Podstawy kryptografii

Andrzej M. Borzyszkowski

Instytut Informatyki Uniwersytet Gdański

sem. letni 2022/2023

inf.ug.edu.pl/~amb/

Andrzej Borzyszkowski (Instytut Informatyki l

Podstawy kryptografii

sem. letni 2022/2023

Podstawy kryptografii

sem. letni 2022/2023

System doskonale bezpieczny

- Przestrzeń wiadomości M, kluczy K i kryptogramów C
- Funkcje szyfrowania i odszyfrowywania
 - Enc: $M \times K \rightarrow C$, być może niedeterministyczna
 - Dec: $C \times K \to M$, Dec(Enc(m, k), k) = m deterministycznie
- Rozkłady prawdopodobieństwa:
 - $-Pr[m=m_0], m_0 \in M, Pr[k=k_0], k_0 \in K$, niezależne rozkłady
- Def.: System jest doskonale bezpieczny, jeśli
 - $-Pr[m=m_0] = Pr[m=m_0|c=c_0], c_0 \in C$
 - tzn. po poznaniu kryptogramu wiedza na temat tekstu jawnego jest taka sama jak przedtem
 - inaczej, zdarzenia $m=m_0$ oraz $c=c_0$ są niezależne
- problemik techniczny: $Pr[c = c_0] > 0$

Szyfr doskonale bezpieczny szyfry strumieniowe

Andrzej Borzyszkowski (Instytut Informatyki I

Własności systemu doskonale bezpiecznego

- Wniosek 1:
 - system jest doskonale bezpieczny wtt.

$$Pr[c = c_0|m = m_0] = Pr[c = c_0]$$

- w kryptografii asymetrycznej jest wprost przeciwnie
- Wniosek 2:
 - system jest doskonale bezpieczny wtt.

$$Pr[c = c_0|m = m_0] = Pr[c = c_0|m = m_1] \text{ dla } m_0, m_1 \in M$$

- Wersja z gra:
 - Ewa wybiera dwa teksty jawne: m_0, m_1
- Tadeusz losuje klucz k, losuje bit $b \in \{0,1\}$, ogłasza $Enc(m_b,k)$
- Ewa stara się odgadnąć bit b, wygrywa jeśli odgadnie
- system jest doskonale bezpieczny wtt. Ewa odnosi sukces
- z prawdopodobieństwem $\frac{1}{2}$

sem. letni 2022/2023

Szyfr jednorazowy

Vernam, Mauborgne 1918:

```
qwertyuiopasdfghjklzxcvbnm
+ przykladtekstdoszyfrowania
= fndpdjulhtkkwiuziiqqlyvovm
 fndpdjulhtkkwiuziiqqlyvovm
-qwertyuiopasdfghjklzxcvbnm
= przykladtekstdoszyfrowania
 fndpdjulhtkkwiuziiqqlyvovm
-wykladelementykryptografii
= jptedgqadhgxdkkiktxcfhvjne

    dowolny tekst może być tekstem jawnym
```

- jedyny szyfr doskonale bezpieczny andrzej Borzyszkowski (Instytut Informatyki l
 - Podstawy kryptografii
- sem. letni 2022/2023

5 / 21

Andrzej Borzyszkowski (Instytut Informatyki l

• generator $b[n+5] = b[n] \oplus b[n+2]$ ma okres 31

- tzn. 31 bitów wyznacza ciąg pseudolosowy 2 Gb

prawidłowego wymiaru i $det(A_k) = 0$ dla k > m

• łatwa implementacja jako rejestr 32 bitowy

• kryptoanaliza: sam szyfrogram nic nie daje

najpierw trzeba zgadnąć wymiar m

LFSR (linear feedback shift register)

rozkład wartości klucza jest jednostajny

• $c = m \oplus k$, gdzie $m, k, c \in \{0, 1\}^{\ell}$, tzn. ciągi bitów długości ℓ $-Pr[c = c_0|m = m_0] = Pr[m \oplus k = c_0|m = m_0] = Pr[m_0 \oplus k = m_0]$

zakładając jednostajny rozkład klucza otrzymujemy warunek

• Klucz użyty powtórnie oznacza umożliwia analize czestotliwości

- umożliwia to analize podobną do analizy szyfru Vigenere'a

– relacja $Dec \subset C \times K \times M$ jest funkcyjna w każdym argumencie

Podstawy kryptografii

- para tekst jawny+zaszyfrowany daje natychmiast fragment klucza

z niewiadomą C, gdzie A[i,j] = b[i+j+1], B[l] = b[m+l+1],

- tw. Jeśli A_k jest macierzą dla wymiaru k, to $det(A_m) = 1$ dla

- ale $b[n+31] = b[n] \oplus b[n+3]$ ma okres $2^{31} - 1 = 2 \cdot 10^9$

– wówczas można próbować rozwiązać równanie AC = B

- jeśli $c = m \oplus k$ oraz $c' = m' \oplus k$ (ten sam klucz k)

• jeśli szyfr jest doskonale bezpieczny, to moc $K \ge |M|$

• tw. Shannon'a: szyfr jest doskonale bezpieczny wtt

sem. letni 2022/2023

Liczby losowe i pseudolosowe

- tyle to wiadomo nie znając kryptogramu

- liczby losowe naprawdę: obserwacja zjawisk przyrody
 - pseudolosowe, generowane algorytmem deterministycznym, być może z początkowym kluczem (ziarno), nieprzewidywalność dla obserwatora, niepowtarzalność (dla różnych ziaren)
- generator liniowy: $x[n] = a \cdot x[n-1] \oplus b \mod k$
 - wystarczający do testowania programów itp.
 - bezwartościowy do kryptografii (przewidywalność)
- funkcje nieodwracalne: łatwo wyliczyć f(x) ale trudno odwrócić
 - s ustalone, x[n] = f(s+n), b[n] = ostatni bit x[n]
 - np. algorytm DES albo SHA
- generator Blum-Blum-Shub: $x[n] = x[n-1] \cdot x[n-1] \mod k$, b[n] = ostatni bit x[n]

Szyfr jednorazowy, analiza

 $|c_0| = Pr[k = m_0 \oplus c_0] = (\frac{1}{2})^{\ell}$

doskonałego bezpieczeństwa

- to $c \oplus c' = m \oplus m'$

Przesuwane rejestry

 X_1, X_2, \ldots

Andrzej Borzyszkowski (Instytut Informatyki l

Przesuwane rejestry, ulepszenie

- generator redukujący
 - generujemy dwa ciągi bitów, a[i] oraz b[i]
 - *i*-ty bit generowany =
 - znaleźć i-tą jedynkę w b, jej numer jest j
 - wynikiem jest a[i]
 - nie ma dowodu, ale wydaje się, że jest to niezły generator
- generator kombinacji
 - ustalamy funkcję nieliniową $f: \{0,1\}^k \to \{0,1\}$
 - używamy k generatorów liniowych, ostatecznym wyjściem jest wynik tej funkcji, tzn. $a[i] = f(a_1[i], \ldots, a_k[i])$
- generator filtrów: zamiast kilku generatorów używany jest jeden z kolejnymi bitami: $b[i] = f(a[i \cdot k + 1], \dots, a[i \cdot k + k])$
 - następny bit jest generowany po k rundach

ndrzej Borzyszkowski (Instytut Informatyki I

Podstawy kryptografii

sem. letni 2022/2023

ndrzej Borzyszkowski (Instytut Informatyki I

sem. letni 2022/2023

Złożoność obliczeniowa

- System doskonale bezpieczny (perfect security):
 - klucz musi być co najmniej tak długi jak tekst jawny
 - i użyty tylko jeden raz
 - założenia zbyt ograniczające praktyczne zastosowania
- Bezpieczeństwo obliczeniowe (computational security):
 - system musi być bezpieczny wobec obliczeń możliwych do wykonania w rozsądnym czasie
 - bezpieczny z prawdopodobieństwem bliskim 1
 - tzn. dopuszczamy możliwość złamania szyfru przypadkiem albo wskutek długich obliczeń
- Założenia: złożoność szyfru mierzona jest parametrem n, przeciwnik działa w czasie wielomianowym ($C \cdot n^c$ dla pewnych C i c)
 - system jest bezpieczny jeśli prawdopodobieństwo złamania jest mniejsze niż n^{-c} dla dowolnego c

Atak na generator kombinacji

- przykład: k = 3, kombinacja $f(x_1, x_2, x_3) = najpopularniejszy z bitów$ długości rejestrów np. 30, 31, 32
- założenie: znamy tekst jawny długości np. 100 bitów, czyli również strumień tej samej długości
- atak siłowy wymaga wypróbowania 2⁹³ możliwych rejestrów początkowych i zbadania, czy wynik generowania jest równy strumieniowi
- $f(x_1, x_2, x_3) = x_i$ dla $\frac{3}{4}$ przypadków dla każdego z i
- czyli testujemy 2³² rejestrów początkowych i sprawdzamy czy generowany strumień pokryje się w ok. $\frac{3}{4}$ ze znanym strumieniem
- w sumie trzeba przetestować 2³³ możliwych stanów początkowych, całkowicie wykonalne zadanie
- dobra funkcja kombinacji nie powinna posiadać korelacji wyniku z argumentami

Podstawy kryptografii

Teoria złożoności

- Algorytm działa w czasie wielomianowym (na wejściu x) - wynik jest wyprodukowany po p(|x|) krokach, p - pewien wielomian
- Algorytm probabilistyczny działa w czasie wielomianowym
 - jeśli dodatkowo odczytuje co najwyżej p(|x|) losowych bitów
 - oznaczenie PPT
- Obie klasy algorytmów są zamkniete na złożenia i inne operacje
- Funkcja f jest zaniedbywalnie mała – jeśli

$$\forall p. \ \exists N \in \mathbb{N}. \ \forall n > N. \ f(n) < \frac{1}{p(n)}$$

- np.
$$2^{-n}$$
, $2^{-\sqrt{n}}$, $n^{-\log n}$

• Funkcje zaniedbywalnie małe są zamknięte na dodawanie i mnożenie przez wielomian

11 / 21

Dwa rodzaje ataków

- $Dec: K \times C \rightarrow M$ - $|K| \leq |M| \approx |C|$, dużo mniejsza przestrzeń kluczy
- Atak brutalny
 - zastosowanie każdego możliwego klucza
 - *Dec*(K, c₀) ⊆ M
 - albo atak z parą $\langle c_0, m_0 \rangle$ i wówczas znajdujemy $Dec(k_0, c_0) = m_0$
 - albo trzeba jakoś wiedzieć, że k_0 jest kluczem
 - prawdopodobieństwo znalezienia klucza = 1
- Zgadywanie
 - testujemy tylko jeden klucz, $Dec(k_0, c_0)$
 - prawdopodobieństwo znalezienia $=\frac{1}{|K|}$
- Czyli przestrzeń klucza musi być ponadwielomianowa dla parametru szyfru

Andrzej Borzyszkowski (Instytut Informatyki l

Podstawy kryptografii

sem. letni 2022/2023

13 / 21

Własności bezpieczeństwa obliczeniowego

- Żaden bit tekstu jawnego nie może być odgadnięty z prawdopodobieństwem znacząco większym niż ¹/₂
 - gdyby mógł być, to dwa teksty jawne różniące się odgadywanym bitem pozwoliłyby Ewie odgadnąć tekst jawny
- Semantyczne bezpieczeństwo (obliczeniowe):

$$\forall A \in PPT. \exists A' \in PPT. \forall h(m), f(m) \in PT.$$

$$Pr[A(n, Enc(k, m), h(m)) = f(m)] - Pr[A'(n, h(m)) = f(m)]$$

iest zaniedbywalnie mała

- -h(m) oznacza "wiedzę" na temat tekstu jawnego
- -f(m) jest własnością, którą chcemy zbadać
- algorytm A korzysta z kryptogramu i tekstu jawnego
- algorytm A' nie korzysta z kryptogramu
- i daje nie gorsze wyniki
- czyli znajomość kryptogramu nie wnosi żadnej wiedzy
- Tw.: powyższe definicje są równoważne

Definicja bezpieczeństwa szyfru

- Doskonałe bezpieczeństwo
 - Ewa wybiera dwa teksty jawne: m_0, m_1
 - Tadeusz losuje klucz k, losuje bit $b \in \{0,1\}$, ogłasza $Enc(k, m_b)$
 - Ewa stara się odgadnąć bit b, wygrywa jeśli odgadnie
 - system jest doskonale bezpieczny wtt. Ewa odnosi sukces
 - z prawdopodobieństwem $\frac{1}{2}$
- Bezpieczeństwo obliczeniowe (atak tylko z kryptogramem)
 - parametr n
 - Ewa używa algorytmu PPT
 - teksty jawne mają tę samą długość (wielomianową od n)
 - klucz jest losowany dla tego parametru n
 - system jest bezpieczny, jeśli prawdopodobieństwo sukcesu Ewy
 - $<\frac{1}{2}$ + zaniedbywalnie mała

Andrzej Borzyszkowski (Instytut Informatyki

Andrzej Borzyszkowski (Instytut Informatyki I

Podstawy kryptografii

sem. letni 2022/2023

14 / 21

Pseudolosowość

- Dany ciąg s (seed, ziarno) długości n, zadanie: wygenerować ciąg G(s) długości $\ell(n) > n$, długość ℓ jest wielomianowa
 - jeśli ciąg s jest losowy, to G(s) "wygląda jak losowy"
 - ciągów długości n jest 2^n , ciągów dłuższych jest więcej, nie wszystkie (b. niewiele) będzie wygenerowanych
 - dla danego ciągu r długości $\ell(n)$ można sprawdzić czy jest ciągiem wygenerowanym (brutalne przeszukiwanie)
- G jest generatorem ciągów pseudolosowych, jeśli
 - $orall D \in PPT.Pr[D(r) = 1] Pr[D(G(s)) = 1]$ jest zaniedbywalnie mała
 - r jest ciągiem losowym długości $\ell(n)$
 - D bada czy ciąg jest losowy, gdyby badało wyczerpująco, to prawie na pewno wykryje, czy ciąg jest generowany
 - ale D ma ograniczone możliwości obliczeniowe

Generatory pseudolosowe

- Formalnie, brak dowodu istnienia jakiegokolwiek generatora
 - brak dowodów, że pewne operacje nie dadzą się wykonać w czasie wielomianowym
 - istnieją problemy, które są wystarczająco trudne przy obecnym stanie wiedzy
- Zakładamy, że generatory pseudolosowe istnieja
 - będą one skutecznie zbudowane przy założeniu, że pewne problemy są trudne

Andrzej Borzyszkowski (Instytut Informatyki I

Podstawy kryptografii

sem. letni 2022/2023

Andrzej Borzyszkowski (Instytut Informatyki I

Tryb synchronizacji

pseudolosowego

bezpieczny

naprawdę losowego Generatory w praktyce

warunków bezpieczeństwa

Podstawy kryptografii

każde użycie funkcji szyfrującej zaznacza zużytą część ciągu

- nigdy dwa teksty nie będą szyfrowane tym samym ciągiem

– strony protokołu muszą pamiętać stan generatora pseudolosowego

sem. letni 2022/2023

Szyfrowanie wielu wiadomości

- Ewa przygotowuje zestaw par tekstów jawnych
 - jeden z zestawów jest zaszyfrowany losowym kluczem
 - Ewa ma zgadnąć, który zestaw
 - system jest bezpieczny dla szyfrowania wielokrotnego, jeśli prawdopodob. sukcesu $< \frac{1}{2} + z$ aniedbywalnie mała
- Twierdzenie: jeśli szyfr jest bezpieczny dla szyfrowania wielokrotnego, to szyfrowanie musi być niedeterministyczne
 - dw.: Ewa przygotowuje $\langle m_0, m_0 \rangle$ oraz $\langle m_0, m_1 \rangle$
 - i widzi, czy kryptogramy są równe, czy różne
- Szyfr strumieniowy
 - znajomość $G(k)\oplus m_0$ oraz $G(k)\oplus m_1$ pozwala obliczyć $m_0\oplus m_1$
 - to tak jak dwukrotne użycie szyfru jednorazowego
 - The Misuse of RC4 in Microsoft Word and Excel

http://eprint.iacr.org/2005/007

Szyfr strumieniowy

• Idea jak z szyfru jednorazowego

- generowanie klucza: losowy długości n,

- odszyfrowanie: $Dec(k, c) = G(k) \oplus c$

Na pewno nie ma doskonałego bezpieczeństwa

Szyfry strumieniowe dla wielokrotnego szyfrowania

• Szyfrowanie jest bezpieczne i jest deterministyczne

- ale nie podpada pod ogólny schemat szyfrowania - funkcja szyfrująca zależy również od "stanu rejestru"

klucz krótszy od tekstu jawnego (tw. Shannona)

- szyfrowanie: $Enc(k, m) = G(k) \oplus m$ dla m długości $\ell(n)$

• Jeśli generator G jest pseudolosowy, to szyfr jest obliczeniowo

- RC4: jest niezły, ma pewne ograniczenia (pierwsze bity)

- dw.: gdyby nie był, to Ewa odróżniłaby ciąg pseudolosowy od

- generatory z przesuwanym rejestrem: w zasadzie nie spełniają

19 / 21

Podstawy kryptografii

Andrzej Borzyszkowski (Instytut Informatyki l

Szyfry strumieniowe dla wielokrotnego szyfrowania c.d.

- Tryb asynchroniczny
 - generator korzysta z dodatkowego wektora inicjalizacji
 - ciąg pseudolosowy G(s,IV), spełnia własności dla łącznego rozpatrywania, tzn. jako funkcji pary $\langle s,IV\rangle$
 - funkcja szyfrowania: $Enc(k, m) = \langle IV, G(k, IV) \oplus m \rangle$
 - funkcja odszyfrowania: $Dec(k, \langle IV, c \rangle) = G(k, IV) \oplus c$
 - szyfrowanie jest niedeterministyczne, każde szyfrowanie tego samego tekstu jawnego daje inny wynik
- Para $\langle s, IV \rangle$ może być uważana łącznie za ziarno
 - niektóre generatory pseudolosowe można łatwo przerobić na generator z wektorem inicjalizującym
 - niektóre taki wektor mają naturalnie obecny
 - niektóre generatory nie nadają się do wielokrotnego szyfrowania

Andrzej Borzyszkowski (Instytut Informatyki l

Podstawy kryptografii

sem. letni 2022/2023

21 / 21