

Maschinelles Lernen I - Grundverfahren V09 Erweiterte Verfahren des Reinforcement Learning

Wintersemester 19/20 Prof. Dr. J.M. Zöllner, Karl Kurzer & Karam Daaboul

INSTITUT FÜR ANGEWANDTE INFORMATIK UND FORMALE BESCHREIBUNGSVERFAHREN

Reinforcement Learning (RL)

Reinforcement LearningWiederholung und Beispiele

Strategiebasiertes LernenPolicy Gradient

Kombiniertes LernenActor Critic Verfahren

DriveNet, Hubschneider et al. 2017

Deep Reinforcement Learning, Berkeley, 2019

Welche Aktion ist besser?

Belohnungsfunktion $r(s_t, a_t)$

$$\theta^* = \arg \max_{\theta} \mathbb{E}_{(s,a) \sim \pi_{\theta}} [r(s,a)]$$
Unendlicher Horizont

Markov Decision Process

s,
$$a_t$$
, $r(s_t, a_t)$ und $r(s_{t+1}|s_t, a_t)$

$$\theta^* = \arg\max_{\theta} \sum_{t=1}^{T} \mathbb{E}_{(s_t, a_t) \sim \pi_{\theta}} [r(s_t, a_t)]$$

Endlicher Horizont

Ziele können als Maximierung der kummulierten Belohnung beschrieben werden.

Taxonomie des Reinforcement Learning

- Bewertungsbasiert
 - Keine Strategie
 - Bewertungsfunktion
- Strategiebasiert
 - Strategie
 - Keine Bewertungsfunktion
- Actor Critic
 - Strategie
 - Bewertungsfunktion

Reinforcement Learning: Beispiel (1)

Bewertungsfunktion

DQN, Mnih et al. 2013

Strategie

PPO, Schulman et al. 2017

https://openai.com/blog/openai-baselines-ppo/

Reinforcement Learning: Beispiel (2)

Belohnung

Messung

Aktionsraum:

- rechts
- Stehen bleiben
- links

Ein Zustand erfüllt die Markov Eigenschaft wenn und nur wenn:

$$p[S_{t+1} | S_t] = p[S_{t+1} | S_1, ..., S_t]$$

Zustandsraum:

- Die Position der Blöcke
- Die Position und die <u>Richtung des</u> <u>Balls</u>
- Die Position des Agenten

Bewertungsbasiert

10

Reinforcement Learning (RL)

- Reinforcement LearningWiederholung und Beispiele
- Strategiebasiertes Lernen Policy Gradient
- Kombiniertes Lernen Actor Critic Verfahren

Strategiebasiert: Diskrete stochastische Policy

Strategiebasiert: Kontinuierliche stochastische Policy

Trajektorien

 \blacksquare Eine Trajektorie τ ist eine Abfolge von Zuständen und Aktionen.

$$\tau_{\pi_{\theta}} = (s_0, a_0, s_1, a_1, \dots)$$

 $\mathbf{R}(\tau) = \sum_{t=0}^{T} R(s_t, a_t)$ ist die Belohnung der Trajektorie

Strategiebasiertes Lernen

- Parametrisiert die Strategie explizit
- Erlaubt stochastische Strategien
- Erlaubt hochdimensionale und kontinuierliche Aktionsräume

Stochastische Strategie

16

Zielfunktion

Ziel: optimale Strategie zu lernen (maximale Belohnung)

$$J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[R_{\tau} \right]$$

$$\theta^* = \arg \max_{\theta} J(\theta) = \arg \max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} [R_{\tau}]$$

 Finden der optimalen Strategieparameter durch Gradientenaufstieg

$$\theta_{k+1} = \theta_k + \alpha \nabla_{\theta} J(\theta)$$

Definition

Die Ableitung der Zielfunktion nach Strategieparametern θ

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}) R(\tau) \right]$$

Zielfunktion

Der Gradient erhöht die Wahrscheinlichkeit von Trajektorien mit positiven Belohnungen; umgekehrt werden Trajektorien mit negativen Belohnungen unwahrscheinlicher.

■ Partielle Ableitung der Zielfunktion nach θ

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} [R(\tau)]$$

Expandieren der Erwartung

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \int P(\tau | \theta) R(\tau)$$
$$\nabla_{\theta} J(\theta) = \int \underline{\nabla_{\theta}} P(\tau | \theta) R(\tau)$$

■ Log Trick: $\frac{\nabla x}{x} = \nabla \log x$

$$\frac{\nabla_{\theta} P(\tau|\theta)}{\nabla_{\theta} I(\theta)} = P(\tau|\theta) \frac{\nabla_{\theta} P(\tau|\theta)}{P(\tau|\theta)} = P(\tau|\theta) \nabla_{\theta} \log P(\tau|\theta)$$
$$\nabla_{\theta} I(\theta) = \int P(\tau|\theta) \nabla_{\theta} \log P(\tau|\theta) R(\tau)$$

Erwartungswert

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\nabla_{\theta} \log P(\tau | \theta) \ R(\tau) \right]$$

Ableiten von $\nabla_{\theta} \log P(\tau | \theta)$

21

- $\mathbf{R}(\tau) = \sum_{t=0}^{T} R(s_t, a_t)$ ist die Belohnung der Trajektorie
- $P(\tau|\theta)$ ist die Wahrscheinlichkeit von Trajektorie τ unter Verwendung der Strategie π_{θ} Startverteilung

$$P(\tau|\theta) = \rho_0(s_0) \prod_{t=0}^{T} P(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t | s_t)$$

Log-Wahrscheinlichkeit einer Trajektorie

$$\log P(\tau|\theta) = \log \rho_0(s_0) + \sum_{t=0}^{I} (\log P(s_{t+1}|s_t, a_t) + \log \pi_{\theta}(a_t|s_t))$$

Ableiten von $\nabla_{\theta} \log P(\tau | \theta)$

$$\log P(\tau|\theta) = \log \rho_0(s_0) + \sum_{t=0}^{T} (\log P(s_{t+1}|s_t, a_t) + \log \pi_{\theta}(a_t|s_t))$$

$$\nabla_{\theta} \log P(\tau|\theta) = \nabla_{\theta} \log \rho_0(s_0) + \sum_{t=0}^{T} (\nabla_{\theta} \log P(s_{t+1}|s_t, a_t) + \nabla_{\theta} \log \pi_{\theta}(a_t|s_t))$$

$$\nabla_{\theta} \log P(\tau|\theta) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$$

$$\nabla_{\theta} \log P(\tau|\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\nabla_{\theta} \log P(\tau|\theta) R(\tau)\right] = \nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) R(\tau)\right]$$

Policy Gradient

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t}) R(\tau) \right] \approx \frac{1}{|D|} \sum_{\tau \in D} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t}) R(\tau)$$

Der Gradient erhöht die Wahrscheinlichkeit von Trajektorien mit positiven Belohnungen; umgekehrt werden Trajektorien mit negativen Belohnungen unwahrscheinlicher.

Policy Gradient – REINFORCE

Initialisiere Strategieparameter $\theta \in R^d$ zufällig $\rightarrow \pi(a|s,\theta)$

Wiederhole:

- 1. Generiere *D* Trajektorien/Episoden $(s_0, a_0, r_1, ... s_{T-1}, a_{T-1}, r_T)$ mit $\pi(\cdot | \cdot, \theta)$
- 2. $\nabla_{\theta} J(\theta) \leftarrow \frac{1}{|D|} \sum_{\tau \in D} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R(\tau)$
- 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Charakteristika – Policy Gradient

- Strategie wird explizit gelernt/verbessert
- Erlaubt stochhastische Strategien
- Generell stabiler (smooth updates)
- Datenineffizient (On-Policy)

26

 Erlaubt hochdimensionale und kontinuierliche Aktionsräume

Probleme bei Strategiegradientenmethoden

hohe Varianz

Varianz

$$abla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t}) R(\tau) \right]$$
geringe Varianz

Lösung: Baselines

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}) \left[R(\tau) - b \right] \right]$$

$$b = \frac{1}{N} \sum_{i=1}^{|D|} R(\tau)$$
 Ist der Gradient weiterhin korrekt?

jede Trajektorie mit positiver

Belohnung wird wahrscheinlicher

Baselines

lacksquare Die Ableitung der Zielfunktion nach Strategieparametern heta

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(\tau) R(\tau)]$$

wobei:

$$\nabla_{\theta} \log \pi_{\theta}(\tau) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Hinzufügen eines Baselines zu der Gleichung

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(\tau) [R(\tau) - b] \right]$$

$$\mathbb{E}_{\tau \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(\tau) b \right] = \int_{\Gamma} \pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) b d\tau = \int_{\Gamma} \nabla_{\theta} \pi_{\theta}(\tau) b d\tau = b \nabla_{\theta} \int_{\Gamma} \pi_{\theta}(\tau) d\tau = b \nabla_{\theta} 1 = 0$$

$$\nabla_{\theta} \pi_{\theta}(\tau)$$

- Das Subtrahieren einer Baseline bringt kein Bias in den Erwartungswert ein.
- Die durchschnittliche Belohnung ist nicht die optimale Baseline, jedoch hinreichend gut.

Reinforcement Learning (RL)

- Bestandteile des RL Problems
 Markov'scher Entscheidungsprozess
- Wertbasiertes LernenQ-Learning
- Strategiebasiertes Lernen Policy Gradient
- Kombiniertes Lernen Actor Critic Verfahren

29

Actor-Critic Verfahren

Statt zufällige $R(\tau)$ zu sampeln, wird ein Critic hinzugefügt, um eine Q-Funktion zu approximieren:

$$Q_w(s,a) \approx Q^{\pi_\theta}(s,a)$$

approximierter Policy Gradient:

$$\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) Q_{w}(s, a)]$$

- Actor wird mit diesem Gradient aktualisiert
- Critic durch Policy Evaluation Verfahren
- Erweiterung durch Advantage-Funktion

$$A(s,a) = Q(s,a) - V(s)$$

$$\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) A(s, a)]$$

Probleme mit RL

- Datenineffizienz
- Performanz
- Belohnungsfunktion
- Lokale Optima
- Generalisierungsprobleme
- → Keine Standardverfahren

31

Datenineffizienz

Können Erfahrungen genutzt werden um Explorationsstrategien abzuleiten?

Generalisierungsprobleme Levine et al. 2016

Multi-Agent Reinforcement Learning

https://openai.com/blog/emergent-tool-use/

Pixel to Control

Lange et al. 2016

Devin et al. 2017

this is the way you want me to go?

Literatur

36

- R. Sutton 2018 "Reinforcement Learning: An Introduction"
- S. Levine 2018 "Deep Reinforcement Learning" (Berkley Course on RL)
- P. Abbeel 2017 "Deep RL Bootcamp" (Berkley Course on RL)
- D. Silver 2015 "Reinforcement Learning" (UCL Course on RL)
- OpenAi 2018 "SpinningUp"