# 第一章顏色、色彩轉換與浮水印

## 內容

- ■1.1 前言
- 1.2 光與顏色
- 1.3 色彩轉換
- ■1.4 隱像術/浮水印的應用
- 1.5 作業

# 1.1 前言

- ■光的特性和組成。
- ■五種彩色模式的轉換。
- 隱像術(Image Hiding)。
- 浮水印(Watermark)。

# .

## 1.2 光與顏色

- 可見光的頻率範圍介於400×10°米到700×10°米之間。
- 低頻率的紅光和高頻率的紫光的亮度都不如比較中間頻率的黃綠 光來的強。



圖1.2.1 亮度與頻率的關係

# и.

# 1.3 色彩轉換

- (1)**RGB** (2)**YIQ** (3)**HSV** (4)**YUV** (5)**YCbCr** ∘
- RGB ←→YIQ

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.523 & 0.311 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$
(1.3.1)



範例 1.3.1:

$$(R, G, B) = (100, 50, 30),$$
  $\chi$   $\text{ Multiple} = ?$ 

$$Y = 0.299 \times 100 + 0.587 \times 50 + 0.114 \times 30 \approx 63$$



### 範例 1.3.2:

RGB 影像
$$I = \begin{bmatrix} (10, 20, 40) & (40, 30, 20) \\ (100, 150, 200) & (50, 250, 120) \end{bmatrix}$$
, YIQ影像=?

$$\begin{split} Y_{11} = &0.299 \times 10 + 0.587 \times 20 + 0.114 \times 40 = 19.29 \\ I_{11} = &0.596 \times 10 - 0.275 \times 20 - 0.321 \times 40 = -12.38 \\ Q_{11} = &0.212 \times 10 - 0.523 \times 20 + 0.311 \times 40 = 4.1 \\ I_{YIQ} = \begin{bmatrix} (19, -12, 4) & (32, 9, -1) \\ (141, -46, 5) & (175, -77, -83) \end{bmatrix} \end{split}$$



圖1.3.1 彩色 Lena 影像



圖1.3.2 轉換後的高灰階 Lena 影像

# м

#### ■ RGB←→HSV

$$H_{1} = \cos^{-1} \left\{ \frac{0.5[(R-G)+(R-B)]}{\sqrt{(R-G)^{2}+(R-B)(G-B)}} \right\}$$

$$H = H_{1} \text{ if } B \leq G$$

$$H = 360^{\circ} - H_{1} \text{ if } B > G$$

$$S = \frac{Max(R,G,B) - Min(R,G,B)}{Max(R,G,B)}$$

$$V = \frac{Max(R,G,B)}{255}$$
(1.3.2)

■ 在HSV系統中,H代表色調,S代表飽和度,V代表亮度。 H=0°時代表紅色,H=120°時代表綠色,H=240°時代表藍色。 當S=0時,表示影像為灰階式的影像。當H=0°且S=1時,影 像為深紅色。



圖1.3.3 HSV 彩色系統



## ■ YUV ←→ YIQ

$$I = -U \sin(33^{\circ}) + V \cos(33^{\circ})$$
  
 $Q = U \cos(33^{\circ}) + V \sin(33^{\circ})$ 

#### ■ RGB **←→** YCbCr

$$C_b = (B-Y)/2 + 0.5$$
  
 $C_r = (R-Y)/2 + 0.5$ 



## 範例 1.3.3:

如何利用色調範圍來過濾皮膚色?



# 1.4 隱像術/浮水印的應用



圖1.4.1 彩色 Lena 影像的三張分解圖



(a) 第一張位元平面



(c) 第三張位元平面



(b) 第二張位元平面



(d) 第四張位元平面



(e) 第五張位元平面



(g) 第七張位元平面



(f) 第六張位元平面



(h) 第八張位元平面

圖1.4.2 高灰階 Lena 影像的八張分解平面



圖1.4.3 圖1.4.2(e) ~ (h) 的合成影像



範例 1.4.1:

給一如下的4 x4子影像,第三張位元平面=?

| 8  | 7  | 6  | 5  |
|----|----|----|----|
| 32 | 31 | 30 | 29 |
| 10 | 11 | 12 | 13 |
| 0  | 1  | 2  | 3  |

| 00001000 | 00000111 | 00000110 | 00000101 |
|----------|----------|----------|----------|
| 00100000 | 00011111 | 00011110 | 00011101 |
| 00001010 | 00001011 | 00001100 | 00001101 |
| 00000000 | 00000001 | 00000010 | 00000011 |

## 第三張位元平面

| 0 | 1 | 1 | 1 |
|---|---|---|---|
| 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 |



## 範例 1.4.2:

捨去低位元平面的隱像術之優缺點為何?

#### 解答:

單程函數 (One way Function)



缺點:經過壓縮後,所植入的影像很容易受到破壞。



#### PSNR

令B'為將A隱藏在B後的結果。PSNR (Peak Signal-to-Noise Ratio) 很常被用來評估B'和B的相似性,PSNR的定義如下:

$$PSNR = 10\log_{10} \frac{255^{2}}{MSE}$$

$$MSE = \frac{1}{N^{2}} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} (B'(x, y) - B(x, y))^{2}$$

#### ■ 浮水印

而所謂的浮水印,可把 A 看成標誌(Logo),通常這個標誌可想成一種版權。



## 範例 1.4.3:

假設每一個位元組(Byte)可以隱藏一個位元。我們的 隱像術規則為:

- 1. 若從浮水印讀出來的位元為 0,則原影像的對應位元組之最後 兩位元由 01→00,或 10→11。
- 2. 若從浮水印讀出來的位元為1,則原影像的對應位元組之最後 兩位元由00→01,或11→10。
- 3. 其餘情況則保持原狀。

## 原影像為

| 24 | 7  | 21 | 9  |
|----|----|----|----|
| 42 | 8  | 66 | 39 |
| 34 | 10 | 12 | 13 |
| 17 | 2  | 5  | 23 |

我們想隱藏以下的浮水印

| 1 | 0 | 0 | 1 |
|---|---|---|---|
| 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 |



依照上述的浮水印隱藏規則,請求出加入浮水印後的十進位影像。

| 24(1) | 7(0)  | 21(0) | 9(1)  |
|-------|-------|-------|-------|
| 42(1) | 8(0)  | 66(1) | 39(0) |
| 34(0) | 10(1) | 12(0) | 13(0) |
| 17(0) | 2(0)  | 5(1)  | 23(1) |

- 浮水印(0)
- **■** 01→00
- **■** 10→11
- 浮水印(1)
- **■** 00→01
- **■** 11→10

| 00011000(1) | 00000111(0) | 00010101(0) | 00001001(1) |
|-------------|-------------|-------------|-------------|
| 00101010(1) | 00001000(0) | 01000010(1) | 00100111(0) |
| 00100010(0) | 00001010(1) | 00001100(0) | 00001101(0) |
| 00010001(0) | 00000010(0) | 00000101(1) | 00010111(1) |



| 25 | 7  | 20 | 9  |
|----|----|----|----|
| 42 | 8  | 66 | 39 |
| 35 | 10 | 12 | 12 |
| 16 | 3  | 5  | 22 |



## 範例 1.4.4:

如何在臉部上找出眼睛和嘴巴的部位?解答:



水平投射法 (Horizontal Projection): 推估(a,b)區間為眼部所在,而(c,d)區間為嘴巴所在。





# 1.5 作業

■ 作業一: 寫一程式以實作1.4節所提的植基於位元 平面之浮水印。

■ 作業二:利用一組訓練用的人臉,估算出人臉的色調範圍。