CPU 设计: 8008

luoyin

目录

	字设计	5
1.1	子程序设计	 5
1.2	指令组成	 5
1.3	指令执行状态变化	 7
1.4	微指令设计	 7
	1.4.1 微指令组成	 7
	1.4.2 指令分类	 7
	1.4.3 微程序分类与跳转	 7
	1.4.4 微指令转移	 7
	1.4.5 微指令转移方式	 8
	1.4.6 微指令转移方式	 8
	1.4.7 跳转设计	 10
	1.4.8 微指令设计	 10

4 目录

Chapter 1

微程序设计

1.1 子程序设计

- IF (Instruction Fetch): T1-T2-T3 (PCI)
- MW (Memory Write): T1-T2-T3 (PCW)
- RR (Register Read): T4
- RW (Register Write): T5
- PCU (PC Update): T4-T5
- IOR (I/O Read): T3-T4-T5

1.2 指令组成

表 1.1: 指令组成

指令	指令码	组成
Lrr	11DDDSSS	PCO(PCL-PCH)-IF-rR-rW
$_{ m LrM}$	11DDD1111	PCO(PCL-PCH)-IF-MA(rLO-rMO)-MR-X1-rW
LMr	111111SSS	PCO(PCL-PCH)-IF-rR-MA(rLO-rMO)-MW
LrI	00DDD110	PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-X1-rW
INr/DCr	V00DDD00V	PCO(PCL-PCH)-IF-X1-rW
ALU OP r	10PPPSSS	PCO(PCL-PCH)-IF-rR-rW
ALU OP M	10PPP1111	PCO(PCL-PCH)-IF-MA(rLO-rMO)-MR-X1-rW
ALU OP I	00PPP100	PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-X1-rW
ROT	000VV010	PCO(PCL-PCH)-IF-X1-rW
JMP	01XXX100	PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-PCO(PCL-PCH)-IMMa-PCU(PCHU-PCLU)
m JFc/JTc	01VCC000	PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-PCO(PCL-PCH)-IMMa-PCUc(PCHU-PCLU, c)
CAL	01XXX110	PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-PCO(PCL-PCH)-IMMa-PCU(PCHU-PCLU)
m CFc/CTc	01VCC010	PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-PCO(PCL-PCH)-IMMa-PCUc(PCHU-PCLU, c)
RET	00XXX1111	PCO(PCL-PCH)-IF-POP-X2
m RFc/RTc	00VCC011	PCO(PCL-PCH)-IF-POPc(c)-X2
INP	0100MMM1	PCO(PCL-PCH)-IF-IO(rAO-rBO)-IOb-CO-rW
OUT	01RRMMM1	PCO(PCL-PCH)-IF-IO(rAO-rBO)-X0
HLT	X0000000	PCO(PCL-PCH)-IF
HLT	11111111	PCO(PCL-PCH)-IF

1.3. 指令执行状态变化 7

1.3 指令执行状态变化

1.4 微指令设计

1.4.1 微指令组成

- 状态码 (3 位)
- 寄存器组操作 (2位): 输出使能, 写使能

•

1.4.2 指令分类

- $D_7D_6 = 00$: 特殊指令
 - $-D_2D_1D_0 = 000$: HLT
 - $-D_2D_1D_0 = 001$: HLT
 - $-D_2D_1D_0 = 010$: ROT
 - $-D_2D_1D_0 = 011$: RFc/RTc
 - $D_2 D_1 D_0 = 100$: ALU OP I
 - $-D_2D_1D_0 = 101$: RST
 - $D_2 D_1 D_0 = 110: LrM/LrI$
 - $-D_2D_1D_0 = 111$: RET
- $D_7D_6=01$: 跳转指令
 - $-D_2D_1D_0 = 000$: JFc/JTc
 - $-D_2D_1D_0 = 010$: CFc/CTc
 - $-D_2D_1D_0 = 100$: JMP
 - $-D_2D_1D_0 = 110$: CAL
 - $-D_2D_1D_0 = XX1$: INP/OUT
- $D_7D_6 = 10$: 算术指令
- $D_7D_6 = 11$: 寄存器指令

1.4.3 微程序分类与跳转

使用 D_7D_6 进行一次分组, 使用 $D_2D_1D_0$ 进行二次分组

1.4.4 微指令转移

微指令转移按照如下计算规则:

$$A_{i} = \mu A_{i} + \sum P_{i}^{I} I_{i} + \sum P_{i}^{S} S_{i} + \sum P_{i}^{C} C_{i}$$
(1.1)

其中, μA_i 为微指令中的下一指令段, P 为微指令中的控制段, 按作用类型不同分为指令控制段 P_i^I , 状态控制段 P_i^S , 和条件控制段 P_i^C , I_i 为指令寄存器的位段, S_i 为状态寄存器的位段, C_i 为条件判定寄存器的位段.

1.4.5 微指令转移方式

- 直接转移: 微指令中的控制段均为 0, 微指令运行下一指令直接由微指令中的 μA_i 段决定.
- 按指令转移: 微指令中的指令控制段 P_i^I 不为 0, 此时, 微指令中的 μA_i 段决定跳转时的基址, $\sum P_i^I I_i$ 决定偏移量.
- 按状态转移: 微指令中的状态控制段 P_i^S 不为 0, 此时, 微指令中的 μA_i 段决定跳转时的基址, $\sum P_i^S S_i$ 决定偏移量.
- 按条件转移: 微指令中的条件控制段 P_i^C 不为 0, 此时, 微指令中的 μA_i 段决定跳转时的基址, $\sum P_i^C C_i$ 决定 偏移量.
- 复合转移: 微指令中的 μA_i 段决定跳转时的基址, 结合指令控制段 P_i^I , 状态控制段 P_i^S , 和条件控制段 P_i^C 综合决定偏移量.

1.4.6 微指令转移方式

表 1.2: 微程序表

第			1年3月		\ \ \ \ \ \	
四年 阪拝学 仏珍 切彫			<u>'</u> _	-	1 4 6	转移关望
PCL T1 PCL输出 PCH	PCL 输出		PC	Н	T2	直接转移
PCH T2 PCH 输出 IF,	PCH 输出		Ħ,	IF, IMMa, IMMb	T3, WAIT	状态转移
IF T3 DATA to IR and regB rR		DATA to IR and regB rR	rR	DATA to IR and regB rR, rLO, PCL, POP, POPc, rAO, X1	T4, T1, HLT	指令转移, 状态转移, 条件转移
rR T4 reg Read rW	reg Read		$^{ m rW}$	rW, rLO	T5, T1, HLT	指令转移, 状态转移
rW T5 reg Write PCL	reg Write		PC	۔	T1, INT	指令转移, 状态转移
rLO T1 reg L Out rHO	reg L Out		$_{\rm rH}$	0	T2	直接转移
rHO T2 reg H Out MI	reg H Out		M	MR, MW	T3, WAIT	指令转移, 状态转移
MR T3 Memory Read X1	Memory Read	ad	X		T4	直接转移
MW T3 Memory Write P0	Memory Write	rite	Ъ(PCL	T1, INT	状态转移

1.4.7 跳转设计

1.4.7.1 IF 跳出

跳出指向

- rR: Lrr+LMr (11VVVSSS), ALU op r (10PPPSSS), 合并 (1XXXXSSS, SSS<>111)
- rLO: LrM (11DDD111, DDD<>111), ALU op M (10PPP111)
- rAO: INP+OUT (01XXXXX1)
- POP: RETURN (00XXXX11)
- PCL: JUMP, CALL (01XXXXX0)
- PCL(next): HLT, INT, NORMAL
- X1: INr/DCr

1.4.8 微指令组合逻辑

• srcM: $D_2D_1D_0$

• dstM: $D_5D_4D_3$

1.4.9 微指令表

ぎ 1.3: 微指令表

	_									
	0	П	×	×	×	×	×	×	×	×
	\vdash	0	×	×	×	×	×	×	×	×
μA	2	0	×	×	×	×	×	×	×	×
	3	0	×	1	×	×	×	×	×	×
	4	0	×	0	×	×	×	×	×	×
	0	0	0	×	×	0	0	0	0	0
Ы	П	0	0	×	×	0	0	0	0	0
	2	0	0	×	×	0	0	0	0	0
	0	0	0	-	\vdash		\vdash	0	0	0
\mathbf{o}	1	1	0	0	1	1	1	1	1	П
	2	0	1	0	1	1	1	0	0	0
ツ 24t 4m/	返 有令	PCL	PCH	IF	$_{ m rR}$	POP	X1	rLO	rAO	PCL2
114 171	TR ATE	00000	00001	00010	01000	01001	01010	01100	01101	01110