BIPOLAR LINEAR INTEGRATED CIRCUIT

TA7504P/S

T-79-05-10

Unit in mm

SINGLE OPERATIONAL AMPLIFIER OPERATIONAL AMPLIFIER DC AMPLIFIER

. High Gain

: $G_V=1\times10^5 (Typ.)$

SILICON MONOLITHIC

. Low Power Dissipation

: P_D≈50mW (Typ.)

. High Common Mode Input Voltage : CMV_{IN}=±13V (Typ.)

. High Differential Input Voltage: DV $_{\mbox{IN}} = 30$ (Typ.)

. Low Input Offset Voltage

: $V_{IO}=1mV$ (Typ.)

. No Frequency Compensation

. Absence of Latch-up . Offset Null Capability

. Short Circuit Protection

6.5 MAX 10.0 MAX SOMAX 1.2±015 2.54 ± 0.25 Lead pitch is 2.54 and tolerance is ±0.25 against theoretical center of each lead that is obtained on the basis of No.1 and No.8 leads. JEDEC TOSHIBA 3 D8 A -P

VOLTAGE OFFSET NULL CIRCUIT

MAXIMUM RATINGS (Ta=25°C)

TIVATION NOTICE					
CHARACTERIS	SYMBOL	RATING	UNIT		
Supply Voltage	V _{CC} ,V _{EE}	±18	V		
Differential Input	DVIN	±30	V		
Input Voltage	VIN	$V_{CC} \sim V_{EE}$	V		
Power Dissipation	TA7504P	_	300	mW	
	TA7504S	PD	400		
Operating Temperature		Topr	~30 ~75	°c	
Storage Temperature		Tstg	-55 ~125	°С	

Unit in mm

Lead pitch is 2.54 and tolerance is ±0.25 against theoretical center of each lead that is obtained on the basis of Nc.1 lead.

JEDEC		
TOSHIBA	S7A-P	

TA7504P/S

But the State of Later and the same in come

ELECTRICAL CHARACTERISTICS (v_{CC} =15v, v_{EE} =-15v, t_a =25 o c)

FFFOUNTOUS COMMUNICIPATION (.	JC , . 1	٠	· · · · · · · · · · · · · · · · · · ·				
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	VIO	1	$R_g \leq 10 k\Omega$		1	5	mV
Input Offset Current	IIO	2	-		30	200	nA
Input Bias Current	II	2	-	-	200	500	nA
Common Mode Input Voltage	CMVIN	3	-	±12	±13		V
Maximum Output Voltage	VOM	4	$R_L \ge 10 k\Omega$	±12	±14	_	v
	V _{OMR}		$R_L \ge 2k\Omega$	±10	±13	-	
Maximum Output Voltage Swing	V _{Op-p}	5	$R_L=10k\Omega$, $f=1kHz$	24	28	-	V
Output Short Circuit Current	Ios	4	-	-	±20	-	mA
Input Impedance	ZIN	-	f=1kHz	0.3	1	-	MΩ
Output Impedance	ZOUT	_	f=1kHz	-	60	- _	Ω
Voltage Gain	GV	_	$R_L=2k\Omega$, $V_{OUT}=\pm10V$ f=10kHz	20	100	_	×10 ³
Common Mode Input Signal Rejection Ratio	CMRR	3	CMV _{IN} =±10V, f=100Hz	70	90	-	dВ
Supply Voltage Rejection Ratio	SVRR	1	Rg ≤10kΩ	_	30	150	μV/V
Power Dissipation	PD	6	-	-	50	85	mW
Temperature Coefficient of Input Offset Voltage	AV _{IO} /AT	1	$R_g \le 10 k\Omega$, $Ta=-30 \sim 75^{\circ}C$	-	5	50	μV/ ^O C
Slew Rate	SR	7	$R_L=2k\Omega$	-	0.5	- _	V/μs
Rise Time	tr	. 8	C_L =100pF, R_L =2k Ω	-	0.3	-	μs
Over Short	eover			-	5	-	%
Input Noise Voltage	e _{np-p}	9	R _g =10kΩ, f=0~100Hz	-	6	-	μV
Infac merce series	I IIP P	1	1 6	<u> </u>	<u> </u>	<u> </u>	٠

TEST CIRCUIT

(1) V_{IO} , $\Delta V_{IO}/\Delta T$, SVRR

$v_{IO}=v_{OUT}/1000$

$$SVRR = \frac{V_{OUT} - V_{OUT}}{1000 \times 5}$$

 V_{OUT1} ; (V_{CC}, -V_{EE} = 17.5(V) V_{OUT2} ; (V_{CC}, -V_{EE} = 12.5(V) $\Delta V_{IO}/\Delta T = |V_{IO}(25^{\circ}C) - V_{IO}(-30^{\circ}C)|/55$ $\Delta V_{IO}/\Delta T = |V_{IO}(25^{\circ}C) - V_{IO}(75^{\circ}C)|/50$

(2) I_{I} , I_{IO}

I₁₀=| I₁₂-I₁₃|

$$I_{I} = \frac{I_{I}2 + I_{I}3}{2}$$

(3) CMV_{IN}, CMRR

$$ext{CMV}_{ ext{IN}}$$
 : $ext{V}_{ ext{OUT}}$ = $\pm 10 ext{(V}_{ ext{DC}})$, $ext{V}_{ ext{IN}}$ MEASURED

CMRR = 20
$$\log \frac{VIN}{\frac{VOUT}{1000}} = 20 \log \frac{7070}{VOUT}$$
 (dB)

(4) V_{OM}, V_{OMR}, I_{OS}

 v_{OM},v_{OMR} : SW_2 : OPEN CIRCUIT

SW1 : TERMINAL 1 OR 5

 I_{OS} : SW_2 : SHORT CIRCUIT

SW1 : TERMINAL 1 OR 5

(5) G_V, V_{Op-p}

C : DC COUPLE

CI : HF BYPASS

ω≫1/RC

GV=VOUT/VIN

 $P_D = (V_{CC} - V_{EE})$ I_{CC}

 $=(V_{CC}-V_{EE})$ IEE

(7) SR

(8) RESPONSE TIME

(9) e_{np-p}

$$e_{np-p}=(|+V_{Opeak}| + |-V_{Opeak}|) \times 10$$
 (V)

T-79-05-10

TA7504P/S

