Tarea 2

Algunas tareas son del Dr. Zeferino Parada.

Aviso: Las ayudas no aparecen en un parcial.

Ejercicio 4. es otro para entender porque la dirección de Newton es buena (localmente).

1. Sean $A \in \mathbb{R}^{n \times n}$ simétrica y $\boldsymbol{b} \in \mathbb{R}^n$. Demuestre que la función

$$f(\boldsymbol{x}) \stackrel{\text{def}}{=\!\!\!=} \frac{1}{2} \boldsymbol{x}^T A \boldsymbol{x} + \boldsymbol{b}^T \boldsymbol{x} + 1$$

tiene un único mínimo local si y solo si A es positiva definida.

2. Sea $x \in \mathbb{R}^n$ fijo tal que $\nabla f(x) \neq 0$.

Además, sea \mathcal{D} el conjunto de direcciones de descenso asociado, i.e.,

$$\mathcal{D} \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \left\{ \boldsymbol{d} \in \mathbb{R}^n \colon \nabla f(\boldsymbol{x})^T \boldsymbol{d} < 0 \right\} \,.$$

- a) Demuestre que \mathcal{D} es no vació, convexo, abierto y que cualquier combinación lineal finita de vectores en \mathcal{D} con coeficientes no negativos pertenece a \mathcal{D} .
- b) Supón que n=2 y que $\theta\in(0,\pi/2)$ es un ángulo fijo. Construya un vector $\boldsymbol{d}\in\mathcal{D}$ tal que el ángulo entre \boldsymbol{d} y $-\nabla f(\boldsymbol{x})$ es θ .
- c) Para n general, construye una sucesión de vectores $\left\{ \boldsymbol{d}^{k} \right\} \subset \mathcal{D}$ con elementos de longitud constante que converge a \boldsymbol{d}^{\star} con $\nabla f(\boldsymbol{x})^{T}\boldsymbol{d}^{\star} = 0$.
- 3. Sean x, $\nabla f(x) \in \mathbb{R}^n$ fijos. Hemos visto varías direcciones de descenso d. Con el fin de asegurar un descenso, queremos que el ángulo θ entre d y $-\nabla f(x)$ es menor o igual a una constante $C < \pi/2$. Contestamos la siguiente pregunta: ¿De qué depende esa constante C?
 - a) Sea $\mathbf{d} \in \mathbb{R}^n$ un vector canónico (de longitud 1) con signo tal que $\nabla f(\mathbf{x})^T \mathbf{d} = -\|\nabla f(\mathbf{x})\|_{\infty}$. Demuestre que

$$\cos(\theta) \ge \frac{1}{\sqrt{n}} \,.$$

b) Sea $d \in \mathbb{R}^n$ un vector con $||d||_{\infty} = 1$ tal que $\nabla f(x)^T d = -||\nabla f(x)||_1$. Demuestre que

$$\cos(\theta) \ge \frac{1}{\sqrt{n}} \,.$$

c) Sean $\nabla f(\boldsymbol{x}) \neq \boldsymbol{0}$, $\nabla^2 f(\boldsymbol{x})$ simétrica positiva definida con eigenvalores $\lambda_1 \leq \ldots \leq \lambda_n$ y \boldsymbol{d}^N la dirección de Newton $\boldsymbol{d}^N \stackrel{\text{def}}{=} -(\nabla^2 f(\boldsymbol{x}))^{-1} \nabla f(\boldsymbol{x})$. Demuestre que

$$\cos(\theta) \ge \frac{\lambda_1}{\lambda_n} \, .$$

d) Interpretar los resultados.

4. Sea \boldsymbol{x} (fijo) tal que $\nabla f(\boldsymbol{x}) \neq \boldsymbol{0}$ y $\nabla^2 f(\boldsymbol{x})$ es definida positiva. Demuestre que la dirección de Newton $\boldsymbol{d}^N \stackrel{\text{def}}{=} -(\nabla^2 f(\boldsymbol{x}))^{-1} \nabla f(\boldsymbol{x})$ es el único mínimo del modelo cuadrático de f en \boldsymbol{x} definido por

$$m_c(\boldsymbol{d}) \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \frac{1}{2} \boldsymbol{d}^T
abla^2 f(\boldsymbol{x}) \boldsymbol{d} +
abla f(\boldsymbol{x})^T \boldsymbol{d} + f(\boldsymbol{x}).$$

- 5. Sea $A \in \mathbb{R}^{n \times n}$ simétrica positiva definida, \boldsymbol{x} (fijo) tal que $\nabla f(\boldsymbol{x}) \neq \boldsymbol{0}$. Demuestre que el ángulo θ entre los vectores $-\nabla f(\boldsymbol{x})$ y $-A\nabla f(\boldsymbol{x})$ es tal que $|\theta| < \pi/2$.

 Ayuda: Considerar la factorización en eigenvalores y-vectores.
- 6. Sean $\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{s} \in \mathbb{R}^n$ (fijos) tales que $\nabla f(\boldsymbol{x})^T \boldsymbol{p} = a < b = \nabla f(\boldsymbol{x})^T \boldsymbol{s} < 0$ y $\|\boldsymbol{p}\|_2 = \|\boldsymbol{s}\|_2 = 1$. Para $c \in (a,b)$ construya un vector \boldsymbol{d} tal que $\|\boldsymbol{d}\|_2 = 1$ y $\nabla f(\boldsymbol{x})^T \boldsymbol{d} = c$.