Bộ để 1

- **1.** Cho 3 đồng vị ${}_{1}^{1}H$, ${}_{1}^{2}H$, ${}_{1}^{3}H$
 - 1) 3 đồng vị này nằm trong cùng 1 ô của bảng HTTH.
 - 2) Đồng vị có tỉ số $\frac{\text{số nơtron}}{\text{số proton}}$ nhỏ nhất là ^1_1H
 - 3) Đồng vị cho ra nước nặng là ³H
 - 4) 2 đồng vị ²H và ³H đều có tính phóng xạ.

B. 1, 2

Chọn các phát biểu **không đúng.**

A. 3, 4

D. 2, 3. C. 1, 4

4) NH₄

4) NH₄OH

- 2. Trong các phân tử
 - 1) CH₄ 2) CHCl₃

Chất nào có cơ cấu tứ diện đều?

C. 1, 3, 4 D. Chỉ có 1, 3.

- A. 1, 2, 3, 4 B. 1, 2, 3
- 3. Sắp dung dịch các chất theo thứ tự độ pH tăng dần từ trái sang phải (các dung dịch có cùng nồng độ mol) 1) CH₃COOH 4) K₂CO₃ 2) HCl 3) KCl

3) CCl₄

- A. 1 < 2 < 3 < 4B. 2 < 1 < 3 < 4C. 3 < 4 < 1 < 2D. 1 < 3 < 2 < 4.
- 4. Một dung dịch trong suốt không thể chứa các dãy ion sau:
 - 1) Na⁺, K⁺, CO_3^{2-} , SO_4^{2-} 2) Ca^{2+} , NH_{4}^{+} , PO_{4}^{3-} , Cl^{-} 3) Ba^{2+} , Mg^{2+} , SO_4^{2-} , CO_3^{2-} 4) Fe³⁺, Cu²⁺, S²⁻, NO₂

Chọn phát biểu đúng.

- A. 1, 2, 3 B. 2, 3, 4 C. 1, 3, 4 D. 3, 4.
- 5. Một hợp chất hữu cơ A có M = 60, phản ứng với Na, với các axit hữu cơ, không phản ứng với bazơ có công thức cấu tạo là:
 - A. $CH_3 O CH_3$ B. $C_2H_5-NH_2$ D. CH₃-NH-CH₃. C. C_3H_7OH
- 6. Trong 4 dung dịch sau (dung môi là nước)

 - 1) NaCl 2) CH₃COOH 3) NaOH

	Dung dịch nào dẫ:	n điện tốt, dung	dịch nào dẫn điệ	ện kém.				
	A. Tốt (1, 3); ke	ém (2, 4)	B. Tốt (1); kém (2, 3, 4)					
	C. Tốt (3, 4); ke	ém (1, 2)	D. Tốt (1, 2, 3); kém (4).					
7. '	Trong các ion sau							
	1) HCO ₃	2) HSO ₄	$3) H2PO4^{-}$	4) CO ₃ ²⁻				
	ion nào có tính	lưỡng tính?						
	A. 1, 2	B. 1, 3	C. 2, 3	D. 1, 4.				
8.	Cho 2 ancol A, B	với $M_B = 2M_A -$	4. Khi khử (tách) nước hỗn hợp 2 ancol				
	này, ngoài các etc	e ta chỉ thu đượ	c 1 anken. Xác d	định công thức cấu tạo				
	của A, B.							
	A. CH_3OH , C_2H	I ₅ OH	B. C_2H_5OH , C_3H_7OH					
	C. C_2H_5OH , C_4	$\mathrm{HO}_{\mathrm{e}}\mathrm{H}$	D. CH ₃ OH, C ₃ H ₇ OH.					
9. 3	Phenol tan nhiều	trong các dung i	môi nào trong cá	c dung môi sau:				
	1) Benzen	-	2) dung dịch NaOH					
	3) Dung dịch $\mathrm{H}_2\mathrm{S}$	O_4	4) dung dịch NH ₄ OH.					
	A. 1, 2	B. 2, 3	C. 3, 4	D. 1, 4.				
10.	Trong các nguyêr	ı tố Na, F, O, C	s (I_A) chọn nguyê	n tố có độ âm điện cao				
	nhất, nguyên tố c	có độ âm điện th	ấp nhất. Cho kết	quả theo thứ tự trên.				
	A. O, Na	B. F, Cs	C. F, Na	D. O, Cs.				
11.	Trong bảng hệ th	ống tuần hoàn, r	nhóm có tính dẫn	điện tốt nhất là nhóm				
	$A. I_A$	B. II _A	C. III_A	D. I _B .				
12.	Hợp chất điclois	butan çó bao nl	niêu đồng phân k	hác nhau:				
	A. 1	B. 2	C. 3	D. 4.				
13.	Trong 3 axit							
	1) axit acrylic	2) axit	axetic 3	axit benzoic				
	axit nào cho được phản ứng trùng hợp?							
	A. Chỉ có 1	B. 1, 2	C. Chỉ có 3	D. Cả 3 chất.				
14.	Một hỗn hợp X	gồm 2 hiđroc	acbon A, B với	$M_B = 2M_A$. Biết rằng				
	11,2 gam X chiế	m thể tích là 6,	72 lít (ở đktc), xá	ic định số mol và <mark>côn</mark> g				
	thức phân tử của	ı A, B.						
	A. C_2H_4 (0,3 mg	ol); $\mathrm{C_4H_8}$ (0,2 mo	ol)					
	B. C ₂ H ₄ (0,2 mol); C ₄ H ₈ (0,1 mol)							
	C. $C_3H_6(0,1)$ mo	l); C_6H_{12} (0,2 m	ol)	•				
	D. C_3H_6 (0,2 mg	ol); C_6H_{12} (0,1 m	ol).					

- 15. X là hỗn hợp 2 đồng phân A, B có cùng công thức phân tử $C_nH_{2n}O$. m gam X có thể cộng 11,2 lít H₂ (đktc). Cũng m gam với AgNO₃/NH₃ dư cho ra 43,2 gam Ag. Biết tỉ khối hơi của X đối với không khí bằng 2, xác định m và công thức cấu tạo của A, B (Ag = 108). A. m = 24 gam; C_2H_5CHO và CH_3COCH_3
 - B. m = 29 gam; C_2H_5 -CHO và CH_3 -CO- CH_3
 - C. m = 32 gam; C_3H_7 -CHO và C_2H_5 -CO-CH₃
 - D. m = 18 gam; C_3H_7 -CHO và C_2H_5 -CO-CH₃.
- 16. 4,8 gam oxit kim loại M cần 2,016 lít khí H₂ (đktc) để khử hoàn toàn oxit thành kim loại. Lấy toàn thể lượng M thu được sau phản ứng khử cho tác dụng với H₂SO₄ loãng (du) thu được 1,344 l H₂ (đktc). Xác định kim loại M và công thức của oxit. Mg = 24; Fe = 56; Cu = 64.

18. Một hợp chất hữu cơ A có M = 123 có chứa 1 nhóm thế X. A cho phản

ứng thế dễ hơn phản ứng cộng, A bị khử cho ra B có tính bazơ.

B. Fe, Fe₃O₄ C. Mg; MgO D. Cu, CuO.

- 17. Trong các nguyên tố sau:
 - 1) O 3) Na 2) F 4) H.
 - nguyên tố nào ngoài số oxi hóa 0 chỉ có 1 số oxi hóa khác.
 - A. Chỉ có 3 B. Chỉ có 1 C. 1, 4 D. 2, 3.
 - Nếu thay thêm 1 nhóm Y vào A, nhóm thế Y ưu tiên vào vị trí meta đối với X.

Xác định công thức cấu tạo của A.

- B. C_6H_5Br A. $C_6H_5-NO_2$
 - D. C_6H_{11} -NO₂. C. C_6H_5 -CHO
- 19. Trong các dãy sau:

A. Fe, Fe_2O_3

- 1) HCl, NaOH, Ca(OH)₂
- 2) H₂SO₄, Na₂SO₄, NaHSO₄
- 3) Ba(OH)₂, KOH, KHSO₄
- dãy nào chứa các chất đều phản ứng được với Ca(HCO₃)₂
- A. Chỉ có 1 B. Chỉ có 2
- **20.** Một hợp chất hữu cơ A có $M_A < 60$
- $A \xrightarrow{H_2O} B \xrightarrow{H_2} C$ (C không phản ứng với $Cu(OH)_2$ cho ra phức màu
 - xanh lam). Xác định công thức cấu tạo của A. A. $CH_2 = CH - CHO$
 - B. $CH_3 CH_2 CHO$

C. 1, 3

D. 1, 4.

 $C. CH_2 = CH - CH_2OH$ D. $CH_2 = CH - O - CH_3$.

tích khí còn lại bằng $\frac{1}{2}$ V ban đầu (đktc). Xác định %A, %B (theo thể tích) và CTPT của A, B. B. 50% C₃H₈, 50% C₃H₆ A. 33,33% C₃H₈, 66,67% C₃H₆ C. 25% C₂H₆, 50% C₂H₄ D. 50% C₂H₆, 50% C₂H₄. 23. Trong các chất sau 1) Fe 3) Fe_2O_3 2) FeO 4) Fe_3O_4 . Chất nào phản ứng với HNO₃ cho ra khí màu nâu? A. 1, 2, 3 B. 2, 3, 4 C. 1, 2, 4 D. 1, 3, 4. **24.** Trong các chất sau, chất nào làm mất màu dung dịch $KMnO_4$ (+ H_2SO_4) 2) KBr 3) Cl₂ 4) KNO₃ 1) C_2H_4 C. 2, 4 B. 2, 3 D. 1, 2. A. 1, 4 **25.** Một dung dịch chứa Na $^+$ 0,1 M, Ca $^{2+}$ 0,005 M, Cl $^-$ 0,06 M và SO_4^{2-} . Tính nồng độ mol của ion SO_4^{2-} . C. 0,025 M D. 0,03 M. A. 0,01 M B. 0,005 M **26.** Trong 4 chất: NaCl, I₂, C₁₀H₈ (băng phiến) và C, chất nào dễ thăng hoa, chất nào có nhiệt độ nóng chảy cao nhất? Nêu rõ lý do. A. NaCl (tinh thể ion), $C_{10}H_8$ (tinh thể phân tử) B. I_2 , $C_{10}H_8$ (tinh thể phân tử), C (tinh thể nguyên tử) C. $C_{10}H_8$ (tinh thể phân tử), C (tinh thể nguyên tử) D. I₂, C₁₀H₈ (tinh thể phân tử), NaCl (tinh thể ion). **27.** Để đốt cháy hết m gam một este no đơn chức A, cần $11,2 \ l$ O₂ (đktc) phản ứng cho ra 17,6 g CO₂. Xác định m và CTPT của este.

B. 8,8 g, $C_3H_6O_2$

 $3) C_6H_6$

chất nào tan trong nước nhiều nhất, chất nào tan ít nhất? Cho kết quả

D. 14,2 g; $C_4H_8O_2$.

4) $C_6H_5-NH_2$

21. Một nguyên tử A có điện tích hạt nhân bằng 30.4×10^{-19} C. A thuộc nhóm nào trong bảng HTTH. Cho biết điện tích của electron là -1.6×10^{-19} C.

22. 3,36 lít (đktc) hỗn hợp X gồm 1 ankan A và 1 anken B ($M_A \approx M_B$) khi qua nước Br_2 dư thì thấy khối lượng bình Br_2 tăng lên 4,2 gam và thể

D. Nhóm II_B.

B. Nhóm I_B C. Nhóm I_A

A. Nhóm II_A

A. 8,8 g; $C_4H_8O_2$

C. 10,2 g; $C_3H_6O_2$

theo thứ tự trên và nêu lý do.

 $2) C_6H_5OH$

28. Trong 4 chất

1) C_2H_5OH

- A. $C_6H_5-NH_2$ (có liên kết hiđro), C_6H_6 (không có liên kết hiđro).
 - B. C₆H₅-OH (có liên kết hiđro), C₆H₆ (không có liên kết hiđro).
- C. C₂H₅OH (không có liên kết hiđro, phân tử nhỏ), C₆H₆ (không có liên kết hiđro).
- D. C_2H_5OH (phân tử nhỏ, có liên kết hiđro), $C_6H_5-NH_2$ (phân tử lớn, có tính bazo).
- 29. Điện phân với điện cực tro 2 bình điện phân mắc nối tiếp. Bình đầu chứa 1 lít dung dịch ZnSO₄ 0,1 M, bình hai chứa 1 lít dung dịch CuSO₄ 0,05 M. Ngừng điện phân khi bắt đầu sủi bọt ở catôt bình II. Tính khối lượng Cu, Zn bám vào 2 catôt và V khí (đktc) thoát ra ở anot mỗi bình

30. X là hỗn hợp 2 hiđrocacbon đồng đẳng kế tiếp. Đốt cháy m gam hỗn

- A. 3,2 g Cu, 3,5 g Zn, 0,56 l O₂ (bình I) và 1,12 l O₂ (bình II)
- - B. 3.2 g Cu, 3.25 g Zn, $0.56 l O_2$ (2 bình) C. 1,6 g Cu, 1,65 g Zn, 0,28 l O₂ (2 bình)
 - D. 3.2 g Cu, 4.2 g Zn, $0.56 l O_2$ (2 bình).
- hợp X thu được 1,1 mol CO₂ và 1,6 mol H₂O. Xác định dãy đồng đẳng, tính m và CTPT của A, B.

Cu = 64, Zn = 65.

A. 13

- A. Ankan, m = 16.4 g; C_2H_6va C_3H_8 B. Ankan, m = 15.8 g; $C_2H_6 \text{ và } C_3H_8$
- C. Anken, m = 18.2 g; C_2H_4 và C_3H_6
- D. Anken, m = 24.5 g; C_3H_6 và C_4H_8 .
- 31. Trong 4 chất: CH₃OH, C₂H₅OH, CH₃-O-CH₃ và C₄H₁₀, chọn chất có nhiệt độ sôi cao nhất, thấp nhất. Nêu lý do. A. C₂H₅OH (có liên kết H và M lớn), CH₃-O-CH₃ (không có liên kết
 - H và M nhỏ). B. CH₃OH (có liên kết H), C₄H₁₀ (không có liên kết H)
 - C. C_2H_5OH (có liên kết H và M lớn), C_4H_{10} (không có liên kết hiđro)
 - D. CH₅-O-CH₃ (phân tử phân cực), C₄H₁₀ (phân tử không phân cực).
- 32. Lấy khí A (có được từ phản ứng giữa 7,8 g Zn với H₂SO₄ dư) cho tác
- dụng với khí B (có được từ phản ứng giữa 5,85 g NaCl với dung dịch
- KMnO₄ + H₂SO₄ (du). Hấp thu hoàn toàn sản phẩm của phản ứng,
- trong 1 lít dung dịch NaOH 0,2 M. Tính pH của dung dịch thu được (thể tích dung dịch vẫn là 1 lít) Zn = 65, Na = 23, Cl = 35,5
 - B. 12 C. 7

D. 2.

- 33. Đốt cháy hết 1 amin đơn chức no A thu được 1,12 l N₂ (đktc). Sản phẩm cháy khi qua dung dịch Ca(OH)₂ (dư) tạo ra 30 gam kết tủa. Xác định CTPT và số đồng phân của A. (Ca = 40)
 A. C₂H₇N, 3 đồng phân
 B. C₃H₉N, 4 đồng phân
 C. C₃H₉N, 3 đồng phân
 D. C₄H₁₁N, 5 đồng phân.
- 34. Một dung dịch chứa Cl⁻ và I⁻. Để chỉ oxi hóa I⁻ (thành I₂) mà không oxi hóa Cl⁻ (thành Cl₂) ta nên dùng chất oxi hóa nào MnO₂, KMnO₄, Fe³⁺? Cho biết

$$\begin{split} E^0_{\text{Cl}_2/2\text{Cl}^-} &= +1,39 \text{ V}; \qquad E^0_{\text{I}_2/2\text{I}^-} &= +0,54 \text{ V} \\ E^0_{\text{Fe}^{3+}/\text{Fe}^2} &= +0,77 \text{ V}; \qquad E^0_{\text{MnO}_2/\text{Mn}^{2+}} &= +1,23 \text{ V} \\ E^0_{\text{MnO}_4/\text{Mn}^{2+}} &= +1,51 \text{ V}. \end{split}$$

A. KMnO₄

B. MnO₂ và KMnO₄

- C. MnO₂ D. Fe³⁺. **35.** Để có được Al(OH)₃ kết tủa từ dung dịch Al₂(SO₄)₃ phải thêm vào dung dịch Al₂(SO₄)₃ chất gì trong các chất sau:
 - 1) Na₂CO₃ 2) NaOH dư 3) dung dịch NH₄OH 4) dung dịch Na₂S A. 1 B. 2 C. 3 D. 1, 4.
- **36.** Phân biệt styren, toluen và benzen bằng một thuốc thử duy nhất. Thuốc thử ấy là:
 - A. dung dịch KMnO₄

 B. dung dịch Br₂

 C. dung dịch HCl

 D. AgNO₂/NH₂
- C. dung dịch HCl D. AgNO₃/NH₃.

 37. Cho a mol CO₂ tác dụng từ từ với một dung dịch có chứa b mol NaOH
 - và c mol Ca(OH)₂. Tìm điều kiện giữa a, b, c để có kết tủa cực đại. Tính khối lượng kết tủa cực đại ấy theo số mol các chất

 A. a = b + c; 100 c

 B. a = 2b + c; 100 c
- C. 2a = b + 2c; 100 c
 D. a = 2(b + c); 100 c.
 38. Một hợp chất hữu cơ C khi bị thủy phân ở môi trường axit cho ra chất B (cho được phản ứng tráng gương với AgNO₃/NH₃) và chất C (chất này

bị oxi hóa cho ra một xeton).

Xác định CTCT của A biết rằng 1 mol A đốt cháy cho ra 4 mol CO₂.

A. HCOOCH – CH₃

B. CH₃–COO–C₂H₅

 ${
m CH_3}$

C. HCOO-CH₂-CH₂-CH₃ D. CH₃-COO-CH₃

39. Cho V_1 lít dung dịch NaOH (nồng độ a mol/l) vào V_2 lít dung dịch H_3PO_4 (nồng độ b mol/l). Tìm điều kiện giữa V_1 , V_2 , a, b để phản ứng cho ra 2 muối Na₂HPO₄ và Na₃PO₄. B. $2V_2b < V_1a < 3V_2b$ A. $V_1 a = 3V_2 b$

D. $V_1a = 2V_2b$.

D. 2, 4.

C. 2, 3 42. Một điamin no có %N = 37.84

4) Al(OH)₃. 1) NaOH 2) KOH 3) $Mg(OH)_2$ theo thứ tư tính bazơ tặng dẫn từ trái qua phải B. 4 < 1 < 2 < 3A. 1 < 2 < 3 < 4

D. 4 < 3 < 1 < 2. C. 4 < 3 < 2 < 1

41. Anđehit thể hiện tính khử trong phản ứng nào 1) RCHO + Ag₂O $\xrightarrow{NH_3}$ RCOOH + 2Ag

2) R-CHO + $2Cu(OH)_2 \rightarrow RCOOH + Cu_2O + 2H_2O$ 3) RCHO + $H_2 \rightarrow RCH_2OH$

4) RCHO $\xrightarrow{O_2}$ CO₂ + H₂O

C. $V_1a > 2V_2b$

40. Sắp các hiđroxit

B. Chỉ có 1, 4 A. 1, 2, 4

Xác định CTCT của điamin

A. $CH_3 - NH - CH_2 - NH - C_2H_5$ B. $CH_3 - NH - CH_2 - NH - CH_3$

C. $C_2H_5 - NH - CH_2 - NH - C_2H_5$ D. $CH_3 - NH - CH_2 - CH_2 - NH - CH_3$.

43. Để phân biệt giữa phenol, axit acrylic và axit axetic, ta có thể dùng

A. H₂ (xúc tác) B. dung dịch KMnO₄

D. dung dịch NaOH. C. dung dich Br 2 **44.** Thêm Ba(OH)₂ dư vào 1 lít dung dịch chứa NH₄, SO₄ và Cl thu được 46,6 g kết tủa và 13,44 lít khí NH3 (đktc). Tính nồng độ mol của các muối chứa trong dung dịch này. Ba = 137

A. $C_{NH,Cl} = 0.1 \text{ M}; C_{(NH,l),SO_c} = 0.2 \text{ M}$ B. $C_{NH_4Cl} = 0.1 M; C_{(NH_4)_2SO_4} = 0.3 M$

C. $C_{NH,Cl} = 0.2 \text{ M}$; $C_{(NH_4)_2SO_4} = 0.2 \text{ M}$

D. $C_{NH,Cl} = 0.2 \text{ M}$; $C_{(NH,l),SO} = 0.3 \text{ M}$.

45. Cho 2,4 gam Mg và 13 gam Zn vào 1 lít dung dịch chứa CuSO₄ 0,2 M và AgNO₃ 0,2 M. Tính nồng độ mol của các ion trong dung dịch sau cùng (V dung dịch vẫn là 1 lít) và khối lượng chất rắn thu được. Cu = 64, Zn = 65, Mg = 24, Ag = 108A. $C_{M\sigma^2} = 0.1 \text{ M}, C_{Z\sigma^2} = 0.2 \text{ M}, C_{SO^2} = 0.2 \text{ M},$ $C_{NO_5} = 0.2 \text{ M}, m_{rán} = 34.4 \text{ g}$ B. $C_{M\sigma^{2}} = 0.1 \text{ M}, C_{Zn^{2}} = 0.2 \text{ M}, C_{SO^{2}} = 0.1 \text{ M},$ $C_{NO_5} = 0.2 \text{ M}, m_{rán} = 28.6 \text{ g}$ C. $C_{Mg^{2+}} = 0.1 \text{ M}, C_{Zn^{2+}} = 0.2 \text{ M}, C_{Cu^{2+}} = 0.05 \text{ M},$ $C_{NO_{s}} = 0.2 \text{ M}, C_{SO_{s}^{2-}} = 0.2 \text{ M}, m_{rán} = 34.6 \text{ g}$ D. $C_{Mg^2} = 0.1 \text{ M}, C_{Zn^2} = 0.2 \text{ M}, C_{NO_0} = 0.2 \text{ M},$ $C_{SO_{2}^{2-}} = 0.2 \text{ M}, m_{rán} = 38.2 \text{ g}.$

3) phenol

axit benzoic.

4) H₂Te

46. Cho 4 chất

1) flobenzen

Chọn các chất hướng nhóm thế sau vào vị trí octo (hoặc para), hay vào vị trí *meta* so với nhóm thế sẵn có. A. (octo, para): 1, 2; (meta): 3, 4

2) clobenzen

- B. (octo, para): 2, 3; (meta): 1, 4 C. (octo, para): 1, 3; (meta): 2, 4 D. (octo, para): 1, 2, 3; (meta): 4.
- **47.** Trong 4 hiđrua nhóm VI_A:
- 1) H₂O
 - 3) H₂Se2) H₂S
 - chọn chất có nhiệt độ sôi cao nhất, thấp nhất

 - A. H_2 Te, H_2 O B. H_2S , H_2O C. H_2Se , H_2S D. H_2O , H_2S .
- **48.** 20 ml dung dịch H₂SO₄ trung hòa 10 ml dung dịch NaOH. Cũng 20 ml dung dịch H_2SO_4 trung hòa 15 ml dung dịch KOH 1,2 M. Cần bao
 - nhiều ml dung dịch H₂SO₄ trên để trung hòa 20 ml dung dịch gồm
 - 10 ml dung dịch NaOH và 10 ml dung dịch KOH trên.
- A. 66,67 B. 45,10 C. 36,80 D. 33,33.

49. Một anken mạch thẳng A khi bị hiđrat hóa cho ra 1 ancol duy nhất. Xác định CTCT của A biết rằng đốt cháy 1 mol A thu được 4 mol CO_2

A. $CH_3 - CH = CH - CH_3$

B. $CH_2 = CH - CH_2 - CH_3$

 $C. CH_3 - CH = CH_2$

D. $CH_3 - CH = CH - CH_2 - CH_3$.

50. Sắp các chất NaF, MgO, Al_2O_3 theo thứ tự nhiệt độ nóng chảy tăng dần.

A. NaF < Al₂O₃ < MgO

B. $NaF < MgO < Al_2O_3$

C. $Al_2O_3 < NaF < MgO$

D. $MgO < NaF < Al_2O_3$.

ĐÁP ÁN BỘ ĐỀ 1

- 1. 3) Sai. Đồng vị cho ra nước nặng là ²₁H (còn có kí hiệu là D: đơteri)
 - 4) Sai. Chỉ có ³₁H có tính phóng xạ, ²₁H không có tính phóng xạ nên ta có thể uống nước nặng mà không sợ bị phóng xạ.
 - 1) Đúng. Đồng vị chiếm cùng 1 ô (cùng vị trí) trong bảng HTTH
 - 2) Đúng. ${}_{1}^{1}H$ có 1 proton và 0 nơtron nên có tỉ số $\frac{\text{số nơtron}}{\text{số proton}} = 0$, nho nhất trong 3 đồng vị. Tỉ số này bằng 1 cho ${}_{1}^{2}H$ và 2 cho đồng vị ${}_{1}^{3}H$.
 - 3, 4 không đúng. Chọn đáp án A.
- 2. 1) CH₄ 3) CCl₄ và 4) NH₄ có 4 nguyên tử giống nhau nối với nguyên tử trung tâm nên có cơ cấu tứ diện đều.
 - CHCl₃ không phải là tứ diện đều vì liên kết C-H ngắn hơn liên kết C-Cl.
 - 1, 3, 4 đúng. Chọn đáp án C.
- 3. HCl axit mạnh, phân ly hoàn toàn nên có [H⁺] lớn nhất, pH nhỏ nhất < 7 CH₃COOH là 1 axit yếu, phân ly kém, nên có [H⁺] nhỏ hơn HCl, pH cao hơn HCl < 7</p>
 - 3) KCl: muối trung tính có pH = 7
 - 4) K_2CO_3 : muối có tính bazơ do phát xuất từ axit yếu và bazơ mạnh, pH > 7.

Sắp theo thứ tự pH tăng dần

- 2 < 1 < 3 < 4. Chọn đáp án B.
- **4.** Một dung dịch trong suốt không thể chứa các ion có thể kết hợp với nhau cho ra kết tủa.
 - 1) Có được vì muối Na⁺, K⁺ đều tan trong nước

- 2) Không có được vì Ca₃(PO₄)₂ kết tủa
- 3) Không có được vì BaSO₄, MgCO₃ kết tủa
- 4) Không có được vì CuS kết tủa.
- Vậy 2, 3, 4 không đáp ứng. Chon đáp án B.
- 5. A có phản ứng với Na và với axit hữu cơ. Vậy A chứa H và OH linh động và A không tác dụng với bazơ. Vậy A là 1 ancol.
 - Với M = 60, A chứa tối đa 3 cacbon. Vậy A là C₃H₇-OH

Loại, B C_2H_5 – NH_2 cũng có H linh động, cũng phản ứng với axit hữu cơ, không phản ứng với bazơ nhưng $M=45\neq 60$ Chọn đáp án C.

- 6. Dung dịch dẫn điện tốt khi chứa chất điện li mạnh (NaCl, NaOH) và dẫn điện kém khi dung dịch chứa chất điện li yếu (CH₃COOH, NH₄OH). Chọn đáp án A.
- 7. Các anion có chứa H phần lớn lưỡng tính

$$HCO_3^- + H^+ \rightleftharpoons CO_2 + H_2O$$

 $HCO_3^- \rightleftharpoons H^+ + CO_3^{2-}$

Tương tự cho H₂PO₄

 HSO_4^- mặc dù có chứa H nhưng không có tính lưỡng tính do HSO_4^- không kết hợp được với H^+ .

$$HSO_4^- + H^+ \times H_2SO_4$$

vì H₂SO₄ là axit mạnh.

CO₃²⁻ chỉ có tính bazơ

- 1, 3 lưỡng tính. Chọn đáp án B.
- 8. 2 ancol bị khủ nước chỉ cho được 1 anken. Vậy 1 ancol là CH_3OH với $M_A=32,\ M_B=2M_A-4=64-4=60.$

B là C_3H_7 -OH.

Chọn đáp án D.

9. Phenol C₆H₅OH chứa 6 C nên ít tan trong nước. Phenol tan trong benzen (dung môi hữu cơ gần phenol) và tan trong dung dịch NaOH do phản ứng.

 $C_6H_5OH + NaOH \rightarrow C_6H_5O^- + Na^+ + H_2O$

tạo ra hợp chất ion

Loại 3 H₂SO₄ vì C₆H₅OH không tác dụng với H₂SO₄.

Loại 4 NH₄OH vì phenol mặc dù có tính axit nhưng rất yếu nên phenol không phản ứng với NH₄OH bazo yếu.

Chọn đáp án A.

10. Nguyên tố có độ âm điện cao nhất là F và nguyên tố có độ âm điện thấp nhất là Cs, nguyên tố đứng gần cuối nhóm I_A kim loại kiềm, nhóm có độ âm điện rất thấp).

Chọn đáp án B.

11. Trong bảng HTTH nhóm có tính dẫn điện tốt nhất là nhóm I_B (Cu, Ag dẫn điện tốt nhất trong tất cả các kim loại). Nhóm I_A , III_A (Al) dẫn điện cũng tốt nhưng kém hơn nhóm I_B . Chọn đáp án B.

12. Isobutan có CTCT là

$$\overset{1}{C}H_{3} - \overset{2}{C}H - \overset{3}{C}H_{3}$$
 $\overset{1}{C}H_{3}$

3 cacbon C₁, C₃, C₄ giống hệt nhau.

Có 3 trường hợp.

- 2 Cl đều nằm trên cùng 1 C (C₁, C₃, C₄)
- \rightarrow 1 đồng phân.
- 1 Cl nằm trên C_1 , 1 Cl trên C_2 (C_3 hoặc C_4) \rightarrow 1 đồng phân.
 - 1 Cl nằm trên C_2 , 1 Cl trên C_1 (C_2 hoặc C_3)
- → 1 đồng phân.

Có 3 đồng phân. Chọn đáp án C.

13. Axit acrylic $CH_2 = CH - COOH$

Axit axetic $CH_3 - COOH$

Axit benzoic C_6H_5 -COOH.

Để có được phản ứng trùng hợp phân tử phải có 1 liên kết C=C ngoài vòng. Đó là axit acrylic.

$$nCH_2 = CH \rightarrow (CH_2 - CH)_n$$

$$COOH$$

Chọn đáp án A.

14. $M_B = 2M_A$ vậy A, B có thể là anken có CT tổng quát là $(CH_2)_n$. Nếu A là C_nH_{2n} , B là $C_{2n}H_{4n}$ để $M_B = 2M_A$.

$$n_X = a + b = \frac{6,72}{22.4} = 0.3 \text{ mol}$$
 (1)

$$\overline{M}_{X} = \frac{11,2}{0.3} = 37,33$$

$$14n < 37,33 < 28n$$

 $n = 2 \rightarrow A \text{ là } C_2H_4 \text{ và } B \text{ là } C_4H_8$

$$m_X = 28a + 56b = 11,2$$
 (1)

(1), (2)
$$\rightarrow$$
 a = 0,2 mol C₂H₄
b = 0,1 mol C₄H₈

a + 2b = 0.4(2)

Chọn đáp án B.

15. A, B với công thức $C_nH_{2n}O$ có thể là anđehit và xeton. Gọi $a = n_{andehitA}$, $b = n_{xetonB}$

(2)

(1)

A, B cộng H_2 theo tỉ lệ mol 1:1

$$n_{H_2} = a + b = \frac{11,2}{22,4} = 0,5 \text{ mol}$$
 (1)

Chỉ có anđehit A tác dụng với AgNO₃/NH₃

a mol A
$$\to$$
 2a mol Ag \downarrow
2a = $\frac{43,2}{108}$ = 0,4 \to a = 0,2 mol

Suy ra b = 0.3 mol

$$M = 14n + 16 = 2 \times 29 = 58 \rightarrow n = 3$$

$$m_{hh} = 58 \times 0.5 = 29 g.$$

Chon đáp án B.

16. Gọi x là hóa trị của M trong oxit. Công thức của oxit là M₂O_x

$$N\hat{e}u a = n_{M_2O_x}$$

$$M_2O_x + xH_2 \rightarrow 2M + xH_2O$$

a ax 2a
ax =
$$\frac{2,016}{22.4}$$
 = 0,09 mol

Gọi y là hóa trị của M trong muối sunfat

$$2M + yH_2SO_4 \rightarrow M_2(SO_4)_y + yH_2$$

$$ay = \frac{1,344}{22.4} = 0,06 \text{ mol}$$
 (2)

$$\frac{(1)}{(2)} \rightarrow \frac{x}{y} = \frac{0.09}{0.06} = \frac{3}{2}$$

$$Vav x = 3, v = 2$$

Công thức của oxit là
$$M_2O_3$$

(1) $\rightarrow a = \frac{0.09}{x} = \frac{0.09}{3} = 0.03 \text{ mol}$

$$0 \rightarrow a = \frac{1}{x} = \frac{1}{3} = 0.03 \text{ mo}$$

 $m_{M_3O_4} = 0.3 (2M + 48) = 4.8$

 $M = 56 \rightarrow M$ là Fe và oxit là Fe₂O₃. Chọn đáp án A.

17. Các nguyên tố, ngoài số oxi hóa 0 chỉ có 1 số oxi hóa khác là

F: chỉ có số oxi hóa -1 do F có độ âm điện cao nhất trong tất cả các nguyên tố.

Na: chỉ có số oxi hóa +1 do Na⁺ với cơ cấu rất bền của khí hiếm Ne không thể mất thêm 1 electron để cho ra Na²⁺.

Loại 1) O vì O có 2 số oxi hóa -2 và -1 (trong H₂O₂ và các peoxit)

Loại 4) H vì H có số oxi hóa +1 và -1 trong các hiđrua kim loại như NaH. Chon đáp án D.

18. A cho phản ứng thế dễ hơn phản ứng cộng. Vậy A là hợp chất thơm có chứa vòng benzen. A bị khử cho ra B có tính bazơ (amin). Vậy A là $C_6H_5-NO_2$ (phù hợp với M = 123). Nhóm $-NO_2$ hút electron làm cho nhóm thế sau vào vị trí meta đối với -NO₂. Chọn đáp án A. 19. Ca(HCO₃)₂ chứa HCO₃ lưỡng tính, phản ứng với các chất có tính axit

và bazo. Dãy 1) HCl (axit), NaOH (bazo), Ca(OH)₂ (bazo) đều phản ứng với Ca(HCO₃)₂ Dãy 2) H₂SO₄, Na₂SO₄, NaHSO₄ chỉ có 2 chất H₂SO₄và NaHSO₄ (có tính axit phản ứng với Ca(HCO₃)₂ còn Na₂SO₄ trung tính không phản

Dãy 3) phù hợp

1, 3 phù hợp. Chọn đáp án C.

20. A phải chứa liên kết C = C và C = O nên A có thể là anđehit chưa no. Với $M_A < 60$.

Ta chọn $CH_2 = CH - CHO$ $CH_2 = CH - CHO + HOH \xrightarrow{xt} CH_2 - CH_2 - CHO$ OH (B)

$$CH_2 - CH_2 - CHO + H_2 \xrightarrow{xt} CH_2OH - CH_2 - CH_2OH.$$

Chọn đáp án A.

OH

ứng. Loại

 $Z = \frac{30, 4.10^{-19}}{1.6 \times 10^{-19}} = 19.$ Với 19 electron, A có cấu hình electron

 $1s^22s^22p^63s^23p^64s^1$ Đó là K thuộc nhóm I_A

A: C_nH_{2n+2} (a mol) B: C_nH_{2n} (b mol)

Chọn đáp án C.

22. Ankan A và anken B có $M_A \approx M_B$ Vậy A, B có cùng số nguyên tử cacbon

21. Điện tích proton = $|\text{diện tích electron}| = +1.6 \times 10^{-19} \text{C}$.

 $n_X = a + b = \frac{3,36}{22.4} = 0,15 \text{ mol}$.

Qua bình Br2, anken bị giữ lại

 $m_B = 4.2 g$

 $V_{anken} = \frac{2}{2} V_{ban \, d\hat{a}u} = 2,24 \; l \longrightarrow n_B = 0,10 \; mol$ $a = n_A = 0.05 \text{ mol}$

 $M_B = \frac{4.2}{0.1} = 42 = 14n \rightarrow n = 3$

Ankan: C_3H_8 , Anken C_3H_6 $%C_3H_8 = \frac{0.05}{0.15} \times 100 = 33,33\%$

 $%C_3H_6 = 100 - 33.33 = 66.67\%.$ Chọn đáp án A.

23. Muốn cho phản ứng với HNO₃ tạo ra khói nâu NO₂, chất phản ứng với

Chọn đáp án D.

HNO₃ phải có tính khử. Đó là 1) Fe 2) FeO và 4) Fe₃O₄ (có chứa Fe²⁺ và Fe³⁺) Chọn đáp án C. 24. KMnO₄ là chất oxi hóa, có màu tím. Ở môi trường axit, MnO₄ bị khử

cho ra Mn²⁺ không màu. Chất phản ứng với MnO₄ phải có tính khử. Đó là C₂H₄ và KBr Cl₂ và KNO₃ có tính oxi hóa không phản ứng với KMnO₄.

16

25. Tổng điện tích dương =
$$|$$
tổng điện tích âm $|$ 0,1 + 0,005 × 2 = 0,06 + 2x

Chọn đáp án C.

Chọn đáp án B.

$$2x = 0.11 - 0.06 = 0.05$$

 $x = C_{SO^{2-}} = 0.025 M$

Van rất yếu. Đó là trường hợp I_2 và $C_{10}H_8$.

27. Este đơn chức no có CT tổng quát là $C_nH_{2n}O_2$.

cộng hóa trị rất bền. Đó là trường hợp cacbon.

 $n_{CO_2} = n_{H_2O} = \frac{17.6}{44} = 0.4 \text{ mol}$

 $\frac{n_{O_2}}{n_{CO_2}} = \frac{3n-2}{2.n} = \frac{0.5}{0.4} = \frac{5}{4} \implies n = 4$

kết hiđro với nước. Đó là trường hợp C₂H₅OH.

phân tử lớn (chứa nhiều C) nên tan ít trong nước.

 $C_nH_{2n}O_2 + \frac{3n-2}{2}O_2 \to nCO_2 + nH_2O$

 $m_{este} = m_{CO_2} + m_{H_2O} - m_{O_2} = 17.6 + 0.4.10 - 0.5.32$

28. Chất hữu cơ tan khá trong nước khi có phân tử nhỏ và tạo được liên

C₆H₅OH và C₆H₅-NH₂ cũng tạo được liên kết hiđro với nước nhưng có

17

26. Chất dễ thăng hoa là các chất có cơ cấu tinh thể phân tử với nút mạng tinh thể là những phân tử. Lực hút giữa các phân tử này là lực Van đe

Chất có nhiệt độ nóng chảy rất cao khi có cơ cấu tinh thể nguyên tử với nút mạng là nguyên tử, các nguyên tử liên kết nhau bằng liên kết

 $n_{O_2} = \frac{11,2}{22,4} = 0.5 \text{ mol}$

Công thức của este là $C_4H_8O_2$.

Theo định luật bảo toàn khối lượng $m_{\text{este}} + m_{O_2} = m_{CO_2} + m_{H_2O}$

m = 8.8 g.

Chọn đáp án A.

 C_6H_6 tan ít nhất trong nước do C_6H_6 có phân tử lớn, lại không tạo được liên kết hiđro với nước. Chọn đáp án C.

29. Theo định luật Farađay

Số mol = $\frac{A}{n} \cdot \frac{It}{96500}$

2 bình điện phân mắc nối tiếp nên cùng I, cùng t.

Bình II (CuSO₄) bắt đầu sủi bọt ở catôt khi vừa hết Cu²⁺, được 0,05 mol Cu. Do Zn và Cu cùng hóa trị n = 2, ta sẽ được bên bình I 0,05 mol Zn

$$CuSO_4 + H_2O \xrightarrow{dp} Cu \downarrow + H_2SO_4 + \frac{1}{2}O_2$$

Số mol O2 thu được ở catôt mỗi bình

$$n_{O_2} = \frac{1}{2}n_{Cu} = 0,025 \text{ mol}$$

 $m_{Cu} = 0,05 \times 64 = 3,2 \text{ g}$

 $m_{Zn} = 0.05 \times 65 = 3.25 g$

$${
m V_{O_2}}=0{,}025 imes22{,}4=0{,}56~l$$
 (giống nhau cho 2 bình).
 Chọn đáp án B.

30. $n_{CO_2} < n_{H_2O} \rightarrow A$, B thuộc họ ankan

$$(3\overline{n} + 1)O_2$$

$$C_{\bar{n}}H_{2\bar{n}+2} + \frac{(3\bar{n}+1)O_2}{2} \rightarrow \bar{n} CO_2 + (\bar{n}+1)H_2O$$

$$m_X = m_C + m_H = 1.1 \times 1.2 + 1.6 \times 2 = 16.4 \text{ g}$$

$$\frac{n_{CO_2}}{n_{HO}} = \frac{\bar{n}}{\bar{n}+1} = \frac{1,1}{1,6} \Rightarrow \bar{n} = 2,2$$

Vậy A là C_2H_6 và B là C_3H_8 .

Chọn đáp án A.

31. Chất có nhiệt độ sôi cao khi có M lớn và nhất là khi có liên kết hiđro

C₂H₅OH và CH₃OH đều tạo được liên kết hiđro nhưng C₂H₅OH có M lớn hơn CH₃OH.

Vậy C₂H₅OH có nhiệt độ sôi cao nhất C_4H_{10} mặc dù có M lớn nhất nhưng không tạo được liên kết hiđro nên

sôi ở nhiệt độ thấp nhất trong 4 chất.

Chọn đáp án C.

32.
$$n_{Zn^{-}} = \frac{7,8}{65} = 0,12 \text{ mol}$$

$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2 \text{ (khí A)}$$
 $0,12$
 $0,12$
 $0,12$

$$n_{NaCl} = \frac{5,85}{58,5} = 0,1 \text{ mol}$$

0,1 mol Cl⁻ bị MnO₄ oxi hóa thành 0,05 mol Cl₂ (khí B)
$$H_2 + Cl_2 \rightarrow 2HCl$$
 $0,05$
 $0,05$
 $0,05$
 $0,1$

Sản phẩm thu được là HCl (0,1 mol)
$$n_{NaOH} = 0,2 \text{ mol}$$

$$HCl + NaOH \rightarrow NaCl + H_2O$$
 $0,1$
 $0,1$

Còn dư $0,2 - 0,1 = 0,1 \text{ mol NaOH}$

$$[OH^-] = 0,1 \text{ M} \rightarrow [H^+] = \frac{10^{-14}}{10^{-1}} = 10^{-13} \text{ M}$$

$$pH = 13.$$

$$Chọn đáp án A.$$

33. $C_nH_{2n+3}N \xrightarrow{O_2} nCO_2 + \frac{2n+3}{2}H_2O + \frac{1}{2}N_2$

$$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O$$

$$CO_{2} + Ca(OH)_{2} \rightarrow CaCO_{3} \downarrow + H_{2}O$$

$$n_{CO_{2}} = n_{CaCO_{3}} = \frac{30}{100} = 0,3 \text{ mol}$$

$$n_{N_{2}} = \frac{1,12}{22,4} = 0,05 \text{ mol}$$

$$n_{CO_{2}} = n_{CACO_{3}} = 0,3$$

$$\frac{n_{\text{CO}_2}}{n_{\text{N}_2}} = \frac{n}{\frac{1}{2}} = 2n = \frac{0,3}{0,05} = 6$$

n = 3

Amin bậc 1:
$$CH_3 - CH_2 - CH_2 - NH_2$$

$$CH_3 - CH - NH_2$$

$$CH_3 - CH_3 - CH_3$$

Amin bậc 2: $CH_3 - NH - C_2H_5$

Amin bậc 3: N(CH₃)₃

Chọn đáp án B.

34. Để chỉ oxi hóa I^- mà không oxi hóa Cl^- thì $E^0_{oh/kh}$ phải lớn hơn $E^0_{\mathbf{l_2}/2l^-}$ nhưng nhỏ hơn $\mathbf{E}_{\text{Cl}_2/2\text{Cl}^-}^0$

Vậy ta chọn Fe³⁺ làm chất oxi hóa với Fe³⁺ ta chỉ có phản ứng.

$$2Fe^{3+} + 2I^- \rightarrow 2Fe^{2+} + I_2$$

Nếu dùng MnO₂ hay KMnO₄ ở môi trường axit, ta oxi hóa cả hai Cl⁻ và I⁻. Chọn đáp án D.

 $\it Ch\acute{u}$ ý: Mặc dù $\it E^{0}_{MnO_{2}/Mn^{2+}} < \it E^{0}_{Cl_{2}/2Cl^{-}}$ nhưng ở môi trường khá axit. $\it MnO_{2}$ vẫn oxi hóa được Cl-.

35. Na₂CO₃ với Al₂(SO₄)₃ không cho ra cacbonat Al vì Al₂(CO₃)₃ bị thủy phân hoàn toàn cho ra Al(OH)3 kết tủa Tương tự cho Na₂S.

Dung dịch NH₄OH cho kết tủa Al(OH)₃, kết tủa này không tan trở lại với NH₄OH dư.

Loai NaOH dư vì Al(OH)3 tan trở lại.

Chọn đáp án D.

Styren có 1 liên kết đôi C = C nằm ngoài vòng benzen, liên kết này hoạt tính mạnh hơn liên kết C = C trong vòng benzen.

Toluen có 1 nhóm thế CH₃ so với benzen.

Để phân biệt ta dùng dung dịch KMnO₄ (H⁺). Styren làm mất màu dung dịch KMnO4 ngay ở nhiệt độ thường (giống như etilen) còn toluen chỉ phản ứng với KMnO₄ khi đun nóng (gốc –CH₃ bị oxi hóa thành –COOH).

Còn benzen không phản ứng với KMnO4 ở bất cứ điều kiên nào (do

Chọn đáp án A.

vòng benzen rất bền).

37. CO_2 phản ứng với OH^- đầu tiên cho ra CO_3^{2-}

$$CO_2 + 2OH^- \rightarrow CO_2^{2-} + H_2O$$

Nếu hết OH⁻ mà còn dư CO₂ thì CO₂ phản ứng tiếp với CO₃²⁻ cho ra HCO₃³

$$CO_3^{2-} + CO_2 + H_2O \rightarrow 2 HCO_3^{-}$$

CaCO₃ không tan còn Ca(HCO₃)₂ tan.

Vậy muốn có kết tủa cực đại thì lượng CO_2 phải vừa đủ để cho ra CO_3^{2-}

$$CO_3^{2-}$$
 + Ca^{2+} \rightarrow $CaCO_3 \downarrow$

Số mol OH- do 2 bazơ

$$n_{OH} = b + 2c$$
 \downarrow

NaOH Ca(OH)₂

Vậy
$$n_{CO_2} = \frac{1}{2}n_{OH} = \frac{b+2c}{2} = a$$

Hay b + 2c = 2a

Ca²⁺ kết tủa hết cho ra c mol CaCO₃

Vậy khối lượng kết tủa cực đại là c × 100.

Chọn đáp án C.

38. C là một este

$$RCOOR' + H_2O \rightarrow RCOOH + R'OH$$

B là RCOOH cho được phản ứng tráng gương vậy B là HCOOH

C là rượu R'OH, C là rượu bậc 2 vì khi bị oxi hóa cho ra 1 xeton.

1 mol A đốt cháy cho ra 4 mol CO₂

Vậy phân tử A chứa 4 nguyên tử cacbon

R'OH là
$$CH_3 - CH - CH_3$$

OH

CTCT của este A là
$$H-COO-CH$$

Chọn đáp án A.

39.
$$H_3PO_4 + 2NaOH \rightarrow Na_2HPO_4 + 2H_2O$$

$$H_3PO_4 + 3NaOH \rightarrow Na_3PO_4 + 3H_2O$$

Để phản ứng giữa H_3PO_4 và NaOH cho ra 2 muối Na_2HPO_4 và Na_3PO_4 thì $2n_{H_3PO_4} < n_{NaOH} < 3n_{H_3PO_4}$

$$2V_2b < V_1a < 3V_2b$$

Chọn đáp án B.

40. Na, Mg, Al thuộc cùng chu kì 3 của bảng HTTH. Tính bazơ của hiđroxit giảm dần từ trái qua phải nên ta có thứ tự. $Al(OH)_3 < Mg(OH)_2 < NaOH$

$$AI(OII)_3 < Mg(OII)_2 < NaO.$$

Na và K thuộc cùng nhóm IA, Na ở trên K. Nên NaOH < KOH Vậy thứ tự chung là

 $Al(OH)_3 < Mg(OH)_2 < NaOH < KOH$

Hay 4 < 3 < 1 < 2.

Chọn đáp án D.

41. C trong -CHO có số oxi hóa +1

C trong -COOH có số oxi hóa +3

C trong -CH₂OH có số oxi hóa -1 C trong CO₂ có số oxi hóa +4

Vậy trong các phản ứng 1, 2, 4 số oxi hóa của C tăng. Trong các phản ứng này, R-CHO là chất khử.

42. Một điamin no có CT tổng quát là $C_nH_{2n+4}N_2$ $\%N = \frac{2800}{14n + 4 + 28} = 37,84$

$$\rightarrow n = 3 \text{ và CTPT là } C_3H_{10}N_2$$

Chọn đáp án B.

43. Phenol

Axit axetic CH₃-COOH

Cả 3 đều có tính axit nên không thể dùng dung dịch NaOH để phân biệt.

Axit acrylic có liên kết C = C nên cộng Br_2 dễ dàng. $CH_2 = CH - CH_3 + Br_2 \rightarrow CH_2Br - CHBr - CH_3$

Phenol nhờ có nhóm -OH cho electron vào vòng benzen làm cho phản ứng thế với Br₂ xảy ra dễ dàng tạo ra kết tủa.

Axit axetic không phản ứng với Br_2 trong điều kiện này.

Chọn đáp án C.

Chú ý: Mặc dù H₂ cùng phản ứng cộng với axit acrylic và phenol nhưng phản ứng không cho ra sản phẩm dễ nhận thấy như khi dùng dung dịch Br₂.

 $Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4 \downarrow$

$$n_{SO_4^{2-}} = n_{BaSO_4} = \frac{46,6}{233} = 0.2 \text{ mol} \rightarrow C_{SO_4^{2-}} = 0.2 \text{ M}$$

 $n_{NH_3} = n_{NH_4^*} = \frac{13,44}{22.4} = 0.6 \text{ mol } \rightarrow C_{NH_4^*} = 0.6 \text{ M}$

Trong dung dịch, tổng điện tích dương = | tổng điện tích âm | $2 \times 0.2 + C_{Cl} = 0.6 \rightarrow C_{Cl} = 0.2 \text{ M}$

Dung dịch chứa 2 muối NH₄Cl với C = 0.2 M và $(NH_4)_2SO_4$ với C = 0.2MChon đáp án C.

45. $n_{Mg} = \frac{2.4}{24} = 0.1 \text{ mol}, n_{Zn} = \frac{13}{65} = 0.2 \text{ mol}$

$$n_{Mg} = \frac{1}{24} = 0.1$$
 Mối, $n_{Zn} = \frac{1}{65} = 0.2$ Mối $n_{Cu^{2+}} = 0.2$ mol. Nếu Cu^{2+} và Ag^{+} bị khử hết thì số mol electron nhận

$$\begin{array}{cccc} Cu^{2+} + 2e & \rightarrow & Cu \\ 0.2 & 0.4 & 0.2 \\ Ag^+ + e & \rightarrow & Ag \end{array}$$

$$\begin{array}{cccc} Ag^+ & + & e & \rightarrow & Ag \\ 0,2 & 0,2 & 0,2 & 0,2 \end{array}$$

Tổng số mol electron nhận là 0.4 + 0.2 = 0.6 mol

Nếu Mg và Zn bị oxi hóa hết, thì số mol electron cho:

Tổng số mol electron cho 0.2 + 0.4 = 0.6 mol

Số mol electron cho = số mol electron nhận. Vậy Mg, Zn phản ứng vừa đủ với Cu²⁺, Ag⁺.

Trong dung dịch chỉ còn $\mathrm{Mg^{2+}}$, $\mathrm{Zn^{2+}}$, $\mathrm{SO_4^{2-}}$, $\mathrm{NO_3^-}$ với $\mathrm{C_{Mg^{2+}}}=0.1$ M, $\mathrm{C_{SO_4^{2-}}}=0.2$ M, $\mathrm{C_{NO_3^-}}=0.2$ M. Chất rắn gồm toàn thể Cu và Ag kết tủa.

 $m_{rán} = 0.2.64 + 0.2.108 = 34.4 g$

Chọn đáp án A.

Nhóm thế đầu hướng nhóm thế sau vào vị trí *octo* hay *para* là nhóm cho electron vào vòng benzen. Đó là Cl (trong clobenzen) và -OH (trong phenol).

Nhóm thế hướng nhóm thế sau vào vị trí *meta* là nhóm hút electron. Đó là F (trong flobenzen) và -COOH (trong axit benzoic).

Chú ý: F vì có độ âm điện rất lớn hút electron trái với Cl có độ âm điện nhỏ hơn F cho electron vào nhân.

Chọn đáp án B.

47. Nhiệt độ sôi tăng theo M. Khi có liên kết hiđro thì nhiệt độ sôi cao bất thường (yếu tố này còn quan trọng hơn yếu tố M).

 H_2O có liên kết hiđro do H liên kết với O nên H_2O có nhiệt độ sôi cao nhất mặc dù H_2O có M nhỏ nhất trong 4 chất.

 H_2S có nhiệt độ sôi thấp nhất vì trong 3 hiđrua còn lại (đều không cho được liên kết hiđro, H_2S có M nhỏ nhất)

Chọn đáp án D.

48. Gọi $C_1 = C_M$ của dung dịch H_2SO_4

 $C_2 = C_M$ của dung dịch NaOH

Khi trung hòa n_{H} = n_{OH}

$$V\acute{o}i \ NaOH: \ 20 \times 2 \times C_1 = 10 \times C_2 \tag{1}$$

$$V\acute{o}i \ KOH: \quad 20 \times 2 \times C_1 = 15 \times 1,2 \tag{2}$$

$$10C_2 = 15 \times 1.2 = 18 \rightarrow C_2 = 1.8 \text{ M}$$

$$(1) \rightarrow 40C_1 = 10.1, 8 \rightarrow C_1 = 0.45 \text{ M}.$$

Với hỗn hợp NaOH + KOH

Gọi V là thể tích dung dịch H₂SO₄

$$0.45 \times 2 \times V = 10.1.8 + 10 \times 1.2$$

$$0.9V = 30 \rightarrow V = 33.33 \text{ ml}$$

Chọn đáp án D.

49. 1 mol anken đốt cháy cho ra 4 mol CO_2 vậy A có 4 $C \rightarrow A$ là C_4H_8

Có 2 CTCT mạch thẳng

1)
$$CH_2 = CH - CH_2 - CH_3$$
 và 2) $CH_3 - CH = CH - CH_3$

Với CTCT 1) Khi A cộng H₂O ta có thể có 2 ancol khác nhau

·
$$CH_3 - CH - CH_2 - CH_3$$
 $CH_2OH - CH_2 - CH_2 - CH_3$

Với CTCT (2) anken cộng H_2O chỉ cho ra ancol CH_3 – CH – CH_2 – CH_3 OH

Chọn đáp án A.

50. Lực hút giữa các ion dương và âm càng mạnh khi tích điện tích $|z_+ z_-|$ của 2 ion càng lớn.

Na⁺F⁻ có
$$|z_+|z_-| = |1 \times (-1)| = 1$$

Mg²⁺O²⁻ có $|z_+|z_-| = |2 \times (-2)| = 4$
 $2Al^{3+}3O^{2-}$ có $|z_+|z_-| = |+3.(-2)| = 6$

So sánh giữa các giá trị của $|z_+|z_-|$ ta thấy lực hút giữa cation và anion mạnh dần từ NaF đến MgO và sau cùng là Al_2O_3 , vậy nhiệt độ nóng chảy tăng dần theo thứ tự

$$NaF < MgO < Al_2O_3$$

Chọn đáp án B.

ĐÁP ÁN BỘ ĐỀ TRẮC NGHIỆM BỘ ĐỀ 1

1. A	2. C	3. B	4. B	5. C	6. A	7. B
8. D	9. A	10. B	11. D	12. C	13. A	14. B
15. B	16. A	17. D	18. A	19. C	20. A	21. C
22. A	23. C	24. D	25. C	26. B	27. A	28. C
29. B	30. A	31. C	32. A	33. B	34. D	35. D
36. A	37. C	38. A	39. B	40. D	41. A	42. B
43. C	44. C	45. A	46. B	47. D	48. D	49. A
50. B						