Olympiades FANUC Ingénieur Équipe CentraleSupelec

CARVALHO BÜRGER Karoline DE JESUS RODRIGUES Tiago ELLER CRUZ Rafael NOGUEIRA Rafael Accácio

Summary:

- 1 Problem description;
- 2 Solution description;
- 3 Results;
- 4 Conclusion.

1 – Problem description

Project objective:

➤ Optimize the present distribution of a palletizing system of a factory

Original Surface

Pallet and boxes

1 – Problem description

Main constraints to be followed:

- Reduce by 2 the original surface (3.6 x 3.6 m)
- > Data provided: dimension of the fixtures, velocity, flow
- > Safety: DCS

2 – Solution description

- 2.1 -Robot choice;
- 2.2 Robot and fixtures positioning;
- 2.3 Robot trajectory and programming;
- 2.4 Robotic cell inputs and outputs;
- 2.5 Operational safety considerations.

2.1 – Robot choice

We need to analyze the problem specifications

2.1 – Robot choice

- ➤ Robot application => Palletizing;
- ➤ Payload => Gripper + Box (70 kg)

> Range of action

1812.19 mm

➤ Production throughput => 411 products per hour; one box each 8.76 seconds;

The chosen one...

R-1000iA/80H

Number of axis	5
Reach	2230 mm
Load capacity	80 kg

2 – Solution description

- 2.1 Robot choice;
- 2.2 Robot and fixtures positioning;
- 2.3 Robot trajectory and programming;
- 2.4 Robotic cell inputs and outputs;
- 2.5 Operational safety considerations.

2.2 – Robot and fixtures positioning

Problematic: size of the conveyors.

Solution:

verticalization!

2.2 – Robot and fixtures positioning

2.2 – Robot and fixtures positioning

2 – Solution description

- 2.1 Robot choice;
- 2.2 Robot and fixtures positioning;
- 2.3 Robot trajectory and programming;
- 2.4 Robotic cell inputs and outputs;
- 2.5 Operational safety considerations.

Register points

Offsets

PR[1]	Initial point (P1 + PR[2])
PR[2]	Pick-up approach vertical distance (150 mm)
PR[3]	Collision avoidance vertical distance when picking a new box (350 mm)
PR[4]	Next-box position marker
PR[5]	Release approach vertical distance (150 mm)
PR[6]	Collision avoidance vertical distance when releasing one box in the pallet (350 mm)

Trajectory

Trajectory

Robot programming

Important issues: Payload (1) Empty gripper (2) Gripper + box

2 – Solution description

- 2.1 Robot choice;
- 2.2 Robot and fixtures positioning;
- 2.3 Robot trajectory and programming;
- 2.4 Robotic cell inputs and outputs;
- 2.5 Operational safety considerations.

Inputs

DI[1]	Box available to be picked
DI[3]	Empty pallet available before the charge zone
DI[4]	Pallet available to be charged
DI[5]	Charged pallet available to be removed

Outputs

DO[2]	Turn on the conveyor to take the empty pallets to the charge zone
DO[3]	Turn on the conveyor to take the charged pallets to the removing zone
DO[5]	Turn on the box conveyor to take the boxes to the pick-up position
D0[6]	Turn on/off the gripper

2 – Solution description

- 2.1 Robot choice;
- 2.2 Robot and fixtures positioning;
- 2.3 Robot trajectory and programming;
- 2.4 Robotic cell inputs and outputs;
- 2.5 Operational safety considerations.

Risk assessment

- > Access to the pallets
- > Falling objects
- > Maintenance

Risk assessment

- > Access to the pallets
- > Falling objects
- > Maintenance

Risk assessment

- > Access to the pallets
- > Falling objects
- > Maintenance

First Solution: Fence

Problems:

- ➤ Lack of protection
- > Fence area

Solution: Dual Check Safety Cartesian Position Check

Solution: Interlock Switch

3 – Results & Performance

- 3.1 Security;
- 3.2 Surface;
- 3.3 Production Throughput;
- 3.4 Budget.

Compliance with ISO 13849-1:

Assessed sources of Risks

Evaluation of the risks posed by each one (PLr)

Is the proposed solution adequate $(PL \ge PLr)$?

Compliance with ISO 13849-1:

Compliance with ISO 13849-1:

Source de Risque	\mathbf{s}	F	P	PLr
Accès des palettes	S2	F2	P1	PLd
Maintenance	S2	F1	P1	PLb
Chute d'objets	S1	F2	P1	PLb

Compliance with ISO 13849-1:

Function name	Standard/Optional	ISO13849-1/IEC61508
Joint Position Check Function	Option A05B-2600-J567	Category 3 PL d SIL 2

3 – Results & Performance

```
3.1 – Security;
```

- 3.2 Surface;
- 3.3 Production Throughput;
- 3.4 Budget.

3.2 – Surface

Total Area: 7.47 m²

Equivalent to 57.61% of initial area

3.2 – Surface

Working surface: 5.33 m²

Equivalent to 41.14% of initial area

3 – Results & Performance

```
3.1 – Security;
```

- 3.2 Surface;
- 3.3 Production Throughput;
- 3.4 Budget.

3.3 – Production Throughput

720 boxes / hour *

About 75% more than the original cell throughput

3 – Results & Performance

```
3.1 – Security;
```

- 3.2 Surface;
- 3.3 Production Throughput;
- 3.4 Budget.

3.4 - Budget

Centrale Supélec

Robot R-1000iA/80H + R-30iB Controller and DCS Module

About 45000 + 2000 €

3.4 - Budget

Suction Gripper

About 700 €

Merely illustrative

3.4 - Budget

Elements	Price
Robot R-1000iA/80H	45000 €
DCS Module	2000 €
Suction Gripper	700€
Total	47700€

4 – Conclusion

- > Faster than expected
- > Considerably cheap
- Less than 50% of initial surface
- > Software maintainability

Thank you for your attention! Any questions?

