Ufuldstændighed i matematik

Dan Saattrup Nielsen

19. april, 2016

• "Jeg lyver"

- "Jeg lyver"
 - Paradoks, altså hverken sandt eller falsk

- "Jeg lyver"
 - Paradoks, altså hverken sandt eller falsk
- "Du kan ikke bevise at jeg taler sandt"

- "Jeg lyver"
 - Paradoks, altså hverken sandt eller falsk
- "Du kan ikke bevise at jeg taler sandt"
 - Paradoks?

- "Jeg lyver"
 - Paradoks, altså hverken sandt eller falsk
- "Du kan ikke bevise at jeg taler sandt"
 - Paradoks? Niks!

- "Jeg lyver"
 - Paradoks, altså hverken sandt eller falsk
- "Du kan ikke bevise at jeg taler sandt"
 - Paradoks? Niks!
 - Sandt, men ubeviseligt

- "Jeg lyver"
 - Paradoks, altså hverken sandt eller falsk
- "Du kan ikke bevise at jeg taler sandt"
 - Paradoks? Niks!
 - Sandt, men ubeviseligt
- Hvad er "jeg" overhovedet?

• Hvordan kan et udsagn referere til sig selv?

- Hvordan kan et udsagn referere til sig selv?
- "Sætningen "Denne sætning har fem ord" har fem ord"

- Hvordan kan et udsagn referere til sig selv?
- "Sætningen "Denne sætning har fem ord" har fem ord".. er sand, men refererer ikke til sig selv

- Hvordan kan et udsagn referere til sig selv?
- "Sætningen "Denne sætning har fem ord" har fem ord".. er sand, men refererer ikke til sig selv
- "Sætningen "Denne sætning har ti ord" har ti ord"

- Hvordan kan et udsagn referere til sig selv?
- "Sætningen "Denne sætning har fem ord" har fem ord".. er sand, men refererer ikke til sig selv
- "Sætningen "Denne sætning har ti ord" har ti ord".. er falsk, og refererer stadig ikke til sig selv!

- Hvordan kan et udsagn referere til sig selv?
- "Sætningen "Denne sætning har fem ord" har fem ord".. er sand, men refererer ikke til sig selv
- "Sætningen "Denne sætning har ti ord" har ti ord".. er falsk, og refererer stadig ikke til sig selv!
- Er det selvreference umuligt?

- Hvordan kan et udsagn referere til sig selv?
- "Sætningen "Denne sætning har fem ord" har fem ord".. er sand, men refererer ikke til sig selv
- "Sætningen "Denne sætning har ti ord" har ti ord".. er falsk, og refererer stadig ikke til sig selv!
- Er det selvreference umuligt? Både ja og nej!

Nøglen

• Den gode idé: referér til en opskrift fremfor selve udsagnet

Nøglen

- Den gode idé: referér til en opskrift fremfor selve udsagnet
- "Hvis du erstatter 'matematik' med 'et eller andet mærkeligt'
 i "Lige nu laver vi matematik", får du et sandt udsagn"

Nøglen

- Den gode idé: referér til en opskrift fremfor selve udsagnet
- "Hvis du erstatter 'matematik' med 'et eller andet mærkeligt'
 i "Lige nu laver vi matematik", får du et sandt udsagn"
- Men denne opskrift refererer jo ikke til sig selv!

Lad Q være udsagnet:

Hvis du erstatter 'x' i "Du kan ikke bevise x" med P, så kan du ikke bevise det,

hvor P her er en variabel i Q

Lad Q være udsagnet:

Hvis du erstatter 'x' i "Du kan ikke bevise x" med P, så kan du ikke bevise det,

hvor P her er en variabel i Q

Hvad hvis vi sætter P til at være Q?

Lad Q være udsagnet:

Hvis du erstatter 'x' i "Du kan ikke bevise x" med P, så kan du ikke bevise det.

hvor P her er en variabel i Q

- Hvad hvis vi sætter P til at være Q?
- Lad G være udsagnet:

Hvis du erstatter 'P' i Q med Q, så kan du ikke bevise det

• Lad Q være udsagnet:

Hvis du erstatter 'x' i "Du kan ikke bevise x" med P, så kan du ikke bevise det.

hvor P her er en variabel i Q

- Hvad hvis vi sætter P til at være Q?
- Lad G være udsagnet:
 Hvis du erstatter 'P' i Q med Q, så kan du ikke bevise det
- Hvorfor virker G?

• Er det her matematik?

• Er det her matematik? Niks!

- Er det her matematik? Niks!
- Vi vil gerne gøre det til matematik

- Er det her matematik? Niks!
- Vi vil gerne gøre det til matematik
- Idé: Lav udsagn om til tal

Sprog	Tal
" og"	1
" eller"	2
"hvis så"	3
"det gælder ikke at"	4
"der eksisterer"	5
" er lig med"	6
"x"	7
"y"	8
"z"	9
:	:

ullet Vi vil også gerne knytte tal til *udsagn*, som fx "x er lig med x"

- Vi vil også gerne knytte tal til udsagn, som fx "x er lig med x"
- Numerér primtallene som p_1, p_2, \dots

- Vi vil også gerne knytte tal til udsagn, som fx "x er lig med x"
- Numerér primtallene som p_1, p_2, \ldots
- Tag "x er lig med x", som svarer til tallene 7, 6 og 7

- Vi vil også gerne knytte tal til udsagn, som fx "x er lig med x"
- Numerér primtallene som p_1, p_2, \ldots
- Tag "x er lig med x", som svarer til tallene 7, 6 og 7
- Dette svarer til tallet $p_1^7 p_2^6 p_3^7$, som er $2^7 3^6 5^7 = 7.290.000.000$

- ullet Vi vil også gerne knytte tal til *udsagn*, som fx "x er lig med x"
- Numerér primtallene som p_1, p_2, \ldots
- Tag "x er lig med x", som svarer til tallene 7, 6 og 7
- Dette svarer til tallet $p_1^7 p_2^6 p_3^7$, som er $2^7 3^6 5^7 = 7.290.000.000$
- Skriv nu $\lceil x \rceil$ er lig med $x \rceil$ for tallet 7.290.000.000

• Husk på vores tidligere udsagn Q:

Hvis du erstatter 'x' i "Du kan ikke bevise x" med P, så kan du ikke bevise det

• Husk på vores tidligere udsagn Q:

Hvis du erstatter 'x' i "Du kan ikke bevise x" med P, så kan du ikke bevise det

Skriv p for tallet 「P¬

• Husk på vores tidligere udsagn Q:

Hvis du erstatter 'x' i "Du kan ikke bevise x" med P, så kan du ikke bevise det

- Skriv p for tallet \(\bigcap P \)
- Vi kan nu 'talificere' den til følgende formel Q:

Hvis du erstatter 'x' i udsagnet der svarer til tallet $^{\square}$ Du kan ikke bevise x^{\square} , med udsagnet der svarer til tallet p, så kan du ikke bevise det

- Husk på vores tidligere udsagn Q:
 - Hvis du erstatter 'x' i "Du kan ikke bevise x" med P, så kan du ikke bevise det
 - Skriv p for tallet 「P¬
- Vi kan nu 'talificere' den til følgende formel \hat{Q} :
 - Hvis du erstatter 'x' i udsagnet der svarer til tallet $^{\square}$ Du kan ikke bevise x^{\square} , med udsagnet der svarer til tallet p, så kan du ikke bevise det
 - Bemærk at \hat{Q} i princippet kun handler om tal!

• Husk på vores tidligere udsagn Q:

Hvis du erstatter 'x' i "Du kan ikke bevise x" med P, så kan du ikke bevise det

- Skriv p for tallet \(\bigcap P \)
- Vi kan nu 'talificere' den til følgende formel \hat{Q} :

Hvis du erstatter 'x' i udsagnet der svarer til tallet $^{\square}$ Du kan ikke bevise x^{\square} , med udsagnet der svarer til tallet p, så kan du ikke bevise det

- Bemærk at \hat{Q} i princippet kun handler om tal!
- Skriv q for tallet 「Q

 ¬

ullet Lad nu \hat{G} være udsagnet

Hvis du erstatter 'p' i udsagnet der svarer til tallet q med q, så kan du ikke bevise det

- ullet Lad nu \hat{G} være udsagnet
 - Hvis du erstatter 'p' i udsagnet der svarer til tallet q med q, så kan du ikke bevise det
 - Igen handler \hat{G} kun om tal

ullet Lad nu \hat{G} være udsagnet

Hvis du erstatter 'p' i udsagnet der svarer til tallet q med q, så kan du ikke bevise det

- Igen handler \hat{G} kun om tal
- Skriv g for tallet $\lceil \hat{G} \rceil$

ullet Lad nu \hat{G} være udsagnet

Hvis du erstatter 'p' i udsagnet der svarer til tallet q med q, så kan du ikke bevise det

- Igen handler \hat{G} kun om tal
- Skriv g for tallet $\lceil \hat{G} \rceil$
- Bemærk at vi før viste at

 $g = \lceil \mathsf{Udsagnet} \ \mathsf{der} \ \mathsf{svarer} \ \mathsf{til} \ \mathsf{tallet} \ g \ \mathsf{kan} \ \mathsf{ikke} \ \mathsf{bevises} \rceil$

- ullet Lad nu \hat{G} være udsagnet
 - Hvis du erstatter 'p' i udsagnet der svarer til tallet q med q, så kan du ikke bevise det
 - Igen handler \hat{G} kun om tal
 - Skriv g for tallet $\lceil \hat{G} \rceil$
- Bemærk at vi før viste at
 g = 「Udsagnet der svarer til tallet g kan ikke bevises」
- Vi har altså et matematisk udsagn, som siger at det ikke kan bevises!

- ullet Lad nu \hat{G} være udsagnet
 - Hvis du erstatter 'p' i udsagnet der svarer til tallet q med q, så kan du ikke bevise det
 - Igen handler \hat{G} kun om tal
 - Skriv g for tallet 「Ĝ¬
- Bemærk at vi før viste at
 g = 「Udsagnet der svarer til tallet g kan ikke bevises」
- Vi har altså et matematisk udsagn, som siger at det ikke kan bevises!
- Men nu vil \hat{G} præcis være et formelt matematisk udsagn der er sandt, men ubeviseligt

Ufuldstændighedssætningen

Sætning

Sålænge vores formelle matematiske system kan arbejde med tal, så vil der altid findes sande, men ubeviselige