# Übung zu Organic Computing II

#### Lernverfahren

David Pätzel

3. Juli 2019

Universität Augsburg Institut für Informatik Lehrstuhl für Organic Computing

Maschinelles Lernen



- Supervised Learning (SL)
- Reinforcement Learning (RL)
- Unsupervised Learning (UL)



- Supervised Learning (SL)
  - · künstliche neuronale Netze
  - Support-Vector-Machines
  - ...
- Reinforcement Learning (RL)
- Unsupervised Learning (UL)



- Supervised Learning (SL)
  - · künstliche neuronale Netze
  - Support-Vector-Machines
  - ...
- Reinforcement Learning (RL)
  - · Monte-Carlo-Methoden
  - Temporal-Difference-Learning
  - ...
- Unsupervised Learning (UL)



- Supervised Learning (SL)
  - · künstliche neuronale Netze
  - Support-Vector-Machines
  - ...
- Reinforcement Learning (RL)
  - · Monte-Carlo-Methoden
  - Temporal-Difference-Learning
  - ...
- Unsupervised Learning (UL)
  - · Clustering-Algorithmen
  - Autoencoder
  - ...



- Supervised Learning (SL)
  - · künstliche neuronale Netze
  - Support-Vector-Machines
  - ...
- Reinforcement Learning (RL)
  - · Monte-Carlo-Methoden
  - Temporal-Difference-Learning
  - ...
- Unsupervised Learning (UL)
  - · Clustering-Algorithmen
  - Autoencoder
  - ...

Übergänge sind z. T. fließend!

#### ML und OC



- OC: "Design zur Laufzeit" ermöglichen!
  ⇒ Online-Learning oft sinnvoll
- · viele Selbst-X-Eigenschaften setzen Lernen voraus
- insbesondere wichtig: Lernen durch Interaktion
  ⇒ RL!
- · aber: oft auch SL und UL relevant

Reinforcement Learning (RL)

# Reinforcement-Learning-Modell





## **Endlichkeit**



Meistens gilt (oder wird angenommen)

$$|S| < \infty$$
 und  $|A| < \infty$ 

## Episodische vs. kontinuierliche RL-Probleme



### Definition (Episodische RL-Probleme)

... können in Episoden unterteilt werden.

Nach dem Ende einer Episode: Zurücksetzen der Umgebung in einen Startzustand, unabhängig davon, wie die Episode geendet hat.

## Definition (Kontinuierliche RL-Probleme)

... sind alle nicht-episodischen RL-Probleme.

## Gewinn (Return)



#### Definition (Gewinn)

Die über die Zeit *insgesamt* ausgeschüttete Belohnung, diskontiert mit  $\gamma \in [0, 1]$ :

$$g_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

Ziel des Agenten: Gewinn maximieren!

#### Weitere Elemente des RL-Modells



- Policy  $\pi: S \to A$ : Verhaltensweise des Agenten
- State-Value-Funktion  $v_{\pi}$  ordnet jedem Zustand den erwarteten Gewinn zu, wenn der Policy  $\pi$  gefolgt wird

$$V_{\pi}(s) = \mathbb{E}_{\pi}[g_t \mid s_t = s]$$

• Action-Value-Funktion  $v_{\pi}$  ordnet jedem Zustand und jeder darin möglichen Aktion den erwarteten Gewinn zu, wenn in diesem Zustand die Aktion gewählt wird und anschließend der Policy  $\pi$  gefolgt wird

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[g_t \mid s_t = s, a_t = a]$$

# Lösung eines RL-Problems



- eine **optimale Policy** (Verhaltensregel)  $\pi_*: S \to A$
- · optimal, wenn  $V_{\pi}(s) = \max_{\pi} V_{\pi}(s)$

# Was der RL-Agent dabei weiß



#### Nichts.

Außer die Menge der Aktionen (er muss sie ja ausführen können) und vielleicht die Menge der Zustände.

# Q-Learning

## Grundlegendes



- basierend auf Tabelle  $O: S \times A \rightarrow \mathbb{R}$
- $\cdot$  Garantie: Q konvergiert zu  $q_{\pi_*}$  (gegeben genug Zeit etc.)
  - $\Rightarrow$  Optimale Policy wird gefunden!
- Parameter
  - Schrittweite  $\alpha \in (0,1]$
  - Q-Learning-Diskontierungsfaktor  $\gamma \in [0,1]$
  - ggf.  $\epsilon \in (0, 1]$

# Initialisierung von Q



- wichtig:  $Q(\text{terminal}, a) = 0 \quad \forall a \in A$
- sonst beliebig
- z. B.  $Q(s, a) = 0 \quad \forall s \in S, a \in A$



#### In allen Nicht-Endzuständen s:

- 1. Wähle Aktion a durch Policy basierend auf Q (z. B.  $\epsilon$ -greedy).
- 2. Führe a aus.
- 3. Beobachte Belohnung r, neuen Zustand s'.
- 4. Update Q:

$$Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma max_a Q(s', a) - Q(s, a))$$

In Endzuständen: Tue nichts, starte neue Episode.

## $\epsilon$ -Greedy-Policy basierend auf Q



- Aktion a mit maximalem  $q_{\pi_*}(s,a)$ : Bestmögliche Aktion im Zustand s!
- Q(s,a) aktuelle Schätzung von  $q_{\pi_*}(s,a)$   $\Rightarrow \arg\max_a Q(s,a)$  aktuelle Schätzung der besten Aktion im Zustand s
- $\epsilon$ -Greedy-Policy basierend auf Q:
  - in  $0 \le \epsilon \le 1$  Fällen: Wähle Aktion arg max Q(s, a).
  - · ansonsten: Wähle zufällige Aktion.

#### Q-Wert von Endzuständen



- · Wichtig: Der Q-Wert von Endzuständen bleibt 0!
- · ... klar, weil keine belohnungsgebende Aktion möglich

# Übungsblatt 8



- · OpenAI-Gym
- · Q-Learning

