EXPT NO. 10:

STUDY OF J-K FLIP FLOP

Objective:

To study the J-K flip flop.

Equipments:

Logic Circuit Simulator Pro.

Theory:

J-K Flip Flop:

Fig 7(a) shows the clocked J-K flip-flop with clear (CR) and preset (PR) inputs. The small circle (inversion symbols) on these inputs indicates that logic '0' is required to clear or set the flip-flop. Thus the '0' applied to the clear input will reset the flip-flop to Q= 'O', and a 'o applied to the Preset input will set the flip-flop to Q J-K input. I.e. a 'o' applied to the clear input will reset the flip-flop regardless of the values of 1'. These inputs override the clock & J-K, and the clock. Under normal conditions, a 'O' should not be applied simultaneously to clear and preset. When the clear and preset inputs are both held at logic '1', the J, K and clock inputs operate in the normal manner.

Procedure:

- Do the connection as per block diagram shown below and switch ON the power supply.
- Apply proper logic inputs to the J-K flip flop and observe the output on LEDs.
- Verify the function table of J-K Flip flop.

Logic Diagram:

Circuit Diagram:

Truth Table:

PR	CL	CLK	J	K	Q	Q'
0	1	Х	X	X	1	0
1	0	Х	Х	X	0	1
0	0	Х	X	Х	-	-
1	1	1	0	0	\mathbf{Q}_{o}	Q ₀ '
1	1	1	1	0	1	0
1	1	1	0	1	0	1
1	1	1	1	1	Toggle	
1	1	0	X	X	Q _o	Q _o '

Conclusion:

From the above experiment, we verified the characteristics of J-K flip flop.