114 **Convex functions**

[RV73, page 22] Running average of a convex function. Suppose $f: \mathbf{R} \to \mathbf{R}$ is convex, with $\mathbf{R}_+ \subseteq \operatorname{\mathbf{dom}} f$. Show that its running average F, defined as

$$F(x) = \frac{1}{x} \int_0^x f(t) dt, \quad \text{dom } F = \mathbf{R}_{++},$$

is convex. Hint. For each
$$s$$
, $f(sx)$ is convex in x , so $\int_0^1 f(sx) \, ds$ is convex.

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions are Golden}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions are Golden}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions are Golden}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions are Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions are Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions are Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions are Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$

$$\frac{1}{s} = sol \qquad \text{Sum of all Golden functions}$$