- 9. 本当にすごいシステムができたの?
- 9.1 未知データに対する認識率の評価
- ・パターン認識システムの評価
 - ◆ 学習データに対して識別率 IOO%でも意味がない
 - ◆ 未知データに対してどれだけの識別率が期待できるかが評価の ポイント
 - → どうやって未知データで評価する?

9.1.1 分割学習法

- 手順
 - lacktriangle 全学習データ χ を学習用データ集合 χ_T と評価用データ集合 χ_E に分割する
 - $\bullet \chi_T$ を用いて識別機を設計し、 χ_E を用いて識別率を推定する

9.1.1 分割学習法

- 利点
 - ◆ 評価が容易
- 欠点
 - ◆ 学習に用いるデータ数が減るので、識別性能が低く見積もられる
 - ◆ 評価に用いるデータ数が少ない場合、識別率の推定精度は低い

9.1.2 交差確認法

- 手順
- $I. \chi$ をm個のグループ $\chi_1,...,\chi_m$ に分割する
- 2. χ_i を除いた(m-1)個のグループで学習し、 χ_i を用いて識別率を算出する
- 3. この手順をすべてのiについて行い、m個の識別率の平均を識別率の推定値とする

9.1.2 交差確認法

9.1.2 交差確認法

- 利点
 - ◆ 分割学習法に比べ、識別率の推定精度は高い
- 欠点
 - ◆ 評価に時間がかかる
 - ◆ 分割数が少ない場合、分割が異なると評価値が大きくぶれる
- 一つ抜き法
 - ◆ 要素数が I となるように分割する方法
 - ◆ 時間はかかるが最も信頼できる交差確認法
- 例題9.1

9.2 システムを調整する方法

- システムの性能向上のために
 - ◆ 前処理部、特徴抽出部、識別部のどこに性能低下の原因がある かを探る

9.2.1 前処理部の確認

- 情報劣化のチェック
 - ◆ サンプリング周波数や量子化ビット数が適切か
- 信号取り込み部のチェック
 - ◆ マイクの入力レベルやカメラのキャリブレーション
 - ◆ 突発的な異常入力に対しては誤動作の防止が必要
- ノイズ除去のチェック
 - ◆ 原信号への影響を確認

- クラスが特徴空間上で完全に分離されているのに認識率が 低い場合
 - → 識別部を再設計(識別関数の学習)

- クラスの分布間に重なりがある場合
 - → 特徴抽出部を再設計(特徴の評価)

- クラス内分散・クラス間分散比
 - ◆ 選択した特徴の評価法
 - ◆ 特徴空間の評価法でクラス毎のデータの広がり方を評価する 尺度
 - ◆ 同じクラスのデータはなるべく接近し、異なるクラスのデータは なるべく離れているものが高い値を取るようにする

・クラス内分散

$$\sigma_W^2 = \frac{1}{n} \sum_{i=1}^c \sum_{\boldsymbol{x} \in \gamma_i} (\boldsymbol{x} - \boldsymbol{m}_i)^T (\boldsymbol{x} - \boldsymbol{m}_i)$$
 \boldsymbol{m}_i :クラス i の平均

・クラス間分散

$$\sigma_B^2 = \frac{1}{n} \sum_{i=1}^{c} n_i (\boldsymbol{m}_i - \boldsymbol{m})^T (\boldsymbol{m}_i - \boldsymbol{m})$$
 \boldsymbol{m} :全データの平均 n_i :クラス i のデータ数

• クラス内分散・クラス間分散比(大きいほど良い)

$$J_{\sigma} = \frac{\sigma_B^2}{\sigma_W^2}$$

- 多クラスのクラス内分散・クラス間分散比
 - ◆ 分布の重なりを考慮できないので、あまりよい評価尺度とはいえない

- ベイズ誤り確率
 - ◆特徴空間上での分布の重なりの度合いを評価
- 例) 身長による(成人) 男女の判別
 - ◆一般に同一の特徴が男女両方にあてはまるので、性別を確実に 決定することはできない。

- ・ベイズ決定則
 - ◆ 誤識別率を最小にするために、事後確率 $P(\omega_i | x)$ が最大となるような ω_i を出力する判定方法
- 条件付きベイズ誤り確率 $e_B(\mathbf{x})$
 - ◆ x が与えられたときの誤り確率の最小値
 - ◆ 2クラス識別問題の場合

$$e_B(\boldsymbol{x}) = \min\{P(\omega_1|\boldsymbol{x}), P(\omega_2|\boldsymbol{x})\}$$

• ベイズ誤り確率 e_R

$$e_B = \int e_B(\boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x}$$
$$= \int \min\{P(\omega_1|\boldsymbol{x}), P(\omega_2|\boldsymbol{x})\} p(\boldsymbol{x}) d\boldsymbol{x}$$

 $iglet e_B$ は誤り確率をこれより小さくはできないという限界、すなわち分布の重なりを表す

- ベイズ誤り確率:特徴の評価基準
 - ◆ 分布は一般に未知であるため、ベイズ誤り確率を直接推定することは困難
 - →学習パターンに基づいてベイズ誤り確率を間接的に推定
 - ◆ 近似的な計算

 $e_B \le e_N \le 2e_B$ $e_N: 1-NN法の誤り確率$

- パラメータ:学習可能
 - ◆ 識別関数の重み
 - ◆ ニューラルネットワークの結合の重み
 - ◆ SVMのα
- ハイパーパラメータ:学習結果によって調整
 - ◆識別関数の次数
 - ◆ ニューラルネットワークの中間ユニット数
 - ◆ SVM 多項式カーネルの次数

- 学習過程に影響を与えるパラメータ
 - ◆ 例) ニューラルネットワークの学習係数、EMアルゴリズムの収束判 定に用いる値
 - ◆ 設定値が不適切な場合、学習に多くの時間がかかったり、学習が 途中で終わったりする
 - ◆ 適切な値の設定は機械学習のknow-how
 - 特徴を標準化することによって、ある程度は経験的に設定可能

- 学習結果に影響を与えるパラメータ
 - ◆ モデルの複雑さに連続的に影響を与える
 - → 性能に直結する
 - ◆ 例) SVMの多項式カーネルの次数、ガウシアンカーネルの半径γ
 - ◆いくつかの異なる値で性能を評価する必要がある

- ハイパーパラメータ λ の決定手順

 - 実際は分布が未知なので、単純に e_{λ} を計算することはできない。
 - lacktriangle 分割学習法や交差確認法で e_{λ} を求める。

- ハイパーパラメータの性質
 - ◆ 複雑にしてもあるところで識別率が上がらなくなる(下がることもある)

- ハイパーパラメータが複数ある場合

ハイパーパラメータ2

まとめ

- 未知データに対する認識率の評価
 - ◆ 分割学習法
 - ◆ 交差確認法
- パターン認識システム全体の調整
 - ◆ 前処理の結果の確認
 - ◆特徴空間の評価
 - ◆ ハイパーパラメータの調整