Detection, Recognition Classification, Identification & Their Index

Alex Lin

Safety Sensing & Control Department Intelligent Mobility Technology Division Mechanical and Systems Research Laboratories Industrial Technology Research Institute

- **Detection**: Find out a particular or set of features or objects in the images.
- Recognition: form groups of similar objects based on the similar measure.
- Classification: classify the objects to certain classes.

 Identification: recognize an unknown object and name it

Detect objects

- Detection: Find out a particular or set of features or objects in the images.
- Recognition: form groups of similar objects based on the similar measure.
- Classification: classify the objects to certain classes.

Identification: recognize an unknown object and

name it

- Detection: Find out a particular or set of features or objects in the images.
- Recognition: form groups of similar objects based on the similar measure.
- Classification: classify the objects to certain classes.
- Identification: recognize an unknown object and name it

- Detection: Find out a particular or set of features or objects in the images.
- Recognition: form groups of similar objects based on the similar measure.
- Classification: classify the objects to certain classes.
- Identification: recognize an unknown object and name it

Dataset before being Labeled 1

Dataset after being Labeled 1

Dataset before being Labeled 2

Dataset after being Labeled 2

Output of label

```
<?xml version="1.0"?>
<annotation>
   <folder>all dataset</folder>
   <filename>009967.jpg</filename>
      <name>car</name>
    - <bndbox>
          <xmax>1274</xmax>
          <xmin>1055</xmin>
          <ymax>590
          <ymin>316
      </bndbox>
      <difficult>0</difficult>
      <occluded>0</occluded>
      <pose>Unspecified</pose>
      <truncated>0</truncated>
   </object>
 - <object>
      <name>bus</name>
    - <bndbox>
          <xmax>330</xmax>
          <xmin>289</xmin>
          <ymax>347</ymax>
         <ymin>301
      </bndbox>
      <difficult>0</difficult>
      <occluded>0</occluded>
      <pose>Unspecified</pose>
      <truncated>0</truncated>
   </object>
 - <object>
      <name>car</name>
    - <bndbox>
          <xmax>360</xmax>
          <xmin>332</xmin>
          <ymax>347</ymax>
          <ymin>323</ymin>
      </bndbox>
      <difficult>0</difficult>
      <occluded>0</occluded>
      <pose>Unspecified</pose>
      <truncated>0</truncated>
 - <object>
      <name>car</name>
    - <bndbox>
          <xmax>714</xmax>
          <xmin>630</xmin>
          <ymax>368</ymax>
          <ymin>327
      </bndbox>
      <difficult>0</difficult>
      <occluded>0</occluded>
      <pose>Unspecified</pose>
      <truncated>0</truncated>
   </object>
   <segmented>0</segmented>
 - <size>
      <depth>3</depth>
      <height>720</height>
      <width>1280</width>
   </size>
      <annotation>Id_000320</annotation>
      <database>vatic</database>
      
   </source>
      <flickrid>vatic</flickrid>
      <name>vatic</name>
   </owner>
</annotation>
```

How to efficiently label?

Ground-Truth Labeling Providers

Amazon Mechanical Turk:

 A US company which provides crowdsourcing service and only accepts US-based requesters

CloudFactory:

 A US company who hired people in Kathmandu, Nepal.

CrowdFlower:

A US company who provides crowdsourcing service

Datatang:

A China crowdsourcing platform

Quantitative Metrics

		Predicted condition			
	Total population	Predicted Condition positive	Predicted Condition negative		
True	condition positive	True positive	False Negative (Type II error)		
condition	condition negative	False Positive (Type I error)	True negative		

Accuracy=(TP + TN)/(TP+TN+FP+FN)

Recall(True Positive Rate, Detection rate)=TP/(TP+FN)

Precision=TP/(TP+FP)

False Positive Rate=FP/(FP+TN)

Ex: 100% detection rate with 50% False Positive rate

A pure binary classification example

Input: images

Output: labels(dog, non-dog)

Classifier

Accuracy=(TP+ TN)/(TP+TN+FP+FN) =(3+1)/7=0.57

Recall(true positive rate, Detection rate) =TP/(TP+FN)=3/(3+1)=0.75

Precision=TP/(TP+FP) =3/(3+2)=0.6

False Positive Rate=FP/(FP+TN)=2/(2+1)=0.67

Another pure binary classification example

Input: images

Output: labels(vehicle, non-vehicle)

vehicle

vehicle

non-vehicle vehicle

vehicle

Recall(true positive rate, Detection rate) =TP/(TP+FN)=3/(3+1)=0.75

Precision=TP/(TP+FP)=3/(3+2)=0.6

False Positive Rate=FP/(FP+TN)=2/(2+1)=0.67

How could we apply binary classification onto detection?

- The production of the following bounding boxes are called Hypothesis Generation.
- Alternatively, such bounding boxes are also called region proposals.
- HG is highly domain-specific.
- For example, vehicle candidates are not possibly in the sky.

Example for Vehicle Detection:

Accuracy=
$$(TP + TN)/(TP+TN+FP+FN)$$

= $(3+1)/7=0.57$

Recall(true positive rate, Detection rate) =TP/(TP+FN)=3/(3+1)=0.75

Precision=TP/(TP+FP)=3/(3+2)=0.6

False Positive Rate=FP/(FP+TN)=2/(2+1)=0.67

: vehicle

Such analysis is kind of impractical! Why?

Non-vehicle (TN) is not the outcome of the final result!

Example for Vehicle Detection: In reality

- The final result only shows FP+TP because the production of region proposals is in the "black box".
- The comparison between the detection result and the Ground-Truth helps to distinguish FP+TP from the results
- FN are those ground-truth labels not detected.

Accuracy=(TP + TN)/(TP+TN+FP+FN) =(3+1) /7=9.57

Recall(true positive rate, Detection rate) =TP/(TP+FN)=3/(3+1)=0.75

Precision=TP/(TP+FP)=3/(3+2)=0.6

False Positive

Rate=FP/(FP+TN)=2/(2+1)=0.67

: ground-truth labeling

An extreme example for Vehicle Detection: high precision

 Sometimes, high precision might be misleading if recall is not calculated.

Recall(true positive rate, Detection rate) =TP/(TP+FN)=1/(1+3)=0.25

Precision=TP/(TP+FP)=1/(1+0)=1

An extreme example for Vehicle Detection: high recall

• Also, high recall might be misleading if precision is not calculated.

Recall(true positive rate, Detection rate) =TP/(TP+FN)=4/(4+0)=1

Precision=TP/(TP+FP)=4/(4+8)=0.33

Quantitative Result Analysis in Terms of "Confidence"

- Do objects with higher confidence tend to be more correct?
 Ans: Not exactly!
- Do we expect most detection error coming from low confidence?
 Ans: Yes!
- Do the above metrics reflect errors in high/low confidence?
 Ans:No!
- Is there any metric to assess the detection results with confidence?
 Ans: Yes, It is called Average Precision(AP)

A Classification Example Considering Confidence: case 1

Input: images

Output: labels(dog, non-dog)

Classifier

dog(0.8)

Recall=3/(3+1)=0.75

non-dog(0.4)

dog(0.5)

non-dog(0.3)

A Classification Example Considering Confidence: case 2

Threshold=(0.45)

Classifier

Input: images

Output: labels(dog, non-dog)

Recall=3/(3+1)=0.75dog(0.7)Precision=TP/(TP+FP) =3/(3+2)=0.6

Comparison with case 1 & 2: which one is better?

 Case 1 is better because we expect the higher the confidence, the more correct the detection result

Case 1

			Case			
dog(0.9)	dog(0.8)	dog(0.7)	dog(0.6)	dog(0.5)	Non-dog(0.4)	Non-dog(0.3)
			Case 2	2013 Dist CAN		# +++ (24)
dog(0.9)	dog(0.8)	dog(0.7)	dog(0.6)	dog(0.5)	Non-dog(0.4)	Non-dog(0.3)
P. Company	2013	1	a			# + 11+ (2 t)

AP for case 1

AP=0.5*1+0.25*0.75+0.25*0.66=0.85

AP for case 2

AP=0.25*1+0.75*0.66=0.745

$$\widehat{P}(R) = \max_{i} \{ P_i : R_i \ge R \}$$

For preserving monotonicity

Do you really understand AP?

 How much AP do you think these 3 photos have?

image: "ew-courtney-david.jpg" (green=true pos, red=false pos, yellow=ground truth), 2/2 found

image: "ew-friends.jpg" (green=true pos, red=false pos, yellow=ground truth), 6/6 found

The idea of AP

 The precision-recall metric does not penalize a detector for producing false positives, as long as those false positives have lower confidence than true positives!!!

ROC curve

- ROC is called Receiver Operating Characteristic curve.
- n "point" in the ROC space could be obtained by classified results given
 - (1) n thresholds of a classifier or
 - (2) n classifiers
- Recursively substituting a lot of different thresholds, the precision and recall tell us would vary
- For a pure classification problem, TP, TN, FP & FN are all observable

Recall(true positive rate, Detection rate) =TP/(TP+FN)=3/(3+1)=0.75

False Positive Rate=FP/(FP+TN)=2/(2+1)=0.67

A poor binary classification example and its counterpart

Recall(true positive rate, Detection rate) =TP/(TP+FN)=1/(1+3)=0.25

Precision=TP/(TP+FP)=1/(1+2)=0.33

False Positive Rate=FP/(FP+TN)=2/(2+1)=0.67

Is this classifier really bad?

Not really!
We could flip
the label to
improve!!

A poor binary classification example and its counterpart

False positive rate

AUC of ROC

True positive rate=TP/(TP+FN)=4/(4+0)=1

False positive rate

AUC of ROC with flipped classifier

True positive rate=TP/(TP+FN)=0/(0+4)=0

hetter!

33

Miss rate vs FPPI curve

- FPPI stands for False Positives Per Image
- Normally, both recall and FPs increase when threshold is lowered.
- In other words, FNs decrease and FPs increase when threshold is lowered.
- Which method is the best one in the following figure?
 - Ans: MS-CNN (the lowest one!!)
- This metric is used to analyze how good this classifier is in terms of confidence.
 Miss Rate=FN/(TP+FN)

$$FPPI = \sum_{i=1}^{N} FP_i/N$$

Benefit of building Ground-Truth database

Optimizing parameters in LDW, FCW,..etc

Typical testing database

Weather	Images	precision	recall	Average precision
Sunny day	Xxxxxx	82.15%	93.75%	?
Cloudy day	XXXX	88.33%	94.91%	?
Raining day				
Raining night				
Night				
•				
•				

What's Problem of Vehicle Testing?

- 測試所需的路型與標線如何取得?
 - Ex:歐盟, 美國, 澳洲
- 需求的交通情境如何掌控?
 - EX:測試車周邊車輛行為
- 特定的天候與光線環境如何取得?
 - 日間/夜間/黄昏/雨/霧
- 如何重覆執行相同的測試?
 - ISO測試規範

Driving Simulation & Verification

- 藉由虛擬實境系統進行即時光影模擬,提供車輛影像安全輔助系統辨識率統計與除錯使用。
- 高精度之車輛物理模型搭配即時運算平台,提供同步之車輛動態運算結果。
 - 提供車輛影像安全系統所需之車輛訊號,並接收相關訊號,進行HIL測試(Hardware-in-the-Loop)。
- 評分系統於測試過程同步提供辨識率統計結果與誤判之影
 像資料。
- 可重現辨識錯誤情境提供演算法修正,確保系統於實車測試前已具備相當之系統強健性與可靠度。
- 模擬駕駛環境無法完全取代實車測試,但可以大幅降低實車測試成本與次數。

Surrounding Projection Systems

User Interface

Real car Interior Force feed-back Steering System

Throttle/ Brake paddle/ Gear shifter/ Functional Buttons

VR光影系統介紹

路面反光與柏油補丁

道路指示牌陰影

路燈桿陰影

遮光版陰影

樹木陰影

橋樑陰影

LDW/ FCW HIL Testing

~ Virtual Lab. ~

LDW/ FCW HIL Testing

■ 泛用型LDW 自動評分系統

- 藉由比對Ground Truth與LDW裝置辨識結果自動進行辨識正確率判定,同時進行完整的辨識結果統計,包含正確率、錯誤率、精確率、召回率、誤判率與遺失率等,完全不需人工辨識且可批次化自動進行,有效協助開發工程師進行系統除錯並大幅縮短驗證所需時間與人力。

How realistic does a simulated driving simulator could achieve?

A very real simulator: GTA

Output

Show output from: Debug actual throttle 0.180392 desired throttle 0.221289 step 18954 braking set throttle 60 set steer 62 actual spin -0.000568 desired spin -0.009453 desired direction -0.493049 actual speed 15.762012 desired speed 13.630258 actual speed change -0.405582 desired speed change 0.008477 desired steer -0.001806 actual steer 0.000000 actual throttle 0.180392 desired throttle 0.221289 step 18955

Observation

- Don't directly develop on a platform which can't use any libraries.
- The time of Big Data is coming.
- Don't label all the data by yourself.
- GPU will be everywhere in the future.
- In-The-Loop tests are very important because no programmer could do the right thing right the first time.
- Winner takes all.