SEELYE, PLACE AND RAYMOND ARCHITECT-ENGINEER

FORT DIY NEW IEDSEV

			FORI D	INT M	JERSEI	
Contract	No			Date	of test	
Contracte					construction	1
Source of	material _			Plan	t	building
						bunding
	1	REPORT (ON AGGR	EGATES-	-SIEVE AN	VALYSIS
Screen or Sieve Size	Round or Square Shape	Weight Retained	Weight Passing	% Passing	% Spec. Reqmts.	
3″					Min. Max.	WEIGHTS OF SAMPLE
21/2"						Total weight
234"						Dry weight
2"						Difference % moisture
132"						After washing
1}4"						% gravel (over ½")
1"						Clay, etc %
34"						Material retained on
<u>}4"</u>						Sieve %
38"						Fineness modulus = sum cumulative % retained
34"						on each of Nos. 100, 50, 30, 16, 8, and 4, 35-in.,
No. 4						$\frac{34-in.}{12-in.}$ and 3-in. sizes \div 100 =
No. 8						Remarks:
No. 16						
No. 30						
No. 50						
No. 100						,
No. 200						
Pan						
Remarks:				Teste	d by:	
Approved		Disapprove	ed		Inspe	ector

Engineer

GKADING

CHECK LIST FOR INSPECTORS

GRADING

Inspectors' Equipment

Complete set of approved plans and specifications.

Surveying instruments if required.

100-ft. tape and 6-ft. rule.

Line level and line.

Equipment for sampling and testing soils as required.

Procedure in Inspection

Preparation of Site. Check against specifications for:

Stripping.

Storage of topsoil.

Removal of obstructions.

Clearing and grubbing.

Protection of trees.

Removal of peat, muck, humus, sod.

Removal or resetting of poles.

Resetting or installation of culverts.

Drains, sewers, water pipes, utilities.

Cavities and trenches to be backfilled and tamped.

Stake grades and slopes.

Cross-section borrow pits.

Cross-section rock as exposed before excavating.

Selection of Material. Follow specifications in selecting material such as placing granular material under paved areas.

Broken rocks on slopes and in marshy foundations.

Wasting peat, muck, frozen clods, organic matter.

Soil Compaction. Check specification requirements such as:

Weight of equipment and number of passes. Eight to twelve passes with sheepsfoot roller are customary. Three-wheel roller, 8 to 12 tons for final rolling of each layer and on the subgrade beneath base course. Caterpillar tractors may be used for granular soils when sheepsfoot or three-wheel rollers are not effective.

Thicknesses of layers rolled (usually 4 in. to 12 in.).

Harrows, rotary tillers, reduction of moisture and soil mixture.

Provision of water distribution in dry weather.

Provision of uniform travel for construction equipment.

Do not permit end dumping over face of high fills.

Stable slopes may be obtained by filling beyond final grade and subsequently excavating to that grade.

Protection of pipes from injury by equipment during construction.

BITUMINOUS PAVING

FIELD SAMPLING

Material and Method	When Sampled	Size of Sample	Instructions
Asphalt, cement, crude asphalt, refined asphalt, bituminous materials, A.S.T.M. D-140	From each source in advance of work and from each carrier as delivered	1 qt. min. Asphalt emulsion or cut-back 2 qt. min.	Draw sample from top, bottom, and middle of tank by lowering bottle or can fitted with a stopper or lid lifted by attached wire, or sample may be taken from drain cock after initial draining. Solid or semi-solid asphalt sampled with clean hatchet or putty knife. Place liquids in smallmouth cans with cork-lined screw top. Place semi-solid material in friction lid cans. Ship crated or boxed. Mark cans.
Asphalt, A.S.T.M. D-290	Daily, for penetra- tion test	3 oz. min.	Draw sample into can from valve over asphalt bucket on plant. Mix and pour into tin or glass container.
Asphalt sand, screenings, crushed stone and gravel, mineral fillers, A.S.T.M. D-75	Each source First shipment and if any change for laboratory tests Daily from piles or bins for plant tests	Fine aggregates 5 lb. min.; coarse aggregates 20 lb.	Quarter samples to size required. Sample from pits by channeling open face or from test hole. Sample from stock piles in various places avoiding base of pile. From cars, sample from top, middle, and bottom. Ship in strong, tight bags or boxes. At plant, sample separate sizes and composite mixture for daily sieve tests.
Heated and dried aggregates, A.S.T.M. D-290	Daily from bins	Fine, 5 lb.; coarse, 20 lb.	Pass shovel or pan quickly through stream of hot mate- rial as it flows from bin for daily sieve tests.
Bituminous mixtures (sheet asphalt, bituminous concrete, road mix, sand asphalt, plant mixes), A.A.S.H.O.T-41, A.S.T.M. D-290	Daily, or as specified or directed	Sheet asphalt, 1 lb. min.; bituminous concrete, 5 lb. min.; cold mixes, 15 lb. min.; com- pressed mixture, 6 to 12 in. sq. by full depth	At plant, take small portions from a number of batches during day, mix, and quarter to size. At paving site, compose sample from top, bottom, front, and back of load. Road mixes, shovel from course full depth, mix, and quarter. Ship samples in clean, tight box, carton, or friction lid can. Compressed samples, select location where mix is representative, before seal coat and after final rolling. Cut exact square to full depth of course.

MARKING SAMPLES-ALL MATERIALS

General. Same as for concrete field sampling, p. 11.

Bituminous Material. Railroad car number, refinery, type, grade, proposed use.

Aggregates. Kind, source, where sampled, separated size or combined mixture.

Bituminous Mixtures. Type, plant, date, specified mix, station or location placed.

FIELD OR PLANT TESTS

May be used when full-scale laboratory tests are not practicable

Penetration of Asphalt (A.S.T.M. D-5) is the distance, measured in units of ½10 mm., that a standard blunt-point needle will penetrate a sample of asphalt at 77° F. when the needle is loaded with 100 grams applied for 5 seconds. Sample selected per p. 139, melted, stirred, and poured into container, 2.17 in. diameter by 1.38 in. Place in water for 1 hour at 77° F. to a depth of 4 in. and 2 in. off bottom of vessel. Sample is penetrated in at least 3 places, and average penetration is reported.

Notes. Sample must be maintained at 77° F. during the test by placing in a transfer dish filled with water and by returning the sample to the water bath after each test. The needle must be wiped after each test. Metal "ointment box" of above dimensions may be obtained at drug store. The inspector should have orders as to action to take if penetration is not as specified.

NORMAL PENETRATION LIMITS

Fig. 64. Penetration test.

Pat Test of Sheet Asphalt. Select small sample of hot mix and note the temperature. Place at once upon a sheet of unglazed manila paper, resting upon a flat board. Fold the paper over the sample and press heavily with the flat of a wood paddle 6 in. long by 4 in. wide. Strike the paper a sharp blow with the paddle, open the paper, and remove the sample. If the stain is medium dark, bitumen content is about right. If it is very dark or sloppy, bitumen is excessive. If it is light and dry, bitumen is insufficient. If only the imprint of single sand grains appears, the amount of filler is deficient. If the space between sand grains is filled in, aggregate grading is good.

Percentage of Bitumen and Mechanical Analysis of Mixtures. The following method is for routine control where A.A.S.H.O. Tests T-58 and T-30 are not practicable. Dissolve and wash all the bitumen from a weighed sample of the mix with carbon tetrachloride, gasoline, or other solvent such as benzol, xylene, or chloroform, and weigh the recovered aggregate.

% of bitumen

$$= \frac{\text{weight of original sample} - \text{weight of recovered aggregate}}{\text{weight of original sample}} \times 100$$

Note. Wash aggregate clean. Avoid loss of any aggregate. If the percentage of bitumen varies from that specified, check the plant scales and the weighing operation. For sieve analysis of dried recovered aggregate (A.S.T.M. C-136 and C-117), see pp. 134 and 135, Aggregate Field Testing.

Field Density of Compressed Mixture. Immerse the weighed sample in hot paraffin, remove, cool, and weigh again. Weight gain is weight of paraffin. Volume of paraffin coat is calculated using 55 lb. per cu. ft. as weight of paraffin. Weigh the coated sample in water, record weight, and calculate the volume of the sample or measure the volume of the displaced water by an overflow device (weight water = 62.4 lb. per cu. ft.). Deduct the volume of the paraffin coat. Field density (lb. per cu. ft.) = net weight of sample in pounds ÷ volume of sample in cubic feet. The percentage of compaction = field density ÷ theoretical maximum density (from laboratory).

$$\%$$
 of voids = $\frac{\text{maximum density} - \text{field density}}{\text{maximum density}} \times 100$

Note. Compaction to 94-96% of maximum density is usually specified.

CHECK LIST FOR INSPECTORS

BITUMINOUS PAVING—GENERAL

Inspectors' Equipment

Complete set of latest approved plans and specifications.

Penetrometer with extra needles and 3-oz. tins (optional; needed only when asphalt penetration is checked on job).

Supply of report forms, sample tags, cartons, cans, and sacks for shipping samples.

Metal dipper, pans, shovels, pails, etc., for sampling.

Armored thermometers of specified temperature range for both plant and field.

Set of screens or sieves of specified aggregate sizes.

Wire brush for cleaning sieves.

1 balance of 500-gram capacity.

1 scale or balance of 10- to 25-lb. capacity.

Supply of carbon tetrachloride or other solvent such as benzol, carbon disulfide, chloroform, or gasoline.

Putty knife for checking pavement depth.

6-ft. folding rule and 50-ft. steel tape.

10-ft. straightedge, 3-ft. straightedge, and template cut to required crown.

Grade line and string level.

Field books, pencils, keel or crayon.

Fruit jar, Chapman flask, or hot plate and pan for moisture content (not necessary for mixes with hot, dry aggregates).

Procedure in Inspection

Bituminous Treatments

Prime Coat. Applied to receptive surfaces; should soak in.

Subgrade or Base. Compacted to specified density; should not shove, creep, or weave under a moving road roller.

Width, elevation, and cross section.

Condition to receive prime; excess loose material removed but surface not so tightly bound as to be impervious; slightly moist surface better for cutbacks and tars than dry and dusty; surface may be quite damp for asphalt emulsions.

Application. Bituminous material tested, approved, and of specified type.

Distributor truck calibrated and volume of material in load determined.

Distance each load should cover, at the width spread and at the gallonage per square yard specified, measured off and marked conspicuously. Amount of bitumen used is usually 0.20 to 0.45 gal. per sq. yd. for tight surfaces and 0.4 to 0.6 for open surfaces.

Distributor checked for specified requirements, usually: mechanical circulator, dual tires, pressure gage, range of application rates, positive shut-off, thermometer, spray bar width, measuring stick, tachometer, application pressure, wheel load or tire pressure, clean apertures or jets, load calibration and capacity.

Specified temperature of application adhered to.

Net gallonage computed by applying temperature conversion factor to gallonage measured at application temperature, see p. 158.

Provision to prevent overlap at beginning and end of application strip; usually building paper is laid down to insure a clear-cut joint.

Cover Material. May or may not be specified. If not specified, a light

cover in spots may be necessary to prevent migration of bitumen on steep grades and banked curves.

If specified, check following: gradation, type, moisture content, rate and uniformity of application, dragging, rolling, brooming and sweeping.

Curing Period. As specified, should elapse before subsequent applications or pavement courses.

Tack Coat. Usually applied to hard, dense impervious surfaces, without soaking in.

Surface. Cleaned or swept, dry but not dusty, patched, brought to line, grade and cross section as specified.

Application. Same as for prime coat except for following precautions: As application is very light (0.08 to 0.15 gal. per sq. yd.) distributor must travel at very high speed; tachometer is a necessity.

All distributor bar apertures or jets must be open and functioning.

Uniformity can be obtained by use of burlap drag behind distributor.

Great care must be exercised to prevent overlapping at sides and ends of strips; resulting fat spots will seriously affect pavement.

Surface must be kept tacky or sticky till pavement is laid, not allowed to be covered with dust or dirt; traffic must be kept off.

Seal Coat. Surface. Prepared as per specifications.

Application. Same as for prime coat with same precautions as for tack coat except bitumen is usually immediately covered with aggregate. Leave an 8-in. strip of bitumen uncovered for lapping adjacent strips.

Cover Material. May or may not be specified. If specified, check type, gradation, moisture content, rate and uniformity of application.

Applied at once after bitumen is spread so particles can be embedded. Material should be spread out ahead in piles or windrows or spreader trucks should be on job before bitumen is applied.

Specified method of uniformly distributing cover material followed.

Rolling, if specified, began at once and continued until aggregate is embedded. Excessive rolling, causing crushing of particles, avoided.

Broom or wire mesh dragging carried on simultaneously with rolling unless otherwise specified.

Excess cover material swept off after rolling if specified.

Back spotting of bleeding areas with cover material for several days.

Mix-in-Place (Road Mix)

Subgrade or Base. Compacted to specified requirements and shaped to correct width, grade and cross section.

Prime Coat. May or may not be specified. Same as for bituminous treatments.

Aggregates for Mixe Source approved and laboratory testing verified. Gradation checked before use and continuously during operations.

Aggregate may be bank run or artificially mixed as specified; in either

case the aggregate, before mixing with bitumen, should conform to specified gradation.

Continuous check on any special requirements such as liquid limit, plasticity index, percentage of silt and clay, either by sending samples to laboratory or by field testing as directed by superiors.

Preparation of Aggregate. Loose aggregate spread flat or in windrows in such volume and to such depth as to produce specified thickness when compacted.

Coarse or fine material mixed into aggregates to produce specified gradation if necessary.

Mixed aggregate brought to specified moisture content by pulverizing and aeration if wet or by sprinkling if dry. If not specified otherwise, usually maximum 2% moisture for cutback asphalts and tars, and 4 to 5% moisture for emulsions. Sprinkling necessary only when aggregate is very dry and dusty.

As contractor will demand quick moisture readings, use of fruit jar pycnometer is recommended; see p. 134.

Application of Bituminous Material. (a) By Set Quantity per Square Yard. Same as for bituminous treatments, prime coat. Follow job specification for increments and sequence of application. If not specified, best practice is to apply in increments of 0.5 to 0.6 gal. per sq. yd. with partial mixing between increments. For dense graded mixes, 0.5 to 0.6 gal. per sq. yd. per inch of depth of finished mix should suffice.

(b) Quantity Varied per Aggregate Gradation. Inspector must make continual screen analysis and compute required quantity of bitumen by formula or method as specified or directed. Screen analysis made either at pit, plant, or on the site, preferably on the site. Bitumen usually 4 to 7% by weight.

Mixing. (a) By Blade Graders. Graders to cut clear down to base (but not to cut into or tear up the base) and make complete turnover. Mixture to roll over in front of grader blade. Mixing to begin at once behind bituminous application to prevent migration of bitumen. Graders to manipulate mixture back and forth across entire width of road or strip being placed. Mix in as long strips as possible keeping turnarounds to minimum. Mixing to continue until all aggregate particles are coated; usually 12 to 15 complete turnovers are necessary.

Areas deficient in bitumen, i.e., dry, brownish color, powdery, no cohesion, large particles uncoated, should receive additional bitumen and remixing.

Areas with excess bitumen, i.e., greasy, fat, sloppy, unstable, free bitumen in evidence, corrected by adding more aggregate and remixing.

(b) By Rotary Tillers (Pulvi-Mixers, Roto-Tillers, etc.). Same general procedure as for blade graders except:

Aggregate is usually spread flat and mixed flat.

Aggregate is not manipulated back and forth.

Bitumen applied in 0.4 to 0.6 gal. per sq. yd. increments with partial mixing between applications is best practice.

Watch for balling up of aggregate, i.e., lumps of uncoated aggregates. If road or area is wide enough, transverse, diagonal or figure-8 travel of the Rotary-Tiller is recommended.

Mixing continued till all aggregates are coated for full depth.

Note. Rotary tillers and blade graders are sometimes operated in combination. Blade grader throws up windrow directly in front of rotary tiller, which mixes and spreads out flat; 10 to 12 repetitions of this process will usually produce uniform mixture.

(c) By Travel Plant Methods. Check calibration of measuring devices on machine.

Control of moisture content of aggregates by constant checking.

Gradation of material in windrows; continual screen analysis.

Accurate windrowing of aggregates ahead of travel plant to produce required finished thickness and width of pavement.

Mixed material as it leaves plant to have all aggregates coated, well mixed, and uniform in gradation and bitumen content.

Bituminous material introduced within specified temperature range.

Mixture may be spread with blade graders or paving machine; follow job specifications.

Curing. As specified.

Rolling. Equipment and methods as specified, to continue until mix is compacted to specified density, is smooth, and shaped to specified cross section and elevations.

Seal Coat. Same as for Bituminous Treatments.

Penetration Macadam

Subgrade or Base. Compacted to specified requirements and shaped to correct width, grade, and cross section.

Aggregates. Coarse stone, choke stone, and chips tested and approved for gradation and quality before use.

Inspection of gradation primarily visual, but screen analysis should be made once a day.

Avoid an excess of stone under 1½-in. size, dust, and screenings, which will form mats that bitumen cannot penetrate.

Placing Aggregates. May be spread by hand, spreader boxes, machines, or blade graders.

Avoid segregation of coarse and fine stone.

Spread in layers as specified; $3\frac{1}{2}$ in. to 4 in. is about the maximum thickness one layer can be built.

Depressions removed by working coarse stone into low areas; do not fill depressions with fine stone.

Pockets or areas of fine stone or choked with dust removed and replaced with properly graded stone.

Surface true, "spotted" to grade and cross section and without areas of excess fine or coarse stone before rolling begins.

Initial Rolling. Begin at sides and progress to center, overlapping shoulder and each previous wheel mark.

Rolling to continue until all stone keyed together.

Depressions developing during rolling corrected.

Rolling not to continue if stones are being crushed. Check stone soundness; if okay, add keystone or use lighter roller. (Some emulsified asphalt specifications require keystone to be spread during initial rolling; check.)

Roll in as long strips as possible to avoid reversing roller.

Rollers to operate in straight, not wavy, lines, and reverse motion smoothly, not in jerks.

Bituminous Application. Do not begin until surface is dry (except for emulsions), not dusty or excessively choked, and uniformly compacted.

Application is same as for prime coat, Bituminous Treatments.

Choke Stone (applied after bituminous material). Spread uniformly, just sufficient to fill voids in stone.

Rolled and broom dragged simultaneously until surface is thoroughly consolidated and free from large voids.

In hot weather or with asphalt emulsions this rolling and brooming may be postponed until day following bituminous application.

Continue rolling and broom dragging until all roller creases and marks are removed and surface does not creep or shove under roller wheels. Additional small amounts of keystone may be added during this process.

Note. Follow job specifications for quantity of bitumen and increments of application. Practice varies from applying bitumen in one heavy application with one choking and rolling to applying bitumen in two or three increments with choking and rolling after each.

Seal Coat. Same as for seal coat, Bituminous Treatments.

Pay Items. Accurate record of all pay items in contract.

Gallons of bituminous material placed (corrected for temperature).

Tons, square yards, or cubic yards of aggregates or completed pavement as specified.

Extra applications of bitumen and aggregates.

CHECK LIST FOR INSPECTORS

PLANT-MIX BITUMINOUS PAVING

Procedure in Inspection

Plant Inspection

Tested and Approved Materials. Bituminous material, aggregates, and fillers tested and approved before use.

Samples of aggregates, bitumen, and mixture shipped to laboratory at least once a week.

Daily screen analysis of aggregates and completed mixture.

Storage and Handling of Materials. Aggregates stock piled to avoid segregation and intermingling.

Mineral filler stored in dry place.

Plant. Plant equipment to meet specifications.

Weighing devices to work properly. Check scales with standard weights. Tare weight of asphalt bucket checked twice daily. Tare weight is weight of empty bucket including residue and adhering bitumen.

Bucket kept clean or correction made for adhering bitumen.

Weigh box large enough to prevent spilling, with tight gates and in good condition.

No segregation or intermingling of aggregates before mixing.

Screens of specified size to completely separate various sizes required.

Asphalt thermometers checked for correct reading.

Weighing facilities for mineral fillers.

Correction of aggregate grading if variation occurs.

Scales for aggregate and bitumen set to produce specified mixture.

No change in basic mix proportions without approval from engineer.

Mixing Operations. Specified moisture content of aggregates adhered to for cold aggregate mixes.

All aggregates coated with bitumen and mix of uniform color and consistency.

Bitumen bucket completely emptied or drained.

Mixing time as specified and sufficient to coat aggregate thoroughly.

On sheet-asphalt jobs sand gradation checked hourly.

Weekly check of aggregate scales or more often if variation occurs.

Net weight of truck loads to equal total batch weights; check once a week.

Aggregates and bitumen heated to specified or approved temperatures; keep daily record.

Aggregates or bitumen never to be heated above the specified limits.

Mixture leaves plant at specified or approved temperature.

Proportions of mixture checked daily by dissolving the bitumen of a representative sample and making screen analysis of aggregates.

Transporting Mixture. All trucks covered with canvas or tarpaulin.

Trucks cleaned and sprayed with light oil or soap emulsion before mixture is placed therein; avoid excess.

Insulated truck bodies preferable if available.

No loads sent out if weather will hinder proper laying; cooperate with field inspector and contractor in this respect.

Field Inspection

Subgrade or Base. Compacted and shaped according to plans and specifications.

Prime or tack coats, if specified, properly applied and curing time elapsed.

Holes and depressions repaired and rolled in advance of paving.

Base dry before mix is placed.

Note. Proper compaction and contour of base and subgrade are essential to a smooth and satisfactory pavement.

Forms. If specified, must be rigidly supported and accurately set to line and grade.

Placing. Paving machines and rollers inspected and approved before use for conformance with specified requirements.

Screeds on paver checked for crown ordinates. See p. 229 for crown offsets.

Screeds cleaned at noon and night shutdowns with fuel oil and scrapers. Contact surfaces of paving equipment lightly oiled.

Avoid excessive hand raking behind paver. Paver should be so adjusted that only occasional touching behind will be necessary by hand.

Notify plant to shut down if rain begins. Loads in transit are customarily allowed to be placed if they are covered and temperature is sufficiently high.

Mixture delivered at proper temperature and not too rich or too lean. *Note.* Excessive bitumen in mix will flush to surface during rolling and mix will be fat, greasy, and soupy. Deficient bitumen is indicated by cracking under roller, pushing into lumps, and dull, lusterless appearance. Either condition must be reported immediately to plant inspector.

Check temperature frequently by use of immersion armored thermometer of Weston type or equal.

An overheated or burnt-up batch will usually give off a cloud of acrid, white smoke when dumped.

If bitumen drains off or migrates to bottom of truck and aggregate on top is uncoated, the plant inspector should be notified immediately.

Check thickness of course as follows: (1) Compute number of square yards a load will cover, and make a mark on the base to which a load should spread. (2) After initial rolling make small hole with putty knife in mixture and check depth with rule. (3) Check square yards laid against tons hauled at noon and at end of day. For dense bituminous concrete mixes, the yield should be about 1 sq. yd. for 1 in. in depth for every 110 lb. of mix.

Mixture spread to a loose depth that will produce specified finished thickness; loose depth must be determined by experiment.

Hand Spreading. Each shovelful turned over as placed and load so dumped that entire batch is shoveled into place.

Workmen not to walk in loose mixture.

Avoid excessive raking that pulls coarse stone to surface.

Control depth with spreading blocks of correct height.

Shovels, rakes, and tampers kept hot and clean.

Rolling. Rollers of type and weight specified, and equipped with water spray and scrapers on wheels.

Begin rolling as soon after spreading as mixture will bear the roller without shoving or hair cracking.

When specified, check square yards rolled per hour per roller.

Begin rolling at sides and proceed toward center, overlapping one-half width of roller on successive passes.

If not specified otherwise, use tandem rollers for initial rolling and keep 3-wheel rollers off until mix is somewhat cooled.

Rollers to reverse motion smoothly, not in jerks.

Length of roller passes to be staggered.

Surface checked immediately after initial rolling with straightedge and template. This must be done before mix cools so corrections can be made. Tolerance usually ½ in. to ¼ in. in 10 ft. Try to correct surface before mix hardens to avoid unsightly skin patches later.

Rollers and trucks not to park on pavement while it is still plastic.

Excessive rolling avoided; it will cause crushing of aggregate and displacement of mix.

Rolling diagonally and at right angles very desirable if width of street or road is sufficient.

Rolling continued until all roller creases are removed and specified density is attained.

Joints. At shutdowns and end of day's work, transverse joints are formed by rolling over edge and then cutting back a vertical joint at full depth.

All cold joints painted with liquid bitumen and fresh mixture rolled firmly against the joint face.

Seal Coat. If specified, check gallons per square yard, temperature, and type of material.

Final Inspection. Depressions and bumps over specified tolerance corrected by concentrated rolling or skin patches.

Oil spots and fat spots cut out and refilled and tamped.

Disintegrated spots where mixture is raveling cut out to full depth with vertical faces and refilled with fresh mixture thoroughly tamped and rolled.

Opening to Traffic. Edges protected from traffic runover before opening pavement, usually after final rolling when mix has cooled off and hardened or from 4 to 12 hr. after placing.

Pay Items. Accurate record kept of all contract pay items, such as:

Tons, square yards, or cubic yards (as specified) of mixture laid.

Volume of embedded structures if deducted from unit price.

Gallons or square yards of any prime, tack, or seal coats applied.

Record of batches condemned or wasted.

.Any other contract pay items.

USE OF BITUMINOUS MATERIALS TABLE 38.

Матентал	Commercial grade	Application temperature, °F 605 605 605 605 605 605 605 605 605 605	Penetration magadam, hot	encration integrating in the property of the property of the plant-int, open-graded mixes (wirshed stone)	Plant-mix, dense-graded mixes	Bituminous concrete	Surface treatment	Seal coats (fog, flush, or sand cover) Seal coats (carnet stone or armor coat)	Tack coats	rune coars (dense of tight dases)	Prime coats (porous or open bases)	Dust palliative x	Patching mixtures (cold patch)	plant mix	Check and inint fillow
	8-TA	720 120 80		~	1	R	×	~	-		×	×	*		
5	4-TA 3-TA	081 80		м "я 	4	H F	×	M >	¢ 14		+	*	**		
BACE	9-TA	081		и *k	1	×	Ħ	××	4 M		1	×	×	1	×
Ro/	7-TA	120		**	×	×	×	Þ	*				×	1	*
LAR T	8-TA	120		* *	×	×	×	•	4 14				×	×	×
H.T.	ET-9	325 120		* *	×		×	>	4 M					×	
ROAD TAR (RT) CUTBACK ROAD TAR (RTCB)	oi-TA	720 720	*	×	н	×	×	>	*					×	*
	HT-11	220 175	**	×	н	×	×	,	4						1
	RT-12	250 250	×	Ħ	×	×							•		,
	RTCB-5	120		 w		··	×						*.		
ſ	BC-0 BC-0	120 50		u	,		×						м		,
ĕ	SC-1	152					ĸ			×		×			
ROAD OIL, SLOW CURING ASPHALTIC (SC)	SC-2	120			1	M	×	×		×	×	×	Ä		
ASPHALITIC (SC)	SC-3	091			n	~	•	^					*		
SLOW TIC (₽-DS	92I 002			w .	,			•				x + x		
SC)	BC-₽	225		жĦ		-	×						×		
ING	9-DS	300	×	× 	×		×	>	4				¥		

Note. For both tars and road oils, the higher the number the more viscous the material. Thus an RT-1, RT-2, and SC-0 are non-viscous liquids at ordinary temperatures suited for sosking into a tighthy bound base like day-gravel. RT-4 to RT-7 and SC-2 to SC-4 will remain semi-liquid and are suited for mixing in place. RT-9 to RT-12 and SC-5 or SC-6 become solid or semi-solid at air temperatures and are suited for hot plant mixes, scaling, and maccadam. References. P. R. A., Koppers Co., Barrett Co., A.S.C.E., Barber-Greene Co. *Cool weather work (spring and fall). † Hot weather work (summer).

TABLE 38. USE OF BITUMINOUS MATERIALS, Continued

ABPHALT CEMENT (AC) PENETRATION	64 64 64 65 64 64 64 64 64 64 64 64 64 64 64 64 64	275 350 250 350 250 350 250 350 250 350 250 350 350	x† x x*	×	×	** * * * *	×	××	* *	• ×			м м м
ASPHALT EMULSION (AE)	SS-1 & 2 MS-1 MS-2 & 3	50 120 60 120 60 120 80 135	×	×	н		×	×	×	H 1	*	×	
RAPID-CURING CUTBACK ASPHALT (RC)	ВС-3 ВС-3 ВС-3 ВС-3 ВС-1	60 125 150 150 175 150 200 200 200 200 200 200 200 200 200 2	×	* **	H H		* * * *	* * * *	×	× ×	×	* *	×
Мвргом Сонгие Сот- васк Аврельт (МС)	ИС-2 ИС-3 ИС-3 ИС-1 ИС-1 ИС-0	09 120 201 202 203 203 203 203 203 203 203 203	•	* * *	ж ж ж ж		м м з м з	**************************************	***	x	× ×	× × × ×	† Hot weather work (summer).
Матюніль	Commercial grade	Application Temperature, °F. Penetration macadam hot	cold Plant-mix, open-graded	Mix-in-place, open-graded (crushed stone)	Plant-mix, dense-graded Mix-in-place, dense-graded (mulch) Bituminous (asphaltic) concrete	Sound contains	Sanu aspuati piant-mix Sand asphalt mix-in-place (road mix) Surface treatment	Seal coats (fog, flush, or sand cover)	Seal coats (carpet, stone, or armor coat) Tack coats	Frime coats, dense or tight bases Prime coats, open or porous bases	Soil stabilization Dust palliative	Patching mixtures (cold patch) Joint filler, brick	*Cool weather work (spring and fall). † Hot weather work (summer).

Nots. For outback asphalts, the higher the number the more viscous the material. For asphalt cements, the higher the penetration number the softer the papalit, thus for heavy traffic in hot weather a stiff grade such as 45 to 70 or 70 to 85 is used and for cool weather or light traffic softer grades are used. For ashedrences. P.R.A., Asphalt Institute, A.S.C.F., Barber-Greene Co., Texas Co. † Hot weather work (summer).

TABLE 39. GALLONS ASPHALTIC MATERIALS REQUIRED AT VARIOUS RATES OF APPLICATION *

GALLONS PER 100 LINEAR FEET

Width, ft.	9	12	15	16	20
Gal. per Sq. Yd.					
0.10	10.	13.3	16.7	17.8	22.2
0.15	15.	20.0	25.0	26.7	33.3
0.20	20.	26.7	33.3	35.6	44.4
0.25	25.	33.3	41.7	44.5	55.5
0.30	30.	40.0	50.0	53.4	66.6
0.35	35.	46.7	58.3	62.3	77.7
0.40	40.	53.3	66.7	71.2	88.8
0.45	45.	60.0	75.0	80.1	99.9
0.50	50.	66.7	83.4	89.0	111.1
1.25	125.	166.3	208.4	222.3	277.7
2.00	200.	266.7	333.4	355.6	444.4

GALLONS PER MILE

Width, ft.	9	12	15	16	20
Gal. per Sq. Yd. 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 1.25 2.00	530	700	880	940	1,170
	790	1,050	1,320	1,410	1,760
	1,050	1,410	1,760	1,880	2,350
	1,320	1,760	2,200	2,350	2,930
	1,580	2,110	2,640	2,820	3,520
	1,840	2,460	3,080	3,290	4,110
	2,110	2,820	3,520	3,750	4,690
	2,330	3,170	3,960	4,220	5,280
	2,640	3,520	4,400	4,690	5,870
	6,600	8,800	11,000	11,730	14,670
	10,560	14,080	17,600	18,770	23,470

^{*} From Pocket Reference for Highway Engineers, Asphalt Institute.

TABLE 40. TONS MINERAL AGGREGATE REQUIRED AT VARIOUS RATES OF APPLICATION *

Tons per 100 Linear Feet

Width, ft.	9	12	15	16	20
Lb. per Sq. Yd. 10 15 20 25 30 35 40 45 50	.5	.67	.84	.89	1.11
	.75	1.0	1.25	1.33	1.67
	1.0	1.33	1.67	1.77	2.22
	1.25	1.67	2.08	2.22	2.78
	1.5	2.0	2.50	2.67	3.33
	1.75	2.33	2.92	3.11	3.89
	2.0	2.67	3.33	3.56	4.44
	2.25	3.0	3.75	4.0	5.0
	2.5	3.33	4.16	4.44	5.55

Tons	PER	MILE
TOMB	FER	TATTITIES

Width, ft.	9	12	15	16	20
Lb. per Sq. Yd. 10 15 20 25 30 35 40 45 50	27 40 53 66 80 93 106 119	35 53 71 88 106 124 141 159 177	44 66 88 110 133 155 177 199 221	47 71 94 118 141 165 188 212 236	59 88 117 147 176 205 234 264 293

^{*} From Pocket Reference for Highway Engineers, Asphalt Institute.

TABLE 41. CUBIC YARDS OF AGGREGATE REQUIRED PER 100 LINEAR FEET AND PER MILE FOR VARIOUS LOOSE DEPTHS ON ROADS OF VARIOUS WIDTHS *

		Area			Cr	bic Yard	ls for Vari	ous Loose	Depths		
Width of					,	,			- D Op UND	,	
Road	Per	Sq. Yards	1"	11,2"	2"	21/2"	3"	31/2"	4"	5"	6"
6′	100'	66.6	1.9	2.8	3.7	4.6	5.6	6.5	7.4	9.3	11.1
	Mile	3520.0	97.8	146.7	195.6	244.4	293.3	342.2	391.1	488.9	586.7
7′	100'	77.7	2.2	3.2	4.3	5.4	6.5	7.6	8.6	10.8	13.0
	Mile	4106.6	114.1	171.1	228.1	285.2	342.2	399.3	456.3	570.4	684.4
8′	100'	88.8	2.5	3.7	4.9	6.2	7.4	8. 6	9.9	12.3	14.8
	Mile	4693.3	130.4	195.6	260.7	325.9	391.1	458. 3	521.5	651.9	782.2
9'	100'	100.0	2.8	4.2	5.6	6.9	8.3	9. 7	11. 1	13.9	16.7
	Mile	5280.0	146.7	220.0	293.3	366.7	440.0	513. 3	586. 7	733.3	880.0
10'	100'	111.1	3.1	4.6	6.2	7.7	9.3	10.8	12.3	15.4	18.5
	Mile	5866.6	163.0	244.4	325.9	407.4	488.9	570.4	651.9	814.8	977.8
12'	100'	133.3	3.7	5.6	7.4	9.3	11.1	13.0	14.8	18.5	22.2
	Mile	7040.0	195.6	293.3	391.1	488.9	586.7	684.4	782.2	977.8	1173.3
14'	100'	155.5	4.3	6.5	8.6	10.8	13.0	15. 1	17.3	21.6	25.9
	Mile	8213.3	228.1	342.2	456.3	570.4	684.4	798. 5	912.6	1140.7	1368.9
16'	100'	177.7	4.9	7.4	9.9	12.3	14.8	17.3	19.8	24.7	29.6
	Mile	9386.6	260.7	391.1	521.5	651.9	782.2	912.6	1043.0	1303.7	1564.4
18′	100'	200.0	5.6	8.3	11.1	13.9	16.7	19.4	22.2	27.8	33.3
	Mile	10560.0	293.3	440.0	586.7	733.3	880.0	1026.7	1173.3	1466.7	1760.0
20′	100'	222.2	6.2	9.3	12.3	15.4	18.5	21.6	24.7	30.9	37.0
	Mile	11733.3	325.9	488.9	651.9	814.8	977.8	1140.7	1303.7	1629.6	1955.6
21'	100'	233.3	6.5	9.7	13.0	16.2	19.4	22.7	25.9	32.4	38.9
	Mile	12320.0	342.2	513.3	684.4	855.6	1026.7	1197.8	1368.9	1711.1	2053.3
23′	100'	255.5	7.1	10.6	14. 2	17.7	21.3	24.8	28.4	35.5	42.6
	Mile	13493.3	374.8	562.2	749. 6	937.0	1124.4	1311.9	1499.3	1874.1	2248.9
24'	100'	266. 6	7.4	11.1	14.8	18.5	22. 2	25.9	29.6	37.0	44.4
	Mile	14080. 0	391.1	586.7	782.2	977.8	1173. 3	1368.9	1564.4	1955.6	· 2346.7

Rolling compacts crushed aggregate base course approximately 20% and wearing course approximately 25%. Ordinary bank gravel compacts approximately 331/4%.

For road 5' wide take half of 10' quantity.

For road 22' wide add quantities for 10' and 12' widths.

For road 26' wide add quantities for 20' and 6' widths.

For road 28' wide take twice quantity for 14' width.

For road 30' wide take three times quantity for 10' width.

^{*} From Tarmac Handbook, Koppers Co.

TABLE 42. AREAS OF PAVEMENT SURFACES *

WIDTH IN	Square Feet	SQUARE YARDS	SQUARE YARDS
FEET	PER MILE	PER MILE	PER LINEAR FOOT
1	5,280	587	0.1111
8	42,240	4,693	0.8888
9	47,520	. 5,280	1.0000
10	52,800	5,867	1.1111
11	58,080	6,453	1.2222
12	63,3 60	7,040	1.3333
15	79,200	8,800	1.6667
16	84,480	9,387	1.7778
18	95,040	10,560	2.0000
20	105,600	11,733	2.2222
22	116,160	12,906	2.4444
24	126,720	14,080	2.6667
2 6	137,280	15,253	2.8888
28	147,840	16,426	3.1110
30	158,400	17,600	3.3333
32	168,960	18,773	3.5555
3 6	190,080	21,120	4.0000
40	211,200	23,467	4.4444
50	264,000	29,333	5.5556

^{*} From Bitumuls Handbook, American Bitumuls Co.

TABLE 43. LINEAR FEET COVERED BY 1 TON OF AGGREGATE AT VARIOUS RATES OF APPLICATION *

Width, ft.	9	12	15	16	20
Lb. per Sq. Yd.					
10	200	150	120	113	90
15	133	100	80	75	60
20	100	75	60	56	45
25	80	60	48	45	36
30	67	50	40	38	30
35	57	43	34	32	26
4 0	50	38	30	28	23
45	44	33	27	25	20
50	40	30	24	23	18

^{*} From Pocket Reference for Highway Engineers, Asphalt Institute.

TABLE 44. WEIGHT AND VOLUME RELATIONS MINERAL AGGREGATES *

BROKEN STONE

Pounds per Cubic Yard

		Loose Spread	Compacted
Kind	Sp. Gr.	45% Voids	30% Voids
Trap	2.8	2590	3300
	2.9	2680	3420
	3.0	2770	3540
	3.1	2870	3650
Granite	2.6	2400	3060
	2.7	2500	3180
	2.8	2590	3300
Limestone	2.6	2400	3060
	2.7	2500	3180
	2.8	2590	3300
Sandstone	2.4	2220	2830
	2.5	2310	2940
	2.6	2400	3060
	2.7	2500	3180

GRAVEL AND SAND

Approximate Number of Pounds per Cubic Yard

Voids	Weight	Voids	Weight
50%	2240	35%	2910
45%	2460	30%	3130
40%	2680	25%	3350

^{*} From Pocket Reference for Highway Engineers, Asphalt Institute.

TABLE 45. WEIGHT AND VOLUME RELATIONS OF ASPHALTIC MATERIALS AT 60° F. *

Specific Gravity	Pounds per Gallon	Gallons per Ton	Specific Gravity	Pounds per Gallon	Gallons per Ton	Specific Gravity	Pounds per Gallon	Gallons per Ton
0.930 0.935 0.940 0.945 0.950 0.955 0.960 0.965 0.970	7.745 7.786 7.828 7.870 7.911 7.953 7.995 8.036 8.078 8.120	258.2 256.8 255.6 254.2 252.8 251.4 250.2 248.8 247.6 246.4	0.980 0.985 0.990 0.995 1.000 1.005 1.010 1.015 1.020 1.025	8.162 8.203 8.245 8.287 8.328 8.370 8.412 8.453 8.495 8.537	245.0 243.8 242.6 241.4 240.2 239.0 237.8 236.6 235.4 234.2	1.030 1.035 1.040 1.045 1.050 1.055 1.10 1.20 1.30	8.578 8.620 8.662 8.704 8.745 8.787 9.161 9.994 10.826 11.659	233.2 232.0 230.8 229.8 228.6 227.6 218.3 200.1 184.8 171.6

^{*} From Principles of Highway Construction, Public Roads Administration.

TABLE 46. DISTANCE IN LINEAL FEET COVERED BY A 1000-GALLON DISTRIBUTOR TANK LOAD *

Application Rate, gallons	Width of Spread, feet									
per square yard	2	3	4	5	6	7	8	9	10	11
0.1	45,000	30,000	22,500	18,000	15,000	12,857	11,250	10.000	9000	8182
0.15	30,000	20,000	15,000	12,000	10,000	8,571	7,500	6,667	6000	5455
0.2	22,500	15,000	11,250	9,000	7,500	6,429	5,625	5,000	4500	4091
0.25	18,000	12,000	9,000	7,200	6,000	5,143	4,500	4,000	3000	3273
0.3	15,000	10,000	7,500	6,000	5,000	4,286	3,750	3,333	3000	2727
0.333	13,500	9,000	6,750	5,400	4,500	3,857	3,375	3,000	2700	2455
0.35	12,857	8,571	6,429	5,143	4,286	3,673	3,214	2,857	2571	2338
0.4	11,250	7,500	5,625	4,500	3,750	3,214	2,813	2,500	2250	2043
0.45	10,000	6,667	5,000	4,000	3,333	2,857	2,500	2,222	2000	1818
0.5	9,000	6,000	4,500	3,600	3,000	2,571	2,250	2,000	1800	1636
0.6	7,500	5,000	3,750	3,000	2,500	2,143	1,875	1,667	1500	136
0.667	6,750	4,500	3,375	2,700	2,250	1,929	1,688	1,500	1350	1227
0.7	6,429	4,286	3,214	2,571	2, 143	1,837	1,607	1,429	1286	1169
0.75	6,000	4,000	3,000	2,400	2,000	1,714	1,500	1,333	1200	109
0.8	5,625	3,750	2,813	2,250	1,875	1,607	1,406	1,250	1125	1023
0.9	5,000	3,333	2,500	2,000	1,667	1,429	1,250	1,111	1000	90
1.0	4,500	3,000	2,250	1,800	1,500	1,286	1,125	1,000	900	81
1.25	3,600	2,400	1,800	1,440	1,200	1,029	900	800	720	65
1.5	3,000	2,000	1,500	1,200	1,000	857	750	667	600	54
1.75	2,571	1,714	1,286	1,029	857	735	643	571	514	46
2.0	2,250	1,500	1,125	900	750	643	563	500	450	40
2.25	2,000	1,333	1,000	800	667	571	500	444	400	36
2.5	1,800	1,200	900	720	600	514	450	400	360	32
Application R			*	,	Width of 8	Spread, fee	t			

Application Rate,	Width of Spread, feet								
gallons per square yard	12	13	14	15	16	17	18	19	20
0.1	7500	6923	6429	6000	5625	5294	5000	4737	450
0.15	5000	4615	4286	4000	3750	3529	3333	3158	300
0.2	3750	3462	3214	3000	2813	2647	2500	2368	225
0.25	3000	2769	2571	2400	2250	2118	2000	1895	180
0.3	2500	2308	2143	2000	1875	1765	1667	1579	150
0.333	2250	2077	1929	1800	1688	1588	1500	1421	135
0.35	2143	1978	1837	1714	1607	1513	1429	1353	128
0.4	1875	1731	1607	1500	1406	1324	1250	1184	112
0.45	1667	1538	1429	1333	1250	1176	1111	1053	100
0.5	1500	1385	1286	1200	1125	1059	1000	947	90
0.6	1250	1154	1071	1000	938	882	833	789	75
0.667	1125	1038	964	900	844	794	750	711	67
0.7	1071	989	918	857	804	756	714	677	64
0.75	1000	923	857	800	750	706	667	632	60
0.8	938	865	804	750	703	662	625	592	56
0.9	833	769	714	667	625	588	556	526	50
1.0	750	692	643	600	563	529	500	474	45
1.25	600	554	514	480	450	424	400	379	36
1.5	500	462	429	400	375	353	333	316	30
1.75	429	396	367	343	321	303	286	271	25
2.0	375	346	321	300	281	265	250	237	22
2.25	333	308	286	267	250	235	222	211	20
2.5	300	277	257	240	225	212	200	189	18

^{*} From Principles of Highway Construction, Public Roads Administration.

TABLE 47. STANDARD ABRIDGED VOLUME CORRECTION TABLE FOR BITUMINOUS MATERIALS *

[Volume at 60° F. occupied by unit volume at indicated temperature; t = observed temperature °F.; M = multiplier to reduce volume to 60° F.]

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	serve	ed temperat							
60 1.0000 145 0.9707 230 0.9425 315 0.9154 65 .9982 150 .9691 235 .9409 320 .9138 70 .9965 155 .9674 240 .9392 325 .9123 75 .9948 160 .9657 245 .9376 330 .9107 80 .9931 165 .9640 250 .9360 335 .9092 85 .9914 170 .9623 255 .9344 340 .9076 90 .9896 175 .9606 260 .9328 345 .9061 95 .9879 180 .9590 265 .9312 350 .9045 100 .9862 185 .9573 270 .9296 355 .9030 105 .9844 190 .9556 275 .9280 360 .9014 110 .9827 195 .9589 280 .9264 365 .8999 115 .9809 200 .9523 285 .9248 370 .8984 120 .9775 210 .9490 295 .9217 380 .8953 135 .9741 220 .9450 295 .9217 380 .8953 135 .9741 220 .9450 295 .9217 380 .8953 135 .9741 220 .9458 305 .9185 390 .8923 140 .9724 225 .9441 310 .9169 395 .8908 65 .9980 150 .9647 235 .9326 320 .9016 65 .9980 150 .9647 235 .9327 335 .8960 295 .9881 175 .9980 150 .9647 235 .9327 335 .8989 235 .9940 160 .968 245 .9280 345 .8998 150 .9758 215 .9474 300 .9201 385 .8938 305 .9185 390 .8923 140 .9724 225 .9441 310 .9169 395 .8908 .8923 140 .9724 225 .9441 310 .9169 395 .8908 .8923 140 .9724 225 .9441 310 .9169 395 .8908 .8923 140 .9724 225 .9441 310 .9169 395 .8908 .8923 140 .9724 225 .9441 310 .9169 395 .8908 .8908 .9921 165 .9980 150 .9647 235 .9326 320 .9016 .8893 80 .9921 165 .9826 240 .9307 325 .8998 75 .9940 160 .9608 245 .9289 330 .8980 .8909 .9881 175 .9550 250 .9270 335 .8962 .85 .9901 170 .9570 255 .9252 340 .8945 .995 .9861 180 .9532 265 .9215 .350 .8999 .9861 180 .9532 265 .9215 .350 .8999 .9861 180 .9532 265 .9215 .350 .8999 .9861 180 .9532 265 .9215 .350 .8999 .9861 180 .9532 265 .9215 .350 .8999 .9861 180 .9532 265 .9215 .350 .8999 .9861 180 .9532 265 .9215 .350 .8999 .9861 180 .9532 265 .9215 .350 .8999 .9861 180 .9532 265 .9215 .350 .8999 .9861 135 .9783 200 .9487 285 .9160 .8874 .110 .9686 225 .9363 310 .9052 395 .8752 .900 .9744 215 .9401 300 .9088 .858 .8766 .9856 .9986 .900 .9487 285 .9160 .865 .8856 .9985 .110 .9852 160 .9709 210 .9569 .700 .9970 .9970 .9970 .9980 .9911 .9583 165 .9695 .915 .9556 .9925 .900 .9911 .9556 .9980 .900 .9083 .900 .9083 .9000 .9081 .9083 .9090 .9083 .9090 .9083 .9		GROUP 0	. Spec	ific Gravi	TA YT	60° F., Ав	ove 0.9	66	
65 9982 150 9691 235 9409 320 9138 70 9965 155 9674 240 9392 325 9123 75 9948 160 9657 245 9376 330 9107 80 9931 165 9640 250 9360 335 9092 85 9914 170 9623 255 9344 340 9076 90 9896 175 9606 260 9328 345 9061 95 9879 180 9590 265 9312 350 9045 100 9862 185 9573 270 9296 355 9030 105 9844 190 9556 275 9280 360 9014 110 9867 195 9539 280 9264 365 8999 115 9809 200 9523 285 9248 370 8984 120 9792 205 9507 290 9233 375 8969 125 9775 210 9490 295 9217 380 8953 130 9758 215 9474 300 9201 385 8938 135 9741 220 9458 305 9185 390 8923 140 9724 225 9441 310 9169 395 8908 GROUP 1. Specific Gravity at 60°F., 0.850 to 0.966 60 1.0000 145 0.9667 230 0.9345 315 0.9034 65 9980 150 9647 235 9326 320 9016 70 9960 155 9628 240 9307 325 8998 75 9940 160 9608 245 9289 330 8980 80 9921 165 9590 250 9270 335 8962 85 9901 170 9570 255 9252 340 8945 90 9881 175 9551 260 9234 435 8969 100 9881 175 9551 260 9234 4365 8990 100 9881 175 9551 260 9249 307 325 8998 100 9981 165 9638 245 9239 330 8980 100 9881 175 9560 250 9270 335 8962 100 9881 175 9551 260 9234 345 8962 100 9881 175 9551 260 9234 345 8927 105 9822 190 9494 275 9179 360 8874 110 9803 195 9476 280 9160 365 8839 125 9744 210 9419 295 9106 380 8821 125 9744 210 9419 295 9106 380 8824 126 9763 205 9438 290 9124 375 8839 127 9763 205 9438 290 9124 375 8839 129 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9457 9509 950 9509 9509 9509 9509 9509 950	t	M	ŧ	M	t	M	ŧ	M	
65 9982 150 9691 235 9409 320 9138 70 9965 155 9674 240 9392 325 9123 75 9948 160 9657 245 9376 330 9107 80 9931 165 9640 250 9360 335 9092 85 9914 170 9623 255 9344 340 9076 90 9896 175 9606 260 9328 345 9061 95 9879 180 9590 265 9312 350 9045 100 9862 185 9573 270 9296 355 9030 105 9844 190 9556 275 9280 360 9014 110 9867 195 9539 280 9264 365 8999 115 9809 200 9523 285 9248 370 8984 120 9792 205 9507 290 9233 375 8969 125 9775 210 9490 295 9217 380 8953 130 9758 215 9474 300 9201 385 8938 135 9741 220 9458 305 9185 390 8923 140 9724 225 9441 310 9169 395 8908 GROUP 1. Specific Gravity at 60°F., 0.850 to 0.966 60 1.0000 145 0.9667 230 0.9345 315 0.9034 65 9980 150 9647 235 9326 320 9016 70 9960 155 9628 240 9307 325 8998 75 9940 160 9608 245 9289 330 8980 80 9921 165 9590 250 9270 335 8962 85 9901 170 9570 255 9252 340 8945 90 9881 175 9551 260 9234 435 8969 100 9881 175 9551 260 9234 4365 8990 100 9881 175 9551 260 9249 307 325 8998 100 9981 165 9638 245 9239 330 8980 100 9881 175 9560 250 9270 335 8962 100 9881 175 9551 260 9234 345 8962 100 9881 175 9551 260 9234 345 8927 105 9822 190 9494 275 9179 360 8874 110 9803 195 9476 280 9160 365 8839 125 9744 210 9419 295 9106 380 8821 125 9744 210 9419 295 9106 380 8824 126 9763 205 9438 290 9124 375 8839 127 9763 205 9438 290 9124 375 8839 129 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9438 290 9124 375 8839 120 9763 205 9457 9509 950 9509 9509 9509 9509 9509 950	60	1.0000	145	0.9707	230	0.9425	315	0.9154	
70				.9691					
75			155		240				
80 9931 165 9640 250 9360 335 9092 85 9914 170 9623 255 9344 340 9076 90 9896 175 9606 260 9328 345 9061 95 9879 180 9590 265 9312 350 9045 100 9862 185 9573 270 9296 355 9030 105 9844 190 9556 275 9280 360 9014 110 9827 195 9539 280 9264 365 8999 115 9809 200 9523 285 9248 370 8984 120 9792 205 9507 290 9233 375 8969 125 9775 210 9490 295 9217 380 8953 130 9758 215 9474 300 9201 385 8938 135 9741 220 9458 305 9185 390 8923 140 9724 225 9441 310 9169 395 8908 60 1.0000 145 0.9667 230 0.9345 315 0.9034 65 9980 150 9647 235 9326 320 9016 60 1.0000 145 0.9667 230 0.9345 315 0.9034 65 9980 150 9647 235 9326 320 9016 70 9960 155 9628 240 9307 325 8998 75 9940 160 9608 245 9289 330 8980 80 9921 165 9628 240 9307 325 8998 75 9940 160 9608 245 9289 330 8980 80 9921 165 9628 240 9307 325 8998 75 9940 180 9687 250 9270 335 8962 85 9901 170 9570 255 9252 340 8945 90 9881 175 9551 260 9234 345 8927 95 9861 180 9532 265 9215 350 8909 100 9841 185 9513 270 9197 355 8892 105 9822 190 9494 275 9179 360 8874 110 9803 195 9476 280 9160 365 886 115 9783 200 9457 285 9160 365 8874 110 9803 195 9476 280 9100 365 8856 115 9783 200 9457 285 9142 370 8839 125 9744 210 9419 295 9106 365 8856 135 9705 220 9382 305 9070 309 8769 140 9821 185 9513 270 9197 355 8892 105 9822 190 9494 275 9179 360 8874 110 9803 195 9476 280 9160 365 8866 135 9705 220 9382 305 9070 390 8769 140 9686 225 9363 310 9052 395 8752 400 8734 GROUP O. Tar Products, A.A.S.H.O. GRADES RT-5, RT-6, RT-7, RT-8, RT-9, RT-10, RT-11, RT-12, RTCB-5, RTCB-6 60 1.0000 105 0.9867 155 0.9723 205 0.9533 65 9985 110 9852 160 9709 210 9569 70 99955 120 9823 170 9681 220 9542 80 99901 125 9839 175 9667 225 9528 80 99901 125 9839 175 9667 225 9528 80 99901 125 9839 175 9667 225 9528 80 99901 135 9889 185 9695 215 9556 75 9985 120 9823 170 9681 220 9542 80 99901 125 9839 175 9667 225 9528 80 99901 125 9839 175 9667 225 9528 80 99901 125 9839 175 9667 225 9528 80 99901 125 9839 175 9667 225 9528 80 99901 125 9839 175 9667 225 9528 80 99901 125 9839 175 9667 225 9528 80 99901 125 9839									
85			165						
90			170		255				
95 9879 180 9590 265 9312 350 9045 100 9862 185 9573 270 9296 355 9030 105 9844 190 9556 275 9280 360 9014 110 9827 195 9539 280 9264 365 8999 115 9809 200 9523 285 9248 370 8984 120 9792 205 9507 290 9233 375 8969 125 9775 210 9490 295 9217 380 8953 130 9758 215 9474 300 9201 385 8938 135 9741 220 9488 305 9185 390 8923 140 9724 225 9441 310 9169 395 8908 400 8893 GROUP 1. SPECIFIC GRAVITY AT 60° F., 0.850 TO 0.966 60 1.0000 145 0.9667 230 0.9345 315 0.9034 65 9980 150 9647 235 9326 320 9016 70 9960 155 9628 240 9307 325 8998 80 9921 165 9502 250 9270 335 8980 80 9921 165 9502 250 9270 335 8962 85 9901 170 9570 255 9252 340 8945 99 9881 175 9551 260 9234 345 8927 95 9861 180 9532 265 9215 350 8909 100 9841 185 9513 270 9197 355 8892 100 9841 185 9513 270 9197 355 8892 125 9744 210 9419 295 9106 365 8854 125 9734 210 9419 295 9106 3854 8851 155 9783 200 9457 285 9142 370 8839 120 9763 205 9435 315 0.9034 8854 115 9783 200 9457 285 9142 370 8839 120 9763 205 9437 285 9142 370 8839 120 9763 205 9437 285 9142 370 8839 120 9763 205 9437 285 9179 360 8874 110 9803 195 9476 280 9160 365 8856 115 9783 200 9457 285 9142 370 8839 120 9763 205 9438 290 9124 375 8821 125 9744 210 9419 295 9106 380 8804 130 9724 215 9401 300 9988 385 8786 115 9783 200 9457 285 9106 380 8804 130 9724 215 9401 300 9988 385 8786 135 9705 220 9382 305 995 140 9686 225 9363 310 9052 395 8752 400 8769 140 9686 225 9363 310 9052 395 8752 400 8769 140 9686 225 9363 310 9052 395 8752 80 9940 125 9895 110 9852 160 9709 210 9569 70 9970 115 9832 160 9853 170 9861 220 9763 205 9363 310 9052 395 8759 140 9686 225 9363 310 9052 395 8759 140 9686 225 9363 310 9052 395 8759 140 9686 225 9363 310 9052 395 8759 140 9686 225 9363 310 9052 395 8759 140 9686 225 9363 310 9052 395 8759 140 9686 225 9363 310 9052 395 8759 140 9686 225 9363 310 9052 395 8759 140 9686 225 9363 310 9052 395 8759 140 9686 225 9363 310 9052 395 8759 140 9686 225 9363 310 9052 395 8759 140 9851 145 9780 185 9067 225 9558 85 9926 130 9796 185 9667 225 9558 85 9926 130 9796 185 9667	90		175			.9328			
100 9862 185 9573 270 9296 355 9030 105 9844 190 9556 275 9280 360 9014 110 9827 195 9539 280 9264 365 8899 115 9809 200 9523 285 9248 370 8984 120 9792 205 9507 290 9233 375 8969 125 9775 210 9490 295 9217 380 8953 130 9758 215 9474 300 9201 385 8938 135 9741 220 9458 305 9158 390 8923 140 9724 225 9441 310 9169 395 8908 GROUP 1. Specific Gravity at 60° F., 0.850 to 0.966 60 1.0000 145 0.9667 230 0.9345 315 0.9034 65 9980 150 9647 235 9326 320 9016 70 9960 155 9628 240 9307 325 8998 75 9940 160 9608 245 9289 330 8980 80 9921 165 9508 240 9307 325 8998 75 9940 160 9608 245 9289 330 8980 80 9921 165 9509 250 9270 335 8962 85 9901 170 9570 255 9252 340 8945 90 9881 175 9551 260 9234 345 8927 95 9861 180 9532 265 9215 350 8909 100 9841 185 9532 265 9215 350 8909 100 9841 185 9513 270 9197 355 8892 105 9822 190 9494 275 9179 360 8874 110 9803 195 9476 280 9160 365 8856 115 9783 200 9457 285 9142 370 8839 120 9763 205 9438 290 9124 375 8821 125 9744 210 9419 295 9106 380 8804 130 9724 215 9401 300 9088 385 876 120 9763 205 9438 290 9124 375 8821 125 9744 210 9419 295 9106 380 8804 130 9724 215 9401 300 9088 385 876 140 9686 225 9363 310 9052 395 8752 400 8734 GROUP 00. Tar Products, A.A.S.H.O. GRADES RT-5, RT-6, RT-7, RT-8, RT-9, RT-10, RT-11; RT-12, RTCB-5, RTCB-6 60 1.0000 105 0.9867 155 0.9723 205 0.9583 65 9985 110 9882 100 9704 180 9052 395 8752 400 8734 GROUP 00. Tar Products, A.A.S.H.O. GRADES RT-5, RT-6, RT-7, RT-8, RT-9, RT-10, RT-11; RT-12, RTCB-5, RTCB-6 60 1.0000 105 0.9867 155 0.9723 205 0.9583 65 9985 110 9882 100 9704 180 9605 215 9556 75 9955 120 9838 165 9605 215 9556 90 9981 135 9706 190 9665 225 9528 85 99926 130 9794 180 9635 235 9501 95 9886 140 9766 190 9625 240 9488 100 9881 145 9751 195 9661 2245 9474			180		265	.9312			
105			185		270	.9296	355		
110			190		275	.9280	360		
115			195		280				
120		. 9809	200		285	.9248	370		
125		.9792					375		
130			210	.9490	295		380		
135			215	.9474	300	.9201			
Group 1. Specific Gravity at 60° F., 0.850 to 0.966 60 1.0000 145 0.9667 230 0.9345 315 0.9034 65 .9980 150 .9647 235 .9326 320 .9016 70 .9960 155 .9628 240 .9307 325 .8998 75 .9940 160 .9688 245 .9289 330 .8980 80 .9921 165 .9590 250 .9270 335 .8962 85 .9901 170 .9570 255 .9252 340 .8945 90 .9881 175 .9551 260 .9234 345 .8927 95 .9861 180 .9532 265 .9215 350 .8909 100 .9841 185 .9513 270 .9197 355 .8892 105 .9822 190 .9494 275 .9179 360 .8874 110 .9803 195 .9476 280 .9160 365 .8856 115 .9783 200 .9457 285 .9142 370 .8839 120 .9763 205 .9438 290 .9124 375 .8821 125 .9744 210 .9419 295 .9106 380 .8804 130 .9724 215 .9401 300 .9088 385 .8786 135 .9705 220 .9382 305 .9070 390 .8769 140 .9686 225 .9363 310 .9052 395 .8752 Group 00. Tar Products, A.A.S.H.O. Grades RT-5, RT-6, RT-7, RT-8, RT-9, RT-10, RT-11, RT-12, RTCB-5, RTCB-6 60 1.0000 105 0.9867 155 0.9723 205 0.9583 65 .9985 110 .9852 160 .9709 210 .9569 70 .9970 115 .9838 165 .9667 225 .9528 85 .9926 130 .9794 180 .9653 230 .9515 90 .9981 135 .9780 185 .9667 225 .9528 85 .9926 130 .9794 180 .9625 240 .9488 100 .9881 145 .9751 195 .9611 245 .9474		.9741	220	. 9458	305	.9185			
Group 1. Specific Gravity at 60° F., 0.850 to 0.966 60 1.0000 145 0.9667 230 0.9345 315 0.9034 65 .9980 150 .9647 235 .9326 320 .9016 70 .9960 155 .9628 240 .9307 325 .8998 75 .9940 160 .9608 245 .9289 330 .8980 80 .9921 165 .9590 250 .9270 335 .8962 85 .9901 170 .9570 255 .9252 340 .8945 90 .9881 175 .9551 260 .9234 345 .8927 95 .9861 180 .9532 265 .9215 350 .8909 100 .9841 185 .9513 270 .9197 355 .8892 105 .9822 190 .9494 275 .9179 360 .8874 110 .9803 195 .9476 280 .9160 365 .8856 115 .9783 200 .9457 285 .9142 370 .8839 120 .9763 205 .9438 290 .9124 375 .8821 125 .9744 210 .9419 295 .9106 380 .8804 130 .9724 215 .9401 300 .9088 385 .8786 135 .9705 220 .9382 305 .9070 390 .8769 140 .9686 225 .9363 310 .9052 395 .8752 Group 00. Tar Products, A.A.S.H.O. Grades RT-5, RT-6, RT-7, RT-8, RT-9, RT-10, RT-11; RT-12, RTCB-5, RTCB-6 60 1.0000 105 0.9867 155 0.9723 205 0.9583 65 .9985 110 .9852 160 .9709 210 .9569 70 .9970 115 .9838 165 .9695 215 .9556 75 .9955 120 .9823 170 .9681 220 .9542 80 .9940 125 .9809 175 .9667 225 .9528 85 .9926 130 .9794 180 .9625 240 .9488 100 .9881 145 .9751 195 .9611 245 .9474									
GROUP 1. SPECIFIC GRAVITY AT 60° F., 0.850 TO 0.966 60 1.0000 145 0.9667 230 0.9345 315 0.9034 65 .9980 150 .9647 235 .9326 320 .9016 70 .9960 155 .9628 240 .9307 325 .8998 75 .9940 160 .9608 245 .9289 330 .8980 80 .9921 165 .9590 250 .9270 335 .8962 85 .9901 170 .9570 255 .9252 340 .8945 90 .9881 175 .9551 260 .9234 345 .8927 95 .9861 180 .9532 265 .9215 350 .8909 100 .9841 185 .9513 270 .9197 355 .8892 105 .9822 190 .9494 275 .9179 360 .8874 110 .9803 195 .9476 280 .9160 365 .8856 115 .9783 200 .9457 285 .9142 370 .8839 120 .9763 205 .9438 290 .9124 375 .8821 125 .9744 210 .9419 295 .9106 380 .8804 130 .9724 215 .9401 300 .9088 385 .8786 135 .9705 220 .9382 305 .9070 390 .8769 140 .9686 225 .9363 310 .9052 395 .8752 400 .8734 GRADES RT-5, RT-6, RT-7, RT-8, RT-9, RT-10, RT-11; RT-12, RTCB-5, RTCB-6 60 1.0000 105 0.9867 155 0.9723 205 0.9583 65 .9985 110 .9852 160 .9709 210 .9569 70 .9970 115 .9838 165 .9695 215 .9556 75 .9955 120 .9823 170 .9681 220 .9542 80 .9940 125 .9809 175 .9667 225 .9528 85 .9926 130 .9794 180 .9653 230 .9515 90 .9911 135 .9780 185 .9639 235 .9501 95 .9886 140 .9766 190 .9625 240 .9488 100 .9881 145 .9751 195 .9611 245 .9474					010				
60 1.0000 145 0.9667 230 0.9345 315 0.9034 65 .9980 150 .9647 235 .9326 320 .9016 70 .9960 155 .9628 240 .9307 325 .8998 75 .9940 160 .9608 245 .9289 330 .8980 80 .9921 165 .9590 250 .9270 335 .8962 85 .9901 170 .9570 255 .9252 340 .8945 90 .9881 175 .9551 260 .9234 345 .8927 95 .9861 180 .9532 265 .9215 350 .8909 100 .9841 185 .9513 270 .9197 355 .8892 105 .9822 190 .9494 275 .9179 360 .8874 110 .9803 195 .9476 280 .9160 365 .8856 115 .9783 200 .9457 285 .9142 370 .8839 120 .9763 205 .9438 290 .9124 375 .8821 125 .9744 210 .9419 295 .9106 380 .8804 130 .9724 215 .9401 300 .9088 385 .8786 135 .9705 220 .9382 305 .9070 390 .8769 140 .9686 225 .9363 310 .9052 395 .8752 400 .8734 Group 00. Tar Products, A.A.S.H.O. Grades RT-5, RT-6, RT-7, RT-8, RT-9, RT-10, RT-11, RT-12, RTCB-5, RTCB-6 60 1.0000 105 0.9867 155 0.9703 205 0.9583 65 .9985 110 .9852 160 .9709 210 .9569 70 .9970 115 .9838 165 .9695 215 .9556 75 .9955 120 .9823 170 .9681 220 .9542 80 .9940 125 .9809 175 .9667 225 .9528 85 .9926 130 .9794 180 .9653 230 .9515 90 .9911 135 .9780 185 .9639 235 .9501 955 .9886 140 .9766 190 .9625 240 .9488 100 .9881 145 .9751 195 .9611 245 .9474		GROUP 1.	SPECII	TIC GRAVIT	т ат 60	0° F., 0.850			
65	60								
70					235		320		
75			155						
80			160				330		
85	60		165		250				
90			170	9570	255				
95			175						
100			180				350		
105			185		270		355		
110			190		275				
115	110		105						
120		9783	200		285	0142	370		
125			205		200		375		
130									
135			215				385		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			220		305		300		
GROUP 00. TAR PRODUCTS, A.A.S.H.O. GRADES RT-5, RT-6, RT-7, RT-8, RT-9, RT-10, RT-11, RT-12, RTCB-5, RTCB-6 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.9686		9363			395		
Grades RT-5, RT-6, RT-7, RT-8, RT-9, RT-10, RT-11; RT-12, RTCB-5, RTCB-6									
Grades RT-5, RT-6, RT-7, RT-8, RT-9, RT-10, RT-11; RT-12, RTCB-5, RTCB-6 $\begin{array}{cccccccccccccccccccccccccccccccccccc$		Gr	00 ano	TAP PR	ODTOTE	AASH			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cninna I							מסייות פו	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$), MI-1,	RTC	B-6	1-10, 17.1-1	r, n.1	12, KIOD-	ο,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.9723		0.9583	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.9985				.9709		.9569	
80 .9940 125 .9809 175 .9667 225 .9528 85 .9926 130 .9794 180 .9653 230 .9515 90 .9911 135 .9780 185 .9639 235 .9501 95 .9896 140 .9766 190 .9625 240 .9488 100 .9881 145 .9751 195 .9611 245 .9474		.9970	115		165		215	.9556	
85 .9926 130 .9794 180 .9653 230 .9515 90 .9911 135 .9780 185 .9639 235 .9501 95 .9896 140 .9766 190 .9625 240 .9488 100 .9881 145 .9751 195 .9611 245 .9474	75		120		170	.9681	220	.9542	
90 .9911 135 .9780 185 .9639 235 .9501 95 .9896 140 .9766 190 .9625 240 .9488 100 .9881 145 .9751 195 .9611 245 .9474					175	.9667	225	.9528	
95 .9896 140 .9766 190 .9625 240 .9488 100 .9881 145 .9751 195 .9611 245 .9474	85		130	.9794			230	.9515	
95 .9896 140 .9766 190 .9625 240 .9488 100 .9881 145 .9751 195 .9611 245 .9474			135	. 9780	185	. 9639	235	.9501	
			140	.9766	190	.9625	240	.9488	
150 .9737 200 .9597 250 .9461	100	.9881						.9474	
	•		150	.9737	200	.9597	250	.9461	

^{*} From Principles of Highway Construction, Public Roads Administration.

TABLE 48. AMOUNTS OF MATERIAL PER SQUARE YARD FOR A TYPICAL PENETRATION MACADAM SURFACE *

	Base		Surfac	E
	Size	Amount	Size	Amount
Coarse stone	3 to 2 in.	285 lb.	$2\frac{1}{2}$ to $1\frac{1}{2}$ in.	270 lb.
Bitumen		1.85 gal.		1.5 gal.
Medium stone	1 to $\frac{3}{4}$ in.	30 lb.	$\frac{3}{4}$ in. to No. 4	30 lb.
Bitumen		0.3 gal.		0.5 gal.
Fine stone	1 to $\frac{3}{4}$ in.	25 lb.	$\frac{3}{4}$ in. to No. 4	25 lb.
Bitumen				0.3 gal.
Stone chips	$\frac{1}{2}$ in. to No. 4	10 lb.	36 in. to No. 8	15 lb.
Do			3% in. to No. 8	10 lb.
Total aggregate		350 lb.		350 lb.
Total bitumen		2.15 gal.		2.3 gal.

^{*} From Principles of Highway Construction, Public Roads Administration.

Date_June 10	194_ <i>0</i>	Report No12
	Engineer	S. P. No. 2006-05
	•	F. A. P. No. 174

DAILY BITUMINOUS REPORT (CONSTRUCTION) * FOR MACADAM, BITUM. TREATMENTS, MIX-IN-PLACE

T. H. No	56 From	West Concord	ToJct. T.H. 14
Inspector	A. C. Johnson	Contractor	Pioneer Co.

	Sta	tion	Aggregate	Bituminous Material		Applica- Wid	
Course	From	То	Lb. per Sq. Yd.	Gal. per Sq. Yd.	Per cent of Mix	tion Temper- ature	of Material
Base prime Wearing Wearing Tack Seal	326 + 00 256 + 00 308 + 00 308 + 00 0 + 00	356 + 00 308 + 00 326 + 00 326 + 00 56 + 00	150 100 18	0.22 0.88 0.60 0.07 0.30	4.6 4.7	110° 200° 200° 200° 220°	26' 24' 24' 24'

AGGREGATE GRADING

Course	Course Pit No. or Total Per Cent Passing									
Course	Station	3/4	5⁄8	3/8	10	20	40	100	200	
Wearing Wearing Seal	506 506 Doe Gravel Co.	100 100	98 97	80 80 100	47 51 5.0	2.0	18 19		3.1 3.4	

BITUMINOUS MATERIALS USED

G	Kind and	G	allons App	lied
Course	Grade	Today	Prev.	To Date
Base prime Tack Wearing Seal	MC - 1 MC - 3 MC - 3 RT - 9	1,700 350 25,300 4,450	10,100 1,200 101,000 15,000	11,800 1,550 126,300 19,450
Weather Temperature	A.1 8 A.M			clear P.M. 78

EQUIPMENT

Description	No. Units	Hours Worked
Traveling plant Distributor Trucks Blade graders Roller Chip spreader Sweeper Drag broom Transfer tank	1 5 3 1 1 1	15 8 40 24 10 3 5 3

OPERATING TIME AND DELAYS

Time start4:0	00 а.м.	Time stop	7:30 р.м.	Gross time	151/9	Time delayed_	1,2	Net operating	15
Delays due to	Lune	ch ½ hr.							
Remarke:	Aggregati	a minad a	and souted now	77					

J. M. Smith Signed by_ Project Engineer

^{*} From Minnesota State Highway Department.

Date		_			E	Engineer			:	Report	No	
Type of pavement.			PLANT-MIX BITUMINOUS INSPECTION S. P. No.									
Width		_	1	DAILY	PA	VING I	REPORT	*	:	F. A. P	. No	
T. H. No.		Fr	om	То						_ Leng	th	
Engineer _												
Street insp	ector_					Pla	nt inspecto	or				
	~				Stati	on	Tons	Area i	n _Y	Yield Temper		
	Cou	rse		From	m	То	Mixture Placed	Area i Sq. Yo	i. Sq	. Yd.	When Laid	2
				-								
												_
				-					_			
Total												
	E	QUIPM	ENT				PLAC	ING ANI	Fini	BEING		
Spreading	Mach	ine		Tota Hour	s İ			Good	Fair	Fair Poor Rema		ks
Make and		No.	Width	Work	ed	Workability						_
Make and	туре	140.	WIGGI		-							_
Rollers			1		-	Rolling						_
		NT-	1 7974		-	rimsii	ed surrace					
Make and	type	No.	Wt.		-			HAUL :				
		<u> </u>	1		-	Average	round-tri	p time . haul			M	in.
Other Equ		ıt					WEATHE	R AND	Темр	ERATUR	Œ	
Description	n		No.		_	Weather	r: A.M ature: 7:00 2:00) A.M.	P.	M	A . M.	
						z campor	2:0	Р.М		5:00	Р.М	_
			T	ME DI	STRIB	UTION A	ND DELAY	rs				
Time start		Time stop			ross ne		Time delayed	i	tir	et pavi ne	ng	
Moving	Wea	ther	Non wk	. days	1	Rock	Sand	Filler	Bit	it. cement Chips		
4								_				
Paver	Pla	int 	Swite	hing	Har	ul road	Trucks	Rollers	-	Base	_	
Remarks									1			_
						Signed	by			ngineer		

^{*} From Minnesota State Highway Department.

.				E	nginee	r			_			
Date		DT 4.3700	3 6 7 3 7 .	n rmr	~ 4737	XT0	TATODY	O MTO3	_			
Type of Pavement		PLANT-MIX BITUMINOUS INSPECTION S. P. No F. A. P. No										
			DAIL									
T. H. No		From	· · ·		7	Го			L	ength		
Contractor Engineer			Locati of plan	on at			т	ype of	plant .			
Engineer		Plan	t insped	ctor _			St	reet ins	pector			
			BA	TCH]	Propo	RTIO	N'S					
	V	Wearing C	Course				Bind	ler Cou	ırse			
	-	Lb. Per	Cent	Lb.	Per	Cent	Lb.	Per (Cent	Lb.	Pe	r Cent
Sand						_						
Filler Bit. cem					-						_	
Batch totals					_							
Tons Mixed					-		-	-			-	
			Ago	REGA	TE GR	ADIN	GS	·			<u> </u>	
			Separa	ate B	ins			Con	posite	Grad	ing	
					Sand	Fil	ler We	aring C.		Bin		
Total %				-		-				-	-	
Passing			_									
" 1	14									-		
" 1	34					_					_	
44 8	8									-		
" 4	8						_					
" 10											_	
" 20 " 40										-		
" <u>\$0</u>												
" 80 " 100 " 200										-		
	Mar	ERIALS U	SED					Ter	MPERA!	CURES	;	
	Source	Tons Today	Tons Prev	3 T	ons to				Max	Mi	in.	Aver.
		<u>-</u>				-	C. Agg. Fine ag			-	[
Coarse agg.]	-	_		.]]	Bit. cen	nent				
			-			-	Wear. Binder	course		-		
Fine agg				_		1 -						
Filler						r			CING T	TWE		
Bit. cement Totals				_		1	Mixing Spec. re	time _ q. min				Sec.
Time tart	Time stop		Gros	38		T	ime layed _		Ņ	let op	erat	ing
Remarks:						_ u	ayou				_	
					d by _			Dro!	- or			
* From Wins	noonta Sta	te Hiahan	n Dena	rtmen	t.			Project	engin	cer		

Engineer

BITUMINOUS PAVING ANALYSES *

Client				194
Project				
Material				
Report No.				
Job sample No.				
Date laid				
Sampled by				
Taken at				
Screens and Sieves Used	Anai	Lyses	Requ Min. %	JIRED Max. %
	(
_				
				,
Passing 200 Mesh Filler				
Bitumen content				
Remarks:				
		Inspec	tor	

^{*} From Haller Engineering Associates, Inc.

Engineer
Engineer

ASPHALT REPORT *

Report for		 	
Material		 	
Project		 	
Producer		 	
Contractor Quantity			
Shipped via Report N	10	 Da	re
Specific gravity @ 25° C.			
Flash point degrees F. (open cup)			
Asphalt content @ 100 pen.			
Furol viscosity @ °C.			
Penetration 25° C. 100 g. 5 sec.			
Ductility, centimeters @ 25° C.			
Loss on evaporation 163° C. 5 hr.			
Penetration of residue from evaporation 25° C. 100 g. 5 sec.			
Total distillate % by volume to 320° F. (160° C.)			
Total distillate % by volume to 374° F. (190° C.)			
Total distillate % by volume to 437° F. (225° C.)			
Total distillate % by volume to 600° F. (315° C.)			
Total distillate % by volume to 680° F. (360° C.)			
Penetration residue from Distillation 25° C. 100 g. 5 sec.			
Ductility residue from Distillation cm. @ 25° C.			
Total bitumen (soluble in CS2)			
Remarks:		·	

The above fulfills the specification requirements.

Inspector

^{*} From Haller Engineering Associates, Inc.

SANITARY CONSTRUCTION

CHECK LIST FOR INSPECTORS

SANITARY CONSTRUCTION

Inspectors' Equipment

Complete working drawings with accurate dimensions covering anchor bolts, sleeves, flexible couplings, expansion loops, etc., with adequate clearances for erection.

Procedure in Inspection

Anchor-bolt locations and wall castings should be checked for accuracy; make sure bolt threads are clean and not damaged.

Sufficient flexible couplings, sleeves, expansion loops, and similar fittings should be provided to reduce vibration and facilitate erection and dismantling of equipment and piping.

Base plates of machines should be set accurately and blocked, not grouted in until assembly of machine is complete. Adjust to level again and grout into position.

Check lubrication of all machines before operating. If equipment has stood around for a period, flushing oil should be used to remove sediment.

Flush out pipe lines, particularly sludge lines from clarifiers. Make sure there are no blocks of lumber, bits of concrete, or other debris in these lines to obstruct a clear passage.

Capacity tests should be run on centrifugal pumps by using a tank (clarifier, wet well, etc.).

Check weirs, making sure they are level.

Review erection instructions of equipment manufacturer, and check to see they have been followed.

Make sure motors are rotating in right direction for the equipment.

Where possible rotate motor and reducer by hand to make sure bearings are free.

Check seal in distributor to see that mercury has been placed properly.

Check gas-utilization equipment to make sure that drainage traps are correctly installed and valves prevent gas escape; that meters are not filled with water; that counterweights in relief devices are correct in size and function freely; that entire hook-up is installed correctly.

In high-rate filter plants, check size, grading, and cleanliness of rock. Dirt and undersized particles should not be allowed.

Pipe Laying. See p. 180.

Filter sands should be carefully controlled to fit the requirements of the specifications.

Take and send frequent samples to the laboratory for test for effective size and uniformity coefficient, or make these tests in the field; see p. 125.

Samples of sand should be taken by the quartering method; see p. 10.

See sections on Concrete, Structural Steel, Timber, Masonry, Welding, etc., for those particular phases of the work.

PIPE LAYING

PIPE

TABLE 49. CEMENT-ASBESTOS SEWER PIPE (TRANSITE)

	Ultimate Strength 3-Edge t., Bearing, lb. per lin. ft.								0,340	+	\perp	F	0 12,300
Class 4	Weight per Lin. Ft., lb.								66.0	84.0	110.0	175.0	248.0
	Shell Thick- ness, inches								1.12	1.25	1.45	1.85	2.18
	Ultimate Strength 3-Edge Bearing, lb. per lin. ft.				4,920	5,100	5,150	5,280	5,360	5,850	7,050	8,180	9,700
Class 3	Weight per Lin. Ft., lb.				21.0	28.6	37.0	47.8	58.0	70.0	100.0	155.0	215.0
	Shell Thick- ness, inches				0.65	0.74	0.84	0.94	1.03	1.13	1.31	1.64	1.93
	Ultimate Strength 3-edge Bearing, Ib. per lin. ft.				3,690	3,850	3,920	4,050	4,140	4,280	4,550	5,000	5,400
Class 2	Weight per Lin. Ft., lb.				17.7	23.6	31.0	40.6	51.0	57.5	77.6	113.2	154.3
	Shell Thick- ness, inches				0.56	0.64	0.73	0.82	0.90	0.94	1.06	1.24	1.41
	Ultimate Strength 3-edge Bearing, Ib. per In. ft.	4,125	2,880	3,100	2,580	2,370	2,200	2,120	2,030	2,290	2,340	2,980	3,500
Class 1	Weight per Lin. Ft., lb.	4.9	6.7	11.9	15.3	19.9	24.6	30.2	35.5	41.7	54.3	8.98	124.8
	Shell Thick- ness, inches	0.39	0.42	0.48	0.50	0.54	0.58	0.62	0.65	0.69	0.75	0.96	1.15
	Pipe Size (inside dismeter), inches	4	9	œ	10	12	14	16	18	20	24	30	36

Standard laying length, 13 ft. Furnished only in straight lengths. Cast-iron fittings recommended for branch connections.

Ultimate strengths determined by tests made in accordance with procedure of A.S.T.M.
All data furnished by Johns-Manville Corp.

TABLE 50. CLAY PIPE, STANDARD STRENGTH, A.S.T.M. SPEC. C-13

	Weight	2	0.6	15.5	23.8	33,8	46.8	67.7	7.70	139	180		277		392		
	Average Strength Requirements, min., lb. per lin. ft.		Sand-	Bearing Method	1430	1430	1430	1570	1710	2000	2430	2860	3430	3930	4570	2000	5570
			F.dore-	Bearing	1000	1000	1000	1100	1200	1400	1700	2000	2400	2750	3200	3500	3800
	Phickness of Socket at	End, in.		Min.	3,8	3/16	1,5	91.6	13/16	8/2	13/16	13/10	138	1916	134	113/10	178
	Thick: Sock	kness of rrel, in. 0 Min. i				1,3	910	3,6	3/1	13/16	11,8	15/16	11/2	11146	17%	7	21/14
	ness of					916	11/16	13/16	15/16	11/8	138	158	178	218	238	23/2	258
.	Thick			Nom- inal		86	34	25	-	11/1	11/2	131	7	23%	21/2	258	231
	Depth of	•	_	Min.	145	8	21/	238	21/2	258	23/1	~	378	31/4	338	31%	334
	Det	Inside Diameter of Del Socket at Sock 1/4 in. above Base, in.			134	234	214	258	234	278	~	31/1	338	31/2	358	331	4
	side eter of				8/9	858	11	13 1/1	1534	1914	23	2631	3038	3416	3734	411/1	443%
	Outside Diam Diameter of \$5 ock Barrel, in. Base			Min.	534	8%0	101/3	1234	15 1/8	1858	22 1/1	2578	2934	83	36 1%	367,6	43}4
				Max.	51,8	77/10	931	12	14% 6	171%6	217/18	22	281/4	3218	3558	3815/10	42}4
	. · · · · · · · · · · · · · · · · · · ·				478	77/10	914	111/2	1334	17%6	2058	241/8	273%	31	3438	3758	4034
	Maximum	Maximum Difference in Length of Two Opposite Sides, in.				3%	31.0	7.6	7,6	7.5	7.5	9/16	9/16	9,40	9,6	948	11/18
	Laying Length Limit of Minus Waristion, a in. per ft. of length				34	7.	34	74	77	74	74	74	38	3/8	3%	3/8	38
	Laying		Nominal,	11.	2, 214, 3	2, 21/2, 3	2, 21/5, 3	2, 2, 5, 3	2, 2½, 3	4	4,	ъ, 4	3, 4	3, 4	3,	3, 4	&, 4
	Size, In.				4	9	œ	91	12	15	œ :	27	24	22	30	88	36

There is no limit for plus variation.
 * From Robinson Clay Products Co.

TABLE 51. CLAY PIPE, EXTRA STRENGTH, A.S.T.M. SPEC. C-200

	17.2	weignt per Foot	jo t	Fipe *		10	07	0 6	90	# £	0 10	170	0.77	417	444	1
	Strength ments,	Jer IIII. II.	Sand-	Bearing Method		0206	9950	9000	2000	2095	4700	00 14	0000	200	8575	
	Average Strength Requirements,	min, io.	Three-	Edge- Bearing Method		0000	0000	2000	9950	9750	3300	2000	4400	5000	0009	
3				Min.		9 1/2	2,72	3,8	11,6	92	17,	13%	136	134	17,8	
	Thickness o	$\frac{1}{2}$ in. from Outer End, in.		Nom- inal		2	9,18	2,8	, 85 , 74	15/6	11,6	15/c	11,5	921	21/16	
. OF	ess of	ii.		Min.		9/16	**	%	11/18	138	134	2	214	234	31,6	
7	Thickness of	Barrel, in.		Nom- inal		13/16	8/2	-	13/16	11/3	178	21,4	21,5	· 673	31/2	
4 (11)	h of	t, in.		Min.		87	21,4	238	21,5	258	234	ಣ	318	334	334	
	Depth of	Socke		Nom- inal		234	21,5	258	234	27.8	က	33,4	338	358	4	
i	de ter of	at 72 ove in.		Мах.		858	11	1334	1534	1914	23	2634	3038	3734	4434	
	Insi	Inside Diameter of Socket at 1,2 in. above Base, in.				83/16	101,	1234	151/8	1858	221/4	2578	2938	3675	431,	
	Outside	Danneter of Barrel, b in.		Max.		77/10	934	12	145/10	1713/16	217/16	25	281/2	3538	4214	
		4				71/16	974	111/2	1334	173/10	2058	241/8	2735	3438	4031	
	Maximum Die	in Length of Two	Limit of in Length Minus of Two Variation, a Sides, in. length				7.16	2/16	2/16	1,7	1,5	91.6	916	8/8	11,10	_
	Laying Length	Limit of					74	14	14	14	7.4	34	3%	38,	8%	
	Layin		Nominal,			2, 21/2, 3	က	m	60	3, 4	3, 4	3,	3, 4	,3 4	3, 4	_
	N.	Nom- inal Size, in.					œ į	2	12	15	78 198	21	24	30	ဗ္ဗ	

a There is no limit for plus variation.

b The average actual inside diameters of pipe having the nominal thickness of barrel shown in Table 53 may be smaller than the nominal sizes. * From Robinson Clay Products Co.

TABLE 52. CORRUGATED METAL CULVERT PIPE

Inside Pipe		Weigh	t per Linear	Foot, lb.	
Diam-	16	14	12	10	8
eter, in.	Gage	Gage	Gage	Gage	Gage
4					
6			•		
8	7.6	9.3			
10	9.3	11.4			
12	10.8	13.3	18.5		
15	13.3	16.4	22.7		
18	15.8	19.5	27.0		
21	18.3	22.5	31.2	39.7	
24	21.0	26.0	35.9	45.7	
30		31.7	43.9	55.9	
36		37.9	52.4	66.7	81.1
42		44.4	61.5	78.3	95.1
48		50.5	70.0	89.1	108.3
54		57.8	80.1	102.0	123.9
60			88.2	112.3	136.4
66			96.6	123.1	149.5
72			105.1	133.9	162.6
84				156.6	190.3

Furnished in any length in multiples of 2 ft.

Data furnished for Armco Pipe by Shelt Co., Elmira, N. Y.

TABLE 53. NON-REINFORCED-CONCRETE SEWER PIPE, A.S.T.M. C-14-41

ini	Thick-	ness	Barrel, in. $(-)^b$	1 2	, z	51 e	710	216	716	6,33	3,32	30 Y	•
Limits of Permissible Variation in:		Depth of	Socket, in. (-) ^b	7		7 2	T :	* Z	₹ ;	7.	**		F .
missible	Internal	Diameter, in.	Socket, (±) ^b	1.6	3,0	1,7	* ~	* 7	7.	* ^	* 4	2 %	:
its of Per	Inte	Diame	Spigot (±) ^b	37	° %	17.	* 7	: ::	ť 2	* ~	7.4	2 2 2 2 6 6	
Lim		Length, in. per	(17	: ::	* 7	: 2	: 7	* :	* 7	1,4	3%	
	maxı- mum	Ab- Borp-	% %	~) oc	×	×	×	o 04	o 00) a	o oc	
Strength,	111.16	Sond	Bearing Method	1500	1650	1950	2100	2250	2620	3000	3300	3600	
Average Strength,	Average Strength B. per lin. ft. Three-Baring Bearing Method Method										2200	2400	
	Thistenance	Socket, T _s		The thickness of	the socket 14 in.	from its outer end	shall be not less	than 34 of the	thickness of the	barrel of the pine.	individual control		
	Thick- ness of Barrel, T, in.										134	23.6	
Mini-	Mini- mum Taper of Sooket,				1:20	1:20	1:20	1:20	1:20	1:20	1:20	1:20	
	Depth of Socket,					214	21%	21/5	275	234	234	ಣ	
Inside	Inside Diameter at Mouth of Socket, Do, in.					1034	13	1514	1834	2214	98	2914	
	Laying	Length, L, ft.		2, 2½, 3	2, 2, 5, 3	2, 214, 3, 4	2, 21/5, 3, 4	2, 215, 3, 4	2, 215, 3, 4	2, 21/2, 3, 4	2, 214, 3, 4	2, 215, 3, 4	
	Internal	Diameter, D, in.		4						•	21		

^a When pipes are furnished having an increase in thickness over that given in last column, then the diameter of socket shall be increased by an amount equal to twice the increase of thickness of barrel.

b The minus sign (-) alone indicates that the plus variation is not limited; the plus-and-minus sign (±) indicates variation in both excess and deficiency in dimension,

Note. For weights and laying lengths, see Table 57.

REINFORCED-CONCRETE SEWER PIPE, A.S.T.M. SPEC. C-75-41 TABLE 54.

Strength Test Requirements, lb. per lin. ft.	nents, lb. per lin. ft.
Sand-Bearing Method	Sand-Bearing Method
Ultimate Produce Ultimate Thiole- Load a 0.01-in. Load in.	Ultimate Load
	4,050 4,500 4,500 4,950 6,400 6,400 6,700 6,700 7,200 7,200 7,200 9,000 9,000 10,100
8,44	: :

a The distance from the center line of the reinforcement to the nearest surface of the concrete has been assumed in the design tables as 1 in.

b Where two lines of steel are specified, a single line placed elliptically may be used, and the area of this shall be at least 50% of the total steel area specified in the design table. Note. For weights and laying lengths, see Table 57.

STANDARD STRENGTH REINFORCED-CONCRETE CULVERT PIPE, A.S.T.M. SPEC. C-76-41 TABLE 55.

1	Strength Test Requirements, lb. per lin. ft. of pipe	Three-Edge-Bearing Method d	Ultimate	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2	Streng Require per lin.	Three	Load to Pro- duce a 0.01-in. Crack	2288884462565656666666666666666666666666
TYC TAT			Weight per Idin, Ft., lb.	75 110 140 225 315 815 860 560 580 1,060
בונים שימיו	00 psi.	ment, ^a sq. in. e barrel b	Elliptical Reinforcement in Circular Pipe and Circular Reinforcement in Elliptical	1 line 0.17 1 line 0.27 1 line 0.22 1 line 0.23 1 line 0.31 1 line 0.45 1 line 0.45 1 line 0.45 1 line 0.51 1 line 0.51
THE CONCLUSION CONTRACT PARTY AND LIME SPECT C-10-41	Concrete, 4,500 psi	Minimum Reinforcement, a sq. in. per lin. ft , of pipe barrel b	Circular Reinforce- ment in Circular Pipe	line
21700			Mini- mum Shell Thick- ness, in.	# 1000000000000000000000000000000000000
			Weight per Lin. Ft., lb.e	88 1125 260 260 260 260 260 260 260 260 260 260
	00 psi.	ment, a sq. in.	Elliptical Reinforcement in Circular Pipe and Circular Reinforcement in Elliptical Pipe	ine 0.40 ine 0.43 ine 0.43 ine 0.73 ine 0.17 ine 0.18 ine 0.28 ine 0.28 ine 0.38 ine 0.40 ine 0.60 ine 0.70 ine 0.70
	Conarete, 3,500 psi.	Minimum Reinforcement, asq. in. per lin. ft. of pipe barrel b	Gircular Reinforce- ment in Circular Pipe	1 line 0.07 1 line 0.09 1 line 0.012 1 line 0.12 2 lines, each 0.22 2 lines, each 0.22 2 lines, each 0.32 2 lines, each 0.32 2 lines, each 0.40 2 lines, each 0.40 2 lines, each 0.40 2 lines, each 0.46 2 lines, each 0.46 2 lines, each 0.65 2 lines, each 0.67 2 lines, each 0.77 2 lines, each 0.77
			Mini- mum Shell Thiok- ness, in.	99999994466667-1888886 ********************************
		Internal	of Pipe, in.	258488848488888888888888888888888888888

a The distance from the center line of the reinforcement to the nearest surface of the concrete has been assumed in the design tables as 1¼ in. for pipe with a shell 2½ in. or nore in thickness.

§ For 2 lines or elliptical reinf., provide 1-in. cover.

§ From Universal Concrete Pipe Co. for langue and groove pipe.

§ From Universal Concrete Pipe Co. for langue and groove pipe.

§ Test loads for sand-bearing tests shall be 1½ times those specified in this table for the three-edge-bearing tests.

TABLE 56. EXTRA-STRENGTH REINFORCED-CONCRETE CULVERT PIPE, A.S.T.M. SPEC. C-76-41

Inter-		Concrete, 450	00 psi.	Require	gth Test ments, lb. ft. of pipe	
nal Diam- eter	Mini-		orcement, a sq. in. f pipe barrel b	Three-Ed Met	Weight per Lin. Ft.	
or Pipe, in.	Shell Thick- ness, in.	Circular Reinforce- ment in Circular Pipe	Elliptical Reinforce- ment in Circular Pipe and Circular Reinforcement in Elliptical Pipe	Load to Produce a 0.01-in. Crack	Ultimate Load	in Lb.
24 30 36 42 48 54 60 66 72 78 84 90 96	3 3½ 4 4½ 5 5½ 6 6½ 7 7½ 8 8 8 8 8 5½	1 line 0.26 1 line 0.31 2 lines, each 0.28 2 lines, each 0.33 2 lines, each 0.44 2 lines, each 0.50 2 lines, each 0.50 2 lines, each 0.60 2 lines, each 0.65 2 lines, each 0.65 2 lines, each 0.65 2 lines, each 0.72 2 lines, each 0.84	1 line 0.20 1 line 0.24 1 line 0.28 1 line 0.33 1 line 0.38 1 line 0.50 1 line 0.56 1 line 0.60 1 line 0.65 1 line 0.72 1 line 0.84 1 line 0.90	4,000 5,000 6,000 7,000 8,000 9,000 9,000 9,500 9,900	6,000 7,500 9,000 10,500 12,000 13,500 15,000 16,500 18,000	260 370 520 680 850 1,050 1,280 1,480 1,885 2,150 2,300 2,600 2,750
102 108	8½ 9	2 lines, each 1.08 2 lines, each 1.17	1 line 1.08 1 line 1.17			3,050 3,450

[&]quot;The distance from the center line of the reinforcement to the nearest surface of the concrete has been assumed in the design tables as 1½ in. for pipe with a shell 2½ in. or more in thickness.

^b For 2 lines or elliptical reinforcement provide 1-in. cover.

[°]Test loads for sand-bearing tests shall be 1½ times those specified in this table for the three-edge-bearing tests.

d From Universal Concrete Pipe Co. for tongue and groove pipe.

174 PIPE

TABLE 57. CONCRETE PIPE, WEIGHTS AND LAYING LENGTHS *

TABLE 0	. COMO	KEIE I	1112, 111	2101110 1111	22 22.2.2.2.		
Non-Ri	EINFORCED	SEWER	PIPE		END EXTE		
A	LS.T.M.	C-14-41					Weight
Inside Diameter,	Length,	Wall Thick- ness,	Weight per Lineal Foot,	Inside Diameter, in.	Length,	Wall Thick- ness, in.	per Lineal Foot, lb.
in. 6 8 10 12 15 18 21 24 24	ft. 3 3 4 4 4 4 4 4	in. 1 1 1 1/8 1/4 1/4 1/2 13/4 2 21/4 25/8	lb. 25 35 48 60 90 120 190 225	12 15 18 21 24 30 36 42 48	4 4 4 4 4 4 4	2 2 ¹ / ₄ 2 ¹ / ₂ 2 ³ / ₄ 3 3 ¹ / ₂ 4 4 ¹ / ₂ 5	100 150 205 255 320 470 600 750
	NE BELL ORCED-CON			REINFO	GUE AND	CRETE I	PIPE
C-7	75-41 and	C-76-41		C-75- C-76-41 Ta	41 3000 ps	si Concre	ete Concrete
12	4	$1\frac{3}{4}$	90	C-76-41 Ta	ble 56 45	00 psi C	Concrete
15 18	4 4	$2 \\ 2 \frac{1}{4}$	125 160	6	3	13/4	48
21	4	$\frac{2}{3}$	205	8 10	4 4	2 2	65 80
$\frac{24}{27}$	4 4	$\frac{25}{8}$	260 30 0	10 12	4	$\overset{2}{2}$	88
27 30	4	$\frac{2}{3}$	370	15	4	214	125
36	4	$3\frac{1}{2}$	510	$\begin{array}{c} 18 \\ 21 \end{array}$	4 4	$\frac{2\frac{1}{2}}{23}$	$\frac{160}{205}$
$rac{42}{48}$	4 4	334	660 835	$\frac{21}{24}$	$\frac{1}{4}$	3	260 260
720	-	±2 1	000	27	4	$3\frac{1}{4}$	310
TONGUE AI	nd Groov Concrete		ORCED-	30 33 36 39	4 4 4 4	$3\frac{1}{2}$ $3\frac{3}{4}$ 4 $4\frac{1}{4}$	370 450 520 600
	1 3500 psi			$rac{42}{45}$	$rac{4}{4}$	4½ 43/	680 760
C-76-41 Ta	ble 55 45	-		48	4	5	850
12 15 18 24 30 36 42 48	4 4 4 4 4 4	13/4 2 21/4 25/8 3 31/2 33/4 41/4	75 110 140 225 315 450 560 720	54 60 66 72 78 84 90 96	4 4', 5', 6' 4', 5', 6' 4', 5', 6' 4', 5', 6' 4', 5', 6'	5½ 6 6½ 7 7½ 8 8	1050 1280 1480 1835 2150 2300 2600 2750
54 60	4 4	4% 5	880 1060	102 108	4', 5', 6' 4', 5', 6'	$\frac{81}{2}$	3050 3450

^{*} From Universal Concrete Pipe Co.

TABLE 58. AMERICAN WATER WORKS ASSOCIATION STANDARD CAST-IRON PIPE *

Nominal	Head	100-Ft. 43 Lb. ssure	Head	8 200-Ft. 86 Lb. ssure	Head	Class C 300-Ft. Head 130 Lb. Pressure		9 400-Ft. 173 Lb. ssure
Inside Diameter, in.	Thick- ness, in.	Approxi- mate Weight per Ft., lb.	Thick- ness, in.	Approxi- mate Weight per Ft., lb.	Thick- ness, in.	Approximate Weight per Ft., lb.	Thick- ness, in.	Approxi- mate Weight per Ft., lb.
3	0.39	14.5	0.42	16.2	0.45	17.1	0.48	18.0
4	0.42	20.0	0.45	21.7	0.48	23.3	0.52	25.0
6	0.44	30.8	0.48	33.3	0.51	35.8	0.55	38.3
8	0.46	42.9	0.51	47.5	0.56	52.1	0.60	55.8
10	0.50	57.1	0.57	63.8	0.62	70.8	0.68	76.7
12	0.54	72.5	0.62	82.1	0.68	91.7	0.75	100.0
14	0.57	89.6	0.66	102.5	0.74	116.7	0.82	129.2
16	0.60	108.3	0.70	125.0	0.80	143.8	0.89	158.3
18	0.64	129.2	0.75	150.0	0.87	175.0	0.96	191.7
20	0.67	150.0	0.80	175.0	0.92	208.3	1.03	229.2
24	0.76	204.2	0.89	233.3	1.04	279.2	1.16	306.7
30	0.88	291.7	1.03	333.3	1.20	400.0	1.37	450.0
36	0.99	391.7	1.15	454.2	1.36	545.8	1.58	625.0
42	1.10	512.5	1.28	591.7	1.54	716.7	1.78	825.0

^{*} From Handbook of Cast Iron Pipe by C. I. Pipe Research Assn.

Water hammer of ordinary intensity allowed for in the above table. Weights based on 12-ft. length.

TABLE 59. FEDERAL SPECIFICATIONS, WW-P-421 STANDARD

Nominal	Max.	Class † or Working ssure	Max. V	Class ‡ or Working ssure	Max.	Class † or Working ssure	Max.	Class ‡ or Working ssure
Inside Diameter, in.	Thick- ness, in.	Approxi- mate Weight per Ft., lb.						
3			0.33	12.5			0.36	13.8
4		·	0.34	16.1			0.38	18.1
6			0.37	25.7	1		0.43	28.7
8		ĺ	0.42	38.6	0.46	41.6	0.50	44.6
10			0.47	52.2	0.52	57.2	0.57	62.3
12			0.50	66.1	0.57	74.1	0.62	81.1
14	0.48	74.9	0.55	86.9	0.62	97.0	0.69	108.0
16	0.52	92.1	0.60	108.1	0.68	121.6	0.75	133.6
18	0.56	111.4	0.65	130.4	0.74	147.9	0.83	164.9
20	0.58	129.0	0.68	152.0	0.78	173.6	0.88	193.6
24	0.64	169.9	0.76	202.9	0.88	233.1	1.00	262.1

[†] From American Cast Iron Pipe Co. ‡ From Federal Specifications WW-P-421.

Water hammer of ordinary intensity allowed for in the above table. Weights based on 16-ft. length. 100 lb. Class—weights for Class B fittings; 150 lb., 200 lb., 250 lb. Classes—weights for Class D fittings.

STANDARD THICKNESSES AND WEIGHTS OF CAST-IRON PIT CAST PIPE * TABLE 60.

	sure	ad	sed on Lgh.†	Per Length	170 230 410 645 980	1,260 2,180 2,180 3,325	4, 440 6, 695 9, 530				
Class 350	Class 350 50 Lb. Pressure 808 Feet Head		350 Lb. Pressure	Wt. Based on 12 Ft. Lgh.†	Avg. Per Foot	14.2 19.2 34.2 53.8		370.0 557.9 794.2			
	350	808		Thick- ness, inches	56.50	.92 .99 1.07	1.36 1.62 1.93				
	sure	pa	sed on Lgh.†	Per	230 230 250 250 250 250 250 250 250 250 250 25	1,175 1,580 1,955 2,360 2,785	4, 155 6, 135 8, 735				
Class 300	300 Lb. Pressure	693 Feet Head	Wt. Based on 12 Ft. Lgh.†	Avg. Per Foot	14.2 19.2 31.7 49.2 77.1	97.9 131.7 162.9 196.7 232.1	346.2 511.3 727.9				
	300	693		ness, inches	37. 94. 94. 98.	.73 .92 .99 1.05	1.26 1.50 1.79				
	ure	Pe	sed on Lgh.†	Per Length	170 230 360 550 865	1,105 1,480 1,825 2,210 2,600	3,460 5,545 7,405 9,635	16,005 19,135			
Class 250	250 Lb. Pressure	577 Feet Head	Wt. Based on 12 Ft. Lgh.†	Avg. Per Foot	14.2 19.2 30.0 45.8 72.1	92.1 123.3 152.1 184.2 216.7	288.3 462.1 617.1 802.9 1,077.1	1,333.8			
	250	577	10.15	ness, inches	75.4.58. 56.88.	. 79 . 92 . 97	1.39 1.54 1.71 2.02	2.21			
	ar.e	Pi	sed on Lgh.†	Per Length	170 230 380 515 775	1,295 1,295 1,710 2,065 2,430	3,230 4,835 6,940 8,990 11,280	14,025 17,860			
Class 200	Class 200 200 Lb. Pressure	30 Lb. Pressur 462 Feet Head	Wt. Based on 12 Ft. Lgh.†	Avg. Per Foot	14.2 19.2 30.0 42.9 64.6	83.8 107.9 142.5 172.1 202.5	269.2 402.9 578.3 749.2 940.0	1,168.8			
J	200	462	Thick	ness, inches	£. 4. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	86. 88. 88. 88. 88. 88.	1.58	1.90			
	ure	pr	sed on Lgh.†	Per	170 280 360 730 730	935 1,210 1,500 1,805 2,265	3,030 4,405 5,895 7,655 9,595	11,965 15,250			
Class 150	150 Lb. Pressure	346 Feet Head	Wt. Based on 12 Ft. Lgh.†	Avg. Per Foot	14.2 30.0 42.9 60.8	77.9 100.8 125.0 160.4 188.8	252.5 367.1 491.3 637.9 799.6	997.1			
)	150	346	Thick-		75 95 95	**************************************	.93 1.10 1.22 1.35 1.48	1.63			
	ure	nd	sed on Lgh.†	Per Length	170 230 360 515 685	880 1,095 1,360 1,640 1,905	2,555 3,735 5,050 6,950 8,715	10,875 12,925			
Class 100	100 Lb. Pressure	Feet Hea	b. Fressi Feet Hea	00 Lb. Fressur 231 Feet Head	Feet Hea	Wt. Based on 12 Ft. Lgh.†	Avg. Per Foot	14.2 19.2 30.0 42.9 57.1	73.3 91.3 113.3 136.7 158.8	212.9 311.3 420.8 579.2 726.3	906.3
	100	231	Thick-	ness, inches	34. 56. 56.	488881 4888	.80 1.05 1.25 1.37	1.51			
	aure	ard	Wt, Based on 12 Ft. Lgh.†	Per Length	170 230 360 515 685	1,025 1,265 1,535 1,785	2,385 3,460 4,610 5,970 7,510	9,325			
Class 50	50 Lb. Pressure	115 Feet Head	Wt, B.	Avg. Per Foot	14.2 19.2 30.0 42.9 57.1	73.3 85.4 105.4 127.9 148.8	198.8 288.3 384.2 497.5 625.8	777.1 922.5			
	20	115	Thick-	ness, inches	रू. व ं.संस्ट	44888	.74 .97 1.07 1.18	1.30			
		səqo	nī szi2		e4 & & O	24988	28838	268			

* From American Standard Assn., Spec. A21.9-1939. † Including bell and spigot bead. Calculated weight of pipe rounded off to nearest 5 pounds.

Note. These weights are for pipe laid without blocks, on flat bottom trench, with tamped backfill, under 5 feet of cover.

TABLE 61. APPROXIMATE QUANTITIES OF MATERIALS USED PER JOINT FOR WATER SERVICE*

Nominal Diameter, In.	Pounds of Joint Compound 2½" Joint Depth †	Pounds of Hemp per Joint	Pounds of Lead in Joint 2" Deep	Pounds of Lead in Joint 2½" Deep	Pounds of Lead in Joint 2½" Deep
3 4 6 8 10 12 14 16 18 20 24	2.00 3.00 4.00 5.00 6.00 7.00 8.25 9.25 10.50 13.00	0.18 0.21 0.31 0.44 0.53 0.61 0.81 0.94 1.00 1.25 1.50	6.00 7.50 10.25 13.25 16.00 19.00 22.00 30.00 33.80 37.00 44.00	6.50 8.00 11.25 14.50 17.50 20.50 24.00 33.00 36.90 40.50 48.00	7.00 8.75 12.25 15.75 19.00 22.50 26.00 35.75 40.00 44.00 52.50

^{*} Adapted from U. S. Pipe and Foundry Co.

[†] Approximate only; will vary with kind of material used.

Note. Weight of lead is based on std. wt. = 0.41 lb. per cu. in. This weight may vary 15% depending on purity.

STEEL PIPE, A.S.T.M. A63-44, WEIGHTS AND DIMENSIONS TABLE 62.

	Double Extra-	Strong Pipe	Thick- of Pipe, ness, lb. per ft., in. Plain Ends	9.03 27.54 53.16 72.42
	Doub	Stron	l is is	0.436 0.674 0.864 0.875
		Schedule 80	Weight The lb. per ft., ne Plain i Ends	5.02 14.98 28.57 43.39
	ong Pipe	Sche	Thick- ness, in.	0.218 0.337 0.432 0.500
	Extra-Strong Pipe	Schedule 60	Weight Thick of Pipe, Thick blb. per ft., ness, lb Plain in.	54.74
:		Sche	Thick- ness, in.	0.500
•	þe	Schedule 40	Wt. of Pipe, lb. per ft., Threaded and with Couplings	3.68 10.89 19.18 28.81 41.13 50.71
	Veight Pi	Sche	Thick- ness, in.	0.154 0.237 0.280 0.322 0.365
	Standard-Weight Pipe	Schedule 30	Wt. of Pipe, Ib. per ft., Threaded and with Couplings	25.00 35.00 45.00
		Sch	Thick- ness, in.	0.277 0.307 0.330
		Number	Threads per inch	11/ ₂ 8 8 8 8 8
		Outside	Diameter, in.	2.375 4.500 6.625 8.625 10.750 12.750
		Pipe Diam- eter	Nominal nal Sizes, in.	2 4 4 8 10 12 12 12 12 12 12 12 12 12 12 12 12 12

Sizes larger than 12 in. are specified by their outside diameter, O.D., and thickness. These larger sizes are furnished with plain ends, unless otherwise specified. The weights for O.D. pipe are given by manufacturers' published standards although it is possible to calculate the theoretical weights for any given size and wall thickness on the basis of 1 cu. in. of steel weighing 0.2833 lb. The table does not give complete list of sizes less than 6 in.

TABLE 63. CEMENT-ASBESTOS WATER PIPE (TRANSITE)

	Class 50		Clas	s 100	Clas	s 150	Class 200	
Pipe Size,* in.	Shell Thick- ness, in.	Weight per Lin. Ft., lb.	Shell Thick- ness, in.	Weight per Lin. Ft., lb.	Shell Thick- ness, in.	Weight per Lin. Ft., lb.	Shell Thick- ness, in.	Weight per Lin. Ft., lb.
3 3½ 4 4½	0.33 0.33 0.33 0.34	3.6 4.2 4.7 5.4	0.35 0.35 0.35 0.36	3.8 4.4 5.0 5.6	0.44 0.45 0.45 0.48	4.6 5.4 6.0 7.3	0.60 0.60 0.60 0.64	6.6 7.5 8.4 10.0
5 6 7 8	0.35 0.36 0.38 0.42	6.2 7.6 9.3 11.7	0.37 0.38 0.41 0.44	6.4 7.8 9.8 11.9	0.51 0.55 0.61 0.65	8.6 10.7 14.1 16.8	0.68 0.75 0.82 0.88	11.8 15.4 19.5 23.7
10 12 14 16	0.44 0.48 0.52 0.56 0.59 0.63	15.2 19.8 24.8 30.6 35.9 42.5	0.59 0.68 0.78 0.88 0.97 1.07	19.8 27.6 36.6 47.0 58.2 71.2	0.85 0.98 1.13 1.25 1.39 1.53	28.0 38.6 51.6 65.0 81.2 99.5	1.10 1.24 1.44 1.65 1.87 2.09	37.0 49.6 67.0 87.8 112.0 139.5
24 30 36	0.69 0.90 1.09	55.5 89.2 126.3	1.25 1.54 1.83	99.3 150.6 211.0	1.82 2.29 2.80	141.5 221.0 318.0	2.48 3.12 3.74	199.0 310.0 435.0

^{*} Pipe size is inside diameter except sizes 4, 6, and 8 in. in Class 150 which are 3.95, 5.85, and 7.85 in., respectively.

CHECK LIST FOR INSPECTORS

PIPE LAYING

Inspectors' Equipment

Complete set of plans, specifications, and approved shop drawings. Calipers.

6-ft. rule, 50-ft. tape and mason's level.

Plumb bob and line.

Class of pipe is same as allowable working pressure in pounds per square inch. Furnished in straight lengths only, standard length = 13 ft.

Procedure in Inspection

Check all pipe delivered for conformity with specification requirements of size, thickness, and reinforcement. Check pipe thickness with calipers and compare with tables, pp. 166-179.

Check all pipe and fittings for cracks or other defects before laying.

When concrete pipe is not inspected at the plant, have contractor cut into 5% of pipe delivered to job in order to check size and number of lines of reinforcing for verification of specification requirements.

Accept no elliptically reinforced pipe unless top is properly marked on outside of pipe. When installing such pipe, require exact centering of each piece.

Report to superior any unsatisfactory subgrade condition which may require special treatment such as removal of unsatisfactory material, consolidation of subgrade with stone or gravel, blocking, reinforced-concrete cradle, or pile support.

Permit no variation from type of bedding called for by plans or specifications except as directed. Remember that such change may require heavier pipe.

Where rock occurs, be sure earth, sand or gravel cushion is provided.

When laying bell and spigot or tongue and groove pipe, require spigot or tongue to be inserted to proper depth and center.

Always require asbestos-cement pipe to be laid with proper space between ends at each joint. See that bells are laid upgrade and excavation is carried on upgrade.

Require mechanical joints to be uniformly bolted, and welded joints to be thoroughly cleaned before welding begins.

Insist upon removal of water from trench where jointing is in progress, and require joints to be clean before lead or compound is poured.

Check each length as laid for size, strength, line, and grade.

Wherever bends or tees occur and in back of hydrants, require proper backing with concrete to prevent joints from opening under pressure.

Do not allow backfill to be placed over joints until pressure test has been made. If covered, require joint to be uncovered during test.

Require backfill to be placed exactly as specified.

Where pipe lines must pass through a fill as is common in the construction of treatment plants, see that pipes are supported by piers (or by other methods) resting on undisturbed soil.

Conduct tests for leakage in water mains and infiltration in sewer lines; see specifications.

Disinfection of pipes and tanks.

Do not place material under or around pipes which will have the effect of making a subdrain of trench.

Engineer

REPORT ON CLAY AND CONCRETE PIPE * SHOP INSPECTION

Material					
Project Producer					
Contractor			Date_		
Sample taken from	I			Repor	ted to
Quantity represented	-			zecpoi	
Marks on sample					
Sampled by				•	
Date taken	-			1	
Date rec'd at lab.					
Job sample No.					
Laboratory report No.					
				Requ Min.	uired Max.
Internal diameter of pipe, in.					
External diameter of pipe, in.					
Thickness of pipe, in.					
Internal diameter of bell, in.					
External diameter of bell, in.					
Thickness of bell, in.					
Total length of pipe, ft.					
Total length of bearing, ft.					
Load applied at first crack, lb.					
Load per lineal foot at first crack, lb.					
Maximum load applied, lb.					
Maximum load per lineal foot, lb.					
Absorption	Test				
Weight after immersion, grams					
Weight after drying, grams					
Loss of weight					
Absorption, %					
Reinforces	MENT				
Number of lines of reinforcing					
Area of circular reinforcing per ft. of pipe, sq. in.					
Number of longitudinals					
Total area of longitudinals, sq. in.			<u> </u>		
Remarks:					
The above tests do not fulfill A.S.T.M. Spec.					
		Insp	ector		

^{*} From Haller Engineering Associates, Inc.

MISCELLANEOUS

INSPECTOR'S TIME RECORD

TUTTLE, SEELYE, PLACE & RAYMOND

Week ending 194. Name Smith		Breakdown of Hours Worked on Each Job							Holidays, Vacation, and Sick	
Date	Description of Work Performed								Total Hours	Leave Allowed
12/1	Adm.	6			_	-	_			
/-						_	_		6	
		8								
2									8	
		10								
3									10	
		10								
4									10	
							-			
5						-	 			
		5					-			
6							-		5	
		15					-			
7						-			15	
7	Cotal Hours	54							54	
							Tota	l Credi	t Hours	61

Breakdown in Hours Wor	ked
Job	Credit Hr
Holidays, Vacation, Sick Leave	
Total	

Employee	
Approved	

TUTTLE, SEELYE, PLACE & RAYMOND PAYROLL AND EXPENSE RECORD

Payroll No.

Cheok No. Net Earnings Plus Expenses Total Misc. Checked by: Title Expenses Sub-sistence Travel Net Earn-ings Total Tax Deductions Income Tax Prepared by: Title Federal O.A. Project _ Rate Amount Payroll Credit Hours Total Temporary Employees Total Permanent Employees Name Total Period ending Income Tax Column

INSPECTOR'S DAILY REPORT

AIRFIELD RUNWAYS

TUTTLE, SEELYE, PLACE & RAYMOND ABCHITECT—ENGINEER FORT DIX, NEW JERSEY

Prime contractor		Contract .		I	Date	
Subcontractor Weather	Т	emp. 8 A.M	ď	1 р.м		5 р.м
Items	Kind		- Location			
,		Units	Lin. Ft.	Sq. Yd.	Cu. Yd.	
Roads Excavation						
Borrow						
Fine grading						
Base						
Тор		1				
Seal coat						
Shoulders						
Ditching						
Culverts and drains						
Foundation material					٠	
Water mains						
Valves						
Hydrants						
Specials						
Sanitary sewer mains						
Manholes						
Specials						
Storm sewer mains						
Manholes						
Inlets						
Head walls						

Labor	Equipment		Inspector's Checking					
		Sewers	Water	Roads				
		Material	Material	Material				
		Line	Blocking	Subgrade				
		Grade	Line	Consolidation				
		Joints	Grade	Surface				
		Backfill	Joints	Culverts				
		Manholes	Backfill	Head walls				
			Valves	Storm sewer				
Worked from	Worked from		Hydrant					

	· · · · · · · · · · · · · · · · · · ·							
		****	Inspector					

INSPECTOR'S DAILY REPORT * GENERAL CONSTRUCTION

Report No Sheet No					-			
						Date_		19
Contr	act No		For					
					Superintendent			
Weat Tides	her {A.M. p.m. (for all w		thereby	·)	Temperatures Time of st A.M NOON Time of st		<u></u>	°F.
	INCLUD	NTRACTOR'S SING SUPERV	ISORS A			Work		
No.	Trade	Hours	Rate	Amount Wages	Class	Quantity	R	emarks
		_					-	
		_						
		_		 -			-	
				-			-	
			Mate	RIAL RECE	NVED THIS DATE	8	1	
I	tem	Delivered	Passed	Rejected	Item	Delivered	Passed	Rejected '
					l			

Plant Equi on Job		Government Utilities Furnished								
Equipment	Hours Worked	No.	Appliance or Service	Hr.	Duty	Rate	Amt.			
				_						
Delays										
Delays										
Accidents										
Defective work to	be correc	eted la	ter (enter in red)							
Special instructio	ns receive	d or gi	ven							
Tests										
Ttoma atomtod this	- doto									
Contractor's plan	ıt									
Items removed										
Items out of co	mmission	(state	time and cause)							
Remarks:										
					····					
	,					. Inspe				

Instructions to inspectors. Make reports full and complete, and to include all work performed on contractor's plant. When the contractor, his chief engineer, general superintendent, or other responsible member of his organization visits the job, make a note, giving names, and also any instructions given by them to the superintendent on the job relative to the prosecution of the work. Note all accidents, delays, fires, etc., and give your opinion as to causes, and how the progress of the work is affected thereby.

^{*} From Navy Department-Bureau Yards and Docks.

GENERAL CONTRACTOR'S DAILY REPORT

						Date10-4-45			
						Weather Clear			
		Job _				Temperature			
Mechanics Laborer				For	eman				
No.	Time	No.	Time	No.	Time				
1 1 1	7					Hoisting materials and taking down rubbish, etc.			
		17	119	1	8	Handling materials for ovens—7th floor Chipping and cutting cols, and beams. Cleaning and taking down rubbish, etc. from 7th, 8th, and 9th floors. Loading truck with rubbish. Helping carpenters.			
11	77					Shoring for center line for ovens. Making up benches for lathers. Building forms for cols. Running power-saw and filir saws. Framing haunches. Shoring forms over ovens.			
l —Cuti	ing arch	es on £		Calk Lath Plas Mar Floo Wea Met Pain Glaz	ing ing tering ble and r coveri therstri al equir ting ing	ing pping oment			
	No. 1 1 1 1 1 1 1 1 1 -Cutt	No. Time 1 1 7 11 77 it hauling rubbitedman. Water	Mechanics Lat No. Time No. 1 1 1 7 17 17 in all man. Watering Fl.	No. Time No. Time 1 1 1 7 17 119 11 77 12 119 14 Awaing rubbish away. 12 alman. Watering Floors.	Mechanics Laborers For No. Time No. Time No. 1 1 1 7 17 119 1 11 77 119 1 11 -Cutting arches on 9th floor. Cutting	Mechanics Laborers Foreman No. Time No. Time No. Time 1			

Supt.

JOB POWER

In order to give the field engineer a general perspective of job power, the following is submitted.

Air compressors used in construction are of various types and sizes.

The most common type for the usual construction job is the portable type mounted on wheels for easy moving.

Compressor should be placed in a safe location to avoid injury but as close to operations as possible in order to avoid expensive labor and material in pipe lines, and to avoid decreased efficiency due to line losses, leaky joints, and actual breakage of line resulting from accident or carelessness.

Compressor capacity is rated on the actual cubic feet of air delivered at a designated pressure, usually 100 p.s.i.

The usual capacities for portable compressors are 105 cu. ft., 210 cu. ft., 315 cu. ft., 365 cu. ft., and 500 cu. ft.

There are many air tools for use with compressors; some of the more common are listed below:

Drills, jackhammers, wagon drills, drifters—for drilling holes in rock for use with explosives.

Breakers or busters—for breaking and chipping rock or loosening hard compact earth.

Air riveters (guns)—for driving rivets in steel bridge and building construction.

Plug drills—for plug and feather work, used generally in quarries for dimension stone such as granite, sandstone, and marble.

Air augers—for drilling holes in wood, in use on wooden piers, cofferdams, roof trusses, etc.

Bolt runners—for tightening bolts.

Tampers—to consolidate backfill.

Hoists, single and multiple drum—for use with derricks, mine scrapers, car haulage in industrial plants, etc.

Sheathing hammers—in trenches or cofferdams to drive wood sheathing, usually up to about 3 in. thick.

Air spades—for digging hard clay or other compact material.

Air vibrators—for concrete.

Pile hammers—for driving any type of pile.

Air saws, air clamps, etc.

The above tools use a varying amount of air, depending on size, mechanical condition of tool, etc.

For tools in general use on a construction job, such as a drill, breaker, tamper, and spades, a figure of 50 cu. ft. can be taken to estimate the compressor capacity required.

For example, a 210 cu. ft. compressor will operate four average size

drills, breakers, spades, or tampers, assuming that these tools are in fair mechanical condition.

The above figure is for practical field conditions.

Two or more compressors may be coupled together to increase the available amount of air. If this is done, the compressors should discharge into an air receiver or reservoir. This will increase efficiency, decrease wear on compressors, and insure an even flow of power to tools.

On any job it is good practice to have one spare tool for every four tools in use to avoid costly delays caused by mechanical failure.

Tools are expensive and should be well cared for; carelessness is an item that should not be on any report sheet.

Some attempts have been made to operate percussion tools (breakers) by gasoline or electricity, but this type of tool is not in general use as yet in the construction field.

Careful consideration should be given to weight of tool selected for various operations. For instance, a man can use a heavier, more powerful drill or breaker if he is drilling a down hole, i.e., a hole either vertical or on a slant away from him. But a much lighter tool should be provided for drilling or chipping a horizontal hole (breast hole), to avoid excessive fatigue. There is, however, a third leg or jack on the market which can be clamped to the drill or breaker which will relieve the operator of much of the weight of the tool and which adds considerably to the efficiency of the tool.

An air tool in operation is always cold owing to the expansion of the air out of the exhaust valve; hence, care must be taken to use a good grade of air oil for lubrication. One of the best of many ways to oil an air tool is by a line oiler. This is an oil reservoir holding about a pint of oil and can be set to provide oil drop by drop into the air line which is carried to the tool.

For several years manufacturers have provided a drill rod threaded on one end to receive a jack bit. This eliminates hand sharpening of steel on the job as the jack bit can be used until dull or until the gage is worn down, then it is simply unscrewed from the rod and replaced.

The gage of a bit is its width. As the drill rotates, the bit is worn down by the rock and gradually the bit becomes narrower until finally, in construction parlance, "the gage is gone."

The gage of a bit is of great importance. Drill rods usually provide for a depth of hole up to 10 ft. to 12 ft. or more by 2-ft. stages.

EXAMPLE.

GAGE

No. 1 or starter drill rod 2 ft.—Bit 2 in. No. 2 drill rod 4 ft.—Bit 1¾ in. No. 3 drill rod 6 ft.—Bit 1½ in.

Note that, on No. 1 bit, the gage is 2 in.

As the bit is worn or loses its gage, it is evident that No. 2 bit will not follow; that is, it will not seat at the bottom of the hole already drilled by No. 1. As a result, bit 2 will become fast in the hole resulting in loss of steel and time. The above bit sizes are arbitrary, but note that the gage for any following bit is ½ in. smaller always.

Bits may be resharpened by special tools but always to a smaller gage; for example a 2-in. bit becomes 1¾ in., etc.

Bits are various shapes: X bits, cross bits + or six point or rose bits . The cross bit and six point are the more common. Although each shape has its strong supporters among rock men, in general it can be said that, in hard dense rock, the cross bit is superior, while in loosely stratified rock, the six point is superior. The six point bit is especially desirable in drilling concrete for demolition.

The use of goggles to protect the eyes is a wise precaution for men operating drills or breakers, and in enclosed places a simple dust mask can be provided to keep the nose and throat as free from dust as possible.

Electric tools such as saws, pumps, wood augers, vibrators, bolt runners, and drill presses have a place in construction. For many tools, electricity is more advantageous in that the primary power feeder is a distant power house and, after the feeder lines are run, power is available at the turn of a switch.

Gasoline- and diesel-fuel-driven motors are widely used as the primary power unit on all sizes of tools from the small compresser, table saws, pumps, vibrators, chain saws, electric generators, etc., to the giant locomotive.

PART II

SURVEYING

TOPOGRAPHIC SURVEY

Traverse points should be selected with a view to economy of setups; e.g., so located that a maximum area can be seen by the instrument man. For accuracy the traverse should be run separately from the topography shots. For economy, where refined accuracy is not necessary, the traverse and the topography can be run simultaneously; i.e., the topography shots are taken as each traverse point is occupied.

Since stadia topography is normally plotted with a protractor, refinements greater than 15 minutes in the horizontal angle are not warranted. Considerable speed is attained when the horizontal angles are estimated to the nearest quarter degree and the vertical angles to the nearest minute.

SAMPLE NOTES

	- 1						\nearrow		44
_	_	ADIA		VERSE measur	and clock				MADAWASKA BROOK K WAITHER NOTES
STa.	3ra	Hor &	Mag B	Rod Int.	Ver &	Hor Dist	0	llo	C. Ward C. A. Eschen, Roas S. J.
B	A	00	N89°W					\parallel	(Ftd) 125 K-1002
	c	90°	N I'E	6.05	-10/7				9-92-45
_	-						0		Cause Cool 1 1 K / Res
\overline{c}	В	o°	50W	6.07	+1016	608'			
	D	201°30′	N22°E	6.95	-/27	696'			Calculated Bearings
							0		AB - 588 -52'E
D	С	0°	521°W	6.96	+/27	697			BC+W/1-08'E
_	Ε	22/°0	N62°E	8.65	-/35	865'			aa+ w22+384
-									44 We31384
E	D	0°			+/35				EF WAS-57W 57
	F	102°25	NI6W	10.21	-325	1018'			146+W69+23E
_							- 1		
£	Ε	0°	S15°E						D day day
_	G	263°20′	N66°E	4.98	-2%6	498'	0	0	
_		0°	C CTRU	499	+296	499'	.		\
<u>6</u>	F	0	567W	4.99	7216	433		0	\++++ \
-			_	-	-	-	$^{\circ}$	\parallel	} +}+} 4# ++++++++++++++++++++++++++++++++++++
-	_		-		-				}+++++10+++++++++++++++++
-				-				10	
_			 -			 	٦	\parallel	A B Bose Line of Sast See
_		-)	-	-A-Sta.6+0 on Base Line Calc.
					<u>' </u>		ノ		

Fig. 2.

						$\overline{}$	€
(ROSS	SECT	ONS			11	PRELIM BRANDON ROAD
						11	Nume 7- 6/04/04, Warm 75 -80 FF
Sta.	B.5.	HI.	F.5.	Elev.	0		R. Shekton . T L. Vought, Rod W. Bailey Tope
	6.07	212 27		206.20		11	Spike in Stunge - 24+90-75'Rt
25						11	40 27 17 60 SE 29 70 40 55 ME
					0	110	\$\frac{1}{4}\frac{1}{4
+50						11	45 30 10 14 5 5 7 15 17 86 40 55 55 65 74 65 59 62 75 65 45 49
-,00							101 10 10 10 10 10 10 10 10 10 10 10 10
26				-	一。	llo	42 77 44 157 6
20				 	— °	\parallel	33 do 376 do 36/ do 33 di do 30
							7
+37						11	\$3 \$5 \$4 \$5 \$5 \$5 \$7 \$7 \$5 \$6 \$37 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5
						11	40 45 45 46 66 66 66 66 66 66 66 66 66 66 66 66
27						11	90 81 70 65 60 64 75 66 50 40
						П	151 201 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+50							80 70 63 54 90 83 64 83 50 38
						11	40 To at
28							1 2 36 50 27 45 28 53 26 35
						11	45 46 55 55 57 50 10 10 10 10 10 10 10 10 10 10 10 10 10
+50						Ш	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					0	llo	45 44 45 45 45 45 45 45 45 45
29						$\prod_{i=1}^{\infty}$	12 20 49 55 40 45 40 55
						П	10 00 10 10 10 10 10 10 10 10 10 10 10 1
T.P.			3.51	208.76		10	Top of store - Sto 29 + 45 - 50'Rt
						\prod	
-							····
\smile				<u> </u>		$^{\prime}$	t

STADIA TABLES

Table 1. Stadia Reductions *

Differences in Elevation for 100 ft. Inclined Distance

Min- utes	0°	lo.	20	3°	40	5°	6°	7°	8°	90	10°	110	12°
0 2 4 6 8 10	0.00 0.06 0.12 0.17 0.23 0.29	1.74 1.80 1.86 1.92 1.98 2.04	3.49 3.55 3.60 3.66 3.72 3.78	5.23 5.28 5.34 5.40 5.46 5.52	6.96 7.02 7.07 7.13 7.19 7.25	8.68 8.74 8.80 8.85 8.91 8.97	10.40 10.45 10.51 10.57 10.62 10.68	12.10 12.15 12.21 12.26 12.32 12.38	13.78 13.84 13.89 13.95 14.01 14.06	15.45 15.51 15.56 15.62 15.67 15.73	17.10 17.16 17.21 17.26 17.32 17.37	18.73 18.78 18.84 18.89 18.95	20.34 20.39 20.44 20.50 20.55 20.60
12 14 16 18 20	0.35 0.41 0.47 0.52 0.58	2.09 2.15 2.21 2.27 2.33	3.84 3.90 3.95 4.01 4.07	5.57 5.63 5.69 5.75 5.80	7.30 7.36 7.42 7.48 7.53	9.03 9.08 9.14 9.20 9.25	10.74 10.79 10.85 10.91 10.96	12.43 12.49 12.55 12.60 12.66	14.12 14.17 14.23 14.28 14.34	15.78 15.84 15.89 15.95 16.00	17.43 17.48 17.54 17.59 17.65	19.05 19.11 19.16 19.21 19.27	20.66 20.71 20.76 20.81 20.87
22 24 26 28 30	0.64 0.70 0.76 0.81 0.87	2.38 2.44 2.50 2.56 2.62	4.13 4.18 4.24 4.30 4.36	5.86 5.92 5.98 6.04 6.09	7.59 7.65 7.71 7.76 7.82	9.31 9.37 9.43 9.48 9.54	11.02 11.08 11.13 11.19 11.25	12.72 12.77 12.83 12.88 12.94	14.51 14.56 14.62	16.06 16.11 16.17 16.22 16.28	17.70 17.76 17.81 17.86 17.92	19.32 19.38 19.43 19.48 19.54	20.92 20.97 21.03 21.08 21.13
32 34 36 38 40	0.93 0.99 1.05 1.11 1.16	2.67 2.73 2.79 2.85 2.91	4.42 4.48 4.53 4.59 4.65	6.15 6.21 6.27 6.33 6.38	7.88 7.94 7.99 8.05 8.11	9.60 9.65 9.71 9.77 9.83	11.42 11.47 11.53	13.00 13.05 13.11 13.17 13.22	14.67 14.73 14.79 14.84 14.90	16.33 16.39 16.44 16.50 16.55	17.97 18.03 18.08 18.14 18.19	19.59 19.64 19.70 19.75 19.80	21.18 21.24 21.29 21.34 21.39
42 44 46 48 50	1.22 1.28 1.34 1.40 1.45	2.97 3.02 3.08 3.14 3.20	4.71 4.76 4.82 4.88 4.94	6.44 6.50 6.56 6.61 6.67	8.17 8.22 8.28 8.34 8.40	9.88 9.94 10.00 10.05 10.11	11.59 11.64 11.70 11.76 11.81	13.28 13.33 13.39 13.45 13.50	14.95 15.01 15.06 15.12 15.17	16.61 16.66 16.72 16.77 16.83	18.24 18.30 18.35 18.41 18.46	19.86 19.91 19.96 20.02 20.07	21.45 21.50 21.55 21.60 21.66
52 54 56 58 60	1.51 1.57 1.63 1.69 1.74	3.26 3.31 3.37 3.43 3.49	4.99 5.05 5.11 5.17 5.23	6.73 6.79 6.84 6.90 6.96	8.45 8.51 8.57 8.63 8.68	10.17 10.22 10.28 10.34 10.40	11.87 11.93 11.98 12.04 12.10	13.56 13.61 13.67 13.73 13.78	15.23 15.28 15.34 15.40 15.45	16.88 16.94 16.99 17.05 17.10	18.51 18.57 18.62 18.68 18.73	20.12 20.18 20.23 20.28 20.34	21.71 21.76 21.81 21.87 21.92
f + c .75 1.00 1.25	0.01 0.01 0.02	0.02 0.03 0.03	0.03 0.04 0.05	0.05 0.06 0.08	0.06 0.08 0.10	0.07 0.09 0.11	0.08 0.11 0.14	0.10 0.13 0.16	0,11 0,15 0,18	0.12 0.16 0.21	0.14 0.18 0.23	0.15 0.20 0.25	0.16 0.22 0.27

Corrections to Horizontal Distances

Min- utes	0°	10	2°	3°	4°	5°	6°	7°	80	90	10°	110	12°
0 10 20 30 40 50	0.01 0.01 0.01 0.02	0.05	0.12 0.14 0.17 0.19 0.22 0.24	0.34 0.37 0.41	0.57	0.98		1.70	1.94 2.02 2.10 2.18 2.27 2.36	2.54 2.63	3.02 3.12 3.22 3.32 3.42 3.53		4.32 4.44 4.56 4.68 4.81 4.93

Table 1. Stadia Reductions (Continued) *
Differences in Elevation for 100 ft. Inclined Distance

Min- utes	13°	140	15°	16°	17°	18°	190	20°	21°	22°	23°	240	250
0	21.92	23.47	25.00	26.50	27.96	29.39	30.78	32.14	33.46		35.97	37.16	38.30
2	21.97	23.52	25.05	26.55	28.01	29.44	30.83	32.18	33.50		36.01	37.20	38.34
4	22.02	23.58	25.10	26.59	28.06	29.48 29.53	30.87 30.92	32.23 32.27	33.54 33.59	34.82 34.86	36.05 36.09	37.23 37.37	38.38 38.41
6	22.08	23.63	25.15 25.20	26.64 26.69	28.10 28.15	29.58	30.92	32.32	33.63	34.90	36.13	37.31	38,45
8	22.13	23.68	1						33.67	34.94	36.17	37.35	
10	22.18	23.73	25.25	26.74	28.20	29.62	31.01	32.36	22.01	24.74	30.17	21.33	38.49
12	22.23	23.78	25.30	26.79	28. 25	29.67	31.06	32.41	33.72	34.98	36.21	37.39	38,53
14	22.28	23.83	25.35	26.84	28.30	29.72	31.10	32.45	33.76	35.02	36.25	37.43	38,56
16	22.34	23.88	25.40	26.89	28.34	29.76	31.15	32.49	33.80	35.07	36.29	37.47	38.60
18	22.39	23.93	25.45	26.94	28.39	29.81	31.19	32.54	33.84	35.11	36.33	37.51	38.64
20	22.44	23.99	25.50	26.99	28.44	29.86	31.24	32.58	33.89	35.15	36.37	37.54	38.67
22	22.49	24.04	25.55	27.04	28, 49	29.90	31.28	32.63	33.93	35.19	36.41	37.58	38.71
24	22.54	24.09	25.60	27.09	28.54	29.95	31.33		33.97		36.45	37.62	38,75
26	22.60	24.14	25.65	27.13	28.58	30.00	31.38	32.72	34.01	35.27	36.49	37.66	38.78
28	22.65	24.19	25.70	27.18	28.63	30.04	31.42	32.76	34.06	35.31	36.53	37.70	38,82
30	22,70	24.24	25.75	27.23	28.68	30.09	31.47	32.80	34.10	35.36	36.57	37.74	38.86
32	22.75	24.29	25.80	27.28	28.73	30.14	31.51	32.85	34.14	35.40	36.61	37.77	38,89
34	22.80	24.34	25.85	27.33	28.77	30.19	31.56	32.89	34.18	35.44	36.65	37.81	38,93
36	22.85	24.39	25.90	27.38	28.82	30.23	31.60	32.93	34.23	35.48	36.69	37.85	38,97
38	22.91	24.44	25.95	27.43	28.87	30.28	31.65	32.98	34.27	35.52	36.73	37.89	39,00
40	22.96	24.49	26.00	27.48	28.92	30.32	31.69	33.02	34.31	35.56	36.77	37.93	39.04
42	23.01	24.55	26.05	27.52	28.96	30.37	31.74	33.07	34.35	35.60	36.80	37.96	39.08
44	23.06	24.60	26.10	27.57	29.01	30.41	31.78	33.11	34.40	35.64	36.84	38.00	39.11
46	23.11	24.65	26.15	27.62	29.06	30.46	31.83	33.15	34.44	35.68	36.88	38,04	39.15
48	23.16	24.70	26.20	27.67	29.11	30.51	31.87	33.20	34.48	35.72	36.92	38.08	39.18
50	23.22	24.75	26.25	27.72	29.15	30.55	31.92	33.24	34.52	35.76	36.96	38.11	39.22
52	23.27	24.80	26.30	27.77	29.20	30.60	31.96	33.28	34.57	35.80	37.00	38, 15	39.26
54	23.32	24.85	26.35	27.81	29.25	30.65	32.01	33.33	34.61	35.85	37.04	38, 19	39.29
56	23.37	24.90	26.40	27.86	29.30	30.69	32.05	33.37	34.65	35.89	37.08	38, 23	39.33
58	23.42	24.95	26.45	27.91	29.34	30.74	32.09	33.41	34.69	35.93	37.12	38, 26	39.36
60	23.47	25.00	26.50	27.96	29.39	30.78	32.14	33.46	34.73	35.97	37.16	38.30	39.40
1+c													
.75	0.17	0.19	0.20	0.21	0.23	0.24	0.25	0.26	0.27	0.29	0.30	0.31	0.32
1.00	0.23	0.25	0.27	0.28	0.30	0.32	0.33	0.35	0.37	0.38	0.40	0.41	0.43
1.25	0.29	0.31	0.34	0.36	0.38	0.40	0.42	0.44	0.46	0.48	0.50	0.52	0.54

Corrections to Horizontal Distances

Min- utes	13°	140	15°	16°	17°	18°	19°	20°	21°	22°	23°	24°	25°
0 10 20 30 40 50	5.06 5.19 5.32 5.45 5.58 5.72	5.85 5.99 6.13 6.27 6.41 6.55	6.70 6.84 6.99 7.14 7.29 7.44	7.60 7.75 7.91 8.07 8.23 8.39	8.55 8.71 8.88 9.04 9.21 9.38	9.72 9.89 10.07 10.24	10.78 10.96 11.14 11.33	11.89 12.07 12.26 12.46	13.04 13.23 13.43	14.24 14.44 14.64 14.85	15.27 15.48 15.69 15.90 16.11 16.33	16.76 16.98 17.20 17.42	17.86 18.08 18.31 18.53 18.76 18.99

^{*} From Eshbach, Handbook of Engineering Fundamentals, John Wiley & Sons, 1936.

CONSTRUCTION STAKEOUTS

STAKEOUT FOR STRUCTURES

Fig. 4. Batter boards for structures.

Batter boards as illustrated are set on, or parallel to, the building or structure lines either before or after the rough excavation is completed. When set before excavating, the batter boards should be checked upon completion of the rough excavation. Points on the batter boards may be set on the outside foundation line or sometimes on the center line of columns. It is preferable to set the top of each batter board to some definite grade, such as the first-floor elevation or else some even foot above or below a working grade.

Before setting the batter boards a base line should be established and referenced in with ties. Targets may also be set on the base line projected. Angles turned from the base line should be established by the method of repetition (see p. 244) as an error of 1 minute in 300 ft. will throw the building line off 1 in.

From time to time during construction, the batter boards should be checked for disturbance or movement.

HIGHWAY CONSTRUCTION STAKEOUT

Fig. 5. Highway construction stakeout.

Before work begins, the construction centerline is staked out, usually on 50-ft. stations. Hubs are set at P.C.'s, P.T.'s, P.I.'s, and transit points. These hubs are tied in or offset, and the ties are recorded in the field book.

Offset grade stakes are set on 50-ft. stations far enough out to escape disturbance during operations where possible. Elevations of these stake tops are taken with a level, and the cut or fill to finish center-line grade is computed and marked on each stake. The distance to the toe or top of slope is marked on the offset grade stake or else the actual location of the toe or top of slope is marked with a slope stake. The station and the distance from the offset stake to center line are marked on the face of the offset stake. The superelevation plus or minus to edge of pavement and any pavement widening or curves are also marked on the offset stakes.

After rough grading is completed, blue tops or fine grade stakes are set every 50 ft. minimum. Blue tops are stakes set to fine grade and the top marked blue. Allowance for settlement or subsidence is sometimes made in setting these grades, or it may be made the contractor's responsibility, the engineer in the latter case setting the stakes to the grades shown on plan.

For concrete pavement, stakes are set usually every 50 ft. on tangents and straight grades and every 25 ft. on horizontal and vertical curves. These stakes are carefully aligned with a transit and tacks set on line. Either the tops are set to exact grade or the cut or fill is marked to finish grade.

Pavement stakes are set with a sufficient offset to allow room for the flanged bases of the forms, the offset usually being about 18 in. or 2 ft. from the edge of pavement. After the initial lane is placed, additional stakes may be set for other lanes or the forms may be set by leveling over with a line level.

For asphaltic pavements stakes are usually not set when the base has been constructed true to grade as the paving machines can be set for the required thickness. If the base is variable, steel pins for line and grade are usually set at 50- or 25-ft. intervals and offset enough to allow the machines to work. A 1-ft. offset is usually sufficient.

The amount of stakeout done for highway construction depends on the value and importance of the work, and judgment is required. For example, on cheap tertiary road construction only center-line stakes might be set at 100-ft. stations and a list of cuts and fill given to the foreman. The line and grade may then be transferred by the foreman, using a tape and hand level, to convenient trees, offset stakes, etc.

Through wooded country, stakes or marks are usually set at the clearing and grubbing limits. Trees to be saved are indicated by markings or signs.

In addition to line and grade stakes, right-of-way stakes may be necessary, also project markers and stakes set at intersection of right-of-way and adjoining property lines.

RAILROAD CONSTRUCTION STAKEOUT

Fig. 6. Railroad construction stakeout.

Stakeout for the grading work is similar to highway stakeout.

After grading is finished, and the ballast, ties, and rails are being installed, stakes for exact alignment and grade of rails are set. These stakes are tacked for line and may be set on center line or offset about 2 ft. from one rail. The grade marked is usually finish grade to the near rail, superelevation being set for the other rail by using a track level.

AIRFIELD CONSTRUCTION STAKEOUT

.....

Fig. 7. Airport stakeout.

The stakeout required differs from highway work in that the widths of runways and taxiways, together with their shoulders and graded areas, are so great that it is not practicable to set offset stakes to serve during construction.

The construction center line is staked out at 50-ft. stations and well referenced and tied in, and targets are set on the line extended. During grading operations stakes are set continually day by day, at least one party usually being required at all times for each runway under construction.

For rough grading stakes at 50-ft. intervals both longitudinally and transversely are sufficient, but for fine grading stakes should be set at 25-ft. intervals.

Concrete pavement stakes are set exactly the same as for highways, but owing to the widths of runways and aprons it is not desirable to depend on a string level to transfer the grades for more than 2 or 3 lanes. Additional stake lines should be run in at intervals of 25 or 30 ft. transversely.

Stakeout for asphaltic pavements is the same as for highways.

Stakes for grading interior areas are usually set on 50- to 100-ft. grids and marked for cut and fill.

PIPELINE STAKEOUT *

Fig. 8. Pipeline stakeout.

Before beginning excavation, stakes should be set 25 or 50 ft. apart parallel to and offset from the center line of the drain on the side opposite to that on which earth will be thrown. Elevations of tops of stakes should be taken with a level and depth of cut marked on each. These stakes will serve as guides for the rough excavation.

Excavation should be begun at the outlet.

After the excavation is approximately to grade, batter boards should be placed across the trench opposite each stake with the top of each board at the same distance above the grade of the flow line. About 6.5 or 7 ft. above grade is good practice. The center line is then marked on the batter boards, and a string connecting these points will be directly above and parallel to the grade line. The center line at any point may then be obtained by dropping a plumb bob from the string, and the grade determined by measuring down from the string with a pole of proper length.

Laying of pipe should begin at the outlet and proceed upstream.

* From Principles of Highway Construction Applied to Airports, Flight Strips and other Landing Areas for Aircraft, Public Roads Administration.

CIRCULAR CURVES

ARC DEFINITION

FORMULAS

$$R = \frac{5729.58}{D}$$

$$T = R \tan \frac{\Delta}{2}; \quad T = \frac{\tan 1^{\circ} \text{ curve for } \Delta}{D}$$

$$L = \text{length} = \frac{100\Delta}{D}$$

$$M = R(1 - \cos \frac{1}{2}\Delta)$$

$$E = R\left(\frac{1}{\cos \frac{1}{2}\Delta} - 1\right); \quad E = \frac{\text{ext. } 1^{\circ} \text{ curve for } \Delta}{D}$$

$$C = 2R \sin \frac{\Delta}{2}$$

DEFINITIONS

L = Length of circular curve.

P.I. = point of intersection.

P.C. = point of curvature.

P.T. = point of tangency.

Example. Given. $\Delta = 54^{\circ} 20'$; $D = 7^{\circ} 40'$; P.I. = Sta. 125 + 39.88. Required. R; T; L and Sta. of P.C. and P.T. Solution.

$$R = \frac{5729.58}{7^{\circ} \cdot 40'} = 747.34'.$$

 $T = 747.34 \text{ (tan } 27^{\circ} 10') = 747.34 (0.513195) = 383.53'.$

Also, from p. 208 (funct. 1° curve) by interpolation, $\tan 1^\circ$ curve for $\Delta 54^\circ 20' = 2940.41$.

$$\therefore T = \frac{2940.41}{7^{\circ} \, 40'} = 383.53'.$$

P.C. = Sta.
$$125 + 39.88 - 383.53 = Sta. 121 + 56.35$$
.

$$L = \frac{100\Delta}{D} = \frac{100(54^{\circ} 20')}{7^{\circ} 40'} = 708.70'.$$

$$P.T. = Sta. 121 + 56.35 + 708.70 = Sta. 128 + 65.05.$$

DEFLECTIONS

FORMULAS

Deflection angle = $\frac{D}{2}$ for 100'; $\frac{D}{4}$ for 50', etc.

For c feet (in minutes) = 0.3 cD.

Deflection angle (in minutes) from P.C. to P.T. = 0.3LD.

Also, deflection angle (in degrees) from P.C. to P.T. = $\frac{\Delta}{2}$.

Example. Given. $\Delta = 54^{\circ} 20'$; $D = 7^{\circ} 40'$; L = 708.70; P.C. = Sta. 121 + 56.35; P.T. = Sta. 128 + 65.05.

Required. Deflection angle from P.C. to Sta. 122 + 00; Sta. 122 + 50 and P.T. Sta. 128 + 65.05.

Solution.

Sta. 122 + 00 - P.C. Sta. 121 + 56.35 = 43.65'.

.. Deflection angle to Sta. $122 + 00 = 0.3 \times 43.65 \times 7^{\circ} 40' = 100.395' = 1^{\circ} 40.395'.$

Deflection angle to Sta. $122 + 50 = 1^{\circ} 40.395' + \frac{7^{\circ} 40'}{4} = 1^{\circ} 40.395' + 1^{\circ} 55' = 3^{\circ} 35.395'.$

Deflection angle to P.T. Sta. $128 + 65.05 = 0.3 \times 708.70 \times 7^{\circ} 40' = 27^{\circ} 10'$.

Also, deflection angle to P.T. Sta. $128 + 65.05 = \frac{\Delta}{2} = \frac{54^{\circ} 20'}{2}$ = 27° 10′.

Example. Given. $\Delta = 54^{\circ} 20'$; $D = 7^{\circ} 40'$; R = 747.34'.

Required. External "E".

Solution.

$$E = 747.34 \left(\frac{1}{.8896822} - 1 \right) = 92.67'.$$

Also, from p. 208 (funct. 1° curve) by interpolation, external 1° curve for $\Delta 54^{\circ} 20' = 710.48$.

$$\therefore E = \frac{710.48}{7^{\circ} \cdot 40'} = 92.67'.$$

MINIMUM CURVATURE *

The curve should be at least 500 ft. long for $\Delta = 5$ degrees and increase 100 ft. in length for each decrease of 1 degree in the Δ .

Where topography permits, use simple 0° 20′ to 1° 00′ curves without superelevation or widening.

MAXIMUM CURVATURE *

	DEGREE	OF CURVE
Assumed Design	DESIRABLE	ABSOLUTE
Speed, M.P.H.	MAXIMUM	$\mathbf{M}_{\mathbf{A}\mathbf{X}\mathbf{I}\mathbf{M}\mathbf{U}\mathbf{M}}$
30	20	25
40	11	14
50	7	9
60	5	6

TANGENT OFFSETS

3

4

The approximate offset from the tangent to the curve at any distance from the P.C. = $\frac{\text{distance}^2}{2R}$.

CHORD DEFINITION (R. R. CURVE)

D (in degrees) subtends 100' chord.

70

$$D = 100 \, \Delta/L$$

$$D = \frac{\tan 1^{\circ} \text{ curve}}{T} \text{ (approx.)}.$$

$$D = \frac{\text{ext. } 1^{\circ} \text{ curve}}{E} \text{ (approx.)}.$$

Tan offset = $\frac{\text{chord}^2}{2R}$ = chord·sin def. = $\left(\frac{\text{chord}^2}{100}\right)$ tan offset, Table 3. Chord offset = 2 tan deflection for 100' chord = 100 sin D° .

^{*} From Geometric Design Standards by A.A.S.H.O.

Tan def. = $\frac{1}{2}D\frac{\text{chord}}{100}$; for c feet = $0.3D \times c$ = def. for 1' in Table 2 $\times c$.

Chord def. = $2 \tan \det = D$ for 100' chord.

FORMULAS

$$\begin{split} R &= \frac{50}{\sin D/2} \; ; \quad R = T \cdot \cot \frac{\Delta}{2} \; ; \quad R = \frac{E}{\operatorname{exsec} \Delta/2} \; ; \quad T = R \cdot \tan \frac{\Delta}{2} \; ; \\ T &= \frac{50 \tan \Delta/2}{\sin \Delta/2} \; ; \quad T = \frac{\tan 1^\circ \operatorname{curve}}{D} + \operatorname{corr.}^* \quad L = 100 \; \frac{\Delta}{D} \; ; \quad \Delta = \frac{DL}{100} \; ; \\ M &= R \left(1 - \cos \frac{\Delta}{2} \right) \; ; \quad M = R \; \operatorname{vers} \frac{\Delta}{2} \; ; \quad E = T \cdot \tan \frac{\Delta}{4} \; ; \\ E &= \frac{R}{\cos \Delta/2} - R \; ; \quad E = R \cdot \operatorname{exsec} \frac{\Delta}{2} \; . \quad C = 2R \cdot \sin \frac{\Delta}{2} \; ; \end{split}$$

$$E = \frac{\text{ext. 1° curve}}{D} + \text{correction.*} \quad \sin \frac{D}{2} = \frac{50}{R} \; ; \quad \sin \frac{D}{2} = \frac{50 \tan \Delta/2}{T}$$

EXAMPLE. Given. $\Delta = 54^{\circ} 20'; D = 7^{\circ} 40', P.I. Sta. 125 + 39.88.$ Required. R, T, L, P.C., and P.T. Solution.

 $R = 50 \div \sin 3^{\circ} 50' = 747.89.$

T = 747.89 (tan 27° 10') = 383.81.

 $L = 100\Delta \div D = 100 (54^{\circ} 20') \div 7^{\circ} 40' = 708.70.$

P.C. = P.I. Sta. 125 + 39.88 - 383.81 = Sta. 121 + 56.07.

P.T. = Sta. 121 + 56.07 + 708.70 = Sta. 128 + 64.77.

^{*} See p. 209.

PADE HER TARLE 2

		q	1° 30′ 2° 30′ 3° 30′ 5° 30′ 5° 30′ 10° 112° 114° 120° 120° 14° 18° 16° 16° 18° 18° 18° 18° 18° 18° 18° 18° 18° 18
CHORDS *		5 Sta.	499 .96 499 .96 499 .96 499 .03 499 .03 498 .14 498 .14 497 .57 497 .57 497 .57 498 .92 498 .93 499 .93 490 .93 400 .9
	hords	4 Sta.	399.98 399.98 399.50 399.50 399.50 399.70 398.78 398.78 398.70 396.70 306.70 306.70 306.70 306.70 306.70 306.70 306.70 306.70 306.70 306.70 306.70 30
ARCS-100'	Long Chords	3 Sta.	299 .99 .299 .93 .29 .299 .93 .299 .93 .299 .93 .299 .93 .299 .93 .299 .93 .299 .93 .299 .93 .299 .93 .299 .93 .299 .93 .299 .93 .299 .93 .299 .93 .290 .93 .299 .93 .299 .93 .299 .93 .290 .93 .299 .93 .290 .93 .29 .299 .93 .290 .93 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20
EDS AND		2 Sta.	200.000 199.99 199.99 199.95 199.93 199.88 199.81 199.77 199.63 199.63 199.63 199.63 199.63 199.63 199.63 199.63 199.63 199.63 199.63 199.63 199.63 199.63
S, CHORDS	Actual Arc per	100' Sta.	100 000 100 000 100 000 100 000 100 001 100 015 100 020 100 02
ORDINATES,	dd	50′	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	For Subchords Add	25′	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
OFFSETS,	or Sube	20,	0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.12
NS, O	Ā	10′	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
LECTIO	Mid	Ord.	0.109 0.218 0.218 0.436 0.545 0.654 0.764 0.764 0.982 1.200 1.300 1.300 1.418 1.746 2.183 2.620 3.935 4.374 4.814 4.814 6.583
RADII, DEFLECTIONS,	Tan Off-	set	0.436 0.873 1.309 1.745 2.181 2.181 2.618 3.926 4.362 4.363 6.105 6.105 6.105 6.105 113.92 113.92 115.64 115.64 117.08 20.79
	Def.	I Pt.	0.00 0.00
TABLE 2.	Radius		11,459.2 2,864.93 2,864.93 2,292.01 1,931.08 1,482.69 1,482.69 1,482.69 1,482.69 1,042.14 965.31 473.69 473.69 473.69 473.69 473.69 473.69 473.69 473.69 196.29 240.49
	Q		1, 30, 2, 30, 3, 30, 5, 30, 5, 30, 7, 30, 112, 116, 116, 118, 20, 22, 30,

* Adapted from Railroad Curve Tables by Eugene Dietzgen Co.

TABLE 3. MINUTES IN DECIMALS OF A DEGREE, SECONDS IN DECIMALS OF A MINUTE *

-											
1	0.0167	11	0.1833	21	0.3500	31	0.5167	41	0.6833	51	0.8500
2	0.0333	12	0.2000	22	0.3667	32	0.5333	42	0.7000	52	0.8667
3	0.0500	13	0.2167	23	0.3833	33	0.5500	43	0.7167	53	0.8833
4	0.0667	14	0.2333	24	0.4000	34	0.5667	44	0.7333	54	0.9000
5	0.0833	15	0.2500	25	0.4167	35	0.5833	45	0.7500	55	0.9167
6	0.1000	16	0.2667	26	0.4333	36	0.6000	46	0.7667	56	0.9333
7	0.1167	17	0.2833	27	0.4500	37	0.6167	47	0.7833	57	0.9500
8	0.1333	18	0.3000	28	0.4667	38	0.6333	48	0.8000	58	0.9667
9	0.1500	19	0.3167	29	0.4833	39	0.6500	49	0.8167	59	0.9833
10	0.1667	20	0.3333	30	0.5000	40	0.6667	50	0.8333	60	1.0000

Proportional Part for 1" = 0.000278 of 1°

USE OF TABLES 2 AND 3

Given	Required	Solution	
$D = 2^{\circ} 30'$ $D = 4^{\circ}$ $D = 10^{\circ}$ $D = 14^{\circ}$ $D = 20^{\circ}$ $D = 3^{\circ}$ $\Delta = 27^{\circ} 05' 11''$	Deflection for 35 ft. Tan offset for 125 ft. Mid ord, for 30 ft. chord Length of nominal 20 ft. sub chord Actual length of arc for $L = 600$ ft. (6 Sta.) Long chord for 3 Sta. Δ in decimals of °	$= 0.75 \times 35 = 26.25$ $= 3.49(1.25/100)^{2}$ $= 0.0001 \times 30^{2} \times 2.183$ $= 20 + 0.05$ $= 100.51 \times 6$ $= \text{From Table 2}$ $= \text{From Table 3}$ $= 27 + 0.0833 + 11 \times 0.000278$	= 26' 15" = 5.45 ft. = 0.196 ft. = 20.05 ft. = 603.06 ft. = 299.73 ft. 3 = 27.086°

^{*} Adapted from Railroad Curve Tables by Eugene Dietzgen Co.

TABLE 4. FUNCTIONS OF 1° CURVE

See pp. 202, 203, 204 for use of table.

	gent	ternal	Central Angle	Tan- gent	Ex- ternal	Central Angle	Tan- gent	Ex- ternal	Central Angle	Tangent	Ex- ternal
1°	50.00	0.22	31°	1588.95 1615.91 1642.93	216.25	61° 62°	3374.98	920.1	91° 30′ 92°	5830.46	2444.9
2°30′	75.00	0.49 0.87	31° 30′ 32°	1615.91	223.51 230.90	620	3408.74	937.3 954.8	020	5933 15	2481.5 2518.5
30'	100.01 125.02	1.36	32° 30′ 33°	1670:02	238.43	62° 30′ 63°	0410.10	972.4	92° 30′ 93°	5881.58 5933.15 5985.20	2556.0
3°°°	150.03	1.96	33°	1697.18	246.08	63°	3511.09	990 2	93°	6037.72	2594.0
30'	175.05	2.67	000	1724.41	253.87	00	3545.57	1008.3	93° 30′ 94°	6090.72	2632.6
4°	200.08	3.49	34 20/	1751.71 1779.08	261.80 269.86	30	3580.24	1026.6 1045.2	30'	6108 22	2671.6 2711.2
- 00	$\frac{225.12}{250.16}$	4.42 5.46	34° 30′ 35°	1806.53	278.05	64° 30′ 65°	3615 09 3650.14	1063.9		6252.74	2751.3
5°30′	275.21	6.61	35° 30′ 36°	1834.05 1861.65	286.39	1 30	3685 39 3720.83	1082.9	95° 30′ 96°	6144.22 6198.22 6252.74 6307.77 6363.34	2792.0
6°	300.27	7.86	36°	1861.65	294.86	66°	3720.83	1102.2	96°	6363.34	2833.2
30	325.35 350.44	9.23 10.71	90	1889.33 1917.09	303.47 312.22	00	3756.48 3792.33	1121.7 1141.4	30	0419.40	2875.0 2917.3
7° 30′ 8°	375.54	12.29	37° 38° 30′	1917.09 1944.93 1972.85 2000.86 2028.95 2057.13 2085.40 2113.75	321.11	67° 30′ 68°	3828 38	1161.3	97° 30′ 98°	6533.33 6591.13 6649.50 6708.47 6768.05 6828.25	2960.3
8°	400.65	12.29 13.99	38°	1972.85	330.15	68°	3864.65 3901.13 3937.83	1181.6	98°	6591.13	3003.8
30	425.78	15.80 17.72	00	2000.86	339.32	30	3901.13	1202.0		6649.50	3047.9
9° 30′ 10°	450.93	17.72 19.75	39° 30′ 40°	2028.95	348.64 358.11	69° 30′ 70°	3937.83	1222.7 1243.7	99° 30′ 100°	6708.47	3092.7 3138.1
100	476.09 501.27	21.89	40°	2085 40	367.72	00	4011.89	1265.0	1000	6828 25	3184.1
10° 30′ 11°	526.47	24.14	40° 30′ 41°	2113.75	377.47	70° 30′ 71°	4049.27	1286.5	100° 30′ 101°	1 00008.07	3230.8
11°	551 70 l	26.50	41°	2142.20 2170.74	387.38	71°	4086.87	1308.2	101°	2050 59	3278.1
	576.94	28.97	-00	2170.74	397.43	l an	4124.71	1330.3	, 00	7012.65	3326.1
11° 30′ 12° 30′ 13°	576.94 602.20 627.49 652.80	31.56 34.26	42° 30′ 43°	2199.38 2228.11	407.64 417.99	72° 30′ 73°	4162.78 4201.10	1352.6 1375.2	101° 102° 103° 103°	7012.65 7075.44 7138.91 7203.07 7267.94 7333.53 7399.85	3374.9 3424.3
40.00	652.80	37.07	430	2256.94	428.50	73°	4239.66	1398.0	4000	7203.07	3474.4
30'	6/8.14	39.99	30'	2256.94 2285.87	439.16	30'	4239.66 4278.48 4317.55	1421.2	30'	7267.94	3525.2
30′ 14°	703.50	43.03	43° 30′ 44°	2314.90	449.98	73° 30′ 74°	4317.55	1444.6	103° 30′ 104°	7333.53	3525.2 3576.8
00	728.89	46.18 49.44	00	2344.03	460.95 472.08	00	4356.87 4396.46	1468.4 1492.4	4	7399.85	3629.2 3682.3
15° 30′ 16°	754.31 779.76	52.82	45° 30′ 46°	2373.27 2402.61 2432.06	483.37	75° 30′ 76°	4436.31	1516.7	105° 30′ 106°	7466.93 7534.78	3736 9
16°	805.24	56.31	46°	2432.06	494.82	76°	4476.44	1541.4	106°	7603.41	3736.2 3791.0
16° 30′ 17°	805.24 830.75	59.91	00	2461.62 2491.29	506.42	1 50	4516.83	1566.3	106° 30′ 107°	7400.93 7534.78 7603.41 7672.84 7743.08 7814.16 7886.09 7958.89 8032.57 8107.17	3846.5
17°	856.29	63.63	47° 30′ 48°	2491.29	518.20	77° 30′ 78°	4557.51 4598.47	1591.6	107	7743.08	3902.9
	881.87 907.48	67.47 71.42	48000	2521.07 2550.97	530.13 542.23	78°	4639.72	1617.1 1643.0	1000	7886.00	3960.1 4018.2
18° 19°	933,12	75.49	48° 30′ 49°	2580.99	554.50	78° 30′ 79°	4681.26	1669.2	108° 109°	7958.89	4077.2
19°	933.12 958.80	79.67	49°	2580.99 2611.12	566.94	79°	4723.10	1695.8	109°	8032.57	4137.1
00	984.52	83.97	00	2641.37	579.54	1 00	4765.24	1722.7	4 - 4 00	8107.17	4197.9
20° 1 30′ 1 21° 1	1010.28 1036.08	88.39 92.92	50° 30′ 51°	2671.75	592.32 605.27	80° 81° 81°	4807.69	1749.9 1777.4	110° 30′ 111°	8182.69 8259.15	4259.7
	1061.91	97.58	51°	2732.87	618.39	81°	4850.45 4893.52	1805.3	4440	8336.59	4322.4 4386.1
30'	1087.79	102.35	30'	2702.24 2732.87 2763.62	631.69	30'	4936.92 4980.65	1833.6 1862.2	30'	8336.59 8415.01	4450.9
21° 30′ 30′ 30′ 30′ 30′ 30′ 30′ 30′ 30′ 30′	1113.72	107.24	51° 30′ 52°	2794.50	645.17	81° 30′ 82°	4980.65	1862.2	30′ 112°	8494.45	4516.6
00	1139.68 1165.70	112.25 117.38		2825.52	658.83 672.66	.00	5024.71 5069.10	1891.2 1920.5	1100	8574.92 8656.45	4583.4
23° 1 30′ 1 24° 1	1191.75	122.63	53° 30′ 54°	2856.66 2887.95	686.68	83° 30′ 84°	5113.84	1950.3	30′ 114°	8730 AR	4651.3 4720.3
24° 1	1217.86	128.00	54°	2919.37	700.89	84°	5158.93	1980.4	114°	8739.06 8822.78 8907.63 8993.64	4790.4
00 1	1244.01	133.50	- 00	2950.93	715.28	.00	5204.38	2010.8	30′ 115°	8907.63	4861.7
25° 1 30′ 1 26° 1	1270.22	139.11 144.85	55° 30′ 56°	2982.63	729.85	85° 30′ 86°	5250.19	2041.7	115°	8993.64	4934.1
200	1296.47 1322.78	150.71	200	3014.48 3046.47	744.62 759.58		5296.37 5342.92	2073.0 2104.7	4 4 4 6 0 0	9080.83 9169.24	5007.8 5082.7
	1349 14	156.70	56° 30′ 57°	3078.61	774.73	86° 30′ 87°	5389.85	2136.7	116° 30′ 117°	9258.89	5158.8
27°	1375.55	162.81	57°	3110.91 3143.35	790.08	87°	5437.17	2169.2	117°	9349.82	5236.2
0000	1402.02	169.04	200	3143.35	805.62	2200	5484.88	2202.2	1100	9442.05	5315.0
28° 30′ 1	1428.54 1455.13	175.41 181.89	59° 59°	3175.96 3208.72	821.37 837.31	89° 30′	5532.99 5581.51	2235.5 2269.3	118,	9535.62 9630.55 9726.89	5395.1 5476.5
290	1481.77	188.51	59°	3241.64	853.46	89°	5630.44	2303.5	4400	9726.80	5559.4
30′ 1	1508.47	195.25 202.12	30'	3274.72	869.82	30'	5630.44 5679.79	2338.2	30'	9824.67	5643.8
30° 1	1535.24	202.12	59° 30′ 60°	3307.97	886.38	89° 30′ 90°	5729.58	2373.3	119° 30′ 120°	9923.92	5729.7
30′ 1	1562.06	209.12	30'	3341.39	903.15	30′	5779.80	2408.9	30′	10,024.68	5817.0

TABLE 5. CORRECTIONS FOR TANGENTS AND EXTERNALS

For railroad and highway curves laid out by the chord definition these corrections are to be added to the values found, using table on p. 208, in order to obtain the corrected tangents and external distances.

For Tangents Add *

Central							Degree	of Curv	re					
Angle	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°	70°
10°	.03	.06	.09	.13	.16	.19	.22	.25	.28	.31	.34	.38	.42	.46
15°	.04	.10	.14	.19	.24	.29	.34	.39	.45	.51	.53	.58	.63	.68
20°	.06	.13	.19	.26	.32	.39	.45	.51	.58	.65	.72	.79	.84	.90
25°	.08	.16	.24	.38	.40	.49	.58	.67	.75	.83	.90	.99	1.06	1.14
30°	.10	.19	.29	.39	.49	.59	.69	.79	.89	.99	1.09	1.20	1.29	1.39
35°	.11	.22	.34	.47	.58	.69	.70	.81	.92	1.04	1.29	1.42	1.54	1.66
40°	.13	.26	.40	.53	.67	.80	.93	1.06	1.20	1.34	1.49	1.64	1.79	1.94
45°	.15	.30	.44	.60	.76	.91	1.06	1.21	1.37	1.52	1.70	1.87	2.04	2.21
50°	.17	.34	.51	.68	.85	1.02	1.19	1.36	1.54	1.72	1.91	2.10	2.29	2.48
55°	.19	.38	.57	.76	.95	1.14	1.32	1.52	1.72	1.92	2.14	2.35	2.56	2.77
60°	.21	.42	.63	.84	1.05	1.27	1.49	1.71	1.94	2.17	2.38	2.60	2.83	3.07
65°	.23	.46	.69	.93	1.16	1.40	1.64	1.88	2.13	2.38	2.63	2.88	3.13	3.39
70°	.25	.51	.76	1.02	1.28	1.54	1.80	2.06	2.33	2.60	2.88	3.16	3.44	3.72
75°	.27	.56	.83	1.12	1.40	1.69	1.98	2.27	2.57	2.87	3.16	3.47	3.78	4.09
80°	.30	.61	.91	1.22	1.53	1.84	2.15	2.46	2.78	3.10	3.44	3.78	4.12	4.46
85°	.33	.66	1.00	1.33	1.68	2.02	2.36	2.70	3.05	3.40	3.77	4.14	4.55	4.89
90°	.36	.72	1.09	1.45	1.83	2.20	2.57	2.94	3.32	3.70	4.10	4.50	4.91	5.32
95°	.39	.79	1.19	1.55	2.00	2.40	2.80	3.20	3.61	4.02	4.40	4.98	5.38	5.83
100°	.43	.86	1.30	1.74	2.18	2.62	3.06	3.50	3.95	4.40	4.88	5.37	5.85	6.34
110°	.51	1.03	1.56	2.08	2.61	3.14	3.67	4.21	4.76	5.31	5.86	6.43	7.01	7.60
120°	.62	1.25	1.93	2.52	3.16	3.81	4.45	5.11	5.77	6.44	7.12	7.80	8.50	9.22

For Externals Add *

Central							Degree	of Cur	7e					
Angle	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°	70°
10°	.001	.003	.004	.006	.007	.008	.009	.011	.012	.014	.015	.017	.018	.020
15°	.003	.007	.010	.014	.018	.023	.027	.029	.032	.035	.039	.043	.047	.051
20°	.006	.011	.017	.022	.028	.034	.038	.045	.051	.057	.063	.070	.076	.083
25°	.009	.018	.027	.036	.046	.056	.065	.074	.083	.093	.106	.120	.127	.135
30°	.013	.025	.038	.051	.065	.078	.090	.103	.116	.129	.149	.170	.179	.188
35°	.018	.035	.054	.072	.086	.109	.131	.153	.175	.197	.213	.230	.247	.264
40°	.023	.046	.070	.093	.117	.141	.172	.203	.234	.265	.277	.290	.315	.341
45°	.030	.060	.093	.119	.153	.184	.216	.254	.289	.325	.351	.378	.411	.445
50°	.037	.075	.116	.151	.189	.227	.266	.305	.345	.384	.425	.467	.508	.550
55°	.046	.093	.142	.188	.236	.283	.332	.381	.420	.479	.530	.582	.641	.700
60°	.056	.112	.168	.225	.283	.340	.398	.457	.516	.575	.636	.697	.774	.851
65°	.067	.135	.204	.273	.343	.412	.483	.554	.625	.697	.711	.845	.922	1.01
70°	.080	.159	.240	.321	.403	.485	.568	.652	.735	.819	.906	.994	1.08	1.17
75°	.095	.182	.286	.383	.480	.578	.678	.777	.877	.977	1.07	1.18	1.29	1.39
80°	.110	.220	.332	.445	.558	.671	.787	.903	1.02	1.13	1.25	1.38	1.50	1.62
85°	.128	.259	.391	.524	.657	.790	.926	1.06	1.20	1.34	1.47	1.62	1.76	1.91
90°	.149	.299	.450	.603	.756	.910	1.07	1.22	1.38	1.54	1.70	1.87	2.03	2.20
95°	.174	.350	.522	.706	.985	1.06	1.25	1.43	1.62	1.80	1.99	2.18	2.38	2.58
100°	.200	.401	.604	.809	1.01	1.22	1.43	1.64	1.85	2.06	2.28	2.50	2.73	2.96
110°	.268	.536	.806	1.08	1.35	1.63	1.91	2.20	2.48	2.76	3.05	3.35	3.66	3.96
120°	.360	.721	1.08	1.45	1.82	2.19	2,57	2.95	3.33	3.72	4.11	4.50	4.91	5.32

^{*} Adapted from Dietzgen's Railroad Curve Tables by Eugene Dietzgen Co.

TABLE 6. DEFLECTIONS AND CHORD LENGTHS FOR CIRCULAR CURVES

For Laying Out Arc Definition Curves By Measured Chords

			Deflection f	or Arc Len	gth	Chore	d for Arc	Length
Degree of Curve	Radius	Deflect	ion = arc l	ength (0.3°	of curve)	Chor	d = 2R	sin def.
070		1'	25′	50′	100′	25′	50'	100′
0° 30′ 1° 30′ 2° 30′ 3° 30′ 4° 30′ 5° 30′ 6° 30′ 7° 30′ 8° 30′ 10° 112° 134° 140° 150° 119° 20° 21° 22° 23° 24°	11, 459, 16 5,729, 58 3,819, 72 2,291, 83 1,909, 86 1,637, 02 1,432, 40 1,273, 24 1,145, 92 1,041, 74 818, 51 763, 94 716, 20 674, 07 636, 62 603, 11 572, 96 520, 87 447, 46 440, 74 440, 74 440, 74 440, 26 381, 97 388, 10 337, 03 318, 31 301, 56 286, 48 272, 84 249, 11 238, 73	0° 00 .15' 0° 00 .30' 0° 00 .45' 0° 00 .60' 0° 00 .75' 0° 01 .20' 0° 01 .85' 0° 01 .85' 0° 01 .85' 0° 01 .85' 0° 01 .85' 0° 02 .25' 0° 02 .25' 0° 02 .85' 0° 03 .90' 0° 03 .80' 0° 03 .80' 0° 04 .50' 0° 04 .50' 0° 04 .50' 0° 05 .10' 0° 05 .10' 0° 05 .10' 0° 06 .00' 0° 06 .80' 0° 06 .80' 0° 06 .80' 0° 06 .80' 0° 06 .80' 0° 06 .80' 0° 07 .20'	0° 03.75′ 0° 07.50′ 0° 11.25′ 0° 15.00′ 0° 18.75′ 0° 22.50′ 0° 33.75′ 0° 37.50′ 0° 45.00′ 0° 52.50′ 1° 07.50′ 1° 11.25′ 1° 15.00′ 1° 15.00′ 1° 37.50′ 2° 22.50′ 1° 37.50′ 2° 22.50′ 2° 37.50′ 2° 37.50′	0° 07.50′ 0° 15.00′ 0° 22.50′ 0° 30.00′ 0° 30.00′ 0° 37.50′ 0° 45.00′ 1° 00.00′ 1° 15.00′ 1° 15.00′ 1° 37.50′ 1° 37.50′ 1° 37.50′ 2° 07.50′ 2° 15.00′ 2° 15.00′ 2° 22.50′ 2° 30.00′ 3° 45.00′ 3° 45.00′ 4° 45.00′ 4° 45.00′ 5° 30.00′ 4° 45.00′ 5° 30.00′ 5° 30.00′ 5° 30.00′ 5° 30.00′ 5° 30.00′ 5° 30.00′ 5° 30.00′ 5° 45.00′ 5° 30.00′ 5° 45.00′ 5° 30.00′ 5° 45.00′ 5° 45.00′ 5° 45.00′ 5° 30.00′ 5° 45.00′ 5° 45.00′	0° 15.00′ 0° 30.00′ 1° 30.00′ 1° 15.00′ 1° 30.00′ 1° 15.00′ 2° 15.00′ 2° 30.00′ 2° 45.00′ 3° 15.00′ 3° 45.00′ 4° 00.00′ 4° 30.00′ 4° 30.00′ 4° 30.00′ 5° 30.00′ 5° 30.00′ 8° 30.00′ 8° 30.00′ 8° 30.00′ 9° 30.00′ 10° 30.00′ 10° 30.00′ 11° 30° 30° 30° 30° 30° 30° 30° 30° 30° 30	25.00° 26.00° 26	50.00′ 50.00′ 50.00′ 50.00′ 50.00′ 50.00′ 50.00′ 50.00′ 50.00′ 50.00′ 50.00′ 50.00′ 49.99′ 49.90′ 49	100.00′ 100.00′ 100.00′ 100.00′ 100.00′ 99.99′ 99.99′ 99.98′ 99.95′ 99.85′ 99.85′ 99.85′ 99.75′ 99.75′ 99.63′ 99.59′ 99.50′ 99.5
38° 12′ 28° 38′ 25° 28′ 22° 55′ 20° 50′ 10° 06′ 17° 38′ 16° 22′ 15° 17′ 14° 19′ 10° 25′ 9° 33′ 8° 50′ 8° 11′ 7° 38′ 10° 24′ 6° 44′ 6° 02′ 5° 44′	150 200 225 250 275 300 325 350 375 400 450 500 600 650 700 750 800 850 950 950	0° 02.86′ 0° 02.64′ 0° 02.46′ 0° 02.29′ 0° 02.15′ 0° 02.02′ 0° 01.91′ 0° 01.81′	0° 57.30′ 0° 53.71′ 0° 50.56′ 0° 47.75′ 0° 45.23′	9° 32.96′ 7° 09.72′ 6° 21.97′ 5° 43.78′ 5° 12.52′ 4° 46.48′ 4° 24.44′ 4° 05.55′ 3° 49.18′ 3° 30.99′ 2° 51.89′ 2° 51.89′ 2° 36.26′ 2° 23.24′ 2° 20.278′ 1° 47.43′ 1° 47.43′ 1° 47.43′ 1° 47.43′ 1° 47.43′ 1° 47.43′ 1° 35.49′ 1° 35.49′ 1° 35.49′ 1° 35.94′	19° 05.92′ 14° 19.44′ 12° 43.94′ 11° 27.55′ 10° 25.04′ 9° 32.96′ 8° 48.88′ 8° 11.11′ 7° 38.37′ 7° 09.72′ 6° 21.97′ 5° 43.77′ 5° 42.52′ 4° 46.48′ 4° 24.44′ 4° 05.55′ 3° 49.18′ 3° 24.86′ 3° 22.22′ 3° 00.93′ 2° 51.89′	25.00′ 25.00′ 25.00′ 25.00′ 25.00′	49.77' 49.87' 49.99' 49.93' 49.93' 49.96' 49.96' 49.96' 49.99' 49.99' 49.99' 49.99' 50.00' 50.00' 50.00' 50.00'	98.16' 98.96' 99.18' 99.45' 99.61' 99.70' 99.70' 99.74' 99.83' 99.99' 99.99' 99.99' 99.99' 99.99' 99.95' 99.96'

Deflection for curves of even radii = $\frac{1718.873}{R}$ arc length.

TABLE 7. LENGTHS OF CIRCULAR ARCS FOR UNIT RADIUS *

By the use of this table, the length of any arc may be found if the length of the radius and the angle of the segment are known. Example. Required: The length of arc of segment of 32° 15′ 27" with radius of 24 ft. 3 in.

From table: Length of arc (radius 1) for 32° = 0.5585054

15′ = 0.0043633

27" = 0.0001309

 0.5629996×24.25 (length of radius) = 13.65 ft.

2				Degrees				Minutes		Seconds
$\begin{array}{c} 41\\ 42\\ 7.735\ 0886\\ 102\\ 1.762\ 7825\\ 161\\ 2.809\ 9801\\ 42\\ 2.733\ 0388\\ 102\\ 1.780\ 2385\\ 102\\ 2.780\ 4916\\ 103\\ 1.797\ 6891\\ 163\\ 2.844\ 8867\\ 43\\ 2.827\ 4334\\ 42\\ 0.012\ 2073\\ 43\\ 0.012\ 2073\\ 43\\ 0.012\ 2073\\ 43\\ 0.00\ 208\\ 44\\ 0.012\ 791\\ 44\\ 0.00\ 203\\ 45\\ 1.852\ 982\\ 105\\ 1.832\ 5957\\ 165\\ 2.879\ 7933\\ 45\\ 0.13\ 0900\\ 45\\ 0.00\ 213\\ 46\\ 0.32\ 8515\\ 106\\ 1.850\ 0490\\ 166\\ 2.897\ 2466\\ 46\\ 0.013\ 3809\\ 47\\ 0.03\ 2074\\ 47\\ 320\ 3047\\ 107\\ 1.867\ 5023\\ 167\\ 2.914\ 6999\\ 47\\ 0.013\ 6717\\ 48\\ 3837\ 7580\\ 108\\ 1.884\ 9556\\ 168\\ 2.932\ 1531\\ 48\\ 0.013\ 6727\\ 49\\ 3.855\ 2113\\ 109\\ 1.902\ 4089\\ 169\\ 2.949\ 6064\\ 49\\ 0.014\ 2535\\ 49\\ 0.00\ 232\\ 49\\ 3.855\ 2113\\ 109\\ 1.992\ 4089\\ 169\\ 2.949\ 6064\\ 49\\ 0.014\ 2535\\ 49\\ 0.00\ 232\\ 51\\ 3.901\ 179\\ 111\\ 1.937\ 3155\\ 171\\ 2.984\ 5130\\ 51\\ 0.01\ 6835\\ 52\\ 0.01\ 526\\ 53\\ 9.95\ 0245\\ 113\\ 1.972\ 2221\\ 173\\ 3.001\ 9663\\ 52\\ 0.01\ 516\\ 54\\ 0.92\ 4778\\ 114\\ 1.989\ 6753\\ 174\\ 3.036\ 8729\\ 55\\ 0.015\ 989\\ 9311\\ 115\\ 2.007\ 1286\\ 175\\ 3.068\ 3282\\ 55\\ 0.015\ 9899\\ 55\\ 0.00\ 267\\ 57\\ 9.99\ 48377\\ 117\\ 2.042\ 932\ 57\\ 1016\ 5806\\ 57\\ 0.994\ 8377\\ 117\\ 12.042\ 9382\ 57\\ 0.00\ 267\\ 57\\ 0.994\ 8377\\ 117\\ 12.042\ 9382\ 57\\ 0.00\ 267\\ 57\\ 0.00\ 276\\ 57\\ 0.00\ 276\\ 2024\ 0382\\ 277\\ 3.098\ 2382\\ 57\\ 0.016\ 5806\\ 57\\ 0.00\ 267\\ 57\\ 0.00\ 276\\ 57\\ 0.00\ 276\\ 2024\ 0382\\ 277\\ 3.098\ 2382\\ 57\\ 0.016\ 5806\\ 57\\ 0.00\ 267\\ 57\\ 0.00\ 276\\ 57\\ 0.00\ 276\\ 57\\ 0.00\ 276\\ 2024\ 0382\\ 277\\ 3.098\ 2382\\ 57\\ 0.016\ 5806\\ 57\\ 0.00\ 267\\ 57\\ 0.00\ 276\\ 57\\ 0.00\ 276\\ 2024\ 0382\\ 277\\ 3.098\ 2385\\ 57\\ 0.016\ 5806\\ 57\\ 0.00\ 267\\ 57\\ 0.00\ 276\\ 2024\ 0382\\ 277\\ 3.098\ 2385\\ 57\\ 0.016\ 5806\\ 57\\ 0.00\ 267\\ 57\\ 0.00\ 276\\ 2024\ 0382\\ 277\\ 3.098\ 2387\\ 57\\ 0.00\ 276\\ 2024\ 0382\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\ 3.098\ 2387\\ 277\\$	1 2 3 4 4 5 6 7 8 9 0 111 2 3 14 5 16 7 8 19 0 11 12 2 3 2 4 5 2 6 6 7 8 2 11 14 5 16 7 18 19 0 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. 034 9066 . 052 3599 . 069 8132 . 087 2665 . 104 7198 . 122 1730 . 139 6263 . 157 0796 . 174 5329 . 191 9862 . 299 4395 . 226 8928 . 244 3461 . 261 7394 . 279 2527 . 296 7060 . 314 1593 . 331 6126 . 349 0659 . 366 5191 . 383 9724 . 401 4257 . 418 8790 . 436 3323 . 453 7856 . 471 2389 . 488 6922 . 506 1455 . 523 5988 . 541 0521 . 558 5054 . 573 5987 . 593 4119 . 610 8652 . 625 7718 . 663 2251 . 680 6784 . 698 1317 . 715 5850 . 733 0383 . 750 4916 . 767 9449 . 785 3982 . 802 8515 . 820 3047 . 837 7580 . 855 2113 . 872 6646 . 890 1779 . 925 0245 . 990 7779 . 9925 0245 . 9927 777 . 9949 9311 . 977 3844 . 994 8377	61 62 63 64 65 66 66 67 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 99 91 101 102 103 104 105 106 107 108 111 112 113 114 115 116 117	1.064 6508 1.082 1041 1.099 5574 1.117 0107 1.134 4640 1.151 9173 1.293 1838 1.256 6371 1.274 0904 1.201 5436 1.308 9969 1.326 4502 1.343 9035 1.361 3568 1.378 8101 1.396 2634 1.413 7167 1.431 1700 1.448 6233 1.518 4364 1.418 7167 1.431 1700 1.448 6233 1.518 4364 1.535 8897 1.553 8430 1.570 7963 1.582 2496 1.605 7029 1.623 1562 1.644 6095 1.658 0628 1.658 0628 1.675 5161 1.692 9694 1.710 4227 1.727 8760 1.745 3293 1.762 7825 1.780 2358 1.797 6891 1.815 1424 1.822 5957 1.850 0490 1.815 1422 1.787 7822 1.823 5957 1.855 0490 1.815 1424 1.815 1424 1.825 5957 1.850 0490 1.815 1424 1.815 1424 1.815 1424 1.815 1424 1.817 1822 1.817 1822 1.817 1822 1.817 1822 1.817 1822 1.817 1822 1.817 1822 1.817 1822	121 122 123 124 125 128 129 130 131 132 133 134 141 142 143 144 145 146 147 148 149 149 150 161 162 163 164 167 168 169 161 162 170 171 172 176	2.129 3017 2.146 77550 2.164 2083 2.181 6616 2.199 1149 2.216 5682 2.234 0214 2.251 4747 2.268 9283 2.338 7412 2.338 7412 2.338 7412 2.337 6478 2.391 1011 2.408 9544 2.426 0077 2.443 4610 2.460 9142 2.478 3875 2.495 8208 2.513 2741 2.538 7274 2.548 1807 2.568 6340 2.583 637 2.600 5406 2.617 9939 2.635 4472 2.052 902 2.775 6202 2.775 6202 2.775 6202 2.775 6202 2.775 6202 2.775 6202 2.775 6202 2.775 6202 2.775 6202 2.775 6202 2.775 6203 2.792 5268 2.899 9801 2.827 4334 2.844 8867 2.862 3400 2.879 7933 2.897 2466 2.914 6999 2.932 1531 2.949 60597 2.984 5130 3.019 4196 3.036 8729 3.051 3262 3.071 7796 2.2882 320	, 123456789101123344566789910112333445667899101123333445366378994112334456674884905512333344556555555557	.000 2909 .000 5818 .000 8727 .001 1636 .001 4544 .001 7453 .002 0362 .002 3271 .002 6180 .003 1998 .003 1998 .003 4907 .003 7815 .004 0724 .004 6532 .004 0655 .006 5289 .005 5289 .005 5289 .005 5289 .006 1087 .006 6904 .007 5631 .007 5631 .007 5631 .007 5631 .007 5631 .007 5631 .007 5631 .007 1635 .008 1449 .008 4358 .008 7268 .009 5993 .009 5993 .009 5993 .009 5993 .001 1811 .010 7029 .011 0538 .011 0	"1234567891011231415667891011231415667899101123334459910112333445991011233445991011233445991011233445991011233344599101123334459910110112334459910112333445991011233344599101123334459910112333445991011233345991011233345991011233345991011233459910110110110110110110110110110110110110	Seconds .000 0048 .000 0097 .000 0145 .000 0194 .000 0242 .000 0293 .000 0389 .000 0486 .000 0486 .000 0486 .000 0486 .000 0486 .000 0727 .000 0776 .000 0776 .000 0873 .000 0870 .000 1018 .000 10

^{*} From War Department, Surveying Tables.

TABLE 8. METRIC CURVES

Deflection Angle 20-m. Chord	Radius in Meters	Log of Radius	Mid. Ordinate	Tangent Offset	Degree of Equivalent U. S. Curve	Deflection Angle 20-m. Chord
0° 10′ 20 30 40 50 1 00 20 30 40 50	3437.75 1718.89 1145.93 859.46 687.57 572.99 491.14 429.76 382.02 343.82 312.58	3.536274 3.235246 3.059158 2.934224 2.837319 2.758145 2.691206 2.633223 2.582081 2.536335 2.494955	.015 .029 .044 .058 .073 .087 .102 .116 .131 .145	0.058 0.116 0.175 0.233 0.291 0.349 0.407 0.465 0.524 0.582 0.640	0° 30′ 1 01 1 31 2 02 2 32 3 03 3 33 4 04 4 34 5 05 5 35	0° 10′ 20 30 40 50 1 00 10 20 30 40 50
2 00 10 20 30 40 50 3 00 10 20 30 40 50	286.54 264.51 245.62 229.26 214.94 202.30 191.07 181.03 171.98 163.80 156.37 149.58	2.457181 2.422434 2.390266 2.360320 2.382311 2.306002 2.281200 2.257741 2.235489 2.214325 2.194148 2.174870	.175 .189 .204 .218 .233 .247 .262 .276 .291 .306 .320 .335	0.698 0.756 0.814 0.872 0.931 0.989 1.047 1.105 1.163 1.221 1.279	6 06 6 36 7 07 7 37 8 08 8 38 9 09 9 40 10 10 10 41 11 11 11	2 00 10 20 30 40 50 3 00 10 20 30 40 50
4 00 10 20 30 40 50 5 00 10 20 30 40 50	143.36 137.63 132.35 127.45 122.91 118.68 114.737 111.045 107.585 104.334 101.275 98.391	2.156416 2.138717 2.121715 2.105357 2.089596 2.074391 2.059704 2.045501 2.031751 2.018427 2.005503 1.992956	.349 .364 .378 .393 .407 .422 .437 .451 .466 .480 .495	1.395 1.453 1.511 1.569 1.627 1.685 1.743 1.801 1.859 1.917 1.975 2.033	12 12 12 43 13 13 13 44 14 15 14 45 15 16 15 47 16 17 16 48 17 49	4 00 20 30 40 50 5 00 10 20 30 40 50
6 00 10 20 30 40 50 7 00 10 20 30 40 50	95.668 93.002 90.652 88.337 86.138 84.047 82.055 80.156 78.344 76.613 74.957 73.372	1.980765 1.968911 1.957375 1.946141 1.935194 1.924520 1.914105 1.903938 1.894008 1.884302 1.874813 1.865530	.524 .539 .553 .568 .582 .597 .612 .626 .641 .655 .670	2.091 2.148 2.206 2.264 2.322 2.380 2.437 2.495 2.553 2.611 2.668 2.726	18 20 18 51 19 21 19 52 20 23 20 54 21 24 21 25 22 26 22 57 23 28 23 59	6 00 10 20 30 40 50 7 00 10 20 30 40 50
8 00 10 20 30 40 50 9 00 10 20 30 40 50 10° 00′	71.853 70.396 68.998 67.655 66.363 65.121 63.925 62.772 61.661 60.589 59.554 58.554 57.588	1.856445 1.847549 1.83836 1.830298 1.821928 1.813720 1.805668 1.797766 1.790008 1.782391 1.774908 1.767556 1.760330	.699 .714 .729 .743 .758 .772 .787 .802 .816 .831 .846 .860	2.783 2.841 2.899 2.956 3.071 3.129 3.186 3.244 3.301 3.358 3.416 3.473	24 29 25 00 25 31 26 02 26 33 27 04 27 35 28 06 28 37 29 08 29 39 30 10 30 41	8 00 10 20 30 40 50 9 00 10 20 30 40 50 10° 00′

SHORT-RADIUS CURVES

Note. The degree of curve is not usually used for the curves involved in street intersections, curbs, road intersections, runway and taxiway fillets, and turnarounds, traffic circles, rotaries, cloverleafs, etc. These curves are defined by the radius R, and central angle, Δ or θ .

NOTATION

T = tangent length P.C. or P.T. to P.l.

L = arc length P.C. to P.T.

l = arc length for any subchord

C = long chord P.C. to P.T.

c =any subchord.

d = deflection to any point.

 Δ = central angle in degrees.

 θ = central angle in radians.

One radian =
$$\frac{360^{\circ}}{2\pi} = \frac{180^{\circ}}{\pi}$$

= 57.2958°
= 57° 17′ 44.8″

 $\pi = 3.14159.$

M = mid. ordinate; m for subchords.

E = external; e for subchords.

Short-radius Curve

Subchards and Deflections

$$R = \frac{L}{\theta} = \frac{L \cdot 180/\Delta}{\pi} = \frac{L}{\Delta} 57.2958 = T \cdot \cot \frac{\Delta}{2} = \frac{C}{2 \sin \Delta/2}.$$

$$\frac{4M^2 + C^2}{8M} = \frac{M^2 + (C/2)^2}{2M}.$$

$$L = R\theta = \frac{\Delta R\pi}{180} = 0.017453\Delta R = \text{circum.} \cdot \frac{\Delta}{360}.$$

$$T = R \cdot \tan \frac{\Delta}{2} = E \cdot \cot \frac{\Delta}{4} = \frac{C}{2 \cos \Delta/2}.$$

$$C = 2R \cdot \sin \frac{\Delta}{2} = 2T \cdot \cos \frac{\Delta}{2} = 2\sqrt{M(2R - M)}$$

$$M = R \cdot \text{vers} \frac{\Delta}{2} = E \cdot \cos \frac{\Delta}{2} = R\left(1 - \cos \frac{\Delta}{2}\right).$$

$$E = R \cdot \text{exsec} \frac{\Delta}{2} = T \cdot \tan \frac{\Delta}{4} = \frac{R}{\cos \Delta/2} - R.$$

$$\Delta = \frac{180L}{\pi R} = 57.2958 \frac{L}{R} = \theta \cdot 57.2958.$$

$$\theta = \frac{L}{R} = \frac{\Delta \pi}{180} = \Delta \cdot 0.017453.$$

$$\sin \frac{\Delta}{2} = \frac{C}{2R}; \quad \cos \frac{\Delta}{2} = \frac{R - M}{R} = \frac{C}{2T}; \quad \tan \frac{\Delta}{2} = \frac{T}{R}$$

Subcord = $2R \cdot \sin d = 2(R - M) \cdot \tan d$.

$$d(\text{in minutes}) = 1718.873 \frac{l}{R}$$
 Radius = $\frac{C}{2 \sin d}$.

Length =
$$\frac{\pi Rd}{90}$$
 = 0.034906 $Rd(d \text{ in degrees})$.

Mid. ordinate =
$$R(1 - \cos d) = 2R \cdot \sin^2 \frac{d}{2}$$

$$\operatorname{Tan} d = \frac{\frac{1}{2}C}{R - m}; \quad \sin d = \frac{\frac{1}{2}C}{R}$$

Excess of l over $c = l - c = l - 2R \cdot \sin d$.

Sum of deflection angles, $d_1 + d_2 + \cdots + d_n = \frac{\Delta}{2}$

Concentric Curves \mathcal{L}_o $L_0 = \frac{R + W/2}{R} L$ $L_i = \frac{R - W/2}{R} L$ $L_0 - L_i = 0.017453W \cdot \Lambda$ $= W \cdot L/R$ Area = $L \cdot W$

Example. Given. R = 50'; $\Delta = 110^{\circ}(\theta = 1.9195)$; l = 50'. Required. L, l_1 , d, d_1 , c, and c_1 . Solution.

$$L = 50 \times 1.9195 = 95.98'; l_1 = 95.98 - 50 = 45.98'.$$

$$d = 1718.873 \times 50/50 = 28^{\circ} 39'.$$

$$d_1 = 1718.873 \times \frac{45.98}{50} = 26^{\circ} 21'.$$

$$c = 2R \sin 28^{\circ} 39' = 47.946'.$$

$$c_1 = 2R \sin 26^{\circ} 21' = 44.385'.$$

TABLE 9. DEFLECTIONS (d) AND MIDDLE ORDINATES (m) FOR SUBCHORDS *

	150′	0° 57' 1° 55' 3° 49' 4° 47' 9° 36'	0.08
	120′	1° 12′ 2° 23′ 4° 47′ 5° 59′ 12° 01′	0.10
	100,	1° 26′ 2° 52′ 5° 44′ 7° 11′ 14° 29′	0,13
2	200	1°35′ 3°11′ 6°23′ 7°59′ 16°08′	0.14
	,08	1° 47′ 3° 35′ 7° 11′ 8° 59′ 18° 13′	0.16
	70,	2° 03′ 4° 06′ 8° 13′ 10° 17′ 20° 55′	0.18
	,09	2° 23′ 4° 47′ 9° 36′ 12° 01′ 24° 37′	0.21
	20,	2° 52′ 5° 44′ 11° 32′ 14° 29′ 30° 00′	0.25
	45,	3° 11′ 6° 23′ 12° 50′ 16° 08′ 33° 45′	0.28
	40,	3° 35′ 7° 11′ 14° 29′ 18° 13′ 38° 41′	0.31
	35,	4° 06′ 8° 13′ 16° 36′ 20° 55′ 45° 35′	0.36
	30,	4° 47′ 9° 36′ 19° 28′ 24° 37′ 56° 27′	0.42
	25′	5°44' 11°32' 23°35' 30°00'	0.51 2.09
	20,	7° 11′ 14° 29′ 30° 00′ 38° 41′	0.64
	18,	7° 59′ 16° 08′ 33° 45′ 43° 59′	3.03
	15′	9°36′ 19°28′ 41°49′ 56°27′	3.82
	12,	12° 01′ 24° 37′ 56° 26′	1.09
	10,	14° 29′ 30° 00′	1.34
1	Chord	5, 10, 26, 50,	20,
	\times	Deflection	W.

* Adapted from Lefax Society, Inc., Philadelphia, Pa.

Circle

$$Area = \pi R^2 = \frac{\pi D^2}{4}$$

Circumference = $2\pi R = \pi D$.

$$R = \frac{\text{Cir.}}{2\pi} = \frac{D}{2} = \sqrt{\frac{\text{Area}}{\pi}}$$
$$D = 2R = \text{cir.}/\pi$$

Sector of Circle

Area =
$$0.008727R^2\Delta$$

= $\frac{l}{2} \cdot R = \pi R^2 \frac{\Delta}{360}$
= $R^2 \cdot \frac{\theta}{2}$

when

 $\Delta = 90^{\circ}$: $A = 0.3927C^2$; $0.7854R^2$

Segment of Circle

$$\begin{split} A_1 &= R^2 \left(\tan \frac{\Delta}{2} - \frac{\Delta \pi}{360} \right) = R \left(T - \frac{l}{2} \right). \\ A_2 &= \frac{lR - c(R - M)}{2} = \left(\pi R^2 \frac{\Delta}{360} \right) - \left[\left(R \sin \frac{\Delta}{2} \right) \right]. \\ \left(R \cos \frac{\Delta}{2} \right) \right]. \end{split}$$

$$A_2 = \left(\pi R^2 \frac{\Delta}{360}\right) - \frac{1}{2}c(R - M)$$

 $A_2 = \frac{2}{3} Mc$ Correct for parabolic segment, approximate for circular segment.

$$A_2 = \frac{1}{2}R^2(\theta - \sin \Delta) = \frac{2}{3}Mc + \frac{M^3}{2c}$$

$$A_3 = \frac{1}{2}R^2 \sin \Delta = \frac{1}{2}c(R - M) = \left(R \sin \frac{\Delta}{2}\right) \left(R \cos \frac{\Delta}{2}\right).$$

When $\Delta = 90^{\circ}$: $A_1 = 0.2146R^2$

 $= 1.2594E^2$

Fig. 9. Formulas for areas.

TRANSITION CURVES *

FORMULAS

$$T_{s} = (R_{c} + p) \tan \frac{\Delta}{2} + k.$$

$$E_{s} = (R_{c} + p) \operatorname{exsec} \frac{\Delta}{2} + p = \frac{R_{c} + p}{\cos \frac{\Delta}{2}} - R_{c}.$$

$$P = y_{c} - R_{c}(1 - \cos \theta_{s}) = \frac{y_{c}}{4} \operatorname{(approx.)}.$$

$$k = x_{c} - R_{c} \sin \theta_{s} = \frac{L_{s}}{2} \operatorname{(approx.)}.$$

$$\theta_{s} = \frac{L_{s}D_{c}}{200}; \theta = \left(\frac{L}{L_{s}}\right)^{2} \theta_{s}.$$

$$\theta = \frac{L^{2}D_{c}}{200 L_{s}}.$$

$$L_{c} = \frac{100 \Delta_{c}}{D_{c}}; L.C. = \frac{X_{c}}{\cos \phi_{c}}.$$

$$\Delta_{c} = \Delta - \frac{L_{s}D_{c}}{100}.$$

$$D = \frac{L}{L_{s}}D_{c}.$$

$$D_{c} = \frac{200 \theta_{s}}{L_{s}}.$$

Note. At the P.C. the spiral approximately bisects P.

$$y = rac{L^3}{L_s} y_c = L(y ext{ for } L_s = 1).$$

 $y_c = L_s(y ext{ for } L_s = 1).$
 $x = L(x ext{ for } L_s = 1);$

 $x_c = L_s(x \text{ for } L_s = 1).$

OFFSETS TO x AND y

OFFSETS TO 1/4 POINTS

y at
$$\frac{1}{4}$$
 point = $y_c/4^3$
y at $\frac{1}{2}$ point = $y_c/2^3 = P/2$
(approx.)
y at $\frac{3}{4}$ point = $y_c/(\frac{4}{3})^3$

TOTAL LENGTH OF CURVE

$$T_s$$
 to S.T. = $2L_s + 100 \frac{\Delta_c}{D_c}$

$$\phi_c = \theta/3 - c; \phi = (L/Ls)^2 \phi_c.$$

Fig. 10. Circular curves with spiral transitions.

^{*} Adapted from Transition Curves for Highways by Joseph Barnett, P.R.A.

Notes for Fig. 10. With L_s given or selected from Table 11 below, p, k, x, y, L.T., S.T., and L.C. may be computed for any spiral by multiplying functions for $L_s = 1$ in Table 12, p. 224, by L_s or L_s in feet. Interpolate for values of θ or θ_s between even degrees. For circular curve layout see pp. 202, 203, 204.

Circular curve may be omitted and curve made transitional throughout in which case S.C. and C.S. coincide at S.C.S., $\theta = \Delta/2$, $\Delta_c = 0$, and T_s and E_s are computed from Table 13, p. 225.

NOTATION

 R_c = radius of the circular curve.

P =offset distance from tangent to the P.C. of the circular curve produced.

k =distance from T.S. to P.C. along tangent.

 $T_s = \text{tangent distance.}$

 $E_s = \text{external distance.}$

 $x_c, y_c = \text{coordinates from T.S. to S.C. and S.T. to C.S.}$

 θ = spiral angle at any point on spiral.

 θ_s = spiral angle at S.C. or C.S.

L = length of spiral, T.S. to any point on spiral.

 $L_s = \text{length of spiral}$, T.S. to S.C. or S.T. to C.S.

 D_c = degree of circular curve (arc definition).

D =degree of curve at any point on spiral.

x, y =coordinates from T.S. or S.T. to any point on spiral.

 ϕ_c = deflection from tangent at T.S. to S.C.

 ϕ = deflection from tangent at T.S., S.T. or any point on spiral to any other point on spiral.

L.T., S.T. = long tangent, short tangent.

L.C. = long chord of spiral transition.

 Δ = intersection and central angle of entire curve.

 Δ_c = intersection and central angle of circular curve.

 $L_c = \text{length of circular curve, S.C. to C.S.}$

Note. The degree of curvature varies directly as the length, from zero curvature at T.S. to the maximum of Dc at the S.C. The spiral departs from the circular curve at the same rate as from the tangent.

SPIRAL LAYOUT (See pp. 221, 222, 223 also.)

Method I: Deflections to even stations by formula $\phi = \theta/3 = 1/3\theta_s(L/L_s)^2$. Correct ϕ for c when $\theta > 20^\circ$.

TABLE 10. C IN FORMULA, $\phi = \theta/3 - C$ (For curves with θ over 20°)

θ in degrees	20	25	30	35	40	45	50
c in minutes	0.4	0.8	1.4	2.2	3.4	4.8	5.6

Method II: Offsets from tangent. Establish by measuring x distances from T.S. and y distances from tangent. Compute θ for each point and then compute x and y coordinates from Table 12, p. 224, or use $\frac{1}{4}$ point formulas above.

Method III: Deflection angle from T.S. or S.T. to any point on spiral with coordinates x and y is the angle whose tangent = y/x.

Method IV: Deflection angles from T.S. to points of 10 equal divisions (10 chord spiral) are: $0.01\phi_c$; $0.04\phi_c$; $0.16\phi_c$; $0.25\phi_c$; $0.36\phi_c$; $0.49\phi_c$; $0.64\phi_c$; $0.81\phi_c$ and ϕ_c .

TABLE 11. MINIMUM TRANSITION LENGTHS

D_c	30 M.P.H.	40 M.P.H.	50 M.P.H.	60 M.P.H.	70 M.P.H.	D_c	
	L_s	L_s	L_s	L_s	L_{s}		
1° 30′	150′	150′	150′	150′	150′	1° 30′	
2°	150′	150′	150′	150′	200′	2°	
2° 30′	150′	150′	150′	150′	250′	2° 30′	
3°	150′	150′	150′	150′	300′	3°	
3° 30′	150′	150′	150′	200′	350'	3° 30′	
4°	150′	150′	150′	250'	4°		
5°	150′	150'	150′	300′			
6°	150'	150′	200′	350′			
7°	150′	150'	250′		Based on		
8°–9°	150′	150′	300′		1 6 1/3		
10°-12°	150′	200′		/. =			
13°-14°	150′	250′				R_c	
15°-23° 150′			Where: $V = 0.75$ design speed in M.P.H.				
24°	200′		Min. $L_s = 150$ ft.				

INSERTION OF SPIRALS INTO EXISTING ALIGNMENT OF CIRCULAR CURVES

 L_S = Length of spiral select from table 11, page 219 $heta_S$ = Spiral angle = $\frac{L_S D_S}{200}$, where D_C = Degree of curvature (arc definition). P = Offset of curve at P.C. to permit spiral introduction from table, page 224 knowing $heta_S$.

CASE I - Radius of original circular curve reduced by value of *P" to provide space to insert spiral transition.

Ist trial : Assume D_c=D, find trial "P" as above. 2nd trial : Compute D_c= <u>5727.58</u>, find correct "P."

CASE II - Radius of original curve retained and curve center "O" shifted inward. Note: Degree of curve retained.

CASE III - Original circular curve location retained and tangents shifted outward to insert spiral.

CASE IV - Original alignment retained as closely as possible by compounding circular curve at both ends.

New P.T.

Original

curve

Given: R1, R2, T, P1 & P2

Cos A2= R1+P1+R2+R2

New P.C.

Original

1=1,-12 Original alignment

Required: Angle A

Solution: Tan A, =

T.S.¥

Pi+Po

PROPERTIES AND EXAMPLES *

PROPERTIES OF SPIRAL

- 1. Offsets, y, vary as the cube of L, or length of spiral. $\therefore y$ at any point $= (L/L_s)^3 y_c$. See Fig. 11.
 - 2. Spiral angle θ varies as L^2 . $\therefore \theta$ at any point on spiral = $(L/L_s)^2\theta_s$.
- 3. Deflection angle ϕ varies as L^2 . $\therefore \phi = (L/L_s)^2 \phi_c$. $\phi_c = \frac{1}{3}\theta_s c$, c being a constant; see Table 10, p. 219. (May be neglected for ordinary problems.)
- 4. D, or degree of curve of spiral at any point, varies directly as L. $\therefore D = L/L_s D_c$.
- 5. Spiral bisects P very nearly and k approximately = $\frac{1}{2}L_{e}$. \therefore Offset from circular curve or tangent to midpoint of spiral is $\frac{1}{2}P$ very nearly.
- 6. Spiral departs from the circular curve between S.C. and P.C. at the same rate as from the tangent. : Radial offsets from circular curve between S.C. and P.C. to the spiral are the same as perpendicular offsets from the tangent between T.S. and P.C.

Given. Spiral $L_s = 200'$; $\theta_s = 24^{\circ}$; T.S. at Sta. 125 + 60.

Required. Offsets to even stations.

Solution. Compute θ and read x and y for $L_s = 1$ from table on 224.

Sta.	L	0	$x, L_s = 1$	$y, L_s = 1$	x	у
$ \begin{array}{r} 126 + 0 \\ 127 + 0 \\ 127 + 60 \end{array} $	40	0° 58′	0.99997	0.00559	40.0	0.22
	140	11° 46′	0.99578	0.06821	139.41	9.55
	200	24° 0′	0.98260	0.13789	196.52	28.58

Fig. 11. Offsets to even stations.

^{*} Reference Transition Curves for Highways by Joseph Barnett, P.R.A.

Given. Spiral, $L_s = 200'$; $\theta_s = 24^{\circ}$.

Required. Offsets to 1/4 points.

Solution. From Fig. 11, $y_c = 27.58'$. By formula, y at any point = $(L/L_s)^3 y_c$

At $\frac{1}{4}$ points, $y = 27.58 \times \frac{1}{64} = 0.43'$.

At $\frac{1}{2}$ points, $y = 27.58 \times \frac{1}{8} = 3.45'$.

Fig. 12. Offsets to 1/4 points.

Given. Spiral with $L_s = 200'$ and $\theta_s = 24^\circ$. Required. Deflection angles ϕ , to Sta. 126 + 0; ϕ_2 to Sta. 127 \neq 0; ϕ_c to Sta. 127 + 60. Solution. By formulas, $\phi_c = \theta_s/3 - c$ and $\phi = \frac{1}{3}(L/L_s)^2$ $\theta_s - c$. Sta. 127 + 60: $\phi_c = 24/3 - 0.8 = 7.9866^\circ = 7^\circ 69.2'$ Sta. 126 + 00: $\phi_1 = (L/L_s)^2\phi_c = (40/200)^2 \times 7.9866$ $= 0.3195^\circ = 0^\circ 19'$ Sta. 127 + 00: $\phi_2 = (L/L_s)^2\phi_c = (140/200)^2 \times 7.9866$ $= 3.9134^\circ = 3^\circ 55'$

Layout. With transit at T.S., foresight along tangent with vernier at 0° Turn ϕ_1 and measure 40 ft. to Sta. 126 + 0. Turn ϕ_2 and measure 100 ft. from Sta. 126 + 0 to Sta. 127 + 0. Turn ϕ_c and measure 60′ from Sta. 127 + 0 to S.C.

Fig. 13. Deflections to even stations.

Given. $\Delta = 90^\circ$; $D_c = 24^\circ$; $L_s = 200'$. Formulas from p. 217. Functions of spiral for $L_s = 1$ from p. 224.

For layout of circular curve, see pp. 202, 203, 204.

LAYOUT OF CONTROL POINTS *

Establish T.S. by measuring k from P.O.T. normal to P.C. or by T_s from P.I. Establish S.C. by L.T., θ_s , and S.T. or by x_c and y_c from T.S., or by ϕ_c and L.C. from T.S.

Note. Figures 11-13 give all dimensions usually necessary to plot or locate the spiral. The following example is a curve fully worked out.

Required	Formula	Solution
$egin{array}{l} heta_s \ \Delta_c \ L_c \ \phi_c \ V_c \ x_c \ P \ k \ E_s \ T_s \ \mathrm{L.T.} \ \mathrm{S.T.} \ \mathrm{L.C.} \end{array}$	$L_{s}D_{c} \div 200$ $\Delta - (L_{s}D_{c} \div 100)$ $100\Delta_{c} \div D_{c}$ $\frac{1}{3}\theta_{s} - c$ $(y \text{ for } L_{s} = 1) \cdot L_{s}$ $(x \text{ for } L_{s} = 1) \cdot L_{s}$ $y_{c} - R_{c}(1 - \cos \theta_{s})$ $x_{c} - R_{c} \sin \theta_{s}$ $(R_{c} + P) \operatorname{exsec} \Delta/2 + P$ $(R_{c} + P) \tan \Delta/2 + k$ $(L.T. \text{ for } L_{s} = 1)L_{s}; \theta = 24^{\circ}$ $(S.T. \text{ for } L_{s} = 1)L_{s}; \theta = 24^{\circ}$ $(L.C. \text{ for } L_{s} = 1)L_{s}; \theta = 24^{\circ}$	$\theta_s = 24^{\circ}$ $\Delta_c = 42^{\circ}$ $L_c = 175.00$ $\phi_c = 7^{\circ} 59.2'$ $y_c = 27.58'$ $x_c = 196.52'$ $P = 6.94'$ $k = 99.42'$ $E_s = 108.70'$ $T_s = 345.09'$ $L.T. = 134.58'$ $S.T. = 67.80'$ $L.C. = 198.44$

Fig. 14. Computations for spiral transitions to circular curves.

^{*} Adapted from O'Rourke, General Engineering Handbook, McGraw-Hill.

TABLE 12. FUNCTIONS OF TRANSITION FOR $L_s = 1*$

Enter table with value of θ or θ_s , and multiply function by L or L_s . See pp. 218–223 for use of table.

θ	p	k	x	y	L.T.	S.T.	L.C.	θ
				00000	00007	00000	1 00000	0°
0°	.00000	.50000	1.00000	.00000	.66667	.33333	1.00000	
1°	.00146	.49999	.99997	.00582	.66668	.33334	.99999	1°
2°	.00291	.49998	.99988	.01163	.66671	.33337	.99995	2°
3°	.00435	.49995	.99973	.01745	.66676	.33342	.99988	3°
4°	.00581	.49992	.99951	.02326	.66684	.33349	.99978	4°
5°	.00727	. 49987	.99924	.02907	.66693	.33358	.99966	5°
6°	.00872	.49982	.99890	.03488	.66705	. 33368	.99951	6°
7°	.01018	.49975	.99851	.04068	.66719	.33381	.99934	7°
8°	.01163	.49967	.99805	.04648	.66735	.33395	.99913	8°
9°	.01308	.49959	.99754	.05227	.66753	.33412	.99890	9°
10°	.01453	.49949	.99696	.05805	.66773	.33430	.99865	10°
110	.01598	.49939	.99632	.06383	.66796	.33451	.99836	11°
12°	.01743	.49927	,99562	.06959	.66821	.33473	.99805	12°
13°	.01887	.49914	.99486	.07535	.66847	.33498	.99771	13°
140	.02032	.49901	.99405	.08110	.66877	.33524	.99735	140
15°	.02176	.49886	.99317	.08684	. 66908	. 33553	.99696	15°
16°	.02320	.49870	.99223	.09257	.66941	.33583	.99654	16°
170	.02465	.49854	.99123	.09828	.66977	.33615	.99609	170
18°	.02608	.49836	.99018	.10398	.67015	.33650	.99562	18°
19°	.02752	.49817	.98906	.10967	.67055	.33687	.99512	19°
20°	.02896	.49798	.98788	.11535	.67097	.33725	.99460	20°
21°	.03040	.49777	.98665	.12101	.67142	.33766	.99404	210
220	.03183	.49755	.98536	.12665	.67189	.33809	.99346	220
23°	.03326	.49733	.98401	.13228	.67238	.33854	.99286	23°
240	.03469	.49709	.98260	.13789	.67290	.33901	.99222	240
25°		.49684	.98113	.14348	.67344	.33950	.99222	25°
26°	.03611	.49658	.97960	.14905	.67400	.34001	.99088	26°
279	.03753	.49632	.97900	.15461	.67459			20°
	.03896					.34055	.99017	
28°	.04037	.49605	.97638	.16014	.67520	.34111	.98943	28°
29°	04179	.49576	.97469	.16565	.67584	.34169	.98866	29°
30°	.04321	.49546	.97293	.17114	.67650	.34229	.98787	30°
31°	.04462	.49516	.97112	.17661	.67719	.34292	.98703	31°
32°	.04602	.49484	.96926	.18206	.67790	.34356	.98621	32°
33°	.04743	.49452	.96733	.18748	.67863	.34424	.98534	33°
34°	.04883	.49419	.96536	.19288	.67939	.34493	.98444	34°
35°	.05023	.49385	.96332	.19826	.68018	.34565	.98351	35°
36°	.05163	.49349	.96124	.20361	.68100	.34640	.98257	36°
37°	.05301	.49313	.95910	.20893	.68184	.34717	.98159	37°
38°	.05441	.49276	.95690	.21423	.68271	.34796	.98059	38°
39°	.05579	.49238	.95466	.21949	.68360	.34878	.97956	39°
40°	.05718	.49199	. 95235	. 22473	.68452	.34962	.97851	40°
41°	.05855	.49159	.95000	.22994	.68547	.35049	.97743	41°
42°	.05993	.49118	.94759	.23513	.68645	.35139	.97632	42°
43°	.06130	.49075	.94513	.24028	.68746	.35232	.97519	43°
440	.06267	.49032	.94262	.24540	.68850	.35327	.97404	44°
45°	.06403	.48990	.94005	.25049	.68957	.35424	.97285	45°
46°	.06538	.48945	.93744	.25555	.69066	.35525	.97165	46°
470	.06674	.48900	.93477	.26057	.69179	.35629	.97041	47°
480	.06809	.48852	.93206	.26556	.69295	.35735	.96916	48°
49°	.06944	.48805	.92930	.27052	.69414	.35844	.96787	49°
50°	.07078	.48757	.92649	.27544	.69536	.35957	.96656	50°
	.0.0.0	. 20.0.	.02020	.wiorr	.00000	.00001	. 20000	50

^{*} Adapted from Transi.ion Curves for Highways by Joseph Barnett, P.R.A.

TABLE 13. FUNCTIONS OF CURVES TRANSITIONAL THROUGHOUT $\label{tangents} \mbox{TANGENTS AND EXTERNALS FOR $L_s=1*

7 1.00087 0.02040 39 1.02832 0.11936 71 1.10561 0.2468 8 1.00114 0.02332 40 1.02987 0.12275 72 1.10917 0.2516 9 1.00144 0.02625 41 1.03146 0.12617 73 1.11281 0.2566 10 1.00178 0.02918 42 1.03310 0.12962 74 1.11654 0.2616 11 1.00216 0.03213 43 1.03479 0.13309 75 1.12036 0.2666 12 1.00257 0.03507 44 1.03653 0.13660 76 1.12427 0.2718 13 1.00302 0.03802 45 1.03831 0.14012 77 1.12828 0.27716 14 1.00350 0.04098 46 1.04015 0.14370 78 1.13240 0.2824 15 1.00458 0.04693 48 1.04399 0.15094 80 1.14092 0.2933		1		11	1	т —	11	1	
7 1.00087 0.02040 39 1.02832 0.11936 71 1.10561 0.2468 8 1.00114 0.02332 40 1.02987 0.12275 72 1.10917 0.2516 9 1.00144 0.02625 41 1.03146 0.12617 73 1.11281 0.25666 10 1.00178 0.02918 42 1.03310 0.12962 74 1.11654 0.2616 11 1.00216 0.03213 43 1.03479 0.13309 75 1.12036 0.2666 12 1.00257 0.03507 44 1.03653 0.13660 76 1.12427 0.2718 13 1.00350 0.04098 46 1.04015 0.14370 78 1.13240 0.2824 15 1.00402 0.04396 47 1.04204 0.14730 79 1.13661 0.2878 16 1.0458 0.04693 48 1.04399 0.15094 80 1.14092 0.2933 <	Δ°	T_s	E_s	Δ°	T_s	E_s	Δ°	T_s	E_s
7 1.00087 0.02040 39 1.02832 0.11936 71 1.10561 0.2468 8 1.00114 0.02332 40 1.02987 0.12275 72 1.10917 0.2516 9 1.00144 0.02625 41 1.03146 0.12617 73 1.11281 0.25666 10 1.00178 0.02918 42 1.03310 0.12962 74 1.11654 0.2616 11 1.00216 0.03213 43 1.03479 0.13309 75 1.12036 0.2666 12 1.00257 0.03507 44 1.03653 0.13660 76 1.12427 0.2718 13 1.00350 0.04098 46 1.04015 0.14370 78 1.13240 0.2824 15 1.00402 0.04396 47 1.04204 0.14730 79 1.13661 0.2878 16 1.0458 0.04693 48 1.04399 0.15094 80 1.14092 0.2933 <									
8 1.00114 0.02332 40 1.02987 0.12275 72 1.10917 0.2516 9 1.00144 0.02625 41 1.03146 0.12617 73 1.11281 0.2566 10 1.00178 0.02918 42 1.03310 0.12962 74 1.11654 0.2616 11 1.00216 0.03213 43 1.03479 0.13309 75 1.12036 0.2666 12 1.00257 0.03507 44 1.03653 0.13660 76 1.12427 0.2718 13 1.00302 0.03802 45 1.03831 0.14012 77 1.12828 0.27710 14 1.00350 0.04098 46 1.04015 0.14370 78 1.13240 0.2824 15 1.00402 0.04396 47 1.04204 0.14730 79 1.13661 0.28780 16 1.00458 0.04992 49 .1.04598 0.15460 81 1.1498 0.30460	6°	1.00064	0.01747	38°	1.02682	0.11599	70°	1.10214	0.24203
9 1.00144 0.02625 41 1.03146 0.12617 73 1.11281 0.25666 10 1.00178 0.02918 42 1.03310 0.12962 74 1.11654 0.2616 11 1.00216 0.03213 43 1.03479 0.13309 75 1.12036 0.26666 12 1.00257 0.03507 44 1.03653 0.13660 76 1.12427 0.2718 13 1.00302 0.03802 45 1.03831 0.14012 77 1.12828 0.27710 14 1.00350 0.04098 46 1.04015 0.14370 78 1.13240 0.2824 15 1.00402 0.04396 47 1.04204 0.14730 79 1.13661 0.28780 16 1.00458 0.04693 48 1.04399 0.15094 80 1.14092 0.2933 17 1.00518 0.04992 49 .1.04598 0.15460 81 1.14535 0.2989 <td>7</td> <td>1.00087</td> <td>0.02040</td> <td>39</td> <td>1.02832</td> <td>0.11936</td> <td>71</td> <td>1.10561</td> <td>0.24681</td>	7	1.00087	0.02040	39	1.02832	0.11936	71	1.10561	0.24681
10 1.00178 0.02918 42 1.03310 0.12962 74 1.11654 0.2616 11 1.00216 0.03213 43 1.03479 0.13309 75 1.12036 0.2666 12 1.00257 0.03507 44 1.03653 0.13660 76 1.12427 0.2718 13 1.00302 0.03802 45 1.03831 0.14012 77 1.12828 0.27710 14 1.00350 0.04098 46 1.04015 0.14370 78 1.13240 0.2824 15 1.00402 0.04396 47 1.04204 0.14730 79 1.13661 0.2878 16 1.0458 0.04693 48 1.04399 0.15094 80 1.14092 0.2933 17 1.0518 0.04992 49 .1.04598 0.15460 81 1.14535 0.2989 18 1.0581 0.05292 50 1.04804 0.15831 82 1.14988 0.30469	8	1.00114	0.02332	40	1.02987	0.12275	72	1.10917	0.25167
11 1.00216 0.03213 43 1.03479 0.13309 75 1.12036 0.2666 12 1.00257 0.03507 44 1.03653 0.13660 76 1.12427 0.2718 13 1.00302 0.03802 45 1.03831 0.14012 77 1.12828 0.27710 14 1.00350 0.04098 46 1.04015 0.14370 78 1.13240 0.2824 15 1.00402 0.04396 47 1.04204 0.14730 79 1.13661 0.28780 16 1.0458 0.04693 48 1.04399 0.15094 80 1.14092 0.29337 17 1.00518 0.04992 49 .104598 0.15460 81 1.14535 0.29896 18 1.00581 0.05292 50 1.04804 0.15831 82 1.14988 0.30466 19 1.0648 0.05593 51 1.05014 0.16206 83 1.15453 0.31046 <td>9</td> <td>1.00144</td> <td>0.02625</td> <td>41</td> <td>1.03146</td> <td>0.12617</td> <td>73</td> <td>1.11281</td> <td>0.25660</td>	9	1.00144	0.02625	41	1.03146	0.12617	73	1.11281	0.25660
12 1.00257 0.03507 44 1.03653 0.13660 76 1.12427 0.2718 13 1.00302 0.03802 45 1.03831 0.14012 77 1.12828 0.27710 14 1.00350 0.04098 46 1.04015 0.14370 78 1.13240 0.2824 15 1.00402 0.04396 47 1.04204 0.14730 79 1.13661 0.2878 16 1.00458 0.04693 48 1.04399 0.15094 80 1.14092 0.2933 17 1.00518 0.04992 49 1.04598 0.15460 81 1.14535 0.2989 18 1.00581 0.05292 50 1.04804 0.15831 82 1.14988 0.30468 19 1.0648 0.05593 51 1.05014 0.16206 83 1.15453 0.31048 20 1.0719 0.05895 52 1.05230 0.16584 84 1.15930 0.31638	10	1.00178	0.02918	42	1.03310	0.12962	74	1.11654	0.26161
13 1.00302 0.03802 45 1.03831 0.14012 77 1.12828 0.27710 14 1.00350 0.04098 46 1.04015 0.14370 78 1.13240 0.2824 15 1.00402 0.04396 47 1.04204 0.14730 79 1.13661 0.28780 16 1.00458 0.04693 48 1.04399 0.15094 80 1.14092 0.29337 17 1.00518 0.04992 49 1.04598 0.15460 81 1.14535 0.29898 18 1.00581 0.05292 50 1.04804 0.15831 82 1.14988 0.30468 19 1.00648 0.05593 51 1.05014 0.16206 83 1.15453 0.31048 20 1.00719 0.05895 52 1.05230 0.16584 84 1.15930 0.31638 21 1.00794 0.06198 53 1.05452 0.16966 85 1.16418 0.3224<	11	1.00216	0.03213	43	1.03479	0.13309	75	1.12036	0.26669
14 1.00350 0.04098 46 1.04015 0.14370 78 1.13240 0.2824 15 1.00402 0.04396 47 1.04204 0.14730 79 1.13661 0.28786 16 1.00458 0.04693 48 1.04399 0.15094 80 1.14092 0.2933 17 1.00518 0.04992 49 1.04598 0.15460 81 1.14535 0.29896 18 1.00581 0.05292 50 1.04804 0.15831 82 1.14988 0.30466 19 1.00648 0.05593 51 1.05014 0.16206 83 1.15453 0.31046 20 1.00719 0.05895 52 1.05230 0.16584 84 1.15930 0.31636 21 1.00794 0.06198 53 1.05452 0.16966 85 1.16418 0.3224 22 1.00873 0.06502 54 1.05680 0.17352 86 1.16919 0.32856 </td <td>12</td> <td>1.00257</td> <td>0.03507</td> <td>44</td> <td>1.03653</td> <td>0.13660</td> <td>76</td> <td>1.12427</td> <td>0.27186</td>	12	1.00257	0.03507	44	1.03653	0.13660	76	1.12427	0.27186
15 1.00402 0.04396 47 1.04204 0.14730 79 1.13661 0.28789 16 1.00458 0.04693 48 1.04399 0.715094 80 1.14092 0.2933 17 1.00518 0.04992 49 .1.04598 0.15460 81 1.14535 0.29896 18 1.00581 0.05292 50 1.04804 0.15831 82 1.14988 0.30466 19 1.00648 0.05593 51 1.05014 0.16206 83 1.15453 0.31048 20 1.00719 0.05895 52 1.05230 0.16584 84 1.15930 0.31636 21 1.00794 0.06198 53 1.05452 0.16966 85 1.16418 0.32242 22 1.00873 0.06502 54 1.05680 0.17352 86 1.16919 0.32854 23 1.00955 0.06808 55 1.05913 0.17742 87 1.17433 0.334	13	1.00302	0.03802	45	1.03831	0.14012	77	1.12828	0.27710
16 1.00458 0.04693 48 1.04399 0.15094 80 1.14092 0.29333 17 1.00518 0.04992 49 1.04598 0.15460 81 1.14535 0.29893 18 1.00581 0.05292 50 1.04804 0.15831 82 1.14988 0.30463 19 1.00648 0.05593 51 1.05014 0.16206 83 1.15453 0.31048 20 1.00719 0.05895 52 1.05230 0.16584 84 1.15930 0.31636 21 1.00794 0.06198 53 1.05452 0.16966 85 1.16418 0.32243 22 1.00873 0.06502 54 1.05680 0.17352 86 1.16919 0.32854 23 1.00955 0.06808 55 1.05913 0.17742 87 1.17433 0.33476 24 1.01042 0.07115 56 1.06153 0.18137 88 1.17960 0.3416	14	1.00350	0.04098	46	1.04015	0.14370	78	1.13240	0.28244
17 1.00518 0.04992 49 1.04598 0.15460 81 1.14535 0.29898 18 1.00581 0.05292 50 1.04804 0.15831 82 1.14988 0.30468 19 1.00648 0.05593 51 1.05014 0.16206 83 1.15453 0.31048 20 1.00719 0.05895 52 1.05230 0.16584 84 1.15930 0.31638 21 1.00794 0.06198 53 1.05452 0.16966 85 1.16418 0.3224 22 1.00873 0.06502 54 1.05680 0.17352 86 1.16919 0.3285 23 1.00955 0.06808 55 1.05913 0.17742 87 1.17433 0.33476 24 1.01042 0.07115 56 1.06153 0.18137 88 1.17960 0.3411 25 1.01132 0.07734 58 1.06651 0.18940 50 1.19054 0.35426 </td <td>15</td> <td>1.00402</td> <td>0.04396</td> <td>47</td> <td>1.04204</td> <td>0.14730</td> <td>79</td> <td>1.13661</td> <td>0.28786</td>	15	1.00402	0.04396	47	1.04204	0.14730	79	1.13661	0.28786
18 1.00581 0.05292 50 1.04804 0.15831 82 1.14988 0.30468 19 1.00648 0.05593 51 1.05014 0.16206 83 1.15453 0.31048 20 1.00719 0.05895 52 1.05230 0.16584 84 1.15930 0.31638 21 1.00794 0.06198 53 1.05452 0.16966 85 1.16418 0.3224 22 1.00873 0.06502 54 1.05680 0.17352 86 1.16919 0.3285 23 1.00955 0.06808 55 1.05913 0.17742 87 1.17433 0.33478 24 1.01042 0.07115 56 1.06153 0.18137 88 1.17960 0.3411 25 1.01132 0.07424 57 1.06399 0.18536 89 1.18500 0.34763 26 1.01226 0.07734 58 1.06651 0.18940 50 1.19054 0.35426 </td <td>16</td> <td>1.00458</td> <td>0.04693</td> <td>48</td> <td>1.04399</td> <td>0.15094</td> <td>80</td> <td>1.14092</td> <td>0.29337</td>	16	1.00458	0.04693	48	1.04399	0.15094	80	1.14092	0.29337
19 1.00648 0.05593 51 1.05014 0.16206 83 1.15453 0.31048 20 1.00719 0.05895 52 1.05230 0.16584 84 1.15930 0.31638 21 1.00794 0.06198 53 1.05452 0.16966 85 1.16418 0.3224 22 1.00873 0.06502 54 1.05680 0.17352 86 1.16919 0.3285 23 1.00955 0.06808 55 1.05913 0.17742 87 1.17433 0.33478 24 1.01042 0.07115 56 1.06153 0.18137 88 1.17960 0.34118 25 1.01132 0.07424 57 1.06399 0.18536 89 1.18500 0.34763 26 1.01226 0.07734 58 1.06651 0.18940 50 1.19054 0.35423 27 1.01324 0.08045 59 1.06909 0.19348 91 1.19623 0.36098<	17	1.00518	0.04992	49	1.04598	0.15460	81	1.14535	0.29898
20 1.00719 0.05895 52 1.05230 0.16584 84 1.15930 0.31638 21 1.00794 0.06198 53 1.05452 0.16966 85 1.16418 0.3224 22 1.00873 0.06502 54 1.05680 0.17352 86 1.16919 0.3285 23 1.00955 0.06808 55 1.05913 0.17742 87 1.17433 0.33478 24 1.01042 0.07115 56 1.06153 0.18137 88 1.17960 0.3416 25 1.01132 0.07424 57 1.06399 0.18536 89 1.18500 0.3476 26 1.01226 0.07734 58 1.06651 0.18940 90 1.19054 0.35426 27 1.01324 0.08045 59 1.06909 0.19348 91 1.19623 0.36098 28 1.01427 0.08358 60 1.07174 0.19762 92 1.20207 0.36786 <td>18</td> <td>1.00581</td> <td>0.05292</td> <td>50</td> <td>1.04804</td> <td>0.15831</td> <td>82</td> <td>1.14988</td> <td>0.30468</td>	18	1.00581	0.05292	50	1.04804	0.15831	82	1.14988	0.30468
21 1.00794 0.06198 53 1.05452 0.16966 85 1.16418 0.3224 22 1.00873 0.06502 54 1.05680 0.17352 86 1.16919 0.32854 23 1.00955 0.06808 55 1.05913 0.17742 87 1.17433 0.33476 24 1.01042 0.07115 56 1.06153 0.18137 88 1.17960 0.34116 25 1.01132 0.07424 57 1.06399 0.18536 89 1.18500 0.34763 26 1.01226 0.07734 58 1.06651 0.18940 90 1.19054 0.35426 27 1.01324 0.08045 59 1.06909 0.19348 91 1.19623 0.36099 28 1.01427 0.08358 60 1.07174 0.19762 92 1.20207 0.36786 29 1.01533 0.08674 61 1.07446 0.20181 93 1.20806 0.37490	19	1.00648	0.05593	51	1.05014	0.16206	83	1.15453	0.31048
22 1.00873 0.06502 54 1.05680 0.17352 86 1.16919 0.32854 23 1.00955 0.06808 55 1.05913 0.17742 87 1.17433 0.33476 24 1.01042 0.07115 56 1.06153 0.18137 88 1.17960 0.34116 25 1.01132 0.07424 57 1.06399 0.18536 89 1.18500 0.34763 26 1.01226 0.07734 58 1.06651 0.18940 90 1.19054 0.35426 27 1.01324 0.08045 59 1.06909 0.19348 91 1.19623 0.36099 28 1.01427 0.08358 60 1.07174 0.19762 92 1.20207 0.36788 29 1.01533 0.08674 61 1.07446 0.20181 93 1.20806 0.37490	20	1.00719	0.05895	52	1.05230	0.16584	84	1.15930	0.31639
23 1.00955 0.06808 55 1.05913 0.17742 87 1.17433 0.33478 24 1.01042 0.07115 56 1.06153 0.18137 88 1.17960 0.3416 25 1.01132 0.07424 57 1.06399 0.18536 89 1.18500 0.3476 26 1.01226 0.07734 58 1.06651 0.18940 90 1.19054 0.35426 27 1.01324 0.08045 59 1.06909 0.19348 91 1.19623 0.36099 28 1.01427 0.08358 60 1.07174 0.19762 92 1.20207 0.36788 29 1.01533 0.08674 61 1.07446 0.20181 93 1.20806 0.37490	21	1.00794	0.06198	53	1.05452	0.16966	85	1.16418	0.32241
24 1.01042 0.07115 56 1.06153 0.18137 88 1.17960 0.34113 25 1.01132 0.07424 57 1.06399 0.18536 89 1.18500 0.34763 26 1.01226 0.07734 58 1.06651 0.18940 90 1.19054 0.35426 27 1.01324 0.08045 59 1.06909 0.19348 91 1.19623 0.36099 28 1.01427 0.08358 60 1.07174 0.19762 92 1.20207 0.36788 29 1.01533 0.08674 61 1.07446 0.20181 93 1.20806 0.37490	22	1.00873	0.06502	54	1.05680	0.17352	86	1.16919	0.32854
25 1.01132 0.07424 57 1.06399 0.18536 89 1.18500 0.34763 26 1.01226 0.07734 58 1.06651 0.18940 90 1.19054 0.35423 27 1.01324 0.08045 59 1.06909 0.19348 91 1.19623 0.36099 28 1.01427 0.08358 60 1.07174 0.19762 92 1.20207 0.36788 29 1.01533 0.08674 61 1.07446 0.20181 93 1.20806 0.37490	23	1.00955	0.06808	55	1.05913	0.17742	87	1.17433	0.33478
26 1.01226 0.07734 58 1.06651 0.18940 90 1.19054 0.35426 27 1.01324 0.08045 59 1.06909 0.19348 91 1.19623 0.36096 28 1.01427 0.08358 60 1.07174 0.19762 92 1.20207 0.36786 29 1.01533 0.08674 61 1.07446 0.20181 93 1.20806 0.37490	24	1.01042	0.07115	56	1.06153	0.18137	88	1.17960	0.34115
27 1.01324 0.08045 59 1.06909 0.19348 91 1.19623 0.36099 28 1.01427 0.08358 60 1.07174 0.19762 92 1.20207 0.36789 29 1.01533 0.08674 61 1.07446 0.20181 93 1.20806 0.37490	25	1.01132	0.07424	57	1.06399	0.18536	89	1.18500	0.34763
28 1.01427 0.08358 60 1.07174 0.19762 92 1.20207 0.36788 29 1.01533 0.08674 61 1.07446 0.20181 93 1.20806 0.37490	26	1.01226	0.07734	58	1.06651	0.18940	60	1.19054	0.35425
29 1.01533 0.08674 61 1.07446 0.20181 93 1.20806 0.37490	27	1.01324	0.08045	59	1.06909	0.19348	91	1.19623	0.36099
	28	1.01427	0.08358	60	1.07174	0.19762	92	1.20207	0.36788
00 1 01044 0 00000 00 1 0FF04 0 00004 04 1 01 101 0 0000	29	1.01533	0.08674	61	1.07446	0.20181	93	1.20806	0.37490
30 + 1.01644 + 0.08990 + 62 + 1.07724 + 0.20604 + 94 + 1.21421 + 0.38207	30	1.01644	0.08990	62	1.07724	0.20604	94	1.21421	0.38207
31 1.01758 0.09309 63 1.08010 0.21034 95 1.22052 0.38940	31	1.01758	0.09309	63	1.08010	0.21034	95	1.22052	0.38940
32 1.01877 0.09630 64 1.08302 0.21468 96 1.22700 0.39689	32	1.01877	0.09630	64	1.08302	0.21468	96	1.22700	0.39688
33 1.02000 0.09952 65 1.08602 0.21908 97 1.23366 0.40453	33	1.02000	0.09952	65	1.08602	0.21908	97	1.23366	0.40453
34 1.02128 0.10277 66 1.08909 0.22355 98 1.24050 0.41234	34	1.02128	0.10277	66	1.08909	0.22355	98	1.24050	0.41234
35 1.02260 0.10604 67 1.09223 0.22807 99 1.24753 0.42034	35	1.02260	0.10604	67	1.09223	0.22807	99	1.24753	0.42034
		1.02396	0.10933	68	1.09546	0.23266	100	1.25475	0.42852
37 1.02537 0.11265 69 1.09876 0.23731	37	1.02537	0.11265	69	1.09876	0.23731			

^{*} Adapted from Transition Curves for Highways by Joseph Barnett, P.R.A.

Case VII. Given Δ and an external or tangent distance; to determine a curve transitional throughout.

Enter Table 13 at known Δ and read T_s and E_s values. Then $L_s=E_s/E_s$ value and $T_s=L_s$ -tangent value, or $L_s=T_s/T_s$ value and $E_s=L_s$ -external value.

Example. Given. $\Delta = 30^{\circ}$ and $E_s = 40'$. Required. L_s , T_s , θ_s , L.T., S.T., D_c , P, and k. Solution. $L_s = 40 \div 0.08990 = 444.9$, say 445'. $T_s = 1.01644 \times 445$ = 452.32'. $\theta_s = \frac{\Delta}{2} = 15^{\circ}$. $D_c = \frac{200\theta_s}{L_s} = 6.47'$. L.T. = 0.66908×445 = 297.74'. S.T. = $0.33553 \times 445 = 149.31'$. $p = 0.02176 \times 445 = 9.68'$. $k = 498.86 \times 445 = 221.99'$.

Fig. 15. Spiral layout by offsets or deflections (same as for spiral transitions to a circular curve).

VERTICAL CURVES (Parabolic)

FORMULAS

 $A = \text{algebraic difference of grades} = + g_1\% - (-g_2\%).$

e = AL/8.

 $d = l^2 A/2L$; $d = 4e(l/L)^2$.

VERTICAL SUMMIT CURVE

Length of vertical summit curves should provide required sight distance. See Vol. I, p. 3-60.

Note. All horizontal distances shown on this page—L, l, l_1 , l_2 , x, x_1 , x_2 —are expressed in 100 ft. stations.

Where L, length of vertical curve, is not determined by sight distance criteria, the minimum value for comfort is

$$L = \frac{AV^2}{10,000} *$$

EXAMPLE. Given. $g_1\% = +3.00\%$; $g_2\% = -2.00\%$; L = 3.00; l = 0.50. Required. A, e, and d. Solution.

$$A = 3.00 - (-2.00) = 5.00$$
$$e = \frac{5.00 \times 3.00}{8} = 1.875'$$

$$d = \frac{0.50^2 \times 5.00}{2 \times 3.00} = 0.208'$$

$$d = 4(1.875) \left(\frac{0.50}{3.00}\right)^2 = 0.208'.$$

To find Sta. of P.V.I. when elevations of P_1 and P_2 are known.

FORMULA .

$$x = \frac{\text{elev. } P_1 - \text{elev. } P_2}{A}$$

EXAMPLE. Given. Elev. $P_1 = 154.50$; elev. $P_2 = 150.00$; A = 5.00. Required. x =distance in 100' stations from known point to P.V.I.

^{*} From O'Rourke, General Engineering Handbook, McGraw-Hill.

Solution.

$$x = \frac{154.50 - 150.00}{5.00} = 0.90(100' \text{ stations})$$

To find low point on sag curve.

VERTICAL SAG CURVE

Length of vertical sag curve should provide headlight illumination for a safe stopping distance. See Vol. I, p. 3-62.

FORMULAS

x = g(lesser gradient) L/A. $d(\text{at low point}) = x^2A/2L.$

Example. Given. $g_1\% = -3.00\%$; $g_2 = +2.00\%$; L = 3.00; A = 5.00. Required. x and d. Solution.

$$x = 2.00 \times \frac{3.00}{5.00} = 1.20'$$

$$d = \frac{1.20^2 \times 5.00}{2 \times 3.00} = 1.20'$$

Note. High point on summit curve can be found by same method.

Fig. 16. Symmetrical vertical curves.

FORMULAS

$$e = \frac{l_1 l_2}{2(l_1 + l_2)} (g_1 - g_2); y_1 = e \left(\frac{x_1}{l_1}\right)^2; y_2 = e \left(\frac{x_2}{l_2}\right)^2$$

Example. Given. $g_1 = 3.00\%$; $g_2 = 2.00\%$; L = 4.00; $l_1 = 1.50$; $l_2 = 2.50$; $x_1 = 0.50$; $x_2 = 1.00$.

Required. $e, y_1, \text{ and } y_2.$

Solution.

$$e = \frac{1.50 \times 2.50}{2(1.50 + 2.50)} (3.00 + 2.00) = 2.35'$$

$$y_1 = 2.35 \left(\frac{0.50}{1.50}\right)^2 = 0.26'$$

$$y_2 = 2.35 \left(\frac{1.00}{2.50}\right)^2 = 0.38'$$

Fig. 17. Unsymmetrical vertical curves u ed to fit unusual conditions.

PARABOLIC CROWN ORDINATES

FORMULAS

SYMMETRICAL CROWN

Used for roads and for streets where gutters are same elevation.

$$c = c_1 \left(\frac{W}{2}\right); y = 4c \left(\frac{x}{W}\right)^2.$$

EXAMPLE. Given. $c_1 = \frac{1}{8}$ "; W = 22'; and x = 6'. Required. c; y (at any point P).

Solution.

$$c = \frac{1}{8} \times \frac{2}{2} = 1.375'' = \frac{1}{8}$$
''
$$y = 4 \times 1.375 (\frac{9}{2})^2 = 0.409'' = \frac{1}{2}\frac{9}{2}\frac{2}{2}$$

ORDINATES—ANY PARABOLIC CURVE

UNSYMMETRICAL CROWN.

Used for city streets where conditions necessitate different gutter elevations. If slope per foot is over ½ in., a stepped curb or retaining wall should be used on uphill side of street.

Also used for off-center crowns on three-lane roads to provide symmetrical crown for future four lanes.

Also used for transition onto superelevated curves.

Offsets from tangent to curve vary directly as the squares of the tangent distances.

FORMULA

$$d^2: x^2 = o: y. \quad \therefore \ y = \frac{ox^2}{d^2}.$$

EXAMPLE. Given. d = 10'; o = 6''; and x = 5'. Required. y. Solution.

$$y = \frac{6 \times 5^2}{10^2} = 1.50^{\prime\prime} = 1\frac{1}{2}^{\prime\prime}$$

ALTERNATIVE METHOD

Divide the distance from center line or high point to edge of pavement into 10 equal spaces. Multiply figures in chart by total crown to get ordinates from crown elevation to pavement surface for points shown.

Example. Given. Total crown = 6''.

 $t_1 = 40 - 25 = 15'$

Required. Ordinates at fifth and eighth points.

Solution.

Ordinate at fifth point = $0.25 \times 6 = 1.50'' = 1\frac{1}{2}''$.

Ordinate at eighth point = $0.64 \times 6 = 3.84'' = 3^{13}_{.16}''$.

FORMULAS

$$x_1 = \frac{dw}{8h}; y_1 = \frac{d^2}{16h}; d_1 = \frac{d}{2} + h + y_1; y = \frac{d_1 x^2}{t^2}$$
$$y_2 = d_1 - d; t = x_1 + \frac{w}{2}; t_1 = W - t$$

Example. Given. h = 0.5'; w = 40'; d = 0.5'; x = 10'. Required. x_1 ; y_1 ; d_1 ; y_2 ; y; t and t_1 .

$$x_1 = \frac{0.5 \times 40}{8 \times 0.5} = 5.0'$$

$$y_1 = \frac{0.5^2}{16 \times 0.5} = 0.0312' = 0.375'' = \frac{3}{8}''$$

$$d_1 = \frac{0.5}{2} + 0.5 + 0.0312 = 0.7812' = 9.375'' = 9\frac{3}{8}''$$

$$y_2 = 0.7812 - 0.5 = 0.2812' = 3.375'' = 3\frac{3}{8}''$$

$$t = 5.0 + \frac{40}{2} = 25.0'$$

$$y = \frac{0.7812 \times 10^2}{25^2} = 0.125'' = 1\frac{1}{2}''$$

TABLE 14. PARABOLIC CROWN ORDINATES

ORDINATES FROM GRADE TANGENT TO SURFACE FOR EACH FOOT OF WIDTH

	,00	14":1' Crown	100.00.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
		rown	000/ 000/ 000/ 000/ 000/ 000/ 000/ 000
	44,	1/8":1' Crown	221 111 111 111 111 111 111 111 111 111
R ROAD		wn	000/ 0004 0005 0038 0038 0087 0087 0007 0007 0008 0008
REET O	40,	14":1' Crown	2000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
F ST			
SURFACE WIDTH OF STREET OR ROAD	34′	14":1' Crown	102 103 103 103 103 103 103 103 103 103 103
RFA		í	
SO		own	
	22,	36":1' Crown	
			100840000011 100840000001 1008400000011
		Jrown	
	20,	15":1' Crown	
			1222470778901 12247078900

RAILROAD TURNOUTS AND CROSSOVERS

Q Columns A and C below	and to tabu- lar figures for every 0.1 ft.	distance be- tween tracks.	Ö	.604 .704 .804 .903 1.003 1.402 1.602 1.802
Colu and C	add to	distar tween	A	.596 .696 .797 .898 .998 1.198 1.598 1.798
			Ö	108.75 126.14 144.56 162.50 180.45 216.37 252.32 288.29 324.26
		18'-0"	В	51.97 60.33 68.75 77.17 85.60 102.49 119.43 136.38
			A	50.24 58.85 67.45 76.02 84.56 101.62 118.69 135.73
	4'-8½"		Ö	96.67 112.57 128.50 144.44 160.40 192.33 224.28 256.26 288.23
	Cage	16'-0"	В	39.96 46.33 62.73 69.16 78.49 91.43 104.37
Vers	Distance in Feet between Center Lines of Tracks. Gage—4-8½"		₹	38.33 44.93 51.51 58.07 64.61 77.67 90.73 103.76
Turnouts and Crossovers	Lines of		Ö	84.58 98.50 112.44 126.39 140.35 168.29 196.26 224.23 252.20
outs and	Ceater]	14'-0"	В	28.00 32.36 36.76 41.18 45.61 64.51 63.44 72.39 81.36
Turno	смеев (Ą	26.42 31.00 35.57 40.12 44.66 63.71 62.76 71.79 80.82
	Feet be		Ö	78.54 91.47 104.40 117.36 130.33 166.27 182.23 208.21 234.19
	ance in	13'-0"	В	22.07 25.43 28.82 32.21 35.65 42.64 49.49 63.38
	Dist		A	20.46 24.04 27.60 31.14 34.68 41.73 48.78 55.81
			C	72.50 84.43 96.37 108.33 120.30 144.25 168.21 192.19
		12'-0"	В	16.23 18.57 20.93 23.34 25.76 30.64 40.47
			Ą	14.50 17.07 19.63 22.17 24.71 29.76 34.80 44.85
Switches	Lead Distance	of Switch to ½" Pt.	8011	48.19 61.28 67.14 72.73 77.61 97.25 107.33 131.36
Swi	Length	Switch Points		11'-0" 16'-6" 16'-6" 16'-6" 22'-0" 22'-0" 30'-0"
82	e cu	Length		11'-4}s" 11'-4}s" 11'-7;s" 11'-7;s" 11'-10;s" 20'-4" 28'-7"
Frogs	Emo	Angle		9°-31'-38" 8°-10'-16" 7°-09'-10" 6°-21'-35" 8°-43'-29" 4°-05'-27" 3°-34'-47" 3°-10'-56"
	Frog No.		T	8 8 112 121 138

233

EARTHWORK COMPUTATIONS

Fig. 18. Methods of finding areas.

- 1. By average end areas:* Volume in cubic yards $=\frac{A_0+A_1}{2}\cdot\frac{l}{27}$, where l= distance in feet between section A_0 and A_1 . Compute end areas as indicated in Fig. 18. Use Tables 16 and 17; also see example on p. 235.
- 2. By prismoidal formula: Volume in cubic yards $=\frac{A_0+4M+A_1}{6}\cdot\frac{l}{27}$, where l= distance in feet between sections A_0 and A_1 , M= area at section midway between section A_0 and A_1 .
- 3. Using prismoidal corrections: Subtract volume in Table 18, p. 240, from volume found using average end areas method.
- 4. To find volume of excavation on curves use average end area method with *l* between sections as indicated below. Fill volumes can be computed similarly.

l = distance between centers of gravity of adjacent sections.

Locate c.g. as shown on left; plot e on plan, and scale l along curve as indicated at right.

Fig. 19. Methods of finding volumes.

^{*} Used by most state highway departments and Public Roads Administration. Recommended for roads and airports.

Example 1. Given. End area₁ = 97 sq. ft.; end area₂ = 120 sq. ft.; l = 50'.

Required. Cubic yards between sections.

Solution. D.A. = 97 + 120 = 217 sq. ft. Enter D.A. column, and to right of 217 find C.Y. = 201 in C.Y. column.

Use Table 17 for D.A. of from 500 to 1000 cu. yd.

Example 2. Given. D.A. = 2751 sq. ft.; l = 50'.

Required. Cubic yards between stations.

Solution. D.A. of 2000 = 1852 cu. yd. Find at bottom of Table 16; D.A. of 751 sq. ft. = 695 cu. yd. Therefore cubic yards for D.A. of 2751 sq. ft. = 1852 + 695 = 2547 cu. yd.

EXAMPLE 3. When l is less than 50'.

Given. D.A. = 217 sq. ft.; l = 37'.

Required. C.Y. between sections.

Solution. Enter column "Distance between Sections" and to right of 37 find "Constant" .6852. Then $.6852 \times 217 = 149$ C.Y.

DOUBLE END AREA VOLUMES

CUBIC YARDS FOR SUM OF END AREAS FOR DISTANCE BETWEEN STATIONS OF 50 FT. * TABLE 16.

	Con- stant	.0000 .0185 .0370 .0556 .0556 .0741 .0926 .1111 .1852 .2037 .2222 .2037 .22407 .2407 .3718 .3318 .3718 .3718 .3718 .3718 .3718
Dis-	tance between Sections	0 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	C.Y.	4118 4118 4119 4219 422 424 424 424 424 426 426 426 426 427 428 428 428 428 428 428 428 428 428 428
	D.A.	450 451 451 452 453 455 456 456 460 460 460 460 460 460 460 470 471
	C.Y.	370 371 372 373 374 375 376 377 381 381 381 382 383 384 386 386 386 386 387 381 381 382 383 384 386 386 386 386 387 387 387 387 387 387 387 387 387 387
	D.A.	400 401 402 403 404 404 407 407 407 407 407 407 407 407
	C.Y.	324 328 328 328 328 329 331 331 331 332 333 334 335 336 337 338 338 338 338 338 338 338 338 338
	D.A.	350 351 352 353 354 355 356 356 361 361 361 361 361 361 361 361 361 36
٠	C.Y.	27.8 27.9 28.1 28.1 28.2 28.2 28.4 28.4 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7
re feet	D.A.	300 301 302 303 304 306 306 307 311 311 311 311 311 311 311 311 311 31
squa	C.Y.	231 232 233 234 236 236 237 237 240 240 244 244 244 244 244 244 244 244
reas in	D.A.	250 251 252 253 254 255 256 256 257 261 261 261 261 261 261 261 261 261 261
end a	C.Y.	185 188 188 189 190 191 194 194 197 197 198 199 200 201 201 200 201 200 201 200 200 200
sum of end areas in square feet,	D.A.	200 201 203 203 204 205 206 207 210 211 213 213 214 213 214 213 214 215 217 218 218 218 218 218 218 218 218 218 218
11	C.Y.	139 141 142 143 144 144 145 146 150 150 151 152 153 153 154 155 155 155 155 155 155 155 155 155
D.A.	D.A.	150 151 152 153 154 156 156 157 160 161 162 163 164 164 164 164 164 164 164 164 164 167 168 168 169 160 160 160 160 160 160 160 160 160 160
ĺ	C.Y.	93. 94. 95. 96. 97. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98
	D.A.	100 101 102 1103 1104 1106 1107 1108 1110 1111 1114 1118 1119 1119 1119 1119 1119
	C.Y.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	D.A.	50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60
	C.Y.	0 1 1 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3
	D.A.	0 1 1 1 1 1 1 1 1 1 1 1 1 1

.4259	.4445	.4630	.4815	.5000	.5185	.5370	.5556	.5741	.5926	.6111	.6296	.6482	.6667	.6852	.7037	.7222	.7408	.7593	.7778	. 7963	.8148	.8333	.8519	.8704	.8889	.9074	.9259		
23,	24,	22,	792	27,	78	29,	30	31,	32,	33,	34′	35,	36,	37,	38,	36,	40,	41,	42,	43,	44'	45,	46,	47,	48,	49,	20,		
438	439	440	441	442	443	444	444	445	446	447	448	449	450	451	452	453	454	455	456	456	457	458	459	460	461	462	463		
473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	200	= 4630	
392	393	394	394	395	396	397	398	399	400	401	402	403	404	405	406	406	407	408	409	410	411	412	413	414	445	416		2009	
423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449			
345	346	347	348	349	350	351	352	353	354	355	356	356	357	358	359	360	361	362	363	364	365	306	367	368	369	369			
373	374	375	376	377	378	379	380	381	382	383	384	382	386	387	388	389	390	391	392	393	394	395	396	397	398	399		= 3704	
299	300	301	302	303	304	305	306	306	- 307	308	309	310	311	312	313	314	315	316	317	318	319	319	320	321	322	323		4000 =	
323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349			
253	254	255	256	256	257	258	259	260	261	262	263	264	265	266	267	268	269	569	270	271	272	273	274	275	276	277			
273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299		= 2778	
206	202	208	500	210	211	212	213	214	215	216	217	218	219	219	220	221	222	223	224	225	226	227	228	229	230	231		3000 =	
223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	242	246	247	248	249			
160	161	162	163	164	165	166	167	168	169	169	170	171	172	173	174	175	176	177	178	179	180	181	181	182	183	184			
173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199		1852	
114	115	116	117	118	119	119	120	121	122	123	124	125	126	127	128	129	130	131	131	132	133	134	135	136	137	138		2000 =	
123	124	125	126	127	128	129	130	<u>131</u>	132	133	134	135	136	137	.138	139	140	141	142	143	144	145	146	147	148	149	•	6	
89	69	69	20	71	72	73	74	75	92	22	28	26	80	81	81	82	83	84	85	98	87	88	68	06	91	92			
73	74	75	92	12	78	79	80	81	82	83	84	82	98	87	88	68	06	91	92	88	46	95	96	62	86	66		926	
21	55	33	7	52	56	27	28	29	90	31	31	32	33	34	35	36	37	88	33	40	41	42	43	44	44	45		1000 =	
23	Z :	3	92	27	88	53	30	31	82	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49			

* Based on average end area formula. Not as accurate as prismoidal formula, but as accurate as usual field measurements warrant. Specified for payment quantities by most state highway departments.

CUBIC YARDS FOR SUM OF END AREAS FOR DISTANCE BETWEEN STATIONS OF 50 FT.* TABLE 17.

Con-	stant	0.0185	0.0370	0.0556	0.0741	0.0926	0.1296	0.1482	0.1667	0.1852	0.2037	0.2222	0.2407	0.2593	0.2778	0.2963	0.3148	0.3333	0.3519	0.3704	0.3889	0.4074	0.4259	0.4445
Distance	Sections	1	23	က	4,	0 0	-10	. 00	6	10	11	12	13	14	12	16	17	18	19	20	21	22	23	24
	C.Y.	880	881	881	885	883	8 8	886	887	888	688	890	891	892	893	894	894	895	968	897	868	899	900	901
	D.A.	950	951	952	953	954	920	957	958	959	960	961	962	963	964	965	996	196	896	696	970	971	972	973
	C.Y.	833	834	835	836	837	000	840	841	842	843	844	844	845	846	847	848	849	820	851	852	853	854	855
	D.A.	006	901	902	903	904	900	907	806	606	910	911	912	913	914	915	916	917	918	919	920	921	922	923
	c.y.	787	788	684	790	791	703	794	794	795	962	797	208	799	800	801	802	803	804	805	908	806	807	808
rea).	D.A.	850	851	852	853	854	856	857	858	859	860	861	862	863	864	865	998	867	898	869	870	871	872	873
areus in square feet (double end area).	C.Y.	741	742	743	744	744	746	747	748	749	750	751	752	753	754	755	756	756	757	758	759	260	761	762
ouble	D.A.	800	801	802	803	808	800	807	808	808	810	811	812	813	814	815	816	817	818	819	820	821	822	823
feet (d	C.Y.	694	695	969	269	869	200	701	702	703	704	705	206	200	202	208	602	710	711	712	713	714	715	716
quare	D.A.	750	751	752	753	754	756	757	758	759	260	761	762	763	764	765	992	767	202	692	270	771	772	773
s in so	C.Y.	648	649	650	651	299	654	655	656	656	299	658	629	099	661	662	663	664	665	999	199	899	699	699
d area	D.A.	700	701	702	703	4 5	3 5	707	208	402	710	711	712	713	714	715	716	717	718	719	720	721	722	723
bue jo uns	C.Y.	602	603	604	909	909	900	809	609	610	611	612	613	614	615	616	617	618	619	619	620	621	622	623
= sur	D.A.	650	651	652	653	654 8 8 8 8	929	657	658	629	099	199	662	663	664	665	999	299	899	699	670	671	672	673
D.A.	C.Y.	556	929	222	258	555	561	562	563	564	565	266	299	568	699	569	570	571	572	573	574	575	576	577
	D.A.	009	601	602	603	604 808	909	607	809	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623
	C.Y.	509	510	511	512	513	515	516	517	518	519	519	520	521	522	523	524	525	526	527	528	529	530	531
	D.A.	550	551	552	553	009 777 777	556	557	558	559	260	561	562	563	564	565	999	267	268	569	570	571	572	573
	C.Y.	463	464	465	466	407	469	469	470	471	472	473	474	475	476	477	478	479	480	481	481	482	483	484
	D.A.	200	501	205	503	200	200	202	208	200	510	511	512	513	514	515	216	517	218	519	220	521	522	523

0.4630 0.4815 0.5000 0.5185 0.5370 0.5370 0.5741 0.6682 0.6682 0.6682 0.7037 0.7037 0.7037 0.7038 0.7408 0.7408 0.7408 0.7778	0 = 7407
532888888888888888888888888888888888888	8000
902 903 904 906 906 906 907 910 911 911 911 911 911 912 913 916 917 918 918 918 918 918	= 6481
974 975 977 977 977 977 977 977 988 988 988 988	2000
856 857 861 861 862 863 863 863 863 864 865 865 865 865 865 865 865 865 865 865	
928 926 926 927 928 930 931 933 934 938 938 938 938 938 938 938 938 938 938	= 5556
800 811 811 811 811 811 811 811 811 811	0000
877 877 877 887 880 881 882 883 884 884 886 888 888 888 888 889 889 889 889 881 881	
765 765 766 767 769 769 770 771 771 773 774 777 778 778 778 779 779 779 779 779 779	= 4630
824 826 826 827 820 830 831 831 831 832 833 833 834 834 834 845 845 845 846 847 847 848 848 848 848 848 848 848 848	2000
717 719 719 720 721 722 723 723 723 723 733 734 735 737 738 738 738 738	
777 777 777 778 781 782 783 784 785 787 789 789 799 799 799 799 799	= 3704
671 672 673 674 675 676 677 677 680 681 681 682 683 683 684 685 686 686 686 687 688 689 689 689 689 689 689 689 689 689	4000
727 22 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	
624 625 627 628 628 630 631 631 631 631 632 633 633 634 635 635 635 635 636 637 637 637 637 637 637 637 637 637	= 2778
675 677 677 677 680 681 682 683 684 684 686 686 686 686 686 686 686 686	3000
5779 5779 5779 5779 5779 5779 5779 5779	
625 626 627 628 630 630 631 633 634 634 635 634 635 636 637 638 637 638 638 639 639 639 639 639 639 639 639 639 639	1852
553 553 553 553 553 553 553 554 554 554	2000 =
574 575 577 577 577 577 577 580 581 582 583 584 584 585 586 586 586 587 588 589 589 589 589 589 589 589 589 589	2
4885 4888 4888 4899 4990 4992 4992 4993 4994 4995 5000 5000 5000 5006 5006	= 926
524 526 526 528 528 528 530 531 531 532 533 534 534 541 541 541 542 543 544 544 544 544 544 548 548 548	1000 =

* Based on average end area formula. Not as accurate as prismoidal, but as accurate as usual field measurements warrant. Specified for payment quantities by most state highway departments.

For examples illustrating use of table see p. 235.

TABLE 18. PRISMOIDAL CORRECTIONS FOR L = 100' STATIONS*

$c_1 - c_2 =$	1	2	3	4	5	6	7	8	9
$ \begin{array}{c c} \hline D_1 - D_2 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array} $	0.03 0.06 0.09 0.12 0.15	0.06 0.12 0.19 0.25 0.31	0.09 0.19 0.28 0.37 0.46	0.12 0.25 0.37 0.49 0.62	0.15 0.31 0.46 0.62 0.77	0.19 0.37 0.56 0.74 0.93	0.22 0.43 0.65 0.86 1.08	0.25 0.49 0.74 0.99 1.23	0.28 0.56 0.83 1.11 1.39
0.6 0.7 0.8 0.9 1.0	0.19 0.22 0.25 0.28 0.31	0.37 0.43 0.49 0.56 0.62	0.56 0.65 0.74 0.83 0.93	0.74 0.86 0.99 1.11 1.23	0.93 1.08 1.23 1.39 1.54	1.11 1.30 1.48 1.67 1.85	1.30 1.51 1.73 1.94 2.16	1.48 1.73 1.98 2.22 2.47	1.67 1.94 2.22 2.50 2.78
1.1 1.2 1.3 1.4 1.5	0.34 0.37 0.40 0.43 0.46 0.49	0.68 0.74 0.80 0.86 0.93	1.02 1.11 1.20 1.30 1.39 1.48	1.36 1.48 1.60 1.73 1.85	1.70 1.85 2.01 2.16 2.31 2.47	2.04 2.22 2.41 2.59 2.78 2.96	2.38 2.59 2.81 3.02 3.24 3.46	2.72 2.96 3.21 3.46 3.70 3.95	3.06 3.33 3.61 3.89 4.17 4.44
1.6 1.7 1.8 1.9 2.0	0.52 0.56 0.59 0.62 0.65	1.05 1.11 1.17 1.23	1.57 1.67 1.76 1.85	2.10 2.22 2.35 2.47 2.59	2.62 2.78 2.93 3.09 3.24	3.15 3.33 3.52 3.70 3.89	3.67 3.89 4.10 4.32 4.54	4.20 4.44 4.69 4.94 5.19	4.72 5.00 5.28 5.56 5.83
2.2 2.3 2.4 2.5 2.6	0.68 0.71 0.74 0.77	1.36 1.42 1.48 1.54 1.60	2.04 2.13 2.22 2.31 2.41	2.72 2.84 2.96 3.09 3.21	3.40 3.55 3.70 3.86 4.01	4.07 4.26 4.44 4.63 4.81	4.75 4.97 5.19 5.40 5.62	5.43 5.68 5.93 6.17 6.42	6.11 6.39 6.67 6.94 7.22
2.7 2.8 2.9 3.0 3.1	0.83 0.86 0.90 0.93	1.67 1.73 1.79 1.85	2.50 2.57 2.67 2.78 2.87	3.33 3.46 3.58 3.70 3.83	4.17 4.32 4.43 4.63 4.78	5.00 5.19 5.37 5.56 5.74	5.83 6.05 6.27 6.48 6.70	6.67 6.91 7.16 7.41 7.65	7.50 7.78 8.06 8.33 8.61
3.2 3.3 3.4 3.5 3.6	0.99 1.02 1.05 1.08	1.98 2.04 2.10 2.16 2.22	2.96 3.06 3.15 3.24 3.33	3.95 4.07 4.20 4.32 4.44	4.94 5.09 5.25 5.40 5.56	5.93 6.11 6.30 6.48 6.67	6.91 7.13 7.35 7.56 7.78	7.90 8.15 8.40 8.64 8.89	8.89 9.17 9.44 9.72
3.7 3.8 3.9 4.0 4.1	1.14 1.17 1.20 1.23 1.27	2.28 2.35 2.41 2.47 2.53	3.43 3.52 3.61 3.70 3.80	4.57 4.69 4.81 4.94 5.06	5.71 5.86 6.02 6.17 6.33	6.85 7.04 7.22 7.41 7.59	7.99 8.21 8.43 8.64 8.86	9.14 9.38 9.63 9.88 10.12	10.28 10.56 10.83 11.11 11,39
4.2 4.3 4.4 4.5 4.6	1.30 1.33 1.36 1.39	2.59 2.65 2.72 2.78 2.84	3.89 3.98 4.07 4.17 4.26	5.19 5.31 5.43 5.56 5.68	6.48 6.64 6.79 6.94 7.10	7.78 7.96 8.15 8.33 8.52	9.07 9.29 9.51 9.72 9.94	10.37 10.62 10.86 11.11 11.36	11.67 11.94 12.22 12.50
4.7 4.8 4.9 5.0	1.45 1.48 1.51 1.54	2.90 2.96 3.02 3.09	4.35 4.44 4.54 4.63	5.80 5.93 6.05 6.17	7.25 7.41 7.56 7.72	8.70 8.89 9.07 9.26	10.15 10.37 10.50 10.80	11.60 11.85 12.10 12.35	13.06 13.33 13.61 13.89
$c_1-c_2=$	1	2	3	4	5	6	. 7	8	9

EXAMPLE. Given. $c_1 = 4'$, $D_1 = 130'$, $c_2 = 8'$, $D_2 = 138'$. Required. Prismoidal correction

value.

Solution. $c_1 - c_2 = 4$; $D_1 - D_2 = 8$. Enter table at 8.0; read correction = 9.88 cu. yd. $(c_2 - c_1)(D_2 - D_1) = (8 - 4)(138 - 130) = +$. Subtract correction from volume by average end area method. See p. 234.

TABLE 18. PRISMOIDAL CORRECTIONS FOR L = 100' STATIONS,*

Continued

$c_1 - c_2 =$	1	2	3	4	5	6	7	8	9
$\begin{array}{r} D_1 - D_2 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \end{array}$	1.57 1.60 1.64 1.67	3.15 3.21 3.27 3.33	4.72 4.81 4.91 5.00	6.30 6.42 6.54 6.67	7.87 8.02 8.18 8.33	9.44 9.63 9.81 10.00	11.02 11.23 11.45 11.67	12.59 12.84 13.09 13.33	14.17 14.44 14.72 15.00
5.5 5.6 5.7 5.8 5.9	1.70 1.73 1.76 1.79 1.82	3.40 3.46 3.52 3.58 3.64	5.09 5.19 5.28 5.37 5.46	6.79 6.91 7.04 7.16 7.28	8.49 8.64 8.80 8.95 9.10	10.19 10.37 10.56 10.74 10.93	11.88 12.10 12.31 12.53 12.75	13.58 13.83 14.07 14.32 14.57	15.28 15.56 15.83 16.11 16.39
6.0 6.1 6.2 6.3 6.4 6.5	1.85 1.88 1.91 1.94 1.98 2.01	3.70 3.77 3.83 3.89 3.95 4.01	5.56 5.65 5.74 5.83 5.93 6.02	7.41 7.53 7.65 7.78 7.90 8.02	9.26 9.41 9.57 9.72 9.88 10.03	11.11 11.30 11.48 11.67 11.85 12.04	12.96 13.18 13.40 13.61 13.83 14.04	14.81 15.06 15.31 15.56 15.80 16.05	16.67 16.94 17.22 17.50 17.78
6.6 6.7 6.8 6.9 7.0	2.04 2.07 2.10 2.13 2.16	4.07 4.14 4.20 4.26 4.32	6.11 6.20 6.30 6.39 6.48	8.15 8.27 8.40 8.52 8.64	10.19 10.34 10.49 10.65 10.80	12.22 12.41 12.59 12.78 12.96	14.26 14.48 14.69 14.91 15.12	16.30 16.54 16.79 17.04 17.28	18.06 18.33 18.61 18.89 19.17 19.44
7.1 7.2 7.3 7.4 7.5	2.19 2.22 2.25 2.28 2.31	4.38 4.44 4.51 4.57 4.63	6.57 6.67 6.76 6.85 6.94	8.77 8.89 9.01 9.14 9.26	10.96 11.11 11.27 11.42 11.57	13.15 13.33 13.52 13.70 13.89	15.34 15.56 15.77 15.99 16.20	17.53 17.78 18.02 18.27 18.52	19.72 20.00 20.28 20.56 20.83
7.6 7.7 7.8 7.9 8.0	2.35 2.38 2.41 2.44 2.47	4.69 4.75 4.81 4.88 4.94	7.04 7.13 7.22 7.31 7.41	9.38 9.51 9.63 9.75 9.88	11.73 11.88 12.04 12.19 12.35	14.07 14.26 14.44 14.63 14.81	16.42 16.64 16.85 17.07 17.28	18.77 19.01 19.26 19.51 19.75	21.11 21.39 21.67 21.94 22.22
8.1 8.2 8.3 8.4 8.5	2.50 2.53 2.56 2.59 2.62	5.00 5.06 5.12 5.19 5.25	7.50 7.59 7.69 7.78 7.87	10.00 10.12 10.25 10.37 10.49	12.50 12.65 12.81 12.96 13.12	15.00 15.19 15.37 15.56 15.74	17.50 17.72 17.93 18.15 18.36	20.00 20.25 20.49 20.74 20.99	22.50 22.78 23.06 23.33 23.61
8.6 8.7 8.8 8.9 9.0	2.65 2.69 2.72 2.75 2.78	5.31 5.37 5.43 5.49 5.56	8.24 8.33	10.62 10.74 10.86 10.99 11.11	13.27 13.43 13.58 13.73 13.89	15.93 16.11 16.30 16.48 16.67	18.58 18.80 19.01 19.23 19.44	21.23 21.48 21.73 21.97 22.22	23.89 24.17 24.44 24.72 25.00
9.1 9.2 9.3 9.4 9.5	2.81 2.84 2.87 2.90 2.93	5.62 5.68 5.74 5.80 5.86	8.52 8.61 8.70 8.80	11.23 11.36 11.48 11.60 11.73	14.04 14.20 14.35 14.51 14.66	16.85 17.01 17.22 17.41 17.59	19.66 19.88 20.09 20.31 20.52	22.47 22.72 22.96 23.21 23.46	25.28 25.56 25.83 26.11 26.39
9.6 9.7 9.8 9.9 10.0	2.96 2.99 3.02 3.06 3.09	5.93 5.99 6.05 6.11 6.17	8.98 9.07 9.17	11.85 11.98 12.10 12.22 12.35	14.81 14.97 15.12 15.28 15.43	17.78 17.96 18.15 18.33 18.52	20.74 20.96 21.17 21.39 21.60	23.70 23.95 24.20 24.44 24.69	26.67 26.94 27.22 27.50 27.78
$c_1 - c_2 =$	1	2	3	4	5	6	7	8	9

 c_1 , c_2 , D_1 , and D_2 are shown for a three-level section. Volume by average end area \pm prismoidal correction = volume by prismoidal formula.

When $(c_2 - c_1)(D_2 - D_1)$ is +, subtract correction.

When $(c_2 - c_1)(D_2 - D_1)$ is -, add correction.

Irregular sections are generally treated the same as three-level sections.

^{*} From American Civil Engineers Handbook by Merriman and Wiggin.

LEVELING

SAMPLE NOTES

April	26, 19	44 - Cla	udy,	001, 50	-60°F.	1		E.Kroyer, Level J Lenart, Rod
		CH LE	VELS_		Estab.	. '	H	MYRTLE STREET
STA.	<i>B</i> 5.	HT.	F.5	Elev.	Elev	_		KEE WUR LEVEL 2/67
BM.*6	4.57	11013			105.56	0	10	Canchete Wanument Star 4+16 + 56' Rt
TP#/	3.18	107.18	613	104.00			[]	Man Hadolin Tel Able Sta 6+50 4t
T.P.*2	2.56	10407		101-51		_		top of stake "8+25-5014+
TP*3	5.06	105 05	4 08	99.99		0	0	TapMut Hydrant "10+15 Rt.
BM*7	4.17	103.02	6.20	98.85				DELITION TOO NE CONNET OF RETOINING MOUN
								Stay 12+25 5557 AM
TP#4		105.94		9783		0	0	Point on Curb Sto 14+06-30'191
TP*5	7.16	10703		99.87				Can canc Step " 16+19-60 FH
BM'8			555	101.48	10147	1		4.5 5 5 Mbn. " 18+35-45'Lt
	3481			105.56			-	┡┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋
			3481			ı	1	┠╏╏┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋
			4 08-	check		- 1	1	┡ ┦┦╏┦╏╏┩╏╏╏╏╏╏
						Į		┡ ╒┋┋╒╒╒ ╒┋
								╏╏┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋
						9	0	╒╅╏╎╒╏╏╏╬╏╏╏╏
						- 1		┡╫╫╫╫╫╫╫
								┠┼╎┼┼╎┼╏┼╏┼╎┼╎┼┼┼╏╏╏
						0	0	┡╃╁╄╃╄╃┞╋╂┧╂╂╃╂╃╂╃╂╇╇┼╇╂╀╇╇╣
						- 1		┞╫┧╫┧╫╫╂╫╫╫╫╫╫╫
								┡ ╏┩╏┩╏┩╏┩╏╏┩╏ ╇╇ ╏╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇
						9	0	┞ ╒╏╏╏╏╏╏╏╏╏╏╏
] 1	
	- 1		- 1	- 1		ノ		

Fig. 20.

June	17, 1943 PROFIL	- Warm	, Humia	Overca	(7		Berger Level 3197 £ RUNNAY 3-A-	CRANDALL FIELD
STA.	B.s.	H.Z.	F.5.	Elev.	Estab.			Whitten, Level: Wiesendande	r. Rob
						0	0		
BM2	4.15	99.82			95.67			Concrete Man Sta a+10-	265'Rt. of \$
0+00			6.2	93.6			1		
0+50			59	93.9		0	0		
0+70			4.7	95.1				Rock Out chop	
1+00			5.5	94.3					
1+25			7.0	92.8		0	0		
1+50			60	938					
2+00			53	94.5					
2+20			55	945				Top of Bank	
2+28			9.7	901		-		Bottom of Ditch	
2+34			99	899					
2+44			5.0	94.8			1	Top of Bonk	
2+50			4.5	95.3				Top of & Stake - Star 2+	sa IIII
T.P. I	5 05	100.88	3.99	95.83		0	0		
3+00			5.6	95.3		- 1	1		
3+50			6.6	94.3		1	1		
4+00			6.9	94.0		0	0		
4+50			7.2	93.7		- 1			
T.P.2	7.42	101.79	651	9437		1	1	top of & Stone - Sto. 4+50	
B.M.3			833	93 46	93.47	0	0	Congrese Man. Star 5+25 - 2	
	16 62		18.83	95.67		-			
			16.62 2.21	2.21 check		ر		·	

TRANSIT PROBLEMS

1. Determination of Distance to Inaccessible Point

Required. AB.

Procedure. Set transit at A, sight on B. Turn 90° and set C at a point at least equal to $\frac{1}{2}AB$. Measure length AC. Set up at C and measure angle ACB. $AB = AC \times \text{tangent } ACB$.

2. Angles by Repetition *

Required. A more accurate determination of an angle than possible by a single measurement.

Procedure. (1) Set the transit very carefully over the point. (2) Set the A vernier at zero, read the B vernier, and record the readings. (3) With the telescope in its normal position, measure one of the angles in a clockwise direction, and record both vernier readings to the smallest reading of the vernier. (4) Leaving the upper motion clamped, again set on the first point and again measure the angle in a clockwise direction (thus doubling the angle). (5) Continue until six repetitions have been secured. Record both vernier readings and the total angle turned. (6) In a like manner, setting the B vernier at zero, measure the explement of the angle in a counterclockwise direction with the bubble down, but read the horizontal circle as though the angle itself had been measured clockwise. (7) Go through the same process for all other angles about the point. (8) Compute the value of each of the angles for each direction turned, and compare with the single measurement. (9) Find the mean of each of these sets of single angles. For a transit reading to single minutes the total error should not exceed $10''\sqrt{n}$, in which n is the number of observations. (10) Adjust the angles so that their sum shall equal 360° by distributing the error equally among the mean values.

Hints and Precautions. (1) Level the transit very carefully before each repetition, but do not disturb the leveling screws while a measurement is being made. (2) The mean of each set of single angles should furnish a value free from instrumental errors. The station adjustment is an attempt to distribute the accidental errors so that the condition that there are 360° about a point shall be fulfilled. (3) Do not become

^{*} Adapted from Davis, Manual of Surveying, McGraw-Hill,

confused when calculating the total angle turned. Observe how the horizontal limb is graduated, and do not omit 360°. (4) The instrument should be handled very carefully. When turning on the lower motion the hands should be in contact with the lower plate (not the alidade), and when making an exact setting on a point the last movement of the tangent screw should be clockwise or against the opposing spring. (5) After each repetition the instrument should be turned on its lower motion in a direction opposite to that of the measurement. (6) The single measurement is taken as a check on the number of repetitions. It should agree closely with the mean value.

Practical Applications. This method is used in triangulation work to measure any angle accurately. The number of sets of readings and the number of repetitions in each set observed depend upon the desired accuracy.

3. Laying off Angles by Repetition *

Required. To lay off a given horizontal angle more accurately than by a single setting of the vernier.

Procedure. (1) Set the transit carefully over the point and lay off the angle. (2) Set a stake on the line of sight, preferably at least 500 ft. from the instrument, and carefully set a tack. (3) By repetition measure the angle laid off, as in the previous problem, making six repetitions in each direction. (4) Find the angular discrepancy between the angle laid off and the required angle. Move the tack perpendicular to the line of sight, a distance equal to the sine of the angular discrepancy times the measured distance between the stakes. (5) Set the tack accordingly.

Practical Applications. This method is of use in laying out large buildings, valuable city lots or right of ways, important highway work such as viaducts and bridges, and airport runway center lines. With a transit vernier reading to 1 minute, an error of 30 in. in a single reading might easily occur; in 300 ft. this would amount to approximately ½ in.

4. Area by Double Meridian Distance *

Required. Area of a closed traverse.

Rules.

Latitude = distance times cosine bearing angle.

Departure = distance times sine bearing angle.

Latitudes and departures are positive or negative according as they are north and east or south and west.

In any closed traverse the algebraic sum of the latitudes (or departures) must equal zero.

Compass rule for balancing. The correction to be applied to the lati-

^{*} Adapted from Davis, Manual of Surveying, McGraw-Hill.

tude (or departure) of any course is to the total error in latitude (or departure) as the length of the course is to the perimeter of the field.

Transit rule for balancing. The correction to be applied to the latitude (or departure) of any course is to the total error in latitude (or departure) as the latitude (or departure) of that course is to the arithmetical sum of all the latitudes (or departures).

Rules for double meridian distances. (1) The D.M.D. of the first course equals the departure of that course.

- (2) The D.M.D. of any other course equals the D.M.D. of the preceding course plus the departure of the preceding course plus the departure of the course itself.
- (3) The D.M.D. of the last course is numerically equal to the departure of that course, but with opposite sign.

Procedure. (1) Transcribe necessary data from the field book into a form similar to that shown below. Check the copy.

- (2) Calculate the latitude and departure of each course, using logarithms as shown in sample computations or more quickly and accurately with natural functions and a calculating machine if one is available. Check results with the slide rule.
- (3) Determine the total error in latitude and in departure, and compute the error of closure.
- (4) Determine the latitude and departure corrections by one of the preceding rules for balancing.
- (5) Apply these corrections, and check by taking the algebraic sum of the corrected latitudes and the algebraic sum of the corrected departures. Each of these sums should equal zero.
- (6) From the corrected departures compute the D.M.D.'s, applying the preceding rules and starting from the most westerly point in the survey. If the last D.M.D. is not numerically equal to the last corrected departure, it will indicate that a mistake in addition has been made.
- (7) Compute double areas by the preceding rule paying special attention to signs. Check computations.
 - (8) Sum up the double areas, divide by 2, and transform into acres.

Hints and Precautions. (1) Use tables of logarithms or natural functions with number of places consistent with the precision of the field measurements. If the bearings have been determined with the surveyor's compass, four places will be sufficient; if angles have been taken to the nearest minute (in error less than 30 seconds) with the transit, five-place tables should be used.

(2) Checks should be applied after each of the steps in the computations. An absolute check on the work can, of course, be had only by recomputation, by methods that will give as many significant figures in the final result as the original computations gave. However, the slide rule will furnish an approximate check, which is very desirable.

- (3) If, after having calculated the latitudes and departures and after having checked them against large errors, the error of closure is found to be larger than that allowable, the computer may frequently locate the mistake, whether it be in computations or field work, through the relation of total error in latitudes and total error in departures. Thus, if the mistake is in the length of one line and there are no other large errors, the ratio of the total error in departures to the total error in latitudes will approximately express the tangent of the bearing angle of that line, or if a mistake has been made in the latitude of a line the departures may nearly close. The computer should, therefore, conduct a critical examination of results and should then recompute those values that seem most likely to contain the mistake. If the mistake is not brought to light when all latitudes and departures have been rechecked, then, and only then, may he be warranted in concluding that the mistake occurred in the field.
- (4) The compass rule or transit rule will be used for balancing latitudes and departures according as the error is assumed to be as much in angles as in distances or as the error is assumed to be mostly due to erroneous lengths.
- (5) When the error of closure is small, the latitudes and departures may usually be balanced by inspection without computing the corrections by either of the preceding rules. When the computer knows the conditions surrounding the field work, he may often distribute the error according to his own judgment rather than by any fixed rule.
- (6) Often neither calculated nor magnetic bearings of lines are shown in the transit notes. If deflection or interior angles were taken, it will be convenient to assume one of the lines in the traverse as the meridian and calculate the bearings of other lines accordingly. If magnetic bearings are recorded in the field notes, they should not be confused with calculated bearings and used as the basis of computations, for their precision will not warrant such use.
- (7) Corrections for erroneous length of chain or tape should not be overlooked. Constant errors of this sort will have no effect on the error of closure.
- (8) By starting with the most westerly point in the survey all the D.M.D.'s become positive; it is not necessary for the solution of the problem that this point be chosen, but it is customary.

Practical Applications. The double meridian distance method of calculating the area within a closed traverse is universally followed in preference to subdividing into triangles. It is generally agreed that it takes less time, is more systematic, and offers more easy checks; through the use of latitudes and departures, the error of closure is readily determined.

Some surveyors favor the method of double parallel distances, which is the same in principle as the preceding method, the only difference being that in double parallel distances (D.P.D.'s) the bases of trapezoids are

	Cal	Dist	Latit	udes	Depa	rtures	Corr	ected	D.M.Ds.	Double	Areas
Line	Bear	66' Ch.	N	5	E	W	Lats.	Deps	D.M.DS.	+	_
A-8	S 80°2912'W	34 464		5 894		33.991	- 5.693	-33.990	61 812		351.88
B-C	3 33°04' W	25.493		21.364	1	13911	-21.361	-13.911	13911		297 1
C-D	S 33°46¾' E	33.934		28.205	18 867	1	-28 201	+18.867	18 867		5320
D-E	N 87°5814'E	28 625	1 013	İ	28 607	İ	+ 1.013	+28 608	66.342	67 21	
E-A	N 0°27' E	54 235	54.234	1	0 426		+54.242	+ 0426	95 376	5173.51	
		176 751	55 247	55.263	47.900	47.902	ΣL=0	ΣD=0		524072	7181.1
				55.247		47.900				1181.10	
				.016		.002			2	4059.62	
Line	$\frac{016}{176 \cdot 751} = \frac{1}{11,000}$ $A - B$	8-C	C-D	D-E	E-A	1			0	r_202.981	Ac.
Lat	5.694	21.364	28.205	1.013	54.234	1			Note	9.	
Log. Lat.	0.75542	1.32968	1.45032	0.00584	1.73427	l				Survey Bai	
Log. Cos.	9.21805	9.92326	9 91969	8.54899 1.45874	9.99999 1.73428					by Transit	nuie.
Log. Dist. Log. Sin.	1 53737 9.99399	1.40642 9.73689	1 53063 9 74509	9,99973	7.89535						
Log. Dep.	1.53136	1 14331	2 27572	1 45647	9.62964	1					
Dep	33.991	13 911	18 867	28.607	0.426						
log. Cor. Lat. Log. D M.D. Log. D.A.	0.75534 1 79107 2 54641	1.32962 1.14336 2 47298	1.45026 1.27570 2.72596	0.00584 1.82179 1.82763	1.73434 1.97944 3.71378						
Double Area	351 89	297.15	532.06	67.21	5173.51						
	l		1	1		l					

Fig. 22.

along a line perpendicular to the meridian, whereas in double meridian distances they lie on the meridian itself. Thus, the rules for finding D.M.D.'s may be changed to rules for D.P.D.'s by substituting the word "latitude" for "departure"; and the rule for finding double areas will then be as follows: The double area of any trapezoid equals the product of its D.P.D. and its corrected departure.

5. Omitted Side *

Required. Length and bearing of one side of a traverse, this side not accessible in field. (It is assumed that errors in measured sides are negligible; all errors are thrown into computed side.)

Procedure. (1) Calculate the latitudes and departures of the known lines as in the previous problem, and find their totals. (2) On the preceding assumption, and since the algebraic sum of latitudes and of departures for any closed traverse is zero, it follows that the latitude and departure of the unknown line are numerically equal to the sums of corresponding quantities for the known lines, but with opposite sign. Therefore, determine the bearing and length of the unknown line by the equations:

Tan bearing angle =
$$\frac{\text{departure of line}}{\text{latitude of line}}$$

and

^{*} Adapted from Davis, Manual of Surveying, McGraw-Hill.

Length of line = $\sqrt{\text{latitude}^2 + \text{departure}^2}$

 $= \frac{\text{latitude of line}}{\text{cos bearing angle}} = \frac{\text{departure of line}}{\text{sin bearing angle}}$

Precaution. Plot known sides, and graphically check omitted side and bearing.

6. Prolongation of a Line by Double Sighting with Transit* (Double Centering)

Required. To produce a straight line with precision.

Procedure. (1) Set the instrument carefully over the forward point on the line with the telescope normal and backsight on line. Use the lower horizontal motion, the upper motion being clamped. (2) Plunge the telescope, and set a stake on the line in advance. Mark a point on the stake exactly on line. (3) Take a second backsight on line in the same manner as before, with the telescope inverted. Plunge the telescope again, and mark a second point on the advance stake. (4) If this point is not coincident with the first point set, a point midway between them is on the line. (5) Set the transit over this point, and advance by the same process, backsighting upon the next point in the rear. Continue in this way for the desired distance.

Hints and Precautions. (1) Be sure that one backsight from each station is taken with the telescope inverted and one with the telescope direct. (2) Tacks should be set in all stakes, and after being set should be checked. A finely divided scale should be used for bisecting the distances.

(3) Whenever an opportunity arises, take backsights as far back on a line as possible to check the line.

Practical Applications. The method of double sighting is used when it is desired to set a point in advance accurately on line. The process of double sighting eliminates instrumental errors. It is used in prolonging lines of a considerable length or setting points accurately ahead on line. Frequently a line prolonged by simply plunging the telescope with a transit supposed to be in perfect adjustment has later been found to be not a straight line but a curve of large radius. The same method should be used when setting transit points ahead on a curve.

7. Establishing a Line by Balancing-in with Transit (Bucking-in)

Required. To establish an intermediate transit point on a line when the two ends of the line are not intervisible.

Procedure. (1) Set up the transit where the intermediate point is required, and as near as can be estimated, on the line. (2) Backsight with telescope normal on the point marking one end of the line, and plunge

^{*} Adapted from Davis, Manual of Surveying, McGraw-Hill.

the telescope. (3) Move the transit a proportionate amount of the distance by which the line of sight fails to strike the point at the opposite end of the line. (4) Repeat the procedure until the line of sight is coincident with the line. (5) Establish the point by lowering the plumb bob of the transit. (6) Repeat the process with the telescope inverted as in double centering. If the instrument is not in adjustment a second point will be found; the correct point is set midway between the two.

Hints and Precautions. The final movement of the transit can usually be made with the shifting head. Until near the correct point, it is unnecessary to level the transit carefully. Additional points on the line can be set by direct sighting.

8. Layout of Circular Curve

Required. To establish the P.C. and P.T. of a simple curve and set points at intervals along the curve.

Procedure. (1) Lay off both tangents from the P.I., thus locating the P.C. and P.T. (2) Set up the transit over the P.C.; set vernier at zero and foresight on P.I. Unclamp the upper motion and sight at the P.T. if visible; the deflection angle of the long chord should equal $\frac{1}{2}$ the external angle Δ . (3) From the previously computed list of deflections, lay out the points on the curve using the proper deflection angle and subchord or full chord as required.

Hints and Precautions. (1) If the back tangent has been stationed the P.C. may be set from the nearest station. (2) When the survey is to be carried ahead the transit may be set up over the P.T. and the curve laid out from it, thus saving a set-up. (3) When setting a transit point or an accurate point on the curve (P.O.C.), the backsight should be checked and the deflection turned with the telescope plunged in both the inverted and direct positions, the point being set as in double centering for a straight line.

Set-up on Curve. When all the stations of a curve are not visible from either the P.C. or P.T., a transit point must be set at some point on the curve (P.O.C.) and the transit moved up to it. (1) Locate the P.O.C. (2) Set up over the P.O.C. backsight on the P.C. with a zero reading on the vernier. (3) Plunge the telescope, and turn the telescope inward until the vernier reading (deflection) for the P.O.C. is reached. The line of sight will then be tangent to the curve. (4) Lay off the deflections for the points to be set as computed in the original list.

Note. Any other station than the P.C. may be sighted provided the proper deflection is used. The following rules apply:

Rule I. When the transit is set on any point on a curve, an auxiliary tangent to the curve at that point may be found by sighting at any station on the curve with the deflection of the station sighted laid off on the proper side of zero and turning the upper motion until the vernier reading (deflection) for the point occupied is reached.

Rule II. When the transit is set on any point on a curve (including the P.C. or P.T.), any other point on the curve may be set by sighting at any point on the curve with the deflection for the point sighted laid off on the proper side of the vernier and turning the upper motion in the proper direction until the vernier reading (deflection) for the point to be set is reached.

SAMPLE NOTES

Fig. 23.

ALLOWABLE ERRORS

Leveling *

Rough leveling for rapid reconnaissance or preliminary work; sights made up to 1000 ft.; rod readings to tenths; no attention paid to balancing backsights and foresights.

Suggested maximum error in feet = $\pm 0.4\sqrt{\text{distance in miles}}$.

Ordinary leveling as required for most engineering works; maximum sights 500 ft.; rod readings to hundredths; backsights and foresights roughly balance for both length of shots and uphill and downhill work; turning points on reasonably solid objects.

Suggested maximum error in feet = $\pm 0.1 \sqrt{\text{distance in miles}}$.

^{*} Adapted from Urquhart, Civil Engineering Handbook, McGraw-Hill.

Accurate leveling, for principal bench marks; maximum sights 300 ft.; rod readings to thousandths; backsights and foresights paced and balanced; rod waved; bubble centered for each sight; turning points on very solid objects; level set very firmly.

Maximum error in feet = $\pm 0.05\sqrt{\text{distance in miles}}$.

This error is the same as allowed for third-order leveling, Corps of Engineers, U. S. Army.

Distances

By stadia, 1:750 maximum allowable error.

By tape, 1:5000 maximum allowable error for ordinary work.

Transit and Tape Traverses

Linear error of closure = $\sqrt{\text{(sum of latitudes)}^2 + (\text{sum of departures})^2}$.

The precision of transit traverses is affected by both linear and angular errors of measurement. Many factors affect the precision, and it can be expressed only in very general terms. The following specifications give approximately the maximum linear and angular errors to be expected when the methods stated are followed. If the surveys are executed by well-trained men, with instruments in good adjustment, and under average field conditions, in general the error of closure should not exceed half the specified amount. The specifications apply to traverses of considerable length. It is assumed that a standardized tape is used.

Class 1. Precision sufficient for many preliminary surveys, for horizontal control of surveys plotted to intermediate scale, and for land surveys where the value of the land is low.

Transit angles read to the nearest minute. Sights taken on a range pole plumbed by eye. Distances measured with a 100-ft. steel tape. Pins or stakes set within 0.1 ft. of end of tape. Slopes under 3% disregarded. On slopes over 3%, distances either measured on the slope and corrections roughly applied, or measured with the tape held level and with an estimated standard pull.

Angular error of closure not to exceed 1'30" \sqrt{n} , in which n is the number of observations. Total linear error of closure not to exceed 1/1000.

Class 2. Precision sufficient for most land surveys and for location of highways, railroads, etc. By far the greater number of transit traverses fall in this class.

Transit angles read carefully to the nearest minute. Sights taken on a range pole carefully plumbed. Pins or stakes set within 0.05 ft. of end of tape. Temperature corrections applied to the linear measurements if the temperature of air differs more than 15° F. from standard. Slopes under 2% disregarded. On slopes over 2%, distances either measured on the slope and corrections roughly applied, or measured with the tape held level and with a carefully estimated standard pull.

Angular error of closure not to exceed $1\sqrt[n]{n}$. Total linear error of closure not to exceed 1/3000.

Class 3. Precision sufficient for much of the work of city surveying, for surveys of important boundaries, and for the control of extensive topographic surveys.

Transit angles read twice with the instrument plunged between observations. Sights taken on a plumb line or on a range pole carefully plumbed. Pins set within 0.05 ft. of end of tape. Temperature of air determined within 10° F., and corrections applied to the linear measurements. Slopes determined within 2%, and corrections applied. Tape held level, the pull kept within 5 lb. of standard, and corrections for sag applied.

Angular error of closure not to exceed $30''\sqrt{n}$. Total linear error of closure not to exceed 1/5000.

Class 4. Precision sufficient for accurate city surveying and for other especially important surveys.

Transit angles read twice with the instrument plunged between readings, each reading being taken as the mean of both A and B vernier readings. Verniers reading to 30". Instrument in excellent adjustment. Sights taken with special care. Pins set within 0.02 ft. of end of tape. Temperature of tape determined within 5° F., and corrections applied. Slopes determined within 1%, and corrections applied. Tape held level, the pull kept within 3 lb. of standard, and corrections for sag applied.

Angular error of closure not to exceed $15''\sqrt{n}$. Total linear error of closure not to exceed 1/10,000.*

DETERMINATION OF TRUE NORTH

OBSERVATION ON POLARIS

Procedure. Set up transit over a point. Observe Polaris at A or B, when the elongation remains constant—a 20-minute period during which Polaris appears to move vertically and actually varies not more than 0.1 minute from the elongation. Depress telescope and set a point ahead. Turn off the angle in Table 19 to give the true north.

* L. C. Urquhart, Civil Engineering Handbook, McGraw-Hill.

TABLE 19: AZIMUTHS OF POLARIS AT ELONGATION, FOR THE BEGINNING OF YEARS 1940-1950 *

(Computed by the U. S. Naval Observatory)

	ions for Ue of uhs	Correc- tion	, -0.5 -0.4	+0.1 +0.1 +0.1 10.2	++111 0.00.00 0.00.00.00	-0.8
	Corrections f middle of months	For middle of—	Jan. Feb.	Mar. Apr. May June	Aug. Sept. Oct. Nov.	Dec.
1950	. 1 , 44.0.00 . 23.00.00	7.2 7.9 8.6 9.4 10.2	11.1 11.9 12.9 13.9	14.9 16.0 17.1 18.3	22 22 25 25 25 25 25 25 25 25 25 25 25 2	27.0 28.7 1 30.6
1949	6.9 1 4.6 5.1 6.3	7.6 8.3 9.0 9.8 10.6	11.5 12.4 13.3 14.3	15.3 16.4 17.6 18.8	22222 24222 24868	27.5 29.2 1 31.1
1948	6.1 6.1 6.7 7.3	8.0 8.7 9.4 10.2	11.9 12.8 13.7 14.7	15.8 16.9 19.2	22.23.24.25 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	28.0 29.8 1 31.6
1947	0 , 1 5.3 5.9 6.5 7.7	8.4 9.1 10.6 11.4	12.3 13.2 14.1 15.1	16.2 17.3 18.5 19.7	252.3 25.3 26.8 26.8	28.5 30.3 1 32.1
1946	6.3 6.3 7.7 7.7 8.1	8.8 9.5 10.2 11.0	12.7 13.6 14.6 15.6	. 17.7 18.9 20.1	22.25 25.72 27.25 27.25 27.25	29.0 30.8 1 32.6
1945	, , 6.6 7.2 7.8 8.5	9.1 9.9 10.6 11.4	13.1 14.0 15.0 16.0	17.0 18.2 20.6	28.25.2 26.2.7.25.3	29.5 31.3 1 33.2
1944	, 1 6.4 7.0 7.5 8.2 8.8	9.5 10.2 11.0 11.8 12.6	13.5 14.4 15.4 16.4	17.4 18.6 19.7 21.0	28.3.2 28.3.2 28.3.2 28.3.3	$\begin{vmatrix} 30.0 \\ 31.7 \\ 1 & 33.6 \end{vmatrix}$
1943	, , 1 6.7 7.3 7.9 8.5 9.2	9.8 10.6 11.3 12.1	13.8 14.8 15.7 16.8	17.8 19.0 20.1 21.4	24.1 25.5 27.1 28.7	30.4 32.2 1 34.1
1942	, , , , , , , , , , , , , , , , , , ,	10.2 10.9 11.7 12.5 13.3	14.2 15.1 16.1 17.1	18.2 19.3 20.5 21.8	24.5 25.9 27.5 29.1	30.8 32.6 1 34.5
1941	0 / 1 7.3 7.9 8.5 9.1	10.5 11.2 12.0 13.6	14.5 15.4 16.4 17.5	18.5 19.7 20.9 22.1	24:9 26:9 27:9 29:5 59:5	31.2 33.0 1 35.0
1940	, , 1 7.6 8.2 8.8 9.4 10.1	10.8 11.5 12.3 13.1	14.8 15.8 16.8 17.8	20.0 20.0 22.5 22.5	88888 8827.29.9	31.6 33.4 1 35.4
Latitude	88488 •	8888	35 37 38	8344	34384	84 69 50

These data may be secured annually from the current Nautical Ephemeris or similar source. * From War Department, Surveying Tables.

From Tracy, Plane Surveying, by permission of the author and John Wiley & Sons. Isogonic chart of the United States for 1940. Fig. 25.

There are two sets of lines on the isogonic chart, Fig. 25, which may be distinguished in two ways: (1) the isoporic lines are much smoother than the isogonic lines; (2) the isoporic lines are numbered in minutes and the isogonic lines in degrees.

The isogonic lines or lines of equal declination (also called "lines of equal variation of the compass") are drawn for January 1940. East of the agonic line, the lines are solid, signifying that the north end of the compass needle points west of true north; west of the agonic line they are dashed, and the compass points east of true north. The lines are drawn to show a smoothed distribution; in the more disturbed regions, the sinuosities of the lines must be regarded as an indication of irregularity rather than as a close representation of the declination.

Magnetic declination is subject to gradual change, the rate of which depends upon time and place. The annual rate of change prevailing

from about 1934 to 1940 may be estimated from the isoporic lines. These lines are solid in regions where the prevailing declination was increasing, and dashed in regions in which the declination was decreasing. Note that, when an isoporic line crosses the agonic line, its sign changes.

Vernier

Accurate readings on scales will fall somewhere between rather than on the subdivision marks on a scale. The vernier is a supplementary scale designed to aid in evaluating these fractional overages.

It is an adjacent scale against which slides the main scale as illustrated in the figure at the right. The zero of the vernier scale becomes the point from which the reading on the main scale is taken. The divisions of the vernier are a little smaller than those on the main scale. Thus 10 subdivisions on the vernier scale equal 9 subdivisions on the main scale.

The refinement is given by reading to the nearest subdivision on the main scale opposite the zero on the vernier and looking along the scale until the point is reached where the subdivisions of the vernier scale and the main scale appear coincident. For instance, in the two scales illustrated, if the

From Tracy, Surveying: Theory and Practice, by permission of the author and John Wiley & Sons.

major subdivisions on the main scales are tenths of a foot, the reading of the scale marked E would be 0.345 ft. The reading of the scale marked F would be 0.407 ft.

INSTRUMENTS AND THEIR ADJUSTMENTS*

Cross section of Gurlev transit.

Parts of Gurley Precise Transits

Vertical circle guard.
Dust shield, protecting objective slide.

2. Dust singuit, protecting objective s
3. Detachable sunshade. (Not illus.)
4. Cap screws to standard.
5. Screws—guard to standard.
6. Vertical circle.
6A. Vertical circle vernier.

 Side plate level.
 North (or transverse) plate level. 11. Compass needle.

12. Lower (or leveling head) clamp.

13. Leveling screw.

14. Leveling screw cup. 15. Lower tangent screw. (Not illus.)

16. Shifting center.

10. Santang center.
17. Bottom plate.
18. Lower clamp screw. (Not illus.)
20. Upper (or limb) clamp screw.
21. Upper (or limb) tangent screw.
22. Upper (or plate) tangent hanger.
23. "A" yermier.

24. Needle lifter.

25. Compass glass cover in metal bezel ring.

26. One piece truss standard.

27. Telescope level.

28. Adjusting nuts for telescope level. 29.

30.

Eyepiece cap.
Knurled ring for eyepiece focusing. Capstan screw for adjusting cross-wires. 31.

Clamp screw for telescope axle. 33. Objective slide adjusting screw.

Objective focusing pinion.

Objective cap. 35.

36. Side (or longitudinal) level vial.

39. Center pin. 40. Limb centering screws

Screw-plate to spindle. 41.

Capstan nut-north (or transverse) vial

44. Spring guard to north vial. 45. Plate level post.

46. Top plate.

47. Screw-plate to standard.

49. Index pointer for magnetic declination.

50. Limb.

51. Socket Limb clamp. 52.

53. Screw-clamp sleeve to socket.

Clamp sleeve.
 Clamp collar.

56. Spider, or four-arm piece. 57. Leveling screw nut. 58. Spindle. 59. Half-ball.

61. Jack or plummet chain.

62.

Bottom cap. Washer—end of spindle. 64.

65. Shell.

66.

Keeper screw. Limb clamp plunger. 67. 68. Locking screw-head to stem of clamp

screw.

69. Clamp screw head.

Screw—tangent hanger to plate.
 Vernier glass.

72. Screw—vernier to plate.
73. Screw—limb to socket.
74. Needle circle.

75. Bezel ring.

78. Screw-v.c. vernier to standard.

Axis tangent screw stem.
 Head, axis tangent screw.
 Locking screw—head to stem of axis

tangent screw.

82. Telescope.
83. Collet, for cross-wire adjusting.
84. Telescope level vial.
86. Nut—end of spindle.
87. Half-ball set screw. 88. Capstan adjusting screw in standard

cap. 90. Needle lifter screw.

91. Needle lifter housing. 92. Screw—compass to plate. 93. Screw—cover ring to standard base.

Nut—top of plate level post. Take-up screw to limb tangent

95.

96. Gib-leveling head clamp.

97. Spacer ring.

98. Cover ring. 99. Plate level adjusting spring.

^{*} From Surveying Instrument Manual, W. & L. E. Gurley, Troy, N. Y.

Cross section of Gurley dumpy level.

Parts for Gurley Dumpy Levels

- Eyepiece cap.
 Eyepiece focusing ring.
 Capstan screw for adjusting cross wires.
- Eyepiece body. Objective focusing pinion.
- Objective slide centering screw.
 Dust shield.
 Main tube head

- 10. Objective cap.
 11. Objective pinion body.
 12. Objective pinion screw.

- 11. Objective pinion body.
 12. Objective pinion screw.
 13. Bar.
 14. Leveling head.
 15. Leveling screw.
 15.A. Leveling screw bushing.
 16. Leveling screw cup.
 17. Bottom plate.
 18. Leveling screw keeper screw.
 19. Shell set screw.
 20. Leveling head champ.
 21. Telescope level.

- 21. Telescope level.

- 22. Telescope level vial.
 23. Capstan adjusting nuts for telescope level vial.
- 24. Shell or outer bearing.
 27. Collet for cross-wire adjusting screws.
 29. Post for adjusting telescope level.
 33. Spindle.
 34. Half ball.

- 34. Half ball.
 35. Screw for half ball.
 36. Nut, end of spindle.
 45. Eyepiece centering ring.
 47. Eyepiece centering screw.
 48. Cross-wire reticule.
 49. Diaphragm in slide.
 50. Objective slide centering ring.
 51. Babbit, slide centering ring.
 52. Main tube.
 54. Inner ring, objective setting.
 55. Objective lens.
 56. Outer ring, objective setting.
 57. Babbit, for objective end.
 58. Objective slide.

Quarter section of Gurley wye level.

Parts for Gurley Wye Levels

- Eyepiece cap.
 Cover ring, covering eyepiece centering screws.
- 3. Capstan screw, for adjusting cross wires.
- wires.
 4. Wye rings.
 5. Cover ring, covering objective slide adjusting sorews.
 6. Objective focusing pinion.
 7. Wye pin.
 7A. Wye clip stop pin.
 8. Dust shield.
 9. Sunshade.*
 114 Wye constan puts (upper).

- 9. Sunshade.*

 11A. Wye capstan nuts (lower).

 11B. Wye capstan nuts (lower).

 12. Level lateral adjusting screw.

 13. Wye bar.

 14. Leveling head.

 15. Leveling screw.

 16. Leveling screw cup.

 17. Bottom plate.

 20. Leveling head clamp.

 21. Telescope level complete.

 22. Telescope level vial.

 23. Vertical adjusting capstan nuts for telescope level.

 24. Evepice focusing pinion.
- Eyepiece focusing pinion.
- Sleeve for eyepiece.
 Eye end ring.
- - * Not illustrated.

- 27. Collet, for cross-wire centering screws. 28. Screws for telescope level hanger and
- post. Telescope level post. 29.
- 30. Spline. 31. Spindle head.
- 33. Spindle. 34. Half ball.

- 34. Half ball.
 35. Screw for half ball.
 39. Hanger for telescope level.
 40. Wye complete.
 42. Babbit ring, in sleeve for eyepiece.
 43. Eyepiece.
 44. Babbit, in eyepiece centering ring.
 45. Eyepiece centering ring.
 46. Collet, for eyepiece centering screw.
 47. Eyepiece centering screw.
 48. Cross-wire reticule.
 49. Diaphrarm in slide.

- 49. Diaphragm in slide.
- 50. Slide centering ring. 51. Babbit, slide centering ring. 52. Main tube.

- 52. Main tube.
 53. Binding ring.
 54. Inner ring, objective setting.
 55. Objective lens.
 56. Outer ring, objective setting.
 57. Babbit, for objective end.
 58. Objective slide.
 59. Objective cap.*

Hints on Adjustments

Before proceeding with any adjustment, read the following suggestions carefully.

Making the Adjustments. Do not attempt to perfect each adjustment the first time as succeeding adjustments may disturb those already made. It is better to keep repeating the entire series until a final check shows each adjustment to be perfect.

Inspection of Instrument. Before adjusting any instrument, clean it thoroughly. Dirt in bearings will not permit a true adjustment. If adjusting screws or nuts are dirty they will not hold adjustment very long. Damaged or worn screws should be replaced by new factory parts as soon as possible. Damaged or worn bearings or damaged structural parts should be repaired and refitted at the factory. Clamps, tangent screws, and tangent springs should be clean and the clamp arm should be examined to make sure there is no indentation where the tangent screw presses. Be sure that the instrument is correctly assembled and that the holding screws are set up solidly but not overstrained. The telescope should be clean, the lenses showing objects sharply and without astigmatism. Be sure that the object lens is tight in its setting and that the setting is screwed tightly in its tube. All axis bearing caps should be screwed up to the proper tension. The proper fit of the telescope axle and the elimination of "walk" is very important. Check the level vials to see that they are firm in their cases. Examine the shoes on the tripod to make sure thay are tight.

Select a Suitable Location. Established offices should provide a substantial pier or wall bracket wherewith to support the instrument when adjusting. Targets and scales should be set at convenient distances and elevations. In a limited space, particularly indoors, telescopes focused at infinity should be set up for use as collimators. On construction work an adjusting site should be selected, targets erected and a stake driven to define the instrument position if a tripod and not a permanent support is used. In selecting such sites, avoid places where the line of sight would pass over a railroad track or paved highway, near a heated building, or through successive areas of light and shadow. Protect the instrument from wind and direct rays of the sun, particularly when they strike only one side of the instrument at a time.

Setting up the Instrument. Select a spot where the ground is firm and dry so that moving around the instrument will not disturb it. If the instrument is set on a floor of concrete, brick or stone, make sure that there are no loose sections. Chip holes in a smooth floor to prevent the tripod points from slipping. After screwing the instrument to the tripod, loosen the tripod bolts, then tighten them, in order to remove all residual torque in the tripod head. This helps hold the transit on line. Tighten the leveling screws firmly, but do not force them.

Transits

The adjustments of transits are as follows:

- 1. Parallax.
- 2. Rectify cross wires.
- 3. Collimation at distant focus.
- 4. Collimation at minimum focus.
- 5. Telescope axis.
- 6. Telescope level.
- 7. Plate levels.
- 8. Vertical circle vernier.
- 9. Center eyepiece.
- 10. Balance compass needle.
- 11. Straighten needle
- 12. Center pivot.

Description of Transit

The transit, as generally constructed today, serves to measure angles in azimuth and in altitude. It, therefore, consists of two divided circles or limbs, one of which rotates about a vertical axis and the other about a horizontal axis. Each graduated surface is made perpendicular to its axis of rotation. The pointer of the instrument is a telescope, supported by standards and plate, the plate carrying the indices or verniers. The spindle, carrying the plate and standards, and the socket, carrying the horizontal limb, constitute the "centers" which rotate about each other and within the bearing of the leveling head.

The "centers" or vertical axis is made plumb by two spirit levels mounted on the plate. These levels are adjustable, and they can be readily checked by reversal about the centers.

The telescope is mounted with an axle which rides in bearings on top of the standards. For the axle to form a horizontal axis it must be at right angles to the vertical axis, and adjustment is provided for raising or lowering one end of the axle.

The pointer of the telescope is an optical line of sight passing through the optical center of the objective lens and the intersection of the cross wires. This is commonly called the line of collimation. The cross-wire ring is made adjustable so that the line of collimation can be adjusted at right angles to the horizontal axis or telescope axle.

In order to provide a datum for altitude angles, a spirit level is attached to the telescope so that its axis can be adjusted parallel to the line of collimation.

A clear understanding of the relationship between the various axes of a transit is helpful in performing adjustments. Those outlined can be performed by the instrument man; detailed instructions are given on succeeding pages. Errors of eccentricity should be corrected at the factory. Errors of parallax are due to improper manipulation.

ልለለ

1. Parallax. Parallax is eliminated by correct focusing of the objective lens on the cross wires.

Owing to differences in eyesight among individual users, it is necessary also to focus the eyepiece on the cross wires. Strictly speaking, this is not an adjustment but rather a manipulation that should be performed each time an accurate pointing is desired. Since incorrect focusing will affect other adjustments involving the use of the telescope, it is listed herein as the first adjustment, and it is important that every detail be followed carefully.

(a) Sight through telescope and make preliminary focus of eyepiece on cross wires. Turn knurled ring at eye end of telescope, until wires appear black and sharp. (On some transits turn eyepiece cap or possibly an eyepiece pinion on side of telescope.)

Eye should be relaxed and time of setting should be brief, otherwise the eye may accommodate itself to the telescope rather than the telescope become adjusted to the eye. If both eyes can be left open, a better focus will be obtained.

- (b) Focus the objective lens on a clearly defined, well-lighted target about 300 ft. away. Turn the objective focusing pinion slowly backward and forward of the position of focus, at the same time wagging the head. Observe for apparent lateral movement between target image and cross wires. Stop focusing at the point where no lateral displacement appears. Disregard sharpness of image and of cross wires. It is this objective focusing which is important in the elimination of parallax.
- (c) If necessary to sharpen the image, refocus the eyepiece slightly. It will be found that the cross wires also will be more distinct.
- (d) Further focusing of the eyepiece will not be necessary unless the eye tires or a different observer uses the instrument, in which event paragraphs b and c should be repeated.
- (e) On surveys of a high order, paragraph b should be followed on all pointings if the observer wishes surely to eliminate parallax error due to focusing.

It may be pointed out that a young man has more trouble than an old man in getting an eyepiece properly focused. This is due to the greater "accommodation" of the younger eye. The above procedure tends to produce a relaxed and normal condition of the eye when setting the final focus of the eyepiece. Furthermore, greater difficulty is experienced with low magnification and with the simple eyepiece of the inverting telescope.

- 2. Rectify Cross Wires. To make the vertical cross wire perpendicular to the telescope axis.
- (a) Sight through telescope and set one end of the vertical cross wire on a sharply defined point A, Fig. 26.
- (b) Elevate or depress telescope so that vertical wire traces over point. If wire coincides with point throughout its length, its position is correct.
- (c) If not, slightly loosen all four capstan screws, located on eyepiece end of telescope.

Fig. 26.

- (d) Move cross-wire ring around, in proper direction, until test shows that vertical wire exactly traces point. Hold screw driver against each of the collets and tap lightly against it.
 - (e) Tighten capstan screws and check.
- 3. Collimation at Distant Focus. To make the collimation plane of the vertical cross wire perpendicular to the telescope axis.
- (a) Set up and sight vertical wire on a sharply defined point A (see Fig. 27), 200 or 300 ft. away.
- (b) Transit the telescope and set a point B at approximately the same elevation and distance as A.
- (c) Leave the telescope reversed, rotate the transit plate a half turn, and again sight on A.
- (d) Again transit the telescope (bring it to its normal position), and set point C.
 - (e) Mark a new point E, one-quarter the distance from C to B.
- (f) By turning the horizontal capstan screws shift the vertical cross wire until it is set on point E.
- (g) Again set on A and repeat until instrument will make both points, B and C, coincide at D.
 - (h) Check rectification of vertical wire (refer to section 2).
- 4. Collimation at Minimum Focus. In most Gurley transits the objective slide rear bearing is adjustable, so that the slide can be made to move parallel to the line of collimation and make it accurate for sighting at all distances. This adjustment is carefully made in the factory and, barring accident to the transit, should require no changing. With Gurley transits having inner-slide focusing any correction necessary can be made in the field; others should be returned to their makers. With internal focusing telescopes this construction is not permitted.
- (a) Set up and sight vertical wire on a sharply defined point, 200 or 300 ft. away.
- (b) Place a horizontal scale or rod about 6 ft. in front of telescope (not nearer than point of minimum clear focus), and so that it appears just under the horizontal cross wire in the field of view, without moving the telescope.
 - (c) Focus on scale and read vertical wire intersection.
- (d) Turn transit plate a half turn, transit telescope, and again set vertical wire on distant point.
- (e) Without moving telescope, focus on nearby scale and read vertical wire intersection.

- (f) If second reading (e) coincides with first reading (c), the objective slide is in adjustment with the vertical wire.
- (g) Turn nearby scale or rod to vertical position in field of view and repeat readings using horizontal wire intersection. If two readings coincide, the objective slide is parallel to the horizontal wire.
- (h) If not, correct for half the error by moving the rear bearing ring of the objective slide up or down or to the right or left as required. Turn slotted screws near or in telescope axis, using screw driver. Turning screw clockwise draws ring towards screw. Loosen opposite screw first. With an erecting telescope, actual movement should be opposite to apparent movement. With many telescopes, screws are on a 45° angle with respect to the cross wires; hence they are to be turned in pairs in order to move the bearing ring as required.
 - (i) Repeat sections 3 and 4 until the conditions of both are satisfied.

- 5. Telescope Axis. To make the telescope axis perpendicular to the vertical axis or spindle.
 - (a) Set up transit.
 - (b) Sight on a high point A (see Fig. 28).
 - (c) Depress telescope and set point B on ground, in front of instrument.
 - (d) Rotate instrument 180° and transit telescope.
 - (e) With telescope in reversed position, again sight on point B.
 - (f) Elevate telescope and note point C.
 - (g) Note a new point D halfway between B and C.
- (h) Raise or lower the right end of the telescope axle until the vertical cross wire intersects the halfway point D, when elevating telescope from point B.

To raise or lower the telescope axle turn the right-hand threaded capstan headed screw which is to be found under the standard cap on the right-hand side. Turn clockwise to raise, counterclockwise to lower.

Fig. 28.

Before raising:

On old-model Gurley Transits: Loosen cap screws.

On late-model Gurley Transits: Loosen capstan screw on top of standard.

After adjusting:

On old-model Gurley Transits: Tighten the two cap screws equally until there is sufficient friction on the axle bearing to keep the telescope end from dropping under its own weight. On some models, laminated shims have been placed under the standard cap. In such cases the cap screws should be set up solidly. If the telescope transits too freely, remove laminations from the shims until the proper braking action is arrived at. Check and adjust the cap screws on the left-hand standard so that these provide equal braking power on both ends of telescope axle.

On late-model Gurley Transits: Tighten the two capstan screws on top of standards. Adjust both screws equally until there is sufficient braking action on the axle to keep the telescope end from dropping. Check and adjust the capstan screws on the left-hand standard so that they provide equal braking power on both ends of telescope axle.

- (i) Check and repeat until transit will make points A and C coincide.
- 6. Telescope Level. To make the axis of the bubble parallel to the line of sight when the latter is horizontal.

For the "Two Peg" method, see p. 274

(a) Drive four stakes, A, B, C, and D, in line and exactly equidistant, from 50 to 100 ft. apart (see Fig. 29).

- ______
- (b) Set up the transit at A.
- (c) Bring the bubble to the center of the telescope level.
- (d) Read the elevation of the line of sight on a rod held at both B and C, calling the first reading R_1 and the second R_2 .
 - (e) Set up the transit at D.
- (f) With the bubble in the center of the telescope level, read the rod on C, calling it R_3 .
 - (g) Add R_1 to R_3 , subtract R_2 , and set target on rod to this result.

$$R_4 = (R_1 + R_3 - R_2)$$

- (h) Hold rod on B.
- (i) By means of the axis tangent motion, incline the telescope until the horizontal wire intersects the target.
- (j) Raise or lower one end of the bubble tube, by turning the capstan nuts, until the bubble returns to the center.

Reversion Vial: A procedure simpler than the peg method can be employed if the telescope level vial is of the reversion type.

- (a) Set up transit, sight on level rod about 100 ft. distant, and center bubble.
 - (b) Read level rod (middle horizontal wire).
- (c) Rotate instrument 180° in azimuth, transit telescope, again sight' on rod, and center bubble.
 - (d) Read level rod.
- (e) Average readings b and d. Set horizontal wire to average reading on rod. Center bubble by capstan adjusting nuts.
- 7. Plate Levels. To make the bubble tube axes perpendicular to the vertical axis or spindle.
 - (a) Set up transit on tripod.
- (b) Rotate transit plate so that each bubble is in line with a pair of opposite leveling screws.
 - (c) Bring plate level bubbles to the center in both tubes.
 - (d) Turn the plate through 180° in azimuth.
 - (e) Note the amount that the bubbles move from the center.
- (f) Raise or lower one end of each bubble tube as required to bring the bubbles back one half the amount they moved off.

To raise or lower one end of the bubble tube: On transits having capstan nuts above and below level tube, use adjusting pin to raise or lower both nuts as required. Do not force together so as to spring bubble tube.

On transits having a slotted screw at top of adjusting post, use adjusting pin to raise or lower only the capstan nut, underneath the tube. Coiled spring inside tube supplies proper tension. Adjust end of tube which will keep slotted screw about flush with top of tube.

- (g) Level up and repeat the above until both bubbles remain in the center when rotating them 180°. Check and correct the bubbles alternately.
- 8. Vertical Circle Vernier. To make the vertical circle (or arc) read zero when the line of collimation is horizontal.
 - (a) Level up transit carefully, using telescope level.
- (b) Center bubble of telescope level, using axis tangent motion. Check bubble adjustment, section 6.
 - (c) Inspect vernier and vertical circle to see if zeros of each coincide.
 - (d) If not, slightly loosen screws which hold vernier to standard.
 - (e) Shift vernier until zeros coincide.
 - (f) Tighten vernier screws and check.

Two-Vernier Vertical Circle. To make the vertical circle read zero when the line of collimation is horizontal.

- (a) Level up transit carefully, using telescope level.
- (b) Center bubble of telescope level, using axis tangent motion.
- (c) Turn capstan headed screw until zeros of one vernier and vertical circle coincide.

To make zeros of verniers read 180° apart.

- (a) Make line of collimation horizontal and also one vernier read zero as described above.
- (b) If opposite vernier does not read zero, slightly loosen the screws which hold that vernier to the vernier frame.
 - (c) Shift vernier until zeros coincide.
- (d) Adjust spacing between vernier and circle until end graduations on vernier match with limb.
 - (e) Tighten vernier screws and check.

Beaman Stadia Arc Indices. To make indices read zero when vernier reads zero.

- (a) Set vernier to read zero on limb.
- (b) If indices H and V do not read zero, slightly loosen index screws.
- (c) Shift indices until they both read zero.
- (d) Tighten index screws.
- 9. Center Eyepiece. To make the cross wires appear in the center of the field of view. This adjustment is not an essential to accuracy but is of convenience to the observer.
- (a) After the cross wires have been adjusted, observe whether they appear in the center of the field.
- (b) If not, unscrew the entire eyepiece from the telescope, turning raised rim ahead of knurled ring.
- (c) Move the eyepiece slide in proper direction (opposite to apparent direction) by means of opposing flat headed screws in eyepiece. Estimate the amount of movement necessary.
- (d) Replace the eyepiece in telescope and, if necessary, repeat until the eyepiece is properly centered.
- 10. Balance Compass Needle. The compass needle is balanced horizontally, as near as possible, for the locality to which it is sent. The metal spring or bright coiled wire on the south end of the needle slides along the needle to enable the instrument man to do exact balancing in the field. The needle should be tested for balance when the instrument is moved from one locality to another. Balancing at the office, particularly in a large building, will probably not give satisfactory results.
 - (a) Level up the instrument.
 - (b) Release the needle on its pivot.
- (c) Remove the compass glass by pressing the palm of the hand flat on the glass and turning counterclockwise.

Some transits have a set screw in the bezel ring, which should be removed before turning ring. This is located in either the NW or SE quadrants. If glass is tight, tap around bezel ring with handle of screw driver to loosen threads. The compass glass cannot be removed from between the standards on some Gurley transits without first detaching the vertical axis tangent bar which is held to the standard by two screws. However, it is unnecessary to remove the compass glass entirely when making adjustments.

- (d) Note the dip of the needle, raise one side of the compass glass, and carefully remove the needle. Slide the counterbalance along the needle toward the high end.
 - (e) Lower the needle on its pivot point as gently as possible.
 - (f) Repeat until the needle balances.
- (g) Replace the compass glass, taking care not to cross the threads. Finish turning with index pointer at N position. Replace locating set screw.
 - (h) Raise the needle from its pivot until ready to use.
- 11. Straighten Needle. To make both ends of the needle read 180° apart in one position. This makes both ends and the center of the needle lie in the same vertical plane.
- (a) Set up compass, lower needle gently on the center pin, and remove the cover glass.
- (b) With a small splinter of wood, bring the north end of the needle exactly opposite the north zero mark of the circle.
 - (c) Read the south end of the needle.
- (d) Rotate the needle a half turn and bring the south end exactly opposite the north zero.
 - (e) Read the north end of the needle.
 - (f) If the two readings agree (paragraphs c and e) the needle is straight.
 - (g) If not, correct for half the error by bending the needle.
 - (h) Repeat the test until the needle is straight.
- 12. Center Pivot. To make both ends of the needle read 180° apart in all positions. This brings the pivot point exactly in the center of the compass circle.
- (a) After straightening needle, bring north end of needle exactly opposite the north zero mark of the circle.
 - (b) Note whether south end of needle reads zero.
- (c) If not, correct for the whole error by bending the center pin in a direction at right angles to the needle. Use wrench, carried in spare parts kit, to bend center pin.
- (d) Rotate the needle a quarter turn, bring the north end opposite a 90° mark, and note whether the south end of the needle reads 90°.
- (e) If not, correct for the whole error by bending the center pin in a direction at right angles to the needle.
- (f) Repeat the above, reading first at the zero and then at the 90° marks, until both ends of the needle read alike in both positions.

Levels

Adjustments of Wye Levels

The adjustments of Gurley wye levels are as follows:

- 1. Parallax.
- 2. Rectify cross wires.
- 3. Collimation at distant focus.
- 4. Collimation at minimum focus.
- 5. Telescope level vial.
- 6. Wves.
- 7. Center eyepiece.

Adjustments of Dumpy Levels

The adjustments of Gurley dumpy levels are as follows:

- 1. Parallax.
- 2. Telescope level vial.
- 3. Rectify cross wires.
- 4. Collimation at distant focus.
- 5. Collimation at minimum focus.
- 6. Center eyepiece.

A level is an instrument used to determine the position of all points in a horizontal plane. It consists of a collimated line of sight adjusted parallel to the axis of a spirit bubble. This fundamental description should be kept in mind when adjusting and using a level of any type.

The type of level is determined from the structural arrangement of the parts necessary to adjust the axis of the bubble parallel to the line of sight and the convenience of keeping the bubble centered when taking a reading.

With the wye level, the telescope is provided with two accurately machined bearing rings, truly circular and of equal diameter, separated by about half the length of the telescope. These rest in wye bearings which are adjustable in the wye bar, which is permanently fixed at right angles to the vertical spindle. Two level posts attached to the telescope (usually underneath) carry the level vial, the position being fixed by adjusting nuts, usually at both ends.

With the dumpy level, the telescope, bar, and spindle are assembled as one unit, the workmanship being such that the axis of the telescope is closely perpendicular to the vertical axis of rotation or spindle. Level posts may be attached either to the bar or to the telescope, these carrying the level vial with adjusting nuts at both ends.

This difference in construction between the wye and dumpy level determines a difference in adjustment procedure. Thus, with the wye level, the collimated line of sight is made concentric with the wye rings by rotating the telescope in the wyes and adjusting the reticule carrying the cross wires. By reversing the telescope rings end for end in the wye bearings, and by adjusting the level vial in the level posts until the bubble

holds its central position in both positions of the telescope, the bubble axis is made parallel with the wye rings and thereby parallel with the collimated line of sight. As long as this parallelism holds, it is possible to do accurate leveling with a wye level, provided the level bubble is made central by the leveling screws each time a reading is taken. venience in keeping the bubble centered when pointing the telescope in a new direction, the wye adjustment is provided, which, by reversing the telescope about its spindle and by adjusting the wye nuts, makes the bubble axis, also the collimated line of sight, perpendicular to the spindle. or axis of rotation. When making the latter adjustment, the telescope slide should be moved by the focusing screw until the objective end of the telescope balances the eyepiece end. This position of the slide should be noted and the slide brought back to it when subsequently leveling up the instrument. Any movement of the slide from this position changes the balance of the instrument and may cause the bubble to run. This condition does not indicate a change in adjustment, since nothing has been done to change the parallelism between the bubble axis and the collimated line of sight. Therefore such a run of the bubble should be corrected by the leveling screws.

In adjusting the dumpy level, the construction necessitates a different procedure. The level bubble axis is first made perpendicular to the spindle or axis of rotation by reversing the telescope end for end about the spindle, centering the bubble by the level post adjusting nut. The collimated line of sight is then brought parallel to the bubble axis by the peg method of adjustment, the details of which are given on p. 274. For careful adjustment the objective slide should be at the position of balance, and any subsequent run of the bubble should be compensated for by the leveling screws, as explained under the wye level paragraph above.

When using a level, the adjustment or parallelism between bubble axis and collimated line of sight is important but it is equally important to make sure that the bubble is centered each time a reading is taken. To assist in this purpose, various devices from a simple mirror to a complicated prism system are used to enable the observer to see the position of the bubble at the time he reads on the rod.

The tilting type of level has been devised to assist the observer in keeping the bubble centered without recourse to the leveling screws. In addition to the change in balance caused by focusing on rods at different distances, there are other factors which cause a bubble to run without disturbing the fundamental parallelism between bubble axis and line of sight, especially so if a sensitive bubble is used.

The tilting level (used for precise leveling) has a double bar, one part attached parallel to the telescope, the other part at right angles to the spindle. The two bars are arranged to pivot one on the other, being separated by a slow-motion screw with opposing spring. A circular or bull's-

eye level on the bar or leveling head serves to plumb the spindle. Final leveling with each reading is done by centering the bubble by the slow-motion screw. Such levels are generally provided with a reflecting device so that both bubble and rod image are visible at the same time.

Tilting levels may be either of the dumpy or of the wye type. In the dumpy type, the parallelism between the bubble axis is established by the peg method of adjustment. In the wye type, the telescope is made with wye rings and with a reversion type of level attached to the side. The advantage of the wye or reversible type of tilting level is the ease of adjusting the line of collimation and the level bubble.

The relative advantages of the wye and dumpy levels boil down to a matter of individual preference. The dumpy level with fewer parts is supposed to remain in adjustment over a longer period of time. However, its adjustment is dependent upon a well-fitted spindle and socket.

The advantage claimed for the wye level is that the adjustments can be checked readily by one person (the dumpy level requires the assistance of a rodman in making the peg adjustment). The principal objection is that the adjustments are dependent upon the wye bearing rings being truly circular and equal in diameter. Since the rings are exposed to wear and to possible damage, some engineers feel that they cannot be sure of the adjustment unless the peg method is used anyway.

For construction engineering the compact solidarity of either the wye or the dumpy level gives these types the preference. However, for accuracy and speed on long lines of differential levels the tilting type is superior.

- 1. Parallax. See parallax adjustment for transit, p. 261.
- 2. Rectify Cross Wires. To make the horizontal cross wire perpendicular to the vertical axis or spindle. The vertical wire is set perpendicular to the horizontal wire by the maker.
- (a) Set up a level on tripod. Set one end of horizontal wire on a sharply defined point A, Fig. 30.
- (b) Turn level slowly about its spindle, so that horizontal wire traces over the point. Wire should coincide with point throughout its length.
- (c) If point appears to trace dotted line AB, Fig. 30, slightly release pressure on capstan screws. Turn all four capstan screws only slightly and by equal amounts.
- (d) Gently tap capstan screws in direction to close angle between horizontal wire and dotted line AB, Fig. 30. Rotate cross-wire ring (test, paragraph b above) until horizontal wire exactly traces point from A' to B', Fig. 30.
 - (e) Tighten capstan screws (all four equally), and check.
- **3.** Collimation at Distant Focus. To make the line of sight (collimation) pass through the axis of the wye rings.
- (a) Set up level on tripod, remove wye pins from clips, and raise clips so that telescope is free to rotate.

- (b) Set intersection of cross wires on a well-defined point (A, Fig. 31), about 300 ft. distant.
- (c) Carefully rotate the telescope halfway around in its wyes, and note whether the intersection of the cross wires still covers the point.
- (d) If not, move the telescope by leveling and tangent screws until the error seems to be one-half corrected.
- (e) Move the cross-wire ring, using each pair of opposite capstan screws successively, until the error is entirely corrected and the cross-wire intersection now covers the point (C, Fig. 31).
- (f) Repeat the rectification (2) and collimation (3) of the cross wires until both adjustments are correct.
- **4.** Collimation at Minimum Focus. To make the objective slide move parallel to the line of collimation when racked in or out for focusing on distant or near targets.

This adjustment may be checked on any telescope but can be corrected only on Gurley inner-slide focusing telescopes. It is not on internal focusing telescopes or on the external focusing telescopes of other makes. It is primarily a factory adjustment and, barring accident, should need no correction in the field.

- (a) Set up level on tripod, remove wye pins from clips, and raise clips so that telescope is free to rotate.
 - (b) Check adjustment of the line of collimation (3) for a remote target.
- (c) Unscrew the cover ring in center of telescope, exposing the flatheaded screws for adjusting the rear bearing of the objective slide.
- (d) Set intersection of cross wires on a well-defined point about 15 ft. distant.
- (e) Carefully rotate telescope halfway round in its wyes, and note whether the intersection of the cross wires still covers the point.
- (f) If not, move the telescope by leveling and tangent screws until the error seems to be one-half corrected.
- (g) Correct the remainder of the error by turning the flat-headed screws with a screw driver until the cross wires intersect on the point. Adjust first one pair of screws and then the other. Loosen one screw and tighten the other.
 - (h) Repeat sections 3 and 4 until the conditions of both are satisfied.
 - (i) Replace cover ring.

- 5. Telescope Level Vial. To make the axis of the bubble parallel to and in the same vertical plane with the axis of the wye rings. As long as this adjustment and section 3 are correct, accurate leveling can be done with the instrument.
- (a) Hold level sideways with spindle horizontal, and turn focusing screw until level balances. Then set up on tripod, clamp telescope over two diagonally opposite leveling screws.
 - (b) Remove wye pins and raise wye clips.
 - (c) Bring bubble to center of tube (see Fig. 32).
- (d) Lift telescope out of wyes, turn end for end, and replace in wyes. Note whether bubble remains in center of tube (see Fig. 33).
 - (e) If not, bring bubble halfway back to center by the leveling screws.
- (f) Correct balance of error by turning the capstan nuts at eyepiece end of bubble tube until bubble returns to center (see Fig. 34).

- (g) Rotate telescope in its wyes, about 30° either side of the vertical, and note whether bubble remains in center of tube.
- (h) If not, bring bubble all the way back to center by turning the lateral capstan screws on each side of the bubble tube post at the objective end of the level.
- (i) Repeat the vertical adjustment, as given under section 5, paragraphs c, d, e, and f above.
- (j) Check alternately until both the lateral adjustment and the vertical adjustment of the vial are correct.

Note: Bubble will run if balance is changed, by running objective slide in or out. This does not indicate adjustment is out. See p. 269.

6. Wyes. To make the axis of the wyes perpendicular to the vertical axis or spindle.

This adjustment is made as a convenience, rather than as a necessity. Accurate leveling can be done if the bubble is in adjustment, and is centered by the leveling screws before each rod reading.

(a) Set up level, rotate about spindle until telescope is over two diagonally opposite leveling screws, and bring bubble to the center of tube (see Fig. 35). Check telescope bubble adjustment, section 5, very carefully. Telescope slide must be in position of balance.

- (b) Rotate level about spindle 180°, and note whether bubble remains in center of tube (see Fig. 36).
- (c) If not, bring bubble halfway back to the center by the leveling screws. Raise or lower one end of the wye bar, until the bubble returns to the center, by turning a pair of capstan nuts at either end of the wye bar.
- (d) Repeat until the bubble remains in center of tube when rotated about spindle (see Fig. 37).
 - 7. Center Eyepiece. To make cross wires appear in center of field.

This is not essential to the accuracy of the work, but it is a convenience to the observer to have the cross wires appear in the center of the field.

- (a) Set up level, and observe whether cross wires appear in center of field.
- (b) If not, unscrew cover ring between cross wires and eye end of telescope.
- (c) Turn the flat-headed screws with a screw driver until the cross wires appear in the center of the field.

Adjust first one pair of screws, and then the other. Loosen one screw and tighten the opposite one. Correct in a direction opposite to the apparent error.

(d) Replace cover ring.

Adjustments of Dumpy Levels

- 1. Parallax. See parallax adjustment for transit, p. 261.
- 2. Telescope Level Vial. To make the axis of the bubble perpendicular to the vertical axis or spindle.
- (a) Set up level on tripod, rotate about spindle until telescope is over two diagonally opposite leveling screws, and bring bubble to center of tube.
- (b) Rotate level about spindle 180°, and note whether bubble remains in center of tube.
- (c) If not, bring the bubble halfway back to the center by the leveling screws.
- (d) Correct balance of error by turning capstan nuts at either end of bubble tube, until bubble returns to center.
- (e) Alternate over both pairs of leveling screws until the bubble remains in center of tube when rotated about spindle.
- 3. Rectify Cross Wires. To make the horizontal cross wire perpendicular to the vertical axis or spindle. Vertical wires are set by the maker at right angles to the horizontal wire.
- (a) Set up level on tripod, and set one end of horizontal cross wire on a sharply defined point (A, Fig. 30).
- (b) Turn level slowly about its spindle, so that horizontal wire traces over the point. If wire coincides with point throughout its length, its position is correct.
- (c) If not, slightly loosen all four capstan screws located on eyepiece end of telescope.
- (d) Move cross-wire ring around, in proper direction, until test shows that horizontal wire exactly traces point (A' B', Fig. 30).
 - (e) Tighten capstan screws and check.
- 4. Collimation at Distant Focus. To make the line of sight parallel to the axis of the bubble.

The "Two Peg" Method

For the "Four Peg" method, see p. 264.

- (a) Set up level at some convenient point A, Fig. 38, holding rod at C, distant at least 100 ft. With instrument carefully leveled and bubble in center of telescope level, read rod on C, calling the reading R_c .
- (b) Locate point B directly behind instrument and so that distance AB equals AC.
- (c) Point telescope toward B, bring bubble to center of telescope tube, and take rod reading R_b .

(d) Set up level beside point B, so that eyepiece of telescope is directly over point. Level up carefully, bringing bubble to center of telescope tube.

- (e) Point eyepiece of telescope toward rod at B, and read through objective end of telescope, calling this reading R_d . If more convenient, measure along the outside center line of telescope.
 - (f) Add to R_d the difference between the first readings $(R_c R_b)$.
 - (g) Set rod target to this result, and hold the rod on point C.
- (h) Move the cross-wire ring up or down until the horizontal wire cuts the target, by turning the vertical pair of opposite capstan screws.
- (i) Check by again reading rod on B, computing rod reading for C, and observing whether horizontal wire cuts the target.
- 5. Collimation at Minimum Focus. To make the objective slide move parallel to the line of collimation when racked in or out for focusing on distant or near targets.

This adjustment may be checked on any telescope but can be corrected only on Gurley inner-slide focusing telescopes. It is not on internal focusing telescopes or on the external focusing telescopes of other makes. It is primarily a factory adjustment and, barring accident, should need no correction in the field.

- (a) After doing section 4, set up level about 15 ft. from B (Fig. 38) toward C, which is the same distance away.
- (b) On old-model Gurley dumpy levels unscrew the cover ring in center of telescope, exposing the flat-headed screws for adjusting the rear bearing of the objective slide.
 - (c) Level carefully and read rod C.
- (d) Rotate level and focus on rod B. Moving objective slide out will probably cause the bubble to run, owing to the change in balance. Bring the bubble to the center by turning the leveling screws.
- (e) Set target on rod B to proper reading to give true difference in elevation $(R_c R_b)$ as determined in section 4. Cross wires should bisect target at this setting.

- (f) If not, turn the flat-headed screws, moving the rear bearing up or down, until the horizontal wire cuts the target.
 - (g) Check sections 4 and 5 alternately, until both are correct.
- 6. Center Eyepiece. To make the cross wires appear in the center of the field of view. This adjustment is not an essential to accuracy but is of convenience to the observer.
- (a) After the cross wires have been adjusted, observe whether they appear in the center of the field.
- (b) If not, unscrew the entire eyepiece from the telescope, turning raised rim ahead of knurled ring.
- (c) Move the eyepiece slide in proper direction (opposite to apparent direction) by means of opposing flat-headed screws in eyepiece. Estimate the amount of movement necessary.
- (d) Replace the eyepiece in telescope, and, if necessary, repeat until the eyepiece is properly centered.

Taping

Changes in Temperature

Correction in feet = $C \times L(T - T_s)$.

C = 0.0000065 for steel tape.

C = 0.00000056 for invar. tape.

L = length of tape in feet.

T =temperature in degrees Fahrenheit at which tape is used.

 T_s = temperature at which tape was standardized (62° F. or 68° F.).

Variation in Tension

Correction in feet =
$$\frac{(P - P_s)L}{AE}$$
.

P = tension applied.

 $P_s = \text{standard tension (10 to 15 lb.)}.$

L = length of tape in feet.

A = cross section area of tape in square inches (light steel tape = $0.0025 \pm$; heavy steel tape = $0.01\pm$).

E = modulus of elasticity in pounds per square inch (30,000,000 for steel tapes).

Sag

Correction in feet between points of support = $\frac{W^2L}{24P^2}$.

W = weight of tape in pounds between supports (a light tape = 1.0± lb. per 100 ft.; a heavy tape = 3.0± per 100 ft.).

L =length in feet between supports.

P =tension used in pounds.

MAPPING

PLOTTING TRAVERSES

1. Plotting by Protractor

Procedure. Fix position of first line, and lay off its length AB by

scaling. Orient the protractor at the forward point B; lay off the deflection angle to the succeeding line, and draw a light line of indefinite length. Scale off the given distance BC to the next traverse point C, etc.

Hints and Precautions. Orient the position of the first line so that the succeeding lines will not run off the paper. Carefully check the deflection angles as to their direction right or left. Calculated bearings should check reasonably with observed magnetic bearings. When azimuths or calculated bearings are used, a meridian line may be drawn through each station and the direction of the succeeding line laid off from the meridian.

2. Plotting by Tangents

Procedure. Fix position of first line, and lay off its length AB by

scaling. Prolong the line AB some convenient distance, to form a base line Bb. Erect a perpendicular bb' of sufficient length. Scale off the distance bb' equal to the length of the base line Bb multiplied by the natural tangent of the deflection angle. Draw a line from B through b' to define the direction of BC, etc.

Hints and Precautions. Time and accuracy can be gained by laying off the base line Bb 10 in. in length and scaling off the natural tangent along the perpendicular with an engineer's scale. Because the 50 scale has more graduations than the 10 scale, it is customary to scale off one-half the natural tangent with the 50 scale. Scale all distances and erect all perpendiculars carefully. Where the deflection angle is greater than 90° the perpendicular is erected by measuring the base line back on the course from the last point and scaling off the tangent for 180°—the deflection angle. When the deflection angle is greater than 45°, erect a perpendicular from the last point set, scale off a 10-in. base line, and erect a line parallel to the last course, along which scale off the cotangent of the deflection angle. Check all plotted angles with a protractor. For in-

278 MAPPING

creased accuracy the base lines may be made 20 in. and the tangents scaled direct with the 50 scale. For checking the erected perpendiculars the diagonal distance on the hypotenuse of the 10-in. sides should scale 14.14 in.

3. Plotting by Chords

Procedure. Proceed the same as in plotting by tangents except that, instead of erecting a perpendicular at the end of the 10-in. base line, describe an arc of 10-in. radius. Scale the chord distance bb'. Draw a

line through Bb', and plot the distance BC. The length of the chord bb' is equal to $20 \cdot \sin \frac{1}{2}$, the deflection angle.

Hints and Precautions. In swinging the 10-in. arc use a beam compass or improvise one by inserting a needle point and a pencil point exactly 10 in. apart in a thin strip of wood. If a table of chords is available no computations are necessary. Check the plotted angles with a protractor.

4. Plotting by Rectangular Coordinates-Latitudes and Departures

(1) Transpose the survey data to a computation book as shown in the sample form on p. 247. (2) Compute the latitudes and departures of the courses, and, if a closed traverse, balance the survey. Assume one of the traverse points as the origin of coordinates, calculate total latitudes and departures, and check the computations. (3) Determine the size of the enclosing rectangle, the four sides of which pass through the eastern, western, northern, and southern points of the traverse. (4) Plot the enclosing rectangle to required scale on drawing paper, estimating its position on the sheet by means of a small-scale sketch. Place the traverse symmetrical with the sheet (the sides of the rectangle may or may not be parallel to the edges of the paper). (5) Test the accuracy of the plotting by scaling the length of diagonals. Plot the reference meridian, and plot and check the reference parallel. (6) Construct coordinate lines (other meridians and parallels) so that the area will be divided in squares with sides less than the length of the scale to be used. Number each of these lines with its distance from the reference meridian or parallel. (7) Locate each traverse point by plotting its latitude and departure. (8) Check the length of the traverse lines connecting the points by scaling, and check the angles with the protractor.

Hints and Precautions. Accurately construct the meridians and parallels. After the enclosing triangle has been constructed and adjusted by trial the other lines should be plotted entirely by scaling. Do not use a T-square and triangles in the usual way but use straightedges only. The best way to lay out the rectangle and coordinates is with a beam compass and steel straightedge, checking all rectangles by diagonals. If the southwest corner of the enclosing rectangle is taken as the origin of coordinates, all the total latitudes and departures will be positive.

Practical Applications. Plotting by coordinates is the best method for plotting most traverses. When the area of a closed traverse is to be computed the latitudes and departures are necessary. The size and shape of the drawing can be determined before plotting. Errors of plotting are not cumulative. The method of checking is simple, and in closed traverses the survey is balanced before plotting.

PLOTTING TOPOGRAPHY

1. Stadia Topography by Protractor

Procedure. First lay out the traverse from which topography was taken. To facilitate plotting use a full circle protractor and a scale that can be pinned at the center. Orient the zero of the protractor on the line to the point on which the transit was sighted in the field. Move the scale to the horizontal angle desired and lay off the horizontal distance.

Hints and Precautions. One way of marking points as they are plotted is to note the elevation; another is to note the number of the point. Points which are to be connected should be connected before beginning a new station, i.e., points along a road, corners of a building, etc. When each traverse point occupied requires the plotting of a considerable number of points, speed and accuracy will be attained by two persons working as a team, one reading the notes and the other plotting the points.

MAPPING SYMBOLS *

FENCES AND WALLS	BOUNDARY LINES
In General (State type)	In General (State type)
Woven Wire	Property Line
Barbed Wire —×——×—	Street Line
Board Fence	Curb Line
Picket Fence////	Easement Line
Rail Fence	National, State
Stone Wall 0000000000000000000000000000000000	County
Retaining Wall	City or Town
Hedge වා අපරවේද ඉද යුතු (ව	
	SURVEY SYMBOLS
STRUCTURES	Transit Station 🔘
Buildings (Large Scale)	Stadia Station
Buildings (Small.scale)	Triangulation Station Δ
Barn or Garage	Bench Mark $\stackrel{\text{B.M.}}{\times}$ or 481 \times B.M.
Bridge	
Dam	MISCELLANEOUS
Tunnel —	Stone Bound
	Monument 🗆
ROADS AND RAILROADS	Tree (State size and species)
Path of trail	Edge of Woods مريده الريدي دريده الاردي و المريدة
Secondary Road	Ledge
Improved Road	Stream -
Single Track R.R. +++++++++++++++++++++++++++++++++	Wire Line T T T
Double Track R.R. #################################	Power Line

^{*} From Tracy, Surveying Theory and Practice. John Wiley & Sons.

282 MAPPING

2. Topography from Cross Sections

Procedure. Indicate the line of cross sections by drawing a light line on the map. Scale off the distance right or left from the base line and mark the elevation.

Hints and Precautions. Orient the base line so that right on the map corresponds to right in the notes.

Given	To Find	Formula
bpw bnw bnp bnp bfnp bmnp bnpw afw cmw	f m d e a c h h	$ \frac{\sqrt{(b+p)^2 + w^2}}{\sqrt{(b-n)^2 + w^2}} $ $ \frac{b(b-n) \div (2b+p-n)}{b(b+p) \div (2b+p-n)} $ $ \frac{bf \div (2b+p-n)}{bm \div (2b+p-n)} $ $ \frac{bw \div (2b+p-n)}{bw \div (2b+p-n)} $ $ \frac{aw \div f}{cw \div m} $

Given	To Find	Formula
bpw by bp bfp bmp bpw afw cmw	f m d e a c h h	$\sqrt{(b+p)^2 + w^2}$ $\sqrt{b^2 + w^2}$ $b^2 \div (2b+p)$ $b(b+p) \div (2b+p)$ $bf \div (2b+p)$ $bm \div (2b+p)$ $bw \div (2b+p)$ $aw \div f$ $cw \div m$

Given	To Find	Formula
A Ba	b	$a \sin B \div \sin A$
ABa	C	$a \sin B \div \sin A$ $a \sin (A + B) \div \sin A$
ABb	a	$b \sin A \div \sin B$
ABb	c	$b \sin (A + B) \div \sin B$
ABc	a	$c \sin A \div \sin (A + B)$
ABc	b	$c \sin B \div \sin (A + B)$
ACa	b	$a \sin (A + C) \div \sin A$
ACa	C	$a \sin C \div \sin A$
ACb	a	$b \sin A \div \sin (A + C)$
ACb	C	$b \sin C \div \sin (A + C)$
ACc	a	$c \sin A \div \sin C$
ACc	b	$c \sin (A + C) \div \sin C$
BCa	b	$a \sin B \div \sin (B+C)$
BCa	c	$a \sin C \div \sin (B+C)$
BCb	a	$b \sin (B + C) \div \sin B$
BCb	c	$b \sin C \div \sin B$
BCc	a	$c \sin (B + C) \div \sin C$
BCc	b	$c \sin B \div \sin C$
abc	S	$(a+b+c) \div 2$
abcs	A	$\sin \frac{1}{2}A = \sqrt{(s-b)(s-c) \div bc}$
abcs	A	$\cos \frac{1}{2}A = \sqrt{s(s-a) \div bc}$
abcs	A	$\tan \frac{1}{2}A = \sqrt{(s-b)(s-c) \div s(s-a)}$
abcs	В	$\sin \frac{1}{2}B = \sqrt{(s-a)(s-c) \div ac}$
abcs	В	$\cos \frac{1}{2}B = \sqrt{s(s-b) \div ac}$
abcs	В	$\tan \frac{1}{2}B = \sqrt{(s-a)(s-c) \div s(s-b)}$
abcs	C	$\sin \frac{1}{2}C = \sqrt{(s-a)(s-b) \div ab}$
abcs	C	$\cos \frac{1}{2}C = \sqrt{s(s-c) \div ab}$
abcs	C	$\tan \frac{1}{2}C = \sqrt{(s-a)(s-b) \div s(s-c)}$
abcs	d	$(b^2+c^2-a^2)\div 2b$
abcs	e	$(a^2+b^2-c^2) \div 2b$
Aab	В	$\sin = b \sin A \div a$
Aac	C	$\sin = c \sin A \div a$
Bab	A	$\sin = a \sin B \div b$
Bbc	C	$\sin = c \sin B \div b$
Cac	<u>A</u> .	$\sin = a \sin C \div c$
Cbc	B	$\sin = b \sin C \div c$
Abc	$\frac{1}{2}(B+C)$	90° − ½ <i>A</i>

Given	To Find	Formula
Abc Abc Abc Bac Bac Bac Bac Cab Cab Cab	$ \frac{1}{2}(B - C) \\ B \\ C \\ a \\ \frac{1}{2}(A + C) \\ \frac{1}{2}(A - C) \\ A \\ C \\ b \\ \frac{1}{2}(A + B) \\ \frac{1}{2}(A - B) \\ A \\ B$	$\tan = [(b-c) \tan (90^{\circ} - \frac{1}{2}A)] \div (b+c)$ $\frac{1}{2}(B+C) + \frac{1}{2}(B-C)$ $\frac{1}{2}(B+C) - \frac{1}{2}(B-C)$ $\sqrt{b^{2} + c^{2} - 2bc \cos A}$ $90^{\circ} - \frac{1}{2}B$ $\tan = [(a-c) \tan (90^{\circ} - \frac{1}{2}B)] \div (a+c)$ $\frac{1}{2}(A+C) + \frac{1}{2}(A-C)$ $\frac{1}{2}(A+C) - \frac{1}{2}(A-C)$ $\sqrt{a^{2} + c^{2} - 2ac \cos B}$ $90^{\circ} - \frac{1}{2}C$ $\tan = [(a-b) \tan (90^{\circ} - \frac{1}{2}C)] \div (a+b)$ $\frac{1}{2}(A+B) + \frac{1}{2}(A-B)$ $\frac{1}{2}(A+B) - \frac{1}{2}(A-B)$ $\sqrt{a^{2} + b^{2} - 2ab \cos C}$

Given	To Find	Formula
drB drB drB drb drb drb drc dre dre	b f e Ang B f c Ang B b f	$d \sin^2 B$ $r \sin 2B$ $d \sin B$ $\sin B = \sqrt{b \div d}$ $\sqrt{b(d - b)}$ \sqrt{db} $\sin B = e \div d$ $e^2 \div d$ $e\sqrt{d^2 - e^2} \div d$
bB eB bf	r r Ang B	$1_{2}b \div \sin^{2} B$ $1_{2}e \div \sin B$ $\tan B = b \div f$

Given	To Find	Formula
bf	r	$(f^2+b^2) \div 2b$
fe	$\operatorname{Ang} B$	$\sin B = \sqrt{e^2 - f^2} \div e$
fe	r	$\frac{1}{2}e^2 \div \sqrt{e^2 - f^2}$
be	$\mathbf{Ang}\; \boldsymbol{B}$	$\sin B = b \div e$
be	r	$\frac{1}{2}e^2 \div b$
rxy	$\operatorname{Ang}B$	$\cos 2B = (\sqrt{r^2 - x^2} - y) \div r$
rxy	b	$r+y-\sqrt{r^2-x^2}$
brx	y	$b + \sqrt{r^2 - x^2} - r$
bry	\boldsymbol{x}	$\sqrt{r^2 - (r + y - b)^2}$
bxy	r	$[x^2 + (b-y)^2] \div (2b-2y)$
r	Circ	6.2832r
rD	Arc a	$.0174533rD^{\circ}$
rD	Arc a	$.0002909 \; rD'$
rD	Arc a	$.00000485 \; rD''$
r	Area	Circle = $3.1416 r^2$
d	Area	Circle = $0.7854 d^2$
c	Area	$Circle = 0.0796 c^2$
ar	Area	Sector = $0.5 ar$
arfh	Area	Segment = $0.5 \text{ ar } - fh$

TABLE 20. NATURAL TRIGONOMETRIC FUNCTIONS *

	_				1						
Deg	.		Covers	Cosec	Tan	Cotan	Secant	Versin	Cosine	_l	
0	0	0.00000	1.00000	Infinite	0.00000	Infinite	1.0000	0.00000	1.00000		
	15	.00436	.99564	229.18 114.59	.00436	229.18 114.59	1.0000	.00001	.99999		30
	45	.01309	.98691	76.397	.01309	76,390	1.0001	.00009	99991		1 13
1	0	.01745	. 98255	57,299	.01745	57,290	1,0001	.00015	99985		
	15	.02181	.97819	45.840	.02182	45.829	1.0002	.00024	.99976		4:
	30	.02618	.97382	38, 202	.02618	38.188	1.0003	00034	.99966		30
_	45	.03054	.96946	32.746	.03055	32.730	1.0005	.00047	.99953		15
2	15	.03490	.96510 .96074	28.654 25.471	.03492	28,636 25,452	1.0006	.00061	.99939	88	45
	30	.04362	.95638	22,926	.04366	22,904	1,0009	.00095	99905	1	30
	45	.04798	.95202	20.843	.04803	20.819	1.0011	.00115	.99885	1	1 13
3	0	.05234	.94766	19.107	.05241	19.081	1.0014	.00137	99863	87	
	15	.05669	.94331	17.639	.05678	17.611	1.0016	.00161	-99839		43
	30 45	.06105	.93895	16.380	.06116	16.350	1.0019	.00187	.99813		30
	,	.06540	.93460	15.290	.06554	15.257	1.0021	.00214	.99786		15
4	15	.06976	.93024	14.836 13.494	.06993	14.301 13.457	1.0024	.00244	.99756 .99725	86	45
	30	.07846	.92154	12.745	.07870	12.706	1.0031	.00308	.99692		30
	45	.08281	.91719	12,076	.08309	12.035	1.0034	.00343	.99656		15
5	0	.08716	.91284	11,474	.08749	11,430	1.0038	,00381	.99619	85	0
	15	.09150	.90850	10.929	.09189	10.883	1.0042	.00420	.99580		45
	30	.09585	.90415	10,433	.09629	10.385	1.0046	.00466	.99540	}	30
	45	.10019	.89981	9,9812	.10069	9,9310	1.0051	.00503	.99497		15
5	15	.10453 .10887	.89547 .89113	9,5668 9,1855	.10510 .10952	9.5144 9.1309	1.0055	.00548	.99452 .99406	84	45
	30	.11320	.88680	8.8337	.11393	8.7769	1.0065	.00643	.99357	1	30
	45	.11754	.88246	8.5079	.11836	8,4490	1.0070	.00693	.99307	1	15
7	0	.12187	.87813	8,2055	.12278	8.1443	1.0075	.00745	.99255	83	0
	15	.12620	.87380	7.9240	.12722	7,8606	1.0081	.00800	.99200	1	45
	30	.13053	.86947	7.6613	.13165	7.5958	1.0086	.00856	.99144	ŀ	30
_	45	.13485	.86515	7.4156	.13609	7.3479	1.0092	.00913	.99086	-	15
8	15	.18917 .14349	.86083 .85651	7.1853 6.9690	.14054	7.1154 6.8969	1.0098	.00973	.99027 .98965	82	45
	30	.14781	.85219	6.7655	14945	6.6912	1.0111	.01098	.98902		30
	45	.15212	.84788	6.5736	.15391	6.4971	1.0118	.01164	.98836		15
9	0	.15643	.84357	6.3924	.15838	6,3138	1,0125	.01231	.98769	81	0
	15	.16074	.83926	6.2211	.16286	6.1402	1.0132	.01300	.98700		45
	30	.16505	.83495	6,0589	.16734	5.9758	1.0139	.01371	.98629		30
	45	.16935	.83065	5.9049	.17183	5.8197	1.0147	.01444	.98556		15
10	15	.17365 .17794	.82635 .82206	5.7588 5.6198	.17633 .18083	5,6713 5,5301	1.0154	.01519	.98481 .98404	80	45
	30	18224	.81776	5.4874	.18534	5.3955	1.0170	.01675	.98325	1	30
	45	.18652	.81348	5,3612	.18986	5.2672	1.0179	.01755	.98245	1	15
11	0	.19081	.80919	5,2408	.19438	5,1446	1.0187	.01837	.98163	79	0
	15	.19509	.80491	5.1258	.19891	5.0273	1.0196	.01921	.98079	1	45
	30	.19937	.80063	5.0158	.20345	4.9152	1.0205	.02008	.97992		30 15
	45	. 20364	.79636 .79209	4.9106	.20800 .21256	4.8077	1.0214	.02095	.97905	78	0
12	15	.20791 .21218	78782	4.8097	.21712	4.7046 4.6057	1.0233	.02185	.97723	78	45
	30	21644	78356	4.6202	.22169	4.5107	1.0243	02370	.97630	1	30
	45	.22070	.77930	4,5311	.22628	4,4194	1.0253	.02466	.97534		15
13	0	22495	.77505	4.4454	.23087	4.3315	1.0263	.02563	,97437	77	ō
	15	.22920	.77080	4.3630	.23547	4.2468	1.0273	.02662	.97338		45
1	30	. 23345	.76655	4,2837	.24008	4.1653	1.0284	.02763	.97237		30 15
	45	.23769	.76231	4.2072	.24470	4.0867	1.0295	.02866	.97134	70	
14	15	.24192 .24615	.75808 .75385	4.1336 4.0625	.24933 .25397	4.0108 3.9375	1.0306	.02970	.97030 .96923	76	0 45
1	30	25038	74962	3.9939	25862	3.8667	1.0329	.03185	.96815		30
	45	.25460	.74540	3.9277	.26328	3.7983	1.0341	.03295	.96705		15
15	0	,25882	.74118	3.8637	.26795	8.7320	1.0353	.03407	. 96593	75	ō
	-				Cotor	Ton	Cosec	Covers	Sine	Deg.	Min
1	l	Cosine	Versin	Secant	Cotan	Tan	C0860	Covers	PITE	Deg.	WIII.

From 75° to 90° read from bottom of table upwards.

^{*} From Peele, Mining Engineers' Handbook, John Wiley & Sons.

TABLE 20. NATURAL TRIGONOMETRIC FUNCTIONS—Continued

			1 -	T =	T =	1	1 -	T == .	1	1	T -
Deg.	Min.	Sine	Covers	Cosec	Tan	Cotan	Secant	Versin	Cosine	_	
15	15	. 26303	0.74118 .73697	3.8637 3.8018	0.26795 .27263	3.7320 3.6680	1.0353	0.03407	0.96593 .96479		45
	30	.26724	73276	3.7420	27732	3.6059	1.0377	.03637	.96363		30
	45	.27144	.72856	3.6840	.28203	3.5457	1.0390	.03754	.96246		15
16	0	.27564	.72436	3.6280	.28674	3.4874	1.0403	.03874	.96126		0
	15	.27983	.72017 .71598	3.5736	.29147	3.4308	1.0416	.03995	.96005		45 30
	45	.28820	71180	3.4699	30096	3.3226	1.0443	.04243	95757		15
17	0	.29237	.70763	3,4203	,30573	3.2709	1.0457	,04370	.95630	73	0
	15	. 29654	.70346	3.3722	.31051	3.2205	1.0471	.04498	.95502		45
	30 45	.30070	.69929 .69514	3.3255 3.2801	.31530 .32010	3.1716 3.1240	1.0485	.04628	.95372 .95240		30 15
18	0	.30486	.69098	3.2361	.32492	3.0777	1.0515	.04894	95106	72	1 0
10	15	.31316	.68684	3.1932	32975	3.0326	1.0530	.05030	.94970		45
	30	.31730	.68270	3.1515	.33459	2.9887	1.0545	.05168	.94832	1	30
	45	.32144	.67856	3.1110	.33945	2.9459	1.0560	.05307	.94693	İ	15
19	.0	.32557	.67443	3.0715	.34433	2.9042	1.0576	.05448	.94552	71	0
	15 30	.32969	.67031	3.0331	.34921 .35412	2.8636	1.0592	.05591	.94409		45 30
	45	.33792	.66208	2.9593	35904	2.7852	1.0625	.05882	.94118	1	15
20	0	34202	.65798	2.9238	.36397	2.7475	1.0642	.06031	.93969	70	0
	15	.34612	.65388	2.8892	.36892	2.7106	1.0659	.06181	.93819		45
	30 45	.35021	.64979	2.8554	.37388	2.6746	1.0676	.06333	.93667	1	30
21	40	.35429	.64571	2.8225	.37887	2.6395	1.0694	.06486	.93514	69	15
ET	15	.35837 .36244	.64163 .63756	2.7904 2.7591	.38888	2.5715	1.0729	.06799	.93358 .93201	69	45
	30	.36650	.63350	2.7285	.39391	2.5386	1.0748	.06958	93042	1	30
	45	.37056	.62944	2.6986	.39896	2.5065	1.0766	.07119	.92881	İ	15
£2	0	.87461	. 62539	2.6695	.40403	2.4751	1.0785	.07282	.92718	68	0
	15 30	.37865 .38268	.62135 .61732	2.6410 2.6131	.40911	2.4443	1.0804	.07446	.92554		45 30
	45	.38671	.61329	2.5859	41933	2.3847	1.0844	07780	92220	1	15
23	0	.39073	60927	2.5593	.42447	2.3559	1.0864	.07950	.92050	67	0
	15	.39474	.60526	2.5333	.42963	2.3276	1.0884	.08121	,91879	-	45
	30	.39875	-60125	2.5078	.43481	2.2998	1.0904	.08294	.91706	1	30
24	45	.40275	.59725 . 59326	2.4829 2.4586	.44001 .44523	2.2727 2.2460	1.0925	.08469	.91531	66	15
2.	15	.41072	.58928	2.4348	.45047	2.2199	1.0968	.08645	.91355 .91176	00	0 45
- 1	30	.41469	.58531	2.4114	.45573	2.1943	1.0989	.09004	.90996	l	30
	45	.41866	.58134	2.3886	.46101	2.1692	1.1011	.09186	.90814	l	15
25	0	.42262	.57738	2.3662	.46631	2.1445	1.1034	.09369	.90631	65	0
- 1	15 30	.42657 .43051	.57343	2.3443	.47163	2.1203 2.0965	1.1056	.09554	.90446	1	45 30
- 1	45	.43445	.56555	2.3018	48234	2.0732	1.1102	.09930	90070		15
26	0	.43837	.86163	2,2812	.48773	2.0503	1,1126	.10121	.89879	64	0
	15	.44229	.55771	2.2610	.49314	2.0278	1.1150	.10313	. 89687		45
- 1	30 45	.44620 .45010	.55380	2.2412	.49858	2.0057	1.1174	.10507	.89493	l	30
7	70	45399	.54990 .54601	2,2217 3,2027	.50404	1.9840 1.9626	1.1198	.10702	.89298	63	15
48	15	.45787	,54213	2.1840	51503	1.9416	1.1248	.11098	.89101 .88902	03	45
	30	.46175	.53825	2.1657	.52057	1.9210	1.1274	.11299	.88701		30
	45	.46561	.53439	2.1477	.52612	1.9007	1.1300	.11501	.88499		15
88	0	.46947	.53053	2.1300	.53171	1.8807	1.1326	.11705	. 88295	62	0
	15	.47332	.52668	2.1127 2.0957	.53732 .54295	1.8611	1.1352	.11911	. 88089 . 87882		45 30
- 1	45	.48099	.51901	2.0790	.54862	1.8228	1.1406	.12327	87673		15
19	0	.48481	.51519	2.0627	.55431	1,8040	1.1433	.12538	87462	61	0
	15	.48862	.51138	2.0466	.56003	1.7856	1.1461	.12750	. 87250		45
	30	.49242	.50758	2.0308	.56577	1.7675	1.1490	,12964	. 87036		30
. 1	45	.49622	.50378	2.0152	.57155	1.7496	1.1518	.13180	.86820		15
30		.50000	.50000	2.0000	.57735	1.7320	1.1547	.13397	. 86603	60	
1		Cosine	Versin	Secant .	Cotan	Tan	Cosec	Covers	Sine	Deg.	Min.
										- ' '	

From 60° to 75° read from bottom of table upwards,

TABLE 20. NATURAL TRIGONOMETRIC FUNCTIONS—Concluded

Deg.	Miń.	Sine	Covers	Cosec	Tan	Cotan	Secant	Versin	Cosine		
30	0	0.50000	0.50000	2.0000	0.57735	1.7320	1.1547	0.13397	0.86603	60	0
	15	.50377	. 49623	1.9850	.58318	1.7147	1.1576	.13616	.86384	1	45
	30 45	.50754	.49246	1.9703	.58904	1.6977	1,1606	.13837	.86163	1	30 15
		.51129	1	1.9558		1,6808	1.1636		.85941		
1	15	. 51504 .51877	.48496 .48123	1.9416	.60086 .60681	1.6643	1.1666	.14283	.85717 .85491	59	45
	30	52250	.47750	1.9139	.61280	1.6319	1.1728	14736	.85264	1	3
	45	.52621	.47379	1.9004	.61882	1.6160	1.1760	14965	.85035	1	1
2	0	. 52992	47008	1.8871	.62487	1.6003	1.1792	.15195	84805	58	
_	15	.53361	.46639	1.8740	63095	1.5849	1.1824	.15427	.84573		4:
	30	.53730	.46270	1.8612	.63707	1.5697	1.1857	.15661	.84339		30
	45	.54097	.45903	1.8485	.64322	1.5547	1.1890	.15896	.84104	l	1:
3	0	. 84464	.45536	1.8361	.64941	1.5399	1.1924	.16133	,83867	57	
	15	.54829	.45171	1.8238	.65563	1.5253	1.1958	.16371	. 83629	i	4
	30 45	.55194	.44806	1.8118	.66188	1.5108	1.1992	.16611	.83389	ł	3
	1	.55557	.44443	1.7999	.66818	1.4966	1.2027	.16853	.83147	1	
4	15	. 55919	.44081	1.7883	.67451	1.4826	1.2062	.17096	.82904	56	43
	30	.56641	.43720 .43359	1.7768 1.7655	.68087 .68728	1.4687	1.2098	.17341	.82659 .82413	l	3
	45	57000	.43000	1.7544	.69372	1.4415	1.2171	.17835	82165	1	1
5	0	.57358	42642	1.7434	.70021	1.4281	1.2208	18085	.81915	88	1 7
•	15	.57715	.42285	1.7327	.70673	1.4150	1.2245	.18336	.81664	"	43
	30	.58070	.41930	1.7220	.71329	1,4019	1.2283	.18588	,81412	1	30
	45	.58425	.41575	1.7116	.71990	1.3891	1.2322	.18843	.81157		1:
5	0	.58779	.41221	1.7013	.72654	1,3764	1.2361	.19098	,80902	54	1 (
	15	.59131	.40869	1.6912	.73323	1.3638	1.2400	.19356	.80644	Ì	4
	30	.59482	.40518	1.6812	.73996	1.3514	1.2440	.19614	.80386	i	3
	45	.59832	.40168	1.6713	.74673	1.3392	1.2480	.19875	.80125	l	1
7	0	.60181	.39819	1.6616	.75355	1.3270	1.2521	.20136	.79864	53	
	15 30	.60529 .60876	.39471 .39124	1.6521	.76042 .76733	1.3151	1.2563	.20400	.79600	ĺ	4:
	45	.61222	.38778	1.6427	.77428	1.3032	1.2647	.20931	.79335	1	15
	0	.61566	.38434	1.6243	.78129	1,2799	1.2690	.21199	.78801	52	"
'	15	.61909	.38091	1,6153	.78834	1.2685	1.2734	,21468	.78532		45
	30	. 62251	.37749	1.6064	.79543	1,2572	1.2778	21739	.78261	ł	30
	45	.62592	.37408	1.5976	.80258	1.2460	1.2822	.22012	.77988	l	1.
•	0	. 62932	.37068	1.5890	.80978	1,2349	1.2868	.22285	.77715	51	1
	15	.63271	.36729	1.5805	.81703	1.2239	1.2913	. 22561	.77439	ĺ	4:
	30	.63608	.36392	1.5721	.82434	1.2131	1.2960	.22838	.77162	1	30
.	45	.63944	.36056	1.5639	.83169	1.2024	1.3007	.23116	.76884		15
)	15	.64279 .64612	.35721 .35388	1.5557	.83910	1.1918	1.3054	.23396	.76604	50	45
	30	.64945	35055	1.5477 1.5398	.84656 .85408	1.1812	1.3102	.23677	.76323 .76041	1	30
	45	.65276	.34724	1.5320	.86165	1,1606	1,3200	.24244	.75756	1	15
.	0	.65606	.34394	1.5242	.86929	1.1504	1.3250	.24529	.75471	49	1
•	15	,65935	.34065	1,5166	.87698	1.1403	1.3301	.24816	.75184		45
	30	.66262	.33738	1,5092	.88472	1.1303	1.3352	.25104	.74896		30
	45	.66588	.33412	1,5018	.89253	1.1204	1.3404	.25394	.74606	1	1.5
1	0	,66913	.33087	1.4945	.90040	1.1106	1.3456	.25686	.74314	48	
	15	.67237	.32763	1.4873	.90834	1.1009	1.3509	.25978	.74022	1	43
	30 45	.67559	.32441	1.4802	.91633	1.0913	1.3563	.26272	.73728		30
		.67880	.32120	1.4732	.92439	1.0818	1.3618	.26568	.73432		15
3	15	.68200 .68518	.31800 .31482	1.4663	.93251	1.0724	1.3673	.26865	.73135	47	45
	30	.68835	.31165	1.4595	.94071	1.0630	1.3786	.27163	.72837 .72537		30
i	45	.69151	.30849	1.4461	.95729	1.0446	1.3843	.27764	.72236		15
	0	.69466	.30534	1.4396	96569	1.0355	1.3902	.28066	71934	46	"
-	15	69779	.30221	1,4331	.97416	1.0265	1.3961	.28370	.71630	10	4.
	30	.70091	.29909	1.4267	.98270	1,0176	1,4020	.28675	.71325		30
	45	.70401	.29599	1,4204	.99131	1.0088	1.4081	.28981	.71019		15
5	0	.70711	.29289	1.4142	,10000	1,0000	1.4142	.29289	.70711	45	0
_	l	G. :								-	
	L	Cosine	Versin	Secant	Cotan	Tan	Совес	Covers	Sine	Deg.	Min

From 45° to 60° read from bottom of table upwards.

TABLE 21. LOGARITHMIC TRIGONOMETRIC FUNCTIONS *

Deg.	Sine	Cosec	Versin	Tangent	Cotan	Covers	Secant	Cosine	Deg
0 1 2 3	8.24186 8.54282 8.71880 8.84358	+ ∞ 11.75814 11.45718 11.28120 11.15642	- \omega 6.18271 6.78474 7.13687 7.38667	- 00 8.24192 8.54308 8.71940 8.84464	11.45692 11.28060 11.15536	9.98457 9.97665 9.96860	10.00000 10.00007 10.00026 10.00060 10.00106	9.99993	90 89 88 87 86
5 6 7 8 9	8.94030 9.01923 9.08589 9.14356 9.19433	11.05970 10.98077 10.91411 10.85644 10.80567	7.58039 7.73863 7.87238 7.98820 8.09032	8.94195 9.02162 9.08914 9.14780 9.19971	10.97838 10.91086	9.94356	10.00166 10.00239 10.00325 10.00425 10.00538	9.99834 9.99761 9.99675 9.99575 9.99462	85 84 83 22 81
10	9.23967	10.76033	8.18162	9.24632	10.75368	9.91717	10.00665	9.99335	80
11	9.28060	10.71940	8.26418	9.28865	10.71135	9.90805	10.00805	9.99195	79
12	9.31788	10.68212	8.33950	9.32747	10.67253	9.89877	10.00960	9.99040	78
13	9.35209	10.64791	8.40875	9.36336	10.63664	9.88933	10.01128	9.98872	77
14	9.38368	10.61632	8,47282	9.39677	10.60323	9.87971	10.01310	9.98690	76
15	9.41300	10.58700	8.53243	9.42805	10.57195	9.86992	10.01506	9.98494	75
16	9.44034	10.55966	8.58814	9.45750	10.54250	9.85996	10.01716	9.98284	74
17	9.46594	10.53406	8.64043	9.48534	10.51466	9.84981	10.01940	9.98060	73
18	9.48998	10.51002	8.68969	9.51178	10.48822	9.83947	10.02179	9.97821	72
19	9.51264	10.48736	8.73625	9.53697	10.46303	9.82894	10.02433	9.97567	71
20	9.53405	10.46595	8.78037	9.56107	10.43893	9.81821	10.02701	9.97299	70
21	9.55433	10.44567	8.82230	9.58418	10.41582	9.80729	10.02985	9.97015	69
22	9.57358	10.42642	8.86223	9.60641	10.39359	9.79615	10.03283	9.96717	68
23	9.59188	10.40812	8.90034	9.62785	10.37215	9.78481	10.03597	9.96403	67
24	9.60931	10.39069	8.93679	9.64858	10.35142	9.77325	10.03927	9.96073	66
25	9.62595	10.37405	8.97170	9.66867	10.33133	9.76146	10.04272	9.95728	65
26	9.64184	10.35816	9.00521	9.68818	10.31182	9.74945	10.04634	9.95366	64
27	9.65705	10.34295	9.03740	9.70717	10.29283	9.73720	10.05012	9.94988	63
28	9.67161	10.32839	9.06838	9.72567	10.27433	9.72471	10.05407	9.94593	62
29	9.68557	10.31443	9.09823	9.74375	10.25625	9.71197	10.05818	9.94182	61
30	9.69897	10.30103	9.12702	9.76144	10.23856	9.69897	10.06247	9.93753	60
31	9.71184	10.28816	9.15483	9.77877	10.22123	9.68571	10.06693	9.93307	59
32	9.72421	10.27579	9.18171	9.79579	10.20421	9.67217	10.07158	9.92842	58
33	9.73611	10.26389	9.20771	9.81252	10.18748	9.65836	10.07641	9.92359	57
34	9.74756	10.25244	9.23290	9.82899	10.17101	9.64425	10.08143	9.91857	56
35	9.75859	10.24141	9.25731	9.84523	10.15477	9.62984	10.08664	9.91336	55
36	9.76922	10.23078	9.28099	9.86126	10.13874	9.61512	10.09204	9.90796	54
37	9.77946	10.22054	9.30398	9.87711	10.12289	9.60008	10.09765	9.90235	53
38	9.78934	10.21066	9.32631	9.89281	10.10719	9.58471	10.10347	9.89653	52
89	9.79887	10.20113	9.34802	9.90837	10.09163	9.56900	10.10950	9.89050	51
40	9.80807	10.19193	9.36913	9.92381	10.07619	9.55293	10.11575	9.88425	50
41	9.81694	10.18306	9.38968	9.93916	10.06084	9.53648	10.12222	9.87778	49
42	9.82551	10.17449	9.40969	9.95444	10.04556	9.51966	10.12893	9.87107	48
48	9.83378	10.16622	9.42918	9.96966	10.03034	9.50243	10.13587	9.86413	47
44	9.84177	10.15823	9.44818	9.98484	10.01516	9.48479	10.14307	9.85693	46
45	9.84949 Cosine	10.15052 Secant	9.46671 Covers	10.00000 Cotan	10.00000 Tangent	9.46671 Versin	10.15052 Cosec	9.84949 Sine	45
	Oding	Secure	20,619	Journ 1	- augent	- erom	Ocaec 1	DITTE	

From 45° to 90° read from bottom of table upwards.

^{*} From Kent, Mechanical Engineers' Handbook, Power Volume, John Wiley & Sons.

TABLE 22. MINUTES INTO DECIMALS OF A DEGREE *

,	0"	10*	15"	20"	30"	40"	45*	50"	,
0 1 2 8 4 5 6 7 8 9 10	.00000 .01667 .03333 .05000 .06667 .08333 .10000 .11667 .13333 .15000 .16667	.00278 .01944 .03611 .05278 .06944 .08611 .10278 .11944 .13611 .15278 .16944	.00417 .02083 .03750 .05417 .07083 .08750 .10417 .12083 .18750 .15417 .17083	.00556 .02222 .03889 .05556 .07222 .08889 .10556 .12222 .13889 .15556 .17222	.00838 .02500 .04167 .05838 .07500 .09167 .10833 .12500 .14167 .15838 .17500	.01111 .02778 .0444 .06111 .07778 .09444 .11111 .12778 .1444 .16111 .17778	.01250 .02917 .04583 .06250 .07917 .09583 .11250 .12917 .14583 .16250 .17917	.01389 .03055 .04722 .06389 .08056 .09722 .11389 .13056 .14722 .16389 .18056	0 1 2 8 4 5 6 7 8 9
11 12 13 14 15 16 17 18 19 20	.18333 .20000 .21667 .23333 .25000 .26667 .28338 .30000 .31667 .33333	.18611 .20278 .21944 .23611 .25278 .26944 .28611 .30278 .31944 .33611	.18750 .20417 .29083 .23750 .25417 .27083 .28750 .30417 .82083 .83750	.18889 .20556 .22222 .23889 .25556 .27222 .28889 .30556 .32222 .33889	.19167 .20838 .22500 .24167 .25838 .27500 .29167 .80838 .32500 .84167	.19444 .21111 .22778 .24444 .26111 .27778 .29444 .81111 .32778 .84444	.19583 .21250 .22917 .24583 .26250 .27917 .29583 .81250 .32917 .84583	.19722 .21389 .23056 .24722 .26389 .28056 .29722 .81389 .83056 .84722	11 12 18 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30	.35000 .36667 .88333 .40000 .41667 .43333 .45000 .46667 .48333 .50000	35278 36944 88611 40278 41944 43611 45278 46944 48611 50278	.35417 .37083 .38750 .40417 .42083 .43750 .45417 .47083 .48750 .50417	.35556 .37222 .38889 .40556 .42222 .43889 .45550 .47222 .48889 .50556	.85833 .87500 .89167 .40838 .42500 .44167 .45833 .47500 .49167 .50838	.86111 .87778 .89444 .41111 .42778 .44444 .46111 .47778 .49444 .51111	.86250 .87917 .89583 .41250 .42917 .44583 .46250 .47917 .49583 .51250	.36389 .38056 .39722 .41389 .43056 .44722 .46389 .48056 .49722 .51389	21 22 23 24 25 26 27 28 29 30
81 83 84 85 86 87 88 89	.51667 .53333 .55000 .56667 .58333 .60000 .61667 .63333 .65000 .66667	.51944 .53611 .55278 .56944 .58611 .60278 .61944 .63611 .65278 .66944	.52083 .53750 .55417 .57083 .58750 .60417 .62083 .63750 .65417 .67083	.52222 .53849 .55556 .57222 .58889 .60556 .62222 .63889 .65556	.52500 .54167 .55838 .57500 .59167 .60838 .62500 .64167 .65888 .67500	.52778 .5444 .50111 .57778 .59444 .61111 .62778 .64444 .66111	.52917 .54583 .56250 .57917 .59583 .61250 .62917 .64583 .66250 .67917	.53056 .54722 .56389 .58056 .59722 .61389 .63056 .64723 .66389	31 32 33 84 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50	.68333 .70000 .71667 .78338 .75000 .76667 .78333 .80000 .81607 .88333	.68611 .70278 .71944 .79611 .75278 .76944 .78611 .80278 .81944 .88611	.68750 .70417 .72083 .73750 .75417 .77083 .78750 .80417 .82083 .83750	.68889 .70556 .72222 .78889 .75556 .77222 .78889 .80556 .82222 .83889	.69167 .70838 .72500 .74167 .75838 .77500 .79167 .80838 .82500 .84167	.69444 .71111 .72778 .74444 .76111 .77778 .79444 .81111 .82778 .84444	.69583 .71250 .72917 .74588 .76250 .77917 .79583 .81250 .82917 .84583	.69722 .71389 .73056 .74722 .76389 .78056 .79723 .81389 .83056 .84722	41 48 48 44 45 46 47 48 49 50
51 52 58 54 55 56 57 58 59	.85000 .86667 .88388 .90000 .91667 .98338 .95000 .96667 .98338	.85278 .86944 .88611 .90278 .91944 .93611 .95278 .96944 .98611	.85417 .87083 .88750 .90417 .92083 .93750 .95417 .97083 .98750	.85556 .87222 .88889 .90556 .92222 .98889 .95556 .97222 .98889	.85888 .87500 .89167 .90838 .92500 .94167 .95838 .97500 .99167	86111 .87778 .80444 .91111 .92778 .94444 .96111 .97778 .99444	.86250 .87917 .89588 .91250 .92917 .94588 .96250 .97917 .99588	.86389 .88056 .89722 .91389 .93056 .94722 .96389 .98056 .99722	51 52 53 54 55 56 57 58 59
,	0"	10"	15"	20"	30*	40"	45"	50"	,

^{*} From Ives, Seven Place Natural Trigonometric Functions, John Wiley & Sons.

TABLE 23. LOGARITHMS OF NUMBERS*

	0	1	2	3	4	5	6	7	8	9
n				-	-		1	•	 -	
10	00000	00432	00860	01284	01703					
11	04139	04532	04922	05308	05690	06070	06446	06819	07188	0755
12	07918	08279	08636	08991	09342	09691	10037	10380	10721	1105
13	11394	11727	12057	12385	12710	13033	13354	13672	13988	1430
14	14613		15229	15534	15836	16137	16435	16732	17026	1731
	47500	47000	10104	10460	18752	19033	19312	19590	19866	2014
15	17609	17898	18184	18469						22789
16	20412	20683	20952	21219	21484	21748		24797		2528
17	23045	23300	23553	23805	24055	24304	24551 26951	27184		
18	25527	25768	26007	26245	26482	26717			29667	2988
19	27875	28103	28330	28556	28780	29003	29226	29447	29007	2900
20	30103	3 0320	30535	30750	30963	31175	31387	31597	31806	32015
21	32222	32428	32634	32838	33041	33244	33445	33646	33846	34044
22	34242	34439	34635	34830	35025	35218	35411	35603	35793	35984
23	36173	36361	36549	36736	36922	37107	37291	37475	37658	37840
24	38021	38202	38382	38561	38739	38917	39094	39270	39445	39620
25	39794	39967	40140	40312	40483	40654	40824	40993	41162	41330
26	41497	41664	41830	41926	42160	42325	42488	42651	42813	42975
27	43136	43297	43457	43616	43775	43933	44091	44248	44404	44560
28	44716	44871	45025	45179	45332	45484	45637	45788	45939	46090
29	46240	46389	46538	46687	46835	46982	47129	47276	47422	4756
**										
30	47712	47857	48001	48144	48287	48430	48572	48714	48855	4899
31	49136	49276	49415	49554	49693	49831	49969	50106	50243	50379
32	50515	50651	50786	50920	51055	51188	51322	51455	51587	51720
33	51851	51983	52114	52244	52375	52504	52634	52763	52892	53020
34	53148	53275	53403	53529	53656	53782	53908	54033	54158	5428
35	54407	54531	54654	54777	54900	55023	55145	55267	55388	55509
36	55630	55751	55871	55901	56110	56229	56348	56467	56585	56703
37	56820	56937	57054	57171	57287	57403	57519	57634	57749	57864
38	57978	58092	58206	58320	58433	58546	58659	58771	58883	58995
39	59106	59218	59329	59439	59550	59660	59770	59879	59988	6009
40	60206	60314	60423	60531	60638	60746	60853	60959	61066	61172
41	61278	61384	61490	61595	61700	61805	61909	62014	62118	62221
42	62325	62428	62531	62634	62737	62839	62941	63043	63144	63246
43	63347	63448	63548	63649	63749	63849	63949	64048	64147	64246
44	64345	64444	64542	64640	64738	64836	64933	65031	65128	65225
45	65321	65418	65514	65610	65700	£500.	65000	65000	66000	46464
46	66276	66370	66464	65610 66558	65706	65801	65896	65992	66087	66181
47	67210	67302	67394		66652	66745	66839	66932	67025	67117
48	68124	68215	68305	67486 68395	67578 68485	67669 68574	67761	67852 68753	67943	68034
49	69020	69108	69197	69285	69373	69461	68664 69548	69636	68842 69723	68931 69810
50	69897	69984	70070	70157	70243	70329	70415	70501	70586	70672
51	70757	70842	70927	71012	71096	71181	71265	71349	71433	71517
52	71600	71684	71767	71850	71933	72016	72099	72181	72263	72346
53	72428	72509	72591	72673	72754	72835	72916	72997	73078	73159
54	73239	73320	73400	73480	73560	73640	73719	73799	73878	73957
	- 1	1								

^{*} From American Civil Engineers' Handbook by Merriam and Wiggin, John Wiley & Sons.

TABLE 23. LOGARITHMS OF NUMBERS (Continued)

n	0	1 '	2	3	4	5	6	7	8	9
1		1		1						
55	74036	74115	74194	74273	74351	74429	74507	74586	74663	74741
56	74819	74896	74974	75051	75128	75205	75282	75358	75435	75511
57	75587	75664	75740	75815	75891	75967	76042	76118	76193	76268
58	76343	76418	76492	76567	76641	76716	76790	76864	76938	77012
59	77085	77159	77232	77305	77379	77452	77525	77597	77670	77743
60	77015	77887	77960	78032	70104	78176	78247	78319	78390	70460
61	77815				78104		78958	79029	79099	78462
62	78533	78604	78675	78746	78817	78888		79727		79169
	79239	79309	79379	79449	79518	79588	79657		79796	79865
63	79934	80003	80072	80140	80209	80277	80346	80414	80482	80550
64	80618	80686	80754	80821	80889	80956	81023	81090	81158	81224
65	81291	81358	81425	81491	81558	81624	81690	81757	81823	81889
66	81954	82020	82086	82151	82217	82282	82347	82413	82478	82543
67	82607	82672	82737	82802	82866	82930	82995	83059	83123	83187
68	83251	83315	83378	83442	83506	83569	83632	83696	83759	83822
69	83885	83948	84011	84073	84136	84198	84261		84386	
		007.20	01011	010,0	000	0		01010	01000	01110
70	84510	84572	84634	84696	84757	84819	84880	84942	85003	
71	85126	85187	85248	85379	85370	85431	85491	85552	85612	85673
72	85733	85794	85854	85914	85974	86034	86094	86153	86213	86273
73	86332	86392	86451	86510	86570	86629	86688	86747	86806	86864
74	86923	86982	87040	87099	87157	87216	87274	87332	87390	87448
	07506	27764	07.000	07.70				07010	070.57	00004
75	87506	87564	87622	87679	87737	87795	87852	87910	87967	88024
76	88081	88138	88195	88252	88309	88366	88423	88480	88536	
77	88649	88705	88762	88818	88874	88930	88986	89042	89098	89154
78	89209	89265	89321	89376	89432	89487	89542	89597	89653	89708
79	89763	89818	89873	89927	89982	90037	90091	90146	90200	90255
80	90309	90363	90417	90472	90526	90580	90634	90687	90741	90795
81	90849	90902	90956	91009	91062	91116	91169		91275	91328
82	91381	91434	91487	91540	91593	91645	91698		91803	91855
83	91908	91960	92012	92065	92117	92169	92221	92273	92324	92376
84	92428	92480	92531	92583	92634	92686	92737	92788	92840	92891
	22242		2224		2244		00045			
85	92942	92993	93044	93095	93146	93197	93247	93298	93349	93399
86	93450	93500	93551	93601	93651	93702	93752	93802	93852	93902
87	93952	94002	94052	94101	94151	94201	94250	94300	94349	94399
88	94448	94498	94547	94596	94645	94694	94743	94792	94841	94890
89	94939	94988	95036	95085	95134	95182	95231	95279	95328	95376
90	95424	95472	95521	95569	95617	95665	95713	95761	95809	95856
91	95904	95952	95999	96047	96095	96142		96237	96284	96332
92	96379	96426	96473	96520	96567	96614	96661	96708	96755	96802
93	96848	96895	96942	96988	97035	97081	97128	97174	97220	97267
94	97313	97359	97405	97451	97497	97543	97589	97635	97681	97727
95	97772	97818	97864	97909	97955	98000	98046	98091	98137	98182
96	98227	98272	98318	98363	98408	98453	98498	98543	98588	98632
97	98677	98722	98767	98811	98856	98900	98945	98989	99034	99078
98	99123	99167	99211	99255	99300	99344	99388	99432	99476	99520
99	99564	99607	99651	99695	99739	99782	99826	99870	99913	99957
1	1	1	1 1			. 1	- 1	1		
1	,	1	2	3	4	5	6	7	8	9

TABLE 24. DECIMAL EQUIVALENTS OF COMMON FRACTIONS *

The given decimals are the parts of inches corresponding to fraction of inches in first column; also, the parts of feet for the fraction of inches in third column.

1/64	0.0052 0.0104 0.015625	1/16 1/8 3/16	17/64	0.2552 0.2604 0.265625		33/64	0.5052 0.5104 0.51562	6 1/16 6 1/8 6 3/16	49/64	0.7552 0.7604 0.765625	1
1/32	0.0208 0.0260 0.03125	1/4 5/16 3/8	9/32	0.2708 0.2760 0.28125	3 1/4 3 5/16 3 3/8	17/32		6 1/4 6 5/16 6 3/8	25/32		9 1/4 9 5/16 9 3/8
8/64	0.0364 0.0417 0.046875	7/ ₁₆ 1/ ₂ 9/ ₁₆	19/64	0. 2865 0. 2917 0. 296875		35/64	0.5364 0.5417 0.54687	1	51/64	0.7865 0.7917 0.796875	
1/16	0.0521 0.0573 0.0625	5/8 11/16 3/4	5/16	0.3021 0.3073 0.3125	3 5/8 3 11/16 3 3/4	9/16	0.5521 0.5573 0.5625	6 5/8 6 11/16 6 3/4	13/16	0.8021 0.8073 0.8125	9 5/8 9 11/16 9 3/4
5/64	0.0677 0.0729 0.078125		21/64	0.3177 0.3229 0.328125		37/64	0.5677 0.5729 0.578125	1	53/64	0.8177 0.8229 0.828125	9 13/16 9 7/8 9 15/16
8/32	0.0833 0.0885 0.09375	i 1/16 i 1/8	11/32	0,3333 0,3385 0,34375	4 4 1/16 4 1/8	19/32	0.5833 0.5885 0.59375	7 7 1/16 7 1/8	27/32	0.8333 0.8385 0.84375	10 10 ½16 10 ½8
7/64	0.0990 0.1042 0.109375	1 3/16 1 1/4 1 5/16	23/64	0.3490 0.3542 0.359375	4 3/16 4 1/4 4 5/16	39/64	0.5990 0.6042 0.609375		55/64	0.8490 0.8542 0.859375	10 3/16 10 1/4 10 5/16
1/8	0.1146 0.1198 0.1250	1 3/8 1 7/16 1 1/2	3/8	0.3646 0.3698 0.3750	4 3/8 4 7/16 4 1/2	5/8	0.6146 0.6198 0.6250	7 3/8 7 7/16 7 1/2	7/8	0.8646 0.8698 0.8750	10 3/8 10 7/16 10 1/2
9/64	0.1302 0.1354 0.140625	1 9/16 1 5/8 1 11/16	²⁵ /64	0.3802 0.3854 0.390625	4 9/16 4 5/8 4 11/16	41/64.	0.6302 0.6354 0.640625	79/16 75/8 711/16	57/64	0.8802 0.8854 0.890625	10 9/16 10 5/8 10 11/16
5/32	0.1458 0.1510 0.15625	1 3/4 1 13/16 1 7/8	13/32	0.3958 0.4010 0.40625	4 3/4 4 13/16 4 7/8	21/32	0.6458 0.6510 0.65625	7 3/ ₄ 7 13/ ₁₆ 7 7/ ₈	29/32	0.8958 0.9010 0.90625	10 3/4 10 13/16 10 7/8
1 1/64		1 15/16 2 2 1/16	27/64	0.4114 0.4167 0.421875	4 15/16 5 5 1/16	43/64	0.6615 0.6667 0.671875	7 ¹⁵ / ₁₆ 8 8 ¹ / ₁₆	59/ ₆₄	0.9115 0.9167 0.921875	10 15/16 11 11 1/16
• /16	0.1771 0.1823 0.1875	2 1/8 2 3/16 2 1/4	7/16	0.4271 0.4323 0.4375	5 1/8 5 3/16 5 1/4	11/16	0.6771 p.6823 0.6875	8 1/8 8 3/16 8 1/4	15/16	0.9271 0.9323 0.9375	11 1/8 11 3/16 11 1/ <u>4</u>
13/64	0.1927 0.1979 0.203125	2 5/16 2 3/8 2 7/16	29/64	0.4427 0.4479 0.453125	5 5/16 5 3/8 5 7/16	45/64	0.6927 0.6979 0.703125	8 5/16 8 3/8 8 7/16	61/64	0.953125	11 5/16 11 3/8 11 7/16
7/32	0.2083 0.2135 0.21875	2 1/2 2 9/16 2 5/8	15/32		5 1/2 5 9/16 5 5/8	23/32	0.7083 0.7135 0.71875	8 1/2 8 9/16 8 5/8	31/32	0,9635	11 1/2 11 9/16 11 5/8
15/64		2 11/16 2 3/4 2 13/16	31/64	0.4740 0.4792 0.484375	5 11/16 5 3/4 5 13/16	47/64	0.7240 0.7292 0.734375	8 11/16 8 3/4 8 13/16	63/64	0.9792 0.984375	11/16 3/4 13/16
2/4	0.2448	2 7/8 2 15/16 3		0.4896 0.4948 0.5000	5 7/8 5 15/16 6	3/4	0.7396 0.7448 0.7500	8 7/8 8 15/16 9		0.9948	117/8 1115/16 12

^{*} From Peele, Mining Engineers' Handbook, John Wiley & Sons.

SURVEYING SIGNALS *

Except for short distances a good system of hand signals between different members of the party makes an efficient means of communication. The number of signals necessary will depend upon the kind of work and the nature of the country. A few of the more common are given below:

"Right" or "Left." The arm is extended in the direction of the desired movement, the right arm being extended for a movement to the right and the left arm for a movement to the left. A long, slow, sweeping motion of the hand indicates a long movement; a short, quick motion indicates a short movement. This signal may be given by the transitman in directing the chainman on line, by the leveler in directing the rodman for a turning point, by the chief of the party to any member, or by one chainman to another chainman.

"All Right." Both arms are extended horizontally and the forearms waved vertically. The signal may be given by any member of any party.

"Plumb the Flag" or "Plumb the Rod." The arm is held vertically and moved in the direction that the flag or rod is to be plumbed. It is given by the transitman or leveler.

"Give a Foresight." The instrumentman holds one arm vertically above his head.

"Establish a Turning Point" or "Set a Hub." The instrumentman holds one arm above his head and waves it in a circle.

"Give Line." The flagman holds the flag horizontally in both hands above his head and brings it down and turns it to a vertical position. If he desires to set a hub, he waves the flag with one end in the ground from side to side.

"Turning Point" or "Bench Mark." In profile leveling the rodman holds the rod horizontally above his head and then brings it down on the point.

"Wave the Rod." The leveler holds one arm above his head and moves it from side to side.

"Pick up the Instrument." Both arms are extended downward and outward, then inward and up, as one would do in grasping the legs of the tripod and shouldering the instrument. It is given by the chief of the party or by the head chainman when the transit is to be moved.

Care should be taken to make the signals so clear that they may be readily understood. Where long sights are taken or where the peculiar color of the background renders hand signals indistinct, colored flags similar to those of railroad trainmen may be used to good advantage. Of course the color should be in contrast with that of the background. Red can be seen very well against snow, and white can be distinguished clearly against the dark green of the forest.

^{*} From Raymond E. Davis, Manual of Surveying for Field and Office, 1915.

A.	Asphalt, tables, 152–159
A soils, 110, 111	tests, 140, 141
Absorption of aggregates, 33, 136	use of, 150, 151
Adjustments, levels, 259, 268-276	Atterberg limits, soils, 110, 113, 114
transits, 259–267	Augers, 99, 101
Admixtures, concrete, calcium chlo-	Average end areas, 234
ride, 18	A.W.W.A. pipe, cast-iron, 175
Age-strength relation, concrete, 33	
Aggregate, 134–137	B
batching plant, 8	7 11 6
cement finishing, 21, 22	Backhoe, 3
colorimetric test, Fig. 17	Basalt, 50, 51
field testing, 134–137	Batch plant inspection, concrete, 14
fineness modulus, 135	Batching computations, 24, 34–39
mechanical analysis, 134, 135, 141	plant, 8
quantity in concrete, 24–39	Batterboards, structures, 197
report form, 137	Beams, American Standard Steel, 55
sampling for bituminous paving,	concrete, minimum width, 40
139	Bearing capacity, piles, 85–87
concrete, 10	soils, 82
sieve analysis, 134, 135, 141	Bituminous paving, aggregate tables,
silt and clay in, 135	153–156, 159
storage and handling, Fig. 16	areas of surfaces, 155
surface water, 33	asphalt at 60° F., 156
tables, bituminous paving, 153-	use of, 151 bitumen required for, 152
156, 159	bituminous material, use of, 150,
voids in, 136	151
water absorption, 33, 136	check list for inspectors, 141
Air-entraining cement, 20, 37 unit weight test, 12	correction table, bitumens, 158
Airports, borings for, 100, 106	distributor tables, 157
reports, inspectors, 184, 185	equipment for inspectors, 141
stakeout, 200	field density, 141
Analysis, aggregate, sieve, 134, 135	linear feet per ton of aggregate
bituminous paving, 141	155
soils, by origin, 112	mechanical analysis, 141
mechanical, 124, 125, 133	mix-in-place, 143
right-angle soil chart, 112	pat test, 140
Angles by repetition, 243, 244	pay items, 146, 149
Arc definition curves, 202, 203	penetration, Macadam, 145
length for unit radius, 211	test, 140
welding, 64-71	percentage of bitumen, 141
Area, average end, 234	plant mix, 146–149
double end, volumes, 235-239	prime coats, 142
double meridian distance, 244-247	reports, 160-164
formulas, 216, 283, 288	road max, 143
pavement surfaces, 155	road oil, use of, 150
reinforcement per foot of width, 41	sampling, 139
Asphalt, reports, 164	seal coats, 143
compling 120	to high 150-150

300 INI	DEX
Bituminous paving, tack coats, 143 tar, use of, 150	Clay, in aggregate, 135 pipe, 167, 168
tests, 141, 150 weight of aggregate, 156 Borings, 99-107	report, 181 Cold-weather concrete, 17, 18 Collimation adjustment, levels, 270,
log, 107, 131, 132 Bridges, 75–80	274, 275 transits, 262
borings for, 100 Brownstone, 52 Brownia in its transit 848	Colorimetric tests, Fig. 17 Compaction of soils, 123
Bucking-in with transit, 248 Bulldozer, 4 Butt worlds 66, 67	calculation, 127 inspection, 138 Compass needle adjustment, 266, 267
Butt welds, 66, 67 C	Compressor, 9, 189 Concrete, 10–48
Calcium chloride, sampling for con-	accelerating admixtures, 18 age-strength relation, 33
crete, 11 California bearing ratio, 120, 130	aggregate batching plant, 8, Fig. 16 absorption, 33
Cast iron, identification, 71 pipe, 175–177	surface water, 33 air-entraining cement, 20
C.B.R., 120, 130 Cement, air-entraining, 20, 37	batch plant inspection, 14, Fig. 16 batching computations, 24, 34–38
-asbestos pipe, 166, 179 -factor, 37 finishes, 21, 22	cement factor, 37 check list for inspectors, 13 cold weather, 17, 18, 21
high-early-strength, 18 in concrete mixes, 24–39	construction joints, 17 curing, 17
report forms, 47, 48 sampling, 10	equipment for inspection, 13 exposed surfaces, 17
storage and handling, 14, Fig. 16 water ratio, 23	field inspection, 15, 19 field sampling, 10
Center eyepiece adjustment, levels, 273, 276	field testing, 12 finishing floors, 21, 22
transit, 266 Centrifuge moisture equivalent, soils,	machine, 9 pavements, 20 form inspection, 15, 19
Channels, structural steel, 55 Chapman flask, 117	frost protection, 18 high-early-strength cement, 18
Check lists, bituminous paving, 141- 149	load tests, 18, 42 material, inspection, 14
concrete, 13–21 foundations, 84	transporting, 15 mixes, 23–38
grading, 138 masonry, 49 painting, 81, 82	mixing, 15, 19 paver, 7 paving 19
pile driving, 84 sanitary construction, 165	paving, 19 pay items, 18 pipe, 170–174
steel, structural, 53, 54 welding, 70-71	report, 181 placing inspection, 16, 19
wood and timber, 94, 95 Chord definition curves, 204, 205	ready mixed, 16 reinforcement, 15, 19
elengths, circular curves, 206. 210 plotting by, 278 Circular curves, 202–216	inspection, 39-41 reports, 43-48
arcs, length for unit radius, 211 Clamshell bucket, 3	sand-aggregate ratio, 24 sand colorimetric tests, Fig. 17 slump, recommended, 23
Classification of soils, 108–125 report on, 129, 133	test, 12 subgrade, 19
Clay, definition, 108 identification, 108, 109	tag for samples, 13 transit mix, 8, 15

Concrete, unit weight test, 12 water content, 23 Construction, equipment, 3-9 joints, concrete, 17 stakeout, 197–201 Contractor's daily report, 188 Correction, table, bituminous materials, 158 prismoidal, 240, 241 tangents and externals, 209 taping, 276 Corrugated metal culverts, 169 Crane, 3 Cross wire adjustment, level, 270, 274 transit, 261 Crossovers, 233 Cubic yards, aggregate required, pav-Culverts, inspection of existing, 76 pipe, 169, 172-174 Curing, age-strength relation, 33 concrete, 17 less than 70°. 34 liquids, samples of, 10 Current, welding, 70 Curves, 202-232 arc definition, 202, 203 areas, 216 chord definition, 204, 205 circular, 202-212 layout, circular, 249, 250 transition, 217-226 vertical, 227-232 maximum curvature, roads, 204 metric, 212 minimum curvature, roads, 204 parabolic, 227-232 railroad, 204 short-radius, 213-215 spiral, 217–226 transition, 217-226 vertical, 227-232 Cypress, Tidewater Red, 90, 91

D

Decimal equivalent of common fraction, 296 Deflections, curves, 203, 206, 210, 215 Density, bituminous paving, 141 calculations, 126, 127 of soils, 117-123 Departures, latitudes and, 244-247 plotting, 278, 279 Double-end area volumes, 235–239 centering, 248 meridian distance, 244-247 Drag line, 3 Dumpy level, 257 adjustments, 268-270, 274-276

Earthwork computations, 234-241 Effective size, soils, 125 Electrodes, welding, 68, 69 Elongation of Polaris, 252, 253 Equipment, bituminous-paving inspectors, 141, 142 concrete inspectors, 13 construction, 3-9, 189-191 grading inspectors, 138 masonry inspectors, 49 pipe-laying inspectors, 179 sanitary inspectors, 165 structural-steel inspectors, 53 welding inspectors, 70 wood inspectors, 94 Errors, allowable for surveys, 250–252 Expansion joint filler, sampling, 10 Expense record, 183 Externals, for circular curves, 202-213 for transition curves, 217-226 for vertical curves, 227-232

Field moisture equivalent, density test, 120-123 soils, 111 Fillet welds, 65–67 Fineness modulus, 135 Finish, concrete floors, 17, 21, 22 pavement machine, 9 Fir, Douglas, 90, 91 Floor finishes, concrete, 21, 22 load tests, 18, 42 Forms, concrete, 15, 19 removal of, 15 Fort Peck sampler, 103 Foundations on soil, 82-84 borings for, 100 piles, 84-88 Frogs, 233 Frost protection, concrete, 18 Fuller's rule, 24 Functions, of 1° circular curve, 208 of transition curves, 224, 225 trigonometric, 289-292

Gage, wire and sheet metal, 58, 59 wire mesh, 39 Gallons, bitumen required, paving, Gneiss, 50, 52 Grader, motor patrol, 4 Grading, 138 Granite, 50, 51 Gravel, definition, 108

500	
Gravel, identification, 108, 109 Greenheart, 90, 9i	Joint filler, sampling, 10 sealer sampling, 10
H	K
Hardwoods, 92, 93 Hemlock, Eastern, 90, 91	Knots, rope, 98
Highways, see Roads Hooks for reinforcement, 40	L
Horizons of soils, 109	Land measure, 283
I	Larch, 90, 91
Inspection, bituminous paving, 139-	Latitudes and departures, 244–247 plotting, 278, 279
164	Layout, circular curves, 249, 250
bridges, 75–80	construction, 197–201
concrete, 10-48 grading, 138	transition curves, 217–226
masonry, 49–52	vertical curves, 227–232 Length, transition curves, 219
painting, 81, 82	Level, adjustments, 268–276
pile driving, 84–88	allowable errors, 250, 251
pipe laying, 179, 180	dumpy, 257
soils, 99, 133 steel, structural, 53–63	notes, 194, 242
timber, 89–96	wye, 258
welding, 64, 74	Lime for mortar and masonry, 49 Limestone, 51, 52
wood, 89–96	Lineal shrinkage, soils, 111, 114
Inspectors' check lists, bituminous	Linear feet covered, paving, 155, 157
paving, 141-149	Liquid limit, soils, 110, 113
concrete, 13–21 foundations, 84	Load tests, concrete, 18, 42
grading, 138	piles, 87 soil, 82, 83
masonry, 49	Logarithms, numbers, 294, 295
painting, 81, 82	trigonometric functions, 292
pile driving, 84, 85 pipe laying, 179, 180	
sanitary, 165	M
structural steel, 53, 54	Macadam, 145
welding, 70, 71	material required, 159
wood and timber, 94, 95	Manila rope, 97
Inspectors' report forms, airport run-	Maple, 93
ways, 184, 185 bituminous paving, 160–164	Mapping, 277–282
bridges, existing, 78, 79	Marble, 50, 51 Marking concrete samples, 11, 13
concrete, 43–48	Masonry, equipment for inspector, 49
general construction, 186, 187	identification of stone, 50-52
pile driving, 88 pipe laying, 181	mortar for, 49, 50
soils, 126–133	preparation for painting, 81, 82
structural steel, 60–63	Maximum density, soils, 117-119 McKiernan-Terry pile hammers, 86
welding, 62, 63, 72–74	Engineering News formula, 85, 86
wood preservation, 96	Mechanical analysis, aggregates, 134,
Inspectors' time record, 182 Invar tape, 276	135
Iron, identification, 71	bituminous paving, 141
Isogonic chart, 254, 255	soils, 124, 125, 133 Mesh reinforcement, 39
r	Metric curves, 212
J	Minutes in decimals of a degree, 207,
Job power, 189–191	293
Joint assemblies, concrete pavements, 19	M.I.T. soil classification, 109
10	Mixer, concrete, 7, 8

Mixes, concrete, 23-39
Mixing concrete, 15, 16
ready-mixed, 16
Mix-in-place, bituminous, 143
Moisture determination, calculations, 126, 127
soils, 115-123
Moran and Proctor sampler 103
Mortar for masonry, 49
Muck, 108

N

Natural trigonometric functions, 289–291
North, determination of, 252
Notes, surveying, 193, 194, 242, 250
Numbers, logarithms of, 294, 295

 ϵ

Oak, 92 Omitted side problem, 247, 248 Optimum moisture, soils, 117–119

P

Painting, 81, 82 Parabolic, curves. 227-232 Parallax adjustment, 261 Pat test, sheet asphalt, 140 Pavement, bituminous, inspection of, 139 - 164concrete, inspection of, 19 concrete paver, 7 finishing machine, 9 reports, 46-48, 160-164 Pay items, bituminous paving, 146, concrete, 18 Payroll record, 183 Peat, 109 Penetration macadam, 145 material required, 159 Penetration test, asphalt, 140 Piles, driving, 84-88 inspection of existing, 75, 76 Pine, Eastern white, 90, 91 long leaf yellow, 90, 91 short leaf yellow, 90, 91 Pipe, cast-iron, 175, 176 cement-asbestos, sewer, 166 water, 179 check list for inspectors, 179, 180 clay, 167, 168 concrete, 170-174 corrugated metal, 169 joint materials, water, 177 laying, 179, 180 reports, 181

Pipe, stakeout of, 201 steel, 178 Pipe line, stakeout, 201 Piston samplers, 103 Placing concrete, 16 Plant mix, bituminous, 146–149 Plaster, preparation for painting, 82 Plasticity index, soils, 110, 114 Plate adjustment, transits, 265 Plotting, topography, 279–282 traverses, 277–279 Polaris, elongation, 253 observation of, 252 Power shovel, 3 P.R.A. soil classification, 110, 111 Preservation, wood, report, 96 Prime coats, bituminous, 142 Prismoidal corrections, 240, 241 Proctor needle plasticity test, 117-119 Profile map, soils, 104, 105 Protractor plotting, 277, 279 Pulvi-mix, 6 Pumping, concrete, 17 Pycnometer, 116

0

Qualification test, welders, 65 Ouicklime, 49

Quicklime, 49 Radius, circular curves, 202-206, 210-215transition curves, 217–226 Railroad, crossovers, 233 curves, 204, 205 frogs, 233 stakeout, 199 switches, 233 turnouts, 233 Ready-mixed concrete, 16 Reinforcement, area per foot, 41 beam widths for, 40 hook dimensions, 40 inspection of, 15, 19 mesh, 39 sampling, 10 sizes of, 40 Report forms, aggregate analysis, 137 airport runways, 184, 185 bituminous paving, 160–164 bridges, existing, 78, 79 concrete, 43-48 contractors, daily, 188 expense record, 183 general construction, 186, 187 payroll, 183

pile driving, 88

pipe laying, 181

Report forms, soils, 126-133 steel, structural, 60-63 time sheet, inspector's, 182 welding, 62, 63, 72-74 wood preservation, 96 Road mix, bituminous, 143 Roads, borings for, 100, 104 stakeout, 198 Roller, sheepsfoot, 5 tandem, 6 three-wheel, 5 Rope, knots, 98 strengths, 97 wire, 97

S

Sag curve, 228 in taping, 276 Sampling, bituminous paving, 139 concrete, 10, 11 soils, 99–107 Sand, colorimetric test, Fig. 17 definition, 108 for concrete, Fig. 17 identification, 108, 109 sampling of, 10 storage and handling, Fig. 16 Sand-aggregate ratio, 24 Sandstone, 51, 52 Sanitary construction, 165 pipe, 166-181 Schist, 50, 52 Seal coat, bituminous, 143 Seconds in decimals of a minute, Section modulus, steel, 55–57 wood, 89 Sewer pipe, cement-asbestos, 166 clay, 167, 168 concrete, 170, 171, 174 laying, 179, 180 male, 52 theet asphalt, pat test, 140 sampling, 139 Short-radius curves, 213-215 Shovel, 3 Shrinkage limit, soils, 110, 114 Shrinkage ratio, soils, 111, 114 Sieve analysis, aggregate, 134, 135 soils, 124, 125 Signals for surveyors, 297 Sit, definition, 108 identification, 108, 109 ın aggregate, 135 Sisal rope, 97 Skimmer, 3 Slate, 52 Slump test, 12 recommended, 23

Soft woods, 90, 91 Soils, 99-133 airport test pits, 106 analysis of, 108-125 Atterberg limits, 110, 113 augers, 99, 101 bearing capacity, N.Y. City code. borings, 99, 100, 107 C.B.R., 120 centrifuge moisture equivalent, 111 Chapman flask, 117 classification, 108-125 compaction recommended, 123 inspection, 138 effective size, 125 exploration, 99-107 field density test, 120-123 field moisture equivalent, 111 foundation inspection, 82–84 horizons, 109 hydrometer analysis zone, 109 identification of principal types, 108, 109 lineal shrinkage, 111, 114 liquid limit, 110, 113, 114 load tests on, 82, 83 mechanical analysis, 124, 125 M.I.T. classification, 109 mixtures, 112 moisture-density relations, 119, 123 moisture determination, 115, 116, optimum moisture, 117-119 origin of, 112 plastic limit, 113, 114 plasticity index, 110, 114 P.R.A. classification, 110, 111 Proctor needle, 117–119 profile map, 104, 105 pycnometer, 116 reports, 126-133 right-angle soil chart, 112 samplers, 100, 102 sampling, 99–107 shrinkage limits, 110, 114 shrinkage ratio, 111, 114 sieve analysis, 124, 125 size of samples, 100 sounding rod, 99, 102 specific gravity, 116, 117 subgrade, 111 test pits, 99-101, 106 uniformity coefficient, 125 unit weight test, 120-123 U.S. Bureau of Soils, grain sizes, 109wash borings, 99, 102 Sounding rod, 99, 102

C 10	I Companion desired assistant
Specific-gravity determination, aggre-	Surveying, decimal equivalent, com-
gate, 134	mon fractions, 296
soils, 115–117	double centering, 248
Spiral curves, 217–226	double end area volumes, 235–239
Spruce, Eastern, 90, 91	double meridian distance, 244–247
Stadia notes, 193, 194	earth work, 234–241
tables, 195, 196	elongation of Polaris, 252, 253
Stakeout, circular curves, 249, 250	errors, allowable, 250-252
construction, 197-201	highway stakeout, 198
transition curves, 217–226	instruments, 256–276
vertical curves, 227-232	isogonic charts, 254, 255
Standard beams, structural steel,	land measure, 283
55	layout, 197-201, 249, 250
Steel, bridges, existing, 76	level, adjustments, 268–276
gages, 58, 59	notes, 194, 242
identification, 71	
	logarithms, numbers, 294, 295
pipe, 178	trigonometric functions, 292
reinforcement, area per foot, 41	mapping, 277–282
beam widths for, 40	minutes in decimals of a degree, 293
hook dimensions, 40	north, determination of, 252, 253
inspection of, 15, 19	notes, 193, 194, 242, 250
mesh, 39	pipe line stakeout, 201
sampling, 10	Polaris, 252, 253
sizes of, 40	prismoidal corrections, 240, 241
structural, 53–63	railroad stakeout, 199
check list for inspectors, 53, 54	railroad turnouts and crossovers,
equipment for inspectors, 53	233
reports, 60–63, 72–74	signals, 297
sections, 55-57	stadia tables, 195, 196
tape, 276	stakeouts, 197–201, 249, 250
Storage, concrete aggregates, Fig. 16	taping, 276
Structures, stakeout, 197	three level sections, 234
Subgrade, classification of, 111	topographic, 193, 194
for concrete pavement, 19	transit, adjustments, 260-267
Summit curve, 227	notes, 193, 194, 250
Surface, exposed concrete, 17	notes, 193, 194, 250 problems, 243–252
for painting, 81, 82	stakeout with, 197-201
water on aggregates, 33, 134	traverse, areas, 244-247
Surveying, adjustments, 256-276	plotting, 277–279
airfield stakeout, 200	trigonometric formulas, 283-288
angles by repetition, 243	trigonometric functions, 289-292
areas, double end, 235-239	vernier, 255
double meridian distance, 244-247	Switches, 233
bucking-in, 248, 249	Symbols, mapping, 280, 281
building stakeout, 197	Ojmbois, mapping, 200, 201
curves, 202–232	m
arc definition, 202, 203	T
	Tack coats, bituminous, 143
areas, 216 chord definition, 204, 205	Tag, beam and cylinder, 13
circular, 202–212	Tangante for circular curres 202-212
	Tangents, for circular curves, 202–213
layout of, 249, 250	for transition curves, 217–226
maximum curvature, roads, 204	for vertical curves, 227–232
metric, 212	plotting by, 277, 278
minimum curvature, roads, 204	Taping, 276
parabolic, 227–232 railroad, 204	Tar, sampling, 139
ranroad, 204	tables, 152–159
short-radius, 213–215	tests, 141
spiral, 217–226	use of, 150
transition, 217–226	Telescope adjustments, levels, 272, 274
vertical, 227–232	transit, 263–265

Unit weight test, aggregate, 136

concrete, 12 soils 120-123

U.S. Bureau of Soils, classification Tension for taping, 276 Test pits, 99-101, 106 Tests, beams, concrete, 11 bituminous paving, 140, 141 colorimetric, Fig. 17 \boldsymbol{v} concrete, reports on, 45-48 Vernier, 255 cylinders, concrete, 11 Vertical curves, 227–232 load, on piles, 87 circle adjustment, transit, 265 on soil, 82, 83 of soils, 113–123 Volume, bituminous materials, 156, slump, concrete, 12 double end area, 235-239 unit weight, concrete, 12 paving aggregates, 156 welding, 65 Three level sections, 234 W Timber, 89-96 Time sheet, inspector's, 182 Wash borings, 99, 102 Tons, aggregate required, paving, 153 Water, absorption by aggregates, 33, Topography, mapping, 277–282 notes, 193, 194 136 maximum for concrete, 23 plotting, 279, 282 stadia tables, 195, 196 sampling for concrete, 11 surface, on aggregates, 33, 134 surveys, 193 symbols, 280, 281 Water-cement ratio, 23, 25-32 Weight, bituminous materials, 156 Transit, adjustments, 260-267 paving aggregates, 156 allowable errors, 251, 252 notes, 193, 194, 250 problems, 243–252 pipe, 166–179 Welding, 64-74 acceptable profiles, 67 stakeout with, 197-201 current, 70 Transit mixers, 8, 16 defective profiles, 67 Transite pipe, 166, 179 electrodes, 68, 69 equipment for inspection, 70 Transition curves, 217-226 Trap rock, 50, 51 fillet weld gages, 67 positions, 66 Traverses, double meridian distance, 244 - 247processes, 64, 65 errors, allowable, 251, 252 qualifications of welder, 65 notes for, 193, 194 omitted side, 247, 248 plotting, 277–279 Trencher, 7 reports, 62, 63, 72-74 weld characteristics, 66 Wire gages, 58, 59 mesh, 39 Trigonometric formulas, 283–288 rope, 97 functions, 289–292 Turnouts, 233 sampling, 10 Wood, 89-96 Wye level, 258 Uadjustments, 268-274 Uniformity coefficient, soils, 125

Y

Yield of concrete, 34-39

