### Решение. Все классы

Построим алгоритм решения задачи для произвольного количества заряженных тел.

- 0. Будем говорить далее о головах студентов, приобретших электрический заряд, как о материальных точках, а ряд, по которому они разлетелись, представим в виде горизонтального отрезка длины L. Координатную ось направим вправо вдоль отрезка, а за начало координат примем его левый конец. Занумеруем точки (заряды) слева направо и обозначим через  $x_k$  их координаты,  $k = 1, 2, \ldots, N$ , где N общее количество точек.
- 1. Начнем с того, что итоговое положение двух точек очевидно. Поскольку все заряды имеют один и тот же знак, то все силы, возникающие между ними, являются силами отталкивания. Следовательно, крайние (слева и справа) точки должны в итоге оказаться на краях отрезка. Поэтому можно считать, что всегда  $x_1 = 0$ ,  $x_N = L$ .

Поскольку, согласно условию, начальное положение не влияет на итог процесса, расположим остальные точки на равном расстоянии друг от друга. Тогда их координаты будут

$$x_k = \frac{(k-1)L}{N-1}.$$

2. Отвлечемся от конкретных числовых значений и рассмотрим более общую задачу. Пусть известны координаты всех точек  $x_k$   $(k=\overline{1,N})$  в некоторый момент времени. Нужно найти координаты этих же точек  $y_k$   $(k=\overline{1,N})$  через интервал времени  $t_0=1$  с (величину  $t_0$  нужно прописывать в формулах, чтобы избежать путаницы с размерностью). В соответствии с условием скорость каждой точки равна нулю. Их новое положение определяется уравнением движения

$$y_k = x_k + \frac{a_k t_0^2}{2}, \quad k = \overline{2, N - 1}.$$
 (1)

Здесь учтено, что  $y_1 = x_1 = 0$  и  $y_N = x_N = L$ .

Ускорение точек найдем из второго закона Ньютона

$$m a_k = \sum_{\substack{j=1,\\j\neq k}}^N F_{k,j},$$

который будем записывать в проекции на введенную ось. Через  $F_{k,j}$  обозначена проекция силы, действующей на точку k (на заряд  $q_k$ ) со стороны точки j (заряда  $q_j$ ).

Модуль силы равен

$$|F_{k,j}| = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_k \, q_j}{|x_k - x_j|^2}.$$

Для определения направления силы (иными словами, знака ее проекции) воспользуемся величиной

$$\frac{x_k - x_j}{|x_k - x_j|}.$$

Она равна -1, если точка j находится правее точки k, и +1 в противоположном случае. Собирая все вместе, получаем для ускорения выражение

$$a_k = \frac{F_k}{m}$$
, где  $F_k = \frac{1}{4\pi\varepsilon_0} \cdot \sum_{\substack{m=1, \ m \neq k}}^N \frac{q_k \, q_j (x_k - x_j)}{|x_k - x_j|^3}, \quad k = \overline{2, N - 1}.$  (2)

После того, как по формулам (1) и (2) будут найдены новые положения всех точек через одну секунду, можно повторить те же действия и найти их положение по прошествии еще одной секудны и так далее.

3. Запишем первый вариант построенного алгоритма вычислений.

```
Алгоритм «Улетный» (пре альфа-версия)
Начало алгоритма
Задать L, m, t_0, N; q_k (k = \overline{1, N})
ДЛЯ k ОТ 1 ДО N
    x_k = \frac{(k-1)L}{N-1}
S = 0
\PiOKA S меньше заданного количества шагов
     Для каждой k-ой точки выполнить:
     ДЛЯ k ОТ 2 ДО N-1
          Найти равнодействующую:
          F = 0
          ДЛЯ і ОТ 1 ДО N
         F = F + \frac{q_k \, q_j (x_k - x_j)}{|x_k - x_j|^3} F = F \cdot \frac{1}{4\pi\varepsilon_0} Halford
               ЕСЛИ j \neq k
         Найти ускорение:
          a = F/m
         Найти новое положение: y_k = x_k + \frac{a\,t_0^2}{2}
         Пересохранить новое положение:
         x_k = y_k
     S = S + 1
```

## Конец алгоритма

Вывести  $x_k$ 

В алгоритме отсутствует индексация сил и ускорений, т.к. эти величины имеют вспомогательный характер и запоминать их для каждой точки нет необходимости.

4. Написанный алгоритм выполняет указанное количество шагов, каждый из которых соответствует очередной секунде процесса.

Выполнив этот алгоритм для одного и для двух шагов, получим ответы на 2 вопрос.

Однако количество шагов, необходимое для нахождения конечных положений точек, неизвестно заранее. Поэтому требуется другое условие выхода из внешнего цикла. Его можно обнаружить в условии задачи, согласно которому можно пренебрегать перемещениями, не превосходящими величины d=0.05 м. Как только будет обнаружено, что все точки сместились на столь малую величину, расчет следует прекратить.

Для этого в алгоритм нужно ввести логическую переменную-ключ, которая будет истиной, если все перемещения  $y_k - x_k$  по модулю не превышают d, и ложью, если хотя бы одно превышает. Назовем эту пременную Key и дополним алгоритм описанными действиями.

Еще один момент, не учтенный в алгоритме, состоит в том, что после очередного шага какие-то две точки могут оказаться в одном месте. Это приведет к делению на ноль в формуле (2) и аварийному завершению работы программы. Чтобы избежать этого, воспользуемся тем, что расчет носит приближенный характер и не претендует на точное описание движения точек (но, вместе с тем, выдает верно их окончательное положение). Поэтому будем попросту игнорировать вклад точки j в равнодействующую, если ее положение совпадает с положением точки k.

Запишем окончательный вариант алгоритма, добавив в него два дополнения и убрав комментарии.

# Алгоритм «Улетный» (релиз) Начало алгоритма Задать $L, m, t_0, N; x_k, q_k (k = \overline{1, N})$ Key = ЛОЖЬ ПОКА Key = ЛОЖЬ Key = ИСТИНА ДЛЯ k ОТ 2 ДО N-1 F = 0 ДЛЯ j ОТ 1 ДО N $EСЛИ (j \neq k)$ и $(x_j \neq x_k)$ $F = F + \frac{q_k q_j(x_k - x_j)}{|x_k - x_j|^3}$ $F = F \cdot \frac{1}{4\pi\varepsilon_0}$ a = F/m $y_k = x_k + \frac{a t_0^2}{2}$ Key = Key И $(|y_k - x_k| \leq d)$ $x_k = y_k$

Вывести  $x_k$ 

### Конец алгоритма

Запустив алгоритм, найдем ответ на третий вопрос.

5. (Только 10 класс.) Для получения ответа на 4-й вопрос необходимо провести вычислительный эксперимент. Будем запускать программу при различных значениях  $q_5$  и следить за тем, когда координаты всех остальных точек станут не больше, чем 2L/3.

Для этого можно, например, монотонно увеличивать величину  $q_5$  с шагом  $\Delta q=10^{-3}$  мКл (можно даже автоматизировать процесс). Можно применить другую стратегию: подобрать любое значение  $q_5$ , при котором остальные точки группируются в нужной части отрезка, а затем подбирать (например, бисекцией) величину  $q_5$  с заданной точностью. Возможны и другие подходы.

- 5. (Только 11 класс.) Для получения ответа на 4-й вопрос достаточно запустить алгоритм для четырех зарядов, т.е. при N=4. При грамотном кодировании это не должно требовать внесения изменений в текст программы.
- 6. Если провести расчеты по приведенным алгоритмам, то получим следующий округленный

#### Ответ:

1, 2. Координаты на первых шагах расчета (в метрах, округленно)

|                  | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ |
|------------------|-------|-------|-------|-------|-------|
| начальный момент | 0     | 3     | 6     | 9     | 12    |
| через $t_0$      | 0     | 4,28  | 6,82  | 9,50  | 12,00 |
| через $2t_0$     | 0     | 4,50  | 7,17  | 9,84  | 12,00 |

3. Окончательное положение (в метрах, округленно)

- 4. (10) Искомый заряд Q = 0.91 мКл.
- 4. (11) Новое окончательное положение (в метрах, округленно)