Simple Linear Regression

```
In [1]:
#Aim: To perform simple Linear Regression
#Exp no:9
#Name:Khushi Chandrashekhar Satpute
#Sec:B
#Roll no:43
#Sub:ET-1
#Date:05/10/2024
In [3]:
import os
In [4]:
import pandas as pd
In [5]:
os.getcwd()
Out[5]:
'C:\\Users\\asus'
In [9]:
os.chdir("C:\\Users\\asus\\Desktop")
In [11]:
data=pd.read_csv("Salary.csv")
In [13]:
data.head()
Out[13]:
   YearsExperience
                   Salary
0
                   39343
               1.1
1
                   46205
               1.3
2
               1.5
                   37731
               2.0
                   43525
3
4
               2.2
                    39891
In [15]:
data.head(50)
Out[15]:
    YearsExperience
                     Salary
 0
                1.1
                     39343
 1
                1.3
                     46205
```

1.5

37731

2

	YearsExperience	Salary
3	2.0	43525
4	2.2	39891
5	2.9	56642
6	3.0	60150
7	3.2	54445
8	3.2	64445
9	3.7	57189
10	3.9	63218
11	4.0	55794
12	4.0	56957
13	4.1	57081
14	4.5	61111
15	4.9	67938
16	5.1	66029
17	5.3	83088
18	5.9	81363
19	6.0	93940
20	6.8	91738
21	7.1	98273
22	7.9	101302
23	8.2	113812
24	8.7	109431
25	9.0	105582
26	9.5	116969
27	9.6	112635
28	10.3	122391
29	10.5	121872
30	11.2	127345
31	11.5	126756
32	12.3	128765
33	12.9	135675
34	13.5	139465

In [17]:

data.tail()

Out[17]:

	YearsExperience	Salary
30	11.2	127345
31	11.5	126756
32	12.3	128765
33	12.9	135675
34	13.5	139465

In [19]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35 entries, 0 to 34
Data columns (total 2 columns):

Column Non-Null Count Dtype
--- 0 YearsExperience 35 non-null float64
1 Salary 35 non-null int64

dtypes: float64(1), int64(1)
memory usage: 692.0 bytes

In [21]:

data.describe()

Out[21]:

	YearsExperience	Salary
count	35.000000	35.000000
mean	6.308571	83945.600000
std	3.618610	32162.673003
min	1.100000	37731.000000
25%	3.450000	57019.000000
50%	5.300000	81363.000000
75%	9.250000	113223.500000
max	13.500000	139465.000000

In [23]:

data.shape

Out[23]:

(35, 2)

In [25]:

data.size

Out[25]:

70

In [27]:

data.ndim

Out[27]:

Out[33]:

	YearsExperience	Salary
0	False	False
1	False	False
2	False	False
3	False	False
4	False	False
5	False	False
6	False	False
7	False	False
8	False	False
9	False	False
10	False	False
11	False	False
12	False	False
13	False	False
14	False	False
15	False	False
16	False	False
17	False	False
18	False	False
19	False	False
20	False	False
21	False	False
22	False	False
23	False	False

	YearsExperience	Salary
24	False	False
25	False	False
26	False	False
27	False	False
28	False	False
29	False	False
30	False	False
31	False	False
32	False	False
33	False	False
34	False	False
In	[35]:	
	a.isnull().any(()
Year Sala dtyp	[35]: rsExperience ary be: bool [37]:	False False
	Ashish"	
	[39]:	
	nt(a)	
Ashi	ish	
In	[41]:	
a[0		
Out 'A'	[41]:	
	[43]:	
a[-	1] [43]:	
'h'	[43].	
	[45]:	
a[1		
'shi	[45]: i'	
	[47]:	
	nt(X)	
[]	1.1] 1.3] 1.5] 2.]	

```
[ 2.2]
 [ 2.91
 [ 3. ]
 [ 3.21
 [3.2]
 [3.7]
 [ 3.9]
 [ 4. ]
 [4.]
 [4.1]
 [ 4.5]
 [4.9]
 [5.1]
 [5.3]
 [5.9]
 [ 6. ]
 [6.8]
 [7.1]
 [7.9]
 [ 8.2]
 [ 8.7]
 [ 9. ]
 [ 9.5]
 [ 9.6]
 [10.3]
 [10.5]
 [11.2]
 [11.5]
 [12.3]
 [12.9]
 [13.5]]
In [49]:
print(y)
[ 39343 46205
                37731
                       43525
                              39891 56642 60150
                                                    54445
                                                           64445
                                                                  57189
        55794 56957
                       57081 61111 67938 66029 83088 81363 93940
 63218
 91738 98273 101302 113812 109431 105582 116969 112635 122391 121872
127345 126756 128765 135675 139465]
In [51]:
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
In [52]:
#Splitting testdata into X_train, X_test, y_train, y_test
from sklearn.model selection import train test split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=.3,random_state=42)
In [53]:
print(X train)
[[12.9]
[1.1]
 [ 2.2]
 [5.3]
 [9.6]
 [ 2.9]
 [ 4. ]
```

```
[1.3]
 [1.5]
 [12.3]
 [ 2. ]
 [11.2]
 [ 8.2]
 [11.5]
 [3.9]
 [7.9]
 [5.9]
 [9.1
 [ 3. ]
 [6.8]
 [13.5]
 [ 3.2]
 [4.5]
 [10.3]]
In [54]:
print(X_test)
[[ 9.5]
 [4.1]
 [8.7]
 [7.1]
 [4.9]
 [10.5]
 [ 6. ]
 [ 4. ]
 [ 3.2]
 [5.1]
 [ 3.7]]
In [59]:
print(y train)
[135675 39343 39891 83088 112635 56642 55794 46205 37731 128765
 43525 127345 113812 126756 63218 101302 81363 105582 60150 91738
 139465 54445 61111 122391]
In [61]:
print(y_test)
[116969 57081 109431 98273 67938 121872 93940 56957 64445 66029
  57189]
In [63]:
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train, y_train)
Out[63]:
    LinearRegression •
LinearRegression()
In [65]:
m = lr.coef
```

```
In [67]:
print("Coefficient :" , m)

Coefficient : [8555.33918938]
In [69]:
#Assigning Y-intercept to a
    c = lr.intercept_
In [71]:
    print("Intercept : ", c)
Intercept : 29602.07353482097
In [73]:
    lr.score(X_test,y_test) * 100

Out[73]:
91.71426108885095
In []:
```