7.6 Suppose $f: \mathbb{R} \to \mathbb{R}$ is integrable, $a \in \mathbb{R}$, and we define

$$F(x) = \int_{a}^{x} f(y)dy.$$

Show that F is a continuous function.

Proof. In the previous homework, we proved exercise 6.4, which can be applied to the measure space $\mathbb R$ because it is σ -finite. It states that for each $\epsilon>0$ there is a $\delta>0$ such that if $\mu(A)<\delta$ then $\int_A |f|<\epsilon$. Now, let $x\in\mathbb R$ and $\epsilon>0$. Choose a δ so that the bound just mentioned holds. Then if $|x-x_0|<\frac{\delta}{3}$, we have $x_0\in A=(x-\frac{\delta}{3},x+\frac{\delta}{3})$ where $\mu(A)<\delta$. So we have

$$|F(x) - F(x_0)| = \left| \int_a^x f - \int_a^{x_0} f \right|$$

$$= \left| \int_a^x f - \int_x^x f - \int_x^{x_0} f \right|$$

$$= \left| \int_x^{x_0} f \right|$$

$$\leq \int_x^{x_0} |f|$$

$$\leq \int_a^4 |f| < \epsilon.$$

We have applied here the fact that, for any $r, s, t \in \mathbb{R}$, $\int_{r}^{t} f = \int_{r}^{s} f + \int_{s}^{t}$. According to the definition given in Bass, $\int_{a}^{b} f = \int_{[a,b]} f$. This is nonsense if a > b, since then $[a,b] = \emptyset$, which would create a truly stupid inconsistency in notation between the Lebesgue the Riemann integrals. I will assume that $\int_{a}^{b} f = -\int_{b}^{a} f$ if a > b, since this makes more sense. Then, for $r \le s \le t$, we have

$$\int_{r}^{t} f = \int (f \cdot \mathbb{1}_{(-\infty,s)} + f \cdot \mathbb{1}_{[s,\infty)}) \mathbb{1}_{[r,t]} = \int f \cdot \mathbb{1}_{[r,s)} + \int f \cdot \mathbb{1}_{[s,t]} = \int_{r}^{s} f + \int_{s}^{t} f.$$

If $r \leq t \leq s$, we have from the previous result $\int_{r}^{s} f = \int_{r}^{t} f + \int_{t}^{s} f$, so subtracting $\int_{t}^{s} f$ gives

$$\int_{r}^{t} f = \int_{r}^{s} f - \int_{t}^{s} f = \int_{r}^{s} f + \int_{s}^{t} f$$

as desired. All other cases follow from rearranging and/or negating both sides of one of these equalities.

7.10 Prove that the limit exists and find its value:

$$\lim_{n \to \infty} \int_0^1 \frac{1 + nx^2}{(1 + x^2)^n} \log(2 + \cos(x/n)) dx$$

Proof. Assume $x \in [0,1]$. Note that $0 < 1 + nx^2 \le \sum_{k=0}^n {n \choose k} x^{2n} = (1+x^2)^n$, therefore $0 < \left| \frac{1+nx^2}{(1+x^2)^n} \right| \le 1$. Also, $0 < \cos(x/n) \le 1$, so $0 < |\log(2 + \cos(x/n))| \le \log(3)$. So if f_n is the integrand, then $|f_n| \le \log(3)$, hence we may apply the dominated convergence theorem.

Since $\{0\}$ is a null set, the expression equals $\lim_{n\to\infty}\int_{(0,1]}f_n$. Applying L'Hospital's rule to the first factor by differentiating with respect to n gives

$$\lim_{n \to \infty} \frac{1 + nx^2}{(1 + x^2)^n} = \lim_{n \to \infty} \frac{x^2}{\log(1 + x^2)(1 + x^2)^n} = \frac{x^2}{\log(1 + x^2)} \lim_{n \to \infty} \frac{1}{(1 + x^2)^n} = 0.$$

The limit of the second factor is clearly $\log 3$, which is finite. So the limit of the integrand is the product of the limits of these factors, which is 0. Thus, by the dominated convergence theorem, the expression equals $\int_{(0,1]} 0 = 0$.

7.16 Let (X, \mathcal{A}, μ) be a measure space. A family of measurable functions $\{f_n\}$ is uniformly integrable if given ϵ there exists M such that

$$\int_{\{x:|f_n(x)|>M\}} |f_n(x)| d\mu < \epsilon$$

for each n. The sequence is uniformly absolutely continuous if, given ϵ , there exists δ such that

$$\left| \int_{A} f_n d\mu \right| < \epsilon$$

for each n if $\mu(A) < \delta$.

Suppose μ is a finite measure. Prove that $\{f_n\}$ is uniformly integrable if and only if $\sup_n \int |f_n| d\mu < \infty$ and $\{f_n\}$ is uniformly absolutely continuous.

Proof. For each n, M, let $T_M^n = \{x : |f_n(x)| > M\}$. Suppose first that $\{f_n\}$ is uniformly integrable, and choose an M so that $\int_{T_n^n} |f_n(x)| d\mu < \frac{\epsilon}{2}$. Let $\delta = \frac{\epsilon}{2M}$. Then for any A with $\mu(A) < \delta$, we have

$$\left| \int_{A} f_{n} \right| \leq \int_{A} |f_{n}|$$

$$= \int_{T_{M}^{n} \cap A} |f_{n}| + \int_{(T_{M}^{n})^{c} \cap A} |f_{n}|$$

$$\leq \int_{T_{M}^{n}} |f_{n}| + \int_{A} M$$

$$< \frac{\epsilon}{2} + M\mu(A) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Now, fix any positive ϵ . There is some M such that, for all n,

$$\int |f_n| = \int_{T_M^n} |f_n| + \int_{(T_M^n)^c} |f_n| < \epsilon + M\mu((T_M^n)^c) \le \epsilon + M\mu(X) < \infty.$$

Thus, since the sequence $\int |f_n|$ is bounded, its supremum is finite.

Next, suppose that $\sup_n \int |f_n| d\mu < \infty$ and $\{f_n\}$ is uniformly absolutely continuous. There exists some δ such that

$$\left| \int_{A} f_n d\mu \right| < \frac{\epsilon}{2}$$

for each n if $\mu(A) < \delta$. Thus, if $\mu(A) < \delta$ we have

$$\int_{A} |f_n| = \int_{A \cap \{x: f_n(x) \ge 0\}} f_n - \int_{A \cap \{x: f_n(x) < 0\}} f_n < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Suppose we were to have, for all M, that $\mu(\lbrace x: |f_n(x)| > M\rbrace) \geq \delta$. Then, for all M, we would have

$$M\delta \leq M\mu(\{x: |f_n(x)| > M\}) \leq \int_{\{x: |f_n(x)| > M\}} M \leq \int_{\{x: |f_n(x)| > M\}} |f_n| \leq \int |f_n| \leq \sup \int |f_n| < \sup \int |$$

contradicting that the supremum is finite. Thus $\mu(\{x:|f_n(x)|>M\})\leq \delta$ for some M. Therefore, $\int_{\{x:|f_n(x)|>M\}} |f_n(x)| d\mu < \epsilon, \text{ so } \{f_n\} \text{ is uniformly integrable.}$

8.3 Suppose A is a Borel measurable subset of [0,1], μ is the Lebesgue measure, and $\epsilon \in (0,1)$. Prove that there exists a continuous function $f:[0,1] \to \mathbb{R}$ such that $0 \le f \le 1$ and

$$\mu(\{x: f(x) \neq \mathbb{1}_A(x)\}) < \epsilon.$$

Proof. If A is a null set, then g=0 suffices. So we may assume A has positive measure. Since A is Borel measurable, there exists a compact set F and an open set G such that $F \subseteq A \subseteq G$ and $\mu(G \setminus F) < \epsilon$. Since $\mu(A) > 0$, we may assume $F \neq \emptyset$, since we could take ϵ to be $\min(\epsilon, \mu(A))$ instead, forcing $\mu(F) > 0$ (otherwise $\epsilon > \mu(G \setminus F) = \mu(G) > \mu(A)$, a contradiction). So there exists some minimum distance δ from F to G^c . Define

$$g(x) = \left(1 - \frac{\operatorname{dist}(x, F)}{\delta}\right)^{+}.$$

g is a composition of continuous functions, hence continuous. g is 0 on G^c and 1 on F, and $0 \le g \le 1$. So we have $g = \mathbbm{1}_A$ on both F and G^c . Therefore, $\{x : f(x) \ne \mathbbm{1}_A(x)\} \subseteq G \setminus F$, hence $\mu(\{x : f(x) \ne \mathbbm{1}_A(x)\}) \le \mu(G \setminus F) < \epsilon$.

8.7 Let μ be a measure, not necessarily σ -finite, and suppose f is real-valued and integrable with respect to μ . Prove that $A = \{x : f(x) \neq 0\}$ has σ -finite measure, that is, there exists $F_n \uparrow A$ such that $\mu(F_n) < \infty$ for each n.

Proof. For each $n \in \mathbb{N}$ (including zero) define $S_n = f^{-1}((n, n+1])$ and $T_n = f^{-1}([-(n+1), -n))$. Then $A = \bigcup_{n=0}^{\infty} S_n \cup \bigcup_{n=0}^{\infty} T_n$. Suppose that, for some $n, \mu(S_n) = \infty$. Then

$$\int_{S_n} |f| = \int_{S_n} f \ge \int_{S_n} n = n\mu(S_n) = \infty,$$

a contraction. Suppose that, for some $n, \mu(T_n) = \infty$. Then

$$\int_{T_n} |f| = \int_{T_n} (-f) \ge \int_{T_n} n = n\mu(T_n) = \infty,$$

a contradiction. So $\mu(S_n), \mu(T_n) < \infty$ for all n, thus A is σ -finite.