

Linux Systems and Open Source Software

Course Overview

Introduction

- Instructor: Chia-Heng Tu (涂嘉恒)
 - chiaheng@ncku.edu.tw
 - Office @ Room 65B03
 - Office hours: by appointment
 - Tel: 06-2757575 ext. 62527
- TAs
 - 吳昱宗、陳彥甫、蔡宗霖
 - Office @ Room 65704 (Advanced Systems Research Lab)
 - Tel: 06-2757575 ext. 62520 #2704
 - Email: <u>asrlab@csie.ncku.edu.tw</u>
 Email subject starts with ``[Linux2022Fall]''

Class Arrangement

• A 3-hour class is separated into three time slots:

Wednesday @R65203

- 1. 10:10 ~ 11:15 (Lectures)
- 2. 11:20 ~ 12:00 (Hands-on Labs)

Friday @R65203 or R65704

3. 9:10 ~ 10:00 (Hands-on Labs and Office hours)

Why Open Source Software (OSS)

Full Ownership and control

No vendor lock-in, great flexibilit

Open Source Software is Everywhere

 Open source software provides almost everything you may need

- Operating systems
- Browsers
- Databases
- Project management
- Email client

Linux-Based Systems Are Everywhere

- Linux is a family of open source Unix-like operating systems
- Linux is the core of various systems
 - Servers
 - 3C products
 - Appliances
 - Autonomous vehicles

Simplified history of Unix-like operating systems.

This Course Will ...

- Be suitable for students who have little or zero experiences in the open source development
- Be good for you to get familiar with open source development tools and flows
- Pave the road for your further studies related to systems or other research fields
- Provide you with many hands-on experiences

Requirements

- Pre-requisite:
 - Programming in C
 - Commitment to spending time for hands-on works

- Efforts:
 - Attend the classes
 - Do hands-on labs and mini projects
 - Hand in your codes and lab results almost every week
 - Hand in your codes and results of the mini projects on special topics

Timetable

0/7 0 ----- :---- 1----

This page will be updated separately Keep an eye on the schedule at Moodle

1.	9// Course introduction	
2.	9/14 Basics of hardware platform for Linux systems	
3.	9/21 Version control system: Git	Basis of Linux tools
4.	9/28 Vim and its plug-in	
5.	10/5 Bash and Shell Scripts	
6.	10/12 Makefile and Maven	
7.	10/19 Linux command-line tools	
8.	10/26 Review and discussion (Discuss with TAs @R65	704)
9.	11/2 Package management	
10.	11/9 Process management	Basis of Linux systems
11.	11/16 Networking	
12.	11/23 Basics of performance analysis	
13.	11/30 Tools for performance analysis	
14.	12/7 Inter-process communication	
15.	12/14 Robotic Operating Systems (ROS)	Advanced topics for Autonomous Driving
16.	12/21 ROS-based autonomous driving systems	
17.	12/28 Simulated autonomous driving systems	
18.	1/4 Review and discussion (Discuss with Tas @R65704	4)

Grading...

- Weekly lab exercises: 75%
 - ♦ Weeks 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 15, 16
 - You should hand in codes/results by the end of each Friday class
- Mini projects: 25%
 - ♦ Weeks 5 (7%), 14 (7%)
 - **₩eeks 17** (11%)
 - You should hand in your codes/results at the specific dates The preliminary dates are shown in the following page
- No labs at
 - Weeks 1, 8, 18
- Online submission of your codes to Moodle to get the above scores

1.	9/7 Course introduction	1. N/A	
2.	9/14 Basics of hardware platform for Linux systems	2. \diamondsuit	
3.	9/21 Version control system: Git	3. 🔷	
4.	9/28 Vim and its plug-in	4. 🔷	
5.	10/5 Bash and Shell Scripts	5. ♦	
6.	10/12 Makefile and Maven	6. 🔷	
7.	10/19 Linux command-line tools	7. 🔷	
8.	10/26 Review and discussion (Discuss with TAs @R65704)	8. N/A	
9.	11/2 Package management	9. 🔷	
10.	11/9 Process management	10. \diamondsuit	
11.	11/16 Networking	11. 🔷	
12.	11/23 Basics of performance analysis	12. \diamondsuit	
13.	11/30 Tools for performance analysis	13. \diamondsuit	
14.	12/7 Inter-process communication	14. ♦	
15.	12/14 Robotic Operating Systems (ROS)	15. \diamondsuit	
16.	12/21 ROS-based autonomous driving systems	16. \diamondsuit	
17.	12/28 Simulated autonomous driving systems	17. 🔷	
18.	1/4 Review and discussion (Discuss with Tas @R65704)	18. N/A	

depending on the status of COVID-19 pandemic

Timetable (Each Color Has Different Meaning)

- 1. 9/7 Course introduction ← No labs
- 3. 9/21 Version control system: Git
- 4. 9/28 Vim and its plug-in
- 5. 10/5 Bash and Shell Scripts ← A mini project; hand-in by 10/26
- 6. 10/12 Makefile and Mayen
- 7. 10/19 Linux command-line tools
- 8. 10/26 Review and discussion (Discuss with TAs @R65704)
- 9. 11/2 Package management
- 10. 11/9 Process management
- 11. 11/16 Networking
- 12. 11/23 Basics of performance analysis
- 13. 11/30 Tools for performance analysis
- 15. 12/14 Robotic Operating Systems (ROS)
- 16. 12/21 ROS-based autonomous driving systems
- 17. 12/28 Simulated autonomous driving systems
 A mini project; hand-in by 1/4
- 18. 1/4 Review and discussion (Discuss with Tas @R65704)

In Each Class

- You will use your PC or the PC in the classroom
- You should download and install the Linux operating system and the virtual machine to set the environment for the hands-on labs

- You are expected to finish your labs on Wed class
 - If you need helps, please find the TAs
 - You should finish labs by no later than each Friday class

September 5, 2022

Now, make your own decision

- Drop this class, if you expect to
 - listen to lectures and take exams

- Take this class, if you want to
 - learn something practical and get hands dirty

September 5, 2022

QUESTIONS?

September 5, 2022