Homework Assignments #5

Due: 2020/06/12 24:00

Assessment policy:

- Give full points when correct, 1/n for solving each n subproblems. 0 for totally wrong or none, -1 for each errors.
- There may be partial points for proofs if the direction is correct.

1. Strongly Connected Components

We want to compute strongly connected components of the graph G below.

Having the pseudocode for computing STRONGLY-CONNECTED-COMPONENTS, we will

STRONGLY-CONNECTED-COMPONENTS (G)

- 1 call DFS(G) to compute finishing times u.f for each vertex u
- 2 compute G^{T}
- 3 call DFS(G^{T}), but in the main loop of DFS, consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
- (a) Represent graph G in an adjacency-list representation. Assume that each adjacency list is ordered alphabetically. (2 pts)

(b) Apply DFS procedure for the graph, printing out the discovered / finished time for each vertex. Also classify each edges, into one of tree / back / forward / cross edge. Assume that vertices are iterated in alphabetical order. (5 pts)

The figure used in the slide:

The DFS procedure used in the slide is as follows:

```
DFS-VISIT(G, u)
DFS(G)
                                    1 /\!\!/ white vertex u has just been discovered
1 for each vertex u \in G.V
                                    2 \quad time = time + 1
^{2}
       u.color = WHITE
                                    3 \quad u.d = time
3 \quad time = 0
                                    4 u.color = GRAY
  for each vertex u \in G.V
                                    5 // explore edge (u, v)
5
       if u.color == WHITE
                                    6 for each v \in G.Adj[u]
6
            DFS-VISIT(G, u)
                                    7
                                            if v.color == WHITE
                                    8
                                                 DFS-VISIT(G, v)
                                    9 // finished
                                   10 u.color = BLACK
                                   11 \quad time = time + 1
                                   12 u.f = time
```

(c) The transpose of a directed graph $G=(V,E)$ is the graph $G^T=(V,E)$	E^T), where
$E^{\mathrm{T}} = \{(v,u) \in V imes V : (u,v) \in E\}.$	

Compute $\mathrm{DFS}(G^T)$, and represent the answer in the figure as in (b). Consider the in order of decreasing $u. f. (3 \ pts)$

(d) Using the results above, show the strongly connected components of G, by printing out the vertices of each component in each line. Also draw a component graph $G^{\rm SCC}$, which contracts all edges whose incident vertices are within the same strongly connected component of G. (3 pts)

2. Shortest paths

Consider the following graph:

(a) Apply Dijkstra's shortest-path algorithm on the graph, using vertex z as the source. Show the d and π values for each pass. (5 pts)

DIJKSTRA
$$(G, w, s)$$

1 INITIALIZE-SINGLE-SOURCE (G, s)

2 $S = \emptyset$

3 $Q = G.V$

4 while $Q \neq \emptyset$

5 $u = \text{EXTRACT-MIN}(Q)$

6 $S = S \cup \{u\}$

7 for each vertex $v \in G.Adj[u]$

8 RELAX (u, v, w)

d:

	S	t	x	y	z
0	∞	∞	∞	∞	∞
1					
2					
:					

	S	t	x	y	z
0	NIL	NIL	NIL	NIL	NIL
1					
2					
÷					

(b) According to (a), what is the shortest path from vertex z to x? Prove or disprove that the result is correct. (5 pts)