DRS Drag Reduction System

Study and design and optimize a DRS for F1 cars

Course of Mechatronics Systems Simulation Academic Year 2021-2022

Corradini Giacomo Oselin Pierfrancesco Serafini Daniele Student ID: 233256 Student ID: 229564 Student ID: 232273

2 - Functional Decomposition

Functional decomposition splits a large complex task into smaller, simpler atomic functions, fostering a better understanding of the overall process.

3

3 - Robust Decision Making

Decisions based on our level of confidence and knowledge

Below are some pros & cons:

Pods & Rocker mechanism

- No Euler instability
- Less vibrations
- Customize profile of actuation
- Aerodynamic influence
- High number of constraints

Pod pull mechanism

- No Euler instability
- Less vibrations
- Aerodynamic influence

Push up mechanism

- Less aerodynamic influence
- More vibrations
- Euler instability

3 - Robust Decision Making

Decisions based on our level of confidence and knowledge.

Below are some pros & cons:

Electric motor

- Quite energy required to work
- Precise and accurate

Pneumatic actuator

- Lack of precision and accuracy
- Slow response

Hydraulic actuator

- Precise and accurate
- Low energy required to work

Electric actuator

- Quite energy required to work
- Precise and accurate

5

4 - Data

Rear wing 2017 Formula one car

In order to do a more realistic analysis we have considered a real rear wing of a formula one car. It is present in the website.

4 - Drag/Down force interpolation (from the paper)

 $\textit{down} := 42447.20981 - 1131.484001\gamma(t)^3 + 10897.17872\gamma(t)^2 - 36539.53600\gamma(t)$

7

5 - Mechanism analysis

Push-up mechanism

5 - Graph of the push up mechanism

5 - Mechanism analysis

Pod-pull mechanism

5 - Parameters optimization from kinematics

5 - Parameters optimization from kinematics

17

5 - Parameters optimization from kinematics

5 - Parameters optimization from kinematics

$$cost_fun = \frac{\sum_{k} \delta_{w_{k}}^{2} \left(\delta_{s_{k}} - s_{k}\right)^{2}}{2 W}$$

Parameters to be optimized: $\emph{L1, LP, anc, x1, y1, s}_{closed}$

19

5 - Graph of the pod pull mechanism

5 - Position, velocity, acceleration analysis

Position of $\theta_j(t)$ Angle [D]

Position of $s_j(t)$ Position of $s_j(t)$ Position of $s_j(t)$ 0.020 0.015 0.005

5 - Force definitions: we define the drag force and down force and we suppose that they are applied to the flap center of mass

5 - Mechanism analysis

Pods and rockers mechanism

5 - Graph of the pods and rocker mechanism

5 - Pods and rockers analysis

Force definitions: we define the drag force and down force and we suppose that they are applied to the flap center of mass

5 - Pods and rockers analysis

Dynamic analysis: Principle of virtual work

33

5 - Pod Pull analysis

Equation of motion, Newton-Euler formulation

```
mI\left(\frac{\mathrm{d}^2}{\mathrm{d}r^2}s(t)\right) - act(t) - R2y(t)
= mI - RIy(t) - R2y(t)
- R2y(t)LI - TLz(t)
- m2\left(LP\left(\frac{\mathrm{d}}{\mathrm{d}t} \; \theta I(t)\right)^2 \cos(\theta I(t)) + LP\left(\frac{\mathrm{d}^2}{\mathrm{d}^2} \; \theta I(t)\right) \sin(\theta I(t)) - 2\frac{\mathrm{d}^2}{\mathrm{d}^2} \; s(t)\right) \\ - \frac{m2LP\left(\left(\frac{\mathrm{d}}{\mathrm{d}t} \; \theta I(t)\right)^2 \sin(\theta I(t)) - \left(\frac{\mathrm{d}^2}{\mathrm{d}^2} \; \theta I(t)\right) \cos(\theta I(t))\right)}{2} + gm2 + R2y(t) - R3y(t)
- \frac{m2LP\left(\left(\frac{\mathrm{d}}{\mathrm{d}t} \; \theta I(t)\right)^2 \sin(\theta I(t)) - \left(\frac{\mathrm{d}^2}{\mathrm{d}^2} \; \theta I(t)\right) \cos(\theta I(t))\right)}{2} + gm2 + R2y(t) - R3y(t)
- R2y\left(\frac{\mathrm{d}^2}{\mathrm{d}^2} \; \theta I(t)\right) + \frac{\left(\left(-R2y(t) - R3y(t)\right) \cos(\theta I(t)\right) + \sin(\theta I(t)) \left(R2x(t) + R3x(t)\right) LP}{2}
- m3\left(\frac{\mathrm{d}}{\mathrm{d}t} \; \theta 3(t)\right)^2 \cos(\theta 3(t) + \psi) LFb - m3\left(\frac{\mathrm{d}^2}{\mathrm{d}^2} \; \theta 3(t)\right) \sin(\theta 3(t) + \psi) LFb + R3x(t) - R4x(t) - p_2 drag
- m3\left(\frac{\mathrm{d}}{\mathrm{d}t} \; \theta 3(t)\right)^2 \sin(\theta 3(t) + \psi) LFb + m3\left(\frac{\mathrm{d}^2}{\mathrm{d}^2} \; \theta 3(t)\right) \cos(\theta 3(t) + \psi) LFb + gm3 - R4y(t) + R3y(t) - p_2 drag
- LFb\left(R3y(t) - R4y(t)\right) \cos(\theta 3(t) + \psi) + LFb\left(R3x(t) - R4x(t)\right) \sin(\theta 3(t) + \psi) + L5\left(\frac{\mathrm{d}^2}{\mathrm{d}^2} \; \theta 3(t)\right) + R3y(t) LP\cos(\theta I(t)) - R3x(t) LP\sin(\theta I(t)) + (s(t) + LI + xI - x4) R3y(t) - R3x(t) \left(yI - y4\right) - LP\cos(\theta I(t)) + \cos(\theta I(t)) + \cos(\theta I(t)) + \sin(\theta I(t)) + \sin(\theta I(t)) + R3x(t) R4y(t)\right]
y_1 var_2 \cdot pe := \left[s(t), \theta I(t), \theta 3(t), R3y(t), R3y(t), R3y(t), R3y(t), R4x(t), R4y(t)\right]
```


5 - DAE solution

It is shown the plot of s(t) obtained from three different analysis

37

5 - Pod Pull analysis

Equation of motion, Lagrange formulation

$$\frac{(2\,mI + 2\,m2)\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2}\,s(t)\right)}{2} - \frac{LP\left(\frac{\mathrm{d}}{\mathrm{d}t}\,\theta I(t)\right)^2\cos\left(\theta I(t)\right)\,m2}{2} - \frac{m2\,LP\sin\left(\theta I(t)\right)\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2}\,\theta I(t)\right)}{2} - \lambda I(t) - act(t)}$$

$$\frac{\left(LP^2\,m2 + 4\,Iz2\right)\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2}\,\theta I(t)\right)}{4} + \frac{LP\left(-\sin\left(\theta I(t)\right)\,m2\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2}\,s(t)\right) + \left(g\,m2 - 2\,\lambda 2(t)\right)\cos\left(\theta I(t)\right) + 2\sin\left(\theta I(t)\right)\lambda I(t)\right)}{2}$$

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2}\,\theta 3(t)\right)\left(LFb^2\,m3 + Iz3\right) + LFb\left(g\,m3 - p_down\right)\cos\left(\theta 3(t) + \psi\right) + LFb\sin\left(\theta 3(t) + \psi\right)p_drag - anc\left(\lambda I(t)\sin\left(\theta 3(t)\right) - \lambda 2(t)\cos\left(\theta 3(t)\right)\right)$$

$$-LP\cos\left(\theta I(t)\right) + \cos\left(\theta 3(t)\right)anc - LI - s(t) - xI + x4$$

$$-LP\sin\left(\theta I(t)\right) + \sin\left(\theta 3(t)\right)anc - yI + y4$$

$$y_vars_Ia := \left[s(t), \theta I(t), \theta 3(t), \lambda I(t), \lambda 2(t)\right]$$

5 - DAE solution

It is shown the plot of s(t) obtained from three different analysis

39

5 - Dynamic Parameters Optimization

```
Dynamic optimization - NE
> dynam opt ne := proc(aaa,bbb,ccc.ddd.eee)
      local param, E,G,NE,NG,r_vars0,dof0,vel_dof0,qD0,vel_qD0,ics0,sol_act_dinam,dae_ics,dae_sys,sol_dae,cost_fun,i,k:
     param := [L1 = aaa,LP = bbb,anc = ccc,x1 = ddd,y1 = eee]:
     #Estimate the initial conditions
     dof0 := theta3(t) = flap_closed:
     vel_dof0 := diff(theta3(t),t) = 0:
qD0 := op(evalf(subs(dof0, data_dae,param, sol_kine))):
vel_qD0 := op(subs(vel_dof0, dof0, data_dae,param, [sol_vel])):
     ics0 := [dof0, vel_dof0, qD0, vel_qD0]:
     #Estimate the actuation force
     sol_act_dinam := subs(forcesub,gamma(t)=ql_profile_t,sol_kine,theta3(t)=ql_profile_t,data_dae,param,sol_act):
     #Estimate the reaction forces
     E, G := GenerateMatrix(subs(forcesub,gamma(t)=theta3(t),eqns), diff(q_vars,t,t) union r_vars):
     NE := evalf(subs(subs(forcesub,gamma(t)=theta3(t),sol_act), ics0, data_dae,param, E)):
NG := evalf(subs(subs(forcesub,gamma(t)=theta3(t),sol_act), ics0, data_dae,param, G)):
     LinearSolve(NE, NG):
     r_vars0 := [seq(r_vars[i] = %[-i],i=1..nops(r_vars))]:
     #Assembling the generic DAE
dae_ics := subs(t=0,data_dae,convert(convert(ics0,set) minus {diff(thetal(t),t)=0} ,D) union r_vars0 ):
     dae_sys := convert(subs(sol_act_dinam,forcesub,gamma(t)=ql_profile_t,data_dae, ne_eqns) union dae_ics,set):
sol_dae := dsolve(dae_sys,numeric,stiff=true,parameters = [L1,LP,anc,x1,y1]):
      sol_dae(parameters = subs(param,[L1,LP,anc,x1,y1])):
      cost_fun :=1/W*add(subs(data_dae,param,(delta__s[k]-rhs(sol_dae(k/np*actuation_time)[10]))^2),k=1..np);
  end proc:
```

5 - Pod Pull - inventor environment

41

6 - MapleSim analysis

6 - Flap subfile

7 - Maple Hydraulics analysis

$$\begin{split} D_eqns_I := \left[\begin{array}{c} \beta \left(\frac{\mathrm{d}}{\mathrm{d}t} \ V3(t) \right) + V3(t) \ To_{Bar} \left(\frac{\mathrm{d}}{\mathrm{d}t} \ p3(t) \right) - q_{12}(t) \ \beta \end{array} \right] \\ qI_{lex}(t) - To_{Bar} pI(t) \ C2 \\ q_{12}(t) - \sqrt{2} \sqrt{\frac{\left(To_{Bar} pI(t) - To_{Bar} p2(t) \right)^2 + \epsilon^2}{\rho}} \ \tanh \left(\frac{To_{Bar} pI(t) - To_{Bar} p2(t)}{\epsilon} \right) A(t) \ Cd \\ Q(t) - q_{12}(t) - qI_{lex}(t) \\ V3(t) - V30 - s(t) \ Ac \\ q_{23}(t) - q_{12}(t) \\ q_{12}(t) - \left(To_{Bar} p2(t) - To_{Bar} p3(t) \right) CI \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} \ s(t) \right) mp - Ac \ To_{Bar} p3(t) + act(t) \end{split}$$

49

7 - Maple Hydraulics analysis

7 - Maple Hydraulics analysis

https://www.f1technical.net/forum/viewtopic.php?t=28398

Operating Pressure - 207bar (3000psi)

Maximum RPM - 11,000

Displacement - 0 - 2.46cubic centimeters per Rev (0.15inch)

Max Flow Per Minute - 25.7L (6.8USG)

Dry Weight without customer specific mount flange - 1.18KG (2.6lbs)

Length without customer specific mount flange - 90mm - 57mmW - 80mmH

Materials - Customer specific mount flange - Titanium. Main gold body - 7 Series Aluminium. Swash plate piston control housing - Cast Aluminum. Rear Outlet cap - Cast Stainless. Internals - Steel/Forged steel.

7 - Maple Hydraulics analysis

Gear Pumps - AP05

54

7 - MapleSim Hydraulics analysis, Hydraulic Circuit

