МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»
Тема: Оценка параметров надёжности программ по временным
моделям обнаружения ошибок

Студент гр. 7304	 Есиков О.И.
Преподаватель	 Ефремов М.А

Санкт-Петербург

Цель работы.

Исследовать показатели надёжности программ, характеризуемые моделью обнаружения ошибок Джелинского-Моранды для различных законов распределения времён обнаружения отказов и различного числа используемых для анализа данных.

Ход выполнения.

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с равномерным законом распределения. Было использовано 100% входных данных.

i	X_i	i	X_i	i	X_i
1	0,312	11	6,357	21	13,034
2	1,423	12	6,940	22	14,789
3	1,660	13	7,159	23	15,789
4	2,295	14	8,805	24	16,008
5	3,241	15	9,210	25	16,295
6	4,848	16	10,205	26	16,495
7	5,562	17	10,788	27	16,830
8	5,722	18	10,970	28	17,193
9	5,788	19	11,782	29	18,383
10	6,183	20	12,253	30	19,526

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i \cdot X_{i}}{\sum_{i=1}^{n} X_{i}} = 20,346$$

$$A > \frac{n+1}{2}$$

20,346 > 15,5 => существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m, A) = \frac{n}{m - A}$$

m	f(m)	g(m, A)	/f(m) - $g(m, A)$ /
31	3,995	2,81592	1,17908
32	3,027	2,574287	0,452713
33	2,558	2,370846	0,187154
34	2,255	2,197205	0,057795
35	2,035	2,047263	0,012263
36	1,863	1,916478	0,053478

Минимум разности двух функций по модулю при $m=35 \Longrightarrow B^{\hat{}}=m-1=34$

$$\check{K} = \frac{n}{(B^{\hat{}} + 1) \cdot \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i \cdot X_{i}} = 0,00692$$

$$X^{\hat{}} = \frac{1}{\check{K} \cdot (B^{\hat{}} - n)}$$

i	31	32	33	34
$X^{}_{i}$	36,127	48,169	72,253	144,507

Время до завершения тестирования = $\sum_{i=31}^{34} X_i^{^{\wedge}} = 301,056$ дней Полное время тестирования = $\sum_{i=1}^{30} X_i + \sum_{i=31}^{34} X_i^{^{\wedge}} = 596,899$ дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с равномерным законом распределения. Было использовано 80% входных данных.

i	X_i	i	X_i	i	X_i
1	1,091	9	8,840	17	14,467
2	3,974	10	12,042	18	14,983
3	4,164	11	12,212	19	15,823
4	4,221	12	12,317	20	17,111
5	4,318	13	12,941	21	18,588
6	5,184	14	13,261	22	18,897
7	7,334	15	13,619	23	19,353
8	7,542	16	13,620	24	19,492

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{\sum_{i=1}^{n} X_i} = 15,754$$

15,754 > 12,5 => существует конечное решение

m	f(m)	g(m, A)	/f(m) - $g(m, A)$ /
25	3,776	2,595648	1,180352
26	2,816	2,342321	0,473679
27	2,354	2,134045	0,219955
28	2,058	1,959784	0,098216
29	1,844	1,811834	0,032166
30	1,678	1,684654	0,006654
31	1,545	1,574158	0,029158

Минимум разности двух функций по модулю при $m=30 \Longrightarrow B^{\hat{}}=m$ - 1=29

$$\check{K} = \frac{n}{(B^{\hat{}} + 1) \cdot \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i \cdot X_i} = 0,006117$$

i	25	26	27	28	29
$X^{^{\wedge}}{}_{i}$	32,694	40,868	54,491	81,736	163,472

Время до завершения тестирования = 373,262 дней

Полное время тестирования = 648,656 дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с равномерным законом распределения. Было использовано 60% входных данных.

i	X_i	i	X_i	i	X_i
1	0,216	7	5,688	13	13,229
2	1,415	8	8,717	14	13,757
3	2,769	9	8,762	15	15,272
4	3,178	10	9,727	16	15,326
5	5,207	11	10,068	17	15,485
6	5,391	12	12,705	18	19,941

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{\sum_{i=1}^{n} X_i} = 12,540$$

12,540 > 9,5 => существует конечное решение

m	f(m)	g(m, A)	/f(m) - $g(m, A)$ /
19	3,495	2,78649	0,70851
20	2,548	2,412953	0,135047
21	2,098	2,127725	0,029725
22	1,812	1,902801	0,090801

Минимум разности двух функций по модулю при $m=21 \Longrightarrow B^{\hat{}}=m$ - 1=20

Время до завершения тестирования = 117,628 дней

Полное время тестирования = 284,483 дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с экспоненциальным законом распределения. Было использовано 100% входных данных.

i	X_i	i	X_i	i	X_i
1	0,167	11	3,449	21	19,939
2	0,230	12	3,820	22	20,340
3	0,270	13	4,499	23	21,018
4	0,566	14	5,645	24	21,755
5	0,871	15	7,065	25	22,548
6	0,879	16	9,102	26	23,041
7	0,955	17	13,665	27	23,697
8	2,293	18	13,700	28	30,907
9	2,606	19	14,223	29	38,003
10	3,141	20	19,550	30	45,814

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{\sum_{i=1}^{n} X_i} = 23,337$$

23,337 > 15,5 => существует конечное решение

m	f(m)	g(m, A)	/f(m) - $g(m, A)$ /
31	3,995	3,91505	0,07995
32	3,027	3,463109	0,436109

Минимум разности двух функций по модулю при $m=31 \Longrightarrow B^{\hat{}}=m-1=30$ $B=n\Longrightarrow$ найдены все ошибки — тестирование завершено.

Полное время тестирования = 373,758 дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с экспоненциальным законом распределения. Было использовано 80% входных данных.

i	X_i	i	X_i	i	X_i
1	0,589	9	5,483	17	13,562
2	1,213	10	5,488	18	17,540
3	1,359	11	5,739	19	21,990
4	1,792	12	6,689	20	22,300
5	2,143	13	8,456	21	24,502
6	2,630	14	9,212	22	27,626
7	3,269	15	11,086	23	28,254
8	5,234	16	11,442	24	34,221

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{\sum_{i=1}^{n} X_i} = 18,192$$

18,192 > 12,5 => существует конечное решение

m	$f(m) \qquad g(m,A) \qquad /f(m)$		/f(m) - $g(m, A)$ /
25	3,776	3,525325	0,250675
26	2,816	3,073817	0,257817

Минимум разности двух функций по модулю при $m=25 \Longrightarrow B^{\hat{}}=m-1=24$

B = n => найдены все ошибки – тестирование завершено.

Полное время тестирования = 271,815 дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с экспоненциальным законом распределения. Было использовано 60% входных данных.

i	X_i	i	X_i	i	X_i
1	0,292	7	2,553	13	11,740
2	0,992	8	2,739	14	17,298
3	1,408	9	4,651	15	17,838
4	2,379	10	5,035	16	21,555
5	2,391	11	6,948	17	22,012
6	2,504	12	10,975	18	50,659

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{\sum_{i=1}^{n} X_i} = 14,548$$

14,548 > 9,5 => существует конечное решение

m	f(m)	g(m, A)	/f(m) - $g(m, A)$ /
19	3,495	4,043317	0,548317
20	2,548	3,301667	0,753667

Минимум разности двух функций по модулю при $m=19 \Longrightarrow B^{\hat{}}=m-1=18$ $B=n\Longrightarrow$ найдены все ошибки — тестирование завершено.

Полное время тестирования = 183,969 дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с релеевским законом распределения. Было использовано 100% входных данных.

	i	X_i	i	X_i	i	X_i
Ī	1	1,451	11	7,733	21	13,453
	2	2,653	12	8,786	22	13,947

3	2,913	13	9,088	23	14,678
4	4,102	14	9,279	24	14,828
5	4,427	15	9,729	25	16,043
6	5,244	16	9,758	26	16,806
7	5,273	17	10,128	27	16,889
8	6,356	18	10,503	28	17,973
9	6,547	19	12,565	29	19,506
10	7,369	20	12,836	30	22,110

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{\sum_{i=1}^{n} X_i} = 19,849$$

19,849 > 15,5 => существует конечное решение

m	f(m)	g(m, A)	f(m) - g(m, A)
31	3,995	2,690378	1,304622
32	3,027	2,468963	0,558037
33	2,558	2,281221	0,276779
34	2,255	2,120014	0,134986
35	2,035	1,980087	0,054913
36	1,863	1,857487	0,005513
37	1,725	1,749184	0,024184

Минимум разности двух функций по модулю при $m=36 \Longrightarrow B^{\hat{}}=m$ - 1=35

$$\check{K} = \frac{n}{(B^{\hat{}} + 1) \cdot \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i \cdot X_i} = 0,005935$$

i	31	32	33	34	35
$X^{}_{i}$	33,699	42,123	56,164	84,246	168,493

Время до завершения тестирования = 384,726 дней

Полное время тестирования = 697,699 дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с релеевским законом распределения. Было использовано 80% входных данных.

i	X_i	i	X_i	i	X_i
1	0,691	9	5,382	17	10,590
2	1,217	10	5,961	18	11,343
3	1,468	11	7,287	19	14,535
4	3,376	12	8,311	20	15,632
5	3,663	13	8,485	21	16,042
6	3,683	14	9,182	22	16,986
7	5,246	15	9,563	23	17,815
8	5,353	16	10,235	24	21,553

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{\sum_{i=1}^{n} X_i} = 16,787$$

16,787 > 12,5 => существует конечное решение

m	f(m)	g(m, A)	/f(m) - $g(m, A)$ /
25	3,776	2,922049	0,853951
26	2,816	2,604897	0,211103
27	2,354	2,34985	0,00415
28	2,058	2,140293	0,082293

Минимум разности двух функций по модулю при $m=27 \Longrightarrow B^{\hat{}}=m$ - 1=26

$$\check{K} = \frac{n}{(B^{\hat{}} + 1) \cdot \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i \cdot X_{i}} = 0,011001$$

i	25	26
$X^{^{\wedge}}{}_{i}$	45,450	90,899

Время до завершения тестирования = 136,349 дней

Полное время тестирования = 349,948 дней

Был сгенерирован и отсортирован по возрастанию массив данных в соответствии с релеевским законом распределения. Было использовано 60% входных данных.

i	X_i	i	X_i	i	X_i
1	1,382	7	6,200	13	14,425
2	3,886	8	8,856	14	14,855
3	4,276	9	11,158	15	15,611
4	4,536	10	11,191	16	16,258
5	5,312	11	12,252	17	17,321
6	5,533	12	12,260	18	20,878

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i \cdot X_i}{\sum_{i=1}^{n} X_i} = 12,183$$

12,183 > 9,5 => существует конечное решение

m	f(m)	g(m, A)	/f(m) - $g(m, A)$ /
19	3,495	2,640557	0,854443
20	2,548	2,302749	0,245251
21	2,098	2,04157	0,05643
22	1,812	1,833602	0,021602
23	1,607	1,664086678	0,057086678

Минимум разности двух функций по модулю при $m=22 \Longrightarrow B^{\hat{}}=m$ - 1=21

$$\check{K} = \frac{n}{(B^{\hat{}} + 1) \cdot \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i \cdot X_{i}} = 0.009848039282734469$$

i	19	20	21
$X^{^{\wedge}}{}_{i}$	33,8477	50,7715	101,543

Время до завершения тестирования = 186,162 дней

Полное время тестирования = 372,352 дней

Полученные в результате работы результаты представлены в итоговых таблицах 1 и 2.

Закон	100% данных	80 % данных	60 % данных
распределения	(n = 30)	$(\mathbf{n} = 24)$	(n = 18)
Равномерный	34	29	20
Экспоненциальный	30	24	18
Релеевский	35	26	20

Таблица 1 – Оценка первоначального числа ошибок

Закон	100% данных	80 % данных	60 % данных
распределения	(n = 30)	(n=24)	(n = 18)
Равномерный	596,899 дней	648,656 дней	284,483 дней
Экспоненциальный	373,758 дней	271,815 дней	183,969 дней
Релеевский	697,699 дней	349,948 дней	372,352 дней

Таблица 2 – Оценка полного времени проведения тестирования

Выводы.

В ходе выполнения лабораторной работы были исследованы показатели характеризуемые моделью надёжности программ, обнаружения ошибок Джелинского-Моранды ДЛЯ различных законов распределения времён обнаружения отказов и различного числа используемых для анализа данных. В результате было получено, что существенно наилучшие показатели для данных, сгенерированных по экспоненциальному закону распределения, что объясняется предположением модели Джелинского-Моранды – время до следующего отказа программы распределено экспоненциально.