Teoria de la Probabilitat

Continguts

2	Var	riables Aleatòries								2						
	2.1	Definició de variable aleatòria.	Llei d'una v.a.													2

2 Variables Aleatòries

2.1 Definició de variable aleatòria. Llei d'una v.a.

Sigui $(\Omega, \mathcal{A}, \beta)$ un espai de probabilitat. Volem estudiar funcions de Ω amb imatge en \mathbb{R} .

Definició 2.1.1

Una variable aleatòria és una funció $X: \Omega \to \mathbb{R}$ tal que per tot borelià $B \in \mathcal{B}, X^{-1}(B) \in \mathcal{A}$.

Per tant, una variable aleatòria és una funció mesurable entre els espais de mesura (Ω, \mathcal{A}, p) i $(\mathbb{R}, \mathcal{B}, \lambda)$.

Exemple 2.1.2

(1) Les funcions constants són variables aleatòries:

$$X \colon \Omega \to \mathbb{R}$$

$$\omega \mapsto c$$
 Si prenem $B \in \mathcal{B}, X^{-1}(B) = \begin{cases} \emptyset & \text{si } c \notin B \\ \Omega & \text{si } c \in B \end{cases}$

(2) Variables aleatòries indicadores:

Sigui
$$A \in \mathcal{A}$$
, definim $\mathbb{1}_A \colon \Omega \to \mathbb{R}$ on $\mathbb{1}_A(\omega) = \begin{cases} 0 & \text{si } \omega \notin A \\ 1 & \text{si } \omega \in A \end{cases}$

Aleshores,
$$B \in \mathcal{B}, \mathbb{1}_A^{-1}(B) = \begin{cases} \emptyset & \text{si } \{0,1\} \nsubseteq B \\ A & \text{si } 1 \in B, \quad 0 \notin B \\ \overline{A} & \text{si } 1 \notin B, \quad 0 \in B \end{cases}$$

$$\Omega \quad \text{si } \{0,1\} \nsubseteq B$$

(3) Si X i Y són v.a., aleshores $X+Y, X\cdot Y, |X|$, etc. són v.a. En general, si $g\colon \mathbb{R}^2 \to \mathbb{R}$ és una funció mesurable, aleshores g(X,Y) és una v.a.

Estem dient que $\forall B \in \mathcal{B}$, $\{\omega \in \Omega \colon X(\omega) \in B\}$ és un succés i, per tant, podem calcular $P(\{\omega \in \Omega \colon X(\omega) \in B\}) \equiv P(X \in B)$.

Exemple 2.1.3

$$P(X \le 1) = P(\{\omega \in \Omega \colon X(\omega) \in (-\infty, 1)\})$$

Les v.a. permeten traslladar l'estructura d'espai de probabilitat de (Ω, \mathcal{A}, p) en $(\mathbb{R}, \mathcal{B})$, donant lloc a mesures que no provenen de la mesura de Lebesgue.

2

Definició 2.1.4

Siguin (Ω, \mathcal{A}, p) un espai de probabilitat i X una v.a.

La mesura de probabilitat induïda per X és una mesura de probabilitat sobre $(\mathbb{R}, \mathcal{B})$ definida per

$$p_X \colon \mathcal{B} \to \mathbb{R}$$

 $B \mapsto p_X = P(\{\omega \in \Omega \colon X(\omega) \in B\})$

Observació 2.1.5 ($\mathbb{R}, \mathcal{B}, p_X$) és un espai de probabilitat.

De teoria de la mesura, és equivalent veure que $[\forall B \in \mathcal{B}, X^{-1}(B) \text{ \'es } de \mathcal{A}]$ a veure que $[l'antiimatge de qualsevol interval \in \mathcal{A}].$

Per tant, per saber si una funció és una v.a. només cal veure si l'antiimatge dels intervals són de A.

La següent definició dóna una funció en \mathbb{R} que codifica molta informació de X:

Definició 2.1.6