

Department of Mathematics

Course: Vector Calculus, Laplace Transform and Numerical Methods	TEST-II	Maximum Marks: 50		
Course Code: MA221TA	Second Semester 2023-2024 Branch: EC, EE, EI, ET	Time: 02:00 PM to 03:30 PM Date: 18/06/2024		

Instructions to candidates: Answer all questions.

Q.No.	Question	M	BT	CO
1a	The acceleration of a falling object subject to forces yields first order differential equation $\frac{dy}{dt} = g - \frac{c}{m} y$, $y(0) = 0$. If the mass(m) is 68.1 kg, drag coefficient (c) is 12.5kg/s and $g = 9.81m/s^2$, using Taylor series method estimate y at $t = 2$ seconds considering up to fourth degree terms.		L3	4
1b	Compute the value of x correct to the four decimal places using the Newton-Raphson method at which the function $xe^x - \cos x$ crosses x -axis near $x = 0.5$.	4	L2	2
2	The growth rate of logistic population is given by the differential equation $\frac{dy}{dx} = y - y^2$, $y(0) = 0.5$. Compute $y(0.2)$ using Runge-Kutta fourth order method by taking $h = 0.1$.	10	L3	3
3a	Using the Regula-Falsi method, obtain a real root of the equation $x^3 - 4x - 9 = 0$, use four decimal places. Perform 3 iterations.		L1	1
3b	Find the directional derivative of $\emptyset(x, y, z) = 4e^{2x-y+z}$ at the point $(1, 1, -1)$ in the direction of the vector $-4\hat{\imath} + 4\hat{\jmath} + 7\hat{k}$.	4	L2	3
4a	Calculate the values of 'a' and 'b' when the surfaces $2ax^2y + bz^3 = 4$ and $5x^2 - 2yz = 9x$ intersect orthogonally at $(1, -1, 2)$.	6	L2	2
4b	Show that the divergence of the vector field $\emptyset(r)\vec{r}$ is $3\emptyset(r) + r\emptyset'(r)$, where \vec{r} is the position vector of the point (x, y, z) and $r = \vec{r} $.	4	L2	2
5a	For conservative field $\vec{f} = (y^2 - 2xyz^3)\hat{i} + (3 + 2xy - x^2z^3)\hat{j} + (6z^3 - 3x^2yz^2)\hat{k}$, determine scalar potential function $'\emptyset'$ such that $\vec{f} = \nabla\emptyset$. Given $\emptyset(1,1,0) = 8$.	6	L3	4
5b	Obtain the curl of vector field $\vec{f} = (2r + k \cos \emptyset)\hat{e_r} - k \sin \theta \hat{e_\theta} + r \cos \theta \hat{e_\theta}$ in spherical polar coordinate system.	4	L2	2

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks Distribution	Particulars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
	Max Marks	6	18	14	12	6	22	22		-	