Simple Lecture 2 (STAT 153/248)
1. Down Of E i PM.
Linear Regression Simple Regression
(n) (n) Doomsky on
Multiple Regrecusion
Eg: y: Height of an Adult
7: Height of pasent of adult
7. Gender Regression
Model: y = po + p, x + error
Response Covariate
Response Variable Covariate
(Coefficients)
$\lambda = A - D$
B: value of y when $z = 0$
R. change in y
$f(x_n, y_n)$
Data: (x_1,y_1) , (x_2,y_2) ,, (x_n,y_n)
B &B from the call
Good: to estimate to St. (2,14). (2,14).
Time Series:
t, t _n

Two ways of using Regression for Time Sevies: (a) Regression using time: $x_i = i$ Time as Grasiate) Y: observation for y at time i Lagged Values of y as covariate $x_i = y_{i-1}$
Eg: CPI (Consumer Price Index) used to measure inflation.
$y_{t}: CPI_{t}$
or over over over over over over over ov
CPIt = Po + Pit + Et
Bo, P,
B: CPID Numerical increase in CPI from The next one month to the next
y _t = log CPI _t

LEAST SQUARES (SM. OLS) $(x_1, y_1), \ldots, (x_n, y_n)$ 5(Po, Pi) = = = (3: - Po-Pixi) 5(0.0034, 1) Find As 2 A, which minimore 5(1, 5) 5(-1,3) 3/25 (P., P.) = 0 How to solve this 3 S(Bo, A) = 0 $\beta_{i} = \underbrace{\underbrace{\underbrace{\underbrace{y_{i} - y}}}_{i=1}(x_{i} - \overline{x})}_{i=1}(x_{i} - \overline{x})^{2}$ $\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$ $\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$ B = Y-A7 Maximum Livelihood Extination Assumption: E, ..., En iid (N(0,002)) y; = Pot Pix; +(Ei) or: scale of the

deviations from the model equation

MLE under this = Least Squares
Regretaien Potade von Exkinator (87)
Why: Just Calculate the MLE.
Livelihood = joint density of data munitiment
$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$
Y independent Y: N (Po+Pi Mi, 02) Assume x; = i
y, yn
Likelihood: II [man b+ b, x; & variance of]
$= \frac{1}{1} \int_{2\pi}^{\pi} e^{xh} \left(-\frac{(y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2} \right)$
(O, O2) MLE: maximise ones Po, P., o
Check MLEs of B.P. = Least semaner of A.P.