REDITOS/ (acin of elections

decreose in oxidation number

Strangest OX I DISING AGENTS " oxidents

in elections.s

Half-reaction

electrochanical cally

Standard Reduction Potentials at 25°C

F2(g) + 2 e . 2 F (aq) + 2.87 H₂O₂(aq) + 2 H⁺(aq) + 2 e⁻ 2 H₂O(ℓ) lead aci) battery + 1.78 PbO₂(s) + SO₄² (aq) + 4 H⁺(aq) + 2 e⁻ $PbSO_4(s) + 2 H_2O(\ell)$ discharge + 1.69 2 HClO(aq) + 2 H*(aq) + 2 e- $C\ell_2(g) + 2 H_2O(\ell)$ + 1.61 recharge (purple) MnO, (aq) + 8 H+(aq) + 5 e~ Mn2+(aq) + 4 H2O(e) (coloners+)1.51 Au³⁺(aq) + 3 e⁻ Au(s) + 1.50 HCℓO(aq) + H*(aq) + 2 e** $C\ell^-(aq) + H_2O(\ell)$ Very common + 1.48 PbO₂(s) + 4 H⁺(aq) + 2 e⁻ Pb2+(aq) + 2 H2O(£) in reduc + 1.46 Cl₂(g) + 2 e 2 C(~(ao) tetrations + 1.36 Orange) Cr2O72- (aq) + 14 H+(aq) + 6 e-2 Cr3*(aq) + 7 H2O(l) (3 rec)+ 1.23 O₂(g) + 4 H⁺(aq) + 4 e⁻ 2 H₂O(ℓ) +1.23 $Br_2(\ell) + 2 e^-$ 2 Br (aq) +1.07NO₃ (aq) + 4 H (aq) + 3 e $NO(g) + 2 H_2O(\ell)$ +0.96collade reaction. → Ag⁺(aq) + e⁻ + 0.80 in silver plating. Fe³+(aq) + e⁻ Fe2+(aq) + 0.77 O2(g) + 2 H+(aq) + 2 e-H₂O₂(aq) + 0.68 12(s) + 2 e 2 (*(ag) Oz as on dout + 0.54 O₂(g) + 2 H₂O(l) + 4 e⁻ 4 OH*(aq) M COMOS ON +0.40Cu2+(aq) + 2 e-Cu(s) + 0.34 S(s) + 2 H⁺(aq) + 2 e⁻ H₂S(aq) + 0.14 STAINDARD HYDROUGH REFERENCE 2 H⁺(aq) + 2 e⁻ $H_2(g)$ 0 exactiv Pb2+(aq) + 2 e-Pb(s) -0.13Sn2+(aq) + 2 e~ Sn(s) -0.14Ni2+(aq) + 2 e-Ni(s) AN OXIDISING AGENT - 0.26 Co2+(aq) + 2 e-Co(s) -0.28IS ABLE TO OXIDISE PbSO₄(s) + 2 e⁻ Pb(s) + SO₄2-(aq) ~ 0.36 Z Cd2+(aq) + 2 e-ANY REDUCING AGONT Cd(s) -0.402 CO₂(g) + 2 H⁺(aq) + 2 e⁻ HOOCCOOH(aq) BELDW IT ON THE - 0.43. Fe²⁺(aq) + 2 e⁻ Fe(s) -0.44RIGHT HAND SI DE Cr3+(aq) + 3 e-Cr(s) - 0.73

Zn²+(aq) + 2 e~

2 H₂O(ℓ) + 2 e⁻

Mn2+(aq) + 2 e-

 $A\ell^{3+}(aq) + 3e^{-}$

Mg2+(aq) + 2 e-

Ca²⁺(aq) + 2 e⁻

Sr²⁺(aq) + 2 e⁻

Ba2+(aq) + 2 e7

K*(aq) + e^

Na*(aq) + e-

WEAKEST oxidants"

reduction

Didant

ممزعزندك

DXIDATIGIN (1095 of elections)

Zn(s)

Mn(s)

 $A\ell(s)$

Mg(s)

Na(s)

Ca(s)

Sr(s)

Ba(s)

K(s)

H₂(g) + 2 OH⁻(aq)

increase in oxidation number

in electrolysis AT in electrochemical cells andde

WEAKEST REDUCING agent reductants

E°(voits)

- 0.76

- 0.83

- 1,18

- 1.66

- 2.37

- 2.71

- 2.76

- 2.89

-2.91

- 2.93

A REDUCING AGOUT IS ABLE TO REDUCE ANY OXIDISING AGENT ABOVE IT ON THE LEST HAND SIDE reduce) oxidant reduction Oxi Jisc)

Fe 24 - JE 3 a COMMY oxidation in redot titrations

tead and bottern recharge discharge

oxalic acid, a common "standard" in relix tituetus oxidation of FC IM COMOSIUM

STRONGES