Mathematics for Data Science — Lesson 6 Operator and Spectral Norm Exercises

Exercise 1: (Sequences — pedagogical) Work with $(x_n) \subset \mathbb{R}^d$ under any norm $\|\cdot\|$.

- a) Show directly from the ε -N definition that $a_n = \frac{(-1)^n}{n} \to 0$.
- b) Let $v_n = \left(\frac{1}{n}, \frac{(-1)^n}{n}, 1 \frac{1}{n}\right) \in \mathbb{R}^3$. Prove $v_n \to (0, 0, 1)$ by checking coordinatewise limits.

Exercise 2: (Asymptotics and rates) Analyse the following growth comparisons.

- a) Show that the harmonic series partial sums $H_n = \sum_{k=1}^n \frac{1}{k}$ satisfy $H_n = \Theta(\log n)$.
- b) Prove $n^{\alpha} = o(\beta^n)$ for every $\alpha > 0$ and $\beta > 1$.
- c) Consider the recursion $x_{k+1} = \rho x_k + \frac{c}{k+1}$ with $x_0 \in \mathbb{R}, \ 0 < \rho < 1, \ c > 0$. Find the asymptotic rate at which x_k tends to 0.

Exercise 3: (Pedagogical) Consider $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ acting on $(\mathbb{R}^2, \|\cdot\|)$.

- a) Compute $\|A\|_1$ and $\|A\|_{\infty}$ by hand.
- b) Compute $A^{\top}A$ and deduce $||A||_2$ from its eigenvalues.
- c) Identify a unit vector v such that $||Av||_2 = ||A||_2$ and describe Av.

Exercise 4: (Pedagogical) Let A be linear on $(\mathbb{R}^n, \|\cdot\|)$ and define $\|A\|_{\text{op}} = \sup_{\|x\|=1} \|Ax\|$.

- a) Prove $\sup_{\|x\|=1} \|Ax\| = \sup_{\|x\| \le 1} \|Ax\|$.
- b) Conclude that $\|A\|_{\text{op}}$ equals the largest radius of $A(\mathbb{S}^{n-1})$ (image of the unit sphere).

Exercise 5: (Intermediate) For a normal matrix A (i.e., $AA^{\top} = A^{\top}A$), show that $||A||_2 = \max_i |\lambda_i(A)|$.

Exercise 6: (Intermediate) Let $A = U\Sigma V^{\top}$ be the SVD with $\sigma_1 \geq \cdots \geq \sigma_r > 0$.

- a) Show that the best rank-k approximation in spectral norm is $A_k = \sum_{i=1}^k \sigma_i u_i v_i^{\top}$ and that $||A A_k||_2 = \sigma_{k+1}$.
- b) Show that A_k is also optimal for the Frobenius norm and that $||A A_k||_F^2 = \sum_{i>k} \sigma_i^2$.

Exercise 7: (Low-rank linear regression) Let $X \in \mathbb{R}^{n \times d}$, $Y \in \mathbb{R}^{n \times m}$, and fix $k \leq \min(d, m)$. Consider

$$\min_{\operatorname{rank}(W) < k} \|XW - Y\|_F. \tag{*}$$

Assume X has full column rank (if not, replace inverses by pseudoinverses below).

- a) Given the SVD $X = P\Sigma Q^{\top}$ with $\Sigma \in \mathbb{R}^{d\times d}$ invertible, set $Z = Q^{\top}W$. Show that (\star) is equivalent to $\min_{\mathrm{rank}(Z)\leq k} \|\Sigma Z P^{\top}Y\|_F$.
- b) Prove that an optimal solution is $Z^* = \Sigma^{-1} [P^\top Y]_k$, where $[\cdot]_k$ denotes the best rank-k approximation (by SVD truncation).
- c) Conclude that $W^* = QZ^*$ solves (\star) . Comment on how the singular values of $P^{\top}Y$ influence the error.
- Exercise 8: (Pedagogical) Determine convergence and find limits (when they exist) for the following sequences.

a)
$$a_n = \frac{3n^2 + 5n}{2n^2 - 1}$$

b)
$$b_n = \frac{2^n + n^{10}}{3 \cdot 2^n - 5}$$

c)
$$c_n = \sin(n\pi) + \frac{1}{n}$$

d) $d_n = (-0.9)^n$

Exercise 9: (Intermediate) Work with sequences in \mathbb{R} and \mathbb{R}^d .

- a) Prove that every bounded monotone increasing sequence (a_n) in \mathbb{R} converges.
- b) Show that in finite-dimensional \mathbb{R}^d , a sequence is Cauchy if and only if it converges.
- c) Given two norms $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ on \mathbb{R}^d , prove that if $(x_n) \to x$ coordinate-wise, then $(x_n) \to x$ in both norms.

Exercise 10: (Advanced) Explore deeper results about sequences and series.

- a) State and prove the Monotone Convergence Theorem: every bounded monotone sequence in \mathbb{R} converges. Explain how this extends to functions.
- b) Use the integral test to show that $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges if and only if p > 1.
- c) Prove the Bolzano–Weierstrass theorem: every bounded sequence in $\mathbb R$ has a convergent subsequence.

Exercise 11: (Limits and Continuity — Pedagogical) Work with limits and continuity in \mathbb{R} .

2

- a) Prove using the ε - η definition that $\lim_{x\to 2} (3x+1) = 7$.
- b) Use the squeeze theorem to show $\lim_{x\to 0} \frac{\sin x}{x} = 1$.
- c) Compute the one-sided limits $\lim_{x\to 1^-} h(x)$ and $\lim_{x\to 1^+} h(x)$ for the piecewise function

$$h(x) = \begin{cases} x^2, & x < 1\\ 2x, & x \ge 1. \end{cases}$$

Does $\lim_{x\to 1} h(x)$ exist? Is h continuous at x=1?

d) Classify the discontinuity at x = 1 for $g(x) = \frac{x^2 - 1}{x - 1}$ (removable) and at x = 0for the step function $s(x) = \begin{cases} -1, & x < 0 \\ 1, & x \ge 0 \end{cases}$ (jump).

Exercise 12: (Continuity Concepts — Pedagogical) Explore deeper continuity properties.

a) Determine whether each expression represents an indeterminate form or a definite answer:

(i)
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$

(ii)
$$\lim_{x \to 0} \frac{\sin x}{x^2}$$

(ii)
$$\lim_{x \to 0} \frac{\sin x}{x^2}$$
(iii)
$$\lim_{x \to 1} \frac{2}{x - 1}$$

- b) Prove that if (x_n) is a sequence with $x_n \to a$ and f is continuous at a, then $f(x_n) \to f(a)$ (sequential characterization of continuity).
- c) Show by example that if $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$ does not guarantee f is continuous at a unless this common value also equals f(a).

Exercise 13: (Derivatives and Linearization — Intermediate) Analyze derivatives and firstorder approximations.

- a) Compute f'(x) for $f(x) = e^{-0.2x^2} + 0.2\sin(2x)$ using the chain rule.
- b) Construct the linear model $\ell_1(x) = f(x_0) + f'(x_0)(x x_0)$ at $x_0 = 1$.
- c) Numerically validate: compute $f(1\pm0.1)$ and $\ell_1(1\pm0.1)$, then find the absolute errors.
- d) Error analysis: at what distance |h| does the relative error $\frac{|f(1+h)-\ell_1(1+h)|}{|f(1)|}$ first exceed 5%?

Exercise 14: (ML-Flavored Applications — Intermediate) Apply first-order calculus to optimization.

> a) For a differentiable function $f: \mathbb{R} \to \mathbb{R}$ and small $\eta > 0$, use the first-order Taylor model to show

$$f(x - \eta f'(x)) \approx f(x) - \eta (f'(x))^{2}.$$

Explain why this guarantees monotone decrease when $f'(x) \neq 0$ and η is sufficiently small.

- b) Suppose $|f'(x)| \leq L$ for all x in some interval. Derive a step-size bound $\eta < 1$ η_{max} that ensures the approximation error $|f(x-\eta f'(x))-[f(x)-\eta (f'(x))^2]|$ is small relative to the predicted decrease.
- c) Given the quadratic loss $f(w) = \|Xw y\|_2^2$ where $X \in \mathbb{R}^{n \times d}$ and $y \in \mathbb{R}^n$, compute $\nabla f(w)$ and explain how $\left|\frac{\partial f}{\partial w_i}(w)\right|$ measures the sensitivity of the loss to changes in the *i*-th feature weight.

3