Aseguramiento de Calidad del Software

Docente: Silvia Alejandra Andrade Rodríguez

Equipo: QSC (Quality Software and Consulting)

Proyecto Line Clothes

1. Descripción del problema

 Realizar un sistema que pueda gestionar los productos, ventas, cambios, devoluciones y envíos de una tienda de ropa.

2. Modelos y Estándares de Calidad

Modelo en el Proceso

Modelo en el Producto

Estándares de Calidad

3. Calidad en el Proceso

Proceso de Mejora, de forma disciplinada. Encontrar los defectos en fases

tempranas del Proceso.

Medir su trabajo, analizar sus resultados.

Productos Obtenidos

Análisis de Defectos

Productos Obtenidos

Análisis de Planeación

Herramientas Utilizadas

4. Calidad en el producto

Modelos de calidad de Productos

Boehm (1976) McCall (1977) Arthur (1985) FURPS (187) Gilb (1988)

Deutch (1988) Schulmeyer (1990), Gillies (1992) Drome (1995) ISO-9126 (2001)

Modelo de McCall

- Revisión del producto (capacidad de cambio)
- Transición del producto (capacidad de adaptación)
- Operaciones del producto (características básicas del producto).

Modelo de Boehm

- Realice lo que desea el usuario
- Utilice recursos informáticos de manera correcta y eficiente
- Sea fácil de utilizar y aprender
- Sea bien diseñado, codificado, probado y mantenido.

ISO IEC 9126

 Define seis factores de calidad, que se consideran tanto internos como externos (funcionalidad, fiabilidad, usabilidad, eficiencia, facilidad de mantenimiento y portabilidad)

5. Calidad del código

EXCELENCIA:

Un código que más allá de programar las funcionalidades requeridas, esté libre de errores, sea claro, simple y orientado a objetos.

CALIDAD:

Conjunto de propiedades que le confieren la capacidad para satisfacer las necesidades implícitas o explícitas para las que se ha desarrollado

"Desarrollar el código que permita proveer al cliente de un producto que satisfaga sus necesidades"

Código duplicado:

 Este término se utiliza cuando hablamos de un código fuente que aparece más de una vez, ya sea dentro de uno o diferentes programas, de propiedad o mantenido, por la misma entidad.

Código muerto

 Es el código que se encuentra en nuestra aplicación, pero nunca es utilizado. Normalmente aparece después de hacer refactor en nuestro código.

Estándares de codificación

• Se refiere a convenciones para escribir código fuente, las cuales frecuentemente son dependientes del lenguaje de programación.

Bugs

 Un bug es un error o un defecto en el software que hace que un programa funcione de forma incorrecta.

Complejidad ciclomática

 Es una métrica de calidad software basada en el cálculo del número de caminos independientes que tiene nuestro código.

```
public class cls factura {
private final String select = "SELECT * FROM TICKET";
private PreparedStatement PS;
private DefaultTableModel DT, DT1;
private ResultSet RS;
private final cls conexion CN;
public cls factura() {
     PS=null;
    CN= new cls conexion();
```


6. Metodologías Ágiles

¿Que es una metodología ágil?

 Por definición, las metodologías ágiles son aquellas que permiten adaptar la forma de trabajo a las condiciones del proyecto, consiguiendo flexibilidad e inmediatez en la respuesta para amoldar el proyecto y su desarrollo a las circunstancias específicas del entorno.

¿Por qué se usar las metodologías ágiles?

- Mejora de la calidad del producto: Estas metodologías fomentan el enfoque proactivo de los miembros del equipo en la búsqueda de la excelencia del producto. Además, la integración, comprobación y mejora continúa de las propiedades del producto mejora considerablemente el resultado final.
- Mayor satisfacción del cliente: El cliente está más satisfecho al verse involucrado y comprometido a lo largo de todo el proceso de desarrollo. Mediante varias demostraciones y entregas, el cliente vive a tiempo real las mejoras introducidas en el proceso
- Mayor motivación de los trabajadores: Los equipos de trabajo autogestionados, facilitan el desarrollo de la capacidad creativa y de innovación entre sus miembros.

- Trabajo colaborativo: La división del trabajo por distintos equipos y roles junto al desarrollo de reuniones frecuentes, permite una mejor organización del trabajo.
- Uso de métricas más relevantes: Las métricas utilizadas para estimar parámetros como tiempo, coste, rendimiento, etc. son normalmente más reales en proyectos ágiles que en los tradicionales. Gracias a la división en pequeños equipos y fases podemos ser más conscientes de lo que está sucediendo.
- Mayor control y capacidad de predicción: La oportunidad de revisar y adaptar el producto a lo largo del proceso ágil, permite a todos los miembros del proyecto ejercer un mayor control sobre su trabajo, cosa que permite mejorar la capacidad de predicción en tiempo y costes.

TABLEROS KANBAN Y TRELLO

Los tableros de su equipo

Crear un tablero nuevo 5 restantes

Tableros del equipo

