Intro: Random Experiment: An outcome for each run. Sample Space Ω: Set of all possible outcomes. Event: Subsets of Ω. Event: Subsets of Ω .

Prob. of Event A: $P(A) = \frac{\text{Number of outcomes in A}}{\text{Number of outcomes in }\Omega}$ Axioms: $P(A) \ge 0 \ \forall A \in \Omega$, $P(\Omega) = 1$,

If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B) \ \forall A, B \in \Omega$ Cond. Prob. $P(A|B) = \frac{P(A \cap B)}{P(B)}$ * $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$ Independence: $P(A|B) = P(A) \Rightarrow P(A \cap B) = P(A)P(B)$ Total Prob. Thm: If H_1, H_2, \dots, H_n form a partition of Ω , then $P(A) = \sum_{i=1}^n P(A|H_i)P(H_i)$. Bayes' Rule: $P(H_k|A) = \frac{P(H_k \cap A)}{P(A)} = \frac{P(A|H_k)P(H_k)}{\sum_{i=1}^n P(A|H_i)P(H_i)}$ *Posteriori: $P(H_k|A)$, Likelihood: $P(A|H_k)$, Prior: $P(H_k)$ 1 RV: CDF: $F_X(x) = P[X \le x]$ PMF: $P_X(x_j) = P[X = x_j] \ j = 1, 2, \dots$ **PDF**: $f_X(x) = \frac{d}{dx} F_X(x)$ * $P[a \le X \le b] = \int_a^b f_X(x) dx$ IS THIS CORRECT? Cond. PMF: $P_X(x|A) = P[X = x|A] = \frac{P[X=x,A]}{P[A]}$ IS THIS Variance: $\sigma_X^2 = \text{Var}[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$ Variance: $\sigma_X^- = \text{Var}[A] - E[X] - e^{-x}$, Cond. Exp.: $E[X|A] = \int_{-\infty}^{\infty} x f_X(x|A) dx$ $\begin{array}{l} \textbf{2 RVs: Joint PMF:} \ P_{X,Y}(x,y) = P[X=x,Y=y] \\ \textbf{Joint PDF:} \ f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y) \end{array}$ Joint PDF: $f_{X,Y}(x,y) = \frac{1}{\partial x} y F_{X,Y}(x,y)$ $*P[(X,Y) \in A] = \int \int_{(x,y) \in A} f_{X,Y}(x,y) \, dx \, dy$ $\text{Exp.: } E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) \, dx \, dy$ Correlation (Corr.): E[XY]Covar.: $\text{Cov}[X,Y] = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - E[X]E[Y]$ Corr. Coeff.: $\rho_{X,Y} = E\left[\left(\frac{X - \mu_X}{\sigma_X}\right)\left(\frac{Y - \mu_Y}{\sigma_Y}\right)\right] = \frac{\text{Cov}[X,Y]}{\sigma_X\sigma_Y}$ Marginal PMF: $P_X(x) = \sum_{j=1}^{\infty} P_{X,Y}(x,y_j)$ Marginal PDF: $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$ Cond. PDF: $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$ $f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_{X}(x)} = \frac{f_{X|Y}(x|y)f_{Y}(y)}{\int_{-\infty}^{\infty} f_{X|Y}(x|y')f_{Y}(y') dy'}$ $*P_{X|Y}(y|x) = \frac{P_{X,Y}(x,y)}{P_{X}(y)} = \frac{P_{X|Y}(x|y)P_{Y}(y)}{P_{X}(y)}$ ${^*P_Y}_{|X}(y|x) = \frac{P_{X,Y}(x,y)}{P_X(x)} = \frac{P_{X|Y}(x|y)P_Y(y)}{\sum_{j=1}^{\infty} {^*P_X}_{|Y}(x|y_j)P_Y(y_j)}$ *If independent, then uncorrelated: Uncorrelated: $Cov[X,Y] = 0 \Leftrightarrow \rho_{X,Y} = 0$ Uncorrelated: $\operatorname{Cov}[X,Y] = 0 \Leftrightarrow \rho_{X,Y} = 0$ Orthogonal: E[XY] = 0 Cond. Exp.: E[Y] = E[E[Y|X]] or E[E[h(Y)|X]] *E[E[Y|X]] w.r.t. $X \mid E[Y|X]$ w.r.t. Y. Estimation: Estimate unknown parameter θ from n i.i.d. measurements X_1, X_2, \ldots, X_n , $\Theta(X) = g(X_1, X_2, \ldots, X_n)$ Estimation Error: $\Theta(X) - \theta$. Unbiased: $\Theta(X) = 0$. Unbiased: $\Theta(X) = 0$. *Asymptotically unbiased: $\lim_{n \to \infty} E[\Theta(X)] = \theta$. Consistent: $\Theta(X) = 0$ is consistent if $\Theta(X) \to 0$ as $n \to \infty$ or $\forall \epsilon > 0$, $\lim_{n \to \infty} P[|\Theta(X) = \theta] < \epsilon] \to 1$. Sample Mean: $M_n = \frac{1}{n} S_n = \frac{1}{n} \sum_{i=1}^n X_i$. *Given a sequence of i.i.d. RVs, X_1, X_2, \ldots, X_n , M_n is unbiased and consistent. Chebychev's Inequality: $P[|X - E[X]| > \epsilon] < \frac{\operatorname{Var}[X]}{\mathbb{E}[X]}$ Chebychev's Inequality: $P[|X - E[X]| \ge \epsilon] \le \frac{\operatorname{Var}[X]}{2}$

Ind.: $f_{X|Y}(x|y) = f_X(x) \ \forall y \Leftrightarrow f_{X,Y}(x,y) = f_X(x)f_Y(y)$

Weak Law of Large #s: $\lim_{n\to\infty} P[|M_n - \mu| < \epsilon] = 1 \ \forall \epsilon > 0$

ML Estimation: Choose parameter θ that is most likely to generate the obs. x_1, x_2, \ldots, x_n . *Disc: $\hat{\Theta} = \arg\max_{\theta} P_{\underline{X}}(\underline{x}|\theta) \stackrel{\log}{\rightarrow} \hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{n} \log P_{X}(x_{i}|\theta)$

*Cont: $\hat{\Theta} = \arg \max_{\theta} f_{\underline{X}}(\underline{x}|\theta) \xrightarrow{\log \theta} \hat{\theta} = \arg \max_{\theta} \sum_{i=1}^{n} \log f_{X}(x_{i}|\theta)$ Maximum A Posteriori (MAP) Estimation:

*Disc: $\hat{\theta} = \arg \max_{\theta} P_{\Theta|\underline{X}}(\theta|\underline{x}) = \arg \max_{\theta} P_{\underline{X}|\Theta}(\underline{x}|\theta) P_{\Theta}(\theta)$

*Cont: $\hat{\theta} = \arg \max_{\theta} f_{\Theta|X}(\theta|\underline{x}) = \arg \max_{\theta} f_{X|\Theta}(x|\theta) f_{\Theta}(\theta)$ * $f_{\Theta|X}(\theta|\underline{x})$: Posteriori, $f_{X|\Theta}(\underline{x}|\theta)$: Likelihood, $f_{\Theta}(\theta)$: Prior

Bayes' Rule: $P_{\Theta|\underline{X}}(\theta|\underline{x}) = \begin{cases} \frac{P_{\underline{X}|\Theta}(\underline{x}|\theta)P_{\Theta}(\theta)}{P_{\underline{X}}(\underline{x})} \\ \frac{f_{\underline{X}|\Theta}(\underline{x}|\theta)P_{\Theta}(\theta)}{f_{\underline{X}}(\underline{x})} \end{cases}$ if X disc. if X cont.

 $f_{\Theta|\underline{X}}(\theta|\underline{x}) = \begin{cases} \frac{P_{\underline{X}|\Theta}(\underline{x}|\theta)f_{\Theta}(\theta)}{P_{\underline{X}}(\underline{x})} & \text{if } \underline{X} \text{ disc.} \\ \frac{f_{\underline{X}|\Theta}(\underline{x}|\theta)f_{\Theta}(\theta)}{f_{\underline{X}}(\underline{x})} & \text{if } \underline{X} \text{ cont.} \end{cases}$ *Independent of θ : $f_{\underline{X}}(\underline{x})$

*Independent of θ : $f_{\underline{X}}(\underline{x}) = \int_{-\infty}^{\infty} f_{\underline{X}|\Theta}(\underline{x}|\theta) f_{\Theta}(\theta) d\theta$

 $\begin{array}{l} \textbf{Beta Prior } \Theta \text{ is a Beta R.V. } w/\alpha,\beta>0 \\ f_{\Theta}(\theta) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha-1}(1-\theta)^{\beta-1} & \text{if } 0<\theta<1 \\ 0 & \text{otherwise} \end{cases} \end{array}$ $*\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$

* $\Gamma(x) = j_0^{-1} t^{-1} e^{-\alpha t}$ Prop.: 1. $\Gamma(x+1) = x\Gamma(x)$. For $m \in \mathbb{Z}^+$, $\Gamma(m+1) = m!$.
2. $\beta(\alpha, \beta) = \frac{(\alpha+\beta-1)!}{(\alpha-1)!(\beta-1)!} = \beta \binom{\alpha+\beta-1}{\alpha-1}$ 3. Expected Value: $E[\Theta] = \frac{\alpha}{\alpha+\beta}$ for $\alpha, \beta > 0$

4. Mode (max of PDF): $\frac{\alpha-1}{\alpha+\beta-2}$ for $\alpha, \beta > 1$

Drawing Beta Dist. 1. Label x-axis from 0 to 1. 2. Identify

mode.

3. Determine shape based on α and β : $\alpha = \beta = 1$ (uniform), $\alpha = \beta > 1$ (bell-shaped, peak at 0.5), $\alpha = \beta < 1$ (U-shaped w/ high density near 0 and 1), $\alpha > \beta$ (left-skewed), $\alpha < \beta$

w/ high density near 0 and 1), $\alpha > \beta$ (i.e. shoos), - (right-skewed). Least Mean Squares (LMS) Estimation: Assume prior $P_{\Theta}(\theta)$ or $f_{\Theta}(\theta)$ w/ obs. $\underline{X} = \underline{x}$. * $\hat{\theta} = g(\underline{x}) = \mathbb{E}[\Theta|\underline{X} = \underline{x}]$ | $\hat{\Theta} = g(\underline{X}) = \mathbb{E}[\Theta|\underline{X}]$

* $E[X] = \frac{a+b}{2}$, $Var[X] = \frac{(b-a)^2}{12}$ Conditional Exp. $E[X|Y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$

Binary Hyp. Testing: H_0 : Null Hyp., H_1 : Alt. Hyp.

TI Err. (False Rejection): Reject H_0 when H_0 is true. * $\alpha(R) = P[X \in R \mid H_0]$ TII Err. (False Accept.): Accept H_0 when H_1 is true. * $\beta(R) = P[X \in R^c \mid H_1]$

*ML Rule: $L(\underline{x}) \le 1 \Rightarrow \text{Accept } H_0 \mid L(\underline{x}) > 1 \Rightarrow \text{Reject } H_0$ *General: $L(\underline{x}) \le \xi \Rightarrow \text{Accept } H_0 \mid L(\underline{x}) > \xi \Rightarrow \text{Reject } H_0$

Neyman-Pearson Lemma: Given L(X), ξ so that $P[L(X) > \xi \mid H_0] = \alpha$ and $P[L(X) \le \xi \mid H_1] = \beta$, then for any other test (rejection region) w/ $P[X \in R \mid H_0] \le \alpha$, then $P[X \notin R \mid H_1] \ge \beta$.
Sig. Testing: Given X_1, \ldots, X_n , find a rejection reg. so a level of T1 err. is achieved: $P[\text{Reject } H_0 \mid H_0] = \alpha$.
*\alpha:\tau:\text{Significance level}, 1 - \alpha:\text{Confidence level}.
Bayesian Hyp. Testing: MAP Rule: Selects hyp. w/ higher a posterior prob. reject H_0 if:

a posteriori prob, reject H_0 if:

a posteriori prob, reject
$$H_0$$
 it:
$$p(H_1 \mid \underline{x}) \underset{H_0}{\gtrless} p(H_0 \mid \underline{x}) \mid f(H_1 \mid \underline{x}) \underset{H_0}{\gtrless} f(H_0 \mid \underline{x})$$

$$p(\underline{x} \mid H_1) \pi_j \underset{H_0}{\gtrless} p(\underline{x} \mid H_0) \pi_0 \mid f(\underline{x} \mid H_1) \pi_j \underset{H_0}{\gtrless} f(\underline{x} \mid H_0) \pi_0$$

$$p_{X}(\underline{x} \mid H_1) P[H_1]$$

 $*p(H_j \mid \underline{x}) = \frac{p_{\underline{X}}(\underline{x}|H_j)P[H_j]}{p_{\underline{X}}(\underline{x}|H_0)P[H_0] + p_{\underline{X}}(\underline{x}|H_1)P[H_1]} : \text{A posteriori}$ Min. Cost Bayes' Dec. Rule: $C_{i,j}$ is cost of accepting H_j when H_i is in place, so the MCBDR minimizes the avg. cost when H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, and so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, so the MCDDA minimum at a solution H_i is in place, and so the MCDDA minimum at a solution H_i is in place, and so the MCDDA minimum at a solution H_i is in place, and so the MCDDA minimum at a solution H_i is in place, and so the MCDDA minimum at a solution H_i is in place, and so the MCDDA minimum at a solution H_i is in place, and so the MCDDA minimum at a solution H_i is in place, and so the MCDDA minimum at a solution H_i is in place, and so the MCDDA minimum at a solution H_i is in place, and so the MCDDA minimum at a solution H_i is in place, and so the MCDDA minimum at a solution H_i is in place, and so the MCDDA minimum at a solution H_i is in place.

 $\begin{array}{l} \text{Accept } H_0 \text{ if } \Lambda(\underline{x}) < \frac{\pi_0(C_{01} - C_{00})}{\pi_1(C_{10} - C_{11})} \\ \text{Accept } H_1 \text{ if } \Lambda(\underline{x}) \geq \frac{\pi_0(C_{01} - C_{00})}{\pi_1(C_{10} - C_{11})} \end{array}$

Naive Bayes Assumption: Assume $X_1 \dots, X_n$ (features) are ind., then $p_{\underline{X}\mid\Theta}(\underline{x}\mid\theta)\Pi_{i=1}^n p_X(x_i\mid\theta)$.