

Final Report

**LIMITED ENERGY STUDY  
GEODSS FACILITY**

**WHITE SANDS MISSILE RANGE,  
NEW MEXICO**



Prepared for

**U.S. ARMY ENGINEER DISTRICT, MOBILE  
MOBILE, ALABAMA 36628**

Under

**U.S. ARMY ENGINEER DISTRICT, MOBILE  
INDEFINITE DELIVERY A-E CONTRACT  
Contract No. DACA01-94-D-0033  
Delivery Order 0008  
EMC No. 1406-008**

November 1995

*DTIG QUALITY INSPECTED 2*

By

**E M C Engineers, Inc.  
2750 S. Wadsworth, Suite C-200  
Denver, Colorado 80227  
303/988-2951**

**19971023 133**

This report has been prepared at the request of the client, and the observations, conclusions, and recommendations contained herein constitute the opinions of EMC Engineers, Inc. In preparing this report, EMC has relied on some information supplied by the client, the client's employees, and others which we gratefully acknowledge. Because no warranties were given with this source of information, EMC Engineers, Inc. cannot make certification or give assurances except as explicitly defined in this report.



DEPARTMENT OF THE ARMY  
CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS  
P.O. BOX 9005  
CHAMPAIGN, ILLINOIS 61826-9005

--  
REPLY TO  
ATTENTION OF: TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited.  
Distribution A. Approved for public release.

Marie Wakefield,  
Librarian Engineering

## TABLE OF CONTENTS

|                                                          |            |
|----------------------------------------------------------|------------|
| List of Abbreviations .....                              | v          |
| Executive Summary.....                                   | ES-1       |
| <b>1. INTRODUCTION.....</b>                              | <b>1-1</b> |
| 1.1 AUTHORITY FOR STUDY .....                            | 1-1        |
| 1.2 PURPOSE OF STUDY .....                               | 1-1        |
| 1.3 STATEMENT OF WORK .....                              | 1-1        |
| 1.4 GENERAL APPROACH .....                               | 1-1        |
| 1.5 LIFE CYCLE COST ANALYSIS .....                       | 1-2        |
| 1.6 ORGANIZATION OF DOCUMENT .....                       | 1-2        |
| <b>2. BUILDING AND HVAC DATA.....</b>                    | <b>2-1</b> |
| 2.1 GENERAL .....                                        | 2-1        |
| 2.2 COMPUTER ROOM .....                                  | 2-1        |
| 2.3 OFFICES .....                                        | 2-1        |
| 2.4 CONFERENCE ROOM.....                                 | 2-2        |
| 2.5 TOWERS .....                                         | 2-2        |
| 2.6 CENTRAL CHILLED WATER SYSTEM .....                   | 2-3        |
| 2.7 LIGHTING .....                                       | 2-3        |
| 2.8 ELECTRIC POWER.....                                  | 2-3        |
| <b>3. BASELINE ENERGY USE.....</b>                       | <b>3-1</b> |
| 3.1 HISTORICAL ENERGY USE.....                           | 3-1        |
| 3.2 BASELINE ENERGY SIMULATION .....                     | 3-2        |
| <b>4. INDIVIDUAL ECO ANALYSIS .....</b>                  | <b>4-1</b> |
| 4.1 ECO 1: ALBEDO MODIFICATION .....                     | 4-3        |
| 4.2 ECO 2: ROOF INSULATION.....                          | 4-9        |
| 4.3 ECO 3: LOW EMISSIVITY ROOF COATING .....             | 4-21       |
| 4.4 ECO 4: T-8 FLUORESCENT LIGHTING .....                | 4-27       |
| 4.5 ECO 5: VORTEX TUBE .....                             | 4-37       |
| 4.6 ECO 6: PREMIUM EFFICIENCY MOTORS .....               | 4-41       |
| 4.7 ECO 7: UNINTERRUPTED POWER SUPPLY MODIFICATION ..... | 4-47       |
| 4.8 ECO 8: CHILLER REPLACEMENT .....                     | 4-67       |
| 4.9 ECO 9: RECIRCULATE AIR IN TOWERS .....               | 4-81       |
| 4.10 ECO 10: TURN OFF OFFICE AHU AT NIGHT.....           | 4-93       |
| 4.11 ECO 11: PROPANE HEAT .....                          | 4-99       |
| 4.12 ECO 12: ECONOMIZERS.....                            | 4-111      |
| <b>5. RESULTS AND RECOMMENDATIONS.....</b>               | <b>5-1</b> |
| 5.1 RESULTS OF ECO ANALYSIS.....                         | 5-1        |
| 5.2 RECOMMENDATIONS .....                                | 5-1        |

## APPENDICES

- A Scope of Work and Correspondence
- B Field Survey Notes
- C Utility Data
- D Computer Simulations
- E Project Documentation

## LIST OF FIGURES

|                                                                            |      |
|----------------------------------------------------------------------------|------|
| FIGURE ES-1. ENERGY USE DISTRIBUTION .....                                 | ES-3 |
| FIGURE ES-2. BASELINE ENERGY USE VS. RECOMMENDED ECO MODIFICATIONS .....   | ES-5 |
| FIGURE 3-1. ELECTRICITY PURCHASED AND GENERATED OCT 1991 TO JAN 1995 ..... | 3-1  |
| FIGURE 3-2. DOE2.1D MODEL VS. HISTORICAL DATA.....                         | 3-3  |
| FIGURE 3-3. ENERGY USE DISTRIBUTION.....                                   | 3-4  |

## LIST OF TABLES

|                                                                     |     |
|---------------------------------------------------------------------|-----|
| TABLE ES-1. HISTORICAL ENERGY CONSUMPTION DATA .....                | 3   |
| TABLE ES-2. SUMMARY OF RESULTS .....                                | 5   |
| TABLE ES-3. SUMMARY OF RECOMMENDED ECOS .....                       | 6   |
| TABLE ES-4. RECOMMENDED ECO UPGRADES WITH COMPUTER RENOVATION ..... | 7   |
| TABLE ES-5. ECOS NOT RECOMMENDED .....                              | 7   |
| TABLE 3-1. FACILITY ANNUAL ENERGY .....                             | 3-4 |
| TABLE 5-1. SUMMARY OF RESULTS.....                                  | 5-1 |
| TABLE 5-2. SUMMARY OF RECOMMENDED ECOS .....                        | 5-1 |
| TABLE 5-3. RECOMMENDED UPGRADES WITH COMPUTER RENOVATION .....      | 5-2 |
| TABLE 5-4. ECOS NOT RECOMMENDED.....                                | 5-2 |

## LIST OF ABBREVIATIONS

|                 |                                                                   |
|-----------------|-------------------------------------------------------------------|
| ACC             | - air cooled condenser                                            |
| ACCU            | - air cooled condensing unit                                      |
| AHU             | - air handling unit                                               |
| Btu             | - British thermal unit                                            |
| CHLR            | - chiller                                                         |
| CNW             | - condenser water                                                 |
| CNWR            | - condenser water return                                          |
| CNWS            | - condenser water supply                                          |
| COE             | - Corps of Engineers                                              |
| CRUs            | - computer room units                                             |
| CV              | - converter                                                       |
| CW              | - chilled water                                                   |
| CWP             | - chilled water pump                                              |
| CWR             | - chilled water return                                            |
| CWS             | - chilled water supply                                            |
| DOE2.1d         | - Computer program used for calculating building hour energy use. |
| DTW             | - dual temperature water                                          |
| DTWP            | - dual temperature water pump                                     |
| ECO             | - Energy Conservation Opportunity                                 |
| EMC             | - E M C Engineers, Inc.                                           |
| F               | - fahrenheit                                                      |
| FEMP            | - Federal Energy Management Program                               |
| ft              | - foot, feet                                                      |
| ft <sup>2</sup> | - square feet                                                     |
| gal             | - gallons                                                         |
| gpm             | - gallons per minute                                              |
| hp              | - horsepower                                                      |
| hr              | - hour                                                            |
| HRU             | - heat recovery unit                                              |

|       |                                           |
|-------|-------------------------------------------|
| HW    | - hot water                               |
| HWP   | - hot water pump                          |
| HWR   | - hot water return                        |
| HWS   | - hot water supply                        |
| H&V   | - heating and ventilating                 |
| IR    | - infrared radiant                        |
| kW    | - kilowatt, one thousand watts            |
| kWh   | - kilowatt-hours, one thousand watt-hours |
| lb/hr | - pounds per hour                         |
| LCCA  | - life cycle cost analysis                |
| MAU   | - make-up air unit                        |
| MBtu  | - million British thermal unit            |
| MZ    | - multizone                               |
| O&M   | - operation and maintenance               |
| OA    | - outside air                             |
| psia  | - pounds per square inch absolute         |
| psig  | - pounds per square inch gage             |
| RA    | - return air                              |
| RAD   | - radiation heating system                |
| RAF   | - return air fan                          |
| rpm   | - revolutions per minute                  |
| SOW   | - scope of work                           |
| sq ft | - square foot                             |
| STM   | - steam                                   |
| SZ    | - single zone                             |
| temp. | - temperature                             |
| UH    | - unit heater                             |
| UMCS  | - utility monitoring and control system   |
| VAV   | - variable air volume                     |
| VSD   | - variable speed drive                    |
| WAC   | - window air conditioner                  |

WSMR - White Sands Missile Range

yr - year(s)

## **EXECUTIVE SUMMARY**

### **AUTHORITY**

This study was performed and this report prepared under Contract No. DACA01-94-D-0033, Delivery Order No. 8. The delivery order was issued by U.S. Army Engineer District, Mobile, to E M C Engineers, Inc. on 8 May 1995.

### **PURPOSE**

The purpose of this study is to identify and evaluate Energy Conservation Opportunities (ECOs), to determine their energy savings potential and economic feasibility, and to document results for possible future funding.

### **BUILDING AND HVAC DATA**

The Ground Based Electro-Optical Deep Space Surveillance (GEODSS) Facility, Building 34568, is a windowless, concrete block structure approximately 10,000 square feet. The building is located on the northern end of the White Sands Missile Range in central New Mexico. The building consists of a large central computer room with perimeter offices. Concrete towers at three corners of the building are topped with telescopes in movable domes. The building is occupied 24 hours per day. The building is conditioned by the following HVAC and auxiliary systems:

- The computer room is conditioned by three Computer Room Units (CRUs) each rated at 12,000 cfm. The CRUs are located within the computer room and distribute supply air via a perforated floor. Each CRU contains a fan, chilled water coil, electric reheat coil, and a humidifier. Room temperature is maintained in the 70° to 72°F range and relative humidity in the 35% to 50% range.
- The offices and hallways are conditioned by a single-zone HVAC system consisting of a fan supplying 4,770 cfm, a chilled water cooling coil, and an electric duct heater. Outside air is specified at 26% of supply air. Room temperature is maintained in the 70° to 72°F range.
- A small conference room adjacent to the offices is served by a small dedicated AHU containing a chilled water cooling coil.
- Each telescope tower is served by a dedicated 2,000 cfm AHU. Each AHU is a once-through system in which outside air is drawn in, cooled by a chilled water cooling coil, ducted to the tower, and expelled through openings in the dome. Each room thermostat is set at 40°F, but the HVAC system is incapable of reaching this

temperature, given the 45°F chilled water temperature serving the cooling coil. It is desired to keep the telescope as cool as possible to minimize stabilization time when the telescope is exposed to the cold night sky. The AHUs serving the towers are operated from mid April to mid November. The AHUs are turned off in the winter.

- All eight AHUs in the building are supplied with chilled water from the central chilled water system. The chilled water system consists of two 36-ton chillers coupled to two air-cooled condensers. Chilled water is supplied to HVAC cooling coils via a primary/secondary pumping arrangement.
- Lighting is provided mainly by recessed fluorescent fixtures each containing two standard 40 watt T-12 fluorescent lamps powered by standard magnetic coil ballasts. Offices and hallways have been extensively delamped and most offices are equipped with occupancy sensors.
- Electric power is supplied to the computer room and electronic equipment associated with the telescopes through a rotating Uninterrupted Power Supply (UPS) system. The UPS system consists of a 120 volt/150 kW generator coupled to a large flywheel turned by a 250 horsepower motor. The flywheel will provide about 17 seconds of uninterrupted power, sufficient time for the emergency diesel-electric generator to come on-line in the event of an interruption to commercial power. Power to the motor was measured during the field survey. The motor was drawing about 85 amps at 281 volts with a power factor of about 0.45.

## HISTORICAL ENERGY USE

Electric power is supplied to the GEODSS Facility by Socorro Electric. The facility is billed for electricity by the White Sands Missile Range at a rate of \$0.0821 per kWh. There is no demand charge.

The facility is metered by a dedicated electric meter. This meter was calibrated by ZIA Electrical Products as part of this study. The meter was found to be accurate within 1.0% in its "as found" condition.

The diesel-electric generator provides backup power for the facility and is used quite often due to poor reliability of commercial service and the frequency of electrical storms.

Average site energy consumption was based on four years of utility data and is presented in Table ES-1.

**Table ES-1. Historical Energy Consumption Data**

| Energy Type | Annual Energy Use | Unit Energy Cost | Annual Energy Cost | Annual MBtu |
|-------------|-------------------|------------------|--------------------|-------------|
| Electricity | 1036 MWh          | \$0.0821/kWh     | \$85,056           | 3536        |
| Diesel Fuel | 5932 gal          | \$1.03/gal       | \$6,110            | 823         |

### **BASELINE ENERGY USE**

The DOE2.1d Building Energy Simulation Program was used to model the building using TMY weather for Truth or Consequences, New Mexico. Figure ES-1 presents the electric energy use distribution. Miscellaneous equipment consumes about 35% of the annual energy used at the facility. Miscellaneous equipment includes computers, office equipment, electronic equipment, cameras, and the air compressors. Space cooling consumes about 43% of the annual energy. Fans, pumps, and lighting consumes the remaining 20%. Space heating consumes less than 2% of the annual energy.

**Figure ES-1. Energy Use Distribution**



## ENERGY CONSERVATION OPPORTUNITIES (ECOs)

The following is a brief summary of the ECOs investigated.

- ECO 1: **Albedo Modification:** Repainting the exterior walls white and placing white gravel on the roof to decrease solar heat gain was found not to be cost-effective. Energy savings are minimal due to good insulation.
- ECO 2: **Roof Insulation:** The existing roof insulation thickness of 4 inches is greater than the optimum insulation thickness of 2 inches.
- ECO 3: **Low-Emissivity Roof Coating:** A low-emissivity coating applied to the underneath side of the roof deck was found not to be cost effective. Energy savings are minimal due to good insulation.
- ECO 4: **T-8 Fluorescent Lamps:** Installing high efficiency lighting and electronic ballasts were found to be cost effective.
- ECO 5: **Vortex Tube Cooling:** Cooling for the telescope cameras was found to consume a relatively large amount of energy. Correction is beyond the scope of this project.
- ECO 6: **High-Efficiency Motors:** Replacing one of the existing HVAC fan motors with a more efficient motor was found to be cost effective.
- ECO 7: **UPS System:** The existing system was found to be very inefficient. Two cost effective modifications are recommended.
- ECO 8: **Chiller Replacement:** Replacing the existing chillers was found to be cost effective.
- ECO 9: **Recirculate Air in Towers:** Recirculating room air and reducing the outside airflow rate in the camera towers was found to be cost effective. The HVAC systems are currently 100% outside air systems.
- ECO 10: **Turn Off Office AHU at Night:** Installing a time clock to turn off the AHU serving the office areas in the building at night was found to be cost effective.
- ECO 11: **Propane Heat:** Replacing the existing electric duct heaters with propane-fired duct furnaces was found not to be cost effective.
- ECO 12: **Economizer:** Installing an economizer on AHU-2 serving the office was found not to be cost effective.

Table ES-2 on the following page presents the results of the analysis for each ECO.

**Table ES-2. Summary of Results**

| ECO # | ECO Description             | Annual Electric Energy Savings (kWh) | Annual Energy Cost Savings (\$) | Annual Maintenance Cost Savings (\$) | Total Investment Costs (\$) | SIR   | Simple Payback (yrs) |
|-------|-----------------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------|-------|----------------------|
| 1     | Albedo Modification         | 1,532                                | 126                             | 0                                    | N/A                         | N/A   | N/A                  |
| 2     | Roof Insulation 6"          | 1,939                                | 159                             | 0                                    | N/A                         | N/A   | N/A                  |
| 3     | Low-Emissivity Roof Coating | 900                                  | 74                              | 0                                    | N/A                         | N/A   | N/A                  |
| 4     | T-8 Fluorescent Lamps       | 29,455                               | 2,418                           | 47                                   | 12,429                      | 2.38  | 5.0                  |
| 5     | Vortex Tube Cooling         | 38,441                               | 3,156                           | 0                                    | N/A                         | N/A   | N/A                  |
| 6     | High-Efficiency Motors      | 2,197                                | 180                             | 0                                    | 1,753                       | 1.55  | 9.7                  |
| 7     | UPS System                  | 89,454                               | 7,344                           | 0                                    | 22,874                      | 4.85  | 3.1                  |
| 8     | Chiller Replacement         | 85,453                               | 7,016                           | 0                                    | 99,539                      | 2.01  | 8.3                  |
| 9     | Recirculation of Tower Air  | 74,518                               | 6,118                           | 0                                    | 22,767                      | 4.05  | 3.7                  |
| 10    | Turn Off AHU at Night       | 48,210                               | 3,958                           | 0                                    | 420                         | 80.86 | 0.1                  |
| 11    | Propane Heat                | 1,199                                | 65                              | 0                                    | 11,182                      | 0.08  | 171.7                |
| 12    | Economizers                 | 967                                  | 79                              | 0                                    | 4,096                       | 0.29  | 51.6                 |

A graphical representation of the annual energy use for the baseline model and each of the ECOs is presented in Figure ES-2 below.

**Figure ES-2. Baseline Energy Use Vs. Recommended ECO Modifications**



## RECOMMENDATIONS

The following ECOs are recommended for implementation.

**Table ES-3. Summary of Recommended ECOs**

| ECO #                  | ECO Description            | Annual Electric Energy Savings (kWh) | Annual Energy Cost Savings (\$) | Annual Maintenance Cost Savings (\$) | Total Investment Costs (\$) | SIR   | Simple Payback (yrs) |
|------------------------|----------------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------|-------|----------------------|
| 10                     | Turn Off AHU at Night      | 48,210                               | 3,958                           | 0                                    | 420                         | 80.86 | 0.09                 |
| 7                      | UPS System                 | 89,454                               | 7,344                           | 0                                    | 22,874                      | 4.85  | 3.11                 |
| 9                      | Recirculation of Tower Air | 74,518                               | 6,118                           | 47                                   | 22,767                      | 4.05  | 3.72                 |
| 4                      | T-8 Fluorescent Lamps      | 29,455                               | 2,418                           | 0                                    | 12,429                      | 2.38  | 5.04                 |
| 8                      | Chiller Replacement        | 85,453                               | 7,016                           | 0                                    | 99,539                      | 2.01  | 8.30                 |
| 6                      | High Efficiency Motors     | 2,197                                | 180                             | 0                                    | 1,753                       | 1.55  | 9.72                 |
| <b>Overall Savings</b> |                            | <b>280,029</b>                       | <b>22,990</b>                   | <b>47</b>                            | <b>101,292</b>              | N/A   | <b>4.41</b>          |

The overall savings takes into account the synergistic effects of multiple ECOs. The total annual energy cost savings for combined ECOs is \$22,990 per year with a resulting simple payback of 4.4 years. The combined ECOs annual energy savings is 280,029 kWh per year, 27% of the present annual energy use.

To qualify for FEMP funding, ECOs must have an SIR greater than 1.25 and a simple economic payback less than 10 years. The following ECOs are recommended for funding as a Federal Energy Management Program (FEMP) project.

**Table ES-4. Summary of ECOs Recommended for FEMP Funding**

| ECO #                   | ECO Description            | Annual Electric Energy Savings (kWh) | Annual Energy Cost Savings (\$) | Annual Maintenance Cost Savings (\$) | Total Investment Costs (\$) | SIR         | Simple Payback (yrs) |
|-------------------------|----------------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------|-------------|----------------------|
| 7                       | UPS System                 | 89,454                               | 7,344                           | 0                                    | 22,874                      | 4.85        | 3.11                 |
| 9                       | Recirculation of Tower Air | 74,518                               | 6,118                           | 0                                    | 22,767                      | 4.05        | 3.72                 |
| 4                       | T-8 Fluorescent Lamps      | 29,455                               | 2,418                           | 47                                   | 12,429                      | 2.38        | 5.04                 |
| 8                       | Chiller Replacement        | 85,453                               | 7,016                           | 0                                    | 99,539                      | 2.01        | 8.30                 |
| <b>Combined Savings</b> |                            | <b>252,877</b>                       | <b>20,761</b>                   | <b>47</b>                            | <b>157,609</b>              | <b>2.74</b> | <b>5.7</b>           |

The combined savings of these ECOs with synergistic effects taken into account is \$20,761 per year with a resulting SIR of 2.74 and a simple payback of 5.7 years.

The following ECOs are recommended for in-house implementation by the GEODSS maintenance staff.

**Table ES-5. Summary of ECOs Recommended for In-House Implementation**

| ECO # | ECO Description        | Annual Electric Energy Savings (kWh) | Annual Energy Cost Savings (\$) | Annual Maintenance Cost Savings (\$) | Total Investment Costs (\$) | SIR   | Simple Payback (yrs) |
|-------|------------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------|-------|----------------------|
| 10    | Turn Off AHU at Night  | 48,210                               | 3,958                           | 0                                    | 420                         | 80.86 | 0.09                 |
| 6     | High-Efficiency Motors | 2,197                                | 180                             | 0                                    | 1,753                       | 1.55  | 9.72                 |

The following ECOs are recommended for implementation with the installation of the new computer system, in about two years.

**Table ES-6. Recommended ECO Upgrades with Computer Renovation**

| ECO # | ECO Description     | Annual Electric Energy Savings (kWh) | Annual Energy Cost Savings (\$) | Annual Maintenance Cost Savings (\$) | Total Investment Costs (\$) | SIR | Simple Payback (yrs) |
|-------|---------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------|-----|----------------------|
| 5     | Vortex Tube Cooling | 38,441                               | 3,156                           | 0                                    | N/A                         | N/A | N/A                  |

The following ECOs were not found to be cost effective:

**Table ES-7. ECOs Not Recommended**

| ECO # | ECO Description             | Annual Electric Energy Savings (kWh) | Annual Energy Cost Savings (\$) | Annual Maintenance Cost Savings (\$) | Total Investment Costs (\$) | SIR  | Simple Payback (yrs) |
|-------|-----------------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------|------|----------------------|
| 1     | Albedo Modification         | 1,532                                | 126                             | 0                                    | N/A                         | N/A  | N/A                  |
| 2     | Roof Insulation 6"          | 1,939                                | 159                             | 0                                    | N/A                         | N/A  | N/A                  |
| 3     | Low-Emissivity Roof Coating | 900                                  | 74                              | 0                                    | N/A                         | N/A  | N/A                  |
| 11    | Propane Heat                | 1,199                                | 65                              | 0                                    | 11,182                      | 0.08 | 171.70               |
| 12    | Economizers                 | 967                                  | 79                              | 0                                    | 4,096                       | 0.29 | 51.60                |

## **1. INTRODUCTION**

### **1.1 AUTHORITY FOR STUDY**

This study was performed and this report prepared under Contract No. DACA01-94-D-0033, Delivery Order No. 8. The delivery order was issued by U.S. Army Engineer District, Mobile, to E M C Engineers, Inc. on 8 May 1995.

### **1.2 PURPOSE OF STUDY**

The purpose of this study is to identify and evaluate Energy Conservation Opportunities (ECOs) for the Ground Based Electro-Optical Deep Space Surveillance (GEODSS) Facility, Building 34568, to determine their energy savings potential and economic feasibility, and to document results for possible future funding.

### **1.3 STATEMENT OF WORK**

The following services are required by the Statement of Work contained in Appendix A:

- Perform a limited site survey.
- Evaluate selected ECOs.
- Use building energy simulations to calculate envelope and HVAC system energy savings.
- Combine selected ECOs into recommended projects taking into account the effects of multiple ECOs on energy savings and implementation costs.
- Provide a comprehensive report presenting field survey data, assumptions, methods of analysis, and results of the study.

### **1.4 GENERAL APPROACH**

EMC attended a pre-proposal meeting at the GEODSS site in March 1995. At that meeting, EMC was given a tour of the facility and received information regarding the history of the facility, including details of present operations and problems. The meeting produced a preliminary list of ECOs to be evaluated.

A detailed field survey was completed the 1st and 2nd of June 1995. As part of the field survey, the electric meter serving the site was recalibrated and electrical measurements were made on selected electrical equipment.

The building energy use was simulated using the DOE2.1d program to produce a baseline model. The baseline model energy use was compared to historical energy use data.

Each ECO was analyzed individually. Energy savings were calculated by modifying the baseline model to reflect the proposed modification. A detailed cost estimate and a Life Cycle Cost Analysis (LCCA) were performed for each ECO.

ECOs with favorable economics were combined into recommended projects. The effects of multiple ECOs on energy savings and implementation costs were taken into account. A Form DD1391 was used to present the data and text for the recommended projects.

A comprehensive Preliminary Report was prepared presenting the field survey data, assumptions, methods of analysis, and results of the study.

## 1.5 LIFE CYCLE COST ANALYSIS

The Life Cycle Cost Analysis (LCCA) methodology used in this study comprised a present value analysis of capital costs, operational costs, and projected energy costs over the expected life cycle of the ECO. Uniform present value (UPV) factors and escalation rates for energy costs were taken from Energy Prices and Discount Factors for Life-Cycle Cost Analysis 1995, which is the current update to NBS Handbook 135. A 3.0% discount rate was used for the purpose of this study in compliance with FEMP guidelines.

The following UPV factors, adjusted for average fuel price escalation, were taken from the NBS 135 Supplement:

| No. of Years | Uniform Present Value Factor |        |            |  | Applicable ECOs      |
|--------------|------------------------------|--------|------------|--|----------------------|
|              | Electricity                  | LP Gas | Non-Energy |  |                      |
| 10           | 8.58                         | 9.60   | 8.53       |  | Controls             |
| 15           | 12.02                        | 14.17  | 11.94      |  | Lighting Systems     |
| 20           | 15.08                        | 18.58  | 14.88      |  | HVAC, Weatherization |

## 1.6 ORGANIZATION OF DOCUMENT

This report is organized as follows:

- Section 2 summarizes the existing building and HVAC data.

- Section 3 presents the energy use of the existing baseline building.
- Section 4 contains the analysis for each individual ECO.
- Section 5 summarizes the results of the analysis and makes recommendations.
- Appendix E contains a completed Form DD-1391 for use in obtaining Federal Energy Management Program (FEMP) funding for the selected project package.

## **2. BUILDING AND HVAC DATA**

### **2.1 GENERAL**

The GEODSS Facility (Building 34568) is a windowless, concrete block structure of approximately 10,000 square feet. The building is located on the northern end of the White Sands Missile Range (WSMR) in central New Mexico. The building consists of a large central computer room surrounded by offices on the perimeter. Concrete towers at three corners of the building are topped with telescopes in movable domes. The building is occupied continuously 24 hours per day. Field survey notes and tabulated data on the building and HVAC systems is contained in Appendix B.

### **2.2 COMPUTER ROOM**

The computer room is in the center of the building with one wall exposed to the outside. The wall consists of concrete block, fiberglass batt insulation, and interior wall board. There are no windows. The built-up flat roof is insulated with an estimated 4 inches of polystyrene insulation supported by a metal deck. A drop acoustic ceiling is suspended about 3 feet below the metal deck.

The computer room contains a large quantity of computer equipment which contributes significant heat gain to the room.

The computer room is conditioned by three computer room units (CRUs) each rated at 12,000 cfm and 326 MBH cooling capacity. The CRUs are located within the computer room and distribute supply air via a perforated floor. Each CRU contains a fan, chilled water coil, electric reheat coil, and a humidifier. Room temperature is maintained in the 70° to 72°F range and relative humidity in the 35% to 50% range.

### **2.3 OFFICES**

Offices and hallways are arranged along three sides of the building. Wall and roof construction is identical to the computer room and there are no windows.

The offices contain typical office equipment such as personal computers, printers, a coffee maker, a refrigerator, vending machines, and a photocopy machine. Additionally, there is some electrical test equipment for maintaining electronic equipment associated with the telescopes.

The offices and hallways are conditioned by a single-zone HVAC system consisting of a fan supplying 4770 cfm, a chilled water cooling coil, and an electric duct heater. Outside air is specified at 26% of supply air. Room temperature is maintained in the 70° to 72°F range.

## **2.4 CONFERENCE ROOM**

A small conference room adjacent to the offices is served by a small dedicated AHU containing a chilled water cooling coil.

## **2.5 TOWERS**

Three two-story towers topped with dome-covered telescopes are located at three corners of the building. The domes are constructed of an aluminum outer skin, about 4 inches of insulation, and an inside skin of unknown construction, possibly fiberglass. The domes are equipped with a tight fabric skirt around the perimeter to limit infiltration. There is a noticeable gap around the aperture door in the dome. The walls are 12 inch cast concrete, fiberglass batt insulation, and interior wallboard. There are no windows.

Equipment in the towers consists of a rack of electronic processing equipment, the telescope drives, and the electronic camera within the telescope. The cameras are cooled by vortex cooling tubes supplied by 90 psig compressed air. Each tower has a dedicated 5 horsepower air compressor to serve the vortex tubes.

Each tower is served by a dedicated 2,000 cfm AHU. Each AHU is a once-through system in which outside air is drawn in, cooled by a chilled water cooling coil, ducted to the tower, and expelled through openings in the dome. Each room thermostat is set at 40°F, but the HVAC system is incapable of reaching this temperature given the 45°F chilled water temperature serving the cooling coil. The result is that the cooling coils are operating at full capacity during the cooling season. It is desired to keep the telescope as cool as possible to minimize stabilization time when the telescope is exposed to the cold night sky.

The AHUs serving the towers are operated from mid-April to mid-November. The AHUs are turned off in the winter.

It is unclear why the HVAC system is a once-through system; there are no ventilation requirements for the space. We originally believed the once-through system was for the purpose of pressurization, to keep dust from infiltrating through the dome. However, the system is not operated in the winter and the openings in the dome do not appear to be large enough to require 2,000 cfm of airflow for pressurization. The once-through system has insufficient capacity to cool the OA air from 95°F to 45°F.

## **2.6 CENTRAL CHILLED WATER SYSTEM**

All eight AHUs in the building are supplied with chilled water from the central chilled water system. The chilled water system consists of two 36 ton chillers coupled to two air-cooled condensers. Chilled water is supplied to HVAC cooling coils via a primary/secondary pumping arrangement.

## **2.7 LIGHTING**

Interior lighting consists of the following:

- The computer room and offices are lit with recessed fluorescent fixtures each containing two standard 40 watt T-12 fluorescent lamps powered by standard magnetic coil ballasts. Offices and hallways have been extensively delamped and most offices are equipped with occupancy sensors which automatically turn lights on and off.
- Ten exit signs are located in the building each with two 20 watt incandescent lamps.
- Twelve 150 watt floodlights serve the three towers. These floodlights are operated for only 1 to 2 hours per day.
- Nine 60 watt recessed incandescent fixtures were noted at various places in the building.
- Fifty-one small, ground-level, shaded, incandescent lamps serve walkways and parking lots around the building. These lamps are rated at 15 and 25 watts at 220 volts, but are operated at 110 volts which results in actual wattages of 7.5 and 12.5.
- The building perimeter is equipped with a high intensity security lighting system which is only activated for an intruder alert. Use of this lighting system for any other purpose is incompatible with the function of the telescopes.

## **2.8 ELECTRIC POWER**

Electric power is supplied to the GEODSS Facility by Socorro Electric. The facility is billed for electricity by the White Sands Missile Range at a rate of \$0.0821 per kWh. There is no demand charge. The rate schedule is contained in Appendix C.

The facility is metered by a dedicated electric meter. This meter was calibrated by ZIA Electrical Products as part of this study. The meter was found to be accurate within 1.0 percent in its "as found" condition. The meter was adjusted slightly during calibration for

better accuracy. Meter nameplate data, calibration data, and historical meter data is contained in Appendix C.

Total power to the facility was measured during the field survey at the main breaker. The system was drawing about 250 amps at 282 volts with a power factor of about 0.63. This extremely low power factor should be corrected because utility companies have begun to penalize customers with low power factors. There currently is no power factor penalty from the utility.

Power supplied to the computer room and electronic equipment associated with the telescopes is termed "Tech power" and is routed through a rotating Uninterrupted Power Supply (UPS) system. The UPS system consists of a 120 volt/150 kW generator coupled to a large flywheel turned by a 250 horsepower electric motor. The flywheel will provide about 17 seconds of uninterrupted power, which is sufficient time for the emergency diesel-electric generator to come on-line in the event of an interruption to commercial power. Power to the motor was measured during the field survey and found to be drawing about 85 amps at 281 volts with a power factor of about 0.45. This low power factor is probably the main reason for the low power factor at the main breaker.

The diesel-electric generator is operated during thunderstorms when there is a strong possibility of commercial power interruptions, and in the event of an actual commercial power interruption.

### **3. BASELINE ENERGY USE**

### 3.1 HISTORICAL ENERGY USE

Monthly electric energy purchased from Socorro electric and generated on site using the diesel-electric generator is indicated in Figure 3-1 below.

**Figure 3-1. Electricity Purchased and Generated Oct 1991 to Jan 1995**



Figure 3-1 is based on facility electric meter data and diesel fuel consumption data. The fuel rate for the diesel-electric generator was assumed to be 0.064 gallons per kWh based on typical fuel rates for diesel-electric generators.

The supporting energy consumption data is contained in Appendix C. The following problems were noted with the electric data:

- The electric meter failed and produced erroneous readings from May 1993 through October 1993, when it was replaced.
- The electric consumption for March 1994 appears to be in error.
- No fuel oil consumption data was supplied after January 1994.

Data for FY91 and FY92 appears consistent and accurate and was judged to be the best representation of energy consumption for the facility. Referring to FY91 and FY92 in Figure 3-1, the following comments apply:

- Monthly energy use throughout the year is fairly steady ranging from about 80 to 105 MWh per month. This is due to a high percentage of electric use going to steady loads which vary little from month to month. These include Tech power, lights, HVAC fans, and office equipment.
- Electricity is consistently low in February and March, probably a result of lower cooling loads and minimal heating loads.

### **3.2 BASELINE ENERGY SIMULATION**

The DOE2.1d building energy simulation program was used to model the building. The model used TMY weather for Truth or Consequences, New Mexico. The following methods and assumptions were made in developing a baseline energy simulation which is intended to represent the existing condition of the building:

- Lighting electric loads were based on fixture counts for each zone, incandescent lamp wattages, and fluorescent fixture wattages based on catalog data for the type of lamps and ballasts in the fixture. Fixtures which had been delamped and light circuits with occupancy sensors were taken into account. Occupancy sensors were assumed to reduce energy use by 30%. The lighting schedules were based on interviews of personnel in the building.
- Equipment electric loads from office equipment were based on the equipment inventory and handbook data containing average energy use.
- Heat gain from people was based on the occupancy schedule of the building.
- Tech power electric loads were based on electrical measurements made during the field survey. The Tech power electric loads were reported to be fairly steady. These loads were varied somewhat as a means for calibrating the model to historical

energy use. Tech power is used by the computers and electronic equipment in the computer room and by electronic equipment and the cameras in the towers.

- Air compressor electric loads were based on vortex tube flow which ranges from 5 to 15 cfm with an average at about 10 cfm. The compressors will supply about 20 cfm, and are thus about 50% loaded. The resulting average load is 2.12 kW per compressor. Vortex tubes and air compressors are operated from 3 p.m. to 7 a.m. daily.
- Fan electric loads were based on motor horsepower and motor loading. Motor loading was determined by measuring motor speed during the field survey and calculating motor slip which is proportional to motor load fraction.
- Chiller performance in terms of kW per ton was difficult to estimate. The chiller is a built-up system consisting of refrigerant compressors and air-cooled condensers from different manufacturers. The baseline air-cooled chiller was assumed to operate 1.43 kW per ton based on catalog data for a chiller of similar type and age.

Figure 3-2 below is a plot of historical and predicted electric energy use of the facility. As can be seen, there is good agreement between the model and historical data.

Figure 3-2. DOE2.1d Model vs. Historical Data



Figure 3-3 below is a graphic of the distribution of electric energy use. As can be seen miscellaneous equipment consumes about 35% of the annual energy used at the facility. Miscellaneous equipment includes computers, office equipment, electronic equipment, cameras, and the air compressors. Space cooling consumes about 43% of the annual energy. HVAC Aux, which includes fans and pumps, and lighting consumes the remaining 20%. Space heating consumes less than 2% of the annual energy.

**Figure 3-3. Energy Use Distribution**



Table 3-1 below presents the annual energy use and cost for the facility.

**Table 3-1. Facility Annual Energy**

|               | Annual Electric Use (MWh) | Annual Energy Cost (\$) |
|---------------|---------------------------|-------------------------|
| DOE2.1d Model | 1,047                     | \$85,981                |
| FY91          | 1,010                     | \$82,921                |
| FY92          | 1,031                     | \$84,645                |

## **4. INDIVIDUAL ECO ANALYSIS**

This section contains a description and complete analysis for each ECO, including backup data. These ECOs are:

- ECO 1: Albedo Modification.
- ECO 2: Roof Insulation.
- ECO 3: Low-Emissivity Roof Coating.
- ECO 4: T-8 Fluorescent Lamps.
- ECO 5: Vortex Tube Cooling.
- ECO 6: High-Efficiency Motors.
- ECO 7: UPS System.
- ECO 8: Chiller Replacement.
- ECO 9: Recirculate Air in Towers.
- ECO 10: Turn Office AHU at Night.
- ECO 11: Propane Heat.
- ECO 12: Economizer.



## 4.1 ECO 1: ALBEDO MODIFICATION

**Proposed Modifications:** Repaint the building white and replace the gravel on the roof with white rock in order to reduce on the cooling load.

The ability of a building surface to reflect incoming electromagnetic radiation is called albedo. Dark building surfaces absorb heat while light surfaces reflect the heat and stay cooler. The absorptance of a surface is measured on a scale from 0 to 1, with an absorptance of 1 absorbing all of the radiation, while a surface with an absorptance of 0 reflects it all. A previous energy conservation study of a typical house in Sacramento, California, indicated that the total air-conditioning bill could be reduced by up to 22% if the absorptance of the walls and roof were decreased from 0.6 to 0.2.

**Existing Conditions:** The building, originally white, was repainted a light tan approximately two years ago. The outside doors were also changed from white to dark brown and the building's roof was also changed from white roof gravel to a medium brown roof gravel. The occupants of the building began to notice an increase in electrical consumption right after the color of the building was changed. The absorptance of the existing flat, built-up roof was assumed to be 0.6, based on the absorptance of similar colored material. The existing wall absorptivity was assumed to be 0.7.

### **Method of Analysis:**

- The DOE 2.1d baseline model was modified and the building's energy consumption was calculated for roof and wall absorptance values of 0.29 and 0.26, respectively.
- Simulations were also run for roof and wall absorptances of 0.1 versus 0.9 to see the effect of a wider range of absorptances.

**Results:** The simulations (summarized in the table below) indicated that with the proposed modifications, there would be a negligible drop in the cooling load which would be partially offset by an increase in heating load. This is due to adequate insulation in the roof and walls. The total annual energy savings was estimated at 5.2 MBtu or about 1,532 kWh which would save \$126 annually.

| Item                   | Baseline | ECO   |
|------------------------|----------|-------|
| Roof Absorptance       | 0.70     | 0.29  |
| Wall Absorptance       | 0.60     | 0.26  |
| Heating (MBtu)         | 55       | 59    |
| Cooling (MBtu)         | 1569     | 1560  |
| HVAC (MBtu)            | 427      | 426   |
| Lights (MBtu)          | 289      | 289   |
| Misc. Equipment (MBtu) | 1234     | 1234  |
| Total Use (MBtu)       | 3,575    | 3,569 |

**Recommendations:** Changing the color of the walls and roof would not substantially decrease the amount of energy consumed by the building or be cost efficient. An albedo modification is not recommended. However, it is recommended that the color of the outer doors be changed for safety reasons from the current dark brown color to a lighter color that will not absorb as much heat. The doors now become so hot in the summer that building personnel have to use gloves to open the doors to avoid being burned.

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC  
DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
REPORT- BEPS ESTIMATED BUILDING ENERGY PERFORMANCE

DOE-2.1D 8/7/1995 12:22:21 PDL RUN 1  
TRUTH OR CONSEQU, N

ENERGY TYPE  
IN SITE MBTU - ELECTRICITY  
CATEGORY OF USE  
SPACE HEAT 59.02  
SPACE COOL 1560.06  
HVAC AUX 426.40  
DOM HOT WTR 0.00  
AUX SOLAR 0.00  
LIGHTS 288.88  
VERT TRANS 0.00  
MISC EQUIP 1233.86  
TOTAL 3568.23

TOTAL SITE ENERGY 3568.14 MBTU 313.0 KBTU/SQFT-YR GROSS-AREA 313.0 KBTU/SQFT-YR NET-AREA  
TOTAL SOURCE ENERGY 3568.14 MBTU 313.0 KBTU/SQFT-YR GROSS-AREA 313.0 KBTU/SQFT-YR NET-AREA  
PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4  
PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0  
NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

**TOTAL SITE ELECTRICITY ENERGY USE 3568.22 MBTU**



E M C Engineering, Inc.  
EMC #1406-008  
GEODSS Site, White Sands Missile Range, NM

LIFE CYCLE COST ANALYSIS  
ECO # 4  
ALBEDO MODIFICATION

LCCECOS.XLS  
Prepared By: EMS  
8/8/95  
Checked By: 

Existing and Proposed Albedo Modification

| CATEGORY         | EXISTING |         | PROPOSED |         | SAVINGS<br>(MBTU) |
|------------------|----------|---------|----------|---------|-------------------|
|                  | Roof     | Wall    | Roof     | Wall    |                   |
| Absorptance      | 0.6      | 0.7     | 0.29     | 0.26    |                   |
| Heating          |          | 55.1    |          | 59.0    | (3.9)             |
| Cooling          |          | 1,569.0 |          | 1,560.1 | 8.9               |
| HVAC             |          | 426.6   |          | 426.4   | 0.2               |
| Lights           |          | 288.8   |          | 288.9   | (0.1)             |
| Misc Equip       |          | 1,233.9 |          | 1,233.9 | -                 |
| Total Use (MBtu) |          | 3,573.4 |          | 3,568.2 | 5.2               |

Maximum and Minimum Albedo Modification

| CATEGORY         | HIGHEST |         | LOWEST |         | SAVINGS<br>(MBTU) |
|------------------|---------|---------|--------|---------|-------------------|
|                  | Roof    | Wall    | Roof   | Wall    |                   |
| Absorptance      | 0.90    | 0.90    | 0.10   | 0.10    |                   |
| Heating          |         | 51.8    |        | 61.5    | (9.6)             |
| Cooling          |         | 1,578.4 |        | 1,555.5 | 22.9              |
| HVAC             |         | 426.8   |        | 426.3   | 0.6               |
| Lights           |         | 288.9   |        | 288.9   | -                 |
| Misc Equip       |         | 1,233.9 |        | 1,233.9 | 0.0               |
| Total Use (MBtu) |         | 3,579.8 |        | 3,565.9 | 13.9              |

ABSORPTANCE for Various Exterior Surfaces\*

| <u>Material</u>                      | <u>Absorptance</u> | <u>Paint</u>                           | <u>Absorptance</u> |
|--------------------------------------|--------------------|----------------------------------------|--------------------|
| Black concrete                       | 0.91               | Optical flat black paint               | 0.98               |
| Stafford blue brick                  | 0.89               | Flat black paint                       | 0.95               |
| Red brick                            | 0.88               | Black lacquer                          | 0.92               |
| Bituminous felt                      | 0.88               | Dark gray paint                        | 0.91               |
| Blue gray slate                      | 0.87               | Dark blue lacquer                      | 0.91               |
| Roofing, green                       | 0.86               | Black oil paint                        | 0.90               |
| Brown concrete                       | 0.85               | Dark olive drab paint                  | 0.89               |
| Asphalt pavement, weathered          | 0.82               | Dark brown paint                       | 0.88               |
| Wood, smooth                         | 0.78               | Dark blue-gray paint                   | 0.88               |
| Uncolored asbestos cement            | 0.75               | Azure blue or dark green<br>lacquer    | 0.88               |
| Uncolored cement                     | 0.65               |                                        |                    |
| Asbestos cement, white               | 0.61               | Medium brown paint                     | 0.84               |
| White marble                         | 0.58               | Medium light brown paint               | 0.80               |
| Light buff brick                     | 0.55               | Brown or green lacquer                 | 0.79               |
| Built-up roof, white                 | 0.50               | Medium rust paint                      | 0.78               |
| Bituminous felt, aluminized          | 0.40               | Light gray oil paint                   | 0.75               |
| Aluminum paint                       | 0.40               | Red oil paint                          | 0.74               |
| Gravel                               | 0.29               | Medium dull green paint                | 0.59               |
| White on galvanized iron             | 0.26               | Medium orange paint                    | 0.58               |
| White glazed brick                   | 0.25               | Medium yellow paint                    | 0.57               |
| Polished aluminum reflector<br>sheet | 0.12               | Medium blue paint                      | 0.51               |
| Aluminized mylar film                | 0.10               | Medium Kelly green paint               | 0.51               |
| Tinned surface                       | 0.05               | Light green paint                      | 0.47               |
|                                      |                    | White semi-gloss paint                 | 0.30               |
|                                      |                    | White gloss paint                      | 0.25               |
|                                      |                    | Silver paint                           | 0.25               |
|                                      |                    | White lacquer                          | 0.21               |
|                                      |                    | Laboratory vapor deposited<br>coatings | 0.05               |

\*This table is a compilation of data from several sources including Passive Solar Design Analysis by J. Douglas Balcomb (US Department of Energy, Office of the Assistant Secretary for Conservation and Solar Energy, December 1979) and Ref. 3



## 4.2 ECO 2: ROOF INSULATION

**Proposed Modifications:** This ECO analysis determines the optimum thickness of rigid insulation in the roof of the building.

It is assumed that any modification to roof insulation will occur only during scheduled roof repair and/or replacement. Therefore, the only cost involved will be the material and labor cost to install the incremental thickness of rigid, polystyrene insulation. The time and labor cost of any demolition of the existing roof or the built-up roofing over the insulation was not included in the analysis.

This ECO determines the optimum balance between the energy savings and the material and labor costs of various thicknesses of rigid insulation on the roof.

**Existing Conditions:** The building roof consists of built-up roofing on 4 inches of rigid insulation supported by a metal deck. Beneath the roof deck is a 4 to 5 foot air space and an acoustic tile suspended ceiling. This air space is not used as a plenum for return air flow.

**Method of Analysis:** Analysis proceeded as follows:

- The roof construction was determined from the building plans.
- The building was then modeled on DOE2.1d with insulation thicknesses ranging from 0 inches to 6 inches of rigid polystyrene roof insulation. The building energy consumption was calculated for each 1 inch increment of insulation.
- Using industry construction cost data, the material and labor costs for installing each insulation thickness were calculated.
- A life cycle cost analysis was performed for each thickness of insulation and the optimum thickness was then determined.

**Results:** The following table presents the results of the computer energy simulations. The LCCA on page 4-12 presents the results of the analysis for six different thicknesses of rigid roof insulation. The optimal insulation thickness is 2 inches, as seen on the graph of roof insulation thickness vs. the LCCA on page 4-11. In summary, additional roof insulation would not be cost effective.

| Item               | Equipment<br>(MBtu) | Lights<br>(MBtu) | HVAC Aux<br>(MBtu) | Space Heat<br>(Mbtu) | Space Cool<br>(Mbtu) | Total<br>(MBtu) |
|--------------------|---------------------|------------------|--------------------|----------------------|----------------------|-----------------|
| 0" Roof Insulation | 1233.9              | 288.9            | 427.7              | 103.9                | 1587.8               | 3,642.2         |
| 1" Roof Insulation | 1233.9              | 288.9            | 427.0              | 76.4                 | 1577.1               | 3,604.0         |
| 2" Roof Insulation | 1233.9              | 288.7            | 427.0              | 64.9                 | 1572.3               | 3,586.8         |
| 3" Roof Insulation | 1233.9              | 288.9            | 426.7              | 58.9                 | 1570.2               | 3,578.5         |
| 4" Roof Insulation | 1233.9              | 288.9            | 426.6              | 55.1                 | 1568.95              | 3,573.4         |
| 5" Roof Insulation | 1233.9              | 288.9            | 426.6              | 52.5                 | 1567.4               | 3,569.3         |
| 6" Roof Insulation | 1233.9              | 288.9            | 426.6              | 50.7                 | 1566.93              | 3,567.0         |

**Recommendations:** Since the building roof already contains 4 inches of rigid polystyrene insulation, any modification to existing roof insulation is unnecessary and not cost effective.

### Roof Insulation Thickness vs. Life Cycle Cost



| Economic Life (yrs) | Electric Energy Cost |        |
|---------------------|----------------------|--------|
| 20                  | 0.0821               | \$/kWh |

Construction Cost - Roof Insulation Replacement

| Building No.                           | 34568   |          |          |          |          |          |          |
|----------------------------------------|---------|----------|----------|----------|----------|----------|----------|
|                                        | 0       | 1        | 2        | 3        | 4        | 5        | 6        |
| Roof Insulation Thickness (inches)     | 4.50    | 9.00     | 13.50    | 18.00    | 22.50    | 25.00    | 29.50    |
| Roof Area (sqft)                       | 9413.33 | 9413.33  | 9413.33  | 9413.33  | 9413.33  | 9413.33  | 9413.33  |
| Material Cost Per sqft                 | 0       | 0.69     | 0.95     | 1.21     | 1.47     | 2.16     | 2.42     |
| Total Material Cost                    | \$0     | \$6,495  | \$8,943  | \$11,390 | \$13,838 | \$20,333 | \$22,780 |
| Labor Hours Per SqFt                   | 0.000   | 0.005    | 0.006    | 0.008    | 0.008    | 0.010    | 0.012    |
| Labor Rate                             | 0.00    | 47.07    | 56.48    | 75.31    | 75.31    | 94.13    | 112.96   |
| Total Labor Cost                       | \$0     | \$1,038  | \$1,245  | \$1,661  | \$1,661  | \$2,076  | \$2,491  |
| Total Cost                             | \$0     | \$7,533  | \$10,188 | \$13,051 | \$15,498 | \$22,408 | \$25,271 |
| Overhead and Profit, Contingency, etc. | \$0     | \$4,188  | \$5,664  | \$7,256  | \$8,616  | \$12,458 | \$14,049 |
| Total Project Cost                     | \$0     | \$11,721 | \$15,852 | \$20,306 | \$24,114 | \$34,866 | \$39,320 |

| Rigid Roof Insulation Thickness    | 0           | 1           | 2           | 3           | 4           | 5           | 6           |
|------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>Investment Costs</b>            |             |             |             |             |             |             |             |
| Construction Cost                  | \$0         | \$11,721    | \$15,852    | \$20,306    | \$24,114    | \$34,866    | \$39,320    |
| SIOH (6.0%)                        | \$0         | \$703       | \$951       | \$1,218     | \$1,447     | \$2,092     | \$2,359     |
| Design Cost (6.0%)                 | \$0         | \$703       | \$951       | \$1,218     | \$1,447     | \$2,092     | \$2,359     |
| Total Construction Cost            | \$0         | \$13,128    | \$17,754    | \$22,743    | \$27,008    | \$39,050    | \$44,039    |
| Total Investment                   | \$0         | \$13,128    | \$17,754    | \$22,743    | \$27,008    | \$39,050    | \$44,039    |
| <b>Annual Energy Use</b>           |             |             |             |             |             |             |             |
| Electric Energy (kWh)              | 1,067,393   | 1,056,005   | 1,051,181   | 1,048,770   | 1,047,272   | 1,046,005   | 1,045,006   |
| Electric Demand (kW)               | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| <b>Annual Energy Cost</b>          |             |             |             |             |             |             |             |
| Electric Energy (kWh)              | \$87,633    | \$86,698    | \$86,302    | \$86,104    | \$85,981    | \$85,877    | \$85,795    |
| Electric Demand (kW)               | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| <b>Discount Factors (Region 4)</b> |             |             |             |             |             |             |             |
| Electric Energy                    | 15.08       | 15.08       | 15.08       | 15.08       | 15.08       | 15.08       | 15.08       |
| Electric Demand                    | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| <b>Discounted Energy Cost</b>      |             |             |             |             |             |             |             |
| Electric Energy                    | \$1,321,505 | \$1,307,406 | \$1,301,434 | \$1,298,449 | \$1,296,594 | \$1,295,025 | \$1,293,788 |
| Electric Demand                    | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| Total Discounted Cost              | \$1,321,505 | \$1,307,406 | \$1,301,434 | \$1,298,449 | \$1,296,594 | \$1,295,025 | \$1,293,788 |
| Total Life Cycle Cost              | \$1,321,505 | \$1,320,534 | \$1,319,188 | \$1,321,191 | \$1,323,602 | \$1,334,076 | \$1,337,827 |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
 REPORT- BEPS ESTIMATED BUILDING ENERGY PERFORMANCE  
 DOE-2.1D 8/7/1995 14:27:35 PDL RUN 1  
 TRUTH OR CONSEQU, N

| ENERGY TYPE<br>IN SITE MBTU - ELECTRICITY |                |
|-------------------------------------------|----------------|
| CATEGORY OF USE                           |                |
| SPACE HEAT                                | 103.87         |
| SPACE COOL                                | 1587.78        |
| HVAC AUX                                  | 427.69         |
| DOM HOT WTR                               | 0.00           |
| AUX SOLAR                                 | 0.00           |
| LIGHTS                                    | 288.88         |
| VERT TRANS                                | 0.00           |
| MISC EQUIP                                | 1233.86        |
| <b>TOTAL</b>                              | <b>3642.08</b> |

TOTAL SITE ENERGY 3642.09 MBTU 319.5 KBTU/SQFT-YR GROSS-AREA 319.5 KBTU/SQFT-YR NET-AREA  
 TOTAL SOURCE ENERGY 3642.09 MBTU 319.5 KBTU/SQFT-YR GROSS-AREA 319.5 KBTU/SQFT-YR NET-AREA  
 PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 1.3  
 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0  
 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
 ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

### TOTAL SITE ELECTRICITY ENERGY USE 3642.08 MBTU



EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 14:20:29 PDL RUN 1  
DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
REPORT- BEPS ESTIMATED BUILDING ENERGY PERFORMANCE TRUTH OR CONSEQU, N

ENERGY TYPE  
IN SITE MBTU - ELECTRICITY  
CATEGORY OF USE  
SPACE HEAT 76.39  
SPACE COOL 1577.06  
HVAC AUX 427.04  
DOM HOT WTR 0.00  
AUX SOLAR 0.00  
LIGHTS 288.88  
VERT TRANS 0.00  
MISC EQUIP 1233.86  
TOTAL 3603.23

TOTAL SITE ENERGY 3603.18 MBTU 316.1 KBTU/SQFT-YR GROSS-AREA 316.1 KBTU/SQFT-YR NET-AREA  
TOTAL SOURCE ENERGY 3603.18 MBTU 316.1 KBTU/SQFT-YR GROSS-AREA 316.1 KBTU/SQFT-YR NET-AREA  
PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.7  
PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED =100.0  
NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

**TOTAL SITE ELECTRICITY ENERGY USE 3603.23 MBTU**



EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC  
DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
REPORT- BEPS ESTIMATED BUILDING ENERGY PERFORMANCE

DOE-2.1D 8/ 7/1995 14:13:20 PDL RUN 1  
TRUTH OR CONSEQU, N

ENERGY TYPE  
IN SITE MBTU - ELECTRICITY  
CATEGORY OF USE  
SPACE HEAT 64.96  
SPACE COOL 1572.27  
HVAC AUX 426.82  
DOM HOT WTR 0.00  
AUX SOLAR 0.00  
LIGHTS 288.88  
VERT TRANS 0.00  
MISC EQUIP 1233.86  
TOTAL 3586.79

TOTAL SITE ENERGY 3586.71 MBTU 314.7 KBTU/SQFT-YR GROSS-AREA 314.7 KBTU/SQFT-YR NET-AREA  
TOTAL SOURCE ENERGY 3586.71 MBTU 314.7 KBTU/SQFT-YR GROSS-AREA 314.7 KBTU/SQFT-YR NET-AREA  
PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.5  
PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED =100.0  
NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

**TOTAL SITE ELECTRICITY ENERGY USE 3586.79 MBTU**



EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 14: 6: 1 PDL RUN 1  
DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
REPORT- BEPS ESTIMATED BUILDING ENERGY PERFORMANCE TRUTH OR CONSEQU. N

ENERGY TYPE  
IN SITE MBTU - ELECTRICITY  
CATEGORY OF USE  
SPACE HEAT 58.92  
SPACE COOL 1570.20  
HVAC AUX 426.70  
DOM HOT WTR 0.00  
AUX SOLAR 0.00  
LIGHTS 288.88  
VERT TRANS 0.00  
MISC EQUIP 1233.86  
TOTAL 3578.56

TOTAL SITE ENERGY 3578.48 MBTU 313.9 KBTU/SQFT-YR GROSS-AREA 313.9 KBTU/SQFT-YR NET-AREA  
TOTAL SOURCE ENERGY 3578.48 MBTU 313.9 KBTU/SQFT-YR GROSS-AREA 313.9 KBTU/SQFT-YR NET-AREA  
PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4  
PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED =100.0  
NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

**TOTAL SITE ELECTRICITY ENERGY USE 3578.56 MBTU**



| ENERGY TYPE<br>IN SITE MBTU - | ELECTRICITY |
|-------------------------------|-------------|
| CATEGORY OF USE               |             |
| SPACE HEAT                    | 55.12       |
| SPACE COOL                    | 1568.95     |
| HVAC AUX                      | 426.63      |
| DOM HOT WTR                   | 0.00        |
| AUX SOLAR                     | 0.00        |
| LIGHTS                        | 288.88      |
| VERT TRANS                    | 0.00        |
| MISC EQUIP                    | 1233.86     |
| TOTAL                         | 3573.45     |

TOTAL SITE ENERGY 3573.36 MBTU 313.5 KBTU/SQFT-YR GROSS-AREA 313.5 KBTU/SQFT-YR NET-AREA  
 TOTAL SOURCE ENERGY 3573.36 MBTU 313.5 KBTU/SQFT-YR GROSS-AREA 313.5 KBTU/SQFT-YR NET-AREA  
 PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4  
 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED =100.0  
 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
 ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

### TOTAL SITE ELECTRICITY ENERGY USE 3573.44 MBTU



| ENERGY TYPE<br>IN SITE MBTU - | ELECTRICITY |
|-------------------------------|-------------|
| CATEGORY OF USE               |             |
| SPACE HEAT                    | 52.53       |
| SPACE COOL                    | 1567.42     |
| HVAC AUX                      | 426.59      |
| DOM HOT WTR                   | 0.00        |
| AUX SOLAR                     | 0.00        |
| LIGHTS                        | 288.88      |
| VERT TRANS                    | 0.00        |
| MISC EQUIP                    | 1233.86     |
| TOTAL                         | 3569.28     |

TOTAL SITE ENERGY 3569.18 MBTU 313.1 KBTU/SQFT-YR GROSS-AREA 313.1 KBTU/SQFT-YR NET-AREA  
 TOTAL SOURCE ENERGY 3569.18 MBTU 313.1 KBTU/SQFT-YR GROSS-AREA 313.1 KBTU/SQFT-YR NET-AREA  
 PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4  
 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0  
 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
 ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

**TOTAL SITE ELECTRICITY ENERGY USE 3569.27 MBTU**



ENERGY TYPE  
IN SITE MBTU - ELECTRICITY  
CATEGORY OF USE  
SPACE HEAT 50.65  
SPACE COOL 1566.93  
HVAC AUX 426.55  
DOM HOT WTR 0.00  
AUX SOLAR 0.00  
LIGHTS 288.88  
VERT TRANS 0.00  
MISC EQUIP 1233.86  
TOTAL 3566.86

TOTAL SITE ENERGY 3566.78 MBTU 312.9 KBTU/SQFT-YR GROSS-AREA 312.9 KBTU/SQFT-YR NET-AREA  
TOTAL SOURCE ENERGY 3566.78 MBTU 312.9 KBTU/SQFT-YR GROSS-AREA 312.9 KBTU/SQFT-YR NET-AREA  
PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4  
PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0  
NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

**TOTAL SITE ELECTRICITY ENERGY USE 3566.87 MBTU**



# 072 | Insulation and Fireproofing

| TOTAL<br>INCL O&P | ITEM | DESCRIPTION                                           | QUANTITY | DAILY<br>OUTPUT | MAN-HOURS | UNIT | 1995 BARE COSTS |       |        |       | TOTAL<br>INCL O&P |      |
|-------------------|------|-------------------------------------------------------|----------|-----------------|-----------|------|-----------------|-------|--------|-------|-------------------|------|
|                   |      |                                                       |          |                 |           |      | MAT.            | LABOR | EQUIP. | TOTAL |                   |      |
| 15                | 1755 | 3 1/2" thick R25<br>Tapered for drainage              | 1 Rofc   | 1,000           | .008      | S.F. | .85             | .18   |        | 1.03  | 1.26 203          |      |
|                   | 1765 |                                                       |          | ↓               | 1,400     | .006 | B.F.            | .41   | .13    | .54   |                   |      |
| 45                | 1900 | Extruded Polystyrene                                  | 1 Rofc   | 1,500           | .005      | S.F. | .29             | .12   |        | .41   | .54               |      |
| 45                | 1910 | 15 PSI compressive strength, 1" thick R5              |          | 1,250           | .006      |      | .52             | .14   |        | .66   | .83               |      |
| 56                | 1920 | 2" thick R10                                          |          | 1,000           | .008      |      | .73             | .18   |        | .91   | 1.12              |      |
| 52                | 1930 | 3" thick R15                                          |          | 1,000           | .005      |      | .97             | .18   |        | 1.15  | 1.39              |      |
| 25                | 1932 | 4" thick R20                                          |          | 1,500           | .005      | B.F. | .34             | .12   |        | .46   | .59               |      |
| 81                | 1934 | Tapered for drainage                                  |          | 1,500           | .005      | S.F. | .31             | .12   |        | .43   | .56               |      |
| 44                | 1940 | 25 PSI compressive strength, 1" thick R5              |          | 1,250           | .006      |      | .57             | .14   |        | .71   | .89               |      |
| 40                | 1942 | 2" thick R10                                          |          | 1,000           | .008      |      | .83             | .18   |        | 1.01  | 1.23              |      |
| 60                | 1944 | 3" thick R15                                          |          | 1,000           | .008      |      | 1.09            | .18   |        | 1.27  | 1.52              |      |
| 56                | 1946 | 4" thick R20                                          |          | 1,500           | .005      | B.F. | .38             | .12   |        | .50   | .64               |      |
| 25                | 1948 | Tapered for drainage                                  |          | 1,500           | .005      | S.F. | .36             | .12   |        | .48   | .62               |      |
| 81                | 1950 | 40 PSI compressive strength, 1" thick R5              |          | 1,500           | .005      |      |                 |       |        |       |                   |      |
| 99                | 1952 | 2" thick R10                                          |          | 1,250           | .006      |      | .68             | .14   |        | .82   | 1.01              |      |
| 55                | 1954 | 3" thick R15                                          |          | 1,000           | .008      |      | 1               | .18   |        | 1.18  | 1.42              |      |
| 54                | 1956 | 4" thick R20                                          |          | 1,000           | .008      |      | 1.32            | .18   |        | 1.50  | 1.77              |      |
| 69                | 1958 | Tapered for drainage                                  |          | 1,400           | .006      | B.F. | .48             | .13   |        | .61   | .76               |      |
| 106               | 1960 | 60 PSI compressive strength, 1" thick R5              |          | 1,450           | .006      | S.F. | .42             | .12   |        | .54   | .68               |      |
| 41                | 1962 | 2" thick R10                                          |          | 1,200           | .007      |      | .78             | .15   |        | .93   | 1.13              |      |
| 84                | 1964 | 3" thick R15                                          |          | 975             | .008      |      | 1.15            | .18   |        | 1.33  | 1.60              |      |
|                   | 1966 | 4" thick R20                                          |          | 950             | .008      |      | 1.53            | .19   |        | 1.72  | 2.02              |      |
|                   | 1968 | Tapered for drainage                                  |          | 1,400           | .006      | B.F. | .58             | .13   |        | .71   | .87               |      |
|                   | 1970 | 115 PSI compressive strength, 1" thick R5             |          | 1,400           | .006      | S.F. | .90             | .13   |        | 1.03  | 1.22              |      |
|                   | 1972 | 2" thick R10                                          |          | 1,150           | .007      |      | 1.78            | .15   |        | 1.93  | 2.24              |      |
|                   | 1974 | 3" thick R15                                          |          | 950             | .008      |      | 2.65            | .19   |        | 2.84  | 3.26              |      |
|                   | 1976 | 4" thick R20                                          |          | 900             | .009      |      | 3.53            | .20   |        | 3.73  | 4.24              |      |
|                   | 1978 | Tapered for drainage                                  |          | 1,400           | .006      | B.F. | .97             | .13   |        | 1.10  | 1.30              |      |
| 75                | 2010 | Expanded polystyrene, 1#/CF density, 3/4" thick R2.89 |          | 1,500           | .005      | S.F. | .16             | .12   |        | .28   |                   |      |
| 97                | 2020 | 1" thick R3.85                                        |          | 1,500           | .005      |      | .16             | .12   |        | .28   | .40               |      |
| 112               | 2100 | 2" thick R7.69                                        |          | 1,250           | .006      |      | .27             | .14   |        | .41   | .56               |      |
| 52                | 2110 | 3" thick R11.49                                       |          | 1,250           | .006      |      | .39             | .14   |        | .53   | .69               |      |
| 77                | 2120 | 4" thick R15.38                                       |          | 1,200           | .007      |      | .50             | .15   |        | .65   | .82               |      |
| 106               | 2130 | 5" thick R19.23                                       |          | 1,150           | .007      |      | .63             | .15   |        | .78   | .97               |      |
| 72                | 2140 | 6" thick R23.26                                       |          | 1,150           | .007      |      | .74             | .15   |        | .89   | 1.09              |      |
| 83                | 2150 | Tapered for drainage                                  |          | 1,500           | .005      | B.F. | .28             | .12   |        | .40   | .53               |      |
| 96                | 2400 | Composites with 2" EPS                                |          |                 |           |      |                 |       |        |       |                   |      |
| 121               | 2410 | 1" Fiberboard                                         | 1 Rofc   | 950             | .008      | S.F. | .58             | .19   |        | .77   | .98               |      |
| 131               | 2420 | 7/16" Oriented strand board                           |          | 800             | .010      |      | .68             | .22   |        | .90   | 1.16              |      |
| 146               | 2430 | 1/2" Plywood                                          |          | 800             | .010      |      | .72             | .22   |        | .94   | 1.20              |      |
| 108               | 2440 | 1" Perlite                                            |          | ↓               | 800       | .010 | ↓               | .60   | .22    |       | .82               | 1.07 |
| 105               | 2450 | Composites with 1 1/2" polyisocyanurate               |          |                 |           |      |                 |       |        |       |                   |      |
| 307               | 2460 | 1" Fiberboard                                         | 1 Rofc   | 800             | .010      | S.F. | .70             | .22   |        | .92   | 1.18              |      |
| 145               | 2470 | 1" Perlite                                            |          | 850             | .009      |      | .72             | .21   |        | .93   | 1.17              |      |
| 99                | 2480 | 7/16" Oriented strand board                           |          | ↓               | 800       | .010 | ↓               | .82   | .22    |       | 1.04              | 1.31 |
| 72                |      |                                                       |          |                 |           |      |                 |       |        |       |                   |      |
| 77                | 0010 | SANDWICH PANELS See division 061-281                  |          |                 |           |      |                 |       |        |       | 401               |      |
| 123               | 0012 | EXTERIOR INSULATION FINISH SYSTEM                     |          |                 |           |      |                 |       |        |       | 402               |      |
| 91                | 0100 | Field applied, 1" EPS insulation                      | J-1      | 295             | .136      | S.F. | 1.46            | 3     | .13    | 4.59  | 6.70              |      |
| 50                | 0110 | 2" EPS insulation                                     |          | 295             | .136      |      | 1.63            | 3     | .13    | 4.76  | 6.90              |      |
| 59                | 0120 | 3" EPS insulation                                     |          | 295             | .136      |      | 1.80            | 3     | .13    | 4.93  | 7.10              |      |
| 56                | 0130 | 4" EPS insulation                                     |          | 295             | .136      |      | 1.97            | 3     | .13    | 5.10  | 7.27              |      |
| 109               | 0140 | Premium finish add                                    |          | ↓               | 1,265     | .032 | ↓               | .22   | .70    | .03   | .95               | 1.43 |

### **4.3 ECO 3: LOW EMISSIVITY ROOF COATING**

**Proposed Modifications:** Install a low emissivity roof coating on the outer and underside of the roof in order to reduce the cooling load.

A low emissivity coating on the underside of the roof forms a radiant barrier that restricts the transfer of heat across the airspace. A low emissivity surface does not radiate energy, thus preventing radiant heat transfer. The barrier should be installed shiny side down so that dust will not collect on it and cause its effectiveness to be reduced. It also needs to have an airspace separating the shiny side from other building materials so that it will effectively eliminate the exchange of heat between itself and the other material. This will reduce the amount of heat that is transferred between building components and lessen the cooling load.

The product evaluated is LO/MIT-1, a silver-colored, low emissivity coating that reflects both heat and light. It is a radiant barrier coating that will create a surface emissivity of 0.21 - 0.26 with an 81% - 85% reflectivity. When placed on the outer surface at the roof, the coating reduces solar heat gain.

**Existing Conditions:** No type of radiant barrier exists now. The roof is a built-up type supported by 4 inches of rigid polystyrene insulation on a metal deck with a suspended acoustic tile ceiling that hangs 4 to 5 feet below the bottom of the roof.

#### **Method of Analysis:**

- Information was obtained from several Denver area roofing contractors on various reflective and light-colored roofing materials. The information included technical data on the material's absorptance as well as material and labor costs for installation or application.
- Information was also received from the USAED in Mobile, Alabama, concerning low emissivity roof coatings.
- The DOE2.1d baseline simulation was modified to include the low emissivity coating. The building energy consumption was calculated with the low emissivity coating in-place.

**Results:** The computer energy simulation revealed that a slight drop occurs in the cooling and heating loads of 3.1 MBtu or 900 kWh annually with a resulting annual energy cost savings of \$74.

| Item             | Baseline<br>(MBtu) | ECO<br>(MBtu) |
|------------------|--------------------|---------------|
| Heating          | 55                 | 53            |
| Cooling          | 1569               | 1568          |
| HVAC             | 427                | 427           |
| Lights           | 289                | 289           |
| Misc. Equipment  | 1234               | 1234          |
| Total Use (MBtu) | 3,574              | 3,571         |

**Recommendations:** A low-emissivity roof coating is not recommended because the savings are too small for this to be a cost-effective ECO.

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC  
DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
REPORT- BEPS ESTIMATED BUILDING ENERGY PERFORMANCE

DOE-2.1D 8/ 7/1995 12:54:53 PDL RUN 1  
TRUTH OR CONSEQU, N

ENERGY TYPE  
IN SITE MBTU - ELECTRICITY  
CATEGORY OF USE  
SPACE HEAT 53.31  
SPACE COOL 1567.73  
HVAC AUX 426.59  
DOM HOT WTR 0.00  
AUX SOLAR 0.00  
LIGHTS 288.88  
VERT TRANS 0.00  
MISC EQUIP 1233.86  
TOTAL 3570.38

TOTAL SITE ENERGY 3570.29 MBTU 313.2 KBTU/SQFT-YR GROSS-AREA 313.2 KBTU/SQFT-YR NET-AREA  
TOTAL SOURCE ENERGY 3570.29 MBTU 313.2 KBTU/SQFT-YR GROSS-AREA 313.2 KBTU/SQFT-YR NET-AREA  
PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4  
PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED =100.0  
NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

**TOTAL SITE ELECTRICITY ENERGY USE 3570.37 MBTU**



E M C Engineering, Inc.  
EMC #1406-008  
GEODSS Site, White Sands Missile Range, NM

LIFE CYCLE COST ANALYSIS  
LOW EMISSIVITY COATING

ECO-3.XLS  
Prepared By: EMS  
11/20/95  
Checked By: \_\_\_\_\_

|                      |    |
|----------------------|----|
| Economic Life(Years) | 10 |
|----------------------|----|

| Simulation            | Energy Consumed (MBTU) | Energy Consumed (kWh) |
|-----------------------|------------------------|-----------------------|
| Baseline Model        | 3573.45                | 1047011.40            |
| LowEmissivity Coating | 3570.37                | 1046190.60            |
| Savings               | 3.08                   | 902.4                 |
| Cost Savings          |                        | \$74,087              |

|                                      |          |
|--------------------------------------|----------|
| Annual Electric Energy Savings (kWh) | 902.4    |
| Total Annual Energy Cost Savings     | \$74,087 |

Florida Solar Energy Center, Cape Canaveral, (407) 763-0300



## RADIANT BARRIER COATING

### For Energy Conservation and Light Reflection

LO/MIT-I is a silver colored, non-thickness dependent, low emissivity coating. Its superb ability to reflect both heat (infrared radiation) and light make it an excellent, low cost substitute for metallic foils or metallized plastic films. High temperature tolerance, excellent adhesion and the ability to produce uniformly low emissivities on a wide variety of substrates make LO/MIT-I unique in the field of high technology coatings.

#### OPTICAL CHARACTERISTICS

Laboratory application of LO/MIT-I on glass substrates has lowered emissivity from .88 to .22 and increased spectral reflectivity from 7.3% to 85%. LO/MIT-I can be applied to a wide variety of substrates and normally will create a surface emissivity of .21-.26, and a spectral reflectivity of 81%-85%, depending on the substrate used. The chart on the rear of this bulletin shows optical properties on specific materials.

#### CONSTITUENTS

Aromatic hydrocarbons, aliphatic ketones, proprietary pigments and binders.

#### SOLVENT

Solsolv 301 or xylene.

#### VISCOSITY

28 seconds #1 Zahn's cup.

#### HARDNESS

Extremely strong 3H hardness after 24 hour room temperature cure. Hardness increases with age.

#### DEGRADATION & OUTGASSING

Unaffected by UV or elevated temperatures. Thermally tolerant to 1000° F (538°C). No outgassing when correctly cured.

#### COVERAGE

400-800 square feet/gallon, depending on surface and application method.

#### CLEAN UP

Clean application equipment with Solsolv 301 or Xylene. Use Isopropyl Alcohol for operator clean up and removal from clothing.

#### MIXING

Coating supplied ready for use. No thinning is required or suggested. Shake well before using. If possible, agitate during application.

#### SURFACE PREPARATION

Normally, adhesion is the only factor that will be affected by surface preparation. Optical properties will remain constant except on surfaces that are very porous such as brick and cement. To improve optical properties on porous substrates, appropriate fillers and primers may be used to increase surface smoothness. This will also increase coverage. On metallic substrates, such as cold rolled or galvanized steel, that may be subject to possible corrosion or oxidation, appropriate primers should be used before applying LO/MIT-I. Where a surface is already primed or painted, apply a test patch of LO/MIT-I to ascertain that the prepared surface is compatible with the solvents used in LO/MIT-I. Plastics may require surface treatment to increase adhesion and should be tested for compatibility with LO/MIT-I. Most building materials, such as wood, plasterboard, paper faced insulation batts, fibrous ceiling tiles and painted metal roof decking require no surface preparation except that they be clean and dust free. Masonry surfaces should be allowed to cure for one month prior to the application of LO/MIT-I.

Any surface preparation questions not answered in this section should be referred to our Technical Services Department.

#### APPLICATION

**Air Atomization:** Use DeVilbiss pressure gun #JGA-502-704-FX; gun pressure of 30 psi (2.11 kg/cm<sup>2</sup>); tank pressure of 4-8 psi (.14-.42 kg/cm<sup>2</sup>). Remote paint supply pots should be equipped with an air driven agitator to keep coating thoroughly mixed during application. -OR-DeVilbiss suction gun #JGA-502-43-FF, gun pressure of 25 psi (1.76 kg/cm<sup>2</sup>). Needle adjustment = 1/2 open. Hold spray gun 8-14" from work. Spraying at the lower pressure (25-30 psi) indicated will lessen overspray and effect better coverage. Use 2 horsepower or larger compressor.

**Airless and Electrostatic:** Test airless and electrostatic equipment for compatibility with LO/MIT-I before using. Remote paint supply pots should be equipped with an air driven agitator to keep coating thoroughly mixed during application.

**Portable Compression Sprayer:** The SOLEC Model LS-1 portable compression sprayer is a low cost, self-contained coating application device for the field application of LO/MIT-I to roof decks, cinder block walls, attics, or new construction where power is unavailable. Ask for Bulletin LS-1.

**Brush and Roller:** LO/MIT-I may also be applied using a solvent resistant paintbrush or roller. However, coverage may be substantially reduced.

**Note:** Good ventilation is necessary for operator safety and drying and curing of the applied coating.

#### DRYING AND CURE

Coating will skin dry within one minute after application. Drying to touch will generally occur within 15 minutes to one hour depending on ambient temperature and humidity. Curing can be accelerated by application of heat up to 500°F (260°C) for 4 to 30 minutes. Experimentation will determine the best curing procedures for your particular environment.

#### STORAGE

Keep at room temperature in tightly sealed container. Keep out of direct sunlight to avoid pressure increase in container. Full containers will remain usable for 1 year from date of manufacture.

#### CAUTION

Contains flammable solvents. Do not expose to elevated heat or open flames. Use with adequate ventilation and avoid excessive breathing of vapor or spray mist. Avoid contact with eyes. OSHA regulations. Sections 1915.24—Painting, 1915.25—Flammable Liquids and 1915.82—Respiratory Protection give additional helpful safety suggestions.

#### FIRST AID

Remove from skin using Isopropyl alcohol and warm soapy water. In case of contact with eyes, flush with clean water for at least 15 minutes and get medical attention. If swallowed, get immediate medical attention. If headache, dizziness or nausea result from excessive inhalation of vapors, remove to fresh air and administer oxygen if necessary.

**SOLAR ENERGY CORPORATION, BOX 3065, PRINCETON, NJ 08543-3065, U.S.A.**

**PACKAGING**

Steel containers. Quarts, gallons, 5 gallon tight head pails. Weights including containers: Quart (.95 liters) = 2.5 lbs. (1.13 kilos), Gallons (3.79 liters) = 8.2 lbs. (4.24 kilos), 5 gallons (18.93 liters) = 42.5 lbs. (21.66 kilos).

**ORDERING AND PRICING INFORMATION**

Contact factory at 609-883-7700 for name of your local distributor, pricing and availability. F.O.B. Ewing, N.J. Shipping and packaging extra. Available for export.

Terms: Net 30 days for D&B rated firms.

**U.S. GOVERNMENT PURCHASERS:**

LO/MIT-I is available through GSA: Contract #TFTC-88-CK-NIIS-01 effective 7/1/89-Section Heading: 80 Brushes, Paint, Sealers & Adhesives. GSA, Proc. Div. (9FTP10-C-M) GSA Center, Auburn, WA 98001.

**TECHNICAL SERVICES DEPARTMENT**

Contact factory at 609-883-7700, 9-6 pm, EST or fax 609-497-0182, 24 hours a day.

**ACCESSORIES & ADDITIONAL PRODUCTS**

LS-1, Modified Compression Sprayer, a low cost, self-contained, coating application device.

SOLKOTE HI/SORB-II, spray applied selective coating.

SOLKLEAN 101, Production metal cleaner.

SOLKLEAN 201, Water based aluminum conversion coating.

SOLSOLV 301, Low cost replacement solvent for Xylene.

ISOPROPYL ALCOHOL, For clean-up of LO/MIT-I coatings.

**IMPORTANT NOTICE TO PURCHASER**

This bulletin is an introductory summary of LO/MIT-I Radiant Barrier Coating. The information provided is based upon typical installation conditions and tests we believe to be reliable. However, due to a wide variety of possible use conditions, SOLEC does not guarantee that typical values expressed will necessarily be obtained. The following is made in lieu of warranties, expressed or implied, including merchantability.

Seller's only obligation shall be to replace such quantity of the product proved to be defective. Seller shall not be liable for any injury, loss or damage, direct or consequential, arising out of the use of or inability to use the product. Before using, user shall determine the suitability of the product for their intended use, and user assumes all risk and liability whatsoever in connection therewith.

No statement or recommendation shall have any force or effect unless in an agreement signed by officers of seller and user.

**RESEARCH FACILITIES**

The Solar Energy Corporation maintains a complete laboratory for the analysis of optical coatings. Our low cost services for the analysis of optical surfaces are used by many large manufacturers. Please contact us for prices.

**LO/MIT/NOTES**

The Solar Energy Corporation maintains a continuing research program in spray applied optical surfaces. Pertinent data is published in the form of bulletins called LO/MIT/NOTES. These bulletins are available, free to our customers and other interested parties. Please write us to have your name placed on our mailing list.

**OPTICAL PROPERTIES OF SELECTED SUBSTRATES**

| Substrate                         | Emissivity<br>Before LO/MIT<br>Applied | Emissivity<br>After LO/MIT<br>Applied | Diffuse Reflectivity<br>Before LO/MIT<br>Applied | Diffuse Reflectivity<br>After LO/MIT<br>Applied |
|-----------------------------------|----------------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------------------------|
| brick (red clay)                  | .92                                    | .36                                   | 36%                                              | 71%                                             |
| cement block                      | .93                                    | .37                                   | 32                                               | 68                                              |
| glass (soda lime)                 | .86                                    | .22                                   | 7.3                                              | 85                                              |
| galvanized steel (bright)         | .03                                    | .25                                   | 77                                               | 84                                              |
| galvanized steel (dull paint job) | .57                                    | .26                                   | 15                                               | 82                                              |
| paper (kraft)                     | .80                                    | .24                                   | 48                                               | 81                                              |
| plasterboard                      | .90                                    | .21                                   | 55                                               | 85                                              |
| plywood                           | .72                                    | .22                                   | 46                                               | 81                                              |
| poly carbonate (clear)            | .84                                    | .22                                   | 8.6                                              | 84                                              |
| polypropylene (opaque)            | .90                                    | .23                                   | 8.1                                              | 84                                              |
| steel, cold rolled, primed        | .87                                    | .25                                   | 22                                               | 83                                              |
| steel, cold rolled, unprimed      | .10                                    | .23                                   | 57                                               | 84                                              |
| steel, 316 stainless              | .19                                    | .23                                   | 59                                               | 84                                              |

**LO/MIT-I Application Ideas****Aircraft**

LO/MIT-I is extremely lightweight (less than .05 oz./ft.<sup>2</sup>). It may be effectively used as a heat shield on many aircraft components including wiring harnesses, cowlings, fire walls and electronic components. It is also an excellent coating for balloon fabrics.

**Automotive**

LO/MIT-I may be used as a low cost, lightweight heat shield on many automotive components including wiring harnesses, battery boxes, exhaust systems, air conditioning ducts, fire walls, intake manifolds, fuel pumps, rubber hoses, shock absorber boots, floor pans, electronic and plastic components.

**Building and Construction**

LO/MIT-I is a low cost substitute for metallic or metallized plastic foils. Wherever these products are used for energy conservation in new or retrofit construction, spray application of LO/MIT-I will generally prove to be as effective at half the cost in many instances, where it may be impractical to staple or tack reflective radiant barriers. LO/MIT-I may be easily spray applied.

**Daylighting**

Since LO/MIT-I exhibits a high diffuse reflectivity on many building materials, it may be effectively used to enhance daylighting and lower illumination costs.

**Energy Conservation**

The use of LO/MIT-I on ceiling and wall surfaces can result in substantial heating and cooling energy savings. (See Radiant Barriers, Building and Construction, Metal Buildings.) Also, in factory buildings and warehouses, the application of LO/MIT-I to interior ceiling surfaces may raise winter radiant temperatures and increase ceiling reflectivity, thereby lowering both heating and lighting costs.

**Metal Buildings**

LO/MIT-I, when applied to the exterior of metal buildings, has been shown to lessen building skin temperatures in excess of 30°F (16°C) in 95°F (35°C) ambient environments. This can lead to substantial decreases in heating and air conditioning costs.

**Ovens, Process Piping, Power Generation Equipment**

LO/MIT-I when applied to the exterior surfaces of boilers, ovens or

temperature process piping can effectively block thermal radiation and may lead to substantial efficiency increases.

**Plastics**

Whenever plastics are subjected to elevated temperatures, surface application of LO/MIT-I may lessen degradation due to adverse thermal environments. In many cases, lower cost and lower weight plastics may be used when they are coated with LO/MIT-I.

**Radiant Barriers**

Recent tests by the Florida Solar Energy Center (FSEC) indicate that the role of radiant heat transfer, particularly in hot, sunny climates, may be much more important than recently recognized. In these climates, heat gain prevention is often more critical to the energy performance of a building than stopping heat loss. Application of LO/MIT-I to the underside of roofs and cavity wall surfaces creates an extremely effective radiant barrier that may lead to substantial energy savings at lower installed per square foot costs than aluminum foil or metallized plastic films.

**Reflectors**

LO/MIT-I exhibits excellent diffuse reflectivity on many substrates. It may be used as a low cost reflective surface in lighting fixtures, control panels and many other applications where reflectivity is needed.

**Roof Coating**

LO/MIT-I will lower roof skin temperatures 20-40°F. It is unaffected by UV radiation and highly reflective to infrared. It will greatly extend roof life and may be brushed, rolled or spray applied to bitumen, PVC, rubber, asphalt, tar and gravel, foam, shingle, tile, steel and most other roofing surfaces. It is hydrophobic and tends to be self-cleaning. Field testing in Southern climates has shown energy savings from 15% to in excess of 30% when LO/MIT-I is used as a reflective roof coating.

**Selective Surfaces**

High emissivity surfaces such as glass or cement, when coated with LO/MIT-I, exhibit low emissivities of .22-.30. By overcoating the LO/MIT-I surface with SOLKOTE Hi/Sorb-II spray applied selective coating, a semi-selective surface exhibiting emissivities of .42-.50 and absorbtivities of 95 to 97% may be achieved. At an installed cost of 12 cents per square foot, substantial cost savings can be achieved over the use of selective metal films.

#### **4.4 ECO 4: T-8 FLUORESCENT LIGHTING**

**Proposed Modifications:** Install high-efficiency T-8 fluorescent lamps driven by high frequency electronic ballasts into existing fixtures..

T-8 fluorescent lamps use rare earth phosphors to increase the lumen efficiency of the lamp. T-8 fluorescent lamps will not operate off standard or energy-saving magnetic ballasts, although there is a rapid-start magnetic ballast available specifically designed for T-8 fluorescent lamps. However, T-8 fluorescent lamps are most effective when used with high frequency, electronic ballasts which increase lumen efficiency in addition to minimizing ballast energy consumption.

**Existing Conditions:** Fluorescent lighting fixtures in the building are equipped with standard 40 Watt lamps and Magnetek magnetic ballasts.

#### **Method of Analysis:**

- The number and type of lighting fixtures in the building were tabulated during the field survey. They were used to develop input data for the Baseline energy simulation program and as a basis for cost estimates. Existing lighting fixture wattage was estimated based on fixture manufacturer's data.
- Lighting schedules were obtained from building managers at the time of the field survey.
- Lighting fixture wattage for T-8 fluorescent lamps and ballasts was estimated from lamp manufacturer's data. Total lighting electrical use with the T-8 fluorescent lighting modification was computed for the building.
- Annual electric energy savings were calculated by modifying the Baseline DOE2.1d computer simulation with the T-8 fluorescent lighting parameters, and subtracting the modified baseline computer simulation from the baseline computer simulation. The DOE2.1d model automatically calculates reductions in cooling loads and increases in heating loads to give an overall energy savings with the T-8 fluorescent lighting in-place.
- Any fixtures that are presently delamped remained delamped in the computer simulations.
- Use of T-8 fluorescent lighting will result in an estimated 3% reduction in lumen output.

- Added annual maintenance costs were calculated based on a rated life of 20,000 hours for existing F-40D lamps and new T-8 fluorescent lamps. Maintenance costs for ballasts were based on a rated life of 60,000 hours.
- Lamp costs were provided by Conserve-a-Watt. Unit lamp costs for existing F-40D lamps and T-8 four-foot straight fluorescent lamps were \$1.68 and \$4.90, respectively.

**Results:** The energy savings and economic results are summarized in the following table. The LCCA is presented on page 4-31. The T-8 fluorescent lamps can be installed with a project SIR of 3.31, a simple payback of 3.6 years, and an annual savings of \$2,418.

|                                      |          |
|--------------------------------------|----------|
| Annual Electric Energy Savings (kWh) | 29,455   |
| Total Annual Energy Cost Savings     | \$2,418  |
| Annual Maintenance Cost Savings      | \$47     |
| Investment Cost                      | \$12,429 |
| Savings-to-Investment Ratio (SIR)    | 2.38     |
| Simple Payback (Years)               | 5.0      |

**Recommendations:** This ECO is recommended for implementation. High-efficiency T-8 fluorescent lamps driven by high frequency electronic ballasts are recommended for the building.

ENERGY TYPE  
IN SITE MBTU - ELECTRICITY  
CATEGORY OF USE  
SPACE HEAT 69.45  
SPACE COOL 1547.35  
HVAC AUX 426.10  
DOM HOT WTR 0.00  
AUX SOLAR 0.00  
LIGHTS 196.29  
VERT TRANS 0.00  
MISC EQUIP 1233.86  
TOTAL 3473.05

TOTAL SITE ENERGY 3473.00 MBTU 304.7 KBTU/SQFT-YR GROSS-AREA 304.7 KBTU/SQFT-YR NET-AREA  
TOTAL SOURCE ENERGY 3473.00 MBTU 304.7 KBTU/SQFT-YR GROSS-AREA 304.7 KBTU/SQFT-YR NET-AREA  
PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.5  
PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED =100.0  
NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

**TOTAL SITE ELECTRICITY ENERGY USE 3473.04 MBTU**



|                                                                                      |                                            |                               |                        |                                             |                        |
|--------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------|------------------------|---------------------------------------------|------------------------|
| 1. COMPONENT<br>ARMY                                                                 | FY 1995 MILITARY CONSTRUCTION PROJECT DATA |                               |                        | 2. DATE<br>Nov-95                           |                        |
| 3. INSTALLATION AND LOCATION<br>GEODSS Site, White Sands Missile Range, NM           |                                            |                               |                        |                                             |                        |
| 4. PROJECT TITLE<br>ECIP: Upgrade Lighting Systems                                   |                                            | 5. PROJECT NUMBER<br>1406.008 |                        |                                             |                        |
| LIFE CYCLE COST ANALYSIS SUMMARY<br>ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)    |                                            |                               |                        |                                             |                        |
| LOCATION: GEODSS Site, White Sands Missile Range, NM                                 |                                            | REGION: 4                     | PROJECT NO: 1406.008   |                                             |                        |
| PROJECT TITLE: ECIP: UPGRADE LIGHTING SYSTEMS                                        |                                            | FISCAL YEAR: 1995             |                        |                                             |                        |
| DISCRETE PORTION NAME: TOTAL                                                         |                                            |                               |                        |                                             |                        |
| ANALYSIS DATE: 11/09/95                                                              |                                            | ECONOMIC LIFE: 15             | PREPARED BY: E. Smith  |                                             |                        |
| 1. INVESTMENT                                                                        |                                            |                               |                        |                                             |                        |
| A. CONSTRUCTION COST                                                                 | =                                          | \$11,098                      |                        |                                             |                        |
| B. SIOH COST                                                                         | (6.0% of 1A) =                             | \$666                         |                        |                                             |                        |
| C. DESIGN COST                                                                       | (6.0% of 1A) =                             | \$666                         |                        |                                             |                        |
| D. TOTAL COST                                                                        | (1A + 1B + 1C) =                           | \$12,429                      |                        |                                             |                        |
| E. SALVAGE VALUE OF EXISTING EQUIPMENT                                               | =                                          | \$0                           |                        |                                             |                        |
| F. PUBLIC UTILITY COMPANY REBATE                                                     | =                                          | \$0                           |                        |                                             |                        |
| G. TOTAL INVESTMENT                                                                  | (1D -1E -1F) =                             | -----> \$12,429               |                        |                                             |                        |
| 2. ENERGY SAVINGS (+) OR COST (-):                                                   |                                            |                               |                        |                                             |                        |
| DATE OF NISTR-4942-1 USED FOR DISCOUNT FACTORS:                                      |                                            |                               |                        |                                             |                        |
| ENERGY SOURCE                                                                        | FUEL COST \$/kWh (1)                       | SAVINGS kWh (2)               | ANNUAL \$ SAVINGS (3)  | JUL '95 DISCOUNT FACTOR (4)                 | DISCOUNTED SAVINGS (5) |
| A. ELECT                                                                             | \$0.0821                                   | 29,455                        | \$2,418                | 12.02                                       | \$29,067               |
| B. DIST                                                                              | \$0.00                                     | 0                             | \$0                    | -                                           | \$0                    |
| C. NAT GAS                                                                           | \$0.00                                     | 0                             | \$0                    | -                                           | \$0                    |
| D. REFUS                                                                             | \$0.00                                     | 0                             | \$0                    | -                                           | \$0                    |
| E. COAL                                                                              | \$0.00                                     | 0                             | \$0                    | -                                           | \$0                    |
| F. OTHER                                                                             |                                            |                               | \$0                    | -                                           | \$0                    |
| G. DEMAND SAVINGS                                                                    |                                            | 0                             | \$0                    | -                                           | \$0                    |
| H. TOTAL                                                                             |                                            | 29,455                        | \$2,418                | ----->                                      | \$29,067               |
| 3. NON-ENERGY SAVINGS (+) OR COST (-)                                                |                                            |                               |                        |                                             |                        |
| A. ANNUAL RECURRING (+/-)                                                            | \$47                                       |                               |                        |                                             |                        |
| 1 DISCOUNT FACTOR (From Table A) =                                                   | 11.94                                      |                               |                        |                                             |                        |
| 2 DISCOUNTED SAVINGS (+) / COST (-) (3A x 3A1) =                                     | \$560                                      |                               |                        |                                             |                        |
| B. NON-RECURRING (+/-)                                                               |                                            |                               |                        |                                             |                        |
| ITEM                                                                                 | SAVINGS (+)<br>COST(-) (1)                 | YEAR OF<br>OCCURRENCE (2)     | DISCOUNT<br>FACTOR (3) | DISCOUNTED<br>SAVINGS/COST (4)<br>(TABLE B) |                        |
| a. MATERIAL: NONE                                                                    | \$0                                        | 0                             | 0.00                   | \$0                                         |                        |
| b. MATERIAL: NONE                                                                    | \$0                                        | 0                             | 0.00                   | \$0                                         |                        |
| c. MATERIAL: NONE                                                                    | \$0                                        | 0                             | 0.00                   | \$0                                         |                        |
| d. TOTAL                                                                             | \$0                                        |                               |                        | \$0                                         |                        |
| C. TOTAL NON-ENERGY DISCOUNTED SAVINGS (+) OR COST (-) (3A2 + 3Bd4) =                |                                            |                               |                        |                                             | \$560                  |
| 4. FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-)                                         | (2H3 + 3A + (3Bd1/Economic Life))          |                               |                        |                                             | \$2,465                |
| 5. SIMPLE PAYBACK (SPB) IN YEARS (MUST BE < 10 YEARS TO QUALIFY)                     | (1G/4) =                                   |                               |                        |                                             | 5.04                   |
| 6. TOTAL NET DISCOUNTED SAVINGS                                                      | (2H5 + 3C) =                               |                               |                        |                                             | \$29,628               |
| 7. DISCOUNTED SAVINGS-TO-INVESTMENT RATIO (SIR)<br>(MUST HAVE SIR > 1.25 TO QUALIFY) | (6/1G) =                                   |                               |                        |                                             | 2.38                   |

| ENGINEER'S OPINION OF PROBABLE COST |                               |             |                 |                  |                       |       |              | SHEET         | 1                   | OF               | 1         |            |           |
|-------------------------------------|-------------------------------|-------------|-----------------|------------------|-----------------------|-------|--------------|---------------|---------------------|------------------|-----------|------------|-----------|
| AREA                                |                               | ACTIVITY    |                 | LOCATION         |                       |       |              | AMENDMENT NO. |                     |                  |           |            |           |
| PROJECT TITLE                       |                               |             |                 | CONTRACT NO.     |                       |       |              |               |                     |                  |           |            |           |
| GEODSS, Energy Conservation Survey  |                               |             |                 | DACA01-94-D-0033 |                       |       |              |               |                     |                  |           |            |           |
| Line No.                            | Item Description              |             | Unit of Measure | No. of Units     | MATERIAL COST         |       | LABOR COST   |               |                     | EQUIPMENT COST   |           | TOTAL COST |           |
|                                     |                               |             |                 |                  | Unit Cost             | Total | Manhrs/ Unit | Total Manhrs  | Labor Cost/ Manhour | Total Labor Cost | Unit Cost | Total      | Unit Cost |
| 1                                   | Replace lamps                 | ea          | 294             | \$4.90           | \$1,441               | 0.08  | 24.50        | \$18.50       | \$453               | \$0.00           | \$0       | \$6.44     | \$1,894   |
| 2                                   | Replace ballasts              | ea          | 147             | \$15.15          | \$2,227               | 0.08  | 12.25        | \$18.50       | \$227               | \$0.00           | \$0       | \$16.69    | \$2,454   |
| 3                                   | Travel to Socorro             | hrs         | 6               |                  | \$0                   | 1.00  | 6.00         | \$18.50       | \$111               | \$0.00           | \$0       | \$18.50    | \$111     |
| 4                                   | Travel to job site            | hrs         | 4               |                  | \$0                   | 1.00  | 4.00         | \$18.50       | \$74                | \$0.00           | \$0       | \$18.50    | \$74      |
| 5                                   | Travel to lamp disposal site  | hrs         | 2               |                  | \$0                   | 1.00  | 2.00         | \$18.50       | \$37                | \$0.00           | \$0       | \$18.50    | \$37      |
| 6                                   | Load old lamps in truck       | hrs         | 2               |                  | \$0                   | 1.00  | 2.00         | \$18.50       | \$37                | \$0.00           | \$0       | \$18.50    | \$37      |
| 7                                   | Lodging and per diem          | days        | 5               |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$100.00         | \$500     | \$100.00   | \$500     |
| 8                                   | Milage                        | miles       | 600             |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.30           | \$180     | \$0.30     | \$180     |
| 9                                   |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 10                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 11                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 12                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 13                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 14                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 15                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 16                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 17                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 18                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 19                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 20                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 21                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 22                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 23                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 24                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 25                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 26                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 27                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 28                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 29                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 30                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 31                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 32                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 33                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 34                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 35                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 36                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 37                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 38                                  |                               |             |                 |                  | \$0                   |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 39                                  | <b>SUBCONTRACTOR SUBTOTAL</b> |             |                 |                  | \$3,668               |       | \$51         |               | \$939               |                  | \$680     |            | \$5,287   |
| 40                                  | LABOR BURDEN                  | %           | 30              |                  | \$0                   |       |              |               | \$282               |                  | \$204     |            | \$486     |
| 41                                  | SUBTOTAL                      |             |                 |                  | \$3,668               |       |              |               | \$1,221             |                  | \$884     |            | \$5,772   |
| 42                                  | OVERHEAD                      | %           | 12.0            |                  | \$440                 |       |              |               | \$146               |                  | \$106     |            | \$693     |
| 43                                  | SUBTOTAL                      |             |                 |                  | \$4,108               |       |              |               | \$1,367             |                  | \$990     |            | \$6,465   |
| 44                                  | PROFIT                        | %           | 12              |                  | \$493                 |       |              |               | \$164               |                  | \$119     |            | \$776     |
| 45                                  | SUBCONTRACTOR TOTAL           |             |                 |                  | \$4,601               |       |              |               | \$1,531             |                  | \$1,109   |            | \$7,241   |
| 46                                  | OVERHEAD                      | %           | 10.95           |                  | \$504                 |       |              |               | \$168               |                  | \$121     |            | \$793     |
| 47                                  | SUBTOTAL                      |             |                 |                  | \$5,104               |       |              |               | \$1,699             |                  | \$1,230   |            | \$8,033   |
| 48                                  | PROFIT                        | %           | 8               |                  | \$408                 |       |              |               | \$136               |                  | \$98      |            | \$643     |
| 49                                  | SUBTOTAL                      |             |                 |                  | \$5,513               |       |              |               | \$1,835             |                  | \$1,329   |            | \$8,676   |
| 50                                  | BOND                          | %           | 0.737           |                  | \$41                  |       |              |               | \$14                |                  | \$10      |            | \$64      |
| 51                                  | SUBTOTAL                      |             |                 |                  | \$5,553               |       |              |               | \$1,848             |                  | \$1,339   |            | \$8,740   |
| 52                                  | N. M. TAX                     | %           | 5.8125          |                  | \$323                 |       |              |               | \$107               |                  | \$78      |            | \$508     |
| 53                                  | SUBTOTAL                      |             |                 |                  | \$5,876               |       |              |               | \$1,956             |                  | \$1,416   |            | \$9,248   |
| 54                                  | CONTINGENCY                   | %           | 20              |                  | \$1,175               |       |              |               | \$391               |                  | \$283     |            | \$1,850   |
| 55                                  | GRAND TOTAL                   |             |                 |                  | \$7,052               |       |              |               | \$2,347             |                  | \$1,700   |            | \$11,098  |
| PREPARED BY                         |                               | APPROVED BY |                 |                  | TITLE OR ORGANIZATION |       |              |               | DATE                |                  |           |            |           |
| EMS                                 |                               |             |                 |                  | EMC Engineers, Inc.   |       |              |               | 11/22/95            |                  |           |            |           |

E M C Engineers, Inc.  
EMC #1406-008  
GEODSS Site, White Sands Missile Range, NM

LIFE CYCLE COST ANALYSIS

T-8 LAMPS  
BALLASTS

ECO-4.XLS  
Prepared by: E. Smith  
11/9/95  
Checked by: \_\_\_\_\_

|                     |   |
|---------------------|---|
| Economic Life (yrs) |   |
| 15                  | 0 |

|              |       |
|--------------|-------|
| Building No. | 34568 |
|--------------|-------|

Investment Costs

|                                     |          |
|-------------------------------------|----------|
| Construction Cost                   | \$11,098 |
| SIOH (6.0%)                         | \$666    |
| Design Cost (6.0%)                  | \$666    |
| Salvage Value of Existing Equipment | \$0      |
| Public Utility Company Rebate       | \$0      |
| Total Investment                    | \$12,429 |

Current Situation (Baseline) Annual Energy Use

|                       |           |
|-----------------------|-----------|
| Lights                | 288.88    |
| Space Cool            | 1,568.95  |
| Space Heat            | 55.12     |
| HVAC Aux              | 426.63    |
| Misc. Equip           | 1,233.86  |
| Total (MBtu)          | 3,573.44  |
| Electric Energy (kWh) | 1,047,008 |

Proposed Situation Annual Energy Use with ECO

|                       |           |
|-----------------------|-----------|
| Lights                | 196.17    |
| Space Cool            | 1,547.35  |
| Space Heat            | 69.45     |
| HVAC Aux              | 426.10    |
| Misc. Equip           | 1,233.84  |
| Total (MBtu)          | 3,472.91  |
| Electric Energy (kWh) | 1,017,553 |

Annual Energy Savings

|                       |        |
|-----------------------|--------|
| Electric Energy (kWh) | 29,455 |
|-----------------------|--------|

Annual Energy Cost Savings

|                                  |         |
|----------------------------------|---------|
| Electric Energy                  | \$2,418 |
| Electric Demand                  | \$0     |
| Total Annual Energy Cost Savings | \$2,418 |

Discount Factors

|                 |       |
|-----------------|-------|
| Electric Energy | 12.02 |
|-----------------|-------|

Discounted Energy Cost Savings

|                 |          |
|-----------------|----------|
| Electric Energy | \$29,067 |
|-----------------|----------|

Non-Energy Savings(+)/Cost(-)

|                                                  |         |
|--------------------------------------------------|---------|
| Existing Annual Ballast Replacement Cost Savings | \$353   |
| Lamp Replacement Cost Savings                    | (\$306) |
| Annual Recurring Savings(+)/Cost(-)              | \$47    |
| Discount Factor                                  | 11.94   |
| Discounted Non-Energy Savings(+)/Cost(-)         | \$560   |

Life Cycle Cost Summary

|                                         |          |
|-----------------------------------------|----------|
| Simple Payback (yrs)                    | 5.0      |
| Total Net Discounted Savings            | \$29,628 |
| Savings to Investment Ratio (SIR)       | 2.38     |
| Adjusted Internal Rate of Return (AIRR) | 10.2%    |

|              |       |
|--------------|-------|
| Building No. | 34568 |
|--------------|-------|

| Energy Type                         | Unit Energy Cost | UPW Discount Factors (1) |       |       |    |
|-------------------------------------|------------------|--------------------------|-------|-------|----|
|                                     |                  | Region 4                 | 10    | 15    | 20 |
| Economic Life of ECO (yrs)          |                  |                          |       |       |    |
| Electric Energy                     | 0.0821 (\$/kWh)  | 8.58                     | 12.02 | 15.08 |    |
| Electric Demand                     | 0 (\$/kW)        | 0                        | 0     | 0     |    |
| Annual Recurring Non-Energy Savings |                  | 8.53                     | 11.94 | 14.88 |    |

(1) NISTIR 4942-1 Energy Prices and Discount Factors for Life-Cycle Cost Analysis 1995

| DESCRIPTION             | LAMP TYPE | NO. LAMPS | LAMP WATTS | EXISTING FIXTURE WATTS | T-8 FIXTURE WATTS |
|-------------------------|-----------|-----------|------------|------------------------|-------------------|
| 4' RECESSED FLUORESCENT | FLUOR     | 2         | 40         | 89                     | 58                |

Number of Fixtures

|                                |     |
|--------------------------------|-----|
| 4' RECESSED FLUORESCENT-2 LAMP | 147 |
|--------------------------------|-----|

Annual Operating Hours Calculation

|                                         |        |
|-----------------------------------------|--------|
| Baseline Lighting Electric Demand (kW)  | 13.1   |
| Baseline Lighting Electric Energy (kWh) | 84,641 |
| Annual Operating Hours                  | 6,470  |

Replacement of Lamps

|                                            |         |
|--------------------------------------------|---------|
| Number of Lamps 4' Straight Tube           | 294     |
| Lamp Life                                  | 20,000  |
| Lamp Replacements per Year                 | 95      |
| Replacement Cost Per Lamp                  | \$6.44  |
| Incremental Replacement Cost per Lamp      | \$3.22  |
| Incremental Annual Lamp Replacement Cost   | \$306   |
| Total Annual Lamp Replacement Cost Savings | (\$306) |

Replacement of Existing Ballasts

|                                       |         |
|---------------------------------------|---------|
| Number of Ballasts                    | 147     |
| Ballast Life (hrs)                    | 60,000  |
| Ballast Replacements Per Year         | 16      |
| Replacement Cost Per Ballast          | \$15.15 |
| Labor Hours Per Ballast               | 0.33    |
| Labor Cost Per Ballast                | \$7.13  |
| Total Annual Ballast Replacement Cost | \$353   |

Replacement of New Ballasts

|                                    |
|------------------------------------|
| No replacement for first 15 years. |
|------------------------------------|

## FEATURES



OPPOSING CAM LATCHES



INTERLOCKING CORNERS



STURDY T-HINGES

- Opposing, rotary-action cam latches for secure door closing. Latches finished after fabrication with smooth, durable, white nylon coating.
- T-hinges die-embossed for maximum strength. Door frame can be hinged or latched from either side.
- Door frame corners screwed together for rigidity—ensures tight fit and easy lens replacement.
- Full-depth end plates secured by screws and unique interlocking corner detail.
- Shielding media completely framed in all door types. Diffusers 100% UV-stabilized acrylic plastic except as noted.
- Urethane foam gasket seals fully between door frame and housing—eliminates light leaks.
- Pressure-lock lampholders secured by snap-in socket track for simplified maintenance.

## SPECIFICATIONS

## Ballast

Thermally-protected, resetting, Class P, HPF ballast standard. Sound rating A, CBM/ETL certified, UL listed. Advance, GE or Universal installed unless otherwise specified.

## Wiring &amp; Electrical

AWM, TFFN or THHN wire used throughout, rated for required temperatures. All ballast leads extend minimum of 6" through access plate.

*Input watts: standard 89, energy-saving 69.*

## Materials

Metal parts die-formed from heavy-gauge steel. Housing die-embossed for added rigidity. Metal gauges: channel and end plates 22-gauge; steel door frame 20-gauge; channel cover and socket track 24-gauge.

## Finish

Five-stage, iron-phosphate pretreatment ensures superior paint adhesion and rust resistance. High-gloss, baked white enamel finish (88% gloss, 86% reflectance). Salt spray test 250 hours. Hardness minimum 2H.

*UL listed and labeled I.B.E.W.—A.F. of L.*

*Fixture guaranteed for one year against mechanical defects in manufacture.*



Dimensions and specifications subject to change without notice.

## MOUNTING DATA Lay-in Grid Luminaire for use in:



Exposed Grid Tee Ceilings

Minimum 5 5/8" plenum depth required for installation



Concealed Grid Tee Ceilings

## Approval

## Job Information



# 2GT 240

GRID TROFFER  
2' x 4' • 2 LAMPS • RAPID START

## PHOTOMETRICS

### COEFFICIENTS OF UTILIZATION

| Pt  | 20%         |             |             |          |
|-----|-------------|-------------|-------------|----------|
|     | 80%         | 70%         | 50%         | 30%      |
| Pcc | 70%         | 50%         | 30%         | 10%      |
| Pw  | 85 81 78 76 | 82 78 77 75 | 76 74 72 70 | 73 72 70 |
| 1   | 78 72 68 64 | 76 71 67 63 | 68 65 62 60 | 63 60    |
| 2   | 65 58 55 50 | 70 64 58 54 | 61 57 53 50 | 56 53    |
| 3   | 66 58 52 47 | 65 57 51 47 | 55 50 46 42 | 49 46    |
| 4   | 61 52 45 41 | 59 51 45 41 | 49 44 40 36 | 46 40    |
| 5   | 56 47 40 36 | 55 46 40 36 | 45 39 35 30 | 39 35    |
| 6   | 52 42 36 31 | 51 42 36 31 | 40 35 31 27 | 34 31    |
| 7   | 48 38 32 27 | 47 37 31 27 | 36 31 27 23 | 31 27    |
| 8   | 44 34 28 24 | 43 34 28 24 | 33 27 24 23 | 32 23    |
| 9   | 41 31 25 21 | 40 31 25 21 | 30 25 21 23 | 24 21    |

### ZONAL CAVITY



\*Standard ballast, F40T12/CW lamps (3150 lumens)

Spacing criteria: II = 1.2 x mounting height; I = 1.3 x mounting height

Full report available. Request ITL 27058

For photometrics on other configurations, see  
Technical Data section or Lithonia representative

## 2GT 240 A12 \*

### CANDLEPOWER

| ANGLE | ALONG | 22.5° | 45.0° | 67.5° | ACROSS |
|-------|-------|-------|-------|-------|--------|
| 0     | 1946  | 1948  | 1948  | 1946  | 1948   |
| 5     | 1933  | 1948  | 1948  | 1943  | 1947   |
| 10    | 1903  | 1925  | 1927  | 1933  | 1941   |
| 15    | 1864  | 1888  | 1900  | 1918  | 1927   |
| 20    | 1800  | 1835  | 1862  | 1893  | 1903   |
| 25    | 1708  | 1756  | 1798  | 1844  | 1852   |
| 30    | 1592  | 1647  | 1705  | 1765  | 1777   |
| 35    | 1448  | 1506  | 1554  | 1643  | 1661   |
| 40    | 1273  | 1327  | 1381  | 1475  | 1497   |
| 45    | 1077  | 1128  | 1188  | 1271  | 1282   |
| 50    | 877   | 931   | 986   | 1052  | 1042   |
| 55    | 696   | 742   | 774   | 822   | 809    |
| 60    | 513   | 569   | 579   | 620   | 619    |
| 65    | 418   | 414   | 399   | 444   | 456    |
| 70    | 328   | 310   | 272   | 320   | 344    |
| 75    | 262   | 236   | 204   | 241   | 272    |
| 80    | 185   | 163   | 142   | 171   | 195    |
| 85    | 96    | 91    | 69    | 96    | 106    |
| 90    | 0     | 0     | 0     | 0     | 0      |

### ZONAL LUMEN SUMMARY

| ZONE  | LUMENS | % LAMP | % FIXTURE |
|-------|--------|--------|-----------|
| 0-30  | 1550   | 24.2   | 31.6      |
| 30-60 | 2586   | 40.5   | 52.7      |
| 60-90 | 772    | 12.0   | 15.7      |
| 0-90  | 4910   | 76.7   | 100.0     |

### TYPICAL VCP PERCENTAGES

| ROOM SIZE (FEET) | HEIGHT ALONG 8.5' 10.0' | HEIGHT ACROSS 8.5' 10.0' |
|------------------|-------------------------|--------------------------|
| 20 x 20          | 70                      | 75                       |
| 30 x 30          | 63                      | 67                       |
| 30 x 60          | 55                      | 58                       |
| 60 x 30          | 66                      | 69                       |
| 60 x 60          | 56                      | 59                       |

## ORDERING INFORMATION

Explanation of  
Catalog Number:

2GT

240

Example: 2GT 240 RN A12 120 ES GLR

Series \_\_\_\_\_

No. Lamps \_\_\_\_\_

Lamp Wattage \_\_\_\_\_

### FRAME TYPE

FLUSH  
STEEL

(Leave  
Blank)

FLUSH  
ALUMINUM

FN-Natural  
FM-Matte black  
FW-White

REGRESSED  
ALUMINUM

RN-Natural  
RM-Matte black  
RW-White

Cam-action spring-loaded latch standard on aluminum door frames

### DIFFUSER TYPE

- A12 #12 pattern acrylic
- A12.125 #12 pattern acrylic, .125" thick
- A19 #19 pattern acrylic, .156" thick
- K20 #20 pattern acrylic, .140" thick
- 3E KSH 3-E pattern
- IM Injection-molded acrylic, .150" thick
- 84Y Holophane 8224 with overlay
- AC Dropped dish, matte white acrylic

For complete list of lenses and louvers,  
see OPTIONS AND ACCESSORIES section

### Fixture Schedule

| TYPE | CATALOG NUMBER |
|------|----------------|
|      |                |
|      |                |
|      |                |

### REMARKS

### OPTIONS

- ES Energy-saving ballasts (Advance Mark III, Universal SLH or GE Maximiser I)
- GLR Internal fast-blow fusing
- EL Self-contained emergency lighting
- LP F40 CW lamps (installed)
- SLP Energy-saving lamps (installed, 34W, full light output, 3050 lumens)
- SW Stretch-Wrap (palletized in cartons)
- JP Job Palletized (uncartoned)
- FR Suitable for UL listed fire-rated ceilings

For details and complete list of options,  
see OPTIONS AND ACCESSORIES section





#### **4.5 ECO 5: VORTEX TUBE**

**Proposed Modifications:** The vortex tube cooling system is part of the telescope camera system and can only be modified through redesign of the camera which is beyond the scope of this project. However, the vortex tube cooling system has very poor efficiency and is a major energy user. The cameras are scheduled for replacement in about two years. The purpose of this evaluation is to quantify energy use and energy costs for this system.

**Existing Conditions:** Each vortex tube in each camera is operated by a separate 5 hp air compressor. The compressors are interconnected in case of a compressor failure. Since the compressors are not fully loaded, the maintenance crew keeps one compressor off-line and uses the other two to provide the air needed to cool the cameras. Even then the compressors are still not operating at capacity.

Flow through the vortex tubes is seasonally adjusted to maintain the desired temperature range in the camera. Compressed air pressure supplied to the vortex tubes are manually adjusted at a throttling valve at each camera. Pressures are varied from 40 to 80 psig.

Based on discussions with building personnel, it was assumed that the compressors operate about 50% of the time between the hours of 3 p.m. and 7 a.m. throughout the year. Under these conditions, the air compressors consume 38,441 kWh annually at an annual cost of \$3,156.

**Recommendations:** It is recommended that the new cameras be cooled with a more efficient cooling system.

E M C Engineers, Inc.  
EMC#1406-008  
GEODSS, White Sands Missile Range  
DACA 63-92-C-0152

VORTEX DATA

UPS-ECO.XLS  
Prepared by: D Jones  
8/22/95  
Checked by: *[Signature]*

**Vortex Tube Energy Use**

Specifications state that vortex tubes should provide 5 scfm of 0 to 10 degree C air for each camera.

A 5 horsepower air compressor will provide about 18 scfm of 140 psig air.

Building personnel report varying pressures to vortex tubes from 40 to 80 psig depending on the season.

Flow thru orifice given by:

$$\text{cfm} = 31.5 * C * D * \sqrt{Ro * DP} / Ro$$

where      cfm is cubic feet per minute at upstream conditions  
              C is discharge coefficient of 0.6  
              D is diameter in inches  
              Ro is upstream density in lbm/ft<sup>3</sup>  
              DP is pressure drop across orifice in psia

Orifice diameter (inches)      0.08

| Air Properties  |                 | Air Flow Calculations          |            |             |
|-----------------|-----------------|--------------------------------|------------|-------------|
| Pressure (psia) | Pressure (psig) | Density (lbm/ft <sup>3</sup> ) | Flow (cfm) | Flow (scfm) |
| 12.2            | 0               | 0.0623                         | 0          | 0           |
| 52.2            | 40              | 0.2663                         | 1.4824     | 6.3371      |
| 72.2            | 60              | 0.3684                         | 1.5437     | 9.1279      |
| 92.2            | 80              | 0.4704                         | 1.5774     | 11.9107     |
| 132.2           | 120             | 0.6745                         | 1.6134     | 17.4676     |

At full load, air compressors draw the following kW:

$$\text{kW} = \text{HP} * 0.746 / 0.85 = \quad 4.39$$

where      HP is motor horsepower  
              0.746 is conversion to kW  
              0.85 is motor efficiency

Assume each compressor operates 50% of the time from 3 pm to 7 am, 365 days per year.

Annual operating hours =      5840

|                                                 |         |        |
|-------------------------------------------------|---------|--------|
| Annual electricity use = 3 * kW * hours * 50% = | 38,441  | kWh    |
| Cost per kWh                                    | 0.0821  | \$/kWh |
| Annual electricity cost                         | \$3,156 |        |



## QR-25 Series Tank Mounted Two-Stage Compressors

Quincy two-stage tank mounted compressors are furnished with Safe-Q-Lube pressure lubrication system. Start-stop mechanism includes Quincy patented loadless starting. Pressure gauge, safety valve, tank drain, shut-off valve, enclosed belt guard,

pressure switch and inlet filter are standard equipment. Tanks conform to ASME and National Board specifications for 200 PSI working pressure. Electric motors of the finest quality are standard equipment. Dual control is standard on tank mounted units — 10 HP and larger.

### SPECIFICATIONS—PRESSURE LUBRICATED

| MODEL      | MOTOR OR ENG. H.P. | CU. FT. DISPL. MIN.     | CU. FT. FREE AIR MIN.   | STD. PRESS. SWITCH SETTING    | SIZE BORE & STROKE IN. | OPER. SPEED R.P.M. | REC. SIZE |      | APPROX. SHIPPING WEIGHT LBS. |
|------------|--------------------|-------------------------|-------------------------|-------------------------------|------------------------|--------------------|-----------|------|------------------------------|
|            |                    |                         |                         |                               |                        |                    | IN.       | GAL. |                              |
| F310-60    | 1½<br>2            | 6.90<br>9.10            | 4.80<br>6.30            | 140-175<br>140-175            | 3½ & 2×2½              | 500<br>660         | 20×48     | 60   | 560<br>595                   |
| F310-80    | 1½<br>2            | 6.90<br>9.10            | 4.80<br>6.30            | 140-175<br>140-175            | 3½ & 2×2½              | 500<br>660         | 20×63     | 80   | 660<br>695                   |
| F325       | 3<br>5             | 13.90<br>23.30          | 10.70<br>18.00          | 140-175<br>140-175            | 4½ & 2½×3              | 500<br>840         | 20×63     | 80   | 765<br>785                   |
| F340       | 7½                 | 34.30                   | 26.10                   | 140-175                       | 5¼ & 3×3½              | 780                | 20×63     | 80   | 1185                         |
| † F350     | 10                 | 52.00                   | 37.40                   | 140-175                       | 6 & 3¼×3½              | 900                | 24×72     | 120  | 1495                         |
| † F370     | 10<br>15           | 52.00<br>69.60          | 37.40<br>50.10          | 120-150<br>120-150            | 6 & 3¼×4               | 790<br>1070        | 24×72     | 120  | 1600<br>1670                 |
| † F390-120 | 10<br>15<br>20     | 57.30<br>78.70<br>90.00 | 44.10<br>60.60<br>69.30 | 120-150<br>120-150<br>120-150 | 7½ & 4×4               | 560<br>770<br>870  | 24×72     | 120  | 1920<br>1970<br>2000         |
| † F390-200 | 10<br>15<br>20     | 57.30<br>78.70<br>90.00 | 44.10<br>60.60<br>69.30 | 120-150<br>120-150<br>120-150 | 7½ & 4×4               | 560<br>770<br>870  | 30×75½    | 200  | 2320<br>2370<br>2390         |
| † DF390    | 10<br>15<br>20     | 57.30<br>78.70<br>90.00 | 44.10<br>60.60<br>69.30 | 120-150<br>120-150<br>120-150 | 7½ & 4×4               | 560<br>770<br>870  | 24×72     | 120  | 2145<br>2200<br>2300         |

†These units are equipped with dual control. Standard VD pilot setting is 130-140 PSIG.

\*These units are base mounted with separate vertical air receivers.

NOTE: Performance data is based on maximum 110% motor load.

←  
**TWO CYLINDER MODELS**

### SPECIFICATIONS—PRESSURE LUBRICATED

| MODEL    | MOTOR OR ENG. H.P. | CU. FT. DISPL. MIN. | CU. FT. FREE AIR MIN. | STD. PRESS. SWITCH SETTING | SIZE BORE & STROKE IN. | OPER. SPEED R.P.M. | REC. SIZE |      | APPROX. SHIPPING WEIGHT LBS. |
|----------|--------------------|---------------------|-----------------------|----------------------------|------------------------|--------------------|-----------|------|------------------------------|
|          |                    |                     |                       |                            |                        |                    | IN.       | GAL. |                              |
| † F5105  | 15<br>20           | 87.50<br>107.00     | 64.70<br>79.20        | 120-150<br>120-150         | 6 & 3¼×3½              | 760<br>940         | 30×75½    | 200  | 2550<br>2600                 |
| † DF5105 | 15<br>20           | 87.50<br>107.00     | 64.70<br>79.20        | 120-150<br>120-150         | 6 & 3¼×3½              | 760<br>940         | 24×72     | 120  | 2500<br>2550                 |
| † F5120  | 20<br>25           | 113.00<br>123.00    | 84.70<br>93.00        | 120-150<br>120-150         | 6 & 3¼×4               | 870<br>940         | 30×75½    | 200  | 2625<br>2715                 |
| † DF5120 | 20<br>25           | 113.00<br>123.00    | 84.70<br>93.00        | 120-150<br>120-150         | 6 & 3¼×4               | 870<br>940         | 24×72     | 120  | 2600<br>2650                 |

**FOUR CYLINDER MODELS**

†These units are equipped with dual control. Standard VD pilot setting is 130-140 PSIG.

\*These units are base mounted with separate vertical air receivers.

NOTE: Performance data is based on maximum 110% motor load.



## **4.6 ECO 6: PREMIUM EFFICIENCY MOTORS**

**Proposed Modifications:** Install premium efficiency electric motors on HVAC equipment.

**Existing Conditions:** Most existing motors in the building are standard efficiency motors in the 1.0 to 7.5 horsepower range. A large 250 horsepower motor is used to turn a rotating UPS system.

**Method of Analysis:** Analysis proceeded as follows:

- Complete electrical measurements were made on the 250 horsepower motor including voltages, amps, power factor, and operating speed. The motor was found to be 11% loaded, operating with a 65% efficiency and a 45% power factor. This motor was evaluated in ECO 7 -Uninterruptible Power Supply Modifications.
- Nameplate data was collected for all motors.
- Speed measurements were made on accessible motors. Speed measurements were used to calculate motor slip which is proportional to the load fraction on the motor.
- Annual baseline electricity use was calculated based on the nameplate horsepower, annual operating hours, and speed measurements.
- Efficiencies and costs for premium motors were based on data provided by four motor manufacturers. Data from three manufacturers was averaged to produce the average efficiency and costs for each standard size of motor.
- Electric demand, annual electric use, and energy savings were calculated based on the load fractions, efficiencies, and operating hours of the premium efficiency motors.
- Annual maintenance costs for standard and premium motors were assumed to be the same.
- Installation costs were based on Means 1995 Electrical Cost Data and included a 20% remote location cost.

**Results:**

The 5 horsepower fan motor on AHU-2 was found to be a good candidate for replacement with a premium efficiency motor. Results are summarized in the following table.

|                                      |        |
|--------------------------------------|--------|
| Annual Electric Energy Savings (kWh) | 2,197  |
| Total Annual Energy Cost Savings     | \$180  |
| Annual Maintenance Cost Savings      | \$0    |
| Investment Cost                      | \$1753 |
| Savings-to-Investment Ratio (SIR)    | 1.55   |
| Simple Payback (Years)               | 9.7    |

Analysis results for other motors follow.

**Recommendation:** Replace the 5 horsepower fan motor on AHU-2 serving the office area with a premium efficiency motor.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                               |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------|------------------------|--------------------------------|---------------------------|-----|-------------------|------------------|----------------|-------------------------------------|----------------|----------------|----------------------------|---------------|------------------|---------|----------------------------------------|---------------------------|------------------------|----------------------------------|-----------|-----|---------------------|------------------|----------------|-------------------|-----|---|------|-----|-------------------|-----|---|------|-----|-------------------|-----|---|------|-----|----------|-----|--|--|-----|--------------------------------------------------------|----------------|--|--|-----|
| 1. COMPONENT<br>ARMY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FY 1995 MILITARY CONSTRUCTION PROJECT DATA |                               |                        | 2. DATE<br>Nov-95              |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| 3. INSTALLATION AND LOCATION<br>GEODSS Site, White Sands Missile Range, NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                               |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| 4. PROJECT TITLE<br>ECIP: Upgrade Lighting Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | 5. PROJECT NUMBER<br>1406.008 |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| <b>LIFE CYCLE COST ANALYSIS SUMMARY</b><br><b>ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                               |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| LOCATION: GEODSS Site, White Sands Missile Range, NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | REGION: 4                     | PROJECT NO: 1406.008   |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| PROJECT TITLE: ECIP: PREMIUM EFFICIENCY MOTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            | FISCAL YEAR: 1995             |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| DISCRETE PORTION NAME: TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                               |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| ANALYSIS DATE: 11/09/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | ECONOMIC LIFE: 15             | PREPARED BY: E. Smith  |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| <b>1. INVESTMENT</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                               |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| <table> <tbody> <tr> <td>A. CONSTRUCTION COST</td> <td>=</td> <td>\$1,567</td> </tr> <tr> <td>B. SIOH COST</td> <td>(6.0% of 1A) =</td> <td>\$94</td> </tr> <tr> <td>C. DESIGN COST</td> <td>(6.0% of 1A) =</td> <td>\$94</td> </tr> <tr> <td>D. TOTAL COST</td> <td>(1A + 1B + 1C) =</td> <td>\$1,755</td> </tr> <tr> <td>E. SALVAGE VALUE OF EXISTING EQUIPMENT</td> <td>=</td> <td>\$0</td> </tr> <tr> <td>F. PUBLIC UTILITY COMPANY REBATE</td> <td>=</td> <td>\$0</td> </tr> <tr> <td>G. TOTAL INVESTMENT</td> <td>(1D - 1E - 1F) =</td> <td>-----&gt; \$1,755</td> </tr> </tbody> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |                               |                        |                                | A. CONSTRUCTION COST      | =   | \$1,567           | B. SIOH COST     | (6.0% of 1A) = | \$94                                | C. DESIGN COST | (6.0% of 1A) = | \$94                       | D. TOTAL COST | (1A + 1B + 1C) = | \$1,755 | E. SALVAGE VALUE OF EXISTING EQUIPMENT | =                         | \$0                    | F. PUBLIC UTILITY COMPANY REBATE | =         | \$0 | G. TOTAL INVESTMENT | (1D - 1E - 1F) = | -----> \$1,755 |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| A. CONSTRUCTION COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =                                          | \$1,567                       |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| B. SIOH COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (6.0% of 1A) =                             | \$94                          |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| C. DESIGN COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (6.0% of 1A) =                             | \$94                          |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| D. TOTAL COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1A + 1B + 1C) =                           | \$1,755                       |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| E. SALVAGE VALUE OF EXISTING EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =                                          | \$0                           |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| F. PUBLIC UTILITY COMPANY REBATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                                          | \$0                           |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| G. TOTAL INVESTMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1D - 1E - 1F) =                           | -----> \$1,755                |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| <b>2. ENERGY SAVINGS (+) OR COST (-):</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                               |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| DATE OF NISTR-4942-1 USED FOR DISCOUNT FACTORS: <u>JUL '95</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |                               |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| ENERGY SOURCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FUEL COST \$/kWh (1)                       | SAVINGS kWh (2)               | ANNUAL \$ SAVINGS (3)  | DISCOUNT FACTOR (4)            | DISCOUNTED SAVINGS (5)    |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| A. ELECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0.0821                                   | 2,197                         | \$180                  | 15.08                          | \$2,720                   |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| B. DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$0.00                                     | 0                             | \$0                    | -                              | \$0                       |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| C. NAT GAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0.00                                     | 0                             | \$0                    | -                              | \$0                       |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| D. REFUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0.00                                     | 0                             | \$0                    | -                              | \$0                       |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| E. COAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$0.00                                     | 0                             | \$0                    | -                              | \$0                       |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| F. OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                               | \$0                    | -                              | \$0                       |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| G. DEMAND SAVINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            | 0                             | \$0                    | -                              | \$0                       |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| H. TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | 2,197                         | \$180                  | ----->                         | \$2,720                   |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| <b>3. NON-ENERGY SAVINGS (+) OR COST (-)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                               |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| <table> <tbody> <tr> <td>A. ANNUAL RECURRING (+/-)</td> <td>\$0</td> </tr> <tr> <td>1 DISCOUNT FACTOR</td> <td>(From Table A) =</td> <td>11.94</td> </tr> <tr> <td>2 DISCOUNTED SAVINGS (+) / COST (-)</td> <td>(3A x 3A1) =</td> <td>\$0</td> </tr> <tr> <td colspan="3"><br/>B. NON-RECURRING (+/-)</td> </tr> <tr> <td>ITEM</td> <td>SAVINGS (+)<br/>COST(-) (1)</td> <td>YEAR OF<br/>OCCURRENCE (2)</td> <td>DISCOUNT<br/>FACTOR (3)</td> <td>DISCOUNTED<br/>SAVINGS/COST (4)</td> </tr> <tr> <td colspan="5">(TABLE B)</td> </tr> <tr> <td>a. MATERIAL: NONE</td> <td>\$0</td> <td>0</td> <td>0.00</td> <td>\$0</td> </tr> <tr> <td>b. MATERIAL: NONE</td> <td>\$0</td> <td>0</td> <td>0.00</td> <td>\$0</td> </tr> <tr> <td>c. MATERIAL: NONE</td> <td>\$0</td> <td>0</td> <td>0.00</td> <td>\$0</td> </tr> <tr> <td>d. TOTAL</td> <td>\$0</td> <td></td> <td></td> <td>\$0</td> </tr> <tr> <td>C. TOTAL NON-ENERGY DISCOUNTED SAVINGS (+) OR COST (-)</td> <td colspan="3">(3A2 + 3Bd4) =</td> <td>\$0</td> </tr> </tbody> </table> |                                            |                               |                        |                                | A. ANNUAL RECURRING (+/-) | \$0 | 1 DISCOUNT FACTOR | (From Table A) = | 11.94          | 2 DISCOUNTED SAVINGS (+) / COST (-) | (3A x 3A1) =   | \$0            | <br>B. NON-RECURRING (+/-) |               |                  | ITEM    | SAVINGS (+)<br>COST(-) (1)             | YEAR OF<br>OCCURRENCE (2) | DISCOUNT<br>FACTOR (3) | DISCOUNTED<br>SAVINGS/COST (4)   | (TABLE B) |     |                     |                  |                | a. MATERIAL: NONE | \$0 | 0 | 0.00 | \$0 | b. MATERIAL: NONE | \$0 | 0 | 0.00 | \$0 | c. MATERIAL: NONE | \$0 | 0 | 0.00 | \$0 | d. TOTAL | \$0 |  |  | \$0 | C. TOTAL NON-ENERGY DISCOUNTED SAVINGS (+) OR COST (-) | (3A2 + 3Bd4) = |  |  | \$0 |
| A. ANNUAL RECURRING (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0                                        |                               |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| 1 DISCOUNT FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (From Table A) =                           | 11.94                         |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| 2 DISCOUNTED SAVINGS (+) / COST (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3A x 3A1) =                               | \$0                           |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| <br>B. NON-RECURRING (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                               |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| ITEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAVINGS (+)<br>COST(-) (1)                 | YEAR OF<br>OCCURRENCE (2)     | DISCOUNT<br>FACTOR (3) | DISCOUNTED<br>SAVINGS/COST (4) |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| (TABLE B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                               |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| a. MATERIAL: NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0                                        | 0                             | 0.00                   | \$0                            |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| b. MATERIAL: NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0                                        | 0                             | 0.00                   | \$0                            |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| c. MATERIAL: NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0                                        | 0                             | 0.00                   | \$0                            |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| d. TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0                                        |                               |                        | \$0                            |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| C. TOTAL NON-ENERGY DISCOUNTED SAVINGS (+) OR COST (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3A2 + 3Bd4) =                             |                               |                        | \$0                            |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| 4. FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) (2H3 + 3A + (3Bd1/Economic Life)) \$180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                               |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| 5. SIMPLE PAYBACK (SPB) IN YEARS (MUST BE < 10 YEARS TO QUALIFY) (1G/4) = 9.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |                               |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| 6. TOTAL NET DISCOUNTED SAVINGS (2H5 + 3C) = \$2,720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                               |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |
| 7. DISCOUNTED SAVINGS-TO-INVESTMENT RATIO (SIR) (6/1G) = 1.55<br>(MUST HAVE SIR > 1.25 TO QUALIFY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                               |                        |                                |                           |     |                   |                  |                |                                     |                |                |                            |               |                  |         |                                        |                           |                        |                                  |           |     |                     |                  |                |                   |     |   |      |     |                   |     |   |      |     |                   |     |   |      |     |          |     |  |  |     |                                                        |                |  |  |     |

| HP  | PREMIUM EFFICIENCY MOTOR EFFICIENCY |       |       |       | STANDARD EFFICIENCY MOTOR EFFICIENCY |       |       |       | PREMIUM EFFICIENCY MOTOR COSTS |       |         |         | STANDARD EFFICIENCY MOTOR COSTS |         |         |       |
|-----|-------------------------------------|-------|-------|-------|--------------------------------------|-------|-------|-------|--------------------------------|-------|---------|---------|---------------------------------|---------|---------|-------|
|     | NEMA<br>(7)                         | (1)   | (2)   | (3)   | (4)                                  | Avg   | (1)   | (2)   | (3)                            | (4)   | Avg     | (1)     | (2)                             | (3)     | (4)     | Avg   |
| 1.0 | 82.5%                               | 86.5% | 78.5% | 85.5% | 86.2%                                | 77.0% | 81.5% | 77.0% | 78.5%                          | 77.5% | \$319   | \$289   | \$362                           | \$395   | \$359   | 2.00  |
| 1.5 | 84.0%                               | 86.5% | 81.5% | 86.5% | 86.5%                                | 80.0% | 81.5% | 80.0% | 82.5%                          | 80.8% | \$354   | \$302   | \$402                           | \$410   | \$389   | 2.50  |
| 2.0 | 84.0%                               | 86.5% | 81.5% | 86.5% | 86.5%                                | 80.0% | 81.5% | 80.0% | 82.5%                          | 80.8% | \$323   | \$387   | \$442                           | \$430   | \$420   | 1.78  |
| 3.0 | 87.5%                               | 88.5% | 85.5% | 88.5% | 88.5%                                | 84.0% | 88.0% | 84.0% | 85.5%                          | 84.0% | \$429   | \$383   | \$429                           | \$451   | \$457   | 3.50  |
| 5.0 | 87.5%                               | 89.5% | 85.5% | 89.5% | 89.5%                                | 86.0% | 86.0% | 85.5% | 86.5%                          | 86.0% | \$502   | \$453   | \$678                           | \$553   | \$553   | 4.20  |
| 7.5 | 89.5%                               | 91.0% | 91.0% | 91.0% | 91.5%                                | 87.0% | 86.5% | 86.5% | 87.5%                          | 86.3% | \$685   | \$519   | \$776                           | \$651   | \$704   | 1.78  |
| 10  | 89.5%                               | 91.7% | 87.5% | 91.7% | 91.7%                                | 87.5% | 91.7% | 87.5% | 87.5%                          | 87.5% | \$825   | \$1,078 | \$815                           | \$732   | \$791   | 1.91  |
| 15  | 91.0%                               | 92.4% | 91.0% | 92.4% | 92.4%                                | 89.0% | 88.5% | 88.5% | 89.5%                          | 88.5% | \$1,088 | \$1,350 | \$1,232                         | \$1,045 | \$1,122 | 2.00  |
| 20  | 91.0%                               | 93.0% | 91.7% | 93.0% | 93.0%                                | 89.5% | 91.7% | 90.2% | 89.5%                          | 90.2% | \$1,368 | \$1,682 | \$1,266                         | \$1,353 | \$1,350 | 10.67 |
| 25  | 92.4%                               | 93.0% | 93.0% | 93.0% | 93.0%                                | 90.4% | 90.4% | 90.2% | 90.2%                          | 90.2% | \$1,610 | \$2,000 | \$1,828                         | \$1,658 | \$1,658 | 11.40 |
| 30  | 92.4%                               | 94.1% | 93.6% | 93.6% | 93.6%                                | 93.8% | 94.1% | 93.0% | 90.9%                          | 90.9% | \$1,874 | \$2,325 | \$2,125                         | \$1,969 | \$1,969 | 13.30 |
| 40  | 93.0%                               | 94.1% | 93.6% | 94.1% | 94.5%                                | 94.2% | 94.5% | 94.5% | 94.2%                          | 91.0% | \$2,486 | \$3,105 | \$2,823                         | \$2,574 | \$2,628 | 16.00 |
| 50  | 93.0%                               | 94.1% | 94.1% | 94.1% | 94.5%                                | 94.0% | 94.5% | 94.5% | 94.5%                          | 91.0% | \$3,053 | \$3,812 | \$3,467                         | \$3,140 | \$3,140 | 5.00  |
| 60  | 93.6%                               | 94.5% | 94.1% | 94.5% | 95.0%                                | 94.7% | 95.0% | 94.7% | 94.7%                          | 91.7% | \$3,053 | \$4,374 | \$4,972                         | \$4,501 | \$4,501 | 17.78 |
| 75  | 94.1%                               | 94.5% | 94.5% | 94.5% | 95.0%                                | 94.7% | 95.0% | 94.7% | 94.7%                          | 92.4% | \$3,053 | \$5,280 | \$5,704                         | \$5,704 | \$5,704 | 19.00 |
| 100 | 94.5%                               | 94.8% | 95.0% | 95.0% | 95.0%                                | 94.6% | 95.0% | 93.0% | 93.0%                          | 91.7% | \$3,053 | \$8,860 | \$7,790                         | \$7,277 | \$7,180 | 24.00 |

(5) Labor cost for electrician from Means Electrical Cost Data 1993 is \$24.95/hr.  
 (6) Includes 20% site & location factor, 15% overhead, 10% profit, and 20% contingency.  
 (7) NEMA Standard MG 1, Table 12-6C

Total enclosed fan cooled, squirrel cage

(1) Westinghouse Optimus HE

(2) Magnetek Louis Allis Spartan

(3) TECO Max-E1

(4) Baldor Super-E

| Energy Type                         | Unit Energy Cost | UPW Discount Factors (1) |       |       |    |
|-------------------------------------|------------------|--------------------------|-------|-------|----|
|                                     |                  | 10                       | 15    | 20    | 20 |
| Economic Life of ECO (yrs)          | 0.0821 (\$/kWh)  | 8.58                     | 12.02 | 15.08 |    |
| Annual Recurring Non-Energy Savings |                  | 8.53                     | 11.94 | 14.88 |    |

(1) NISTIR 85-3273-7 EDnergy Prices and Discount Factors for Life-Cycle Cost Analysis 1995

Discount rate = 3%, Region 4

| Field Measurements |      |             |       |                   |             |             |             |          |          |          |        |
|--------------------|------|-------------|-------|-------------------|-------------|-------------|-------------|----------|----------|----------|--------|
| Nameplate Data     |      |             |       | Voltage           |             |             |             | Current  |          |          |        |
| Spec#              | HP   | Rated Volts | Phase | Rated Speed (Rpm) | A-B (Volts) | C-A (Volts) | C-B (Volts) | A (Amps) | B (Amps) | C (Amps) |        |
| General            | 250  | 480         | 3     | 1770              | 485         | 485         | 485         | 91       | 81       | 450      | 1786.6 |
| General            | 250  | 210         | 3     | 1800              | 210.5       | 210.5       | 210.7       | 79       | 52       | 67       | 96.9   |
| Condens            | 1.5  | 115         | 3     | 3                 | N/A         | N/A         | N/A         | N/A      | N/A      | N/A      | N/A    |
| Refrig C           | 5    | 460         | 7.3   | 3                 | 1750        |             |             |          |          |          | N/A    |
| Refrig C           | 5    | 460         | 7.3   | 3                 | 1750        |             |             |          |          |          | N/A    |
| Chilled            | 1    | 208         | 3.3   | 3                 | 1725        |             |             |          |          |          | N/A    |
| Chilled            | 1    | 208         | 3.3   | 3                 | 1725        |             |             |          |          |          | N/A    |
| Chilled            | 1    | 208         | 3.3   | 3                 | 1725        |             |             |          |          |          | N/A    |
| Air Com            | 5    | 208         | 15.4  | 3                 | 1750        |             |             |          |          |          | N/A    |
| Air Com            | 5    | 208         | 15.4  | 3                 | 1750        |             |             |          |          |          | N/A    |
| AHU-2              | 6    | 460         | 7.3   | 3                 | 1730        |             |             |          |          |          | N/A    |
| AHU-3              | 3    | 230         | 8.36  | 3                 | 1760        |             |             |          |          |          | N/A    |
| AHU-4              | 3    | 230         | 9.8   | 3                 | 1740        |             |             |          |          |          | N/A    |
| AHU-5              | 7.5  | 480         | 11    | 3                 | 1750        |             |             |          |          |          | N/A    |
| AHU-7              | 7.5  | 480         | 11    | 3                 | 1750        |             |             |          |          |          | N/A    |
| AHU-8              | 7.5  | 480         | 11    | 3                 | 1750        |             |             |          |          |          | N/A    |
| AHU-9              | 0.33 | 230         | 2.9   | 3                 | 1750        |             |             |          |          |          | N/A    |

| Spec#    | HP   | Rated Volts | Phase | Rated Speed (Rpm) | A-B (Volts) | C-A (Volts) | C-B (Volts) | A (Amps) | B (Amps) | C (Amps) | Power Factor | Motor Power (kW) | Fan Power (kW) | (1) Motor Sync (rpm) | (2) Load Fraction (%) | Calculated Values     |                    |      |      |     |
|----------|------|-------------|-------|-------------------|-------------|-------------|-------------|----------|----------|----------|--------------|------------------|----------------|----------------------|-----------------------|-----------------------|--------------------|------|------|-----|
|          |      |             |       |                   |             |             |             |          |          |          |              |                  |                |                      |                       | (3) Output Power (kW) | (4) Motor Eff. (%) |      |      |     |
| General  | 250  | 480         | 3     | 1770              | 485         | 485         | 485         | 91       | 81       | 450      | 1786.6       | N/A              | 1800           | 11%                  | 32.58                 | 21.14                 | 65%                |      |      |     |
| General  | 250  | 210         | 3     | 1800              | 210.5       | 210.5       | 210.7       | 79       | 52       | 67       | 96.9         | 1795.6           | N/A            | 1800                 | 70%                   | 23.32                 | N/A                | 81%  |      |     |
| Condens  | 1.5  | 115         | 3     | 3                 | N/A         | N/A         | N/A         | N/A      | N/A      | N/A      | N/A          | N/A              | N/A            | 1800                 | 70%                   | 0.97                  | 0.78               | 86%  |      |     |
| Refrig C | 5    | 460         | 7.3   | 3                 | 1750        |             |             |          |          |          |              |                  |                | 1800                 | 70%                   | 3.02                  | 2.61               | 86%  |      |     |
| Chilled  | 1    | 208         | 3.3   | 3                 | 1725        |             |             |          |          |          |              |                  |                | 1800                 | 70%                   | 0.67                  | 0.52               | 78%  |      |     |
| Chilled  | 1    | 208         | 3.3   | 3                 | 1725        |             |             |          |          |          |              |                  |                | 1800                 | 70%                   | 0.67                  | 0.52               | 78%  |      |     |
| Chilled  | 1    | 208         | 3.3   | 3                 | 1725        |             |             |          |          |          |              |                  |                | 1800                 | 70%                   | 0.67                  | 0.52               | 78%  |      |     |
| Air Com  | 5    | 208         | 15.4  | 3                 | 1750        |             |             |          |          |          |              |                  |                | 1800                 | 70%                   | 3.02                  | 2.61               | 86%  |      |     |
| Air Com  | 5    | 208         | 15.4  | 3                 | 1750        |             |             |          |          |          |              |                  |                | 1800                 | 70%                   | 3.02                  | 2.61               | 86%  |      |     |
| AHU-2    | 6    | 460         | 7.3   | 3                 | 1730        |             |             |          |          |          |              |                  |                | N/A                  | 1727.6                | N/A                   | 4.02               | 3.86 | 86%  |     |
| AHU-3    | 3    | 230         | 8.36  | 3                 | 1760        |             |             |          |          |          |              |                  |                | N/A                  | 1781.7                | 1393                  | 46%                | 1.20 | 85%  |     |
| AHU-4    | 3    | 230         | 9.8   | 3                 | 1740        |             |             |          |          |          |              |                  |                | N/A                  | 1768.9                | 1255.7                | 52%                | 1.36 | 85%  |     |
| AHU-5    | 7.5  | 480         | 11    | 3                 | 1750        |             |             |          |          |          |              |                  |                | N/A                  | 1766.2                | 1370                  | 1800               | 56%  | 1.48 | 85% |
| AHU-7    | 7.5  | 480         | 11    | 3                 | 1750        |             |             |          |          |          |              |                  |                | N/A                  | 1800                  | 70%                   | 4.48               | 3.92 | 88%  |     |
| AHU-8    | 7.5  | 480         | 11    | 3                 | 1750        |             |             |          |          |          |              |                  |                | N/A                  | 1800                  | 70%                   | 4.48               | 3.92 | 88%  |     |
| AHU-9    | 0.33 | 230         | 2.9   | 3                 | 1750        |             |             |          |          |          |              |                  |                | N/A                  | 1800                  | 70%                   | 0.22               | 0.17 | 78%  |     |

| (5) Output Power | (6) New Motor Power (hp) | (7) Motor Effic. (%) | (8) Load Fraction (%) | (9) Annual Input Power (kW) | (10) Annual Demand Hours | Electric Demand Savings (kWh) | Annual Energy Savings (\$) | Demand Cost Savings (\$) | Annual Cost Savings (\$) | Installed Cost (\$) | Utility Incentive (\$) | Investment Cost (\$) | Simple Payback (yr) | Discounted Cost Savings (\$) | SIR  | Rate of Return (IRR) |
|------------------|--------------------------|----------------------|-----------------------|-----------------------------|--------------------------|-------------------------------|----------------------------|--------------------------|--------------------------|---------------------|------------------------|----------------------|---------------------|------------------------------|------|----------------------|
| 2B.3             | 250                      | 0.938                | 11%                   | 22.54                       | 8760                     | 10.03                         | 87,906                     | \$0                      | \$7,217                  | \$14,530            | \$0                    | #####                | 2.3                 | \$108,834                    | 6.69 | 14.4%                |
| N/A              | 250                      | N/A                  | N/A                   | N/A                         | N/A                      | N/A                           | N/A                        | N/A                      | N/A                      | N/A                 | N/A                    | N/A                  | N/A                 | N/A                          | N/A  | N/A                  |
| 1.1              | 1.5                      | 0.862                | 70%                   | 0.91                        | 4980                     | 0.06                          | 263                        | \$0                      | \$22                     | \$876               | \$0                    | \$980                | 45.4                | \$325                        | 0.33 | -1.6%                |
| 3.5              | 5                        | 0.897                | 70%                   | 2.91                        | 4980                     | 0.11                          | 502                        | \$0                      | \$41                     | \$1,242             | \$0                    | \$1,389              | 33.7                | \$621                        | 0.45 | -0.1%                |
| 3.5              | 5                        | 0.897                | 70%                   | 2.91                        | 4980                     | 0.11                          | 502                        | \$0                      | \$41                     | \$1,242             | \$0                    | \$1,389              | 33.7                | \$621                        | 0.45 | -0.1%                |
| 0.7              | 1                        | 0.862                | 70%                   | 0.61                        | 4980                     | 0.07                          | 297                        | \$0                      | \$24                     | \$802               | \$0                    | \$897                | 36.8                | \$368                        | 0.41 | -0.5%                |
| 0.7              | 1                        | 0.862                | 70%                   | 0.61                        | 4980                     | 0.07                          | 297                        | \$0                      | \$24                     | \$802               | \$0                    | \$897                | 36.8                | \$368                        | 0.41 | -0.5%                |
| 0.7              | 1                        | 0.862                | 70%                   | 0.61                        | 4980                     | 0.07                          | 297                        | \$0                      | \$24                     | \$802               | \$0                    | \$897                | 36.8                | \$368                        | 0.41 | -0.5%                |
| 3.5              | 5                        | 0.897                | 70%                   | 2.91                        | 4980                     | 0.11                          | 502                        | \$0                      | \$41                     | \$1,242             | \$0                    | \$1,389              | 33.7                | \$621                        | 0.45 | -0.1%                |
| 3.5              | 5                        | 0.897                | 70%                   | 2.91                        | 4980                     | 0.11                          | 502                        | \$0                      | \$41                     | \$1,242             | \$0                    | \$1,389              | 33.7                | \$621                        | 0.45 | -0.1%                |
| 3.5              | 5                        | 0.897                | 103%                  | 4.22                        | 8760                     | 0.26                          | 2,197                      | \$0                      | \$180                    | \$1,667             | \$0                    | \$1,753              | 9.7                 | \$2,720                      | 1.66 | 6.3%                 |
| 6.2              | 6                        | 0.915                | 46%                   | 1.19                        | 5136                     | 0.01                          | 72                         | \$0                      | \$6                      | \$875               | \$0                    | \$980                | 166.8               | \$89                         | 0.09 | -7.8%                |
| 1.4              | 3                        | 0.862                | 52%                   | 1.34                        | 5136                     | 0.02                          | 108                        | \$0                      | \$9                      | \$840               | \$0                    | \$1,051              | 118.7               | \$134                        | 0.13 | -6.2%                |
| 1.6              | 3                        | 0.865                | 56%                   | 1.46                        | 5136                     | 0.02                          | 117                        | \$0                      | \$10                     | \$940               | \$0                    | \$1,051              | 109.2               | \$145                        | 0.14 | -5.8%                |
| 1.7              | 3                        | 0.865                | 70%                   | 4.28                        | 8760                     | 0.19                          | 1,700                      | \$0                      | \$140                    | \$1,567             | \$0                    | \$1,753              | 12.6                | \$2,105                      | 1.20 | 5.0%                 |
| 5.3              | 7.5                      | 0.915                | 70%                   | 4.28                        | 8760                     | 0.19                          | 1,700                      | \$0                      | \$140                    | \$1,567             | \$0                    | \$1,753              | 12.6                | \$2,105                      | 1.20 | 5.0%                 |
| 5.3              | 7.5                      | 0.915                | 70%                   | 4.28                        | 8760                     | 0.19                          | 1,700                      | \$0                      | \$140                    | \$1,567             | \$0                    | \$1,753              | 12.6                | \$2,105                      | 1.20 | 5.0%                 |
| 0.2              | 0.33                     | 0.862                | 70%                   | 0.20                        | 8760                     | 0.02                          | 196                        | \$0                      | \$16                     | \$802               | \$0                    | \$897                | 55.8                | \$243                        | 0.27 | -2.6%                |

| ENERGY TYPE<br>IN SITE MBTU | ELECTRICITY |
|-----------------------------|-------------|
| CATEGORY OF USE             |             |
| SPACE HEAT                  | 57.53       |
| SPACE COOL                  | 1565.05     |
| HVAC AUX                    | 420.43      |
| DOM HOT WTR                 | 0.00        |
| AUX SOLAR                   | 0.00        |
| LIGHTS                      | 288.88      |
| VERT TRANS                  | 0.00        |
| MISC EQUIP                  | 1233.86     |
| TOTAL                       | 3565.76     |

TOTAL SITE ENERGY 3565.62 MBTU 312.8 KBTU/SQFT-YR GROSS-AREA 312.8 KBTU/SQFT-YR NET-AREA  
 TOTAL SOURCE ENERGY 3565.62 MBTU 312.8 KBTU/SQFT-YR GROSS-AREA 312.8 KBTU/SQFT-YR NET-AREA  
 PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4  
 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED =100.0  
 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
 ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

### TOTAL SITE ELECTRICITY ENERGY USE 3565.75 MBTU



## 4.7 ECO 7: UNINTERRUPTED POWER SUPPLY MODIFICATION

**Proposed Modifications:** It is proposed to replace or modify the existing Uninterrupted Power Supply (UPS) system for more efficient operation. Two options were evaluated:

- Option 1: Modify the existing rotating UPS with a smaller motor.
- Option 2: Replace the existing rotating UPS with a static UPS.

**Existing Conditions:** Presently, the existing UPS system consists of a 250 horsepower motor which turns a large flywheel coupled to an electric generator. The system receives 480 volts and delivers a maximum of 150 kW of 208 volt power. The system will provide at least 17 seconds of uninterrupted power if the electricity to the motor is interrupted. The lag time is needed for start up of the emergency generator. This is important because the site is over 18 miles away from the substation and the electricity supply is not always reliable.

Even though the existing UPS system is capable of supplying 150 kW of power, the requirements are reported to be a maximum of 44 kW. Electrical measurements indicated that the system was supplying only 23 kW at the time of the field survey. About 33 kW was being supplied to the motor in order to produce the 23 kW. The power factor at the motor was measured at 45%.

Assuming the power loss in the system remains at 10 kW, the annual energy cost for it is about \$7200. At this time, the Socorro Electric Company has not yet started to penalize WSMR for poor power factor, but they have started selectively penalizing other customers and will likely penalize WSMR soon. Poor power factor also increases power line losses and voltage drop. White Sands must pay for any line losses downstream of the utility meter which could be significant depending on the location of the meter.

An analysis of the two options stated above is presented below.

### **Option 1:**

The existing 250 horsepower motor could be replaced with a 100 horsepower motor which should include a soft start system. The soft start, or variable speed drive, system would allow the motor to bring a non-rotating flywheel up to speed without damaging the motor. It may take twice as long to get the flywheel up to speed as with the 250 hp motor, but that should not significantly affect the operation of the facility. Based on the reported maximum demand of 44 kW, the maximum size motor required is about 56 horsepower. Use of a 100 horsepower motor would provide a good safety margin.

Measurements on the existing 250 hp motor at the time of the field survey indicated that the motor was 11% loaded and was operating with a 65% efficiency and a 45% power factor.

The new 100 hp motor operating at the same conditions would be 28% loaded and operate with a 94% efficiency and a power factor of 68%.

### Option 2:

The existing rotating UPS system could be replaced with a static UPS system. The rotating UPS is a technology that is nearly obsolete. A static UPS system consists of an electronic and battery cabinet typically installed in the computer room which provides power line protection and a battery backup. At 40 kW, the smallest battery cabinet will provide 13 minutes of uninterrupted power as opposed to 17 seconds for the existing rotating UPS.

The static UPS operates with a 92% efficiency down to about 25% load. At 10% load, the efficiency is still in the high eighties. Two static UPS systems were priced:

- A 64 kW system for \$58,000
- A 100 kW system for \$68,000

Installation is typically in the range of 25 to 50% of equipment cost.

Analysis: Analysis proceeded as follows:

- Existing energy use was based on electrical field measurements at the time of the field survey.
- Energy use with the proposed modifications was based on data from the MotorMaster data base and from the static UPS manufacturer.
- Equipment and installation costs were based on local supplier quotes and estimates of installation time.
- Maintenance costs were assumed to be \$0.01/kWh for electrical motors and generators associated with the static UPS and \$0.03/kWh for the diesel-electric generator. The diesel-electric generator currently produces about 95,000 kWh of electricity annually. It was assumed that operation of the diesel-electric generator during thunderstorms would not be necessary with the static UPS system.
- A spreadsheet was used to calculate energy cost savings and ECO economics.

**Results:**

Results for both options are summarized in the following table:

|                                      | Option 1 | Option 2 |
|--------------------------------------|----------|----------|
| Annual Electric Energy Savings (kWh) | 89,454   | 85,172   |
| Total Annual Energy Cost Savings     | \$7344   | \$6993   |
| Annual Maintenance Cost (Savings)    | 0        | \$4909   |
| Investment Cost                      | 22,847   | 97,292   |
| Savings-to-Investment Ratio (SIR)    | 4.85     | 1.83     |
| Simple Payback (Years)               | 3.1      | 13.9     |

**Recommendations:**

Of the two options, Option 1 - New 100 hp Motor, is recommended. This modification is the most cost effective.

E M C Engineers, Inc.  
EMC#1406-008  
GEODSS, White Sands Missile Range  
DACA 63-92-C-0152

MOTOR DATA

UPS-ECO.XLS  
Prepared by: D Jones  
11/9/95  
Checked by: \_\_\_\_\_

| 1. COMPONENT<br>ARMY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FY 1995 MILITARY CONSTRUCTION PROJECT DATA          |                            |                                          | 2. DATE<br>Apr-95                                 |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|------------------------------------------|---------------------------------------------------|----|-------------------|---|---|----------|----|------------|----------------|--|---------|----|-------------|----------------|--|---------|----|------------|------------------|--|----------|----|---------------------------------------|--|--|--|----|---------------------------------|--|--|--|----|------------------|------------------|--|-----------------|-------------------------------------------------|--|--|---------|--|---------------|----------------------|-----------------|-----------------------|---------------------------------|---------|----------|--------|---------|-----------------|---------|--|--|--|--|------------|--|--|--|--|----------|--|--|--|--|---------|--|--|--|--|----------|--|--|--|--|-------------------|-------|--|--|--|----------|--|--------|---------|------------------|----|------------------------|--|--|--|----|-----------------|------------------|--|--|----|-----------------------------------|--------------|--|--|----|---------------------|--|--|--|--|------|----------------------------|---------------------------|---------------------------------------------------|----|----------------|--|--|--|----|----------------|--|--|--|----|----------------|--|--|--|----|-------|--|--|--|----|-----------------------------------------------------|--|--|----------------|
| 3. INSTALLATION AND LOCATION<br>GEODSS Site, White Sands Missile Range, NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| 4. PROJECT TITLE<br>ECIP: Upgrade Lighting Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |                            | 5. PROJECT NUMBER                        |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| LIFE CYCLE COST ANALYSIS SUMMARY<br>ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| LOCATION: GEODSS Site, White Sands Missile Range, NM<br>PROJECT TITLE: ECIP: UPGRADE UPS SYSTEM<br>DISCRETE PORTION NAME: TOTAL<br>ANALYSIS DATE: 11/09/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     | REGION: 4                  | PROJECT NO: 1413-001<br>FISCAL YEAR 1995 |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| <p>1. INVESTMENT</p> <table> <tbody> <tr><td>A.</td><td>CONSTRUCTION COST</td><td>=</td><td>=</td><td>\$20,491</td></tr> <tr><td>B.</td><td>SIOSH COST</td><td>(5.5% of 1A) =</td><td></td><td>\$1,127</td></tr> <tr><td>C.</td><td>DESIGN COST</td><td>(6.0% of 1A) =</td><td></td><td>\$1,229</td></tr> <tr><td>D.</td><td>TOTAL COST</td><td>(1A + 1B + 1C) =</td><td></td><td>\$22,847</td></tr> <tr><td>E.</td><td>SALVAGE VALUE OF EXISTING EQUIPMENT =</td><td></td><td></td><td></td></tr> <tr><td>F.</td><td>PUBLIC UTILITY COMPANY REBATE =</td><td></td><td></td><td></td></tr> <tr><td>G.</td><td>TOTAL INVESTMENT</td><td>(1D - 1E - 1F) =</td><td></td><td>-----&gt; \$22,847</td></tr> </tbody> </table> <p>2. ENERGY SAVINGS (+) OR COST (-):</p> <table> <thead> <tr> <th colspan="3">DATE OF NISTR-4942-1 USED FOR DISCOUNT FACTORS:</th> <th colspan="2">OCT '94</th> </tr> <tr> <th>ENERGY SOURCE</th> <th>FUEL COST \$/kWh (1)</th> <th>SAVINGS kWh (2)</th> <th>ANNUAL \$ SAVINGS (3)</th> <th>DISCOUNT FACTOR (4) SAVINGS (5)</th> </tr> </thead> <tbody> <tr><td>A. ELEC</td><td>\$0.0821</td><td>89,454</td><td>\$7,344</td><td>15.08 \$110,750</td></tr> <tr><td>B. DIST</td><td></td><td></td><td></td><td></td></tr> <tr><td>C. NAT GAS</td><td></td><td></td><td></td><td></td></tr> <tr><td>D. REFUS</td><td></td><td></td><td></td><td></td></tr> <tr><td>E. COAL</td><td></td><td></td><td></td><td></td></tr> <tr><td>F. OTHER</td><td></td><td></td><td></td><td></td></tr> <tr><td>G. DEMAND SAVINGS</td><td>10.21</td><td></td><td></td><td></td></tr> <tr><td>H. TOTAL</td><td></td><td>89,454</td><td>\$7,344</td><td>-----&gt; \$110,750</td></tr> </tbody> </table> <p>3. NON-ENERGY SAVINGS (+) OR COST (-)</p> <table> <tbody> <tr><td>A.</td><td>ANNUAL RECURRING (+/-)</td><td></td><td></td><td></td></tr> <tr><td>1.</td><td>DISCOUNT FACTOR</td><td>(From Table A) =</td><td></td><td></td></tr> <tr><td>2.</td><td>DISCOUNTED SAVINGS (+) / COST (-)</td><td>(3A x 3A1) =</td><td></td><td></td></tr> <tr><td>B.</td><td>NON-RECURRING (+/-)</td><td></td><td></td><td></td></tr> <tr><td></td><td>ITEM</td><td>SAVINGS (+)<br/>COST(-) (1)</td><td>YEAR OF<br/>OCCURRENCE (2)</td><td>DISCOUNT FACTOR (3) SAVINGS/COST (4)<br/>(TABLE B)</td></tr> <tr><td>a.</td><td>MATERIAL: NONE</td><td></td><td></td><td></td></tr> <tr><td>b.</td><td>MATERIAL: NONE</td><td></td><td></td><td></td></tr> <tr><td>c.</td><td>MATERIAL: NONE</td><td></td><td></td><td></td></tr> <tr><td>d.</td><td>TOTAL</td><td></td><td></td><td></td></tr> <tr><td>C.</td><td>TOTAL NON-ENERGY DISCOUNTED SAVINGS (+) OR COST (-)</td><td></td><td></td><td>(3A2 + 3Bd4) =</td></tr> </tbody> </table> <p>4. FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-)</p> <p>5. SIMPLE PAYBACK (SPB) IN YEARS (MUST BE &lt; 10 YEARS TO QUALIFY)</p> <p>6. TOTAL NET DISCOUNTED SAVINGS</p> <p>7. DISCOUNTED SAVINGS-TO-INVESTMENT RATIO (SIR)<br/>(MUST HAVE SIR &gt; 1.25 TO QUALIFY)</p> |                                                     |                            |                                          |                                                   | A. | CONSTRUCTION COST | = | = | \$20,491 | B. | SIOSH COST | (5.5% of 1A) = |  | \$1,127 | C. | DESIGN COST | (6.0% of 1A) = |  | \$1,229 | D. | TOTAL COST | (1A + 1B + 1C) = |  | \$22,847 | E. | SALVAGE VALUE OF EXISTING EQUIPMENT = |  |  |  | F. | PUBLIC UTILITY COMPANY REBATE = |  |  |  | G. | TOTAL INVESTMENT | (1D - 1E - 1F) = |  | -----> \$22,847 | DATE OF NISTR-4942-1 USED FOR DISCOUNT FACTORS: |  |  | OCT '94 |  | ENERGY SOURCE | FUEL COST \$/kWh (1) | SAVINGS kWh (2) | ANNUAL \$ SAVINGS (3) | DISCOUNT FACTOR (4) SAVINGS (5) | A. ELEC | \$0.0821 | 89,454 | \$7,344 | 15.08 \$110,750 | B. DIST |  |  |  |  | C. NAT GAS |  |  |  |  | D. REFUS |  |  |  |  | E. COAL |  |  |  |  | F. OTHER |  |  |  |  | G. DEMAND SAVINGS | 10.21 |  |  |  | H. TOTAL |  | 89,454 | \$7,344 | -----> \$110,750 | A. | ANNUAL RECURRING (+/-) |  |  |  | 1. | DISCOUNT FACTOR | (From Table A) = |  |  | 2. | DISCOUNTED SAVINGS (+) / COST (-) | (3A x 3A1) = |  |  | B. | NON-RECURRING (+/-) |  |  |  |  | ITEM | SAVINGS (+)<br>COST(-) (1) | YEAR OF<br>OCCURRENCE (2) | DISCOUNT FACTOR (3) SAVINGS/COST (4)<br>(TABLE B) | a. | MATERIAL: NONE |  |  |  | b. | MATERIAL: NONE |  |  |  | c. | MATERIAL: NONE |  |  |  | d. | TOTAL |  |  |  | C. | TOTAL NON-ENERGY DISCOUNTED SAVINGS (+) OR COST (-) |  |  | (3A2 + 3Bd4) = |
| A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONSTRUCTION COST                                   | =                          | =                                        | \$20,491                                          |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SIOSH COST                                          | (5.5% of 1A) =             |                                          | \$1,127                                           |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DESIGN COST                                         | (6.0% of 1A) =             |                                          | \$1,229                                           |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TOTAL COST                                          | (1A + 1B + 1C) =           |                                          | \$22,847                                          |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SALVAGE VALUE OF EXISTING EQUIPMENT =               |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PUBLIC UTILITY COMPANY REBATE =                     |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TOTAL INVESTMENT                                    | (1D - 1E - 1F) =           |                                          | -----> \$22,847                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| DATE OF NISTR-4942-1 USED FOR DISCOUNT FACTORS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |                            | OCT '94                                  |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| ENERGY SOURCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FUEL COST \$/kWh (1)                                | SAVINGS kWh (2)            | ANNUAL \$ SAVINGS (3)                    | DISCOUNT FACTOR (4) SAVINGS (5)                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| A. ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0.0821                                            | 89,454                     | \$7,344                                  | 15.08 \$110,750                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| B. DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| C. NAT GAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| D. REFUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| E. COAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| F. OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| G. DEMAND SAVINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.21                                               |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| H. TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | 89,454                     | \$7,344                                  | -----> \$110,750                                  |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANNUAL RECURRING (+/-)                              |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DISCOUNT FACTOR                                     | (From Table A) =           |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DISCOUNTED SAVINGS (+) / COST (-)                   | (3A x 3A1) =               |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NON-RECURRING (+/-)                                 |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ITEM                                                | SAVINGS (+)<br>COST(-) (1) | YEAR OF<br>OCCURRENCE (2)                | DISCOUNT FACTOR (3) SAVINGS/COST (4)<br>(TABLE B) |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MATERIAL: NONE                                      |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| b.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MATERIAL: NONE                                      |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MATERIAL: NONE                                      |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TOTAL                                               |                            |                                          |                                                   |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |
| C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TOTAL NON-ENERGY DISCOUNTED SAVINGS (+) OR COST (-) |                            |                                          | (3A2 + 3Bd4) =                                    |    |                   |   |   |          |    |            |                |  |         |    |             |                |  |         |    |            |                  |  |          |    |                                       |  |  |  |    |                                 |  |  |  |    |                  |                  |  |                 |                                                 |  |  |         |  |               |                      |                 |                       |                                 |         |          |        |         |                 |         |  |  |  |  |            |  |  |  |  |          |  |  |  |  |         |  |  |  |  |          |  |  |  |  |                   |       |  |  |  |          |  |        |         |                  |    |                        |  |  |  |    |                 |                  |  |  |    |                                   |              |  |  |    |                     |  |  |  |  |      |                            |                           |                                                   |    |                |  |  |  |    |                |  |  |  |    |                |  |  |  |    |       |  |  |  |    |                                                     |  |  |                |

| Description                        | New 100 Horsepower Motor |           | New 64 kW Static UPS System |           |
|------------------------------------|--------------------------|-----------|-----------------------------|-----------|
|                                    | Driver                   | Generator | Driver                      | Generator |
| <b>Nameplate Data</b>              |                          |           |                             |           |
| Horsepower                         | 250                      | 250       | 250                         | 250       |
| Rated Volts (Volts)                | 480                      | 480       | 480                         | 480       |
| FLA (Amps)                         | 285                      | 285       | 285                         | 285       |
| Phase                              | 3                        | 3         | 3                           | 3         |
| Full Load Speed (rpm)              | 1770                     | 1770      | 1770                        | 1770      |
| <b>Field Measurements</b>          |                          |           |                             |           |
| Voltage A-B (Volts)                | 487                      | 210.3     | 487                         | 210.3     |
| B-C (Volts)                        | 486                      | 210.5     | 486                         | 210.5     |
| C-A (Volts)                        | 485                      | 210.7     | 485                         | 210.7     |
| Current A (Amps)                   | 86                       | 79        | 86                          | 79        |
| B (Amps)                           | 91                       | 52        | 91                          | 52        |
| C (Amps)                           | 81                       | 67        | 81                          | 67        |
| Power Factor A                     | 0.465                    | 0.969     | 0.465                       | 0.969     |
| B                                  | 0.47                     | 0.999     | 0.47                        | 0.999     |
| C                                  | 0.42                     | 0.967     | 0.42                        | 0.967     |
| Motor Speed (rpm)                  | 1796.6                   | 1796.6    | 1796.6                      | 1796.6    |
| <b>Calculated Values</b>           |                          |           |                             |           |
| Motor Load Fraction (%)            | 11%                      | N/A       | 11%                         | N/A       |
| Output Power (kW)                  | 21.14                    | N/A       | 21.14                       | N/A       |
| Input Power (kW)                   | 32.70                    | 23.54     | 32.70                       | 23.54     |
| Motor Sync Speed (rpm)             | 1800                     | 1800      | 1800                        | 1800      |
| Motor Efficiency (%)               | 65%                      | N/A       | 65%                         | N/A       |
| <b>New 100 Horsepower Motor</b>    |                          |           |                             |           |
| Output Power (hp)                  | 28.3                     | N/A       | 28.3                        | N/A       |
| Horsepower (hp)                    | 100                      | N/A       | N/A                         | N/A       |
| Motor Efficiency (%)               | 94%                      | N/A       | 92%                         | N/A       |
| Motor Load Fraction (%)            | 28%                      | N/A       | N/A                         | N/A       |
| Input Power (kW)                   | 22.49                    | N/A       | 22.97                       | N/A       |
| <b>New 64 kW Static UPS System</b> |                          |           |                             |           |
| Annual Operating Hours             | 8760                     | N/A       | 8760                        | N/A       |
| Demand Savings (kW)                | 10.21                    | N/A       | 9.72                        | N/A       |
| Annual Energy Savings (kWh)        | 89,454                   | N/A       | 85,172                      | N/A       |
| Demand Cost Savings (\$)           |                          | N/A       |                             | N/A       |
| Energy Cost Savings (\$)           | \$7,344                  | N/A       | \$6,993                     | N/A       |
| Annual Cost Savings (\$)           | \$7,344                  | N/A       | \$6,993                     | N/A       |
| Installed Cost (\$)                | \$20,491                 | N/A       | \$87,000                    | N/A       |
| <b>Energy Savings</b>              |                          |           |                             |           |
| Diesel Generator (\$)              |                          | N/A       | \$2,850                     | N/A       |
| UPS Driver (\$)                    |                          | N/A       | \$2,059                     | N/A       |
| UPS Generator (\$)                 |                          | N/A       | \$2,059                     | N/A       |
| Static UPS (\$)                    |                          | N/A       | (\$2,059)                   | N/A       |
| Total (\$)                         |                          | N/A       | \$4,909                     | N/A       |
| <b>Maintenance Savings</b>         |                          |           |                             |           |
| Investment Cost (\$)               | \$22,847                 | N/A       | \$97,292                    | N/A       |
| Simple Payback (yrs)               | 3.1                      | N/A       | 13.9                        | N/A       |
| Life Cycle Cost Savings (\$)       | \$110,750                | N/A       | \$178,488                   | N/A       |
| SIR                                | 4.85                     | N/A       | 1.83                        | N/A       |
| Rate of Return (AIRR)              | 12.5%                    | N/A       | 7.2%                        | N/A       |
| <b>Life Cycle Cost Summary</b>     |                          |           |                             |           |

| ENGINEER'S OPINION OF PROBABLE COST |                                            |                  |                 |                                          |               |       | SHEET        | 1             | OF                  | 1                |           |            |           |
|-------------------------------------|--------------------------------------------|------------------|-----------------|------------------------------------------|---------------|-------|--------------|---------------|---------------------|------------------|-----------|------------|-----------|
| AREA                                |                                            | ACTIVITY         |                 | LOCATION<br>White Sands Missle Range, NM |               |       |              | AMENDMENT NO. |                     |                  |           |            |           |
| PROJECT TITLE                       |                                            | UPS Modification |                 | CONTRACT NO.<br>DACA01-94-D-0033         |               |       |              |               |                     |                  |           |            |           |
| GEOSS, Energy Conservation Survey   |                                            |                  |                 |                                          |               |       |              |               |                     |                  |           |            |           |
| Line No                             | Item Description                           |                  | Unit of Measure | No. of Units                             | MATERIAL COST |       | LABOR COST   |               |                     | EQUIPMENT COST   |           | TOTAL COST |           |
|                                     |                                            |                  |                 |                                          | Unit          | Total | Manhrs/ Unit | Total Manhrs  | Labor Cost/ Manhour | Total Labor Cost | Unit Cost | Total      | Unit Cost |
| 1                                   | Replace 250 hp motor with 100 hp motor     |                  |                 |                                          | \$0           | 0.00  | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 2                                   | Electric motor, 100 hp, Premium efficiency | ea               | 1               | \$2,365                                  | \$2,365       | 20.00 | 20.00        | \$18.50       | \$370               | \$0.00           | \$0       | \$2,735    | \$2,735   |
| 3                                   | Starter, 100 hp, Soft start                | ea               | 1               | \$4,450                                  | \$4,450       | 48.00 | 48.00        | \$18.50       | \$888               | \$0.00           | \$0       | \$5,338    | \$5,338   |
| 4                                   | Remove existing motor                      | ea               | 1               | \$0.00                                   | \$0           | 8.00  | 8.00         | \$18.50       | \$148               | \$0.00           | \$0       | \$148.00   | \$148     |
| 5                                   | Travel to Socorro                          | hrs              | 12              |                                          | \$0           | 1.00  | 12.00        | \$18.50       | \$222               | \$0.00           | \$0       | \$18.50    | \$222     |
| 6                                   | Travel to job site                         | hrs              | 8               |                                          | \$0           | 1.00  | 8.00         | \$18.50       | \$148               | \$0.00           | \$0       | \$18.50    | \$148     |
| 7                                   | Lodging and per diem                       | days             | 10              |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$100.00         | \$1,000   | \$100.00   | \$1,000   |
| 8                                   | Mileage                                    | miles            | 600             |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.30           | \$180     | \$0.30     | \$180     |
| 9                                   |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 10                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 11                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 12                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 13                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 14                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 15                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 16                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 17                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 18                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 19                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 20                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 21                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 22                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 23                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 24                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 25                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 26                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 27                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 28                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 29                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 30                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 31                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 32                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 33                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 34                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 35                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 36                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 37                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 38                                  |                                            |                  |                 |                                          | \$0           |       | 0.00         | \$18.50       | \$0                 | \$0.00           | \$0       | \$0.00     | \$0       |
| 39                                  | SUBCONTRACTOR SUBTOTAL                     |                  |                 |                                          | \$6,815       |       | \$96         |               | \$1,776             |                  | \$1,180   |            | \$9,771   |
| 40                                  | LABOR BURDEN                               |                  | %               | 30                                       | \$0           |       |              |               | \$533               |                  | \$354     |            | \$887     |
| 41                                  | SUBTOTAL                                   |                  |                 |                                          | \$6,815       |       |              |               | \$2,309             |                  | \$1,534   |            | \$10,658  |
| 42                                  | OVERHEAD                                   |                  | %               | 12.0                                     | \$818         |       |              |               | \$277               |                  | \$184     |            | \$1,279   |
| 43                                  | SUBTOTAL                                   |                  |                 |                                          | \$7,633       |       |              |               | \$2,586             |                  | \$1,718   |            | \$11,937  |
| 44                                  | PROFIT                                     |                  | %               | 12                                       | \$916         |       |              |               | \$310               |                  | \$206     |            | \$1,432   |
| 45                                  | SUBCONTRACTOR TOTAL                        |                  |                 |                                          | \$8,549       |       |              |               | \$2,896             |                  | \$1,924   |            | \$13,369  |
| 46                                  | OVERHEAD                                   |                  | %               | 10.95                                    | \$936         |       |              |               | \$317               |                  | \$211     |            | \$1,464   |
| 47                                  | SUBTOTAL                                   |                  |                 |                                          | \$9,485       |       |              |               | \$3,213             |                  | \$2,135   |            | \$14,833  |
| 48                                  | PROFIT                                     |                  | %               | 8                                        | \$759         |       |              |               | \$257               |                  | \$171     |            | \$1,187   |
| 49                                  | SUBTOTAL                                   |                  |                 |                                          | \$10,244      |       |              |               | \$3,470             |                  | \$2,306   |            | \$16,020  |
| 50                                  | BOND                                       |                  | %               | 0.737                                    | \$75          |       |              |               | \$26                |                  | \$17      |            | \$118     |
| 51                                  | SUBTOTAL                                   |                  |                 |                                          | \$10,319      |       |              |               | \$3,496             |                  | \$2,323   |            | \$16,138  |
| 52                                  | N. M. TAX                                  |                  | %               | 5.8125                                   | \$600         |       |              |               | \$203               |                  | \$135     |            | \$938     |
| 53                                  | SUBTOTAL                                   |                  |                 |                                          | \$10,919      |       |              |               | \$3,699             |                  | \$2,458   |            | \$17,076  |
| 54                                  | CONTINGENCY                                |                  | %               | 20                                       | \$2,184       |       |              |               | \$740               |                  | \$492     |            | \$3,415   |
| 55                                  | GRAND TOTAL                                |                  |                 |                                          | \$13,103      |       |              |               | \$4,439             |                  | \$2,949   |            | \$20,491  |

|                    |             |                                              |                  |
|--------------------|-------------|----------------------------------------------|------------------|
| PREPARED BY<br>EMS | APPROVED BY | TITLE OR ORGANIZATION<br>EMC Engineers, Inc. | DATE<br>11/22/95 |
|--------------------|-------------|----------------------------------------------|------------------|

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC  
DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
REPORT- BEPS ESTIMATED BUILDING ENERGY PERFORMANCE

DOE-2.1D 8/7/1995 13:34:35 PDL RUN 1  
TRUTH OR CONSEQU, N

ENERGY TYPE  
IN SITE MBTU - ELECTRICITY  
CATEGORY OF USE  
SPACE HEAT 55.12  
SPACE COOL 1569.61  
HVAC AUX 426.65  
DOM HOT WTR 0.00  
AUX SOLAR 0.00  
LIGHTS 288.88  
VERT TRANS 0.00  
MISC EQUIP 964.77  
TOTAL 3305.03

TOTAL SITE ENERGY 3304.94 MBTU 289.9 KBTU/SQFT-YR GROSS-AREA 289.9 KBTU/SQFT-YR NET-AREA  
TOTAL SOURCE ENERGY 3304.94 MBTU 289.9 KBTU/SQFT-YR GROSS-AREA 289.9 KBTU/SQFT-YR NET-AREA  
PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4  
PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0  
NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

**TOTAL SITE ELECTRICITY ENERGY USE 3305.02 MBTU**



CRITERIA: Horsepower ..... 250  
Speed (RPM) ..... 1800  
Enclosure ..... Totally Enclosed

Manufacturer: Toshiba  
Model: STD EFF  
Catalog: B2504FLF4BM  
List Price (\$): 13448

|                 | Full | 3/4  | 1/2  | 1/4 |
|-----------------|------|------|------|-----|
| Efficiency (%): | 94.1 | 93.9 | 92.9 | n/a |
| Power factor:   | 87.5 | 86.3 | 81.7 | n/a |

Full Load RPM: 1780

Voltage Rating: 460

Frame Size: 505UZ

Features: n/a

Warranty (yrs): n/a

Service Factor: 1.15

|                 | FL  | BD   | LR   |
|-----------------|-----|------|------|
| Torque (ft-lb): | 738 | 1705 | 2214 |

|                 | Idle | FL  | LR   |
|-----------------|------|-----|------|
| Current (amps): | 72.0 | 285 | 1820 |

CRITERIA: Horsepower ..... 100  
Speed (RPM) ..... 1800  
Enclosure ..... Totally Enclosed

Manufacturer: Reliance  
Model: TEFC U-FRAME STD EFF  
Catalog: P44G611  
List Price (\$): 7343

|                 | Full | 3/4  | 1/2  | 1/4  |
|-----------------|------|------|------|------|
| Efficiency (%): | 95.8 | 96.1 | 95.9 | 94.0 |
| Power factor:   | 90.5 | 89.1 | 84.4 | 68.0 |

Full Load RPM: 1786  
Voltage Rating: 460  
Frame Size: 445U  
Features: U-Frame  
Warranty (yrs): 1  
Service Factor: 1.15

|                 | FL  | BD  | LR  |
|-----------------|-----|-----|-----|
| Torque (ft-lb): | 294 | 687 | 406 |

|                 | Idle | FL  | LR  |
|-----------------|------|-----|-----|
| Current (amps): | n/a  | 108 | 677 |

# Facsimile Cover Sheet

To: Dennis Jones

Company: EMC

Phone: \_\_\_\_\_  
Fax: 985-2527

From: Bill Kirkendoll

Company: GE SUPPLY, DENVER

Phone: 303-572-7115  
Fax: 303-572-7120

Date: 7/13/95

Pages including this  
cover page: 5

Comments:

Estimated Quote on  
100hp Motor & Solid State  
Soft Start  
Starter



GE Supply

William M. Kirkendoll  
Rocky Mountain Region Motor Specialist

425 Quivas St., Denver, CO 80204  
303 572-7115, 1 800 332-5853, Fax: 303 572-7120

(Good Luck!)

Bill



**GE Supply  
Quotation**

General Electric Company

EMC Engineers, Inc.  
10 2750 S. Welkworth Blvd  
Suite C-200  
Denver CO 80227  
Attn: Dennis Jones

Unless otherwise stated, this quotation expires 30 days from its date, may be modified or withdrawn by GE Supply prior to any acceptance and supersedes all previous quotations and agreements relating to this transaction. All communications should refer to the quotation number and be addressed to our office at the above address.

| GENERAL QUOTE NUMBER | JOB/PROJECT | CUSTOMER REQUEST FOR QUOTE | DATE    | TIME | PAGE |
|----------------------|-------------|----------------------------|---------|------|------|
| WMK71395002          |             |                            | 7/13/95 |      |      |

GE Supply is pleased to offer  
the following quotation:

I will offer an estimated Price  
with the following assumptions:

1. Motor RPM - 1800

2. Motor Enclosure - Open dryproof

3. Nema Load Inertia - 441 lb-ft<sup>2</sup>

(with a large Flywheel The W/K<sup>2</sup> on load inertia is critical.)

Item 1. 100 hp, 1800 RPM, Energy Saver  
ODP, 404T Frame, 230/460/3/60 (1) \$2365.00  
each

Item 2. 100 hp GE ASTAT-CD Solid State  
Reduced Voltage Starter, Nema (1) \$4450.00  
each

Delivery: Motor is stock subject to prior sale  
the Starter is 4 weeks.

Freight: Prepaid to Denver

*Best Regards, Bill Kunkel*

SALE OF ANY GOODS COVERED BY THIS QUOTATION IS EXPRESSLY CONDITIONED UPON THE TERMS AND CONDITIONS CONTAINED OR REFERRED TO HEREIN, INCLUDING THOSE SET FORTH ON  
THE BACK OF THIS LETTER AND THOSE CONTAINED IN ANY ATTACHMENTS HERETO.

JC107 Rev 13-80

*Driproof*

**Frames 182 - 449, Type K, KS, KG, KGS and KR  
3 Phase**

**DIMENSIONS—For ESTIMATING ONLY**

### Dimensions



| Frame | Ap-<br>prox-<br>imate<br>Net<br>Wt<br>In Lb | Dimensions in inches |       |            |      |       |      |          |      |      |       |       |       |       |       |       |       |      |      |      |       |       |       |
|-------|---------------------------------------------|----------------------|-------|------------|------|-------|------|----------|------|------|-------|-------|-------|-------|-------|-------|-------|------|------|------|-------|-------|-------|
|       |                                             | SHAFT                |       |            |      |       |      | MOUNTING |      |      |       |       |       | A     | B     | C     | D     | G    | J    | K    | L     | O     | P     |
|       |                                             | Keyway               |       | Key Length | N-W  | U     | V    | E        | H    | BA   | BS    | 2F    | 2xF   |       |       |       |       |      |      |      |       |       |       |
|       |                                             | Width                | Depth |            |      |       |      |          |      |      |       |       |       |       |       |       |       |      |      |      |       |       |       |
| 182T  | 64                                          | .250                 | .125  | 1.75       | 2.75 | 1.125 | 2.50 | 3.75     | .406 | 2.75 | 2.25  | 4.50  | 8.68  | 6.64  | 14.58 | 4.50  | 0.54  | 1.60 | 2.32 | 5.82 | 9.18  | 9.34  |       |
| 184T  | 80                                          | .250                 | .125  | 1.75       | 2.75 | 1.125 | 2.50 | 3.75     | .406 | 2.75 | 2.75  | 5.50  | 8.68  | 6.64  | 14.58 | 4.50  | .64   | 1.60 | 2.38 | 6.32 | 9.18  | 9.34  |       |
| 213T  | 120                                         | .312                 | .156  | 2.35       | 3.38 | 1.375 | 3.12 | 4.25     | .406 | 3.50 | 3.50  | 7.00  | 9.60  | 8.00  | 17.26 | 5.25  | .80   | 1.30 | 2.80 | 6.88 | 10.44 | 10.34 |       |
| 215T  | 125                                         | .312                 | .156  | 2.35       | 3.38 | 1.375 | 3.12 | 4.25     | .406 | 3.50 | 3.50  | 7.00  | 9.60  | 8.00  | 17.26 | 5.25  | .80   | 1.30 | 2.80 | 6.88 | 10.44 | 10.34 |       |
| 254T  | 180                                         | .375                 | .188  | 2.62       | 4.00 | 1.825 | 3.75 | 5.00     | .531 | 4.25 | 5.00  | 10.00 | 8.50  | 11.20 | 11.30 | 22.31 | 6.25  | .70  | 1.50 | 2.35 | 9.06  | 12.44 | 12.28 |
| 256T  | 220                                         | .375                 | .188  | 2.62       | 4.00 | 1.825 | 3.75 | 5.00     | .531 | 4.25 | 5.00  | 10.00 | 8.50  | 11.20 | 11.30 | 22.31 | 6.25  | .70  | 1.50 | 2.35 | 9.06  | 12.44 | 12.28 |
| 284T8 | 285                                         | .375                 | .188  | 1.88       | 3.25 | 1.825 | 3.00 | 5.50     | .530 | 4.75 | 5.50  | ----- | 9.50  | 12.40 | 12.80 | 23.56 | 7.00  | .80  | 1.70 | 3.30 | 10.06 | 13.84 | 13.76 |
| 284T  | 265                                         | .600                 | .250  | 3.25       | 4.62 | 1.875 | 4.38 | 6.50     | .530 | 4.75 | 5.50  | ----- | 9.50  | 12.40 | 12.80 | 23.56 | 7.00  | .80  | 1.70 | 3.30 | 10.06 | 13.84 | 13.76 |
| 286TS | 325                                         | .375                 | .188  | 1.88       | 3.25 | 1.825 | 3.00 | 6.50     | .530 | 4.75 | 5.50  | 11.00 | ----- | 12.40 | 12.80 | 23.56 | 7.00  | .80  | 1.70 | 3.30 | 10.06 | 12.94 | 13.78 |
| 288T  | 325                                         | .500                 | .250  | 3.25       | 4.62 | 1.875 | 4.38 | 6.50     | .530 | 4.75 | 5.50  | 11.00 | ----- | 12.40 | 12.80 | 23.56 | 7.00  | .80  | 1.70 | 3.30 | 10.06 | 13.84 | 13.76 |
| 324TS | 435                                         | .800                 | .250  | 2.00       | 3.76 | 1.875 | 3.80 | 6.25     | .656 | 5.25 | 6.00  | ----- | 10.50 | 14.40 | 13.80 | 26.06 | 8.00  | 1.00 | 1.70 | 3.60 | 11.06 | 15.84 | 15.72 |
| 324T  | 435                                         | .800                 | .250  | 3.88       | 6.25 | 2.125 | 5.00 | 6.25     | .656 | 5.25 | 6.00  | ----- | 10.50 | 14.40 | 13.80 | 27.68 | 8.00  | 1.00 | 1.70 | 3.60 | 11.06 | 15.84 | 15.72 |
| 326TS | 450                                         | .500                 | .250  | 2.00       | 3.76 | 1.875 | 3.50 | 6.25     | .656 | 5.25 | 6.00  | 12.00 | ----- | 14.40 | 13.80 | 26.06 | 8.00  | 1.00 | 1.70 | 3.60 | 11.06 | 15.84 | 15.72 |
| 326T  | 450                                         | .500                 | .250  | 3.88       | 6.25 | 2.125 | 5.00 | 6.25     | .656 | 5.25 | 6.00  | 12.00 | ----- | 14.40 | 13.80 | 27.56 | 8.00  | 1.00 | 1.70 | 3.60 | 11.06 | 15.84 | 15.72 |
| 364TS | 850                                         | .600                 | .250  | 2.00       | 3.75 | 1.875 | 3.80 | 7.00     | .656 | 5.88 | 6.12  | ----- | 11.25 | 16.00 | 14.40 | 27.68 | 9.00  | 1.10 | 2.20 | 3.40 | 11.81 | 17.94 | 17.68 |
| 364T  | 850                                         | .625                 | .312  | 4.25       | 6.38 | 2.375 | 5.62 | 7.00     | .656 | 5.88 | 6.12  | ----- | 11.25 | 16.00 | 14.40 | 29.88 | 9.00  | 1.10 | 2.20 | 3.40 | 11.81 | 17.94 | 17.68 |
| 365TS | 700                                         | .500                 | .250  | 2.00       | 3.75 | 1.875 | 3.80 | 7.00     | .656 | 5.88 | 6.12  | 12.25 | ----- | 16.00 | 14.40 | 27.56 | 9.00  | 1.10 | 2.20 | 3.40 | 11.81 | 17.94 | 17.68 |
| 366T  | 700                                         | .625                 | .312  | 4.25       | 6.38 | 2.375 | 5.62 | 7.00     | .656 | 5.88 | 6.12  | 12.25 | ----- | 16.00 | 14.40 | 29.69 | 9.00  | 1.10 | 2.20 | 3.40 | 11.81 | 17.94 | 17.68 |
| 404TS | 925                                         | .600                 | .250  | 2.75       | 4.25 | 2.125 | 4.00 | 8.00     | .810 | 6.62 | 6.88  | ----- | 12.25 | 18.00 | 16.00 | 31.06 | 10.00 | 1.30 | 2.40 | 4.10 | 13.31 | 18.94 | 18.84 |
| 404T  | 925                                         | .750                 | .375  | 5.62       | 7.25 | 2.675 | 7.00 | 8.00     | .810 | 6.62 | 6.88  | ----- | 12.25 | 18.00 | 16.00 | 34.06 | 10.00 | 1.30 | 2.40 | 4.10 | 13.31 | 18.94 | 18.84 |
| 405TS | 950                                         | .500                 | .250  | 2.75       | 4.25 | 2.125 | 4.00 | 8.00     | .810 | 6.62 | 6.88  | 13.75 | ----- | 18.00 | 16.00 | 31.06 | 10.00 | 1.30 | 2.40 | 4.10 | 13.31 | 18.94 | 18.84 |
| 405T  | 950                                         | .750                 | .375  | 5.62       | 7.25 | 2.675 | 7.00 | 8.00     | .810 | 6.62 | 6.88  | 13.75 | ----- | 18.00 | 16.00 | 34.06 | 10.00 | 1.30 | 2.40 | 4.10 | 13.31 | 18.94 | 18.84 |
| 444TS | 1225                                        | .625                 | .312  | 3.00       | 4.75 | 2.375 | 4.60 | 9.00     | .810 | 7.50 | 8.25  | ----- | 14.50 | 20.00 | 18.80 | 38.06 | 11.00 | 1.50 | 2.80 | 4.90 | 15.66 | 21.94 | 21.60 |
| 444T  | 1225                                        | .675                 | .437  | 6.88       | 8.50 | 3.375 | 8.25 | 9.00     | .810 | 7.50 | 8.25  | 16.50 | ----- | 20.00 | 18.80 | 38.66 | 11.00 | 1.50 | 2.80 | 4.90 | 15.66 | 21.94 | 21.60 |
| 445TS | 1300                                        | .625                 | .312  | 3.00       | 4.75 | 2.375 | 4.50 | 9.00     | .810 | 7.50 | 8.25  | 16.50 | ----- | 20.00 | 18.80 | 39.81 | 11.00 | 1.50 | 2.80 | 4.90 | 15.66 | 21.94 | 21.60 |
| 445T  | 1300                                        | .675                 | .437  | 6.88       | 8.50 | 3.376 | 8.25 | 9.00     | .810 | 7.50 | 8.25  | 16.50 | ----- | 20.00 | 18.80 | 44.56 | 11.00 | 1.50 | 2.80 | 4.90 | 15.66 | 21.94 | 21.60 |
| 449TS | 1690                                        | .625                 | .312  | 3.00       | 4.75 | 2.375 | 4.50 | 9.00     | .810 | 7.50 | 12.50 | 25.00 | ----- | 20.00 | 27.30 | 48.31 | 11.00 | 1.50 | 2.80 | 4.90 | 19.81 | 21.94 | 21.60 |
| 449T  | 1690                                        | .675                 | .437  | 6.88       | 8.50 | 3.375 | 8.25 | 9.00     | .810 | 7.50 | 12.50 | 25.00 | ----- | 20.00 | 27.30 | 48.55 | 11.00 | 1.50 | 2.80 | 4.90 | 19.81 | 21.94 | 21.60 |
| 449T1 | 1690                                        | .675                 | .437  | 4.50       | 6.75 | 3.375 | 9.60 | 9.00     | .810 | 7.50 | 12.50 | 25.00 | ----- | 20.00 | 27.30 | 48.55 | 11.00 | 1.50 | 2.80 | 4.90 | 19.81 | 21.94 | 21.60 |

#### **CONDUIT BOX DIMENSIONS**

| Frame                         | Nominal<br>Hd | Approx<br>Vol | Dimensions in inches |       |       |      |       |       |
|-------------------------------|---------------|---------------|----------------------|-------|-------|------|-------|-------|
|                               |               |               | AA                   | AB    | AC    | AF   | XL    | XN    |
| <b>STANDARD CONDUIT BOX ©</b> |               |               |                      |       |       |      |       |       |
| 182-184                       | 5             | 32            | 0.50                 | 7.03  | 6.06  | 1.32 | 2.64  | 6.12  |
| 213-215                       | 10            | 30            | .50                  | 8.86  | 7.20  | 2.38 | 5.00  | 3.52  |
| 254-256                       | 20            | 78            | 1.25                 | 10.31 | 8.25  | 3.50 | 6.06  | 5.52  |
| 284-286                       | 30            | 137           | 1.50                 | 12.53 | 9.78  | 4.34 | 7.59  | 6.26  |
| 324-326                       | 60            | 370           | 2.00                 | 15.20 | 11.46 | 6.44 | 10.89 | 8.56  |
| 364-365                       | 75            | 370           | 3.00                 | 18.26 | 12.51 | 8.44 | 10.89 | 8.56  |
| 404-405                       | 125           | 700           | 3.00                 | 19.01 | 14.88 | 7.00 | 11.75 | 10.00 |
| 444-449                       | 200           | 700           | 3.00                 | 20.32 | 16.19 | 7.00 | 11.75 | 10.00 |
| 444-449                       | 250-300       | 1800          | 4.00                 | 21.86 | 16.44 | 7.00 | 13.68 | 17.00 |
| 444-449                       | 350-400       | 1800          | 4.00                 | 21.86 | 16.44 | 7.00 | 13.68 | 17.00 |
| 444-449                       | 450-500       | 1500          | 2-3.00               | 21.86 | 16.44 | 7.00 | 13.68 | 17.00 |
| 444-449                       | 600           | 1500          | 2-4.00               | 21.86 | 16.44 | 7.00 | 13.68 | 17.00 |

#### **OVERSIZE CONDUIT BOX**

| OVERSIZE CONDOR BOX |         |       |        |       |       |      |       |       |      |
|---------------------|---------|-------|--------|-------|-------|------|-------|-------|------|
| 182-184             | 6       | 32    | 0.50   | 7.03  | 8.06  | 1.32 | 2.64  | 8.12  | B.52 |
| 213-215             | 10      | 78    | 1.25   | 8.31  | 7.26  | 3.85 | 6.06  | B.52  | 8.25 |
| 254-256             | 20      | - 137 | 1.50   | 12.16 | 9.41  | 4.36 | 7.59  | B.56  |      |
| 284-286             | 30      | - 370 | 2.00   | 15.83 | 10.19 | 6.44 | 10.89 | B.56  |      |
| 324-326             | 50      | 370   | 3.00   | 15.20 | 11.46 | 6.44 | 10.69 | B.56  |      |
| 384-365             | 75      | 700   | 3.00   | 18.01 | 13.88 | 7.00 | 11.75 | 10.00 |      |
| 404-406             | 125     | 825   | 4.00   | 18.43 | 14.13 | 7.00 | 13.16 | 14.12 |      |
| 444-449             | 200     | 925   | 4.00   | 19.74 | 15.44 | 7.00 | 13.16 | 14.12 |      |
| 444-449             | 250-300 | 2500  | 2-4.00 | 21.54 | 18.44 | 7.00 | 13.68 | 27.25 |      |
| 444-449             | 350-400 | 2500  | 2-4.00 | 21.54 | 18.44 | 7.00 | 13.68 | 27.25 |      |
| 444-449             | 450-500 | 2500  | 2-4.00 | 21.54 | 18.44 | 7.00 | 13.68 | 27.25 |      |
| 444-449             | 600     | 2500  | 2-4.00 | 21.54 | 18.44 | 7.00 | 13.68 | 27.26 |      |

① Shaft diameters  $1\frac{1}{2}$  inches and smaller will come within the limits of +0.0001 inch -0.0005 inch; diameters  $1\frac{1}{2}$  inches and larger +0.0001 inch -0.0001 inch.

$\frac{1}{16}$ " represents length of straight part of shaft extension.

④ "V" represents length of straight part  
E.g., if "D" dimensions will be:

④ Tolerance on "D" dimensions will be:  
 $D = 1827.326T \pm 0.000$  inch - 0.032 inch

On Frames 1821-3261 +0.000 inch.  
On Frames 364-449T +0.(XX) inch -0.060 inch.  
④ Oversized conduit box will be provided for 125 hp and larger for less

⑥ Hole for  $\frac{1}{2}$  inch conduit with knockouts for 0.75 and 1.00-inch conduit. The knockout is to be used with the NEMA E-1 or E-2 assembly.

- ⑧ Motor feet have 2 holes-per-foot allowing NEMA F-1 or F-2 assembly while maintaining critical NEMA mounting dimensions.

Providing mounting conditions permit, conduit box may be turned so that entrance can be made upward, downward, or from either side.

Weights shown are approximate shipping weights and should be used for estimating only.

estimating only.

**Premium Efficiency, Energy Saver® Motors****Code KS, NEMA Design B, Continuous****40 C Ambient, 60 Hertz, 460 Volts, 3-phase, 1.15 Service Factor****Performance Data****Driproof, Rolled Steel Frames 182-286, Aluminum Frames 324-449**

| Horse power | Full-load RPM | Ampere    |             |                   |           | NEMA Code Letter | Torque   |             |                   | Efficiency $\eta$    |                 |                 |           | Power Factor $\phi$ |          |        | Max. KVAR $\phi$ | No Load dBA Sound Press. $\phi$ |
|-------------|---------------|-----------|-------------|-------------------|-----------|------------------|----------|-------------|-------------------|----------------------|-----------------|-----------------|-----------|---------------------|----------|--------|------------------|---------------------------------|
|             |               | Full-load | Full-load   | NEMA Locked Rotor | Full-load |                  | NEMA %FL | NEMA BD %FL | FL Nominal $\phi$ | FL Guaranteed (min.) | 3/4 load $\phi$ | 1/2-load $\phi$ | Full-load | 3/4-load            | 1/2-load |        |                  |                                 |
|             |               | 460v      | 200v (max.) | Lb.-in.           | (min.)    |                  | (min.)   | (min.)      | (min.)            | (min.)               | (min.)          | (min.)          | (min.)    | (min.)              | (min.)   | (min.) |                  |                                 |
| 1 1/2       | 1170          | 2.3       | 4.8         | 20.0              | M         | 6.7              | 165      | 250         | 87.5              | 85.5                 | 88.8            | 88.8            | 72.0      | 66.0                | 53.2     | 1.0    | 51               |                                 |
| 2           | 1165          | 2.9       | 6.4         | 25.0              | L         | 9.0              | 160      | 240         | 87.5              | 85.5                 | 89.0            | 87.8            | 74.0      | 68.2                | 55.8     | .9     | 51               |                                 |
| 3           | 1765          | 3.9       | 8.6         | 32.0              | K         | 8.9              | 215      | 250         | 90.2              | 88.5                 | 91.4            | 90.2            | 80.0      | 75.4                | 84.0     | 1.5    | 55               |                                 |
|             | 1175          | 4.2       | 9.2         | 32.0              | K         | 13.4             | 155      | 230         | 89.5              | 87.5                 | 89.8            | 88.1            | 75.0      | 70.0                | 58.1     | 1.7    | 57               |                                 |
| 5           | 3520          | 6.2       | 13.6        | 46.0              | J         | 7.5              | 150      | 215         | 89.5              | 87.5                 | 92.1            | 91.6            | 85.5      | 85.0                | 76.6     | 1.8    | 68               |                                 |
|             | 1755          | 6.6       | 14.6        | 46.0              | J         | 15.0             | 185      | 225         | 89.5              | 87.5                 | 90.9            | 90.5            | 80.0      | 76.8                | 66.2     | 2.2    | 55               |                                 |
|             | 1170          | 6.9       | 15.4        | 46.0              | J         | 22.5             | 150      | 215         | 88.5              | 87.5                 | 89.8            | 88.5            | 76.0      | 71.5                | 59.9     | 2.8    | 57               |                                 |
| 7 1/2       | 3500          | 9.2       | 20.8        | 63.5              | H         | 11.3             | 140      | 200         | 89.5              | 87.5                 | 92.1            | 92.2            | 86.0      | 86.3                | 78.8     | 2.2    | 68               |                                 |
|             | 1785          | 9.4       | 22.2        | 63.5              | H         | 22.3             | 175      | 215         | 91.7              | 90.2                 | 92.9            | 92.6            | 81.5      | 80.6                | 73.0     | 2.5    | 61               |                                 |
|             | 1180          | 10.8      | 23.6        | 63.5              | H         | 33.4             | 150      | 205         | 91.7              | 90.2                 | 92.6            | 91.4            | 71.5      | 67.5                | 56.1     | 4.4    | 59               |                                 |
| 10          | 3530          | 12.0      | 27.4        | 81.0              | H         | 14.9             | 135      | 200         | 90.2              | 88.5                 | 92.1            | 91.7            | 87.0      | 87.8                | 80.9     | 2.8    | 70               |                                 |
|             | 1780          | 12.7      | 29.8        | 81.0              | H         | 29.8             | 160      | 200         | 91.7              | 90.2                 | 93.1            | 92.9            | 80.5      | 79.3                | 71.5     | 3.5    | 61               |                                 |
|             | 1175          | 14.3      | 31.4        | 81.0              | H         | 44.6             | 150      | 200         | 91.7              | 90.2                 | 92.7            | 91.7            | 71.5      | 67.2                | 55.8     | 5.9    | 59               |                                 |
| 15          | 3520          | 17.5      | 40.8        | 116.0             | G         | 22.4             | 130      | 200         | 91.0              | 89.5                 | 92.8            | 92.8            | 88.5      | 89.7                | 84.8     | 3.3    | 70               |                                 |
|             | 1770          | 18.8      | 43.4        | 116.0             | G         | 44.5             | 160      | 200         | 93.0              | 91.7                 | 94.1            | 93.7            | 81.5      | 80.0                | 72.0     | 5.3    | 66               |                                 |
|             | 1180          | 19.9      | 48.6        | 116.0             | G         | 66.8             | 140      | 200         | 92.4              | 91.0                 | 92.5            | 91.8            | 76.5      | 74.7                | 65.6     | 8.5    | 61               |                                 |
| 20          | 3540          | 23.2      | 52.8        | 145.0             | G         | 29.6             | 130      | 200         | 92.4              | 91.0                 | 94.3            | 93.9            | 87.5      | 88.5                | 82.9     | 4.8    | 71               |                                 |
|             | 1770          | 24.4      | 56.8        | 145.0             | G         | 59.3             | 150      | 200         | 93.8              | 92.4                 | 94.5            | 94.2            | 82.0      | 81.0                | 73.5     | 6.8    | 68               |                                 |
|             | 1175          | 26.7      | 64.6        | 145.0             | G         | 89.4             | 135      | 200         | 92.4              | 91.0                 | 93.8            | 93.6            | 76.0      | 75.1                | 66.7     | 8.2    | 61               |                                 |
|             | 885           | 26.2      | -           | 145.0             | G         | 118.5            | 125      | 200         | 92.4              | 91.0                 | 93.2            | 92.9            | 77.5      | 74.3                | 64.1     | 9.0    | 64               |                                 |
| 25          | 3540          | 28.1      | 64.8        | 182.5             | G         | 37.1             | 130      | 200         | 93.0              | 91.7                 | 94.8            | 94.6            | 89.5      | 90.8                | 88.4     | 4.8    | 71               |                                 |
|             | 1775          | 29.8      | 70.4        | 182.5             | G         | 74.0             | 150      | 200         | 94.1              | 93.0                 | 94.9            | 94.8            | 83.5      | 77.9                | 59.0     | 8.9    | 67               |                                 |
|             | 1180          | 30.0      | -           | 182.5             | G         | 111.4            | 135      | 200         | 93.8              | 92.7                 | 94.4            | 94.5            | 83.5      | 83.0                | 78.5     | 7.2    | 64               |                                 |
|             | 885           | 32.5      | -           | 182.5             | G         | 148.5            | 125      | 200         | 92.4              | 91.4                 | 93.2            | 93.2            | 78.0      | 75.3                | 65.6     | 10.8   | 64               |                                 |
| 30          | 3560          | 33.2      | 76.2        | 217.5             | G         | 44.2             | 130      | 200         | 93.6              | 92.4                 | 94.6            | 93.9            | 90.5      | 91.8                | 87.8     | 5.6    | 73               |                                 |
|             | 1770          | 36.0      | 85.4        | 217.5             | G         | 88.9             | 150      | 200         | 94.1              | 93.0                 | 94.9            | 94.8            | 83.0      | 83.5                | 78.0     | 8.2    | 64               |                                 |
|             | 1180          | 38.0      | -           | 217.5             | G         | 133.7            | 135      | 200         | 93.6              | 92.7                 | 94.6            | 94.7            | 83.5      | 82.6                | 78.2     | 8.7    | 65               |                                 |
|             | 890           | 39.5      | -           | 217.5             | G         | 176.9            | 125      | 200         | 93.6              | 92.7                 | 94.3            | 93.8            | 76.0      | 72.9                | 62.3     | 12.2   | 65               |                                 |
| 40          | 3560          | 44.2      | 101.8       | 290.0             | G         | 69.0             | 125      | 200         | 93.6              | 92.4                 | 94.8            | 94.5            | 87.0      | 88.5                | 80.9     | 7.8    | 66               |                                 |
|             | 1780          | 45.5      | -           | 290.0             | G         | 118.0            | 140      | 200         | 94.5              | 93.7                 | 95.4            | 95.4            | 85.5      | 84.3                | 77.8     | 9.8    | 66               |                                 |
|             | 1185          | 46.8      | -           | 290.0             | G         | 176.9            | 135      | 200         | 94.1              | 93.3                 | 94.5            | 94.2            | 76.0      | 71.5                | 60.6     | 17.8   | 66               |                                 |
|             | 890           | 53.3      | -           | 290.0             | G         | 236.0            | 125      | 200         | 93.8              | 92.7                 | 94.0            | 93.5            | 76.0      | 71.5                | 60.6     | 17.8   | 79               |                                 |
| 50          | 3580          | 54.3      | -           | 382.5             | G         | 73.7             | 120      | 200         | 93.0              | 92.0                 | 93.5            | 92.9            | 92.0      | 93.6                | 92.0     | 6.5    | 79               |                                 |
|             | 1780          | 57.2      | -           | 382.5             | G         | 145.7            | 140      | 200         | 94.5              | 93.7                 | 95.4            | 95.4            | 88.5      | 85.8                | 79.8     | 12.8   | 70               |                                 |
|             | 1185          | 58.2      | -           | 382.5             | G         | 221.2            | 135      | 200         | 94.1              | 93.3                 | 94.7            | 94.5            | 86.5      | 84.5                | 78.1     | 12.1   | 69               |                                 |
|             | 890           | 59.3      | -           | 382.5             | G         | 295.5            | 125      | 200         | 93.8              | 92.7                 | 94.8            | 95.0            | 84.0      | 82.6                | 75.4     | 13.0   | 69               |                                 |
| 60          | 3585          | 65.9      | -           | 435.0             | G         | 88.4             | 120      | 200         | 93.8              | 92.7                 | 94.0            | 93.4            | 91.0      | 93.1                | 90.3     | 9.1    | 73               |                                 |
|             | 1790          | 69.1      | -           | 435.0             | G         | 175.2            | 140      | 200         | 95.4              | 94.7                 | 95.4            | 94.8            | 85.5      | 84.2                | 77.7     | 15.4   | 69               |                                 |
|             | 1190          | 69.2      | -           | 435.0             | G         | 284.7            | 135      | 200         | 95.0              | 94.3                 | 95.6            | 95.4            | 85.5      | 84.4                | 77.9     | 14.7   | 69               |                                 |
|             | 890           | 71.4      | -           | 435.0             | G         | 354.7            | 125      | 200         | 94.1              | 93.3                 | 96.0            | 95.1            | 83.6      | 82.4                | 75.2     | 15.8   | 69               |                                 |
| 75          | 3575          | 80.7      | -           | 542.5             | G         | 110.2            | 105      | 200         | 94.5              | 93.7                 | 95.1            | 94.8            | 92.0      | 93.3                | 90.7     | 10.4   | 83               |                                 |
|             | 1790          | 87.1      | -           | 542.5             | G         | 220.3            | 140      | 200         | 96.4              | 94.7                 | 95.6            | 95.1            | 84.5      | 83.5                | 76.7     | 20.3   | 73               |                                 |
|             | 1190          | 85.5      | -           | 542.5             | G         | 330.7            | 135      | 200         | 95.4              | 94.7                 | 96.0            | 95.7            | 86.0      | 84.9                | 78.8     | 17.7   | 69               |                                 |
|             | 890           | 88.0      | -           | 542.5             | G         | 443.5            | 125      | 200         | 94.5              | 93.7                 | 95.3            | 95.3            | 84.6      | 83.3                | 77.3     | 17.5   | 69               |                                 |
| 100         | 3575          | 110.0     | -           | 725.0             | G         | 146.9            | 105      | 200         | 94.5              | 93.7                 | 95.2            | 94.9            | 89.5      | 90.5                | 86.1     | 20.8   | 83               |                                 |
|             | 1790          | 115.0     | -           | 725.0             | G         | 293.2            | 125      | 200         | 96.2              | 95.7                 | 96.2            | 95.7            | 85.0      | 82.9                | 74.9     | 30.4   | 69               |                                 |
|             | 1190          | 110.0     | -           | 725.0             | G         | 440.7            | 126      | 200         | 95.4              | 94.7                 | 96.0            | 95.8            | 89.0      | 88.7                | 84.3     | 18.1   | 69               |                                 |
|             | 890           | 117.0     | -           | 725.0             | G         | 591.8            | 125      | 200         | 95.0              | 94.3                 | 95.3            | 95.2            | 84.0      | 82.6                | 76.2     | 26.4   | 69               |                                 |
| 125         | 3570          | 136.0     | -           | 907.5             | G         | 183.8            | 100      | 200         | 95.0              | 94.3                 | 94.6            | 93.9            | 90.0      | 91.7                | 88.6     | 19.8   | 93               |                                 |
|             | 1785          | 135.0     | -           | 907.5             | G         | 368.2            | 110      | 200         | 95.4              | 94.7                 | 96.0            | 96.1            | 90.5      | 90.7                | 87.4     | 18.7   | 78               |                                 |
|             | 1190          | 138.0     | -           | 907.5             | G         | 550.9            | 125      | 200         | 95.4              | 94.7                 | 96.1            | 96.0            | 88.5      | 88.5                | 84.3     | 22.8   | 69               |                                 |
|             | 890           | 149.0     | -           | 907.5             | G         | 739.3            | 120      | 200         | 95.0              | 94.3                 | 95.5            | 95.5            | 82.5      | 80.3                | 71.6     | 37.5   | 69               |                                 |

① Average expected values - do not use as guaranteed values. Efficiency, speed, torque, power factor and sound values are the same for 200, 230, or 460 volt. Current values vary inversely with voltage.  
 ② Recommended maximum capacitor rating when capacitor and motor are switched as a unit.

③ Sound Power dBA -  $10^{-10}$  watts; Sound Pressure (dBA) measured in a free field with a reference pressure of 0.00002 pascals, average reading at three feet.  
 ④ Tested in accordance with IEEE Standard 112, Test Method B, using accuracy improvement by segregated loss determination including stray load loss improvement as specified in NEMA Standard MG1-12.63a.



## ASTAT-CD Soft Starter

### New

*Advanced microprocessor technology for reliability and versatility*

*Heavy-duty, rugged construction*

*Simplified setup using keypad and digital display*

*Easy-to-read alphanumeric digital display shows status of working conditions and provides diagnostics when fault conditions occur*

*User-configurable for most applications including pump control, DC injection braking, slow speed and soft start*

*Outstanding diagnostics capability means easy maintenance, reduced downtime; 17 fault codes*

*Integral electronic overload relay for optimum motor protection; selectable for standard or heavy-duty applications*

*RS-422/485 communications link available for remote operation*

*Energy saving mode reduces power costs and reactive power*

*User-configurable output relay for increased versatility*

*Built-in Snubbers and MOVs protect against harmful voltage spikes*



**ASTAT**



## SUPPORTEK, INC.

## FAX TRANSMISSION

TO: Dennis Jones  
COMPANY: EMC  
FAX NUMBER: 985-2527

DATE: 7-11-95  
FROM: Tom Ebner  
TOTAL # OF PAGES:

## REGARDING:

---

---

---

---

---

---

If transmission is incomplete or illegible, please contact us at: (303)293-3112.

## Budget Prices

|           |                 |          |
|-----------|-----------------|----------|
| Model 80  | 80 kVA/64 kWh   | \$58,000 |
| Model 125 | 125 kVA/100 kWh | \$68,000 |

Add 50% for installation

## Powerware® Plus 80 On-line Uninterruptible Power System

|          |              |
|----------|--------------|
| MODEL 50 | 50kVA / 40kW |
| MODEL 65 | 65kVA / 52kW |
| MODEL 80 | 80kVA / 64kW |



The Exide Electronics Powerware Plus 80 combines on-line UPS technology with the latest in network communications. A complete solution for your mission-critical applications. For use in both mainframe and client/server environments, the Plus 80 gives you:

- Continuous on-line protection
- Superior system reliability
- World class quality
- Flexible network communications

The Exide Electronics Powerware Plus 80 UPS provides power protection through superior on-line technology, flexible communications and user-friendly operation. A variety of options allows easy integration of the

Plus 80 into centralized or remote monitoring systems, and network adapters provide LAN connectivity and SNMP compatibility. Other communications options include remote terminal capabilities, remote monitoring panel and remote emergency power-off, which are available through standard RS-232 and RS-485 ports.

**Powerful, yet easy to understand.** The Powerware Plus 80's monitor panel features a large easy-to-read LCD, push-button controls, operational metering features, utility statistics and intelligent alarm management. These features allow you to quickly monitor UPS

operations and the status of the supported system. A battery monitoring and test system proactively identifies the battery time available should a loss of utility power occur.

The Powerware Plus 80 is equipped with intelligent controls, dual-feed input capability, self-diagnostics, redundant fans and redundant control power supplies. The integration of insulated gate bipolar transistors (IGBTs) into a high speed inverter lets the Plus 80 more effectively support demanding non-linear loads, such as PCs, laser printers and industrial motor drives.

**Powerware Plus 80 Performance Characteristics**

|                                 |        | Model 50   |      |      |      |       | Model 65   |      |      |      |       | Model 80   |      |      |      |       |
|---------------------------------|--------|------------|------|------|------|-------|------------|------|------|------|-------|------------|------|------|------|-------|
|                                 |        | 50kVA/40kW |      |      |      |       | 65kVA/52kW |      |      |      |       | 80kVA/64kW |      |      |      |       |
| Input Voltage †                 | Volts  | 480        | 480  | 208  | 600  | 400   | 480        | 480  | 208  | 600  | 400   | 480        | 480  | 208  | 600  | 400   |
| Output Voltage †                | Volts  | 208        | 480  | 208  | 208  | 400   | 208        | 480  | 208  | 208  | 400   | 208        | 480  | 208  | 208  | 400   |
| Input Voltage Range             |        |            |      |      |      |       |            |      |      |      |       |            |      |      |      |       |
| Minimum                         | Volts  | 408        | 408  | 177  | 510  | 340   | 408        | 408  | 177  | 510  | 340   | 408        | 408  | 177  | 510  | 340   |
| Maximum                         | Volts  | 528        | 528  | 229  | 660  | 440   | 528        | 528  | 229  | 660  | 440   | 528        | 528  | 229  | 660  | 440   |
| Input / Output Frequency        | Hz     | 60         | 60   | 60   | 60   | 50/60 | 60         | 60   | 60   | 60   | 50/60 | 60         | 60   | 60   | 60   | 50/60 |
| AC Input (With input filter)    |        |            |      |      |      |       |            |      |      |      |       |            |      |      |      |       |
| Nominal Amps                    | Amps   | 56         | 55   | 128  | 45   | 69    | 72         | 72   | 167  | 58   | 90    | 89         | 89   | 205  | 72   | 106   |
| Maximum Amps                    | Amps   | 69         | 69   | 160  | 56   | 86    | 90         | 90   | 208  | 72   | 112   | 111        | 111  | 256  | 89   | 133   |
| AC Input (Without input filter) |        |            |      |      |      |       |            |      |      |      |       |            |      |      |      |       |
| Nominal Amps                    | Amps   | 66         | 66   | 150  | 52   | 81    | 85         | 85   | 195  | 68   | 105   | 105        | 105  | 241  | 84   | 126   |
| Maximum Amps                    | Amps   | 82         | 82   | 188  | 65   | 101   | 106        | 106  | 245  | 85   | 131   | 131        | 131  | 301  | 105  | 157   |
| Bypass Input                    |        |            |      |      |      |       |            |      |      |      |       |            |      |      |      |       |
| Nominal Amps                    | Amps   | 60         | 60   | 139  | 48   | 74    | 78         | 78   | 180  | 63   | 97    | 96         | 96   | 222  | 77   | 115   |
| AC Output                       |        |            |      |      |      |       |            |      |      |      |       |            |      |      |      |       |
| Nominal Amps                    | Amps   | 139        | 60   | 139  | 139  | 74    | 180        | 78   | 180  | 180  | 97    | 222        | 96   | 222  | 222  | 115   |
| 10 Minutes Max.                 | Amps   | 174        | 75   | 174  | 174  | 93    | 225        | 98   | 225  | 225  | 121   | 278        | 120  | 278  | 278  | 144   |
| DC Link                         |        |            |      |      |      |       |            |      |      |      |       |            |      |      |      |       |
| Nominal DC Voltage              | Volts  | 480        | 480  | 480  | 480  | 480   | 480        | 480  | 480  | 480  | 480   | 480        | 480  | 480  | 480  | 480   |
| Float Voltage                   | Volts  | 540        | 540  | 540  | 540  | 540   | 540        | 540  | 540  | 540  | 540   | 540        | 540  | 540  | 540  | 540   |
| End of Discharge                | Volts  | 401        | 401  | 401  | 401  | 401   | 401        | 401  | 401  | 401  | 401   | 401        | 401  | 401  | 401  | 401   |
| Maximum Amps                    | Amps   | 100        | 100  | 100  | 100  | 100   | 130        | 130  | 130  | 130  | 130   | 160        | 160  | 160  | 160  | 160   |
| Physical Attributes (w/o batt.) |        |            |      |      |      |       |            |      |      |      |       |            |      |      |      |       |
| Installed Weight ††             | Lbs    | 2000       | 2000 | 2475 | 3400 | 2475  | 2000       | 2000 | 2475 | 3400 | 2475  | 2000       | 2000 | 2475 | 3400 | 2475  |
| Installed Width                 | Inches | 34         | 34   | 34   | 58   | 34    | 34         | 34   | 34   | 58   | 34    | 34         | 34   | 34   | 58   | 34    |
| Systems Efficiencies            |        |            |      |      |      |       |            |      |      |      |       |            |      |      |      |       |
| @ 100% Load                     | %      | 92         | 92   | 91   | 91   | 91    | 92         | 92   | 91   | 91   | 91    | 92         | 92   | 90   | 90   | 91    |
| @ 75% Load                      | %      | 92         | 92   | 90   | 90   | 90    | 92         | 92   | 91   | 91   | 91    | 92         | 92   | 91   | 91   | 91    |
| @ 50% Load                      | %      | 91         | 91   | 88   | 88   | 88    | 92         | 92   | 89   | 89   | 89    | 92         | 92   | 90   | 90   | 90    |
| Full Load Heat Dissipation      |        |            |      |      |      |       |            |      |      |      |       |            |      |      |      |       |
| BTU/Hr. (x1000)                 |        | 11.9       | 11.9 | 13.5 | 13.5 | 13.5  | 15.4       | 15.4 | 17.6 | 17.6 | 17.6  | 19.0       | 19.0 | 24.3 | 24.3 | 21.5  |
| KCal/Hr. (x1000)                |        | 3.00       | 3.00 | 3.40 | 3.40 | 3.40  | 3.89       | 3.89 | 4.43 | 4.43 | 4.43  | 4.79       | 4.79 | 6.12 | 6.12 | 5.45  |
| Inverter Efficiency (Full Load) | %      | 93         | 93   | 93   | 93   | 93    | 93         | 93   | 93   | 93   | 93    | 93         | 93   | 93   | 93   | 93    |

† Easily adjustable for 380, 400 or 415 VAC Input/Output, 50 or 60 Hz

†† All cabinets are 73.5 inches (1867 mm) high and 31.5 inches (800 mm) in depth

**Powerware Plus 80 Battery Protection Time At 25°C (In Minutes)**

| Battery Cabinet | Nominal DC Voltage | Total Battery Cabinets | Output Load on UPS in kW |     |     |     |    |    | Weight (lbs.) | Width (in.) |
|-----------------|--------------------|------------------------|--------------------------|-----|-----|-----|----|----|---------------|-------------|
|                 |                    |                        | 20                       | 26  | 32  | 40  | 52 | 64 |               |             |
| 5508            | 480                | 1                      | 38                       | 25  | 19  | 13  | 8  | 5  | 2,225         | 24          |
| 8008            | 480                | 1                      | 60                       | 45  | 35  | 26  | 16 | 12 | 3,325         | 36          |
| 5516            | 480                | 2                      | 90                       | 60  | 52  | 39  | 27 | 19 | 4,450         | 48          |
| 8016            | 480                | 2                      | 125                      | 95  | 80  | 60  | 46 | 35 | 6,850         | 72          |
| 8024            | 480                | 3                      | 185                      | 140 | 115 | 95  | 70 | 59 | 9,975         | 108         |
| 8032            | 480                | 4                      | 240+                     | 190 | 155 | 125 | 95 | 80 | 13,300        | 144         |

All battery cabinets are 73.5 inches (1867mm) high and 31.5 inches (800mm) in depth; Line-up configuration



Specifications subject to change without notice.

All previously mentioned corporate names and brands are registered as trademarks by their respective companies.

1-800-554-3448 (Toll-free in US & Canada) World Headquarters, 8521 Six Forks Road, Raleigh, NC 27615 USA  
 Telephone (US): 1-919-872-3020; Fax (US): 1-800-75-EXIDE; International Telephone: 1-919-870-3150; International Fax: 1-919-870-3300

## Powerware® Plus 150 On-line Uninterruptible Power System

|           |                |
|-----------|----------------|
| MODEL 100 | 100kVA / 80kW  |
| MODEL 125 | 125kVA / 100kW |
| MODEL 150 | 150kVA / 120kW |



Powerware Plus 40 / 50 / 65 / 80 (left)  
Powerware Plus 125 / 150 (right)

The Exide Electronics Powerware Plus 150 combines on-line UPS technology with the latest in network communications. A complete solution for your mission-critical applications. For use in both mainframe and client/server environments, the Plus 150 gives you:

- Continuous on-line protection
- Superior system reliability
- World class quality
- Flexible network communications

The Exide Electronics Powerware Plus 150 UPS provides power protection through superior on-line technology, flexible communications and user-friendly operation. A variety of options allows easy integration of the

Plus 150 into centralized or remote monitoring systems, and network adapters provide LAN connectivity and SNMP compatibility. Other communications options include remote terminal capabilities, remote monitoring panel and remote emergency power-off, which are available through standard RS-232 and RS-485 ports.

**Powerful, yet easy to understand.** The Powerware Plus 150's monitor panel features a large easy-to-read LCD, push-button controls, operational metering features, utility statistics and intelligent alarm management. These features allow you to quickly monitor UPS

operations and the status of the supported system. A battery monitoring and test system proactively identifies the battery time available, should a loss of utility power occur.

The Powerware Plus 150 is equipped with intelligent controls, dual-feed input capability, self-diagnostics, redundant fans and redundant control power supplies. The integration of insulated gate bipolar transistors (IGBTs) into a high speed inverter lets the Plus 150 more effectively support demanding non-linear loads, such as PCs, laser printers and industrial motor drives.

**Powerware Plus 150 Performance Characteristics**

|                                        |        | Model 100   |      |      |      |       | Model 125    |      |      |      |       | Model 150    |      |       |       |       |
|----------------------------------------|--------|-------------|------|------|------|-------|--------------|------|------|------|-------|--------------|------|-------|-------|-------|
|                                        |        | 100kVA/80kW |      |      |      |       | 125kVA/100kW |      |      |      |       | 150kVA/120kW |      |       |       |       |
| <b>Input Voltage †</b>                 | Volts  | 480         | 480  | 208  | 600  | 400   | 480          | 480  | 208  | 600  | 400   | 480          | 480  | 208   | 600   | 400   |
| <b>Output Voltage †</b>                | Volts  | 208         | 480  | 208  | 208  | 400   | 208          | 480  | 208  | 208  | 400   | 208          | 480  | 208   | 208   | 400   |
| <b>Input Voltage Range</b>             |        |             |      |      |      |       |              |      |      |      |       |              |      |       |       |       |
| Minimum                                | Volts  | 408         | 408  | 177  | 510  | 340   | 408          | 408  | 177  | 510  | 340   | 408          | 408  | 177   | 510   | 340   |
| Maximum                                | Volts  | 528         | 528  | 229  | 660  | 440   | 528          | 528  | 229  | 660  | 440   | 528          | 528  | 229   | 660   | 440   |
| <b>Input / Output Frequency</b>        | Hz     | 60          | 60   | 60   | 60   | 50/60 | 60           | 60   | 60   | 60   | 50/60 | 60           | 60   | 60    | 60    | 50/60 |
| <b>AC Input (With input filter)</b>    |        |             |      |      |      |       |              |      |      |      |       |              |      |       |       |       |
| Nominal Amps                           | Amps   | 111         | 111  | 256  | 89   | 134   | 139          | 139  | 320  | 111  | 168   | 166          | 166  | 384   | 134   | 200   |
| Maximum Amps                           | Amps   | 139         | 139  | 320  | 111  | 168   | 174          | 174  | 400  | 139  | 210   | 208          | 208  | 480   | 167   | 250   |
| <b>AC Input (Without input filter)</b> |        |             |      |      |      |       |              |      |      |      |       |              |      |       |       |       |
| Nominal Amps                           | Amps   | 130         | 130  | 302  | 105  | 158   | 163          | 163  | 377  | 130  | 198   | 196          | 196  | 452   | 157   | 235   |
| Maximum Amps                           | Amps   | 163         | 163  | 377  | 131  | 198   | 204          | 204  | 471  | 163  | 247   | 245          | 245  | 565   | 196   | 294   |
| <b>Bypass Input</b>                    |        |             |      |      |      |       |              |      |      |      |       |              |      |       |       |       |
| Nominal Amps                           | Amps   | 120         | 120  | 278  | 96   | 146   | 150          | 150  | 347  | 120  | 182   | 180          | 180  | 416   | 144   | 217   |
| <b>AC Output</b>                       |        |             |      |      |      |       |              |      |      |      |       |              |      |       |       |       |
| Nominal Amps                           | Amps   | 278         | 120  | 278  | 278  | 145   | 347          | 150  | 347  | 347  | 182   | 416          | 180  | 416   | 416   | 217   |
| 10 Minutes Max.                        | Amps   | 348         | 150  | 348  | 348  | 183   | 434          | 188  | 434  | 434  | 228   | 520          | 225  | 520   | 520   | 271   |
| <b>DC Link</b>                         |        |             |      |      |      |       |              |      |      |      |       |              |      |       |       |       |
| Nominal DC Voltage                     | Volts  | 480         | 480  | 480  | 480  | 480   | 480          | 480  | 480  | 480  | 480   | 480          | 480  | 480   | 480   | 480   |
| Float Voltage                          | Volts  | 540         | 540  | 540  | 540  | 540   | 540          | 540  | 540  | 540  | 540   | 540          | 540  | 540   | 540   | 540   |
| End of Discharge                       | Volts  | 401         | 401  | 401  | 401  | 401   | 401          | 401  | 401  | 401  | 401   | 401          | 401  | 401   | 401   | 401   |
| Maximum Amps                           | Amps   | 200         | 200  | 200  | 200  | 200   | 250          | 250  | 250  | 250  | 250   | 300          | 300  | 300   | 300   | 300   |
| <b>Physical Attributes (w/o batt.)</b> |        |             |      |      |      |       |              |      |      |      |       |              |      |       |       |       |
| Installed Weight ††                    | Lbs    | 3150        | 3150 | 5000 | 5000 | 3975  | 3150         | 3150 | 5000 | 5000 | 3975  | 3150         | 3150 | 5000  | 5000  | 3975  |
| Installed Width                        | Inches | 49          | 49   | 73   | 73   | 49    | 49           | 49   | 73   | 73   | 49    | 49           | 49   | 73    | 73    | 49    |
| <b>Systems Efficiencies</b>            |        |             |      |      |      |       |              |      |      |      |       |              |      |       |       |       |
| @ 100% Load                            | %      | 92          | 92   | 91   | 91   | 91    | 92           | 92   | 91   | 91   | 91    | 92           | 92   | 90    | 90    | 91    |
| @ 75% Load                             | %      | 92          | 92   | 90   | 90   | 90    | 92           | 92   | 91   | 91   | 91    | 92           | 92   | 91    | 91    | 91    |
| @ 50% Load                             | %      | 91          | 91   | 88   | 88   | 88    | 92           | 92   | 89   | 89   | 89    | 92           | 92   | 90    | 90    | 90    |
| <b>Full Load Heat Dissipation</b>      |        |             |      |      |      |       |              |      |      |      |       |              |      |       |       |       |
| BTU/Hr. (x1000)                        |        | 23.6        | 23.8 | 27.0 | 27.0 | 27.0  | 29.7         | 29.7 | 33.8 | 33.8 | 33.8  | 35.6         | 35.6 | 45.5  | 45.5  | 40.5  |
| KCal/Hr. (x1000)                       |        | 5.99        | 5.99 | 6.81 | 6.81 | 6.81  | 7.48         | 7.48 | 8.51 | 8.51 | 8.51  | 8.98         | 8.98 | 11.47 | 11.47 | 10.21 |
| Inverter Efficiency (Full Load)        | %      | 93          | 93   | 93   | 93   | 93    | 93           | 93   | 93   | 93   | 93    | 93           | 93   | 93    | 93    | 93    |

† Easily adjustable for 380, 400 or 415 VAC Input/Output, 50 or 60 Hz

TT All cabinets are 73.5 inches (1867 mm) high and 31.5 inches (800 mm) in depth

**Powerware Plus 150 Battery Protection Time At 25°C (In Minutes)**

| Battery Cabinet | Nominal DC Voltage | Total Battery Cabinets | Output Load on UPS in kW | 40  | 50 | 60 | 80  | 100 | 120 | Weight (lbs.) | Width (in.) |
|-----------------|--------------------|------------------------|--------------------------|-----|----|----|-----|-----|-----|---------------|-------------|
| 5508            | 480                | 1                      |                          | 14  | 9  | 5  | N/A | N/A | N/A | 2,225         | 24          |
| 8008            | 480                | 1                      |                          | 28  | 20 | 15 | 9   | 5   | N/A | 3,325         | 36          |
| 5516            | 480                | 2                      |                          | 38  | 28 | 21 | 14  | 9   | 5   | 4,450         | 48          |
| 8016            | 480                | 2                      |                          | 60  | 48 | 40 | 27  | 20  | 15  | 6,650         | 72          |
| 8024            | 480                | 3                      |                          | 90  | 70 | 60 | 46  | 35  | 28  | 9,975         | 108         |
| 8032            | 480                | 4                      |                          | 120 | 95 | 80 | 60  | 49  | 40  | 13,300        | 144         |

All battery cabinets are 73.5 inches (1867mm) high and 31.5 inches (800mm) in depth; Line-up configuration



Specifications subject to change without notice.

Previously mentioned corporate names and brands are registered as trademarks by their respective companies.

1-800-554-3468 (Call-free in US &amp; Canada) World Headquarters, 8521 Six Forks Road, Raleigh, NC 27615 USA

Telephone (US): 1-919-872-3020; Fax (US): 1-800-75-EXIDE; International Telephone: 1-919-870-3150; International Fax: 1-919-870-3300



## 4.8 ECO 8: CHILLER REPLACEMENT

**Proposed Modifications:** Replace the current chillers with more efficient and environment-friendly chillers. The proposed chillers are scroll air-cooled 40-ton chillers.

The main advantage of a scroll air-cooled chiller is its part-load efficiency is very high compared to the existing chillers. This is important for the GEODDS site since it operates at partial loads the majority of the year. The proposed chillers at full-load use 1.51 kW/ton, but at half load this ratio drops to 1.02 kW/ton.

**Existing Conditions:** The current chillers at full-load use 1.43 kW/ton. At half-load, this ratio increases to 1.72 kW/ton. These chillers also use R-22 refrigerant as their coolant which has been linked to the destruction of the ozone layer.

**Method of Analysis:** Analysis proceeded as follows:

- The nameplate information of the chillers was obtained during the field survey, as were the specifications on the replacement chillers.
- Manufacturer's specifications were used to determine the tonnages and kW consumed of both existing and proposed chillers at part-loads.
- The baseline computer model was modified to reflect the replacement of the current chillers with scroll air-cooled chillers.
- The savings from the avoided cost of replacing the existing chillers in 10 years, at the end of their expected useful life, was included in the analysis.

**Results:** Replacing the chillers will result in large energy and cost savings. The LCCA is summarized in the following table.

|                                      |          |
|--------------------------------------|----------|
| Annual Electric Energy Savings (kWh) | 85,453   |
| Total Annual Energy Cost Savings     | \$7,016  |
| Annual Maintenance Cost Savings      | \$0      |
| Discounted Replacement Cost Savings  | \$93,865 |
| Investment Cost                      | \$99,539 |
| Savings-to-Investment Ratio (SIR)    | 2.01     |
| Simple Payback (Years)               | 8.30     |

**Recommendations:** The current chillers should be replaced by two 30-ton scroll chillers. The GEODSS site will see an approximate 8% decrease in energy consumption.

E M C Engineers, Inc.  
EMC#1406-008  
GEODSS, White Sands Missile Range  
DACA 63-92-C-0152

CHILLER REPLACEMENT

ECO-8.XLS  
Prepared by: D Jones  
11/10/95  
Checked by: \_\_\_\_\_

| 1. COMPONENT<br>ARMY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FY 1995 MILITARY CONSTRUCTION PROJECT DATA          | 2. DATE<br>Apr-95                                                                             |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|---|---|----------|---------------|----------------------|------------------|-----------------------|-------------------------------------------|---------|-----------------------------------|----------------|---------|-----------------|-------------------------------|------------|----------------|--|----------|------------|---------------------------------------|----------------------------|---------------------------|--------------------------------------------------------------|----------|---------------------------------|----------|---|----------------|---------|------------------|----------------|--------|----------|----------|----------------|--|--|--|-------------------|-------|----------|--|----------|----------|-----------------------------------------------------|--------|----------------|------------------|
| 3. INSTALLATION AND LOCATION<br>GEODSS Site, White Sands Missile Range, NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| 4. PROJECT TITLE<br>ECIP: Upgrade Lighting Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5. PROJECT NUMBER                                   |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| LIFE CYCLE COST ANALYSIS SUMMARY<br>ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| LOCATION: GEODSS Site, White Sands Missile Range, NM<br>PROJECT TITLE: ECIP: REPLACE CHILLERS<br>DISCRETE PORTION NAME: TOTAL<br>ANALYSIS DATE: 11/10/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | REGION: 4<br>PROJECT N 1413-001<br>FISCAL YEA 1995<br>ECONOMIC LIFE: 20<br>PREPARED B D Jones |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| <p><b>1. INVESTMENT</b></p> <table> <tbody> <tr> <td>A.</td> <td>CONSTRUCTION COST</td> <td>=</td> <td>=</td> <td>\$89,272</td> </tr> <tr> <td>B.</td> <td>SIOH COST</td> <td>(5.5% of 1A) =</td> <td></td> <td>\$4,910</td> </tr> <tr> <td>C.</td> <td>DESIGN COST</td> <td>(6.0% of 1A) =</td> <td></td> <td>\$5,356</td> </tr> <tr> <td>D.</td> <td>TOTAL COST</td> <td>(1A +1B +1C) =</td> <td></td> <td>\$99,539</td> </tr> <tr> <td>E.</td> <td>SALVAGE VALUE OF EXISTING EQUIPMENT =</td> <td></td> <td></td> <td></td> </tr> <tr> <td>F.</td> <td>PUBLIC UTILITY COMPANY REBATE =</td> <td></td> <td></td> <td></td> </tr> <tr> <td>G.</td> <td>TOTAL INVESTMENT</td> <td>(1D -1E -1F) =</td> <td>-----&gt;</td> <td>\$99,539</td> </tr> </tbody> </table>                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                                                                                               | A.                                              | CONSTRUCTION COST                                            | = | = | \$89,272 | B.            | SIOH COST            | (5.5% of 1A) =   |                       | \$4,910                                   | C.      | DESIGN COST                       | (6.0% of 1A) = |         | \$5,356         | D.                            | TOTAL COST | (1A +1B +1C) = |  | \$99,539 | E.         | SALVAGE VALUE OF EXISTING EQUIPMENT = |                            |                           |                                                              | F.       | PUBLIC UTILITY COMPANY REBATE = |          |   |                | G.      | TOTAL INVESTMENT | (1D -1E -1F) = | -----> | \$99,539 |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONSTRUCTION COST                                   | =                                                                                             | =                                               | \$89,272                                                     |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SIOH COST                                           | (5.5% of 1A) =                                                                                |                                                 | \$4,910                                                      |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DESIGN COST                                         | (6.0% of 1A) =                                                                                |                                                 | \$5,356                                                      |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOTAL COST                                          | (1A +1B +1C) =                                                                                |                                                 | \$99,539                                                     |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SALVAGE VALUE OF EXISTING EQUIPMENT =               |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PUBLIC UTILITY COMPANY REBATE =                     |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOTAL INVESTMENT                                    | (1D -1E -1F) =                                                                                | ----->                                          | \$99,539                                                     |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| <p><b>2. ENERGY SAVINGS (+) OR COST (-):</b></p> <table> <thead> <tr> <th colspan="4">DATE OF NISTR-4942-1 USED FOR DISCOUNT FACTORS:</th> <th>OCT '94</th> </tr> <tr> <th>ENERGY SOURCE</th> <th>FUEL COST \$/kWh (1)</th> <th>SAVINGS kWh (2)</th> <th>ANNUAL \$ SAVINGS (3)</th> <th>DISCOUNT FACTOR (4) ISCOUNTED SAVINGS (5)</th> </tr> </thead> <tbody> <tr> <td>A. ELEC</td> <td>\$0.0821</td> <td>85,456</td> <td>\$7,016</td> <td>15.08 \$105,800</td> </tr> <tr> <td>B. DIST</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>C. NAT GAS</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>D. REFUS</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>E. COAL</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>F. OTHER</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>G. DEMAND SAVINGS</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>H. TOTAL</td> <td></td> <td>85,456</td> <td>\$7,016</td> <td>-----&gt; \$105,800</td> </tr> </tbody> </table>                                                                                                             |                                                     |                                                                                               | DATE OF NISTR-4942-1 USED FOR DISCOUNT FACTORS: |                                                              |   |   | OCT '94  | ENERGY SOURCE | FUEL COST \$/kWh (1) | SAVINGS kWh (2)  | ANNUAL \$ SAVINGS (3) | DISCOUNT FACTOR (4) ISCOUNTED SAVINGS (5) | A. ELEC | \$0.0821                          | 85,456         | \$7,016 | 15.08 \$105,800 | B. DIST                       |            |                |  |          | C. NAT GAS |                                       |                            |                           |                                                              | D. REFUS |                                 |          |   |                | E. COAL |                  |                |        |          | F. OTHER |                |  |  |  | G. DEMAND SAVINGS |       |          |  |          | H. TOTAL |                                                     | 85,456 | \$7,016        | -----> \$105,800 |
| DATE OF NISTR-4942-1 USED FOR DISCOUNT FACTORS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |                                                                                               |                                                 | OCT '94                                                      |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| ENERGY SOURCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FUEL COST \$/kWh (1)                                | SAVINGS kWh (2)                                                                               | ANNUAL \$ SAVINGS (3)                           | DISCOUNT FACTOR (4) ISCOUNTED SAVINGS (5)                    |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| A. ELEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0.0821                                            | 85,456                                                                                        | \$7,016                                         | 15.08 \$105,800                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| B. DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| C. NAT GAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| D. REFUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| E. COAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| F. OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| G. DEMAND SAVINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| H. TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | 85,456                                                                                        | \$7,016                                         | -----> \$105,800                                             |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| <p><b>3. NON-ENERGY SAVINGS (+) OR COST (-):</b></p> <table> <tbody> <tr> <td>A.</td> <td>ANNUAL RECURRING (+/-)</td> <td></td> <td></td> <td></td> </tr> <tr> <td>1.</td> <td>DISCOUNT FACTOR</td> <td>(From Table A) =</td> <td></td> <td></td> </tr> <tr> <td>2.</td> <td>DISCOUNTED SAVINGS (+) / COST (-)</td> <td>(3A x 3A1) =</td> <td></td> <td></td> </tr> <tr> <td colspan="5"><b>B. NON-RECURRING (+/-)</b></td> </tr> <tr> <td></td> <td>ITEM</td> <td>SAVINGS (+)<br/>COST(-) (1)</td> <td>YEAR OF<br/>OCCURRENCE (2)</td> <td>DISCOUNT FACTOR (3) DISCOUNTED SAVINGS/COST (4)<br/>(TABLE B)</td> </tr> <tr> <td>a.</td> <td>AVOIDED COST OF CHILLER REPLA</td> <td>\$99,539</td> <td>2</td> <td>0.943 \$93,865</td> </tr> <tr> <td>b.</td> <td>MATERIAL: NONE</td> <td></td> <td></td> <td></td> </tr> <tr> <td>c.</td> <td>MATERIAL: NONE</td> <td></td> <td></td> <td></td> </tr> <tr> <td>d.</td> <td>TOTAL</td> <td>\$99,539</td> <td></td> <td>\$93,865</td> </tr> <tr> <td>C.</td> <td>TOTAL NON-ENERGY DISCOUNTED SAVINGS (+) OR COST (-)</td> <td></td> <td>(3A2 + 3Bd4) =</td> <td>\$93,865</td> </tr> </tbody> </table> |                                                     |                                                                                               | A.                                              | ANNUAL RECURRING (+/-)                                       |   |   |          | 1.            | DISCOUNT FACTOR      | (From Table A) = |                       |                                           | 2.      | DISCOUNTED SAVINGS (+) / COST (-) | (3A x 3A1) =   |         |                 | <b>B. NON-RECURRING (+/-)</b> |            |                |  |          |            | ITEM                                  | SAVINGS (+)<br>COST(-) (1) | YEAR OF<br>OCCURRENCE (2) | DISCOUNT FACTOR (3) DISCOUNTED SAVINGS/COST (4)<br>(TABLE B) | a.       | AVOIDED COST OF CHILLER REPLA   | \$99,539 | 2 | 0.943 \$93,865 | b.      | MATERIAL: NONE   |                |        |          | c.       | MATERIAL: NONE |  |  |  | d.                | TOTAL | \$99,539 |  | \$93,865 | C.       | TOTAL NON-ENERGY DISCOUNTED SAVINGS (+) OR COST (-) |        | (3A2 + 3Bd4) = | \$93,865         |
| A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANNUAL RECURRING (+/-)                              |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DISCOUNT FACTOR                                     | (From Table A) =                                                                              |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DISCOUNTED SAVINGS (+) / COST (-)                   | (3A x 3A1) =                                                                                  |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| <b>B. NON-RECURRING (+/-)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ITEM                                                | SAVINGS (+)<br>COST(-) (1)                                                                    | YEAR OF<br>OCCURRENCE (2)                       | DISCOUNT FACTOR (3) DISCOUNTED SAVINGS/COST (4)<br>(TABLE B) |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AVOIDED COST OF CHILLER REPLA                       | \$99,539                                                                                      | 2                                               | 0.943 \$93,865                                               |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| b.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MATERIAL: NONE                                      |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MATERIAL: NONE                                      |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOTAL                                               | \$99,539                                                                                      |                                                 | \$93,865                                                     |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOTAL NON-ENERGY DISCOUNTED SAVINGS (+) OR COST (-) |                                                                                               | (3A2 + 3Bd4) =                                  | \$93,865                                                     |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |
| <p><b>4. FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-)</b> (2H3+3A+(3Bd1/Economic Life)) \$11,993</p> <p><b>5. SIMPLE PAYBACK (SPB) IN YEARS (MUST BE &lt; 10 YEARS TO QUALIFY)</b> (1G/4) = 8.30</p> <p><b>6. TOTAL NET DISCOUNTED SAVINGS</b> (2H5 + 3C) = \$199,665</p> <p><b>7. DISCOUNTED SAVINGS-TO-INVESTMENT RATIO (SIR)</b> (6/1G) = 2.01<br/>(MUST HAVE SIR &gt; 1.25 TO QUALIFY)</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                                               |                                                 |                                                              |   |   |          |               |                      |                  |                       |                                           |         |                                   |                |         |                 |                               |            |                |  |          |            |                                       |                            |                           |                                                              |          |                                 |          |   |                |         |                  |                |        |          |          |                |  |  |  |                   |       |          |  |          |          |                                                     |        |                |                  |

**Existing Reciprocating Chiller**

Specified capacity

428,750 Btuh  
 35.73 tons

Full load performance

0.274 Btu in/Btu out  
 0.96 kW/ton  
 1.43 kW/ton  
 Carrier 30GB-40 Air cooled chiller  
 115 EAT, 45 LWT

Part load performance

$\% \text{kW} = 0.0881 + 1.138 * \text{PLR} - 0.2258 * \text{PLR}^2$

where

PLR is part load ratio

DOE default for reciprocating chiller

| PLR  | TONS | kW    | kW / Ton | % kW |
|------|------|-------|----------|------|
| 1.00 | 31.3 | 44.80 | 1.43     | 1.00 |
| 0.75 | 23.5 | 36.49 | 1.55     | 0.81 |
| 0.50 | 15.7 | 26.91 | 1.72     | 0.60 |
| 0.25 | 7.8  | 16.06 | 2.05     | 0.36 |

**Proposed Scroll Chiller**

Selected Model

CCAD-40

Condenser

CAUC-C50

Part load performance

| PLR  | TONS | kW    | kW / Ton | % kW  |
|------|------|-------|----------|-------|
| 1.00 | 34.4 | 52.00 | 1.51     | 1.000 |
| 0.75 | 25.8 | 32.46 | 1.26     | 0.624 |
| 0.50 | 17.2 | 17.63 | 1.02     | 0.339 |
| 0.25 | 8.6  | 8.67  | 1.01     | 0.167 |

**Energy Savings**

|                              |                  |
|------------------------------|------------------|
| Current Energy Use (MBTU)    | 3573.45          |
| Proposed Energy Use (MBTU)   | 3281.79          |
| Annual Energy Savings (MBTU) | 291.66           |
| Annual Energy Savings (kWh)  | 85,456           |
| Annual Cost Savings (\$)     | \$7,015.91       |
| UPV Factor (20 years)        | 15.08            |
| Discounted Energy Savings    | <b>\$105,800</b> |

| ENERGY TYPE     | IN SITE MBTU | ELECTRICITY |
|-----------------|--------------|-------------|
| CATEGORY OF USE |              |             |
| SPACE HEAT      | 55.12        |             |
| SPACE COOL      | 1277.30      |             |
| HVAC AUX        | 426.63       |             |
| DOM HOT WTR     | 0.00         |             |
| AUX SOLAR       | 0.00         |             |
| LIGHTS          | 288.88       |             |
| VERT TRANS      | 0.00         |             |
| MISC EQUIP      | 1233.86      |             |
| TOTAL           | 3281.79      |             |

TOTAL SITE ENERGY 3281.71 MBTU 287.9 KBTU/SQFT-YR GROSS-AREA 287.9 KBTU/SQFT-YR NET-AREA  
TOTAL SOURCE ENERGY 3281.71 MBTU 287.9 KBTU/SQFT-YR GROSS-AREA 287.9 KBTU/SQFT-YR NET-AREA  
PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4  
PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED =100.0  
NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

**TOTAL SITE ELECTRICITY ENERGY USE 3281.79 MBTU**



| ENGINEER'S OPINION OF PROBABLE COST |  |                                     |  |                  |                       |           | SHEET         | 1            | OF           | 1                   |                  |            |         |          |          |          |
|-------------------------------------|--|-------------------------------------|--|------------------|-----------------------|-----------|---------------|--------------|--------------|---------------------|------------------|------------|---------|----------|----------|----------|
| AREA                                |  | ACTIVITY                            |  | LOCATION         |                       |           | AMENDMENT NO. |              |              |                     |                  |            |         |          |          |          |
| PROJECT TITLE                       |  |                                     |  | CONTRACT NO.     |                       |           |               |              |              |                     |                  |            |         |          |          |          |
| GEOSS, Energy Conservation Survey   |  |                                     |  | DACA01-94-D-0033 |                       |           |               |              |              |                     |                  |            |         |          |          |          |
| Line No.                            |  | Item Description                    |  | Unit of Measure  | No. of Units          | Unit Cost | MATERIAL COST |              | LABOR COST   |                     | EQUIPMENT COST   | TOTAL COST |         |          |          |          |
| Line No.                            |  | Item Description                    |  | Unit of Measure  | No. of Units          | Unit Cost | Total         | Manhrs/ Unit | Total Manhrs | Labor Cost/ Manhour | Total Labor Cost | Unit Cost  | Total   |          |          |          |
| 1                                   |  | Trane 30-ton Scroll Chiller CCAD-30 |  | Ea.              | 2                     | \$16,338  | \$32,675      | 118.00       | 236.00       | \$22.99             | \$5,426          | \$0.00     | \$0     | \$19,050 | \$38,101 |          |
| 2                                   |  | with Condenser CAUC-C40             |  | Ea.              | 2                     | \$0.00    | \$0           | 0.00         | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0      | \$0      |          |
| 3                                   |  |                                     |  |                  |                       |           | \$0           | 0.00         | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0      | \$0      |          |
| 4                                   |  | Travel to Socorro                   |  | hrs              | 24                    |           | \$0           | 1.00         | 24.00        | \$22.99             | \$552            | \$0.00     | \$0     | \$22.99  | \$552    |          |
| 5                                   |  | Demolition                          |  | Ea.              | 2                     | \$0.00    | \$0           | 16.00        | 32.00        | \$22.99             | \$736            | \$0.00     | \$0     | \$367.84 | \$736    |          |
| 6                                   |  | Travel to job site                  |  | hrs              | 30                    |           | \$0           | 1.00         | 30.00        | \$22.99             | \$690            | \$0.00     | \$0     | \$22.99  | \$690    |          |
| 7                                   |  | Lodging and per diem                |  | days             | 30                    |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$100.00   | \$3,000 | \$100.00 | \$3,000  |          |
| 8                                   |  | Mileage                             |  | miles            | 600                   |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.30     | \$180   | \$0.30   | \$180    |          |
| 9                                   |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 10                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 11                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 12                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 13                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 14                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 15                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 16                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 17                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 18                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 19                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 20                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 21                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 22                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 23                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 24                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 25                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 26                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 27                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 28                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 29                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 30                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 31                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 32                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 33                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 34                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 35                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 36                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 37                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 38                                  |  |                                     |  |                  |                       |           | \$0           |              | 0.00         | \$22.99             | \$0              | \$0.00     | \$0     | \$0.00   | \$0      |          |
| 39                                  |  | SUBCONTRACTOR SUBTOTAL              |  |                  |                       |           | \$32,675      |              | 322          |                     | \$7,403          |            |         | \$3,180  |          | \$43,258 |
| 40                                  |  | LABOR BURDEN                        |  | %                | 30                    |           | \$0           |              |              |                     | \$2,221          |            |         | \$954    |          | \$3,175  |
| 41                                  |  | SUBTOTAL                            |  |                  |                       |           | \$32,675      |              |              |                     | \$9,624          |            |         | \$4,134  |          | \$46,433 |
| 42                                  |  | OVERHEAD                            |  | %                | 12.0                  |           | \$3,921       |              |              |                     | \$1,155          |            |         | \$496    |          | \$5,572  |
| 43                                  |  | SUBTOTAL                            |  |                  |                       |           | \$36,596      |              |              |                     | \$10,778         |            |         | \$4,630  |          | \$52,005 |
| 44                                  |  | PROFIT                              |  | %                | 12                    |           | \$4,392       |              |              |                     | \$1,293          |            |         | \$556    |          | \$6,241  |
| 45                                  |  | SUBCONTRACTOR TOTAL                 |  |                  |                       |           | \$40,988      |              |              |                     | \$12,072         |            |         | \$5,186  |          | \$58,245 |
| 46                                  |  | OVERHEAD                            |  | %                | 10.95                 |           | \$4,488       |              |              |                     | \$1,322          |            |         | \$568    |          | \$6,378  |
| 47                                  |  | SUBTOTAL                            |  |                  |                       |           | \$45,476      |              |              |                     | \$13,394         |            |         | \$5,754  |          | \$64,623 |
| 48                                  |  | PROFIT                              |  | %                | 8                     |           | \$3,638       |              |              |                     | \$1,071          |            |         | \$460    |          | \$5,170  |
| 49                                  |  | SUBTOTAL                            |  |                  |                       |           | \$49,114      |              |              |                     | \$14,465         |            |         | \$6,214  |          | \$69,793 |
| 50                                  |  | BOND                                |  | %                | 0.737                 |           | \$362         |              |              |                     | \$107            |            |         | \$46     |          | \$514    |
| 51                                  |  | SUBTOTAL                            |  |                  |                       |           | \$49,476      |              |              |                     | \$14,572         |            |         | \$6,260  |          | \$70,307 |
| 52                                  |  | N. M. TAX                           |  | %                | 5.8125                |           | \$2,876       |              |              |                     | \$847            |            |         | \$364    |          | \$4,087  |
| 53                                  |  | SUBTOTAL                            |  |                  |                       |           | \$52,351      |              |              |                     | \$15,419         |            |         | \$6,623  |          | \$74,394 |
| 54                                  |  | CONTINGENCY                         |  | %                | 20                    |           | \$10,470      |              |              |                     | \$3,084          |            |         | \$1,325  |          | \$14,879 |
| 55                                  |  | GRAND TOTAL                         |  |                  |                       |           | \$62,822      |              |              |                     | \$18,503         |            |         | \$7,948  |          | \$89,272 |
| PREPARED BY                         |  | APPROVED BY                         |  |                  | TITLE OR ORGANIZATION |           |               |              | DATE         |                     | 11/10/95         |            |         |          |          |          |
| EMS                                 |  |                                     |  |                  | EMC Engineers, Inc.   |           |               |              |              |                     |                  |            |         |          |          |          |

## 157 | Air Conditioning and Ventilation

| 157 100   A.C. & Vent. Units                                        | CREW   | DAILY<br>OUTPUT | MAN-<br>HOURS | UNIT | 1995 BARE COSTS |        |        |         | TOTAL<br>INCL O&P |
|---------------------------------------------------------------------|--------|-----------------|---------------|------|-----------------|--------|--------|---------|-------------------|
|                                                                     |        |                 |               |      | MAT.            | LABOR  | EQUIP. | TOTAL   |                   |
| 151 80 ton cooling                                                  | Q-8    | .10             | 320           | Ea.  | 42,800          | 8,925  | 525    | 52,250  | 61,500            |
| 152 100 ton cooling                                                 |        | .09             | 355           |      | 49,700          | 9,925  | 585    | 60,210  | 70,500            |
| 1540 120 ton cooling                                                |        | .08             | 400           |      | 55,000          | 11,200 | 655    | 66,855  | 78,500            |
| 1560 135 ton cooling                                                |        | .07             | 457           |      | 62,500          | 12,800 | 750    | 76,050  | 89,500            |
| 1580 150 ton cooling                                                |        | .07             | 457           |      | 66,500          | 12,800 | 750    | 80,050  | 93,500            |
| 1600 175 ton cooling                                                |        | .06             | 533           |      | 76,500          | 14,900 | 875    | 92,275  | 108,000           |
| 1620 200 ton cooling                                                |        | .05             | 640           |      | 88,500          | 17,900 | 1,050  | 107,450 | 126,000           |
| 1640 225 ton cooling                                                |        | .05             | 640           |      | 94,000          | 17,900 | 1,050  | 112,950 | 132,000           |
| 1660 250 ton cooling                                                |        | .04             | 800           |      | 102,500         | 22,300 | 1,300  | 126,100 | 148,000           |
| 4000 Packaged chiller, with remote air cooled condensers incl.      |        |                 |               |      |                 |        |        |         |                   |
| 4020 15 ton cooling                                                 | Q-7    | .35             | 91,429        | Ea.  | 12,300          | 2,550  |        | 14,850  | 17,400            |
| 4030 20 ton cooling                                                 |        | .32             | 100           |      | 14,200          | 2,800  |        | 17,000  | 20,000            |
| 4040 25 ton cooling                                                 |        | .30             | 106           |      | 16,900          | 2,975  |        | 19,875  | 23,200            |
| 4050 30 ton cooling                                                 |        | .27             | 118           |      | 19,200          | 3,300  |        | 22,500  | 26,200            |
| 4060 40 ton cooling                                                 |        | .22             | 145           |      | 24,900          | 4,050  |        | 28,950  | 33,500            |
| 4070 50 ton cooling                                                 |        | .18             | 177           |      | 27,900          | 4,950  |        | 32,850  | 38,300            |
| 4080 60 ton cooling                                                 |        | .14             | 228           |      | 30,400          | 6,375  |        | 36,775  | 43,200            |
| 4090 70 ton cooling                                                 |        | .12             | 266           |      | 37,900          | 7,450  |        | 45,350  | 53,000            |
| 4100 80 ton cooling                                                 |        | .11             | 290           |      | 38,900          | 8,125  |        | 47,025  | 55,000            |
| 4110 90 ton cooling                                                 |        | .10             | 320           |      | 51,000          | 8,925  |        | 59,925  | 69,500            |
| 4120 100 ton cooling                                                |        | .09             | 355           |      | 56,500          | 9,925  |        | 66,425  | 77,000            |
| 4130 110 ton cooling                                                | Q-8    | .08             | 400           |      | 58,000          | 11,200 | 655    | 69,855  | 81,500            |
| 4140 120 ton cooling                                                |        | .07             | 457           |      | 59,500          | 12,800 | 750    | 73,050  | 86,000            |
| 4150 140 ton cooling                                                |        | .06             | 533           |      | 66,000          | 14,900 | 875    | 81,775  | 96,500            |
| 0010 WINDOW UNIT AIR CONDITIONERS                                   |        |                 |               |      |                 |        |        |         |                   |
| 4000 Portable/window, 15 amp 125V grounded receptacle required      |        |                 |               |      |                 |        |        |         |                   |
| 4060 5000 BTUH                                                      | 1 Carp | 8               | 1             | Ea.  | 275             | 24.50  |        | 299.50  | 345               |
| 134 6000 BTUH                                                       |        | 8               | 1             |      | 350             | 24.50  |        | 374.50  | 425               |
| 1480 8000 BTUH                                                      |        | 6               | 1.333         |      | 465             | 33     |        | 498     | 565               |
| 1500 10,000 BTUH                                                    |        | 6               | 1.333         |      | 525             | 33     |        | 558     | 635               |
| 1520 12,000 BTUH                                                    | L-2    | 8               | 2             |      | 560             | 43.50  |        | 603.50  | 685               |
| 1600 Window/thru-the-wall, 15 amp 230V grounded receptacle required |        |                 |               |      |                 |        |        |         |                   |
| 1780 17,000 BTUH                                                    | L-2    | 6               | 2.667         | Ea.  | 745             | 58     |        | 803     | 915               |
| 1940 25,000 BTUH                                                    |        | 4               | 4             |      | 980             | 87     |        | 1,067   | 1,225             |
| 1960 29,000 BTUH                                                    |        | 4               | 4             |      | 1,175           | 87     |        | 1,262   | 1,450             |

## 157 200 | System Components

| 010 COILS, FLANGED                             |     |       |       |     |     |       |  |        | 201 |
|------------------------------------------------|-----|-------|-------|-----|-----|-------|--|--------|-----|
| 100 Basic water or condenser coils             |     |       |       |     |     |       |  |        |     |
| 110 Copper tubes, alum. fins, galv. end sheets |     |       |       |     |     |       |  |        |     |
| 112 H is finned height, L is finned length     |     |       |       |     |     |       |  |        |     |
| 120 3/8" x .016 tube, .0065 AL fins            |     |       |       |     |     |       |  |        |     |
| 130 2 row, 8 fins per inch                     |     |       |       |     |     |       |  |        |     |
| 140 4" H x 12" L                               | Q-5 | 48    | .333  | Ea. | 255 | 8.80  |  | 263.80 | 294 |
| 150 4" H x 24" L                               |     | 24    | .667  |     | 275 | 17.55 |  | 292.55 | 330 |
| 160 4" H x 48" L                               |     | 12    | 1.333 |     | 355 | 35    |  | 390    | 445 |
| 170 4" H x 72" L                               |     | 8     | 2     |     | 390 | 52.50 |  | 442.50 | 510 |
| 180 6" H x 12" L                               |     | 32    | .500  |     | 266 | 13.15 |  | 279.15 | 315 |
| 190 6" H x 24" L                               |     | 16    | 1     |     | 287 | 26.50 |  | 313.50 | 355 |
| 200 6" H x 48" L                               |     | 8     | 2     |     | 375 | 52.50 |  | 427.50 | 495 |
| 210 6" H x 72" L                               |     | 5.33  | 3.002 |     | 420 | 79    |  | 499    | 580 |
| 220 10" H x 12" L                              |     | 19.30 | .829  |     | 290 | 22    |  | 312    | 355 |
| 230 10" H x 24" L                              |     | 9.60  | 1.667 |     | 315 | 44    |  | 359    | 415 |
| 240 10" H x 48" L                              |     | 4.80  | 3.333 |     | 420 | 88    |  | 508    | 595 |
| 250 10" H x 72" L                              |     | 3.20  | 5     |     | 470 | 132   |  | 602    | 715 |

**TRANE™**

6675 S. Kenton St., Suite 118  
Englewood, CO 80111

**F A X C O V E R S H E E T**

**DATE:** September 29, 1995      **TIME:** 1:10 PM  
**TO:** Dennis Jones      **PHONE:**  
EMC Engineers      **FAX:** .  
**FROM:** Gerry L. Boarman      **PHONE:** 303-705-9100  
The Trane Company      **FAX:** 303-649-9195  
**RE:**  
**CC:**

Number of pages including cover sheet: 1

**Message**

Dennis,

Sorry for the delay.

The budget for 2-30 ton compressor chillers and associated 40 ton air cooled condensers is \$ 32,675.00 Please let me know what else I can get for you and thank you for the opportunity.



**TRANE™**

**SLC-DS-1  
January 1994**

First Printing

---

**Cold Generator®  
Scroll Liquid Chillers**

**20 to 60 Tons  
Water Cooled  
and  
Condenserless**



## Features and Benefits

### Leading in Efficiency and Reliability With State-Of-The-Art Scroll Compressor Technology

#### Reliability

The Trane Cold Generator® water chiller with many new improvements, now brings an exciting new compressor to the commercial market — the Trane 3-D™ Scroll compressor. Trane has designed the scroll compressor to be a leader in reliability. HERE'S HOW:

- Simple design with 64 percent fewer parts than equal capacity reciprocating compressor.
- 3-D Scroll compliance allows liquid and dirt to pass through without damaging compressor (liquid slugging resistant).
- Advanced microelectronics protect both compressor and motor from typical electrical fault conditions.
- Scroll compressors have less than a third the torque variations of a reciprocating compressor.
- Years of laboratory testing have optimized compressor and chiller systems reliability.
- Water-Cooled Cold Generators are 100 percent RUN TESTED at the factory.

#### Efficiency

The energy efficiency of the Cold Generator liquid chiller results in energy costs lower than any other comparable chiller. Full load efficiencies are typical of reciprocating chillers, but part load efficiencies are simply unmatched by any other manufacturer.

Superior efficiencies are obtained by combining many of the traditional Cold Generator chiller energy efficient features with the Trane 3-D scroll compressor technology. HERE'S HOW:

- Scroll compressor's positive displacement design
- Dual refrigerant circuits (40-60 ton units)
- Multiple compressors
- Optimum system design
- Reduced Friction
- No Valves
- Advanced Heat Transfer Surfaces



Chart illustrates low torque variation of 3-D scroll compressor vs reciprocating compressor.



Graph illustrates Trane Cold Generator chiller's superior annual energy costs vs typical reciprocating chillers.

## Trane 3-D™ Compliance Scroll Compressor

— Maximum Efficiency  
with  
Enhanced Reliability

### How Does 3-D Compliance Work?

The 3-D compressor has a patented tip seal on the tip of each spiral. The tip seal acts like a piston ring to provide sealing between high and low pressure chambers without wearing the mating surfaces.

Radial compliance is achieved with a swing link mechanism that allows the spiral walls on the disks to touch without wear. The swing link joins the motor shaft and the orbiting scroll disk.

In normal operation this contact provides sealing between high and low pressure cavities. However, if a contaminant such as dirt or liquid refrigerant enters the compression chamber, the swing link allows the spiral walls to separate in the radial direction and pass the contamination without harm to the compressor.

### General

The 3-D compressor has two scrolls. The top scroll is fixed and the bottom scroll orbits. Each scroll has walls in a spiral shape that mesh.



### Inlet-First Orbit

As the bottom scroll orbits, two refrigerant gas pockets are formed and enclosed.

### Compression-Second Orbit

The refrigerant gas is compressed as the volume is reduced closer to the center of the scroll.

### Discharge-Third Orbit

The gas is compressed further and discharged through a small port in the center of the fixed scroll.

### Scroll Principal Components

This is a cutaway view of a hermetic, scroll compressor, showing the relative positions of the principal components. Shown is a Trane 10-ton, 3600 rpm, scroll compressor as an example.

The principle of operation of this example compressor is as follows: The suction gas is drawn into the compressor at A. The gas then passes through the gap between the rotor and stator, B, cooling the motor, before it enters the compressor housing, C. Here, the velocity of the gas is reduced, causing a separation of the entrained oil from the gas stream. The gas then enters the intake chamber, D, that encircles the scrolls.

Finally, the suction gas is drawn into the scroll assembly where it is compressed and discharged into the dome of the compressor. The dome of this example compressor acts as a hot gas muffler which dampens the pulsations before the gas enters the discharge line, E.



# Performance Data

Performance  
Data  
Compressor  
Chiller

Table 16-1 — CCAD Performance Data, 42 F Leaving Chilled Water Temperature

| Unit Size | Condenser Size | Entering Condenser Air Temperature |      |      |      |      |      |      |      |     |      |      |     |
|-----------|----------------|------------------------------------|------|------|------|------|------|------|------|-----|------|------|-----|
|           |                | 85                                 |      | 95   |      | 105  |      | 115  |      |     |      |      |     |
| Tons      | Kw             | EER                                | Tons | Kw   | EER  | Tons | Kw   | EER  | Tons | Kw  | EER  |      |     |
| 20        | CAUC-C20       | 19.4                               | 19.5 | 11.8 | 18.4 | 21.6 | 10.1 | 17.3 | 23.9 | 8.6 | 16.1 | 26.6 | 7.2 |
| 20        | CAUC-C25       | 19.7                               | 18.6 | 12.6 | 18.7 | 20.6 | 10.8 | 17.6 | 23.0 | 9.1 | 16.5 | 25.5 | 7.7 |
| 25        | CAUC-C25       | 24.1                               | 24.9 | 11.5 | 22.8 | 27.6 | 9.9  | 21.5 | 30.6 | 8.4 | 20.0 | 34.0 | 7.0 |
| 25        | CAUC-C30       | 24.5                               | 23.4 | 12.5 | 23.3 | 26.0 | 10.7 | 22.0 | 28.9 | 9.1 | 20.6 | 32.1 | 7.7 |
| 30        | CAUC-C30       | 28.8                               | 29.1 | 11.8 | 27.3 | 32.2 | 10.1 | 25.7 | 35.7 | 8.6 | 24.1 | 39.6 | 7.3 |
| 30        | CAUC-C40       | 29.2                               | 27.0 | 12.9 | 27.8 | 29.9 | 11.1 | 26.3 | 33.2 | 9.5 | 24.7 | 36.9 | 8.0 |
| 40        | CAUC-C40       | 38.7                               | 38.8 | 11.9 | 36.7 | 43.0 | 10.2 | 34.5 | 47.8 | 8.6 | 32.2 | 53.2 | 7.2 |
| 40        | CAUC-C50       | 39.1                               | 37.4 | 12.5 | 37.1 | 41.6 | 10.6 | 35.0 | 46.2 | 9.0 | 32.7 | 51.4 | 7.6 |
| 50        | CAUC-C50       | 47.6                               | 50.2 | 11.3 | 45.1 | 55.6 | 9.7  | 42.5 | 61.8 | 8.2 | 39.7 | 68.4 | 6.9 |
| 50        | CAUC-C60       | 48.4                               | 47.0 | 12.3 | 46.0 | 52.2 | 10.5 | 43.5 | 58.2 | 8.9 | 40.8 | 64.6 | 7.6 |
| 60        | CAUC-C60       | 56.9                               | 58.4 | 11.6 | 54.0 | 64.8 | 10.0 | 50.9 | 71.8 | 8.5 | 47.6 | 79.8 | 7.1 |
| 60        | CAUC-C80       | 57.5                               | 53.6 | 12.8 | 54.7 | 59.6 | 11.0 | 51.8 | 66.4 | 9.3 | 48.6 | 73.8 | 7.9 |

Table 16-2 — CCAD Performance Data, 44 F Leaving Chilled Water Temperature

| Unit Size | Condenser Size | Entering Condenser Air Temperature |      |      |      |      |      |      |      |     |      |      |     |
|-----------|----------------|------------------------------------|------|------|------|------|------|------|------|-----|------|------|-----|
|           |                | 85                                 |      | 95   |      | 105  |      | 115  |      |     |      |      |     |
| Tons      | Kw             | EER                                | Tons | Kw   | EER  | Tons | Kw   | EER  | Tons | Kw  | EER  |      |     |
| 20        | CAUC-C20       | 20.0                               | 19.7 | 12.1 | 19.0 | 21.8 | 10.4 | 17.8 | 24.2 | 8.8 | 16.6 | 26.8 | 7.4 |
| 20        | CAUC-C25       | 20.4                               | 18.8 | 12.9 | 19.3 | 20.8 | 11.0 | 18.2 | 23.2 | 9.3 | 17.1 | 25.7 | 7.9 |
| 25        | CAUC-C25       | 24.9                               | 25.1 | 11.8 | 23.6 | 27.9 | 10.1 | 22.2 | 30.9 | 8.6 | 20.7 | 34.3 | 7.2 |
| 25        | CAUC-C30       | 25.3                               | 23.7 | 12.7 | 24.1 | 26.3 | 10.9 | 22.7 | 29.2 | 9.3 | 21.3 | 32.4 | 7.9 |
| 30        | CAUC-C30       | 29.7                               | 29.4 | 12.1 | 28.2 | 32.6 | 10.3 | 26.6 | 36.1 | 8.8 | 24.9 | 40.0 | 7.4 |
| 30        | CAUC-C40       | 30.2                               | 27.2 | 13.2 | 28.8 | 30.2 | 11.4 | 27.2 | 33.5 | 9.7 | 25.6 | 37.2 | 8.2 |
| 40        | CAUC-C40       | 39.9                               | 39.2 | 12.1 | 37.8 | 43.4 | 10.4 | 35.6 | 48.2 | 8.8 | 33.3 | 53.6 | 7.4 |
| 40        | CAUC-C50       | 40.3                               | 37.8 | 12.7 | 38.3 | 42.0 | 10.9 | 36.1 | 46.6 | 9.2 | 33.8 | 51.8 | 7.8 |
| 50        | CAUC-C50       | 49.1                               | 50.6 | 11.6 | 46.6 | 56.2 | 9.9  | 43.9 | 62.2 | 8.4 | 41.0 | 69.0 | 7.1 |
| 50        | CAUC-C60       | 50.0                               | 47.4 | 12.6 | 47.5 | 52.6 | 10.8 | 44.9 | 58.6 | 9.2 | 42.2 | 65.2 | 7.7 |
| 60        | CAUC-C60       | 58.7                               | 58.5 | 12.0 | 55.7 | 65.4 | 10.2 | 52.6 | 72.6 | 8.7 | 49.2 | 80.6 | 7.3 |
| 60        | CAUC-C80       | 59.3                               | 54.0 | 13.1 | 56.5 | 60.0 | 11.3 | 53.5 | 66.8 | 9.6 | 50.3 | 74.4 | 8.1 |

Table 16-3 — CCAD Performance Data, 45 F Leaving Chilled Water Temperature

| Unit Size | Condenser Size | Entering Condenser Air Temperature |      |      |      |      |      |      |      |     |      |      |     |
|-----------|----------------|------------------------------------|------|------|------|------|------|------|------|-----|------|------|-----|
|           |                | 85                                 |      | 95   |      | 105  |      | 115  |      |     |      |      |     |
| Tons      | Kw             | EER                                | Tons | Kw   | EER  | Tons | Kw   | EER  | Tons | Kw  | EER  |      |     |
| 20        | CAUC-C20       | 20.3                               | 19.8 | 12.2 | 19.3 | 21.9 | 10.5 | 18.1 | 24.3 | 8.9 | 16.9 | 26.9 | 7.5 |
| 20        | CAUC-C25       | 20.7                               | 18.9 | 13.0 | 19.6 | 20.9 | 11.2 | 18.5 | 23.3 | 9.5 | 17.3 | 25.8 | 8.0 |
| 25        | CAUC-C25       | 25.3                               | 25.3 | 11.9 | 24.0 | 28.0 | 10.2 | 22.6 | 31.1 | 8.7 | 21.1 | 34.4 | 7.3 |
| 25        | CAUC-C30       | 25.8                               | 23.8 | 12.9 | 24.5 | 26.4 | 11.1 | 23.1 | 29.3 | 9.4 | 21.7 | 32.5 | 8.0 |
| 30        | CAUC-C30       | 30.2                               | 29.5 | 12.2 | 28.7 | 32.7 | 10.5 | 27.0 | 36.3 | 8.9 | 25.3 | 40.2 | 7.5 |
| 30        | CAUC-C40       | 30.7                               | 27.3 | 13.4 | 29.2 | 30.3 | 11.5 | 27.7 | 33.7 | 9.8 | 26.0 | 37.4 | 8.3 |
| 40        | CAUC-C40       | 40.5                               | 39.4 | 12.3 | 38.4 | 43.6 | 10.5 | 36.2 | 48.4 | 8.9 | 33.8 | 53.8 | 7.5 |
| 40        | CAUC-C50       | 40.9                               | 38.0 | 12.8 | 38.9 | 42.0 | 11.1 | 36.7 | 46.8 | 9.4 | 34.4 | 52.0 | 7.9 |
| 50        | CAUC-C50       | 49.9                               | 50.8 | 11.7 | 47.3 | 56.4 | 10.0 | 44.6 | 62.6 | 8.5 | 41.7 | 69.4 | 7.2 |
| 50        | CAUC-C60       | 50.8                               | 47.6 | 12.7 | 48.3 | 53.0 | 10.9 | 45.7 | 58.8 | 9.3 | 42.9 | 65.4 | 7.8 |
| 60        | CAUC-C60       | 59.6                               | 59.2 | 12.0 | 56.6 | 65.6 | 10.3 | 53.4 | 72.8 | 8.8 | 50.1 | 80.8 | 7.4 |
| 60        | CAUC-C80       | 60.3                               | 54.2 | 13.3 | 57.4 | 60.4 | 11.4 | 54.4 | 67.2 | 9.7 | 51.1 | 74.6 | 8.2 |

Notes:

1. Evaporator fouling factor is 0.00025 on ARI Standard 590-92.
2. Interpolation between points is permissible. Extrapolation is not permitted.
3. Kw input is for compressors only.
4. EER = Energy Efficiency Ratio, (Btu/watt-hour). Power includes compressors and control power.
5. Rated in accordance with ARI Standard 590-92.
6. Ratings are based on evaporator temperature drop of 10 F.

Proposed  
chiller

## Performance Data Part Load

CGWD 20-60 Ton  
Part Load Performance

Table 15-1 — CGWD 20-60 Ton  
Part Load Performance

|      | CGWD 20<br>Unit Compressor Capacity |      |      |      |      |
|------|-------------------------------------|------|------|------|------|
|      | 100%                                | 75%  | 50%  | 25%  | IPLV |
| Tons | 20.6                                | 15.5 | 10.3 | 5.2  |      |
| Kw   | 16.4                                | 10.7 | 5.9  | 3.1  | 18.1 |
| EER  | 15.0                                | 17.2 | 20.6 | 18.7 |      |

|      | CGWD 25<br>Unit Compressor Capacity |      |      |      |      |
|------|-------------------------------------|------|------|------|------|
|      | 100%                                | 75%  | 50%  | 25%  | IPLV |
| Tons | 24.9                                | 18.7 | 12.5 | 6.2  |      |
| Kw   | 21.8                                | 14.2 | 9.0  | 4.7  | 15.4 |
| EER  | 13.6                                | 15.6 | 16.2 | 15.2 |      |

|      | CGWD 30<br>Unit Compressor Capacity |      |      |      |      |
|------|-------------------------------------|------|------|------|------|
|      | 100%                                | 75%  | 50%  | 25%  | IPLV |
| Tons | 29.5                                | 22.1 | 14.8 | 7.4  |      |
| Kw   | 25.8                                | 17.3 | 9.9  | 5.2  | 15.8 |
| EER  | 13.7                                | 15.2 | 17.5 | 16.4 |      |

30 ton

|      | CGWD 40<br>Unit Compressor Capacity |      |      |      |      |
|------|-------------------------------------|------|------|------|------|
|      | 100%                                | 75%  | 50%  | 25%  | IPLV |
| Tons | 41.2                                | 30.9 | 20.6 | 10.3 |      |
| Kw   | 33.0                                | 20.6 | 11.2 | 5.5  | 19.0 |
| EER  | 14.9                                | 17.8 | 21.7 | 21.3 |      |

40 ton

|      | CGWD 50<br>Unit Compressor Capacity |      |      |      |      |
|------|-------------------------------------|------|------|------|------|
|      | 100%                                | 75%  | 50%  | 25%  | IPLV |
| Tons | 48.6                                | 36.5 | 24.3 | 12.2 |      |
| Kw   | 42.6                                | 27.3 | 16.2 | 8.1  | 16.3 |
| EER  | 13.6                                | 15.8 | 17.8 | 17.6 |      |

|      | CGWD 60<br>Unit Compressor Capacity |      |      |      |      |
|------|-------------------------------------|------|------|------|------|
|      | 100%                                | 75%  | 50%  | 25%  | IPLV |
| Tons | 59.3                                | 44.5 | 29.7 | 14.8 |      |
| Kw   | 52.2                                | 33.9 | 19.3 | 9.4  | 16.5 |
| EER  | 13.6                                | 15.7 | 18.2 | 18.4 |      |

Notes:

1. Evaporator and condenser flow rates are constant. Flow rates determined at ARI full load standard rating points.
2. Part load is rated in accordance with ARI Standard 590-92.
3. IPLV is a single number part-load efficiency figure of merit calculated per ARI Standard 590-92.
4. KW input is for compressor(s) only.

# Performance data (cont) Existing Chiller

## PERFORMANCE RATINGS (10 F Chilled Water Rise)

| UNIT 30                                         | CAP.<br>(Tons)   | SDT<br>(F) | COMPR<br>KW | COOLER<br>FLOW DATA |                  | CAP.<br>(Tons) | SDT<br>(F) | COMPR<br>KW | COOLER<br>FLOW DATA |                  | CAP.<br>(Tons)   | SDT<br>(F) | COMPR<br>KW | COOLER<br>FLOW DATA |       |      |  |  |  |  |  |  |  |  |
|-------------------------------------------------|------------------|------------|-------------|---------------------|------------------|----------------|------------|-------------|---------------------|------------------|------------------|------------|-------------|---------------------|-------|------|--|--|--|--|--|--|--|--|
|                                                 |                  |            |             | Gpm                 | PD               |                |            |             | Gpm                 | PD               |                  |            |             | Gpm                 | PD    |      |  |  |  |  |  |  |  |  |
| <b>105 F Condenser Entering Air Temperature</b> |                  |            |             |                     |                  |                |            |             |                     |                  |                  |            |             |                     |       |      |  |  |  |  |  |  |  |  |
| <b>40 F LCWT</b>                                |                  |            |             | <b>42 F LCWT</b>    |                  |                |            |             |                     | <b>44 F LCWT</b> |                  |            |             |                     |       |      |  |  |  |  |  |  |  |  |
| GA                                              | 020              | 15.4       | 127.4       | 20.1                | 36.8             | 2.8            | 16.1       | 128.3       | 20.5                | 38.5             | 3.0              | 16.9       | 129.4       | 21.0                | 40.4  | 3.3  |  |  |  |  |  |  |  |  |
|                                                 | 025              | 19.5       | 127.1       | 25.4                | 46.6             | 4.3            | 20.4       | 128.1       | 26.2                | 48.9             | 4.7              | 21.4       | 129.2       | 26.9                | 51.3  | 5.2  |  |  |  |  |  |  |  |  |
|                                                 | 030              | 22.8       | 125.2       | 28.7                | 54.6             | 5.8            | 23.9       | 126.1       | 29.4                | 57.1             | 6.4              | 24.9       | 127.0       | 30.1                | 59.7  | 6.9  |  |  |  |  |  |  |  |  |
| GB                                              | 040              | 30.4       | 130.3       | 40.7                | 72.6             | 7.5            | 31.7       | 131.4       | 41.7                | 75.9             | 8.1              | 33.1       | 132.4       | 42.7                | 79.2  | 8.8  |  |  |  |  |  |  |  |  |
|                                                 | 045              | 37.8       | 130.0       | 50.0                | 90.3             | 6.5            | 39.4       | 131.1       | 51.3                | 94.4             | 7.1              | 41.2       | 132.1       | 52.6                | 93.6  | 7.7  |  |  |  |  |  |  |  |  |
|                                                 | 055              | 44.0       | 131.5       | 59.5                | 105.1            | 8.8            | 45.9       | 132.6       | 61.0                | 169.8            | 9.5              | 47.8       | 133.7       | 62.5                | 114.5 | 10.3 |  |  |  |  |  |  |  |  |
|                                                 | 070              | 57.9       | 130.1       | 78.4                | 138.4            | 9.8            | 60.5       | 131.1       | 80.3                | 144.6            | 10.7             | 63.1       | 132.1       | 82.4                | 151.0 | 11.6 |  |  |  |  |  |  |  |  |
| GA                                              | 085              | 69.8       | 131.6       | 98.0                | 166.7            | 8.7            | 72.8       | 132.7       | 100.5               | 174.1            | 9.4              | 75.9       | 133.8       | 103.0               | 181.7 | 10.2 |  |  |  |  |  |  |  |  |
|                                                 | 105              | 87.5       | 132.1       | 118.4               | 209.1            | 7.4            | 90.9       | 133.1       | 121.2               | 217.5            | 7.9              | 94.4       | 134.1       | 124.0               | 226.0 | 8.5  |  |  |  |  |  |  |  |  |
|                                                 | 110              | 95.8       | 135.1       | 145.4               | 229.1            | 8.8            | 99.5       | 136.2       | 149.0               | 238.0            | 9.4              | 103.2      | 137.3       | 152.6               | 247.1 | 10.1 |  |  |  |  |  |  |  |  |
|                                                 | 120              | 103.0      | 138.1       | 170.7               | 246.1            | 10.1           | 106.8      | 139.2       | 175.0               | 255.4            | 10.8             | 110.6      | 140.4       | 179.3               | 264.9 | 11.6 |  |  |  |  |  |  |  |  |
|                                                 | <b>45 F LCWT</b> |            |             |                     | <b>46 F LCWT</b> |                |            |             |                     |                  | <b>48 F LCWT</b> |            |             |                     |       |      |  |  |  |  |  |  |  |  |
| GA                                              | 020              | 17.2       | 129.9       | 21.3                | 41.3             | 3.4            | 17.6       | 130.4       | 21.5                | 42.2             | 3.6              | 18.4       | 131.4       | 22.0                | 44.1  | 3.9  |  |  |  |  |  |  |  |  |
|                                                 | 025              | 21.9       | 129.7       | 27.3                | 52.5             | 5.4            | 22.4       | 130.2       | 27.6                | 53.8             | 5.7              | 23.5       | 131.3       | 28.4                | 56.3  | 6.2  |  |  |  |  |  |  |  |  |
|                                                 | 030              | 25.5       | 127.4       | 30.4                | 61.0             | 7.2            | 26.0       | 127.9       | 30.8                | 62.3             | 7.5              | 27.1       | 128.8       | 31.5                | 65.0  | 8.1  |  |  |  |  |  |  |  |  |
| GB                                              | 040              | 33.8       | 132.9       | 43.1                | 80.9             | 9.2            | 34.5       | 133.5       | 43.6                | 82.6             | 9.6              | 35.9       | 134.6       | 44.6                | 86.1  | 10.3 |  |  |  |  |  |  |  |  |
|                                                 | 045              | 42.0       | 132.7       | 53.2                | 100.7            | 8.1            | 42.9       | 133.2       | 53.8                | 102.8            | 8.4              | 44.7       | 134.3       | 55.1                | 107.2 | 9.1  |  |  |  |  |  |  |  |  |
|                                                 | 055              | 48.8       | 134.3       | 63.3                | 116.9            | 10.7           | 49.8       | 134.8       | 64.1                | 119.4            | 11.2             | 51.9       | 136.0       | 65.7                | 124.4 | 12.1 |  |  |  |  |  |  |  |  |
|                                                 | 070              | 64.4       | 132.7       | 83.4                | 154.3            | 12.1           | 65.8       | 133.2       | 84.4                | 157.5            | 12.6             | 68.5       | 134.3       | 86.4                | 164.2 | 13.6 |  |  |  |  |  |  |  |  |
| GA                                              | 085              | 77.5       | 134.4       | 104.3               | 185.6            | 10.7           | 79.1       | 134.9       | 105.6               | 189.5            | 11.1             | 82.3       | 136.0       | 108.1               | 197.3 | 12.0 |  |  |  |  |  |  |  |  |
|                                                 | 105              | 96.2       | 134.7       | 125.4               | 230.4            | 8.9            | 98.0       | 135.2       | 126.9               | 234.8            | 9.2              | 101.7      | 136.2       | 129.7               | 243.7 | 9.9  |  |  |  |  |  |  |  |  |
|                                                 | 110              | 105.1      | 137.9       | 154.4               | 251.7            | 10.5           | 107.0      | 138.4       | 156.2               | 256.4            | 10.9             | 110.9      | 139.5       | 159.9               | 265.8 | 11.7 |  |  |  |  |  |  |  |  |
|                                                 | 120              | 112.6      | 140.9       | 181.4               | 269.6            | 12.0           | 114.6      | 141.5       | 183.6               | 274.4            | 12.4             | 118.6      | 142.7       | 188.0               | 284.2 | 13.3 |  |  |  |  |  |  |  |  |

## PERFORMANCE RATINGS (10 F Chilled Water Rise)

| UNIT 30                                         | CAP.<br>(Tons)   | SDT<br>(F) | COMPR<br>KW | COOLER<br>FLOW DATA |                  | CAP.<br>(Tons) | SDT<br>(F) | COMPR<br>KW | COOLER<br>FLOW DATA |                  | CAP.<br>(Tons)   | SDT<br>(F) | COMPR<br>KW | COOLER<br>FLOW DATA |       |      |  |  |  |  |  |  |  |  |
|-------------------------------------------------|------------------|------------|-------------|---------------------|------------------|----------------|------------|-------------|---------------------|------------------|------------------|------------|-------------|---------------------|-------|------|--|--|--|--|--|--|--|--|
|                                                 |                  |            |             | Gpm                 | PD               |                |            |             | Gpm                 | PD               |                  |            |             | Gpm                 | PD    |      |  |  |  |  |  |  |  |  |
| <b>115 F Condenser Entering Air Temperature</b> |                  |            |             |                     |                  |                |            |             |                     |                  |                  |            |             |                     |       |      |  |  |  |  |  |  |  |  |
| <b>40 F LCWT</b>                                |                  |            |             | <b>42 F LCWT</b>    |                  |                |            |             |                     | <b>44 F LCWT</b> |                  |            |             |                     |       |      |  |  |  |  |  |  |  |  |
| GA                                              | 020              | 14.2       | 136.2       | 20.8                | 34.0             | 2.4            | 14.9       | 137.1       | 21.3                | 35.6             | 2.6              | 15.6       | 138.1       | 21.9                | 37.4  | 2.9  |  |  |  |  |  |  |  |  |
|                                                 | 025              | 17.6       | 135.5       | 25.7                | 42.1             | 3.6            | 18.6       | 136.5       | 26.6                | 44.4             | 4.0              | 19.5       | 137.5       | 27.4                | 46.7  | 4.4  |  |  |  |  |  |  |  |  |
|                                                 | 030              | 21.2       | 134.3       | 30.0                | 50.7             | 5.1            | 22.2       | 135.1       | 30.8                | 53.1             | 5.5              | 23.2       | 135.9       | 31.6                | 55.5  | 6.0  |  |  |  |  |  |  |  |  |
| GB                                              | 040              | 28.1       | 139.1       | 42.2                | 67.1             | 6.4            | 29.4       | 140.0       | 43.2                | 70.2             | 7.0              | 30.7       | 141.1       | 44.3                | 73.4  | 7.6  |  |  |  |  |  |  |  |  |
|                                                 | 045              | 35.0       | 138.8       | 52.1                | 83.6             | 5.6            | 36.6       | 139.8       | 53.4                | 87.5             | 6.2              | 38.2       | 140.8       | 54.8                | 91.5  | 6.7  |  |  |  |  |  |  |  |  |
|                                                 | 055              | 40.8       | 140.3       | 61.9                | 97.6             | 7.6            | 42.6       | 141.3       | 63.6                | 102.0            | 8.3              | 44.5       | 142.4       | 65.3                | 106.5 | 9.0  |  |  |  |  |  |  |  |  |
|                                                 | 070              | 53.7       | 138.9       | 81.5                | 128.5            | 8.5            | 56.2       | 139.9       | 83.7                | 134.4            | 9.3              | 58.6       | 140.9       | 85.8                | 140.4 | 10.1 |  |  |  |  |  |  |  |  |
| GA                                              | 085              | 64.8       | 140.4       | 101.9               | 155.0            | 7.5            | 67.7       | 141.5       | 104.5               | 162.1            | 8.2              | 70.7       | 142.5       | 107.3               | 169.3 | 8.9  |  |  |  |  |  |  |  |  |
|                                                 | 105              | 81.8       | 141.1       | 123.8               | 195.6            | 6.5            | 85.1       | 142.1       | 126.8               | 203.7            | 7.0              | 88.5       | 143.0       | 129.9               | 211.9 | 7.5  |  |  |  |  |  |  |  |  |
|                                                 | 110              | 89.8       | 144.1       | 151.9               | 214.6            | 7.7            | 93.3       | 145.1       | 155.7               | 223.1            | 8.3              | 96.9       | 146.2       | 159.6               | 231.8 | 9.0  |  |  |  |  |  |  |  |  |
|                                                 | 120              | 96.6       | 147.0       | 178.2               | 230.9            | 8.9            | 100.2      | 148.1       | 182.7               | 239.8            | 9.6              | 104.0      | 149.2       | 187.3               | 248.9 | 10.3 |  |  |  |  |  |  |  |  |
|                                                 | <b>45 F LCWT</b> |            |             |                     | <b>46 F LCWT</b> |                |            |             |                     |                  | <b>48 F LCWT</b> |            |             |                     |       |      |  |  |  |  |  |  |  |  |
| GA                                              | 020              | 16.0       | 138.6       | 22.1                | 38.2             | 3.0            | 16.3       | 139.1       | 22.4                | 39.1             | 3.1              | 17.1       | 140.1       | 22.9                | 40.9  | 3.4  |  |  |  |  |  |  |  |  |
|                                                 | 025              | 20.0       | 138.1       | 27.9                | 47.9             | 4.6            | 20.5       | 138.6       | 28.3                | 49.1             | 4.8              | 21.5       | 139.7       | 29.1                | 51.5  | 5.2  |  |  |  |  |  |  |  |  |
|                                                 | 030              | 23.7       | 136.4       | 31.9                | 56.8             | 6.3            | 24.2       | 136.8       | 32.3                | 58.0             | 6.6              | 25.3       | 137.7       | 33.1                | 60.6  | 7.1  |  |  |  |  |  |  |  |  |
| GB                                              | 040              | 31.3       | 141.6       | 44.8                | 75.0             | 8.0            | 32.0       | 142.1       | 45.3                | 76.7             | 8.3              | 33.4       | 143.2       | 46.4                | 80.0  | 9.0  |  |  |  |  |  |  |  |  |
|                                                 | 045              | 39.0       | 141.3       | 55.5                | 93.5             | 7.0            | 39.9       | 141.9       | 56.1                | 95.5             | 7.3              | 41.6       | 143.0       | 57.5                | 99.7  | 7.9  |  |  |  |  |  |  |  |  |
|                                                 | 055              | 45.4       | 142.9       | 66.1                | 108.8            | 9.4            | 46.4       | 143.5       | 67.0                | 111.1            | 9.7              | 48.3       | 144.6       | 68.7                | 115.8 | 10.6 |  |  |  |  |  |  |  |  |
|                                                 | 070              | 59.9       | 141.4       | 87.0                | 143.5            | 10.5           | 61.2       | 141.9       | 88.1                | 146.6            | 11.0             | 63.8       | 143.0       | 90.3                | 153.0 | 11.9 |  |  |  |  |  |  |  |  |
| GA                                              | 085              | 72.2       | 143.1       | 108.6               | 173.0            | 9.3            | 73.8       | 143.6       | 110.1               | 176.7            | 9.7              | 76.8       | 144.7       | 112.8               | 184.2 | 10.5 |  |  |  |  |  |  |  |  |
|                                                 | 105              | 90.2       | 143.5       | 131.4               | 216.0            | 7.8            | 92.0       | 144.0       | 133.0               | 220.3            | 8.1              | 95.5       | 145.1       | 136.1               | 228.8 | 8.7  |  |  |  |  |  |  |  |  |
|                                                 | 110              | 98.7       | 146.7       | 161.5               | 236.3            | 9.3            | 100.5      | 147.3       | 163.5               | 240.7            | 9.6              | 104.2      | 148.4       | 167.4               | 249.8 | 10.4 |  |  |  |  |  |  |  |  |
|                                                 | 120              | 105.9      | 149.8       | 189.6               | 253.5            | 10.7           | 107.8      | 150.4       | 191.9               | 258.1            | 11.0             | 111.6      | 151.6       | 196.6               | 267.5 | 11.8 |  |  |  |  |  |  |  |  |

Cap. — Capacity

Kw — Compressor Motor Power Input at Rated Voltage

LCWT — Leaving Chilled Water Temperature

PD — Pressure Drop (ft water)

SDT — Saturated Discharge Temperature

## 4.9 ECO 9: RECIRCULATE AIR IN TOWERS

**Proposed Modification:** Reduce the outside airflow rate in three telescope towers by installing a return air duct system in each tower for recirculation of room air.

Each return air duct system would come through the tower wall next to the existing supply air ductwork. Putting this system in place would involve cutting through the concrete between the tower and its adjacent compressor room and routing a return air duct back into the air handling unit (AHU) in that room. This system will intake only 400 cfm of outside air (OA) (or 20% of supply air) and return 1600 cfm from the tower.

**Existing Conditions:** Presently, the three telescope towers use 100% OA for cooling. This system consumes significant energy as the cool air is directly vented to the outside and is not reused. According to the building personnel, there is no specific reason why this particular system is in place.

**Method of Analysis:** Analysis proceeded as follows:

- A baseline computer model of the building was created using DOE2.1d which simulated the building energy consumption over a period of one year.
- The baseline computer model was modified to reflect an 80% reduction of the total outside air. The modified baseline computer model was subtracted from the baseline computer model to determine the energy savings.

**Results:** The LCCA summarized below represents the results of lowering outside air quantities on the AHUs serving the telescope towers.

|                                      |          |
|--------------------------------------|----------|
| Annual Electric Energy Savings (kWh) | 74,537   |
| Total Annual Energy Cost Savings     | \$6,118  |
| Annual Maintenance Cost Savings      | \$0      |
| Investment Cost                      | \$22,767 |
| Savings-to-Investment Ratio (SIR)    | 4.05     |
| Simple Payback (Years)               | 3.7      |

**Recommendations:** The reduction of outside airflow in each tower is recommended for implementation.

|                                                                                           |                                            |                           |                        |                                            |                                       |
|-------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------|------------------------|--------------------------------------------|---------------------------------------|
| 1. COMPONENT<br>ARMY                                                                      | FY 1995 MILITARY CONSTRUCTION PROJECT DATA |                           |                        | 2. DATE<br>Jul-95                          |                                       |
| 3. INSTALLATION AND LOCATION<br>GEODSS Site, White Sands Missile Range, NM                |                                            |                           |                        |                                            |                                       |
| 4. PROJECT TITLE<br>Recirculate Tower Air                                                 |                                            | 5. PROJECT NUMBER         |                        |                                            |                                       |
| <b>LIFE CYCLE COST ANALYSIS SUMMARY<br/>ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)</b> |                                            |                           |                        |                                            |                                       |
| LOCATION: White Sands Missile Range, NM                                                   |                                            | REGION: 4 (New Mexico)    | PROJECT NO: 1406.008   |                                            |                                       |
| PROJECT TITLE: Recirculate Tower Air                                                      |                                            |                           |                        | FISCAL YEAR: 1995                          |                                       |
| ANALYSIS DATE: 12/01/95                                                                   |                                            | ECONOMIC LIFE: 20         | PREPARED BY: E.Smith   |                                            |                                       |
| <b>1. INVESTMENT</b>                                                                      |                                            |                           |                        |                                            |                                       |
| A. CONSTRUCTION COST                                                                      | =                                          | \$20,328                  |                        |                                            |                                       |
| B. SIOH COST                                                                              | (6.0% of 1A) =                             | \$1,220                   |                        |                                            |                                       |
| C. DESIGN COST                                                                            | (6.0% of 1A) =                             | \$1,220                   |                        |                                            |                                       |
| D. TOTAL COST                                                                             | (1A +1B +1C) =                             | \$22,767                  |                        |                                            |                                       |
| E. SALVAGE VALUE OF EXISTING EQUIPMENT =                                                  |                                            | \$0                       |                        |                                            |                                       |
| F. PUBLIC UTILITY COMPANY REBATE =                                                        |                                            | \$0                       |                        |                                            |                                       |
| G. TOTAL INVESTMENT                                                                       | (1D -1E -1F) =                             | -----> \$22,767           |                        |                                            |                                       |
| <b>2. ENERGY SAVINGS (+) OR COST (-):</b>                                                 |                                            |                           |                        |                                            |                                       |
| DATE OF NISTR-85-3273-9 USED FOR DISCOUNT FACTORS:                                        |                                            |                           |                        | Jul-95                                     |                                       |
| ENERGY SOURCE                                                                             | FUEL COST \$/KWH (1)                       | SAVINGS KWH/YR (2)        | ANNUAL \$ SAVINGS (3)  | DISCOUNT FACTOR (4)                        | DISCOUNTED SAVINGS (5)                |
| A. ELECT. (SAV'GS)                                                                        | \$0.0821                                   | 74537                     | \$6,119                | 15.08                                      | \$92,282                              |
| B. DIST (GAL.)                                                                            | \$1.10                                     | 0                         | \$0                    | 18.57                                      | \$0                                   |
| C. RESID (GAL.)                                                                           | \$3.00                                     | 0                         | \$0                    | 21.02                                      | \$0                                   |
| D. NAT GAS (MBTU)                                                                         | \$6.18                                     | 0                         | \$0                    | 18.58                                      | \$0                                   |
| E. COAL                                                                                   | \$2.00                                     | 0                         | \$0                    | 16.83                                      | \$0                                   |
| G. DEMAND (\$/kW)                                                                         | \$0.00                                     | 0                         | \$0                    | 15.08                                      | \$0                                   |
| H. TOTAL                                                                                  |                                            | 74,537                    | \$6,119                | ----->                                     | \$92,282                              |
| <b>3. NON-ENERGY SAVINGS (+) OR COST (-):</b>                                             |                                            |                           |                        |                                            |                                       |
| A. ANNUAL RECURRING (+/-)                                                                 |                                            |                           |                        |                                            |                                       |
| 1 ANNUAL MAINTENANCE SAVINGS                                                              |                                            |                           |                        | \$0                                        | 14.88                                 |
| 2                                                                                         |                                            |                           |                        |                                            | 14.88                                 |
| 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-)                                               |                                            |                           |                        | \$0                                        | \$0                                   |
| B. NON-RECURRING (+/-)                                                                    |                                            |                           |                        |                                            |                                       |
| ITEM                                                                                      | SAVINGS (+)<br>COST(-) (1)                 | YEAR OF<br>OCCURRENCE (2) | DISCOUNT<br>FACTOR (3) | DISCOUNTED<br>SAV'G/COST(4)<br>(TABLE A-2) |                                       |
| a.                                                                                        | \$0                                        | 0                         | 0.00                   | \$0                                        |                                       |
| b.                                                                                        | \$0                                        | 0                         | 0.00                   | \$0                                        |                                       |
| c.                                                                                        | \$0                                        | 0                         | 0.00                   | \$0                                        |                                       |
| d. TOTAL                                                                                  | \$0                                        |                           |                        | \$0                                        |                                       |
| C. TOTAL NON-ENERGY DISCOUNTED SAVINGS (+) OR COST (-)                                    |                                            |                           |                        |                                            | (3A3 + 3Bg4) = \$0                    |
| 4. FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-)                                              |                                            |                           |                        |                                            | (2H3+3A+(3Bg1/Economic Life)) \$6,119 |
| 5. SIMPLE PAYBACK (SPB) IN YEARS (MUST BE < 10 YEARS TO QUALIFY)                          |                                            |                           |                        |                                            | (1G/4) = 3.7                          |
| 6. TOTAL NET DISCOUNTED SAVINGS                                                           |                                            |                           |                        |                                            | (2H5 + 3C) = \$92,282                 |
| 7. DISCOUNTED SAVINGS-TO-INVESTMENT RATIO (SIR)<br>(MUST HAVE SIR > 1.25 TO QUALIFY)      |                                            |                           |                        |                                            | (6/1G) = 4.05                         |

|                     |    |
|---------------------|----|
| Economic Life (yrs) | 20 |
|---------------------|----|

Energy Information

| Energy Type                | Unit Energy Cost | UPW Discount Factors (1)<br>Discount Rate = 4%, Region 4 |
|----------------------------|------------------|----------------------------------------------------------|
| Economic Life of ECO (yrs) |                  | 10 15 20                                                 |
| Electric Energy            | 0.0821 (\$/kWh)  | 8.58 12.02 15.08                                         |

(1) NISTER 4942-1 Energy Prices and Discount Factors for Life-Cycle Cost Analysis 1995

Proposed Supply Airflow Reduction

| Zone    | Floor Area (ft^2) | Existing Supply Airflow (cfm) | Existing Outside Airflow (cfm) | Existing Return Airflow (cfm) | Proposed Supply Airflow (cfm) | Proposed Outside Airflow (cfm) | Proposed Return Airflow (cfm) |
|---------|-------------------|-------------------------------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|
| Tower 1 | 576               | 2000                          | 2000                           | 0                             | 2000                          | 400                            | 1600                          |
| Tower 2 | 576               | 2000                          | 2000                           | 0                             | 2000                          | 400                            | 1600                          |
| Tower 3 | 576               | 2000                          | 2000                           | 0                             | 2000                          | 400                            | 1600                          |

Energy Savings Predicted by DOE 2.1

| Baseline Energy Consumption (MBTUh) | Energy Consumption With Return Air in Towers (MBTUh) | Predicted Energy Savings (MBTUh) | Annual Savings (kWh) | Unit Energy Cost (\$/kWh) | Annual Energy Cost Savings (\$) |
|-------------------------------------|------------------------------------------------------|----------------------------------|----------------------|---------------------------|---------------------------------|
| 3573.44                             | 3319.11                                              | 254.33                           | 74537                | 0.0821                    | \$6,119                         |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 13:11:23 PDL RUN 1  
DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
REPORT- BEPS ESTIMATED BUILDING ENERGY PERFORMANCE TRUTH OR CONSEQU. N

ENERGY TYPE  
IN SITE MBTU - ELECTRICITY  
CATEGORY OF USE  
SPACE HEAT 55.12  
SPACE COOL 1323.79  
HVAC AUX 417.46  
DOM HOT WTR 0.00  
AUX SOLAR 0.00  
LIGHTS 288.88  
VERT TRANS 0.00  
MISC EQUIP 1233.86  
TOTAL 3319.12

TOTAL SITE ENERGY 3319.12 MBTU 291.2 KBTU/SQFT-YR GROSS-AREA 291.2 KBTU/SQFT-YR NET-AREA  
TOTAL SOURCE ENERGY 3319.12 MBTU 291.2 KBTU/SQFT-YR GROSS-AREA 291.2 KBTU/SQFT-YR NET-AREA  
PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.0  
PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0  
NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

**TOTAL SITE ELECTRICITY ENERGY USE 3319.11 MBTU**





PROPOSED RETURN DUCT

EXISTING DAMPER

PROPOSED DAMPER  
EXISTING DAMPER

COOLING COIL

①

PLY DUCT

TURN DUCT



4-85

(3)

| ENGINEER'S OPINION OF PROBABLE COST                |                               |          |                 |                                           |               |                       | SHEET        | 1             | OF                        | 1              |            |          |          |
|----------------------------------------------------|-------------------------------|----------|-----------------|-------------------------------------------|---------------|-----------------------|--------------|---------------|---------------------------|----------------|------------|----------|----------|
| AREA                                               |                               | ACTIVITY |                 | LOCATION<br>White Sands Missile Range, NM |               |                       |              | AMENDMENT NO. |                           |                |            |          |          |
| PROJECT TITLE<br>GEOSS, Energy Conservation Survey |                               |          |                 | CONTRACT NO.<br>DACA01-94-D-0033          |               |                       |              |               |                           |                |            |          |          |
| Line No.                                           | Item Description              |          | Unit of Measure | No. of Units                              | MATERIAL COST |                       | LABOR COST   |               |                           | EQUIPMENT COST | TOTAL COST |          |          |
|                                                    |                               |          |                 |                                           | Unit Cost     | Total                 | Manhrs/ Unit | Total Manhrs  | Total Labor Cost/ Manhour | Unit Cost      | Total      |          |          |
| 1                                                  | Sawing Concrete               | Inch-ft  | 480             | \$0.25                                    | \$120         | 0.08                  | 38.40        | \$22.99       | \$883                     | \$0.00         | \$0        | \$2      | \$1,003  |
| 2                                                  | Galvanized Steel Ductwork     | Lb       | 600             | \$1.00                                    | \$600         | 0.08                  | 48.00        | \$22.99       | \$1,104                   | \$0.00         | \$0        | \$3      | \$1,704  |
| 3                                                  | Ductwork Liner                | SF       | 600             | \$0.38                                    | \$228         | 0.04                  | 24.00        | \$22.99       | \$552                     | \$0.00         | \$0        | \$1      | \$780    |
| 4                                                  | Damper                        | ea       | 3               | \$70.00                                   | \$210         | 1.00                  | 3.00         | \$22.99       | \$69                      | \$0.00         | \$0        | \$92.99  | \$279    |
| 5                                                  | Pneumatic Operator            | ea       | 3               | \$153.00                                  | \$459         | 1.00                  | 3.00         | \$22.99       | \$69                      | \$0.00         | \$0        | \$175.99 | \$528    |
| 6                                                  | Pneumatic Econo Control       | ea       | 3               | \$250.00                                  | \$750         | 1.50                  | 4.50         | \$22.99       | \$103                     | \$0.00         | \$0        | \$284.49 | \$853    |
| 7                                                  | Return Air Grill              | ea       | 6               | \$39.00                                   | \$234         | 0.53                  | 3.20         | \$22.99       | \$74                      | \$0.00         | \$0        | \$51.25  | \$308    |
| 8                                                  | Balancing                     | ea       | 3               | \$0.00                                    | \$0           | 1.50                  | 4.50         | \$22.99       | \$103                     | \$0.00         | \$0        | \$34.49  | \$103    |
| 9                                                  | Drywall Repair                | SF       | 150             | \$0.25                                    | \$38          | 0.04                  | 6.00         | \$22.99       | \$138                     | \$0.00         | \$0        | \$1.17   | \$175    |
| 10                                                 | Painting                      | SF       | 150             | \$0.04                                    | \$6           | 0.04                  | 6.00         | \$22.99       | \$138                     | \$0.00         | \$0        | \$0.96   | \$144    |
| 11                                                 | Cleanup (after job completed) | Ls       | 1               |                                           | \$0           | 16.00                 | 16.00        | \$22.99       | \$368                     | \$0.00         | \$0        | \$367.84 | \$368    |
| 12                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 13                                                 | Travel to Socorro             | hrs      | 18              |                                           | \$0           | 1.00                  | 18.00        | \$22.99       | \$414                     | \$0.00         | \$0        | \$22.99  | \$414    |
| 14                                                 | Travel to job site            | hrs      | 15              |                                           | \$0           | 1.00                  | 15.00        | \$22.99       | \$345                     | \$0.00         | \$0        | \$22.99  | \$345    |
| 15                                                 | Lodging and per diem          | days     | 15              |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$100.00       | \$1,500    | \$100.00 | \$1,500  |
| 16                                                 | Milage                        | miles    | 800             |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.30         | \$240      | \$0.30   | \$240    |
| 17                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 18                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 19                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 20                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 21                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 22                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 23                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 24                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 25                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 26                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 27                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 28                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 29                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 30                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 31                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 32                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 33                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 34                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 35                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 36                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 37                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 38                                                 |                               |          |                 |                                           | \$0           |                       | 0.00         | \$22.99       | \$0                       | \$0.00         | \$0        | \$0.00   | \$0      |
| 39                                                 | SUBCONTRACTOR SUBTOTAL        |          |                 |                                           | \$2,645       |                       | 190          |               | \$4,359                   |                | \$1,740    |          | \$8,743  |
| 40                                                 | LABOR BURDEN                  | %        | 30              |                                           | \$0           |                       |              |               | \$1,308                   |                | \$522      |          | \$1,830  |
| 41                                                 | SUBTOTAL                      |          |                 |                                           | \$2,645       |                       |              |               | \$5,667                   |                | \$2,262    |          | \$10,573 |
| 42                                                 | OVERHEAD                      | %        | 12              |                                           | \$317         |                       |              |               | \$680                     |                | \$271      |          | \$1,269  |
| 43                                                 | SUBTOTAL                      |          |                 |                                           | \$2,962       |                       |              |               | \$6,346                   |                | \$2,533    |          | \$11,842 |
| 44                                                 | PROFIT                        | %        | 12              |                                           | \$355         |                       |              |               | \$762                     |                | \$304      |          | \$1,421  |
| 45                                                 | SUBCONTRACTOR TOTAL           |          |                 |                                           | \$3,317       |                       |              |               | \$7,108                   |                | \$2,837    |          | \$13,263 |
| 46                                                 | OVERHEAD                      | %        | 11              |                                           | \$363         |                       |              |               | \$778                     |                | \$311      |          | \$1,452  |
| 47                                                 | SUBTOTAL                      |          |                 |                                           | \$3,681       |                       |              |               | \$7,886                   |                | \$3,148    |          | \$14,715 |
| 48                                                 | PROFIT                        | %        | 8               |                                           | \$294         |                       |              |               | \$631                     |                | \$252      |          | \$1,177  |
| 49                                                 | SUBTOTAL                      |          |                 |                                           | \$3,975       |                       |              |               | \$8,517                   |                | \$3,400    |          | \$15,892 |
| 50                                                 | BOND                          | %        | 1               |                                           | \$29          |                       |              |               | \$63                      |                | \$25       |          | \$117    |
| 51                                                 | SUBTOTAL                      |          |                 |                                           | \$4,004       |                       |              |               | \$8,580                   |                | \$3,425    |          | \$16,009 |
| 52                                                 | N. M. TAX                     | %        | 6               |                                           | \$233         |                       |              |               | \$499                     |                | \$199      |          | \$931    |
| 53                                                 | SUBTOTAL                      |          |                 |                                           | \$4,237       |                       |              |               | \$9,079                   |                | \$3,624    |          | \$16,940 |
| 54                                                 | CONTINGENCY                   | %        | 20              |                                           | \$847         |                       |              |               | \$1,816                   |                | \$725      |          | \$3,388  |
| 55                                                 | GRAND TOTAL                   |          |                 |                                           | \$5,084       |                       |              |               | \$10,895                  |                | \$4,349    |          | \$20,328 |
| PREPARED BY                                        |                               |          | APPROVED BY     |                                           |               | TITLE OR ORGANIZATION |              |               |                           | DATE           |            |          |          |
| EEMS                                               |                               |          |                 |                                           |               | EMC Engineers, Inc.   |              |               |                           | 11/10/95       |            |          |          |

# 157 | Air Conditioning and Ventilation

## 157 200 | System Components

|                                                                                                                | CREW         | DAILY<br>OUTPUT | MAN-<br>HOURS | UNIT  | 1995 BARE COSTS |       |        |        | TOTAL<br>INCL O&P | 230 |
|----------------------------------------------------------------------------------------------------------------|--------------|-----------------|---------------|-------|-----------------|-------|--------|--------|-------------------|-----|
|                                                                                                                |              |                 |               |       | MAT.            | LABOR | EQUIP. | TOTAL  |                   |     |
| 30 ton                                                                                                         | Q-6          | .30             | .80           | Ea.   | 11,400          | 2,175 |        | 13,575 | 15,900            |     |
| 40 ton                                                                                                         |              | .20             | 120           |       | 15,200          | 3,275 |        | 18,475 | 21,700            |     |
| 50 ton                                                                                                         |              | .18             | 133           |       | 18,800          | 3,650 |        | 22,450 | 26,200            |     |
| 60 ton                                                                                                         |              | .16             | 150           |       | 22,000          | 4,100 |        | 26,100 | 30,500            |     |
| 75 ton                                                                                                         |              | .14             | 171           |       | 37,100          | 4,675 |        | 41,775 | 48,000            |     |
| 80 ton                                                                                                         |              | .12             | 200           |       | 38,000          | 5,450 |        | 43,450 | 50,000            |     |
| 100 ton                                                                                                        |              | .09             | 266           |       | 51,000          | 7,275 |        | 58,275 | 67,500            |     |
| Water cooled, compressor, heat exchanger, controls                                                             |              |                 |               |       |                 |       |        |        |                   |     |
| 5 ton                                                                                                          | Q-5          | .70             | 22,857        | Ea.   | 3,625           | 600   |        | 4,225  | 4,925             |     |
| 15 ton                                                                                                         |              | .50             | 32            |       | 6,025           | 845   |        | 6,870  | 7,925             |     |
| 20 ton                                                                                                         | Q-6          | .40             | 60            |       | 8,325           | 1,650 |        | 9,975  | 11,700            |     |
| 40 ton                                                                                                         |              | .20             | 120           |       | 15,700          | 3,275 |        | 18,975 | 22,300            |     |
| 100 ton                                                                                                        |              | .11             | 218           |       | 33,900          | 5,950 |        | 39,850 | 46,300            |     |
| CLOUDING TOWERS Packaged units                                                                                 | A84<br>-120  |                 |               |       |                 |       |        |        |                   | 240 |
| Draw thru, single flow                                                                                         |              |                 |               |       |                 |       |        |        |                   |     |
| Belt drive, 60 tons                                                                                            | A84<br>-230  | Q-6             | .90           | .267  | TonAC           | 69.50 | 7.30   | 76.80  | 87.50             |     |
| 95 tons                                                                                                        |              |                 | 100           | .240  |                 | 60    | 6.55   | 66.55  | 76                |     |
| 110 tons                                                                                                       |              |                 | 109           | .220  |                 | 59    | 6      | 65     | 74                |     |
| 125 tons                                                                                                       |              |                 | 120           | .200  |                 | 58    | 5.45   | 63.45  | 72.50             |     |
| For higher capacities, use multiples                                                                           |              |                 |               |       |                 |       |        |        |                   |     |
| Induced air, double flow                                                                                       |              |                 |               |       |                 |       |        |        |                   |     |
| Gear drive, 150 ton                                                                                            | Q-6          | 126             | .190          | TonAC | 76.50           | 5.20  |        | 81.70  | 92.50             |     |
| 300 ton                                                                                                        |              | 129             | .186          |       | 52.50           | 5.10  |        | 57.60  | 66                |     |
| 600 ton                                                                                                        |              | 132             | .182          |       | 41.50           | 4.96  |        | 46.46  | 53                |     |
| 840 ton                                                                                                        |              | 142             | .169          |       | 44              | 4.61  |        | 48.61  | 55.50             |     |
| Up to 1,000 tons                                                                                               |              | 150             | .160          |       | 43              | 4.37  |        | 47.37  | 54                |     |
| For higher capacities, use multiples                                                                           |              |                 |               |       |                 |       |        |        |                   |     |
| For pumps and piping, add                                                                                      | Q-6          | 38              | .632          | TonAC | 35              | 17.25 |        | 52.25  | 64.50             |     |
| For absorption systems, add                                                                                    |              |                 |               |       | 75%             | 75%   |        |        |                   |     |
| For rigging, see division 016-460                                                                              |              |                 |               |       |                 |       |        |        |                   |     |
| DUCTWORK                                                                                                       | R157<br>-060 |                 |               |       |                 |       |        |        |                   | 250 |
| Fabricated rectangular, includes fittings, joints, supports, allowance for flexible connections, no insulation | R157<br>-070 |                 |               |       |                 |       |        |        |                   |     |
| NOTE: Fabrication and Installation are combined as LABOR cost.                                                 | R157<br>-100 |                 |               |       |                 |       |        |        |                   |     |
| Add to labor for elevated installation                                                                         |              |                 |               |       |                 |       |        |        |                   |     |
| of fabricated ductwork                                                                                         |              |                 |               |       |                 |       |        |        |                   |     |
| 10' to 15' high                                                                                                |              |                 |               |       |                 | 6%    |        |        |                   |     |
| 15' to 20' high                                                                                                |              |                 |               |       |                 | 12%   |        |        |                   |     |
| 20' to 25' high                                                                                                |              |                 |               |       |                 | 15%   |        |        |                   |     |
| 25' to 30' high                                                                                                |              |                 |               |       |                 | 21%   |        |        |                   |     |
| 30' to 35' high                                                                                                |              |                 |               |       |                 | 24%   |        |        |                   |     |
| 35' to 40' high                                                                                                |              |                 |               |       |                 | 30%   |        |        |                   |     |
| Over 40' high                                                                                                  |              |                 |               |       |                 | 33%   |        |        |                   |     |
| For duct insulation and lining see 155-651-3000                                                                |              |                 |               |       |                 |       |        |        |                   |     |
| Aluminum, alloy 3003-H14, under 100 lb.                                                                        | Q-10         | .75             | .320          | lb.   | 3.49            | 8.40  |        | 11.89  | 17                |     |
| 100 to 500 lb.                                                                                                 |              | 80              | .300          |       | 1.81            | 7.85  |        | 9.66   | 14.30             |     |
| 500 to 1,000 lb.                                                                                               |              | 95              | .253          |       | 1.62            | 6.65  |        | 8.27   | 12.20             |     |
| 1,000 to 2,000 lb.                                                                                             |              | 120             | .200          |       | 1.52            | 5.25  |        | 6.77   | 9.85              |     |
| 2,000 to 5,000 lb.                                                                                             |              | 130             | .185          |       | 1.38            | 4.84  |        | 6.22   | 9.10              |     |
| Over 5,000 lb.                                                                                                 |              | 145             | .166          |       | 1.38            | 4.34  |        | 5.72   | 8.30              |     |
| Galvanized steel, under 200 lb.                                                                                |              | 235             | .102          |       | 2.47            | 2.68  |        | 5.15   | 6.90              |     |
| 200 to 500 lb.                                                                                                 |              | 245             | .098          |       | 1               | 2.57  |        | 3.57   | 5.10              |     |
| 500 to 1,000 lb.                                                                                               |              | 255             | .094          |       | .62             | 2.47  |        | 3.09   | 4.55              |     |

## 020 | Subsurface Investigation and Demolition

|     | 020 700   Selective Demolition                           | CREW     | DAILY<br>OUTPUT | MAN-<br>HOURS | UNIT | 1995 BARE COSTS |       |        | TOTAL<br>INCL G&P |       |      |     |
|-----|----------------------------------------------------------|----------|-----------------|---------------|------|-----------------|-------|--------|-------------------|-------|------|-----|
|     |                                                          |          |                 |               |      | MAT.            | LABOR | EQUIP. |                   |       |      |     |
| 724 | 1320 Double                                              | 1 Plum   | 7               | 1.143         | Ea.  |                 | 33.50 |        | 33.50             | 53    | 724  |     |
|     | 1400 Water closet, floor mounted                         |          | 8               | 1             |      |                 | 29.50 |        | 29.50             | 46.50 |      |     |
|     | 1420 Wall mounted                                        |          | 7               | 1.143         |      |                 | 33.50 |        | 33.50             | 53    |      |     |
|     | 1500 Urinal, floor mounted                               |          | 4               | 2             |      |                 | 58.50 |        | 58.50             | 92.50 |      |     |
|     | 1520 Wall mounted                                        |          | 7               | 1.143         |      |                 | 33.50 |        | 33.50             | 53    |      |     |
|     | 1600 Water fountains, free standing                      |          | 8               | 1             |      |                 | 29.50 |        | 29.50             | 46.50 |      |     |
|     | 1620 Recessed                                            |          | 6               | 1.333         |      |                 | 39    |        | 39                | 61.50 |      |     |
|     | 2000 Piping, metal, to 2" diameter                       |          | 200             | .040          | LF.  |                 | 1.17  |        | 1.17              | 1.85  |      |     |
|     | 2050 To 4" diameter                                      |          | 150             | .053          |      |                 | 1.56  |        | 1.56              | 2.47  |      |     |
|     | 2100 To 8" diameter                                      | 2 Plum   | 100             | .160          |      |                 | 4.69  |        | 4.69              | 7.40  |      |     |
|     | 2150 To 16" diameter                                     |          | 60              | .267          |      |                 | 7.80  |        | 7.80              | 12.35 |      |     |
|     | 2240 Toilet partitions, see division 020-732             |          |                 |               |      |                 |       |        |                   |       |      |     |
|     | 2250 Water heater, 40 gal.                               | 1 Plum   | 6               | 1.333         | Ea.  |                 | 39    |        | 39                | 61.50 |      |     |
|     | 6000 Remove and reset fixtures, minimum                  |          | 6               | 1.333         |      |                 | 39    |        | 39                | 61.50 |      |     |
|     | 6100 Maximum                                             |          | 4               | 2             |      |                 | 58.50 |        | 58.50             | 92.50 |      |     |
| 725 | 0010 ROOFING AND SIDING DEMOLITION                       | R020-510 | B-13            | 1,680         | .033 | S.F.            |       |        |                   |       | 725  |     |
|     | 1000 Deck, roof, concrete plank                          |          |                 | 3,900         | .014 |                 | .30   | .13    | .43               | .54   |      |     |
|     | 1100 Gypsum plank                                        |          |                 | 3,500         | .016 |                 | .34   | .14    | .48               | .72   |      |     |
|     | 1150 Metal decking                                       |          |                 |               |      |                 |       |        |                   |       |      |     |
|     | 1200 Wood, boards, tongue and groove, 2" x 6"            | 2 Clb    | 960             | .017          |      |                 | .32   |        | .32               | .55   |      |     |
|     | 1220 2" x 10"                                            |          | 1,040           | .015          |      |                 | .30   |        | .30               | .51   |      |     |
|     | 1280 Standard planks, 1" x 6"                            |          | 1,080           | .015          |      |                 | .29   |        | .29               | .49   |      |     |
|     | 1320 1" x 8"                                             |          | 1,160           | .014          |      |                 | .27   |        | .27               | .45   |      |     |
|     | 1340 1" x 12"                                            |          | 1,200           | .013          |      |                 | .26   |        | .26               | .44   |      |     |
|     | 2000 Gutters, aluminum or wood, edge hung                | 1 Clb    | 240             | .033          | LF.  |                 | .65   |        | .65               | 1.10  |      |     |
|     | 2100 Built-in                                            |          | 100             | .080          |      |                 | 1.55  |        | 1.55              | 2.63  |      |     |
|     | 2500 Roof accessories, plumbing vent flashing            |          | 14              | .571          | Ea.  |                 | 11.10 |        | 11.10             | 18.80 |      |     |
|     | 2600 Adjustable metal chimney flashing                   |          | 9               | .889          |      |                 | 17.25 |        | 17.25             | 29    |      |     |
|     | 3000 Roofing, built-up, 5 ply roof, no gravel            | B-2      | 1,600           | .025          | S.F. |                 | .49   |        | .49               | .84   |      |     |
|     | 3001 Including gravel                                    |          | 890             | .045          |      |                 | .89   |        | .89               | 1.51  |      |     |
|     | 3100 Gravel removal, minimum                             |          | 5,000           | .008          |      |                 | .16   |        | .16               | .27   |      |     |
|     | 3120 Maximum                                             |          | 2,000           | .020          |      |                 | .40   |        | .40               | .57   |      |     |
|     | 3400 Roof insulation board                               |          | 3,900           | .010          |      |                 | .20   |        | .20               | .34   |      |     |
|     | 4000 Shingles, asphalt strip                             |          | 3,500           | .011          |      |                 | .23   |        | .23               | .38   |      |     |
|     | 4100 Slate                                               |          | 2,500           | .016          |      |                 | .32   |        | .32               | .54   |      |     |
|     | 4300 Wood                                                |          | 2,200           | .018          |      |                 | .36   |        | .36               | .61   |      |     |
|     | 4500 Skylight to 10 S.F.                                 | 1 Clb    | 8               | 1             | Ea.  |                 | 19.40 |        | 19.40             | 33    |      |     |
|     | 5000 Siding, metal, horizontal                           |          | 444             | .018          | S.F. |                 | .35   |        | .35               | .59   |      |     |
|     | 5020 Vertical                                            |          | 400             | .020          |      |                 | .39   |        | .39               | .66   |      |     |
|     | 5200 Wood, boards, vertical                              |          | 400             | .020          |      |                 | .39   |        | .39               | .66   |      |     |
|     | 5220 Clapboards, horizontal                              |          | 380             | .021          |      |                 | .41   |        | .41               | .69   |      |     |
|     | 5240 Shingles                                            |          | 350             | .023          |      |                 | .44   |        | .44               | .75   |      |     |
|     | 5260 Textured plywood                                    |          | 725             | .011          |      |                 | .21   |        | .21               | .36   |      |     |
| 726 | 0010 SAW CUTTING Asphalt over 1000 LF., 3" deep          | B-89     | 775             | .021          | LF.  |                 | .21   | .46    | .36               | 1.03  | 136  | 728 |
|     | 0020 Each additional inch of depth                       |          | 1,250           | .013          |      |                 | .05   | .28    | .22               | .55   | .76  |     |
|     | 0400 Concrete slabs, mesh reinforcing, per inch of depth |          | 960             | .017          |      |                 | .27   | .37    | .29               | .93   | 1.21 |     |
|     | 0420 Rod reinforcing, per inch of depth                  |          | 550             | .029          |      |                 | .36   | .64    | .50               | 1.50  | 1.98 |     |
|     | 0800 Concrete walls, plain, per inch of depth            | A-1A     | 100             | .080          |      |                 | .25   | 1.55   | .34               | 2.14  | 3.27 |     |
|     | 0820 Rod reinforcing, per inch of depth                  |          | 60              | .133          |      |                 | .36   | 2.59   | .57               | 3.52  | 5.40 |     |
|     | 1200 Masonry walls, brick, per inch of depth             |          | 146             | .055          |      |                 | .25   | 1.06   | .23               | 1.54  | 2.33 |     |
|     | 1220 Block walls, solid, per inch of depth               |          | 122             | .066          |      |                 | .25   | 1.27   | .28               | 1.80  | 2.74 |     |
|     | 1300 Wood sheathing to 1" thick, on walls                | 1 Carp   | 200             | .040          |      |                 | .98   |        | .98               | 1.67  |      |     |
|     | 1320 On roof                                             |          | 250             | .032          |      |                 | .79   |        | .79               | 1.33  |      |     |
|     | See also div. 020-125 core drilling                      |          |                 |               |      |                 |       |        |                   |       |      |     |

## 155 | Heating

### 155 600 | Heating System Access.

|     |      |                                                                 | DAILY<br>OUTPUT | MAN-<br>HOURS | UNIT | 1995 BARE COSTS |       |        |       | TOTAL<br>INCL O&P |
|-----|------|-----------------------------------------------------------------|-----------------|---------------|------|-----------------|-------|--------|-------|-------------------|
|     |      |                                                                 |                 |               |      | MAT.            | LABOR | EQUIP. | TOTAL |                   |
| 651 | 2000 | Breeching, 2" calcium silicate with 1/2" cement finish, no lath |                 |               |      |                 |       |        |       |                   |
|     | 2020 | Rectangular                                                     | Q-14            | .42           | .381 | S.F.            | 4.79  | 9.60   |       | 14.39             |
|     | 2040 | Round                                                           |                 | 38.70         | .413 |                 | 5.30  | 10.40  |       | 15.70             |
|     | 2300 | Calcium silicate block, + 200° to + 1200°F                      |                 |               |      |                 |       |        |       | 22.50             |
|     | 2310 | On irregular surfaces, valves and fittings                      |                 |               |      |                 |       |        |       |                   |
|     | 2340 | 1" thick                                                        | Q-14            | .30           | .533 | S.F.            | 2.71  | 13.45  |       | 16.16             |
|     | 2360 | 1-1/2" thick                                                    |                 | .25           | .640 |                 | 2.95  | 16.15  |       | 19.10             |
|     | 2380 | 2" thick                                                        |                 | .22           | .727 |                 | 3.74  | 18.35  |       | 22.09             |
|     | 2400 | 3" thick                                                        |                 |               | .18  | .889            |       | 5.95   | 22.50 | 28.45             |
|     | 2410 | On plane surfaces                                               |                 |               |      |                 |       |        |       | 43                |
|     | 2420 | 1" thick                                                        | Q-14            | .168          | .095 | S.F.            | 2.71  | 2.40   |       | 5.11              |
|     | 2430 | 1-1/2" thick                                                    |                 | .144          | .111 |                 | 2.95  | 2.80   |       | 5.75              |
|     | 2440 | 2" thick                                                        |                 | .126          | .127 |                 | 3.74  | 3.20   |       | 6.94              |
|     | 2450 | 3" thick                                                        |                 | .100          | .160 |                 | 5.95  | 4.03   |       | 9.98              |
|     | 2900 | Domestic water heater wrap kit                                  |                 |               |      |                 |       |        |       |                   |
|     | 2920 | 1-1/2" with vinyl jacket, 20-60 gal.                            | 1 Plum          | 8             | 1    | Ea.             | 30    | 29.50  |       | 59.50             |
|     | 3000 | Ductwork                                                        |                 |               |      |                 |       |        |       |                   |
|     | 3020 | Blanket type, fiberglass, flexible                              |                 |               |      |                 |       |        |       |                   |
|     | 3030 | Fire resistant liner, black coating one side                    |                 |               |      |                 |       |        |       |                   |
|     | 3050 | 1/2" thick, 2 lb. density                                       | Q-14            | .380          | .042 | S.F.            | .38   | 1.06   |       | 1.44              |
|     | 3060 | 1" thick, 1-1/2 lb. density                                     |                 | .350          | .046 |                 | .50   | 1.15   |       | 1.65              |
|     | 3070 | 1-1/2" thick, 1-1/2 lb. density                                 |                 | .320          | .050 |                 | .62   | 1.26   |       | 1.88              |
|     | 3080 | 2" thick, 1-1/2 lb. density                                     |                 |               | .300 | .053            |       | .86    | 1.34  | 2.20              |
|     | 3140 | FRK vapor barrier wrap, .75 lb. density                         |                 |               |      |                 |       |        |       | 3.12              |
|     | 3160 | 1" thick                                                        | Q-14            | .350          | .046 | S.F.            | .28   | 1.15   |       | 1.43              |
|     | 3170 | 1-1/2" thick                                                    |                 | .320          | .050 |                 | .37   | 1.26   |       | 1.63              |
|     | 3180 | 2" thick                                                        |                 | .300          | .053 |                 | .46   | 1.34   |       | 1.80              |
|     | 3190 | 3" thick                                                        |                 | .260          | .062 |                 | .53   | 1.55   |       | 2.08              |
|     | 3200 | 4" thick                                                        |                 |               | .242 | .066            |       | .71    | 1.67  | 2.38              |
|     | 3210 | Vinyl jacket, same as FRK                                       |                 |               |      |                 |       |        |       |                   |
|     | 3280 | Unfaced, 1 lb. density                                          |                 |               |      |                 |       |        |       |                   |
|     | 3310 | 1" thick                                                        | Q-14            | .360          | .044 | S.F.            | .29   | 1.12   |       | 1.41              |
|     | 3320 | 1-1/2" thick                                                    |                 | .330          | .048 |                 | .39   | 1.22   |       | 1.61              |
|     | 3330 | 2" thick                                                        |                 |               | .310 | .052            |       | .48    | 1.30  | 1.78              |
|     | 3490 | Board type, fiberglass, 3 lb. density                           |                 |               |      |                 |       |        |       |                   |
|     | 3500 | Fire resistant, black pigmented, 1 side                         |                 |               |      |                 |       |        |       |                   |
|     | 3520 | 1" thick                                                        | Q-14            | .150          | .107 | S.F.            | 1.44  | 2.69   |       | 4.13              |
|     | 3540 | 1-1/2" thick                                                    |                 | .130          | .123 |                 | 1.78  | 3.10   |       | 4.88              |
|     | 3560 | 2" thick                                                        |                 |               | .120 | .133            |       | 2.15   | 3.36  | 5.51              |
|     | 3600 | FRK vapor barrier                                               |                 |               |      |                 |       |        |       | 7.80              |
|     | 3620 | 1" thick                                                        | Q-14            | .150          | .107 | S.F.            | 1.10  | 2.69   |       | 3.79              |
|     | 3630 | 1-1/2" thick                                                    |                 | .130          | .123 |                 | 1.30  | 3.10   |       | 4.40              |
|     | 3640 | 2" thick                                                        |                 |               | .120 | .133            |       | 1.60   | 3.36  | 4.96              |
|     | 3680 | No finish                                                       |                 |               |      |                 |       |        |       | 7.20              |
|     | 3700 | 1" thick                                                        | Q-14            | .170          | .094 | S.F.            | .65   | 2.37   |       | 3.02              |
|     | 3710 | 1-1/2" thick                                                    |                 | .140          | .114 |                 | .75   | 2.88   |       | 3.63              |
|     | 3720 | 2" thick                                                        |                 |               | .130 | .123            |       | 1      | 3.10  | 4.10              |
|     | 3730 | Sheet insulation                                                |                 |               |      |                 |       |        |       |                   |
|     | 3760 | Polyethylene foam, closed cell, UV resistant                    |                 |               |      |                 |       |        |       |                   |
|     | 3770 | Standard temperature (-90° to +212° F)                          |                 |               |      |                 |       |        |       |                   |
|     | 3771 | 1/4" thick                                                      | Q-14            | .450          | .036 | S.F.            | .31   | .90    |       | 1.21              |
|     | 3772 | 3/8" thick                                                      |                 | .440          | .036 |                 | .47   | .92    |       | 1.99              |
|     | 3773 | 1/2" thick                                                      |                 | .420          | .038 |                 | .62   | .96    |       | 1.58              |
|     | 3774 | 3/4" thick                                                      |                 | .400          | .040 |                 | .99   | 1.01   |       | 2                 |
|     | 3775 | 1" thick                                                        |                 |               | .380 | .042            |       | 1.32   | 1.06  | 2.38              |
|     | 3779 | Adhesive (see line 155-651-7878)                                |                 |               |      |                 |       |        |       | 3.17              |

# 092 | Lath, Plaster and Gypsum Board

## 092 600 | Gypsum Board Systems

| ITEM<br>1. O&P | DESCRIPTION                                                            | DAILY<br>OUTPUT | MAN-<br>HOURS | UNIT | 1995 BARE COSTS |       |        |       | TOTAL<br>INCL O&P |
|----------------|------------------------------------------------------------------------|-----------------|---------------|------|-----------------|-------|--------|-------|-------------------|
|                |                                                                        |                 |               |      | MAT.            | LABOR | EQUIP. | TOTAL |                   |
| 508            | 2000 5/8" thick, on walls, standard, no finish included                | 2 Carp          | 2,000         | .008 | S.F.            | .20   | .20    | .40   | .55               |
|                | 2050 Taped and finished                                                |                 | 965           | .017 |                 | .25   | .41    | .66   | .97               |
| .55            | 2100 Fire resistant, no finish included                                |                 | 2,000         | .008 |                 | .22   | .20    | .42   | .57               |
| 1.04           | 2150 Taped and finished                                                |                 | 965           | .017 |                 | .27   | .41    | .68   | .99               |
| 1.28           | 2200 Water resistant, no finish included                               |                 | 2,000         | .008 |                 | .29   | .20    | .49   | .65               |
| 1.75           | 2250 Taped and finished                                                |                 | 965           | .017 |                 | .34   | .41    | .75   | 1.06              |
| .56            | 2300 Prefinished, vinyl, clipped to studs                              |                 | 900           | .018 |                 | .59   | .44    | 1.03  | 1.39              |
| 1.05           | 3000 On ceilings, standard, no finish included                         |                 | 1,800         | .009 |                 | .20   | .22    | .42   | .59               |
| .57            | 3050 Taped and finished                                                |                 | 765           | .021 |                 | .25   | .51    | .76   | 1.15              |
| 1.07           | 3100 Fire resistant, no finish included                                |                 | 1,800         | .009 |                 | .22   | .22    | .44   | .61               |
| 1.31           | 3150 Taped and finished                                                |                 | 765           | .021 |                 | .27   | .51    | .78   | 1.17              |
| 1.80           | 3200 Water resistant, no finish included                               |                 | 1,800         | .009 |                 | .29   | .22    | .51   | .69               |
| 1.34           | 3250 Taped and finished                                                |                 | 765           | .021 |                 | .34   | .51    | .85   | 1.24              |
| 1.85           | 3500 On beams, columns, or soffits, standard, no finish included       |                 | 675           | .024 |                 | .29   | .58    | .87   | 1.31              |
| .56            | 3550 Taped and finished                                                |                 | 475           | .034 |                 | .35   | .83    | 1.18  | 1.79              |
| 1.08           | 3600 Fire resistant, no finish included                                |                 | 675           | .024 |                 | .31   | .58    | .89   | 1.33              |
| 1.31           | 3650 Taped and finished                                                |                 | 475           | .034 |                 | .37   | .83    | 1.20  | 1.81              |
| 1.80           | 3700 Water resistant, no finish included                               |                 | 675           | .024 |                 | .38   | .58    | .96   | 1.41              |
| .33            | 3750 Taped and finished                                                |                 | 475           | .034 |                 | .43   | .83    | 1.26  | 1.87              |
| .17            | 4000 Fireproofing, beams or columns, 2 layers, 1/2" thick, incl finish |                 | 330           | .048 |                 | .49   | 1.19   | 1.68  | 2.56              |
| 604            | 4050 5/8" thick                                                        |                 | 300           | .053 |                 | .55   | 1.31   | 1.86  | 2.83              |
|                | 4100 3 layers, 1/2" thick                                              |                 | 225           | .071 |                 | .73   | 1.75   | 2.48  | 3.77              |
| 1.16           | 4150 5/8" thick                                                        |                 | 210           | .076 |                 | .79   | 1.87   | 2.66  | 4.05              |
| 1.18           | 5050 For 1" thick coreboard on columns                                 | ↓               | 480           | .033 |                 | .51   | .82    | 1.33  | 1.95              |
| 1.45           | 5100 For foil-backed board, add                                        |                 |               |      |                 | .08   |        | .08   | .09               |
| 1.48           | 5200 For high ceilings, over 8' high, add                              | 2 Carp          | 3,060         | .005 |                 | .09   | .13    | .22   | .32               |
| 1.2            | 5270 For textured spray, add                                           | 2 Lath          | 1,600         | .010 |                 | .11   | .24    | .35   | .51               |
| 1.43           | 5300 For over 3 stories high, add per story                            | 2 Carp          | 6,100         | .003 | ↓               | .05   | .06    | .11   | .17               |
| 1.90           | 5350 For finishing corners, inside or outside, add                     |                 | 1,100         | .015 | L.F.            | .06   | .36    | .42   | .68               |
| 1.44           | 5500 For acoustical sealant, add per bead                              | 1 Carp          | 500           | .016 | "               | .03   | .39    | .42   | .70               |
|                | 5550 Sealant, 1 quart tube                                             |                 |               |      | Ea.             | 4.10  |        | 4.10  | 4.51              |
| 608            | 5600 Sound deadening board, 1/4" gypsum                                | 2 Carp          | 1,800         | .009 | S.F.            | .16   | .22    | .38   | .55               |
|                | 5650 1/2" wood fiber                                                   |                 | 1,800         | .009 | "               | .22   | .22    | .44   | .61               |
| 52             | 0010 METAL STUDS, DRYWALL Partitions, 10' high, with runners           |                 |               |      |                 |       |        |       | 612               |
| .55            | 0050 See also Studding, division 051-230                               |                 |               |      |                 |       |        |       |                   |
| 1.27           | 2000 Non-load bearing, galvanized, 25 ga. 1-5/8", 16" O.C.             | 1 Carp          | 450           | .018 | S.F.            | .24   | .44    | .68   | 1                 |
| .52            | 2100 24" O.C.                                                          |                 | 520           | .015 |                 | .19   | .38    | .57   | .85               |
| .92            | 2200 2-1/2" wide, 16" O.C.                                             |                 | 440           | .018 |                 | .26   | .45    | .71   | 1.05              |
| .55            | 2250 24" O.C.                                                          |                 | 510           | .016 |                 | .22   | .39    | .61   | .89               |
| .95            | 2300 3-5/8" wide, 16" O.C.                                             |                 | 430           | .019 |                 | .30   | .46    | .76   | 1.11              |
| .59            | 2350 24" O.C.                                                          |                 | 500           | .016 |                 | .26   | .39    | .65   | .96               |
| 1.01           | 2400 4" wide, 16" O.C.                                                 |                 | 420           | .019 |                 | .35   | .47    | .82   | 1.18              |
| 1.30           | 2450 24" O.C.                                                          |                 | 490           | .016 |                 | .28   | .40    | .68   | .99               |
| .56            | 2500 6" wide, 16" O.C.                                                 |                 | 410           | .020 |                 | .45   | .48    | .93   | 1.31              |
| 1.12           | 2550 24" O.C.                                                          |                 | 480           | .017 |                 | .34   | .41    | .75   | 1.07              |
| .59            | 2600 20 ga. studs, 1-5/8" wide, 16" O.C.                               |                 | 450           | .018 |                 | .42   | .44    | .86   | 1.20              |
| 1.15           | 2650 24" O.C.                                                          |                 | 520           | .015 |                 | .34   | .38    | .72   | 1.01              |
| .53            | 2700 2-1/2" wide, 16" O.C.                                             |                 | 440           | .018 |                 | .47   | .45    | .92   | 1.28              |
| 1.18           | 2750 24" O.C.                                                          |                 | 510           | .016 |                 | .38   | .39    | .77   | 1.07              |
| 1.35           | 2800 3-5/8" wide, 16" O.C.                                             |                 | 430           | .019 |                 | .56   | .46    | 1.02  | 1.40              |
| 1.82           | 2850 24" O.C.                                                          |                 | 500           | .016 |                 | .45   | .39    | .84   | 1.17              |
| 1.32           | 2900 4" wide, 16" O.C.                                                 |                 | 420           | .019 |                 | .59   | .47    | 1.06  | 1.44              |
| 1.77           | 2950 24" O.C.                                                          |                 | 490           | .016 |                 | .47   | .40    | .87   | 1.20              |
| 1.1            | 3000 6" wide, 16" O.C.                                                 |                 | 410           | .020 |                 | .74   | .48    | 1.22  | 1.62              |
| 1.83           | 3050 24" O.C.                                                          | ↓               | 480           | .017 | ↓               | .59   | .41    | 1     | 1.35              |

Standard coverage of these items see Means Interior Cost Data 1995

# 099 | Painting and Wall Coverings

## 099 200 | Interior Painting

|      |                                                           | CREW   | DAILY<br>OUTPUT | MAN-<br>HOURS | UNIT | 1995 BARE COSTS |       |        |       | TOTAL<br>INCL O&P |
|------|-----------------------------------------------------------|--------|-----------------|---------------|------|-----------------|-------|--------|-------|-------------------|
|      |                                                           |        |                 |               |      | MAT.            | LABOR | EQUIP. | TOTAL |                   |
| 6300 | To 16" diameter, primer or sealer coat, brushwork         | 2 Pord | 340             | .047          | L.F. | .19             | 1.06  |        | 1.25  | 1.96              |
| 6350 | Spray                                                     |        | 567             | .028          |      | .21             | .64   |        | .85   | 1.28              |
| 6400 | Paint 1 coat, brushwork                                   |        | 325             | .049          |      | .20             | 1.11  |        | 1.31  | 2.05              |
| 6450 | Spray                                                     |        | 567             | .028          |      | .23             | .64   |        | .87   | 1.30              |
| 6500 | Paint 2 coats, brushwork                                  |        | 202             | .079          |      | .40             | 1.79  |        | 2.19  | 3.38              |
| 6550 | Spray                                                     |        | 323             | .050          |      | .44             | 1.12  |        | 1.56  | 2.32              |
| 7000 | Trim, wood, incl. puttying, under 6" wide                 |        |                 |               |      |                 |       |        |       |                   |
| 7200 | Primer coat, oil base, brushwork                          | 1 Pord | 900             | .009          | L.F. | .02             | .20   |        | .22   | .35               |
| 7250 | Paint, 1 coat, brushwork                                  |        | 875             | .009          |      | .02             | .21   |        | .23   | .36               |
| 7400 | 2 coats                                                   |        | 520             | .015          |      | .04             | .35   |        | .39   | .61               |
| 7450 | 3 coats                                                   |        | 370             | .022          |      | .05             | .49   |        | .54   | .86               |
| 7500 | Over 6" wide, primer coat, brushwork                      |        | 600             | .013          |      | .04             | .30   |        | .34   | .53               |
| 7550 | Paint, 1 coat, brushwork                                  |        | 450             | .018          |      | .04             | .40   |        | .44   | .70               |
|      | 2 coats                                                   |        | 265             | .030          |      | .07             | .68   |        | .75   | 1.20              |
| 7600 | 3 coats                                                   |        | 190             | .042          |      | .09             | .95   |        | 1.04  | 1.66              |
| 7650 | Cornice, simple design, primer coat, oil base, brushwork  |        | 550             | .015          | S.F. | .09             | .33   |        | .42   | .64               |
| 8000 | Paint, 1 coat                                             |        | 500             | .016          |      | .09             | .36   |        | .45   | .69               |
| 8250 | 2 coats                                                   |        | 300             | .027          |      | .18             | .60   |        | .78   | 1.19              |
| 8300 | Ornate design, primer coat                                |        | 300             | .027          |      | .19             | .60   |        | .79   | 1.20              |
| 8400 | Paint, 1 coat                                             |        | 280             | .029          |      | .19             | .65   |        | .84   | 1.27              |
| 8450 | 2 coats                                                   |        | 170             | .047          |      | .35             | 1.06  |        | 1.41  | 2.14              |
| 8600 | Balustrades, primer coat, oil base, brushwork             |        | 598             | .013          |      | .05             | .30   |        | .35   | .56               |
| 8650 | Paint, 1 coat                                             |        | 544             | .015          |      | .05             | .33   |        | .38   | .61               |
| 8700 | 2 coats                                                   |        | 340             | .024          |      | .09             | .53   |        | .52   | .97               |
| 8900 | Trusses and wood frames, primer coat, oil base, brushwork |        | 800             | .010          |      | .05             | .23   |        | .28   | .43               |
| 8950 | Spray                                                     |        | 1,200           | .007          |      | .05             | .15   |        | .20   | .31               |
| 9000 | Paint 1 coat, brushwork                                   |        | 750             | .011          |      | .05             | .24   |        | .29   | .46               |
| 9200 | Spray                                                     |        | 1,200           | .007          |      | .05             | .15   |        | .20   | .31               |
| 9220 | Paint 2 coats, brushwork                                  |        | 500             | .016          |      | .09             | .36   |        | .45   | .69               |
| 9240 | Spray                                                     |        | 600             | .013          |      | .09             | .30   |        | .39   | .59               |
| 9260 | Stain, brushwork, wipe off                                |        | 600             | .013          |      | .03             | .30   |        | .33   | .52               |
| 9280 | Varnish, 3 coats, brushwork                               |        | 275             | .029          |      | .10             | .66   |        | .76   | 1.19              |
| 9350 | For latex paint, deduct                                   |        |                 |               |      | 10%             |       |        |       |                   |

|      |                                                                |        |       |      |      |     |     |  |     |     |
|------|----------------------------------------------------------------|--------|-------|------|------|-----|-----|--|-----|-----|
| 0010 | WALLS AND CEILINGS                                             |        |       |      |      |     |     |  |     |     |
| 0020 | Labor cost includes protection of adjacent items not painted   |        |       |      |      |     |     |  |     |     |
| 0100 | Concrete, dry wall or plaster, oil base, primer or sealer coat |        |       |      |      |     |     |  |     |     |
| 0200 | Smooth finish, brushwork                                       | 1 Pord | 1,300 | .006 | S.F. | .04 | .14 |  | .18 | .27 |
| 0240 | Roller                                                         |        | 2,040 | .004 |      | .04 | .09 |  | .13 | .19 |
| 0300 | Sand finish, brushwork                                         |        | 1,163 | .007 |      | .07 | .16 |  | .23 | .34 |
| 0340 | Roller                                                         |        | 1,700 | .005 |      | .07 | .11 |  | .18 | .25 |
| 0380 | Spray                                                          |        | 2,720 | .003 |      | .05 | .07 |  | .12 | .17 |
| 0400 | Paint 1 coat, smooth finish, brushwork                         |        | 1,200 | .007 |      | .05 | .15 |  | .20 | .31 |
| 0440 | Roller                                                         |        | 2,000 | .004 |      | .04 | .09 |  | .13 | .19 |
| 0480 | Spray                                                          |        | 2,200 | .004 |      | .04 | .08 |  | .12 | .17 |
| 0500 | Sand finish, brushwork                                         |        | 1,050 | .008 |      | .06 | .17 |  | .23 | .35 |
| 0540 | Roller                                                         |        | 1,600 | .005 |      | .05 | .09 |  | .14 | .20 |
| 0580 | Spray                                                          |        | 2,100 | .004 |      | .05 | .09 |  | .17 | .26 |
| 0600 | Paint 2 coats, smooth finish, brushwork                        |        | 680   | .012 |      | .08 | .27 |  | .35 | .53 |
| 0640 | Roller                                                         |        | 1,190 | .007 |      | .07 | .15 |  | .22 | .33 |
| 0680 | Spray                                                          |        | 1,700 | .005 |      | .08 | .11 |  | .19 | .26 |
| 0900 | Sand finish, brushwork                                         |        | 605   | .013 |      | .11 | .30 |  | .41 | .61 |
| 0940 | Roller                                                         |        | 1,020 | .008 |      | .10 | .18 |  | .28 | .40 |
| 0980 | Spray                                                          |        | 1,700 | .005 |      | .09 | .11 |  | .20 | .27 |
| 1200 | Paint 3 coats, smooth finish, brushwork                        |        | 510   | .016 |      | .12 | .35 |  | .47 | .71 |
| 1240 | Roller                                                         |        | 790   | .010 |      | .11 | .23 |  | .34 | .50 |

For expanded coverage of these items see Means Interior Cost Data 1995

## **4.10 ECO 10: TURN OFF OFFICE AHU AT NIGHT**

**Proposed Modifications:** Install a time clock to turn off the AHU serving the office areas in the building at night.

Since these areas are not occupied at night, the temperature does not need to be maintained or the space ventilated during unoccupied periods. In the summer the temperature may be allowed to rise, while in the winter the temperature may be allowed to drop, in order to save energy.

**Existing Conditions:** Presently, the thermostat is set to maintain 70°F year-round, even when the offices are unoccupied.

**Method of Analysis:** The analysis proceeded as follows:

- The AHU operating schedules in the baseline energy model were altered so that the AHU only operates from 6 a.m. to 4 p.m. daily.
- The energy savings were compared to the baseline model and the energy and cost savings were calculated.
- A LCCA was prepared to determine the cost effectiveness of implementing this ECO.
- It was assumed that the GEODSS maintenance staff would install the time clock as part of their normal daily duties. The cost of a time clock is the only expense to implement this ECO.

**Results:** The LCCA results are presented in the following table.

|                                      |         |
|--------------------------------------|---------|
| Annual Electric Energy Savings (kWh) | 48,210  |
| Total Annual Energy Cost Savings     | \$3,958 |
| Annual Maintenance Cost Savings      | \$0     |
| Investment Cost                      | \$420   |
| Savings-to-Investment Ratio (SIR)    | 80.86   |
| Simple Payback (Years)               | 0.10    |

**Recommendations:** Turning off the office AHU at night is recommended.

| 1. COMPONENT<br>ARMY                                                                            | FY 1995 MILITARY CONSTRUCTION PROJECT DATA |                        |                       |                                         | 2. DATE<br>Jul-95      |
|-------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|-----------------------|-----------------------------------------|------------------------|
| 3. INSTALLATION AND LOCATION<br>GEODSS Site, White Sands Missile Range, NM                      |                                            |                        |                       |                                         |                        |
| 4. PROJECT TITLE<br>Recirculate Tower Air                                                       |                                            |                        | 5. PROJECT NUMBER     |                                         |                        |
| <b>LIFE CYCLE COST ANALYSIS SUMMARY</b><br><b>ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)</b> |                                            |                        |                       |                                         |                        |
| LOCATION: White Sands Missile Range, NM                                                         |                                            | REGION: 4 (New Mexico) |                       | PROJECT NO: 1406.008                    |                        |
| PROJECT TITLE: Turn Off Office AHU at Night                                                     |                                            |                        |                       | FISCAL YEAR: 1995                       |                        |
| ANALYSIS DATE: 11/13/95                                                                         |                                            | ECONOMIC LIFE: 10      |                       | PREPARED BY: E.Smith                    |                        |
| <b>1. INVESTMENT</b>                                                                            |                                            |                        |                       |                                         |                        |
| A. CONSTRUCTION COST                                                                            | =                                          | \$375                  |                       |                                         |                        |
| B. SIOH COST                                                                                    | (6.0% of 1A) =                             | \$22                   |                       |                                         |                        |
| C. DESIGN COST                                                                                  | (6.0% of 1A) =                             | \$22                   |                       |                                         |                        |
| D. TOTAL COST                                                                                   | (1A + 1B + 1C) =                           | \$420                  |                       |                                         |                        |
| E. SALVAGE VALUE OF EXISTING EQUIPMENT                                                          | =                                          | \$0                    |                       |                                         |                        |
| F. PUBLIC UTILITY COMPANY REBATE                                                                | =                                          | \$0                    |                       |                                         |                        |
| G. TOTAL INVESTMENT                                                                             | (1D -1E -1F) =                             | -----> \$420           |                       |                                         |                        |
| <b>2. ENERGY SAVINGS (+) OR COST (-):</b>                                                       |                                            |                        |                       |                                         |                        |
| DATE OF NISTR-85-3273-9 USED FOR DISCOUNT FACTORS:                                              |                                            |                        |                       | Jul-95                                  |                        |
| ENERGY SOURCE                                                                                   | FUEL COST \$/KWH (1)                       | SAVINGS KWH/YR (2)     | ANNUAL \$ SAVINGS (3) | DISCOUNT FACTOR (4)                     | DISCOUNTED SAVINGS (5) |
| A. ELECT. (SAV'GS)                                                                              | \$0.0821                                   | 48210                  | \$3,958               | 8.58                                    | \$33,960               |
| B. DIST (GAL.)                                                                                  | \$1.10                                     | 0                      | \$0                   |                                         | \$0                    |
| C. RESID (GAL.)                                                                                 | \$3.00                                     | 0                      | \$0                   |                                         | \$0                    |
| D. NAT GAS (MBTU)                                                                               | \$6.18                                     | 0                      | \$0                   |                                         | \$0                    |
| E. COAL                                                                                         | \$2.00                                     | 0                      | \$0                   |                                         | \$0                    |
| G. DEMAND (\$/kW)                                                                               | \$0.00                                     | 0                      | \$0                   |                                         | \$0                    |
| H. TOTAL                                                                                        |                                            | 48,210                 | \$3,958               | ----->                                  | \$33,960               |
| <b>3. NON-ENERGY SAVINGS (+) OR COST (-):</b>                                                   |                                            |                        |                       |                                         |                        |
| A. ANNUAL RECURRING (+/-)                                                                       |                                            |                        |                       |                                         |                        |
| 1 ANNUAL MAINTENANCE SAVINGS                                                                    |                                            | \$0                    | 14.88                 | \$0                                     |                        |
| 2                                                                                               |                                            |                        | 14.88                 | \$0                                     |                        |
| 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST                                                         |                                            | \$0                    |                       | \$0                                     |                        |
| B. NON-RECURRING (+/-)                                                                          |                                            |                        |                       |                                         |                        |
| ITEM                                                                                            | SAVINGS (+) COST(-) (1)                    | YEAR OF OCCURRENCE (2) | DISCOUNT FACTOR (3)   | DISCOUNTED SAV'G/COST(4)<br>(TABLE A-2) |                        |
| a.                                                                                              | \$0                                        | 0                      | 0.00                  | \$0                                     |                        |
| b.                                                                                              | \$0                                        | 0                      | 0.00                  | \$0                                     |                        |
| c.                                                                                              | \$0                                        | 0                      | 0.00                  | \$0                                     |                        |
| d. TOTAL                                                                                        | \$0                                        |                        |                       | \$0                                     |                        |
| C. TOTAL NON-ENERGY DISCOUNTED SAVINGS (+) OR COST (-) (3A3 + 3Bg4) =                           |                                            |                        |                       | \$0                                     |                        |
| 4. FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) (2H3 + 3A + (3Bg1/Economic Life))                  |                                            |                        |                       | \$3,958                                 |                        |
| 5. SIMPLE PAYBACK (SPB) IN YEARS (MUST BE < 10 YEARS TO QUALIFY) (1G/4) =                       |                                            |                        |                       | 0.1                                     |                        |
| 6. TOTAL NET DISCOUNTED SAVINGS (2H5 + 3C) =                                                    |                                            |                        |                       | \$33,960                                |                        |
| 7. DISCOUNTED SAVINGS-TO-INVESTMENT RATIO (SIR) (6/1G) =<br>(MUST HAVE SIR > 1.25 TO QUALIFY)   |                                            |                        |                       | 80.86                                   |                        |

E M C Engineering, Inc.  
EMC #1406-008  
GEODSS Site, White Sands Missile Range, NM

Turn Off Office AHU at Night

ECO-10.XLS  
Prepared By: EMS  
11/13/95  
Checked By: \_\_\_\_\_

|                      |    |
|----------------------|----|
| Economic Life(Years) | 10 |
|----------------------|----|

| Simulation     | Energy Consumed (MBTU) | Energy Consumed (kWh) |
|----------------|------------------------|-----------------------|
| Baseline Model | 3573.45                | 1,047,011             |
| Night Setback  | 3408.91                | 998,802               |
| Savings        | 164.54                 | 48,210                |
| Cost Savings   |                        | \$3,958               |

|                                      |          |
|--------------------------------------|----------|
| Annual Electric Energy Savings (kWh) | 48,210   |
| Total Annual Energy Cost Savings     | \$3,958  |
| Construction Cost                    | \$375    |
| SIOH (6.0%)                          | \$22     |
| Design Cost (6.0%)                   | \$22     |
| Investment Cost                      | \$420    |
| Discounted Savings                   | \$33,960 |
| Savings-to-Investment Ratio (SIR)    | 80.86    |
| Simple Payback (Years)               | 0.11     |

**TOTAL SITE ELECTRICITY ENERGY USE 3408.91 MBTU**



| ENGINEER'S OPINION OF PROBABLE COST |                               |                     |              |                  |                       |              | SHEET         | 1                   | OF               | 1         |            |           |       |
|-------------------------------------|-------------------------------|---------------------|--------------|------------------|-----------------------|--------------|---------------|---------------------|------------------|-----------|------------|-----------|-------|
| AREA                                |                               | ACTIVITY            |              | LOCATION         |                       |              | AMENDMENT NO. |                     |                  |           |            |           |       |
| PROJECT TITLE                       |                               | Turn Off Office AHU |              | CONTRACT NO.     |                       |              |               |                     |                  |           |            |           |       |
| GEOSS, Energy Conservation Survey   |                               |                     |              | DACA01-94-D-0033 |                       |              |               |                     |                  |           |            |           |       |
| Line No.                            | Item Description              | Unit of Measure     | No. of Units | MATERIAL COST    |                       | LABOR COST   |               |                     | EQUIPMENT COST   |           | TOTAL COST |           |       |
|                                     |                               |                     |              | Unit Cost        | Total                 | Manhrs/ Unit | Total Manhrs  | Labor Cost/ Manhour | Total Labor Cost | Unit Cost | Total      | Unit Cost | Total |
| 1                                   | Programmable Timer            | ea                  | 1            | \$249.33         | \$249                 | 2.00         | 2.00          | \$22.99             | \$46             | \$0.00    | \$0        | \$295     | \$295 |
| 2                                   | (solid state w/battery)       |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0       | \$0   |
| 3                                   | (Installation by GEOSS staff) |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0       | \$0   |
| 4                                   |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 5                                   |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 6                                   |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 7                                   |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 8                                   |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 9                                   |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 10                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 11                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 12                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 13                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 14                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 15                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$100.00  | \$0        | \$100.00  | \$0   |
| 16                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.30    | \$0        | \$0.30    | \$0   |
| 17                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 18                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 19                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 20                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 21                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 22                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 23                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 24                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 25                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 26                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 27                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 28                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 29                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 30                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 31                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 32                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 33                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 34                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 35                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 36                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 37                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 38                                  |                               |                     |              |                  | \$0                   |              | 0.00          | \$22.99             | \$0              | \$0.00    | \$0        | \$0.00    | \$0   |
| 39                                  | SUBCONTRACTOR SUBTOTAL        |                     |              |                  | \$249                 |              | 2             |                     | \$46             |           | \$0        |           | \$295 |
| 40                                  | LABOR BURDEN                  | %                   | 0            |                  | \$0                   |              |               |                     | \$0              |           | \$0        |           | \$0   |
| 41                                  | SUBTOTAL                      |                     | 0            |                  | \$249                 |              |               |                     | \$46             |           | \$0        |           | \$295 |
| 42                                  | OVERHEAD                      | %                   | 0            |                  | \$0                   |              |               |                     | \$0              |           | \$0        |           | \$0   |
| 43                                  | SUBTOTAL                      |                     | 0            |                  | \$249                 |              |               |                     | \$46             |           | \$0        |           | \$295 |
| 44                                  | PROFIT                        | %                   | 0            |                  | \$0                   |              |               |                     | \$0              |           | \$0        |           | \$0   |
| 45                                  | SUBCONTRACTOR TOTAL           |                     | 0            |                  | \$249                 |              |               |                     | \$46             |           | \$0        |           | \$295 |
| 46                                  | OVERHEAD                      | %                   | 0            |                  | \$0                   |              |               |                     | \$0              |           | \$0        |           | \$0   |
| 47                                  | SUBTOTAL                      |                     | 0            |                  | \$249                 |              |               |                     | \$46             |           | \$0        |           | \$295 |
| 48                                  | PROFIT                        | %                   | 0            |                  | \$0                   |              |               |                     | \$0              |           | \$0        |           | \$0   |
| 49                                  | SUBTOTAL                      |                     | 0            |                  | \$249                 |              |               |                     | \$46             |           | \$0        |           | \$295 |
| 50                                  | BOND                          | %                   | 0            |                  | \$0                   |              |               |                     | \$0              |           | \$0        |           | \$0   |
| 51                                  | SUBTOTAL                      |                     | 0            |                  | \$249                 |              |               |                     | \$46             |           | \$0        |           | \$295 |
| 52                                  | N. M. TAX                     | %                   | 5.8125       |                  | \$14                  |              |               |                     | \$3              |           | \$0        |           | \$17  |
| 53                                  | SUBTOTAL                      |                     | 0            |                  | \$264                 |              |               |                     | \$49             |           | \$0        |           | \$312 |
| 54                                  | CONTINGENCY                   | %                   | 20           |                  | \$53                  |              |               |                     | \$10             |           | \$0        |           | \$62  |
| 55                                  | GRAND TOTAL                   |                     |              |                  | \$317                 |              |               |                     | \$58             |           | \$0        |           | \$375 |
| PREPARED BY                         |                               | APPROVED BY         |              |                  | TITLE OR ORGANIZATION |              |               |                     | DATE             |           |            |           |       |
| EMS                                 |                               |                     |              |                  | EMC Engineers, Inc.   |              |               |                     | 11/10/95         |           |            |           |       |

# 157 | Air Conditioning and Ventilation

## 157 400 | Accessories

| ITEM | DESCRIPTION                                              | CREW   | DAILY<br>OUTPUT | MAN-<br>HOURS | UNIT | 1995 BARE COSTS |       |        | TOTAL  | INCL O&P |
|------|----------------------------------------------------------|--------|-----------------|---------------|------|-----------------|-------|--------|--------|----------|
|      |                                                          |        |                 |               |      | MAT.            | LABOR | EQUIP. |        |          |
| 3430 | Pneumatic/electric                                       | 1 Plum | 16              | .500          | Ea.  | 135             | 14.65 |        | 149.65 | 172      |
| 3440 | Pneumatic proportioning                                  |        | 8               | 1             |      | 156             | 29.50 |        | 185.50 | 217      |
| 3450 | Pneumatic switching                                      |        | 12              | .667          |      | 74.50           | 19.55 |        | 94.05  | 112      |
| 3460 | Selector, 3 point                                        |        | 6               | 1.333         |      | 55.50           | 39    |        | 94.50  | 121      |
| 3470 | Time delay                                               |        | 8               | 1             |      | 206             | 29.50 |        | 235.50 | 271      |
| 3500 | Sensor, air operated                                     |        |                 |               |      |                 |       |        |        |          |
| 3520 | Humidity                                                 | 1 Plum | 16              | .500          | Ea.  | 175             | 14.65 |        | 189.65 | 216      |
| 3540 | Pressure                                                 |        | 16              | .500          |      | 194             | 14.65 |        | 208.65 | 236      |
| 3560 | Temperature                                              |        | 12              | .667          |      | 138             | 19.55 |        | 157.55 | 182      |
| 3600 | Electric operated                                        |        |                 |               |      |                 |       |        |        |          |
| 3620 | Humidity                                                 | 1 Elec | 8               | 1             | Ea.  | 40              | 28.50 |        | 68.50  | 87       |
| 3650 | Pressure                                                 |        | 8               | 1             |      | 485             | 28.50 |        | 513.50 | 580      |
| 3680 | Temperature                                              |        | 10              | .800          |      | 80.50           | 23    |        | 103.50 | 124      |
| 4000 | Thermometers                                             |        |                 |               |      |                 |       |        |        |          |
| 4100 | Dial type, 3-1/2" diameter, vapor type, union connection | 1 Spi  | 32              | .250          | Ea.  | 95              | 7.30  |        | 102.30 | 116      |
| 4120 | Liquid type, union connection                            |        | 32              | .250          |      | 133             | 7.30  |        | 140.30 | 157      |
| 4130 | Remote reading, 15' capillary                            |        | 32              | .250          |      | 90              | 7.30  |        | 97.30  | 110      |
| 4500 | Stem type, 6-1/2" case, 2" stem, 1/2" NPT                |        | 32              | .250          |      | 24              | 7.30  |        | 31.30  | 37.50    |
| 4520 | 4" stem, 1/2" NPT                                        |        | 32              | .250          |      | 33              | 7.30  |        | 40.30  | 47.50    |
| 4600 | 9" case, 3-1/2" stem, 3/4" NPT                           |        | 28              | .286          |      | 40              | 8.35  |        | 48.35  | 57       |
| 4620 | 6" stem, 3/4" NPT                                        |        | 28              | .286          |      | 43              | 8.35  |        | 51.35  | 60.50    |
| 4640 | 8" stem, 3/4" NPT                                        |        | 28              | .286          |      | 49              | 8.35  |        | 57.35  | 67       |
| 4660 | 12" stem, 1" NPT                                         |        | 26              | .308          |      | 55              | 9     |        | 64     | 74.50    |
| 5000 | Thermostats                                              |        |                 |               |      |                 |       |        |        |          |
| 5030 | Manual                                                   | 1 Shee | 8               | 1             | Ea.  | 21              | 28    |        | 49     | 67       |
| 5040 | 1 set back, electric, timed                              |        | 8               | 1             |      | 69.50           | 28    |        | 97.50  | 121      |
| 5050 | 2 set back, electric, timed                              |        | 8               | 1             |      | 42.50           | 28    |        | 70.50  | 90.50    |
| 5100 | Locking cover                                            |        |                 |               |      | 13.80           |       |        | 13.80  | 15.15    |
| 5200 | 24 hour, automatic, clock                                | 1 Shee | 8               | 1             |      | 87              | 28    |        | 115    | 140      |
| 5220 | Electric, 2 wire                                         | 1 Elec | 13              | .615          |      | 11.60           | 17.55 |        | 29.15  | 39.50    |
| 5230 | 3 wire                                                   |        | 10              | .800          |      | 14.05           | 23    |        | 37.05  | 50       |
| 5240 | Pneumatic:                                               |        |                 |               |      |                 |       |        |        |          |
| 5250 | Single temp., single pressure                            | 1 Spi  | 8               | 1             | Ea.  | 102             | 29.50 |        | 131.50 | 157      |
| 5251 | Dual pressure                                            |        | 8               | 1             |      | 141             | 29.50 |        | 170.50 | 200      |
| 5252 | Dual temp., dual pressure                                |        | 8               | 1             |      | 132             | 29.50 |        | 161.50 | 190      |
| 5253 | Reverse acting w/averaging element                       |        | 8               | 1             |      | 124             | 29.50 |        | 153.50 | 181      |
| 5254 | Heating-cooling w/deadband                               |        | 8               | 1             |      | 139             | 29.50 |        | 168.50 | 198      |
| 5255 | Integral w/piston top valve actuator                     |        | 8               | 1             |      | 129             | 29.50 |        | 158.50 | 187      |
| 5256 | Dual temp., dual pressure                                |        | 8               | 1             |      | 151             | 29.50 |        | 180.50 | 211      |
| 5257 | Low limit, 8" averaging element                          |        | 8               | 1             |      | 94              | 29.50 |        | 123.50 | 149      |
| 5258 | Room single temp. proportional                           |        | 8               | 1             |      | 42              | 29.50 |        | 71.50  | 91       |
| 5300 | Transmitter, pneumatic                                   |        |                 |               |      |                 |       |        |        |          |
| 5320 | Temperature averaging element                            | 0-1    | 8               | 2             | Ea.  | 80.50           | 53    |        | 133.50 | 169      |
| 5350 | Pressure differential                                    | 1 Plum | 7               | 1.143         |      | 470             | 33.50 |        | 503.50 | 565      |
| 5370 | Humidity, duct                                           |        | 8               | 1             |      | 158             | 29.50 |        | 187.50 | 218      |
| 5380 | Room                                                     |        | 12              | .667          |      | 143             | 19.55 |        | 162.55 | 188      |
| 5390 | Temperature, with averaging element                      |        | 6               | 1.333         |      | 90              | 39    |        | 129    | 159      |
| 5420 | Electric operated, humidity                              | 1 Elec | 8               | 1             |      | 40              | 28.50 |        | 68.50  | 87       |
| 5430 | DPST                                                     |        | 8               | 1             |      | 56              | 28.50 |        | 84.50  | 105      |
| 6000 | Valves, motorized zone                                   |        |                 |               |      |                 |       |        |        |          |
| 6100 | Sweat connections, 1/2" C x C                            | 1 Spi  | 20              | .400          | Ea.  | 37              | 11.70 |        | 48.70  | 59       |
| 6110 | 3/4" C x C                                               |        | 20              | .400          |      | 37              | 11.70 |        | 48.70  | 59       |
| 6120 | 1" C x C                                                 |        | 19              | .421          |      | 41.50           | 12.30 |        | 53.80  | 65       |
| 6140 | 1/2" C x C, with end switch, 2 wire                      |        | 20              | .400          |      | 48              | 11.70 |        | 59.70  | 71       |
| 6150 | 3/4" C x C, with end switch, 2 wire                      |        | 20              | .400          |      | 48              | 11.70 |        | 59.70  | 71       |
| 6160 | 1" C x C, with end switch, 2 wire                        |        | 19              | .421          |      | 52.50           | 12.30 |        | 64.80  | 76.50    |

## 4.11 ECO 11: PROPANE HEAT

**Proposed Modification:** Replace electric heating coils in ducts with propane-fired duct furnaces which use a less expensive fuel.

This would involve installing propane duct heaters and associated propane lines and a propane storage tank.

**Existing Conditions:** Only the computer room CRUs and AHU-2 have heating coils, which are placed in the ducts. Propane duct heaters are not practical for the CRUs, therefore they were not evaluated. Since the price of electricity is high at \$0.0821/kWh, a way to save money and energy is to convert the existing electric duct heaters over to propane-fired duct furnaces in AHU-2 serving the office.

**Method of Analysis:** Analysis proceeded as follows:

- A baseline energy consumption model was developed using DOE2.1d.
- A modified baseline energy consumption model was developed using DOE2.1d. ECO 10 (Turn Off Office AHU at Night) significantly reduced the heating energy use. Most heating energy was consumed at night when internal heat gain from lights, office equipment, and people was minimal. The dominant heating load at night was ventilation air heating which was eliminated by ECO 10.
- The baseline models were then modified so that the heating coils for AHU-2 were propane-fired instead of electric.
- The baseline energy consumption model and the modified model were compared and the energy savings were calculated.

**Results:** The LCCA results are presented in the following table.

|                                      | Baseline | Modified Baseline |
|--------------------------------------|----------|-------------------|
| Annual Electric Energy Savings (kWh) | 16,150   | 1,199             |
| Total Annual Energy Cost Savings     | \$878    | \$65              |
| Annual Maintenance Cost Savings      | \$0      | \$0               |
| Investment Cost                      | \$11,182 | \$11,182          |
| Savings-to-Investment Ratio (SIR)    | 1.04     | 0.08              |
| Simple Payback (Years)               | 12.74    | 171.7             |

**Recommendations:** Switching over to propane is not recommended because it is not cost effective when used in conjunction with ECO 10. Furthermore, GEODSS does not desire to use propane in the building due to the risk to the facility.

E M C Engineering, Inc.

EMC #1406-008

GEODSS Site, White Sands Missile Range, NM PROPANE FIRED DUCT FURNACES

## LIFE CYCLE COST ANALYSIS

ECO-11.XLS

Prepared By: EMS

11/10/95

Checked By: \_\_\_\_\_

|                       |    |
|-----------------------|----|
| ECONOMIC LIFE (YEARS) | 20 |
|-----------------------|----|

## Existing Conditions

|                                         | Baseline | Baseline<br>with ECO 10 |
|-----------------------------------------|----------|-------------------------|
| Baseline Electric Heating Energy (MBtu) | 55.12    | 4.09                    |
| Conversion Factor (MBtu/kWh)            | 0.003413 | 0.003413                |
| Baseline Electric Heating Energy (kWh)  | 16,150   | 1,199                   |
| Unit Electricity Cost (\$/kWh)          | \$0.0821 | \$0.0821                |
| Annual Energy Cost (\$)                 | \$ 1,326 | \$ 98                   |

## Proposed Modification

|                                        | Baseline | Baseline<br>with ECO 10 |
|----------------------------------------|----------|-------------------------|
| Modified Propane Heating Energy (MBtu) | 61.38    | 4.56                    |
| Conversion Factor (MBtu/gal)           | 0.095    | 0.095                   |
| Baseline Propane Required (gal)        | 646      | 48                      |
| Unit Propane Cost (\$/gal)             | \$0.6940 | \$0.6940                |
| Annual Energy Cost (\$)                | \$ 448   | \$ 33                   |

|                                      |           |           |
|--------------------------------------|-----------|-----------|
| Annual Electric Energy Savings (kWh) | 16,150    | 1,199     |
| Annual Propane Savings (gal)         | (646)     | (48)      |
| Total Annual Energy Cost Savings     | \$ 878    | \$ 65     |
| Annual Maintenance Costs             | -         | -         |
| Economic Life (yrs)                  | \$ 20     | \$ 20     |
| UPV Factor - Electricity             | 15.08     | 15.08     |
| UPV Factor - LP Gas                  | 18.58     | 18.58     |
| Life Cycle Cost Savings              | \$ 11,664 | \$ 866    |
| Construction Cost                    | \$ 9,984  | \$ 9,984  |
| SIOH (6.0%)                          | \$ 599    | \$ 599    |
| Design Cost (6.0%)                   | \$ 599    | \$ 599    |
| Total Investment                     | \$ 11,182 | \$ 11,182 |
| Savings-to-Investment Ratio          | 1.04      | 0.08      |
| Simple Payback (years)               | 12.74     | 171.70    |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 8/1995 9: 9:49 PDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
 REPORT- BEPS ESTIMATED BUILDING ENERGY PERFORMANCE TRUTH OR CONSEQU, N

| ENERGY TYPE<br>IN SITE MBTU - | ELECTRICITY | NATURAL-GAS |
|-------------------------------|-------------|-------------|
| CATEGORY OF USE               |             |             |
| SPACE HEAT                    | 0.00        | 61.38       |
| SPACE COOL                    | 1568.96     | 0.00        |
| HVAC AUX                      | 426.63      | 0.00        |
| DOM HOT WTR                   | 0.00        | 0.00        |
| AUX SOLAR                     | 0.00        | 0.00        |
| LIGHTS                        | 288.88      | 0.00        |
| VERT TRANS                    | 0.00        | 0.00        |
| MISC EQUIP                    | 1233.87     | 0.00        |
| TOTAL                         | 3518.34     | 61.38       |

TOTAL SITE ENERGY 3579.61 MBTU 314.0 KBTU/SQFT-YR GROSS-AREA 314.0 KBTU/SQFT-YR NET-AREA  
 TOTAL SOURCE ENERGY 3579.61 MBTU 314.0 KBTU/SQFT-YR GROSS-AREA 314.0 KBTU/SQFT-YR NET-AREA  
 PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4  
 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0  
 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
 ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

### TOTAL SITE ELECTRICITY ENERGY USE 3518.34 MBTU



TOTAL SITE NATURAL-GAS ENERGY USE 61.38 MBTU

SPACE HEAT 100.0%



# Baseline with ECO - 10



| ENGINEER'S OPINION OF PROBABLE COST |                          |             |                 |                     |                       |              | SHEET        | 1             | OF                  | 1                |            |          |          |         |
|-------------------------------------|--------------------------|-------------|-----------------|---------------------|-----------------------|--------------|--------------|---------------|---------------------|------------------|------------|----------|----------|---------|
| AREA                                |                          | ACTIVITY    |                 | LOCATION            |                       |              |              | AMENDMENT NO. |                     |                  |            |          |          |         |
| PROJECT TITLE                       |                          |             |                 | Turn Off Office AHU |                       | CONTRACT NO. |              |               |                     |                  |            |          |          |         |
| GEOSS, Energy Conservation Survey   |                          |             |                 | DACA01-94-D-0033    |                       |              |              |               |                     |                  |            |          |          |         |
| Line No.                            | Item Description         |             | Unit of Measure | No. of Units        | MATERIAL COST         |              | LABOR COST   |               |                     | EQUIPMENT COST   | TOTAL COST |          |          |         |
|                                     |                          |             |                 |                     | Unit Cost             | Total        | Manhrs/ Unit | Total Manhrs  | Labor Cost/ Manhour | Total Labor Cost | Unit Cost  | Total    |          |         |
| 1                                   | Propane Tank 305 Gallons |             | Ea.             | 1                   | \$2,865               | \$2,865      | 8.00         | 8.00          | \$22.99             | \$184            | \$0.00     | \$0      | \$3,049  | \$3,049 |
| 2                                   | Cement Pad               |             | S.F.            | 18                  | \$0.96                | \$17         | 0.00         | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$1      | \$17    |
| 3                                   | Piping                   |             | L.F.            | 44                  | \$2.84                | \$126        | 0.11         | 4.75          | \$22.99             | \$109            | \$0.00     | \$0      | \$5      | \$235   |
| 4                                   | Propane Furnace          |             | Ea.             | 1                   | \$880.00              | \$880        | 8.00         | 8.00          | \$22.99             | \$184            | \$0.00     | \$0      | \$1,064  | \$1,064 |
| 5                                   | Excavation               |             | L.F.            | 20                  | \$0.00                | \$0          | 0.10         | 2.00          | \$22.99             | \$46             | \$0.00     | \$0      | \$2.30   | \$46    |
| 6                                   | Pressure Regulator Valve |             | Ea.             | 1                   | \$153.00              | \$153        | 1.60         | 1.60          | \$22.99             | \$37             | \$0.00     | \$0      | \$189.78 | \$190   |
| 7                                   | Gas Stop                 |             | Ea.             | 1.0                 | \$17.75               | \$18         | 0.67         | 0.67          | \$22.99             | \$15             | \$0.00     | \$0      | \$33.08  | \$33    |
| 8                                   |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 9                                   |                          |             |                 |                     |                       |              |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 10                                  | Travel to job site       |             | hrs             | 9                   |                       | \$0          | 1.00         | 9.00          | \$22.99             | \$207            | \$0.00     | \$0      | \$22.99  | \$207   |
| 11                                  | Lodging and per diem     |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$100.00   | \$0      | \$100.00 | \$0     |
| 12                                  | Mileage                  |             | miles           | 300                 |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.30     | \$90     | \$0.30   | \$90    |
| 13                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 14                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 15                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$100.00   | \$0      | \$100.00 | \$0     |
| 16                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.30     | \$90     | \$0.30   | \$90    |
| 17                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 18                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 19                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 20                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 21                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 22                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 23                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 24                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 25                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 26                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 27                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 28                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 29                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 30                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 31                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 32                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 33                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 34                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 35                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 36                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 37                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 38                                  |                          |             |                 |                     |                       | \$0          |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0      | \$0.00   | \$0     |
| 39                                  | SUBCONTRACTOR SUBTOTAL   |             |                 |                     |                       | \$4,059      |              | 34            |                     | \$782            |            | \$90     |          | \$4,931 |
| 40                                  | LABOR BURDEN             |             | %               | 30                  |                       | \$0          |              |               |                     | \$235            |            | \$27     |          | \$262   |
| 41                                  | SUBTOTAL                 |             |                 |                     |                       | \$4,059      |              |               |                     | \$1,017          |            | \$117    |          | \$5,193 |
| 42                                  | OVERHEAD                 |             | %               | 12                  |                       | \$487        |              |               |                     | \$122            |            | \$14     |          | \$623   |
| 43                                  | SUBTOTAL                 |             |                 |                     |                       | \$4,546      |              |               |                     | \$1,139          |            | \$131    |          | \$5,816 |
| 44                                  | PROFIT                   |             | %               | 12                  |                       | \$546        |              |               |                     | \$137            |            | \$16     |          | \$698   |
| 45                                  | SUBCONTRACTOR TOTAL      |             |                 |                     |                       | \$5,092      |              |               |                     | \$1,275          |            | \$147    |          | \$6,514 |
| 46                                  | OVERHEAD                 |             | %               | 11                  |                       | \$558        |              |               |                     | \$140            |            | \$16     |          | \$713   |
| 47                                  | SUBTOTAL                 |             |                 |                     |                       | \$5,649      |              |               |                     | \$1,415          |            | \$163    |          | \$7,227 |
| 48                                  | PROFIT                   |             | %               | 8                   |                       | \$452        |              |               |                     | \$113            |            | \$13     |          | \$578   |
| 49                                  | SUBTOTAL                 |             |                 |                     |                       | \$6,101      |              |               |                     | \$1,528          |            | \$176    |          | \$7,805 |
| 50                                  | BOND                     |             | %               | 1                   |                       | \$45         |              |               |                     | \$11             |            | \$1      |          | \$58    |
| 51                                  | SUBTOTAL                 |             |                 |                     |                       | \$6,146      |              |               |                     | \$1,539          |            | \$177    |          | \$7,863 |
| 52                                  | N. M. TAX                |             | %               | 6                   |                       | \$357        |              |               |                     | \$89             |            | \$10     |          | \$457   |
| 53                                  | SUBTOTAL                 |             |                 |                     |                       | \$6,503      |              |               |                     | \$1,629          |            | \$187    |          | \$8,320 |
| 54                                  | CONTINGENCY              |             | %               | 20                  |                       | \$1,301      |              |               |                     | \$326            |            | \$37     |          | \$1,664 |
| 55                                  | GRAND TOTAL              |             |                 |                     |                       | \$7,804      |              |               |                     | \$1,955          |            | \$225    |          | \$9,984 |
| PREPARED BY                         |                          | APPROVED BY |                 |                     | TITLE OR ORGANIZATION |              |              |               | DATE                |                  |            | 11/10/95 |          |         |
| EMS                                 |                          |             |                 |                     |                       |              |              |               |                     |                  |            |          |          |         |

## 026 | Piped Utilities

### 026 800 | Fuel Distribution

|      |                                                                  | CREW | DAILY<br>OUTPUT | MAN-<br>HOURS | UNIT | 1995 BARE COSTS |       |        | TOTAL<br>INCL O&P |
|------|------------------------------------------------------------------|------|-----------------|---------------|------|-----------------|-------|--------|-------------------|
|      |                                                                  |      |                 |               |      | MAT.            | LABOR | EQUIP. |                   |
| 804  | 0320 Reducers 2"                                                 | Q-6  | 27              | .889          | Ea.  | 13.45           | 24.50 |        | 37.95             |
|      | 3" diameter                                                      |      | 22              | 1.091         |      | 15.55           | 30    |        | 45.55             |
|      | 4" diameter                                                      | ↓    | 20              | 1.200         | ↓    | 24              | 33    |        | 57                |
| 1010 | Gas station product line for secondary containment (double wall) |      |                 |               |      |                 |       |        | 77.50             |
| 1100 | Fiberglass reinforced plastic pipe 25' lengths                   | Q-6  | 375             | .064          | L.F. | 3.62            | 1.75  |        | 5.37              |
| 1120 | Pipe, plain end 3"                                               |      | 350             | .069          |      | 4.66            | 1.87  |        | 6.53              |
| 1130 | 4" diameter                                                      |      | 325             | .074          |      | 5.20            | 2.02  |        | 7.22              |
| 1140 | 5" diameter                                                      |      |                 |               |      |                 |       |        | 8.90              |
| 1150 | 6" diameter                                                      | ↓    | 300             | .080          | ↓    | 8.80            | 2.18  |        | 10.98             |
| 1200 | Fittings                                                         |      |                 |               |      |                 |       |        | 13.15             |
| 1230 | Elbows, 90° & 45° 3"                                             | Q-6  | 18              | 1.333         | Ea.  | 35              | 36.50 |        | 71.50             |
| 1240 | 4" diameter                                                      |      | 16              | 1.500         |      | 65              | 41    |        | 106               |
| 1250 | 5" diameter                                                      |      | 14              | 1.714         |      | 134             | 47    |        | 181               |
| 1260 | 6" diameter                                                      |      | 12              | 2             |      | 139             | 54.50 |        | 193.50            |
| 1270 | Tees 3"                                                          |      | 15              | 1.600         |      | 48.50           | 43.50 |        | 92                |
| 1280 | 4" diameter                                                      |      | 12              | 2             |      | 80.50           | 54.50 |        | 135               |
| 1290 | 5" diameter                                                      |      | 9               | 2.667         |      | 150             | 73    |        | 223               |
| 1300 | 6" diameter                                                      |      | 6               | 4             |      | 155             | 109   |        | 264               |
| 1310 | Couplings 3"                                                     |      | 18              | 1.333         |      | 23              | 36.50 |        | 59.50             |
| 1320 | 4" diameter                                                      |      | 16              | 1.500         |      | 63              | 41    |        | 104               |
| 1330 | 5" diameter                                                      |      | 14              | 1.714         |      | 125             | 47    |        | 172               |
| 1340 | 6" diameter                                                      |      | 12              | 2             |      | 130             | 54.50 |        | 184.50            |
| 1350 | Cross-over nipples, 3"                                           |      | 18              | 1.333         |      | 5.40            | 36.50 |        | 41.90             |
| 1360 | 4" diameter                                                      |      | 16              | 1.500         |      | 6.30            | 41    |        | 47.30             |
| 1370 | 5" diameter                                                      |      | 14              | 1.714         |      | 9.40            | 47    |        | 56.40             |
| 1380 | 6" diameter                                                      |      | 12              | 2             |      | 9.75            | 54.50 |        | 64.25             |
| 1400 | Telescoping, reducers, concentric 4" x 3"                        |      | 18              | 1.333         |      | 18.05           | 36.50 |        | 54.55             |
| 1410 | 5" x 4"                                                          |      | 17              | 1.412         |      | 46.50           | 38.50 |        | 85                |
| 1420 | 6" x 5"                                                          | ↓    | 16              | 1.500         | ↓    | 114             | 41    |        | 155               |
|      |                                                                  |      |                 |               |      |                 |       |        | 190               |

### 026 850 | Gas Distribution System

|      |                                                                   |      |     |      |      |       |       |      |       |
|------|-------------------------------------------------------------------|------|-----|------|------|-------|-------|------|-------|
| 854  | 0010 PIPING, GAS SERVICE & DISTRIBUTION, POLYETHYLENE             |      |     |      |      |       |       |      | 854   |
|      | 0020 not including excavation or backfill                         |      |     |      |      |       |       |      |       |
| 1000 | 60 psi coils, 1/2" diameter, SDR 9.3                              | B-20 | 450 | .053 | L.F. | .25   | 1.18  |      | 1.43  |
| 1040 | 1-1/4" diameter, SDR 11                                           |      | 400 | .060 |      | .65   | 1.32  |      | 1.97  |
| 1100 | 2" diameter, SDR 11                                               |      | 360 | .067 |      | 1.21  | 1.47  |      | 2.68  |
| 1160 | 3" diameter, SDR 11                                               | ↓    | 300 | .080 |      | 2.27  | 1.76  |      | 4.03  |
| 1500 | 40' joints with coupling, 3" diameter, SDR 11                     | B-21 | 300 | .093 |      | 2.47  | 2.11  | .36  | 4.94  |
| 1540 | 4" diameter, SDR 11                                               |      | 260 | .108 |      | 3.91  | 2.44  | .41  | 6.76  |
| 1600 | 6" diameter, SDR 11                                               |      | 240 | .117 |      | 8.95  | 2.64  | .45  | 12.04 |
| 1640 | 8" diameter, SDR 11                                               | ↓    | 200 | .140 | ↓    | 14.90 | 3.17  | .54  | 18.61 |
| 856  | 0010 PIPING, GAS SERVICE & DISTRIBUTION, STEEL                    |      |     |      |      |       |       |      | 856   |
|      | 0020 not including excavation or backfill, tar coated and wrapped |      |     |      |      |       |       |      |       |
| 4000 | Schedule 40, plain end                                            |      |     |      |      |       |       |      |       |
| 4040 | 1" diameter                                                       | Q-4  | 300 | .107 | L.F. | 2.84  | 2.98  | .17  | 5.99  |
| 4080 | 2" diameter                                                       |      | 280 | .114 |      | 3.21  | 3.20  | .19  | 6.60  |
| 4120 | 3" diameter                                                       | ↓    | 260 | .123 |      | 6.45  | 3.44  | .20  | 10.09 |
| 4160 | 4" diameter                                                       | B-35 | 255 | .188 |      | 9.25  | 4.49  | 1.96 | 15.70 |
| 4200 | 5" diameter                                                       |      | 220 | .218 |      | 13.90 | 5.20  | 2.27 | 21.37 |
| 4240 | 6" diameter                                                       |      | 180 | .267 |      | 17.05 | 6.35  | 2.77 | 26.50 |
| 4280 | 8" diameter                                                       |      | 140 | .343 |      | 27    | 8.15  | 3.56 | 38.71 |
| 4320 | 10" diameter                                                      |      | 100 | .480 |      | 37    | 11.45 | 4.99 | 53.44 |
| 4360 | 12" diameter                                                      |      | 80  | .600 |      | 46.50 | 14.30 | 6.25 | 67.05 |
| 4400 | 14" diameter                                                      |      | 75  | .640 |      | 52    | 15.25 | 6.65 | 73.90 |
| 4440 | 16" diameter                                                      | ↓    | 70  | .686 | ↓    | 57    | 16.35 | 7.10 | 80.45 |
|      |                                                                   |      |     |      |      |       |       |      | 97.50 |

## 155 | Heating

### 155 200 | Boiler Accessories

| ITEM<br>NO. | DESCRIPTION                                           | CREW   | DAILY<br>OUTPUT | MAN-<br>HOURS | UNIT   | 1995 BARE COSTS |       |        | TOTAL<br>INCL O&P |
|-------------|-------------------------------------------------------|--------|-----------------|---------------|--------|-----------------|-------|--------|-------------------|
|             |                                                       |        |                 |               |        | MAT.            | LABOR | EQUIP. |                   |
| 9470        | 10,400/23,200 GPH                                     | Q-6    | 29              | 82.759        | Ea.    | 26,100          | 2,250 |        | 28,350            |
| 0010        | INDUCED DRAFT FANS                                    |        |                 |               |        |                 |       |        | 32,200            |
| 1000        | Breeching installation                                |        |                 |               |        |                 |       |        | 250               |
| 1800        | Hot gas, 600°F, variable pitch pulley and motor       |        |                 |               |        |                 |       |        | 260               |
| 1840        | 6" diam. inlet, 1/4 H.P., 1 phase, 400 CFM            | Q-9    | 6               | 2,667         | Ea.    | 1,000           | 67.50 |        | 1,067.50          |
| 1850        | 7" diam. inlet, 1/4 H.P., 1 phase, 800 CFM            |        | 5               | 3,200         |        | 1,075           | 81    |        | 1,156             |
| 1860        | 8" diam. inlet, 1/4 H.P., 1 phase, 1120 CFM           |        | 4               | 4             |        | 1,575           | 101   |        | 1,300             |
| 1870        | 9" diam. inlet, 3/4 H.P., 1 phase, 1440 CFM           |        | 3.60            | 4,444         |        | 1,850           | 112   |        | 1,676             |
| 1880        | 10" diam. inlet, 3/4 H.P., 1 phase, 2000 CFM          |        | 3.30            | 4,848         |        | 2,075           | 123   |        | 1,875             |
| 1900        | 12" diam. inlet, 3/4 H.P., 3 phase, 2960 CFM          |        | 3               | 5,333         |        | 2,150           | 135   |        | 2,198             |
| 1910        | 14" diam. inlet, 1 H.P., 3 phase, 4160 CFM            |        | 2.60            | 6,154         |        | 2,525           | 156   |        | 2,550             |
| 1920        | 16" diam. inlet, 2 H.P., 3 phase, 6720 CFM            |        | 2.30            | 6,957         |        | 2,750           | 176   |        | 2,681             |
| 1940        | 18" diam. inlet, 3 H.P., 3 phase, 9120 CFM            |        | 2               | 8             |        | 3,325           | 202   |        | 3,300             |
| 1950        | 20" diam. inlet, 3 H.P., 3 phase, 9760 CFM            |        | 1.50            | 10,667        |        | 3,625           | 270   |        | 3,527             |
| 1960        | 22" diam. inlet, 5 H.P., 3 phase, 13,360 CFM          |        | 1               | 16            |        | 4,225           | 405   |        | 4,400             |
| 1980        | 24" diam. inlet, 7-1/2 H.P., 3 phase, 17,760 CFM      |        | ↓               | .80           | 20     | 5,200           | 505   |        | 4,630             |
| 2000        | For multi-blade damper at fan inlet, add              |        |                 |               |        | 20%             |       |        | 5,275             |
| 3650        | Chimneytop Installation                               |        |                 |               |        |                 |       |        | 6,525             |
| 3700        | 6" size                                               |        |                 |               |        |                 |       |        |                   |
| 3740        | 8" size                                               | 1 Shee | 8               | 1             | Ea.    | 305             | 28    |        | 333               |
| 3780        | 13" size                                              |        | 7               | 1.143         |        | 310             | 32    |        | 380               |
| 3800        | For speed control switch, add                         |        | ↓               | 6             | 1.333  | 420             | 37.50 |        | 342               |
| 3820        | For thermal fan control, add                          |        |                 |               |        | 49.50           |       |        | 390               |
| 3840        | Rue shutter damper for draft control, parallel blades |        |                 |               |        | 29              |       |        | 457.50            |
| 3850        | 8" size                                               |        |                 |               |        |                 |       |        | 520               |
| 3860        | 9" size                                               | Q-9    | 8               | 2             | Ea.    | 350             | 50.50 |        | 400.50            |
| 3880        | 10" size                                              |        | 7.50            | 2,133         |        | 380             | 54    |        | 465               |
| 3890        | 12" size                                              |        | 7               | 2,286         |        | 390             | 58    |        | 434               |
| 3900        | 14" size                                              |        | 6.50            | 2,462         |        | 430             | 62.50 |        | 505               |
| 3920        | 16" size                                              |        | 6               | 2,667         |        | 490             | 67.50 |        | 448               |
| 3940        | 18" size                                              |        | 5.50            | 2,909         |        | 530             | 73.50 |        | 492.50            |
| 3950        | 20" size                                              |        | 5               | 3,200         |        | 580             | 81    |        | 575               |
| 3960        | 22" size                                              |        | 4.50            | 3,556         |        | 645             | 90    |        | 640               |
| 3980        | 24" size                                              |        | 4               | 4             |        | 710             | 101   |        | 700               |
| 3990        | 27" size                                              |        | 3.50            | 4,571         |        | 750             | 116   |        | 765               |
| 4000        | 30" size                                              |        | 3               | 5,333         |        | 775             | 135   |        | 850               |
| 4010        | 32" size                                              |        | 2.50            | 6,400         |        | 825             | 162   |        | 910               |
| 4020        | 36" size                                              |        | 2               | 8             |        | 865             | 202   |        | 1,075             |
|             |                                                       |        | ↓               | 1.50          | 10,667 | 930             | 270   |        | 1,175             |
|             |                                                       |        |                 |               |        |                 |       |        | 1,067             |
|             |                                                       |        |                 |               |        |                 |       |        | 1,275             |
|             |                                                       |        |                 |               |        |                 |       |        | 1,200             |
|             |                                                       |        |                 |               |        |                 |       |        | 1,450             |

### 155 400 | Warm Air Systems

DUCT FURNACES includes burner, controls, stainless steel heat exchanger. Gas fired, electric ignition

Indoor installation

|                                              |     |      |       |     |       |       |  |        |       |
|----------------------------------------------|-----|------|-------|-----|-------|-------|--|--------|-------|
| 100 MBH output                               | Q-5 | 5    | 3,200 | Ea. | 880   | 84.50 |  | 964.50 | 1,100 |
| 120 MBH output                               |     | 4    | 4     |     | 1,000 | 105   |  | 1,105  | 1,250 |
| 200 MBH output                               |     | 2.70 | 5,926 |     | 1,375 | 156   |  | 1,531  | 1,775 |
| 240 MBH output                               |     | 2.30 | 6,957 |     | 1,450 | 183   |  | 1,633  | 1,850 |
| 280 MBH output                               |     | 2    | 8     |     | 1,600 | 211   |  | 1,811  | 2,100 |
| 320 MBH output                               |     | ↓    | 1.60  | 10  | 1,750 | 263   |  | 2,013  | 2,325 |
| For powered venter and adapter, add          |     |      |       |     | 220   |       |  | 220    | 242   |
| For required flue pipe, see division 155-680 |     |      |       |     |       |       |  |        |       |
| Outdoor installation, with vent cap          |     |      |       |     |       |       |  |        |       |
| 75 MBH output                                | Q-5 | 4    | 4     | Ea. | 1,325 | 105   |  | 1,430  | 1,600 |
| 94 MBH output                                | ↓   | 4    | 4     | ↓   | 1,475 | 105   |  | 1,580  | 1,775 |

# 022 | Earthwork

## 2 SITE WORK

### 022 200 | Excav./Backfill/Compact.

|     | REF ID | DESCRIPTION                                              | CREW   | DAILY<br>OUTPUT | MAN-<br>HOURS | UNIT | 1995 BARE COSTS |       |        | TOTAL<br>INCL. |
|-----|--------|----------------------------------------------------------|--------|-----------------|---------------|------|-----------------|-------|--------|----------------|
|     |        |                                                          |        |                 |               |      | MAT.            | LABOR | EQUIP. |                |
| 258 | 0010   | EXCAVATING, UTILITY TRENCH Common earth                  |        |                 |               |      |                 |       |        |                |
|     | 0050   | Trenching with chain trencher, 12 H.P., operator walking |        |                 |               |      |                 |       |        |                |
|     | 0100   | 4" wide trench, 12" deep                                 | B-53   | 800             | .010          | L.F. |                 | .24   | .10    | .34            |
|     | 0150   | 18" deep                                                 |        | 750             | .011          |      |                 | .26   | .11    | .37            |
|     | 0200   | 24" deep                                                 |        |                 | .011          |      |                 | .28   | .12    | .40            |
|     | 0300   | 6" wide trench, 12" deep                                 |        |                 | .012          |      |                 | .30   | .13    | .43            |
|     | 0350   | 18" deep                                                 |        |                 | .013          |      |                 | .32   | .14    | .46            |
|     | 0400   | 24" deep                                                 |        |                 | .015          |      |                 | .35   | .15    | .50            |
|     | 0450   | 36" deep                                                 |        |                 | .018          |      |                 | .43   | .19    | .62            |
|     | 0600   | 8" wide trench, 12" deep                                 |        |                 | .017          |      |                 | .41   | .18    | .59            |
|     | 0650   | 18" deep                                                 |        |                 | .020          |      |                 | .48   | .21    | .69            |
|     | 0700   | 24" deep                                                 |        |                 | .023          |      |                 | .55   | .24    | .79            |
|     | 0750   | 36" deep                                                 |        |                 | .027          |      |                 | .64   | .28    | .92            |
|     | 1000   | Backfill by hand including compaction, add               |        |                 |               |      |                 |       |        |                |
|     | 1050   | 4" wide trench, 12" deep                                 | A-1    | 800             | .010          | L.F. |                 | .19   | .08    | .27            |
|     | 1100   | 18" deep                                                 |        | 530             | .015          |      |                 | .29   | .11    | .40            |
|     | 1150   | 24" deep                                                 |        | 400             | .020          |      |                 | .39   | .15    | .54            |
|     | 1300   | 6" wide trench, 12" deep                                 |        | 540             | .015          |      |                 | .29   | .11    | .40            |
|     | 1350   | 18" deep                                                 |        | 405             | .020          |      |                 | .38   | .15    | .53            |
|     | 1400   | 24" deep                                                 |        | 270             | .030          |      |                 | .57   | .22    | .79            |
|     | 1450   | 36" deep                                                 |        | 180             | .044          |      |                 | .86   | .33    | 1.19           |
|     | 1600   | 8" wide trench, 12" deep                                 |        | 400             | .020          |      |                 | .39   | .15    | .54            |
|     | 1650   | 18" deep                                                 |        | 265             | .030          |      |                 | .59   | .23    | .82            |
|     | 1700   | 24" deep                                                 |        | 200             | .040          |      |                 | .78   | .30    | 1.08           |
|     | 1750   | 36" deep                                                 |        | 135             | .059          |      |                 | 1.15  | .45    | 1.60           |
|     | 2000   | Chain trencher, 40 H.P. operator riding                  |        |                 |               |      |                 |       |        |                |
|     | 2050   | 6" wide trench and backfill, 12" deep                    | B-54   | 1,200           | .007          | L.F. |                 | .16   | .16    | .32            |
|     | 2100   | 18" deep                                                 |        | 1,000           | .008          |      |                 | .19   | .19    | .38            |
|     | 2150   | 24" deep                                                 |        | 975             | .008          |      |                 | .20   | .20    | .40            |
|     | 2200   | 36" deep                                                 |        | 900             | .009          |      |                 | .21   | .21    | .42            |
|     | 2250   | 48" deep                                                 |        | 750             | .011          |      |                 | .26   | .26    | .52            |
|     | 2300   | 60" deep                                                 |        | 650             | .012          |      |                 | .30   | .30    | .60            |
|     | 2400   | 8" wide trench and backfill, 12" deep                    |        | 1,000           | .008          |      |                 | .19   | .19    | .38            |
|     | 2450   | 18" deep                                                 |        | 950             | .008          |      |                 | .20   | .20    | .40            |
|     | 2500   | 24" deep                                                 |        | 900             | .009          |      |                 | .21   | .21    | .42            |
|     | 2550   | 36" deep                                                 |        | 800             | .010          |      |                 | .24   | .24    | .48            |
|     | 2600   | 48" deep                                                 |        | 650             | .012          |      |                 | .30   | .30    | .60            |
|     | 2700   | 12" wide trench and backfill, 12" deep                   |        | 975             | .008          |      |                 | .20   | .20    | .40            |
|     | 2750   | 18" deep                                                 |        | 860             | .009          |      |                 | .22   | .22    | .44            |
|     | 2800   | 24" deep                                                 |        | 800             | .010          |      |                 | .24   | .24    | .48            |
|     | 2850   | 36" deep                                                 |        | 725             | .011          |      |                 | .27   | .27    | .54            |
|     | 3000   | 16" wide trench and backfill, 12" deep                   |        | 835             | .010          |      |                 | .23   | .23    | .46            |
|     | 3050   | 18" deep                                                 |        | 750             | .011          |      |                 | .26   | .26    | .52            |
|     | 3100   | 24" deep                                                 |        | 700             | .011          |      |                 | .28   | .28    | .56            |
|     | 3200   | Compaction with vibratory plate, add                     |        |                 |               |      |                 |       |        | 50%            |
| 262 | 0010   | FILL Spread dumped material, by dozer, no compaction     |        |                 |               |      |                 |       |        |                |
|     | 0100   | By hand                                                  | B-10B  | 1,000           | .012          | C.Y. |                 | .28   | .85    | 1.13           |
|     | 0150   | Spread fill, from stockpile with 2-1/2 C.Y. F.E. loader  | 1 Club | 12              | .567          | "    |                 | 12.95 |        | 12.95          |
|     | 0170   | 130 H.P. 300' haul                                       | B-10P  | 600             | .020          | C.Y. |                 | .46   | 1.35   | 1.81           |
|     | 0190   | With dozer 300 H.P. 300' haul                            | B-10M  | 600             | .020          | "    |                 | .46   | 1.71   | 2.17           |
|     | 0500   | Gravel fill, compacted, under floor slabs, 4" deep       | B-37   | 10,000          | .005          | S.F. | .10             | .10   | .01    | .21            |
|     | 0600   | 6"deep                                                   |        | 8,600           | .006          |      |                 | .15   | .11    | .26            |
|     | 0700   | 9" deep                                                  |        | 7,200           | .007          |      |                 | .25   | .14    | .39            |
|     | 0800   | 12" deep                                                 |        | 6,000           | .008          |      |                 | .35   | .16    | .53            |
|     | 1000   | Alternate pricing method, 4" deep                        |        | 120             | .400          | C.Y. | 7.50            | 8.20  | 1.16   | 16.86          |

## 55 | Heating

### 55 600 | Heating System Access.

| ITEM                                                         | QUANTITY | DAILY<br>OUTPUT | MAN-<br>HOURS | UNIT   | 1995 BARE COSTS |       |        |          | TOTAL<br>INCL O&P |
|--------------------------------------------------------------|----------|-----------------|---------------|--------|-----------------|-------|--------|----------|-------------------|
|                                                              |          |                 |               |        | MAT.            | LABOR | EQUIP. | TOTAL    |                   |
| 15 gallon capacity                                           | Q-5      | 17              | .941          | Ea.    | 485             | 25    |        | 510      | 570               |
| 24 gallon capacity                                           |          | 14              | 1.143         |        | 520             | 30    |        | 550      | 620               |
| 30 gallon capacity                                           |          | 12              | 1.333         |        | 605             | 35    |        | 640      | 720               |
| 40 gallon capacity                                           |          | 10              | 1.600         |        | 690             | 42    |        | 732      | 825               |
| 60 gallon capacity                                           |          | 8               | 2             |        | 790             | 52.50 |        | 842.50   | 955               |
| 80 gallon capacity                                           |          | 7               | 2.286         |        | 905             | 60    |        | 965      | 1,100             |
| 100 gallon capacity                                          |          | 6               | 2.667         |        | 1,100           | 70    |        | 1,170    | 1,325             |
| 120 gallon capacity                                          |          | 5               | 3.200         |        | 1,275           | 84.50 |        | 1,359.50 | 1,525             |
| 135 gallon capacity                                          |          | 4.50            | 3.556         |        | 1,375           | 93.50 |        | 1,468.50 | 1,650             |
| 175 gallon capacity                                          |          | 4               | 4             |        | 1,675           | 105   |        | 1,780    | 2,025             |
| 220 gallon capacity                                          |          | 3.60            | 4.444         |        | 1,925           | 117   |        | 2,042    | 2,300             |
| 240 gallon capacity                                          |          | 3.30            | 4.848         |        | 2,025           | 128   |        | 2,153    | 2,425             |
| 305 gallon capacity                                          |          | 3               | 5.333         |        | 2,725           | 140   |        | 2,865    | 3,225             |
| 400 gallon capacity                                          |          | 2.80            | 5.714         |        | 3,325           | 150   |        | 3,475    | 3,900             |
| Steel ASME expansion, rubber diaphragm, 19 gal. cap. accept. |          | 12              | 1.333         |        | 1,125           | 35    |        | 1,160    | 1,300             |
| 31 gallon capacity                                           |          | 8               | 2             |        | 1,250           | 52.50 |        | 1,302.50 | 1,450             |
| 61 gallon capacity                                           |          | 6               | 2.667         |        | 1,750           | 70    |        | 1,820    | 2,025             |
| 79 gallon capacity                                           |          | 5               | 3.200         |        | 1,875           | 84.50 |        | 1,959.50 | 2,175             |
| 119 gallon capacity                                          |          | 4               | 4             |        | 1,975           | 105   |        | 2,080    | 2,350             |
| 158 gallon capacity                                          |          | 3.80            | 4.211         |        | 2,775           | 111   |        | 2,886    | 3,250             |
| 211 gallon capacity                                          |          | 3.30            | 4.848         |        | 3,200           | 128   |        | 3,328    | 3,725             |
| 317 gallon capacity                                          |          | 2.80            | 5.714         |        | 4,200           | 150   |        | 4,350    | 4,875             |
| 422 gallon capacity                                          |          | 2.60            | 6.154         |        | 6,200           | 162   |        | 6,362    | 7,075             |
| 528 gallon capacity                                          |          | 2.40            | 6.667         |        | 6,800           | 176   |        | 6,976    | 7,750             |
| VENT CHIMNEY Prefab metal, U.L. listed                       |          |                 |               |        |                 |       |        |          | 680               |
| Gas, double wall, galvanized steel                           |          |                 |               |        |                 |       |        |          |                   |
| 3" diameter                                                  | Q-9      | 72              | .222          | V.L.F. | 2.92            | 5.60  |        | 8.52     | 12.30             |
| 4" diameter                                                  |          | 68              | .235          |        | 3.57            | 5.95  |        | 9.52     | 13.55             |
| 5" diameter                                                  |          | 64              | .250          |        | 4.20            | 6.30  |        | 10.50    | 14.80             |
| 6" diameter                                                  |          | 60              | .267          |        | 4.93            | 6.75  |        | 11.68    | 16.30             |
| 7" diameter                                                  |          | 56              | .286          |        | 7.25            | 7.25  |        | 14.50    | 19.70             |
| 8" diameter                                                  |          | 52              | .308          |        | 8.10            | 7.80  |        | 15.90    | 21.50             |
| 10" diameter                                                 |          | 48              | .333          |        | 17.05           | 8.45  |        | 25.50    | 32.50             |
| 12" diameter                                                 |          | 44              | .364          |        | 23              | 9.20  |        | 32.20    | 40                |
| 14" diameter                                                 |          | 42              | .381          |        | 38.50           | 9.65  |        | 48.15    | 57.50             |
| 16" diameter                                                 |          | 40              | .400          |        | 52              | 10.10 |        | 62.10    | 73.50             |
| 18" diameter                                                 |          | 38              | .421          |        | 67              | 10.65 |        | 77.65    | 90.50             |
| 20" diameter                                                 | Q-10     | 36              | .467          |        | 79              | 17.50 |        | 96.50    | 116               |
| 22" diameter                                                 |          | 34              | .706          |        | 100             | 18.50 |        | 118.50   | 140               |
| 24" diameter                                                 |          | 32              | .750          |        | 123             | 19.65 |        | 142.65   | 168               |
| 26" diameter                                                 |          | 31              | .774          |        | 148             | 20.50 |        | 168.50   | 196               |
| 28" diameter                                                 |          | 30              | .800          |        | 156             | 21    |        | 177      | 206               |
| 30" diameter                                                 |          | 28              | .857          |        | 165             | 22.50 |        | 187.50   | 219               |
| 32" diameter                                                 |          | 27              | .889          |        | 192             | 23.50 |        | 215.50   | 249               |
| 34" diameter                                                 |          | 26              | .923          |        | 218             | 24    |        | 242      | 279               |
| 36" diameter                                                 |          | 25              | .960          |        | 231             | 25    |        | 256      | 295               |
| 38" diameter                                                 |          | 24              | 1             |        | 252             | 26    |        | 278      | 320               |
| 40" diameter                                                 |          | 23              | 1.043         |        | 281             | 27.50 |        | 308.50   | 355               |
| 42" diameter                                                 |          | 22              | 1.091         |        | 295             | 28.50 |        | 323.50   | 370               |
| 44" diameter                                                 |          | 21              | 1.143         |        | 325             | 30    |        | 355      | 410               |
| 46" diameter                                                 |          | 20              | 1.200         |        | 360             | 31.50 |        | 391.50   | 445               |
| 48" diameter                                                 |          | 19              | 1.263         |        | 395             | 33    |        | 428      | 490               |
| For 4", 5" and 6" oval, add                                  |          |                 |               |        | 50%             |       |        |          |                   |
| Gas, double wall, galvanized steel, fittings                 |          |                 |               |        |                 |       |        |          |                   |
| Elbow 45°, 3" diameter                                       | Q-9      | 36              | .444          | Ea.    | 7.20            | 11.25 |        | 18.45    | 26                |
| 4" diameter                                                  |          | 34              | .471          |        | 8.50            | 11.90 |        | 20.40    | 28.50             |

## 033 | Cast-In-Place Concrete

## 033 100 | Structural Concrete

|     | ITEM NUMBER | DESCRIPTION                                                                                           | CREW   | DAILY<br>OUTPUT | MAN-<br>HOURS | UNIT    | 1995 BARE COSTS |       |        | TOTAL<br>INCL O&P |
|-----|-------------|-------------------------------------------------------------------------------------------------------|--------|-----------------|---------------|---------|-----------------|-------|--------|-------------------|
|     |             |                                                                                                       |        |                 |               |         | MAT.            | LABOR | EQUIP. |                   |
| 130 | 4050        | Over 20 C.Y.                                                                                          | C-15   | 35.77           | 2,013         | C.Y.    | 88              | 46.50 | 1.65   | 136.15            |
|     | 4200        | Grade walls, 8" thick, 8' high                                                                        |        | ↓ 14.76         | 4,878         |         | 85              | 113   | 4      | 202               |
|     | 4250        | 14' high                                                                                              | C-14   | 21.98           | 6,551         |         | 113             | 157   | 51.50  | 321.50            |
|     | 4260        | 12" thick, 8' high                                                                                    | C-15   | 20.70           | 3,478         |         | 77              | 80.50 | 2.85   | 160.35            |
|     | 4270        | 14' high                                                                                              | C-14   | 32.20           | 4,472         |         | 88.50           | 107   | 35     | 230.50            |
|     | 4300        | 15" thick, 8' high                                                                                    | C-15   | 25.76           | 2,795         |         | 73              | 65    | 2.29   | 140.29            |
|     | 4350        | 12' high                                                                                              | C-14   | 41.24           | 3,492         |         | 78              | 83.50 | 27.50  | 189               |
|     | 4500        | 18' high                                                                                              |        | 39.32           | 3,662         | ↓       | 87.50           | 87.50 | 28.50  | 203.50            |
|     | 4520        | Handicap access ramp, railing both sides, 3' wide                                                     |        | 47.37           | 3,040         | L.F.    | 91.50           | 75.50 | 7.10   | 174.10            |
|     | 4525        | 5' wide                                                                                               |        | 47              | 3,053         |         | 94              | 76    | 7.15   | 177.15            |
|     | 4530        | With cheek walls and rails both sides, 3' wide                                                        |        | 26.22           | 5,491         |         | 148             | 137   | 3.85   | 288.85            |
|     | 4535        | 5' wide                                                                                               |        | 24.32           | 5,920         | ↓       | 180             | 154   | 6.80   | 340.80            |
|     | 4650        | Slab on grade, not including finish, 4" thick                                                         | C-15   | 52.36           | 1,375         | C.Y.    | 62              | 32    | 1.13   | 95.13             |
|     | 4700        | 6" thick                                                                                              |        | 78.79           | .914          | *       | 59              | 21    | .75    | 80.75             |
|     | 4751        | Slab on grade, incl. troweled finish, not incl. forms or reinforcing, over 10,000 S.F., 4" thick slab | C-8A   | 1,982           | .024          | S.F.    | .66             | .51   |        | 1.17              |
|     | 4760        |                                                                                                       |        | 2,000           | .024          |         | .96             | .51   |        | 1.47              |
|     | 4820        | 6" thick slab                                                                                         |        | 1,840           | .026          |         | 1.32            | .55   |        | 1.87              |
|     | 4840        | 8" thick slab                                                                                         |        | 1,594           | .030          |         | 1.98            | .64   |        | 2.62              |
|     | 4900        | 12" thick slab                                                                                        |        | 1,458           | .033          | ↓       | 2.49            | .70   |        | 3.19              |
|     | 4950        | 15" thick slab                                                                                        |        |                 |               |         |                 |       |        | 3.9               |
|     | 5000        | Slab on grade, incl. textured finish, not incl. forms                                                 | C-8A   | 2,200           | .022          | S.F.    | .64             | .46   |        | 1.10              |
|     | 5001        | For reinforcing, 4" thick slab                                                                        |        | 2,000           | .024          |         | .96             | .51   |        | 1.47              |
|     | 5010        | 6" thick                                                                                              |        | 1,800           | .027          | ↓       | 1.28            | .57   |        | 1.85              |
|     | 5020        | 8" thick                                                                                              |        |                 |               |         |                 |       |        | 2.3               |
|     | 5200        | Lift slab in place above the foundation, incl. forms, reinforcing, concrete and columns, minimum      | C-14   | 1,665           | .086          | S.F.    | 3.38            | 2.07  | .68    | 6.13              |
|     | 5210        |                                                                                                       |        | 1,240           | .116          |         | 3.63            | 2.78  | .91    | 7.32              |
|     | 5250        | Average                                                                                               |        | 1,200           | .120          | ↓       | 3.92            | 2.87  | .94    | 7.73              |
|     | 5300        | Maximum                                                                                               |        |                 |               |         |                 |       |        | 10                |
|     | 5500        | Lightweight, ready mix, including screed finish only, not including forms or reinforcing              |        |                 |               |         |                 |       |        |                   |
|     | 5510        |                                                                                                       | C-8    | 80              | .700          | C.Y.    | 79.50           | 15.25 | 7.15   | 101.90            |
|     | 5550        | 1:4 for structural roof decks                                                                         |        | 90              | .622          |         | 75              | 13.55 | 6.35   | 94.90             |
|     | 5600        | 1:6 for ground slab with radiant heat                                                                 |        | 80              | .700          |         | 79.50           | 15.25 | 7.15   | 101.90            |
|     | 5650        | 1:3:2 with sand aggregate, roof deck                                                                  |        | 105             | .533          |         | 79.50           | 11.60 | 5.45   | 96.55             |
|     | 5700        | Ground slab                                                                                           |        |                 |               |         |                 |       |        | 113               |
|     | 5900        | Pile caps, incl. forms and reinf., sq. or rect., under 5 C.Y.                                         | C-15   | 34.34           | 2,097         |         | 74              | 48.50 | 1.72   | 124.22            |
|     | 5950        | Over 10 C.Y.                                                                                          |        | 47.34           | 1,521         |         | 71.50           | 35.50 | 1.25   | 108.25            |
|     | 6000        | Triangular or hexagonal, under 5 C.Y.                                                                 |        | 33.66           | 2,139         |         | 66.50           | 49.50 | 1.75   | 117.75            |
|     | 6050        | Over 10 C.Y.                                                                                          |        | 53.88           | 1,336         |         | 71              | 31    | 1.10   | 103.10            |
|     | 6200        | Retaining walls, gravity, 4' high see division 022-708                                                |        | 21.35           | 3,372         |         | 68              | 78.50 | 2.77   | 149.27            |
|     | 6250        | 10' high                                                                                              |        | 40.17           | 1,792         |         | 59.50           | 41.50 | 1.47   | 102.47            |
|     | 6300        | Cantilever, level backfill loading, 8' high                                                           |        | 22.59           | 3,187         |         | 75.50           | 74    | 2.61   | 152.11            |
|     | 6350        | 16' high                                                                                              |        | 29.29           | 2,458         | ↓       | 73.50           | 57    | 2.02   | 132.52            |
|     | 6800        | Stairs, not including safety treads, free standing                                                    |        | 120             | .600          | LF Nose | 5               | 13.95 | .49    | 19.44             |
|     | 6850        | Cast on ground                                                                                        |        | 180             | .400          | *       | 3.51            | 9.30  | .33    | 13.14             |
|     | 7000        | Stair landings, free standing                                                                         |        | 285             | .253          | S.F.    | 2               | 5.85  | .21    | 8.06              |
|     | 7050        | Cast on ground                                                                                        |        | 685             | .105          | *       | 1.13            | 2.44  | .09    | 3.66              |
| 134 | 0010        | CURING With burlap, 4 uses assumed, 7.5 oz.                                                           | 2 Clab | 55              | .291          | C.S.F.  | 2.78            | 5.65  |        | 8.43              |
|     | 0100        | 12 oz.                                                                                                |        | 55              | .291          |         | 4               | 5.65  |        | 9.65              |
|     | 0200        | With waterproof curing paper, 2 ply, reinforced                                                       |        | 70              | .229          |         | 5.30            | 4.43  |        | 9.73              |
|     | 0300        | With sprayed membrane curing compound                                                                 |        | 95              | .168          | ↓       | 2.07            | 3.27  |        | 5.34              |
|     | 0400        | Curing blankets, 1" to 2" thick, buy, minimum                                                         |        |                 |               | S.F.    | .81             |       |        | .81               |
|     | 0450        | Maximum                                                                                               |        |                 |               |         | 2.53            |       |        | 2.53              |
|     | 0500        | Electrically heated pads, 110 volts, 15 watts per S.F., buy                                           |        |                 |               |         | 4.24            |       |        | 4.24              |
|     | 0600        | 20 watts per S.F., buy                                                                                |        |                 |               |         | 5.65            |       |        | 5.65              |
|     | 0710        | Electrically heated pads, 15 watts/sf, 20 uses, minimum                                               |        |                 |               |         | .15             |       |        | .15               |
|     | 0800        | Maximum                                                                                               |        |                 |               |         | .25             |       |        | .25               |

See the Reference Section for reference number information, Crew Listings and City C

## 4.12 ECO 12: ECONOMIZERS

**Proposed Modifications:** Install an economizer on AHU-2, which serves the hall and office areas.

An economizer uses outside air to cool the building when the outdoor temperature drops below a preset temperature. With the outside air cooling the building instead of the chillers, less energy is used in maintaining the indoor temperature.

**Existing Conditions:** Only the office AHU is eligible for an economizer as this is the only AHU using outside air as a percentage of their supply air. The restricted environment of the computer room makes an economizer on the CRUs an impractical option.

**Method of Analysis:** Analysis proceeded as follows:

- The baseline energy consumption model was modified so that the office AHUs included economizers controlled by dry-bulb temperature.

**Results:** The results are presented in the table below.

|                                      |         |
|--------------------------------------|---------|
| Annual Electric Energy Savings (kWh) | 967     |
| Total Annual Energy Cost Savings     | \$79    |
| Annual Maintenance Cost Savings      | \$0     |
| Investment Cost                      | \$4,096 |
| Savings-to-Investment Ratio (SIR)    | 0.29    |
| Simple Payback (Years)               | 51.6    |

**Recommendations:** An economizer on AHU-2 is not recommended.

|                                                                                                    |                                            |                           |                        |                                            |                        |
|----------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------|------------------------|--------------------------------------------|------------------------|
| 1. COMPONENT<br>ARMY                                                                               | FY 1995 MILITARY CONSTRUCTION PROJECT DATA |                           |                        | 2. DATE<br>Jul-95                          |                        |
| 3. INSTALLATION AND LOCATION<br>GEODSS Site, White Sands Missile Range, NM                         |                                            |                           |                        |                                            |                        |
| 4. PROJECT TITLE<br>Install Economizer                                                             |                                            | 5. PROJECT NUMBER         |                        |                                            |                        |
| <b>LIFE CYCLE COST ANALYSIS SUMMARY<br/>ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)</b>          |                                            |                           |                        |                                            |                        |
| LOCATION: White Sands Missile Range, NM                                                            |                                            | REGION: 4 (New Mexico)    |                        | PROJECT NO: 1406.008                       |                        |
| PROJECT TITLE: Recirculate Tower Air                                                               |                                            |                           |                        | FISCAL YEAR: 1995                          |                        |
| ANALYSIS DATE: 12/01/95                                                                            |                                            | ECONOMIC LIFE: 20         | PREPARED BY: E.Smith   |                                            |                        |
| <b>1. INVESTMENT</b>                                                                               |                                            |                           |                        |                                            |                        |
| A. CONSTRUCTION COST                                                                               | =                                          | \$3,657                   |                        |                                            |                        |
| B. SIOH COST                                                                                       | (6.0% of 1A) =                             | \$219                     |                        |                                            |                        |
| C. DESIGN COST                                                                                     | (6.0% of 1A) =                             | \$219                     |                        |                                            |                        |
| D. TOTAL COST                                                                                      | (1A +1B +1C) =                             | \$4,096                   |                        |                                            |                        |
| E. SALVAGE VALUE OF EXISTING EQUIPMENT =                                                           |                                            | \$0                       |                        |                                            |                        |
| F. PUBLIC UTILITY COMPANY REBATE =                                                                 |                                            | \$0                       |                        |                                            |                        |
| G. TOTAL INVESTMENT                                                                                | (1D -1E -1F) =                             | -----> \$4,096            |                        |                                            |                        |
| <b>2. ENERGY SAVINGS (+) OR COST (-):</b>                                                          |                                            |                           |                        |                                            |                        |
| DATE OF NISTR-85-3273-9 USED FOR DISCOUNT FACTORS: <u>Jul-95</u>                                   |                                            |                           |                        |                                            |                        |
| ENERGY SOURCE                                                                                      | FUEL COST \$/KWH (1)                       | SAVINGS KWH/YR (2)        | ANNUAL \$ SAVINGS (3)  | DISCOUNT FACTOR (4)                        | DISCOUNTED SAVINGS (5) |
| A. ELECT. (SAV/GS)                                                                                 | \$0.0821                                   | 967                       | \$79                   | 15.08                                      | \$1,197                |
| B. DIST (GAL.)                                                                                     | \$1.10                                     | 0                         | \$0                    | 18.57                                      | \$0                    |
| C. RESID (GAL.)                                                                                    | \$3.00                                     | 0                         | \$0                    | 21.02                                      | \$0                    |
| D. NAT GAS (MBTU)                                                                                  | \$6.18                                     | 0                         | \$0                    | 18.58                                      | \$0                    |
| E. COAL                                                                                            | \$2.00                                     | 0                         | \$0                    | 16.83                                      | \$0                    |
| G. DEMAND (\$/KW)                                                                                  | \$0.00                                     | 0                         | \$0                    | 15.08                                      | \$0                    |
| H. TOTAL                                                                                           |                                            | 967                       | \$79                   | ----->                                     | \$1,197                |
| <b>3. NON-ENERGY SAVINGS (+) OR COST (-)</b>                                                       |                                            |                           |                        |                                            |                        |
| A. ANNUAL RECURRING (+/-)                                                                          |                                            |                           |                        |                                            |                        |
| 1 ANNUAL MAINTENANCE SAVINGS                                                                       |                                            | \$0                       | 14.88                  | \$0                                        |                        |
| 2                                                                                                  |                                            |                           | 14.88                  | \$0                                        |                        |
| 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-)                                                        |                                            | \$0                       |                        | \$0                                        |                        |
| B. NON-RECURRING (+/-)                                                                             |                                            |                           |                        |                                            |                        |
| ITEM                                                                                               | SAVINGS (+)<br>COST(-) (1)                 | YEAR OF<br>OCCURRENCE (2) | DISCOUNT<br>FACTOR (3) | DISCOUNTED<br>SAV'G/COST(4)<br>(TABLE A-2) |                        |
| a.                                                                                                 | \$0                                        | 0                         | 0.00                   | \$0                                        |                        |
| b.                                                                                                 | \$0                                        | 0                         | 0.00                   | \$0                                        |                        |
| c.                                                                                                 | \$0                                        | 0                         | 0.00                   | \$0                                        |                        |
| d. TOTAL                                                                                           | \$0                                        |                           |                        | \$0                                        |                        |
| C. TOTAL NON-ENERGY DISCOUNTED SAVINGS (+) OR COST (-)                                             |                                            | (3A3 + 3Bg4) =            |                        | \$0                                        |                        |
| 4. FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) (2H3+3A+(3Bg1/Economic Life)) \$79                    |                                            |                           |                        |                                            |                        |
| 5. SIMPLE PAYBACK (SPB) IN YEARS (MUST BE < 10 YEARS TO QUALIFY) (1G/4) = 51.6                     |                                            |                           |                        |                                            |                        |
| 6. TOTAL NET DISCOUNTED SAVINGS (2H5 + 3C) = \$1,197                                               |                                            |                           |                        |                                            |                        |
| 7. DISCOUNTED SAVINGS-TO-INVESTMENT RATIO (SIR) (6/1G) = 0.29<br>(MUST HAVE SIR > 1.25 TO QUALIFY) |                                            |                           |                        |                                            |                        |

E M C Engineers, Inc  
EMC #1406-008  
GEODSS Site, White Sands Missile Range, NM

LIFE CYCLE COST ANALYSIS  
ECONOMIZERS

ECO-12.XLS  
Prepared By: EMS  
11/10/95  
Checked By: \_\_\_\_\_

|                      |    |
|----------------------|----|
| Economic Life(Years) | 20 |
|----------------------|----|

| Simulation       | Energy Consumed (MBTU) | Energy Consumed (kWh) |
|------------------|------------------------|-----------------------|
| Baseline Model   | 3573.44                | 1,047,008             |
| Economizer Model | 3570.14                | 1,046,042             |
| Savings          | 3.30                   | 967                   |
| Cost Savings     |                        | \$79                  |

|                                      |          |
|--------------------------------------|----------|
| Annual Electric Energy Savings (kWh) | 967      |
| Total Annual Energy Cost Savings     | \$79     |
| Construction Cost                    | \$ 3,657 |
| SIOH (6.0%)                          | \$ 219   |
| Design Cost (6.0%)                   | \$ 219   |
| Total Investment                     | \$ 4,096 |
| Discounted Savings                   | \$1,197  |
| Savings-to-Investment Ratio (SIR)    | 0.29     |
| Simple Payback (Years)               | 51.60    |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
 REPORT- BEPS ESTIMATED BUILDING ENERGY PERFORMANCE  
 DOE-2.1D 8/ 8/1995 13:42:14 PDL RUN 1  
 TRUTH OR CONSEQU, N

| ENERGY TYPE<br>IN SITE MBTU - | ELECTRICITY    |
|-------------------------------|----------------|
| CATEGORY OF USE               |                |
| SPACE HEAT                    | 55.08          |
| SPACE COOL                    | 1565.69        |
| HVAC AUX                      | 426.63         |
| DOM HOT WTR                   | 0.00           |
| AUX SOLAR                     | 0.00           |
| LIGHTS                        | 288.88         |
| VERT TRANS                    | 0.00           |
| MISC EQUIP                    | 1233.86        |
| <b>TOTAL</b>                  | <b>3570.14</b> |

TOTAL SITE ENERGY 3570.04 MBTU 313.2 KBTU/SQFT-YR GROSS-AREA 313.2 KBTU/SQFT-YR NET-AREA  
 TOTAL SOURCE ENERGY 3570.04 MBTU 313.2 KBTU/SQFT-YR GROSS-AREA 313.2 KBTU/SQFT-YR NET-AREA  
 PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.0  
 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED =100.0  
 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
 ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

### TOTAL SITE ELECTRICITY ENERGY USE 3570.13 MBTU



| ENGINEER'S OPINION OF PROBABLE COST                                      |                         |             |                 |                                           |                       |         | SHEET        | 1             | OF                  | 1                |            |       |         |
|--------------------------------------------------------------------------|-------------------------|-------------|-----------------|-------------------------------------------|-----------------------|---------|--------------|---------------|---------------------|------------------|------------|-------|---------|
| AREA                                                                     |                         | ACTIVITY    |                 | LOCATION<br>White Sands Missile Range, NM |                       |         |              | AMENDMENT NO. |                     |                  |            |       |         |
| PROJECT TITLE<br>Install Economizer<br>GEOSS, Energy Conservation Survey |                         |             |                 | CONTRACT NO.<br>DACA01-94-D-0033          |                       |         |              |               |                     |                  |            |       |         |
| Line No.                                                                 | Item Description        |             | Unit of Measure | No. of Units                              | MATERIAL COST         |         | LABOR COST   |               |                     | EQUIPMENT COST   | TOTAL COST |       |         |
|                                                                          |                         |             |                 |                                           | Unit Cost             | Total   | Manhrs/ Unit | Total Manhrs  | Labor Cost/ Manhour | Total Labor Cost | Unit Cost  | Total |         |
| 1                                                                        | Damper Motor            | Ea.         | Ea.             | 3                                         | \$153.00              | \$459   | 0.50         | 1.50          | \$22.99             | \$34             | \$0.00     | \$0   |         |
| 2                                                                        | Outside Air Temp Sensor | Ea.         | Ea.             | 1                                         | \$69.20               | \$69    | 0.80         | 0.80          | \$22.99             | \$18             | \$0.00     | \$0   |         |
| 3                                                                        | Controller              | Ea.         | Ea.             | 1                                         | \$250.00              | \$250   | 1.14         | 1.14          | \$22.99             | \$26             | \$0.00     | \$0   |         |
| 4                                                                        | Dampers                 | Ea.         | Ea.             | 3                                         | \$132.00              | \$396   | 1.00         | 3.00          | \$22.99             | \$69             | \$0.00     | \$0   |         |
| 5                                                                        | Ductwork Modification   | Ls.         | Ls.             | 1                                         | \$0.00                | \$0     | 8.00         | 8.00          | \$22.99             | \$184            | \$0.00     | \$0   |         |
| 6                                                                        |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 7                                                                        |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 8                                                                        |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 9                                                                        |                         |             |                 |                                           |                       |         |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 10                                                                       | Travel to job site      | hrs         | hrs             | 6                                         |                       | \$0     | 1.00         | 6.00          | \$22.99             | \$138            | \$0.00     | \$0   |         |
| 11                                                                       | Lodging and per diem    |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$100.00   | \$0   |         |
| 12                                                                       | Milage                  | miles       | miles           | 300                                       |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.30     | \$90  |         |
| 13                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 14                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 15                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$100.00   | \$0   |         |
| 16                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.30     | \$90  |         |
| 17                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 18                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 19                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 20                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 21                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 22                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 23                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 24                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 25                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 26                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 27                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 28                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 29                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 30                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 31                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 32                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 33                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 34                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 35                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 36                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 37                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 38                                                                       |                         |             |                 |                                           |                       | \$0     |              | 0.00          | \$22.99             | \$0              | \$0.00     | \$0   |         |
| 39                                                                       | SUBCONTRACTOR SUBTOTAL  |             |                 |                                           |                       | \$1,174 |              | 20            |                     | \$470            |            | \$90  | \$1,734 |
| 40                                                                       | LABOR BURDEN            | %           | 30              |                                           |                       | \$0     |              |               |                     | \$141            |            | \$27  | \$168   |
| 41                                                                       | SUBTOTAL                |             |                 |                                           |                       | \$1,174 |              |               |                     | \$611            |            | \$117 | \$1,902 |
| 42                                                                       | OVERHEAD                | %           | 12              |                                           |                       | \$141   |              |               |                     | \$73             |            | \$14  | \$228   |
| 43                                                                       | SUBTOTAL                |             |                 |                                           |                       | \$1,315 |              |               |                     | \$684            |            | \$131 | \$2,130 |
| 44                                                                       | PROFIT                  | %           | 12              |                                           |                       | \$158   |              |               |                     | \$82             |            | \$16  | \$256   |
| 45                                                                       | SUBCONTRACTOR TOTAL     |             |                 |                                           |                       | \$1,473 |              |               |                     | \$766            |            | \$147 | \$2,386 |
| 46                                                                       | OVERHEAD                | %           | 11              |                                           |                       | \$161   |              |               |                     | \$84             |            | \$16  | \$261   |
| 47                                                                       | SUBTOTAL                |             |                 |                                           |                       | \$1,634 |              |               |                     | \$850            |            | \$163 | \$2,647 |
| 48                                                                       | PROFIT                  | %           | 8               |                                           |                       | \$131   |              |               |                     | \$68             |            | \$13  | \$212   |
| 49                                                                       | SUBTOTAL                |             |                 |                                           |                       | \$1,765 |              |               |                     | \$918            |            | \$176 | \$2,859 |
| 50                                                                       | BOND                    | %           | 1               |                                           |                       | \$13    |              |               |                     | \$7              |            | \$1   | \$21    |
| 51                                                                       | SUBTOTAL                |             |                 |                                           |                       | \$1,778 |              |               |                     | \$925            |            | \$177 | \$2,880 |
| 52                                                                       | N. M. TAX               | %           | 6               |                                           |                       | \$103   |              |               |                     | \$54             |            | \$10  | \$167   |
| 53                                                                       | SUBTOTAL                |             |                 |                                           |                       | \$1,881 |              |               |                     | \$979            |            | \$187 | \$3,048 |
| 54                                                                       | CONTINGENCY             | %           | 20              |                                           |                       | \$376   |              |               |                     | \$196            |            | \$37  | \$610   |
| 55                                                                       | GRAND TOTAL             |             |                 |                                           |                       | \$2,258 |              |               |                     | \$1,175          |            | \$225 | \$3,657 |
| PREPARED BY                                                              |                         | APPROVED BY |                 |                                           | TITLE OR ORGANIZATION |         |              |               | DATE                |                  |            |       |         |
| EMS                                                                      |                         |             |                 |                                           | EMC Engineers, Inc.   |         |              |               | 11/10/95            |                  |            |       |         |

## 157 | Air Conditioning and Ventilation

|     | REF.                         | DESCRIPTION                                                                                    | QUANTITY | DAILY<br>OUTPUT | MAN-<br>HOURS | UNIT | 1995 BARE COSTS |       |        | TOTAL  |
|-----|------------------------------|------------------------------------------------------------------------------------------------|----------|-----------------|---------------|------|-----------------|-------|--------|--------|
|     |                              |                                                                                                |          |                 |               |      | MAT.            | LABOR | EQUIP. |        |
|     | <b>157 400   Accessories</b> |                                                                                                |          |                 |               |      |                 |       |        |        |
| 401 | 1850                         | Double pack to 30,000 CFM, add                                                                 |          |                 |               |      | 5%              |       |        |        |
|     | 1860                         | Double pack to 60,000 CFM, add                                                                 |          |                 |               |      | 6%              |       |        |        |
|     | 1870                         | Inlet or outlet transition, vertical                                                           |          |                 |               |      | 2%              |       |        |        |
|     | 1880                         | Single pack to 5000 CFM, add                                                                   |          |                 |               |      | 3%              |       |        |        |
|     | 1890                         | Single pack to 24,000 CFM, add                                                                 |          |                 |               |      | 2%              |       |        |        |
|     | 1900                         | Double pack to 24,000 CFM, add                                                                 |          |                 |               |      | 2%              |       |        |        |
|     | 2000                         | Electronic air cleaner, duct mounted                                                           |          |                 |               |      |                 |       |        |        |
|     |                              | 400 - 1000 CFM                                                                                 | 1 Shee   | 2.30            | 3.478         | Ea.  | 380             | 97.50 |        | 477.50 |
|     | 2150                         | 1000 - 1400 CFM                                                                                |          | 2.20            | 3.636         |      | 485             | 102   |        | 587    |
|     | 2200                         | 1400 - 2000 CFM                                                                                |          | 2.10            | 3.810         |      | 545             | 107   |        | 652    |
|     | 2250                         |                                                                                                |          |                 |               |      |                 |       |        | 770    |
|     | 2950                         | Mechanical media filtration units                                                              |          |                 |               | MCFM | 35              |       |        | 35     |
|     | 3000                         | High efficiency type, with frame, non-supported                                                |          |                 |               |      | 50              |       |        | 55     |
|     | 3100                         | Supported type                                                                                 |          |                 |               |      | 5.50            |       |        | 5.50   |
|     | 4000                         | Medium efficiency, extended surface                                                            |          |                 |               |      | 45              |       |        | 45     |
|     | 4500                         | Permanent washable                                                                             |          |                 |               |      | 165             |       |        | 165    |
|     | 5000                         | Renewable disposable roll                                                                      |          |                 |               |      |                 |       |        | 182    |
|     | 5500                         | Throwaway glass or paper media type                                                            |          |                 |               | Ea.  | 4.10            |       |        | 4.10   |
|     |                              |                                                                                                |          |                 |               |      |                 |       |        | 4.51   |
| 410 | 0010                         | ANTI-FREEZE inhibited                                                                          |          |                 |               |      |                 |       |        |        |
|     | 0900                         | Ethylene glycol concentrated                                                                   |          |                 |               |      |                 |       |        |        |
|     | 1000                         | 55 gallon drums, small quantities                                                              |          |                 |               | Gal. | 6.15            |       |        | 6.15   |
|     | 1200                         | Large quantities                                                                               |          |                 |               |      | 5.70            |       |        | 5.70   |
|     | 2000                         | Propylene glycol, for solar heat, small quantities                                             |          |                 |               |      | 7.25            |       |        | 7.25   |
|     | 2100                         | Large quantities                                                                               |          |                 |               |      | 7.15            |       |        | 7.15   |
|     |                              |                                                                                                |          |                 |               |      |                 |       |        | 7.25   |
| 420 | 0010                         | CONTROL COMPONENTS                                                                             |          |                 |               |      |                 |       |        |        |
|     | 0700                         | Controller, receiver                                                                           |          |                 |               |      |                 |       |        |        |
|     | 0730                         | Pneumatic, panel mount, single input                                                           | 1 Plum   | 8               | 1             | Ea.  | 175             | 29.50 |        | 204.50 |
|     | 0740                         | With conversion mounting bracket                                                               |          | 8               | 1             |      | 182             | 29.50 |        | 211.50 |
|     | 0750                         | Dual input, with control point adjustment                                                      |          | 7               | 1.143         |      | 250             | 33.50 |        | 283.50 |
|     | 0850                         | Electric, single snap switch                                                                   | 1 Elec   | 4               | 2             |      | 244             | 57    |        | 301    |
|     | 0860                         | Dual snap switches                                                                             |          | 3               | 2.667         |      | 325             | 76    |        | 401    |
|     | 0870                         | Humidity controller                                                                            |          | 8               | 1             |      | 156             | 28.50 |        | 184.50 |
|     | 0880                         | Load limiting controller                                                                       |          | 8               | 1             |      | 315             | 28.50 |        | 343.50 |
|     | 0890                         | Temperature controller                                                                         |          | 8               | 1             |      | 149             | 28.50 |        | 177.50 |
|     | 1000                         | Enthalpy control, boiler water temperature control governed by outdoor temperature, with timer | 1 Elec   | 3               | 2.667         | Ea.  | 142             | 76    |        | 218    |
|     | 1010                         |                                                                                                |          |                 |               |      |                 |       |        | 271    |
|     | 2000                         | Gauges, pressure or vacuum                                                                     | 1 Spi    | 32              | 250           | Ea.  | 8               | 7.30  |        | 15.30  |
|     | 2100                         | 2" diameter dial                                                                               |          | 32              | 250           |      |                 |       |        | 20     |
|     | 2200                         | 2-1/2" diameter dial                                                                           |          | 32              | 250           |      | 9.40            | 7.30  |        | 16.70  |
|     | 2300                         | 3-1/2" diameter dial                                                                           |          | 32              | 250           |      | 12              | 7.30  |        | 19.30  |
|     | 2400                         | 4-1/2" diameter dial                                                                           |          | 32              | 250           |      | 16.50           | 7.30  |        | 23.80  |
|     | 2700                         | Flanged iron case, black ring                                                                  | 1 Spi    | 32              | 250           | Ea.  | 43              | 7.30  |        | 50.30  |
|     | 2800                         | 3-1/2" diameter dial                                                                           |          | 32              | 250           |      | 52              | 7.30  |        | 59.30  |
|     | 2900                         | 4-1/2" diameter dial                                                                           |          | 32              | 250           |      | 70.50           | 7.30  |        | 77.80  |
|     | 3000                         | 6" diameter dial                                                                               |          |                 |               |      | 18%             |       |        |        |
|     | 3300                         | For compound pressure-vacuum, add                                                              |          |                 |               |      |                 |       |        |        |
|     | 3350                         | Humidistat                                                                                     |          |                 |               |      |                 |       |        |        |
|     | 3360                         | Pneumatic operation                                                                            |          |                 |               |      |                 |       |        |        |
|     | 3361                         | Room humidistat, direct acting                                                                 | 1 Spi    | 12              | .667          | Ea.  | 133             | 19.50 |        | 152.50 |
|     | 3362                         | Room humidistat, reverse acting                                                                |          | 12              | .667          |      | 133             | 19.50 |        | 152.50 |
|     | 3363                         | Room humidity transmitter                                                                      |          | 17              | .471          |      | 143             | 13.75 |        | 156.75 |
|     | 3364                         | Duct mounted controller                                                                        |          | 12              | .667          |      | 175             | 19.50 |        | 194.50 |
|     | 3365                         | Duct mounted transmitter                                                                       |          | 12              | .667          |      | 158             | 19.50 |        | 177.50 |
|     | 3366                         | Humidity indicator, 3-1/2"                                                                     |          | 28              | .286          |      | 63.50           | 8.35  |        | 71.85  |
|     | 3390                         | Electric operated                                                                              | 1 Shee   | 8               | 1             |      | 40              | 28    |        | 68     |
|     | 3400                         | Relays                                                                                         |          |                 |               |      |                 |       |        |        |

## 5. RESULTS AND RECOMMENDATIONS

### 5.1 RESULTS OF ECO ANALYSIS

Table 5-1 presents the results of the analysis for each ECO.

**Table 5-1. Summary of Results**

| ECO # | ECO Description             | Annual Electric Energy Savings (kWh) | Annual Energy Cost Savings (\$) | Annual Maintenance Cost Savings (\$) | Total Investment Costs (\$) | SIR   | Simple Payback (yrs) |
|-------|-----------------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------|-------|----------------------|
| 1     | Albedo Modification         | 1,532                                | 126                             | 0                                    | N/A                         | N/A   | N/A                  |
| 2     | Roof Insulation 6"          | 1,939                                | 159                             | 0                                    | N/A                         | N/A   | N/A                  |
| 3     | Low-Emissivity Roof Coating | 900                                  | 74                              | 0                                    | N/A                         | N/A   | N/A                  |
| 4     | T-8 Fluorescent Lamps       | 29,455                               | 2,418                           | 47                                   | 12,429                      | 2.38  | 5.0                  |
| 5     | Vortex Tube Cooling         | 38,441                               | 3,156                           | 0                                    | N/A                         | N/A   | N/A                  |
| 6     | High-Efficiency Motors      | 2,197                                | 180                             | 0                                    | 1,753                       | 1.55  | 9.7                  |
| 7     | UPS System                  | 89,454                               | 7,344                           | 0                                    | 22,874                      | 4.85  | 3.1                  |
| 8     | Chiller Replacement         | 85,453                               | 7,016                           | 0                                    | 99,539                      | 2.01  | 8.3                  |
| 9     | Recirculation of Tower Air  | 74,518                               | 6,118                           | 0                                    | 22,767                      | 4.05  | 3.7                  |
| 10    | Turn Off AHU at Night       | 48,210                               | 3,958                           | 0                                    | 420                         | 80.86 | 0.1                  |
| 11    | Propane Heat                | 1,199                                | 65                              | 0                                    | 11,182                      | 0.08  | 171.7                |
| 12    | Economizers                 | 967                                  | 79                              | 0                                    | 4,096                       | 0.29  | 51.6                 |

### 5.2 RECOMMENDATIONS

The following ECOs are recommended for implementation.

**Table 5-2. Summary of Recommended ECOs**

| ECO #                  | ECO Description            | Annual Electric Energy Savings (kWh) | Annual Energy Cost Savings (\$) | Annual Maintenance Cost Savings (\$) | Total Investment Costs (\$) | SIR        | Simple Payback (yrs) |
|------------------------|----------------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------|------------|----------------------|
| 10                     | Turn Off AHU at Night      | 48,210                               | 3,958                           | 0                                    | 420                         | 80.86      | 0.09                 |
| 7                      | UPS System                 | 89,454                               | 7,344                           | 0                                    | 22,874                      | 4.85       | 3.11                 |
| 9                      | Recirculation of Tower Air | 74,518                               | 6,118                           | 47                                   | 22,767                      | 4.05       | 3.72                 |
| 4                      | T-8 Fluorescent Lamps      | 29,455                               | 2,418                           | 0                                    | 12,429                      | 2.38       | 5.04                 |
| 8                      | Chiller Replacement        | 85,453                               | 7,016                           | 0                                    | 99,539                      | 2.01       | 8.30                 |
| 6                      | High Efficiency Motors     | 2,197                                | 180                             | 0                                    | 1,753                       | 1.55       | 9.72                 |
| <b>Overall Savings</b> |                            | <b>280,029</b>                       | <b>22,990</b>                   | <b>47</b>                            | <b>101,292</b>              | <b>N/A</b> | <b>4.41</b>          |

$$\frac{280,029 \text{ kWh} \times 3,413 \text{ BTU}}{1,000,000 \text{ kWh}} \times \frac{\text{MBTU}}{\text{BTU}} = 956 \text{ MBTU}$$

The overall savings takes into account the synergistic effects of multiple ECOs. The total annual energy cost savings for combined ECOs is \$22,990 per year with a resulting simple payback of 4.4 years. The combined ECOs annual energy savings is 280,029 kWh per year, 27% of the present annual energy use.

To qualify for FEMP funding, ECOs must have an SIR greater than 1.25 and a simple economic payback less than 10 years. The following ECOs are recommended for funding as a Federal Energy Management Program (FEMP) project.

**Table 5-3. Summary of ECOs Recommended for FEMP Funding**

| ECO # | ECO Description            | Annual Electric Energy Savings (kWh) | Annual Energy Cost Savings (\$) | Annual Maintenance Cost Savings (\$) | Total Investment Costs (\$) | SIR  | Simple Payback (yrs) |
|-------|----------------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------|------|----------------------|
| 7     | UPS System                 | 89,454                               | 7,344                           | 0                                    | 22,874                      | 4.85 | 3.11                 |
| 9     | Recirculation of Tower Air | 74,518                               | 6,118                           | 0                                    | 22,767                      | 4.05 | 3.72                 |
| 4     | T-8 Fluorescent Lamps      | 29,455                               | 2,418                           | 47                                   | 12,429                      | 2.38 | 5.04                 |
| 8     | Chiller Replacement        | 85,453                               | 7,016                           | 0                                    | 99,539                      | 2.01 | 8.30                 |
|       | Combined Savings           | 252,877                              | 20,761                          | 47                                   | 157,609                     | 2.74 | 5.7                  |

The combined savings of these ECOs with synergistic effects taken into account is \$20,761 per year with a resulting SIR of 2.74 and a simple payback of 5.7 years.

The following ECOs are recommended for in-house implementation by the GEODSS maintenance staff.

**Table 5-4. Summary of ECOs Recommended for In-House Implementation**

| ECO # | ECO Description        | Annual Electric Energy Savings (kWh) | Annual Energy Cost Savings (\$) | Annual Maintenance Cost Savings (\$) | Total Investment Costs (\$) | SIR   | Simple Payback (yrs) |
|-------|------------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------|-------|----------------------|
| 10    | Turn Off AHU at Night  | 48,210                               | 3,958                           | 0                                    | 420                         | 80.86 | 0.09                 |
| 6     | High-Efficiency Motors | 2,197                                | 180                             | 0                                    | 1,753                       | 1.55  | 9.72                 |

The following ECOs are recommended for implementation with the installation of the new computer system, in about two years.

**Table 5-5. Recommended ECO Upgrades with Computer Renovation**

| ECO # | ECO Description     | Annual Electric Energy Savings (kWh) | Annual Energy Cost Savings (\$) | Annual Maintenance Cost Savings (\$) | Total Investment Costs (\$) | SIR | Simple Payback (yrs) |
|-------|---------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------|-----|----------------------|
| 5     | Vortex Tube Cooling | 38,441                               | 3,156                           | 0                                    | N/A                         | N/A | N/A                  |

The following ECOs were not found to be cost effective:

**Table 5-6. ECOs Not Recommended**

| ECO # | ECO Description             | Annual Electric Energy Savings (kWh) | Annual Energy Cost Savings (\$) | Annual Maintenance Cost Savings (\$) | Total Investment Costs (\$) | SIR  | Simple Payback (yrs) |
|-------|-----------------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------|------|----------------------|
| 1     | Albedo Modification         | 1,532                                | 126                             | 0                                    | N/A                         | N/A  | N/A                  |
| 2     | Roof Insulation 6"          | 1,939                                | 159                             | 0                                    | N/A                         | N/A  | N/A                  |
| 3     | Low-Emissivity Roof Coating | 900                                  | 74                              | 0                                    | N/A                         | N/A  | N/A                  |
| 11    | Propane Heat                | 1,199                                | 65                              | 0                                    | 11,182                      | 0.08 | 171.70               |
| 12    | Economizers                 | 967                                  | 79                              | 0                                    | 4,096                       | 0.29 | 51.60                |

**APPENDIX A**

**SCOPE OF WORK AND CORRESPONDENCE**

**ORDER FOR SUPPLIES OR SERVICES**  
 (Contractor must submit four copies of invoice)

Form Approved  
 OMB No. 0704-0187  
 Expires Aug 31, 1992

PAGE 1 OF

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0187), Washington, DC 20503. Please DO NOT RETURN your form to either of these addresses. Send your completed form to the procurement official identified in item 6.

|                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                             |                                                               |                                                                                                                                                                      |                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 1. CONTRACT / PURCH ORDER NO<br><b>D 01-94-D-0033</b>                                                                                                                                                                                                                      |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 2. DELIVERY ORDER NO.<br><b>0008</b>                                                                                                                        | 3. DATE OF ORDER<br><b>08 MAY 95</b>                          | 4. REQUISITION / PURCH REQUEST NO.                                                                                                                                   | 5. CERTIFIED FOR NATIONAL DEFENSE UNDER DMS REG 1<br>DO |
| 6. ISSUED BY<br><b>US ARMY ENGINEER DISTRICT, MOBILE<br/>P.O. BOX 2288<br/>MOBILE, ALABAMA 36628-0001</b>                                                                                                                                                                  |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 7. ADMINISTERED BY (If other than 6)<br><b>CODE</b>                                                                                                         |                                                               | 8. DELIVERY FOB<br><input checked="" type="checkbox"/> DEST<br><input type="checkbox"/> OTHER<br>(See Schedule if other)                                             |                                                         |
| 9. CONTRACTOR<br><b>EMC ENGINEERS, INC.<br/>2750 SO. WADSWORTH BLVD, SUITE C-200<br/>DENVER, COLORADO 80227-3400</b>                                                                                                                                                       |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               |                      | FACILITY CODE<br><b>CODE</b>                                                                                                                                | 10. DELIVER TO FOB POINT BY (Date)<br><b>SEE APPENDIX "A"</b> | 11. MARK IF BUSINESS<br><input type="checkbox"/> SMALL<br><input checked="" type="checkbox"/> SMALL DISADVANTAGED<br><input checked="" type="checkbox"/> WOMEN-OWNED |                                                         |
|                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                             | 12. DISCOUNT TERMS<br><b>N/A</b>                              | 13. MAIL INVOICES TO<br><b>CESAM-EN-MN</b>                                                                                                                           |                                                         |
| 14. SHIP TO<br><b>US ARMY ENGINEER DISTRICT, MOBILE<br/>P.O. BOX 2288<br/>MOBILE, ALABAMA 36628-0001</b>                                                                                                                                                                   |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 15. PAYMENT WILL BE MADE BY<br><b>FINANCE AND ACCOUNTING OFFICER<br/>US ARMY ENGINEER DISTRICT, MOBILE<br/>P.O. BOX 2288<br/>MOBILE, ALABAMA 36628-0001</b> |                                                               | MARK ALL PACKAGES AND PAPERS WITH CONTRACT OR ORDER NUMBER                                                                                                           |                                                         |
| 16. TYPE OF ORDER<br><input type="checkbox"/> PURCHASE                                                                                                                                                                                                                     | DELIVERY X<br><input type="checkbox"/> PURCHASE                                                      | This delivery order is issued on another Government agency or in accordance with and subject to terms and conditions of above numbered contract.<br>Reference your<br>ACCEPTANCE. THE CONTRACTOR HEREBY ACCEPTS THE OFFER REPRESENTED BY THE NUMBERED PURCHASE ORDER AS IT MAY PREVIOUSLY HAVE BEEN OR IS NOW MODIFIED, SUBJECT TO ALL OF THE TERMS AND CONDITIONS SET FORTH, AND AGREES TO PERFORM THE SAME. |                      |                                                                                                                                                             |                                                               |                                                                                                                                                                      |                                                         |
| NAME OF CONTRACTOR                                                                                                                                                                                                                                                         |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               | SIGNATURE            | TYPED NAME AND TITLE                                                                                                                                        |                                                               | DATE SIGNED                                                                                                                                                          |                                                         |
| <input type="checkbox"/> If this box is marked, supplier must sign Acceptance and return the following number of copies:<br><b>17. COUNTING AND APPROPRIATION DATA / LOCAL USE<br/>2020 508-8028 P437018.75-25CZ S01076 QE50215B231B400 (R08956335) TOTAL: \$44,069.00</b> |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                             |                                                               |                                                                                                                                                                      |                                                         |
| 18. ITEM NO.                                                                                                                                                                                                                                                               | 19. SCHEDULE OF SUPPLIES / SERVICE                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 20. QUANTITY ORDERED/ ACCEPTED*                                                                                                                             | 21. UNIT                                                      | 22. UNIT PRICE                                                                                                                                                       | 23. AMOUNT                                              |
|                                                                                                                                                                                                                                                                            | DELIVERY ORDER FOR LIMITED ENERGY STUDY,<br>GEOODS FACILITY, WHITE SANDS MISSILE RANGE<br>NEW MEXICO |                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                             |                                                               |                                                                                                                                                                      | \$44,069.00                                             |
| *If quantity accepted by the Government is same as quantity ordered, indicate by X. If different, enter actual quantity accepted below quantity ordered and encircle.                                                                                                      |                                                                                                      | 24. UNITED STATES OF AMERICA<br><i>Edward M. Slana</i> 8 MAY 95<br>BY: EDWARD M. SLANA                                                                                                                                                                                                                                                                                                                        |                      |                                                                                                                                                             | CONTRACTING FOR ORDERING OFFICER                              |                                                                                                                                                                      | 25. TOTAL<br><b>\$44,069.00</b>                         |
|                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                             |                                                               |                                                                                                                                                                      | 29. DIFFERENCE                                          |
| 26. QUANTITY IN COLUMN 20 HAS BEEN                                                                                                                                                                                                                                         |                                                                                                      | 27. SHIP NO.                                                                                                                                                                                                                                                                                                                                                                                                  |                      | 28. D.O. VOUCHER NO.                                                                                                                                        |                                                               | 30. INITIALS                                                                                                                                                         |                                                         |
| <input type="checkbox"/> INSPECTED <input type="checkbox"/> RECEIVED <input type="checkbox"/> ACCEPTED, AND CONFORMS TO THE CONTRACT EXCEPT AS NOTED                                                                                                                       |                                                                                                      | <input type="checkbox"/> PARTIAL<br><input type="checkbox"/> FINAL                                                                                                                                                                                                                                                                                                                                            |                      | 32. PAID BY                                                                                                                                                 |                                                               | 33. AMOUNT VERIFIED CORRECT FOR                                                                                                                                      |                                                         |
|                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                             |                                                               |                                                                                                                                                                      |                                                         |
| DATE                                                                                                                                                                                                                                                                       |                                                                                                      | SIGNATURE OF AUTHORIZED GOVERNMENT REPRESENTATIVE                                                                                                                                                                                                                                                                                                                                                             |                      | 31. PAYMENT<br><input type="checkbox"/> COMPLETE<br><input checked="" type="checkbox"/> PARTIAL<br><input type="checkbox"/> FINAL                           |                                                               | 35. BILL OF LADING NO.                                                                                                                                               |                                                         |
| DATE                                                                                                                                                                                                                                                                       |                                                                                                      | SIGNATURE AND TITLE OF CERTIFYING OFFICER                                                                                                                                                                                                                                                                                                                                                                     |                      |                                                                                                                                                             |                                                               |                                                                                                                                                                      |                                                         |
| 37. RECEIVED AT                                                                                                                                                                                                                                                            | 38. RECEIVED BY                                                                                      | 39. DATE RECEIVED                                                                                                                                                                                                                                                                                                                                                                                             | 40. TOTAL CONTAINERS | 41. S/R ACCOUNT NUMBER                                                                                                                                      |                                                               | 42. S/R VOUCHER NUMBER                                                                                                                                               |                                                         |

**APPENDIX "A"**

SCOPE OF WORK  
LIMITED ENERGY STUDY  
GEODDS FACILITY, BUILDING 34568  
STALLION SITE  
WHITE SANDS MISSILE RANGE, NM

Performed as part of the  
ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

SCOPE OF WORK  
FOR A  
LIMITED ENERGY STUDY  
GEODDS FACILITY  
WHITE SANDS MISSILE RANGE, NM

TABLE OF CONTENTS

1. BRIEF DESCRIPTION OF WORK
2. GENERAL
3. PROJECT MANAGEMENT
4. SERVICES AND MATERIALS
5. PROJECT DOCUMENTATION
  - 5.1 ECIP Projects
  - 5.2 Non-ECIP Projects
  - 5.3 Nonfeasible ECOs
6. DETAILED SCOPE OF WORK
7. WORK TO BE ACCOMPLISHED
  - 7.1 Perform a Limited Site Survey
  - 7.2 Evaluate Selected ECOs
  - 7.3 Combine ECOs into Recommended Projects
  - 7.4 Submittals, Presentations and Reviews

ANNEXES

- A - DETAILED SCOPE OF WORK
- B - EXECUTIVE SUMMARY GUIDELINE
- C - REQUIRED DD FORM 1391 DATA

1. BRIEF DESCRIPTION OF WORK: The Architect-Engineer (AE) shall:

1.1 Perform a site survey of a specific facility to collect all data required to perform a thorough energy audit of the facility.

1.2 Identify and evaluate Energy Conservation Opportunities (ECOS) to determine their energy savings potential and economic feasibility.

1.3 Provide project documentation for recommended ECOs as detailed herein.

1.4 Prepare a comprehensive report to document all work performed, the results and all recommendations.

2. GENERAL

2.1 This study is limited to the evaluation of the specific building listed in Annex A, DETAILED SCOPE OF WORK.

2.2 The information and analysis outlined herein are considered to be minimum requirements for adequate performance of this study.

2.3 For the building listed in Annex A, all methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures as well as the physical facilities. All ECOs which produce energy or dollar savings shall be documented in this report. Any ECO considered infeasible shall also be documented in the report with reasons for elimination.

2.4 The study shall consider the use of all energy sources applicable to each building, system, or ECO.

2.5 The "Energy Conservation Investment Program (ECIP) Guidance", described in letter from DAIM-FDF-U, dated 10 Jan 1994 establishes criteria for ECIP projects and shall be used for performing the economic analyses of all ECOs and projects. The program, Life Cycle Cost In Design (LCCID), has been developed for performing life cycle cost calculations in accordance with ECIP guidelines and is referenced in the ECIP Guidance. If any program other than LCCID is proposed for life cycle cost analysis, it must use the mode of calculation specified in the ECIP Guidance. The output must be in the format of the ECIP LCCA summary sheet, and it must be submitted for approval to the Contracting Officer.

2.6 Computer modeling will be used to analyze ECOs which would modify, replace, or significantly alter the load on an existing heating, ventilating, and air-conditioning (HVAC) system. Modeling will be done using a professionally recognized and proven computer program or programs that integrate architectural features with air-conditioning, heating, lighting and other energy-producing or consuming systems. These programs will be capable of

simulating the features, systems, and thermal loads of the building under study. The program will use established weather data files and may perform calculations on a true hour-by-hour basis or may condense the weather files and the number of calculations into several "typical" days per month. The Detailed Scope of Work, Annex A, lists programs that are acceptable to the Contracting Officer. If the AE desires to use a different program, it must be submitted for approval with a sample run, an explanation of all input and output data, and a summary of program methodology and energy evaluation capabilities.

2.7 Energy conservation opportunities determined to be technically and economically feasible shall be developed into projects acceptable to installation personnel. This may involve combining similar ECOs into larger packages which will qualify for ECIP funding, and determining in coordination with installation personnel the appropriate packaging and implementation approach for all feasible ECOs.

2.7.1 Projects which qualify for ECIP funding shall be identified, separately listed, and prioritized by the Savings to Investment Ratio (SIR).

2.7.2 All feasible non-ECIP projects shall be ranked in order of highest to lowest SIR.

### 3. PROJECT MANAGEMENT

3.1 Project Managers. The AE shall designate a project manager to serve as a point of contact and liaison for work required under this delivery order. Upon award of this delivery order, the individual shall be immediately designated in writing. The AE's designated project manager shall be approved by the Contracting Officer prior to commencement of work. This designated individual shall be responsible for coordination of work required under this delivery order. The Contracting Officer will designate a project manager to serve as the Government's point of contact and liaison for all work required under this delivery order. This individual will be the Government's representative.

3.2 Installation Assistance. The Commanding Officer or authorized representative at the installation will designate an individual to assist the AE in obtaining information and establishing contacts necessary to accomplish the work required under this delivery order. This individual will be the installation representative.

3.3 Public Disclosures. The AE shall make no public announcements or disclosures relative to information contained or developed in this contract, except as authorized by the Contracting Officer.

3.4 Meetings. Meetings will be scheduled whenever requested by the AE or the Contracting Officer for the resolution of questions or problems encountered in the performance of the work. The AE's project manager and the Government's representative shall be required to attend and participate in all meetings pertinent to the work required under this contract as directed by the Contracting Officer. These meetings, if necessary, are in addition to the presentation and review conferences.

3.5 Site Visits, Inspections, and Investigations. The AE shall visit and inspect/investigate the site of the project as necessary and required during the preparation and accomplishment of the work.

### 3.6 Records

3.6.1 The AE shall provide a record of all significant conferences, meetings, discussions, verbal directions, telephone conversations, etc., with Government representative(s) relative to this contract in which the AE and/or designated representative(s) thereof participated. These records shall be dated and shall identify the contract number, and delivery order number, participating personnel, subject discussed and conclusions reached. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the records.

3.6.2 The AE shall provide a record of requests for and/or receipt of Government-furnished material, data, documents, information, etc., which if not furnished in a timely manner, would significantly impair the normal progression of the work under this contract. The records shall be dated and shall identify the contract number and delivery order number. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the record of request or receipt of material.

4. SERVICES AND MATERIALS. All services, materials (except those specifically enumerated to be furnished by the Government), labor, supervision and travel necessary to perform the work and render the data required under this delivery order are included in the lump sum price of the delivery order.

5. PROJECT DOCUMENTATION. All energy conservation opportunities which the AE has considered shall be included in one of the following categories and presented in the report as such:

5.1 ECIP Projects. To qualify as an ECIP project, an ECO, or several ECOs which have been combined, must have a construction cost estimate greater than \$300,000, a Savings to Investment Ratio (SIR) greater than 1.25 and a simple payback period of less than ten years. The overall project and each discrete part of the project shall have an SIR greater than 1.25. All projects meeting the above criteria shall be arranged as specified in paragraph 2.7.1 and shall be provided with programming documentation.

Programming documentation shall consist of a DD Form 1391 and life cycle cost analysis (LCCA) summary sheet(s) (with necessary backup

data to verify the numbers presented). A life cycle cost analysis summary sheet shall be developed for each ECO and for the overall project when more than one ECO are combined. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs.

5.2 Non-ECIP Projects. Projects which do not meet ECIP criteria with regard to cost estimate or payback period, but which have an SIR greater than 1.25 shall be documented. Projects or ECOs in this category shall be arranged as specified in paragraph 2.7.2 and shall be provided with the following documentation: the life cycle cost analysis (LCCA) summary sheet completely filled out, a description of the work to be accomplished, backup data for the LCCA, ie, energy savings calculations and cost estimate(s), and the simple payback period. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs. In addition these projects shall have the necessary documentation prepared, as required by the Government's representative, for one of the following categories:

a. Federal Energy Management Program (FEMP) Projects. A FEMP (or O&M Energy) project is one that results in needed maintenance or repair to an existing facility, or replaces a failed or failing existing facility, and also results in energy savings. The criteria are similar to the criteria for ECIP projects, ie,  $SIR \geq 1.25$ , and simple payback period of less than ten years. Projects with a construction cost estimate up to \$1,000,000 shall be documented as outlined in par 5.2 above; projects over \$1,000,000 shall be documented on 1391s. In the FEMP program, a system may be defined as "failed or failing" if it is inefficient or technically obsolete. However, if this strategy is used to justify a proposed project, the equipment to be replaced must have been in use for at least three years.

b. Low Cost/No Cost Projects. These are projects which the Director of Public Works (DPW) can perform using his resources. Documentation shall be as required by the DPW.

5.3 Nonfeasible ECOs. All ECOs which the AE has considered but which are not feasible, shall be documented in the report with reasons and justifications showing why they were rejected.

6. DETAILED SCOPE OF WORK. The Detailed Scope of Work is contained in Annex A.

7. WORK TO BE ACCOMPLISHED.

7.1 Perform a Limited Site Survey. The AE shall obtain all necessary data to evaluate the ECOs or projects by conducting a site survey. The AE shall document his site survey on forms developed for the survey, or standard forms, and submit these completed forms as part of the report. All test and/or measurement equipment shall be properly calibrated prior to its use.

**7.2 Evaluate Selected ECOs.** The AE shall analyze all identified ECOs in detail to determine their feasibility. Savings to Investment Ratios (SIRs) shall be determined using current ECIP guidance. The AE shall provide all data and calculations needed to support the recommended ECO. All assumptions and engineering equations shall be clearly stated. Calculations shall be prepared showing how all numbers in the ECO were figured. Calculations shall be an orderly step-by-step progression from the first assumption to the final number. Descriptions of the products, manufacturers catalog cuts, pertinent drawings and sketches shall also be included. A life cycle cost analysis summary sheet shall be prepared for each ECO and included as part of the supporting data.

**7.3 Combine ECOs Into Recommended Projects.** During the Interim Review Conference, as outlined in paragraph 7.4.1, the AE will be advised of the DPW's preferred packaging of recommended ECOs into projects for implementation. Some projects may be a combination of several ECOs, and others may contain only one. These projects will be evaluated and arranged as outlined in paragraphs 5.1, 5.2, and 5.3. Energy savings calculations shall take into account the synergistic effects of multiple ECOs within a project and the effects of one project upon another. The results of this effort will be reported in the Final Submittal per par 7.4.2.

**7.4 Submittals, Presentations and Reviews.** The work accomplished shall be fully documented by a comprehensive report. The report shall have a table of contents and shall be indexed. Tabs and dividers shall clearly and distinctly divide sections, subsections, and appendices. All pages shall be numbered. Names of the persons primarily responsible for the project shall be included. The AE shall give a formal presentation of the interim submittal to installation, command, and other Government personnel. Slides or view graphs showing the results of the study to date shall be used during the presentation. During the presentation, the personnel in attendance shall be given ample opportunity to ask questions and discuss any changes deemed necessary to the study. A review conference will be conducted the same day, following the presentation. Each comment presented at the review conference will be discussed and resolved or action items assigned. It is anticipated that the presentation and review conference will require approximately one working day. The presentation and review conference will be at the installation on the date agreeable to the building occupant, the DPW, the AE and the Government's representative. The Contracting Officer may require a resubmittal of any document(s), if such document(s) are not approved because they are determined by the Contracting Officer to be inadequate for the intended purpose.

**7.4.1 Interim Submittal.** An interim report shall be submitted for review after the field survey has been completed and an analysis has been performed on all of the ECOs. The report shall indicate the work which has been accomplished to date, illustrate the methods and justifications of the approaches taken and contain a plan of the work remaining to complete the study. Calculations

showing energy and dollar savings, SIR, and simple payback period of all the ECOs shall be included. The results of the ECO analyses shall be summarized by lists as follows:

a. All ECOs eliminated from consideration shall be grouped into one listing with reasons for their elimination as discussed in par 5.3.

b. All ECOs which were analyzed shall be grouped into two listings, recommended and non-recommended, each arranged in order of descending SIR. The AE shall submit the Scope of Work and any modifications to the Scope of Work as an appendix to the report. A narrative summary describing the work and results to date shall be a part of this submittal. At the Interim Submittal and Review Conference, the Government's and AE's representatives shall coordinate with the DPW to provide the AE with direction for packaging or combining ECOs for programming purposes and also indicate the fiscal year for which the programming or implementation documentation shall be prepared. The survey forms completed during this audit shall be submitted with this report. The survey forms only may be submitted in final form with this submittal. They should be clearly marked at the time of submission that they are to be retained. They shall be bound in a standard three-ring binder which will allow repeated disassembly and reassembly of the material contained within.

7.4.2 Final Submittal. The AE shall prepare and submit the final report when all sections of the report are 100% complete and all comments from the interim submittal have been resolved. The AE shall submit the Scope of Work for the study and any modifications to the Scope of Work as an appendix to the submittal. The report shall contain a narrative summary of conclusions and recommendations, together with all raw and supporting data, methods used, and sources of information. The report shall integrate all aspects of the study. The recommended projects, as determined in accordance with paragraph 5, shall be presented in order of priority by SIR. The lists of ECOs specified in paragraph 7.4.1 shall also be included for continuity. The final report and all appendices shall be bound in standard three-ring binders which will allow repeated disassembly and reassembly. The final report shall be arranged to include:

a. An Executive Summary to give a brief overview of what was accomplished and the results of this study using graphs, tables and charts as much as possible (See Annex B for minimum requirements).

b. The narrative report describing the problem to be studied, the approach to be used, and the results of this study.

c. Documentation for the recommended projects (includes LCCA Summary Sheets).

d. Appendices to include as a minimum:

- 1) Energy cost development and backup data
- 2) Detailed calculations
- 3) Cost estimates
- 4) Computer printouts (where applicable)
- 5) Scope of Work



ANNEX A

DETAILED SCOPE OF WORK

LIMITED ENERGY STUDY

GEOODDS FACILITY, BUILDING 34568

STALLION SITE, WHITE SANDS MISSILE RANGE, NM

1. The General Scope of Work outlines requirements for the study and the report; and the detailed scope of work describes the specific area to be studied. If any conflicts arise between the General and the Detailed scopes of work, the Detailed Scope of Work shall govern.
2. The facility to be investigated in this study is Building 34568, which is located at Stallion Site in the northern part of White Sands Missile Range. It is approximately 30 miles south and east of Socorro, NM and south of US Highway 380. Access to the site is controlled. Temporary passes will be required for both personnel and vehicle access. A one-week notice should be given by the AE prior to any visit. This time will be needed to make the necessary arrangements for the visit.
3. The installation representative for this contract will be Mr. Julian Delgado, Energy Manager, Directorate of Public Works. The occupant representative will be Msgt. Luther Mills, Chief, Detachment 1, 18th SSS.
4. Building 34568 is a windowless, filled-concrete-block, high-bay structure with an area of approximately 10,000 SF. It is a research facility with scientific and computer equipment, and it is occupied 24 hours per day, 365 days per year. Two TRANE 40-ton, air-cooled chillers are used for air conditioning. Some spaces require year-round cooling. Those spaces that require heat are served by electric resistance duct heaters or unit heaters. The building, although owned by the Army, is occupied by an Air Force Detachment. The site is separately metered, and the Air Force reimburses White Sands Missile Range for all power used. Records of electrical consumption are available for the past three years. Building 34568 and a motor-generator set that serves equipment in B/34568 are the major users of electrical energy on the site.
5. Approximately two years ago the electrical consumption for this facility began to rise sharply. The purpose of this study is to find all cost-effective measures which may be employed to reduce energy consumption and cost.
6. The work consists of conducting a thorough energy audit and to identify and evaluate energy conservation opportunities (ECOs) for the GEOODDS facility. All energy-related aspects of the facility should be investigated, ie. skin, lighting, HVAC systems, equipment and controls, other equipment, operations and maintenance. Field data taken should include lighting levels and operating

amps of all major equipment. A field calibration of the electrical meter for the site should be a part of the field investigation. Any proposal that would modify or replace the chillers must take into consideration the latest guidance on CFC refrigerants. See suggested ECOs at the end of this annex.

7. Completion and Payment Schedule: The following schedule shall be used as a guide in approving payments on this contract. The final report for this study shall be due not later than 90 days after Notice to Proceed.

| <u>MILESTONE</u>                            | <u>PERCENT OF CONTRACT AMOUNT<br/>AUTHORIZED FOR PAYMENT</u> |
|---------------------------------------------|--------------------------------------------------------------|
| Completion of Field Work                    | 25                                                           |
| Receipt of Interim Submittal                | 75                                                           |
| Completion of Interim Presentation & Review | 85                                                           |
| Receipt of Final Report                     | 100                                                          |

8. The following computer programs will be acceptable for use in building and HVAC system simulation. If it is desired to use a program other than one of the following, it must be submitted for approval as outlined in par 2.6 of the general scope of work.

- a. Building Loads and System Thermodynamics (BLAST)
- b. Carrier E20 or Hourly Analysis Program (HAP)
- c. DOE 2.1B
- d. Trane Air-Conditioning Economics (TRACE)

9. Government-Furnished Information: The following documents will be furnished to the AE:

- a. As-built drawings (as available) of Building 34568.
- b. Energy consumption records.
- c. Energy Conservation Investment Program (ECIP) Guidance, dated 10 Jan 1994.
- d. ETL 1110-3-254, Use of Electric Power for Comfort Space Heating
- e. ETL 1110-3-282, Energy Conservation
- f. TM 5-785, Engineering Weather Data
- g. TM 5-800-2, Cost Estimates, Military Construction
- h. AR 415-15, 1 Jan 84, Military Construction, Army (MCA) Program Development
- i. Architectural and Engineering Instructions, Design Criteria, 9 December 1991
- j. The latest MCP Index

10. A computer program titled Life Cycle Costing in Design (LCCID) is available from the BLAST Support Office in Urbana, Illinois for a nominal fee. The current edition of LCCID is dated October 1994. This computer program can be used for performing the economic calculations for ECIP and non-ECIP ECOs. The AE is encouraged to obtain and use this computer program. The BLAST Support Office can be contacted at 144 Mechanical Engineering Building, 1206 West Green Street, Urbana, Illinois 61801. The telephone number is (217) 333-3977 or (800) 842-5278.

11. Reports and correspondence shall be provided in the quantities shown to the offices listed below:

|                                                                                                                                        | <u>CORRESPONDENCE</u>    | <u>*FIELD NOTES</u> |   |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|---|
|                                                                                                                                        | <u>REPORT SUBMITTALS</u> |                     |   |
| Commander<br>US Army White Sands Missile Range<br>ATTN: STEWS-DPW-PE (Delgado)<br>White Sands Missile Range, NM 88002-5076             |                          | 2                   | 1 |
| Det 1<br>18th SSS/DC (Msgt Mills)<br>PO Box W<br>Socorro, NM, 87801                                                                    |                          | 2                   | 1 |
| Air Force Space Command<br>ATTN: 73 MSS/CE (Soderlund)<br>400 O'Malley Avenue, Suite 56<br>Falcon AFB, CO, 80912-4056                  | 1                        |                     |   |
| Commander<br>US Army Engineer District, Mobile<br>ATTN: CESAM-EN-DM (Mr. Battaglia)<br>PO Box 2288<br>Mobile, AL 36628-0001            |                          | 2                   | 1 |
| Commander<br>US Army Engineer District, Fort Worth<br>ATTN: CESWF-ED-MP (Mr Champagne)<br>PO Box 17300<br>Fort Worth, TX, 76102 - 0300 |                          | 1                   | - |

\* To be submitted in final form with the interim submittal

## SUGGESTED ENERGY CONSERVATION OPPORTUNITIES

### ENVELOPE

- o Insulation (wall, roof, etc.)
- o Color of outside walls, doors, and roof
- o Low emissivity roof coating

### POWER

- o Improve power factor
- o High efficiency motor replacement

### HVAC

- o Reduce outside air
- o Night setback/setup thermostats
- o Economizer cycles (dry bulb)
- o Chiller replacement
- o Chiller controls
- o Revise or repair building HVAC controls

### IMPROVE LIGHTING EFFICIENCY

- o Replace standard fluorescent lamps with energy-conserving lamps
- o Replace standard fluorescent ballasts with electronic ballasts
- o Replace existing fluorescent fixtures with new fixtures having efficient reflectors, electronic ballasts, and energy-conserving lamps
- o Use more efficient lighting source, ie, upgrade from incandescent to fluorescent, from fluorescent to HID, from mercury vapor to high pressure sodium, etc

ANNEX B

EXECUTIVE SUMMARY GUIDELINE

1. Introduction.
2. Building Data (types, number of similar buildings, sizes, etc.)
3. Present Energy Consumption of Buildings or Systems Studied.
  - o Total Annual Energy Used.
  - o Site Energy Consumption.

Electricity - MWH, Dollars, MBTU  
Fuel Oil - GALS, Dollars, MBTU & MWH  
Natural Gas - THERMS, Dollars, MBTU & MWH  
Propane - GALS, Dollars, MBTU & MWH  
Other - QTY, Dollars, MBTU & MWH

4. Energy Conservation Analysis.
  - o ECOs Investigated.
  - o ECOs Recommended.
  - o ECOs Rejected. (Provide economics or reasons)
  - o ECIP Projects Developed. (Provide list)\*
  - o Non-ECIP Projects Developed. (Provide list)\*
  - o Operational or Policy Change Recommendations.

5. Energy and Cost Savings.
  - o Total Potential Energy and Cost Savings resulting from recommended projects in MBTU/yr, MWH/yr, and \$K/yr.
  - o Percentage of Energy Conserved.
  - o Energy Use and Cost Before and After the Energy Conservation Opportunities are Implemented.

\* Include the following data from the life cycle cost analysis summary sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR, the simple payback period and the analysis date.





2750 South Wadsworth Blvd. • Suite C-200  
Denver, Colorado 80227-3400  
303/988-2951 • Fax: 303/985-2527

### CONFIRMATION NOTICE

Confirmation Notice No. 1

EMC #1406-008

DATE: 22 September 1995

PROJECT: Limited Energy Study - GEODSS Facility

CONTRACT NO.: DACA01-94-D-0033

DELIVERY ORDER: 0008

NOTES

PREPARED BY: E M C Engineers, Inc.

DATE OF  
MEETING: 19 September 1995

PLACE OF  
MEETING: WSMR, New Mexico

SUBJECT: Review of Preliminary Report

|            |                         |                 |                |
|------------|-------------------------|-----------------|----------------|
| ATTENDEES: | Anthony W. Battaglia    | Mobile COE      | (334) 690-2613 |
|            | Capt. Ray Marsh         | 21 CES/CECR     | (719) 556-8935 |
|            | Sgt. Charles E. Rodgers | Det 1 18SPSS/DC | (505) 835-4546 |
|            | Jim Finley              | PRC Sitel       | DSN 349-4134   |
|            | Mike Barrett            | PRC Sitel       | DSN 349-4134   |
|            | Julian T. Delgado       | DPW-PE          | (505) 678-8762 |
|            | Dennis Jones            | EMC             | (303) 988-2951 |

The following is a summary of the items discussed, the comments made, and the decisions made during the meeting.

EMC verbally presented the findings of the Preliminary Report.

The following review comments were offered by Mobile COE:

1. Overall, this is a good report, well-presented, and well documented.

Thank you

Confirmation Notice No. 1  
22 September 1995  
Page 2

2. Pg ES-6 Table ES-3, Summary Of Recommended ECOs: See Comment 15 below.

**Concur. An additional DOE simulation containing all recommended ECOs will be performed.**

3. Page 1-2 Section 1.5: A UPV value for LP Gas should also be included.

**Concur.**

4. Page 2-1 Section 2.2: The CFM rating for the CRUs is given. It would be helpful if the BTU/Hr. rating could also be given.

**Concur. Will add to report.**

5. Section 4 Please add the Life Cycle Cost Analysis (LCCA) Summary Sheet for all ECOs for which SIR was determined, as on page 4-31, except that the Form 1391 heading and borders are not necessary.

**Concur.**

6. Page 4-25 Please clarify if this ECO is for complete fixture replacement or for retrofit of existing fixtures with new ballast's and lamps.

**Will clarify. ECO is retrofit.**

7. Pg. 4-42 In the motor data table, please define the heading of the column "COE."

**Corps of Engineers. Will add note for COE standards.**

8. In the paragraph on Existing Conditions, please make sure that the subjects, verbs and pronouns all agree.

**Concur.**

9. Pg. 4-65 I was not able to reconcile the data presented for the Existing Reciprocating Chiller with the backup material on or around page 4-75. Please Clarify.

**Existing chiller cut sheet is missing. Will add to report.**

10. Pg. 4-69 Item 2, Condenser: Should model number be CAUC-C50 rather than CAUA-C50?

**Yes. Will correct.**

11. Pg 4-69 Are the unit costs for the chiller and the condenser from a quote? I could not find a price like that in the Means data on page 4-70. If from a quote, please include a copy.

**Copy of quote will be included.**

12. Pg. 4-75 Part of the heading for this page, the part towards the right, did not copy well: so I can't tell to which equipment (existing or proposed) this data supplies. Please clarify.

**Heading will be more clearly identified.**

13. Pg. 4-95 At bottom of page, Recommendations: Delete the words "saves energy and " The analysis on page 4-98 shows that there is a net increase in energy use.

**Concur.**

14. Pg. 5-1 Section 5.2 Recommendations: According to the guidelines for FEMP projects ECOs 8 & 11 should not be recommended as their simple payback periods are greater than 10 years. During the review meeting, we should solicit guidance from the customers to see if they want to include these since they are just barely over ten years.

**These ECOs will be re-evaluated as per comments discussed later in the Confirmation Notice. It is likely that the resulting payback periods will be less than 10 years.**

15. Page 5-1 Section 5.2, The overall energy savings appears to be a straight sum of the individual energy savings of each ECO. This is probably not correct for a synergistic approach. The proper way to obtain the energy savings would be to make one more DOE run with all the appropriate changes in inputs. The resulting annual energy usage could then be subtracted from the base case to obtain the savings. All the rest of the LCCA inputs are pretty straightforward.

**Concur. An additional DOE simulation containing all recommended ECOs will be performed.**

16. Be sure to update the distribution list, as some of the names and addresses have changed.

**Concur.**

The following additional items were discussed:

Confirmation Notice No. 1  
22 September 1995  
Page 4

GEODSS does not want to use propane in the building due to risk to the facility. EMC will evaluate use of a double-bundle chiller for heating as an alternative.

The Chiller Replacement ECO should be re-evaluated to include the need to replace existing chillers within two years due to corrosion in the condenser. The new chillers should be down sized from 40 to 30 tons.

The sketch indicating modifications necessary for ECO #9 ,Recirculation of Air in Towers, should be improved to better show work to be performed. EMC obtained additional plans at the site to form the basis of the improved sketch.

Julian Delgado indicated that WSMR has had problems with funding previous ECIP projects because labor rates and other costs differ between previous EMC assumptions and actual negotiated rates under the IDT with the present contractor. Julian will supply EMC with current labor rates and other applicable rates.

Capt. Marsh will fax EMC the 1391 format the Air Force likes to use.

Programming documentation should be prepared for ECOs 4, 7, 8, and 9. GEODSS will implement ECOs 6 and 10 in-house with O&M funds.

This meeting was adjourned.



Dennis E. Jones

v:\1406.008\cn-1a.doc

If any portion of this Confirmation Notice is incorrect, please notify us immediately. If correspondence is not received to the contrary within 14 days, it will be assumed that the decisions, conclusions, and status outlined in this Confirmation Notice are correct.



ANNEX C

REQUIRED DD FORM 1391 DATA

To facilitate ECIP project approval, the following supplemental data shall be provided:

- a. In title block clearly identify projects as "ECIP."
- b. Complete description of each item of work to be accomplished including quantity, square footage, etc.
- c. A comprehensive list of buildings, zones, or areas including building numbers, square foot floor area, designated temporary or permanent, and usage (administration, patient treatment, etc.).
- d. List references, and assumptions, and provide calculations to support dollar and energy savings, and indicate any added costs.
  - (1) If a specific building, zone, or area is used for sample calculations, identify building, zone or area, category, orientation, square footage, floor area, window and wall area for each exposure.
  - (2) Identify weather data source.
  - (3) Identify infiltration assumptions before and after improvements.
  - (4) Include source of expertise and demonstrate savings claimed. Identify any special or critical environmental conditions such as pressure relationships, exhaust or outside air quantities, temperatures, humidity, etc.
- e. Claims for boiler efficiency improvements must identify data to support present properly adjusted boiler operation and future expected efficiency. If full replacement of boilers is indicated, explain rejection of alternatives such as replace burners, nonfunctioning controls, etc. Assessment of the complete existing installation is required to make accurate determinations of required retrofit actions.
- f. Lighting retrofit projects must identify number and type of fixtures, and wattage of each fixture being deleted and installed. New lighting shall be only of the level to meet current criteria. Lamp changes in existing fixtures is not considered an ECIP type project.

g. An ECIP life cycle cost analysis summary sheet as shown in the ECIP Guidance shall be provided for the complete project and for each discrete part included in the project. The SIR is applicable to all segments of the project. Supporting documentation consisting of basic engineering and economic calculations showing how savings were determined shall be included.

h. The DD Form 1391 face sheet shall include, for the complete project, the annual dollar and MBTU savings, SIR, simple amortization period and a statement attesting that all buildings and retrofit actions will be in active use throughout the amortization period.

i. The calendar year in which the cost was calculated shall be clearly shown on the DD Form 1391.

j. For each temporary building included in a project, separate documentation is required showing (1) a minimum 10-year continuing need, based on the installation's annual real property utilization survey, for active building retention after retrofit, (2) the specific retrofit action applicable and (3) an economic analysis supporting the specific retrofit.

k. Nonappropriated funded facilities will not be included in an ECIP project without an accompanying statement certifying that utility costs are not reimbursable.

l. Any requirements required by ECIP guidance dated 10 Jan 1994 and any revisions thereto. Note that unescalated costs/savings are to be used in the economic analyses.

m. The five digit category number for all ECIP projects except for Family Housing is 80000. The category code number for Family Housing projects is 71100.



2750 South Wadsworth Blvd. • Suite C-200  
Denver, Colorado 80227-3400  
303/988-2951 • Fax: 303/985-2527

### CONFIRMATION NOTICE

Confirmation Notice No. 1

EMC #1406-008

DATE: 22 September 1995

PROJECT: Limited Energy Study - GEODSS Facility  
CONTRACT NO.: DACA01-94-D-0033  
DELIVERY ORDER: 0008

NOTES

PREPARED BY: E M C Engineers, Inc.

DATE OF  
MEETING: 19 September 1995

PLACE OF  
MEETING: WSMR, New Mexico

SUBJECT: Review of Preliminary Report

|            |                         |                 |                |
|------------|-------------------------|-----------------|----------------|
| ATTENDEES: | Anthony W. Battaglia    | Mobile COE      | (334) 690-2613 |
|            | Capt. Ray Marsh         | 21 CES/CECR     | (719) 556-8935 |
|            | Sgt. Charles E. Rodgers | Det 1 18SPSS/DC | (505) 835-4546 |
|            | Jim Finley              | PRC Sitel       | DSN 349-4134   |
|            | Mike Barrett            | PRC Sitel       | DSN 349-4134   |
|            | Julian T. Delgado       | DPW-PE          | (505) 678-8762 |
|            | Dennis Jones            | EMC             | (303) 988-2951 |

The following is a summary of the items discussed, the comments made, and the decisions made during the meeting.

EMC verbally presented the findings of the Preliminary Report.

The following review comments were offered by Mobile COE:

1. Overall, this is a good report, well-presented, and well documented.

Thank you

2. Pg ES-6 Table ES-3, Summary Of Recommended ECOs: See Comment 15 below.

**Concur. An additional DOE simulation containing all recommended ECOs will be performed.**

3. Page 1-2 Section 1.5: A UPV value for LP Gas should also be included.

**Concur.**

4. Page 2-1 Section 2.2: The CFM rating for the CRUs is given. It would be helpful if the BTU/Hr. rating could also be given.

**Concur. Will add to report.**

5. Section 4 Please add the Life Cycle Cost Analysis (LCCA) Summary Sheet for all ECOs for which SIR was determined, as on page 4-31, except that the Form 1391 heading and borders are not necessary.

**Concur.**

6. Page 4-25 Please clarify if this ECO is for complete fixture replacement or for retrofit of existing fixtures with new ballast's and lamps.

**Will clarify. ECO is retrofit.**

7. Pg. 4-42 In the motor data table, please define the heading of the column "COE."

**Corps of Engineers. Will add note for COE standards.**

8. In the paragraph on Existing Conditions, please make sure that the subjects, verbs and pronouns all agree.

**Concur.**

9. Pg. 4-65 I was not able to reconcile the data presented for the Existing Reciprocating Chiller with the backup material on or around page 4-75. Please Clarify.

**Existing chiller cut sheet is missing. Will add to report.**

10. Pg. 4-69 Item 2, Condenser: Should model number be CAUC-C50 rather than CAUA-C50?

**Yes. Will correct.**

11. Pg 4-69 Are the unit costs for the chiller and the condenser from a quote? I could not find a price like that in the Means data on page 4-70. If from a quote, please include a copy.

**Copy of quote will be included.**

12. Pg. 4-75 Part of the heading for this page, the part towards the right, did not copy well: so I can't tell to which equipment (existing or proposed) this data supplies. Please clarify.

**Heading will be more clearly identified.**

13. Pg. 4-95 At bottom of page, Recommendations: Delete the words "saves energy and " The analysis on page 4-98 shows that there is a net increase in energy use.

**Concur.**

14. Pg. 5-1 Section 5.2 Recommendations: According to the guidelines for FEMP projects ECOs 8 & 11 should not be recommended as their simple payback periods are greater than 10 years. During the review meeting, we should solicit guidance from the customers to see if they want to include these since they are just barely over ten years.

**These ECOs will be re-evaluated as per comments discussed later in the Confirmation Notice. It is likely that the resulting payback periods will be less than 10 years.**

15. Page 5-1 Section 5.2, The overall energy savings appears to be a straight sum of the individual energy savings of each ECO. This is probably not correct for a synergistic approach. The proper way to obtain the energy savings would be to make one more DOE run with all the appropriate changes in inputs. The resulting annual energy usage could then be subtracted from the base case to obtain the savings. All the rest of the LCCA inputs are pretty straightforward.

**Concur. An additional DOE simulation containing all recommended ECOs will be performed.**

16. Be sure to update the distribution list, as some of the names and addresses have changed.

**Concur.**

The following additional items were discussed:

GEODSS does not want to use propane in the building due to risk to the facility. EMC will evaluate use of a double-bundle chiller for heating as an alternative.

Confirmation Notice No. 1  
22 September 1995  
Page 4

The Chiller Replacement ECO should be re-evaluated to include the need to replace existing chillers within two years due to corrosion in the condenser. The new chillers should be down sized from 40 to 30 tons.

The sketch indicating modifications necessary for ECO #9 ,Recirculation of Air in Towers, should be improved to better show work to be performed. EMC obtained additional plans at the site to form the basis of the improved sketch.

Julian Delgado indicated that WSMR has had problems with funding previous ECIP projects because labor rates and other costs differ between previous EMC assumptions and actual negotiated rates under the IDT with the present contractor. Julian will supply EMC with current labor rates and other applicable rates.

Capt. Marsh will fax EMC the 1391 format the Air Force likes to use.

Programming documentation should be prepared for ECOs 4, 7, 8, and 9. GEODSS will implement ECOs 6 and 10 in-house with O&M funds.

This meeting was adjourned.

---

Dennis E.Jones

v:\1406.008\cn-1a.doc

If any portion of this Confirmation Notice is incorrect, please notify us immediately. If correspondence is not received to the contrary within 14 days, it will be assumed that the decisions, conclusions, and status outlined in this Confirmation Notice are correct.

**APPENDIX B**

**FIELD SURVEY NOTES**

**E M C** Engineers, Inc.  
White Sands Missile Range, New Mexico  
EMC #1406.008

[BLDG NO.] 34568

GE Site  
Building No. 34568  
TRACE Input Data

Prepared by: Smith  
8/11/95  
Checked by: T Poeling

[FLOOR AREA] 10,671 ft<sup>2</sup>

#### INTERIOR LIGHTS

| DESCRIPTION             | LAMP TYPE | NO. LAMPS | LAMP WATTS | Fixture Watts         | Fixture Count | Total Watts |
|-------------------------|-----------|-----------|------------|-----------------------|---------------|-------------|
| 4' RECESSED FLUORESCENT | FLUOR INC | 2         | 40         | 89                    | 131           | 11659       |
| EXIT LIGHT              | INC       | 2         | 20         | 40                    | 10            | 400         |
| EXPOSED INCANDESCENT    | INC       | 1         | 150        | 150                   | 12            | 1800        |
| RECESSED INCANDESCENT   | INC       | 1         | 60         | 60                    | 9             | 540         |
|                         |           |           |            | TOTAL WATTS           |               | 14,399      |
|                         |           |           |            | WATTS PER SQUARE FOOT |               | 1.35        |

#### EXTERIOR LIGHTS

| DESCRIPTION                | LAMP TYPE | NO. LAMPS | LAMP WATTS | Fixture Watts | Fixture Count | Total Watts |
|----------------------------|-----------|-----------|------------|---------------|---------------|-------------|
| INCANDESCENT               | INC       | 1         | 7.5        | 7.5           | 18            | 135         |
| INCANDESCENT (PARKING LOT) | INC       | 1         | 12.5       | 12.5          | 33            | 412.5       |
|                            |           |           |            | TOTAL WATTS   |               | 548         |

#### EQUIPMENT OUTSIDE CONDITIONED SPACE

| DESCRIPTION   | PEAK WATTS  | USE FACTOR | USE WATTS |
|---------------|-------------|------------|-----------|
| COMPRESSOR #1 | 4244        | 0.5        | 2122      |
| COMPRESSOR #2 | 4244        | 0.5        | 2122      |
| COMPRESSOR #3 | 4244        | 0.5        | 2122      |
|               | TOTAL WATTS |            | 6,366     |

EQUIPMENT INSIDE CONDITIONED SPACE

| DESCRIPTION           | PEAK WATTS | USE FACTOR | USE WATTS | COUNT | TOTAL WATTS |
|-----------------------|------------|------------|-----------|-------|-------------|
| COFFEE MAKER          | 1500       | 0.75       | 1125      | 1     | 1125        |
| REFRIGERATOR          | 225        | 1.00       | 225       | 1     | 225         |
| MICROWAVE             | 400        | 0.15       | 60        | 1     | 60          |
| PERSONAL COMPUTER     | 160        | 0.5        | 80        | 9     | 720         |
| LASER PRINTER         | 60         | 0.5        | 30        | 9     | 270         |
| MEDIUM COPIER         | 1750       | 1.00       | 1750      | 1     | 1750        |
| VENDING MACHINE       | 500        | 1.00       | 500       | 1     | 500         |
| COKE MACHINE          | 700        | 1.00       | 700       | 1     | 700         |
| TOTAL WATTS           |            | 5,350      |           | 0.50  |             |
| WATTS PER SQUARE FOOT |            |            |           |       |             |

ASHRAE 1989 FUNDAMENTALS page 26.8 & 28.4

PEOPLE HEAT GAIN

| BUILDING TYPE          | SENSE BTUh | LATENT BTUh | COUNT |
|------------------------|------------|-------------|-------|
| OFFICE                 | 225        | 125         | 14    |
| TOTAL PEOPLE           |            | 14          |       |
| SQUARE FOOT PER PERSON |            | 762         |       |

ASHRAE 1993 FUNDAMENTALS p 26.8

Pa

## HVAC SYSTEMS

| ZONE DATA            |         | AHU-2 | AHU-3,4,5 | AHU-6,7,8 | AHU-9 |
|----------------------|---------|-------|-----------|-----------|-------|
| DESIGNATION          |         |       |           |           |       |
| AREA SERVED          | OFFICES |       |           |           |       |
| SUPPLY AIRFLOW (CFM) | 4770    | 2000  |           |           |       |
| VENTILATION          | 1257    | 2000  |           |           |       |
| EXHAUST              | 1257    | 2000  |           |           |       |
| RETURN               | 3513    | 0     |           |           |       |
| OUTSIDE AIR (%)      | 26.40%  | 100%  |           |           |       |

| AHU DATA                          | SYSTEM TYPE        | SZ TRANE           | SZ CLIMATE CHANGER #6 | SZ CRU AIRFLOW CO. | SZ WILLIAMS AH-800-W2-B40 |
|-----------------------------------|--------------------|--------------------|-----------------------|--------------------|---------------------------|
| MANUFACTURER                      | CLIMATE CHANGER #8 | CLIMATE CHANGER #8 | CLIMATE CHANGER #6    | CCT-41C4           | 10                        |
| MODEL NUMBER                      | 113                | 62                 | 326                   | 326                | N/A                       |
| COOLING CAPACITY (MBH)            | 131                | N/A                | 115                   | 115                | 0.33                      |
| HEATING CAPACITY (MBH)            | 5                  | 3                  | 7.5                   | 7.5                | -                         |
| SUPPLY FAN HORSEPOWER             | 3.0                | 2.5                | 0.5                   | 0.5                | 0.246                     |
| SUPPLY FAN STATIC PRESSURE ("H2O) | 3.14               | 1.9                | 4.72                  | 4.72               | N/A                       |
| SUPPLY FAN LOAD (kW)              | N/A                | N/A                | N/A                   | N/A                | N/A                       |
| RETURN FAN HORSEPOWER             | N/A                | N/A                | N/A                   | N/A                | N/A                       |
| RETURN FAN STATIC PRESSURE        | N/A                | N/A                | N/A                   | N/A                | N/A                       |
| RETURN FAN LOAD                   | N/A                | N/A                | N/A                   | N/A                | N/A                       |

  

| CONTROLS | OPERATING SEASON               | ALWAYS   | APRIL - NOVEMBER | ALWAYS   | ALWAYS   |
|----------|--------------------------------|----------|------------------|----------|----------|
|          | HEATING SEASON                 | ALWAYS   | N/A              | ALWAYS   | N/A      |
|          | COOLING SEASON                 | ALWAYS   | NONE             | ALWAYS   | ALWAYS   |
|          | TIME CLOCK                     | NONE     | 24 HOURS         | NONE     | NONE     |
|          | WEEKDAY SCHEDULE               | 24 HOURS | 24 HOURS         | 24 HOURS | 24 HOURS |
|          | WEEKEND SCHEDULE               | 24 HOURS | 24 HOURS         | 24 HOURS | 24 HOURS |
|          | SUPPLY AIR TEMPERATURE CONTROL | 24 HOURS | 24 HOURS         | 24 HOURS | 24 HOURS |
|          | SUPPLY AIR SETPOINT (°F)       | 24 HOURS | 24 HOURS         | 24 HOURS | 24 HOURS |
|          | MIXED AIR TEMPERATURE CONTROL  | 24 HOURS | 24 HOURS         | 24 HOURS | 24 HOURS |
|          | MIXED AIR SETPOINT (°F)        | 24 HOURS | 24 HOURS         | 24 HOURS | 24 HOURS |
|          | COOLING THERMOSTAT             | 24 HOURS | 24 HOURS         | 24 HOURS | 24 HOURS |
|          | HEATING THERMOSTAT             | 24 HOURS | 24 HOURS         | 24 HOURS | 24 HOURS |
|          | ECONOMIZER TYPE                | 24 HOURS | 24 HOURS         | 24 HOURS | 24 HOURS |

### TOWER WALL AND ROOF U-VALUES

| Layer                                           | R-value      |
|-------------------------------------------------|--------------|
| Outside air film                                | 0.17         |
| 1' Concrete Wall                                | 1.23         |
| 4" Insulation (on 2 1/2" metal studs)           | 13.00        |
| 5/8" Gypsum                                     | 0.56         |
| Inside air Film                                 | 0.68         |
| <b>Total R-value</b>                            | <b>15.64</b> |
| <b>Total U-value (Btu/hr-ft<sup>2</sup>-°F)</b> | <b>0.064</b> |

R-values taken from ASHRAE Table 22.4, pg. 22.6-22.9

### TOWER WALL

| Layer                                           | R-value      |
|-------------------------------------------------|--------------|
| Outside air film                                | 0.17         |
| 1' Concrete Wall                                | 1.23         |
| 4" Insulation (on 2 1/2" metal studs)           | 13.00        |
| 5/8" Gypsum                                     | 0.56         |
| Inside air Film                                 | 0.68         |
| <b>Total R-value</b>                            | <b>15.64</b> |
| <b>Total U-value (Btu/hr-ft<sup>2</sup>-°F)</b> | <b>0.064</b> |

R-values taken from ASHRAE Table 22.4, pg. 22.6-22.9

### TOWER ROOF

| Layer                                           | R-value      |
|-------------------------------------------------|--------------|
| Outside air film                                | 0.17         |
| 4" Rigid Insulation                             | 25.00        |
| Inside air Film                                 | 0.68         |
| <b>Total R-value</b>                            | <b>25.85</b> |
| <b>Total U-value (Btu/hr-ft<sup>2</sup>-°F)</b> | <b>0.039</b> |

### COMPUTER AND FACILITY ROOF

| Layer                                                          | R-value      |
|----------------------------------------------------------------|--------------|
| Outside air film                                               | 0.17         |
| Built-up roof on underlayment<br>on steel deck on steel joists | 0.33         |
| 4" Rigid insulation                                            | 20.00        |
| Inside air Film                                                | 0.68         |
| <b>Total R-value</b>                                           | <b>21.18</b> |
| <b>Total U-value (Btu/hr-ft<sup>2</sup>-°F)</b>                | <b>0.047</b> |

### FACILITY EXTERIOR WALLS

| Layer                                                                                                  | R-value      |
|--------------------------------------------------------------------------------------------------------|--------------|
| Outside air film                                                                                       | 0.17         |
| 8" Concrete masonry unit<br>(Assume medium aggregate<br>w/perlite filled cores at<br>reinforced areas) | 2.50         |
| 3/4" Plywood                                                                                           | 0.93         |
| Air Space                                                                                              | 0.91         |
| 1 3/8" Plywood removable doors                                                                         | 1.05         |
| 5/8" Gypsum                                                                                            | 0.56         |
| Inside air Film                                                                                        | 0.68         |
| <b>Total R-value</b>                                                                                   | <b>7.31</b>  |
| <b>Total U-value (Btu/hr-ft<sup>2</sup>-°F)</b>                                                        | <b>0.137</b> |

R-values taken from ASHRAE Table 22.4, pg. 22.6-22.9

**E** Engineers, Inc.  
White Sands Missile Range, New Mexico  
EMC #1406.008

GS Site  
Building No. 34568  
TRACE Input Data

Prepared by E. Smith  
8/11/95  
Checked by T Poeling

#### CONDENSER

|              |                |
|--------------|----------------|
| Manufacturer | Trane          |
| Model No.    | CRHHR400C-3RAT |
| Tons         | 35.73          |

#### COMPRESSOR

| Manufacturer | Tri volt |
|--------------|----------|
| Model No.    | 3N659A   |
| HP           | 5.00     |
| RPM          | 1750     |

#### PUMPS

| Description        | Motor Size (hp) | Full Load (kW) | Flow Rate (gpm) | Speed (rpm) | Operating Schedule |
|--------------------|-----------------|----------------|-----------------|-------------|--------------------|
| Chilled Water Loop | 1               | 0.63           | 72              | 1725        | AVAIL              |
| Chilled Water Loop | 1               | 0.63           | 72              | 1725        | AVAIL              |
| Chilled Water Loop | 1               | 0.63           | 72              | 1725        | AVAIL              |
| Chilled Water Loop | 1               | 0.63           | 72              | 1725        | AVAIL              |

E M C Engineers, Inc.  
Energy Conservation Survey  
White Sands Missile Range, NM

Field Survey Notes

EMC No. 1406.008  
Date: 6/29/95  
Prepared by: ES

CHILLER PLANT DATA

Chiller No.: 1

|                                         |                                  |                    |
|-----------------------------------------|----------------------------------|--------------------|
| Manufacturer: TRANE                     | Location: CHILLER ROOM           |                    |
| Model No.: CRHR400C - 3RAT              | Serves AHUs: 2,3,4,5,6,7,8,9     |                    |
| Serial No.: N884062288                  |                                  |                    |
| TYPE OF CHILLER:                        | TYPE OF REFRIGERANT: FREON       | MULTIPLE CHILLERS: |
| Absorption:                             | DX:                              | Series Piping:     |
| Centrifugal:                            | Water:                           | Parallel Piping:   |
| Reciprocating:                          | Other:                           | SIZE OF PIPING:    |
| Rotary Screw:                           | Air-Cooled:                      | Supply (in.):      |
| Other:                                  | Water-Cooled:                    | Return (in.):      |
| COMPRESSOR DATA:                        | CONDENSING FANS: TRANE           | EVAPORATOR DATA:   |
| No. of Compressors: 1                   | No. of Fans: 4                   | Serial No.:        |
| RLA: LR: 315                            | HP: 1.5                          | No. of Passes:     |
| Volts: 460                              | FLA: 3                           | Miscellaneous:     |
| kW:                                     | Volts:                           |                    |
| Capacity (tons): 38.23                  | Phase/Hz: 3 / 60                 |                    |
| OPERATING TIMES:                        |                                  |                    |
| Present Start Time:                     | Required Start Time:             |                    |
| Present Stop Time:                      | Required Stop Time:              |                    |
| Months Operating:                       | Timeclock (Y/N):                 |                    |
| CONTROLS:                               | CONTROL VALVES:                  |                    |
| Pneumatic:                              | Location:                        |                    |
| Electric:                               | 2-Way:                           |                    |
| DDC:                                    | 3-Way:                           |                    |
| Setpoints: CHW: CNW:                    | Size:                            |                    |
| Comments: MAX FUSE SIZE TIME DELAY: 15, | MIN CIR AMPACITY: 13,            |                    |
| CONDENSOR MODEL #: CAUA - 4004 - OB,    | CONDENSOR TYPE: 621 - 0340 - 3A, |                    |
| CONDENSOR SERIAL #: J79E - 20224        |                                  |                    |

E M C Engineers, Inc.  
Energy Conservation Survey  
White Sands Missile Range, NM

Field Survey Notes

EMC No.1406.008  
Date: 6/22/95  
Prepared by: ES

## CHILLER PLANT DATA

Chiller No.: 2

|                                                                                                                                                                                                                                       |                                                                                                        |                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Manufacturer: TRANE                                                                                                                                                                                                                   | Location: CHILLER ROOM                                                                                 |                                                                                                                                 |
| Model No.: CRHR400C - 3FAT                                                                                                                                                                                                            | Serves AHUs: 2,3,4,5,6,7,8,9                                                                           |                                                                                                                                 |
| Serial No.: GOD40J4178                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                 |
| <b>TYPE OF CHILLER:</b><br><br>Absorption:<br>Centrifugal:<br>Reciprocating:<br>Rotary Screw:<br>Other:                                                                                                                               | <b>TYPE OF REFRIGERANT:</b> FREON<br><br>DX:<br>Water:<br>Other:<br>Air-Cooled:<br>Water-Cooled:       | <b>MULTIPLE CHILLERS:</b><br><br>Series Piping:<br>Parallel Piping:<br><b>SIZE OF PIPING:</b><br>Supply (in.):<br>Return (in.): |
| <b>COMPRESSOR DATA:</b><br><br>No. of Compressors: 1<br>RLA: LR: 315<br>Volts: 460<br>kW:<br>Capacity (tons): 38.23                                                                                                                   | <b>CONDENSING FANS:</b> TRANE<br><br>No. of Fans: 4<br>HP: 1.5<br>FLA: 3<br>Volts:<br>Phase/Hz: 3 / 60 | <b>EVAPORATOR DATA:</b><br><br>Serial No.:<br>No. of Passes:<br>Miscellaneous:                                                  |
| <b>OPERATING TIMES:</b><br><br>Present Start Time:<br>Present Stop Time:<br>Months Operating:                                                                                                                                         | Required Start Time:<br>Required Stop Time:<br>Timeclock (Y/N):                                        |                                                                                                                                 |
| <b>CONTROLS:</b><br><br>Pneumatic:<br>Electric:<br>DDC:<br>Setpoints: CHW: CNW:                                                                                                                                                       | <b>CONTROL VALVES:</b><br><br>Location:<br>2-Way:<br>3-Way:<br>Size:                                   |                                                                                                                                 |
| <b>Comments:</b> MAX FUSE SIZE TIME DELAY: 15, MIN CIR AMPACITY: 13,<br>CONDENSOR MODEL #: CAUA - 4004 - OB, CONDENSOR TYPE: 621 - 0340 - 3A,<br>CONDENSOR SERIAL #: J79E - 20224<br>USED ONLY WHEN NEEDED, OTHERWISE IT IS SHUT DOWN |                                                                                                        |                                                                                                                                 |

E M C Engineers, Inc.  
Energy Conservation Survey  
White Sands Missile Range, NM.

EMC No. 1406.008  
Date: 6/24/95  
Prepared by: ES

## MOTORS

Location: Compressor Room #2

Application:

|                                                                                     |                   |
|-------------------------------------------------------------------------------------|-------------------|
| Pump Motor: Tri volt                                                                | Manufacturer:     |
| Manufacturer Dayton                                                                 | Model No.:        |
| Model No.: 3N659A                                                                   | Serial No.:       |
| Serial No.: GO34A1F9OTO81RO43F                                                      | Frame No.:        |
| HP: 5 RPM: 1750                                                                     | Pump Type: D      |
| Volts: 200-236/460                                                                  | FLA:              |
| Ph/Hz: 3 / 60                                                                       | LRA:              |
| Measured RPM:                                                                       |                   |
| Operating Hours:                                                                    | Months Operating: |
| Comments: Type: D, SF: 1.15, Insul Class: B, Frame : 184T, Nema Design: B,          |                   |
| KVARmax: 2.0, Amps: 15.4 - 14.6 / 7.3, SFA: 18.0 - 15.8 / 7.9, Shaft End BRG: 6206, |                   |
| Opp End BRG: 6204, Nema Nom Eff: 85.5, Power Factor: 79.5, Duty: Continuous         |                   |
|                                                                                     |                   |
|                                                                                     |                   |

Location: 34566 Building

Application: Powers Generator

|                                                                                           |                       |
|-------------------------------------------------------------------------------------------|-----------------------|
| Pump Motor:                                                                               | Manufacturer:         |
| Manufacturer Toshiba                                                                      | Model No.:            |
| Model No.: B2504VLF4B3                                                                    | Serial No.:           |
| Serial No.: 10123512                                                                      | Frame No.: 447TZ      |
| HP: 250 RPM: 1770                                                                         | Pump Type:            |
| Volts: FLA:                                                                               | GPM: Head (ft.):      |
| Ph/Hz: 4 / 60 LRA:                                                                        |                       |
| Measured RPM: 1796.6                                                                      |                       |
| Operating Hours:                                                                          | Months Operating: All |
| Comments: Type: TIKK, Form: VBKI, Code: E, Amps: 28.5, Class: F, Nema Design: B, 4 Poles, |                       |
| BRG No: LS-NU318 OS-6318, SF: 1.15, MAX ANB: 40                                           |                       |
|                                                                                           |                       |
|                                                                                           |                       |

E M C Engineers, Inc.  
Energy Conservation Survey  
White Sands Missile Range, NM

Field Survey

EMC No. 1406.008  
Date: 6/22/95  
Prepared By: ES

**PUMPS**

**Location:** Chiller Room

|                      |                   |                                            |
|----------------------|-------------------|--------------------------------------------|
| Pump Motor: GE Motor | Pump No.: 1,2,3,4 | Type:                                      |
| Manufacturer:        | Manufacturer:     |                                            |
| Model No.:           | Model No.:        | 5K43MG8163A                                |
| Serial No.:          | Serial No.:       |                                            |
| HP: 1 RPM: 1725      | Frame No.:        |                                            |
| Volts: 208 FLA: 3.3  | GPM:              | Head (ft.):                                |
| Fluid: Water         | Comments:         | Typical of all four pumps<br>Chilled Water |
|                      |                   |                                            |
|                      |                   |                                            |

**CONTROL SCHEMATIC/PIPING SCHEMATIC**



E M C Engineers, Inc.  
Energy Conservation Survey  
White Sands Missile Range, NM

Field Survey

EMC No. 1406.008  
Date: 6/22/95  
Prepared By: ES

AIR HANDLING UNIT DATA

AHU No.: 2

|                      |                                                                                                       |              |                                     |                                     |                     |                                     |      |                  |
|----------------------|-------------------------------------------------------------------------------------------------------|--------------|-------------------------------------|-------------------------------------|---------------------|-------------------------------------|------|------------------|
| Manufacturer         | Trane                                                                                                 |              |                                     |                                     | Location:           | Chiller Room                        |      |                  |
| Model No.:           | Climate Changer Size 8                                                                                |              |                                     |                                     | Served by:          |                                     |      |                  |
| Serial No.:          | V80E15027                                                                                             |              |                                     |                                     | Serves Area:        | Office areas                        |      |                  |
| AHU TYPE:            | Single-zone: <input checked="" type="checkbox"/>                                                      | 2 Pipe FC:   | 4 Pipe FC:                          |                                     | Unit Heater:        |                                     |      |                  |
|                      | H&V Unit:                                                                                             | Multizone:   | Double Duct:                        |                                     | Induction Unit:     |                                     |      |                  |
|                      | VAV:                                                                                                  | Reheat:      | Comp. Room:                         |                                     | Other:              |                                     |      |                  |
| Number of Zones:     |                                                                                                       |              |                                     |                                     |                     |                                     |      |                  |
| SUPPLY FAN:          | Blow-thru:                                                                                            | Draw-thru:   | <input checked="" type="checkbox"/> | In-line:                            |                     |                                     |      |                  |
| X Centrifugal:       | B.I.:                                                                                                 | F.C.:        |                                     | Airfoil:                            | Radial:             |                                     |      |                  |
| Axial:               | Vaneaxial:                                                                                            | Tubeaxial:   |                                     | Propeller:                          |                     |                                     |      |                  |
| Manufacturer:        | Motor Dayton                                                                                          |              |                                     |                                     |                     |                                     |      |                  |
| Model No.:           | 3N659                                                                                                 |              |                                     |                                     |                     |                                     |      |                  |
| HP:                  | 5                                                                                                     | Volts:       | 460                                 | FLA:                                | 7.3                 | RPM:                                | 1730 | Phase/Hz: 3 / 60 |
| RETURN FAN:          | Axial:                                                                                                | Centrifugal: |                                     |                                     |                     |                                     |      |                  |
| Manufacturer:        |                                                                                                       |              |                                     |                                     |                     |                                     |      |                  |
| Model No.:           | N/A                                                                                                   |              |                                     |                                     |                     |                                     |      |                  |
| HP:                  | Volts:                                                                                                | FLA:         |                                     | RPM:                                | Phase/Hz:           |                                     |      |                  |
| COILS:               | CHW                                                                                                   | HW           | Steam                               | Electric                            | CNTRL VLV           | CW                                  | HW   |                  |
| Preheat:             |                                                                                                       |              |                                     |                                     | Location:           |                                     |      |                  |
| Heating:             |                                                                                                       |              |                                     | <input checked="" type="checkbox"/> | 2-Way:              |                                     |      |                  |
| Cooling:             | <input checked="" type="checkbox"/>                                                                   |              |                                     |                                     | 3-Way:              | <input checked="" type="checkbox"/> |      |                  |
| Humidity:            |                                                                                                       |              |                                     |                                     | Size:               |                                     |      |                  |
| Reheat:              |                                                                                                       |              |                                     |                                     | Pneu/Elec.:         | Pneu                                |      |                  |
| CONTROLS:            |                                                                                                       |              |                                     |                                     | SETPOINTS:          |                                     |      |                  |
| Pneumatic:           | <input checked="" type="checkbox"/>                                                                   |              |                                     |                                     | Space:              |                                     |      |                  |
| Electric:            |                                                                                                       |              |                                     |                                     | Occupied Heating:   |                                     |      |                  |
| DDC:                 |                                                                                                       |              |                                     |                                     | Unoccupied Heating: |                                     |      |                  |
| Damper Control (OA): | <input checked="" type="checkbox"/>                                                                   |              |                                     |                                     | Occupied Cooling:   |                                     |      |                  |
| Damper Control (RA): |                                                                                                       |              |                                     |                                     | Unoccupied Cooling: |                                     |      |                  |
| Damper Control (EA): |                                                                                                       |              |                                     |                                     | Setback (Y/N):      |                                     |      |                  |
| Economizer (Y/N):    | N small OA duct                                                                                       |              |                                     |                                     | Setback Setpoint:   |                                     |      |                  |
| Comments:            | RA: 75 °F,<br>SA: 69 °F,<br>Motor: 1727.6 rpm measured<br>Fan: 1727.6 rpm measured<br>$\eta = 82.5\%$ |              |                                     |                                     | PF = 81%            |                                     |      |                  |

E M C Engineers, Inc.  
Energy Conservation Survey  
White Sands Missile Range, NM

Field Survey

EMC No. 1406.008  
Date: 6/22/95  
Prepared By: ES

**AIR HANDLING UNIT DATA**

|                      |                                                  |            |                                     |                     |                     |                                     |      |           |        |
|----------------------|--------------------------------------------------|------------|-------------------------------------|---------------------|---------------------|-------------------------------------|------|-----------|--------|
| Manufacturer:        | Trane                                            |            | Location:                           | Compressor Room # 1 |                     |                                     |      |           |        |
| Model No.:           | CC SIZE 6                                        |            | Served by:                          |                     |                     |                                     |      |           |        |
| Serial No.:          | V8OE15028                                        |            | Serves Area:                        | Tower 1             |                     |                                     |      |           |        |
| AHU TYPE:            | Single-zone: <input checked="" type="checkbox"/> | 2 Pipe FC: | 4 Pipe FC:                          | Unit Heater:        |                     |                                     |      |           |        |
| H&V Unit:            | Multizone:                                       |            | Double Duct:                        | Induction Unit:     |                     |                                     |      |           |        |
| VAV:                 | Reheat:                                          |            | Comp. Room:                         | Other:              |                     |                                     |      |           |        |
| Number of Zones:     |                                                  |            |                                     |                     |                     |                                     |      |           |        |
| SUPPLY FAN:          | Blow-thru:                                       | Draw-thru: | <input checked="" type="checkbox"/> | In-line:            |                     |                                     |      |           |        |
| X Centrifugal:       | B.I.:                                            | F.C.:      | Airfoil:                            |                     | Radial:             |                                     |      |           |        |
| Axial:               | Vaneaxial:                                       | Tubeaxial: | Propeller:                          |                     |                     |                                     |      |           |        |
| Manufacturer:        | Motor Economite                                  |            |                                     |                     |                     |                                     |      |           |        |
| Model No.:           | 51-385-215 R6-6P                                 |            |                                     |                     |                     |                                     |      |           |        |
| HP:                  | 3                                                | Volts:     | 230                                 | FLA:                | 8.36                | RPM:                                | 1760 | Phase/Hz: | 3 / 60 |
| RETURN FAN:          | Axial:                                           |            | Centrifugal:                        |                     |                     |                                     |      |           |        |
| Manufacturer:        | NONE                                             |            |                                     |                     |                     |                                     |      |           |        |
| Model No.:           |                                                  |            |                                     |                     |                     |                                     |      |           |        |
| HP:                  | Volts:                                           | FLA:       | RPM:                                |                     | Phase/Hz:           |                                     |      |           |        |
| COILS:               | CHW                                              | HW         | Steam                               | Electric            | CNTRL VLV           | CW                                  | HW   |           |        |
| Preheat:             |                                                  |            |                                     |                     | Location:           |                                     |      |           |        |
| Heating:             |                                                  |            |                                     |                     | 2-Way:              |                                     |      |           |        |
| Cooling:             | <input checked="" type="checkbox"/>              |            |                                     |                     | 3-Way:              | <input checked="" type="checkbox"/> |      |           |        |
| Humidity:            |                                                  |            |                                     |                     | Size:               |                                     |      |           |        |
| Reheat:              |                                                  |            |                                     |                     | Pneu/Elec.:         |                                     |      |           |        |
| <b>CONTROLS:</b>     |                                                  |            |                                     |                     | <b>SETPOINTS:</b>   |                                     |      |           |        |
| Pneumatic:           | <input checked="" type="checkbox"/>              |            |                                     |                     | Space:              |                                     |      |           |        |
| Electric:            |                                                  |            |                                     |                     | Occupied Heating:   |                                     |      |           |        |
| DDC:                 |                                                  |            |                                     |                     | Unoccupied Heating: |                                     |      |           |        |
| Damper Control (OA): | <input checked="" type="checkbox"/>              |            |                                     |                     | Occupied Cooling:   |                                     |      |           |        |
| Damper Control (RA): |                                                  |            |                                     |                     | Unoccupied Cooling: |                                     |      |           |        |
| Damper Control (EA): |                                                  |            |                                     |                     | Setback (Y/N):      |                                     |      |           |        |
| Economizer (Y/N):    |                                                  |            |                                     |                     | Setback Setpoint:   |                                     |      |           |        |
| Comments:            | No heating coils                                 |            | Measured rpm                        | Motor: 1781.7       |                     |                                     |      |           |        |
|                      | 100% outside air                                 |            |                                     | Fan: 1393           |                     |                                     |      |           |        |
| SA:                  | 68 °F                                            |            |                                     |                     |                     |                                     |      |           |        |
|                      |                                                  |            |                                     |                     |                     |                                     |      |           |        |
|                      |                                                  |            |                                     |                     |                     |                                     |      |           |        |

E M C Engineers, Inc.  
Energy Conservation Survey  
White Sands Missile Range, NM

Field Survey

EMC No. 1406.008  
Date: 6/22/95  
Prepared By: ES

AIR HANDLING UNIT DATA

AHU No.:

4

|                        |                                                  |            |              |                     |                     |                                     |    |
|------------------------|--------------------------------------------------|------------|--------------|---------------------|---------------------|-------------------------------------|----|
| Manufacturer:          | Trane                                            |            | Location:    | Compressor Room # 2 |                     |                                     |    |
| Model No.:             | CC SIZE 6                                        |            | Served by:   |                     |                     |                                     |    |
| Serial No.:            | V8OE15028                                        |            | Serves Area: | Tower 2             |                     |                                     |    |
| AHU TYPE:              | Single-zone: <input checked="" type="checkbox"/> | 2 Pipe FC: | 4 Pipe FC:   | Unit Heater:        |                     |                                     |    |
|                        | H&V Unit:                                        | Multizone: | Double Duct: | Induction Unit:     |                     |                                     |    |
|                        | VAV:                                             | Reheat:    | Comp. Room:  | Other:              |                     |                                     |    |
| Number of Zones:       |                                                  |            |              |                     |                     |                                     |    |
| SUPPLY FAN:            | Blow-thru:                                       | Draw-thru: | In-line:     |                     |                     |                                     |    |
| X Centrifugal:         | B.I.:                                            | F.C.:      | Airfoil:     | Radial:             |                     |                                     |    |
| Axial:                 | Vaneaxial:                                       | Tubeaxial: | Propeller:   |                     |                     |                                     |    |
| Manufacturer:          | Fan Doerr                                        |            |              |                     |                     |                                     |    |
| Model No.:             | 3N228                                            |            |              |                     |                     |                                     |    |
| HP:                    | 3                                                | Volts:     | 230          | FLA:                | 9.8                 | RPM: 1740 Phase/Hz: 3 / 60          |    |
| RETURN FAN:            | Axial: Centrifugal:                              |            |              |                     |                     |                                     |    |
| Manufacturer:          |                                                  |            |              |                     |                     |                                     |    |
| Model No.:             | <b>NONE</b>                                      |            |              |                     |                     |                                     |    |
| HP:                    | Volts:                                           | FLA:       | RPM:         | Phase/Hz:           |                     |                                     |    |
| COILS:                 | CHW                                              | HW         | Steam        | Electric            | CNTRL VLV           | CW                                  | HW |
| Preheat:               |                                                  |            |              |                     | Location:           |                                     |    |
| Heating:               |                                                  |            |              |                     | 2-Way:              |                                     |    |
| Cooling:               | <input checked="" type="checkbox"/>              |            |              |                     | 3-Way:              | <input checked="" type="checkbox"/> |    |
| Humidity:              |                                                  |            |              |                     | Size:               |                                     |    |
| Reheat:                |                                                  |            |              |                     | Pneu/Elec.:         |                                     |    |
| <b>CONTROLS:</b>       |                                                  |            |              |                     | <b>SETPOINTS:</b>   |                                     |    |
| Pneumatic:             | <input checked="" type="checkbox"/>              |            |              |                     | Space:              |                                     |    |
| Electric:              |                                                  |            |              |                     | Occupied Heating:   |                                     |    |
| DDC:                   |                                                  |            |              |                     | Unoccupied Heating: |                                     |    |
| Damper Control (OA):   | <input checked="" type="checkbox"/>              |            |              |                     | Occupied Cooling:   |                                     |    |
| Damper Control (RA):   |                                                  |            |              |                     | Unoccupied Cooling: |                                     |    |
| Damper Control (EA):   |                                                  |            |              |                     | Setback (Y/N):      |                                     |    |
| Economizer (Y/N):      |                                                  |            |              |                     | Setback Setpoint:   |                                     |    |
| Comments: Measured rpm | Motor: 1768.9                                    |            | SAT: 70 °F   |                     |                     |                                     |    |
|                        | Fan: 1255.7                                      |            | CWT: 53 °F   |                     |                     |                                     |    |
|                        | Identical to AHU # 3                             |            | LWT: 66 °F   |                     |                     |                                     |    |

E M C Engineers, Inc.  
Energy Conservation Survey  
White Sands Missile Range, NM

Field Survey

EMC No. 1406.008  
Date: 6/22/95  
Prepared By: ES

AIR HANDLING UNIT DATA

AHU No.:

5

|                        |                                                  |            |              |                 |                     |                                     |      |           |        |
|------------------------|--------------------------------------------------|------------|--------------|-----------------|---------------------|-------------------------------------|------|-----------|--------|
| Manufacturer:          | Trane                                            |            |              | Location:       | Compressor Room # 3 |                                     |      |           |        |
| Model No.:             | CC SIZE 6                                        |            |              | Served by:      |                     |                                     |      |           |        |
| Serial No.:            | V80E15028                                        |            |              | Serves Area:    | Tower 3             |                                     |      |           |        |
| AHU TYPE:              | Single-zone: <input checked="" type="checkbox"/> | 2 Pipe FC: | 4 Pipe FC:   | Unit Heater:    |                     |                                     |      |           |        |
| H&V Unit:              | Multizone:                                       |            | Double Duct: | Induction Unit: |                     |                                     |      |           |        |
| VAV:                   | Reheat:                                          |            | Comp. Room:  | Other:          |                     |                                     |      |           |        |
| Number of Zones:       |                                                  |            |              |                 |                     |                                     |      |           |        |
| SUPPLY FAN:            | Blow-thru:                                       | Draw-thru: | In-line:     |                 |                     |                                     |      |           |        |
| X Centrifugal:         | B.I.:                                            | F.C.:      | Airfoil:     | Radial:         |                     |                                     |      |           |        |
| Axial:                 | Vaneaxial:                                       | Tubeaxial: | Propeller:   |                 |                     |                                     |      |           |        |
| Manufacturer:          | Motor U.S. Electric                              |            |              |                 |                     |                                     |      |           |        |
| Model No.:             | G137D/N07N1270436F                               |            |              |                 |                     |                                     |      |           |        |
| HP:                    | 3                                                | Volts:     | 230          | FLA:            | 9                   | RPM:                                | 1740 | Phase/Hz: | 3 / 60 |
| RETURN FAN:            | Axial:                                           |            | Centrifugal: |                 |                     |                                     |      |           |        |
| Manufacturer:          |                                                  |            |              |                 |                     |                                     |      |           |        |
| Model No.:             | <b>NONE</b>                                      |            |              |                 |                     |                                     |      |           |        |
| HP:                    | Volts:                                           |            | FLA:         |                 | RPM:                | Phase/Hz:                           |      |           |        |
| COILS:                 | CHW                                              | HW         | Steam        | Electric        | CNTRL VLV           | CW                                  | HW   |           |        |
| Preheat:               |                                                  |            |              |                 | Location:           |                                     |      |           |        |
| Heating:               |                                                  |            |              |                 | 2-Way:              |                                     |      |           |        |
| Cooling:               | <input checked="" type="checkbox"/>              |            |              |                 | 3-Way:              | <input checked="" type="checkbox"/> |      |           |        |
| Humidity:              |                                                  |            |              |                 | Size:               |                                     |      |           |        |
| Reheat:                |                                                  |            |              |                 | Pneu/Elec.:         |                                     |      |           |        |
| CONTROLS:              |                                                  |            |              |                 | SETPOINTS:          |                                     |      |           |        |
| Pneumatic:             | <input checked="" type="checkbox"/>              |            |              |                 | Space:              |                                     |      |           |        |
| Electric:              |                                                  |            |              |                 | Occupied Heating:   |                                     |      |           |        |
| DDC:                   |                                                  |            |              |                 | Unoccupied Heating: |                                     |      |           |        |
| Damper Control (OA):   | <input checked="" type="checkbox"/>              |            |              |                 | Occupied Cooling:   |                                     |      |           |        |
| Damper Control (RA):   |                                                  |            |              |                 | Unoccupied Cooling: |                                     |      |           |        |
| Damper Control (EA):   |                                                  |            |              |                 | Setback (Y/N):      |                                     |      |           |        |
| Economizer (Y/N):      |                                                  |            |              |                 | Setback Setpoint:   |                                     |      |           |        |
| Comments: Measured rpm | Motor: 1766.2                                    |            |              |                 | SAT:                | 72                                  | °F   |           |        |
|                        | Fan: 1370                                        |            |              |                 | CWT:                | 56                                  | °F   |           |        |
| Identical to AHU # 3   |                                                  |            |              |                 | LWT:                | 62                                  | °F   |           |        |
| Damper on supply air   |                                                  |            |              |                 |                     |                                     |      |           |        |
| η = 81.5%              |                                                  |            |              |                 |                     |                                     |      |           |        |

E M C Engineers, Inc.  
Energy Conservation Survey  
White Sands Missile Range, NM

Field Survey

EMC No. 1406.008  
Date: 6/24/95  
Prepared By: ES

**AIR HANDLING UNIT DATA**

AHU No.: 6,7,8

|                               |                                                  |              |                     |                                     |             |                                     |                   |           |        |
|-------------------------------|--------------------------------------------------|--------------|---------------------|-------------------------------------|-------------|-------------------------------------|-------------------|-----------|--------|
| Manufacturer:                 | Airflow Co.                                      |              | Location:           | Computer Room                       |             |                                     |                   |           |        |
| Model No.:                    | CCT-41C4                                         |              | Served by:          |                                     |             |                                     |                   |           |        |
| Serial No.:                   | M11MD228                                         |              | Serves Area:        | Computer Room                       |             |                                     |                   |           |        |
| AHU TYPE:                     | Single-zone: <input checked="" type="checkbox"/> | 2 Pipe FC:   | 4 Pipe FC:          | Unit Heater:                        |             |                                     |                   |           |        |
| H&V Unit:                     | Multizone:                                       |              | Double Duct:        | Induction Unit:                     |             |                                     |                   |           |        |
| VAV:                          | Reheat:                                          |              | Comp. Room:         | Other:                              |             |                                     |                   |           |        |
| Number of Zones:              |                                                  |              |                     |                                     |             |                                     |                   |           |        |
| SUPPLY FAN:                   | Blow-thru:                                       | Draw-thru:   | In-line:            |                                     |             |                                     |                   |           |        |
| X Centrifugal:                | B.I.:                                            | F.C.:        | Airfoil:            | Radial:                             |             |                                     |                   |           |        |
| Axial:                        | Vaneaxial:                                       | Tubeaxial:   | Propeller:          |                                     |             |                                     |                   |           |        |
| Manufacturer:                 | Marathon Electric                                |              |                     |                                     |             |                                     |                   |           |        |
| Model No.:                    | UVA213TTDR7026GPL                                |              |                     |                                     |             |                                     |                   |           |        |
| HP:                           | 7.5                                              | Volts:       | 480                 | FLA:                                | 11          | RPM:                                | 1750              | Phase/Hz: | 3 / 60 |
| RETURN FAN:                   | Axial:                                           | Centrifugal: |                     |                                     |             |                                     |                   |           |        |
| Manufacturer:                 |                                                  |              |                     |                                     |             |                                     |                   |           |        |
| Model No.:                    |                                                  |              |                     |                                     |             |                                     |                   |           |        |
| HP:                           | Volts:                                           | FLA:         | RPM:                |                                     |             | Phase/Hz:                           |                   |           |        |
| COILS:                        | CHW                                              | HW           | Steam               | Electric                            | CNTRL VLV   | CW                                  | HW                |           |        |
| Preheat:                      |                                                  |              |                     |                                     | Location:   |                                     |                   |           |        |
| Heating:                      |                                                  |              |                     | <input checked="" type="checkbox"/> | 2-Way:      |                                     |                   |           |        |
| Cooling:                      | <input checked="" type="checkbox"/>              |              |                     |                                     | 3-Way:      | <input checked="" type="checkbox"/> |                   |           |        |
| Humidity:                     |                                                  |              |                     |                                     | Size:       |                                     |                   |           |        |
| Reheat:                       |                                                  |              |                     |                                     | Pneu/Elec.: | Pneu                                |                   |           |        |
| <b>CONTROLS:</b>              |                                                  |              |                     |                                     |             |                                     | <b>SETPOINTS:</b> |           |        |
| Pneumatic:                    | <input checked="" type="checkbox"/>              |              |                     |                                     |             |                                     |                   |           |        |
| Electric:                     |                                                  |              |                     |                                     |             |                                     |                   |           |        |
| DDC:                          |                                                  |              |                     |                                     |             |                                     |                   |           |        |
| Damper Control (OA):          | <input checked="" type="checkbox"/>              |              |                     |                                     |             |                                     |                   |           |        |
| Damper Control (RA):          |                                                  |              |                     |                                     |             |                                     |                   |           |        |
| Damper Control (EA):          |                                                  |              |                     |                                     |             |                                     |                   |           |        |
| Economizer (Y/N):             | N                                                |              |                     |                                     |             |                                     | Setback (Y/N): N  |           |        |
| Comments: Nema nom eff: 84.0, | Nom PF: 76.6,                                    |              | Maxc CAP KVAR: 5.3, |                                     |             | SF: 1.15,                           |                   |           |        |
| Continuous duty               |                                                  |              |                     |                                     |             |                                     |                   |           |        |
|                               |                                                  |              |                     |                                     |             |                                     |                   |           |        |
|                               |                                                  |              |                     |                                     |             |                                     |                   |           |        |
|                               |                                                  |              |                     |                                     |             |                                     |                   |           |        |

E M C Engineers, Inc.  
Energy Conservation Survey  
White Sands Missile Range, NM

Field Survey

EMC No. 1406.008  
Date: 6/22/95  
Prepared By: ES

**AIR HANDLING UNIT DATA**

AHU No.:

9

|                                 |               |            |              |          |                     |                        |           |  |  |
|---------------------------------|---------------|------------|--------------|----------|---------------------|------------------------|-----------|--|--|
| Manufacturer:                   | Williams      |            |              |          | Location:           | Conference Room Plenum |           |  |  |
| Model No.:                      | AH-800-W2-B40 |            |              |          | Served by:          |                        |           |  |  |
| Serial No.:                     |               |            |              |          | Serves Area:        | Conference Room        |           |  |  |
| <b>AHU TYPE:</b>                | Single-zone:  | 2 Pipe FC: | 4 Pipe FC:   |          | Unit Heater:        |                        |           |  |  |
|                                 | H&V Unit:     | Multizone: | Double Duct: |          | Induction Unit:     |                        |           |  |  |
|                                 | VAV:          | Reheat:    | Comp. Room:  |          | Other:              | Fan Coil               |           |  |  |
| Number of Zones:                |               |            |              |          |                     |                        |           |  |  |
| <b>SUPPLY FAN:</b>              | Blow-thru:    | Draw-thru: |              |          | In-line:            |                        |           |  |  |
|                                 | Centrifugal:  | B.I.:      | F.C.:        |          | Airfoil:            | Radial:                |           |  |  |
|                                 | Axial:        | Vaneaxial: | Tubeaxial:   |          | Propeller:          |                        |           |  |  |
| Manufacturer:                   |               |            |              |          |                     |                        |           |  |  |
| Model No.:                      |               |            |              |          |                     |                        |           |  |  |
| HP:                             | 0.33          | Volts:     | 230          | FLA:     | 2.9                 | RPM:                   | Phase/Hz: |  |  |
| <b>RETURN FAN:</b>              | Axial:        |            | Centrifugal: |          |                     |                        |           |  |  |
| Manufacturer:                   |               |            |              |          |                     |                        |           |  |  |
| Model No.:                      | <b>NONE</b>   |            |              |          |                     |                        |           |  |  |
| HP:                             | Volts:        |            | FLA:         | RPM:     |                     | Phase/Hz:              |           |  |  |
| <b>COILS:</b>                   | CHW           | HW         | Steam        | Electric | <b>CNTRL VLV</b>    | <b>CW</b>              | <b>HW</b> |  |  |
| Preheat:                        |               |            |              |          | Location:           |                        |           |  |  |
| Heating:                        |               |            |              |          | 2-Way:              | ✓                      |           |  |  |
| Cooling:                        | ✓             |            |              |          | 3-Way:              |                        |           |  |  |
| Humidity:                       |               |            |              |          | Size:               |                        |           |  |  |
| Reheat:                         |               |            |              |          | Pneu/Elec.:         |                        |           |  |  |
| <b>CONTROLS:</b>                |               |            |              |          | <b>SETPOINTS:</b>   |                        |           |  |  |
| Pneumatic:                      | ✓             |            |              |          | Space:              |                        |           |  |  |
| Electric:                       |               |            |              |          | Occupied Heating:   |                        |           |  |  |
| DDC:                            |               |            |              |          | Unoccupied Heating: |                        |           |  |  |
| Damper Control (OA):            |               |            |              |          | Occupied Cooling:   |                        |           |  |  |
| Damper Control (RA):            |               |            |              |          | Unoccupied Cooling: |                        |           |  |  |
| Damper Control (EA):            |               |            |              |          | Setback (Y/N):      |                        |           |  |  |
| Economizer (Y/N):               |               |            |              |          | Setback Setpoint:   |                        |           |  |  |
| <b>Comments:</b> No outside air |               |            |              |          |                     |                        |           |  |  |
|                                 |               |            |              |          |                     |                        |           |  |  |
|                                 |               |            |              |          |                     |                        |           |  |  |
|                                 |               |            |              |          |                     |                        |           |  |  |
|                                 |               |            |              |          |                     |                        |           |  |  |

E M C Engineers, Inc.  
Energy Conservation Survey  
White Sands Missile Range, NM

Field Survey

EMC No. 1406.008  
Date: 6/22/95  
Prepared By: ES

**INTERNAL LOADS DATA**

|                                                                                    |                 |        |          |
|------------------------------------------------------------------------------------|-----------------|--------|----------|
| Equipment Description:                                                             | Lighting        |        |          |
| Equipment Location:                                                                | Conference Room |        |          |
| Manufacturer:                                                                      |                 |        |          |
| Model No.:                                                                         |                 |        |          |
| Serial No.:                                                                        |                 |        |          |
| Motor Data: HP:                                                                    | RPM:            | Volts: | Amps:    |
| Comments: Ballast- Dimmer Ballast      Magnetek 502-ATO-P, Four foot lamps - F-40D |                 |        |          |
| Thermostat-                                                                        |                 | 70 °F, | 40 Watts |
| Wall-                                                                              |                 | 70 °F  |          |
|                                                                                    |                 |        |          |
|                                                                                    |                 |        |          |

|                                     |                 |        |       |
|-------------------------------------|-----------------|--------|-------|
| Equipment Description:              |                 |        |       |
| Equipment Location:                 | Conference Room |        |       |
| Manufacturer:                       |                 |        |       |
| Model No.:                          |                 |        |       |
| Serial No.:                         |                 |        |       |
| Motor Data: HP:                     | RPM:            | Volts: | Amps: |
| Comments: Temperature Plenum= 75 °F |                 |        |       |
| Roof Bottom                         |                 | 71 °F  |       |
| Room=                               |                 | 70 °F  |       |
|                                     |                 |        |       |
|                                     |                 |        |       |

|                                          |       |        |          |
|------------------------------------------|-------|--------|----------|
| Equipment Description:                   |       |        |          |
| Equipment Location:                      | Halls |        |          |
| Manufacturer:                            |       |        |          |
| Model No.:                               |       |        |          |
| Serial No.:                              |       |        |          |
| Motor Data: HP:                          | RPM:  | Volts: | Amps:    |
| Comments: Ballast- Universal Rapid Start |       |        |          |
| Lamps- F-40D                             |       | 2 Lamp | 40 Watts |
|                                          |       |        |          |
|                                          |       |        |          |

E M C Engineers, Inc.  
Energy Conservation Survey  
White Sands Missile Range, NM

Field Survey

EMC No. 1406.008

Date: *6/22/95*  
Prepared By: *ES*

## BUILDING MANAGER INTERVIEW

### BUILDING INFORMATION:

|                   |           |                |            |
|-------------------|-----------|----------------|------------|
| Building No:      | 34568     | Building Name: | GEOSS      |
| Surveyed by:      |           | Date:          | 6/2/95     |
| Building Contact: | Jim Mills | Phone No:      | 835 - 4546 |
| Building Contact: |           | Phone No:      |            |

| OCCUPANCY:            | Day                | Night | Day                  | Night      |
|-----------------------|--------------------|-------|----------------------|------------|
| Number of Employees:  | Mon.-Fri.: 12 - 14 | 3 - 4 | Schedule: 7am To 4pm | 5pm To 7am |
|                       | Saturday:          | 2     | 7am To 4pm           | 5pm To 7am |
|                       | Sun./Hol.:         | 2     | 3 - 4                | 7am To 4pm |
| Visitors Per Day:     | Mon.-Fri.:         |       | Schedule: To         | To         |
|                       | Saturday:          |       | To                   | To         |
|                       | Sun./Hol.:         |       | To                   | To         |
| Meals Served Per Day: | Breakfast:         |       | Schedule: To         | To         |
|                       | Lunch:             |       | To                   | To         |
|                       | Dinner:            |       | To                   | To         |

Comments:

### LIGHTING SCHEDULE:

|                          |            |           |    |    |
|--------------------------|------------|-----------|----|----|
| Normal Occupancy:        | Mon.-Fri.: | Schedule: | To | To |
|                          | Sat./Sun.: |           | To | To |
| Cleaning Crew/2nd Shift: | Mon.-Fri.: | Schedule: | To | To |
|                          | Sat./Sun.: |           | To | To |

### EQUIPMENT SCHEDULE:

|                          |            |           |    |    |
|--------------------------|------------|-----------|----|----|
| Fan/AHU Schedule:        | Mon.-Fri.: | Schedule: | To | To |
|                          | Sat./Sun.: |           | To | To |
| Chiller Schedule:        | Mon.-Fri.: | Schedule: | To | To |
|                          | Sat./Sun.: |           | To | To |
| Boiler Schedule:         | Mon.-Fri.: | Schedule: | To | To |
|                          | Sat./Sun.: |           | To | To |
| Aux. Equipment Schedule: |            |           |    |    |
|                          | Mon.-Fri.: | Schedule: | To | To |
|                          | Sat./Sun.: |           | To | To |
|                          | Mon.-Fri.: | Schedule: | To | To |
|                          | Sat./Sun.: |           | To | To |

Comments:

E M C Engineers, Inc.  
Energy Conservation Survey  
White Sands Missile Range, NM

Field Survey

EMC No. 1406.008  
Date: 6/2/85  
Prepared By: ES

LIGHTING

| SPACE           | # OCCUPANCY<br>SENSORS | # FIXTURES<br>W/ O.S. | # DELAMPED | # FIXTURES<br>IN SPACE | TOTAL OPERATING<br>FIXTURES IN SPACE |
|-----------------|------------------------|-----------------------|------------|------------------------|--------------------------------------|
| HALLS           | 0                      | 0                     | 0          | 17                     | 17                                   |
| OFFICES         | 7                      | 23                    | 19         | 82                     | 56                                   |
| COMPUTER ROOM   | 3                      | 13                    | 27         | 77                     | 47                                   |
| CONFERENCE ROOM | 0                      | 0                     | 0          | 6                      | 6                                    |
| TOWER 1         | 0                      | 0                     | 0          | 7                      | 7                                    |
| TOWER 2         | 0                      | 0                     | 0          | 7                      | 7                                    |
| TOWER 3         | 0                      | 0                     | 0          | 7                      | 7                                    |

ENERGY CONSUMPTION

| SPACE           | TOTAL OPERATING<br>FIXTURES IN SPACE | WATTS PER FIXTURE |     | TOTAL KW CONSUMED |       |
|-----------------|--------------------------------------|-------------------|-----|-------------------|-------|
|                 |                                      | PRESENT           | T-8 | PRESENT           | T-8   |
| HALLS           | 17                                   | 89                | 58  | 1.513             | 0.986 |
| OFFICES         | 56                                   | 89                | 58  | 4.984             | 3.248 |
| COMPUTER ROOM   | 47                                   | 89                | 58  | 4.183             | 2.726 |
| CONFERENCE ROOM | 6                                    | 89                | 58  | 0.534             | 0.348 |
| TOWER 1         | 7                                    | 89                | 58  | 0.623             | 0.406 |
| TOWER 2         | 7                                    | 89                | 58  | 0.623             | 0.406 |
| TOWER 3         | 7                                    | 89                | 58  | 0.623             | 0.406 |

TOTAL ENERGY CONSUMED BY LIGHTING

| SPACE           | TOTAL KW CONSUMED |       | OTHER<br>LIGHTS | WATTAGE OF<br>OTHER LIGHTS | TOTAL KW CONSUMED |      |
|-----------------|-------------------|-------|-----------------|----------------------------|-------------------|------|
|                 | PRESENT           | T-8   |                 |                            | PRESENT           | T-8  |
| HALLS           | 1.513             | 0.986 | 0               | 0                          | 1.513             | 0.99 |
| OFFICES         | 4.984             | 3.248 | 0               | 0                          | 4.984             | 3.25 |
| COMPUTER ROOM   | 4.183             | 2.726 | 7               | 60                         | 4.603             | 3.15 |
| CONFERENCE ROOM | 0.534             | 0.348 | 0               | 0                          | 0.534             | 0.35 |
| TOWER 1         | 0.623             | 0.406 | 4               | 150                        | 1.223             | 1.01 |
| TOWER 2         | 0.623             | 0.406 | 4               | 150                        | 1.223             | 1.01 |
| TOWER 3         | 0.623             | 0.406 | 4               | 150                        | 1.223             | 1.01 |

E M C Engineers, Inc.  
Energy Conservation Survey  
White Sands Missile Range, NM

Field Survey

EMC No. 1406.008  
Date: 6/22/95  
Prepared By: ES

MOTORS

Location: Compressor Room # 1

Application: Compressed Air for Camera in Tower # 1

|                                                                          |                               |
|--------------------------------------------------------------------------|-------------------------------|
| Pump Motor: A.C. TEFC                                                    | Manufacturer:                 |
| Manufacturer: Lincoln                                                    | Model No.:                    |
| Model No.: T-3482 ( Lincoln Code )                                       | Serial No.:                   |
| Serial No.: 2278302                                                      | Frame No.:                    |
| HP: 5 RPM: 1740                                                          | Pump Type:                    |
| Volts: 200/400 FLA:                                                      | GPM: Head (ft.):              |
| Ph/Hz: 3 / 60 LRA:                                                       |                               |
| Measured RPM:                                                            |                               |
| Operating Hours:                                                         | Months Operating:             |
| Comments: INS: B, SF: 1.15, Max Amb: 40, Nema Code: J, Amps: 15.6 / 7.8, | EEF index: K, Nema Design: B, |
|                                                                          |                               |
|                                                                          |                               |
|                                                                          |                               |
|                                                                          |                               |

MOTORS

Location: Compressor Room # 2

Application: Compressed Air for Camera in Tower # 2

|                                                                                                   |                               |
|---------------------------------------------------------------------------------------------------|-------------------------------|
| Pump Motor: A.C. TEFC                                                                             | Manufacturer:                 |
| Manufacturer: Acurate Air ENGR, INC.                                                              | Model No.:                    |
| Model No.: 325-14                                                                                 | Serial No.:                   |
| Serial No.: 119526LS                                                                              | Frame No.:                    |
| HP: 5 RPM: 1740                                                                                   | Pump Type:                    |
| Volts: 200/400 FLA:                                                                               | GPM: 900 Head (ft.):          |
| Ph/Hz: 3 / 60 LRA:                                                                                |                               |
| Measured RPM:                                                                                     |                               |
| Operating Hours:                                                                                  | Months Operating:             |
| Comments: INS: B, SF: 1.15, Max Amb: 40, Nema Code: J, Amps: 15.6 / 7.8, Vessel Service #: 292700 | EEF index: K, Nema Design: B, |
|                                                                                                   |                               |
|                                                                                                   |                               |
|                                                                                                   |                               |

MOTORS

Location: Compressor Room # 3

Application: Compressed Air for Camera in Tower # 3

|                                                                          |                               |
|--------------------------------------------------------------------------|-------------------------------|
| Pump Motor: A.C. TEFC                                                    | Manufacturer:                 |
| Manufacturer: Lincoln                                                    | Model No.:                    |
| Model No.: T - 3482 ( Lincoln Code )                                     | Serial No.:                   |
| Serial No.: 2580235                                                      | Frame No.:                    |
| HP: 5 RPM: 1740                                                          | Pump Type:                    |
| Volts: 200/400 FLA:                                                      | GPM: Head (ft.):              |
| Ph/Hz: 3 / 60 LRA:                                                       |                               |
| Measured RPM:                                                            |                               |
| Operating Hours:                                                         | Months Operating:             |
| Comments: INS: B, SF: 1.15, Max Amb: 40, Nema Code: J, Amps: 15.6 / 7.8, | EEF index: K, Nema Design: B, |
|                                                                          |                               |
|                                                                          |                               |
|                                                                          |                               |

**APPENDIX C**

**UTILITY DATA**

| AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT                                                                                                                                                       |                               |                                           |                                | 1. CONTRACT ID CODE | PAGE OF PAGES                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------|--------------------------------|---------------------|----------------------------------------------|
| 2. AMENDMENT/MODIFICATION NO.<br>P00006                                                                                                                                                                  | 3. EFFECTIVE DATE<br>1 Jan 95 | 4. REQUISITION/PURCHASE REQ. NO.          | 5. PROJECT NO. (If applicable) |                     |                                              |
| 6. ISSUED BY<br><br>Utilities Sales Officer<br>SWS-DPW-PE, Bldg 1748<br>White Sands Missile Range, NM<br>88002-5076                                                                                      | CODE                          | 7. ADMINISTERED BY (If other than Item 6) |                                | CODE                |                                              |
| 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State and ZIP Code)<br><br>Detachment 1, 1st Space Wing (AFSPACECOM)<br>ATTN: SMSGT Luther Mills<br>P.O. Box W<br>Socorro, New Mexico 87801-5000 |                               |                                           |                                | (V)                 | 9A. AMENDMENT OF SOLICITATION NO.            |
|                                                                                                                                                                                                          |                               |                                           |                                |                     | 9B. DATED (SEE ITEM 11)                      |
|                                                                                                                                                                                                          |                               |                                           |                                |                     | 10A. MODIFICATION OF CONTRACT/ORDER NO.      |
|                                                                                                                                                                                                          |                               |                                           |                                |                     | DAAD07-89-S-0034<br>10B. DATED (SEE ITEM 13) |
| CODE                                                                                                                                                                                                     | FACILITY CODE                 | 01 Jan 89                                 |                                |                     |                                              |

11. THIS ITEM ONLY APPLIES TO AMENDMENTS OF SOLICITATIONS

The above numbered solicitation is amended as set forth in Item 14. The hour and date specified for receipt of Offers  is extended,  is not extended.

Offers must acknowledge receipt of this amendment prior to the hour and date specified in the solicitation or as amended, by one of the following methods:

(a) By completing Items 8 and 15, and returning \_\_\_\_\_ copies of the amendment; (b) By acknowledging receipt of this amendment on each copy of the offer submitted; or (c) By separate letter or telegram which includes a reference to the solicitation and amendment numbers. FAILURE OF YOUR ACKNOWLEDGMENT TO BE RECEIVED AT THE PLACE DESIGNATED FOR THE RECEIPT OF OFFERS PRIOR TO THE HOUR AND DATE SPECIFIED MAY RESULT IN REJECTION OF YOUR OFFER. If by virtue of this amendment you desire to change an offer already submitted, such change may be made by telegram or letter, provided each telegram or letter makes reference to the solicitation and this amendment, and is received prior to the opening hour and date specified.

12. ACCOUNTING AND APPROPRIATION DATA (If required)

13. THIS ITEM APPLIES ONLY TO MODIFICATIONS OF CONTRACTS/ORDERS,  
IT MODIFIES THE CONTRACT/ORDER AS DESCRIBED IN ITEM 14.

- A. THIS CHANGE ORDER IS ISSUED PURSUANT TO: (Specify authority) THE CHANGES SET FORTH IN ITEM 14 ARE MADE IN THE CONTRACT ORDER NO. IN ITEM 10A.
- B. Per paragraph 4 of cited contract, CHANGE OF RATE CLAUSE
- B. THE ABOVE NUMBERED CONTRACT/ORDER IS MODIFIED TO REFLECT THE ADMINISTRATIVE CHANGES (such as changes in paying office, appropriation date, etc.) SET FORTH IN ITEM 14, PURSUANT TO THE AUTHORITY OF FAR 43.103(b).
- C. THIS SUPPLEMENTAL AGREEMENT IS ENTERED INTO PURSUANT TO AUTHORITY OF:
- D. OTHER (Specify type of modification and authority)

E. IMPORTANT: PURCHASER  is not,  is required to sign this document and return \_\_\_\_\_ copies to the issuing office.

14. DESCRIPTION OF AMENDMENT/MODIFICATION (Organized by UCF section headings, including solicitation/contract subject matter where feasible.)

CHANGE OF RATES as follows:

SPECIAL PROVISIONS A (Electric Service): RATE A - \$0.0821/KWH  
 SPECIAL PROVISIONS B-1 (Propane Gas Service): RATE A - \$0.6940/GAL  
 SPECIAL PROVISIONS C (Water Service): RATE A - \$1.3593/KGAL  
 SPECIAL PROVISIONS F (Refuse Disposal Service): RATE A - \$1.4513/CY

Except as provided herein, all terms and conditions of the document referenced in Item 9A or 10A, as heretofore changed, remains unchanged and in full force and effect.

|                                                                |                                                                                                                |                                                                                                    |                               |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------|
| 15A. NAME AND TITLE OF SIGNER (Type or print)                  | 16A. NAME AND TITLE OF CONTRACTING OFFICER (Type or print)<br><br>JULIAN T. DELGADO<br>Utilities Sales Officer |                                                                                                    |                               |
| 15B. PURCHASER<br><br>(Signature of person authorized to sign) | 15C. DATE SIGNED                                                                                               | 16B. UNITED STATES OF AMERICA<br>BY <i>Julian T. Delgado</i><br>(Signature of Contracting Officer) | 16C. DATE SIGNED<br>21 Feb 95 |

CONTRACT NO. DAAD07-89-S-0034  
MODIFICATION P00006

DETACHMENT 1, 1st SPACE WING (AF)

RATE A - CY 95

Electricity:

Bldg 34568 - Metered

Bldg 34226 - Metered

Propane Gas: Charge is made from metered consumption.

Water: FLAT RATE

6.5 KGAL/yr/employee x 26 employees = 169 KGAL/yr  
169 Kgal/yr x \$1.3593/Kgal = \$229.72 per yr  
                                                 \$ 19.14 per month

Refuse: FLAT RATE

Bldg 34568:

14.27 CY/yr/person x 24 people = 342.48 CY/yr  
342.48 CY/yr x \$1.4513 = \$497.04 per yr  
                                                 \$ 41.42 per month

Bldg 34226:

14.27 CY/yr/person x 2 people = 28.54 CY/yr  
28.54 CY/yr x \$1.4513 = \$41.42 per yr  
                                                 \$ 3.45 per month

MAR. -27' 95(MON) 11:18 GEODSS DET 1

TEL: 505 349 4137

P. 001

PRC Inc.  
GEODSS Site 1  
P.O. Box 1159  
Socorro, NM 87501



March 27, 1995

Attn: Dennis Jones;

The electric meter installed at the GEODSS site on WSMR New Mexico is labeled as follows.

|                            |              |
|----------------------------|--------------|
| Manufacturer               | Westinghouse |
| Class                      | 20           |
| Volts                      | 120          |
|                            | 4WY          |
| Type                       | D458M        |
| Form                       | 6S           |
| Style                      | 280C021G60   |
| TA                         | 2.5          |
| Kh                         | 1.8          |
| Two stator Watt Hour meter |              |
| 60 Hz                      |              |
| PTR                        | 2.4/1        |
| PKh                        | 691.2        |
| CTR                        | 800/5        |

The meter has a secondary plate with the following information.

Ser 3947514  
Mark Io Demand Register  
120V 60Hz  
F.5 KW 13.824/27.648  
Reg Ratio 14 101/216  
t-15  
Direct reading for Kh 6912

If you need any more information please feel free to contact me.

Mike Barrett  
GEODSS Site One  
Maintenance Supervisor

Meter

THU JUN 1, 1995 9:51:29 AM  
TEST STATUS: AS FOUND

FORM: 6S 120 VOLTS 2.50 AMPS Kh= 1.80  
REV:FL= 5 PF= 5 LL= 1 N= 0 Nt= 0  
SERIES LEFT COMMON RIGHT  
FL 100.31 99.34 100.18 100.43  
% REG. PF 99.76 100.41 100.36 100.36  
LL 99.58

ZIA ELECTRICAL PRODUCTS

Customer #: \_\_\_\_\_  
Serial #: 68081432  
Reading: 0565  
Meter Brand: Westinghouse  
Tested by: WJ  
Comments: Meter is OK

THU JUN 1, 1995 10:48:34 AM  
TEST STATUS: AS LEFT

FORM: 6S 120 VOLTS 2.50 AMPS Kh= 1.80  
REV:FL= 5 PF= 5 LL= 1 N= 0 Nt= 0  
SERIES LEFT COMMON RIGHT  
FL 100.79 100.08 100.93 100.33  
% REG. PF 100.26 100.79 101.05 100.50  
LL 100.14

ELEC ESEL

ELECTRICITY PURCHASED & GENERATED OCT 1991- JAN 1995



MONTHLY CONSUMPTION

ELECTRIC CONSUMPTION OCT 1991- JAN 1995



## DIESEL CONSUMPTION



**YEARLY**

**YEARLY TOTALS**

|              | ELECTRIC<br>CONSUMED(MWH) | MONTHLY<br>COST | DIESEL FUEL<br>ONSUMED (GAL) | MONTHLY<br>COST     |
|--------------|---------------------------|-----------------|------------------------------|---------------------|
| <b>1991</b>  | OCT                       | 109.3           | 8033.55                      | 288 296.64          |
|              | NOV                       | 88.2            | 6482.70                      | 192 197.76          |
|              | DEC                       | 74.9            | 5505.15                      | 1768 1821.04        |
|              | JAN                       | 90.9            | 6681.15                      | 232 238.96          |
|              | FEB                       | 71.9            | 5284.65                      | 520 535.6           |
|              | MAR                       | 72.9            | 5358.15                      | 568 585.04          |
|              | APR                       | 77.9            | 5725.65                      | 624 642.72          |
|              | MAY                       | 83.7            | 6151.95                      | 464 477.92          |
|              | JUN                       | 83.8            | 6159.30                      | 536 552.08          |
|              | JUL                       | 76.3            | 5608.05                      | 1528 1573.84        |
|              | AUG                       | 72.9            | 5358.15                      | 632 650.96          |
|              | SEP                       | 110.2           | 8099.70                      | 400 412             |
| <b>TOTAL</b> |                           | <b>1012.9</b>   | <b>74448.15</b>              | <b>7752 7984.56</b> |
|              |                           |                 |                              |                     |
| <b>1992</b>  | OCT                       | 83.9            | 6166.65                      | 48 49.44            |
|              | NOV                       | 105.2           | 7732.2                       | 32 32.96            |
|              | DEC                       | 80.6            | 5924.1                       | 352 362.56          |
|              | JAN                       | 101.5           | 7460.25                      | 104 107.12          |
|              | FEB                       | 91.3            | 6710.55                      | 80 82.4             |
|              | MAR                       | 85.7            | 6298.95                      | 160 164.8           |
|              | APR                       | 85.3            | 6269.55                      | 352 362.56          |
|              | MAY                       | 83.4            | 6129.9                       | 784 807.52          |
|              | JUN                       | 74.1            | 5446.35                      | 592 609.76          |
|              | JUL                       | 96.1            | 7063.35                      | 608 626.24          |
|              | AUG                       | 90.7            | 6666.45                      | 784 807.52          |
|              | SEP                       | 80.8            | 5938.8                       | 216 222.48          |
| <b>TOTAL</b> |                           | <b>1058.6</b>   | <b>77807.1</b>               | <b>4112 4235.36</b> |
|              |                           |                 |                              |                     |
| <b>1993</b>  | OCT                       | 99.1            | 7283.85                      | 168 173.04          |
|              | NOV                       | 77.1            | 5666.85                      | 16 16.48            |
|              | DEC                       | 65.9            | 4843.65                      | 1896 1952.88        |
|              | JAN                       | 91.6            | 6732.6                       | 96 98.88            |
|              | FEB                       | 79.6            | 5850.6                       | 16 16.48            |
|              | MAR                       | 79              | 5806.5                       | 176 181.28          |
|              | APR                       | 88.7            | 6519.45                      | 80 82.4             |
|              | MAY                       | 61.9            | 4549.65                      | 256 263.68          |
|              | JUN                       | 12              | 882                          | 457 470.71          |
|              | JUL                       | 13.6            | 999.6                        | 784 807.52          |
|              | AUG                       | 11.7            | 859.95                       | 1392 1433.76        |
|              | SEP                       | 11.7            | 859.95                       | 96 98.88            |
| <b>TOTAL</b> |                           | <b>691.9</b>    | <b>50854.65</b>              | <b>5433 5595.99</b> |

YEARLY

|                 |                |                  |            |               |
|-----------------|----------------|------------------|------------|---------------|
| OCT             | 30             | 2205             | 48         | 49.44         |
| NOV             | 91.5           | 6725.25          | 64         | 65.92         |
| DEC             | 73.25          | 5383.875         | 80         | 82.4          |
| <b>1994 JAN</b> | <b>91.33</b>   | <b>6712.755</b>  | <b>24</b>  | <b>24.72</b>  |
|                 |                | <b>6179.6181</b> |            | <b>0</b>      |
| MAR             | 23             | 1741.1           |            | 0             |
| APR             | 72             | 5450.4           |            | 0             |
| MAY             | 73.7           | 5579.09          |            | 0             |
| JUN             | 63.4           | 4799.38          |            | 0             |
| JUL             | 80.78          | 6115.046         |            | 0             |
| AUG             | 97.96          | 7415.572         |            | 0             |
| SEP             | 98.4           | 7448.88          |            | 0             |
| <b>TOTAL</b>    | <b>876.953</b> | <b>65755.966</b> | <b>216</b> | <b>222.48</b> |

|              |               |                  |
|--------------|---------------|------------------|
| OCT          | 77.98         | 5903.086         |
| NOV          | 97.92         | 7412.544         |
| DEC          | 82.06         | 6211.942         |
| <b>1995</b>  |               | <b>8305.236</b>  |
| <b>TOTAL</b> | <b>359.12</b> | <b>27832.808</b> |

| YEAR | ELECTRIC    | DIESEL FUEL | MONTHLY       |         |
|------|-------------|-------------|---------------|---------|
|      | CONSUMPTION | COST \$     | ONSUMED (GAL) | COST    |
| 1991 | 1012.9      | 74448.15    | 7752          | 7984.56 |
| 1992 | 1058.6      | 77807.1     | 4112          | 4235.36 |
| 1993 | 691.9       | 50854.65    | 5433          | 5595.99 |
| 1994 | 876.953     | 65755.966   | 216           | 222.48  |
| 1995 | 359.12      | 27832.808   |               |         |

**APPENDIX D**

**COMPUTER SIMULATIONS**

DOE2.1d Model vs. Historical  
Data



## EZDOE Model Data

## ELECTRICAL DATA FROM SITE

|       |     | ELECTRIC<br>CONSUMED<br>(MBTU) | EZDOE ELECTRIC<br>CONSUMED<br>(MWH) | 1994 ELECTRIC<br>CONSUMED<br>(MWH) | 1992 ELECTRIC<br>CONSUMED<br>(MWH) | 1991 ELECTRIC<br>CONSUMED<br>(MWH) |
|-------|-----|--------------------------------|-------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| 1994  | JAN | 285.20                         | 83.58                               | 91.33                              | 101.50                             | 90.90                              |
|       | FEB | 249.90                         | 73.24                               |                                    | 91.30                              | 71.90                              |
|       | MAR | 272.83                         | 79.96                               | 23.00                              | 85.70                              | 72.90                              |
|       | APR | 274.47                         | 80.44                               | 72.00                              | 85.30                              | 77.90                              |
|       | MAY | 302.69                         | 88.71                               | 73.70                              | 83.40                              | 83.70                              |
|       | JUN | 344.08                         | 100.84                              | 63.40                              | 74.10                              | 83.80                              |
|       | JUL | 360.70                         | 105.71                              | 80.78                              | 96.10                              | 76.30                              |
|       | AUG | 346.30                         | 101.49                              | 97.96                              | 90.70                              | 72.90                              |
|       | SEP | 314.83                         | 92.27                               | 98.40                              | 80.80                              | 110.20                             |
|       | OCT | 278.59                         | 81.65                               | 77.98                              | 99.10                              | 83.90                              |
|       | NOV | 263.28                         | 77.16                               | 97.92                              | 77.10                              | 105.20                             |
|       | DEC | 280.48                         | 82.20                               | 82.06                              | 65.90                              | 80.60                              |
| TOTAL |     | 3573.35                        | 1047.25                             | 940.16                             | 1031.00                            | 1010.20                            |



ECO-8 Chiller Replacement



ECO - 8      Chiller Replacement

+

ECO - 4      T-8 Lighting

TOTAL SITE ELECTRICITY ENERGY USE 2710.37 MBTU



ECO-8            chiller Replacement

+

ECO-4            T-8 Lighting

+

ECO-9            Recirculation

+

ECO-7            UPS Modification

TOTAL SITE ELECTRICITY ENERGY USE 2617.7 MBTU



ECO's 4, 6, 7, 8, 9, 10

INPUT LOADS ..

\$-----\$  
\$ E Z - D O E    L O A D S   I N P U T \$  
\$-----\$

\$ GENERAL PROJECT DATA

TITLE LINE-1 \*    EMC    ENGINEERS    INC.    \*  
LINE-2 \*EZDOE - ELITE SOFTWARE DEVELOPMENT INC\*  
LINE-3 \*    DENVER,    CO    80227    \*  
  
LINE-4 \*GEODSS SITE DOE EVALUATION    \* ..

ABORT              ERRORS ..  
DIAGNOSTIC        WARNINGS ..  
LOADS-REPORT      VERIFICATION=(LV-B,LV-D,LV-F,LV-G,LV-I)  
                    SUMMARY=(LS-A,LS-B,LS-C,LS-D)  
                    HOURLY-DATA-SAVE = YES ..  
BUILDING-LOCATION ALTITUDE = 4998.  
                    SHIELDING-COEF = 0.31  
                    X-REF = 0.0  
                    Y-REF = 0.0 ..  
RUN-PERIOD        JAN 1 1994 THRU DEC 31 1994 ..

\$ SCHEDULES

D\_LIGHTS =DAY-SCHEDULE (1,6) (0.75)  
              (7,16) (1.)  
              (17,24) (0.75) ..

SSH\_LIGHTS =DAY-SCHEDULE (1,6) (0.4)  
              (7,16) (0.16)  
              (17,24) (0.4) ..

DAYOCCUP =DAY-SCHEDULE (1,5) (0.25)  
              (6) (0.5)  
              (7,10) (1.)  
              (11,13) (0.75)  
              (14,16) (1.)  
              (17) (0.5)  
              (18,24) (0.25) ..

SSH\_OCCUP =DAY-SCHEDULE (1,6) (0.25)  
              (7,16) (0.14)  
              (17,24) (0.25) ..

OFFICEQUIP =DAY-SCHEDULE (1,5) (0.5)  
              (6) (0.75)  
              (7,16) (1.)  
              (17) (0.75)  
              (18,24) (0.5) ..

D\_ON =DAY-SCHEDULE (1,24) (1.) ..

SSHOFFEQUP =DAY-SCHEDULE (1,6) (0.6)  
              (7,16) (0.25)

(17,24) (0.6) ..

CONF OCCUP =DAY-SCHEDULE (1,9) (0.)  
(10,12) (1.,0.,1.)  
(13,24) (0.) ..

TOWERLIGHT =DAY-SCHEDULE (1,5) (0.)  
(6) (1.)  
(7,11) (0.)  
(12) (1.)  
(13,16) (0.)  
(17) (1.)  
(18,24) (0.) ..

TOWEQUIP =DAY-SCHEDULE (1,6) (1.)  
(7,14) (0.)  
(15,24) (1.) ..

ld\_off =DAY-SCHEDULE (1,24) (0.) ..

infiltow =DAY-SCHEDULE (1,6) (5.)  
(7,17) (1.)  
(18,24) (5.) ..

SUMINFIL =DAY-SCHEDULE (1,6) (1.)  
(7,18) (0.)  
(19,24) (1.) ..

WEEKLIGHTS =WEEK-SCHEDULE (WD) D\_LIGHTS  
(WEH) SSH\_LIGHTS ..

WEEKLYPEOP =WEEK-SCHEDULE (WD) DAYOCCUP  
(WEH) SSH\_OCCUP ..

W\_EQUIP =WEEK-SCHEDULE (WD) OFFICEQUIP  
(WEH) SSHOFFEQUP ..

W\_CONFOCU =WEEK-SCHEDULE (ALL) CONF OCCUP ..

LITETOWER =WEEK-SCHEDULE (ALL) TOWERLIGHT ..

T\_EQUIP =WEEK-SCHEDULE (ALL) TOWEQUIP ..

compequip =WEEK-SCHEDULE (ALL) D\_ON ..

lw\_off =WEEK-SCHEDULE (ALL) ld\_off ..

towinfil =WEEK-SCHEDULE (ALL) infiltow ..

INFILSUM =WEEK-SCHEDULE (ALL) SUMINFIL ..

\$ YEAR SCHEDULE  
y\_lights =SCHEDULE THRU DEC 31 WEEKLIGHTS ..

\$ YEARLYOCCUP  
A\_OCCUP =SCHEDULE THRU DEC 31 WEEKLYPEOP ..

\$ YEARLY EQUIPMENT

Y\_EQUIP =SCHEDULE THRU DEC 31 W\_EQUIP ..

\$ OCCUPANCYOFCONFERENCERM  
OCCUCONFRM =SCHEDULE THRU DEC 31 W\_CONFOCCU ..

\$ TOWER LIGHTS  
T\_LIGHTS =SCHEDULE THRU DEC 31 LITETOWER ..

\$ EQUIPMENT IN TOWER  
TOWEREQUIP =SCHEDULE THRU DEC 31 T\_EQUIP ..

\$ computer room equip  
equipcomp =SCHEDULE THRU DEC 31 compequip ..

L-hrly\_rps =SCHEDULE THRU MAR 12 lw\_off  
THRU MAR 13 compequip  
THRU SEP 7 lw\_off  
THRU SEP 8 compequip  
THRU DEC 31 lw\_off ..

\$ infiltration into tower  
towerinfil =SCHEDULE THRU APR 1 towinfil  
THRU NOV 1 INFILSUM  
THRU DEC 31 towinfil ..

\$ CONSTRUCTION TYPES

\$ ROOF OVER MAIN BUILDING  
TOP\_ROOF =LAYERS MATERIAL=(RG01,BR01,IN37,AL23)  
THICKNESS=(0.042,0.031,0.333,0.000) ..

REGROOF =CONSTRUCTION LAYERS = TOP\_ROOF  
ABSORPTANCE = 0.600 ..

\$ WALL AROUND TOWERS  
T\_WALL =LAYERS MATERIAL=(CC07,IN02,GP02)  
THICKNESS=(1.000,0.296,0.052) ..

TOWERWAL =CONSTRUCTION LAYERS = T\_WALL  
ABSORPTANCE = 0.650 ..

\$ FLOOR OF BLDG(NOT COMP ROOM)  
FLOOR =CONSTRUCTION U-VALUE = 0.800 ..

\$ DOME ON TOWER  
TOWEROOF =CONSTRUCTION U-VALUE = 0.048  
ABSORPTANCE = 0.400 ..

\$ CEILING WITH 4.5 FT PLENUM  
REGCEIL =LAYERS MATERIAL=(HF-E4,AC03)  
THICKNESS=(0.000,0.063) ..

CEILING =CONSTRUCTION LAYERS = REGCEIL ..

\$ CEILING WITH 4.5 FT PLENUM  
T\_CEILIG =LAYERS MATERIAL=(HF-E4,IN03,HF-E1)  
THICKNESS=(0.000,0.511,0.063) ..

TOWCEIL =CONSTRUCTION LAYERS = T\_CEILIG ..

\$ REGULAR WALL AROUND BUILDING  
WALL =LAYERS MATERIAL=(CB14, IN02, PW05, GP02)  
THICKNESS=(0.667, 0.296, 0.063, 0.052) ..  
REGWALL =CONSTRUCTION LAYERS = WALL  
ABSORPTANCE = 0.650 ..

\$ INT WAL IN COMPUTER ROOM  
C\_WALL =LAYERS MATERIAL=(CB14, IN02, PW05, GP02)  
THICKNESS=(0.667, 0.296, 0.063, 0.052) ..  
COMPWAL =CONSTRUCTION LAYERS = C\_WALL ..

\$ FLOOR OF COMPUTER ROOM  
FLOORCOM =CONSTRUCTION U-VALUE = 0.800 ..

\$ INT WAL IN COMPUTER ROOM  
I\_WALL =LAYERS MATERIAL=(CB12, PW05, GP02)  
THICKNESS=(0.667, 0.063, 0.052) ..  
INTWALL =CONSTRUCTION LAYERS = I\_WALL ..  
  
GEODSS =GLASS-TYPE GLASS-TYPE-CODE = 1  
INSIDE-EMISS = 0  
VIS-TRANS = 0.00 ..

#### \$ SPACE DESCRIPTION

CONFERENCE =SPACE AREA = 348.0 VOLUME = 2786.0  
ZONE-TYPE = CONDITIONED PEOPLE-SCHEDULE = OCCUCONFRM  
NUMBER-OF-People = 1.0 PEOPLE-HEAT-GAIN = 350.0  
PEOPLE-HG-LAT = 125.0 PEOPLE-HG-SENS = 250.0  
LIGHTING-TYPE = REC-FLUOR-NV LIGHTING-KW = 0.53  
LIGHT-TO-SPACE = 0.8 LIGHT-TO-OTHER = 0.2  
LIGHT-HEAT-TO = CONFPLENUM  
LIGHTING-SCHEDULE = OCCUCONFRM  
EQUIP-SCHEDULE = OCCUCONFRM EQUIPMENT-KW = 0.5  
FURNITURE-TYPE = HEAVY FURN-WEIGHT = 4.  
INF-METHOD = CRACK NEUTRAL-ZONE-HT = 6.0 ..

I-W HEIGHT = 8.0 WIDTH = 18.4 CONS = INTWALL

NEXT-TO = HALLS ..

I-W HEIGHT = 8.0 WIDTH = 19.0 CONS = INTWALL

NEXT-TO = HALLS ..

I-W HEIGHT = 8.0 WIDTH = 18.4 CONS = INTWALL

NEXT-TO = COMPUTERRM ..

I-W HEIGHT = 8.0 WIDTH = 19.0 CONS = INTWALL

NEXT-TO = COMPUTERRM ..

HALLS =SPACE AREA = 5285.5 VOLUME = 42284.0  
ZONE-TYPE = CONDITIONED PEOPLE-SCHEDULE = A\_OCCUP  
NUMBER-OF-People = 4.0 PEOPLE-HEAT-GAIN = 350.0  
PEOPLE-HG-LAT = 125.0 PEOPLE-HG-SENS = 250.0  
LIGHTING-TYPE = REC-FLUOR-NV LIGHTING-KW = 6.5  
LIGHT-TO-SPACE = 0.8 LIGHT-TO-OTHER = 0.2

LIGHT-HEAT-TO = HALLPLENUM  
 LIGHTING-SCHEDULE = y\_lights  
 EQUIP-SCHEDULE = Y\_EQUIP EQUIPMENT-KW = 5.35  
 FURNITURE-TYPE = LIGHT INF-METHOD = CRACK  
 NEUTRAL-ZONE-HT = 0.0 ..

E-W HEIGHT = 8.0 WIDTH = 80.0 CONS = REGWALL  
 AZIMUTH = 315 ..

E-W HEIGHT = 8.0 WIDTH = 117.6 CONS = REGWALL  
 AZIMUTH = 45 ..

E-W HEIGHT = 8.0 WIDTH = 80.0 CONS = REGWALL  
 AZIMUTH = 135 ..

U-W HEIGHT = 1.0 WIDTH = 80.0 CONS = FLOOR ..

U-W HEIGHT = 117.6 WIDTH = 1.0 CONS = FLOOR ..

U-W HEIGHT = 1.0 WIDTH = 80.0 CONS = FLOOR ..

**TOWER\_1** =SPACE AREA = 576.0 VOLUME = 14976.0  
 ZONE-TYPE = CONDITIONED PEOPLE-SCHEDULE = T\_LIGHTS  
 NUMBER-OF-PeOPLE = 2.0 LIGHTING-TYPE = INCAND  
 LIGHTING-KW = 1.23 LIGHTING-SCHEDULE = T\_LIGHTS  
 EQUIP-SCHEDULE = TOWEREQUIP EQUIPMENT-KW = 4.39  
 EQUIP-SENSIBLE = 0.3 INF-METHOD = AIR-CHANGE  
 AIR-CHANGES/Hr = 0.75 INF-SCHEDULE = towerinfil ..

ROOF HEIGHT = 24.0 WIDTH = 24.0 CONS = TOWEROOF  
 TILT = 0 ..

E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL  
 AZIMUTH = 45 ..

E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL  
 AZIMUTH = 135 ..

E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL  
 AZIMUTH = 225 ..

U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..

E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL  
 AZIMUTH = 315 ..

U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..

U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..

**TOWER\_3** =SPACE AREA = 576.0 VOLUME = 14976.0  
 ZONE-TYPE = CONDITIONED PEOPLE-SCHEDULE = T\_LIGHTS  
 NUMBER-OF-PeOPLE = 2.0 LIGHTING-TYPE = INCAND  
 LIGHTING-KW = 1.23 LIGHTING-SCHEDULE = T\_LIGHTS  
 EQUIP-SCHEDULE = TOWEREQUIP EQUIPMENT-KW = 4.39  
 EQUIP-SENSIBLE = 0.3 INF-METHOD = AIR-CHANGE

AIR-CHANGES/HR = 0.75 INF-SCHEDULE = towerinfil ..

ROOF HEIGHT = 24.0 WIDTH = 24.0 CONS = TOWEROOF  
TILT = 0 ..

E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL  
AZIMUTH = 45 ..

E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL  
AZIMUTH = 135 ..

E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL  
AZIMUTH = 225 ..

U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..

E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL  
AZIMUTH = 315 ..

U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..

U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..

U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..

COMPUTERRM =SPACE AREA = 4037.4 VOLUME = 36337.0  
ZONE-TYPE = CONDITIONED PEOPLE-SCHEDULE = equipcomp  
NUMBER-OF-PeOPLE = 4.0 PEOPLE-HEAT-GAIN = 350.0  
PEOPLE-HG-LAT = 125.0 PEOPLE-HG-SENS = 250.0  
LIGHTING-TYPE = REC-FLUOR-NV LIGHTING-KW = 4.72  
LIGHT-TO-SPACE = 0.8 LIGHT-TO-OTHER = 0.2  
LIGHT-HEAT-TO = COMPRMPLN  
LIGHTING-SCHEDULE = equipcomp  
EQUIP-SCHEDULE = equipcomp EQUIPMENT-KW = 29.0  
EQUIP-SENSIBLE = 0.67 INF-METHOD = CRACK  
NEUTRAL-ZONE-HT = 0.0 ..

I-W HEIGHT = 9.0 WIDTH = 59.6 CONS = INTWALL  
NEXT-TO = HALLS ..

I-W HEIGHT = 9.0 WIDTH = 40.6 CONS = INTWALL  
NEXT-TO = HALLS ..

I-W HEIGHT = 9.0 WIDTH = 49.3 CONS = INTWALL  
NEXT-TO = HALLS ..

I-W HEIGHT = 9.0 WIDTH = 18.3 CONS = INTWALL  
NEXT-TO = CONFERENCE ..

I-W HEIGHT = 9.0 WIDTH = 19.0 CONS = INTWALL  
NEXT-TO = CONFERENCE ..

E-W HEIGHT = 9.0 WIDTH = 67.6 CONS = COMPWAL  
AZIMUTH = 225 ..

U-W HEIGHT = 67.6 WIDTH = 1.0 CONS = FLOORCOM ..

CONFPLENUM =SPACE AREA = 348.0 VOLUME = 1879.2

ZONE-TYPE = UNCONDITIONED ..

I-W HEIGHT = 5.4 WIDTH = 18.4 CONS = INTWALL  
NEXT-TO = COMPRMPLN ..

I-W HEIGHT = 5.4 WIDTH = 19.0 CONS = INTWALL  
NEXT-TO = COMPRMPLN ..

I-W HEIGHT = 5.4 WIDTH = 18.4 CONS = INTWALL  
NEXT-TO = HALLPLENUM ..

I-W HEIGHT = 5.4 WIDTH = 19.0 CONS = INTWALL  
NEXT-TO = HALLPLENUM ..

I-W HEIGHT = 18.4 WIDTH = 19.0 CONS = CEILING  
NEXT-TO = CONFERENCE ..

ROOF HEIGHT = 17.4 WIDTH = 19.0 CONS = REGROOF  
TILT = 0 ..

ROOF HEIGHT = 1.0 WIDTH = 19.0 CONS = REGROOF  
TILT = 0 ..

COMPRMPLN =SPACE AREA = 4037.4 VOLUME = 17764.6  
ZONE-TYPE = UNCONDITIONED INF-METHOD = CRACK  
NEUTRAL-ZONE-HT = 0.0 ..

I-W HEIGHT = 4.4 WIDTH = 59.6 CONS = INTWALL  
NEXT-TO = HALLPLENUM ..

I-W HEIGHT = 4.4 WIDTH = 40.6 CONS = INTWALL  
NEXT-TO = HALLPLENUM ..

I-W HEIGHT = 4.4 WIDTH = 49.3 CONS = INTWALL  
NEXT-TO = HALLPLENUM ..

I-W HEIGHT = 4.4 WIDTH = 18.3 CONS = INTWALL  
NEXT-TO = CONFPLENUM ..

I-W HEIGHT = 4.4 WIDTH = 19.0 CONS = INTWALL  
NEXT-TO = CONFPLENUM ..

I-W HEIGHT = 49.3 WIDTH = 59.6 CONS = CEILING  
NEXT-TO = COMPUTERRM ..

I-W HEIGHT = 18.3 WIDTH = 40.6 CONS = CEILING  
NEXT-TO = COMPUTERRM ..

E-W HEIGHT = 4.4 WIDTH = 67.6 CONS = COMPWAL  
AZIMUTH = 225 ..

ROOF HEIGHT = 49.3 WIDTH = 59.6 CONS = REGROOF  
TILT = 0 ..

ROOF HEIGHT = 18.3 WIDTH = 40.6 CONS = REGROOF  
TILT = 0 ..

HALLPLENUM =SPACE AREA = 5285.5 VOLUME = 28541.7

ZONE-TYPE = UNCONDITIONED INF-METHOD = CRACK  
 NEUTRAL-ZONE-HT = 0.0 ..

E-W HEIGHT = 5.4 WIDTH = 80.0 CONS = REGWALL  
 AZIMUTH = 315 ..

E-W HEIGHT = 5.4 WIDTH = 117.6 CONS = REGWALL  
 AZIMUTH = 45 ..

E-W HEIGHT = 5.4 WIDTH = 80.0 CONS = REGWALL  
 AZIMUTH = 135 ..

I-W HEIGHT = 25.0 WIDTH = 80.0 CONS = CEILING  
 NEXT-TO = HALLS ..

I-W HEIGHT = 67.6 WIDTH = 19.0 CONS = CEILING  
 NEXT-TO = HALLS ..

I-W HEIGHT = 25.0 WIDTH = 80.0 CONS = CEILING  
 NEXT-TO = HALLS ..

ROOF HEIGHT = 25.0 WIDTH = 80.0 CONS = REGROOF  
 TILT = 0 ..

ROOF HEIGHT = 67.6 WIDTH = 19.0 CONS = REGROOF  
 TILT = 0 ..

ROOF HEIGHT = 25.0 WIDTH = 80.0 CONS = REGROOF  
 TILT = 0 ..

**TOWER\_2** =SPACE AREA = 576.0 VOLUME = 14976.0  
 ZONE-TYPE = CONDITIONED PEOPLE-SCHEDULE = T\_LIGHTS  
 NUMBER-OF-PEOPLE = 2.0 LIGHTING-TYPE = INCAND  
 LIGHTING-KW = 1.23 LIGHTING-SCHEDULE = T\_LIGHTS  
 EQUIP-SCHEDULE = TOWEREQUIP EQUIPMENT-KW = 4.39  
 EQUIP-SENSIBLE = 0.3 INF-METHOD = AIR-CHANGE  
 AIR-CHANGES/HR = 0.75 INF-SCHEDULE = towerinfil ..

ROOF HEIGHT = 24.0 WIDTH = 24.0 CONS = TOWEROOF  
 TILT = 0 ..

E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL  
 AZIMUTH = 45 ..

E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL  
 AZIMUTH = 135 ..

E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL  
 AZIMUTH = 225 ..

U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..

E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL  
 AZIMUTH = 315 ..

U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..

U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..

U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..

\$ HOURLY REPORT DESCRIPTION

```
GLOBAL_BLK =REPORT-BLOCK VARIABLE-TYPE = GLOBAL
             VARIABLE-LIST = (24,17) ..
glob_hrly = HOURLY-REPORT REPORT-SCHEDULE = L-hrly_rps
             REPORT-BLOCK = (GLOBAL_BLK)

..
dup_glob_b = HOURLY-REPORT REPORT-SCHEDULE = L-hrly_rps
             REPORT-BLOCK = (GLOBAL_BLK)

..
END ..
COMPUTE LOADS ..
```

INPUT SYSTEMS ..

```
$-----$  
$ E Z - D O E S Y S T E M S I N P U T S $  
$-----$
```

\$ GENERAL PROJECT DATA

```
TITLE LINE-1 *      EMC      ENGINEERS      INC.      *
LINE-2 *EZDOE - ELITE SOFTWARE DEVELOPMENT INC*
LINE-3 *      DENVER,      CO      80227      *

LINE-4 *GEODSS SITE DOE EVALUATION      * ..
ABORT          ERRORS ..
DIAGNOSTIC     WARNINGS ..
SYSTEMS-REPORT VERIFICATION=(SV-A)
SUMMARY=(SS-A,SS-C,SS-K,SS-O) ..
```

\$ SCHEDULES

```
DAILYTEMP =DAY-SCHEDULE (1,24) (68.) ..
TOWER_AHU =DAY-SCHEDULE (1,24) (1.) ..
S_GEODSSYS =DAY-SCHEDULE (1,7) (100.)
             (8,15) (50.)
             (16,24) (100.) ..
CAMCOMPRES =DAY-SCHEDULE (1,7) (100.)
             (8,15) (0.)
             (16,24) (100.) ..
CRU        =DAY-SCHEDULE (1,24) (72.) ..
WINTOWER   =DAY-SCHEDULE (1,24) (0.) ..
COOLCOMP   =DAY-SCHEDULE (1,24) (72.) ..
ahu2       =DAY-SCHEDULE (1,24) (0.26) ..

INSIDE     =WEEK-SCHEDULE (ALL) DAILYTEMP ..
W_GEODSS   =WEEK-SCHEDULE (ALL) TOWER_AHU ..
WINGEODSS =WEEK-SCHEDULE (ALL) WINTOWER ..
W_CAMERA    =WEEK-SCHEDULE (ALL) CAMCOMPRES ..
COMPHEAT   =WEEK-SCHEDULE (ALL) CRU ..
```

```

CONF_AHU =WEEK-SCHEDULE (ALL) TOWER_AHU ...
BIGAHU =WEEK-SCHEDULE (ALL) TOWER_AHU ...
COMPCOOL =WEEK-SCHEDULE (ALL) COOLCOMP ...
w_ahu2 =WEEK-SCHEDULE (ALL) ahu2 ...

$ FULL TIME RUNNING AHU
FULL_ON =SCHEDULE THRU DEC 31 CONF_AHU ...

$ YEARLY SYSTEMS TOWERS
TOWERYEAR =SCHEDULE THRU APR 1 WINGEODSS
            THRU NOV 1 W_GEODSS
            THRU DEC 31 WINGEODSS ...

$ YEARLY CAMERA COMPRESSO
Y_CAMERA =SCHEDULE THRU DEC 31 W_CAMERA ...

$ TEMPERATURE IN BLDG
BLDGTEMP =SCHEDULE THRU DEC 31 INSIDE ...

$ TEMPERATURE OF COMPRESSOR
COMPUTER =SCHEDULE THRU DEC 31 COMPHEAT ...

s_off =SCHEDULE THRU DEC 31 WINGEODSS ...

hrly-sched =SCHEDULE THRU MAR 12 WINGEODSS
            THRU MAR 13 CONF_AHU
            THRU SEP 7 WINGEODSS
            THRU SEP 8 CONF_AHU
            THRU DEC 31 WINGEODSS ...

$ HEATER FOR AHU #1
HEATER =SCHEDULE THRU APR 1 CONF_AHU
            THRU NOV 1 WINGEODSS
            THRU DEC 31 CONF_AHU ...

$ TEMP TO COOL IN COMP RM
COOL_COMP =SCHEDULE THRU DEC 31 COMPCOOL ...

$ outside air to ahu2
oaahu2 =SCHEDULE THRU DEC 31 w_ahu2 ...

```

\$ ZONE DESCRIPTION

```

CONFERENCE =ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0
                HEAT-TEMP-SCH = BLDGTEMP COOL-TEMP-SCH = COMPUTER
                ZONE-TYPE = CONDITIONED MAX-HEAT-RATE = -1.0
                THERMOSTAT-TYPE = PROPORTIONAL ASSIGNED-CFM = 800.
                SIZING-OPTION = FROM-LOADS COOLING-CAPACITY = 10000.0
                COOL-SH-CAP = 8000.0 ...

HALLS      =ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0
                HEAT-TEMP-SCH = BLDGTEMP COOL-TEMP-SCH = COMPUTER
                ZONE-TYPE = CONDITIONED

```

THERMOSTAT-TYPE = PROPORTIONAL ASSIGNED-CFM = 4770.  
 OUTSIDE-AIR-CFM = 1247. SIZING-OPTION = FROM-LOADS  
 EXHAUST-CFM = 1247.0 HEATING-CAPACITY = -76817.0  
 COOLING-CAPACITY = 113658.0 COOL-SH-CAP = 102183.0 ...

**TOWER\_1** =ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0  
 HEAT-TEMP-SCH = BLDGTEMP COOL-TEMP-SCH = COMPUTER  
 ZONE-TYPE = CONDITIONED MAX-HEAT-RATE = -1.0  
 THERMOSTAT-TYPE = PROPORTIONAL ASSIGNED-CFM = 2000.  
 SIZING-OPTION = FROM-LOADS EXHAUST-CFM = 2000.0  
 COOLING-CAPACITY = 62702.0 COOL-SH-CAP = 62702.0 ...

**TOWER\_3** =ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0  
 HEAT-TEMP-SCH = BLDGTEMP COOL-TEMP-SCH = COMPUTER  
 ZONE-TYPE = CONDITIONED MAX-HEAT-RATE = -1.0  
 THERMOSTAT-TYPE = PROPORTIONAL ASSIGNED-CFM = 2000.  
 SIZING-OPTION = FROM-LOADS EXHAUST-CFM = 2000.0  
 COOLING-CAPACITY = 62866.0 COOL-SH-CAP = 62866.0 ...

**COMPUTERRM** =ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0  
 HEAT-TEMP-SCH = BLDGTEMP COOL-TEMP-SCH = COOL\_COMP  
 ZONE-TYPE = CONDITIONED  
 THERMOSTAT-TYPE = PROPORTIONAL ASSIGNED-CFM = 36000.  
 SIZING-OPTION = FROM-LOADS RATED-CFM = 36000.0  
 HEATING-CAPACITY = -345300.0  
 COOLING-CAPACITY = 978600.0 COOL-SH-CAP = 838200.0 ...

**CONFPLENUM** =ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0  
 ZONE-TYPE = UNCONDITIONED SIZING-OPTION = FROM-LOADS ...

**COMPRMPLN** =ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0  
 ZONE-TYPE = UNCONDITIONED SIZING-OPTION = FROM-LOADS ...

**HALLPLENUM** =ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0  
 ZONE-TYPE = UNCONDITIONED SIZING-OPTION = FROM-LOADS ...

**TOWER\_2** =ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0  
 HEAT-TEMP-SCH = BLDGTEMP COOL-TEMP-SCH = COMPUTER  
 ZONE-TYPE = CONDITIONED MAX-HEAT-RATE = -1.0  
 THERMOSTAT-TYPE = PROPORTIONAL ASSIGNED-CFM = 2000.  
 SIZING-OPTION = FROM-LOADS EXHAUST-CFM = 2000.0  
 COOLING-CAPACITY = 62702.0 COOL-SH-CAP = 62702.0 ...

#### \$ SYSTEM DESCRIPTION

**1TOWER** =SYSTEM SYSTEM-TYPE = SZRH  
 MAX-SUPPLY-T = 120.0 MIN-SUPPLY-T = 55.0  
 HEATING-SCHEDULE = s\_off  
 COOLING-SCHEDULE = TOWERYEAR MAX-HUMIDITY = 90.0  
 OA-CONTROL = FIXED SUPPLY-CFM = 2000.  
 MIN-OUTSIDE-AIR = 1.0 FAN-SCHEDULE = TOWERYEAR  
 SUPPLY-STATIC = 2.5 SUPPLY-EFF = 0.72  
 NIGHT-CYCLE-CTRL = STAY-OFF NIGHT-VENT-DT = 0.0  
 MIN-CFM-RATIO = 1.0 REHEAT-DELTA-T = 65.  
 COOLING-CAPACITY = 40000. COOL-SH-CAP = 40000.  
 COOL-FT-MIN = 0. FURNACE-AUX = 0.  
 FURNACE-HIR = 1.0  
 ZONE-NAMES = (TOWER\_1) ...

CRUINT =SYSTEM SYSTEM-TYPE = SZRH  
 MAX-SUPPLY-T = 72.0 MIN-SUPPLY-T = 62.0  
 HEATING-SCHEDULE = FULL\_ON  
 COOLING-SCHEDULE = FULL\_ON MAX-HUMIDITY = 55.0  
 MIN-HUMIDITY = 30.0 OA-CONTROL = FIXED  
 SUPPLY-CFM = 36000. RETURN-CFM = 36000.  
 MAX-OA-FRACTION = 0.0 FAN-SCHEDULE = FULL\_ON  
 SUPPLY-STATIC = 1.5 SUPPLY-EFF = 0.72  
 NIGHT-CYCLE-CTRL = STAY-OFF NIGHT-VENT-DT = 0.0  
 MIN-CFM-RATIO = 1.0 REHEAT-DELTA-T = 65.  
 COOLING-CAPACITY = 978600. COOL-SH-CAP = 838200.  
 COOL-FT-MIN = 0. HEATING-CAPACITY = -345300.  
 FURNACE-AUX = 0. HEAT-SOURCE = ELECTRIC  
 RETURN-AIR-PATH = DUCT  
 ZONE-NAMES = (COMPUTERRM, COMPRMPLN) ..

2TOWER =SYSTEM SYSTEM-TYPE = SZRH  
 MAX-SUPPLY-T = 120.0 MIN-SUPPLY-T = 55.0  
 HEATING-SCHEDULE = s\_off  
 COOLING-SCHEDULE = TOWERYEAR MAX-HUMIDITY = 90.0  
 OA-CONTROL = FIXED SUPPLY-CFM = 2000.  
 MIN-OUTSIDE-AIR = 1.0 FAN-SCHEDULE = TOWERYEAR  
 SUPPLY-STATIC = 2.5 SUPPLY-EFF = 0.72  
 NIGHT-CYCLE-CTRL = STAY-OFF NIGHT-VENT-DT = 0.0  
 MIN-CFM-RATIO = 1.0 REHEAT-DELTA-T = 65.  
 COOLING-CAPACITY = 40000. COOL-SH-CAP = 40000.  
 COOL-FT-MIN = 0. FURNACE-AUX = 0.  
 FURNACE-HIR = 1.0  
 ZONE-NAMES = (TOWER\_2) ..

3TOWER =SYSTEM SYSTEM-TYPE = SZRH  
 MAX-SUPPLY-T = 120.0 MIN-SUPPLY-T = 55.0  
 HEATING-SCHEDULE = s\_off  
 COOLING-SCHEDULE = TOWERYEAR MAX-HUMIDITY = 90.0  
 OA-CONTROL = FIXED SUPPLY-CFM = 2000.  
 MIN-OUTSIDE-AIR = 1.0 FAN-SCHEDULE = TOWERYEAR  
 SUPPLY-STATIC = 2.5 SUPPLY-EFF = 0.72  
 NIGHT-CYCLE-CTRL = STAY-OFF NIGHT-VENT-DT = 0.0  
 MIN-CFM-RATIO = 1.0 REHEAT-DELTA-T = 65.  
 COOLING-CAPACITY = 40000. COOL-SH-CAP = 40000.  
 COOL-FT-MIN = 0. FURNACE-AUX = 0.  
 FURNACE-HIR = 1.0  
 ZONE-NAMES = (TOWER\_3) ..

REGAHU =SYSTEM SYSTEM-TYPE = SZRH  
 MAX-SUPPLY-T = 120.0 MIN-SUPPLY-T = 58.0  
 HEATING-SCHEDULE = FULL\_ON  
 COOLING-SCHEDULE = FULL\_ON HEAT-SET-T = 120.0  
 MAX-HUMIDITY = 80.0 OA-CONTROL = FIXED  
 SUPPLY-CFM = 4770. RETURN-CFM = 3523.  
 MIN-OUTSIDE-AIR = 0.26 MAX-OA-FRACTION = 0.26  
 FAN-SCHEDULE = FULL\_ON SUPPLY-STATIC = 3.0  
 SUPPLY-EFF = 0.72 NIGHT-CYCLE-CTRL = STAY-OFF  
 NIGHT-VENT-DT = 0.0 MIN-CFM-RATIO = 1.0  
 REHEAT-DELTA-T = 65. COOLING-CAPACITY = 113658.  
 COOL-SH-CAP = 102183. COOL-FT-MIN = 0.  
 HEATING-CAPACITY = -76817. FURNACE-AUX = 0.  
 FURNACE-HIR = 1.0 HEAT-SOURCE = ELECTRIC  
 RETURN-AIR-PATH = DUCT  
 ZONE-NAMES = (HALLS, HALLPLENUM) ..

```
CONFRMAHU =SYSTEM      SYSTEM-TYPE = SZRH
            MAX-SUPPLY-T = 70.0  MIN-SUPPLY-T = 62.0
            HEATING-SCHEDULE = s_off  COOLING-SCHEDULE = FULL_ON
            MAX-HUMIDITY = 50.0  OA-CONTROL = FIXED
            SUPPLY-CFM = 800.  RETURN-CFM = 800.
            MAX-OA-FRACTION = 0.0  FAN-SCHEDULE = FULL_ON
            SUPPLY-DELTA-T = 2.42  SUPPLY-KW = 0.00031
            NIGHT-CYCLE-CTRL = STAY-OFF  NIGHT-VENT-DT = 0.0
            MIN-CFM-RATIO = 1.0  REHEAT-DELTA-T = 65.
            COOLING-CAPACITY = 10000.  COOL-SH-CAP = 8000.
            COOL-FT-MIN = 0.  FURNACE-AUX = 0.
            FURNACE-HIR = 1.0  RETURN-AIR-PATH = DUCT
            ZONE-NAMES = (CONFERENCE, CONFPLENUM) ..
```

#### \$ HOURLY REPORT DESCRIPTION

```
zone-blk =REPORT-BLOCK VARIABLE-TYPE = TOWER_1
            VARIABLE-LIST = (6,7,17,18) ..
ahu-blk =REPORT-BLOCK VARIABLE-TYPE = 1TOWER
            VARIABLE-LIST = (5,6,8,1,2,17) ..
hrly-Ozone = HOURLY-REPORT REPORT-SCHEDULE = hrly-sched
            REPORT-BLOCK = (zone-blk)
.
.
.
hrly-sys1 = HOURLY-REPORT REPORT-SCHEDULE = hrly-sched
            REPORT-BLOCK = (ahu-blk)
.
.
.
END ..
COMPUTE SYSTEMS ..
```

```
INPUT PLANT ..
```

```
$-----$  
$ E Z - D O E   P L A N T S   I N P U T $  
$-----$
```

#### \$ GENERAL PROJECT DATA

```
TITLE LINE-1 *      EMC      ENGINEERS      INC.      *
      LINE-2 *EZDOE - ELITE SOFTWARE DEVELOPMENT INC*
      LINE-3 *      DENVER,       CO      80227      *
.
.
.
LINE-4 *GEODSS SITE DOE EVALUATION      * ..
```

```
ABORT          ERRORS ..
DIAGNOSTIC     WARNINGS ..
PLANT-REPORT    SUMMARY=(PS-A,PS-B,PS-C,BEPS)
.
```

#### \$ SCHEDULES

```
PD_ON        =DAY-SCHEDULE (1,24) (1.) ..
.
.
PW_ON        =WEEK-SCHEDULE (ALL) PD_ON ..
```

```
$ GEODSSP_ON
```

P\_ON =SCHEDULE THRU DEC 31 PW\_ON ..

\$ EQUIPMENT DESCRIPTION

\$ CURVE-FIT

CHILLER1 = CURVE-FIT TYPE = QUADRATIC  
OUTPUT-MIN = 1.00  
COEF = ( 0.088, 1.138, -0.226) ..

CHILLERS =PLANT-EQUIPMENT TYPE = HERM-REC-CHLR  
SIZE = 0.4 INSTALLED-NUMBER = 2  
MAX-NUMBER-AVAIL = 2 ..

PLANT-PARAMETERS HERM-REC-COND-TYPE = AIR HERM-REC-UNL-RAT = 1.0  
CHILL-WTR-T = 45. CCIRC-MOTOR-EFF = 0.85  
CCIRC-HEAD = 45.0 HCIRC-MOTOR-EFF = 0.83  
HCIRC-HEAD = 0.0 ..

PART-LOAD-RATIO TYPE = HERM-REC-CHLR  
MIN-RATIO = 0.2500 MAX-RATIO = 1.0000  
OPERATING-RATIO = 1.0000 ELEC-INPUT-RATIO = 0.4071 ..

ENERGY-RESOURCE RESOURCE = ELECTRICITY SOURCE-SITE-EFF = 1.000 ..  
ENERGY-RESOURCE RESOURCE = NATURAL-GAS ..

EQUIPMENT-QUAD HERM-REC-EIR-FPLR = CHILLER1 ..

END ..  
COMPUTE PLANT ..  
STOP ..

## BUILDING ENERGY ANALYSIS PROGRAM

DEVELOPED BY  
LAWRENCE BERKELEY LABORATORY/UNIVERSITY OF CALIFORNIA  
AND  
James J. Hirsch/HIRSCH & ASSOCIATES/(805) 482-5515

WITH MAJOR SUPPORT FROM  
UNITED STATES DEPARTMENT OF ENERGY  
ASSISTANT SECRETARY FOR CONSERVATION AND RENEWABLE ENERGY  
OFFICE OF BUILDINGS AND COMMUNITY SYSTEMS  
BUILDING SYSTEMS DIVISION

## LEGAL NOTICE

THIS PROGRAM WAS PREPARED AS AN ACCOUNT OF WORK SPONSORED BY THE UNITED STATES GOVERNMENT AND OTHERS, NEITHER THE UNITED STATES NOR THE DEPARTMENT OF ENERGY, NOR JAMES J. HIRSCH, NOR OTHER SPONSORS, NOR ANY OF THEIR EMPLOYEES, NOR ANY OF THEIR CONTRACTORS, SUBCONTRACTORS, OR THEIR EMPLOYEES MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS OR USEFULNESS OF ANY DATA OR RESULTS PRESENTED, APPARATUS, INFORMATION, PRODUCT OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

LBL RELEASE DEC 1990 version : JJHirsch PC 2.1D-017  
Elite Software PC DOE-2.1D released in April 1993.  
Copyright (c) Elite Software Development, 1993. All Rights Reserved.

-----  
EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1  
DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
REPORT- LV-B SUMMARY OF SPACES OCCURRING IN THE PROJECT TRUTH OR CONSEQU, N  
-----

| NUMBER OF SPACES | 9          | EXTERIOR   | 8                      | INTERIOR            | 1                   |                      |             |               |           |
|------------------|------------|------------|------------------------|---------------------|---------------------|----------------------|-------------|---------------|-----------|
| SPACE            | SPACE MULT | SPACE TYPE | LIGHTING (WATT / SQFT) | EQUIP (WATT / SQFT) | INFILTRATION METHOD | AIR CHANGES PER HOUR | AREA (SQFT) | VOLUME (CUFT) |           |
| CONFERENCE       | 1.0        | INT        | 0.0                    | 1.52                | 1.0                 | 1.44                 | CRACK       | 0.00          | 348.00    |
| HALLS            | 1.0        | EXT        | 0.0                    | 1.23                | 4.0                 | 1.01                 | CRACK       | 0.00          | 5285.50   |
| TOWER_1          | 1.0        | EXT        | 0.0                    | 2.14                | 2.0                 | 7.62                 | AIR-CHANGE  | 0.75          | 576.00    |
| TOWER_3          | 1.0        | EXT        | 0.0                    | 2.14                | 2.0                 | 7.62                 | AIR-CHANGE  | 0.75          | 576.00    |
| COMPUTERRM       | 1.0        | EXT        | 0.0                    | 1.17                | 4.0                 | 7.18                 | CRACK       | 0.00          | 4037.40   |
| CONFPLENUM       | 1.0        | EXT        | 0.0                    | 0.00                | 0.0                 | 0.00                 | NO-INPILT.  | 0.00          | 348.00    |
| COMPRMPLN        | 1.0        | EXT        | 0.0                    | 0.00                | 0.0                 | 0.00                 | CRACK       | 0.00          | 4037.40   |
| HALLPLENUM       | 1.0        | EXT        | 0.0                    | 0.00                | 0.0                 | 0.00                 | CRACK       | 0.00          | 5285.50   |
| TOWER_2          | 1.0        | EXT        | 0.0                    | 2.14                | 2.0                 | 7.62                 | AIR-CHANGE  | 0.75          | 576.00    |
| BUILDING TOTALS  |            |            |                        |                     |                     | 15.0                 |             | 21069.80      | 174520.50 |

-----  
EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1  
DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
REPORT- LV-D DETAILS OF EXTERIOR SURFACES IN THE PROJECT TRUTH OR CONSEQU, N  
-----

NUMBER OF EXTERIOR SURFACES 30 RECTANGULAR 30 OTHER 0  
(U-VALUE INCLUDES INSIDE AIR FILM PLUS OUTSIDE AIR FILM AT 7.5 MPH WINDSPEED )

| SURFACE    | SPACE | - - - G L A S S - - - | U-VALUE (BTU/HR-SQFT-F) | AREA (SQFT) | - - - W A L L - - - | U-VALUE (BTU/HR-SQFT-F) | AREA (SQFT) | - - - W A L L + G L A S S - | U-VALUE (BTU/HR-SQFT-F) | AREA (SQFT) | AZIMUTH |
|------------|-------|-----------------------|-------------------------|-------------|---------------------|-------------------------|-------------|-----------------------------|-------------------------|-------------|---------|
| HALLS      |       | 0.000                 | 0.00                    | 0.066       | 940.80              | 0.066                   | 940.80      | NORTH-EAST                  |                         |             |         |
| TOWER_1    |       | 0.000                 | 0.00                    | 0.068       | 624.00              | 0.068                   | 624.00      | NORTH-EAST                  |                         |             |         |
| TOWER_3    |       | 0.000                 | 0.00                    | 0.068       | 624.00              | 0.068                   | 624.00      | NORTH-EAST                  |                         |             |         |
| HALLPLENUM |       | 0.000                 | 0.00                    | 0.066       | 635.04              | 0.066                   | 635.04      | NORTH-EAST                  |                         |             |         |
| TOWER_2    |       | 0.000                 | 0.00                    | 0.068       | 624.00              | 0.068                   | 624.00      | NORTH-EAST                  |                         |             |         |
| TOWER_3    |       | 0.000                 | 0.00                    | 0.068       | 624.00              | 0.068                   | 624.00      | SOUTH-EAST                  |                         |             |         |
| TOWER_1    |       | 0.000                 | 0.00                    | 0.068       | 624.00              | 0.068                   | 624.00      | SOUTH-EAST                  |                         |             |         |
| HALLPLENUM |       | 0.000                 | 0.00                    | 0.066       | 432.00              | 0.066                   | 432.00      | SOUTH-EAST                  |                         |             |         |
| HALLS      |       | 0.000                 | 0.00                    | 0.066       | 640.00              | 0.066                   | 640.00      | SOUTH-EAST                  |                         |             |         |
| TOWER_2    |       | 0.000                 | 0.00                    | 0.068       | 624.00              | 0.068                   | 624.00      | SOUTH-EAST                  |                         |             |         |
| TOWER_1    |       | 0.000                 | 0.00                    | 0.068       | 624.00              | 0.068                   | 624.00      | SOUTH-EAST                  |                         |             |         |
| TOWER_3    |       | 0.000                 | 0.00                    | 0.068       | 624.00              | 0.068                   | 624.00      | SOUTH-WEST                  |                         |             |         |
| COMPUTERRM |       | 0.000                 | 0.00                    | 0.066       | 608.40              | 0.066                   | 608.40      | SOUTH-WEST                  |                         |             |         |
| COMPRMPLN  |       | 0.000                 | 0.00                    | 0.066       | 297.44              | 0.066                   | 297.44      | SOUTH-WEST                  |                         |             |         |
| TOWER_2    |       | 0.000                 | 0.00                    | 0.068       | 624.00              | 0.068                   | 624.00      | SOUTH-WEST                  |                         |             |         |
| TOWER_1    |       | 0.000                 | 0.00                    | 0.068       | 624.00              | 0.068                   | 624.00      | SOUTH-WEST                  |                         |             |         |
| HALLS      |       | 0.000                 | 0.00                    | 0.066       | 640.00              | 0.066                   | 640.00      | NORTH-WEST                  |                         |             |         |
| HALLPLENUM |       | 0.000                 | 0.00                    | 0.066       | 432.00              | 0.066                   | 432.00      | NORTH-WEST                  |                         |             |         |
| TOWER_3    |       | 0.000                 | 0.00                    | 0.068       | 624.00              | 0.068                   | 624.00      | NORTH-WEST                  |                         |             |         |
| TOWER_2    |       | 0.000                 | 0.00                    | 0.068       | 624.00              | 0.068                   | 624.00      | NORTH-WEST                  |                         |             |         |
| CONFPLENUM |       | 0.000                 | 0.00                    | 0.053       | 330.60              | 0.053                   | 330.60      | ROOF                        |                         |             |         |
| CONFPLENUM |       | 0.000                 | 0.00                    | 0.053       | 19.00               | 0.053                   | 19.00       | ROOF                        |                         |             |         |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
 REPORT- LV-D DETAILS OF EXTERIOR SURFACES IN THE PROJECT TRUTH OR CONSEQU, N

|            |       |      |       |         |       |         |           |
|------------|-------|------|-------|---------|-------|---------|-----------|
| HALLPLENUM | 0.000 | 0.00 | 0.053 | 2000.00 | 0.053 | 2000.00 | ROOF      |
| HALLPLENUM | 0.000 | 0.00 | 0.053 | 1284.40 | 0.053 | 1284.40 | ROOF      |
| HALLPLENUM | 0.000 | 0.00 | 0.053 | 2000.00 | 0.053 | 2000.00 | ROOF      |
| TOWER_2    | 0.000 | 0.00 | 0.047 | 576.00  | 0.047 | 576.00  | ROOF      |
| TOWER_3    | 0.000 | 0.00 | 0.047 | 576.00  | 0.047 | 576.00  | ROOF      |
| COMPRMPLN  | 0.000 | 0.00 | 0.053 | 2938.28 | 0.053 | 2938.28 | ROOF      |
| COMPRMPLN  | 0.000 | 0.00 | 0.053 | 742.98  | 0.053 | 742.98  | ROOF      |
| TOWER_1    | 0.000 | 0.00 | 0.047 | 576.00  | 0.047 | 576.00  | ROOF      |
| HALLS      | 0.000 | 0.00 | 0.800 | 80.00   | 0.800 | 80.00   | UNDERGRND |
| HALLS      | 0.000 | 0.00 | 0.800 | 117.60  | 0.800 | 117.60  | UNDERGRND |
| HALLS      | 0.000 | 0.00 | 0.800 | 80.00   | 0.800 | 80.00   | UNDERGRND |
| TOWER_1    | 0.000 | 0.00 | 0.800 | 24.00   | 0.800 | 24.00   | UNDERGRND |
| TOWER_1    | 0.000 | 0.00 | 0.800 | 24.00   | 0.800 | 24.00   | UNDERGRND |
| TOWER_1    | 0.000 | 0.00 | 0.800 | 24.00   | 0.800 | 24.00   | UNDERGRND |
| TOWER_1    | 0.000 | 0.00 | 0.800 | 24.00   | 0.800 | 24.00   | UNDERGRND |
| TOWER_3    | 0.000 | 0.00 | 0.800 | 24.00   | 0.800 | 24.00   | UNDERGRND |
| TOWER_3    | 0.000 | 0.00 | 0.800 | 24.00   | 0.800 | 24.00   | UNDERGRND |
| TOWER_3    | 0.000 | 0.00 | 0.800 | 24.00   | 0.800 | 24.00   | UNDERGRND |
| TOWER_3    | 0.000 | 0.00 | 0.800 | 24.00   | 0.800 | 24.00   | UNDERGRND |
| TOWER_3    | 0.000 | 0.00 | 0.800 | 24.00   | 0.800 | 24.00   | UNDERGRND |
| COMPUTERRM | 0.000 | 0.00 | 0.800 | 67.60   | 0.800 | 67.60   | UNDERGRND |
| TOWER_2    | 0.000 | 0.00 | 0.800 | 24.00   | 0.800 | 24.00   | UNDERGRND |
| TOWER_2    | 0.000 | 0.00 | 0.800 | 24.00   | 0.800 | 24.00   | UNDERGRND |
| TOWER_2    | 0.000 | 0.00 | 0.800 | 24.00   | 0.800 | 24.00   | UNDERGRND |
| TOWER_2    | 0.000 | 0.00 | 0.800 | 24.00   | 0.800 | 24.00   | UNDERGRND |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
 REPORT- LV-D DETAILS OF EXTERIOR SURFACES IN THE PROJECT TRUTH OR CONSEQU, N

|             | AVERAGE U-VALUE/GLASS (BTU/HR-SQFT-F) | AVERAGE U-VALUE/WALLS (BTU/HR-SQFT-F) | AVERAGE U-VALUE WALLS+GLASS (BTU/HR-SQFT-F) | GLASS AREA (SQFT) | OPAQUE AREA (SQFT) | GLASS+OPAQUE AREA (SQFT) |
|-------------|---------------------------------------|---------------------------------------|---------------------------------------------|-------------------|--------------------|--------------------------|
| NORTH-EAST  | 0.000                                 | 0.067                                 | 0.067                                       | 0.00              | 3447.84            | 3447.84                  |
| SOUTH-EAST  | 0.000                                 | 0.067                                 | 0.067                                       | 0.00              | 2944.00            | 2944.00                  |
| SOUTH-WEST  | 0.000                                 | 0.067                                 | 0.067                                       | 0.00              | 2777.84            | 2777.84                  |
| NORTH-WEST  | 0.000                                 | 0.067                                 | 0.067                                       | 0.00              | 2944.00            | 2944.00                  |
| ROOF        | 0.000                                 | 0.052                                 | 0.052                                       | 0.00              | 11043.26           | 11043.26                 |
| ALL WALLS   | 0.000                                 | 0.067                                 | 0.067                                       | 0.00              | 12113.68           | 12113.68                 |
| WALLS+ROOFS | 0.000                                 | 0.060                                 | 0.060                                       | 0.00              | 23156.94           | 23156.94                 |
| UNDERGRND   | 0.000                                 | 0.800                                 | 0.800                                       | 0.00              | 633.20             | 633.20                   |
| BUILDING    | 0.000                                 | 0.080                                 | 0.080                                       | 0.00              | 23790.14           | 23790.14                 |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
 REPORT- LV-F DETAILS OF INTERIOR SURFACES IN THE PROJECT TRUTH OR CONSEQU, N

NUMBER OF INTERIOR SURFACES 24  
 (U-VALUE INCLUDES BOTH AIR FILMS)

| SURFACE NAME | AREA (SQFT) | CONSTRUCTION NAME | SURFACE TYPE | U-VALUE (BTU/HR-SQFT-F) | ADJACENT SPACES       |
|--------------|-------------|-------------------|--------------|-------------------------|-----------------------|
| 147.20       | INTWALL     | DELAYED STANDARD  |              | 0.326                   | SPACE-1 HALLS         |
| 152.00       | INTWALL     | DELAYED STANDARD  |              | 0.326                   | CONFERENCE CONFERENCE |
| 147.20       | INTWALL     | DELAYED STANDARD  |              | 0.326                   | COMPUTERRM COMPUTERRM |
| 152.00       | INTWALL     | DELAYED STANDARD  |              | 0.326                   | HALLS HALLS           |
| 536.40       | INTWALL     | DELAYED STANDARD  |              | 0.326                   | COMPUTERRM COMPUTERRM |
| 365.40       | INTWALL     | DELAYED STANDARD  |              | 0.326                   | HALLS HALLS           |
| 443.70       | INTWALL     | DELAYED STANDARD  |              | 0.326                   | COMPUTERRM COMPUTERRM |
| 164.70       | INTWALL     | DELAYED STANDARD  |              | 0.326                   | CONFERENCE CONFERENCE |
| 171.00       | INTWALL     | DELAYED STANDARD  |              | 0.326                   | COMPUTERRM COMPUTERRM |
| 99.36        | INTWALL     | DELAYED STANDARD  |              | 0.326                   | CONFPLENUM CONFPLENUM |
| 102.60       | INTWALL     | DELAYED STANDARD  |              | 0.326                   | CONFPLENUM CONFPLENUM |
| 99.36        | INTWALL     | DELAYED STANDARD  |              | 0.326                   | HALLPLENUM HALLPLENUM |
| 102.60       | INTWALL     | DELAYED STANDARD  |              | 0.326                   | CONFPLENUM CONFPLENUM |
| 349.60       | CEILING     | DELAYED STANDARD  |              | 0.279                   | CONFPLENUM CONFERENCE |
| 262.24       | INTWALL     | DELAYED STANDARD  |              | 0.326                   | CONFPLENUM HALLPLENUM |
| 178.64       | INTWALL     | DELAYED STANDARD  |              | 0.326                   | CONFPLENUM HALLPLENUM |
| 216.92       | INTWALL     | DELAYED STANDARD  |              | 0.326                   | CONFPLENUM CONFPLENUM |
| 80.52        | INTWALL     | DELAYED STANDARD  |              | 0.326                   | CONFPLENUM CONFPLENUM |
| 83.60        | INTWALL     | DELAYED STANDARD  |              | 0.279                   | CONFPLENUM COMPUTERRM |
| 2938.28      | CEILING     | DELAYED STANDARD  |              | 0.279                   | CONFPLENUM COMPUTERRM |
| 742.98       | CEILING     | DELAYED STANDARD  |              | 0.279                   | HALLPLENUM HALLS      |
| 2000.00      | CEILING     | DELAYED STANDARD  |              | 0.279                   | HALLPLENUM HALLS      |
| 1284.40      | CEILING     | DELAYED STANDARD  |              | 0.279                   | HALLPLENUM HALLS      |
| 2000.00      | CEILING     | DELAYED STANDARD  |              | 0.279                   | HALLPLENUM HALLS      |

EMC ENGINEERS INC, EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1  
DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU, N  
REPORT- LV-G DETAILS OF SCHEDULES OCCURRING IN THE PROJECT

NUMBER OF SCHEDULES 9 ( NON DIMENSIONLESS SCHEDULES ARE GIVEN IN ENGLISH UNITS )

SCHEDULE y\_lights

THROUGH 31 12

FOR DAYS SUN SAT HOL  
HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
0.40 0.40 0.40 0.40 0.40 0.40 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40

FOR DAYS MON TUE WED THU FRI  
HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
0.75 0.75 0.75 0.75 0.75 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

SCHEDULE A\_OCCUP

THROUGH 31 12

FOR DAYS SUN SAT HOL  
HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
0.25 0.25 0.25 0.25 0.25 0.25 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

FOR DAYS MON TUE WED THU FRI  
HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
0.25 0.25 0.25 0.25 0.25 0.25 0.50 1.00 1.00 1.00 0.75 0.75 1.00 1.00 1.00 0.50 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

SCHEDULE Y\_EQUIP

THROUGH 31 12

EMC ENGINEERS INC, EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1  
DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU, N  
REPORT- LV-G DETAILS OF SCHEDULES OCCURRING IN THE PROJECT

FOR DAYS SUN SAT HOL  
HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
0.60 0.60 0.60 0.60 0.60 0.60 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

FOR DAYS MON TUE WED THU FRI  
HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
0.50 0.50 0.50 0.50 0.50 0.50 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SCHEDULE OCCUCONFIRM

THROUGH 31 12

FOR DAYS SUN MON TUE WED THU FRI SAT HOL  
HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SCHEDULE T\_LIGHTS

THROUGH 31 12

FOR DAYS SUN MON TUE WED THU FRI SAT HOL  
HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SCHEDULE TOWEREQUIP

THROUGH 31 12

EMC ENGINEERS INC, EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1  
DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU, N  
REPORT- LV-G DETAILS OF SCHEDULES OCCURRING IN THE PROJECT

FOR DAYS SUN MON TUE WED THU FRI SAT HOL  
HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SCHEDULE equipcomp

THROUGH 31 12

FOR DAYS SUN MON TUE WED THU FRI SAT HOL  
HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SCHEDULE L-hrly\_rps

THROUGH 12 3

FOR DAYS SUN MON TUE WED THU FRI SAT HOL  
HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

THROUGH 13 3

FOR DAYS SUN MON TUE WED THU FRI SAT HOL  
HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

THROUGH 7 9

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU. N  
 REPORT- LV-G DETAILS OF SCHEDULES OCCURRING IN THE PROJECT

FOR DAYS SUN MON TUE WED THU FRI SAT HOL  
 HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

THROUGH 8 9

FOR DAYS SUN MON TUE WED THU FRI SAT HOL  
 HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

THROUGH 31 12

FOR DAYS SUN MON TUE WED THU FRI SAT HOL  
 HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SCHEDULE towerinfil

THROUGH 1 4

FOR DAYS SUN MON TUE WED THU FRI SAT HOL  
 HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
 5.00 5.00 5.00 5.00 5.00 5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

THROUGH 1 11

FOR DAYS SUN MON TUE WED THU FRI SAT HOL  
 HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

THROUGH 31 12

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU. N  
 REPORT- LV-G DETAILS OF SCHEDULES OCCURRING IN THE PROJECT

FOR DAYS SUN MON TUE WED THU FRI SAT HOL  
 HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
 5.00 5.00 5.00 5.00 5.00 5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU. N  
 REPORT- LV-I DETAILS OF CONSTRUCTIONS OCCURRING IN THE PROJECT

| NUMBER OF CONSTRUCTIONS | 10 | DELAYED | 7 | QUICK | 3 | U-VALUE<br>(BTU/HR-SQFT-F) | SURFACE<br>ABSORPTANCE | SURFACE<br>ROUGHNESS<br>INDEX | SURFACE<br>TYPE | NUMBER OF<br>RESPONSE<br>FACTORS |  |
|-------------------------|----|---------|---|-------|---|----------------------------|------------------------|-------------------------------|-----------------|----------------------------------|--|
| CONSTRUCTION NAME       |    | 5       |   | 15    |   | 0                          |                        | 0                             |                 | 0                                |  |
| REGROOF                 |    | 0.054   |   | 0.60  |   | 3                          |                        | 3                             |                 | 5                                |  |
| TOWERWALL               |    | 0.069   |   | 0.65  |   | 3                          |                        | 3                             |                 | 15                               |  |
| FLOOR                   |    | 0.800   |   | 0.70  |   | 3                          |                        | 3                             |                 | 0                                |  |
| TOWERROOF               |    | 0.048   |   | 0.40  |   | 3                          |                        | 3                             |                 | 0                                |  |
| CEILING                 |    | 0.279   |   | 0.70  |   | 3                          |                        | 3                             |                 | 4                                |  |
| TOWCEIL                 |    | 0.045   |   | 0.70  |   | 3                          |                        | 3                             |                 | 5                                |  |
| REGWALL                 |    | 0.067   |   | 0.65  |   | 3                          |                        | 3                             |                 | 19                               |  |
| COMPWALL                |    | 0.067   |   | 0.70  |   | 3                          |                        | 3                             |                 | 19                               |  |
| FLOORCOM                |    | 0.800   |   | 0.70  |   | 3                          |                        | 3                             |                 | 0                                |  |
| INTWALL                 |    | 0.326   |   | 0.70  |   | 3                          |                        | 3                             |                 | 9                                |  |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU. N  
 REPORT- LS-A SPACE PEAK LOADS SUMMARY

| SPACE NAME    | MULTIPLIER | COOLING LOAD<br>(BTU/Hr) | TIME OF<br>PEAK | DRY-<br>BULB  | WET-<br>BULB | HEATING LOAD<br>(BTU/Hr) | TIME OF<br>PEAK | DRY-<br>BULB | WET-<br>BULB |
|---------------|------------|--------------------------|-----------------|---------------|--------------|--------------------------|-----------------|--------------|--------------|
| CONFERENCE    | 1.         | 1.                       | 2.252           | APR 3 12 NOON | 60.F         | 45.F                     | 0.000           | 0.F          | 0.F          |
| HALLS         | 1.         | 1.                       | 37.671          | AUG 1 4 PM    | 97.F         | 65.F                     | -1.752          | JAN 16 2 PM  | 43.F         |
| TOWER_1       | 1.         | 1.                       | 14.370          | JUL 31 7 PM   | 96.F         | 60.F                     | -116.665        | JAN 10 9 PM  | 2.F          |
| TOWER_3       | 1.         | 1.                       | 14.370          | JUL 31 7 PM   | 96.F         | 60.F                     | -116.665        | JAN 10 9 PM  | 4.F          |
| COMPUTERRM    | 1.         | 1.                       | 81.185          | AUG 1 11 PM   | 83.F         | 64.F                     | 0.000           | 0.F          | 0.F          |
| COMPLRNM      | 1.         | 1.                       | 1.359           | JUL 13 3 PM   | 86.F         | 61.F                     | -1.518          | JAN 11 8 AM  | -3.F         |
| COMPRMLN      | 1.         | 1.                       | 17.198          | JUL 13 3 PM   | 86.F         | 61.F                     | -14.123         | JAN 11 8 AM  | -3.F         |
| HALLPLRNM     | 1.         | 1.                       | 25.015          | JUL 13 4 PM   | 87.F         | 61.F                     | -25.730         | JAN 11 8 AM  | -3.F         |
| TOWER_2       | 1.         | 1.                       | 14.370          | JUL 31 7 PM   | 96.F         | 60.F                     | -116.665        | JAN 10 9 PM  | 2.F          |
| SUM           |            | 207.788                  |                 |               |              | -393.119                 |                 |              |              |
| BUILDING PEAK |            | 147.375                  | AUG 1 7 PM      | 94.F          | 65.F         | -349.994                 | JAN 10 9 PM     | 4.F          | 2.F          |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 LDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION CONFERENCE  
 REPORT- LS-B SPACE PEAK LOAD COMPONENTS TRUTH OR CONSEQU, N

SPACE CONFERENCE

| MULTIPLIER           | 1.0            | FLOOR MULTIPLIER  | 1.0                          |
|----------------------|----------------|-------------------|------------------------------|
| FLOOR AREA           | 348 SQFT       | 32 M2             |                              |
| VOLUME               | 2786 CUFT      | 79 M3             |                              |
| COOLING LOAD         |                |                   |                              |
| TIME APR 3 12NOON    |                |                   |                              |
| DRY-BULB TEMP        | 60F            | 16C               |                              |
| WET-BULB TEMP        | 45F            | 7C                |                              |
| HEATING LOAD         |                |                   |                              |
| TIME JAN 16 2PM      |                |                   |                              |
| DRY-BULB TEMP        | 43F            | 6C                |                              |
| WET-BULB TEMP        | 31F            | -1C               |                              |
| SENSIBLE (KBTU/H)    | ( KW )         | SENSIBLE (KBTU/H) | ( KW )                       |
| WALLS                | 0.000          | 0.000             | 0.000                        |
| ROOFS                | 0.000          | 0.000             | 0.000                        |
| GLASS CONDUCTION     | 0.000          | 0.000             | 0.000                        |
| GLASS SOLAR          | 0.000          | 0.000             | 0.000                        |
| DOOR                 | 0.000          | 0.000             | 0.000                        |
| INTERNAL SURFACES    | 0.000          | 0.000             | 0.000                        |
| UNDERGROUND SURFACES | 0.000          | 0.000             | 0.000                        |
| OCCUPANTS TO SPACE   | 0.170          | 0.050             | 0.024                        |
| LIGHT TO SPACE       | 0.851          | 0.249             | 0.000                        |
| EQUIPMENT TO SPACE   | 1.230          | 0.360             | 0.000                        |
| PROCESS TO SPACE     | 0.000          | 0.000             | 0.000                        |
| INFILTRATION         | 0.000          | 0.000             | 0.000                        |
| TOTAL                | 2.252          | 0.659             | 0.082 0.024                  |
| TOTAL LOAD           | 2.334 KBTU/H   | 0.683 KW          | 0.000 KBTU/H 0.000 KW        |
| TOTAL LOAD / AREA    | 6.71BTU/H.SQFT | 21.139 W / M2     | 0.000BTU/H.SQFT 0.000 W / M2 |

- \* NOTE 1) THE ABOVE LOADS EXCLUDE OUTSIDE VENTILATION AIR
- \* ---- LOADS
- \* 2) TIMES GIVEN IN STANDARD TIME FOR THE LOCATION
- \* IN CONSIDERATION

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 LDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION HALLS TRUTH OR CONSEQU, N

SPACE HALLS

| MULTIPLIER           | 1.0            | FLOOR MULTIPLIER  | 1.0                          |
|----------------------|----------------|-------------------|------------------------------|
| FLOOR AREA           | 5286 SQFT      | 491 M2            |                              |
| VOLUME               | 42284 CUFT     | 1197 M3           |                              |
| COOLING LOAD         |                |                   |                              |
| TIME AUG 1 4PM       |                |                   |                              |
| DRY-BULB TEMP        | 97F            | 36C               |                              |
| WET-BULB TEMP        | 65F            | 18C               |                              |
| HEATING LOAD         |                |                   |                              |
| TIME JAN 16 2PM      |                |                   |                              |
| DRY-BULB TEMP        | 43F            | 6C                |                              |
| WET-BULB TEMP        | 31F            | -1C               |                              |
| SENSIBLE (KBTU/H)    | ( KW )         | SENSIBLE (KBTU/H) | ( KW )                       |
| WALLS                | 2.680          | 0.785             | 0.000 0.000                  |
| ROOFS                | 0.000          | 0.000             | 0.000 0.000                  |
| GLASS CONDUCTION     | 0.000          | 0.000             | 0.000 0.000                  |
| GLASS SOLAR          | 0.000          | 0.000             | 0.000 0.000                  |
| DOOR                 | 0.000          | 0.000             | 0.000 0.000                  |
| INTERNAL SURFACES    | 0.000          | 0.000             | 0.000 0.000                  |
| UNDERGROUND SURFACES | -0.048         | -0.014            | 0.000 0.000                  |
| OCCUPANTS TO SPACE   | 0.864          | 0.253             | 0.328 0.096                  |
| LIGHT TO SPACE       | 16.674         | 4.883             | 0.000 0.000                  |
| EQUIPMENT TO SPACE   | 17.500         | 5.125             | 0.000 0.000                  |
| PROCESS TO SPACE     | 0.000          | 0.000             | 0.000 0.000                  |
| INFILTRATION         | 0.000          | 0.000             | 0.000 0.000                  |
| TOTAL                | 37.671         | 11.033            | 0.328 0.096                  |
| TOTAL LOAD           | 37.998 KBTU/H  | 11.129 KW         | -1.752 KBTU/H -0.513 KW      |
| TOTAL LOAD / AREA    | 7.19BTU/H.SQFT | 22.664 W / M2     | 0.332BTU/H.SQFT 1.045 W / M2 |

- \* NOTE 1) THE ABOVE LOADS EXCLUDE OUTSIDE VENTILATION AIR
- \* ---- LOADS
- \* 2) TIMES GIVEN IN STANDARD TIME FOR THE LOCATION
- \* IN CONSIDERATION

EMC ENGINEERS INC. 80227 EZDOE - ELITE SOFTWARE DEVELOPMENT INC  
DENVER, CO GEOSS SITE DOE EVALUATION TOWER\_1  
REPORT- LS-B SPACE PEAK LOAD COMPONENTS TRUTH OR CONSEQU, N

SPACE TOWER\_1

| MULTIPLIER           | 1.0             | FLOOR MULTIPLIER       | 1.0                      |                            |
|----------------------|-----------------|------------------------|--------------------------|----------------------------|
| FLOOR AREA           | 576 SQFT        | 54 M2                  |                          |                            |
| VOLUME               | 14976 CUFT      | 424 M3                 |                          |                            |
| COOLING LOAD         |                 |                        | HEATING LOAD             |                            |
| TIME                 | JUL 31          | 7PM                    | JAN 10 9PM               |                            |
| DRY-BULB TEMP        | 96F             | 36C                    | 4F -16C                  |                            |
| WET-BULB TEMP        | 60F             | 16C                    | 2F -17C                  |                            |
| SENSIBLE (KBTU/H)    | ( KW )          | LATENT (KBTU/H) ( KW ) | SENSIBLE (KBTU/H) ( KW ) |                            |
| WALLS                | 2.592           | 0.759                  | 0.000 0.000              | -8.386 -2.456              |
| ROOFS                | 0.733           | 0.215                  | 0.000 0.000              | -1.845 -0.540              |
| GLASS CONDUCTION     | 0.000           | 0.000                  | 0.000 0.000              | 0.000 0.000                |
| GLASS SOLAR          | 0.000           | 0.000                  | 0.000 0.000              | 0.000 0.000                |
| DOOR                 | 0.000           | 0.000                  | 0.000 0.000              | 0.000 0.000                |
| INTERNAL SURFACES    | 0.000           | 0.000                  | 0.000 0.000              | -1.434 -0.420              |
| UNDERGROUND SURFACES | -0.258          | -0.076                 | 0.000 0.000              | 0.000 0.000                |
| OCCUPANTS TO SPACE   | 0.000           | 0.000                  | 0.000 0.000              | 0.319 0.094                |
| LIGHT TO SPACE       | 0.422           | 0.124                  | 0.000 0.000              | 4.062 1.190                |
| EQUIPMENT TO SPACE   | 3.923           | 1.149                  | 0.000 0.000              | 0.000 0.000                |
| PROCESS TO SPACE     | 0.000           | 0.000                  | 0.000 0.000              | -109.381 -32.035           |
| INFILTRATION         | 6.958           | 2.038                  | 0.000 0.000              | -116.665 -34.168           |
| TOTAL                | 14.370          | 4.208                  | 0.000 0.000              | -116.665 KBTU/H -34.168 KW |
| TOTAL LOAD           | 14.370 KBTU/H   | 4.208 KW               |                          |                            |
| TOTAL LOAD / AREA    | 24.95BTU/H.SQFT | 78.645 W / M2          | 202.543BTU/H.SQFT        | 638.513 W / M2             |

NOTE 1) THE ABOVE LOADS EXCLUDE OUTSIDE VENTILATION AIR  
 2) TIMES GIVEN IN STANDARD TIME FOR THE LOCATION  
 IN CONSIDERATION

EMC ENGINEERS INC. 80227 EZDOE - ELITE SOFTWARE DEVELOPMENT INC  
DENVER, CO GEOSS SITE DOE EVALUATION TOWER\_3  
REPORT- LS-B SPACE PEAK LOAD COMPONENTS TRUTH OR CONSEQU, N

SPACE TOWER\_3

| MULTIPLIER           | 1.0             | FLOOR MULTIPLIER       | 1.0                      |                            |
|----------------------|-----------------|------------------------|--------------------------|----------------------------|
| FLOOR AREA           | 576 SQFT        | 54 M2                  |                          |                            |
| VOLUME               | 14976 CUFT      | 424 M3                 |                          |                            |
| COOLING LOAD         |                 |                        | HEATING LOAD             |                            |
| TIME                 | JUL 31          | 7PM                    | JAN 10 9PM               |                            |
| DRY-BULB TEMP        | 96F             | 36C                    | 4F -16C                  |                            |
| WET-BULB TEMP        | 60F             | 16C                    | 2F -17C                  |                            |
| SENSIBLE (KBTU/H)    | ( KW )          | LATENT (KBTU/H) ( KW ) | SENSIBLE (KBTU/H) ( KW ) |                            |
| WALLS                | 2.592           | 0.759                  | 0.000 0.000              | -8.386 -2.456              |
| ROOFS                | 0.733           | 0.215                  | 0.000 0.000              | -1.845 -0.540              |
| GLASS CONDUCTION     | 0.000           | 0.000                  | 0.000 0.000              | 0.000 0.000                |
| GLASS SOLAR          | 0.000           | 0.000                  | 0.000 0.000              | 0.000 0.000                |
| DOOR                 | 0.000           | 0.000                  | 0.000 0.000              | 0.000 0.000                |
| INTERNAL SURFACES    | 0.000           | 0.000                  | 0.000 0.000              | -1.434 -0.420              |
| UNDERGROUND SURFACES | -0.258          | -0.076                 | 0.000 0.000              | 0.000 0.000                |
| OCCUPANTS TO SPACE   | 0.000           | 0.000                  | 0.000 0.000              | 0.319 0.094                |
| LIGHT TO SPACE       | 0.422           | 0.124                  | 0.000 0.000              | 4.062 1.190                |
| EQUIPMENT TO SPACE   | 3.923           | 1.149                  | 0.000 0.000              | 0.000 0.000                |
| PROCESS TO SPACE     | 0.000           | 0.000                  | 0.000 0.000              | -109.381 -32.035           |
| INFILTRATION         | 6.958           | 2.038                  | 0.000 0.000              | -116.665 -34.168           |
| TOTAL                | 14.370          | 4.208                  | 0.000 0.000              | -116.665 KBTU/H -34.168 KW |
| TOTAL LOAD           | 14.370 KBTU/H   | 4.208 KW               |                          |                            |
| TOTAL LOAD / AREA    | 24.95BTU/H.SQFT | 78.645 W / M2          | 202.543BTU/H.SQFT        | 638.513 W / M2             |

NOTE 1) THE ABOVE LOADS EXCLUDE OUTSIDE VENTILATION AIR  
 2) TIMES GIVEN IN STANDARD TIME FOR THE LOCATION  
 IN CONSIDERATION

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION COMPUTERMM  
 REPORT- LS-B SPACE PEAK LOAD COMPONENTS TRUTH OR CONSEQU, N  
 -----

SPACE COMPUTERRM

| MULTIPLIER           | 1.0             | FLOOR MULTIPLIER | 1.0             | HEATING LOAD            |
|----------------------|-----------------|------------------|-----------------|-------------------------|
| FLOOR AREA           | 4037 SQFT       | 375 M2           |                 |                         |
| VOLUME               | 36337 CUFT      | 1029 M3          |                 |                         |
| COOLING LOAD         |                 |                  |                 |                         |
| TIME                 | AUG 1 11PM      |                  |                 |                         |
| DRY-BULB TEMP        | 83F             | 28C              |                 |                         |
| WET-BULB TEMP        | 64F             | 18C              |                 |                         |
|                      |                 |                  |                 |                         |
| SENSIBLE             | (KBTU/H) ( KW ) | LATENT           | (KBTU/H) ( KW ) | SENSIBLE                |
| WALLS                | 1.043           | 0.306            | 0.000 0.000     | (KBTU/H) ( KW )         |
| ROOFS                | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000             |
| GLASS CONDUCTION     | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000             |
| GLASS SOLAR          | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000             |
| DOOR                 | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000             |
| INTERNAL SURFACES    | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000             |
| UNDERGROUND SURFACES | -0.007          | -0.002           | 0.000 0.000     | 0.000 0.000             |
| OCCUPANTS TO SPACE   | 0.946           | 0.277            | 0.328 0.096     | 0.000 0.000             |
| LIGHT TO SPACE       | 12.887          | 3.774            | 0.000 0.000     | 0.000 0.000             |
| EQUIPMENT TO SPACE   | 66.315          | 19.422           | 0.000 0.000     | 0.000 0.000             |
| PROCESS TO SPACE     | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000             |
| INFILTRATION         | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000             |
| TOTAL                | 81.185          | 23.777           | 0.328 0.096     | 0.000 0.000             |
| TOTAL LOAD           | 81.513 KBTU/H   | 23.873 KW        |                 | 0.000 KW                |
| TOTAL LOAD / AREA    | 20.19BTU/H.SQFT | 63.647 W / M2    |                 | 0.000 BTU/H.SQFT W / M2 |

\* NOTE 1) THE ABOVE LOADS EXCLUDE OUTSIDE VENTILATION AIR  
 \* ---- LOADS  
 \* 2) TIMES GIVEN IN STANDARD TIME FOR THE LOCATION  
 \* IN CONSIDERATION

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION CONFPLENUM TRUTH OR CONSEQU, N  
 REPORT- LS-B SPACE PEAK LOAD COMPONENTS CONFPLENUM  
 -----

SPACE CONFPLENUM

| MULTIPLIER           | 1.0             | FLOOR MULTIPLIER | 1.0             | HEATING LOAD                  |
|----------------------|-----------------|------------------|-----------------|-------------------------------|
| FLOOR AREA           | 348 SQFT        | 32 M2            |                 |                               |
| VOLUME               | 1879 CUFT       | 53 M3            |                 |                               |
| COOLING LOAD         |                 |                  |                 |                               |
| TIME                 | JUL 13 3PM      |                  |                 | JAN 11 8AM                    |
| DRY-BULB TEMP        | 66F             | 30C              |                 | -3F -19C                      |
| WET-BULB TEMP        | 61F             | 16C              |                 | -4F -20C                      |
|                      |                 |                  |                 |                               |
| SENSIBLE             | (KBTU/H) ( KW ) | LATENT           | (KBTU/H) ( KW ) | SENSIBLE                      |
| WALLS                | 0.000           | 0.000            | 0.000 0.000     | (KBTU/H) ( KW )               |
| ROOFS                | 1.328           | 0.389            | 0.000 0.000     | 0.000 -1.521 -0.445           |
| GLASS CONDUCTION     | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000                   |
| GLASS SOLAR          | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000                   |
| DOOR                 | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000                   |
| INTERNAL SURFACES    | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000                   |
| UNDERGROUND SURFACES | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000                   |
| OCCUPANTS TO SPACE   | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000                   |
| LIGHT TO SPACE       | 0.030           | 0.009            | 0.000 0.000     | 0.003 0.001                   |
| EQUIPMENT TO SPACE   | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000                   |
| PROCESS TO SPACE     | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000                   |
| INFILTRATION         | 0.000           | 0.000            | 0.000 0.000     | 0.000 0.000                   |
| TOTAL                | 1.359           | 0.398            | 0.000 0.000     | -1.518 -0.445                 |
| TOTAL LOAD           | 1.359 KBTU/H    | 0.398 KW         |                 | -0.445 KW                     |
| TOTAL LOAD / AREA    | 3.90BTU/H.SQFT  | 12.309 W / M2    |                 | 4.363BTU/H.SQFT 13.754 W / M2 |

\* NOTE 1) THE ABOVE LOADS EXCLUDE OUTSIDE VENTILATION AIR  
 \* ---- LOADS  
 \* 2) TIMES GIVEN IN STANDARD TIME FOR THE LOCATION  
 \* IN CONSIDERATION





EMC ENGINEERS INC. EZZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 LDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU, N  
 REPORT- LS-D BUILDING MONTHLY LOADS SUMMARY

| MONTH            | COOLING               |             |           |           |                               |                       | HEATING     |           |           |                               |                     |                        | ELEC |  |  |
|------------------|-----------------------|-------------|-----------|-----------|-------------------------------|-----------------------|-------------|-----------|-----------|-------------------------------|---------------------|------------------------|------|--|--|
|                  | COOLING ENERGY (MBTU) | TIME OF MAX | DRY- TEMP | WET- TEMP | MAXIMUM COOLING LOAD (BTU/Hr) | HEATING ENERGY (MBTU) | TIME OF MAX | DRY- TEMP | WET- TEMP | MAXIMUM HEATING LOAD (BTU/Hr) | TRICAL ENERGY (KWH) | MAXIMUM ELEC LOAD (KW) |      |  |  |
| JAN              | 69.37014              | 21 12       | 56.F      | 38.F      | 107.628                       | -35.625               | 10 21       | 4.F       | 2.F       | -349.994                      | 37827.              | 59.443                 |      |  |  |
| FEB              | 63.04140              | 18 12       | 62.F      | 45.F      | 107.796                       | -36.330               | 3 22        | 31.F      | 25.F      | -292.306                      | 34170.              | 59.443                 |      |  |  |
| MAR              | 71.42878              | 9 15        | 78.F      | 56.F      | 116.264                       | -34.220               | 2 25        | 30.F      | 26.F      | -255.733                      | 38070.              | 59.443                 |      |  |  |
| APR              | 71.72991              | 22 16       | 89.F      | 53.F      | 122.174                       | -3.298                | 1 23        | 60.F      | 43.F      | -25.152                       | 36689.              | 59.443                 |      |  |  |
| MAY              | 78.91193              | 9 18        | 86.F      | 52.F      | 130.740                       | -0.771                | 2 3         | 37.F      | 24.F      | -18.115                       | 37827.              | 59.443                 |      |  |  |
| JUN              | 86.18958              | 23 18       | 84.F      | 58.F      | 147.152                       | -0.002                | 1 10        | 83.F      | 52.F      | -0.540                        | 36811.              | 59.443                 |      |  |  |
| JUL              | 90.58653              | 28 18       | 91.F      | 65.F      | 143.785                       | 0.000                 |             |           |           | 0.000                         | 37705.              | 59.443                 |      |  |  |
| AUG              | 91.05647              | 1 18        | 94.F      | 65.F      | 147.375                       | 0.000                 |             |           |           | 0.000                         | 38070.              | 59.443                 |      |  |  |
| SEP              | 85.07023              | 1 18        | 85.F      | 61.F      | 137.977                       | 0.000                 |             |           |           | 0.000                         | 36689.              | 59.443                 |      |  |  |
| OCT              | 77.88515              | 6 16        | 80.F      | 51.F      | 126.112                       | -2.154                | 15 24       | 43.F      | 39.F      | -36.774                       | 37705.              | 59.443                 |      |  |  |
| NOV              | 70.93912              | 10 15       | 68.F      | 47.F      | 114.183                       | -15.763               | 19 5        | 34.F      | 28.F      | -127.152                      | 36567.              | 59.443                 |      |  |  |
| DEC              | 70.90217              | 9 12        | 52.F      | 40.F      | 108.745                       | -29.420               | 30 23       | 29.F      | 24.F      | -197.853                      | 37827.              | 59.443                 |      |  |  |
| TOTAL            | 927.111               |             |           |           |                               | -157.582              |             |           |           | -349.994                      | 445954.             | 59.443                 |      |  |  |
| MAX              |                       |             |           |           |                               | 147.375               |             |           |           |                               |                     |                        |      |  |  |
| HOURLY DATA FILE | 1FROM PROG            | 1           |           |           |                               |                       |             |           |           |                               |                     |                        |      |  |  |

EMC ENGINEERS INC. EZZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 LDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU, N  
 glob\_hrly - HOURLY-REPORT

MMDDHH GLOBAL GLOBAL

|                        | DRY BULB | WIND SPEED |
|------------------------|----------|------------|
| R                      | ABS TEMP | KNOTS      |
| (24)                   | (17)     |            |
| 313 1                  | 487.0    | 10.0       |
| 313 2                  | 487.0    | 9.0        |
| 313 3                  | 485.0    | 10.0       |
| 313 4                  | 484.0    | 9.0        |
| 313 5                  | 484.0    | 13.0       |
| 313 6                  | 486.0    | 13.0       |
| 313 7                  | 487.0    | 7.0        |
| 313 8                  | 490.0    | 9.0        |
| 313 9                  | 493.0    | 12.0       |
| 313 10                 | 497.0    | 9.0        |
| 313 11                 | 502.0    | 9.0        |
| 313 12                 | 503.0    | 7.0        |
| 313 13                 | 506.0    | 9.0        |
| 313 14                 | 507.0    | 9.0        |
| 313 15                 | 507.0    | 9.0        |
| 313 16                 | 507.0    | 9.0        |
| 313 17                 | 506.0    | 4.0        |
| 313 18                 | 502.0    | 4.0        |
| 313 19                 | 499.0    | 1.0        |
| 313 20                 | 497.0    | 9.0        |
| 313 21                 | 495.0    | 4.0        |
| 313 22                 | 493.0    | 3.0        |
| 313 23                 | 492.0    | 5.0        |
| 313 24                 | 490.0    | 0.0        |
| DAILY SUMMARY (MAR 13) |          |            |
| MN                     | 484.0    | 0.0        |
| MX                     | 507.0    | 13.0       |
| SM                     | 11886.0  | 185.0      |
| AV                     | 495.3    | 7.7        |
| MONTHLY SUMMARY (MAR)  |          |            |
| MN                     | 484.0    | 0.0        |
| MX                     | 507.0    | 13.0       |
| SM                     | 11886.0  | 185.0      |
| AV                     | 495.3    | 7.7        |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 LDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU, N  
 glob\_hrly = HOURLY-REPORT

GLOBAL GLOBAL

DRY BULB WIND  
ABS TEMP SPEED  
R KNOTS

----(24)----(17)  
 9 8 1 531.0 8.0  
 9 8 2 530.0 8.0  
 9 8 3 529.0 5.0  
 9 8 4 526.0 0.0  
 9 8 5 524.0 5.0  
 9 8 6 524.0 0.0  
 9 8 7 528.0 0.0  
 9 8 8 533.0 4.0  
 9 8 9 537.0 0.0  
 9 8 10 541.0 0.0  
 9 8 11 542.0 0.0  
 9 8 12 547.0 0.0  
 9 8 13 546.0 8.0  
 9 8 14 549.0 6.0  
 9 8 15 547.0 6.0  
 9 8 16 547.0 0.0  
 9 8 17 542.0 18.0  
 9 8 18 537.0 10.0  
 9 8 19 537.0 10.0  
 9 8 20 536.0 5.0  
 9 8 21 534.0 5.0  
 9 8 22 532.0 4.0  
 9 8 23 531.0 4.0  
 9 8 24 530.0 4.0

DAILY SUMMARY (SEP 8)

|    |         |       |
|----|---------|-------|
| MN | 524.0   | 0.0   |
| MX | 549.0   | 18.0  |
| SM | 12860.0 | 110.0 |
| AV | 535.8   | 4.6   |

MONTHLY SUMMARY (SEP)

|    |         |       |
|----|---------|-------|
| MN | 524.0   | 0.0   |
| MX | 549.0   | 18.0  |
| SM | 12860.0 | 110.0 |
| AV | 535.8   | 4.6   |

YEARLY SUMMARY

|    |         |       |
|----|---------|-------|
| MN | 484.0   | 0.0   |
| MX | 549.0   | 18.0  |
| SM | 24746.0 | 295.0 |
| AV | 515.5   | 6.1   |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 LDL RUN 1  
 dup\_glob\_b = HOURLY-REPORT TRUTH OR CONSEQU, N

MMDDHH GLOBAL GLOBAL

DRY BULB WIND  
ABS TEMP SPEED  
R KNOTS

----(24)----(17)  
 313 1 487.0 10.0  
 313 2 487.0 9.0  
 313 3 485.0 10.0  
 313 4 484.0 9.0  
 313 5 484.0 13.0  
 313 6 486.0 13.0  
 313 7 487.0 7.0  
 313 8 490.0 9.0  
 313 9 492.0 12.0  
 313 10 497.0 9.0  
 313 11 502.0 9.0  
 313 12 503.0 7.0  
 313 13 506.0 9.0  
 313 14 507.0 9.0  
 313 15 507.0 9.0  
 313 16 507.0 9.0  
 313 17 506.0 4.0  
 313 18 502.0 4.0  
 313 19 499.0 3.0  
 313 20 497.0 9.0  
 313 21 495.0 4.0  
 313 22 493.0 3.0  
 313 23 492.0 5.0  
 313 24 490.0 0.0

DAILY SUMMARY (MAR 13)

|    |         |       |
|----|---------|-------|
| MN | 484.0   | 0.0   |
| MX | 507.0   | 13.0  |
| SM | 11886.0 | 185.0 |
| AV | 495.3   | 7.7   |

MONTHLY SUMMARY (MAR)

|    |         |       |
|----|---------|-------|
| MN | 484.0   | 0.0   |
| MX | 507.0   | 13.0  |
| SM | 11886.0 | 185.0 |
| AV | 495.3   | 7.7   |

EMC ENGINEERS INC. DOE-2.1D 8/7/1995 15: 8:11 LDL RUN 1  
 DENVER, CO 80227 EZDOE - ELITE SOFTWARE DEVELOPMENT INC  
 dup\_glob\_b - HOURLY-REPORT GEODSS SITE DOE EVALUATION  
 TRUTH OR CONSEQU, N

GLOBAL GLOBAL

DRY BULB WIND  
ABS TEMP SPEED  
R KNOTS

|        | (24)  | (17) |
|--------|-------|------|
| 9 8 1  | 531.0 | 8.0  |
| 9 8 2  | 530.0 | 6.0  |
| 9 8 3  | 529.0 | 5.0  |
| 9 8 4  | 526.0 | 0.0  |
| 9 8 5  | 524.0 | 5.0  |
| 9 8 6  | 524.0 | 0.0  |
| 9 8 7  | 528.0 | 0.0  |
| 9 8 8  | 533.0 | 4.0  |
| 9 8 9  | 537.0 | 0.0  |
| 9 8 10 | 541.0 | 0.0  |
| 9 8 11 | 542.0 | 0.0  |
| 9 8 12 | 547.0 | 0.0  |
| 9 8 13 | 546.0 | 8.0  |
| 9 8 14 | 549.0 | 6.0  |
| 9 8 15 | 547.0 | 6.0  |
| 9 8 16 | 547.0 | 0.0  |
| 9 8 17 | 542.0 | 18.0 |
| 9 8 18 | 537.0 | 10.0 |
| 9 8 19 | 537.0 | 10.0 |
| 9 8 20 | 536.0 | 5.0  |
| 9 8 21 | 534.0 | 5.0  |
| 9 8 22 | 532.0 | 4.0  |
| 9 8 23 | 531.0 | 4.0  |
| 9 8 24 | 530.0 | 4.0  |

DAILY SUMMARY (SEP 8)

|    |         |       |
|----|---------|-------|
| MN | 524.0   | 0.0   |
| MX | 549.0   | 18.0  |
| SM | 12860.0 | 110.0 |
| AV | 535.8   | 4.6   |

MONTHLY SUMMARY (SEP)

|    |         |       |
|----|---------|-------|
| MN | 524.0   | 0.0   |
| MX | 549.0   | 18.0  |
| SM | 12860.0 | 110.0 |
| AV | 535.8   | 4.6   |

YEARLY SUMMARY

|    |         |       |
|----|---------|-------|
| MN | 484.0   | 0.0   |
| MX | 549.0   | 18.0  |
| SM | 24746.0 | 295.0 |
| AV | 515.5   | 6.1   |

MESSAGE LIST FROM SYSTEMS PROGRAM

\*\*\*WARNING\*\*\* IN 1TOWER THE RETURN HUMIDITY FOR A COIL EXIT T = 53.7 IS 0.0090  
 BUT YOUR SETPOINT IS 0.0009 WHICH MAY NOT BE HELD.  
 \*\*\*WARNING\*\*\* SYSTEM 1TOWER MAY HAVE INADEQUATE COOLING CAPABILITY  
 (CHECK COOLING-CAPACITY AND MIN-SUPPLY-T FOR CONSISTENCY)  
 \*\*\*WARNING\*\*\* SYSTEM CRUIT HAS ZERO OUTSIDE AIR FOR DESIGN CALCULATION  
 \*\*\*WARNING\*\*\* SYSTEM 2TOWER THE RETURN HUMIDITY FOR A COIL EXIT T = 53.7 IS 0.0090  
 BUT YOUR SETPOINT IS 0.0009 WHICH MAY NOT BE HELD.  
 \*\*\*WARNING\*\*\* SYSTEM 2TOWER MAY HAVE INADEQUATE COOLING CAPABILITY  
 (CHECK COOLING-CAPACITY AND MIN-SUPPLY-T FOR CONSISTENCY)  
 \*\*\*WARNING\*\*\* IN 3TOWER THE RETURN HUMIDITY FOR A COIL EXIT T = 53.7 IS 0.0090  
 BUT YOUR SETPOINT IS 0.0009 WHICH MAY NOT BE HELD.  
 \*\*\*WARNING\*\*\* SYSTEM 3TOWER MAY HAVE INADEQUATE COOLING CAPABILITY  
 (CHECK COOLING-CAPACITY AND MIN-SUPPLY-T FOR CONSISTENCY)  
 \*\*\*WARNING\*\*\* SYSTEM REGAHU MAY HAVE INADEQUATE COOLING CAPABILITY  
 (CHECK COOLING-CAPACITY AND MIN-SUPPLY-T FOR CONSISTENCY)  
 \*\*\*WARNING\*\*\* SYSTEM CONFRAHU HAS ZERO OUTSIDE AIR FOR DESIGN CALCULATION  
 \*\*\*WARNING\*\*\* SYSTEM CONFRAHU MAY HAVE INADEQUATE COOLING CAPABILITY  
 (CHECK COOLING-CAPACITY AND MIN-SUPPLY-T FOR CONSISTENCY)

EMC ENGINEERS INC. DOE-2.1D 8/7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 EZDOE - ELITE SOFTWARE DEVELOPMENT INC  
 REPORT- SV-A SYSTEM DESIGN PARAMETERS GEODSS SITE DOE EVALUATION 1TOWER  
 TRUTH OR CONSEQU, N

| SYSTEM NAME | ALTITUDE MULTIPLIER |                    | RETURN FAN       | ELEC (KWP)         | DELTA-T (F)               | OUTSIDE AIR               | COOLING CAPACITY (BTU/HR) | SENSIBLE (SHR)      | HEATING CAPACITY (BTU/HR)       | COOLING EIR (BTU/BTU) | HEATING EIR (BTU/BTU) |
|-------------|---------------------|--------------------|------------------|--------------------|---------------------------|---------------------------|---------------------------|---------------------|---------------------------------|-----------------------|-----------------------|
| 1TOWER      | 1.200               |                    | FAN (CFM)        | ELEC (KWP)         | DELTA-T (F)               | OUTSIDE AIR               | COOLING CAPACITY (BTU/HR) | SENSIBLE (SHR)      | HEATING CAPACITY (BTU/HR)       | COOLING EIR (BTU/BTU) | HEATING EIR (BTU/BTU) |
| SUPPLY FAN  | ELEC (KWP)          | DELTA-T (F)        | RETURN FAN (CFM) | ELEC (KWP)         | DELTA-T (F)               | OUTSIDE AIR               | COOLING CAPACITY (BTU/HR) | SENSIBLE (SHR)      | HEATING CAPACITY (BTU/HR)       | COOLING EIR (BTU/BTU) | HEATING EIR (BTU/BTU) |
| 2400.       | 0.815               | 1.3                | 0.               | 0.000              | 0.0                       | 1.000                     | 40.000                    | 1.000               | -166.707                        | 0.00                  | 0.00                  |
| ZONE NAME   | SUPPLY FLOW 2400.   | EXHAUST FLOW 2400. | FAN (KWP)        | MINIMUM FLOW 2400. | OUTSIDE AIR FLOW (BTU/HR) | COOLING CAPACITY (BTU/HR) | EXTRACTION RATE 0.00      | SENSIBLE (SHR) 0.00 | HEATING CAPACITY (BTU/HR) -0.33 | ADDITION RATE -168.48 | MULTIPLIER 1.0        |
| TOWER_1     |                     |                    |                  |                    |                           |                           |                           |                     |                                 |                       |                       |

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8 / 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION CRUITN  
 REPORT- SV-A SYSTEM DESIGN PARAMETERS TRUTH OR CONSEQU, N  
 -----

| SYSTEM NAME      | ALTITUDE MULTIPLIER |                   |                   |                    |                           |                                  |                                |                                  |                              |                              |               |            |  |
|------------------|---------------------|-------------------|-------------------|--------------------|---------------------------|----------------------------------|--------------------------------|----------------------------------|------------------------------|------------------------------|---------------|------------|--|
| <b>CRUITN</b>    | <b>1.200</b>        | <b>RETURN FAN</b> | <b>ELEC (CFM)</b> | <b>DELTA-T (F)</b> | <b>OUTSIDE AIR RATIO</b>  | <b>COOLING CAPACITY (BTU/HR)</b> | <b>SENSIBLE CAPACITY (SHR)</b> | <b>HEATING CAPACITY (BTU/HR)</b> | <b>COOLING EIR (BTU/BTU)</b> | <b>HEATING EIR (BTU/BTU)</b> |               |            |  |
| SUPPLY FAN (CFM) | 43200.              | ELEC (KW)         | 8.803             | 0.8                | 43200.                    | 0.000                            | 0.0                            | 0.000                            | 978.600                      | 0.857                        | -345.300      | 0.00       |  |
| ZONE NAME        | SUPPLY FLOW         | EXHAUST FLOW      | FAN (KW)          | MINIMUM FLOW RATIO | OUTSIDE AIR FLOW (BTU/HR) | COOLING CAPACITY (BTU/HR)        | SENSIBLE CAPACITY (SHR)        | EXTRACTION RATE                  | HEATING CAPACITY (BTU/HR)    | HEATING RATE (BTU/Hr)        | ADDITION RATE | MULTIPLIER |  |
| COMPUTERRM       | 43200.              | 0.                | 0.000             | 1.000              | 0.                        | 0.00                             | 0.00                           | 0.00                             | 387.05                       | -2529.79                     | -155.68       | 1.0        |  |
| COMPRMLN         | 0.                  | 0.                | 0.000             | 0.000              | 0.                        | 0.00                             | 0.00                           | 0.00                             | 0.00                         | 0.00                         | 0.00          | 1.0        |  |

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8 / 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION 2TOWER  
 REPORT- SV-A SYSTEM DESIGN PARAMETERS TRUTH OR CONSEQU, N  
 -----

| SYSTEM NAME      | ALTITUDE MULTIPLIER |                   |                   |                    |                           |                                  |                                |                                  |                              |                              |               |            |  |
|------------------|---------------------|-------------------|-------------------|--------------------|---------------------------|----------------------------------|--------------------------------|----------------------------------|------------------------------|------------------------------|---------------|------------|--|
| <b>2TOWER</b>    | <b>1.200</b>        | <b>RETURN FAN</b> | <b>ELEC (CFM)</b> | <b>DELTA-T (F)</b> | <b>OUTSIDE AIR RATIO</b>  | <b>COOLING CAPACITY (BTU/HR)</b> | <b>SENSIBLE CAPACITY (SHR)</b> | <b>HEATING CAPACITY (BTU/HR)</b> | <b>COOLING EIR (BTU/BTU)</b> | <b>HEATING EIR (BTU/BTU)</b> |               |            |  |
| SUPPLY FAN (CFM) | 2400.               | ELEC (KW)         | 0.815             | 1.3                | 0.                        | 0.000                            | 0.0                            | 1.000                            | 40.000                       | 1.000                        | -166.707      | 0.00       |  |
| ZONE NAME        | SUPPLY FLOW         | EXHAUST FLOW      | FAN (KW)          | MINIMUM FLOW RATIO | OUTSIDE AIR FLOW (BTU/HR) | COOLING CAPACITY (BTU/HR)        | SENSIBLE CAPACITY (SHR)        | EXTRACTION RATE                  | HEATING CAPACITY (BTU/HR)    | HEATING RATE (BTU/Hr)        | ADDITION RATE | MULTIPLIER |  |
| TOWER_2          | 2400.               | 2400.             | 0.000             | 1.000              | 2400.                     | 0.00                             | 0.00                           | 0.00                             | -0.33                        | -168.48                      | -134.78       | 1.0        |  |

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8 / 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION 3TOWER  
 REPORT- SV-A SYSTEM DESIGN PARAMETERS TRUTH OR CONSEQU, N  
 -----

| SYSTEM NAME      | ALTITUDE MULTIPLIER |                   |                   |                    |                           |                                  |                                |                                  |                              |                              |               |            |  |
|------------------|---------------------|-------------------|-------------------|--------------------|---------------------------|----------------------------------|--------------------------------|----------------------------------|------------------------------|------------------------------|---------------|------------|--|
| <b>3TOWER</b>    | <b>1.200</b>        | <b>RETURN FAN</b> | <b>ELEC (CFM)</b> | <b>DELTA-T (F)</b> | <b>OUTSIDE AIR RATIO</b>  | <b>COOLING CAPACITY (BTU/HR)</b> | <b>SENSIBLE CAPACITY (SHR)</b> | <b>HEATING CAPACITY (BTU/HR)</b> | <b>COOLING EIR (BTU/BTU)</b> | <b>HEATING EIR (BTU/BTU)</b> |               |            |  |
| SUPPLY FAN (CFM) | 2400.               | ELEC (KW)         | 0.815             | 1.3                | 0.                        | 0.000                            | 0.0                            | 1.000                            | 40.000                       | 1.000                        | -166.707      | 0.00       |  |
| ZONE NAME        | SUPPLY FLOW         | EXHAUST FLOW      | FAN (KW)          | MINIMUM FLOW RATIO | OUTSIDE AIR FLOW (BTU/HR) | COOLING CAPACITY (BTU/HR)        | SENSIBLE CAPACITY (SHR)        | EXTRACTION RATE                  | HEATING CAPACITY (BTU/HR)    | HEATING RATE (BTU/Hr)        | ADDITION RATE | MULTIPLIER |  |
| TOWER_3          | 2400.               | 2400.             | 0.000             | 1.000              | 2400.                     | 0.00                             | 0.00                           | 0.00                             | -0.33                        | -168.48                      | -134.78       | 1.0        |  |

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8 / 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION REGAHU  
 REPORT- SV-A SYSTEM DESIGN PARAMETERS TRUTH OR CONSEQU, N  
 -----

| SYSTEM NAME      | ALTITUDE MULTIPLIER |                   |                   |                    |                           |                                  |                                |                                  |                              |                              |               |            |  |
|------------------|---------------------|-------------------|-------------------|--------------------|---------------------------|----------------------------------|--------------------------------|----------------------------------|------------------------------|------------------------------|---------------|------------|--|
| <b>REGAHU</b>    | <b>1.200</b>        | <b>RETURN FAN</b> | <b>ELEC (CFM)</b> | <b>DELTA-T (F)</b> | <b>OUTSIDE AIR RATIO</b>  | <b>COOLING CAPACITY (BTU/HR)</b> | <b>SENSIBLE CAPACITY (SHR)</b> | <b>HEATING CAPACITY (BTU/HR)</b> | <b>COOLING EIR (BTU/BTU)</b> | <b>HEATING EIR (BTU/BTU)</b> |               |            |  |
| SUPPLY FAN (CFM) | 5724.               | ELEC (KW)         | 2.333             | 1.5                | 4228.                     | 0.000                            | 0.0                            | 0.261                            | 113.658                      | 0.899                        | -76.817       | 0.00       |  |
| ZONE NAME        | SUPPLY FLOW         | EXHAUST FLOW      | FAN (KW)          | MINIMUM FLOW RATIO | OUTSIDE AIR FLOW (BTU/HR) | COOLING CAPACITY (BTU/HR)        | SENSIBLE CAPACITY (SHR)        | EXTRACTION RATE                  | HEATING CAPACITY (BTU/HR)    | HEATING RATE (BTU/Hr)        | ADDITION RATE | MULTIPLIER |  |
| HALLS            | 5724.               | 1496.             | 0.000             | 1.000              | 1496.                     | 0.00                             | 0.00                           | 0.00                             | 49.21                        | -346.17                      | -276.94       | 1.0        |  |
| HALLPLENUM       | 0.                  | 0.                | 0.000             | 0.000              | 0.                        | 0.00                             | 0.00                           | 0.00                             | 0.00                         | 0.00                         | 0.00          | 1.0        |  |

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8 / 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION CONFRAHU  
 REPORT- SV-A SYSTEM DESIGN PARAMETERS TRUTH OR CONSEQU, N  
 -----

| SYSTEM NAME      | ALTITUDE MULTIPLIER |                   |                   |                    |                           |                                  |                                |                                  |                              |                              |               |            |  |
|------------------|---------------------|-------------------|-------------------|--------------------|---------------------------|----------------------------------|--------------------------------|----------------------------------|------------------------------|------------------------------|---------------|------------|--|
| <b>CONFRAHU</b>  | <b>1.200</b>        | <b>RETURN FAN</b> | <b>ELEC (CFM)</b> | <b>DELTA-T (F)</b> | <b>OUTSIDE AIR RATIO</b>  | <b>COOLING CAPACITY (BTU/HR)</b> | <b>SENSIBLE CAPACITY (SHR)</b> | <b>HEATING CAPACITY (BTU/HR)</b> | <b>COOLING EIR (BTU/BTU)</b> | <b>HEATING EIR (BTU/BTU)</b> |               |            |  |
| SUPPLY FAN (CFM) | 960.                | ELEC (KW)         | 0.248             | 2.0                | 960.                      | 0.000                            | 0.0                            | 0.000                            | 10.000                       | 0.800                        | 0.000         | 0.00       |  |
| ZONE NAME        | SUPPLY FLOW         | EXHAUST FLOW      | FAN (KW)          | MINIMUM FLOW RATIO | OUTSIDE AIR FLOW (BTU/HR) | COOLING CAPACITY (BTU/HR)        | SENSIBLE CAPACITY (SHR)        | EXTRACTION RATE                  | HEATING CAPACITY (BTU/HR)    | HEATING RATE (BTU/Hr)        | ADDITION RATE | MULTIPLIER |  |
| CONFERENCE       | 960.                | 0.                | 0.000             | 1.000              | 0.                        | 0.00                             | 0.00                           | 0.00                             | 4.69                         | -67.39                       | -2.07         | 1.0        |  |
| CONFPLENUM       | 0.                  | 0.                | 0.000             | 0.000              | 0.                        | 0.00                             | 0.00                           | 0.00                             | 0.00                         | 0.00                         | 0.00          | 1.0        |  |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION 1TOWER TRUTH OR CONSEQU, N  
 REPORT- SS-A SYSTEM MONTHLY LOADS SUMMARY FOR

| MONTH | COOLING                     |                      |              |              |      |                                        | HEATING                     |                      |              |              |      |                                        | ELEC-                     |  |       | MAXIMUM<br>LOAD<br>(kW) |
|-------|-----------------------------|----------------------|--------------|--------------|------|----------------------------------------|-----------------------------|----------------------|--------------|--------------|------|----------------------------------------|---------------------------|--|-------|-------------------------|
|       | COOLING<br>ENERGY<br>(MBTU) | TIME<br>OF MAX<br>DY | DRY-<br>TEMP | WET-<br>BULB | BULB | MAXIMUM<br>COOLING<br>LOAD<br>(BTU/Hr) | HEATING<br>ENERGY<br>(MBTU) | TIME<br>OF MAX<br>DY | DRY-<br>TEMP | WET-<br>BULB | BULB | MAXIMUM<br>HEATING<br>LOAD<br>(BTU/Hr) | TRICAL<br>ENERGY<br>(kWh) |  |       |                         |
| JAN   | 0.00000                     |                      |              |              |      | 0.000                                  | 0.000                       |                      |              |              |      | 0.000                                  | 2291.                     |  | 5.616 |                         |
| FEB   | 0.00000                     |                      |              |              |      | 0.000                                  | 0.000                       |                      |              |              |      | 0.000                                  | 2069.                     |  | 5.616 |                         |
| MAR   | 0.00000                     |                      |              |              |      | 0.000                                  | 0.000                       |                      |              |              |      | 0.000                                  | 2291.                     |  | 5.616 |                         |
| APR   | 8.67692                     | 22                   | 15           | 91           | F    | 54                                     | F                           | 46.677               |              |              |      | 0.000                                  | 2784.                     |  | 6.433 |                         |
| MAY   | 14.27732                    | 9                    | 18           | 90           | F    | 53                                     | F                           | 45.304               |              |              |      | 0.000                                  | 2897.                     |  | 6.433 |                         |
| JUN   | 22.71675                    | 23                   | 15           | 98           | F    | 63                                     | F                           | 57.992               |              |              |      | 0.000                                  | 2804.                     |  | 6.433 |                         |
| JUL   | 24.99347                    | 1                    | 18           | 100          | F    | 60                                     | F                           | 62.778               |              |              |      | 0.000                                  | 2897.                     |  | 6.433 |                         |
| AUG   | 23.42665                    | 22                   | 18           | 73           | F    | 67                                     | F                           | 53.562               |              |              |      | 0.000                                  | 2897.                     |  | 6.433 |                         |
| SEP   | 18.79902                    | 13                   | 16           | 90           | F    | 60                                     | F                           | 45.225               |              |              |      | 0.000                                  | 2804.                     |  | 6.433 |                         |
| OCT   | 8.20284                     | 7                    | 16           | 85           | F    | 57                                     | F                           | 38.099               |              |              |      | 0.000                                  | 2897.                     |  | 6.433 |                         |
| NOV   | 0.23611                     | 1                    | 15           | 73           | F    | 48                                     | F                           | 26.300               |              |              |      | 0.000                                  | 2237.                     |  | 6.433 |                         |
| DEC   | 0.00000                     |                      |              |              |      | 0.000                                  |                             | 0.000                |              |              |      | 0.000                                  | 2291.                     |  | 5.616 |                         |
| TOTAL | 121.329                     |                      |              |              |      | 62.778                                 |                             | 0.000                |              |              |      | 0.000                                  | 31159.                    |  | 6.433 |                         |
| MAX   |                             |                      |              |              |      |                                        |                             |                      |              |              |      |                                        |                           |  |       |                         |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION 1TOWER TRUTH OR CONSEQU, N  
 REPORT- SS-C SYSTEM MONTHLY LOAD HOURS FOR

| MONTH  | NUMBER OF HOURS          |                          |                                          |                   |                            |                            |                  |                              |                           |                                      |                                                   |                                                | --COINCIDENT LOADS-- |  |  |
|--------|--------------------------|--------------------------|------------------------------------------|-------------------|----------------------------|----------------------------|------------------|------------------------------|---------------------------|--------------------------------------|---------------------------------------------------|------------------------------------------------|----------------------|--|--|
|        | HOURS<br>COOLING<br>LOAD | HOURS<br>HEATING<br>LOAD | HOURS<br>COINCIDENT<br>COOL-HEAT<br>LOAD | HOURS<br>FLOATING | HOURS<br>HEATING<br>AVAIL. | HOURS<br>COOLING<br>AVAIL. | HOURS<br>FANS ON | HOURS<br>FANS ON<br>CYCLE ON | HOURS<br>NIGHT<br>VENTING | HOURS<br>FLOATING<br>WHEN<br>FANS ON | HEATING<br>LOAD AT<br>COOLING<br>PEAK<br>(BTU/Hr) | ELECTRIC<br>LOAD AT<br>COOLING<br>PEAK<br>(kW) |                      |  |  |
| JAN    | 0                        | 0                        | 0                                        | 744               | 0                          | 0                          | 0                | 0                            | 0                         | 0                                    | 0.000                                             | 4.388                                          |                      |  |  |
| FEB    | 0                        | 0                        | 0                                        | 672               | 0                          | 0                          | 0                | 0                            | 0                         | 0                                    | 0.000                                             | 4.388                                          |                      |  |  |
| MAR    | 0                        | 0                        | 0                                        | 744               | 0                          | 0                          | 0                | 0                            | 0                         | 0                                    | 0.000                                             | 5.203                                          |                      |  |  |
| APR    | 498                      | 0                        | 0                                        | 222               | 0                          | 686                        | 696              | 0                            | 0                         | 198                                  | 0.000                                             | 5.203                                          |                      |  |  |
| MAY    | 621                      | 0                        | 0                                        | 123               | 0                          | 667                        | 744              | 0                            | 0                         | 123                                  | 0.000                                             | 5.203                                          |                      |  |  |
| JUN    | 713                      | 0                        | 0                                        | 7                 | 0                          | 715                        | 720              | 0                            | 0                         | 7                                    | 0.000                                             | 5.203                                          |                      |  |  |
| JUL    | 744                      | 0                        | 0                                        | 0                 | 0                          | 744                        | 744              | 0                            | 0                         | 0                                    | 0.000                                             | 5.203                                          |                      |  |  |
| ADG    | 744                      | 0                        | 0                                        | 0                 | 0                          | 744                        | 744              | 0                            | 0                         | 0                                    | 0.000                                             | 5.203                                          |                      |  |  |
| SEP    | 714                      | 0                        | 0                                        | 6                 | 0                          | 720                        | 720              | 0                            | 0                         | 6                                    | 0.000                                             | 5.203                                          |                      |  |  |
| OCT    | 507                      | 0                        | 0                                        | 237               | 0                          | 744                        | 744              | 0                            | 0                         | 237                                  | 0.000                                             | 5.203                                          |                      |  |  |
| NOV    | 14                       | 0                        | 0                                        | 706               | 0                          | 24                         | 24               | 0                            | 0                         | 10                                   | 0.000                                             | 5.203                                          |                      |  |  |
| DEC    | 0                        | 0                        | 0                                        | 744               | 0                          | 0                          | 0                | 0                            | 0                         | 0                                    | 0.000                                             | 4.388                                          |                      |  |  |
| ANNUAL | 4555                     | 0                        | 0                                        | 4205              | 0                          | 5044                       | 5136             | 0                            | 0                         | 581                                  |                                                   |                                                |                      |  |  |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION 1TOWER TRUTH OR CONSEQU, N  
 REPORT- SS-K SPACE TEMPERATURE SUMMARY

| MONTH  | AVERAGE SPACE TEMP |                   |                   |                  |                   | AVERAGE TEMPERATURE DIFFERENCE           |                                             |                                              |                                              |                                          | SUMMED TEMP DIFFERENCE                      |                                              |                                              |                                          |                  | HUMIDITY RATIO DIFFERENCE BETWEEN OUTDOOR AND ROOM AIR (FRAC. OR MULT.) |  |
|--------|--------------------|-------------------|-------------------|------------------|-------------------|------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------|------------------|-------------------------------------------------------------------------|--|
|        | ALL HOURS (F)      | COOLING HOURS (F) | HEATING HOURS (F) | FAN ON HOURS (F) | FAN OFF HOURS (F) | BETWEEN OUTDOOR & ROOM AIR ALL HOURS (F) | BETWEEN OUTDOOR & ROOM AIR FAN ON HOURS (F) | BETWEEN OUTDOOR & ROOM AIR FAN OFF HOURS (F) | BETWEEN OUTDOOR & ROOM AIR HEATING HOURS (F) | BETWEEN OUTDOOR & ROOM AIR ALL HOURS (F) | BETWEEN OUTDOOR & ROOM AIR FAN ON HOURS (F) | BETWEEN OUTDOOR & ROOM AIR FAN OFF HOURS (F) | BETWEEN OUTDOOR & ROOM AIR HEATING HOURS (F) | BETWEEN OUTDOOR & ROOM AIR ALL HOURS (F) | (Frac. or Mult.) |                                                                         |  |
| JAN    | 44.72              |                   |                   | 0.00             | 44.72             | -7.83                                    | 0.00                                        | -7.83                                        |                                              |                                          |                                             |                                              |                                              |                                          |                  | -0.00508                                                                |  |
| FEB    | 48.66              |                   |                   | 0.00             | 48.66             | -4.68                                    | 0.00                                        | -4.68                                        |                                              |                                          |                                             |                                              |                                              |                                          |                  | -0.00470                                                                |  |
| MAR    | 53.36              |                   |                   | 0.00             | 53.36             | -3.10                                    | 0.00                                        | -3.10                                        |                                              |                                          |                                             |                                              |                                              |                                          |                  | -0.00015                                                                |  |
| APR    | 57.66              | 59.77             |                   | 57.48            | 62.90             | -2.48                                    | 2.58                                        | -0.45                                        |                                              |                                          |                                             |                                              |                                              |                                          |                  | 228.91                                                                  |  |
| MAY    | 61.91              | 62.91             |                   | 61.91            | 0.00              | 5.30                                     | 5.30                                        | 0.00                                         |                                              |                                          |                                             |                                              |                                              |                                          |                  | 321.24                                                                  |  |
| JUN    | 67.28              | 67.30             |                   | 67.28            | 0.00              | 10.48                                    | 10.48                                       | 0.00                                         |                                              |                                          |                                             |                                              |                                              |                                          |                  | 332.66                                                                  |  |
| JUL    | 67.53              | 67.53             |                   | 67.53            | 0.00              | 10.72                                    | 9.02                                        | 9.02                                         |                                              |                                          |                                             |                                              |                                              |                                          |                  | 280.38                                                                  |  |
| ADG    | 66.03              | 66.03             |                   | 66.03            | 0.00              | 7.62                                     | 7.62                                        | 0.00                                         |                                              |                                          |                                             |                                              |                                              |                                          |                  | 242.87                                                                  |  |
| SEP    | 64.79              | 64.84             |                   | 64.79            | 0.00              | 1.41                                     | 1.41                                        | 0.00                                         |                                              |                                          |                                             |                                              |                                              |                                          |                  | 159.87                                                                  |  |
| OCT    | 57.34              | 59.89             |                   | 57.34            | 0.00              | -8.88                                    | 1.85                                        | -9.25                                        |                                              |                                          |                                             |                                              |                                              |                                          |                  | 314.89                                                                  |  |
| NOV    | 57.00              | 57.83             |                   | 54.98            | 57.07             | -9.65                                    | 0.00                                        | -9.65                                        |                                              |                                          |                                             |                                              |                                              |                                          |                  | 0.00021                                                                 |  |
| DEC    | 49.21              |                   |                   | 0.00             | 49.21             |                                          |                                             |                                              |                                              |                                          |                                             |                                              |                                              |                                          |                  |                                                                         |  |
| ANNUAL | 57.99              | 64.47             | 0.00              | 63.18            | 50.64             | 1.10                                     | 6.73                                        | -6.87                                        | 0.00                                         |                                          |                                             |                                              |                                              |                                          |                  | -0.00118                                                                |  |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION FOR TOWER\_1 TRUTH OR CONSEQU, N  
 REPORT- SS-O TEMPERATURE SCATTER PLOT

| HOUR     | TOTAL HOURS AT TEMPERATURE LEVEL AND TIME OF DAY |     |     |     |     |     |    |    |    |    |     |     | TOTAL |    |
|----------|--------------------------------------------------|-----|-----|-----|-----|-----|----|----|----|----|-----|-----|-------|----|
|          | 1AM                                              | 2   | 3   | 4   | 5   | 6   | 7  | 8  | 9  | 10 | 11  | 12  |       |    |
| ABOVE 85 | 0                                                | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 0     |    |
| 81-85    | 0                                                | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 0     |    |
| 76-80    | 0                                                | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0   | 0   | 0     |    |
| 71-75    | 4                                                | 3   | 0   | 0   | 0   | 1   | 3  | 7  | 31 | 21 | 40  | 85  | 62    |    |
| 66-70    | 43                                               | 39  | 27  | 23  | 21  | 10  | 33 | 45 | 74 | 93 | 100 | 101 | 72    | 90 |
| 61-65    | 106                                              | 105 | 114 | 110 | 115 | 76  | 88 | 77 | 67 | 56 | 45  | 49  | 39    | 30 |
| BELOW 60 | 61                                               | 67  | 73  | 81  | 78  | 128 | 93 | 91 | 70 | 58 | 42  | 44  | 34    | 26 |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION CRUINT TRUTH OR CONSEQU, N  
 REPORT- SS-A SYSTEM MONTHLY LOADS SUMMARY FOR

| MONTH     | COOLING               |             |               |               |                                |                       | HEATING     |               |               |                                |                         |                   | ELEC    |        |  |
|-----------|-----------------------|-------------|---------------|---------------|--------------------------------|-----------------------|-------------|---------------|---------------|--------------------------------|-------------------------|-------------------|---------|--------|--|
|           | COOLING ENERGY (MBTU) | TIME OF MAX | DRY-BULB TEMP | WET-BULB TEMP | MAXIMUM COOLING LOAD (KBTU/HR) | HEATING ENERGY (MBTU) | TIME OF MAX | DRY-BULB TEMP | WET-BULB TEMP | MAXIMUM HEATING LOAD (KBTU/HR) | ELECTRICAL ENERGY (KWH) | MAXIMUM LOAD (KW) |         |        |  |
| JAN       | 217.58914             | 29          | 10            | 42.F          | 35.F                           | 295.765               | -134.871    | 11            | 11            | 12.F                           | 10.F                    | -187.717          | 31626.  | 42.509 |  |
| FEB       | 196.18980             | 14          | 20            | 40.F          | 29.F                           | 294.231               | -120.258    | 14            | 11            | 45.F                           | 35.F                    | -182.704          | 28566.  | 42.509 |  |
| MAR       | 217.12257             | 27          | 7             | 39.F          | 34.F                           | 294.359               | -131.741    | 6             | 11            | 53.F                           | 38.F                    | -182.082          | 31626.  | 42.509 |  |
| APR       | 210.48479             | 29          | 8             | 51.F          | 43.F                           | 295.580               | -125.645    | 29            | 8             | 51.F                           | 43.F                    | -178.922          | 30606.  | 42.509 |  |
| MAY       | 217.77766             | 22          | 7             | 60.F          | 45.F                           | 295.134               | -128.496    | 2             | 9             | 48.F                           | 31.F                    | -176.955          | 31626.  | 42.509 |  |
| JUN       | 211.18484             | 16          | 3             | 60.F          | 57.F                           | 295.847               | -122.632    | 1             | 8             | 61.F                           | 44.F                    | -173.556          | 30606.  | 42.509 |  |
| JUL       | 218.16196             | 5           | 20            | 77.F          | 61.F                           | 296.336               | -125.922    | 24            | 11            | 78.F                           | 63.F                    | -173.166          | 31626.  | 42.509 |  |
| AUG       | 217.55618             | 23          | 23            | 70.F          | 60.F                           | 296.612               | -125.627    | 25            | 11            | 71.F                           | 61.F                    | -174.459          | 31626.  | 42.509 |  |
| SEP       | 211.65114             | 10          | 22            | 63.F          | 57.F                           | 287.234               | -123.521    | 27            | 10            | 69.F                           | 53.F                    | -175.570          | 30606.  | 42.509 |  |
| OCT       | 217.99722             | 6           | 8             | 55.F          | 42.F                           | 295.079               | -129.675    | 20            | 9             | 46.F                           | 42.F                    | -179.452          | 31626.  | 42.509 |  |
| NOV       | 210.65187             | 22          | 10            | 39.F          | 33.F                           | 295.759               | -127.831    | 22            | 10            | 39.F                           | 33.F                    | -183.868          | 30606.  | 42.509 |  |
| DEC       | 217.30580             | 15          | 8             | 25.F          | 21.F                           | 295.569               | -133.730    | 16            | 11            | 33.F                           | 30.F                    | -185.580          | 31626.  | 42.509 |  |
| TOTAL MAX | 2563.674              |             |               |               |                                | 297.234               | -1529.949   |               |               |                                |                         | -187.717          | 372373. | 42.509 |  |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION CRUINT TRUTH OR CONSEQU, N  
 REPORT- SS-C SYSTEM MONTHLY LOAD HOURS FOR

| MONTH  | NUMBER OF HOURS    |                    |                                 |                |                      |                      | COINCIDENT LOADS |                     |                     |                             |                                      |                                    |
|--------|--------------------|--------------------|---------------------------------|----------------|----------------------|----------------------|------------------|---------------------|---------------------|-----------------------------|--------------------------------------|------------------------------------|
|        | HOURS COOLING LOAD | HOURS HEATING LOAD | HOURS COINCIDENT COOL-HEAT LOAD | HOURS FLOATING | HOURS HEATING AVAIL. | HOURS COOLING AVAIL. | HOURS FANS ON    | HOURS FANS CYCLE ON | HOURS NIGHT VENTING | HOURS FLOATING WHEN FANS ON | HOURS LOAD AT COOLING PEAK (KBTU/HR) | ELECTRIC LOAD AT COOLING PEAK (KW) |
| JAN    | 744                | 744                | 744                             | 0              | 744                  | 744                  | 744              | 0                   | 0                   | 0                           | -183.958                             | 42.509                             |
| FEB    | 672                | 672                | 672                             | 0              | 672                  | 672                  | 672              | 0                   | 0                   | 0                           | -180.864                             | 42.509                             |
| MAR    | 744                | 744                | 744                             | 0              | 744                  | 744                  | 744              | 0                   | 0                   | 0                           | -181.009                             | 42.509                             |
| APR    | 720                | 720                | 720                             | 0              | 720                  | 720                  | 720              | 0                   | 0                   | 0                           | -178.322                             | 42.509                             |
| MAY    | 744                | 744                | 744                             | 0              | 744                  | 744                  | 744              | 0                   | 0                   | 0                           | -174.995                             | 42.509                             |
| JUN    | 720                | 720                | 720                             | 0              | 720                  | 720                  | 720              | 0                   | 0                   | 0                           | -173.326                             | 42.509                             |
| JUL    | 744                | 744                | 744                             | 0              | 744                  | 744                  | 744              | 0                   | 0                   | 0                           | -171.898                             | 42.509                             |
| AGO    | 744                | 744                | 744                             | 0              | 744                  | 744                  | 744              | 0                   | 0                   | 0                           | -173.186                             | 42.509                             |
| SEP    | 720                | 720                | 720                             | 0              | 720                  | 720                  | 720              | 0                   | 0                   | 0                           | -174.287                             | 42.509                             |
| OCT    | 744                | 744                | 744                             | 0              | 744                  | 744                  | 744              | 0                   | 0                   | 0                           | -175.213                             | 42.509                             |
| NOV    | 720                | 720                | 720                             | 0              | 720                  | 720                  | 720              | 0                   | 0                   | 0                           | -183.868                             | 42.509                             |
| DEC    | 744                | 744                | 744                             | 0              | 744                  | 744                  | 744              | 0                   | 0                   | 0                           | -184.895                             | 42.509                             |
| ANNUAL | 8760               | 8760               | 8760                            | 0              | 8760                 | 8760                 | 8760             | 0                   | 0                   | 0                           |                                      |                                    |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION CRUINT TRUTH OR CONSEQU, N  
 REPORT- SS-K SPACE TEMPERATURE SUMMARY

| MONTH  | AVERAGE SPACE TEMP |                   |                   |                  |                   | AVERAGE TEMPERATURE DIFFERENCE |                           |                           |                           |                  | SUMMED TEMP DIFFERENCE |                   |                           | HUMIDITY RATIO DIFFERENCE |                                               |
|--------|--------------------|-------------------|-------------------|------------------|-------------------|--------------------------------|---------------------------|---------------------------|---------------------------|------------------|------------------------|-------------------|---------------------------|---------------------------|-----------------------------------------------|
|        | ALL HOURS (F)      | COOLING HOURS (F) | HEATING HOURS (F) | FAN ON HOURS (F) | FAN OFF HOURS (F) | ALL HOURS (F)                  | BETWEEN OUTDOOR& ROOM AIR | BETWEEN OUTDOOR& ROOM AIR | BETWEEN OUTDOOR& ROOM AIR | FAN ON HOURS (F) | FAN OFF HOURS (F)      | HEATING HOURS (F) | BETWEEN OUTDOOR& ROOM AIR | BETWEEN OUTDOOR& ROOM AIR | BETWEEN OUTDOOR AND ROOM AIR (FRAC. OR MULT.) |
| JAN    | 67.31              | 67.31             | 67.31             | 67.31            | 0.00              | -30.42                         | -30.42                    | 0.00                      | 942.93                    | 942.93           | 0.00000                | 0.00000           | 0.00000                   | 0.00000                   | 0.00000                                       |
| FEB    | 67.90              | 67.90             | 67.90             | 67.90            | 0.00              | -23.92                         | -23.92                    | 0.00                      | 670.83                    | 670.83           | 0.00000                | 0.00000           | 0.00000                   | 0.00000                   | 0.00000                                       |
| MAR    | 68.38              | 68.38             | 68.38             | 68.38            | 0.00              | -18.12                         | -18.12                    | 0.00                      | 572.24                    | 572.24           | 0.00000                | 0.00000           | 0.00000                   | 0.00000                   | 0.00000                                       |
| APR    | 69.21              | 69.21             | 69.21             | 69.21            | 0.00              | -9.07                          | -9.07                     | 0.00                      | 360.75                    | 360.75           | 0.00000                | 0.00000           | 0.00000                   | 0.00000                   | 0.00000                                       |
| MAY    | 69.75              | 69.75             | 69.75             | 69.75            | 0.00              | -2.53                          | -2.53                     | 0.00                      | 282.73                    | 282.73           | 0.00000                | 0.00000           | 0.00000                   | 0.00000                   | 0.00000                                       |
| JUN    | 70.53              | 70.53             | 70.53             | 70.53            | 0.00              | 7.23                           | 7.23                      | 0.00                      | 305.93                    | 305.93           | 0.00000                | 0.00000           | 0.00000                   | 0.00000                   | 0.00000                                       |
| JUL    | 70.77              | 70.77             | 70.77             | 70.77            | 0.00              | 7.48                           | 7.48                      | 0.00                      | 278.23                    | 278.23           | 0.00000                | 0.00000           | 0.00000                   | 0.00000                   | 0.00000                                       |
| AGO    | 70.57              | 70.57             | 70.57             | 70.57            | 0.00              | 4.48                           | 4.48                      | 0.00                      | 221.80                    | 221.80           | 0.00000                | 0.00000           | 0.00000                   | 0.00000                   | 0.00000                                       |
| SEP    | 70.19              | 70.19             | 70.19             | 70.19            | 0.00              | 2.21                           | 2.21                      | 0.00                      | 231.14                    | 231.14           | 0.00000                | 0.00000           | 0.00000                   | 0.00000                   | 0.00000                                       |
| OCT    | 69.16              | 69.16             | 69.16             | 69.16            | 0.00              | -10.41                         | -10.41                    | 0.00                      | 380.02                    | 380.02           | 0.00000                | 0.00000           | 0.00000                   | 0.00000                   | 0.00000                                       |
| NOV    | 68.20              | 68.20             | 68.20             | 68.20            | 0.00              | -20.07                         | -20.07                    | 0.00                      | 604.96                    | 604.96           | 0.00000                | 0.00000           | 0.00000                   | 0.00000                   | 0.00000                                       |
| DEC    | 67.55              | 67.55             | 67.55             | 67.55            | 0.00              | -27.99                         | -27.99                    | 0.00                      | 867.60                    | 867.60           | 0.00000                | 0.00000           | 0.00000                   | 0.00000                   | 0.00000                                       |
| ANNUAL | 69.13              | 69.13             | 69.13             | 69.13            | 0.00              | -10.04                         | -10.04                    | 0.00                      | 5719.16                   | 5719.16          | 0.00000                | 0.00000           | 0.00000                   | 0.00000                   | 0.00000                                       |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION CRUINT FOR COMPUTERTRM TRUTH OR CONSEQU, N  
 REPORT- SS-O TEMPERATURE SCATTER PLOT



EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
 REPORT- SS-O TEMPERATURE SCATTER PLOT CRUIT FOR COMPRMPLN TRUTH OR CONSEQU, N

| HOUR     | TOTAL HOURS AT TEMPERATURE LEVEL AND TIME OF DAY |     |     |     |     |     |     |     |     |     |     |      | TOTAL |     |     |     |     |     |     |     |     |     |     |     |      |
|----------|--------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
|          | 1AM                                              | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12PM | 1PM   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |      |
| ABOVE 85 | 0                                                | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0     | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    |
| 81-85    | 0                                                | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0     | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    |
| 76-80    | 29                                               | 24  | 21  | 19  | 16  | 12  | 9   | 13  | 20  | 27  | 36  | 46   | 57    | 64  | 65  | 66  | 63  | 59  | 52  | 46  | 38  | 34  | 33  | 31  | 880  |
| 71-75    | 153                                              | 156 | 157 | 156 | 159 | 162 | 165 | 162 | 157 | 153 | 150 | 144  | 137   | 131 | 134 | 133 | 135 | 138 | 140 | 146 | 153 | 154 | 154 | 155 | 3584 |
| 66-70    | 154                                              | 156 | 157 | 160 | 157 | 156 | 156 | 155 | 153 | 152 | 148 | 149  | 147   | 150 | 146 | 150 | 147 | 150 | 150 | 150 | 151 | 150 | 150 | 150 | 3644 |
| 61-65    | 29                                               | 29  | 30  | 30  | 33  | 35  | 35  | 35  | 35  | 33  | 31  | 26   | 24    | 20  | 20  | 16  | 17  | 21  | 23  | 23  | 23  | 27  | 28  | 29  | 652  |
| BELOW 60 | 0                                                | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0     | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION 2TOWER  
 REPORT- SS-A SYSTEM MONTHLY LOADS SUMMARY FOR TRUTH OR CONSEQU, N

| MONTH     | COOLING               |                |               |               | HEATING                        |                       |                |               | ELEC          |                                |                         |                   |
|-----------|-----------------------|----------------|---------------|---------------|--------------------------------|-----------------------|----------------|---------------|---------------|--------------------------------|-------------------------|-------------------|
|           | COOLING ENERGY (MBTU) | TIME OF MAX DY | DRY-BULB TEMP | WET-BULB TEMP | MAXIMUM COOLING LOAD (KBTU/HR) | HEATING ENERGY (MBTU) | TIME OF MAX DY | DRY-BULB TEMP | WET-BULB TEMP | MAXIMUM HEATING LOAD (KBTU/HR) | ELECTRICAL ENERGY (KWH) | MAXIMUM LOAD (KW) |
| JAN       | 0.00000               |                |               |               | 0.000                          | 0.000                 |                |               |               | 0.000                          | 2291.                   | 5.618             |
| FEB       | 0.00000               |                |               |               | 0.000                          | 0.000                 |                |               |               | 0.000                          | 2069.                   | 5.618             |
| MAR       | 0.00000               |                |               |               | 0.000                          | 0.000                 |                |               |               | 0.000                          | 2291.                   | 5.618             |
| APR       | 8.67692               | 22             | 15            | 91.F          | 54.F                           | 46.677                |                |               |               | 0.000                          | 2784.                   | 6.433             |
| MAY       | 14.27732              | 9              | 18            | 90.F          | 53.F                           | 45.304                |                |               |               | 0.000                          | 2857.                   | 6.433             |
| JUN       | 22.71675              | 23             | 15            | 98.F          | 63.F                           | 57.992                |                |               |               | 0.000                          | 2804.                   | 6.433             |
| JUL       | 24.99347              | 1              | 18            | 100.F         | 60.F                           | 62.778                |                |               |               | 0.000                          | 2857.                   | 6.433             |
| AUG       | 23.42665              | 22             | 18            | 73.F          | 67.F                           | 53.562                |                |               |               | 0.000                          | 2804.                   | 6.433             |
| SEP       | 18.79902              | 13             | 16            | 90.F          | 60.F                           | 45.225                |                |               |               | 0.000                          | 2857.                   | 6.433             |
| OCT       | 8.20284               | 7              | 16            | 85.F          | 57.F                           | 38.099                |                |               |               | 0.000                          | 2237.                   | 6.433             |
| NOV       | 0.23611               | 1              | 15            | 73.F          | 48.F                           | 26.300                |                |               |               | 0.000                          | 2291.                   | 5.618             |
| DEC       | 0.00000               |                |               |               |                                | 0.000                 |                |               |               | 0.000                          | 31159.                  |                   |
| TOTAL MAX | 121.329               |                |               |               |                                | 62.778                |                |               |               | 0.000                          |                         | 6.433             |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION 2TOWER  
 REPORT- SS-C SYSTEM MONTHLY LOAD HOURS FOR TRUTH OR CONSEQU, N

| MONTH  | NUMBER OF HOURS    |                    |                                 |                |                      |                      |               |                | COINCIDENT LOADS    |                             |                                        |                                    |  |
|--------|--------------------|--------------------|---------------------------------|----------------|----------------------|----------------------|---------------|----------------|---------------------|-----------------------------|----------------------------------------|------------------------------------|--|
|        | HOURS COOLING LOAD | HOURS HEATING LOAD | HOURS COINCIDENT COOL-HEAT LOAD | HOURS FLOATING | HOURS HEATING AVAIL. | HOURS COOLING AVAIL. | HOURS FANS ON | HOURS CYCLE ON | HOURS NIGHT VENTING | HOURS FLOATING WHEN FANS ON | HEATING LOAD AT COOLING PEAK (KBTU/HR) | ELECTRIC LOAD AT COOLING PEAK (KW) |  |
| JAN    | 0                  | 0                  | 0                               | 744            | 0                    | 0                    | 0             | 0              | 0                   | 0                           | 0.000                                  | 4.388                              |  |
| FEB    | 0                  | 0                  | 0                               | 672            | 0                    | 0                    | 0             | 0              | 0                   | 0                           | 0.000                                  | 4.388                              |  |
| MAR    | 0                  | 0                  | 0                               | 744            | 0                    | 0                    | 0             | 0              | 0                   | 0                           | 0.000                                  | 5.203                              |  |
| APR    | 498                | 0                  | 0                               | 222            | 0                    | 686                  | 696           | 0              | 0                   | 198                         | 0.000                                  | 5.203                              |  |
| MAY    | 621                | 0                  | 0                               | 123            | 0                    | 667                  | 744           | 0              | 0                   | 123                         | 0.000                                  | 5.203                              |  |
| JUN    | 713                | 0                  | 0                               | 7              | 0                    | 715                  | 720           | 0              | 0                   | 7                           | 0.000                                  | 5.203                              |  |
| JUL    | 744                | 0                  | 0                               | 0              | 0                    | 744                  | 744           | 0              | 0                   | 0                           | 0.000                                  | 5.203                              |  |
| AUG    | 744                | 0                  | 0                               | 0              | 0                    | 744                  | 744           | 0              | 0                   | 0                           | 0.000                                  | 5.203                              |  |
| SEP    | 714                | 0                  | 0                               | 6              | 0                    | 720                  | 720           | 0              | 0                   | 6                           | 0.000                                  | 5.203                              |  |
| OCT    | 507                | 0                  | 0                               | 237            | 0                    | 744                  | 744           | 0              | 0                   | 237                         | 0.000                                  | 5.203                              |  |
| NOV    | 14                 | 0                  | 0                               | 706            | 0                    | 24                   | 24            | 0              | 0                   | 10                          | 0.000                                  | 5.203                              |  |
| DEC    | 0                  | 0                  | 0                               | 744            | 0                    | 0                    | 0             | 0              | 0                   | 0                           | 0.000                                  | 4.388                              |  |
| ANNUAL | 4555               | 0                  | 0                               | 4205           | 0                    | 5044                 | 5136          | 0              | 0                   | 581                         |                                        |                                    |  |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION 2TOWER  
 REPORT- SS-K SPACE TEMPERATURE SUMMARY TRUTH OR CONSEQU, N

| MONTH  | AVERAGE SPACE TEMP |                   |                   |                  | AVERAGE TEMPERATURE DIFFERENCE |                   |                   |                  | SUMMED TEMP DIFFERENCE |                   |                   |                   | HUMIDITY RATIO DIFFERENCE |  |
|--------|--------------------|-------------------|-------------------|------------------|--------------------------------|-------------------|-------------------|------------------|------------------------|-------------------|-------------------|-------------------|---------------------------|--|
|        | ALL HOURS (F)      | COOLING HOURS (F) | HEATING HOURS (F) | FAN ON HOURS (F) | OUTDOOR& ROOM AIR              | OUTDOOR& ROOM AIR | OUTDOOR& ROOM AIR | FAN ON HOURS (F) | OUTDOOR& ROOM AIR      | OUTDOOR& ROOM AIR | OUTDOOR& ROOM AIR | FAN OFF HOURS (F) | (Frac. or Mult.)          |  |
| JAN    | 44.72              |                   |                   | 0.00             | 44.72                          | -7.83             | 0.00              | -7.83            |                        |                   |                   |                   | -0.00508                  |  |
| FEB    | 48.66              |                   |                   | 0.00             | 48.66                          | -4.68             | 0.00              | -4.68            |                        |                   |                   |                   | -0.00527                  |  |
| MAR    | 53.36              |                   |                   | 0.00             | 53.36                          | -3.10             | 0.00              | -3.10            |                        |                   |                   |                   | -0.00470                  |  |
| APR    | 57.66              | 59.77             |                   | 57.48            | 62.90                          | 2.48              | 2.58              | -0.45            |                        |                   |                   |                   | -0.00015                  |  |
| MAY    | 61.91              | 62.91             |                   | 61.91            | 0.00                           | 5.30              | 5.30              | 0.00             |                        |                   |                   |                   | 0.00000                   |  |
| JUN    | 67.28              | 67.30             |                   | 67.28            | 0.00                           | 10.48             | 10.48             | 0.00             |                        |                   |                   |                   | 0.00001                   |  |
| JUL    | 67.53              | 67.53             |                   | 67.53            | 0.00                           | 10.72             | 10.72             | 0.00             |                        |                   |                   |                   | 0.00022                   |  |
| AUG    | 66.03              | 66.03             |                   | 66.03            | 0.00                           | 9.02              | 9.02              | 0.00             |                        |                   |                   |                   | 0.00004                   |  |
| SEP    | 64.79              | 64.84             |                   | 64.79            | 0.00                           | 7.62              | 7.62              | 0.00             |                        |                   |                   |                   | 0.00000                   |  |
| OCT    | 57.34              | 59.89             |                   | 57.34            | 0.00                           | 1.41              | 1.41              | 0.00             |                        |                   |                   |                   | 0.00017                   |  |
| NOV    | 57.00              | 57.83             |                   | 54.98            | 57.07                          | -8.88             | 1.85              | -9.25            |                        |                   |                   |                   | 0.00021                   |  |
| DEC    | 49.21              |                   |                   | 0.00             | 49.21                          | -9.65             | 0.00              | -9.65            |                        |                   |                   |                   |                           |  |
| ANNUAL | 57.99              | 64.47             | 0.00              | 63.18            | 50.64                          | 1.10              | 6.73              | -6.87            | 0.00                   | 3086.05           |                   |                   | -0.00118                  |  |

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION 3TOWER TRUTH OR CONSEQU. N  
 REPORT- SS-0 TEMPERATURE SCATTER PLOT 2TOWER FOR TOWER\_2

| HOUR      | TOTAL HOURS AT TEMPERATURE LEVEL AND TIME OF DAY |     |     |     |     |     |    |    |    |    |    |     | 5   | 6  | 7  | 8  | 9  | 10 | 11 | 12 | TOTAL |
|-----------|--------------------------------------------------|-----|-----|-----|-----|-----|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|-------|
|           | 1AM                                              | 2   | 3   | 4   | 5   | 6   | 7  | 8  | 9  | 10 | 11 | 12  |     |    |    |    |    |    |    |    |       |
| ABOVE 85  | 0                                                | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     |
| 81-85     | 0                                                | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     |
| 76-80     | 0                                                | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     |
| 71-75     | 4                                                | 3   | 0   | 0   | 0   | 0   | 0  | 1  | 3  | 7  | 31 | 21  | 40  | 85 | 62 | 83 | 63 | 68 | 45 | 32 | 20    |
| 66-70     | 43                                               | 39  | 27  | 23  | 21  | 10  | 33 | 45 | 74 | 93 | 96 | 100 | 101 | 72 | 90 | 78 | 86 | 78 | 79 | 75 | 77    |
| 61-65     | 106                                              | 105 | 114 | 110 | 115 | 76  | 88 | 77 | 67 | 56 | 45 | 49  | 39  | 30 | 32 | 29 | 35 | 31 | 46 | 62 | 68    |
| BELLOW 60 | 61                                               | 67  | 73  | 81  | 78  | 128 | 93 | 91 | 70 | 58 | 42 | 44  | 34  | 26 | 29 | 23 | 29 | 34 | 44 | 45 | 49    |
|           |                                                  |     |     |     |     |     |    |    |    |    |    |     |     |    |    |    |    |    |    | 51 | 56    |
|           |                                                  |     |     |     |     |     |    |    |    |    |    |     |     |    |    |    |    |    |    | 59 | 1365  |

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION 3TOWER TRUTH OR CONSEQU. N  
 REPORT- SS-A SYSTEM MONTHLY LOADS SUMMARY FOR

| - C O O L I N G - |                       |                |                  | - H E A T I N G - |                                |                       |                | - E L E C -      |               |                                |                         |                   |
|-------------------|-----------------------|----------------|------------------|-------------------|--------------------------------|-----------------------|----------------|------------------|---------------|--------------------------------|-------------------------|-------------------|
| MONTH             | COOLING ENERGY (MBTU) | TIME OF MAX DY | DRY-BULB TEMP HR | WET-BULB TEMP     | MAXIMUM COOLING LOAD (KBTU/HR) | HEATING ENERGY (MBTU) | TIME OF MAX DY | DRY-BULB TEMP HR | WET-BULB TEMP | MAXIMUM HEATING LOAD (KBTU/HR) | ELECTRICAL ENERGY (KWH) | MAXIMUM LOAD (KW) |
| JAN               | 0.00000               |                |                  |                   | 0.000                          | 0.000                 |                |                  |               | 0.000                          | 2291.                   | 5.616             |
| FEB               | 0.00000               |                |                  |                   | 0.000                          | 0.000                 |                |                  |               | 0.000                          | 2069.                   | 5.616             |
| MAR               | 0.00000               |                |                  |                   | 0.000                          | 0.000                 |                |                  |               | 0.000                          | 2291.                   | 5.616             |
| APR               | 8.67692               | 22             | 15               | 91.F              | 54.F                           | 46.677                | 0.000          |                  |               | 0.000                          | 2784.                   | 6.433             |
| MAY               | 14.27732              | 9              | 18               | 90.F              | 53.F                           | 45.304                | 0.000          |                  |               | 0.000                          | 2897.                   | 6.433             |
| JUN               | 22.71675              | 23             | 15               | 98.F              | 63.F                           | 57.992                | 0.000          |                  |               | 0.000                          | 2804.                   | 6.433             |
| JUL               | 24.99347              | 1              | 18               | 100.F             | 60.F                           | 62.778                | 0.000          |                  |               | 0.000                          | 2897.                   | 6.433             |
| AUG               | 23.42665              | 22             | 18               | 73.F              | 67.F                           | 53.562                | 0.000          |                  |               | 0.000                          | 2897.                   | 6.433             |
| SEP               | 18.79902              | 13             | 16               | 90.F              | 60.F                           | 45.225                | 0.000          |                  |               | 0.000                          | 2804.                   | 6.433             |
| OCT               | 8.20284               | 7              | 16               | 85.F              | 57.F                           | 38.099                | 0.000          |                  |               | 0.000                          | 2897.                   | 6.433             |
| NOV               | 0.23611               | 1              | 15               | 73.F              | 48.F                           | 26.300                | 0.000          |                  |               | 0.000                          | 2237.                   | 6.433             |
| DEC               | 0.00000               |                |                  |                   |                                | 0.000                 |                |                  |               | 0.000                          | 2291.                   | 5.616             |
| TOTAL             | 121.329               |                |                  |                   |                                | 0.000                 |                |                  |               |                                | 31159.                  |                   |
| MAX               |                       |                |                  |                   |                                | 62.778                |                |                  |               |                                | 0.000                   | 6.433             |

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION 3TOWER TRUTH OR CONSEQU. N  
 REPORT- SS-C SYSTEM MONTHLY LOAD HOURS FOR

| - N U M B E R O F H O U R S - |                    |                    |                                 |                |                      |                    |                      |               |                     |                     |                             | --COINCIDENT LOADS--         |                               |
|-------------------------------|--------------------|--------------------|---------------------------------|----------------|----------------------|--------------------|----------------------|---------------|---------------------|---------------------|-----------------------------|------------------------------|-------------------------------|
| MONTH                         | HOURS COOLING LOAD | HOURS HEATING LOAD | HOURS COINCIDENT COOL-HEAT LOAD | HOURS FLOATING | HOURS HEATING AVAIL. | HOURS COOLING LOAD | HOURS HEATING AVAIL. | HOURS FANS ON | HOURS FANS ON CYCLE | HOURS NIGHT VENTING | HOURS FLOATING WHEN COOLING | HEATING LOAD AT COOLING PEAK | ELECTRIC LOAD AT COOLING PEAK |
| JAN                           | 0                  | 0                  | 0                               | 744            | 0                    | 0                  | 0                    | 0             | 0                   | 0                   | 0                           | 0.000                        | 4.388                         |
| FEB                           | 0                  | 0                  | 0                               | 672            | 0                    | 0                  | 0                    | 0             | 0                   | 0                   | 0                           | 0.000                        | 4.388                         |
| MAR                           | 0                  | 0                  | 0                               | 744            | 0                    | 0                  | 0                    | 0             | 0                   | 0                   | 0                           | 0.000                        | 4.388                         |
| APR                           | 498                | 0                  | 0                               | 222            | 0                    | 686                | 696                  | 0             | 0                   | 198                 | 0.000                       | 5.203                        |                               |
| MAY                           | 621                | 0                  | 0                               | 123            | 0                    | 667                | 744                  | 0             | 0                   | 123                 | 0.000                       | 5.203                        |                               |
| JUN                           | 713                | 0                  | 0                               | 7              | 0                    | 715                | 720                  | 0             | 0                   | 7                   | 0.000                       | 5.203                        |                               |
| JUL                           | 744                | 0                  | 0                               | 0              | 0                    | 744                | 744                  | 0             | 0                   | 0                   | 0.000                       | 5.203                        |                               |
| ADG                           | 744                | 0                  | 0                               | 0              | 0                    | 744                | 744                  | 0             | 0                   | 0                   | 0.000                       | 5.203                        |                               |
| SEP                           | 714                | 0                  | 0                               | 6              | 0                    | 720                | 720                  | 0             | 0                   | 6                   | 0.000                       | 5.203                        |                               |
| OCT                           | 507                | 0                  | 0                               | 237            | 0                    | 744                | 744                  | 0             | 0                   | 237                 | 0.000                       | 5.203                        |                               |
| NOV                           | 14                 | 0                  | 0                               | 706            | 0                    | 24                 | 24                   | 0             | 0                   | 10                  | 0.000                       | 5.203                        |                               |
| DEC                           | 0                  | 0                  | 0                               | 744            | 0                    | 0                  | 0                    | 0             | 0                   | 0                   | 0.000                       | 4.388                        |                               |
| ANNUAL                        | 4555               | 0                  | 0                               | 4205           | 0                    | 5044               | 5136                 | 0             | 0                   | 581                 |                             |                              |                               |

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION 3TOWER TRUTH OR CONSEQU. N  
 REPORT- SS-K SPACE TEMPERATURE SUMMARY

| A V E R A G E S P A C E T E M P |               |                   |                   | AVERAGE TEMPERATURE BETWEEN OUTDOOR & ROOM AIR |                   |                  |                   | DIFFERENCE BETWEEN OUTDOOR & ROOM AIR |                        |                   |                        | SUMMED TEMP DIFFERENCE BETWEEN OUTDOOR & ROOM AIR |  | HUMIDITY RATIO DIFFERENCE BETWEEN OUTDOOR AND ROOM AIR |
|---------------------------------|---------------|-------------------|-------------------|------------------------------------------------|-------------------|------------------|-------------------|---------------------------------------|------------------------|-------------------|------------------------|---------------------------------------------------|--|--------------------------------------------------------|
| MONTH                           | ALL HOURS (F) | COOLING HOURS (F) | HEATING HOURS (F) | FAN ON HOURS (F)                               | FAN OFF HOURS (F) | FAN ON HOURS (F) | FAN OFF HOURS (F) | OUTDOOR & ROOM AIR (F)                | OUTDOOR & ROOM AIR (F) | HEATING HOURS (F) | OUTDOOR & ROOM AIR (F) | (FRAC. OR MULT.)                                  |  |                                                        |
| JAN                             | 44.72         | 0.00              | 44.72             | -7.83                                          | 0.00              | -7.83            | 0.00              | 44.72                                 | 44.72                  | 0.00              | 44.72                  | -0.00508                                          |  |                                                        |
| FEB                             | 48.66         | 0.00              | 48.66             | -4.68                                          | 0.00              | -4.68            | 0.00              | 48.66                                 | 48.66                  | 0.00              | 48.66                  | -0.00527                                          |  |                                                        |
| MAR                             | 53.36         | 0.00              | 53.36             | -3.10                                          | 0.00              | -3.10            | 0.00              | 53.36                                 | 53.36                  | 0.00              | 53.36                  | -0.00470                                          |  |                                                        |
| APR                             | 57.66         | 59.77             | 57.48             | 2.48                                           | 2.48              | 2.58             | -0.45             | 57.66                                 | 57.66                  | 173.37            | 57.66                  | -0.00015                                          |  |                                                        |
| MAY                             | 61.91         | 62.91             | 61.91             | 5.30                                           | 5.30              | 5.30             | 0.00              | 61.91                                 | 61.91                  | 228.91            | 61.91                  | 0.00000                                           |  |                                                        |
| JUN                             | 67.28         | 67.30             | 67.28             | 10.48                                          | 10.48             | 10.48            | 0.00              | 67.28                                 | 67.28                  | 321.24            | 67.28                  | 0.00001                                           |  |                                                        |
| JUL                             | 67.53         | 67.53             | 67.53             | 10.72                                          | 10.72             | 10.72            | 0.00              | 67.53                                 | 67.53                  | 332.66            | 67.53                  | 0.00011                                           |  |                                                        |
| ADG                             | 66.03         | 66.03             | 66.03             | 9.02                                           | 9.02              | 9.02             | 0.00              | 66.03                                 | 66.03                  | 280.38            | 66.03                  | 0.00022                                           |  |                                                        |
| SEP                             | 64.79         | 64.84             | 64.79             | 7.62                                           | 7.62              | 7.62             | 0.00              | 64.79                                 | 64.79                  | 242.87            | 64.79                  | 0.00004                                           |  |                                                        |
| OCT                             | 57.34         | 59.89             | 57.34             | 1.41                                           | 1.41              | 1.41             | 0.00              | 57.34                                 | 57.34                  | 159.87            | 57.34                  | 0.00000                                           |  |                                                        |
| NOV                             | 57.00         | 57.83             | 54.98             | -8.88                                          | 1.85              | -9.25            | 0.00              | 57.00                                 | 57.00                  | 314.89            | 57.00                  | 0.00017                                           |  |                                                        |
| DEC                             | 49.21         | 0.00              | 49.21             | -9.65                                          | 0.00              | -9.65            | 0.00              | 49.21                                 | 49.21                  | 0.00              | 49.21                  | 0.00021                                           |  |                                                        |
| ANNUAL                          | 57.99         | 64.47             | 60.64             | 1.10                                           | 6.73              | -6.87            | 0.00              | 57.99                                 | 57.99                  | 3086.05           | 57.99                  | -0.00118                                          |  |                                                        |

EMC ENGINEERS INC. EDDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15:8:11 SDL RUN 1  
DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
REPORT- SS-6 TEMPERATURE SCATTER PLOT 3TOWER FOR TOWER\_3 TRUTH OR CONSEQU. N

| HOUR     | TOTAL HOURS AT TEMPERATURE LEVEL AND TIME OF DAY |     |     |     |     |     |    |    |    |    |    |      | TOTAL |    |    |    |    |    |    |    |    |    |    |      |      |
|----------|--------------------------------------------------|-----|-----|-----|-----|-----|----|----|----|----|----|------|-------|----|----|----|----|----|----|----|----|----|----|------|------|
|          | 1AM                                              | 2   | 3   | 4   | 5   | 6   | 7  | 8  | 9  | 10 | 11 | 12PM | 1     | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12   |      |
| ABOVE 85 | 0                                                | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0    |
| 81-85    | 0                                                | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0    |
| 76-80    | 0                                                | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 1  | 1  | 1  | 1  | 3  | 0  | 0  | 0  | 0  | 0    | 7    |
| 71-75    | 4                                                | 3   | 0   | 0   | 0   | 0   | 0  | 1  | 3  | 7  | 31 | 21   | 40    | 85 | 62 | 83 | 63 | 68 | 45 | 32 | 20 | 14 | 12 | 5    | 602  |
| 66-70    | 43                                               | 39  | 27  | 23  | 21  | 10  | 33 | 45 | 74 | 93 | 96 | 100  | 101   | 72 | 90 | 78 | 86 | 78 | 79 | 75 | 77 | 71 | 58 | 52   | 1521 |
| 61-65    | 106                                              | 105 | 114 | 110 | 115 | 76  | 88 | 77 | 67 | 56 | 45 | 49   | 39    | 30 | 32 | 29 | 35 | 31 | 46 | 62 | 78 | 88 | 95 | 1641 |      |
| BELOW 60 | 61                                               | 67  | 73  | 81  | 78  | 128 | 93 | 91 | 70 | 58 | 42 | 44   | 34    | 26 | 29 | 23 | 29 | 34 | 44 | 45 | 49 | 51 | 56 | 59   | 1365 |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 SDL RUN 1  
REPORT SSS-A CO 80227 GEODSS SITE DOE EVALUATION REGAHU TRUTH OR CONSEQU. N  
DENVER, SYSTEM MONTHLY LOADS SUMMARY FOR

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15:0:11 SDL RUN 1  
DENVER, CO 80227 GEODSS SITE DOE EVALUATION REPORT SS-C SYSTEM MONTHLY LOAD HOURS FOR REGAHU TRUTH OR CONSEQUEN, N

| MONTH  | NUMBER OF HOURS          |                          |                                          |                   |                            |                            |                  |                        | --COINCIDENT LOADS--      |                                      |                                                   |                                                |
|--------|--------------------------|--------------------------|------------------------------------------|-------------------|----------------------------|----------------------------|------------------|------------------------|---------------------------|--------------------------------------|---------------------------------------------------|------------------------------------------------|
|        | HOURS<br>COOLING<br>LOAD | HOURS<br>HEATING<br>LOAD | HOURS<br>COINCIDENT<br>COOL-HEAT<br>LOAD | HOURS<br>FLOATING | HOURS<br>HEATING<br>AVAIL. | HOURS<br>COOLING<br>AVAIL. | HOURS<br>FANS ON | HOURS<br>FANS CYCLE ON | HOURS<br>NIGHT<br>VENTING | HOURS<br>FLOATING<br>WHEN<br>FANS ON | HEATING<br>LOAD AT<br>COOLING<br>PEAK<br>(BTU/HR) | ELECTRIC<br>LOAD AT<br>COOLING<br>PEAK<br>(KW) |
| JAN    | 6                        | 642                      | 0                                        | 96                | 744                        | 648                        | 744              | 0                      | 0                         | 96                                   | 0.000                                             | 14.178                                         |
| FEB    | 34                       | 500                      | 0                                        | 138               | 672                        | 534                        | 672              | 0                      | 0                         | 138                                  | 0.000                                             | 14.178                                         |
| MAR    | 232                      | 316                      | 0                                        | 196               | 744                        | 548                        | 744              | 0                      | 0                         | 196                                  | 0.000                                             | 14.178                                         |
| APR    | 478                      | 37                       | 0                                        | 205               | 720                        | 515                        | 720              | 0                      | 0                         | 205                                  | 0.000                                             | 14.178                                         |
| MAY    | 669                      | 16                       | 0                                        | 59                | 744                        | 685                        | 744              | 0                      | 0                         | 59                                   | 0.000                                             | 14.178                                         |
| JUN    | 720                      | 0                        | 0                                        | 0                 | 720                        | 720                        | 720              | 0                      | 0                         | 0                                    | 0.000                                             | 14.178                                         |
| JUL    | 744                      | 0                        | 0                                        | 0                 | 744                        | 744                        | 744              | 0                      | 0                         | 0                                    | 0.000                                             | 14.178                                         |
| AUG    | 744                      | 0                        | 0                                        | 0                 | 744                        | 744                        | 744              | 0                      | 0                         | 0                                    | 0.000                                             | 14.178                                         |
| SEP    | 718                      | 0                        | 0                                        | 2                 | 720                        | 718                        | 720              | 0                      | 0                         | 2                                    | 0.000                                             | 14.178                                         |
| OCT    | 529                      | 71                       | 0                                        | 144               | 744                        | 600                        | 744              | 0                      | 0                         | 144                                  | 0.000                                             | 14.178                                         |
| NOV    | 163                      | 332                      | 0                                        | 225               | 720                        | 495                        | 720              | 0                      | 0                         | 225                                  | 0.000                                             | 14.178                                         |
| DEC    | 7                        | 609                      | 0                                        | 128               | 744                        | 616                        | 744              | 0                      | 0                         | 128                                  | 0.000                                             | 14.178                                         |
| ANNUAL | 5044                     | 2523                     | 0                                        | 1193              | 8760                       | 7567                       | 8760             | 0                      | 0                         | 1193                                 |                                                   |                                                |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8 / 7/1995 15: 8:11 SDL RUN 1  
DENVER, CO 80227 GEODSS SITE DOE EVALUATION REGAHU TRUTH OR CONSEQU, N  
DATA TEMPERATURE SUMMARY

| MONTH  | AVERAGE SPACE TEMP |                      |                      |                     |                      | AVERAGE TEMPERATURE DIFFERENCE                 |                                                   |                                                    | SUMMED TEMP DIFFERENCE                             |                                                |                                                | HUMIDITY RATIO<br>(FRAC. OR MULT.) |
|--------|--------------------|----------------------|----------------------|---------------------|----------------------|------------------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------|
|        | ALL HOURS<br>(F)   | COOLING HOURS<br>(F) | HEATING HOURS<br>(F) | FAN ON HOURS<br>(F) | FAN OFF HOURS<br>(F) | BETWEEN OUTDOOR & ROOM AIR<br>ALL HOURS<br>(F) | BETWEEN OUTDOOR & ROOM AIR<br>FAN ON HOURS<br>(F) | BETWEEN OUTDOOR & ROOM AIR<br>FAN OFF HOURS<br>(F) | BETWEEN OUTDOOR & ROOM AIR<br>HEATING HOURS<br>(F) | BETWEEN OUTDOOR & ROOM AIR<br>ALL HOURS<br>(F) | BETWEEN OUTDOOR & ROOM AIR<br>ALL HOURS<br>(F) |                                    |
| JAN    | 66.18              | 67.66                | 65.94                | 66.18               | 0.00                 | -29.29                                         | -29.29                                            | 0.00                                               | 849.78                                             | 907.89                                         | -0.00002                                       |                                    |
| FEB    | 67.42              | 69.73                | 67.03                | 67.42               | 0.00                 | -23.45                                         | -23.45                                            | 0.00                                               | 560.53                                             | 657.03                                         | -0.00002                                       |                                    |
| MAR    | 68.81              | 70.42                | 67.56                | 68.81               | 0.00                 | -18.55                                         | -18.55                                            | 0.00                                               | 354.10                                             | 580.69                                         | -0.00003                                       |                                    |
| APR    | 70.96              | 71.55                | 69.14                | 70.96               | 0.00                 | -10.82                                         | -10.82                                            | 0.00                                               | 37.88                                              | 386.52                                         | -0.00002                                       |                                    |
| MAY    | 72.15              | 72.38                | 69.22                | 72.15               | 0.00                 | -4.93                                          | -4.93                                             | 0.00                                               | 17.73                                              | 288.74                                         | -0.00002                                       |                                    |
| JUN    | 73.71              | 73.71                | 73.71                | 73.71               | 0.00                 | 4.05                                           | 4.05                                              | 0.00                                               | 268.15                                             | 231.46                                         | -0.00002                                       |                                    |
| JUL    | 74.03              | 74.03                | 74.03                | 74.03               | 0.00                 | 4.22                                           | 4.22                                              | 0.00                                               | 199.22                                             | 199.22                                         | 0.00023                                        |                                    |
| AUG    | 73.72              | 73.72                | 73.72                | 73.72               | 0.00                 | 1.33                                           | 1.33                                              | 0.00                                               | 223.88                                             | 407.36                                         | -0.00001                                       |                                    |
| SEP    | 73.08              | 73.09                | 73.08                | 73.08               | 0.00                 | -0.68                                          | -0.68                                             | 0.00                                               | 72.17                                              | 407.36                                         | -0.00002                                       |                                    |
| OCT    | 70.87              | 71.50                | 68.79                | 70.87               | 0.00                 | -12.12                                         | -12.12                                            | 0.00                                               | 372.26                                             | 608.44                                         | -0.00002                                       |                                    |
| NOV    | 68.38              | 70.19                | 67.25                | 68.38               | 0.00                 | -20.25                                         | -20.25                                            | 0.00                                               | 751.85                                             | 841.76                                         | -0.00002                                       |                                    |
| DEC    | 66.71              | 68.13                | 66.46                | 66.71               | 0.00                 | -27.15                                         | -27.15                                            | 0.00                                               | 3016.30                                            | 5601.12                                        | 0.00001                                        |                                    |
| ANNUAL | 70.52              | 72.75                | 66.80                | 70.52               | 0.00                 | -11.42                                         | -11.42                                            | 0.00                                               |                                                    |                                                |                                                |                                    |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION FOR HALLS TRUTH OR CONSEQU, N  
 REPORT- SS-O TEMPERATURE SCATTER PLOT REGAHU

| HOUR     | 1AM | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 1PM | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | TOTAL |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| ABOVE 85 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     |
| 81-85    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     |
| 76-80    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     |
| 71-75    | 217 | 211 | 208 | 204 | 201 | 204 | 210 | 212 | 222 | 229 | 245 | 251 | 255 | 263 | 275 | 278 | 271 | 254 | 244 | 237 | 236 | 233 | 228 | 219 | 5607  |
| 66-70    | 148 | 154 | 157 | 161 | 164 | 161 | 155 | 153 | 143 | 136 | 120 | 114 | 110 | 102 | 90  | 87  | 94  | 111 | 121 | 128 | 129 | 132 | 137 | 146 | 3153  |
| 61-65    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     |
| BELOW 60 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION FOR HALLPLENUM TRUTH OR CONSEQU, N  
 REPORT- SS-O TEMPERATURE SCATTER PLOT REGAHU

| HOUR     | 1AM | 2  | 3  | 4   | 5   | 6   | 7   | 8   | 9   | 10 | 11 | 12  | 1PM | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9  | 10 | 11 | 12   | TOTAL |
|----------|-----|----|----|-----|-----|-----|-----|-----|-----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|------|-------|
| ABOVE 85 | 0   | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0    | 0     |
| 81-85    | 0   | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0    | 0     |
| 76-80    | 95  | 91 | 90 | 82  | 76  | 72  | 71  | 73  | 78  | 92 | 96 | 99  | 99  | 107 | 109 | 107 | 108 | 104 | 102 | 100 | 98 | 98 | 97 | 96   | 2240  |
| 71-75    | 94  | 98 | 97 | 103 | 106 | 108 | 108 | 106 | 106 | 95 | 96 | 100 | 94  | 93  | 96  | 94  | 97  | 98  | 98  | 99  | 97 | 96 | 96 | 96   | 2372  |
| 66-70    | 96  | 96 | 95 | 95  | 94  | 94  | 93  | 94  | 91  | 90 | 93 | 94  | 101 | 103 | 106 | 106 | 107 | 105 | 103 | 97  | 96 | 95 | 95 | 93   | 2333  |
| 61-65    | 76  | 74 | 76 | 78  | 82  | 84  | 86  | 85  | 84  | 81 | 75 | 72  | 62  | 58  | 54  | 53  | 56  | 59  | 67  | 69  | 72 | 74 | 76 | 1707 |       |
| BELOW 60 | 4   | 6  | 6  | 7   | 7   | 7   | 6   | 6   | 5   | 4  | 3  | 3   | 2   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3  | 3  | 4  | 108  |       |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION CONFRAHNU TRUTH OR CONSEQU, N  
 REPORT- SS-A SYSTEM MONTHLY LOADS SUMMARY FOR

| C O O L I N G |                       |                |                  | H E A T I N G |                                |                       |                |                  |               |                                |                         | E L E C           |  |  |  |
|---------------|-----------------------|----------------|------------------|---------------|--------------------------------|-----------------------|----------------|------------------|---------------|--------------------------------|-------------------------|-------------------|--|--|--|
| MONTH         | COOLING ENERGY (MBTU) | TIME OF MAX DY | DRY-BULB TEMP HR | WET-BULB TEMP | MAXIMUM COOLING LOAD (KBTU/HR) | HEATING ENERGY (MBTU) | TIME OF MAX DY | DRY-BULB TEMP HR | WET-BULB TEMP | MAXIMUM HEATING LOAD (KBTU/HR) | ELECTRICAL ENERGY (KWH) | MAXIMUM LOAD (KW) |  |  |  |
| JAN           | 0.84672               | 21             | 12               | 56.F          | 38.F                           | 5.406                 | 0.000          |                  |               | 0.000                          | 248.                    | 1.278             |  |  |  |
| FEB           | 0.87625               | 18             | 12               | 62.F          | 45.F                           | 5.500                 | 0.000          |                  |               | 0.000                          | 224.                    | 1.278             |  |  |  |
| MAR           | 1.08429               | 30             | 12               | 73.F          | 53.F                           | 5.558                 | 0.000          |                  |               | 0.000                          | 248.                    | 1.278             |  |  |  |
| APR           | 1.23204               | 22             | 12               | 84.F          | 50.F                           | 5.648                 | 0.000          |                  |               | 0.000                          | 240.                    | 1.278             |  |  |  |
| MAY           | 1.38165               | 10             | 12               | 82.F          | 51.F                           | 5.659                 | 0.000          |                  |               | 0.000                          | 248.                    | 1.278             |  |  |  |
| JUN           | 1.47795               | 29             | 12               | 87.F          | 63.F                           | 5.728                 | 0.000          |                  |               | 0.000                          | 240.                    | 1.278             |  |  |  |
| JUL           | 1.56652               | 27             | 12               | 88.F          | 65.F                           | 5.764                 | 0.000          |                  |               | 0.000                          | 248.                    | 1.278             |  |  |  |
| ADJ           | 1.54302               | 1              | 12               | 92.F          | 67.F                           | 5.811                 | 0.000          |                  |               | 0.000                          | 248.                    | 1.278             |  |  |  |
| SEP           | 1.42242               | 8              | 12               | 82.F          | 63.F                           | 5.694                 | 0.000          |                  |               | 0.000                          | 240.                    | 1.278             |  |  |  |
| OCT           | 1.26640               | 7              | 12               | 75.F          | 53.F                           | 5.611                 | 0.000          |                  |               | 0.000                          | 248.                    | 1.278             |  |  |  |
| NOV           | 1.01403               | 10             | 12               | 67.F          | 48.F                           | 5.540                 | 0.000          |                  |               | 0.000                          | 240.                    | 1.278             |  |  |  |
| DEC           | 0.90256               | 9              | 12               | 52.F          | 40.F                           | 5.432                 | 0.000          |                  |               | 0.000                          | 248.                    | 1.278             |  |  |  |
| TOTAL MAX     | 14.616                |                |                  |               | 5.811                          | 0.000                 |                |                  |               | 0.000                          | 2924.                   | 1.278             |  |  |  |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION CONFRAHNU TRUTH OR CONSEQU, N  
 REPORT- SS-C SYSTEM MONTHLY LOAD HOURS FOR

| N U M B E R O F H O U R S |                    |                    |                                 |                |                      |                      |               |                |                     |                             |                                        | C O I N C I D E N T L O A D S      |  |  |  |
|---------------------------|--------------------|--------------------|---------------------------------|----------------|----------------------|----------------------|---------------|----------------|---------------------|-----------------------------|----------------------------------------|------------------------------------|--|--|--|
| MONTH                     | HOURS COOLING LOAD | HOURS HEATING LOAD | HOURS COINCIDENT COOL-HEAT LOAD | HOURS FLOATING | HOURS HEATING AVAIL. | HOURS COOLING AVAIL. | HOURS FANS ON | HOURS CYCLE ON | HOURS NIGHT VENTING | HOURS FLOATING WHEN FANS ON | HEATING LOAD AT COOLING PEAK (KBTU/HR) | ELECTRIC LOAD AT COOLING PEAK (KW) |  |  |  |
| JAN                       | 675                | 0                  | 0                               | 69             | 0                    | 675                  | 744           | 0              | 0                   | 69                          | 0.000                                  | 1.278                              |  |  |  |
| FEB                       | 616                | 0                  | 0                               | 56             | 0                    | 616                  | 672           | 0              | 0                   | 56                          | 0.000                                  | 1.278                              |  |  |  |
| MAR                       | 682                | 0                  | 0                               | 62             | 0                    | 682                  | 744           | 0              | 0                   | 62                          | 0.000                                  | 1.278                              |  |  |  |
| APR                       | 660                | 0                  | 0                               | 60             | 0                    | 660                  | 720           | 0              | 0                   | 60                          | 0.000                                  | 1.278                              |  |  |  |
| MAY                       | 682                | 0                  | 0                               | 62             | 0                    | 682                  | 744           | 0              | 0                   | 62                          | 0.000                                  | 1.278                              |  |  |  |
| JUN                       | 660                | 0                  | 0                               | 60             | 0                    | 660                  | 720           | 0              | 0                   | 60                          | 0.000                                  | 1.278                              |  |  |  |
| JUL                       | 684                | 0                  | 0                               | 60             | 0                    | 684                  | 744           | 0              | 0                   | 60                          | 0.000                                  | 1.278                              |  |  |  |
| ADJ                       | 690                | 0                  | 0                               | 54             | 0                    | 690                  | 744           | 0              | 0                   | 54                          | 0.000                                  | 1.278                              |  |  |  |
| SEP                       | 661                | 0                  | 0                               | 59             | 0                    | 661                  | 720           | 0              | 0                   | 59                          | 0.000                                  | 1.278                              |  |  |  |
| OCT                       | 682                | 0                  | 0                               | 62             | 0                    | 682                  | 744           | 0              | 0                   | 62                          | 0.000                                  | 1.278                              |  |  |  |
| NOV                       | 660                | 0                  | 0                               | 60             | 0                    | 660                  | 720           | 0              | 0                   | 60                          | 0.000                                  | 1.278                              |  |  |  |
| DEC                       | 682                | 0                  | 0                               | 62             | 0                    | 682                  | 744           | 0              | 0                   | 62                          | 0.000                                  | 1.278                              |  |  |  |
| ANNUAL                    | 8034               | 0                  | 0                               | 726            | 0                    | 8034                 | 8760          | 0              | 0                   | 726                         |                                        |                                    |  |  |  |

EMC ENGINEERS INC. EZDOE ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15:8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION CONFRAHU TRUTH OR CONSEQU, N  
 REPORT- SS-K SPACE TEMPERATURE SUMMARY

| MONTH  | AVERAGE SPACE TEMP |                   |                   |                  |                   | AVERAGE TEMPERATURE DIFFERENCE |                       |                       |                       |                   | SUMMED TEMP DIFFERENCE |                   |                   |                          |                  | HUMIDITY RATIO |  |
|--------|--------------------|-------------------|-------------------|------------------|-------------------|--------------------------------|-----------------------|-----------------------|-----------------------|-------------------|------------------------|-------------------|-------------------|--------------------------|------------------|----------------|--|
|        | ALL HOURS (F)      | COOLING HOURS (F) | HEATING HOURS (F) | FAN ON HOURS (F) | FAN OFF HOURS (F) | OUTDOOR& ROOM AIR (F)          | OUTDOOR& ROOM AIR (F) | OUTDOOR& ROOM AIR (F) | OUTDOOR& ROOM AIR (F) | HEATING HOURS (F) | HEATING HOURS (F)      | HEATING HOURS (F) | HEATING HOURS (F) | OUTDOOR AND ROOM AIR (F) | (FRAC. OR MULT.) |                |  |
| JAN    | 68.35              | 68.37             |                   | 68.35            | 0.00              | -31.46                         | -31.46                | 0.00                  |                       |                   |                        |                   |                   | 975.13                   | 0.00000          |                |  |
| FEB    | 69.15              | 69.16             |                   | 69.15            | 0.00              | -25.17                         | -25.17                | 0.00                  |                       |                   |                        |                   |                   | 705.36                   | 0.00000          |                |  |
| MAR    | 69.82              | 69.82             |                   | 69.82            | 0.00              | -19.56                         | -19.56                | 0.00                  |                       |                   |                        |                   |                   | 612.61                   | 0.00000          |                |  |
| APR    | 70.96              | 70.97             |                   | 70.96            | 0.00              | -10.82                         | -10.82                | 0.00                  |                       |                   |                        |                   |                   | 393.06                   | 0.00000          |                |  |
| MAY    | 71.58              | 71.68             |                   | 71.68            | 0.00              | -4.46                          | -4.46                 | 0.00                  |                       |                   |                        |                   |                   | 293.31                   | 0.00000          |                |  |
| JUN    | 72.71              | 72.71             |                   | 72.71            | 0.00              | 5.05                           | 5.05                  | 0.00                  |                       |                   |                        |                   |                   | 281.93                   | 0.00000          |                |  |
| JUL    | 73.03              | 73.04             |                   | 73.03            | 0.00              | 5.22                           | 5.22                  | 0.00                  |                       |                   |                        |                   |                   | 246.84                   | 0.00000          |                |  |
| AGO    | 72.78              | 72.79             |                   | 72.78            | 0.00              | 2.27                           | 2.27                  | 0.00                  |                       |                   |                        |                   |                   | 207.02                   | 0.00000          |                |  |
| SEP    | 72.26              | 72.26             |                   | 72.26            | 0.00              | 0.15                           | 0.15                  | 0.00                  |                       |                   |                        |                   |                   | 228.54                   | 0.00000          |                |  |
| OCT    | 70.88              | 70.89             |                   | 70.88            | 0.00              | -12.13                         | -12.13                | 0.00                  |                       |                   |                        |                   |                   | 413.25                   | 0.00000          |                |  |
| NOV    | 69.55              | 69.56             |                   | 69.55            | 0.00              | -21.43                         | -21.43                | 0.00                  |                       |                   |                        |                   |                   | 643.74                   | 0.00000          |                |  |
| DEC    | 68.67              | 68.68             |                   | 68.67            | 0.00              | -29.11                         | -29.11                | 0.00                  |                       |                   |                        |                   |                   | 902.45                   | 0.00000          |                |  |
| ANNUAL | 70.83              | 70.84             | 0.00              | 70.83            | 0.00              | -11.73                         | -11.73                | 0.00                  |                       |                   |                        |                   |                   | 5903.25                  | 0.00000          |                |  |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15:8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION CONFRAHU FOR CONFERENCE TRUTH OR CONSEQU, N  
 REPORT- SS-O TEMPERATURE SCATTER PLOT

| HOUR     | TOTAL HOURS AT TEMPERATURE LEVEL AND TIME OF DAY |     |     |     |     |     |     |     |     |     |     |     | TOTAL |
|----------|--------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
|          | 1AM                                              | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |       |
| ABOVE 85 | 0                                                | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     |
| 81-85    | 0                                                | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     |
| 76-80    | 0                                                | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     |
| 71-75    | 365                                              | 365 | 365 | 365 | 365 | 365 | 365 | 181 | 210 | 170 | 210 | 365 | 365   |
| 66-70    | 0                                                | 0   | 0   | 0   | 0   | 0   | 0   | 184 | 155 | 195 | 155 | 0   | 0     |
| 61-65    | 0                                                | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     |
| BELOW 60 | 0                                                | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15:8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION CONFRAHU FOR CONFPLNUM TRUTH OR CONSEQU, N  
 REPORT- SS-O TEMPERATURE SCATTER PLOT

| HOUR     | TOTAL HOURS AT TEMPERATURE LEVEL AND TIME OF DAY |     |     |     |     |     |     |     |     |     |     |     | TOTAL |
|----------|--------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
|          | 1AM                                              | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |       |
| ABOVE 85 | 0                                                | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     |
| 81-85    | 0                                                | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     |
| 76-80    | 29                                               | 25  | 22  | 19  | 17  | 12  | 11  | 14  | 27  | 24  | 46  | 43  | 62    |
| 71-75    | 149                                              | 152 | 153 | 156 | 157 | 162 | 162 | 159 | 150 | 150 | 142 | 142 | 128   |
| 66-70    | 150                                              | 150 | 152 | 147 | 145 | 142 | 143 | 141 | 137 | 156 | 134 | 149 | 141   |
| 61-65    | 37                                               | 38  | 38  | 43  | 46  | 49  | 49  | 51  | 51  | 35  | 43  | 31  | 34    |
| BELOW 60 | 0                                                | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
 hrly-Ozone = HOURLY-REPORT TRUTH OR CONSEQU. N

MMDDHH TOWER\_1 TOWER\_1 TOWER\_1 TOWER\_1

| ZONE  | THERMOST TEMP | HTG SET SETPOINT | CLG SET POINT |
|-------|---------------|------------------|---------------|
|       | F             | F                | F             |
| 313 1 | 39.9          | -999.0           | -999.0        |
| 313 2 | 39.9          | -999.0           | -999.0        |
| 313 3 | 38.3          | -999.0           | -999.0        |
| 313 4 | 38.0          | -999.0           | -999.0        |
| 313 5 | 35.9          | -999.0           | -999.0        |
| 313 6 | 37.2          | -999.0           | -999.0        |
| 313 7 | 40.9          | -999.0           | -999.0        |
| 313 8 | 40.9          | -999.0           | -999.0        |
| 313 9 | 40.9          | -999.0           | -999.0        |
| 31310 | 41.5          | -999.0           | -999.0        |
| 31311 | 42.1          | -999.0           | -999.0        |
| 31312 | 43.7          | -999.0           | -999.0        |
| 31313 | 43.0          | -999.0           | -999.0        |
| 31314 | 43.2          | -999.0           | -999.0        |
| 31315 | 45.3          | -999.0           | -999.0        |
| 31316 | 45.7          | -999.0           | -999.0        |
| 31317 | 47.3          | -999.0           | -999.0        |
| 31318 | 45.6          | -999.0           | -999.0        |
| 31319 | 45.3          | -999.0           | -999.0        |
| 31320 | 43.4          | -999.0           | -999.0        |
| 31321 | 44.3          | -999.0           | -999.0        |
| 31322 | 44.4          | -999.0           | -999.0        |
| 31323 | 43.2          | -999.0           | -999.0        |
| 31324 | 46.6          | -999.0           | -999.0        |

DAILY SUMMARY (MAR 13)

|    |        |          |          |         |
|----|--------|----------|----------|---------|
| MN | 35.9   | -999.0   | -999.0   | 999.0   |
| MX | 47.3   | -999.0   | -999.0   | 999.0   |
| SM | 1016.3 | -23976.0 | -23976.0 | 23976.0 |
| AV | 42.3   | -999.0   | -999.0   | 999.0   |

MONTHLY SUMMARY (MAR)

|    |        |          |          |         |
|----|--------|----------|----------|---------|
| MN | 35.9   | -999.0   | -999.0   | 999.0   |
| MX | 47.3   | -999.0   | -999.0   | 999.0   |
| SM | 1016.3 | -23976.0 | -23976.0 | 23976.0 |
| AV | 42.3   | -999.0   | -999.0   | 999.0   |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/ 7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
 hrly-Ozone = HOURLY-REPORT TRUTH OR CONSEQU. N

MMDDHH TOWER\_1 TOWER\_1 TOWER\_1 TOWER\_1

| ZONE   | THERMOST TEMP | HTG SET SETPOINT | CLG SET POINT |
|--------|---------------|------------------|---------------|
|        | F             | F                | F             |
| 9 8 1  | 65.1          | 68.0             | 68.0          |
| 9 8 2  | 64.9          | 68.0             | 68.0          |
| 9 8 3  | 63.7          | 68.0             | 68.0          |
| 9 8 4  | 62.0          | 68.0             | 68.0          |
| 9 8 5  | 63.1          | 68.0             | 68.0          |
| 9 8 6  | 60.3          | 68.0             | 68.0          |
| 9 8 7  | 62.9          | 68.0             | 68.0          |
| 9 8 8  | 65.0          | 68.0             | 68.0          |
| 9 8 9  | 66.0          | 68.0             | 68.0          |
| 9 8 10 | 67.9          | 68.0             | 68.0          |
| 9 8 11 | 68.4          | 68.0             | 68.0          |
| 9 8 12 | 70.1          | 68.0             | 68.0          |
| 9 8 13 | 68.4          | 68.0             | 68.0          |
| 9 8 14 | 72.1          | 68.0             | 68.0          |
| 9 8 15 | 69.7          | 68.0             | 68.0          |
| 9 8 16 | 72.1          | 68.0             | 68.0          |
| 9 8 17 | 68.2          | 68.0             | 68.0          |
| 9 8 18 | 67.3          | 68.0             | 68.0          |
| 9 8 19 | 67.6          | 68.0             | 68.0          |
| 9 8 20 | 67.4          | 68.0             | 68.0          |
| 9 8 21 | 66.8          | 68.0             | 68.0          |
| 9 8 22 | 65.7          | 68.0             | 68.0          |
| 9 8 23 | 65.4          | 68.0             | 68.0          |
| 9 8 24 | 64.7          | 68.0             | 68.0          |

DAILY SUMMARY (SEP 8)

|    |        |        |        |        |
|----|--------|--------|--------|--------|
| MN | 60.3   | 68.0   | 68.0   | 72.0   |
| MX | 72.1   | 72.0   | 68.0   | 72.0   |
| SM | 1594.5 | 1640.0 | 1632.0 | 1728.0 |
| AV | 66.4   | 68.3   | 68.0   | 72.0   |

MONTHLY SUMMARY (SEP)

|    |        |        |        |        |
|----|--------|--------|--------|--------|
| MN | 60.3   | 68.0   | 68.0   | 72.0   |
| MX | 72.1   | 72.0   | 68.0   | 72.0   |
| SM | 1594.5 | 1640.0 | 1632.0 | 1728.0 |
| AV | 66.4   | 68.3   | 68.0   | 72.0   |

YEARLY SUMMARY

|    |        |          |          |         |
|----|--------|----------|----------|---------|
| MN | 35.9   | -999.0   | -999.0   | 72.0    |
| MX | 72.1   | 72.0     | 68.0     | 999.0   |
| SM | 2610.8 | -22336.0 | -22344.0 | 25704.0 |
| AV | 54.4   | -465.3   | -465.5   | 535.5   |

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU. N  
 hrly-sys1 = HOURLY-REPORT  
 -----

| MMDDHH                 | 1TOWER                        | 1TOWER                        | 1TOWER                        | 1TOWER                    | 1TOWER                    | 1TOWER                           |
|------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------|---------------------------|----------------------------------|
|                        | TOT HTG<br>COIL PWR<br>BTU/HR | TOT CLG<br>COIL PWR<br>BTU/HR | TOT ZONE<br>CLG PWR<br>BTU/HR | HTG COIL<br>AIR TEMP<br>F | CLG COIL<br>AIR TEMP<br>F | TOT SYST<br>FLOWRATE<br>CUFT/MIN |
|                        | ---(5)                        | ---(6)                        | ---(8)                        | ---(1)                    | ---(2)                    | ---(17)                          |
| 313 1                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 313 2                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 313 3                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 313 4                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 313 5                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 313 6                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 313 7                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 313 8                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 313 9                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 31310                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 31311                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 31312                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 31313                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 31314                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 31315                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 31316                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 31317                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 31318                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 31319                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 31320                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 31321                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 31322                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 31323                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| 31324                  | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| DAILY SUMMARY (MAR 13) |                               |                               |                               |                           |                           |                                  |
| MN                     | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| MX                     | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| SM                     | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| AV                     | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| MONTHLY SUMMARY (MAR)  |                               |                               |                               |                           |                           |                                  |
| MN                     | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| MX                     | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| SM                     | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| AV                     | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 SDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU. N  
 hrly-sys1 = HOURLY-REPORT  
 -----

| MMDDHH                | 1TOWER                        | 1TOWER                        | 1TOWER                        | 1TOWER                    | 1TOWER                    | 1TOWER                           |
|-----------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------|---------------------------|----------------------------------|
|                       | TOT HTG<br>COIL PWR<br>BTU/HR | TOT CLG<br>COIL PWR<br>BTU/HR | TOT ZONE<br>CLG PWR<br>BTU/HR | HTG COIL<br>AIR TEMP<br>F | CLG COIL<br>AIR TEMP<br>F | TOT SYST<br>FLOWRATE<br>CUFT/MIN |
|                       | ---(5)                        | ---(6)                        | ---(8)                        | ---(1)                    | ---(2)                    | ---(17)                          |
| 9 8 1                 | 0.                            | 25182.                        | 0.                            | 61.0                      | 59.5                      | 2400.                            |
| 9 8 2                 | 0.                            | 24549.                        | 0.                            | 60.3                      | 58.8                      | 2400.                            |
| 9 8 3                 | 0.                            | 24879.                        | 0.                            | 59.2                      | 57.6                      | 2400.                            |
| 9 8 4                 | 0.                            | 27853.                        | 0.                            | 57.3                      | 55.8                      | 2400.                            |
| 9 8 5                 | 0.                            | 18722.                        | 0.                            | 57.0                      | 55.5                      | 2400.                            |
| 9 8 6                 | 0.                            | 18901.                        | 0.                            | 57.0                      | 55.5                      | 2400.                            |
| 9 8 7                 | 0.                            | 23298.                        | 0.                            | 58.9                      | 57.4                      | 2400.                            |
| 9 8 8                 | 0.                            | 26155.                        | 0.                            | 62.5                      | 61.0                      | 2400.                            |
| 9 8 9                 | 0.                            | 30408.                        | 0.                            | 64.4                      | 62.9                      | 2400.                            |
| 9 8 10                | 0.                            | 33518.                        | 0.                            | 66.9                      | 65.3                      | 2400.                            |
| 9 8 11                | 0.                            | 35078.                        | 0.                            | 67.1                      | 65.6                      | 2400.                            |
| 9 8 12                | 0.                            | 39546.                        | 0.                            | 69.9                      | 68.3                      | 2400.                            |
| 9 8 13                | 0.                            | 39698.                        | 0.                            | 68.9                      | 67.3                      | 2400.                            |
| 9 8 14                | 0.                            | 42071.                        | 0.                            | 70.6                      | 69.1                      | 2400.                            |
| 9 8 15                | 0.                            | 40639.                        | 0.                            | 69.3                      | 67.7                      | 2400.                            |
| 9 8 16                | 0.                            | 40033.                        | 0.                            | 69.6                      | 68.0                      | 2400.                            |
| 9 8 17                | 0.                            | 35375.                        | 0.                            | 67.0                      | 65.4                      | 2400.                            |
| 9 8 18                | 0.                            | 33007.                        | 0.                            | 63.3                      | 61.7                      | 2400.                            |
| 9 8 19                | 0.                            | 32973.                        | 0.                            | 63.3                      | 61.7                      | 2400.                            |
| 9 8 20                | 0.                            | 30006.                        | 0.                            | 63.7                      | 62.1                      | 2400.                            |
| 9 8 21                | 0.                            | 27233.                        | 0.                            | 63.0                      | 61.4                      | 2400.                            |
| 9 8 22                | 0.                            | 25818.                        | 0.                            | 61.7                      | 60.1                      | 2400.                            |
| 9 8 23                | 0.                            | 25135.                        | 0.                            | 61.0                      | 59.5                      | 2400.                            |
| 9 8 24                | 0.                            | 24549.                        | 0.                            | 60.3                      | 58.8                      | 2400.                            |
| DAILY SUMMARY (SEP 8) |                               |                               |                               |                           |                           |                                  |
| MN                    | 0.                            | 18722.                        | 0.                            | 57.0                      | 55.5                      | 2400.                            |
| MX                    | 0.                            | 42071.                        | 0.                            | 70.6                      | 69.1                      | 2400.                            |
| SM                    | 0.                            | 724629.                       | 0.                            | 1523.1                    | 1486.1                    | 57600.                           |
| AV                    | 0.                            | 30193.                        | 0.                            | 63.5                      | 61.9                      | 2400.                            |
| MONTHLY SUMMARY (SEP) |                               |                               |                               |                           |                           |                                  |
| MN                    | 0.                            | 18722.                        | 0.                            | 57.0                      | 55.5                      | 2400.                            |
| MX                    | 0.                            | 42071.                        | 0.                            | 70.6                      | 69.1                      | 2400.                            |
| SM                    | 0.                            | 724629.                       | 0.                            | 1523.1                    | 1486.1                    | 57600.                           |
| AV                    | 0.                            | 30193.                        | 0.                            | 63.5                      | 61.9                      | 2400.                            |
| YEARLY SUMMARY        |                               |                               |                               |                           |                           |                                  |
| MN                    | 0.                            | 0.                            | 0.                            | 0.0                       | 0.0                       | 0.                               |
| MX                    | 0.                            | 42071.                        | 0.                            | 70.6                      | 69.1                      | 2400.                            |
| SM                    | 0.                            | 724629.                       | 0.                            | 1523.1                    | 1486.1                    | 57600.                           |
| AV                    | 0.                            | 15096.                        | 0.                            | 31.7                      | 31.0                      | 1200.                            |

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 PDL RUN 1  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU. N  
 REPORT- PV-A EQUIPMENT SIZES  
 -----

| EQUIPMENT     | NUMBER<br>SIZE INSTD<br>(MBTU/H) | NUMBER<br>SIZE INSTD<br>AVAIL (MBTU/H) |
|---------------|----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| HERM-REC-CHLR | 0.400                            | 2                                      | 2                                      | 2                                      | 2                                      | 2                                      | 2                                      |

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
 REPORT- PS-A PLANT ENERGY UTILIZATION SUMMARY  
 -----

DOE-2.1D 8/ 7/1995 15: 8:11 PDL RUN 1  
 TRUTH OR CONSEQU. N

| MONTH | S I T E   E N E R G Y |                      |                     |                 |                         |                      |                      |                      |                       |                     |                     |                      |                        | * SOURCE |
|-------|-----------------------|----------------------|---------------------|-----------------|-------------------------|----------------------|----------------------|----------------------|-----------------------|---------------------|---------------------|----------------------|------------------------|----------|
|       | 2 TOTAL HEAT LOAD     | 3 TOTAL COOLING LOAD | 4 TOTAL ELECTR LOAD | 5 RCVRED ENERGY | 6 WASTED RCVRABL ENERGY | 7 FUEL INPUT COOLING | 8 ELEC INPUT COOLING | 9 FUEL INPUT HEATING | 10 ELEC INPUT HEATING | 11 FUEL INPUT ELECT | 12 TOTAL FUEL INPUT | 13 TOTAL SITE ENERGY | 14 TOTAL SOURCE ENERGY |          |
| JAN   | 136.3                 | 225.7                | 285.2<br>83.5E      | 0.0             | 0.0                     | 0.0                  | 107.9<br>31.6E       | 0.0                  | 0.0<br>0.0E           | 0.0                 | 0.0                 | 285.2                | * 285.2                |          |
| FEB   | 121.5                 | 204.0                | 249.9<br>73.2E      | 0.0             | 0.0                     | 0.0                  | 97.5<br>28.6E        | 0.0                  | 0.0<br>0.0E           | 0.0                 | 0.0                 | 249.9                | * 249.9                |          |
| MAR   | 133.1                 | 228.3                | 272.8<br>79.9E      | 0.0             | 0.0                     | 0.0                  | 108.4<br>31.7E       | 0.0                  | 0.0<br>0.0E           | 0.0                 | 0.0                 | 272.8                | * 272.8                |          |
| APR   | 127.0                 | 253.4                | 274.5<br>60.4E      | 0.0             | 0.0                     | 0.0                  | 115.2<br>33.8E       | 0.0                  | 0.0<br>0.0E           | 0.0                 | 0.0                 | 274.5                | * 274.5                |          |
| MAY   | 129.9                 | 287.3                | 302.7<br>88.7E      | 0.0             | 0.0                     | 0.0                  | 138.3<br>40.5E       | 0.0                  | 0.0<br>0.0E           | 0.0                 | 0.0                 | 302.7                | * 302.7                |          |
| JUN   | 124.0                 | 319.4                | 344.1<br>100.8E     | 0.0             | 0.0                     | 0.0                  | 184.4<br>54.0E       | 0.0                  | 0.0<br>0.0E           | 0.0                 | 0.0                 | 344.1                | * 344.1                |          |
| JUL   | 127.3                 | 336.4                | 360.7<br>105.6E     | 0.0             | 0.0                     | 0.0                  | 196.8<br>57.6E       | 0.0                  | 0.0<br>0.0E           | 0.0                 | 0.0                 | 360.7                | * 360.7                |          |
| AUG   | 127.0                 | 329.2                | 346.3<br>101.4E     | 0.0             | 0.0                     | 0.0                  | 181.2<br>53.1E       | 0.0                  | 0.0<br>0.0E           | 0.0                 | 0.0                 | 346.3                | * 346.3                |          |
| SEP   | 124.9                 | 302.7                | 314.8<br>92.2E      | 0.0             | 0.0                     | 0.0                  | 155.6<br>45.6E       | 0.0                  | 0.0<br>0.0E           | 0.0                 | 0.0                 | 314.8                | * 314.8                |          |
| OCT   | 131.1                 | 260.8                | 278.6<br>81.6E      | 0.0             | 0.0                     | 0.0                  | 114.3<br>33.5E       | 0.0                  | 0.0<br>0.0E           | 0.0                 | 0.0                 | 278.6                | * 278.6                |          |
| NOV   | 129.2                 | 221.3                | 263.3<br>77.1E      | 0.0             | 0.0                     | 0.0                  | 104.6<br>30.6E       | 0.0                  | 0.0<br>0.0E           | 0.0                 | 0.0                 | 263.3                | * 263.3                |          |
| DEC   | 135.1                 | 225.5                | 280.5<br>82.1E      | 0.0             | 0.0                     | 0.0                  | 107.9<br>31.6E       | 0.0                  | 0.0<br>0.0E           | 0.0                 | 0.0                 | 280.5                | * 280.5                |          |
|       | 1546.4                | 3193.9               | 3573.4<br>1046.5E   | 0.0             | 0.0                     | 0.0                  | 1612.2<br>472.2E     | 0.0                  | 0.0<br>0.0E           | 0.0                 | 0.0                 | 3573.4               | * 3573.4               |          |

NOTE-- ALL ENTRIES ARE IN MBTU EXCEPT  
 ENTRIES FOLLOWED BY E ARE IN MWH (THOUSANDS OF KWH)

-----  
 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
 REPORT- PS-B MONTHLY PEAK AND TOTAL ENERGY USE  
 -----

DOE-2.1D 8/ 7/1995 15: 8:11 PDL RUN 1  
 TRUTH OR CONSEQU. N

| MO  | UTILITY-             | ELECTRICITY |
|-----|----------------------|-------------|
| JAN | TOTAL (MBTU)         | 285.200     |
|     | PEAK (KBTU)          | 463.528     |
|     | DY/HR                | 11/ 6       |
| FEB | TOTAL (MBTU)         | 249.904     |
|     | PEAK (KBTU)          | 425.794     |
|     | DY/HR                | 3/ 6        |
| MAR | TOTAL (MBTU)         | 272.826     |
|     | PEAK (KBTU)          | 429.078     |
|     | DY/HR                | 14/ 6       |
| APR | TOTAL (MBTU)         | 274.472     |
|     | PEAK (KBTU)          | 612.297     |
|     | DY/HR                | 22/15       |
| MAY | TOTAL (MBTU)         | 302.693     |
|     | PEAK (KBTU)          | 611.021     |
|     | DY/HR                | 9/17        |
| JUN | TOTAL (MBTU)         | 344.078     |
|     | PEAK (KBTU)          | 643.065     |
|     | DY/HR                | 22/17       |
| JUL | TOTAL (MBTU)         | 360.698     |
|     | PEAK (KBTU)          | 647.350     |
|     | DY/HR                | 1/17        |
| AUG | TOTAL (MBTU)         | 346.303     |
|     | PEAK (KBTU)          | 639.052     |
|     | DY/HR                | 1/17        |
| SEP | TOTAL (MBTU)         | 314.834     |
|     | PEAK (KBTU)          | 612.207     |
|     | DY/HR                | 1/16        |
| OCT | TOTAL (MBTU)         | 278.588     |
|     | PEAK (KBTU)          | 590.171     |
|     | DY/HR                | 7/16        |
| NOV | TOTAL (MBTU)         | 263.279     |
|     | PEAK (KBTU)          | 424.847     |
|     | DY/HR                | 22/ 6       |
| DEC | TOTAL (MBTU)         | 280.481     |
|     | PEAK (KBTU)          | 428.507     |
|     | DY/HR                | 16/ 6       |
|     | ONE YEAR<br>USE/PEAK | 3573.357    |
|     |                      | 647.350     |

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
 REPORT- PS-C EQUIPMENT PART LOAD OPERATION

DOE-2.1D 8/ 7/1995 15: 8:11 PDL RUN 1  
 TRUTH OR CONSEQU, N

| EQUIPMENT     | HOURS AT PERCENT PART LOAD RATIO |    |    |    |    |    |      |      |     |     | TOTAL HOURS | ANNUAL LOAD (MBTU) | FALSE LOAD (MBTU) | ELEC USED (MBTU) | THERMAL USED (MBTU) |    |    |      |        |        |        |     |
|---------------|----------------------------------|----|----|----|----|----|------|------|-----|-----|-------------|--------------------|-------------------|------------------|---------------------|----|----|------|--------|--------|--------|-----|
|               | 0                                | -- | 10 | -- | 20 | -- | 30   | --   | 40  | --  | 50          | --                 | 60                | --               | 70                  | -- | 80 | --   | 90     | --     | 100    | --  |
| HERM-REC-CHLR | 0                                | 0  | 0  | 0  | 0  | 0  | 1396 | 4394 | 790 | 904 | 1276        | 0                  | 0                 | 0                | 0                   | 0  | 0  | 8760 | 3193.9 | 1010.4 | 1568.9 | 0.0 |

HOT LOOP CIRCULATION PUMP ELECTRICAL USE = 0.0 MBTU  
 COLD LOOP CIRCULATION PUMP ELECTRICAL USE = 43.3 MBTU

NOTES TO TABLE

- 1) THE FIRST PART LOAD ENTRY FOR EACH PIECE OF EQUIPMENT IS THE HOURLY LOAD DIVIDED BY THE HOURLY OPERATING CAPACITY
- 2) THE SECOND PART LOAD ENTRY FOR EACH PIECE OF EQUIPMENT IS THE HOURLY LOAD DIVIDED BY THE TOTAL INSTALLED CAPACITY

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC  
 DENVER, CO 80227 GEODSS SITE DOE EVALUATION  
 REPORT- BEPS ESTIMATED BUILDING ENERGY PERFORMANCE

DOE-2.1D 8/ 7/1995 15: 8:11 PDL RUN 1  
 TRUTH OR CONSEQU, N

| ENERGY TYPE<br>IN SITE MBTU | CATEGORY OF USE | ELECTRICITY |
|-----------------------------|-----------------|-------------|
| SPACE HEAT                  | 55.12           |             |
| SPACE COOL                  | 1568.95         |             |
| HVAC AUX                    | 426.63          |             |
| DOM HOT WTR                 | 0.00            |             |
| AUX SOLAR                   | 0.00            |             |
| LIGHTS                      | 288.88          |             |
| VERT TRANS                  | 0.00            |             |
| MISC EQUIP                  | 1233.86         |             |
| TOTAL                       | 3573.45         |             |

TOTAL SITE ENERGY 3573.36 MBTU 313.5 KBTU/SQFT-YR GROSS-AREA 313.5 KBTU/SQFT-YR NET-AREA  
 TOTAL SOURCE ENERGY 3573.36 MBTU 313.5 KBTU/SQFT-YR GROSS-AREA 313.5 KBTU/SQFT-YR NET-AREA  
 PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4  
 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0  
 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED  
 ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

**PEAK COOLING LOAD 147.78 KBTU/H**



PEAK HEATING LOAD 349.99 KBTU/H















**TOTAL SITE ELECTRICITY ENERGY USE 3573.44 MBTU**





**APPENDIX E**

**PROJECT DOCUMENTATION**

| 1. COMPONENT<br><b>AIR FORCE</b>                                                                                                                                                                                                                                                                                                                                         | <b>FY 1995 MILITARY CONSTRUCTION PROJECT DATA</b> |                                                             |                                       | 2. DATE<br><b>15-Nov-95</b> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|---------------------------------------|-----------------------------|
| 3. INSTALLATION AND LOCATION<br><b>GEOSS Site, White Sands Missile Range, NM</b>                                                                                                                                                                                                                                                                                         |                                                   | 4. PROJECT TITLE<br><b>FEMP Energy Conservation Package</b> |                                       |                             |
| 5. PROGRAM ELEMENT                                                                                                                                                                                                                                                                                                                                                       | 6. CATEGORY CODE                                  | 7. PROJECT NO.                                              | 8. PROJECT COST (\$000)<br><b>160</b> |                             |
| 9. COST ESTIMATES                                                                                                                                                                                                                                                                                                                                                        |                                                   |                                                             |                                       |                             |
| ITEM                                                                                                                                                                                                                                                                                                                                                                     | U/M                                               | QUANTITY                                                    | UNIT COST                             | COST (\$000)                |
| Primary Facilities:                                                                                                                                                                                                                                                                                                                                                      |                                                   |                                                             |                                       |                             |
| UPS System Modification                                                                                                                                                                                                                                                                                                                                                  | LS                                                |                                                             |                                       | 21                          |
| Air Recirculation System                                                                                                                                                                                                                                                                                                                                                 | LS                                                |                                                             |                                       | 21                          |
| High Efficiency Lighting                                                                                                                                                                                                                                                                                                                                                 | LS                                                |                                                             |                                       | 11                          |
| Chiller Replacement                                                                                                                                                                                                                                                                                                                                                      | LS                                                |                                                             |                                       | 89                          |
| Supporting Facilities                                                                                                                                                                                                                                                                                                                                                    |                                                   |                                                             |                                       |                             |
| Estimated Contract Cost                                                                                                                                                                                                                                                                                                                                                  |                                                   |                                                             |                                       | 142                         |
| Supervision, Inspection and Overhead (6%)                                                                                                                                                                                                                                                                                                                                |                                                   |                                                             |                                       | 9                           |
| Design (6%)                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                       | 9                           |
| <b>TOTAL REQUEST</b>                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                             |                                       | 160                         |
| <b>TOTAL REQUEST (ROUNDED)</b>                                                                                                                                                                                                                                                                                                                                           |                                                   |                                                             |                                       | 160                         |
| Installed Equipment-Other Appropriations                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                             |                                       |                             |
| <b>10. DESCRIPTION OF PROPOSED CONSTRUCTION</b>                                                                                                                                                                                                                                                                                                                          |                                                   |                                                             |                                       |                             |
| This project includes four separate subprojects:                                                                                                                                                                                                                                                                                                                         |                                                   |                                                             |                                       |                             |
| Uninterruptible Power Supply                                                                                                                                                                                                                                                                                                                                             |                                                   |                                                             |                                       |                             |
| Air Recirculation System                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                             |                                       |                             |
| High Efficiency Lighting                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                             |                                       |                             |
| Chiller Replacement                                                                                                                                                                                                                                                                                                                                                      |                                                   |                                                             |                                       |                             |
| <b>11. REQUIREMENT</b>                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                             |                                       |                             |
| This project is required for HVAC and lighting systems to operate at peak efficiency and effectiveness. An immediate utility savings would be recognized.                                                                                                                                                                                                                |                                                   |                                                             |                                       |                             |
| <p><u>UPS System Modifications</u> - Measurements on the existing 250 hp motor at the time of the field survey indicated that the motor was 11% loaded and was operating with a 65% efficiency and a 45% power factor.</p> <p>The new 100 hp motor operating at the same conditions would be 28% loaded and operate with a 94% efficiency and a power factor of 68%.</p> |                                                   |                                                             |                                       |                             |

|                                                                            |                                            |                   |                      |
|----------------------------------------------------------------------------|--------------------------------------------|-------------------|----------------------|
| 1. COMPONENT<br>AIR FORCE                                                  | FY 1995 MILITARY CONSTRUCTION PROJECT DATA |                   | 2. DATE<br>15-NOV-95 |
| 3. INSTALLATION AND LOCATION<br>GEODSS Site, White Sands Missile Range, NM |                                            |                   |                      |
| 4. PROJECT TITLE<br>FEMP Energy Conservation Opportunity Package           |                                            | 5. PROJECT NUMBER |                      |

**11. REQUIREMENT (continued)**

Air Recirculation System - Presently, the three telescopes use 100% outside air cooled with mechanical refrigeration for cooling. This system consumes significant energy as the cool air is directly vented to the outside and is not reused. According to the building personnel, there is no specific reason why this particular system is in place.

The project would provide return air ducting and motorized dampers which would allow recirculation with mechanical cooling or 100% outside air when outside air is cool.

High Efficiency Lighting - Fluorescent lighting fixtures in the building are equipped with standard 40 watt lamps and magnetic ballasts. High-efficiency T-8 fluorescent lamps and electronic ballasts would reduce lighting energy consumption by 32%.

Chiller Replacement - The current chillers are full-load use 1.43 kW/ton. At half-load this ratio increases to 1.72 kW/ton. These chillers also use R-22 refrigerant coolant which has been linked to the destruction of the ozone layer. The proposed chillers at full-load would use 1.51 kW/ton, but at half-load this ratio drops to 1.02 kW/ton.

**Impact If Not Provided:**

If this project is not funded, the GEODSS Facility will continue to operate with excessive energy requirements and will not realize a \$432,000 life cycle energy savings over the next 20 years.

**Supporting Documentation:**

Supporting data includes the basic engineering calculations which show the energy savings. The supporting data was documented and conducted under an Army contract performed by an A-E firm (E M C Engineers, Inc.) in FY 95.

**Verification of Savings:**

The energy use for the periods prior to the project can be compared to the energy use for billing periods subsequent to the project upgrade.

**Amount of Energy Conserved:**

The amount of combined energy conserved is estimated to be 252,877 kWh/yr (\$20,761/yr).

## Summary of ECOs Recommended for FEMP Funding

| ECO # | ECO Description            | Annual Electric Energy Savings (kWh) | Annual Energy Cost Savings (\$) | Annual Maintenance Cost Savings (\$) | Total Investment Costs (\$) | SIR  | Simple Payback (yrs) |
|-------|----------------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------|------|----------------------|
| 7     | UPS System                 | 89,454                               | 7,344                           | 0                                    | 22,874                      | 4.85 | 3.11                 |
| 9     | Recirculation of Tower Air | 74,518                               | 6,118                           | 0                                    | 22,767                      | 4.05 | 3.72                 |
| 4     | T-8 Fluorescent Lamps      | 29,455                               | 2,418                           | 47                                   | 12,429                      | 2.38 | 5.04                 |
| 8     | Chiller Replacement        | 85,453                               | 7,016                           | 0                                    | 99,539                      | 2.01 | 8.30                 |
|       | Combined Savings           | 252,877                              | 20,761                          | 47                                   | 157,609                     | 2.74 | 5.7                  |

|                                                                                           |                                                |                            |                                   |                        |                                             |
|-------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------|-----------------------------------|------------------------|---------------------------------------------|
| 1. COMPONENT<br>ARMY                                                                      | FY 1996 MILITARY CONSTRUCTION PROJECT DATA     |                            |                                   | 2. DATE<br>Apr-95      |                                             |
| 3. INSTALLATION AND LOCATION<br>GEODSS Site, White Sands Missile Range, NM                |                                                |                            |                                   |                        |                                             |
| 4. PROJECT TITLE<br>FEMP - Energy Conservation Opportunity Package                        |                                                |                            | 5. PROJECT NUMBER                 |                        |                                             |
| <b>LIFE CYCLE COST ANALYSIS SUMMARY<br/>ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)</b> |                                                |                            |                                   |                        |                                             |
| LOCATION:                                                                                 | GEODSS Site, White Sands Missile Range, NM     |                            | REGION: 4                         | PROJECT NO:            |                                             |
| PROJECT TITLE:                                                                            | FEMP - Energy Conservation Opportunity Package |                            | FISCAL YEAR:                      | 1995                   |                                             |
| DISCRETE PORTION NAME:                                                                    | TOTAL                                          |                            |                                   |                        |                                             |
| ANALYSIS DATE:                                                                            | 11/22/95                                       | ECONOMIC LIFE:             | 20                                | PREPARED BY: D Jones   |                                             |
| 1. INVESTMENT                                                                             |                                                |                            |                                   |                        |                                             |
| A. CONSTRUCTION COST                                                                      | =                                              | =                          | \$141,353                         |                        |                                             |
| B. SIOH COST                                                                              | (5.5% of 1A) =                                 |                            | \$7,774                           |                        |                                             |
| C. DESIGN COST                                                                            | (6.0% of 1A) =                                 |                            | \$8,481                           |                        |                                             |
| D. TOTAL COST                                                                             | (1A + 1B + 1C) =                               |                            | \$157,609                         |                        |                                             |
| E. SALVAGE VALUE OF EXISTING EQUIPMENT =                                                  |                                                |                            |                                   |                        |                                             |
| F. PUBLIC UTILITY COMPANY REBATE =                                                        |                                                |                            |                                   |                        |                                             |
| G. TOTAL INVESTMENT                                                                       | (1D - 1E - 1F) =                               |                            | ----->                            | \$157,609              |                                             |
| 2. ENERGY SAVINGS (+) OR COST (-):                                                        |                                                |                            |                                   |                        |                                             |
| DATE OF NISTR-4942-1 USED FOR DISCOUNT FACTORS:                                           |                                                |                            |                                   |                        |                                             |
| <u>OCT '94</u>                                                                            |                                                |                            |                                   |                        |                                             |
| ECO                                                                                       | FUEL COST<br>\$/kWh (1)                        | SAVINGS<br>kWh (2)         | ANNUAL \$<br>SAVINGS (3)          | DISCOUNT<br>FACTOR (4) | DISCOUNTED<br>SAVINGS (5)                   |
| A. UPS System                                                                             | \$0.0821                                       | 89,454                     | \$7,344                           | 15.08                  | \$110,750                                   |
| B. Recirculation of Tower Air                                                             | \$0.0821                                       | 74,518                     | \$6,118                           | 15.08                  | \$92,258                                    |
| C. T-8 Fluorescent Lamps                                                                  | \$0.0821                                       | 29,455                     | \$2,418                           | 12.02                  | \$29,067                                    |
| D. Chiller Replacement                                                                    | \$0.0821                                       | 85,453                     | \$7,016                           | 15.08                  | \$105,796                                   |
| E.                                                                                        |                                                |                            |                                   |                        |                                             |
| F.                                                                                        |                                                |                            |                                   |                        |                                             |
| G.                                                                                        |                                                |                            |                                   |                        |                                             |
| H. TOTAL                                                                                  |                                                | 278,880                    | \$22,896                          | ----->                 | \$337,872                                   |
| 3. NON-ENERGY SAVINGS (+) OR COST (-)                                                     |                                                |                            |                                   |                        |                                             |
| A. ANNUAL RECURRING (+/-)                                                                 | (From Table A) =                               |                            |                                   |                        |                                             |
| 1 DISCOUNT FACTOR                                                                         | (3A x 3A1) =                                   |                            |                                   |                        |                                             |
| 2 DISCOUNTED SAVINGS (+) / COST (-)                                                       |                                                |                            |                                   |                        |                                             |
| B. NON-RECURRING (+/-)                                                                    | ITEM                                           | SAVINGS (+)<br>COST(-) (1) | YEAR OF<br>OCCURRENCE (2)         | DISCOUNT<br>FACTOR (3) | DISCOUNTED<br>SAVINGS/COST (4)<br>(TABLE B) |
| a. AVOIDED COST OF CHILLER REPLACEMENT                                                    |                                                | \$99,539                   | 2                                 | 0.943                  | \$93,865                                    |
| b. MATERIAL: NONE                                                                         |                                                |                            |                                   |                        |                                             |
| c. MATERIAL: NONE                                                                         |                                                |                            |                                   |                        |                                             |
| d. TOTAL                                                                                  |                                                | \$99,539                   |                                   |                        | \$93,865                                    |
| C. TOTAL NON-ENERGY DISCOUNTED SAVINGS (+) OR COST (-)                                    |                                                |                            | (3A2 + 3Bd4) =                    |                        | \$93,865                                    |
| 4. FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-)                                              |                                                |                            | (2H3 + 3A + (3Bd1/Economic Life)) |                        | \$27,873                                    |
| 5. SIMPLE PAYBACK (SPB) IN YEARS (MUST BE < 10 YEARS TO QUALIFY)                          |                                                |                            | (1G/4) =                          |                        | 5.65                                        |
| 6. TOTAL NET DISCOUNTED SAVINGS                                                           |                                                |                            | (2H5 + 3C) =                      |                        | \$431,737                                   |
| 7. DISCOUNTED SAVINGS-TO-INVESTMENT RATIO (SIR)<br>(MUST HAVE SIR > 1.25 TO QUALIFY)      |                                                |                            | (6/1G) =                          |                        | 2.74                                        |