Deep Learning Lab #2 (Fall 2020) EEG classification

Lab Objective:

In this lab, you will need to implement simple EEG classification models which are EEGNet, DeepConvNet [1] with BCI competition dataset. Additionally, you need to try different kinds of activation function including ReLU, Leaky ReLU, ELU.

Important Date:

Deadline: 2020/11/24 (Tue.) 23:55

Late submission: 2020/11/27 (Fri.) 23:55

Turn in:

1. Experiment Report (.pdf)

2. Source code

Notice: zip all files in one file and name it like, "LAB2_12345_Bill.zip"

Requirements:

- 1. Implement the EEGNet, DeepConvNet with three kinds of activation function including ReLU, Leaky ReLU, ELU.
- 2. In the experiment results, you have to show the highest accuracy (not loss) of two architectures with three kinds of activation functions.
- 3. To visualize the accuracy trend, you need to plot each epoch accuracy (not loss) during training phase and testing phase.

Dataset:

BCI Competition III - IIIb Cued motor imagery with online feedback (non- stationary classifier) with 2 classes (left hand, right hand) from 3 subjects [2 classes, 2 bipolar EEG channels]

Reference: http://www.bbci.de/competition/iii/desc_IIIb.pdf

Implementation Details:

✓ Prepare Data

The training data and testing data have been preprocessed and named [S4b_train.npz, X11b_train.npz] and [S4b_test.npz, X11b_test.npz] respectively. Please download the preprocessed data and put it in the same folder. To read the preprocessed data, refer to the "dataloader.py".

✓ Model Architecture

You need to implement simple EEG classification models which are EEGNet and DeepConvNet.

♦ EEGNet:

Overall visualization of the EEGNet architecture

EEGNet implementation details:

```
EEGNet(
  (firstconv): Sequential(
     (0): Conv2d(1, 16, kernel_size=(1, 51), stride=(1, 1), padding=(0, 25), bias=False)
     (1): BatchNorm2d(16, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
}
(depthwiseConv): Sequential(
     (0): Conv2d(16, 32, kernel_size=(2, 1), stride=(1, 1), groups=16, bias=False)
     (1): BatchNorm2d(32, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
     (2): ELU(alpha=1.0)
     (3): AvgPool2d(kernel_size=(1, 4), stride=(1, 4), padding=0)
     (4): Dropout(p=0.25)
}
(separableConv): Sequential(
     (0): Conv2d(32, 32, kernel_size=(1, 15), stride=(1, 1), padding=(0, 7), bias=False)
     (1): BatchNorm2d(32, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
     (2): ELU(alpha=1.0)
     (3): AvgPool2d(kernel_size=(1, 8), stride=(1, 8), padding=0)
     (4): Dropout(p=0.25)
}
(classify): Sequential(
     (0): Linear(in_features=736, out_features=2, bias=True)
}
```

♦ DeepConvNet:

You need to implement the DeepConvNet architecture by using the following table, where C = 2, T = 750 and N = 2. The max norm term is ignorable.

Layer	# filters	size	# params	Activation	Options
Input		(C, T)			
Reshape		(1, C, T)			
Conv2D	25	(1, 5)	150	Linear	mode = valid, max norm = 2
Conv2D	25	(C, 1)	25 * 25 * C + 25	Linear	mode = valid, max norm = 2
BatchNorm			2 * 25		epsilon = 1e-05, $momentum = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	50	(1, 5)	25 * 50 * C + 50	Linear	$\bmod e = \textrm{valid}, \max \textrm{norm} = 2$
BatchNorm			2 * 50		${\rm epsilon} = 1\text{e-}05, \text{momentum} = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	100	(1, 5)	50 * 100 * C + 100	Linear	mode = valid, max norm = 2
BatchNorm			2 * 100		${\rm epsilon} = 1\text{e-}05, {\rm momentum} = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	200	(1, 5)	100 * 200 * C + 200	Linear	mode = valid, max norm = 2
BatchNorm			2 * 200		${\rm epsilon} = 1\text{e-}05, \text{momentum} = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Flatten					
Dense	N			softmax	$\max \text{ norm} = 0.5$

✓ Activation Functions

ReLU $\max(0, x)$

Leaky ReLU $\max(0.1x, x)$

By default, the negative slope = 0.01

ELU
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

The α value for the ELU formulation.Default: 1.0

✓ Hyper Parameters

- A. Batch size= 64
- B. earning rate = 1e-2
- C. Epochs = 300
- D. Optimizer: Adam
- E. Loss function: torch.nn.CrossEntropyLoss()

You can adjust the hyper-parameters according to your own ideas.

✓ Result comparison

In this part, you can use the matplotlib library to draw the graph. The comparison figure should like the example as below (EEGNet).

Activation function comparision(EEGNet)

✓ Report Specification:

- 1. Introduction (10%)
- 2. Experiment set up (30%)
 - A. The detail of your model
 - ♦ EEGNet
 - ♦ DeepConvNet
 - B. Explain the activation function (ReLU, Leaky ReLU, ELU)
- 3. Experimental results (30%)
 - A. The highest testing accuracy
 - ♦ Screenshot with two models
 - ♦ anything you want to present
 - B. Comparison figures
 - **♦** EEGNet
 - ♦ DeepConvNet
- 4. Discussion (20%)
 - A. Anything you want to share

✓ Assignment Evaluation:

- 1. Code & model performances (60%)
- 2. Report (40%)

---- Criterion of result (40%) ----

Accuracy > = 87% = 100 pts

Accuracy $85 \sim 87\% = 90 \text{ pts}$

Accuracy $80 \sim 85\% = 80$ pts

Accuracy $75 \sim 80\% = 70 \text{ pts}$

Accuracy < 75% = 60 pts

Reference:

[1] EEGNet: A Compact Convolutional Neural Network for EEG-based Brain-Computer Interfaces