Ejercicios EYP1113L Control 2

Segunda parte

14-06-2024

Introducción

Este documento contiene ejercicios para probar algunas características del cálculo numérico en R. En particular se encuentran diferentes pruebas de hipótesis.

ENS.xlsx

La base de datos consiste en un extracto de la Encuesta Nacional de la Salud (ENS) tomada el 2009. Consiste en encuestar y medir ciertos indicadores corporales de cada persona, junto con su región de origen, edad, y otros factores. Datos se encuentra en hoja "ENS2009", y descripción de las variables se encuentra en la segunda hoja "Variables".

Para todas las pruebas de hipótesis entregue el valor del estadístico asociado, valor-p y responder SI o NO a la pregunta entregada.

- 1. ¿Se puede afirmar a partir de la muestra que el nivel medio de colesterol (COLES) supera los 195 mg/hL? Asuma que el nivel de colesterol tiene distribución aproximadamente normal. Utilizar $\alpha = 5\%$.
- 2. ¿Existe evidencia estadística para mostrar que las personas de esta población tienen un nivel medio de presión arterial diastólica (PAD) distinto de 75 mg/hL? Asuma que la variable señalada tiene distribución aproximadamente normal. Utilizar $\alpha = 5\%$.
- 3. ¿Se puede afirmar a partir de la muestra que la mayoría de la población no fuma? (variable FUMADOR) Utilizar $\alpha = 5\%$.
- 4. Se afirma que más de un 10% de la población tiene diabetes. ¿Puede respladar esta hipótesis con los datos? Utilizar $\alpha = 5\%$ y variable DIABETES.
- 5. Realizar un test de bondad de ajuste Log-Normal al nivel de colesterol (COLES). ¿Se puede asumir una distribución Log-Normal? Utilizar significancia de 5%. Ayuda: estimar parámetros por máxima verosimilitud, luego realizar test Kolmogorov-Smirnov (K-S)
- 6. Realizar un test de bondad de ajuste Gamma al nivel de colesterol de baja densidad (LDL). ¿Se puede asumir una distribución Gamma? Utilizar significancia de 5%. Ayuda: estimar parámetros por máxima verosimilitud, luego realizar test Kolmogorov-Smirnov (K-S)

Respuestas:

(1) $T_0 = -0.324908$, valor-p = 0.6273611, NO, (2) $T_0 = 6.0762293$, valor-p = 1.4173656 × 10⁻⁹, SI, (3) $Z_0^2 = 307.2131213$ (6 $Z_0 = 17.5274961$), valor-p = 4.4188187 × 10⁻⁶⁹, SI, (4) $Z_0^2 = 0.3191959$ (6 $Z_0 = 0.5649743$), valor-p = 0.2860456, NO, (5) D = 0.0250814, valor-p = 0.0844846, SI, (6) D = 0.0179884, valor-p = 0.3898188, SI

(Nota: Cualquier test que entregue valor-p "< 2.2e-16", puede colocarse dicho valor, un cero o bien usar \$p.value al comando para dar con el valor exacto)

Abalon.xlsx

Base de datos consiste en 400 locos (Abalón Rojo) observados en 4 centros de estudio de Chile. Se registran varias características físicas

- largo: El largo del loco (en cm)
- diametro: El diámetro del loco (en cm)
- alto: El alto del loco (en cm)
- pesot: Peso total, cuerpo más concha (en g)
- pesocu: Peso cuerpo (en g)
- pesoco: Peso concha (en g)
- anillos: Número de anillos en la concha
- centro: Nombre del centro de estudio

Para todas las pruebas de hipótesis entregue el valor del estadístico asociado, valor-p y responder SI o NO a la pregunta entregada.

- 1. ¿Es posible afirmar que el largo promedio de locos en la costa es menor a 14 cm? Utilizar $\alpha = 5\%$, y asumir que la variable señalada tiene distribución aproximadamente normal.
- 2. Realizar un test de bondad de ajuste Normal al peso total de locos (pesot). ¿Se puede asumir una distribución Normal para el peso total? Utilizar significancia de 5%. Ayuda: estimar parámetros por máxima verosimilitud, luego realizar test Kolmogorov-Smirnov (K-S)
- 3. Realizar un test de bondad de ajuste Weibull al largo de los locos (largo). ¿Se puede asumir una distribución Weibull? Utilizar significancia de 5%. Ayuda: estimar parámetros por máxima verosimilitud, luego realizar test Kolmogorov-Smirnov (K-S)

Respuestas:

(1) $T_0 = -5.2277431$, valor-p = 1.3869266×10^{-7} , SI, (2) D = 0.0562576, valor-p = 0.1589303, SI, (3) D = 0.0774973, valor-p = 0.0163829, NO.