

1. TEORÍA DE GRAFOS

GRAFO

G = (V,E) estructura discreta formada por nodos y aristas / arcos

Tipos:

Vacío simple

GND, Simple, pero no vacío

GND, Completo y simple >> K_n

Completo, pero no simple

Subgrafo

$$H = (V',E')$$

 $V' = \{a,b,d\} \subseteq V,$
 $E' = \{\{a,b\},\{b,d\}\} \subseteq E$

Ejercicio1: Calcula Matriz adyacencia: A

$$H = (V_2, E_2)$$

A/G	V ₁	V ₂	V ₃	V ₄
V_1	0	1	1	0
V_2	1	0	0	1
V_3	1	0	0	1
V_4	0	1	1	0

A/H	u_1	u ₂	u ₃	u ₄
u_1	0	0	1	1
u ₂	0	0	1	1
u_3	1	1	0	0
u ₄	1	1	0	0

¿Cómo calculas el grado del vértice de la fila 3 en cada matriz ?

REPRESENTACIÓN MATRICIAL

>> Matriz de adyacencia A = [a_{ii}]:

Número de aristas / arcos del vértice v_i al v_i.

GND

 $d(\mathbf{v_i}) >> suma de fila i$

El bucle cuenta 2

A simétrica

GD

Fila i: vértice **origen** del arco (i, j)

Columna j: vértice destino del arco (i, j)

 $ds(v_i) >> suma de fila i$

 $de(v_i) >> suma de columna j$

El bucle cuenta 1

A **no** siempre simétrica

Ejercicio1.b: Calcula Matriz Incidencia: M

$$H = (V_2, E_2)$$

M/G	V_1V_2	v_1v_3	V_2V_4	V_3V_4
V ₁	1	1	0	0
V_2	1	0	1	0
V_3	0	1	0	1
V_4	0	0	1	1

M/H	u ₁ u ₃	u ₁ u ₄	u_2u_3	u ₂ u ₄
u ₁	1	1	0	0
u_2	0	0	1	1
u_3	1	0	1	0
u_4	0	1	0	1

REPRESENTACIÓN MATRICIAL

>> Matriz de incidencia $M = [m_{ij}]$: aristas / arcos (columnas) que inciden en el vértice v_i (fila).

GND

 $d(v_i) >> suma de fila i$

$$M = \left[m_{ij} \right] / \ m_{ij} = \left[\begin{array}{ll} 0 & v_i \ no \ es \ extremo \ de \ e_j \\ \\ 1 & v_i \ es \ extremo \ de \ e_j \\ \\ 2 & e_j \ es \ un \ bucle \end{array} \right]$$

GD Suma elementos columna j = 0

$$M = [m_{ij}] / m_{ij} = \begin{cases} 0 & v_i \text{ no es extremo de } e_j \\ 1 & v_i \text{ es vértice inicial de } e_j \\ -1 & v_i \text{ es vértice final de } e_j \\ 2 & e_j \text{ es un bucle} \end{cases}$$

Ejercicio2: M representa la matriz de incidencia de un grafo ¿dirigido o no dirigido? ¿Simple?

M	e ₁	e_2	e ₃	e_4	e_5
X	1	0	0	-1	0
У	1 0	1	2	0	1
Z	-1	-1	0	1	-1

¿Existe algún bucle en el grafo? ¿en qué vértice?

¿Por qué la suma de las columnas da como resultado cero?

tener los grafos para que lo se Comprueba si los grafos a) G y

Ejercicio3: Define grafos isom Una arista/arco $e_i \in E_1$ une los vértices $u, v \in V_1$ si y sólo si, la arista/arco correspondiente $e_1' \in E_2$ une los vértices f(u), $f(v) \in V_2$

$$G = (V_1, E_1)$$

$$H = (V_2, E_2)$$

Elegimos imágenes de vértices de G

$$f(v_1) = u_{1,}$$

$$f(v_2) = u_4$$

$$f(v_3) = u_3$$

$$f(v_4) = u_2$$

es biyectiva entre V₁, V₂

Vemos que f preserva la adyacencia:

$$E_1 = \{ \{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_4\}, \{v_3, v_4\} \}$$

$$E_2 = \{ \{u_{1,}u_3\}, \{u_{1,}u_4\}, \{u_{2,}u_3\}, \{u_{2,}u_4\} \}$$

$$\{v_{1}, v_{2}\} \in E_{1} \rightarrow \{u_{1} u_{4}\} \in E_{2}$$

 $\{v_{1}, v_{3}\} \in E_{1} \rightarrow \{u_{1} u_{3}\} \in E_{2}$
 $\{v_{2}, v_{4}\} \in E_{1} \rightarrow \{u_{2} u_{4}\} \in E_{2}$
 $\{v_{3}, v_{4}\} \in E_{1} \rightarrow \{u_{2} u_{3}\} \in E_{2}$

Ejercicio3: ...isomorfos

No es fácil determinar la correspondencia entre vértices que <u>preserven</u> la adyacencia

$$H = (V_2, E_2)$$

2ª elección de vértices:

$$f(v_1) = u_4$$

$$f(v_2) = u_2$$

$$f(v_3) = u_3$$

$$f(v_4) = u_1$$

Vemos que ahora **NO** se preserva adyacencia:

$$E_1 = \{ \{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_4\}, \{v_3, v_4\} \}$$

$$E_2 = \{ \{u_{1,}u_3\}, \{u_{1,}u_4\}, \{u_{2,}u_3\}, \{u_{2,}u_4\} \}$$

$$\{v_{1,}v_{2}\} \in E_{1} \rightarrow \{u_{2} u_{4}\} \in E_{2}$$

$$\{v_{1,}v_{3}\} \in E_{1} \rightarrow \{u_{3} u_{4}\} \notin E_{2}$$

$$\{v_{2,}v_{4}\} \in E_{1} \rightarrow \{u_{1} u_{2}\} \notin E_{2}$$

$$\{v_{3,}v_{4}\} \in E_{1} \rightarrow \{u_{1} u_{3}\} \in E_{2}$$

Ejercicio3: ...isomorfos

Comprobar si no cumplen alguna de las propiedades necesarias para ser isomorfos

$$U = (V_2, E_2)$$

1º nº vértices: 5

2º nº aristas: 6

3º Grado de vértices?

En U >> un vértice $v_4/d(v_4) = 1$

En T >> **no** existe $v_i / d(v_i) = 1$

T y U no son isomorfos

Ejercicio3: ...isomorfos

nº vértices: 6

nº aristas: 10

$$d(v_1) = 4$$

 $d(v_2) = 2$
 $d(v_3) = 4$

$$d(v_4) = 2$$

$$d(v_5) = 4$$

$$d(v_6) = 2$$

Comprobar si no cumplen alguna de las propiedades necesarias para ser isomorfos

$$d(u_1) = 2$$

 $d(u_2) = 4$

$$d(u_3) = 3$$

$$d(u_4) = 2$$

$$d(u_5) = 4$$

$$d(u_6) = 3$$

No son isomorfos ya que en G_1 hay 3 vértices de grado 2 y en G_2 hay 2

MATEMÁTICA DISCRETA
MATEMÁTICAS 1
GIM. 20
Chuleta G.
Chuleta G.
ISONIORFOS
Jef.

vef. Dos grafos simples $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ son isomorfos $(G_1 \cong G_2)$ si existe una función biyectiva $f : V_1 \rightarrow V_2 / u, v \in V_i$

u y v son adyacentes en G₁ si y sólo si, f(u) y f(v) son adyacentes en G₂.

>> Una arista/arco $\mathbf{e_1} \in \mathbf{E_1}$ une los vértices $\mathbf{u}, \mathbf{v} \in \mathbf{V_1}$ si y sólo si, la arista/arco correspondiente $\mathbf{e_1'} \in \mathbf{E_2}$ une los vértices $\mathbf{f(u)}, \mathbf{f(v)} \in \mathbf{V_2}$

>> La función f preserva la relación de adyacencia

Propiedades necesarias para que dos grafos simples sean isomorfos:

- Los grafos deben preservar
 - Nº de vértices,
 - Nº de aristas y
 - ➤ Mismo nº de vértices con igual grado.

 $f: X \rightarrow Y$ $x \rightarrow y = f(x)$

Short REVIEW

Función **biyectiva** entre conjuntos X, Y:

inyectiva (1) + sobreyectiva (2)

- (1): todos los elementos de X tienen una única imagen en Y.
- (2) Idem de Y a X.

X, Y igual nº de elementos

Ejercicio4: Comprueba si los grafos T y U son bipartidos y K_{mn}

Def. G = (V,E), GND, es **bipartido** si existe una **partición** de V /

1º
$$V_1 \cup V_2 = V$$

2º
$$V_1 \cap V_2 = \emptyset$$

$$3^{\circ} \quad \forall \{v_i, v_j\} \in E, \quad v_i \in V_1, \quad v_j \in V_2$$

Toda arista debe tener un extremo en V_1 y otro en V_2

¿Cómo obtener la partición de V?

Elegir 2 etiquetas.

Marcar cada vértice con ellas / no haya vértices adyacentes con la misma etiqueta.

Grafo bipartido completo: Si <u>cada</u> vértice de V_1 está <u>relacionado</u> con cada vértice de V_2

GRAFO $K_{m,n}$: es GND, bipartido completo y simple / $|V_1| = n$, $|V_2| = m$.

Un **GD** es bipartido si lo es su **GND asociado.**

Ejemplos de Grafos bipartidos

$$V_1 = \{2,5\},$$

 $V_2 = \{0,1,3,4,6,7\}$

$$G = (V,E) /$$

$$V_1 = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$$

$$E = \{ \{1,3\},$$

$$\{2,3\}, \{2,4\},$$

$$\{3,5\}, \{3,6\}, \{3,7\},$$

$$\{4,7\}, \{4,8\} \}$$

$$V = V_1 \cup V_2$$

 $V_1 = \{ 1, 2, 5, 6, 7, 8 \}$
 $V_2 = \{ 3, 4 \}$
 $V_1 \cap V_2 = \emptyset$

Ejemplo de Grafo Bipartido Completo

Cada vértice de V₁ está relacionado con cada vértice de V₂

$$V_1 = \{a,c,e\}$$

$$V_2 = \{b,d,f\}$$

Todos los nodos están conectados? ...

¿ Hasta dónde puede llegar ...

Ejercicio5: Considera el grafo

<u>CICLO</u>: cadena simple cerrada con vértices internos distintos.

- a) Escribe una cadena simple que no sea camino
- b) Escribe un camino que no sea cadena simple

c) Toda cadena simple es un camino ? NO
$$C = v_1 e_1 v_2 e_9 v_1$$
 NO $C = v_1 e_1 v_2 e_9 v_1$ NO $C = v_1 e_1 v_2$ SI

d) Todo camino es una cadena simple? SI
$$C = v_1 e_1 v_2$$

- e) Una cadena cerrada puede ser un camino? NO $C = v_1 e_1 v_2 e_9 v_1$
- f) Un camino puede ser una cadena cerrada?

Ejercicio5: Considera el grafo

Escribe un circuito

- g) Toda cadena cerrada es un circuito?
- h) Todo ciclo es una cadena cerrada?

CADENA: sucesión finita de vértices y aristas

$$W = v_0 e_1 v_1 \dots e_k v_k, \quad \forall i, 1 \le i \le k$$

CADENA SIMPLE: cadena con <u>todas</u> sus <u>aristas distintas</u>.

CAMINO: cadena con <u>todo</u>s sus <u>vértices distintos</u>.

CADENA CERRADA: cadena de longitud no nula / vértice inicial coincide con el final

CICLO: cadena simple cerrada con vértices internos distintos.

k - ciclo → Ciclo de **longitud k**

>> En GD los ciclos se llaman circuitos

Longitud de una cadena : nº de aristas / arcos

