ISO/IEC 17025:2017 와 KS Q ISO/IEC 17025:2017 에 의한 공인인정범위

코리아인스트루먼트㈜ 서울특별시 구로구 남부순환로 1303

전화 : 02-863-1901~4 팩스 : 02-863-1905 이메일 : kic@kic21.co.kr

교 정

유효기간 만료일 : 2026. 8. 4 인정번호 : KC01-052

KOLAS 평가결과에 의해 다음의 교정수행에 대하여 공인됩니다.

분류번호	교정항목	현장 교정	분류번호	교정항목	현장 교정	분류번호	교정항목	현장 교정
102.선형치	수		106.기타 3	길이 관련량		206.부피		
10203	기계/전기식 콤퍼레이터	N	10601	내/외측 캘리퍼, 기어 이두께	Y	20601	유리제 부피계; 타 재질 포함	N
10206	다이얼/실린더 게이지 시험기	N		캘리퍼, 캘리퍼 게이지		20604	표준부피용기	Y
10207	닥터블레이드	N	10603	실리더/보어 게이지	Y	20605	콘크리트 공기량 시험기	N
10209	엔드바,마이크로미터 기준봉	N	10604	깊이 게이지, 마이크로미터;	Y	20606	피스톤식 부피계	N
10210	길이 변위계, LVDT	Y		다이얼형 포함		207. 밀도		
10211	틈새 게이지	Y	10605	다이얼/디지털 게이지	Y	20704	염도계	N
10212	필름어플리케이터	N	10608	그라인드게이지	N	20705	당도계	N
10213	갭 게이지	N	10609	지침측미기,테스트인디케이터	Y	20707	염화물 측정기	N
10214	게이지 블록; 비교교정	N	10610	마이크로미터 헤드	N	208.점도		
10216	높이 게이지/측정기	Y	10611	3점 마이크로미터	Y	20801	동점도계; 모세관형 점도계 등	N
10220	표준 측장기	Y	10612	내측 마이크로미터	Y	20802	회전형 동점도계	N
10223	전기 마이크로미터	Y	10613	외측 마이크로미터	Y	209.유체유	-동	
10224	높이 마이크로미터, 받침블록	N	10617	표준체	N	20901	열선형 유속계	N
10227	표준 내/외경 줄자	N	201.질량			20902	피토튜브 유속계 등	N
10228	원통형 플러그/핀 게이지,	Y	20103	자동계량 포장저울	Y	20908	기체용 차압유량계	N
	나사 측정용 와이어 게이지		20105	부등비접시수동저울	Y	20909	액체용 차압유량계	N
10229	래디어스 게이지	N	20109	전기식 지시 저울	Y	20910	액체용 전자기유량계	N
10230	원통형 링 게이지	N	20112	판수동/플랫트 폼 저울	Y	20911	기체용 질량유량계	N
10232	스텝 게이지, 캘리퍼 검사기	N	20113	접시 지시 저울,	Y	20912	액체용 질량유량계	N
10233	테이퍼형 틈새 게이지	N		스프링 지시 저울 등		20914	기체용 용적유량계	N
10234	초음파식 두께측정기	Y	20116	분동 및 추	N	20915	액체용 용적유량계	N
10235	두께 측정용 기준 시편;	N	202.힘			20916	기체용 터빈유량계	N
	코팅형, 초음파 시편		20203	인장 및 압축시험기	Y	20917	액체용 터빈유량계	N
10236	피막 두께 측정기	Y	20204	푸쉬풀 게이지	N	20918	기체용 초음파유량계	N
104.형상			203.토크			20919	액체용 초음파유량계	N
10401	형상 측정기	Y	20302	토크 측정기	N	20920	기체용 면적유량계	N
10404	옵티컬 플랫	N	20303	토크렌치 및 토크 드라이버	Y	20921	액체용 면적유량계	N
10405	옵티컬 파라렐	N	204.압력			20922	기체용 와유량계	N
10406	평행블록	N	20406	절대압계; 다이얼, 디지털.	N	20923	액체용 와유량계	N
10407	정밀 정반	Y		기압계, 기록계 등		210.경도		
10409	진원도 측정기	Y	20407	혈압계	Y	21001	브리넬 경도시험기	Y
10412	스트레이트엣지	N	20408	연성 압력계	Y	21002	로크웰 경도시험기	Y
10413	곧은자	N	20409	차압계; 디지털, 다이얼 포함	Y	21004	비커스 경도시험기	Y
105.복합형	상		20411	게이지압용 압력계; 다이얼,	Y	21005	듀로미터 경도시험기	N
10503	접촉식 좌표 측정기	Y		디지털, 기록계 등		21006	리브 경도시험기	N
10504	비접촉식 좌표 측정기	Y	20412	압력변환기/전송기	Y			
10511	측정현미경, 측정투영기	Y	20413	다이얼형 진공계	Y			

10510	츠미 취미컨	17	00414	스시계	Ŋ.Ţ	1		l
10512	추미 현미경 초치사 표면되었기 초점기	Y	20414	수심계	N	1		
10517 10525	촉침식 표면거칠기 측정기 나사 플러그 게이지	Y	1					
		N						
10527 10529	나사 링 게이지	N N	ł					
	브이 블록 및 박스 블록	N 현장	наю-		현장	наюз		현장
분류번호		교정	분류번호	l	교정	분류번호	교정항목	교정
301.시간/	T		404.기타	직류 및 저주파측정 T	1	406.RF 측		
30102	주파수표준기	N	40401	저주파 증폭기, 챠지	Y	40601	고주파 증폭기	Y
30103	주파수 발생기	N		/전압 증폭기 등		40602	동축형 감쇠기	Y
30104	주파수 측정기/계수기	Y	40402	직류/저주파 감쇠기	Y	40605	버스트펄스발생기	Y
30105	시간간격 발생기	Y	40403	멀티미터 교정기;	Y	40607	고주파 전력 측정기 교정기	Y
30106	시간간격 측정기,초시계 및	Y		하부속성 개별인정		40608	EMC용 변환기	Y
	타이머		40404	파형 측정기 교정기	Y	40610	동축형 방향성 결합기/분배기	Y
302.속도/	회전수		40406	영상신호발생기	Y	40613	정전기발생기	N
30201	표준 회전수 발생장치	Y	40407	오디오 분석기/왜율 미터	Y	40614	EMC 수신기	Y
30202	접촉식 회전 속도계	N	40408	저주파용 여파기	Y	40615	고주파/전자파 여파기	Y
30203	광 회전 속도계	Y	40409	저주파 신호 분석기,	Y	40618	전원 임피던스 안정화 회로망	Y
401.직류	-	•		가청주파수분석기 등		40621	이동통신 종합시험기	Y
40101	직류 전류계	Y	40410	전원 주파수계	Y	40622	변조계	Y
40102	직류 전압전류 변환기	Y	40411	다기능 파형 발생기,	Y	40623	회로망 분석기	Y
40103	직류 전압/전류 교정기	Y		구형파 발생기 등		40626	잡음충격파시험기	Y
40104	전기식온도교정기(센서미포함)	Y	40413	직교류 고전압계	Y	40635	고주파 전력 측정기	Y
40105	직류용 분류기	Y	40414	저주파 임펄스 발생기	Y	40636	다이오드 전력 감지기	Y
40106	검류계	Y	40416	누설전류 시험기	Y	40637	열전대 전력 감지기	Y
40108	직류 전원 공급기	Y	40417	직/교류 전자부하	Y	40638	펄스 발생기	Y
40112	직류 전압계/차동 전압계 등	Y	40418	변조도 측정기	Y	40639	레이더시험장치	Y
40113	정전기/이온 측정기	N	40419	아날로그/디지털 멀티 미터;	Y	40640	고주파 신호 발생기	Y
402.저항,	용량 및 인덕턴스		1	하부속성 개별인정		40641	고주파 스펙트럼 분석기	Y
40201	용량 브리지/지시기	Y	40420	잡음 전압 측정기	Y	40642	속도 측정기	Y
40202	계단식 용량기	Y	40421	파형 측정기	Y	40643	서지 발생기	Y
40204	표준 용량기	Y	40422	저주파위상계	Y	40644	정재파비 측정기,	Y
40205	접지 저항 측정기	Y	40423	랜덤파형 발생기	Y		스로티드 라인 등	
40206	인덕턴스 브릿지/지시기	Y	40424	전압 전류 기록계	Y	40645	고주파 터미네이션	Y
40208	유도기, 계단식 유도기 등	Y	40425	릴레이 시험기	Y	40646	동축형 서미스터 마운트	N
40210	절연시험기	Y	40426	LF 신호 발생기	Y	40650	고주파 전압계	Y
40213	저항 브리지 및 유사장비	Y	40427	저주파 스펙트럼 분석기	Y	40652	전자기장의 세기 측정기	Y
40214	저항측정기, 고저항측정기 등	Y	40429	스위프 발생기	Y	40654	딥 시뮬레이터	Y
40215	저항기, 표준저항,	Y	40430	신호변환기	Y	407.전자기	장의 세기 및 안테나	
	계단식저항, 고저항 등		40433	파형 분석기	Y	40704	환상안테나류	N
40217	임피던스 브리지/LCR 미터	Y	40434	직/교류 고전압 출력기	Y	40705	단극안테나류	N
403.교류	및 교류전력		40435	직/교류 고전압 프로브	Y			
40301	교류 전류계	Y	40436	논리회로분석기	Y	1		
40302	클램프형 전류계/전압계	Y	40437	전화기 시험기	Y	1		
40303	교류 전압/전류 교정기	Y	40438	영상신호분석기	Y	1		
40304	전력계 교정기	N				1		
40305	교류 전류 분류기	Y	1					
		L	j	I	ı	I	1	

인정번호 : KC01-052호

			-			=	_	_
40307	전압전류위상계	Y						
40310	역률계,무효율계 등	Y						
40311	교류 전력계, 피상.	Y						
	고조파 및 무효 전력계 등							
40312	교류 전원 공급기	Y						
40313	내전압/전기 안전 시험기	Y						
40314	전력 기록계	Y						
40318	교류 전압계/	Y						
	전위차,실효치							
분류번호	교정항목	현장 교정	분류번호	교정항목	현장 교정	분류번호	교정항목	현장 교정
501.접촉식	온도		502.비접촉	-식 온도		601.음향		
50101	온도 발생장치;오븐,전기로,	Y	50204	복사온도계	N	60106	소음계	N
	액체항온조, 빙점조,		50206	흑체로	N	603.진동		
	드라이블럭교정기 등		503.습도			60301	진동계 교정기	N
50102	온도 지시계; 지시/기록/	Y	50301	노점 습도계;	N	60302	진동 변환기	N
	조절계, 온도 교정기 등			냉각거울, 알루미나 박막 등		60303	진동 측정기	N
	벡크만온도계 등		50302	상대습도 습도계;	N	701.광도		
50103	유리제 온도계; 유리제온도계,	N		고분자박막, 모발 등		70101	광조도계	N
	벡크만온도계 등		50303	건습구 습도계; 아스만 통풍,	N	901. 화학	분석	
50104	저항식 온도계;	Y		저항온도계식 등		90103	가스 분석기	N
	백금저항온도계		50304	온·습도 기록계 ;	N	90104	배기가스 측정기	N
	측온저항체, 써미스터 등			자기온습도기록계 등				
50105	열팽창식 온도계;	Y	50305	노점/상대습도 변환기	N			
	바이메탈 온도계,기체 또는		50306	습도 발생장치; 이압력식/	Y			
	액체충만식 온도계 등			이온도식/분류식습도발생장치,				
50106	열전대; 귀금속, 비금속,	Y		항온항습기 등				
	순금속, 특수 등		504.수분		-	1		
50107	온도 변환기	Y	50402	목재 수분계	N	1		

주석

- 1. 위 기관은 고정표준실교정 및 현장교정 서비스를 제공한다.
- 2. 현장교정 서비스를 제공하는 기관은 "KOLAS-SR-007 현장 시험 및 교정 수행을 위한 추가기술요건"을 만족한다.
- 3. 인정범위 상에 "Y"가 표기된 항목은 현장교정 서비스가 가능하고, "N"이 표기된 항목은 현장교정 서비스가 불가능하다.
- 4. 측정불확도는 포함인자 k=2를 사용하며, 신뢰수준 약 95 %를 나타내는 확장불확도로 표현되며 정상적인 조건에서 고객에 제공될 수 있는 최소 의 측정불확도를 의미한다.
- 5. 일반적으로, 교정성적서에 기재된 측정불확도는 교정용 표준기, 고객의 장비와 교정환경 등의 영향 때문에, 공인인정범위에 기재된 측정불확도보다 더 크게 표현됨을 유의하여야 한다.

102. 선형치수

102. 선형치수				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
기계/전기식 콤퍼레이터	10203	(0 ~ 2) mm	0.15 μm	CP-10203
다이얼/실린더 게이지 시험기	10206	(0 ~ 25) mm	√0.24 ² + 0.004 2 ² ×I ² μm (I 의 단위는 mm)	CP-10206
닥터 블레이드	10207	(0 ~ 10) mm	2.5 µm	CP-10207
엔드바, 마이크로미터 기준봉	10209	(0 ~ 500) mm	√0.7²+0.005 3²× <i>l</i> ² μm (<i>l</i> 의 단위는 mm)	CP-10209 / 표준측장기
길이 변위계, LVDT	10210	$(0 \sim 100) \text{ mm}$ $(100 \sim 500) \text{ mm}$ $(500 \sim 1 000) \text{ mm}$	5.9 μm 0.031 mm 0.12 mm	CP-10210
틈새 게이지	10211	(0 ~ 10) mm	0.6 μm	CP-10211 / 표준측장기
필름 어플리케이터	10212	(0 ~ 10) mm	2.5 µm	CP-10212
갭 게이지	10213	(3 ~ 300) mm	√0.7²+0.005 3²×I² μm (I 의 단위는 mm)	CP-10213
게이지 블록; 비교교정	10214	(0.5 ~ 100) mm	√81 ² + 1.3 ² ×I ² nm (I 의 단위는 mm)	CP-10214
높이 게이지/측정기	10216	(0 ~ 1 000) mm	√0.8²+0.004 3²×1² µm (I 의 단위는 mm)	CP-10216
표준 측장기	10220	(0 ~ 500) mm	√0.3²+0.003 1²×I² μm (I 의 단위는 mm)	CP-10220
전기 마이크로미터	10223	(0 ~ 5) mm	0.18 μm	CP-10223
높이 마이크로미터, 받침블록	10224			CP-10224
블록 간격		(0 ~ 600) mm	√0.8 ² +0.004 3 ² ×ℓ ² μm (ℓ 의 단위는 mm)	
헤드		30 mm	1.0 μm	
표준 내/외경 줄자	10227	(0 ~ 15) m	√0.34 ² + 0.004 6 ² ×I ² mm (I 의 단위는 m)	CP-10227
원통형 플러그/핀 게이지, 나사 측정용 와이어 게이지 원통형 플러그/핀 게이지	10228	(0.1 ~ 200) mm	√0.6 ² + 0.005 2 ² ×l ² μm (l 의 단위는 mm)	CP-10228
래디어스 케이지	10229	(0.35 ~ 100) mm	(/ 의 단위는 mm) 3.6 µm	CP-10229

102. 선형치수

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
원통형 링 게이지	10230	(2 ~ 200) mm	√1.2²+0.004 1²×l² μm (l 의 단위는 mm)	CP-10230
스텝 게이지, 캘리퍼 검사기	10232	(0 ~ 670) mm	√1.0 ² +0.004 5 ² ×l ² μm (l 의 단위는 mm)	CP-10232
테이퍼형 틈새 게이지	10233	(0 ~ 50) mm	30 µm	CP-10233
초음파식 두께측정기	10234	(0 ~ 100) mm (100 ~ 500) mm	4 μm 8 μm	CP-10234
두께 측정용 기준 시편; 코팅형, 초음파 시편	10235			
코팅형 초음파 시편		$(0 \sim 10) \text{ mm}$ $(0 \sim 500) \text{ mm}$	3.5 μm √0.8²+0.004 3²×I² μm (I 의 단위는 mm)	CP-10235-1 CP-10235-2
피막 두께 측정기	10236	$(0 \sim 7.4) \text{ mm}$	2.1 µm	CP-10236

104. 형상

104, 8 8	1			
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
형상 측정기 세로방향 정확도 가로방향 정확도	10401	(0 ~ 100) mm (0 ~ 50) mm	√0.6²+0.004 3²×l² μm √1.1²+0.004 1²×l² μm (/ 의 단위는 mm)	CP-10401
옵티컬 플랫 평면도	10404	(0 ~ 75) mm	0.06 µm	CP-10404
옵티컬 파라텔 평면도 평행도	10405	(0 ~ 60) mm (0 ~ 60) mm	0.06 μm 0.11 μm	CP-10405
평행 블록 평면도 평행도 두 블록의 높이차	10406	(0 ~ 1 000) mm	1.4 μm 1.4 μm 2.0 μm	CP-10406
정밀 정반 평면도	10407	$(1\ 000 \times 1\ 000)\ \text{mm}^2$ $(3\ 000 \times 3\ 000)\ \text{mm}^2$	3.9 μm 7.1 μm	CP-10407
진원도 측정기 검출기 정확도 스핀들 원주방향의 회전 정확도	10409	(0 ~ 30) µm 360°	0.41 μm 0.026 μm	CP-10409

스트레이트 엣지	10412			CP-10412
진직도		$(0 \sim 1\ 500)\ \text{mm}$	2.1 μm	
평행도		$(0 \sim 1\ 500)\ mm$	2.0 µm	
곧은자	10413	(0 ~ 2 000) mm	0.13 mm	CP-10413

105. 복합형상

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
접촉식 좌표 측정기	10503	(0 ~ 1 000) mm	√1.0²+0.004 6²×l² μm (l 의 단위는 mm)	CP-10503
비접촉식 좌표 측정기	10504	(0 ~ 1 000) mm	√0.5²+0.003 7²×l² μm (l 의 단위는 mm)	CP-10504
측정현미경, 측정투영기	10511			
측정현미경 선형정확도		(0 ~ 500) mm	√0.6 ² + 0.004 1 ² ×l ² μm (l 의 단위는 mm)	CP-10511-1
측정 투영기 이송정확도		(0 ~ 500) mm	√1.4 ² + 0.003 2 ² ×l ² µm (l 의 단위는 mm)	CP-10511-2
직각도 배율오차 각도		- - -	2.4 μm 0.06 % 1.1'	
측미 현미경	10512	(0 ~ 30) mm	1.0 μm	CP-10512
촉침식 표면거칠기 측정기 Ra Rz 단차높이	10517	(0 ~ 5) μm (0 ~ 20) μm (0 ~ 20) μm	0.060 μm 0.20 μm 0.041 μm	CP-10517
나사 플러그 게이지 바깥지름 피치 산의 반각 유효지름	10525	$(0 \sim 150) \text{ mm}$ $(0.2 \sim 6) \text{ mm}$ $(0 \sim 30)^{\circ}$ $(0 \sim 150) \text{ mm}$	$\sqrt{0.7^2 + 0.005} \ 1^2 \times l^2$ μ m $1.9 \ \mu$ m $2.1'$ $\sqrt{2.1^2 + 0.005} \ 1^2 \times l^2$ μ m $(l 의 단위는 mm)$	CP-10525
나사 링 게이지 유효지름 안지름	10527	(6 ~ 100) mm (6 ~ 100) mm	2.3 μm 2.5 μm	CP-10527
브이 블록 및 박스 블록	10529			CP-10529

평면도	$(0 \sim 150) \text{ mm}$	1.2 μm	
평행도		1.9 µm	
기울기		0.8 µm	
상호차		1.9 µm	

106. 기타 길이 관련량

100,714 E 1 E E				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
내/외측/기어 이두께 캘리퍼,	10601			
캘리퍼 게이지				
캘리퍼 게이지		$(0 \sim 200) \text{ mm}$	$\sqrt{3.6^2 + 0.004 \ 3^2 \times l^2} \ \mu m$	CP-10601-1
내/외측 캘리퍼		$(0 \sim 2\ 000)\ \text{mm}$	$\sqrt{9.2^2 + 0.004 \ 3^2 \times l^2} \ \mu m$	CP-10601-2
			(1 의 단위는 mm)	
실린더/보어 게이지	10603	$(0 \sim 800) \text{ mm}$	0.7 μm	CP-10603
깊이 게이지,마이크로미터;	10604	(0 ~ 300) mm	$\sqrt{1.0^2 + 0.004 5^2 \times l^2} \mu \text{m}$	CP-10604
다이얼형 포함		(300 ~ 1 000) mm	$\sqrt{7.6^2 + 0.004 \ 5^2 \times l^2} \ \mu m$	
			(<i>l</i> 의 단위는 mm)	

106. 기타 길이 관련량

100. 기타 설의 판단당				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
다이얼/디지털 게이지	10605	$(0 \sim 100) \text{ mm}$	$\sqrt{1.7^2 + 0.004 1^2 \times l^2} \mu \text{m}$	CP-10605
			(<i>l</i> 의 단위는 mm)	
그라인드 게이지	10608			CP-10608
단차		$(0 \sim 1) \text{ mm}$	2.7 µm	
스크레이퍼 진직도		$(0 \sim 70) \text{ mm}$	1.8 µm	
기취 크리리 메 > 므 시니메시디	10000	(0 5)	0.5	CD 10000
지침 측미기,테스트 인디케이터	10609	$(0 \sim 5) \text{ mm}$	0.5 μm	CP-10609
마이크로미터 헤드	10610	$(0 \sim 50) \text{ mm}$	$\sqrt{0.7^2 + 0.004 \ 3^2 \times l^2} \ \mu m$	CP-10610
1 122 1-1 -1	10010	(0 00) 11111	(l 의 단위는 mm)	C1 10010
3점 마이크로미터	10611	(2 ~ 200) mm	$\sqrt{3.0^2 + 0.004} \ 1^2 \times l^2 \ \mu m$	CP-10611
			(<i>l</i> 의 단위는 mm)	
내측 마이크로미터	10612	$(5 \sim 1\ 000)\ mm$	$\sqrt{0.9^2 + 0.004 \ 3^2 \times l^2} \ \mu m$	CP-10612
			(l 의 단위는 mm)	
시호 하시크그라다	10010			
외측 마이크로미터 외측 마이크로미터	10613	(0 9 000)	$\sqrt{1.6^2 + 0.004 \ 3^2 \times l^2} \ \mu m$	CD 10C19 1
외극 마이크도미터		(0 ~ 2 000) mm	V1.6+0.004 3-×l-μm (l 의 단위는 mm)	CP-10613-1
V-앤빌 마이크로미터		$(5 \sim 25) \text{ mm}$	(t sq ਦੱਸਦ min) 1.3 μm	CP-10613-2
표준체	10617	(0 20) 111111	1.0 μΠ	CP-10617
체 눈 크기	10011	(0 ~ 100) mm	4.4 μm	01 10011
선 지름		$(0 \sim 10) \text{ mm}$	2.9 µm	
2 ,1				
E				

201. 질량

_201. 결상				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
자동 계량 포장저울	20103	$(0 \sim 5) \text{ kg}$	1.1 g	CP-20103
		(5 ~ 10) kg	2.2 g	
		(10 ~ 50) kg	12 g	

		(50 ~ 200) kg	0.12 k g	
부등비 접시 수동저울	20105	$(0 \sim 311) \text{ g}$ $(311 \sim 2610) \text{ g}$ $(2.61 \sim 20) \text{ kg}$	9.1 mg 91 mg 0.91 g	CP-20105
전기식 지시 저울	20109	$(0 \sim 2) \text{ g}$ $(2 \sim 10) \text{ g}$ $(10 \sim 30) \text{ g}$ $(30 \sim 100) \text{ g}$ $(100 \sim 200) \text{ g}$ $(200 \sim 1000) \text{ g}$ $(1 \sim 2) \text{ kg}$ $(2 \sim 10) \text{ kg}$ $(10 \sim 30) \text{ kg}$ $(30 \sim 60) \text{ kg}$ $(60 \sim 150) \text{ kg}$ $(150 \sim 300) \text{ kg}$ $(300 \sim 1000) \text{ kg}$	6.0 µg 10 µg 14 µg 23 µg 35 µg 0.18 mg 0.34 mg 1.9 mg 20 mg 53 mg 1.1 g 11 g 0.2 kg	CP-20109
판수동/플랫트 폼 저울	20112	$(0 \sim 50) \text{ kg}$ $(50 \sim 100) \text{ kg}$ $(100 \sim 200) \text{ kg}$ $(200 \sim 500) \text{ kg}$	19 g 46 g 91 g 0.19 kg	CP-20112

201. 질량

201. 설당 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
접시 지시 저울,	20113	$(0 \sim 1) \text{ kg}$	1.9 g	CP-20113
스프링 지시 저울		(1 ~ 50) kg	91 g	
		$(50 \sim 100) \text{ kg}$	0.16 kg	
분동 및 추	20116	E2급 (1 mg ~ 5 kg)		CP-20116
		1 mg	2.0 µg	
		2 mg	2.0 µg	
		5 mg	2.2 µg	
		10 mg	2.2 µg	
		20 mg	2.2 µg	
		50 mg	2.6 µg	
		100 mg	2.9 µg	
		200 mg	2.9 µg	
		500 mg	3.0 µg	
		1 g	3.0 µg	
		2 g	5.2 µg	
		5 g	14 µg	
		10 g	14 µg	
		20 g	14 µg	
		50 g	17 µg	
		100 g	20 µg	
		200 g	43 µg	
		500 g	0.13 mg	
		1 kg	0.30 mg	
		2 kg	0.60 mg	
		5 kg	3.4 mg	

F1급 (10 kg ~ 20 kg)		
10 kg	10 mg	
20 kg	19 mg	

202. 힘

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
인장 및 압축 시험기 인장 압축	20203	$(10 \sim 100) \text{ N}$ $(100 \sim 200) \text{ N}$ $(200 \sim 500) \text{ N}$ $(500 \sim 1000) \text{ N}$ $(1 \sim 2) \text{ kN}$ $(2 \sim 5) \text{ kN}$ $(5 \sim 10) \text{ kN}$ $(10 \sim 100) \text{ N}$ $(100 \sim 200) \text{ N}$ $(200 \sim 500) \text{ N}$ $(200 \sim 500) \text{ N}$ $(200 \sim 1000) \text{ N}$ $(1 \sim 2) \text{ kN}$ $(2 \sim 5) \text{ kN}$ $(2 \sim 5) \text{ kN}$ $(30 \sim 100) \text{ kN}$ $(30 \sim 50) \text{ kN}$ $(300 \sim 100) \text{ kN}$ $(300 \sim 500) \text{ kN}$ $(300 \sim 500) \text{ kN}$	2.0×10 ⁻³ 2.0×10 ⁻³ 2.2×10 ⁻³ 4.0×10 ⁻³ 1.5×10 ⁻³ 1.5×10 ⁻³ 1.5×10 ⁻³ 2.6×10 ⁻³ 1.9×10 ⁻³ 3.6×10 ⁻³ 2.4×10 ⁻³ 3.2×10 ⁻³ 1.3×10 ⁻³ 1.7×10 ⁻³ 1.4×10 ⁻³ 2.2×10 ⁻³ 1.4×10 ⁻³ 1.6×10 ⁻³ 1.6×10 ⁻³	CP-20203
푸쉬풀 게이지	20204	(1 ~ 500) N	1.4×10 ⁻³	CP-20204

203. 토크

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
토크 측정기	20302	$(0.1 \sim 1) \text{ N} \cdot \text{m}$ $(1 \sim 5) \text{ N} \cdot \text{m}$ $(5 \sim 10) \text{ N} \cdot \text{m}$ $(10 \sim 50) \text{ N} \cdot \text{m}$	2.8×10^{-3} 2.8×10^{-3} 3.2×10^{-3} 2.7×10^{-3}	CP-20302
토크렌치 및 토크 드라이버	20303	$(0.001 \sim 0.009) \text{ N} \cdot \text{m}$ $(0.009 \sim 0.03) \text{ N} \cdot \text{m}$ $(0.03 \sim 0.1) \text{ N} \cdot \text{m}$ $(0.1 \sim 1) \text{ N} \cdot \text{m}$ $(1 \sim 5) \text{ N} \cdot \text{m}$ $(5 \sim 10) \text{ N} \cdot \text{m}$ $(10 \sim 50) \text{ N} \cdot \text{m}$ $(50 \sim 200) \text{ N} \cdot \text{m}$ $(200 \sim 500) \text{ N} \cdot \text{m}$ $(500 \sim 1000) \text{ N} \cdot \text{m}$	5.8×10^{-2} 2.5×10^{-2} 2.9×10^{-2} 1.1×10^{-2} 1.1×10^{-2} 1.1×10^{-2} 1.1×10^{-3} 4.4×10^{-3} 4.6×10^{-3}	CP-20303

204. 압력

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
			(신되구군 약 95 %)	

절대압계; 다이얼, 디지털, 기압계, 기록계 등	20406	(80 ~ 110) kPa	1.5×10 ⁻⁴	CP-20406
혈압계	20407	(0 ~ 40) kPa	0.035 kPa	CP-20407
연성 압력계	20408	(-100 ~ 0) kPa (0 ~ 1) kPa (1 ~ 200) kPa (0.2 ~ 2) MPa (2 ~ 7) MPa	3.2×10^{-4} 7.0×10^{-3} 1.5×10^{-4} 9.0×10^{-5} 1.7×10^{-4}	CP-20408
차압계; 디지털, 다이얼 포함	20409	(0 ~ 1) kPa (1 ~ 200) kPa (0.2 ~ 2) MPa	7.0×10^{-3} 1.5×10^{-4} 9.0×10^{-5}	CP-20409
게이지압용 압력계; 다이얼, 디지털, 기록계 등	20411	$(0 \sim 1) \text{ kPa}$ $(1 \sim 200) \text{ kPa}$ $(0.2 \sim 2) \text{ MPa}$ $(2 \sim 7) \text{ MPa}$ $(7 \sim 100) \text{ MPa}$	7.0×10^{-3} 1.5×10^{-4} 9.0×10^{-5} 1.7×10^{-4} 1.3×10^{-4}	CP-20411
압력변환기/전송기	20412	(0 ~ 1) kPa (1 ~ 200) kPa (0.2 ~ 2) MPa (2 ~ 7) MPa (7 ~ 100) MPa	3.0×10^{-3} 2.1×10^{-4} 2.3×10^{-4} 2.5×10^{-4} 2.8×10^{-4}	CP-20412
다이얼 진공계	20413	(-100 ~ 0) kPa	8.9×10 ⁻⁴	CP-20413
수심계	20414	(0 ~ 100) m	7.0×10 ⁻³	CP-20414

206. 부피

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
유리제 부피계; 타 재질 포함	20601	$\begin{array}{c} (0\sim1) \text{ mL} \\ (1\sim2) \text{ mL} \\ (2\sim5) \text{ mL} \\ (5\sim10) \text{ mL} \\ (5\sim10) \text{ mL} \\ (10\sim25) \text{ mL} \\ (25\sim50) \text{ mL} \\ (50\sim100) \text{ mL} \\ (100\sim250) \text{ mL} \\ (250\sim500) \text{ mL} \\ (250\sim500) \text{ mL} \\ (200\sim1000) \text{ mL} \\ (1000\sim2000) \text{ mL} \\ \end{array}$	1.5 µL 2.8 µL 3.6 µL 6.0 µL 9.3 µL 14 µL 20 µL 52 µL 88 µL 0.14 mL 0.24 mL	CP-20601
표준부피용기	20604	(0 ~ 20) L	6.8 mL	CP-20604

		$(20 \sim 100) L$ $(100 \sim 200) L$ $(200 \sim 500) L$ $(500 \sim 1000) L$ $(1000 \sim 2000) L$ $(2000 \sim 5000) L$ $(5000 \sim 10000) L$	34 mL 65 mL 0.16 L 0.32 L 0.64 L 1.7 L 3.4 L	
콘크리트 공기량 시험기	20605	(0 ~ 10) %	0.02 %	CP-20605
피스톤식 부피계	20606	$(0.1 \sim 2) \ \mu L$ $(2 \sim 5) \ \mu L$ $(5 \sim 10) \ \mu L$ $(0.01 \sim 0.02) \ m L$ $(0.02 \sim 0.05) \ m L$ $(0.05 \sim 0.1) \ m L$ $(0.1 \sim 0.2) \ m L$ $(0.2 \sim 0.5) \ m L$ $(0.5 \sim 1) \ m L$ $(1 \sim 2) \ m L$ $(2 \sim 5) \ m L$ $(5 \sim 10) \ m L$ $(20 \sim 50) \ m L$ $(50 \sim 100) \ m L$	5.8 nL 7.9 nL 9.9 nL 0.021 µL 0.045 µL 0.076 µL 0.37 µL 0.73 µL 1.4 µL 3.7 µL 7.2 µL 14 µL 32 µL 64 µL	CP-20606

207. 밀도

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
염도계	20704	(0.5 ~ 15) %	0.03 %	CP-20704
당도계	20705	(0 ~ 60) %	0.15 %	CP-20705
염화물 측정기	20707	(0.000 ~ 1.000) %	0.006 8 %	CP-20707

208. 점도

200. 62				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
동점도계; 모세관형 점도계 등	20801			CP-20801
세관형 점도계 포드컵 점도계 잔컵 점도계		$(2.5 \sim 200\ 000)\ \text{mm}^2/\text{s}$ $(2.5 \sim 2\ 000)\ \text{mm}^2/\text{s}$ $(2.5 \sim 2\ 000)\ \text{mm}^2/\text{s}$	$1.6 \times 10^{-2} $ $2.7 \times 10^{-2} $ $3.6 \times 10^{-2} $	

절대점도계; 회전형 점도계 등 회전형 점도계	20802	(2.5 ~ 200 000) mPa·s	1.7×10 ⁻²	CP-20802

209. 유체유동

209. 유체유동	,		1	•
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
열선 형 유속계	20901	(2 ~ 30) m/s	5.5×10 ⁻²	CP-20901
피토튜브 유속계 등	20902	(2 ~ 30) m/s	5.5×10 ⁻²	CP-20902
기체용 차압유량계 소닉노즐	20908	(0.002 ~ 250) m ³ /h	4.3×10 ⁻³	CP-20928/소닉노즐
액체용 차압유량계 마스터미터법 중량측정법	20909	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	$2.8 \times 10^{-3} \\ 2.2 \times 10^{-3}$	CP-20926/마스터미터법 CP-20927/중량측정법
액체용 전자기유량계 마스터미터법 중량측정법	20910	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	$2.8 \times 10^{-3} \\ 2.2 \times 10^{-3}$	CP-20926/마스터미터법 CP-20927/중량측정법
기체용 질량유량계 소닉노즐	20911	(0.002 ~ 250) m ³ /h	4.3×10 ⁻³	CP-20928/소닉노즐
액체용 질량유량계 마스터미터법 중량측정법	20912	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	$2.8 \times 10^{-3} \\ 2.2 \times 10^{-3}$	CP-20926/마스터미터법 CP-20927/중량측정법
기체용 용적유량계 소닉노즐	20914	(0.002 ~ 250) m ³ /h	4.3×10 ⁻³	CP-20928/소닉노즐
액체용 용적유량계 마스터미터법 중량측정법	20915	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	$2.8 \times 10^{-3} \\ 2.2 \times 10^{-3}$	CP-20926/마스터미터법 CP-20927/중량측정법
기체용 터빈유량계 소닉노즐	20916	(0.002 ~ 250) m ³ /h	4.3×10 ⁻³	CP-20928/소닉노즐
액체용 터빈유량계 마스터미터법 중량측정법	20917	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	2.8×10 ⁻³ 2.2×10 ⁻³	CP-20926/마스터미터법 CP-20927/중량측정법
기체용 초음파유량계 소닉노즐	20918	(0.002 ~ 250) m ³ /h	4.3×10 ⁻³	CP-20928/소닉노즐

209. 유체유동

			- 측정불확도	
츠저라/자베	부르버 ㅎ	교저버의	7.0547	시요ㅍ즈/츠저바버 드

7 0 0/0/ 0 4	보비건조	ㅠ- Q ㅁ기	(신뢰수준 약 95 %)	/TO파트/크'0'0 H O
액체용 초음파유량계 마스터미터법 중량측정법	20919	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	$2.8 \times 10^{-3} \\ 2.2 \times 10^{-3}$	CP-20926/마스터미터법 CP-20927/중량측정법
기체용 면적유량계 소닉노즐	20920	$(0.002 \sim 250) \text{ m}^3/\text{h}$	4.3×10 ⁻³	CP-20928/소닉노즐
액체용 면적유량계 마스터미터법 중량측정법	20921	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	2.8×10^{-3} 2.2×10^{-3}	CP-20926/마스터미터법 CP-20927/중량측정법
기체용 와유량계 소닉노즐	20922	(0.002 ~ 250) m ³ /h	4.3×10 ⁻³	CP-20928/소닉노즐
액체용 와유량계 마스터미터법 중량측정법	20923	$(0.005 \sim 50) \text{ m}^3/\text{h}$ $(0.001 \sim 2) \text{ m}^3/\text{h}$	$2.8 \times 10^{-3} \\ 2.2 \times 10^{-3}$	CP-20926/마스터미터법 CP-20927/중량측정법

210. 경도

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
브리넬 경도시험기	21001	(100 ~ 250) HBW 10/3 000 (250 ~ 450) HBW 10/3 000	3.2 HBW 10/3 000 4.8 HBW 10/3 000	CP-21001
로크웰 경도시험기	21002	(20 ~ 70) HRC (20 ~ 100) HRBW	0.44 HRC 0.74 HRBW	CP-21002
비커스 경도시험기	21004	225 HV 0.2 이하 (400 ~ 600) HV 0.2 700 HV 0.2 이상 225 HV 0.3 이하 (400 ~ 600) HV 0.3 700 HV 0.3 이상 225 HV 0.5 이하 (400 ~ 600) HV 0.5 700 HV 0.5 이상 225 HV 1 이하 (400 ~ 600) HV 1 700 HV 1 이상	7.4 HV 0.2 22 HV 0.2 36 HV 0.2 6.8 HV 0.3 16 HV 0.3 30 HV 0.3 6.8 HV 0.5 17 HV 0.5 26 HV 0.5 4.6 HV 1 15 HV 1 22 HV 1	CP-21004
듀로미터 경도시험기	21005	(0 ~ 100) HDA (0 ~ 100) HDD	0.44 HDA 0.44 HDD	CP-21005
리브 경도시험기	21006	(400 ~ 1 000) HLD	4.6 HLD	CP-21006

301. 시간 및 주파수

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
주파수 표준기 출력주파수	30102	(0.1 ~ 10) MHz	3.0×10 ⁻¹²	CP-30102
주파수 발생기 출력주파수	30103	(0.1 ~ 10) MHz	3.0×10 ⁻¹²	CP-30103
주파수 측정기/계수기 기준발진 입력주파수	30104	(0.1 ~ 10) MHz 1 Hz ~ 40 GHz	$3.0 \times 10^{-12} \\ 7.0 \times 10^{-7}$	CP-30104
시간간격 발생기 기준발진 주기	30105	(0.1 ~ 10) MHz 10 ns ~ 5 s	$3.0 \times 10^{-12} \\ 5.8 \times 10^{-6}$	CP-30105
시간간격 측정기, 초시계 타이머	30106	1 ms ~ 24 h (1 ~ 100) s (100 ~ 1 000) s (1 000 ~ 10 000) s	1.4×10 ⁻⁷ 6.4 ms 64 ms 0.64 s	CP-30106

302. 속도/회전수

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
표준 회전수 발생장치 (원심분리기)	30201	(6 ~ 90) min ⁻¹ (90 ~ 1 000) min ⁻¹ (1 000 ~ 3 000) min ⁻¹ (3 000 ~ 6 000) min ⁻¹ (6 000 ~ 9 000) min ⁻¹ (9 000 ~ 10 000) min ⁻¹ (10 000 ~ 15 000) min ⁻¹ (15 000 ~ 30 000) min ⁻¹ (30 000 ~ 50 000) min ⁻¹	0.6 min ⁻¹ 0.7 min ⁻¹ 0.8 min ⁻¹ 1.1 min ⁻¹ 1.4 min ⁻¹ 2.5 min ⁻¹ 2.8 min ⁻¹ 4.2 min ⁻¹ 6.3 min ⁻¹	CP-30201
접촉식 회전 속도계	30202	(6 ~ 1 000) min ⁻¹ (1 000 ~ 4 000) min ⁻¹	0.11 min ⁻¹ 0.2 min ⁻¹	CP-30202
광 회전 속도계	30203	(6 ~ 100) min ⁻¹ (100 ~ 1 000) min ⁻¹ (1 000 ~ 100 000) min ⁻¹ (1 000 ~ 100 000) min ⁻¹	0.061 min ⁻¹ 0.07 min ⁻¹ 0.1 min ⁻¹ 1 min ⁻¹	CP-30203

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
직류전류계	40101	(\pm) 0 μA $(0 \sim 10)$ μA $(10 \sim 100)$ μA $(0.1 \sim 1)$ mA $(1 \sim 10)$ mA $(1 \sim 100)$ mA $(0.1 \sim 1)$ A $(1 \sim 10)$ A $(1 \sim 20)$ A $(20 \sim 30)$ A $(30 \sim 40)$ A $(40 \sim 60)$ A $(60 \sim 80)$ A $(80 \sim 100)$ A	$ \begin{array}{c} 11 \text{ nA} \\ 6.5 \times 10^{-4} \\ 1.1 \times 10^{-4} \\ 4.4 \times 10^{-5} \\ 4.1 \times 10^{-5} \\ 5.4 \times 10^{-5} \\ 9.3 \times 10^{-5} \\ 1.9 \times 10^{-4} \\ 1.3 \times 10^{-4} \\ 2.3 \times 10^{-4} \\ 2.3 \times 10^{-4} \\ 1.9 \times 10^{-4} \\ 1.8 \times 10^{-4} \end{array} $	CP-40101
직류전압전류 변환기 직류전류	40102	$10 \mu A$ (10 ~ 100) μA (0.1 ~ 1) mA (1 ~ 10) mA (10 ~ 100) mA (0.1 ~ 1) A (1 ~ 10) A (10 ~ 50) A (50 ~ 100) A	0.8 nA 2 nA 0.02 μA 0.2 μA 2 μA 0.03 mA 0.3 mA 0.010 A 0.019 A	CP-40102
교류전류		10 μA $40 \text{ Hz} \sim 1 \text{ kHz}$ (10 ~ 100) μA $40 \text{ Hz} \sim 1 \text{ kHz}$ (0.1 ~ 1) mA 40 Hz 40 Hz 40 Hz (1 ~ 10) mA 40 Hz 40 Hz (1 ~ 10) mA	0.023 μA 0.04 μA 0.14 μA 0.11 μA 1.3 μA 0.93 μA	

40 Hz 40 Hz ~ 1 kHz	13 μA 9.2 μA	
(0.1 ~ 1) A 40 Hz 40 Hz ~ 1 kHz	0.13 mA 0.094 mA	
(1 ~ 10) A 40 Hz 40 Hz ~ 1 kHz	1.3 mA 1.0 mA	
(10 ~ 50) A 40 Hz ~ 1 kHz	0.062 A	
(50 ~ 100) A 40 Hz ~ 1 kHz	0.12 A	

101. 직류				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
직류전압/전류 교정기 직류전압	40103	$(\pm) \\ 0 \text{ mV} \\ (0 \sim 1) \text{ mV} \\ (1 \sim 10) \text{ mV} \\ (10 \sim 100) \text{ mV} \\ (0.1 \sim 1) \text{ V} \\ (1 \sim 10) \text{ V} \\ (10 \sim 100) \text{ V} \\ (100 \sim 1000) \text{ V}$	0.21 μV 0.38 μV 0.39 μV 0.57 μV 3.2 μV 0.029 mV 0.45 mV 4.8 mV	CP-40103
직류전류		(\pm) 0 μA $(0 \sim 1)$ μA $(1 \sim 10)$ μA $(10 \sim 100)$ μA $(0.1 \sim 1)$ mA $(1 \sim 10)$ mA $(1 \sim 10)$ mA $(10 \sim 100)$ mA $(0.1 \sim 1)$ A $(1 \sim 10)$ A $(1 \sim 10)$ A $(10 \sim 20)$ A $(20 \sim 100)$ A	0.42 nA 0.44 nA 0.90 nA 1.3 nA 0.013 µA 0.14 µA 4.4 µA 0.12 mA 1.4 mA 3.9 mA 20 mA	
저 항		$\begin{array}{c} 1 \ \Omega \\ (1 \sim 10) \ \Omega \\ (10 \sim 100) \ \Omega \\ (0.1 \sim 1) \ k\Omega \\ (1 \sim 10) \ k\Omega \\ (10 \sim 100) \ k\Omega \\ (0.1 \sim 1) \ M\Omega \\ (1 \sim 10) \ M\Omega \end{array}$	$\begin{array}{c} 16~\mu\Omega \\ 0.11~m\Omega \\ 1.1~m\Omega \\ 11~m\Omega \\ 0.10~\Omega \\ 1.2~\Omega \\ 11~\Omega \\ 0.21~k\Omega \end{array}$	
전기식 온도 교정기(센서 미포함) 출력저항 PT 100 Ω JPT 100 Ω PT 1000 Ω		$(18.52 \sim 375.70) \Omega$ $(17.14 \sim 327.03) \Omega$ $(185.20 \sim 1000.00) \Omega$	0.008 Ω 0.008 Ω 0.011 Ω	CP-40104

	(1 000.00 ~ 3 233.02) Ω	0.042 Ω	
출력기전력 TO	E $(-8.824 \sim 76.373) \text{ mV}$ $(-7.890 \sim 69.553) \text{ mV}$ K $(-5.891 \sim 54.819) \text{ mV}$ $(-3.990 \sim 47.513) \text{ mV}$ $(-5.602 \sim 20.872) \text{ mV}$ R $(0 \sim 21.031) \text{ mV}$ S $(0 \sim 18.637) \text{ mV}$ B $(1.792 \sim 13.820) \text{ mV}$	0.86 μV 0.85 μV 0.84 μV 0.83 μV 0.82 μV 0.82 μV 0.82 μV	
입력저항 PT 100 JPT 100 PT 1000	Ω (17.14 ~ 327.03) Ω	0.012 Ω 0.011 Ω 0.017 Ω 0.052 Ω 0.086 Ω	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
전기식 온도 교정기(센서 미포함) 입력기전력 TC E J K N T R S B		$(-8.824 \sim 76.373) \text{ mV}$ $(-7.890 \sim 69.553) \text{ mV}$ $(-5.891 \sim 54.819) \text{ mV}$ $(-3.990 \sim 47.513) \text{ mV}$ $(-5.602 \sim 20.872) \text{ mV}$ $(0 \sim 21.031) \text{ mV}$ $(0 \sim 18.637) \text{ mV}$ $(1.792 \sim 13.820) \text{ mV}$	1.0 μV 0.95 μV 0.84 μV 0.79 μV 0.79 μV 0.79 μV 0.79 μV	CP-40104
직류용 분류기 직류저항	40105	$\begin{array}{c} 0.1 \text{ m}\Omega \\ (0.1 \sim 1) \text{ m}\Omega \\ (1 \sim 10) \text{ m}\Omega \\ (10 \sim 100) \text{ m}\Omega \\ (0.1 \sim 0.3) \Omega \\ (0.3 \sim 0.4) \Omega \\ (0.4 \sim 0.5) \Omega \\ (0.5 \sim 0.6) \Omega \\ (0.5 \sim 0.6) \Omega \\ (0.6 \sim 0.7) \Omega \\ (0.7 \sim 0.8) \Omega \\ (0.8 \sim 1) \Omega \\ (1 \sim 2) \Omega \\ (2 \sim 3) \Omega \\ (3 \sim 4) \Omega \\ (4 \sim 5) \Omega \\ (8 \sim 10) \Omega \\ (10 \sim 20) \Omega \end{array}$	1.4×10^{-4} 1.3×10^{-4} 1.7×10^{-4} 1.0×10^{-4} 6.0×10^{-5} 5.5×10^{-5} 5.6×10^{-5} 5.4×10^{-5} 5.5×10^{-5} 5.6×10^{-5} 5.6×10^{-5} 5.0×10^{-5} 4.7×10^{-5} 4.5×10^{-5} 4.4×10^{-5} 4.3×10^{-5} 4.4×10^{-5} 5.0×10^{-5} 5.0×10^{-5}	CP-40105

			$(20 \sim 30) \Omega$ $(30 \sim 40) \Omega$ $(40 \sim 50) \Omega$ $(50 \sim 60) \Omega$ $(60 \sim 70) \Omega$ $(70 \sim 80) \Omega$ $(80 \sim 90) \Omega$ $(90 \sim 100) \Omega$	4.7×10^{-5} 4.5×10^{-5} 4.0×10^{-5} 4.7×10^{-5} 4.6×10^{-5} 4.8×10^{-5} 4.7×10^{-5} 4.6×10^{-5}	
검류계	직류전압	40106	(\pm) $0\mu V$ $(0 \sim 100) \mu V$ $(0.1 \sim 1) mV$ $(1 \sim 10) mV$ $(10 \sim 100) mV$ $(0.1 \sim 1) V$ $(1 \sim 10) V$ $(10 \sim 100) V$ $(100 \sim 1000) V$	$\begin{array}{c} 0.60~\mu\text{V} \\ 4.6\times10^{-4} \\ 5.2\times10^{-5} \\ 5.2\times10^{-5} \\ 1.2\times10^{-5} \\ 1.1\times10^{-5} \\ 6.0\times10^{-6} \\ 1.3\times10^{-5} \\ 1.4\times10^{-5} \end{array}$	CP-40106
	직류전류		(\pm) 0 uA $(0 \sim 10) \text{ uA}$ $(10 \sim 100) \text{ uA}$ $(0.1 \sim 1) \text{ mA}$ $(1 \sim 10) \text{ mA}$ $(10 \sim 100) \text{ mA}$ $(0.1 \sim 1) \text{ A}$ $(0.1 \sim 5) \text{ A}$	6.1 nA 6.5×10^{-4} 1.1×10^{-4} 8.5×10^{-5} 7.5×10^{-5} 9.0×10^{-5} 1.5×10^{-4} 5.3×10^{-4}	

401. 식듀				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
직류 전원 공급기 직류전압	40108	(±) 0 V (0 ~ 100) mV	$0.22~\mu V \ 3.9 \times 10^{-4}$	CP-40108
직류전류		(0.1 ~ 1 000) V (±)	2.9×10^{-5}	
		$0 \mu A$ $(0 \sim 1) mA$ $(1 \sim 10) mA$ $(10 \sim 100) mA$ $(0.1 \sim 1) A$ $(1 \sim 10) A$ $(10 \sim 100) A$ $(10 \sim 200) A$	5.8 nA 8.2×10^{-5} 2.9×10^{-4} 4.4×10^{-5} 1.3×10^{-4} 1.5×10^{-4} 2.0×10^{-4} 7.6×10^{-4}	
직류 전압계/차동 전압계 등	40112	(\pm) 0 mV $(0 \sim 10) \text{ mV}$ $(10 \sim 100) \text{ mV}$	0.80 μV 5.4×10 ⁻⁵ 1.2×10 ⁻⁵	CP-40112

		$(0.1 \sim 1) \text{ V}$ $(1 \sim 10) \text{ V}$ $(10 \sim 100) \text{ V}$ $(100 \sim 1000) \text{ V}$	5.9×10^{-6} 4.0×10^{-6} 5.9×10^{-6} 7.3×10^{-6}	
정전기/이온 측정기	40113	(\pm) $(0 \sim 4) kV$ $(4 \sim 6) kV$ $(6 \sim 8) kV$ $(8 \sim 10) kV$ $(10 \sim 12) kV$ $(12 \sim 14) kV$ $(14 \sim 16) kV$ $(16 \sim 18) kV$ $(18 \sim 35) kV$ $(35 \sim 50) kV$	0.013 kV 0.014 kV 0.016 kV 0.017 kV 0.019 kV 0.021 kV 0.023 kV 0.025 kV 0.11 kV 0.12 kV	CP-40113

402 저항 용량 및 이덕터스

_402. 저항, 용량 및 인덕턴스				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
용량 브리지/ 지시기	40201			CP-40201
용량		120 Hz		
		1 nF	3.0×10^{-4}	
		(1 ~ 100) nF	4.0×10^{-4}	
		$(0.1 \sim 1) \mu F$	6.0×10^{-4}	
		•		
		1 kHz		
		1 pF	4.9×10^{-4}	
		(1 ~ 100) pF	4.4×10^{-4}	
		(100 ~ 1 000) pF	1.6×10^{-4}	
		(1 ~ 100) nF	1.7×10^{-4}	
		$(0.1 \sim 1) \mu F$	1.9×10^{-4}	
		•		
		10 kHz		
		1 nF	2.6×10^{-4}	

L O Las Moor cosas			
	(1 ~ 100) nF (0.1 ~ 1) μF	3.9×10^{-4} 5.7×10^{-4}	
	1 MHz 1 pF (1 ~ 100) pF (0.1 ~ 1) nF	4.4×10^{-4} 4.4×10^{-4} 4.4×10^{-4}	
	2 MHz 1 pF (1 ~ 100) pF (0.1 ~ 1) nF	4.9×10^{-4} 4.4×10^{-4} 4.6×10^{-4}	
	3 MHz 1 pF (1 ~ 100) pF (0.1 ~ 1) nF	6.0×10^{-4} 4.4×10^{-4} 5.2×10^{-4}	
	4 MHz 1 pF (1 ~ 100) pF (0.1 ~ 1) nF	7.7×10^{-4} 4.4×10^{-4} 6.2×10^{-4}	
	5 MHz 1 pF (10 ~ 100) pF (0.1 ~ 1) nF	9.8×10^{-4} 4.6×10^{-4} 7.7×10^{-4}	
	10 MHz 1 pF (10 ~ 100) pF (0.1 ~ 1) nF	3.4×10^{-3} 2.4×10^{-3} 3.1×10^{-3}	
	13 MHz 1 pF (10 ~ 100) pF (0.1 ~ 1) nF	4.3×10^{-3} 2.4×10^{-3} 3.8×10^{-3}	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
계단식 용량기 용량	40202	120 Hz 1 nF (1 ~ 10) nF (10 ~ 100) nF (100 ~ 1000) nF 1 kHz	0.001 5 nF 0.004 3 nF 0.055 nF 0.59 nF	CP-40202

	-		_	
		(1~10) pF (10~100) pF (100~1000) pF (1~10) nF (10~100) nF (100~1000) nF	0.005 0 pF 0.047 pF 0.46 pF 0.002 2 nF 0.023 nF 0.55 nF	
		(1 ~ 10) kHz 1 nF (1 ~ 10) nF (10 ~ 100) nF (100 ~ 1000) nF	0.001 5 nF 0.004 2 nF 0.043 nF 0.59 nF	
표준 용량기	40204			CP-40204
용량	10201	1 pF		C1 10201
0 0		1 kHz	4.9×10^{-4}	
		$(0.001 \sim 1) \text{ MHz}$	4.9×10 4.5×10^{-4}	
		$(0.001 \sim 1) \text{ MHz}$ $(1 \sim 2) \text{ MHz}$	4.5×10^{-4} 9.5×10^{-4}	
		$(2 \sim 5)$ MHz	1.3×10^{-3}	
		$(5 \sim 10) \text{ MHz}$	3.5×10^{-3}	
		$(3 \sim 10) \text{ MHz}$	4.4×10^{-3}	
		(10 ~ 13) MHZ	4.4 ^ 10	
		(1 ~ 10) pF		
		1 kHz	4.4×10^{-4}	
		$(0.001 \sim 1) \text{ MHz}$	4.4×10^{-4} 4.4×10^{-4}	
		$(1 \sim 5)$ MHz	9.2×10^{-4}	
		$(5 \sim 13)$ MHz	2.6×10^{-3}	
		(0 10) WII 12	2.0 / 10	
		(10 ~ 100) pF		
		1 kHz	4.4×10^{-4}	
		(0.001 ~ 1) MHz	4.4×10^{-4}	
		$(1 \sim 5) \text{ MHz}$	9.3×10^{-4}	
		$(5 \sim 13) \text{ MHz}$	2.6×10^{-3}	
		, , ,	_,, _,	
		(100 ~ 1 000) pF		
		1 kHz	4.5×10^{-4}	
		(0.001 ~ 1) MHz	4.5×10^{-4}	
		$(1 \sim 3) \text{ MHz}$	9.6×10^{-4}	
		(3 ~ 5) MHz	1.1×10^{-3}	
		$(5 \sim 10) \text{ MHz}$	3.9×10^{-3}	
		(10 ~ 13) MHz	3.9×10^{-3}	
		1 nF		
		120 Hz	1.7×10^{-4}	
		(0.12 ~ 1) kHz	1.7×10^{-4}	
		(1 ~ 10) kHz	1.7×10^{-4}	
		(1 10) 5		
		(1 ~ 10) nF	0.4	
		120 Hz	3.4×10^{-4}	
		$(0.12 \sim 1) \text{ kHz}$	1.8×10^{-4}	
		(1 ~ 10) kHz	3.3×10^{-4}	

102, 7 0, 0 0 X L T L —				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
표준 용량기	40204			CP-40204

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ī	L(10 100) 5	1	1
용량		(10 ~ 100) nF	3.4×10^{-3}	
		120 Hz (0.12 ~ 1) kHz	3.4×10^{-3} 1.8×10^{-3}	
		$(0.12 \sim 1) \text{ kHz}$ $(1 \sim 10) \text{ kHz}$	1.8×10 3.4×10^{-3}	
		(1 10) M12	0.4 /\ 10	
		(100 ~ 1 000) nF		
		120 Hz	5.4×10^{-5}	
		$(0.12 \sim 1) \text{ kHz}$	2.0×10^{-5}	
		(1 ~ 10) kHz	5.4×10^{-5}	
접지 저항 측정기	40205			CP-40205
지 시청 특경기 저항	40203	10 mΩ	6.6×10 ⁻⁴	C1 40203
		$(0.01 \sim 10) \Omega$	6.1×10^{-4}	
		$(10 \sim 100) \Omega$	6.5×10^{-4}	
		$(0.1 \sim 1) \text{ k}\Omega$	6.8×10^{-4}	
		$(1 \sim 100) \text{ k}\Omega$	7.1×10^{-4}	
2) VJ		40 11-		
전압		40 Hz 0.1 V	1.0×10-4	
		(0.1 V) $(0.1 V)$	1.3×10^{-4} 1.5×10^{-4}	
		$(1 \sim 100) \text{ V}$	1.4×10^{-4}	
		(100 ~ 300) V	1.6×10^{-4}	
		(300 ~ 500) V	1.1×10^{-4}	
		(500 ~ 1 000) V	1.2×10^{-4}	
		(
		(40 ~ 100) Hz		
		0.1 V (0.1 ~ 1) V	1.3×10^{-4} 1.2×10^{-4}	
		$(0.1 \sim 1) \text{ V}$ $(1 \sim 100) \text{ V}$	1.2×10 1.1×10^{-4}	
		$(1 \sim 100) \text{ V}$ $(1 \sim 100) \text{ V}$	1.6×10^{-4}	
		(300 ~ 500) V	1.1×10^{-4}	
		(500 ~ 1 000) V	1.2×10^{-4}	
		100 Hz ~ 1 kHz		
		0.1 V	1.3×10^{-4}	
		$(0.1 \sim 1) \text{ V}$ $(1 \sim 100) \text{ V}$	1.2×10^{-4} 1.1×10^{-4}	
		$(100)^{\circ} V$ $(100 \sim 300)^{\circ} V$	1.1×10 1.6×10^{-4}	
		(300 ~ 500) V	1.1×10^{-4}	
		(500 ~ 1 000) V	1.2×10^{-4}	
전류		40 Hz ~ 1 kHz	2 2 4	
		1 A	3.6×10^{-4}	
		$(1 \sim 10) \text{ A}$ $(10 \sim 30) \text{ A}$	8.5×10^{-4} 8.2×10^{-4}	
		$(10 \sim 30) \text{ A}$ $(30 \sim 50) \text{ A}$	8.2×10 1.2×10^{-3}	
		$(50 \sim 100) \text{ A}$	1.3×10^{-3}	
		· 	10	
인덕턴스 브릿지/지시기	40206			CP-40206
표준 인덕턴스		1 kHz	2 2 2	
		100 μH	0.045 μΗ	
		1 mH 10 mH	0.000 32 mH 0.003 2 mH	
		10 mH 100 mH	0.003 2 mH 0.032 mH	
		100 mm	0.000 32 H	

402. 저항, 용량 및 인덕턴스			측정불확도	1
측정량/장비	분류번호	교정범위	국정굴확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
인덕턴스 브릿지/지시기	40206			CP-40206
계단식 인덕턴스		1 kHz	0.0=3	
		100 μΗ	2.2×10^{-3}	
		$(0.1 \sim 0.9) \text{ mH}$ $(0.9 \sim 1) \text{ mH}$	$2.5 \times 10^{-3} \\ 1.6 \times 10^{-3}$	
		$(0.9 \sim 1) \text{ mH}$ $(1 \sim 9) \text{ mH}$	2.5×10^{-3}	
		$(9 \sim 10) \text{ mH}$	1.3×10^{-3}	
		$(10 \sim 90) \text{ mH}$	2.5×10^{-3}	
		$(90 \sim 100) \text{ mH}$	1.3×10^{-3}	
		(100 ~ 900) mH	2.5×10^{-3}	
		$(0.9 \sim 1) \text{ mH}$	5.2×10^{-4}	
유도기,계단식 유도기	40208			CP-40208
인덕턴스	10200	1 kHz		01 10200
		100 μΗ	0.046 µH	
		$(0.1 \sim 1) \text{ mH}$	0.000 34 mH	
		$(1 \sim 10) \text{ mH}$	0.003 4 mH	
		(10 ~ 100) mH	0.034 mH	
		(0.1 ~ 1) H	0.000 34 H	
절연시험기	40210			CP-40210
직류 전압 (Output)		(10 ~ 1 000) V	0.071 V	
		$(1 \sim 5) \text{ kV}$	14 V	
		$(5 \sim 10) \text{ kV}$	17 V	
직류 전압 (Input)		(1 ~ 20) V	0.000 75 V	
		(20 ~ 200) V	0.007 5 V	
		(200 ~ 1 000) V	0.071 V	
교류 전압 (Input)		(1 ~ 10) V	0.001 0 V	
— II E I (III)		$(10 \sim 20) \text{ V}$	0.004 4 V	
		(20 ~ 200) V	0.045 V	
		(200 ~ 1 000) V	0.11 V	
절연저항		(1 ~ 10) kΩ	0.000 78 kΩ	
크린시청		$(10 \sim 100) \text{ k}\Omega$	0.000 78 kΩ 0.007 8 kΩ	
	1	$(0.1 \sim 1) \text{ M}\Omega$	0.000 078 MΩ	
	1	$(1 \sim 10) \text{ M}\Omega$	0.000 87 ΜΩ	
		$(10 \sim 100) \text{ M}\Omega$	0.017 ΜΩ	
	1	$(100 \sim 500) \text{ M}\Omega$	0.31 ΜΩ	
		$(0.5 \sim 1) \text{ G}\Omega$	0.001 0 GΩ	
		$(1 \sim 5) \text{ G}\Omega$	0.005 9 GΩ	
	1	$(5 \sim 10) \text{ G}\Omega$	0.014 GΩ	
		$(10 \sim 50) \text{ G}\Omega$ $(50 \sim 100) \text{ G}\Omega$	0.067 GΩ	
	1	$(50 \sim 100) \text{ G}\Omega$ $(100 \sim 500) \text{ G}\Omega$	0.14 GΩ 1.3 GΩ	
	1	$(100 \sim 300) \text{ G}\Omega$ $(0.5 \sim 1) \text{ T}\Omega$	0.002 5 TΩ	
저항	1	10 mΩ	6.6×10^{-3}	
		$(0.01 \sim 10) \Omega$	6.1×10^{-4}	1

	$(10 \sim 100) \Omega$ $(0.1 \sim 1) k\Omega$ $(1 \sim 100) k\Omega$	$6.5 \times 10^{-4} 6.8 \times 10^{-4} 7.1 \times 10^{-4}$	
--	--	--	--

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
저항 브리지 및 유사장비	40213			CP-40213
Measuring ARM		0.01 Ω	4.8×10^{-4}	
		$(0.01 \sim 0.1) \Omega$	6.0×10^{-5}	
		$(0.1 \sim 1) \Omega$	1.4×10^{-5}	
		$(1 \sim 10) \Omega$	8.9×10^{-6}	
		$(10 \sim 100) \Omega$	7.7×10^{-6}	
		$(100 \sim 1\ 000)\ \Omega$	7.7×10^{-6}	
		$(1 \sim 10) \text{ k}\Omega$	7.7×10^{-6}	
		(10 ~ 100) kΩ	7.8×10^{-6}	
		(100 ~ 1 000) kΩ	9.2×10^{-6}	
		$(1 \sim 10) \text{ M}\Omega$	2.0×10^{-5}	
Ratio ARM		1 mΩ	2.4×10^{-4}	
		10 mΩ	1.2×10^{-4}	
		100 mΩ	5.9×10^{-5}	
		1 Ω	1.4×10^{-5}	
		10 Ω	1.4×10^{-5}	
		100 Ω	1.3×10^{-5}	
		1 kΩ	1.3×10^{-5}	
		10 kΩ	1.1×10^{-5}	
		100 kΩ	1.3×10^{-5}	
		1 MΩ	1.3×10^{-5}	
		10 MΩ	1.7×10^{-5}	
저항 측정기,	40214			CP-40214
고저항측정기 등				
직류저항		1 mΩ	2.4×10^{-4}	
		$(1 \sim 10) \text{ m}\Omega$	1.2×10^{-4}	
		$(10 \sim 100) \text{ m}\Omega$	5.9×10^{-5}	
		$(0.1 \sim 1) \Omega$	1.3×10^{-5}	
		$(1 \sim 10) \Omega$	1.3×10^{-5}	
		$(10 \sim 100) \Omega$	1.2×10^{-5}	
		$(0.1 \sim 1) \text{ k}\Omega$	1.2×10^{-5}	
		$(1 \sim 10) \text{ k}\Omega$	1.0×10^{-5}	
		$(10 \sim 100) \text{ k}\Omega$	1.0×10^{-5}	
		$(0.1 \sim 1) \text{ M}\Omega$	1.1×10^{-5}	
		$(1 \sim 10) \text{ M}\Omega$	1.4×10^{-5}	
		$(10 \sim 100) \text{ M}\Omega$	1.6×10^{-4}	
		$(0.1 \sim 1) \text{ G}\Omega$	7.0×10^{-4}	
		$(1 \sim 10) \text{ G}\Omega$	1.2×10^{-3}	
		$(10 \sim 100) \text{G}\Omega$	1.2×10^{-3}	
		$(0.1 \sim 1) \text{ T}\Omega$	3.0×10^{-3}	
교류저항		1 kHz		
		10 mΩ	6.0×10^{-3}	
	1	(10 ~ 100) mΩ	3.0×10^{-3}	Ī

	$(0.1 \sim 1) \Omega$ $(1 \sim 10) \Omega$ $(10 \sim 100) \Omega$ $(0.1 \sim 1) k\Omega$ $(1 \sim 10) k\Omega$ $(10 \sim 100) k\Omega$ $(0.1 \sim 1) M\Omega$	3.0×10^{-4} 1.7×10^{-4}	

지한기, 표준제항. 제단식계항, 고제항 등 지판시계항	402. 서양, 용당 및 인딕턴스 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
지하는 기 등 기 등 기 등 기 등 기 등 기 등 기 등 기 등 기 등 기		40215			CP-40215
(1 ~ 10) m일 (10 ~ 100) k2 (10 ~ 100) m2 (10 ~ 100) k2 (1					
(10 ~ 100) m을 (0.1 ~ 1) 요 53 μ요 (1 ~ 10) 요 0.40 m을 (10 ~ 100) 요 1.1 m일 (10 ~ 100) 요 1.1 m일 (11 ~ 10) k요 91 m일 (10 ~ 100) k요 11 m일 (1 ~ 10) k요 91 m일 (10 ~ 100) k요 (0.1 ~ 1) M요 11 요 11 요 (1 ~ 10) M요 4.8 μ요 (10 ~ 100) m요 4.8 μ요 (10 ~ 100) m요 4.8 μ요 (10 ~ 100) m요 14 μ요 (1 ~ 10) Ω 0.089 m요 (10 ~ 100) Ω 0.77 m2 (10 ~ 100) kα 7.7 m2 (1 ~ 10) kα 0.78 ω (0.1 ~ 1) Mα 0.20 kα (0.1 ~ 1) Mα 0.20 kα (10 ~ 100) Mα 14 kα (0.1 ~ 1) GΩ 1.6 MΩ 14 kα (0.1 ~ 1) GΩ 1.6 MΩ 14 kα (0.1 ~ 1) GΩ 1.6 MΩ 14 kHz 0.30 mΩ (10 ~ 100) mα 14 kHz 0.30 mΩ	직류저항				
(0.1 ~ 1) 요 (1 ~ 10) 요 (10 ~ 100) 요 (10 ~ 100) 요 (11 mg) (10 ~ 100) 요 (11 mg) (11 mg) (11 mg) (11 ~ 10) kg (11 mg) (10 ~ 100) kg (0.1 ~ 1) Mg (10 ~ 100) kg (0.1 ~ 1) Mg (11 ~ 10) Mg (11 ~ 10) Mg (11 ~ 10) Mg (11 ~ 10) Mg (10 ~ 100) mg (10 ~ 100) mg (10 ~ 100) mg (10 ~ 100) g (10 ~ 10) kg (10 ~ 10) Mg (
(1 ~ 10) 요 (10 ~ 100) 요 (1.1 m요 (10 ~ 100) 요 (1.1 m요 (10 ~ 100) k요 (11 ~ 10) k요 (10 ~ 100) m요 (10 ~ 100) k요 (10 ~ 100) ka (10					
(10~100) 요 (0.1~1) kQ (11 mQ (1.7) kQ					
(0.1 ~ 1) k으 (1 ~ 10) k으 (1 ~ 10) k으 (1 ~ 100) k으 (10 ~ 100) k으 (0.86 \(\omega\) (10 ~ 100) k으 (0.1 ~ 1) M\(\omega\) (1 ~ 10) M\(\omega\) (10 ~ 100) m\(\omega\) (10 ~ 100) \(\omega\) (0.1 ~ 1) \(\omega\) (0.1 ~ 1) \(\omega\) (0.1 ~ 1) k\(\omega\) (10 ~ 100) \(\omega\) (0.1 ~ 1) M\(\omega\) (0.20 k\(\omega\) (10 ~ 100) M\(\omega\) (1					
(1 ~ 10) k으 (10 ~ 100) k으 (10 ~ 100) k으 (10 ~ 100) k으 (10 ~ 10) M으 (11 으 (10 ~ 100) M으 (10 ~ 100) k으 (10 ~ 100) M으 (10 ~ 100)					
(10 ~ 100) kΩ (0.1 ~ 1) MΩ (1 Ω 0.24 kΩ 11 Ω (1 ~ 10) MΩ (1 ~ 10) MΩ (1 ~ 10) MΩ (1 ~ 10) MΩ (10 ~ 100) MΩ (10 ~ 100) MΩ (10 ~ 100) Ω (10 ~ 100) Ω (0.1 ~ 1) Ω (10 ~ 100) Ω (0.1 ~ 1) kΩ (10 ~ 100) MΩ (10 ~ 100) M					
(0.1 ~ 1) MQ (1 ~ 10) MQ (10 ~ 100) MQ (10 ~ 10) Q (0.1 ~ 1) Q (1 ~ 10) kQ (1 ~ 10) MQ (10 ~ 100) MQ (10 ~ 10) MQ					
제단식저항 1 mQ (1 ~ 10) MQ (10 ~ 100) mQ (10 ~ 100) mQ (0.1 ~ 1) Q (1 ~ 10) MQ (1 ~ 10) MQ (1 ~ 10) MQ (1 ~ 100) MQ (1 ~ 100) MQ (1 ~ 100) MQ (1 ~ 100) MQ (1 ~ 10 MQ (0.1 ~ 1) GQ (0.1 ~ 1) Q					
제단식저항 1 m\Q (1 ~ 10) m\Q (10 ~ 100) m\Q (10 ~ 100) m\Q (0.1 ~ 1) \Quad (10 ~ 100) m\Q (0.1 ~ 1) \Quad (10 ~ 100) \Quad (10 ~ 100) \Quad (10 ~ 100) \Quad (10 ~ 100) \Quad (0.1 ~ 1) \Quad (10 ~ 100) \Quad (10 ~ 10) \Quad (10 ~ 100) \Quad					
(1 ~ 10) mΩ (10 ~ 100) mΩ (6.0 μΩ (0.1 ~ 1) Ω (1 ~ 10) kΩ (1 ~ 10) MΩ (1 ~ 10) MΩ (10 ~ 100) MΩ (10 ~ 100) MΩ (10 ~ 10) MΩ (10 ~ 10) MΩ (0.1 ~ 1) GΩ (1.6 MΩ (0.1 ~ 1) ΩΩ (1.			(1 10) 11111	0.21 Kuu	
(1 ~ 10) mΩ (10 ~ 100) mΩ (6.0 μΩ (0.1 ~ 1) Ω (1 ~ 10) kΩ (1 ~ 10) MΩ (1 ~ 10) MΩ (10 ~ 100) MΩ (10 ~ 100) MΩ (10 ~ 10) MΩ (10 ~ 10) MΩ (0.1 ~ 1) GΩ (1.6 MΩ (0.1 ~ 1) ΩΩ (1.	계단식저항		1 mΩ	4.7 μΩ	
대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대	,, ,, ,, ,				
(0.1 ~ 1) \(\Omega \) (1 ~ 10) \(\Omega \) (10 ~ 100) \(\Omega \) (0.1 ~ 1) \(\kappa \) (0.77 \(\max \) (0.1 ~ 1) \(\kappa \) (10 ~ 100) \(\kappa \) (10 ~ 100) \(\kappa \) (0.77 \(\max \) (10 ~ 100) \(\kappa \) (0.77 \(\max \) (10 ~ 100) \(\kappa \) (0.78 \(\Omega \) (0.7 \(\max \) (0.1 ~ 1) \(\max \) (0.20 \(\kappa \) (10 ~ 100) \(\max \) (10 ~ 100) \(\max \) (10 ~ 100) \(\max \) (0.1 ~ 1) \(\Gamma \) (0.1 ~ 1) \(\Gamma \) (0.060 \(\max \) (10 ~ 100) \(\max \) (1 \(\max \) (10					
(10 ~ 100) \(\Omega \) (0.1 ~ 1) \(\k\Omega \) (1 ~ 10) \(\k\Omega \) (1 ~ 10) \(\k\Omega \) (10 ~ 100) \(\k\Omega \) (10 ~ 100) \(\k\Omega \) (0.1 ~ 1) \(\mathred \Omega \) (0.1 ~ 1) \(\mathred \Omega \) (0.1 ~ 10) \(\mathred \Omega \) (10 ~ 100) \(\mathred \Omega \) (10 ~ 100) \(\mathred \Omega \) (0.1 ~ 1) \(\Gamma \) (0.1 ~ 1) \(\Gamma \) (10 \(\mathred \Omega \) (10 ~ 100) \(\mathred \Omega \)			$(0.1 \sim 1) \Omega$		
(0.1 ~ 1) kΩ (1 ~ 10) kΩ (1 ~ 10) kΩ (1 ~ 10) kΩ (10 ~ 100) kΩ (10 ~ 100) kΩ (0.1 ~ 1) MΩ (10 ~ 10) MΩ (10 ~ 10) MΩ (10 ~ 10) MΩ (10 ~ 10) MΩ (0.1 ~ 1) GΩ (1.6 MΩ) 교류저항 10 mΩ 1 kHz 0.060 mΩ (10 ~ 100) mΩ (10 ~			$(1 \sim 10) \Omega$	$0.089 \; {\rm m}\Omega$	
(1~10) kΩ 77 mΩ (10~100) kΩ 0.78 Ω 0.78 Ω (0.1~1) MΩ 9.2 Ω (1~10) MΩ 0.20 kΩ (10~100) MΩ 14 kΩ (0.1~1) GΩ 1.6 MΩ 10 mΩ 100 mΩ (10~100) mΩ 0.30 mΩ (0.1~1) Ω 0.30 mΩ (0.1~1) Ω 1 kHz 0.33 mΩ			$(10 \sim 100) \Omega$	0.77 mΩ	
(10 ~ 100) kΩ (0.1 ~ 1) MΩ 9.2 Ω (1 ~ 10) MΩ 0.20 kΩ (10 ~ 100) MΩ 14 kΩ (0.1 ~ 1) GΩ 1.6 MΩ 1.6 MΩ (10 ~ 100) mΩ 1 kHz 0.30 mΩ (10 ~ 100) mΩ 1 kHz 0.30 mΩ (0.1 ~ 1) Ω 1 kHz 0.33 mΩ			$(0.1 \sim 1) \text{ k}\Omega$	7.7 mΩ	
(0.1 ~ 1) MΩ 9.2 Ω (1 ~ 10) MΩ 0.20 kΩ (10 ~ 100) MΩ 14 kΩ (0.1 ~ 1) GΩ 1.6 MΩ 교류저항 10 mΩ 1 kHz 0.060 mΩ (10 ~ 100) mΩ 1 kHz 0.30 mΩ (0.1 ~ 1) Ω 1 kHz 0.33 mΩ					
(1 ~ 10) MΩ (10 ~ 100) MΩ (14 kΩ (10 ~ 100) MΩ (0.1 ~ 1) GΩ (1.6 MΩ (10 ~ 100) mΩ (1.6					
(10 ~ 100) MΩ (14 kΩ (0.1 ~ 1) GΩ 1.6 MΩ 1.6 MΩ (0.1 ~ 1) GΩ 1.6 MΩ (0.060 mΩ (10 ~ 100) mΩ (0.1 ~ 1) Ω (0.1 ~ 1) Ω (0.1 ~ 1) Ω (0.33 mΩ					
교류저항 (0.1 ~ 1) GΩ 1.6 MΩ 10 mΩ 1 kHz 0.060 mΩ (10 ~ 100) mΩ 1 kHz 0.30 mΩ (0.1 ~ 1)Ω 1 kHz 0.33 mΩ					
교류저항 10 mΩ 1 kHz 0.060 mΩ (10 ~ 100)mΩ 1 kHz 0.30 mΩ (0.1 ~ 1)Ω 1 kHz 0.33 mΩ					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$(0.1 \sim 1) \text{ G}\Omega$	1.6 MΩ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	그르기된		100		
$(10 \sim 100 \text{)m}\Omega$ 1 kHz $0.30 \text{ m}\Omega$ $(0.1 \sim 1 \text{)}\Omega$ 1 kHz $0.33 \text{ m}\Omega$	<u></u>			0.0000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 KHZ	0.060 ms2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(10 ~ 100)m0		
$(0.1 \sim 1)\Omega$ 1 kHz $0.33 \text{ m}\Omega$				0.30 mO	
1 kHz 0.33 mΩ			I MIL	0.00 11102	
1 kHz 0.33 mΩ			$(0.1 \sim 1)\Omega$		
				0.33 mΩ	
$(1 \sim 10)\Omega$			_		
			(1 ~ 10)Ω		

1 MHz	4.8 Ω	
100 kHz	6.6 Ω	
(1 ~ 10)kΩ 1 kHz	3.2 Ω	
1 MHz	0.48 Ω	
100 kHz	0.66 Ω	
(0.1 ~ 1)kΩ 1 kHz	0.32 Ω	
(1 kHz ~ 1 MHz)	0.048 Ω	
(10 ~ 100)Ω 1 kHz	0.032 Ω	
	,	
1 kHz (1kHz ~ 1 MHz)	$3.3~\mathrm{m}\Omega$ $7.2~\mathrm{m}\Omega$	

402. 저항, 용량 및 인덕턴스 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
임피던스 브리지,LCR METER	40217			CP-40217
저항		1 kHz		
		10 mΩ	6.0×10^{-3}	
		$(10 \sim 100) \text{ m}\Omega$	3.0×10^{-3}	
		$(0.1 \sim 1) \Omega$	1.3×10^{-3}	
		(1~10)Ω	7.1×10^{-4}	
		(10 ~ 100) Ω	5.2×10^{-4}	
		$(0.1 \sim 1) \text{ k}\Omega$	5.2×10^{-4}	
		$(1 \sim 10) k\Omega$	4.2×10^{-4}	
		$(10 \sim 100) \text{ k}\Omega$	5.2×10^{-4}	
		$(0.1 \sim 1) \text{ M}\Omega$	1.7×10^{-4}	
		100 kHz		
		1 kΩ	4.7×10^{-4}	
		$(1 \sim 10) \text{ k}\Omega$	4.7×10^{-4} 4.7×10^{-4}	
		$(10 \sim 100) \text{ k}\Omega$	7.4×10^{-5}	
		(10 100) 1101	7.17.10	
		1 MHz		
		10 Ω	7.1×10^{-4}	
		(10 ~ 100)Ω	2.4×10^{-4}	
		(0.1 ~ 1) kΩ	2.4×10^{-4}	
		(1 ~ 10) kΩ	4.7×10^{-4}	
용량		1 kHz		
		1 pF	4.8×10^{-4}	
		(1 ~ 100) pF	4.3×10^{-4}	
		$(0.1 \sim 1) \text{ nF}$	1.4×10^{-4}	
		(1 ~ 100) nF	2.3×10^{-4}	
		(0.1 ~ 1) μF	2.4×10^{-4}	
		100 11		
1		120 Hz		1

1 nF (1 ~ 100) nF (0.1 ~ 1) μF	2.4×10^{-4} 3.8×10^{-4} 6.5×10^{-4}	
10 kHz 1 nF (1 ~ 100) nF (0.1 ~ 1) μF	2.4×10^{-4} 3.8×10^{-4} 6.5×10^{-5}	
1 MHz 1 pF (1 ~ 100) pF (0.1 ~ 1) nF	4.4×10^{-4} 4.3×10^{-4} 4.4×10^{-4}	
2 MHz 1 pF (1 ~ 100) pF (0.1 ~ 1) nF	4.9×10^{-4} 4.3×10^{-4} 4.5×10^{-4}	
3 MHz 1 pF (1 ~ 100) pF (0.1 ~ 1) nF	5.9×10^{-4} 4.4×10^{-4} 5.1×10^{-4}	
4 MHz 1 pF (1 ~ 100) pF (0.1 ~ 1) nF	7.6×10^{-4} 4.4×10^{-4} 6.2×10^{-4}	

402. 서양, 봉당 및 인덕턴스			I	
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
임피던스 브리지,LCR METER	40217			CP-40217
용량		5 MHz		
		1 pF	9.8×10^{-4}	
		(1 ~ 100) pF	4.5×10^{-4}	
		$(0.1 \sim 1) \text{ nF}$	7.6×10^{-4}	
		(0.1	110	
		10 MHz		
		1 pF	3.4×10^{-3}	
		(1 ~ 100) pF	2.4×10^{-3}	
		$(0.1 \sim 1) \text{ nF}$	3.1×10^{-3}	
		(0.1 1)111	0.1 / 10	
		13 MHz		
		1 pF	4.3×10^{-3}	
		(1 ~ 100) pF	2.4×10^{-3}	
		$(0.1 \sim 1) \text{ nF}$	3.8×10^{-3}	
인덕턴스		1 kHz		
		100 μΗ	4.6×10^{-4}	
		(0.1 ~ 1) mH	4.0×10^{-4}	
		$(1 \sim 10) \text{ mH}$	3.4×10^{-4}	
		$(10 \sim 100) \text{ mH}$	3.4×10^{-4}	
		(0.1 ~ 1) H	4.0×10^{-4}	
		(0.1 1) 11	1.0 ** 10	

403. 교류 및 교류전력

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
교류전류계	40301			CP-40301
		0.1 uA		
		10 Hz	0.81 uA	
		10 Hz ~ 40 Hz	0.79 uA	
		$40 \text{ Hz} \sim 1 \text{ kHz}$	0.79 uA	
		1 kHz ~ 10 kHz	0.66 uA	
		0.1 μΑ ~ 10 μΑ		
		10 Hz	82 nA	
		10 Hz ~ 40 Hz	7.9×10^{-3}	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	7.9×10^{-3}	
		1 kHz ~ 10 kHz	6.7×10^{-2}	
		10 μΑ ~ 100 μΑ		
		10 Hz	0.96 uA	
		10 Hz ~ 40 Hz	8.7×10^{-4}	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	8.5×10^{-4}	
		1 kHz ~ 10 kHz	7.7×10^{-3}	
		100 μA ~ 1 mA		
		10 Hz	0.42 uA	
		10 Hz ~ 40 Hz	2.1×10^{-4}	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	2.0×10^{-4}	
		1 kHz ~ 10 kHz	1.8×10^{-3}	
		1 mA ~ 10 mA		
		10 Hz	0.30 uA	
		10 Hz ~ 40 Hz	2.1×10^{-4}	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	1.8×10^{-4}	
		1 kHz ~ 10 kHz	1.7×10^{-3}	

403. 교류 및 교류전력 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
교류전류계	40301	10 mA ~ 100 mA 10 Hz 10 Hz ~ 40 Hz 40 Hz ~ 1 kHz 1 kHz ~ 10 kHz	0.31 uA 2.2×10^{-4} 1.8×10^{-4} 1.3×10^{-3}	CP-40301
		100 mA ~ 1 A 10 Hz 10 Hz ~ 40 Hz 40 Hz ~ 1 kHz 1 kHz ~ 10 kHz 1 A ~ 10 A 40 Hz ~ 1 kHz 1 kHz ~ 10 kHz	3.3×10^{-4} 3.3×10^{-4} 3.3×10^{-4} 7.2×10^{-3} 5.3×10^{-4} 5.3×10^{-4}	

		10 A ~ 20 A 50 Hz ~ 100 Hz 100 Hz ~ 1 kHz 20 A ~ 50 A 50 Hz ~ 100 Hz 100 Hz ~ 1 kHz 50 A ~ 100 A 50 Hz ~ 100 Hz 100 Hz ~ 1 kHz	2.5×10^{-4} 2.5×10^{-4} 2.4×10^{-4} 2.0×10^{-4} 1.7×10^{-4} 1.5×10^{-4}	
클램프형 전류계/전압계 직류전압	40302	0 mV $(0 \sim 10) \text{ mV}$ $(10 \sim 100) \text{ mV}$ $(0.1 \sim 1) \text{ V}$ $(1 \sim 10) \text{ V}$ $(10 \sim 100) \text{ V}$ $(0.1 \sim 1) \text{ kV}$	0.001 1 mV 0.000 82 mV 0.006 6 mV 0.000 066 V 0.000 66 V 0.006 6 V 0.066 V	CP-40302
교류전압		10 Hz 20 kHz 20 kHz 20 kHz 20 kHz 200 kHz	0.006 8 mV 0.006 6 mV 0.011 mV 0.007 6 mV 0.015 mV 0.014 mV 0.020 mV 0.042 mV 0.070 mV 0.099 mV 0.19 mV	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
클램프형 전류계/전압계	40302			CP-40302
교류전압		(50 ~ 100) mV		
		10 Hz	0.037 mV	
		10 Hz ~ 40 Hz	0.018 mV	
		40 Hz ~ 20 kHz	0.017 mV	
		20 kHz ~ 50 kHz	0.029 mV	
		50 kHz ~ 100 kHz	0.064 mV	
		100 kHz ~ 200 kHz	0.12 mV	
		200 kHz ~ 500 kHz	0.17 mV	
	<u> </u>	$500 \text{ kHz} \sim 1 \text{ MHz}$	0.32 mV	

(100 ~ 500) mV 10 Hz 10 Hz ~ 40 Hz 40 Hz ~ 20 kHz 20 kHz ~ 50 kHz 50 kHz ~ 100 kHz 100 kHz ~ 200 kHz 200 kHz ~ 500 kHz 500 kHz ~ 1 MHz (0.5 ~ 1) V 10 Hz 10 Hz ~ 40 Hz 40 Hz ~ 20 kHz 20 kHz ~ 50 kHz 50 kHz ~ 100 kHz 100 kHz ~ 200 kHz 200 kHz ~ 200 kHz 200 kHz ~ 500 kHz 200 kHz ~ 500 kHz 200 kHz ~ 500 kHz	0.18 mV 0.10 mV 0.083 mV 0.090 mV 0.12 mV 0.32 mV 0.72 mV 1.2 mV 0.30 mV 0.13 mV 0.093 mV 0.12 mV 0.17 mV 0.52 mV 1.3 mV	
500 kHz ~ 1 MHz (5 ~ 10) V 10 Hz 10 Hz ~ 40 Hz 40 Hz ~ 20 kHz 20 kHz ~ 50 kHz 50 kHz ~ 100 kHz 100 kHz ~ 200 kHz 200 kHz ~ 500 kHz 500 kHz ~ 100 kHz	3.0 mV 1.3 mV 0.92 mV 1.2 mV 1.5 mV 3.6 mV 13 mV 19 mV	
(10 ~ 50) V 10 Hz 10 Hz ~ 40 Hz 40 Hz ~ 20 kHz 20 kHz ~ 50 kHz 50 kHz ~ 100 kHz	0.018 V 0.007 9 V 0.006 0 V 0.007 7 V 0.013 V	

400. 프뮤 옷 프뮤진틱				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
클램프형 전류계/전압계	40302			CP-40302
		(50 ~ 100) V		
		10 Hz	0.029 V	

인경단보 · NCOI-052보			
	10 Hz ~ 40 Hz	0.012 V	
	40 Hz ~ 20 kHz	0.007 7 V	
	20 kHz ~ 50 kHz	0.011 V	
	50 kHz ~ 100 kHz	0.020 V	
	(100 ~ 500) V		
	50 Hz	0.24 V	
	50 Hz ~ 1 kHz	0.086 V	
	(500 ~ 1000) V		
	50 Hz	0.43 V	
	50 Hz ~ 1 kHz	0.11 V	
직류전류	0 mA	0.066 μΑ	
711211			
	$(0 \sim 1) A$	2.3×10^{-3}	
	(1 ~ 10) A	2.4×10^{-3}	
	(10 ~ 200) A	2.3×10^{-3}	
	(200 ~ 1 000) A	2.4×10^{-3}	
교류전류	1 mA		
- 11 & 11	10 Hz ~ 1 kHz	2.3×10^{-3}	
	10 112 · 1 K112	2.3 \(10	
	(1 0)		
	$(1 \sim 2) \text{ mA}$	0	
	$10 \text{ Hz} \sim 1 \text{ kHz}$	2.4×10^{-3}	
	1 kHz ~ 10 kHz	4.3×10^{-3}	
	(2 ~ 5) mA		
	10 Hz ∼ 1 kHz	2.4×10^{-3}	
	1 kHz ~ 10 kHz	3.2×10^{-3}	
	1 KHZ 10 KHZ	3.2 \ 10	
	(5 00)		
	(5 ~ 20) mA	0	
	$10 \text{ Hz} \sim 1 \text{ kHz}$	2.4×10^{-3}	
	1 kHz ~ 10 kHz	2.9×10^{-3}	
	(20 ~ 50) mA		
	10 Hz ~ 1 kHz	2.4×10^{-3}	
	$1 \text{ kHz} \sim 10 \text{ kHz}$	2.8×10^{-3}	
	1 KHZ 10 KHZ	2.8 \(10	
	(FO 100) = A		
	(50 ~ 100) mA	0	
	10 Hz ~ 1 kHz	2.4×10^{-3}	
	1 kHz ~ 10 kHz	2.6×10^{-3}	
	(0.1 ~ 0.2) A		
	10 Hz ∼ 1 kHz	2.5×10^{-3}	
	1 kHz ~ 10 kHz	8.5×10^{-3}	
	1 M12 10 M12	0.0 \(10	
	(0.2 ~ 0.5) A		
	10 Hz ~ 1 kHz	2.5×10^{-3}	
	1 kHz ~ 10 kHz	7.8×10^{-3}	
	(0.5 ~ 1) A		
	10 Hz ∼ 1 kHz	2.5×10^{-3}	
	1 kHz ~ 10 kHz	7.6×10^{-3}	
		1.0 /\ 10	
	(1 ~ 2) A		
		0.73	
	40 Hz ~ 1 kHz	2.7×10^{-3}	
	1 kHz ~ 10 kHz	4.8×10^{-3}	
i	Ī	1	

403. 교류 및 교류전력

403. 교류 및 교류전력 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
클램프형 전류계/전압계	40302	(2 ~ 10) A 40 Hz ~ 1 kHz 1 kHz ~ 10 kHz	2.4×10^{-3} 4.4×10^{-3}	CP-40302
		(10 ~ 20) A 40 Hz ~ 60 Hz 60 Hz ~ 100 Hz 100 Hz ~ 1 kHz 1 kHz ~ 10 kHz	2.5×10^{-3} 2.7×10^{-3} 5.5×10^{-3} 6.0×10^{-2}	
		(20 ~ 40) A 40 Hz ~ 60 Hz 60 Hz ~ 100 Hz 100 Hz ~ 1 kHz 1 kHz ~ 10 kHz	2.4×10^{-3} 2.5×10^{-3} 3.8×10^{-3} 4.8×10^{-2}	
		(40 ~ 60) A 40 Hz ~ 100 Hz 100 Hz ~ 1 kHz	$2.5 \times 10^{-3} \\ 3.2 \times 10^{-3}$	
		(60 ~ 80) A 40 Hz ~ 100 Hz 100 Hz ~ 1 kHz	$2.4 \times 10^{-3} \\ 3.0 \times 10^{-3}$	
		(80 ~ 100) A 40 Hz ~ 100 Hz 100 Hz ~ 1 kHz	$2.4 \times 10^{-3} \\ 2.8 \times 10^{-3}$	
		60 Hz (100 ~ 200) A (200 ~ 400) A (400 ~ 600) A (600 ~ 1 000) A	2.7×10^{-3} 2.4×10^{-3} 2.7×10^{-3} 2.5×10^{-3}	
저항		$(0 \sim 1) \Omega$ $(1 \sim 10) \Omega$ $(10 \sim 100) \Omega$ $(0.1 \sim 1) k\Omega$ $(1 \sim 10) k\Omega$ $(10 \sim 100) k\Omega$ $(0.1 \sim 1) M\Omega$ $(1 \sim 10) M\Omega$ $(1 \sim 100) M\Omega$	0.000 12 Ω 0.000 66 Ω 0.006 3 Ω 0.000 062 kΩ 0.000 62 kΩ 0.006 3 kΩ 0.000 066 MΩ 0.000 76 MΩ 0.012 MΩ	
교류전압/전류 교정기 교류전압	40303	10 Hz ~ 40 Hz (1 ~ 100) mV (0.1 ~ 1) V (1 ~ 10) V (10 ~ 100) V (100 ~ 200) V (200 ~ 300) V (300 ~ 600) V	0.014 mV 0.11 mV 1.1 mV 0.013 V 0.019 V 0.037 V 0.073 V	CP-40303

(600 ~ 1 000) V	0.14 V	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
교류전압/전류 교정기	40303			CP-40303
교류전압		$40 \text{ Hz} \sim 20 \text{ kHz}$		
		$(1 \sim 100) \text{ mV}$	0.010 mV	
		$(0.1 \sim 1) \text{ V}$	0.084 mV	
		$(1 \sim 10) \text{ V}$	0.85 mV	
		$(10 \sim 100) \text{ V}$	0.008 7 V	
		$(100 \sim 200) \text{ V}$	0.013 V	
		(200 ~ 300) V	0.020 V	
		(300 ~ 600) V	0.038 V	
		(600 ~ 1 000) V	0.088 V	
		20 kHz ~ 100 kHz		
		$(1 \sim 100) \text{ mV}$	0.024 mV	
		$(0.1 \sim 1) \text{ V}$	0.12 mV	
		$(1 \sim 10) \text{ V}$	1.3 mV	
		$(10 \sim 100) \text{ V}$	0.014 V	
		$(100 \sim 200) \text{ V}$	0.026 V	
		$(200 \sim 300) \text{ V}$	0.17 V	
		(300 ~ 600) V	0.35 V	
		100 kHz ~ 500 kHz		
		$(1 \sim 100) \text{ mV}$	0.033 mV	
		$(0.1 \sim 1) \text{ V}$	0.17 mV	
		$(1 \sim 10) \text{ V}$	1.7 mV	
		$(10 \sim 20) \text{ V}$	0.003 2 V	
		500 kHz ~ 1 MHz		
		$(1 \sim 100) \text{ mV}$	0.15 mV	
		$(0.1 \sim 1) \text{ V}$	1.1 mV	
		$(1 \sim 10) \text{ V}$	0.013 V	
		$(10 \sim 20) \text{ V}$	0.026 V	
교류전류		40 Hz ~ 1 kHz		
		$(10 \sim 100) \mu A$	0.28 μΑ	
		$(0.1 \sim 1) \text{ mA}$	0.48 μΑ	
		$(1 \sim 10) \text{ mA}$	0.004 8 mA	
		$(10 \sim 100) \text{ mA}$	0.028 mA	
		$(0.1 \sim 1) \text{ A}$	0.86 mA	
		(1 ~ 10) A	11 mA	
		(10 ~ 100) A	0.13 A	
		1 kHz ~ 10 kHz		
		$(10 \sim 100) \mu A$	1.6 μΑ	
		$(0.1 \sim 1) \text{ mA}$	1.7 μΑ	
		$(1 \sim 10) \text{ mA}$	0.016 mA	
		$(10 \sim 100) \text{ mA}$	0.031 mA	
		$(0.1 \sim 1) \text{ A}$	6.6 mA	ĺ

전력계 교정기 교류전압	40304	40 Hz ~ 20 kHz (0.1 ~ 1) V (1 ~ 10) V	6.4×10^{-5} 5.5×10^{-5}	CP-40304
		$(1 \sim 10) \text{ V}$ $(10 \sim 100) \text{ V}$ $(100 \sim 200) \text{ V}$	6.0×10^{-5} 5.2×10^{-5}	
		40 Hz ~ 10 kHz (200 ~ 1 000) V	5.6×10^{-5}	

403. 교류 및 교류전력	1		T	T
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
전력계 교정기 교류전압	40304	20 kHz ~ 50 kHz (0.1 ~ 1) V (1 ~ 10) V (10 ~ 100) V	8.3×10^{-5} 4.8×10^{-5} 5.3×10^{-5}	CP-40304
		50 kHz ~ 100 kHz (0.1 ~ 1) V (1 ~ 100) V	$1.0 \times 10^{-4} \\ 8.1 \times 10^{-5}$	
		100 kHz ~ 500 kHz (0.1 ~ 1) V (1 ~ 10) V	$4.4 \times 10^{-4} \\ 4.0 \times 10^{-4}$	
		500 kHz ~ 1 MHz (0.1 ~ 1) V (1 ~ 10) V	$1.1 \times 10^{-3} \\ 1.2 \times 10^{-3}$	
교류전류		40 Hz ~ 10 kHz 1 mA (1 ~ 10) mA (10 ~ 100) mA (0.1 ~ 1) A (1 ~ 10) A (10 ~ 20) A	6.0×10^{-5} 3.9×10^{-5} 3.9×10^{-5} 4.1×10^{-5} 4.9×10^{-5} 4.9×10^{-5}	
교류전력		$(50 \sim 60) \text{ Hz}$ $(0.6 \sim 120) \text{ W}$ $(120 \sim 240) \text{ W}$ $(240 \sim 1 200) \text{ W}$ $(1.2 \sim 4.8) \text{ kW}$ $(4.8 \sim 7.2) \text{ kW}$ $(7.2 \sim 12) \text{ kW}$	1.8×10^{-4} 1.5×10^{-4} 1.8×10^{-4} 1.5×10^{-4} 1.8×10^{-4} 1.8×10^{-4} 1.6×10^{-4}	
역율		(50 ~ 60) Hz lead, lag (0 ~ 0.3) lead, lag (0.3 ~ 0.5) lead, lag (0.5 ~ 0.8) lead, lag (0.8 ~ 1)	0.000 13 0.000 14 0.000 16 0.000 17	

교류전류 분류기	40305			CP-40305
교류	-저항	0.1 mΩ		
		(40 ~ 60) Hz	4.6×10^{-4}	
		(60 ~ 100) Hz	6.0×10^{-4}	
		$(0.1 \sim 1) \text{ kHz}$	1.6×10^{-4}	
		$(0.1 \sim 1) \text{ m}\Omega$	4	
		$(40 \sim 60) \text{ Hz}$	3.4×10^{-4}	
		(60 ~ 100) Hz	5.0×10^{-4}	
		$(0.1 \sim 1) \text{ kHz}$	1.6×10^{-4}	
		(1 ~ 10) mΩ		
		$40 \text{ Hz} \sim 5 \text{ kHz}$	5.4×10^{-4}	
		40 HZ 0 KHZ	5.4 \ 10	
		(10 ~ 100) mΩ		
		10 Hz ~ 1 kHz	3.4×10^{-4}	
		$(1 \sim 10) \text{ kHz}$	7.2×10^{-4}	

403. 교류 및 교류선덕 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
교류전류 분류기 교류저항	40305	$(0.1 \sim 1) \Omega$ 10 Hz $(10 \sim 40) \text{ Hz}$ $40 \text{ Hz} \sim 1 \text{ kHz}$ $(1 \sim 10) \text{ kHz}$ $(1 \sim 10) \Omega$ 10 Hz $(10 \sim 40) \text{ Hz}$ $40 \text{ Hz} \sim 1 \text{ kHz}$ $(1 \sim 10) \text{ kHz}$ $(10 \sim 100) \Omega$ 10 Hz $(10 \sim 40) \text{ Hz}$ $40 \text{ Hz} \sim 1 \text{ kHz}$ $(1 \sim 10) \text{ kHz}$	3.2×10^{-4} 2.2×10^{-4} 1.8×10^{-4} 1.2×10^{-3} 3.0×10^{-4} 2.2×10^{-4} 1.8×10^{-4} 1.6×10^{-3} 3.0×10^{-4} 1.8×10^{-3}	CP-40305
전압 전류 위상계 위상	40307	$(50 \sim 60) \text{ Hz}$ $-180^{\circ} \sim 180^{\circ}$	0.012°	CP-40307
역률계,무효율계 등 역률	40310	50 Hz ~ 60 Hz lead, lag (0 ~ 1)	0.000 22	CP-40310
교류 전력계, 피상. 고조파 및 무효 전력계 등 교류전압	40311	1 mV (10 Hz) (10 Hz ~ 10 kHz) 1 mV ~ 10 mV	9.0 μV 9.1 μV	CP-40311

	(10 Hz) (10 Hz ~ 10 kHz) 10 mV ~ 100 mV (10 Hz) (10 Hz ~ 20 kHz)	11 μV 10 μV 37 μV 18 μV	
	$(20 \text{ kHz} \sim 200 \text{ kHz})$	0.12 mV	
	(200 kHz ~ 1 MHz)	0.32 mV	
교류전압	100 mV ~ 1 V		
	(10 Hz)	0.29 mV	
	(10 Hz ~ 40 Hz)	0.12 mV	
	$(40 \text{ Hz} \sim 20 \text{ kHz})$	67 μV	
	(20 kHz ~ 200 kHz)	0.51 mV	
	(200 kHz ~ 1 MHz)	2.1 mV	
	1 V ~ 10 V		
	(10 Hz)	2.9 mV	
	(10 Hz ~ 40 Hz)	1.2 mV	
	(40 Hz ~ 20 kHz)	0.65 mV	
	$(20 \text{ kHz} \sim 100 \text{ kHz})$	1.4 mV	
	(100 kHz ~ 1 MHz)	19 mV	

403. 교류 및 교류전력	<u> </u>		1	, ,
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
교류 전력계, 피상.	40311			CP-40311
고조파 및 무효 전력계 등				
교류전압		$10 \text{ V} \sim 100 \text{ V}$		
		(10 Hz)	29 mV	
		$(10 \text{ Hz} \sim 40 \text{ Hz})$	12 mV	
		$(40 \text{ Hz} \sim 20 \text{ kHz})$	7.1 mV	
		($20 \text{ kHz} \sim 100 \text{ kHz}$)	19 mV	
		$100 \text{ V} \sim 300 \text{ V}$		
		(50 Hz)	29 mV	
		$(50 \text{ Hz} \sim 60 \text{ Hz})$	28 mV	
		$(60 \text{ Hz} \sim 1 \text{ kHz})$	48 mV	
		300 V ~ 600 V		
		(50 Hz)	59 mV	
		$(50 \text{ Hz} \sim 60 \text{ Hz})$	54 mV	
		$(60 \text{ Hz} \sim 1 \text{ kHz})$	62 mV	
		600 V ~ 1 000 V	0.5	
		$(50 \text{ Hz} \sim 1 \text{ kHz})$	85 mV	
그 크 귀 코		1 0		
교류전류		1 mA	0.00	
		(10 Hz)	0.30 μΑ	
		$(10 \text{ Hz} \sim 1 \text{ kHz})$	0.21 μΑ	
		$(1 \text{ kHz} \sim 10 \text{ kHz})$	1.8 μΑ	
1	1			l l

[1 mA ~ 10 mA	l	
	(10 Hz)	3.0 µA	
	(10 Hz ~ 1 kHz)	2.1 μΑ	
	$(1 \text{ kHz} \sim 10 \text{ kHz})$	17 μΑ	
	10 mA ~ 100 mA		
	(10 Hz)	31 µA	
	$(10 \text{ Hz} \sim 1 \text{ kHz})$	22 μΑ	
	$(1 \text{ kHz} \sim 10 \text{ kHz})$	0.13 mA	
	100 mA ~ 1 A		
	(40 Hz)	0.33 mA	
	(40 Hz ~ 60 Hz)	0.14 mA	
	$(60 \text{ Hz} \sim 1 \text{ kHz})$	0.33 mA	
	(1 kHz ~ 10 kHz)	7.2 mA	
	1 A ~ 10 A		
	(40 Hz)	5.3 mA	
	(40 Hz ~ 60 Hz)	1.5 mA	
	(60 Hz ~ 1 kHz)	5.3 mA	
	$(1 \text{ kHz} \sim 10 \text{ kHz})$	37 mA	
	(TRHZ TO RHZ)	01 1111	
	10 A ~ 40 A		
	(40 Hz)	23 mA	
	(40 Hz ~ 60 Hz)	7.2 mA	
	(40 Hz ~ 100 Hz)	34 mA	
	(100 Hz ~ 1 kHz)	0.11 A	
	$(1 \text{ kHz} \sim 10 \text{ kHz})$	1.9 A	
	(1 1112 10 1112)	1.0 11	
	40 A ~ 100 A		
	(40 Hz)	33 mA	
	(40 Hz ~ 60 Hz)	33 mA	
	(60 Hz ~ 100 Hz)	49 mA	
	(100 Hz ~ 1 kHz)	0.16 A	
	(100 HZ ·- 1 KHZ)	0.10 A	

403. 교류 및 교류전력

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
교류 전력계, 피상.	40311			CP-40311
고조파 및 무효 전력계 등				
교류전류		100 A ~ 1 000 A		
		(50 Hz)	2.6 A	
		$(50 \text{ Hz} \sim 60 \text{ Hz})$	2.6 A	
직류전압		1 mV	6.2 μV	
		$1 \text{ mV} \sim 100 \text{ mV}$	6.3 μV	
		$100 \text{ mV} \sim 3 \text{ V}$	16 μV	
		$3~\mathrm{V}\sim10~\mathrm{V}$	0.10 mV	
		$10 \text{ V} \sim 100 \text{ V}$	0.84 mV	
		$100 \text{ V} \sim 1 000 \text{ V}$	11 mV	
직류전류		100 μΑ	0.014 μΑ	
		$100 \mu A \sim 1 mA$	0.044 μΑ	
		1 mA ~ 10 mA	0.41 μΑ	
		10 mA ~ 100 mA	5.3 μA	
		100 mA ~ 1 A	0.093 mA	
		1 A ~ 10 A	4.1 mA	

		10 A ~ 40 A 40 A ~ 100 A 100 A ~ 1 000 A	7.7 mA 0.013 A 2.4 A	
교류전력		(50 Hz ~ 60 Hz) 1.2 W 1.2 W ~ 120 W 120 W ~ 24 kW	7.0×10^{-4} 7.5×10^{-4} 3.1×10^{-4}	
직류전력		1.2 W $1.2 \text{ W} \sim 24 \text{ W}$ $24 \text{ W} \sim 4.8 \text{ kW}$	2.3×10^{-4} 3.7×10^{-4} 1.3×10^{-3}	
역률		(50 Hz ~ 60 Hz) Lead, Lag (0 ~ 1)	0.000 24	
하모닉 전압		(50 Hz ~ 60 Hz) 0.5 % ~ 20 %	0.091 %	
하모닉 전류		(50 Hz ~ 60 Hz) 0.5 % ~ 20 %	0.061 %	
교류전압 교류전압	40312	10 Hz 100 mV $(0.1 \sim 1) \text{ V}$ $(1 \sim 10) \text{ V}$ $(10 \sim 100) \text{ V}$ $40 \text{ Hz} \sim 20 \text{ kHz}$ 100 mV $(0.1 \sim 1) \text{ V}$ $(1 \sim 10) \text{ V}$ $(10 \sim 100) \text{ V}$ $(100 \sim 200) \text{ V}$ $(200 \sim 300) \text{ V}$ $(300 \sim 600) \text{ V}$ $(600 \sim 1 000) \text{ V}$	0.015 mV 0.12 mV 0.52 mV 0.011 V 0.015 mV 0.12 mV 0.54 mV 0.012 V 0.014 V 0.038 V 0.074 V 0.15 V	CP-40312

403. 교류 및 교류전력

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
교류 전원 공급기	40312			CP-40312
교류전압		20 kHz ~ 100 kHz		
		100 mV	0.024 mV	
		$(0.1 \sim 1) \text{ V}$	0.13 mV	
		$(1 \sim 10) \text{ V}$	1.4 mV	
		$(10 \sim 100) \text{ V}$	0.015 V	
		$(100 \sim 200) \text{ V}$	0.027 V	
		(200 ~ 300) V	0.18 V	
		$(300 \sim 600) \text{ V}$	0.35 V	
		$100 \text{ kHz} \sim 500 \text{ kHz}$		
		100 mV	0.034 mV	

1.9 J.Y . MC01 002.Y				
		$(0.1 \sim 1) \text{ V}$ $(1 \sim 10) \text{ V}$ $(10 \sim 20) \text{ V}$	0.18 mV 1.8 mV 3.3 mV	
		500 kHz ~ 1 MHz 100 mV (0.1 ~ 1) V (1 ~ 10) V (10 ~ 20) V	0.15 mV 1.1 mV 0.013 V 0.026 V	
교류전류		$40 \text{ Hz} \sim 1 \text{ kHz}$ $(0.1 \sim 1) \text{ mA}$ $(1 \sim 10) \text{ mA}$ $(10 \sim 100) \text{ mA}$ $(0.1 \sim 1) \text{ A}$ $(1 \sim 10) \text{ A}$ $(10 \sim 100) \text{ A}$	0.64 µA 0.003 7 mA 0.037 mA 0.36 mA 8.5 mA 0.13 A	
주파수		40 Hz ~ 1 kHz	0.005 9 Hz	
직류전압		(±) 0 V (0 ~ 100) mV (0.1 ~ 1 000) V	$0.22 \mu V$ 3.9×10^{-4} 2.9×10^{-5}	
직류전류		(\pm) 0 μA (0 ~ 1) mA (1 ~ 10) mA (10 ~ 100) mA (0.1 ~ 1) A (1 ~ 10) A (10 ~ 100) A (100 ~ 200) A	5.8 nA 8.2×10^{-5} 2.9×10^{-4} 4.4×10^{-5} 1.3×10^{-4} 1.5×10^{-4} 2.0×10^{-4} 7.6×10^{-4}	
내전압/전기 안전 시험기 직류전압	40313	(±) $(0.1 \sim 1) \text{ kV}$ $(1 \sim 10) \text{ kV}$ $(10 \sim 20) \text{ kV}$ $(20 \sim 50) \text{ kV}$ $(50 \sim 70) \text{ kV}$ $(70 \sim 100) \text{ kV}$	9.0×10^{-2} 9.0×10^{-3} 1.0×10^{-2} 6.7×10^{-3} 3.3×10^{-3} 7.0×10^{-3}	CP-40313

403. 교류 및 교류전력

100, 41 / 41				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
내전압/전기 안전 시험기	40313			CP-40313
교류전압		60 Hz		
		$(0.1 \sim 1) \text{ kV}$	6.0×10^{-2}	
		$(1 \sim 6) \text{ kV}$	3.0×10^{-2}	
		$(6 \sim 9) \text{ kV}$	4.3×10^{-3}	

인경인모 · F	1001 00231				
	직류전류		$(9 \sim 15) \text{ kV}$ $(15 \sim 20) \text{ kV}$ $(20 \sim 50) \text{ kV}$ $(50 \sim 70) \text{ kV}$ $(70 \sim 100) \text{ kV}$ $(0.1 \sim 0.5) \text{ mA}$ $(0.5 \sim 1) \text{ mA}$ $(1 \sim 50) \text{ mA}$	7.0×10^{-3} 1.0×10^{-2} 6.7×10^{-3} 5.0×10^{-3} 3.8×10^{-3} 1.2×10^{-2} 1.3×10^{-2} 1.2×10^{-2}	
	근 거 ㄹ		(50 ~ 100) mA	1.2×10 1.3×10^{-2}	
	교류전류		60 Hz $(0.1 \sim 0.5)$ mA $(0.5 \sim 1)$ mA $(1 \sim 50)$ mA $(50 \sim 100)$ mA	1.2×10^{-2} 1.4×10^{-2} 1.3×10^{-2} 1.4×10^{-2}	
	시간		(1 ~ 60) s	71 ms	
	발진전압		$(10 \sim 500) \text{ V}$ $(0.5 \sim 5) \text{ kV}$ $(5 \sim 10) \text{ kV}$	0.08 V 13 V 17 V	
	절연저항		$(1 \sim 10) \text{ k}\Omega$ $(10 \sim 100) \text{ k}\Omega$ $(0.1 \sim 1) \text{ M}\Omega$ $(1 \sim 10) \text{ M}\Omega$ $(10 \sim 100) \text{ M}\Omega$ $(100 \sim 500) \text{ M}\Omega$ $(0.5 \sim 1) \text{ G}\Omega$ $(1 \sim 5) \text{ G}\Omega$ $(5 \sim 10) \text{ G}\Omega$ $(10 \sim 500) \text{ G}\Omega$ $(50 \sim 100) \text{ G}\Omega$ $(100 \sim 500) \text{ G}\Omega$ $(0.5 \sim 1) \text{ T}\Omega$	0.000 8 kΩ 0.007 8 kΩ 0.000 08 MΩ 0.000 87 MΩ 0.017 MΩ 0.31 MΩ 0.001 0 GΩ 0.005 9 GΩ 0.014 GΩ 0.067 GΩ 0.14 GΩ 1.3 GΩ 0.002 5 TΩ	
전력 기록계	교류전력	40314	(50 Hz ~ 60 Hz) 1.2 W 1.2 W ~ 120 W 120 W ~ 24 kW	$7.0 \times 10^{-4} 7.5 \times 10^{-4} 3.1 \times 10^{-4}$	CP-40314
	직류전력		1.2 W 1.2 W \sim 24 W 24 W \sim 4.8 kW	$2.3 \times 10^{-4} 3.7 \times 10^{-4} 1.3 \times 10^{-3}$	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
교류전압계/전위차,실효치	40318			CP-40318
교류전압		0.1 mV		
		10 Hz	6.5 µV	
		10 Hz ~ 40 Hz	6.5 μV	
		40 Hz ~ 1 kHz	6.5 μV	
		1 kHz ~ 20 kHz 20 kHz ~ 50 kHz	8.1 μV	
		50 kHz ~ 100 kHz	10 μV 19 μV	
		100 kHz ~ 500 kHz	35 µV	
		500 kHz ~ 1 MHz	61 μV	
		$0.1 \text{ mV} \sim 10 \text{ mV}$		
		10 Hz	8.2 µV	
		10 Hz ~ 40 Hz	8.0×10^{-4}	
		40 Hz ~ 1 kHz	7.0×10^{-4}	
		1 kHz ~ 20 kHz	8.8×10^{-4}	
		20 kHz ~ 50 kHz	1.2×10^{-3}	
		50 kHz ~ 100 kHz 100 kHz ~ 500 kHz	2.3×10^{-3} 4.6×10^{-3}	
		$500 \text{ kHz} \sim 1 \text{ MHz}$	8.3×10^{-3}	
		10 mV ~ 100 mV		
		10 Hz	37 μV	
		10 Hz ~ 40 Hz	1.7×10^{-4}	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	1.6×10^{-4}	
		$1 \text{ kHz} \sim 20 \text{ kHz}$	1.6×10^{-4}	
		20 kHz ~ 50 kHz	2.8×10^{-4}	
		50 kHz ~ 100 kHz	6.4×10^{-4}	
		100 kHz ~ 500 kHz 500 kHz ~ 1 MHz	$1.7 \times 10^{-3} \\ 3.2 \times 10^{-3}$	
		100 mV ~ 1 V		
		10 Hz	0.29 mV	
		10 Hz ~ 40 Hz	1.2×10^{-4}	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	6.7×10^{-5}	
		$1 \text{ kHz} \sim 20 \text{ kHz}$	6.7×10^{-5}	
		$20 \text{ kHz} \sim 50 \text{ kHz}$	1.0×10^{-4}	
		50 kHz ~ 100 kHz	1.5×10^{-4}	
		100 kHz ~ 500 kHz 500 kHz ~ 1 MHz	$1.3 \times 10^{-3} \\ 2.1 \times 10^{-3}$	
		1 V ~ 10 V		
		10 Hz	2.9 mV	
		10 Hz ~ 40 Hz	1.2×10^{-4}	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	6.5×10^{-5}	
		$1 \text{ kHz} \sim 20 \text{ kHz}$	6.5×10^{-5}	
		$20 \text{ kHz} \sim 50 \text{ kHz}$	1.0×10^{-4}	
		$50 \text{ kHz} \sim 100 \text{ kHz}$	1.4×10^{-4}	
		100 kHz ~ 500 kHz	1.3×10^{-3}	
		500 kHz ~ 1 MHz	1.9×10^{-3}	
		$10~\mathrm{V}\sim100~\mathrm{V}$		
		10 Hz	29 mV	
		10 Hz ~ 40 Hz	1.2×10^{-4}	
		40 Hz ~ 1 kHz	7.2×10^{-5}	
	1 1	$1 \text{ kHz} \sim 20 \text{ kHz}$	7.1×10^{-5}	1

	20 kHz ~ 50 kHz 50 kHz ~ 100 kHz	$1.1 \times 10^{-4} \\ 1.9 \times 10^{-4}$	
	100 V ~ 1 000 V 50 Hz 50 Hz ~ 1 kHz	4.3×10^{-4} 8.5×10^{-5}	
404. 기타 직류 및 저주파 측정			
	 	측정북환도	

404. 기타 직류 및 저주파 측정		00 11Z 1 KHZ	0.3 ^ 10	
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
저주파 증폭기, 챠지/전압증폭기 등	40401			CP-40401
증폭량		DC		
		10 mV ~ 100 mV	2.6×10^{-4}	
		$100 \text{ mV} \sim 1 \text{ V}$	1.0×10^{-6}	
		1 V ~ 1 000 V	1.2×10^{-5}	
		10 Hz		
		$10 \text{ mV} \sim 100 \text{ mV}$	3.5×10^{-3}	
		100 mV ~ 1 V	3.8×10^{-4}	
		1 V ~ 10 V	3.0×10^{-4}	
		10 V ~ 100 V	3.1×10^{-4}	
		10 Hz ~ 40 Hz		
		$10 \text{ mV} \sim 100 \text{ mV}$	3.3×10^{-3}	
		100 mV ~ 1 V	1.9×10^{-4}	
		1 V ~ 10 V	1.4×10^{-4}	
		$10 \text{ V} \sim 100 \text{ V}$	1.5×10^{-4}	
		100 V ~ 1 000 V	1.8×10^{-4}	
		40 Hz ~ 1 kHz		
		$10 \text{ mV} \sim 100 \text{ mV}$	3.3×10^{-3}	
		100 mV ~ 1 V	1.8×10^{-4}	
		$1~\mathrm{V}\sim10~\mathrm{V}$	1.1×10^{-4}	
		10 V ~ 100 V	1.2×10^{-4}	
		100 V ~ 1 000 V	1.6×10^{-4}	
		1 kHz ~ 10 kHz		
		$10 \text{ mV} \sim 100 \text{ mV}$	3.3×10^{-3}	
		100 mV ~ 1 V	2.1×10^{-4}	
		$1~\mathrm{V}\sim10~\mathrm{V}$	1.5×10^{-4}	
		10 V ~ 100 V	1.4×10^{-4}	
		100 V ~ 1 000 V	1.6×10^{-4}	
		10 kHz ~ 30 kHz		
		100 mV ~ 1 V	3.7×10^{-4}	
		1 V ~ 10 V	2.6×10^{-4}	
		$10 \text{ V} \sim 100 \text{ V}$	2.6×10^{-4}	
		100 V ~ 1 000 V	2.8×10^{-4}	
		30 kHz ~ 100 kHz		
		100 mV ~ 1 V	8.6×10^{-4}	
		1 V ~ 10 V	6.0×10^{-4}	
		10 V ~ 100 V	6.6×10^{-4}	
		100 kHz ~ 1 MHz		
		100 mV ~ 1 V	1.2×10^{-2}	
		1 V ~ 10 V	1.2×10^{-2} 1.2×10^{-2}	

DC		
0 dB ~ 30 dB	0.01 dB	
30 dB ~ 40 dB	0.01 dB	
40 dB ~ 50 dB	0.03 dB	
50 dB ~ 60 dB	0.10 dB	
10 Hz		
0 dB ~ 10 dB	0.01 dB	
10 dB ~ 20 dB	0.03 dB	
20 dB ~ 30 dB	0.10 dB	
30 dB ~ 40 dB	0.27 dB	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
저주파 증폭기,	40401			CP-40401
챠지/전압증폭기 등				
증폭량		10 Hz ~ 40 Hz		
		0 dB ~ 10 dB	0.01 dB	
		10 dB ~ 20 dB	0.02 dB	
		20 dB ~ 30 dB	0.07 dB	
		$30 \text{ dB} \sim 40 \text{ dB}$	0.13 dB	
		$40 \text{ dB} \sim 50 \text{ dB}$	0.63 dB	
		50 dB ~ 60 dB	1.5 dB	
		40 Hz ~ 1 kHz		
		0 dB ~ 10 dB	0.01 dB	
		10 dB ~ 20 dB	0.01 dB	
		$20 \text{ dB} \sim 30 \text{ dB}$	0.06 dB	
		$30 \text{ dB} \sim 40 \text{ dB}$	0.11 dB	
		40 dB ~ 50 dB	0.58 dB	
		50 dB ~ 60 dB	1.3 dB	
		1 kHz ~ 30 kHz		
		0 dB ~ 10 dB	0.02 dB	
		10 dB ~ 20 dB	0.06 dB	
		20 dB ~ 30 dB	0.22 dB	
		30 dB ~ 40 dB	0.23 dB	
		$40 \text{ dB} \sim 50 \text{ dB}$	0.91 dB	
		$50 \text{ dB} \sim 60 \text{ dB}$	2.2 dB	
		30 kHz ~ 100 kHz		
		0 dB ~ 10 dB	0.02 dB	
		10 dB ~ 20 dB	0.06 dB	
		20 dB ~ 30 dB	0.22 dB	
		$30 \text{ dB} \sim 40 \text{ dB}$	0.56 dB	
		100 kHz ~ 200 kHz		
		0 dB ~ 10 dB	0.09 dB	
		10 dB ~ 20 dB	0.22 dB	
		200 kHz ~ 1 MHz		
		$0 \text{ dB} \sim 10 \text{ dB}$	0.38 dB	
		10 dB ~ 20 dB	0.99 dB	
키르/키즈코 키 키리	40400			CD 40400
직류/저주파 감쇠기 감쇠량	40402	10 Hz		CP-40402
7240		10 112	I	l

$0 \text{ dB} \sim -40 \text{ dB}$ $-40 \text{ dB} \sim -50 \text{ dB}$ $-50 \text{ dB} \sim -60 \text{ dB}$	0.006 dB 0.007 dB 0.018 dB	
$10 \text{ Hz} \sim 20 \text{ kHz}$ $0 \text{ dB} \sim -40 \text{ dB}$ $-40 \text{ dB} \sim -50 \text{ dB}$ $-50 \text{ dB} \sim -60 \text{ dB}$	0.005 dB 0.008 dB 0.020 dB	
$20 \text{ kHz} \sim 100 \text{ kHz}$ $0 \text{ dB} \sim -30 \text{ dB}$ $-30 \text{ dB} \sim -40 \text{ dB}$ $-40 \text{ dB} \sim -50 \text{ dB}$ $-50 \text{ dB} \sim -60 \text{ dB}$	0.006 dB 0.028 dB 0.030 dB 0.039 dB	

404. 기타 직류 및 저주파 측정				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
직류/저주파 감쇠기	40402			CP-40402
감쇠량		$100 \text{ kHz} \sim 200 \text{ kHz}$		
		$0 \text{ dB} \sim -30 \text{ dB}$	0.027 dB	
		$-30 \text{ dB} \sim -40 \text{ dB}$	0.091 dB	
		$-40 \text{ dB} \sim -50 \text{ dB}$	0.11 dB	
		-50 dB ~ -60 dB	0.13 dB	
		200 kHz ~ 1 MHz		
		0 dB ~ -30 dB	0.13 dB	
		$-30 \text{ dB} \sim -50 \text{ dB}$	0.19 dB	
		-50 dB ~ -60 dB	0.23 dB	
멀티미터교정기;	40403			CP-40403
하부속성 개별인정				
직류전압		(±)	0.00	
		0 mV	0.23 μV	
		$(0 \sim 10) \text{ mV}$	0.23 μV	
		$(10 \sim 100) \text{ mV}$	0.50 μV	
		$(0.1 \sim 1) \text{ V}$ $(1 \sim 10) \text{ V}$	3.0 μV	
		$(1 \sim 10) \text{ V}$ $(10 \sim 100) \text{ V}$	38 μV 0.49 mV	
		$(10 \sim 100)^{-1}$ V $(0.1 \sim 1)$ kV	6.8 mV	
		(U.1 ·- 1) KV	0.0 111 V	
직류전류		(±)		
		ОμА	0.47 nA	
		(0 ~ 100) μA	3.9 nA	
		$(0.1 \sim 1) \text{ mA}$	25 nA	
		$(1 \sim 10) \text{ mA}$	0.24 μΑ	
		$(10 \sim 100) \text{ mA}$	2.4 μΑ	
		$(0.1 \sim 1) \text{ A}$	24 µA	
		$(1 \sim 10) \text{ A}$	0.27 mA	
		(10 ~ 20) A	0.75 mA	
교류전압		40 Hz ~ 20 kHz		
		$(1 \sim 100) \text{ mV}$	6.7 μV	

$(0.1 \sim 1) \text{ V}$ $(1 \sim 10) \text{ V}$ $(10 \sim 100) \text{ V}$ $(0.1 \sim 1.0) \text{ kV}$ $20 \text{ kHz} \sim 50 \text{ kHz}$ $(1 \sim 100) \text{ mV}$ $(0.1 \sim 1) \text{ V}$ $(1 \sim 10) \text{ V}$ $(10 \sim 100) \text{ V}$ $50 \text{ kHz} \sim 100 \text{ kHz}$ $(1 \sim 100) \text{ mV}$ $(0.1 \sim 1) \text{ V}$ $(1 \sim 100) \text{ V}$	58 μV 0.59 mV 14 mV 56 mV 9.1 μV 56 μV 0.57 mV 14 mV 11 μV 79 μV 0.88 mV	
$(1 \sim 10) \text{ V}$ $(10 \sim 100) \text{ V}$ $100 \text{ kHz} \sim 500 \text{ kHz}$ $(1 \sim 100) \text{ mV}$ $(0.1 \sim 1) \text{ V}$ $(1 \sim 10) \text{ V}$	0.88 mV 14 mV 0.045 mV 0.27 mV 4.1 mV	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
멀티미터교정기; 하부속성 개별인정	40403			CP-40403
교류전압		500 kHz ~ 1 MHz		
31- II U B		$(1 \sim 100) \text{ mV}$	0.12 mV	
		$(0.1 \sim 1) \text{ V}$	0.90 mV	
		$(1 \sim 10) \text{ V}$	13 mV	
		,		
교류전류		10 Hz		
		$(0.01 \sim 1) \text{ mA}$	0.084 μΑ	
		$(1 \sim 10) \text{ mA}$	0.77 μΑ	
		$(10 \sim 100) \text{ mA}$	7.7 µA	
		$(0.1 \sim 1) \text{ A}$	0.033 mA	
		$(1 \sim 10) \text{ A}$	0.41 mA	
		$(10 \sim 20) \text{ A}$	0.82 mA	
		10 11- 10 1-11-		
		$10 \text{ Hz} \sim 10 \text{ kHz}$ $(0.01 \sim 1) \text{ mA}$	0.052 µA	
		$(0.01 \sim 1) \text{ mA}$ $(1 \sim 10) \text{ mA}$	0.032 µA 0.39 µA	
		$(10 \sim 100) \text{mA}$	3.9 µA	
		$(0.1 \sim 1) \text{ A}$	0.033 mA	
		$(1 \sim 10) \text{ A}$	0.41 mA	
		(10 ~ 20) A	0.82 mA	
저항		1 Ω	10 μΩ	
		$(1 \sim 10) \Omega$	$0.11~\mathrm{m}\Omega$	
		$(10 \sim 100) \Omega$	0.79 mΩ	
		$(0.1 \sim 1) \text{ k}\Omega$	$7.5~\mathrm{m}\Omega$	
1		$(1 \sim 10) \text{ k}\Omega$	52 mΩ	

		$(10 \sim 100) \text{ k}\Omega$ $(0.1 \sim 1) \text{ M}\Omega$ $(1 \sim 10) \text{ M}\Omega$ $(10 \sim 100) \text{ M}\Omega$	0.76 Ω 11 Ω 0.14 kΩ 1.5 kΩ	
파형 측정기 교정기 직류전압(1 MΩ)	40404	(±) $(1 \sim 5) \text{ mV}$ $(5 \sim 50) \text{ mV}$ $(50 \sim 500) \text{ mV}$ $(500 \sim 5) \text{ V}$ $(5 \sim 50) \text{ V}$ $(50 \sim 200) \text{ V}$	0.9 μV 1.1 μV 8 μV 8 μV 0.9 mV 9 mV	CP-40404
교류전압		$100 \text{ Hz} \sim 1 \text{ kHz}$ $1 \text{ mV} \sim 10 \text{ mV}$ $10 \text{ mV} \sim 50 \text{ mV}$ $50 \text{ mV} \sim 100 \text{ mV}$ $100 \text{ mV} \sim 200 \text{ mV}$ $200 \text{ mV} \sim 500 \text{ mV}$ $500 \text{ mV} \sim 1 \text{ V}$ $1 \text{ V} \sim 2 \text{ V}$ $2 \text{ V} \sim 5 \text{ V}$ $5 \text{ V} \sim 10 \text{ V}$ $10 \text{ V} \sim 20 \text{ V}$ $20 \text{ V} \sim 50 \text{ V}$ $50 \text{ V} \sim 100 \text{ V}$ $100 \text{ V} \sim 200 \text{ V}$	0.033 mV 0.034 mV 0.037 mV 0.042 mV 0.16 mV 0.20 mV 0.24 mV 1.6 mV 2.0 mV 2.4 mV 16 mV 20 mV	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
파형 측정기 교정기	40404			CP-40404
교류전압		$1 \text{ kHz} \sim 10 \text{ kHz}$		
		$1 \text{ mV} \sim 10 \text{ mV}$	0.034 mV	
		$10 \text{ mV} \sim 20 \text{ mV}$	0.034 mV	
		$20 \text{ mV} \sim 50 \text{ mV}$	0.035 mV	
		$50 \text{ mV} \sim 100 \text{ mV}$	0.039 mV	
		$100 \text{ mV} \sim 200 \text{ mV}$	0.044 mV	
		$200 \text{ mV} \sim 500 \text{ mV}$	0.17 mV	
		$500 \text{ mV} \sim 1 \text{ V}$	0.21 mV	
		$1 \text{ V} \sim 2 \text{ V}$	0.27 mV	
		$2 \text{ V} \sim 5 \text{ V}$	1.7 mV	
		$5 \text{ V} \sim 10 \text{ V}$	2.1 mV	
		$10 \text{ V} \sim 20 \text{ V}$	2.7 mV	
		$20 \text{ V} \sim 50 \text{ V}$	17 mV	
		50 V ~ 100 V	21 mV	
		$100 \text{ V} \sim 200 \text{ V}$	27 mV	
		$10 \text{ kHz} \sim 20 \text{ kHz}$		
		$1 \text{ mV} \sim 5 \text{ mV}$	0.037 mV	
		$5 \text{ mV} \sim 10 \text{ mV}$	0.038 mV	
		$10 \text{ mV} \sim 20 \text{ mV}$	0.039 mV	

	20 mV ~ 50 mV 50 mV ~ 100 mV 100 mV ~ 200 mV 200 mV ~ 500 mV 500 mV ~ 1 V 1 V ~ 2 V 2 V ~ 5 V 5 V ~ 10 V 10 V ~ 20 V 20 V ~ 50 V 50 V ~ 100 V 100 V ~ 200 V	0.045 mV 0.057 mV 0.084 mV 0.23 mV 0.33 mV 0.51 mV 2.3 mV 3.3 mV 5.1 mV 23 mV 33 mV	
시간 마커 발생기	1 ns ~ 5 s	9.3×10^{-8}	
신호 발생기 레벨	600 mV 50 kHz ~ 100 kHz 100 kHz ~ 3 000 MHz	$2.0 \times 10^{-3} $ 2.8×10^{-2}	

404. 기타 직류 및 저주파 측정

404. 기타 식뉴 및 서주파 즉성				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
영상 신호 발생기	40406			CP-40406
Amplitude				
Luminance		(500 ~ 800) mV	4.1 mV	
Burst		(200 ~ 400) mV	4.9 mV	
Sync		(200 ~ 400) mV	4.9 mV	
주파수 부반송파		(3.5 ~ 4.5) MHz	0.88 Hz	
라인 PAL		15.625 kHz	19 Hz	
NTSC		15.734 kHz	19 Hz	
필드 PAL		50.00 Hz	0.059 Hz	
NTSC		59.94 Hz	0.071 Hz	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
영상 신호 발생기	40406			CP-40406
Color Bar				
Luminance		(50 ~ 714) mV	4.1 mV	
Chrominance		(50 ~ 714) mV	8.8 mV	
		(30 111) 1111	0.0 m	
위상		(0~360)°	1.4 °	
H-타이밍				
H Blanking		(6.9 ~ 16.4) μs	0.062 µs	
Sync-to-Burst Start		(5 ~ 8) μs	0.036 µs	
Sync Duration, Width		(1~8) µs	0.024 µs	

I		l		
Sync Rise Time		80 ns ~ 1 μs	14 ns	
Sync Fall Time		80 ns ~ 1 μs	12 ns	
Burst Duration, Width		(1.4 ~ 3) μs	0.036 µs	
오디오 분석기/왜율 미터	40407			CP-40407
교류입력전압		(1 mV)		
		40 Hz ~ 10 kHz	9 μV	
		10 kHz ~ 100 kHz	20 μV	
		(1 mV ~ 10 mV)		
		40 Hz ~ 10 kHz	10 μV	
		10 kHz ~ 100 kHz	24 μV	
		(10 mV ~ 100 mV)		
		40 Hz ~ 10 kHz	71 µV	
		10 kHz ~ 100 kHz	73 μV	
		(100 11 11)		
		$(100 \text{ mV} \sim 1 \text{ V})$	0.71 mV	
		40 Hz ~ 10 kHz 10 kHz ~ 100 kHz	0.71 mV 0.72 mV	
			0.72 1117	
		$(1 \text{ V} \sim 10 \text{ V})$		
		40 Hz ~ 100 kHz	7.1 mV	
		(10 V ~ 100 V)		
		40 Hz ~ 10 kHz	0.071 V	
		10 kHz ~ 100 kHz	0.073 V	
		(100 V ~ 300 V)		
		(100 V ~ 300 V) 50 Hz	0.12 V	
		50 Hz ~ 500 Hz	0.12 V 0.084 V	
		500 Hz ~ 1 kHz	0.084 V	
		1 11 (10 11 100 111)	. 50	
교류입력전압 평탄성		1 V (40 Hz ~ 100 kHz)	0.72 mV	
교류출력전압		(1 mV)		
		40 Hz ~ 20 kHz	19 μV	
		20 kHz ~ 50 kHz	35 μV	
		50 kHz ~ 100 kHz	69 µV	
		(1 mV ~ 10 mV)		
		40 Hz ~ 20 kHz	20 μV	
		20 kHz ~ 50 kHz	39 μV	
		50 kHz ~ 100 kHz	72 µV	

404, 714 711 7 717 7 8				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
오디오 분석기/왜율 미터	40407			CP-40407
교류출력전압		$(10 \text{ mV} \sim 100 \text{ mV})$		
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	0.021 mV	
		1 kHz ~ 20 kHz	0.042 mV	
		20 kHz ~ 50 kHz	0.095 mV	
		50 kHz ~ 100 kHz	0.11 mV	

		$(100 \text{ mV} \sim 1 \text{ V})$		
		40 Hz ~ 1 kHz	0.59 mV	
		1 kHz ~ 20 kHz	0.62 mV	
		20 kHz ~ 50 kHz	0.77 mV	
		50 kHz ~ 100 kHz	0.78 mV	
		(1 V ~ 10 V)		
		40 Hz ~ 1 kHz	1.3 mV	
		1 kHz ~ 20 kHz	2.6 mV	
		20 kHz ~ 50 kHz	7.1 mV	
		50 kHz ~ 100 kHz	7.2 mV	
교류출력전압 평탄성		1 V (40 Hz ~ 10 kHz)	0.79 mV	
		$(10 \text{ kHz} \sim 100 \text{ kHz})$	0.93 mV	
직류 입력 전압		10 mV ~ 100 mV	0.58 mV	
711 日7 七日		$0.1 \text{ V} \sim 1 \text{ V}$	0.70 mV	
		1 V ~ 10 V	7.0 mV	
		10 V ~ 300 V	70 mV	
직류 출력 전압		10 mV ~ 100 mV	0.58 mV	
		$0.1 \text{ V} \sim 1 \text{ V}$	0.70 mV	
		1 V ~ 10 V	7.0 mV	
		10 V ~ 50 V	70 mV	
		10 7 00 7	701117	
입력 주파수		1 Hz ~ 100 kHz	1.1×10^{-5}	
출력 주파수		1 Hz ~ 100 kHz	7.0×10^{-6}	
왜율		400 Hz ~ 1 kHz		
게 판			1.010=2	
		(0.1 ~ 31.6) %	1.2×10^{-2}	
		400 Hz ~ 1 kHz		
		$(-10 \sim -60) \text{ dB}$	0.03 dB	
		(20	3.01	
기즈코 이 사람기	40400			CD 40400
저주파용 여파기	40408	100 11	O 11 II.	CP-40408
차단 주파수		100 Hz	0.11 Hz	
		100 Hz ~ 1 kHz	1.1 Hz	
		1 kHz ~ 10 kHz	2.8 Hz	
		10 kHz ~ 90 kHz	20 Hz	
삽입 손실		5 Hz ~ 10 MHz	0.15 dB	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등

저주파 신호 분석기,	40409		T	CP-40409
가청주파수 분석기 등				-5-00
교류입력전압		(1 mV)		
		40 Hz ~ 10 kHz	9 μV	
		10 kHz ~ 100 kHz	20 μV	
		(1 mV ~ 10 mV)		
		40 Hz ~ 10 kHz	10 μV	
		10 kHz ~ 100 kHz	24 µV	
		$(10 \text{ mV} \sim 100 \text{ mV})$		
		40 Hz ~ 10 kHz	71 µV	
		10 kHz ~ 100 kHz	73 μV	
		(100 mV ~ 1 V)		
		40 Hz ~ 10 kHz	0.71 mV	
		10 kHz ~ 100 kHz	0.72 mV	
		(4 **		
		$(1 \text{ V} \sim 10 \text{ V})$	77 1 17	
		40 Hz ~ 100 kHz	7.1 mV	
		(10 V ~ 100 V)		
		40 Hz ~ 10 kHz	0.071 V	
		10 kHz ~ 100 kHz	0.073 V	
		(100 II 000 II)		
		(100 V ~ 300 V) 50 Hz	0.12 V	
		50 Hz ~ 500 Hz	0.12 V 0.084 V	
		500 Hz ~ 1 kHz	0.084 V	
교류입력전압 평탄성		1 V (40 Hz ~ 100 kHz)	0.72 mV	
그런 호려 가지.		(1 17)		
교류출력전압		(1 mV) 40 Hz ~ 20 kHz	19 µV	
		$20 \text{ kHz} \sim 50 \text{ kHz}$	35 μV	
		50 kHz ~ 100 kHz	69 μV	
		$(1 \text{ mV} \sim 10 \text{ mV})$		
		40 Hz ~ 20 kHz	20 μV	
		20 kHz ~ 50 kHz 50 kHz ~ 100 kHz	39 μV 72 μV	
		00 M12 100 M12	, Δ μ ν	
		(10 mV ~ 100 mV)		
		40 Hz ~ 1 kHz	0.021 mV	
		1 kHz ~ 20 kHz	0.042 mV	
		20 kHz ~ 50 kHz	0.095 mV	
		50 kHz ~ 100 kHz	0.11 mV	
		(100 mV ~ 1 V)		
		40 Hz ~ 1 kHz	0.59 mV	
		1 kHz ~ 20 kHz	0.62 mV	
		20 kHz ~ 50 kHz	0.77 mV	
		50 kHz ~ 100 kHz	0.78 mV	
		(1 V ~ 10 V)		
		$(1 \lor \sim 10 \lor)$ $40 \text{ Hz} \sim 1 \text{ kHz}$	1.3 mV	
		1 kHz ~ 20 kHz	2.6 mV	
		$20 \text{ kHz} \sim 50 \text{ kHz}$	7.1 mV	

	50 kHz ~ 100 kHz	7.2 mV	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
저주파 신호 분석기,	40409		(THIE 7 30 N)	CP-40409
가청주파수 분석기 등		(
교류 출력전압 평탄성		$1 \text{ V } (40 \text{ Hz} \sim 10 \text{ kHz})$	0.79 mV 0.93 mV	
		$(10 \text{ kHz} \sim 100 \text{ kHz})$	0.95 111	
직류입력전압		10 mV ~ 100 mV	0.58 mV	
		$0.1~\mathrm{V}\sim1~\mathrm{V}$	0.70 mV	
		$1~\mathrm{V}\sim10~\mathrm{V}$	7.0 mV	
		10 V ~ 300 V	70 mV	
직류출력전압		10 mV ~ 100 mV	0.58 mV	
7.7.0 7.0.7		0.1 V ~ 1 V	0.70 mV	
		$1~\mathrm{V}\sim10~\mathrm{V}$	7.0 mV	
		10 V ~ 50 V	70 mV	
입력주파수		1 Hz ~ 100 kHz	1.1×10^{-5}	
출력주파수		1 Hz ~ 100 kHz	7.0×10^{-6}	
왜율		400 Hz ~ 1 kHz	1.010-2	
		(0.1 ~ 31.6) %	1.2×10^{-2}	
		400 Hz ~ 1 kHz		
		$(-10 \sim -60) \text{ dB}$	0.03 dB	
전원 주파수계	40410			CP-40410
		(10 ~ 100) Hz	0.001 1 Hz	
		$(0.1 \sim 1) \text{ kHz}$	0.011 Hz	
다기능 파형 발생기	40411			CP-40411
출력주파수		$1~\mathrm{Hz}\sim1~\mathrm{GHz}$	5.8×10^{-6}	
		1 GHz ~ 3 GHz	2.9×10^{-6}	
출력레벨		(10 Hz ~ 1 kHz)		
큰 뒤 네 큰		10 mV	8.3×10^{-4}	
		10 mV ~ 100 mV	4.2×10^{-4}	
		$0.1~\mathrm{V}\sim1~\mathrm{V}$	1.8×10^{-4}	
		$1~\mathrm{V}\sim10~\mathrm{V}$	1.3×10^{-4}	
		$10~\mathrm{V}\sim20~\mathrm{V}$	1.6×10^{-4}	
		20 V ~ 30 V	1.2×10^{-4}	
		(1 kHz ~ 10 kHz)		
		10 mV	8.7×10^{-4}	
		$10~\text{mV} \sim 100~\text{mV}$	4.2×10^{-4}	
		$0.1~\mathrm{V}\sim1~\mathrm{V}$	1.9×10^{-4}	
		$1~\mathrm{V}\sim10~\mathrm{V}$	1.6×10^{-4}	
		10 V ~ 20 V	1.5×10^{-4}	
		20 V ~ 30 V	1.2×10^{-4}	
			1	1
출력레벨평탄성		(40 Hz ~ 60 Hz)		

	(60 Hz ~ 100 kHz) 0.0 dB	0.14 dB	
	(100 kHz ~ 1 MHz) 0.0 dB	0.20 dB	
	(10 Hz ~ 100 kHz) 100 mV 100 mV ~ 1 V	0.6 mV 0.8 mV	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
다기능 파형 발생기	40411			CP-40411
출력레벨평탄성		$(10 \text{ Hz} \sim 1 \text{ kHz})$		
		1 V ~ 10 V	0.9 mV	
		10 V ~ 30 V	3.5 mV	
		(1 kHz ~ 10 kHz)		
		1 V ~ 10 V	1.2 mV	
		$10~\mathrm{V}\sim30~\mathrm{V}$	3.6 mV	
		(101-11- 1001-11-)		
		(10 kHz ~ 100 kHz) 1 V ~ 10 V	5.5 mV	
		$1 \text{ V} \sim 10 \text{ V}$ $10 \text{ V} \sim 30 \text{ V}$	20 mV	
		10 V ~ 30 V	20 III v	
감쇠량		1 kHz		
		$10 \text{ dB} \sim -20 \text{ dB}$	0.14 dB	
		$-20 \text{ dB} \sim -60 \text{ dB}$	0.19 dB	
Off-set 전압		(-20 ~ 20) V	0.8 mV	
상승시간/하간시간		1	1.1.4.10=2	
강하시간/야간시간		1 ns 1 ns ~ 100 μs	$1.1 \times 10^{-2} \\ 1.2 \times 10^{-3}$	
		1 ns ~ 100 μs	1.2 × 10 °	
직교류 고전압계	40413			CP-40413
직류전압		$(0.1 \sim 0.2) \text{ kV}$	1.0×10^{-2}	
		$(0.2 \sim 0.3) \text{ kV}$	5.0×10^{-3}	
		$(0.3 \sim 0.4) \text{ kV}$	4.7×10^{-3}	
		$(0.4 \sim 0.5) \text{ kV}$	4.0×10^{-3}	
		$(0.5 \sim 0.6) \text{ kV}$	3.6×10^{-3}	
		$(0.6 \sim 0.8) \text{ kV}$	3.4×10^{-3}	
		$(0.8 \sim 0.9) \text{ kV}$	3.3×10^{-3}	
		$(0.9 \sim 1) \text{ kV}$ $(1 \sim 2) \text{ kV}$	3.2×10^{-3} 3.2×10^{-3}	
		$(1 \sim 2) \text{ kV}$ $(2 \sim 3) \text{ kV}$	3.2×10 3.1×10^{-3}	
		$(3 \sim 6) \text{ kV}$	3.0×10^{-3}	
		$(6 \sim 9) \text{ kV}$	3.0×10^{-3} 3.1×10^{-3}	
교류전압		60 Hz		
		$(0.1 \sim 0.2) \text{ kV}$	1.0×10^{-1}	
		$(0.2 \sim 0.3) \text{ kV}$	5.1×10^{-2}	
		$(0.3 \sim 0.4) \text{ kV}$	3.4×10^{-2}	
		$(0.4 \sim 0.5) \text{ kV}$	2.6×10^{-2}	
		$(0.5 \sim 0.6) \text{ kV}$	2.0×10^{-2}	ĺ
		$(0.6 \sim 0.7) \text{ kV}$	1.7×10^{-2}	

$(0.8 \sim 0.9) \text{ kV}$ $(0.9 \sim 1) \text{ kV}$ $(1 \sim 2) \text{ kV}$ $(2 \sim 3) \text{ kV}$ $(3 \sim 4) \text{ kV}$ $(4 \sim 5) \text{ kV}$ $(5 \sim 6) \text{ kV}$	1.3×10^{-2} 1.1×10^{-2} 1.0×10^{-2} 5.2×10^{-3} 3.6×10^{-3} 2.8×10^{-3} 3.5×10^{-3}	

404. 기타 식뉴 및 서구파 측정 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
저주파 임펄스 발생기 출력전압	40414	1 V (1 ~ 5) V 5 V ~ 20 kV	$0.014 \text{ V} \\ 1.3 \times 10^{-2} \\ 5.2 \times 10^{-2}$	CP-40414
펄스폭		50 ns 50 ns ~ 100 ms	0.014 ns 1.4×10^{-3}	
상승시간		1 ns 1 ns ~ 100 ms	0.016 ns 1.4×10^{-3}	
누설전류 시험기 직류전류	40416	$10 \mu A$ (10 ~ 100) μA (0.1 ~ 1) mA (1 ~ 10) mA (10 ~ 100) mA	8.6 nA 0.059 μA 0.58 μA 0.005 8 mA 0.058 mA	CP-40416
교류전류		$40~\text{Hz} \sim 1~\text{kHz}$ $10~\mu\text{A}$ (10 ~ 100) μA (0.1 ~ 1) mA (1 ~ 10) mA (10 ~ 100) mA	0.080 μA 0.11 μA 0.62 μA 0.006 2 mA 0.062 mA	
교류전압		40 Hz ~ 1 kHz (10 ~ 100) mV (0.1 ~ 1) V (1 ~ 10) V (10 ~ 100) V (100 ~ 1 000) V	0.060 mV 0.59 mV 5.9 mV 0.059 V 0.59 V	
직/교류 전자부하 직류전압	40417	(0 ~ 1 000) V	1.3×10^{-5}	CP-40417
직류전류		1 mA $(1 \sim 10) \text{ mA}$	$7.9 \times 10^{-5} \\ 7.3 \times 10^{-5}$	

	(10 ~ 100) mA (0.1 ~ 1) A (1 ~ 10) A (10 ~ 100) A	1.3×10^{-4} 1.7×10^{-4} 1.5×10^{-4} 1.9×10^{-4}	
교류전압	50 Hz ~ 400 Hz (0.1 ~ 1 000) V	2.2×10^{-4}	
교류전류	50 Hz ~ 400 Hz 1 mA (1 ~ 10) mA (10 ~ 100) mA (0.1 ~ 1) A (1 ~ 100) A	6.6×10^{-4} 5.5×10^{-4} 5.9×10^{-4} 7.9×10^{-4} 1.3×10^{-3}	
충방전기시험기 충전 전압	0 mV (0 ~ 1 000) V	$0.98 \ \mu V$ 1.3×10^{-5}	

404. 기타 식류 및 지구파 극성			츠저브하드	
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
직/교류 전자부하	40417			CP-40417
충방전 전류		(±)		
		ОμА	5.8 nA	
		$(0 \sim 1) \text{ mA}$	8.2×10^{-5}	
		$(1 \sim 10) \text{ mA}$	2.9×10^{-4}	
		$(10 \sim 100) \text{ mA}$	4.4×10^{-5}	
		$(0.1 \sim 1) \text{ A}$	1.3×10^{-4}	
		$(1 \sim 10) A$	1.5×10^{-4}	
		(10 ~ 100) A	1.9×10^{-4}	
		(100 ~ 1 000) A	2.1×10^{-4}	
변조도 측정기	40418			CP-40418
주파수변조		1 kHz ~ 400 kHz	2.5×10^{-2}	
진폭변조		5 % ~ 99 %	2.5×10^{-2}	
			(상대불확도)	
위상변조		1 rad ~ 10 rad	2.5×10^{-2}	
변조왜율		0 % ~ 10 %	1.5×10^{-2}	
			(상대불확도)	
아날로그,디지털 멀티 미터	40419			CP-40419
하부 속성 개별 인정				
직류전압		(±)		
		0 mV	0.80 μV	
		$0 \text{ mV} \sim 10 \text{ mV}$	5.4×10^{-5}	
		$10 \text{ mV} \sim 100 \text{ mV}$	1.2×10^{-5}	
		$100 \text{ mV} \sim 1 \text{ V}$	5.9×10^{-6}	
		$1 \text{ V} \sim 10 \text{ V}$	4.0×10^{-6}	

	10 V ~ 100 V 100 V ~ 1 000 V	$5.9 \times 10^{-6} $ 7.3×10^{-6}	
교류전압	0.1 mV		
	10 Hz	6.6 μV	
	10 Hz ~ 40 Hz	6.5 μV	
	40 Hz ~ 1 kHz	6.5 μV	
	1 kHz ~ 20 kHz	8.2 μV	
	20 kHz ~ 50 kHz	10 μV	
	50 kHz ~ 100 kHz	19 μV	
	100 kHz ~ 500 kHz	35 μV	
	500 kHz ~ 1 MHz	61 μV	
	0.1 17 10 17		
	0.1 mV ~ 10 mV	0.0 17	
	10 Hz	$8.2 \mu V$ 8.0×10^{-4}	
	10 Hz ~ 40 Hz	8.0×10 7.0×10^{-4}	
	40 Hz ~ 1 kHz 1 kHz ~ 20 kHz	7.0×10 8.8×10^{-4}	
	20 kHz ~ 50 kHz	8.8×10 1.2×10^{-3}	
	50 kHz ~ 50 kHz	2.3×10^{-3}	
	100 kHz ~ 500 kHz	2.5×10 4.6×10^{-3}	
	500 kHz ~ 1 MHz	8.3×10^{-3}	
	JOO KIIZ I WIIIZ	0.5 \ 10	

404 기타 진류 및 저주파 측정

404. 기타 직류 및 저주파 측정				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
아날로그,디지털 멀티 미터	40419			CP-40419
하부 속성 개별 인정				
교류전압		10 mV ~ 100 mV		
		10 Hz	37 μV	
		10 Hz ~ 40 Hz	1.7×10^{-4}	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	1.6×10^{-4}	
		1 kHz ~ 20 kHz	1.6×10^{-4}	
		20 kHz ~ 50 kHz	2.8×10^{-4}	
		50 kHz ~ 100 kHz	6.4×10^{-4}	
		100 kHz ~ 500 kHz	1.7×10^{-3}	
		$500 \text{ kHz} \sim 1 \text{ MHz}$	3.2×10^{-3}	
		100 mV ~ 1 V		
		10 Hz	0.29 mV	
		10 Hz ~ 40 Hz	1.2×10^{-4}	
		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$	6.7×10^{-5}	
		1 kHz ~ 20 kHz	6.7×10^{-5}	
		20 kHz ~ 50 kHz	1.0×10^{-4}	
		50 kHz ~ 100 kHz	1.5×10^{-4}	
		100 kHz ~ 500 kHz	1.3×10^{-3}	
		$500 \text{ kHz} \sim 1 \text{ MHz}$	2.1×10^{-3}	
		1 V ~ 10 V		
•	•		•	•

	10 Hz	2.9 mV	
	10 Hz ~ 40 Hz	1.2×10^{-4}	
	40 Hz ~ 1 kHz	6.5×10^{-5}	
	1 kHz ~ 20 kHz	6.5×10^{-5}	
	20 kHz ~ 50 kHz	1.0×10^{-4}	
	50 kHz ~ 100 kHz	1.4×10^{-4}	
	100 kHz ~ 500 kHz	1.3×10^{-3}	
	500 kHz ~ 1 MHz	1.9×10^{-3}	
	10 V ~ 100 V		
	10 Hz	29 mV	
	10 Hz ~ 40 Hz	1.2×10^{-4}	
	40 Hz ~ 1 kHz	7.2×10^{-5}	
	1 kHz ~ 20 kHz	7.1×10^{-5}	
	20 kHz ~ 50 kHz	1.1×10^{-4}	
	50 kHz ~ 100 kHz	1.9×10^{-4}	
	100 V ~ 1 000 V		
	50 Hz	4.3×10^{-4}	
	50 Hz ~ 1 kHz	8.5×10^{-5}	
직류전류	(±)		
	ОμА	11 nA	
	0 μΑ ~ 10 μΑ	6.5×10^{-4}	
	10 μΑ ~ 100 μΑ	1.1×10^{-4}	
	100 μA ~ 1 mA	4.4×10^{-5}	
	1 mA ~ 10 mA	4.1×10^{-5}	
	10 mA ~ 100 mA	5.4×10^{-5}	
	100 mA ~ 1 A	9.3×10^{-5}	
	1 A ~ 10 A	4.1×10^{-4}	
	10 A ~ 20 A	1.3×10^{-3}	
교로자로	0.1		
교류전류	0.1 μA 10 Hz	Ο1 Λ	
	10 Hz 10 Hz ~ 40 Hz	81 nA 79 nA	
	10 Hz ~ 40 Hz 40 Hz ~ 1 kHz	79 nA 79 nA	
	1 kHz ~ 10 kHz	79 HA 0.66 μA	
	1 KHZ ~ 10 KHZ	Αμ ου.υ	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
아날로그,디지털 멀티 미터	40419			CP-40419
하부 속성 개별 인정				
교류전류		0.1 μΑ ~ 10 μΑ		
		10 Hz	82 nA	
		10 Hz ~ 40 Hz	7.9×10^{-3}	
		40 Hz ~ 1 kHz	7.9×10^{-3}	
		1 kHz ~ 10 kHz	6.7×10^{-2}	
		10 μΑ ~ 100 μΑ		
		10 Hz	96 nA	
		10 Hz ~ 40 Hz	8.7×10^{-4}	
		40 Hz ~ 1 kHz	8.5×10^{-4}	
		1 kHz ~ 10 kHz	7.7×10^{-3}	
		I KIIZ I O KIIZ	1.1 1.10	
		100 μA ~ 1 mA		
		=	0.30 1	
1		10 Hz	0.30 μΑ	ı

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
1	10 Hz ∼ 40 Hz	2.1×10^{-4}	
	40 Hz ~ 1 kHz	1.8×10^{-4}	
	1 kHz ~ 10 kHz	1.8×10^{-3}	
	1 mA ~ 10 mA		
	10 Hz	3.0 μΑ	
	10 Hz ~ 40 Hz	2.1×10^{-4}	
		1.8×10^{-4}	
	40 Hz ~ 1 kHz		
	1 kHz ~ 10 kHz	1.7×10^{-3}	
	10 mA ~ 100 mA		
	10 Hz	31 μΑ	
	10 Hz ~ 40 Hz	2.2×10^{-4}	
	40 Hz ~ 1 kHz	1.8×10^{-4}	
	1 kHz ~ 10 kHz	1.3×10^{-3}	
	100 mA ~ 1 A		
	10 Hz	0.33 mA	
	10 Hz ~ 40 Hz	3.3×10^{-4}	
	40 Hz ~ 1 kHz	3.3×10^{-4}	
	1 kHz ~ 10 kHz	7.2×10^{-3}	
	1 kHz ~ 10 kHz	7.2 \ 10	
	1 A ~ 10 A		
	40 Hz	5.3×10^{-4}	
	40 Hz ~ 500 Hz	5.3×10^{-4}	
	500 Hz ~ 1 kHz	5.3×10^{-4}	
	1 kHz ~ 10 kHz	5.3×10^{-4}	
	10 A ~ 20 A		
	50 Hz	2.0×10^{-3}	
	50 Hz ~ 100 Hz	2.0×10^{-3}	
	100 Hz ~ 400 Hz	2.3×10^{-3}	
	400 Hz ~ 1 kHz	2.3×10^{-3}	
저항	1 Ω	$0.13~\mathrm{m}\Omega$	
	1 Ω ~ 10 Ω	2.5×10^{-5}	
	10 Ω ~ 100 Ω	1.2×10^{-5}	
	$100 \Omega \sim 1 \text{ k}\Omega$	1.0×10^{-5}	
	1 kΩ ~ 10 kΩ	1.0×10^{-5}	
	10 kΩ ~ 100 kΩ	1.5×10^{-5}	
	100 kΩ ~ 1 MΩ	2.3×10^{-5}	
	$1 \text{ M}\Omega \sim 10 \text{ M}\Omega$	4.5×10^{-5}	
	$10 \text{ M}\Omega \sim 100 \text{ M}\Omega$	1.1×10^{-4}	
	10 14100 100 14100	1.1 / 10	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
잡음 전압 측정기 입력레벨	40420	10 Hz $(1 \sim 10) \text{ mV}$ $(10 \sim 100) \text{ mV}$ $(0.1 \sim 1) \text{ V}$ $(1 \sim 10) \text{ V}$ $(10 \sim 100) \text{ V}$	$ \begin{array}{c} 1.3 \times 10^{-2} \\ 3.7 \times 10^{-4} \\ 3.0 \times 10^{-4} \\ 3.0 \times 10^{-4} \\ 3.0 \times 10^{-4} \end{array} $	CP-40420
1]	10 Hz ~ 40 Hz		

1 1	$(1 \sim 10) \text{ mV}$	8.7×10^{-3}	Ī
	$(10 \sim 100) \text{ mV}$	1.9×10^{-4}	
	$(0.1 \sim 1) \text{ V}$	1.4×10^{-4}	
	$(1 \sim 10) \text{ V}$	1.4×10^{-4}	
	$(10 \sim 100) \text{ V}$	1.4×10^{-4}	
	(10 · 100) V	1.4 \(10	
	$40 \text{ Hz} \sim 20 \text{ kHz}$		
	$(1 \sim 10) \text{ mV}$	8.2×10^{-3}	
	$(10 \sim 100) \text{ mV}$	1.8×10^{-4}	
	$(0.1 \sim 1) \text{ V}$	1.1×10^{-4}	
	$(1 \sim 10) \text{ V}$	1.1×10^{-4}	
	$(10 \sim 100) \text{ V}$	1.1×10^{-4}	
	20 kHz ~ 50 kHz		
		1.0.1.10-2	
	$(1 \sim 10) \text{ mV}$	1.0×10^{-2}	
	$(10 \sim 100) \text{ mV}$	2.9×10^{-4}	
	$(0.1 \sim 1) \text{ V}$	1.4×10^{-4}	
	(1 ~ 10) V	1.3×10^{-4}	
	$(10 \sim 100) \text{ V}$	1.4×10^{-4}	
	(10 ~ 100) V	1.4 × 10	
	50 kHz ~ 100 kHz		
	$(1 \sim 10) \text{ mV}$	1.9×10^{-2}	
	$(10 \sim 100) \text{ mV}$	6.4×10^{-4}	
	$(0.1 \sim 1) \text{ V}$	1.7×10^{-4}	
	$(1 \sim 10) \text{ V}$	1.6×10^{-4}	
	$(10 \sim 100) \text{ V}$	2.1×10^{-4}	
	100 kHz ~ 200 kHz		
	$(1 \sim 10) \text{ mV}$	3.2×10^{-2}	
	$(10 \sim 100) \text{ mV}$	1.1×10^{-3}	
	$(0.1 \sim 1) \text{ V}$	5.2×10^{-4}	
	$(1 \sim 10) \text{ V}$	3.6×10^{-4}	
	200 kHz ~ 500 kHz		
		3.6×10^{-2}	
	$(1 \sim 10) \text{ mV}$		
	$(10 \sim 100) \text{ mV}$	1.7×10^{-3}	
	$(0.1 \sim 1) \text{ V}$	1.2×10^{-3}	
	$(1 \sim 10) \text{ V}$	1.2×10^{-3}	
	500 kHz ~ 1 MHz		
		0.0	
	$(1 \sim 10) \text{ mV}$	6.0×10^{-2}	
	$(10 \sim 100) \text{ mV}$	3.2×10^{-3}	
	$(0.1 \sim 1) \text{ V}$	3.2×10^{-3}	
	$(1 \sim 10) \text{ V}$	1.8×10^{-3}	
	(1 10) V	1.0 /\ 10	
	FO II- 1 1 II		
	50 Hz ~ 1 kHz	4	
	(100 ~ 300) V	3.3×10^{-4}	
부하	CCTIC	0.19 dB	
' '	CCIR/ARM	0.19 dB	
	DIN	0.19 dB	
	JIS	0.19 dB	
<u> </u>			

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
잡음 전압 측정기 주파수 응답	40420	1 V		CP-40420

인정민호 · KC01-052호				
		10 Hz	3.0×10^{-4}	
		10 Hz ~ 40 Hz	1.4×10^{-4}	
		40 Hz ~ 20 kHz	1.1×10^{-4}	
		20 kHz ~ 50 kHz	1.3×10^{-4}	
		50 kHz ~ 100 kHz	1.7×10^{-4}	
		100 kHz ~ 1 MHz	2.0×10^{-3}	
파형 측정기	40421			CP-40421
직류전압		1 mV ∼ 5 mV	0.031 mV	
1,1,2,1		$5 \text{ mV} \sim 10 \text{ mV}$	0.033 mV	
		$10 \text{ mV} \sim 20 \text{ mV}$	0.037 mV	
		20 mV ~ 50 mV	0.049 mV	
		50 mV ~ 100 mV	0.094 mV	
		100 mV ~ 200 mV	0.14 mV	
		$200 \text{ mV} \sim 500 \text{ mV}$	0.34 mV	
		500 mV ~ 1 V	0.80 mV	
		$1 \text{ V} \sim 2 \text{ V}$	1.2 mV	
		$2 \text{ V} \sim 5 \text{ V}$	2.6 mV	
		5 V ~ 10 V	7.9 mV	
		10 V ~ 20 V	12 mV	
		20 V ~ 50 V	26 mV	
			0.004 17	
Square Wave 전압		1 mV ~ 5 mV	0.024 mV	
		5 mV ~ 10 mV	0.032 mV	
		10 mV ~ 20 mV	0.043 mV	
		$20 \text{ mV} \sim 50 \text{ mV}$	0.064 mV	
		50 mV ~ 100 mV	0.14 mV	
		100 mV ~ 200 mV	0.33 mV	
		200 mV ~ 500 mV	0.65 mV	
		500 mV ~ 1 V	0.96 mV	
		1 V ~ 2 V	3.4 mV	
		2 V ~ 5 V	4.7 mV	
		5 V ~ 10 V	9.6 mV	
		10 V ~ 20 V	16 mV	
		20 V ~ 50 V	37 mV	
Time Marker		1 ns ~ 5 ns	0.000 8 ns	
		5 ns ~ 50 ns	0.008 ns	
		50 ns ~ 500 ns	0.08 ns	
		500 ns ~ 5 μs	0.000 Ns	
		5 μs ~ 50 μs	0.008 μs	
		50 μs ~ 500 μs	0.000 µs	
		500 μs ~ 5 ms	0.000 µs	
		5 ms ~ 50 ms	0.008 ms	
		50 ms ~ 500 ms	0.08 ms	
		500 ms ~ 5 s	0.000 8 s	
Bandwidth (at 600 mV)		50 kHz ~ 100 MHz	11 mV	
, in the second of the second		100 MHz ~ 500 MHz	22 mV	
		500 MHz ~ 1 100 MHz	28 mV	
		1 100 MHz ~ 6 GHz	32 mV	
		6 GHz ~ 18 GHz	32 mV 34 mV	
		18 GHz ~ 26 GHz	46 mV	
		26 GHz ~ 33 GHz	77 mV	
	I		<u> </u>	

404. 기타 식류 및 서구파 극성 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
파형 측정기	40421		(단위 단 기 30 70)	CP-40421
Calout Signal Volt		$10 \text{ mV} \sim 100 \text{ mV}$	0.2 mV	
		$100 \text{ mV} \sim 200 \text{ mV}$	1.1 mV	
		$200 \text{ mV} \sim 500 \text{ mV}$	1.1 mV	
		500 mV ~ 1 V	2.0 mV	
		1 V ~ 2 V	11 mV	
		2 V ~ 5 V	11 mV	
Calout Signal Frequency		5 V ~ 10 V	13 mV	
Calout Signal Frequency		100 Hz ~ 500 Hz 500 Hz ~ 5 kHz	0.071 Hz 0.71 Hz	
		5 kHz ~ 20 kHz	7.1 Hz	
		O RIIZ ZO RIIZ	7.1 112	
저주파 위상계	40422			CP-40422
위상		$(50 \sim 60) \text{ Hz}$		
		(-180 ~ 180)°	0.072°	
게디되었 비.게ㅋ	40400			CD 40400
랜덤파형 발생기 주파수	40423	1 Hz ~ 1 GHz	5.8×10^{-6}	CP-40423
7-41		1 GHz ~ 3 GHz	2.9×10^{-6}	
		1 diiz 0 diiz	2.9 \(10	
출력 레벨		(10 Hz ~ 1 kHz)		
		10 mV	8.3×10^{-4}	
		$10 \text{ mV} \sim 100 \text{ mV}$	4.2×10^{-4}	
		$0.1~\mathrm{V}\sim1~\mathrm{V}$	1.8×10^{-4}	
		$1~\mathrm{V}\sim10~\mathrm{V}$	1.3×10^{-4}	
		10 V ~ 20 V	1.6×10^{-4}	
		20 V ~ 30 V	1.2×10^{-4}	
		(1 kHz ~ 10 kHz)		
		10 mV	8.7×10^{-4}	
		10 mV ~ 100 mV	4.2×10^{-4}	
		0.1 V ~ 10 V	1.9×10^{-4}	
		$1~\mathrm{V}\sim10~\mathrm{V}$	1.6×10^{-4}	
		$10 \text{ V} \sim 20 \text{ V}$	1.5×10^{-4}	
		$20 \text{ V} \sim 30 \text{ V}$	1.2×10^{-4}	
호크레베(C.) 퍼티지		(40 II (0 II)		
출력레벨(Sinewave) 평탄성		(40 Hz ~ 60 Hz) 0.0 dB	0.19 dB	
		0.0 db	0.19 db	
		(60 Hz ~ 100 kHz)		
		0.0 dB	0.14 dB	
		($100 \text{ kHz} \sim 1 \text{ MHz}$)		
		0.0 dB	0.20 dB	
		(10 Hz ~ 100 kHz)		
		(10 Hz ~ 100 kHz) 100 mV	0.6 mV	
		100 mV ~ 1 V	0.8 mV	
		100,	J.O III ,	
		(10 Hz ~ 1 kHz)		
		1 V ~ 10 V	0.9 mV	
		$10 \text{ V} \sim 30 \text{ V}$	3.5 mV	
I	1			

(1 kHz ~ 10 kHz) 1 V ~ 10 V 10 V ~ 30 V	1.2 mV 3.6 mV	
(10 kHz ~ 100 kHz) 1 V ~ 10 V 10 V ~ 30 V	5.5 mV 20 mV	

404. 기타 직류 및 저주파 측정				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
랜덤파형 발생기 김쇠량 Off-Set 전압	40423	1 kHz $10 \text{ dB} \sim -20 \text{ dB}$ $-20 \text{ dB} \sim -60 \text{ dB}$ $(-20 \sim 20) \text{ V}$	0.14 dB 0.19 dB 0.8 mV	CP-40423
Rise / Fall 시간		1 ns 1 ns ~ 100 μs	$1.1 \times 10^{-2} \\ 1.2 \times 10^{-3}$	
전압 전류 기록계 직류전압	40424	(\pm) 0 mV $(0 \sim 10) \text{ mV}$ $(10 \sim 100) \text{ mV}$ $(0.1 \sim 1) \text{ V}$ $(1 \sim 10) \text{ V}$ $(10 \sim 100) \text{ V}$ $(0.1 \sim 1) \text{ kV}$	$\begin{array}{c} 0.79~\mu\mathrm{V} \\ 4.6\times10^{-4} \\ 2.9\times10^{-5} \\ 1.0\times10^{-5} \\ 6.1\times10^{-6} \\ 1.3\times10^{-5} \\ 1.4\times10^{-5} \end{array}$	CP-40424
직류전류		(\pm) 0 μA (0 ~ 100) μA (0.1 ~ 1) mA (1 ~ 10) mA (10 ~ 100) mA (0.1 ~ 1) A (1 ~ 10) A	$\begin{array}{c} 0.011~\mu A \\ 6.5\times 10^{-4} \\ 8.4\times 10^{-5} \\ 7.2\times 10^{-5} \\ 9.2\times 10^{-5} \\ 1.5\times 10^{-4} \\ 7.1\times 10^{-4} \end{array}$	
릴레이 시험기 직류전압 직류전류	40425	$(0.1 \sim 700) \text{ V}$ 1 mA $(1 \sim 10) \text{ mA}$ $(10 \sim 100) \text{ mA}$ $(0.1 \sim 1) \text{ A}$ $(1 \sim 10) \text{ A}$ $(10 \sim 100) \text{ A}$	5.8×10^{-5} $0.58 \mu\text{A}$ 2.9×10^{-4} 2.9×10^{-4} 1.7×10^{-4} 1.8×10^{-4} 3.5×10^{-4}	CP-40425
교류전압		$(50 \text{ Hz} \sim 1 \text{ kHz})$ $(0.1 \sim 750) \text{ V}$	1.0×10^{-4}	
교류전류		(50 Hz \sim 1 kHz) 1 mA (1 \sim 10) mA	0.71 μA 4.1 × 10 ⁻⁴	

		$(10 \sim 100) \text{ mA}$ $(0.1 \sim 1) \text{ A}$ $(1 \sim 10) \text{ A}$ $(10 \sim 100) \text{ A}$	3.1×10^{-4} 3.6×10^{-4} 1.2×10^{-3} 1.3×10^{-3}	
LF 신호발생기 출력주파수	40426	1 Hz ~ 100 MHz	5.8×10^{-6}	CP-40426
출력레벨		$(10 \text{ Hz} \sim 1 \text{ kHz})$ 10 mV $10 \text{ mV} \sim 100 \text{ mV}$ $0.1 \text{ V} \sim 1 \text{ V}$ $1 \text{ V} \sim 10 \text{ V}$ $1 \text{ V} \sim 20 \text{ V}$	8.3×10^{-4} 4.2×10^{-4} 1.8×10^{-4} 1.3×10^{-4} 1.6×10^{-4}	

404. 기타 식유 및 서구과 즉성 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
LF 신호발생기	40426	(1.11 10.11)		CP-40426
출력레벨		(1 kHz ~ 10 kHz) 10 mV	8.7×10^{-4}	
		10 mV ~ 100 mV	8.7×10 4.2×10^{-4}	
		$0.1 \text{ V} \sim 1 \text{ V}$	1.9×10^{-4}	
		1 V ~ 10 V	1.6×10^{-4}	
		10 V ~ 20 V	1.5×10^{-4}	
출력레벨 평탄성		(60 Hz ~ 100 kHz)		
2 1912 000		0.0 dB	0.14 dB	
		(100 kHz ~ 1 MHz)	0.00 10	
		0.0 dB	0.20 dB	
		(10 Hz ~ 100 kHz)		
		100 mV	0.6 mV	
		100 mV ~ 1 V	0.8 mV	
		(10 Hz ~ 1 kHz)		
		$1~\mathrm{V}\sim10~\mathrm{V}$	0.9 mV	
		10 V ~ 20 V	3.2 mV	
		(1 kHz ~ 10 kHz)		
		1 V ~ 10 V	1.2 mV	
		10 V ~ 20 V	3.0 mV	
		(10 kHz ~ 100 kHz)		
		$1 \text{ V} \sim 10 \text{ V}$	5.5 mV	
		10 V ~ 20 V	15 mV	
감쇠량		1 kUa		
[1 kHz 10 dB ∼ −20 dB	0.14 dB	
		$-20 \text{ dB} \sim -60 \text{ dB}$	0.14 dB 0.19 dB	
		20 42 00 40	0.10 db	
Off-Set 전압		(-20 ~ 20) V	0.8 mV	
 저주파 스펙트럼 분석기	40427			CP-40427
기준발진		10 MHz	0.007 1 Hz	

중심 주파수	10 Hz ~ 20 Hz 20 Hz ~ 200 Hz 200 Hz ~ 2 kHz 2 kHz ~ 20 kHz 20 kHz ~ 200 kHz 200 kHz ~ 100 MHz	7.1×10^{-5} 7.1×10^{-6} 7.1×10^{-7} 7.1×10^{-8} 7.1×10^{-9} 7.1×10^{-10}	
주파수 카운터	10 Hz ~ 20 Hz 20 Hz ~ 200 Hz 200 Hz ~ 2 kHz 2 kHz ~ 20 kHz 20 kHz ~ 200 kHz 200 kHz ~ 100 MHz	7.1×10^{-5} 7.1×10^{-6} 7.1×10^{-7} 7.1×10^{-8} 7.1×10^{-9} 7.1×10^{-10}	
주파수 응답	9 kHz ~ 100 MHz	0.15 dB	
눈금 충실도	(0 ~ 100) dB	0.06 dB	
중간 주파수 이득	(0 ~ 100) dB	0.06 dB	
평균 잡음 레벨	9 kHz ~ 100 MHz	0.9 dB	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
저주파 스펙트럼 분석기 분해능 대역폭 정확도	40427	10 Hz ~ 3 MHz	2.4×10^{-3}	CP-40427
분해능 대역폭 선택도		10 Hz ~ 3 MHz	3.1×10^{-3}	
분해능 변경 정확도		10 Hz ~ 3 MHz	0.04 dB	
주파수 범위 정확도		1 kHz ~ 100 MHz	1.1×10^{-4}	
출력 주파수		1 MHz ~ 100 MHz	6.1×10^{-8}	
출력 레벨		9 kHz ~ 100 MHz	0.16 dB	
스위프 발생기 출력주파수	40429	1 Hz ~ 100 MHz	5.8×10^{-6}	CP-40429
출력궤벨		$(10 \text{ Hz} \sim 1 \text{ kHz})$ 10 mV $10 \text{ mV} \sim 100 \text{ mV}$ $0.1 \text{ V} \sim 1 \text{ V}$ $1 \text{ V} \sim 10 \text{ V}$ $10 \text{ V} \sim 20 \text{ V}$	8.3×10^{-4} 4.2×10^{-4} 1.8×10^{-4} 1.3×10^{-4} 1.6×10^{-4}	
જ નવ ની આ જો જો હો છે		$(1 \text{ kHz} \sim 10 \text{ kHz})$ 10 mV $10 \text{ mV} \sim 100 \text{ mV}$ $0.1 \text{ V} \sim 1 \text{ V}$ $1 \text{ V} \sim 10 \text{ V}$ $10 \text{ V} \sim 20 \text{ V}$	8.7×10^{-4} 4.2×10^{-4} 1.9×10^{-4} 1.6×10^{-4} 1.5×10^{-4}	
출력레벨 평탄성		$(40 \text{ Hz} \sim 60 \text{ Hz})$		

	0.0 dB	0.19 dB	
	(60 Hz ~ 100 kHz) 0.0 dB	0.14 dB	
	(100 kHz ~ 1 MHz) 0.0 dB	0.20 dB	
	(10 Hz ~ 100 kHz) 100 mV 100 mV ~ 1 V	0.6 mV 0.8 mV	
	(10 Hz ~ 1 kHz) 1 V ~ 10 V	0.9 mV	
	$10 \text{ V} \sim 20 \text{ V}$ (1 kHz ~ 10 kHz)	3.2 mV	
	$ 1 V \sim 10 V 10 V \sim 20 V $	1.2 mV 3.0 mV	
-1 11 Th	(10 kHz \sim 100 kHz) 1 V \sim 10 V 10 V \sim 20 V	5.5 mV 15 mV	
감쇠량	1 kHz 10 dB ~ -20 dB -20 dB ~ -60 dB	0.14 dB 0.19 dB	
Off-Set 전압	(-20 ~ 20) V	0.8 mV	

역04. 기다 석규 및 시구와 특성 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
신호변환기	40430			CP-40430
직류전압		ΟμV	0.22 μV	
		$(0 \sim 10) \text{ mV}$	8.1×10^{-4}	
		$(10 \sim 100) \text{ mV}$	4.1×10^{-5}	
		$(0.1 \sim 1) \text{ V}$	1.2×10^{-5}	
		$(1 \sim 10) \text{ V}$	7.7×10^{-6}	
		$(10 \sim 100) \text{ V}$	2.1×10^{-5}	
직류전류		О µА	0.86 nA	
		$(0 \sim 1) \text{ mA}$	1.1×10^{-4}	
		$(1 \sim 10) \text{ mA}$	4.4×10^{-5}	
		$(10 \sim 100) \text{ mA}$	1.2×10^{-4}	
		$(0.1 \sim 1) A$	2.5×10^{-4}	
		$(1 \sim 10) A$	6.3×10 ⁻⁴	
파형 분석기	40433			CP-40433
교류입력전압		$(1 \text{ mV} \sim 10 \text{ mV})$		
		$40 \text{ Hz} \sim 10 \text{ kHz}$	10 μV	
		10 kHz ~ 100 kHz	24 μV	
		(
		$(10 \text{ mV} \sim 100 \text{ mV})$		
		40 Hz ~ 10 kHz	71 µV	
		10 kHz ~ 100 kHz	73 μV	
		(100 17 17)		
		$(100 \text{ mV} \sim 1 \text{ V})$	0.71	
l		$40 \text{ Hz} \sim 10 \text{ kHz}$	0.71 mV	

	10 kHz ~ 100 kHz	0.72 mV	
	(1 V ~ 10 V)	7.1 V	
	40 Hz ~ 100 kHz	7.1 mV	
	(10 V ~ 100 V)		
	40 Hz ~ 10 kHz	0.071 V	
	10 kHz ~ 100 kHz	0.073 V	
교류출력전압	(1 mV ~ 10 mV)		
	40 Hz ~ 10 kHz	7.3 µV	
	10 kHz ~ 50 kHz	32 μV	
	50 kHz ~ 100 kHz	32 μV	
	(10 mV ~ 100 mV)		
	40 Hz ∼ 1 kHz	0.010 mV	
	1 kHz ~ 10 kHz	0.022 mV	
	10 kHz ~ 50 kHz	0.056 mV	
	50 kHz ~ 100 kHz	0.056 mV	
	(100 mV ~ 1 V)		
	100 Hz ~ 1 kHz	0.58 mV	
	1 kHz ~ 10 kHz	0.62 mV	
	10 kHz ~ 50 kHz	0.80 mV	
	50 kHz ~ 100 kHz	0.80 mV	
	(1 V ~ 10 V)		
	100 Hz ~ 1 kHz	1.0 mV	
	1 kHz ~ 10 kHz	2.2 mV	
	10 kHz ~ 50 kHz	5.6 mV	
	50 kHz ~ 100 kHz	5.6 mV	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
과형 분석기	40433	(10 V ~ 100 V) 100 Hz ~ 1 kHz 1 kHz ~ 10 kHz 10 kHz ~ 50 kHz 50 kHz ~ 100 kHz	11 mV 22 mV 56 mV 56 mV	CP-40433
입력주파수 출력주파수		10 Hz ~ 100 kHz 10 Hz ~ 100 kHz	1.2×10^{-5} 7.6×10^{-6}	
직/교류 고전압 출력기 직류전압	40434	0.1 kV $(0.1 \sim 5) \text{ kV}$ $(5 \sim 10) \text{ kV}$ $(10 \sim 15) \text{ kV}$ $(15 \sim 20) \text{ kV}$ $(20 \sim 30) \text{ kV}$	$0.008 2 \text{ kV}$ 2.9×10^{-3} 1.8×10^{-3} 1.5×10^{-3} 6.8×10^{-3} 4.6×10^{-3}	CP-40434

_ v _				
교류전압		$(30 \sim 40) \text{ kV}$ $(40 \sim 50) \text{ kV}$ $(50 \sim 60) \text{ kV}$ $(60 \sim 70) \text{ kV}$ $(70 \sim 80) \text{ kV}$ $(80 \sim 90) \text{ kV}$ $(90 \sim 100) \text{ kV}$ 60 Hz	3.5×10^{-3} 2.9×10^{-3} 2.5×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 1.9×10^{-3} 1.8×10^{-3} 0.032 kV	
		$(0.1 \sim 5) \text{ kV}$ $(5 \sim 10) \text{ kV}$ $(10 \sim 15) \text{ kV}$ $(15 \sim 20) \text{ kV}$ $(20 \sim 30) \text{ kV}$ $(30 \sim 40) \text{ kV}$ $(40 \sim 50) \text{ kV}$ $(50 \sim 60) \text{ kV}$ $(60 \sim 70) \text{ kV}$ $(70 \sim 80) \text{ kV}$ $(80 \sim 90) \text{ kV}$ $(90 \sim 100) \text{ kV}$	3.0×10^{-3} 1.8×10^{-3} 1.5×10^{-3} 6.8×10^{-3} 4.6×10^{-3} 3.6×10^{-3} 2.9×10^{-3} 2.5×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 1.9×10^{-3} 1.8×10^{-3}	
직/교류 고전압 프로브 직류	40435	(±) $0.1 \text{ V} \sim 1 000 \text{ V}$ (1 ~ 2) kV (2 ~ 5) kV (5 ~ 9) kV	1.0×10^{-4} 3.2×10^{-3} 3.1×10^{-3} 3.1×10^{-3}	CP-40435
교류		50 Hz \sim 1 kHz 0.1 V \sim 1 kV 60 Hz (1 \sim 2) kV (2 \sim 3) kV (3 \sim 4) kV (4 \sim 5) kV (5 \sim 6) kV	2.0×10^{-4} 4.0×10^{-3} 3.0×10^{-3} 2.8×10^{-3} 2.8×10^{-3} 2.6×10^{-3}	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
논리회로분석기 임계전압	40436	(- 10 ~ 10) V	7.6×10 ⁻⁵	CP-40436
전화기 시험기 벨주파수	40437	(1 ~ 100) Hz	0.58 Hz	CP-40437
벨 전압		(1 ~ 100) V (100 ~ 150) V	0.58 V 0.59 V	
톤 주파수		(1 209, 1 336) Hz (1 477) Hz	0.8 Hz 0.9 Hz	

인성년오 · KCUI-U52오				
1		(697,770) Hz	0.5 Hz	1
		(852, 941) Hz	0.6 Hz	
		(832, 941) 112	0.0 112	
톤 레벨		$(-20 \sim 0) \text{ dBm}$	0.3 dB	
국선 전압		(16 ~ 96) V	0.6 V	
영상 신호 분석기	40438			CP-40438
색차 진폭	10100			01 10100
		VI 60 0 IDD 444 1 - 17	C.F. M	
(NTSC)		YL 62.2 IRE 444.1 mV	6.5 mV	
		CY 88.2 IRE 629.7 mV	7.9 mV	
		G 82.4 IRE 588.3 mV	7.9 mV	
		MG 82.4 IRE 588.3 mV	7.9 mV	
		R 88.2 IRE 629.7 mV	7.9 mV	
		B 62.2 IRE 444.1 mV	6.5 mV	
색차 진폭		D 02.2 IIC 444.1 IIIV	0.0 111 V	
		VI 450 5 37	0.7. 17	
(PAL)		YL 470.5 mV	3.7 mV	
		CY 663.8 mV	7.6 mV	
		G 620.1 mV	6.5 mV	
		MG 620.1 mV	6.5 mV	
		R 663.8 mV	7.6 mV	
		B 470.5 mV	5.5 mV	
		B 470.3 IIIV	5.5 III v	
위상				
(NTSC/PAL)		YL 167.1 °	1.4 °	
		CY 283.4 °	1.4 °	
		G 240.8°	1.4 °	
		MG 60.8 °	1.4 °	
		R 103.8 °	1.4 °	
		В 347.1°	1.4 °	
주파수 응답				
(NTSC)		(50 kHz ~ 100 kHz)		
		714 mV	19 mV	
		(11111)		
(DAI)		(50 kHz - 100 kH-)		
(PAL)		(50 kHz ~ 100 kHz)	01 77	
		800 mV	21 mV	
주파수				
Bust (NTSC)		3.579 545 MHz	1.5 Hz	
(PAL)		4.433 619 MHz	2.1 Hz	
(1112)		1.133 310 11112		
I: (NITCC)		15.734 kHz	1.2 Hz	
Line (NTSC)				
(PAL)		15.625 kHz	1.2 Hz	
Field (NTSC)		59.94 Hz	0.012 Hz	
(PAL)		50.00 Hz	0.012 Hz	
			1	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
고주파 증폭기 이득	40601	(0 ~ 40) dB 5 Hz ~ 9 kHz 9 kHz ~ 5 GHz	0.15 dB 0.17 dB	CP-40601

(40 ~ 60) dB 5 Hz ~ 9 kHz 9 kHz ~ 5 GHz 18 GHz ~ 18 GHz 18 GHz ~ 10 GHz 18 GHz ~ 10 GHz 18 GHz ~ 10 GHz 18 GHz ~ 20 GHz 2 GHz ~ 20 GHz 3 GHz ~ 30 GHz 3 GHz ~ 30 GHz 4 GHz 2 GHz ~ 20 GHz 3 GHz ~ 30 GHz 4 GHz 2 GHz ~ 20 GHz 3 GHz ~ 30 GHz 4 GHz 4 GHz ~ 20 GHz 4 GHz ~ 20 GHz 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 3 GHz ~ 30 GHz 4 GHz ~ 30 GHz 4 GHz ~ 30 GHz 5 Hz ~ 2 GHz 5 Hz ~ 2 GHz 6 GHz ~ 30 GHz 7 GHz ~ 30 GHz 8 GHz ~ 2 GHz 8 GHz ~ 2 GHz 9 GHz ~ 30 GHz 11 dB 12 GHz ~ 2 GHz 11 dB 13 GHz ~ 40 GHz 11 dB 14 GHz 15 Hz ~ 2 GHz 16 GHz 17 GHz 18 GHz 19 GHz ~ 30 GHz 10 GHz ~ 30 GHz 30 GHz ~ 40 GHz 11 dB 12 GHz ~ 2 GHz 30 GHz ~ 40 GHz 11 dB 14 GHz 15 Hz ~ 2 GHz 16 GHz 17 GHz 18 GHz 19 GHz 10 GHz 11 dB 11 dB 12 GHz ~ 2 GHz 13 dB 14 GHz 15 Hz ~ 2 GHz 16 GHz 17 dB 18 GHz 18 GHz 19 GHz 10 GHz 11 dB 11 dB 12 GHz 12 GHz 13 dB 14 GHz 15 Hz ~ 2 GHz 16 GHz 17 dB 18 GHz 18			5 GHz ~ 18 GHz	0.27 dB	
등학원 강석기 (600 년 12 대 12			18 GHz ~ 40 GHz	0.29 dB	
용					
5 GHz ~ 18 GHz 18 GHz 0.29 dB (60 ~ 70) dB (60 ~ 70) dB 5 Hz ~ 9 kHz 0.21 dB 9 kHz ~ 5 GHz 0.17 dB 5 GHz ~ 18 GHz 0.27 dB 7 GHz ~ 10 GHz ~ 20 GHz 0.31 dB 2 GHz ~ 20 GHz 0.68 dB 30 GHz ~ 40 GHz 0.68 dB 2 GHz ~ 20 GHz 0.31 dB 2					
(60 ~ 70) dB 5 Hz ~ 9 kHz 9 kHz ~ 5 GHz 0.17 dB 5 GHz ~ 18 GHz 0.27 dB (0 ~ 10) dB 5 Hz ~ 2 GHz 0.31 dB 20 GHz ~ 30 GHz 0.31 dB 20 GHz ~ 30 GHz 0.31 dB 20 GHz ~ 20 GHz 0.31 dB 20 GHz ~ 40 GHz 1.1 dB (40 ~ 50) dB 5 Hz ~ 2 GHz 0.31 dB 20 GHz ~ 30 GHz 0.31 dB 20 GHz ~ 30 GHz 0.31 dB 20 GHz ~ 40 GHz 1.1 dB (50 ~ 60) dB 5 Hz ~ 2 GHz 0.31 dB 20 GHz ~ 30 GHz 0.33 dB 20 GHz ~ 30 GHz 0.33 dB 20 GHz ~ 20 GHz 0.33 dB					
중확형 강쇠기 40602 간속형 강쇠기 40602 (0 ~ 10) dB 5 Hz ~ 2 GHz 2 GHz ~ 2 GHz 2 GHz ~ 2 GHz 2 GHz ~ 2 GHz 3 GHz ~ 2 GHz 2 GHz ~ 2 GHz 2 GHz ~ 2 GHz 3 GHz ~ 2 GHz 3 GHz ~ 2 GHz 3 GHz ~ 2 GHz 4 GHz ~ 3 GHz 3 GHz ~ 4 GHz 3 GHz ~ 3 GHz 3 GHz 3 GHz ~ 3 GHz 3 GH					
중확형 강쇠기 40602 간속형 강쇠기 40602 (0 ~ 10) dB 5 Hz ~ 2 GHz 2 GHz ~ 2 GHz 2 GHz ~ 2 GHz 2 GHz ~ 2 GHz 3 GHz ~ 2 GHz 2 GHz ~ 2 GHz 2 GHz ~ 2 GHz 3 GHz ~ 2 GHz 3 GHz ~ 2 GHz 3 GHz ~ 2 GHz 4 GHz ~ 3 GHz 3 GHz ~ 4 GHz 3 GHz ~ 3 GHz 3 GHz 3 GHz ~ 3 GHz 3 GH			(60 ~ 70) dB		
동축형 감쇠기 2 4 0 6 0 2 각 4 0 6 0 2 (0 ~ 10) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 2 GHz ~ 20 GHz 3 GHz ~ 30 GHz 3 GHz ~ 40 GHz (10 ~ 20) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 3 GHz ~ 20 GHz 3 GHz ~ 20 GHz 2 GHz ~ 20 GHz 2 GHz ~ 20 GHz 3 GHz ~ 40 GHz (10 ~ 20) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 3 GHz ~ 40 GHz 1.1 dB (20 ~ 30) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 3 GHz ~ 40 GHz 1.1 dB (20 ~ 30) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 3 GHz ~ 40 GHz 1.1 dB (30 ~ 40) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 3 GHz ~ 40 GHz 1.1 dB (30 ~ 40) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 3 GHz ~ 30 GHz 3 GHz ~ 40 GHz 1.1 dB (40 ~ 50) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 3 GHz ~ 30 GHz 3 GHz ~ 40 GHz 1.1 dB (40 ~ 50) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 3 GHz ~ 30 GHz 3 GHz ~ 40 GHz 1.1 dB (40 ~ 50) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 3 GHz ~ 30 GHz 3 GHz ~ 40 GHz 1.1 dB				0.21 dB	
장취 감쇠기 감식당 (0~10) dB 5 Hz~2 GHz 2 GHz~20 GHz 20 GHz~30 GHz 30 GHz~40 GHz 0.96 dB (10~20) dB 5 Hz~2 GHz 2 GHz~20 GHz 0.96 dB (10~20) dB 5 Hz~2 GHz 2 GHz~30 GHz 30 GHz~40 GHz 0.31 dB 2 GHz~30 GHz 30 GHz~40 GHz 1.1 dB (20~30) dB 5 Hz~2 GHz 2 GHz~20 GHz 2 GHz~20 GHz 2 GHz~30 GHz 30 GHz~40 GHz 1.1 dB (20~30) dB 5 Hz~2 GHz 2 GHz~20 GHz 2 GHz~20 GHz 2 GHz~20 GHz 30 GHz~40 GHz 1.1 dB (30~40) dB 5 Hz~2 GHz 2 GHz~20 GHz 2 GHz~20 GHz 2 GHz~20 GHz 30 GHz~40 GHz 1.1 dB (40~50) dB 5 Hz~2 GHz 2 GHz~20 GHz 30 GHz~40 GHz 1.1 dB (40~50) dB 5 Hz~2 GHz 2 GHz~20 GHz 30 GHz~40 GHz 1.1 dB (40~50) dB 5 Hz~2 GHz 2 GHz~20 GHz 30 GHz~40 GHz 1.1 dB (50~60) dB 5 Hz~2 GHz 2 GHz~20 GHz 30 GHz~40 GHz 1.1 dB					
감석량 (0 ~ 10) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 10 GHz 20 GHz ~ 30 GHz 30 GHz ~ 40 GHz 30 GHz ~ 40 GHz (10 ~ 20) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 2 GHz ~ 20 GHz 2 GHz ~ 30 GHz 30 GHz ~ 40 GHz (10 ~ 20) dB 5 Hz ~ 2 GHz 2 GHz ~ 30 GHz 30 GHz ~ 40 GHz 1.1 dB (20 ~ 30) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 30 GHz ~ 40 GHz 1.1 dB (20 ~ 30) dB 5 Hz ~ 2 GHz 2 GHz ~ 30 GHz 30 GHz ~ 30 GHz 1.1 dB (30 ~ 40) dB 5 Hz ~ 2 GHz 2 GHz ~ 30 GHz 30 GHz ~ 40 GHz 1.1 dB (30 ~ 40) dB 5 Hz ~ 2 GHz 2 GHz ~ 30 GHz 30 GHz ~ 40 GHz 1.1 dB (40 ~ 50) dB 5 Hz ~ 2 GHz 2 GHz ~ 30 GHz 30 GHz ~ 30 GHz 30 GHz ~ 40 GHz 1.1 dB (40 ~ 50) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 30 GHz ~ 30 GHz 1.1 dB (50 ~ 60) dB 5 Hz ~ 2 GHz 30 GHz ~ 30 GHz 30 GHz ~ 30 GHz 30 GHz ~ 40 GHz 1.1 dB			5 GHz ~ 18 GHz	0.27 dB	
5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 2 GHz ~ 20 GHz 2 GHz ~ 20 GHz 30 GHz ~ 30 GHz 30 GHz ~ 40 GHz (10 ~ 20) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 2 GHz ~ 20 GHz 2 GHz ~ 20 GHz 30 GHz ~ 30 GHz 30 GHz ~ 40 GHz (20 ~ 30) dB 5 Hz ~ 2 GHz 30 GHz ~ 30 GHz 30 GHz ~ 40 GHz 1.1 dB (20 ~ 30) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 30 GHz ~ 30 GHz 30 GHz ~ 40 GHz 1.1 dB (30 ~ 40) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 30 GHz ~ 30 GHz 30 GHz ~ 30 GHz 30 GHz ~ 40 GHz 1.1 dB (30 ~ 40) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 0.31 dB 2 GHz ~ 20 GHz 0.31 dB 3 GHz ~ 40 GHz 1.1 dB (40 ~ 50) dB 5 Hz ~ 2 GHz 2 GHz ~ 30 GHz 30 GHz ~ 40 GHz 1.1 dB (40 ~ 50) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 30 GHz ~ 40 GHz 1.1 dB (50 ~ 60) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 30 GHz ~ 30 GHz 30 GHz ~ 40 GHz 1.1 dB		40602			CP-40602
2 GHz ~ 20 GHz	감쇠량			0.10 JD	
20 GHz ~ 30 GHz 30 GHz 0.96 dB 30 GHz ~ 40 GHz 0.96 dB (10 ~ 20) dB 5 Hz ~ 2 GHz 0.20 dB 2 GHz ~ 20 GHz 0.31 dB 20 GHz ~ 40 GHz 1.1 dB (20 ~ 30) dB 5 Hz ~ 2 GHz 0.31 dB 2 GHz ~ 20 GHz 1.1 dB (20 ~ 30) dB 5 Hz ~ 2 GHz 0.31 dB 2 GHz ~ 30 GHz 7 GHz 7 GHz 1.1 dB (20 ~ 30) dB 5 Hz ~ 2 GHz 7 G					
30 GHz ~ 40 GHz (10 ~ 20) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 2 GHz ~ 30 GHz 30 GHz ~ 30 GHz 30 GHz ~ 40 GHz (11 dB) (20 ~ 30) dB 5 Hz ~ 2 GHz 2 GHz 2 GHz 30 GHz					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			30 GHz ~ 40 GHz	0.96 dB	
5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 2 GHz ~ 20 GHz 20 GHz ~ 30 GHz 30 GHz ~ 40 GHz (20 ~ 30) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 2 GHz ~ 20 GHz 30 GHz ~ 30 GHz 30 GHz ~ 40 GHz (30 ~ 40) dB 5 Hz ~ 2 GHz 30 GHz ~ 20 GHz 30 GHz ~ 20 GHz 30 GHz ~ 30 GHz 30 GHz ~ 40 GHz (30 ~ 40) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 30 GHz ~ 30 GHz 30 GHz ~ 40 GHz 1.1 dB (40 ~ 50) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 30 GHz ~ 30 GHz 30 GHz ~ 40 GHz 1.1 dB (50 ~ 60) dB 5 Hz ~ 2 GHz 30 GHz ~ 30 GHz			(10 ~ 20) dB		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			00 4112 10 4112	1.1 dB	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(30 ~ 40) dB		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5 Hz ~ 2 GHz	0.23 dB	
$30 \text{ GHz} \sim 40 \text{ GHz} \qquad \qquad 1.1 \text{ dB}$ $(40 \sim 50) \text{ dB}$ $5 \text{ Hz} \sim 2 \text{ GHz} \qquad \qquad 0.24 \text{ dB}$ $2 \text{ GHz} \sim 20 \text{ GHz} \qquad \qquad 0.31 \text{ dB}$ $20 \text{ GHz} \sim 30 \text{ GHz} \qquad \qquad 0.77 \text{ dB}$ $30 \text{ GHz} \sim 40 \text{ GHz} \qquad \qquad 1.1 \text{ dB}$ $(50 \sim 60) \text{ dB}$ $5 \text{ Hz} \sim 2 \text{ GHz} \qquad \qquad 0.26 \text{ dB}$ $2 \text{ GHz} \sim 20 \text{ GHz} \qquad \qquad 0.33 \text{ dB}$ $20 \text{ GHz} \sim 30 \text{ GHz} \qquad \qquad 0.79 \text{ dB}$					
$(40 \sim 50) dB$ $5 Hz \sim 2 GHz$ $2 GHz \sim 20 GHz$ $20 GHz \sim 30 GHz$ $30 GHz \sim 40 GHz$ $1.1 dB$ $(50 \sim 60) dB$ $5 Hz \sim 2 GHz$ $2 GHz \sim 20 GHz$ $2 GHz \sim 20 GHz$ $2 GHz \sim 30 GHz$ $0.26 dB$ $2 GHz \sim 20 GHz$ $0.33 dB$ $20 GHz \sim 30 GHz$ $0.79 dB$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.1 db	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.04 JD	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
(50 ~ 60) dB 5 Hz ~ 2 GHz 2 GHz ~ 20 GHz 20 GHz ~ 30 GHz 0.26 dB 0.33 dB 0.79 dB					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			30 GHz ~ 40 GHz	1.1 dB	
$2 \text{ GHz} \sim 20 \text{ GHz}$ 0.33 dB $20 \text{ GHz} \sim 30 \text{ GHz}$ 0.79 dB			(50 ~ 60) dB		
$20 \text{ GHz} \sim 30 \text{ GHz}$ 0.79 dB					

등 전명/전비 본유번호 교정병의 (선의주순 약 95 %) 사용표준/측상명 등 등 부족함 관위 (선의주순 약 95 %) 사용표준/측상명 등 등 FHz ~ 100 Hz 100 Hz ~ 3 GHz 3 GHz 6 9 9 5 %) (전의주순 약 95 %) (전의주연 95 %) (전의	406. RF 즉정			호기비치트	I
공화병 (60 ~ 70) 4B 5 Hz ~ 100 Hz 100 Hz 0.25 dB 100 Hz ~ 3 GHz 3 GHz 0.25 dB 3 GHz ~ 40 GHz 0.45 dB 20 GHz ~ 30 GHz 0.45 dB 20 GHz ~ 40 GHz 0.82 dB 30 GHz ~ 40 GHz 0.82 dB 12 dB 100 Hz 0.82 dB 100 Hz 0.85 dB 20 GHz ~ 40 GHz 0.85 dB 30 GHz ~ 40 GHz 0.85 dB 12 dB 13 dB 15 0 kHz ~ 18 GHz 0.60 dB 14 × 10 ° ³ de 42 d 12 dB 15 0 kHz ~ 18 GHz 0.60 dB 14 × 10 ° ³ de 42 d 12 dB	측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
S Hz ~ 100 Hz 102		40602			CP-40602
100 Hz ~ 3 GHz / 5 GHz / 5 GHz / 5 GHz / 5 GHz / 20 GHz / 3 GHz / 40 GHz / 1.2 dB 1.2 d	감쇠량			2 22 15	
지 GHz ~ 5 GHz F 20 GHz F 20 GHz A 5 GHz F 20 GHz A 5 GHz F 20 GHz A 5 GHz A					
5 GHz - 20 GHz					
20 GHz - 20 GHz 30 GHz 40 GHz 1.2 dB					
(70 ~ 80) dB 5 Hz ~ 100 Hz 100 Hz ~ 3 GHz 3 GHz ~ 20 GHz 20 GHz ~ 30 GHz 3 GHz ~ 20 GHz 20 GHz ~ 40 GHz 1.2 dB (80 ~ 110) dB 150 kHz ~ 18 GHz 20 GHz ~ 30 GHz 40805 출덕권합 20 GHz ~ 18 GHz (10 ~ 200) ns 1.4 × 10 ⁻³ 20 A V 20 A V					
(70 ~ 80) dB 5 Hz ~ 100 Hz 100 Hz ~ 3 GHz 100 Hz ~ 3 GHz 3 GHz ~ 20 GHz 20 GHz ~ 30 GHz 30 GHz ~ 40 GHz 1.2 dB (80 ~ 110) dB 150 kHz ~ 18 GHz 교스폭 상숙시간 비스트 젤스 발생기 한복주과수 (10 ~ 200) ns 1.4 × 10 ° 3 (10 ~ 100) kHz (10 ~ 100) kHz (20 ~ 30) ms (10 ~ 100) ms (10 ~ 100) ms (10 ~ 100) ms (20 ~ 30) ms (40 ~ 100) ms (10 ~ 200) ms (40 ~ 100) ms (40 ~ 50) ms (40 ~ 50) ms (100 ~ 200) ms (200 ~ 300) ms (200					
변수트 원수 전략			50 GHZ 40 GHZ	1.2 00	
변수트 원수 전략			(70 ~ 80) dB		
비스트 필스 발생기 전 100 Hz ~ 3 GHz 3 GHz 0.57 dB 0.50 dB 0.50 dB 0.50 dB 0.50 dB 0.50 dB 1.2 dB 1.30 GHz ~ 10 GHz 1.2 dB 1.2 dB 1.30 GHz ~ 10 NB 1.4 × 10 ⁻³				0.50 dB	
명한 전략 전략 추정기 교정기 Range 대주과 전략추정기 교정기 Range 대주과 전략추정 대표 전략 대표 전					
배스트 팬스 발생기 (80 ~ 110) dB (150 kHz ~ 18 GHz) (10 ~ 200) ns (1.4 × 10 ° 3)					
바스트 필스 발생기					
H스트 팰스 발생기 40605 (-4 ~ 4) kV 6.0 × 10 ⁻³ CP-40605 환역수			30 GHz ~ 40 GHz	1.2 dB	
H스트 팰스 발생기 40605 (-4 ~ 4) kV 6.0 × 10 ⁻³ CP-40605 환역수					
버스트 필스 발생기 출력권압 편스폭 상승시간 반복주과수 비스트 지속시간 비스트 지속시간 비스트 주기 대스트주기 대스트주기 대스트주기 대스트주기 대스트주기 대스트주기 대스트주기 대스트주기 대스트주기 대스트주기 대스트주기 대스트주기 대스트주기 대스트주기 대스트주기 대스트주기 대스트주기 대스트주기 (10 ~ 100) ms (10 ~ 100) ms (10 ~ 200) ms (10 ~ 200) ms (100 ~ 200) ms (100 ~ 200) ms (100 ~ 200) ms (200 ~ 300) ms (300 ~ 400) ms (300					
물력전압 (-4~4)kV 6.0×10 ⁻³ 편스폭 (10~200)ns 1.4×10 ⁻³ 상승시간 1ns~1 μs 1.4×10 ⁻³ 반복주과수 (1~100)kHz 5.9×10 ⁻³ 비스트 지속시간 10 ms (15~20)ms 6.6×10 ⁻⁴ (20~30)ms 4.4×10 ⁻⁴ (30~40)ms 3.3×10 ⁻⁴ (40~50)ms 6.6×10 ⁻⁴ (200~300)ms 6.6×10 ⁻⁴ (200~300)ms 4.4×10 ⁻³ (100~200)ms 6.6×10 ⁻⁴ (200~300)ms 4.4×10 ⁻³ (200~300)ms 3.3×10 ⁻⁴ 바스트 주기 (10~100)ms 1.4×10 ⁻³ (200~300)ms 4.4×10 ⁻⁴ (300~400)ms 3.3×10 ⁻⁴ 교주과 전력측정기 교정기 Range 10 μW 1.1×10 ⁻⁵ 30 μW 2.5×10 ⁻⁵ 100 μW 1.1×10 ⁻⁵ 300 μW 2.6×10 ⁻⁵ 1 mW 4.9×10 ⁻⁵ 3 mW 2.0×10 ⁻⁵ 3 mW 2.0×10 ⁻⁵ 3 mW 2.0×10 ⁻⁵ 3 mW 3.6×10 ⁻⁶ 3 mW 3.6×10 ⁻⁶ 3 mW 3.5×10 ⁻⁶			150 kHz ~ 18 GHz	0.60 dB	
필스폭 상승시간 반복주파수 (1 ~ 100) kHz 1 ns ~ 1 μs 1.4 × 10 ⁻³ 반복주파수 (1 ~ 100) kHz 5.9 × 10 ⁻³ 비스트 지속시간 (10 ~ 15) ms (10 ~ 200) ms (15 ~ 20) ms (16 ~ 10 ⁻⁴ (20 ~ 30) ms (30 ~ 40) ms (100 ~ 200) ms (200 ~ 300) ms (100 ~ 200) ms (200 ~ 300) ms (200 ~ 300) ms (3.3 × 10 ⁻⁴ (300 ~ 400) ms (200 ~ 300) ms (1.1 × 10 ⁻³ (200 ~ 300) ms (200 ~ 300) ms (200 ~ 300) ms (3.3 × 10 ⁻⁴ 2.5 × 10 ⁻⁵ 10 μW 1.1 × 10 ⁻⁵ 30 μW 2.5 × 10 ⁻⁵ 10 μW 1.1 × 10 ⁻⁵ 300 μW 2.6 × 10 ⁻⁶ 10 mW 2.0 × 10 ⁻⁶ 30 mW 3.6 × 10 ⁻⁶ 10 mW 7.2 × 10 ⁻⁶ 30 mW 3.6 × 10 ⁻⁶ 100 mW 5.3 × 10 ⁻⁶	버스트 펄스 발생기	40605			CP-40605
상승시간 만복주과수 (1 ~ 100) kHz 10 ms (10 ~ 15) ms (15 ~ 20) ms (20 ~ 30) ms (40 ~ 50) ms (200 ~ 300) ms (100 ~ 200) ms (300 ~ 400) ms (300 ~ 400) ms (300 ~ 400) ms (200 ~ 300) ms (300 ~ 400) ms (400 ~ 50	출력전압		$(-4 \sim 4) \text{ kV}$	6.0×10^{-3}	
상승시간 만복주과수 (1 ~ 100) kHz 10 ms (10 ~ 15) ms (15 ~ 20) ms (20 ~ 30) ms (40 ~ 50) ms (200 ~ 300) ms (100 ~ 200) ms (300 ~ 400) ms (300 ~ 400) ms (300 ~ 400) ms (200 ~ 300) ms (300 ~ 400) ms (400 ~ 50					
반복주과수 비스트 지속시간 10 ms (10 ~ 15) ms (15 ~ 20) ms (16 ~ 10 ms) (10 ~ 10 ms) (15 ~ 20) ms (10 ~ 10 ms) (10 ~ 10 ms) (10 ~ 10 ms) (10 ~ 20 ms) (10 ~ 10 ms) (10 ~ 20 ms) (20 ~ 30 ms) (30 ~ 40 ms) (30 ms)	펄스폭		(10 ~ 200) ns	1.4×10^{-3}	
비스트 지속시간 10 ms (10~15) ms (20~30) ms (30~40) ms (40~50) ms (100~200) ms (200~300) ms (4.4×10 ⁻⁴ (30~40) ms (200~300) ms (40~50) ms (200~300) ms (상승시간		1 ns ~ 1 μs	1.4×10^{-3}	
대한 (10 ~ 15) ms (15 ~ 20) ms (15 ~ 20) ms (20 ~ 30) ms (4.4 × 10 ⁻⁴ (40 ~ 50) ms (100 ~ 200) ms (1.4 × 10 ⁻³ (200 ~ 300) ms (1.0 ~ 200) ms (200 ~ 300) ms (200 ~ 300) ms (300 ~ 400) ms (300 ~	반복주파수		$(1 \sim 100) \text{ kHz}$	5.9×10^{-3}	
대한 (10 ~ 15) ms (15 ~ 20) ms (15 ~ 20) ms (20 ~ 30) ms (4.4 × 10 ⁻⁴ (40 ~ 50) ms (100 ~ 200) ms (1.4 × 10 ⁻³ (200 ~ 300) ms (1.0 ~ 200) ms (200 ~ 300) ms (200 ~ 300) ms (300 ~ 400) ms (300 ~	버스트 지속시가		10 ms	0.014 ms	
대스트 주기 (15 ~ 20) ms (20 ~ 30) ms (30 ~ 40) ms (40 ~ 50) ms (100 ~ 200) ms (200 ~ 300) ms (300 ~ 400) m	, ,				
비스트 주기 비스트 주기 (10 ~ 100) ms (100 ~ 200) ms (200 ~ 300) ms (100 ~ 200) ms (200 ~ 300) ms (200 ~ 300) ms (200 ~ 300) ms (200 ~ 300) ms (200 ~ 200) ms (200 ~ 300) ms (200 ~ 300) ms (200 ~ 300) ms (200 ~ 300) ms (200 ~ 200) ms (200 ~ 300) ms (200					
버스트 주기 (10 ~ 100) ms (1.4 × 10 ⁻³ (100 ~ 200) ms (100 ~ 200) ms (200 ~ 300) ms (300 ~ 400) ms (300 ~ 40					
버스트 주기 (10 ~ 100) ms (1.4 × 10 ⁻³ (100 ~ 200) ms (100 ~ 200) ms (200 ~ 300) ms (300 ~ 400) ms (300 ~ 400) ms (300 ~ 400) ms (2.5 × 10 ⁻⁵ 10 μW 1.1 × 10 ⁻⁵ 300 μW 2.5 × 10 ⁻⁵ 1 mW 4.9 × 10 ⁻⁵ 3 mW 2.0 × 10 ⁻⁵ 10 mW 7.2 × 10 ⁻⁶ 30 mW 3.6 × 10 ⁻⁶ 100 mW 3.6 × 10 ⁻⁶ 100 mW 5.3 × 10 ⁻⁶			$(30 \sim 40) \text{ ms}$		
(100 ~ 200) ms (200 ~ 300) ms (300 ~ 400) ms (4.4 × 10 ⁻⁴ 3.3 × 10 ⁻⁵ 10 μW 1.1 × 10 ⁻⁵ 300 μW 2.5 × 10 ⁻⁵ 1 mW 4.9 × 10 ⁻⁵ 3 mW 2.0 × 10 ⁻⁶ 10 mW 7.2 × 10 ⁻⁶ 30 mW 3.6 × 10 ⁻⁶ 100 mW 5.3 × 10 ⁻⁶			$(40 \sim 50) \text{ ms}$		
(100 ~ 200) ms (200 ~ 300) ms (300 ~ 400) ms (4.4 × 10 ⁻⁴ 3.3 × 10 ⁻⁵ 10 μW 1.1 × 10 ⁻⁵ 300 μW 2.5 × 10 ⁻⁵ 1 mW 4.9 × 10 ⁻⁵ 3 mW 2.0 × 10 ⁻⁶ 10 mW 7.2 × 10 ⁻⁶ 30 mW 3.6 × 10 ⁻⁶ 100 mW 5.3 × 10 ⁻⁶					
(200 ~ 300) ms (300 ~ 400) ms 4.4 × 10 ⁻⁴ 3.3 × 10 ⁻⁴ 40607 Range 3 µW 2.5 × 10 ⁻⁵ 10 µW 1.1 × 10 ⁻⁵ 30 µW 2.5 × 10 ⁻⁵ 100 µW 1.1 × 10 ⁻⁵ 300 µW 2.6 × 10 ⁻⁵ 1 mW 4.9 × 10 ⁻⁵ 3 mW 2.0 × 10 ⁻⁵ 10 mW 7.2 × 10 ⁻⁶ 30 mW 3.6 × 10 ⁻⁶ 100 mW 5.3 × 10 ⁻⁶	버스트 주기				
고주과 전력측정기 교정기 Range 40607 Range 10 μW 2.5 × 10 ⁻⁵ 10 μW 1.1 × 10 ⁻⁵ 30 μW 2.5 × 10 ⁻⁵ 100 μW 1.1 × 10 ⁻⁵ 300 μW 2.6 × 10 ⁻⁵ 1 mW 4.9 × 10 ⁻⁵ 3 mW 2.0 × 10 ⁻⁶ 30 mW 3.6 × 10 ⁻⁶ 100 mW 5.3 × 10 ⁻⁶					
고주파 천력측정기 교정기 Range 3 μW 2.5 × 10 ⁻⁵ 10 μW 1.1 × 10 ⁻⁵ 30 μW 2.5 × 10 ⁻⁵ 100 μW 1.1 × 10 ⁻⁵ 300 μW 2.6 × 10 ⁻⁵ 1 mW 4.9 × 10 ⁻⁵ 3 mW 2.0 × 10 ⁻⁵ 10 mW 7.2 × 10 ⁻⁶ 30 mW 3.6 × 10 ⁻⁶ 100 mW 5.3 × 10 ⁻⁶					
Range $ \begin{array}{ccccccccccccccccccccccccccccccccccc$			(300 ~ 400) ms	3.3×10^{-4}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	고주파 전력측정기 교정기	40607			CP-40607
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Range		3 μW		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			10 μW		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
100 mW 5.3×10^{-6}					
EMC용 변환기 40608 CP-40608			100 mW	5.3 × 10 °	
EMC용 변환기 40608 CP-40608					
EMC용 변환기 40608 CP-40608					
·	EMC용 변환기	40608			CP-40608

Current Probe 전달 임피던스	5 Hz ~ 1 000 MHz	1.8 dB	
Absorbing Clamp 삽입손실	(30 ~ 1 000) MHz	2.2 dB	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
동축형 방향성 결합기/분배기	40610			CP-40610
결합인자		(0 ~ 10) dB		
		9 kHz \sim 2 GHz	0.18 dB	
		2 GHz ~ 20 GHz	0.31 dB	
		20 GHz ~ 30 GHz	0.68 dB	
		30 GHz ~ 40 GHz	0.96 dB	
		(10 ~ 20) dB		
		9 kHz \sim 2 GHz	0.20 dB	
		2 GHz ~ 20 GHz	0.31 dB	
		20 GHz ~ 30 GHz	0.73 dB	
		30 GHz ~ 40 GHz	1.1 dB	
		(20 ~ 30) dB		
		9 kHz \sim 2 GHz	0.21 dB	
		2 GHz ~ 20 GHz	0.31 dB	
		20 GHz ~ 30 GHz	0.75 dB	
		30 GHz ~ 40 GHz	1.1 dB	
		(30 ~ 40) dB		
		9 kHz ~ 2 GHz	0.23 dB	
		$2 \text{ GHz} \sim 4 \text{ GHz}$	0.25 dB	
		(40 ~ 50) dB		
		9 kHz ~ 1 GHz	0.24 dB	
		(50 ~ 60) dB		
		9 kHz ~ 1 GHz	0.26 dB	
		(60 ~ 70) dB		
		9 kHz ~ 1 GHz	0.33 dB	
정전기 발생기	40613			CP-40613
피크전류		\pm (0 A ~ 112.5 A)	2.7×10^{-2}	
T1 전류				
(330 Ω)		\pm (0 A ~ 60 A)	2.8×10^{-2}	
(2 kΩ)		\pm (0 A ~ 8.25 A)	2.7×10^{-2}	
T2 전류				
(330 Ω)		$\pm (0 A \sim 30 A)$	2.8×10^{-2}	
(2 kΩ)		\pm (0 A ~ 4.5 A)	2.7×10^{-2}	
상승시간		0.6 ns	0.019 ns	
		$0.6 \text{ ns} \sim 0.7 \text{ ns}$	0.016 ns	
		$0.7 \text{ ns} \sim 0.8 \text{ ns}$	0.014 ns	
		$0.8 \text{ ns} \sim 0.9 \text{ ns}$	0.013 ns	
		$0.9 \text{ ns} \sim 1.0 \text{ ns}$	0.012 ns	

피크전압	$\pm (1 \text{ kV} \sim 2 \text{ kV})$ $\pm (2 \text{ kV} \sim 4 \text{ kV})$ $\pm (4 \text{ kV} \sim 5 \text{ kV})$ $\pm (5 \text{ kV} \sim 7 \text{ kV})$ $\pm (7 \text{ kV} \sim 9 \text{ kV})$ $\pm (9 \text{ kV} \sim 15 \text{ kV})$ $\pm (15 \text{ kV} \sim 30 \text{ kV})$	1.3×10^{-2} 8.5×10^{-3} 7.2×10^{-3} 8.0×10^{-3} 7.6×10^{-3} 7.3×10^{-3} 7.5×10^{-3}	
------	---	--	--

406. RF 즉성 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
EMC 수신기 기준발진	40614	10 MHz	0.007 1 Hz	CP-40614
중심 주파수		10 Hz ~ 20 Hz 20 Hz ~ 200 Hz 200 Hz ~ 2 kHz 2 kHz ~ 20 kHz 20 kHz ~ 200 kHz 200 kHz ~ 40 GHz	7.1×10^{-5} 7.1×10^{-6} 7.1×10^{-7} 7.1×10^{-8} 7.1×10^{-9} 7.1×10^{-10}	
주파수 카운터		10 Hz ~ 20 Hz 20 Hz ~ 200 Hz 200 Hz ~ 2 kHz 2 kHz ~ 20 kHz 20 kHz ~ 200 kHz 200 kHz ~ 40 GHz	7.1×10^{-5} 7.1×10^{-6} 7.1×10^{-7} 7.1×10^{-8} 7.1×10^{-9} 7.1×10^{-10}	
주파수 응답		9 kHz ~ 1 GHz 1 GHz ~ 8 GHz 8 GHz ~ 20 GHz 20 GHz ~ 26 GHz 26 GHz ~ 34 GHz 34 GHz ~ 40 GHz	0.15 dB 0.17 dB 0.23 dB 0.25 dB 0.30 dB 0.32 dB	
눈금 충실도		(0 ~ 100) dB	0.06 dB	
중간 주파수 이득		(0 ~ 100) dB	0.06 dB	
평균 잡음 레벨		9 kHz ~ 40 GHz	1.0 dB	
분해능 대역폭 정확도		10 Hz ~ 3 MHz	2.4×10^{-3}	
분해능 대역폭 선택도		10 Hz ~ 3 MHz	3.1×10^{-3}	
분해능 변경 정확도		10 Hz ~ 3 MHz	0.04 dB	
주파수 범위 정확도		1 kHz ~ 20 GHz	1.1×10^{-4}	
출력 주파수		1 MHz ~ 1 GHz	6.1×10^{-8}	
출력 레벨		9 kHz ~ 1 GHz	0.16 dB	

고주파/전자파 여파기	40615			CP-40615
차단 주파수		5 Hz ~ 10 Hz	1.4 mHz	
		10 Hz ~ 100 Hz	1.7 mHz	
		$100 \text{ Hz} \sim 1 \text{ kHz}$	9.3 mHz	
		$1 \text{ kHz} \sim 10 \text{ kHz}$	93 mHz	
		$10 \text{ kHz} \sim 100 \text{ kHz}$	0.94 Hz	
		100 kHz ~ 1 MHz	9.5 Hz	
		$1 \text{ MHz} \sim 10 \text{ MHz}$	20 Hz	
		$10 \text{ MHz} \sim 100 \text{ MHz}$	0.20 kHz	
		$100 \text{ MHz} \sim 1 \text{ GHz}$	1.8 kHz	
		$1 \text{ GHz} \sim 10 \text{ GHz}$	18 kHz	
		10 GHz ~ 20 GHz	33 kHz	
		20 GHz ~ 30 GHz	48 kHz	
		30 GHz ~ 40 GHz	55 kHz	

400. RF 국정 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
고주파/전자파 여파기 삽입 손실	40615	5 Hz ~ 10 MHz 10 MHz ~ 50 MHz 50 MHz ~ 2 GHz 2 GHz ~ 18 GHz 18 GHz ~ 25 GHz 25 GHz ~ 40 GHz	0.15 dB 0.18 dB 0.24 dB 0.26 dB 0.32 dB 0.46 dB	CP-40615
전원임피던스 안정화 회로망 임피던스 삽입손실 위상 결합 및 감결함 회로망 임피던스 삽입손실 위상	40618	9 kHz ~ 1 GHz 9 kHz ~ 1 GHz 9 kHz ~ 1 GHz 9 kHz ~ 230 MHz 9 kHz ~ 230 MHz 9 kHz ~ 230 MHz	0.78 Ω 0.16 dB 0.6° 2.9 Ω 0.16 dB 0.6°	CP-40618
이동통신 종합시험기 기준발진 출력 주파수 출력 레벨	40621	10 MHz 10 Hz ~ 6 GHz 9 kHz ~ 100 kHz (20 ~ 0) dBm (0 ~ -10) dBm (-10 ~ -60) dBm 100 kHz ~ 1 GHz (20 ~ -30)dBm (-30 ~ -60)dBm (-60 ~ -120)dBm	0.007 1 Hz 1.0×10^{-8} 0.23 dB 0.26 dB 0.30 dB 0.23 dB 0.27 dB 0.60 dB	CP-40621

	1 GHz \sim 6 GHz (20 \sim -30)dBm (-30 \sim -60)dBm (-60 \sim -120)dBm	0.26 dB 0.29 dB 0.61 dB	
출력 레벨 평탄성	9 kHz ~ 50 MHz 50 MHz ~ 6 GHz	0.16 dB 0.18 dB	
주파수 변조	0 kHz ~ 400 kHz	2.5×10^{-2}	
진폭 변조	0 % ~ 100 %	2.5 × 10 ⁻² (상대불확도)	
위상 변조	0 rad ~ 400 rad	2.5×10^{-2}	
변조 왜율	0 % ~ 10 %	1.5 × 10 ⁻² (상대불확도)	
고조파	9 kHz ~ 6 GHz	2 dB	
입력 주파수	10 Hz ~ 6 GHz	7.1×10^{-8}	
주파수 응답	9 kHz ~ 1 GHz 1 GHz ~ 6 GHz	0.15 dB 0.17 dB	
입력 레벨 직선성	(0 ~ 100) dB	0.06 dB	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
이동통신 종합시험기	40621			CP-40621
교류 입력 전압		10 mV		
		40 Hz ~ 10 kHz	10 μV	
		10 kHz ~ 100 kHz	24 μV	
		(10 mV ~ 100 mV)		
		40 Hz ~ 10 kHz	71 µV	
		10 kHz ~ 100 kHz	71 µV 73 µV	
		10 1112 100 11112	γο μ ν	
		(1 V ~ 10 V)		
		40 Hz ~ 100 kHz	7.1 mV	
		(10 V ~ 30 V)		
		40 Hz ~ 10 kHz	0.070 V	
		10 kHz ~ 100 kHz	0.071 V	
교류 출력 전압		10 mV		
		$40 \text{ Hz} \sim 20 \text{ kHz}$	20 μV	
		20 kHz ~ 40 kHz	39 µV	
		(10 mV ~ 100 mV)		
		40 Hz ~ 1 kHz	0.021 mV	
		1 kHz ~ 20 kHz	0.042 mV	
		$20 \text{ kHz} \sim 40 \text{ kHz}$	0.095 mV	
		$(100 \text{ mV} \sim 1 \text{ V})$		

		40 Hz ~ 1 kHz 1 kHz ~ 20 kHz 20 kHz ~ 40 kHz	0.59 mV 0.62 mV 0.77 mV	
		(1 V ~ 6 V) 40 Hz ~ 1 kHz 1 kHz ~ 20 kHz 20 kHz ~ 40 kHz	1.1 mV 1.9 mV 5.2 mV	
직류 입력 전압		10 mV ~ 100 mV 0.1 V ~ 1 V 1 V ~ 10 V 10 V ~ 30 V	0.58 mV 0.70 mV 7.0 mV 76 mV	
변조계 주파수 변조	40622	0 kHz ~ 400 kHz	2.5×10^{-2}	CP-40622
진폭변조		0 % ~ 100 %	2.5 × 10 ⁻² (상대불확도)	
위상변조		0 rad ~ 400 rad	2.5×10^{-2}	
변조왜율		0 % ~ 10 %	1.5 × 10 ⁻² (상대불확도)	
회로망 분석기 기준발진	40623	10 MHz	0.007 1 Hz	CP-40623
주파수 측정		5 Hz ~ 40 GHz	1.0×10^{-8}	

406 RF 측정

406. RF 특성 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
회로망 분석기	40623			CP-40623
출력레벨		9 kHz ~ 100 kHz		
		(20 ~ 0) dBm	0.23 dB	
		$(0 \sim -10) \text{ dBm}$	0.26 dB	
		$(-10 \sim -60) \text{ dBm}$	0.30 dB	
		100 kHz ~ 1 GHz		
		(20 ~ −30)dBm	0.23 dB	
		$(-30 \sim -60)$ dBm	0.27 dB	
		$(-60 \sim -120) dBm$	0.60 dB	
		1 GHz ~ 18 GHz		
		(20 ~ −30)dBm	0.27 dB	
		$(-30 \sim -60)$ dBm	0.30 dB	
		$(-60 \sim -120)$ dBm	0.61 dB	
		10.011 00.011		
		18 GHz ~ 26 GHz	0.00 10	
		(20 ~ −30)dBm	0.29 dB	
		26 GHz ~ 40 GHz		

		(20 ~ -30)dBm	0.43 dB	
출력레벨 평탄성		9 kHz ~ 50 MHz	0.16 dB	
		50 MHz ~ 6 GHz	0.18 dB	
		6 GHz ~ 18 GHz	0.20 dB	
		18 GHz ~ 26 GHz	0.29 dB	
		26 GHz ~ 40 GHz	0.43 dB	
동적감쇠량		50 MHz ~ 18 GHz	0.00.17	
		$(0 \sim 10) \text{ dB}$	0.08 dB	
		(10 ~ 20) dB	0.09 dB	
		(20 ~ 30) dB	0.10 dB	
		(30 ~ 40) dB	0.11 dB	
		(40 ~ 50) dB	0.12 dB	
		(50 ~ 60) dB	0.12 dB	
		(60 ~ 70) dB	0.13 dB	
		(70 ~ 80) dB	0.15 dB	
잡음 충격파 시험기	40626			CP-40626
출력전압		±0.1 kV	6.1×10^{-2}	
		$\pm (0.1 \sim 0.2) \text{ kV}$	3.5×10^{-2}	
		$\pm (0.2 \sim 0.3) \text{ kV}$	2.8×10^{-2}	
		$\pm (0.3 \sim 0.4) \text{ kV}$	2.5×10^{-2}	
		$\pm (0.4 \sim 0.9) \text{ kV}$	2.2×10^{-2}	
		$\pm (0.9 \sim 4) \text{ kV}$	2.0×10^{-2}	
		_(0.0 1/11.	2.0 / 10	
펄스폭		50 ns	0.013 ns	
		50 ns ~ 500 ns	0.13 ns	
		500 ns ~ 1 μs	0.001 3 µs	
		000 113 1 µ3	0.001 σ μ3	
고주파 전력 측정기	40635			CP-40635
전력	10000	3 μW ~ 100 mW	3.1×10^{-3}	21 10000
E 7		ο μ.γ. 100 mγγ	0.1 /\ 10	
기준출력		1 mW	14 μW	
고전력		100 mW		
		1.5 MHz ~ 50 MHz	5.5 mW	
		50 MHz ~ 1 GHz	8.6 mW	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
고주파 전력 측정기 고전력	40635	100 mW ~ 20 W 1.5 MHz ~ 50 MHz 50 MHz ~ 1 GHz	5.5×10^{-2} 8.6×10^{-2}	CP-40635
		20 W ~ 50 W 1.5 MHz ~ 25 MHz 25 MHz ~ 1 GHz	5.5×10^{-2} 5.3×10^{-2}	
		50 W ~ 80 W 80 MHz ~ 1 GHz	5.2×10^{-2}	
		80 W ~ 100 W		

		80 MHz ~ 400 MHz	4.6×10^{-2}	
			5.3×10^{-2}	
		400 MHz ~ 1 GHz	5.3×10^{-5}	
다이오드 전력 감지기	40636			CP-40636
교정인자		1 μW ~ 100 mW		
		9 kHz ~ 10 MHz	2.1×10^{-2}	
		10 MHz ~ 50 MHz	2.3×10^{-2}	
		50 MHz ~ 5 GHz	2.4×10^{-2}	
		$5 \text{ GHz} \sim 10 \text{ GHz}$	2.6×10^{-2}	
		10 GHz ~ 18 GHz	3.0×10^{-2}	
		18 GHz ~ 24 GHz	3.7×10^{-2}	
		24 GHz ~ 40 GHz	4.6×10^{-2}	
			4.0 \ 10	
열전대 전력 감지기	40637			CP-40637
	40037	1 100 117		Cr =40037
교정인자		1 μW ~ 100 mW		
		9 kHz ~ 10 MHz	2.1×10^{-2}	
		$10 \text{ MHz} \sim 50 \text{ MHz}$	2.3×10^{-2}	
		50 MHz ~ 5 GHz	2.4×10^{-2}	
		5 GHz ~ 10 GHz	2.6×10^{-2}	
		10 GHz ~ 18 GHz	3.0×10^{-2}	
		18 GHz ~ 24 GHz	3.7×10^{-2}	
		$24 \text{ GHz} \sim 40 \text{ GHz}$	4.6×10^{-2}	
펄스 발생기	40638			CP-40638
	40638	1 Hz ~ 200 MHz	7.6×10^{-7}	CP-40638
펄스 발생기 주파수	40638	1 Hz ~ 200 MHz	7.6×10^{-7}	CP-40638
주파수	40638		7.6×10^{-7}	CP-40638
	40638	40 Hz		CP-40638
주파수	40638	40 Hz 10 mV	18 μV	CP-40638
주파수	40638	40 Hz 10 mV (10 ~ 20) mV	$18 \ \mu V$ 9.0×10^{-4}	CP-40638
주파수	40638	40 Hz 10 mV	18 μV	CP-40638
주파수	40638	40 Hz 10 mV (10 ~ 20) mV	$18 \ \mu V$ 9.0×10^{-4} 3.8×10^{-4}	CP-40638
주파수	40638	40 Hz 10 mV (10 ~ 20) mV (20 ~ 50) mV (50 ~ 100) mV	$18 \ \mu V$ 9.0×10^{-4} 3.8×10^{-4} 2.2×10^{-4}	CP-40638
주파수	40638	40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$	$18 \ \mu V$ 9.0×10^{-4} 3.8×10^{-4} 2.2×10^{-4} 3.9×10^{-4}	CP-40638
주파수	40638	40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$ $(200 \sim 500) \text{ mV}$	$18 \mu V$ 9.0×10^{-4} 3.8×10^{-4} 2.2×10^{-4} 3.9×10^{-4} 1.8×10^{-4}	CP-40638
주파수	40638	40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$ $(200 \sim 500) \text{ mV}$ $(0.5 \sim 1) \text{ V}$	$18 \ \mu\text{V}$ 9.0×10^{-4} 3.8×10^{-4} 2.2×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.3×10^{-4}	CP-40638
주파수	40638	40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$ $(200 \sim 500) \text{ mV}$ $(0.5 \sim 1) \text{ V}$ $(1 \sim 2) \text{ V}$	$\begin{array}{c} 18~\mu\mathrm{V} \\ 9.0\times10^{-4} \\ 3.8\times10^{-4} \\ 2.2\times10^{-4} \\ 3.9\times10^{-4} \\ 1.8\times10^{-4} \\ 1.3\times10^{-4} \\ 3.9\times10^{-4} \end{array}$	CP-40638
주파수	40638	40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$ $(200 \sim 500) \text{ mV}$ $(0.5 \sim 1) \text{ V}$	$18 \ \mu\text{V}$ 9.0×10^{-4} 3.8×10^{-4} 2.2×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.3×10^{-4}	CP-40638
주파수	40638	40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$ $(200 \sim 500) \text{ mV}$ $(0.5 \sim 1) \text{ V}$ $(1 \sim 2) \text{ V}$ $(2 \sim 5) \text{ V}$	$\begin{array}{c} 18~\mu\mathrm{V} \\ 9.0\times10^{-4} \\ 3.8\times10^{-4} \\ 2.2\times10^{-4} \\ 3.9\times10^{-4} \\ 1.8\times10^{-4} \\ 1.3\times10^{-4} \\ 3.9\times10^{-4} \\ 1.8\times10^{-4} \\ 1.8\times10^{-4} \end{array}$	CP-40638
주파수	40638	40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$ $(200 \sim 500) \text{ mV}$ $(0.5 \sim 1) \text{ V}$ $(1 \sim 2) \text{ V}$ $(2 \sim 5) \text{ V}$ $(5 \sim 10) \text{ V}$	$18 \ \mu\text{V}$ 9.0×10^{-4} 3.8×10^{-4} 2.2×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.3×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.8×10^{-4} 1.3×10^{-4}	CP-40638
주파수	40638	40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$ $(200 \sim 500) \text{ mV}$ $(0.5 \sim 1) \text{ V}$ $(1 \sim 2) \text{ V}$ $(2 \sim 5) \text{ V}$	$\begin{array}{c} 18~\mu\mathrm{V} \\ 9.0\times10^{-4} \\ 3.8\times10^{-4} \\ 2.2\times10^{-4} \\ 3.9\times10^{-4} \\ 1.8\times10^{-4} \\ 1.3\times10^{-4} \\ 3.9\times10^{-4} \\ 1.8\times10^{-4} \\ 1.8\times10^{-4} \end{array}$	CP-40638
주파수	40638	40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$ $(200 \sim 500) \text{ mV}$ $(0.5 \sim 1) \text{ V}$ $(1 \sim 2) \text{ V}$ $(2 \sim 5) \text{ V}$ $(5 \sim 10) \text{ V}$	$18 \ \mu\text{V}$ 9.0×10^{-4} 3.8×10^{-4} 2.2×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.3×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.8×10^{-4} 1.3×10^{-4}	CP-40638
주파수	40638	40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$ $(200 \sim 500) \text{ mV}$ $(0.5 \sim 1) \text{ V}$ $(1 \sim 2) \text{ V}$ $(2 \sim 5) \text{ V}$ $(5 \sim 10) \text{ V}$	$18 \ \mu\text{V}$ 9.0×10^{-4} 3.8×10^{-4} 2.2×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.3×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.8×10^{-4} 1.3×10^{-4}	CP-40638
주파수	40638	40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$ $(200 \sim 500) \text{ mV}$ $(0.5 \sim 1) \text{ V}$ $(1 \sim 2) \text{ V}$ $(2 \sim 5) \text{ V}$ $(5 \sim 10) \text{ V}$	$18 \ \mu\text{V}$ 9.0×10^{-4} 3.8×10^{-4} 2.2×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.3×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.8×10^{-4} 1.3×10^{-4}	CP-40638
주파수	40638	40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$ $(200 \sim 500) \text{ mV}$ $(0.5 \sim 1) \text{ V}$ $(1 \sim 2) \text{ V}$ $(2 \sim 5) \text{ V}$ $(5 \sim 10) \text{ V}$	$18 \ \mu\text{V}$ 9.0×10^{-4} 3.8×10^{-4} 2.2×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.3×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.8×10^{-4} 1.3×10^{-4}	CP-40638
주파수	40638	40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$ $(200 \sim 500) \text{ mV}$ $(0.5 \sim 1) \text{ V}$ $(1 \sim 2) \text{ V}$ $(2 \sim 5) \text{ V}$ $(5 \sim 10) \text{ V}$	$18 \ \mu\text{V}$ 9.0×10^{-4} 3.8×10^{-4} 2.2×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.3×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.8×10^{-4} 1.3×10^{-4}	CP-40638
주파수	40638	40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$ $(200 \sim 500) \text{ mV}$ $(0.5 \sim 1) \text{ V}$ $(1 \sim 2) \text{ V}$ $(2 \sim 5) \text{ V}$ $(5 \sim 10) \text{ V}$	$18 \ \mu\text{V}$ 9.0×10^{-4} 3.8×10^{-4} 2.2×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.3×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.8×10^{-4} 1.3×10^{-4}	CP-40638
주파수	40638	40 Hz 10 mV $(10 \sim 20) \text{ mV}$ $(20 \sim 50) \text{ mV}$ $(50 \sim 100) \text{ mV}$ $(100 \sim 200) \text{ mV}$ $(200 \sim 500) \text{ mV}$ $(0.5 \sim 1) \text{ V}$ $(1 \sim 2) \text{ V}$ $(2 \sim 5) \text{ V}$ $(5 \sim 10) \text{ V}$	$18 \ \mu\text{V}$ 9.0×10^{-4} 3.8×10^{-4} 2.2×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.3×10^{-4} 3.9×10^{-4} 1.8×10^{-4} 1.8×10^{-4} 1.3×10^{-4}	CP-40638

100. Id 7 6				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
펄스 발생기	40638			CP-40638
출력레벨		$40~\mathrm{Hz}\sim1~\mathrm{kHz}$		
		10 mV	18 μV	
		$(10 \sim 20) \text{ mV}$	9.0×10^{-4}	
		$(20 \sim 50) \text{ mV}$	3.8×10^{-4}	
		$(50 \sim 100) \text{ mV}$	2.2×10^{-4}	

인성년오 · MCO1-052오			
	(100 ~ 200) mV	3.9×10^{-4}	
	$(200 \sim 500) \text{ mV}$	1.7×10^{-4}	
	$(0.5 \sim 1) \text{ V}$	1.3×10^{-4}	
	$(1 \sim 2) \text{ V}$	3.9×10^{-4}	
	$(2 \sim 5) \text{ V}$	1.7×10^{-4}	
	$(5 \sim 10) \text{ V}$	1.7×10 1.3×10^{-4}	
	$(10 \sim 20) \text{ V}$		
	(10 ~ 20) V	3.9×10^{-4}	
	1 1-11- 10 1-11-		
	1 kHz ~ 10 kHz	01 17	
	10 mV	21 μV	
	$(10 \sim 20) \text{ mV}$	1.2×10^{-3}	
	$(20 \sim 50) \text{ mV}$	5.8×10^{-4}	
	$(50 \sim 100) \text{ mV}$	4.2×10^{-4}	
	$(100 \sim 200) \text{ mV}$	5.4×10^{-4}	
	$(200 \sim 500) \text{ mV}$	3.1×10^{-4}	
	$(0.5 \sim 1) \text{ V}$	2.6×10^{-4}	
	$(1 \sim 2) \text{ V}$	5.4×10^{-4}	
	$(2 \sim 5) \text{ V}$	3.1×10^{-4}	
	$(5 \sim 10) \text{ V}$	2.6×10^{-4}	
	(10 ~ 20) V	5.4×10^{-4}	
	10 kHz ~ 20 kHz		
	10 mV	21 µV	
	$(10 \sim 20) \text{ mV}$	1.2×10^{-3}	
	$(20 \sim 50) \text{ mV}$	5.8×10^{-4}	
	$(50 \sim 100) \text{ mV}$	4.2×10^{-4}	
	$(100 \sim 200) \text{ mV}$	5.5×10^{-4}	
	$(200 \sim 500) \text{ mV}$	3.3×10^{-4}	
	$(0.5 \sim 1) \text{ V}$	2.6×10^{-4}	
	$(1 \sim 2) \text{ V}$	5.5×10^{-4}	
	$(2 \sim 5) \text{ V}$	3.2×10^{-4}	
	$(5 \sim 10) \text{ V}$	2.6×10^{-4}	
	$(10 \sim 20) \text{ V}$		
	(10 ~ 20) V	5.4×10^{-4}	
	20 1-11- 50 1-11		
	20 kHz ~ 50 kHz	40 57	
1	10 mV	40 μV	
1	$(10 \sim 20) \text{ mV}$	2.3×10^{-3}	
1	$(20 \sim 50) \text{ mV}$	1.3×10^{-3}	
	$(50 \sim 100) \text{ mV}$	9.5×10^{-4}	
	(100 ~ 200) mV	1.6×10^{-3}	
	$(200 \sim 500) \text{ mV}$	9.4×10^{-4}	
	$(0.5 \sim 1) \text{ V}$	7.2×10^{-4}	
	$(1 \sim 2) \text{ V}$	1.6×10^{-3}	
	$(2 \sim 5) \text{ V}$	9.4×10^{-4}	
	$(5 \sim 10) \text{ V}$	7.2×10^{-4}	
	(10 ~ 20) V	1.6×10^{-3}	
1			
		•	

406.	RF	측정	

			측정불확도	
츠저라/자비	보르버ㅎ	교정버이	그 0 = 국고	시요ㅍ즈/츠저바버 드

- 1616/16F1	七月七本	╨. 9 ㅁ기	(신뢰수준 약 95 %)	기 () 끄 년 / 기 () () 년 ()
펄스 발생기 출력레벨	40638	50 kHz ~ 100 kHz		CP-40638
크 기에 크		10 mV	72 µV	
		$(10 \sim 20) \text{ mV}$	3.8×10^{-3}	
		$(20 \sim 50) \text{ mV}$	1.7×10^{-3}	
		(50 ~ 100) mV	1.2×10^{-3}	
		(100 ~ 200) mV	1.7×10^{-3}	
		$(200 \sim 500) \text{ mV}$	9.6×10^{-4}	
		$(0.5 \sim 1) \text{ V}$	7.2×10^{-4}	
		$(1 \sim 2) \text{ V}$	1.7×10^{-3}	
		$(2 \sim 5) \text{ V}$	9.4×10^{-4}	
		$(5 \sim 10) \text{ V}$ $(10 \sim 20) \text{ V}$	$7.2 \times 10^{-4} \\ 1.8 \times 10^{-3}$	
		(10 * 20) V	1.8 × 10	
주기		1 ns ~ 1 s	1.3×10^{-3}	
펄스폭		1 ns ~ 1 s	1.3×10^{-3}	
지연시간		1 ns ~ 1 s	1.3×10^{-3}	
2회 연속펄스		1 ns ~ 1 s	1.3×10^{-3}	
레이더 시험장치	40639		1.0 1.0 = 8	CP-40639
출력 주파수		100 kHz ~ 40 GHz	1.0×10^{-8}	
출력레벨		9 kHz ~ 100 kHz		
		$(20 \sim 0) \text{ dBm}$	0.23 dB	
		$(0 \sim -10) \text{ dBm}$	0.26 dB	
		(-10 ~ -60) dBm	0.30 dB	
		100 kHz ~ 1 GHz		
		$(20 \sim -30) dBm$	0.23 dB	
		$(-30 \sim -60) dBm$	0.27 dB	
		(−60 ~ −120)dBm	0.60 dB	
		1 GHz ~ 18 GHz		
		$(20 \sim -30) dBm$	0.27 dB	
		$(-30 \sim -60) dBm$	0.30 dB	
		(−60 ~ −120)dBm	0.61 dB	
출력 레벨 평탄성		9 kHz ~ 50 MHz	0.16 dB	
		50 MHz ~ 6 GHz	0.18 dB	
		6 GHz ~ 18 GHz	0.20 dB	
주파수변조		0 kHz ~ 400 kHz	2.5×10^{-2}	
진폭변조		0 % ~ 100 %	2.5×10^{-2}	
			(상대 불확도)	
변조 왜율		0 % ~ 10 %	1.5 × 10 ⁻² (상대 불확도)	
펄스 주기		10 ns ~ 10 ms	1.3×10^{-3}	
입력 주파수 교정		100 kHz ~ 18 GHz	8.4×10^{-6}	
입력 레벨 교정		(0 ~ -80) dB	0.08 dB	

고전력	100 mW		
	$1.5 \text{ MHz} \sim 50 \text{ MHz}$	5.5 mW	
	50 MHz ~ 1 GHz	8.6 mW	

3. RF 측정	u = .a =	== w1 - 11 + 1	측정불확도	30-76-79-7
측정량/장비	분류번호	교정범위	(신뢰수준 약 95 %)	사용표준/측정방법 등
레이더 시험장치	40639			CP-40639
고전력		100 mW ~ 20 W		
		1.5 MHz ~ 50 MHz	5.5×10^{-2}	
		50 MHz ~ 1 GHz	8.6×10^{-2}	
		20 W ~ 50 W		
		1.5 MHz ~ 50 MHz	5.5×10^{-2}	
		$50 \text{ MHz} \sim 1 \text{ GHz}$	5.3×10^{-2}	
		50 W ~ 80 W	4	
		$80 \text{ MHz} \sim 1 \text{ GHz}$	5.2×10^{-4}	
		80 W ~ 100 W		
		80 MHz ~ 400 MHz	4.6×10^{-2}	
		400 MHz ~ 1 GHz	5.3×10^{-2}	
			0.0 110	
고주파신호발생기	40640	10 3411	0.007.1.11	CP-40640
기준발진		10 MHz	0.007 1 Hz	
주파수 측정		20 Hz ~ 40 GHz	1.0×10^{-8}	
			(상대불확도)	
출력레벨		9 kHz ~ 100 kHz		
르 그 네 크		$(20 \sim 0) \text{ dBm}$	0.23 dB	
		$(0 \sim -10) \text{ dBm}$	0.26 dB	
		$(-10 \sim -60) \text{ dBm}$	0.30 dB	
		$100 \text{ kHz} \sim 1 \text{ GHz}$		
		$(20 \sim -30) \text{ dBm}$	0.23 dB	
		$(-30 \sim -60) \text{ dBm}$	0.27 dB	
		$(-60 \sim -120) \text{ dBm}$	0.60 dB	
		1 GHz ~ 18 GHz		
		(20 ~ −30) dBm	0.27 dB	
		$(-30 \sim -60) \text{ dBm}$	0.30 dB	
		$(-60 \sim -120) \text{ dBm}$	0.61 dB	
		10.011 00.011		
		$18 \text{ GHz} \sim 26 \text{ GHz}$	0.00 10	
		$(20 \sim -30) \text{ dBm}$	0.29 dB	
		26 GHz ~ 40 GHz		
		(20 ~ -30) dBm	0.43 dB	
호리케붸 허리기			0.10.10	
출력레벨 평탄성		9 kHz ~ 50 MHz	0.16 dB	
		50 MHz ~ 6 GHz 6 GHz ~ 18 GHz	0.18 dB 0.20 dB	
		18 GHz ~ 26 GHz	0.20 dB 0.29 dB	
		26 GHz ~ 40 GHz	0.23 dB 0.43 dB	
		20 3112 10 3112	0.10 db	

주파수 변조	0 kHz ~ 400 kHz	2.5×10^{-2}	
진폭변조	0 % ~ 100 %	2.5 × 10 ⁻² (상대불확도)	
위상변조	0 rad ~ 400 rad	2.5×10^{-2}	
변조왜율	0 % ~ 10 %	1.5 × 10 ⁻² (상대불확도)	
고조파 400, PD 총 기	9 kHz ~ 26.5 GHz	2.0 dB	

406. RF 측정 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
고주파 스펙트럼 분석기 기준발진	40641	10 MHz	0.007 1 Hz	CP-40641
중심 주파수		10 Hz ~ 20 Hz 20 Hz ~ 200 Hz 200 Hz ~ 2 kHz 2 kHz ~ 20 kHz 20 kHz ~ 200 kHz 200 kHz ~ 40 GHz	7.1×10^{-5} 7.1×10^{-6} 7.1×10^{-7} 7.1×10^{-8} 7.1×10^{-9} 7.1×10^{-10}	
주파수 카운터		10 Hz ~ 20 Hz 20 Hz ~ 200 Hz 200 Hz ~ 2 kHz 2 kHz ~ 20 kHz 20 kHz ~ 200 kHz 200 kHz ~ 40 GHz	7.1×10^{-5} 7.1×10^{-6} 7.1×10^{-7} 7.1×10^{-8} 7.1×10^{-9} 7.1×10^{-10}	
주파수 응답		9 kHz ~ 1 GHz 1 GHz ~ 8 GHz 8 GHz ~ 20 GHz 20 GHz ~ 26 GHz 26 GHz ~ 34 GHz 34 GHz ~ 40 GHz	0.15 dB 0.17 dB 0.23 dB 0.25 dB 0.30 dB 0.32 dB	
눈금 충실도		(0 ~ 100) dB	0.06 dB	
중간 주파수 이득		(0 ~ 100) dB	0.06 dB	
평균 잡음 레벨		9 kHz ~ 40 GHz	1.0 dB	
분해능 대역폭 정확도		10 Hz ~ 3 MHz	2.4×10^{-3}	
분해능 대역폭 선택도		10 Hz ~ 3 MHz	3.1×10^{-3}	
분해능 변경 정확도		10 Hz ~ 3 MHz	0.04 dB	
주파수 범위 정확도		1 kHz ~ 20 GHz	1.1×10^{-4}	
출력 주파수		1 MHz ~ 1 GHz	6.1×10^{-8}	
출력 레벨		9 kHz ~ 1 GHz	0.16 dB	
속도 측정기	40642			CP-40642

속도		(5 ~ 2 000) m/s	0.073 m/s	
서지 발생기 피크 전압	40643	(-20 ~ 20) kV	3.9×10^{-2}	CP-40643
시간(전반시간)		0.1 μ s (0.1 ~ 0.4) μ s (0.4 ~ 1.2) μ s (1.2 ~ 4.0) μ s (4.0 ~ 10.0) μ s	$0.000 \ 77 \ \mu s$ 2.0×10^{-3} 1.6×10^{-3} 7.9×10^{-4} 1.7×10^{-3}	

10 μs (10 ~ 30) μs (30 ~ 50) μs (50 ~ 60) μs (60 ~ 100) μs (100 ~ 200) μs (200 ~ 500) μs (500 ~ 1 000) μs	$0.069 \mu s$ 3.5×10^{-3} 1.8×10^{-3} 2.4×10^{-3} 1.6×10^{-3} 6.1×10^{-4} 2.5×10^{-4}	CP-40643
	1.3×10^{-3}	
(- 5 000 ~ 5 000) A	1.9×10^{-2}	
1 μs (1.0 ~ 2.0) μs (2.0 ~ 8.0) μs (8.0 ~ 10.0) μs	0.007 3 μ s 3.7 × 10 ⁻³ 2.1 × 10 ⁻³ 1.5 × 10 ⁻³	
10 μs (10 ~ 12) μs (12 ~ 24) μs (24 ~ 100) μs	$0.073~\mu s$ 6.1×10^{-3} 4.6×10^{-3} 2.1×10^{-3}	
10 MHz	0.007 1 Hz	CP-40644
20 Hz ~ 26 GHz	1.0×10^{-8}	
9 kHz ~ 100 kHz (10 ~ 0) dBm (0 ~ -10) dBm (-10 ~ -30) dBm 100 kHz ~ 1 GHz (10 ~ -30) dBm	0.23 dB 0.26 dB 0.30 dB	
	$20 \text{ Hz} \sim 26 \text{ GHz}$ $9 \text{ kHz} \sim 100 \text{ kHz}$ $(10 \sim 0) \text{ dBm}$ $(0 \sim -10) \text{ dBm}$ $(-10 \sim -30) \text{ dBm}$ $100 \text{ kHz} \sim 1 \text{ GHz}$	$20 \text{ Hz} \sim 26 \text{ GHz}$ 1.0×10^{-8} $9 \text{ kHz} \sim 100 \text{ kHz}$ $(10 \sim 0) \text{ dBm}$ $(0 \sim -10) \text{ dBm}$ $(-10 \sim -30) \text{ dBm}$ $100 \text{ kHz} \sim 1 \text{ GHz}$ $(10 \sim -30) \text{ dBm}$ 0.23 dB

	(10 ~ −30) dBm	0.26 dB	
	10 GHz ~ 26 GHz		
	(10 ~ -30) dBm	0.29 dB	
정재파비	50 MHz ~ 1 GHz		
	1.04	0.023	
	1.20	0.019	
	1.50	0.025	
	2.00	0.042	
	1 GHz ~ 4 GHz		
	1.04	0.023	
	1.20	0.029	
	1.50	0.040	
	2.00	0.070	
	4 GHz ~ 18 GHz		
	1.04	0.031	
	1.20	0.035	
	1.50	0.050	
	2.00	0.090	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
고주파 터미네이션 VSWR	40645	5 Hz ~ 3 GHz 3 GHz ~ 20 GHz 20 GHz ~ 40 GHz	0.008 3 0.015 0.030	CP-40645
동축형 서미스터 마운트 Cal Factor	40646	1 μW ~ 100 mW 10 MHz ~ 50 MHz 50 MHz ~ 5 GHz 5 GHz ~ 10 GHz 10 GHz ~ 18 GHz	$2.3\times10^{-2} \\ 2.4\times10^{-2} \\ 2.6\times10^{-2} \\ 2.9\times10^{-2}$	CP-40646
고주파 전압계	40650	100 kHz 1 mV (1 ~ 10) mV (10 ~ 100) mV (0.1 ~ 1) V (1 ~ 10) V (10 ~ 100) V 1 MHz 1 mV (1 ~ 10) mV (10 ~ 100) mV (0.1 ~ 1) V (10 ~ 100) mV (0.1 ~ 1) V	0.019 mV 0.025 mV 0.11 mV 0.000 87 V 0.008 7 V 0.088 V 0.083 mV 0.083 mV 0.33 mV 0.002 2 V 0.020 V	CP-40650
전자기장의 세기 측정기	40652			CP-40652

중심 주파수		10 Hz ~ 20 Hz 20 Hz ~ 200 Hz 200 Hz ~ 2 kHz 2 kHz ~ 20 kHz 20 kHz ~ 200 kHz 200 kHz ~ 40 GHz	7.1×10^{-5} 7.1×10^{-6} 7.1×10^{-7} 7.1×10^{-8} 7.1×10^{-9} 7.1×10^{-10}	
주파수 응답		9 kHz ~ 1 GHz 1 GHz ~ 8 GHz 8 GHz ~ 20 GHz 20 GHz ~ 26 GHz 26 GHz ~ 34 GHz 34 GHz ~ 40 GHz	0.15 dB 0.17 dB 0.23 dB 0.25 dB 0.30 dB 0.32 dB	
눈금 충실도		(0 ~ 100) dB	0.06 dB	
중간 주파수 이득		(0 ~ 100) dB	0.06 dB	
딥 시뮬레이터 출력전압	40654	10 V (10 ~ 50) V (50 ~ 100) V (100 ~ 150) V (150 ~ 250) V (250 ~ 300) V	0.058 V 1.2×10^{-3} 5.9×10^{-4} 4.8×10^{-4} 3.7×10^{-4} 3.0×10^{-4}	CP-40654
딥전압		(0 ~ 120)% (0 ~ 240)V	3.1×10^{-2}	
딥시간		(1 ~ 1 000) ms	1.3×10^{-3}	

407. 전자기장의 세기 및 안테나

407, 전시기 3의 세기 중 한	11 - 1			
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
환상안테나류	40704			CP-40704
안테나인		30 Hz ~ 30 MHz	2.3 dB	
단극안테나류	40705			CP-40705
안테나인	자	9 kHz ~ 30 MHz	1.8 dB	

501. 접촉식 온도

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
온도 발생장치; 오븐, 전기로,액체항온조, 빙점조, 드라이블럭교정기 등	50101			
오븐		(-80 ~ 250) ℃	0.66 ℃	CP-50101-1
온도발생장치		(-196 ~ 550) ℃ (550 ~ 1 100) ℃	0.02 ℃ 0.86 ℃	CP-50101-2
온도 지시계; 지시/기록 /조절계, 온도 교정기 등 센서포함	50102	(−196 ~ 550) ℃	0.08 ℃	CP-50102

	(550 ~ 1 100) ℃	0.95 ℃	
센서제외(저항식)	(-196 ~ 550) ℃	0.10 °C	
(열전식) 	(-196 ~ 1 100) ℃	0.36 ℃	
온도교정기			
출력저항	(−190 ~ 630) ℃	0.18 ℃	CP-40104
TC E	(-196 ~ 1 100) ℃	0.22 ℃	
J	(−196 ~ 1 100) °C	0.23 ℃	
K	(−196 ~ 1 100) ℃	0.31 ℃	
N	(−196 ~ 1 100) ℃	0.41 ℃	
R	(0 ~ 1 100) ℃	0.74 ℃	
S	(0 ~ 1 100) ℃	0.73 ℃	
В	(600 ~ 1 100) ℃	0.75 ℃	
Т	(−196 ~ 399) ℃	0.31 ℃	
입력저항	(−190 ~ 630) ℃	0.19 ℃	
TC E	(−196 ~ 1 100) ℃	0.19 ℃	
J	(−196 ~ 1 100) ℃	0.24 ℃	
K	(−196 ~ 1 100) ℃	0.34 ℃	
N	(−196 ~ 1 100) ℃	0.45 ℃	
R	(0 ~ 1 100) ℃	0.80 ℃	
S	(0 ~ 1 100) ℃	0.80 ℃	
В	(600 ~ 1 100) ℃	0.88 ℃	
Т	(-196 ~ 399) ℃	0.34 ℃	
유리제 온도계; 유리제온도계, 50	12		CP-50103
#디세 온도계, ㅠ디세곤도계, 50 벡크만온도계 등	(-80 ~ -50) ℃	0.25 ℃	C1 90109
학의원은도계 등 유리제 온도계	(-50 ~ 400) °C	0.25 C 0.09 °C	
게 다세 근고계	(400 ~ 550) °C	0.09 °C 0.25 °C	
	(400 330) C	0.25	
저항식 온도계; 백금저항온도계, 50	04		
측온저항체, 써미스터 등			
	(−196 ~ 550) ℃	0.05 ℃	CP-50104

501. 접촉식 온도

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
열팽창식 온도계; 바이메탈 온도계, 기체 또는 액체충만식 온도계 등 바이메탈 온도계	50105	(-80 ~ 100) ℃ (100 ~ 250) ℃ (250 ~ 550) ℃	0.32 ℃ 0.67 ℃ 1.4 ℃	CP-50105
열전대; 귀금속, 비금속, 순금속, 특수 등 비금속	50106	(-196 ~ 550) ℃ (550 ~ 1 100) ℃	0.66 ℃ 1.3 ℃	CP-50106-1
귀금속		(0 ~ 550) ℃ (550 ~ 1 100) ℃	1.1 ℃ 1.2 ℃	CP-50106-2

온도 변환기	50107			
		(−196 ~ 550) ℃	0.23 ℃	CP-50107
		(550 ~ 1 100) ℃	0.96 ℃	

502. 비접촉식 온도

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
복사온도계	50204	$(0 \sim 100) ^{\circ} ^{\circ} ^{\circ} $ $(100 \sim 200) ^{\circ} ^{\circ} ^{\circ} $ $(200 \sim 500) ^{\circ} ^{\circ} ^{\circ} $ $(500 \sim 800) ^{\circ} ^{\circ} ^{\circ} $ $(800 \sim 1 \ 000) ^{\circ} ^{\circ} ^{\circ} $	1.3 ℃ 1.5 ℃ 1.9 ℃ 2.5 ℃ 2.9 ℃	CP-50204
흑체로	50206	$(0 \sim 100) ^{\circ} ^{\circ} ^{\circ} $ $(100 \sim 200) ^{\circ} ^{\circ} ^{\circ} $ $(200 \sim 500) ^{\circ} ^{\circ} ^{\circ} $ $(500 \sim 800) ^{\circ} ^{\circ} ^{\circ} $ $(800 \sim 1 000) ^{\circ} ^{\circ} ^{\circ} $	1.4 °C 1.6 °C 1.8 °C 2.3 °C 2.7 °C	CP-50206

503. 습도

503. 百工				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
노점 습도계; 냉각거울, 알루미나 박막 등	50301			CP-50301
노점		(-75 ~ -60) ℃dp	0.66 ℃dp	
		(-60 ~ 20) ℃dp	0.37 °Cdp	
상대습도 습도계; 고분자박막, 모발 등	50302			CP-50302-1
모발(상대습도)		(4 ~ 20) % R.H. (20 ~ 50) % R.H.	2.4 % R.H. 1.5 % R.H.	
		(50 ~ 70) % R.H. (70 ~ 90) % R.H.	1.8 % R.H. 2.3 % R.H.	
		(90 ~ 95) % R.H.	3.1 % R.H.	

503. 습도

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
상대습도 습도계; 고분자박막, 모발 등 고분자박막(상대습도)	50302	(4 ~ 20) % R.H. (20 ~ 50) % R.H. (50 ~ 70) % R.H. (70 ~ 90) % R.H. (90 ~ 95) % R.H.	2.4 % R.H. 1.5 % R.H. 1.8 % R.H. 2.3 % R.H. 3.1 % R.H.	CP-50302-2

(온도)		$(-80 \sim 0) ^{\circ} ^{\circ} ^{\circ} ^{\circ} $ $(0 \sim 70) ^{\circ} ^{\circ} ^{\circ} ^{\circ} $ $(70 \sim 100) ^{\circ} ^{\circ} ^{\circ} ^{\circ} $ $(100 \sim 150) ^{\circ} ^{\circ} ^{\circ} ^{\circ} $	0.64 ℃ 0.53 ℃ 1.5 ℃ 2.1 ℃	
건습구 습도계; 아스만 통풍, 저항온도계식 등 저항온도계식(상대습도)	50303	(4 ~ 20) % R.H. (20 ~ 50) % R.H. (50 ~ 70) % R.H. (70 ~ 90) % R.H. (90 ~ 95) % R.H.	2.7 % R.H. 1.6 % R.H. 2.0 % R.H. 2.5 % R.H. 3.2 % R.H.	CP-50303

503. 습도

503. 습도				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
온·습도 기록계 ; 자기온습도기록계 등	50304			CP-50304
상대습도		(10 ~ 20) % R.H. (20 ~ 50) % R.H. (50 ~ 70) % R.H. (70 ~ 90) % R.H. (90 ~ 95) % R.H.	2.3 % R.H. 1.5 % R.H. 1.8 % R.H. 2.3 % R.H. 3.1 % R.H.	
온도		$(-20 \sim 50) ^{\circ} \text{C}$ (50 ~ 100) $^{\circ} \text{C}$	0.47 ℃ 1.5 ℃	
노점/상대습도 변환기	50305			CP-50305
상대습도 변환기		$(4 \sim 20) \%$ R.H. $(20 \sim 50) \%$ R.H. $(50 \sim 70) \%$ R.H. $(70 \sim 90) \%$ R.H. $(90 \sim 95) \%$ R.H.	2.4 % R.H. 1.6 % R.H. 1.8 % R.H. 2.4 % R.H. 3.1 % R.H.	
습도 발생장치; 이압력식/ 이온도식/분류식 습도발생장치, 항온항습기 등 항온항습기(상대습도)	50306	(4 ~ 20) % R.H. (20 ~ 50) % R.H. (50 ~ 70) % R.H. (70 ~ 95) % R.H.	2.6 % R.H. 2.7 % R.H. 3.5 % R.H. 4.5 % R.H.	CP-50306
(온도)		(-80 ~ 250) ℃	0.70 ℃	

504. 수분

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
목재 수분계	50402	(8 ~ 25) % M.C.	3.5 % M.C.	CP-50402

601. 음향

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
소음계	60106			CP-60107

31.5 Hz	0.5 dB	
63 Hz	0.4 dB	
125 Hz	0.3 dB	
250 Hz	0.2 dB	
500 Hz	0.2 dB	
1 kHz	0.2 dB	
2 kHz	0.2 dB	
4 kHz	0.2 dB	
8 kHz	0.5 dB	
12.5 kHz	0.8 dB	

603. 진동

603. 진동			_	
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
진동계 교정기	60301	(20 ~ 1 250) Hz	1.7 %	CP-60301
진동 변환기 가속도	60302	10 Hz (10 ~ 630) Hz (630 ~ 1 250) Hz (1 250 ~ 2 500) Hz (2 500 ~ 5 000) Hz	1.9 % 1.6 % 2.3 % 2.5 % 2.8 %	CP-60302
진동 측정기 가속도	60303	10 Hz (10 ~ 20) Hz (20 ~ 630) Hz (630 ~ 1 250) Hz	2.4 % 1.8 % 1.6 % 2.3 %	CP-60303
속도		10 Hz $(10 \sim 20) \text{ Hz}$ $(20 \sim 160) \text{ Hz}$ $(160 \sim 630) \text{ Hz}$ $(630 \sim 1\ 000) \text{ Hz}$ $(1\ 000 \sim 1\ 250) \text{ Hz}$	2.0 % 1.7 % 1.6 % 1.7 % 2.4 % 2.5 %	
변위		10 Hz $(10 \sim 20) \text{ Hz}$ $(20 \sim 80) \text{ Hz}$ $(80 \sim 160) \text{ Hz}$ $(160 \sim 315) \text{ Hz}$	2.0 % 1.7 % 1.6 % 1.7 % 2.6 %	

701. 광도

101. 0				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
광조도계	70101			CP-70101
		$(1 \sim 10) lx$	3.1 %	
		$(10 \sim 100) lx$	2.7 %	
		$(100 \sim 1\ 000) lx$	2.8 %	
		(1 000 ~ 3 000) lx	2.9 %	
		$(3\ 000 \sim 5\ 000)\ lx$	3.4 %	

901. 화학분석

901. 화학분석				
측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
가스 분석기 이산화탄소(CO ₂) 일산화탄소(CO) 산소(O ₂) 메탄(CH ₄) 수소(H ₂) 이산화황(SO ₂) 이소부탄(i-C ₄ H ₁₀) 일산화질소(NO) 프로판(C ₃ H ₈) 황화수소(H ₂ S)		(0 ~ 5 000) μmol/mol (0.5 ~ 5) cmol/mol (0 ~ 100) μmol/mol (0 ~ 18) cmol/mol (0 ~ 2) cmol/mol (0 ~ 2) cmol/mol (0 ~ 500) μmol/mol (0 ~ 1) cmol/mol (0 ~ 500) μmol/mol (0 ~ 1) cmol/mol (0 ~ 1) cmol/mol	1.7×10^{-2} 1.7×10^{-2} 2.2×10^{-2} 2.0×10^{-2} 1.7×10^{-2} 2.1×10^{-2} 2.2×10^{-2} 2.7×10^{-2} 2.2×10^{-2} 2.4×10^{-2} 4.9×10^{-2}	CP-90103
배기가스 측정기 산소(O ₂) 이산화탄소(CO ₂) 이산화황(SO ₂) 일산화질소(NO) 프로판(C ₃ H ₈) 일산화탄소(CO)		(0 ~ 18) cmol/mol (0 ~ 5) cmol/mol (0 ~ 1 000) μmol/mol (0 ~ 1 000) μmol/mol (0 ~ 1) cmol/mol (0 ~ 1 000) μmol/mol	2.0×10^{-2} 1.6×10^{-2} 2.2×10^{-2} 2.2×10^{-2} 2.4×10^{-2} 2.2×10^{-2}	CP-90104

주1) (0.5 ~ 100)A 의 단독구간 표시는 0.5 A 이상 100 A 이하를 의미하며, (0.5 ~ 10)A, (10 ~ 100)A 의 연속구간 표시는 첫구간은 0.5 A 이상 10 A 이하, 둘째구간은 10 A 초과 100 A 이하를 의미함.

주2) " **∅**.72+(3×1)2 µm (1: m) "에서 1은 게이지블록의 길이를 "m"로 표시한 것임.

주3) CMC 표시란에 단위가 없는 숫자 $(4\times10^{-11} = 4\times10^{-9}\%)$ 는 지수형태로 나타낸 상대불확도를 표시한 것임.