# The metacognition of attention: Using self-scheduled breaks to improve performance

Trisha N. Patel<sup>1</sup>, Mark Steyvers<sup>2</sup>, and Aaron S. Benjamin<sup>1</sup> 1 University of Illinois at Urbana-Champaign

2 University of California, Irvine

### **Classic Sustained Attention** Task



- Respond to far ovals (target events)
- 32 Blocks (22 trials per block)
- 18% target rate (Experiment 1 and 2)

#### **Experiment 1**

Unrestricted break placement

Self-scheduled break: Take a 15 sec break Trial 1 Trial n

Pre-scheduled break: Given a 15 sec break yoked to self-schedule break condition



#### **Experiment 2**

Unrestricted break length and placement

Self-scheduled break: Take a X sec break



Pre-scheduled break: Given a X sec break yoked to self-schedule break condition



Self-Scheduled Break Pre-Scheduled Break No Break Block







# **Modified Sustained Attention** Task



# **Experiment 3**

Self-pace trial rate

Self-Paced: Control timing between trials

Trial 1 Trial 2 Trial n

Fixed-Average-Pace: ITI yoked to the average of self-paced condition

Trial 2





# **Experiment** 4

Replicates Experiment 3

Includes an exact yoked condition

Fixed-Exact-Pace: ITI yoked exactly to the self-paced condition







Conclusion: Self-pacing trial onset improves performance

• 9 Blocks (40 trials per block) • 50% target rate (Experiment 3) • 30% target rate (Experiment 4)