CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Complexity Classes

- Nondeterministic Time Complexity Classes
- Class NP


```
TIME(f(n)) = { \pi | \exists algorithm A: A solves \pi in O(f(n)) time}
```

Define

```
NTIME(f(n)) = \{ \pi \mid \exists \text{ non-deterministic algorithm A: A solves } \pi \text{ in O(f(n)) time} \}
```

Alternatively,

```
NTIME(f(n)) = \{ \pi \mid \exists \text{ algorithm A: A verifies a certificate for } \pi \text{ in O(f(n)) time} \}
```

- o Given $\pi \in NTIME(f(n))$,
 - What can you infer about a certificate for π ?

4/22/2016

COMPLEXITY CLASSES - NP

- Recall $P = \{ \pi \mid \pi \text{ is a decision problem that can be solved by a polynomial time algorithm } \}$
 - i.e. $\mathbb{P} = U_{k \in \mathbb{N}}$ TIME(n^k)
- Define $\mathbb{NP} = \{\pi \mid \pi \text{ is a decision problem that can be solved by a non-deterministic polynomial time algorithm }$
 - i.e. $\mathbb{NP} = \{\pi \mid \pi \text{ is a decision problem for which a certificate can be verified by a polynomial time algorithm}$
 - i.e. $\mathbb{NP} = U_{k \in \mathbb{N}} \ \mathsf{NTIME}(\mathsf{n}^k)$

COMPLEXITY CLASSES — NP — EXAMPLE PROBLEMS

- \circ Argue that the following problem is in NP.
 - i.e.
 - odiscover / define a certificate and calculate its length,
 - opropose an algorithm for verifying the certificate, and
 - o argue that the algorithm executes in worst case polynomial time.

COMPOSITES:

ols a given positive integer composite (i.e. not prime)?

Complexity Classes – \mathbb{NP} – Example Problems

- Argue that the following problems are in NP.
 - Graph Isomorphism (ISO):
 - oGiven graphs G1=(V1,E1) and G2=(V2,E2), is there a 1-1 onto function f from V1 to V2 such that there is an edge (u11, u12) in E1 if and only if there is an edge (f(u1),f(u2)) in E2.
 - Traveling Sales Person (TSP):
 - oGiven a set of cities and distances of roads connecting each other, is there a tour starting and ending in the same city but visiting all other cities exactly once such that the total distance covered is <= K?
 - 0,1 Knapsack