Detect Kernel-Mode Rootkits via Real Time Logging & Controlling Memory Access

Igor Korkin, PhD
Independent Researcher
Moscow, Russia

Satoshi Tanda
CrowdStrike, Inc
Vancouver, Canada

2017 CDFSL

The slides are here – www.bit.ly/MemoryMonRWX

We Protect the Computer Memory

Igor Korkin, PhD
Independent Researcher
Moscow, Russia

Satoshi Tanda CrowdStrike, Inc Vancouver, Canada

2017 CDFSL

The slides are here – www.bit.ly/MemoryMonRWX

- Igor Korkin, Ph.D.
- His 5 recent papers are double blind peer reviewed
- He has spoken at the ADFSL conferences since 2014

- Satoshi Tanda
- He has 7 years of experience in reverse engineering & Windows internals
- He spoke at the BlueHat v16,
 REcon 2011 and 2016

Memory accesses look like driving without rules

It is needed to control the memory accesses

Agenda

- Malware avoids detection: trends & experts' views
- Intercepting memory access attempts: methods & projects
- The new memory interceptor MemoryMonRWX: idea & prototype
- Demos

Future plans with IoT & Digital Security

"... malware, or more specifically, a kernel rootkit, can often tamper with kernel memory data, putting the trustworthiness of memory analysis under question"

Prakash, A., Venkataramani, E., Yin, H., & Lin, Z. (2015, October 31). On the Trustworthiness of Memory Analysis - An Empirical Study from the Perspective of Binary Execution, IEEE Transactions on Dependable and Secure Computing (TDSC), 12(5), 1545-5971, http://dx.doi.org/10.1109/TDSC.2014.2366464

What do we have now?

Windows security features	What do we have now?
Driver Signature Enforcement	
PatchGuard (Kernel Patch Protection)	

^{1.} McAfee. (2016, September). Threats Report. McAfee Labs. Retrieved from http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-sep-2016.pdf

^{2.} Singh, A. (2015, April 8). Dissecting Turla Rootkit Malware Using Dynamic Analysis. Retrieved from https://www.lastline.com/labsblog/dissecting-turla-rootkit-malware-using-dynamic-analysis

What do we have now?

^{1.} McAfee. (2016, September). Threats Report. McAfee Labs. Retrieved from http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-sep-2016.pdf

Singh, A. (2015, April 8). Dissecting Turla Rootkit Malware Using Dynamic Analysis. Retrieved from https://www.lastline.com/labsblog/dissecting-turla-rootkit-
 8

Defeat and Protect PatchGuard

Nº	Pre-emptive Actions	Malware actions	Results & Comments
1		Rootkit is hiding the process	
2		Exploit is disabling PatchGuard Rootkit is hiding the process	
3	Memory protector limits memory access	Exploit is disabling PatchGuard Rootkit is hiding the process	

Demo 1

The online version is here —

https://www.youtube.com/embed/vi9TzLrO_pE?vq=hd1440

Demo 2

The online version is here —

https://youtu.be/vi9TzLrO_pE?t=70

Defeat and Protect PatchGuard

Nº	Pre-emptive Actions	Malware actions	Results & Comments
1		Rootkit is hiding the process	OS has crashed X (PatchGuard has generated 0x109 BSOD)
2		Exploit is disabling PatchGuard Rootkit is hiding the process	OS has been infected X (PatchGuard has been disabled, no BSOD)
3	Memory protector limits memory access	Exploit is disabling PatchGuard Rootkit is hiding the process	OS has been protected (Exploit has failed)

What malware attacks do we want to monitor & ____ prevent?__

Control memory accesses:

- Reading
- Writing
- Executing

Memory Interceptor Requirements

1) All types of memory accesses: read, write, execute

2) Triples for each access:

Source Address

Type of access

Destination Address

Memory Interceptor Requirements

1) All types of memory accesses: read, write, execute
 2) Triples for each access:
 Source Address Type of access

Destination Address

3) Access only from Source range → Destination range:

4) A kernel-mode driver, which supports Windows 10 x64 and multi-core CPUs

What can we use as a basis for the memory interceptor?

Memory monitoring methods based on OS & hypervisor facilities

→ There is no build-in tools for controlling kernel mode memory

Intercepting memory access: methods & projects

Methods for monitoring access to memory

OS-based

Hooking Memory Management routines

Handling Page-Fault Exceptions by IDT

Hypervisor-based

Handling #PF Exceptions by Hypervisor

Leveraging Intel EPT technology

Intercepting memory access: methods & projects

Methods for monitoring access to memory

OS-based

Hooking Memory Management routines

Handling Page-Fault Exceptions by IDT

Hypervisor-based

Handling #PF Exceptions by Hypervisor

Leveraging Intel EPT technology

	Read/
Project title, year	Write/
	Execute
SPIDER, 2013	+/+/-
SecVisor, 2007	-/+/+
HyperSleuth, 2010	+/-/-
CXPInspector, 2013	-/-/+
HyperTap, 2014	-/+/+
DRAKVUF, 2014	-/-/+
MemoryMonRWX, 2017	
(The proposed system)	+/+/+

New Advanced Technology: Intel VT-x with Extended Page Tables (EPT)

EPT Overview

EPT paging structures

Applying EPT to monitor & limit memory access

EPT plays the role of traffic lights for memory accesses

Processing memory access: VT-x vs. VT-x with EPT

VT-x without EPT

Processing memory access: VT-x vs. VT-x with EPT

VT-x without EPT

Access to virtual memory Paging structures **Guest OS Guest Physical address:** Hypervisor **Host Physical address:** Hardware **Host Memory**

VT-x with EPT

Applying EPT features to trap and skip memory access____

Applying EPT features to trap and skip memory

access **EPT Paging structures EPT Page Directory EPT Page Table Guest memory** Entry **Guest memory** Entry access **Access Bits** PFN access **Access Bits** PFN **Access Bits** PFN Page walk via Page walk via Hypervisor EPT pages EPT pages Intercept access: Change mapping: **EPT violation** Substitute page Read Write Execute Memory Change nothing Memory Content Content **EPT violation**

Hypervisor skips these accesses

How to apply EPT to monitor access only

- from Source range to Destination range
- and skip all the rest?

Others

Skips all other accesses

We propose the following 5 steps

Step 1. Trapping execution on Source range

Step 1. Trapping execution on Source range

Guest OS memory

Source range

Destination range

Others

Step 1. Trapping execution on Source range

Step 2. Process VM-Exit to separate access to the Destination range

Step 2. Process VM-Exit to separate access to the Destination range

This is the memory access to the Destination range

Step 3. Process VM-Exit, because of access on Destination range

Step 3. Process VM-Exit, because of access on Destination range

Step 4 (Restore setting). Process VM-Exit, because of MTF

Step 5. Process VM-Exit, because of execution on Destination range

Hypervisor traps these code executions, but we don't need to control them

Five steps together

MemoryMonRWX architecture

MemoryMonRWX architecture

MemoryMonRWX architecture

Demo 3

The online version is here – https://youtu.be/vi9TzLrO pE?t=157

MemoryMonRWX is small and fast

100% – the full system overload

Conclusions

- MemoryMonRWX logs & controls all memory accesses in a real time
- It is a hypervisor, which supports newest Windows 10 x64
- MemoryMonRWX can be used in various tasks:
 - Trace malware activity
 - Protect memory of 3rd party drivers

Acquire Physical Memory & Detect Hidden Software by Raspberry Pi

CaptureGUARD Physical Memory Acquisition Hardware \$7,799.00

"This is an ExpressCard device capable of imaging the physical memory of the computer it's connected to. Creates dump files in the standard WinDD format.."

1. CaptureGUARD Physical Memory Acquisition Hardware – ExpressCard. Windowsscope. http://www.windowsscope.com/product/captureguard-physical-memory-acquisition-hardware-expresscard/
2. Aumaitre, D., and Devine, C. Subverting Windows 7 x64 Kernel with DMA attacks. Sogeti ESEC Lab: http://esec-lab.sogeti.com/dotclear/public/ publications/10-hitbamsterdam-dmaattacks.pdf, July 2010.

Acquire Physical Memory & Detect Hidden Software by Raspberry Pi

CaptureGUARD Physical Memory Acquisition Hardware \$7,799.00

"This is an ExpressCard device capable of imaging the physical memory of the computer it's connected to. Creates dump files in the standard WinDD format.."

= \$330.00

Lower price with more features

In the USA in upwards of 2.5 million people depend on wireless implantable medical devices, which all can be hijacked remotely¹

1. Ash, S. (2016). Cybersecurity of wireless implantable medical devices - http://pqdtopen.proquest.com/doc/1796055559.html?FMT=ABS

Protection of Wireless Implantable Medical Devices

Our Team:

- Veronika Domova
- Software developer, Sweden
- IoT and Industrial Cyber Security

• Igor Korkin, Ph.D.

Our Idea:

Input implant's technical specifications

Choose the lightweight crypto cipher

Verify the firmware

Protected implant

47

Thank you!

Igor Korkin igor.korkin@gmail.com

Satoshi Tanda <u>tanda.sat@gmail.com</u>

The slides, source code and all details are here – www.bit.ly/MemoryMonRWX