GEOMETRY & REPRESENTATIONS

Yun Jang jangy@sejong.edu

Disclaimer

- These slides can only be used as study material for the Computer Graphics at Sejong University
- The slides cannot be distributed or used for another purpose

Basic Elements

- Geometry is the study of the relationships among objects in an n-dimensional space
 - In computer graphics, we are interested in objects that exist in three dimensions
- Want a minimum set of primitives from which we can build more sophisticated objects
- We will need three basic elements:
 - Scalars
 - Vectors
 - Points

Coordinate-Free Geometry

- When we learned simple geometry, most of us started with a Cartesian approach
 - Points were at locations in space $\mathbf{p} = (x, y, z)$
 - We derived results by algebraic manipulations involving these coordinates
- This approach was nonphysical
 - Physically, points exist regardless of the location of an arbitrary coordinate system
 - Most geometric results are independent of the coordinate system
 - Example Euclidean geometry: two triangles are identical if two corresponding sides and the angle between them are identical

Affine Spaces

- Vector space supporting points with no origin
 - Affine: preserve colinearity and ratio of distances
- Operations
 - Vector-vector addition
 - Scalar-vector multiplication
 - Point-vector addition
 - Scalar-scalar operations
 - Note: No origin, so cannot add points!
- For any point define
 - \square 1 P = P
 - $\mathbf{D} \cdot \mathbf{P} = \mathbf{0}$ (zero vector)

Convexity

 An object is convex iff for any two points in the object all points on the line segment between these points are also in the object

Convex Hull

- □ Smallest convex object containing $P_1, P_2, \dots P_n$
- Formed by "shrink wrapping" points

Linear Independence

 \square A set of vectors $v_1, v_2, ..., v_n$ is *linearly independent* if

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$$
 iff $\alpha_1 = \alpha_2 = \dots = 0$

- If a set of vectors is linearly independent, we cannot represent one in terms of the others
- If a set of vectors is linearly dependent, as least one can be written in terms of the others

Dimension

- In a vector space, the maximum number of linearly independent vectors is fixed and is called the dimension of the space
- In an n-dimensional space, any set of n linearly independent vectors form a basis for the space
- □ Given a basis $v_1, v_2, ..., v_n$, any vector v can be written as

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

where the $\{\alpha_i\}$ are unique

Example: 3D Cartesian Space

Representation

- Until now we have been able to work with geometric entities without using any frame of reference, such as a coordinate system
- Need a frame of reference to relate points and objects to our physical world
 - For example, where is a point? Can't answer without a reference system
 - World coordinates
 - Camera coordinates

Frames

 A coordinate system is insufficient to represent points

If we work in an affine space we can add a single point, the *origin*, to the basis vectors to form a

frame

Homogeneous Coordinates

The homogeneous coordinates form for a three-dimensional point [x y z] is given as

$$\mathbf{p} = [\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}]^T = [\mathbf{w} \mathbf{x} \mathbf{w} \mathbf{y} \mathbf{w} \mathbf{z} \mathbf{w}]^T$$

We return to a three dimensional point (for $w \neq 0$) by

$$x \leftarrow x'/w$$

$$y \leftarrow y'/w$$

$$z \leftarrow z'/w$$

If w = 0, the representation is that of a vector

Note that homogeneous coordinates replaces points in three dimensions by lines through the origin in four dimensions

For w = 1, the representation of a point is [x y z 1]

Homogenous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
 - All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4 x 4 matrices
 - Hardware pipeline works with 4 dimensional representations
 - \blacksquare For orthographic viewing, we can maintain $w\!\!=\!\!0$ for vectors and $w\!\!=\!\!1$ for points
 - For perspective we need a perspective division

Example: 2D (3x3) matrices

$$\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x+a \\ y+b \\ 1 \end{pmatrix},$$

Linear transformations: rotation, reflection, etc

$$\begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Questions?

- Ask now or e-mail later
- Acknowledgements
 - Previous instructors at Purdue
 - David Ebert, ECE
 - Niklas Elmqvist, ECE
 - Previous instructors at Arizona state university
 - Ross Maciejewski
 - Textbook (Ed Angel)
 - Google Image Search
 - Copyright respective owners

TRANSFORMATIONS AND OPENGL

Yun Jang jangy@sejong.edu

Disclaimer

- These slides can only be used as study material for the Computer Graphics at Sejong University
- The slides cannot be distributed or used for another purpose

Objectives

- Introduce standard transformations
 - Rotation
 - Translation
 - Scaling
 - Shear
- Derive homogeneous coordinate transformation matrices
- Learn to build arbitrary transformation matrices from simple transformations

General Transformations

A transformation maps points to other points and/or vectors to other vectors

Affine Transformations

- Line preserving
- Characteristic of many physically important transformations
 - Rigid body transformations: rotation, translation
 - Scaling, shear
- Need only transform endpoints of line segments and let implementation draw line segment between transformed endpoints

Translation

Move (translate, displace) a point to a new location

- Displacement determined by a vector d
 - Three degrees of freedom
 - □ P'=P+d

Translation Using Representations

Using the homogeneous coordinate representation in some frame

$$\mathbf{p} = [x y z 1]^{T}$$

$$\mathbf{p}' = [x' y' z' 1]^{T}$$

$$\mathbf{d} = [dx dy dz 0]^{T}$$

Hence $\mathbf{p'} = \mathbf{p} + \mathbf{d}$ or

$$x'=x+d_{x}$$

$$y'=y+d_{y}$$

$$z'=z+d_{z}$$

note that this expression is in four dimensions and expresses point = vector + point

Translation Matrix

We can also express translation using a 4 x 4 matrix **T** in homogeneous coordinates **p**'=**Tp** where

$$\mathbf{T} = \mathbf{T}(d_{x}, d_{y}, d_{z}) = \begin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together

Rotation (2D)

Consider rotation about the origin by θ degrees

 $lue{}$ radius stays the same, angle increases by heta

Rotation about the z axis

- Rotation about z axis in three dimensions leaves all points with the same z
 - Equivalent to rotation in two dimensions in planes of constant z

$$x' = x \cos \theta - y \sin \theta$$

 $y' = x \sin \theta + y \cos \theta$
 $z' = z$

or in homogeneous coordinates

$$\mathbf{p}' = \mathbf{R}_{\mathbf{Z}}(\theta)\mathbf{p}$$

Rotation Matrix

$$\mathbf{R} = \mathbf{R}_{\mathbf{Z}}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation About x and y axes

- Same argument as for rotation about z axis
 - For rotation about x axis, x is unchanged
 - For rotation about y axis, y is unchanged

$$\mathbf{R} = \mathbf{R}_{\mathbf{X}}(\mathbf{q}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R = R_{y}(q) = \begin{cases} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{cases}$$

Scaling

Expand or contract along each axis (fixed point of origin)

$$x' = s_{x} x
y' = s_{y} y
z' = s_{z} z
p'=Sp
$$S = S(s_{x}, s_{y}, s_{z}) = \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$$$

Reflection

corresponds to negative scale factors

Inverses

- Although we could compute inverse matrices by general formulas, we can use simple geometric observations
 - Translation: $\mathbf{T}^{-1}(d_x, d_y, d_z) = \mathbf{T}(-d_x, -d_y, -d_z)$
 - Rotation: $\mathbf{R}^{-1}(\theta) = \mathbf{R}(-\theta)$
 - Holds for any rotation matrix
 - Note that since $cos(-\theta) = cos(\theta)$ and $sin(-\theta) = -sin(\theta)$

$$\mathbf{R}^{-1}(\theta) = \mathbf{R}^{\mathrm{T}}(\theta)$$

□ Scaling: $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$

Order of Transformations

- Matrix on the right is applied first
- Mathematically, the following are equivalent

$$p' = ABCp = A(B(Cp))$$

- Note: many references use column matrices to represent points
 - In terms of column matrices:

$$\mathbf{p}^{\mathsf{T}} = \mathbf{p}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}}$$

General Rotation About the Origin

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes

$$\mathbf{R}(\mathbf{q}) = \mathbf{R}_{z}(\mathbf{q}_{z}) \; \mathbf{R}_{y}(\mathbf{q}_{y}) \; \mathbf{R}_{x}(\mathbf{q}_{x})$$

 $q_x q_y q_z$ are called the Euler angles

Note that rotations do not commute We can use rotations in another order but with different angles

Rotation About a Fixed Point other than the Origin

Move fixed point to origin

Rotate

Move fixed point back

$$\mathbf{M} = \mathbf{T}(\mathbf{p}_{\mathbf{f}}) \mathbf{R}(\mathbf{\theta}) \mathbf{T}(-\mathbf{p}_{\mathbf{f}})$$

TRANSFORMATIONS IN OPENGL

Yun Jang jangy@sejong.edu

Objectives

- Learn how to carry out transformations in OpenGL
 - Rotation
 - Translation
 - Scaling
- Introduce OpenGL matrix modes
 - Model-view
 - Projection

OpenGL Matrices

- OpenGL: matrices are part of the state
- Multiple types
 - Model-View (GL MODELVIEW)
 - Projection (GL_PROJECTION)
 - Texture (**GL TEXTURE**) (ignore for now)
 - Color (GL COLOR) (ignore for now)
- Single set of functions for manipulation
- Select which to manipulated by
 - glMatrixMode(GL MODELVIEW);
 - glMatrixMode(GL_PROJECTION);

Current Transformation Matrix (CTM)

- Conceptually there is a 4 x 4 homogeneous coordinate matrix, the current transformation matrix (CTM) that is part of the state and is applied to all vertices that pass down the pipeline
- The CTM is defined in the user program and loaded into a transformation unit

CTM operations

 The CTM can be altered either by loading a new CTM or by postmutiplication

```
Load an identity matrix: \mathbf{C} \leftarrow \mathbf{I}
Load an arbitrary matrix: \mathbf{C} \leftarrow \mathbf{M}
```

```
Load a translation matrix: \mathbf{C} \leftarrow \mathbf{T}
Load a rotation matrix: \mathbf{C} \leftarrow \mathbf{R}
Load a scaling matrix: \mathbf{C} \leftarrow \mathbf{S}
```

```
Postmultiply by an arbitrary matrix: \mathbf{C} \leftarrow \mathbf{CM}
Postmultiply by a translation matrix: \mathbf{C} \leftarrow \mathbf{CT}
Postmultiply by a rotation matrix: \mathbf{C} \leftarrow \mathbf{C} \mathbf{R}
Postmultiply by a scaling matrix: \mathbf{C} \leftarrow \mathbf{C} \mathbf{S}
```

Rotation About a Fixed Point

Start with identity matrix: $\mathbf{C} \leftarrow \mathbf{I}$

Move fixed point to origin: $C \leftarrow CT$

Rotate: $\mathbf{C} \leftarrow \mathbf{C}\mathbf{R}$

Move fixed point back: $\mathbf{C} \leftarrow \mathbf{C}\mathbf{T}^{-1}$

Result: $C = TR T^{-1}$ which is **backwards**.

This result is a consequence of doing postmultiplications. Let's try again.

Reversing the Order

We want $C = T^{-1} R T$ so we must do the operations in the following order

$$\begin{aligned} \mathbf{C} &\leftarrow \mathbf{I} \\ \mathbf{C} &\leftarrow \mathbf{C} \mathbf{T}^{-1} \\ \mathbf{C} &\leftarrow \mathbf{C} \mathbf{R} \\ \mathbf{C} &\leftarrow \mathbf{C} \mathbf{T} \end{aligned}$$

Each operation corresponds to one function call in the program.

Note that the last operation specified is the first executed in the program

CTM in OpenGL

- OpenGL has a model-view and a projection matrix in the pipeline which are concatenated together to form the CTM
- Can manipulate each by first setting the correct matrix mode

Rotation, Translation, Scaling

```
Load an identity matrix:
     glLoadIdentity()
 Multiply on right:
     glRotatef(theta, vx, vy, vz)
           theta in degrees, (vx, vy, vz) define axis of rotation
     glTranslatef(dx, dy, dz)
     glScalef(sx, sy, sz)
      Each has a float (f) and double (d) format (glScaled)
```

Example

□ Rotation about z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)

```
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(1.0, 2.0, 3.0);
glRotatef(30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);
```

 Remember that last matrix specified in the program is the first applied

Arbitrary Matrices

 Can load and multiply by matrices defined in the application program

```
glLoadMatrixf(const Glfloat *m)
glMultMatrixf(const Glfloat *m)
```

- The matrix m is a one dimension array of 16 elements which are the components of the desired 4 x 4 matrix stored by columns
- In glMultMatrixf, m multiplies the existing matrix on the right

Row vs. Column-major Order

How to lay out a 2D array in memory?

- - Rows: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
 - Columns: a, e, i, m, b, f, j, n, c, g, k, o, d, h, l, p
- OpenGL expects column-major
 - C stores in row-major
 - float data[4][4] = { { a, b, c, d}, {e, f, g, h}, ...};
 - Need to transpose before sending to OpenGL

Matrix Stacks

- In many situations we want to save transformation matrices for use later
 - Traversing hierarchical data structures (Chapter 10)
 - Avoiding state changes when executing display lists
- OpenGL maintains stacks for each type of matrix
 - Access present type (as set by glMatrixMode) by glPushMatrix() glPopMatrix()

```
int main(int argc, char** argv)
  glutInitWindowSize(500, 500);
  glutInitWindowPosition(200, 200);
  glutCreateWindow("Coordinates");
/* create a callback routine for (re-)display */
  glutDisplayFunc(display);
```

```
49
```

```
void display()
      /* clear the screen*/
      glClear(GL_COLOR_BUFFER_BIT);
      glMatrixMode(GL_MODELVIEW);
      glLoadIdentity();
      glColor3f(1, .5, .5);
       drawAxes();
Void drawAxes(){
      glBegin(GL_LINES);
                   glVertex2f(0, -.2);
                   glVertex2f(0, .2);
       glEnd();
       glBegin(GL LINES);
                   glVertex2f(-.2, 0);
                   glVertex2f(.2, 0);
      glEnd();
```


- Now I want to move my local coordinate system to (.2, .2)
- What do I do? glTranslatef(.2, .2, 0); glColor3f(0, 1, 1); drawAxes();

 Now I want to rotate an object about the center of my new local coordinate system

■ What do I do?

glTranslatef(.35, .35, 0); glRotatef(angle, 0, 0, 1) drawAxes()

Now I want to rotate an object about the center of my

new local coordinate sys

What do I do?

glRotatef(angle, 0, 0, 1); glTranslatef(.35, .35, 0); glRotatef(-angle, 0, 0, 1); drawAxes()

Your new local coordinate system is rotated if you don't add this in!

