02_Exercise2_MaxL_

April 22, 2018

0.1 Task1

Implement in Python (you can use SciPy library) the Maximum Likelihood Estimator to estimate the parameters for example mean and variance of some data. Your steps are: * Create a data set: - Set x-values for example: x = np.linspace(0, 100, num=100), - Set observed y-values using a known slope (1.4), intercept (4), and sd (3), for example y = 4 + 1.4x + np.random.normal(0, 3, 100) * Create a likelihood function which arguments is a list of initial parameters * Test this function on various data sets (Hint: you can use minimize from scipy.optimize and scipy.stats to compute the negative log-likelihood)

```
In [18]: from scipy import stats
         import numpy as np
         from scipy.optimize import minimize
In [20]: def loglikehoodfunction(params, args):
             m = params[1]
             c = params[0]
             y_predicted = m*args[0]+c
             LL = -np.sum( stats.norm.logpdf(args[1], loc=y_predicted) )
             return LL
         #check by setting slope to 1.4 and intercept to 4
         init_params = [1,1]
         xdata = np.linspace(0,100,100)
         ydata = xdata*1.4+4+np.random.normal(0,3,100)
         args = [xdata, ydata]
         results = minimize(loglikehoodfunction, init_params, args = args, method = 'nelder-mead
         print "slope is "+str(results.x[1])+" and y intercept is "+str(results.x[0])
         #Verfying for different datasets
         #check by setting slope to 5 and intercept to 10
         ydata = xdata*5+10+np.random.normal(0,3,100)
         args = [xdata, ydata]
         results = minimize(loglikehoodfunction, init_params, args = args, method = 'nelder-mead
         print "slope is "+str(results.x[1])+" and y intercept is "+str(results.x[0])
```

#check by setting slope to 15 and intercept to 101

0.1.1 Reference:

https://stackoverflow.com/questions/7718034/maximum-likelihood-estimate-pseudocode