

Machine Learning and Solubility Prediction

Dr Bao N. Nguyen

Dec 2021

Why solubility?

 Aqueous solubility is an important ADMET property for drug candidates (linked to bioavailability).

It's surprisingly difficult to predict!

The challenges of solubility prediction

Solubility Challenge: Can You Predict Solubilities of 32 Molecules Using a Database of 100 Reliable Measurements?

Antonio Llinàs*, Robert C. Glen and Jonathan M. Goodman*

View Author Information ∨

Cite this: J. Chem. Inf. Model. 2008, 48, 7. 1289-1303 Publication Date: July 15, 2008 V

https://doi.org/10.1021/ci800058v

Copyright © 2008 American Chemical Society

RIGHTS & PERMISSIONS

Article Views	Altmetric	Citations						
3580	3	105						
LEARN AROUT THESE METRICS								

Solubility Challenge Revisited after Ten Years, with Multilab Shake-Flask Data, Using Tight (SD ~ 0.17 log) and Loose (SD ~ 0.62 log) Test Sets

Antonio Llinas and Alex Avdeef*

Cite this: J. Chem. Inf. Model. 2019, 59, 6. 3036-3040

Publication Date: May 1, 2019 V

https://doi.org/10.1021/acs.jcim.9b00345

Copyright © 2019 American Chemical Society

RIGHTS & PERMISSIONS

Article Views Altmetric Citations 1454

LEARN ABOUT THESE METRICS

Export

The challenges of solubility prediction

Is Experimental Data Quality the Limiting Factor in Predicting the Aqueous Solubility of Druglike Molecules?

David S. Palmer*† and John B. O. Mitchell*‡

Mol. Pharmaceutics, 2014, 11 (8), pp 2962-2972

DOI: 10.1021/mp500103r

Publication Date (Web): June 11, 2014

Copyright © 2014 American Chemical Society

- Typical experimental error is LogS \pm 0.5-0.7
- Traditional metrics R² and RMSE can be misleading given the errors in the training data
- Two predictive thresholds (%LogS \pm 0.7 and %LogS \pm 1.0) are used to evaluate the models

[†] Department of Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland G1 1XL, U.K.

[‡] Biomedical Sciences Research Complex and EaStCHEM School of Chemistry, University of St. Andrews, Purdie Building, North Haugh, St. Andrews, Scotland KY16 9ST, U.K.

Approach in Nguyen group

 DFT (B3LYP/6-31+G(d)) was used to generate the descriptors for 900 compounds

Initial model metrics

Water_set_wide (LogS = -12 - 2)

Metric	MLR	PLS	ANN	SVM	GP	RF	ET	Bag	Stdev
R^2	0.80	0.80	0.90	0.89	0.88	0.90	0.92	0.90	0.01
RMSE	1.15	1.16	0.83	0.85	0.89	0.81	0.73	0.81	0.05
%LogS±0.7	50.5	52.6	58.9	71.6	68.4 (91.6)	58.9	63.2	57.9	5.69
%LogS±1.0	66.3	67.4	77.9	80.0	74.7 (94.7)	82.1	82.1	82.1	1.88

 The predictions using non-linear methods are very similar, and depends on the training data and descriptors far more than on the ML method

Importance of each descriptor

Impact of skipping descriptors in H₂O

- Important descriptors: MW, molar volume, △G_{sol}, SASA, most_neg, Het_charges
- Which one can be more accurately calculated?

Improvement of solvation energy

Method	R ²	RMSE	%LogS ±0.7	%LogS ±1.0	R ²	RMSE	%LogS± 0.7	%LogS ±1.0
	Old descriptors (PCM solvation model)			on New descriptors (HF SMD solvation model)				
ANN	0.90	0.84	58.9	78.9	0.91	0.81	68.4	84.2
SVM	0.89	0.85	71.6	78.9	0.90	0.82	72.6	83.2
RF	0.90	0.83	60.0	75.8	0.90	0.82	63.2	80.0
ET	0.93	0.71	66.3	84.2	0.93	0.70	69.5	84.2
Bag	0.90	0.82	57.9	76.8	0.90	0.83	65.3	81.1
GP	0.88	0.89	68.4	73.7	0.90	0.80	70.5	82.1

- *Water_set_wide* (LogS = -12 to 2)
- PCM = Polarizable continuum model (*Chem. Rev.* **2005**, *8*, 2999)
- SMD = Solvent model based on density (J. Phys. Chem. B 2009, 113, 6378)

Improvement of solvation energy

• *Water_set_wide* (LogS = -12 to 2)

Benchmarking in H₂O

AQUASOL and
EPISUITE are
standard FDA
tools for solubility
prediction

Project details

- We want to explore other approaches to interpretable Machine Learning models for solubility prediction
- You will be given datasets generated by molecular modelling on the same
 900 compounds
- Details on algorithms, code (R, Python) will be guided by Dr Gusnanto and Dr Cutillo