Origin9.0 中全峰拟合过程教程(以 Li_3N | 含有 LiOH 杂相|样品衍射图谱为例):

1. 将 XRD 数据导入 Origin 9.0 中(此过程很简单,不再赘述),并画出其衍射图谱。结果如下

2. 选择 Analysis→Peaks and Baseline→Peak Analyzer→Open Dialog...打开峰分析导航器。

3. 打开 Peak Analyzer 之后,在下方目标选择中选择 Fit Peaks(Pro),然后选择 Next。

4. 在基线模式中选择 User Defined

5. 在基线锚点中将 Window Size 的值设置成 5-15 之间的数值,Threshold 的值设置默认不变。Number of Points to Find 的值设置为 15-20 之间,最后点击 Find。

一般来讲,**Window Size** 的值控制的是局部平均法的步长(每次求平均所取的点数),可以目测基线的起伏程度,**起伏越大,该值应越小,起伏越小,该值应越大**。总体来说,取 **10-20** 之间即可。

Threshold 是控制基线的起伏阈值。该值越大,基线锚点起伏越严重,该值越小,基线锚点的起伏程度越小,一般默认的 0.05 即可。

Number of Points to Find 是锚点数,10°-80°的范围内,一般 15-20 点即可,平均起来也就是 4-6°一个锚点。自动查找的锚点不宜过多,因为无论你如何控制这些参数,最终还是需要手动去修改添加锚占。

6. 在 Enable Auto Find 的方框中把勾去掉,然后下方的 Add(添加) Modify/Del (修改/删除)Clear All(清除所有点)三个按钮即可释放。

7. 选择 origin 中的<mark>放大</mark>按钮,将基线放大来观察。

基线放大不宜过大,应该使得锚点大小相对于噪声信号来说很小,同时能明显得目测出基线位置为宜。 放大按钮和缩小按钮是独立的,当不进行锚点修改的时候,可以对图像进行基线区域放大缩小或者局 部放大缩小,这对于局部基线的锚点微调十分有利。

8. 选择 Modify/Del 按钮,然后直接拖动基线上的锚点,使得锚点整体看起来平滑均匀。如果锚点过多,可以单击锚点选中,键入 Delete 键删除即可。调节好之后点击 Done 按钮。

	f the red square to edit
Done	Use keys: Space, Arrow, Del, Tab, Home, End and Enter.

9. 如果基线锚点较少,或者基线的变化较为复杂,特殊地方需要添加锚点,可以选择 Add 按钮,然后再需要的位置上直接双击即可添加(单击时选中位置,再双击就是添加)。完成之后同样点击 Done 即可。

Number of Points to Find	15				
	Find				
	Add	Modify/Del	Clear All		

10. 当基线的调整完成之后,就点击 Next 进行下一步工作。

11. 在连接锚点建立基线的时候,插值方法中有三个选项,为了基线的平滑性,建议选择第三种方式: BSpline 方式。然后点击 Next。

可以对基线进行放大, 自行观察这三种基线建立方式有何异同。

12. 依次点击 Substract Now 和 Rescale。观察建立的基线是否平滑,近乎横线为佳,若不是点击 Prev 来修改前方的设置,若可以就点击 Next。

13. 接下来的一步是寻峰。点击 Peak Findding Settings 前的 中,展开选项并将峰过滤部分里的 Threshold Height (%) (阈值高度) 选项右侧的 Auto 旁的勾去掉。

14. 将 Direction 选项选择下拉列表中的 Positive, Local Points 值改为 10-20 之间。Threshold Height(%)(阈值高度)选项值改为 10-20 左右,最后点击 Find 查找峰。

Local Points 的值控制的是寻峰过程中产生局部最大值的步长范围。比如 10 就代表着 10 个点中具有的最大值满足阈值高度的时候就确认为峰。

Threshold Height (%) 阈值高度值控制的是寻峰过程中,局部最大值被划为峰的最小强度。其值的大小是相对于全域最大值(最高衍射峰)的百分比。

因此,如果寻找出来的峰过多,则可以加大局部点数(Local Points)后再重新查找,若峰数量过少,可以减小阈值高度值。

一般来说,自动寻峰找出衍射强度不小于最大峰值的 **15%**的峰位即可,剩下的峰若认为还有,可以手动 寻峰标定。

15. 手动寻峰标定。将 Enable Auto Find 方框内的勾点击去掉,选择下方的 Add(添加) Modify/Del (修改/删除)Clear All(清除所有峰)三个按钮来对所存在的峰进行标定。

中间过程可以结合放大或者缩小按钮来对峰进行选定,比如添加标定峰,先用放大按钮进行局部放大,然后选择 Add。

注意弹出的小弹窗里的说明,它会指示你怎么操作。

在峰位处单击选中,如果不准确再重新单击,找准确后双击即可添加标定峰。这种寻找只是粗略寻找,不要求峰位百分之百准确,大约在峰位处即可。

如果寻峰结果有个别峰位偏差过大,或者有多余的峰,可以选择 Modify/Del 按钮,再单击选中目标峰位锚点,对其进行拖动修改或者键入 Delete 来删除掉。

灵活利用相应的按钮,直到将所有要拟合的峰都标定出来为止。最后点击 Next。

16. 在峰位拟合面板中选择 Fit control。

17. 在面板中点击 Sort Peaks(峰分类)按钮,将峰按照峰位升序(默认如此)排列,再点击 OK。

18. 接着点击 Recorder Peaks 按钮。

重新排序峰位之后,点击此按钮就是将峰序号按照峰位的排列来重新分配。

19. 锁定峰位拟合。选择锁定峰位按钮 , 然后点击单步迭代按钮 若干次。迭代拟合的同时要注意 观察 origin 中衍射峰的拟合情况。

之所以先锁定峰位是因为一些衍射强度较弱的峰不容易拟合,直接拟合的话,其峰位就会乱窜,以至于偏离原位置导致出错。先锁定峰位拟合若干次(有时候 1-2 次就行了),此时注意观察弱峰,弱峰的半高宽目测与衍射峰相差不多的时候,暂停拟合。

20. 锁定峰宽拟合(此步骤并非必要步骤,仅适用于那些峰宽度目测符合很好,但峰位偏差较大的情况。一般情况下,此步骤是可以跳过的)。

重复点击锁定峰位按钮 → 来释放此限制,再选择锁定峰宽度按钮 → ,然后点击单步迭代按钮 术 若干次。迭代拟合的同时要注意观察 origin 中衍射峰的拟合情况。

21. 释放峰位锁定和峰宽锁定,在峰参数选项卡(Parameters)中,于 Fixed 列的方框中点击弱峰对应的 center (峰位)和 FWHM(半高宽)进行相应的锁定。必要的时候,可以在 Value 列中手动修改对应的值,使 其与目测的结果更加吻合然后锁定。

修改值并锁定的时候注意观察 origin 中的拟合线与衍射峰的符合程度,需要说明的是,**全峰拟合本身就对衍射峰较弱的峰误差较大**,如果必要,可以将单个目标峰之外的所有的峰(包括峰位,峰宽和振幅)全部锁定,来进行单峰拟合。拟合完一个锁定一个,这是全峰拟合中拟合弱峰的杀手锏。

22. 弱峰拟合好并锁定后,就可以对未锁定的强峰进行自由拟合,可以点击 按钮一次性拟合到收敛,也可以点击单步迭代按钮 , 直到收敛停止。

拟合达到收敛精度之后,单步迭代按钮即变成灰色,不能再进行迭代,下方会出现 Fit converged.的标识。

此时拟合已经完成,点击 OK 即可退出拟合控制面板。

23. 当峰全部拟合完成后,点击 Finish。

后边出现的这个弹窗是因为拟合的数据图点数过大,开启"速度模式"等等,选择 OK 即可。

接下来的这个面板是提醒你要不要转换成报告表,底下有四个选项,建议选 Yes (默认项)。最后点击OK。

附注: 拟合结果会输出到原数据表中,并将拟合的数据重新生成一个 graph。

在拟合报告表中选择 PeakProperties 标签,里面就是拟合的峰的结果,其中 Center Max 对应的就是峰位 拟合值列。Center Grvty 列对应的是峰的重心位置。FWHM 列就是半高宽列。读者可以自行翻译观看。

N		A2 🗭		A4(Y) ⊕				A8(Y) ♣	
ng Name	Peak Index	Реак туре	Area Fit	Area FitT	Area FitTP	Center Max	Center Grvty	Max Height	FWHM
Units									
mments									
rameters			202 22522	000 00500	0.70050	00 50700	00 50700	440.07004	4.04040
1		Gaussian	228.80533		2.70058	20.59762	20.59762	110.27964	1.94912
2		Gaussian	1928.97628		22.76762	22.84651	22.84651		0.41749
3		Gaussian	2026.44548		23.91804	28.08174	28.08174		0.46692
4		Gaussian	129.86737	129.86737	1.53282	30.37558	30.37558	93.30722	1.30753
5		Gaussian	237.13949	237.13949	2.79895	32.43019	32.43019	149.76195	1.48755
6		Gaussian	122.68433	122.68433	1.44804	35.7578	35.7578	84.72391	1.36035
7		Gaussian	106.56968	106.56968	1.25784	36.58311	36.58311	187.69332	0.5334
8		Gaussian	495.30765	495.30765	5.84609	46.75401	46.75401	929.01305	0.50087
9		Gaussian	1260.85384	1260.85384	14.8818	49.79698	49.79698	1910.06971	0.62013
10		Gaussian	992.86448	992.86448	11.71873	55.45785	55.45785	1140.16231	0.81807
11		Gaussian	182.27379	182.27379	2.15137	58.13348	58.13348	194.28764	0.88135
12		Gaussian	643.81729	643.81729	7.59895	70.73046	70.73046	539.73368	1.1206
13	13	Gaussian	117.23409	116.85104	1.37919	77.82414	77.82414	64.37587	1.7108
14									
15									
16 17									
18									
19									
20									
21									
22									
23									
24									
25									
26 27									
28									
29									
30									
31									
32									
33									
34									
35									
36 37									
38									
39									
40									
41									
42									
43									
44									