Math 285 Lecture Note: Week 5

Daesung Kim

1 Complex Roots of the Characteristic Equation

Example 1.1. Consider y'' + 2y' + 5 = 0. As before, let $y(t) = e^{rt}$, then we get the characteristic equation $r^2 + 2r + 5 = 0$. The roots for the equation are r = -1 + 2i, -1 - 2i. This yields that $y(t) = e^{(-1+2i)t}$, $e^{(-1-2i)t}$ are solutions to the DE. What are these functions?

Example 1.2. Let's consider y'' + y = 0, then the characteristic equation is $r^2 + 1 = 0$, whose roots are r = i, -i. Thus, $y(t) = e^{it}, e^{-it}$ are solutions. On the other hands, we already know that $y(t) = \sin t, \cos t$ are solutions.

Eulers Formula enables us to define the exponent with complex numbers, which says

$$e^{it} = \cos t + i\sin t.$$

For example, $e^{\pi i/2} = i$, $e^{\pi i} = -1$, and $e^{\pi i/3} = \cos(\pi/3) + i\sin(\pi/3) = \frac{1}{2}(1 + \sqrt{3}i)$. For general complex number z = x + iy, we have

$$e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y).$$

Note that if z is a complex number, then so is e^z and it could be negative.

Example 1.3. Consider y'' + 2y' + 5 = 0, then $y(t) = e^{r_1 t}, e^{r_2 t}$ are solutions where $r_1 = -1 + 2i$ and $r_2 = -1 - 2i$. By the previous argument, we have

$$y_1(t) = e^{-t}(\cos(2t) + i\sin(2t)),$$

 $y_2(t) = e^{-t}(\cos(-2t) + i\sin(-2t)) = e^{-t}(\cos(2t) - i\sin(2t)).$

Then, the Wronskian is

$$W[y_1, y_2](t) = \det \begin{pmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{pmatrix}$$

$$= r_2 y_1(t) y_2(t) - r_1 y_1(t) y_2(t)$$

$$= (r_2 - r_1) e^{(r_1 + r_2)t}$$

$$= -4ie^{-2t}$$

Since $W[y_1, y_2](0) = -4i \neq 0$, $\{y_1, y_2\}$ is a fundamental set of solutions.

However, this fundamental set is not convenient because y_1 and y_2 are complex-valued solutions. Instead, we consider

$$u(t) = \frac{1}{2}(y_1(t) + y_2(t)) = e^{-t}\cos(2t),$$

$$v(t) = \frac{1}{2i}(y_1(t) - y_2(t)) = e^{-t}\sin(2t).$$

Note that these are also solutions. Furthermore, the Wronskian is

$$W[u,v](t) = u(t)v'(t) - u'(t)v(t) = e^{-2t}(\cos(2t)^2 + \sin(2t)^2) = e^{-2t} \neq 0.$$

Thus, $\{u,v\}$ is a fundamental set of solutions. The general real valued solution of the DE is

$$y(t) = e^{-t}(C_1\cos(2t) + C_2\sin(2t)).$$

Example 1.4. Consider y'' - 4y' + 5y = 0 with y(0) = 1 and y'(0) = 3. The characteristic equation is $r^2 - 4r + 5 = 0$ and so the roots are r = 2 + i, 2 - i. Thus, $\{u, v\}$ is a fundamental set of solutions where $u = e^{2t} \cos t$ and $v = e^{2t} \sin t$. The general solution is

$$y(t) = e^{2t}(C_1 \cos t + C_2 \sin t).$$

Note that

$$y'(t) = 2e^{2t}(C_1\cos t + C_2\sin t) + e^{2t}(-C_1\sin t + C_2\cos t).$$

By the initial conditions, we have

$$y(0) = C_1 = 1,$$

 $y'(0) = 2C_1 + C_2 = 3,$

and $y(t) = e^{2t}(\cos t + \sin t)$.

References

[BD] Boyce and DiPrima, Elementary Differential Equations and Boundary Value Problems, 10th Edition, Wiley

Department of Mathematics, University of Illinois at Urbana-Champaign $E\text{-}mail\ address{:} \texttt{daesungk@illinois.edu}$