Lab 7:

Characterization and DC Biasing of the BJT

Name: Wan-Yu Liao

ECEN 325 Section 514

TA: Mandela

Lab Date: October 18, 2019

Lab Report Due Date: October 22, 2019

Calculations

(1)

NPN Resistive DC Biasing Circuit

PNP Resistive DC Biasing Circuit

PNP	
I_C	1mA
V_C	1.5 <i>V</i>
V_{EC}	$\geq 1V$
V_{RE}	$\geq 1V$
V_{CC}	5 <i>V</i>
V_{EE}	0
β	100
V_T	25 <i>mV</i>
I _{supply}	$\leq 2mA$

KC = 1/2 K12
VRE = 2.222V
V2 = 2,922V
RE = 2.2K-12
Ro1 = 4,156KD
RB2 = 5,844KD

All the values are the same as previous part. It is just flipped.

NPN DC Biasing Circuit

NPN	
I_C	2mA
V_C	3.5 <i>V</i>
V_{CE}	≥ 1 <i>V</i>
V_{\times}	≥ 1.5 <i>V</i>
V_{CC}	5 <i>V</i>
V_{EE}	0
β	100
V_T	25 <i>mV</i>
I _{supply}	\leq 5 <i>mA</i>

$$R_{c} = 750\Omega$$
 $R_{1} = 3.8 k\Omega$ $R_{2} = 1.2 k\Omega$ $R_{8} = 250\Omega$
 $R_{B1} = 4.6 k\Omega$ $R_{82} = 5.4 k\Omega$ $V_{x} = 2V$ $V_{y} = 1.2 V$
 $V_{2} = 2.7 V$

Assume
$$V_{CE} = 1.5V$$
 Isupply = 3.5 mA

$$R_{C} = \frac{5-3.5}{2\text{ m A}} = 750-\Omega$$

$$V_{X} = 3.5 - 1.5 = 2V$$

$$V_{R3} = 2 - 1.5 = 0.5V$$

$$V_{Y} = 2 + 0.7 = 2.7V$$

$$V_{Y} = 0.5 + 0.7 = 1.2V$$

$$V_{R3} = \frac{5 - 2.7}{0.5 \text{ mA}} = 4.6 \text{ k.} \Omega$$

$$V_{R3} = \frac{0.5 + 0.7}{0.5 \text{ mA}} = 1.2V$$

$$V_{R3} = \frac{0.5 + 0.7}{0.5 \text{ mA}} = 1.2V$$

$$V_{R3} = \frac{0.5 + 0.7}{0.5 \text{ mA}} = 1.2V$$

$$V_{R3} = \frac{0.5 + 0.7}{0.5 \text{ mA}} = 1.2V$$

$$V_{R3} = \frac{0.5 + 0.7}{0.5 \text{ mA}} = 1.2V$$

$$V_{R3} = \frac{0.5 + 0.7}{0.5 \text{ mA}} = 1.2V$$

$$R_{B2} = \frac{2.7}{0.5MA} = 5.4 k_{.}\Omega_{.}$$

$$V_{X} = 3.5 - 1.5 = 2V$$

$$V_{R3} = 2 - 1.5 = 0.5V$$

$$V_{Z} = 2 + 0.7 = 2.7V$$

$$V_{B1} = \frac{5 - 2.7}{0.5 \text{ mA}} = 4.6 \text{ k.s.}$$

$$R_{B2} = \frac{2.7}{0.5 \text{ mA}} = 5.4 \text{ k.s.}$$

$$R_{1} = \frac{5 - 1.2}{1 \text{ m}} = 1.2 \text{ k.s.}$$

$$R_{1} = \frac{5 - 1.2}{1 \text{ m}} = 3.8 \text{ k.s.}$$

PNP DC Biasing Circuit

PNP	
I_C	2 <i>mA</i>
V_C	1.5 <i>V</i>
V_{EC}	$\geq 1V$
V_{\times}	≥ 1.5 <i>V</i>
V_{CC}	5 <i>V</i>
V_{EE}	0
β	100
V_T	25 <i>mV</i>
I _{supply}	≤ 5 <i>mA</i>

All the values are the same as the previous part. It is just flip.

Simulations

(1)

Figure 1: Schematic of NPN BJT characterization circuit for Fig. 2 ▲

Figure 2: Simulation plot of NPN BJT characterization circuit using DC sweep of V1 from 0 to 5V, while V2 = 5V

Figure 3: Excel plot for collector current (IC) of an NPN BJT as a function of Vbe ▲

Figure 4: Simulation plot of NPN BJT characterization circuit using DC sweep of V2 from 0 to 5V, while V1 = 2V

Figure 5: Excel plot for collector current (IC) of an NPN BJT as a function of Vce ▲

(2)

Figure 6: Schematic of NPN BJT characterization circuit for Fig. 4 \(\textstyle \)

Figure 7: Simulation plot of PNP BJT characterization circuit using DC sweep of V1 from -5 to 0V, while $V2 = -5V \blacktriangle$

Figure 8: Excel plot for collector current (IC) of an PNP BJT as a function of Veb

Figure 9: Simulation plot of PNP BJT characterization circuit using DC sweep of V2 from -5 to 0V, while $V1 = -2V \blacktriangle$

Figure 10: Excel plot for collector current (IC) of an PNP BJT as a function of Vec ▲

(3)

Figure 11: Schematic and interactive simulation for I_C , V_C , V_{RE} , and V_2 for NPN Resistive DC biasing circuit in Fig. 6(a) \blacktriangle

$$I_C = 1.01 \text{mA}, \ V_C = 3.49 \text{V}, \ V_{RE} = 2.24 \text{V}, \ V_2 = 2.90 \text{V}$$

Figure 12: Schematic and interactive simulation for I_C , V_C , V_{RE} , and V_2 for PNP Resistive DC biasing circuit in Fig. 6(b) \blacktriangle

$$I_C = 0.996 mA, \ V_C = 1.49 \ V, \ V_{RE} = 5 - 2.8 = 2.2 V, \ V_2 = 5 - 2.09 = 2.91 V$$

(4)

Figure 13: Schematic and interactive simulation for I_C , V_C , V_2 , V_x , and V_y for NPN DC biasing circuit using current source in Fig. 7(a) and Fig. 7(b) \blacktriangle

$$I_C = 1.99$$
mA, $V_C = 3.51$ V, $V_2 = 2.67$ V, $V_x = 1.98$ V, $V_y = 1.19$ V

Figure 14: Schematic and interactive simulation for I_C , V_C , V_2 , V_x , and V_y for NPN DC biasing circuit using current source in Fig. 8(a) and Fig. 8(b) \blacktriangle

$$I_C = 1.86 mA, \ V_C = 1.39 V, \ V_2 = 5 - 2.32 = 2.68 V, \ V_x = 5 - 3.05 = 1.95 V, \ V_y = 5 - 3.81 = 1.19 V$$

Measurements

(1)

Figure 11: Excel plot for collector current (IC) of an NPN BJT as a function of Vbe ▲

Figure 12: Excel plot for collector current (IC) of an NPN BJT as a function of Vce \blacktriangle

(2)

Figure 13: Excel plot for collector current (IC) of an PNP BJT as a function of Veb 🛦

Figure 14: Excel plot for collector current (IC) of an PNP BJT as a function of Vec ▲

(3)

Figure 15: V_C for NPN Resistive DC biasing ▲

Figure 16: V_{RE} for NPN Resistive DC biasing \blacktriangle

Figure 17: V_2 for NPN Resistive DC biasing \blacktriangle

Ic = (5-3.424)/1500 = 1.05 mA

Figure 18: V_C for PNP Resistive DC biasing ▲

Figure 19: $V_{RE} = 5 - 2.703 = 2.297V$ for PNP Resistive DC biasing \blacktriangle

Figure 20: $V_2 = 5 - 2.046 = 2.954V$ for PNP Resistive DC biasing \blacktriangle Ic = 1.525/1500 = 1.01 mA

(4)

Figure 21: V_C for NPN DC biasing circuit ▲

Figure 22: V₂ for NPN DC biasing circuit ▲

Figure 23: V_x for NPN DC biasing circuit ▲

Figure 24: V_y for NPN DC biasing circuit ▲

Ic = (5 - 3.18) / 750 = 2.427 mA

Figure 25: V_C for PNP DC biasing circuit ▲

Figure 26: $V_2 = 5 - 2.322 = 2.678V$ for PNP DC biasing circuit \blacktriangle

Figure 27: $V_x = 5 - 2.999 = 2.001V$ for PNP DC biasing circuit \blacktriangle

Figure 28: $V_y = 5 - 3.76 = 1.24V$ for PNP DC biasing circuit \triangle Ic = 1.804 / 750 = 2.405mA

Tables

NPN Resistive DC Biasing Circuit

	Calculation	Simulation	Measurement
$V_{C}(V)$	3.5	3.49	3.424
$V_{2}(V)$	2.922	2.90	2.904
$V_{RE}(V)$	2.222	2.24	2.255
I_{C} (mA)	1	1.01	1.05

PNP Resistive DC Biasing Circuit

	Calculation	Simulation	Measurement
$V_{C}(V)$	1.5	1.49	1.525
$V_{2}(V)$	2.922	2.91	2.954
$V_{RE}(V)$	2.222	2.2	2.297
I _C (mA)	1	0.996	1.01

NPN DC Biasing Circuit

	Calculation	Simulation	Measurement
$V_{C}(V)$	3.5	3.51	3.18
$V_{2}(V)$	2.7	2.67	2.626
$V_{x}(V)$	2	1.98	1.951
$V_{y}(V)$	1.2	1.19	1.198
I _C (mA)	2	1.99	2.427

PNP DC Biasing Circuit

	Calculation	Simulation	Measurement
$V_{C}(V)$	1.5	1.39	1.804
$V_{2}(V)$	2.7	2.68	2.678
$V_{x}(V)$	2	1.95	2.001
$V_{y}(V)$	1.2	1.19	1.24
I_{C} (mA)	2	1.86	2.405

Comment

The calculation, simulation, and measurement values are all very close. However, measurement values are a bit off from the calculation and simulation values and this is because I used approximate resistor values but not exact resistor values.

For NPN and PNP characterization plot, both Ic vs. Vbe plots go up at around 0.6V which means that the transistor turns on at about 0.6V. And both Ic vs. Vce plots go up basically immediately that means Ic and Vce are going constantly.