Labo 4: Paramètres de tendance centrale

Visseho Adjiwanou, PhD.

26 January 2023

PARTIE A

Voici les résultats obtenus au cours d'une enquête sur l'âge et le statut matrimoniale des répondants.

Tableau 1: Distribution du statut matrimonial

Statut	Fréquence	Pourcentage	Pourcentage valide	Pourcentage cumulé
Marié	247	29.1	29.1	29.1
Veuf	3	.4	.4	29.4
Divorcé	36	4.2	4.2	33.6
Séparé	14	1.6	1.6	35.3
Jamais marié	550	64.7	64.7	100.0
Total	850	100.0	100.0	

Répondez aux questions suivantes:

- 1. Quel est le type de la variable étudiée?
- 2. Quel est la valeur du mode
- 3. Si vous pouvez utiliser la médiane, indiquez sa valeur. Sinon, dites que ce n'est pas possible et expliquer votre réponse.
- 4. Si vous pouvez utiliser la moyenne, indiquez sa valeur. Sinon, dites que ce n'est pas possible et expliquer votre réponse.
- 5. Quel est le problème avec ce tableau? Quelle solution préconisez-vous?

Au cours de la même enquête, on a collecté les données sur le groupe d'âges des enquêtés. les résultats sont présentés dans le tableau 2.

Tableau 2: Distribution du groupe d'âges

Groupe d'âge	Fréquence	Pourcentage	Pourcentage valide	Pourcentage cumulé
15 - 24	276			
25 - 34	199			
35 - 49	263			
50 et plus	77			
Non réponse	35			
Total	850			

- 1. Quel est le type de la variable étudiée?
- 2. Complétez le tableau
- 3. Quel est la valeur du mode?
- 4. Si vous pouvez utiliser la médiane, indiquez sa valeur. Sinon, dites que ce n'est pas possible et expliquer

votre réponse.

5. Si vous pouvez utiliser la moyenne, indiquez sa valeur. Sinon, dites que ce n'est pas possible et expliquer votre réponse.

Question 2

Voici les données issues d'une enquête dans une classe

Age	Nombre d'élèves
10	5
11	7
12	4

- 1. Quelle est la variable étudiée?
- 2. Quelle est la valeur de l'âge moyen de la classe?
- 3. Quelle est la valeur de l'âge modal de la classe?
- 4. Quelle est la valeur de l'âge médian de la classe?

PARTIE B

La solution technologique au changement climatique (exemple tiré de Krieg)

Beaucoup de gens pensent qu'en adoptant de nouvelles technologies, nous pouvons économiser à la fois de l'argent et protéger l'environnement en brûlant moins de combustibles fossiles. Cet exercice est tiré du livre de krieg, "Statistics and data analysis for Social Science".

1. Que pensez-vous de cette assertion?

2. En quoi n'est-elle pas valide?

Pour tester cette assertion, nous utilisons les données de 1994 et de 2009 sur les voitures les plus efficients entre les deux périodes. Le tableau suivant présente les vitesses (mile per gallon, mpg) pour les différentes marques de voitures pour leur circulation en ville et sur l'autoroute:

• Pour 1994

Marque et modèle	Ville (mpg)	Autoroute(mpg)
Mazda 626	23	31
Honda Accord	22	29
Chevrolet Corsica	22	28
Buick Century	22	28
Oldsmobile Cutlass Ciera	22	28
Oldsmobile Achieva	21	32
Pontiac Grand Am	21	32
Infiniti G20	21	29
Mitsubishi Galant	21	28
Dodge Spirit	21	27

Marque et modèle	Ville (mpg)	Autoroute(mpg)
Plymouth Acclaim	21	27
Subaru Legacy	20	28
Toyota Camry	20	27
Hyundai Sonata	19	26
Chrysler LeBaron	19	25
Ford Taurus	18	27
Mercury Sable	18	27
Eagle Vision	18	26

• Pour 2009

Marque et modèle	Ville (mpg)	$\overline{\text{Autoroute(mpg)}}$
Toyota Prius Hybrid)	48	45
Nissan Altima (hybrid)	35	33
Toyota Camry (hybrid)	33	34
Chevrolet Malibu (hybrid)	26	34
Saturn Aura (hybrid)	26	34
Hyundai Elantra	25	33
Kia Spectra	24	32
Nissan Altima	23	32
Saturn Aura	22	33
Kia Optima	22	-
Hyundai Sonata	22	32
Honda Accord	22	31
Chevrolet Malibu	22	30
Toyota Camry	21	31
Volkswagen Passat	21	31
Mazda 6	21	30
Chrysler Sebring	21	30
Dodge Avenger	21	30
Ford Fusion	20	29
Mercury Milan	20	29
Mitsubishi Galant	20	27
Subaru Legacy	20	27
Nissan Maxima	19	260
Nissan Altima	19	26
Mercury Sable	18	28
Hyundai Azera	18	26
Buick LaCrosse/Allure	17	28

3. Quelle est la taille de chaque échantillon

4. Éfficacité gagnée en ville

Vous allez calculé le mode, la médiane et la moyenne pour la vitesse en **ville** en 1994 et 2009. Quelle conclusion tirez-vous? A cette étape de l'exercice, je vous demande de faire les calculs à la main.

5. Éfficacité sur autoroute

Le calcul que vous venez de faire est trop long. On peut présenter les données précédentes sous forme de données agrégées. C'est quoi encore les données agrégées?

- 4.1 Regrouper les données de la **vitesse sur l'autoroute** sous forme agrégée. Cela veut dire qu'il faut dénombrer le nombre de voitures pour chaque niveau de vitesse. Faite cela pour les données de 1994 et de 2009.
- 5.1 Présenter dans ce même tableau les fréquences, et les fréquences cumulées
- 5.2 Quelle représentation graphique vous semble la plus appropriée pour ces données?
- 5.3 Calculer à nouveau le mode, la médiane et la moyenne à partir de ses données groupées. Quelle conclusion tirez-vous?

		PAS NÉCESSAIRE LA	QUESTION	6
--	--	-------------------	----------	---

6. Utilisation de R

Maintenant, nous allons utiliser R pour faire le même travail. Voici comment vous allez procéder.

- 1. Créer la base de données donnee_1994 avec les variable suivantes:
- modele
- vitesse ville et
- vitesse autoroute

Vous comprenez que cette base de données contient donc 18 observations pour 3 variables. Quelle est la nature de chaque variable?

Réponse 1

- 2. Calculer la moyenne, la médiane et le mode des deux variables **vitesse_ville** et **vitesse_autoroute** à partir des données **données_1994**.
- Commenter vos résultats. Si vous vous rappelez, pour calculer la moyenne et la médiane, il faut utiliser les fonctions **mean** et **mediane**.
- Cependant, il **N'existe PAS** de fonction **mode** pour calculer le mode. Je vous demande de faire quelques recherches et me venir avec une solution. Il est dès fois important de ne pas se focaliser pour comprendre ce que vous faites du moment où ça marche. Donnez-vous le temps de le comprendre plus tard.
- 3. Il y a plusieurs autres paramètres de tendance centrale que les trois que nous avons vus en classe. Vous avez le minimum, le maximum, le premier quartile, le 3e quartile et plus généralement les **ntiles**. Calculer ces différents paramètres sur les variables vitesse_ville et vitesse_autoroute. Commenter vos résultats.
- 4. La fonction **descr** de summarytools vous permet aussi de calculer ces paramètres de tendance centrale. Utiliser cette fonction pour calculer les paramètres calculer au 2 et 3.
- 5. Maintenant, refaite la même chose avec les données de 2009.
- 6. Quelle conclusion tirez-vous sur la solution technologique au changement climatique?