mercoledì 18 ottobre 2017 16:14 GRAMMAT CHE $G = \langle Z, V, S, P \rangle$ ALFADETO CATEGORIE Carelonia Pasou town SINTATIONS (N, ZALE $A \rightarrow Z$ (\(\sigma\)\(\lambda\) DERIVATIONE (MODO PER GENERARE STRINGHE DEC CINCURCIO) ···· -> abbaa LINGUAGGIO DEFINITO = INSIEME DI TUTTE LE STAIN GUE GENERABILI ESEMPIO: G= ({a, b}, {S}, S, {S > aSb, S > as}) L = { a ~ 5 ~ / m > 0 }

mercoledi 18 ottobre 2017 16:23 ESEMPIO:	Definiano una grammatica L = {a b m m > m > 0	
	ab ec aaa bb ec	
	a a a a a b b b	A nappresenta le stringte con almero una a
$A \rightarrow a$ $A \rightarrow aA$ $J = A$	$\rightarrow A \times$ $\rightarrow a \mid aA$ $\rightarrow ab \mid a \times b$	X rappresente and
S -> AX	$\rightarrow aAX \rightarrow aaX \rightarrow aaaX$	b -> aaa ab b

merco	ledì 18	ottobre	2017	16:	31																			
		Λ	1 -	- 10		ſ	10		2.0	<u> </u>	_) _ /	,	, _	c	·—_	٠, ا		, ;		(UD	$C \subset C$, ;
		Д	()	ر الک	•		JUA	\sim	MΔ	11 6	2 \	۲	'E 10		CO		1)E)) C	,	(~`	~ UL		ار
													/											
											/	/			1									
									(۵ ۵	20	a	a	55	5									
									•	•				~										
														,					1					
							S	•	→	C	<i>ک</i> د	, b			α	<u>S</u>	, b	>		C	i (5		
														•					•					

ALBERO DI DERIVAZIONE RISPETTO A G= (Z, V, S, P)

- la redice contiene la categorie sintattica inisiele
- -s Ogni mods intermedis (non e una radice me una foglie) contione una Categoria sintattica
- -o l figli di un mas consispondons ai simboli che si Trovano a destra in una produtare per la categoria sintatrica del modo stesso
- no le foglie contenzono simbol. bell'alfabets

n		17:14				
	PER	6 Cai	STMUCA	DEL	(12 CUACC10	€3137€
	<i>\(\lambda \)</i>	ALBERO	01 DE/	nivation.	£.	
		ab		a c	55	
		S		((S)	
				6		
		(a) (b		(a)	(3) (5)	
				1/		
				(a	b	

() (()) ()() P P P P P O O O O O O O O O O O O O O		$P \rightarrow () P PP$	(((())) $()()$ $((()())$
	P		

	mercol	edì 18 (ottobre	2017	17:	31																						
				(1									ナ				١			(١.							
				V,																								
				6.	\sim	5°	ے د	55	ص ا			~		C	^		<u>م</u>	<i>Q</i> ^	~ e	~	9	Ç	~~	ر حـ		57_	~`~	5
				P	UO	-	Q	۲۱) (کہ ج	2_	(<i>د</i> ۶	٥٥	ر د	حآ	Q		٥_	ſ	riu T	•	9 i	(. (۹۱	Le	G.
				5			Se	λ ὶ	ے ں	<i>ر</i> ځ.	<i>ن</i> ړن	e			Şl		di a	೭೬										
											G	ПД	\triangle	∕ ∕\∠	<u>T</u>	i c	Δ		Д	Μ	ßİ	٩u	Д					
						ſ	= \ i	, ST	. لم	O		νo.	0 I	Ω	i u	Ξſ		1			, E	75)	QA (رد	(^		
												4									()		· , .			Δ.		
																	/											

mercoledì 18 ottobre 2017 17:34 E possible Trasformane una grammatica ambigue in un'attre grammatice equisalente (stesso linguaggio) non ansigua? so Non esiste un netodo generale.... Spesso il probleme cle consa ambisotte e la doppia niconsidre $P \rightarrow () | (P) | PP$ 1 Ploostori RICORSINE: RIGENERAND IL SIMBOLD A CulSono DOPPIA STATE APPLICATE Riconside (LA CATEGORÍA SINTATTICA E PP => Passotione DEFINITA IN Che SOSTITUISCE TERMINI DI JE Un simpolo ()()()STESSA) CON DUE COPIE DELLO STESSO PP

