联考废案题解

Xun_Xiaoyao

2023年10月10日

1 树状数组 (fenwick)

一道很有意思的签到题!

1.1 测试点 1~8

使用题目给出的函数进行 1 操作,二操作暴力查区间和,时间复杂度 O(Qn)。

1.2 测试点 9~14

使用线段树或者树状数组维护区间和,由于一次 1操作有 $O(\log n)$ 次修改,时间复杂度 $O(Q\log^2 n)$ 。

1.3 测试点 15~20

考虑利用要树状数组的结构,考虑使用树状数组维护前缀和,每一次 1 操作只会修改 $O(\log n)$ 个数,单次修改可以做到 $O(\log n)$,时间复杂度 $O(Q\log n)$ 。

2 子序列 (seq)

sto moonstaring orz

测试点 $1 \sim 4$ 2.1

枚举所有的子序列,时间复杂度 $O(2^n \operatorname{poly}(n))$

测试点 $5 \sim 8$ 2.2

考虑枚举 A 有多少个子序列恰好在第 i 位比 B 小,前若干位匹配可以贪心,然后枚举 A 的第 i 位是什么数,使用 DP 求出在后面有多少本质不同的子序列,做到 O(poly(n))

2.3 测试点 9~20

考虑优化上述做法,记 $f_{i,j}$ 表示在 A 的 [i,n] 这段后缀中,以 j 为第一个数的子序列的数量,

不难得到转移
$$f_{i,j} = \begin{cases} \sum_{k=1}^{V} f_{i+1,k} + 1 & , j = a_i \\ f_{i+1,j} & , otherwise \end{cases}$$

不难得到转移 $f_{i,j} = \begin{cases} \sum\limits_{k=1}^V f_{i+1,k} + 1 &, j = a_i \\ f_{i+1,j} &, otherwise \end{cases}$ 考虑在 A 中贪心匹配 B (每次取最前的一位),假设匹配的位置分别是 $c_1, c_2 \dots c_m$,则最终答 案按为 $\sum_{i=1}^{m} \sum_{i=1}^{b_i-1} f_{c_i,j} + 1$,发现这个式子可以用树状数组优化,时间复杂度 $O(n \log n)$ 。

新建文件夹 (build)

sto Fyfive, Conviction orz 把 n, m, q 视为同阶。

3.1 测试点 $1 \sim 4$

暴力维护一个 $n \times m$ 的矩阵即可,暴力求值,时间复杂度 O(qnm)。

3.2 测试点 5~10

维护二维前缀和,时间复杂度 O(nm+q)。

3.3 正解 1

二维矩阵和板子题。

使用线段树维护区间历史版本和。

具体的你可以实时维护一个一次函数 kt+b 表示当前值为 k, 当前时刻 t_0 的历史版本和为 $kt_0 + b_{\circ}$

我们发现,如果这个值没有被修改,历史版本和可以直接顺延为 $k(t_0+1)+b$,也就是这个一 次函数。

否则,对这些一次函数维护懒标记修改即可。

可以做到 $O((m+q)\log n)$ 。

3.4 正解 2

 $\left| \begin{array}{c} nw \end{array} \right|$,表示历史版本区间和 ans,当前值区间和 nw 以及区间长度 线段树的节点维护向量

 len_{\circ}

则一次区间修改就是给这个区间右乘一个矩阵 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & x & 1 \end{bmatrix}$ 。记录一次历史版本是右乘一个矩阵 $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 。时间复杂度 $O(3^3(m+a)\log x)$

时间复杂度 $O(3^3(m+q)\log n)$, 常数略大。

发现只有下三角的6个数可能不为0,只要维护这6个数即可,常数会小一点。

4 树题 (tree)

sto Ustinian 505 orz

4.1 测试点 1~4

对于每个 u 暴力枚举 $v \in sub_u$,然后 O(n) 计算答案。时间复杂度 $O(n^3)$,期望得分 20 分。

4.2 测试点 5~6 和 11~14

考虑枚举 v,在 T_2 上暴力跳祖先维护第二类贡献,同时使用 $O(1)/O(\log n)$ 求 lca 求两点间路 径长度,更新祖先的答案。

时间复杂度 $O(\sum dep)/O(\sum dep \log n)$, 期望得分 50 分。

4.3 测试点 7~10

第一类贡献 dis(u,v) 是序列上的,直接上分治。

当前解决 [l,r], 要计算 [l,mid], [mid+1,r] 相互的贡献。设 w_i 为 i 到 mid 的距离。

需要最小化 $w_i + w_j + \sum A_{P(j \to i)_k} \times (k-1)$ 。

后半部分贡献不好看,转换一下:

设

$$C_i = \sum_{j \in sub_i} A_j, D_i = \sum_{j \in sub_i} dep_j \times A_j$$

那么

$$\sum A_{P(j\to i)_k} \times (k-1) = D_{g_i} - dep_j \times C_{g_i} + dep_v \times C_j - D_j$$

原式变为 $(w_i + D_{g_i}) - dep_j \times C_{g_i} + (dep_j \times C_j - D_j + w_j)$ 。

对于每个 i, $w_i + D_{g_i}$ 是确定的,需要最小化后面的乘积式,同时需要满足 i,j 分属 mid 两侧且 $j \in sub_i$ 。

- $j \in sub_i$, 将 [l,r] 内的点拉出来建**虚树**。
- 最小化乘积式, 我会李超树合并。
- i, j 分属 mid 两侧,每个点维护分别维护 $\leq mid$ 和 > mid 的李超树。

时间复杂度 $O(n \log^2 n)$, 拼上暴力后期望得分 70 分。

4.4 测试点 15~20

将序列分治换成边分治即可,其余方法不变。

为什么不用**点分治**?因为每个分治中心的不同子树可能很多,那么每个点需要维护子树个数个李超树,时间复杂度就错了。(如果你会用点分治解决,那就太厉害了!)

时间复杂度 $O(n \log^2 n)$, 期望得分 100 分。