1 Kombinatorik

$$\begin{array}{c|ccc} & \text{ohne} & \text{Zurück legen} \\ \hline \text{Reigenfolge} & \frac{n!}{(n-k)!} & n^k \\ \text{ohne} & \binom{n}{k} & \binom{n+k-1}{k} \\ \end{array}$$

2 Diskrete Zufallsvariablen

2.1 Axiomatscher Ansatz

- $P(E) \ge 0$
- $P(\Omega) = 1$
- $P(E \cup F) = P(E) + P(F)$, wenn $E \cap F = \emptyset$
- $\Omega = E \cup \overline{E}$

2.2 Gemeinsame und bedingte Wahrscheinlichkeiten

- $P(EF) = P(E \cap F) = P(F \cap E) = P(FE)$
- $P(E|F) = \frac{P(EF)}{P(F)} = \frac{P(FE)}{P(F)}$
- P(EF) = P(E|F)P(F)

2.3 statistische Unabhängigkeit

•
$$P(EF) = P(E)P(F)$$

2.4 Bayes-Regel

- $P(A_i|B_j) = \frac{P(B_j|A_i)P(A_i)}{P(B_j)}$
- $P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|\overline{F})P(\overline{F})}$

2.5 Gesetz der Gesamtwsk

•
$$P(F) = \sum_{i=1}^{K} P(F|E_i)P(E_i)$$

2.6 Diskrete Zufallsbyariablen

- Eine Zufallsvaribale ZV $X(\omega)$ ist eine Funktion, die jedem möglichen Ergebnis $\omega \in \Omega$ eines Zufallsexperimentes eine reelle Zahl $X(\omega)$ zuordnet.
- Jede reelle Zahl $X(\omega)$ hate eine zugehörige Wahrscheinlichkeit. Wir schreiben diese als $P(X(\omega) = x) = P_X(x)$

•
$$P(4 \le X \le 6) = P(X \le 6) - P(X \le 3)$$

2.7 Wahrscheinlichkeitsverteilung

•
$$P_X(x) = P(X = x)$$

•
$$0 \le P_X(x) \le 1$$

$$\bullet \ \sum_X P_X(x) = 1$$

2.8 Poisson-ZV

•
$$P_X(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

•
$$\sum_{-\infty}^{\infty} x \frac{\lambda^x e^{-\lambda}}{x!} = 1$$

2.9 Zwei diskrete ZV

WskVerteilung	Formel
Gemeinsame	$P_{XY}(x,y) = P(X=x,Y=y)$
Bedingte	$P_{X Y}(x y) = \frac{P_{XY}(x,y)}{P_{Y}(y)}$
Rand	$P_X(x,y) = \sum_Y P_{XY}(x,y)$

2.10 binomial Verteilung

•
$$P_X(k) = \binom{n}{k} p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

2.11 Erwartungswerte und Momente

	Formel
Mittelwert	$\mu_X = E\{X\} \hat{=} \sum_X x P_X(x)$
Varianz	$var(X) = E\{(X - \mu_X)^2\} = \sum_X (x - \mu_X)^2 P_X(x)$
Standard Abw.	$\sigma_X = \sqrt{var(X)}$
Korrelation	$\mu_{XY} = E\{XY\} = \sum_{X} \sum_{Y} xy P_{XY}(x, y)$
Kovarianz	$\sigma_{XY} = E\{(X - \mu_X)(Y - \mu_Y)\} = \sum_X \sum_Y (x - \mu_X)(y - \mu_Y) P_{XY}(x, y)$
Linearität	$E\{aX + bY\} = aE\{X\} + bE\{Y\}$

•
$$\sigma_X^2 = \mu_{X^2} - \mu_X^2$$

•
$$E[x^2] = E[x(x-1)] + E[x]$$

•
$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \mu_{XY} - \mu_X \mu_Y$$

2.12 Unkorreliertheit

- $E\{XY\} = E\{X\}E\{Y\}$, d.h $\sigma_{XY} = 0$, dann sind X und Y unkorreliert
- statistische Unabhängigkeit bedeutet Unkorreliertheit aber nicht umgekehrt
- Korrelationskoeffizient $\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$
- $-1 \le \rho_{XY} \le 1$

2.13 Lineare Schätzung

- opt Schätzer, der MSE minimiert: $\hat{Y} = \mu_Y + \rho_{XY} \frac{\sigma_Y}{\sigma_X} (X \mu_x)$
- dessen MSE = $\sigma_Y^2 (1 \rho_{XY}^2)$

2.14

- Stichprobenmw: $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n x_i$
- Stichprobenvar: $\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \hat{\mu}_n)^2$

3 Zeitdiskrete Markoff-Ketten

3.1 Definition

Eine Folge von ganzwertigen ZVn.

Ereignis = Zustand

Zeithomogen, wenn keine Abhängikeit von der Zeit besteht

 $P(X_{n+1} = j | X_n = i)$ sind Übergangswahrscheinlichkeiten

 $P(X_n = i)$ sind Zustandwahrscheinlichkeiten

$$P(X_{n+1} = | X_n = i_n, ..., X_0 = i_0) = P(X_{n+1} = i_{i+1} | X_n = i_n)$$

3.2 stationäre Verteilung

- $q_n = q_0 P^n$
- Stationäre Verteilung, wenn $\pi = \pi P$
- $\pi = \pi P \Leftrightarrow \pi(P I) = 0$
- irreduzibel = Jeder Zusatand erreichbar
- Eine irreduzible, aperiodische Kette mit einer endlichen Anzahl von Zuständen hat eine eindeutige stationäre Verteilung.
- eindeutige stationäre Verteilung, wenn irreduzibel und aperiodisch

3.3 Berechnung der stationären Verteilung

4 Stetige Zufallsvariablen

4.1 Wkdichte- und kumulative Verteilungsfunktionen

Funktion	Formel
kummulative Verteilungs	$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(\xi) d\xi$
Wskdichte	$f_X(x) = \frac{d}{dx} F_X(x)$

4.1.1 Eigenschaften

- $P(a < X \le b) = P(X \le b) P(X \le a) = F_X(b) F_X(a)$
- $P(X > a) = 1 P(X \le a) = 1 F_X(a)$
- $F_X(x)$ ist nicht abnehmend
- $f_x(x) \ge 0$ aber nicht notwendigerweise $f_X(x) \le 1$
- $F_X(-\infty) = 0$ und $F_X(\infty) = \int_{-\infty}^{\infty} f_X(x) dx = 1$

4.2 Zwei Zufallsvariablen

gem. k. Vf. $\begin{aligned} & F_{XY}(x,y) = P(X \leq x, Y \leq y) \\ & \text{gem. Wdf.} & f_{xy}(x,y) = \frac{\partial}{\partial_x} \frac{\partial}{\partial_y} F_{XY}(x,y) \\ & \text{Rand-Wdf.} & F_X(x) = \int_{-\infty}^{\infty} f_{XY}(x,y) dy \\ & \text{bedingte Wdf.} & f_{X|Y}(x|y) = \frac{F_{XY}(x,y)}{f_Y(y)} \end{aligned}$

4.3 statistische Unabhängikgeit

- $F_{XY}(x,y) = F_X(x)F_Y(y)$
- $f_{XY}(x,y) = f_X(x)f_Y(y)$
- $\bullet \ f_{X|Y}(x|y) = f_X(x)$

4.4 Erwartungswerte

4.4.1 Eine stetige ZV

Erwartungswert Operator Moment 1. Ordnung Moment 2. Ordnung Varianz $E\{g(X)\} \hat{=} \int_{-\infty}^{\infty} g(x) f_X(x) dx \\ \mu_X = E\{X\} = \int_{-\infty}^{\infty} x f_X(x) dx \\ \mu_{x^2} = E\{X^2\} = \int_{-\infty}^{\infty} x^2 f_X(x) dx \\ var(x) = \sigma_x^2 = E\{(X - \mu_X)^2\}$

4.4.2 Zwei stetige ZVn

 $\begin{array}{c|c} E\{g(X,Y)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) dx dy \\ \text{Korrelation} & \mu_{XY} = E\{XY\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{XY}(x,y) dx dy \\ \text{Kovarianz} & \sigma_{XY} = E\{(X-\mu_x)(Y-\mu_y)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (X-\mu_x)(Y-\mu_y) f_{XY}(x,y) dx dy \end{array}$

4.5 Tscherbyscheff Ungleichung

Sie X eine ZV mit dem Mittelwert μ_X und einer endlichen Varianz σ_X^2 . Für ein beliebiges $\delta>0$

$$P[|X - \mu_x| \ge \delta] \le \frac{\sigma_X^2}{\delta^2}$$

4.6 Wichtige Verteilungen

4.6.1 Gleichverteilung

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & \text{sonst} \end{cases}$$

4.6.2 Exponential verteilung

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & \text{sonst} \end{cases}$$
 $F_X(x) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0 \\ 0 & \text{sonst} \end{cases}$

4.6.3 Gauß-Verteilung (Normalverteilung)

$$X \sim N(\mu_X, \sigma_X^2)$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_X} exp(-\frac{1}{2}(\frac{x-\mu_x}{\sigma_X})^2)$$

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{s^2}{2}} ds$$

$$erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-s^2} ds$$
 komplementäre Fehlerfunktion
$$erf(z) = 1 - erf(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-s^2} ds = 2\phi(-\sqrt{2}z)$$
 Q-Funktion
$$Q(z) = 1 - \phi(z) = \frac{1}{2} erfc(\frac{z}{\sqrt{2}})$$

4.6.4 Eigenschaften

- vollständig bestimmt durch Mittelwert und Varianz
- Wenn X und Y gem. Gauß-verteilt sind und unkorreliert sind, dann sind sie unabhängig
- $\bullet\,$ Wenn X und Y gem. Gauß-verteilt sind, dann sind auch die Randverteilungen Gaußisch
- \bullet Wenn X und Y gem. Gauß-verteilt sind, dann ist es X|Y auch
- Wenn X Gauß-verteilt ist, dann ist aX+b auch (mit $Mittelwert~a\mu_X+b~und~Varianz~a2^2\sigma_X^2)$

4.7 Momenterzeugende Funktion

$$\phi(s) = E\{e^{sX}\} = \int_{-\infty}^{\infty} e^{sx} f_X(x) dx, \quad s \in C$$

4.7.1 n-te Moment

$$E\{X^n\} = \frac{d^n}{ds^n}\phi(s)|_{s=0}$$

4.7.2 Charakteristische Funktion

$$\psi(\omega) = E\{e^{j\omega X}\} = \int_{-\infty}^{\infty} e^{j\omega x} f_X(x) dx = \psi(j\omega), \quad \omega \in R$$

- Die c.F existiert immer, weil $|\psi(\omega)| = |E\{e^{j\omega X}\}| \le E\{e^{j\omega X}|\} = 1$
- Aufgrund der Symmetrie der FT $\psi(\omega) = \psi^*(-\omega)$
- c.F. ist reel (und gerade) genau dann wenn die Wdf. gerade ist: $f_X(x) = f_X(-x)$
- weil $\psi(\omega)=\psi(j\omega)$, können wir die Momente auch mit der c.F erzeugen: $E\{X^n\}=rac{d^n}{d\omega^n}(-j)^n\psi(\omega)|_{\omega=0}$

4.8 Gesetz der großen Zahlen und zentraler Grenzwertsatz

4.8.1 schwaches Gesetz der großen Zahlen

$$\hat{\mu}_N = \frac{1}{N} \sum_{n=1}^N X_n$$

4.9 Zentraler Grenzwertsatz

$$Z = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} (X_n - \mu)$$

5 Statistik

5.1 Parameterschätzung

 $\begin{array}{ll} \text{Stichprobe} & \text{Reihe von Messungen} \\ \text{Statistik} & \text{beliebige Funktion der Daten} \\ \text{Stichprobenmittel} & \hat{M_n} = \frac{1}{n} \sum_{i=1}^n X_i \\ \text{Stichprobenvarianz} & \hat{\sum}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \hat{M}_n)^2 \\ & \hat{\sum}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu}_X)^2 \end{array}$

5.2 Erwartungstreue und Konsistenz

Wenn das Mittel des Schätzers dem Mittelwert des Parameters, den er schätz, entspricht, dann nennen wir den Schätzer **erwartungstreu**.

5.3 Erwartungstreue und Konsistenz

- $E[\hat{M}_n] = \frac{1}{n} \sum_{i=1}^n \mu_X = \mu_X$
- $E[\hat{\sum}_n^2] = \sigma_X^2$

- Stichproben mittel und -varianz sind konstistente Schätzer von Ensemble-Mittel und Varianz
- Erwartungstreue \neq Konsistenz

5.4 Konfidenzintervalle

- Wir schreiben $\mu_X = \hat{M}_n \pm \text{ mit } 100(1-\alpha)\%Wsk$
- wenn wir meinen $P(\mu_X \in [\hat{M}_n \delta, \hat{M}_n + \delta]) = 1 \alpha$
- Konfidenzintervall: $[\hat{M}_n \delta, \hat{M}_n + \delta]$
- Konfidenzniveau: 1α

5.5 Hypothesentest für das Mittel

- $\mu \leq \mu_0$ oder $\mu > \mu_0$
- $\mu = \mu_0 \text{ oder } \mu \neq \mu_0$
- \bullet Fehler 1. Art (falscher Alarm) Entscheidung für $H_1,$ obwohl H_0 wahr ist
- \bullet Fehler 2. Art (versäumte Detektion) Entscheidung für $H_0,$ obwohl H_1 wahr ist
- einseitiger Test: y_{α}
- zweiseitiger Test: $y_{\frac{\alpha}{2}}$

5.6 Histogramm

• Schätzung einer Wsk Verteilunf -dichte wie oft B E
obachtungen in eine Klasse fallen

6 Zufallsvektoren

6.1 Bivariante Gaußverteilung

- gemeinsam gaußisch $f_{XY}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho_{XY}^2}} exp\{-\frac{1}{2(1-\rho_{XY}^2)}[(\frac{x-\mu_x}{\sigma_X})^2 2\rho_{XY}\frac{(x-\mu_x)(y-\mu_y)}{\sigma_X\sigma_Y} + (\frac{y-\mu_y}{\sigma_Y})^2]\}$
- Randverteilung $f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x,y) dy = \frac{1}{\sqrt{2\pi}\sigma_X} exp\{-\frac{1}{2}(\frac{x-\mu_X}{\sigma_X})^2\}$
- Wenn X und Y unkorreliert sind, d.h. $\rho_{XY}=0$, dann ist $f_{XY}(x,y)=f_X(x)f_Y(y)$, d.h. X und Y sind unabgängig

6.2 Bedingte Gauß- Wdf.

- $F_{Y|X}(y|x) = \frac{f_{XY}}{f_X(x)}$
- Gaußisch Mittel $E\{Y|X=x\} = \mu_Y + \rho_{XY} \frac{\sigma_Y}{\sigma_X} (x \mu_x)$
- Varianz $\sigma_Y^2(1-\rho_{XY}^2)$
- Für $\hat{Y} = E\{Y|X\}ist\hat{Y} = aX + b$, der lin Schätzer, $E\{(\hat{Y} Y)^2\}$ MSE

6.3 Gemeinsame Verteilungen und Dichten

- Sei $\mathbf{X} = [X_1,...,X_n]^T, \mathbf{Y} = [Y_1,...,Y_n]^T$
- k. Vf $F_{\mathbf{X}}(\mathbf{x}) = P(X_1 \le x_1, ..., X_n \le x_n)$
- Wdf $f_{\mathbf{X}}(\mathbf{x}) = \frac{\partial}{\partial_{x_1}} ... \frac{\partial}{\partial_{x_n}} F_{\mathbf{X}}(\mathbf{x})$
- gem k. Vf $F_{XY}(x,y) = P(X_1 \le x_1,...,X_n \le x_n, Y_1 \le y_1,...,Y_n \le y_n)$
- $\bullet \ \text{gem Wdf} \ f_{\mathbf{XY}}(\mathbf{x},\!\mathbf{y}) = \tfrac{\partial}{\partial_{x_1}} ... \tfrac{\partial}{\partial_{x_n}} \tfrac{\partial}{\partial_{y_1}} ... \tfrac{\partial}{\partial_{y_n}} F_{\mathbf{XY}}(\mathbf{x},\!\mathbf{y})$

6.4 Momente

- $\mu_{X_i} = E\{X_i\}, i = 1, ..., n$
- $\sigma_{X_i}^2 = E\{(X_i \mu_{X_i})^2\}$
- $\sigma_{X_i X_j} = E\{(X_i \mu_{x_i})(X_j \mu_{X_j})\}$

6.5 Mittelwertvektor und Kovarianz

- $\mu_{\boldsymbol{X}} = E\{\boldsymbol{X}\}$
- $R_{XX} = E\{(X \mu_X)(X \mu_X)^T\} = E\{XX^T\} \mu_X \mu_X^T$
- Element (i,j) von R_{XX} ist die Kovarianz zwischen X_iX_j
- R_{XX} ist symmetrisch: $R_{XX} = R_{XX}^T$

6.6 Kovarianzmatrix

- Korrelationsmatrix: $E\{XX^T\}$
- Kreuz-Kovar: $R_{XY} = E\{(X \mu_X)(Y \mu_Y)^T\}$
- Unkorreliert: $E\{\boldsymbol{X}\boldsymbol{Y}^T\} = E\{\boldsymbol{X}\}E\{\boldsymbol{Y}^T\}$ bedeutet aber nicht unabhängig
- orthogional $E\{XY^T\} = 0$
- Kovar, Korrelationsmatrizen sind symmetrisch und pos semidefinit: $z^T R_{XX} z \ge 0 \ \forall z \ne 0$

6.7 Transformation von Zufallsvektoren

• Sei y = g(x), g invertierbar mit inverser Funktion h $f_Y(y) = f_X(h(y))|det(J_h(y))|$

.

6.8 Multivariante GaußVerteilung

• n-dim Wdf $f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{\frac{n}{2}} \sqrt{det(\boldsymbol{R}_{\boldsymbol{X}\boldsymbol{X}})}} exp\{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_{\boldsymbol{x}})^T \boldsymbol{R}_{\boldsymbol{X}\boldsymbol{X}}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_{\boldsymbol{X}})\}$

6.9 Verhalten bei linearer Transformation

• Sei ${\pmb A}$ eine m x n Matrix vom Rang m. Dann Zufallsvektor ${\pmb Y}=A{\pmb X}$ eine m-dim GaußVerteilung mit MWvek ${\pmb \mu}_{\pmb Y}=A{\pmb \mu}_{\pmb X}$ und Kovarmat $[R_{YY}=AR_{XX}A^T$

6.10 bedingte Wdf

- $f_{X|Y}(x|y)$ ist gaußisch mit Mittelwertvek $\pmb{W_y}$ und Kovarmat \pmb{Q}
- $\bullet \ f_{X|Y}(x|y) = \frac{1}{(2\pi)^{\frac{n}{2}}\sqrt{\det(\boldsymbol{Q})}}exp\{(\boldsymbol{x}-\boldsymbol{W_y})^T\boldsymbol{Q}^{-1}(\boldsymbol{x}-\boldsymbol{W_y})\}$

7 Zufallsprozess

- Zufallsprozess (ZP, stochastisches Signal) ist eine Schar/Ensemble von Musterfunktionen
- Jede Musterfunktion(Beobachtung) $x_n(t)$ ist deterministisch
- Für einen Zeitpunkt $t=t_0$ wird aus dem ZP X(t) eine Zufallsvariable $Z=X(t_0)$
- gibt es zeitkontinuierlich udn diskret

7.1 Statistik

Funktion	Formel
kum. Vert.	$F_{X(t)}(x) = P(X(t) \le x)$
wdf	$f_{X(t)}(x) = \frac{d}{dx} F_{X(t)}(x)$
gem kum.	$F_{X(t_1)X(t_2)}(x_1, x_2) = P(X(t_1) \le x_1, X(t_2) \le x_2)$
gem. Wdf	$f_{X(t_1)X(t_2)}(x_1, x_2) = \frac{\partial^2}{\partial x_1} \frac{\partial^2}{\partial x_2} F_{X(t_1)X(t_2)}(x_1, x_2)$

7.2 Momentfunktionen

Funktion	Formel
Mittelwert	$\mu_X(t) = E[X(t)] = \int_{-\infty}^{\infty} x f_{X(t)}(x) dx$
AutoKorrelation	$m_{xx}(t_1, t_2) = E[X(t_1)X(t_2)] = \int \int_{-\infty}^{\infty} x_1 x_2 f_{X(t_1)X(t_2)}(x_1, x_2) dx_1 dx_2$
AutoKovar	$C_c(t) = X(t) - \mu_X(t)$:
	$r_{xx}(t_1, t_2) = E[X_c(t_1)X_c(t_2)] = E[(X(t_1) - \mu_X(t_1))(X(t_2) - \mu_X(t_2))]$
	$r_{XX}(t_1, t_2) = m_{xx}(t_1, t_2) - \mu_X(t_1)\mu_X(t_2)$

7.3 WSS Prozesse

- Ein ZP ist WSS, wenn sein Mittel zeitinvariant ist und seine AKF verschiebungsinvariant ist
- Sei $t_1=t+\tau$ ud
n $t_2=t$ Dann ist AKF verschiebungsinvariant, wenn sie nur von der Zeitverschiebung
 τ abghängt $m_{XX} \hat{=} E[X(t+\tau)X(t)] = \int \int_{-\infty}^{\infty} x_1 x_2 f_{X(t+\tau)X(t)}(x_1,x_2) dx_1 dx_2$
- $r_{XX}(\tau) = m_{XX}(\tau) \mu_X^2$

7.4 Gem. Momentfunktion

- $m_{XY} = E[X(t+\tau)Y(t)] = \int \int_{-\infty}^{\infty} xy f_{X(t+\tau)Y(t)}(x,y) dx_1 dy$
- $r_{XY}(\tau) = E[X_C(t+\tau)Y_C(t)] = E[(X(t+\tau) \mu_X)(Y(t) \mu_Y)]$
- $r: XY(\tau) = m_{XY}(\tau) \mu_X \mu_Y$
- \bullet X(t) und Y(t) können einzeln WSS sein, ohne gemeinsam WSS zu sein

7.5 Eigenschaften der Korrelationsfunktion

- $|m_{XY}(\tau)| \le \sqrt{m_{XX}(0)m_{YY}(0)}$
- $\bullet \ |m_{XX}(\tau)| \leq m_{XX}(0) = P: X = \text{Leistung von } X(t), \text{ welche für WSS konstant}$
- $m_{XX}(\tau) = m_{XX}(-\tau)$ (reell und gerade)
- $\forall \tau \ m_{XY}(\tau) = 0 \Rightarrow \text{orthogonal}$
- $\forall \tau \ m_{XY}(\tau) = \mu_X \mu_Y \Rightarrow \text{unkorreliert}$

7.6 Ergodizität

Ergodizität	Formel
Mittel	$\hat{\mu}_X = \frac{1}{2T} \int_{-T}^{T} x(t) dt \ T \to \infty \ \mu_X(\tau) = E[X(t)]$
Korrelation	$\hat{m}_{XX}(\tau) = \frac{1}{2T} \int_{-T}^{T} x(t+\tau)x(t)dt \ T \to \infty \ m_{XX}(\tau) = E[X(t+\tau)X(t)]$

7.7 Spektrale Leistungsdichte

•
$$S_{XX}(\omega) = \int_{-\infty}^{\infty} m_{XX}(\tau) e^{-j\omega\tau}$$

•
$$m_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) e^{j\omega\tau} d\omega$$

- $S_{XX}(\omega)$ ist reell
- $S_{XX}(\omega) = S_{XX}(-\omega)$, weil X(t) reell ist
- $S_{XX}(\omega) \ge 0$
- $S_{XY}(\omega) = \int_{-\infty}^{\infty} m_{XY}(\tau) e^{-j\omega\tau}$

7.8 LTI

Zeitbereich	Frequenzbereich
Impulsantwort $h(t)$	Frequenzantwort $H(\omega)$
Kreuzkorrelationen	Spektrale Kreuz-Leistungsdichten
$m_{XY}(\tau) = m_{XX}(\tau) * h(-\tau)$	$S_{XY}(\omega) = S_{XX}(\omega)H^*(\omega)$
$m_{YX}(\tau) = h(\tau) * m_{XX}(\tau)$	$S_{YX}(\omega) = H(\omega)S_{XX}(\omega)$
Korrelation	Spektrale Leistungsdichte
$m_{YY}(\tau) = h(\tau) * m_{XX}(\tau) * h(-\tau)$	$S_{YY}(\omega) = H(\omega) ^2 S_{XX}(\omega)$
Ausgangsmittel	Ausgangsleistung
$\mu_Y = \mu_X \int_{-\infty}^{\infty} h(\tau) d\tau = \mu_X H(0)$	$E\{Y^{2}(t)\} = m_{YY}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega) ^{2} S_{XX}(\omega) d\omega$