### **Chapter 27 Circuits**

Chap. 27-1 Single-Loop Circuits

Chap. 27-2 Multi-Loop Circuits

Chap. 27-3 The Ammeter and The Voltmeter

Chap. 27-4 RC Circuits

#### 기전력 (electromotive force : emf)

- 1. 기전력(electro-motive force: emf)
  - · 두 단자 사이에 전위차를 유지시켜 주는 능력(힘)
  - · Ɛ: emf, 단위는 전압 (V)으로 표시
- 기전력 장치들
   전지, 발전기, 태양전지, 연료전지등
   이들을 보통 "전원(battery)"이라고 부름



#### Capacitors:

 $\dashv\vdash$ 

Purpose is to store charge (energy).

- We have calculated the capacitance of a system
- We had to modify Gauss' Law to account for bulk matter effects (dielectrics) ...  $C = \kappa C_0$
- We calculated effective capacitance of series or parallel combinations of capacitors
- Batteries (Voltage sources, sources of emf):
   Purpose is to provide a constant potential



OR

difference between two points.

 Cannot calculate the potential difference from first principles... chemical ↔ electrical energy conversion. Non-ideal batteries will be dealt with in terms of an "internal resistance".





#### 기전력이란:

단위 전하를 낮은 퍼텐셜에서 높은 퍼텐셜로 이동시키기 위해 필요한 일

$$\varepsilon \equiv \frac{dW}{dq} \quad [J/C] = [V]$$





#### 단일 회로 고리에서의 전류

#### 에너지 보존법칙을 이용하기

#### 기전력이 한 일:

$$dW = \varepsilon dq = \varepsilon i dt$$

저항기에서 소모되는 열 에너지:

$$dE = Pdt = i^2Rdt$$

$$\varepsilon idt = i^2 R dt \implies \varepsilon = iR$$





#### 퍼텐셜 이용하기

#### 회로규칙(loop rule): 고리회로를 따라 퍼텐셜 차를 더해나가면 그 결과는 0 이다.

$$\sum_{closed} \Delta V = 0$$

a 에서 시작하여 전류방향으로 한바퀴 돌면,

$$V_a + \varepsilon - iR = V_a$$
  
 $\varepsilon - iR = 0$ 

a 에서 시작하여 전류방향 반대로 한바퀴 돌면,

$$iR - \varepsilon = 0$$





#### <u>기전력장치(전원)의 내부저항</u>

$$V_{ba} = iR$$

$$V_{ab} = V_{ba}$$

$$\mathcal{E} - ir = iR \quad \Rightarrow i = \frac{\mathcal{E}}{R + r}$$



일률(Power):

$$i\mathcal{E} = i^2R + i^2r$$

내부저항에 의한 열소모

#### <u>회로의 접지(ground)</u>

#### 접지 (ground):

전기적으로 도체인 축축한 흙이나 지하 암반에 연결하는 것



 $r = 2.0 \Omega$ 

# Kirchhoff 법칙 (rule)

$$1. \quad \sum_{closed} \Delta V = 0$$



키르히호프의 접점규칙

2.  $\sum_{i,j} i_{i,j} = 0$  (접점-junction)  $\Longrightarrow$  Charge conservation

$$\sum_{i_1} i_2 = -i_1 + i_2 + i_3 = 0$$

$$i_1 = i_2 + i_3$$

## Kirchhoff의 회로규칙

$$\sum_{closed} \Delta V = 0$$



 $a \rightarrow b$  로

가는 동안

R 과 **은** 에서의

퍼텐셜 변화

$$\Delta V = V_b - V_a = -IR$$

$$\Delta V = V_b - V_a = IR$$

$$\Delta V = V_b - V_a = \varepsilon$$

$$\Delta V = V_b - V_a = -\varepsilon$$

$$\Delta V = V_b - V_a = -IR$$

$$\Delta V = V_b - V_a = IR$$

$$\Delta V = V_b - V_a = \varepsilon$$

$$\Delta V = V_b - V_a = -\varepsilon$$

■ 단일고리 회로 예





• 접점규칙 : 접점이 없다.

• 고리규칙 :  $V_{\text{emf},1} - iR_1 - iR_2 - V_{\text{emf},2} = 0$ 

$$i = \frac{V_{\text{emf},1} - V_{\text{emf},2}}{R_1 + R_2}$$

#### ■ 다중고리 회로 예





• 접점규칙:

$$i_2 = i_1 + i_3$$



N개의 접점 ⇒ N-1 개의 독립적인 식

• 고리규칙 :

$$-i_1 R_1 - V_{\text{emf},1} - i_2 R_2 = 0$$
$$-i_3 R_3 - V_{\text{emf},2} - i_2 R_2 = 0$$



독립적인 고리의 수

$$i_{1} = -\frac{(R_{2} + R_{3})V_{\text{emf},1} - R_{2}V_{\text{emf},2}}{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}$$

$$i_{2} = -\frac{R_{3}V_{\text{emf},1} - R_{1}V_{\text{emf},2}}{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}$$

$$i_{3} = -\frac{-R_{2}V_{\text{emf},1} + (R_{1} + R_{2})V_{\text{emf},2}}{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}$$

$$\begin{pmatrix} 1 & -1 & 1 \\ -R_1 & -R_2 & 0 \\ 0 & -R_2 & -R_3 \end{pmatrix} \begin{pmatrix} i_1 \\ i_2 \\ i_3 \end{pmatrix} = \begin{pmatrix} 0 \\ V_{\text{emf},1} \\ V_{\text{emf},2} \end{pmatrix}$$



$$\sum_{a} i_{a} = 0$$

(1) 번 고리에서:

$$\sum_{closed} \Delta V = 0 \implies \varepsilon_1 - i_1 R_1 + i_3 R_3 = 0$$

(2) 번 고리에서:

 $\sum_{closed} \Delta V = 0 \implies -i_3 R_3 - i_2 R_2 - \varepsilon_2 = 0$ 



 $i_1$   $i_2$   $i_3$ 

구할 수 있다.

#### 저항 연결

#### 직렬연결

→ 전류가 동일



$$\varepsilon - i_1 R_1 - i_2 R_2 - i_3 R_3 = 0 \rightarrow i = \frac{\varepsilon}{R_1 + R_2 + R_3} = \frac{\varepsilon}{R_{eq}} \rightarrow R_{eq} = \sum_{i=1}^n R_i$$

#### 병렬연결

→ 퍼텐셜 차가 동일



$$i = i_1 + i_2 + i_3 = \varepsilon \left( \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right) = \frac{\varepsilon}{R_{eq}} \to \frac{1}{R_{eq}} = \sum_{j=1}^{n} \frac{1}{R_j}$$

### Chap. 27-3 The Ammeter and The Voltmeter

#### 전류계

- 회로 속에 끼워 넣어 전류를 잼
- 내부저항이 아주 작아야 잰 값이 정확함 (왜?)

#### 전압계

- 탐침을 두 점에 붙여 전위차를 잼
- 내부저항이 아주 커야 잰 값이 정확함 (왜?)



## Chap. 27-4 RC Circuits

#### RC 회로

축전기의 충전: switch가 a 에 있을 때

$$\varepsilon - iR - \frac{q}{C} = 0$$

$$i = \frac{dq}{dt}$$

$$R\frac{dq}{dt} + \frac{q}{C} = \varepsilon$$
 : 충전 방정식



$$\rightarrow i(t) = \left(\frac{\varepsilon}{R}\right) e^{-\frac{t}{RC}}$$







### Chap. 27-4 RC Circuits

## 시간상수: $\tau = RC$

$$\tau = RC = \left[\frac{\Delta V}{I} \cdot \frac{q}{\Delta V}\right] = \left[\frac{q}{I}\right] = \left[\frac{q}{q/t}\right] = T$$

$$R = 10\Omega, \quad C = 1\mu F \quad \Rightarrow \tau = RC = 10^{-5} \text{ sec}$$

$$\Rightarrow q(t) = C\varepsilon \left(1 - e^{-\frac{t}{RC}}\right)$$

$$\rightarrow i(t) = \left(\frac{\varepsilon}{R}\right) e^{-\frac{t}{RC}}$$





## Chap. 27-4 RC Circuits

# RC 회로 : 방전

축전기의 방전: switch가 b 에 있을 때

$$R\frac{dq}{dt} + \frac{q}{C} = 0$$
 : 방전 방정식



$$\Rightarrow q(t) = q_0 e^{-\frac{t}{RC}} \qquad \{q_0 = q(t=0) = CV_0\}$$

$$i(t) = -\left(\frac{q_0}{RC}\right) e^{-\frac{t}{RC}}$$

#### **Electrical Safety**

- Electric current flowing through the human body is dangerous.
  - The table below lists the effects of various currents.
    - Much lower currents can be dangerous if applied internally.
  - It takes voltage to drive current through the body.
  - Thus, it's a combination of high voltage and the capability to supply at least tens of milliamperes (mA) that's most dangerous.

**Table 24.3** Effects of Externally Applied Current on Humans

| Current Range | Effect                                                 |
|---------------|--------------------------------------------------------|
| 0.5–2 mA      | Threshold of sensation                                 |
| 10–15 mA      | Involuntary muscle contractions; can't let go          |
| 15-100 mA     | Severe shock; muscle control lost; breathing difficult |
| 100-200 mA    | Fibrillation of heart; death within minutes            |
| >200 mA       | Cardiac arrest; breathing stops; severe burns          |

#### **Grounding for Electrical Safety**

- In conventional power systems, one side of the power line is connected to the ground.
  - This prevents the power system from reaching arbit rary high potentials with respect to ground.
  - But it presents danger in the event of a failure that brings a person into contact with the "hot" wire.
    - Grounded appliances and tools reduce this danger.
      - So do ground-fault circuit interrupters (GFCIs).



(a)