Ricci Flow and the urvature Operator of Kind

Harry Fluck

ornell University

pril 27th 2023

Outline

- Introduction to the Ricci Flow
- The Curvature Operator
- The Curvature Operator of the Second Kind
- Statement of Results

Hamilton's Ricci Flow

Definition: Ricci Flow (Hamilton '82)

Let (M, g_0) be a Riemannian manifold. The equation

$$\frac{\partial}{\partial t}g_{ij} = 2R_{ij} + (\frac{2\int_{M}Rd\mu}{nVol(M)}g_{ij}), g(0) = 0$$

is known as the (normalized) Ricci flow. pair (M, g(t))closed manifold and g(t) is a solution to the Ricci flow is compact Ricci flow.

Short Time Existence

Theorem (Hamilton '82)

For any closed Riemannian manifold (M, g_0) , there is a un short time solution $g(t), t \in [0, \delta)$ to the Ricci flow equat $g(0) = g_0$.

Remark

The Ricci tensor is not elliptic:

$$\sigma D(2Rc)_{\zeta}(\nu) = |\zeta|^2 \nu_{ij} + \zeta_i \zeta_j Tr(\nu) \quad \zeta_i \zeta_k \nu_{kj}$$

That is, the Ricci flow is not a strictly parabolic flow.

Short Time Existence

Theorem (DeTurck '83)

Let (M, g_0) be a closed Riemannian manifold. There is a flow

$$\frac{\partial}{\partial t}g_{ij} = 2R_{ij} + \mathcal{L}_X g_{ij}, \ g(0) = g_0$$

and a family of diffeomorphisms $\varphi(t): M \to M$, such tha unique smooth short time solution to (1) with $g(0) = g_0$, solves the Ricci flow equation with initial date g_0 .

Intuition for the Ricci Flow

Ricci Flow as a Heat Equation

In geodesic normal coordinates centered at a point p, we

$$\frac{\partial}{\partial t}g_{ij} = 2R_{ij} = 3\Delta_{\mathsf{Euc}}(g_{ij}).$$

Idea of the Ricci

- Ricci Flow sho similarly to the for the metric
- Ricci flow sho apriori badly b
- Use this fact t the topology of

Singularity Formation in Ricci Flow

Singularity Formation

For a compact Ricci flow (M, g(t)) with R(0) > 0, $\exists T \in$

$$\lim_{t \to T} |Rm|_{g(t)} = \infty.$$

Modelling the Singularity

For $K_i := |Rm(x_i, t_i)| \nearrow \infty, t_i \nearrow T$, we aim to study the

$$(M, g_i(t), x_i), g_i(t) = K_i g(t_i + K_i^{-1} t).$$

If, in the C^{∞} pointed sense of Cheeger and Gromov, we h

$$(M, g_i(t), x_i) \rightarrow (M_{\infty}, g_{\infty}(t), x_{\infty})$$

we call $(M_{\infty}, g_{\infty}(t))$ a singularity model for the flow.

Intuitive Solutions of the Ricci Flow

The Ricci Flow on Surfaces

The Uniformization Theorem (Poincaré)

Every closed Riemann surface contains a metric in its conis locally isometric to one of the 3 model geometries: S^2 ,

Remarks

- This is equivalent to the existence of a metric of con curvature in the conformal class.
- In dimension 2, Ricci flow is equivalent to the scalar

$$\frac{\partial}{\partial t}u = \Delta_{g_0}log(u) \quad R_{g_0},$$

where $u \in C^{\infty}(M)$. In particular, Ricci flow preserve class of the metric.

The Ricci Flow on Surfaces

Theorem (Hamilton '88+ Chow '91)

For any closed (M^2, g_0) , the solution to the normalized R all time and converges to a metric of constant sectional c

Remarks

- In Hamilton '88: Case of $\chi(M) \leq 0$ and $\chi(M) > 0$ with
- 2 Chow '91: Case of $\chi(M) > 0$ with arbitrary initial m
- Hamilton and Chow's proof required uniformization t
- (Chen, Lu+ Tian '06): Give a Ricci flow proof of the theorem.

The Ricci Flow on 3-Manifolds

Thurston's Geometrization Conjecture

Every closed prime 3-manifold has a canonical geometric when cut along tori, each tori is locally isometric to one c geometries.

Remarks

- Implies, as a corollary, the Poincaré conjecture:
 - Every closed simply connected 3-manifold is home
- 2 proof of Thurston's conjecture was the long term a Ricci flow programme.
- Resolved by Perelman in 2003 using Ricci flow.

The Ricci Flow on 3-Manifolds

Theorem (Hamilton '82)

For any closed (M^3, g_0) with Rc > 0, the solution to the flow exists for all time and converges to a metric of const sectional curvature. Hence, $M^3 \cong S^3$ for some \in Iso(

Theorem (Perelman '03)

Let $(M_{\infty}, g_{\infty}(t))$ be a singularity model of a 3-dimension. flow. Then there are sequences $\lambda_i, \beta_i \in \mathbb{R}$, points $x_i \in M_0$ $t_i \rightarrow \infty$ such that the rescaled solutions

$$(M_{\infty}, g_i(t), x_i), g_i(t) = \lambda_i g(t_i + \beta_i t)$$

converge to the standard solution on either $S^3/$ or (S^2)

Ricci Flow in Higher Dimensions

Remarks on n > 4

- $lue{s}$ Singularities of the Ricci flow for dimensions $n \geq 4$ a more complicated.
- Understanding singularity formation in dimension 4 is contemporary area of research.
- To attain any general results, one needs to impose st assumptions on the initial metric.

Definition: Curvature Operator

Let (M, g) be a Riemannian manifold. The curvature tense bundle map on the space of 2-forms:

$$Rm: \wedge^{2}T^{*}M \to \wedge^{2}T^{*}M$$
$$e^{i} \wedge e^{j} \to R_{iikl}e^{k} \wedge e^{l}$$

known as the curvature operator.

Definition: Positive Curvature Operator

We say Rm is positive (Rm > 0) if $Rm|_p$ has strictly positive each $p \in M$. Note that

$$Rm > 0 \Rightarrow sec > 0$$
.

Classical Problem

Which manifolds admit metrics with positive curvature or

Examples

- leftimes If n=2, Gauss Bonnet implies $M=S^2$ or $M=\mathbb{RP}^2$
- If $M^n = S^n$ with the standard round metric, then
- Some non-examples:

$$Rm_{S^2 \times S^1} = \begin{pmatrix} 0 & & & \\ & 0 & \\ & & 1 \end{pmatrix}, Rm_{\mathbb{P}^2} = \begin{pmatrix} 0 & & & \\ & 0 & & \\ & & 1 & \end{pmatrix}$$

Space Form Conjecture

Let (M, g) is a closed Riemannian manifold with Rm > 0 diffeomorphic to a spherical spherical space form. That is some $\in Iso(S^n)$.

Hamilton's Conjecture

Let (M,g) be a closed Riemannian manifold with Rm > 0solution to the normalized Ricci flow exists for all time an metric of constant positive sectional curvature. Hence, M

The Lie Igebra Structure of $\wedge^2 T^*$

Let (M, g) be a Riemannian manifold. For each $p \in M$, t $\wedge^2 T_p^* M \cong \mathfrak{s}$ (n) as a Lie algebra, with bracket defined by

$$[U,V]_{ij}=g^{kl}(U_{ik}V_{lj} V_{ik}U_{lj})$$

Fix a basis φ of $\wedge^2 T_p^* M$. The Lie algebra square of Rm

$$Rm : \wedge^{2} T^{*} M \to \wedge^{2} T^{*} M$$

$$(Rm)_{\beta} = C^{\gamma \delta} C_{\beta}^{\epsilon \zeta} Rm_{\gamma \epsilon} Rm_{\delta \zeta},$$

where $C^{\gamma\delta}$ are the structure constants for the bracket in t

The Evolution Equation for Rm

Let (M, g(t)) be a compact Ricci flow. The Riemann cur satisfies the reaction diffusion equation

$$\frac{\partial}{\partial t}R_{ijkl} = \Delta R_{ijkl} + 2(R_{pijq}R_{qklp} + R_{pilq}R_{qkjp} - R_{pijq}R_{qlk})$$

The reaction terms can be grouped so that the curvature

$$\frac{\partial}{\partial t}Rm = \Delta Rm + Rm^2 + Rm .$$

Hamilton's ODE→PDE Maximum Principle

Let (M,g) be a Riemannian manifold, $\pi: E \to M$ be a H bundle with compatible connection, and $K \subset E$ be a close which is invariant under parallel translation. For a section consider the non-linear PDE

$$\frac{\partial}{\partial t}e(t) = \Delta e + f(e(t)).$$

Suppose that the subset K is preserved by the ODE

$$\frac{d}{dt}e=f(e(t)).$$

Then the same is true for solutions to (2).

The ODE \rightarrow PDE Maximum Principle for Rm

Let (M, g(t)) be a compact Ricci flow. Recall that the cu satisfies

$$\frac{\partial}{\partial t}Rm = \Delta Rm + Rm^2 + Rm \ .$$

Let $K \subset S^2(\wedge^2 T^*M)$ be a closed, convex subset invarian translation. Suppose that solutions to

$$\frac{d}{dt} = ^2 +$$

which begin in K, remain in K. Then the same is true for Ricci flow.

Theorem (Huisken '85)

Let (M, g(t)) be a compact Ricci flow such that R(0) > 0 $\exists \delta > 0$ s.t. the estimate

$$|\tilde{Rm}| \leq R^{1-\delta}$$

holds $\forall t \in [0, T)$. Then the solution to the normalized Ri all time and converges to a metric of constant positive se

Definition: Pinching Sets

subset $K \subset S^2(\wedge^2 T^*M)$ is called a pinching set if it is invariant under parallel translation, preserved by the ODE

$$\frac{d}{dt} = ^2 +$$

and satisfies the pinching estimate

satisfies the pinching condition.

$$|\tilde{a}| \leq |\tilde{a}|^{1-\delta}$$

for some $\delta > 0$ and all $\in K$. n open subset $U \subset S^2$ (A the pinching condition if every compact subset $K \subset U$ is

pinching set. In particular, the normalized Ricci flow evolves a manifold R>0 into one of constant positive sectional curvature if

The ODE in Dimension 3

The Lie algebra square Rm is the adjoint matrix and the the system

$$\frac{d}{dt}\lambda_i = \lambda_i^2 + \lambda_j \lambda_k,$$

where $\lambda_1, \lambda_2, \lambda_3$ are the eigenvalues of Rm.

Hamilton studied this system to prove his conjecture for r

The ODE in Dimension 4

There is a splitting $\bigwedge^2 = \bigwedge^2_+ \oplus \bigwedge^2_-$ by eigenspaces of the operator so that

$$Rm = \begin{pmatrix} B \\ B^t \end{pmatrix}, Rm = \begin{pmatrix} B \\ B \end{pmatrix}^t C$$

where B, C are 3×3 matrices and is the adjoint m then reduces to a system of 3×3 matrix ODE e.g.

$$\frac{d}{dt} = {}^2 + BB^t + .$$

Hamilton studied this system to prove his conjecture for r

Theorem (Böhm+Wilking '08)

Let (M,g) be a closed Riemannian manifold with 2 positi operator. Then the solution to the normalized Ricci flow e all time and converges to a metric of constant positive se Hence, $M \cong S^n$ is diffeomorphic to a spherical space for

Remark

We say a linear operator $\in \operatorname{End}(\mathbb{R}^n)$ is m positive if the *m* eigenvalues of is positive.

Definition: The 2nd Curvature Operator

Let (M,g) be a Riemannian manifold. The curvature tens bundle map on the space of symmetric 2-tensors:

$$\overline{Rm}: S^2(T^*M) \to S^2(T^*M)$$
 $e_i \odot e_j \to R_{kilj}e_k \odot e_l$

Let $\pi:S^2(T^*M)\to S^2_n(T^*M)$ denote the projection onto traceless 2-forms. The operator

$${Rm} = \pi \circ \overline{Rm}|_{S_0^2} : S_0^2(T^*M) \to S_0^2(T^*M)$$

is known as the curvature operator of the second kind.

Restricting to S_0^2 T^*

There a splitting

$$S^2(T^*M) = S_0^2(T^*M) \oplus \mathbb{R}g$$

into O(n)-invariant subbundles.

For the round metric $g_{\mathbb{S}^n}$ on S^n ,

$$\overline{Rm}_{g_n}: S^2(T^*M) \to S^2(T^*M)$$

is not positive. In particular, $Rm|_{\mathbb{R}_g}$ has eigenvalue

Mence, we work with the restricted operator

$$\mathring{Rm}: S_0^2(T^*M) \to S_0^2(T^*M)$$

Remarks

We have

$${Rm} > 0 \Rightarrow sec > 0$$
.

 \square In general, the relationship between Rm and Rm is u

$$\mathring{Rm}_{\mathbb{P}^2} = \begin{pmatrix} \frac{1}{2} \operatorname{Id} & & \\ & \operatorname{Id} & \\ & & \operatorname{Id} \end{pmatrix}, Rm_{\mathbb{P}^2} = \begin{pmatrix} 0 & & \\ & 0 & \\ & & 1 \end{pmatrix}$$

Conjecture (Nishikawa '86)

Let (M,g) be a closed Riemannian manifold with Rm > 0 $M \cong S^n$ is diffeomorphic to a spherical space form.

Examples

- $lue{s}$ If n=2, Gauss Bonnet implies $M=S^2$ or $M=\mathbb{RP}^2$
- If $M^n = S^n$ with the standard round metric then H
- Some non-examples:

$${Rm_{S^2 imes S^1}} = \left(egin{array}{cccc} rac{1}{3} & & & & & \\ & 0 & & & & \\ & & 0 & & & \\ & & & 1 & & \\ & & & & 1 \end{array}
ight), \;
{Rmm_{\mathbb{P}^2}} = \left(egin{array}{cccc} & & & & \\ & & & & & \\ & & & & & 1 \end{array}
ight)$$

Theorem (Cao, Gursky, Tran '21)

Let (M^n, g) be a closed Riemannian manifold with 2-posi curvature operator. Then M^n is diffeomorphic to a spheri

Definition: Positive Isotropic Curvature

Riemannian manifold $(M^n,g), n \geq 4$ is said to have posturvature (PIC) if for all orthonormal 4-frames $\{e_1,e_2,e_3,e_4,e_5\}$

$$R_{1331} + R_{1441} + R_{2332} + R_{2442} \quad 2R_{1234} >$$

We say (M^n, g) , $n \ge 3$ is PICk if $M \times \mathbb{R}^k$ has PIC.

Remark

We have the following implications:

2 positive
$$Rm \Rightarrow PIC1 \Rightarrow \begin{cases} PIC \\ Rc > 0 \end{cases}$$

Theorem (Brendle '08)

Let (M^n, g_0) , $n \ge 3$ be a closed, PIC1 Riemannian manifo solution to the normalized Ricci flow exists for all time co metric of constant positive sectional curvature.

Remark

Since Rm is 2 positive \Rightarrow PIC1, Brendle's result can be set strengthening of the theorem of Böhm and Wilking.

Theorem (Cao, Gursky, Tran '21)

Let (M^n, g) be a closed Riemannian manifold with 2-posi curvature operator. Then M^n is diffeomorphic to a spheri

Idea of the Proof

Show algebraically that 2 positive Rm implies positive PIC the convergence result of Brendle.

Definition: $k + \epsilon$) non-negative

linear operator $\in End(\mathbb{R}^n)$ is $(k+\epsilon)$ non-negative where 1 < k < n if

$$\lambda_1 + \dots + \lambda_k + \epsilon \lambda_{k+1} \ge 0$$

for any eigenvalues $\lambda_1,...,\lambda_{k+1}$ of .

Note that setting $\epsilon=0$ gives k non-negative and setting non-negative.

Theorem (Li '22)

The assumption of Cao, Gursky, and Tran can be weaken That is, if (M,g) is a closed manifold such that Rm is 3 is diffeomorphic to a spherical space form.

For n=3, the assumption can be weakened further to $3\frac{1}{3}$ For n = 4, the assumption can be weakened even further

Řm.

Conjecture (Li '22)

If (M^n, g) is a closed manifold with $(n + \frac{n-2}{n})$ positive se operator, then M^n is diffeomorphic to a spherical space for

The 2nd urvature Operator and Ricci Flow

The 2nd Curvature Operator and Ricci Flow

- The evolution of Rm under the Ricci flow has not be
 - This is natural to investigate c.f. the work of Hamilt
 - Fundamentally, positivity conditions of Rm would need by Ricci flow for this to provide anything useful.

Main Theorem: Fluck and Li '23

Let $(M^3, g(t)), t \in [0, T)$ be a 3 dimensional compact Rie g(0) has non-negative second curvature operator for so Then g(t) has non-negative second curvature operator

Theorem: Fluck and Li '23

Let (M^3, g) be a 3-dimensional Riemannian manifold. Th Rm are given by a, b, c and

$$\lambda_{\pm} = \frac{a+b+c}{3} \pm \frac{\sqrt{2}}{3} \sqrt{3(a^2+b^2+c^2)} \quad (a+b^2+c^2)$$

where $a \le b \le c$ denote the eigenvalues of Rm. Note we

$$\lambda \leq a \leq b \leq c \leq \lambda_+$$
.

Proof

Recall that the Weyl tensor vanishes in dimension 3 s

$$Rm = S \otimes g := (Rc \quad \frac{R}{4}g) \otimes g$$

and the eigenvalues of S are

$$\frac{1}{2}(a+b \quad c) \le \frac{1}{2}(a+c \quad b) \le \frac{1}{2}(b+c)$$

Thus, the problem reduces to a general algebraic one second curvature operator of \(\int \) Id, where has kn

lgebraic Lemma: Fluck and Li '23

Let V be a finite dimensional real vector space and $\in S$ eigenvalues of the algebraic second curvature operator of \wedge Id $\in S^2(\wedge^2 V)$ are given by

$$\left\{ \begin{array}{ll} \mu_i + \mu_j \text{ with multiplicity } n_i n_j \text{ where } 1 \leq i < 2 \\ 2 \\ \mu_i \text{ with multiplicity } n_i & 1 \text{ where } 1 \leq i \leq 1 \\ \text{the k-1 non-zero solutions of } \sum_{i=1}^k \frac{n_i \mu_i}{2 \\ \mu_i & 1 \end{array} \right.$$

where μ_i for $1 \le i \le k$ are the eigenvalues of with mul-

Proof

lacktriangle pply the lemma to S igwedge Id where S has eigenvalues

$$\mu_1 = \frac{1}{2}(a+b-c), \mu_2 = \frac{1}{2}(a+c-b), \mu_3 = \frac{1}{2}$$

Indeed, $\{\mu_i + \mu_j\}_{1 \le i < j \le 3} = \{a, b, c\}$ and one verifies non-zero solutions of

$$\sum_{i=1}^{k} \frac{n_i \mu_i}{2\mu_i \quad \lambda} = \frac{3}{2}$$

are

$$\lambda_{\pm} = rac{a+b+c}{3} \pm rac{\sqrt{2}}{3} \sqrt{3(a^2+b^2+c^2)}$$
 (a)

Corollary: Fluck and Li '23

Let (M^3, g) be a complete Riemannian manifold such tha non-negative for some $\delta \in [0, \frac{1}{3}]$. Then there exists $\epsilon > 0$

$$Rc \geq \epsilon R$$
.

Consequently, any such manifold is either flat or a spheric

Remarks

It is already known due to Li that

$${Rm}$$
 is $3\frac{1}{3}$ non-negative \Rightarrow Rm has non-negative F

There is already a classification of 3 manifolds with I Hamilton (compact case) and Liu (complete non-con

$$M^3 = egin{cases} \mathbb{R}^3, (\mathit{N}^2 imes \mathbb{R})/ & ext{if } \mathit{M}^3 ext{ is non-co} \ S^3/\ , (\mathit{S}^2 imes \mathbb{R})/ & ext{if } \mathit{M}^3 ext{ is compa} \end{cases}$$

This result enhances this classification.

Main Theorem: Fluck and Li '23

Let $(M^3, g(t)), t \in [0, T)$ be a 3 dimensional compact Rie g(0) has non-negative second curvature operator for so Then g(t) has non-negative second curvature operator

Proof

 \bigcirc By the lemma, the eigenvalues of $\stackrel{\circ}{Rm}$ are a, b, c and

$$\lambda_{\pm} = rac{a+b+c}{3} \pm rac{\sqrt{2}}{3} \sqrt{3(a^2+b^2+c^2)}$$
 (2)

where $a \leq b \leq c$ are the eigenvalues of Rm.

☑ By Hamilton's ODE→PDE maximum principle, it suf non-negativity is preserved by the system of ODE's

$$\begin{cases} \frac{da}{dt} & = a^2 + bc \\ \frac{db}{dt} & = b^2 + ac \\ \frac{dc}{dt} & = c^2 + ab \end{cases}$$

coming from $\frac{dS}{dt} = S^2 + S$ in dimension 3.

Proof

Define

$$f(\) = \begin{cases} \lambda + (\ 1)a, & \text{i} \\ \lambda + (3\)a + (\ 2)(a+b), & \text{i} \\ \lambda + \frac{R}{2} + (\ 4)c, & \text{i} \\ \frac{R}{2} + \frac{R}{3}(\ 4) + (5\)\lambda_{+} & \text{i} \end{cases}$$

so that

$$f(\)\geq 0\iff \mathring{Rm}$$
 is non-negative

Proof

Under the ODE we have

$$\frac{dR}{dt} = |Ric|^2 \ge 0,$$

and so w.l.o.g we may assume that R(t) > 0.

- 2 It thus suffices to show f()/R is non-decreasing un
- Direct calculation shows that each component is non

$$\frac{d}{dt}(\frac{a}{R}) = \frac{2}{S^2}(b^2(c \quad a) + c^2(b \quad a))$$

Open Problems

Conjecture: Preserving Positivity in rbitrary Dime

Let $(M^n, g(t)), t \in [0, T)$ be a compact Ricci flow. If g(t) non-negative second curvature operator for some $t \in [0, T]$ and $t \in [0, T]$ has non-negative second curvature operator for all

Open Problems

Space Form Conjecture (Li)

Let (M,g) be a closed Riemannian manifold with $(n+\frac{n}{2})$ second curvature operator. Then M is diffeomorphic to a form. Moreover, this positivity condition is sharp all dime

Remarks

- Cases of dimension 3 and 4 have been resolved due t Sharpness of dimension 3 is due to Fluck and Li.
- 2 It is unknown whether $(n + \frac{n-2}{n})$ positive implies PIC non-Ricci flow approaches may not work.