

Effectuez une prédiction de revenus

MISSION

COURS

ÉVALUATION

Mis à jour le mardi 2 avril 2019

Mars 2019 - Certains étudiants rencontrent actuellement des problèmes d'affichage des formules mathématiques dans ce projet. Si c'est votre cas, vous pouvez télécharger l'énoncé de ce projet à **cette adresse**.

Prérequis

Pour ce projet, il sera utile de savoir réaliser une analyse de **statistique descriptive** en langages **R** ou **Python** (avec des représentations graphiques). Il faudra également appliquer des modélisations de type **ANOVA** ou **régression linéaire**.

Mise en situation

Vous êtes employé dans une banque, présente dans de nombreux pays à travers le monde. Celle-ci souhaite cibler de nouveaux clients potentiels, plus particulièrement les jeunes en âge d'ouvrir leur tout premier compte bancaire.

Cependant, elle souhaite cibler les prospects les plus susceptibles d'avoir, plus tard dans leur vie, de hauts revenus.

L'équipe dans laquelle vous travaillez a donc reçu pour mission de créer un modèle permettant de déterminer le revenu potentiel d'une personne.

Très bien.

"Quelles information avons-nous?" demandez-vous à votre supérieur, qui vous répond : "A vrai dire...
quasiment aucune : uniquement le revenu des parents, car nous allons cibler les enfants de nos clients
actuels, ainsi que le pays où ils habitent. C'est tout! Ah oui, une dernière chose : ce modèle doit être valable
pour la plupart des pays du monde. Je vous laisse méditer là-dessus... Bon courage!"

Avec aussi peu de données disponibles, cela semble être un sacré challenge!

Ainsi, vous proposez une régression linéaire avec 3 variables :

- le revenu des parents,
- le revenu moyen du pays dans lequel habite le prospect,
- l'indice de Gini calculé sur les revenus des habitants du pays en question.

Ce projet ne traite que de la construction et de l'interprétation du modèle. Vous n'irez pas jusqu'à la phase de prédiction

Les données

Ce fichier contient les données de la <u>World Income Distribution</u>, datée de 2008.

Cette base de données est composée principalement d'études réalisées au niveau national pour bon nombre de pays, et contient les distributions de revenus des populations concernées.

Vous téléchargerez également les indices de Gini estimés par la Banque Mondiale, disponibles <u>à cette adre</u> <u>sse</u>. Libre à vous de trouver également d'autres sources, ou de recalculer les indices de Gini à partir de la World Income Distribution.

Vous aurez également besoin de récupérer le nombre d'habitants de chaque pays présent dans votre base.

Vos missions

Mission 1

Résumez les données utilisées :

- Année(s) des données utilisées
- Nombre de pays présents
- Population couverte par l'analyse (en termes de pourcentage de la population mondiale)

Les données de la world income distribution présentent pour chaque pays les quantiles de la distribution des revenus de leur population respective.

- De quel type de quantiles s'agit-il (quartiles, déciles, etc.)?
- Échantillonner une population en utilisant des quantiles est-il selon vous une bonne méthode ? Pourquoi ?

Nous appellerons ici chaque quantile une classe de revenu.

Ainsi, la valeur de la colonne *income* pour un quantile donné peut être vu comme le revenu moyen des personnes appartenant à la classe de revenu correspondante à ce quantile.

L'unité utilisée dans la colonne *income* de la world income distribution est le \$PPP. Cette unité est calculée par la Banque Mondiale, selon la méthode Eltöte-

Köves-Szulc. Après vous être documenté, vous expliquerez à votre mentor *très brièvement* à quoi correspond cette unité et pourquoi elle est pertinente pour une comparaison de pays différents. (Il n'est pas nécessaire de donner cette explication lors de la soutenance)

Mission 2

- Montrez la diversité des pays en termes de distribution de revenus à l'aide d'un graphique. Celui-ci représentera le revenu moyen (axe des ordonnées, sur une échelle logarithmique) de chacune des classes de revenus (axe des abscisses) pour 5 à 10 pays que vous aurez choisis pour montrer la diversité des cas.
- Représentez la courbe de Lorenz de chacun des pays choisis.
- Pour chacun de ces pays, représentez l'évolution de l'indice de Gini au fil des ans.
- Classez les pays par indice de Gini. Donnez la moyenne, les 5 pays ayant l'indice de Gini le plus élevé et les 5 pays ayant l'indice de Gini le plus faible. En quelle position se trouve la France ?

Mission 3

Dans l'état actuel, nous avons à disposition deux des trois variables explicatives souhaitées :

 $(m_{j})\$ le revenu moyen du pays (j)

 $(G_{j})\ l'indice de Gini du pays (j)$

Il nous manque donc, pour un individu \(i\), la classe de revenu \(c_{i,parent}\) de ses parents.

Nous supposons ici que l'on associe à chaque individu (i) une unique classe $(c_{i,parent})$; quel que soit le nombre de parents de (i).

Nous allons donc simuler cette information grâce à un coefficient \(\\rho_{j}\) (propre à chaque pays \(j\)) mesurant une corrélation entre le revenu de l'individu \(i\) et le revenu de ses parents. Ce coefficient sera ici appelé *coefficient d'élasticité*, il mesure la *mobilité intergénérationnelle du revenu*.

Pour plus d'informations sur le calcul du coefficient d'élasticité, consulter <u>ce document</u>, notamment l'équation 1 de la page 8). Ce coefficient est déterminé par une régression linéaire simple dans laquelle le logarithme du revenu de l'enfant (Y_{child}) est une fonction du logarithme du revenu des parents (Y_{parent}) :

 $[ln(Y_{child}) = \alpha + p_j \ln(Y_{parent}) + epsilon]$

Pour obtenir le coefficient d'élasticité, deux possibilités s'offrent à vous :

- 1. Vous baser sur ces coefficients donnés par la banque mondiale, dans GDIM dataset : http://www.world-bank.org/en/topic/poverty/brief/what-is-the-global-database-on-intergenerational-mobility-gdim . Le coefficient d'élasticité est donné pour certains pays, sous le nom IGEincome (relative IGM in income)
- 2. Vous baser sur des estimations provenant de multiples études, extrapolées à différentes régions du monde : elles se trouvent dans le fichier <u>elasticity.txt</u>. Attention, ces données sont parfois anciennes.

Il est aussi possible de combiner ces deux approches.

Pour chaque pays, nous allons utiliser une génération aléatoire de la classe de revenu des parents, à partir de ces seules deux informations :

- ((P_.
 - la classe de revenu de l'enfant \(c_{i,child}\).

Attention à bien utiliser la *classe* de revenu de l'enfant (qui est un nombre compris entre 1 et 100 si vous utilisez 100 quantiles), plutôt que son revenu PPP. De même, on ne cherche pas à générer le revenu des parents, mais la *classe* de revenu des parents \((c_{i,parent}\)).

Voici le protocole de génération pour un pays \(j\) donné, qui se base sur l'équation donnée ci dessus :

- 1. Générez un grand nombre \(n\) de réalisations d'une variable que nous appellerons \(ln(Y_{parent})\) selon une loi normale. Le choix de la moyenne et de l'écart-type n'auront pas d'incidence sur le résultat final. \(n\) doit être supérieur à 1000 fois le nombre de quantiles.
- 2. Générez \(n\) réalisations du terme d'erreur \(\epsilon\) selon une loi normale de moyenne 0 et d'écart-type 1.
- 3. Pour une valeur donnée de \(p_j\) (par exemple 0.9), calculez \(y_{child} = e^{\alpha+p_jln(y_{parent})+\epsilon}\). Le choix de \(\alpha\) n'a aucune incidence sur le résultat final et peut être supprimé. A ce stade, \(y_{child}\) contient des valeurs dont l'ordre de grandeur ne reflète pas la réalité, mais cela n'a pas d'influence pour la suite.
- 4. Pour chacun des (n) individus générés, calculez la classe de revenu $(c_{i,child})$ ainsi que la classe de revenu de ses parents $(c_{i,parent})$, à partir de (y_{child}) et (y_{parent}) .
- 5. A partir de cette dernière information, estimez pour chaque \(c_{i,child}\) la distribution conditionnelle de \(c_{i,parent}\). Par exemple, si vous observez 6 individus ayant à la fois \(c_{i,child} = 5\) et \(c_{i,parent} = 8\), et que 200 individus sur 20000 ont \(c_{i,child} = 5\), alors la probabilité d'avoir \(c_{i,parent} = 8\) sachant \(c_{i,child} = 5\) et sachant \(p_{j=0.9}\) sera estimée à 6/200 (On note cette probabilité comme ceci : \(P(c_{i,parent} = 8|c_{i,child} = 5,p_{j=0.9}) = 0.03\)). Si votre population est divisée en \(c\) classes de revenu, vous devriez alors avoir \(c^2\) estimations de ces probabilités conditionnelles, pour chaque pays.
- 6. Optionnellement et pour vérifier la cohérence de votre code, vous pouvez créer un graphique représentant ces distributions conditionnelles. Voici 2 exemples pour une population segmentée en 10 classes, pour 2 valeurs de (p_j) : l'une traduisant une forte mobilité (0.1) et l'autre une très faible mobilité (0.9) :

- Faible mobilité
- 7. Éventuellement et pour éviter toute confusion, effacez les individus que vous venez de générer (nous n'en avons plus besoin), et ne gardez que les distributions conditionnelles.
- 8. Nous allons maintenant travailler sur un nouvel échantillon. Celui-ci sera créé à partir de la WID. Pour chaque individu de la Wold Income Distribution, créez-en 499 "clones". La taille de votre nouvel échantillon sera donc 500 fois plus grand que celui de la Wold Income Distribution.
- 9. Pour chaque \(c_{i,child}\) et chaque pays, il y a maintenant 500 individus. Vous attribuerez aux 500 individus leurs classes \(c_{i,parent}\) conformément aux distributions trouvées précédemment. Par

- exemple, si $(P(c_{i,parent}=8|c_{i,child}=5,p_{j}=0.9) = 0.03)$, alors vous assignerez la classe $(c_{i,parent}=8)$ à 15 des 500 individus du pays (j) ayant $(c_{i,child}=5)$, car 500*0.03 = 15.
- 10. Éventuellement et pour éviter toute confusion, effacez la variable \(c_{i,child}\): nous n'en avons pas besoin pour la mission 4.
- 11. Assurez-vous que votre nouvel échantillon contiennent bien les variables initialement présentes dans la World income distribution : (m_j) et (G_j) .

Utilisez ce nouvel échantillon pour la mission 4.

Mission 4

Pour cette mission 4, nous chercherons à expliquer le revenu des individus en fonction de plusieurs variables explicatives : le pays de l'individu, l'indice de Gini de ce pays, la classe de revenus des parents, etc.

Appliquez une ANOVA sur vos données, en n'incluant comme variable explicative que le pays de l'individu. Analysez la performance du modèle.

Pour chacune des régressions suivantes, vous testerez 2 version : l'une en exprimant le revenu moyen du pays et les revenus (parents & enfants) en logarithme (ln), l'autre en les laissant tels quels. Vous choisirez la version la plus performante pour répondre aux question.

Appliquez une régression linéaire sur vos données, en n'incluant comme variables explicatives uniquement le revenu moyen du pays de l'individu et l'indice de Gini du pays de l'individu. Quel est le pourcentage de variance expliquée par votre modèle ?

Selon ce modèle, donnez la décomposition de variance totale expliquée par :

- Le pays de naissance (ie. le revenu moyen et l'indice de Gini)
- Les autres facteurs non considérés dans le modèle (efforts, chance, etc.)

Améliorez le modèle précédent en incluant maintenant la classe de revenu des parents. Quel est le pourcentage de variance expliquée par ce nouveau modèle ?

En observant le coefficient de régression associé à l'indice de Gini, peut-on affirmer que le fait de vivre dans un pays plus inégalitaire favorise plus de personnes qu'il n'en défavorise ?

Selon ce dernier modèle, donnez la décomposition de variance totale expliquée par :

- Le pays de naissance et le revenu des parents
- Les autres facteurs non considérés dans le modèle (efforts, chance, etc.)

Livrables attendus

Voici les livrables attendus, à transmettre dans une archive .zip :

- Le code Python ou R permettant de répondre à l'ensemble de vos missions. Puisqu'il y a beaucoup de questions, faites attention à ce que votre code soit clair, qu'il délimite bien les différentes parties et questions, et qu'il soit correctement commenté.
- Les graphiques générés, dans un format image .png ou .jpg

Modalité de la soutenance

Pour chacune des missions proposées, vous détaillerez votre démarche, en précisant les éventuels problèmes rencontrés (ainsi que la manière dont vous y avez fait face) et en répondant à toutes les questions posées dans l'énoncé. La soutenance durera environ 25 minutes, avec 5 à 10 minutes de questions-réponses éventuelles.

Ressources complémentaires

https://bioinfo-fr.net/guide-de-demarrage-pour-ggplot2-un-package-graphique-pour-r

• Tutoriel en français sur l'utilisation de ggplot2.

http://www.sthda.com/french/wiki/anova-analyse-de-variance-avec-r

• Petit exemple d'ANOVA sous R.

https://www.marsja.se/four-ways-to-conduct-one-way-anovas-using-python/

• 4 manières de mener une ANOVA en Python.

https://eric.univ-lyon2.fr/~ricco/cours/slides/ANOVA.pdf

• Cours très complet sur l'ANOVA (attention, niveau avancé).

Annexe: code

Voici le code évoqué dans la mission 3, libre à vous de l'utiliser ou pas :

```
python
1 import scipy.stats as st
2 import pandas as pd
3 import numpy as np
4 from collections import Counter
 6 def generate_incomes(n, pj):
       ln_y_parent = st.norm(0,1).rvs(size=n)
10
       residues = st.norm(0,1).rvs(size=n)
11
       return np.exp(pj*ln_y_parent + residues), np.exp(ln_y_parent)
12
13
14 def quantiles(l, nb_quantiles):
       size = len(1)
15
       l_{sorted} = l.copy()
       l_sorted = l_sorted.sort_values()
17
       quantiles = np.round(np.arange(1, nb_quantiles+1, nb_quantiles/size) -0.5 +1./size)
18
       q_dict = {a:int(b) for a,b in zip(l_sorted,quantiles)}
19
       return pd.Series([q_dict[e] for e in 1])
20
21
22 def compute_quantiles(y_child, y_parents, nb_quantiles):
       y_child = pd.Series(y_child)
23
24
       y_parents = pd.Series(y_parents)
       c_i_child = quantiles(y_child, nb_quantiles)
25
       c_i_parent = quantiles(y_parents, nb_quantiles)
26
       sample = pd.concat([y_child, y_parents, c_i_child, c_i_parent], axis=1)
27
       sample.columns = ["y_child", "y_parents", "c_i_child", "c_i_parent"]
29
       return sample
31 def distribution(counts, nb_quantiles):
       distrib = []
       total = counts["counts"].sum()
       if total == 0 :
           return [0] * nb_quantiles
37
       for q_p in range(1, nb_quantiles+1):
           subset = counts[counts.c_i_parent == q_p]
           if len(subset):
               nb = subset["counts"].values[0]
               distrib += [nb / total]
42
43
               distrib += [0]
       return distrib
45
47 def conditional_distributions(sample, nb_quantiles):
       counts = sample.groupby(["c_i_child","c_i_parent"]).apply(len)
48
       counts = counts.reset_index()
50
       counts.columns = ["c_i_child","c_i_parent","counts"]
51
52
       mat = []
       for child_quantile in np.arange(nb_quantiles)+1:
           subset = counts[counts.c_i_child == child_quantile]
54
           mat += [distribution(subset, nb_quantiles)]
       return np.array(mat)
58 def plot_conditional_distributions(p, cd, nb_quantiles):
       plt.figure()
60
       cumul = np.array([0] * nb_quantiles)
62
       for i, child_quantile in enumerate(cd):
64
           plt.bar(np.arange(nb_quantiles)+1, child_quantile, bottom=cumul, width=0.95, label = str(i+1) +"e")
65
           cumul = cumul + np.array(child_quantile)
66
       plt.axis([.5, nb_quantiles*1.3 ,0 ,1])
       plt.title("p=" + str(p))
       plt.legend()
70
       plt.xlabel("quantile parents")
71
       plt.ylabel("probabilité du quantile enfant")
72
       plt.show()
74
75 def proba_cond(c_i_parent, c_i_child, mat):
       return mat[c_i_child, c_i_parent]
78 pj = 0.9
79 nb quantiles = 100
80 n = 1000*nb_quantiles # taille de l'échantillon
81
82 y_child, y_parents = generate_incomes(n, pj)
83 sample = compute quantiles(y child, y parents, nb quantiles)
84 cd = conditional_distributions(sample, nb_quantiles)
```

```
86 print(cd)
87

88 c_i_child = 5
89 c_i_parent = 8
90 p = proba_cond(c_i_parent, c_i_child, cd)
91 print("\nP(c_i_parent = {} | c_i_child = {}, pj = {}) = {}".format(c_i_parent, c_i_child, pj, p))
```

Compétences évaluées

Maîtriser les bases de la statistique inférentielle

Maîtriser les bases des probabilités

Modéliser des données

OpenClassrooms	Entreprises	En plus	♣ Français
L'entreprise	Employeurs	Devenez mentor	
Alternance		Aide et FAQ	f in D
Forum		Conditions Générales	
Blog		d'Utilisation	Télécharger dans I'App Store
Nous rejoindre		Politique de Protection des Données Personnelles	
		Nous contacter	