Revue de littérature

Thierry Bazier-Matte

6 avril 2017

1 Optimisation moderne de portefeuille

Dans ce document, nous allons tenter de classifier et de répertorier la plupart des méthodes ayant rapport, de près ou de loin, à l'intersection des méthodes statistiques avancées et de l'apprentissage machine avec la théorie du portefeuille, en présentant pour chacune d'elle leurs avantages et leurs inconvénients.

1.1 Théorie classique du portefeuille

Une revue de littérature sur la théorie du portefeuille serait fondamentalement incomplète sans l'article fondateur de Markowitz, publié en 1952 [Mar52].

Nous allons montrer que le cadre théorique développé par Markowitz peut être considéré comme un cas particulier de notre algorithme, pour autant que l'on considère un portefeuille à un seul actif.

Soit $w \in \mathcal{R}^k$ le vecteur représentant la répartition du portefeuille de Markowitz à k actifs à optimiser. Alors un investisseur markowitzien souhaite résoudre le problème suivant :

minimiser
$$w^T \Sigma w$$
 tel que $\mu^T w = \mu_0$, (1)

où $\Sigma \in \mathscr{R}^{k \times k}$ est la covariance du rendement des actifs et $\mu \in \mathscr{R}^k$ le vecteur d'espérance. [**Todo:** Montrer formellement.] Par la théorie de l'optimisation convexe, il existe une constante $\gamma \in \mathscr{R}$ telle que le problème énoncé est équivalent à

maximiser
$$\mu^T w + \gamma w^T \Sigma w$$
. (2)

Dans le cas où on considère un portefeuille à un seul actif, alors ce problème se réduit alors à

maximiser
$$\mu q - \gamma \sigma^2 q^2$$
, (3)

où on a posé $\mu := \mathbf{E} R$ et $\sigma^2 := \mathbf{Var} R$.

Supposons qu'un investisseur soit doté d'une utilité quadratique paramétrée par

$$u(r) = r - \frac{\gamma}{\sigma^2 + \mu^2} \sigma^2 r^2,\tag{4}$$

et que l'information factorielle intégrée à l'algorithme ne consiste uniquement qu'en les rendements eux mêmes; autrement dit, le vecteur d'information X se réduirait tout simplement à un terme constant fixé à 1, *i.e.*, $X \sim 1$. [**Todo:** expliquer].

Avec une utilité (4) et l'absence d'information supplémentaire, l'objectif de ^[Citation needed] devient aussitôt

$$EU(qR) = qER - \frac{\gamma}{\sigma^2 + \mu^2} \sigma^2 q^2 E R^2.$$
 (5)

Mais puisque ${\it Var}\,R={\it E}\,R^2-({\it E}\,R)^2$, on déduit ${\it E}\,R^2=\sigma^2+\mu^2$, ce qui entraı̂ne alors que (4) s'exprime par

maximiser
$$EU(qR) = \mu q - \gamma \sigma^2 q^2$$
, (6)

ce qui est tout à fait identique à (3).

Nous suggérons au lecteur intéressé par l'équivalence des diverses formulations d'optimisation de portefeuille dans un univers de Markowitz [BPS13] et [Mar14], tous deux publiés à l'occasion du soixantième anniversaire de [Mar52].

1.2 Portefeuille universel / Papiers d'Elad Hazan

Ce mémoire sera également consacré aux garanties statistiques de performance des estimateurs q^* .

Bien que le modèle soit différent et de nature itérative, le *portefeuille universel* de [Cov91] est à notre connaissance un des premiers modèles de gestion de portefeuille à exploiter une distribution arbitraire tout en proposant des garanties statistiques de convergence.

Voir [Cov91, Haz15].

1.3 Théorie de portefeuille régularisé

[BEKL16]

1.4 Fama and French et suivants?

[FF93]

1.5 Articles du NIPS

1.6 Papiers de Ben Van Roy

1.7 Conclusions : Notre problème par rapport à ces deux disciplines

Références

- [BEKL16] Gah-Yi Ban, Noureddine El Karoui, and Andrew EB Lim. Machine learning and portfolio optimization. *Management Science*, 2016.
- [BPS13] Taras Bodnar, Nestor Parolya, and Wolfgang Schmid. On the equivalence of quadratic optimization problems commonly used in portfolio theory. *European Journal of Operational Research*, 229(3):637–644, 2013.
- [Cov91] Thomas M Cover. Universal portfolios. *Mathematical finance*, 1(1):1–29, 1991.
- [FF93] Eugene F Fama and Kenneth R French. Common risk factors in the returns on stocks and bonds. *Journal of financial economics*, 33(1):3–56, 1993.
- [Haz15] Elad Hazan. Introduction to online convex optimization. *Foundations and trends in optimization*, 2(3-4):157–325, 2015.
- [Mar52] Harry Markowitz. Portfolio selection. *The journal of finance*, 7(1):77–91, 1952.
- [Mar14] Harry Markowitz. Mean–variance approximations to expected utility. *European Journal of Operational Research*, 234(2):346–355, 2014.