EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

02208579

PUBLICATION DATE

20-08-90

APPLICATION DATE

07-02-89

APPLICATION NUMBER

01029261

APPLICANT: JEOL LTD;

INVENTOR: YAMAZAKI TOSHIO:

INT.CL.

G01R 33/28 G01N 24/12

TITLE

METHOD FOR ANALYZING PROTEIN STRUCTURE

ABSTRACT:

PURPOSE: To make it possible to analyze the structure of protein having the large molecular weight accurately by performing three-dimensional NMR measurement of ¹⁵N-¹ different nuclides for specimen to be checked incorporating

the protein labeled as ²H and ¹⁵N.

CONSTITUTION: Three-dimensional NMR of ¹⁵N-¹ is performed for a specimen to be checked incorporating protein labeled as ²H and ¹⁵N. At first HMQC- COSY is performed. With respect to separated peak, amino-acid spin based identification is performed. Then, NOESY-HMQC is performed. The linking data of the neighboring amino acid are obtained based on the obtained spectrum. The linking data of the amino acid in NMR obtained in both measurements are compared with the arrangement of the amino acid of a known primary structure, and attribution is determined. In this way, the structure can be accu rately analyzed even for the protein specimen having the large molecular weight.

COPYRIGHT: (C)1990, JPO& Japio

⑲ 日本国特許庁(JP)

⑩特許出願公開

◎ 公開特許公報(A) 平2-208579

5 Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成2年(1990)8月20日

G 01 R 33/28 G 01 N 24/12

7621-2G G 7621-2G 01 N 24/02 24/12 U

審査請求 未請求 請求項の数 1 (全5頁)

②発明の名称 蛋白質の構造解析方法

②特 願 平1-29261

20出 願 平1(1989)2月7日

⑩発 明 者 中 村 春 木

大阪府吹田市古江台 6 - 2 - 3 株式会社蛋白工学研究所

内

⑩発明者 永山 国 昭 ⑫発明者 山崎 俊夫 東京都昭島市武蔵野3丁目1番2号 日本電子株式会社内東京都昭島市武蔵野3丁目1番2号 日本電子株式会社内

本電子株式会社 東京都昭島市武蔵野3丁目1番2号

⑪出 顋 人 日本電子株式会社

明細

1. 発明の名称

蛋白質の構造解析方法

- 2. 特許請求の範囲
- (1) ²日ラベル及び¹⁵Nラベルされた蛋白質を含む被検試料について¹⁵N- ¹日異核種3次元NMR測定を行い、得られたデータに基づいて構造解析を行うことを特徴とする蛋白質の構造解析方法。
- 3. 発明の詳細な説明

[産業上の利用分野]

本発明は、核磁気共鳴 (NMR) スペクトルに 基づいて蛋白質の構造解析を行う際に用いられる 構造解析方法に関するものである。

[従来技術]

NMRを利用した蛋白質の構造解析方法が、スイスのWithrich等により開発されている。この方法は、COSYタイプ及びNOEタイプの2次元NMRを使用すると共に、蛋白質の化学構造の特殊性を考慮し、3つのステップからなる一般的か

つ体系的な構造解析方法である。

例えば、第2図(a)に示すような 'H-NM Rスペクトルが、同図(b)に示すような蛋白質について得られたとする。このスペクトル中の各ピークが具体的に第2図(b)のペプチドのどの水素核に由来しているのかを確定するのが帰属問題である。

2次元NMRを利用した上記従来法では、それ を次の3つのステップで行う。

- (1) COSY2次元NMRスペクトルもしくは その類似スペクトルで各アミノ酸に属するスピン 系を同定する。その際、第3図のような2次元パ ターンが利用される。
- (2) 隣接するアミノ酸のつながりの情報を得る ために、NOESY2次元NMRスペクトルを測 定する。その際、第4図に示すアミド水索(NH) の隣接基とのNOEが利用される。
- (3) (1), (2) で得たNMR的アミノ酸のつながりの情報を既知の一次構造のアミノ酸配列 (第2図(b)) と比較し帰属を決定する。

[発明が解決しようとする課題]

しかし、水素核(「H)NMRスペクトルを用いたこの方法は、分子量1万以下の蛋白質についてはかなり成功しているが、分子量がそれ以上のものでは、アミド水素(NH)の「H-NMRスペクトルにおける化学シフトの重なりのため、例え2次元NMR上でパターンとして分離できても帰属に曖昧さが残ってしまう。

例として、分子量6000のBPTI (bovine pagerealle tripsia inhibitor) と分子量11700のチオレドキシン(E. Coll TRX) について、アミド水素のピークの重なりのヒストグラムを第5図に示した。図から分るように、BPTIではよく分離したアミド水素(縮退度1)が最も多く、縮退度3,4は急速になくなっている。

一方、チオレドキシンは、分子量に比例したピークの広がり O. O 2 ppm をとった場合、縮退度 2 が最も多く、しかも、縮退度 6 に及ぶ激しいピークの重なりを持つ。

このように、従来法では、蛋白質の分子量が大

きくなると、スペクトル中のピークの重なりが激 しくなって構造解析が事実上不可能になってしま っ

本発明は、上述した点に鑑みてなされたもので あり、大きな分子量の蛋白質であっても解析が可 能な構造解析方法を提供することを目的としてい ス

[課題を解決するための手段]

この目的を達成するため、本発明の構造解析方法は、 ²Hラベル及び¹⁵Nラベルされた蛋白質を含む被検試料について¹⁵N - ¹H 異核種 3 次元 N M R 測定を行い、得られたデータに基づいて構造解析を行うことを特徴としている。

[作用]

以下、本発明を詳説する。

上述のような激しいピークの重なりを減らすには、①ピークを狭小化し、本来の分離を向上させるとともに、②「H-NMRに新しい次元即ち」5N-NMRを導入し、両者の2次元相関スペクトルを測定し、その新次元軸上で水素核のピークを

分離すれば良い。

上記①のピークの狭小化は、重水素核(2H)の一様部分ラベル法で解決できることがLeMaster等により示された(Biochemistry 24、7263(1888)。その原理は重水素核の導入により、スピン系をAX化し、ピークの微細構造を簡単化することにある。第6図にその例を示す。 2HラベルしていないもののスペクトルAに比べ、 2HラベルしたもののスペクトルBは、各ピークが狭小化されると共に、微細構造が簡易化されていることが分かる。尚、この場合、試料中の水素核を75%の割合で重水素に置換している。

上記②の新次元の導入によるピークの分離は、
「N- 1HCOSY2次元NMR(「NHMQC)により可能となる。そのスペクトルの例を第7図に示した。この図は、横軸が「H-NMR、縦軸が」「N-NMRで、分子量1600の蛋白質ペプチドアミドNHの2次元相関スペクトルである。この図から、もし、「N核による縦方向の分離を行わなければ、±0.02ppmの広がりでは~1

○個、±0.01ppm を取っても~5個の化学シフトの重なりがあることが理解される。

従って、「H-NMRにおけるピークの分離を 基礎とした従来の帰属方法は、この蛋白質分子に は適用不可能ということになる。

以上の考察から、本発明者は、①と②の方法を 取り入れた3次元NMRにより分子量が大きくて も帰属を決定できることを見出した。

[実施例]

第1図は、本発明の一例を示す流れ図である。 第1図に示すように、本発明の構造解析方法においては、

(0) 先ず、 ²Hラベル及び¹⁵Nラベルされた蛋白質を含む被検試料が用意される。

(1) 次に、15N-1H3次元NMR例えばHMQC-COSYが実施され、分離されたピークに対しアミノ酸スピン系の同定が行われる。第8図に示すような2次元NMRを用いた従来法では近なり合って分離が困難なピークも、第8図(b)に示すような3次元NMRを用いた本発明では、

特開平2-208579(3)

新たに導入された¹⁵Nの軸方向に水素核のピーク が分離されているため、曖昧さのない同定が可能 である。

(2) 次に、15N-1H3次元NMR例えばNO ESY-HMQCが実施され、得られたスペクトルに基づいて隣接するアミノ酸のつながりの情報 を得る。

(3) (1), (2)で得たNMR的アミノ酸の つながりの情報を既知の一次構造のアミノ酸配列 と比較し、帰属を決定する。

尚、 2 H の ラベル 化 率 L H (%) は、 0 < L H \leq 100 で、 ランダムな部分又は全ラベル、 15 N の ラベル 化 率 L N (%) は、 8 O \leq L N \leq 100 で、 ランダムな部分又は全ラベルが 好ましい。

また、上記(1), (2)の測定は、試料を軽水と混合して実施される。特に、100% ²Hラベルした場合、そのままでは¹⁵N ー ¹H3次元NMRの「Hの信号が出てこないが、軽水と混合すると、¹⁵Nと結合している ²Hだけが「Hに置換されるため、アミド水素のピークだけが出現し、

図、第4図はアミド水素(NH)の隣接基とのNOEを説明する図、第5図はアミド水素のピークの重なりのヒストグラムを示す図、第6図は 3Hラベルの有無によるスペクトルの違いを示す図、第7図は15Nー 1HCOSY2次元NMR(15NHMQC)スペクトルの例を示す図、第8図は2次元NMRと3次元NMRと比較した図である。

× .

ピークが一層簡単化され、帰属の決定が容易にな る。

前記(1)における¹⁵N-「H3次元NMR別 定は、HMQC-COSYに限らず、これと同等 の情報が得られれば、例えばCOSY-HMQC, HMQC-RELAY, RELAY-HMQC, HMQC-HOHAHA, HOHAHA-HMQ C等の各種測定法が使用できる。

また、上記(2)における¹⁵Nー¹H3次元N MR制定は、NOESY-HMQCに限らず、これと同等の情報が得られれば、例えばHMQC-NOESY等の測定法も使用できる。

[効果]

以上詳述した如く、本発明によれば、分子量の 大きな蛋白質試料であっても、正確に構造解析を 行うことの出来る方法が実現される。

4. 図面の簡単な説明

第1図は本発明の一実施例を示す流れ図、第2 図は蛋白質の一次構造及びその「H-NMRスペクトルを示す図、第3図は2次元パクーンを示す

> (1) 2Hラベル及び「Nラベルンチャー 競検試料を準備
>
> 「N-H 3次元NMR(例は「HMQC-COST)
> 測定を行い、分離とれたピークに対したり酸スピン系の同定を行う
> 「N-1H 3次元NMR(例は「NOEST-HMQC)
> 関連を行い、 隣接するアミノ酸つつながりの情報を得る
>
> (1)、(2)で得た情報を既知の一次
> 構造のアミノ西を配列とに繋い、
> り中属を決定する

才1図

特許出願人 日本電子株式会社

特開平2-208579 (4)

Val の COSY(O) と RELAY(+) のパターン 才3 図

