Licenciatura en Ciencias de la Computación

Andrés R. Saravia

Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía y Física

10/111/2020

Motivación

- 2 Conceptos principales
- 3 Cálculo de tableaux

4 Conclusiones y trabajos futuros

Motivación

Situaciones modeladas por medio de estructuras relacionales:

- grafos,
- bases de datos,
- el flujo de ejecución de un programa,
- el manejo de memoria dinámica,
- o relaciones entre varios elementos.

Lógicas modales

- Extensión de la lógica proposicional.
- Nuevos operadores que describen diferentes modos de verdad.
- Buen balance entre la expresividad y el comportamiento computacional.
- Sirven para razonar y extraer información de las estructuras relacionales.

Lógicas modales dinámicas

Permiten modificar la estructura a medida que se evalúa una fórmula. Ejemplos:

- frames reactivos,
- lógicas modales de sabotaje,
- y las lógicas de anuncios públicos.

Lógicas de Separación *SL*

- Extensión de la lógica de Hoare.
- Razonamiento sobre programas con estructuras de datos mutables.
- Se interpreta sobre una abstracción de la memoria de un programa.

Reinterpretación de las *SL*

- Las abstracciones pueden ser representadas como modelos relacionales de lógica modal, donde la relación es finita y funcional.
- Permite expresar tanto propiedades modales como de separación.

Modal Logics + Separation Logics = Modal Separation Logics

Nuestra contribución

- Nos interesa razonar o extraer información usando MSL.
- Existen distintas tareas de razonamiento.
- Satisfacibilidad: dada una fórmula decidir si es satisfacible.
- Desarrollamos un cálculo de tableaux que decida la satisfacibilidad de un fragmento de MSL, expresada de una cierta manera.

Sintaxis de $MSL(*, \diamondsuit)$

Sea $PROP = \{p, q, ...\}$ un conjunto infinito enumerable de símbolos proposicionales. Las fórmulas de $MSL(*, \diamondsuit)$ están definidas por la siguiente gramática:

$$\phi ::= \top \mid p \mid \text{emp} \mid \neg \phi \mid \phi \land \phi \mid \Diamond \phi \mid \phi * \phi,$$

donde $p \in PROP$. Los demás operadores y constantes se definen de la forma usual.

Modelos en $\overline{\mathsf{MSL}(*, \diamondsuit)}$

Un *modelo* es una tupla $\mathfrak{M} = \langle \mathbb{N}, \mathfrak{R}, \mathfrak{V} \rangle$ tal que:

- el conjunto de los números naturales N es el conjunto de mundos,
- $\mathfrak{R} \subseteq \mathbb{N} \times \mathbb{N}$ es una relación finita y funcional $((\mathfrak{l},\mathfrak{l}') \in \mathfrak{R} \text{ y } (\mathfrak{l},\mathfrak{l}'') \in \mathfrak{R} \text{ implica } \mathfrak{l}' = \mathfrak{l}'')$,
- y \mathfrak{V} : PROP $\to \mathcal{P}(\mathbb{N})$ es una valuación.

Semántica de $MSL(*, \diamondsuit)$

```
Sea \mathfrak{M}=\langle \mathbb{N},\mathfrak{R},\mathfrak{V}\rangle y \mathfrak{l}\in \mathbb{N}, la relación \models está definida como:
```

$$\begin{array}{lll} \mathfrak{M}, \mathfrak{l} \models \top & \stackrel{\mathsf{def}}{\Leftrightarrow} & \mathsf{siempre}, \\ \mathfrak{M}, \mathfrak{l} \models \rho & \stackrel{\mathsf{def}}{\Leftrightarrow} & \mathfrak{l} \in \mathfrak{V}(\rho), \\ \mathfrak{M}, \mathfrak{l} \models \neg \phi & \stackrel{\mathsf{def}}{\Leftrightarrow} & \mathfrak{M}, \mathfrak{l} \not\models \phi, \\ \mathfrak{M}, \mathfrak{l} \models \phi_1 \wedge \phi_2 & \stackrel{\mathsf{def}}{\Leftrightarrow} & \mathfrak{M}, \mathfrak{l} \models \phi_1 \; \mathsf{y} \; \mathfrak{M}, \mathfrak{l} \models \phi_2, \\ \mathfrak{M}, \mathfrak{l} \models \diamond \phi & \stackrel{\mathsf{def}}{\Leftrightarrow} & \mathsf{existe} \; \mathsf{un} \; \mathfrak{l}' \in \mathbb{N} \; (\mathfrak{l}, \mathfrak{l}') \in \mathfrak{R}, \; \mathsf{tal} \; \mathsf{que} \; \mathfrak{M}, \mathfrak{l}' \models \phi, \\ \mathfrak{M}, \mathfrak{l} \models \mathsf{emp} & \stackrel{\mathsf{def}}{\Leftrightarrow} & \mathfrak{R} = \emptyset, \\ \mathfrak{M}, \mathfrak{l} \models \phi_1 * \phi_2 & \stackrel{\mathsf{def}}{\Leftrightarrow} & \langle \mathbb{N}, \mathfrak{R}_1, \mathfrak{V} \rangle, \mathfrak{l} \models \phi_1 \; \mathsf{y} \; \langle \mathbb{N}, \mathfrak{R}_2, \mathfrak{V} \rangle, \mathfrak{l} \models \phi_2, \\ \mathfrak{m}, \mathfrak{l} \models \phi_1 * \phi_2 & \stackrel{\mathsf{def}}{\Leftrightarrow} & \langle \mathbb{N}, \mathfrak{R}_1, \mathfrak{V} \rangle, \mathfrak{l} \models \phi_1 \; \mathsf{y} \; \langle \mathbb{N}, \mathfrak{R}_2, \mathfrak{V} \rangle, \mathfrak{l} \models \phi_2, \\ \mathfrak{para} \; \mathsf{alguna} \; \mathsf{partición} \; \{\mathfrak{R}_1, \mathfrak{R}_2\} \; \mathsf{de} \; \mathfrak{R}. \end{array}$$

Una fórmula ϕ en MSL(*, \diamondsuit) es satisfacible si existe un modelo \mathfrak{M} y un mundo \mathfrak{l} tal que $\mathfrak{M}, \mathfrak{l} \models \phi$. Caso contrario, ϕ es insatisfacible.

Ejemplos

La siguiente fórmula es insatisfacible en $MSL(*, \diamondsuit)$:

$$\neg(\neg emp * \neg emp) \land (\neg emp * \neg emp * \neg emp)$$

Ejemplos

La expresividad de $MSL(*, \diamondsuit)$ puede definir caminos y ciclos:

$$\begin{array}{c} (\neg \texttt{emp} * \neg \texttt{emp}) \land \neg (\neg \texttt{emp} * \neg \texttt{emp} * \neg \texttt{emp}) \land \Diamond \Diamond \Diamond \top \land \\ \neg (\neg \texttt{emp} * \Diamond \Diamond \Diamond \top) \land \neg \Diamond (\neg \texttt{emp} * \Diamond \Diamond \Diamond \top) \end{array}$$

Razonar sobre $MSL(*, \diamondsuit)$

- Los lenguajes dinámicos son difíciles de comprender y manipular.
- En general no tienen buenas propiedades para hacer inferencia.
- Sin embargo, podemos transformarlas en fórmulas más manejables.

Fórmulas elementales

- Fórmulas en MSL(*, ⋄).
- Describen propiedades esenciales de los modelos.
- Dos familias:
 - Fórmulas size:
 - o Expresan el tamaño del modelo en términos de la relación.
 - \circ Expresiones de la forma size $\geq \beta$.
 - o size $\geq \beta$ es verdadera sii \Re tiene al menos β elementos.
 - Fórmulas grafo: expresan propiedades de la forma del modelo desde el mundo actual.

Gramática de G

Expresión derivada del elemento \mathcal{G} no terminal de la siguiente gramática:

$$\ell := \top \mid \perp \mid p \mid \neg p, \quad Q := \ell \mid Q \wedge Q.$$

$$\mathcal{G} := |Q,...,Q\rangle | |Q,...,Q| | |Q,...,\overline{Q},...,Q|,$$

donde $p \in PROP$ y \mathcal{G} debe contener al menos una conjunción Q.

Semántica de ${\cal G}$

Representan caminos que satisfacen una conjunción de literales Q en cada posición.

$$|Q_1,...,Q_n\rangle$$

$$[Q_1,...,Q_n]$$

$$Q_1, \dots, Q_n$$

$$Q_1 \qquad Q_2 \qquad Q_n \qquad Q_n$$

$$Q_1$$
 Q_2 Q_1 Q_2 Q_2

$$Q_1 \longrightarrow \cdots \longrightarrow Q_i \longrightarrow$$

Equivalencia

Lema

Toda fórmula elemental ϕ es lógicamente equivalente a una fórmula en $MSL(*, \diamondsuit)$.

Lema

Sea ϕ una fórmula en $MSL(*, \diamondsuit)$, existe una fórmula elemental ψ tal que:

1.
$$\psi = \bigvee_{i=1}^{n} (\mathcal{G}_i \wedge \mathcal{S}_i)$$
, con $\mathcal{S}_i = (\mathtt{size} \geq \beta_i)$ ó $(\mathtt{size} \geq \beta_i \wedge \neg \mathtt{size} \geq \alpha_i)$,

2. $y \psi y \phi$ son equivalentes.

Cálculo de tableaux

- Un procedimiento en el que se decide la satisfacibilidad de una fórmula dada utilizando la satisfacibilidad de sus subfórmulas.
- Uso de reglas de inferencia previamente establecidas.
- Toma una fórmula como input, decide si es satisfacible o no y, en caso afirmativo, devuelve un modelo el cual satisface dicha fórmula.
- Se utiliza una estructura de datos de árbol.

Recapitulación

Lema

Sea ϕ una fórmula en $\mathsf{MSL}(*,\diamondsuit)$, existe una fórmula elemental ψ equivalente tal que:

$$\psi = \bigvee_{i=1}^{n} (\mathcal{G}_i \wedge \mathcal{S}_i)$$
, con $\mathcal{S}_i = (\mathtt{size} \geq \beta_i)$ ó $(\mathtt{size} \geq \beta_i \wedge \neg \mathtt{size} \geq \alpha_i)$.

Desarrollaremos un cálculo con etiquetas para este tipo de fórmulas. Las etiquetas serán los números naturales y representarán los mundos del modelo. Por definición, empezaremos desde la etiqueta i=1.

Capas en la aplicación de las reglas de derivación.

$$\bigvee_{i=1}^{n} \varphi_{i} \Longrightarrow (\mathcal{G}_{k} \wedge \mathcal{S}_{k}) \Longrightarrow \mathcal{G}_{k} \Longrightarrow Q \Longrightarrow \ell$$

$$\bigvee_{i=1}^n \varphi_i \Longrightarrow (\mathcal{G}_k \wedge \mathcal{S}_k)$$

$$\frac{i: \varphi_k \vee \bigvee_{j \neq k} \varphi_j}{i: \varphi_k \mid i: \bigvee_{j \neq k} \varphi_j} \vee \text{para } \varphi_j \text{'s}$$

Siendo $\bigvee_{j\neq k} \varphi_j$ una disyunción de una o más fórmulas.

Cálculo de tableaux

$$(\mathcal{G}_k \wedge \mathcal{S}_k) \Longrightarrow \mathcal{G}_k$$

Cada rama tendrá exactamente una fórmula $\varphi_k = (\mathcal{G}_k \wedge \mathcal{S}_k)$.

$$\frac{i: \mathcal{G} \land \mathtt{size} \ge \beta}{i: \mathcal{G}} \land (\mathsf{I}) \quad \frac{i: \mathcal{G} \land \mathtt{size} \ge \beta \land \neg \mathtt{size} \ge \alpha}{i: \mathcal{G}} \land (\mathsf{II})$$

$$\frac{i: \mathcal{G} \land \mathtt{size} \ge \beta}{\mathtt{size} \ge \beta} \quad \neg \mathtt{size} \ge \alpha$$

$$\mathcal{G}_k \Longrightarrow Q$$

$$\begin{array}{c|c} i:|Q_i\rangle & \qquad & i:|Q_i,\alpha,Q_n\rangle \\ \hline i:Q_i & \qquad & i:Q_i \\ iR(i+1) & \qquad & iRe \geq 1 \end{array}$$
 Continuada II
$$\begin{array}{c|c} i:|Q_i,\alpha,Q_n\rangle & \qquad & \text{Continuada II} \\ \hline iR(i+1) & \qquad & iRe \geq n-i+1 \\ i+1:|\alpha,Q_n\rangle & \qquad & \end{array}$$

Siendo α cero o más conjunciones.

$$Q \Longrightarrow \ell$$

$$\frac{i: \ell \wedge Q}{i: \ell} \wedge \text{ para literales}$$

$$i: Q$$

Con Q siendo una conjunción de uno o más literales.

Ramas cerradas, abiertas y saturadas

Una rama \mathcal{B} es cerrada si y solamente si sucede al menos una de las siguientes situaciones:

- $(i : \perp) \in \mathcal{B}$ para algún $i \in \mathbb{N}$;
- (i:p), $(i:\neg p) \in \mathcal{B}$ para algún $i \in \mathbb{N}$, $p \in PROP$;
- size $\geq \beta$, ¬size $\geq \alpha \in \mathcal{B}$ con $\alpha \leq \beta$;
- $exttt{-}$ ¬size $\geq 0 \in \mathcal{B}$;

Una rama es abierta si no es cerrada, y una rama está saturada si no se le pueden aplicar más reglas.

Resultados del cálculo

Completitud

Sea $\psi = \bigvee_{i=1}^{n} (\mathcal{G}_i \wedge \mathcal{S}_i)$ con $\mathcal{S}_i = \mathtt{size} \geq \beta_i$ ó (size $\geq \beta_i \wedge \neg \mathtt{size} \geq \alpha_i$). Si el tableaux para ψ tiene una rama abierta y saturada, entonces ψ es satisfacible.

Corrección

Sea $\psi = \bigvee_{i=1}^n (\mathcal{G}_i \wedge \mathcal{S}_i)$ con $\mathcal{S}_i = \mathtt{size} \geq \beta_i$ ó ($\mathtt{size} \geq \beta_i \wedge \neg \mathtt{size} \geq \alpha_i$). Si ψ es satisfacible, entonces el tableaux para ψ tiene una rama abierta y saturada.

Características del cálculo

- Ventajas:
 - Fácil tratamiento computacional.
 - Es polinomial.
- Desventajas:
 - La traducción de MSL(*, ⋄) a fórmulas elementales contiene una explosión exponencial.
 - No es polinomial a la hora de decidir la satisfacibilidad de una fórmula en MSL(*, ⋄).

Trabajos futuros

- Pasantía en LSV, ENS Paris-Saclay (Stéphane Demri):
 - Estudio sobre la complejidad de los fragmentos de MSL.
- Tesis doctoral: Lógicas Epistémicas con Estrategias (Raúl Fervari):
 - Lenguajes provistos de agentes capaces de aprender estrategias.