LITERATURE SURVEY

Hazardous Area Monitoring for Industrial Plant powered by IoT

TEAM LEADER: S.SHARMILA

TEAM MEMBER 1: E.SANTHAKUMAR

TEAM MEMBER 2: M.SHARMI

TEAM MEMBER 3: G.V.PRETHISH RAJ

S.No	TITLE	AUTHOR & YEAR	ABOUT THE PAPER	RESULT
1.	On the evaluation of DHT22 temperature sensor for IoT Application	Yasser Asrul Ahmad, Teddy Surya Gunawan, Hasmah Mansor, Belal Ahmed Hamida, Adam Fikri Hishamudin, Fatchul Arifin 2021	The IoT temperature monitoring system utilizing the DHT22 sensor provides accurate measurement up to 0.10C but a slower response in detecting temperature change	It is observed that the DHT22 sensor with Raspberry Pi configuration in an IoT configuration provides accurate temperature measurement up to 0.1 deg Celsius.
2.	Design and Implementati on of IoT System for Aeroponic Chamber Temperature Monitering	Charisma Aulia Jamhari, Wahyu Kunto Wibowo, Aulia Rahma Annisa, Teuku Muhammad Roffi 2020	This work presents a design and implementation of a labscale aeroponic system that employs the Internet of Things (IoT) for online and automated monitoring capability. The temperature in this chamber was carefully monitored by using the DHT-11 sensor connected to the internet through the Wemos-D1-mini integrated microprocessor and Wifi module.	The system performed real-time, online monitoring of key parameters, i.e. humidity, temperature, and light intensity. Without any control, the root chamber temperature reached 32.9 °C.
3.	An IoT-based Temperature Monitoring System for Underground Cable Tunnels	Meng-Fu Chen1, Huan-Chieh Chiu1, Kai- Sheng Tseng1, Yu-Cheng Yang1, Cheng-Ying Chou1, Joe-Air Jiang 2019	This paper proposes an IoT-based underground tunnel temperature monitoring system in which the wireless transmission method used is after the experiment. Temperature sensing nodes are placed in an underground tunnel, and then a gateway collects sensed data and sends them to a database.	Since there is no stable power source in the underground tunnel, the temperature measurement node in the system can only use the battery as the sole source of power. Therefore, node energy consumption is the key to the long-term operation of the system.
4.	New alternatives to manage hot surface ignition temperatures for trace heating in explosive atmospheres	Dan Caouette,Jim Parks Jr,Matt Aurini 2017	This paper will present alyernative methods to deal withimproved heater constructions and controller algorithms. Used with engineering design software that can accurately predict heatersurface temperatures, these options provide the design engineer with improved flexibility in creating solutions.	Design of THS used in hazardous areas can be a major challenge, when maintaining temperatures approaching the temperature classification limit. The resulting benefits include fewer trace heater

	1			
				passes per unit length
				of pipe, lower
				installation and
				maintenance costs,
				and a better match of
				owe output needs to
				the system heat loss.
				In many causes, the
				reduction in trace
				heater length can be
				as much as 50% over
				traditional design
				approaches.
5.	MQTT Based	Ravi Kishore	We will be able to monitor	It can be said that in
	Environment	Kodali and Aditya	critical safety parameters of the	the years to come there
	Monitoring In	Valdas	working environment in these	will be a massive
	Factories for	2017	factories so that we are well-	improvement in the
	Employee		aware of the safety situation and	safety standards in
	Safety		the possibility of occurence of	hazardous factories so
			any mishap. For the design of this	that employees can
			system, we use an ESP8266 Wi- Fi chip enabled microcontroller	work peacefully without the risk of loss
			NodeMCU. To this are connected	of life hanging over
			three sensors - one to monitor	their heads.
			temperature and humidity (DHT	then neads.
			sensor), an ultrasonic sensor (
			HC-04) and a smoke sensor(
			MQ2 sensor).	
6.	Demonstrator	Martin Degner,	The demonstrator shows a	This work
	for online	Hartmut Ewald	wide concentration dynamic	demonstrate the
	measurement	2017	range of some 1000 ppm and a	functionality of
	of		resolution of below 1 ppm for	catalytic converters
	combustion		all three gases. Such a sensor	and the actual
	gases NO,		system can be used for online	emission problems of
	NO2 and		emission monitoring of	modern Diesel- as
	SO2		combustion engines in	well as Otto-engines.
			transportation area as well as	The lack of a
			in stationary industry	compact and cost
			application.	effective sensor for
				the individual
				detection of NO and
				NO2 for monitoring
				and well-directed
				engine control
				application.
7.	Fabrication	Xiaoyi Mu,	This paper introduces a	The electrode
	of a	Student Member,	microfabrication process that	structure occupies a
	Miniaturized	IEEE, †Zhe	enables miniaturized, rapid	2mm×2mm sensing
	Room	Wang, †Min Guo,	response, gas sensors to be	area, only 8% of the
	Temperature	†Xiangqun Zeng,	realized using RTIL interfaces	area in the macro-
	Ionic Liquid	Andrew J. Mason	on a permeable membrane	scale device. WE and
i .			1 a permenere memorane	und

	Gas Sensor	2012	substrate with planar	CE were
	for Human	2012	microfabricated electrodes. An	interdigitated for
	Health and		RTIL sensor with a	impedance
				measurement with a
	Safety		2mm×2mm sensing area is	
	Monitoring		described, and measured	200 µm width and a
			responses to methane, a	100μm gap, and an
			dangerous residential and	RE was included to
			occupational gas, and sulfur	improve
			dioxide, a common	electrochemical
			environmental pollutant.	stability
8.	Evaluation of	Velavarthy	We provide a survey of the	The energy of a
	Routing	Neehaarika,	performances of basic routing	nodes decays at a
	Protocols	Sanampudi	protocols namely AODV,	slower rate in case of
	used in	Sindhura	DSDV, DSR when employed	DSDV when
	Wireless	2011	in the aforementioned scenario	compared to the
	Sensor		having 85 sensor nodes. The	other two protocols
	Networks		above mentioned routing	(AODV, DSR).
	Monitoring		protocols are tested for their	DSDV also shows
	Temperature		efficiency, optimal energy use	better Delivery Ratio
	in		and reliability using Network	compared to the
	Composting		Simulator-2 (NS2).	other protocols
	Heaps			tested.