sistemas electrónicos

ADC-DAC: exercícios

- 1. Pretende-se converter um sinal analógico, de 0 a 5V, com uma resolução melhor que 1%. Determine:
 - a) o número de bits do conversor;
 - b) o valor analógico que representa 1 LSB;
 - c) a saída digital que se obtém com uma entrada de 3,544V.
- 2. Com a DAC de 6 bits seguinte pretende-se obter um valor de fim de escala de 6,3V. Calcule:
 - a) o valor analógico do LSB;
 - b) R_1 a R_5 e R_F ;
 - c) o valor da corrente que percorre R_F quando a palavra a converter é 100001.

3. - Com o circuito abaixo pretende-se construir uma DAC de 8 bits.

Assuma R = 5k Ω ; R_F = 5,01961k Ω e $V_{\rm REF}$ = - 10V. Calcule:

- a) as correntes I_7 e I_0 ;
- b) o valor analógico aproximado do LSB;
- c) o valor da saída quando a palavra a converter é 01000010.

- 4. Numa ADC de contagem de 10 bits o clock é de 1MHz. Calcule:
 - a) aproximadamente, o tempo máximo de conversão;
 - b) o tempo de conversão de um sinal que conduziu ao resultado 0000100010.

sistemas electrónicos

5. - Na ADC paralelo representada, $V_{\rm REF}$ = 7V.

Para $v_{\rm A}$ = 4,6V determine quantos comparadores estão saturados positivamente e qual o valor digital à saída.

6. - Considere uma ADC de aproximações sucessivas com 6 bits, um valor de fim de escala de 6,3V e um *clock* de 1 MHz.

Para um sinal de entrada de 4,82V, determine o valor digital à saída e o tempo de conversão.