Community Detection

Goals

- Tools and Datasets
- Community Detection Applications
- Measure the quality of a community
 - ⋆ Modularity
 - ⋆ Node Similarity
- Divide a graph into communities
 - ⋆ Girvan and Newman (Divisive Algorithm)
 - ⋆ Hierarchical Clustering (Agglomerative Algorithm)

Goals

- Tools and Datasets
- Community Detection Applications
- Measure the quality of a community
 - ⋆ Modularity
 - ⋆ Node Similarity
- Divide a graph into communities
 - ⋆ Girvan and Newman (Divisive Algorithm)
 - ⋆ Hierarchical Clustering (Agglomerative Algorithm)

Python Library Small Graphs

· networkx

- https://networkx.github.io/
- Suitable for small graphs (~10,000 nodes)
- Too slow for big graphs

Python Library Large Graphs

- igraph (C code)
 - ⋆ http://igraph.org/python/doc/igraph.clustering-module.html

- graph-tool (Heavily optimized C code)
 - ★ Takes ~1/2 hour to install
 - https://graph-tool.skewed.de/static/doc/community.html

Benchmarks

N = 39796 vertices

E = 301498 edges

Algorithm	graph-tool (4 cores)	graph-tool (1 core)	igraph	NetworkX
Single-source shortest path	0.0064 s	0.0063 s	0.012 s	0.127 s
PageRank	0.193 s	0.555 s	0.781 s	34.26 s
K-core	0.0205 s	0.0250 s	0.0181 s	0.9586 s
Minimum spanning tree	0.0268 s	0.0296 s	0.0397 s	0.413 s
Betweenness	579.7 s (~9.6 mins)	1977.6 s (~33 mins)	1182.6 s (~19.7 mins)	53716.692 s (~14.9 hours)

Visualization and Database

- Neo4j (Database)
 - ★ http://console.neo4j.org/

- Gephi (Visualization)
 - ★ http://gephi.github.io/

Network Data Sources

 http://snap.stanford.edu/class/cs224w-2012/ resources.html

http://konect.uni-koblenz.de/

Goals

- Tools and Datasets
- Community Detection Applications
- Measure the quality of a community
 - ⋆ Modularity
 - ⋆ Node Similarity
- Divide a graph into communities
 - ⋆ Girvan and Newman (Divisive Algorithm)
 - ⋆ Hierarchical Clustering (Agglomerative Algorithm)

Community Detection

Learning to Discover Social Circles in Ego Networks

Julian McAuley Stanford, USA

jmcauley@cs.stanford.edu

Jure Leskovec
Stanford, USA
jure@cs.stanford.edu

Community Detection Cont.

Goals

- Tools and Datasets
- Community Detection Applications
- Measure the quality of a community
 - ⋆ Modularity
 - ⋆ Node Similarity
- Divide a graph into communities
 - ⋆ Girvan and Newman (Divisive Algorithm)
 - ⋆ Hierarchical Clustering (Agglomerative Algorithm)

Community Quality

- Quantitative definition of a community
- Used to guide the division of communities

A General Idea

```
# Edges
"inside"
community A
```

Edges
"between"
community A
and others

Modularity

- Density of edges within a subgraph
- Minus baseline edge density of the same subgraph randomized

High modularity = "Better" community

Fraction of edges within a subgraph

Fraction of edges if edges were randomly distributed in the subgraph

 Edge density must be higher than expected at random to be regarded as "high"

Randomizing Subgraph

- 1. Halve each edge (stub) in the subgraph
- 2. Rewire stubs randomly to other nodes / self node
- Degree distribution of randomized subgraph remains the same

$$m = \# \text{ of edges}$$

Node similarity

- The number of neighbors 2 nodes share
- A lot of shared neighbors = High similarity

$$n_{ij} = \sum_{k} A_{ik} A_{kj}$$

Node similarity Example

$$\mathbf{n}_{ij} = (\mathbf{A}_{ik1} * \mathbf{A}_{jk1}) + (\mathbf{A}_{ik2} * \mathbf{A}_{jk2}) \\
= (1 * 1) + (0 * 1) \\
= 1$$

Remarks about Node similarity

- Node similarity is not normalized
- According to the degree of the nodes
- Usually measure similarity with Cosine Similarity
- Or (dis)similarity with Euclidean Distance

Node (Dis) Similarity: Euclidean Distance

$$d_{ij} = \sum_{k} (A_{ik} - A_{jk})^2$$

$$normal(d_{ij}) = \frac{d_{ij}}{k_i + k_j}$$

Degree of Degree of node i node j

Node Similarity: Cosine Similarity

```
\sigma_{ij} = rac{n_{ij}}{\sqrt{k_i k_j}}
```

Goals

- Tools and Datasets
- Community Detection Applications
- Measure the quality of a community
 - ⋆ Modularity
 - ⋆ Node Similarity
- Divide a graph into communities
 - ⋆ Girvan and Newman (Divisive Algorithm)
 - ⋆ Hierarchical Clustering (Agglomerative Algorithm)

How to divide a graph

	Divisive	Agglomerative	
Approach	Top-down	Bottom-up	
Starting Point	Graph	Individual Nodes	
Community Formation	Removing edges	Iteratively merging	
Technique	Girvan and Newman	Hierarchical Clustering	
More popular	Yes	No	

Divisive Algorithm

Girvan and Newman

Girvan and Newman

- 1. Compute betweenness for all edges
- 2. Remove edge with largest betweenness
- 3. Recalculate betweenness

- 4. Calculate modularity if new communities formed
- 5. Stop if average modularity is maximized

(i.e. Further iteration would reduce modularity)

6. Otherwise repeat from step 2

Agglomerative Algorithm

Hierarchical Clustering

Single Linkage Clustering

Merge based on the minimum distance between elements of 2 clusters

$$\min\{d(x,y):x\in\mathcal{A},\,y\in\mathcal{B}\}.$$

A and B are 2 separate clusters

Remarks about Hierarchical Clustering

- Have to decide cut-off
- Hierarchy is by construction, not always sensible
- Good for networks that are hierarchical (social / biological)

Summary

- Applications to detect social community
- Different metric to evaluate communies
- Different algorithms to create communities from graph

Next Steps

Cliques and k-core as a measure of similarity

```
\star p. 10 - 11 (http://arxiv.org/pdf/0906.0612.pdf)
```

• Kernighan-Lin (Minimum bisection) algorithm

```
\star p. 17 - 18 (http://arxiv.org/pdf/0906.0612.pdf)
```

Partitional Clustering

```
\star p. 19 - 20 (http://arxiv.org/pdf/0906.0612.pdf)
```

igraph and graph-tool