

Iris Flower Classification – Pro Version

Project Report

1. Introduction

The Iris dataset is one of the most famous datasets in machine learning. It contains 150 samples of iris flowers, each with four features: sepal length, sepal width, petal length, and petal width.

The goal is to classify flowers into three species: **Setosa**, **Versicolor**, **and Virginica**.

This project demonstrates a **complete ML workflow** including data exploration, visualization, preprocessing, model training, cross-validation, hyperparameter tuning, and evaluation.

2. Project Workflow

Pipeline:

Dataset \rightarrow Exploration \rightarrow Visualization \rightarrow Preprocessing \rightarrow Model Training \rightarrow Cross-Validation \rightarrow Hyperparameter Tuning \rightarrow Evaluation \rightarrow Results

Steps:

- **Dataset:** Iris dataset (150 samples, 3 classes, 4 features)
- Exploration & Visualization: Pairplots, distribution plots
- **Preprocessing:** Feature scaling (important for LR, KNN, SVM)
- Model Training & Evaluation:
 - o Logistic Regression
 - K-Nearest Neighbors (KNN, tuned with GridSearchCV)
 - Decision Tree (tuned with GridSearchCV)

- o Support Vector Machine (SVM, best model)
- Validation: 5-fold cross-validation, confusion matrix, decision boundary plots

🤖 3. Models Used

Model	Description
Logistic Regression	Linear model, interpretable
KNN	Instance-based, requires scaling
Decision Tree	Rule-based, interpretable, tuned depth
SVM	High-performance, robust to non-linear data

4. Results

Cross-Validation Accuracy

Model	5-Fold CV Accuracy
Logistic Regression	0.9600
KNN	0.9600 (best k=5)
Decision Tree	0.9533 (best max_depth=4)
SVM	0.9667 (Best Model)

- Logistic Regression and KNN performed similarly well (~96%).

Key Insights

- SVM was the best performing model.
- Scaling was essential for Logistic Regression, KNN, and SVM.
- Confusion matrix confirmed balanced classification across all species.
- Visualization of decision boundaries provided clear model interpretability.

5. Figures Generated

- Pairplot of Iris features figures/pairplot.png
- Feature distributions figures/feature_distributions.png
- Confusion Matrix (SVM) figures/confusion_matrix.png
- Decision Boundary (SVM, first 2 features) figures/decision_boundary.png

6. Conclusion

The Iris Flower Classification – Pro Version showcases a professional end-to-end ML workflow:

- Data exploration & visualization
- Preprocessing (scaling)

- Multiple models compared
- Cross-validation & hyperparameter tuning
- Evaluation with confusion matrix & decision boundaries