Vybrané příklady před prvním průběžným testem

4ST201 Statistika

Lubomír Štěpánek 24. října 2019

Obsah

1	vod]
2	lohy	7

1 Úvod

Následující příklady byly vybrány jako typové pro účely opakování před prvním průběžným testem.

2 Úlohy

Úloha 1.

V tabulce 1 jsou uvedeny hodnoty osmiprvkového výběru $\mathbf{x} = (x_1, x_2, \dots, x_8)^T$. Určete pro daný výběr jeho aritmetický průměr, medián, výběrový rozptyl, výběrovou směrodatnou odchylku, minimum, maximum, variační rozpětí a variační koeficient.

\overline{i}	1	2	3	4	5	6	7	8
$\overline{x_i}$	4	5	2	12	11	8	6	16

Tabulka 1: Hodnoty výběru $\boldsymbol{x} = (x_1, x_2, \dots, x_8)^T$

 $\check{\boldsymbol{R}}$ ešení. S použitím známých vzorců dostaneme postupně hodnoty pro aritmetický průměr $\bar{x}=8$, medián $\tilde{x}=7$, výběrový rozptyl $s_x^2=22$, výběrovou směrodatnou odchylku $s_x=\sqrt{22}$, minimum $x_{(1)}=\min\{\boldsymbol{x}\}=2$, maximum $x_{(8)}=\max\{\boldsymbol{x}\}=16$, variační rozpětí $R=\max\{\boldsymbol{x}\}-\min\{\boldsymbol{x}\}=16-2=14$ a variační koeficient $v_x=\frac{\sqrt{22}}{8}$.

Úloha 2.

Na katederní schůzi, kde bylo původně šestnáct lidí, přišlo několik doktorandů pozdě. Jejich příchodem kleslo průměrné IQ v místnosti ze 140 na 137. Průměrné IQ ve skupince pozdě příchozích doktorandů bylo 125. Určete, kolik bylo doktorandů bylo ve skupince pozdě příchozích.

 $\check{Re}\check{seni}$. Označme neznámý počet doktorandů symbolem k. Dále značme hodnotu IQ pro i-tého doktoranda symbolem d_i , kde $i \in \{1,2,3,\ldots,k\}$ a hodnotu IQ j-tého člena katederní schůze před příchodem doktorandů postupně q_j , kde $j \in \{1,2,3,\ldots,16\}$. Pro aritmetický průměr IQ ve skupince doktorandů platí $125 = \frac{1}{k} \sum_{i=1}^k d_i$. Odsud zřejmě je $\sum_{i=1}^k d_i = 125k$. Dále vyjádřeme průměrnou hodnotu IQ na katederní schůzi před a po příchodu doktorandů. Před příchodem doktorandů zřejmě pro průměrné IQ v místnosti platilo $140 = \frac{1}{16} \sum_{j=1}^{16} q_j$, odsud zřejmě je $\sum_{j=1}^{16} q_j = 16 \cdot 140 = 2240$. Po příchodu doktorandů pak pro průměrné IQ v místnosti platilo $137 = \frac{1}{16+k} \left(\sum_{j=1}^{16} q_j + \sum_{i=1}^k d_i\right)$. Dosazením za $\sum_{j=1}^{16} q_j = 2240$ a za $\sum_{i=1}^k d_i = 125k$ do předchozí rovnosti získáme

$$137 = \frac{1}{16+k} \left(2240 + 125k \right).$$

Odtud již dalšími úpravami

$$137 = \frac{1}{16+k} (2240 + 125k)$$

$$137(16+k) = 2240 + 125k$$

$$2192 + 137k = 2240 + 125k$$

$$12k = 48$$

$$k = 4.$$

Ve skupince pozdě příchozích byli právě čtyři doktorandi.

Úloha 3.

V souboru deseti čísel je aritmetický průměr roven 12 a rozptyl 4. Do souboru přidáme hodnotu 23. Jak se změní průměr a rozptyl souboru?

 \dot{R} ešení. Značme původní hodnoty postupně x_1, x_2, \ldots, x_{10} a novou, přidanou hodnotu x_{11} . V původním souboru jistě pro aritmetický průměr platilo $\bar{x}=12=\frac{1}{10}\sum_{i=1}^{10}x_i$, odtud $\sum_{i=1}^{10}x_i=12\cdot 10=120$, a pro výběrový rozptyl (ve výpočetním tvaru) platilo $s_x^2=4=\frac{1}{10}\sum_{i=1}^{10}x_i^2-\left(\frac{1}{10}\sum_{i=1}^{10}x_i\right)^2=\frac{1}{10}\sum_{i=1}^{10}x_i^2-(\bar{x})^2$, odsud je $\sum_{i=1}^{10}x_i^2=10\cdot\left(s_x^2+(\bar{x})^2\right)=10\cdot(4+12^2)=1480$. Pro aritmetický průměr v souboru po přidání jedenácté hodnoty platí $\bar{x}_{\text{nový}}=\frac{1}{11}\left(\sum_{i=1}^{10}x_i+x_{11}\right)$, odsud po dosazení $\sum_{i=1}^{10}x_i=120$ a $x_{11}=23$ je $\bar{x}_{\text{nový}}=\frac{1}{11}\left(\sum_{i=1}^{10}x_i+x_{11}\right)=\frac{1}{11}(120+23)=\frac{143}{11}=13$. Pro výběrový rozptyl v souboru po přidání jedenácté hodnoty platí $s_{x,\text{nový}}^2=\frac{1}{11}\left(\sum_{i=1}^{10}x_i^2+x_{11}^2\right)-\left(\frac{1}{11}\left(\sum_{i=1}^{10}x_i+x_{11}\right)\right)^2=1$

$$\frac{1}{11} \left(\sum_{i=1}^{10} x_i^2 + x_{11}^2 \right) - (\bar{x}_{\text{nov}\circ})^2. \text{ Dosazen\'im za } \sum_{i=1}^{10} x_i^2 = 1480, \text{ za } \bar{x}_{\text{nov}\circ} = 13 \text{ a za } x_{11} = 23 \text{ je } s_{x,\text{nov}\circ}^2 = \frac{1}{11} \left(\sum_{i=1}^{10} x_i^2 + x_{11}^2 \right) - (\bar{x}_{\text{nov}\circ})^2 = \frac{1}{11} \left(1480 + 23^2 \right) - (13)^2 = 13\frac{7}{11}.$$

Po přidání jedenácté hodnoty je nový aritmetický průměr souboru roven $\bar{x}_{\text{nový}} = 13$ a výběrový rozptyl je nyní roven $s_{x,\text{nový}}^2 = 13\frac{7}{11}$.

Úloha 4.

V urně je deset bílých a třicet černých koulí. S jakou pravděpodobností budou mezi šesti náhodně vytaženými koulemi právě čtyři černé, pokud

- (i) každou kouli po vytažení vždy vrátíme zpět do urny?
- (ii) koule po vytažení do urny zpět nevracíme?

Řešení. Postupně vyřešme obě části.

(i) Pokud po každém tahu vrátíme kouli zpět do urny, je pravděpodobnost, že bude vytažena černá koule, konstantní během všech šesti tahů, a sice je rovna podílu počtu černých a všech koulí v urně, tedy $p_{\text{černá}} = \frac{30}{30+10} = \frac{3}{4}$. Obdobně pravděpodobnost vytažení bílé koule se díky vracení vytažených koulí vždy zpět do urny nemění a je během všech šesti tahů rovna podílu počtu bílých a všech koulí, tedy $p_{\text{bílá}} = \frac{10}{10+30} = \frac{1}{4}$.

Označme symbolem X náhodnou veličinu vracející počet vytažení černých koulí během šesti tahů z urny s vracením. Zřejmě, protože jednotlivé tahy koulí z urny jsou díky jejich zpětnému vracení do urny na sobě nezávislé, sleduje náhodná veličina X binomické rozdělení s počtem pokusů n=6 a pravděpodobností úspěchu rovnou $p_{\text{černá}}=\frac{3}{4}$, formálně tedy $X\sim \text{binom}(n,p)\sim \text{binom}(n,p_{\text{černá}})\sim \text{binom}\left(6,\frac{3}{4}\right)$.

Hledáme hodnotu výrazu P(X=4). Podle definice pravděpodobnostní funkce binomického rozdělení dostáváme pravděpodobnost pro vytažení právě k černých koulí rovnou

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k},$$

kde v našem případě je k = 4. Postupně tedy dostáváme

$$P(X = k) = \binom{n}{k} p^{k} (1 - p)^{n - k}$$

$$P(X = k) = \binom{n}{k} p^{k}_{\text{černá}} (1 - p_{\text{černá}})^{n - k}$$

$$P(X = 4) = \binom{6}{4} \left(\frac{3}{4}\right)^{4} \left(1 - \left(\frac{3}{4}\right)\right)^{6 - 4}$$

$$P(X = 4) = {6 \choose 4} \left(\frac{3}{4}\right)^4 \left(\frac{1}{4}\right)^2$$
$$P(X = 4) \doteq 15 \cdot 0.316 \cdot 0.0625$$
$$P(X = 4) \doteq 0.297.$$

Pravděpodobnost, že mezi šesti nezávislými tahy koulí z dané urny budou právě čtyři černé, uvažujeme-li vždy tažené koule po každém tahu zpět do urny, je tak rovna přibližně 0,297.

(ii) Pokud koule po jejich vytažení z urny nevracíme zpět, jednotlivé tahy již nejsou nezávislé a stejně tak ani pravděpodobnost vytažení černé koule není po každém z tahů shodná.

Označme symbolem Y náhodnou veličinu vracející počet vytažení černých koulí během šesti tahů z urny, ale bez zpětného vracení koulí zpět vždy po jejich vytažení. Zřejmě jednotlivé tahy nejsou nezávislé a náhodná veličina Y sleduje hypergeometrické rozdělení s parametrem N=40 odpovídajícím počtu všech koulí v urně, parametrem M=30 odpovídajícím počtu černých koulí v urně a parametrem n=6 odpovídajícímu počtu tahů z urny bez vracení. Formálně tedy $Y \sim \text{hypergeom}(N, M, n) \sim \text{hypergeom}(40, 30, 6)$.

Hledám hodnotu výrazu P(Y=4). Podle definice pravděpodobnostní funkce hypergeometrického rozdělení dostáváme pravděpodobnost pro vytažení právě k černých koulí rovnou

$$P(Y = k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}},$$

kde v našem případě je k = 4. Postupně tedy dostáváme

$$P(Y = k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$$

$$P(Y = 4) = \frac{\binom{30}{4} \binom{10}{2}}{\binom{40}{6}}$$

$$P(X = 4) = \frac{27405 \cdot 45}{3838380}$$

$$P(X = 4) \doteq 0.321.$$

Pravděpodobnost, že mezi šesti tahy koulí z dané urny budou právě čtyři černé, neuvažujeme-li vrácení tažené koule po každém tahu zpět do urny, je tak rovna přibližně 0.321.

Úloha 5.

V malé nemocnici zaznamenají vždy od pondělí do neděle průměrně 35 porodů.

- (i) Kolik porodů můžeme v dané nemocnici očekávat následující den?
- (ii) Kolik porodů můžeme v dané nemocnici očekávat během následujících tří dní?
- (iii) Jaký je očekávaný rozptyl počtu porodů v dané nemocnici během následujících tří dní?
- (iv) S jakou pravděpodobností dojde v dané nemocnici během následujících tří dní právě k 12 porodům?
- (v) S jakou pravděpodobností dojde v dané nemocnici během následujícího dne k nejvýše dvěma porodům?
- (vi) S jakou pravděpodobností dojde v dané nemocnici během následujícího dne k alespoň jednomu porodu?
- (vii) S jakou pravděpodobností dojde v dané nemocnici během následujícího dne právě ke čtyřem, pěti nebo šesti porodům?

 $\check{R}e\check{s}en\acute{i}$. Označme symbolem X náhodnou veličinu udávající počet porodů za jeden den v dané malé nemocnici. Předpokládejme, že počty porodů mezi jednotlivými dny jsou navzájem nezávislé, pak náhodná veličina X sleduje Poissonovo rozdělení o parametru $\lambda = \frac{35}{7} = 5$ [porodů/den]. Formálně tedy pišme $X \sim \operatorname{poiss}(\lambda) \sim \operatorname{poiss}(5)$. Ještě dodejme, že střední hodnota náhodné veličiny X a její rozptyl jsou pak oba rovny parametru λ , tedy $\mathbb{E}(X) = \operatorname{var}(X) = \lambda = 5$.

- (i) Předpokládejme, že počet porodů "následující" den je zcela nezávislý na všech ostatních dnech. Pak počet porodů, kolik můžeme v dané malé nemocnici očekávat během následujícího dne, je roven střední hodnotě náhodné veličiny X, tedy $\mathbb{E}(X) = \lambda = 5$ [porodů].
- (ii) Předpokládejme, že počty porodů během "následujících" tří dnů jsou zcela nezávislé na všech ostatních dnech a rovněž nezávislé navzájem. Pak označme symbolem Y náhodnou veličinu udávající počet porodů během následujících tří dnů. Zřejmě jde o součet počtu porodů následující, druhý následující a třetí následující den, tedy Y = X + X + X = 3X. Protože víme, že součet k veličin sledujících Poissonovo rozdělení vždy o parametru λ rovněž sleduje Poissonovo rozdělení, avšak o parametru $k\lambda$, platí, že $Y = 3X \sim \text{poiss}(3\lambda) \sim \text{poiss}(3\cdot 5) \sim \text{poiss}(15)$. Stejně tak platí, že $\mathbb{E}(Y) = \text{var}(Y) = 3\lambda = 3\cdot 5 = 15$. Proto můžeme během následujících tří dní očekávat v dané nemocnici právě $\mathbb{E}(Y) = 15$ porodů.
- (iii) Počet očekávaných porodů v dané nemocnici během následujících tří dní je popsán veličinou Y. Proto očekávaný rozptyl počtu porodů během následujících tří dní je roven var(Y) = 15 [porodů].
- (iv) Hledáme hodnotu pravděpodobnosti P(Y=12). Ze vztahu pro pravděpodobnostní funkci Poissonova rozdělení dostáváme

$$P(Y = k) = \frac{\lambda^k e^{-\lambda}}{k!},$$

kde v našem případě je k = 12. Postupně tedy dostáváme

$$P(Y = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

$$P(Y = 12) = \frac{15^{12} e^{-15}}{12!}$$

$$P(X = 12) \doteq 0.083.$$

Během následujících tří dní tedy v dané nemocnici dojde ke dvanácti porodům s pravděpodobností přibližně 0,083.

(v) Hledáme hodnotu pravděpodobnosti $P(X \leq 2)$, což lze vyjádřit vzhledem k nezávislosti jednotlivých počtů porodů také jako $P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2)$. Ze vztahu pro pravděpodobnostní funkci Poissonova rozdělení víme, že $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$ a dostáváme

$$P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$$

$$P(Y \le 2) = \frac{5^0 e^{-5}}{0!} + \frac{5^1 e^{-5}}{1!} + \frac{5^2 e^{-5}}{2!}$$

$$P(X \le 2) \doteq 0,0067 + 0,0337 + 0,0842$$

$$P(X \le 2) \doteq 0,125.$$

Během následujícího dne tedy v dané nemocnici dojde nejvýše ke dvěma porodům s pravděpodobností přibližně 0,125.

(vi) Hledáme hodnotu pravděpodobnosti $P(X \ge 1)$, což lze vyjádřit vzhledem k nezávislosti jednotlivých počtů porodů také jako $P(X \ge 1) = 1 - P(X = 0)$. Ze vztahu pro pravděpodobnostní funkci Poissonova rozdělení víme, že $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$ a dostáváme

$$P(X \ge 1) = 1 - P(X = 0)$$

$$P(Y \ge 1) = 1 - \frac{5^0 e^{-5}}{0!}$$

$$P(Y \ge 1) = 1 - 0,0067$$

$$P(X \ge 1) \doteq 0,993.$$

Během následujícího dne tedy v dané nemocnici dojde alespoň k jednomu porodu s pravděpodobností přibližně 0,993. $\hfill\Box$

(vii) Hledáme hodnotu pravděpodobnosti $P(X \in \{4, 5, 6\})$, což lze vyjádřit vzhledem k nezávislosti jednotlivých počtů porodů také jako $P(X \in \{4, 5, 6\}) = P(X = 4) + P(X = 5) + P(X = 6)$. Ze vztahu pro pravděpodobnostní funkci Poissonova rozdělení víme, že $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$ a dostáváme

$$P(X \in \{4, 5, 6\}) = P(X = 4) + P(X = 5) + P(X = 6)$$

$$P(X \in \{4, 5, 6\}) = \frac{5^4 e^{-5}}{4!} + \frac{5^5 e^{-5}}{5!} + \frac{5^6 e^{-5}}{6!}$$

$$P(X \in \{4, 5, 6\}) \doteq 0.1755 + 0.1755 + 0.1462$$

$$P(X \in \{4, 5, 6\}) \doteq 0.497.$$

Během následujícího dne tedy v dané nemocnici dojde k právě čtyřem, pěti nebo šesti porodům s pravděpodobností přibližně 0,497.

Úloha 6.

Náhodná veličina X sleduje normální rozdělení $\mathcal{N}(20, 16)$. Jaká je pravděpodobnost, že nabude hodnoty

- (i) menší než 16?
- (ii) větší než 20?
- (iii) v rozmezí mezi 12 a 28?
- (iv) menší než 12 nebo větší než 28?

Řešení. Podle zadání je tedy zřejmě $X \sim \mathcal{N}(20, 4^2)$. Zřejmě tedy platí i $U \equiv \frac{X - \mathbb{E}(X)}{\sqrt{\text{var}(X)}} = \frac{X - 20}{4} \sim \mathcal{N}(0, 1^2)$, kde U je náhodná veličina sledující standardní normální rozdělení. Pak je tedy i $P(U \leq u) = F_U(u) = \Phi(u)$.

- (i) Hledáme hodnotu výrazu P(X < 16). Postupně upravujme $P(X < 16) = P\left(\frac{X \mathbb{E}(X)}{\sqrt{\text{var}(X)}} < \frac{16 \mathbb{E}(X)}{\sqrt{\text{var}(X)}}\right) = P\left(\frac{X 20}{4} < \frac{16 20}{4}\right) = P\left(U < \frac{-4}{4}\right) = P\left(U < -1\right) = F_U(-1) = \Phi(-1) = 1 \Phi(1) \doteq 1 0.841 \doteq 0.159.$
- (ii) Hledáme hodnotu výrazu P(X > 20), kterou můžeme také přepsat jako $P(X > 20) = 1 P(X \le 20)$. Postupně upravujme $P(X > 20) = 1 P(X \le 20) = 1 P(X \le 20) = 1 P\left(\frac{X \mathbb{E}(X)}{\sqrt{\text{var}(X)}} \le \frac{20 \mathbb{E}(X)}{\sqrt{\text{var}(X)}}\right) = 1 P\left(\frac{X 20}{4} \le \frac{20 20}{4}\right) = 1 P\left(U \le \frac{0}{4}\right) = 1 P\left(U \le 0\right) = 1 F_U(0) = 1 \Phi(0) = 1 0,500 = 0,500.$
- (iii) Hledáme hodnotu výrazu P(12 < X < 28), kterou můžeme také přepsat jako P(12 < X < 28) = P(X < 28) P(X < 12). Postupně upravujme $P(12 < X < 28) = P(X < 28) P(X < 12) = P\left(\frac{X \mathbb{E}(X)}{\sqrt{\text{var}(X)}} < \frac{28 \mathbb{E}(X)}{\sqrt{\text{var}(X)}}\right) P\left(\frac{X \mathbb{E}(X)}{\sqrt{\text{var}(X)}} < \frac{12 \mathbb{E}(X)}{\sqrt{\text{var}(X)}}\right) = P\left(\frac{X 20}{4} < \frac{28 20}{4}\right) P\left(\frac{X 20}{4} < \frac{12 20}{4}\right) = P\left(U < \frac{8}{4}\right) P\left(U < \frac{-8}{4}\right) = P\left(U < 2\right) P\left(U < 2\right) P\left(U < 2\right) = P\left(U < 2\right) P\left(U$
- (iv) Hledáme hodnotu výrazu $P(X<12 \lor X>28)$, což lze též přepsat jako 1-P(12< X<28). Protože však z předchozího zadání víme, že $P(12< X<28)\doteq 0,954$, můžeme ihned psát, že $P(X<12 \lor X>28)=1-P(12< X<28)\doteq 1-0,954\doteq 0,046$.

Úloha 7.

Hmotnost bochníku chleba z jedné konkrétní pekárny sleduje normální rozdělení o střední hodnotě 0,8 kg a směrodatné odchylce 0,1 kg. Určete pravděpodobnost, že náhodně zakoupený bochník chleba z dané pekárny

- (i) bude mít hmotnost menší než 0,6 kg.
- (ii) bude mít hmotnost větší než 0,9 kg.
- (iii) bude mít hmotnost v rozmezí mezi 0,5 kg až 1,1 kg.

Řešení. Označme symbolem X hmotnost náhodně zakoupeného bochníku z dané pekárny. Podle zadání je tedy zřejmě $X \sim \mathcal{N}(0,8,\ 0,1^2)$. Zřejmě tedy platí i $U \equiv \frac{X - \mathbb{E}(X)}{\sqrt{\text{var}(X)}} = \frac{X - 0,8}{0,1} \sim \mathcal{N}(0,1^2)$, kde U je náhodná veličina sledující standardní normální rozdělení. Pak tedy je rovněž $P(U < u) = F_U(u) = \Phi(u)$.

- (i) Hledáme hodnotu výrazu P(X < 0.6). Postupně upravujme $P(X < 0.6) = P\left(\frac{X \mathbb{E}(X)}{\sqrt{\text{var}(X)}} < \frac{0.6 \mathbb{E}(X)}{\sqrt{\text{var}(X)}}\right) = P\left(\frac{X 0.8}{0.1} < \frac{0.6 0.8}{0.1}\right) = P\left(U < \frac{-0.2}{0.1}\right) = P\left(U < -2\right) = F_U(-2) = \Phi(-2) = 1 \Phi(2) \doteq 1 0.977 \doteq 0.023$. Hmotnost náhodného bochníku chleba z dané pekárny bude menší než 0,6 kg s pravděpodobnostní přibližně 0,023. \square
- (ii) Hledáme hodnotu výrazu P(X>0.9). kterou můžeme také přepsat jako $P(X>0.9)=1-P(X\le0.9)$. Postupně upravujme $P(X>0.9)=1-P(X\le0.9)=1-P(X\le0.9)=1-P\left(\frac{X-\mathbb{E}(X)}{\sqrt{\mathrm{var}(X)}}\le\frac{0.9-\mathbb{E}(X)}{\sqrt{\mathrm{var}(X)}}\right)=1-P\left(\frac{X-0.8}{0.1}\le\frac{0.9-0.8}{0.1}\right)=1-P\left(U\le\frac{0.1}{0.1}\right)=1-P\left(U\le1\right)=1-F_U(1)=1-\Phi(1)=1-0.841=0.159$. Hmotnost náhodného bochníku chleba z dané pekárny bude větší než 0,9 kg s pravděpodobnostní přibližně 0,159.
- (iii) Hledáme hodnotu výrazu P(0,5 < X < 1,1), kterou můžeme také přepsat jako P(0,5 < X < 1,1) = P(X < 1,1) P(X < 0,5). Postupně upravujme $P(0,5 < X < 1,1) = P(X < 1,1) P(X < 0,5) = P\left(\frac{X \mathbb{E}(X)}{\sqrt{\text{var}(X)}} < \frac{1,1 \mathbb{E}(X)}{\sqrt{\text{var}(X)}}\right) P\left(\frac{X \mathbb{E}(X)}{\sqrt{\text{var}(X)}} < \frac{0,5 \mathbb{E}(X)}{\sqrt{\text{var}(X)}}\right) = P\left(\frac{X 0,8}{0,1} < \frac{1,1 0,8}{0,1}\right) P\left(\frac{X 0,8}{0,1} < \frac{0,5 0,8}{0,1}\right) = P\left(U < \frac{0,3}{0,1}\right) P\left(U < \frac{-0,3}{0,1}\right) = P\left(U < 3\right) P\left(U < -3\right) = P\left(U < 3\right) P\left(U < 3\right)$