BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 58 302.5

Anmeldetag:

12. Dezember 2003

Anmelder/Inhaber:

IRWIN Industrial Tools GmbH,

85399 Hallbergmoos/DE

Bezeichnung:

Antrieb für Spann- und/oder Spreizwerkzeug mit

Aktivierungseinrichtung

IPC:

B 25 B 5/06

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 29. September 2005

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

/_ .

Brosia

BOEHMERT & BOEHMERT ANWALTSSOZIETÄT

Boehmert & Boehmert • P.O.B. 15 03 08 • D-80043 München

Deutsches Patent- und Markenamt Zweibrückenstraße 12 80297 München DR. DG. KARL BOEPMÆRT, PA (1979-1772)
DPL-ING, ALBERT BOEPMÆRT, PA (1979-1772)
WILHELM J. H. STAHLBERG, PA, Demons
DPL-ING, ALTER HOORMANN, PA-7, Bremen
DPL-PHYS, DR. HEDNZ GODDAR, PA-7, Monchen
DPL-PHYS, DR. HEDNZ GODDAR, PA-7, Monchen
DPL-PHYS, ROBERT MONZHUBER, PA (1973-1972)
DR. LUDWIG KOUKER, RA, Bremen
DPL, CHEM, RADDERAS WINKLER, PA (1973-1972)
DR. LUDWIG KOUKER, RA, Bremen
DR. (CHEM) ANDREAS WINKLER, PA (1973-1972)
DR. LUDWIG KOUKER, RA, Bremen
MICHAELA HUTH-DERIG, RA, Materian
DPL-PHYS, DR. MARION TONHARDT, PA-7, Bremen
MICHAELA HUTH-DERIG, RA, Materian
DPL-PHYS, DR. MARION TONHARDT, PA-7, Demokharf
DR. ANDREAS EBERT-WEIDENFELLER, RA, Bremen
DR. ANDREAS EBERT-WEIDENFELLER, RA, Bremen
DR. ANDREAS EBERT-WEIDENFELLER, RA, Bremen
DR. ANDREAS EBERT-WEIDENFELLER, DA, BREMEN
DR. ANDREAS EBERT-WEIDENFELLER, DA, BREMEN
DR. ANTHRAS PHEIDENFELLER, PA-1, MONCHON
DPL-PHYS, DR. DOROTHER WEBER-BRULS, PA-7, Frenkl
DPL-PHYS, DR. STEFAN SCHÖHER, PA-1, MONCHON
DR. ANDREAS CHÄFER, RA, Bannen
DR. JAN BERND NORDEMANN, LL. M., RA, Bertin
DR. CHRISTAN CZYCHOWSKI, RA, Bortin
DR. CHRISTAN CZYCHOWSKI, RA, Bortin
DR. CARL-RICHARD HAARMANN, RA, Menden
DR. CARL-RICHARD HAARMANN, RA, MENDEL
DR. CHRISTAN CZYCHOWSKI, RA, Bortin
DR. CARL-RICHARD HAARMANN, RA, MENDEL
DR. PAPEL, SCRIBSTAN WA, APPELT, PA-1, MARION
DR. LANDERS CRIBSTAN WA, APPELT, PA-1, MARION
DR. CARLSTRON CRIBSTRON WA, APPELT, PA-1, MARION
DR. CARLSTR

PA - Patentanwalt/Patent Attorney
RA - Rechtsanwalt/Attorney at Law
- Funnoran Patent Attorney

MAitre en Droit
 Licencié en Dro

Diplôme d'Etudes Approfondies en Conception de Produits e

Alle zugebassen zur Vertretung vor dem Europäischen Markensent, Alicante Professional Representation at the Community Trademark Office, Alicante PROF. DR. WILLIALIM NORDEMANN, AN Position
DPTL-PHYS, EDUARD BAUMANN, PAN Hamberiche
DR.-BIG. GERALD KLÖPSCH, PAN Deseator'
DPTL-ING, HANN W. GROEDING, PAN Metschen
DPTL-ING, SEGFRED SCHEMER, PAN Bisheldel
DPTL-PHYS, LORENZ HANDWINKEL, PAN FASTER
DPTL-ING, ANTON FREHERR RIEDERER V. PAAR, PAN Loren
DPTL-ING, ANTON FREHERR RIEDERER V. PAAR, PAN Loren
DPTL-ING, ANTON FREHERR RIEDERER V. PAAR, PAN LOREN
DPTL-ING, IN IAN TONNES, PA AN LORE
DPTL-RYS, CHRISTIAN BEEHL, PAN Metschen
DR. KANDR RAS DUSTMANN, ILL.M., RAN Passed
DR. ANDREAS DUSTMANN, ILL.M., RAN Passed
DPTL-ING, NILS T.F. SCHMED, PAN Metschen
DPTL-BIOCHEM, DR. MARKUS ENGELHARD, PA Metschen
DPTL-GEM, DR. KARL-HEND Z. METTEN, PAN Freedfert
PASCAL DECKER, RA Berlin
DPTL-CHEM, DR. VOLKER SCHOLZ, PA Bressen
DPTL-CHEM, DR. VOLKER, RA. Meedien
DPTL-CHEM, DR. VOLKER, RA. Meedien

In Zusammenarbeit mit/in cooperation with DIPL-CHEM. DR. HANS ULRICH MAY, PA*, MONTHS

Ihr Zeichen Your ref. Ihr Schreiben Your letter of Unser Zeichen: Our ref.

München.

Neuanmeldung

I30141

12. Dezember 2003

IRWIN Industrial Tools GmbH Lilienthalstraße 7 85399 Hallbergmoos

Antrieb für Spann- und/oder Spreizwerkzeug mit Aktivierungseinrichtung

Die Erfindung betrifft einen Antrieb für ein Spann- und/oder Spreizwerkzeug zur insbesondere kontinuierlichen Verlagerung dessen Schub- oder Zugstange mit einer daran fest angebrachten, beweglichen Backe relativ zu einem eine ortsfeste Backe haltenden Träger des Spann- und/oder Spreizwerkzeugs in Längsrichtung der Schub- oder Zugstange.

Ein derartiger Antrieb ist aus dem US-Patent 6,568,667 bekannt, das ein Spannwerkzeug offenbart, bei dem ein Schnellschließantrieb die bewegliche Backe auf die ortsfeste Backe zu-

- 64.355 -

drückt. Der Schließvorgang kann durch Betätigung einer Rückdrücksperre ausgelöst werden, welche eine Verlagerung der Schub- oder Zugstange entgegen einer Vorschubrichtung eines Schrittgetriebes verhindert. Ein Schrittgetriebe, mit welchem die bewegliche Backe auf die ortsfeste Backe schrittweise durch Betätigen eines Antriebsarms zubewegt werden kann, ist ausführlich in der DE 3917473 beschrieben.

Der bekannte Schnellschließantrieb ist durch eine Druckfeder gebildet, die zwischen Abstützstellen auf einer der beweglichen Backe abgewandten Seite des Trägers angeordnet ist. Die Anordnung einer Druckfeder auf der der beweglichen Backe abgewandten Seite des Trägers des Spann- und/oder Spreizwerkzeugs macht einen großen Raumbedarf für das Spann- oder Spreizwerkzeug erforderlich, um der Druckfeder den notwendigen Weg zum Entfalten der gespeicherten potentiellen Antriebsenergie zur Verfügung zu stellen. Des weiteren geht mit der Druckfeder eine nicht lineare Kraftfederabgabe einher, d.h. zu Beginn der Schließbewegung treten hohe Schließkräfte auf, die während der Schließbewegung abnehmen. Zudem birgt die Verwendung einer Spiraldruckfeder insofern eine Verletzungsgefahr für die Bedienperson in sich, als sich letztere beim Spannen der Feder zwischen den Spiralwinden einklemmen kann und die Antriebskraft von der Druckfeder explosionsartig abgegeben wird.

Es ist Aufgabe der Erfindung, den Nachteil des Standes der Technik zu überwinden, insbesondere die Ergonomie eines Spann- und/oder Spreizwerkzeugs zu verbessern, insbesondere einen Antrieb für ein Spann- oder Spreizwerkzeug zum insbesondere kontinuierlichen Verlagern einer Schub- oder Zugstange bereitzustellen, wobei die räumliche Abmessung insbesondere in Längsrichtung sowie das Gewicht des Spann- und/oder Spreizwerkzeugs minimiert sind und eine gleichmäßige Schließbewegung mit insbesondere einer gleichmäßigen Schließkraft bereitgestellt ist.

Diese Aufgabe wird durch die Merkmale von Patentanspruch 1 gelöst. Danach ist eine Einrichtung zum Erzeugen einer Zugkraft zwischen der Schub- und der Zugstange und dem Träger vorgesehen. Mit der erfindungsgemäßen Maßnahme kann die Abmessung des Trägers sowie dessen Gehäuses genutzt werden, um einen Antriebsweg zur Freigabe von Antriebse-

nergie zu nutzen. Zusätzliche Antriebswege, wie bei dem bekannten Schnellschließmechanismus, sind nicht notwendig, so daß das erfindungsgemäße Spann- oder Spreizwerkzeug nicht nur eine wesentlich geringere Abmessung sondern auch ein wesentlich geringeres Gewicht aufweist. Des weiteren geben Zugeinrichtungen im allgemeinen aufgrund ihrer Elastizität die Antriebskraft weniger abrupt ab, wodurch das Verletzungsrisiko reduziert ist.

Der geringe Platzbedarf wird bei einer bevorzugten Ausführung vor allem durch eine Zugfeder, insbesondere eine Drehfeder, realisiert. Die Zugfeder hat Kraftangriffspunkte sowohl am Träger als auch an der Schub- oder Zugstange oder an der beweglichen Backe.

Um insbesondere große Gegenstände zwischen den Spannbacken einklemmen zu können, ist die Zugfeder an der Schub- oder Zugstange oder an der beweglichen Backe lösbar befestigt, um an einer mehr zum Träger hin positionierten Stellung umgesetzt und wieder befestigt zu werden. Auf diese Weise können Zugfedern kurzer Zugstrecken herangezogen werden.

Bei einer bevorzugten Ausführung ist die Einrichtung zur Erzeugung einer Zugkraft, insbesondere eine Drehfeder, mit einem wickelbaren Kraftübertragungselement gekoppelt. Das wickelbare Kraftübertragungselement, wie ein Wickelstrang, ist an seinem freien Ende mit der Schub- oder Zugstange oder der beweglichen Backe fest verbunden. Beim Zuziehen der beweglichen Backe wickelt die Drehfeder den Wickelstrang an einer Wickelspule auf.

Bei einer bevorzugten Ausführung der Erfindung ist eine Wickelaufnahme, die oben erwähnte Wickelspule, kraftübertragend mit der Einrichtung zur Erzeugung einer Zugkraft gekoppelt. Die Wickelaufnahme ist insbesondere am Träger ortsfest gelagert.

Bei einer bevorzugten Ausführung der Erfindung ist die Einrichtung zur Erzeugung einer Zugkraft eine gewickelte Spiralbandfeder. Die Spiralbandfeder kennzeichnet sich durch eine gleichmäßige lineare Zugkraftabgabe unabhängig von dem Grad der Abwicklung aus. Die Spiralbandfeder kann einen Spiralbandträger aufweisen, der drehbar an dem Träger gelagert ist.

Bei einer Weiterbildung der Erfindung ist die Schub- oder Zugstange mit einer Aufnahme für einen abgewickelten Bandabschnitt der Spiralbandfeder versehen. Dabei ist die Aufnahme derart tief, daß das abgewickelte Spiralband mit Spiel zwischen der Schub- oder Zugstange und dem Träger liegen kann. Im abgewickelten Zustand ist die gespeicherte Antriebszugenergie in der Spiralbandfeder gespeichert.

Bei einer bevorzugten Ausführung der Erfindung ist der erfindungsgemäße Antrieb mit einem Schrittgetriebe versehen, das kleine Verlagerungswege erzeugt und damit hohe Spannkräfte zwischen den Spannbacken aufbringen kann. Das Schrittgetriebe ist einem von der Zugeinrichtung unabhängigen Antrieb zugeordnet, der durch die Betätigung eines Antriebsarms von einer Bedienperson betrieben wird. Der Antriebsarm wird derart ausgelegt, daß er über einen gegen eine Rückstellfeder verlagerbaren Mitnehmer hebelkraftübertragsgemäß auf die Schuboder zugstange in Eingriff bringbar ist, und ein Träger auf einer den Backen zugewandten Spannseite der Schub- oder Zugstange schwenkbar angelenkt ist.

Mit dem erfindungsgemäßen Antrieb zum Schnellverschließen der beweglichen Spannbacke in Kombination mit dem Schrittgetriebe ist tatsächlich eine Einhandzwinge realisiert, welche ein schnelles Greifen mit dem Schnellschlußmechanismus sowie ein Aubringen hoher Spannkräfte bei geringem Krafteinsatz realisiert.

Der Antriebsarm des Schrittgetriebes weist ein Schwenklager auf, das im Verlauf der Längsrichtung der Schub- oder Zugstange im wesentlichen auf der Höhe des Mitnehmers liegt, wobei insbesondere der Antriebsarm einen permanenten ortsfesten Schwenklagerpunkt aufweist. Das Schwenklager und eine Krafteintragsstelle des Antriebsarms in dem Mitnehmer sind im wesentlichen in einer Ebene angeordnet, zu welcher die Schub- oder Zugstange als Ebenennormale liegt. Der Antriebsarm weist insbesondere einen ersten Abschnitt mit einem Wirkhebel, der durch den Abstand des Schwenklagers zum Krafteintragspunkt definiert ist, und einen zweiten Abschnitt auf, an dem ein Operator den Antriebsarm betätigt. Insbesondere umfaßt das Schrittgetriebe eine Rückstellfeder, die nach Lösen einer Betätigungskraft zum Verbringen des Antriebsarms von dessen Betätigungsstellen in eine Ausgangsstelle ausgelegt ist, in

welcher der Antriebsarm für einen vollständigen Betätigungshub betätigbar ist. Außerdem weist das Schrittgetriebe eine Dauerverkantung des Mitnehmers auf, bei der insbesondere eine Rückstellfeder derart auf den Mitnehmer einwirkt, daß er im unbetätigten Betriebszustand des Antriebsarm gegen einen Anschlag am Antriebsarm gedrängt an der Schub- oder Zugstange verkantend anliegt.

Eine Einrichtung zum Lösen einer Dauerverkantung des Mitnehmers ist insbesondere ebenfalls vorgesehen, wobei die Einrichtung zum Lösen der Verkantung eines Mitnehmers über eine eine Verlagerung der Schub- oder Zugstange entgegen der Vorschubrichtung des Schrittgetriebes verhindernde Sperre bedienbar ist.

Zudem betrifft die Erfindung ein Spann- und/oder Spreizwerkzeug mit einem erfindungsgemäßen Antrieb.

Weitere Vorteile, Merkmale und Eigenschaften der Erfindung werden durch die folgende Beschreibung bevorzugter Ausführung anhand der beiliegenden Zeichnungen deutlich, in denen zeigen:

- Figur 1a eine Seitenansicht einer Ausführung eines erfindungsgemäßen Spann- und/oder Spreizwerkzeugs mit einer geöffneten Spannbackenstellung;
- Figur 1b eine Querschnittsansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 1a entlang der Schnittlinie A-A;
- Figur 2 eine Seitenansicht einer weiteren erfindungsgemäßen Ausführung eines Spannund/oder Spreizwerkzeugs mit geöffneter Spannbackenstellung, wobei ein erfindungsgemäßer Antrieb in seinem Antriebsbetrieb zum Öffnen der Spannbacken gezeigt ist;

-6-

eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 2, wobei Figur 3 der erfindungsgemäße Antrieb in seinem Antriebsbetrieb zum Schließen der Spannbacken gezeigt ist; eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 2 mit Figur 4 einem deaktivierten Antrieb, wobei ein erfindungsgemäßer Mechanismus zum Laden von Antriebsenergie bei einer Schließbewegung der Backen gezeigt ist; eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 2 mit Figur 5 einem deaktivierten Antrieb, wobei der erfindungsgemäße Mechanismus zum Laden von Antriebsenergie bei einer Öffnungsbewegung der Spannbacken gezeigt ist; eine Seitenansicht einer weiteren erfindungsgemäßen Ausführung eines Spann-Figur 6a und/oder Spreizwerkzeugs mit Spannbacken im einspannenden Zustand; Figur 6b eine Stirnansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 6a; eine Seitenansicht der erfindungsgemäßen Ausführung des Spann- und/oder Figur 7a Spreizwerkzeugs gemäß Figuren 6a, 6b mit einer geöffneten Spannbackenkonfiguration; eine Querschnittsansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 7a Figur 7b entlang der Schnittlinie B-B; eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß den Figuren Figur 8a 6a bis 7b in einem Betriebsmodus des Schließens der Spannbacken;

eine Stirnansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 8a;

Figur 8b

- 7 -

eine Seitenansicht einer weiteren erfindungsgemäßen Ausführung eines Spannund/oder Spreizwerkzeugs mit einer geöffneten Spannbackenkonfiguration;

Figur 9b eine Draufsicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 9a;

Figur 9c eine vergrößerte Detailansicht des Bereichs C gemäß Figur 9b;

Figur 9d eine Stirnansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 9a.

Die in den Figuren 1a und 1b dargestellte bevorzugte Ausführung eines Spann- und/oder Spreizwerkzeugs 1 umfaßt eine Schub- oder Zugstange 3, die an einem Träger 5 in deren Längsrichtung beweglich gelagert ist. Der Träger 5 umfaßt ein geschlossenes Gehäuse 7, wobei auf einer Spannseite 9 der Schub- oder Zugstange 3 eine feste Spannbacke 11 vorgesehen ist, die einer beweglichen Spannbacke 13 diametral gegenüberliegt, welche an einem Ende 14 der Schub- oder Zugstange 3 lösbar befestigt ist.

In Figur 1a ist der Spannbetriebsmodus des Spann- und/oder Spreizwerkzeugs 1 dargestellt. Ist die bewegliche Backe 13 an dem gegenüberliegenden Ende 16 der Schub- oder Zugstange 3 befestigt, besitzt das Spann- und/oder Spreizwerkzeugs 1 einen Spreizbetriebsmodus.

Auf der der Spannseite 9 gegenüberliegenden Betätigungsseite 15 der Zug- oder Schubstange 3 ist an dem Träger 5 ein Griff 17 zum Halten des Spann- und/oder Spreizwerkzeugs mit einer Hand einstückig befestigt. Zudem ist an dem Träger 5 ein Schrittgetriebe 19 gelagert, das später im Detail erläutert wird. Das Gehäuse 7 des Trägers 5 umfaßt und schützt einen erfindungsgemäßen Antrieb 21, der durch eine Drehfeder 23, die eine Rotationsachse aufweist, und ein drehbar gelagertes Antriebsrad 25 gebildet ist, dessen Drehachse mit der Rotationsachse der Drehfeder 23 zusammenfällt. Die sich an dem Träger 5 abstützende Drehfeder 23 beaufschlagt die Schub- oder Zugstange 3 mit einer Zugkraft für eine Verlagerung der Schub- oder Zugstange in Schließrichtung.

Das Antriebsrad 25 steht kraftübertragend mit einem Längsrand 27 der Schub- oder Zugstange 3 im Eingriff. In Figur 1a ist der drehmomentübertragende und Zugkräfte erzeugende Eingriff durch Reibungsschluß zwischen Antriebsrad 5 und Schub- oder Zugstange 3 gebildet.

Das Antriebsrad 25 ist derart an dem Träger 5 gelagert, daß in jeder Verlagerungsposition der Schub- oder Zugstange 3 ein Eingriff des Antriebsrads 25 mit der Schub- oder Zugstange 3 gewährleistet ist, also stets Zugkräfte auf die Schub- oder Zugstange 3 wirken. Das Antriebsrad 25 ist aus einem Gummi enthaltenden Werkstoff gebildet, wobei die Schub- oder Zugstange 3 zum Antriebsrad 25 derart liegt, daß eine eine Normalkraft erzeugende Vorspannung zwischen den beiden Bauteilen wirkt.

Mit dieser Ausführung eines drehantreibbaren Getriebeelements in Form eines Antriebsrads 25 und einer Drehfeder 23 als Zugeinrichtung und Energiespeicher wird der Schub- oder Zugstange 3 in jeder ihrer Verlagerungspositionen eine Antriebszugkraft zum Schließen der Spannbacken 11, 13 mitgeteilt, also eine Antriebszugkraft zum Bewegen der Schub- oder Zugstange 3 von rechts nach links, wie in Figur 1a durch den Pfeil S, wie Schließrichtung, angezeigt ist.

Aufgrund des ständigen Eingriffs des Antriebsrads 25 mit der Schub- oder Zugstange 3 ist weiterhin gewährleistet, daß bei einer Öffnungsbewegung der Spannbacke 13, d.h. bei einer Bewegung der Schub- oder Zugstange 3 von links nach rechts, die Drehfeder 23 gespannt wird, um für den anschließenden Öffnungsvorgang ausreichende potentielle Energie zum erneuten Öffnen des Spann- und/oder Spreizwerkzeugs 1 bereitzustellen.

Eine Drehfeder 23 als Kraftmaschine ist insofern von Vorteil, als sie für eine im wesentlichen kontinuierliche Drehmoment-Bereitstellung sorgt, so daß ein kontinuierlicher Schließvorgang mit gleichmäßiger Schließkraft und Schließgeschwindigkeit bereitgestellt ist.

Die Reibungskraft, welche zur Übertragung des Drehmoments bzw. einer Zugkraft von dem Antriebsrad 25 auf die Schub- oder Zugstange 3 notwendig ist, ist derart insbesondere durch

Wahl eines hohen Reibungskoeffizienten einzustellen, daß es bei einem Stillstand der Schuboder Zugstange 3 nicht zu einem Durchdrehen des Antriebsrads 25 kommt. Auf diese Weise ist gewährleistet, daß sich die potentielle Energie der Drehfeder 23 nicht selbständig durch Durchrutschen des Antriebsrads 25 löst.

Die Ausführung gemäß den Figuren 2 und 3 stellt ein Spann- und/oder Spreizwerkzeug dar, die sich im wesentlichen von dem Spann- und/oder Spreizwerkzeug gemäß Figur 1a und 1b darin unterscheidet, daß eine alternative Ausführung eines erfindungsgemäßen Antriebs für das Spann- und/oder Spreizwerkzeug vorgesehen ist. Zur besseren Lesbarkeit der Figurenbeschreibung werden für identische und ähnliche Bauteile zur Ausführung gemäß den Figuren 1a und 1b identische Bezugszeichen verwendet, die um 100 erhöht sind, wobei es einer erneuten Erläuterung der Funktionsweise der Bauteile nicht bedarf.

Die Figuren 2 und 3 zeigen zwei unterschiedliche Antriebskonfigurationen eines Getriebes eines erfindungsgemäßen Antriebs. In beiden Konfigurationen ist der Antrieb durch eine Freistellung einer Klinke 131 aus einer Klinkenverzahnung 133 aktiviert.

Bei der Getriebekonfiguration gemäß Figur 2 wird ein Öffnen der Spannbacken 111 und 113 realisiert. Die Öffnungsrichtung der Verlagerung der Schub- und/oder Zugstange 103 ist mit O angedeutet.

Der erfindungsgemäße Antrieb 121 umfaßt ein drehantreibbares Getriebeelement, das als Antriebsrad 135 über eine Drehfeder 123 angetrieben ist. Die Drehfeder 123 ist derart montiert, daß eine Drehung des Antriebsrads 135 im Uhrzeigersinn bewirkt wird.

Ein mit dem Antriebsrad 135 drehmomentübertragend gekoppeltes Zwischengetrieberad 137 wird entgegen dem Uhrzeigersinn durch das Antriebsrad 135 gedreht, wobei das Zwischengetrieberad 137 drehmomentübertragend ein als Getriebebauteil zum Umsetzen einer Drehbewegung in eine translatorische Bewegung ausgebildetes Abtriebsrad 139 antreibt. Das Abtriebsrad 139 kommt unter Ausbildung einer Zugkraft zwischen Träger 105 und Schub- oder

Zugstange 103 mit dem der Betätigungsseite 115 zugewandten Rand 127 der Schub- oder Zugstange 103 kraftübertragend in Eingriff. Da das Abtriebsrad 139 in einer Drehbewegung im Uhrzeigersinn angetrieben ist, wird der Schub- oder Zugstange 103 eine Translationszugkraft mitgeteilt, welche die bewegliche Backe 113 in Öffnungsrichtung O von der ortsfesten Backe 111 entfernen läßt.

Sämtliche Drehmomentübertragungen können entweder durch Reibschluß oder durch Formschluß in Form von Verzahnungen oder durch eine Kombination aus beiden realisiert werden.

Im Anschluß wird nun eine bevorzugte Weiterbildung der Erfindung erläutert, die einen Mechanismus zum Wechseln der Verlagerungsrichtung von einer Öffnungsverlagerung, wie in Figur 2 dargestellt ist, in eine Schließverlagerung und umgekehrt betrifft, welcher Betriebsmodus in Figur 3 dargestellt ist.

Der Mechanismus zum Wechseln der Verlagerungsrichtung weist eine Schaltung auf, welche durch eine Rückdrücksperre betätigbar ist. Die Rückdrücksperre stellt eine Blockade gegen das Verlagern der Schub- oder Zugstange entgegen der Vorschubrichtung des Schrittgetriebes dar, die durch den Pfeil V angedeutet ist. Die Sperrwirkung der Rückdrücksperre wird durch die Verkantung eines Durchgangsbereichs eines Freigabehebels 141 mit der Schub- oder Zugstange 103 bewerkstelligt.

Soll also die Schub- oder Zugstange 103 in Öffnungsrichtung O (Figur 2), die der Vorschubrichtung V des Schrittgetriebes 119 entgegengesetzt ist, verlagert werden, so ist zum einen der Freigabehebel 141 zu betätigen, um die in Öffnungsrichtung O wirkende Sperrwirkung des Freigabehebels 141, die aufgrund der Verkantung des Freigabehebels 141 mit der Schub- oder Zugstange 103 besteht, zu lösen. Die Betätigung des Freigabehebels 141 ist in Figur 2 nicht näher dargestellt. Es reicht ein leichtes Kippen des Freigabehebels 141, um die Sperrwirkung in Öffnungsrichtung O aufzuheben.

Soll nun die Verlagerungsrichtung von O nach S gewechselt werden, ist der Freigabehebel 141 derart stark zu drücken (Figur 3), daß eine Schalteinrichtung aktiviert wird, die durch einen in seiner Längsrichtung verlagerbaren Druckstab 143 gebildet ist, der auf ein Lager 145 für das Abtriebsrad 139 drückt. Das Lager 145 gewährleistet eine Verschiebung des Abtriebsrads 139 in Längsrichtung, nämlich in Schließrichtung S, der Schub- oder Zugstange 103. Eine nicht dargestellte Vorspannung, insbesondere eine Druckfeder, für das Lager drückt das Abtriebsrad 139 in die in Figur 2 dargestellte Position, in der Abtriebsrad 139 mit dem Zwischengetrieberad 137 in Eingriff steht.

Bei Betätigung des Druckstabs 143, also bei Aktivierung der Schaltung, wird das Lager 145 des Abtriebsrads 139 derart verschoben, daß das Abtriebsrad 139 von dem Zwischengetrieberad 137 freikommt und in einen unmittelbaren drehmomentübertragenden Kontakt mit dem Antriebsrad 135 gelangt. Mit diesem strukturellen Aufbau ist ein Drehrichtungswechsler in dem Antrieb integriert, der einen Wechsel der Drehrichtung des Abtriebsrads 139 realisiert. Im geschaltenen Zustand (Figur 3) treibt die Drehbewegung des von der Drehfeder 123 angetriebenen Antriebsrads 135 das Abtriebsrad 139 entgegen dem Uhrzeigersinn an, wodurch die Schub- oder Zugstange 103 in Schließrichtung S kontinuierlich verlagert wird.

In beiden in den Figuren 2 und 3 dargestellten Getriebekonfigurationen sind Antriebsrad, Zwischengetrieberad und Abtriebsrad an ihren Drehmomentübertragungspunkten derart vorgespannt, daß eine ausreichende Normalkraft zur Bildung der erforderlichen Reibungskraft bzw. Zugkraft zur Drehmomentübertragung erzeugt ist. Die erforderliche Andrückkraft des Abtriebsrads 139 gegen die Schub- oder Zugstange 103 wird bei dem Öffnungsmechanismus gemäß Figur 2 aufgrund der Vorspannung des Lagers 143 sichergestellt, wobei die erforderliche Andruckkraft im Schließmechanismus gemäß Figur 3 durch die dem Druckstab 143 an dem Freigabehebel 141 mitgeteilte Betätigungskraft gewährleistet ist.

In den Figuren 4 und 5 ist ein Spann- und/oder Spreizwerkzeug 101 dargestellt, das im Hinblick auf den strukturellen Aufbau des Spann und/oder Spreizwerkzeugs gemäß den Figuren 2 und 3 im wesentlichen identisch ist. Zur besseren Lesbarkeit der Figurenbeschreibung werden

- 12 -

identische Bezugszeichen für identische oder ähnliche Bauteile verwendet. Einer erneuten Erläuterung der identischen oder ähnlichen Bauteile bedarf es nicht.

Das Spann- und/oder Spreizwerkzeug 101 gemäß den Figuren 4 und 5 unterscheidet sich in dem Betriebszustand des Antriebs gegenüber dem Spann- und/oder Spreizwerkzeug gemäß den Figuren 2 und 3. Der Antrieb ist nämlich durch die Sperrklinke 131 deaktiviert, die in einer an dem Antriebsrad 135 radial außen liegenden Verzahnung 133 eingerastet ist und somit die Freigabe der in der Drehfeder 123 gespeicherten Drehantriebsenergie blockiert.

In diesem Betriebsmodus wird der Drehfeder 123 die zum Schließen und Öffnen notwendige Drehantriebsenergie zugeführt. Durch die Bewegung der Schub- oder Zugstange 103 wird über das zwischen der Schub- oder Zugstange 103 und der Drehfeder 123 angeordnete Getriebe eine Drehbewegung am Antriebsrad 135 entgegen dem Uhrzeigersinn induziert, wodurch die Drehfeder 123 gespannt wird.

Mit Hilfe des oben beschriebenen Mechanismus zum Wechseln der Verlagerungsrichtung kann der Spannvorgang unabhängig von einer bestimmten Verlagerungsrichtung der Schuboder Zugstange realisiert werden.

In Figur 4 ist der Lademechanismus in einer Betriebskonstellation dargestellt, bei der ein Spannen der Drehfeder 123 durch Schließen der Backen 111, 113 realisiert ist. Bei der Bewegung der Schub- oder Zugstange 103 von rechts nach links, also in Schließrichtung S, wird dem Abtriebrad 139 eine Drehbewegung entgegen dem Uhrzeigersinn induziert, wobei dem Zwischengetrieberad 137 eine Drehbewegung in dem Uhrzeigersinn mitgeteilt wird. Durch Drehung des Antriebsrads 135 entgegen dem Uhrzeigersinn wird die Drehfeder 123 gegen den Uhrzeigersinn gespannt oder aufgezogen.

Da ohnehin zum Öffnen der Spannbacken, also für eine Bewegung der Schub- oder Zugstange von links nach rechts, die Rückdrücksperre durch den Freigabehebel 141 betätigt werden muß, ist bei vollständiger Betätigung des Freigabehebels 141 automatisch sichergestellt, daß

über den Druckstab 143 der Drehrichtungswechsler aktiviert ist und das Abtriebsrad 139 aus dem Eingriff mit dem Zwischengetrieberad befreit ist.

Auf diese Weise ist es mit dem erfindungsgemäßen Antrieb möglich, ein Laden von potentieller Energie in den Speicher für Antriebsenergie bereitzustellen, wobei ein Ladevorgang sowohl beim Öffnen als auch beim Schließen durchführbar ist. Wird also die bewegliche Backe auf die ortsfeste Backe mittels des Schrittgetriebes zubewegt, wird automatisch die Drehfeder des Antriebs gespannt. Ein Aufladen durch Hin- und Herbewegen der Schub- oder Zugstange ist möglich.

In den Figuren 6a, 6b, 7a, 7b, 8a und 8b ist eine weitere Ausführung eines erfindungsgemäßen Spann- und/oder Spreizwerkzeugs mit einer alternativen Ausführung eines Antriebs zur kontinuierlichen Verlagerung einer Schub- oder Zugstange dargestellt. Zur besseren Lesbarkeit sind identische oder ähnliche Bauteile zu den vorstehenden Ausführungen mit der gleichen Bezugsziffer versehen, die um 100 oder 200 erhöht ist. Einer erneuten Erläuterung der identischen oder ähnlichen Bauteile wie deren Funktionsweise bedarf es nicht.

Die Ausführung gemäß den Figuren 6a bis 8b unterscheidet sich von den oben stehenden Ausführungen in der Ausgestaltung des Antriebs. Eine bevorzugte Einrichtung zum Ziehen der Schub- oder Zugstange von einer offenen Stellung, wie sie in den Figuren 7a dargestellt ist, in eine geschlossenen Stellung, wie sie in Figur 6a dargestellt ist, ist vorgesehen. Die Zugeinrichtung ist bei der Ausführung gemäß den Figuren 6a bis 8b durch eine Drehfeder 223 gebildet, die mit einem wickelbaren Strang 245 gekoppelt ist. Der wickelbare Strang 245 ist an seinem freien Ende an der Schub- oder Zugstange 203 befestigt. Hierfür ist eine Befestigungseinrichtung 247 vorgesehen, welche über einen Freigabeknopf 248 von der Schub- oder Zugstange 203 lösbar ist, um die Befestigungseinrichtung 247 des wickelbaren Strangs 245 längs der Schub- oder Zugstange 203 umsetzen zu können. Beispielsweise bei Spannund/oder Spreizwerkzeugen für besonders breite Gegenstände 249 ist eine sehr lange Schub- oder Zugstange (hier nicht dargestellt) vorgesehen. Um nicht eine ebenso lange Zugeinrich-

- 14 -

tung einsetzen zu müssen, kann die Befestigungseinrichtung 247 näher zum Träger 205 gerückt werden.

Für den wickelbaren Strang 245 ist eine Spule 251 vorgesehen, auf die der wickelbare Strang 245 beim Zuziehen der Spannbacke 213 wickelbar ist. Der Wickelstrang 245 erstreckt sich von der Spule 251 über eine in der Nähe der Spule in Richtung auf die bewegliche Backe 213 versetzte Führung 253, welche den Wickelstrang 245 in eine Vertiefung 255 der Schub- oder Zugstange 203 leitet. Von der Führung 253 läuft der Wickelstrang 245 längs der Schub- oder Zugstange 203 in deren Vertiefung 255 zur Befestigungseinrichtung 247.

Der Wickelstrang 245 kann als Faden oder als ein metallisch verstärkter Stoffaden gebildet sein. Auch Nylonschnüre mit kleinem Querschnitt sind als Wickelstrang einsetzbar.

Die Schub- oder Zugstange 203 mit der Vertiefung 255 zur Aufnahme des Wickelstrangs 245 ist, wie in Figur 7b ersichtlich ist, als I-Träger mit zwei seitlichen Vertiefungen 255 ausgeführt. Die Vertiefungen sind derart bemessen, daß der Wickelstrang berührungsfrei hinsichtlich des Gehäuses 207 des Trägers 205 entlanggleiten kann.

Eine besondere erfinderische Maßnahme besteht darin, der drehbar gelagerten Spule 251, die mit der Drehfeder 223 drehantreibend gekoppelt ist, eine Dämpfungseinrichtung 257 zuzuordnen, die schematisch in den Figuren 6a, 7a und 8a angedeutet ist.

Die Dämpfungseinrichtung 257 ist dazu ausgelegt, die durch die Zugkraft der Zugeinrichtung auf die bewegliche Backe 213 wirkenden Kraft derart zu dämpfen, daß eine kontrollierbare Schließgeschwindigkeit der beweglichen Backe 213 gewährleistet ist. Die gewünschte Schließgeschwindigkeit hängt von den Wünschen der das Spann- und/oder Spreizwerkzeug 201 benutzenden Personen ab. Die Dämpfungseinrichtung 257 kann auf einem Reibungsverlust- oder Pantschverlustprinzip eines Arbeitsfluids basieren.

Die Dämpfungseinrichtung 257 ist insbesondere vorteilhaft, sollte eine Drehfeder verwendet werden, welche eine nicht lineare Kraftbereitstellung bietet. Die Dämpfungseinrichtung 257 kann derart auf die Drehfeder abgestimmt sein, daß ein lineare Kraftvermittlung erzielt wird.

In dem in den Figuren 6a bis 8b gezeigten erfindungsgemäßen Antrieb ist ein Mechanismus zum Speichern und Laden von Energie durch die Drehfeder realisiert. Den niedrigsten Niveauwert im Speicher enthält die Drehfeder 223 dann, wenn die Spannbacken 211 und 213 geschlossen sind. Durch Wegziehen der Spannbacke 213 von der ortsfesten Backe 211 bei leichter Betätigung des Freigabehebels 241 der Rückdrücksperre zum Lösen des Spannund/oder Spreizwerkzeugs wird die Drehfeder 223 über den Wickelstrang 245 gespannt. Bei Freigabe des Freigabehebels 241 verbringen Federn 259 und 261 den Freigabehebel 241 in eine gegenüber der Schub- oder Zugstange, 203 verkantete Stellung. Die in der verkanteten Stellung auftretenden Reibungs- und Verkantungskräfte sind derart groß, daß ein selbständiges Schließen der Spannbacke 213 durch die Zugeinrichtung nicht möglich ist. Die dafür erforderliche Reibungs- oder Verkantkraft an dem Freigabehebel 241 kann unter Berücksichtigung der Federkonstanten der Federn 259 und 261 eingestellt werden.

Betätigt die Bedienperson den Freigabehebel 241, so werden die Reibungs- oder Verkantungskräfte an der Schub- oder Zugstange gelöst, wodurch die Drehantriebsenergie in der Drehfeder 223 freigegeben wird und die bewegliche Backe über den Wickelstrang 245 zur ortsfesten Backe 211 hin gezogen wird. Der Betriebszustand des Schließens ist in den Figuren 8a und 8b dargestellt. Die Zugeinrichtung wirkt so lange, bis der Gegenstand 249 von den Backen 211, 213 ergriffen ist (Figur 6a, 6b) und die Zugkraft der Drehfeder 223 nicht mehr ausreicht, ein weiteres Verlagern der Schub- oder Zugstange 203 in Schließrichtung S zu bewirken.

Nach dem Beenden des Schnellschließvorgangs durch die erfindungsgemäße Zugeinrichtung können über das Schrittgetriebe 219 dem Gegenstand 249 hohe Spannkräfte mitgeteilt werden, welches Schrittgetriebe kleiner Schrittweite später detaillierter beschrieben wird.

In den Figuren 9a bis 9d ist ein weiteres erfindungsgemäßes Spann- und/oder Spreizwerkzeug gezeigt, wobei zur besseren Lesbarkeit der Figurenbeschreibung für identische oder ähnliche Bauteile die gleichen Bezugsziffern verwendet werden, die um 100, 200 oder 300 erhöht sind, wobei es einer erneuten Erläuterung der identischen oder ähnliche Bauteile nicht bedarf.

Die Ausführung des Spann- und/oder Spreizwerkzeugs 301 gemäß den Figuren 9a bis 9d unterscheidet sich von der Ausführung des Spann- und/oder Spreizwerkzeugs gemäß den Figuren 6a bis 8b darin, daß die Einrichtung zum Ziehen der beweglichen Backe 313 auf die ortsfeste Backe 311 ausschließlich mit einer Drehfeder 323 bewerkstelligt wird, d.h. ohne Nutzung eines Wickelstranges, welcher die Drehfeder mit der Schub- oder Zugstange 303 oder der beweglichen Backe 313 verbindet.

Die Drehfeder 323 gemäß der Ausführung der Figuren 9a bis 9d ist eine Spiralbandfeder, welche drehbar im Gehäuse 207 des Trägers 205 gelagert ist. Zur Speicherung der Drehantriebsenergie kann die Spiralbandfeder abgewickelt werden, wobei der abgewickelte Abschnitt 365 in der Vertiefung 355 der Schub- oder Zugstange aufgenommen ist. Die Basis 367 der Spiralbandfeder ist zum Aufwickeln des abgewickelten Spiralbandabschnitts 365 drehbar am Träger 305 gelagert. Das freie Ende des abwickelbaren Spiralbandabschnitts 365 ist an der Schub- oder Zugstange 303 oder an der beweglichen Backe 313 befestigt. Die hierfür notwendige Befestigungseinrichtung (hier nicht dargestellt) für den Spiralbandabschnitt 365 ist lösbar, wobei die Befestigungseinrichtung längs der Schub- oder Zugstange 303 umsetzbar ist, insbesondere um bei großen zu spannenden Gegenständen (hier nicht näher dargestellt) kein zu starkes Abwickeln der Spiralbandfeder zu bedingen.

Der besondere Vorteil der Spiralbandfeder liegt darin, eine unabhängig vom zurückgelegten Weg gleichmäßige lineare Antriebskraft der beweglichen Backe 313 oder der Schub- oder Zugstange 303 mitzuteilen.

Somit erfüllt die Spiralbandfeder sowohl die Aufgabe einer Zugeinrichtung als auch die einer Dämpfungseinrichtung zum Erzeugen gleichmäßiger Schließgeschwindigkeiten.

- 17 -

Zur Aufnahme der mit dem Spiralbandabschnitt 365 gewickelten Spiralbandbasis 367 kann das Gehäuse 307 eine seitliche Öffnung aufweisen, durch welche die Basis 367 samt gewikkeltem Spiralbandabschnitt 365 ragen kann, was in den Figuren 9b und 9c dargestellt ist.

Der Schließbetriebsmodus sowie die Bedienung des Spann- und/oder Spreizwerkzeugs 303 mit der Spiralbandfeder entspricht im wesentlichen dem Spann- und/oder Spreizwerkzeug 203, das gemäß den Figuren 6a bis 8b anhand der dort verwendeten Zugeinrichtung mit Wikkelstrang beschrieben ist.

Nach der durch die Spiralbandfeder bewirkte Schließbewegung der beweglichen Backe 313 kann mittels des Schrittgetriebes 319 kleiner Schrittweite die gewünschte hohe Spannkraft zwischen den Backen 311 und 313 aufgebaut werden.

Im folgenden wird der Aufbau sowie die Funktionsweise des Schrittgetriebes kleiner Schrittweiten beschrieben, welches Schrittgetriebe im wesentlichen dem entspricht, das in der deutschen Patentanmeldung DE 10335365.8 von der Anmelderin angegeben wird.

Das Schrittgetriebe 19 bis 319 ist dazu ausgelegt, einen Kraftbetrieb des Spann- und/oder Spreizwerkzeugs 1 bis 301 bereitzustellen, bei dem die Schub- oder Zugstange 3 bis 303 in Vorschubrichtung V mit kleinen Schrittweiten verlagerbar ist. In diesem Kraftbetrieb ist ein Wirkhebel eines Antriebsarms 71 bis 371 wirksam, welcher Wirkhebel durch den Abstand eines Schwenklagers 73 bis 373 des Antriebsarm 71 bis 371 und eines Krafteintragsbolzens 75 bis 375 definiert ist. Da der Betätigungshebel des Antriebsarms 71 bis 371 weit größer ist als der Wirkhebel, können Spannkräfte erzeugt werden, die um das 10-fache höher sind als die, die mit dem Schrittgetriebe gemäß dem US-Patent 6,568,667 möglich sind.

Durch eine im Gehäuse 307 gelagerte Druckfeder 77 bis 377 wird ein Mitnahmeschieber 79 bis 379 stets an den Krafteintragsbolzen 75 bis 375 des Antriebsarms 71 bis 371 gedrückt. Weiterhin dient die Druckfeder 77 bis 377 dazu, den Mitnahmeschieber 79 bis 379 in eine stets gegenüber der Schub- oder Zugstange 3 bis 303 verkanteten Stellung zu bringen. Dies

wird dadurch erreicht, daß die Druckkrafteintragsstelle der Druckfeder 77 bis 377 näher zur Schub- oder Zugstange 3 bis 303 liegt als der Krafteintragsbolzen 75 bis 375, wodurch der Mitnahmeschieber 79 bis 379 um den Krafteintragsbolzen 75 bis 375 gegen den Uhrzeigersinn geschwenkt wird, bis der Mitnahmeschieber 79 bis 379 mit der Schub- oder Zugstange 3 bis 303 verkantet. Damit ist gewährleistet, daß bei Betätigung des Antriebsarms 71 bis 371 in einer Schwenkbewegung um das Schwenklager 73 bis 373 unmittelbar eine Verlagerung der Schub- oder Zugstange bewirkt wird, womit unmittelbar Spannkräfte zwischen den Spannbacken 13, 15 bis 313, 315 hervorgerufen werden können. Nach einem Hub des Antriebsarms 71 bis 371 ist letzterer von der Bedienperson freizugeben, wodurch die Druckfeder 77 bis 377 die Mitnehmerverkantung des Mitnahmeschiebers 79 bis 379 gegenüber der Schub- oder Zugstange 3 bis 303 freigibt und der Antriebsarm 71 bis 371 in die in der Figur 9a beispielsweise dargestellte Ausgangsstellung zurückgeführt ist.

Die günstigen Hebelverhältnisse für das Schrittgetriebe kleiner Schrittweite wird vor allem dadurch realisiert, daß sowohl das Schwenklager 73 bis 373 als auch der Krafteintragsbolzen 375 auf der Spannseite 9 bis 309 liegen.

Die in der vorstehenden Beschreibung, den Figuren und den Ansprüchen offenbarten Merkmale können sowohl einzeln als auch in beliebiger Kombination für die Realisierung de Erfindung in den verschiedenen Ausgestaltungen von Bedeutung sein. Beispielsweise ist es möglich, die unterschiedlichen Antriebsmechanismen untereinander auszutauschen und zu kombinieren. Zum Beispiel ist es durchaus im erfindungsgemäßen Gedanken, die Dämpfungseinrichtung (257) mit Drehfederantrieben, wie in den Figuren 1a und 1b oder 2 bis 5 dargestellt, zu kombinieren.

Bezugszeichenliste

g
•
÷
;
r Zugstange
·
4
tange
•
•

144	Lager
245	wickelbarer Strang
247	Befestigungseinrichtung
248	Freigabeknopf
249	einzuspannender Gegenstand
251	Spule
253	Führung
255, 355	Vertiefung
257	Dämpfungseinrichtung
259	Feder
261	Feder
365	Spiralbandabschnitt
367	Basis
0	Öffnungsrichtung
S	Schließrichtung
V	Vorschubrichtung des Schrittgetriebes

BOEHMERT & BOEHMERT ANWALTSSOZIETÄT

Bochmert & Bochmert • P.O.B. 15 03 08 • D-80043 München

Deutsches Patent- und Markenamt Zweibrückenstraße 12 80297 München

DR. ING, KARL BOEHMERT, PA (1879-1972)
DIPL-ING, ALBERT BOEHMERT, PA (1870-1973)
DIPL-ING, ALBERT BOEHMERT, PA (1870-1973)
DR.-ING, WALTER HOORMANN, PA: Brumb
DR.-ING, WALTER HOORMANN, PA: Brumb
DPL-PHYS, DR. HEINZ GODDAR, PA: Menchan
DR.-ING, ROLLAND LIESEGANG, PA: Menchan
DPL-PHYS, ROBERT MONZHUBER, PA (1931-19
DIPL-PHYS, ROBERT MONZHUBER, PA (1931-19
DE LIEDWIG KOINTER. LUDWIG KOUKER, RA Breeze (CHEM.) ANDREAS WINKLER, PA*, Br ANUMENT ... DOG TO A LESEGANG, PAT, AND ANUMENT AND A LESEGANG, PAT, AND ANUMENT AND ANUMENT AND ANUMENTAL AND ANUMENTAL AND ANUMENT AND ANUMENTAL AND ANUMENT AND ANUMENT AND ANUMENT AND ANUMENTAL ANUMENTAL AND ANUMENTAL AND ANUMENTAL AND ANUMENTAL AND ANUMENTAL ANUMENTAL AND ANUMENTAL ANUMENTAL AND ANUMENTAL AND ANUMENTAL AND ANUMENTAL AND ANUMENTAL AND ANUMENTAL AND ANUMENTAL ANUMENTAL AND ANUMENTAL AND ANUMENTAL A

PROF. DR. WILHELM MORDEMANN, M. N.
DPIL. PHYS. EDUARD BAUMANN, P. S. SHA
DPIL. PHYS. EDUARD BAUMANN, P. S. SHA
DPIL. PHYS. EDUARD BAUMANN, P. S. SHA
DPIL. PHOS. BEGFRED SCHREERER, P. A. SHA
DPIL. PHYS. LORENZ, HANSWINGEL, M. S.
DPIL. PHYS. LORENZ, HANSWINGEL, M. S.
DPIL. PHYS. ANTON FREHERER RIEDEERE,
DPIL. ING. DR. JAN TONNIES, P.A. K. KIE
DPIL. PHYS. CHRISTIAN BEIBLI, PAT, S. SHA
DR. ANKE NORDEMANN-SCHIFFEL, MA P.
DR. KLAUS TIM BRÖCKER, HA. SHA
DR. ANDREAS DUSTMANN, LL.M., RA PRIM
DR. ANDREAS DUSTMANN, LL.M., RA PRIM
DRIL. RIGHT ST. S. SCHOOL, PATA BROWNERS. CHEM. DR. NATURATION OF ALL DECKER, RA. Berlin
-CHEM. DR. VOLKER SCHOLZ, PA. BI-CHEM. DR. JORK ZWICKER, PA. Min-CHEM. DR. NATURATION OF THE ALL DR. JORGE ST. JORGE ST

In Zusammenarbeit mit/in cooperation with DIPL.-CHEM. DR. HANS ULRICH MAY, PA

Ihr Zeichen Your ref.

Ihr Schreiben Your letter of Unser Zeichen: Our ref.

München,

Neuanmeldung

I30141

12. Dezember 2003

IRWIN Industrial Tools GmbH Lilienthalstraße 7 85399 Hallbergmoos

Antrieb mit einer Aktivierungseinrichtung und Spann- und/oder Spreizwerkzeug

Ansprüche

1. Antrieb für ein Spann- und/oder Spreizwerkzeug zur kontinuierlichen Verlagerung dessen Schub- oder Zugstange mit einer daran fest angebrachten, beweglichen Backe relativ zu einem eine ortsfeste Backe haltenden Träger des Spann- und/oder Spreizwerkzeugs in Längsrichtung der Schub- oder Zugstange, umfassend eine Aktivierungseinrichtung, bei deren Betätigung der Antrieb die Schub- oder Zugstange verlagert, gekennzeichnet durch

- 64.355 -

eine Einrichtung zum Erzeugen einer Zugkraft zwischen der Schub- oder Zugstange und dem Träger.

- 2. Antrieb nach Anspruch 1, gekennzeichnet durch eine Zugfeder, insbesondere eine Drehfeder.
- 3. Antrieb nach Anspruch 2, dadurch gekennzeichnet, daß die Zugfeder einerseits an dem Träger und andererseits an der Schub- oder Zugstange oder an der beweglichen Backe befestigt ist.
- 4. Antrieb nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß eine Befestigungsstelle der Zugfeder an der Schub- oder Zugstange lösbar und längs letzterer umsetzbar ist.
- 5. Antrieb nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Einrichtung zur Erzeugung einer Zugkraft mit einem wickelbaren Kraftübertragungselement verbunden ist.
- 6. Antrieb nach Anspruch 5, gekennzeichnet durch eine Wickelaufnahme für das Kraftübertragungselement, die mit der Einrichtung zur Erzeugung einer Zugkraft drehantreibbar gekoppelt ist und insbesondere am Träger ortsfest gelagert ist.
- 7. Antrieb nach einem der Ansprüche, dadurch gekennzeich net, daß die Einrichtung zur Erzeugung einer Zugkraft eine gewickelte Spiralbandfeder ist.
- 8. Antrieb nach Anspruch 7, dadurch gekennzeichnet, daß die Spiralbandfeder einen Wicklungsträger aufweist, der drehbar an dem Träger gelagert ist.

- 9. Antrieb nach Anspruch 7 oder 8, dadurch gekennzeich net, daß die Zugeinrichtung, insbesondere ein abgewickeltes Band der Spiralbandfeder, zumindest teilweise in einer Aufnahme oder Vertiefung der Schub- oder Zugstange liegt.
- 10. Antrieb nach Anspruch 9, dadurch gekennzeichnet, daß die Schub- oder Zugstange die Form eines I-Trägers aufweist.
- 11. Antrieb nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß ein Schrittgetriebe mit kleinen Verlagerungswegen vorgesehen ist.
- 12. Antrieb nach Anspruch 11, dadurch gekennzeichnet, daß das Schrittgetriebe mit einem manuell betätigbaren Antriebsarm betriebsmäßig verbunden ist, der über einen gegen eine Rückstellfeder verlagerbaren Mitnehmer hebelkraftübertragsgemäß auf die Schub- oder Zugstange in Eingriff bringbar ist und an dem Träger auf einer den Backen zugewandten Spannseite der Schub- oder Zugstange schwenkbar angelenkt ist.
- 13. Antrieb nach Anspruch 12, dadurch gekennzeichnet, daß eine Kraftübertragsstelle des Antriebsarms an dem Mitnehmer zwischen einem Schwenklager des Antriebsarms und der Schub- oder Zugstange liegt.
- 14. Antrieb nach Anspruch 2 oder 13, dadurch gekennzeich net, daß ein Schwenklager des Antriebsarms im Verlauf der Längsrichtung der Schub- oder Zugstange im wesentlichen auf Höhe des Mitnehmers liegt, wobei insbesondere der Antriebsarm einen permanent ortsfesten Schwenklagerpunkt aufweist, wobei insbesondere das Schwenklager und eine Kraftübertragsstelle des Antriebsarms an dem Mitnehmer im wesentlichen in einer Ebene liegen, zu welcher die Schub- oder Zugstange als Ebenennormale liegt, wobei insbesondere der Antriebsarm einen ersten Abschnitt mit einem Wirkhebel und einen zweiten Abschnitt aufweist, an dem ein Operator den Antriebsarm betätigen kann, wobei das Schrittgetriebe eine Rückstellfeder, die nach Lösen einer Betätigungskraft zum Verbringen des Antriebsarms aus dessen Betätigungsstellung in eine Ausgangsstelle ausgelegt

- 4 -

ist, in welcher der Antriebsarm für einen vollständigen Betätigungshub betätigbar ist, und eine Dauerverkantung des Mitnehmers umfaßt, bei der insbesondere eine Rückstellfeder derart auf den Mitnehmer einwirkt, daß er im unbetätigten Betriebszustand des Antriebsarms gegen einen Anschlag am Antriebsarm gedrängt an der Schub- oder Zugstange verkantend anliegt, wobei insbesondere eine Einrichtung zum Lösen einer Dauerverkantung des Mitnehmers vorgesehen ist, wobei die Einrichtung zum Lösen der Verkantung des Mitnehmers über eine eine Verlagerung der Schub- oder Zugstange entgegen der Vorschubrichtung des Schrittgetriebes verhindernde Sperre bedienbar ist.

Zusammenfassung

Bei einem Antrieb für ein Spann- und/oder Spreizwerkzeug zur kontinuierlichen Verlagerung dessen Schub- oder Zugstange mit einer daran fest angebrachten, beweglichen Backe relativ zu einem eine ortsfeste Backe haltenden Träger des Spann- und/oder Spreizwerkzeugs in Längsrichtung der Schub- oder Zugstange, umfassend eine Aktivierungseinrichtung vorgesehen, bei deren Betätigung der Antrieb die Schub- oder Zugstange verlagert, ist eine Einrichtung zum Erzeugen einer Zugkraft zwischen der Schub- oder Zugstange und dem Träger vorgesehen.

