Introduction to the Course

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant Consultant, Quantopian

Example of Time Series: Google Trends

Example of Time Series: Climate Data

Example of Time Series: Quarterly Earnings Data

Example of Multiple Series: Natural Gas and Heating Oil

Goals of Course

- Learn about time series models
- Fit data to a time series model
- Use the models to make forecasts of the future
- Learn how to use the relevant statistical packages in Python
- Provide concrete examples of how these models are used

Some Useful Pandas Tools

• Changing an index to datetime

```
df.index = pd.to_datetime(df.index)
```

Plotting data

```
df.plot()
```

Slicing data

```
df['2012']
```

Some Useful Pandas Tools

Join two DataFrames

```
df1.join(df2)
```

Resample data (e.g. from daily to weekly)

```
df = df.resample(rule='W').last()
```

More pandas Functions

Computing percent changes and differences of a time series

```
df['col'].pct_change()
df['col'].diff()
```

pandas correlation method of Series

```
df['ABC'].corr(df['XYZ'])
```

pandas autocorrelation

```
df['ABC'].autocorr()
```

Let's practice!

TIME SERIES ANALYSIS IN PYTHON

Correlation of Two Time Series

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant Consultant, Quantopian

Correlation of Two Time Series

Plot of S&P500 and JPMorgan stock

Correlation of Two Time Series

• Scatter plot of S&P500 and JP Morgan returns

More Scatter Plots

• Correlation = 0.9

• Correlation = -0.9

• Correlation = 0.4

• Corelation = 1.0

Common Mistake: Correlation of Two Trending Series

 Dow Jones Industrial Average and UFO Sightings (www.nuforc.org)

- Correlation of levels: 0.94
- Correlation of percent changes: pprox 0

Example: Correlation of Large Cap and Small Cap Stocks

- Start with stock prices of SPX (large cap) and R2000 (small cap)
- First step: Compute percentage changes of both series

```
df['SPX_Ret'] = df['SPX_Prices'].pct_change()
df['R2000_Ret'] = df['R2000_Prices'].pct_change()
```

Example: Correlation of Large Cap and Small Cap Stocks

Visualize correlation with scattter plot

```
plt.scatter(df['SPX_Ret'], df['R2000_Ret'])
plt.show()
```


Example: Correlation of Large Cap and Small Cap Stocks

Use pandas correlation method for Series

```
correlation = df['SPX_Ret'].corr(df['R2000_Ret'])
print("Correlation is: ", correlation)
```

Correlation is: 0.868

Let's practice!

TIME SERIES ANALYSIS IN PYTHON

Simple Linear Regressions

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant Consultant, Quantopian

What is a Regression?

• Simple linear regression:

$$y_t = lpha + eta x_t + \epsilon_t$$

What is a Regression?

Ordinary Least Squares (OLS)

Python Packages to Perform Regressions

In statsmodels:

```
import statsmodels.api as sm
sm.OLS(y, x).fit()
```

In numpy:

```
np.polyfit(x, y, deg=1)
```

• In pandas:

```
pd.ols(y, x)
```

• In scipy:

```
from scipy import stats
stats.linregress(x, y)
```

Warning: the order of x and y is not consistent across packages

Example: Regression of Small Cap Returns on Large Cap

Import the statsmodels module

```
import statsmodels.api as sm
```

• As before, compute percentage changes in both series

```
df['SPX_Ret'] = df['SPX_Prices'].pct_change()
df['R2000_Ret'] = df['R2000_Prices'].pct_change()
```

Add a constant to the DataFrame for the regression intercept

```
df = sm.add_constant(df)
```

Regression Example (continued)

Notice that the first row of returns is NaN

```
SPX_Price R2000_Price SPX_Ret R2000_Ret

Date

2012-11-01 1427.589966 827.849976 NaN NaN

2012-11-02 1414.199951 814.369995 -0.009379 -0.016283
```

Delete the row of NaN

```
df = df.dropna()
```

Run the regression

```
results = sm.OLS(df['R2000_Ret'],df[['const','SPX_Ret']]).fit()
print(results.summary())
```

Regression Example (continued)

Regression output

```
OLS Regression Results
Dep. Variable:
                                          R-squared:
                                                                            0.753
Model:
                                         Adj. R-squared:
                                                                            0.753
Method:
                                        F-statistic:
                                                                            3829.
                        Least Squares
                     Fri, 26 Jan 2018
Date:
                                         Prob (F-statistic):
                                                                             0.00
                                         Log-Likelihood:
Time:
                              13:29:55
                                                                           4882.4
No. Observations:
                                                                           -9761.
                                  1257
                                         AIC:
Df Residuals:
                                  1255
                                         BIC:
                                                                           -9751.
Df Model:
Covariance Type:
                             nonrobust
                                                               [95.0% Conf. Int.]
           -4.964e-05
const
                            0.000
                                       -0.353
                                                   0.724
                                                                            0.000
SPX Ret
                            0.018
                                      61.877
                                                                  1.105
                                                                            1.177
               1.1412
Omnibus:
                                61.950
                                         Durbin-Watson:
Prob(Omnibus):
                                 0.000
                                         Jarque-Bera (JB):
                                                                          148.100
Skew:
                                 0.266
                                         Prob(JB):
                                                                         6.93e-33
Kurtosis:
                                         Cond. No.
                                                                             131.
```

- Intercept in results.params[0]
- Slope in results.params[1]

Regression Example (continued)

• Regression output

		OLS Re	egress	ion Res	sults		
Dep. Vari	.able:	R2000	R2000 Ret		ared:	0.753	
Model:		_	OLS		R-squared:	0.753	
Method:		Least Squares		F-statistic:		3829.	
Date:		Fri, 26 Jan 2018		Prob (F-statistic):		0.00	
Time:		13:29:55		Log-Likelihood:		4882.4	
No. Observations:		1257		AIC:		-9761.	
Df Residuals:		1255		BIC:			-9751.
Df Model:			1				
Covariance Type:		nonrol	oust				
=======	coef	std err	=====:	t	P> t	[95.0% Cor	nf. Int.]
const	-4.964e-05	0.000	-0	. 353	0.724	-0.000	0.000
SPX_Ret	1.1412	0.018	61	. 877	0.000	1.105	1.177
Omnibus:		61	61.950		 n-Watson:	=======	1.991
Prob(Omnibus):		0	0.000		e-Bera (JB):	148.100	
Skew:		0	0.266		JB):	6.93e-33	
Kurtosis: 4.599		.595	Cond.	No.		131.	

Relationship Between R-Squared and Correlation

- $[\operatorname{corr}(x,y)]^2=R^2$ (or R-squared)
- sign(corr) = sign(regression slope)
- In last example:
 - R-Squared = 0.753
 - Slope is positive
 - \circ correlation = $+\sqrt{0.753}=0.868$

Let's practice!

TIME SERIES ANALYSIS IN PYTHON

Autocorrelation

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant Consultant, Quantopian

What is Autocorrelation?

Correlation of a time series with a lagged copy of itself

Series	Lagged Series		
5			
10	5		
15	10		
20	15		
25	20		
:			

- Also called serial correlation
- Lag-one autocorrelation

Interpretation of Autocorrelation

• Mean Reversion - Negative autocorrelation

Interpretation of Autocorrelation

• Momentum, or Trend Following - Positive autocorrelation

Traders Use Autocorrelation to Make Money

- Individual stocks
 - Historically have negative autocorrelation
 - Measured over short horizons (days)
 - Trading strategy: Buy losers and sell winners
- Commodities and currencies
 - Historically have positive autocorrelation
 - Measured over longer horizons (months)
 - Trading strategy: Buy winners and sell losers

Example of Positive Autocorrelation: Exchange Rates

- Use daily ¥/\$ exchange rates in DataFrame df from FRED
- Convert index to datetime

```
# Convert index to datetime
df.index = pd.to_datetime(df.index)
# Downsample from daily to monthly data
df = df.resample(rule='M').last()
# Compute returns from prices
df['Return'] = df['Price'].pct_change()
# Compute autocorrelation
autocorrelation = df['Return'].autocorr()
print("The autocorrelation is: ",autocorrelation)
```

The autocorrelation is: 0.0567

Let's practice!

TIME SERIES ANALYSIS IN PYTHON

