งานประชุมวิชาการ และนวัตกรรม กฟภ. ปี 2564

Data Driven Business in Digital Utility Era ขับเคลื่อนธุรกิจด้วยฐานข้อมูลในยุค Digital Utility

Simplified Method of Lightning Performance Assessment of OHL with Line Lightning Protection Devices

Mr D. Belko¹, Mr M. Zinck², Mr C. Chuayin³, Mr S. Turatham³

¹ Streamer Electric Company, St. Petersburg, Russia (dmitry.belko@streamer.ru)

² Streamer Electric AG, Bangkok, Thailand (matthieu.zinck@streamer-electric.com)

³ King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand

(chaitwat09@gmail.com, sakkarin@paralec.com)

บทคัดย่อ

บทความนี้มุ่งเสนอวิธีอย่างง่ายสำหรับการคำนวณ ประสิทธิภาพในการป้องกันผลกระทบจากฟ้าผ่าของสายส่ง และเปรียบเทียบกับวิธี Monte Carlo ซึ่งเป็นวิธีดั้งเดิมตาม มาตรฐาน IEEE 1410 โดยใช้ ซอฟต์ แวร์ ATP-EMTP คำอธิบายหลักของวิธีอย่างง่ายในการคำนวณความน่าจะ เป็นของการเกิดวาบไฟตามผิวและนำมาซึ่งการพัฒนา ซอฟต์แวร์ Groza ในขั้นต้นได้อธิบายไว้ในบทความนี้ จาก วิธีการคำนวณที่เสนอนั้นแสดงให้เห็นถึงประสิทธิภาพฟ้าผ่า ของสายส่ง และการปรับปรุงประสิทธิภาพให้เพิ่มขึ้นของ จากการติดตั้งอุปกรณ์ป้องกันสายส่งจากฟ้าผ่า (Line Lightning Protection Devices: LLPD) บนเสาส่งอย่าง เหมาะสม บทความนี้ได้พิจารณาถึงฟ้าผ่าโดยตรงที่เกิด ขึ้นกับสายกราวด์เหนือศีรษะ (Over Head Ground Wire: OHGW) ที่ตำแหน่งครึ่งหนึ่งของระยะห่างระหว่างเสาส่ง (Span)

คำสำคัญ: สายส่งเหนือศีรษะ, การป้องกันฟ้าผ่า, ประสิทธิภาพฟ้าผ่า, ไฟฟ้าดับ, back flash over, ฟ้าผ่า โดยตรง, LLPD

1. บทน้ำ

ในปัจจุบันนั้นมีวิธีการคำนวณประสิทธิภาพในการ ข้องกันผลกระทบจากฟ้าผ่าอยู่หลากหลายวิธีโดยการใช้ ซอฟต์แวร์ EMTP (ATP, EMTP-RV) [1, 2] การจำลองแบบ 2

มิติและ 3 มิติโดยใช้โปรแกรม FEM วิธีของ Monte Carlo [3] การออกแบบสายส่ง และอื่น ๆ โดยวิธีเหล่านี้มีความละเอียด เป็นอย่างมากและอาศัยความเชี่ยวชาญเฉพาะทางของผู้ใช้ โปรแกรม ด้วยเหตุนี้การคำนวณควรที่จะสามารถแสดงจำนวน ไฟฟ้าดับที่เกิดขึ้นจากฟ้าผ่าของแต่ละวงจรในแต่ละปีได้ ในทางปฏิบัติการคำนวณเพื่อให้ได้คำตอบที่แม่นยำดังกล่าวไม่ ไม่มีความจำเป็นสำหรับหน่วยงานหรือบริษัทที่ทำหน้าที่ ควบคุมสายส่ง ยิ่งกว่านั้นจำนวนไฟฟ้าดับส่วนใหญ่ที่เกิดขึ้นนั้น ขึ้นอยู่กับฟ้าผ่าที่เกิดขึ้นในแต่ละภูมิภาคที่อาจเปลี่ยนแปลงใน แต่ละปี หน่วยงานหรือบริษัทที่ทำหน้าที่ควบคุมสายส่งควร ทราบวิธีการเพิ่มประสิทธิภาพฟ้าผ่าของสายส่งด้วย ประสิทธิภาพสูงสุดและค่าใช้จ่ายน้อยโดยไม่ต้องใช้การคำนวณ องค์ประกอบของวงจรสายขนาดใหญ่และแบบจำลองที่ ซับซ้อน วิธีการดังกล่าวได้ถูกนำมาใช้ในซอฟต์แวร์ $\mathsf{Groza}^\mathsf{TM}$ โดยใช้อุปกรณ์ป้องกันสายส่งจากฟ้าผ่าจากบริษัท Streamer Electric บทความนี้มุ่งเน้นที่การเปรียบเทียบระหว่างผลลัพธ์ ของความน่าจะเป็นของการเกิดวาบไฟย้อนกลับ (Back Flashover: BFO) ที่ได้จากรูปแบบการคำนวณอย่างง่ายและ จากการจำลองในซอฟต์แวร์ EMTP ในโหมด ATP โดยใช้วิธี Monte Carlo

2. รูปแบบวิธีอย่างง่ายในการคำนวณความน่าจะเป็นของ การเกิดไฟวาบย้อนกลับ

รูปแบบเต็มในการคำนวณกระแสผิดพร่องในสายส่งนั้น ได้ถูกอธิบายใน [4] บทความนี้อธิบายเพียงวิธีการคำนวณ ความน่าจะเป็นของการเกิดวาบไฟย้อนกลับเนื่องจากฟ้าผ่าใน สายกราวด์เหนือศีรษะ(OHGW) ความน่าจะเป็นของวาบไฟ ตามผิวที่เกิดจากฟ้าผ่าบนสายส่งอาจถูกกำหนดโดยกระแส ฟ้าผ่าวิกฤตโดยใช้สูตรการกระจายของกระแสฟ้าผ่าจาก IEEE Guide [5].

$$P = \frac{1}{1 + \left(\frac{I^{crit}}{31}\right)^{2.6}} \tag{1}$$

เมื่อพิจารณากรณีของฟ้าผ่าบนเสาส่งที่มีสายดิน โดย สนใจค่ากระแส I_p ซึ่งไหลผ่านเสาส่งนี้ ค่ากระแสนี้จะลดลง ตามการแตกกิ่งตามสายกราวด์ไปยังเสาส่งใกล้เคียง เมื่อ ระยะห่างระหว่างเสาส่งสั้นลง กระสที่ไหลจะมากขึ้นตาม [6] กระแสที่ไหลผ่านเสาส่งสามารถแสดงในรูปของค่ารีดักชันแฟก เตอร์ (ตัวคูณลด) $I_p = \eta I_L$ ในหาค่าตัวคูณลดจะใช้วงจรสมมูล ในรูปที่ 1 ในการคำนวณ

รูปที่ 1 วงจรสมมูลสำหรับการคำนวณตัวคูณลดของกระแสฟ้าผ่า

รูปที่ 2 วงจรสมมูลสำหรับการคำนวณลำดับของวาบไฟย้อนกลับ

ขั้นตอนต่อไปประกอบด้วยการกำหนดลำดับของวาบ ไฟตามผิวของเฟสทั้งหมดบนสายส่ง และหาค่ากระแสฟ้าผ่า วิกฤตสำหรับวาบไฟเหล่านี้ เพื่อความเรียบง่ายให้พิจารณา กรณีของสายส่งวงจรเดียวสามเฟส โดยแบบจำลองการ วิเคราะห์วงจรสมมูลจะแสดงในรูปที่ 2 ความต้านทานของเสา ส่งสมมูล R_{eq} จะพิจารณาตามกระแสฟ้าผ่าที่ไหลตามสาย กราวด์ไปยังเสาส่งไกล้เคียงตามที่ ระบุไว้ข้างต้น เสิร์จ อิมพีแดนซ์ฟ้าผ่า Z_L =300 Ω รวมทั้งแรงดันตกที่ส่งผลกระทบ ต่อความนำของเสาส่งซึ่งแปรผกผันกับเวลาหน้าคลื่นของฟ้าผ่า ศักย์ไฟฟ้าที่สายกราวด์ควรถูกเหนี่ยวนำไปยังตัวนำแต่ละเส้น โดยศักย์ไฟฟ้านี้สามารถหาได้โดยใช้ค่าสัมประสิทธิ์สัมพัทธ์ k ทำการหาค่ากระแสฟ้าผ่าวิกฤติ i สำหรับการเกิดวาบไฟ ย้อนกลับสำหรับตัวนำแต่ละเส้น และ V_{CFO} ของลูกถ้วยหรือ อุปกรณ์ป้องกันอื่น ๆ ใช้เป็นแรงดันเบรกดาวน์ สมมุติว่าเฟส แรกที่เกิดวาบไฟตามผิวคือ i=3 พร้อมมีการติดตั้งอุปกรณ์ ป้องกันไว้ โดยมีเงื่อนไขว่า LLPD นั้นทำงานได้อย่างถูกต้อง อาร์กจะต้องถูกดับและทำให้ไม่เกิดไฟฟ้าดับในวงจรสายส่ง

รูปที่ 3 เสาของสายส่งเหนือศีรษะ 35 kV ที่ทำการคำนวณเปรียบเทียบ

อย่างไรก็ตาม หากไม่มีการป้องกันในเฟสอื่น ควร พิจารณากระแสฟ้าผ่าวิกฤตสำหรับการวาบไฟตามผิวครั้งที่ สองของเฟส 1 หรือ 2 เพื่อประเมินจำนวนการเกิดไฟดับที่ น่าจะเป็นไปได้ ในวงจรสมมูล รูปที่ 2 ไฟวาบตามผิวครั้งแรก จะสัมพันธ์กับการปิดสวิตช์ SW3 กระแสจะไหลตามตัวนำของ เฟส 3 และความต้านทานเสาส่งสมมูล R_{eq} จะมีค่าลดลง ค่า สัมประสิทธิ์สัมพัทธ์ของสายส่งและเฟสที่เกิดวาบไฟตามผิว รวมถึงเฟสอื่น ๆ มีการเปลี่ยนแปลงเช่นกันโดยลำดับของการ

รูปที่ 4 แบบจำลองวงจรในซอฟต์แวร์ ATP-EMTP สำหรับการคำนวณโดยวิธี Monti Carlo

เกิดไฟวาบย้อนกลับนั้นคำนวณอย่างเป็นขั้นตอน โดยทั่วไปจะ คำนวณด้วยสมการที่ 2 ถึง 5

$$R_i^{eqNf} = \frac{\eta}{\frac{1}{Z_L} + \frac{1}{R_i^y} + \frac{2}{Z_{00}} + \frac{2}{Z_{f1,f1}} + \dots + \frac{2}{Z_{Nf-1,Nf-1}}}$$
(2)

$$k_i^{Nf} = \frac{Z_{0i} + Z_{f1,i} + Z_{f2,i} + \dots + Z_{Nf-1,i}}{Z_{00} + Z_{0,f1} + Z_{0,f2} + \dots + Z_{0,Nf-1}}$$
(3)

$$I_{i}^{Nf} = \frac{V_{CFO\ i}}{R_{i}^{eqNf}(1 - k_{i}^{Nf})}, \ I^{Nf} = \min(|I_{i}^{Nf}|)$$
 (4)

$$P^{Nf} = \frac{1}{1 + \left(\frac{I^{Nf}}{31}\right)^{2.6}} \tag{5}$$

เมื่อ

i คือ ดัชนีของสายส่ง, i>0 คือตัวนำแต่ละเฟส, i=0 คือ สายกราวด์เหนือศีรษะ

 N_f คือ จำนวนครั้งของการเกิดวาบไฟตามผิวจาก 1 ถึง i $f_1,\,f_2\dots$ คือ จำนวนไฟวาบตามผิวที่เกิดบนตัวนำลำดับต่างๆ R_i^{eqNf} คือ ความต้านทานเสาส่งสมมูลของตัวนำ i ที่มีการ เกิดไฟวาบตามผิวครั้งที่ N_f .

R^y คือ ความต้านทานเสาส่งสมมูลที่มีค่าความเหนี่ยวนำ ของตัวนำ i

k; ^{Nf} คือ ค่าสัมประสิทธิ์สัมพัทธ์ของตัวนำ i มีการเกิดไฟ วาบตามผิวครั้งที่ Na

I,^{nf} คือ กระแสฟ้าผ่าวิกฤติของเฟสที่เกิดวาบไฟตามผิว i ที่มีการเกิดไฟวาบตามผิวครั้งที่ N₊ V_{CFO i} คือ แรงดันฟ้าผ่าวิกฤติของฉนวนลูกถ้วยหรืออุปกรณ์ ป้องกันของเฟส i

 Z_{ii} คือ เสิร์จอิมพีแดนซ์ของตัวนำเอง i

 $\mathsf{Z}_{\scriptscriptstyle \parallel}$ คือ เสิร์จอิมพีแดนซ์ร่วมระหว่างตัวนำ i กับตัวนำ j.

2.1 การคำนวณความน่าจะเป็นในการเกิดวาบไฟ ย้อนกลับโดยวิธี Monte Carloในซอฟต์แวร์ATP -EMTP

จากเครื่องมือคำนวณสำหรับวิเคราะห์การจายของ
กระแส ได้มีการใช้การคำนวณผ่านซอฟต์แวร์ ATP-EMTP
(Electromagnetic Transients Program) ข้อดีของ ATPEMTP คือความเป็นที่นิยม ความเป็นมิตรและมีประสิทธิภาพ
ต่อผู้ใช้งาน โดยสามารถสร้างแบบจำลองในการคำนวณที่
เป็นไปได้บนพื้นฐานของการเขียนโปรแกรมให้กับ
ส่วนประกอบวงจรและแบบจำลองต่าง ๆ รวมถึงพิจารณา
แรงดันบนฉนวนที่เกิดจากวาบไฟย้อนกลับที่จำเป็นสำหรับการ
วิเคราะห์แรงดันเกินเนื่องจากฟ้าผ่าและการวิเคราะห์
พารามิเตอร์ทางสถิติของอิมพัลส์ฟ้าผ่า แบบจำลอง
ประกอบด้วย

- 1) แบบจำลอง LCC ที่ประกอบด้วยพารามิเตอร์สายส่ง
- 2) เสาส่งจะแสดงด้วยค่าความเหนี่ยวนำและความ ต้านทานเสาส่ง โดยประเภทของเสาส่งจะแสดงดังรูปที่ 3
- 3) แหล่งกำเนิดฟ้าผ่าประเภท CIGRE โดยภายใน แบบจำลองได้ถูกปรับตั้งพารามิเตอร์ทางสถิติเอาไว้ ค่ากระแส ฟ้าผ่ามัธยฐาน 31 kA ส่วนเบี่ยงเบนมาตรฐาน 0.28 เพื่อให้ ตรงกับสมการที่ (1)

4) ลูกถ้วยสายส่งกับเงื่อนไขของการเกิดวาบไฟตามผิวที่ ถูกโปรแกรมเอาไว้

โดยส่วนของวงจรที่ทำการวิเคราะห์ในซอฟต์แวร์ EMTP จะ แสดงดังรูปที่ 4

2.2 ผลการทดลองและการเปรียบเทียบ

การศึกษาได้พิจารณาสายส่งเหนือศีรษะ 35 kV และ สายกราวด์เหนือศีรษะบนเสาส่งดังรูปที่ 3 โดยระยะห่าง ระหว่างเสาส่งเป็น 200 เมตร แรงดันวาบไฟตามผิววิกฤติของ ฉนวน V_{CFO}= 240 kV การคำนวณความน่าจะเป็นของการเกิด วาบไฟย้อนกลับ ของฉนวนเชิงเส้นสำหรับสายส่งแต่ละเฟส ในช่วงความต้านทานเสาส่งตั้งแต่ 5 ถึง 100 **O**

รูปที่ 5 ความน่าจะเป็นของการเกิดวาบไฟย้อนกลับจากฟ้าผ่าโดยตรงบน เสาส่งและฟ้าผ่าบนระยะระหว่างสายกราวด์เหนือศีรษะ ที่คำนวณโดยใช้ วิธี Monte Carlo ด้วยซอฟต์แวร์ ATP-EMTP และคำนวณโดยวิธีอย่าง ง่ายด้วยซอฟต์แวร์ Groza โดยที่ a) วาบไฟตามผิวในเฟสที่ 1 b) วาบไฟ ตามผิวในเฟสที่ 2 และ c) วาบไฟตามผิวในเฟสที่ 3

รูปที่ 6 การเปรียบเทียบความน่าจะเป็นของการเกิดวาบไฟย้อนกลับ ทั้งหมดที่คำนวณผ่านซอฟต์แวร์ ATP-EMTP และ Groza ของทุกเฟสที่ เกิดวาบไฟตามผิว

รูปที่ 5 (a) (b) และ (c) แสดงการเปลี่ยนแปลงตามความ น่าจะเป็นของการเกิดวาบไฟย้อนกลับของสายส่งแต่ละเฟสใน กรณีที่เกิดฟ้าผ่าที่เสาและในระยะจุดกึ่งกลางของสายกราวด์ เหนือศีรษะ บนความต้านทานเสาส่ง คำนวณโดยสองวิธี ได้แก่

- 1) วิธีการคำนวณโดยรูปแบบอย่างง่ายซึ่งอธิบายไว้ใน หัวข้อที่ 2 (ดังรูปกราฟที่มีชื่อว่า Groza)
- 2) วิธีการคำนวณโดยวิธี Monte Carlo ในซอฟต์แวร์ ATP-EMTP ซึ่งอธิบายไว้ในหัวข้อที่ 2.1 (ดังรูปกราฟที่มีชื่อว่า EMTP)

จากการตีความกราฟสามารถระบุได้ว่าความสัมพันธ์ที่มี
แนวโน้มที่ ดีที่สุดของความน่าจะเป็นของการเกิดวาบไฟ
ย้อนกลับนั้นสังเกตได้จากวาบไฟตามผิวครั้งแรกสำหรับทั้งสอง
กรณีที่เกิดฟ้าผ่าบนเสาส่งและในระยะระหว่างสายส่ง ส่วนการ
วาบไฟตามผิวลำดับถัดมาจะให้ผลลัพธ์ที่มีความคลาดเคลื่อน
มากขึ้น ในกรณีที่ฟ้าผ่าโดยตรงบนเสาส่ง ผลลัพธ์การคำนวณ
จากซอฟต์แวร์ Groza จะถูกประมาณได้ค่าสูงเกินไปเล็กน้อย
ในทางกลับกัน กรณีที่ฟ้าผ่าบนระยะระหว่างเสาส่ง ผลลัพธ์ที่
คำนวณจากซอฟต์แวร์จะถูกประมาณได้ค่าต่ำเกินไป เห็นได้ชัด
ว่าค่าความน่าจะเป็นของการเกิดวาบไฟย้อนกลับ ในกรณี
ฟ้าผ่าบนเสาส่งจะสูงกว่าในกรณีฟ้าผ่าบนระยะระหว่างเสาส่ง
เนื่องจากมีการแบ่งกระแสฟ้าผ่าในสองทิศทางในกรณีฟ้าผ่าบน
ระยะระหว่างเสาส่ง สิ่งนี้ทำให้สังเกตเห็นได้ชัดเจนยิ่งขึ้นที่
ความต้านทานการต่อลงดินของเสาส่งมีค่าต่ำ ที่ความต้านทาน
สงนั้นค่าต่าง ๆ จะอยู่ในแนวโน้มเดียวกัน

ควรสังเกตว่าที่ค่าต่ำของความต้านทานเสาส่งที่ต่ำกว่า 10 Ω ความคลาดเคลื่อนในอัตราส่วนเป็นเปอร์เซ็นต์จะ มากกว่าที่ค่าความต้านทานเสาส่งสูง ซึ่งเป็นเพราะอิทธิพลของ การค่าความเหนี่ยวนำของเสาส่ง อย่างไรก็ตาม ในขั้นตอน สุดท้ายของการคำนวณความต้านทานฟ้าผ่านั้นจำเป็นต้องใช้ ค่าเฉลี่ยของความน่าจะเป็นของการเกิดวาบไฟย้อนกลับ ระหว่างกรณีที่ฟ้าผ่าบนเสาส่งโดยตรงและฟ้าผ่าบนระยะ ระหว่างเสาส่งจากสมการ

$$P_{\rm\scriptscriptstyle BFO}^{\rm\scriptscriptstyle total} = \frac{P_{\rm\scriptscriptstyle BFO}^{\rm\scriptscriptstyle span} + P_{\rm\scriptscriptstyle BFO}^{\rm\scriptscriptstyle pole}}{2} \tag{6}$$

จากกราฟที่มีความน่าจะเป็นของการเกิดวาบไฟย้อนกลับ ทั้งหมดนั้น สำหรับการวาบไฟตามผิวทั้งสามเฟสแสดงในรูปที่ 6 ซึ่งมีความสอดคล้องกันของค่าผลลัพธ์การคำนวณที่ได้รับ จากซอฟต์แวร์ EMTP และในซอฟต์แวร์ Groza มากขึ้น

3. วิเคราะห์ผลการคำนวณแบบจำลอง

วิธีการคำนวณโดยอย่างง่ายที่ได้อธิบายไว้ข้างต้น ได้ถูก นำมาใช้งานในซอฟต์แวร์ Groza (ดังรูปที่ 7) สำหรับการ คำนวณประสิทธิภาพฟ้าผ่าของสายส่งด้วยซอฟต์แวร์ Groza โดยซอฟต์แวร์สามารถจำลองสายส่งแบบวงจรเดียวหรือสอง วงจรได้ในระดับแรงดันสูงถึง 115 kV และแบ่งการจำลอง ออกเป็นส่วน ๆ เพื่อกำหนดระดับการป้องกันฟ้าผ่าของแต่ละ ส่วนของสายส่งโดยมีหรือไม่มีการติดตั้งอุปกรณ์ป้องกันสายส่ง จากฟ้าผ่า

การจัดเรียงทางเรขาคณิตของตัวนำและสายไฟบนเสาส่ง ทั้งหมด ลักษณะรูปทรงและประเภทของเสาส่ง ฉนวนสาย และรูปแบบการเกิดฟ้าผ่าในพื้นที่นั้นถูกกำหนดให้เป็น พารามิเตอร์อินพุตสำหรับการคำนวณของซอฟต์แวร์ ผลลัพธ์ จากการคำนวณจะบ่งบอกถึงจำนวนครั้งของการเกิดไฟฟ้าดับ เป็นรายปีจากฟ้าผ่าโดยตรงและจากแรงดันเกินเนื่องจากการ เหนี่ยวนำ เพื่อนำข้อมูลเหล่านี้ไปใช้สำหรับการประเมิน ประสิทธิภาพฟ้าผ่าของสายส่ง และเพิ่มระดับการป้องกันฟ้าผ่า ของสายส่ง

รูปที่ 7 หน้าจอแสดงผลของซอฟต์แวร์ Groza

4. สรุป

การคำนวณประสิทธิภาพฟ้าผ่าของสายส่งด้วยวิธีอย่าง ง่ายได้ถูกนำเสนอในบทความ โดยวิธีนี้ใช้รูปแบบการวิเคราะห์ ด้วยค่าขั้นต่ำของอินพุตพารามิเตอร์ของสายส่ง และ จำเป็นต้องกำหนดขอบเขตของการประมาณประสิทธิภาพ ฟ้าผ่า วิธีการนี้ช่วยในการกำหนดจำนวนครั้งที่เกิดไฟฟ้าดับใน แต่ละปีจากฟ้าผ่าโดยตรงที่เสาส่งหรือฟ้าผ่าที่จุดกึ่งกลางระยะ ระหว่างเสาส่ง แนวทางนี้อาจใช้ในการประเมินการเพิ่มระดับ การป้องกันฟ้าผ่าในสายส่งด้วยการติดตั้งอุปกรณ์ป้องกันและ เพื่อหารูปแบบการจัดวางอุปกรณ์บนเสาส่งที่เหมาะสม การ เปรียบเทียบการคำนวณความน่าจะเป็นของการเกิดวาบไฟ ย้อนกลับของสายส่งทั้งสามเฟสโดยวิธี Monte Carlo ใน ซอฟต์แวร์ ATP-EMTP ตามรูปแบบวงจรสมมูลของสายส่ง เหนือศีรษะ 35 kV แสดงให้เห็นการเปรียบที่ยบที่เหมาะสม ของค่าความน่าจะเป็นอย่างครอบคลุมมากที่สุดสำหรับการ ประเมินประสิทธิภาพฟ้าผ่าของสายส่งเหนือศีรษะ โดยวิธีการ นี้ถูกนำมาใช้ในซอฟต์แวร์ Groza ซึ่งสามารถเป็นซอฟต์แวร์

แนะนำสำหรับวิศวกรออกแบบสายส่งและสำหรับบริษัทที่ดูแล ควบคุมสายส่งอยู่

เอกสารอ้างอิง

- [1] P. Malicki, A. Mackow, M. Kizilcay, "Estimating the lightning performance of a multi-circuit transmision tower", 33rd ICLP, 2016.
- [2] L. Zejun, G. Shanqiang, Z. Chun, "Calculation of lightning trip-out rates for 10kV overhead distribution line", 32nd ICLP, 2014.
- [3] N. Filipe, C. Cardoso, J. Mendes, A. Leiria, D. Duarte, L. Perro, M. M. Fernandes, "A methodology for estimating transmission lines lightning performance using a statistical approach", 33rd ICLP, 2016
- [4] D. Belko, M. Zhitenev, "Implementation of the Analytical Method for the Lightning Performance Assessment of Power Line with Line Lightning Protection Devices", 15th SIPDA, 2019
- [5] IEEE Guide for Improving the Lightning
 Performance of Electric Power Overhead
 Distribution Lines, IEEE Std. 1410-2010.
- [6] D.O. Belko, G.V. Podporkin, "Analysis of current distribution among long-flashover arresters for 10 kV overhead line protection against direct lightning strikes", 33rd ICLP, 2016.