Nonparametric Survival Curve Estimation | Confidence Intervals | Left Truncation |

Eric Delmelle | Lehigh University

1 Introduction

- Many possible hazard function shapes when using parametric models
 - Challenge: which parametric family to choose?
 - For human/animal survival, no single family always fits well
- Nonparametric estimators of survival function
 - Already discussed
 - Most common: Kaplan-Meier (product-limit) estimator
 - Confidence intervals; mean and median survival
 - Kernel smoothing
 - data: Gastric Cancer Survival dataset
- Left truncation
 - data: Channing House Retirement dataset

2 Nonparametric Estimation of the Survival Function

2.1 The Kaplan-Meier (KM) Estimator

- (we have seen this already)
- Product over the failure times of the conditional probabilities of surviving to the next failure time.

$$\hat{S}(t) = \prod_{t_i \leq t} (1 - \hat{q}_i) = \prod_{t_i \leq t} \left(1 - \frac{d_i}{n_i}\right)$$

• where n_i is the number of subjects at risk at time t_i , and d_i is the number of individuals who fail at that time.

2.2 Example Data and Calculation: Gastric Cancer

- Let's work through the Kaplan-Meier calculation using the **Gastric Cancer** Survival Data (see page 6 in the book, section 1.4, example 1.2 Xelox in patients with advanced gastric center).
- The data is loaded with the asaur package
- A single-arm trial = everyone in the study gets the same treatment (here, XELOX). No control group or comparison arm (like placebo or standard therapy).
- Phase II mid-stage study where all participants get XELOX chemo; researchers tracked survival outcomes to decide if it's worth moving to a larger, controlled Phase III trial.
- The **Delta** variable tell us whether the event occurred or not (1=dead).
- Note the confidence intervals are set to False here.
- $n = 48 \rightarrow total$ number of patients in the dataset (the trial enrolled 48).
- Events = $32 \rightarrow$ the number of patients who experienced the event of interest.
- About 10.3 months, 50% of patients had experienced progression or death.

```
# Load required libraries
  library(survival)
  library(muhaz)
  library(asaur)
  library(boot)
  # see example 1.2
  timeMonths <- gastricXelox$timeWeeks*7/30.25</pre>
  delta <- gastricXelox$delta
  # Create survival object
  result.km <- survfit(Surv(timeMonths, delta) ~ 1, conf.type="none")
  print(result.km)
Call: survfit(formula = Surv(timeMonths, delta) ~ 1, conf.type = "none")
      n events median
[1,] 48
            32
                 10.3
```

plot(result.km, conf.int=F, mark="|", xlab="Time in months",ylab="Survival probability")

2.3 Confidence Intervals (CI)

- There are several approaches to constructing confidence intervals for the Kaplan-Meier estimator.
- Each with different properties and advantages.
- Plain (can be negative!!!)
- Log
- Log-Log

2.3.1 Plain (Linear) Confidence Intervals

The most straightforward approach uses the delta method to obtain the variance of $\hat{S}(t)$ directly:

$$\text{var}[\hat{S}(t)] \approx [\hat{S}(t)]^2 \sum_{t_i \leq t} \frac{d_i}{n_i(n_i - d_i)}$$

This leads to the **plain confidence interval**: $\hat{S}(t) \pm z_{\alpha/2} \sqrt{\text{var}[\hat{S}(t)]}$

```
legend = c("Plain"),
col = c("red"),
lty = 1)
```

Plain Confidence Intervals

Figure 1: Plain Confidence Intervals

2.3.2 Problems with Plain Confidence Intervals

The plain confidence interval has a fundamental problem: it can extend below 0 or above 1, which is nonsensical for probabilities. This occurs because:

- The normal approximation may be poor, especially with small sample sizes
- The survival function is bounded between 0 and 1, but the normal distribution is unbounded
- The distribution of $\hat{S}(t)$ can be quite skewed, especially near the tails

2.3.3 Log Transformation

- An improvement uses the log transformation of $\hat{S}(t)$:

$$\text{var}[\log \hat{S}(t)] = \sum_{t_i \leq t} \frac{d_i}{n_i(n_i - d_i)}$$

• The log confidence interval is: $\exp\left\{\log[\hat{S}(t)] \pm z_{\alpha/2} \sqrt{\mathrm{var}[\log\hat{S}(t)]}\right\}$

- This ensures the confidence interval stays within (0,1]
- Can still have issues when $\hat{S}(t)$ approaches 1.

Comparison of Confidence Interval Types

Figure 2: Plain vs Log Confidence Intervals

2.3.4 Complementary Log-Log Transformation (Most Satisfying)

• The **complementary log-log transformation** is generally preferred because it has the best statistical properties:

```
\text{var}[\log[-\log\hat{S}(t)]] \approx \frac{1}{[\log\hat{S}(t)]^2} \sum_{t_i \leq t} \frac{d_i}{n_i(n_i - d_i)}
```

• The confidence interval becomes: $\exp\left\{-\exp\left[\log(-\log[\hat{S}(t)]) \pm z_{\alpha/2}\sqrt{\text{var}[\log[-\log\hat{S}(t)]]}\right]\right\}$

Comparison of Confidence Interval Types

Figure 3: Comparison of All Confidence Interval Types

2.3.5 Why Log-Log is "More Satisfying"

- Bounded intervals: Confidence intervals are always between 0 and 1
- Better symmetry: The transformation creates more symmetric distributions, making the normal approximation more accurate
- Improved coverage: Studies show log-log intervals have coverage probabilities closer to the nominal level (e.g., 95%)
- **Theoretical justification**: The transformation is related to the cumulative hazard function, which has better asymptotic properties
- Stable behavior: Performs well even when $\hat{S}(t)$ is close to 0 or 1

```
# Compare the three methods for our example data
summary(result.km.plain)
```

Call: survfit(formula = Surv(timeMonths, delta) ~ 1, conf.type = "plain")

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
0.926	48	1	0.979	0.0206		0.939		1.000
1.851	47	3	0.917	0.0399		0.838		0.995
2.083	44	1	0.896	0.0441		0.809		0.982
2.545	43	1	0.875	0.0477		0.781		0.969
2.777	42	1	0.854	0.0509		0.754		0.954
3.008	41	1	0.833	0.0538		0.728		0.939
3.702	40	2	0.792	0.0586		0.677		0.907
3.934	38	2	0.750	0.0625		0.628		0.872
4.397	36	1	0.729	0.0641		0.603		0.855
4.860	35	1	0.708	0.0656		0.580		0.837
5.554	34	2	0.667	0.0680		0.533		0.800
5.785	32	1	0.646	0.0690		0.511		0.781
6.479	31	2	0.604	0.0706		0.466		0.743
6.942	29	1	0.583	0.0712		0.444		0.723
8.562	28	2	0.542	0.0719		0.401		0.683
9.719	26	1	0.521	0.0721		0.380		0.662
9.950	25	1	0.500	0.0722		0.359		0.641
10.645	23	1	0.478	0.0722		0.337		0.620
12.264	19	1	0.453	0.0727		0.311		0.596
13.653	16	1	0.425	0.0735		0.281		0.569
13.884	14	1	0.394	0.0742		0.249		0.540
14.810	13	1	0.364	0.0744		0.218		0.510
15.273	12	1	0.334	0.0742		0.188		0.479
17.587	11	1	0.303	0.0734		0.160		0.447
18.050	10	1	0.273	0.0720		0.132		0.414

```
cat("\n--- Log transformation ---\n")
--- Log transformation ---
  summary(result.km.log)
Call: survfit(formula = Surv(timeMonths, delta) ~ 1, conf.type = "log")
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
  0.926
            48
                      1
                           0.979
                                  0.0206
                                                 0.940
                                                               1.000
  1.851
            47
                      3
                           0.917
                                  0.0399
                                                 0.842
                                                               0.998
  2.083
            44
                      1
                           0.896 0.0441
                                                 0.813
                                                               0.987
  2.545
            43
                      1
                           0.875
                                  0.0477
                                                 0.786
                                                               0.974
            42
                           0.854 0.0509
  2.777
                      1
                                                 0.760
                                                               0.960
  3.008
                           0.833
            41
                      1
                                  0.0538
                                                 0.734
                                                               0.946
  3.702
            40
                      2
                           0.792
                                  0.0586
                                                 0.685
                                                               0.915
  3.934
            38
                      2
                           0.750
                                                 0.637
                                                               0.883
                                  0.0625
                           0.729
  4.397
            36
                      1
                                  0.0641
                                                 0.614
                                                               0.866
  4.860
            35
                      1
                           0.708
                                  0.0656
                                                 0.591
                                                               0.849
  5.554
            34
                      2
                           0.667
                                  0.0680
                                                 0.546
                                                               0.814
  5.785
            32
                           0.646
                                                               0.796
                      1
                                  0.0690
                                                 0.524
  6.479
            31
                      2
                           0.604
                                  0.0706
                                                 0.481
                                                               0.760
  6.942
            29
                      1
                           0.583
                                  0.0712
                                                 0.459
                                                               0.741
                           0.542
  8.562
            28
                      2
                                  0.0719
                                                 0.418
                                                               0.703
                           0.521
                                  0.0721
                                                               0.683
  9.719
            26
                      1
                                                 0.397
                           0.500
 9.950
            25
                      1
                                  0.0722
                                                 0.377
                                                               0.663
 10.645
            23
                           0.478 0.0722
                                                 0.356
                                                               0.643
                      1
 12.264
            19
                      1
                           0.453
                                  0.0727
                                                 0.331
                                                               0.620
                           0.425
 13.653
            16
                      1
                                  0.0735
                                                 0.303
                                                               0.596
                           0.394
 13.884
            14
                      1
                                  0.0742
                                                 0.273
                                                               0.570
 14.810
            13
                      1
                           0.364
                                  0.0744
                                                 0.244
                                                               0.544
 15.273
            12
                           0.334
                                  0.0742
                                                               0.516
                      1
                                                 0.216
 17.587
            11
                      1
                           0.303
                                  0.0734
                                                 0.189
                                                               0.487
 18.050
            10
                      1
                           0.273 0.0720
                                                 0.163
                                                               0.458
  cat("\n--- Log-log transformation ---\n")
```

⁻⁻⁻ Log-log transformation ---

Call: survfit(formula = Surv(timeMonths, delta) ~ 1, conf.type = "log-log")

n risk	n event	survival	std err	lower 95% CT	upper 95% CT
					0.997
					0.968
					0.955
					0.942
					0.928
					0.913
40					0.882
38	2				0.850
					0.833
35	1	0.708	0.0656	0.558	0.816
34	2	0.667	0.0680	0.515	0.781
32	1	0.646	0.0690	0.494	0.763
31	2	0.604	0.0706	0.452	0.726
29	1	0.583	0.0712	0.432	0.708
28	2	0.542	0.0719	0.392	0.670
26	1	0.521	0.0721	0.372	0.650
25	1	0.500	0.0722	0.353	0.631
23	1	0.478	0.0722	0.332	0.610
19	1	0.453	0.0727	0.308	0.587
16	1	0.425	0.0735	0.280	0.562
14	1	0.394	0.0742	0.251	0.535
13	1	0.364	0.0744	0.223	0.507
12	1	0.334	0.0742	0.196	0.478
11	1	0.303	0.0734	0.170	0.449
10	1	0.273	0.0720	0.145	0.418
	48 47 44 43 42 41 40 38 36 35 34 32 31 29 28 26 25 23 19 16 14 13 12 11	48 1 47 3 44 1 43 1 42 1 41 1 40 2 38 2 36 1 35 1 34 2 32 1 31 2 29 1 28 2 26 1 25 1 23 1 19 1 16 1 14 1 13 1 11 1	48 1 0.979 47 3 0.917 44 1 0.896 43 1 0.875 42 1 0.854 41 1 0.833 40 2 0.792 38 2 0.750 36 1 0.729 35 1 0.708 34 2 0.667 32 1 0.646 31 2 0.604 29 1 0.583 28 2 0.542 26 1 0.521 25 1 0.500 23 1 0.478 19 1 0.453 16 1 0.425 14 1 0.394 13 1 0.364 12 1 0.334 11 1 0.303	48 1 0.979 0.0206 47 3 0.917 0.0399 44 1 0.896 0.0441 43 1 0.875 0.0477 42 1 0.854 0.0509 41 1 0.833 0.0538 40 2 0.792 0.0586 38 2 0.750 0.0625 36 1 0.729 0.0641 35 1 0.708 0.0656 34 2 0.667 0.0680 32 1 0.646 0.0690 31 2 0.604 0.0706 29 1 0.583 0.0712 28 2 0.542 0.0719 26 1 0.521 0.0721 25 1 0.500 0.0722 23 1 0.478 0.0727 16 1 0.425 0.0735 14 1 0.394 0.0742 13 1 0.364 0.0742 <td>47 3 0.917 0.0399 0.793 44 1 0.896 0.0441 0.768 43 1 0.875 0.0477 0.743 42 1 0.854 0.0509 0.718 41 1 0.833 0.0538 0.694 40 2 0.792 0.0586 0.647 38 2 0.750 0.0625 0.602 36 1 0.729 0.0641 0.580 35 1 0.708 0.0656 0.558 34 2 0.667 0.0680 0.515 32 1 0.646 0.0690 0.494 31 2 0.604 0.0706 0.452 29 1 0.583 0.0712 0.432 28 2 0.542 0.0719 0.392 26 1 0.521 0.0721 0.372 25 1 0.500 0.0722 0.333 23 1 0.478 0.0727 0.308 16</td>	47 3 0.917 0.0399 0.793 44 1 0.896 0.0441 0.768 43 1 0.875 0.0477 0.743 42 1 0.854 0.0509 0.718 41 1 0.833 0.0538 0.694 40 2 0.792 0.0586 0.647 38 2 0.750 0.0625 0.602 36 1 0.729 0.0641 0.580 35 1 0.708 0.0656 0.558 34 2 0.667 0.0680 0.515 32 1 0.646 0.0690 0.494 31 2 0.604 0.0706 0.452 29 1 0.583 0.0712 0.432 28 2 0.542 0.0719 0.392 26 1 0.521 0.0721 0.372 25 1 0.500 0.0722 0.333 23 1 0.478 0.0727 0.308 16

3 Finding the Median Survival

• The median survival time is defined as:

$$\hat{t}_{med} = \inf\{t: \hat{S}(t) \leq 0.5\}$$

```
# Making sure that we actually generate CI
result.km <- survfit(Surv(timeMonths, delta) ~ 1, conf.type="log-log")
print(result.km)</pre>
```

Call: survfit(formula = Surv(timeMonths, delta) ~ 1, conf.type = "log-log")
 n events median 0.95LCL 0.95UCL
[1,] 48 32 10.3 5.79 15.3

To find a $1 - \alpha$ confidence interval for the median, we use:

$$-z_{\alpha/2} \leq \frac{g\{\hat{S}(t)\} - g(0.5)}{\sqrt{\operatorname{var}[g\{\hat{S}(t)\}]}} \leq z_{\alpha/2}$$

where $g(u) = \log[-\log(u)]$ is the complementary log-log transformation.

4 Median Follow-Up Time

- One measure of the quality of a clinical trial is the duration of follow-up.
- The "potential" median survival uses the "reverse" Kaplan-Meier method:

```
# Reverse censoring indicators
  delta.followup <- 1 - delta
  # Compute reverse Kaplan-Meier
  reverse_km <- survfit(Surv(timeMonths, delta.followup) ~ 1)</pre>
  print(reverse_km)
Call: survfit(formula = Surv(timeMonths, delta.followup) ~ 1)
      n events median 0.95LCL 0.95UCL
[1,] 48
                 27.8
            16
                         21.1
                                  50.2
  # Compare with simple median
  cat("Simple median follow-up:", median(timeMonths), "months\n")
Simple median follow-up: 9.950413 months
  cat("Potential follow-up (reverse KM):", reverse_km$median, "months\n")
Potential follow-up (reverse KM): months
```

5 Quantiles

5

34

- What is the survival probabilities
- First and third quartiles

```
# Quantiles for gastric cancer data
  quantile(result.km, probs = c(0.25, 0.75))
$quantile
      25
                75
4.165289
               NA
$lower
       25
                  75
2.545455 14.809917
$upper
      25
                75
6.479339
               NA
  • and remember the other question:
  • what is my probability to survive at 5 years?
  result.km <- survfit(Surv(timeMonths, delta) ~ 1, conf.type="log-log")</pre>
  summary(result.km, times = 5)
Call: survfit(formula = Surv(timeMonths, delta) ~ 1, conf.type = "log-log")
```

6 Smoothed Hazard and Survival Function Estimates (Kernel)

• The hazard function estimate at failure times is quite unstable.

time n.risk n.event survival std.err lower 95% CI upper 95% CI

0.708 0.0656

• A kernel smoother provides a better visualization.

14

• This is not a replacement for parametric distribution like exponential or Weibull, but provides an interesting visualization

0.558

0.816

$$\hat{h}(t) = \frac{1}{b} \sum_{i=1}^{D} K\left(\frac{t - t_{(i)}}{b}\right) \frac{d_i}{n_i}$$

where K(u) is a kernel function (e.g., Epanechnikov kernel: $K(u) = \frac{3}{4}(1-u^2)$ for $-1 \le u \le 1$).

```
# Piecewise exponential hazard estimate
  result.pe5 <- pehaz(timeMonths, delta, width = 5, max.time = 20)
max.time= 20
width= 5
nbins= 4
  result.pe1 <- pehaz(timeMonths, delta, width = 1, max.time = 20)
max.time= 20
width= 1
nbins= 20
  # Plot piecewise estimates
  plot(result.pe5,
       ylim = c(0, 0.15),
       col = "black",
       xlab = "Time",
       ylab = "Hazard Rate",
       main = "Hazard Function Estimates")
  lines(result.pe1, col = "gray")
  # Smooth hazard estimate
  result.smooth <- muhaz(timeMonths, delta,
                          bw.smooth = 20,
                          b.cor = "left",
                          max.time = 20)
  lines(result.smooth, col = "blue", lwd = 2)
  legend("topright",
         legend = c("5-month intervals", "1-month intervals", "Smoothed"),
```

```
col = c("black", "gray", "blue"),
lty = 1,
lwd = c(1, 1, 2))
```

Hazard Function Estimates

Figure 4: Smoothed Hazard Function Estimate

6.1 Smooth Survival Function from Hazard

```
lines(surv_smooth ~ times[1:(length(times) - 1)], col = "red", lwd = 2)

legend("topright",
    legend = c("Kaplan-Meier", "Smoothed"),
    col = c("black", "red"),
    lty = 1,
    lwd = c(1, 2))
```

Kaplan-Meier vs Smoothed Survival Estimates

Figure 5: Comparison of Kaplan-Meier and Smoothed Survival Estimates

7 Left Truncation

- Left truncation occurs when subjects can only be observed after a certain time point.
- Requires modification of the Kaplan-Meier estimator where subjects enter the risk set at their truncation time.

7.1 Channing House Example

- Collection of survival data from the Channing House retirement home in Palo Alto, California, collected between 1964 and 1975.
- It records the age at entry and at death or exit (due to leaving or being alive at the study's end) for 97 men and 365 women, focusing on differences in survival between sexes after accounting for age.

- The data is used for survival analysis and features left truncation (residents entered at different ages, so their pre-Channing House lifetimes were not observed).
- Also right censoring (some residents were still alive at the study's end).

```
# We will use the channing dataset - loaded with 'boot' earlier
  # Convert ages from months to years
  channing$entryYears <- channing$entry / 12</pre>
  channing$exitYears <- channing$exit / 12</pre>
  # Filter for males using text matching
  cat("Age range at entry:", range(channing$entryYears), "\n")
Age range at entry: 61.08333 95
  cat("Age range at exit:", range(channing$exitYears), "\n")
Age range at exit: 64.75 100.5833
  # Standard Kaplan-Meier with left truncation
  result.km.standard <- survfit(Surv(entryYears, exitYears, cens, type = "counting") ~ 1,
                                 data = channing)
  # Conditional on reaching age 68
  result.km.68 <- survfit(Surv(entryYears, exitYears, cens, type = "counting") ~ 1,
                           data = channing,
                           start.time = 68)
  plot(result.km.standard,
       xlim = c(64, 101),
       xlab = "Age",
       ylab = "Survival probability",
       conf.int = FALSE,
       main = "Survival Estimates for Channing House Data (Males)",
       frame = FALSE) # removes the box
```

```
lines(result.km.68, col = "green", conf.int = FALSE)

legend("topright",
    legend = c("KM", "KM 68 and older"),
    lty = 1,
    col = c("black", "green"),
    bty = "n") # remove legend box
```

Survival Estimates for Channing House Data (Males)


```
# Print summaries
  cat("\n=== Standard KM with left truncation ===\n")
=== Standard KM with left truncation ===
  print(result.km.standard)
Call: survfit(formula = Surv(entryYears, exitYears, cens, type = "counting") ~
    1, data = channing)
  5 observations deleted due to missingness
     records n.max n.start events median 0.95LCL 0.95UCL
[1,]
         457
               202
                              175
                                    82.7
                                            74.8
                                                    85.8
                        11
```

```
cat("\n=== KM conditional on age 68+ ===\n")
=== KM conditional on age 68+ ===
  print(result.km.68)
Call: survfit(formula = Surv(entryYears, exitYears, cens, type = "counting") ~
    1, data = channing, start.time = 68)
  {\bf 5} observations deleted due to missingness
     records n.max n.start events median 0.95LCL 0.95UCL
[1,]
        451
              202
                        36
                              172 84.9
                                            83.8
                                                     86.7
  # Remove rows with NA values in key variables
  channing <- channing[complete.cases(channing$entryYears, channing$exitYears, channing$cens</pre>
  # Remove problematic observations
  channing <- channing[channing$exitYears > channing$entryYears, ]
  # Create age group based on entry age
  channing$ageGroup <- ifelse(channing$entryYears >= 75, "75+ at entry", "Under 75 at entry"
  # Check the distribution
  cat("Age group distribution:\n")
Age group distribution:
  print(table(channing$ageGroup))
     75+ at entry Under 75 at entry
              231
                                226
```

```
# Survival analysis by age group with left truncation
result.km.byage <- survfit(Surv(entryYears, exitYears, cens, type = "counting") ~ ageGroup</pre>
                            data = channing)
# Plot comparison
plot(result.km.byage,
     xlim = c(64, 101),
     xlab = "Age",
     ylab = "Survival probability",
     conf.int = FALSE,
     col = c("red", "blue"),
     lty = c(1, 1),
     lwd = 2,
     main = "Survival by Entry Age: Channing House Data")
legend("topright",
       legend = c("Under 75 at entry", "75+ at entry"),
       col = c("red", "blue"),
       lty = c(1, 1),
       lwd = 2)
```

Survival by Entry Age: Channing House Data


```
# Print summaries for each group
cat("\n=== Survival by Entry Age Group ===\n")
```

```
print(result.km.byage)
Call: survfit(formula = Surv(entryYears, exitYears, cens, type = "counting") ~
   ageGroup, data = channing)
                          records n.max n.start events median 0.95LCL 0.95UCL
ageGroup=75+ at entry
                              231
                                    125
                                            25 111 86.8 85.6
                                                                        88.7
ageGroup=Under 75 at entry
                              226
                                    172
                                           11 64 82.4 74.8
                                                                          NA
  library(dplyr)
  library(survival)
  library(ggplot2)
  # Prep
  channing <- channing %>%
    mutate(entryYears = entry/12,
           exitYears = exit/12
  # Split by exact entry-age cutoff
  dat_under <- filter(channing, entryYears < 75)</pre>
  dat_75plus <- filter(channing, entryYears >= 75)
  # Separate left-truncated KM fits (age on x because we use entryYears->exitYears)
  fit_under <- survfit(Surv(entryYears, exitYears, cens, type = "counting") ~ 1, data = dat
  fit_75plus <- survfit(Surv(entryYears, exitYears, cens, type = "counting") ~ 1, data = dat</pre>
  # Tidy the survival outputs for plotting
  s_under <- summary(fit_under)</pre>
  s_75
         <- summary(fit_75plus)
  print(fit_under)
Call: survfit(formula = Surv(entryYears, exitYears, cens, type = "counting") ~
   1, data = dat_under)
    records n.max n.start events median 0.95LCL 0.95UCL
[1,]
        226
              172 11 64 82.4 74.8
                                                    NA
```

=== Survival by Entry Age Group ===

```
print(fit_75plus)
Call: survfit(formula = Surv(entryYears, exitYears, cens, type = "counting") ~
    1, data = dat_75plus)
    records n.max n.start events median 0.95LCL 0.95UCL
[1,]
         231
               125
                        25
                              111
                                    86.8
                                            85.6
                                                     88.7
  df_plot <- bind_rows(</pre>
    data.frame(age = s_under$time, surv = s_under$surv, group = "Under 75 at entry"),
    data.frame(age = s_75$time,
                                  surv = s_75$surv,
                                                         group = "75+ at entry")
  # Plot (step function, age on x)
  ggplot(df_plot, aes(x = age, y = surv, color = group)) +
    geom_step(linewidth = 1.1) +
    coord_cartesian(xlim = c(64, 101), ylim = c(0, 1)) +
    labs(title = "Survival by Entry Age (Exact 75+ Cutoff): Channing House (Males)",
         x = "Age", y = "Survival probability") +
    geom_vline(xintercept = 75, linetype = 2) +
    theme_classic(base_size = 12) +
    theme(legend.title = element_blank(), legend.position = "top")
```

Survival by Entry Age (Exact 75+ Cutoff): Channing House

7.2 What do we see from the results?

- 231 people entered at 75+, 226 entered under 75 (well-balanced groups)
- Median survival age: 86.8 years for 75+ entry group vs 82.4 years for under 75 group
- More events (deaths) in the 75+ group (111 vs 64)
- Be careful!!!
- Left truncation can create complex interpretational challenges in survival analysis
- The "better" survival in the 75+ group might reflect selection effects rather than true differences in longevity.
- **Selection bias**: People who entered at 75+ had to survive to at least 75 to be observed, so they represent a subset who were already "survivors"
- **Different risk periods**: The under 75 group includes people who entered much younger and were observed through more of their life course
- Survivor effect: The 75+ entry group might represent individuals with particularly good health/genetics who lived long enough to enter the retirement home at advanced ages

8 Key Takeaways

- 1. **Kaplan-Meier estimator** is the most widely used nonparametric survival function estimator
- 2. **Confidence intervals** should use the complementary log-log transformation for better properties
- 3. Median survival is the time when the survival function first drops to 0.5 or below
- 4. Smoothed hazard functions provide better visualization than step functions
- 5. Left truncation requires careful handling to avoid bias in survival estimates

8.1 Additional Notes

- 1. The bshazard package provides B-spline based smoothing for hazard functions
- 2. Other percentiles can be estimated similarly to the median using:

$$\hat{t}_p = \inf\{t: \hat{S}(t) \leq 1-p\}$$

- 3. Simultaneous confidence bands are available in the kmconfband package
- 4. Right truncation is more complex and requires specialized methods like those in the DTDA package

8.2 Exercises

13.884

14

8.2.1 Exercise 3.1

Find the median survival and 95% confidence interval from the example data. Explain why the upper limit might be undefined.

```
# Median survival from our example
  result.km
Call: survfit(formula = Surv(timeMonths, delta) ~ 1, conf.type = "log-log")
      n events median 0.95LCL 0.95UCL
[1,] 48
            32
                  10.3
                          5.79
                                   15.3
  summary(result.km)
Call: survfit(formula = Surv(timeMonths, delta) ~ 1, conf.type = "log-log")
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
  0.926
            48
                      1
                           0.979
                                  0.0206
                                                  0.861
                                                               0.997
  1.851
            47
                      3
                           0.917
                                  0.0399
                                                  0.793
                                                               0.968
  2.083
            44
                      1
                           0.896
                                  0.0441
                                                  0.768
                                                               0.955
  2.545
            43
                      1
                           0.875
                                  0.0477
                                                  0.743
                                                               0.942
  2.777
            42
                           0.854 0.0509
                                                               0.928
                      1
                                                  0.718
  3.008
            41
                      1
                           0.833
                                  0.0538
                                                  0.694
                                                               0.913
  3.702
                      2
                           0.792
            40
                                  0.0586
                                                  0.647
                                                               0.882
  3.934
            38
                      2
                           0.750
                                  0.0625
                                                  0.602
                                                               0.850
  4.397
            36
                           0.729
                                                               0.833
                      1
                                  0.0641
                                                  0.580
  4.860
            35
                      1
                           0.708
                                  0.0656
                                                  0.558
                                                               0.816
                           0.667
  5.554
            34
                      2
                                  0.0680
                                                  0.515
                                                               0.781
            32
                      1
                           0.646
                                                  0.494
                                                               0.763
  5.785
                                  0.0690
                      2
                           0.604
  6.479
            31
                                  0.0706
                                                  0.452
                                                               0.726
  6.942
            29
                      1
                           0.583
                                  0.0712
                                                  0.432
                                                               0.708
                      2
                           0.542
  8.562
            28
                                  0.0719
                                                  0.392
                                                               0.670
  9.719
            26
                           0.521
                                  0.0721
                                                 0.372
                                                               0.650
                      1
  9.950
                           0.500
            25
                      1
                                  0.0722
                                                  0.353
                                                               0.631
                           0.478 0.0722
 10.645
            23
                      1
                                                  0.332
                                                               0.610
 12.264
            19
                      1
                           0.453 0.0727
                                                               0.587
                                                  0.308
 13.653
                           0.425
            16
                      1
                                  0.0735
                                                  0.280
                                                               0.562
                      1
                           0.394
```

0.251

0.535

0.0742

14.810	13	1	0.364	0.0744	0.223	0.507
15.273	12	1	0.334	0.0742	0.196	0.478
17.587	11	1	0.303	0.0734	0.170	0.449
18.050	10	1	0.273	0.0720	0.145	0.418

```
# The upper confidence limit is undefined (NA) when the upper confidence \# band for the survival curve never drops to 0.5
```

8.2.2 Exercise 3.2

Find the first and third quartiles for the gastric cancer data with 95% confidence intervals.

```
# Quantiles for gastric cancer data
  quantile(result.km, probs = c(0.25, 0.75))
$quantile
               75
      25
4.165289
               NA
$lower
       25
                 75
2.545455 14.809917
$upper
      25
               75
6.479339
               NA
```

```
\# Note: Quartiles are times when S(t) = 0.75 (first quartile) and S(t) = 0.25 (third quart
```

8.2.3 Exercise 3.3

Create a smooth hazard function estimate with bandwidth 20 and explain any multiple peaks.

```
# Already created in the main text with bw.smooth = 20
plot(result.smooth,
    xlab = "Time",
    ylab = "Hazard Rate",
    main = "Smooth Hazard Function (bandwidth = 20)")
```

Smooth Hazard Function (bandwidth = 20)

Figure 6: Smooth Hazard with Bandwidth 20

- # Multiple peaks could indicate:
- # 1. Different risk periods in disease progression
- # 2. Treatment effects wearing off
- # 3. Heterogeneity in patient populations
- # 4. Artifacts from smoothing procedure

8.2.4 Exercise 3.4

Compare left-truncated vs. non-truncated estimates and discuss potential bias.

- # This comparison shows how ignoring left truncation can lead to biased estimates
- # The non-truncated estimate may underestimate survival at younger ages
- # because individuals who died young were never observed in the study

 \leftarrow Return to Course Materials