

NWEN 241 More C Fundamentals

Qiang Fu

School of Engineering and Computer Science Victoria University of Wellington

This Lecture

- GNU C complier (gcc) and GNU debugger (gdb)
- Data types
- Problems with macro definition

1/03/2016

NWEN 241: Systems Programming

GNU C Compiler (gcc)

- gcc does:
 - preprocessing,
 - compilation,
 - assembly, and
 - linking
- Normally all done together, but you can get gcc to stop after each stage.

```
% gcc circle.c /* default output name a.out */
or
% gcc -o circle circle.c
```

Preprocessing

- Execute preprocessor directives
- Preprocessor directives begin with a #
- Text substitution macro substitution, conditional compilation and inclusion of named files

```
#define PI 3.14
```

- PI will be replaced by 3.14

```
\#define SQ(x) ((x) * (x))
```

- SQ(x) will be replaced by $((x)^*(x))$

#include <stdio.h>

- File stdio.h will be copied

Preprocessing

- To make gcc stop after preprocessing, use -E
 - % gcc -E circle.c
 - Output goes to standard output
 - % gcc -E -o circle.i circle.c
 - Output goes to circle.i
 - .c files become .i files.
- Does Java support preprocessing?
 - Java does not have a preprocessor
 - No header files
 - Constant data members used in place of #define

1/03/2016

NWEN 241: Systems Programming

5

Compilation

- · Compile, but don't assemble.
- Output from this stage is assembler code (symbolic representation of the numeric machine code).
- To make gcc stop after compilation, use -S.
 - % qcc -S circle.i
 - Output goes to circle.s
 - % gcc -S -o circleC.s circle.c
 - Output goes to circleC.s
 - .c and .i files become .s files.

1/03/2016

NWEN 241: Systems Programming

.

Assembly

- Assemble, but don't link.
- Output from this stage is object code.
- To make gcc stop after assembly, use -c.
 - % qcc -c circle.s
 - Output goes to circle.o
 - % gcc -c circle.c -o circleC.o
 - Output goes to circleC.o
 - .c, .i and .s files become .o files.

Linking

- Link, and produce executable.
 - Bring together multiple pieces of object code and arrange them into one executable.

```
% gcc circle.o -o circle
```

% ./circle

Linking

• Another example (source code in multiple files)

```
% gcc -c circlelink.c sq.c
```

- Output goes to circlelink.o and sq.o

```
% gcc -o circle circlelink.o sq.o
```

% ./circle

Or,

% gcc circlelink.o sq.o

% ./a.out

Think about...

% gcc circlelink.o

% gcc sq.o

1/03/2016

NWEN 241: Systems Programming

9

GNU Debugger (gdb)

- gdb is used to fix program errors.
- gdb allows a programmer to:
 - observe the execution of a program
 - determine when and if specific lines of code are executed
 - step through a program line by line

1/03/2016

NWEN 241: Systems Programming

. . .

GNU Debugger (gdb)

• How gdb works:

- % gcc -g circle.c
- -g tells gcc we are going to debug a.out
- circle.c is compiled without optimisation (rearrangement of code)
- a symbol table is created to store additional information (e.g., variables used)
- % qdb a.out
- Shell prompt (%) → debugger prompt ((gdb))

GNU Debugger (gdb)

- Useful gdb commands:
 - run (start to execute the program)
 - q/quit (exit the debugger)
 - break 10 (stop at line 10)
 - print x (show variable x)
 - display x (show variable x when the program is paused)
 - step (step through the program line by line)
 - next (execute next line)
 - continue (resume the execution until next breakpoint)
 - help

GNU Debugger (gdb)

• An example (crash)

NWEN 241: Systems Programming

Data Types

1/03/2016

- Programming is about describing data and algorithms
- How data is represented in memory?
- Four basic data types:
 - int (integer quantity)
 - char (single character)
 - float (floating-point number)
 - double (double-precision floating-point number)

Note: There are also qualifiers associated with the types: short / long, and signed / unsigned.

Data types for Java (any difference?)

Data Types

- Programming is about describing data and algorithms
- How data is represented in memory?

1/03/2016

13

NWEN 241: Systems Programming

. . .

16

Data Types

- Two groups of types
 - Integral types: int and char
 - Can be used to hold integer values
 - Floating types: float and double
 - · Can be used to hold real values

Data Types

Integral types

1/03/2016

NWEN 241: Systems Programming

17

19

Data Types

Integral types

1/03/2016

NWEN 241: Systems Programming

Data Types

- Floating types
 - How floating-point number represented in memory
 - 123.45 = 1111011.01110011 = 0.111101101110011 * 2⁷
 - Mantissa: 111101101110011
 - Exponent: 7
 - Mantissa and exponent are stored separately
 - 123.75 = 1111011.11000000 = 0.111101111000000 * 2^7
 - 123.45 cannot be perfectly expressed in binary notation

Data Types

- Floating types
 - How floating-point number represented in memory
 - 123.45 = 1111011.01110011 = 0.111101101110011 * 2⁷
 - Mantissa: 111101101110011
 - Exponent: 7
 - Mantissa and exponent are stored separately
 - 123.75 = 1111011.11000000 = 0.111101111000000 * 2^7
 - 123.45 cannot be perfectly expressed in binary notation
 - float t = 123.45
 - t = 123.449997
 - · Use double

1/03/2016 NWEN 241: Systems Programming

1/03/2016

NWEN 241: Systems Programming

Data Types

- Sizes of different types
 - Use sizeof() to find out
 - The sizes may vary from machine to machine
 - The following rules are always guaranteed:
 - sizeof(char) = 1
 - sizeof(char) <= sizeof(short) <= sizeof(int) <= sizeof(long)
 - sizeof(signed) = sizeof(unsigned) = sizeof(int)
 - sizeof(float) <= sizeof(double) <= sizeof(long double)
 - Does Java have varied sizes between systems?

1/03/2016

NWEN 241: Systems Programming

21

Data Types

Type casting

```
- C does automatic type casting
```

```
int i = 2;
double d = 2.5;
i = (int)d; /* explicit type casting */
i = d;
```

NWEN 241: Systems Programming

NWEN 241: System

Data Types

- Type casting
 - C does automatic type casting

- Info losing type casting must be made explicitly in Java

1/03/2016

1/03/2016

Constants

Data Types

- integer constants
- floating-point constants
- character constants
- string constants
- enumeration constants (does Java have this?)
- Naming constants
 - Use the const qualifier (Java uses the final keyword)
 const float pi = 3.14; /* declares a "read-only" variable
 */
 - Use the preprocessor (Java does not have this)

22

Problems with macros

Problems with macros

1/03/2016

NWEN 241: Systems Programming

25

NWEN 241: Systems Programming

26

Problems with macros

Problems with macros

1/03/2016

1/03/2016

- Be careful when defining and calling macros

Data Types

• More data types later on

Next Week

• Operators, data input/output, functions, pointers and arrays

NWEN 241: Systems Programming

30

1/03/2016 NWEN 241: Systems Programming 29 1/03/2016