- 8.13 1) La matrice λ A s'obtient en multipliant chacune des n colonnes de A par λ . Chaque fois que l'on multiplie une colonne par λ , on multiplie aussi le déterminant par λ . Donc $\det(\lambda A)$ multiplie n fois $\det(A)$ par λ : $\det(\lambda A) = \lambda^n \det(A)$.
 - 2) Montrons par récurrence que $\det(A^k) = (\det(A))^k$.

Initialisation

Si
$$k = 2$$
, alors $\det(A^2) = \det(A \cdot A) = \det(A) \cdot \det(A) = (\det(A))^2$.

Hérédité

Supposons
$$k \ge 2$$
 et la formule $\det(A^k) = (\det(A))^k$ vraie pour k . $\det(A^{k+1}) = \det(A^k \cdot A) = \det(A^k) \cdot \det(A) = (\det(A))^k \cdot \det(A) = (\det(A))^{k+1}$