

Content

3. Specific Processes for Advanced Micro- and Nanoelectronics

- 3.1 Specific CVD Processes
- 3.2 Epitaxy
- 3.3 Advanced PVD Processes
- 3.4 Atomic Layer Deposition
- 3.5 Ion Implantation / Special Annealing Processes
- 3.6 Advanced Lithography
- 3.7 Advanced Dry/Plasma Etching Processes
- 3.8 Chemical Mechanical Polishing/Planarization
- 3.9 Electrochemical Deposition and Electroless Deposition

3.1 Special CVD Processes

- 3.1.1 Metal CVD (W, Cu)
- 3.1.2 Metal Nitride CVD Conductive Diffusion Barriers
- 3.1.3 Applications of CVD poly-Si, SiO_2 , Si_xN_y ...
- 3.1.4 CVD of low-k dielectrics

3.1.1 Metal CVD

(A) Tungsten (W) CVD

- Application and integration aspects
- Precursors and reactions
- Process characteristics and film properties
- Selective process

Application and integration aspects of CVD-W

Three Metal Layer CMOS Device

Source: PTI Seminars, Inc, 1749 Gilsinn Ln, St. Louis, MO 63026

Application and integration aspects of CVD-W

TSMC 0.18 CMOS Cross Section

Source: Course on VLSI design

Peter Kogge, Joseph Nahas (University of Notre Dam)

CVD Tungsten Via Fill: Process sequence ("W plug")

Tungsten via fill (W plug) using blanket W-CVD (contact fill accordingly)

Tungsten CVD: Precursors

Precusor	Phase (@RT, air pressure)	vapour pressure
WF ₆	gaseous	880 Torr (21 °C)
WCI ₆	solid	0.7 7 Torr (150200 °C)
$W(CO)_6$	solid	10 50 mTorr (30 °C)
metalorganic		

Tungsten deposition using WF₆ is very sensitive to the wafer surface materials:

- faster nucleation on metallic and conducting surfaces
- bad nucleation and adhesion on insulators
- · liner for blanket deposition required
- · selective deposition mode possible

Tungsten CVD: Reactions

Hydrogen reduction of WF₆: blanket W deposition for contact and via fill

$$WF_6 + 3 H_2 \longrightarrow W \downarrow + 6 HF^{\uparrow}$$

Silane reduction of WF_6 : nucleation step for blanket W CVD selective deposition for

contact or via fill

$$2 WF_{6} + 3 SiH_{4} \longrightarrow 2 W \downarrow + 3 SiF_{4} \uparrow + 6 H_{2} \uparrow$$

$$WF_{6} + 2 SiH_{4} \longrightarrow W \downarrow + 3 SiHF_{3} \uparrow + 3 H_{2} \uparrow$$

Silicon reduction of WF₆: parasitic reaction during contact fill on Si

$$2 \text{ WF}_6 + 3 \text{ Si} \longrightarrow 2 \text{ W} \downarrow + 3 \text{ SiF}_4 \uparrow < 400^{\circ}\text{C}$$

$$\text{WF}_6 + 3 \text{ Si} \longrightarrow \text{W} \downarrow + 3 \text{ SiF}_2 \uparrow > 500^{\circ}\text{C}$$

Aluminium reduction of WF₆: parasitic reaction during via fill

$$WF_6$$
 + 2 AI \longrightarrow W \downarrow + 2 AIF₃ \uparrow

AIF₃ increases via resistance: liner as barrier against WF₆ diffusion required

Tungsten CVD:

Reactions -Thermodynamic considerations

Change in Gibbs free engergy [kJ/mol]

Reduction reactions on Al

------ AI [AIF3 (g)]
----- AI [(AIF3)2 (g)]
----- SiH4 [SiF4/H2]
---- SiH4 [SiHF3/H2]
---- AI [AIF3 (s)]

Reduction reactions on Si

H2-Red.
SI-Red. (SIF2)
Si-Red. (SIF4)
SiH4-Red. (SIF4)
SIH4-Red. (SIH53)

Tungsten CVD: Process characteristics

Temperature effect $(T \downarrow :)$

- resistivity ↑
- step coverage ↑
- deposition rate ↓

Tungsten CVD: Film properties

Parameter	Via Fill	Interconnect
W Thickness Bulk resistivity film reflectance (bei 480 nm) Stress $T_{dep} = 440^{\circ}C$ $T_{dep} = 375^{\circ}C$	500 nm < 11.5 μΩcm 60% 1.5 GPa 1.9 GPa	350 nm < 10.5 μΩcm 70% 1.5 GPa 1.9 GPa
Step coverage 0.25 μ m, 8:1 AR T_{dep} = 375°C 0.30 μ m, 5:1 AR T_{dep} = 440°C Sheet resistance uniformity	90% 90%	NA NA
WIW (1σ) WTW (1σ)	< 2% < 2%	< 2% < 2%

Source: Applied Materials (http://appliedmaterials.com/products)

Tungsten CVD: Selective deposition

Blanket Tungsten CVD

Via clean
Liner deposition
W CVD
W CMP

Selective Tungsten CVD

Via clean

W CVD

Tungsten CVD: Selective deposition

required process steps depend on reactive area material (e.g. Al, TiN)

Source: S.E. Schulz, PhD thesis, TU Chemnitz, 1996

Tungsten CVD: Selective deposition

Source: S.E. Schulz, PhD thesis, TU Chemnitz, 1996