Modeling First-Mile Ride-Hailing Needs and Carpool Likelihood in Chicago, IL

CPLN 505 Final Project Ruqi Chen, Qi Si, Jiamin Tan 4/25/2021

Ride-Hailing and First/Last-Mile Problems

- In Philadelphia, 2016
 - SEPTA partnered with Uber
 - "...Uber rides will be discounted by 40 percent to-and-from 11 suburban Regional Rail stations ...with a maximum discount of \$10 per ride" (SEPTA website 2016).

UBER

SEPTA is now connecting to Uber

40% off your Uber ride to and from this station all summer long'

Source: iseptaphilly.com

Ride-Hailing and First/Last-Mile Problems

- In Seattle, 2019
 - King County Metro and Via to Transit
 - "Via to Transit is a pilot, *on-demand service*... connects riders to and from three transit hubs in southeast Seattle and Tukwila".
 - "Rides will be shared with other Metro customers, while assuring you get to your destination promptly" (King County website).

Source: kingcounty.gov

Source: kingcounty.gov

Research Questions

Research Question 1

What socioeconomic factors influence the number of first-mile ridehailing trips originated at places near major transit stations?

Research Question 2

What socioeconomic factors influence people's willingness to carpool in first-mile ride-hailing trips?

Ride-Hailing Service Data: Transportation Network Providers — Trips, Chicago Data Portal.

- Original Dataset
 - Nov 1, 2018 April 2, 2021 (last updated)
 - 186 million rows with 21 variables; each row is a trip
 - Spatial resolution: census tract
 - Temporal resolution: rounded to every 15 minutes

Data Used in Our Study

- Monday, Dec 3, 2018. from 6 am to 9 am.
- 29359 rows without NAs.

Ride-Hailing Service Data: Transportation Network Providers — Trips, Chicago Data Portal.

A glance of the data

trip_start_timestamp	trip_end_timestamp	trip_seconds	trip_miles	pickup_census_tract
2018-12-03 07:45:00	2018-12-03 08:00:00	597	1.4106094	17031081403
2018-12-03 06:45:00	2018-12-03 07:00:00	1089	5.3045963	17031062400
2018-12-03 08:45:00	2018-12-03 09:00:00	776	1.5944449	17031320100
2018-12-03 08:00:00	2018-12-03 08:15:00	989	1.9820785	17031281900
2018-12-03 08:00:00	2018-12-03 08:45:00	2439	6.0767964	17031060200
2018-12-03 06:00:00	2018-12-03 07:00:00	3290	15.9732930	17031241500
2018-12-03 08:45:00	2018-12-03 09:00:00	1310	5.2808794	17031242500

• • •

•

• It does NOT contain any socioeconomic information of each rider

Ride-Hailing Service Data: Transportation Network Providers — Trips, Chicago Data Portal.

- Why Monday, Dec 3, 2018. from 6 am to 9 am?
 - The date (Dec 3, 2018) was arbitrarily selected...
 - However, ...
 - Most riders should depart from **home** between 6am and 9 am on a Monday.
 - Therefore, Socioeconomic characteristics of these riders can then be described by *census data* of their origin census tracts (home).

Socioeconomics Data: 2018 American Community Survey (ACS) 5-Year Estimate

- Spatial Resolution
 - Census Tract
- Factors/Variables Considered

Demographics	Housing	Commuting	Other
Age	Rent	Commuting Time	Educational Attainment
Race	Ownership	Carpooled Amount	Household Vehicle Availability
Gender	Mortgage		Marital Status
Income			
Population Density			

Some Literature Reviewed

- Market research: who are the customers of ride-hailing applications? By Pew Research Center, 2018
- Factors Influencing Willingness to Pool in Ride-Hailing Trips By Hou Yi, et al, 2020

Some Researches on Users of Ride-Hailing Services

Other Relevant Data:

- Administrative Boundary of the City of Chicago
 - 1 Polygon
- Chicago Transit Authority (CTA) Train Stations
 - 144 Points
- CTA Bus Stops
 - 10847 Points

CTA Train Stations and Chicago Census Tracts

Find Potential First Mile Trips:

- The ride-hailing service dataset does NOT indicate which trips are first mile trips
- We made the following assumptions:
 - A trip will be identified as a first mile trip
 - If its destination is in a census tract accessible to at least one CTA train station

AND

• If the trip is shorter than 1.5 miles

Step 1:

Find census tracts accessible to CTA trains stations

Method:

Select any census tracts
touched by a 100-meter buffer
from each station

Census Tracts with Train Access

Step 2:

Find the origin census tracts of first-mile trips

Method:

- 1) Select trips shorter than 1.5 miles (network distance) and dropped off at station tracts
 - 2) Retrieve their origin census tracts

Origin Census Tracts of First Mile Trips

Step 3:

Find the census tracts which are close to train stations but never generated any first-mile trip using ride-hail services

Method:

Select all census tracts whose centroids locates within 1-mile buffers from stations

Census Tracts near Train Stations with Zero Ride-Hail First Mile Trip

The data has census variables...

-	GEOID =	TotalPop	MedRent [‡]	MedIncome
1	17031010100	4522	874	62177
2	17031010201	7039	1023	47411
:	17031010202	2852	973	51719
4	17031010300	6650	976	66875
	17031010400	5153	1010	59861

Step 4:

Generate data to be used in regressions

Method:

- 1) Merge first-mile trip data and census data based on census tracts' IDs;
- 2) Combine census tracts had ride-hail trips and census tracts had no ride-hail trip.

... and ride-hail service variables

	_			
	carpool	totalcost [‡]	pickup_num [‡]	carpool_ratio 🗦
	0	24.50	3	0.00000000
1	2	56.67	8	0.25000000
	0	12.50	2	0.00000000
	1	5.00	1	1.00000000
	0	0.00	0	0.00000000

The total number of first-mile ride-hail trips

The ratio of carpooled first-mile ride-hail trips

The final dataset for regression has 528 observations (census tracts)

Each row is a

census tract

Research Question 1

What socioeconomic factors influence the number of first-mile ridehailing trips originated at places near major transit stations?

To Answer Research Question 1: Multivariate Linear Regression?

- Intuition: It will be simple...
- However, ...
 - The dependent variable is extremely right-skewed
 - NOT normally distributed even after a log transformation
 - The number of trips is count data
 - a census tract cannot have 3.5 ride-hail trips

Distribution of number of trips

Distribution of log number of trips

To Answer Research Question 1: Negative Binomial Regression

- Model 1: full model
 - Use all relevant census variables
- Model 2: trimmed model
 - Only use significant variables from the full model
- A likelihood ratio test showed...
 - NO significant difference between the two models

	Dependent variable:		
	pickup_num		
	(1)	(2)	
MedRent	0.001***	0.001***	
	(0.0003)	(0.0002)	
MedIncome	-0.00000		
	(0.00000)		
MedAge	-0.011		
	(0.020)		
CollegeRate	3.962***	4.749***	
	(1.236)	(0.721)	
white_percent	-0.793		
	(0.669)		
AfricanAmerican_percent	-0.866		
	(0.578)		
as.factor(maleTofemale)1	-0.015		
	(0.127)		
Commute0_29mins_percent		6.089***	
	(0.567)	(0.506)	
carpooled	0.002***	0.002***	
	(0.001)	(0.001)	
HH_ownership_rate	-2.086*		
	(1.136)	***	
NoVehicle_rate	2.204***	2.432***	
	(0.809)	(0.480)	
busstop_den	2,167.453		
	(5,846.572)		
Pop_Den	-9.199		
_	(9.969)		
divorce_rate	3.750		
	(2.412)		
single_Rate	-0.149		
	(1.110)		
child_rate	-0.457		
	(0.452)		
mortgage_Rate	2.536*		
_	(1.509)		
Constant	-3.488**	-4.844***	
	(1.408)	(0.324)	
Observations	528	528	
Log Likelihood	-1,022.867	-1,028.995	
theta	0.833*** (0.085)		
Akaike Inf. Crit.	2,081.734	2,069.990	
Note:	p<0.1;	<i>p<0.05;</i> p<0.01	

To Answer Research Question 1: Negative Binomial Regression

- Rootograms of the two models
 - Very similar results
- Picked Model 2 (trimmed model) since it used fewer variables

Rootogram of the full model

Rootogram of the trimmed model

To Answer Research Question 1: Negative Binomial Regression

- Interpretation Example (MedRent)
 - For a one-unit increase in a census tract's median rent, the expected log count of first-mile ride-hailing trips in this census tract will increase by 0.001, holding other conditions constant.
- Variables worth considering for ride-hailing demand:
 - Median rent,
 - % of people have bachelor's degrees,
 - % of commuters whose commuting time is less than 30 minutes,
 - number of people carpooled to work,
 - % of households do not own a car

	Dependent variable:	
	pickup_num	
MedRent	0.001***	
	(0.0002)	
CollegeRate	4.749***	
	(0.721)	
Commute0_29mins_percent	6.089***	
	(0.506)	
carpooled	0.002***	
	(0.001)	
NoVehicle_rate	2.432***	
	(0.480)	
Constant	-4.844***	
	(0.324)	
Observations	528	
Log Likelihood	-1,028.995	
theta	0.795*** (0.080)	
Akaike Inf. Crit.	2,069.990	
Note:	p<0.1; p<0.05; p<0.01	

Research Question 2

What socioeconomic factors influence people's willingness to carpool in first-mile ride-hailing trips?

- The ride-hailing trips data documented whether a trip was authorized to be shared.
- Carpooled ride-hailing ratio in each census tract
 - number of authorized shared trips/number of total trips

- Step 1: Create a binary variable indicate carpool ratio (carpool ratio < 0.2 -> 0, >0.2 -> 1)
- Step 2: Create training and testing samples. (75% training sample & 25% testing sample)
- Step 3: Identify meaningful variables.
- Step 4: Regression on all the possible variables.
- Step 5: Regression on independent variables selected by stepwise function.
- Step 6: Run ROC(C-statistics) to test the fitness of the model.

	Dependent variable:	
	carpool_Binary	
	(1)	(2)
TotalPop	0.00004	
	(0.0001)	
CollegeRate	2.483	4.120***
	(2.156)	(1.594)
Commute0_29mins_percent	3.616***	3.574***
	(1.073)	(0.990)
HH_ownership_rate	-1.395	
	(2.123)	
NoVehicle_rate	-0.843	
	(1.595)	
busstop_den	-9,020.633	
	(11,539.110)
MedRent	-0.0003	
	(0.001)	
MedAge	-0.011	
	(0.038)	
MedIncome	-0.00001	-0.00001**
	(0.00001)	(0.00000)
carpooled	0.002	0.003**
	(0.002)	(0.001)
child_rate	-1.175	
	(0.901)	
single_Rate	1.628	2.079*
	(1.986)	(1.146)
mortgage_Rate	1.195	
	(2.775)	***
Constant	-1.672	-3.952***
	(2.725)	(0.800)
Observations	369	369
Log Likelihood	-203.232	-205.022
Akaike Inf. Crit.	434.465	422.043
Note:	<i>p</i> <0.1; p<0 .	05; p<0.01

- Findings/Interpretations
- Variables lead to increase in probability:
 - Commute0_29mins_percent
 - College Rate
 - Carpooled (private vehicle)
 - Single Rate (unmarried/total population)
- Variables lead to decrease in probability :
 - Median Income

	Danandar	at wariahlar	
_	Dependent variable:		
		_Binary	
	(1)	(2)	
TotalPop	0.00004		
	(0.0001)		
CollegeRate	2.483	4.120***	
	(2.156)		
Commute0_29mins_percent	3.616***	3.574***	
	(1.073)	(0.990)	
HH_ownership_rate	-1.395		
	(2.123)		
NoVehicle_rate	-0.843		
	(1.595)		
busstop_den	-9,020.633	3	
(11,539.110	0)	
MedRent	-0.0003		
	(0.001)		
MedAge	-0.011		
	(0.038)		
MedIncome	-0.00001	-0.00001**	
	(0.00001)	(0.00000)	
carpooled	0.002	0.003**	
	(0.002)	(0.001)	
child_rate	-1.175		
	(0.901)		
single_Rate	1.628	2.079 [*]	
	(1.986)	(1.146)	
mortgage_Rate	1.195		
	(2.775)		
Constant	-1.672	-3.952***	
	(2.725)	(0.800)	
Observations	369	369	
Log Likelihood	-203.232	-205.022	
Akaike Inf. Crit.	434.465	422.043	
Note:	o<0.1; p<0	.05; p<0.01	

Confusion Matrix

		Actual Outcome	
		0	1
Predicted	0	114	0
Outcome	1	4	1

Accuracy Rate = 0.73

Suggestions for Future Researches

- Find better ways to identify first-mile ride-hail trips
- Survey riders' socioeconomic characteristics rather than relying on census tracts
- Use larger sample size from multiple days
- Consider other factors such as distances and existing bus routes