МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.4.2

Закон Кюри-Вейсса

Выполнил:

Гисич Арсений

Б03-102

1 Аннотация

В данной работе проводится исследование зависимости магнитной восприимчивости гадолиния, который является ферромагнетиком, от температуры. Исследование приведено для температур от 14 до 40 °C. На основании этой зависимости вычисляется точка Кюри гадолиния.

2 Теоретические сведения

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле ориентирует магнитные моменты, которые в отсутствие поля располагались в пространстве хаотическим образом. Однако при $T \to 0$ тепловое движение всё меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках – под влиянием обменных сил – это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри Θ . Оказывается, что у ферромагнетиков магнитная восприимчивость должна удовлетворять закону Кюри-Вейсса:

$$\chi \propto \frac{1}{T - \Theta_p},$$

где Θ_p — температура, близкая к температуре Кюри, так как при $T \approx \Theta$ формула (2) недостаточна точна.

3 Методика измерений

Экспериментальная установка. Схема установки для проверки Закона Кюри-Вейсса показана на рис. 1. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC -автогенератора.

Рис. 1: Схема экспериментальной установки

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика (~ 50 кГц), поэтому для уменьшения вихревых токов образец изготовлен из мелких кусочков размером $\sim 0,5$ мм. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными

частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближённой оценки температуры. Температура образца регулируется с помощью термостата 5.

Магнитная восприимчивость образца χ определяется по изменению самоиндукции катушки. Обозначив через L самоиндукцию катушки с образцом и через L_0 – её самоиндукцию в отсутствие образца, получим

$$(L-L_0)\propto \chi$$
.

При изменении самоиндукции образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC},$$

где C – ёмкость контура автогенератора. Период колебаний в отсутствие образца определяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C}.$$

Итак, закон Кюри-Вейсса справедлив, если выполнено соотношение:

$$\frac{1}{\chi} \propto (T - \Theta_p) \propto \frac{1}{\tau^2 - \tau_0^2}.$$

Измерения проводятся в интервале температур от 14 °C до 40 °C.

4 Используемое оборудование

- 1. катушка самоиндукции с образцом из гадолиния;
- 2. термостат;
- 3. частотомер;
- 4. цифровой вольтметр;
- 5. LC-автогенератор;
- 6. термопара медь-константан;

5 Результаты измерений и обработка данных

6 Обсуждение результатов и выводы

В данной работе был исследован спектральный состав периодических электрических сигналов.

При исследовании спектра периодической последовательности прямоугольных импульсов при фиксированных параметрах ν_{noem} и τ были измерены амплитуды и частоты первых 6 гармоник (таб. 1). Измеренные значения соответствуют рассчитанным теоретически. Также была измерена зависимость ширины спектра $\Delta\nu$ от времени импульса τ . Из полученной зависимости (рис. ??) следует:

$$\Delta \nu \cdot \tau \simeq 1,01 \pm 0,01,$$

n	$\nu_m, \kappa \Gamma u$	a_m	$Hop_{\mathcal{M}}(a_m)$	$\nu_{uзм}, \kappa \Gamma u$	$\delta_{ u_{usm}}, \kappa \Gamma u_{\!\scriptscriptstyle j}$	$a_{uзм}, MB$	$\delta_{a_{usm}}, MB$	$Hop_{\mathcal{M}}(a_{u_{\mathcal{S}_{\mathcal{M}}}})$
1	1	144,51	8,81	1,00	0,02	820	2	8,54
2	2	128,76	7,85	2,00	0,02	736	2	7,67
3	3	104,80	6,39	3,00	0,02	600	2	6,25
4	4	75,68	4,62	4,00	0,02	432	2	4,50
5	5	45,02	2,75	5,00	0,02	264	2	2,75
6	6	16,39	1	6,00	0,02	96	2	1

Таблица 1: Результаты теоретического расчёта и измерений амплитуд и частот первых 6 гармоник спектра

что соответствует соотношению неопределённостей в рамках погрешности. Основной вклад в погрешность вносит определение коэффициента зависимости, так как благодаря использованию цифровых приборов другие источники погрешности отсутствуют или их влияние несущественно.

При исследовании спектра периодической последовательности цугов была измерена зависимость расстояния $\delta\nu$ между соседними спектральными компонентами сигнала от периода T повторения импульсов. Из полученной зависимости (рис. \ref{pull}) следует:

$$\delta\nu \cdot \tau \simeq 0.95 \pm 0.01$$
,

что близко к соотношению неопределённостей. Здесь основной вклад в погрешность также вносит определение коэффициента зависимости.

При исследовании спектра амплитудно-модулированного сигнала была измерена зависимость отношения $a_{6o\kappa}/a_{ocn}$ амплитуд боковой и основной спектральных линий от глубины модуляции m. Из полученной зависимости (рис. ??) следует:

$$\frac{a_{\textit{bor}}}{a_{\textit{och}}} = 0,510 \pm 0,004 \cdot m,$$

что соответствует теоретической зависимости $\frac{a_{\textit{бок}}}{a_{\textit{ocn}}} = \frac{m}{2}$. Аналогично здесь основной вклад в погрешность вносит определение коэффициента зависимости.

Также в данной работе был изучен спектр сигнала, модулированного по фазе. Спектры сигналов при различном максимальном отклонении φ_m приведены на рис. ??-??.