Open Platform Communications Unified Architecture OPCUA

(released in 2008)

Majid Aminian

01/08/2019

OPC UA information modeling framework turns data into information and transport of machine-to-machine data and interfaces and the semantics of data

OPC UA standardizes industrial connectivity and ensures interoperability between products from different manufacturers

OPCUA Process

OPC UA provides a very flexible and adaptable mechanism for moving data between enterprise-type systems and the kinds of controls, monitoring devices and sensors that interact with real world data

A Robust Set of Services –OPC UA provides a full suite of services for eventing, alarming, reading, writing, discovery and more.

Internet Capability –OPC UA is fully capable of moving data over the Internet

available hardware platforms and operating systems:

- Hardware platforms: traditional PC hardware, cloud-based servers, PLCs, micro-controllers (ARM etc.)
- Operating Systems: Microsoft Windows, Apple OSX, Android, or any distribution of Linux, etc.

OPCUA client application:

In this application we can manage data that was sent by our codes(python codes) and watch streaming data .

Note: we could use different kind of free applications for OPCUA client and server.

In my project i used 'Prosys OPC UA Client'.

OPCUA Client Environment:

OPCUA Client Environment:

Meta data of data(Information Model)

```
<Reference ReferenceType="HasComponent">ns=1;i=6005</Reference>
        <Reference ReferenceType="HasComponent">ns=1:i=6004</Reference>
    </References>
</UAObject>
<UAVariable DataType="LocalizedText" NodeId="ns=1:i=6006" BrowseName="1:Data 01" AccessLevel="3">
    <DisplayName>Data_01</DisplayName>
        <Reference ReferenceType="HasProperty" IsForward="false">ns=1;i=5002</Reference>
        <Reference ReferenceType="HasTypeDefinition">i=68</Reference>
   </References>
</UAVariable>
<UAVariable DataType="Float" NodeId="ns=1:i=6007" BrowseName="1:Data 2" AccessLevel="3">
    <DisplayName>Data 2</DisplayName>
    <References>
        <Reference ReferenceType="HasTypeDefinition">i=63</Reference>
        <Reference ReferenceType="HasComponent" IsForward="false">ns=1;i=5002</Reference>
    </References>
<UAVariable DataType="Float" NodeId="ns=1;i=6008" BrowseName="1:Data 3" AccessLevel="3">
    <DisplayName>Data 3</DisplayName>
    <References>
        <Reference ReferenceType="HasTypeDefinition">i=63</Reference>
        <Reference ReferenceType="HasComponent" IsForward="false">ns=1;i=5002</Reference>
    </References>
</UAVariable>
<UAVariable DataType="Float" NodeId="ns=1:i=6009" BrowseName="1:Data 4" AccessLevel="3">
    <DisplayName>Data 4</DisplayName>
    <References>
        <Reference ReferenceType="HasTypeDefinition">i=63</Reference>
        <Reference ReferenceType="HasComponent" IsForward="false">ns=1;i=5002</Reference>
    </References>
</UAVariable>
<UAVariable DataType="Int64" NodeId="ns=1;i=6001" BrowseName="1:id" AccessLevel="3">
    <DisplayName>id</DisplayName>
    <References>
        <Reference ReferenceType="HasTypeDefinition">i=63</Reference>
        <Reference ReferenceType="HasComponent" IsForward="false">ns=1;i=5002</Reference>
    </References>
    <Value>
        <uax:Int64>0</uax:Int64>
    </Value>
<UAVariable DataType="UtcTime" NodeId="ns=1;i=6003" BrowseName="1:myvar unix time" AccessLevel="3">
```

python libraries which we are working with them:

1- google protobuf:

For buffering and getting data on the internet

2-OPCUA client and server:

For communicating with opc application

3- Streamz and Holoviews:

for streaming data and plotting them

A sample of streaming plot:

