EECS 445

Introduction to Machine Learning

Honglak Lee - Fall 2015

Contributors: Max Smith

Latest revision: June 27, 2015

Contents

1	Rea	dings	1
	1.1	Probability Distributions	1
		The Beta Distribution	1
	1.2	Linear Models for Regression	2
		Maximum likelihood and least squares	3
		Sequential Learning	3

Abstract

Theory and implementation of state-of-the-art machine learning algorithms for large-scale real-world applications. Topics include supervised learning (regression, classification, kernel methods, neural networks, and regularization) and unsupervised learning (clustering, density estimation, and dimensionality reduction).

1 Readings

1.1 Probability Distributions

Definition 1.1 (Binary Variable). Single variable that can take on either 1, or 0; $x \in \{0,1\}$. We denote μ $(0 \le \mu \le 1)$ to be the probability that the random binary variable x = 1

$$p(x=1|\mu) = \mu$$

$$p(x=0|\mu) = 1 - \mu$$

Definition 1.2 (Bernoulli Distribution). Probability distribution of the binary variable x, where μ is the probability x = 1.

Bern
$$(x|\mu) = \mu^x (1-\mu)^{1-x}$$

The distribution has the following properties:

- $E(x) = \mu$
- $Var(x) = \mu(1 \mu)$
- $\mathcal{D} = \{x_1, \dots, x_N\} \to p(\mathcal{D}|\mu) = \prod_{n=1}^N p(x_n|\mu)$
- Maximum likelihood estimator: $\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{numOfOnes}{sampleSize}$ (aka. sample mean)

Definition 1.3 (Binomial Distribution). Distribution of m observations of x = 1, given a sample size of N.

Bin
$$(m|N, \mu = {}_{m}^{N}\mu^{m}(1-\mu)^{N-m}$$

- $E(m) = N\mu$
- $Var(m) = N\mu(1-\mu)$

The Beta Distribution

In order to develop a Bayesian treatment for fitting data sets, we will introduce a prior distribution $p(\mu)$.

- Conjugacy: when the prior and posterior distributions belong to the same family.

Definition 1.4 (Beta Distribution).

$$Beta(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}$$

Where $\Gamma(x)$ is the gamma function. The distribution has the following properties:

- $E(\mu) = \frac{a}{a+b}$
- $\operatorname{Var}(\mu) = \frac{ab}{(a+b)^2(a+b+1)}$

- conjugacy
- $a \to \infty || b \to \infty \to \text{variance}$ to0

Conjugacy can be shown by the distribution by the likelihood function (binomial):

$$p(\mu|m, l, a, b) \propto \mu^{m+a-1} (1-\mu)^{l+b-1}$$

Normalized to:

$$p(\mu|m, l, a, b) = \frac{\Gamma(m+a+l+b)}{\Gamma(m+a)\Gamma(l+b)} \mu^{m+a-1} (1-\mu)^{l+b-1}$$

- **Hyperparameters:** parameters that control the distribution of the regular parameters.
- **Sequential Approach:** method of learning where you make use of an observation one at a time, or in small batches, and then discard them before the next observation are used. (Can be shown with a Beta, where observing $x = 1 \rightarrow a + +, x = 0 \rightarrow b + +$, then normalizing)
- For a finite data set, the posterior mean for μ always lies between the prior mean and the maximum likelihood estimate.
- A general property of Bayesian learning is when we observe more and more data the uncertainty of the posterior distribution will steadily decrease.
- More information and examples of probability distributions can be found in Appendix B of Bishop's 'Pattern Recognition and Machine Learning.'

1.2 Linear Models for Regression

- Linear Regression: $y(\mathbf{x}, \mathbf{w}) = w_0 l a + w_1 x_1 + \ldots + w_D x_D$
- Limited on linear function of input variables x_i
- Extend the model with nonlinear functions, where $\phi_i(x)$ are known as basis functions:

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(x)$$

- $-w_0$ allows for any fixed offset in data, and is known as the **bias parameter**.
- Given a dummy variable $\phi_0(x) = 1$, our model becomes:

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(x) = \mathbf{w}^{\mathbf{T}} \phi(x)$$

- Functions of this form are called **linear models** because the function is linear in weight.

Maximum likelihood and least squares

- Via proof on p. 141-2, the maximum likelihood of the weight matrix is:

$$\mathbf{w_{ML}} = (\phi^{\mathbf{T}}\phi)^{-1}\phi^{\mathbf{T}}\mathbf{t}$$

where: $\phi_{nj} = \phi_j(x_n)$, called the **design matrix**

- This is known as the **normal equations** for the least squares problem.

Theorem 1.1 (Moore-Penrose Pseudo-Inverse). of the matrix ϕ is the quantity:

$$\phi^{\dagger} = (\phi^{\mathbf{T}}\phi)^{-1}\phi^{\mathbf{T}}$$

It is regarded as the generalization of the matrix inverse of nonsquare matrix, because in the case that that the matrix is square we see: $\phi^{\dagger} = \mathbf{phi}^{-1}$

- The bias w_0 compensates for the difference between the averages of the target values and the weighted sum of the average of the basis function values.
- The Geometric interpretation of the least squares solution is an N-dimensional projection onto an M-dimensional subspace.
- Thus in practice direct solutions can lead to numerical issues when $\phi^T \phi$ is close to singular, because it results in large parameters. **Singular value decomposition** is a solution to this as it regularizes the terms.

Sequential Learning

- **Sequential Learning**: data points are considered one at a time, and the model parameters are updated after each such presentation.
 - This is useful for real-time applications, where data continues to arrive

Definition 1.5 (Stochastic Gradient Descent). Application of sequential learning where the model parameters are updated at each additional data point using:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

Here τ is the iteration number, η is the learning rate, and E_n represents an objective function we want to minimize (in this case the sum of errors).

TODO: Pseudocode

Definition 1.6 (Least-Means-Squares (LMS) Algorithm). Stochastic gradient descent where the objective function is the sum-of-squares error function resulting:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)\mathbf{T}}\phi_n)\phi_n$$

- We introduce a regularization term to control over and under fitting.

$$E = E_D(\mathbf{w}) + \lambda E_W \mathbf{w})$$

- A simple example of regularization is given by the sum-of-squares of the weight vector elements:

$$E_W(\mathbf{w}) = 1/2\mathbf{w}^T\mathbf{w}$$

- This regularizer is known as **weight decay** because it encourages weight values to decay towards zero unless supported by the data (stats term: **parameter shrinkage**)

3