SNU 4190.210 프로그래밍 원리(Principles of Programming) Part I

Prof. Chung-Kil Hur

School of Computer Science & Engineering

차례

- 1 프로그래밍 기본부품과 조합 (elements & compound)
- 2 이름짓기 (binding, delclaration, definition)
- 3 재귀와 고차함수 (recursion & higher-order functions)
- 4 타입으로 정리하기 (types & typeful programming)
- 5 프로그램의 계산 복잡도 (program complexity)
- 6 맞는 프로그램인지 확인하기 (program correctness)

다음

- 1 프로그래밍 기본부품과 조합 (elements & compound)
- 2 이름짓기 (binding, delclaration, definition)
- 3 재귀와 고차함수 (recursion & higher-order functions)
- 4 타입으로 정리하기 (types & typeful programming)
- 5 프로그램의 계산 복잡도 (program complexity)
- 6 맞는 프로그램인지 확인하기 (program correctness)

프로그램 구성에 필요한 요소 (Elements of Programming)

- ▶ 기본부품(primitives)
- ▶ 조합하는 방법(means of constructing compound)
- ▶ 프로그램 실행과정의 이해(rule of evaluation)
- ▶ 타입으로 정리하는 방법(types)
- ▶ 속내용을 감추는 방법(means of abstraction)

기본부품의 반복된 조합 (Combination of Primitives)

(pictures from Google search)

기본부품의 반복된 조합 (Combination of Primitives)

(pictures from Google search)

기본부품의 반복된 조합 (Combination of Primitives)

(pictures from Google search)

Difference: programs can be executed

기본 부품(primitives)

기본적으로 제공됨. 상수(constant)라고도 불림.

type	elements	operators
$\overline{\mathbb{N},\mathbb{R}}$	0, -1, 1.2, -1.2e2	+, *, /, =, <=,
\mathbb{B}	#t, #f	and, or, not,
String	"snow", "12@it"	substr,
		strconcat,
Symbol	'snow, '12@it	
Unit	()	

기본 부품(primitives)

기본적으로 제공됨. 상수(constant)라고도 불림.

type	elements	operators
\mathbb{N} , \mathbb{R}	0, -1, 1.2, -1.2e2	+, *, /, =, <=,
\mathbb{B}	#t, #f	and, or, not,…
String	"snow", "12@it"	substr,
		strconcat,
Symbol	'snow, '12@it	
Unit	()	

- ▶ Base types: \mathbb{N} , \mathbb{R} , \mathbb{B} , String, Symbol
- \blacktriangleright 실행(evaluation, semantics): -1.2e2 is -1.2×10^2 , #t is true, + is +, 'snow is a symbol named "snow", etc

식을 조합하는 방법 (Ways to Construct Programs)

- ▶ 재귀적(inductive, recursive):
 - One can compose infinitely many programs.
 - Arbitrary expressions can be plugged into an expression.
- ► When composing a program, one has to understand how the program will be evaluated (semantics).

프로그램 식의 실행과정 (Evaluation Process)

- ▶ 주어진 프로그램 식을 읽고(read)
- ▶ 그 식을 계산하고(evaluate)
 - ▶ 계산중에 컴퓨터 메모리와 시간을 소모 (consume time & memory)
 - ▶ 계산중에 입출력이 있으면 입출력을 수행 (input & output)
- ▶ 최종 계산 결과가 있으면 화면에 프린트한다(print)

- ▶ 식의 실행 규칙(rule of evaluation, semantics): clearly defined
- ▶ 프로그래머는 이것을 이해해야 의도한 프로그램을 작성할 수 있음 (programmer should understand the semantics)
- ▶ 제대로 실행될 수 없는(오류있는) 멀쩡한 식들이 많음 (Many well-formed programs are erroneous)

실행 규칙. 각 식의 종류에 따라서 (Each case has its own rule):

- ▶ 생긴게 옳다고 모두 제대로 실행되는 게 아님 (Well-formed programs may go wrong)
- ▶ 부품식들의 계산결과의 타입이 맞아야 (Well-typed programs do not go wrong)
- ▶ 이름의 사용 (use of names), 이름의 유효범위(scope)

실행 규칙. 각 식의 종류에 따라서 (Each case has its own rule):

▶ c 일때:

- ▶ 생긴게 옳다고 모두 제대로 실행되는 게 아님 (Well-formed programs may go wrong)
- ▶ 부품식들의 계산결과의 타입이 맞아야 (Well-typed programs do not go wrong)
- ▶ 이름의 사용 (use of names), 이름의 유효범위(scope)

실행 규칙. 각 식의 종류에 따라서 (Each case has its own rule):

- ▶ c 일때:
- ▶ x 일때:

- ▶ 생긴게 옳다고 모두 제대로 실행되는 게 아님 (Well-formed programs may go wrong)
- ▶ 부품식들의 계산결과의 타입이 맞아야 (Well-typed programs do not go wrong)
- ▶ 이름의 사용 (use of names), 이름의 유효범위(scope)

실행 규칙. 각 식의 종류에 따라서 (Each case has its own rule):

- ▶ c 일때:
- x 일때:
- ▶ (if *E E E*) 일때:

- ▶ 생긴게 옳다고 모두 제대로 실행되는 게 아님 (Well-formed programs may go wrong)
- ▶ 부품식들의 계산결과의 타입이 맞아야 (Well-typed programs do not go wrong)
- ▶ 이름의 사용 (use of names), 이름의 유효범위(scope)

실행 규칙. 각 식의 종류에 따라서 (Each case has its own rule):

- ▶ c 일때: x 일때:
- ▶ (if *E E E*) 일때:
- ▶ (cons *E E*) 일때:

- ▶ 생긴게 옳다고 모두 제대로 실행되는 게 아님 (Well-formed programs may go wrong)
- ▶ 부품식들의 계산결과의 타입이 맞아야 (Well-typed programs do not go wrong)
- ▶ 이름의 사용 (use of names), 이름의 유효범위(scope)

실행 규칙. 각 식의 종류에 따라서 (Each case has its own rule):

- ▶ *c* 일때:
- ▶ x 일때:
- ▶ (if *E E E*) 일때:
- ▶ (cons *E E*) 일때:
- ▶ (car *E*) 일때:

- ▶ 생긴게 옳다고 모두 제대로 실행되는 게 아님 (Well-formed programs may go wrong)
- ▶ 부품식들의 계산결과의 타입이 맞아야 (Well-typed programs do not go wrong)
- ▶ 이름의 사용 (use of names), 이름의 유효범위(scope)

실행 규칙. 각 식의 종류에 따라서 (Each case has its own rule):

- ▶ c 일때:
- x 일때:
- ▶ (if *E E E*) 일때:
- ▶ (cons *E E*) 일때:
- ▶ (car E) 일때:
- ▶ (cdr E) 일때:

- ▶ 생긴게 옳다고 모두 제대로 실행되는 게 아님 (Well-formed programs may go wrong)
- ▶ 부품식들의 계산결과의 타입이 맞아야 (Well-typed programs do not go wrong)
- ▶ 이름의 사용 (use of names), 이름의 유효범위(scope)

실행 규칙. 각 식의 종류에 따라서 (Each case has its own rule):

- ► c 일때:
- ▶ x 일때:
- ▶ (if *E E E*) 일때:
- ▶ (cons *E E*) 일때:
- ▶ (car *E*) 일때:
- ▶ (cdr E) 일때:
- ▶ (lambda (x*) E) 일때:

- ▶ 생긴게 옳다고 모두 제대로 실행되는 게 아님 (Well-formed programs may go wrong)
- ▶ 부품식들의 계산결과의 타입이 맞아야 (Well-typed programs do not go wrong)
- ▶ 이름의 사용 (use of names), 이름의 유효범위(scope)

실행 규칙. 각 식의 종류에 따라서 (Each case has its own rule):

- ▶ c 일때:
- ▶ x 일때:
- ▶ (if *E E E*) 일때:
- ▶ (cons *E E*) 일때:
- ▶ (car E) 일때:
- ▶ (cdr E) 일때:
- ▶ (lambda (x*) E) 일때:
- ▶ (E E*) 일때:

- ▶ 생긴게 옳다고 모두 제대로 실행되는 게 아님 (Well-formed programs may go wrong)
- ▶ 부품식들의 계산결과의 타입이 맞아야 (Well-typed programs do not go wrong)
- ▶ 이름의 사용 (use of names), 이름의 유효범위(scope)

프로그램식 조합방식의 원리 (Principle about Program Components

모든 프로그래밍 언어에는 각 타입마다 그 타입의 값을 만드는 식과 <u>사용하는 식</u>을 구성하는 방법이 제공된다. [For each type, there are ways to make values of the type (introduction) and ways to use them (elimination).]

이 원리를 확인해보면 (Let's check this principle)

타입 $ au$	만드는 식 (intro)	사용하는 식 (elim)
기본타입 ι	c	+, *, =, and,
		substr, etc
곱타입 $\tau \times \tau$	(cons E E)	(car E), (cdr E)
함수타입 $\tau \to \tau$	(lambda (x^*) E)	$(E E^*)$

다음

- 1 프로그래밍 기본부품과 조합 (elements & compound)
- 2 이름짓기 (binding, delclaration, definition)
- 3 재귀와 고차함수 (recursion & higher-order functions)
- 4 타입으로 정리하기 (types & typeful programming)
- 5 프로그램의 계산 복잡도 (program complexity)
- 6 맞는 프로그램인지 확인하기 (program correctness)

Naming (binding, declaration, definition)

이름 짓기는 속내용감추기(abstraction)의 첫 스텝: 이름을 지으면 지칭하는 대상(속내용) 대신에 그 이름을 사용 (Naming is a simple way of abstraction: One can hide details by giving it a name)

- ▶ 이름 지을 수 있는 대상 (those that can be named):
 - ▶ 프로그램에서 다룰 수 있는 모든 값 (all values)
- ▶ 이름의 유효범위가 한정됨 (The scope of a name is given). 따라서,
 - ▶ 이름 재사용 가능 (reuse a name)
 - ▶ 전체 프로그램의 모든 이름을 외울 필요없음 (do not need to know all names)
 - ▶ 이름이 필요한 곳에만 알려짐 (a name is defined only where it is needed)
- ▶ 이름의 유효범위는 쉽게 결정됨 (The scope of a name is easily determined)

이름의 유효범위 결정 (how to determine the scope)

프로그램 텍스트에서 쉽게 결정됨(lexical scoping) [The scope of a name is easily determined from the program text]

이름의 유효범위 결정 (how to determine the scope)

프로그램 텍스트에서 쉽게 결정됨(lexical scoping) [The scope of a name is easily determined from the program text]

이런 간단한 유효범위는 수리논술의 2000년 전통 (The idea originates from Math):

Theorem The intersection of all addition-closed sets is addition-closed

Proof Let S be the intersection set. Let x and y be elements of S. Because x and y are elements of \dots hence in S. \square

이름짓기(binding, declaration, definition)

▶ 식에서 이름짓기

▶ 프로그램에서 이름짓기

- ► 생긴게 옳다고 모두 제대로 실행되는 게 아님 (Well-formed programs may go wrong)
- ▶ 부품식들의 계산결과의 타입이 맞아야 (Well-typed programs do not go wrong)
- ▶ 이름의 유효범위(scope)
- ▶ 환경(environment): 이름과 그 대상(값)의 목록표 (table for names and their associated values)

▶ (let ((*x E*)) *E*)

- ► 생긴게 옳다고 모두 제대로 실행되는 게 아님 (Well-formed programs may go wrong)
- ▶ 부품식들의 계산결과의 타입이 맞아야 (Well-typed programs do not go wrong)
- ▶ 이름의 유효범위(scope)
- ▶ 환경(environment): 이름과 그 대상(값)의 목록표 (table for names and their associated values)

- ▶ (let ((*x E*)) *E*)
- (letrec ((x E)) E)

- ► 생긴게 옳다고 모두 제대로 실행되는 게 아님 (Well-formed programs may go wrong)
- ▶ 부품식들의 계산결과의 타입이 맞아야 (Well-typed programs do not go wrong)
- ▶ 이름의 유효범위(scope)
- ▶ 환경(environment): 이름과 그 대상(값)의 목록표 (table for names and their associated values)

- ▶ (let ((*x E*)) *E*)
- ▶ (letrec ((*x E*)) *E*)
- \blacktriangleright (define x E) E

- ► 생긴게 옳다고 모두 제대로 실행되는 게 아님 (Well-formed programs may go wrong)
- ▶ 부품식들의 계산결과의 타입이 맞아야 (Well-typed programs do not go wrong)
- ▶ 이름의 유효범위(scope)
- ▶ 환경(environment): 이름과 그 대상(값)의 목록표 (table for names and their associated values)

이름의 유효범위(scope) 예

```
scope of x, y
(let ((x 1) (y 2))
                                            scope of y
  (+ (let ( (y (+ x 3)) )
(let ( (x (* y 3)) )
                                            scope of x
```

이름짓기 + 사용하기의 실행과정(semantics)

컴퓨터는 프로그램 식을 실행할 때 (When evaluating an expression)

- ▶ 이름과 그 대상의 목록표를 관리 (managing a table for names and their associated values)
- ▶ 그러한 목록표를 환경이라고 함 (Such a table is called an environment)

a	1
b	2
env	(('a 1) ('b 2))
f	(lambda (x) (+ x 1))

이름짓기 + 사용하기의 실행과정(semantics)

환경 관리 (Managing environments)

- ▶ 환경 만들기: 이름이 지어지면 (Make an environment when names are defined)
- ▶ 환경 참조하기: 이름이 나타나면 (Use the environment when the names are used)
- ▶ 환경 폐기하기: 유효범위가 끝나면 (Delete the environment when the scope ends)

```
(let ( (x 1) (y 2) ) scope of x, y scope of y scope of x

(let ( (x (* y 3)) ) (+ x y) ) ) 2
```

여러개 한꺼번에 이름짓기: 실행의미 (Multiple names at once)

- (let (($x_1 \ E_1$) ($x_2 \ E_2$)) E)
- (letrec ($(x_1 \ E_1) \ (x_2 \ E_2)$) E)
- (define x_1 E_1) (define x_2 E_2) E

설탕구조(syntactic sugar)

편리를 위해서 제공; 지금까지것들로 구성가능; 반드시 필요는 없다 (Just convinient notations for "expressions"):

list, cond, let, define은 설탕

```
= (cons \cdots)
(list E^*)
(cond (E E') (else E''))
                                    = (if \cdots)
(let ((x E)) E')
                                    = ((lambda \cdots) \cdots)
(let ((x_1 E_1) (x_2 E_2)) E)
                                    = ((lambda \cdots) \cdots)
(define x E) E'
                                    = (letrec \cdots)
(define x E) (define y E') E''
                                    = (letrec \cdots)
                                    = (define \cdots)
(define (f x) E)
(begin E E')
                                    = ((lambda \cdots) \cdots)
```

다음

- 1 프로그래밍 기본부품과 조합 (elements & compound)
- 2 이름짓기 (binding, delclaration, definition)
- 3 재귀와 고차함수 (recursion & higher-order functions)
- 4 타입으로 정리하기 (types & typeful programming)
- 5 프로그램의 계산 복잡도 (program complexity)
- 6 맞는 프로그램인지 확인하기 (program correctness)

재귀(recursion): 되돌기, 같은 일의 반복

▶ 예) 재귀하고있는 그림들:

▶ 예) 재귀하고있는 표기법:

$$E ::= c$$

$$\mid x$$

$$\mid (if E E E)$$

$$\mid (cons E E)$$

▶ 예) 재귀하고있는 정의:

$$a_0 = 1, \quad a_{n+1} = a_n + 2 \quad (n \in \mathbb{N})$$

 $X = 1 \hookrightarrow X$

재귀함수(recursive function)의 정의

▶ 함수만 재귀적으로 정의가능 (대부분의 언어) (왜?) [Only functions can be defined recursively in most langs (why?)]

▶ 임의의 값을 재귀적으로 정의? 그 값 계산이 무한할 수 있음 (possible in Haskell) [Recursively defined data can be infinitely large]

```
(define x (+ 1 x))
(define K (cons 1 K))
(define Y (cons 1 (add1 Y)))
```

재귀함수의 실행과정

```
(define (fac n)
                                      (if (= n 0) 1
(fac 4)
                                        (* n (fac (- n 1)))
\Rightarrow(* 4 (fac 3))
\Rightarrow(* 4 (* 3 (fac 2)))
\Rightarrow(* 4 (* 3 (* 2 (fac 1))))
⇒(* 4 (* 3 (* 2 (* 1 (fac 0)))))
⇒(* 4 (* 3 (* 2 (* 1 1))))
⇒(* 4 (* 3 (* 2 1)))
\Rightarrow(* 4 (* 3 2))
⇒(* 4 6)
⇒24
```

- ▶ 누적됨: 재귀호출을 마치고 계속해야 할 일들이
 - ▶ 함수호출때 호출 마치고 계속해야 할 일(continuation)을 기억해야
- ▶ 현대기술은 재귀호출때 누적 않되도록 자동변환
 - ▶ 끝재귀(tail recursion) 변환

끝재귀(tail recursion) 변환

```
(define (fac n)
        (if (= n 0) 1
            (* n (fac (- n 1)))
        ))
(define (fac n)
        (define (fac-aux m r)
            (if (= m 0) r
                (fac-aux (-m 1) (*m r)))
        (fac-aux n 1))
```

끝재귀함수(tail-recursive ftn)의 실행 과정

```
(fac 4)
\Rightarrow (fac-aux 4 1)
\Rightarrow (fac-aux 3 (* 4 1))
\Rightarrow (fac-aux 3 4)
\Rightarrow (fac-aux 2 (* 3 4))
\Rightarrow (fac-aux 2 12)
\Rightarrow (fac-aux 1 (* 2 12))
\Rightarrow (fac-aux 1 24)
\Rightarrow (fac-aux 0 (* 1 24))
\Rightarrow (fac-aux 0 24)
⇒24
```

- ▶ 할일을 (하고) 재귀호출 변수로 전달
- ▶ 재귀호출 마치고 할 일이 누적되지 않음

고차함수(higher-order function)

▶ 함수가 인자로

$$\sum_{n=a}^{b} f(n) = f(a) + \dots + f(b)$$

▶ 함수가 결과로

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x-\epsilon)}{\epsilon}$$

현대 프로그래밍에서

- ▶ 모두 지원되는(Scala, Python, Lua, JavaScript, Clojure, Scheme, ML, C#, F#등)
- ▶ 과거에는 지원되지못했던

고차함수는 일상에서 흔하다

- ▶ 함수가 인자로
 - ▶ 요리사(함수)는 요리법(함수)과 재료를 받아서...
 - ▶ 댄서(함수)는 리듬있게움직이는법(함수)과 음악을 받아서...
 - ▶ 컴퓨터(함수)는 프로그램(함수)과 입력을 받아서...
- ▶ 함수가 결과로
 - ▶ 요리학교(함수)는 요리사(함수)를 만들어내고
 - ▶ 댄스동아리(함수)는 댄서(함수)를 만들어내고
 - 컴퓨터공장(함수)은 컴퓨터를(함수) 만들어내고

고차함수의 쓸모

고수준으로 일반화된 함수를 정의할 수 있다

```
(define (sigma lower upper)
    (lambda (f)
       (define (loop n)
         (if (> n upper) 0
            (+ (f n) (loop (+ n 1)))))
       (loop lower)
    ))
(define one-to-million (sigma 1 1000000))
(one-to-million (lambda (n) (* n n)))
(one-to-million (lambda (n) (+ n 2)))
```

고차함수의 쓸모

고수준으로 일반화된 함수를 정의할 수 있다

```
(define (sum lower upper f)
    (if (> lower upper) 0
      (+ (f lower) (sum (+ lower 1) upper f))
    ))
  (define (generic-sum lower upper f larger base op inc)
    (if (larger lower upper) base
       (op (f lower)
         (generic-sum (inc lower) upper f larger base op in
    ))
(sum 1 10 (lambda (n) n))
```

(sum 10 100 (lambda (n) (+ n 1)))
(generic-sum 1 10 (lambda (n) n) > -1 + (lambda (n) (+ 2 n)
(generic-sum "a" "z" (lambda (n) n) order "" concat alpha-r

다음

- 1 프로그래밍 기본부품과 조합 (elements & compound)
- 2 이름짓기 (binding, delclaration, definition)
- 3 재귀와 고차함수 (recursion & higher-order functions)
- 4 타입으로 정리하기 (types & typeful programming)
- 5 프로그램의 계산 복잡도 (program complexity)
- 6 맞는 프로그램인지 확인하기 (program correctness)

타입(type)

타입(type)은 프로그램이 계산하는 값들의 집합을 분류해서 요약하는 데 사용하는 "언어"이다. 타입으로 분류요약하는 방식은 대형 프로그램을 실수없이 구성하는 데 효과적이다.

Type is a "language" for describing a set of values that are used in programs. Abstracting a program as a type is an effective method to reduce errors in writing large programs.

- ▶ 타입(type)은 가이드다 [Type is a guide]
 - ▶ 프로그램의 실행안전성을 확인하는 [for removing runtime errors]
 - ▶ 새로운 종류의 데이터값을 구성하는 [for describing a new data structure]

사용하는 타입들(types)

고차함수 타입 [higher-order types]

고차함수 타입 예:

 $\begin{array}{l} \operatorname{int} * \operatorname{int} * (\operatorname{int} \to \operatorname{int}) \to \operatorname{int} \\ (\operatorname{real} \to \operatorname{real}) \to (\operatorname{real} \to \operatorname{real}) \\ \operatorname{int} * (\operatorname{int} \to \operatorname{int}) \to \operatorname{int} \\ \operatorname{int} \to (\operatorname{int} \to \operatorname{int}) \to \operatorname{int} \\ \operatorname{int} \times (\operatorname{int} \to \operatorname{int}) \to \operatorname{int} \\ (\operatorname{int} \to \operatorname{int}) \to \operatorname{int} \\ (\operatorname{int} \to \operatorname{int}) \times \operatorname{int} \\ \operatorname{list} \to \operatorname{int} \\ \operatorname{money} \to (\operatorname{year} \to \operatorname{car} \operatorname{list}) \end{array}$

 $ightharpoonup c: \iota$ $\rightarrow x : \tau$ ightharpoonup (if E E' E'') ightharpoonup (lambda (x) E) \blacktriangleright (E E') ightharpoonup (cons E E') ightharpoonup (car E▶ (cdr *E*)

```
ightharpoonup c: \iota
\rightarrow x : \tau
\blacktriangleright (if E:\mathbb{B}\ E' E'' )

ightharpoonup (lambda (x) E )
\blacktriangleright (E E')

ightharpoonup (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
\blacktriangleright (if E:\mathbb{B} E':\tau E''

ightharpoonup (lambda (x) E )
\blacktriangleright (E E')
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
\blacktriangleright (if E:\mathbb{B} E':\tau E'':\tau)

ightharpoonup (lambda (x ) E )
\blacktriangleright (E E')
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
• (if E:\mathbb{B}\ E':\tau\ E'':\tau) : \tau

ightharpoonup (lambda (x ) E )
\blacktriangleright (E E')
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
• (if E:\mathbb{B}\ E':\tau\ E'':\tau) : \tau
\blacktriangleright (lambda (x:\tau) E )
\blacktriangleright (E E')
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
• (if E:\mathbb{B}\ E':\tau\ E'':\tau) : \tau
\blacktriangleright (lambda (x:\tau) E:\tau')
\blacktriangleright (E E')
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

 $ightharpoonup c: \iota$ $\rightarrow x : \tau$ • (if $E:\mathbb{B}\ E':\tau\ E'':\tau$) : τ • (lambda ($x:\tau$) $E:\tau'$) : $\tau \to \tau'$ \blacktriangleright (E E') ightharpoonup (cons E E') ightharpoonup (car E▶ (cdr E

```
ightharpoonup c: \iota
\rightarrow x : \tau
\blacktriangleright (if E:\mathbb{B} E':\tau E'':\tau) : \tau
• (lambda (x:\tau) E:\tau') : \tau \to \tau'

    x:τ임을 E를 구성할 때 기억

\blacktriangleright (E E')

ightharpoonup (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
\blacktriangleright (if E:\mathbb{B} E':\tau E'':\tau) : \tau
• (lambda (x:\tau) E:\tau') : \tau \to \tau'

    x: τ임을 E를 구성할 때 기억

\blacktriangleright (E:\tau'\to\tau\;E')
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
\blacktriangleright (if E:\mathbb{B} E':\tau E'':\tau) : \tau
• (lambda (x:\tau) E:\tau') : \tau \to \tau'

    x: τ임을 E를 구성할 때 기억

\blacktriangleright (E:\tau' \to \tau \ E':\tau')
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
\blacktriangleright (if E:\mathbb{B} E':\tau E'':\tau) : \tau
• (lambda (x:\tau) E:\tau') : \tau \to \tau'

    x: τ임을 E를 구성할 때 기억

\blacktriangleright (E:\tau'\to\tau\ E':\tau'):\tau
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

- $ightharpoonup c: \iota$
- $\rightarrow x : \tau$
- ightharpoonup (if $E:\mathbb{B}\ E':\tau\ E'':\tau$) : τ
- (lambda ($x:\tau$) $E:\tau'$) : $\tau \to \tau'$
 - ▶ *x* : *τ*임을 *E*를 구성할 때 기억
- $(E:\tau' \to \tau \ E':\tau'): \tau$
- (cons $E:\tau E':\tau'$)
- ightharpoonup (car E
- ▶ (cdr *E*

- $ightharpoonup c: \iota$
- $\rightarrow x : \tau$
- ightharpoonup (if $E:\mathbb{B}\ E':\tau\ E'':\tau$) : τ
- (lambda ($x:\tau$) $E:\tau'$) : $\tau \to \tau'$
 - ▶ *x* : *τ*임을 *E*를 구성할 때 기억
- \blacktriangleright ($E:\tau' \to \tau \ E':\tau'$): τ
- (cons $E:\tau$ $E':\tau'$): $\tau \times \tau'$
- ightharpoonup (car E
- ▶ (cdr *E*

- $ightharpoonup c: \iota$
- $\rightarrow x : \tau$
- ightharpoonup (if $E:\mathbb{B}\ E':\tau\ E'':\tau$) : τ
- (lambda ($x:\tau$) $E:\tau'$) : $\tau \to \tau'$
 - ▶ *x* : *τ*임을 *E*를 구성할 때 기억
- \blacktriangleright ($E:\tau' \to \tau \ E':\tau'$): τ
- (cons $E:\tau$ $E':\tau'$): $\tau \times \tau'$
- (car $E:\tau \times \tau'$)
- ▶ (cdr E

- $ightharpoonup c: \iota$
- $\rightarrow x : \tau$
- \blacktriangleright (if $E:\mathbb{B}$ $E':\tau$ $E'':\tau$) : τ
- ▶ (lambda (x: τ) E: τ') : $\tau \to \tau'$
 - ▶ *x* : *τ*임을 *E*를 구성할 때 기억
- \blacktriangleright ($E:\tau' \to \tau \ E':\tau'$): τ
- (cons $E:\tau$ $E':\tau'$): $\tau \times \tau'$
- (car $E:\tau \times \tau'$): τ
- ▶ (cdr *E*)

- $ightharpoonup c: \iota$
- $\rightarrow x : \tau$
- ightharpoonup (if $E:\mathbb{B}\ E':\tau\ E'':\tau$) : τ
- ▶ (lambda (x: τ) E: τ') : $\tau \to \tau'$
 - ▶ *x* : *τ*임을 *E*를 구성할 때 기억
- \blacktriangleright $(E:\tau'\to\tau\ E':\tau'):\tau$
- (cons $E:\tau$ $E':\tau'$): $\tau \times \tau'$
- \blacktriangleright (car $E:\tau\times\tau'$): τ
- (cdr $E:\tau \times \tau'$)

- $ightharpoonup c: \iota$
- $\rightarrow x : \tau$
- ightharpoonup (if $E:\mathbb{B}\ E':\tau\ E'':\tau$) : τ
- ▶ (lambda (x: τ) E: τ') : $\tau \to \tau'$
 - ▶ *x* : *τ*임을 *E*를 구성할 때 기억
- $(E:\tau' \to \tau \ E':\tau'): \tau$
- (cons $E:\tau$ $E':\tau'$): $\tau \times \tau'$
- \blacktriangleright (car $E:\tau\times\tau'$): τ
- (cdr $E:\tau \times \tau'$): τ'

 $ightharpoonup c: \iota$ $\rightarrow x : \tau$ ightharpoonup (if E E' E'') ightharpoonup (lambda (x) E) \blacktriangleright (E E') ightharpoonup (cons E E') ightharpoonup (car E▶ (cdr *E*)

```
ightharpoonup c: \iota
\rightarrow x : \tau
\blacktriangleright (if E:\mathbb{B}\ E' E'' )

ightharpoonup (lambda (x) E )
\blacktriangleright (E E')

ightharpoonup (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
\blacktriangleright (if E:\mathbb{B} E':\tau E''

ightharpoonup (lambda (x) E )
\blacktriangleright (E E')
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
\blacktriangleright (if E:\mathbb{B} E':\tau E'':\tau)

ightharpoonup (lambda (x ) E )
\blacktriangleright (E E')
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
• (if E:\mathbb{B}\ E':\tau\ E'':\tau) : \tau

ightharpoonup (lambda (x ) E )
\blacktriangleright (E E')
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
• (if E:\mathbb{B}\ E':\tau\ E'':\tau) : \tau
\blacktriangleright (lambda (x:\tau) E )
\blacktriangleright (E E')
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
• (if E:\mathbb{B}\ E':\tau\ E'':\tau) : \tau
\blacktriangleright (lambda (x:\tau) E:\tau')
\blacktriangleright (E E')
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

 $ightharpoonup c: \iota$ $\rightarrow x : \tau$ • (if $E:\mathbb{B}\ E':\tau\ E'':\tau$) : τ • (lambda ($x:\tau$) $E:\tau'$) : $\tau \to \tau'$ \blacktriangleright (E E') ightharpoonup (cons E E') ightharpoonup (car E▶ (cdr E

```
ightharpoonup c: \iota
\rightarrow x : \tau
\blacktriangleright (if E:\mathbb{B} E':\tau E'':\tau) : \tau
• (lambda (x:\tau) E:\tau') : \tau \to \tau'

    x: τ임을 E를 구성할 때 기억

\blacktriangleright (E E')

ightharpoonup (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
\blacktriangleright (if E:\mathbb{B} E':\tau E'':\tau) : \tau
• (lambda (x:\tau) E:\tau') : \tau \to \tau'

    x: τ임을 E를 구성할 때 기억

\blacktriangleright (E:\tau'\to\tau\;E')
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
\blacktriangleright (if E:\mathbb{B} E':\tau E'':\tau) : \tau
• (lambda (x:\tau) E:\tau') : \tau \to \tau'

    x: τ임을 E를 구성할 때 기억

\blacktriangleright (E:\tau' \to \tau \ E':\tau')
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

```
ightharpoonup c: \iota
\rightarrow x : \tau
\blacktriangleright (if E:\mathbb{B} E':\tau E'':\tau) : \tau
• (lambda (x:\tau) E:\tau') : \tau \to \tau'

    x: τ임을 E를 구성할 때 기억

\blacktriangleright (E:\tau'\to\tau\ E':\tau'):\tau
\blacktriangleright (cons E E' )

ightharpoonup (car E
▶ (cdr E
```

- ▶ *c* : *l*
- $\rightarrow x : \tau$
- \blacktriangleright (if $E:\mathbb{B}$ $E':\tau$ $E'':\tau$) : τ
- (lambda ($x:\tau$) $E:\tau'$) : $\tau \to \tau'$
 - ▶ *x* : *τ*임을 *E*를 구성할 때 기억
- $(E:\tau' \to \tau \ E':\tau'): \tau$
- (cons $E:\tau E':\tau'$)
- ightharpoonup (car E
- ightharpoonup (cdr E

- $ightharpoonup c: \iota$
- $\rightarrow x : \tau$
- \blacktriangleright (if $E:\mathbb{B}$ $E':\tau$ $E'':\tau$) : τ
- (lambda ($x:\tau$) $E:\tau'$) : $\tau \to \tau'$
 - ▶ *x* : *τ*임을 *E*를 구성할 때 기억
- \blacktriangleright ($E:\tau' \to \tau \ E':\tau'$): τ
- (cons $E:\tau$ $E':\tau'$): $\tau \times \tau'$
- ightharpoonup (car E
- ▶ (cdr *E*

- $ightharpoonup c: \iota$
- $\rightarrow x : \tau$
- ightharpoonup (if $E:\mathbb{B}\ E':\tau\ E'':\tau$) : τ
- (lambda ($x:\tau$) $E:\tau'$) : $\tau \to \tau'$
 - ▶ *x* : *τ*임을 *E*를 구성할 때 기억
- $(E:\tau' \to \tau \ E':\tau'): \tau$
- (cons $E:\tau$ $E':\tau'$): $\tau \times \tau'$
- (car $E:\tau\times\tau'$)
- ▶ (cdr E

- $ightharpoonup c: \iota$
- $\rightarrow x : \tau$
- ightharpoonup (if $E:\mathbb{B}\ E':\tau\ E'':\tau$) : τ
- (lambda ($x:\tau$) $E:\tau'$) : $\tau \to \tau'$
 - ▶ *x* : *τ*임을 *E*를 구성할 때 기억
- $(E:\tau' \to \tau \ E':\tau'): \tau$
- (cons $E:\tau$ $E':\tau'$): $\tau \times \tau'$
- (car $E:\tau \times \tau'$) : τ
- ▶ (cdr *E*)

- **▶** *c* : *ι*
- $\rightarrow x : \tau$
- \blacktriangleright (if $E:\mathbb{B}$ $E':\tau$ $E'':\tau$) : τ
- (lambda ($x:\tau$) $E:\tau'$) : $\tau \to \tau'$
 - ▶ *x* : *τ*임을 *E*를 구성할 때 기억
- \blacktriangleright $(E:\tau'\to\tau\ E':\tau'):\tau$
- (cons $E:\tau$ $E':\tau'$) : $\tau \times \tau'$
- \blacktriangleright (car $E:\tau\times\tau'$): τ
- (cdr $E:\tau \times \tau'$)

- $ightharpoonup c: \iota$
- $\rightarrow x : \tau$
- ightharpoonup (if $E:\mathbb{B}\ E':\tau\ E'':\tau$) : τ
- ▶ (lambda (x: τ) E: τ') : $\tau \to \tau'$
 - ▶ *x* : *τ*임을 *E*를 구성할 때 기억
- \blacktriangleright ($E:\tau' \to \tau \ E':\tau'$): τ
- (cons $E:\tau$ $E':\tau'$): $\tau \times \tau'$
- \blacktriangleright (car $E:\tau\times\tau'$): τ
- (cdr $E:\tau \times \tau'$): τ'

- ▶ (let ((x_1 E_1) (x_2 E_2)) E)
- (letrec ((x_1 E_1) (x_2 E_2)) E)
- (define x_1 E_1) (define x_2 E_2) E

- (let ((x_1 : au_1 E_1) (x_2 E_2)) E)
- (letrec ((x_1 E_1) (x_2 E_2)) E)
- (define x_1 E_1) (define x_2 E_2) E

- lacktriangle (let ((x_1 : au_1 E_1 : au_1) (x_2 E_2)) E)
- (letrec ((x_1 E_1) (x_2 E_2)) E)
- (define x_1 E_1) (define x_2 E_2) E

- ▶ (let ((x_1 : au_1 E_1 : au_1) (x_2 : au_2 E_2)) E)
- (letrec ((x_1 E_1) (x_2 E_2)) E)
- (define x_1 E_1) (define x_2 E_2) E

- ▶ (let ((x_1 : au_1 E_1 : au_1) (x_2 : au_2 E_2 : au_2)) E)
- (letrec ((x_1 E_1) (x_2 E_2)) E)
- (define x_1 E_1) (define x_2 E_2) E

- ▶ (let ((x_1 : au_1 E_1 : au_1) (x_2 : au_2 E_2 : au_2)) E:au)
- (letrec ((x_1 E_1) (x_2 E_2)) E)
- (define x_1 E_1) (define x_2 E_2) E

- (let ((x₁:τ₁ E₁:τ₁) (x₂:τ₂ E₂:τ₂)) E:τ)
 ▶ x₁:τ₁이고 x₂:τ₂임을 E를 구성할 때 기억
 ▶ (letrec ((x₁ E₁) (x₂ E₂)) E)
- (define x_1 E_1) (define x_2 E_2) E

- ▶ (let $((x_1:\tau_1 \ E_1:\tau_1) \ (x_2:\tau_2 \ E_2:\tau_2)) \ E:\tau)$ ▶ $x_1:\tau_1$ 이고 $x_2:\tau_2$ 임을 E를 구성할 때 기억
 ▶ (letrec $((x_1:\tau_1 \ E_1 \) \ (x_2 \ E_2 \)) \ E \)$
- (define x_1 E_1) (define x_2 E_2) E

- (let ((x₁:τ₁ E₁:τ₁) (x₂:τ₂ E₂:τ₂)) E:τ)
 ▶ x₁:τ₁이고 x₂:τ₂임을 E를 구성할 때 기억
 ▶ (letrec ((x₁:τ₁ E₁:τ₁) (x₂ E₂)) E)
- (define x_1 E_1) (define x_2 E_2) E

- (let ((x₁:τ₁ E₁:τ₁) (x₂:τ₂ E₂:τ₂)) E:τ)
 ▶ x₁:τ₁이고 x₂:τ₂임을 E를 구성할 때 기억
 (letrec ((x₁:τ₁ E₁:τ₁) (x₂:τ₂ E₂)) E)
- (define x_1 E_1) (define x_2 E_2) E

- (let ((x₁:τ₁ E₁:τ₁) (x₂:τ₂ E₂:τ₂)) E:τ)
 ∗ x₁:τ₁이고 x₂:τ₂임을 E를 구성할 때 기억
 (letrec ((x₁:τ₁ E₁:τ₁) (x₂:τ₂ E₂:τ₂)) E)
- (define x_1 E_1) (define x_2 E_2) E

- (let ((x₁:τ₁ E₁:τ₁) (x₂:τ₂ E₂:τ₂)) E:τ)
 x₁:τ₁ 이고 x₂:τ₂임을 E를 구성할 때 기억
 (letrec ((x₁:τ₁ E₁:τ₁) (x₂:τ₂ E₂:τ₂)) E:τ)
- (define x_1 E_1) (define x_2 E_2) E

- ▶ (let ((x_1 : au_1 E_1 : au_1) (x_2 : au_2 E_2 : au_2)) E:au)
 - $x_1 : \tau_1$ 이고 $x_2 : \tau_2$ 임을 E를 구성할 때 기억
- (letrec ((x_1 : au_1 E_1 : au_1) (x_2 : au_2 E_2 : au_2)) E:au)
 - $ightharpoonup x_1 : au_1$ 이고 $x_2 : au_2$ 임을 E_1, E_2, E 를 구성할 때 기억
- (define x_1 E_1) (define x_2 E_2) E

- (let ((x_1 : au_1 E_1 : au_1) (x_2 : au_2 E_2 : au_2)) E:au)
 - $x_1 : \tau_1$ 이고 $x_2 : \tau_2$ 임을 E를 구성할 때 기억
- ▶ (letrec ((x_1 : τ_1 E_1 : τ_1) (x_2 : τ_2 E_2 : τ_2)) E: τ)
 - $x_1 : \tau_1$ 이고 $x_2 : \tau_2$ 임을 E_1, E_2, E 를 구성할 때 기억
- (define $x_1 : \tau_1 \ E_1$) (define $x_2 \ E_2$) E

- ▶ (let ((x_1 : au_1 E_1 : au_1) (x_2 : au_2 E_2 : au_2)) E:au)
 - $x_1 : \tau_1$ 이고 $x_2 : \tau_2$ 임을 E를 구성할 때 기억
- ▶ (letrec (($x_1:\tau_1 \ E_1:\tau_1$) ($x_2:\tau_2 \ E_2:\tau_2$)) $E:\tau$)
 - $x_1 : \tau_1$ 이고 $x_2 : \tau_2$ 임을 E_1, E_2, E 를 구성할 때 기억
- (define $x_1:\tau_1$ $E_1:\tau_1$) (define x_2 E_2) E

- ▶ (let ((x_1 : au_1 E_1 : au_1) (x_2 : au_2 E_2 : au_2)) E:au)
 - $x_1 : \tau_1$ 이고 $x_2 : \tau_2$ 임을 E를 구성할 때 기억
- ▶ (letrec ((x_1 : τ_1 E_1 : τ_1) (x_2 : τ_2 E_2 : τ_2)) E: τ)
 - $x_1 : \tau_1$ 이고 $x_2 : \tau_2$ 임을 E_1, E_2, E 를 구성할 때 기억
- (define $x_1 : \tau_1 \ E_1 : \tau_1$) (define $x_2 : \tau_2 \ E_2$) E

- ▶ (let ((x_1 : au_1 E_1 : au_1) (x_2 : au_2 E_2 : au_2)) E:au)
 - ▶ $x_1 : \tau_1$ 이고 $x_2 : \tau_2$ 임을 E를 구성할 때 기억
- ▶ (letrec (($x_1:\tau_1 \ E_1:\tau_1$) ($x_2:\tau_2 \ E_2:\tau_2$)) $E:\tau$)
 - $x_1 : \tau_1$ 이고 $x_2 : \tau_2$ 임을 E_1, E_2, E 를 구성할 때 기억
- (define $x_1:\tau_1$ $E_1:\tau_1$) (define $x_2:\tau_2$ $E_2:\tau_2$) E

- (let (($x_1:\tau_1 \ E_1:\tau_1$) ($x_2:\tau_2 \ E_2:\tau_2$)) $E:\tau$)
 - $x_1 : \tau_1$ 이고 $x_2 : \tau_2$ 임을 E를 구성할 때 기억
- ▶ (letrec ((x_1 : τ_1 E_1 : τ_1) (x_2 : τ_2 E_2 : τ_2)) E: τ)
 - $x_1 : \tau_1$ 이고 $x_2 : \tau_2$ 임을 E_1, E_2, E 를 구성할 때 기억
- ▶ (define x_1 : τ_1 E_1 : τ_1) (define x_2 : τ_2 E_2 : τ_2) E: τ

- ▶ (let ((x_1 : τ_1 E_1 : τ_1) (x_2 : τ_2 E_2 : τ_2)) E: τ)
 - ▶ $x_1 : \tau_1$ 이고 $x_2 : \tau_2$ 임을 E를 구성할 때 기억
- ▶ (letrec (($x_1:\tau_1 \ E_1:\tau_1$) ($x_2:\tau_2 \ E_2:\tau_2$)) $E:\tau$)
 - $x_1 : \tau_1$ 이고 $x_2 : \tau_2$ 임을 E_1, E_2, E 를 구성할 때 기억
- ▶ (define x_1 : τ_1 E_1 : τ_1) (define x_2 : τ_2 E_2 : τ_2) E: τ
 - ▶ x₁: τ₁이고 x₂: τ₂임을 E₁, E₂, E를 구성할 때 기억

타입으로 프로그램을 정리/검산하기 [Validate a program using types]

```
(define (fac n)
 (if (= n 0) 1
      (* n (fac (- n 1)))
 ))
(define (fibonacci n)
   (cond ((= n 0) 0)
         ((= n 1) 1)
         (else (+ (fibonacci (- n 1))
                   (fibonacci (- n 2))))
  ))
(define (bar a b c)
 (if (= b 0) c
      (bar (+ a 1) (- b 1) (* a b))
 ))
```

타입으로 프로그램을 정리/검산하기 [Validate a program using types]

```
{= : int * int -> bool}
{* : int * int -> int}
{- : int * int -> int}
{(define (fac {n : int})
   \{(if \{(= \{n : int\} \{0 : int\}) : bool\}\}
         \{1: int\}
         \{(* \{n : int\})\}
             \{(fac \{(-\{n:int\} \{1:int\}) : int\}) : int\}\}
          ) : int}
   ) : int}
 ) : int -> int}
```

Type checking rule for lists

```
a:	au l:	au list a:	au l:	au list t
```

타입으로 프로그램을 정리/검산하기 [Validate a program using types]

```
(define (map-reduce f l op init)
  (reduce (map f 1) op init))
 (define (map f 1)
  (if (null? 1) '()
     (cons (f (car 1)) (map f (cdr 1)))
  ))
 (define (reduce 1 op init)
  (if (null? 1) init
     (op (car 1) (reduce (cdr 1) op init))
  ))
 (define (word-count pages) (map-reduce wc pages + 0))
 (define (make-dictionary pages)
         (map-reduce mw (words pages) merge ()))
```

다음

- 1 프로그래밍 기본부품과 조합 (elements & compound)
- 2 이름짓기 (binding, delclaration, definition)
- 3 재귀와 고차함수 (recursion & higher-order functions)
- 4 타입으로 정리하기 (types & typeful programming)
- 5 프로그램의 계산 복잡도 (program complexity)
- 6 맞는 프로그램인지 확인하기 (program correctness)

프로그램 실행 비용의 증가정도(order of growth)

프로그램 실행 비용의 증가정도(order of growth)

▶ 계산비용 [cost] = 시간과 메모리 [time & memory]

프로그램 실행 비용의 증가정도(order of growth)

- ▶ 계산비용 [cost] = 시간과 메모리 [time & memory]
- ▶ 증가정도 [growth] = 입력 크기에 대한 함수로 [function on input size], 단
 - ▶ 관심: 입력이 커지면 <u>결국 어떻게 될지</u>(asymptotic complexity)

프로그램 실행 비용의 증가정도(order of growth)

- ▶ 계산비용 [cost] = 시간과 메모리 [time & memory]
- ▶ 증가정도 [growth] = 입력 크기에 대한 함수로 [function on input size], 단
 - ▶ 관심: 입력이 커지면 <u>결국 어떻게 될지</u>(asymptotic complexity)
- ▶ "계산복잡도(complexity, order of growth)가 $\Theta(f(n))$ 이다" (n은 입력의 크기), 만일 그 복잡도가 f(n)으로 샌드위치될때 [if f(n) satisfies the following]:

$$\Theta(f(n)): k_1 \times f(n) \le \bullet \le k_2 \times f(n)
O(f(n)): \bullet \le k_2 \times f(n)
\Omega(f(n)): k_1 \times f(n) \le \bullet$$

 $(k_1, k_2$ 는 n과 무관한 양의 상수 $[k_1, k_2]$ are fixed constants])

프로그램 실행 비용의 증가정도(order of growth)

- ▶ 계산비용 [cost] = 시간과 메모리 [time & memory]
- ▶ 증가정도 [growth] = 입력 크기에 대한 함수로 [function on input size], 단
 - ▶ 관심: 입력이 커지면 <u>결국 어떻게 될지</u>(asymptotic complexity)
- ▶ "계산복잡도(complexity, order of growth)가 $\Theta(f(n))$ 이다"(n은 입력의 크기), 만일 그 복잡도가 f(n)으로 샌드위치될때 [if f(n) satisfies the following]:

$$\Theta(f(n)): k_1 \times f(n) \leq \bullet \leq k_2 \times f(n)
O(f(n)): \bullet \leq k_2 \times f(n)
\Omega(f(n)): k_1 \times f(n) \leq \bullet$$

 $(k_1, k_2$ 는 n과 무관한 양의 상수 $[k_1, k_2]$ are fixed constants])

▶ n^2 , $10000 \times n^2$, $3 \times n^2 + 10000 \times n$ 은 모두 $\Theta(n^2)$

- ▶ (fac n): 시간복잡도[time complexity] $\Theta(n)$, [space complexity]메모리복잡도 $\Theta(n)$.
- ▶ (exp b n):

► (SAT formula):

▶ (diophantine eqn):

- ▶ (fac n): 시간복잡도[time complexity] $\Theta(n)$, [space complexity]메모리복잡도 $\Theta(n)$.
- ▶ (exp b n):
 - ▶ *O*(*n*)로 구현가능 [yes]
- ▶ (SAT formula):

▶ (diophantine eqn):

- ▶ (fac n): 시간복잡도[time complexity] $\Theta(n)$, [space complexity]메모리복잡도 $\Theta(n)$.
- ▶ (exp b n):
 - ▶ *O*(*n*)로 구현가능 [yes]
 - ▶ $O(\log n)$ 로 구현가능 [yes]
- ► (SAT formula):

▶ (diophantine eqn):

- ▶ (fac n): 시간복잡도[time complexity] $\Theta(n)$, [space complexity]메모리복잡도 $\Theta(n)$.
- ▶ (exp b n):
 - ▶ *O*(*n*)로 구현가능 [yes]
 - ▶ $O(\log n)$ 로 구현가능 [yes]
- ► (SAT formula):
 - ▶ $O(2^n)$ 로 구현가능 [yes]
- (diophantine eqn):

- ▶ (fac n): 시간복잡도[time complexity] $\Theta(n)$, [space complexity]메모리복잡도 $\Theta(n)$.
- (exp b n):
 - ▶ *O*(*n*)로 구현가능 [yes]
 - ▶ $O(\log n)$ 로 구현가능 [yes]
- ► (SAT formula):
 - ▶ $O(2^n)$ 로 구현가능 [yes]
 - ▶ O(poly(n))로 구현가능? 누구도모름 [not known]
- (diophantine eqn):

- ▶ (fac n): 시간복잡도[time complexity] $\Theta(n)$, [space complexity]메모리복잡도 $\Theta(n)$.
- ▶ (exp b n):
 - ▶ *O*(*n*)로 구현가능 [yes]
 - ▶ $O(\log n)$ 로 구현가능 [yes]
- ► (SAT formula):
 - ▶ $O(2^n)$ 로 구현가능 [yes]
 - ▶ O(poly(n))로 구현가능? 누구도모름 [not known]
- (diophantine eqn):
 - ▶ $O(2^n)$ 로 구현가능?

- ▶ (fac n): 시간복잡도[time complexity] $\Theta(n)$, [space complexity]메모리복잡도 $\Theta(n)$.
- ▶ (exp b n):
 - ▶ *O*(*n*)로 구현가능 [yes]
 - ▶ $O(\log n)$ 로 구현가능 [yes]
- ► (SAT formula):
 - ▶ $O(2^n)$ 로 구현가능 [yes]
 - ▶ *O*(*poly*(*n*))로 구현가능? 누구도모름 [not known]
- (diophantine eqn):
 - ▶ $O(2^n)$ 로 구현가능?
 - ▶ $O(n^n)$ 로 구현가능?

- ▶ (fac n): 시간복잡도[time complexity] $\Theta(n)$, [space complexity]메모리복잡도 $\Theta(n)$.
- (exp b n):
 - ▶ *O*(*n*)로 구현가능 [yes]
 - ▶ $O(\log n)$ 로 구현가능 [yes]
- ▶ (SAT formula):
 - ▶ $O(2^n)$ 로 구현가능 [yes]
 - ▶ O(poly(n))로 구현가능? 누구도모름 [not known]
- (diophantine eqn):
 - ▶ O(2ⁿ)로 구현가능?
 - ▶ *O*(*n*ⁿ)로 구현가능?
 - ▶ Is it decidable? not known until 1970, then "no"

다음

- 1 프로그래밍 기본부품과 조합 (elements & compound)
- 2 이름짓기 (binding, delclaration, definition)
- 3 재귀와 고차함수 (recursion & higher-order functions)
- 4 타입으로 정리하기 (types & typeful programming)
- 5 프로그램의 계산 복잡도 (program complexity)
- 6 맞는 프로그램인지 확인하기 (program correctness)

맞는 프로그램인지 확인하기 [program correctness]

프로그램을 돌리기<u>전에(static analysis) [before</u> execution]

- ▶ 분석<u>검증 후</u> 프로그램 제출/출시/탑재 [execute after static analysis]
- ▶ 다른 공학분야와 동일 [the same in other areas of engineering]:
 - ▶ 기계/전기/공정/건축설계 분석<u>검증 후</u> 제작/설비/건설 [build after analysis in mechanical/electrical/architecture enginering]
- ▶ 일상과 동일 [the same in our life]:
 - ▶ 입시/면접, 사주/궁합, 클럽기도
 - ▶ 검증 후 실행

검증해야 할 성질들 (properties to verify)

▶ 제대로 생겼는가? 자동검증 [well formed? automatic]

- ▶ 제대로 생겼는가? 자동검증 [well formed? automatic]
- ▶ 타입에 맞게 실행될 것인가? [well typed?]

- ▶ 제대로 생겼는가? 자동검증 [well formed? automatic]
- ▶ 타입에 맞게 실행될 것인가? [well typed?]
 - ▶ 직접검증(Scheme, C, JavaScript, etc) [manual]

- ▶ 제대로 생겼는가? 자동검증 [well formed? automatic]
- ▶ 타입에 맞게 실행될 것인가? [well typed?]
 - ▶ 직접검증(Scheme, C, JavaScript, etc) [manual]
 - ▶ 자동검증(ML, Scala, Haskell, Java, Python, etc) [automatic]

- ▶ 제대로 생겼는가? 자동검증 [well formed? automatic]
- ▶ 타입에 맞게 실행될 것인가? [well typed?]
 - ▶ 직접검증(Scheme, C, JavaScript, etc) [manual]
 - ▶ 자동검증(ML, Scala, Haskell, Java, Python, etc) [automatic]
- ▶ 4190.210: 항상 끝나는가: 직접검증, 비교적 용이 [terminate?: manual, not so hard]

검증해야 할 성질들 (properties to verify)

- ▶ 제대로 생겼는가? 자동검증 [well formed? automatic]
- ▶ 타입에 맞게 실행될 것인가? [well typed?]
 - ▶ 직접검증(Scheme, C, JavaScript, etc) [manual]
 - ▶ 자동검증(ML, Scala, Haskell, Java, Python, etc) [automatic]
- ▶ 4190.210: 항상 끝나는가: 직접검증, 비교적 용이 [terminate?: manual, not so hard]
- ▶ 내가 바라는 계산을 하는가: 어려움 [fully correct?: very hard]

My main research topic.

You can learn some from the "Software Foundations" course that I will teach in 2015 Fall.

확인: 모든 입력에 대해서 정의되었는가? [does not crash?]

▶ 타입에 맞게 실행될 것이 확인된 경우 [just need to check whether the program is well typed]

We will learn more complex types for user-defined data structures later.

확인: 항상 끝나는가? [always terminate?]

그렇다, 만일 [lf]:

- ▶ 반복 될 때 뭔가가 계속 "줄어들고" [something "decreases"]
- ▶ 그 줄어듬의 "끝이 있다"면 [the decreasing has an end].

즉, 재귀함수의 경우, 만일 [For example, in a recursive function, if]:

- ▶ 재귀 호출마다 인자가 "줄어들고" [an argument decreases at every recursive call]
- ▶ 그 줄어듬의 "끝이 있다"면 [the decreases has an end].

```
(define (fac n)
  (if (= n 0) 1
      (* n (fac (- n 1)))
  ))
```

```
(define (fac n)
  (if (= n 0) 1
      (* n (fac (- n 1)))
  ))
```

▶ 음이아닌 정수만 입력으로 받는다면 [if n ≥ 0],

```
(define (fac n)
  (if (= n 0) 1
      (* n (fac (- n 1)))
    ))
```

- ▶ 음이아닌 정수만 입력으로 받는다면 [if n ≥ 0],
- ▶ 재귀호출마다 원래 n보다 줄고 있고 "n-1" [n-1 < n] at every recursive call],

```
(define (fac n)
  (if (= n 0) 1
      (* n (fac (- n 1)))
    ))
```

- ▶ 음이아닌 정수만 입력으로 받는다면 [if n ≥ 0],
- ▶ 재귀호출마다 원래 n보다 줄고 있고 "n-1" [n-1 < n] at every recursive call],
- ▶ 끝이 있다("(= n 0) 1") [there is an end].

아래와 같은 재귀함수 $f:A\to B$ 를 생각하자(w.l.o.g.) (define (f x) \cdots (f e_1) \cdots (f e_2) \cdots)

재귀함수 인자들의 집합 A에서 [in the set A]

아래와 같은 재귀함수 $f:A \rightarrow B$ 를 생각하자(w.l.o.g.)

(define (f
$$x$$
) \cdots (f e_1) \cdots (f e_2) \cdots)

재귀함수 인자들의 집합 A에서 [in the set A]

▶ 원소들 간의 줄어드는 순서 >를 찾으라, 아래와 같은 [find > such that]:

아래와 같은 재귀함수 $f: A \rightarrow B$ 를 생각하자(w.l.o.g.)

(define (f
$$x$$
) \cdots (f e_1) \cdots (f e_2) \cdots)

재귀함수 인자들의 집합 A에서 [in the set A]

- ▶ 원소들 간의 줄어드는 순서 >를 찾으라, 아래와 같은 [find > such that]:
- ▶ 재귀호출 인자식 $(e_1$ 와 e_2)의 값이 원래 인자(x)보다 >인("줄어드는"), 그리고 $[x>e_1$ and $x>e_2]$

아래와 같은 재귀함수 $f:A \rightarrow B$ 를 생각하자(w.l.o.g.)

(define (f
$$x$$
) \cdots (f e_1) \cdots (f e_2) \cdots)

재귀함수 인자들의 집합 A에서 [in the set A]

- ▶ 원소들 간의 줄어드는 순서 >를 찾으라, 아래와 같은 [find > such that]:
- ▶ 재귀호출 인자식(e₁와 e₂)의 값이 원래 인자(x)보다 >인("줄어드는"), 그리고 [x > e₁ and x > e₂]
- ▶ 집합 A에서 >-순서대로 원소를 줄세우면 항상 유한한(well-founded) [> has no infinite decreasing chain (i.e., well-founded) in A].

```
(define (bar a b c)
  (if (= b 0) c
        (bar (+ a 1) (- b 1) (* a b))
  ))
```

- ▶ N * N * N에서 줄어드는 순서 >는? [what is >?]
- ▶ 그래서 그 >-순서가 항상 유한번에 바닥에 닿는(well-founded)? [is > well-founded?]

그런 순서 >는?

```
(define (map-reduce f l op init)
  (reduce (map f 1) op init))
(define (map f 1)
  (if (null? 1) ()
    (cons (f (car 1)) (map f (cdr 1)))
 ))
(define (reduce 1 op init)
  (if (null? 1) init
    (op (car 1) (reduce (cdr 1) op init))
 ))
(define (word-count pages) (map-reduce wc pages + 0))
(define (make-dictionary pages) (map-reduce mw (words
```

```
(define (sum lower upper f)
  (if (> lower upper) 0
        (+ (f lower) (sum (+ lower 1) upper f))
    ))
```

```
(define (ackermann m n)
  (cond
    ((= m 0) (+ n 1))
    ((= n 0) (ackermann (- m 1) 1))
    (else (ackermann (- m 1) (ackermann m (- n 1))))
))
```