THE US INFLATION PHENOMENON

AUTHOR | Rand Sobczak Jr. **DATE** | 16 September 2021

Problem Identification

Generated Deliverables

Data Pre-Processing

Table of contents

04 05 06

Model Description

Model Findings

Next Steps

01

Problem Identification

Developing a model to explain & understand the phenomenon of US Inflation

What is Inflation?

Inflation is the **decline of purchasing power** of a given currency over time. **Deflation is the inverse**

but it's a **highly debated** phenomenon in economics. Many economists maintain that **moderate** inflation **levels** are needed to **drive consumption**, assuming that higher levels of **spending are crucial** for **economic growth**

but it's a highly debated phenomenon in economics. Many economists maintain that moderate inflation levels are needed to drive consumption, assuming that higher levels of spending are crucial for economic growth

& **stabilizing it** is one of three objectives of the **Federal Reserve who's decisions move** the global **financials markets**

but it's a highly debated phenomenon in economics. Many economists maintain that moderate inflation levels are needed to drive consumption, assuming that higher levels of spending are crucial for economic growth

& stabilizing it is one of three objectives of the Federal Reserve who's decisions move the global financials markets

Gold, for example, saw 2 day drop of 4.67% the day of & after the Fed mentioned tapering; i.e., raising the Fed Rate in response to <u>Inflation</u>

but it's a highly debated phenomenon in economics. Many economists maintain that moderate inflation levels are needed to drive consumption, assuming that higher levels of spending are crucial for economic growth

& stabilizing it is one of three objectives of the Federal Reserve who's decisions move the global financials markets

Gold, for example, saw 2 day drop of 4.67% the day of & after the Fed mentioned tapering; i.e., raising the Fed Rate in response to Inflation

Math language, a 2+ standard deviated move

The purpose & goal of this Data Science project is to

build a model to explain & understand the phenomenon of US Inflation

02

Generated Deliverables

The power of API's

Quandl

Quandl is a marketplace for financial, economic and alternative data

Generated Deliverables

Investing.com

A financial platform & news website; one of the top 3 financial websites in the world

FRED

Federal Reserve Economic Data (FRED) a database maintained by the Research division of the Federal Reserve Bank of St. Louis

Problem Identification (cont.)

I **shortlisted 19 variables** to determine their influence on Inflation

Items	Reported	API	API Source	Comments
Inflation	Monthly	Quandl	U.S. Bureau of Labor Statistics	The target variable
Wages CPI	Monthly	FRED	U.S. Bureau of Labor Statistics	A component of the target variable
WTI	Daily	Quandl	CME	West Texas Intermediate - One of many commodities
Heating Oil	Daily	Investpy	Investing.com	One of many commodities
Copper	Daily	Investpy	Investing.com	One of many commodities
Sugar	Daily	Investpy	Investing.com	One of many commodities
Natural Gas	Daily	Investpy	Investing.com	One of many commodities
Cattle	Daily	Investpy	Investing.com	One of many commodities
Lean Hogs	Daily	Investpy	Investing.com	One of many commodities
Soybeans	Daily	Investpy	Investing.com	One of many commodities
Lumber	Daily	Investpy	Investing.com	One of many commodities
Capacity Utilization	Monthly	FRED	Board of Governors of the Federal Reserve	The % of resources used by corporations
Corn	Daily	Investpy	Investing.com	One of many commodities
M2 Velocity	Quarterly	FRED	Federal Reserve Bank of St. Louis	Movement of money; state of the economy proxy
GDP	Quarterly	FRED	U.S. Bureau of Economic Analysis	A proxy for the state of the economy
Wheat	Daily	Investpy	Investing.com	One of many commodities
PMI	Monthly	Quandl	Institute of Supply Management	Manufacturing PMI - A proxy for the economy
USD Index	Daily	Quandl	Intercontinental Exchange Inc	(\ensuremath{DXY}) Proxy for potentially importing inflation
Unemployment Rate	Monthly	Quandl	U.S. Bureau of Labor Statistics	A proxy for the state of the economy
Initial Jobless Claims	Weekly	Quandl	U.S. Employment and Training Administration	A proxy for the state of the economy

Problem Identification

Target Variable

Economic Data

I **Target variable** | What we seek to understand

Comments	API Source	API	Reported	Items
The target variable	U.S. Bureau of Labor Statistics	Quandl	Monthly	Inflation

Problem Identification (cont.)

Target Variable

Commodities

Economic Dat

I **Commodities** | Where Inflation typically shows itself

Items	Reported	API	API Source	Comments
WTI	Daily	Quandl	CME	West Texas Intermediate - One of many commodities
Heating Oil	Daily	Investpy	Investing.com	One of many commodities
Copper	Daily	Investpy	Investing.com	One of many commodities
Sugar	Daily	Investpy	Investing.com	One of many commodities
Natural Gas	Daily	Investpy	Investing.com	One of many commodities
Cattle	Daily	Investpy	Investing.com	One of many commodities
Lean Hogs	Daily	Investpy	Investing.com	One of many commodities
Soybeans	Daily	Investpy	Investing.com	One of many commodities
Lumber	Daily	Investpy	Investing.com	One of many commodities
Corn	Daily	Investpy	Investing.com	One of many commodities
Wheat	Daily	Investpy	Investing.com	One of many commodities

Problem Identification

Target Variable Commodities

Economic Data

I **Economic Data** | Variables to determine the health of the economy

Items	Reported	API	API Source	Comments
Wages CPI	Monthly	FRED	U.S. Bureau of Labor Statistics	A component of the target variable

Capacity Utilization	Monthly	FRED	Board of Governors of the Federal Reserve	The % of resources used by corporations
M2 Velocity	Quarterly	FRED	Federal Reserve Bank of St. Louis	Movement of money; state of the economy proxy
GDP	Quarterly	FRED	U.S. Bureau of Economic Analysis	A proxy for the state of the economy
PMI	Monthly	Quandl	Institute of Supply Management	Manufacturing PMI - A proxy for the economy
USD Index	Daily	Quandl	Intercontinental Exchange Inc	(DXY) Proxy for potentially importing inflation
Unemployment Rate	ment Rate Monthly Quan	Quandl	U.S. Bureau of Labor Statistics	A proxy for the state of the economy
Initial Jobless Claims	Weekly	Quandl	U.S. Employment and Training Administration	A proxy for the state of the economy

Source Code

This can be found at my GitHub account referenced at the end

Generated Deliverables

Research Report

Also can be found at my GitHub account referenced at the end

Presentation Report

This one...

03

A Data Pre-Processing

Split it up...

Data Cleaning

Data Frames should talk to each other

 After pulling the data frame was composed of variables with different lengths <class 'pandas.core.frame.DataFrame'> DatetimeIndex: 14285 entries, 1946-01-01 to 2021-08-18 Data columns (total 19 columns): Non-Null Count Dtype Column. Wage CPI 14276 non-null float64 WTI 12071 non-null float64 Heating Oil 13070 non-null float64 Copper 10423 non-null float64 Sugar 13070 non-null float64 Natural Gas 9898 non-null float64 Cattle 13067 non-null float64 Lean Hogs 13072 non-null float64 Sovbeans 9982 non-null float64 Lumber 13072 non-null float64 Capacity Utilization 14016 non-null float64 Corn 13069 non-null float64 M2 Velocity 14134 non-null float64 13 GDP 14278 non-null float64 Wheat 9984 non-null float64 PMI 15 14264 non-null float64 USD Index 11256 non-null float64 Unemployment Rate 14264 non-null float64 Initial Jobless Claims 14013 non-null float64

dtypes: float64(19)
memory usage: 2.2 MB

Data Cleaning

Data Frames should talk to each other

- After pulling the data frame was composed of variables with different lengths
 - **Natural Gas** being the constraint
 - **Used forward** fill

<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 9735 entries, 1991-04-18 to 2021-08-18 Data columns (total 19 columns):

#	Column	Non-I	Null Count	Dtype			
0	Wage CPI	9735	non-null	float64			
1	WTI	9735	non-null	float64			
2	Heating Oil	9735	non-null	float64			
3	Copper	9735	non-null	float64			
4	Sugar	9735	non-null	float64			
5	Natural Gas	9735	non-null	float64			
6	Cattle	9735	non-null	float64			
7	Lean Hogs	9735	non-null	float64			
8	Soybeans	9735	non-null	float64			
9	Lumber	9735	non-null	float64			
10	Capacity Utilization	9735	non-null	float64			
11	Corn	9735	non-null	float64			
12	M2 Velocity	9735	non-null	float64			
13	GDP	9735	non-null	float64			
14	Wheat	9735	non-null	float64			
15	PMI	9735	non-null	float64			
16	USD Index	9735	non-null	float64			
17	Unemployment Rate	9735	non-null	float64			
18	Initial Jobless Claims	9735	non-null	float64			
dtypes: float64(19)							
memony usage: 1 E MP							

memory usage: 1.5 MB

Data Pre-Processing Data Cleaning (cont.)

Data Frames should talk to each other (cont.)

- Different lengths
- Cut the data to April 1991

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 9735 entries, 1991-04-18 to 2021-08-18
Data columns (total 19 columns):
Columns Non Null Count Divisor

Daca	cordinis (cocar is cordin	113/1	
#	Column	Non-Null Count	Dtype
0	Wage CPI	9735 non-null	float64
1	WTI	9735 non-null	float64
2	Heating Oil	9735 non-null	float64
3	Copper	9735 non-null	float64
4	Sugar	9735 non-null	float64
5	Natural Gas	9735 non-null	float64
6	Cattle	9735 non-null	float64
7	Lean Hogs	9735 non-null	float64
8	Soybeans	9735 non-null	float64
9	Lumber	9735 non-null	float64
10	Capacity Utilization	9735 non-null	float64
11	Corn	9735 non-null	float64
12	M2 Velocity	9735 non-null	float64
13	GDP	9735 non-null	float64
14	Wheat	9735 non-null	float64
15	PMI	9735 non-null	float64
16	USD Index	9735 non-null	float64
17	Unemployment Rate	9735 non-null	float64
18	Initial Jobless Claims		
dtype	es: float64(19)		
	. `		

dtypes: float64(19) memory usage: 1.5 MB

Data Pre-Processing Data Cleaning (cont.)

Data Frames should talk to each other (cont.)

- Different lengths
- Cut the Data
- Concatenated with Inflation
 - Using a forward fill
 - Only 321 observations

<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 321 entries, 1991-04-30 to 2021-07-31 Data columns (total 20 columns): Non-Null Count Dtype Column Inflation float64 321 non-null Wage CPI float64 321 non-null float64 WTT 321 non-null Heating Oil float64 321 non-null float64 Copper 321 non-null Sugar 321 non-null float64 float64 Natural Gas 321 non-null Cattle float64 321 non-null Lean Hogs float64 321 non-null Soybeans 321 non-null float64 float64 Lumber 321 non-null Capacity Utilization float64 321 non-null 12 Corn 321 non-null float64 M2 Velocity float64 321 non-null GDP 321 non-null float64 15 float64 Wheat 321 non-null PMT 321 non-null float64 USD Index float64 321 non-null 321 non-null float64 Unemployment Rate Initial Jobless Claims float64 321 non-null dtypes: float64(20)

memory usage: 52.7 KB

 Items
 Reported
 API
 API Source
 Comments

 Inflation
 Monthly
 Quandl
 U.S. Bureau of Labor Statistics
 The target variable

Exploratory Data Analysis

Investigating the Time Relationships

- Quarter on Quarter (for all)
 - Compared a quarterly change on Variables & Inflation
- Month on Month (for all)
- Quarter on Quarter for Variables (past) & Inflation (forwards)
- Quarter on Quarter w/ Rolling Averages

- 0.8

- 0.6

- 0.4

- 0.2

- -0.2

- -0.4

- -0.6

Data

Pre-Processing

Exploratory Data Analysis

Quarter on Quarter (for all)

Feature Correlation Heat Maps with the Pearson correlation coefficients

Exploratory Data Analysis (cont.)

- Quarter on Quarter (for all)
- Month on Month (for all)
 - The same as the previous but looked at monthly change
- Quarter on Quarter for Variables (past) & Inflation (forwards)
- Quarter on Quarter w/ Rolling Averages

- 0.4

- 0.2

Exploratory Data Analysis (cont.)

- Quarter on Quarter (for all)
- Month on Month (for all)
- Q on Q for Variables (past) & Inflation (forwards)
 - Looked at a previous 1 quarter change for variables to a 1 quarter change in Inflation in the future
- Quarter on Quarter w/ Rolling Averages

Exploratory Data Analysis (cont.)

Investigating the Time Relationships (cont.)

- Quarter on Quarter (for all)
- Month on Month (for all)
- Q on Q for Variables (past) & Inflation (forwards)

Quarter on Quarter w/ Rolling Averages

 Similar to # 1 albeit used a rolling average for those that were reported more often than once a Quarter as a Variable "may have had" a bad week or day when the Quarter ended

Data

Pre-Processing

Exploratory Data Analysis

Quarter on Quarter w/ Rolling Averages

Feature Correlation Heat Maps with the Pearson correlation coefficients (cont.)

Data Pre-Processing Exploratory Data Analysis (cont.)

- Scraping is also a consideration to be taken in.
- I did not scrape on the variables; something discussed in "Next Steps"
- I did scrape, however, on Inflation; this was done on a three (3) standard deviated move whereby they were dropped; representing 1.5-2.8% of the total DataFrame

Exploratory Data Analysis (cont.)

- Scraping is also a consideration to be taken in.
- I did not scrape on the variables; something discussed in "Next Steps"
- I did scrape, however, on Inflation; this was done on a three (3) standard deviated move whereby they were dropped; representing 1.5-2.8% of the total DataFrame

Exploratory Data Analysis (cont.)

- Scraping is also a consideration to be taken in.
- I did not scrape on the variables; something discussed in "Next Steps"
- I did scrape, however, on Inflation; this was done on a three (3) standard deviated move whereby they were dropped; representing 1.5-2.8% of the total DataFrame

Pre-Processing

Splitting & Scaling

- Chosen data frame
 - The Quarter on Quarter w/ Rolling Averages was chosen
- Train, Test Split
- Scaling

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split
 - The data was then split for Training & Testing to be sent to different Scaling Approaches
- Scaling

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split
- Scaling
 - 3 scaling approaches were tried to "normalize" them:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 Log Transformation (LG)

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split
- Scaling
 - 3 scaling approaches were tried to "normalize" them:

 - MinMax Scaling (MM)
 - Log Transformation (LG)

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split
- Scaling
 - 3 scaling approaches were tried to "normalize" them:
 - Standard Scaling (SS)
 MinMax Scaling (MM)
 - Log Transformation (LG)

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried to "normalize" them :
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)

	Wages CPI_SS	WTI_SS	Wages CPI_MM	WTI_MM	Wages CPI_LG	WTI_LG
count	2.180000e+02	2.180000e+02	218.000000	218.000000	2.180000e+02	2.180000e+02
mean	-4.838128e-18	2.750094e-17	0.694134	0.579751	-2.340126e-16	-1.018553e-17
std	1.002301e+00	1.002301e+00	0.099718	0.153589	1.002301e+00	1.002301e+00
min	-6.977019e+00	-3.783391e+00	0.000000	0.000000	-4.203779e+00	-3.308051e+00
25%	-2.671202e-01	-5.665365e-01	0.667559	0.492937	-3.922100e-01	-6.014282e-01
50%	1.153214e-01	-3.959852e-02	0.705608	0.573683	2.665979e-02	-8.488108e-02
75%	4.280369e-01	6.677299e-01	0.736719	0.682071	3.947888e-01	6.501558e-01
max	3.074376e+00	2.742497e+00	1.000000	1.000000	4.675375e+00	3.071756e+00

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split
- Scaling
 - 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
 - MM posted poor results; thus removed

Data Pre-Processing

Pre-Processing (cont.)

$\rm R^2$ results for nothing scaled below Test 0.254 (nothing scaled)	MAE results for nothing scaled below Test 0.563 (nothing scaled)	MSE results for nothing scaled below Test 0.7556 (nothing scaled)
R ² results for X & y scaled below SS Train 0.3966 Test 0.2796 MM Train 0.0424 Test -0.1085 LG Train 0.4149 Test -23.8319	MAE results for X & y scaled below SS Train 0.5376	MSE results for X & y scaled below SS Train 0.6034
R2 results for X only scaled below SS Train 0.4185 Test 0.254 MM Train -0.2444 Test -0.0533 LG Train 0.4142 Test -23.4693	MAE results for X only scaled below SS Train 0.4312	MSE results for X only scaled below SS Train 0.3727 Test 0.571 MM Train 0.7976 Test 0.8061 LG Train 0.3755 Test 18.7277

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, variables were chosen to sent to either a SS or LG while keeping the y variable (Inflation) unscaled.

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, variables were chosen to sent to either a SS or LG while keeping the
 y variable (Inflation) unscaled.
- The following were sent to LG:
 - Wage CPI

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, variables were chosen to sent to either a SS or LG while keeping the
 y variable (Inflation) unscaled.
- The following were sent to LG:
 - Wage CPI
 - Capacity Utilization

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, variables were chosen to sent to either a SS or LG while keeping the
 y variable (Inflation) unscaled.
- The following were sent to LG:
 - Wage CPI
 - Capacity Utilization
 - M2 Velocity

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, variables were chosen to sent to either a SS or LG while keeping the
 y variable (Inflation) unscaled.
- The following were sent to LG:
 - Wage CPI
 - Capacity Utilization
 - M2 Velocity
 - GDP

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, variables were chosen to sent to either a SS or LG while keeping the
 y variable (Inflation) unscaled.
- The following were sent to LG:
 - Wage CPI
 - Capacity Utilization
 - M2 Velocity
 - GDP
 - Unemployment Rate

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, variables were chosen to sent to either a SS or LG while keeping the
 y variable (Inflation) unscaled.
- The following were sent to LG:
 - Wage CPI
 - Capacity Utilization
 - M2 Velocity
 - GDP
 - Unemployment Rate
 - Initial Jobless Claims

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, ""
- The results of these below

$\ensuremath{\text{R}^2}$ results for nothing scaled below Test 0.254 (nothing scaled)	MAE results for nothing scaled below Test 0.563 (nothing scaled)	MSE results for nothing scaled below Test 0.7556 (nothing scaled)
R ² results for X & y scaled below SS Train 0.3966 Test 0.2796 W Train 0.0424 Test 0.1005 LG Train 0.4149 Test -23.8319	MAE results for X & y scaled below SS Train 0.5376 Test 0.684 WM Train 0.0811 Test 0.0943 LG Train 0.5478 Test 1.6306	MSE results for X & y scaled below SS Train 0.6034
R ² results for X only scaled below S5 Train 0.4185 Test 0.254 HH Train 0.2444 Test 0.0533 LG Train 0.4142 Test -23,4693	MAE results for X only scaled below SS Train 0.4312 Test 0.563 MM Train 0.6711 Test 0.6112 LG Train 0.4381 Test 1.2897	MSE results for X only scaled below SS Train 0.3727 Test 0.571 HM Train 0.3755 Test 0.8001 LG Train 0.3755 Test 18.7277
R ² results for the LG & SS combination below SS Train 0.4067 Test -22.811	MAE results for the LG & SS combination below SS Train 0.4377 Test 1.2751	MSE results for the LG & SS combination below SS Train 0.3803 Test 18.2239

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, ""
- The results of these below
- The resulting x5 Data frames went to a Random Forest Model

04

Model Description

The Random Forest

The Random Forest Model was then used

with the goal of determining what variables best explain & understand Inflation

05

Model Findings

What's moving Inflation

Where's Inflation coming from?

- The standard process was taken on x5
 - Grid Search
 - Random Forest
 - Hyperparameter search using Grid Search CV

Model Findings

Where's Inflation coming from? (cont.)

- The standard process was taken on x5
- The results
 - Random Forest showed a ubiquitous 1st & 2nd place to Wages CPI & WTI respectively on 5; other variables discounted the performance

Model Findings

(cont.)

Where's Inflation coming from? (cont.)

• The standard process was taken on x5

The results

- Random Forest showed a ubiquitous 1st & 2nd place to Wages CPI & WTI respectively on all; other variables discounted the performance
- In the end, the SS approach on both X & y presented the best results with these two variables

Model Findings

(cont.)

R ² results for X & y scaled below	MAE results for X & y scaled below	MSE results for X & y scaled below
SS Train 0.2924 Test 0.424	SS Train 0.5639 Test 0.5811	SS Train 0.7076 Test 0.6877
LG Train 0.2815 Test 0.3673	LG Train 0.5727 Test 0.598	LG Train 0.7185 Test 0.7763
R ² results for X only scaled below	MAE results for X only scaled below	MSE results for X only scaled below
SS Train 0.2924 Test 0.3489	SS Train 0.4515 Test 0.6127	SS Train 0.4536 Test 0.7774
LG Train 0.2778 Test 0.2979	LG Train 0.4572 Test 0.6272	LG Train 0.4629 Test 0.8615
R ² results for the LG & SS combination SS Train 0.284 Test 0.3761	MAE results for the LG & SS combination SS Train 0.4572 Test 0.6272	MSE results for the LG & SS combination SS Train 0.4629 Test 0.8615

(cont.)

Where's Inflation coming from? (cont.)

• The standard process was taken on x5

. The results

- Random Forest showed a ubiquitous 1st & 2nd place to Wages CPI & WTI respectively on all; other variables discounted the performance
- In the end, the SS approach on both X & y presented the best results with these two variables
- & showed that the process presented notable improvement from where we started
 - After rolling averages on the unscaled 19 Variables

A 17.0 bps increase in R2; 66.94 % increase.

A 1.81 bps increase in MAE.

A -6.79 bps decrease in MSE.

(cont.)

Where's Inflation coming from? (cont.)

• The standard process was taken on x5

The results

- Random Forest showed a ubiquitous 1st & 2nd place to Wages CPI & WTI respectively on all; other variables discounted the performance
- In the end, the SS approach on both X & y presented the best results with these two variables
- & showed that the process presented notable improvement from where we started
 - After rolling averages on the unscaled 19 Variables
 - After rolling averages on the SS X & y scaled 19 Variables

A 14.44 bps increase in R2; 51.64 % increase.

A -10.29 bps decrease in MAE.

A -17.24 bps decrease in MSE.

(cont.)

Where's Inflation coming from? (cont.)

The standard process was taken on x5

The results

- Random Forest showed a ubiquitous 1st & 2nd place to Wages CPI & WTI respectively on all; other variables discounted the performance
- In the end, the SS approach on both X & y presented the best results with these two variables
- & showed that the process presented notable improvement from where we started
 - After rolling averages on the unscaled 19 Variables
 - After rolling averages on the SS X & y scaled 19 Variables
 - Isolated the importance to Wages & WTI

(cont.)

Where's Inflation coming from? (cont.)

• The standard process was taken on x5

The results

- Random Forest showed a ubiquitous 1st & 2nd place to Wages CPI & WTI respectively on all; other variables discounted the performance
- In the end, the SS approach on both X & y presented the best results
- & showed that the process presented notable improvement from where we started
- So the verdict is that when you use these two variables alone you best position yourself to understand Inflation.

(cont.)

Where's Inflation coming from? (cont.)

The standard process was taken on x5

The results

- Random Forest showed a ubiquitous 1st & 2nd place to Wages CPI & WTI respectively on all; other variables discounted the performance
- In the end, the SS approach on both X & y presented the best results
- & showed that the process presented notable improvement from where we started
- So the verdict is that when you use these two variables alone you best position yourself to understand Inflation
- While the Wages CPI is reported with Inflation itself, we will borrow **some words** to explain it on something that moves every day

The wise words of Bill Clintons' advisor to his 1992 political campaign 66

11

- lames Carville

The wise words of Bill Clintons' advisor to his 1992 political campaign

"It's the economy, stupid"

- James Carville

Borrowed words...

Our **Conclusion**

06

☼ Next Steps

Keep going

Variables not included

- Steel
 - 2008 was the furthest I could pull

Next Steps

Variables not included

- Steel
- . Gasoline
 - 2005 was the furthest I could pull

Next Steps

Next Steps

Variables not included

- Steel
- Gasoline
- US Wages Hourly Earnings
 - Limited Data as well

Next Steps

Variables not included

- Steel
- Gasoline
- US Wages Hourly Earnings
- US Dollar Index: Broad, Goods & Services
 - Only goes until 2006

Next Steps

Variables not included

- Steel
- Gasoline
- US Wages Hourly Earnings
- US Dollar Index: Broad, Goods & Services
- Growth in M2
 - Possible overlap with M2 Velocity

More attention may be applicable to the below:

Get more data

Next Steps (cont.)

More attention may be applicable to the below:

- Get more data
- The SS & LG Divide
 - Reassess the Variables which were chosen in the SS & LG divide; discussed in Pre-processing

More attention may be applicable to the below:

- Get more data
- The SS & LG Divide
- Scrape Variables
 - Winsorizing way present better results

Next Steps (cont.)

More attention may be applicable to the below:

- Get more data
- The SS & LG Divide
- Scrape Variables

Predict Wages CPI Itself

 Develop a model to remove ourselves from the US govt's reporting

More attention may be applicable to the below:

- Get more data
- The SS & LG Divide
- Scrape Variables
- Predict Wages CPI Itself
- Build a Better Imported / Exported USD
 - The DXY doesn't correctly address the US Imports or Exports Inflation as it's weighting is a weighted geometric mean of the:
 - Eurozone (EUR),
 - Japan (JPY),
 - United Kingdom (GBP),
 - Canada (CAD),
 - Sweden (SEK) &
 - Switzerland (CHF)

More attention may be applicable to the below:

- Get more data
- The SS & LG Divide
- Scrape Variables
- Predict Wages CPI Itself

Build a Better Imported / Exported USD

- The DXY doesn't correctly address whether the US Imports or Exports Inflation as it's is a weighted geometric mean of the:
- Doesn't take into account the US's largest trading partner, China. Imports shown below

China	Canada	Vietnam 3.6%	Korea		Switzerland					
		India	France	Thaila	and Sing	apore	Nether	rlands	Br	azil
20%	12% Japan	2.3% Italy	Deigiain	1.7 Australia	South Africa	3% Colombia		△ Sa		0% Poland
Mexico		2.2%	0.91% Indonesia	Sweden 0.55%	0.49% Hong Kong			% 0.4	4196	0.38% Finland
	5.2%	United	0.91% Russia	Denmark 0.51%	0.34% Cambodia 0.29%	0.24%	0.23%			
	Germany	2.2%		Austria 0.50%	Ecuador 0.27% Bangladesh	Portugal 0.17%				
14%	5.0%	Malaysia	0.68%	Turkey 0.50% Philippines	0.27% Peru 0.25%	Nicaragua 0.10% Iraq	Egypt			
	3.0 /0	1.9%	0.67%	0.49%	Czech Republic 0.24%	United				

More attention may be applicable to the below:

- Get more data
- The SS & LG Divide
- Scrape Variables
- Predict Wages CPI Itself

Build a Better Imported / Exported USD

- The DXY doesn't correctly address whether the US Imports or Exports Inflation as it's is a weighted geometric mean of the:
- Doesn't take into account the US's largest trading partner, China. Imports shown below.
- It takes into account less than 40% of US Import Trade

More attention may be applicable to the below:

- Get more data
- The SS & LG Divide
- Scrape Variables
- Predict Wages CPI Itself
- Build a Better Imported / Exported USD
- Random Forest was used, while Gradient Boosting may be something to explore:
 - i.e. Boosting over Bagging

Thanks

By **Rand Sobczak Jr.**rand.sobczak@gmail.com
+1 313 447 8634

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Questions