If f is a surjection then $f(A)\cap f(B)\subset f(A\cap B)$

Let x be an element of $f(A) \cap f(B)$. Then $x \in f(A)$ and $x \in f(B)$. That is, there exists $y \in A$ such that f(y) = x and there exists $z \in B$ such that f(z) = x. We would like to find $u \in A \cap B$ s.t. f(u) = x. But $u \in A \cap B$ if and only if $u \in A$ and $u \in B$.

```
11 H1. surjection(f) 11. f(A) \cap f(B) \subset f(A \cap B)
```

1. Expand pre-universal target T1.

$$\begin{array}{c} \text{L1} \\ \hline \text{H1. } \textit{surjection}(f) \\ \hline \text{T2. } \forall x. (x \in f(A) \cap f(B) \Rightarrow x \in f(A \cap B)) \end{array}$$

2. Apply 'let' trick and move premise of universal-conditional target T2 above the line.

L1) xH1. surjection(f)H2. $x \in f(A) \cap f(B)$ T3. $x \in f(A \cap B)$

Let x be an element of $f(A) \cap f(B)$.

3. Quantifier-free expansion of hypothesis H2.

L1) xH1. surjection(f)H3. $x \in f(A)$ H4. $x \in f(B)$ $T3. <math>x \in f(A \cap B)$

Since $x \in f(A) \cap f(B)$, $x \in f(A)$ and $x \in f(B)$.

4. Expand pre-existential hypothesis H3.

L1) $x \ y$ H1. surjection(f)H5. $y \in A$ H6. f(y) = xH4. $x \in f(B)$ T3. $x \in f(A \cap B)$

By definition, since $x \in f(A)$, there exists $y \in A$ such that f(y) = x.

5. Expand pre-existential hypothesis H4.

L1 $x \ y \ z$ H1. surjection(f)H5. $y \in A$ H6. f(y) = xH7. $z \in B$ H8. f(z) = xT3. $x \in f(A \cap B)$

By definition, since $x \in f(B)$, there exists $z \in B$ such that f(z) = x.

6. Expand pre-existential target T3.

We would like to find $u \in A \cap B$ s.t. f(u) = x.

L1)
$$x y z$$
H1. $surjection(f)$
H5. $y \in A$
H6. $f(y) = x$
H7. $z \in B$
H8. $f(z) = x$

T4. $\exists u.(u \in A \cap B \land f(u) = x)$

7. Unlock existential target T4.

8. Quantifier-free expansion of target T5.

No moves possible.

We would like to find $u \in A \cap B$ s.t. f(u) = x.

But $u \in A \cap B$ if and only if $u \in A$ and $u \in B$.

If f is an injection then $f(A) \cap f(B) \subset f(A \cap B)$

Let x be an element of $f(A)\cap f(B)$. Then $x\in f(A)$ and $x\in f(B)$. That is, there exists $y\in A$ such that f(y)=x and there exists $z\in B$ such that f(z)=x. Since f is an injection, f(y)=x and f(z)=x, we have that y=z. We would like to find $u\in A\cap B$ s.t. f(u)=x. But $u\in A\cap B$ if and only if $u\in A$ and $u\in B$. Since y=z, we have that $y\in B$. Therefore, setting u=y, we are done.

$$H1. \ f$$
 is an injection $T1. \ f(A) \cap f(B) \subset f(A \cap B)$

1. Expand pre-universal target T1.

1. H1.
$$f$$
 is an injection T2. $\forall x. (x \in f(A) \cap f(B) \Rightarrow x \in f(A \cap B))$

2. Apply 'let' trick and move premise of universal-conditional target T2 above the line.

L1 xH1. f is an injection
H2. $x \in f(A) \cap f(B)$ T3. $x \in f(A \cap B)$

Let x be an element of $f(A) \cap f(B)$.

3. Quantifier-free expansion of hypothesis H2.

L1 xH1. f is an injection
H3. $x \in f(A)$ H4. $x \in f(B)$ $T3. <math>x \in f(A \cap B)$

Since $x \in f(A) \cap f(B)$, $x \in f(A)$ and $x \in f(B)$.

4. Expand pre-existential hypothesis H3.

L1) x yH1. f is an injection
H5. $y \in A$ H6. f(y) = xH4. $x \in f(B)$ T3. $x \in f(A \cap B)$

By definition, since $x \in f(A)$, there exists $y \in A$ such that f(y) = x.

5. Expand pre-existential hypothesis H4.

L1) $x \ y \ z$ H1. f is an injection

H5. $y \in A$ H6. f(y) = xH7. $z \in B$ H8. f(z) = xT3. $x \in f(A \cap B)$

By definition, since $x \in f(B)$, there exists $z \in B$ such that f(z) = x.

6. Forwards reasoning using H1 with (H6,H8).

Since f is an injection, f(y) = x and f(z) = x, we have that y = z.

$$\begin{array}{c|cccc} \textbf{L1} & x & y & z \\ & \textbf{H1.} & f \text{ is an injection} & [\text{Vuln.; Used with (H6,H8).}] \\ & \textbf{H5.} & y \in A \\ & \textbf{H6.} & f(y) = x & [\text{Vuln.}] \\ & \textbf{H7.} & z \in B \\ & \textbf{H8.} & f(z) = x & [\text{Vuln.}] \\ & \textbf{H9.} & y = z \\ \hline & \textbf{T3.} & x \in f(A \cap B) \end{array}$$

7. Expand pre-existential target T3.

L1 $x \ y \ z$ H1. f is an injection [Vuln.; Used with (H6,H8).]
H5. $y \in A$ H6. f(y) = x [Vuln.]
H7. $z \in B$ H8. f(z) = x [Vuln.]
H9. y = z $T4. \ \exists u. (u \in A \cap B \land f(u) = x)$

We would like to find $u \in A \cap B$ s.t. f(u) = x.

8. Unlock existential target T4.

L1 x y zH1. f is an injection [Vuln.; Used with (H6,H8).]

H5. $y \in A$ H6. f(y) = x [Vuln.]

H7. $z \in B$ H8. f(z) = x [Vuln.]

H9. y = zL2• u• T5. u• $\in A \cap B$ T6. f(u•) = x

We would like to find $u \in A \cap B$ s.t. f(u) = x.

9. Quantifier-free expansion of target T5.

L1 x y zH1. f is an injection [Vuln.; Used with (H6,H8).]

H5. $y \in A$ H6. f(y) = x [Vuln.]

H7. $z \in B$ H8. f(z) = x [Vuln.]

H9. y = zL2 \bullet $u \bullet$ $T7. u \bullet \in A$ $T8. u \bullet \in B$ $T6. f(u \bullet) = x$

But $u \in A \cap B$ if and only if $u \in A$ and $u \in B$.

10. Rewrite z as y throughout the tableau using hypothesis H9.

Since y = z, we have that $y \in B$.

11. Moved H6 down, as x can only be utilised by T6.

12. Choosing $u^{\blacklozenge}=y$ matches all targets inside $\mathrm{L2}^{\spadesuit}$ against hypotheses, so $\mathrm{L2}^{\spadesuit}$ is done.

Therefore, setting u = y, we are done.

- L1 x y zH1. f is an injection [Vuln.; Used with (H6,H8).]
 H5. $y \in A$ H10. $y \in B$ L2 Done
- 13. All targets of L1 are 'Done', so L1 is itself done.
- L1 Done

Problem solved.

If A and B are open sets, then $A \cap B$ is also open.

Let x be an element of $A\cap B$. Then $x\in A$ and $x\in B$. Therefore, since A is open, there exists $\eta>0$ such that $u\in A$ whenever $d(x,u)<\eta$ and since B is open, there exists $\theta>0$ such that $v\in B$ whenever $d(x,v)<\theta$. We would like to find $\delta>0$ s.t. $y\in A\cap B$ whenever $d(x,y)<\delta$. But $y\in A\cap B$ if and only if $y\in A$ and $y\in B$. We know that $y\in A$ whenever $d(x,y)<\eta$ and that $y\in B$ whenever $d(x,y)<\theta$. Assume now that $d(x,y)<\delta$. Then $d(x,y)<\eta$ if $\delta\leqslant\eta$ and $d(x,y)<\theta$ if $\delta\leqslant\theta$. We may therefore take $\delta=\min(\eta,\theta)$ and we are done.

```
A = \begin{bmatrix} L1 \\ H1. \ A \text{ is open} \\ H2. \ B \text{ is open} \\ \hline \textbf{T1. } A \cap B \text{ is open} \end{bmatrix}
```

1. Expand pre-universal target T1.

```
L1 H1. A is open H2. B is open T2. \forall x. (x \in A \cap B \Rightarrow \exists \delta. (\forall y. (d(x,y) < \delta \Rightarrow y \in A \cap B)))
```

2. Apply 'let' trick and move premise of universal-conditional target T2 above the line.

Let x be an element of $A \cap B$.

```
L1) x
H1. A is open
H2. B is open
H3. x \in A \cap B
T3. \exists \delta. (\forall y. (d(x, y) < \delta \Rightarrow y \in A \cap B))
```

3. Quantifier-free expansion of hypothesis H3.

```
L1) x
H1. A is open
H2. B is open
H4. x \in A
H5. x \in B

T3. \exists \delta. (\forall y. (d(x,y) < \delta \Rightarrow y \in A \cap B))
```

4. Forwards reasoning using H1 with H4.

```
\begin{array}{c|c} \textbf{L1} & x \ \eta[x] \\ \textbf{H1.} \ A \ \text{is open} & [\text{Vuln.; Used with H4.}] \\ \textbf{H2.} \ B \ \text{is open} & \\ \textbf{H4.} \ x \in A & [\text{Vuln.}] \\ \textbf{H5.} \ x \in B & \\ \textbf{H6.} \ \forall u.(d(x,u) < \eta[x] \Rightarrow u \in A) \\ \hline \textbf{T3.} \ \exists \delta. (\forall y.(d(x,y) < \delta \Rightarrow y \in A \cap B)) \end{array}
```

5. Deleted H4, as this unexpandable atomic statement is unmatchable.

Since $x \in A \cap B$, $x \in A$ and $x \in B$.

Since A is open and $x \in A$, there exists $\eta > 0$ such that $u \in A$ whenever $d(x, u) < \eta$.

```
\begin{array}{c} \text{L1} & x \ \eta[x] \\ \text{H1. } A \text{ is open} & [\text{Vuln.; Used with H4.}] \\ \text{H2. } B \text{ is open} & \\ \text{H4. } x \in A & [\text{Vuln.}] \\ \text{H5. } x \in B & \\ \text{H6. } \forall u.(d(x,u) < \eta[x] \Rightarrow u \in A) \\ \hline \text{T3. } \exists \delta. (\forall y.(d(x,y) < \delta \Rightarrow y \in A \cap B)) \end{array}
```

6. Deleted H1, as the conclusion of this implicative statement is unmatchable.

```
L1 x \eta[x]
H1. A is open [Vuln.; Used with H4.]

H2. B is open

H4. x \in A [Vuln.]

H5. x \in B

H6. \forall u.(d(x, u) < \eta[x] \Rightarrow u \in A)

T3. \exists \delta.(\forall y.(d(x, y) < \delta \Rightarrow y \in A \cap B))
```

7. Forwards reasoning using H2 with H5.

```
\begin{array}{c} \text{L1} & x \ \eta[x] \ \theta[x] \\ \text{H1. } A \text{ is open} & [\text{Vuln.; Used with H4.}] \\ \text{H2. } B \text{ is open} & [\text{Vuln.; Used with H5.}] \\ \text{H4. } x \in A & [\text{Vuln.}] \\ \text{H5. } x \in B & [\text{Vuln.}] \\ \text{H6. } \forall u.(d(x,u) < \eta[x] \Rightarrow u \in A) \\ \text{H7. } \forall v.(d(x,v) < \theta[x] \Rightarrow v \in B) \\ \hline \\ \text{T3. } \exists \delta. (\forall y.(d(x,y) < \delta \Rightarrow y \in A \cap B)) \end{array}
```

8. Deleted H5, as this unexpandable atomic statement is unmatchable.

9. Deleted H2, as the conclusion of this implicative statement is unmatchable.

```
L1) x \ \eta[x] \ \theta[x]
H1. \ A \text{ is open}
H2. \ B \text{ is open}
H4. \ x \in A
H5. \ x \in B
H6. \ \forall u. (d(x, u) < \eta[x] \Rightarrow u \in A)
H7. \ \forall v. (d(x, v) < \theta[x] \Rightarrow v \in B)
T3. \ \exists \delta. (\forall y. (d(x, y) < \delta \Rightarrow y \in A \cap B))
[Vuln.; Used with H4.]
[Vuln.; Used with H5.]
[Vuln.]
[Vuln.]
[Vuln.]
```

10. Unlock existential-universal-conditional target T3.

Since B is open and $x \in B$, there exists $\theta > 0$ such that $v \in B$ whenever $d(x, v) < \theta$.

We would like to find $\delta > 0$ s.t. $y \in A \cap B$ whenever $d(x, y) < \delta$.

11. Quantifier-free expansion of target T4.

L1)
$$x \eta[x] \theta[x]$$
H1. A is open
$$[Vuln.; Used with H4.]$$
H2. B is open
$$[Vuln.; Used with H5.]$$
H4. $x \in A$
$$[Vuln.]$$
H5. $x \in B$
$$[Vuln.]$$
H6. $\forall u.(d(x, u) < \eta[x] \Rightarrow u \in A)$
H7. $\forall v.(d(x, v) < \theta[x] \Rightarrow v \in B)$

$$\boxed{L2^{\bullet}} \qquad \delta^{\bullet}[\overline{y}] y$$

$$\boxed{H8. \ d(x, y) < \delta^{\bullet}[\overline{y}] \ [From L1.]}$$

$$\boxed{T5. \ y \in A}$$

$$\boxed{T6. \ y \in B}$$

But $y \in A \cap B$ if and only if $y \in A$ and $y \in B$.

12. Backwards reasoning using H6 with T5.

```
(L1)
                                            x \eta[x] \theta[x]
      H1. A is open
                                                                  [Vuln.; Used with H4.]
     H2. B is open
                                                                  [Vuln.; Used with H5.]
     H4. x \in A
                                                                  [Vuln.]
     H5. x \in B
                                                                  [Vuln.]
     H6. \forall u.(d(x, u) < \eta[x] \Rightarrow u \in A)
                                                                  [Vuln.]
     H7. \forall v. (d(x, v) < \theta[x] \Rightarrow v \in B)
      (L2♦)
                              \delta^{lack}[\overline{y}] y
            H8. d(x,y) < \delta^{\bullet}[\overline{y}]
                                          [From L1.]
            T7. d(x, y) < \eta[x]
            T6. y \in B
```

We know that $y \in A$ whenever $d(x, y) < \eta$.

13. Delete H6 as no other statement mentions A.

14. Backwards reasoning using H7 with T6.

15. Delete H7 as no other statement mentions B.

```
(L1)
                                          x \eta[x] \theta[x]
                                                               [Vuln.; Used with H4.]
     H1. A is open
                                                               [Vuln.; Used with H5.]
     H2. B is open
     H4. x \in A
                                                               [Vuln.]
     H5. x \in B
                                                               [Vuln.]
     H6. \forall u.(d(x, u) < \eta[x] \Rightarrow u \in A)
                                                               [Vuln.]
     H7. \forall v. (d(x, v) < \theta[x] \Rightarrow v \in B)
                                                               [Vuln.]
     (L2*)
            H8. d(x,y) < \delta^{\bullet}[\overline{y}]
                                        [From L1.]
            T7. d(x, y) < \eta[x]
            T8. d(x, y) < \theta[x]
```

16. Replacing diamonds with bullets in $L2^{\blacklozenge}$.

We know that $y \in B$ whenever $d(x, y) < \theta$.

Assume now that $d(x, y) < \delta$.

```
(L1)
                                             x \eta[x] \theta[x]
     H1. A is open
                                                                      [Vuln.; Used with H4.]
                                                                      [Vuln.; Used with H5.]
     H2. B is open
     H4. x \in A
                                                                      [Vuln.]
     H5. x \in B
                                                                      [Vuln.]
     H6. \forall u.(d(x, u) < \eta[x] \Rightarrow u \in A)
                                                                      [Vuln.]
     H7. \forall v. (d(x, v) < \theta[x] \Rightarrow v \in B)
                                                                      [Vuln.]
     (L2)
                                \delta^{\bullet}[\overline{y}] y
           H8. d(x,y) < \delta^{\bullet}[\overline{y}]
                                            [From L1.]
           T7. d(x, y) < \eta[x]
           T8. d(x,y) < \theta[x]
```

17. Backwards reasoning using library result "transitivity" with (T7,H8).

(L1) $x \eta[x] \theta[x]$ H1. A is open [Vuln.; Used with H4.] H2. B is open [Vuln.; Used with H5.] H4. $x \in A$ [Vuln.] H5. $x \in B$ [Vuln.] H6. $\forall u.(d(x, u) < \eta[x] \Rightarrow u \in A)$ [Vuln.] H7. $\forall v. (d(x, v) < \theta[x] \Rightarrow v \in B)$ [Vuln.] (L2) [From L1.; Vuln.] H8. $d(x,y) < \delta^{\bullet}[\overline{y}]$ T9. $\delta^{\bullet}[\overline{y}] \leqslant \eta[x]$ T8. $d(x,y) < \theta[x]$

Since $d(x, y) < \delta$, $d(x, y) < \eta$ if $\delta \leqslant \eta$.

18. Moved H8 down, as x can only be utilised by T8.

```
(L1)
                                                                      x \eta[x] \theta[x]
      H1. A is open
                                                                                                                     [Vuln.; Used with H4.]
                                                                                                                     [Vuln.; Used with H5.]
      H2. B is open
      H4. x \in A
                                                                                                                     [Vuln.]
      H5. x \in B
                                                                                                                     [Vuln.]
      H6. \forall u.(d(x, u) < \eta[x] \Rightarrow u \in A)
                                                                                                                     [Vuln.]
      H7. \forall v. (d(x, v) < \theta[x] \Rightarrow v \in B)
                                                                                                                     [Vuln.]
      (L2)
                                                       \delta^{\bullet}[\overline{y}] y
            T9. \delta^{\bullet}[\overline{y}] \leqslant \eta[x]
            \overset{	ext{(L3)}}{	o} H8. d(x,y)<\delta^ullet[\overline{y}]
                                                      [From L1.; Vuln.; From L2.]
                   T8. d(x,y) < \theta[x]
```

19. Backwards reasoning using library result "transitivity" with (T8,H8).

Since $d(x,y) < \delta$, $d(x,y) < \theta$ if $\delta \leqslant \theta$.

```
(L1)
                                                                       x \eta[x] \theta[x]
      H1. A is open
                                                                                                                      [Vuln.; Used with H4.]
      H2. B is open
                                                                                                                      [Vuln.; Used with H5.]
      H4. x \in A
                                                                                                                      [Vuln.]
      H5. x \in B
                                                                                                                      [Vuln.]
      H6. \forall u.(d(x, u) < \eta[x] \Rightarrow u \in A)
                                                                                                                      [Vuln.]
      H7. \forall v. (d(x, v) < \theta[x] \Rightarrow v \in B)
                                                                                                                      [Vuln.]
       (L2)
                                                        \delta^{\bullet}[\overline{y}] y
            T9. \delta^{\bullet}[\overline{y}] \leqslant \eta[x]
              \text{H8. } d(x,y) < \delta^{\bullet}[\overline{y}] 
                                                      [From L1.; Vuln.; From L2.]
                    T10. \delta^{\bullet}[\overline{y}] \leqslant \theta[x]
```

20. Delete H8 as no other statement mentions x.

21. Collapsed subtableau L3 as it has no undeleted hypotheses.

22. Taking $\delta^{\bullet}[\overline{y}] = \min(\eta[x], \theta[x])$ matches all targets against a library solution, so L2 is done.

We may therefore take $\delta = \min(\eta, \theta)$. We are done.

23. All targets of L1 are 'Done', so L1 is itself done.

Problem solved.

The pre-image of an open set U under a continuous function f is open.

Let x be an element of $f^{-1}(U)$. Then $f(x) \in U$. Therefore, since U is open, there exists $\eta > 0$ such that $u \in U$ whenever $d(f(x), u) < \eta$. We would like to find $\delta > 0$ s.t. $y \in f^{-1}(U)$ whenever $d(x,y) < \delta$. But $y \in f^{-1}(U)$ if and only if $f(y) \in U$. We know that $f(y) \in U$ whenever $d(f(x), f(y)) < \eta$. Since f is continuous, there exists $\theta > 0$ such that $d(f(x), f(y)) < \eta$ whenever $d(x, y) < \theta$. Therefore, setting $\delta = \theta$, we are done.

- H1. f is continuous

 H2. U is open

 T1. $f^{-1}(U)$ is open
- 1. Expand pre-universal target T1.

H1.
$$f$$
 is continuous

H2. U is open

T2. $\forall x. (x \in f^{-1}(U) \Rightarrow \exists \delta. (\forall y. (d(x,y) < \delta \Rightarrow y \in f^{-1}(U))))$

2. Apply 'let' trick and move premise of universal-conditional target T2 above the line.

Let x be an element of $f^{-1}(U)$.

L1
$$\begin{array}{c} x \\ \text{H1. } f \text{ is continuous} \\ \text{H2. } U \text{ is open} \\ \hline \textbf{H3. } x \in f^{-1}(U) \\ \hline \hline \text{T3. } \exists \delta. (\forall y. (d(x,y) < \delta \Rightarrow y \in f^{-1}(U))) \end{array}$$

- 3. Quantifier-free expansion of hypothesis H3.
- L1 xH1. f is continuous
 H2. U is open
 H4. $f(x) \in U$ T3. $\exists \delta. (\forall y. (d(x, y) < \delta \Rightarrow y \in f^{-1}(U)))$
- 4. Forwards reasoning using H2 with H4.
- $\begin{array}{c} \text{L1} & x \ \eta[f(x)] \\ \text{H1. } f \text{ is continuous} \\ \text{H2. } U \text{ is open} & [\text{Vuln.; Used with H4.}] \\ \text{H4. } f(x) \in U & [\text{Vuln.}] \\ \hline \text{H5. } \forall u.(d(f(x),u) < \eta[f(x)] \Rightarrow u \in U) \\ \hline \text{T3. } \exists \delta. (\forall y.(d(x,y) < \delta \Rightarrow y \in f^{-1}(U))) \end{array}$
- 5. Deleted H4, as this unexpandable atomic statement is unmatchable.
- $\begin{array}{c} \text{L1} & x \ \eta[f(x)] \\ \text{H1. } f \text{ is continuous} \\ \text{H2. } U \text{ is open} & \text{[Vuln.; Used with H4.]} \\ \text{H4. } f(x) \in U & \text{[Vuln.]} \\ \hline \text{H5. } \forall u.(d(f(x),u) < \eta[f(x)] \Rightarrow u \in U) \\ \hline \hline \text{T3. } \exists \delta. (\forall y.(d(x,y) < \delta \Rightarrow y \in f^{-1}(U))) \end{array}$

15

Since $x \in f^{-1}(U)$, we have that $f(x) \in U$.

Since U is open and $f(x) \in U$, there exists $\eta > 0$ such that $u \in U$ whenever $d(f(x), u) < \eta$.

6. Deleted H2, as the conclusion of this implicative statement is unmatchable.

```
L1 x \eta[f(x)]
H1. f is continuous
H2. U is open
H4. f(x) \in U
[Vuln.; Used with H4.]
H5. \forall u.(d(f(x), u) < \eta[f(x)] \Rightarrow u \in U)

T3. \exists \delta.(\forall y.(d(x, y) < \delta \Rightarrow y \in f^{-1}(U)))
```

7. Unlock existential-universal-conditional target T3.

```
L1 x \eta[f(x)]
H1. f is continuous
H2. U is open
H4. f(x) \in U
[Vuln.; Used with H4.]
H5. \forall u.(d(f(x), u) < \eta[f(x)] \Rightarrow u \in U)

L2^{\blacklozenge}
\delta^{\blacklozenge}[\overline{y}] y
H6. <math>d(x, y) < \delta^{\blacklozenge}[\overline{y}] [From L1.]
T4. y \in f^{-1}(U)
```

We would like to find $\delta > 0$ s.t. $y \in f^{-1}(U)$ whenever $d(x,y) < \delta$.

8. Quantifier-free expansion of target T4.

But $y \in f^{-1}(U)$ if and only if $f(y) \in U$.

9. Backwards reasoning using H5 with T5.

```
\begin{array}{c} \text{L1} & x \ \eta[f(x)] \\ \text{H1. } f \text{ is continuous} \\ \text{H2. } U \text{ is open} \\ \text{H4. } f(x) \in U \\ \text{H5. } \forall u.(d(f(x),u) < \eta[f(x)] \Rightarrow u \in U) \\ \hline \\ \text{L2}^{\blacklozenge} & \delta^{\blacklozenge}[\overline{y}] \ y \\ \hline \\ \text{L2}^{\blacklozenge} & \delta^{\blacklozenge}[\overline{y}] \ \text{[From L1.]} \\ \hline \\ \text{T6. } d(f(x),f(y)) < \eta[f(x)] \\ \hline \end{array}
```

We know that $f(y) \in U$ whenever $d(f(x), f(y)) < \eta$.

10. Delete H5 as no other statement mentions U.

11. Backwards reasoning using H1 with T6.

Since f is continuous, there exists $\theta > 0$ such that $d(f(x), f(y)) < \eta$ whenever $d(x, y) < \theta$.

12. Delete H1 as no other statement mentions f.

13. Hypothesis H6 matches target T7 after choosing $\delta^{\blacklozenge}[\overline{y}] = \theta[x, \eta[f(x)]]$, so L2 $^{\blacklozenge}$ is done.

 $\begin{array}{c|c} \textbf{L1} & x \ \eta[f(x)] \\ & \text{H1. } f \text{ is continuous} & [\text{Vuln.}] \\ & \text{H2. } U \text{ is open} & [\text{Vuln.; Used with H4.}] \\ & \text{H4. } f(x) \in U & [\text{Vuln.}] \\ & \text{H5. } \forall u.(d(f(x),u) < \eta[f(x)] \Rightarrow u \in U) & [\text{Vuln.}] \\ \hline \hline & \textbf{L2} \bullet \\ \hline \textbf{Done} & \\ \end{array}$

Therefore, setting $\delta = \theta$, we are done.

14. All targets of L1 are 'Done', so L1 is itself done.

L1 Done

Problem solved.

If f and g are continuous functions, then $g \circ f$ is continuous.

Take x and $\epsilon > 0$. We would like to find $\delta > 0$ s.t. $d(g(f(x)),g(f(y))) < \epsilon$ whenever $d(x,y) < \delta$. Since g is continuous, there exists $\eta > 0$ such that $d(g(f(x)),g(f(y))) < \epsilon$ whenever $d(f(x),f(y)) < \eta$. Since f is continuous, there exists $\theta > 0$ such that $d(f(x),f(y)) < \eta$ whenever $d(x,y) < \theta$. Therefore, setting $\delta = \theta$, we are done.

H1. f is continuous

H2. g is continuous

T1. $g \circ f$ is continuous

1. Expand pre-universal target T1.

H1.
$$f$$
 is continuous

H2. g is continuous

T2. $\forall x, \epsilon. (\exists \delta. (\forall y. (d(x,y) < \delta \Rightarrow d(g(f(x)), g(f(y))) < \epsilon)))$

2. pply 'let' trick and move premise of universal target T2 above the line.

L1 $x \in H1. \ f$ is continuous $H2. \ g$ is continuous $T3. \ \exists \delta. (\forall y. (d(x,y) < \delta \Rightarrow d(g(f(x)),g(f(y))) < \epsilon))$

3. Unlock existential-universal-conditional target T3.

4. Backwards reasoning using H2 with T4.

5. Delete H2 as no other statement mentions g.

Take x and $\epsilon > 0$.

We would like to find $\delta > 0$ s.t. $d(g(f(x)), g(f(y))) < \epsilon$ whenever $d(x, y) < \delta$.

Since g is continuous, there exists $\eta > 0$ such that $d(g(f(x)), g(f(y))) < \epsilon$ whenever $d(f(x), f(y)) < \eta$.

6. Backwards reasoning using H1 with T5.

Since f is continuous, there exists $\theta > 0$ such that $d(f(x), f(y)) < \eta$ whenever $d(x, y) < \theta$.

7. Delete H1 as no other statement mentions f.

8. Hypothesis H3 matches target T6 after choosing $\delta^{\blacklozenge}[\overline{y}] = \theta[x, \eta[f(x), \epsilon]]$, so L2^{\blacklozenge} is done.

Therefore, setting $\delta = \theta$, we are done.

9. All targets of L1 are 'Done', so L1 is itself done.

Problem solved.

If f is a continuous function and $(a_n) \to a$, then $(f(a_n)) \to f(a)$

Let $\epsilon > 0$. We would like to find N s.t. $d(f(a), f(a_n)) < \epsilon$ whenever $n \geqslant N$. Since f is continuous, there exists $\delta > 0$ such that $d(f(a), f(a_n)) < \epsilon$ whenever $d(a, a_n) < \delta$. Since $a_n \to a$, there exists N' such that $d(a, a_n) < \delta$ whenever $n \geqslant N'$. Therefore, setting N = N', we are done.

H1.
$$f$$
 is continuous
$$\frac{\text{H2. } a_n \to a}{\text{T1. } f(a_n) \to f(a)}$$

1. Expand pre-universal target T1.

$$egin{aligned} egin{aligned} \operatorname{L1} & \operatorname{H1.}\ f \ ext{is continuous} \ & \operatorname{H2.}\ a_n o a \ & \operatorname{T2.}\ orall \epsilon. (\exists N. (orall n. (n \geqslant N \Rightarrow d(f(a), f(a_n)) < \epsilon))) \end{aligned}$$

2. pply 'let' trick and move premise of universal target T2 above the line.

Let $\epsilon > 0$.

```
egin{aligned} \mathsf{L1} & \epsilon \ \mathsf{H1.} \ f \ \mathsf{is} \ \mathsf{continuous} \ \mathsf{H2.} \ a_n 	o a \ \hline  \mathbf{T3.} \ \exists N. ( \forall n. (n \geqslant N \Rightarrow d(f(a), f(a_n)) < \epsilon)) \end{aligned}
```

3. Unlock existential-universal-conditional target T3.

We would like to find N s.t. $d(f(a), f(a_n)) < \epsilon$ whenever $n \ge N$.

4. Backwards reasoning using H1 with T4.

Since f is continuous, there exists $\delta > 0$ such that $d(f(a), f(a_n)) < \epsilon$ whenever $d(a, a_n) < \delta$.

5. Delete H1 as no other statement mentions f.

6. Backwards reasoning using H2 with T5.

Since $a_n \to a$, there exists N' such that $d(a, a_n) < \delta$ whenever $n \ge N'$.

7. Delete H2 as no other statement mentions a.

8. Hypothesis H3 matches target T6 after choosing $N^{\blacklozenge}[\overline{n}] = N'[\delta[a,\epsilon]]$, so $L2^{\blacklozenge}$ is done.

Therefore, setting N=N', we are done.

```
\begin{array}{c|c} \textbf{L1} & \boldsymbol{\epsilon} \\ & \textbf{H1.} \ f \ \text{is continuous} & [\textbf{Vuln.}] \\ & \textbf{H2.} \ a_n \rightarrow a & [\textbf{Vuln.}] \\ \hline & \textbf{L2}^{\blacklozenge} \textbf{Done} \end{array}
```

9. All targets of L1 are 'Done', so L1 is itself done.

Problem solved.

A closed subset A of a complete metric space X is complete.

Let (a_n) be a Cauchy sequence in A. Then, since X is complete, we have that (a_n) converges. That is, there exists a such that $a_n \to a$. Since A is closed in X, (a_n) is a sequence in A and $a_n \to a$, we have that $a \in A$. Thus (a_n) converges in A and we are done.

H1. X is complete H2. A is closed in XT1. A is a complete space

1. Expand pre-universal target T1.

L1
H1. X is complete
H2. A is closed in XT2. $\forall (a_n).((a_n) \text{ is Cauchy } \land (a_n) \text{ is a sequence in } A \Rightarrow (a_n) \text{ converges in } A)$

2. Apply 'let' trick and move premise of universal-conditional target T2 above the line.

Let (a_n) be a Cauchy sequence in A.

L1 (a_n) H1. X is complete

H2. A is closed in XH3. (a_n) is Cauchy

H4. (a_n) is a sequence in AT3. (a_n) converges in A

3. Forwards reasoning using H1 with H3.

Since X is complete and (a_n) is Cauchy, we have that (a_n) converges.

4. Deleted H1, as the conclusion of this implicative statement is unmatchable.

L1 (a_n) H1. X is complete [Vuln.; Used with H3.]
H2. A is closed in XH3. (a_n) is Cauchy [Vuln.]
H4. (a_n) is a sequence in AH5. (a_n) converges

T3. (a_n) converges in A

5. Expand pre-existential hypothesis H5.

By definition, since (a_n) converges, there exists a such that $a_n \to a$.

6. Forwards reasoning using library result "a closed set contains its limit points" with (H2,H4,H6).

Since A is closed in X, (a_n) is a sequence in A and $a_n \to a$, we have that $a \in A$.

7. Delete H2 as no other statement mentions X.

8. All conjuncts of T3 (after expansion) can be simultaneously matched against H7 and H6 or rendered trivial by choosing z=a, so L1 is done.

L1 Done

Problem solved.

We would like to show that (a_n) converges in A. But this is clearly the case, so we are done.

$$f(f^{-1}(A)) \subset A$$

Let x be an element of $f(f^{-1}(A))$. Then there exists $y \in f^{-1}(A)$ such that f(y) = x. Since $y \in f^{-1}(A)$, we have that $f(y) \in A$. Since f(y) = x, we have that $x \in A$ and we are done.

1. Expand pre-universal target T1.

L1
$$T2. \, orall x. (x \in f(f^{-1}(A)) \Rightarrow x \in A)$$

2. Apply 'let' trick and move premise of universal-conditional target T2 above the line.

3. Expand pre-existential hypothesis H1.

L1)
$$x \ y$$
H2. $y \in f^{-1}(A)$
H3. $f(y) = x$
T3. $x \in A$

4. Quantifier-free expansion of hypothesis H2.

$$\begin{array}{c} \text{L1} & x \ y \\ \text{H4.} \ f(y) \in A \\ \hline \text{H3.} \ f(y) = x \\ \hline \hline \text{T3.} \ x \in A \end{array}$$

5. Rewrite f(y) as x throughout the tableau using hypothesis H3.

6. Hypothesis H5 matches target T3, so L1 is done.

Problem solved.

Let x be an element of $f(f^{-1}(A))$.

By definition, since $x \in f(f^{-1}(A))$, there exists $y \in f^{-1}(A)$ such that f(y) = x.

Since $y \in f^{-1}(A)$, we have that $f(y) \in A$.

Since f(y) = x, we have that $x \in A$.

We are done.

$$A \subset f^{-1}(f(A))$$

Let x be an element of A. We would like to show that $x \in f^{-1}(f(A))$, i.e. that $f(x) \in f(A)$. But this is clearly the case, so we are done.

$$T1.\ A\subset f^{-1}(f(A))$$

1. Expand pre-universal target T1.

$$T2.\, orall x.(x\in A\Rightarrow x\in f^{-1}(f(A)))$$

2. Apply 'let' trick and move premise of universal-conditional target T2 above the line.

Let x be an element of A.

$$\begin{array}{c}
\text{L1} & x \\
 & \text{H1. } x \in A \\
\hline
 & \text{T3. } x \in f^{-1}(f(A))
\end{array}$$

3. Quantifier-free expansion of target T3.

$$\begin{array}{c|c} \text{L1} & x \\ \hline \textbf{H1.} \ x \in \overset{x}{A} \\ \hline \textbf{T4.} \ f(x) \in f(A) \end{array}$$

We would like to show that $x \in f^{-1}(f(A))$, i.e. that $f(x) \in f(A)$.

4. All conjuncts of T4 (after expansion) can be simultaneously matched against H1 or rendered trivial by choosing y = x, so L1 is done.

L1 Done

Problem solved.

We would like to show that $f(x) \in f(A)$. But this is clearly the case, so we are done.

The intersection of two subgroups is a subgroup

Let x and y be such that $x \in H \cap K$ and $y \in H \cap K$. Since H is a subgroup, H is closed under taking inverses, $e \in H$ and H is closed under multiplication. Since K is a subgroup, K is closed under taking inverses, $E \in K$ and E is closed under multiplication. Since E is closed under multiplication, we have that E is closed under multiplication, we have that E is closed under multiplication and E is that E is and E is an analysis of E in the E is an analysis of E in the E in the E is an analysis of E in the E is an analysis of E in the E in the E is an analysis of E in the E in the E is an analysis of E in the E in the E is an analysis of E in the E in the E in the E is an analysis of E in the E in the E in the E is an analysis of E in the E in t

- L1 H1. H is a subgroup H2. K is a subgroup T1. $\forall x, y. (x \in H \cap K \land y \in H \cap K \Rightarrow xy \in H \cap K)$
- 1. Apply 'let' trick and move premise of universal-conditional target T1 above the line.

Let x and y be such that $x \in H \cap K$ and $y \in H \cap K$.

L1)
$$x y$$

H1. H is a subgroup

H2. K is a subgroup

H3. $x \in H \cap K$

H4. $y \in H \cap K$

T2. $xy \in H \cap K$

2. Quantifier-free expansion of hypothesis H1.

 $\begin{array}{c} \textbf{L1} & x \ y \\ \textbf{H5.} \ H \ \text{is closed under taking inverses} \\ \textbf{H6.} \ e \in H \\ \textbf{H7.} \ H \ \text{is closed under multiplication} \\ \textbf{\textbf{H2.}} \ \textbf{\textbf{\textbf{K}}} \ \textbf{is a subgroup} \\ \textbf{H3.} \ x \in H \cap K \\ \textbf{H4.} \ y \in H \cap K \\ \hline \textbf{\textbf{T2.}} \ xy \in H \cap K \\ \end{array}$

Since H is a subgroup, H is closed under taking inverses, $e \in H$ and H is closed under multiplication.

3. Quantifier-free expansion of hypothesis H2.

H5. H is closed under taking inverses H6. $e \in H$ H7. H is closed under multiplication H8. K is closed under taking inverses H9. $e \in K$ H10. K is closed under multiplication H3. $\mathbf{x} \in \mathbf{H} \cap \mathbf{K}$ H4. $y \in H \cap K$ T2. $xy \in H \cap K$

Since K is a subgroup, K is closed under taking inverses, $e \in K$ and K is closed under multiplication.

4. Quantifier-free expansion of hypothesis H3.

Since $x \in H \cap K$, $x \in H$ and $x \in K$.

H5.
$$H$$
 is closed under taking inverses H6. $e \in H$
H7. H is closed under multiplication H8. K is closed under taking inverses H9. $e \in K$
H10. K is closed under multiplication H11. $x \in H$
H12. $x \in K$
H4. $y \in H \cap K$

T2. $xy \in H \cap K$

5. Quantifier-free expansion of hypothesis H4.

H5. H is closed under taking inverses H6. $e \in H$ H7. H is closed under multiplication H8. K is closed under taking inverses H9. $e \in K$ H10. K is closed under multiplication H11. K is closed under multiplication H12. K is closed under multiplication H12. K is closed under multiplication H11. K is closed u

Since $y \in H \cap K$, $y \in H$ and $y \in K$.

6. Forwards reasoning using library result "" with (H7,H11,H13).

(L1)H5. H is closed under taking inverses H6. $e \in H$ H7. H is closed under multiplication [Vuln.] H8. K is closed under taking inverses H9. $e \in K$ H10. K is closed under multiplication H11. $x \in H$ [Vuln.] H12. $x \in K$ H13. $y \in H$ [Vuln.] H14. $y \in K$ H15. $xy \in H$ T2. $xy \in H \cap K$

Since H is closed under multiplication, $x \in H$ and $y \in H$, we have that $xy \in H$.

7. Deleted H7, as this unexpandable atomic statement is unmatchable.

```
(L1)
                          x y
    H5. H is closed under taking inverses
    H6. e \in H
    H7. H is closed under multiplication
                                             [Vuln.]
    H8. K is closed under taking inverses
    H9. e \in K
    H10. K is closed under multiplication
    H11. x \in H
                                             [Vuln.]
    H12. x \in K
    H13. y \in H
                                             [Vuln.]
    H14. y \in K
    H15. xy \in H
    T2. xy \in H \cap K
```

8. Deleted H11, as this unexpandable atomic statement is unmatchable.

9. Deleted H13, as this unexpandable atomic statement is unmatchable.

L1	x y	
	H5. H is closed under taking inverses	
	H6. $e \in H$	
	H7. H is closed under multiplication	[Vuln.]
	H8. K is closed under taking inverses	
	H9. $e \in K$	
	H10. K is closed under multiplication	
	H11. $x \in H$	[Vuln.]
	H12. $x \in K$	
	H13. $y \in H$	[Vuln.]
	H14. $y \in K$	
	H15. $xy \in H$	
	T2. $xy \in H \cap K$	

10. Forwards reasoning using library result "" with (H10,H12,H14).

Since K is closed under multiplication, $x \in K$ and $y \in K$, we have that $xy \in K$.

```
(L1)
                           x y
    H5. H is closed under taking inverses
    H6. e \in H
    H7. H is closed under multiplication
                                             [Vuln.]
    H8. K is closed under taking inverses
    H9. e \in K
    H10. K is closed under multiplication
                                             [Vuln.]
    H11. x \in H
                                              [Vuln.]
    H12. x \in K
                                             [Vuln.]
    H13. y \in H
                                              [Vuln.]
    H14. y \in K
                                             [Vuln.]
    H15. xy \in H
    H16. xy \in K
    T2. xy \in H \cap K
```

11. Deleted H10, as this unexpandable atomic statement is unmatchable.

(L1)	x y	
	H5. H is closed under taking inverses	
	H6. $e \in H$	
	H7. H is closed under multiplication	[Vuln.]
	H8. K is closed under taking inverses	
	H9. $e \in K$	
	H10. K is closed under multiplication	[Vuln.]
	H11. $x \in H$	[Vuln.]
	H12. $x \in K$	[Vuln.]
	H13. $y \in H$	[Vuln.]
	H14. $y \in K$	[Vuln.]
	H15. $xy \in H$	
	H16. $xy \in K$	
	T2. $xy \in H \cap K$	

12. Deleted H12, as this unexpandable atomic statement is unmatchable.

```
(L1)
                          x y
    H5. H is closed under taking inverses
    H6. e \in H
    H7. H is closed under multiplication
                                             [Vuln.]
    H8. K is closed under taking inverses
    H9. e \in K
    H10. K is closed under multiplication
                                             [Vuln.]
    H11. x \in H
                                              [Vuln.]
    H12. x \in K
                                              [Vuln.]
    H13. y \in H
                                              [Vuln.]
    H14. y \in K
                                             [Vuln.]
    H15. xy \in H
    H16. xy \in K
    T2. xy \in H \cap K
```

13. Deleted H14, as this unexpandable atomic statement is unmatchable.

```
(L1)
                          x y
    H5. H is closed under taking inverses
    H6. e \in H
    H7. H is closed under multiplication
                                             [Vuln.]
    H8. K is closed under taking inverses
    H9. e \in K
    H10. K is closed under multiplication
                                             [Vuln.]
    H11. x \in H
                                             [Vuln.]
    H12. x \in K
                                             [Vuln.]
    H13. y \in H
                                             [Vuln.]
    H14. y \in K
                                             [Vuln.]
    H15. xy \in H
    H16. xy \in K
    T2. xy \in H \cap K
```

14. Quantifier-free expansion of target T2.

(L1)H5. H is closed under taking inverses H6. $e \in H$ H7. H is closed under multiplication [Vuln.] H8. *K* is closed under taking inverses H9. $e \in K$ H10. K is closed under multiplication [Vuln.] H11. $x \in H$ [Vuln.] H12. $x \in K$ [Vuln.] H13. $y \in H$ [Vuln.] H14. $y \in K$ [Vuln.] H15. $xy \in H$ H16. $xy \in K$ T3. $xy \in H$ T4. $xy \in K$

15. Hypothesis H15 matches target T3, so we can remove T3.

x y	
H5. H is closed under taking inverses	
H6. $e \in H$	
H7. H is closed under multiplication	[Vuln.]
H8. K is closed under taking inverses	
H9. $e \in K$	
H10. K is closed under multiplication	[Vuln.]
H11. $x \in H$	[Vuln.]
H12. $x \in K$	[Vuln.]
H13. $y \in H$	[Vuln.]
H14. $y \in K$	[Vuln.]
H15. $xy \in H$	
H16. $xy \in K$	
$\boxed{T4. xy \in K}$	
· ·	

16. Hypothesis H16 matches target T4, so L1 is done.

L1 Done

Problem solved.

We would like to show that $xy \in H \cap K$, i.e. that $xy \in H$ and $xy \in K$.

We are done.