2018年度 サード 中間試験問題・解答

試験実施日 2018 年 6 月 12 日 6 時限

出題者記入欄

試 験 科 目 名 <u>応用数学 I-J</u>		出題者名佐藤弘康
試 験 時 間 <u>60</u> 分	平常授業	業日_月 _曜日 <u>1</u> 時限
持ち込みについて 可	√(\ □)	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください
教科書 ・ 参考書 ・ ノート その他 ((手書きのみ	メ・コピーも可) ・電卓 ・辞書)
本紙以外に必要とする用紙	解答用紙_	
通信欄		

受験者記入欄

学 科	学 年		学	籍	番	号		氏	名	
		1								

採点者記入欄

	31.7.11 H HZ, 11/13
採点欄	評価

佐藤 弘康

1 以下の文を読んで、(1)~(5) に当てはまるもっとも適当 なものを下の選択肢から選び、丸で囲みなさい.

平面内の領域 D の点 (x,y) に対し, 実数 z = f(x,y)が対応するとき, f を D 上の 2 変数関数といい, D を fの $\mid (1) \mid$ という. 点 (x,y) が D の範囲を動くとき, zが取り得る範囲を f の (2) という. (1) が明示的 に与えられていない場合はf が定義可能な点 (x,y) の 全体の集合を (1) と考えることとする.

2変数関数

$$f(x,y) = \sqrt{3 - x^2 - y^2}$$

 \mathcal{O} (1)|は原点を中心とする半径| (3) |の円の| であり, (2) |は| (5) | である.

(選択肢)

- (1) 区間 ・ 始域 ・ 終域・ 値域 ・ 定義域
- (2) 区間 ・ 始域 ・ 終域・ 値域 ・ 定義域
- (3) 1 $\sqrt{3}$ 3 9
- (4) 内部 ・ 外部 ・ 円周
- (5) 実数全体 · 正の実数全体 · $0 \le z \le \sqrt{3}$ $0 \le z \le 3$ · $z \ge \sqrt{3}$ · $z \ge 3$
- 次の関数 f(x,y) について、2次までの偏導関数をすべて 求めなさい.
 - (1) $f(x,y) = x^3 2xy^2 + 3y^3$

 $oxed{3}$ 以下は $1.98^4 imes3.01^3$ の近似値を計算する方法について 述べた文章である. 空欄に当てはまる最も適切な式また は数を解答欄に書きなさい.

$$f(x,y) = \boxed{(1)}$$
 とおくと、

$$1.98^4 \times 3.01^3 = f(2 + \boxed{(2)}, 3 + \boxed{(3)}$$

である. ここで, z = f(x,y) の全微分は

$$dz = 4x^3y^3 \, dx + 3x^4y^2 \, dy$$

であり、これは独立変数 x,y の増分が dx,dy のときの z の増分を表している. x = 2, y = 3, dx = (2)dy = | (3) | | | | | | | | | | | | | | | |

$$dz = \boxed{(4)}$$

となるので、次の近似式

$$1.98^4 \times 3.01^3 = (5) + (4)$$

が得られる.

(解答欄)

(1)	

(2)		

(3)		
	(3)	

	_
(4)	

- 4 $x^2 xy + y^2 = 3$ の陰関数を y = f(x) とする. このとき, 以下の間に答えなさい.
 - (1) f(x) の導関数 f'(x) を求めなさい.

(2) f'(a) = 0 を満たす x = a と, b = f(a) の組 (a,b) をすべて求めなさい.

(3) f'(a) = 0 を満たす x = a に対し, f''(a) の符号を調べ, b = f(a) が極大値か極小値か, またはそのどちらでもないか判定しなさい. ただし, F(x,y) = 0 の陰関数の 2 階導関数が

$$y'' = -\frac{F_{xx}(x,y) + 2F_{xy}(x,y)y' + F_{yy}(x,y)(y')^{2}}{F_{y}(x,y)}$$

となることを用いてよい.

5 関数

$$f(x,y) = 2x^3 - 3xy + 2y^3 - 6$$

の極値をすべて求めなさい.