Linguaggi Relazionali

- Algebra Relazionale: insieme di operatori su relazioni che danno come risultato relazioni; si definiscono
 - operatori primitivi (ridenominazione, proiezione, unione e differenza, restrizione, prodotto)
 - operatori derivati (giunzioni, divisione, ...)
 - altri operatori (raggruppamento, order by, min, max)
 - Non si usa direttamente come linguaggio di interrogazione dei DBMS ma come rappresentazione interna delle interrogazioni.
- Calcolo Relazionale: linguaggio dichiarativo di tipo logico dal quale è stato derivato l'SQL.

Algebra relazionale

Notazione 4

Data una relazione R (A1: T1, ..., An: Tn)

```
• Tipo: {(A1: T1, ..., An: Tn)}
```

- Grado: n
- Data una ennupla $t \in R$

t.Ai valore dell'attributo Ai

- Nel modello di base:
 - relazioni come insiemi di ennuple
 - non si usa NULL

Ridenominazione (ρ)

Data una relazione R(X), con X insieme di attributi, A ∈ X e B ∉ X

$$\rho_{A \leftarrow B}(R)$$

relazione R dove A è ridenominato con B

$$\rho_{A \leftarrow B}(R) = \{t \mid \exists u \in R . t . B = u . A \land \forall C \in X - \{A\} . t . C = u . C\}$$

Grado della nuova relazione? Tipo? Cardinalità?

R e S relazioni dello stesso tipo:

● Unione (∪)

$$R \cup S = \{t \mid t \in R \ \lor \ t \in S\}$$

Differenza (-)

$$R - S = \{t \mid t \in R \land t \notin S\}$$

Qual è il tipo del risultato? Quante ennuple contiene il risultato?

Se t₁ è un'ennupla non in R , allora

$$R = (R \cup \{t_1\}) - \{t_1\}$$

• Proiezione (π): data R(X) con {A₁, ..., A_m} \subseteq X

$$\pi_{A_1,A_2,\ldots,A_m}(R)$$

"elimina" gli attributi diversi da A1, ..., Am

$$\pi_{A_1,\ldots,A_m}(R) = \{\langle t.A_1,\ldots,t.A_m \rangle \mid t \in R\}$$

Qual è il tipo del risultato? Se R contiene n ennuple quante ne contiene il risultato?

Proprietà: se L1 e L2 sono insiemi di attributi con L1 ⊆ L2

$$\pi_{L1}(\pi_{L2}(R)) = \pi_{L1}(R)$$

Sia data la relazione Studenti

Studenti

Nome	Cognome	<u>Matricola</u>	Anno	Provincia
Paolo	Verdi	71523	2005	VE
Anna	Rossi	76366	2006	PD
Giorgio	Zeri	71347	2005	VE
Chiara	Scuri	71346	2006	VE

Trovare il nome, la matricola e la provincia degli studenti

Espressione nell'algebra

 π Nome, Matricola, Provincia (Studenti)

Nome	<u>Matricola</u>	Provincia
Paolo	71523	VE
Anna	76366	PD
Giorgio	71347	VE
Chiara	71346	VE

 $\pi_{\text{Provincia}}(Studenti)$?

Restrizione (selezione) (σ)

$$\sigma_{\phi}(R) = \{t \mid t \in R \land \phi(t)\}\$$

relazione le cui ennuple sono le ennuple di R che soddisfano la Condizione $\,\phi\,$

ullet Condizione ϕ è una combinazione proposizionale di (dis)uguaglianze e disequazioni tra attributi (o tra attributi e costanti)

$$\phi ::= A_i \circ p A_j \mid A_i \circ p c \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi$$

dove **op** è un operatore di confronto.

La condizione riguarda attributi di singole ennuple

11

Algebra Relazionale: Restrizione (cont.)

Qual è il tipo del risultato? Se R contiene n ennuple quante ne ha il risultato?

Commutativa:

$$\sigma_{C_1}(\sigma_{C_2}(R)) = \sigma_{C_1 \wedge C_2}(R) = \sigma_{C_2}(\sigma_{C_1}(R))$$

Restrizione: Esempi

Trovare i dati degli studenti della provincia di Venezia:

σ Provincia = 'VE' (Studenti)

Nome	Cognome	<u>Matricola</u>	Anno	Provincia
Paolo	Verdi	71523	2005	VE
Giorgio	Zeri	71347	2005	VE
Chiara	Scuri	71346	2006	VE

Trovare il nome, la matricola e l'anno di iscrizione degli studenti di Venezia:

 π Nome, Matricola, Anno (σ Provincia = 'VE' (Studenti))

Nome	<u>Matricola</u>	Anno
Paolo	71523	2005
Giorgio	71347	2005
Chiara	71346	2006

Prodotto (x)

$$R \times S$$

- R e S con attributi distinti A1, ..., An, e B1, ..., Bm
- ennuple ottenute concatenando ennuple di R e ennuple di S
- $R \times S = \{ \langle t.A_1, \dots, t.A_n, u.B_1, \dots, u.B_m \rangle \mid t \in R \land u \in S \}$
- Qual è il tipo del risultato? Se R e S contengono n e m ennuple quante ne contiene il risultato?

Prodotto: Esempio

Α	В
a1	b1
a2	b2

c1 d1
 c2 d2
 c3 d3

D
1 d1
2 d2
3 d3

Α	В	С	D
a1	b1	c1	d1
a1	b1	c2	d2
a1	b1	сЗ	d3
a2	b2	c1	d1
a2	b2	c2	d2
a2	b2	сЗ	d3

Algebra Relazionale: Esempi

• Qual è il risultato di Studenti × Esami ?

Studenti

Nome	Cognome	<u>Matricola</u>	Anno	Provincia
Paolo	Verdi	71523	2005	VE
Anna	Rossi	76366	2006	PD
Giorgio	Zeri	71347	2005	VE
Chiara	Scuri	71346	2006	VE

Esami

Codice	Materia	Candidato*	Data	Voto	Lode
B112	BD	71523	08.07.06	27	N
F31	FIS	76366	08.07.07	26	N
B247	BD	76366	28.12.06	28	S

Algebra Relazionale: Esempi

Trovare il nome degli studenti che hanno superato l'esame di BD con 30

$$\pi_{\mathsf{Nome}}(\sigma_{\mathsf{Materia}='\mathsf{BD'}\wedge\mathsf{Voto}=30}(\sigma_{\mathsf{Matricola}=\mathsf{Candidato}}(\mathsf{Studenti}\times\mathsf{Esami})))$$

si introduce un operatore derivato: la giunzione!

$$\pi_{\mathsf{Nome}}(\sigma_{\mathsf{Materia}} = \mathsf{BD'} \wedge \mathsf{Voto} = \mathsf{30}(\mathsf{Studenti} \ \mathsf{Matricola} = \mathsf{Candidato} \ \mathsf{Esami}))$$

Operatori derivati: Giunzione (o Join)

Giunzione: Utile per "combinare" informazioni di relazioni correlate

$$R \underset{A_i = B_j}{\bowtie} S$$

- R e S con attributi distinti A1, ..., An, e B1, ..., Bm
- ovvero

$$R \underset{A_i = B_j}{\bowtie} S = \sigma_{A_i = B_j} (R \times S)$$

$$\{\langle t.A_1, \dots, t.A_n, u.B_1, \dots, u.B_m \rangle \mid t \in R \land u \in S \land t.A_i = u.B_j\}$$

Giunzione naturale

$$R \bowtie S$$

Esempio

Giunzione

Esempio

Giunzione naturale

Documenti ⋈ DescrizioniBib

Giunzione esterna

Intersezione

$$R \cap S$$

esprimibile come

$$R - (R - S)$$

Operatori Derivati: Divisione

Divisione: date le relazioni R(XY) e S(Y) si vuole produrre una relazione T(X) tale che una ennupla t è in T se e solo se per ogni s in S la ennupla <t, s> appare in R.

$$R \div S$$

- Esempio: matricola degli studenti che hanno fatto tutti gli esami che ha fatto Anna Rossi (matr. 76366).
 - esami di Anna Rossi:

$$ES_AR = \pi_{\mathsf{Materia}}(\sigma_{\mathsf{Candidato}='76366'}(\mathsf{Esami}))$$

esami studenti con matricola

$$ES = \pi_{\mathsf{Candidato},\mathsf{Materia}}(\mathsf{Esami})$$

Operatori Derivati: Divisione

Divisione: date le relazioni R(XY) e S(Y) si vuole produrre una relazione T(X) tale che una ennupla t è in T se e solo se per ogni s in S la ennupla <t, s> appare in R.

$$R \div S$$

- Esempio: matricola degli studenti che hanno fatto tutti gli esami che ha fatto Anna Rossi (matr. 76366).
 - esami di Anna Rossi:

$$ES_AR = \pi_{\mathsf{Materia}}(\sigma_{\mathsf{Candidato}='76366'}(\mathsf{Esami}))$$

esami studenti con matricola

$$ES = \pi_{\mathsf{Candidato},\mathsf{Materia}}(\mathsf{Esami})$$

Operatori derivati: Divisione (cont.)

il risultato desiderato è quindi

$$ES \div ES_AR$$

- Usato per query che coinvolgono quantificazione universale
- Esprimibile come

$$\pi_X(R) - \pi_X((\pi_X(R) \times S) - R)$$

Esercizio 24

- Query per
 - studenti che hanno fatto un sottoinsieme degli esami di Anna Rossi

studenti che hanno fatto esattamente gli esami di Anna Rossi

Proiezione generalizzata

$$\pi_{Exp_1} \operatorname{\mathbf{AS}}_{A_1, Exp_2} \operatorname{\mathbf{AS}}_{A_2, \dots, Exp_n} \operatorname{\mathbf{AS}}_{A_n}(R)$$

Le espressioni Expi possono comprendere attributi, costanti, e operazioni su di essi

Esempio: data una relazione Utente(Codice, Salario Lordo, Trattenute, ...)

 π_{Codice} , SalarioLordo $-\mathsf{Trattenute}\ \mathit{AS}\ \mathsf{Stipendio}(\mathsf{Utente})$

Funzioni di aggregazione

- Le funzioni di aggregazione hanno come argomenti multinsiemi e ritornano come risultato un valore.
- sum ritorna la somma degli elementi
- avg ritorna la media degli elementi
- count ritorna il numero degli elementi
- min e max ritornano il minimo e il massimo valore degli elementi
- Se si vuole ignorare eventuali duplicati, si estende il nome della funzione con la stringa "-distinct"

Altri Operatori (cont.)

Raggruppamento (γ)

$$A_1, A_2, ..., A_n \gamma_{f_1, f_2, ...f_k}(R)$$

dove gli A_i sono attributi di R e le f_i sono espressioni che usano funzioni di aggregazione (min, max, count, sum, avg, ...)

Significato del raggruppamento (γ)

$$S = {}_{A_1, A_2, \dots, A_n} \gamma_{f_1, f_2, \dots f_k}(R)$$

Trovare per ogni candidato il numero degli esami, il voto minimo, massimo e medio

 ${\sf Candidato}\, {\it ``count(*), min(Voto), max(Voto), avg(Voto)} \big({\sf Esami} \big)$

	Materia	Candidato	Data	Voto	Lode
	BD	71523	08.07.06	20	Z
	FIS	76366	08.07.07	26	Z
	ASD	71523	28.12.06	30	S
_	BD	76366	28.12.06	28	Z

Esecuzione del raggruppamento (cont.)

raggruppamento

Materia	Candidato	Data	Voto	Lode
BD	71523	08.07.06	20	N
ASD	71523	28.12.06	30	S
FIS	76366	08.07.07	26	N
BD	76366	28.12.06	28	N

calcolo delle funzioni

Candidato	Count(*)	min(Voto)	max(Voto)	avg(Voto)
71523	2	20	30	25
76366	2	26	28	27

Algebra relazionale su multinsiemi

Proiezione senza l'eliminazione dei duplicati (multinsiemistica)

$$\pi^b_{A_1,A_2,\ldots,A_n}(O)$$

Eliminazione di duplicati

$$\delta(O)$$

ullet Ordinamento A_1,A_2,\ldots,A_n attributi di O

$$au_{A_1,A_2,\ldots,A_n}(O)$$

Unione, Intersezione e Differenza

$$O_1 \cup^b O_2, O_1 \cap^b O_2, O_1 -^b O_2$$

Trasformazioni Algebriche

- Basate su regole di equivalenza fra espressione algebriche
- Consentono di scegliere diversi ordini di join e di anticipare proiezioni e restrizioni.
- Alcuni esempi con la relazione R(A, B, C, D):

$$\pi_{A}(\pi_{A,B}(R)) \equiv \pi_{A}(R)$$

$$\sigma_{C_{1}}(\sigma_{C_{2}}(R)) \equiv \sigma_{C_{1} \wedge C_{2}}(R)$$

$$\sigma_{C_{1} \wedge C_{2}}(R \times S) \equiv \sigma_{C_{1}}(R) \times \sigma_{C_{2}}(S)$$

$$R \times (S \times T) \equiv (R \times S) \times T$$

$$(R \times S) \equiv (S \times R)$$

$$\sigma_{C}(X \gamma_{F}(R)) \equiv_{X} \gamma_{F}(\sigma_{C}(R))$$

Alberi Logici e Trasformazioni Algebriche

Consideriamo le relazioni R(A, B, C, D) e S(E, F, G) e l'espressione:

$$\pi_{A,F}(\sigma_{A=100\wedge F>5\wedge A=E}(R\times S))$$

Esempio: Biblioteca (semplificato)

Titolo e collocazione di tutti i documenti in prestito.

Nome e Cognome degli utenti che hanno documenti in prestito.

36

Query sulla biblioteca

- Codice, Nome e Cognome di tutti gli utenti che:
 - sono studenti e hanno matricola < 7000
 - sono docenti e hanno numero di telefono tra 1200 e 1300.

Gli utenti (tutti gli attributi) che non hanno in prestito nessun libro.

Query sulla biblioteca (cont.)

 Codice degli utenti che hanno in prestito solo libri di fisica (si legga libro di fisica come documento la cui descrizione bibliografica è indicizzata da un termine che ha come standard "Fisica"). Si vuole una copia per ciascuna descrizione bibliografica.

Codice degli utenti che hanno in prestito tutti i libri di fisica. Si vuole una copia per ciascuna descrizione bibliografica.

 Codice degli utenti che hanno in prestito tutti e soli i libri di fisica. Si vuole una copia per ciascuna descrizione bibliografica.

Nome, Cognome e Codice degli utenti che hanno in prestito più di tre libri.

Codice, Nome e Cognome degli autori che hanno scritto il massimo numero di libri.

Calcolo Relazionale

Calcolo relazionale

L'algebra relazionale non è l'unico linguaggio formale di interrogazione per DB relazionali; un'alternativa è il calcolo relazionale (CR), del quale esistono due varianti:

41

- calcolo relazionale su ennuple (CRE)
- calcolo relazionale su domini (CRD)

Completezza Relazionale

- AR, CRE e CRD sono espressivamente equivalenti: ogni interrogazione esprimibile nell'uno è anche esprimibile negli altri.
- Un linguaggio relazionale espressivamente equivalente all'AR, al CRE e al CRD è detto relazionalmente completo
- i linguaggi dei DBMSs commerciali sono in genere non solo relazionalmente completi, ma anche di più ... in quanto includono anche altre funzionalità (e.g. aggregazione, raggruppamento, ...).

- AR è un linguaggio procedurale
 - un'interrogazione è una espressione che specifica, oltre a cosa va recuperato, le operazioni necessarie a recuperarlo;
- CR è un linguaggio dichiarativo
 - un'interrogazione è un'espressione che specifica cosa va recuperato, ma non come recuperarlo.
 - le operazioni da eseguire e la loro sequenzializzazione sono decise dal DBMS.

 Praticamente tutti i linguaggi dei DBMS relazionali commerciali sono implementazioni (più o meno fedeli ...) del CR; ad esempio SQL ~ CRE

Logica del prim'ordine

termini: denotano individui (elementi del dominio di interesse)

$$t ::= c \mid x \mid f(t_1, \dots, t_n)$$

- c costante
- x variabile
- f simbolo di funzione

formule: denotano valori di verità (T o F);

$$\phi ::= p(t_1, \dots, t_n) \mid \neg \phi \mid \phi_1 \wedge \phi_2 \mid \phi_1 \rightarrow \phi_2 \mid \forall x. \phi \mid \exists x. \phi$$

- p simbolo di predicato n-ario

Calcolo Relazionale su ennuple

- Il CRE usa la logica del prim'ordine, interpretata su un dominio i cui elementi sono le ennuple della BD, per esprimere le interrogazioni
- costanti e le variabili sono di tipo ennupla.

Esempio di interrogazione:

Nomi e cognomi degli studenti che hanno superato almeno un esame:

 $\{t.\mathsf{Nome},\ t.\mathsf{Cognome}\mid t\in\mathsf{Studenti}\land\exists e\in\mathsf{Esami}.(t.\mathsf{Matricola}=e.\mathsf{Candidato})\}$

Calcolo Relazionale su ennuple

Un'interrogazione del CRE è un'espressione del tipo

$$\{t_{i1}.A_1, ..., t_{im}.A_m \mid \phi(t_1,...t_n)\}$$

dove

- t_i variabili ennupla (il cui tipo, i.e. a quali relazioni appartengono, sarà indicato in φ);
- A_i simboli di funzione di tipo attributo (t_i.A_i è una notazione alternativa per A_i(t_i));
- $\phi(t_1,...t_n)$ è una formula del prim'ordine in cui
 - le variabili t₁,...t_n occorrono libere
 - il risultato è l'insieme delle ennuple < t_{i1}.A₁, ...,t_{im}.A_m > tali che φ(t₁,...t_n) è vera.

Calcolo Relazionale su ennuple

- Le formule atomiche possono essere
 - formule di tipo

$$t \in \mathsf{Studenti}$$
 $e \in \mathsf{Esami}$

dichiara che t appartiene all'estensione corrente di Studente: quindi in ogni espressione t.A nell'interrogazione, A deve essere un attributo di Studente;

formule di confronto fra valori di attributi

$$t$$
.Matricola = e .Candidato

formule di confronto fra il valore di un attributo e un valore costante

$$t$$
.Provincia = 'VE'

Esprimibilità dell'AR in CRE

Restrizione

```
\sigma_{Provincia='VE'}(Studenti) { t | t \in Studenti \land t.Prov = 'VE' }
```

Proiezione

```
\pi_{Nome,Cognome}(Studenti) { t. Nome, t.Cognome | t \in Studenti }
```

Unione

Studenti U Docenti

```
\{t \mid t \in Studenti \lor t \in Docenti\}
```

Esprimibilità dell'AR in CRE (cont.)

Differenza

```
Studenti – Docenti \{ t \mid t \in Studenti \land \neg (t \in Docenti) \}
```

Prodotto

Studenti x Esami

```
\{ s, e \mid s \in Studenti \land e \in Esami \}
```

Intersezione

Studenti ∩ Docenti

```
\{t \mid t \in Studenti \land t \in Docenti\}
```

Esercizi 50

Esprimere nel calcolo relazionale

- giunzione;
- giunzione naturale.