## Reaction-diffusion spatial modeling of COVID-19 in Chicago

Trent Gerew

Illinois Institue of Technology

August 27, 2021



• The COVID Problem

- Project Context and Objectives
- Current Work



• The COVID Problem

- Project Context and Objectives
- Current Work

## The COVID Problem



Identified in Wuhan, China in December 2019. Caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

In the United States alone, we currently have

- **37,768,911** total cases
- **626,833** total deaths



#### The COVID Problem



Transmission by exposure to infectious respiratory fluids:

- 1. Inhalation of virus
- 2. Deposition of virus on exposed mucus membranes
- 3. Touching mucous membranes with soiled hands contaminated with virus

## The COVID Problem



## COVID-19 weekly cases per 100,000 population by race/ethnicity, United States



# COVID-19 weekly case rate per 100,000 population by percentage of county population in poverty,





• The COVID Problem

- Project Context and Objectives
- Current Work



Why make a mathematical study of COVID-19?

An epidemic model provides . . .

- a convenient summary of the data
- insight into the underlying processes of the disease spread
- a testing ground for assessing control procedures



Models of infectious diseases are usually variations on the **Kermack-McKendrick model** (1927).



#### Usual assumptions:

- Population is *homogeneous*
- Transmission is spatially independent



These assumptions don't match reality!

Level of community transmission by county



(a) 7/22/2021

(b) 7/29/2021







**Idea:** Use reaction-diffusion to build a spatially explicit model.

- The data clearly shows a diffusive pattern
- Spatial dependence can approximate demographic differences
- Spatially dependent data exists for many scales and regions





• The COVID Problem

- Project Context and Objectives
- Current Work

Future Goals

12 / 17



Original motivation from Summer 2020 IPRO with Prof. Robert Ellis and Mr. David Eads (NPR). Expanded over Summer 2021 with Prof. Chun Liu and Prof. Yiwei Wang.

## Start by defining the zero-dimension (ODE) model:

- 1. Start with a population of susceptibles (S)
- 2. Some of the population may become infected(I) upon emergence of the virus
- 3. Infected individuals interact with susceptibles at rate  $\beta$  to draw new members into I
- 4. A fraction of I recover or die at a rate  $\gamma$  moving to the removed (R) population



This represents processes that occur in a "well mixed" situation.



The population model at the PDE level is an autonomous diffusion with a source:

$$S_t = \nabla(\mathfrak{D}_s \nabla S) - \beta SI,$$
  

$$I_t = \nabla(\mathfrak{D}_I \nabla I) + \beta SI - \gamma I,$$
  

$$R_t = \gamma I.$$

#### Assumptions:

- The *R* population has immunity.
- Diffusion performs all relevant spreading.
- Arriving infected individuals form local hotspots.



Next we identify the parameters  $\beta$  and  $\gamma$  at the ODE level:

Idea: Minimize the distance between the model time series and the observed time series.

$$\mathcal{N} = \sum_{i}^{t_{ ext{fit}}^{ ext{end}}} \left( \left| C_{ ext{num}}(t_i) - C_{ ext{obs}}(t_i) 
ight|^2 + \left| D_{ ext{num}}(t_i) - D_{ ext{obs}}(t_i) 
ight|^2 
ight)$$

where the index *i* identifies a point in the time series.

Optimize the parameters to reproduce:

- ullet the reported *total* number of infected cases C(t) = I(t) + R(t)
- the *total* number of deceased D(t) = R(t).



Table: ODE parameters for Chicago: optimal (best-fitting), median and interquartile range, and variation range used in the optimization algorithm. Initial parameter guesses were uniformly sampled within these ranges.

|                                       |              | Median (interquartile range) | Initial value           |
|---------------------------------------|--------------|------------------------------|-------------------------|
| Population                            | Ν            | 2,695,598                    |                         |
| Initial population                    | $(I_0, R_0)$ | (127, 2)                     |                         |
| Transmission rate, $S 	o I$ [per day] | $eta^{1}$    | 0.38206(0.38204-0.38209)     | $c \in \textit{U}[0,1]$ |
| Transition rate, $I 	o R$ [per day]   | $\gamma$     | 0.39656(0.39654-0.39659)     | $c \in U[0.25, 0.75]$   |

 $<sup>^1{\</sup>rm The}$  transmission rate  $\beta$  must be divided by N when used in the ODE model.



The COVID Problem

- Project Context and Objectives
- Current Work