Secure Multi-Party Computation

Secure two-party computation

x and y remain secret

Building block: oblivious transfer (OT)

Putting everything together

x Alice

f(x,y) = 0

y

Bob

Keys for *y*: oblivious transfer

Properties of Yao's garbled circuit

Constant round

Boolean circuits

Goldreich-Micali-Wigderson(GMW) protocol

Secret sharing

Bob

Why XOR?

Truth table of XOR

Inputs		Outputs
Χ	Υ	Z
0	0	0
0	1	1
1	0	1
1	1	0

Generalization to finite field

Why finite field?

Generalization to multiple parties

$$a = a_0 \oplus a_1 \oplus a_2 \oplus \dots \oplus a_n$$

$$a = a_1 + a_1 + a_2 + \dots + a_n \mod p$$

Generalization to threshold t out of n

How to Share a Secret, Adi Shamir 1979

Idea of GMW protocol

Boolean circuits with XOR + AND gates
Why?
XOR + AND is universal: construct NAND!!!

• Inputs are secret-shared between two parties

After every gate, the output is secret-shared between two parties

Input:

Alice

$$a \quad a_0 = a \oplus a_1$$

$$b_1 = b \oplus b_0$$

Bob

XOR gates

 $= (a_o \oplus a_1) \oplus (b_o \oplus b_1)$ = $(a_o \oplus b_o) \oplus (a_1 \oplus b_1)$

 a_{1}

Bob

AND gates

AND gates

Putting everything together

 χ

Alice

1. Secret sharing inputs

2. XOR locally for every XOR gate

3. Run OTs for every AND gate

4. Reconstruct the output

Properties of GMW protocol

• Interactive, O(depth) rounds

Can be generalized to arithmetic circuits

Input:

Alice

$$a \quad a_0 = a + a_1 \mod p$$

 $a_{_{1}}$

Bob

$$b_1 = b + b_0 \mod p$$

Addition gates

Multiplication gates

Multiplication gates

Bob

Generalization to multiparty computation

$$a = a_0 \oplus a_1 \oplus a_2 \oplus ... \oplus a_n$$

$$b = b_0 \oplus b_1 \oplus b_2 \oplus ... \oplus b_n$$

$$a \oplus b = (a_0 \oplus b_0) \oplus (a_1 \oplus b_1) \oplus ... \oplus (a_n \oplus b_n)$$

$$a \wedge b = \sum a_i \wedge b_i \oplus \sum a_i \wedge b_i$$

Properties of GMW protocol

• Interactive, O(depth) rounds

Can be generalized to arithmetic circuits

Easily extended to multi-party

Multiplication triplets

$$e = a - u$$

$$f = b - v$$

$$b_o$$

$$c_o = -ef + a_o f + eb_o + z_o$$

 u_o, v_o, z_o

Multiplication gates:

$$a_o$$
 - u_o , b_o - v_o

$$a_1 - u_1$$
, $b_1 - v_1$

$$c_0 + c_1 = a \times b$$

$$(u_0 + u_1) \times (v_0 + v_1) = (z_0 + z_1)$$

$$a_{1}$$

$$e = a - u$$

$$f = b - v$$

$$c_1 = a_1 f + e b_1 + z_1$$

$$u_1, v_1, z_1$$

Online-offline cost

Multiplication triplets are data independent

Cannot be reused

All types of "triplets"

• Square, truncation, etc, ...