Patent claims

- 1. prepreg for fiber composites having high strength and resilience, characterized in that the prepreg comprises from 50 to 85% by mass of sheetlike textile structures and from 15 to 50% by mass of polyaminotriazine ethers containing carbamic ester groups and based on
 - A) aminotriazine ethers of the structure

10

5

 $-NH_2$, $-NH-CHR_2-OH$, $-NH-CHR_2-O-R_3$ R_1 $-CH_3$, $-C_3H_7$, $-NH-CHR_2-O-R_4-OH$, $-C_6H_5$, -OH, phthalimido, succinimido-, -NH-CO-C₅-C₁₈-alkyl, -NH-C₅-C₁₈-alkylene-OH,

15 $-NH-CHR_2-O-C_5-C_{18}-alkylene-NH_2$, $-NH-C_5-C_{18}-alkylene-NH_2$,

$$R_2 = -H$$
, $-C_1-C_7-alkyl$;
 $R_3 = -C_1-C_{18}-alkyl$, $-R_4-OH$,

20

 $R_4 = -CH(CH_3) - CH_2 - O - C_2 - C_{12} - alkylene - O - CH_2 - CH(CH_3) -$ -CH(CH₃)-CH₂-O-C₂-C₁₂-arylene-O-CH₂-CH(CH₃)-, $-[CH_2-CH_2-O-CH_2-CH_2]_n -[CH_2-CH(CH_3)-O-CH_2-CH(CH_3)]_n-$

25 $-[O-CH_2-CH_2-CH_2-CH_2]_n-$

 $-[(CH_2)_{2-8}-O-CO-C_6-C_{14}-arylene-CO-O-(CH_2)_{2-8}]_n-$

 $-[(CH_2)_{2-8}-O-CO-C_2-C_{12}-alkylene-CO-O-(CH_2)_{2-8}]_n-$

where n = 1 to 200;

- polyester sequences containing siloxane groups 30 of the type $-[(X)_r-O-CO-(Y)_s-CO-O(X)_r]-$, in which

> $X = \{ (CH_2)_{2-8} - O - CO - C_6 - C_{14} - arylene - CO - O - (CH_2)_{2-8} \} - or$ $\{(CH_2)_{2-8}-O-CO-C_2-C_{12}-alkylene-CO-O-(CH_2)_{2-8}\}-;$

5

r = 1 to 70; s = 1 to 70 and y = 3 to 50;

- polyether sequences which contain siloxane groups and are of the type

where $R_5 = H$; C_1-C_4 -alkyl and y = 3 to 50;

- sequences based on alkylene oxide adducts of 10 melamine of the type comprising 2-amino-4,6-dic2-c4-alkyleneamino-1,3,5-triazine sequences;
- phenol ether sequences based on dihydric 15 phenols and C_2 - C_8 -diols of the type comprising $-C_2-C_8-alkylene-O-C_6-C_{18}-arylene-O-C_2-C_8-alkylene$ sequences;

and/or

20 B) mixtures of from 10 to 90% by aminotriazine ethers A) and from 90 to 10% by mass of polyaminotriazine ethers having molar masses of from 300 to 5000, the polyaminotriazine ethers formed by being thermal autocondensation 25 aminotriazine ethers A),

and

C) isocyanates of the formula $R_6(N = C = O)_2$, where $R_6 = C_6 - C_{14}$ -arylene, $C_4 - C_{18}$ -alkylene and/or C_5 -30 C₈-cycloalkylene, and/or oligomeric polyesters or polyethers having terminal isocyanate groups and molar masses of from 200 to 5000,

the molar ratio of triazine segment to carbamic ester groups being from 1:1 to 1:4.

5

10

2. The prepreg as claimed in claim 1, characterized in that the textile substrate materials are woven fabrics or nonwovens, preferably woven fabrics or nonwovens comprising glass fibers, carbon fibers, polyamide fibers, polyester fibers, polypropylene fibers and/or thermosetting plastic fibers.

of

- 3. prepreg as claimed in claim 1 characterized in that the ratio of aldehyde component to triazine component is from 1 : 1 to 3: 1 in the polyaminotriazine ethers containing carbamic ester groups.
- 4. The prepreg as claimed in at least one of the preceding claims, characterized in that polyaminotriazine ethers containing carbamic ester 10 polyaminotriazine are ethers melamine, formaldehyde, methanol and diisocyanates of the type $R_6(N = C = 0)_2$.
- The prepreg as claimed in at least one of the 15 5. preceding claims, characterized in that polyaminotriazine ethers containing carbamic ester groups are polyaminotriazine ethers based on
 - B) mixtures of from 5 to 30% by mass aminotriazine ethers A) and from 95 to 70% by mass of polyaminotriazine ethers having molar masses of from 300 to 5000, the polyaminotriazine ethers being formed by thermal autocondensation of aminotriazine ethers A), and
- 25 C) isocyanates of the formula $R_6(N = C = O)_2$, where $R_4 = C_4 - C_{18} - alkylene$ and/or $C_5 - C_8 - cycloalkylene$, and/or oligomeric polyesters or polyethers having terminal isocyanate groups and molar masses of from 200 to 5000.

30

20

5

6. A process for the production of prepregs for fiber composites having high strength and resilience, characterized in that prepregs which comprise from 50 to 85% by mass of sheet-like textile structures and from 15 to 50% by mass of polyaminotriazine 35 ethers containing carbamic ester groups produced by a melt application method in which mixtures of

A) aminotriazine ethers of the structure

$$R_1$$
 C
 N
 N
 II
 I
 $R_3 - O - CHR_2 - NH - C$
 $C - R_1$
 N

```
WO 2004/083288
```

- 23 - PCT/EP2004/002906

```
= -NH_2,
                                                                -NH-CHR_2-O-R_3,
                                        -NH-CHR_2-OH,
             -NH-CHR_2-O-R_4-OH,
                                       -CH_3, -C_3H_7, -C_6H_5, -OH,
             phthalimido, succinimido-, -NH-CO-C5-C18-alkyl,
             -NH-C_5-C_{18}-alkylene-OH,
 5
             -NH-CHR_2-O-C_5-C_{18}-alkylene-NH_2,
             -NH-C_5-C_{18}-alkylene-NH_2,
             R_2 = -H, -C_1-C_7-alkyl;
             R_3 = -C_1 - C_{18} - alkyl, -R_4 - OH,
10
             R_4 = -CH(CH_3) - CH_2 - O - C_2 - C_{12} - alkylene - O - CH_2 - CH(CH_3) -
             -CH(CH_3)-CH_2-O-C_2-C_{12}-arylene-O-CH_2-CH(CH_3)-
             -[CH_2-CH_2-O-CH_2-CH_2]_n-
             -[CH_2-CH(CH_3)-O-CH_2-CH(CH_3)]_n-
15
             -[O-CH_2-CH_2-CH_2-CH_2]_n-
             -[(CH_2)<sub>2-8</sub>-O-CO-C<sub>6</sub>-C<sub>14</sub>-arylene-CO-O-(CH_2)<sub>2-8</sub>]<sub>n</sub>-,
             -[(CH_2)_{2-8}-O-CO-C_2-C_{12}-alkylene-CO-O-(CH_2)_{2-8}]_n-
             where n = 1 to 200;
             - polyester sequences containing siloxane groups
20
                 of the type -[(X)_r-0-C0-(Y)_s-C0-0(X)_r]-,
                 which
             X = \{ (CH_2)_{2-8} - O - CO - C_6 - C_{14} - arylene - CO - O - (CH_2)_{2-8} \} - or
             \{(CH_2)_{2-8}-O-CO-C_2-C_{12}-alkylene-CO-O-(CH_2)_{2-8}\}-;
                           C<sub>1</sub>-C<sub>4</sub>-Alkyl
                                          C<sub>1</sub>-C<sub>4</sub>-Alkyl
         C<sub>1</sub>-C<sub>4</sub>-Alkyl
                                                                           Or
         -{O-CO-C<sub>2</sub>-C<sub>12</sub>-Alkylen-CO-O-({Si-O-[Si-O]<sub>z</sub>-CO-C<sub>2</sub>-C<sub>12</sub>-Alkylen-CO}-
                              C_1-C_4-Alkyl C_1-C_4-Alkyl
25
             r = 1 to 70; s = 1 to 70 and y = 3 to 50;
```

- polyether sequences containing siloxane groups of the type

$$C_1$$
- C_4 -Alkyl C_1 - C_4 -Alkyl C_5 - C_4 -Alkyl C_5 - C_5 - C_5 - C_5 - C_7 - C_7 - C_7 - C_7 - C_7 - C_8 - C_8 - C_9 -Alkyl C_9 - C_9 -Alkyl

where $R_5 = H$; C_1-C_4 -alkyl and y = 3 to 50;

- sequences based on alkylene oxide adducts of 5 melamine of the type comprising 2-amino-4,6-di- C_2-C_4 -alkyleneamino-1,3,5-triazine sequences:

- phenol ether sequences based on dihydric phenols and C_2 - C_8 -diols of the type comprising $-C_2$ - C_8 -alkylene-0- C_6 - C_{18} -arylene-0- C_2 - C_8 -alkylene sequences;

and/or

of from 10 to 90% B) mixtures by aminotriazine ethers A) and from 90 to 10% by mass of polyaminotriazine ethers having molar masses of from 300 to 5000, the polyaminotriazine ethers being formed by thermal autocondensation aminotriazine ethers A),

and

15

20

25

10

5

C) isocyanates of the formula $R_6(N=C=0)_2$, where $R_6=C_6-C_{14}$ -arylene, C_4-C_{18} -alkylene and/or C_5-C_8 -cycloalkylene, and/or oligomeric polyesters or polyethers having terminal isocyanate groups and molar masses of from 200 to 5000,

the molar ratio of diisocyanate to the sum of imino groups and amino groups in the triazine sequence being from 0.15:1 to 0.65:1, and it being possible for the mixtures to contain from 0.05 to 2% by mass, based on the aminotriazine ethers, of latent curing agents,

are melted at temperatures of from 85 to 130°C, 30 reacted, and applied to textile substrate materials.

7. A process for the production of prepregs for fiber composites having high strength and resilience, characterized in that prepregs which comprise from 50 to 85% by mass of sheet-like textile structures and from 15 to 50% by mass of polyaminotriazine ethers containing carbamic ester groups are produced by a liquid application method in which

dispersions in C_5-C_{12} -hydrocarbons and/or C_3-C_{12} ketones or solutions in dimethyl sulfoxide, dimethylformamide and/or dimethylacetamide having a solids content of from 25 to 70% by mass, comprising

5

A) aminotriazine ethers of the structure

$$R_{1} = -NH_{2}, -NH-CHR_{2}-OH, -NH-CHR_{2}-O-R_{3},$$

$$-NH-CHR_{2}-O-R_{4}-OH, -CH_{3}, -C_{3}H_{7}, -C_{6}H_{5}, -OH,$$

$$phthalimido, succinimido-, -NH-CO-C_{5}-C_{18}-alkyl,$$

$$-NH-C_{5}-C_{18}-alkylene-OH,$$

$$-NH-CHR_{2}-O-C_{5}-C_{18}-alkylene-NH_{2},$$

$$-NH-C_{5}-C_{18}-alkylene-NH_{2},$$

$$10$$

 $R_2 = -H$, $-C_1-C_7$ -alkyl; $R_3 = -C_1 - C_{18} - alkyl, -R_4 - OH,$

 $R_4 = -CH(CH_3) - CH_2 - O - C_2 - C_{12} - alkylene - O - CH_2 - CH(CH_3) -$ -CH(CH₃)-CH₂-O-C₂-C₁₂-arylene-O-CH₂-CH(CH₃)-, 15 $-[CH_2-CH_2-O-CH_2-CH_2]_n -[CH_2-CH(CH_3)-O-CH_2-CH(CH_3)]_n-,$ $-[O-CH_2-CH_2-CH_2-CH_2]_n -[(CH_2)_{2-8}-O-CO-C_6-C_{14}-arylene-CO-O-(CH_2)_{2-8}]_n-$ 20 $-[(CH_2)_{2-8}-O-CO-C_2-C_{12}-alkylene-CO-O-(CH_2)_{2-8}]_n-,$ where n = 1 to 200; polyester sequences containing siloxane groups

of the type $-[(X)_r-O-CO-(Y)_s-CO-O(X)_r]-$, which

25 $X = \{ (CH_2)_{2-8} - O - CO - C_6 - C_{14} - arylene - CO - O - (CH_2)_{2-8} \} - or$ $\{(CH_2)_{2-8}-O-CO-C_2-C_{12}-alkylene-CO-O-(CH_2)_{2-8}\}-;$

$$C_{1}-C_{4}-Alkyl \qquad C_{1}-C_{4}-Alkyl \\ | \qquad | \qquad | \\ Y = -\{C_{6}-C_{14}-Arylen-CO-O-(\{Si-O-[Si-O]_{y}-CO-C_{6}-C_{14}-Arylen\}-\\ | \qquad | \qquad | \\ C_{1}-C_{4}-Alkyl \qquad C_{1}-C_{4}-Alkyl \qquad or$$

5

10

15

20

25

30

r = 1 to 70; s = 1 to 70 and y = 3 to 50;

- polyether sequences containing siloxane groups and of the type

$$\begin{array}{c|cccc} & C_{1}\text{-}C_{4}\text{-}Alkyl & C_{1}\text{-}C_{4}\text{-}Alkyl \\ & & | & & | \\ & -CH_{2}\text{-}CHR_{5}\text{-}O\text{-}(\{Si\text{-}O\text{-}[Si\text{-}O]_{y}\text{-}CHR_{5}\text{-}CH_{2}\text{-} \\ & & | & | \\ & & C_{1}\text{-}C_{4}\text{-}Alkyl & C_{1}\text{-}C_{4}\text{-}Alkyl \\ \end{array}$$

where $R_5 = H$; C_1-C_4 -alkyl and y = 3 to 50;

- sequences based on alkylene oxide adducts of melamine of the type comprising 2-amino-4,6-di- C_2-C_4 -alkyleneamino-1,3,5-triazine sequences;
- phenol ether sequences based dihydric on phenols and C_2 - C_8 -diols of the type comprising $-C_2-C_8$ -alkylene-O-C₆-C₁₈-arylene-O-C₂-C₈-alkylene sequences;

and/or

B) mixtures of from 10 to 90% by aminotriazine ethers A) and from 90 to 10% by mass of polyaminotriazine ethers having molar masses of from 300 to 5000, the polyaminotriazine ethers being formed by autocondensation of triazine ethers A),

and

C) isocyanates of the formula $R_6(N = C = O)_2$, where $R_6 = C_6-C_{14}$ -arylene, C_4-C_{18} -alkylene and/or C_5 -C₈-cycloalkylene, and/or oligomeric polyesters or polyethers having terminal isocyanate groups and molar masses of from 200 to 5000,

the molar ratio of diisocyanate to the sum of imino groups and amino groups in the triazine sequence being from 0.15:1 to 0.65:1, and it being possible for the mixtures to contain from 0.05 to 2% by mass, based on the aminotriazine ethers, of latent curing agents,

5

are applied at temperatures from 5 to 80°C to textile substrate materials and reacted at from 80 to 120°C/from 0.1 to 1 bar and dried.

The process for the production of prepregs as 10 8. claimed in claim 6 or 7, characterized in that the aminotriazine ether used is tris(methoxymethylamino)-1,3,5-triazine.

5

10

15

20

25

30

- 9. The process for the production of prepregs as claimed in at least one of claims 6 to 8, characterized in that the latent curing agents used are weak acids, preferably
 - blocked sulfonic acids,
 - alkali metal salts or ammonium salts of phosphoric acid,
- C_1 - C_{12} -alkyl esters or C_2 - C_8 -hydroxyalkyl esters of aromatic C_6 - C_{14} -carboxylic acids or inorganic acids,
 - salts of melamine or guanamines with aliphatic C_1-C_{18} -carboxylic acids,
 - anhydrides, monoesters or monoamides of $C_4 C_{20} C_{30}$ dicarboxylic acids,
 - monoesters or monoamides of copolymers of ethylenically unsaturated $C_4-C_{20}-{\rm dicarboxylic}$ anhydrides and ethylenically unsaturated monomers of the type comprising $C_2-C_{20}-{\rm olefins}$ and/or $C_8-C_{20}-{\rm vinylaromatics}$, and/or
 - salts of C_1 - C_{12} -alkylamines or alkanolamines with aliphatic C_1 - C_{18} -carboxylic acids, aromatic C_6 - C_{14} -carboxylic acids or alkylaromatic carboxylic acids and inorganic acids of the hydrochloric acid, sulfuric acid or phosphoric acid type.
 - 10. A fiber composite produced using prepregs as claimed in one or more of claims 1 to 5.
 - 11. The use of a fiber composite as claimed in claim 10 for heat protection clothing, fire protection blankets, electrical insulation papers, construction parts and vehicle fittings.