Log-linear MRFs: Ising, Boltzmann, Deep Belief, Metric

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Log-linear MRF Applications
 - Ising Model
 - Boltzmann Distribution
 - Energy Based Model
 - Boltzmann Machine
 - Restricted Boltzmann Machine
 - Deep Belief Networks
 - Metric MRF

General Log-linear model with features

• A distribution P is a log-linear model over $\mathcal H$ if

$$P(X_1,...,X_n) = \frac{1}{Z} \exp \left[-\sum_{i=1}^k w_i f_i(D_i) \right]$$

Note that *k* is the no of features
Not no of subgraphs

- Can have several functions over same scope
- Each term is an energy function
- Equivalent to Gibbs distribution

$$P_{\Phi}(X_1,...X_n) = \frac{1}{Z}\tilde{P}(X_1,...X_n) \text{ where } \tilde{P}(X_1,...X_n) = \prod_{i=1}^m \phi_i(D_i)$$
 is an unnomalized measure and $Z = \sum_{X_1,...X_n} \tilde{P}(X_1,...X_n)$

• Rewrite factor $\phi(D)$ as $\phi(D) = \exp(-\epsilon(D))$ where $\epsilon(D) = -\ln \phi(D)$ is the *energy* function

Example of Markov Network: Ising Model

- Pairwise and single potentials
 - Edge potentials $\varepsilon_{ij}(x_i,x_j) = w_{ij}x_ix_j$
 - Contributes w_{ij} when $X_i = X_j$, same, and $-w_{ij}$ otherwise
 - Node potentials are u_i
- Probability distribution (energy function)

$$P(\xi) = \frac{1}{Z} \exp\left(-\sum_{i < j} w_{ij} x_i x_j - \sum_i u_i x_i\right)$$
 $\xi \in Val(X)$ is a full assignment of the variables

- Edge/node potentials also arise in continuous
 - Gaussian quadratic form: $p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp[(\mathbf{x} \mathbf{\mu})^t \Sigma^{-1} (\mathbf{x} \mathbf{\mu})]$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[(\mathbf{x} - \boldsymbol{\mu})^t \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

• Using precision matrix $J=\Sigma^{-1}$

$$p(\mathbf{x}) \quad \alpha \quad \exp\left[-\frac{1}{2}\mathbf{x}^t J \mathbf{x} + \left(J \mathbf{\mu}\right)^t \mathbf{x}\right]$$

With h= $J\mu$, terms involving $x_i \left[-\frac{1}{2} J_{i,i} x_i^2 + h_i x_i \right]$

terms involving pairs
$$-\frac{1}{2} \big[J_{i,j} x_i x_j + J_{j,i} x_j x_i \big] = \mathbf{4} J_{i,j} x_i x_j$$

When $w_{ij}>0$ model prefers

 w_{ij} <0 : antiferromagnetic

 w_{ii} =0: non-interacting

aligned spins: ferromagnetism

Ising Model in Statistical Physics

- Energy of interacting atoms
 - Determined from their spin
 - Atom's spin is sum of its electron spins
 - Each atom associated with binary random variable
 - $-X_i \in \{+1,-1\}$ whose value is direction of atom's spin
 - Energy function parametric form

$$\mathbf{\varepsilon}_{i,j}(x_i,x_j) = -w_{ij}x_ix_j$$

- Symmetric in X_i , X_i : note scope is pairwise
- Makes contribution w_{ij} to energy when $X_i = X_j$ (same spin)
- $-w_{ij}$ otherwise
- Probability distribution over atoms (energy function)

$$P(\xi) = \frac{1}{Z} \exp\left(-\sum_{i < j} w_{ij} x_i x_j - \sum_i u_i x_i\right) \qquad \xi \, \varepsilon \, Val(X)$$

Ising Model studies

- To answer a variety of questions
 - Usually as the no. of atoms (variables) goes to infinity $P(\xi) = \frac{1}{Z} \exp \left[-\sum_{i \le i} w_{ij} x_i x_j - \sum_i u_i x_i \right]$
- Inference problems, e.g.,
 - Determine probability of a configuration where majority of spins are +1 (or -1) versus more mixed ones
 - Answer depends on strength of interactions w_{ii}
 - e.g., Multiply all weights by temperature parameter
 - Many other problems investigated extensively
 - Answers known--some even analytically

Boltzmann Distribution

- Variant of Ising Model
- Variables X_i have value $\{0,1\}$ instead of $\{+1,-1\}$
 - Energy function has same parametric form

$$\mathbf{\varepsilon}_{ij}(x_i, x_j) = -w_{ij}x_ix_j$$

- Nonzero contribution $-w_{ij}$ from edge X_i - X_j only when X_i = X_j =1
 - Ising model has contribution w_{ij} when variables are same and $-w_{ij}$ when they are different
- Has the same energy function as Ising model

$$P(\xi) = \frac{1}{Z} \exp\left(-\sum_{i < j} w_{ij} x_i x_j - \sum_i u_i x_i\right)$$

Mapping 0 to -1

Boltzmann Distrib. & Statistical Mechanics

Boltzmann Probability distribution

$$P(\text{state}) \propto \exp[-E]/kT$$

Where *E* is state energy (varies from state to state)

- kT is a constant of the distribution
 - -k = Boltzmann's constant, T = absolute temperature
- Ratio over two states depends on energy difference

$$P(\text{state}_1)|P(\text{state}_2) = \exp[E_2 - E_1]/kT$$

- Later investigated by Josiah Gibbs
 - Boltzmann distribution also known as Gibbs measure
- Maxwell-Boltzmann distribution
 - Is χ^2 with 3 degrees of freedom

$$f(v) = \sqrt{\left(\frac{m}{2\pi kT}\right)^3} 4\pi v^2 e^{-\frac{mv^2}{2kT}}$$

Boltzmann Distribution resembles neuron

- Neuron output is a stochastic function of its connected neighbors
 - Probability distribution of each variable X_i given assignment of neighbors X_j is $\sigma(z)$ where

$$z = -\left(\sum_{j} w_{ij} x_{j}\right) - w_{i} \qquad \text{where } \sigma(z) = [1/1 + \exp(-z)]$$
 is a value in [0,1]

9

Boltzmann distribution, Sigmoidal neuron and Logistic Regression have the same form

Boltzmann Machine

- A form of Energy Based Model
- Structure of a recurrent neural network (RNN):
 - one where there are directed cycles
 - Unlike feed-forward neural networks RNN can use internal memory to process arbitrary sequences
 - Can process time-varying real-valued inputs
 - Have nodes which are inputs, hidden and outputs
- Boltzmann machines are a type of RNN

Restricted Boltzmann Machine

- RBM is a special case of Boltzmann machines and Markov networks
- No visible-visible and hidden-hidden connections
 Bipartite graph

Not an RBM

 Used to learn features for input to neural networks in Deep Learning

Deep Belief Networks (DBNs)

- Consist of several layers of RBMs
 - Stacking RBMs
 - Fine tuning resulting deep network using gradient descent and back-propagation
- DBNs are Generative Models
 - Provide estimates of both

$$p(x|C_k)$$
 and $p(C_k|x)$

- Conventional neural networks are discriminative
 - Directly estimate $p(C_k|x)$

Metric MRF for Labeling

Task:

- Graph with nodes $X_1,...X_n$, edges E
- Assign to each X_i a label in $V=\{v_1,...v_k\}$
 - E.g., labeling super-pixels in image
- Each node, in isolation, has a preferred label
 - · E.g., color specifies a label
- However, we want smoothness constraint over neighbors
 - Neighboring nodes should have "similar" values

Importance of Modeling Correlations between superpixels

Original image

Oversegmented image-superpixels Each superpixel is alone-each

Classification using node potentials a random variable superpixel classified independently

Segmentation using pairwise Markov Network encoding interactions between adjacent superpixels

Solution for Labeling

Solution:

- Encode node preferences as edge potentials
- Smoothness preferences as edge potentials
- Encode model in negative log-space, using energy functions
- Energy function

$$E(x_1,..x_n) = \sum_{i} \varepsilon_i(x_i) + \sum_{i,j \in E} \varepsilon_{ij}(x_i,x_j)$$

- For MAP objective, ignore partition function
- Goal: Minimize the energy (MAP objective)

$$\arg\min_{x_1,...x_n} E(x_1,...x_n)$$

- How to define smoothness? Next.

Smoothness for Metric MRF

- Many variants
- Simplest one is a variant of Ising model

$$\mathbf{e}_{i,j} = \begin{cases} 0 & x_i = x_j \\ 1 & x_i \neq x_j \end{cases}$$

- for $\lambda_{ij} \geq 0$
- In this model:
 - Lowest pairwise energy (0) when neighbors have same value
 - Higher energy otherwise λ_{ij}

Generalizations of Smoothness for Metric MRF

- 1. Potts model (when there are more than two labels)
- 2. Distance Function on labels
 - Prefer neighboring nodes to have labels smaller distance apart
 - Metric MRF
 - Need a metric $\mu(v_k, v_l)$ on labels

Metric Requirement

- Function μ : $V \times V \rightarrow [0, \infty)$
 - Reflexivity, symmetry and triangle inequality
 - Semi-metric if triangle inequality is violated
- Metric MRF
 - Define $\varepsilon_{i,j}(v_k,v_l) = \mu(v_k,v_l)$
 - Where μ is a metric (or semi-metric)
 - Assume same for all variables
 - » Simplifies no. of parameters needed
 - » Usually holds in practice
 - Example metric p-norm: $\varepsilon(x_i, x_j) = \min(c||x_i x_j||_p, \operatorname{dist}_{\max})$
- Metric interactions arise frequently
 - Plays important role in computer vision