		111001 0452	Test		A Alle	HUI DV
	1)	The number of 1	Possibility to consider t	5 (3+3)=(3)=	- 20
		possibility, 6	W) ())	1888
	1	XXXYYY	445+6=15			
	2	XXXXXY.	3+5+6=14		W	null probability
	3	XXYYXY	3+4+6=13	5	6	1/20
	4	XXYYYX	3+4+5=12	0.1	7	1/20
	5	XYXXYY	2+5+6=13		8	2/20
	Ь	YXYXY	2+4+6=12		g	3/20
	7	XYXYYX	2+4+5=11		10	3/20
	7	XYYXXY	2+3+6=11		114	3/20
	9	XYXYX	2+3+5=10		12	3/22
	10	XYYYXX	2+3+4=9		13	2/20
		XXXXXX		2.15	14	1/20
	11	YYYYXX	1-12-13 = 6	0.15	15	1/20
	12	YYXYXX	1+2+4=7			43/1/
	13	YYXXYX	1+2+5=8	Sin	e it is	two tail test
	14	YXXXY	1+2+6=9	0	20 and	2=0.2
	15	YXXXYY	1+5+6=12	ti	hen	/,
	16	YXXXXY	1+4+6=11	P	(W=6+7-	+14+15) = zo = 0.
	17	YXXYYX	1+4+5=10	U	ve would	reject to who
	18	XXXXXX	1+3+5=9		WZ7	or W7-14
)	19	YXXXXX	1+3+6=10			
	20	YXYYXX	1+3+4=8			
•	9					
•						
>						
7 7 7 7						

2)	$\binom{3+2}{3} = \binom{5}{5}$	3)=10	Possisi vues
		To A	

Possib, Vity	#	of Valu	e from first sample > seland sample
XXXYY		0	
XXXXX	7	2	4:13 4
XXXXX		2	y 135
XYYXX		2	× 1, 4 5
YXTXX		1	124
XXYYY			125 73 4
YYXXX		3	3 4 5
YXXYX		3	235
YXXXY		3	2134
XXXXX		3	2 4 5

Prob
1/0
3/10
3/10
4/10

Ho: Vistering to stastisting talks has no effect on milk yield Ha: Listening to Stasustus tacks has effect on mick vield COW (Yield before Yield after Ri Piz Riffz diff 10 12 2 2 15 Ranki Rankz Rank 3 T+ Prub 1/8 1/2 1/3 : ZP(T+7,6/H.)= 1/8 = 0.25. We use signed Rank test to obtain T+= 6 with P dame 0.25, 7/5ince P value 0.25 < 2 = 0.25 We reject to and conclud Ha, that is, we have enough evidence at 0.25 level to conduit that Vistering to Stastisus talks has effect on mick yield

36)	Ho: No different in median of milk yield								
20)	Ha: True median difference of mild yield is not equal to 0								
CON	Yield befor Tield after after-befor Sign								
1	10 12 2 +								
2	15 19 4 +								
3	12 15 3 +								
C	0 / 2 3								
P(c)	0125 0375 0125								
	C ~ Bin (3,015)								
	upper tail p value: p(C7,3)=0.125								
	two taild p Value: 2 (0.125) = 0.25								
	A Similar Conclusion can be drawn from part (3a)								
4)									
	Y -1 -2 -3 -4 -50								
7 2 80	V = - A 711.7								
	Y = -0.743 7 -1								
	rs = -								
	The proof of Constant is the part of the contract of the contr								
	The pearson's correlation r'is not at all robust to outlier The Spearman's rank correlation defined the amelation								
	between the ranks of the X Value and ranks of Y Varne is								
	rought to the outlier, we have outlier -50 in								
	the data set. Thus is tend to have stronger association between two which lex and i								

# XL X; Xo B=6=# Values above 0.5 1 0.98 0.45 P balue = P(B76 B nBin (8.2)) 2 0.381 -0.119 = P(6)+P(1)+P(3) 3 0.892 0.342 = 0.11+0.021+0.004 4 0.045 -0.455 = 0.145 5 0.505 0.005 Since 0.145 > 0.05 we retain H. 6 0.691 0.191 We don't have enough evidence 7 0.773 0.273 to conclude at level 0.05 that 8 0.1529 0.029 the population median exceeds 0.15 b) 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(A) Ho: $0_{0.5} = 0.5$ Vs H_a : $0_{0.5} \neq 0.5$ # Xx X; \times 0 $B = 6 = \#$ Value S above 0.5 1 0.98 0.45 P Halue S P Halue S Above S P Halue S P Halue S Above S P Halue S P Halue S Above S P Halue S		
# Xz X; Xo B=6=# Value Sabove 0:5 1 0.98 0:45 p talue = P(Bz6 BMBin (8.½)) 2 0:381 -0:119 = P(6)+P(1)+P(3) 3 0.892 0:342 = 0:11+0:031+0:004 4 0:045 -0:455 = 0:145 5 0:505 0:005 Since 0:145 > 0:05, we retain H. 6 0:697 0:197 we don't have enough evidence 7 0:773 0:273 to conclude at level 0:05 that 8 0:529 0:029 the population median exceeds 0:5 b) 2 9 1 1 9 197 Xuy Xzy Xzy The interval (Xuy Xzy) = (0.970, 0:529) has exact coverage 7 = 7:3% > 75% Thus, we use this interval as an 75% prediction interval for the next Value	(A) Ho: $0_{0.5} = 0.5$ Vs H_a : $0_{0.5} \neq 0.5$ # Xx X; \times 0 $B = 6 = \#$ Value S above 0.5 1 0.98 0.45 P Halue S P Halue S Above S P Halue S P Halue S Above S P Halue S P Halue S Above S P Halue S		
(A) Ho: Oois = 0'5 VS Ha: Oois 7 0'5 # Xx X; Xo B=6=# Values above 0'5 1 0.98 0:45 p talue = p(B76 B nBin (8.½)) 2 0:381 -0:119 = p(6)+p(7)+p(3) 3 0:892 0:342 = 0:11+0:031+0:00:49 4 0:045 -0:455 = 0:145 > 0:05, we retain H. 6 0:697 0:197 we don't have enough evidence 7 0:713 0:213 to conclude at level 0:05 that 8 0:529 0:029 the population median excrede 0:5 b) The interval (Xin Xin) = (0.980, 0:529) has exact coverage = 7 = 775% > 75% Thus, we use this interval as an 75% prediction interval for the next Value	(A) Ho: $0_{0.5} = 0.5$ Vs H_a : $0_{0.5} \neq 0.5$ # Xx X; \times 0 $B = 6 = \#$ Value S above 0.5 1 0.98 0.45 P Halue S P Halue S Above S P Halue S P Halue S Above S P Halue S P Halue S Above S P Halue S	7)	
# X_{2} X_{3} X_{0} X_{1} X_{2} X_{3} X_{4} X_{5} $X_$	# X_1 X_2 X_3 X_4 X_5 X_6 X_5 X_6 X_5 X_6 $X_$		W H-20 - OUT W H 2015
1 0.98 0.45 p talue = $P(B > 6 \mid B \times B)$ (8.2)) 2 0.381 -0.119 = $P(b) + P(1) + P(3)$ 3 0.892 0.342 = 0.11 + 0.031 + 0.100 4 4 0.045 -0.1455 = 0.145 5 0.505 0.005 Since 0.145 > 0.05, we retain the 6 0.691 0.191 We don't have enough evidence 7 0.173 0.213 to conclude at level 0.05 that 8 0.1529 0.029 the population median exceeds 0.15 b) $\frac{1}{2}$ $\frac{1}{2$	1 0.98 0:45 p balue = $p(B \ge 6 \mid B \times B)$ in $(8. \frac{1}{2})$ 2 0:381 -0.119 = $p(6) + p(1) + p(3)$ 3 0.842 0.342 = 0.11 + 0.031 + 0.004 4 0.045 -0.1455 = 0.145 6 0.505 0.005 Since 0.145 0.05, we retain 4 . 6 0.697 0.197 we don't have enough evidence 6 0.013 0.213 to conclude at level 0.05 that 6 0.1529 0.029 the population median excrede 0.15 6 0.1529 0.029 the population median excrede 0.15 6 0.1529		10005-03
1 0.98 0.45 p talue = $P(B > 6 \mid B \times B)$ (8.2)) 2 0.381 -0.119 = $P(b) + P(1) + P(3)$ 3 0.892 0.342 = 0.11 + 0.031 + 0.100 4 4 0.045 -0.1455 = 0.145 5 0.505 0.005 Since 0.145 > 0.05, we retain the 6 0.691 0.191 We don't have enough evidence 7 0.173 0.213 to conclude at level 0.05 that 8 0.1529 0.029 the population median exceeds 0.15 b) $\frac{1}{2}$ $\frac{1}{2$	1 0.98 0:45 p balue = $p(B \ge 6 \mid B \times B)$ in $(8. \frac{1}{2})$ 2 0:381 -0.119 = $p(6) + p(1) + p(3)$ 3 0.842 0.342 = 0.11 + 0.031 + 0.004 4 0.045 -0.1455 = 0.145 6 0.505 0.005 Since 0.145 0.05, we retain 4 . 6 0.697 0.197 we don't have enough evidence 6 0.013 0.213 to conclude at level 0.05 that 6 0.1529 0.029 the population median excrede 0.15 6 0.1529 0.029 the population median excrede 0.15 6 0.1529		# Xi Xi Xo B=6=# Values above 0:5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 0:381 -0.119 = $P(b) + P(1) + P(3)$ 3 0.842 0342 = $0.111 + 0.021 + 0.1004$ 4 0:045 -0.1455 = 0.145 5 0:505 0.005 Since 0:145 > 0.05, we retain H. 6 0:697 0:197 We don't have enough evidence 7 0:773 0:273 to conclude at level 0.05 that 8 0:529 0:029 the population median excreds 0:15 b) $\frac{1}{2}$ \frac		
3 0.842 0.342 = 0.11 + 0.03/ + 0.004 4 0.045 - 0.455 = 0.145 5 0.505 0.005 Since 0.145 > 0.05, we retain H. 6 0.697 0.197 we don't have enough evidence 7 0.773 0.273 to conclude at level 0.05 that 8 0.1529 0.029 the population median exceeds 0.15 b)	3 0.842 0.342 = 0.11 + 0.00 if 4 0.045 -0.1455 = 0.145 5 0.505 0.005 Since 0.145 > 0.005, we retain th. 6 0.697 0.197 we don't have enough evidence 7 0.773 0.273 to conclude at level 0.05 that 8 0.1529 0.029 the population median exceeds 0.15 b) $\frac{1}{2}$ \frac		2 0:381 -0:119 = P(6)+P(1)+P(8)
5 0:505 0:005 Since 0:145 > 0:05. We retain H. 6 0:697 0:197 We don't have enough evidence 7 0:773 0:273 to Conclude at level 0:05 that 8 0:529 0:029 the population medican exceeds 0:5 The interval $(X_{11}, X_{12}) = (0.970, 0.529)$ has exact coverage $\frac{1}{9} = 77.9\% > 75\%$ Thus, We use this interval as an 75% prediction interval for the next Value	5 0:505 0:005 Since 0:145 > 0:05, we retain H. 6 0:697 0:197 we don't have enough evidence 7 0:773 0:273 to conclude at level 0:05 that 8 0:529 0:029 the population median exceeds 0:5 $ \frac{4}{4}, \frac{1}{4}, \frac{1}{4} $ The interval $(X_{11}, X_{12}) = (0.970, 0.529)$ has exact coverage $\frac{1}{4} = 7.79\% > 75\%$ Thus, we use this interval as an 75% prediction interval for the next Value		
b) \[\begin{align*} \text{0.697} & \text{0.197} & \text{we don't have enough evidence} \\ \text{7 \text{0.773}} & \text{0.213} & \text{to Conclude at Level 0.05 that} \\ \text{8 \text{0.1529}} & \text{1029} & \text{the population median exceeds 0.15} \\ \text{b} \) \[\text{\frac{1}{9} & \frac{1}{9} & \text{\frac{1}{9}}	b) \[\begin{align*}		4 0:045 -0:145 = 0:145
The interval (Xu, Xa,) = (0.980, 0.529) has exact coverage $\frac{7}{9} = 77.9\% > 75\%$ Thus, we use this interval as an 75% prediction interval for the next Value	The interval (X_{11} , X_{12}) = (0.970, 0.529) has exact coverage $\frac{7}{4} = 77.9\% > 75\%$ Thus, we use this interval as an 75% prediction interval for the next Value		5 0:505 0:005 Since 0:145 > 0:05, we retain H.
b) \[\frac{1}{4}, \frac{1}{4}	b) \[\frac{\dagger}{\pi}, \frac{\dagger}{\dagger}, \frac{\dagger}{\da		6 0:697 0:197 We don't have enough esidence
the interval (Xu, Xa) = (0.980, 0.529) has exact coverage = 7 = 77.9% > 75% Thus, we use this interval as an 75% prediction interval for the next Value	the interval (Xu, Xa,) = (0.970, 0.529) has exact coverage = 7 = 77.9% > 75% Thus, we use this interval as an 75% prediceson interval for the next Value		
The interval $(X_{uy}, X_{(3)}) = (0.970, 0.579)$ has exact coverage $\frac{7}{9} \approx 77.9\% > 75\%$ Thus, we use this interval as an 75% prediction interval for the next Value	The interval $(X_{u_1}, X_{(3)}) = (0.970, 0.529)$ has exact coverage $\frac{7}{9} = 77.9\% > 75\%$ Thus, we use this interval as an 75% prediction interval for the next Value		8 0,529 0,029 the population median exceeds or5
The interval $(X_{uy}, X_{(3)}) = (0.970, 0.579)$ has exact coverage $\frac{7}{9} \approx 77.9\% > 75\%$ Thus, we use this interval as an 75% prediction interval for the next Value	The interval $(X_{u_1}, X_{(3)}) = (0.970, 0.529)$ has exact coverage $\frac{7}{9} = 77.9\% > 75\%$ Thus, we use this interval as an 75% prediction interval for the next Value		
The interval $(X_{uy}, X_{(3)}) = (0.970, 0.579)$ has exact coverage $\frac{7}{9} \approx 77.9\% > 75\%$ Thus, we use this interval as an 75% prediction interval for the next Value	The interval $(X_{u_1}, X_{(3)}) = (0.970, 0.529)$ has exact coverage $\frac{7}{9} = 77.9\% > 75\%$ Thus, we use this interval as an 75% prediction interval for the next Value	1	
The interval $(X_{uy}, X_{(3)}) = (0.970, 0.579)$ has exact coverage $\frac{7}{9} = 77.9\% > 75\%$ Thus, we use this interval as an 75% prediction interval for the next Value	the interval (Xu, Xa,) = (0.980, 0.529) has exact coverage = 7.7.3% > 75% Thus, we use this interval as an 75% prediction interval for the next Value	b	9 9
has exact coverage $\frac{7}{9} = 77.9\% > 75\%$ Thus, we use this interval as an 75% prediction interval for the next Value	has exact coverage $\frac{7}{9} = 77.9\% > 75\%$ Thus, we use this interval as an 75% prediction interval for the next Value		×(1) ×(2) ×(3)
has exact coverage $\frac{7}{9} = 77.9\% > 75\%$ Thus, we use this interval as an 75% prediction interval for the next Value	has exact coverage $\frac{7}{9} = 77.9\% > 75\%$ Thus, we use this interval as an 75% prediction interval for the next Value		The interval (x, xx) = (0.070 01529)
Thus, we use this interval as an 75% prediction interval for the next Value	Thus, we use this interval as an 75% prediction interval for the next Value		has exact coverage = ~77.9 % > 7.5%
prediction interval for the next Value	prediction interval for the next Value		Thus Ma use the Interval as an 75%
		2	prediction intervent for the next Value
See 5) 6) 1) in R mark down	Sec 5) 6) 1) in R Mark down		
See 5) 6) 1) in R Mark down	See 5) 6) 1) in R Mark down		
			See 5) 6) 1) in R mark down