LATEX Made Easy with Overleaf!

Brady Rippon

Columbia Biostatistics Computing Club

What is Overleaf?

Online resource for creating and maintaining LATEX documents with lots of cool features.

- Real-time updates for document editor
- Dropbox capabilities
- Collaboration
- Github compatibility (new)

Why Use Overleaf?

- Organized and user-friendly.
- Microsoft Word is easier, so it's better, right?
 - No.

Microsoft Word Version (very lame)

$$\lim \left[1 + \frac{a}{n} + o(n^{-1})\right]^n = e^a$$

ATFX Version (very awesome!)

$$\lim_{n \to \infty} \left[1 + \frac{a}{n} + o\left(n^{-1}\right) \right]^n = e^a$$

How to Use Overleaf

■ Find a template you like → "Open a Copy"/"Rename"

Collaboration with Github (Step #1)

- Use "Clone With Git" to get Overleaf Tex URL.
- Create repository from clone in Git client (SourceTree).

Collaboration with Github (Step #2)

Create new repository directly on GitHub.

Collaboration with Github (Step #3)

In the Settings tab of your client (SourceTree) repository, add a new repository.

Collaboration with Github (Step #4)

Set new repository path as URL for GitHub repository.

Collaboration with GitHub

Workflow

- Edit document directly on Overleaf.
- Pull changes from Overleaf repository from Git client (SourceTree).
- Push changes to shared GitHub repository.
- Pull collaborator changes from GitHub repository.

Note: Collaborators can now use local versions of LATEX while you work online with Overleaf!

Motivation

Some Cool Examples of LATEX!

Colored Diagrams

Recall the equation for Bayes' Theorem:

Fancy 2x2 Tables

A new study is investigating the effects of smoking on developing a cold. Researchers collect an appropriate sample and collected the following data:

	EXPO		
DISEASE	Smoker (+)	Smoker (-)	
Cold	587	402	989
No Cold	2,743	2,578	5,321
	3,330	2,980	6,310

Diagrams (One Sample Testing)

- The research is only testing **one sample** of subjects
- What data do we have?

- Look up appropriate probabilities in z-table or t-table.
- Make a conclusion to your test that matches your results!

Diagrams (Two Sample Testing)

The research is comparing two samples of subjects.

■ What data do we have? $May only know s_1, s_2$ *Test:* $\sigma_1 = \sigma_2$ *Test:* $\sigma_1 \neq \sigma_2$ We know σ_1 and σ_2 $\int z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \qquad t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2} \qquad t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim t_{d''}$

■ Note:
$$s_p = \sqrt{\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}}$$
 and d'' is known

ANOVA (3+ Sample Testing)

Source	df	SS	MS
Treatment	k-1	$\sum_{i=1}^{k} n_i (\overline{x}_i - \overline{x})^2$	$SST \; / \; (k-1)$
Error	N-k	$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_i)^2$	SSE $/$ $(N-k)$
Total	N-1	$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \overline{x})^2$	

$$F = \frac{\text{MST}}{\text{MSE}} \sim F_{k-1,N-k} \text{ under H}_0$$

ANOVA (3+ Sample Testing)

Relationship of ANOVA table entries

Source	df	SS	MS
Treatment	A	В	B / A
Error	C	D	D / C
Total	A + C	B+D	

Source	df	SS	MS
Treatment	A	В	B / A
Error	C	D	D / C
Total	A + C	B+D	

But Wait, There's More!

You can make presentations in LATEX too! (like this one!)

But Wait, There's More (Again)!

LATEX Cheat Sheet

- https://www.overleaf.com/11628447zbwvtxvqbxbr# /43996246/
 - (Lots of tips and tricks for writing LATEX documents)

LATEX Presentation Materials

- https://www.overleaf.com/11628482ncxpqhdpbjnr# /43996388/
 - (Coding for this presentation)
- https://www.sharelatex.com/learn/Beamer
 - (Beamer features, slide themes, color themes, etc.)