Ізольовані особливі точки

доц. І.В. Орловський

1. Нулі аналітичної функції

Нехай f(z) – аналітична функція в області D. Точку $z_0 \in D$ називають нулем функції f(z), якщо $f(z_0) = 0$. Розвинення функції f(z) в околі її нуля у степеневий ряд має вигляд

$$f(z) = \sum_{n=1}^{\infty} c_n (z - z_0)^n, \ c_0 = 0$$

Якщо, крім цього $c_1=c_2=\ldots=c_{m-1}=0$, $c_m\neq 0$, то точку z_0 називають нулем кратності m (або нулем m-го порядку). Якщо m=1, то z_0 називають простим нулем. В околі нуля кратності m розвинення функції f(z) у степеневий ряд має вигляд

$$f(z) = \sum_{n=m}^{\infty} c_n (z - z_0)^n = c_m (z - z_0)^m + c_{m+1} (z - z_0)^{m+1} + \dots = (z - z_0)^m (c_m + c_{m+1} (z - z_0) + \dots) = (z - z_0)^m g(z), \ g(z_0) \neq 0,$$

Теорема 1

Точка $z_0 \in$ нулем кратності m функції f(z) тоді й лише тоді, коли:

$$f(z_0) = f'(z_0) = \dots = f^{(m-1)}(z_0) = 0, \ f^{(m)}(z_0) \neq 0.$$

Нулі функції f(z) називають ізольованими, якщо їх можна оточити околами, які не перетинаються.

Нулі відмінної від тотожного нуля аналітичної функції є ізольованими.

2. Ізольовані особливі точки та їх класифікація

Точку z_0 називають особливою точкою функції f(z), якщо функція в цій точці не ϵ аналітичною.

Особливу точку z_0 функції f(z) називають ізольованою особливою точкою, якщо існує проколений окіл точки z_0 (кільце $0<|z-z_0|< r$) у якому функція f(z) є аналітична.

Залежно від поведінки функції f(z) під час наближення до точки z_0 розрізняють три типи особливих точок.

Означення 1

Ізольовану особливу точку z_0 називають:

- $lacksymbol{0}$ усувною, якщо існує скінченна $\lim_{z o z_0}f(z)$;
- $\mathbf{2}$ полюсом, якщо $\lim_{z o z_0} f(z) = \infty;$
- $oldsymbol{3}$ істотно особливою точкою, якщо границя функції f(z), коли $z o z_0$ не існу ϵ .

3. Властивості ізольованих особливих точок

Якщо $z=z_0$ усувна особлива точка функції f(z), то функція

$$\tilde{f}(z) = \begin{cases} f(z), & z \neq z_0; \\ \lim_{z \to z_0} f(z), & z = z_0, \end{cases}$$

вже буде аналітичною в $z=z_0$, тобто особливість можна «усунути».

Теорема 2 (про зв'язок між полюсом і нулем функції)

Точка z_0 ϵ полюсом порядку m для функції f(z) тоді й лише тоді, коли для функції $g(z)=\frac{1}{f(z)}$ точка z_0 ϵ нулем кратності m.

Теорема З (Сохоцького)

Якщо z_0 – істотно особлива точка функції f(z), то для довільного $A\in\mathbb{C}$ існує така послідовність точок $\{z_k,\ k\in\mathbb{N}\}$, яка збігається до $z_0\ (z_k\to z_0)$, що

$$\lim_{k \to \infty} f(z_k) = A.$$

4. Розвинення в ряд Лорана в околі особливої точки

Тип ізольованої особливої точки зв'язаний з характером розвинення функції f(z) в ряд Лорана у кільці $0<|z-z_0|< r$ з виколотим центром z_0 .

Нехай в околі точки z_0 функція f(z) розвивається в ряд Лорана:

$$f(z) = \sum_{m=1}^{\infty} \frac{c_{-m}}{(z - z_0)^m} + \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

Теорема 4

Ізольована особлива точка z_0 функції f(z) ϵ :

lacktriangle усувною особливою точкою тоді й лише тоді, коли розвинення функції f(z) в ряд Лорана у проколеному околі цієї точки не містить головної частини:

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

 полюсом порядку т тоді й лише тоді, коли головна частина розвинення функції f(z) в ряд Лорана у проколеному околі цієї точки містить скінченну (і додатну) кількість відмінних від нуля членів:

$$f(z) = \frac{c_{-m}}{(z - z_0)^m} + \ldots + \frac{c_{-1}}{z - z_0} + \sum_{n=0}^{\infty} c_n (z - z_0)^n, \ c_{-m} \neq 0.$$

ullet істотно особливою тоді й лише тоді, коли головна частина розвинення функції f(z) в ряд Лорана в проколеному околі цієї точки містить нескінченно багато відмінних від нуля членів:

$$f(z) = \sum_{m=1}^{\infty} \frac{c_{-m}}{(z - z_0)^m} + \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

5. Поведінка функції в нескінченно віддаленій точці

Класифікацію ізольованих точок можна поширити і на випадок, коли особливою точкою функції f(z) є нескінченно віддалена точка $z=\infty$.

Околом точки $z=\infty$ називають зовнішність будь-якого круга з центром у точці z=0 і радіусом R>0, тобто множину |z|>R.

Точку $z=\infty$ називають ізольованою особливою точкою функції f(z), якщо в деякому околі цієї точки немає інших особливих точок функції.

Нескінченно віддалена ізольована особлива точка може бути:

- ullet усувною (розвинення в ряд Лорана в околі точки $z=\infty$ не містить членів з додатними степенями);
- полюсом (розвинення в ряд Лорана в околі точки $z=\infty$ містить скінченну кількість членів з додатними степенями);
- ullet істотно особливою точкою (розвинення в ряд Лорана в околі точки $z=\infty$ містить нескінченну кількість членів з додатними степенями).

Відомі Тейлорові розвинення функцій e^z , $\cos z$, $\sin z$, $\cot z$, $\sin z$ можна розглядати також і як розвинення у ряд Лорана в околі точки $z=\infty$. Оскільки всі ці розвинення містять нескінченну кількість додатних степенів z, то вказані функції мають у точці $z=\infty$ істотну особливість.

Зауважимо також, що вивчення функції f(z) в околі точки $z=\infty$ можна звести заміною $z=rac{1}{\zeta}$ до вивчення функції $ilde{f}(\zeta)=f\left(rac{1}{z}
ight)$ в околі точки $\zeta=0.$

Література

- [1] Ряди. Функції комплексної змінної. Операційне числення. Конспект лекцій / Уклад.: В.О. Гайдей, Л.Б. Федорова, І.В. Алєксєєва, О.О. Диховичний. К: НТУУ «КПІ», 2013. 108 с.
- [2] Дубовик В.П., Юрик І.І. *Вища математика*, К.: Вища школа, 1998.
- [3] Письменный Д.Т. Конспект лекций по высшей математике, 2 часть. М.: Рольф, 2000.