

EXAMEN DU BACCALAUREAT SESSION DE JUIN 2014

Section : Sciences de l'informatique

Epreuve: MATHEMATIQUES

Durée : 3 H
Coefficient : 3

Session principale

Exercice 1 (4 points)

Répondre par vrai ou faux en justifiant la réponse.

- 1) Si (x,y) est une solution dans $\mathbb{Z}x\mathbb{Z}$ de l'équation 5x-6y=6 alors x est un multiple de 6.
- 2) L'équation 3 x + 6 y = 8 admet des solutions dans $\mathbb{Z}x\mathbb{Z}$.
- 3) Le reste de la division euclidienne de 3²⁰¹⁴ par 5 est égal à 4.
- 4) Si n = 1[2] et n = 1[3] alors n = 1[6].

Exercice 2 (6 points)

Soit f la fonction définie sur $]0,+\infty[$ par $f(x) = (1-\ln x)^2$.

On désigne par (C) sa courbe représentative dans un repère orthonormé $(0, \overline{i}, \overline{j})$.

- 1) a) Calculer $\lim_{x\to 0^+} f(x)$, $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$.
 - b) Interpréter graphiquement les résultats obtenus.
- 2) a) Montrer que pour tout $x \in]0,+\infty[$, $f'(x) = -\frac{2}{x}(1-\ln x)$.
 - b) Dresser le tableau de variations de f.
 - c) Tracer la courbe (C).
- 3) On désigne par \mathcal{A} l'aire de la partie du plan limitée par la courbe (C), l'axe des abscisses et les droites d'équations x = 1 et x = e.
 - a) Montrer que la fonction $F: x \mapsto x(5 + \ln^2 x 4 \ln x)$ est une primitive de f sur $]0, +\infty[$.
 - b) Calculer alors A.
- 4) Soit g la restriction de f à l'intervalle [0, e].
 - a) Montrer que g est une bijection de [0, e] sur un intervalle J que l'on déterminera.
 - b) Tracer, dans le repère $(0, \vec{i}, \vec{j})$, la courbe (C') de la fonction g^{-1} réciproque de g.
 - c) Montrer que pour tout $x \in J$, $g^{-1}(x) = e^{1-\sqrt{x}}$.
- 5) On se propose de calculer l'intégrale $I = \int_0^1 \frac{1}{e^{\sqrt{x}}} dx$.
 - a) Exploiter le graphique pour établir que $\mathcal{A} = \left(\int_0^1 e^{1-\sqrt{x}} dx\right) 1$.
 - b) Montrer alors que $\mathcal{A} = eI 1$ et donner la valeur de I.

Exercice 3 (5 points)

Le plan complexe est rapporté à un repère orthonormé(O, ū, v).

- 1) a) Vérifier que $(1-5i)^2 = -24-10i$.
 - b) Résoudre dans \mathbb{C} , l'équation $z^2 + (3-i)z + 8 + i = 0$.
- 2) Soient A, B et C les points d'affixes respectives $z_A = -2 + 3i$, $z_B = -1 2i$ et $z_C = 4 i$.
 - a) Placer dans le plan les points A, B et C.
 - b) Montrer que le triangle ABC est isocèle et rectangle.
 - c) Déterminer l'affixe du point D pour lequel ABCD est un carré.
- 3) Soit (Γ) l'ensemble des points M d'affixe z tels que $\left| \ z-1-i \ \right| = \sqrt{13}$.
 - a) Déterminer l'ensemble (Γ).
 - b) Que représente l'ensemble (Γ) pour le carré ABCD ? Construire (Γ).

Exercice 4 (5 points)

Le tableau suivant donne (en milliards) le nombre d'abonnements au téléphone mobile, dans le monde.

Année	2006	2007	2008	2009	2010	2011	2012	2013
Rang (x _i)	1	2	3	4	5	6	7	8
Effectif (y _i)	2,75	3,37	4,03	4,65	5,32	5,96	6,41	6,84

Source: International Telecommunication Union

- a) Représenter dans un repère orthonormé, le nuage de points M_i(x_i; y_i).
 On prendra pour unité graphique 1,5 cm.
 - b) Expliquer comment un ajustement affine est justifié.
- 2) a) Donner le coefficient de corrélation linéaire de (x ; y). Interpréter ce résultat.
 - b) Ecrire l'équation de la droite de régression de y en x (les coefficients seront arrondis au centième).
- 3) On suppose que cette tendance se maintient.
 - a) Estimer le nombre d'abonnements en 2014.
 - b) En quelle année le nombre d'abonnements atteindra 10 milliards pour la première fois ?