18.304 Final Project Hadamard Matrices

Nicolas Bravo nbravo@mit.edu

May 2015

1 Abstract

2 Introduction

Definition 2.1. A Hadamard matrix is a square matrix whose entries are either +1 or -1 and whose rows are mutually orthogonal.

3 Construction

There are several ways to construct Hadamard matrices. For example, James Joseph Sylvester proposed the following: Let H be a Hadamard matrix of order n. Then

$$\begin{bmatrix} H & H \\ H & -H \end{bmatrix}$$

is a Hadamard matrix of order 2n. This construction could lead to the following sequence of Hadamard matrices: $H_1 = \begin{bmatrix} 1 \end{bmatrix}$, $H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, $H_{2^k} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

$$\begin{bmatrix} H_{2^{k-1}} & H_{2^{k-1}} \\ H_{2^{k-1}} & H_{2^{k-1}} \end{bmatrix}$$

4 Equality of Hadamard Matrices

5 Results

Theorem 5.1. Let H be a Hadamard matrix of order n. Then $HH^T = nI_n$.

Proof. Since each entry in H is ± 1 , we know that the length of each row vector is \sqrt{n} . Further, we know from the definition of Hadamard matrices that each

row is orthogonal to each other row, so if we divide H by \sqrt{n} we obtain an orthogonal matrix $Q=\frac{1}{\sqrt{n}}H$. We then see that

$$QQ^{T} = I_{n}$$

$$\left(\frac{1}{\sqrt{n}}H\right)\left(\frac{1}{\sqrt{n}}H^{T}\right) = I_{n}$$

$$HH^{T} = nI_{n}$$

Theorem 5.2. If H is an $n \times n$ Hadamard matrix, then n = 1 or n = 2 or $n \equiv 0 \mod 4$.

Proof.

Theorem 5.3. There exists an $n \times n$ matrix with entries ± 1 whose determinant is greater than $\sqrt{n!}$

Proof. \Box

- 6 Applications
- 7 Current Research
- 8 Conclusion