UNNS Operators XIV–XVI (Phase A): Definitions, Invariants, and Proof Sketches

UNNS Research Collective (2025)

Unbounded Nested Number Sequences Laboratory (UNNS)

OVERVIEW

Phase A formalizes the theoretical cores of the next operators in the UNNS hierarchy: XIV (Φ -Scale), XV (Prism), and XVI (Closure). We provide precise operator definitions, invariants, and proof sketches establishing well-posedness, existence of measurable observables, and inter-operator consistency with Operator XIII (Interlace).

I. PRELIMINARIES

Let $\tau^{(n)}: \Omega \subset \mathbb{R}^d \to \mathbb{R}$ be the τ -Field at recursion step n. We use:

$$\kappa^{(n)}(x) = \nabla \cdot (\nabla \tau^{(n)}(x)), \qquad H_r^{(n)} = \text{Shannon entropy of a suitable observable of } \tau^{(n)}.$$

The Interlace lock (Operator XIII) fixes a phase ratio with parameter λ^* . Throughout, η_{σ} denotes mean-zero noise with variance σ^2 .

II. OPERATOR XIV — Φ -SCALE (RECURSIVE PROPORTION)

A. Definition

Let $S_{\mu}: \Omega \to \Omega$ be a scaling map $x \mapsto \mu x$ (with suitable boundary handling). Define the scale-coupled update

$$\tau^{(n+1)}(x) = \tau^{(n)}(x) + \lambda \sin(\tau^{(n)}(S_{\mu}x) - \tau^{(n)}(x)) + \eta_{\sigma}. \tag{1}$$

Define

$$\Delta_{\text{scale}}^{(n)}(\mu) = \left\langle \left(\tau^{(n)}(\mu x) - \tau^{(n)}(x) \right)^2 \right\rangle_x, \qquad \Pi^{(n)}(\mu) = \left\langle \cos \left(\tau^{(n)}(\mu x) - \tau^{(n)}(x) \right) \right\rangle_x.$$

Let $S^{(n)}(k)$ be the power spectrum of $\tau^{(n)}$.

B. Invariants and Lock

Invariant (self-similar spectrum). On a scaling band $B \subset \mathbb{R}^+$,

$$S^{(n)}(k) \approx \mu^{-\gamma} S^{(n)}(\mu k)$$
 for some $\gamma > 0$. (2)

Scale lock. A lock occurs at μ^* where $\Delta_{\text{scale}}^{(n)}(\mu)$ attains a sharp minimum and $\Pi^{(n)}(\mu)$ a local maximum, stable in n.

C. Proof Sketches

- (i) Well-posedness. For $\tau^{(n)} \in L^2(\Omega)$ and bounded λ , the r.h.s. of (1) is measurable and square-integrable. Noise η_{σ} preserves L^2 in expectation. Hence $\tau^{(n)} \in L^2$ for all n.
- (ii) Existence of μ^* . Consider $f(\mu) = \mathbb{E}[\Delta_{\text{scale}}^{(n)}(\mu)]$. Under mild regularity, f is continuous on compact μ -intervals. Therefore a minimizer exists. Uniqueness in practice follows from convexity near Interlace lock λ^* (empirically: a single sharp basin).
- (iii) Self-similarity fit. If (1) induces correlation between x and μx with bounded mixing, the spectrum satisfies (2) up to a multiplicative law; γ emerges from regression of $\log S(k)$ on $\log S(\mu k)$.

III. OPERATOR XV — PRISM (SPECTRAL DECOMPOSITION)

A. Definition

Augment the recursion with a dispersive channel $\beta \geq 0$:

$$\tau^{(n+1)}(x) = \tau^{(n)}(x) + \lambda \sin(\Delta \phi^{(n)}(x)) - \beta \nabla^2 \tau^{(n)}(x) + \eta_{\sigma},$$
 (3)

where $\Delta \phi^{(n)}(x)$ denotes a phase difference functional (as in XIII/XIV). Define spatial spectrum $P^{(n)}(k) = |\widehat{\kappa^{(n)}}(k)|^2$ and temporal spectrum $P^{(n)}(\omega)$.

B. Spectral Invariants

Power-law band. There exist (k_1, k_2) with

$$P^{(n)}(k) \sim k^{-p}$$
 on $[k_1, k_2], p > 0.$ (4)

Feature set. Persistent peaks/notches $\{k_i\}$ satisfy geometric relations predicted by μ^* from XIV (near-log periodic spacing).

C. Proof Sketches

- (i) Energy balance. The $-\beta \nabla^2$ term damps high-k modes; the $\sin(\cdot)$ term injects structure at phase-coupled scales. Under stationary statistics, a balance produces a scale band with power-law decay.
- (ii) Imprint of XIV. If XIV establishes self-similarity with μ^* , then phase-coherent interactions seed harmonics at $\{k_i\} \approx \{k_0 \mu^{*m}\}$; these persist as spectral features in P(k).

IV. OPERATOR XVI — CLOSURE (SEALING THE MANIFOLD)

A. Definition

Let $\{\tau^{(0)}, \dots, \tau^{(N)}\}$ be a trajectory generated by XIII \rightarrow XIV \rightarrow XV. Define an information-flux functional **J** and a sealing step

$$\tau^{(N+1)} = \tau^{(N)} - \alpha_c \nabla \cdot \mathbf{J}(\tau^{(0..N)}), \qquad \alpha_c > 0.$$
 (5)

Let \mathcal{M} be a collection of conserved metrics (e.g., integrated curvature, entropy bands, invariant tuples).

B. Closure Properties

Conservation. $\mathcal{M}(\tau^{(N+1)}) = \mathcal{M}(\tau^{(0)})$ up to tolerance ϵ_c .

Idempotence. $C(C(\tau)) = C(\tau)$, where C applies (5) with the same J and α_c .

C. Proof Sketches

(i) Existence of sealed state. Define $\mathcal{F}(\tau) = \tau - \alpha_c \nabla \cdot \mathbf{J}$. If \mathcal{F} is a contraction in a norm consistent with \mathcal{M} , Banach's fixed-point theorem yields a unique sealed state.

(ii) Idempotence. If the sealed state satisfies $\nabla \cdot \mathbf{J} = 0$, then reapplication of (5) produces no change, establishing idempotence.

V. INTER-OPERATOR CONSISTENCY

Running XIV at λ^* (from XIII) sharpens the scale-lock basin (unique μ^*). XV inherits the spacing pattern from μ^* in P(k). XVI preserves the invariant tuple $\{\sin^2 \theta_W, \mu^*, p\}$ within specified tolerances while minimizing net flux.

PHASE A DELIVERABLES

- Formal definitions (1), (3), (5) with measurable invariants.
- Existence/well-posedness sketches; lock/self-similarity arguments.
- A shared invariant tuple for cross-operator consistency.