PRODUIT SCALAIRE DANS V_2 Etude analytique (2) -Applications-: cercle

Dans tout ce qui va suivre le plan (\mathcal{P}) est rapporté à un repère $\mathcal{R}\left(O;\vec{i};\vec{j}\right)$ orthonormé.

I) EQUATION D'UN CERCLE

Définition :Soient Ω un point et r un réel positif, le cercle de centre Ω et de rayon r est l'ensemble des points M dans le plan (\mathcal{P}) qui vérifient : $\Omega M = r$ on le note, $\mathcal{C}(\Omega,r):C(\Omega;r)=\{M\in(\mathcal{P})/\Omega M=r\}$

Remarque:

On peut considérer le point comme étant un cercle de rayon nul.

1) Cercle défini par son centre et son rayon.

Soient $\Omega(a, b)$ un point et r un réel positif,

$$M(x, y) \in C(\Omega; r) \Leftrightarrow \Omega M = r$$

$$\Leftrightarrow \Omega M^2 = r^2$$

$$\Leftrightarrow (x-a)^2 + (y-b)^2 = r^2$$

Exemple: déterminer l'équation cartésienne du cercle de centre $\Omega(-1;2)$ et de rayon r=3

Solution : l'équation cartésienne du cercle est :

$$C(\Omega,r)$$
: $(x+1)^2 + (y-2)^2 = 3^2$

C a d:
$$x^2 + y^2 + 2x - 4y - 4 = 0$$

Propriété: Soient $\Omega(a, b)$ un point et r un réel positif, le cercle $\mathcal{C}(\Omega, r)$ à une équation cartésienne de la forme : $\mathcal{C}(\Omega, r)$: $(x-a)^2 + (y-b)^2 = r^2$

2) Equation réduite d'un cercle

On a :
$$M(x, y) \in \mathcal{C}(\Omega, r) \Leftrightarrow (x - a)^2 + (y - b)^2 = r^2$$

 $\Leftrightarrow x^2 - 2ax + a^2 + y^2 - 2by + b^2 - r^2 = 0$
 $\Leftrightarrow x^2 + y^2 + \alpha x + \beta y + \gamma = 0$ où : $\alpha = -2a$; $\beta = -2b$ et $\gamma = a^2 + b^2 - r^2$

Propriété1 : Tout cercle dans le plan à une équation de la forme : $x^2 + y^2 + \alpha x + \beta y + \gamma = 0$ où α , β et γ sont des réels.

Propriété2: Soit (C) L'ensemble des points

M(x; y) du plan tel que :

$$x^2 + y^2 - 2ax - 2by + c = 0$$

avec a; b; c des réelles

• Si : $a^2+b^2-c > 0$ alors (C) est une cercle de centre $\Omega(a;b)$ et de rayon $R = \sqrt{a^2+b^2-c}$

• Si : $a^2 + b^2 - c = 0$ alors $(C) = \{\Omega(a;b)\}$

• Si : $a^2+b^2-c < 0$ alors $(C)=\emptyset$

PREUVE: $M(x; y) \in (C) \Leftrightarrow$

 $\Leftrightarrow x^2 + y^2 - 2ax - 2by + c = 0$

 $\Leftrightarrow x^2 - 2ax + a^2 + y^2 - 2by + b^2 + c - a^2 - b^2 = 0$

 $\Leftrightarrow (x-a)^2 + (y-b)^2 = a^2 + b^2 - c = 0$

• Si : $a^2+b^2-c\succ 0$ alors (C) est une cercle de centre $\Omega(a;b)$ et de rayon $R=\sqrt{a^2+b^2-c}$

• Si : $a^2+b^2-c=0$ alors $(C) = \{\Omega(a;b)\}$

• Si : $a^2+b^2-c \prec 0$ alors $(C)=\emptyset$

Exemples :Déterminer L'ensemble $\left(E\right)$ dans les cas suivants :

1) (E): $x^2 + y^2 - x + 3y - 4 = 0$

2)(E): $x^2 + y^2 - 6x + 2y + 10 = 0$

3) (E): $x^2 + y^2 - 4x + 5 = 0$

Solutions :1) $a = \frac{1}{2}$; $b = -\frac{3}{2}$; c = -4

On a: $a^2 + b^2 - c = \left(\frac{1}{2}\right)^2 + \left(-\frac{3}{2}\right)^2 - \left(-4\right) = \frac{1}{4} + \frac{9}{4} + 4 = \frac{13}{2} > 0$

Donc: $\Omega(\frac{-a}{2};\frac{-b}{2})$ donc $\Omega(\frac{1}{2};\frac{-3}{2})$

$$R = \sqrt{a^2 + b^2 - c} = \frac{\sqrt{26}}{2}$$

alors (E): est une cercle de centre

 $\Omega(\frac{1}{2};\frac{-3}{2})$ et de rayon $\frac{\sqrt{26}}{2}$

2) a = 3; b = -1; c = 10 $a^2 + b^2 - c = 3^2 + (-1)^2 - 10 = 9 + 1 - 10 = 0$

alors $(E) = \{\Omega(3,-1)\}$

3) a = 2; b = 0; c = 5

 $a^2 + b^2 - c = 4 - 5 = -1 < 0$ alors $(E) = \emptyset$

3) Cercle définie par son diamètre.

Propriété : (Rappelle)

Soient A et B deux points distincts dans le plan l'ensemble des points M

qui vérifient MA.MB = 0 est le cercle de diamètre [AB].Ce qui nous permet d'énoncer la propriété suivante:

Propriété : Soient $A(x_A; y_A)$

et $B(x_R; y_R)$ deux points distincts dans le plan, le cercle de diamètre [AB] à pour équation :

$$(x-x_A)(x-x_B)+(y-y_A)(y-y_B)=0$$

Exemple : Déterminer une équation du cercle de diamètre [AB] avec A(1,2) et B(-3,1)

solution: $M(x; y) \in (C) \Leftrightarrow \overrightarrow{MA}.\overrightarrow{MB} = 0$

$$\overrightarrow{MA}(1-x;2-y)$$
 et $\overrightarrow{MB}(-3-x;1-y)$

$$M(x; y) \in (C) \Leftrightarrow (-3-x)(1-x)+(1-y)(2-y)=0$$

Donc: (C): $x^2 + y^2 + 2x - 3y - 1 = 0$

4) cercle définie par trois points ou Cercle circonscrit à un triangle

Soit ABC un triangle, les médiatrices du triangle ABC se coupent en Ω le Centre du cercle circonscrit du triangle

Exemple : le plan (\mathcal{P}) est rapporté à un repère $\mathcal{R}(O; \vec{i}; \vec{j})$ orthonormé. Soient les points

$$A(2;3)$$
 $B(0;1)$; $C(-4;5)$; $E(5;2)$ et $F(2;4)$

1)Ecrire l'équation du cercle circonscrit au Triangle ABC.

2) Ecrire l'équation du cercle circonscrit au triangle

OEF. **Solution**: 1)Soient
$$I(1;2)$$
 et $J(-1;4)$ le

milieu respectivement du segments : $\lceil AB \rceil$ et $\lceil AC \rceil$

Et soit (Δ) la médiatrice de [AB]donc (Δ) passe par

I(1,2) et AB un vecteur normal a (Δ)

Et on a : $\overrightarrow{AB}(-2;-2)$ donc une équation de (Δ) est :

$$(\Delta):-2(x-1)-2(y-2)=0$$

Donc: $(\Delta): -2x+2-2y+4=0$ donc $(\Delta): -2x-2y+6=0$

donc (Δ) : x + y - 3 = 0 (après simplifications)

Et soit (Δ') la médiatrice de [AC] donc (Δ') passe

par J(-1;4) et \overrightarrow{AC} un vecteur normal a (Δ') et on

a : $\overrightarrow{AC}(-6;2)$ donc une équation de (Δ') est :

$$(\Delta'):-6(x+1)+2(y-4)=0$$
 donc: $(\Delta'):3x-y+7=0$

On a Ω est le Centre du cercle circonscrit du triangle ABC donc le point d'intersection de (Δ) et (Δ') on va donc résoudre le système :

$$(\Delta): x + y - 3 = 0$$

$$(\Delta'): 3x - y + 7 = 0$$

Et la solution de ce système est : (-1;4) donc

 $\Omega(-1;4)$ est le centre du cercle circonscrit du triangle ABC et le rayon est :

$$r = A\Omega = \sqrt{(-1-2)^2 + (4-3)^2} = \sqrt{10}$$

Et l'équation du cercle est : $(x+1)^2+(y-4)^2=10$

$$(C)$$
: $x^2 + y^2 + 2x - 8y + 7 = 0$

2) déterminons l'équation du cercle circonscrit au triangle OEF.

On sait que l'équation du cercle s'écrit sous la forme :

$$(C')$$
: $x^2 + y^2 - 2ax - 2by + c = 0$

Et on a : $O \in (C') \Leftrightarrow c = 0$

$$E(5;2) \in (C') \Leftrightarrow 25+4-10a-4b=0$$

$$F(2;4) \in (C') \Leftrightarrow 4+16-4a-8b=0$$

on va donc résoudre le système :

$$\begin{cases} 10a + 4b = 29 \\ a + 2b = 5 \\ c = 0 \end{cases} \Leftrightarrow \begin{cases} a = \frac{19}{8} \\ b = \frac{21}{16} \\ c = 0 \end{cases}$$

Et l'équation du cercle est :

$$(C')$$
: $x^2 + y^2 - \frac{19}{4}x - \frac{21}{8}y = 0$

II) L'INTERIEUR ET L'EXTERIEUR D'UN CERCLE.

Définition: Soit $C(\Omega; r)$ un cercle dans le plan.

a) L'ensemble des points M dans le plan qui vérifient $\Omega M \leq r$ s'appelle la boule fermée de centre Ω et de rayon r, il s'appelle aussi l'intérieur du cercle $C(\Omega;r)$ b) L'ensemble des points M dans le plan qui vérifient

 $\Omega M > r$ s'appelle l'extérieur du cercle $C(\Omega; r)$

Application : La résolution graphique de quelques systèmes d'inéquation

Exemple : Nous allons résoudre graphiquement le système :

$$(S) \begin{cases} x^2 + y^2 - 2x - 4y + \frac{11}{4} < 0 \\ x^2 + y^2 + 2x - 4 > 0 \end{cases}$$

$$x^2 + y^2 - 2x - 4y + \frac{11}{4} = 0$$

est l'équation du cercle (\mathcal{C})

de centre B(1,2) et de rayon $r = \frac{3}{2}$

 $x^2 + y^2 + 2x - 4 = 0$ est l'équation du cercle (\mathcal{C} ')

de centre A(-1,0) et de rayon r' = 2.

L'ensemble des points M qui vérifient (S) est l'extérieur de (C') intersection l'intérieur de (C)

Exercice1 : résoudre graphiquement le système :

$$(S) \begin{cases} (1): x^2 + y^2 - 4x < 0 \\ (2): x - y - 1 > 0 \end{cases}$$

Solution:

• (1):
$$x^2 + y^2 - 4x < 0 \Leftrightarrow (x-2)^2 + y^2 < 2^2$$

Donc les solutions de cette inéquation c'est les couples (x;y) des points qui se trouvent à l'intérieurs du cercle (\mathcal{C}) de centre $\Omega(2;0)$ et de rayon r=2

• $(2): x-y-1 \succ 0:$ les solutions de cette inéquation c'est les couples (x;y) des points qui se trouvent audessous de la droite d'équation : $(\Delta): x^2+y^2-4x=0$ (demi plan qui contient $\Omega(2;0)$

Car :
$$2-0-1=1 \succ 0$$
)

Finalement l'ensemble des solutions du système c'est les couples (x; y) des points qui appartiennent à la partie colorée.

Exercice2: Résoudre graphiquement $(x^2 + y^2 - 4x - 6y + 9) (2x - y + 1) \le 0$

III) POSITIONS RELATIVES D'UN CERCLE EST D'UNE DROITE.

1) Propriété

Soit C(O;r) un cercle de rayon r strictement positif et (D) une droite dans le plan. Pour étudier les positions relatives du cercle C(O;r) de (D), il suffit de déterminer la distance de (D;r) soit H la projection

déterminer la distance de O à (D). soit H la projection orthogonal de O sur (D)

1)Si
$$d(O;(D)) = OH \succ r$$

Soit M un point de la droite (D) on a :

 $OM \ge OH > r$ donc tout point de la

droite (D) est strictement à L'extérieure du cercle (C)

$$(\mathcal{C}) \cap (D) = \emptyset$$

2) $d(O;(D)) = OH = r$

Puisque OH = r alors H est un point

commun entre (D) et (C).

Soit *M* un point de la droite (*D*) Différent de *H* on a :

OM > OH = r

Donc tout point de la droite (D) différent de H est strictement à

L'extérieure du cercle (\mathcal{C}).

 $(\mathcal{C}) \cap (D) = \{H\}$ Ont dit que la droite (D) est tangente au cercle (\mathcal{C}) en H

3)
$$d(0, (D)) = \Omega H < r$$

Dans ce cas le cercle (\mathcal{C}) et la droite(D) se coupent

en deux points M_1 et M_2 et H est le milieu du segment $[M_1M_2]$

Exemple1 :Etudier la

 $(\mathcal{C}) \cap (D) = \emptyset$

position du cercle de centre $\Omega(1;2)$ et de rayon R=2

avec la droite d'équation (D): x + y + 2 = 0

Solution : on calcul $d(\Omega,(P))$?

$$d\left(\Omega, (P)\right) = \frac{|1+2+2|}{\sqrt{1^2+1^2}} = \frac{|5|}{\sqrt{2}} = \frac{5\sqrt{2}}{2} > R = 2$$

Donc : droite (D) est à L'extérieure du cercle (\mathcal{C})

Exemple2: Etudier la position du cercle (\mathcal{C}) de centre $\Omega(1;2)$ et de rayon R=2 avec la droite d'équation (D): x-y+2=0

Solution : on calcul $d(\Omega,(P))$?

$$d\left(\Omega, (P)\right) = \frac{|1-2+2|}{\sqrt{1^2 + (-1)^2}} = \frac{|1|}{\sqrt{2}} = \frac{\sqrt{2}}{2} < R = 2$$

Donc : le cercle (\mathcal{C}) et la droite

(D) se coupent en deux points A et B

Déterminons les coordonnées des points

d'intersections?

On va résoudre le système suivant :

$$\Leftrightarrow \begin{cases} (1)(x-1)^2 + (y-2)^2 = (2)^2 \\ (2)x - y + 2 = 0 \end{cases}$$

On a: $(2) \Leftrightarrow x+2=y$

On remplaçant dans (1) y = x + 2

On trouve: $(1)(x-1)^2+(x+2-2)^2=(2)^2$

Donc: $(x-1)^2 + (x)^2 = 4 \Leftrightarrow x^2 - 2x + 1 + x^2 = 4$

Donc: $2x^2 - 2x - 3 = 0$ $\Delta = 28$

Donc: $x_1 = \frac{2 + 2\sqrt{7}}{4}$ et $x_2 = \frac{2 - 2\sqrt{7}}{4}$

Donc: $x_1 = \frac{1 + \sqrt{7}}{2}$ et $x_2 = \frac{1 - \sqrt{7}}{2}$

Si: $x_1 = \frac{1+\sqrt{7}}{2}$ on remplace dans x+2=y

On trouve: $y_1 = \frac{1+\sqrt{7}}{2} + 2 = \frac{5+\sqrt{7}}{2}$

Si: $x_2 = \frac{1 - \sqrt{7}}{2}$ on remplace dans x + 2 = y

$$y_2 = \frac{1 - \sqrt{7}}{2} + 2 = \frac{5 - \sqrt{7}}{2}$$

Donc: les points d'intersections sont :

$$A\left(\frac{1+\sqrt{7}}{2};\frac{5+\sqrt{7}}{2}\right)$$
 et

$$B\left(\frac{1-\sqrt{7}}{2};\frac{5-\sqrt{7}}{2}\right)$$

Exemple3: Etudier la position du cercle (\mathcal{C}) de centre $\Omega(1;2)$ et de rayon R=1 avec la droite d'équation (D): y = 3

Solution : on calcul $d(\Omega,(P))$?

$$(D): 0x+1y-3=0$$

$$d\left(\Omega, (P)\right) = \frac{|0+2-3|}{\sqrt{0^2+1^2}} = \frac{|-1|}{\sqrt{1}} = 1 = R$$

Donc : la droite (D) est tangente au cercle (C) en A Déterminons les coordonnées du point d'intersection ou point de tangence?

L'équation de (\mathcal{C}) est $(x-1)^2+(y-2)^2=1^2$

On va résoudre le système suivant :

$$\Leftrightarrow \begin{cases} (1)(x-1)^2 + (y-2)^2 = 1\\ (2)y = 3 \end{cases}$$

On remplaçant dans y = 3 dans (1)

On aura:

$$(1)(x-1)^2+1=1 \Leftrightarrow (x-1)^2=0 \Leftrightarrow x-1=0$$

Donc: x=1 donc point de tangence est A(1;3)

2) Droite tangente à un cercle.

2.1 Définition

Dans tous ce qui suit le rayon du cercle est strictement positif.

Définition: Une droite (D) est dite tangente à un cercle (C) s'ils se coupent en un seul point.

Propriété : Une droite (D) est dite tangente au cercle $\mathcal{C}(\Omega, r)$ si et seulement si $d(\Omega, (D)) = r$

2.2 Equation de la tangente à un cercle en un de ses points.

Soit \mathcal{C} (Ω,r) un cercle dans le plan où Ω (a,b) et A l'un de ses points.

Soit la droite (T) la tangente à $\mathcal{C}(\Omega, r)$ en A

$$M(x; y) \in (T) \Leftrightarrow \overrightarrow{AM}.\overrightarrow{A\Omega} = 0$$

$$\Leftrightarrow$$
 $(x-x_A)(y-y_A)+(a-x_A)(b-y_A)=0$

Propriété: Soient Ω (a, b) un point et \mathcal{C} (Ω, r) un cercle dans le plan et A l'un de ses points. La droite (T) tangente à $\mathcal{C}(\Omega,r)$ en A à pour équation :

$$(x-x_A)(y-y_A)+(a-x_A)(b-y_A)=0$$

 $\textbf{exemple:} \textbf{Soit} \; (\mathcal{C}) \; \textbf{le cercle d'équation} :$

$$x^2 + y^2 - 4x - 2y + 1 = 0$$
 (1)

1) Vérifier que $A(0;1) \in (C)$

2) Ecrire l'équation de la tangente au cercle (\mathcal{C}) en A.

Solution :1)On a : $0^2+1^2-4\times0-2\times1+1=0$

Donc $A(0;1) \in (C)$

2)L'équation de la tangente au cercle (\mathcal{C}) en A. ??

$$a = 2; b = 1; c = 1 : a^2 + b^2 - c = 2^2 + 1^2 - 1 = 4 > 0$$

Donc (\mathcal{C}) cercle de centre $\Omega(\frac{-a}{2};\frac{-b}{2})$ cad $\Omega(2;1)$

$$\overrightarrow{A\Omega}(-2;0)$$
 et $\overrightarrow{AM}(x-0;y-1)$

$$M(x; y) \in (D) \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{A\Omega} = 0$$

$$-2(x-0) = 0 \Leftrightarrow -2(x-0) + 0(y-1) = 0 \Leftrightarrow M(x;y) \in (D)$$

$$M(x; y) \in (D) \Leftrightarrow x = 0$$

Donc : L'équation de la tangente au cercle (C) en

$$A \operatorname{est} : (D) : x = 0$$

Application: Soit (\mathcal{C}) le cercle d'équation :

$$x^2 + y^2 - 2x - 2y - 6 = 0$$

1) Vérifier que le point A (3, -1) appartient au cercle

2- Ecrire l'équation de la tangente au cercle (\mathcal{C}) en A.

2.3 Tangente à un cercle (\mathcal{C}) passante par un point à l'extérieure de (\mathcal{C})

Exercice:

Soient le cercle (C): $(x-2)^2 + (y-1)^2 = 4$ et A(5,6)

1- Vérifier que le point A est à l'extérieur de (C)

2- a) Déterminer l'équation de la droite (δ) passante par A et parallèle à l'axe des ordonnées.

b) Vérifier que (δ) n'est pas tangente à (\mathcal{C}).

3- Soit (Δ) une droite qui passe par A et qui n'est pas parallèle à l'axe (Oy) et dont l'équation réduite est :

$$(\Delta) y = mx + p$$

a) Déterminer l'équation de (Δ) en fonction de m uniquement.

b) Déterminer m pour que (Δ) soit tangente au cercle (\mathcal{C}).

4- Soit *B*(4,5)

a) Montrer que la droite passante par B et parallèle à l'axe des ordonnées est tangente au cercle (C).

b) Soit (Δ ') une droite qui passe par A et qui n'est pas parallèle à l'axe (Oy) et dont l'équation réduite est :

(Δ') y = mx + p; Déterminer m pour que (Δ) soit tangente au cercle (\mathcal{C}).

2.3 Tangente à un cercle et de direction déterminée.

Soit (\mathcal{C}) le cercle de centre $\Omega(-1,2)$ et de rayon 3. Déterminer les équations des tangentes à (\mathcal{C}) et de vecteur directeur $\vec{u}(-2;1)$.

3) Equation paramétrique d'un cercle.

le plan (\mathcal{P}) est rapporté à un repère $\mathcal{R}\left(O; \vec{i}; \vec{j}\right)$

orthonormé.

Considérons (C) le cercle de centre $\Omega(a, b)$ et de

rayon r. On a : $\overrightarrow{OM} = \overrightarrow{O\Omega} + \overrightarrow{\Omega M}$ (1)

Si M(x, y) dans \mathcal{R} et M(X, Y) dans \mathcal{R}' où:

$$\mathcal{R}(O; \vec{i}; \vec{j})$$
 et $\mathcal{R}'(O; \vec{i}; \vec{j})$

Alors (1) se traduit analytiquement par : $\begin{cases} x = a + X \\ y = b + Y \end{cases}$

or
$$\begin{cases} X = r \cos \alpha \\ Y = r \sin \alpha \end{cases}$$
 et par suite :
$$\begin{cases} x = a + r \cos \alpha \\ y = b + r \sin \alpha \end{cases}$$

Réciproquement l'ensemble

$$(C) = \left\{ M(x; y) \in (P) / \begin{cases} x = a + r \cos \alpha \\ y = b + r \sin \alpha \end{cases} \right\}$$

où a et b sont des réels et r un réel positif est le cercle de centre $\Omega(a,\,b)$ et de rayon r

Exemple1 :Déterminer l'équation paramétrique du cercle (C) de centre $\Omega(1;-2)$ et de rayon $r = \sqrt{2}$

Solution : l'équation paramétrique du cercle (C) de centre $\Omega(1;-2)$ et de rayon $r = \sqrt{2}$ est :

$$\begin{cases} x = 1 + \sqrt{2}\cos\theta \\ y = -2 + \sqrt{2}\sin\theta \end{cases} \text{ avec } (\theta \in \mathbb{R})$$

Exemple2: Déterminer l'ensemble (C) des points

M(x;y) du plan tel que :

$$\begin{cases} x = 3 + \sqrt{3}\cos\theta \\ y = 1 + \sqrt{3}\sin\theta \end{cases} \text{ avec } \left(\theta \in \mathbb{R}\right)$$

Solution:
$$\begin{cases} x - 3 = \sqrt{3}\cos\theta \\ y - 1 = \sqrt{3}\sin\theta \end{cases} \Leftrightarrow \begin{cases} x = 3 + \sqrt{3}\cos\theta \\ y = 1 + \sqrt{3}\sin\theta \end{cases}$$

$$(x-3)^2 + (y-1)^2 = (\sqrt{3}\cos\theta)^2 + (\sqrt{3}\sin\theta)^2 \Leftrightarrow$$

$$(x-3)^{2} + (y-1)^{2} = 3((\cos\theta)^{2} + (\sin\theta)^{2}) \Leftrightarrow$$

$$(x-3)^2 + (y-1)^2 = \sqrt{3}^2$$

Donc l'ensemble (C) des points M(x;y) du plan est Ie

cercle (C) de centre $\Omega(3;1)$ et de rayon $R = \sqrt{3}$

Exercice1: le plan (\mathcal{P}) est rapporté à un repère $\mathcal{R}\left(O; \vec{i}; \vec{j}\right)$ orthonormé. (C) l'ensemble des points

M(x;y) du plan tel que : $\begin{cases} x = 2 + 2\cos\theta \\ y = 2\sin\theta \end{cases}$ avec $(\theta \in \mathbb{R})$

1) montrer $\operatorname{que}(C)$ est le cercle $(C)\operatorname{dont}$ on déterminera de centre Ω et de rayon R et une équation cartésienne

2) soit le point A(-1;0); montrer que A est à

l'extérieur du cercle (C) et déterminer les équations des deux tangentes au cercle (C) passant par A 3) déterminer les équations des deux tangentes au cercle (C) et qui sont parallèles à la droite :

$$(D): 3x-4y=0$$

4)a)soit la droite (Δ) d'équation : y = x

Montrer que (Δ) coupe le $\operatorname{cercle}(C)$ en deux points à déterminer

4)b) déterminer graphiquement l'ensemble des points M(x;y) du plan tel que : $\frac{x^2+y^2}{4} \le x \le y$

Solution:1)
$$\begin{cases} x = 2 + 2\cos\theta \\ y = 2\sin\theta \end{cases} \Leftrightarrow \begin{cases} x - 2 = 2\cos\theta \\ y - 0 = 2\sin\theta \end{cases}$$

$$(x-2)^2 + (y-0)^2 = (2\cos\theta)^2 + (2\sin\theta)^2 \Leftrightarrow$$

$$(x-2)^{2} + (y-0)^{2} = 4((\cos\theta)^{2} + (\sin\theta)^{2}) \Leftrightarrow$$

$$(x-2)^2 + (y-0)^2 = 2^2$$

Donc l'ensemble (C) des points M(x;y) du plan est le cercle(C) de centre $\Omega(2;0)$ et de rayon R=2

2)
$$A(-1;0)$$
; (C) : $(x-2)^2 + (y-0)^2 = 2^2$

On a: $(-1-2)^2 + (0-0)^2 - 4 = 9 - 4 > 0$ donc A est à

l'extérieur du cercle (C)

Soit (T) une droite qui passe par A et tangente au cercle (\mathcal{C}) et soit : ax+by+c=0 une équation cartésienne de (T) avec $(a;b)\neq(0;0)$

Puisque (T) est tangente au cercle (C) alors :

$$d\left(\Omega,\left(T\right)\right) = R \operatorname{cad} \frac{\left|2a+c\right|}{\sqrt{a^2+b^2}} = 2$$
:

Et on a : $A \in (T)$ donc : -a+c=0 donc on trouve :

$$b = \frac{a\sqrt{5}}{2}$$
 ou $b = -\frac{a\sqrt{5}}{2}$ et l'équation cartésienne de

(T) est:
$$2x - \sqrt{5}y + 2 = 0$$
 ou $2x + \sqrt{5}y + 2 = 0$

Par suite les équations des deux tangentes au cercle (C) passant par A sont :

$$(T_1)$$
: $2x - \sqrt{5}y + 2 = 0$ ou (T_2) : $2x + \sqrt{5}y + 2 = 0$

3)(D):
$$3x-4y=0$$
 $\Omega(2;0)$

Puisque $(T) \parallel (D)$ donc on pose :

$$(T)$$
: $3x-4y+c=0$ et (T) tangentes au cercle (C)

Donc:
$$d(\Omega, (T)) = R \Leftrightarrow \operatorname{cad} \frac{|6+c|}{\sqrt{3^2 + (-4)^2}} = 2$$
:

$$\Leftrightarrow \frac{\left|6+c\right|}{5} = 2 \Leftrightarrow \left|6+c\right| = 10 \Leftrightarrow 6+c = 10 \text{ Ou } 6+c = -10$$

c = 4 ou c = -16

Donc les tangentes au cercle (\mathcal{C}) sont :

$$(T_1'): 3x-4y+4=0 \text{ ou } (T_2'): 3x-4y-16=0$$

4)a) on va résoudre le système suivant :

$$\begin{cases} (x-2)^2 + (y-0)^2 = 2^2 \\ y = x \end{cases}$$
 donc : $y = x$ et $2x^2 - 4x = 0$

donc: (x=0 ou x=2) et y=x

donc : (Δ) coupe le cercle(C) aux points :

O(0;0) et B(2;2)

4)b)
$$\frac{x^2 + y^2}{4} \le x \le y \Leftrightarrow \begin{cases} x - y \le 0 \\ x^2 + y^2 - 4x \le 0 \end{cases} \Leftrightarrow \begin{cases} x - y \le 0 \\ (x - 2)^2 + y^2 - 4 \le 0 \end{cases}$$

L'inéquation : $(x-2)^2 + y^2 - 4 \le 0$ détermine

l'ensemble des points M(x; y) du plan qui se trouve

à l'intérieur du $\operatorname{cercle}(C)$ ou sur le $\operatorname{cercle}(C)$

Et L'inéquation : $x-y \le 0$ détermine l'ensemble des points M(x;y) du plan qui se trouve au-dessus de la droite (Δ) ou sur la droite (Δ)

Voire la figure ci-dessus :

Exercice2: le plan (\mathcal{P}) est rapporté à un repère $\mathcal{R}\left(O; \vec{i}; \vec{j}\right)$ orthonormé. Soient les points

$$A(3;4)$$
 $B(4;1); C(2;-3)$

1)montrer que les points A; B et C sont non alignés

2) Ecrire l'équation du cercle (C) passant

par A; B et C

Solution : 1) on a : $\overrightarrow{AB}(1;-3)$ et $\overrightarrow{AC}(-1;-7)$

$$\det\left(\overrightarrow{AB}; \overrightarrow{AC}\right) = \begin{vmatrix} 1 & -1 \\ -3 & -7 \end{vmatrix} = -10 \neq 0$$

Donc les points A; B et C sont non alignés

1)Soient $I\left(\frac{7}{2}; \frac{5}{2}\right)$ et $J\left(3; -1\right)$ le milieu

respectivement du segments : $\begin{bmatrix} AB \end{bmatrix}$ et $\begin{bmatrix} BC \end{bmatrix}$

Et soit (D) la médiatrice de [AB] donc (D) passe par

I et \overrightarrow{AB} un vecteur normal a (D)

$$M(x; y) \in (D) \Leftrightarrow \overrightarrow{IM} \cdot \overrightarrow{AB} = 0 \Leftrightarrow \left(x - \frac{7}{2}\right) - 3\left(y - \frac{5}{2}\right) = 0$$

$$\Leftrightarrow x - 3y + 4 = 0$$

Donc: (D): x-3y+4=0

Et soit (Δ) la médiatrice de [BC] donc (Δ) passe par

J et \overrightarrow{BC} un vecteur normal a (Δ)

$$M(x; y) \in (\Delta) \Leftrightarrow \overrightarrow{JM} \cdot \overrightarrow{BC} = 0 \Leftrightarrow x + 2y - 1 = 0$$

Donc : (Δ) : x+2y-1=0 (après simplifications) soit Ω est le Centre du cercle circonscrit du triangle ABC donc le point d'intersection de (Δ) et (D) on va donc résoudre le système :

$$\begin{cases} x - 3y + 4 = 0 \\ x + 2y - 1 = 0 \end{cases}$$

Et la solution de ce système est : $\Omega(-1;1)$ donc

 $\Omega(-1;1)$ est le centre du cercle circonscrit du triangle

ABC et le rayon est :
$$r = A\Omega = \sqrt{(3+1)^2 + (4-1)^2} = 5$$

Et l'équation du cercle est : $(x+1)^2 + (y-1)^2 = 25$

$$(C)$$
: $x^2 + y^2 + 2x - 2y - 23 = 0$

Exercice 3:le plan (\mathcal{P}) est rapporté à un repère $\mathcal{R}\left(O;\vec{i};\vec{j}\right)$ orthonormé. $\left(C_{\scriptscriptstyle m}\right)$ l'ensemble des points

M(x;y) du plan tel que :

$$(C_m)$$
: $x^2 + y^2 - 2mx + 2y + 2m = 0$ avec m Paramètre réel

1) déterminer l'ensemble (C_1)

2) a)montrer que $\forall m \in \mathbb{R} - \{1\}$ (C_m) est *un cercle* dont déterminera le centre Ω_m et de rayon R_m

2) b) déterminer l'ensemble des centres $\Omega_{\scriptscriptstyle m}$ lorsque $m \in \mathbb{R} - \{1\}$

2) b) montrer que tous les *cercles* (C_m) passent par un point fixe I dont déterminera et tracer (C_0) ; (C_2) ; (C_3)

3) a) montrer que la droite (Δ) : x=1 est tangente A toutes les *cercles* (C_m)

3) b)soit
$$m > \frac{-3}{2}$$
 et $m \ne 1$ et le point $A(0;1)$

Vérifier que A est à l'extérieur des $cercles(C_m)$ et que la droite(AI) n'est pas tangente aux $cercles(C_m)$

solution:1) (C_1) ? pour m=1 on a:

$$(C_1)$$
: $x^2 + y^2 - 2x + 2y + 2 = 0 \Leftrightarrow (x-1)^2 + (y+1)^2 = 0$
 $\Leftrightarrow x - 1 = 0$ et $y + 1 = 0 \Leftrightarrow x = 1$ et $y = 1$

Donc: (C_1) est le point E(1;-1)

2) a)
$$(C_m)$$
: $x^2 + y^2 - 2mx + 2y + 2m = 0 \Leftrightarrow$

$$\Leftrightarrow$$
 $(x-m)^2+(y+1)^2=(m-1)^2$

Donc: (C_m) est *un cercle* de centre $\Omega_m(m;-1)$ et de rayon $R_m=|m-1| \quad \forall m\in\mathbb{R}-\{1\}$

2) b)on pose : x=m et y=-1 avec $m\in\mathbb{R}-\{1\}$ on a donc: l'ensemble des centres Ω_m lorsque $m\in\mathbb{R}-\{1\}$ est la droite d'équation : y=-1 privé du Point E(1;-1)

2) b)
$$I(a;b) \in (C_m) \ \forall m \in \mathbb{R} - \{1\}$$

$$\Leftrightarrow a^2+b^2-2ma+2b+2m=0$$

$$\Leftrightarrow m(2-2a)+a^2+b^2+2b=0 \ \forall m \in \mathbb{R}-\{1\}$$

$$\Leftrightarrow \begin{cases} 2 - 2a = 0 \\ a^2 + b^2 + 2b = 0 \end{cases} \Leftrightarrow a = 1 \text{ et } b = -1 \text{ Donc} : \text{tous les}$$

cercles (C_m) passent par un point fixe I(1;-1)

3) a)L'équation de (Δ) est : x+0y-1=0

Et
$$d(\Omega_m, (\Delta)) = \frac{|m-1|}{\sqrt{1^2 + 0^2}} = |m-1| = R_m$$

Donc : la droite (Δ) est tangente a toutes les

cercles (C_m) (on peut montrer que (Δ) coupe en (C_m) un point unique)

3) b)on a:
$$x^2 + y^2 - 2mx + 2y + 2m = 2m + 3$$

Et puisque :
$$m > \frac{-3}{2}$$
 alors : $x^2 + y^2 - 2mx + 2y + 2m > 0$

donc A est à l'extérieur des *cercles* (C_m)

Montrons que :
$$d\left(\Omega_m, (AI)\right) = \frac{|2m-2|}{\sqrt{5}} = \frac{2}{\sqrt{5}} R_m$$

Donc: (AI) n'est pas tangente aux *cercles* (C_m)

Car:
$$\frac{2}{\sqrt{5}}R_m \neq R_m$$

Exercice 1 : Déterminer les ensembles :

$$(\Gamma 1) = \{ M(x, y) \in (\mathcal{P})/x^2 + y^2 - 2x + y + 1 = 0 \}$$

$$(\Gamma 2) = \{ M (x, y) \in (\mathcal{P})/x^2 + y^2 - x + 2y + 4 = 0 \}$$

Exercice1:

Soient les points A(-1,0), B(1,2) et C(5,-2)

- 1- Montrer que les points A, B et C ne sont pas alignés
- 2- Ecrire l'équation du cercle circonscrit au Triangle *ABC*.

Exercice 2 : Soit l'ensemble :

$$(C_m) = \{M(x, y) \in (\mathcal{P})/x^2 + y^2 - 2mx + 4my + 4m^2 - 1 = 0\}$$

où m est un réel.

- 1- Montrer que pour tout m dans \mathbb{R} , l'ensemble $\left(C_{m}\right)$ est un cercle et déterminer ses éléments.
- 2- Déterminer l'équation cartésienne du plus petit cercle $\left(C_{\scriptscriptstyle m}\right)$.
- 3- Déterminer l'ensemble dans lequel varient les centres Ω_m quand m décrit $\mathbb R$
- 4- a) Déterminer pour quelles valeurs de m le point A(-1,2) appartient-il à $\left(C_{\scriptscriptstyle m}\right)$
- b) Soit $M_0\left(x_0;y_0\right)$) un point donné dans le plan, existent-ils toujours des réels m qui vérifient $M_0\in\left(C_m\right)$
- 5- Déterminer s'il existe l'intersection de tous les cercles $\left(C_{\scriptscriptstyle m}\right)$

C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

