Quadrotor planning and execution with different RRT* sampling methods

Yathartha Tuladhar, Niraj Basnet, Golden Rockefeller

Motivation

- Sample-based planning methods like RRT* are popular for planning (especially in higher dimensional state spaces)
- But how does the sampling method affect the computational cost and plan quality?

ATLAS humanoid robot with 28 degrees of freedom

Goal

- Compare sampling techniques
 - Uniform
 - Obstacle Based
 - Gaussian
 - Maximum Clearance
- Plan path for a Quadrotor in a simulated environment

Quadrotor navigating around obstacles

Approach

- RRT* algorithm (6 dimensions: x, y, z, row, pitch, yaw)
- Sampling techniques
 - Uniform
 - Obstacle Based
 - Gaussian
 - Max Clearance
- Trajectory Optimization and Control
- Gazebo, ROS, OMPL, RotorS Simulator

System Block Diagram

Sampling Methods

Uniform

Accepted Sample

Obstacle Based

Rejected Sample

Sampling Methods (cont'd)

Maximize Clearance

Accepted Sample

Gaussian

Rejected Sample

Trajectory Generation and Control

Minimum Jerk Path

Proportional-Integral-Derivative (PID) Minimum Jerk Trajectory Controller (4 dimensions: x, y, z, yaw) (6 dimensions) x_r, y_r, z_r, yaw_r Ω_1 , Ω_2 , Ω_3 , Ω_4 Get Target from Path Controller x, y, z, yaw Path Node Planned Path

Dynamics

Custom World in Gazebo

Octomap of custom world

Experiment Settings:

- Time limit (15 seconds)
- Trials (50)
- Highly cluttered vs. less cluttered environment
- Sample step size 0.5 meters
- Memory limit (100 MB)

Metrics:

Best cost, Valid segment fraction, Memory

Best cost

- Valid segment fraction
- Memory

Highly cluttered environment

Less cluttered environment

- Best cost
- Valid segment fraction
- Memory

Highly cluttered environment

Less cluttered environment

- Best cost
- Valid segment fraction
- Memory

Highly cluttered environment

Less cluttered environment

- Best cost
- Valid segment fraction
- Memory

Highly cluttered environment

Less cluttered environment

Simulation in Gazebo and RVIZ

Conclusion

- How does sample technique affect planning?
- Compared 4 sampling techniques (Uniform, Obstacle Based, Gaussian, Maximum Clearance)
- Quadrotor domain
- Found similar performances with sampling techniques
- No dominating sampling technique, given costs and memory metrics
- Sampling technique depends on problem definition

Future work

- Sampling technique comparison for full 12 dimensional state (include velocities)
- Account for critical dynamics differences between RRT* planning and real-world execution
- Compare to obstacle-edge-based sampling technique

Comments and/or Questions?