Билет 43

Aвтор1,, AвторN
99 июна 9090 г

Содержани	\mathbf{e}
-----------	--------------

0.1	Билет 43: ! П ⁻	ризнак Коши	$(c \overline{\lim})$. Примеры.			1
-----	----------------------------	-------------	-----------------------	------------	--	--	---

0.1. Билет 43: ! Признак Коши (с lim). Примеры.

Теорема 0.1 (признак Коши).

$$a_n \geqslant 0$$

- 1. Если $\sqrt[n]{a_n} \geqslant 1$ начиная с некоторого места, то ряд расходится
- 2. Если $\sqrt[n]{a_n} \leqslant q < 1$ начиная с некоторого места, то ряд сходится

3.
$$q' := \overline{\lim}_{n \to \infty} \sqrt[n]{a_n}$$

Если q' < 1 сходится, то и ряд сходится.

Если q' > 1 расходится, то и ряд расходится.

Доказательство.

Судя по формулировке билета, первые два пункта доказывать не нужно, но доказательство у них быстрое, так что пусть тоже будет.

- 1. $\sqrt[n]{a_n}\geqslant 1 \implies a_n\geqslant 1 \implies a_n\not\to 0$, не выполняется необходимое условие. '
- 2. $\sqrt[n]{a_n} \leqslant q < 1 \implies a_n \leqslant q^n$

Воспользуемся признаком сравнения с $\sum\limits_{n=1}^{\infty}q^n$. Это сумма геометрической прогрессии, знаменатель которой меньше 1, то есть $\sum\limits_{n=1}^{\infty}q^n$ сходится. Значит, $\sum\limits_{n=1}^{\infty}a_n$ сходится.

3. (a) $\overline{\lim} \lim_{n \to \infty} \sqrt[n]{a_n} = q' > 1 \implies$ найдется подпоследовательность a_{n_k} , такая что $\lim_{k \to \infty} a_{n_k} = q' > 1$

 \implies найдется такая окрестность, что при достаточно больших k все $a_{n_k} \in (1, \dots)$ (важно, что промежуток точно больше 1)

$$\implies a_{n_k} > 1$$

$$\implies a_n \not\to 0$$
, ряд расходится

(b)
$$\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = q' < 1$$

- \Longrightarrow (по определению верхнего предела) $\varlimsup_{n\to\infty}\sqrt[n]{a_n}=\limsup_{n\to\infty}\sqrt[k]{a_k}=q'<1$
- \Longrightarrow можно выбрать окрестность $(\dots,\frac{q'+1}{2})\subset (\dots,1),$ такую что начиная с некоторого момента все $\sup_{k\geqslant n}\sqrt[k]{a_k}$ попадают в эту окрестность, то есть $\sup_{k\geqslant n}\sqrt[k]{a_k}<\frac{q'+1}{2}<1$
- $\implies \sqrt[k]{a_k} < \frac{q'+1}{2} < 1$ при достаточно больших k, тогда $\sum\limits_{n=1}^{\infty} a_n$ сходится по доказанному в пункте 2.

Пример.

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}, \text{при } x > 0$$

$$\sqrt[n]{\frac{x^n}{n!}} = \frac{x}{\sqrt[n]{n!}}$$

Воспользуемся формулой Стирлинга:

$$\frac{x}{\sqrt[n]{n!}} \sim \frac{x}{\sqrt[n]{n^n \cdot e^{-n} \cdot \sqrt{2\pi n}}} \sim \frac{x}{\frac{n}{e}} = \frac{xe}{n} \to 0$$

- q

Билет 43 СОДЕРЖАНИЕ

Замечание.

Если $\varlimsup_{n\to\infty}\sqrt[n]{a_n}=1,$ то ряд может как сходиться, так и расходиться.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n} - \text{расходится}$$

$$\overline{\lim_{n\to\infty}} \sqrt[n]{\tfrac{1}{n}} = \lim_{n\to\infty} \tfrac{1}{\sqrt[n]{n}} = 1$$

$$2. \sum_{n=1}^{\infty} \frac{1}{n(n+1)} - \text{сходится}$$

$$\varlimsup_{n\to\infty}\sqrt[n]{\tfrac{1}{n(n+1)}}=\varliminf_{n\to\infty}\tfrac{1}{\sqrt[n]{n}\cdot\sqrt[n]{n+1}}=1$$