AMY KIM

MTA EXPLORATORY DATA ANALYSIS: Severe Storm Events 2021

INTRODUCTION

145 Street station - Hurricane Ida

Motivation:

- City of New York experienced water inundation at various subway stations in 2021
- Objectives and Goals:
 - Investigate relationship between precipitation and ridership
 - Observe patterns in passenger movement in severe storm events
 - Provide data to assist the City of New York in effective deployment of resources and target stations for infrastructure upgrade

METHODOLOGY

Data	Metrics	etrics Tools	
MTA Turnstile data	 Correlation between precipitation and entries/exits at stations 	SQL Alchemy	
 NOOA Daily Precipitation Data 	 Deep dive into 2 storm days 	Pandas	
MeteoStat Hourly Precipitation Data	9/I Hurricane Ida (173mm rain)10/26 storm day (63mm rain)	NumPy	
 NYC Stormwater Flood Map 	 Looked at turnstile entries/exits delta 	Matplotlib	
 NY State Subway Location Data 	between no precipitation day vs. severe storm day	Seaborn	
		GeoPandas & Contextily	

RESULTS

Overall correlation

	DAILY_TOTALS	prcp
DAILY_TOTALS	1.000000	-0.007948
prcp	-0.007948	1.000000

Top 10 negative correlations

Top 10 positive correlations

	Correlation
STATION	
RIT-ROOSEVELT	-0.188326
RIT-MANHATTAN	-0.181363
AQUEDUCT N.COND	-0.110041
9TH STREET	-0.092444
HIGH ST	-0.090189
CENTRAL PK N110	-0.089969
THIRTY THIRD ST	-0.082308
14TH STREET	-0.080730
74 ST-BROADWAY	-0.080674
BEACH 90 ST	-0.079236

- Overall slight negative correlation between precipitation and total entries/exits at a station
- Slightly stronger negative correlations than positive correlations, at a station level

Wednesday September 1st Hurricane Ida

- Used previous day which had zero precipitation as baseline
- Big drops in entries/exits across all main subway stations

176 ST

145 ST

145 ST

Tuesday October 26th Storm Day

- Storm day was preceded by a day with no precipitation, so the 25th was used as a baseline for comparison.
- Again, main passenger hubs experienced highest decreases.
- Lag in impact compared to Hurricane Ida.

CONCLUSION

- Overall slight negative correlation between rides and precipitation
- Main passenger hubs were most negatively impacted by storms
- 145 Street Station which was known to be flooded was supported by the data and looking into station upgrade is recommended

FUTURE WORK:

- Further research into turnstile level data. Are there particular entrances which are being more impacted than others due to location or elevation?
- Look at recovery rates after a storm how quickly does each station resume to normal passenger levels.
 - Targeted upgrade for those stations which have slow recovery rate.
- Investigate other storm days in prior years, do we see recurring stations?