Capítulo 4.

Resultados de Convergência

4.1. Limitante para $\|(x^*, z^*)\|_{\infty}$

Nas análises de convergência de MPI infactíveis em geral há a necessidade de se escolher um ponto inicial que reflita de alguma maneira o tamanho do vetor (x^*, z^*) [44, 47]. Nessas análises o tamanho de tal vetor é estimado através de um limitante para sua norma- ∞ . Nada obstante, embora esse limitante é utilizado nas demonstrações não há qualquer indicativo de como é possível estimá-lo.

Como neste trabalho também se fará uso deste limitante, o Teorema 4.1 faz uma estimativa para o mesmo, usando a decomposição em valor singular da matriz A.

{teo:bound-xz}

Teorema 4.1. Sejam S_P o conjunto das soluções ótimas primais e S_D o conjunto das soluções ótimas duais par ao par primal-dual (2.1) e (2.2). Se S_P e S_D forem limitados então para toda solução primal $x^* \in S_P$ e correspondente solução dual $(y^*, z^*) \in S_D$ existe $\zeta > 0$ tal que

$$\|(x^*, z^*)\|_{\infty} \le \zeta$$

Demonstração. Suponha que $x=(x_B,x_N)$ seja tal que $x_B \in \mathbb{R}^m$ é uma solução básica e $x_N \in \mathbb{R}^{n-m}$ uma solução não-básica de (2.1). Seja $U\Sigma V^T$ a decomposição em valor singular (SVD) de A, em que

$$\Sigma = \begin{bmatrix} C & 0 \end{bmatrix},$$

 $C = \operatorname{diag}(\varsigma_{\max}, \ldots, \varsigma_{\min})$ e ς_{\min} e ς_{\max} são o menor e maior valor singular de A. Com isso, $Ax = U\Sigma V^T x$ e logo $\Sigma V^T x = U^T b$.

Seja

$$\Sigma^{\dagger} = \begin{bmatrix} C^{-1} \\ 0 \end{bmatrix}.$$

Logo $\Sigma^{\dagger}\Sigma V^T x = \Sigma^{\dagger}U^T b$ e portanto

$$\left\| \begin{bmatrix} I_m & 0 \\ 0 & 0 \end{bmatrix} V^T x \right\| = \left\| \Sigma^{\dagger} U^T b \right\|$$

Como U e V são ortogonais, temos que $||x_B|| \le ||\Sigma^{\dagger}|| \, ||b||$ e logo

$$||x_B||_{\infty} \le ||x_B|| \le \frac{1}{\varsigma_{\min}} ||b||$$

Note que, como por hipótese S_P é limitado, qualquer solução ótima x^* de (2.1) é uma combinação convexa de soluções ótimas básicas, i.e.,

$$x^* = \sum_{\ell=1}^p t_\ell \tilde{x}_\ell$$

em que $\sum_{\ell=1}^p t_\ell=1$ e para $\ell=1,\ldots,p$ tem-se $\tilde{x}_\ell=(\tilde{x}_B|\tilde{x}_N)_\ell$ e $(\tilde{x}_B)_\ell$ como uma solução ótima básica.

Portanto, existe ζ_x escalar positivo, tal que

$$||x^*||_{\infty} \le \zeta_x$$

em que

$$\zeta_x = \sum_{\ell=1}^p t_\ell \frac{1}{\zeta_{\min}} \|b\| = \frac{1}{\zeta_{\min}} \|b\|.$$

As restrições do problema dual (2.2), podem ser reescritas na forma padrão de um PL, definindo $\tilde{A} = [A^T \ I]$ e $\tilde{z} = [y \ z]$ tal que $\tilde{A}\tilde{z} = c$. Sejam π_i , com i = 1, ..., n, os valores singulares de \tilde{A} .

Com ideias similares às usadas na primeira parte da demonstração deste teorema, é possível verificar que a seguinte desigualdade

$$\|\tilde{z}^*\|_{\infty} \le \frac{1}{\pi_{\min}} \|c\|$$

é verdadeira.

Note que $\|z^*\|_{\infty} \leq \|\tilde{z}^*\|_{\infty}$ e pelo Lema 4.2, $\pi_{\min} = 1$. Portanto

$$||z^*||_{\infty} \le \zeta_z,$$

em que $\zeta_z = ||c||$.

Para finalizar, basta definir $\zeta = \max\{\zeta_x, \zeta_z\}$ e o teorema está provado.

{lem:svd-AI}

Lema 4.2. Seja a matriz $A \in \mathbb{R}^{m \times n}$, m < n uma matriz de posto completo e a a matriz $\tilde{A} = [A^T I_n]$, em que I_n é a matriz identidade de ordem n. Se ς_i , para $i = 1, \ldots, m$, é valor singular de A – e de A^T –, e π_i , para $i = 1, \ldots, n$, é valor singular de \tilde{A} então

{eq:sing_value

$$\pi_i^2 = \varsigma_i^2 + 1 \tag{4.1a}$$

para $i = 1, \ldots, m$ e

$$\pi_i = 1 \tag{4.1b}$$

para $i = m + 1, \ldots, n$.

Demonstração. Os valores singulares de A^T são as raízes quadradas dos autovalores distintos da matriz A^TA , isto é, existem $v_i \in \mathbb{R}^n$, $i = 1, \ldots, m$ não nulos, tais que

$$A^T A v_i = \varsigma_i^2 v_i.$$

Agora, note que

$$\tilde{A}\tilde{A}^T = [A^T I_n] \begin{bmatrix} A \\ I_n \end{bmatrix} = A^T A + I_n$$

e que

$$\tilde{A}\tilde{A}^T v_i = A^T A v_i + v_i = (\varsigma^2 + 1)v_i.$$

Portanto, para i = 1, ..., m, v_i é autovetor de $\tilde{A}\tilde{A}^T$ com autovalor correspondente a $(\varsigma_i^2 + 1)$. Além disso, note que o posto de A^TA é m e portanto a dimensão do núcleo de A^TA é (n-m). Seja $\mathcal{B} = \{u_{m+1}, ..., u_n\}$ uma base para o núcleo de A^TA . Para $u_i \in \mathcal{B}$, tem-se que

$$\tilde{A}\tilde{A}^T u_i = A^T A u_i + u_i = u_i.$$

Com isso, para $i=m+1,\ldots,n,$ u_i também é autovetor de $\tilde{A}\tilde{A}^T$ com autovalor correspondente a 1.

Consequentemente, sendo os valores singulares de \tilde{A} a raiz quadrada os autovalores de $\tilde{A}\tilde{A}^T$ e considerando que os autovalores são únicos valem as equações (4.1).