EI5IS102 Traitement de l'Information

Introduction

Charles Brazier

Postdoctoral researcher Université de Bordeaux, CNRS, Bordeaux INP, LaBRI France

Who am I?

Education

- MSc in Acoustics, Signal Processing, and Computer Science Applied to Music (IRCAM, Paris)
- PhD in Machine Learning and Music (Johannes Kepler University, Linz, Austria)
- Postdoc in Speech Recognition (Université de Bordeaux/LaBRI)

Project at LaBRI

- FVLLMONTI Project: Speech Emotion Recognition, Machine Translation
- Autonom Health: Automatic Sleepiness Detection, Speech Biomarkers

Personal data

- Office: LaBRI Bureau 356
- E-mail: charles.brazier@u-bordeaux.fr

What is about: data

Data: a decision driver in almost every industry → How to best utilize data?

YOLOv10, 2024

Apple Music

What is about: Data Processing & Machine Learning

Data Processing

Automatic extraction of high level information from data (text/images/videos)

Introduction to Machine Learning

Learning from tons of (annotated) examples.

Motivation:

- Automatic data analysis: teaching a computer to listen, to see, to understand, etc.
- Expanding field: Natural Language Processing, Computer Vision, etc.
- Tons of applications: cultural, entertainment, environmental, fashion, medical, linguistic, robotic, sport, urbanism, etc.

Data selection: choose relevant data for the analysis.

Example: user listening history, clinical questionnaires, sport game statistics, etc.

Data preprocessing: clean and prepare the data for analysis

Example: handling missing data, standardizing formats, removing duplicate entries, etc.

Data transformation: Transform data into a suitable format for analysis

Example: Converting data tables into numerical values, normalizing, smoothing, etc.

Data mining: Apply mining techniques to uncover patterns and relationships in the data.

Example: Principal Component Analysis, Correspondence Analysis, Clustering, etc.

Interpretation & Evaluation: Evaluate the model and interpret the results

Example: Identify distinct musical taste segments or listening patterns to personalize reco.

Qualitative data: data describing categories

Nominal: categories with no specific order

- Ordinal: ordered categories

Quantitative data: data expressing quantities or numerical values

- **Interval:** numeric data with equal intervals (discrete or continuous)

Ratio: same with "true zero"
 Zero means the absence of the quantity

Multinomial data: data consisting of multiple categories with more than two possible values

Multidimensional data: data with multiple attributes, each represented as a dimension

Name	bitter	sweet	acid	salted	alcaline
St Yorre	3.4	3.1	2.9	6.4	4.8
Badoit	3.8	2.6	2.7	4.7	4.5
Vichy	2.9	2.9	2.1	6.0	5.0
Quézac	3.9	2.6	3.8	4.7	4.3

Game Name	Platform	Year	Genre
F-Zero	NES	1990	Racing
Final Fantasy	NES	1990	RPG
Mario Kart: Double Dash	Wii	2003	Racing
Wii Sports	Wii	2006	Sports
Xenoblade Chronicles	Wii	2010	RPG
Tetris	GB	1989	Puzzle
Pokémon Gold	GB	2000	RPG
Mario Kart DS	DS	2005	Racing
Professor Layton	DS	2007	Puzzle
FIFA 20	DS	2020	Sports

Multinomial data: data consisting of multiple categories with more than two possible values

Multidimensional data: data with multiple attributes, each represented as a dimension

Name	bitter	sweet	acid	salted	alcaline
St Yorre	3.4	3.1	2.9	6.4	4.8
Badoit	3.8	2.6	2.7	4.7	4.5
Vichy	2.9	2.9	2.1	6.0	5.0
Quézac	3.9	2.6	3.8	4.7	4.3

Game Name	Platform	Year	Genre
F-Zero	NES	1990	Racing
Final Fantasy	NES	1990	RPG
Mario Kart: Double Dash	Wii	2003	Racing
Wii Sports	Wii	2006	Sports
Xenoblade Chronicles	Wii	2010	RPG
Tetris	GB	1989	Puzzle
Pokémon Gold	GB	2000	RPG
Mario Kart DS	DS	2005	Racing
Professor Layton	DS	2007	Puzzle
FIFA 20	DS	2020	Sports

Multinomial data: data consisting of multiple categories with more than two possible values

Multidimensional data: data with multiple attributes, each represented as a dimension

Name	bitter	sweet	acid	salted	alcaline
St Yorre	3.4	3.1	2.9	6.4	4.8
Badoit	3.8	2.6	2.7	4.7	4.5
Vichy	2.9	2.9	2.1	6.0	5.0
Quézac	3.9	2.6	3.8	4.7	4.3

Game Name	Platform	Year	Genre
F-Zero	NES	1990	Racing
Final Fantasy	NES	1990	RPG
Mario Kart: Double Dash	Wii	2003	Racing
Wii Sports	Wii	2006	Sports
Xenoblade Chronicles	Wii	2010	RPG
Tetris	GB	1989	Puzzle
Pokémon Gold	GB	2000	RPG
Mario Kart DS	DS	2005	Racing
Professor Layton	DS	2007	Puzzle
FIFA 20	DS	2020	Sports

Multinomial data: data consisting of multiple categories with more than two possible values

Multidimensional data: data with multiple attributes, each represented as a dimension

Name	bitter	sweet	acid	salted	alcaline
St Yorre	3.4	3.1	2.9	6.4	4.8
Badoit	3.8	2.6	2.7	4.7	4.5
Vichy	2.9	2.9	2.1	6.0	5.0
Quézac	3.9	2.6	3.8	4.7	4.3

Ditter	Sweet	aciu	Saileu	aica
3.4	3.1	2.9	6.4	4.
3.8	2.6	2.7	4.7	4.
2.9	2.9	2.1	6.0	5
3.9	2.6	3.8	4.7	4.
3.9	2.6	3.8	4.7	
	3.8	3.4 3.1 3.8 2.6 2.9 2.9	3.4 3.1 2.9 3.8 2.6 2.7 2.9 2.9 2.1	3.4 3.1 2.9 6.4 3.8 2.6 2.7 4.7 2.9 2.9 2.1 6.0

Game Name	Platform	Year	Genre
F-Zero	NES	1990	Racing
Final Fantasy	NES	1990	RPG
Mario Kart: Double Dash	Wii	2003	Racing
Wii Sports	Wii	2006	Sports
Xenoblade Chronicles	Wii	2010	RPG
Tetris	GB	1989	Puzzle
Pokémon Gold	GB	2000	RPG
Mario Kart DS	DS	2005	Racing
Professor Layton	DS	2007	Puzzle
FIFA 20	DS	2020	Sports

Multinomial analysis:

Game Name	Platform	Year	Genre
F-Zero	NES	1990	Racing
Final Fantasy	NES	1990	RPG
Mario Kart: Double Dash	Wii	2003	Racing
Wii Sports	Wii	2006	Sports
Xenoblade Chronicles	Wii	2010	RPG
Tetris	GB	1989	Puzzle
Pokémon Gold	GB	2000	RPG
Mario Kart DS	DS	2005	Racing
Professor Layton	DS	2007	Puzzle
FIFA 20	DS	2020	Sports

Correspondence Analysis

	Racing	Sports	RPG	Puzzle	Total
NES	1	0	1	0	2
Wii	1	1	1	0	3
GB	0	0	1	1	2
DS	1	1	0	1	3
Total	3	2	3	2	10

Contingency table

Ordinal data: median, percentiles, etc.

Interval data: mean, std, etc.

Reduction dimension:
Principal Component
Analysis (PCA)

Example with music data

Supervised clustering: Support Vector Machine (SVM)

Unsupervised clustering: **K-means** with 2 classes

Finding the centroids of the classes

Prerequisites

Basics on:

- Linear algebra (matrix/vector multiplication)
- Statistics (median, mean, variance)
- Python programming

Syllabus - engineering skills acquired:

- **Axis 1** Fundamentals
 - Knowledge and understanding of data science analysis tools
- Axis 2 Tools
 - Capacity to choose and use adequate methods
- **Axis 5** Project management
 - Capacity of presenting efficiently solutions, summarizing results

Content

Introduction to data processing:

- Manipulation of data tables
- Extraction of information
- Dimension reduction

Data analysis methods:

- Quantitative data: PCA (Principal Component Analysis)
- Qualitative data: CA (Correspondence Analysis)

Basics on machine learning: Data clustering and classification

- Unsupervised learning: K-means
- Supervised learning: SVM (Support Vector Machine)

Assignment and project using Python (Numpy, scikit-learn)

How?

Schedule:

- **Lectures (1h20)** x3
- **Practice (2h40)** x3, 2 groups

Evaluation:

-	1 assignment in Python (individual or groups of 2)≈50%
	→ Manipulation of data and implementation of a simple data analysis method,
	notebook release
-	1 project (groups of 2 or 3) on the application to real data ≈20%
	→ Understanding of data analysis method, write a scientific report
-	1 final quiz (individual, ≈ 15 mins), no documents allowed ≈30%
	→ Check acquired notions

How?

Moodle

Jupyter notebook

What assignment?

Assignment: Implement the Principal Component Analysis (PCA) method

- Carbon footprint data

	Region	Terres cultivees	Paturages	Forets	Zones de peches	Terrains batis	Carbone	PIB/habitant (en millier de dollars)	Indice de developpement humain
Pays									
Afghanistan	Middle East/Central Asia	0.3	0.2	0.1	0.0	0.0	0.2	0.56	0.509
Albania	Other Europe	0.5	0.2	0.2	0.0	0.0	0.9	5.05	0.792
Algeria	Africa	0.6	0.2	0.2	0.0	0.0	1.3	4.76	0.746
Angola	Africa	0.3	0.1	0.1	0.1	0.0	0.2	3.23	0.582
Argentina	South America	0.9	0.7	0.3	0.1	0.1	1.2	10.08	0.842

- Find and visualize correlations between modalities
 - Matrix representation
 - Line/column similarities
 - Eigenvalue problem

What project?

Project: Analyze a dataset using Python Machine Learning libraries: dimension reduction, study source of variability, clustering, etc.

PCA

Dataset

Clustering

Assignment and Project Deadlines

Calendar:

1.	Lecture 1 – Principal Component Analysis	Nov. 6
2.	Practice 1 – Start assignment	Nov. 13
3.	Lecture 2 – Correspondence Analysis	Nov. 20
4.	Practice 2 – Finish assignment	Nov. 27
5.	Lecture 3 – Introduction to machine learning and project presentation	Dec. 4
6.	Practice 3 – Work on project	Dec. 11
Dea	adlines:	
1.	Assignment (commented notebook)	Nov. 27
2.	Online quiz	Dec. 11
3.	Project report (pdf)	Dec

Questions?

Sources, images courtesy and acknowledgment:

N. Papadakis

Charles Brazier charles.brazier@u-bordeaux.fr