Gate Assignment

RONGALA ARUN SIDDARDHA - AI20BTECH11019

Download latex code from

https://github.com/ArunSiddardha/EE900/tree/main/ Gate assignment/Gate Assignment.tex

GATE-EC 2006 Q.15

The dirac-delta function $\delta(t)$ is defines as

The dirac-delta function
$$\delta(t)$$
 is defines as

1) $\delta(t) = \begin{cases} 1, & t = 0 \\ 0, & otherwise \end{cases}$

2) $\delta(t) = \begin{cases} \infty, & t = 0 \\ 0, & otherwise \end{cases}$

3) $\delta(t) = \begin{cases} 1, & t = 0 \\ 0, & otherwise \end{cases}$ and $\int_{-\infty}^{\infty} \delta(t)dt = 1$

4) $\delta(t) = \begin{cases} \infty, & t = 0 \\ 0, & otherwise \end{cases}$ and $\int_{-\infty}^{\infty} \delta(t)dt = 1$

The Dirac delta function (δ function), also known as the unit impulse symbol, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

At t=0 dirac function is ∞ .

So the answer is 4