Teoria dos números II Números Primos

André Gustavo dos Santos¹

¹ Departamento de Informática Universidade Federal de Viçosa

INF230 - 2021/1

Conteúdo

Introdução

- 1 Primos
- 2 Teorema Fundamental da Aritmética
- 3 Algoritmos
- 4 Infinidade dos primos
- 5 Distribuição de primos
- 6 Primos de Mersenne
- 7 Conjecturas

2/28

Os slides seguintes são baseados nas seções 4.3.1 a 4.3.5 do livro texto da disciplina:

Introdução

ROSEN, Kenneth H. Discrete mathematics and its applications. McGraw-Hill Education, 8th edition, 2018

Introdução

Introdução

- Na aula passada vimos divisibilidade de inteiros
- Um conceito importante relacionado à divisibilidade é o denúmeros primos
- O estudo de primos vem desde os tempos antigos
- Há milhares de anos já se sabe que existem infinitos números primos
- Vários resultados foram encontrados por matemáticos nos últimos 400 anos
- O teorema fundamental da aritmética é um deles
- Várias conjecturas sobre primos ainda estão em aberto
- E os primos têm um papel importante na criptografia moderna

4/28

Primos - definição

Introdução

- Todo inteiro maior que 1 é divisível por pelo menos dois inteiros, pois todo número inteiro é divisível por 1 e por ele mesmo
- Inteiros positivos que têm exatamente esses dois divisores são chamados primos

Definição

Um inteiro p maior que 1 é chamado **primo** se seus únicos fatores positivos são 1 e p. Um inteiro positivo maior que 1 que não é primo é chamado **composto**.

Obs.: um inteiro n é composto se e somente se houver um inteiro a tal que a|n e 1 < a < n.

5/28

Primos - exemplos

Introdução

Os números abaixo são primos ou compostos?

- 7: primo, pois tem exatamente dois divisores, 1 e 7.
- 9: composto, pois tem divisor entre 1 e 9, o 3.
- 1: nem primo nem composto (veja as definições no slide anterior).

Teorema Fundamental da Aritmética

Os primos são os blocos que constroem os números inteiros positivos

Teorema Fundamental da Aritmética

Todo inteiro maior que 1 pode ser escrito de forma única como um primo ou como produto de dois ou mais primos, em que os fatores primos são escritos em ordem não decrescente.

Exemplos

Introdução

$$\blacksquare 100 = 2 \cdot 2 \cdot 5 \cdot 5 = 2^25^2$$

$$999 = 3 \cdot 3 \cdot 3 \cdot 37 = 3^337$$

Obs.: esta decomposição é chamada fatoração em números primos

7 / 28

s Teor. Fund. da Aritmética Algoritmos Infinidade dos primos Distribuição de primos Primos de Mersenne Conjecturas

Divisão por tentativa

Introdução

- É importante mostrar que um dado número é primo
- Em criptografia, números primos grandes são usados para tornar uma mensagem secreta
- Um dos métodos para mostrar que um número é primo é baseado na seguinte observação

Teorema 2

Se n é composto, então n tem um fator primo menor ou igual a \sqrt{n} .

Prova

- Se n é composto, então existe um inteiro a tal que a | n e 1 < a < n
- Como n é positivo e a|n, então n=ab para algum inteiro positivo b
- Se $a>\sqrt{n}$ e $b>\sqrt{n}$, então $ab>\sqrt{n}\sqrt{n}=n$, uma contradição. Logo, $a\leq\sqrt{n}$ ou $b\leq\sqrt{n}$
- Como a e b são divisores de n, então n tem divisor $<\sqrt{n}$
- Este divisor ou é primo ou, pelo teorema fundamental da aritmética, tem fatores primos menores que ele mesmo
- Em qualquer dos casos, *n* tem um fator primo menor ou igual a \sqrt{n} . □

8 / 28

mos Teor. Fund. da Aritmética Algoritmos Infinidade dos primos Distribuição de primos Primos de Mersenne Conjecturas

Divisão por tentativa

Introdução

- O teorema anterior diz que um número é primo se não for divisível por nenhum primo menor ou igual à sua raiz quadrada
- Isto leva a um algoritmo força-bruta chamado divisão por tentativa

Mostre que 101 é primo

■ 101 não é divisível por 2, 3, 5 nem 7, os únicos primos $\leq \sqrt{101}$. Logo, é primo.

9/28

Fatoração em números primos

Introdução

- Vimos que todo inteiro tem uma fatoração em primos
- É útil ter um método para encontrar tal fatoração
- Como encontrar a fatoração em primos de um número n?
 - Comece dividindo *n* por sucessivos primos, começando do menor, 2
 - Se *n* tiver um fator primo, ele terá algum menor que \sqrt{n}
 - Se não encontrar nenhum até \sqrt{n} , então n é primo
 - Do contrário, se encontrar um fator primo p, continue fatorando n/p (note que n/p não tem fator primo < p, pois começamos dos menores)
 - Novamente, se n/p não tiver fator primo nenhum até sua raiz, então n/p é primo
 - Do contrário, se encontrar um fator primo q, continue fatorando n/p/q
 - Continue até que a fatoração seja reduzida a um primo

Fatoração em números primos

Introdução

Exemplo: fatoração de 7007

- Começamos dividindo 7007 por sucessivos primos, começando de 2
- Os primos 2, 3 e 5 não dividem 7007, mas 7|7007, com 7007/7 = 1001
- Continuamos, dividindo 1001 por sucessivos primos, começando de 7
- 7|1001, com 1001/7 = 143
- Continuamos, dividindo 143 por sucessivos primos, começando de 7
- 7 não divide 143, mas 11|143, com 143/11 = 13
- 13 é primo, fim. A fatoração em primos de 7007 é 7.7.11.13 = 7².11.13.

Crivo de Eratóstenes

Introdução

- Pelo teorema 2, os números compostos até 100 devem ter algum fator primo ≤ 10
- Os primos até 10 são 2, 3, 5 e 7
- Então os primos até 100 são estes quatro e os números não divisíveis por eles
- Uma forma de encontrar todos eles é usar o Crivo de Eratóstenes
- Esse é um método antigo para encontrar todos os primos até um dado valor
- O seguinte exemplo ilustra o funcionamento do método

Crivo de Eratóstenes

Introdução

Encontrar todos os primos até 100

- Escreva todos os números
- Marque todos os múltiplos de 2
- Marque todos os múltiplos de 3
- Marque todos os múltiplos de 5
- Marque todos os múltiplos de 7
- Os que sobraram são primos

AB	LE 1	The	Siev	e of	Erat	osthe	nes.												
Integers divisible by 2 other than 2										Integers divisible by 3 other than 3									
rec	rive a	n une	lerlin	e.						rec	eive c	n une	lerlin	€.					
1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	<u>16</u>	17	18	19	20	11	12	13	14	<u>15</u>	16	17	18	19	20
21	<u>22</u>	23	<u>24</u>	25	<u>26</u>	27	28	29	30	21	22	23	24	25	<u>26</u>	27	28	29	30
31	32	33	34	35	36	37	38	39	40	31	32	33	34	35	36	37	38	39	40
41	<u>42</u>	43	$\underline{44}$	45	46	47	$\underline{48}$	49	50	41	42	43	$\underline{44}$	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60	51	52	53	54	55	56	57	58	59	60
61	<u>62</u>	63	64	65	66	67	<u>68</u>	69	70	61	62	63	64	65	<u>66</u>	67	<u>68</u>	<u>69</u>	70
71	72	73	74	75	<u>76</u>	77	<u>78</u>	79	80	71	72	73	74	<u>75</u>	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	81	82	83	84	85	<u>86</u>	87	88	89	90
91	92	93	94	95	<u>96</u>	97	98	99	100	91	92	93	94	95	96	97	98	99	100
	_				96 her ti		_	99	100		_	93 divisi	_		=		_		100
Inte	_	divisi	ble b	y 5 ot	_		_	99	100	In	egers	_	ble b	y 7 ot	= her ti	han 7	rece	ive	100
Inte	gers	divisi	ble b	y 5 ot	_		_	99	100 10	In	egers	divisi	ble b	y 7 ot	= her ti	han 7	rece	ive	10
Inte	gers	divisi n una	ble b	y 5 ot e.	her ti	han 5			10	In: an	egers unde	divisi rline;	ble by	y 7 ot ers in	= her ti i colo	han 7 r are	reces prim	ive ie.	10
Interect	gers vive a	divisi n una	ble by derlin	y 5 ot e.	her ti	han 5		9	10 20 30	Internal Int	egers unde	divisi rline;	ble b	y 7 ot ers in	her ti i colo	han 7 or are	reces prim 8 18	ive ie.	10 20
Interect	gers vive a	divisi n una 3	ble b	5 15 25		7 17		9 19	10 20	Int an	egers unde 2 12	divisi rline; 3	integ	5 15 25	her ti i colo 6 16	han 7 or are 7	reces prim	ive ie. 9	10
Interect 1 11 21	2 12 22 32	divisi n una 3 13 23	# 14 24 34	5 15 25 35	6 16 26 36	7 17 <u>27</u>	8 18 28 38	9 19 29	10 20 30	1 11 21	2 12 22 32	divisi rline; 3 13 23	### 14	5 15 25 35	## colo	han 7 or are 7 17 27	receiprim	9 19 29	10 20 30
Interess 1 11 21 31 41	2 12 22 22 32 42	3 13 23 3 43	4 14 24 34 44	5 15 25 35 45	6 16 26 36 46	7 17 <u>27</u> 37	8 18 28 38 48	9 19 29 39 49	10 20 30 40 50	Ini an 1 11 21 31 41	2 12 22 32 42	divisi rline; 3 13 23 33 43	### 14	5 15 25 45	6 16 26 36 46	7 17 27 37	receiprim	9 19 29 39 49	10 20 30 40 50
Into reco 1 11 21 31 41 51	2 12 22 22 32 42 52	3 13 23 33 43	4 14 24 34 44 54	5 15 25 25 45 55	6 16 26 36 46	7 17 27 37 47	8 18 28 28 48 58	9 19 29 39 49	10 20 30 40 50 60	111 21 31 41 51	2 12 22 22 32 42 52	divisi rline; 3 13 23 33 43	4 14 24 34 44 54	5 15 25 25 45 55	6 16 26 36 46	7 17 27 37 47	receiprim 8 18 28 38 48 58	9 19 29 39 49	10 20 30 40 50
Into reco 1 11 21 31 41 51 61	2 12 22 32 42 52	3 13 23 33 43 53	4 14 24 34 44 54 64	5 15 25 25 45 55 65	16 26 36 46 56	7 17 27 37 47 57	8 18 28 38 48 58 68	9 19 29 39 49 59	10 20 30 40 50 60	1 1 1 1 2 1 2 1 3 1 4 1 5 1 6 1	2 12 22 32 42 52 62	divisi rline; 3 13 23 33 43 53	4 14 24 34 44 54 64	5 15 25 35 45 55	16 26 36 46 56	7 17 27 37 47 57	receiprim	9 19 29 39 49 59	10 20 30 40 50 60 70
1 11 21 31 41 51 61	2 2 2 2 22 42 52 62 72	3 13 23 33 43 53 63 73	# 14 24 34 44 54 64 74	y 5 ot e. 5 15 25 35 45 55 65 75	6 16 26 36 46 56 66 76	7 17 27 37 47 57 67	8 18 28 28 38 48 58 68 78	9 19 29 39 49 59 69 79	10 20 30 40 50 60 70 80	111 21 31 41 51 61 71	2 12 22 32 42 52 62	divisi rline; 3 13 23 33 43 53 63 73	4 14 24 24 44 54 64 74	5 15 25 45 55 65 75	6 16 26 36 46 56 76	7 17 27 47 47 67	recent	9 19 29 39 49 59 69	10 20 30 40 50 60 70 80
Interess 1 11 21 31 41	2 12 22 32 42 52	3 13 23 33 43 53	4 14 24 34 44 54 64	5 ot 25 25 25 45 55 65	16 26 36 46 56	7 17 27 37 47 57	8 18 28 38 48 58 68	9 19 29 39 49 59	10 20 30 40 50 60	1 1 1 1 2 1 2 1 3 1 4 1 5 1 6 1	2 12 22 32 42 52 62	divisi rline; 3 13 23 33 43 53	4 14 24 34 44 54 64	5 15 25 25 45 55	16 26 36 46 56	7 17 27 37 47 57	receiprim	9 19 29 39 49 59	10 20 30 40 50 60 70

Fonte: ROSEN, K H. Discrete mathematics and its applications. McGraw-Hill Education, 8th edition, 2018.

13 / 28

Barrian Teor. Fund. da Aritmética Algoritmos Infinidade dos primos Distribuição de primos Primos de Mersenne Conjecturas

Eficiência dos algoritmos

Introdução

- O método mostrado para testar primalidade faz $\mathcal{O}(\sqrt{n})$ operações de resto
- O crivo de Eratóstenes para gerar a lista de primos faz $n \sum_{p \le n} \frac{1}{p}$ marcações, sendo possível mostrar que isso corresponde a $\mathcal{O}(n \log \log n)$
- Tais algoritmos não são polinomiais, pois n é o valor da entrada, não o tamanho¹
- Na verdade, o tamanho da entrada é log n, que é o número de bits do valor n; tais algoritmos são, então, exponenciais em relação ao tamanho da entrada
- Um teste de primalidade realmente polinomial foi proposto pelos indianos M. Agrawal, N. Kayal e N. Saxena em 2002. Inicialmente $\tilde{\mathcal{O}}((\log n)^{12})$, que já colocou o teste de primalidade na classe \mathcal{P} , foi refinado posteriormente para $\tilde{\mathcal{O}}((\log n)^6)$
- Já para o problema de fatoração em primos não é conhecido um algoritmo polinomial; e nisto reside a segurança dos métodos de criptografia modernos.

14 / 28

¹são classificados como pseudo-polinomiais

os Teor. Fund. da Aritmética Algoritmos **Infinidade dos primos** Distribuição de primos Primos de Mersenne Conjecturas

Infinidade dos primos

Introdução

- Há muito se sabe que existem infinitos primos
- Uma das provas foi dado por Euclides, e é considerada uma das provas mais bonitas da matemática

Teorema 3

Há um número infinito de primos.

Prova (por contradição)

- Suponha que não, que existam finitos primos. Sejam p_1, p_2, \ldots, p_n todos esses primos.
- Considere o inteiro $Q = p_1 p_2 \dots p_n + 1$
- Pelo teorema fund. da aritmética, Q é primo ou pode ser descrito por produto de primos
- Mas nenhum dos primos listados divide Q, pois se $p_i|Q$, então $p_i|Q-p_1p_2...p_n=1$
- Então há algum fator primo que não está na lista p_1, p_2, \dots, p_n (ou Q ou algum fator de Q)
- Uma contradição porque assumimos que a lista p_1, p_2, \dots, p_n inclui todos primos
- Consequentemente, há um número infinitos de primos.

s Teor. Fund. da Aritmética Algoritmos Infinidade dos primos Distribuição de primos Primos de Mersenne Conjecturas

Distribuição de primos

Introdução

- Teorema 3 nos diz que há infinitos primos, mas quantos há até um inteiro x?
- Esta questão tem interessado matemáticos há muitos anos
- No século XVIII eles produziram muitas tabelas de primos para tentar encontrar alguma evidência da distribuição de primos
- Alguns dos grandes matemáticos da época, incluindo Gauss and Legendre, conjecturaram (mas não provaram) o seguinte:

Teorema dos números primos

Seja $\pi(x)$ o número de primos de 1 a x. Então, a razão entre $\pi(x)$ e $x/\ln x$ tende a 1, quando x cresce sem limite.

- O teorema foi provado pela primeira vez em 1896, de forma independente, pelo matemático francês Jacques Hadamard e pelo matemático belga Charles-Jean Gustave Nicholas de la Vallée-Poussin, usando teoria de variáveis complexas
- Provas por outras técnicas foram feitas depois, todas também bem complicadas
- E também refinamentos na estimativa do erro destaa aproximação bem como aproximações usando outras funções

Distribuição de primos

Introdução

Resultados da aproximação de $\pi(x)$ por $x/\ln x$

TABLE 2 Approximating $\pi(x)$ by $x/\ln x$.										
x	$\pi(x)$	x/ ln x	$\pi(x)/(x/\ln x)$							
10^{3}	168	144.8	1.161							
10^{4}	1229	1085.7	1.132							
10 ⁵	9592	8685.9	1.104							
10^{6}	78,498	72,382.4	1.084							
10^{7}	664,579	620,420.7	1.071							
10^{8}	5,761,455	5,428,681.0	1.061							
10^{9}	50,847,534	48,254,942.4	1.054							
10^{10}	455,052,512	434,294,481.9	1.048							

- Até 2017, o número de primos até 10^n foi calculado para todo $n \le 26$
 - $\pi(10^{26}) = 1.699.246.750.872.437.141.327.603$

(valor exato)

 $\pi(10^{26})/(10^{26}/\ln 26) = 1,01729$

(diferença relativa)

 $\pi(10^{26}) - (10^{26}/\ln 26) = 28.883.358.936.853.188.823.261$

(diferença absoluta)

Probabilidade

Introdução

- Qual a probabilidade de um número escolhido aleatoriamente ser primo?
- O teorema dos números primos diz há aproximadamente x/ ln x primos de 1 a x
- Então a chance de um número escolhido aleatoriamente entre 1 e n ser primo é aproximadamente $(n/\ln n)/n = 1/\ln n$
- Usando este teorema e cálculo, pode-se mostrar que a probabilidade de n ser primo é também aproximadamente $\frac{1}{\ln n}$
- Exemplo: um número de 1000 dígitos tem $\frac{1}{\ln 10^{1000}}$ chance de ser primo ($\approx \frac{1}{2300}$)

Primos de Mersenne

Introdução

- Como há infinitos primos, para qualquer primo há outros maiores que ele
- É natural então que haja uma busca por primos cada vez maiores
- Nos últimos 300 anos, o maior primo conhecido era quase sempre da forma $2^p 1$, em que p é primo
- Primos nesse formato são chamados primos de Mersenne, homenagem ao monge francês Marin Mersenne que os estudou no século XVII

Exemplos

- $2^2 1 = 3, primo$
- $2^3 1 = 7, primo$
- $2^5 1 = 31, primo$
- $2^7 1 = 127, primo$
- A razão para os maiores primos conhecidos serem geralmente primos de Mersenne é que há um teste extremamente eficiente, chamado teste de Lucas-Lehmer, para determinar se 2^p - 1 é primo. E não há para outros formatos

Primos de Mersenne

Introdução

 \blacksquare Em 1644, Mersenne afirmou que $2^p - 1$ é primo para

$$p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257$$

mas é composto para todos os outros primos *p* até 257.

- Demorou mais de 300 anos para se determinar que Mersenne em 5 deles:
 - **2** $p = 2^p 1$ não é primo para p = 67 e p = 257
 - e é primo para p = 61, p = 87 e p = 107

Obs.: para se ter uma ideia da dificuldade, saiba que

$$2^{61} - 1 = 2305843009213693951,$$
 $2^{67} - 1 = 147573952589676412927,$
 $2^{257} - 1 = 147573952589676412927,$

231584178474632390847141970017375815706539969331281128078915168015826259279871

Teor. Fund. da Aritmética Algoritmos Infinidade dos primos Distribuição de primos Primos de Mersenne Conjecturas

Primos de Mersenne

Introdução

- A busca por primos de Mersenne tem sido constante desde a invenção dos computadores
- Até 2006 eram conhecidos 43; até 2017 já eram 50
- Em dezembro de 2017 foi encontrado o primo 2^{277,232,917} 1, o maior até então, um número com mais de 23 milhões de dígitos

- Existe um grande esforço, o *Great Internet Mersenne Prime Search* (GIMPS)
- A busca tem aplicação prática: o teste de Lucas-Lehmer é comumente usado no controle de qualidade de supercomputadores
- Inclusive, em 2016, um bug no processador Intel Skylake foi descoberto ao se executar um software do GIMPS

Conjecturas e problemas em aberto

Introdução

- A teoria dos números é conhecida como um tópico fácil de se formular conjecturas, algumas das quais muito difíceis de serem demonstradas
- Umas permaneceram abertas por muitos anos, e há outras ainda em aberto!
- Mais que isso, a teoria dos números é conhecida pela facilidade de construir conjecturas de fácil entendimento, mas que resistem a todas as técnicas de prova, exceto as mais sofistificadas (em algumas casos, a todas mesmo!)
- Muitos problemas famosos sobre números primos ainda esperam soluções de pessoas brilhantes
- A seguir um exemplo inicial e depois três problemas famosos em aberto
- Esses problemas mostram que questões que parecem simples permanecem sem resposta mesmo no século XXI

Exemplo inicial

Introdução

Função f(n) tal que f(n) é primo para todo n

- Seria útil conhecer uma função f(n) cujo valor é primo para todo n
- Centenas de anos atrás os matemáticos verificaram muitas funções polinomiais
- Um bom exemplo é $f(n) = n^2 n + 41$
- Verifique que f(n) de fato é primo para n = 1, 2, 3, 4..., 40
- Isto leva a uma conjectura de que f(n) é primo para todo n
- .
- Mas note que $f(41) = 41^2 41 + 41 = 41^2$, que não é primo...
- Será que podemos construir uma função polinômial f(n) que é primo para todo n?
- \blacksquare É possível mostrar que para coeficientes inteiros, não. Para qualquer função polinomial f(n) de coeficientes inteiros, existe algum y tal que f(y) não é primo.

Conjectura de Goldbach

Introdução

■ Em 1742, o matemático Christian Goldbach conjecturou, em uma carta ao matemático Leonhard Euler, que todo inteiro ímpar > 5 é a soma de três primos.

```
falm, wift beofrefan, it wine about for mat four antifet,
     Si v. sit functis igisius x. einemodi ut factav =
```

UFV

24 / 28

Fonte: wikipedia

Conjectura de Goldbach

Introdução

- Em 1742, o matemático Christian Goldbach conjecturou, em uma carta ao matemático Leonhard Euler, que todo inteiro ímpar > 5 é a soma de três primos.
- Euler respondeu dizendo que isto é equivalente a dizer que todo inteiro par > 2 é a soma de dois primos.

Conjectura de Goldbach

Todo inteiro par > 2 é a soma de dois primos.

- Por exemplo: 4 = 2 + 2, 6 = 3 + 3, 8 = 5 + 3, 10 = 7 + 3, 12 = 7 + 5.
- Ela havia sido verificada, à mao, para números até quase 1 milhão
- Com uso de computadores, já foi verificada para todo inteiro par até 4 · 10¹⁸
- Alguns resultados mais fracos foram provados
 - Todo inteiro par > 2 é a soma de no máximo seis primos (provado por O. Ramaré, 1995)
 - Todo inteiro suficiente grande é a soma de um primo e de um número que ou é primo ou é o produto de dois primos (provado por J. R. Chen, 1966)
- A conjectura, entretanto, ainda permanece em aberto.

 André Gustavo
 UFV
 Teoria dos números
 INF230 - 2021/1
 25 / 28

Primos no formato $n^2 + 1$

■ Há muitas conjecturas que afirmam que há infinitos primos em um certo formato

Conjectura

Introdução

Existem infinitos números primos da forma $n^2 + 1$, sendo n um inteiro positivo

- Por exemplo: $5 = 2^2 + 1$, $17 = 4^2 + 1$, $37 = 6^2 + 1$
- O melhor resultado conhecido é o seguinte
 - Existem infinitos números positivos n em que $n^2 + 1$ é primo ou produto de dois primos (provado por Henryk Iwaniecin, 1973)
- A conjectura, entretanto, ainda permanece em aberto.

Primos gêmeos

Introdução

- Primos gêmeos são pares de primos que se diferenciam por 2 unidades
- Por exemplo, 3 e 5, 5 e 7, 11 e 13, 17 e 19, e 4967 e 4969

Conjectura dos primos gêmeos

Existem infinitos pares de primos gêmeos

- O melhor resultado conhecido é o seguinte
 - Existem infinitos pares p e p + 2, em que p é primo e p + 2 é primo ou produto de dois primos (provado por J. R. Chen, 1966)
- O recorde mundial de primos gêmeos, no início de 2018, consistia nos números $2.996.863.034.895 \cdot 2^{1.290.000} \pm 1$, que são números de 388.342 dígitos.
- A conjectura, entretanto, ainda permanece em aberto.

s Teor. Fund. da Aritmética Algoritmos Infinidade dos primos Distribuição de primos Primos de Mersenne Conjecturas

Bounded gap conjecture

Introdução

- Seja P(n) a proposição de que existem infinitos pares de primos de diferença exatamente n.
- A conjectura dos primos gêmeos é a proposição de que P(2) é verdadeira.
- Matemáticos que trabalham na conjectura dos primos gêmeos formularam uma mais fraca, conhecida como Bounded gap conjecture

Bounded gap conjecture

Existe um inteiro n para o qual P(N) é verdadeira

- A comunidade científica ficou surpresa quando Yitang Zhang, um chinês professor da Univ. de New Hampshire², que não publicava papers desde 2001, provou a conjectura em 2013. Em particular, ele provou que:
 - lacktriangle Existe um número N < 70.000.000 para o qual P(N) é verdadeira (Yitang Zhang, 2013)
- Usando tal resultado, um grupo de matemáticos conseguiu baixar o gap para 246

²Fez doutorado na Univ. de Purdue; entre a conclusão do doutorado e o emprego como professor, trabalhou em servicos de contabilidade, foi entregador de comidas em New York e trabalhou no Subway em Kentucky.

28 / 28