Explorando las Capacidades de GitHub Copilot

Natali Lujan Allende

Bachiller en Estadística Informática (UNALM) con especialización en Marketing Digital (UPC) y Maestría en Ciencia de Datos

- Women Techmakers Ambassador
- .https://www.linkedin.com/in/natali-lujan-allende/
- .https://www.facebook.com/groups/biexpert
- in .https://www.linkedin.com/company/datacatnip/
- .natalilujan@gmail.com

Que es Github Copilot

Asistente de programación impulsado por inteligencia artificial desarrollado por GitHub y OpenAI.

Características Clave

- Autocompletar Códigos: Copilot puede predecir lo que el usuario quiere escribir y sugerir líneas de código o incluso funciones completas.
- 2. **Soporte Multilenguaje**: Es compatible con muchos lenguajes de programación, como JavaScript, Python, TypeScript, Ruby, Go, y más.
- 3. **Generación de Tests**: Puede ayudar a generar tests unitarios basados en el código que escribas, facilitando el proceso de pruebas.
- 4. **Documentación y Comentarios**: Copilot también entiende comentarios en lenguaje natural y sugiere código basado en ellos.

¿Por Qué Usar GitHub Copilot?

- 1. Aumento de la Productividad: Ayuda a reducir el tiempo de escritura de código al sugerir soluciones rápidas.
- 2. Facilita el Aprendizaje: Es útil para nuevos desarrolladores, ya que proporciona ejemplos de buenas prácticas.
- 3. Colaboración: Actúa como un compañero de codificación, lo que hace que el proceso de desarrollo sea más interactivo y menos tedioso.

"¿Cómo puedo aprovechar al máximo GitHub Copilot para el análisis de datos?"

DEMO

Ask Copilot

Copilot is powered by AI, so mistakes are possible. Review output carefully before use.

- or type # to attach context
- @ to chat with extensions

Type / to use commands

GitHub Copilot

- Uso Principal: Su función principal es generar sugerencias de código automáticamente en función del contexto. Por ejemplo, si comienzas a escribir una función, Copilot intenta predecir y sugerir el resto del código.
- Interacción: No tiene una interfaz de chat. Las sugerencias aparecen directamente en el editor de código, y el desarrollador puede aceptar, rechazar o modificar estas sugerencias.

GitHub Copilot Chat

- Uso Principal: GitHub Copilot Chat es ideal para realizar consultas complejas o resolver problemas específicos en tiempo real. Puedes hacer preguntas como "¿Cómo puedo optimizar este código?" o "¿Cuál es la mejor manera de manejar errores aquí?" y recibir una respuesta contextualizada.
- Interacción: Funciona como un asistente de conversación en el editor de código. Ofrece una experiencia similar a un chat, permitiéndote hacer preguntas en lenguaje natural y obtener respuestas o sugerencias detalladas.

Diferencias entre GitHub Copilot y GitHub Copilot Chat

Característica	GitHub Copilot	GitHub Copilot Chat
Sugerencias de Código	Sí	Sí
Interfaz de Chat	No	Sí
Respuestas en Lenguaje Natural	No	Sí, permite hacer preguntas y recibir explicaciones
Interacción Directa	Aparece en el editor como sugerencias de código	A través de una ventana de chat
Mejor para	Autocompletado rápido y escritura de código	Resolver problemas y obtener explicaciones más detalladas

importar las bibliotecas necesarias para el análisis de datos

analysis.py

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Crear y entrenar un modelo de regresión lineal con scikit-learn sabiendo que la variable respuesta es pageviews 0 Q > Accept Accept & Run Discard O V from sklearn.model_selection import train_test_split from sklearn.linear model import LinearRegression from sklearn.metrics import mean squared error, r2 score X = df_grouped[['newVisits', 'transactions', 'bounces', 'visits']] y = df grouped['pageviews'] X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42) model = LinearRegression() model.fit(X train, y train) y pred = model.predict(X test) mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) print(f'Mean Squared Error: {mse}')

print(f'R^2 Score: {r2}')

Python

```
D v
        from sklearn.model selection import train test split
        from sklearn.linear model import LinearRegression
        from sklearn.metrics import mean squared error, r2 score
        # Definir las variables independientes (features) y la variable dependiente (target)
        X = df grouped[['newVisits', 'transactions', 'bounces', 'visits']]
        v = df grouped['pageviews']
        # Dividir los datos en conjuntos de entrenamiento y prueba
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
        # Crear el modelo de regresión lineal
        model = LinearRegression()
        # Entrenar el modelo
        model.fit(X train, y train)
        # Hacer predicciones en el conjunto de prueba
        y pred = model.predict(X test)
        # Evaluar el modelo
        mse = mean_squared_error(y_test, y_pred)
        r2 = r2 score(y test, y pred)
        print(f'Mean Squared Error: {mse}')
        print(f'R^2 Score: {r2}')

√ 1.45
```

••• Mean Squared Error: 326573.4998899098 R^2 Score: 0.875558714539844

Gracias!

aka.ms/learn-copilot

