Álgebra Linear I - Lista 7

Combinação e independência linear. Bases

1) Determine a para que o vetor v=(1,a,-a) seja combinação linear dos vetores $u_1=(2,1,1)$ e $u_2=(0,1,1)$.

2)

- 1. Considere vetores v e u linearmente independentes. Estude se os vetores v+u e v-u são linearmente independentes.
- 2. Faça o mesmo com os vetores $v + \sigma u$ e $v \lambda u$ onde λ e σ são números reais não nulos.
- 3. Considere agora três vetores linearmente independentes v_1 , v_2 e v_3 . Estude se os vetores

$$w_1 = v_1 + v_2 + v_3$$
, $w_2 = v_1 + v_3$, e $w_3 = v_2 + v_3$

são linearmente independentes.

4. Faça o mesmo com os vetores

$$u_1 = v_1 + v_2 + v_3$$
, $u_2 = v_1 + v_2$, e $u_3 = v_1$.

5. Suponha, finalmente, que

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix} \neq 0.$$

Estude se os vetores

$$w_1 = a_1v_1 + a_2v_2 + a_3v_3$$
, $w_2 = a_4v_1 + a_5v_2 + a_6v_3$, $w_3 = a_7v_1 + a_8v_2 + a_9v_3$ são linearmente independentes.

3) Sejam v e u vetores linearmente independentes de \mathbb{R}^3 . Estude se u, v e $u \times v$ são linearmente independentes.

Faça o mesmo com os vetores v e u e $(u \times v) + u$.

4) Considere os vetores

$$u_1 = (1, 1, 1), \quad u_2 = (1, 1, 0), \quad u_3 = (3, 3, 2), \quad u_4 = (2, 2, 2)$$

e o subespaço vetorial V gerado por u_1, u_2, u_3 e u_4 .

- a) Determine uma base β de V.
- b) Determine uma base ortogonal β' de V (isto é, uma base formada por vetores mutuamente ortogonais).
- c) Determine uma base ortogonal β'' de \mathbb{R}^3 que contenha a base β' .
- d) Veja se (2,2,4) pertence a V.
- e) Escreva o vetor (5,5,3) como combinação linear dos vetores da base β .
 - 5) Considere os vetores

$$v_1 = (1, 1, 0),$$
 $v_2 = (2, 0, 1),$ $v_3 = (1, -3, 2),$ $v_4 = (2, 2, 0),$ $v_5 = (3, 1, 1),$ $v_6 = (2, 3, \mathbf{a}).$

- a) Determine o valor de a no vetor v_6 para que os vetores v_1, v_2, v_3, v_4, v_5 e v_6 gerem um plano π .
- b) Usando os vetores do item anterior, determine uma base β do plano π (ou seja os vetores da base são escolhidos entre os vetores v_1, \ldots, v_6) e determine as coordenadas do vetor (5, 1, 2) na base β .
- c) Encontre uma base $\alpha = \{u_1, u_2, u_3\}$ de \mathbb{R}^3 tal que o vetor v = (1, 2, 3) tenha coordenadas (1, 2, 0) na base α .

6)

(a) Considere a base β de \mathbb{R}^3

$$\beta = \{(1, 1, 0); (1, 0, 1); (0, 1, 1)\}$$

Determine as coordenadas $(v)_{\beta}$ do vetor v = (4, 2, 0) na base β .

(b) Seja $\alpha = \{u_1, u_2, u_3\}$ uma base de \mathbb{R}^3 . Considere a nova base de \mathbb{R}^3

$$\delta = \{u_1 + u_2, u_2 + u_3, u_3 + u_1\}.$$

Sabendo que as coordenadas do vetor w na base α são

$$(w)_{\alpha} = (3, 3, 4),$$

determine as coordenadas $(w)_{\delta}$ de w na base δ .

(c) Determine k para que os vetores

$$\{(1,2,1);(2,k,1);(k,3,k)\}$$

não formem uma base de \mathbb{R}^3 .

7) Considere a família de vetores de \mathbb{R}^3

$$\mathcal{E} = \{(1,2,3), (1,1,2), (2,2,4), (1,1,1), (2,2,2)\}.$$

- a) Estude se os vetores da família $\mathcal E$ são linearmente independentes.
- b) Determine todas as bases de \mathbb{R}^3 formadas por vetores diferentes que podem ser obtidas usando os vetores de \mathcal{E} (isto é, bases formadas pelos mesmos vetores em ordem diferente contam como a mesma, ou seja, as bases $\{u, v, w\}$ e $\{v, w, u\}$ contam uma única vez).

Considere agora a família de vetores de \mathbb{R}^3

$$\beta = \{u_1 = (1, 1, 1), u_2 = (1, 2, 1), u_3 = (0, 1, 1)\}.$$

- c) Veja que β é uma base de \mathbb{R}^3 .
- d) Determine as coordenadas do vetor (3,6,5) na base β .

- e) Considere agora o vetor w que na base β tem coordenadas $(1,1,1)_{\beta}$ (isto é, $w = 1u_1 + 1u_2 + 1u_3$). Determine as coordenadas de w na base canônica.
- f) Considere agora os vetores w_1 , w_2 e w_3 que na base β têm coordenadas

$$w_1 = (1, 1, 0)_{\beta}, \quad w_2 = (1, 2, 2)_{\beta}, \quad w_3 = (0, -2, -1)_{\beta}.$$

Estude se os vetores w_1 , w_2 e w_3 formam uma base de \mathbb{R}^3 .

8) Considere os vetores de \mathbb{R}^3

$$v_1 = (1, 2, 1), \quad v_2 = (1, -1, 2), \quad v_3 = (0, 3, -1).$$

- (a) Determine a equação cartesiana do subespaço \mathbb{W} de \mathbb{R}^3 gerado pelos vetores v_1, v_2 e v_3 .
- (b) Determine uma base γ do subespaço \mathbb{W} e as coordenadas do vetor (2,1,3) nessa base γ .
- (c) Determine uma base ortonormal $\beta = \{w_1, w_2, w_3\}$ de \mathbb{R}^3 de forma que w_1 seja paralelo a v_1 e w_2 esteja no plano gerado por v_1 e v_2 .
- (d) Considere o vetor $v_4 = (a, b, c)$. Determine $a, b \in c$ para que

$$\alpha = \{v_1, v_2, v_4\}$$

seja uma base de \mathbb{R}^3 tal que as coordenadas do vetor u=(4,3,1) na base α sejam $(u)_{\alpha}=(2,1,1)$.