

XII

Problema 1 - Electromagnetism	Parţial	Punctaj
		10
A.		3
a) Înainte de deschiderea lui K, prin bobina cu inductanța L circula curentul $I_{L_1} = E/(R+R_1)$, (*)0,25 p Prin miliampermetru nu circula nici-un curent electric (nu există nici-o diferență de potențial la capetele instrumentului). Admițând ca pozitive sensurile din figură ale curenților electrici din ramuri, după trecerea lui K pe poziția deschis (adică in timpul regimului tranzitoriu), cu legile lui Kirchhoff putem scrie relațiile $I_L = I_r + I_1$, $rI_r = 2R_1I_1$, respectiv $L\frac{dI_L}{dt} + 2RI_L + rI_r = 0$ 0,75 p		
Din primele două relații găsim imediat că $I_L = I_r(r+2R_1)/(2R_1)$.		
A treia relație se poate transcrie sub forma $\frac{dI_L}{dt} = -\frac{rR + (r+2R)R_1}{LR_1}I_r.$		
Sarcina electrică ce trece în intervalul de timp dt prin miliampermetru se scrie sub forma		
$dq = I_r dt = -\frac{LR_1 dI_L}{rR + (r + 2R)R_1} \cdot \dots 0,75 \text{ p}$		
Deoarece curentul I_L variază de la valoarea inițială I_{L_1} , dată de relația (*),		
la valoarea finală $I_{L_2} = 0$, putem integra între aceste limite. Obținem în		
final $q = \frac{EL}{2R(r+R) + (r+2R)R_1 + rR^2/R_1}$ 0,5 p		
b) Când numitorul este minim, sarcina ce trece prin miliampermetru este		
maximă. Aceasta se întâmplă atunci când $(r+2R)R_1 = \frac{rR^2}{R_1}$, rezultând		
$R_1 = R[r/(r+2R)]^{1/2},$ 0,5 p		
$R_1 = R[r/(r+2R)]^{1/2}$,		
B. (3
Legea II Newton are forma $m\vec{a} = m d\vec{v}/dt = \vec{F} = q(\vec{v} \times \vec{B}) - \alpha \vec{v}$.		
Proiecțiile ecuației de mișcare pe cele trei axe sunt		
$F_x = m dv_x/dt = -\alpha v_x + qBv_y$, $F_y = m dv_y/dt = -\alpha v_y - qBv_x$, respectiv		
$F_z = m dv_z/dt = -\alpha v_z = 0$. Particula se va mişca în planul $x \theta y$ (deoarece		
$v_{z0} = 0$)		

Ţinem cont că, prin definiție, $\vec{v} = d\vec{r} / dt$, unde $\vec{r}(x, y, 0)$ este raza	
vectoare din planul $x0y$ a particulei și, după simplificarea cu dt în toți	
numitorii obținem	
$mdv_x = -\alpha dx + qBdy$, respectiv	
$mdv_y = -\alpha dy - qBdx \dots 0,75 p$	
Toți factorii de proporționalitate din fața diferențialelor sunt constanți și,	
de aceea, putem să utilizăm aceste relații (în sens integral) între starea initială din origine, cu \vec{r} (0,00) și \vec{v} (0, v, 0) și starea finală din punctul	
inițială din origine, cu $\vec{r}_0(0,0,0)$ și $\vec{v}_0(0,v_0,0)$, și starea finală, din punctul terminus al spiralei cu $\vec{r}_0(0,0,0)$ și $\vec{v}_0(0,v_0,0)$, Avem	
terminus al spiralei, cu $\vec{r}_P(x_P, y_P, 0)$ și $\vec{v}_P(0,0,0)$. Avem $m\Delta v_x = m(0-0) = 0 = -\alpha\Delta x + qB\Delta y = -\alpha(x_P-0) + qB(y_P-0)$, respectiv	
$m\Delta v_y = m(0 - v_0) = -\alpha \Delta y - qB\Delta x = -\alpha (y_P - 0) - qB(x_P - 0), \text{ adică}$	
$-\alpha x_p + qBy_p = 0, +\alpha y_p + qBx_p = mv_00,75 p$	
Rezolvând sistemul obținem	
$x_P = \frac{mqBv_0}{\alpha^2 + q^2B^2}$, respectiv $y_P = \frac{m\alpha v_0}{\alpha^2 + q^2B^2}$ 0,5 p	
C.	3
Putem scrie relațiile evidente $(m/2)v_0^2 = eU$, $v_0 = \sqrt{2eU/m}$ 0,25 p	
Pe de altă parte, la mișcarea în câmp magnetic	
$m\frac{d\vec{v}}{dt} = -e(\vec{v} \times \vec{B}) = -e\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ v_x & v_y & v_z \\ 0 & 0 & B_z \end{vmatrix}.$	
De aici $\frac{dv_x}{dt} = -\frac{e}{m}v_y B_z(x)$, $\frac{dv_y}{dt} = +\frac{e}{m}v_x B_z(x)$ și $\frac{dv_z}{dt} = 0$. (*)	
Valoarea constantă a lui v_z este egală cu zero (căci $v_{z0} = 0$). Electronul se	
va mişca în planul xOy	
$dv_y = \frac{e}{m}B_z(x)dx$ care, prin integrare, ne dă imediat	
$v_y = \frac{e}{m}B_0\frac{d}{\pi}[1-\cos(\pi\frac{x}{d})] = \frac{2eB_0d}{\pi m}\sin^2(\frac{\pi x}{2d}).$ Constanta de integrare s-a	
determinat ținând cont că, la intrarea în câmpul magnetic, adică la $x = 0$,	
electronul avea componenta $v_{y0} = 0$ 0,75 p	
Deoarece cîmpul magnetic nu poate modifica modulul vitezei avem mereu	
$ \vec{v} = v_0$ şi putem scrie $v_x = \sqrt{v_0^2 - v_y^2} = \sqrt{v_0^2 - \left(\frac{2eB_0d}{m\pi}\right)^2 \sin^4\left(\frac{\pi x}{2d}\right)}$.	
La ieşirea din câmp, când $x = d$, avem $v_x(x = d) = \sqrt{v_0^2 - \left(\frac{2eB_0d}{m\pi}\right)^2} \equiv v_{xd}$.	

0,75 p	
Acum mai putem scrie $\vec{v}_0 \cdot \vec{v}_d = v_0 v_{xd} = v_0^2 \cos \alpha$ și, de aici,	
$\cos \alpha = \frac{v_{xd}}{v_0} = \sqrt{1 - \left(\frac{2eB_0d}{\pi m v_0}\right)^2}, \text{ adică} \sin \alpha = \frac{2eB_0d}{\pi m v_0} = \frac{B_0d}{\pi} \sqrt{\frac{2e}{mU}} 0,5 \text{ p}$	
Oficiu	1

XII

Problema 2 - Un dispozitiv interferențial mai puțin cunoscut	Parțial	Punctaj
2 2 0 0 10 10 10 10 10 10 10 10 10 10 10 10	- w- y-w-	10
a) La trecerea prin prismă, orice rază de lumină deviază spre bază cu		
unghiul $\Delta \approx (n-1)\alpha$		
Considerăm razele (1) și (2) care ajung în punctul M(x) de pe ecran-vezi		
prima figură.		
Pentru desen corect se acordă		
∫(E) (E ₀)		
$\frac{1}{2}$		
m \		
$\vec{\mathbf{u}}_1$		
$ \setminus_{\mathcal{O}}$ $\downarrow_{\mathcal{C}}$ $\downarrow_{\mathcal{C}}$ $\downarrow_{\mathcal{C}}$		
(2) $\vec{\mathbf{u}}_2$ $M(\mathbf{x},\mathbf{y})$		
(A)		
→ g ←		
·		
Diferența lor de fază este $\varphi = (2\pi/\lambda)(\vec{u}_1 - \vec{u}_2).O\vec{M}$, în care $O\vec{M}(x, y, D)$,		
$\vec{u}_2(0,0,1)$ iar $u_{1x} = \sin \Delta \approx \Delta$,		
17		
$u_{1y} = 0$, $u_{1z} = \cos \Delta \approx 1$. Astfel $\varphi = (2\pi/\lambda)x$. $\Delta = (2\pi/\lambda)(n-1)x\alpha$ 1 p		
Rezultatul interferenței din M se exprimă prin relația binecunoscută		
$I = 2I_0 \cos^2(\varphi/2) = 2I_0 \cos^2[(\pi/\lambda)(n-1)x\alpha],$ (*) 1 p		
b) Franjele sunt paralele cu axa Oy (dirijată perpendicular pe planul		
desenului). Maximele corespund lui $\varphi = 2\pi s$, $s = 0,1,2,$		
Interfranja corespunde variației lui φ cu 2π . Obținem imediat		
$i = \lambda / [(n-1)\alpha] \approx 137,5 \mu m$		
Acum putem scrie dependența $I(x) = 2I_0 \cos^2(\pi x/i)$		
Reprezentarea grafică solicitată este cea din figură.		
0,5 p		
I I		
↑		
2I_0		
$0 \underbrace{0}_{i} \underbrace{0}_{2i} \underbrace{0}_{3i} \underbrace{0}_{x}$		
a) Cu garanul în naziția (E.) zana de interferentă ce lărecete receired		
c) Cu ecranul în poziția (E ₀) zona de interferență se lărgește maximal (desen nou, sau prezentarea situației noi pe vechiul desen)		
0,5 p		

De pe desen rezultă: $tg\Delta = h/(g+D_0)$, unde g este grosimea lamei.	
Deoarece $g \ll D_0$ putem scrie aproximativ	
$D_0 \approx h/\Delta \approx h/[(n-1)\alpha] \approx 2,75m.$ 0,75 p	
Numărul de franje ce încap în zona de interferență este	
$N = (C_0 F_0) / i \approx h / i \approx h(n-1)(\alpha / \lambda) \approx 82,7$; [N] = 820,5 p	
d) În apă, pentru deviația dată de prismă avem formula $\Delta' \approx (n/n'-1)\alpha$.	
0,5 р	
\sim \sim	
→ 	
n' Apa Aer	
Rolul lui Δ din formulele de mai sus (punctele a – c) îl joacă acum un alt	
Δ, anume cel ce satisface legea refracției de la ieșirea din vas (vezi a treia	
figură): $1.\sin \Delta = n' \sin \Delta'$. Aproximând sinuşii prin unghiurile	
corespunzătoare (în radiani) avem $\Delta \approx n'\Delta' \approx (n-n')\alpha$ 0,75 p	
Acum, formula (*), dedusă la punctul a, capătă o formă uşor modificată,	
anume	
$I(x) = 2I_0 \cos^2[(\pi/\lambda)\Delta'xn'] = 2I_0 \cos^2[(\pi/\lambda)x(n-n')\alpha]$ 0,75 p	
Pentru noua interfranjă obținem $i' = \lambda/[(n-n')\alpha] = 412,5 \mu m0,5 p$	
Oficiu	1

Problema 3 – Navă cosmică interstelară	Parțial	Punctaj
	,	10
a) Metoda 1 În figura 1 sunt reprezentate pozițiile navei cosmice (S') în raport cu sistemul fix (S), în momentele corespunzătoare reflexiilor de pe fiecare din cele două oglinzi. O2 S O1	0,50	3
$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $		
Fig. 1 Durata pauzei (Δt) dintre cele două semnale recepționate în sistemul fix S este egală cu durata parcurgerii de către lumină a distanței ($d+l$), dus – întors, unde d – distanța parcursă de nava cosmică, în raport cu corpul ceresc, în timp ce lumina străbate într-un singur sens distanța dintre oglinzi, iar l – distanța dintre oglinzi în raport cu S. Fie $\Delta t_1'$ durata propagării luminii din planul oglinzii O_2 până pe oglinda O_1 , măsurată de S':	0,25	
Durata aceluiași eveniment, măsurată de S, este: $\Delta t_1 = \frac{l_0}{c}.$ $\Delta t_1 = \frac{\Delta t_1'}{\sqrt{1-\beta^2}}; \beta = \frac{v}{c};$	0,25	
$\sqrt{1-\beta^2} c$ $\Delta t_1 = \frac{l_0}{c\sqrt{1-\beta^2}}.$ Rezultă:	0,25	
$d = \mathbf{v} \cdot \Delta t_1 = \frac{\beta l_0}{\sqrt{1 - \beta^2}}; \ l = l_0 \sqrt{1 - \beta^2};$	0,25	

XII

$\Delta t = \frac{2(d+l)}{c} = \frac{2}{c} \left[\frac{\beta l_0}{\sqrt{1-\beta^2}} + l_0 \sqrt{1-\beta^2} \right];$		
$\Delta t = \frac{2l_0}{c} \frac{1+\beta-\beta^2}{\sqrt{1-\beta^2}} ; \beta^2 << \beta;$		
$\Delta t \approx \frac{2l_0}{c} \sqrt{\frac{1+\beta}{1-\beta}} \; ;$	0,75	
$\mathbf{v} = c \frac{(\Delta t)^2 c^2 - 4l_0^2}{(\Delta t)^2 c^2 + 4l_0^2}.$	0,75	
a) Metoda 2		3
Durata pauzei (Δt) dintre cele două semnale recepționate în		
sistemul fix S este: $\Delta t = \Delta t_1 + \Delta t_2$, unde Δt_1 – durata propagării	0.75	
luminii, dus – întors, între planele celor două oglinzi (în raport cu S),	0,75	
iar Δt_2 – durata parcurgerii de către lumină, în sens invers, a		
distanței d pe care nava cosmică a parcurs-o față de S în timpul Δt_1 .		
Dacă $\Delta t'$ – durata parcurgerii distanței dintre planele oglinzilor,		
dus – întors, de către lumină, în raport cu S', rezultă:		
$\Delta t' = \frac{2l_0}{c}; \qquad \Delta t_1 = \frac{\Delta t'}{\sqrt{1-\beta^2}};$	0,25	
$d = \mathbf{v} \cdot \Delta t_1 = c \cdot \Delta t_2;$	0,25	
$\Delta t = \Delta t_1 + \frac{\mathbf{v}}{c} \Delta t_1 = (1 + \beta) \Delta t_1;$	0,50	
$\Delta t = \frac{2l_0}{c} \sqrt{\frac{1+\beta}{1-\beta}};$	0,50	
$\mathbf{v} = c \frac{(\Delta t)^2 c^2 - 4l_0^2}{(\Delta t)^2 c^2 + 4l_0^2}.$	0,75	
b) Pentru semnalul electromagnetic incident, sursa de		3
oscilații este fixă (sistemul S), iar observatorul (nava cosmică S') se		
depărtează de sursă. Frecvența semnalului înregistrat pe nava cosmică		
este:	1 25	
$v'=v_0\sqrt{\frac{1-\beta}{1+\beta}}$.	1,25	
,		
Pentru semnalul electromagnetic reflectat, observatorul (sistemul S) este fix, iar sursa de oscilații (racheta S') se depărtează de		
observator. Frecvența semnalului înregistrat pe stația de pe Σ este:		
$v = v' \sqrt{\frac{1-\beta}{1+\beta}}.$	1,25	
Rezultă:		
$v = v_0 \frac{1 - \beta}{1 + \beta}.$	0,50	

0,50

0.25

31 ianuarie – 5 februarie 2010 Constanța

Fig. 2

Durata pauzei $(\Delta \tau)$ dintre cele două semnale recepționate în sistemul fix S este egală cu durata parcurgerii de către lumină a distanței (l-d), dus – întors, unde d – distanța parcursă de nava cosmică, în raport cu corpul ceresc, în timp ce lumina străbate într-un singur sens distanța dintre oglinzi, iar l – distanța dintre oglinzi în raport cu S.

Fie $\Delta t_1^{'}$ durata propagării luminii din planul oglinzii O_1 până pe oglinda O_2 , măsurată de S':

$$\Delta t_1 = \frac{l_0}{c}.$$

Durata aceluiași eveniment, măsurată de S, este:

$$\Delta t_1 = \frac{\Delta t_1'}{\sqrt{1 - \beta^2}}; \quad \beta = \frac{\mathbf{v}}{c};$$
$$\Delta t_1 = \frac{l_0}{c\sqrt{1 - \beta^2}}.$$

0,25

0,25

Rezultă:

$$d = \mathbf{v} \cdot \Delta t_1 = \frac{\beta l_0}{\sqrt{1 - \beta^2}}; \ l = l_0 \sqrt{1 - \beta^2};$$

0,25

$\Delta \tau = \frac{2(l-d)}{c} = \frac{2}{c} \left[l_0 \sqrt{1-\beta^2} - \frac{\beta l_0}{\sqrt{1-\beta^2}} \right];$		
$\Delta \tau = \frac{2l_0}{c} \frac{1 - \beta - \beta^2}{\sqrt{1 - \beta^2}}; \ \beta^2 << \beta;$		
$\Delta \tau \approx \frac{2l_0}{c} \sqrt{\frac{1-\beta}{1+\beta}} \; ;$	0,75	
$\mathbf{v} = c \frac{(\Delta t)^2 c^2 - 4l_0^2}{(\Delta t)^2 c^2 + 4l_0^2};$		
$\Delta \tau = \frac{4l_0^2}{c^2 \Delta t}.$	0,75	
c) Metoda 2		3
Durata pauzei $(\Delta \tau)$ dintre cele două semnale recepționate în		
sistemul fix S este: $\Delta \tau = \Delta \tau_1 - \Delta \tau_2$, unde $\Delta \tau_1$ – durata propagării	0.77	
luminii, dus – întors, între planele celor două oglinzi	0,75	
(în raport cu S), iar $\Delta \tau_2$ – durata parcurgerii de către lumină, în		
sens invers, a distanței d pe care nava cosmică a parcurs-o față de S în		
timpul Δau_1 .		
Dacă $\Delta t'$ – durata parcurgerii distanței dintre planele oglinzilor,		
dus – întors, de către lumină, în raport cu S', rezultă:		
$\Delta t' = \frac{2l_0}{c}; \qquad \Delta \tau_1 = \frac{\Delta t'}{\sqrt{1 - \beta^2}};$	0.25	
$\frac{\Delta t}{c} = \frac{1}{c}, \frac{\Delta t_1}{\sqrt{1-\beta^2}},$	0,25	
$\Delta \tau_1 = \frac{2l_0}{c} \frac{1}{\sqrt{1-\beta^2}};$		
V - F	0,25	
$d = \mathbf{v} \cdot \Delta \tau_1 = c \cdot \Delta \tau_2;$	0,25	
$\Delta \tau = \Delta \tau_1 - \frac{\mathbf{v}}{c} \Delta \tau_1 = (1 - \beta) \Delta \tau_1;$		
$\Delta \tau = \frac{2l_0}{c} \sqrt{\frac{1-\beta}{1+\beta}};$	0,25	
$c \sqrt{1+\beta^2}$		
$\mathbf{v} = c \frac{(\Delta t)^2 c^2 - 4l_0^2}{(\Delta t)^2 c^2 + 4l_0^2}; \beta = \frac{\mathbf{v}}{c} = \frac{(\Delta t)^2 c^2 - 4l_0^2}{(\Delta t)^2 c^2 + 4l_0^2};$	0,50	
$\Delta \tau = \frac{4l_0^2}{c^2 \Delta t}.$	0,75	
$c^-\Delta t$		1
Onciu		1