- **4.17** 1) Puisque la base canonique de \mathbb{R}^n définie à l'exercice 4.12 comporte n éléments, on en tire que $\dim(\mathbb{R}^n) = n$.
 - 2) Vu que la base canonique de $\mathbb{R}_n[x]$ définie à l'exercice 4.13 comprend n+1 éléments, on en déduit que $\dim(\mathbb{R}_n[x])=n+1$.
 - 3) Pour tous $1 \leq i \leq m$ et $1 \leq j \leq n$ on définit la matrice E_{ij} comme étant la matrice dont tous les termes sont nuls, sauf celui de la *i*-ième ligne et j-ième colonne qui vaut 1.

Alors $M_{m,n}(\mathbb{R})$ a pour base canonique $(E_{ij}: 1 \leq i \leq m \text{ et } 1 \leq j \leq n)$. Il en résulte que $\dim(M_{m,n}(\mathbb{R})) = m n$.