Observe con más cuidado las componentes de A^2 . Por ejemplo, el 1 en la posición (2, 4) es el producto escalar del segundo renglón y la cuarta columna de A:

$$(1 \quad 0 \quad 0 \quad 0 \quad 1) \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = 1$$

El último 1 del segundo renglón representa la arista

$$V_2 \rightarrow V_5$$

El último 1 en la cuarta columna representa la arista

$$V_5 \rightarrow V_4$$

Al multiplicar, estos unos representan la 2-cadena

$$V_2 \rightarrow V_5 \rightarrow V_4$$

De igual manera, el 2 en la posición (5, 2) de A^2 es el producto escalar del quinto renglón y la segunda columna de A:

$$(1 \quad 0 \quad 0 \quad 1 \quad 0) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = 2$$

Siguiendo el razonamiento anterior se puede apreciar que esto indica el par de 2-cadenas:

$$V_5 \rightarrow V_1 \rightarrow V_2$$

У

$$V_5 \rightarrow V_4 \rightarrow V_2$$

Si se generalizan estos hechos se pueden probar los siguientes resultados:

Teorema 2.8.1

Si A es la matriz de incidencia de una gráfica dirigida, la componente ij de A^2 da el número de 2-cadenas de un vértice i a un vértice j.

Haciendo uso de este teorema se puede demostrar que el número de 3-cadenas que unen el vértice i con el vértice j es la componente ij de A^3 . En el ejemplo 2.8.2

$$A^{3} = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 2 & 1 & 1 & 0 \\ 2 & 0 & 0 & 1 & 2 \end{pmatrix}$$