Construction of *q*-ary Constant Weight Sequences using a Knuth-like Approach

Elie N. Mambou & Theo G. Swart

Department of Electrical and Electronic Engineering Science, University of Johannesburg (UJ) South Africa

2017 IEEE International Symposium on Information Theory RWTH University, Aachen, Germany

June 25-30, 2017

About this work

- Extension on "Encoding and decoding of balanced q-ary sequences using a Gray code prefix," ISIT 2016.
- "A Construction for Balancing Non-Binary Sequences Based on Gray Code Prefixes", arXiv:1706.00852v1.
- Received the chancellor's medal award for best master dissertation.
- Thanks to my advisor and external examiners.

- Preliminaries
- 2 Construction of *q*-ary CW Sequences
- 3 Analysis
- 4 Conclusion

Definitions

Preliminaries

•0000

- Consider a q-ary information sequence $\mathbf{x} = x_0 x_1 x_2 ... x_{k-1}$, $x_i \in \{0, 1, ..., q - 1\}$, of length k.
- Let the prefix that will be appended to x be of length r; and let the information and the prefix together be denoted by $\mathbf{c} = c_0 c_1 c_2 \dots c_{k-1}$, $c_i \in \{0, 1, \dots, q-1\}$, of length n = k + r.
- The weight of c, w(c) is defined as

$$w(\mathbf{c}) = \sum_{i=0}^{k-1} c_i.$$

• c is called constant weight (CW) sequence with weight, w(c) and it is said to be balanced if $w(c) = \beta_{n,a} = \frac{n(q-1)}{2}$.

• It has been proven [1], that x, can always be balanced by adding modulo q one sequence from a set of balancing sequences $\boldsymbol{b}(s,p)=b_1b_2\ldots b_k$ generated as follows:

$$b_i = \begin{cases} s, & i-1 \geq p, \\ s+1 \pmod{q}, & i-1 < p, \end{cases} \text{ where } \begin{cases} 0 \leq s \leq q-1, \\ 0 \leq p \leq k-1. \end{cases}$$

- Let z be the iterator through these balancing sequences, with z = sk + p, $0 \le z \le kq 1$. $\boldsymbol{b}(s,p)$ and $\boldsymbol{b}(z)$ refers to the same.
- Let y denote the sequence after a balancing sequence is added, $y = x \oplus_q \mathbf{b}(z)$. At least one $\mathbf{b}(z)$ will lead to a balanced output y.

¹T. G. Swart and J. H. Weber, "Efficient balancing of *q*-ary sequences with parallel decoding," in *Proc. IEEE Int. Symp. Inform. Theory*, Seoul, Korea, 2009.

Balancing of q-ary sequences (Cont'd)

Example 1

Overview

For q=3, k=3, consider the sequence $\mathbf{x}=202$. The balancing value is $\beta_{\mathbf{k},\mathbf{q}}=3$.

Z	$\boldsymbol{b}(z)$	$\pmb{x} \oplus_q \pmb{b}(z) = \pmb{y}$	w(y)
0	000	$202 \oplus_3 000 = 202$	4
1	100	$202 \oplus_3 100 = 002$	2
2	110	$202 \oplus_3 110 = 012$	3
3	111	$202 \oplus_3 111 = 010$	1
4	211	$202 \oplus_3 211 = 110$	2
5	221	$202 \oplus_3 221 = 120$	3
6	222	$202 \oplus_3 222 = 121$	4
7	022	$202 \oplus_3 022 = 221$	5
8	002	$202 \oplus_3 002 = 201$	3

- Invented by Frank Gray [2]; originally used to solve problems in pulse code communication; and extended to several other fields.
- $d = d_1 d_2 \dots d_{r'}$ denotes a sequence amongst the set of q-ary sequences of length r' listed in lexicographic order. They are mapped to Gray code sequences, $g = g_1 g_2 \dots g_{r'}$. Any two adjacent sequences differ in only one symbol position, with weight difference of either -1 or +1.
- 4-ary Gray code of length 2

Z	d	g	Z	d	g	Z	d	g	Z	d	g
0	00	00	4	10	13	8	20	20	12	30	33
1	01	01	5	11	12	9	21	21	13	31	32
2	02	02	6	12	11	10	22	22	14	32	31
3	03	03	7	13	10	11	20 21 22 23	23	15	33	30

²F. Gray, "Pulse code communication," U. S. Patent 2632058, 1953.

Encoding and Decoding of q-ary Gray codes [3]

Gray code encoding algorithm The parity of the sum S_i of the first i-1 digits of \mathbf{g} determines the Gray code symbols, where $2 \le i \le r'$ and $g_1 = d_1$, then

$$S_i = \sum_{j=1}^{i-1} g_j$$
, and $g_i = \begin{cases} d_i, & ext{if } S_i ext{ is even}, \\ q-1-d_i, & ext{if } S_i ext{ is odd}. \end{cases}$

Gray code decoding algorithm

$$S_i = \sum_{j=1}^{i-1} g_j$$
, and $d_i = \begin{cases} g_i, & \text{if } S_i \text{ is even,} \\ q-1-g_i, & \text{if } S_i \text{ is odd.} \end{cases}$

³D.-J. Guan, "Generalized Gray codes with applications," in *Proc. National Science Council, Republic of China. Part A.* 1998.

Applications of CW sequences

- They play an important role in communication system where high security and confidentiality are needed, because of various properties such as correlations, balanced value distributions and strong linear complexity.
- Frequency hopping in GSM networks.
- Detection of unidirectional errors and threshold setting in barcode implementations.
- DNA sequences (Biology field).
- In VLC (visible light communication), to eliminate flickering in CSK and performing dimming in FSK, OOK.

Research goal

 Construction of CW sequences through an efficient encoding and decoding scheme.

Generating *q*-ary CW Sequences

- We want to construct an (n, k, W, q) CW sequence of length n, weight W with k information symbols.
- The length of Gray code prefix is, $r' = \log_q(kq) = \log_q(k) + 1$; such that cardinalities of the set of Gray code prefix and that of weighting sequences are equal.
- Lemma 1. For any q-ary information sequence x of length k, where parameters k and q are not coprime, we can find a $\boldsymbol{b}(z)$ such that the weight of $\boldsymbol{y} = \boldsymbol{x} \oplus_q \boldsymbol{b}(z)$ is $\omega_1 \leq w(\boldsymbol{y}) \leq \omega_2$, where $\omega_1 = \beta_{k,q} (q-1)$ and $\omega_2 = \beta_{k,q} + (q-1)$.
- Theorem 1. An (n, k, W, q) CW sequence can be constructed from any q-ary information sequence x of length k where

$$\frac{(k-2)(q-1)}{2} \le W \le \frac{(k+2r'+4)(q-1)}{2}.$$
 (1)

Encoding (Cont'd)

Example 2

Overview

Encoding the ternary sequence x = 212 into a CW sequence of weight W=8. The condition $k=q^t$, is imposed and the Gray code prefix length is $r' = log_3 3 + 1 = 2$.

Z	$\pmb{x} \oplus_q \pmb{b}(z) = \pmb{y}$	$\boldsymbol{c} = [u \boldsymbol{g} \boldsymbol{y}]$	w(c)
0	$212 \oplus_3 000 = 212$	<u>000</u> 212	5
1	$212 \oplus_3 100 = 012$	<u>001</u> 012	4
2	$212 \oplus_3 110 = 022$	<u>202</u> 022	8
3	$212 \oplus_3 111 = 020$	<u>012</u> 020	5
4	$212 \oplus_3 211 = 120$	<u>011</u> 120	5
5	$212 \oplus_3 221 = 100$	<u>010</u> 100	2
6	$212 \oplus_3 222 = 101$	<u>020</u> 101	4
7	$212 \oplus_3 022 = 201$	2 21201	8
8	$212 \oplus_3 002 = 211$	<u>022</u> 211	8

Encoding (Cont'd)

Overview

Generating q-ary CW Sequences with extended weight range

000000000

- Appending a redundant vector \boldsymbol{u} of length \boldsymbol{e} to $\boldsymbol{c}' = [\boldsymbol{g}|\boldsymbol{y}]$, then the output sequence becomes $\mathbf{c} = [\mathbf{u}|\mathbf{g}|\mathbf{y}]$. This leads to (n, k, W, q) CW sequences where n = k + r' + e.
- This will lead to an increase of weight range as $w(u) \in [0, e(q-1)]$.
- Theorem 2. Any q-ary information sequence of length k can generate an (n, k, W, q) CW sequence where

$$\frac{(k-2)(q-1)}{2} < W < \frac{(k+2r'+2e+1)(q-1)}{2}.$$
 (2)

• The redundant vector $\mathbf{u} = u_1 u_2 \dots u_e$ is such that $u_i \in \{0, 1, \dots, q-1\}$ and $w(\boldsymbol{u}) = W - w(\boldsymbol{c}')$ if and only if $W > w(\mathbf{c}')$, otherwise $\mathbf{u} = \mathbf{0}$.

Example 3

Overview

Consider the same ternary information sequence x=212 of length 3 as in Example 2. We would like to generate a (7,3,12,3) CW sequence of weight W=12 and n=7.

Z	$\mathbf{x} \oplus_{\mathbf{q}} \mathbf{b}(z) = \mathbf{y}$	c = [u g y]	w(c)
0	$212 \oplus_3 000 = 212$	00 00212	5
1	$212 \oplus_3 100 = 012$	<u>0001</u> 012	4
2	$212 \oplus_3 110 = 022$	<u>0002</u> 022	6
3	$212 \oplus_3 111 = 020$	<u>0012</u> 020	5
4	$212 \oplus_3 211 = 120$	<u>0011</u> 120	5
5	$212 \oplus_3 221 = 100$	<u>0010</u> 100	2
6	$212 \oplus_3 222 = 101$	<u>0020</u> 101	4
7	$212 \oplus_3 022 = 201$	00 21201	6
8	$212 \oplus_3 002 = 211$	22 222211	12

Range has been extended from [2, 10] to [2, 12].

Encoding (Cont'd)

Parameters evaluation

• W was calculated according to equation (2).

	t	$k = q^t$	W	n	r'	е
	2	4	[2,8]	10	3	3
q = 2	3	8	[4, 12]	16	4	4
	4	16	[8, 16]	24	5	3
	1	3	[2, 11]	7	2	2
q = 3	2	9	[8, 21]	15	3	3
	3	27	[26, 41]	34	4	3
	1	4	[4, 18]	8	2	2
q = 4	2	16	[22, 42]	22	3	3
	3	64	[94, 120]	72	4	4

Decoding

- The redundant vector \mathbf{u} is dropped, then the r' symbols are extracted as the Gray code prefix and converted to corresponding iterator z.
- z is used to determine the parameters s and p, then b(s, p) can be derived.
- Finally, the original sequence is recovered through $x = y \ominus_q b(s, p)$.

Decoding (Cont'd)

Overview

Decoding of (2,4)-Gray code

Gray code (g)	Sequence (d)	Z	s, p	$\boldsymbol{b}(s,p)$
00	00	0	0,0	0000
01	01	1	0, 1	1000
02	02	2	0, 2	1100
03	03	3	0,3	1110
13	10	4	1,0	1111
12	11	5	1, 1	2111
11	12	6	1, 2	2211
10	13	7	1,3	2221
20	20	8	2,0	2222
21	21	9	2, 1	3222
22	22	10	2, 2	3322
23	23	11	2, 3	3332
33	30	12	3,0	3333
32	31	13	3, 1	0333
31	32	14	3 , 2	0033
30	33	15	3, 3	0003

Decoding (Cont'd)

Example 4

Overview

Consider the decoding of the (7, 4, 14, 4) CW sequence, **2**313113.

- The redundant symbol u=2 is dropped. Then the Gray code sequence of length 2, is extracted as 31.
- The Gray code $\mathbf{g} = 31$ corresponds to $\mathbf{d} = 32$, and index z = 14. This implies that s=3 and p=2, therefore b(3,2)=0033(presented in the previous table).
- Finally, the information sequence is recovered as

$$x = y \ominus_a b(s, p) = 3113 \ominus_3 0033 = 3120.$$

Cardinality study

- \mathcal{N}_1 is the cardinality of q-ary CW sequences for specific W of length n and \mathcal{N}_2 , the cardinality of q-ary information sequences of length k.
- To construct an (n, k, W, q) CW sequence, one clearly requires enough parity bits r such that $\mathcal{N}_1 \geq \mathcal{N}_2 = q^k$, where n = k + r.

W		q	n	k	\mathcal{N}_1	\mathcal{N}_2
	3	2	7	4	35	16
	5	2	12	8	792	256
$\beta_{n,q} - q + 1$	10	2	21	16	352716	65536
	3	3	5	3	30	27
	10	3	12	9	58278	19683
	6	4	6	4	336	256
	4	2	7	4	35	16
	6	2	12	8	924	256
$\beta_{n,q}$	11	2	21	16	352716	65536
	5	3	5	3	51	27
	12	3	12	9	737789	19683
	9	4	4	6	580	256
	6	2	8	4	28	16
	9	2	13	8	715	256
$\beta_{n,q} + q$	13	2	22	16	497420	65536
	9	3	6	3	50	27
	16	3	13	9	129844	19683
	15	4	7	4	728	256

- The redundancy is $r = \log_q k + e + 1 \Rightarrow k = q^{r-1-e}$.
- For e=1, the redundancy becomes $r=\log_q k+2$, which is similar as that presented in [4].
- The addition of the vector **u** does not change the complexity of this construction compared to the one in [4].
- This method requires $\mathcal{O}(qk\log_q k)$ digit operations for the encoding and $\mathcal{O}(k)$ digit operations for the decoding process.
- Comparison of our scheme with other constructions based on redundancy and complexity can be found in [4].

⁴E. N. Mambou and T. G. Swart, "Encoding and decoding of balanced *q*-ary sequences using a Gray code prefix," in *Proc. IEEE Int. Symp. Inform. Theory*, Barcelona, Spain, 2016.

Conclusion

- An efficient algorithm was proposed for encoding and decoding (n, k, W, q) CW sequences based on Gray code prefixes with a method to extend the achievable CW range.
- The construction does not make use of memory-consuming lookup tables, and only simple operations such as addition and subtraction are needed.
- The decoding process can be performed mostly in parallel.
- As the proposed method is only applicable to information sequences of length k where $k = q^t$, the improvement would be to extend this algorithm to the case where $k \neq q^t$.

q-ary Constant Weight Sequences

Thanks for your attention!

"We cannot solve our problems with the same thinking we used when we created them." Albert Einstein

QUESTIONS AND COMMENTS!!

This work is based on the research supported in part by the National Research Foundation of South Africa

