存储过程性能测试报告

修订历史

版本	修订日期	修订描述	作者	备注
Cedar 0.2	2016-07-29	存储过程性能测试报告	朱涛 王冬慧	

简洁测试结果

负载 类型	OceanBase 0.4.2	Cedar 0.1	Cedar 0.2	结论
9MS*120线程,TPC-C benchmark,64warehouse, 200client,payment	2565(Tps)	3394(Tps)	9870(Tps)	Cedar0.2版 本的Tps约 为0.1版本的 3倍,约为 OceanBase 0.4.2的4倍
9MS*120线程,TPC-C benchmark,64warehouse, 200client,neworder	1329(Tps)	1633(Tps)	2592(Tps)	Cedar0.2版 本的Tps约 为0.1版本的 1.6倍,约为 OceanBase 0.4.2的2倍

1 测试环境

实验使用10台服务器搭建集群作为测试环境,每台服务器的硬件环境相同,如表1所示。其中1台服务器用于部署UPS+RS,其他9台服务器用于部署MS+CS。

硬件	描述
操作系统	CentOS release 6.5
内核	2.6.32431.el6.x86_64
CPU	Intel(R) Xeon(R) CPU E5606@2.13GHz x2

内存	192GB
硬盘	3.6TB
网卡	Broadcom NetXtreme II BCM5709 1000BaseT

2 测试方法

我们使用了TPC-C benchmark中的payment和neworder事务,设计实验将采用事务优化的存储过程(下文统一称为SPTP)与无事务优化的存储过程(SP)和传统的JDBC调用事务方法(JDBC)对比。实验主要有两个变量:客户端数量和仓库数量。通过对比不同变量下的Throughput(Tps)和Latency,分析事务优化的性能。

3 结果分析

3.1 payment事务性能对比实验

不同事务执行方式在10个warehouse下的Tps随客户端数量的变化情况如图1所示。

图1. payment事务Tps随client变化图 (10warehouse)

不同事务执行方式在60个warehouse下的Tps随客户端数量的变化情况如图2所示。

Payment 60warehouse Throughput

图2. payment事务Tps随client变化图 (60warehouse)

图3. payment事务Latency随client变化图 (10warehouse)

Payment 60warehouse Latency

图4. payment事务Tps随client变化图 (60warehouse)

由图1可知,在10warehouse下,事务的冲突较高,此种情况下,SPTP的性能明显优于SP和JDBC,且能够保持稳定的性能。

由图2可知,在60warehouse下,事务的冲突较低,SPTP能够达到约10000Tps的性能,约是JDBC性能的三倍。此时UPS的CPU占用率几乎到达了极限,因此,UPS的计算成为了性能的瓶颈。

由图3和图4可知,无论是低冲突还是高冲突下,SPTP的Latency能够稳定在200ms左右,总体性能优于SP和JDBC。

3.2 neworder事务性能对比实验

不同事务执行方式在10个warehouse下的Tps随客户端数量的变化情况如图5所示。

Neworder 10warehouse Throughput

图5. neworder事务Tps随client变化图 (10warehouse)

不同事务执行方式在60个warehouse下的Tps随客户端数量的变化情况如图6所示。

图6. neworder事务Tps随client变化图 (60warehouse)

Neworder 10warehouse Latency

图7. neworder事务Latency随client变化图 (10warehouse)

图8. neworder事务Latency随client变化图 (60warehouse)

结果分析:SPTP在处理neworder时,在60warehouse下,Tps能够到达2500Tps左右,约为JDBC的两倍。实验表明,事务优化性能提升十分明显。