Linear Mixed-Effects Models

(aka Statistics III)

Bernd Figner

b.figner@psych.ru.nl

Week 4: February 24, 2014

1

Today: Models, Models

- · Questions: General, homework-related?
- All involved Imer modeling steps
- Theoretical and practical considerations
 - Packages
 - Preparing the data frame
 - Contrast settings
 - Pre-model checks and diagnostics
 - The Ime4 syntax
 - Interpreting the output
 - Post-model checks and diagnostics
 - Getting p values
 - Post-hocs
- Homework/lab session

Important Stuff from Papers

(Baayen et al., 2008; Barr et al., 2013; Barr, 2013)

- How to specify random effects
 - Intercepts
 - Slopes
 - Correlation (aka Covariance) terms
- How to set up your model
 - Fixed and random effects syntax
 - What should be a:
 - · fixed effect
 - · random intercept
 - · random slope
 - Non-convergence

3

Overview

Important Data Analysis/Modeling Steps

recommended not only for mixed models

0. What packages do we need?

```
Matrix '1.1.1.1' (or higher)
install.packages('Matrix', repos='http://cran.us.r-
project.org')

pbkrtest '0.3.8' (or higher)
install.packages('pbkrtest', repos='http://cran.us.r-
project.org')

Ime4 '1.1.2' (or higher)
install.packages('lme4', repos = c("http://lme4.r-
forge.r-project.org/repos", getOption("repos")))
```

```
install.packages("car") → Anova()
install.packages("boot") → boot.ci()
install.packages("reshape") → melt()
install.packages("lattice") → densityplot()
install.packages("lsmeans") → lsmeans()
install.packages("multcomp") → glht()
```

1. Preparatory Steps

- Read/import data
- Reshaping data (if necessary) → long format
- Merging with other data frames (if necessary)
- Centering or scaling of continuous variables
- Coding of categorical (=unordered) and ordered factors
- Contrast settings

7

2. Understand the raw data

- Look at descriptives (means, medians, range, ...)
- Plot raw data
 - Distribution of dependent variable (normal? transform?)
 - Aggregated (e.g., group differences)
 - Individual differences (in case of repeated measures)
 - Similar means across participants or big differences?
 → random intercepts
 - Do within-subject effects look similar across participants or do participants differ a lot? → random slopes

3. Set up your mixed-model

- · Which fixed effects? Main effects, interactions
- Which random effects? Barr et al. (2013)
 - Theoretical = "design-driven"
 - → based on experimental design
 - **Empirical** = "data-driven"
 - Generally not recommended (but common in some fields)
 - Exception: non-convergence can force simplification
 - Should be principled!
 - Barr et al. (2013): concrete step-by-step guidelines

9

4. Run and check your model

- summary(mymodel)
- · Everything ok?
 - Converged without warnings or errors
 - Number of observations, number of groups ok?
- Check some diagnostic plots
 - plot(mymodel) → fitted vs. residuals
 - densityplot(resid(mymodel)) → distribution of the residuals
 - plot(DV, fitted(mymodel)) → raw vs. fitted

5. Significance tests

- · Typically only for fixed effects of interest
- · Several different options
- · Tests of coefficents vs. test of effects
- Coefficients → like regression: coefficient significantly different from 0?
- Effects → like ANOVA: Is whole predictor significant?
 - factor with more than 2 levels
 - whole interaction term
- Post-hoc tests

11

6. Report model in text and figures

- · Describe model in sufficient detail
- Report results
- · Create plots showing the results
 - Plot raw data?
 - Plot model results? (e.g., marginal means)

Mixed-model analysis step-by-step

Bill's repeated-measure ANOVA example

1. Preparatory Steps

- · Read/import data
- Reshaping data (if necessary) → long format
- Merging with other data frames (if necessary)
- Centering or scaling of continuous variables
- Coding of categorical (=unordered) and ordered factors
- Contrast settings

1. Preparatory Steps

- Read/import data
- Reshaping data (if necessary) → long format
- Merging with other data frames (if necessary)
- Centering or scaling of continuous variables
- Coding of categorical (=unordered) and ordered factors
- Contrast settings

15

Creating the data frame

```
participant<-gl(20, 9, labels = c("P01", "P02", "P03", "P04", "P05",
    "P06", "P07", "P08", "P09", "P10", "P11", "P12", "P13", "P14",
    "P15", "P16", "P17", "P18", "P19", "P20"))

drink<-gl(3, 3, 180, labels = c("Beer", "Wine", "Water"))
imagery<-gl(3, 1, 180, labels = c("Beerpos", "Negative", "Neutral"))
groups<-gl(9, 1, 180, labels = c("beerpos", "beerneg", "beerneut",
    "winepos", "wineneg", "wineneut", "waterpos", "waterneg",
    "waterneut"))

attitude<-c(1, 6, 5, 38, -5, 4, 10, -14, -2, 26, 27, 27, 23, -15, 14,
    21, -6, 0, 1, -19, -10, 28, -13, 13, 33, -2, 9, 7, -18, 6, 26, -16,
    19, 23, -17, 5, 22, -8, 4, 34, -23, 14, 21, -19, 0, 30, -6, 3, 32,
    -22, 21, 17, -11, 4, 40, -6, 0, 24, -9, 19, 15, -10, 2, 15, -9, 4,
    29, -18, 7, 13, -17, 8, 20, -17, 9, 30, -17, 12, 16, -4, 10, 9, -12,
    -5, 24, -15, 18, 17, -4, 8, 14, -11, 7, 34, -14, 20, 19, -1, 12, 43,
    30, 8, 20, -12, 4, 9, -10, -13, 15, -6, 13, 23, -15, 15, 29, -1, 10,
    15, 15, 12, 20, -15, 6, 6, -16, 1, 40, 30, 19, 28, -4, 0, 20, -10,
    2, 8, 12, 8, 11, -2, 6, 27, 5, -5, 17, 17, 15, 17, -6, 6, 9, -6,
    -13, 30, 21, 21, 15, -2, 16, 19, -20, 3, 34, 23, 28, 27, -7, 7, 12,
    -12, 2, 34, 20, 26, 24, -10, 12, 12, -9, 4)

longAttitude<-data.frame(participant, drink, imagery, groups, attitude)</pre>
```

Data Structure

- · 20 participants
- DV: attitude; continuous: range -23 to +43
- Each pp contributes 9 data points: 3 x 3 design
 - drink: Beer, Water, Wine
 - imagery: positive, negative, neutral
- Each of the 9 unique factor combinations is measured once in each participant (no replication)

```
longAttitude[1:20,]
  participant drink imagery groups attitude
          P01 Beer Positive beerpos 1
1
          P01 Beer Negative beerneg
2
                                           6
          P01 Beer Neutral beerneut
3
                                           5
          P01 Wine Positive winepos
4
                                          38
5
          P01 Wine Negative wineneg
                                          -5
6
          P01 Wine Neutral wineneut
                                          4
7
          P01 Water Positive waterpos
                                          10
          P01 Water Negative waterneg
          P01 Water Neutral waterneut
                                          -2
10
          P02 Beer Positive beerpos
                                          26
11
          P02 Beer Negative beerneg
                                          27
          P02 Beer Neutral beerneut
                                          27
12
          P02 Wine Positive winepos
13
                                          23
          P02 Wine Negative wineneg
14
                                         -15
          P02 Wine Neutral wineneut
15
                                          14
16
          P02 Water Positive waterpos
                                          21
17
          P02 Water Negative waterneg
                                          -6
18
                                           0
          P02 Water Neutral waterneut
19
          P03 Beer Positive beerpos
                                          1
          P03 Beer Negative
20
                                         -19
                            beerneg
```

```
with(longAttitude, table(imagery, drink))
          drink
imagery
           Beer Wine Water
  Positive
              20
                   20
                         20
             20
  Negative
                   20
                         20
  Neutral
              20
                   20
                         20
                                                 19
```

1. Preparatory Steps

- Read/import data
- Reshaping data (if necessary) → long format
- Merging with other data frames (if necessary)
- · Centering or scaling of continuous variables
- Coding of categorical (=unordered) and ordered factors
- Contrast settings

21

Factor Coding

- Both factors (drink, imagery) are categorical
- Let's make them explicit factors (not strictly necessary here, but good practice)

longAttitude\$f_imagery <- as.factor(longAttitude\$imagery)
longAttitude\$f_drink <- as.factor(longAttitude\$drink)</pre>

What contrast setting? (aka contrast coding)

Contrast Settings

R Default

- treatment for unordered factors (=categorical)
- polynomial for ordered factors
 options(contrasts=c("contr.treatment", "contr.poly"))

My recommendation (based on Barr et al., 2013)

- "sum-to-zero" (=deviation) for unordered factors
- · polynomial for ordered factors

```
options(contrasts=c("contr.sum", "contr.poly"))
```

I have that statement virtually always at the top of each script

23

Treatment coding

contrasts(longAttitude\$f_drink)

Wine Water
Beer 0 0
Wine 1 0
Water 0 1

Sum-to-zero (deviation) coding

contrasts(longAttitude\$f_drink)

[,1] [,2]
Beer 1 0
Wine 0 1
Water -1 -1

Does it matter?

For the Imer models

- Typically not
- BUT: Barr et al. (2013): in rare cases, it does matter
 → Deviation coding recommended!

Interpretation

- Significance of factor as a whole: Doesn't matter
- Significance of coefficients associated with a factor (number coeffs = factor levels – 1): DOES matter!

25

Interpretation

"Naive" interpretation is wrong!

Treatment coding

Wine Water
Beer 0 0
Wine 1 0
Water 0 1

Naive (wrong!) interpretation

- · First contrast compares Wine against two others
- · Second contrast: Water versus two others

→ Wrong!!

Correct Interpretation

(1) Save your contrast matrix into a variable

Treat_cont_f_drink <- contrasts(longAttitude\$f_drink)</pre>

(2) Add a first column of 1's (for the intercept)

Treat_cont_f_drink <- cbind(c(1,1,1), Treat_cont_f_drink)</pre>

Wine Water Beer 1 0 Wine 1 1 0 Water 1

(3) Invert (=solve) the matrix, to get the actual weights

solve(Treat_cont_f_drink)

Beer Wine Water 1 0 Wine -1 1 Water -1 0 1

27

Correct Interpretation cont.

solve(Treat_cont_f_drink)

Beer Wine Water

1 0 -1 1 0

Wine Water -1 1

Correct Interpretation cont.

First row

- Intercept
- · Category Beer

29

Correct Interpretation cont.

Second row (Contrast "Wine")

• Comparison Wine (+1) versus Beer (-1)

Correct Interpretation cont.

```
solve(Treat_cont_f_drink)

Beer Wine Water

1 0 0
Wine -1 1 0
Water -1 0 1
```

Third row (contrast "Water")

Comparison Water (+1) versus Beer (-1)

31

What about Deviation Coding?

options(contrasts=c("contr.sum", "contr.poly"))
Dev_cont_f_drink <- contrasts(longAttitude\$f_drink)
Dev_cont_f_drink <- cbind(c(1,1,1), Dev_cont_f_drink)
solve(Dev_cont_f_drink)</pre>

```
Beer Wine Water
[1,] 0.3333333 0.3333333 0.3333333
[2,] 0.6666667 -0.3333333 -0.3333333
[3,] -0.3333333 0.6666667 -0.3333333
```

What about Deviation Coding?

options(contrasts=c("contr.sum", "contr.poly"))
Dev_cont_f_drink <- contrasts(longAttitude\$f_drink)
Dev_cont_f_drink <- cbind(c(1,1,1), Dev_cont_f_drink)
solve(Dev_cont_f_drink)</pre>

```
Beer Wine Water
[1,] 0.3333333 0.3333333 0.3333333
[2,] 0.6666667 -0.3333333 -0.3333333
[3,] -0.3333333 0.6666667 -0.3333333
```

First row

- Intercept
- · Average across all 3 drinks

33

What about Deviation Coding?

options(contrasts=c("contr.sum", "contr.poly"))
Dev_cont_f_drink <- contrasts(longAttitude\$f_drink)
Dev_cont_f_drink <- cbind(c(1,1,1), Dev_cont_f_drink)
solve(Dev_cont_f_drink)</pre>

```
Beer Wine Water
[1,] 0.3333333 0.3333333 0.3333333
[2,] 0.6666667 -0.3333333 -0.3333333
[3,] -0.3333333 0.6666667 -0.3333333
```

Second row (contrast 1!)

 Beer (+2/3) compared to the average of Wine and Water (both -1/3)

What about Deviation Coding?

options(contrasts=c("contr.sum", "contr.poly"))
Dev_cont_f_drink <- contrasts(longAttitude\$f_drink)
Dev_cont_f_drink <- cbind(c(1,1,1), Dev_cont_f_drink)
solve(Dev_cont_f_drink)</pre>

```
Beer Wine Water
[1,] 0.3333333 0.3333333 0.3333333
[2,] 0.6666667 -0.3333333 -0.3333333
[3,] -0.3333333 0.6666667 -0.3333333
```

Third row (contrast 2!)

 Wine (+2/3) compared to the average of Beer and Water (both -1/3)

35

2. Understand the raw data

- Look at descriptives (means, medians, range, ...)
- Plot raw data
 - Distribution of dependent variable (normal? transform?)
 - Aggregated (e.g., group differences)
 - Individual differences (in case of repeated measures)
 - Similar means across participants or big differences?
 → random intercepts
 - Do within-subject effects look similar across participants or do participants differ a lot? → random slopes

Some Descriptives

library(psych) describe(longAttitude)

	var	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se	
participant*	1	180	10.50	5.78	10.5	10.50	7.41	1	20	19	0.00	-1.23	0.43	
drink*	2	180	2.00	0.82	2.0	2.00	1.48	1	3	2	0.00	-1.52	0.06	
imagery*	3	180	2.00	0.82	2.0	2.00	1.48	1	3	2	0.00	-1.52	0.06	
groups*	4	180	5.00	2.59	5.0	5.00	2.97	1	9	8	0.00	-1.25	0.19	
attitude	5	180	7.89	15.37	8.0	7.89	17.79	-23	43	66	-0.02	-0.86	1.15	
f_imagery*	7	180	2.00	0.82	2.0	2.00	1.48	1	3	2	0.00	-1.52	0.06	
f drink*	8	180	2.00	0.82	2.0	2.00	1.48	1	3	2	0.00	-1.52	0.06	

Factors indicated by *

→ descriptives don't make that much sense for factors...

37

with(longAttitude, describeBy(attitude, group = list(imagery, drink), mat = TRUE))

```
item group1 group2 var n mean
11 1 Positive Beer 1 20 21.05 13.007993 18.5 21.0000 16.3086 1 43 42 0.13404848 -1.29076740 2.908676
12 2 Negative Beer 1 20 4.45 17.303711 0.0 4.1250 23.7216 -19 30 49 0.12623981 -1.66479365 3.860327
13 3 Neutral Beer 1 20 10.00 10.295630 8.0 10.0000 7.4130 -10 28 38 0.16580893 -0.76357245 2.302173
14 4 Positive Wine 1 20 25.35 6.737757 25.0 25.5625 6.6171 11 38 27 -0.191370 -0.57484950 1.5066080
15 5 Negative Wine 1 20 -12.00 6.181466 -13.5 -11.9375 5.9304 -23 -2 21 0.08001702 -1.09341404 1.382218
16 6 Neutral Wine 1 20 12.00 6.181466 -13.5 -11.9375 5.9304 -23 -2 21 0.08001702 -1.09341404 1.382218
17 7 Positive Water 1 20 17.40 7.074044 17.0 16.9375 6.6717 6 33 27 0.43047448 -0.62080268 1.581804
18 8 Negative Water 1 20 -9.26 6.802476 -10.0 -9.3125 8.8956 -20 5 25 0.17181762 -0.6767898 1.521808
```

Number observations and means per cell in the 3x3 design

- · Means can be used for plotting
- SEs are wrong! They don't take into account repeatedmeasures nature

2. Understand the raw data

- Look at descriptives (means, medians, range, ...)
- Plot raw data
 - Distribution of dependent variable (normal? transform?)
 - Aggregated (e.g., group differences)
 - Individual differences (in case of repeated measures)
 - Similar means across participants or big differences?
 → random intercepts
 - Do within-subject effects look similar across participants or do participants differ a lot? → random slopes

3. Set up your mixed-model

- Which fixed effects? Main effects, interactions
- Which random effects? Barr et al. (2013)
 - Theoretical = "design-driven"
 - → based on experimental design
 - **Empirical** = "data-driven"
 - Generally not recommended (but common in some fields)
 - Exception: non-convergence can force simplification
 - Should be principled!
 - Barr et al. (2013): concrete step-by-step guidelines

43

3. Set up your mixed-model

- Which fixed effects? Main effects, interactions
- · Which random effects? Barr et al. (2013)
 - Theoretical = "design-driven"
 - → based on experimental design
 - Empirical = "data-driven"
 - Generally not recommended (but common in some fields)
 - Exception: non-convergence can force simplification
 - Should be principled!
 - Barr et al. (2013): concrete step-by-step guidelines

Fixed Effects

- Typically effects of interest
- Those, we want to test for significance
 - Main effect of imagery
 - Main effect of drink
 - Interaction between imagery and drink

Remember?

- a + b → main effect of a and main effect of b
- $a : b \rightarrow$ the interaction of a and b
- $a * b \rightarrow$ main effects a and b AND interaction the same as a + b + a : b

45

3. Set up your mixed-model

- Which fixed effects? Main effects, interactions
- Which random effects? Barr et al. (2013)
 - Theoretical = "design-driven"
 - → based on experimental design
 - **Empirical** = "data-driven"
 - Generally not recommended (but common in some fields)
 - Exception: non-convergence can force simplification
 - Should be principled!
 - Barr et al. (2013): concrete step-by-step guidelines

Random Effects

- · What's our "unit," our "grouping" variable?
 - Do we have 1 or more grouping variables?
 - Only 1: participant → random per-participant intercept
- Which effects are within units? in our case, within-subject
 - drink, imagery, interaction drink x imagery
 - Thus, random per-participant slopes for all 3
 - Sure?
 - No "replication:" each participant only 1 observation per 3 x 3 cell!
 - No random slope for the interaction

47

Random Effects cont.

- All random effects...
 - Per-participant intercept
 - Per-participant "drink" slope
 - Per-participant "imagery" slope
- ... have the same grouping unit
- → Random correlation (aka covariance) terms among all random effects

A quick detour:

Random Effects Syntax

Random Effects Syntax

Always in parentheses and with a "I" somewhere in there, like (xxx | yyy)

For the examples on the following slides

- group: a grouping factor (e.g., participant)
- pred: a predictor (e.g., drink; could also be a continuous variable, doesn't matter)

See: http://glmm.wikidot.com/faq
[scroll down to "Model specification etc"]

R Syntax	What it stands for
(1 group)	random group intercept
(pred group)	random slope of pred per group AND correlated random group intercept
(1+pred group)	same as the one before
(0+pred group)	random slope of pred per group WITHOUT random group intercept
(0+pred group) + (1 group)	random slope of pred per group AND uncorrelated random group intercept
pred + (0+pred group) + (1 group)	fixed slope of pred which is allowed to vary over group AND uncorrelated random group intercep
(1 group) + (1 group2)	intercept varying among crossed random effects group and group2

End of the detour, back to our model

Our Imer model

Fixed effects

- drink, imagery, their interaction
- Random effects
 - Random per-participant intercept
 - Random per-participant slope for drink
 - Random per-participant slope for imagery
 - Random correlations between all random effects

```
att_1 <- lmer(attitude ~ f_imagery *
f_drink + (1 + f_imagery + f_drink)
participant), data = longAttitude)</pre>
```

53

Imer: General Syntax

```
MyModel <- lmer(DV ~ IV1 + IV2 + (1 + IV1 | GroupingFactor), data = MyData)
```

Maximum number of iterations (e.g., 30,000)

```
MyModel <- lmer(DV ~ IV1 [...], control =
lmerControl(optCtrl = list(maxfun = 30000))</pre>
```

Optimizer (e.g., bobyqa)

```
MyModel <- lmer(DV ~ IV1 [...], control =
lmerControl(optimizer = "bobyqa"))</pre>
```

Our Imer model

att_1 <- lmer(attitude ~ f_imagery *
f_drink + (1 + f_imagery + f_drink|
participant), data = longAttitude)</pre>

summary(att_1)

55

4. Run and check your model

- summary(mymodel)
- Everything ok?
 - Converged without warnings or errors
 - Number of observations, number of groups ok?
- · Check some diagnostic plots
 - plot(mymodel) → fitted vs. residuals
 - densityplot(resid(mymodel)) → distribution of the residuals
 - plot(DV, fitted(mymodel)) → raw vs. fitted

```
Linear mixed model fit by REML ['lmerMod']
Formula: attitude ~ f_imagery * f_drink + (1 + f_imagery + f_drink | participant)
Data: longAttitude

REML criterion at convergence: 1206.6

Scaled residuals:
Min 1Q Median 3Q Max
-2.33976 -0.58251 -0.00033 0.68843 3.12033

Note: If you want to use ML instead of REML
att_1_ML <- lmer(attitude ~ f_imagery * f_drink + (1 + f_imagery + f_drink| participant), data = longAttitude,
REML = FALSE)
```

```
Random effects:
 Groups
             Name
                         Variance Std.Dev. Corr
 participant (Intercept) 8.049
                                   2.837
                           5.702
                                           -0.41
                                   2.388
             f_imagery1
             f_imagery2 23.694
                                   4.868
                                           0.47 -0.95
             f_drink1
                          75.921
                                   8.713
                                           0.85 -0.50 0.68
             f_drink2
                          12.560
                                   3.544
                                           -0.94 0.64 -0.73 -0.94
 Residual
                          33.401
                                    5.779
Number of obs: 180, groups: participant, 20
                      Wine
           Beer
                                 Water
[1,] 0.3333333 0.3333333 0.3333333
[2,] 0.6666667 - 0.3333333 - 0.3333333 \rightarrow f_drink1
[3,] -0.3333333 0.6666667 -0.33333333 \rightarrow f_drink2
                                                                  59
```

```
Fixed effects:
                    Estimate Std. Error t value
(Intercept)
                      7.8944
                                 0.7668
                                         10.295
                                          16.507
f_imagery1
                     13.3722
                                  0.8101
                                  1.2473 -10.805
f_imagery2
                    -13.4778
f_drink1
                      3.9389
                                  2.0414
                                           1.930
f_drink2
                      0.4389
                                  0.9996
                                           0.439
                    -4.1556
                                  0.8615
f_imagery1:f_drink1
                                          -4.823
f_imagery2:f_drink1
                      6.0944
                                  0.8615
                                           7.074
                      3.6444
                                  0.8615
                                          4.230
f_imagery1:f_drink2
f_imagery2:f_drink2
                                         -7.957
                     -6.8556
                                  0.8615
```

Notes

- R default: type 1 → Order matters
- no p values
- for large data sets: rule of thumb t > 2

- What is it??!! Nobody talks about it...
- It is something ... complicated. It can be related to multicollinearity.
- Douglas Bates' explanation: https://stat.ethz.ch/pipermail/r-sig-mixed-models/2009q1/001941.html
- Take-home message: Ignore it print(summary(mymodel), corr = FALSE)

61

4. Run and check your model

- Check summary(mymodel)
- Everything ok?
 - Converged without warnings or errors
 - Number of observations, number of groups ok?
- Check some diagnostic plots
 - plot(mymodel) → fitted vs. residuals
 - densityplot(resid(mymodel)) → distribution of the residuals
 - plot(DV, fitted(mymodel)) → raw vs. fitted

5. Significance tests

- · Typically only for fixed effects of interest
- Several different options
- · Tests of coefficents vs. test of effects
- Coefficients → like regression: coefficient significantly different from 0?
- Effects → like ANOVA: Is whole predictor significant?
 - factor with more than 2 levels
 - whole interaction term
- · Post-hoc tests

Tests of Coefficients and "Effects"

- Example: 3 experimental conditions
 - neutral
 - positive mood induction
 - negative mood induction
- Effects: familiar from ANOVA framework
 - Is the **whole factor** significant?
 - → "Effect of mood induction"
 - Similarly: interaction between categorical factors: Is whole interaction significant?

67

- Coefficients: familiar from regression framework
 - Is the coefficient significantly different from 0?
 - Continuous predictors (→ 1 df)
 - Interactions between continuous predictors (→ 1 df)
 - Factors with 2 levels (→ 1df)
 - Factors with more levels (mood induction example)
 - Neutral condition vs average of positive and negative mood significant?
 - · Positive vs negative mood condition significant?

• ..

→ How you set up contrasts matters!

Getting p values

→ Different methods (usually similar results)
(Douglas Bates: https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html)

List ordered according to recommendations

http://glmm.wikidot.com/faq

69

http://glmm.wikidot.com/faq

What is the best way to test hypotheses on effects in GLMMs?

 This question is not completely answerable, but there is generally a tradeoff between computational difficulty and accuracy.

Three "most recommended" ones

(1) (non)Parametric bootstrap

- coefficients: bootMer() → boot.ci()
- effects: PBmodcomp() (package pbkrtest)

(2) Conditional F-tests with df correction

- Anova(..., test="F") (package car)
- KRmodcomp() (package pbkrtest)

(3) Likelihood Ratio Tests

anova() or drop1()

71

Conditional F test with df correction (Kenward-Roger)

library(car)

```
Anova(mymodel, type = 3, test = "F")
```

To get type 2 test: type = 2

Anova() calls KRmodcomp from pbkrtest

KRmodcomp(LargeModel, SmallModel)

SmallModel: same as LargeModel, but without the fixed effect of interest

Notes

- · Typically fast; widely accepted
- NOT available for generalized mixed models

Repeated-measures ANOVA Example

```
Anova(att_1, type = 3, test = "F")
[approx. 7 sec on this laptop]
Analysis of Deviance Table (Type III Wald F tests with
Kenward-Roger df)
Response: attitude
                        F Df Df.res
                                      Pr(>F)
                 105.9886 1
                                19 3.288e-09 ***
(Intercept)
                                18 1.929e-11 ***
f_imagery
                 130.5585 2
f_drink
                   6.9885 2
                                18 0.005674 **
f_imagery:f_drink 19.6430 4
                                76 3.906e-11 ***
```

73

Bootstrap methods: bootMer()

library(lme4)

- (1) Run your Imer model (mymodel)
- (2) Define a function (only once per R session)

```
FUN_bootMer <- function(fit) {
    return(fixef(fit))
}</pre>
```

(3) Run bootstrap (can take a while!)

```
boot_mymodel <- bootMer(mymodel, FUN_bootMer,
nsim = 1000, type = "parametric", .progress =
"txt", PBargs = list(style = 3))</pre>
```

- → Look up ?bootMer
- → Possible to use several cores → much faster!

(4) Get Confidence Intervals

(4.1.) look at boot_att_1

head(as.data.frame(boot_att_1))

(4.2.) get CIs at boot_att_1

For intercept

```
boot.ci(boot_att_1, index = 1, conf =
0.95, type=c("norm", "basic", "perc"))
```

99% CI

```
boot.ci(boot_att_1, index = 1, conf =
0.99, type=c("norm", "basic", "perc")
```

75

For second column (= first coefficient after intercept)

```
boot.ci(boot_att_1, index = 2, conf =
0.95, type=c("norm", "basic", "perc"))
```

etc for 3rd column, 4th column,

When a CI does NOT include 0 → significant!

- 95% CI does NOT include $0 \rightarrow p < .05$
- 99% CI does NOT include $0 \rightarrow p < .01$
- 95% CI DOES include $0 \rightarrow ns$, p > .05
- 90% CI DOES include $0 \rightarrow ns$, p > .10

Bootstrap method to test EFFECTS

 - PBmodcomp(LargeModel, SmallModel) from pbkrtest → test of effects

Same idea as KRmodcomp

- · First, fit model with and without effect of interest
- Then, compare the fit of the 2 models via PBmodcomp()
 PBmodcomp(LargeModel, SmallModel)

Notes

- Can take quite some time
- Look up ?PBmodcomp → possible to distribute across several clusters! Much faster!!

77

LRTs

Same model comparison idea

- · First, fit model with and without effect of interest
- Then, compare the fit of the 2 models via anova()

anova(SmallModel, LargeModel)

Notes

- Often NOT recommended (at least for smaller data sets)
- BUT: Barr et al. (2013) → worked very well!

Reporting results: next time...

Questions, comments, ...?

Important Notes re Homework (more details in BB version)

Homework

- Go through all the steps we covered today
- Use the intertemporal choice valuation ratings
- Time and Amount: continuous predictors!
 - Always center continuous predictors
- Convergence problems
 - Check your data and model (e.g., outliers? odd participants?)
 - Increase number of iterations
 - Try scaling (= standardizing) predictors

Our Data

- Risky choice
 - hot and cold version
 - questionnaire items
 - demographics
- Intertemporal choice
 - Binary choices, each between an SS and LL
 - Valuation ratings (heelemal niet goed/heel goed)
 - Titrator (table with SS/LL options)
 - questionnaire items

Geef voor elk van de onderstaande opties aan hoe goed je die optie vindt.								
Let op: Linker en rechter uiteindes van de schaal betekenen:								
Helemaal niet goed € 15 over 42 dagen Heel goed € 85 vandaag								
1. € 78 over 28 dagen								
Helemaal niet goed	Heel goed							
2. € 18 over 3 dagen								
Helemaal niet goed	Heel goed							
3. € 50 over 42 dagen								
Helemaal niet goed	Heel goed	34						

Important steps to do

- Load valuation rating file (→ BlackBoard)
- Load file with item information (time and amount for q1 to q15) (→ BlackBoard)
- Several preprocessing steps necessary
 - Create participant code variable
 - Merge data frames
 - Center (scale) predictors

– ...

Do checks before running the model

85

- Run model
- Convergence problems?
 - Data frame and model ok? Outliers, odd participants?
 - Increase number of iterations?
 - Predictors centered? Predictors scaled?
- Do checks after having run the model (plots)
- Get p values
 - Try Anova(..., test = "F")
 - Try others, if you want

More details in BB homework slides!! What you have to hand in

- Sworn statement (as usual...)
- · R script with all commands
- · Word or pdf document
 - Figures you created (pre and post model)
 - Results that you get
 - Comment things a bit "Participants showed a significant effect of amount: As the amount of money increased, the attractiveness ratings increased (decreased?) significantly (coeff = xx; p < .05)..."</p>

87

That's it for today's lecture! Questions or comments?

See you in a bit downstairs!
-1.55A/B