Задачи 5 класса

Задача 1.

А. Вовочка согнул из куска проволоки квадрат со стороной 9 сантиметров. Затем он разогнул проволоку и согнул из неё равносторонний треугольник. Какова длина стороны этого тhtугольника?

Решение: $9 \times 4 \div 3 = 12 \, \text{см}$.

В. Мальчик Дима в течение 2 часов надувает шары. Каждые три минуты он надувает 8 шаров, а каждый десятый шар у него лопается. Сколько шаров будет у Димы?

Решение: В двух часах 120 минут, отсюда Дима надует $\frac{120}{3} \cdot 8 = 320$ шариков. В результате того, что некоторые шарики лопаются, останется $320 - 320 \div 10 = 320 - 32 = 288$ шариков.

С. Мальчики Миша, Никита и Олег делят конфеты. Сначала Миша взял себе 20% всех конфет и ещё 12 конфет. Затем Никита взял 25% оставшихся конфет и ещё 15 конфет. Наконец, Олег взял 30% оставшихся конфет и ещё 21 конфету. И конфеты закончились. Кто из мальчиков взял больше конфет?

Решение: То, сколько конфет взял каждый из млальчиков, легко установить «обратным ходом».

После первой части хода Олега оставалась 21 конфета, и это составляло 70% от количества конфет, которое было до хода Олега. Значит, до хода Олега на столе лежало $\frac{21}{0.7}=30$ конфет — и все их взял Олег.

После первой части хода Никиты оставалось 30+15=45 конфет, которые составляли 75% от всех имеющихся конфет. Таким образом, перед ходом Никиты на столе было $\frac{45}{0.75}=60$ конфет, 30 из которых взял Олег, а, соответственно, 30- Никита.

Наконец, после первой части хода Миши на столе оставалось 72 конфеты, которые составляли 80% от конфет, имевшихся в наличии до начала дележа. Значит, в начале было $\frac{72}{0.8}=90$ конфет, по 30 из которых взяли Олег и Никита — соответственно, Мише также досталось 30 конфет.

Таким образом, мальчики взяли поровну конфет.

Задача 2.

В. Три числа *A*, *B* и *C* связаны соотношениями:

$$A + B = 12.3$$
; $B + C = 18.9$; $A + C = 6.1$.

Не находя эти числа, укажите самое большое среди них. Результат обоснуйте.

Решение: B>C, так как A+B больше, чем A+C. Также B>A, так как B+C>A+C. Отсюда B- самое большое из чисел.

С. Тренер расставил спортсменов на прямой дорожке. По сигналу тренера спортсмены бегут к одному из них, на которого указывает тренер, а затем возвращаются на свои места. Какой из спортсменов пробежит наибольшее расстояние после нескольких таких стартов?

Решение: Отметим на прямой спортсмена, на которого в какой-то момент указал тренер, и изобразим зависимость расстояния, которое должны пробежать другие спортсмены, от их положения на прямой.

Например, после выбора тренером трёх спортсменов зависимость расстояния, которое пробегут другие спортсмены за три старта, от их положения на прямой, будет выглядеть так:

В любом случае, после нескольких стартов зависимость преодолённого расстояния от положения на дорожке будет выглядеть как сумма нескольких функций, изображённых на первом рисунке в этом пункте. Всякая такая функция имеет два локальных максимума на краях дорожки — то есть достаточно близко к каждому из краёв дорожки все функции, появляющиеся в процессе стартов, будут возрастать при движении к этому краю.

Поэтому наибольшее расстояние будет пройдено одним из крайних спортсменов — чтобы понять, каким именно, в каждом случае нужно смотреть на них индивидуально.

Задача 4.

А. На ёлке 2015 шаров. На один синий шар приходится 4 красных. На сколько процентов синих шаров на ёлке меньше, чем красных?

Решение: Красных шаров на ёлке в 4 раза больше, чем синих — иными словами, синих шаров в 4 раза или на 75% меньше, чем красных.

В. Добрыня Никитич раз мечом направо махнёт — 3 врага упадёт, раз мечом налево махнёт — 2 врага упадёт. Рыбится богатырь — раз налево, два раза направо. За сколько взмахов богатырь разобьёт вражье войско, состоящее из 564 человек? А если рубится богатырь — раз направо, два раза налево?

Решение: За один «период» при первом способе борьбы Добрыня убивает 8 врагов, а при втором способе — 7.

564:8=70~(остаток~4). В таком случае Добрыне понадобится $70\cdot 3+2~\text{взмаха}:$ после 70~«периодов» останутся 4~врага, которых можно будет убить за два дополнительных взмаха.

564:7=80 (остаток 4). Добрыне понадобится $80\cdot 3+2$ взмаха — после 80 «периодов», опять же, останется 4 врага, которых можно убить за два взмаха.

С. Вовочке на дом задали разделить некоторое число на 2, 3 и 6. Папа, проверяя домашнее задание, услышал от Вовочки следующее: «Я забыл, какое число задали, поэтому делил другое число, которое сам придумал, — и два раза разделилось без остатка, а один раз получился остаток». Папа уверен, что Вовочка допустил ошибку. Как он об этом догадался?

Решение: Если у Вовочки получилось разделить придуманное им число нацело на 6, то он точно неправ: если число нацело делится на 6, то оно делится на 2 и на 3, и остатка получиться не могло.

Если же Вовочке удались деления на 2 и на 3, то придуманное им число автоматически делится на 6. То есть, если у Вовочки получились два деления, то и третье тоже должно было получиться.

Задача 5.

А. Боря утверждает, что он может нарисовать 6 точек на двух прямых, три на одной и 4 на другой. Может ли такое быть?

Решение: Да, конечно может:

В. Сколькими способами можно разрезать шнурок от ботинка длиной 36 см на кусочки длиной 3 см и 5 см?

Решение: Выпишем сначала все способы представить *число* 36 в виде суммы нескольких чисел 3 и 5. Их не так много:

$$36 = 3 \cdot 12$$

$$36 = 3 \cdot 7 + 5 \cdot 3$$

$$36 = 3 \cdot 2 + 5 \cdot 6$$

Способ разрезать шнурок на 12 одинаковых кусков ровно один. Теперь рассмотрим второе представление: нам предстоит разрезать шнурок на 10 кусков, 3 из которых имеют длину 5. В каждом разрезании куски упорядочены от левого конца шнурка к правому, поэтому каждое разрезание определяется тем, под какими номерами из имеющихся десяти идут куски длины 5.

Выбрать три номера из десяти можно C^3_{10} способами — таково определение биномиального коэффициента. Заметим только, что симметричные способы разрезать шнурок посчитаны нами независимо, хотя отличаются поворотом шнурка. Поэтому биномиальный коэффициент нужно разделить пополам.

Со случаем, когда 6 кусков имеют длину 5, поступим аналогично. Получаем ответ:

$$1 + \frac{1}{2} \cdot C_{10}^3 + \frac{1}{2} \cdot C_{10}^6.$$

С. У мальчика Лёвы есть волшебная линейка длиной 9 сантиметров. Может ли он нанести на эту линейку три промежуточных деления так, чтобы любой отрезок длиной от 1 до 9 сантиметров можно было измерить с точностью до сантиметра?

Решение: Предъявим расстановку делений:

Сборник задач олимпиады «Математика НОН-СТОП»

Задача 6.

А. Пять хамелеонов съедают всех мух с пяти кустов за пять минут. На сколько надо увеличить число хамелеонов, чтобы они съели всех мух с 50 кустов за 50 минут?

Решение: Количество хамелеонов не нужно увеличивать, потому что в их изначальном составе за 10 «подходов» по 5 минут хамелеоны объедят все 50 кустов.

В. В школе 350 учеников и 175 парт. Ровно половина девочек сидит за одной партой с мальчиками. Можно ли пересадить учеников так, чтобы ровно половина мальчиков сидела за одной партой с девочками?

Решение: Если ровно половина девочек сидит с мальчиками, то другая половина девочек занимает некоторое количество парт полностью. То есть, половина всех девочек — это чётное число, а отсюда количество девочек делится на 4.

Если бы мы хотели, чтобы ровно половина мальчиков сидела за партой с девочками, то по аналогичным причинам количество мальчиков должно было бы делиться на 4. Однако одновременно делиться на 4 количества девочек и мальчиков не могут, так как тогда оказалось бы, что 350 делится на 4, а это неверно.

С. В классе учится не менее 12 девочек и не более 16 мальчиков. У каждого из них в классе одинаковое число друзей, среди которых обязательно есть девочка и мальчик. Известно также, что у каждой девочки друзей среди мальчиков больше, чем среди девочек, а у каждого мальчика друзей среди девочек не больше, чем среди мальчиков. Какое наименьшее число друзей может быть у школьников в этом классе?

Обозначим наименьшее число друзей у школьников через D и докажем, что D=6. Мы знаем, что в классе Д девочек и М мальчиков, при этом

$$12 < Д$$
; $M < 16$.

- 1) D>2. Действительно, если бы у школьников было по 2 друга, то девочки не могли бы иметь друзей-девочек, что противоречит условию.
- 2) D>3. Если у каждого школьника было бы по 3 друга, то каждая девочка могла бы иметь не менее двух друзей-мальчиков, а каждый мальчик не более одной подруги-девочки. Обозначив за ${\mathcal F}$ количество дружеских связей «мальчик-девочка», получим

$$2 \cdot 12 < 2 \cdot \mathbf{\Pi} < \mathcal{F} < \mathbf{M} < 16$$
 — противоречие.

3) D>4. Если у каждого школьника по 4 друга, то каждая девочка имеет не менее трёх друзей-мальчиков, а каждый мальчик — не более двух друзей-девочек. Получаем, что

$$3 \cdot 12 \leq 3 \cdot \mathbf{Д} \leq \mathcal{F} \leq 2 \cdot \mathbf{M} \leq 2 \cdot 16$$
 — противоречие.

- 4) D > 5 аналогично предыдущему пункту.
- 5) D = 6. Приведём пример дружеских связей между 16 мальчиками и 12 девочками, удовлетворяющих условию. Разделим мальчиков на 4 группы по 4 человека, а девочек на 4 группы по 3 человека; разобьём эти группы на пары. Пусть в каждой группе все девочки знакомы друг с другом, все мальчики знакомы друг с другом, а также каждая девочка знает всех мальчиков из группы, парной её группе.

Тогда каждый мальчик знаком с 3 девочками и 3 мальчиками, а каждая девочка — с 2 девочками и 4 мальчиками. Эта ситуация подходит под условие задачи.