ByM for Mixtures

Stefan Franssen — Oxford — stefan.franssen@stats.ox.ac.uk Joint work with Jeanne Nguyen and Aad van der Vaart

BvM for semiparametric mixtures

Dirichlet process mixtures

Mixture distributions are densities of the form

$$p_{\theta,F} = \int p_{\theta}(x|z) \, \mathrm{d} F(z) \tag{1}$$

where $p_{\theta}(x|z)$ is a given kernel, which has two parameters: θ, z . z can be seen as a marginal variable that we marginalize over given some distribution F. We will endow F with a Dirichlet process prior and θ with a parameter prior.

Bernstein-von Mises

Theorem 1. If $\Pi_n(\theta \in \Theta_n, F \in \mathcal{F}_n | X_1, \dots, X_n) \to 1$, in P_0^n -probability, and (2)-(3) hold, then

$$\sqrt{n}(\theta - \hat{\theta}_n)|X^{(n)} \rightsquigarrow N(0, \tilde{I}_0^{-1}).$$

The likelihood condition

For given $(\theta, F) \in \Theta \times \mathcal{F}$, assume that there exists a map $t \mapsto F_t(\theta, F)$ from a given neighbourhood of $0 \in \mathbb{R}^d$ to \mathcal{F} such that, for given measurable subsets $\Theta_n \subset \Theta$ and $\mathcal{F}_n \subset \mathcal{F}$,

$$\ell_n \left(\theta + \frac{t}{\sqrt{n}}, F_{t/\sqrt{n}}(\theta, F) \right) - \ell_n(\theta, F)$$

$$= t^T \mathbb{G}_n \tilde{\ell}_0 - t^T \left(\tilde{I}_0 + R_{n,1}(\theta, F) \right) \sqrt{n} (\theta - \theta_0)$$

$$- \frac{1}{2} t^T \tilde{I}_0 t + R_{n,2}(\theta, F),$$

for a matrix-valued process $R_{n,1}$ and and scalar process $R_{n,2}$ such that

$$\sup_{\theta \in \Theta_n, F \in \mathcal{F}_n} \left\| R_{n,1}(\theta, F) \right\| + \left| R_{n,2}(\theta, F) \right| \xrightarrow{P_0^n} 0. \tag{2}$$

The change of measure condition

$$\frac{\int_{\Theta_n \times \mathcal{F}_n} e^{\ell_n \left(\theta - t/\sqrt{n}, F_{-t/\sqrt{n}}(\theta, F)\right)} d\Pi(\theta, F)}{\int_{\Theta_n \times \mathcal{F}_n} e^{\ell_n (\theta, F)} d\Pi(\theta, F)} \xrightarrow{P_0^n} 1. \tag{3}$$

Consistency by compactness

Lemma 2. Assume the assumptions as in [1] and suppose that (θ_0, F_0) belongs to the Kullback-Leibler support of Π . Then the posterior distribution is consistent at (θ_0, F_0) .

Consistency by Glivenko-Centelli class

Lemma 3. Suppose that $\{\log(p_{\theta,F})\}$ is Glivenko-Cantelli, (θ_0, F_0) is identifiable and that (θ_0, F_0) belongs to the Kullback-Leibler support of Π . Then the posterior distribution is consistent at (θ_0, F_0) .

Verifying the conditions for the Bernstein-von Mises

Broadly speaking, we can verify Condition (2) by using entropy conditions and Condition (3) by showing that the posterior for (θ, F) contracts at a rate faster than $n^{-1/4}$.

An example: Frailty models

We will now sketch how to verify the rates for frailty models. In a frailty model, the kernel is given by

$$p_{\theta_0}(x, y|z) = z^2 \theta_0 e^{-z(x+\theta y)}.$$

Restricting to compacts

Lemma 4. Let F_0 be a probability distribution on $[0, \infty]$ such that there exists a $\gamma > 0$ such that $\int z^{\gamma} + z^{-\gamma} dF_0(z) < \infty$. Then for every $0 < \epsilon < \frac{1}{4}$ there exists $\underline{m}_{\epsilon}, \overline{m}_{\epsilon}$ and a probability distribution F^* supported on $[\underline{m}_{\epsilon}, \overline{m}_{\epsilon}]$ such that

$$||p_{\theta_0,F_0} - p_{\theta_0,F^*}||_1 < 4\epsilon.$$

Finite approximation

Lemma 5. Let F be a finite measure on [m, M] with $0 < m < M < \infty$. For every $0 < \epsilon < \frac{1}{2}$ there exists a discrete measure F_{ϵ} with $|F| = |F_{\epsilon}|$, with fewer than $c \log(\frac{M}{m}) \log(\frac{1}{\epsilon})$ support points, for some universal constant C > 0, such that

$$||p_{\theta,F} - p_{\theta,F_0}|| < |F|\epsilon.$$

Moreover, in every interval $I_i = [e^i m, e^{i+1} m]$ there are atoms unless $F(I_i) = 0$.

Bounding for general approximations

Lemma 6. Let $(0, \infty) = \bigcup_{j=0}^{\infty} A_j$ be a partition and $F_N = \sum_{j=1}^{N} w_j \delta_{z_j}$ a probability measure with $Z_j \in A_j$ for $j = 1, \ldots, N$. Then

$$||p_{\theta_0,F} - p_{\theta_0,F_N}||_1 \le 4 \max_{1 \le j \le N} \frac{diam A_j}{\min(a: a \in A_j)} + \sum_{j=1}^N |F(A_j) - w_j| + F(A_0).$$

Defining $\Theta_{\epsilon} \times \mathcal{F}_{\epsilon}$

Define

$$\Theta_{\epsilon} \times \mathcal{F}_{\epsilon} := \{\theta, F : \|\theta - \theta_0\| < \epsilon \theta_0, \sum_{i=1}^{N_{\epsilon}} |F(A_i) - F_0(A_i)| < \epsilon, \min_i F(A_i) > \frac{\epsilon^2}{2} \}$$

Bounded likelihood ratio

Lemma 7. Let F_0 be a fixed probability distribution. Suppose that $\int z^{2\delta} dF_0(z) < \infty$ for some $\delta > 0$. Let $0 < \epsilon < \frac{1}{3}$. Then for all $(\theta, F) \in \Theta_{\epsilon} \times \mathcal{F}_{\epsilon}$

$$P_{\theta_0,F_0}\left(rac{p_{\theta_0,F_0}}{p_{\theta,F}}
ight)^{\delta} \lesssim rac{1}{\epsilon^{\delta}\underline{m}_{\epsilon}^{2\delta}}.$$

Prior mass bound

Lemma 8. Let F_0 be a probability distribution on $[0, \infty)$ and $\theta_0 \in \mathbb{R}_{\geq 0}$. Suppose that there exists a $\gamma > 0$ such that $\int (z^{-\gamma} + z^{\gamma}) dF_0(z) < \infty$. For suitable center measures G, and priors π

$$\Pi((\theta, F): V_2 + KL(P_{\theta_0, F_0}; P_{\theta, F}) < \epsilon) \ge e^{-c \log(\epsilon)^3}.$$

