

Matemática Aplicada Matrizes/Sistemas de Equações Lineares

1 MATRIZES

Matriz é uma tabela de elementos dispostos em linhas e colunas. Por exemplo, ao recolher os dados referentes à altura, peso e idade de um grupo de quatro pessoas, podemos dispô-los na tabela:

	Altura (m)	Peso (kg)	Idade (anos)
Pessoa 1	1,70	70	23
Pessoa 2	1,75	60	45
Pessoa 3	1,60	52	25
Pessoa 4	1,81	72	30

Abstraindo o significado das linhas e colunas, temos a matriz:

Em problemas em que o número de variáveis e de observações é muito grande, essa disposição ordenada dos dados em forma de matriz torna-se absolutamente indispensável.

1.1 NOTAÇÃO

Representamos uma matriz de *m* linhas e *n* colunas por

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \qquad (A)_{ij} = a_{ij}$$

Exemplo

Para a matriz A_{2x2}, temos:

$$A = \begin{bmatrix} 2 & -3 \\ 7 & 0 \end{bmatrix} \qquad (A)_{11} = 2 \qquad (A)_{12} = -3$$
$$(A)_{21} = 7 \qquad (A)_{22} = 0$$

Usamos sempre letras maiúsculas para denotar matrizes e, quando queremos especificar a ordem de uma matriz A (isto é, o número de linhas e colunas), escrevemos A_{mxn} . Também são utilizadas outras notações para matriz além de colchetes, como parênteses e duas barras.

Duas matrizes A_{mxn} e B_{rxs} são iguais, A = B, se têm o mesmo número de linhas (m = r) e colunas (n = s) e todos os seus elementos correspondentes são iguais $(a_{ij} = b_{ij})$.

1.2 TIPOS ESPECIAIS DE MATRIZ

Consideremos uma matriz com m linhas e n colunas, que denotamos por A $_{mxn}$.

1.2.1 Matriz quadrada

É aquela cujo número de linhas é igual ao de colunas (m = n).

Exemplos

Os elementos a_{ij} , que i = j, são da diagonal principal; no exemplo, 1, 0 e 6.

No caso de matrizes quadradas A_{mxm} , costumamos dizer que A é uma matriz de ordem m.

1.2.2 Matriz nula

É aquela em que $a_{ij} = 0$ para todo i e j.

$$\mathbf{A}_{3x3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

1.2.3 Matriz-coluna

 \acute{E} aquela que possui uma única coluna (n = 1).

Exemplos

$$\begin{bmatrix} 1 \\ 4 \\ -3 \end{bmatrix} \qquad e \qquad \begin{bmatrix} x \\ y \end{bmatrix}$$

1.2.4 Matriz-linha

É aquela em que m = 1.

Exemplo

$$\begin{bmatrix} 3 & 0 & -1 \end{bmatrix}$$

1.2.5 Matriz diagonal

É uma matriz quadrada (m = n) em que $a_{ij} = 0$ para $i \neq j$, isto é, os elementos que não estão na diagonal principal são nulos.

Exemplos

$$\begin{bmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \qquad e \qquad \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

1.2.6 Matriz triangular superior

É uma matriz quadrada em que todos os elementos abaixo da diagonal principal são nulos, isto é, m = n e $a_{ij}=0$ para i>j.

Exemplos

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & -1 & 4 \\ 0 & 0 & 3 \end{bmatrix} \qquad \text{e} \qquad \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$$

1.2.7 Matriz triangular inferior

É uma matriz quadrada em que todos os elementos acima da diagonal principal são nulos, isto é, m = n e $a_{ii}=0$ para i < j.

Exemplos

$$\begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 2 & 2 & 0 \\ 1 & 0 & 5 & 4 \end{bmatrix} \quad e \quad \begin{bmatrix} x_1 & 0 & 0 \\ x_2 & 0 & 0 \\ x_3 & x_4 & x_5 \end{bmatrix}$$

1.2.8 Matriz simétrica

É uma matriz quadrada em que $a_{ij}=a_{ji}$. A parte superior é um "reflexo" da parte inferior, em relação à diagonal principal.

Exemplos

$$\begin{bmatrix} 4 & 3 & -1 \\ 3 & 2 & 0 \\ -1 & 0 & 5 \end{bmatrix} \qquad e \qquad \begin{bmatrix} a & b & c & d \\ b & e & f & g \\ c & f & h & i \\ d & g & i & k \end{bmatrix}$$

1.2.9 Matriz-identidade

É uma matriz quadrada e diagonal em que todos os elementos da diagonal principal são iguais a 1, ou seja, $a_{ij} = 1$ para i = j e $a_{ij} = 0$ para $i \neq j$. Este tipo de matriz é amplamente utilizado em diversas operações com matrizes, com será visto adiante.

Exemplos

$$\mathbf{I_3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad \mathbf{e} \qquad \quad \mathbf{I_2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

1.3 OPERAÇÕES COM MATRIZES

1.3.1 Adição ou subtração

A adição ou subtração de duas matrizes A e B, de mesmo tamanho, pode ser feita efetuando a adição/subtração de suas entradas correspondentes, gerando, assim, outra matriz, denotada por A + B ou A - B, ou seja, $A \pm B = [a_{ij} \pm b_{ij}]_{mxn}$.

Exemplo

$$\begin{bmatrix} 1 & -1 \\ 4 & 0 \\ 2 & 5 \end{bmatrix} + \begin{bmatrix} 0 & 4 \\ -2 & 5 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 3 & 5 \end{bmatrix}$$

1.3.2 Multiplicação por escalar

Sendo A = $[a_{ij}]_{mxn}$ e k um número, definimos uma nova matriz $k\mathbf{A} = [ka_{ij}]_{mxn}.$

Exemplo

$$-2\begin{bmatrix} 2 & 10 \\ 1 & -3 \end{bmatrix} = \begin{bmatrix} -4 & -20 \\ -2 & 6 \end{bmatrix}$$

1.3.3 Matriz transposta

Dada uma matriz $A = [a_{ij}]_{mxn}$, podemos obter outra $A' = [b_{ij}]_{nxm}$, cujas linhas são as colunas de A, isto é, $b_{ij} = a_{ji}$. A' é denominada transposta de A.

Exemplos

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \\ -1 & 4 \end{bmatrix}$$

$$A' = \begin{bmatrix} 2 & 0 & -1 \\ 1 & 3 & 4 \end{bmatrix}$$

$$2x3$$

$$\mathbf{B} = \begin{bmatrix} -3 \\ 8 \end{bmatrix} \qquad \qquad \mathbf{B'} = \begin{bmatrix} -3 & 8 \end{bmatrix}$$

1.3.4 Multiplicação

Antes da definição do processo de multiplicação de matrizes, vamos analisar um problema prático:

Suponha que a seguinte matriz fornece a quantidade das vitaminas A, B e C obtidas em cada unidade dos alimentos I e II.

Alimento I
$$\begin{bmatrix} A & B & C \\ 4 & 3 & 0 \\ 5 & 0 & 1 \end{bmatrix}$$

Se ingerirmos 5 unidades do alimento I e 2 unidades do alimento II, quanto consumiremos de cada tipo de vitamina?

Podemos representar o consumo dos alimentos I e II (nesta ordem) pela matriz "consumo":

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \cdot \begin{bmatrix} 4 & 3 & 0 \\ 5 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 \cdot 4 + 2 \cdot 5 & 5 \cdot 3 + 2 \cdot 0 & 5 \cdot 0 + 2 \cdot 1 \end{bmatrix} = \begin{bmatrix} 30 & 15 & 2 \end{bmatrix}$$

Em outras palavras, serão ingeridas 30 unidades de vitamina A, 15 de B e 2 de C.

Outro problema que podemos considerar em relação aos dados anteriores é o seguinte: se o custo dos alimentos depender somente do seu conteúdo vitamínico e soubermos que o preço por unidade de vitaminas A, B e C é, respectivamente, 1,5, 3 e 5 u.m., quanto pagaríamos pela porção de alimentos indicada anteriormente?

$$\begin{bmatrix} 30 & 15 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1,5 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 30 \cdot 1,5 + 15 \cdot 3 + 2 \cdot 5 \end{bmatrix} = \begin{bmatrix} 100 \end{bmatrix}$$

No produto de matrizes, cada um dos elementos da matriz resultante é obtido pela soma de produtos dos elementos de uma linha da primeira matriz pelos elementos de uma coluna da segunda matriz.

Somente é possível multiplicar A_{mxn} por B_{pxq} se n = p, ou seja, se o número de colunas da primeira for igual ao número de linhas da segunda. Nesse caso, a matriz resultante tem dimensão mxq. Veja:

Exemplo

Considere as matrizes A_{2x3} e B_{3x4} . A multiplicação é possível porque o número de colunas de A é igual ao número de linhas de B. Nesse caso, a matriz resultante é uma matriz AB_{2x4} :

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix} ; B = \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix} ; AB = \begin{bmatrix} 12 & 27 & 30 & 13 \\ 8 & -4 & 26 & 12 \end{bmatrix}$$

$$= \frac{12 \cdot 27 \cdot 30 \cdot 13}{2x^4}$$

Atenção: geralmente, AB \neq BA. Por isso, a lei do cancelamento não é válida: AB = CB \Rightarrow AC

1.3.5 Matriz inversa

Considere uma matriz A quadrada. Se existe uma matriz B, tal que AB = BA = I, então A é invertível e B é a inversa de A. A matriz inversa de A é denotada por A^{-1} . Se não existir a inversa de A, diz-se que matriz A é não invertível ou singular.

Exemplo de matriz invertível

$$A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}; \quad B = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}$$

Verifica-se que:

$$AB = BA = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 \therefore $B = A^{-1}$

Uma matriz invertível tem apenas uma matriz inversa (teorema).

1.3.6 Propriedades da aritmética matricial

a)
$$A \pm B = B \pm A$$

b)
$$A \pm (B \pm C) = (A \pm B) \pm C$$

c)
$$A(BC) = (AB)C$$

d)
$$A(B \pm C) = AB \pm AC$$

e)
$$(A \pm B)C = AC \pm BC$$

f)
$$a(B \pm C) = aB \pm aC$$
 ; $a = escalar (número)$

g)
$$(a \pm b)C = aC \pm bC$$

h)
$$a(bC) = (ab)C$$

i)
$$a(BC) = (aB)C = B(aC)$$

j)
$$A^n = AA ... A (n \text{ vezes})$$

k)
$$A^{-n} = (A^{-1})^n = A^{-1}A^{-1} \dots A^{-1}$$
 (*n* vezes)

1)
$$A^rA^s = A^{r+s}$$

m)
$$(A^r)^s = A^{rs}$$

- n) Uma matriz é simétrica se, e somente se, é igual à sua transposta: A = A'.
- o) A'' = A, isto é, a transposta da transposta de uma matriz é ela mesma.

p)
$$(A + B)' = A' + B'$$

- q) (kA)' = kA', sendo k um escalar qualquer.
- r) (AB)' = B'A', observe a ordem.
- s) AI = IA = A, isto justifica o nome da matriz identidade.

1.3.7 Exercícios propostos

1) Considere as seguintes matrizes A, B, C e D:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \quad ; \quad B = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} \quad ; \quad C = \begin{bmatrix} 2 & 5 \\ 3 & 4 \end{bmatrix} \quad ; \quad D = \begin{bmatrix} 3 & 7 \\ 0 & 0 \end{bmatrix}$$

- a) Mostre que $AB = AC \neq BC$.
- b) Mostre que, apesar de $A \neq 0$ e $D \neq 0$, AD = 0 (0 é a matriz nula).
- 2) Efetue as operações seguintes, quando possível:

a)
$$A = \begin{bmatrix} 4 & 8 & 2 \\ 6 & 8 & 10 \end{bmatrix}$$
, $3A = ?$

b)
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 5 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$, $A + B = ?$

c)
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 5 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$, $A - B = ?$

d)
$$A = \begin{bmatrix} 4 & 2 & 1 \\ 5 & 3 & 4 \end{bmatrix}$$
, $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $AX = ?$

e)
$$A = \begin{bmatrix} -3 & 1 \\ 2 & 5 \\ 4 & 2 \end{bmatrix}$$
, $X = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, $AX = ?$

f)
$$A = \begin{bmatrix} -2 & 1 & 3 \\ 4 & 1 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -2 \\ 2 & 4 \\ 1 & -3 \end{bmatrix}$, $AB = ? e BA = ?$

g)
$$A = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 3 & 6 \end{bmatrix}$, $AB = ? e BA = ?$

h)
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$, $AB = ? e BA = ?$

3) João pesa 81 quilos e quer perder peso por meio de um programa de dieta e exercícios. Após consultar a Tabela 1, ele monta o programa de exercícios na Tabela 2. Quantas calorias vai queimar por dia se seguir esse programa?

Tabela 1 – Calorias queimadas por hora

	Atividade esportiva			
Peso	Caminhada	Corrida	Bicicleta	Jogar tênis
69	213	651	304	420
73	225	688	321	441
77	237	726	338	468
81	249	764	356	492

Tabela 2 – Disponibilidade diária de tempo para cada atividade

	Atividade esportiva			
Dia da semana	Caminhada	Corrida	Bicicleta	Jogar tênis
Segunda-feira	1,0	0	1,0	0
Terça-feira	0	0	0	2,0
Quarta-feira	0,4	0,5	0	0
Quinta feira	0	0	0,5	2,0
Sexta-feira	0,4	0,5	0	0

4) Uma empresa fabrica três produtos e suas despesas de produção estão divididas em três categorias. Em cada uma dessas categorias, faz-se uma estimativa do custo de produção de um único exemplar de cada produto, assim como da quantidade de

cada produto a ser fabricado por trimestre. As estimativas são dadas nas Tabelas 1 e 2. A empresa gostaria de apresentar a seus acionistas uma única tabela mostrando o custo total por trimestre de cada uma das três categorias: matéria-prima, pessoa e despesas gerais.

Tabela 1 – Custo de produção por categoria

	Produto		
Gasto	A	В	C
Matéria-prima	0,10	0,30	0,15
Pessoal	0,30	0,40	0,25
Despesas gerais	0,10	0,20	0,15

Tabela 2 – Quantidade produzida por trimestre

	Estação			
Produto	Verão	Outono	Inverno	Primavera
A	4.000	4.500	4.500	4.000
В	2.000	2.600	2.400	2.200
С	5.600	6.200	6.000	6.000

1.4 DETERMINANTES

É possível associar a cada matriz quadrada A_{nxn} um <u>escalar (número)</u>, denominado determinante de A (det(A)), cujo valor informa se a matriz é ou não invertível.

1.4.1 Notação

O determinante de uma matriz A geralmente é denotado colocando o arranjo de seus elementos entre retas verticais, a letra da matriz entre retas verticais ou simplesmente escrevendo det(A). Por exemplo, considere a matriz A:

$$A = \begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix}$$

O determinante pode ser denotado por:

$$det(A) = |A| = \begin{vmatrix} 3 & 4 \\ 2 & 1 \end{vmatrix} = (3*1)-(4*2) = -5$$

1.4.2 Cálculo do determinante para matriz quadrada de ordem 2

$$\det\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11*}a_{22} - a_{12*}a_{21}$$

1.4.3 Cálculo do determinante para matriz quadrada de ordem 3

$$\det\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{22} \\ a_{21} & a_{22} & a_{23} \\ a_{22} & a_{23} & a_{23} \\ a_{23} & a_{23} & a_{23} \\ a_{24} & a_{22} & a_{23} \\ a_{24} & a_{22} & a_{23} \\ a_{24} & a_{22} & a_{23} \\ a_{25} & a_{25} & a_{25} \\ a_{25} & a_{25} &$$

1.4.4 Cálculo do determinante para matriz quadrada de ordem n > 3

Para matrizes quadradas de ordem n > 3, pode-se calcular o determinante pelos cofatores: $\det(A) = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} \det A_{ij}$, sendo A_{ij} a submatriz obtida de A retirando a i-ésima linha e a j-iésima coluna. Nesse caso, deve-se escolher uma linha ou coluna - de preferência, a que tiver mais zeros - e calcular o somatório, encontrando, assim, o determinante da matriz A.

1.4.5 Propriedades dos determinantes

Sendo A e B matrizes quadradas de ordem n:

- a) Se A contém uma linha ou coluna de zeros então det(A) = 0.
- b) det(A) = det(A')

- c) Se A é uma matriz triangular (superior, inferior ou diagonal), então det(A) é o produto das entradas da diagonal principal da matriz.
- d) Multiplicando uma linha ou coluna da matriz por uma constante, o determinante fica multiplicado por essa constante.
- e) Trocando de posição duas linhas ou colunas da matriz, o determinante troca de sinal.
- Se a matriz tem duas linhas ou colunas iguais ou proporcionais, o determinante é zero.
- g) Somar o múltiplo de uma linha à outra não altera o valor do determinante.
- h) $det(A+B) \neq det(A) + det(B)$
- i) det(AB) = det(A) * det(B)
- j) $det(A^{-1}) = \frac{1}{det(A)}$ esta propriedade garante que uma matriz A é invertível somente se o seu determinante é diferente de zero.

1.4.6 Exercícios propostos

1. Verifique se as matrizes a seguir são invertíveis:

a)
$$\begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$$

b)
$$\begin{bmatrix} 3 & 6 \\ 2 & 4 \end{bmatrix}$$

c)
$$\begin{bmatrix} 3 & -6 \\ 2 & 4 \end{bmatrix}$$

a)
$$\begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$$
 b) $\begin{bmatrix} 3 & 6 \\ 2 & 4 \end{bmatrix}$ c) $\begin{bmatrix} 3 & -6 \\ 2 & 4 \end{bmatrix}$ d) $\begin{bmatrix} 4 & 3 & 4 & 8 \\ 6 & 15 & 13 & 12 \\ 1 & 9 & 7 & 2 \\ 0 & 4 & 9 & 0 \end{bmatrix}$

- 2. Dadas as matrizes $A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix}$, calcule:
- a) det(A) + det(B)
- b) det(A + B)
- c)det(AB)
- 3. Calcule cada um dos determinantes a seguir:

a)
$$\begin{vmatrix} 3 & 5 \\ -2 & -3 \end{vmatrix}$$

b)
$$\begin{vmatrix} 1 & 3 & 2 \\ 4 & 1 & -2 \\ 2 & 1 & 3 \end{vmatrix}$$

c)
$$\begin{vmatrix} 2 & -1 & 2 \\ 1 & 3 & 2 \\ 5 & 1 & 6 \end{vmatrix}$$

a)
$$\begin{vmatrix} 3 & 5 \\ -2 & -3 \end{vmatrix}$$
 b) $\begin{vmatrix} 1 & 3 & 2 \\ 4 & 1 & -2 \\ 2 & 1 & 3 \end{vmatrix}$ c) $\begin{vmatrix} 2 & -1 & 2 \\ 1 & 3 & 2 \\ 5 & 1 & 6 \end{vmatrix}$ d) $\begin{vmatrix} 4 & 3 & 0 \\ 3 & 1 & 2 \\ 5 & -1 & -4 \end{vmatrix}$

i)
$$\begin{vmatrix} 2 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 3 & -2 \end{vmatrix}$$
 j) $\begin{vmatrix} 1 & 3 & 2 \\ 4 & 1 & -2 \\ 2 & 1 & 3 \end{vmatrix} * \begin{vmatrix} 4 & 3 & 0 \\ 3 & 1 & 2 \\ 5 & -1 & -4 \end{vmatrix}$

Respostas: a) 1; b) -39; c) 0; d) 58; e) 116 (compare com o resultado do ex. d); f) -116; g) 0; h) 0; i) -4; j) 2.262

1.5 MÉTODO PARA CALCULAR MATRIZ INVERSA

Considere uma matriz quadrada A de ordem n. Vimos que, se $det(A) \neq 0$, essa matriz é invertível. Por meio de operações com suas linhas da matriz, conseguimos encontrar sua matriz inversa correspondente.

1.5.1 Matriz A de ordem 2

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad ; \qquad A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

1.5.2 Matriz A de ordem $n \ge 3$

Para encontrar a matriz inversa de uma matriz quadrada de ordem $n \ge 3$, existem dois métodos (apenas o segundo será visto em detalhes):

a) $A^{-1} = \frac{1}{\det(A)} adj(A)$, sendo adj(A) a matriz adjunta de A, ou seja, a matriz transposta dos cofatores de A, os quais são determinados por:

 $C_{ij} = (-1)^{i+j} M_{ij}$, sendo M_{ij} o determinante menor de a_{ij} .

Exemplo

$$A = \begin{bmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{bmatrix} \qquad M_{11} = \begin{vmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{vmatrix} = \begin{vmatrix} 5 & 6 \\ 4 & 8 \end{vmatrix} = 16$$

b) Por operações com linhas, transformar [A | I] em [I | A⁻¹].

Exemplo

Operações possíveis:

- Trocar de posição duas linhas
- Multiplicar uma linha por um número real não-nulo
- Substituir uma linha por sua soma com um múltiplo de outra linha

Exemplo

$$\begin{bmatrix} -1 & 2 & 2 & | 1 & 0 & 0 \\ 0 & 1 & 0 & | 0 & 1 & 0 \\ -1 & 1 & 3 & | 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_1 = -L_1} \begin{bmatrix} 1 & -2 & -2 & | -1 & 0 & 0 \\ 0 & 1 & 0 & | 0 & 1 & 0 \\ -1 & 1 & 3 & | 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_3 = L_3 + L_1}$$

$$\begin{bmatrix} 1 & -2 & -2 & | -1 & 0 & 0 \\ 0 & 1 & 0 & | 0 & 1 & 0 \\ 0 & -1 & 1 & | -1 & 0 & 1 \end{bmatrix} \xrightarrow{L_4 = L_1 + 2L_2} \begin{bmatrix} 1 & 0 & -2 & | -1 & 2 & 0 \\ 0 & 1 & 0 & | 0 & 1 & 0 \\ 0 & -1 & 1 & | -1 & 0 & 1 \end{bmatrix} \xrightarrow{L_3 = L_3 + L_2}$$

$$\begin{bmatrix} 1 & 0 & -2 & | -1 & 2 & 0 \\ 0 & 1 & 0 & | 0 & 1 & 0 \\ 0 & 0 & 1 & | -1 & 1 & 1 \end{bmatrix} \xrightarrow{L_4 = L_1 + 2L_3} \begin{bmatrix} 1 & 0 & 0 & | -3 & 4 & 2 \\ 0 & 1 & 0 & | 0 & 1 & 0 \\ 0 & 0 & 1 & | -1 & 1 & 1 \end{bmatrix}$$

1.5.3 Exercícios propostos

1. Encontre a inversa de cada uma das matrizes seguintes:

a)
$$\begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$$
 b) $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ c) $\begin{bmatrix} 2 & 6 \\ 3 & 8 \end{bmatrix}$ d) $\begin{bmatrix} 3 & 0 \\ 9 & 3 \end{bmatrix}$

b)
$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$

c)
$$\begin{bmatrix} 2 & 6 \\ 3 & 8 \end{bmatrix}$$

$$d)\begin{bmatrix} 3 & 0 \\ 9 & 3 \end{bmatrix}$$

$$e) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$f) \begin{bmatrix} 2 & 0 & 5 \\ 0 & 3 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$

g)
$$\begin{bmatrix} -1 & -3 & -3 \\ 2 & 6 & 1 \\ 3 & 8 & 3 \end{bmatrix}$$

e)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 f) $\begin{bmatrix} 2 & 0 & 5 \\ 0 & 3 & 0 \\ 1 & 0 & 3 \end{bmatrix}$ g) $\begin{bmatrix} -1 & -3 & -3 \\ 2 & 6 & 1 \\ 3 & 8 & 3 \end{bmatrix}$ h) $\begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & -2 & -3 \end{bmatrix}$

Respostas:

$$a) \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \ b) \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \ c) \begin{bmatrix} -4 & 3 \\ 3/2 & -1 \end{bmatrix} \ d) \begin{bmatrix} 1/3 & 0 \\ -1 & 1/3 \end{bmatrix} \ e) \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$f) \begin{bmatrix} 3 & 0 & -5 \\ 0 & 1/3 & 0 \\ -1 & 0 & 2 \end{bmatrix} g) \begin{bmatrix} 2 & -3 & 3 \\ -3/5 & 6/5 & -1 \\ -2/5 & -1/5 & 0 \end{bmatrix} h) \begin{bmatrix} -1/2 & -1 & -1/2 \\ -2 & -1 & -1 \\ 3/2 & 1 & 1/2 \end{bmatrix}$$

2 SISTEMAS DE EQUAÇÕES LINEARES

Provavelmente, o problema mais importante em matemática é resolver um sistema de equações lineares. Mais de 75% de todos os problemas matemáticos encontrados em aplicações científicas e industriais envolvem a resolução de um sistema linear em alguma etapa. Usando os métodos da matemática moderna, muitas vezes é possível reduzir um problema sofisticado a um único sistema de equações lineares. Sistemas lineares aparecem em aplicações em áreas como administração, economia, sociologia, ecologia, demografia, genética, eletrônica, engenharia e física.

Vamos analisar um problema prático, que, apesar de simples, ilustra bem a aplicabilidade dos sistemas de equações lineares e a forma como podem ser montados:

Determinado produtor rural possui duas fazendas, Morro Branco e Riacho Seco, onde deseja plantar soja e trigo. Devido às condições de solo específicas, o lucro anual esperado para a soja é de \$4,00/ha na Morro Branco e de \$6,00/ha na Riacho Seco, enquanto o lucro anual previsto para o trigo é de \$8,00/ha na Morro Branco e de \$4,00/ha na Riacho Seco. Sabe-se ainda que: a área de soja a ser plantada na Morro Branco deve ter a mesma dimensão da área plantada de soja do Riacho Seco; a área de trigo plantada na Riacho Seco deve ter a mesma dimensão da área plantada de trigo na Morro Branco; o lucro anual total da Morro Branco e da Riacho Seco deve ser de \$160,00 e \$120,00, respectivamente; as fazendas têm área suficiente para atender aos anseios do produtor.

Para determinar a área de soja e trigo a ser cultivada em cada uma das fazendas, tal situação pode ser facilmente apresentada por um sistema de equações lineares, com as seguintes incógnitas:

 x_1 = número de hectares de soja a ser plantado em cada fazenda.

 x_2 = número de hectares de trigo a ser plantado em cada fazenda.

Assim, o sistema de equações que representa o problema é dado por:

$$\begin{cases} 4x_1 + 8x_2 = 160 \\ 6x_1 + 4x_2 = 120 \end{cases}$$

2.1 DEFINIÇÃO

Uma equação linear com n incógnitas (variáveis) é uma equação com a forma:

 $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$, em que a_1 , a_2 , ..., a_n e b são números reais e x_1 , x_2 , ..., x_n são as variáveis. Um sistema de equações lineares com m equações e n incógnitas é um conjunto de equações do tipo:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

- \triangleright Uma solução do sistema é um *n*-upla de números $(x_1, x_2, ..., x_n)$ que satisfaça simultaneamente essas *m* equações.
- ➤ Dois sistemas de equações lineares são equivalentes se, e somente se, toda solução de um é solução do outro.

2.2 CLASSIFICAÇÃO

Um sistema de equações lineares pode possuir uma única solução, infinitas soluções ou simplesmente não possuir nenhuma solução possível. Assim, pode ser classificado como:

- Sistema possível e determinado admite uma única solução.
- Sistema possível e indeterminado admite infinitas soluções.
- Sistema impossível não admite nenhuma solução.

Exemplos:

a)
$$\begin{cases} x_1 + 2x_2 = 5 \\ 2x_1 + 3x_2 = 8 \end{cases}$$
 b)
$$\begin{cases} x_1 - x_2 + x_3 = 2 \\ 2x_1 + x_2 - x_3 = 4 \end{cases}$$
 c)
$$\begin{cases} x_1 + x_2 = 2 \\ x_1 - x_2 = 1 \\ x_1 = 4 \end{cases}$$

O sistema a tem como solução o par ordenado (1,2) e, por isso, ele é **possível e determinado.**

O sistema b possui infinitas soluções, com a primeira variável igual a 2. As soluções podem ser representadas pela tripla ordenada $(2, \alpha, \alpha)$, sendo α um número qualquer. Neste caso, o **sistema é possível e indeterminado**.

O sistema c não possui solução. Neste caso, <u>é impossível</u>.

- ➤ Se um sistema linear tem mais equações do que incógnitas (m > n), em geral (mas nem sempre), é impossível.
- > Se um sistema linear tem mais incógnitas do que equações (m < n), em geral, é possível e indeterminado.

2.3 NOTAÇÃO MATRICIAL

Podemos escrever um sistema de equações lineares por meio de uma forma matricial. Isso facilita muito a análise e resolução.

Considere o seguinte sistema de equações:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Escrito na forma matricial, fica:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

ou

$$AX = B$$

Em que a primeira matriz da multiplicação (**A**) é a matriz dos coeficientes das variáveis e a segunda, a matriz das incógnitas (**X**). A matriz após a igualdade (**B**) é a matriz dos resultados (termos independentes).

Outra matriz que podemos associar ao sistema é a **matriz ampliada**, que é do formato [A|B] e consiste em colocar numa mesma matriz os coeficientes e os termos independentes (valores do lado direito da igualdade).

Exemplo

Para o sistema:
$$\begin{cases} x_1 + 4x_2 + 3x_3 = 1\\ 2x_1 + 5x_2 + 4x_3 = 4\\ x_1 - 3x_2 - 2x_3 = 5 \end{cases}$$

Temos a forma matricial:
$$\begin{bmatrix} 1 & 4 & 3 \\ 2 & 5 & 4 \\ 1 & -3 & -2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix}$$

Matriz ampliada do sistema segundo o formato [A|B]:
$$\begin{bmatrix} 1 & 4 & 3 & 1 \\ 2 & 5 & 4 & 4 \\ 1 & -3 & -2 & 5 \end{bmatrix}$$

A notação matricial, sobretudo a matriz ampliada, é utilizada na resolução do sistema de equações lineares. Para resolver o sistema (por algum dos métodos que serão vistos adiante), podem-se realizar operações, conhecidas como elementares, sobre as linhas de uma matriz ampliada.

Operações elementares sobre as linhas de uma matriz ampliada

- Trocar de posição duas linhas.
- Multiplicar uma linha por um número real não nulo.
- Substituir uma linha por sua soma com um múltiplo de outra linha.

2.3.1 Exercícios propostos

1) Escreva cada uma das matrizes a seguir por meio da notação matricial, como também as correspondentes matrizes ampliadas:

a)
$$\begin{cases} x_1 & -3x_2 = 2 \\ -2x_2 = 6 \end{cases}$$

b)
$$\begin{cases} x_1 + x_2 + x_3 = 8 \\ 2x_2 + x_3 = 5 \\ 3x_3 = 9 \end{cases}$$

c)
$$\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 5 \\ 3x_2 + x_3 - 2x_4 = 1 \\ -x_3 + 2x_4 = -1 \\ 4x_4 = 4 \end{cases}$$

d)
$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 5 \\ 2x_2 + x_3 - 2x_4 + x_5 = 1 \\ 4x_3 + x_4 - 2x_5 = 1 \\ x_4 - 3x_5 = 0 \end{cases}$$

2) Escreva por extenso o sistema de equações que corresponde a cada uma das matrizes ampliadas a seguir:

a)
$$\begin{bmatrix} 3 & 2 & | & 8 \\ 1 & 5 & | & 7 \end{bmatrix}$$

b)
$$\begin{bmatrix} 5 & -2 & 1 & 3 \\ 2 & 0 & -4 & 0 \end{bmatrix}$$

c)
$$\begin{bmatrix} 2 & 1 & 4 & | & -1 \\ 4 & -2 & 3 & | & 4 \\ 5 & 2 & 6 & | & -1 \end{bmatrix}$$

d)
$$\begin{bmatrix} 4 & -3 & 1 & 2 & | & 4 \\ 0 & 1 & -5 & 6 & | & 5 \\ 1 & 1 & 0 & 4 & | & 8 \\ 5 & 1 & 3 & -2 & | & 7 \end{bmatrix}$$

2.4 MÉTODOS PARA RESOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES

2.4.1 Substituição

Este método é o mais adequado para sistemas de duas equações ou que estão na forma triangular (a matriz dos coeficientes é uma matriz triangular).

Exemplos

(i)
$$\begin{cases} x_1 + 2x_2 = 5 \\ 2x_1 + 3x_2 = 8 \end{cases}$$
 (ii)
$$\begin{cases} x_1 + x_2 + x_3 = 8 \\ 2x_2 + x_3 = 5 \\ 3x_3 = 9 \end{cases}$$

Para resolver o sistema (i), basta isolar uma das variáveis em uma das equações e substituir o resultado na outra, encontrando o valor de uma das variáveis. Na sequência, substitui-se esse valor na outra equação e acha-se o valor da segunda variável.

Quanto ao sistema (ii), verifique que a matriz de coeficientes é uma matriz triangular superior. Para resolvê-lo, procede-se à substituição das variáveis de baixo para cima.

2.4.2 Forma triangular

Como vimos, se um sistema de equações lineares tem associado a ele uma matriz de coeficientes triangular, é possível resolvê-lo por substituição.

Se a matriz de coeficientes não é triangular, geralmente (mas não sempre) é possível transformá-la nesse tipo por sucessivas operações nas linhas da matriz ampliada do sistema até que a matriz de coeficientes fique no formato triangular.

Operações elementares sobre as linhas de uma matriz ampliada

- Trocar de posição duas linhas.
- Multiplicar uma linha por um número real não nulo.
- Substituir uma linha por sua soma com um múltiplo de outra linha.

Exemplo

Resolva o seguinte sistema de equações lineares:

$$\begin{cases} x_1 + 2x_2 + x_3 = 3\\ 3x_1 - x_2 - 3x_3 = -3\\ 2x_1 + 3x_2 + x_3 = 4 \end{cases}$$

A esse sistema, temos associada uma matriz ampliada do sistema. Efetuando as operações elementares, é possível transformar a matriz dos coeficientes para a forma triangular. Primeiramente, temos que eleger um elemento, chamado pivô, que será utilizado para eliminar os elementos abaixo dele em sua coluna. Essa operação é feita sucessiva vezes até chegar ao formato triangular.

Pivô
$$\longrightarrow$$
 $\begin{bmatrix} 1 & 2 & 1 & 3 \\ 3 & -1 & -3 & -1 \\ 2 & 3 & 1 & 4 \end{bmatrix}$

Efetuando as operações elementares, temos:

$$\begin{bmatrix}
1 & 2 & 1 & 3 \\
3 & -1 & -3 & -1 \\
2 & 3 & 1 & 4
\end{bmatrix}
\xrightarrow{L_2=L_2-3L_1 \atop L_3=L_3-2L_1}
\begin{bmatrix}
1 & 2 & 1 & 3 \\
0 & -7 & -6 & -10 \\
0 & -1 & -1 & -2
\end{bmatrix}
\xrightarrow{L_3=(-7)*L_3}$$

$$\begin{bmatrix}
1 & 2 & 1 & 3 \\
0 & -7 & -6 & -10 \\
0 & 7 & 7 & 14
\end{bmatrix}
\xrightarrow{L_3=L_3+L_2}
\begin{bmatrix}
1 & 2 & 1 & 3 \\
0 & -7 & -6 & -10 \\
0 & 0 & 1 & 4
\end{bmatrix}$$

Na última matriz, verificamos que $x_3 = 4$. Com o valor dessa variável, é possível proceder zà substituição de baixo para cima e encontrar o valor das outras variáveis.

Resumindo, em geral, se um sistema linear $n \times n$ puder ser reduzido a uma forma triangular, ele terá uma única solução, que poderá ser obtida por substituição.

2.4.2.1 Exercícios propostos

Resolva os sistemas a seguir:

a)
$$\begin{cases} x_1 - 2x_2 = 5 \\ 3x_1 + x_2 = 1 \end{cases}$$
 b)
$$\begin{cases} x_1 + 2x_2 - x_3 = 1 \\ 2x_1 - x_2 + x_3 = 3 \\ -x_1 + 2x_2 + 3x_3 = 7 \end{cases}$$

c)
$$\begin{cases} -x_2 - x_3 + x_4 = 0\\ x_1 + x_2 + x_3 + x_4 = 6\\ 2x_1 + 4x_2 + x_3 - 2x_4 = -1\\ 3x_1 + x_2 - 2x_3 + 2x_4 = 3 \end{cases}$$

Respostas: a) (1,-2); b) (1,1,2); c) (2,-1,3,2).

2.4.3 Forma escada

Vimos que, geralmente, é possível reduzir um sistema linear $n \times n$ a uma forma triangular e proceder à resolução via substituição. Entretanto, esse método falha se, em qualquer etapa do processo de redução, todas as escolhas possíveis para o elemento pivô em determinada coluna são nulas, ou seja, se aparece algum elemento nulo na diagonal principal. Além disso, se a matriz dos coeficientes não for quadrada, também não será possível reduzi-la à forma triangular. Em ambos os casos, utilizamos a redução à forma escada e, com o resultado, podemos verificar se o sistema é possível ou não e se é determinado.

Exemplo

Considere o seguinte sistema representado pela matriz aumentada:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ -1 & -1 & 0 & 0 & 1 & -1 \\ -2 & -2 & 0 & 0 & 3 & 1 \\ 0 & 0 & 1 & 1 & 3 & -1 \\ 1 & 1 & 2 & 2 & 4 & 1 \end{bmatrix}$$
 Linha do pivô

Efetuando as operações elementares para anular os últimos quatro elementos da primeira coluna, obtemos a matriz:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 2 & 2 & 5 & 3 \\ 0 & 0 & 1 & 1 & 3 & -1 \\ 0 & 0 & 1 & 1 & 3 & 0 \end{bmatrix}$$

Neste estágio, a redução a uma forma triangular não pode continuar. Todas as escolhas possíveis para o elemento pivô na segunda coluna são iguais a zero. Como nosso objetivo é simplificar ao máximo o sistema dado, devem-se passar para a terceira coluna e anular os três últimos elementos:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Na quarta coluna, todas as escolhas possíveis para o pivô são iguais a zero; logo, novamente passamos para a próxima coluna. Usando a terceira linha como pivô, anulamos os dois últimos elementos da quinta coluna e chegamos à forma escada:

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 0 & -3
\end{bmatrix}$$

Traduzindo a forma matricial para a forma de equações, as duas últimas linhas representam as equações:

$$0x_1 + 0x_2 + 0x_3 + 0x_4 + 0x_5 = -4$$

$$0x_1 + 0x_2 + 0x_3 + 0x_4 + 0x_5 = -3$$

Como não existem quíntuplas (números $(x_1, x_2, x_3, x_4, x_5)$) capazes de satisfazer essas equações, o sistema é impossível.

Suponha agora que, modificando os números à direita do sinal de igualdade, de modo a obter um sistema possível, temos, por exemplo, a matriz ampliada:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ -1 & -1 & 0 & 0 & 1 & -1 \\ -2 & -2 & 0 & 0 & 3 & 1 \\ 0 & 0 & 1 & 1 & 3 & 3 \\ 1 & 1 & 2 & 2 & 4 & 4 \end{bmatrix}$$

Procedendo à redução da matriz à forma, temos:

Assim, as duas últimas linhas da matriz representam um subsistema que pode ser resolvido por quaisquer quíntuplas:

$$0x_1 + 0x_2 + 0x_3 + 0x_4 + 0x_5 = 0$$

$$0x_1 + 0x_2 + 0x_3 + 0x_4 + 0x_5 = 0$$

Logo, o sistema torna-se possível, mas indeterminado, e temos:

$$x_1 + x_2 + x_3 + x_4 + x_5 = 1$$
$$x_3 + x_4 + 2x_5 = 0$$
$$x_5 = 3$$

Consequentemente, identificando as variáveis livres x_2 e x_4 (que correspondem às colunas que foram puladas no processo de redução da matriz à forma escada), temos:

$$x_1 + x_3 + x_5 = 1 - x_2 - x_4$$
 $x_3 + 2x_5 = -x_4$
 $x_5 = 3$
 $x_1 = -x_2 + 4$
 $x_3 = -x_4 - 6$

Para cada par ordenado (x_2 e x_4), temos uma solução e, consequentemente, infinitas soluções.

> Definição

Uma matriz está reduzida à forma escada se:

- (i) O primeiro elemento não nulo de cada linha é 1.
- (ii) A linha k não consiste apenas em zeros, sendo o número de zeros no início da linha k+1 maior do que o número de zeros no início da linha k.
- (iii) Existem linhas com todos os elementos iguais a zero, ficando abaixo de todas as linhas não nulas.
- O processo no qual se usam as operações elementares para transformar um sistema linear em outro cuja matriz dos coeficientes está em forma escada é chamado método de Gauss.

Exemplos

As matrizes a seguir estão em forma escada:

$$\begin{bmatrix} 1 & 4 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

As matrizes a seguir não estão em forma escada:

$$\begin{bmatrix} 2 & 4 & 6 \\ 0 & 3 & 5 \\ 0 & 0 & 4 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

- Deserve que, se a matriz ampliada do sistema, quando reduzida à forma escada, tem uma linha da forma $\begin{bmatrix} 0 & 0 & \cdots & 0 & | & n \end{bmatrix}$, o sistema é impossível. Caso contrário, o sistema é possível.
- ➤ Se o sistema é possível e as linhas não nulas da matriz em forma escada representam um sistema triangular, o sistema tem uma única solução (é determinado) ou possui infinitas soluções (é indeterminado). Em ambos os casos, basta proceder à substituição de baixo para cima para encontrar a(s) solução(ões).

Analisando a matriz ampliada do sistema reduzida à forma escada, é possível determinar o tipo de sistema de equações lineares associado (quanto à sua classificação).

Exemplos de situações

Sistemas com mais equações do que incógnitas

Sistemas deste tipo geralmente (mas nem sempre) são impossíveis. Veja três exemplos:

a)
$$\begin{cases} x_1 + x_2 = 1 \\ x_1 - x_2 = 3 \\ -x_1 + 2x_2 = -2 \end{cases}$$
 b)
$$\begin{cases} x_1 + 2x_2 + x_3 = 1 \\ 2x_1 - x_2 + x_3 = 2 \\ 4x_1 + 3x_2 + 3x_3 = 4 \\ 2x_1 - x_2 + 3x_3 = 5 \end{cases}$$
 c)
$$\begin{cases} x_1 + 2x_2 + x_3 = 1 \\ 2x_1 - x_2 + x_3 = 2 \\ 4x_1 + 3x_2 + 3x_3 = 4 \\ 3x_1 + x_2 + 2x_3 = 3 \end{cases}$$

Vamos proceder à análise da classificação dos sistemas, quanto à resolução, em cada um dos casos.

Para o sistema a, fazendo a redução da matriz ampliada à forma escada, temos:

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$
. Verifica-se, pela última linha da matriz, que o sistema é impossível.

Para o sistema b, reduzindo a matriz ampliada à forma escada, temos:

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 1/5 & 0 \\ 0 & 0 & 1 & 3/2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Usando substituição, vemos que o sistema tem exatamente uma solução: $(\frac{-9}{10}, \frac{-3}{10}, \frac{3}{2})$.

A solução é única, pois as linhas não nulas da matriz reduzida formam um sistema triangular.

Para o sistema c, procedendo à redução da matriz ampliada à forma escada, temos:

$$\begin{bmatrix}
1 & 2 & 1 & 1 \\
0 & 1 & 1/5 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

Resolvendo para x_2 e x_1 em termos de x_3 , obtemos:

$$x_2 = -0.2x_3$$

 $x_1 = 1 - 2x_2 - x_3 = 1 - 0.6x_3$

Logo, o conjunto solução é o conjunto de todas as triplas ordenadas da forma (1 - 0.6α ; -0.2 α ; α), sendo α um número real. O sistema é possível e indeterminado (tem infinitas soluções) por causa da variável x_3 .

Sistemas com menos equações do que incógnitas

Embora um sistema deste tipo possa ser impossível de ser resolvido, é em geral possível e indeterminado. Tal sistema nunca pode ser possível e determinado (isto é, ter uma única solução).

Exemplos

a)
$$\begin{cases} x_1 + 2x_2 + x_3 = 1 \\ 2x_1 + 4x_2 + 2x_3 = 3 \end{cases}$$

b)
$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 2 \\ x_1 + x_2 + x_3 + 2x_4 + 2x_5 = 3 \\ x_1 + x_2 + x_3 + 2x_4 + 3x_5 = 2 \end{cases}$$

Vamos analisar a matriz reduzida à forma escada para cada um dos casos:

Para o sistema a, procedendo à redução da matriz ampliada à forma escada temos:

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Verifica-se que o sistema é impossível.

Para o sistema b, reduzindo a matriz ampliada à forma escada, temos:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$

Verifica-se que o sistema é possível, mas, como existem duas variáveis livres (x_2 e x_3), é indeterminado. Realizando a substituição temos:

$$x_1 = 1 - x_2 - x_3$$
$$x_4 = 2$$
$$x_5 = -1$$

Portanto, para quaisquer α e β reais, a quíntupla $(1-\alpha-\beta, \alpha, \beta, 2, -1)$ é uma solução do sistema.

2.4.4 Forma escada reduzida por linhas

Como visto, uma vez que a matriz ampliada de um sistema estiver na forma escada, será possível efetuar a resolução do sistema por substituição. Contudo, existe uma ampliação do método de redução à forma escada, que facilita a identificação das soluções do sistema. Nesse caso, efetuamos operações elementares na matriz ampliada do sistema e obtemos a matriz forma escada reduzida por linhas.

Uma matriz está em forma escada reduzida por linhas quando:

- (i) A matriz está em forma escada.
- (ii) O primeiro elemento não nulo de cada linha é o único elemento diferente de zero na sua coluna.
- O processo de usar operações elementares para colocar uma matriz em forma escada reduzida por linhas é conhecido como método de Gauss-Jordan.

Exemplos

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

2.4.4.1 Exercícios propostos

1. Quais das matrizes a seguir estão em forma escada? Quais estão em forma escada reduzida por linhas?

a)
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
 b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ d) $\begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$
e) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}$ f) $\begin{bmatrix} 1 & 4 & 6 \\ 0 & 0 & 1 \\ 0 & 1 & 3 \end{bmatrix}$ g) $\begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 & 4 \\ 0 & 0 & 1 & 3 & 6 \end{bmatrix}$ h) $\begin{bmatrix} 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

2. Cada uma das matrizes aumentadas a seguir está em forma escada. Para cada uma delas, indique se o sistema linear correspondente é possível ou não. Se o sistema tiver uma única solução, encontre-a:

a)
$$\begin{bmatrix} 1 & 2 & | & 4 \\ 0 & 1 & | & 3 \\ 0 & 0 & | & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 1 & 3 & | & 1 \\ 0 & 1 & | & -1 \\ 0 & 0 & | & 0 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & -2 & | & 4 & | & 1 \\ 0 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

d)
$$\begin{bmatrix} 1 & -2 & 2 & | & -2 \\ 0 & 1 & -1 & | & 3 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$
 e)
$$\begin{bmatrix} 1 & 3 & 2 & | & -2 \\ 0 & 0 & 1 & | & 4 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$
 f)
$$\begin{bmatrix} 1 & -1 & 3 & | & 8 \\ 0 & 1 & 2 & | & 7 \\ 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Respostas: b) (4, -1); c) $(2\alpha - 11, \alpha, 3)$; d) (4,5,2); f) (5,3,2)

Cada uma das matrizes aumentadas a seguir está em forma escada reduzida por linhas. Para cada uma delas, encontre o conjunto solução do sistema linear correspondente:

a)
$$\begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 4 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

a)
$$\begin{bmatrix} 1 & 0 & 0 & | & -2 \\ 0 & 1 & 0 & | & 5 \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$$
 b) $\begin{bmatrix} 1 & 4 & 0 & | & 2 \\ 0 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$ c) $\begin{bmatrix} 1 & -3 & 0 & | & 2 \\ 0 & 0 & 1 & | & -2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$

d)
$$\begin{bmatrix} 1 & 2 & 0 & 1 & 5 \\ 0 & 0 & 1 & 3 & 4 \end{bmatrix}$$

$$f) \begin{bmatrix}
 0 & 1 & 0 & 2 \\
 0 & 0 & 1 & -1 \\
 0 & 0 & 0 & 0
 \end{bmatrix}$$

Respostas: a)
$$(-2,5,3)$$
; c) $(3\alpha + 2, \alpha, -2)$; d) $(5 - 2\alpha + \beta, \alpha, -3\beta + 4, \beta)$;
e) $(-5\alpha + 2\beta + 3, \alpha, \beta, 6)$; f) $(\alpha, 2, -1)$

Use o método de Gauss-Jordan para resolver cada um dos sistemas a seguir:

a)
$$\begin{cases} x_1 + x_2 = -1 \\ 4x_1 - 3x_2 = 3 \end{cases}$$

b)
$$\begin{cases} x_1 + 3x_2 + x_3 + x_4 = 3\\ 2x_1 - 2x_2 + x_3 + 2x_4 = 8\\ 3x_1 + x_2 + 2x_3 - x_4 = -1 \end{cases}$$

c)
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 - x_2 - x_3 = 0 \end{cases}$$

d)
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ 2x_1 + x_2 - x_3 + 3x_4 = 0 \\ x_1 - 2x_2 + x_3 + x_4 = 0 \end{cases}$$

Respostas: a)
$$(0, -1)$$
; b) $(\frac{5}{2} + \frac{5}{6}\alpha, -\frac{1}{2} + \frac{1}{6}\alpha, 2 - \frac{4}{3}\alpha, \alpha)$; c) $(0, -\alpha, \alpha)$; d)

$$(-\frac{4}{3}\alpha,0,\frac{1}{3}\alpha,\alpha)$$

2.4.5 Resolução por matriz inversa

Outra forma de resolver um sistema de equações lineares é pela matriz inversa da matriz dos coeficientes. Este método aplica-se a sistemas de equações lineares em que o número de equações é igual ao número de incógnitas.

Lembrando que qualquer sistema de equações lineares pode ser escrito na forma AX = B, sendo A, a matriz dos coeficientes, X a matriz das incógnitas e B a matriz dos termos independentes, é possível resolver a matriz das incógnitas pela expressão:

$$\mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$$

Pois:

$$AX=B$$
 \rightarrow $A^{-1}AX = A^{-1}B$ \rightarrow $I_nX = A^{-1}B$ \rightarrow $X = A^{-1}B$

Contudo, vale ressaltar que essa relação somente é válida se existir a matriz inversa da matriz dos coeficientes A, isto é, se existir A^{-1} . Em outras palavras, se o $det(A) \neq 0$.

Exemplo

Resolva o sistema a seguir pela matriz inversa dos coeficientes:

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 5\\ 2x_1 + 5x_2 + 3x_3 = 3\\ x_1 + 8x_3 = 17 \end{cases}$$

Escrevendo na forma matricial, temos AX = B:

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ 17 \end{bmatrix}$$

Como det(A) = -1 e, portanto, $det(A) \neq 0$, é possível calcular a inversa de A:

$$A^{-1} = \begin{bmatrix} -40 & 16 & 9\\ 13 & -5 & -3\\ 5 & -2 & -1 \end{bmatrix}$$

Resolvendo pela inversa, temos:

$$X = A^{-1}B$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 3 \\ 17 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

Logo,
$$x_1 = 1$$
; $x_2 = -1$ e $x_3 = 2$

2.4.6 Regra de Cramer

Outro método de resolução é a regra de Cramer, cujos requisitos para aplicação são os mesmos para a aplicação da matriz inversa, ou seja, o número de equações tem que ser igual ao número de incógnitas e a matriz dos coeficientes tem que ser invertível. Por essa regra, temos:

$$x_1 = \frac{\det(A_1)}{\det(A)}, x_2 = \frac{\det(A_2)}{\det(A)}, \dots, x_n = \frac{\det(A_n)}{\det(A)}$$

Em que $x_1, x_2, ..., x_n$ são as incógnitas e $A_1, A_2, ..., A_n$ são as matrizes em que a coluna n é substituída pelos valores independentes do sistema de equações lineares.

Exemplo

Resolva o sistema seguinte pela regra de Cramer:

$$\begin{cases} 2x_1 - 3x_2 + 7x_3 = 1\\ x_1 + 3x_3 = 5\\ 2x_2 - x_3 = 0 \end{cases}$$

Temos:

$$\det \begin{bmatrix} 2 & -3 & 7 \\ 1 & 0 & 3 \\ 0 & 2 & -1 \end{bmatrix} = -1$$

Ou seja, $det(A) \neq 0$, então AX = B:

$$\begin{bmatrix} 2 & -3 & 7 \\ 1 & 0 & 3 \\ 0 & 2 & -1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 0 \end{bmatrix},$$

$$A_1 = \begin{bmatrix} 1 \\ 5 \\ 0 \end{bmatrix}, A_2 = \begin{bmatrix} 2 & 1 \\ 1 & 5 \\ 0 & 0 \end{bmatrix}, A_3 = \begin{bmatrix} 2 & -3 & 1 \\ 1 & 0 & 5 \\ 0 & 2 & 0 \end{bmatrix}$$

$$\det(A_1) = 49 \qquad \det(A_2) = -9 \qquad \det(A_3) = -18$$

Pela regra de Cramer:

$$x_1 = \frac{\det(A_1)}{\det(A)}, x_2 = \frac{\det(A_2)}{\det(A)}, \dots, x_n = \frac{\det(A_n)}{\det(A)}$$

Logo:

$$x_1 = \frac{49}{-1} = -49$$
 $x_2 = \frac{-9}{-1} = 9$ $x_3 = \frac{-18}{-1} = 18$

2.4.7 Exercícios propostos

1) Resolva usando o método da matriz inversa:

$$\begin{cases} x_1 + 4x_2 + 3x_3 = 12 \\ -x_1 - 2x_2 = -12 \\ 2x_1 + 2x_2 + 3x_3 = 8 \end{cases}$$

Resposta: (4; 4; -2,66)

2) Resolva usando a regra de Cramer:
$$\begin{cases} x_1 - 2x_2 + x_3 = 1 \\ 2x_1 + x_2 = 3 \\ x_2 - 5x_3 = 4 \end{cases}$$

Resposta: (1,56; -0,13; -0,82)

3 LISTA DE EXERCÍCIOS

- 1) Classifique como verdadeira ou falsa cada uma das sentenças a seguir:
- a) Se A é uma matriz 3x4 e B é uma matriz 4x5, então AB é 3x5 e não existe BA.
- b) Se A é 2x4 e B é 4x2, então AB é 2x2 e BA é 4x4.
- c) Se A e B são matrizes quadradas de ordem 3, então AB e BA também são.
- d) Se A é 3x2, B é 2x4 e C é 4x3, então (AB)C é uma matriz quadrada de ordem 3.
- e) Se A é 2x2, B é 2x1 e C é 2x1, então C(AB) é uma matriz 1x1.

Respostas: V; *b*) *V*; *c*) *V*; *d*) *V*; *e*) *F*

2) Determine x e y tal que:

$$\begin{vmatrix} 0 & 0 & 1 \\ 2 & x & 4 \\ 1 & 1 & y \end{vmatrix} = 1 e \begin{vmatrix} 1 & x & 0 \\ 0 & y & 1 \\ 1 & 0 & 1 \end{vmatrix} = 8$$

- 3) Na matriz $\begin{bmatrix} 1 & x & x^2 \\ 1 & 2 & 4 \\ 1 & -3 & 9 \end{bmatrix}$, calcule:
- a) Seu determinante
- b) Os valores de x que anulam esse determinante.

Resposta: -3 ou.

4) Calcule os valores de *a* para que o sistema $\begin{cases} 3x + 2y = 1 \\ ax - 4y = 0 \end{cases}$ seja possível e determinado.

Resposta: $a \neq -6$

5) Dado o sistema
$$\begin{cases} x + y + z = 1 \\ x + a^2 y + z = a^2 \\ 2x + 2y + (3 - a)z = b \end{cases}$$
,

calcule os valores de a e b para que ele seja possível e indeterminado.

Resposta: $a \pm 1$ e b=2

- 6) Considere o sistema $\begin{cases} x y = 3 \\ 2x 2y = k \end{cases}$. É falso afirmar que:
- a) Para k = 6, o sistema é possível e indeterminado.
- b) Para $k \neq 6$, o sistema é indeterminado.
- c) Para k = 7, o sistema é impossível.
- d) (6,3) é uma solução para k = 6.

Resposta: b

- 7) Sendo A = $\begin{bmatrix} 3 & 2 \\ 5 & 1 \end{bmatrix}$ e B = $\begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}$, calcule AB e BA, mostrando que AB \neq BA.
- 8) Sendo $A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$, determine uma matriz B, tal que $AB = I_2$.

Resposa:
$$\begin{bmatrix} 1/2 & -1/6 \\ 0 & 1/3 \end{bmatrix}$$

9) Resolva a equação: $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 3 & 2 \end{bmatrix} \cdot X = \begin{bmatrix} 3 \\ 8 \\ 11 \end{bmatrix}$

Resposta: (3, 2, 1)

- 10) Descreva todas as possíveis matrizes 2x2 que estão na forma escada reduzida por linhas.
- 11) Encontre o valor de A, sendo $A^{-1} = \begin{bmatrix} 2 & -1 \\ 3 & 5 \end{bmatrix}$.

Resposta:
$$\begin{bmatrix} 5/13 & 1/13 \\ -3/13 & 2/13 \end{bmatrix}$$

12) Determine as matrizes A, X e B, de modo que os sistemas possam ser expressos pela equação matricial AX = B:

a)
$$\begin{cases} 2x_1 - 3x_2 + 5x_3 = 7 \\ 9x_1 - x_2 + x_3 = -1 \\ x_1 + 5x_2 + 4x_3 = 0 \end{cases}$$

b)
$$\begin{cases} 4x_1 & -3x_3 + x_4 = 1 \\ 5x_1 + x_2 & -8x_4 = 3 \\ 2x_1 - 5x_2 + 9x_3 - x_4 = 0 \\ 3x_2 - x_3 + 7x_4 = 2 \end{cases}$$

13) Resolva os sistemas lineares a seguir representados por suas matrizes aumentadas:

a)
$$\begin{bmatrix} 1 & -3 & 4 & 7 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 0 & 8 & -5 & 6 \\ 0 & 1 & 4 & -9 & 3 \\ 0 & 0 & 1 & 1 & 2 \end{bmatrix}$$

c)
$$\begin{bmatrix} 1 & 7 & -2 & 0 & -8 & | & -3 \\ 0 & 0 & 1 & 1 & 6 & | & 5 \\ 0 & 0 & 0 & 1 & 3 & | & 9 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 1 & -3 & 7 & | & 1 \\ 0 & 1 & 4 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

d)
$$\begin{bmatrix} 1 & -3 & 7 & 1 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Respostas: a) (-37, -8, 5); b) $(-10 + 13\alpha, 13\alpha - 5, 2 - \alpha, \alpha)$;

c)
$$(-7\alpha + 2\beta - 11, \alpha, -3\beta - 4, -3\beta + 9, \beta)$$

14) Resolva utilizando a forma escada reduzida por linhas (método Gauss-Jordan):

a)
$$\begin{cases} x + y = 10 \\ y + z = 12 \\ z + w = 14 \end{cases}$$
 b)
$$\begin{cases} a + b - c = 2 \\ 2a + 3b - 5c = 10 \end{cases}$$
 c)
$$\begin{cases} 2x + 3y + 4z = 9 \\ 3x + 4y + 5z = 12 \end{cases}$$
 d)
$$\begin{cases} u + v + w + t = 13 \\ -2u - 2v + 4w + 4t = 15 \\ -u - v + 5w + 5t = 28 \end{cases}$$

Respostas: b)
$$(-4-2\alpha, 6+3\alpha, \alpha)$$
; c) $(0, 3, 0)$; d) $(\frac{37}{6}-\alpha, \alpha, \frac{41}{6}-\beta, \beta)$

15) Resolva utilizando a matriz inversa ou a regra de Cramer:

a)
$$\begin{cases} x + 2y - z = 2 \\ 2x - y + 3z = 9 \\ 3x + 3y - 2z = 3 \end{cases}$$
 b)
$$\begin{cases} x + y - 10 = 0 \\ x - z - 5 = 0 \\ y - z - 3 = 0 \end{cases}$$
 c)
$$\begin{cases} 2a - b + c = 3 \\ a - b + 2c = 3 \\ a + b + c = 6 \end{cases}$$

b)
$$\begin{cases} x + y - 10 = 0 \\ x - z - 5 = 0 \\ y - z - 3 = 0 \end{cases}$$

c)
$$\begin{cases} 2a - b + c = 3 \\ a - b + 2c = 3 \\ a + b + c = 6 \end{cases}$$

Respostas: a) (1, 2, 3); b) $(6, 4, 1; c)(\frac{9}{5}, \frac{12}{5}, \frac{9}{5})$

Disciplina on-line

16) Um modelo macroeconômico simples consiste em três equações:

Equação de consumo: $C = \alpha_0 + \alpha_1 Y + \alpha_2 T$

Equação de investimento: $I = \beta_0 + \beta_1 Y + \beta_2 K$

Identidade da renda: Y = C + I + G

Nelas, C é o consumo: Y, a renda; T, os impostos; I, o investimento; K, o estoque de capital; e G, os gastos do governo. Esse modelo poderia ser escrito em forma matricial como:

$$\begin{bmatrix} 1 & 0 & -\alpha_1 \\ 0 & 1 & -\beta_1 \\ -1 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} C \\ I \\ Y \end{bmatrix} = \begin{bmatrix} \alpha_0 + \alpha_2 T \\ \beta_0 + \beta_2 K \\ G \end{bmatrix}$$

Uma condição necessária para que esse modelo possua uma solução única é que a matriz A:

- a) Seja simétrica.
- b) Seja diagonal.
- c) Seja não invertível.
- d) Seja idempotente $(A^2 = A)$.
- e) Tenha determinante diferente de zero.