Estudantes:

- Eduardo Eiji Goto
- Gustavo Hammerschmidt
- João Vitor Andrioli

TDE 01 - Simulação do Passeio Aleatório

1) Problema

Uma partícula se desloca passo a passo de modo aleatório em uma trajetória reta. A partícula pode realizar um deslocamento (um passo) de comprimento 1, para uma direção (direita ou esquerda) com igual probabilidade. A probabilidade de ela se deslocar para a esquerda é a mesma de ela se deslocar para direta, e igual a 0.5 (a partícula não pode permanecer parada de uma etapa para outra). A partícula inicia na origem (posição zero), e que um passo à direita é considerado um deslocamento positivo e um passo à esquerda é considerado um deslocamento negativo. Queremos encontrar é qual a probabilidade de que partícula esteja na posição k após n passos? ($n \ge 1$)

2) Solução teórica

Para se calcular a probabilidade que um passeio aleatório de n passos termine na posição k usamos a seguinte equação:

$$P[\{S(n) = k\}] = {n \choose (n+k)/2}/2^n = {n \choose (n+k)/2} \cdot 2^{-n}$$

Detalhes no Anexo 1.

3) Assistir o vídeo:

https://www.youtube.com/watch?v=vz1wWCFpzl0&feature=youtu.be&hd=1

4) Implementação da simulação vetorial

O arquivo "TDE01.ipynb" contém o código Python no Jupyter Notebook tem a implementação do cálculo teórico e da simulação interativa do passeio aleatório. Contém também as orientações para a implementação vetorial. Implementar a simulação vetorial e comparar os tempos de execução do algoritmo de simulação interativo e do algoritmo de simulação vetorial.

Copie o código da sua implementação aqui:

```
import numpy as np
from math import factorial

def combinacao(n, x):
    return factorial(n)/(factorial(x)*(factorial(n - x)))

def mesma_paridade(n, k):
    return (n % 2 == 0 and k % 2 == 0) or (n % 2 != 0 and k % 2 != 0)
```

```
def PasseioV(npassos, pos, nsim):
   matriz = np.array([ np.random.randint(0, 2, npassos) for                in range(nsim)]
    row_sum = [ s-(npassos-s) for s in [ sum(_) for _ in matriz] ]
    pSim = sum([1 for _ in row_sum if _==pos]) / nsim
    if mesma paridade(npassos, pos):
        pTeorica = combinacao(npassos, (npassos + pos) / 2) * (2 ** (-
npassos))
```

```
return pSim, pTeorica

passos = 100 #int(input("Defina o numero de passos: "))
pos = 2  #int(input("Defina a posicao final da trajetoria: "))
nsim = 1000 #int(input("Deflina o numero de simulacoes: "))

tstart = time.perf_counter()
pSim, pTeorica = PasseioV(passos, pos, nsim)
tend = time.perf_counter()

print('Probabilidade simulada: {:.4f}'.format(pSim))
print('Probabilidade teorica: {:.4f}'.format(pTeorica))
print("Tempo de execução: {:.4f}".format(tend-tstart))
```

Obs.: Desconsidere as quebras de linha, é a formatação do word.

5) Orientações

Trabalho em equipe (tamanho da equipe de 2 a 5 estudantes).

Copiar o código da sua solução no item 4.

Preencher as tabelas do item 6.

Enviar esse arquivo "TDE 01 Probabilidade do Passeio Aleatório.doc" como resposta.

Não enviar o arquivo "TDE01.ipynb".

6) Comparação de desempenho dos algoritmos Preencher as tabelas a seguir, para o passeio de 13 passos. Número de simulações = 100000 (cem mil). Registre o tempo de simulação em segundos.

Cálculo Teórico														
Posição	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Probabilidade	0.0000	0.2094	0.0000	0.1571	0.0000	0.0872	0.0000	0.0349	0.0000	0.0095	0.0000	0.0015	0.0000	0.0001

Simulação Interativa														
Posição	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Probabilidade	0.0000	0.2098	0.0000	0.1588	0.0000	0.0860	0.0000	0.0353	0.0000	0.0096	0.0000	0.0014	0.0000	0.0001
Tempo de	1.8048	1.8049	1.8161	1.8173	1.7968	1.7988	1.8011	1.8045	1.8180	1.8126	1.7917	1.8117	1.8329	1.8082
simulação														

Simulação Vetorial														
Posição	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Probabilidade	0.0000	0.2079	0.0000	0.1550	0.0000	0.0863	0.0000	0.0344	0.0000	0.0098	0.0000	0.0015	0.0000	0.0001
Tempo de	1.7089	1.8273	1.6243	1.8588	1.6934	1.6470	1.7301	1.6395	1.6444	1.6951	1.6568	1.7236	1.6710	1.6956
simulação														

Código para execução dos 13 passos e resultado:

```
passos = 13
 nsim = 100000
import time
probabilities, times, temp, prob = [], [], [0, 0], [0, 0, 0] # prob[pteorica, psim, psimVetorial]
for pos in range (passos+1):
   tstart = time.perf counter()
   pteorica, psim = Passeio( passos, pos, nsim)
   tend = time.perf counter()
   prob[0], prob[1], temp[0] = pteorica, psim, (tend - tstart)
    tstart = time.perf counter()
   psim, = PasseioV( passos, pos, nsim)
   tend = time.perf counter()
   prob[2], temp[1] = psim, (tend - tstart)
    times.append(temp)
   probabilities.append(prob)
```

```
print("-"*40,"\npos:",_pos)
print('-'*40)
print("P[teórica] = {:.5f}".format(prob[0]))
print("P[simulada] = {:.5f}".format(prob[1]))
print("P[simVetorial] = {:.5f}".format(prob[2]))

print('-'*40)
print("Tempo(PSimulada) = {:.5f}".format(temp[0]))
print("Tempo(PsimVetorial) = {:.5f}".format(temp[1]))
print('-'*40, '\n')
```

```
pos: 0

P[teórica] = 0.00000

P[simulada] = 0.00000

P[simVetorial] = 0.00000

Tempo(PSimulada) = 1.80488

Tempo(PsimVetorial) = 1.70892

pos: 1

P[teórica] = 0.20947

P[simulada] = 0.20987

P[simulada] = 0.20798

Tempo(PSimulada) = 1.80493

Tempo(PSimulada) = 1.82737

pos: 2
```

```
P[teórica] = 0.00000
P[simulada] = 0.00000
P[simVetorial] = 0.00000
Tempo(PSimulada) = 1.81616
Tempo(PsimVetorial) = 1.62430
pos: 3
P[teórica]
              = 0.15710
P[simulada] = 0.15880
P[simVetorial] = 0.15507
Tempo(PSimulada) = 1.81730
Tempo(PsimVetorial) = 1.85884
pos: 4
P[teórica]
             = 0.00000
P[simulada] = 0.00000
P[simVetorial] = 0.00000
Tempo(PSimulada) = 1.79681
Tempo(PsimVetorial) = 1.69347
P[teórica]
P[simulada] = 0.08604
P[simVetorial] = 0.08639
Tempo(PSimulada) = 1.79886
Tempo(PsimVetorial) = 1.64700
```

```
pos: 6
P[teórica]
P[simulada] = 0.00000
P[simVetorial] = 0.00000
Tempo(PSimulada) = 1.80118
Tempo(PsimVetorial) = 1.73015
pos: 7
P[teórica]
              = 0.03491
P[simulada] = 0.03533
P[simVetorial] = 0.03440
Tempo(PSimulada)
                 = 1.80459
Tempo(PsimVetorial) = 1.63955
pos: 8
P[teórica]
P[simulada] = 0.00000
P[simVetorial] = 0.00000
Tempo(PSimulada)
Tempo(PsimVetorial) = 1.64442
pos: 9
P[teórica]
P[simulada] = 0.00967
P[simVetorial] = 0.00986
Tempo(PSimulada) = 1.81269
```

```
Tempo(PsimVetorial) = 1.69512
pos: 10
              = 0.00000
P[teórica]
P[simulada] = 0.00000
P[simVetorial] = 0.00000
pos: 11
P[teórica]
P[simulada] = 0.00147
P[simVetorial] = 0.00153
Tempo(PSimulada) = 1.81172
Tempo(PsimVetorial) = 1.72367
pos: 12
              = 0.00000
P[teórica]
P[simulada] = 0.00000
P[simVetorial] = 0.00000
Tempo(PSimulada) = 1.83299
Tempo(PsimVetorial) = 1.67108
pos: 13
P[teórica]
              = 0.00012
P[simulada] = 0.00014
```

#