Chapitre 21. Analyse asymptotique.

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1 Compléments sur les développements limités

1.a Rappel: définition

Définition:

Soit I un intervalle, $x_0 \in I$, et f une fonction à valeurs dans \mathbb{K} définie sur D = I ou $I \setminus \{x_0\}$. Soit $n \in \mathbb{N}$.

On dit que f admet un développement limité à l'ordre n en x_0 s'il existe $(a_0, \dots a_n) \in \mathbb{K}^{n+1}$ tels que : $f(x) = \underbrace{a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n}_{\text{polynôme appelé partie régulière du DL, degré } + o\left((x - x_0)^n\right).$

En particulier, pour $x_0 = 0$, cela signifie :

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n).$$

1.b Unicité d'un DL et conséquence

Proposition:

Si f admet un DL à l'ordre n en x_0 , alors celui-ci est unique; autrement dit,

si
$$f(x)$$
 = $a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + o((x - x_0)^n)$
et si $f(x)$ = $b_0 + b_1(x - x_0) + b_2(x - x_0)^2 + \dots + b_n(x - x_0)^n + o((x - x_0)^n)$
alors $a_0 = b_0, \ a_1 = b_1, \ a_2 = b_2, \dots, \ a_n = b_n.$

Démonstration 1

Proposition:

(DL en 0 et parité)

Si f admet un DL à l'ordre n en 0, et :

 $\bullet \;$ si f est paire, alors tous les coefficients d'ordre impair du DL sont nuls :

$$f(x) = a_0 + a_2 x^2 + \dots + a_{2k} x^{2k} + o(x^{2k})$$
 ou $o(x^{2k+1})$ (selon que $n = 2k$ ou $2k + 1$)

ullet si f est impaire, alors tous les coefficients d'ordre pair du DL sont nuls :

$$f(x) = a_1 x + a_3 x^3 + \dots + a_{2k+1} x^{2k+1} + o\left(x^{2k+1}\right)$$
 ou $o\left(x^{2k+2}\right)$ (selon que $n = 2k+1$ ou $2k+2$)

Démonstration 2

Primitivation de DL

Théorème:

Soit $f: I \to \mathbb{R}$, où I est un intervalle de \mathbb{R} , x_0 un point de I, et $n \in \mathbb{N}$.

On note F une primitive de f sur I.

Si f admet un DL à l'ordre n en x_0 :

$$f(x) = \underset{x \to x_0}{=} a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + o((x - x_0)^n)$$

alors F a un DL à l'ordre n+1 en x_0 , qui est :

Démonstration 3

Dans le cas courant $x_0 = 0$:

$$f(x) \underset{x\to 0}{=} \sum_{k=0}^{n} a_k x^k + o(x^n) \Longrightarrow$$

Exemples d'utilisation : à partir d'autres DL connus....

- Déterminer le DL en 0 de $\ln(1+x)$ (à l'ordre n) et celui de Arctan (à l'ordre 2n+1).
- Déterminer le DL à l'ordre 5 en 0 de Arccos.

Démonstration 4

⚠ Il n'y a pas de résultat pour la dérivée concernant l'existence de DL.

Plus précisément :

si f a un DL à l'ordre n en x_0 , on ne peut pas conclure que f' a un DL à l'ordre n-1 en x_0 ...

(Cependant, si on sait d'autre part que f' a bien un DL à l'ordre n-1 en x_0 , alors il s'obtient bien sûr en dérivant terme à terme celui de f, par application du résultat sur l'intégration de DL à f'! Mais en pratique, cela ne sert pas vraiment.)

2 DL et classe C^n - Formule de Taylor-Young

2.a Introduction

Soit $f: I \to \mathbb{R}$, où I est un intervalle de \mathbb{R} , x_0 un point de I, et \mathcal{C} la courbe représentative de f.

• On sait que f est continue en x_0 si et seulement si f admet en x_0 un DL d'ordre 0, qui sera nécessairement :

$$f(x) \underset{x \to x_0}{=} \underbrace{f(x_0)}_{\text{polynôme de degré 0}} + o(1)$$

• On sait que f est dérivable en x_0 si et seulement si f admet en x_0 un DL d'ordre 1, qui sera nécessairement :

$$f(x) \underset{x \to x_0}{=} \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{\text{polynôme de degré 1}} + o(x - x_0)$$

Graphiquement, C est localement proche de sa tangente au point x_0 :

• Dans ce chapitre :

On verra que si f est de classe C^2 , alors f admet en tout $x_0 \in I$ un DL à l'ordre 2, qui sera nécessairement :

$$f(x) = \underbrace{f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2}_{\text{polynôme de degré 2}} + o\left((x - x_0)^2\right)$$

⚠ Il n'y a plus de "si et seulement si"...

Graphiquement, la courbe $\mathcal C$ est localement proche d'une certaine parabole.

Plus généralement, si f est de classe \mathcal{C}^n , alors f admet en tout $x_0 \in I$ un DL à l'ordre n...

2.b Formule de Taylor-Young

Théorème:

Soit $f: I \to \mathbb{K}$ une fonction de classe , avec I un intervalle. Soit $x_0 \in I$. Alors f admet un DL à l'ordre n en x_0 , qui est :

$$f(x) = \underset{x \to x_0}{=}$$

$$=$$
 $x \rightarrow x_0$

$$si x_0 = 0 : f(x) = 0$$

$$=$$

Démonstration 5

Pour résumer les liens entre DL d'ordre n et classe \mathcal{C}^n :

continuité	existence d'un DL à l'ordre 0	
dérivabilité	existence d'un DL à l'ordre 1	
classe \mathcal{C}^n	existence d'un DL à l'ordre n	

Mais la réciproque du dernier point est fausse pour $n \geq 2$!

En particulier, existence d'un DL d'ordre 2 en $x_0 \not\Rightarrow f$ deux fois dérivable en x_0 .

Application de Taylor-Young : preuves de DL usuels 2.c

Exemples: exp, cos, $x \mapsto \frac{1}{1+x}$.

Démonstration 6

On se servira de la formule de Taylor-Young pour les exercices théoriques principalement; pour les calculs pratiques de DL, on utilise en général les opérations vues : +, ×, /, o, primitivation.

2.dApplication des DL ou des développements asymptotiques à connaître

- Étude locale (prolongement, dérivabilité, position par rapport à la tangente...) d'une fonction en un point : c.f. ch 12.
- Calcul de limite : si f a un DL en x_0 , la limite de f en x_0 est le terme constant a_0 ; si f a un développement asymptotique, on considère le premier terme du développement. 1
- Détermination d'asymptote et position par rapport à l'asymptote : c.f. ch 9.
- Recherche d'équivalent (c.f. après!) : l'équivalent sera le premier terme non nul... 2
- 1. On suppose les termes classés du "moins négligeable" au "plus négligeable".
- 2. On suppose les termes classés du "moins négligeable" au "plus négligeable".

3 Domination

3.a Pour les suites

Définition:

Soient u et v deux suites de $\mathbb{K}^{\mathbb{N}}$.

On suppose que $v_n \neq 0$, au moins à partir d'un certain rang.

On dit que u est <u>dominée</u> par v, et on note $u_n = O(v_n)$ si la suite $\left(\frac{u_n}{v_n}\right)$ est bornée.

Autres notations : $u_n = O_{n \to +\infty}(v_n), u_n = O(v_n).$

Voici une définition équivalente, qui permet d'éviter de supposer que v_n ne s'annule jamais à partir d'un certain rang : $u_n = O(v_n) \iff \exists (M_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}, \ \forall n \in \mathbb{N}, \ u_n = M_n v_n$ et (M_n) est bornée.

Exemples: $5n^2 + \ln n$

$$\frac{\sin(n)}{n}$$
$$\frac{(-1)^n}{\ln(n)} + \frac{1}{n^2}$$

Comme une suite convergente (vers 0) est bornée :

Proposition:

$$u_n = o(v_n) \implies u_n = O(v_n)$$

⚠ la réciproque est fausse!

Cette notion de O est celle qu'on utilise en informatique pour parler de complexité.

Propriétés de O à connaître : les mêmes que pour o pour la multiplication par un scalaire, la somme, le produit, la transitivité ; et :

$$u_n = O(1) \iff (u_n)_{n \in \mathbb{N}} \text{ est bornée}$$

 \triangle Si vous trouvez $u_n = O(0)$, cela signifie que la suite (u_n) est nulle à partir d'un certain rang : il y a de fortes chances que vous vous soyez trompé!

3.b Pour les fonctions

La différence : pour les suites, n ne peut tendre que vers $+\infty$, alors qu'ici on se place en un point a qui peut être fini ou $\pm\infty$.

Définition :

Soient f, g, des fonctions définies sur un intervalle I, et $a \in \mathbb{R} \cup \{-\infty, +\infty\}$ un point ou une extrémité de I.

On suppose que g ne s'annule pas au voisinage de a.

On dit que \underline{f} est dominée par g au voisinage de \underline{a} si $x \mapsto \frac{f(x)}{g(x)}$ est bornée au voisinage de \underline{a} .

5

Notations : $f = O_a(g)$, ou $f(x) = O_{x \to a}(g(x))$, ou f(x) = O(g(x)).

Voici une définition équivalente, qui englobe le cas où g s'annule au voisinage de a:

 $f(x) \underset{x \to a}{=} O(g(x)) \iff$ il existe une fonction M telle que f(x) = M(x)g(x) et M bornée au voisinage de a

Les propriétés sont les mêmes que pour les suites (lien entre o et O, opérations, O(o)...), précisons quand même :

$$f(x) = O(1) \iff f$$
 est bornée au voisinage de a

4 Equivalence

4.a Pour les suites

4.a.i Définition et premiers exemples

Définition:

Soient u et v deux suites de $\mathbb{K}^{\mathbb{N}}$.

On suppose que $v_n \neq 0$, au moins à partir d'un certain rang.

On dit que u est <u>équivalent</u> à v, et on note $u_n \sim v_n$ si :

Autre notation : $u_n \sim v_n$.

Voici une définition équivalente, qui permet d'éviter de supposer que v_n ne s'annule jamais à partir d'un certain rang :

$$u_n \underset{n \to +\infty}{\sim} v_n \iff \exists (a_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}, \ \forall n \in \mathbb{N}, \ u_n = a_n v_n \ \text{et} \ a_n \underset{n \to +\infty}{\longrightarrow} 1.$$

En conséquence, $u_n \underset{n \to +\infty}{\sim} 0$ signifie :

Cela n'arrive quasiment jamais en pratique!

Premiers exemples:

$$n+1 \underset{n \to +\infty}{\sim}$$

$$3n^2 + 2n - \sqrt{n} + \frac{1}{n} \underset{n \to +\infty}{\sim}$$

$$3n^2 \underset{n \to +\infty}{\sim}$$

$$\frac{1}{n + \ln(n)} \underset{n \to +\infty}{\sim}$$

$$\frac{1}{n} + \frac{1}{n^2} \mathop{\sim}_{n \to +\infty}$$

$$\frac{2}{\ln(n)} \underset{n \to +\infty}{\sim}$$

4.a.ii Propriétés de base

Proposition:

• $u_n \underset{n \to +\infty}{\sim} u_n$ (réflexivité)

Si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 alors $v_n \underset{n \to +\infty}{\sim} u_n$ (symétrie)

Si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 et si $v_n \underset{n \to +\infty}{\sim} w_n$, alors $u_n \underset{n \to +\infty}{\sim} w_n$ (transitivité)

• Multiplication par un scalaire :

Pour
$$\lambda \neq 0$$
, si $u_n \underset{n \to +\infty}{\sim} v_n$ alors $\lambda u_n \underset{n \to +\infty}{\sim} \lambda v_n$.

Si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 et $w_n \underset{n \to +\infty}{\sim} t_n$, alors $u_n w_n \underset{n \to +\infty}{\sim} v_n t_n$

• Valeur absolue/module :

Si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 alors $|u_n| \underset{n \to +\infty}{\sim} |v_n|$

• Puissances:

Si $u_n \underset{n \to +\infty}{\sim} v_n$, et si $(u_n)_n$ est strictement positive à partir d'un certain rang, alors v_n aussi et pour tout $\alpha \in \mathbb{R}$, $u_n^{\alpha} \underset{n \to +\infty}{\sim} v_n^{\alpha}$.

Si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
, et si $(u_n)_n$ est non nulle à partir d'un certain rang, alors v_n aussi et $\frac{1}{u_n} \underset{n \to +\infty}{\sim} \frac{1}{v_n}$

Démonstration 7

🛕 | Il n'y a pas de propriété pour les sommes!

Contre-exemple:

En fait, on n'est pas obligé de supposer $(u_n)_n$ positive à partir d'un certain rang pour les puissances si ces puissances sont entières : en effet, cela revient à utiliser la propriété sur les produits.

Pas de composition avec les équivalents! :

Contre-exemple:

4.a.iii Lien entre \sim et o (développements limités en particulier)

Une propriété déjà vue au chapitre 9 :

Proposition:

Si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 et si $w_n = o(u_n)$ alors $w_n = o(v_n)$.

Utilisation : on peut donc écrire qu'un $o\left(\frac{1}{n+1}\right)$ est un

La proposition fondamentale, également vue au chapitre 9 :

Proposition:

$$u_n \underset{n \to +\infty}{\sim} v_n \iff u_n = v_n + o(v_n).$$

Exemple: $u_n = \ln n + n^2 + 2^n \underset{n \to +\infty}{\sim}$

D'où une méthode pour calculer l'équivalent d'une somme :

passer par les o, souvent avec des développements limités/asymptotiques, que l'on sait sommer.

Exemple : Déterminer un équivalent simple de la suite de terme général : $u_n = n^{\frac{1}{n}} - \sqrt{1 + \frac{\ln(n)}{n}}$

Démonstration 8

On obtient un équivalent en prenant le premier terme non nul dans le développement trouvé.

Remarque: Soit (u_n) une suite.

Que signifie $u_n - 1 \underset{n \to +\infty}{\sim} \frac{1}{n}$? Que signifie $u_n \underset{n \to +\infty}{\sim} 1 + \frac{1}{n}$? Quelle est l'information la plus intéressante?

Démonstration 9

Au final, s'il reste des sommes dans un équivalent (par exemple $u_n \underset{n \to +\infty}{\sim} 3n^2 + 2n$), c'est qu'on n'a pas encore l'équivalent le plus simple de la suite (u_n) ; dans l'exemple, le terme 2n est superflu, il n'apporte aucune information. On ne retiendra que

8

Equivalent et signe, équivalent et limite

Une propriété démontrée au chapitre 9 :

Proposition:

On suppose $u_n \underset{n \to +\infty}{\sim} v_n$.

Si la suite $(u_n)_n$ est positive à partir d'un certain rang, alors $(v_n)_n$ aussi.

Si la suite $(u_n)_n$ est non nulle à partir d'un certain rang, alors $(v_n)_n$ aussi.

Même chose avec "négative", ou "strictement positive", ou "strictement négative".

Proposition:

Soit
$$\ell$$
 fini non nul. $u_n \underset{n \to +\infty}{\longrightarrow} \ell \iff u_n \underset{n \to +\infty}{\sim} \ell$.

 \triangle Ce n'est pas valable si $\ell = 0$: se rappeler que $u_n \underset{n \to +\infty}{\sim} 0$ est rarissime...

De même que pour le signe, une information $u_n \underset{n \to +\infty}{\sim} v_n$ avec (v_n) suite "plus simple" dont on connaît la limite permet d'obtenir des informations sur la suite de départ (u_n) :

Proposition:

Si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 et que $v_n \underset{n \to +\infty}{\longrightarrow} \ell$ (fini ou infini), alors $u_n \underset{n \to +\infty}{\longrightarrow} \ell$.

(c.f. chapitre 9)

Ceci nous donner une nouvelle méthode pour calculer la limite d'une suite : trouver un équivalent simple .

Attention aux déformations de cette proposition :

- Si (u_n) et (v_n) ont la même limite, on ne peut pas conclure que $u_n \underset{n \to +\infty}{\sim} v_n$. Contre-exemple:
- Si (u_n) a une limite, alors (u_{n+1}) a la même limite; mais même dans ce cas particulier, on ne peut pas conclure que $u_n \underset{n \to +\infty}{\sim} u_{n+1}$. Contre-exemple:

Proposition:

Si à partir d'un certain rang, $u_n \leq v_n \leq w_n$, et s'il existe une suite (a_n) non nulle à partir d'un certain rang telle que $u_n \underset{n \to +\infty}{\sim} a_n$ et $w_n \underset{n \to +\infty}{\sim} a_n$, alors

$$v_n \underset{n \to +\infty}{\sim} a_n$$

Démonstration 10

Exemples à connaître

Proposition:

Si
$$u_n \xrightarrow[n \to +\infty]{} 0$$
:

Démonstration 11

Exemples:

$$u_n = \sin\frac{1}{n}$$
$$v_n = \sin\frac{1}{\sqrt{n}}$$

et
$$u_n + v_n$$
?

Autres exemples d'application :

a) Équivalent simple de
$$u_n = \ln\left(1 + \sin\frac{1}{n}\right)$$
 b) Limite de $u_n = \left(\frac{n+1}{n-1}\right)^n$

b) Limite de
$$u_n = \left(\frac{n+1}{n-1}\right)^n$$

Démonstration 12

Proposition:

(Polynômes) Pour
$$a_0, \ldots, a_p$$
 dans \mathbb{K} avec $\boxed{a_p \neq 0}$,
$$a_0 + a_1 n + a_2 n^2 + \cdots + a_p n^p \underset{n \to +\infty}{\sim} a_p n^p$$

4.b Pour les fonctions

La définition et les propriétés sont similaires; une différence est bien sûr que, pour les suites, n ne peut tendre que vers $+\infty$, alors qu'ici on se place en un point a qui peut être fini ou $\pm\infty$.

Il y aura un résultat supplémentaire concernant la "composition".

Dans la suite, sauf mention contraire, on considerera des fonctions (f, g, h...) définies sur un intervalle I, et $a \in \mathbb{R} \cup \{-\infty, +\infty\}$ un point ou une extrémité de I.

Définition:

On suppose que g ne s'annule pas au voisinage de a.

On dit que f est équivalente à g au voisinage de a si :

Notations : $f \sim g$ ou $f(x) \sim g(x)$.

Une définition qui marche aussi dans le cas où g s'annule au voisinage de a:

 $f(x) \underset{x \to a}{\sim} g(x) \iff$ il existe une fonction u telle que f(x) = u(x)g(x) au voisinage de a et $u(x) \underset{x \to a}{\longrightarrow} 1$

 \triangle En conséquence, $f(x) \sim_{x \to a} 0$ signifie que f est nulle au voisinage de a (rarissime!!! vérifier ses calculs dans ce cas...).

Résumons les propriétés similaires à celles des suites :

Proposition:

$$f(x) \underset{x \to a}{\sim} g(x) \Longleftrightarrow$$

En conséquence, si on connaît un développement limité ou asymptotique de f au voisinage de a, en considérant que les termes sont bien ordonnés, L'équivalent est le premier terme non nul du développement.

Exemples:

Il faut savoir traiter les polynômes; par exemple, pour $-4x^3 - 2x^2 + 1$:

Un équivalent en $+\infty$ est

Un équivalent en 0 est

Un équivalent de $-4x^3 - 2x^2 + 1 + \frac{7}{\sqrt{x}}$ en 0 est

Proposition:

(Équivalents usuels)

$$\bullet \quad \exp(x) - 1 \underset{x \to 0}{\sim} x$$

$$\bullet \quad \ln(1+x) \underset{x \to 0}{\sim} x$$

•
$$\ln(1+x) \underset{x\to 0}{\sim} x$$

• $\forall \alpha \in \mathbb{R}, (1+x)^{\alpha} - 1 \underset{x\to 0}{\sim} \alpha x$

• En particulier
$$\sqrt{1+x} - 1 \underset{x\to 0}{\sim} \frac{1}{2}x$$

•
$$\sin(x) \underset{x \to 0}{\sim} x$$

•
$$\tan(x) \underset{x \to 0}{\sim} x$$

$$\bullet \quad 1 - \cos(x) \underset{x \to 0}{\sim} \frac{1}{2}x^2$$

•
$$\operatorname{sh}(x) \underset{x \to 0}{\sim} x$$

•
$$\operatorname{ch}(x) - 1 \underset{x \to 0}{\sim} \frac{1}{2} x^2$$

•
$$Arcsin(x) \underset{x\to 0}{\sim} x$$

• Arctan
$$(x) \sim x$$

Proposition:

- Soit ℓ fini non nul . $f(x) \underset{x \to a}{\longrightarrow} \ell \iff f(x) \underset{x \to a}{\sim} \ell$
- Si $f(x) \underset{x \to a}{\sim} g(x)$ et... si g est > 0 au voisinage de a (resp. < 0, resp. non nulle) alors g aussi. si $g(x) \xrightarrow[x \to a]{} \ell \in \overline{\mathbb{R}}$, alors $f(x) \xrightarrow[x \to a]{} \ell \in \overline{\mathbb{R}}$ aussi.
- Si $f(x) \leq g(x) \leq h(x)$ au voisinage de a, et si $f(x) \underset{x \to a}{\sim} \varphi(x)$ et $h(x) \underset{x \to a}{\sim} \varphi(x)$, alors $g(x) \underset{x \to a}{\sim} \varphi(x)$.

11

Proposition:

- \sim réflexive, symétrique et transitive.
- On peut multiplier les deux membres d'un équivalent par un λ non nul
- On peut faire des produits, des quotients membre à membre des équivalents;
- On peut les passer à la valeur absolue;
- On peut les passer à une puissance $\alpha \in \mathbb{R}$ fixée si les fonctions sont bien strictement positives au voisinage du point.

↑ On ne peut pas, de manière générale, faire de sommes ou de compositions d'équivalents.

Des contre-exemples :

On sait que $x + \sqrt{x} + \ln(x) \underset{x \to +\infty}{\sim} x$ et $-x + \ln(x) \underset{x \to +\infty}{\sim} -x$. Mais on ne peut pas sommer :

On sait que $x^2 + x \sim x$. Mais on ne peut pas composer par exp :

Comment faire alors pour trouver l'équivalent d'une somme ou d'une composition?

- passer par les o: montrer plutôt que f(x) = g(x) + o(g(x))
- ou revenir à la définition : montrer que $\frac{f(x)}{g(x)}$ tend vers 1 quand x tend vers a.

Exemples:

- a) Trouver un équivalent de $x + \tan x$ en 0.
- b) Trouver un équivalent de $\exp(-x^2 + \frac{1}{x})$ en $+\infty$.

Démonstration 13

La seule "composition" qui est autorisée, c'est une limite avec un équivalent :

Proposition:

Si
$$f(X) \underset{X \to b}{\sim} g(X)$$
 et si $\varphi(t) \underset{t \to a}{\longrightarrow} b$, alors $f(\varphi(t)) \underset{t \to a}{\sim} g(\varphi(t))$.

Démonstration 14

Exemple : déterminer un équivalent simple en 0 de $\exp(\sin t) - 1$.

Démonstration 15

Remarque: On peut montrer qu'on a le DL suivant : $Arcsin(x) = x + \frac{x^3}{6} + o(x^3)$.

12

- Quelle différence avec l'affirmation "Arcsin $(x) \sim x + \frac{x^3}{6}$ "?
- Quels équivalents intéressants déduire de ce DL?

Entraînement : Donner des équivalents simples de :

a)
$$f(x) = \ln(1+x)$$
 en $+\infty$

b)
$$f(x) = \sin(5x) + \sin(x)$$
 en 0

c)
$$f(x) = \sqrt{x+2} - \sqrt{x+1} \text{ en } +\infty$$

Démonstration 16

Application : calcul de limites

Désormais, quand c'est possible, on évite de faire des développements limités pour calculer des limites : souvent, les équivalents suffisent et constituent un outil plus rapide.

On essaiera de factoriser les expressions, et de trouver un équivalent de chaque terme; parfois on fera un DL pour un terme, mais on repassera aux équivalents dès que cela sera possible.

Exemples:

- Déterminer la limite en 0 de $f(x) = \frac{1}{\sin x} \frac{1}{x}$.
- Déterminer la limite en 1 de $g(x) = \frac{\ln^2(2-x)}{x^2 2x + 1}$.
- Déterminer la limite de $u_n = \left(\frac{1}{n} + 2 n\right) \operatorname{Arctan} \frac{1}{n}$.

Démonstration 17

4.d Conséquence : liens entre DL et extremum

Soit $f: I \to \mathbb{R}$ et a un point de I qui ne soit pas une extrémité de I.

On suppose f dérivable en a.

- (Condition nécessaire d'extremum) Nous avons vu au chapitre 12 que si f admet en a un extremum local alors f'(a) = 0, ce qui revient à dire que le DL d'ordre 1 en a de f est
- (Condition suffisante d'extremum) Si f admet un DL d'ordre 2 en a de la forme

$$f(x) = f(a) + C(x-a)^2 + o((x-a)^2)$$
 avec $C \neq 0$

alors f admet un extremum en a : un maximum si C > 0, un minimum si C < 0. En effet:

13

Plan du cours

1	Compléments sur les développements limités			
	1.a	Rappel: définition	1	
	1.b	Unicité d'un DL et conséquence	1	
	1.c	Primitivation de DL	2	
2	DL et classe \mathcal{C}^n - Formule de Taylor-Young			
	2.a	Introduction	3	
	2.b	Formule de Taylor-Young	4	
	2.c	Application de Taylor-Young : preuves de DL usuels	4	
	2.d	Application des DL ou des développements asymptotiques à connaître	4	
3	Do	omination	5	
	3.a	Pour les suites	5	
	3.b	Pour les fonctions	5	
4	$\mathbf{E}\mathbf{q}$	uivalence	6	
	4.a	Pour les suites	6	
		4.a.i Définition et premiers exemples	6	
		4.a.ii Propriétés de base	7	
		4.a.iii Lien entre \sim et o (développements limités en particulier)	8	
		4.a.iv Equivalent et signe, équivalent et limite	8	
		4.a.v Exemples à connaître	9	
	4.b	Pour les fonctions		
	4.c	Application : calcul de limites		
	4.d	Conséquence : liens entre DL et extremum	13	