Clifford Quantum Cellular Automata

Alexander Sytchev

Chair of Scientific Computing

 $\mathrm{June}\ 2,\ 2022$

Introduction

Definitions

Classes of CQCAs

Quantum Entanglement

References

Introduction

Cellular Automata

Cellular automaton:

- ► Lattice of cells
- Each cell is in one of a finite set of states
- ➤ State of each cell changes over time by applying a global ruleset

This concept can also be applied to quantum systems:

Quantum cellular automata

Example: Conway's Game of Life

- ▶ 2D lattice
- ► Cell either alive (black) or dead (white)
- ▶ Rules [2]:
 - 1. A live cell with fewer than two live neighbours dies
 - 2. A live cell with more than three live neighbours dies
 - 3. A live cell with two or three live neighbours lives
 - 4. A dead cell with exactly three live neighbours comes to life
- ► The same rules can also be seen from the perspective of the neighbors: Each cell affects its surroundings

Introduction

Definitions

Classes of CQCAs

Quantum Entanglement

References

Clifford Quantum Cellular Automata

- ► Infinite Lattice of cells with Clifford operators (Pauli X/Y/Z or identity gate)
- ▶ Most simple case: 1D spin chains
- ▶ A Clifford Quantum Cellular Automaton (CQCA) is a globally unique ruleset
 - ► Maps Clifford operators to sets of Clifford operators
 - ▶ Applied to every cell at each time step

Figure 2: Application of CQCA to a single cell

Operator Application

Clifford operator application rules:

- 1. $i \odot i = I, i \in \{I, X, Y, Z\}$ (Gates are unitary)
- 2. $i \odot I = I \odot i = i, i \in \{I, X, Y, Z\}$ (Identity is neutral)
- 3. $i \odot j = k, i \neq j \neq k \in \{X, Y, Z\}$

Rulesets

- ▶ Goal: Map Clifford operators to sets of Clifford operators
- ► Each rule is relative to the origin cell (underlined operator)
- Example:
 - $ightharpoonup X o \underline{Z}$
 - ightharpoonup Z o Z XZ

- Rules:
 - Mapping from an X gate to X and Z gates
 - Mapping from a Z gate to X and Z gates
 - Mapping from a Y gate is implicit: $Y = X \odot Z$
- Possible to define the rules by the indices (relative to the origin) for X and Z gates: $M = \begin{pmatrix} m_{X \to X} & m_{Z \to X} \\ m_{X \to Z} & m_{Z \to Z} \end{pmatrix}$
- ► Previous example ("Glider CQCA"):
 - ightharpoonup X o Z
 - ightharpoonup Z
 igh
- $M_{G} = \begin{pmatrix} \emptyset & \{0\} \\ \{0\} & \{-1,1\} \end{pmatrix}$
 - ightharpoonup Implicit rule: $Y \to ZYZ$

Classes of CQCAs

Classes of CQCAs

CQCAs can be sorted into 3 classes:

- 1. Glider CQCAs
- 2. Fractal CQCAs
- 3. Periodic CQCAs

Glider CQCAs

Glider rules:

- ightharpoonup X o Z
- ightharpoonup Z ightharpoonup ZXZ
- ▶ Implicit rule: $Y \rightarrow Z\underline{Y}Z$

Figure 3: Evolution of M_G

Fractal CQCAs

The rule set $M_F = \begin{pmatrix} \{-1,0,1\} & \{0\} \\ \{0\} & \emptyset \end{pmatrix}$ produces fractal behavior

Figure 4: Evolution of M_F [1]

Periodic CQCAs

The ruleset $M_P = \begin{pmatrix} \{0\} & \emptyset \\ \{-1,1\} & \{0\} \end{pmatrix}$ produces periodic behavior

Figure 5: Evolution of M_P

Introduction

Definitions

Classes of CQCAs

Quantum Entanglement

References

Quantum Entanglement

- ► CQCAs are designed with quantum systems in mind
- Quantum systems allow quantum entanglement
- ► How to measure the entanglement in CQCAs?

- A translation invariant stabilizer state ω (for 1-dimensional lattices) is a chain of quantum states (qubits)
- ► Returns to the same state after application of a set of Clifford operator chains
- ► For CQCAs: Generators S
- Example: $\mathbb{S} = \{(\cdots I_{i-1}Z_iI_{i+1}\cdots), \forall i \in \mathbb{Z}\}$
- ► Important aspects:
 - For every such set of generators there exists a stabilizer state
 - ► The application of a CQCA results in a different set of operator chains with their own stabilizer state

Translation Invariant Stabilizer States

- ► The stabilizer state changes from ω to ω' by CQCA application
- ightharpoonup Example: CQCA with rule $Z \to \underline{X}Z$

Figure 6: Generators S before and after CQCA application

Bipartite Cuts

- ▶ The entanglement E(t) is the highest number of entangled qubit pairs with respect to any bipartite cut in S at time step t
- Chain length with the most entanglements: Take the cell c_{max} with the highest entanglement number n_{max} and add 1
- $E(t) = \lfloor \frac{1}{2} (n_{\text{max}} + 1) \rfloor$

Figure 7: Bipartite cut in \mathbb{S}

Entanglement Measurement

Figure 8: Entanglements E(t) of different CQCAs for initial configuration (\cdots IYXYI \cdots)

Entanglement Measurement

Figure 9: Continuation of E(t) of M_F

Introduction

Definitions

Classes of CQCAs

Quantum Entanglement

References

Johannes Gütschow.

Entanglement generation of clifford quantum cellular automata.

Applied Physics B, 98(4):623–633, 2010.

Nathaniel Johnston.

https://conwaylife.com/.

vaquinha.

https://tenor.com/view/glider-gun-game-of-life-conway-conway-game-of-life-gif-16861451.

4□ > 4□ > 4□ > 4□ > 4□ > 900