Part 1: Waveforms
Appendix A

LFSR Waveform: note the seed_en tick, the data_done tick, and data, the stream of random values

Appendix B

	999,995 ps	999,996 ps	999,997 ps	999,998 ps	999,999 ps	1,000,000 p
0						
0						
0						
80			80			3
07			07			<u> </u>
01			01			3
fd			fd			<u> </u>
37			37			ā
10000 ps			10000 ps			5
						_
	0 0 80 07 01 fd 37	0 0 80 07 01 fd 37	0 0 80 07 01 fd 37	0	0	0

Extended GCD waveform: note a and b are coprime (g_out = 1)

Appendix C

Name	Value	1 1	1, 000 ,999,996	ps '	1,000,999,998	ps '
¼ clk	0					
¼ new_data	0					
> 🕷 a_in[7:0]	129			129		
> 😼 b_in[7:0]	3			3		
> 😼 q_out[7:0]	43			43		
> 🕷 r_out[7:0]	00			00		
⅓ clk_period	10000 ps			10000 ps		

Modulus Waveform: note that 129/3 = 43 and 129 % 3 = 0

Appendix D

Name	Value	999,992 ps	999,993 ps	999,994 ps	999,995 ps	999,996 ps	999,997 ps	999,998 ps	999,999 ps
¼ clk	0								
¼ done	0								
¼ en	0								
> 😼 x[3:0]	5				5				
> 😼 y[3:0]	7				7				
> 🖷 p[3:0]	d	7			d			•	
> 🕷 mod_exp[3:0]	8	_	_		8				
¼ c_num_bits	4				4				

Modular Exponentiation Waveform: note that $x^y \% p = mod_exp$

Appendix E

PQ Generation Waveform: note that p and q both get prime values

Appendix F

Rabin-Miller Primality Waveform 187 is not prime -> prime_out = 0

Appendix G

Miller-Rabin Primality Waveform: 137 is prime
-> prime_out = 1

Appendix H

rsatop (entire project) hierarchy: Look at the modularization of components

Appendix I

Generate key: Proof that our keys are correct. (e*d)modn = 1, as a property of RSA. Wolfram Alpha affirms this is the case

Appendix J

SerialRx Waveform: Look at rx_data, that's the finial value after the second RsRx packet

Part 2: State Machines

Appendix K

PQ Generation State Machine

Appendix L

Key Generation State Machine

Appendix M

RSA Top State Machine

Appendix N

Modular Exponentiation State

Appendix O

Rabin-Miller State Machine

Appendix P

Modulus State Machine

Appendix Q

Extended GCD State Machine

Appendix R

SerialRX State Machine

Part 3: Block Diagrams

Appendix S

Modulus Block Diagram

Appendix T

Block diagram of extended GCD

Appendix U

RSA top Block Diagram

Appendix V

SerialRx Block Diagram

Appendix W

Pq Generation block diagram

Appendix X

Modular Exponentiation Block Diagram

Appendix Y

Rabin- Miller Block Diagram

Appendix Z

Key Generation Block Diagram

Appendix AA

LFSR Block Diagram

key gen finished key finished

Appendix AC

Resource Utilization

Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.

| Tool Version: Vivado v.2018.3 (lin64) Build 2405991 Thu Dec 6 23:36:41 MST 2018

Date: Tue Jun 4 13:39:19 2019

| Host : mkarch running 64-bit Antergos Linux

| Command : report_utilization -file rsatop_utilization_synth.rpt -pb

rsatop utilization synth.pb

| Design : rsatop

Device: 7a35tcpg236-2
Design State: Synthesized

Utilization Design Information

Table of Contents

- 1. Slice Logic
- 1.1 Summary of Registers by Type
- 2. Memory
- 3. DSP
- 4. IO and GT Specific
- 5. Clocking
- 6. Specific Feature
- 7. Primitives
- 8. Black Boxes
- 9. Instantiated Netlists
- 1. Slice Logic

F8 Muxes		0	0	8150 (0.00
+	+	+-	+	+	+

^{*} Warning! The Final LUT count, after physical optimizations and full implementation, is typically lower. Run opt_design after synthesis, if not already completed, for a more realistic count.

1.1 Summary of Registers by Type

++-	+		++	
Total	Clock Enabl	e Synch	ronous Asynch	ronous
++-	+		++	
0	_1	-	-	
0	_ İ	- j	Set	
0	_ [-	Reset	
0	_	Set	-	
0	_ [Reset	-	
0	Yes	-	-	
0	Yes	-	Set	
2	Yes	-	Reset	
6	Yes	Set	-	
2129	Yes	Rese	t -	
+	+		+	

2. Memory

```
+-----+
| Site Type | Used | Fixed | Available | Util% |
+-----+
| Block RAM Tile | 0 | 0 | 50 | 0.00 |
| RAMB36/FIFO* | 0 | 0 | 50 | 0.00 |
| RAMB18 | 0 | 0 | 100 | 0.00 |
+-----+
```

* Note: Each Block RAM Tile only has one FIFO logic available and therefore can accommodate only one FIFO36E1 or one FIFO18E1. However, if a FIFO18E1 occupies a Block RAM Tile, that tile can still accommodate a RAMB18E1

3. DSP -----+ -----+----+----+----+ | Site Type | Used | Fixed | Available | Util% |

+	+			
DSPs				32.22
DSP48E1			1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
•	٠, ٠	•	I .	
+	+	+		

4. IO and GT Specific

+
Site Type Used Fixed Available Util%
++
Bonded IOB 26 0 106 24.53
Bonded IPADs
Bonded OPADs 0 0 4 0.00
PHY_CONTROL
PHASER_REF
OUT_FIFO
IN_FIFO
IDELAYCTRL
IBUFDS
GTPE2_CHANNEL
PHASER_OUT/PHASER_OUT_PHY 0 0 20 0.00
PHASER_IN/PHASER_IN_PHY
IDELAYE2/IDELAYE2_FINEDELAY 0 0 250 0.00
IBUFDS_GTE2
ILOGIC
++

5. Clocking

```
+----+
| Site Type | Used | Fixed | Available | Util% |
+-----+
| BUFGCTRL | 3 | 0 | 32 | 9.38 |
| BUFIO | 0 | 0 | 20 | 0.00 |
| MMCME2_ADV | 0 | 0 | 5 | 0.00 |
| PLLE2_ADV | 0 | 0 | 5 | 0.00 |
| BUFMRCE | 0 | 0 | 10 | 0.00 |
| BUFHCE | 0 | 0 | 72 | 0.00 |
| BUFR | 0 | 0 | 20 | 0.00 |
```

6. Specific Feature

++ Site Type Used Fixed Available Util%
++
BSCANE2
CAPTUREE2 0 0 1 0.00
DNA_PORT 0 0 1 0.00
EFUSE_USR 0 0 1 0.00
FRAME_ECCE2 0 0 1 0.00
ICAPE2 0 0 2 0.00
PCIE_2_1 0 0 1 0.00
STARTUPE2 0 0 1 0.00
XADC
+

7. Primitives

```
+----+
| Ref Name | Used | Functional Category |
+----+
I FDRE
        | 2129 |
                  Flop & Latch |
LUT2
       | 470 |
                     LUT |
                     LUT |
LUT3
       | 439 |
LUT4
       | 428 |
                     LUT |
      | 291 |
LUT5
                     LUT |
| CARRY4 | 255 |
                    CarryLogic |
LUT6
      | 248 |
                     LUT |
LUT1
      | 163 |
                     LUT |
|DSP48E1 | 29 |
                 Block Arithmetic |
|OBUF | 23 |
                      10 |
| RAMS32 | 16 | Distributed Memory |
                 Flop & Latch |
| FDSE
       | 6|
       | 3|
| IBUF
                     10 |
       | 3|
| BUFG
                    Clock |
LDCE
      | 2|
                 Flop & Latch |
```

8. Black Boxes

++
Ref Name Used
++
9. Instantiated Netlists
++
Ref Name Used

+----+

Appendix AD Explanation of remaining top level synthesis errors

- > (Synth 8-327) inferring latch for variable 'rand_en_en_reg' [miller-rabin.vhd:146] (1 more like this)
- > o [Synth 8-6014] Unused sequential element was removed, [extgcd.vhd:192] (11 more like this)
- > o [Synth 8-3936] Found unconnected internal register 'prime_tester/modexp_component/mod_component/r_out_reg' and it is trimmed from '32' to '16' bits. [mod.vhd:120] (1 more like this)
- > [Synth 8-3917] design rsatop has port generate_key_state driven by constant 0 (2 more like this)
- > 0 [Synth 8-3332] Sequential element (i_2) is unused and will be removed from module keygen. (99 more like this)

(Constraints 18-5210) No constraints selected for write.

Resolution: This message can indicate that there are no constraints for the design, or it can indicate that the used in flags are set such that the constraints are ignored. This later case is used when running synth_design to not write synthesis coresulting checkpoint. Instead, project constraints are read when the synthesized design is opened.

Synth 8-327: Rand en en is intended to be a latch for an enable bit that must change between states, irrelevant of clock

Synth 8-6014: Sequential element because extgcd is instantiated with signals off generic types.

Synth 8-3936: Due to instantiation with generic types Synth 8-3917: Constant 0 for a led light on the FPGA

Synth 8-3332: Keygen does not contain i_2. Confusing errors

Constraints: properly declared a constraint file