ЗАДАЧА БАЛАНСНОЙ КОМПОНОВКИ 3D-ОБЪЕКТОВ: МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И МЕТОДЫ РЕШЕНИЯ

Аннотация. Построена обобщенная математическая модель задачи оптимальной компоновки 3D-объектов (шары, прямые круговые цилиндры, прямые правильные призмы, прямые прямоугольные параллелепипеды) в контейнере (прямой круговой цилиндр, параболоид вращения, усеченный круговой конус) с круговыми стеллажами. Учтены допустимые расстояния между объектами и ограничения поведения механической системы (ограничения равновесия, моментов инерции, устойчивости). Предложены методы решения на основе *r*-алгоритма Шора, мультистарта и ускоренного перебора концевых вершин дерева решений.

Ключевые слова: задача балансной компоновки, *phi*-функция, квази-*phi*-функция, допустимые расстояния, ограничения поведения, нелинейное программирование, *r*-алгоритм Шора.

ВВЕДЕНИЕ

Оптимизационные 3D-задачи компоновки возникают при проектировании ракетно-космической техники [1]. Их отличительной чертой является учет ограничений поведения (behavior constraints) спутниковой системы. Ограничения поведения задают требования на такие механические свойства системы, как равновесие, инерционность и устойчивость. Многие публикации посвящены исследованию задач компоновки оборудования в модульных отсеках космических кораблей или спутников. Так, например, задачи компоновки объектов для упрощенной схемы спутникового модуля с учетом ограничений поведения рассматривались в работах [1–4]. Данные задачи относятся к классу NP-сложных [5].

Для построения адекватных математических моделей задач оптимальной компоновки в виде задач нелинейного программирования актуально аналитическое описание специальных ограничений: ограничений размещения (непересечение объектов, включение объектов в контейнер с учетом минимально и максимально допустимых расстояний) и ограничений поведения (ограничения равновесия, моментов инерции и устойчивости). Как известно, эффективным средством математического моделирования отношений геометрических объектов в классе задач размещения является метод *phi*-функций Стояна. Данный метод позволяет применять для решения оптимизационных задач размещения методы негладкой оптимизации [6, 7] и нелинейного программирования [8]. В работах [9–13] приведены свободные от радикалов *phi*-функции и квази-*phi*-функции для классов 2D- и 3D-объектов. С использованием этих функций предложены математические модели некоторых видов задач балансной компоновки, описанные в [13, 14].

В данной статье рассматривается задача балансной компоновки в следующей постановке: разместить 3D-объекты в контейнере с круговыми стеллажами с учетом специальных ограничений так, чтобы функция цели достигала своего экстремального значения. Объектами являются шары, прямые круговые цилиндры, прямые правильные призмы, прямые прямоугольные параллелепипеды. В качестве контейнера Ω выбирается прямой круговой цилиндр, параболоид вращения или усеченный круговой конус.

Цель данной работы — построение обобщенной математической модели балансной компоновки 3D-объектов в контейнере в виде задачи нелинейного программирования с негладкими функциями. Из такой модели можно получить различные варианты задач балансной компоновки, которые определяются разнообразием пространственных форм объектов и контейнеров, видом функции цели, а также наличием специальных ограничений, обозначенных выше.

© А.А. Коваленко, Т.Е. Романова, П.И. Стецюк, 2015

контейнеры и объекты

Пусть Ω — контейнер высотой H. Задаем Oxyz в качестве неподвижной системы координат контейнера Ω , где Oz — продольная ось симметрии Ω , начало системы Oxyz находится в центре симметрии нижнего основания S_1 контейнера Ω . Полагаем, что Ω разделен круговыми стеллажами S_k , $k=1,2,\ldots,m$, на подконтейнеры Ω^k , $k=1,2,\ldots,m$, где S_1 — нижнее основание контейнера Ω (также может рассматриваться в качестве стеллажа). Обозначим t_k расстояние между стеллажами S_k и S_{k+1} . В качестве контейнера рассматриваются: $\Omega \equiv \mathbb{C}$, \mathbb{C} — прямой круговой цилиндр с основанием радиуса R (рис. 1,a); $\Omega \equiv \Lambda, \Lambda$ — параболоид вращения с основанием радиуса R (рис. $1,\delta$); $\Omega \equiv \mathbb{E}$, \mathbb{E} — усеченный круговой конус с радиусами R_1 и R_{m+1} нижнего (S_1) и верхнего (S_{m+1}) оснований соответственно (рис. $1,\delta$).

Семейство $A=\{A_i,i=1,2,\ldots,n\}$ объектов, размещаемых в контейнере Ω , состоит из объектов, среди которых: шары $\mathbf{S}_i,\ i\in I_1=\{1,2,\ldots,n_1\}$ радиуса r_i (рис. 2,a); прямые круговые цилиндры $\mathbf{C}_i,\ i\in I_2=\{n_1+1,\ldots,n_1+n_2\}$, с метрическими характеристиками (r_i,h_i) , где r_i — радиус основания, h_i — полувысота \mathbf{C}_i (рис. $2,\delta$); прямые правильные призмы $\mathbf{K}_i,\ i\in I_3=\{n_1+n_2+1,\ldots,n_1+n_2+n_3\}$, с метрическими характеристиками (v_i,r_i,h_i) , где v_i — число вершин правильного многоугольника в основании $\mathbf{K}_i,\ r_i$ — радиус оснований цилиндра, описанного около $\mathbf{K}_i,\ h_i$ — полувысота (рис. $2,\delta$); прямые прямоугольные параллелепипеды $\mathbf{P}_i,\ i\in I_4=\{n_1+n_2+n_3+1,\ldots,n_1+n_2+n_3+n_4=n\}$, с метрическими характеристиками (w_i,l_i,h_i) , где w_i — полудлина, l_i — полуширина, h_i — полувысота \mathbf{P}_i (рис. $2,\delta$). При этом $r_i< R,\ h_i\leq H,\ h^k\leq t_k,\ h^k=\max\{h_i^k,\ i\in I^k\}$.

Каждый объект A_i задается в собственной системе координат $O_i x_i y_i z_i$ следующим образом: начало O_i системы координат находится в центре симметрии объекта A_i , а оси $O_i x_i$, $O_i y_i$, $O_i z_i$ являются осями его симметрии, при этом каждая ось $O_i z_i$ параллельна оси O_z неподвижной системы координат.

Контейнер Ω разделен круговыми слеллажами S_k на подконтейнеры Ω^k , $k=1,2,\ldots,m$. Осуществим разбиение объектов семейства A на подмножества $A^k=\{{\bf S}_i\,,i\in I_1^k\,,{\bf C}_i\,,i\in I_2^k\,,{\bf K}_i\,,i\in I_3^k\,,{\bf P}_i\,,i\in I_4^k\,\}$, $I^k=\{I_1^k\,\cup I_2^k\,\cup I_3^k\,\cup I_4^k\}$ в соответствии с требованием размещения объектов внутри подконтейнеров Ω^k , $k=1,2,\ldots,m$. Контейнер Ω с упакованными в нем объектами назовем системой Ω_A . Примеры систем Ω_A приведены на рис. 3. Для Ω_A задается система координат

 $Puc.\ 1.\$ Виды контейнера Ω : прямой круговой цилиндр (a); контейнер параболоидной формы (δ) ; прямой круговой усеченный конус (s)

Рис. 2. Виды объектов множества A: шар (a); прямой круговой цилиндр (δ); прямая правильная призма (s); прямой прямоугольный параллелепипед (ε)

Рис. 3. Компоновка объектов: в цилиндрическом контейнере при m=2 (a); в параболическом контейнере при m=3 (δ)

 O_S XYZ, в которой ее начало O_S расположено в центре масс системы Ω_A , а оси O_S X, O_S Y, O_S Z параллельны осям O_S , O_S QZ соответственно.

Расположение объектов семейства A внутри контейнера Ω определяется переменными параметрами размещения $u_i = (x_i, y_i, z_i, \theta_i)$ относительно системы координат Oxyz, где (x_i, y_i, z_i) — вектор трансляции объекта A_i , а θ_i — угол поворота A_i -го объекта в плоскости $O_ix_iy_i$ (рис. 4). Таким образом, вектор переменных $u = (p, u_1, u_2, ..., u_n) \in \mathbb{R}^{\xi}$, $\xi \leq 4n+1$, определяет в \mathbb{R}^3 размещение элементов семейства A внутри контейнера Ω , где p — переменная метрическая характеристика контейнера Ω .

 $\mathit{Puc.}$ 4. Положение системы координат $O_i x_i y_i z_i$ относительно Oxyz

Полагаем, что заданы минимально и максимально допустимые расстояния ρ_{ij}^-, ρ_{ij}^+ между каждой парой объектов $A_i^k \in A^k$ и $A_j^k \in A^k$, $i,j \in I^k$, $i \neq j$, а также минимально и максимально допустимые расстояния ρ_i^-, ρ_i^+ между каждым элементом $A_i^k \in A^k, i \in I^k$, и боковой поверхностью подконтейнера Ω^k соответственно.

Задача балансной компоновки 3D-объектов. Необходимо упаковать 3D-объекты из множества *A*

в контейнере Ω с круговыми стеллажами S_k , $k=1,2,\ldots,m$, так, чтобы заданная функция цели F достигала своего экстремального значения при учете специальных ограничений: ограничений механического поведения системы Ω_A ; ограничений на минимально ρ_{ij}^- , ρ_i^- и максимально ρ_{ij}^+ , ρ_i^+ допустимые расстояния.

Для построения математической модели поставленной задачи необходимо формализовать (описать в аналитическом виде) ограничения размещения и ограничения поведения.

ОГРАНИЧЕНИЯ РАЗМЕЩЕНИЯ

В задаче балансной компоновки 3D объектов ограничениями размещения являются: непересечение объектов A_i^k и A_j^k , т.е. int $A_i^k \cap \operatorname{int} A_j^k = \emptyset$; включение объекта A_i^k в контейнер Ω , т.е. $A_i^k \subseteq \Omega$. Для моделирования этих ограничений используется метод phi-функций Стояна [10].

Пусть $A, B \subset \mathbb{R}^t$ — замкнутые phi-объекты, t=2,3. Полагаем, что по крайней мере один из объектов ограниченный. Местоположение объекта A определяется вектором переменных параметров размещения $u_A=(v_A,\theta_A)$, где $v_A=(x_A,y_A,z_A)$ — вектор трансляции, $\theta_A=(\theta_z,\theta_x,\theta_y)$ — углы поворота: от оси OX к OY, от оси OY к OZ и от оси OX к OZ. Пусть $u_A=(v_A,\theta_A)$ и $u_B=(v_B,\theta_B)$ — векторы переменных объектов A и B соответственно.

Определение 1. Всюду определенная, непрерывная функция $\Phi^{AB}(u_A, u_B)$ называется *phi*-функцией объектов $A(u_A)$ и $B(u_B)$, если она удовлетворяет следующим свойствам [10]:

$$\Phi^{AB}\left(u_{A},u_{B}\right)<0, \text{ если int }A(u_{A})\cap\text{ int }B(u_{B})\neq\varnothing;$$

$$\Phi^{AB}\left(u_{A},u_{B}\right)=0, \text{ если int }A(u_{A})\cap\text{ int }B(u_{B})=\varnothing \text{ и fr }A(u_{A})\cap\text{ fr }B(u_{B})\neq\varnothing;$$

$$\Phi^{AB}\left(u_{A},u_{B}\right)>0, \text{ если cl }A(u_{A})\cap\text{ cl }B(u_{B})=\varnothing.$$

Определение 2. Квази-*phi*-функцией для объектов $A(u_A)$ и $B(u_B)$ называется всюду определенная, непрерывная функция $\Phi'^{AB}(u_A,u_B,u')$, для которой функция $\max_{u'\in U} \Phi'^{AB}(u_A,u_B,u')$ является *phi*-функцией $\Phi^{AB}(u_A,u_B)$, где вид множества $u'\in U$

 $U \subset \mathbb{R}^n$ и размерность пространства \mathbb{R}^n зависят от формы размещаемых объектов [9]. Для моделирования ограничений на минимально и максимально допустимые расстояния ρ^- и ρ^+ используются нормализованные phi-функции [10] (квази-phi-функции [11]). Как расстояние между объектами A и B рассматривается dist $(A,B) = \min_{a \in A, b \in B} d(a,b)$, где d(a,b) — евклидово расстояние между точками

a и b, a, $b \in \mathbb{R}^{t}$, t = 2, 3.

Определение 3. *Рhi*-функция $\widetilde{\Phi}^{AB}(u_A,u_B)$ называется нормализованной, если ее значения равны евклидовым расстояниям между объектами $A(u_A)$ и $B(u_B)$ при условии $(u_A,u_B)\in G,\ G=\{(u_A,u_B)|\ \text{int}\ A(u_A)\cap \text{int}\ B(u_B)=\varnothing\}$.

Определение 4. Квази-*phi*-функция $\widetilde{\Phi}'^{AB}(u_A,u_B,u')$ называется нормализованной для объектов $A(u_A)$ и $B(u_B)$, если при int $A(u_A) \cap$ int $B(u_B) = \emptyset$ функция $\max_{u' \in U} \widetilde{\Phi}'^{AB}(u_A,u_B,u')$ является нормализованной *phi*-функцией.

Приведем примеры *phi*-функций и квази-*phi*-функций для некоторых видов объектов.

1. Phi-функция для объектов \mathbf{C}^* и $\mathbf{S}(x, y, z)$ определяется так: $\Phi^{\mathbf{C}^*\mathbf{S}} = \min\{\xi_1, \xi_2, \xi_3\}$, где $\xi_1 = z - r$, $\xi_2 = H - z - r$, $\xi_3 = -x^2 - y^2 + (R - r)^2$.

Здесь ${\bf C}^*$ — дополнение к цилиндрическому контейнеру высотой H с круговым основанием радиуса R, ${\bf S}$ — шар радиуса r с центром в точке (x, y, z). Нормализованная phi-функция определяется формулой $\widetilde{\Phi}^{{\bf C}^*{\bf S}} = \min{\{\xi_1, \xi_2, \widetilde{\xi}_3\}}$, где $\widetilde{\xi}_3 = -\sqrt{x^2+y^2} + (R-r)$.

- 2. Phi-функция для двух шаров $S_1(u_1)$ и $S_2(u_2)$ с радиусами r_1 , r_2 и центрами в точках (x_1,y_1,z_1) , (x_2,y_2,z_2) имеет вид $\Phi^{SS}=(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2-(r_1+r_2)^2$, а нормализованная phi-функция определяется формулой $\widetilde{\Phi}^{SS}=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}-(r_1+r_2)$.
- 3. Квази-*phi*-функция для выпуклых многогранников определяется следующим образом. Пусть $K_1(u_1)$ и $K_2(u_2)$ выпуклые многогранники, заданные вершинами $\lambda_1 p_i^1$, $i=1,\ldots,m_1$, и $\lambda_2 p_i^2$, $i=1,\ldots,m_2$, соответственно, а $\Phi^{K_1P}(u_1,u_P)=\min_{1\leq i\leq m_1}\psi_P(\lambda_1 p_i^1)$ phi-функция для объектов K_1 и P, $\Phi^{K_2P^*}(u_2,u_P)=$
- $=\min_{1\leq i\leq m_2}(-\psi_P(\lambda_2\,p_i^2))$ phi-функция для объектов \pmb{K}_2 и $P^*=\mathbb{R}^3\setminus \mathrm{int}\,P$. Здесь

 $P(u_P) = \{(x, y, z) : \psi_P = \alpha x + \beta y + \gamma z + \mu_P \ge 0\}$ — полупространство, где $u_P = (\theta_{x_P}, \theta_{y_P}, \mu_P)$, $\alpha = \sin \theta_{y_P}$, $\beta = -\sin \theta_{x_P} \cos \theta_{y_P}$, $\gamma = \cos \theta_{x_P} \cos \theta_{y_P}$. Тогда функция

 $\Phi'^{K_1K_2}(u_1, u_2, u_P) = \min \{\Phi^{K_1P}(u_1, u_P), \Phi^{K_2P^*}(u_2, u_P)\}$

является квази-phi-функцией для $K_1(u_1)$ и $K_2(u_2)$. Отметим, что функция $2\Phi'^{K_1K_2}(u_1,u_2,u_P)$ — нормализованная квази-phi-функция.

Конкретный вид phi-функций (квази-phi-функций) для всех пар объектов, рассматриваемых в данной работе, приведен в [10–13].

В терминах phi-функций (квази-phi-функций): условие int $A_i^k \cap$ int $A_j^k = \varnothing$ эквивалентно $\Phi_{ij} \geq 0$, где Φ_{ij} — phi-функция (квази-phi-функция) для объектов A_i^k и A_j^k ; условие $A_i^k \subseteq \Omega$ эквивалентно $\Phi_i \geq 0$, где Φ_i — phi-функция для объектов A_i^k и $\Omega^{k^*} = \mathbb{R}^t \setminus \text{int } \Omega^k$, t = 2, 3.

Ограничение dist $(A_i^k,A_j^k) \geq \rho_{ij}^-$ можно описать следующим образом: $\widetilde{\Phi}_{ij} \geq \rho_{ij}^-$, где $\widetilde{\Phi}_{ij}$ — нормализованная phi-функция (квази-phi-функция) для объектов A_i^k и A_j^k . Ограничение dist $(A_i^k,A_j^k) \leq \rho_{ij}^+$ определяется так: $\widetilde{\Phi}_{ij} \leq \rho_{ij}^+$. По аналогии формализуется ограничение $\rho_i^- \leq \text{dist}\,(A_i^k,\Omega_i^{*k}) \leq \rho_i^+$ с использованием неравенства $\rho_i^- \leq \widetilde{\Phi}_i \leq \rho_i^+$, где $\widetilde{\Phi}_i$ — нормализованная phi-функция (квази-phi-функция) для объектов A_i^k и Ω_i^{k*} соответственно.

Ограничения непересечения объектов подмножества $A^k \subset \Omega^k$ с учетом минимально и максимально допустимых расстояний ρ_{ii}^- и ρ_{ii}^+ имеет вид

$$\Upsilon_{1}(u) = \min \{\widetilde{\Phi}_{ij} - \rho_{ij}^{-}, -\widetilde{\Phi}_{ij} + \rho_{ij}^{+}, i > j \in I^{k}, k = 1, ..., m\} \ge 0.$$
 (1)

Ограничения включения объектов подмножества $A^k \subset \Omega^k$ с учетом минимально и максимально допустимых расстояний ρ_i^- и ρ_i^+ представим следующим образом:

 $\Upsilon_{2}(u) = \min \{\widetilde{\Phi}_{i} - \rho_{i}^{-}, -\widetilde{\Phi}_{i} + \rho_{i}^{+}, i \in I^{k}, k = 1, ..., m\} \ge 0.$ (2)

Неравенство вида $\Upsilon(u) = \min \{\Upsilon_1(u), \Upsilon_2(u)\} \ge 0$ описывает ограничения размещения. Если допустимые расстояния не заданы, то нормализованные *phi*функции (или квази-*phi*-функции) в (1) и (2) заменяются обычными *phi*-функциями (или квази-*phi*-функциями).

ОГРАНИЧЕНИЯ ПОВЕДЕНИЯ

Пусть каждый объект семейства A — однородное тело массой m_i , $i \in I_n$. Центр масс A_i -го объекта совпадает с центром его симметрии, который находится в начале его системы координат $O_i x_i y_i z_i$. Таким образом, координатные оси любой системы $O_i x_i y_i z_i$ являются главными центральными осями для объекта A_i .

Пусть m_0 — масса боковой поверхности контейнера Ω (массой стеллажей и оснований контейнера пренебрегаем), а $O_c=(x_0,y_0,z_0)$ — центр масс контейнера Ω , заданный в неподвижной системе координат Oxyz. Полагаем, что плотность боковой поверхности контейнера Ω является постоянной величиной. Для рассмотренных видов контейнера Ω координаты x_0 , y_0 находятся на его оси симметрии Oz, значит, $O_c=(0,0,z_0)$. Определим положение координаты z_0 для каждого вида контейнера следующим образом:

$$z_0 = \frac{H}{2}$$
 для ${f C}, \ z_0 = \frac{2H}{5}$ для ${f \Lambda}, \ z_0 = \frac{H}{3} \, \frac{R_1 + 2R_{m+1}}{R_1 + R_{m+1}}$ для ${f E}.$

Тогда центр масс $O_s=(x_s(u),\,y_s(u),z_s(u))$ системы Ω_A определяется так:

$$x_{s}(u) = \frac{\sum_{i=0}^{n} m_{i} x_{i}}{\sum_{i=0}^{n} m_{i}}, \quad y_{s}(u) = \frac{\sum_{i=0}^{n} m_{i} y_{i}}{\sum_{i=0}^{n} m_{i}}, \quad z_{s}(u) = \frac{\sum_{i=0}^{n} m_{i} z_{i}}{\sum_{i=0}^{n} m_{i}}.$$

Рассмотрим ограничения по механическим характеристикам системы Ω_A . Ограничения равновесия определим следующими неравенствами:

$$\mu_{11}(u) = \min \left\{ -(x_s(u) - x_0) + \Delta x_c, (x_s(u) - x_0) + \Delta x_c \right\} \ge 0,$$

$$\mu_{12}(u) = \min \left\{ -(y_s(u) - y_0) + \Delta y_c, (y_s(u) - y_0) + \Delta y_c \right\} \ge 0,$$

$$\mu_{13}(u) = \min \left\{ -(z_s(u) - z_0) + \Delta z_c, (z_s(u) - z_0) + \Delta z_c \right\} \ge 0,$$
(3)

где $\Delta x_c, \Delta y_c, \Delta z_c$ — допустимые отклонения от точки $O_c = (x_0, y_0, z_0)$. Ограничения моментов инерции определим таким образом:

$$\mu_{21}(u) = -J_X(u) + \Delta J_X \ge 0,$$

$$\mu_{22}(u) = -J_Y(u) + \Delta J_Y \ge 0,$$

$$\mu_{23}(u) = -J_Z(u) + \Delta J_Z \ge 0,$$
(4)

где $J_X(u), J_Y(u), J_Z(u)$ — моменты инерции системы Ω_A относительно осей системы координат O_S $XYZ, \ \Delta J_X, \ \Delta J_Y, \ \Delta J_Z$ — допустимые значения для $J_X(u), J_Y(u), J_Z(u)$. Осевые моменты инерции $J_X(u), J_Y(u), J_Z(u)$ определим следующим образом:

$$\begin{split} J_X\left(u\right) &= J_{\Omega x} + \sum_{i=1}^n \left(J_{x_i} \cos^2\theta_i + J_{y_i} \sin^2\theta_i\right) + \sum_{i=1}^n \left(y_i^2 + z_i^2\right) m_i - \left(y_s^2 + z_s^2\right) \sum_{i=0}^n m_i, \\ J_Y\left(u\right) &= J_{\Omega y} + \sum_{i=1}^n \left(J_{x_i} \sin^2\theta_i + J_{y_i} \cos^2\theta_i\right) + \sum_{i=1}^n \left(x_i^2 + z_i^2\right) m_i - \left(x_s^2 + z_s^2\right) \sum_{i=0}^n m_i, \\ J_Z\left(u\right) &= J_{\Omega z} + \sum_{i=1}^n J_{z_i} + \sum_{i=1}^n \left(x_i^2 + y_i^2\right) m_i - \left(x_s^2 + y_s^2\right) \sum_{i=0}^n m_i, \end{split}$$

где $J_{\Omega x}, J_{\Omega y}, J_{\Omega z}$ — моменты инерции контейнера Ω относительно осей системы координат Oхуz, $J_{x_i}, J_{y_i}, J_{z_i}$ — моменты инерции объекта A_i относительно осей системы координат O_i х $_i$ х $_i$ х $_i$

Моменты инерции $J_{\Omega x},\,J_{\Omega y},\,J_{\Omega z}$ и $J_{x_i},\,J_{y_i},\,J_{z_i}$ определяются в зависимости от вида и формы рассматриваемого тела следующими соотношениями.

Для боковой поверхности контейнера Ω имеем:

• для
$$\mathbf{C} J_{\Omega x} = J_{\Omega y} = \frac{1}{6} m_0 (3R^2 + 2H^2), J_{\Omega z} = m_0 R^2;$$

• для
$$\mathbf{E} J_{\Omega x} = J_{\Omega y} = \frac{m_0}{2} \left(\frac{H^2(R_1 + 3R_{m+1})}{3(R_1 + R_{m+1})} + \frac{R_1^2 + R_{m+1}^2}{2} \right), J_{\Omega z} = \frac{m_0}{2} \left(R_1^2 + R_{m+1}^2 \right);$$

• для
$$\Lambda$$
 $J_{\Omega z} = \frac{3Hm_0}{5}$, $J_{\Omega x} = J_{\Omega y} = \frac{Hm_0}{70} (21+16H)$.

Для однородного объекта A_i имеем:

• для
$$S_i$$
 $J_{x_i} = J_{y_i} = J_{z_i} = \frac{2}{5} m_i r_i^2$, $i \in I_1$;

• для
$$C_i$$
 $J_{x_i} = J_{y_i} = \frac{1}{12} m_i (3r_i^2 + 4h_i^2), \ J_{z_i} = \frac{1}{2} m_i r_i^2, \ i \in I_2;$

• для
$$\boldsymbol{K}_i$$
 (при $v_i = 6$): $J_{x_i} = J_{y_i} = \frac{1}{24} m_i (5r_i^2 + 8h_i^2), \ J_{z_i} = \frac{5}{12} m_i r_i^2, \ i \in I_3;$

• для
$$P_i$$
 $J_{x_i} = \frac{1}{12} m_i (l_i^2 + h_i^2), J_{y_i} = \frac{1}{12} m_i (w_i^2 + h_i^2), J_{z_i} = \frac{1}{12} m_i (l_i^2 + w_i^2),$

 $i \in I_4$

Ограничения устойчивости определим следующими неравенствами:

$$\mu_{31}(u) = \min \{-J_{XY}(u) + \Delta J_{XY}, J_{XY}(u) + \Delta J_{XY}\} \ge 0,$$

$$\mu_{32}(u) = \min \{-J_{YZ}(u) + \Delta J_{YZ}, J_{YZ}(u) + \Delta J_{YZ}\} \ge 0,$$

$$\mu_{33}(u) = \min \{-J_{XZ}(u) + \Delta J_{XZ}, J_{XZ}(u) + \Delta J_{XZ}\} \ge 0,$$
(5)

где $J_{XY}(u),\,J_{YZ}(u),\,J_{XZ}(u)$ — центробежные моменты инерции системы Ω_A относительно осей системы координат O_S $XYZ,\,\Delta J_{XY},\,\Delta J_{YZ},\,\Delta J_{XZ}$ — допустимые значения для $J_{XY}(u),\,J_{YZ}(u),\,J_{XZ}(u)$ соответственно. Характеристики $J_{XY}(u),\,J_{YZ}(u),\,J_{XZ}(u)$ определяются следующим образом:

$$J_{XY}(u) = \frac{1}{2} \sum_{i=0}^{n} (J_{x_i} - J_{y_i}) \sin 2\theta_i + \sum_{i=0}^{n} x_i y_i m_i - x_s y_s \sum_{i=0}^{n} m_i,$$

$$J_{XZ}(u) = \sum_{i=0}^{n} x_i z_i m_i - x_s z_s \sum_{i=0}^{n} m_i, \ J_{YZ}(u) = \sum_{i=0}^{n} y_i z_i m_i - y_s z_s \sum_{i=0}^{n} m_i.$$

На основе неравенств (3)–(5) определим систему ограничений, описывающую ограничения поведения (behavior constraints) системы Ω_A таким образом:

$$\begin{cases} \mu_{1}(u) = \min \{\mu_{11}(u), \mu_{12}(u), \mu_{13}(u)\} \ge 0, \\ \mu_{2}(u) = \min \{\mu_{21}(u), \mu_{22}(u), \mu_{23}(u)\} \ge 0, \\ \mu_{3}(u) = \min \{\mu_{31}(u), \mu_{32}(u), \mu_{33}(u)\} \ge 0. \end{cases}$$

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И ЕЕ ОСОБЕННОСТИ

Математическая модель задачи балансной компоновки имеет вид

$$F(u^*) = \min_{u \in W} F(u), \tag{6}$$

$$W = \{ u \in \mathbb{R}^{\xi} : \Upsilon(u) \ge 0, \ \mu_1(u) \ge 0, \ \mu_2(u) \ge 0, \ \mu_3(u) \ge 0, \ \zeta \ge 0 \}, \tag{7}$$

где $\xi \geq 0$ — система дополнительных ограничений на метрические характеристики и/или параметры размещения контейнера и объектов. В зависимости от выбора функции цели рассматриваются различные варианты математической модели (6), (7). Наиболее часто используются следующие функции цели: размер контейнера Ω ; отклонение центра масс системы Ω_A от заданной точки; моменты инерции системы Ω_A . Примеры таких задач приведены в [2, 4, 13, 14].

Рассмотрим некоторые из вариантов математической модели (6), (7), которые представляют интерес с практической точки зрения.

Задача Р1:

$$F(u) = F_1(u) = p, \ u = (u_1, u_2, ..., u_n, p),$$

$$W = \{ u \in \mathbb{R}^{4n+1} : \Upsilon(u) \ge 0, \ \mu_1(u) \ge 0, \ \mu_2(u) \ge 0, \ \mu_3(u) \ge 0, \zeta \ge 0 \}.$$

Задача Р2:

$$F(u) = F_2(u) = (x_s(u) - x_0)^2 + (y_s(u) - y_0)^2 + (z_s(u) - z_0)^2,$$

$$u = (u_1, u_2, ..., u_n),$$

$$W = \{ u \in R^{4n} : \Upsilon(u) \ge 0, \, \mu_2(u) \ge 0, \, \mu_3(u) \ge 0, \, \xi \ge 0 \}.$$

Задача РЗ:

$$\begin{split} F\left(u\right) &= F_{3}\left(u\right) = \lambda_{1}J_{X}\left(u\right) + \lambda_{2}J_{Y}\left(u\right) + \lambda_{3}J_{Z}\left(u\right), \\ u &= \left(u_{1}, u_{2}, \dots, u_{n}\right), \ \lambda_{i} \in [0, 1], \ \lambda_{1} + \lambda_{2} + \lambda_{3} = 1, \\ W &= \left\{u \in R^{4n} : \Upsilon(u) \geq 0, \mu_{1}(u) \geq 0, \mu_{3}\left(u\right) \geq 0, \xi \geq 0\right\}. \end{split}$$

Задача Р1 имеет линейную функцию цели, в задачах Р2 и Р3 функции цели квадратичные. Ограничения размещения в задачах Р1–Р3 включают минимаксные функции, а ограничения поведения описываются нелинейными неравенствами. Примеры задач Р1–Р3 приведены в [4, 14, 15].

Данные задачи обладают рядом особенностей. В работе [14] рассматривается случай, когда $h_1 = h_2 = ... = h_n = H$. Для других примеров [2, 4, 13] объекты крепятся к стеллажам. Тогда функции для 3D-объектов, приведенные в (1), (2), можно заменить функциями для 2D-объектов, а параметры размещения примут вид $u_i = (x_i, y_i, \theta_i)$. Следовательно, $\xi \leq 3n+1$.

Отметим, что задача (6), (7) является многоэкстремальной задачей нелинейного программирования с негладкими функциями. Область допустимых решений W в общем случае — несвязное множество с многосвязными компонентами связности. Граница области W состоит из кусочно-гладких поверхностей. Она описывается системой из N phi-неравенств с негладкими функциями, где $N=N_a+N_b$, N_a — число phi-неравенств, описывающих ограничения размеще-

ния,
$$N_a = \sum_{k=1}^m N_k$$
, N_k — число *phi*-неравенств, описывающих ограничения раз-

мещения в Ω^k , $N_k = n^k + \frac{1}{2} n^k (n^k - 1)$, k = 1, 2, ..., m, N_b — число функций, опи-

сывающих ограничения поведения, $N_b \le 15$. Ограничения размещения описываются с помощью phi-функций (или квази-phi-функций).

Каждую базовую *phi*-функцию Φ_l , $l=1, 2, ..., N_a$, определим в виде

$$\Phi_l = \max_{i=1,...,\eta_l} f_i^l = \max_{i=1,...,\eta_l} \min_{j=1,...,J_i^l} f_{ij}^l,$$

где $f_{ij}^{\;l}$ — гладкая функция. Поскольку $\min_{j=1,\dots,J_i^l} f_{ij}^{\;l} \geq 0$ эквивалентно тому, что

 $f_{ij}^{\ l} \geq 0$ для всех j, а $\max_{i=1,\dots,\eta_l} f_i^{\ l} \geq 0$ означает, что выполняется по крайней мере

одно из неравенств $f_i^{\ l} \geq 0$, каждое из неравенств $f_i^{\ l} \geq 0$ можно рассматривать как систему в общем случае нелинейных $J_i^{\ l}$ неравенств. Для каждого phi-неравенства $\Phi_l \geq 0$ строится так называемое phi-дерево [15], концевым вершинам которого соответствуют системы неравенств $f_{ij}^{\ l} \geq 0$ с гладкими функциями. На основе phi-деревьев строится дерево решений, описывающее область допустимых решений W задачи (6), (7) (рис. 5). Корню дерева решений соот-

Рис. 5. Общий вид дерева решений

ветствует система неравенств

$$\lambda \ge 0 \Leftrightarrow \{\mu_1(u) \ge 0, \ \mu_2(u) \ge 0, \ \mu_3(u) \ge 0, \ \xi \ge 0\}.$$

На первом уровне дерева решения имеем η_1 вершин, где η_1 — число концевых вершин phi-дерева, описывающего неравенство $\Phi_1 \geq 0$. Здесь $\Phi_1 = \max_{i=1,\dots,\eta_1} f_i^1$, $f_i^1 = \min_{j=1,\dots,J_i^1} f_{ij}^1$. Каждой вершине соответствует система неравенств $\{\lambda \geq 0, f_{d_1}^1 \geq 0\}$.

Из каждой вершины первого уровня исходит η_2 концевых вершин базового phi-дерева, описывающего неравенство $\Phi_2 \geq 0$, где $\Phi_2 = \max_{i=1,\dots,\eta_2} f_i^2$, $f_i^2 = \min_{j=1,\dots,J_i^2} f_{ij}^2$. Тогда число вершин на втором уровне дерева решений составляет $\eta_1 \cdot \eta_2$ и каждой вершине соответствует система неравенств $\{\lambda \geq 0, f_{d_1}^1 \geq 0, f_{d_2}^2 \geq 0\}$.

Аналогично, из каждой вершины (l-1)-го уровня дерева решений исходит η_l концевых вершин phi-дерева, описывающего неравенство $\Phi_l \geq 0$, где $\Phi_l = \max_{i=1,\dots,\eta_l} f_i^l$, $f_i^l = \min_{j=1,\dots,J_i^l} f_{ij}^l$. Число вершин l-го уровня дерева решений составляет $\eta_1 \cdot \eta_2 \cdot \ldots \cdot \eta_l$, а каждой вершине соответствует система вида $\{\lambda \geq 0, f_{d_1}^1 \geq 0, f_{d_2}^2 \geq 0, \ldots, f_{d_l}^l \geq 0\}$. Таким образом, число концевых вершин де-

Исходя из построенного дерева решений, представим область допустимых решений в виде $W=W_1\cup\ldots\cup W_d\cup\ldots\cup W_\eta$, где подобласть W_d соответствует d-й концевой вершине дерева решений и определяется системой неравенств $\{\lambda\geq 0,\ f_{d_l}^{\ l}\geq 0,\ l=1,\ldots,N_a\}$. Тогда задачу (6), (7) можно свести к следующей задаче оптимизации:

$$F(u^*) = \min\{F(u^{d^*}), d = 1, 2, ..., \eta\},$$
 (8)

рева решений задачи (6), (7) составляет $\eta = \eta_1 \cdot \eta_2 \cdot ... \cdot \eta_{N_a}$.

$$F(u^{d^*}) = \min_{u \in W_d \subset \mathbb{R}^{\xi}} F(u).$$
 (9)

Поскольку каждая задача в (9) является многоэкстремальной задачей нелинейного программирования, решение задачи (8), (9) в общем случае не гарантирует получения глобального минимума.

МЕТОДЫ РЕШЕНИЯ

Для решения задачи (6), (7) предлагаются следующие методы.

Метод 1 состоит в ускоренном переборе локальных экстремумов для всех вершин дерева решений задачи (6), (7). Значительная часть концевых вершин дерева ее решений соответствует несовместным системам, не всякий локальный экстремум на подобласти W_d является локальным экстремумом на области W, кроме того, локальные экстремумы данной задачи на разных подобластях могут совпадать. В силу этого применяется модель (8), (9) и ускоренный перебор подзадач вида (9), использующий набор правил отсечения, основанных на учете оценки функции цели сверху и вырожденности неполных систем.

Метод 2 основан на применении метода «мультистарта» (multistart method), который заключается в следующем: с помощью специальных алгоритмов (например, [10]) строится множество стартовых точек из области допустимых решений (7) и выполняется поиск локального экстремума для каждой стартовой точки на каждой подобласти $W_d \subset W$, соответствующей стартовой точке. Решается задача нелинейного программирования вида (9). Лучший из полученных локальных экстремумов выбирается в качестве приближения к глобальному экстремуму задачи (6), (7).

Методы 1 и 2 используют IPOPT [8] для поиска локальных экстремумов задач вида (9).

Метод 3 с помощью негладких штрафов заменяет задачу (7), (8) задачей безусловной оптимизации почти-дифференцируемой функции вида

$$f(u) = F(u) + P_1 \sum_{l=1}^{N_a} \max \{0, -\Phi_l\} + P_2 \sum_{k=1}^{N_b} \max \{0, -\mu_k\} + P_3 \max \{0, -p + p_{low}\},$$

где P_i — штрафные коэффициенты, i = 1, 2, 3 , Φ_l — функции из ограничений размещения вида (1) и (2), μ_k — функции вида (3)–(5), p_{low} — очевидная нижняя оценка значения переменной метрической характеристики p контейнера Ω .

Метод 3 предполагает использование мультистарта и состоит в поиске локальных минимумов функции для заданного набора стартовых точек. Для поиска локальных минимумов почти-дифференцируемых функций применяются алгоритмы минимизации негладких функций, в частности $r(\alpha)$ -алгоритм Шора [6, 7]. Данный метод позволяет получать хорошие локально-оптимальные решения для небольшого числа (<100) объектов.

ЗАКЛЮЧЕНИЕ

Рассмотрена обобщенная математическая модель задачи балансной компоновки 3D-объектов, множество реализаций которой (в зависимости от вида объектов, формы контейнера, функции цели и вида ограничений поведения) покрывает широкий класс практических задач, возникающих в ракетно-космическом машиностроении. Использование метода phi-функций для аналитического описания ограничений размещения позволяет представить обобщенную математическую модель в виде задачи нелинейного программирования с негладкими функциями. Предлагаются три метода решения с применением $r(\alpha)$ -алгоритма Шора, метода мультистарта и ускоренного перебора вершин дерева решений.

- Modeling and optimization in space engineering / G. Fasano, J.D. Pintér (Eds.) // Springer Optimization and its Applications. 2013. 73. 404 p.
- 2. Che C., Wang Y., Teng H. Test problems for quasi-satellite packing: Cylinders packing with behavior constraints and all the optimal solutions known // Optimization Online. 2008. http://www.optimization-online.org/DB HTML/2008/09/2093.html.
- Lei K. Constrained layout optimization based on adaptive particle swarm optimizer / C. Zhihua,
 L. Zhenhua, K. Zhuo, L. Yong (Eds.) // Advances in Computation and Intelligence. 2009. N 1.
 P. 434–442.
- 4. Sun Z., Teng H. Optimal layout design of a satellite module // Engineering Optimization. 2003. 35, N 5. P. 513–530.
- 5. Chazelle B., Edelsbrunner H., Guibas L.J. The complexity of cutting complexes // Discrete & Computational Geometry. 1989. 4, N 2. P. 139-181.
- Shor N.Z. Nondifferentiable optimization and polynomial problems. Boston; Dordrecht; London: Kluwer Acad. Publ., 1998. — 394 p.
- 7. Shor N.Z., Stetsyuk P.I. Modified *r*-algorithm to find the global minimum of polynomial functions // Cybernetics and Systems Analysis. 1997. 33, N 4. P. 482–497.
- 8. Wachter A., Biegler L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming // Mathematical Programming. 2006. 106, N 1. P. 25-57.
- Chernov N., Stoyan Yu., Romanova T., Pankratov A. Phi-functions for 2D objects formed by line segments and circular arcs // Advances in Operations Research. 2012. —
 — Article ID 346358. 26 p. doi:10.1155/2012/346358.
- Chernov N., Stoyan Yu., Romanova T. Mathematical model and efficient algorithms for object packing problem // Computational Geometry: Theory and Applications. 2010. 43, N 5. P. 533-553.
- 11. Стоян Ю.Г., Панкратов А.В., Романова Т.Е., Чернов Н.И. Квази-*phi*-функции для математического моделирования отношений геометрических объектов // Доп. НАН України. 2014. № 9. С. 53–57.
- 12. Романова Т.Е., Коваленко А.А. Рһі-функции для моделирования ограничений включения в оптимизационных задачах компоновки // Системи обробки інформації. 2013. 1, № 117. С. 228–133.
- 13. Stoyan Yu., Romanova T. Mathematical models of placement optimization: Two- and three-dimensional problems and applications / G. Fasano, J.D. Pintér (Eds.) // Modeling and Optimization in Space Engineering. Ser. Springer Optimization and its Applications. 2013. 73. P. 363–388.
- 14. Коваленко А.А., Панкратов А.В., Романова Т.Е., Стецюк П.И. Упаковка круговых цилиндров в цилиндрический контейнер с учетом специальных ограничений поведения системы // Журнал обчислювальної та прикладної математики. — 2013. — № 1(111). — С. 126–134.
- Bennell J., Scheithauer G., Stoyan Y., Romanova T., Pankratov A. Optimal clustering of a pair of irregular objects // Journal of Global Optimization. — 2015. — 61, N 3. — P. 497-524.

Поступила 12.09.2014