MTH 424 - PARTIAL DIFFERENTIAL EQUSTION

IIT KANPUR

Instructor: Indranil Chowdhury

Odd Semester, 2024-25

Assignment 3

- 1. Prove that Laplace equation, $(\Delta u = 0)$ is rotation invariant. That is, if O is an orthogonal $n \times n$ matrix and v(x) := u(Ox), then $\Delta v = 0$.
- 2. Consider the following function

$$\phi(x) = \frac{1}{|x - x_0|^{n-2}}.$$

- (a) By direct calculation show that ϕ is harmonic in $\mathbb{R}^n \setminus \{x_0\}$.
- (b) For n=2 and $\phi(x)=\frac{1}{|x|}$, show that $\Delta\phi(x)\neq 0$ for $x\neq 0$.
- 3. For n=2, show that the Laplace equation in polar coordinates for function $v(r\theta)$ be given by

$$\frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2} = 0$$

- 4. Let $\phi : \mathbb{R} \to \mathbb{R}$ be smooth and convex function. Assume u is harmonic. Show that $v := \phi(u)$ is subharmonic (i.e. $-\triangle v \le 0$).
- 5. Assume $u \in C(\Omega)$. Let $B(x_0, r) \subset \Omega$, show that

$$\oint_{B(x_0,\epsilon)} u(y)dy \xrightarrow[\epsilon \to 0]{} u(x) \quad \text{and} \quad \oint_{\partial B(x_0,\epsilon)} u(y)dy \xrightarrow[\epsilon \to 0]{} u(x).$$

6. Suppose Ω is a bounded domain and $u, v \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfy

$$-\triangle u \leq 0 \quad \text{and} \quad -\triangle v \leq 0 \quad \text{in} \quad \Omega \quad \text{and} \quad u \leq v \quad \text{in} \quad \partial \Omega.$$

Prove that $u \leq v$ in Ω .

7. Let $f \in C_c^2(\mathbb{R}^n)$ for $n \geq 3$ and Φ be the fundamental solution of the Laplace operator. Define

$$I_{\epsilon} := \int_{B(0,\epsilon)} \Phi(y) \triangle f(x-y) dy$$

for $0 < \epsilon << 1$. Show that there exists a constant C > 0 such that

$$|I_{\epsilon}| < C\epsilon^2$$
.

8. let Ω be a domain in \mathbb{R}^2 symmetric about the x-axis and let $\Omega^+ = \{(x,y) \in \Omega : y > 0\}$ be the upper part of Ω . Assume $u \in C^2(\overline{\Omega^+})$ is harmonic in Ω^+ with u = 0 on $\partial \Omega^+ \cap \{y = 0\}$. Define for $(x,y) \in \Omega$

$$v(x,y) = \begin{cases} u(x,y) & \text{if } y \ge 0, \\ -u(x,-y) & \text{if } y < 0. \end{cases}$$

1

Show that v is harmonic.