Parcial 3 - Introducción a la Lógica y la Computación

1. Para el AF que se muestra a continuación, obtener su expresión regular equivalente utilizando el Teorema de Kleene (vuelta):

2. Probar que el lenguaje $L=\{a^ib^j:i,j\geq 0\ y\ j=2i\}$ no es regular utilizando pumping lema.

Dado el siguiente AFN ${\cal M}$

Considere el AFD M^\prime resultante de aplicar el algoritmo de determinización transición. Determine

Teniendo en cuenta la pregunta anterior, determine cuáles de los siguientes finales en el autómata determinizado M^\prime .

- a. Ø
- b. {q₀, q₁}
- _ c. (q,)
- d. (q₀, q₂)
- e. {q_o}

Determinar cuales de las siguientes afirmaciones son verdaderas

- a. Sea $\Sigma=\{1,2,3\}$. El lenguaje $L=\{x_1\dots x_k\in\Sigma^*:x_1,\dots,x_k\in\Sigma,\ x_1\leq x_2\dots\leq x_k\ \mathrm{y}\ k\geq 0\}$ es regular.
- $_{\square}$ b. Si $L_1\in LR^{\Sigma}$ y $L_2\subseteq L_1$, entonces $L_2\in LR^{\Sigma}$.
- \square c. Si $(L_1 \cup L_2) \in LR^\Sigma$, entonces $L_1 \in LR^\Sigma$ o $L_2 \in LR^\Sigma$.
- $\ \ \, \Box$ d. Si G es una gramática entonces $L(G) \in LR^{\Sigma}$.
- \underline{w} e. Si $L_1\in LR^\Sigma$ y $lpha_1,\ldots,lpha_k\in\Sigma^*$, entonces $(L_1\cup\{lpha_1,\ldots,lpha_k\})\in LR^\Sigma$.
- \underline{w} f. Si $L_1 \in LR^\Sigma$ y $L_2 \in LR^\Sigma$, entonces $(L_1 L_2) \in LR^\Sigma$.
- $_{\square}$ g. Para todo lenguaje L, si L es infinito, no es regular.