第25章 CoreSight

25.1 概要

CoreSight サブシステムは、ARM 社の各種デバッグモジュールをサブシステム化したもので、ASIC-PF に準拠した Cortex 系 CPU サブシステムと組み合わせることでトレースを含むデバッグ機能を実現します。

25.1.1 特徴

テクノロジ: 非依存

準拠規格: ARM Debug Interface v5.1 (ADIv5.1)

デバッグ・インタフェース: JTAG、SWD ^注1

注1 JL-086A では Serial Wire 接続は使用できません(制限事項)

以下に表に JL-086A に搭載している CoreSight のコンフィギュレーションを記載します。

表25-1 CoreSightコンフィギュレーション

カテゴリ	コンフィギュレー	ション項目	設定値	備考
Cortex 系 CPU の接続	CPU0		TYPE-R4	
	CPU1		なし	
	CPU2		なし	
		Cortex-M 使用時		Cortex-M 系を使用時は、トレース機能 (ATB バスの口数)を指定してください。
CPU-SS	旧 ARM 系 CPU の接続		なし	On Chip JTAG インタフェースの利用を
旧 ARM 系				指定します。
AHB-AP	AHBインタフェースの利用		あり	システムの AHB バスにアクセスする機能
D-I DOM			00011	┃ を利用するか指定します。 ┃ ゙̄ゕ゙ゕヸ゙ゕ゙゠゙゙゙゙゙゙゙゙゙゚゚゠゚゙゙゙゙゙゙゙゙゙゙゚゚゚゙゚゚゚゙゙゚゚゚゚゙゙゙゙゙゙
Debug ROM	パーツナンバー		000H	デバッガが、本サブシステムが搭載された SoC を識別するために用いるパーツナン
				300 を識別するために用いるパープリプ
				■ 識別が不要の場合には 000H を指定してく
				ださい。
				本項目で設定した値は、DAP のペリフェラ
				ル ID レジスタ、および TARGETID レジス
				タに反映されます。
ソフトウェア	ITM		なし	ITM の有無
トレース	SWO ポート			SWO 機能を利用するには ITM が必要です
ハードウェア	TPIU		なし	TPIU の有無
トレース	ETB		あり	ETB の有無
	RAM 容量(kB)	_	4	ETB の RAM 容量

25.1.2 ブロック概要

図25-1 ブロック図^{注1}

- 注 1 ・ JL-086A では Serial Wire 接続は使用できません(制限事項)
 - ・コンフィギュレーションにより、JL-086Aでは、CPU-SSOは TYPE-R4となります。
 - ・コンフィギュレーションにより、JL-086A では以下は存在しません。 CPU-SS1、CPU-SS2

DAPBUS Exported Interface

TPIU (ハードウェアトレース)

ITM、SWO (ソフトウェアトレース)

(1) CTI

デバッグに関わるトリガを相互にやり取りするための ARM 社 CTI(Cross Trigger Interface)モジュールです。

(2) DAP

ARM 社 DAP(Debug Access Port)モジュールです。DAP は、デバッグのために、CoreSight components に アクセスするための手段を提供します。ADI v5.1 に準拠した JTAG デバッグ・インタフェースまたは SWD インタフェース $^{\mathbf{k}_1}$ を持つデバッガを接続することができます。デバッガとの接続については、25.1.1を参照してください。

注 1 JL-086A では Serial Wire 接続は使用できません(制限事項)

(3) ETB

ARM 社 ETB(Embedded Trace Buffer)モジュールです。ATB 経由のトレース・データを内部専用 RAM に格納するための制御機能を提供します。

25.2 端子機能

25.2.1 端子表

表**25-2** CoreSight 端子一覧

端子名	I/O	説明	Active Level	未使用時端子処置
TCK	I	CPU JTAG クロック入力	Н	OPEN
TRSTZ	I	CPU JTAG 回路リセット入力	L	OPEN
TMS	I	CPU JTAG TAP モード選択	Н	OPEN
TDI	ı	CPU JTAG シリアル入力	Н	OPEN
TDO	0	CPU JTAG シリアル出力	Н	OPEN

注1 JL-086A では Serial Wire 接続は使用できません(制限事項)

25.2.2 AMBA インタフェース

表25-3 AHB マスタ・インタフェース信号一覧

端子グループ	バス幅	同期クロック	端子グループの説明	AHB タイプ
MH*	32bit	HCLK	AHB-AP	Lite

表25-4 AHB-Lite マスタ バースト/サイズ

	バースト・タイプ MHBURST[2:0]								転送サイズ (bit) MHSIZE[2:0]							
	000	001	010	011	100	101	110	111	000	001	010	011	100	101	110	111
端子グループ	SINGLE	INCR	WRAP4	INCR4	WRAP8	INCR8	WRAP16	INCR16	8	16	32	64	128	256	512	1024
AHB マスタ (AHB-AP)	0	×	×	×	×	×	×	×	0	0	0	×	×	×	×	×

- 対応した転送が発生します。
- × 対応した転送は発生しません。

表**25-5** AHB-Lite マスタ その他転送

		Endian		EBT			Fクション ROT[3:0]			
端子グループ	TE	BE32	BE8	早期バースト終了 アクセス	オペコード/データ	ユーザ/特権	バッファ可/ 不可	キャッシュ可/不可	アンアラインド転送	エラー応答の反応
AHB マスタ (AHB-AP)	0	×	×	×	•	•	•	•	×	バースト転送を 行わないため対象外

- 対応 / 生成する
- × 非対応 / 生成しない
- 両状態が起こりえます。

25.3 メモリ・マップ

25.3.1 デバッグ APB アクセス

各 CoreSight コンポーネントを制御するデバッグ・レジスタは、デバッグ APB バスに配置されます。CoreSight コンポーネントの配置情報を収めた ROM テーブル、CPU のデバッグ・レジスタ、および CTI の制御レジスタが配置されています。

25.3.1.1 システム・バスからのアクセス

システム APB インタフェース経由で、システム・バスからデバッグ APB 領域にアクセスすることができます。 この場合のアドレスマップは、図 25-2(α)を参照してください。

システム・バスからデバッグ・レジスタにアクセスした場合、ロック機構により書き込み無効・制限読み出し 可能な状態に制限されています。各デバッグ・コンポーネントに存在するロック・アクセス・レジスタを操作す る事により、ロックを解除しフル・アクセスが可能になります。

デバッグ APB 領域は、表 25-6 に示す領域サイズの境界にアラインさせて配置してください。また配置アドレスを、CPU サブシステムの DBGROMADDR 端子に設定してください。 注1

注 1 JL-086A では、DBGROMADDR[31:12]=0xE_FF40 に固定されています。

25.3.1.2 デバッガからのアクセス

デバッガからのアクセスは、JTAG/SWD ^{注2}経由で行います。この場合のアドレスマップは、**図 25-2(b)** を参照してください。デバッガからアクセスした場合、デバッグ APB 領域は OH 番地、および 80000000H 番地にミラー配置されているように見えます。

アドレスの MSB がハイの領域にアクセスした場合、ロック機構が無効化されフル・アクセスが可能です。 アドレスの MSB がローの領域にアクセスした場合、ロック機構が有効となり、システム APB バス経由のアクセスをエミュレートする事が可能です。

図**25-2** システム・バス、ICE から見えるデバッグ APB の配置^{注3}

- 注 2 JL-086A では、Serial Wire 接続は使用できません(制限事項)
- 注3 システムパス経由アクセス時のアドレスは、DBGROMADDR を足しこんだアドレス(EFF4_0000H)

25.3.2 デバッグ APB 領域のアドレスマップ

図 25-3にデバッグ APB 領域のアドレスマップを示します。

デバッグ APB インタフェース 0 に接続した CPU サブシステムは 08000H から 0BFFFH の範囲に、デバッグ APB インタフェース 1 に接続した CPU サブシステムは OCOOOH から OFFFFH の範囲に配置されます。 デバッグ APB インタフェース 2 に接続した CPU サブシステム 10000H はから 13FFFH の範囲に配置されます。 21

JL-086A では、デバッグ APB インタフェース 0 には、CPU-SS(TYPE-R4F)が接続されます。 デバッグ APB インタフェース 1/2 は未使用のため、未使用領域となります。

デバッグ APBO 領域内、デバッグ APB1 領域内、デバッグ APB2 領域内のアドレスマップは接続する CPU サブ システムに依存します。

図 25-4 に示す CSSYS 領域を除きコンフィギュレーションにより未使用とした領域および N/A 領域にアクセ スした場合、書き込み無視、0読み出しが行われます。PSLVERRは発生しません。図 25-5に示す CSSYS 領域内 でコンフィギュレーションによりコンポーネントが存在しない領域にアクセスした場合、PSLVERRが発生します。 コンポーネントが存在する領域および N/A 領域へのアクセスは PSLVERR を発生しません。

図25-3 デバッグ APB 内アドレスマップ例注2

注 2 デバッグ APB1/2 は未使用のため、18'h0 C000~18'h0 3FFF は未使用領域となります。

表25-6 Cortex 系 CPU 接続数による必要領域

Cortex 系 CPU	領域サイズ
CPU0 使用時	64KB

図25-4 本サブシステム内に存在する CoreSight コンポーネントのアドレスマップ注1

注1 JL-086A では、コンフィギュレーションにより、以下の領域が存在しません。 SWO (4KByte) ITM (4KByte) TPIU (4KByte)

図**25-5** CPU-SS のアドレスマップ例^注2

注 2 図中の Offset は EFF4_8000H です。 よって、CPU-SS(TYPE-R4F)領域は、EFF4_8000H~EFF4_BFFFH となります。

表**25-7** デバッグ APB アドレス内アドレスマップ

インタフェース	DBGSELFADDR指定值	領域	サイズ	用途
デバッグAPB 0	20'h00008	0x00008000 - 0x0000BFFF	16KB	CPU-SS(TYPE-R4F)接続用

25.4 機能詳細

25.4.1 デバッグ・インタフェース

本 DAP モジュールは、デバッガとの JTAG 接続、Serial Wire Debug(SWD)接続に対応します。

リセット解除直後、DAP は JTAG 接続モードにあり、デバッガからの初期化シーケンスにより SWD 接続モードに切り替わります。

25.4.1.1 SWD インタフェース接続^注1

Serial Wire Interface を使用するときは、下図のような接続およびデータ・フローになります。

TDI は任意値に固定し、nTRST にはパワーオン・リセットを供給してください。JTAG 接続機能を使用しない場合には、未使用時端子処置(ロー・クランプ)に従い処置してください。

図25-6 SWD インタフェース接続^{注2}

注 1 JL-086A では、Serial Wire 接続は使用できません(制限事項)

注 2 JL-086A では、図 25-6 中の外部端子 TMS/SWDIO、TCK/SWCLK の端子名称は以下になります。

TMS/SWDIO: TMS TCK/SWCLK: TCK

25.4.1.2 JTAG インタフェース(ADIv5)

JTAG インタフェースを使用する場合は、下図のような接続およびデータ・フローになります。

図**25-7** JTAG インタフェース端子接続^注1

注 1 JL-086A では、図 25-7 中の外部端子 TMS/SWDIO、TCK/SWCLK の端子名称は以下になります。

TMS/SWDIO: TMS TCK/SWCLK: TCK

25.4.2 TRSTZ 入力タイミング

デバッガが供給する TRSTZ および TCK について、下記制限が守られていることを確認してください。

TRSTZ 解除(Low \rightarrow Hi)と TCK の立ち上がりに関して、セットアップ・ホールド制約が守られていることを確認してください。

また TRSTZ を使用しない場合には、デバッガが Test-Logic-Reset ステートへの遷移を用いた TAP リセットを 行えることを確認してください。

図25-8 TRSTZ、TCK 間タイミング

なおパワーオン・リセット信号についても TCK との間に同様のタイミング制約が存在しますが、リセット解除時にはデバッガとの通信が行われておらず TCK は発振していないため、制限としておりません。