

Index

Ur	nit – 4 → Inferential Statistics – I	3
Ur	nit – 4.1 → Correlation and Regression	3
1)	Method – 1 → Correlation Coefficient	3
2)	Method – 2 → Rank Correlation Coefficient	5
3)	Method – 3 → Linear Regression	6
4)	Method – 4 → Curve Fitting	8
Ur	nit – 4.2 ↔ Hypothesis Testing – I	12
Ну	ypothesis Testing for Large Sample – I	12
5)	Method – 5 → Test for Single Proportion	12
6)	Method – 6 → Test for Difference of Proportions	14

Unit - 4 ---> Inferential Statistics - I

Unit - 4.1 → Correlation and Regression

Method - 1 → Correlation Coefficient

Example of Method-1: Correlation Coefficient

В	1	Calcul	Calculate the coefficient of correlation between the given series:											
		X	54	57	55	57	56	52	59					
		у	36	35	32	34	36	38	35					
		Answ	er: r =	= -0.	457	5								
В	2	Calcul	ate the	e coef	ficier	nt of o	correl	ation	betwe	en the	e age o	of husba	and and	wife
		for be	low:											
		Age	of hush	oand	35	34	40	43	56	20	38			
		Age	of wife		32	30	31	32	53	20	33			
		Answ	er: r =	= 0.9	371									
В	3	Comp	ute Ka	ırl Pe	arsor	ı's co	efficie	ent of	corre	lation	betw	een x a	ınd y for	the
		follow	ollowing data:											
		X	100	98	78	8	85	110	93	80				
		у	85	90	7	0	72	95	81	74				
		Answ	er: r =	= 0.9	603									
В	4	Calcul	ate the	e coef	ficier	nt of o	correl	ation	for the	follo	wing s	series:		
		Х	65	6	6	67	67	6	8	69	70	72		
		у	67	6	8	65	68	7	2	72	69	71		
		Answ	er: r =	= 0.6	030									

В	5	Calcı	ılate the	coeffi	cient o	f corre	lation	for th	e follo	wing	series	:	
		X	1100	1200	1300	1400	1	ı		700	1800	1900	2000
			0.30	0.29		0.25				0.24			
		У	0.30	0.29	0.29	0.25	0.2	4 0	24 (1.24	0.29	0.18	0.15
		Ansv	wer: r =	-0.7	906								
В	6	Find	the corr	elatio	n coeff	icient	betwe	en the	serui	n dia	stolic I	3.P. an	d serun
		chole	esterol le	evels o	f 10 ra	ndoml	y sele	cted d	ata of	10 pe	rsons.		
		Pers	son	1	2	3	4	5	6	7	8	9	10
		Cho	lesterol	307	259	341	317	274	416	267	320	274	336
		B.P.		80	75	90	74	75	110	70	85	88	78
		_											
С	7		ver: r =										
\ \ \	/	Find	r _{xy} from	given	data i	f n = 1	.0, \sum	$(x-\bar{x})$)(y –	$\overline{y}) = 0$	$66, \sigma_{\rm x}$	= 5.4,	
		$\sigma_y =$	6.2.										
			ver: r =										
С	8	Find	r _{xy} from	given	data n	1 = 10	$\sum (x$	$(-\bar{x})($	$y - \bar{y}$	= 16	$50, \sigma_x^2$	= 196),
		$\sigma_{\rm v}^2 =$	225.										
		,											
			<i>w</i> er: r =										
С	9	Dete	rmine th	e coef	ficient	of cor	relatio	n if n	$= 8, \bar{x}$	= 0.5	$\bar{y} = 0$).5,	
		$\sum x$	$^{2}=44$,	\sum	$y^2 =$	44, \sum	xy =	-40.					
		Ansv	wer: r =	-1									

Method - 2 → Rank Correlation Coefficient

Example of Method-2: Rank Correlation Coefficient

LAGII	ipic c	<u>n Meun</u>	<u>ou 2.</u>	<u>IXaiii</u>	COL	Clac	OH C	/CIII	ист	Ĭ						
A	1	Two J	udges	in a l	peaut	y con	test r	ank t	he 1	2 co	ntes	tants	as foll	ows:		
		1st ju	ıdge	1	2	3	4	5	6	7	8	9	10	11	12	
		2nd j	iudge	12	9	6	10	3	5	4	7	8	2	11	1	
		What	degre	e of a	greer	nent	is the	re be	twee	en th	ne ju	dges?	l	I	I	
		Answ	er o	0	454	.5										
С	2	Ten co					al tes	t we	e ra	nke	d by	the tl	ree ju	dges	A, B,	and
		C in th	ne follo	owing	g orde	er:										
		Rank	by A		1	6	5	1)	3	2	4	9	7	8	
		Rank	by B		3	5	8	4		7	10	2	1	6	9	
		Rank	by C		6	4	9	8		1	2	3	10	5	7	
		Using	the ra	nk co	orrela	tion	metho	d, fi	nd w	hich	pair	of ju	dges h	as th	e nea	rest
		appro	pproach to common linking in music.													
		Angra	on. In	dana	A an	a c h	200 20	NO MO	t on	mno	aah					
		Answ							_	_						
С	3	Obtair											364]			
	3	l 		1				1	-		1					
		X	68	64	75	50	64	80	7.	5	40	55	64			
		у	62	58	68	45	81	60	6	8	48	50	70			
		Answ	er: p	= 0. !	5455											
С	4	From					the r	nark	s ob	tain	ed by	y 8 st	udent	s in C	omp	uter
		Netwo	orking	(CN)	and (Comp	iler D	esigi	(CD)) pa	pers	, com	pute r	ank co	oeffic	ient
		of cor	relatio	n.												
		CN	15	20	0	28	12	40	(60	20	8	80			
		CD	40	30	0 !	50	30	20		10	30	6	0			
			1					I			I					
		Answ	er: ρ	= 0												

Method - 3 → Linear Regression

Example of Method-3: Linear Regression

	<u> </u>					SICOS									
В	1	Find	Find the regression line of y on x for the following data:												
		X	2	3	4	4	5	6	6	7	7	8	10	10	
		у	1	3	2	4	4	4	6	4	6	7	9	10	
		Answ	ver: y	= 0	. 9891	1x – (). 916	6	•		•		•		
В	2	Obtai	n two	regre	ession	lines	from	the fo	llowi	ng da	ta:				
		X	65	66	67	67	68	69	70	72					
		у	67	68	65	68	72	72	69	71					
		Ansv	ver: x	= 0.	5455 ;	y + 30	0.360)5 ; <u>y</u>	y = 0	6667	7x + 2	23.66	44		
В	3	The a	moun	it of c	hemio	cal cor	npou	nd (y)), whi	ch we	re dis	solve	d in 1	.00 gra	ams
		of wa	ter at	vario	us ter	npera	tures	(x):							
		X	15	15	30	30	45	45	60	60					
		у	12	10	25	21	31	33	44	39					
		Find	the eq	uatio	n of th	ne reg	ressio	n line	e of y	on x a	nd es	timate	e y if z	x = 50	°C.
		A		0	(7 1	1 75	. 25	25							
С	4		ver: y follow						essio	n line	of p	erforr	ning	rating	on
		exper	rience	and a	lso es	timat	e the j	proba	ble pe	erforn	nance	if an o	pera	tor ha	s 11
		years	' expe	rienc	e.										
		Ope	rator			1		2	3		4	5		6	
		Perf	ormai	nce ra	ting	78		36	98		25	75		82	
		Expe	erienc	e		84		51	91		60	68		62	-
		Answ	ver. v	= 0	4094	x + 4	2 44	94 ·	46 9	528 ·	x =	Exne	riena	·e	
С	5													egress	sion
		lines.													
		n = 1	0, \sum	x = 3	80, \sum	y = 4	40, \sum	$x^2 =$	222,	$\sum y^2$	= 98	5, \sum	xy =	384.	
		Ansv	ver: y	= 2x	– 2	; x =	0.32	y + 1	. 72						

С	6	Find the lines of regre	Find the lines of regression of y on x if $n = 9$, $\sum x = 30.3$, $\sum y = 91.1$,							
		$\sum xy = 345.09, \sum x$	² = 11!	5.11. Also	, find valu	ne of y(1.5) and y(5.0).				
						$5523 \; ; \; y(5.0) = 14.90$	183			
С	7	Find the regression li	nes froi	n the foll	owing da	ta. where, $r = 0.5$.				
			X	у						
		Mean	60	67.5						
		Standard deviation	15	13.5						
		Answer: $y = 0.45x$	+ 40.5	x = 0	5556y +	22.4970				
С	8					city utilization on produ	ction			
		from the following da	ta:							
				Aver	age	Standard deviation				
		Production (lakh uni	its)	35	.6	10.5				
		Capacity utilization ((%)	84	.8	8.5				
		Correlation coefficie	nt		r =	0.62				
		Estimate the producti	on whe	en capacit	y utilizat	ion is 70%.				
		Answer: $x = 0.5019$	9y + 66	5. 9324 ;	y = 0.7	659x – 29.3483 ; 24.2	2627			
		$\mathbf{x} = \mathbf{Capac}$	ity util	ization ;	$\mathbf{v} = \mathbf{Pro}$	oduction				

Method - 4 → Curve Fitting

Example of Method-4.1: Fitting a Stright Line

В	2	By the 1	nethod	d of lea	ast sq	uare,	find th	e straig	ght lin	e that	best fi	ts the	e follov	ving
		data:			-									
		X	1	2		3	4	5]					
		у	14	27	4	10	55	68						
]					
D	2	Answe					. 1	A1 C	1	1	2.0	<u> </u>		
В	3	Fit a sti			-				na y w	vnen x	= 2.8	3		
		X	2	5		6	9	11						
		у	2	4		6	9	10						
		Answe	r: v =	-0.0	244	+ 0.	9431x	; v(2.	8) =	2.616	53			
В	4	Fit a sti												
		Х	71	68	7	73	69	67	65	66	5 (67		
		у	69	72	7	70	70	68	67	68	3 (68		
		Answe	r: v =	46.93	394 -	- 0.3	232x		l					
В	5	The we						interva	ls are	given	belov	v. Fit	a strai	ght-
		line usi	ng met	thod o	f leas	t squ	ares.							
		Age (x	:)	1	2	3	4	5	6	7	8	9		10
		Weigh	it (y)	52.5	58.7	65	70.2	75.4	81.1	87.2	95.5	102	2.5 10	08.4
		Answe	r. v =	45 6	867 -	⊦ 6 1	752x				•	•	•	
В	6	The fol						ading s	speed	of 3	stude	nts ir	ı a sp	eed-
		reading	g progr	am, a	nd th	e nur	nber of	weeks	they l	have b	een ii	n the	progra	am:
		No. of	weeks	3		5	2	8	6	g)	3	4	7
		Spee	d gain	86	5 .	118	49	193	164	1 23	32	73	109	
		Find a	straigh	t line	by th	e me	thod of	least s	quare	S.			1	_
		Answe	$\mathbf{r}:\mathbf{y}=$	3.34	09 +	24 . 9	318x							

C 9 If P is the pull required to lift a load W by means of a pulley block, find a linear approximation of the form P = mW + c connecting P and W, using the following data:

P	13	18	23	27
W	51	75	102	119

Answer: P = 0.2028W + 2.6580

Example of Method-4.2: Fitting a Parabola

В	1	Fit a sec	ond-deg	ree pol	yno	mial	of y	on x t	o the f	ollov	ving d	ata:			
		Х	50	70		100		120							
		у	12	15		21		25							
		Answer	. w – 5 !	5250 -	0	1020)v _	0.00	05v ²						
В	2	Fit a par													
Ь		Tit a pai	abola to	the lon	UW	ilig 0	וספו	vatio	115.						
		X	1	2		3		4	5		6				
		У	3.13	3.76		6.94	1	2.62	20.86	5 3	1.53				
		Answer	·· v — 4 (982 _ '	2 1	199v	· ⊥ '	1 257	$9v^2$						
										_					
В	3	Fit a par	abola y =	= a + b	x +	cx ² 1	o th	ne follo	owing	data	:				
		X	1	2		3		5	6						
		у	1.1	5.8		17.5	!	55.9	86.7	,					
		Answer	: y = 2.	7227 –	4.	5528	Bx +	3.07	71x ²						
В	4	Fit a sec	ond-deg	ree par	abo	la y =	= a	+ bx -	- cx ² t	o the	follov	ving d	lata:		
		Х	1.0	1.5		2.0		2.5	3.0)	3.5	4.	0		
		у	1.1	1.3		1.6		2.0	2.7	,	3.4	4.	1		
		Amarwan	1 .	0257	•	1020		. 0. 2/	202						
		Answer	y = 1.0	J35/ -	· U.	1925	X	F U. Z4	129 X						
С	5	For 10 ra	andomly	select	ed o	bser	vati	ons, tł	ne follo	owin	g data	were	recor	ded.	
		Observ	ation Nu	mber	1	2	3	4	5	6	7	8	9	10	
		Overtin	ne Hours	s (x)	1	1	2	2	3	3	4	5	6	7	
		Additio	nal units	s (y)	2	7	7	10	8	12	10	14	11	14	
		Determi	ne the co	efficie	nt o	f regi	ess	ion us	ing the	e non	-linea	ry =	a + b ₂	$\frac{1}{1}x + b$	$_2$ x^2 .
		Answer	: y = 1.8	3022 +	3.	482 3	8x –	0.26	90x ²						

C 6 The following are the data on the drying time of a certain varnish and the amount of an additive that is intended to reduce the drying time?

Amount of varnish additive(grams)"x"	0	1	2	3	4	5	6	7	8
Drying time(hr.) "y"	12	10.5	10	8	7	8	7.5	8.5	9

Fit a second-degree polynomial by the method of least square.

Use the result to predict the drying time of the varnish when 6.5 gm of the additive is being used.

Answer: $y = 12.1848 - 1.8465x + 0.1829x^2$; y(6.5) = 7.9101

B 7 Fit a second – degree parabola $y = ax^2 + bx + c$ to the following data:

X	-1	0	1	2	3
у	5	6	21	50	93

Answer: $y = 7x^2 + 8x + 6$

Unit - 4.2 → Hypothesis Testing - I

Hypothesis Testing for Large Sample - I

Method - 5 → Test for Single Proportion

Example of Method-5: Test for Single Proportion

Α	1	A coin was tossed 400 times and the head turned up 216 times. Test the
		hypothesis that the coin is unbiased. ($ Z_{0.05} = 1.96$)
	2	Answer: The coin is unbiased.
В	2	In a hospital 480 female and 520 male babies were born in a week. Do these
		figures confirm the hypothesis that males and females were born in equal
		numbers? ($ Z_{0.05} = 1.96$)
		Answer: Males and females were born in equal proportions.
Α	3	In a study designed to investigate whether certain detonators used with
		explosives in a coal mining meet the requirement that at least 90% will ignite
		the explosives when charged. It is found that 174 of 200 detonators function
		properly. Test the null hypothesis $P=0.9$ against the alternative hypothesis
		$P < 0.9$ at the 0.05 level of significance. ($Z_{0.05} = -1.645$)
		Answer: Null hypothesis is accepted.
В	4	A salesman in a departmental store claim that at most 60% of the shoppers
		entering the store leave without making a purchase. A random sample of 50
		shoppers showed that 35 of them left without making a purchase. Are these
		sample results consistent with the claim of the salesman? Use a level of
		significance of 0.05. ($Z_{0.05} = 1.645$)
		Answer: Yes, these sample results are consistent with the claim of
		salesman.

Α	5	In a random sample of 125 cold drinkers, 68 said they prefer 'Thumsup to
		Pepsi'. Test the null hypothesis $P=0.5$ against the alternative hypothesis
		$P > 0.5$. ($Z_{0.05} = 1.645$)
		Answer: Null hypothesis is accepted.
С	6	A social worker believes that fewer than 25% of the couples in a certain area
		have ever used any form of birth control. A random sample of 120 couples
		was conducted. 20 of them said they have used. Test the belief of the social
		worker at 0.05 level. ($Z_{0.05} = 1.645$)
		Answer: Social worker's belief is true.

Method - 6 → Test for Difference of Proportions

Example of Method-6: Test for Difference of Proportions

A	1	100 articles from a factory are examined and 10 are found to be defective.
		Out of 500 similar articles from a second factory 15 are found to be defective.
		Test the significance between the difference of two proportions at 5% level.
		$(\mid Z_{0.05} \mid = 1.96)$
A	2	Answer: There is a significant difference between the two proportions In a random sample of 1000 persons from town A, 400 are found to be
	_	consumers of wheat. In a sample of 800 from town B, 400 are found to be
		consumers of wheat. Do these data reveal a significant difference between
		town A and town B, so far as the proportion of wheat consumers is
		concerned? ($ Z_{0.05} = 1.96$)
		Answer: There is significant difference between town A and town B as
A	3	the proportion of wheat consumers is concerned. A manufacturer of electronic equipment subjects' samples of two completing
11		
		brands of transistors to an accelerated performance test. If 45 of 180
		transistors of the first kind and 34 of 120 transistors of second kind fails the
		test, what can be conclude at the level of significance $\alpha=0.05$ about the
		difference between the corresponding sample proportion? (\mid Z _{0.05} \mid = 1.96)
		Answer: The difference between the proportion is not significant.
С	4	500 Articles from a factory are examined and found to be 2% defective. 800
		similar articles from a second factory are found to have only 1.5% defective.
		Can it reasonably have concluded that the product of first factory is inferior
		than those of second? ($Z_{0.05} = 1.645$)
		Answer: Products do not differ in quality.
	1	ATT TV

С	5	Before an increase in excise duty on tea, 800 people out of a sample of 1000
		persons were found to be tea drinkers. After an increase in the duty, 800
		persons were known to be tea drinkers in a sample of 1200 persons. Do you
		think that there is a significant decrease in the consumption of tea after the
		increase in the excise duty? $(Z_{0.01} = 2.33)$
		Answer: There is significant decrease in consumption of tea.
В	6	A cigarette manufacturing firm claims that its brand A of the cigarettes
		outsells its brand B by 8%. If it is found that 42 out of a sample of 200
		smokers prefers brand A and 18 out of another random sample of 100
		smokers prefer brand B, test whether the 8% difference is a valid claim.
		$(Z_{0.05} = 1.645)$
		Answer: The claim of manufacturer is valid.

* * * * * End of the Unit * * * * *

