## STM32F3 TIMERS



#### Introduction

- Hardware timers are used to:
  - Generate
    - signals of various frequencies
    - Generate pulse-width-modulated (PWM) outputs
    - Accurate time base
  - Trigger events at known frequencies
  - Measure elapsed time between two events
  - Count events





Without accurate timing, digital control engineering is not possible – the control signals (controller action) have to happen at the exact right moment in time, e.g. timing control of an engine, etc.

#### STM32 Timers

- □ The STM32F30x has up to ten timer units
  - Timer 1 and Timer 8 are advanced timers intended for motor control.
  - □ Timers 2-4 and 15-17 are general purpose timer units.
  - Timers 6-7 are basic timers which are used to provide a time base to trigger the digital to analog converters.
- All of the timers have a common architecture; the advanced timer simply has additional hardware features.
- We will look at the basic timer first and then move on to the general-purpose timer.



### Timers and IRQn

| IRQn | Peripheral         |
|------|--------------------|
| 24   | TIM1_BRK_TIM15     |
| 25   | TIM1_UP_TIM16      |
| 26   | TIM1_TRG_COM_TIM17 |
| 27   | TIM1_CC            |
| 28   | TIM2               |
| 29   | TIM3               |
| 30   | TIM4               |
| 43   | TIM8_BRK           |
| 44   | TIM8_UP            |
| 45   | TIM8_TRG_COM       |
| 46   | TIM8_CC            |
| 54   | TIM6_DAC           |
| 55   | TIM7               |

### Timer Feature Comparison

| Timer | 16 Bits | 32 Bits | Up | Down | Up/Down | Auto-Reload | Input Capture | Output Compare | Edge-aligned PWM | Center-aligned PWM | One-pulse mode output | Complementary outputs with programmable dead-time | Synchronization circuit to control the timer with external signals and to interconnect several timers | together | Repetition counter to update the timer registers only after a given number of cycles of the counter | Break inputs to put the timer's output signals in a safe<br>user selectable configuration | Interrupt/DMA generation | Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning purposes | Trigger input for external clock or cycle-by-cycle current management | Synchronization circuit to trigger the DAC |
|-------|---------|---------|----|------|---------|-------------|---------------|----------------|------------------|--------------------|-----------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|
| 1,8   | x       |         | x  | x    | x       | x           | x             | x              | x                | x                  | X                     | x                                                 | x                                                                                                     |          | x                                                                                                   | x                                                                                         | x                        | x                                                                                            | x                                                                     |                                            |
| 2     |         | x       | x  | x    | x       | x           | x             | x              | x                | x                  | x                     |                                                   | х                                                                                                     |          |                                                                                                     |                                                                                           | x                        | X                                                                                            | X                                                                     |                                            |
| 3,4   | Х       |         | X  | X    | X       | X           | X             | X              | X                | X                  | X                     |                                                   | x                                                                                                     |          |                                                                                                     |                                                                                           | X                        | x                                                                                            | X                                                                     |                                            |
| 15    | Х       |         | Х  |      |         | X           | Х             | X              | X                |                    | X                     | X                                                 | Х                                                                                                     |          | X                                                                                                   | Х                                                                                         | Х                        |                                                                                              |                                                                       |                                            |
| 16,17 | X       |         | X  |      |         | X           | X             | X              | Х                |                    | X                     | Х                                                 |                                                                                                       |          | Х                                                                                                   | Х                                                                                         | X                        |                                                                                              |                                                                       |                                            |
| 6, 7  | X       |         | X  |      |         | X           |               |                |                  |                    |                       |                                                   |                                                                                                       |          |                                                                                                     |                                                                                           | X                        |                                                                                              |                                                                       | X                                          |

#### Basic Timer Block Diagram



## Output Compare / Input Capture

- Many timers extend the basic module with the addition of counter channels. The "x" refers to the channel.
- With this modest additional hardware, an output can be generated whenever the count register reaches a specific value or the counter register can be captured when a specific input event occurs (possibly a prescaled input clock).



**Timer Channel** 

## General-purpose timer block diagram



10

TIM2

TIM3/4



## Counting Modes (1/2)

- There are three counter modes:
  - · Up counting mode
  - · Down counting mode
  - · Center-aligned mode





#### Counter Modes



Counter Modes (ARR=3, PSC=1)

## Counting Modes (2/2)

- There is only one counting mode:
  - · Up counting mode



#### Update Event

- The content of the preload register is transferred into the shadow register
  - depends on the Auto-reload Preload feature if enabled or not ARPE
    - If enabled, at each Update Event the transfer occurs
    - · If not enabled, the transfer occurs Immediately
- The Update Event is generated
  - For each counter overflow/underflow
  - Through software, by setting the UG bit (Update Generation)
- The Update Event (UEV) request source can be configured to be
  - Next to counter overflow/underflow event
  - Next to Counter overflow/underflow event plus the following events
    - · Setting the UG bit by software
    - Trigger active edge detection (through the slave mode controller)

#### Counter Clock Selection

- Clock can be selected out of 8 sources.
  - Internal clock TIMxCLK provided by the RCC
  - Internal trigger input 1 to 4:
    - ITR1 / ITR2 / ITR3 / ITR4
    - · Using one timer as prescaler for another timer
  - External Capture Compare pins
    - · Pin 1: TI1FP1 or TI1F ED
    - Pin 2: TI2FP2
  - External pin ETR
    - · Enable/Disable bit
    - · Programable polarity
    - · 4 Bits External Trigger Filter
    - · External Trigger Prescaler:
      - Prescaler off
      - Division by 2
      - Division by 4
      - · Division by 8





#### Capture Compare Array presentation

#### Up to 4 channels

- TIM2/3/4/5/19 have 4 channels
- TIM12/15 have 2 channels
- TIM13/14/16/17 have one channel
- TIM6/7/18 have no channels

#### Programmable bidirectional channels

- Input direction: channel configured in <u>Capture</u> mode
- Output direction: Channel configured in <u>Compare</u> mode

#### Channel's main functional blocks

- Capture/Compare register
- · Input stage for capture
  - 4-bit digital filter
  - · Input Capture Prescaler:
- · Output stage for Compare
  - Output control block

## Input Capture Mode (1/2)

Capture stage architecture





## Input Capture Mode (2/2)

- Flexible mapping of TIx inputs to channels' inputs ICx
  - {TI1->IC1}, {TI1->IC2}, {TI2->IC1} and {TI2->IC2} are possible
- When an active Edge is detected on ICx input, the counter value is latched in the corresponding CCR register.
- When a Capture Event occurs, the corresponding CCXIF flag is set and an interrupt or a DMA request can be sent if they are enabled.
- An over-capture flag for over-capture signaling
  - Takes place when a Capture Event occurs while the CCxIF flag was already high

### **PWM Input Mode**



 The PWM Input functionality enables the measurement of the period and the pulse width of an external waveform.



## Output Compare Mode

- The Output Compare is used to control an output waveform or indicate when a period of time has elapsed.
- When a match is found between the capture/compare register and the counter:
  - The corresponding output pin is assigned to the programmable Mode, it can be:
    - Set
    - Reset
    - Toggle
    - · Remain unchanged
  - · Set a flag in the interrupt status register
  - Generates an interrupt if the corresponding interrupt mask is set
  - Send a DMA request if the corresponding enable bit is set
- The CCRx registers can be programmed with or without preload registers



#### **PWM Mode**

- Available on all channels
- Two PWM mode available
  - PWM mode 1
  - PWM mode 2
  - Each PWM mode behavior (waveform shape) depends on the counting direction



### One Pulse Mode (1/2)

- One Pulse Mode (OPM) is a particular case of Output Compare mode
- It allows the counter to be started in response to a stimulus and to generate a pulse
  - · With a programmable length
  - · After a programmable delay
- There are two One Pulse Mode waveforms selectable by software:
  - Single Pulse
  - Repetitive Pulse



### One Pulse Mode (2/2)

#### Exercise:

How to configure One Pulse Mode to generate a repetitive Pulse in response to a stimulus ?

#### One Pulse Mode configuration steps

- Input Capture Module Configuration:
  - Map TlxFPx on the corresponding Tlx.
  - TIxFPx Polarity configuration.
  - TIxFPx Configuration as trigger input.
  - iv. TIxFPx configuration to start the counter (Trigger mode)

- Output Compare Module Configuration:
  - OCx configuration to generate the corresponding waveform.
  - OCx Polarity configuration.
  - t<sub>Delay</sub> and t<sub>Pulse</sub> definition.
- One Pulse Module Selection: Set or Reset the corresponding bit (OPM) in the Configuration register (CR1).

### Encoder Interface (1/2)

- Encoders are used to measure position and speed of mobile systems (either linear or angular)
- The encoder interface mode acts as an external clock with direction selection
- Encoders and Microcontroller connection example:
  - A can be connected directly to the MCU without external interface logic.
  - The third encoder output which indicates the mechanical zero position, may be connected to an external interrupt and trigger a counter reset.
- Encoder enhancement
  - A copy of the Update Interrupt Flag (UIF) is copied into bit 31 of the counter register
  - Simultaneous read of the Counter value and the UIF flag: Simplify the position determination





#### Encoder Interface (2/2)

#### Exercise:

How to configure the Encoder interface to detect the rotation direction of a motion system?

#### Encoder interface configuration steps:

- Select the active edges: example counting on TI1 and TI2.
- Select the polarity of each input: example TI1 and TI2 polarity not inverted.
- Select the corresponding Encoder Mode.
- Enable the counter.

## Hall sensor Interface (1/2)





### Hall sensor Interface (2/2)

- Hall sensors are used for:
  - Speed detection
  - Position sensor
  - Brushless DC Motor Sensor
- How to configure the TIM to interface with a Hall sensor?
  - Select the hall inputs for TI1: TI1S bit in the CR2 register
  - The slave mode controller is configured in reset mode
  - TI1F\_ED is used as input trigger
- To measure a motor speed:
  - Use the Capture/Compare Channel 1 in Input Capture Mode
  - The Capture Signal is the TRC signal
  - The captured value which correspond to the time elapsed between 2 changes on the inputs, gives an information about the motor speed



### Synchronization Mode Configuration

- The Trigger Output can be controlled on:
  - · Counter reset
  - Counter enable
  - Update event
  - OC1 / OC1Ref / OC2Ref / OC3Ref / OC4Ref signals
- The slave timer can be controlled in two modes:
  - Triggered mode : only the start of the counter is controlled
  - Gated Mode: Both start and stop of the counter are controlled
  - Reset Mode Rising edge of the selected trigger input (TRGI) reinitializes the counter





#### Synchronization: Configuration examples (1/3)

#### Cascade mode:

- TIM3 used as master timer for TIM2.
- TIM2 configured as TIM3 slave, and master for TIM15

#### MASTER



#### Synchronization: Configuration examples (2/3)

 One Master several slaves: TIM2 used as master for TIM3, TIM4 and TIM15



#### Synchronization: Configuration examples (3/3)

- Timers and external trigger synchronization
  - TIM2, TIM3 and TIM4 are slaves for an external signal connected to respective Timers inputs





## Basic timers (TIM6/TIM7)

- The main block of the programmable timer is a 16-bit, up counter with its related auto-reload register. The counter clock can be divided by a prescaler.
- The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running.
- They may be used as generic timers for time-base generation but they are also specifically used to drive the digital-toanalog converter (DAC).
- The timers are completely independent, and do not share any resources.

## TIM6/TIM7 main features

- 16-bit auto-reload upcounter
- 16-bit programmable prescaler used to divide (also "on the fly") the counter clock frequency by any factor between 1 and 65536
- Synchronization circuit to trigger the DAC
- Interrupt/DMA generation on the update event:
   counter overflow

# TIM6/TIM7 registers

| Description                   | Name      | Offset |
|-------------------------------|-----------|--------|
| Control Register 1            | TIMx_CR1  | 0x00   |
| Control Register 2            | TIMx_CR2  | 0x04   |
| DMA/Interrupt Enable Register | TIMx_DIER | 0x0C   |
| Status Register               | TIMx_SR   | 0x10   |
| Event Generation Register     | TIMx_EGR  | 0x14   |
| Counter                       | TIMx_CNT  | 0x24   |
| Prescaler                     | TIMx_PSC  | 0x28   |
| Auto-Reload Register          | TIMx_ARR  | 0x2C   |

# TIM6/TIM7 Registers Relevant Bits

| Reg       | Bits | Name     | Description                | Mask       |
|-----------|------|----------|----------------------------|------------|
| TIMx_CR1  | 11   | UIFREMAP | UIF status bit remapping   | 0x00000800 |
|           | 7    | ARPE     | Auto-reload preload enable | 0x00000080 |
|           | 3    | OPM      | One-pulse mode             | 0x0000008  |
|           | 2    | URS      | Update request source      | 0x0000004  |
|           | 1    | UDIS     | Update disable             | 0x0000002  |
|           | 0    | CEN      | Counter enable             | 0x0000001  |
| TIMx_CR2  | 6:4  | MMS      | Master mode selection      |            |
| TIMx_DIER | 8    | UDE      | Update DMA request enable  | 0x00000100 |
|           | 0    | UIE      | Update interrupt enable    | 0x0000001  |
| TIMx_SR   | 0    | UIF      | Update interrupt flag      | 0x0000001  |
| TIMx_EGR  | 0    | UG       | Update generation          | 0x0000001  |

# TIM6/TIM7 register map

| Offset        | Register      | 31   | 30   | 29   | 28   | 27   | 56   | 25    | 24     | 23   | 22   | 21   | 20        | 19   | 18   | 17      | 16      | 15   | 14   | 13   | 12   | 1        | 10   | 6    | 8    | 7    | 9    | 2    | 4    | 3    | 2    | -    | 0    |
|---------------|---------------|------|------|------|------|------|------|-------|--------|------|------|------|-----------|------|------|---------|---------|------|------|------|------|----------|------|------|------|------|------|------|------|------|------|------|------|
| 0x00          | TIMx_CR1      | Hes. | Hes. | Hes. | Res. | Res. | Res. | Hes.  | Hes.   | Hes. | H66. | Hes. | Hes.      | Hes. | Res. | Res.    | Hes.    | Hes. | Hes. | Hes. | Hes. | UIFREMAP | H68. | Res. | Res. | ARPE | Hes. | Hes. | Hes. | OPM  | URS  | SIGN | CEN  |
|               | Reset value   |      |      |      |      |      |      |       |        |      |      |      |           |      |      |         |         |      |      |      |      | 0        |      |      |      | 0    |      |      |      | 0    | 0    | 0    | 0    |
| 0x04          | TIMx_CR2      | Hes.  | Hes.   | Hes. | Hes. | H98. | Hes.      | H88. | Hes. | Hes.    | Hess.   | Hes. | Hes. | Hes. | Hes. | Hes.     | H88. | Hes. | Hes. | Hes. | м    | MS[2 | 2:0] | Hes. | Hes. | Hes. | Less |
|               | Reset value   |      |      |      |      |      |      |       |        |      |      |      |           |      |      |         |         |      |      |      |      |          |      |      |      |      | 0    | 0    | 0    |      |      |      | コ    |
| 0x08          | 0x08 Reserved |      |      |      |      |      |      |       |        |      |      |      |           |      |      |         |         |      |      |      |      |          |      |      |      |      |      |      |      |      |      |      |      |
| 0x0C          | TIMx_DIER     | Hes. | Hes. | Hes. | Hes: | Hasi | Hes. | Hes.  | Hes.   | Hes  | Hes. | H98. | Hes.      | H88. | Hes. | Hes.    | He si   | Hes. | Hes. | Hes. | Hes. | Hes.     | H88. | Hes: | an   | Hes. | OIE  |
|               | Reset value   |      |      |      |      | F    |      |       |        |      |      |      |           |      |      |         |         |      |      |      |      |          |      |      | 0    |      |      |      |      |      |      |      | 0    |
| 0x10          | TIMx_SR       | Hes. | Hes. | Hes. | Besi | Basi | Hes. | Hes   | Hesi   | Has  | Has. | Hes  | Hes.      | H88. | Hes. | 98<br>B | si<br>P | Hesi | Hesi | Hes. | Hes. | Hes.     | H88  | Besi | Besi | Besi | Hes. | Hes. | Hes  | Has. | Hes. | Hes. | 4    |
|               | Reset value   |      |      |      |      |      |      |       |        |      |      |      |           |      |      |         |         |      |      |      |      |          |      |      |      |      |      |      |      |      |      | П    | 0    |
| 0x14          | TIMx_EGR      | H88. | H68. | H68. | Hes. | Res  | Hes. | H98.  | H 68.  | H68  | H68. | H 68 | H88.      | H88. | Res. | Hes.    | H68.    | H 88 | H.   | H88. | H68. | H88.     | H68. | Hes. | Hes. | Hes. | H 68 | H98. | H88. | H88. | Hes. | E 88 | 50   |
|               | Reset value   |      |      |      |      |      |      |       |        |      |      |      |           |      |      |         |         |      |      |      |      |          |      |      |      |      |      |      |      |      |      |      | 0    |
| 0x18-<br>0x20 |               |      |      |      |      |      |      |       |        |      |      |      |           | Re   | sen  | /ed     |         |      |      |      |      |          |      |      |      |      |      |      |      |      |      |      |      |
| 0x24          | TIMx_CNT      |      |      |      |      |      |      |       |        |      |      |      | CNT[15:0] |      |      |         |         |      |      |      |      |          |      |      |      |      |      |      |      |      |      |      |      |
|               | Reset value   | 0    |      |      |      |      |      |       |        |      |      |      |           |      |      |         |         | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 0x28          | TIMx_PSC      | Hes.  | Hes.   | Hes. | Hes. | H08. | Hes.      | Hes. | Hes. | Hes.    | Hes.    |      |      |      |      |          |      | P    | SC   | [15: | 0]   |      |      |      |      |      |      |
|               | Reset value   |      |      |      |      |      |      |       |        |      |      |      |           |      |      |         |         | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 0x2C          | TIMx_ARR      | H66. | H68. | H68. | Hes. | Hes. | Hes. | H 68. | H 686. | H68. | H68. | H68. | H68.      | H68. | Hes. | Hes.    | Hes.    |      |      |      |      |          |      | А    | RR   | [15: | 0]   |      |      |      |      |      |      |
|               | Reset value   |      |      |      |      |      |      |       |        |      |      |      |           |      |      |         |         | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

#### Code Snippet

```
//Timer7 Prescaler :550; Preload = 65455-1;
// Actual Interrupt Time = 1000 ms
#define UIE 0x00000001 // Update interrupt enable
#define CEN 0x00000001 // Counter enable
#define UIF 0x00000001 // Update interrupt flag
#define RCC APB1ENR TIM7EN 0x00000020
void InitTimer7(void) {
 RCC->APB1ENR |= RCC APB1ENR TIM7EN; // Enable clock for TIM7
  TIM7->CR1 &= ~CEN; // Disable TIM7 interrupt
  TIM7->PSC = 550;
  TIM7->ARR = 65454;
                                                  36,000,000/2^6=550
 NVIC EnableIRQ(TIM7 IRQn);
                                                  36,000,000/550=65454.54545
  TIM7->DIER |= UIE; // Enable TIM7 interrupt
                                                  PRESCALER: 550
  TIM7->CR1 |= CEN; // TIM7 enable
                                                  PRELOAD: 65455
void TIM7 IRQHandler (void) {
  TIM7->SR &= ~UIF; // Clear UIF
 //Enter your code here
```

#### General-purpose timers (TIM2/TIM3/TIM4)

TIM2

**TIM3/4** 

- □ The general-purpose timers consist of a 16-bit or 32-bit autoreload counter driven by a programmable prescaler.
- They may be used for a variety of purposes, including measuring the pulse lengths of input signals (input capture) or generating output waveforms (output compare and PWM).
- Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers.
- The timers are completely independent, and do not share any resources. They can be synchronized together.

- □ 16-bit (TIM3 and TIM4) or 32-bit (TIM2) up, down, up/down auto-reload counter.
- 16-bit programmable prescaler used to divide (also "on the fly") the counter clock frequency by any factor between 1 and 65536.
- Up to 4 independent channels for:
  - Input capture
  - Output compare
  - PWM generation (Edge- and Center-aligned modes)
  - One-pulse mode output
- Synchronization circuit to control the timer with external signals and to interconnect several timers.

- Interrupt/DMA generation on the following events:
  - Update: counter overflow/underflow, counter initialization (by software or internal/external trigger)
  - Trigger event (counter start, stop, initialization or count by internal/external trigger)
  - Input capture
  - Output compare
- Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning purposes
- Trigger input for external clock or cycle-by-cycle current management

### Most Important TIM3 Registers

| 41 |         | Description                     | Name       | TIM2 | TIM3/4 |  |
|----|---------|---------------------------------|------------|------|--------|--|
|    |         | Control Register 1              | TIMx_CR1   |      |        |  |
|    |         | Control Register 2              | TIMx_CR2   |      |        |  |
|    |         | DMA/Interrupt Enable Register   | TIMx_DIER  |      |        |  |
|    |         | Status Register                 | TIMx_SR    |      |        |  |
|    |         | Event Generation Register       | TIMx_EGR   |      |        |  |
|    | ĺ       | Capture/Compare Mode Register 1 | TIMx_CCMR1 |      |        |  |
|    |         | Capture/Compare Mode Register 2 | TIMx_CCMR2 |      |        |  |
|    | į       | Capture/Compare Enable Register | TIMx_CCER  |      |        |  |
|    |         | Counter                         | TIMx_CNT   |      |        |  |
|    |         | Prescaler                       | TIMx_PSC   |      |        |  |
|    |         | Auto-Reload Register            | TIMx_ARR   |      |        |  |
| ПТ | IM2/3/4 | Capture/Compare Register 1      | TIMx_CCR1  |      |        |  |
|    | IM6/7   | Capture/Compare Register 2      | TIMx_CCR2  |      |        |  |
|    |         | Capture/Compare Register 3      | TIMx_CCR3  |      |        |  |
|    |         | Capture/Compare Register 4      | TIMx_CCR4  |      |        |  |

### TIM3 Some Important Bits

| 42 |         | Reg       | Bits | Name     | Description                      | TI |
|----|---------|-----------|------|----------|----------------------------------|----|
|    |         | TIMx_CR1  | 11   | UIFREMAP | UIF status bit remapping         |    |
|    |         |           | 7    | ARPE     | Auto-reload preload enable       |    |
|    |         |           | 3    | OPM      | One-pulse mode                   |    |
|    |         |           | 2    | URS      | Update request source            |    |
|    |         |           | 1    | UDIS     | Update disable                   |    |
|    |         |           | 0    | CEN      | Counter enable                   |    |
|    |         | TIMx_CR2  | 6:4  | MMS      | Master mode selection            |    |
|    |         | TIMx_DIER | 8    | UDE      | Update DMA request enable        |    |
|    |         |           | 4    | CC4IE    | Capture/Compare 4 interrupt enab | le |
|    |         |           | 3    | CC3IE    | Capture/Compare 4 interrupt enab | le |
|    |         |           | 2    | CC2iE    | Capture/Compare 4 interrupt enab | le |
| Т  | IM2/3/4 |           | 1    | CC1IE    | Capture/Compare 4 interrupt enab | le |
|    | IM6/7   |           | 0    | UIE      | Update interrupt enable          |    |
|    | ·       | TIMx_SR   | 0    | UIF      | Update interrupt flag            |    |
|    |         | TIMx_EGR  | 0    | UG       | Update generation                |    |

# capture/compare mode register **z** (TIMx\_CCMR**z**) **z**={1,2}

The channels can be used in input (capture mode) or in output (compare mode).

**TIM3/4** 

TIM2

- The direction of a channel is defined by configuring the corresponding CCyS bits.
- All the other bits of this register have a different function in input and in output mode.

| Offset | Register                             | 31   | 30   | 29   | 28   | 27   | 26   | 25   | 24      | 23   | 22   |      | 20   | 19   | 18   | 17   | 16      | 15    | 14  |             | 12 | 11    | 10              | 6         | 8        | 7     | 9   | 5           | 4 | 3         | 2     | -         | 0 |
|--------|--------------------------------------|------|------|------|------|------|------|------|---------|------|------|------|------|------|------|------|---------|-------|-----|-------------|----|-------|-----------------|-----------|----------|-------|-----|-------------|---|-----------|-------|-----------|---|
|        | TIMx_CCMR2<br>Output Compare<br>mode | Res. | Hes. | Hes. | Res. | Hes. | Res. | Hes. | OC4M[3] | Hes. | Res. | Hes. | Hes. | Res. | Hes. | Res. | OC3M[3] | O24CE |     | OC4<br>[2:0 |    | OC4PE | OC4FE           | CC<br>[1: | 4S<br>0] | OC3CE |     | C3N<br>2:0] | М | OC3PE     | OC3FE | CC<br>[1: |   |
| 0x1C   | Reset value                          |      |      |      |      |      |      |      | 0       |      |      |      |      |      |      |      | 0       | 0     | 0   | 0           | 0  | 0     | 0               | 0         | 0        | 0     | 0   | 0           | 0 | 0         | 0     | 0         | 0 |
|        | TIMx_CCMR2<br>Input Capture<br>mode  | Res. | Hes. | Hes. | Hes. | Hes. | Hes. | Hes. | Res.    | Hes. | Res. | Hes. | Hes. | Hes. | Hes. | Res. | Hes.    | 1     | IC4 | F[3:        | 0] | P     | C4<br>SC<br>:0] | CC<br>[1: | 4S<br>0] | ı     | СЗБ | [3:0        | ] | PS<br>[1: | SC.   | CC<br>[1: |   |
|        | Reset value                          |      |      |      |      |      |      |      |         |      |      |      |      |      |      |      |         | 0     | 0   | 0           | 0  | 0     | 0               | 0         | 0        | 0     | 0   | 0           | 0 | 0         | 0     | 0         | 0 |

#### TIMx\_CCMRz (Output Compare Mode)

| Field     | Description                     | Operation                                                                                                                                                                                                                                           |
|-----------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OCyM[3:0] | Output Compare y Mode           | define the behavior of the output reference signal OCyREF from which OCy and OCyN are derived.                                                                                                                                                      |
| OCyCE     | Output compare y clear enable   |                                                                                                                                                                                                                                                     |
| OCyPE     | Output compare y preload enable |                                                                                                                                                                                                                                                     |
| OCyFE     | Output compare y fast enable    |                                                                                                                                                                                                                                                     |
| CCyS[1:0] | Capture/Compare y selection     | <ul> <li>00: CCy channel is configured as output</li> <li>01: CCy channel is configured as input, ICy is mapped on Tly</li> <li>10: CCy channel is configured as input; if y is odd, ICy is mapped on Tly+1, else ICy is mapped on Tly-1</li> </ul> |

### OCyM[3:0] field of TIMx\_CCMRz

| Value | Action (in Output Compare)                                                                                                                          | TIM3/ |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 0000  | Frozen                                                                                                                                              |       |
| 0001  | OCyREF = 1 when the counter CNT = CCRy                                                                                                              |       |
| 0010  | OCyREF = 0 when the counter CNT = CCRy                                                                                                              |       |
| 0011  | OCyREF toggles when CNT = CCRy                                                                                                                      |       |
| 0100  | OCyREF is forced 0                                                                                                                                  |       |
| 0101  | OCyREF is forced 1                                                                                                                                  |       |
| 0110  | PWM mode 1: When $\uparrow$ if CNT <ccry <math="" else="" ocyref="0." then="" when="">\downarrow if CNT&gt;CCRy then OCyREF= 0 else OCyREF=1</ccry> |       |
| 0111  | PWM mode 2: When ↑ if CNT <ccry cnt="" else="" ocyref="1." then="" when="" ↓="">CRy then OCyREF=1else OCyREF=0.</ccry>                              |       |
| 1000  | Retriggerable OPM mode 1                                                                                                                            |       |
| 1001  | Retriggerable OPM mode 2                                                                                                                            |       |
| 1100  | Combined PWM mode 1                                                                                                                                 |       |
| 1101  | Combined PWM mode 2                                                                                                                                 |       |
| 1110  | Asymmetric PWM mode 1                                                                                                                               |       |
| 1111  | Asymmetric PWM mode 2                                                                                                                               |       |

#### TIMx\_CCMRz (Input Capture Mode)

ICyF Input capture y filter

ICyPSC[1:0] Input capture y prescaler

CCyS[1:0] Capture/Compare y selection

O1: CCy channel is configured as output

O1: CCy channel is configured as input, ICy is mapped on Tly

10: CCy channel is configured as input; if y is odd, ICy is mapped on Tly+1, else ICy is

mapped on Tly-1

**TIM3/4** 

TIM2

46

# Capture/Compare Enable Register (TIMx\_CCER) (CCy channel as output)

| Bits  | Description                             | Operation                                                                                                         |
|-------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| CCyNP | Capture/Compare y output Polarity       | CC1NP must be kept cleared in this case.                                                                          |
| CCyP  | Capture/Compare y output Polarity       | 0: OCy active high 1: OCy active low                                                                              |
| CCyE  | Capture/Compare <b>y</b> output enable. | <ul><li>0: Off - OCy is not active</li><li>1: On - OCy signal is output on the corresponding output pin</li></ul> |

| Offset | Register    | 31   | 30   | 29   | 28   | 27   | 26   | 25   | 24   | 23   | 22   | 21   | 20   | 19   | 18   | 17   | 16  |       | 14   |      | 12   | 11    | 10   | 6 | 8    | 7     | 9    | 2    | 4 | 3     | 2 | 1 | 0    |
|--------|-------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|-------|------|------|------|-------|------|---|------|-------|------|------|---|-------|---|---|------|
| 0x20   | TIMx_CCER   | Res. | Hes. | Hes. | Res. | Hes. | Res. | Hes. | Res. | Hes. | Res. | Hes. | Hes. | Res. | Hes. | Res. | (S) | CC4NP | Hes. | CC4P | CC4E | CC3NP | Res. | 0 | CC3E | CC2NP | Res. | CC2P | 8 | CC1NP | ě | õ | CC1E |
|        | Reset value |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |     | 0     |      | 0    | 0    | 0     |      | 0 | 0    | 0     |      | 0    | 0 | 0     |   | 0 | 0    |

# Capture/Compare Enable Register (TIMx\_CCER) (CCy channel as input)

| Bits         | Description                       | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CCyNP<br>MSB | Capture/Compare y output Polarity | This bit is used in conjunction with CCyP to define TlyFP1 polarity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CCyP<br>LSB  | Capture/Compare y output Polarity | <ul> <li>CCyNP/CCyP bits select TlyFP1 polarity for trigger or capture operations.</li> <li>00: rising edge/noninverted</li> <li>rising edge (capture, trigger in reset, external clock or trigger mode)</li> <li>not inverted (trigger in gated mode, encoder mode)</li> <li>01: falling edge/inverted</li> <li>falling edge (capture, trigger in reset, external clock or trigger mode)</li> <li>inverted (trigger in gated mode, encoder mode)</li> <li>10: reserved, do not use this configuration</li> <li>11: both edges/noninverted</li> <li>edges (capture, trigger in reset, external clock or trigger mode)</li> <li>not inverted (trigger in gated mode).</li> <li>This configuration must not be used for encoder mode.</li> </ul> |
| CCyE         | Capture/Compare y output enable   | This bit determines if a capture of the counter value can actually be done into CCRy or not.  0: Capture disabled 1: Capture enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

### TIM2/3/4 Registers

| Offset | Register                             | 31       | 30       | 29       | 28       | 27       | 26   | 25       | 24       | 23       | 22       | 21   | 20                                                                 | 19   | 18       | 17   | 16       | 15    | 14   | 13          | 12        | 11       | 10              | 6             | 0 1  | ,        | ם כ          | 4        | 3     | 5               | 7         | 0          |
|--------|--------------------------------------|----------|----------|----------|----------|----------|------|----------|----------|----------|----------|------|--------------------------------------------------------------------|------|----------|------|----------|-------|------|-------------|-----------|----------|-----------------|---------------|------|----------|--------------|----------|-------|-----------------|-----------|------------|
| 0x00   | TIMx_CR1                             | Res.     | Hes.     | Hes.     | Res.     | Hes.     | Res. | Hes.     | Res.     | Hes.     | Res.     | Hes. | Hes.                                                               | Res. | Hes.     | Res. | Hes.     | Res.  | Hes. | Res.        | Hes.      | UIFREMAP | Reserved        | CK[<br>[1:0]  | ARPE | : 0      | CMS<br>[1:0] | DIR      | OPM   | URS             | UDIS      | CEN        |
|        | Reset value                          |          | $\top$   | $\vdash$ | $\vdash$ |          |      |          |          |          |          |      |                                                                    |      | $\vdash$ |      |          |       |      |             |           | _        | <b> </b>        | 0 (           | 0    | 0        | 0            | 0        | 0     | 0               | 0         | 0          |
| 0x04   | TIMx_CR2                             | Res.     | Hes.     | Hes.     | Hes.     | Hes.     | Hes. | Hes.     | Res.     | Hes.     | Res.     | Hes. | Hes.                                                               | Hes. | Hes.     | Hes. | Hes.     | Res.  | Hes. | Hes.        | Hes.      | Hes.     | Hes.            | Hes.          | TIIS | <u> </u> | MS           | [2:0]    | SCCDS | Hes.            | Res.      | Hes.       |
|        | Reset value                          |          |          |          |          |          |      |          |          |          |          |      |                                                                    |      |          |      |          |       |      |             |           |          |                 |               | (    | ) (      | 0            | 0        | 0     |                 |           |            |
| 0x08   | TIMx_SMCR                            | Hes.     | Hes.     | Hes.     | Hes.     | Hes      | Hes. | Hes.     | Hes.     | Hes.     | Hes.     | Hes. | ESS<br>ESS<br>ESS<br>ESS<br>ESS<br>ESS<br>ESS<br>ESS<br>ESS<br>ESS | Hes. | Hes.     | Hes. | SMS[3]   | ETP   | ECE  | ET<br>[1    | PS<br>:0] |          | ETF             | [3:0]         | MSM  |          | TS[2         |          | Hes.  | SM              | /IS[2     | ::0]       |
|        | Reset value                          |          |          |          |          |          |      |          |          |          |          |      |                                                                    |      |          |      | 0        | 0     | 0    | 0           | 0         | 0        |                 | 0 (           | ) (  | 0        | 0            | 0        |       | 0               | 0         | 0          |
| 0x0C   | TIMx_DIER                            | Hes.     | Hes.     | Hes.     | Hes.     | Hes.     | Hes. | Hes.     | Hes.     | Hes.     | Hes.     | Hes. | Hes.                                                               | Hes. | Hes.     | Hes. | Hes.     | Hes.  | TDE  | COMDE       | CC4DE     | CC3DE    | CC2DE           | CC1DE         | Hes. | 븯        | Hes.         | CC4IE    | CC3E  | CC2IE           | CC1IE     | NE         |
|        | Reset value                          | $\vdash$ | $\vdash$ | $\vdash$ | $\vdash$ | $\vdash$ |      | $\vdash$ | $\vdash$ | $\vdash$ | $\vdash$ |      |                                                                    |      | $\vdash$ |      | $\vdash$ |       | 0    | 0           | 0         | 0        | 0               |               | )    | (        | )            | 0        | 0     | 0               | 0         | 0          |
| 0x10   | TIMx_SR                              | Res.     | Hes.     | Hes.     | Hes.     | Hes.     | Hes. | Hes.     | Hes.     | Hes.     | Res.     | Hes. | Hes.                                                               | Hes. | Hes.     | Hes. | Hes.     | Res.  | Hes. | Hes.        | CC40F     | CC3OF    | CC2OF           | CC10F<br>Res. | Hes. | 브        | Hes.         | CC4IF    | CC3IF | CC2IF           | CC1F      | UIF        |
|        | Reset value                          |          |          |          |          |          |      |          |          |          |          |      |                                                                    |      |          |      |          |       |      |             | 0         | 0        | 0               | 0             |      | 0        |              | 0        | 0     | 0               | 0         | 0          |
| 0x14   | TIMx_EGR                             | Res.     | Hes.     | Hes.     | Res.     | Hes.     | Res. | Hes.     | Res.     | Hes.     | Res.     | Res. | Hes.                                                               | Res. | Hes.     | Res. | Hes.     | Res.  | Res. | Hes.        | Hes.      | Hes.     | Res.            | Res.          | Hes. | TG       | Hes.         | CC4G     | CC3G  | CC2G            | CC1G      | NG         |
|        | Reset value                          |          |          |          |          |          |      |          |          |          |          |      |                                                                    |      |          |      |          |       |      |             |           |          |                 |               |      | (        | )            | 0        | 0     | 0               | 0         | 0          |
|        | TIMx_CCMR1<br>Output Compare<br>mode | Res.     | Hes.     | Hes.     | Hes.     | Hes.     | Hes. | Hes.     | OC2M[3]  | Hes.     | Hes.     | Hes. | Hes.                                                               | Hes. | Hes.     | Res. | OC1M[3]  | OC2CE |      | )C2<br>[2:0 |           | OC2PE    | OC2FE           | CC2<br>[1:0   |      | 1        | OC1          | IM<br>0] | OC1PE | OC1FE           | CC<br>[1: |            |
| 0x18   | Reset value                          |          |          |          |          |          |      |          | 0        |          |          |      |                                                                    |      |          |      | 0        | 0     | 0    | 0           | 0         | _        | 0               | 0 (           | ) (  | 0        | 0            | 0        | 0     | 0               | 0         | 0          |
|        | TIMx_CCMR1<br>Input Capture<br>mode  | Res.     | Hes.     | Hes.     | Hes.     | Hes.     | Hes. | Hes.     | Res.     | Hes.     | Res.     | Hes. | Hes.                                                               | Hes. | Hes.     | Res. | Hes.     | ı     | C2F  | [3:0        | 0]        | P        | 32<br>SC<br>:0] | CC2<br>[1:0   |      | IC       | 1F[3:        | :0]      |       | 31<br>SC<br>:0] | CC<br>[1: | :1S<br>:0] |
|        | Reset value                          |          |          |          |          |          |      |          |          |          |          |      |                                                                    |      |          |      |          | 0     | 0    | 0           | 0         | 0        | 0               | 0 (           | ) (  | ) (      | 0            | 0        | 0     | 0               | 0         | 0          |

|      |                                      |                   |      |      |      |      |        |       |            |      |      |         |         |         |      |      |         |       |      |             |        |           |           |           |            |       |      | 1           | ΓΙΛ  | ۱2        |       | 1        | ГΙМ        | 3/4 |
|------|--------------------------------------|-------------------|------|------|------|------|--------|-------|------------|------|------|---------|---------|---------|------|------|---------|-------|------|-------------|--------|-----------|-----------|-----------|------------|-------|------|-------------|------|-----------|-------|----------|------------|-----|
|      | TIMx_CCMR2<br>Output Compare<br>mode | Res.              | Hes. | Hes. | Res. | Hes. | Res.   | Hes.  | OC4M[3]    | Hes. | Res. | Hes.    | Hes.    | Res.    | Hes. | Res. | OC3M[3] | O24CE | (    | DC4<br>[2:0 | M<br>] | OC4PE     | OC4FE     | CC<br>[1: | :4S<br>:0] | OC3CE |      | C3l<br>2:0] | M    | OC3PE     | OC3FE | CC<br>[1 | 3S<br>:0]  |     |
| 0x1C | Reset value                          |                   |      |      |      |      |        |       | 0          |      |      |         |         |         |      |      | 0       | 0     | 0    | 0           | 0      | 0         |           | 0         | 0          | 0     | 0    | 0           | 0    | 0         | 0     | 0        | 0          |     |
|      | TIMx_CCMR2<br>Input Capture<br>mode  | Hes.              | Hes. | Hes. | Hes. | Hes. | Hes.   | Hes.  | Res.       | Hes. | Res. | Hes.    | Hes.    | Hes.    | Hes. | Res. | Hes.    |       | IC4I | F[3:0       |        | PS<br>[1: | 6C<br>[0] | [1:       | 4S<br>:0]  | I     | СЗБ  | [3:0        | ]    | P8<br>[1: | -     | [1       | :3S<br>:0] |     |
|      | Reset value                          |                   |      |      |      |      |        |       |            |      |      | $\perp$ | $\perp$ | $\perp$ |      |      |         | 0     | 0    | 0           |        | 0         | 0         | 0         | 0          | 0     | 0    | 0           | 0    | 0         | 0     | 0        | 0          |     |
| 0x20 | TIMx_CCER                            | Hes.              | Hes. | Hes  | Res  | Hes  | Res    | Hes.  | Res.       | Hes. | Res. | Hes.    | Hes.    | Hes.    | Hes  | Res. | Hes.    | CC4NP | Hes. | CC4P        | CC4E   | CC3NP     | Res.      | 200       | CC3E       | CC2NP | Hes. | CC2P        | CC2E | CC1NP     | Hes   | CC1P     | CC1E       |     |
|      | Reset value                          |                   |      |      |      |      |        |       |            |      |      |         |         |         |      |      |         | 0     |      | 0           | 0      | 0         |           | 0         | 0          | 0     |      | 0           | 0    | 0         |       | 0        | 0          |     |
| 0x24 | TIMx_CNT                             | CNT[31] or UIFCPY |      |      | IT)  | M2   | only   | , re: |            | T[30 |      |         | the     | r tim   | ers) | )    |         |       |      |             |        |           |           | С         | :NT[:      | 15:0  | 0]   |             |      |           |       |          |            |     |
|      | Reset value                          | 0                 | 0    | 0    | 0    | 0    | 0      | 0     | 0          | 0    | 0    | 0       | 0       | 0       | 0    | 0    | 0       | 0     | 0    | 0           | 0      | 0         | 0         | 0         | 0          | 0     | 0    | 0           | 0    | 0         | 0     | 0        | 0          |     |
| 0x28 | TIMx_PSC                             | Hes.              | Hes. | Hes. | Hes. | Hes. | Hes.   | Hes.  | Hes.       | Hes. | Hes. | Hes.    | Hes.    | Hes.    | Hes. | Hes. | Hes.    |       |      |             |        |           |           | Р         | SC[        | 15:0  | 0]   |             |      |           |       |          |            |     |
|      | Reset value                          |                   |      |      |      |      |        |       |            |      |      |         |         |         |      |      |         | 0     | 0    | 0           | 0      | 0         | 0         | 0         | 0          | 0     | 0    | 0           | 0    | 0         | 0     | 0        | 0          |     |
| 0x2C | TIMx_ARR                             |                   |      | (    | ТІМ  | 2 or | nly, r |       | RR[<br>rve |      |      | oth     | er t    | imer    | rs)  |      |         |       |      |             |        |           |           | Α         | RR[        | 15:0  | 0]   |             |      |           |       |          |            |     |
|      | Reset value                          | 0                 | 0    | 0    | 0    | 0    | 0      | 0     | 0          | 0    | 0    | 0       | 0       | 0       | 0    | 0    | 0       | 0     | 0    | 0           | 0      | 0         | 0         | 0         | 0          | 0     | 0    | 0           | 0    | 0         | 0     | 0        | 0          |     |
| 0x30 |                                      |                   |      |      |      |      |        |       |            |      |      |         |         | Re      | ser  | ved  |         |       |      |             |        |           |           |           | •          |       |      |             |      |           |       |          |            |     |

### TIM2/3/4 Registers

|        |             |      |      |      |      |      |        |      |             |      |      |      |       |      |      |      |      |      |      |      |    |    |      |     |     |      |      |      | TI۸ | ۱2 |     |      | T۱۸ | ۸3/ | 4 |
|--------|-------------|------|------|------|------|------|--------|------|-------------|------|------|------|-------|------|------|------|------|------|------|------|----|----|------|-----|-----|------|------|------|-----|----|-----|------|-----|-----|---|
| Offset | Register    | 31   | 30   | 59   | 28   | 27   | 26     | 25   | 24          | 23   | 22   | 21   | 20    | 19   | 18   | 17   | 16   | 15   | 14   | 13   | 12 | 7  | 10   | 6   | 8   | 7    | 9    | 2    | 4   | 3  | 0   | ı -  | - 0 | •   |   |
| 0x34   | TIMx_CCR1   |      |      | (    | TIM  | 2 or | nly, r |      | CR1<br>rved |      |      | oth  | er ti | mer  | s)   |      |      |      |      |      |    |    |      | С   | CR  | 1[15 | :0]  |      |     |    |     |      |     |     |   |
|        | Reset value | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0           | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0   | 0   | 0    | 0    | 0    | 0   | 0  | 0   | 0    | 0   |     |   |
| 0x38   | TIMx_CCR2   |      | •    | (    | TIM  | 2 or | nly, r |      | CR2         | -    | _    | oth  | er ti | mer  | s)   | •    | _    |      |      |      | •  |    |      | С   | CR2 | 2[15 | :0]  |      |     |    | •   |      |     |     |   |
|        | Reset value | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0           | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0   | 0   | 0    | 0    | 0    | 0   | 0  | 10  | 0    | 0   |     |   |
| 0x3C   | TIMx_CCR3   |      |      | (    | TIM  | 2 or | ıly, r |      | CR3<br>rved |      |      |      | er ti | mer  | s)   | •    |      |      |      |      |    |    |      | С   | CR  | 3[15 | :0]  |      |     |    |     | •    |     |     |   |
|        | Reset value | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0           | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0   | 0   | 0    | 0    | 0    | 0   | 0  | 0   | 0    | 0   |     |   |
| 0x40   | TIMx_CCR4   |      |      | (    | TIM: | 2 or | nly, r |      | CR4         |      |      | oth  | er ti | mer  | s)   |      |      |      |      |      |    |    |      | С   | CR  | 4[15 | :0]  |      |     |    |     |      |     |     |   |
|        | Reset value | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0           | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0   | 0   | 0    | 0    | 0    | 0   | 0  | 0   | 0    | 0   |     |   |
| 0x44   |             |      |      |      |      |      |        |      |             |      |      |      |       | Re   | ser  | ved  |      |      |      |      |    |    |      |     |     |      |      |      |     |    |     |      |     |     |   |
| 0x48   | TIMx_DCR    | Res. | Hes. | Hes  | Hes. | Hes  | Hes    | Hes. | Res.        | Hes. | Res. | Hes. | Hes   | Hes. | Hes  | Res. | Hes. | Res. | Hes. | Res. |    | DE | 3L[4 | :0] |     | Hes. | Res. | Hes. |     | D  | BA[ | 4:0] | ]   |     |   |
|        | Reset value |      |      |      |      |      |        |      |             |      |      |      |       |      |      |      |      |      |      |      | 0  | 0  | 0    | 0   | 0   |      |      |      | 0   | 0  | 0   | 0    | 0   |     |   |
| 0x4C   | TIMx_DMAR   | Res. | Hes. | Hes. | Hes. | Hes. | Hes.   | Hes. | Hes.        | Hes. | Hes. | Hes. | Hes.  | Hes. | Hes. | Hes. | Hes. |      | _    |      | _  |    | _    | D   | MAE | 3[15 | :0]  | _    | _   | _  |     |      |     |     |   |
|        | Reset value |      |      |      |      |      |        |      |             |      |      |      |       |      |      |      |      | 0    | 0    | 0    | 0  | 0  | 0    | 0   | 0   | 0    | 0    | 0    | 0   | 0  | 0   | 0    | 0   |     |   |

```
#include "stm32f30x.h"
int main(void) {
 // At this stage the microcontroller clock setting is already configured
 // GPIOE clock enable
 RCC->AHBENR |= RCC AHBENR GPIOEEN;
 // Configure PE15 in output push-pull mode
 GPIOE->MODER |= 1UL << 15*2; // Output
 GPIOE->OTYPER |= 0L << 15; // Push-pull
 GPIOE->OSPEEDR \mid= 3UL << 15*2; // 50 MHz
 GPIOE->PUPDR |= 0L << 15*2; // No pull-up resistance
 // TIM3 clock enable
 RCC->APB1ENR |= RCC APB1ENR TIM3EN;
 // delay = 0.5 = (PSC+1)*ARR/FAPB1 = 60000*600/72000000
 TIM3->PSC = 599; // Set pre-scaler to 600 (PSC + 1)
 TIM3->ARR = 60000; // Auto reload value 600000
 TIM3->CR1 = TIM CR1 CEN; // Enable timer
 while (1) {
   if(TIM3->SR & TIM SR UIF) { // if UIF flag is set
     TIM3->SR &= ~TIM SR UIF; // clear UIF flag
     GPIOE->ODR ^= 1L << 15; // toggle LED state
```

GP Timer: Code Example

#include "stm32f30x.h"

### GP Timer: Code Example (using ISR) (1)

TIM2

TIM3/4

```
int main(void)
 // At this stage the microcontroller clock setting is already configured
 // GPIOE clock enable
 RCC->AHBENR |= RCC AHBENR GPIOEEN;
 // Configure PE15 in output push-pull mode
 GPIOE->MODER
              |= 1 <<(15*2); // Output
 GPIOE->OTYPER |= 0 << 15; // Push-pull
 GPIOE->OSPEEDR \mid= 3UL <<(15*2); // 50 MHz
 GPIOE->PUPDR |= 0 << (15*2); // No pull-up resistance
 // TIM3 clock enable
 RCC->APB1ENR |= RCC APB1ENR TIM3EN;
 // delay = 0.5 = (PSC+1)*ARR/FAPB1 = 60,000*600/72,000,000
 TIM3->PSC = 599; // Set pre-scaler to 600 (PSC + 1)
 TIM3->ARR = 60000; // Auto reload value 600000
 TIM3->CR1 = TIM CR1 CEN; // Enable timer
 TIM3->DIER |= 1 << 0; // enable interrupt
 NVIC->ISER[0] |= 1 << 29; // enable TIM3 interrupt in NVIC
 while (1);
```

#### GP Timer: Code Example (using ISR) (2)

Each of the timers 2 to 4 has four output channels. For example, the output channels for timer 3 are mapped as follows:

| TIM3_CH1  | TIM3_CH2  | TIM3_CH3  | TIM3_CH4   |
|-----------|-----------|-----------|------------|
| PA6 (AF2) | PA4 (AF2) | PBO (AF2) | PB1 (AF2)  |
| PB4 (AF2) | PA7 (AF2) | PC8 (AF2) | PB7 (AF10) |
| PC6 (AF2) | PB5 (AF2) | PE4 (AF2) | PC9 (AF2)  |
| PE2 (AF2) | PC7 (AF2) |           | PE5 (AF2)  |
|           | PE3 (AF2) |           |            |

#### Timer Configuration for PWM

TIM2

TIM3/4

- Pulse width modulation mode allows you to generate a signal with a period determined by the value of the ARR register and a duty cycle determined by the value of the CCRy register.
- The PWM mode can be selected independently on each channel (one PWM per OCy output) by writing 110 (PWM mode 1) or 111 (PWM mode 2) in CCMRz.OCyM bits.

#### PWM mode (cont)

- TIM2
- TIM3/4
- OCy polarity is software programmable using the CCER.CCyP bit.
  - It can be programmed as active high or active low.
- OCy output is enabled by the CCER.CCyE bit.
- □ In PWM mode (1 or 2), CNT and CCRy are always compared to determine whether CCRy  $\leq$  CNT or CNT  $\leq$  CCRy (depending on the direction of the counter).
- The timer is able to generate PWM in edge-aligned mode or center-aligned mode depending on the CR1.CMS bits.

#### PWM Code Example

```
#include "stm32f30x.h"
int main(void)
  RCC->AHBENR |= RCC AHBENR GPIOCEN; // Enable GPIOC clock
  RCC->APB1ENR |= RCC APB1ENR TIM3EN; // Enable Timer 3 clock
  // PC8 configuration
 GPIOC->MODER |= 2 << (8*2); // Alternate function mode GPIOC->OTYPER |= 0 << 8; // Output push-pull (reset state) GPIOC->OSPEEDR |= 0 << (8*2); // 2 MHz High speed
  GPIOC->AFR[1] = 2 << ((8-8)*4); // Select AF2 for PC8: TIM3 CH3
  // Period = 600 \times 6000 / 72000000 = 50 ms, Duty = 25 ms
  TIM3->PSC = 5999; // Set prescaler to 6000 (PSC + 1)
  TIM3->ARR = 600; // Auto reload value 600
  TIM3->CCR3 = 600/5; // Start PWM duty for channel 3
  TIM3->CCMR2 |= TIM CCMR2 OC3M 2 | TIM CCMR2 OC3M 1; // PWM mode 1 on channel 3
  TIM3->CCER |= TIM CCER CC3E; // Enable compare on channel 3
  TIM3->CR1 |= TIM CR1 CEN; // Enable timer
 while (1) {}
```

#### Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx\_CCRy) are used to latch the value of the counter after a transition detected by the corresponding ICy signal.

**TIM3/4** 

TIM2

- When a capture occurs, the corresponding CCyIF flag (TIMx\_SR register) is set and an interrupt or a DMA request can be sent if they are enabled.
- If a capture occurs while the CCyIF flag was already high,
   then the over-capture flag CCyOF (TIMx\_SR register) is set.
- CCyIF can be cleared by software by writing it to 0 or by reading the captured data stored in the TIMx\_CCRy register. CCyOF is cleared when you write it to 0.

#### Input Capture Procedure (1)

Example: capturing the counter value in TIMx\_CCR1 when TI1 input rises.

**TIM3/4** 

TIM2

- Select the active input: TIMx\_CCR1 must be linked to the TI1 input, so write the CC1S bits to 01 in the TIMx\_CCMR1 register.
  - As soon as CC1S becomes different from 00, the channel is configured in input and the TIMx\_CCR1 register becomes read-only.
- Select the edge of the active transition on the TI1 channel by writing the CC1P and CC1NP and CC1NP bits to 000 in the TIMx\_CCER register (rising edge in this case).

### Input Capture Procedure (2)

- Program the input prescaler.
  - In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to 00 in the TIMx\_CCMR1 register).
- Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx\_CCER register.
- If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx\_DIER register, and/or the DMA request by setting the CC1DE bit in the TIMx\_DIER register.

### Input Capture Procedure (3)

TIM2 TIM3/4

#### When an input capture occurs:

- □ The TIMx\_CCR1 register gets the value of the counter on the active transition.
- CC1 IF flag is set (interrupt flag).
  - CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared.
- An interrupt is generated depending on the CC1IE bit.
- A DMA request is generated depending on the CC1 DE bit.

This function is used to control an output waveform or indicating when a period of time has elapsed.

Output compare mode

- When a match is found between the capture/compare register and the counter, the output compare function:
  - Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCyM bits in the TIMx\_CCMRz register) and the output polarity (CCyP bit in the TIMx\_CCER register).
  - □ The output pin can keep its level (OCyM=000), be set (OCyM=001), be cleared (OCyM=010) or can toggle (OCyM=011) on match.
  - Sets a flag in the interrupt status register (CCyIF bit in the TIMx\_SR register).
  - Generates an interrupt if the corresponding interrupt mask is set (CCyIE bit in the TIMx\_DIER register).

#### Output compare mode (2)

TIM2 TIM3/4

In output compare mode, the update event UEV has no effect on OCyREF and OCy output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One-pulse mode).

#### Output Compare: Procedure

1. Select the counter clock (internal, external, prescaler).

TIM2

TIM3/4

- Write the desired data in the TIMx\_ARR and TIMx\_CCRy registers.
- 3. Set the CCyIE and/or CCyDE bits if an interrupt and/or a DMA request is to be generated.
- Select the output mode. For example, you must write OCyM=011, OCyPE=0, CCyP=0 and CCyE=1 to toggle OCy output pin when CNT matches CCRy, OCy is enabled and active high.
- 5. Enable the counter by setting the CEN bit in the TIMx\_CR1 register.

**TIM3/4** 

□ In output mode (CCyS bits = 00 in the TIMx\_CCMRz register), each output compare signal (OCyREF and then OCy) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter.

Forced output mode (1)

- □ To force an output compare signal (OCyREF/OCy) to its active level, you just need to write 101 in the OCyM bits in the corresponding TIMx\_CCMRz register. Thus OCyREF is forced high (OCxREF is always active high) and OCy get opposite value to CCyP polarity bit.
  - e.g.: CCyP=0 (OCy active high) => OCy is forced to high level.

#### Forced output mode (2)

- OCyREF signal can be forced low by writing the
   OCyM bits to 100 in the TIMx\_CCMRz register.
- Anyway, the comparison between the TIMx\_CCRy shadow register and the counter is still performed and allows the flag to be set. Interrupt and DMA requests can be sent accordingly.

#### Pins connected to TIM2

| TIM2_CH1_ETR | TIM2_CH2  | TIM2_CH3   | TIM2_CH4    |
|--------------|-----------|------------|-------------|
| PAO (AF1)    | PA1 (AF1) | PA2 (AF1)  | PA3 (AF1)   |
| PA5 (AF1)    | PB3 (AF1) | PA9 (AF10) | PA10 (AF10) |
| PA15 (AF1)   | PD4 (AF2) | PB10 (AF1) | PB11 (AF1)  |
| PD3 (AF2)    |           | PD7 (AF2)  | PD6 (AF2)   |

## SMS[3:0] Field of TIMx Slave Mode Control Register (TIMx\_SMCR)

#### **SMS:** Slave mode selection

| Bits | Mode                          | Description                                                                                                                                                                                     |
|------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0000 | Slave mode disabled           | if $CEN = '1$ then the prescaler is clocked directly by the internal clock. Counter counts up/down on TI2FP2 edge depending on TI1FP1 level.                                                    |
| 0001 | Encoder mode 1                | Counter counts up/down on TI2FP2 edge depending on TI1FP1 level.                                                                                                                                |
| 0010 | Encoder mode 2                | Counter counts up/down on TI1FP1 edge depending on TI2FP2 level.                                                                                                                                |
| 0011 | Encoder mode 3                | Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input.                                                                                               |
| 0100 | Reset Mode                    | ORising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers.                                                                           |
| 0101 | Gated Mode                    | The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are controlled. |
| 0110 | Trigger Mode                  | The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled.                                                                     |
| 0111 | External Clock Mode 1         | Rising edges of the selected trigger (TRGI) clock the counter.                                                                                                                                  |
| 1000 | Combined reset + trigger mode | Rising edge of the selected trigger input (TRGI) reinitializes the counter, generates an update of the registers and starts the counter.                                                        |

## TS[1:0] Field of TIMx Slave Mode Control Register (TIMx\_SMCR)

- □ **TS:** Trigger selection
- This bit-field selects the trigger input to be used to synchronize the counter.

| Bits | Identification                      |
|------|-------------------------------------|
| 000  | Internal Trigger 0 (ITRO); reserved |
| 001  | Internal Trigger 1 (ITR1)           |
| 010  | Internal Trigger 2 (ITR2)           |
| 011  | Internal Trigger 3 (ITR3); reserved |
| 100  | TI1 Edge Detector (TI1F_ED)         |
| 101  | Filtered Timer Input 1 (TI1FP1)     |
| 110  | Filtered Timer Input 2 (TI2FP2)     |
| 111  | (ETRF) External Trigger input       |

- It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay.
- Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. You select One-pulse mode by setting the OPM bit in the TIMx\_CR1 register. This makes the counter stop automatically at the next update event UEV.
- A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be:
  - $\square$  CNT<CCRy  $\leq$  ARR (in particular, 0<CCRy),



- For example you may want to generate a positive pulse on OC1 with a length of t<sub>PULSE</sub> and after a delay of t<sub>DELAY</sub> as soon as a positive edge is detected on the TI2 input pin.
- Let's use TI2FP2 as trigger 1:
  - Map TI2FP2 on TI2 by writing IC2S=01 in the TIMx\_CCMR1 register.
  - TI2FP2 must detect a rising edge, write CC2P=0 and CC2NP=0 in the TIMx\_CCER register.
  - □ Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=110 in the TIMx\_SMCR register.
  - □ TI2FP2 is used to start the counter by writing SMS to '110 in the TIMx\_SMCR register (trigger mode).

- The OPM waveform is defined by writing the compare registers (taking into account the clock frequency and the counter prescaler).
  - The t<sub>DELAY</sub> is defined by the value written in the TIMx\_CCR1 register.
  - □ The t<sub>PULSE</sub> is defined by the difference between the auto-reload value and the compare value (TIMx\_ARR TIMx\_CCR1).
  - Let's say you want to build a waveform with a transition from 0 to 1 when a compare match occurs and a transition from 1 to 0 when the counter reaches the auto-reload value.
    - To do this you enable PWM mode 2 by writing OC1M=111 in the TIMx\_CCMR1 register. You can optionally enable the preload registers by writing OC1PE=1 in the TIMx\_CCMR1 register and ARPE in the TIMx\_CR1 register. In this case you have to write the compare value in the TIMx\_CCR1 register, the auto-reload value in the TIMx\_ARR register, generate an update by setting the UG bit and wait for external trigger event on TI2. CC1P is written to '0 in this example.

- In our example, the DIR and CMS bits in the TIMx\_CR1 register should be low.
- □ You only want 1 pulse (Single mode), so you write 1 in the OPM bit in the TIMx\_CR1 register to stop the counter at the next update event (when the counter rolls over from the auto-reload value back to 0). When OPM bit in the TIMx\_CR1 register is set to 0, the Repetitive Mode is selected.