
Minimizing quadratic, min at origin Executing minimization of function @(x)x'*H*x Starting at point [1, 2], Using DFP method.

outer it. lambda init	iteration	X	step size	f(x)	norm(grad)	ls iters
		+1.00e+00 +2.00e+00		2.30e+01		
1 1.03e-01	1	+3.80e-01	2.16e+00	4.55e-01	2.09e+01	3
1.036-01		-6.83e-02				
1.63e-01	2	+7.12e-10	3.86e-01	2.97e-17	2.38e+00	3
11000 01		+2.37e-09				
2 0.00e+00	1	+7.12e-10	0.00e+00	2.97e-17	2.41e-08	1
3.000.00		+2.37e-09				

x =

1.0e-08 *

0.0712

0.2372

no_its =

4

normg =

2.4101e-08

Executing minimization of function @(x)x'*H*x Starting at point [1, 2], Using BFGS method.

outer it. lambda	iteration	X	step size	f(x)	norm(grad)	ls iters
init		+1.00e+00 +2.00e+00		2.30e+01		
1 1.03e-01	1	+3.80e-01	2.16e+00	4.55e-01	2.09e+01	3
1.036-01		-6.83e-02				
1.61e-01	2	+7.12e-10	3.86e-01	2.96e-17	2.38e+00	3

+2.37e-09

2 1 +7.12e-10 0.00e+00 2.96e-17 2.41e-08 2 0.00e+00 +2.37e-09

x =

1.0e-08 *

0.0712

0.2372

no_its =

4

normg =

2.4100e-08

Minimizing quadratic, min at origin Executing minimization of function @(x)x'*H*x Starting at point [-5, -3], Using DFP method.

outer it. lambda	iteration	X	step size	f(x)	norm(grad)	ls iters
init		-5.00e+00 -3.00e+00		1.20e+02		
1 1.25e-01	1	-1.25e+00	5.30e+00	7.50e+00	4.24e+01	3
1.256-01		+7.50e-01				
1.42e-01	2	+1.96e-08	1.46e+00	3.06e-15	1.06e+01	3
1.426-01		+1.96e-08				
2	1	+1.96e-08	0.00e+00	3.06e-15	2.28e-07	1
0.00e+00		+1.96e-08				

x =

1.0e-07 *

0.1957

0.1957

 $no_its =$

normg =

2.2820e-07

Executing minimization of function @(x)x'*H*x Starting at point [-5, -3], Using BFGS method.

outer it. lambda init	iteration	X	step size	f(x)	norm(grad)	ls iters
init		-5.00e+00 -3.00e+00		1.20e+02		
1 1.25e-01	1	-1.25e+00	5.30e+00	7.50e+00	4.24e+01	3
		+7.50e-01				
1.33e-01	2	+1.96e-08	1.46e+00	3.08e-15	1.06e+01	3
		+1.96e-08				
2 0.00e+00	1	+1.96e-08	0.00e+00	3.08e-15	2.29e-07	1
0.000100		+1.96e-08				

x =

1.0e-07 *

0.1961

0.1961

 $no_its =$

4

normg =

2.2874e-07

Minimizing quadratic, min at origin Executing minimization of function @(x)x'*H*x Starting at point [7, 7, 7, 7, 7],

Starting at point [7, 7, 7, 7, 7] Using DFP method.

outer it. lambda	iteration	X	step size	f(x)	norm(grad)	ls iters
init		+7.00e+00 +7.00e+00		1.22e+03		
1	1	+6.06e+00	1.21e+01	1.36e+02	1.80e+02	3

```
6.73e-02
                       +4.17e+00
                       +2.29e+00
                       +4.00e-01
                       -1.49e+00
                2
                      +4.77e+00
                                   4.60e+00
                                                3.51e+01
                                                            4.52e+01
                                                                            3
1.05e-01
                       +1.44e+00
                       -4.09e-01
                       -7.64e-01
                       +3.70e-01
                3
                      +3.25e+00
                                   2.61e+00
                                                1.29e+01
                                                            1.85e+01
                                                                            3
1.53e-01
                       -2.87e-01
                       -4.70e-01
                       +3.72e-01
                       -8.84e-02
                4
                       +1.47e+00
                                   2.05e+00
                                                4.20e+00
                                                            9.84e+00
                                                                            3
2.41e-01
                       -6.55e-01
                       +3.54e-01
                       -1.20e-01
                       +1.82e-02
                5
                       -3.43e-08
                                   1.66e+00
                                                            6.30e+00
                                                                            3
                                                1.88e-13
3.27e-01
                       -8.64e-08
                       -1.08e-07
                       -9.85e-08
                       -6.44e-08
                                                            2.17e-06
    2
                1
                       -3.43e-08
                                   0.00e+00
                                                1.88e-13
                                                                            1
0.00e+00
                       -8.64e-08
                       -1.08e-07
                       -9.85e-08
                       -6.44e-08
x =
   1.0e-06 *
   -0.0343
   -0.0864
   -0.1084
   -0.0985
   -0.0644
no_its =
    10
```

normg =

2.1664e-06

Executing minimization of function @(x)x'*H*x Starting at point $[7,\ 7,\ 7,\ 7,\ 7]$, Using BFGS method.

outer it. lambda	iteration	X	step size	f(x)	norm(grad)	ls iters
init		+7.00e+00 +7.00e+00		1.22e+03		
1 6.73e-02	1	+6.06e+00	1.21e+01	1.36e+02	1.80e+02	3
		+4.17e+00				
		+2.29e+00				
		+4.00e-01				
		-1.49e+00				
9.88e-02	2	+4.77e+00	4.60e+00	3.51e+01	4.52e+01	3
		+1.44e+00				
		-4.09e-01				
		-7.64e-01				
		+3.70e-01				
1.30e-01	3	+3.25e+00	2.61e+00	1.29e+01	1.85e+01	3
		-2.87e-01				
		-4.70e-01				
		+3.72e-01				
		-8.84e-02				
1.80e-01	4	+1.47e+00	2.05e+00	4.20e+00	9.84e+00	3
		-6.55e-01				
		+3.54e-01				
		-1.20e-01				
		+1.82e-02				
2.12e-01	5	-5.77e-08	1.66e+00	1.64e-13	6.30e+00	3
		-8.98e-08				
		-7.88e-08				
		-7.36e-08				
		-8.63e-08				
2 0.00e+00	1	-5.77e-08	0.00e+00	1.64e-13	2.10e-06	1
		-8.98e-08				
		-7.88e-08				
		-7.36e-08				
		-8.63e-08				

x =

```
-0.8985
   -0.7882
   -0.7361
   -0.8634
no_its =
    10
normg =
   2.0982e-06
Minimizing negative definite quadratic form, has no minimum
Executing minimization of function Q(x)x'*H*x
Starting at point [5, 9],
Using DFP method.
outer it.
            iteration x
                                                         norm(grad) ls iters
                                 step size
                                             f(x)
lambda
                      +5.00e+00
   init
                                              -1.06e+02
                      +9.00e+00
[#Warning: The function does not seem to be convex: cannot
be minimized.]#
Executing minimization of function Q(x)x'*H*x
Starting at point [5, 9],
Using BFGS method.
                                               f(x)
outer it.
            iteration
                                  step size
                                                         norm(grad) ls iters
                         Χ
lambda
   init
                      +5.00e+00
                                              -1.06e+02
                      +9.00e+00
[#Warning: The function does not seem to be convex: cannot
be minimized.]#
Minimizing indefinite quadratic form, has no minimum
Executing minimization of function @(x)x'*H*x
Starting at point [5, 9],
Using DFP method.
outer it.
            iteration
                        Х
                                  step size
                                               f(x)
                                                         norm(grad) ls iters
lambda
   init
                      +5.00e+00
                                              3.30e+02
                      +9.00e+00
    1
                1
                      +8.57e+00
                                  1.13e+01
                                             -2.06e+02
                                                           9.49e+01
                                                                          3
1.19e-01
                      -1.71e+00
```

-0.5768

[#Warning: The function does not seem to be convex: cannot be minimized.]#

Executing minimization of function @(x)x'*H*x Starting at point [5, 9], Using BFGS method.

outer it. lambda	iteration	X	step size	f(x)	norm(grad)	ls iters
init		+5.00e+00 +9.00e+00		3.30e+02		
1 1.19e-01	1	+8.57e+00	1.13e+01	-2.06e+02	9.49e+01	3
		-1.71e+00				

[#Warning: The function does not seem to be convex: cannot

Minimizing rosenbrock function, min at (1, 1) Executing minimization of function rosenbrock Starting at point [200, 200], Using DFP method.

outer it.	iteration	Х	step size	f(x)	norm(grad)	ls iters
lambda init		+2.00e+02 +2.00e+02		1.58e+11		
1 6.28e-08	1	-1.20e-03	2.00e+02	4.02e+06	3.18e+09	23
0.206-00		+2.00e+02				
4.99e-03	2	-5.04e-01	2.00e+02	2.26e+00	4.01e+04	5
4.996-03		+2.54e-01				
2 5.12e-03	1	-4.89e-01	1.54e-02	2.24e+00	3.00e+00	3
5.120-03		+2.54e-01				
1.37e-01	2	-2.81e-01	2.92e-01	1.73e+00	3.05e+00	3
		+4.88e-02				
3 4.16e-03	1	-2.56e-01	3.52e-02	1.58e+00	8.46e+00	3
4.106-03		+7.38e-02				
5.21e-02	2	-1.53e-01	1.18e-01	1.34e+00	2.34e+00	7
3.216-02		+1.65e-02				
4 1.01e-02	1	-1.26e-01	3.09e-02	1.29e+00	3.07e+00	3
1.016-02		+3.06e-02				
	2	-2.73e-02	1.02e-01	1.06e+00	3.31e+00	7

4.54e-02		+2.80e-03				
5	1	+7.66e-03	3.57e-02	9.87e-01	2.07e+00	6
1.72e-02		-4.26e-03				
0.7100	2	+8.96e-02	8.20e-02	8.39e-01	2.15e+00	7
3.71e-02		-2.18e-03				
6 2.02e-02	1	+1.19e-01	5.07e-02	8.38e-01	2.51e+00	2
2.020-02		+3.91e-02				
6.89e-02	2	+2.43e-01	1.26e-01	5.77e-01	5.80e+00	6
0.096-02		+6.42e-02				
7 6.01e-03	1	+2.55e-01	1.38e-02	5.60e-01	2.31e+00	3
0.016-03		+5.78e-02				
8.56e-02	2	+3.56e-01	1.14e-01	4.45e-01	1.62e+00	4
0.300 02		+1.09e-01				
8 3 61e-03	1	+3.52e-01	1.34e-02	4.21e-01	3.70e+00	4
8 3.61e-03 1.62e-01		+1.22e-01				
1.62e-01	2	+4.91e-01	1.71e-01	2.97e-01	1.10e+00	4
1.020 01		+2.22e-01				
9 2.61e-03	1	+4.84e-01	1.25e-02	2.67e-01	4.79e+00	3
		+2.32e-01				
2.45e-01	2	+6.13e-01	1.82e-01	1.76e-01	7.50e-01	5
		+3.60e-01				
10 2.02e-03	1	+6.07e-01	9.24e-03	1.55e-01	4.57e+00	3
		+3.66e-01				
3.69e-01	2	+7.23e-01	1.84e-01	9.39e-02	5.03e-01	6
		+5.09e-01				
11 1.63e-03	1	+7.17e-01	6.75e-03	8.00e-02	4.15e+00	3
		+5.14e-01				
5.50e-01	2	+8.18e-01	1.78e-01	4.26e-02	3.24e-01	6
		+6.60e-01				

12 1.36e-03	1	+8.14e-01	4.71e-03	3.45e-02	3.46e+00	3
1.000 00		+6.62e-01				
8.27e-01	2	+8.98e-01	1.61e-01	1.49e-02	1.94e-01	5
0.276-01		+8.00e-01				
13 1.18e-03	1	+8.95e-01	3.06e-03	1.10e-02	2.58e+00	3
1.186-03		+8.01e-01				
1.27e+00	2	+9.58e-01	1.30e-01	3.17e-03	1.02e-01	4
1.276.00		+9.14e-01				
14 1.07e-03	1	+9.57e-01	1.67e-03	1.87e-03	1.56e+00	3
1.076-03		+9.15e-01				
0.00e+00	2	+9.57e-01	0.00e+00	1.87e-03	4.00e-02	1
0.000100		+9.15e-01				
15 0.00e+00	1	+9.57e-01	0.00e+00	1.87e-03	4.00e-02	1
0.000.00		+9.15e-01				

0.9568

0.9153

no_its =

30

normg =

0.0400

Minimizing rosenbrock function, min at (1, 1) Executing minimization of function rosenbrock Starting at point [399, -711], Using DFP method.

outer it. lambda	iteration	X	step size	f(x)	norm(grad)	ls iters
init		+3.99e+02 -7.11e+02		2.56e+12		
1 1.56e-08	1	-5.79e-04	3.99e+02	5.05e+07	2.55e+10	24
		-7.10e+02				

5.01e-03	2	+8.87e-01	7.11e+02	1.28e-02	1.42e+05	5
3.01e-03		+7.86e-01				
2 3.08e-04	1	+8.87e-01	6.98e-05	1.28e-02	2.27e-01	2
3.086-04		+7.86e-01				
1.17e+00	2	+9.51e-01	1.30e-01	4.40e-03	1.84e-01	4
1.176+00		+8.99e-01				
3 1.08e-03	1	+9.49e-01	1.96e-03	2.62e-03	1.81e+00	3
1.086-03		+9.00e-01				
1.85e+00	2	+9.90e-01	8.82e-02	3.51e-04	4.77e-02	3
1.036.00		+9.78e-01				
4 0.00e+00	1	+9.90e-01	0.00e+00	3.51e-04	6.80e-01	1
0.00e+00		+9.78e-01				

0.9899

0.9782

no_its =

8

normg =

0.6804

.....

Minimizing rosenbrock function, min at (1, 1) Executing minimization of function rosenbrock Starting at point [399, -711], Using BFGS method.

outer it. lambda	iteration	X	step size	f(x)	norm(grad)	ls iters
init		+3.99e+02 -7.11e+02		2.56e+12		
1 1.56e-08	1	-5.79e-04	3.99e+02	5.05e+07	2.55e+10	24
		-7.10e+02				
5.01e-03	2	+8.87e-01	7.11e+02	1.28e-02	1.42e+05	5

		+7.86e-01				
2 3.08e-04	1	+8.87e-01	6.98e-05	1.28e-02	2.27e-01	2
3.006-04		+7.86e-01				
8.98e-01	2	+9.51e-01	1.31e-01	4.28e-03	1.84e-01	4
		+9.00e-01				
3 1.08e-03	1	+9.50e-01	1.94e-03	2.55e-03	1.79e+00	3
1.000 00		+9.01e-01				
1.86e+00	2	+9.90e-01	8.73e-02	3.35e-04	4.70e-02	3
1.000.00		+9.79e-01				
4 0.00e+00	1	+9.90e-01	0.00e+00	3.35e-04	6.67e-01	1
0.000.00		+9.79e-01				

0.9901

0.9788

 $no_its =$

8

normg =

0.6666

Minimizing rosenbrock function, min at (1, 1) Executing minimization of function rosenbrock Starting at point [3990, -7111], Using DFP method.

outer it. lambda init	iteration	Х	step size	f(x)	norm(grad)	ls iters
		+3.99e+03 -7.11e+03		2.54e+16		
1 1.57e-10	1	-4.58e-05	3.99e+03	5.06e+09	2.54e+13	30
		-7.11e+03				
	2	+7.83e-01	7.11e+03	4.71e-02	1.42e+06	4
5.00e-03		+6.13e-01				
2	1	+7.84e-01	8.82e-04	4.70e-02	4.34e-01	2

	2.03e-03						
	2.036-03		+6.13e-01				
	6.83e-01	2	+8.69e-01	1.59e-01	2.37e-02	2.76e-01	5
	0.036-01		+7.47e-01				
	3 1.24e-03	1	+8.66e-01	3.78e-03	1.80e-02	3.03e+00	3
1.246-03	1.24e-03		+7.49e-01				
	1.77e+00	2	+9.84e-01	2.37e-01	1.76e-02	1.34e-01	2
	1.776+00		+9.55e-01				
	4 1.03e-03	1	+9.78e-01	5.93e-03	4.63e-04	5.78e+00	3
	1.036-03		+9.57e-01				
	0.00e+00	2	+9.78e-01	0.00e+00	4.63e-04	1.96e-02	1
	0.000100		+9.57e-01				
	5 0.00e+00	1	+9.78e-01	0.00e+00	4.63e-04	1.96e-02	1
	0.006.00		+9.57e-01				

0.9785 0.9574

no_its =

10

normg =

0.0196

Minimizing rosenbrock function, min at (1, 1) Executing minimization of function rosenbrock Starting at point [3990, -7111], Using BFGS method.

outer it. lambda	iteration	X	step size	f(x)	norm(grad)	ls iters
init		+3.99e+03 -7.11e+03		2.54e+16		
1 1.57e-10	1	-4.58e-05	3.99e+03	5.06e+09	2.54e+13	30
		-7.11e+03				

5.00e-03	2	+7.83e-01	7.11e+03	4.71e-02	1.42e+06	4
3.006-03		+6.13e-01				
2 2.03e-03	1	+7.84e-01	8.82e-04	4.70e-02	4.34e-01	2
2.036-03		+6.13e-01				
4.87e-01	2	+8.69e-01	1.59e-01	2.37e-02	2.76e-01	5
4.076-01		+7.47e-01				
3 1.24e-03	1	+8.66e-01	3.78e-03	1.80e-02	3.03e+00	3
1.246-03		+7.49e-01				
1.76e+00	2	+9.84e-01	2.37e-01	1.76e-02	1.34e-01	2
1.700.00		+9.55e-01				
4 1.03e-03	1	+9.78e-01	5.93e-03	4.64e-04	5.78e+00	3
1.036-03		+9.57e-01				
0.00e+00	2	+9.78e-01	0.00e+00	4.64e-04	1.96e-02	1
0.000.00		+9.57e-01				
5 0.00e+00	1	+9.78e-01	0.00e+00	4.64e-04	1.96e-02	1
0.006.00		+9.57e-01				

0.9785

0.9573

 $no_its =$

10

normg =

0.0196

Minimizing rosenbrock function, min at (1, 1) Executing minimization of function rosenbrock Starting at point [200, 200], Using DFP method.

outer it. lambda	iteration	X	step size	f(x)	norm(grad)	ls iters
init		+2.00e+02		1.58e+11		
		+2.00e+02				

1	1	-1.20e-03	2.00e+02	4.02e+06	3.18e+09	23
6.28e-08		+2.00e+02				
4 000 02	2	-5.04e-01	2.00e+02	2.26e+00	4.01e+04	5
4.99e-03		+2.54e-01				
2 5.12e-03	1	-4.89e-01	1.54e-02	2.24e+00	3.00e+00	3
5.126-03		+2.54e-01				
1.37e-01	2	-2.81e-01	2.92e-01	1.73e+00	3.05e+00	3
1.376-01		+4.88e-02				
3 4.16e-03	1	-2.56e-01	3.52e-02	1.58e+00	8.46e+00	3
4.100 00		+7.38e-02				
5.21e-02	2	-1.53e-01	1.18e-01	1.34e+00	2.34e+00	7
01210 02		+1.65e-02				
4 1.01e-02	1	-1.26e-01	3.09e-02	1.29e+00	3.07e+00	3
11010 02		+3.06e-02				
4.54e-02	2	-2.73e-02	1.02e-01	1.06e+00	3.31e+00	7
		+2.80e-03				
5 1.72e-02	1	+7.66e-03	3.57e-02	9.87e-01	2.07e+00	6
		-4.26e-03				
3.71e-02	2	+8.96e-02	8.20e-02	8.39e-01	2.15e+00	7
		-2.18e-03				
6 2.02e-02	1	+1.19e-01	5.07e-02	8.38e-01	2.51e+00	2
		+3.91e-02				
6.89e-02	2	+2.43e-01	1.26e-01	5.77e-01	5.80e+00	6
		+6.42e-02				
7 6.01e-03	1	+2.55e-01	1.38e-02	5.60e-01	2.31e+00	3
		+5.78e-02				
8.56e-02	2	+3.56e-01	1.14e-01	4.45e-01	1.62e+00	4
		+1.09e-01				
8 3.61e-03	1	+3.52e-01	1.34e-02	4.21e-01	3.70e+00	4

		+1.22e-01				
1 620 01	2	+4.91e-01	1.71e-01	2.97e-01	1.10e+00	4
1.62e-01		+2.22e-01				
9 2.61e-03	1	+4.84e-01	1.25e-02	2.67e-01	4.79e+00	3
2.010-03		+2.32e-01				
2.45e-01	2	+6.13e-01	1.82e-01	1.76e-01	7.50e-01	5
2.436-01		+3.60e-01				
10 2.02e-03	1	+6.07e-01	9.24e-03	1.55e-01	4.57e+00	3
2.026-03		+3.66e-01				
3.69e-01	2	+7.23e-01	1.84e-01	9.39e-02	5.03e-01	6
3.096-01		+5.09e-01				
11 1.63e-03	1	+7.17e-01	6.75e-03	8.00e-02	4.15e+00	3
1.036-03		+5.14e-01				
5.50e-01	2	+8.18e-01	1.78e-01	4.26e-02	3.24e-01	6
		+6.60e-01				
12 1.36e-03	1	+8.14e-01	4.71e-03	3.45e-02	3.46e+00	3
1.000 00		+6.62e-01				
8.27e-01	2	+8.98e-01	1.61e-01	1.49e-02	1.94e-01	5
0.270 01		+8.00e-01				
13 1.18e-03	1	+8.95e-01	3.06e-03	1.10e-02	2.58e+00	3
1.100 00		+8.01e-01				
1.27e+00	2	+9.58e-01	1.30e-01	3.17e-03	1.02e-01	4
11210.00		+9.14e-01				
14 1.07e-03	1	+9.57e-01	1.67e-03	1.87e-03	1.56e+00	3
1.076 00		+9.15e-01				
0.00e+00	2	+9.57e-01	0.00e+00	1.87e-03	4.00e-02	1
0.000		+9.15e-01				
15 0.00e+00	1	+9.57e-01	0.00e+00	1.87e-03	4.00e-02	1
2.000.00		+9.15e-01				

0.9568

0.9153

 $no_its =$

30

normg =

0.0400

Minimizing rosenbrock function, min at (1, 1) Executing minimization of function rosenbrock Starting at point [200, 200], Using BFGS method.

outer it. lambda	iteration	X	step size	f(x)	norm(grad)	ls iters
init		+2.00e+02 +2.00e+02		1.58e+11		
1 6.28e-08	1	-1.20e-03	2.00e+02	4.02e+06	3.18e+09	23
0.200 00		+2.00e+02				
4.99e-03	2	-5.04e-01	2.00e+02	2.26e+00	4.01e+04	5
11000 00		+2.54e-01				
2 5.12e-03	1	-4.89e-01	1.54e-02	2.24e+00	3.00e+00	3
		+2.54e-01				
2.44e-02	2	-4.13e-01	1.06e-01	2.00e+00	3.05e+00	9
21440 02		+1.79e-01				
3 4.59e-02	1	-3.50e-01	1.02e-01	1.88e+00	2.23e+00	4
4.550 02		+9.89e-02				
6.05e-03	2	-2.17e-01	1.64e-01	1.67e+00	7.62e+00	5
0.030 03		+3.67e-03				
4 4.48e-03	1	-1.89e-01	4.76e-02	1.42e+00	1.06e+01	3
4.400 00		+4.24e-02				
3.77e-02	2	-1.08e-01	8.87e-02	1.23e+00	2.30e+00	7
3.116-02		+7.26e-03				

5 2.12e-02	1	-5.65e-02	5.42e-02	1.17e+00	2.55e+00	5
		+2.56e-02				
0.00e+00	2	-5.65e-02	0.00e+00	1.17e+00	4.76e+00	1
0.000.00		+2.56e-02				
6 1.17e-04	1	-5.63e-02	5.57e-04	1.16e+00	4.76e+00	3
1.176 04		+2.50e-02				
2.72e-02	2	+1.70e-02	7.40e-02	9.88e-01	4.66e+00	9
2.726-02		+1.51e-02				
7 6.94e-03	1	+3.14e-02	2.51e-02	9.42e-01	3.62e+00	3
0.546 05		-5.48e-03				
1.87e-02	2	+8.13e-02	5.00e-02	8.53e-01	2.26e+00	7
1.076 02		-3.01e-03				
8 1.10e-02	1	+9.80e-02	2.69e-02	8.21e-01	2.45e+00	3
1.100 02		+1.81e-02				
3.72e-03	2	+1.13e-01	1.51e-02	7.93e-01	2.72e+00	6
3.720-03		+2.06e-02				
9 7.96e-03	1	+1.30e-01	2.10e-02	7.65e-01	2.64e+00	3
		+8.12e-03				
1.66e-02	2	+1.75e-01	4.66e-02	6.93e-01	2.17e+00	7
		+1.96e-02				
10 7.83e-03	1	+1.82e-01	1.86e-02	6.71e-01	2.38e+00	4
7.000 00		+3.69e-02				
1.97e-02	2	+2.33e-01	5.36e-02	5.89e-01	2.06e+00	7
1.0.0 01		+5.45e-02				
11 1.54e-02	1	+2.57e-01	2.44e-02	5.69e-01	1.58e+00	3
1.546 02		+5.30e-02				
5.71e-03	2	+2.82e-01	2.83e-02	5.33e-01	2.60e+00	6
31.10 00		+6.63e-02				
12 4.90e-03	1	+2.82e-01	1.29e-02	5.16e-01	2.63e+00	3
7.300 03		+7.92e-02				

7.23e-02	2	+3.83e-01	1.17e-01	3.91e-01	1.42e+00	5
7.236-02		+1.37e-01				
13 4.01e-03	1	+3.82e-01	8.47e-03	3.82e-01	2.12e+00	3
4.016-03		+1.45e-01				
1.36e-01	2	+5.16e-01	1.69e-01	2.68e-01	1.11e+00	4
1.500 01		+2.48e-01				
14 2.47e-03	1	+5.09e-01	1.14e-02	2.41e-01	4.63e+00	3
2.476 00		+2.57e-01				
2.61e-01	2	+6.36e-01	1.83e-01	1.57e-01	6.94e-01	6
2.010 01		+3.89e-01				
15 1.93e-03	1	+6.30e-01	8.75e-03	1.37e-01	4.54e+00	3
_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		+3.95e-01				
3.96e-01	2	+7.43e-01	1.84e-01	8.12e-02	4.62e-01	6
		+5.40e-01				
16 1.57e-03	1	+7.38e-01	6.30e-03	6.86e-02	4.02e+00	3
		+5.44e-01				
5.94e-01	2	+8.36e-01	1.75e-01	3.53e-02	2.94e-01	6
		+6.89e-01				
17 1.32e-03	1	+8.32e-01	4.34e-03	2.82e-02	3.29e+00	3
		+6.92e-01				
8.96e-01	2	+9.12e-01	1.55e-01	1.15e-02	1.73e-01	5
		+8.25e-01				
18 1.16e-03	1	+9.09e-01	2.74e-03	8.23e-03	2.37e+00	3
		+8.27e-01				
1.38e+00	2	+9.67e-01	1.20e-01	2.09e-03	8.74e-02	4
		+9.32e-01				
19 1.05e-03	1	+9.66e-01	1.40e-03	1.17e-03	1.33e+00	2
		+9.33e-01				
0.00e+00	2	+9.66e-01	0.00e+00	1.17e-03	3.14e-02	1

+9.33e-01

20 1 +9.66e-01 0.00e+00 1.17e-03 3.14e-02 1 0.00e+00 +9.33e-01

x =

0.9659 0.9327

 $no_its =$

40

normg =

0.0314

x02 =

113 999

.....

Minimizing Booth, min at (1, 3) Executing minimization of function $@(x)(x(1)+2*x(2)-7)^2+(2*x(1)+x(2)-5)^2$ Starting at point [9, 10], Using DFP method.

outer it. lambda init	iteration	x	step size	f(x)	norm(grad)	ls iters
		+9.00e+00 +1.00e+01		1.01e+03		
1 5.56e-02	1	+1.44e+00	1.06e+01	3.95e-01	1.91e+02	3
		+2.56e+00				
5.00e-01	2	+1.00e+00	6.29e-01	8.12e-16	1.26e+00	3
		+3.00e+00				
2 0.00e+00	1	+1.00e+00	0.00e+00	8.12e-16	1.71e-07	1
		+3.00e+00				

x =

1.0000

3.0000

```
no_its =
     4
normg =
   1.7099e-07
Minimizing Booth, min at (1, 3)
Executing minimization of function @(x)(x(1)+2*x(2)-7)^2+(2*x(1)+x(2)-5)^2
Starting at point [9, 10],
Using BFGS method.
outer it.
            iteration
                        X
                                  step size
                                                f(x)
                                                          norm(grad) ls iters
lambda
   init
                      +9.00e+00
                                              1.01e+03
                      +1.00e+01
                                  1.06e+01
                                              3.95e-01
                1
                      +1.44e+00
                                                           1.91e+02
                                                                          3
5.56e-02
                      +2.56e+00
                2
                      +1.00e+00
                                  6.29e-01
                                                           1.26e+00
                                                                          3
                                              8.12e-16
5.00e-01
                      +3.00e+00
    2
                1
                      +1.00e+00
                                  0.00e+00
                                              8.12e-16
                                                           1.71e-07
                                                                          1
0.00e+00
                      +3.00e+00
x =
    1.0000
    3.0000
no_its =
     4
normg =
   1.7099e-07
Minimizing Booth, min at (1, 3)
Executing minimization of function \mathbb{Q}(x)(x(1)+2^*x(2)-7)^2+(2^*x(1)+x(2)-5)^2
Starting at point [113, 999],
Using DFP method.
outer it.
            iteration
                                  step size
                                               f(x)
                                                          norm(grad) ls iters
                        X
lambda
```

5.92e+06

init

+1.13e+02

		+9.99e+02				
1 5.59e-02	1	-3.95e+02	7.92e+02	3.08e+05	1.42e+04	3
3.396-02		+3.92e+02				
5.00e-01	2	+9.97e-01	5.55e+02	1.80e-04	1.11e+03	3
		+3.00e+00				
2 0.00e+00	1	+9.97e-01	0.00e+00	1.80e-04	8.04e-02	1
0.006700		+3.00e+00				

0.9971 2.9966

no_its =

4

normg =

0.0804

Minimizing Booth, min at (1, 3) Executing minimization of function $@(x)(x(1)+2*x(2)-7)^2+(2*x(1)+x(2)-5)^2$ Starting at point [113, 999], Using BFGS method.

outer it. lambda init	iteration	X	step size	f(x)	norm(grad)	ls iters
		+1.13e+02 +9.99e+02		5.92e+06		
1 5.59e-02	1	-3.95e+02	7.92e+02	3.08e+05	1.42e+04	3
		+3.92e+02				
4.97e-01	2	+9.97e-01	5.55e+02	1.80e-04	1.11e+03	3
		+3.00e+00				
2 0.00e+00	1	+9.97e-01	0.00e+00	1.80e-04	8.04e-02	1
		+3.00e+00				

x =

0.9971

2.9966

```
4
normg =
    0.0804
Minimizing Styblinski-Tang function, min at (-2.904)
Executing minimization of function @(x)1/2*(x(1)^4-16*x(1)^2+5*x(1)+x(2)^4-
16*x(2)^2+5*x(2)
Starting at point [-3, -3],
Using DFP method.
outer it.
            iteration
                                   step size
                                                 f(x)
                                                           norm(grad) ls iters
                          Χ
lambda
                       -3.00e+00
   init
                                               -7.80e+01
                       -3.00e+00
    1
                1
                      -2.90e+00
                                   1.36e-01
                                               -7.83e+01
                                                             4.95e+00
                                                                            4
2.76e-02
                      -2.90e+00
                2
                      -2.90e+00
                                   0.00e+00
                                               -7.83e+01
                                                             0.00e+00
                                                                            1
0.00e+00
                      -2.90e+00
                                                             0.00e+00
    2
                1
                      -2.90e+00
                                   0.00e+00
                                               -7.83e+01
                                                                            1
0.00e+00
                       -2.90e+00
x =
   -2.9035
   -2.9035
no_its =
     4
normg =
     0
Minimizing Styblinski-Tang function, min at (-2.904)
Executing minimization of function @(x)1/2*(x(1)^4-16*x(1)^2+5*x(1)+x(2)^4-
16*x(2)^2+5*x(2)
Starting at point [-3, -3],
```

no_its =

Using BFGS method.

outer it. lambda	iteration	X	step size	f(x)	norm(grad)	ls iters
init		-3.00e+00 -3.00e+00		-7.80e+01		
1 2.76e-02	1	-2.90e+00	1.36e-01	-7.83e+01	4.95e+00	4
		-2.90e+00				
0.00e+00	2	-2.90e+00	0.00e+00	-7.83e+01	0.00e+00	1
		-2.90e+00				
2 0.00e+00	1	-2.90e+00	0.00e+00	-7.83e+01	0.00e+00	1
		-2.90e+00				

-2.9035

-2.9035

no_its =

4

normg =

0

Minimizing Styblinski-Tang function, min at (-2.904)

Executing minimization of function $@(x)1/2*(x(1)^4-16*x(1)^2+5*x(1)+x(2)^4-16*x(2)^2+5*x(2))$

Starting at point [-1.5, -1.5],

Using DFP method.

outer it. lambda init	iteration	X	step size	f(x)	norm(grad)	ls iters
		-1.50e+00 -1.50e+00		-3.84e+01		
1 3.36e-02	1	-2.16e+00	9.37e-01	-6.38e+01	2.79e+01	9
		-2.16e+00				
1.91e-01	2	-2.90e+00	1.05e+00	-7.83e+01	2.39e+01	6
		-2.90e+00				
2 0.00e+00	1	-2.90e+00	0.00e+00	-7.83e+01	5.12e-06	1
		-2.90e+00				

```
x =
            -2.9035
             -2.9035
no_its =
                      4
normg =
             5.1238e-06
Minimizing Styblinski-Tang function, min at (-2.904)
Executing minimization of function @(x)1/2*(x(1)^4-16*x(1)^2+5*x(1)+x(2)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4-16*x(1)^4
16*x(2)^2+5*x(2)
Starting at point [-1.5, -1.5],
Using BFGS method.
outer it.
                                                     iteration
                                                                                                                                                       step size
                                                                                                                                                                                                                  f(x)
                                                                                                                                                                                                                                                            norm(grad) ls iters
                                                                                                          Χ
lambda
             init
                                                                                                 -1.50e+00
                                                                                                                                                                                                            -3.84e+01
                                                                                                  -1.50e+00
                                                                                                 -2.16e+00
                                                                                                                                                      9.37e-01
                                                                                                                                                                                                                                                                                                                                       9
                                                                      1
                                                                                                                                                                                                            -6.38e+01
                                                                                                                                                                                                                                                                     2.79e+01
3.36e-02
                                                                                                 -2.16e+00
                                                                       2
                                                                                                 -2.90e+00
                                                                                                                                                      1.05e+00
                                                                                                                                                                                                           -7.83e+01
                                                                                                                                                                                                                                                                     2.39e+01
                                                                                                                                                                                                                                                                                                                                       6
1.91e-01
                                                                                                 -2.90e+00
                                                                                                                                                     0.00e+00
                  2
                                                                      1
                                                                                                 -2.90e+00
                                                                                                                                                                                                            -7.83e+01
                                                                                                                                                                                                                                                                     4.14e-06
                                                                                                                                                                                                                                                                                                                                       2
0.00e+00
                                                                                                 -2.90e+00
x =
             -2.9035
             -2.9035
no_its =
                      4
normg =
             4.1431e-06
```

```
Executing minimization of function @(x)1/2*(x(1)^4-16*x(1)^2+5*x(1)+x(2)^4-
16*x(2)^2+5*x(2)
Starting at point [-1, -1],
Using DFP method.
outer it.
                                              iteration
                                                                                                                                  step size
                                                                                                                                                                                      f(x)
                                                                                                                                                                                                                          norm(grad) ls iters
                                                                                                   Χ
lambda
           init
                                                                                    -1.00e+00
                                                                                                                                                                                 -2.00e+01
                                                                                     -1.00e+00
               1
                                                             1
                                                                                    -1.00e+00
                                                                                                                                  0.00e+00
                                                                                                                                                                                 -2.00e+01
                                                                                                                                                                                                                                  2.33e+01
                                                                                                                                                                                                                                                                                           1
0.00e+00
                                                                                    -1.00e+00
x =
                -1
                -1
no its =
                   2
normg =
           23.3345
Minimizing Styblinski-Tang function, min at (-2.904)
Executing minimization of function Q(x)1/2*(x(1)^4-16*x(1)^2+5*x(1)+x(2)^4-16*x(1)^4-16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4+16*x(1)^4
16*x(2)^2+5*x(2)
Starting at point [-1, -1],
Using BFGS method.
outer it.
                                              iteration
                                                                                                  Χ
                                                                                                                                  step size
                                                                                                                                                                                       f(x)
                                                                                                                                                                                                                          norm(grad) ls iters
lambda
           init
                                                                                     -1.00e+00
                                                                                                                                                                                 -2.00e+01
                                                                                     -1.00e+00
                                                                                    -1.00e+00
                                                                                                                                  0.00e+00
                                                                                                                                                                                -2.00e+01
                                                                                                                                                                                                                                  2.33e+01
                                                                                                                                                                                                                                                                                           1
               1
                                                             1
0.00e+00
                                                                                    -1.00e+00
x =
                -1
                -1
no_its =
                   2
```

Minimizing Styblinski-Tang function, min at (-2.904)

normg =

23.3345