## Data Science Capstone Final Project

Tarini Ghosh

## Using Four-Square API to get venue type information for each neighborhood

- Using Four-Square API, I downloaded the venuetypes for each neighborhood belonging to the two cities
- The types of venues were then categorized as 'found in both cities', 'found only in Toronto' and 'Found only in New York'
- Let's first focus on those 'found in both cities'.
- Even within them there were differences.

### Top 20 venue-types having higher prevalence in either cities

### **New York Toronto**

Toronto New York LogFoldChange

|                               | TOTOTICO | New York | LogroidChange |
|-------------------------------|----------|----------|---------------|
| ['Bus Station']               | 0.001947 | 0.027586 | -2.650811     |
| ['Mobile Phone Shop']         | 0.000974 | 0.010345 | -2.363129     |
| ['Martial Arts Dojo']         | 0.000974 | 0.006897 | -1.957663     |
| ['Shoe Store']                | 0.002921 | 0.013793 | -1.552198     |
| ['Supermarket']               | 0.005842 | 0.025862 | -1.487660     |
| ['Deli / Bodega']             | 0.009737 | 0.036207 | -1.313306     |
| ['Supplement Shop']           | 0.001947 | 0.006897 | -1.264516     |
| ['Baseball Field']            | 0.001947 | 0.006897 | -1.264516     |
| ['Moving Target']             | 0.000974 | 0.003448 | -1.264516     |
| ['Metro Station']             | 0.003895 | 0.012069 | -1.130985     |
| ['Playground']                | 0.002921 | 0.008621 | -1.082195     |
| ['Market']                    | 0.001947 | 0.005172 | -0.976834     |
| ['Latin American Restaurant'] | 0.005842 | 0.015517 | -0.976834     |
| ['Discount Store']            | 0.008763 | 0.022414 | -0.939094     |
| ['Bank']                      | 0.014606 | 0.032759 | -0.807758     |
| ['Chinese Restaurant']        | 0.014606 | 0.032759 | -0.807758     |
| ['Food Truck']                | 0.003895 | 0.008621 | -0.794513     |
| ['Mexican Restaurant']        | 0.009737 | 0.018966 | -0.666679     |
| ['Pharmacy']                  | 0.018500 | 0.034483 | -0.622662     |

|                         | TOTOTICO | New Tork | LogroidChange |
|-------------------------|----------|----------|---------------|
| ['Cheese Shop']         | 0.004869 | 0.001724 | 1.038069      |
| ['Art Gallery']         | 0.009737 | 0.003448 | 1.038069      |
| ['Café']                | 0.029211 | 0.010345 | 1.038069      |
| ['Indian Restaurant']   | 0.010711 | 0.003448 | 1.133379      |
| ['Bagel Shop']          | 0.005842 | 0.001724 | 1.220390      |
| ['Breakfast Spot']      | 0.017527 | 0.005172 | 1.220390      |
| ['Clothing Store']      | 0.012658 | 0.003448 | 1.300433      |
| ['Thai Restaurant']     | 0.012658 | 0.003448 | 1.300433      |
| ['Farmers Market']      | 0.006816 | 0.001724 | 1.374541      |
| ['Sporting Goods Shop'] | 0.007790 | 0.001724 | 1.508072      |
| ['Yoga Studio']         | 0.008763 | 0.001724 | 1.625855      |
| ['Greek Restaurant']    | 0.008763 | 0.001724 | 1.625855      |
| ['Sushi Restaurant']    | 0.017527 | 0.003448 | 1.625855      |
| ['Lounge']              | 0.008763 | 0.001724 | 1.625855      |
| ['French Restaurant']   | 0.009737 | 0.001724 | 1.731216      |
| ['Beer Bar']            | 0.009737 | 0.001724 | 1.731216      |
| ['Steakhouse']          | 0.011685 | 0.001724 | 1.913538      |
| ['Dessert Shop']        | 0.011685 | 0.001724 | 1.913538      |
| ['Bookstore']           | 0.014606 | 0.001724 | 2.136681      |
| ['Japanese Restaurant'] | 0.021422 | 0.001724 | 2.519673      |

Toronto New York LogFoldChange

# Kinds of venues specifically high in either cities displayed specific trends

### Restaurants:

- Deli, Latin American, Chinese and Mexican Restaurants were higher in New York
- Asian (Thai, Japanese, Indian, Sushi) and European (Greek, French, Bagel shop) were higher in Toronto
- Farmers' markets, Art gallery, Yoga studio, Book store:
  Toronto
- Baseball field, Food trucks, Supermarkets, Discount store, Banks: New York
- Identification of such differences could help individuals interested for setting up businesses in specific cities.

## Probing which neighborhoods are similar to each other across both cities

- Using Multivariate Principal Component Analysis, we can identify similarities among neighborhoods
- The objective was to first check if we could group neighborhoods across both cities into clusters.
- This will be important for someone who wants to move from one city to another and wants to explore similar neighborhoods

# PCA plot of neighborhoods from two cities shows three groupings



### Three groupings

- There are three distinct groups, one covering neighborhoods from both cities, the other with a larger spread and containing only neighborhoods from Toronto, the third an outlier group dominated by those from New York.
- Further validated using k-means

## K-means clustering (k=3) also shows exact the same trend



- Cluster1 Neighborhoods (found in both cities)
- OCluster2 Neighborhoods (Toronto dominated)
- Ocluster3 Neighborhoods (New York dominated)

### Conclusion

- The above analysis gives a rough overview of how cities can be compared among each other, to identify:
- a. Neighborhoods that are similar (important especially for travelers and people trying to look into similar neighborhoods for moving in).
- b. What venues are highly prevalent or less prevalent across cities and venues (important especially for individuals looking to set up business).