1. Рассмотрим стационарную VAR(1) модель

$$\begin{pmatrix} a_t \\ b_t \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 0.3 & 0 \\ 0.5 & 0.6 \end{pmatrix} \begin{pmatrix} a_{t-1} \\ b_{t-1} \end{pmatrix} + \begin{pmatrix} u_t \\ v_t \end{pmatrix},$$

где (u_t) и (v_t) — некоррелированные белые шумы.

- а) Является ли (a_t) причиной по Гренджеру для (b_t) ? Является ли (b_t) причиной по Гренджеру для (a_t) ?
- б) Постройте импульсную функцию реакции (a_t) на единичное одноразовое изменение (v_t) на 0, 1 и 2 шага.
- в) Постройте прогноз (a_t) из момента времени t на два шага вперед. В каком процентном соотношении дисперсия ошибки прогноза переменной a_{t+2} определяется шоками в переменных (u_t) и (v_t) ? Эти проценты по-умному называются FEVD, forecast error variance decomposition.
- 2. Рассмотрим уравнение на векторный процесс (y_t)

$$y_t = \begin{pmatrix} 0.3 & 0 \\ 0.5 & 0.3 \end{pmatrix} y_{t-1} + \begin{pmatrix} 0.04 & 0 \\ 0 & 0.04 \end{pmatrix} y_{t-2} + \begin{pmatrix} u_t \\ v_t \end{pmatrix},$$

где (u_t) и (v_t) — некоррелированные белые шумы.

- а) Имеет ли это уравнение стационарное решение? Правда ли, что в этом стационарном решении y_t не зависит от будущих значений u_{t+s} и v_{t+s} ?
- б) Рассмотрим векторный процесс $w_t = \begin{pmatrix} y_t \\ y_{t-1} \end{pmatrix}$. Докажите, что (w_t) удовлятворяет некоторому VAR(1) уравнению вида $w_t = Aw_{t-1} + \nu_t$. Явно укажите вид матрицы A и вектора ошибок ν_t .
- 3. Рассмотрим копулу Клейтона,

$$C(u_1, u_2) = \max\{0, (u_1^t + u_2^t - 1)^{1/t}\},\$$

где t < 1.

- а) Как связаны между собой величины U_1 и U_t при $t \to 0$?
- б) Найдите условное распределение U_2 при $U_1=0.5$ и t=-1.
- 4. Рассмотрим стационарный процесс AR(1) GARCH(1,1):

$$\begin{cases} y_t = 2 + 0.3y_{t-1} + u_t \\ u_t = \sigma_t \cdot \nu_t \\ \nu_t \sim \mathcal{N}(0; 1) \\ \sigma_t^2 = 2 + 0.4\sigma_{t-1}^2 + 0.2u_{t-1}^2 \end{cases}$$

Найдите \mathbb{V} ar $(u_t \mid \mathcal{F}_{t-1})$, \mathbb{V} ar $(y_t \mid \mathcal{F}_{t-1})$, \mathbb{V} ar (u_t) , \mathbb{V} ar (y_t) .

5. Рассмотрим стационарный процесс со стохастической волатильностью ARSV(1):

$$\begin{cases} u_t = \exp(h_t/2)\nu_t \\ \nu_t \sim \mathcal{N}(0;1) \\ h_t = 2 + 0.4h_{t-1} + \eta_t \\ \eta_t \sim \mathcal{N}(0;\sigma^2) \end{cases},$$

где последовательности ошибок (ν_t) и (η_t) независимы.

- а) Найдите $\mathbb{V}\operatorname{ar}(u_t \mid \mathcal{F}_{t-1}), \mathbb{V}\operatorname{ar}(u_t).$
- б) Может оказаться, что в пункте (а) условная дисперсия будет меньше безусловной?