

Programação Embarcada Yuri Alves Xavier - 2020003694

Projeto Final da Disciplina

Yuri Xavier

RELATÓRIO DO PROJETO FINAL

Implementação da plataforma PICGenius como um caixa eletrônico

Docente: Otavio de Souza Martins Gomes

Itajubá – 2021

Sumário

1	Res	sumo	3
2	2 Introdução		3
	B Desenvolvimento		
	3.1	Fluxograma das Teclas	4
		Funções	
		Imagens do funcionamento	
		nclusão	

1 Resumo

Neste Relatório consta a descrição dos passos e das técnicas implementadas para aplicação dos conceitos importantes da Programação Embarcada em uma plataforma denominada PICGenius, cujo microcontrolador é um PIC18F4520. Este projeto é fruto do trabalho desenvolvido nas disciplinas ECOP04 e ECOP14.

2 Introdução

O projeto visa, por meio das ferramentas presentes na plataforma, simular parte do funcionamento de um caixa eletrônico. Logo, além da interação do usuário com o sistema, também é essencial a comunicação do sistema com o mesmo, através de texto, luz e som.

Para cumprir os requisitos, foram selecionadas algumas ferramentas presentes na plataforma, como:

Teclado Matricial

Foram usadas 12 teclas do teclado Matricial, entre seleção, operadores e confirmação.

Figura 1- Teclado Matricial

Display LCD

O display de cristal líquido ao lado é o principal recurso desenvolvido, uma vez realiza a maior parte da comunicação com o usuário, através da escrita e de caracteres.

Figura 2- Display LCD

Cooler

O cooler é comumente usado para o resfriamento de um resistor da placa, contudo, o giro da ventoinha indica o funcionamento do dispositivo coletor de cédulas.

Buzzer

O buzzer é um dispositivo emissor de ondas sonoras, ele é controlável por modulação de largura de pulso (PWM). No projeto, é auxiliar na validação de um processo.

Barramento de Led's

O barramento de 8 Led's conectados ao PORTD do microcontrolador é a indicação visual de um processo específico em andamento, ligando-os de maneira sequencial.

3 Desenvolvimento

3.2 Funções

- unsigned int conta1(int opcao, unsigned int valor);
 Registros e operadores do saldo.
- void lcdPosition(unsigned char linha, unsigned char coluna);
 Posicionamento do cursor do LCD com uso da biblioteca "lcd".
 - lcdCommand(linha + coluna): através da atribuição adequada dos endereços de linha e coluna, posiciona o cursor.
- int optRead(void);

leitura das teclas lidas utilizando biblioteca "Keypad";

- void kplnit() : Inicialização da rotina e definição dos bits.
- void kpDebounce(): Realiza o Debounce das teclas lendo as rampas de descida e de subida do sinal.
- unsigned int kpRead(): Retorna o valor da tecla Pressionada.
- void itoa(unsigned int val, char* str);
 Criação de uma String através de um parâmetro Inteiro;
- void ledLoading(void);
 Ligação sequencial do PORTD diretamente em seu endereço.

3.3 Imagens do funcionamento

4 Conclusão

Apesar de diversas dificuldades ao decorrer do projeto, o objetivo final foi alcançado. A escolha de um caixa eletrônico resultou em um processo mais assimilativo, ou seja, relativamente distante de uma aplicação mais assertiva da plataforma.

Pessoalmente, considero que o projeto final das disciplinas representam na realidade, o inicio do estudo da programação embarcada. Cativando e proporcionando a visão do universo dos *Embedded Systems*.