19CSE303 Embedded Systems Project Documentation

Department of Computer Science and Engineering Amrita School of Computing, Amrita Vishwa Vidyapeetham, Coimbatore, India.

Team Members:

Roll Number	Name
CB.EN.U4CSE22424	Nadimpalli Venkata Sai Kiran Varma
CB.EN.U4CSE22440	Soma Sika Pravallika
CB.EN.U4CSE22444	Suman Panigrahi
CB.EN.U4CSE22457	Sravani Oruganti

Project Overview

This project implements two embedded applications using the STM32 microcontroller: a temperature and motion detection system, and a servo motor controller. The detection system monitors temperature, motion, and ambient light levels using various sensors, with LEDs indicating specific conditions. The servo controller adjusts motor angles from 0° to 180° using PWM signals, providing precise positioning.

Application 1: Temperature and Motion Detection System

The temperature and motion detection system uses sensors to monitor environmental conditions and triggers LEDs based on detected values:

• **DHT11 Sensor**: Measures temperature.

PIR Sensor: Detects motion.

Light Sensor: Monitors ambient light.

LED Indicators:

- PC13: Onboard LED, activated by motion detection.
- **PB9**: External LED, responds to ambient light conditions.
- PC14: External LED, blinks if the temperature exceeds a set threshold of 27.3 °C.

This system continuously reads the sensors and updates the LEDs based on the current environmental conditions.

Application 2: Servo Motor Control

This application controls the position of a servo motor through PWM signals generated by Timer 2 on GPIO PA5. Using the Servo_SetAngle() function, the servo motor's angle is precisely adjusted, allowing for control within a 0° to 180° range.

The motor's angle is set by calculating the necessary pulse width for each desired position, showcasing direct hardware control through register manipulation.

Components Used

- Microcontroller: STM32F401CCU6 Minimum System Board
- Sensors: DHT11 Temperature & Humidity Sensor, PIR Motion Sensor, Light Sensor
- LEDs: Onboard LED (PC13), External Indicator LEDs (PC14, PB9)

• **Servo Motor**: TowerPro SG90 Mini Servo (180° Rotation)

How to Build and Deploy

- 1. **Setup**: Use STM32CubeIDE or Keil uVision with STM32 libraries.
- 2. **Compilation**: Compile the code and flash it to the STM32 board.
- 3. **Execution**: Run the program on the STM32 board, observing the LED responses and servo motor movement based on sensor data.

Images

