Introduction to Sequence Similarity Networks

Miguel M. Sandin

miguelmendezsandin@gmail.com

2021-05-06

Why networks?

And not yet another phylogenetic tree?

Because we want to answer different questions.

Phylogenies:

What are the evolutionary relationships among taxa?

Based in:

- -Species selection
- -Alignment
- -Evolutionary model
- -Phylogenetic inference
- -Bifurcating phylogenetic tree

SSN:

Where is this protein coming from? How do genomes interact? ...

Based in:

A - G 11 C A - C

- -Species selection
- -Similarity search
- -Threshold(s) selection
- -Network analysis/representation

And what about ecological analysis? Why not yet another ordination analysis?

Because we want to answer different questions.

Ordination:

How do samples correlate?...

Based in:

-Abundance/Presence-Absence

SSN:

What are the most central sequences?

Based in:

-Sequence similarity

Networks COMPLEMENT previous well-established methods

What is a network?

Before starting!

What is a network?

How is it built?

Species selection

>seq1 ACGATCGATTAC... >seq2 TGGAGATCATAC... >seq3 GCAGTCGATTAC... >seq4 ACGATGCTAGCT...

	Seq1	Seq2	Seq3	 Seqi
Seq1	1	id12	id13	 id1i
Seq2	id21	1	id21	 id2i
Seq3	id31	id32	1	 id3i
	•••	•••	•••	
Seqi	idi1	idi2	idi3	 1

Seq1	Seq2	id12
Seq1	Seq3	id13
Seq1	Seq4	id14
Seqi	Seqj	idij

Local Alignment

BLAST

	А	В	С	D	E	F
А	100	91	76	72	92	64
В	91	100	91	96	82	80
С	76	98	100	94	78	84
D	72	96	94	100	62	86
E	94	82	78	62	100	79
F	64	80	84	86	79	100

We choose a threshold: id Is the **pairwise** similarity above? If yes, there is a connection

Undirected connection

	Α	В	С	D	Е	F
Α	100	91	76	72	92	64
В	91	100	91	96	82	80
С	76	98	100	94	78	84
D	72	96	94	100	62	86
E	94	82	78	62	100	79
F	64	80	84	86	79	100

Id: 60

	А	В	С	D	E	F
Α	100	91	76	72	92	64
В	91	100	91	96	82	80
С	76	98	100	94	78	84
D	72	96	94	100	62	86
Е	94	82	78	X 62	100	79
F	X 64	80	84	86	79	100

ld: 70

	Α	В	С	D	Е	F
Α	100	91	76	72	92	64
В	91	100	91	96	82	80
С	76	98	100	94	78	84
D	72	96	94	100	62	86
E	94	82	78	62	100	79
F	64	80	84	86	79	100

Id: 60 Id: 70 Id: 80

	Α	В	С	D	E	F
А	100	91	76	72	92	64
В	91	100	91	96	82	80
С	76	98	100	94	78	84
D	72	96	94	100	62	86
Е	94	82	78	62	100	79
F	64	80	84	86	79	100

Id: 70

Id: 80 Id: 90

How are networks visualized? The layout

2D representation: <u>Gravity</u>, <u>Repulsion and Spring forces</u> (and some more...)

Properties of networks

Nnodes: 4

Nedges: 4

Connectivity: 2

Density: 0.66

Nnodes: 6

Nedges: 8

Connectivity: 2.6

Density: 0.53

Connected components: 2

Number of nodes: 10

Number of edges: 12

Connectivity: $\frac{2+4+3+3+1+3+1+3+2+2}{10} = 2.4$

Clustering coefficient: $\frac{2e}{n(n-1)} = \frac{12}{10(10-1)} = 0.26$

Connected components: A subgraph in which any pair of nodes is connected, and that is not connected to the rest of the graph

Connectivity: Average number of neighbors

Clustering coefficient (**density**): Proportion of number of edges with respect to the maximum possible edges.

Properties of networks

Attribute Y

Assortativity = 0

Assortativity: A measure of the preference for labeled nodes in a network to attach to other nodes with identical labels.

Properties of the nodes

Degree: B

Closeness: H

Eccentricity: E, D, C or F

Betweenness: B or H

Degree: Number of edges that a node is connected to.

Closeness: Average shortest distance between a node and all the other nodes.

Eccentricity: Average longest distance between a node and all other nodes.

Betweenness: Frequency at which a node is found in all the possible shortest paths between

any two nodes in the network.

What is the difference between "betweeness" and "closeness" or "eccentricity"?

The betweenness describe the relative position of the node, whereas the closeness and eccentricity is telling how central or peripheral, respectively, the given node is.

A betweenness close to 1 is indicative of a highly central gene, whereas close to 0 is more peripheral.

Hands on!

Let's get to build some networks

Hands on!

Let's get to build some networks

- 1. BLAST all against all
 - 1.1 Clean the blast output
- 2. Visualize the network
 - 2.1 Build the network
 - 2.2 Prepare some attributes
- 3. Analyze the network
- 4. Explore assortativity of the attributes
- 5. Other analysis (shortest path analysis)

1. BLAST all against all

1. Create a database of the fasta file and run blast against the database:

- 1.1 Clean the blast output
 - 1.1_blastnClean.py

	Seq1	Seq2	Seq3		Seqi
Seq1	X 1	ic (2	id (3	X	ig X i
Seq2	id21	X 1	id (1	X	i ge i
Seq3	id31	id32	X 1	X	id
				X	X
Seqi	idi1	idi2	idi3		X 1

	Seq1	Seq2	Seq3	***	Seqi
Seq1	1	id12	id13		id1i
Seq2	id21	1	id21		id2i
Seq3	id31	id32	1		id3i
Seqi	idi1	idi2	idi3	•••	1

2.1 Build the network

2.1_buildNetwork.py

2.2 Prepare some attributes

2.2_attributes_file.R

	Seq1	Seq2	Seq3	 Seqi
Seq1	1	id12	id13	 id1i
Seq2	id21	1	id21	 id2i
Seq3	id31	id32	1	 id3i
Seqi	idi1	idi2	idi3	 1

Seq1	Seq2	id12
Seq1	Seq3	id13
Seq1	Seq4	id14
Seqi	Seqj	idij

Cytoscape

Now let's play and compare our networks.

And try to get some biological meaning out of it!

3. Analyze the network

3. Calculate properties of the network (its Connected Components) and the nodes:

3 analyzeNetwork.py

Properties of the network:

Connected components

Number of nodes

Number of edges

Connectivity

Clustering coefficient

Properties of the nodes:

Degree

Closeness & Eccentricity

Betweenness

Connected components: A subgraph in which any pair of nodes is connected, and that is not connected to the rest of the graph

Connectivity: Average number of neighbors

Density: Proportion of number of edges with respect to the maximum possible edges.

Degree: Number of edges that a node is connected to.

Closeness: Average shortest distance between a node and all the other nodes.

Eccentricity: Average longest distance between a node and all other nodes.

Betweenness: Frequency at which a node is found in all the possible shortest paths between any two nodes in the network.

4. Assortativity of the attributes

4. Calculate how your attributes are connected within and between them:

4_analyzeNetworkAssortativity.py

Assortativity: A measure of the preference for labelled nodes in a network to attach to other nodes with identical labels.

5. Shortest path analysis

Minimum distance (number of edges) between two nodes

5. Calculate shortest path between all pairs of nodes from attribute A and a attrbiute B

5_analyzeNetworkShortestPath.py

Path through *H* and through *J* are equivalent

We can finally get to see our results

6. Plotting the results

statsNetworks.R

Structure of the script:

- 1. Libraries
- 2. Working directory
- 3. Network analysis
- 4. Connected components
- 5. Nodes centralities
- 6. Assortativity
- 7. Shortest path

Load required packages

Set your preferred working directory

Plot results for every network (≠ ID thresholds)

Tree and network thinking

Quick reminder

Properties of the network:

Connected components

Number of nodes

Number of edges

Connectivity

Clustering coefficient

Assortativity

Properties of the nodes:

Degree

Closeness & Eccentricity

Betweenness

Connected components: A subgraph in which any pair of nodes is connected, and that is not connected to the rest of the graph

Connectivity: Average number of neighbors

Density: Proportion of number of edges with respect to the maximum possible edges.

Assortativity: A measure of the preference for labelled nodes in a network to attach to other nodes with identical labels.

Degree: Number of edges that a node is connected to.

Closeness: Average shortest distance between a node and all the other nodes.

Eccentricity: Average longest distance between a node and all other nodes.

Betweenness: Frequency at which a node is found in all the possible shortest paths between any two nodes in the network.

Concluding remarks

The *simplicity* of networks helps tackling issues where phylogenies fail or are limited, and/or give a different perspective in ordination analysis

Phylogenies:	SSN:	Ordination:	
-Alignment dependent	-Alignment free	-Abundance (or	
-Evolutionary model	-Similarity search	presence-Absence)	
-Phylogenetic inference	-Network representation	-Spatial ordination	
-Bifurcating phylogenetic tree		-No genetic information	

Different questions, different approaches

Networks COMPLEMENT previous well-established methods

Concluding remarks

Each tree or network is an hypothesis for the given data!

Different pictures of the same "reality"

Concluding remarks

Each tree or network is an hypothesis for the given data!

Different pictures of the same "reality"

Only by accessing all truths we can better understand the true patterns: Yet, what is understanding?