

PES University, Bangalore

(Established under Karnataka Act No. 16 of 2013)

UE19CS203 – STATISTICS FOR DATA SCIENCE

Unit - 3 - Probability Distributions

QUESTION BANK

Principles of Point Estimation (Maximum Likelihood Estimation)

Exercises for Section 4.9

[Text Book Exercise – Section 4.9 – Q. No. [5 – 10] – Pg. No. [285]]

- 1. Let $X \sim Geom(p)$. Find MLE of p. (Exclude)
- 2. Let $X_1 \dots X_n$ be a random sample from the population with Poisson (λ) distribution. Find the MLE of λ .
- 3. Maximum Likelihood estimates possess the property of functional invariance, which means that if $\hat{\theta}$ is the MLE of θ , and $h(\theta)$ is any function of θ , then $h(\hat{\theta})$ is the MLE of $h(\theta)$.
 - a) Let $X \sim Bin(n, p)$ where n is known and p is unknown. Find the MLE of the odds ratio p/(1-p).
 - **b)** Use the result of Exercise 5 to find the MLE of the odds ratio p/(1-p) if $X \sim Geom(p)$. (Exclude)
 - c) If $X \sim Poisson(\lambda)$, then $P(X = 0) = e^{-\lambda}$. Use the result of Exercise 6 to find the MLE of P(X = 0) if $X_1 \dots X_n$ is a random sample from a population with the $Poisson(\lambda)$ distribution.
- 4. Let $X_1 ext{...} X_n$ be a random sample from a $N(\mu, 1)$ population. Find the MLE of μ .
- 5. Let $X_1 \dots X_n$ be a random sample from a $N(0, \sigma^2)$ population. Find the MLE of σ .
- 6. Let X_1X_n be a random sample from a $N(\mu, \sigma^2)$ population. Find the MLEs of μ and σ . [Hint: The likelihood function is a function of two parameters μ and σ . Compute partial derivatives with respect to μ and σ and set them equal to 0 to find the values $\hat{\mu}$ and $\hat{\sigma}$ that maximize the likelihood function.