Fondamenti dell'informatica

Andrea gullì handgull

September 22, 2022

Contents

1	Insiemistica di base			3
	1.1	Cos'è un	insieme	3
	1.2 Rappresentazione degli insiemi		entazione degli insiemi	4
		1.2.1 D	Diagrammi di Eulero-Venn	4
		1.2.2 R	cappresentazione estensionale	4
		1.2.3 R	Cappresentazione intensionale	5
	1.3	Sottoinsi	emi e insieme potenza	5
		1.3.1 Se	ottoinsiemi di un insieme	5
		1.3.2 In	nsieme potenza	6
1.4		Operazio	oni fra insiemi	7
		1.4.1 Ir	ntersezione di insiemi	7
		1.4.2 U	Inione di insiemi	7
		1.4.3 D	Differenza e differenza simmetrica di insiemi	8
		1.4.4 C	Complementazione di insiemi	9
		1.4.5 P	Partizionamento di insiemi	10
	1.5	Leggi di	De Morgan	10

Introduzione

Perchè studiare insiemi? La teoria degli insiemi è un fondamento della matematica e l'informatica deriva strettamente da essa

Concretamente parlando, il campo dell'informatica più influenzato dall'insiemistica a mio avviso è quello delle **basi di dati**.

Ad esempio se una SELECT * FROM coinvolge più di una tabella verrà fatto il **prodotto cartesiano** tra le tuple¹ delle tabelle del database.

Sempre nei database relazionali sono essenziali le operazioni di unione, intersezione (inner JOIN), di differenza e così via.

 $^{^{1}\}mathrm{una}$ tupla è un generico elemento di una relazione con attributi in un database relazionale.

Chapter 1

Insiemistica di base

1.1 Cos'è un insieme

Un **insieme** è una collezione non ordinata di oggetti distinti e ben definiti detti elementi dell'insieme. Per convenzione gli insiemi sono denominati con una lettera maiuscola e sono delimitati da parentesi graffe, gli elementi sono indicati con una lettera minuscola.

Per ogni oggetto (anche un insieme) esistente è possibile chiedersi se esso appartiene o meno ad un determinato insieme.

Se un elemento appartiene ad A si scrive:

$$a \in A$$

Se un elemento b non appartiene ad A si scrive:

$$b \notin A$$

L' **insieme universo** è l'insieme indicato con U che contiene tutti gli tutti gli elementi e tutti gli insiemi esistenti, compreso quindi anche se stesso.

L' **insieme vuoto**, ovvero l'insieme senza elementi, viene denotato con ϕ . Per ogni oggetto x, esiste un insieme $\{x\}$ che viene detto **singoletto**.

$$A = \{1, 2, 3\}$$
$$B = \{3, 2, 1\}$$

$$C = \{1, 1, 2, 3\}$$

In questo caso abbiamo che A = B = C, dato che ordine e numerosità degli elementi non contano, come detto sopra.

 $\{\phi\}$ non è l'insieme vuoto ma è un insieme (un singoletto) contenente l'insieme vuoto.

1.2 Rappresentazione degli insiemi

1.2.1 Diagrammi di Eulero-Venn

Un metodo di rappresentazione grafico estremamente facile da capire ma limitato se si tratta di dover rappresentare insiemi grandi. Molto semplicemente gli elementi dentro il cerchio appartengono all'insieme.

1.2.2 Rappresentazione estensionale

Consiste nell'elencare esplicitamente tutti gli elementi dell'insieme. Anche questo metodo risulta scomodo quando all'interno dell'insieme vi è un gran numero di elementi o addirittura c'è un numero infinito di elementi da elencare.

$$A = \{1, 2, 3\}$$

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

Rappresentazione intensionale 1.2.3

Consiste nel formulare una proprietà caratteristica P che distingue precisamente gli elementi dell'insieme $S = \{x : P\}$. S'è l'insieme di tutti e soli gli elementi per i quali la proprietà P è vera.

$$A = \{x : x \in \mathbb{N}, x > 3, x < 6\} = \{4, 5\}$$

1.3 Sottoinsiemi e insieme potenza

1.3.1 Sottoinsiemi di un insieme

Consideriamo due insiemi:

$$A = \{1, 2, 3, 4\}$$
$$B = \{1, 2, 3\}$$

Osserviamo che ogni elemento di B è anche elemento di A. In questo caso si dice che B è un sottoinsieme di A e si indica con la notazione

$$B \subset A$$

La situazione può essere rappresentata tramite diagrammi di Venn:

Per dire che un sottoinsieme B è contenuto o uguale ad A si può scrivere:

$$B \subset A$$

 $\boxed{\phi\subseteq A\ \forall A}\ \forall$ significa "per ogni" Mentre per dire che B
 non è sottoinsieme di A possiamo scrivere:

$$B \not\subset A$$
 o anche B $\not\subseteq$ A

Possiamo dire che per \subseteq valgono le seguenti proprietà:

• Riflessività: $S \subseteq S \ \forall S$

 \bullet Transitività: se A \subseteq B e B \subseteq C allora A \subseteq C

Se dati due insiemi C e D succede che $C \subseteq D$ e $D \subseteq C$, allora C è detto sottinsieme improprio di D. (C = D).

Ogni insieme (tranne l'insieme vuoto come vedremo a breve) accetta 2 sottoinsiemi impropri:

- L'insieme stesso
- L'insieme vuoto

Se $S \subseteq T$ e $S \neq T$ allora diciamo che S è un **sottoinsieme proprio** di T e che T è un **soprainsieme proprio** di S.

Repetita iuvant, scriviamo quello detto sopra in definizioni intensionali

 $S \subset T = \{x : \text{se } x \in S \text{ allora } x \in T \text{ con } S \neq T\}$ $(S = T) = \{x : x \in S \text{ sse } x \in T\}$ $S \subseteq T = \{x : S \subset T \text{ oppure } S = T\}$

1.3.2 Insieme potenza

Un sottoinsieme di un insieme può essere chiamato parte, l'insieme potenza o **insieme delle parti** di A si indica con $\wp(A)$ ed è l'insieme a cui appartengono tutti e soli i sottoinsiemi di A.

$$\wp(S) = \{X : X \subseteq S\}$$

$$A = \{1, 2\}$$

$$\wp(A) = \{\phi, \{1\}, \{2\}, \{1, 2\}\}$$

$$\wp\phi = \{\phi\}$$

Se S è composto da n elementi (con $n \ge 0$) il numero di elementi in $\wp(S)$ è 2^n . Sapendo anche che la **cardinalità** di un insieme indica il numero di elementi di esso e si scrive:

$$A = \{1, 2, 3\} |A| = 3$$

Allora potremmo anche dire che $\wp(\mathbf{S})$ è $2^{|S|}$

1.4 Operazioni fra insiemi

1.4.1 Intersezione di insiemi

L'intersezione di due insiemi si scrive $S \cap T$, L'insieme risultante contiene tutti e soli gli elementi che appartenevano sia ad S che a T. (naturalmente se S e T sono disgiunti $S \cap T = \phi$).

$$S \cap T = \{x : x \in S e x \in T\}$$

Per l'operazione \cap valgono le seguenti proprietà:

• Idempotenza: $S \cap S = S$

• Commutatività: $A \cap B = B \cap A$

• Assorbimento: $A \cap B = A$ sse $A \subseteq B$

• Associatività: $(A \cap B) \cap C = A \cap (B \cap C)$

Si noti inoltre che $A \cap \phi = \phi \ \forall A$

1.4.2 Unione di insiemi

L'unione di due insiemi si scrive $S \cup T$, l'insieme risultante contiene tutti gli elementi di S e tutti quelli di T.

Definiamo $S \cup T = \{x : x \in S \text{ oppure } x \in T\}$

L'insieme unione come si può vedere è il più piccolo insieme che contiene sia A che B.

Per l'operazione ∪ valgono le seguenti proprietà:

• Idempotenza: $S \cup S = S$

• Commutatività: $A \cup B = B \cup A$

• Assorbimento: $A \cup B = A$ sse $B \subseteq A$

• Associatività: $(A \cup B) \cup C = A \cup (B \cup C)$

Si noti inoltre che ϕ è l'elemento neutro $A \cup \phi = A$ Inoltre \cup e \cap sono legate da delle proprietà distibutive

• $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

• $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

1.4.3 Differenza e differenza simmetrica di insiemi

Dati due insiemi A e B definiamo l'**insieme differenza** di B in A come l'insieme costruito da tutti e soli gli elementi di A che non appartengono a B.

La differenza tra insiemi si scrive come A \ B e può essere definita intensionalmente come: A \ B = $\{x: x \in A \ e \ x \not\in B\}$

La **differenza simmetrica** di due insiemi $A \in B$ è indicata come $A \triangle B$ e può essere definita come: $A \triangle B = (A \setminus B) \cup (B \setminus A)$ ovvero: $A \triangle B = \{x : (x \in A \ e \ x \not\in B) \ oppure \ (x \not\in A \ e \ x \in B)\}$

1.4.4 Complementazione di insiemi

il **complemento** di un insieme è l'insieme degli elementi che non appartengono a quell'insieme.

Gli insiemi complemento si dividono nei **complementi relativi** (detti anche insieme differenza) e nei **complementi assoluti** (dove l'altro insieme è U). Dato un insieme A il suo complemento in U si scrive come \overline{A} o A^C dove U è sottointeso.

$$\overline{A} = \{x : x \in U \in x \notin A\}$$

1.4.5 Partizionamento di insiemi

Sia F un insieme i cui elementi sono insiemi, F può essere anche chiamato **famiglia di insiemi**. Dato un insieme non vuoto S, una **partizione** di S è una famiglia F di sottoinsiemi di S tale che:

- ogni elemento di S appartiene a qualche elemento di F
- due elementi qualunque di F sono disgiunti (intersezione vuota)

1.5 Leggi di De Morgan

Le leggi di De Morgan, sono relative alla **logica booleana**¹ e stabiliscono relazioni di equivalenza tra gli operatori di congiunzione e disgiunzione logica. Le due leggi di De Morgan per unione ed intersezione (potremmo applicare le leggi anche ad altre operazioni) permettono di esprimere il complementare dell'intersezione e il complementare dell'unione in una forma alternativa:

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \tag{1.1}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \tag{1.2}$$

Dimostrazione di (1.1):

Sappiamo che se $\overline{A \cup B} = \overline{A} \cap \overline{B}$ allora vale:

$$\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$$
 ed anche $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$

prendiamo un generico elemento x tale che x $\in \overline{A \cup B}$ ciò naturalmente equivale a scrivere che x $\not\in$ A \cup B

Se un elemento non appartiene all'unione di due insiemi vuol dire che non appartiene a nessuno dei due insiemi:

$$x \notin A e x \notin B$$
.

Per la definizione di insieme complementare abbiamo quindi che:

$$x \in \overline{A} \in x \in \overline{B} \text{ ovvero } x \in \overline{A} \cap \overline{B}$$

essendo x generico possiamo dedurre che ogni elemento di $\overline{A \cup B}$ appartiene anche a $\overline{A} \cap \overline{B}$

quindi non è sbagliato dire che $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$

e per dimostrare che $\overline{A}\cap\overline{B}\subseteq\overline{A\cup B}$ basta ripercorrere all'indietro la dimostrazione precedente, ovvero:

 $^{^{1}}$ è il ramo dell'algebra in cui le variabili possono assumere solamente i valori vero e falso

$$x \in \overline{A} \cap \overline{B}$$

$$x \in \overline{A} \quad e \quad x \in \overline{B}$$

$$x \notin A \quad e \quad x \notin B$$

$$x \notin A \cup B$$

$$x \in \overline{A \cup B}$$

Dimostrazione di (1.1) sotto forma di diagrammi di Venn:

La dimostrazione di 1.2 è molto simile ed è lasciata al lettore Dimostrazione di (1.2) sotto forma di diagrammi di Venn:

