## Assignment for Section 1.1: Vectors and linear combinations

- (1) If  $\mathbf{v} + \mathbf{w} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$  and  $\mathbf{v} \mathbf{w} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$ , compute and draw the vectors  $\mathbf{v}$  and  $\mathbf{w}$ .
- (2) From  $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$  and  $\mathbf{w} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ , find the components of  $3\mathbf{v} + \mathbf{w}$  and  $c\mathbf{v} + d\mathbf{w}$ .
- (3) What combination  $c \begin{bmatrix} 1 \\ 2 \end{bmatrix} + d \begin{bmatrix} 3 \\ 1 \end{bmatrix}$  produces  $\begin{bmatrix} 14 \\ 8 \end{bmatrix}$ ?

Express the question as two equations for the coefficients c and d in the linear combination.

Note: in printing, a vector is denoted as a lowercase letter in boldface, e.g., v. In handwriting, we put an arrow over the letter to denote this vector, e.g.,  $\vec{v}$ .