ВикипедиЯ

Секвенциальная логика

Материал из Википедии — свободной энциклопедии

Секвенциальная логика — это логика памяти цифровых устройств. Название «секвенциальная» восходит к англ. sequential. Соответствующая логика может именоваться также как последовательностная, хотя последний термин по преимуществу употребляется в связи с логическими автоматами.

Секвенциальная логика отличается от комбинационной логики тем, что моделирует цифровые устройства с учётом предыстории их функционирования (то есть предполагается наличие памяти, которая в комбинационной логике не предусмотрена).

Содержание

Характеристика

Синхронная секвенциальная логика

Асинхронная секвенциальная логика

Секвенция

Венъюнкция

Реализация

См. также

Примечания

Литература

Ссылки

Характеристика

Секвенциальная логика является разделом дискретной математики. Она развивается в рамках теории цифровых схем в тесной связи с комбинационной логикой, булевой алгеброй и конечными автоматами. В зависимости от регламента функционирования цифровые устройства подразделяются на синхронные и асинхронные. Соответственно их поведение подчиняется либо синхронной, либо асинхронной логике.

Синхронная секвенциальная логика

При логическом моделировании устройств с памятью особая роль отводится фактору времени, который в синхронных схемах естественным образом учитывается тактами конечного автомата. Такты определяют моменты смены состояний автомата, то есть, синхронизируют соответствующую функцию.

1 of 3 27.02.2020, 22:24

Математический аппарат синхронной логики задают автоматные модели Мили и Мура.[1]

Асинхронная секвенциальная логика

Асинхронная секвенциальная логика для выражения эффекта запоминания использует моменты смены состояний, которые задаются не в явном виде, а исходя из сопоставления логических величин по принципу «раньше-позже». Для асинхронной логики достаточно установить очерёдность смены состояний безотносительно каких-либо привязок к реальному или виртуальному времени. Теоретический аппарат секвенциальной логики составляют математические инструменты секвенции и веньюнкции, а также логико-алгебраические уравнения на их основе.

Секвенция

Секвенция (лат. sequentia — последовательность) — это последовательность пропозициональных элементов, представляемая упорядоченным множеством, например, $\langle x \rangle = \langle x_1 \ x_2 \ \dots \ x_n \rangle$, где $x_i \in \{0,1\}$.

Посредством секвенции реализуется двоичная функция $z=\varphi\left(\langle x \rangle\right)$, такая, что z=1 имеет место только в случае

 $(x_1 \land x_2 \land \dots x_n) = 1$ при условии, что $(x_i = 1) \prec (x_j = 1)$ для всех i < j. (Символ \prec задаёт отношение опережения).

Секвенциальная функция обращается в единицу при единичных значениях аргументов, установка которых осуществляется поочерёдно,

начиная с x_1 и заканчивая x_n . Во всех остальных случаях — z=0.

Венъюнкция

Венъюнкция — это асимметрическая логико-динамическая операция \angle , согласно которой связка $x \angle y$ принимает единичное значение только в случае $x \land y = 1$ при условии, что в момент установления x = 1 равенство y = 1 уже имело место.

Истинность венъюнкции обусловлена переключением $\pmb{x}=\pmb{0}/\pmb{1}$ на фоне $\pmb{y}=\pmb{1}.$

Логическая неопределённость выражается посредством венъюнкции: $1 \angle 1$.

Венъюнкция и минимальная (двухэлементная) секвенция функционально идентичны: $x \angle y = \langle y \, x \rangle$.

Реализация

Венъюнктор является основным операционным элементом памяти секвенциальной логики. Он реализуется на основании равенства

 $x \wedge (ar{x} \lor x \angle y) = x \angle y$, где формула $(ar{x} \lor x \angle y)$ представляет функцию SR-триггера.

Секвентор строится на основе композиции из соединённых определённым образом веньюнкторов. Например, для реализации

секвентора $\langle x\,y\,z\,u\,v \rangle$ пригодны следующие формулы: $v \angle (u \angle (z \angle (y \angle x)))$, $\langle x\,y \rangle \wedge \langle y\,z \rangle \wedge \langle z\,u \rangle \wedge \langle u\,v \rangle$.

См. также

- Логика в информатике
- Асинхронная логика

Примечания

1. Классификация абстрактных автоматов

Литература

- А. Фридман, П. Менон. Теория переключательных схем. М.:Мир, 1978. — 580с.
- Васюкевич В. О. Венъюнкция логико-динамическая операция.
 Определение, реализация, приложения. // Автоматика и вычислительная техника. 1984. № № 6. С. 73-78.
- Васюкевич В. О. Элементы асинхронной логики. Венъюнкция и секвенция. 2009. 123с. URL: http://asynlog.balticom.lv/Content/Files/ru.pdf (недоступная ссылка).

Ссылки

- ASYNCHRONOUS LOGIC and NEW ALGEBRA FOR DIGITAL CIRCUITS (https://w eb.archive.org/web/20120227135150/http://asynlog.balticom.lv/)
- Теория автоматов (http://www.mathnet.ru/php/getFT.phtml?jrnid=intv&pap erid=28&what=fullt&option lang=rus) // mathnet.ru

Источник — https://ru.wikipedia.org/w/index.php?title=Секвенциальная_логика& oldid=105136918

Эта страница в последний раз была отредактирована 14 февраля 2020 в 19:18.

Текст доступен по <u>лицензии Creative Commons Attribution-ShareAlike</u>; в отдельных случаях могут действовать дополнительные условия.

Wikipedia® — зарегистрированный товарный знак некоммерческой организации Wikimedia Foundation, Inc.

3 of 3 27.02.2020, 22:24