

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

t s2/9/all

2/9/1
DIALOG(R) File 351:Derwent WPI
(c) 2001 Derwent Info Ltd. All rts. reserv.

003805630
WPI Acc No: 1983-801872/198344
XRPX Acc No: N83-192746

Determining value of impedance of measurement object - by applying successively low and high direct voltages and evaluating voltmeter readings

Patent Assignee: SIEMENS AG (SIEI)

Inventor: SCHWARZ C

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
DE 3213866	A	19831027				198344 B

Priority Applications (No Type Date): DE 3213866 A 19820415; DE 47862 A 19820415

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
DE 3213866	A	9		

Abstract (Basic): DE 3213866 A*

The process is for determining the impedance of an object with the aid of a measurement voltage, where an interference direct voltage is present in the object, are designed to provide greater accuracy in measurement than the main patent, partic. for values in the lower range. They are applicable partic. in measuring telephone cables. The process provides for the measurement circuit to have two sources of direct voltage (U01,U02) for measuring, which can be connected selectively through a switch (SL) to the object of measurement (MO). The voltages (Um1,Um2,Um3) are then determined at the object and the impedance (Rx) of the object is calculated in accordance with a given equation.

The circuit used to effect the process is a component of a measurement instrument (MG), which is connected to the object (MO) through two terminals (K1,K2). It comprises, in addition to the direct voltage sources and the switch, a voltmeter (UM) and a connected evaluation circuit (AW) to determine the value of the impedance of the object.

1/2

Title Terms: DETERMINE; VALUE; IMPEDANCE; MEASURE; OBJECT; APPLY; SUCCESSION; LOW; HIGH; DIRECT; VOLTAGE; EVALUATE; VOLTMETER; READ

Derwent Class: S01; W02

International Patent Class (Additional): G01R-027/02

File Segment: EPI

Manual Codes (EPI/S-X): S01-D05; S01-H02; W02-C01D

?

THIS PAGE BLANK (USPTO)

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(11) DE 32 13 866 A1

(51) Int. Cl. 3:
G 01 R 27/02

DE 32 13 866 A1

(21) Aktenzeichen: P 32 13 866.0
(22) Anmeldetag: 15. 4. 82
(23) Offenlegungstag: 27. 10. 83

(71) Anmelder:
Siemens AG, 1000 Berlin und 8000 München, DE

(61) Zusatz zu: P 30 47 862.7
(72) Erfinder:
Schwarz, Christian, 8000 München, DE

(54) Verfahren und Schaltungsanordnung zur Bestimmung des Wertes des ohmschen Widerstandes eines Meßobjekts

Bei einem Verfahren zur Bestimmung des Wertes des ohmschen Widerstandes eines Meßobjekts, an dem Störspannungen anliegen, werden nacheinander eine Meßgleichspannung (U_{o1}) mit niedrigem und eine Meßgleichspannung (U_{o2}) mit höherem Spannungswert an das Meßobjekt ange schaltet. Durch Messung und Auswertung der gemessenen Spannungen (U_{m1} , U_{m3}) mit einem Spannungsmesser (UM) und einer Auswerteschaltung (AW) werden bei Gewährleistung einer hohen Meßgenauigkeit die Einflüsse der Störspannungen eliminiert. Die Erfindung ist vor allem bei Messungen an Fernsprechleitungen anwendbar. (32 13 866)

FIG 1

DE 32 13 866 A1

Patentansprüche

1. Verfahren zur Bestimmung des Wertes des ohmschen Widerstandes eines Meßobjektes unter Verwendung einer Meßspannung, wobei zusätzlich am Meßobjekt eine Stör-Gleichspannung anliegt, dadurch gekennzeichnet, daß die Meßschaltung zwei verschiedenen großen Meßgleichspannungsquellen (U_{o1} , U_{o2}) aufweist, die über einen Schalter (SL) wahlweise an das Meßobjekt (MO) anschaltbar sind, daß dabei die jeweiligen Spannungen (U_{m1} , U_{m2} , U_{m3}) am Meßobjekt (MO) bestimmt werden und daraus der ohmsche Widerstand R_x des Meßobjektes (MO) nach der Beziehung

$$15 \quad R_x = \frac{R_v \cdot (U_{m3} - U_{m1})}{U_{o2} - U_{o1} - (U_{m3} - U_{m1})} - R_m$$

bestimmt wird, wobei

20 R_m der vorgegebene Innenwiderstand eines Spannungsmessers (UM) zur Bestimmung der Spannung (U_{m1} , U_{m3}),
 R_v ein vorgegebener Vorschaltwiderstand für den Spannungsmesser (UM),
 U_{m1} der gemessene Spannungswert bei Anschaltung der Meßgleichspannungsquelle mit niedrigem Spannungswert (U_{o1}) und
 U_{m3} der gemessene stationäre Spannungswert nach Anschalten der Meßgleichspannungsquelle mit höherem Spannungswert (U_{o2}) ist.

30 2. Schaltungsanordnung zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, daß die Meßgleichspannungsquellen (U_{o1} , U_{o2}), der Schalter (SL), der Spannungsmesser (UM) und eine mit dem Spannungsmesser (UM) verbundene Auswerteschaltung (AW) zur Bestimmung des Wertes des ohmschen Widerstandes R_x des Meßobjekts (MO) Bestandteil eines Meßgerätes (MG) sind, das an das Meßobjekt (MO) über zwei Anschlußklemmen (K1, K2) anschaltbar ist.

SIEMENS AKTIENGESELLSCHAFT
Berlin und München

Unser Zeichen
VPA 82 P 4415 DE

- d -

5 Verfahren und Schaltungsanordnung zur Bestimmung des Wertes
des ohmschen Widerstandes eines Meßobjekts
Zusatz zu Patent (Patentanm. P 30 47 862.7)

Die Erfindung bezieht sich auf ein Verfahren zur Bestim-
10 mung des Wertes des ohmschen Widerstandes eines Meßobjektes
unter Verwendung einer Meßspannung, wobei zusätzlich am
Meßobjekt eine Stör-Gleichspannung anliegt.

Aus dem Hauptpatent ist bereits bekannt, bei einem Verfah-
15 ren dieser Art im Meßgerät zwei Meßwiderstände vorzusehen,
die wahlweise über einen Schalter derart an das Meßobjekt
angeschaltet werden, daß zwei verschiedene Spannungs- oder
Strommessungen durchführbar sind. Aus dem Differenzen-Quo-
tienten der gemessenen Strom- oder Spannungswerte läßt sich
20 der ohmsche Widerstand des Meßobjekts ermitteln.

Nachteilig ist bei diesem bekannten Verfahren, daß die Meß-
genauigkeit bei der Widerstandsmessung in einigen Fällen
unzureichend ist, nämlich dann, wenn die gemessenen Werte
25 im unteren Widerstandsbereich liegen. Eine große Genauig-
keit ist beim bekannten Verfahren in erster Linie dann er-
reichbar, wenn die gemessenen Werte in der Nähe des Gesamt-
Einkoppelwiderstandes des Meßgerätes - von den Anschluß-
klemmen aus betrachtet - liegen.

30 Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren
zur Messung der Impedanz eines Meßobjekts zu schaffen, bei
dem bei weitgehender Eliminierung von Störeinflüssen eine
große Genauigkeit bei der Messung gewährleistet ist.

Zur Lösung dieser Aufgabe weist bei einem Verfahren der eingangs angegebenen Art als weitere Ausbildung der in der Hauptanmeldung beschriebenen Erfindung die Meßschaltung zwei einen Zweipol bildende und verschieden große Meßgleichspannungsquellen auf, die über einen Schalter wahlweise an das Meßobjekt anschaltbar sind, daß dabei die jeweiligen Spannungen am Meßobjekt bestimmt werden und daraus der vom Zweipol aus gesehene ohmsche Widerstand des Meßobjektes nach der Beziehung

10

$$R_x = \frac{R_v \cdot (U_{m3} - U_{m1})}{U_{o2} - U_{o1} - (U_{m3} - U_{m1})} - R_m$$

bestimmt wird, wobei

15

R_m der vorgegebene Innenwiderstand eines Spannungsmessers zur Bestimmung der Spannung,
 R_v ein vorgegebener Vorschaltwiderstand für den Spannungsmesser,
 U_{m1} der gemessene Spannungswert bei Anschaltung der Meßgleichspannungsquelle mit niedrigem Spannungswert und
 U_{m3} der gemessene stationäre Spannungswert nach Anschalten der Meßgleichspannungsquelle mit höherem Spannungswert ist.

20

Durch das aufeinanderfolgende Anschalten der beiden Spannungsquellen, die eine äußerst genaue Spannungs- oder Strommessung am Meßobjekt gewährleisten, kann aus dem Differenzen-Quotienten der Meßergebnisse bei den aufeinanderfolgenden Messungen auf einfache Weise der Widerstandswert ermittelt werden, wobei der mittelbare absolute Fehler bei der Widerstandsmessung weitgehend unabhängig vom Wert des gemessenen Widerstandes R_x , insbesondere im unteren Widerstandsbereich, ist.

25

Die Erfindung betrifft weiterhin eine Schaltungsanordnung zur Durchführung des Verfahrens, welche dadurch gekenn-

zeichnet ist, daß die Meßgleichspannungsquellen, der Schalter, der Spannungsmesser und eine mit dem Spannungsmesser verbundene Auswerteschaltung zur Bestimmung des Wertes des ohmschen Widerstandes Rx des Meßobjekts Bestandteil eines
 5 Meßgerätes sind, das an das Meßobjekt über zwei Anschlußklemmen anschaltbar ist.

Die Erfindung wird anhand der Figur erläutert, wobei Figur 1 ein Prinzipschaltbild einer Meßschaltung zur Durchführung des erfindungsgemäßen Verfahrens und Figur 2 den Verlauf der durch Spannungsmessungen während der drei Meßphasen ermittelten Spannung am Meßobjekt darstellt.
 10

Beim Prinzipschaltbild nach der Figur 1 besteht das Meßobjekt MO aus einem Widerstand Rx (Ersatz-Wirkwiderstand) und einer gestrichelt dargestellten Kapazität Cx (Ersatz-Parallelkapazität) und zwei Störspannungsquellen USG (Ersatz-Störwechselspannungsquelle). Ein Meßgerät MG zur Bestimmung des Wertes des ohmschen Widerstandes Rx des Meßobjekts MO enthält zwei Meßgleichspannungsquellen Uo1 und Uo2, die wahlweise über einen Schalter SL und einen Vorschaltwiderstand Rv an die eine Anschlußklemme K1 des Meßgerätes MG und mit ihren anderen Anschlüsse direkt an die andere Anschlußklemme K2 des Meßgerätes MG angeschaltet werden können. Das Meßgerät MG enthält ferner einen Spannungsmesser UM, der zwischen die Klemmen K1 und K2 geschaltet ist; der Spannungsmesser UM weist einen vorgegebenen Innenwiderstand Rm auf. Die beiden Spannungsquellen Uo1 und Uo2 weisen unterschiedliche Spannungswerte auf, wobei eine Spannungsquelle auch die Spannung 0 Volt aufweisen kann. Vorteilhaft ist, wenn die Differenz der von den Meßgleichspannungsquellen Uo1 und Uo2 abgegebenen Spannungen relativ groß ist, was eine hohe Meßgenauigkeit gewährleistet.
 15
 20
 25
 30
 35

Zur Auswertung der mit dem Spannungsmesser UM gemessenen Werte unter Einbeziehung der vorgegebenen Werte der Widerstände Rv und Rm ist an den Spannungsmesser UM eine Aus-

werteschaltung AW angeschlossen, mit der der gesuchte ohm-sche Widerstandswert Rx ermittelt werden kann.

In der Figur 2 ist der Spannungsverlauf der mit dem Spannungsmesser UM gemessenen Spannung $U_m(t)$ über der Zeit t aufgetragen. Während der Zeit T_1 wird beispielsweise die Spannungsquelle U_{o1} über den Schalter SL an das Meßobjekt MO angelegt, so daß sich hier der konstante Spannungsverlauf U_{m1} am Spannungsmesser UM einstellt. Am Beginn der Zeitspanne T_2 wird der Schalter SL betätigt, so daß die Spannungsquelle U_{o2} mit dem größeren Spannungswert an das Meßobjekt MO angeschaltet wird. Bedingt durch die Kapazität C_x steigt die gemessene Spannung $U_m(t)$ am Spannungsmesser UM nach einer e-Funktion an und erreicht nach einer Zeitspanne T_2 ihren eingeschwungenen Zustand. Die Zeitspanne T_2 ist so gewählt, daß auf jeden Fall am Ende dieser Zeitspanne die Spannung am Spannungsmesser UM auf einen stationären Wert eingeschwungen ist. In der an die Zeitspanne T_2 sich anschließenden Zeitspanne T_3 wird die Messung des konstanten Spannungswertes, der sich ergibt, wenn die Spannungsquelle U_{o2} am Meßobjekt MO anliegt, vorgenommen.

Während der ersten Zeitspanne T_1 ergibt sich die Spannung U_{m1} am Meßgerät UM wie folgt:

25

$$U_{m1} = \frac{R_x \parallel R_m}{R_v + R_x \parallel R_m} \cdot U_{o1} + \frac{R_v \parallel R_m}{R_x + R_v \parallel R_m} \cdot USG \quad (1)$$

wobei die Terme $R_x \parallel R_m$ und $R_v \parallel R_m$ die aus der Parallelschaltung dieser Widerstände ermittelten Widerstandswerte darstellen. Die Spannungsmessung während der Zeitspanne T_2 - unmittelbar nach dem Umschaltzeitpunkt t_{s1} - verläuft nach folgender Gleichung:

$$35 \quad U_{m2} = \frac{1}{T_2} \cdot \left\{ \begin{array}{l} U_m(t) \cdot dt \\ \int_{t_{s1}}^{t_{s1} + T_2} \end{array} \right\} \quad (2)$$

Es ist darüber hinaus auch noch folgende Darstellung dieses Spannungsverlaufs unter Zuhilfenahme der in der Zeitspanne T3 nach dem Umschaltzeitpunkt t_{s2} gemessenen Spannung U_{m3} möglich:

5

$$U_m(t) = U_{m3} - (U_{m3} - U_{m1}) \cdot \exp\left(-\frac{(t - t_{s1})}{\tau}\right) \quad (3)$$

Die in der Gleichung (3) enthaltene Ladezeitkonstante τ ergibt sich aus:

10

$$\tau = R_p \cdot C_x \quad (4)$$

wobei der Widerstand R_p einen zur Ersatz-Parallelkapazität C_x parallel liegenden Ersatz-Wirkwiderstand darstellt,

15 der sich aus folgender Gleichung ergibt:

$$\frac{1}{R_p} = \frac{1}{R_x} + \frac{1}{R_m} + \frac{1}{R_v} \quad (5)$$

Der zeitliche Mittelwert U_{m2}' des Spannungsverlaufs U_{m2}

20 kann wie folgt ermittelt werden:

$$U_{m2} = \frac{1}{T_2} \cdot \int_{t_s}^{t_s + T_2} (U_{m3} - (U_{m3} - U_{m1}) \cdot \exp\left(-\frac{(t-t_s)}{\tau}\right)) \cdot dt \quad (6)$$

$$25 U_{m2} = U_{m3} + \frac{U_{m3} - U_{m1}}{T_2} \cdot \tau \cdot (\exp(-T_2/\tau) - 1) \quad (6')$$

Der während der Zeitspanne T3 gemessene Spannungsverlauf U_{m3} lässt sich in der gleichen Weise wie der Spannungsverlauf in der Zeitspanne T1 darstellen:

30

$$U_{m3} = \frac{R_x \parallel R_m}{R_v + R_x \parallel R_m} \cdot U_{o2} + \frac{R_v \parallel R_m}{R_x + R_v \parallel R_m} \cdot USG \quad (7)$$

Die Ermittlung des unbekannten ohmschen Widerstands R_x des Meßobjekts M0 kann mit den Ergebnissen der ersten und

35 der dritten Spannungsmessung (Zeitspanne T1 und Zeitspanne T2) durchgeführt werden. Hierbei wird durch Differenz-

- 6 - VPA 82 P 4415 DE

bildung der Spannungswerte der Einfluß der Störspannungsquelle eliminiert:

$$Um3 - Um1 = \frac{Rx // Rm}{Rv + Rx // Rm} \cdot (Uo2 - Uo1)$$

5

$$Rx // Rm = (Rv + Rx // Rm) \cdot \frac{Um3 - Um1}{Uo2 - Uo1}$$

$$Rx // Rm = Rv \cdot \frac{Um3 - Um1}{Uo2 - Uo1 - (Um3 - Um1)}$$

$$10 \quad 1/Rx = \frac{Uo2 - Uo1 - (Um3 - Um1)}{Rv \cdot (Um3 - Um1)} - 1/Rm \quad (8)$$

Die Durchführung der zur Lösung der Gleichung (8) notwendigen Rechenoperationen werden mit Hilfe der Auswerteschaltung AW durchgeführt, die an ihrem Eingang mit den vom 15 Spannungsmeßgerät UM ermittelten Werten beaufschlagt wird. Die Auswerteschaltung AW kann beispielsweise mit einem Mikrocomputer realisiert werden, der mit einem Rechenprogramm zur Lösung der Gleichung (8) versehen ist.

2 Patentansprüche

2 Figuren

-8.

Leerseite

Nummer:
Int. Cl. 3:
Anmeldetag:
Offenlegungstag:

3213866
G01R 27/02
15. April 1982
27. Oktober 1983

- 9 -

3213866

1/1

82 P 4415

FIG 2