议题凸显与关联构建: Twitter 社交机器人对 新冠疫情讨论的建构。

师 文 陈昌凤

【内容摘要】 在海外社交平台 Twitter 上,社交机器人参与到新冠疫情的英文讨论中,并进行议题的凸显 和关联构建。结构化主题模型和语义相似度计算的结果显示,就讨论的主题而言,虽然人类更关注美国 国内疫情,但是社交机器人热衷于发布世界上其他国家的疫情;社交机器人还被用于发布疫情流行的动 态。就关联构建而言,在社交机器人的语料中,与"coronavirus"(冠状病毒)最相似的词汇为"wuhancoronavirus"(武汉冠状病毒) 而在人类语料中 最相似的词汇为"virus"(病毒) 这反映出社交机器人试图在 病毒起源问题上进行倾向性影射,而人类的表述则更为客观中性。此外,社交机器人常常标榜其发布的 内容为 "coronavirustruth" (新冠疫情的真相) 但是人类则更常使用 "rumor" (谣言) 一词 表达对信息的批 判性审视。

【关键词】 计算传播学; 社交机器人; 新型冠状病毒; 社交媒体

一、引言

在世界范围内,社交媒体被认为是可以有效促进 民主化及社会运动的平台①,社交媒体上的文本数据 也被视作推测公众意见的"传感器"2。2020年初, 新型冠状病毒肺炎在全球范围内的流行成为重大的 风险事件 在疫情风险充斥现实空间的背景下,线下 对话的空间进一步被挤压。对于公众而言,社交媒 体成为理解危机事件的重要渠道; 对于政策制定者 而言,社交媒体上因承载海量公共讨论,因此既扮演 公众认知的"传感器",也成为各利益相关方角逐的 焦点,实则扮演着反映和塑造公众认知的渠道性工 具。基于此背景,社交媒体上公共讨论的真实性与 透明性,关乎公众是否在免于操纵的情况下理性构 建对新冠疫情的认知,也关乎政策决策者对公众意 见的掌握是否真实。

但是 越来越多的证据显示 社交媒体上大量信息 的作者并非人类,而是由被自动化软件控制的社交机 器人所生产。^③纵然社交平台一直在试图识别并清除 社交机器人,但社交机器人可以进行行为的策略性调 整以规避检测。^④活跃的 Twitter 帐户中约有 9% 到 15%属干社交机器人。⑤社交机器人往往被批量生产 并投入使用 在自动化脚本的控制下模仿人类行为 比 如发布内容并与其他用户互动社交。实证研究发现, 社交机器人已经具备激发人类用户与之互动的能

力 简单的策略化运营方案即可将机器人帐户提升 为有影响力的用户。"少量社交机器人(占用户总量的 5%-10%) 即足以引发沉默的螺旋,从而改变公众舆 论的走向。®在 Facebook 上,社交机器人对社交关系网 渗透的成功率高达80%。9

此前的研究和报道已经发现 在新冠疫情相关的 社交媒体讨论中存在大量的社交机器人,在此基础 上,本研究试图进一步探讨社交机器人在疫情讨论 中扮演的角色:(1)新冠疫情的流行与防控是兼具政 治属性和公共卫生属性的复杂公共事件,公众对新 冠疫情的认知理应整体、系统,在新冠疫情的讨论 中,社交机器人和人类在话题倾向上有何种差异? 社交机器人如何构建其他概念与新冠病毒的关联? (2) 新冠疫情在全世界范围内的扩散使其与国际政 治发生了密切关联,中国和美国曾就疫情问题在舆 论场上数次交锋,在涉及到中国时,社交机器人和人 类在话题倾向上有何种差异? 社交机器人如何构建 其他概念与中国的关联?

本文采用计算传播学方法回应以上问题,通过对 海外社交平台 Twitter 上与新冠疫情相关的英文推文 进行文本挖掘 将作者身份作为协变量引入文本的结 构化主题模型以探讨作者身份对话题流行度的影响。 此外 我们计算了机器人和人类语料库中的特定概念 之间的语义相似度,以期厘清自动化舆论操纵在新冠

^{*} 本文系国家社科基金重大项目"智能时代的信息价值观引领研究"(项目编号: 18ZDA307)的研究成果。 (C) 1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 现代传播 2020 年第 10 期(总第 291 期)

疫情讨论中所扮演的角色。

二、相关文献

1. 社交机器人与健康传播

此前研究发现,社交机器人积极介入了公共健康 卫生事件的讨论。有些社交机器人被用于实现良善目 的 如科学家曾设计了个性化社交机器人用于科普 以 期对吸烟者进行个性化干预,提升公共健康意识。10但 在更多情况下 机器人被认为是公共健康事件讨论中 的恶意行动者 对公共健康构成威胁。此前研究发现, 社交机器人会蓄意扩大健康议题中的某些侧面,而回 避另一些侧面。比如,社交机器人倾向于强调大麻在 治疗身体和心理疾病方面的医学效用,但较少谈及大 麻的危害性¹¹,机器人还声称电子烟是有效的戒烟辅 助工具,并出于商业目的对某些品牌的电子烟进行推 销 以及在疫苗接种的辩论中 社交机器人高频转发与 其意见一致的用户的信息®,支持疫苗和反对疫苗的 机器人策略性地同时扩大对立双方的声音®,通过"错 误平衡"(false balancing) 在疫苗有效性方面制造争议, 以动摇公众接种疫苗的决心。

目前 新冠疫情的公共讨论中使用社交机器人进 行舆论操纵的现象已经引发广泛关注,但是目前各方 尚未就机器人的角色达成共识。此前,有媒体称中国 社交机器人参与推广了 Twitter 上的话题标签#grazieCina 以期宣传中国在新冠疫情中对意大利的帮助。[®] 《纽约时报》也发文指控社交机器人参与转发剑桥大 学关于疫情的论文,该论文对病毒的中国起源论表示 质疑; 同时,由于Twitter上有两条称赞中国对疫情作 出快速响应的推文得到大量转发,《纽约时报》推断其 背后有社交机器人的贡献。⑤但是,学术界的发现却有 所不同,有学者通过关键词的词频统计,发现在关于新 冠肺炎的讨论中 社交机器人常常触及香港修例、台湾 问题、维吾尔族人权问题,但是该学者认为社交机器人 在新冠疫情危机中对此类问题的讨论可使中国侵犯言 论自由和人权行为得到关注,并称社交机器人"促进了 民主讨论"。

2. 社交机器人与中国议题

社交机器人被广泛应用于国内及国际政治博弈 中。社交机器人往往以较高的频次发布大量信息 制 造对某一方的虚假支持或抹黑。例如,在英国脱欧公 投中,支持脱欧与反对脱欧的最活跃用户均为社交机 器人,机器人用户贡献了英国脱欧讨论总流量的 32% ® ,它们还相互勾连、快速形成中小型的机器人转 人大规模重复发布和转发同一条消息 降低信息环境 的多样性。[®]尤其值得注意的是,社交机器人发布内容 的真实性有待商榷 例如在委内瑞拉政治议题中 社交 机器人伪装成政治领袖、政府机构以推广特定政治 信息。

在 2016 年美国大选中 ,IRA(俄罗斯互联网研究 机构) 曾被指控系统性地使用虚假社交媒体账号干 预美国政治议程³⁰,并影响特定意识形态的用户对信 息的转发。20在法国大选的线上讨论中,大量社交机 器人积极参与到"马克龙泄密"事件的传播中,而这 些机器人的个人简介中却包含美国大选的竞选口 号,研究者认为甚至存在专门进行社交机器人交易 的黑市,使机器人在世界范围内的各个政治事件中 被重复使用。塑

社交机器人对中国相关问题的操纵也引发了国内 外学者的关注。此前研究已经发现,大量社交机器人 和虚假账户活跃于与"中国"相关的内政外交讨论中, 有的机器人使用中文、针对使用 VPN 登录海外社交平 台的中国网民进行自动化宣传。图也有大量机器人用 英文发布内容,意图操纵英文社区内对中国相关议题 的讨论 在 Twitter 上对中国相关议题的英文讨论中, 社交机器人生产的内容占比超过五分之一 相比经济 议题 机器人更愿意讨论中国的政体和人权问题 在涉 港、澳、台、疆议题中,发表反对中国政府的立场的言 论。
學此外 在中美贸易战等事件中 ,学者也发现了社 交机器人的身影。每在香港修例风波中,大量社交机器 人扩散《纽约时报》对此事的报道,支持修例运动的关 键词在机器人的用户名和推文中高频出现。

3. 关联认知

虽然世界卫生组织倡导避免将病毒与特定地区进 行关联,但是新冠疫情与中国的关联一直是科学界和 舆论场上的焦点议题。一方面,作为首先在中国得到 报告的全球公共卫生事件,新冠疫情中的中国所扮演 的角色为全世界所关注。另外一方面,虽然病毒的起 源尚在研究中,目前来自自然科学界的证据并未将中 国与病毒起源进行关联 ,但是新冠病毒源于中国的 论调仍广为流传 美国总统特朗普用 "Chinese virus"指 代新冠病毒 美国国务卿蓬佩奥也多次公然声称新冠 病毒源自武汉病毒研究所。

认知科学认为,人类对事物的认知并非基于线性 结构 而是呈现网络状态◎ 并据此提出"关联记忆"和 "关联学习"模型®,即强调人们通过关联的方式对事 物进行学习和记忆,使人类对于特定事物的认知与对 头脑中其他事物的认知相互关联。③在认知网络中,节 点代表一个个特定的概念,并代表概念之间的关联,如 果两个概念总是被同时提及,则它们在人类头脑中的 关联会被创立或强化,如果两个概念之间已经形成了 关联,则刺激会更容易地从一个事物传导至另外 Shing House: All rights reserved. http://www.cr

姆斯在提出议程设置的第三层——网络议程设置时也 借鉴了关联记忆和关联认知模型。他认为鉴于个体基 于关联关系对事物形成认知,那么媒体上对事物关联 的呈现会影响用户构建概念之间的绑定关系,即媒体 可以通过强调某些概念之间的关联,使它们在人类头 脑中的关联更加显著,进而将对事物之间关联的塑造 引入效果研究视野。3

虽然人类头脑中对事物中的关联建构难以被直接 测量 但是语言学家认为 通过观察人类语言中对事物 之间关联性的呈现,可以反向推测头脑中对于事物之 共现关系进行语义网络分析 ,呈现围绕特定议题的网 络化认知。等但是随着自然语言处理技术的发展,词汇 之间的关联不仅可由显式的共现关系得以呈现,也可 以在将词语向量化处理之后,通过计算词向量之间的 距离 揭露概念之间的隐秘关联。顶级学术期刊 Science 上曾发表过一篇论文 其使用词向量计算人类语 言中潜在的性别偏见和种族偏见®,并发现女性名字 与家庭关系更紧密,而男性的名字与职业词汇关系更 紧密; 欧洲裔美国人的名字与"令人愉悦"关联更紧 密 而非洲裔美国人的名字与"令人不悦"关联更紧 密。有学者认为 隐式关联比基于共现关系获得的显 式关联更能反映词汇之间的深层关系。

三、数据

本研究选择海外社交平台 Twitter 作为研究对象。 我们参考世界卫生组织官方网站上发布的时间线®, 以世界卫生组织的行为为基准,挑选出三个重要时间 点收集数据:(1)1月22日,世卫组织驻中国代表团发 表声明称 有证据表明武汉的疫情存在人传人现象 但 需要更多的调查以了解传播的全部范围,这标志着世 界卫生组织开始注意并评估对新冠疫情的潜在传播能 力。(2)1月30日,WHO宣布将新冠肺炎疫情列为 "国际关注的突发公共卫生事件"(PHEIC) 标志着新 冠疫情在世界范围内引发关注。(3)3月11日,WHO 宣布新冠肺炎疫情已经构成全球性大流行病(Pandemic) 标志着新冠疫情在全球范围内的爆发。

由于本研究涉及疫情在世界范围内的流行,因此 遵循 Twitter 平台数据收集规则 ,以事件发生时刻对应 的 GMT + 0 时区时间为标准确定检索日期 ,获取事件 发生当天的推文。世界卫生组织将由新型冠状病毒引 发的疾病命名为缩写 COVID - 19 ,以表示 "Corona Virus Disease 2019",但是该缩写的确定日期为 2 月 11 日,而本研究的时间区间包含该缩写确定之前和缩写 确定之后。为保证数据的一贯性,我们仍选择新冠病

毒的全称#coronavirus(不区分大小写)作为检索关

我们使用自主设计的 Python 脚本 抓取指定时间 发布、含有上述关键词的原创英文推文。值得注意的 是,该抓取方法要求推文作者亲自直接提及"#coronavirus"一词 如果作者转发了一条含有"#coronavirus"的 推文,但转发时并未亲自提及该词,则本条转发推文不 在抓取之列,该抓取逻辑确保了含有"#coronavirus"的 文本由作者本人作出,与本研究试图探究作者身份与 文本关系的研究意图相吻合。并且,我们清洗掉文本 中的表情、符号、超链接,并将文本统一成小写。

四、方法

1. 机器人识别

近年来,计算机学界已经意识到社交机器人对社 交媒体公共讨论的干扰,大量算法被用于自动化地检 测社交机器人。有学者利用社交机器人发帖频次较高 的特征 将每日发帖频率超过某阈值的账户识别为机 器人; ® 也有学者利用机器人与人类用户在文本特征、 账户特征以及行为特征等方面的差异确定机器人用户 与人类用户之间的界限。在目前的算法实践中,印第 安纳大学开发的综合性机器人识别工具 Botometer(旧 称 BotorNot) 的使用最为广泛^⑩ ,曾被用于检测美国大 选、法国总统选举、英国脱欧事件中的机器人。^⑩Botometer 将社交网络、朋友、用户个人资料、语言情感、时间 活动模式等维度的信息注入机器学习模型,提取账户 特征,生成一个位于0-1之间的机器人评分(bot score),评估特定账号为机器人的概率。机器人评分越 接近于1则该账号有越大概率有自动化操纵的痕迹; 机器人评分越接近于0,则该账号有越大概率被人类 所使用 我们参考此前研究的惯例 以 0.5 作为区分机 器人和人类的临界值。鄧如果用户设置了隐私权限、已 注销或被关停、推文数量不足以支撑分析,Botometer 则无法对其进行机器人概率评估 我们将这类用户标 记为未知用户 排除在本研究的分析之外。

本研究共获取 195201 条推文 经检测 其中 18497 条(9.27%) 由机器人生产,176166条(90.25%) 由人 类用户生产 535 条(0.27%) 由未知用户生产。以上 推文共由 118720 名不同用户生产 ,其中 ,10865 名(9. 15%) 是机器人用户,107478 名(90.53%) 是人类用 户 375 名(0.32%) 是未知用户。

2. 结构化主题模型(STM)

在主题模型研究领域 ,LDA(Latent Dirichlet Allocation) 自 2003 年被提出以来得到广泛应用[®] ,但是 LDA 的局限性在于其只能输出主题分布,而不生成进 行假设检验的置信区间。如果研究者希望探究元数据

对于主题分布的影响,进而对元数据中的变量和 LDA 输出主题分布的关系进行统计分析 这一结果会缺乏 统计置信度。

为解决将主题模型应用于社会科学研究时面临的 统计分析需求 2013 年 ,Robert 等人在 LDA 的基础上 提出基于无监督学习的 STM(Structural Topic Model), 将文档级别的协变量引入主题模型,在模型计算过程 中输出一个或多个协变量与主题分布、词汇分布的关 系。[⊕]对比实验证明 STM 主题模型中对变量计算的准 确性高于将传统统计方法额外加诸 LDA 主题模型。等 此外 STM 还可计算变量对于特定主题中词汇分布的 影响®,该优点使 STM 在近年的计算传播研究中得到 越来越多的关注。有学者在分析"女司机"相关讨论 的话题时,使用STM研究不同平台(报纸、微博)对于 话题分布产生的影响。 ® 也有学者® 使用 STM 分析了媒 体将网站上不同主题的新闻同步至社交媒体时所遵循 的把关原则。

具体而言 我们使用 R 语言中的 STM 包对文本展 开结构主题模型分析。在本研究中,我们训练了两个 STM 模型: (1) 在 STM1 中,我们将机器人和人类的所 有推文输入模型,并将作者身份(社交机器人、人类) 作为主题流行度协变量引入模型,意在探究作者身份 对于疫情讨论主题的影响。(2) 在 STM2 中 ,我们仅将 机器人和人类生产的含有 "china"的推文输入模型,并 将作者身份(社交机器人、人类)作为主题流行度协变 量引入模型 .意在探究作者身份如何影响疫情讨论中 涉及"中国"的推文主题分布。STM 的主题个数 K 需 要用户自行指定,根据 STM 模型的原理, K 并无绝对 最优解 需要由使用者基于可解释性进行判断 ⑩。对 于 STM1 和 STM2 我们均在 K = 6 至 K = 14 之间进行 尝试 经过比较 我们将 STM1 中的 K 值确定为 12 将 STM2 中的 K 值确定为 8。

3. 词向量化及语义相似度

在本研究中 我们首先对语料库中的单词进行向 量化。传统的热独编码思路为对每个词进行稀疏的 N 维热独(one - hot) 编码 此处 N 为语料库的词汇量 相 应地, 语料库中每个词的索引为 0─N - 1, 通过建立一 个 N 维的向量,将每个词转化为一个独特的 N 维向 量 在该向量中,只有该词的索引位为1,其余位均为 0。然而,在这种传统的向量表示里,维度等于词典大 小 而实践中词典大小往往在万词量级 这会导致维数 灾难 矩阵过于稀疏导致空间利用率较低。此外,由于 热独编码中任意两个向量两两正交,所以任意两个词 的余弦相似度固定为 0 ,热独编码无法表达词汇之间 的关系。在本研究中,我们采用更为前沿的 word2vec 技术,该技术由 Google 团队于 2013 年发布,其采用无 监督神经网络,基于连续词袋模型(CBOW)或者跳字 模型(Skip - gram) 借助神经网络中的隐藏层将热独 编码下的高维词语文本映射到较低维空间,通过训练 获取新的向量表示,词与词之间的关联可以通过两个 词向量之间的余弦相似度计算得出。

具体而言,我们使用 Python 语言,调用 gensim 库 中的 word2vec 接口 选择连续词袋模型 将机器人语料 和人类语料分别输入模型 获取基于机器人语料的词 向量和基于人类语料的词向量。随后我们使用 most similar接口,分别获取机器人和人类语料中,与"coronavirus" "china"关联最为紧密的30个词汇。

总而言之 在对推文作者身份进行识别之后 我们 使用以上方法进行了以下四组分析: (a) 在疫情讨论 中,作者身份(社交机器人、人类)是否影响了话题的 分布?(b)在社交机器人和人类的语料中,哪些词与 "coronavirus"(新冠病毒) 具有最紧密的关联?(c)在 与中国相关的疫情讨论中,作者身份(社交机器人、人 类) 是否影响了话题的分布?(d) 在社交机器人和人 类的语料中,哪些词与 "china" (中国) 具有最紧密的 关联?

五、结果

1. 疫情话题在机器人和人类中的呈现

表 1 呈现了 STM1 输出的 12 个主题及其高区别度 词汇。除了主题1没有明确的意义指向之外,其他的 11 个主题涵盖了英国、美国、中国的疫情,疫情对经 济、学校的影响 疫情的预防措施 医疗状况 ,公共健康 等方面。

如上文所述,我们将作者身份(机器人和人类) 作为主题流行度协变量引入 STM1 模型 ,用以探究人 类和机器人在选择讨论主题时遵循的不同逻辑。图 1展示了机器人和人类对每个主题的倾向。图中的 零点表示标准化之后的各主题在语料库中的分布, 如果话题分布位于零点左侧,则该话题在作者身份 为机器人的推文中得到更多呈现; 如果话题分布位 于零点右侧,则该话题在作者身份为人类的推文中 得到更多呈现。如果一个话题对应的横坐标值为 0. 1 则表明该话题在人类推文中的呈现比其在机器人 推文中的呈现多10%。据图1显示,虽然大多数主 题分布在零点附近,表明机器人和人类讨论中的疫 情主题分布差异有限。相较而言,机器人更多发布 英国疫情、中国疫情的信息以及疫情动态、预防措 施 但人类更关注美国的疫情和疫情带来的计划 变动。

± 1	·ch /c + · · · · · · · · · · · · · · · · · ·	12 个主题的音义	, T. /L = .H. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	ᄱᄭᇊᆟᆟᄼᄔ	17 15 THING TO	/ メライヤー ス デサエュ╗シ៲

主题序号	意义	高概率词汇	
1	\	people time good flu thing call today month start coming ive thought die long best	
2	英国等地疫情爆发	coronavirus ,covid ,coronavirusupdate ,corona ,well ,coronavirusoutbreak ,coronavirusuk ,coronavirusuk ,coronavirusuk ,coronavirusupdates ,pandemia	
3	美国疫情	coronavirus trump going cant realdonaldtrump panic american toilet paper president real medium house a-merica word	
4	疫情带来的计划变动	coronavirus event ,cancelled ,march ,game ,cancel ,concern ,fan ,conference ,big ,canceled ,meeting ,decision , postponed going	
5	疫情动态	coronavirus case ,health ,italy ,death ,confirmed ,country ,state ,emergency ,number ,breaking ,update ,positive , total ,tested	
6	公共健康	coronavirus help news read live great watch question situation community expert latest free public advice	
7	中国疫情	coronavirus ,china ,spread ,outbreak ,virus ,wuhan ,travl ,ncov ,quarantine ,chinese ,flight ,international ,iran , city ,novel	
8	医疗状况	pandemic coronavirus ,test ,testing ,disease ,hospital ,doctor ,cdc ,patient ,system ,spread ,healthcare ,vaccine , classifies ,action	
9	疫情的经济影响	coronavirus ,work ,business ,sick ,government ,crisis ,plan ,online ,student ,impact ,market ,budget ,economy , class ,employee	
10	疫情对学校的影响	coronavirus day school week close spreading fast social nation shut hour kid ago open area	
11	预防措施	coronavirus hand virus dont stay keep corona wash safe mask face hope avoid kill worried	
12	疫情风险	coronavirus life year care risk better symptom lot family told serious bad sure contact making	

图 1 作者身份对疫情讨论主题的影响

2. 中国相关讨论在机器人和人类中的呈现

表 2 呈现了 STM2 输出的 8 个主题及其高区别度词汇 涵盖疫情预防治疗、各国疫情动态、疫情跨国传播、食用野生动物、政治阴谋等方面。

如上文所述 我们将作者身份(机器人和人类)作为主题内容协变量引入 STM2 模型 用以探究疫情讨论中,人类和机器人谈及中国时的主题分布。相较于图 1 机器人和人类在中国相关的主题讨论上有更大差异 机器人热衷于发布疫情动态 如死亡数、确诊数等;也更倾向于讨论疫情对于经济、贸易带来的影响。相对而言,人类更多地讨论疫情的预防治疗和跨国传播。

图 2 作者身份对中国相关的疫情讨论主题的影响

3. 机器人和人类语言中的语义关联

基于对词向量的相似度计算,我们获取了机器人和人类分别如何围绕疫情、中国构建语义关联,并将结果呈现于表3中。比较机器人和人类语料中与"coronavirus"相似度排名前30的词汇,我们发现,在机器人的语料中,"wuhancoronavirus"(武汉冠状病毒)一词与目标词汇相似度最高,该词汇以"武汉"这一地区名对病毒进行命名,意在对地区进行污名化,并试图构建中国武汉与病毒起源的关联。相比之下,在人类的语料中,与目标词汇相似度最高的是"virus"(病毒),该词是对冠状病毒这一事物的客观表达,未含有污名化意

图。值得注意的是,"wuhancoronavirus" "wuhanvirus" blishing House, Ali rights reserved. http://www.cnki.ne (武汉病毒、"wuhanpneumonia"(武汉肺炎)在机器人 语料中与 "coronavirus"相似度分别位于第1名、第9 名和第 25 名 但是二者在人类语料库中 ,与 "coronavirus"的相似度均未进入前30名,这表明机器人有更明 显的意图将"武汉"这一意象与病毒名称关联起来 在 病毒起源这一敏感议题上进行倾向性引导。

主题序号	意义	高区别度词汇	
1	预防与治疗	mask american cant month work face vaccine working west feel ill treatment german lesson wearing	
2	各国疫情动态	covid ,italy ,iran ,coronavirusupdate ,france ,rate ,spain ,slows ,coronavid ,coronavirusupdates ,covidchina ,chinalies ,mortality ,coronavirusitaly ,coviduk	
3	亚洲疫情增长	pray ,russia ,contained ,alarming ,grow ,china ,growing ,passed ,close ,coronavirus ,inaction ,scary ,asia ,approaching ,full	
4	疫情规模	case death ,confirmed ,total ,taiwan ,number ,reported ,worldwide ,toll ,update ,province ,transmission ,hubei , rise ,mainland	
5	政治与阴谋	communist hand blame best job regime shit democrat created left drug party bioweapon body weapon	
6	经济影响	economy crisis economic true student money rapidly god cure asian aid step online oil demand	
7	食用野生动物	human animal originated symptom resident ocenter bat occoor respiratory wild wildlife oprevention sign returned seattle	
8	跨国传播	health ,emergency ,travel ,flight ,public ,declared ,international ,declares ,organization ,concern ,airport ,passen- ger ,continues ,screening ,thursday	

表 2 与中国相关的疫情讨论中 8 个主题的意义及代表性词汇

表 3 机器人和人类语料中 与 "coronavirus"和 "china"相似度排名前 30 的词汇

	coronavirus		china	
	bot	human	bot	human
1	wuhancoronavirus	virus	outside	chinese
2	covidindia	covid	iran	wuhan
3	coronavirususa	globally	southkorea	europe
4	atlantic	extent	date	сер
5	coronaalert	further	toll	country
6	coronavirustruth	rumor	japan	chinas
7	coronavid	healthanalytics	slows	hubei
8	coronavirusec	handful	korea	iran
9	wuhanvirus	growing	mainland	taiwan
10	codvid	mend	deaths	korea
11	coronaoutbreak	worldwide	death	illegal
12	coronavirusindia	reagan	surpassing	epicenter
13	novelcoronavirus	stave	panama	nigeria
14	coronavirusinindia	corona	wuhan	hk
15	coronaviruskenya	interpreted	total	african
16	coronavirusus	hopefully	soar	originated
17	covidespana	becoming	surpassed	daegu
18	combsdaelpe	unknown	hubei	africa
19	coronaindia	undetected	rise	germany
20	forbes	bermuda	usa	hongkong
21	coronaviruscanada	amongst	indonesia	islamic
22	coronavirusnyc	easily	vietnam	abroad
23	covid	jab	ratio	worstaffected
24	wuhanoutbreak	potential	italy	epicentre
25	wuhanpneumonia	possibility	raising	lombardy
26	gocorona	lengthen	south	fold
27	coronvirusuk	fast	recovery	battle
28	ede	wider	globally	southkorea
29	trumpantichrist	elder	totaling	europes
30	covidusa	paranoia	discharged	origin

此外,在机器人语料中,大量高相似度词汇由 "coronavirus"和国家名先后组合而成。用于表达特定国 家的疫情状况 这与上文所述 社交机器人热衷于发布 各国疫情信息相吻合。结合此前研究[®],我们认为这 反映出大量新闻机器人参与到疫情讨论中,被用于发 布疫情动态信息及警报。

值得注意的是,在机器人语料中, "coronavirustruth"(新冠病毒真相)一词与目标词汇的相似度排名 高居第6名 而在人类语料中, "rumor"(谣言)一词与 目标词汇的相似度排名位于第6名。这一差异表明, 社交机器人发言时经常标榜其发布的新冠相关内容为 真相或内幕真相,而人类用户则更多提及谣言这一概 念 表达对信息环境的批判性审视。

在社交机器人语料中 国外地名、疫情增长等词汇 与 "china" 关联程度较高; 相较而言 在人类语料中 出 现更多的是与 "china"相关联的中国国内地名。这一 差异说明社交机器人更关注各国疫情增长,而人类更 关注中国作为疫情"震中"的情况。

六、讨论与结论

作为一个全球性风险事件 新冠疫情具有多面性、 复杂性,其在社交媒体上的呈现对形塑公众的认知有 重要潜在影响,但是社交机器人的活动使社交媒体的 信息环境更加复杂。本研究聚焦海外社交平台 Twitter 上关于新冠疫情的讨论,借助结构化主题模型及语义 相似度计算 探究社交机器人如何凸显特定话题并构 建事物之间的关联,以期影响新冠疫情在社交媒体上 的整体呈现。我们发现,社交机器人与人类用户对新 冠疫情的讨论侧重点存在差异; 即便当社交机器人和 人类提及同样的概念 他们对概念之间关联的构建也 存在差异。

此前对于社交机器人与健康传播的研究认为,社 交机器人大量发布与科学共识相反的健康信息,增加 了对公共健康的威胁。®但是在本研究中,我们发现社 交机器人在健康讨论中的作用具有多面性。一方面, 社交机器人被应用于进行疫情新闻速报 随着新冠疫 情在全球范围内的流行,社交机器人大量发布世界各 地的疫情发展动态 客观上起到了传播新闻的作用;但 另外一方面 社交机器人发布信息的质量值得商榷 ,虽 然社交机器人标榜其发布的内容为 "coronavirustruth", 这一词汇暗示其试图揭露虚假现象幕后的真相,但是 根据此前的研究 机器人本身就是助推低质量信息 扩散的始作俑者,他们热衷于转发来源于低可信度来 源的消息 却甚少转发事实核查网站的消息。相比之 下,人类用户在讨论新冠病毒时,常常提及"rumor"— 词 反而折射出人类在面对信息洪流时有更强的批判 意识 试图积极识别虚假信息。

社交机器人对于不同国家疫情的讨论强度差异也 值得思考。根据权威流量统计网站 Statista 最新发布 的 Twitter 用户构成 ,用户数量位居前列的国家分别是 美国、日本、俄国、英国、沙特阿拉伯等。同时,考虑到 本研究将目标推文的语言限定为英文 在这种情况下, 社交机器人对于英国、中国等国家疫情的关注和人类 用户对于美国国内的疫情关注形成了微妙的反差。虽 然计算传播学工具尚无法窥见 Twitter 社交机器人背 后的动机,但机器人是否扮演了转移公众对于美国国 内疫情关注的角色值得怀疑。同时,语义相似度计算 的结果指出,社交机器人试图通过对病毒进行策略性 命名的方式强化武汉与病毒起源之间的关联——这一 关联本不存在于人类语义中,以期促成舆论场上对中 国的不利讨论。这一发现与此前研究的发现不谋而 合,共同指向了社交机器人被用于国际舆论场上的政 治角逐 以期营造对中国的负面舆论。 5

鉴于新冠疫情兼具公共卫生属性和国际政治维度, 本研究聚焦于文本层面 试图探究社交机器人对以上两 个纬度的话题凸显和关联构建。但是 由于社交机器人 系以内容发布、转发、关注、点赞等多种方式对社交平台 进行深度参与 本文难以呈现社交机器人在新冠疫情讨 论中的角色的复杂全貌。在计算文本研究的基础上,未 来研究或可基于社群传播、人机交互等视角对社交机器 人在疫情讨论中的角色进一步挖掘 亦或对机器人和人 类行为之间的因果关系进行统计学检验。

注释:

- Meraz S. Hashtag Wars and Networked Framing: The Private/Public Networked Protest Repertoires of Occupy on Twitter. Between the Public and Private in Mobile Communication ,vol. 36 2017. p. 303.
- Kirilenko A. P. , T. Molodtsova and S. Stepchenkova. People as Sensors: Mass Media and Local Temperature Influence Climate Change Discussion on Twitter. Global Environmental Change - human and Policy Dimensions vol. 30 2015. p. 92.
- 3 Wojcik S. 5 Things to Know About Bots on Twitter. 2018; Howard P. N. B. Kollanyi and S. Woolley. Bots and Automation Over Twitter During the US Election. Computational Propaganda Project. Working Paper Series 2016; Schuchard JR. et al. Bots Fired: Examining Social Bot Evidence in Online Mass Shooting Conversations. Palgrave Communications vol. 5 ,no. 1 2019. p. 5.
- 4 Luceri L. et al. Evolution of Bot and Human Behavior During Elections. First Monday vol. 24 no. 9 2019.
- (5) Varol O. et al. Online Human Bot Interactions: Detection Estimation and Characterization. in Eleventh international AAAI conference on web and social media 2017
- Shao C. et al. The Spread of Low Credibility Content by Social Bots. Nature Communications vol. 9 issue 1 2018. p. 4792.
- The Messias J. et al. You Followed My Bot! Transforming Robots Into Influential Users in Twitter. 2013.
- (8) Cheng C., Y. Luo and C. Yu. Dynamic Mechanism of Social Bots Interfering With Public Opinion in Network. Physica A statistical Mechanics and Its Applications 2020. p. 124167.
- Boshmaf ,Y. et al. The Socialbot Network: When Bots Socialize for Fame and Money. in Proceedings of the 27th annual computer security applica-(9) tions conference. 2011. ACM.
- Deb A. et al. Social Bots for Online Public Health Interventions. in advances in social networks analysis and mining. 2018.
- Allem J. P. P. Escobedo and L. Dharmapuri. Cannabis Surveillance With Twitter Data: Emerging Topics and Social Bots. American Journal of Public Health ,vol. 110 ,no. 3 2020. p. 359.
- Yuan X. R. J. Schuchard and A. T. Crooks. Examining Emergent Communities and Social Bots Within the Polarized Online Vaccination Debate in Twitter. Social Media + Society vol. 5 no. 3 2019. p. 6.
- Broniatowski ,D. A. ,et al. Weaponized Health Communication: Twitter Bots and Russian Trolls Amplify the Vaccine Debate. American journal of public health vol. 108 no. 10 2018. p. 1382.
- Gabriele F. B. e. How China Unleashed Twitter Bots to Spread COVID 19 Propaganda in Italy. Formiche. https://formiche.net/2020/03/china - unleashed - twitter - bots - covid19 - propaganda - italy/. Accessed on June 26th.
- Qiqing ,W. Y. L. Behind China's Twitter Campaign A Murky Supporting Chorus. 2020.
- Howard P N Kollanyi B. Bots #Strongerin and #Brexit: Computational Propaganda During the UK EU Referendum. arXiv: Social and Information Networks. 2016.
- Bastos M. T. and D. Mercea. The Brexit Botnet and User Generated Hyperpartisan News. Social Science Computer Review wol. 37, no. 1, 2019.
- (18) Sch? fer F. S. Evert and P. Heinrich. Japan's 2014 General Election: Political Bots Right - Wing Internet Activism and Prime Minister Shinzō Abe's Hidden Nationalist Agenda. Big data vol. 5 no. 4 2017. p. 301.
- Forelle M. C., et al. Political Bots and the Manipulation of Public Opinion in Venezuela, arXiv; Social and Information Networks, 2015. p. 6.

- 20 Linvill ,D. L. and P. L. Warren. Troll Factories: Manufacturing Specialized Disinformation on Twitter. Political Communication. 2020. p. 16.
- Badawy A. K. Lerman and E. Ferrara. Who Falls for Online Political Manipulation? in Companion Proceedings of The 2019 World Wide Web Conference, 2019.
- Errara E. Disinformation and Social bot Operations in the Run up to the 2017 French Presidential Election. First Monday vol. 22 no. 8, 2017.
- Bolsover G. and P. Howard. Chinese Computational Propaganda: Automation Algorithms and the Manipulation of Information About Chinese Politics on Twitter and Weibo. Information Communication & Society vol. 22 no. 14 2019. p. 2071.
- ② 师文、陈昌凤《分布与互动模式: 社交机器人操纵 Twitter 上的中国议题研究》,《国际新闻界》,2020 年第5期,第69页。
- 🖾 张洪忠、赵蓓、石韦颖《社交机器人在 Twitter 参与中美贸易谈判议题的行为分析》,《新闻界》2020 年第 2 期 ,第 50 页。
- ②⑤ 师文、陈昌凤《社交机器人在新闻扩散中的角色和行为模式研究——基于〈纽约时报〉"修例"风波报道在 Twitter 上扩散的分析》,《新闻与传播研究》2020 年第 5 期 第 16、13 页。
- Forster P. et al. Phylogenetic Network Analysis of SARS CoV 2 Genomes. Proceedings of the National Academy of Sciences vol. 117, no. 17, 2020, p. 9241.
- David E. Sanger. Pompeo Ties Coronavirus to China Lab Despite Spy Agencies Uncertainty. New York Times. 2020. May. 3rd.
- 29 Downs R. M. and D. Stea. Image and Environment: Cognitive Mapping and Spatial Behavior. Transaction Publishers. 2017. p. 73.
- 30 Lang A. The Limited Capacity Model of Mediated Message Processing. Journal of Communication, vol. 50, no. 1, 2000. p. 65.
- Santanen E. L. R. O. Briggs and G. J. De Vreede. The Cognitive Network Model of Creativity: A new Causal Model of Creativity and a new Brainstorming Technique. in Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. 2000. IEEE; Alonso E. and E. Mondragón. Associative Learning and Behaviour: An Algebraic Search for Psychological Symmetries. Language Representation and Reasoning: Memorial Volume to Isabel Gómez Txurruka 2007. p. 35.
- Collins A. M. and E. F. Loftus. A Spreading Activation Theory of Semantic Processing. Psychological review vol. 82, no. 6, 1975, p. 407.
- 3 Guo ,L. ,H. T. Vu and M. McCombs. An Expanded Perspective on Agenda Setting Effects: Exploring the Third Level of Agenda Setting. Revista de comunicación no. 11 2012. p. 55.
- Wettler M. and R. Rapp. Computation of Word Associations Based on Co occurrences of Words in Large Corpora. in VERY LARGE CORPORA: ACADEMIC AND INDUSTRIAL PERSPECTIVES, 1993, p. 9.
- (3) Meraz S. Hashtag Wars and Networked Framing: The Private/public Networked Protest Repertoires of Occupy on Twitter. Between the Public and Private in Mobile Communication 2017. p. 309; Kitzie ,V. and D. Ghosh. # Criming and# Alive: Network and Content Analysis of two Sides of a Story on Twitter. Proceedings of the Association for Information Science and Technology ,vol. 52 ,no. 1 2015. p. 3.
- Galiskan A. J. J. Bryson and A. Narayanan. Semantics Derived Automatically From Language Corpora Contain Human like Biases. Science, vol. 356, no. 6334–2017. p. 184.
- ③ 王晗啸、李成名、于德山、巴志超《基于上下文语义的网络议程设置研究——以红黄蓝事件为例》,《国际新闻界》,2020年第5期,第88页。
- WHO ,Archived: WHO Timeline COVID 19. 2020. https://www.who.int/news-room/detail/27-04-2020-who-timeline---covid-19. Accessed on June 26th.
- Howard P. N. B. Kollanyi and S. Woolley. Bots and Automation over Twitter During the US Election. Computational Propaganda Project: Working Paper Series 2016; Howard P. N. and B. Kollanyi. Bots # StrongerIn and # Brexit: Computational Propaganda During the UK EU Referendum. Available at SSRN 2798311 2016.
- Davis C. A. et al. Botornot: A System to Evaluate Social Bots. in Proceedings of the 25th International Conference Companion on World Wide Web. 2016. International World Wide Web Conferences Steering Committee.
- ① Luceri L. et al. Evolution of Bot and Human Behavior During Elections. First Monday vol. 24 no. 9 2019; Shao C. et al. The Spread of Low credibility Content by Social Bots. Nature communications vol. 9 no. 1 2018. p. 4782; Ferrara E. Disinformation and Social Bot Operations in the Run up to the 2017 French Presidential Election. First Monday vol. 22 no. 8 2017; Badawy A. E. Ferrara and K. Lerman. Analyzing the Digital Traces of Political Manipulation: The 2016 Russian Interference Twitter Campaign. in 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining(ASONAM) . 2018. IEEE.
- Shao C. et al. The Spread of Low Credibility Content by Social Bots. Nature communications vol. 9 issue. 1 2018. p. 4788; Ferrara E. Disinformation and Social bot Operations in the Run up to the 2017 French Presidential Election. First Monday vol. 22 no. 8 2017; Badawy A. E. Ferrara and K. Lerman. Analyzing the Digital Traces of Political Manipulation: the 2016 Russian Interference Twitter Campaign. in 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). 2018. IEEE.
- Blei ,D. M. ,A. Y. Ng and M. I. Jordan. Latent Dirichlet Allocation. Journal of machine Learning research ,vol. 3 2003. p. 993.
- Roberts M. E. et al. The Structural Topic Model and Applied Social Science. in Advances in neural information processing systems workshop on topic models: computation application and evaluation. 2013. Harrahs and Harveys Lake Tahoe.
- Wesslen R. Computer Assisted Text Analysis for Social Science: Topic Models and Beyond. arXiv: Computation and Language. 2018.
- Roberts M. E. B. M. Stewart and D. Tingley stm: R Package for Structural Topic Models. Journal of Statistical Software vol. 91, no. 2, 2019. p. 3, p. 12.
- El M. and Z. Luo ,The 'Bad Women Drivers' Myth: the OverrEpresentation of Female Drivers and Gender Bias in China's Media. Information ,Communication & Society ,vol. 23 ,no. 5 , 2020. p. 782.
- Pak C. News Organizations' Selective Link Sharing as Gatekeeping: A Structural Topic Model Approach. Computational Communication Research, vol. 1, no. 1, 2019, p. 57.
- Mikolov T. et al. Efficient Estimation of Word Representations in Vector Space. in international conference on learning representations. 2013.
- Sutton J. Health Communication Trolls and Bots Versus Public Health Agencies Trusted Voices. American Journal of Public Health vol. 108 no. 10 2018.
 p. 1281; Allem J. and E. Ferrara. Could Social Bots Pose a Threat to Public Health. American Journal of Public Health vol. 108 no. 8 2018. p. 1005.
- Shao C. et al. The Spread of Low credibility Content by Social Bots. Nature communications vol. 9 no. 1 2018, p. 4789.
- Statista Leading Countries Based on Number of Twitter Users as of April 2020. https://www.statista.com/statistics/242606/number of active twitter users in selected countries/. Accessed on June 26th.
- \$\overline{G}\$ Bolsover \$\mathcal{G}\$. and \$P\$. Howard. Chinese Computational Propaganda: Automation Algorithms and the Manipulation of Information About Chinese Politics on Twitter and Weibo. Information Communication & Society vol. 22 no. 14 2019. p. 2068; 师文、陈昌凤《分布与互动模式: 社交机器人操纵 Twitter 上的中国议题研究》,《国际新闻界》2020 年第 5 期 第 70 页; 师文、陈昌凤《社交机器人在新闻扩散中的角色和行为模式研究——基于〈纽约时报〉"修例"风波报道在 Twitter 上扩散的分析》,《新闻与传播研究》2020 年第 5 期 第 14 页。

(作者师文系清华大学地球系统科学系博士研究生;陈昌凤系清华大学新闻传播学院常务副院长、教授、博士生导师)