





Beta-Binomial 
$$\theta \sim \text{Beta}(\alpha, \beta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \quad X \mid \theta \sim \text{Bin}(n, \theta), \ \mathbb{P}(X \mid \theta) = \binom{n}{X} \theta^X (1 - \theta)^{n - X} \quad \theta \mid X \sim \text{Beta}(\alpha + X, \beta + n - X)$$

Gaussian-Gaussian 
$$\theta \sim \mathcal{N}(\mu_0, \sigma_0^2) \propto \exp\left(-\frac{(\theta - \mu_0)^2}{2\sigma_0^2}\right) \quad X \mid \theta \sim \mathcal{N}(\theta, \sigma^2), \, \mathbb{P}(X \mid \theta) \propto \exp\left(-\frac{(X - \theta)^2}{2\sigma^2}\right) \qquad \theta \mid X \sim \mathcal{N}(\mu_n, \sigma_n^2),$$

$$\mu_n = \frac{\sigma_0^2 X + \sigma^2 \mu_0}{\sigma_0^2 + \sigma^2}, \ \sigma_n^2 = \frac{\sigma_0^2 \sigma^2}{\sigma_0^2 + \sigma^2}$$

| Gamma-Poisson | $\theta \sim \text{Gamma}(\alpha, \beta) \propto \theta^{\alpha - 1} e^{-\beta \theta}$ | $X \mid \theta \sim \text{Poisson}(\theta),  \mathbb{P}(X \mid \theta) = \frac{\theta^X e^{-\theta}}{X!}$ | $\theta \mid X \sim \text{Gamma}(\alpha + X, \beta)$ |
|---------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|---------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------|

\_

| Modèle         | Loi a priori                                                                                  | Vraisemblance                                                                                                                                                              | Loi a posteriori                                            |
|----------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Beta-Bernoulli | $\theta \sim \text{Beta}(\alpha, \beta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$ | $X \mid \boldsymbol{\theta} \sim \text{Bernoulli}(\boldsymbol{\theta}),  \mathbb{P}(X \mid \boldsymbol{\theta}) = \boldsymbol{\theta}^X (1 - \boldsymbol{\theta})^{1 - X}$ | $\theta \mid X \sim \text{Beta}(\alpha + X, \beta + 1 - X)$ |

Pour quel type de modèle obtient-on une loi a posteriori facilement ?

On dit qu'une loi a priori  $\pi(\theta)$  est **conjuguée** pour un modèle  $\mathbb{P}(X_1, \ldots, X_n \mid \theta)$  si la loi a posteriori  $\mathbb{P}(\theta \mid X_1, \ldots, X_n)$  appartient à la même famille de distributions que  $\pi(\theta)$ .

### Quelques exemples:

















### 2) Prendre une loi a priori conjuguée:

a priori conjuguees

## a priori conjuguées

- 1. Pour quel type de modèle obtient-on une loi a posteriori facilement?
  - 2) Prendre une loi a priori conjuguée:

On dit qu'une loi a priori  $\pi(\theta)$  est **conjuguée** pour un modèle  $\mathbb{P}(X_1, \ldots, X_n \mid \theta)$  si la loi a posteriori  $\mathbb{P}(\theta \mid X_1, \ldots, X_n)$  appartient à la même famille de distributions que  $\pi(\theta)$ .

#### Quelques exemples:

| Modèle            | Loi a priori                                                                                                  | Vraisemblance                                                                                                                                                                         | Loi a posteriori                                                                                                                        |
|-------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Beta-Bernoulli    | $\theta \sim \text{Beta}(\alpha, \beta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$                 | $X \mid \boldsymbol{\theta} \sim \text{Bernoulli}(\boldsymbol{\theta}),  \mathbb{P}(X \mid \boldsymbol{\theta}) = \boldsymbol{\theta}^X (1 - \boldsymbol{\theta})^{1 - X}$            | $\theta \mid X \sim \text{Beta}(\alpha + X, \beta + 1 - X)$                                                                             |
| Beta-Binomial     | $\theta \sim \text{Beta}(\alpha, \beta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$                 | $X \mid \boldsymbol{\theta} \sim \text{Bin}(n, \boldsymbol{\theta}), \ \mathbb{P}(X \mid \boldsymbol{\theta}) = \binom{n}{X} \boldsymbol{\theta}^X (1 - \boldsymbol{\theta})^{n - X}$ | $\theta \mid X \sim \text{Beta}(\alpha + X, \beta + n - X)$                                                                             |
| Gaussian-Gaussian | $\theta \sim \mathcal{N}(\mu_0, \sigma_0^2) \propto \exp\left(-\frac{(\theta - \mu_0)^2}{2\sigma_0^2}\right)$ | $X \mid \theta \sim \mathcal{N}(\theta, \sigma^2),  \mathbb{P}(X \mid \theta) \propto \exp\left(-\frac{(X - \theta)^2}{2\sigma^2}\right)$                                             | $\theta \mid X \sim \mathcal{N}(\mu_n, \sigma_n^2),$                                                                                    |
|                   |                                                                                                               |                                                                                                                                                                                       | $\mu_n = \frac{\sigma_0^2 X + \sigma^2 \mu_0}{\sigma_0^2 + \sigma^2}, \ \sigma_n^2 = \frac{\sigma_0^2 \sigma^2}{\sigma_0^2 + \sigma^2}$ |
| Gamma-Poisson     | $\theta \sim \text{Gamma}(\alpha, \beta) \propto \theta^{\alpha - 1} e^{-\beta \theta}$                       | $X \mid \boldsymbol{\theta} \sim \text{Poisson}(\boldsymbol{\theta}),  \mathbb{P}(X \mid \boldsymbol{\theta}) = \frac{\boldsymbol{\theta}^X e^{-\boldsymbol{\theta}}}{X!}$            | $\theta \mid X \sim \text{Gamma}(\alpha + X, \beta + 1)$                                                                                |





- 1. Introduction
- 2. Les Bayésiens vs Les fréquentistes
- 3. Rappels de probabilités (exemples)
- 4. Loi a posteriori et modèles conjugués
- 5. Estimateur de Bayes





# Risque fréquentiste minimax



