Семинар 1. Байесовские рассуждения

Курс: Байесовские методы в машинном обучении, 2016

- 1. В результате медицинского обследования один из тестов выявил у человека серьезное заболевание. Данный тест имеет высокую точность 99% (вероятность позитивного ответа при наличии заболевания 99%, вероятность отрицательного ответа при отсутствии заболевания также 99%). Однако, выявленное заболевание является достаточно редким и встречается только у одного человека на 10000. Вычислить вероятность того, что у обследуемого человека действительно есть выявленное заболевание.
- 2. Рассмотрим следующую вероятностную модель. Студент на семинаре отвечает плохо (c=1) или хорошо (c=0) в зависимости от наличия/отсутствия депрессии (д=1 или д=0) и от участия в вечеринке накануне (b=1) или b=0). Участие в вечеринке также может приводить к тому, что у студента болит голова (r=1), а плохой ответ на семинаре влечёт недовольство преподавателя (n=1). Причинно-следственные связи в модели показаны на рис. 1, а вероятности задаются как:

$p(c=1 {\scriptscriptstyle B},{\scriptscriptstyle { m f I}})$	В	д	$p(\Gamma = 1 B)$	В	$p(\pi = 1 c)$	c	
0.999	1	1	0.9	1	0.95	1	p(B = 1) = 0.2
0.9	1	0	0.2	0	0.5	0	p(A = 1) = 0.4.
0.9	0	1					
0.01	0	0					

Требуется определить $p(B = 1|\Gamma = 1)$, $p(B = 1|\Pi = 1)$ и $p(B = 1|\Pi = 1, \Gamma = 1)$.

- 3. Рассмотрим две независимые случайные величины, распределённые по закону Пуассона: $x_1 \sim \text{Poiss}(\lambda_1)$, $x_2 \sim \text{Poiss}(\lambda_2)$, т.е. $p(x_i = k) = \exp(-\lambda_i) \frac{\lambda_i^k}{k!}$, $k = 0, 1, 2, \dots$ Доказать, что $x_1 + x_2 \sim \text{Poiss}(\lambda_1 + \lambda_2)$.
- 4. Пусть x_1, x_2, \dots, x_N независимая выборка из распределения $Poiss(\lambda)$. Требуется оценить λ с помощью метода максимального правдоподобия.
- 5. Пусть x_1, x_2, \ldots, x_N независимая выборка из распределения $\operatorname{Poiss}(\lambda)$. Требуется найти байесовскую оценку λ как мат.ожидание апостериорного распределения $p(\lambda|x_1,\ldots,x_N)$, если в качестве априорного распределения выступает гамма-распределение $p(\lambda) = \mathcal{G}(\lambda|a,b) = \frac{b^a}{\Gamma(a)}\lambda^{a-1} \exp(-b\lambda), \ a,b>0$.

Рис. 1: Причинно-следственные связи для задачи 2

Замечание про сравнение оценок из задач 4 и 5:

- 1. про неинформативные априорные распределения можно подробнее прочесть в книге Kevin Patrick Murphy. Machine Learning: a Probabilistic Perspective. в главе 5.4. Priors.
- 2. то, что априорное распределение $p(\lambda) \sim \frac{1}{\lambda}$ является равномерным праером на $log\lambda$, можно легко понять через законы распределения функций от случайной переменной, которые понятно описаны здесь.