COMP3308 Introduction to Artificial Intelligence

About me

Tina Ngo

PhD Candidate

Graduated Bachelor of Adv. Comp.

Research area: Machine Learning for Healthcare

About You

Introduce yourself:

- 1. Name
- 2. Degree, Year
- 3. **Do you have a partner for A1 yet?** If not, say **what you're looking for,** or your **preferred approach.** For examples:
 - Achieving HD / Distinction
 - Complete fast, relax later
 - Go with the flow:)
 - Partner does all the works

Content

<u>Uninformed</u> Search Strategies:

- BFS (Breadth-First Search)
- UCS (Uniform Cost Search)
- **DFS** (Depth-First Search)
- **IDS** (Iterative Deepening Search)

Do not use **heuristic** knowledge

Informed Search Strategies:

- Greedy
- A* (Next week)

Use **heuristic** knowledge

=> Typically more efficient

Due on Tuesday 3pm every week!

Next: Exercise 1a

Breadth-First Search

- Expands the <u>shallowest</u> unexpanded node
- Insert children at the end of the fringe
- Complete Yes
- Optimal No (only Yes when step cost is the same)

Fringe: 1 Expanded:

Fringe: 2, 3, 4 Expanded: 1

Fringe: 3, 4, 5, 6 **Expanded:** 1, 2

Fringe: 4, 5, 6, 7, 8 **Expanded:** 1, 2, 3

Fringe: 5, 6, 7, 8, 9 **Expanded:** 1, 2, 3, 4

Fringe: 6, 7, 8, 9

Expanded: 1, 2, 3, 4, 5

Fringe: 7, 8, 9

Expanded: 1, 2, 3, 4, 5, 6

Continue until expanded all nodes

Solution

Expanded: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Next: Exercise 1b

Uniform Cost Search

- Expands the <u>least-cost</u> (lowest path cost from root) unexpanded node
- Insert nodes in the fringe in order of increasing path cost from root
- Complete Yes
- Optimal Yes

node	2	3	4	5	6	7	8	9	10	11
g(n)	3	1	1	?						

node	2	3	4	5	6	7	8	9	10	11
g(n)	3	1	1	4	?					

node	2	3	4	5	6	7	8	9	10	11
g(n)	3	1	1	4	3	?				

node	2	3	4	5	6	7	8	9	10	11
g(n)	3	1	1	4	3	3				

node	2	3	4	5	6	7	8	9	10	11
g(n)	3	1	1	4	3	3	2	6	3	5

Fringe: (3, 1), (4, 1), (2, 3)

Expanded: 1

node	2	3	4	5	6	7	8	9	10	11
g(n)	3	1	1	4	3	3	2	6	3	5

Fringe: (4, 1), (8, 2), (2, 3), (7, 3)

Expanded: 1, (3, 1)

node	2	3	4	5	6	7	8	9	10	11
g(n)	3	1	1	4	3	3	2	6	3	5

Fringe: (8, 2), (2, 3), (7, 3), (9, 6)

Expanded: 1, (3, 1), (4, 1)

node	2	3	4	5	6	7	8	9	10	11
g(n)	3	1	1	4	3	3	2	6	3	5

Fringe: (2, 3), (10, 3), (7, 3), (11, 5), (9, 6)

Expanded: 1, (3, 1), (4, 1), (8, 2)

n	ode	2	3	4	5	6	7	8	9	10	11
g	ı(n)	3	1	1	4	3	3	2	6	3	5

Solution

Expanded: 1, 3, 4, 8, 2, 6, 7, 10, 5, 11, 9

Next: Exercise 1c

Depth-First Search

- Expands the <u>deepest</u> unexpanded node
- Insert children at the front of the fringe
- Complete No (in infinite space), Yes (in finite space)
- Optimal No

Fringe: 1 Expanded:

Fringe: 2, 3, 4 Expanded: 1

Fringe: 5, 6, 3, 4 **Expanded:** 1, 2

Fringe: 6, 3, 4 **Expanded:** 1, 2, 5

Fringe: 3, 4

Expanded: 1, 2, 5, 6

Fringe: 7, 8, 4

Expanded: 1, 2, 5, 6, 3

Fringe: 8, 4

Expanded: 1, 2, 5, 6, 3, 7

Fringe: 10, 11, 4

Expanded: 1, 2, 5, 6, 3, 7

Solution

Expanded: 1, 2, 5, 6, 3, 7, 8, 10, 11, 4, 9

Next: Exercise 1d

Iterative Deepening Search

- DFS with a depth limit ₹
- Complete Yes
- Optimal No

• \{\epsilon = 0

Expanded: 1

• \{\ell = 0

Expanded: 1

• *l* = 1

Expanded: 1, 2, 3, 4

• \{\ell = 0

Expanded: 1

ℓ = 1

Expanded: 1, 2, 3, 4

• *l* = 2

Expanded: 1, 2, 5, 6, 3, 7, 8, 4, 9

€ = 0

Expanded: 1

ℓ = 1

Expanded: 1, 2, 3, 4

• *l* = 2

Expanded: 1, 2, 5, 6, 3, 7, 8, 4, 9

• *l* = 3

Expanded: 1, 2, 5, 6, 3, 7, 8, 10, 11, 4, 9

Next: Exercise 2

Solution

- **a) BFS:** 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- **b) UCF:** 1, 4, 3, 9, 2, 7, 8, 6, 11, 12, 5, 10, 13
- **c) DFS:** 1, 2, 5, 6, 10, 11, 3, 7, 12, 13, 4, 8, 9
- **d) IDS:** 1, 1, 2, 3, 4, 1, 2, 5, 6, 3, 7, 4, 8, 9 1, 2, 5, 6, 10, 11, 3, 7, 12, 13, 4, 8, 9

Next: Exercise 3

Greedy Search

- Use heuristic value h(n)
- h(n) is the <u>estimated cost from n to a goal node</u>
- Expand node with the smallest h value
- Optimal No
- Complete Yes (in finite space), No (in infinite space)

Greedy Search

Show:

- 1. List of expanded nodes
- 2. Solution path
- 3. Path Cost

*Same priority -> Expand last added

Fringe: S Expanded:

Fringe: (B, 1), (A, 2)

Expanded: S

Fringe: (E, 0), (G, 1), (F, 2), (A, 2)

Expanded: S, (B, 1)

Fringe: (G, 1), (F, 2), (A, 2) **Expanded:** S, (B, 1), (E, 0)

Fringe: (G, 1), (F, 2), (A, 2) **Expanded:** S, (B, 1), (E, 0)

Do we stop?

Fringe: (G, 1), (F, 2), (A, 2) **Expanded:** S, (B, 1), (E, 0)

Do we stop?

YES (because E is a goal node)

What nodes were **expanded?**

What is the **path found?**

What is the cost of the path found?

What nodes were **expanded? SBE**

What is the **path found?**

What is the cost of the path found?

What nodes were **expanded? SBE**

What is the **path found? SBE**

What is the cost of the path found?

What nodes were **expanded?**

SBE

What is the **path found?**

SBE

What is the cost of the path found?

3 + 5 = 8

What nodes were expanded?

SBE

What is the path found?

SBE

What is the cost of the path found?

3 + 5 = 8

Is this solution optimal (lowest path cost)?

What nodes were expanded?

SBE

What is the path found?

SBE

What is the cost of the path found?

3 + 5 = 8

Is this solution <u>optimal</u> (lowest path cost)? NO

What nodes were expanded?

SBE

What is the path found?

SBE

What is the cost of the path found?

$$3 + 5 = 8$$

Is this solution optimal (lowest path cost)?

What is the optimal solution?

What nodes were expanded?

SBE

What is the path found?

SBE

What is the cost of the path found?

3 + 5 = 8

Is this solution optimal (lowest path cost)?

What is the optimal solution?

Path: **SADI**

Cost: 4 + 1 + 1 = 6

Next: Exercise 4

Hint: Start by listing the expanded nodes

Next: Exercise 5

Rook

Move vertically or horizontally.

N rooks problem

Given a empty n x n board:

- 1. Place 1 rook at left most column
- Place 1 rook at the left most (safe) column, make sure its is not attacked by another rook
- 3. Repeat step 2 until all columns are filled

Show that there are n! goal state

