phylogenetic examples

Christof Neumann

2022-06-22

Contents

1	Comparative example from the main text	T
2	Reanalysis of Balasubramaniam et al data set	6
3	Data summary	10
Re	eferences	12

This document contains the code to replicate the two analyses of macaque hierarchy steepness (one analysis in the main text, one in the appendix) from *Extending Bayesian Elo-rating to quantify the steepness of dominance hierarchies* (https://doi.org/10.1101/2022.01.28.478016). It was built using EloSteepness (version 0.4.0) and EloSteepness.data (version 0.9.4).

```
library(EloSteepness)
library(EloSteepness.data)
library(rstan)
library(cmdstanr)
library(ape)
library(xtable) # just for table generation in this document
```

1 Comparative example from the main text

```
# path to raw model code
mod1 <- system.file("extdata/phylogenetic_examples/comparative_steepness_model_1.stan",</pre>
                     package = "EloSteepness.data")
file.exists(mod1)
#> [1] TRUE
# load tree, matrices and key table
data("Primates301 nex")
data("phylo_matrices")
data("phylo_key")
# prune tree to available species
species <- unique(phylo_key$species_fixed)</pre>
tree <- keep.tip(Primates301_nex, species)</pre>
# plot(tree)
length(tree$tip.label) == length(species) # sanity check
#> [1] TRUE
# sort matrices and key so they have the same order
```

```
interaction_matrices <- phylo_matrices[sort(names(phylo_matrices))]</pre>
key <- phylo_key[order(phylo_key$datasetname), ]</pre>
all(names(interaction_matrices) == key$datasetname) # sanity check
#> [1] TRUE
# summary data for each group
specdata <- data.frame(datasetname = key$datasetname,</pre>
                         spec = gsub(" ", "_", key$species_fixed),
                         groupsize = NA,
                         n interactions = NA,
                         dyads = NA,
                         prunks = NA)
for (m in seq_len(nrow(specdata))) {
  mat <- interaction_matrices[[specdata$datasetname[m]]]</pre>
  specdata$groupsize[m] <- ncol(mat)</pre>
  specdata$n_interactions[m] <- sum(mat)</pre>
  specdata$dyads[m] <- ncol(mat) * (ncol(mat) - 1) / 2</pre>
  specdata$prunks[m] <- EloRating::prunk(mat)[1]</pre>
}
```

For the sake of this vignette we reduce the number of species and also the number of interactions in the networks. We do this just because it speeds up the sampling from the model. With the full data set, this would take several hours (about four on my fairly old laptop). With the reduced data set this takes less time to run (but still takes a few minutes).

```
# ignore these lines if you want to run the full data set
specdata <- specdata[specdata$groupsize < 7, ]</pre>
interaction_matrices <- interaction_matrices[specdata$datasetname]</pre>
tree <- keep.tip(tree, specdata$spec)</pre>
interaction matrices <- lapply(interaction matrices, function(x) ceiling(x / 5))
# prepare the data set as list for sending it to Stan
xdata <- list()</pre>
xdata$n_datasets <- length(interaction_matrices)</pre>
xdata$n_ids_per_dataset <- as.integer(unlist(lapply(interaction_matrices, ncol)))</pre>
xdata$n_total_ids <- sum(xdata$n_ids_per_dataset)</pre>
xdata$n_interactions_per_dataset <- as.integer(unlist(lapply(interaction_matrices, sum)))</pre>
xdata$n_total_interactions <- sum(xdata$n_interactions_per_dataset)</pre>
xdata$interaction_index <- as.integer(seq_len(xdata$n_total_interactions))</pre>
xdata$individual_index <- as.integer(seq_len(xdata$n_total_ids))</pre>
# generate sequences
set.seed(1)
s <- lapply(interaction_matrices, randomized_sequence_from_matrix)</pre>
# global winner and loser indices
xdata$winner <- do.call("rbind", lapply(s, function(x)x$winnermat))</pre>
xdata$loser <- do.call("rbind", lapply(s, function(x)x$losermat))</pre>
xdata$index_dataset_interactions_start <- cumsum(xdata$n_interactions_per_dataset) -</pre>
                                               xdata$n_interactions_per_dataset + 1
xdata$index_individuals_start <- cumsum(xdata$n_ids_per_dataset) -</pre>
                                      xdata$n_ids_per_dataset + 1
```

```
xdata$y <- rep(1, xdata$n_total_interactions)</pre>
# phylogeny-related
n_spec <- length(tree$tip.label)</pre>
tree_mat <- vcv.phylo(tree, corr = TRUE)</pre>
species_index <- integer(nrow(specdata))</pre>
for (i in seq_len(nrow(specdata))) {
  species index[i] <- which(colnames(tree mat) == specdata$spec[i])</pre>
}
# for phylogeny part of the model
xdata$N_phyl <- n_spec # N_1</pre>
xdata$N_coeff_phyl <- 1 # number of parameters: 1 = SD for phyl 'intercepts'
xdata$spec_index <- species_index</pre>
xdata$chol_mat <- t(chol(tree_mat)) # Cholesky factor of phylogenetic correlation matrix
xdata$phyl_predictor <- rep(1, nrow(specdata)) # group-level predictor values
# for repeated measures part of the model
xdata$N_repeated <- n_spec # the same as for the phylogeny part
# number of parameters: 1 = SD for repeated measurements (species intercepts)
xdata$N_coeff_repeated <- 1</pre>
xdata$index_rep_measures <- species_index # the same as for the phyl part
# group-level predictor values, the same as for the phyl part
xdata$rep_measures_predictor <- rep(1, nrow(specdata))</pre>
# compile stan model
xmod1 <- cmdstan_model(stan_file = mod1, compile = TRUE)</pre>
# sampling
res1 <- xmod1$sample(data = xdata,
                     refresh = 100,
                     parallel_chains = 2,
                     iter_warmup = 1500,
                     iter_sampling = 2500,
                     seed = 1,
                     adapt_delta = 0.9)
stanfit <- rstan::read_stan_csv(res1$output_files())</pre>
xsummary <- summary(stanfit)$summary</pre>
round(summary(stanfit, pars = c("sd_repeated_measures", "sd_phyl"))$summary, 2)
                           mean se_mean sd 2.5% 25% 50% 75% 97.5%
0.01 0.19 0.01 0.08 0.17 0.29 0.68 1003.37
                           0.21
#> sd_phyl[1]
                           Rhat
#> sd_repeated_measures[1]
                           1
#> sd_phyl[1]
# optional saving of results
# save(xmod1, xsummary, res1, stanfit, xdata, specdata, tree, file = "comp_analysis_1.RData")
par(mfrow = c(1, 2), family = "serif")
par(family = "serif", mgp = c(1.8, 0.7, 0), las = 1, mar = c(2, 1, 1, 1))
plot.phylo(tree, cex = 0.8, show.tip.label = FALSE, x.lim = c(0, 19))
```

```
tips <- tree$tip.label</pre>
for (i in seq_along(tips)) {
  x <- sum(specdata$spec == tips[i])</pre>
  y <- gsub("_", " ", tips[i])
  tiplabels(text = bquote(italic(.(y))~.(paste0(" (", x, ")"))),
            tip = i, bg = NULL, adj = 0, frame = "none", offset = 0.3, cex = 0.8)
}
par(mar = c(3, 2.5, 1.5, 1))
# posteriors
x <- as.numeric(extract(stanfit, pars = c("sd_phyl"))$sd_phyl)</pre>
y <- as.numeric(extract(stanfit, pars = c("sd_repeated_measures"))$sd_repeated_measures)
pr_phyl <- as.numeric(extract(stanfit, pars = c("prior_sd_phyl"))$prior_sd_phyl)</pre>
pr_rep <- as.numeric(extract(stanfit, pars = c("prior_sd_repeated_measures"))$prior_sd_repeated_measure</pre>
# and their densities
pr_phyl <- density(pr_phyl[pr_phyl < 10], adjust = 1) # truncated for smoother display
pr_rep <- density(pr_rep[pr_rep < 10], adjust = 1)</pre>
p1 <- density(x, adjust = 1)
p2 <- density(y, adjust = 1)</pre>
yr \leftarrow c(0, max(p1\$y, p2\$y) * 1.05)
xr \leftarrow c(0, max(p1$x, p2$x) * 1.05)
xr[2] <- 2
plot(0, 0, type = "n", xlim = xr, ylim = yr, xaxs = "i", yaxs = "i", las = 1,
     axes = FALSE, xlab = "SD", ylab = "density")
axis(1)
polygon(c(p1$x, rev(p1$x)), c(rep(0, length(p1$y)), rev(p1$y)),
        border = NA, col = adjustcolor("#3B99B1", 0.5))
polygon(c(p2$x, rev(p2$x)), c(rep(0, length(p2$y)), rev(p2$y)),
        border = NA, col = adjustcolor("#EACB2B", 0.5))
polygon(c(pr_phyl$x, rev(pr_phyl$x)), c(rep(0, length(pr_phyl$y)), rev(pr_phyl$y)),
        border = NA, col = adjustcolor("grey", 0.4))
polygon(c(pr_rep$x, rev(pr_rep$x)), c(rep(0, length(pr_rep$y)), rev(pr_rep$y)),
        border = NA, col = adjustcolor("grey", 0.4))
points(p1$x, p1$y, type = "1", lwd = 0.5)
points(p2x, p2y, type = "1", lwd = 0.5)
points(pr_phyl$x, pr_phyl$y, type = "1", lwd = 0.5)
points(pr_rep$x, pr_rep$y, type = "1", lwd = 0.5)
box(bty = "l")
legend("topright", ncol = 1, col = c("#3B99B1", "#EACB2B", "grey"),
       legend = c("phylogenetic", "repeated measurements", "priors"),
       pch = 15, bty = "n")
```


2 Reanalysis of Balasubramaniam et al data set

```
# path to raw model code
mod2 <- system.file("extdata/phylogenetic_examples/comparative_steepness_model_2.stan",</pre>
                     package = "EloSteepness.data")
file.exists(mod2)
#> [1] TRUE
# tree data
data("Primates301_nex")
# data from Balasubramaniam et al 2012 (table 2)
sp <- c("Macaca_assamensis", "Macaca_fascicularis", "Macaca_fascicularis",</pre>
        "Macaca_fuscata", "Macaca_fuscata", "Macaca_mulatta", "Macaca_mulatta",
        "Macaca_nigra", "Macaca_radiata", "Macaca_sylvanus", "Macaca_thibetana",
        "Macaca_thibetana", "Macaca_tonkeana", "Macaca_tonkeana")
st < c(0.65, 0.94, 0.79, 0.56, 0.92, 0.65, 0.78,
        0.49, 0.60, 0.45, 0.87, 0.80, 0.22, 0.20)
specdata <- data.frame(spec = sp,</pre>
                        steepness = st)
# prune tree to 9 macaque species
species <- unique(specdata$spec)</pre>
tree <- keep.tip(Primates301_nex, species)</pre>
# plot(tree)
length(tree$tip.label) == length(species) # sanity check
#> [1] TRUE
# prepare data set to be handed over to stan
xdata <- list()</pre>
xdata$N <- nrow(specdata)</pre>
xdata$the_steepness <- specdata$steepness</pre>
# phylogeny-related
tree_mat <- vcv.phylo(tree, corr = TRUE) # covariance matrix</pre>
n_spec <- length(tree$tip.label)</pre>
# index for species
species index <- integer(nrow(specdata))</pre>
for (i in seq_len(nrow(specdata))) {
  species_index[i] <- which(colnames(tree_mat) == specdata$spec[i])</pre>
}
# for phylogeny part
xdata$N_phyl <- n_spec # number of levels</pre>
xdata$N_coeff_phyl <- 1 # number of pars: SD for phyl 'intercepts'
xdata$spec_index <- species_index</pre>
xdata$chol_mat <- t(chol(tree_mat)) # cholesky factor of phylogenetic correlation matrix
xdata$phyl_predictor <- rep(1, nrow(specdata)) # group-level predictor values
# for repeated measures part
xdata$N_repeated <- n_spec # the same as for the phyl part (number of levels)
# number of pars: SD for repeated measurements (species intercepts)
```

```
xdata$N_coeff_repeated <- 1</pre>
xdata$index_rep_measures <- species_index # the same as for the phyl part
# group-level predictor values, the same as for the phyl part
xdata$rep_measures_predictor <- rep(1, nrow(specdata))</pre>
# compile stan model
xmod2 <- cmdstan model(stan file = mod2, compile = TRUE)</pre>
# sampling
res2 <- xmod2$sample(data = xdata,
                     refresh = 0,
                     parallel_chains = 2,
                     seed = 123,
                     adapt_delta = 0.9)
# convert back to rstan (for easier handling of output)
stanfit2 <- read_stan_csv(res2$output_files())</pre>
xsummary2 <- summary(stanfit2)$summary</pre>
round(summary(stanfit2,
      pars = c("sd_phyl", "sd_repeated_measures", "phi", "Intercept"))$summary, 2)
#>
                            mean se_mean sd 2.5% 25% 50%
                                                                75% 97.5% n_eff
#> sd_phyl[1]
                            0.80 0.02 0.51 0.05 0.41 0.75 1.11 1.90 421.67
                                    0.02 0.45 0.04 0.33 0.61 0.94 1.69 646.94
#> sd_repeated_measures[1] 0.68
                                  0.20 5.62 3.03 6.78 9.79 13.91 24.59 804.95
#> phi
                           10.90
#> Intercept
                            0.58
                                    0.02 0.56 -0.61 0.27 0.57 0.89 1.72 971.02
#>
                           R.h.a.t.
#> sd_phyl[1]
#> sd_repeated_measures[1] 1.00
#> phi
                           1.00
#> Intercept
                           1.00
# optional saving of results
# save(xmod2, xsummary2, res2, stanfit2, xdata, specdata, tree, file = "comp_analysis_2.RData")
# plot in the manuscript
sd_phyl <- sprintf("%.2f", xsummary2["sd_phyl[1]", 1])</pre>
sd_rep <- sprintf("%.2f", xsummary2["sd_repeated_measures[1]", 1])</pre>
par(mfrow = c(1, 2), family = "serif")
par(family = "serif", mgp = c(1.8, 0.7, 0), las = 1, mar = c(2, 1, 1, 1))
# plot tree with number of groups
ape::plot.phylo(tree, cex = 0.8, show.tip.label = FALSE, x.lim = c(0, 19))
tips <- tree$tip.label</pre>
for (i in seq_along(tips)) {
 x <- sum(specdata$spec == tips[i])</pre>
  y <- gsub("_", " ", tips[i])</pre>
 ape::tiplabels(text = bquote(italic(.(y))~.(paste0(" (", x, ")"))),
                 tip = i, bg = NULL, adj = 0,
                 frame = "none", offset = 0.3, cex = 0.8)
par(mar = c(3, 2.5, 1.5, 1))
# extract posterior samples for SDs and corresponding priors
```

```
est_phyl <- as.numeric(extract(stanfit2, pars = c("sd_phyl"))$sd_phyl)</pre>
est_rep <- as.numeric(extract(stanfit2, pars = c("sd_repeated_measures"))$sd_repeated_measures)</pre>
pr_phyl <- as.numeric(extract(stanfit2, pars = c("prior_sd_phyl"))$prior_sd_phyl)</pre>
pr_rep <- as.numeric(extract(stanfit2, pars = c("prior_sd_repeated_measures"))$prior_sd_repeated_measur</pre>
# and densities of posteriors
est phyl <- density(est phyl, adjust = 1)</pre>
est_rep <- density(est_rep, adjust = 1)</pre>
# and for priors
pr_phyl <- density(pr_phyl[pr_phyl < 10], adjust = 1) # truncated for smoother display</pre>
pr_rep <- density(pr_rep[pr_rep < 10], adjust = 1)</pre>
# data ranges for plot
yr \leftarrow c(0, max(est_phyl\$y, est_rep\$y) * 1.05)
xr \leftarrow c(0, max(est_phyl$x, est_rep$x) * 1.05)
plot(0, 0, type = "n", xlim = xr, ylim = yr, xaxs = "i", yaxs = "i",
     las = 1, axes = FALSE, xlab = "SD", ylab = "density")
axis(1)
polygon(c(est phyl$x, rev(est phyl$x)), c(rep(0, length(est phyl$y)), rev(est phyl$y)),
        border = NA, col = adjustcolor("#3B99B1", 0.5))
polygon(c(est_rep$x, rev(est_rep$x)), c(rep(0, length(est_rep$y)), rev(est_rep$y)),
        border = NA, col = adjustcolor("#EACB2B", 0.5))
polygon(c(pr_phyl$x, rev(pr_phyl$x)), c(rep(0, length(pr_phyl$y)), rev(pr_phyl$y)),
        border = NA, col = adjustcolor("grey", 0.4))
polygon(c(pr_rep$x, rev(pr_rep$x)), c(rep(0, length(pr_rep$y)), rev(pr_rep$y)),
        border = NA, col = adjustcolor("grey", 0.4))
points(est_phyl$x, est_phyl$y, type = "1", lwd = 0.5)
points(est_rep$x, est_rep$y, type = "1", lwd = 0.5)
points(pr_phyl$x, pr_phyl$y, type = "l", lwd = 0.5)
points(pr_rep$x, pr_rep$y, type = "1", lwd = 0.5)
box(bty = "1")
legend("topright", ncol = 1, col = c("#3B99B1", "#EACB2B", "grey"),
       legend = c("phylogenetic", "repeated measurements", "priors"),
       pch = 15, bty = "n")
```


3 Data summary

Table ${\bf 1}$ provides data summaries and references for the analyses run above.

Table 1: Macaque dominance interaction networks

data set	species	common name	group size	interactions	sparseness	reference
anderson2016b_dom_1	Macaca fuscata	Japanese macaque	6	80	0.20	Anderson et al. (2016); Anderson (2016)
anderson2016b_dom_2	$Macaca\ fuscata$	Japanese macaque	5	28	0.30	Anderson et al. (2016); Anderson (2016)
balasubramaniam2014_dom_1	$Macaca\ tonkeana$	Tonkean macaque	9	174	0.14	Balasubramaniam (2014); Demaria & Thierry (2001)
$balasubramaniam 2014_dom_2$	Macaca nigra	crested macaque	6	516	0.00	Balasubramaniam (2014)
$bartlett1971_dom_1$	$Macaca\ mulatta$	rhesus macaque	9	37	0.31	Bartlett & Meier (1971)
$bartlett1971_dom_2$	$Macaca\ mulatta$	rhesus macaque	9	90	0.06	Bartlett & Meier (1971)
$berman2004_dom_1$	$Macaca\ thibetana$	Tibetan macaque	13	263	0.09	Berman et al. (2004)
$berman2004_dom_2$	$Macaca\ thibetana$	Tibetan macaque	13	379	0.20	Berman et al. (2004)
berman2004_dom_3	Macaca thibetana	Tibetan macaque	10	428	0.02	Berman et al. (2004)
birky2002_dom_01	Macaca cyclopis	Formosan macaque	6	109	0.00	Birky (2002)
birky2002_dom_02	Macaca cyclopis	Formosan macaque	6	61	0.07	Birky (2002)
birky2002_dom_12	Macaca cyclopis	Formosan macaque	6	66	0.07	Birky (2002)
chacko2014_dom_1	Macaca radiata	bonnet macaque	11	354	0.04	Chacko (2014)
chapais1985_dom_1	Macaca fuscata	Japanese macaque	10	97	0.40	Chapais (1985)
cooper1999_dom_1	Macaca assamensis	Assamese macaque	22	1077	0.16	Cooper (1999) Deng & Zhao (1987)
deng1987_dom_1	Macaca thibetana	Tibetan macaque longtailed macaque	$\frac{15}{6}$	383 102	0.26 0.20	0 ()
dewaal1977_dom_1 dewaal1977_dom_2	Macaca fascicularis Macaca fascicularis	longtailed macaque	0 11	542	0.20	de Waal (1977) de Waal (1977)
dewaal1985 dom 1	Macaca mulatta	rhesus macaque	20	856	0.09	de Waal & Luttrell (1985)
duboscq2013 dom 1	Macaca nigra	crested macaque	20 15	561	0.10	Duboscq et al. (2013)
duboscq2013 dom 2	Macaca nigra	crested macaque	15	210	0.23	Duboscq et al. (2013)
duboscq2013_dom_3	Macaca nigra	crested macaque	15	407	0.10	Duboscq et al. (2013)
duboscq2013 dom 4	Macaca nigra	crested macaque	21	283	0.36	Duboscq et al. (2013)
duboscq2013 dom 5	Macaca nigra	crested macaque	21	732	0.11	Duboscq et al. (2013)
duboscq2013_dom_6	$Macaca\ nigra$	crested macaque	21	711	0.12	Duboscq et al. (2013)
fa1986_dom_1	Macaca sylvanus	Barbary macaque	6	70	0.00	Fa (1986)
$fa1986_dom_2$	Macaca sylvanus	Barbary macaque	6	43	0.20	Fa (1986)
fa1986_dom_3	Macaca sylvanus	Barbary macaque	6	51	0.07	Fa (1986)
$fa1986_dom_4$	$Macaca\ sylvanus$	Barbary macaque	6	38	0.13	Fa (1986)
$funkhouser2018a_dom_5$	$Macaca\ thibetana$	Tibetan macaque	13	53	0.63	Funkhouser et al. (2018)
$funkhouser2018a_dom_6$	$Macaca\ thibetana$	Tibetan macaque	13	69	0.49	Funkhouser et al. (2018)
furuichi1983_dom_1	$Macaca\ fuscata$	Japanese macaque	7	15	0.48	Furuichi (1983)
furuichi1983_dom_2	Macaca fuscata	Japanese macaque	7	21	0.38	Furuichi (1983)
giacoma1992_dom_1	Macaca nemestrina	pigtailed macaque	6	1105	0.00	Giacoma & Messeri (1992)
giacoma1992_dom_2	Macaca nemestrina	pigtailed macaque	6	287	0.00	Giacoma & Messeri (1992)
giacoma1992_dom_3	Macaca nemestrina	pigtailed macaque	6	419	0.00	Giacoma & Messeri (1992)
gumert2000_dom_1	Macaca fascicularis	longtailed macaque	10	16	0.73	Gumert (2000)
gumert2000_dom_3	Macaca fascicularis Macaca fuscata	longtailed macaque	10 9	35 96	$0.73 \\ 0.08$	Gumert (2000)
hanya2008_dom_1 hanya2008_dom_2	Macaca fuscata	Japanese macaque Japanese macaque	9 7	$\frac{90}{22}$	0.08	Hanya et al. (2008) Hanya et al. (2008)
hill1995_dom_1	Macaca fuscata	Japanese macaque Japanese macaque	7	291	0.00	Hill & Okayasu (1995)
kaburu2012_dom_1	Macaca sylvanus	Barbary macaque	7	584	0.00	Kaburu et al. (2012)
matsumura1998 dom 1	Macaca maura	moor macaque	10	112	0.29	Matsumura (1998)
micheletta2011 dom 1	Macaca nigra	crested macaque	6	277	0.07	Micheletta (pers. comm.)
missakian1972 dom 1	Macaca mulatta	rhesus macaque	$\frac{0}{22}$	5159	0.00	Missakian (1972)
murray1984 dom 1	Macaca arctoides	stumptailed macaque	20	1176	0.06	Murray (1984)
oi1988_dom_1	Macaca fuscata	Japanese macaque	16	45	0.69	Oi (1988)
oi1988 dom 2	Macaca fuscata	Japanese macaque	5	3	0.70	Oi (1988)
oi1988_dom_3	Macaca fuscata	Japanese macaque	10	85	0.27	Oi (1988)
oi1990_dom_1	$Macaca\ nemestrina$	pigtailed macaque	15	359	0.17	Oi (1990)
petit1992_dom_1	$Macaca\ maura$	moor macaque	5	70	0.30	Petit & Thierry (1992)
petit1992_dom_2	$Macaca\ maura$	moor macaque	5	231	0.00	Petit & Thierry (1992)
raney1981_dom_1	$Macaca\ radiata$	bonnet macaque	24	276	0.54	Raney et al. (1981)
$rhine 1972_dom_1$	$Macaca\ arctoides$	stumptailed macaque	4	154	0.00	Rhine (1972); Rhine (1972)a
rhine1972_dom_3	Macaca arctoides	stumptailed macaque	4	204	0.00	Rhine (1972); Rhine (1972)a
rizaldi2010_dom_2	Macaca fuscata	Japanese macaque	5	81	0.00	Rizaldi & Watanabe (2010)

Continued on next page

Table 1: Macaque dominance interaction networks

data set	species	common name	group	interactions	sparseness	reference
			size			
sade1972_dom_1	Macaca mulatta	rhesus macaque	9	136	0.00	Sade (1972)
$scanlon1984_dom_1$	$Macaca\ mulatta$	rhesus macaque	9	116	0.08	Scanlon (1984)
$silk1981_dom_1$	$Macaca\ radiata$	bonnet macaque	29	1413	0.25	Silk et al. (1981)
$sterck1997_dom_01$	Macaca fascicularis	longtailed macaque	9	15	0.69	Sterck & Steenbeek (1997)
$sterck1997_dom_02$	Macaca fascicularis	longtailed macaque	9	36	0.42	Sterck & Steenbeek (1997)
$su2003_dom_1$	Macaca cyclopis	Formosan macaque	8	245	0.04	Su (2003)
$su2003_dom_2$	Macaca cyclopis	Taiwanese macaque	8	42	0.25	Su (2003)
$tully1975_dom_1$	$Macaca\ radiata$	bonnet macaque	8	247	0.00	Tully (1975)
tully1975_dom_2	$Macaca\ nemestrina$	pigtailed macaque	8	100	0.11	Tully (1975)
zhang2014b_dom_1	$Macaca\ thibetana$	Tibetan macaque	9	288	0.00	Zhang et al. (2014)
$zumpe1986_dom_1$	$Macaca\ mulatta$	rhesus macaque	4	55	0.00	Zumpe & Michael (1986)

References

- Anderson, E. J. (2016). The behaviour and welfare of zoo-housed Japanese macaques (Macaca fuscata) [MSc thesis]. Concordia University.
- Anderson, E. J., Weladji, R. B., & Paré, P. (2016). Changes in the dominance hierarchy of captive female Japanese macaques as a consequence of merging two previously established groups: Consequences of merging macaque groups. Zoo Biology, 35, 505–512. https://doi.org/10.1002/zoo.21322
- Balasubramaniam, K. N. (2014). Variation in dominance relationships in macaques from phylogenetic and socioecological perspectives [PhD thesis]. University at Buffalo, State University of New York.
- Bartlett, D. P., & Meier, G. W. (1971). Dominance status and certain operants in a communal colony of rhesus macaques. *Primates*, 12, 209–219. https://doi.org/10.1007/BF01730411
- Berman, C. M., Ionica, C. S., & Li, J. (2004). Dominance style among *Macaca thibetana* on Mt. Huangshan, China. *International Journal of Primatology*, 25, 1283–1312. https://doi.org/10.1023/B:IJOP.000004396 3.77801.c3
- Birky, W. A. (2002). Mating patterns and social structure in a wild group of Formosan macaques (Macaca cyclopis) [PhD thesis]. Rutgers University.
- Chacko, S. R. (2014). Why do females live in groups? Dominance, grooming, and experimental testing of the effects of food distribution on the behavior of commensal bonnet macaque (Macaca radiata) females [PhD thesis]. University of California.
- Chapais, B. (1985). An experimental analysis of a mother-daughter rank reversal in Japanese macaques (Macaca fuscata). Primates, 26, 407–423. https://doi.org/10.1007/BF02382456
- Cooper, M. A. (1999). Social tolerance in Assamese macaques (Macaca assamensis) [PhD thesis]. University of Georgia.
- de Waal, F. B. M. (1977). The organization of agonistic relations within two captive groups of Java-monkeys (Macaca fascicularis). Zeitschrift Für Tierpsychologie, 44, 225–282. https://doi.org/10.1111/j.1439-0310.1977.tb00995.x
- de Waal, F. B. M., & Luttrell, L. M. (1985). The formal hierarchy of rhesus macaques: An investigation of the bared-teeth display. *American Journal of Primatology*, 9, 73–85. https://doi.org/10.1002/ajp.1350090202
- Demaria, C., & Thierry, B. (2001). A comparative study of reconciliation in rhesus and Tonkean macaques. Behaviour, 138, 397–410. https://doi.org/10.1163/15685390152032514
- Deng, Z., & Zhao, Q. (1987). Social structure in a wild group of *Macaca thibetana* at Mount Emei, China. Folia Primatologica, 49, 1–10. https://doi.org/10.1159/000156304
- Duboscq, J., Micheletta, J., Agil, M., Hodges, J. K., Thierry, B., & Engelhardt, A. (2013). Social tolerance in wild female crested macaques (*Macaca nigra*) in Tangkoko-Batuangus Nature Reserve, Sulawesi, Indonesia. *American Journal of Primatology*, 75, 361–375. https://doi.org/10.1002/ajp.22114
- Fa, J. E. (1986). Use of time and resources by provisioned troops of monkeys. Karger.
- Funkhouser, J. A., Mayhew, J. A., Sheeran, L. K., Mulcahy, J. B., & Li, J.-H. (2018). Comparative investigations of social context-dependent dominance in captive chimpanzees (*Pan troglodytes*) and wild Tibetan macaques (*Macaca thibetana*). *Scientific Reports*, 8, 13909. https://doi.org/10.1038/s41598-018-32243-2
- Furuichi, T. (1983). Interindividual distance and influence of dominance on feeding in a natural Japanese macaque troop. *Primates*, 24, 445–455. https://doi.org/10.1007/BF02381678
- Giacoma, C., & Messeri, P. (1992). Attributes and validity of dominance hierarchy in the female pigtail macaque. *Primates*, 33, 181–189. https://doi.org/10.1007/BF02382748
- Gumert, M. D. (2000). Reciprocity in an wild group of long tailed macaques (Macaca fascicularis) at Tanjung Puting National Park, Kalimantan Tengah, Indonesia: An analysis of social currency exchange [MSc thesis]. Bucknell University.
- Hanya, G., Matsubara, M., Hayaishi, S., Zamma, K., Yoshihiro, S., Kanaoka, M. M., Sugaya, S., Kiyono, M., Nagai, M., Tsuriya, Y., Hayakawa, S., Suzuki, M., Yokota, T., Kondo, D., & Takahata, Y. (2008). Food conditions, competitive regime, and female social relationships in Japanese macaques: Within-population variation on yakushima. *Primates*, 49, 116–125. https://doi.org/10.1007/s10329-007-0073-y
- Hill, D. A., & Okayasu, N. (1995). Absence of "youngest ascendancy" in the dominance relations of sisters in wild Japanese macaques (*Macaca fuscata yakaui*). *Behaviour*, 132, 367–379. https://doi.org/10.1163/156853995X00612
- Kaburu, S. S. K., MacLarnon, A., Majolo, B., Qarro, M., & Semple, S. (2012). Dominance rank and

- self-scratching among wild female Barbary macaques (*Macaca sylvanus*). African Zoology, 47, 74–79. https://doi.org/10.3377/004.047.0111
- Matsumura, S. (1998). Relaxed dominance relations among female moor macaques (*Macaca maurus*) in their natural habitat, south Sulawesi, Indonesia. Folia Primatologica, 69, 346–356. https://doi.org/10.1159/000021650
- Missakian, E. A. (1972). Genealogical and cross-genealogical dominance relations in a group of free-ranging rhesus monkeys (*Macaca mulatta*) on Cayo Santiago. *Primates*, 13, 169–180. https://doi.org/10.1007/BF 01840878
- Murray, R. D. (1984). Mating patterns among kin and nonkin in a captive group of stumptail macaques [PhD thesis]. Ohio State University.
- Oi, T. (1988). Sociological study on the troop fission of wild Japanese monkeys (*Macaca fuscata yakui*) on Yakushima Island. *Primates*, 29, 1–19. https://doi.org/10.1007/BF02380846
- Oi, T. (1990). Patterns of dominance and affiliation in wild pig-tailed macaques (*Macaca nemestrina nemestrina*) in west Sumatra. *International Journal of Primatology*, 11, 339–356. https://doi.org/10.1007/BF02193005
- Petit, O., & Thierry, B. (1992). Affiliative function of the silent bared-teeth display in moor macaques (Macaca maurus): Further evidence for the particular status of Sulawesi macaques. International Journal of Primatology, 13, 97–105. https://doi.org/10.1007/BF02547729
- Raney, D. F., Abernethy, V., & Rodman, P. S. (1981). Dominance and the social behavior of adult female bonnet macaques (*Macaca radiata*). *Primates*, 22, 368–378. https://doi.org/10.1007/BF02381577
- Rhine, R. J. (1972). Changes in the social structure of two groups of stumptail macaques (*Macaca arctoides*). *Primates*, 13, 181–194. https://doi.org/10.1007/BF01840879
- Rhine, R. J., & Kronenwetter, C. (1972). Interaction patterns of two newly formed groups of stumptail macaques (*Macaca arctoides*). *Primates*, 13, 19–33. https://doi.org/10.1007/BF01757933
- Rizaldi, & Watanabe, K. (2010). Early development of peer dominance relationships in a captive group of Japanese macaques *Macaca fuscata*. Current Zoology, 56, 190–197.
- Sade, D. S. (1972). Sociometrics of *Macaca mulatta* I. Linkages and cliques in grooming matrices. *Folia Primatologica*, 18, 196–223. https://doi.org/10.1159/000155480
- Scanlon, K. (1984). Play and development of social skills in infant rhesus macaques [PhD thesis, Open University]. https://doi.org/10.21954/ou.ro.0000de55
- Silk, J. B., Samuels, A., & Rodman, P. S. (1981). Hierarchical organization of female *Macaca radiata* in captivity. *Primates*, 22, 84–95. https://doi.org/10.1007/BF02382559
- Sterck, E. H. M., & Steenbeek, R. (1997). Female dominance relationships and food competition in the sympatric Thomas langur and long-tailed macaque. *Behaviour*, 134, 749–774. https://doi.org/10.1163/156853997X00052
- Su, H.-H. (2003). Within-group female-female feeding competition and inter-matriline feeding competition in Taiwanese macaques (Macaca cyclopis) at Fushan Experimental Forest, Taiwan [PhD thesis]. Rutgers University.
- Tully, M. S. (1975). Social relations among adult females in two species of macaque [PhD thesis]. University of Colorado.
- Zhang, Q.-X., Li, J.-H., Xia, D.-P., Zhu, Y., Wang, X., & Zhang, D. (2014). Influence of dominance rank and affiliation relationships on self-directed behavior in female Tibetan macaques (*Macaca thibetana*). Zoological Research, 35, 214–221. https://doi.org/10.11813/j.issn.0254-5853.2014.3.214
- Zumpe, D., & Michael, R. P. (1986). Dominance index: A simple measure of relative dominance status in primates. American Journal of Primatology, 10, 291–300. https://doi.org/10.1002/ajp.1350100402