Sinusoidi

Una sinusoide è un segnale che ha la forma della funzione seno o coseno.

Una corrente (tensione) sinusoidale è anche detta corrente (tensione) alternata (o <u>ac</u> dell'inglese *alternate current,* che si contrappone a dc *direct current).*

Grazie all'analisi di Fourier, qualunque segnale variabile nel tempo può essere scomposto in una somma di contributi sinusoidali (serie di Fourier o integrale di Fourier).

$$W = [Rool] \cdot [S-1]$$

$$W = \begin{cases} 0 & \text{if } S = 1 \end{cases}$$

$$W = \begin{cases} 0 & \text{if } S = 1 \end{cases}$$

Sinusoidi

Usando le identità trigonometriche possiamo trasformare seni in coseni e viceversa

$$\sin(\omega t \pm 180^{\circ}) = -\sin \omega t$$

$$\cos(\omega t \pm 180^{\circ}) = -\cos \omega t$$

$$\sin(\omega t \pm 90^{\circ}) = \pm \cos \omega t$$

$$\cos(\omega t \pm 90^{\circ}) = \pm \sin \omega t$$

Sinusoidi

a) Ampiezza $V_m=5V$ Fase $\phi=-60^\circ$ Pulsazione $\omega=4\pi\ rad/s=12,57\ rad/s$ Periodo $T=\frac{2\pi}{\omega}=0,5\ s$ Frequenza $f=\frac{1}{7}=2\ \text{Hz}$

Si nota che lo sfasamento tra le due sinusoidi è di 30°, con ${\rm v_2}$ in anticipo su ${\rm v_1}$.

$$z = x + jy$$
, $(x = r\cos\theta, y = r\sin\theta)$

$$z = r/\underline{\theta}$$
,

$$\left(r = \sqrt{x^2 + y^2}, \theta = \tan^{-1}\frac{y}{x}\right)$$

$$\left(r = \sqrt{x^2 + y^2}, \theta = \tan^{-1} \frac{y}{x}\right)$$

FORTA CARTESIANA

Numeri complessi

Esercizio Esprimere i seguenti numeri complessi in forma polare e esponenziale (a) $z_1=6+j8$, (b) $z_2=6-j8$, (c) $z_3=-6+j8$, (d) $z_4=-6-j8$ Soluzione a) Per $z_1^{(4)}$ 65/93 (1* quadrante)

 $\theta_2 = \tan^{-1}\left(\frac{-8}{6}\right) = -53,13^\circ = \underbrace{\left(306,87^\circ\right)}_{}$

$$r_1 = \sqrt{6^2 + 8^2} = 10, \qquad \theta_1 = \tan^{-1}\frac{8}{6} = 53.13^\circ$$

Forma polare 10/53.13°

Forma esponenziale $10e^{j53.13^{\circ}}$

b) Per z₂=6-j8 (4° quadrante)

 $r_2 = \sqrt{6^2 + (-8)^2} = 10,$

Forma polare $10/306.87^{\circ}$

Forma esponenziale $~10e^{f306.87^{\circ}}$

R20-

FORTA ROCALE

A FORGE

ESBNENTIALE

200

Numeri complessi

Esercizio Esprimere i seguenti numeri complessi in forma cartesiana (a) $12 /\!\!\!\!\!/ -60^\circ$, (b) $-50 /\!\!\!\!\!/ 285^\circ$, (c) $8e^{j10^\circ}$, (d) $20e^{-j\pi/3}$

a)
$$12/-60^{\circ} = 12 \cos(-60^{\circ}) + j12 \sin(-60^{\circ}) = 6 - j10.39$$

b)
$$-50/285^{\circ} = -50 \cos 285^{\circ} - j50 \sin 285^{\circ} = -12.94 + j48.3$$

c)
$$8e^{j10^{\circ}} = 8 \cos 10^{\circ} + j8 \sin 10^{\circ} = 7.878 + j1.389$$

$$8/28 = -30 \cos 283 = -130 \sin 263 = -12.94 + j48.$$

$$8/29 = 8 \cos 10^{\circ} + j8 \sin 10^{\circ} = 7.878 + j1.389$$

$$0) 20e^{-j\pi/3} = 20 \cos(-\pi/3) + j20 \sin(-\pi/3) = 10 - j17.32$$

Fasori Un fasore è un numero complesso che rappresenta l'ampiezza e la fase di una sinuscide. Per l'identità di Eulero $e^{\pm j\phi} = \cos\phi \pm j \sin\phi$ Quindi $\cos\phi = \text{Re}(e^{i\phi})$ $\sin\phi = \text{Im}(e^{i\phi})$ E possiamo scrivere $v(t) = V_m \cos(\omega t + \phi) = \text{Re}(V_m e^{i(\omega t + \phi)}) = \text{Re}(V_m e^{i\phi} e^{j\omega t})$ Funzione del tempo Fasore $v(t) = \text{Re}(Ve^{i\omega t})$ $V = V_m e^{j\phi} = V_m / \phi$

Fasori

 $v(t) = V_m \cos(\omega t + \phi)$ \Leftrightarrow $\mathbf{V} = V_m / \phi$ Dominio del tempo Dominio del Fasori

1) v(t) è la rappresentazione istantanea (o nel dominio del tempo), mentre ${\bf V}$ è la rappresentazione in frequenza (o nel dominio del fasori)

2) v(t) dipende dal tempo, mentre ${\bf V}$ no.

3) v(t) è sempre reale senza termini complessi, mentre V è generalmente un numero complesso.

Fasori

Esercizio Trasformare le seguenti sinuscidi in fasori (a)
$$i=6\cos(50t-40^\circ)$$
 A (b) $v=-4\sin(30t+50^\circ)$ V

Soluzione

a)
$$I = 6/-40^{\circ} A$$

b)
$$-\sin A = \cos(A + 90^\circ)$$
 quindi

$$v = -4\sin(30t + 50^\circ) = 4\cos(30t + 50^\circ + 90^\circ)$$

= $4\cos(30t + 140^\circ)$ V

$$\mathbf{V}=4\underline{/140^o}\,\mathrm{V}$$

Fasori

Esercizio Trasformare le seguenti sinusoidi in fasori

(a)
$$v = 7\cos(2t + 40^\circ) \text{ V}$$

(b) $i = -4\sin(10t + 10^\circ) \text{ A}$

Soluzione

a)
$$\mathbf{V} = 7 \underline{/40^{\circ}} \, \mathrm{V}$$

b)
$$-\sin A = \cos(A + 90^\circ)$$
 quindi

$$i = -4\sin(10t + 10^{\circ}) \text{ A} = 4\cos(10t + 10^{\circ} + 90^{\circ})$$

$$\mathbf{I} = 4/100^{\circ} \, \mathrm{A}$$

6 LUGLIO 2017

$$V_{TH} = \lambda b (\ell_3 + \ell_2) - i_e \ell_2$$

$$-V_{TH} + ib \cdot R_{3} + (ib - ie) R_{2} = 0 \Rightarrow V_{TH} = ab(R_{3} + R_{2}) - ieR_{2}$$

$$V_{C}(+) = V_{TH} + (V_{0} - V_{TH}) e$$