파이썬기반기계학습

제주도 도로 교통량 예측 AI 경진대회

2022.10.03 ~ 2022.11.14

목차 contents

- I.INTRO
- II. EDA
- III. FEATURE ENGINEERING
- IV. MODELING
- V. OUTRO

INTRO

[DACON]

한국판 캐글로 여러 기업들이 주최하며 보통 입상 시 상금과 채용 연계가 이루어짐

진행중인 대회 >

오직 데이콘에서만 참여할 수 있어요

2022 Samsung AI Challenge (Ma···

2022.08.08						
알고리즘	정형	회귀	물성	RMSE		

2022 Samsung AI Challenge (3D···

2022.08	연습				
악고리즘	CV	회귀	SEM	RMSE	

1 2 3 전체보기

월간 데이콘 숫자 3D 이미지 분류 AI …

2022.08.01					
알고리즘	CV	분류	3D	Accuracy	

청경채 성장 예측 AI 경진대회

2022.08.17						
알고리즘	정형	생육	회귀	RMSE		

자율주행 센서의 안테나 성능 예측 AI ···

2022.08	.01			연습
알고리즘	정형	회귀	자율주행	NRMSE

2022 인하 인공지능 챌린지 <본 대회>

2022.07.29					
알고리즘	정형	회귀	에너지	자체검증	

INTRO

첫 번째 데이콘 참여

- LG AI 주최
- 자율주행 센서의 안테나 성능 예측 AI 경진대회
- 1800여명 참가
- Public 1등
- Private 1등
- 최종 x

두 번째 데이콘 참여

- 제주도 주최
- 제주도 도로 교통량 예측 AI 경진대회
- 1400여명 참가
- Public 2등
- private 4등
- 최종 3등

INTRO

[배경]

제주도내 주민등록인구는 2022년 기준 약 68만명으로, 연평균 1.3%정도 매년 증가하고 있습니다. 또한 외국인과 관광객까지 고려하면 전체 상주인구는 90만명을 넘을 것으로 추정되며, 제주도민 증가와 외국인의 증가로 현재 제주도의 교통체증이 심각한 문제로 떠오르고 있습니다.

[주제]

제주도 도로 교통량 예측 AI 알고리즘 개발

[설명]

제주도의 교통 정보로부터 도로 교통량 회귀 예측

[제공 데이터]

- Train.csv 2022 년 8월 이전 데이터만 존재하며 날짜, 시간, 교통 및 도로구간 등의 정보와 도로의 차량 평균 속도(target)정보 포함
- Test.csv 2022년 8월 데이터만 존재하며 날짜, 시간, 교통 및 도로구간 등의 정보 포함

[외부 데이터] * 2022년 8월 이전에 수집 가능한 데이터만을 사용

- 국가공휴일.cvs
 2018 ~ 2023 년의 국가 공휴일
- 제주도장소데이터_20151231.csv (출처: 공공데이터포털) 2015년 제주도 장소데이터로 공항, 항만, 아파트, 마트, 관광지 등의 위치 정보 포함

1. EDA(일부)

- maximum_speed_limit 값이 40인 경우를 제외하고는 속도제한이 증가함에 따라 target 값도 증가
- 시간에 따른 target값 차이
- 요일에 따른 target값 차이

2. 상관관계

[Target 변수에 대한 상관관계가 가장 높은 변수]

- Maximum_speed_limit 관련 파생변수
- 관광지 카운트 변수
- 위도경도 관련 파생변수
- 시간 관련 파생변수

1. DATE 관련 파생변수 생성

base_date	day_of_week	base_hour
20220623	목	17
20220728	목	21
20211010	일	7
20220311	금	13
20211005	화	8
20210913	월	7
20220106	목	0
20211213	월	16
20211004	월	15
20211208	수	2
20220623	목	11
20220724	일	2
20211229	수	10
20220507	토	7
20220203	목	16
20220501	일	16
20220701	금	22
20211001	금	17
20220319	토	16
20220210	목	12
20220701	금	21
20220119	수	0

1. base_date

-> 년/월/일

2. day_of_week

-> 월~일

3. base_hour

-> 0~23시

1. DATE 관련 파생변수 생성

base_date
20220623
20220728
20212020
20220311
20211005

season	Day_of_week	sin_time	cos_time	group_time	month	week
3	1	-0.9659	-2.588e-01	2	6	0
3	1	-0.70710	7.071e-01	3	7	0
0	4	0.9659	-2.588e-01	1	10	1
2	0	-0.2588	-9.659e-01	2	3	0
0	6	0.8660	-5.000e-01	1	10	0
•••					•••	•••

- base_date 에서 Year, month, week, weekdays 파생변수 생성
- 시간과 관련한 피쳐들이 inherently cyclical 하다는 것을 활용하기 위한 sin/cos time 변환
- 새벽, 오전, 오후, 밤 으로 time 그룹핑
- Month 피쳐로 부터 방학시즌(7, 8,12, 1,2월)에 대한 파생변수 생성
- Season 변수 생성

2. 좌표 관련 파생변수

start_latitude	start_longitude	end_latitude	end_longitude
33.42774727	126.662612	33.42774877	126.662335
33.50073043	126.5291068	33.5048113	126.5262401
33.2791451	126.3685977	33.2800721	126.3621475
33.24608087	126.5672043	33.2455654	126.5662282
33.46221435	126.3265511	33.46267677	126.3301518
33.2499487	126.5056637	33.25218326	126.5060688
33.41841197	126.268029	33.41417501	126.2693776
33.48239171	126.4416217	33.48233227	126.4422658
33.25307382	126.5063927	33.25218326	126.5060688
33.36171667	126.7669579	33.36433621	126.7694089
33.4194234	126.4914948	33.42267243	126.4929348
33.24850523	126.5697971	33.24863305	126.5677662
33.48570693	126.6041622	33.48005319	126.6254858
33.26411158	126.5540433	33.26368492	126.5509785
33.31691324	126.6246344	33.31706538	126.6238672
33.47800071	126.5438429	33.47744524	126.5427027
33.4858849	126.4899786	33.48597496	126.4864085
33.45242292	126.3826241	33.45273432	126.3853366
33.46222797	126.4236391	33.45796664	126.4100768
33.46531818	126.9086122	33.47037218	126.9027929
33.50010333	126.5128511	33.50013221	126.512046
33.27816804	126.6676508	33.27988259	126.6859543
33.51846796	126.6456845	33.52766134	126.6448212
33.25194718	126.5108937	33.25104534	126.5105738

도로의 시작 지점 위도, 경도

도로의 끝 지점 위도, 경도

2. 좌표 관련 파생변수

Location Cluster	distance	jeju_dist	Seogwi_dist
3	0.025711	14.555762	21.516988
2	0.525891	0.737266	28.052074
1	0.608399	29.022186	18.626831
0	0.107352	28.436535	1.110065
1	0.337949	19.092174	31.524609

- 관광지와 가까울수록 교통량이 많을 것/인접한 도로들 사이 교통량이 비슷할 것이란 가설
- 제주시, 한라산, 성산일출봉 등 주요 관광지의 거리 계산 변수 생성
- 출발지와 도착지 사이 거리(harversine) 계산한 변수 생성
- 좌표 기준 4개 구역으로 clustering 한 변수 생성

3. 핵심피처 관련 파생변수

base_hour	road_name	maximum_speed_limit	start_node_name	end_node_name	target
17	지방도1112호선	60	제3교래교	제3교래교	52
21	일반국도11호선	60	광양사거리	KAL사거리	30
7	일반국도16호선	80	창고천교	상창육교	61
13	태평로	50	남양리조트	서현주택	20
8	일반국도12호선	80	애월샷시	애월입구	38
7	경찰로	60	시청입구2	서호2차현대맨션203동	28
0	-	60	가동	나동	39
16	외도천교	60	외도천교	외도천교	28
15	경찰로	60	신성교회	서호2차현대맨션203등	14
2	일반국도16호선	50	양수장	제2가시교	52
11	일반국도99호선	60	노루생이	노루생이삼거리	47
2	중정로	50	선경오피스텔	정방수퍼	40
10	번영로	70	명도암교차로	버으내교차로	60
7	일반국도16호선	60	서홍교	서흥동사무소	28
16	-	60	송목교	송목교	58
16	일반국도16호선	30	아라초등학교앞	제2아라교	32
22	연동로	50	그랜드호텔사거	흘천5교	35
17	중산간서로	70	중산간서로6091	장전1교차로	50
16	중산간서로	70	광령3교차로	고성교차로	56
12	일반국도12호선	80	오조한도교입구	송내교차로	46
21	일반국도12호선	70	종합운동장입구사거	동산교	21
0	일반국도12호선	80	동부장의운수사	농업용관정	70
23	지방도1118호선	60	양천동	뱅듸왓교차로	37
7	새서귀로	60	한솔고기국수	삼주연립101동	33

타겟값(속도) 이용한 파생변수 생성

3. 핵심피처 관련 파생변수

start_speed	end_speed	section_speed	start_speed_time	End_speed_time	Section_speed_time
48.697943	50.298219	49.105982	46.450450	48.659670	45.269144
26.400712	26.400712	47.203323	26.562992	26.562992	35.375781
59.101720	65.118140	56.858438	60.135135	66.588964	39.794253
23.755158	25.445418	25.030004	20.789883	23.299611	22.146268
39.873670	39.873670	51.188650	40.518182	49.972727	41.931997

- 시작점, 끝점, 도로명에 따른 train data 의 target 변수의 평균값을 이용한 변수 생성
 - 1) maximum speed limit 값에 따른 target 평균 > start_speed, end_speed, section_speed
 - 2) base hour 값에 따른 target 평균 > start_speed_time, end_speed_time, section_speed_time

4. 관광지 외부데이터

ID	X 축 값	Y축값	구분	장소명	소재지	데이터기준일자
3	126.5688	33.23655	교통시설	동방파제	제주특별자치도 서귀포시 서귀동 758-2	2015-12-31
4	126.5626	33.23507	지명관련	새섬	제주특별자치도서귀포시 서귀동산 3-3	2015-12-31
5	126.5997	33.23031	지명관련	섶섬	제주특별자치도서귀포시 보목동산 1	2015-12-31
		•••		•••		

end_ latitude	end_ longitude	Tour cnt
33.427	126.662	42
33.504	126.526	690
33.280	126.362	46
33.245	126.566	410
33.462	126.330	76

제주도장소(POI)데이터 20151231.CSV

- 관광지 주변에 교통량이 많을 것이라는 가설
- 제주도 장소 외부데이터에서 구분이 관광,문화,레저,공원 인 데이터 추출
- 좌표를 이용하여 도착지 반경 2km 이내 지점인 경우를 카운트 하여 tour_cnt 변수 생성

5. 공휴일 외부데이터

Post_holiday	Pre_holiday	holiday	
0	0	0	
0	0	0	
1	1	0	
0	0	0	
0	1	0	

- 공휴일에는 교통혼잡도가 달라질 것이라는 가설
- 대체공휴일을 고려하여 공휴일 1일 전, 1일 후 또한 포함하여 파생변수 생성

5. 최종데이터

Day_of_week	sin_time	cos_time	•••	start_speed_ time	End_speed_ time	Section_speed_ time
1	-0.9659	-2.588e-01		46.450450	48.659670	45.269144
1	-0.70710	7.071e-01		26.562992	26.562992	35.375781
4	0.9659	-2.588e-01		60.135135	66.588964	39.794253
0	-0.2588	-9.659e-01		20.789883	23.299611	22.146268
6	0.8660	-5.000e-01		40.518182	49.972727	41.931997
		•••		•••	•••	

• Feature Engineering 을 통해 총 48 개의 피쳐 생성

1. Basyesian Optimization (Optuna)

ParBayesianOptimization in Action (Round 1)


```
def objective_xgb(trial: Trial, x, y):
    params = {
        "n_estimators": trial.suggest_int('n_estimators', 500, 5000),
        'max_depth': trial.suggest_int('max_depth', 8, 16),
        'min_child_weight': trial.suggest_int('min_child_weight', 1, 300),
        'gamma': trial.suggest_int('gamma', 1, 3),
        'learning_rate': trial.suggest_categorical('learning_rate', [0.008,0.01,0.012,0.014,
        "colsample_bytree": trial.suggest_float("colsample_bytree", 0.5, 1.0),
        'lambda': trial.suggest_loguniform('lambda', 1e-3, 10.0),
        'alpha': trial.suggest_loguniform('alpha', 1e-3, 10.0),
        'subsample': trial.suggest_categorical('subsample', [0.6, 0.7, 0.8, 1.0]),
        'random_state': 42
}
```

• 베이지안 최적화 라이브러리인 Optuna를 이용, 모델 별 최적의 하이퍼파라미터 획득

2. 모델 실험 리스트

Models	CV MAE
Model Stacking (lgbm+xgb+hist+cat)	2.77
XGBoost	2.94
CatBoost	2.95
histGradientboost Regressor	3.03
Gradientboost Regressor	3.11
LightGBM	3.26

"최종모델 XGBoost 선정"

- 각종 모델 테스트 결과 및 추론속도를 고려, 최종모델 XGBoost 선정
- 단일모델을 사용함으로써 실제 산업에 적용시 빠른 평균속력 추론이 가능

MODELING

3. Post Processing (정수형 변환)

	-	50samı	ole pred value	e round M	AE: 2.24	
7	70 -	y_pred y_target			A	
6	50 -	1	1 1			
alne	50 -	./ //	1 1	Λ		
target value	10 -	PINI	1/1/1	, / \		1
12	30 -	A MV	A A	M/M	N	V
2	20 -	1		'\/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
1	10 -			M	1	
		0 10	20 sample n	30 umber	40	50

반올림 CV MAE

올림 CV MAE

형변환	CV score	
원본	2.9848	
반올림	2.9731	
올림	2.9795	
내림	3.0369	

"round값 변환선정"

- trainset의 타겟값이 정수형이므로 형변환시 MAE값 측정 테스트
- 샘플 뿐 아니라 전체데이터셋 Fold별 CV결과를 반올림, MAE 측정 시 성능향상을 확인

V OUTRO

1. Propose

[지도 API 활용]

- 각도로 별 일정 범위 내의 관광지 수 피처 생성
- Data-Leakage로 인해 사용하지 않았으나 성능향상 확인
- 실제 미래 예측 모델에서는 사용이 가능할 것

[날씨 예보 데이터]

- 날씨에 따른 Target값 영향이 존재함
- Data-Leakage로 인해 날씨 데이터는 사용 X
- 실제 미래 예측 모델에서는 사용이 가능할 것

[Stacking]

• 예측 성능 향상 가능

Thank you

