A Newton's Method:

Slope =
$$\frac{f(x_{k+1}) - f(x_k)}{\chi_{k+1} - \chi_k} = \frac{-f(\chi_k)}{\chi_{k+1} - \chi_k}$$

$$f'(x) = \frac{-f(xx)}{x_{k+1} - x_k}$$

$$2k_{k+1} = 2k_k - \frac{f(2k)}{f'(2k)}$$

$$9(2k)$$

Example:

$$f(x) = \frac{1}{x} - 0.5$$
 [x_{*} is at 2], assume $x_{o} = 1$.

$$\chi_{k+1} = \chi_{k} - \frac{f(x_{k})}{f'(x_{k})}$$

$$= \chi_{k} - \frac{1}{\chi_{k}} - 0.5$$

$$\frac{1}{\chi_{k}} \left(\frac{1}{\chi_{k}} - 0.5\right)$$

$$\chi_{k+1} = 2 \chi_k - 0.5 \chi_k^2$$

KI	2ck
0	1
1	1.5
2	1.875
3	1.9921875
4	1-999969482
5	2
6	2

Newton's Method will not work if there is a turning point between 2 k and 2 k

Example:

Lets say the above function is $f(x) = x^3 - 2x + 2$

Finding the turning points:

$$f'(x) = 3x^2 - 2 = 0$$

$$\Rightarrow x = \pm \sqrt{\frac{2}{3}}$$

$$= \pm 0.816$$

Make sure 2. < -0.816

Example, $\alpha = -1$.

with the first times and in the hall

Example:

 $f(x) = x^2 - 2xe + e^{-2x}, \quad x_0 = 1$

Find the solution of this function within 10⁻⁵ using

and the first for the first fight graphed

- a) Newton's Method
- b) Aitken Acceleration.

Note:

0-00001

- > Within 10⁻⁵ means answer must be accurate upto 5 d.p. [calculate answer upto 6 dp, then round upto 5 dp at the last]
- \Rightarrow In the above question, what should we compare our answers to? Should we compare our quivers to f(x) = 0 or compare our answer to the actual root, x_* ?
- TF we compare to f(x)=0, we will reach our answer when f(2k) < 0.00001, where k is the iteration number.
- \Rightarrow If we compare to the actual root, χ_{\star} , we will reach our consider when $|\chi_{\star}-\chi_{\rm K}|<0.00001$.
- \rightarrow This means that we compare to f(x)=0 When x_{+} is not given, or x_{+} cannot be found numerically.

Solution:

$$f(x) = x^{2} - 2xe^{-x} + e^{-2x}$$

$$f'(x) = 2x - 2e^{-x} - 2x(-e^{-x}) - 2e^{-2x}$$

$$\chi_{k+1} = \chi_{k} - \frac{f(\chi_{k})}{f'(\chi_{k})}$$

$$= \chi_{k} - \frac{\chi_{k}^{2} - 2\chi_{k}e^{-\chi_{k}} + e^{-2\chi_{k}}}{2\chi_{k} - 2e^{-\chi_{k}} + 2\chi_{k}e^{-\chi_{k}} - 2e^{-2\chi_{k}}}$$

K	α_{k}	fczu)	if fexx < 0.00001?
0	1 - put f(1)	> 0.399576	N6
	put (1) in viteration formula		
1	0.768941	>0.093292	NO
2	0.664590	0.022532	No
3	0.615033	0.005537	No
4	0.590884	0.00137	No
		0.000342	No
5	0.578963		160
6	0.573041	0.0000 85	100
7	0-570089	2 x 10 - 5	No
8	0-568615	0.5 x 10 -5	Yes
	Answer: 2Cx	= 0.56862 (upt	5 d·P)