

AniMove 2024, June 17th to 28th

Home range meta-analyses

Using the 'ctmm' R package

Inês Silva, Chris Fleming

i.simoes-silva@hzdr.de

Analyses of ecological data should always account for the uncertainty in the process(es) that generated the data.

Analyses of ecological data should always account for the uncertainty in the process(es) that generated the data.

We want to quantify the effect of covariates, such as species or taxa, sex, body size, age, movement characteristics, conspecific density, habitat, anthropogenic impact, etc....

Analyses of ecological data should always account for the uncertainty in the process(es) that generated the data.

We want to quantify the effect of covariates, such as species or taxa, sex, body size, age, movement characteristics, conspecific density, habitat, anthropogenic impact, etc....

... even if we are comparing different populations with different movement behaviors or sampling schedules.

NON-HIERARCHICAL MODELS

How does data inform parameters?

Adapted from Midway (2008)

NON-HIERARCHICAL MODELS

How does data inform parameters?

Adapted from Midway (2008)

HIERARCHICAL MODELS

How does data inform parameters?

HIERARCHICAL MODELS

How does data inform parameters?

HIERARCHICAL MODELS

How does data inform parameters?

Trajectory

Data

 χ^2 inverse-Gaussian meta-analysis

Individual

Trajectory

Tapirs have HR crossing times (τ_p) of 0.72 days, ranging from 0.05 to 12.8 days.

Our estimator

This framework facilitates population-level inference with as few as **2-3 observed home range crossings** (τ_p) and similarly small number of individuals (m).

