Фонин Максим Алексеевич, ИУ5-25М

Рубежный контроль №1: "Методы обработки данных"

Номер варианта: 8

Номер задачи №1: 8

Номер задачи №2: 28

Задача №8. Для набора данных проведите устранение пропусков для одного (произвольного) числового признака с использованием метода заполнения модой.

Задача №28. Для набора данных для одного (произвольного) числового признака проведите обнаружение и замену (найденными верхними и нижними границами) выбросов на основе межквартильного размаха.

Дополнительные требования по группам:

Для студентов группы **ИУ5-25М**, ИУ5И-25М, ИУ5-25МВ - для произвольной колонки данных построить парные диаграммы (pairplot).

Описание набора данных cleaned_nutrition_dataset https://www.kaggle.com/datasets/tharunmss/nutritional-breakdown-of-foods/data

Этот набор данных содержит полную разбивку по питательной ценности более 3500 продуктов питания, включая подробную информацию о макроэлементах, микроэлементах и калорийности. Он идеально подходит для использования в науке о данных, аналитике здоровья, планировании питания и проектах машинного обучения, ориентированных на еду, питание и благополучие.

Содержит следующую основную информацию:

- Vitamin C количество витамина C (аскорбиновой кислоты), присутствующего в продукте питания.
- Vitamin B11 количество витамина B11 (фолиевой кислоты) в продукте питания.
- Sodium содержание натрия, как правило, влияет на уровень соли.
- Calcium количество кальция, необходимого для костей и зубов.
- Carbohydrates общее количество углеводов, включая крахмалы и сахара.
- food первоначальное название продукта питания, как оно было записано.
- Iron содержание железа важно для транспорта крови и кислорода.
- Caloric Value общая энергия, содержащаяся в продукте питания (в килокалориях).
- Sugars простые сахара включены в общее количество углеводов.
- Dietary Fiber неперевариваемые углеводы, способствующие пищеварению.

Задача №8.

```
In [44]: import pandas as pd
         import seaborn as sns
         import numpy as np
         import scipy.stats as stats
         import matplotlib.pyplot as plt
         from sklearn.impute import SimpleImputer
         from sklearn.impute import MissingIndicator
In [45]: # Install dependencies as needed:
         # pip install kagglehub[pandas-datasets]
         import kagglehub
         from kagglehub import KaggleDatasetAdapter
         # Set the path to the file you'd like to load
         file path = "cleaned nutrition dataset.csv"
         # Load the latest version
         df = kagglehub.load dataset(
           KaggleDatasetAdapter.PANDAS,
           "tharunmss/nutritional-breakdown-of-foods",
           file path,
           # Provide any additional arguments like
           # sql_query or pandas_kwargs. See the
           # documenation for more information:
           # https://github.com/Kaggle/kagglehub/blob/main/README.md#kaggledatasetadapter
```

) df.shape

<ipython-input-45-e0d2a6dc8e91>:10: DeprecationWarning: load_dataset is deprecate
d and will be removed in future version.

df = kagglehub.load_dataset(

Out[45]: (3454, 13)

In [46]: df.head()

Out[46]:		Vitamin C	Vitamin B11	Sodium	Calcium	Carbohydrates	food	Iron	Caloric Value	Suga
	0	0.082	0.086	0.018	2.8	0.073	margarine with yoghurt	0.027	88.0	0
	1	0.400	0.005	0.065	10.2	3.700	sunflower seed butter	0.700	99.0	1
	2	0.000	0.000	0.000	0.0	0.000	hazelnut oil	0.000	120.0	0
	3	0.000	0.000	0.000	0.0	0.000	menhaden fish oil	0.000	1966.0	0
	4	0.000	0.000	0.000	0.0	0.000	cod liver fish oil	0.000	123.0	0
	4									•

In [47]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3454 entries, 0 to 3453
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype			
0	Vitamin C	3454 non-null	float64			
1	Vitamin B11	3454 non-null	float64			
2	Sodium	3454 non-null	float64			
3	Calcium	3454 non-null	float64			
4	Carbohydrates	3454 non-null	float64			
5	food	3454 non-null	object			
6	Iron	3454 non-null	float64			
7	Caloric Value	3454 non-null	float64			
8	Sugars	3454 non-null	float64			
9	Dietary Fiber	3454 non-null	float64			
10	Fat	3454 non-null	float64			
11	Protein	3454 non-null	float64			
12	food_normalized	3454 non-null	object			
da.	C1+C4/44\	L-1				

dtypes: float64(11), object(2)

memory usage: 350.9+ KB

In [48]: df.describe()

Out[48]:		Vitamin	C	Vitamin B11	Sodium	Calcium	Carbohydrates	Iror
	count	3454.00000	00	3454.000000	3454.000000	3454.000000	3454.000000	3454.000000
	mean	9.50102	21	11.447140	141.437806	53.953960	18.724570	1.627954
	std	70.38754	12	33.849817	973.168394	103.339195	26.232674	4.384574
	min	0.00000	00	0.000000	0.000000	0.000000	0.000000	0.000000
	25%	0.00000	00	0.029000	0.057000	4.647500	1.700000	0.200000
	50%	0.30000	00	0.075000	0.200000	21.940000	9.110000	0.700000
	75 %	5.38250	00	4.327500	21.372500	60.600000	26.400000	1.600000
	max	3872.00000	00	550.520000	14174.590000	1283.500000	390.200000	121.200000
	1	_		_				•
In [49]:	# Проверка на пропуски df.isnull().sum()							
Out[49]:			0					
		Vitamin C	0					
	Vi	tamin B11	0					
		Sodium	0					
		Calcium	0					
	Carb	ohydrates	0					
		food	0					
		Iron	0					
	Cal	loric Value	0					
		Sugars	0					
	Die	etary Fiber	0					
		Fat	0					
		Protein	0					
	food_n	ormalized	0					
	dtype: i	int64						
In [50]:	# Проп np.ran subset missin	уски в 'Ca dom.seed(4 = df[(df[g_indices	iloi 2) 'Si =	ric Value' m ugars'] < 2) np.random.ch	& (df['Dieta	rs' u 'Dieta ry Fiber'] < .ndex, min(20	ry Fiber' низки 1)] , len(subset))	

df['Caloric Value'].isnull().sum()

```
Out[50]: np.int64(20)
In [51]: mode_calories = df['Caloric Value'].mode()[0]
         mode calories
         # df['Caloric Value'].fillna(mode_calories, inplace=True)
Out[51]: np.float64(2.0)
In [52]: | def impute_column(dataset, column, strategy_param, fill_value_param=None):
             Заполнение пропусков в одном признаке
             temp_data = dataset[[column]].values
             size = temp_data.shape[0]
             indicator = MissingIndicator()
             mask_missing_values_only = indicator.fit_transform(temp_data)
             imputer = SimpleImputer(strategy_strategy_param,
                                      fill_value=fill_value_param)
             all_data = imputer.fit_transform(temp_data)
             missed_data = temp_data[mask_missing_values_only]
             filled_data = all_data[mask_missing_values_only]
             return all_data.reshape((size,)), filled_data, missed_data
         all_data, filled_data, missed_data = impute_column(df, 'Caloric Value', 'most_fr
In [53]:
         all data
Out[53]: array([ 88., 99., 120., ..., 300., 320., 350.])
In [54]: df['Caloric Value'].mode()
Out[54]:
            Caloric Value
         0
                     2.0
```

dtype: float64

Задача №28.

Обработаем выбросы в 'Sodium'

```
In [55]:
    def diagnostic_plots(df, variable, title):
        fig, ax = plt.subplots(figsize=(10,7))
        # zucmozpamma
        plt.subplot(2, 2, 1)
        df[variable].hist(bins=50)
        ## Q-Q plot
        plt.subplot(2, 2, 2)
        stats.probplot(df[variable], dist="norm", plot=plt)
        # ящик с усами
        plt.subplot(2, 2, 3)
        sns.violinplot(x=df[variable])
        # ящик с усами
```

```
plt.subplot(2, 2, 4)
sns.boxplot(x=df[variable])
fig.suptitle(title)
plt.show()
```

```
In [56]: diagnostic_plots(df, 'Sodium', title="Sodium - original")
```

Sodium - original


```
In [41]: sodium = df['Sodium']

# Вычислим границы IQR
Q1 = sodium.quantile(0.25)
Q3 = sodium.quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5*IQR
upper_bound = Q3 + 1.5*IQR
lower_bound, upper_bound
```

Out[41]: (np.float64(-31.91625), np.float64(53.34574999999995))

```
In [60]: diagnostic_plots(df, 'Sodium', title)
```

Поле-Sodium, метод-IRQ

Дополнительные требования по группам:

Для столбца 'Sodium' построим парные диаграммы с другими численными столбцами

```
In [61]:
         numerical_cols = [
              c for c in df.columns
              if df[c].dtype in ['float64', 'int64']
         numerical_cols
Out[61]: ['Vitamin C',
           'Vitamin B11',
           'Sodium',
           'Calcium',
           'Carbohydrates',
           'Iron',
           'Caloric Value',
           'Sugars',
           'Dietary Fiber',
           'Fat',
           'Protein']
In [62]:
         sns.pairplot(
              data=df,
              x_vars=numerical_cols,
              y_vars=['Sodium'],
              plot_kws={'alpha': 0.4, 's': 20},
              height=4,
              aspect=1.2
```

