A SOFTWARE PLATFORM FOR MONITORING PATIENTS IN SMART HOMES

RITWIK DUTTA
ARCHBISHOP MITTY HIGH SCHOOL

TALK OVERVIEW

- Related work
- SW components
- Application flow
- Frontend design
- Backend design
- Conclusions
- Future work

RELATED WORK

- Apple Smart Home Software
- Pegasystems Agile Healthcare Software Solutions
- Qualcomm Life 2net Platform
- Boston Software Systems
- ADT Medial Alert Monitoring
- Omnicell Unity Enterprise Platform

SW COMPONENTS

- Frontend
 - HTTP Server: Python SimpleHTTPServer (2.7.3)

- Backend
 - Database: MongoDB Portable (2.6.3)
 - Web framework: Flask (0.10.1)
 - Application core: Python (2.7.3)

APPLICATION FLOW

FRONTEND DESIGN

FRONTEND

LOGIN

- Completely custom built
- User account management
 - Creation: Username and metric customization
 - Deletion
- User account login

FRONTEND

DASHBOARD

- View information by date
- Multiple data formats
 - Percentage: progress bar
 - Granular data: line graphs
 - Pictures: grid and lightbox
 - Raw files: plaintext

FRONTEND

QUERY

- Completely custom built
- Customizable data range
- Multiple graphs can be viewed at once for comparison
 - Metric selection: choose any number of metrics over a time range

BACKEND DESIGN

BACKEND

FLASK

- Interfaces between frontend and backend
 - Frontend requests: parsed and passed to backend
 - Queries information: pulls information from database
 - Returns data: formats data into readable format
 - Frontend displays corresponding data

BACKEND

PYTHON

- Bridges frontend and backend
 - Flask server: requests data from database
 - Processing data: pulls data from MongoDB and processes
 - Return data: information sent back to Flask for frontend to retrieve
- Pulls data from sensors
 - Data logging: sensor data is pulled and written to the database

BACKEND

MONGODB

- An open source NoSQL database with JSON-like schema
- Contains collections for users and for each metric
 - Data organization: individual documents for each datum

```
• Sample document:

    "date": 250110,
    "username": "wsmith1420938822",
    "metric": "sleep",
    "value": 5
```

• Query methods: collections can be queried with multiple fields

CONCLUSIONS

- Distinguishing features of our project
 - Licensing: MIT licensed and freely usable and modifiable for all use
 - Source code: openly available and free to view, modify, or expand upon
 - Flexibility: easily expandable for more metrics and sensors
 - Deployment: simple download-and-run deployment on local or cloud platforms

FUTURE WORK

(PT. 1)

- Login
 - Password system: more secure for patients and caretakers
 - User account controls: moved to admin page
- Query
 - Data prediction: use past data patterns to predict future trends
 - Recommended queries: analyze data to find "interesting" patterns to show user
 - Data anomalies: detect and impute anomalies in sensor data streams

FUTURE WORK

(PT. 2)

- Site design
 - Responsive: mobile and tablet friendly design
 - Completely dynamic pages: use web framework for all web content generation
- Web framework
 - Transition to Django: more stable and mature framework for a better platform
- Project platform
 - Transition to C/C++: more efficient and faster data processing for project backend