

直驱旋转电爪RGD系列

产品操作手册

本文档为RGD系列产品的操作手册,适用机型下:

适用型号	最大夹持力	全行程
RGD-5-14	5 N	14 mm
RGD-5-30	5 N	30 mm
RGD-35-14	35 N	14 mm
RGD-35-30	35 N	30 mm

修订履历

日期	版本	修改内容	适用软件版本
20210930	V1.00	描述硬件接线、技术参数、 基本功能介绍及指令相关说明	软件版本2.7
20211108	V1.01	产品系列说明书更新数据	软件版本2.7
20211115	V1.02	更新文档图例	软件版本2.7

[注:软件版本请在上位机软件上获取]

| 目 录 |

作	多订履历	01
1	. 夹爪概况	04
	1.1 指示灯定义	05
	1.2 线序定义	05
	1.3 产品清单	06
2	. RS485控制	06
	2.1 RS485调试软件说明	06
	2.1.1 调试软件安装及接线	06
	2.1.2 调试软件使用说明	07
	2.2 RS485默认配置	09
	2.3 指令说明	09
	2.3.1 命令格式	10
	2.3.2 命令总览	10
	2.3.3 命令详解	13
	2.3.3.1 初始化夹爪	13
	2.3.3.2 力值	13
	2.3.3.3 位置	14
	2.3.3.4 速度	15
	2.3.3.5 绝对角度低位	15
	2.3.3.6 旋转速度	17
	2.3.3.7 旋转力	17
	2.3.3.8 相对旋转角度	18
	2.3.3.9 初始化状态反馈	19
	2.3.3.10 夹持状态反馈	19
	2.3.3.11 位置反馈	20
	2.3.3.12 错误/警告/信息/反馈	21
	2.3.3.13 旋转角度实时反馈	21
	2.3.3.14 旋转初始化状态反馈	22
	2.3.3.15 旋转状态反馈	22
	2.3.3.16 写入保存	23
	2.3.3.17 初始化方向	23
	2.3.3.18 设备ID	24
	2.3.3.19 波特率	24
	2.3.3.20 停止位	25

2.3.3.21 校验位	25
2.3.3.22 旋转停止	
2.3.3.23 自动初始化	
2.3.3.24 旋转堵转停转配置	
2.3.3.25 复位旋转角度	
2.3.3.26 堵转检测时间	
. 附录	
3.1 夹爪接线方式	
3.2 夹爪通讯格式详解	
3.2.1 485指令03功能码详解	30
3.2.2 485指令06功能码详解	31

1. 夹爪概况

RGD为**旋转平行电爪**,夹爪配有一对平行指尖,运动过程中对称运行,并可根据需求无限旋转。夹爪主体结构为平滑的长方形结构,拥有2面安装孔位,可以满足设备的不同安装条件。并配有一个4芯的通讯接口,具有以下特点:

力位速角可控:夹爪可以对夹爪的**夹持位置、夹持力值、运行速度**以及**旋转角度**进行编程调节,可以**任意组合搭配**。

多种通讯方式:夹爪本体采用标准的**Modbus-RTU**协议进行控制。其他如USB、EtherCAT、CAN、TCP/IP等通讯协议可通过协议转换器进行转接。

夹持判断:夹持过程中采用力控和位控相结合的方式。

夹持反馈:夹爪的状态可以通过编程进行读取,也可以根据夹爪本体的指示灯进行判断。 **指尖可定制:**可根据实时情况对指尖的进行替换,适用于精密加工、零件组装等领域。

图1.1 RGD系列夹爪图

夹爪可与市面上主流的机器人和工业控制器PLC与工控机相连,内置驱动,在使用时只需接线就能控制夹爪。可在以下场景使用但不限于:

夹爪应用场景

- ✓ 机床上下料;
- ✓ 工件抓取与搬运;
- ✓ 医疗行业;
- √ 新零售行业;
- ✓ 教学科研;
- √ 旋盖应用;

• • • • • •

1.1 指示灯定义

夹爪可对夹爪的状态实时进行反馈,可以通过指令进行读取,也可以在指示灯的颜色上进行判断,RGD上有两个指示灯,分别指示夹持状态和旋转状态:

指示灯颜色说明

·未初始化状态:红灯闪烁,其他灯不亮。

·初始化完成状态: 蓝灯常亮, 表示进入可操作的状态。

·接收到命令状态: 蓝灯快速闪烁

·接住物体状态:绿灯常亮,其他灯不亮。

·物体掉落状态:绿灯闪烁。

1.2 线序定义

夹爪本体上的引脚定义如图1.4所示,夹爪共引出4根线,具体引脚文字说明如表1.3所示, 实物以线标为准。

Pin Assignment Front View M8 female A-Coding 4PIN

引脚	定义	
1	24V	
2	485_A	
3	485_B	
4	GND	

图1.4 4PIN引脚定义

出线颜色	定义	说明
蓝	485_A	通讯线正,接通讯模块T/R+
绿	485_B	通讯线负,接通讯模块T/R
红	24 V	电源正,接电源直流24V正极
黑	GND	电源负,接电源直流GND负极

表1.3 4PIN引脚文字说明表

1.3 产品清单

打开包装后,请仔细核对产品清单:

序号	类型	名称	数量
1	夹爪	夹爪	1
2	线材	M8-4芯装针接头 5米缆线	1
3	模块	USB转485模块	1

表1.4产品清单

RGD夹爪标准出线为M8-4芯装孔接头, 另配的5米的4芯裸线, 可以用于自由接线。在裸线的末端会有标识贴条, 注明各根线序定义, 请注意线序以实际标识为准。

[注:特殊定制产品内容会有所不同。]

2. RS485控制

夹爪命令采用标准的Modbus-RTU进行控制。Modbus-RTU指令的部分说明请查阅**2.3.1** 命令格式(Modbus-RTU是市面上标准的通讯格式,广泛用于工业领域,具体详细格式请在网络上查阅);具体接线方式请查阅**2.1.1 调试软件安装及接线**;具体通讯寄存器地址说明请查阅**2.3.3** 命令详解。

2.1 RS485调试软件说明

调试软件专门用于在电脑端对夹爪进行控制和设置调试参数。由于电脑端一般没有RS485接口,需要使用USB转485模块将接口转换为USB接口,便于夹爪在电脑端进行调试和控制。

2.1.1 调试软件安装及接线

通过调试软件进行连接,本质上是通过RS485接口进行控制,具体连线需要连接夹爪端的 **24V, GND, 485_A(T/R+,485+), 485_B(T/R-,485-)**共4根线,电源为24V直流稳压电源,将模块的USB插口插入到电脑的USB接口。**不同系列的接线定义不同,请按照具体夹爪的说明书进行接线,如下所示**:

485A接入485转USB模块**T/R+**;

485B接入485转USB模块**T/R-**;

24V 接入24V直流稳压电源的**正极**;

24V接入24V直流稳压电源的**负极**;

接线说明

- ①: 当设备(电脑)有RS485接口时,通讯可以直接接入RS485+和RS485-通讯线而不通过USB转485模块
- ②:通过此种方式接线,可以使用其它串口调试软件(如Modbus Poll等)进行调试
- ③: 当设备(电脑)有24V供电接口时,供电可以直接接入电源正极24V和电源负极0V 而不通过24V直流稳压电源

软件可以在官网上进行下载,软件安装过程中**集成有软件和驱动**,二者一起进行安装。安装 过程中建议勾选**创建快捷方式**。

图2.2(a) 安装界面1

图2.2(b) 驱动安装界面

2.1.2 调试软件使用说明

在使用前,需要按照使用说明**(见2.1.1 调试软件安装及接线)**接好对应接线。 打开软件,软件会自动识别串口,自动识别夹爪的波特率,ID号等信息进行自动连接。 如下图所示:

图2.3 主控界面

具体界面说明如下所示:

界面说明

- ① **初始化及演示模式:**夹爪运行前需要进行初始化用于标定零点,演示模式为一个循环程序。
- ② 控制界面:可以针对夹爪的位置 力值 速度进行控制。
- ③ 夹持状态:实时显示夹爪的夹持状态。
- ④ 位置电流实时图:实时显示位置,电流。电流表示内部电机的电流,并非夹爪实际消耗的电流。电流实时图可以体现夹持力的稳定性。

夹爪本体采用Modbus-RTU进行通讯,可以往寄存器内部读写数据,可以在视图-【寄存器】 处对夹爪数据进行读写数据,包含控制、反馈、用户参数如下图所示:

© 2017-2021 DH-Robotics. All rights reserved.

图2.4 寄存器控制

2.2 RS485默认配置

夹爪ID:1

波特率:115200

数据位:8 停止位:1

校验位:无校验位

2.3 指令说明

2.3.1 命令格式

夹爪采用标准的Modbus-RTU协议,支持03、04、06、10功能码。

夹爪在控制时,一般使用03、06功能码对夹爪进行读取控制。03功能码及06功能码为**读取写入单一寄存器**,控制指令由地址码(1个字节),功能码(1个字节),起始地址(2个字节),数据(2个字节),校验码(2个字节)五个部分组成。我们以初始化指令0106010000149F6为例,如表2.1所示。

地址码	功能码	寄存器地址	寄存器数据	CRC校验码
01	06	01 00	00 01	49 F6

表2.1 命令格式

地址码:表示夹爪的ID号。可在设备ID中进行修改,默认是1。01代表夹爪的modbus ID为01。

功能码:描述对夹爪的读写操作,是对夹爪读取数据,还是写入数据到夹爪,常见功能码有03(读取保持寄存器)、06(写入保持寄存器)。初始化指令功能码为06代表准备写入。

寄存器地址:夹爪功能对应地址。初始化指令地址为0x0100。

寄存器数据:写入数据到具体的寄存器地址,从而实现控制读取数据。初始化指令为写入01代表进行初始化。

CRC校验码:保证终端设备不去响应那些在传输过程中发生改变的数据,保证系统的安全性和效率。CRC校验采用16位的循环亢余方法,根据前面数据进行转换,可知初始化指令的CRC校验码为49 F6。

如需要读取多个寄存器地址或写入寄存器地址时,可以采用04(0x)和10(0x)功能码对夹 爪连续寄存器地址进行读写,具体控制指令格式请查阅modbus-RTU标准协议。

2.3.2 命令总览

命令由**基础控制地址表**和参数配置地址表组成。

基础控制地址表:包含初始化、力值、位置、速度、角度及其对应的反馈命令,是主要的控制指令。如表2.2所示。

参数配置表:包含夹爪的参数配置,包括可以写入modbus-RTU的相关配置以及IO相关配置。需要注意的是,在配置完需要的参数后,需要在0x0300处写入Flash保存。如表2.3所示。

功能	Modbus 地址高字节	Modbus 地址低字节	说明	写入	读取
初始化夹爪		0x00	重新标定夹爪 和回零位	写入1:回零位(找单向位 置);写入0xA5:重新标定	0:未处于初始化过程; 1:初始化完成;2:初始化中
力值		0x01	设定后续夹 爪夹持力值	20-100,百分比	读取当前设定力值
预留		0x02	_	_	_
位置	0x01	0x03	运动到指定 位置	0-1000,千分比	读取当前设定位置
速度		0x04	设定后续 夹持速度值	1-100,百分比	读取当前设定速度
绝对角 度低位		0x05	旋转到绝对 指定角度	-32768-32767,角度值	读取当前的设定角度
预留		0x06	_	_	_

功能	Modbus 地址高字节	Modbus 地址低字节	说明	写入	读取
旋转速度		0x07	设定后续旋转 速度值	1-100,百分比	读取当前的设定旋速
旋转 力值	0x01	0x08	设定后续 旋转力值	20-100,百分比	读取当前的设定扭力
相对旋转角度		0x09	旋转相对 旋转角度值	-32768-32767,角度值	读取当前的设定值, 执行旋转动作后置0
初始 化状态 反馈		0x00	反馈当前 夹爪的初始 化状态	——此Modbus地址仅读取	0:未初始化; 1:初始化成功; 2,初始化中
夹持状 态反馈	0x02	0x01	反馈当前夹爪 的夹持状态	——此Modbus地址仅读取	0:运动中,1:到达位置; 2:夹住物体;3:物体掉落
位置反馈	0x02	0x02	反馈当前夹 爪位置信息	——此Modbus地址仅读取	读取当前的 实时位置
错误/警 告/信息 反馈		0x05	反馈当前 夹爪的错误 码等信息	——此Modbus地址仅读取	0:无任何问题; 04 过热;08 过载;11过速
旋转角 度反馈		0x08	反馈当前 旋转 实时角度	——此Modbus地址仅读取	读取当前的 实时角度
预留		0x09			
旋转初 始化状 态反馈		0x0A	反馈旋转 初始化状态	——此Modbus地址仅读取	0:未初始化; 1:初始化成功;2,初始化中
旋转 状态 反馈		0x0B	反馈旋转状态	——此Modbus地址仅读取	0:运动中,1:到达位置; 2:堵转;0xFFFF 未初始化 3:堵转停转(需要 旋转堵 转停转配置 设置为1: 旋转堵 转停转)

表2.2 基础控制地址表

功能	Modbus 地址高字节	Modbus 地址低字节	说明	写入	读取
写入保存		0x00	写入flash	0:默认,1:将所有 参数写入flash	写入flash操作,默认 读取返回0
初始化 方向	0x03	0x01	配置夹爪 初始化方向	0:打开;1:关闭 (默认:0)	读取当前的设定值
设备ID		0x02	配置夹爪 Modbus ID	1-255 (默认:1)	读取当前的设定值
波特率		0x03	配置夹爪 Modbus 波特率	0-5:115200,57600, 38400,19200,9600, 4800(默认:0)	读取当前的设定值
停止位	0x03	0x04	配置夹爪 Modbus 停止位	0:1停止位; 1:2停止位(默认:0)	读取当前的设定值
校验位		0x05	配置夹爪 Modbus 校验位	0:无校验;1:奇校验; 2:偶校验(默认:0)	读取当前的设定值
旋转停止		0x02	在夹爪运行 中停止旋转	写入1:旋转停止	读取当前的设定值
自动初始化		0x04	上电自动初 始化配置	0:上电不初始化; 1:上电自动初始化 (0:默认)	读取当前的设定值 (需在0x300处写入01, 重新上电有效)
旋转堵 转停转 配置	0x05	0x05	旋转堵转 停转配置	0:旋转堵转不停转; 1:旋转堵转停转 (0:默认)	读取当前的设定值 (需在0x300处写入01保存)
复位旋转角度		0x06	复位无限旋 转轴的多圈 转动量	写入01 :复位旋转角度为 ±360°以内, 写入A5 :实际旋转到 初始化位置(0°),并复位 旋转角度为0°	读取当前的设定值
堵转阈 值等级		0x08	设置堵转 停转的灵敏 度等级	0-5,默认为2	读取当前的设定值

表2.3 参数配置地址表

2.3.3 命令详解

2.3.3.1 初始化夹爪

该命令为夹爪初始化相关命令,地址为 0x0100。具体初始化命令详细介绍如下表2.4所示。

功能	地址	说明	写入	读取
初始化夹爪	0x0100	重新标定夹爪 和回零位	写入1:回零位(找单 向位置);写入0xA5: 重新标定	0:未处于初始化过程; 1:初始化完成; 2:初始化中

表2.4 初始化指令

RS485连接控制前需进行初始化夹爪,用于重新标定夹爪和回零位,夹爪初始化过程中请 勿控制。根据夹爪型号的不同,初始化时间为0.5-3秒左右,请在初始化结束后进行控制。0x01和 0xA5 二者在功能上有所区分,如下所示:

0x01:根据**2.3.3.10** 初始化方向指令,来确定初始化状态为打开和关闭状态。写入01继续上次的初始化位置。若初始化方向为张开,夹爪初始化之前夹爪状态也为张开状态,则发送0x01进行初始化后,夹爪在视觉上不会运动。

0xA5:无论夹爪处于任何位置和状态,发送0xA5后,夹爪进行一合一开,若有物体阻碍夹爪的初始化过程,则会导致夹爪识别非闭合位置的零点位置。

初始具体执行初始化命令如下所示:

执行初始化成功(写操作):

发送:01 06 01 00 00 01 49 F6 返回:01 06 01 00 00 01 49 F6

完全进行初始化(写操作):

发送:01 06 01 00 00 A5 48 4D 返回:01 06 01 00 00 A5 48 4D

2.3.3.2 力值

该命令为夹爪力值相关命令,地址为0x0101。具体力值命令详细介绍如下表2.5所示。

功能	地址	说明	写入	读取
力值	0x0101	设置力值	20-100,百分比	读取当前设定力值

表2.5力值指令

力的数值范围为20-100(%),对应16进制数据为0014-0064。当您设定了力值之后,夹 爪会在位置移动中,以**设定力值**去夹持或者撑开目标物体。

默认力值100%。

以设置并读取30%闭合力为例:

设置30%力值(写操作):

发送:01 06 01 01 00 1E 59 FE 返回:01 06 01 01 00 1E 59 FE

读取当前设定力(读操作):

发送:01 03 01 01 00 01 D4 36 返回:01 03 02 xx xx crc1 crc2

2.3.3.3 位置

该命令为夹爪设置位置相关命令,地址为0x0103。具体位置命令详细介绍如下表2.6所示。

功能	地址	说明	写入	读取
位置	0x0103	设定夹爪位置	0-1000,千分比	读取当前设定位置

表2.6 位置指令

位置数值范围为0-1000(‰),对应16进制数据为0000-03E8,可以在0x0202地址处读取实时位置,请查阅**2.3.3.11位置反馈**。以设置并读取500(‰)位置为例:

设置500位置(写操作):

发送:0106010301F47821返回:0106010301F47821

读取当前设定位置(读操作):

发送:01030103000175F6返回:010302xxxxcrc1crc2读取当前实时位置(读操作):发送:0103020200012472返回:010302xxxxcrc1crc2

2.3.3.4 速度

该命令为夹爪设置速度相关命令,地址为0x0104。具体速度命令详细介绍如下表2.7所示。

功能	地址	说明	写入	读取
速度	0x0104	以设定速度运行	1-100,百分比	读取当前设定速度

表2.7 速度指令

速度数值范围为1-100(%),对应16进制数据为 00 01 – 00 64,认速度100%。以设置并读取50(%)闭合力为例:

设置50%速度(写操作):

发送:01 06 01 04 00 32 48 22 返回:01 06 01 04 00 32 48 22

读取当前速度(读操作):

发送:01 03 01 04 00 01 C4 37 返回:01 03 02 xx xx crc1 crc2

2.3.3.5 绝对角度低位

该命令为夹爪设置旋转绝对角度相关命令,地址为 0x0105。具体旋转角度命令详细介绍如下表2.8所示。

功能	地址	说明	写入	读取
绝对角度低位	0x0105	运行到绝对旋转角度	-32768-32767,角度值	读取当前设定旋转角度

表2.8 绝对角度低位指令

旋转角度低位数值范围为-32768-32767(角度),对应16进制数据为 0x0000-0xFFFF。 增加了相对旋转角度,**此角度为绝对旋转角度,为夹爪从开机后累计旋转角度,当累计旋转**

角度超过低位范围、绝对旋转角度自动复位旋转角度。

当需要读取实时绝对角度,请查阅2.3.3.13 旋转角度实时反馈。

最大值为:-32768~32767,当超过此数值时,绝对旋转角度自动复位旋转角度,将外部轴位置复位为1圈内的位置:复位前的位置大于0度时:0~360,复位前的位置小于0度时:-360~0。若需要手动清除绝对角度累计值,请查阅**2.3.3.27复位旋转角度**。

绝对旋转角度和相对旋转角度区别

- ·绝对旋转角度:为累计旋转角度,从开机初始化位置开始(角度0°开始),顺时针旋转累计计数,逆时针旋转累计减数。最大值为:-32768~32767,当超过此数值时,自动复位旋转角度。
- ·相对旋转角度:以当前夹爪位置作为参考,进行旋转。旋转完毕后,置位为0。用于顺时 针或逆时针旋转相对角度。

绝对旋转角度和相对旋转角度联系

· 绝对旋转受相对旋转角度影响: 当相对旋转角度旋转时, 绝对旋转角度会根据相对角度的数值进行累加或累减。

以设置并读取180度为例:

设置180 度绝对旋转角度(写操作):

发送:01 06 01 05 00 B4 98 40 返回:01 06 01 05 00 B4 98 40

读取当前设定的绝对角度(读操作):

发送:01 03 01 05 00 01 95 F7 返回:01 03 02 xx xx crc1 crc2

注意

·夹爪采用反码的表示形式表示正负。

旋转角度为正,正数的反码与其原码相同。

例:360°对应反码为168(0x)。

旋转360°角度指令为:01 06 01 05 01 68 98 49

旋转角度为负,负数的反码是对正数逐位取反加1,符号位为1。

例:-360°对应反码为FE97(0x)。

旋转-360°角度指令为:01 06 01 05 FE 97 99 F9

2.3.3.6 旋转速度

该命令为夹爪设置旋转速度相关命令,地址为 0x0107。具体旋转速度命令详细介绍如下表 2.9所示。

功能	地址	说明	写入	读取
旋转速度	0x0107	以设定旋转速度运行	1-100,百分比	读取当前设定旋转速度

表2.9 旋转速度指令

旋转速度数值范围为1-100(%),对应16进制数据为0001-0064。默认旋转速度50%。以设置并读取50(%)旋转速度为例:

设置50% 旋转速度(写操作): 发送:010601070032B822 返回:010601070032B822

读取当前旋转速度(读操作): 发送:0103010700013437 返回:010302xxxxcrc1crc2

2.3.3.7 旋转力

该命令为夹爪设置旋转力相关命令,地址为 0x0108。具体旋转力命令详细介绍如下表2.10 所示。

功能	地址	说明	写入	读取
旋转力	0x0108	以设定旋转力运行	20-100,百分比	读取当前设定旋转力

表2.10 旋转力指令

旋转力的数值范围为20-100(%),对应16进制数据为0014-0064,默认100%。。当您设定了旋转力值之后,夹爪会在旋转移动中,以设定旋转力值旋转。

以设置50%旋转力为例:

设置50% 旋转力值(写操作): 发送:0106010800328821 返回:0106010800328821

读取当前设定旋转力(读操作): 发送:0103010800010434 返回:010302xxxxcrc1crc2

2.3.3.8 相对旋转角度

该命令为夹爪设置相对旋转角度相关命令,地址为 0x0109。具体旋转力命令详细介绍如下表2.11所示。

功能	地址	说明	写入	读取
相对旋转角度	0x0109	旋转相对旋转角度	-32768-32767,角度值	读取当前的设定值, 执行旋转动作后置0

表2.11 表2.11 相对旋转指令

相对旋转角度范围为-32768-32767(角度),对应16进制数据为 0x0000-0xFFFF。当设置相对旋转角度,夹爪会按照设置角度进行旋转,旋转完后置0。

绝对旋转角度和相对旋转角度区别

- ·相对旋转角度:以当前夹爪位置作为参考,进行旋转。旋转完毕后,置位为0。用于顺时 针或逆时针旋转相对角度。
- ·绝对旋转角度:为累计旋转角度,从开机初始化位置开始(角度0°开始),顺时针旋转累计加数,逆时针旋转累计减数。最大值为:-32768~32767,当超过此数值时,自动复位旋转角度。

绝对旋转角度和相对旋转角度联系

·绝对旋转受相对旋转角度影响:当相对旋转角度旋转时,绝对旋转角度会根据相对角度的数值进行累加或累减。

以设置50°相对旋转角度为例:

设置50°相对旋转角度(写操作):

发送:01 06 01 09 00 32 D9 E1 返回:01 06 01 09 00 32 D9 E1

读取当前设定相对旋转角度(读操作):

发送:01 03 01 09 00 01 55 F4 返回:01 03 02 xx xx crc1 crc2

注意

·夹爪采用反码的表示形式表示正负。

旋转角度为正,正数的反码与其原码相同。

例:360°对应反码为168(0x)。

旋转360°角度指令为:0106010501689849

旋转角度为负,负数的反码是对正数逐位取反加1,符号位为1。

例:-360°对应反码为FE97(0x)。

旋转-360°角度指令为:01 06 01 05 FE 97 99 F9

2.3.3.9 初始化状态反馈

该命令为夹爪读取初始化状态反馈相关命令,地址为 0x0200。具体初始化状态反馈详细介绍如下表2.12所示。

功能	地址	说明	写入	读取
初始化状态反馈	0x0200	反馈当前夹爪的 初始化状态	不能写入	0:未初始化; 1:初始化成功; 2:初始化中

表2.12 初始化状态反馈

初始化状态反馈可用于获取是否进行了初始化。具体读取指令如下所示:

读取初始化状态(读操作):

发送:01 03 02 00 00 01 85 B2

返回:0103020000B844(当前为未初始化状态)

2.3.3.10 夹持状态反馈

该命令为夹爪夹持状态反馈相关命令,地址为 0x0201。具体夹持状态反馈详细介绍如下表2.13所示。

功能	地址	说明	写入	读取
夹持状态反馈	0x0201	0:运动中,1:到达位置; 2:夹住物体;3:物体掉落; FFFF:未初始化	不能写入	00;01;02;03

表2.13 夹持状态反馈

夹持状态反馈用干读取目前夹爪的状态,可分为4种状态,如下所示

反馈状态说明

不同的返回的指令数据,代表夹爪的不同状态,具体状态如下:

·00:夹爪处于正在运动状态。

·01:夹爪停止运动,且夹爪未检测到夹到物体。

·02:夹爪停止运动,且夹爪检测到夹到物体。

·03:夹爪检测到夹住物体后,发现物体掉落。

·FFFF:夹爪未初始化。

注:如果夹爪在到达指定位置前夹住物体,那么此时也认为夹爪已经夹住物体(反馈为:02)。

读取夹持状态反馈(读操作):

发送:01 03 02 01 00 01 D4 72

返回:01030200023985(返回02代表夹住物体)

2.3.3.11 位置反馈

该命令为夹爪位置实时反馈命令,地址为0x0202。具体位置反馈详细介绍如下表2.14所示。

功能	地址	说明	写入	读取
位置反馈	0x0202	反馈当前夹爪 实时位置	不能写入	读取当前实时位置

表2.14 位置反馈

位置反馈可用于读取当前夹爪实时位置。具体读取指令如下所示:

读取位置状态(读操作):

发送:01 03 02 02 00 01 24 72 返回:01 03 02 xx xx crc1 crc2

2.3.3.12 错误/警告/信息/反馈

该命令为夹爪反馈错误/警告/信息/反馈命令,地址为 0x0202。具体位置反馈详细介绍如下表2.15所示。

功能	地址	说明	写入	读取
错误/警告/信息 /反馈	0x0205	反馈当前夹爪的错误 码等信息	不能写入	0:无任何问题;04 过热; 08 过载;11过速

表2.14 错误/警告/信息/反馈

夹爪反馈错误/警告/信息/反馈命令可用于读取当前夹爪状态,包含是否温度过高,运行速度是否过快,扭矩是否过载。具体读取指令如下所示:

读取位置状态(读操作):

发送:01 03 02 05 00 01 95 B3 返回:01 03 02 xx xx crc1 crc2

2.3.3.13 旋转角度实时反馈

该命令为夹爪旋转角度实时反馈角度相关命令,地址为 0x0208。具体旋转角度反馈详细介绍如下表2.16所示。

功能	地址	说明	写入	读取
旋转角度反馈	0x0208	反馈当前夹爪旋转 实时角度	不能写入	读取当前旋转实时角度

表2.16 旋转角度反馈

旋转角度反馈可用于读取当前夹爪旋转实时角度,角度值为:反馈数据。具体读取指令如下所示:

读取旋转角度实时值(读操作): 发送:0103020800010470 返回:010302xxxxcrc1crc2

2.3.3.14 旋转初始化状态反馈

该命令为夹爪旋转初始化状态反馈相关命令,地址为 0x020A。具体旋转初始化状态反馈详细介绍如下表2.17所示

功能	地址	说明	写入	读取
旋转初始化 状态反馈	0x020A	反馈当前夹爪旋转 初始化状态	不能写入	0:未初始化; 1:初始化成功; 2:正在初始化

表2.17 旋转初始化状态反馈

旋转初始化状态反馈可用于读取当前夹爪旋转初始化状态。具体读取指令如下所示:

读取旋转初始化状态 (读操作): 发送:01 03 02 0A 00 01 A5 B0 返回:01 03 02 xx xx crc1 crc2

2.3.3.15 旋转状态反馈

该命令为夹爪旋转状态反馈相关命令,地址为 0x020B。具体旋转状态反馈详细介绍如下表2.18所示。

功能	地址	说明	写入	读取
旋转状态反馈	0x020B	反馈当前夹爪 旋转状态	不能写入	0:运动中,1:到达位置; 2:堵转;0xFFFF 未初始化 3:堵转停转(需要 旋转堵转 停转配置 设置为1: 旋转 堵转停转)

表2.18 夹爪旋转状态

旋转状态反馈可用于读取当前夹爪旋转状态。具体读取指令如下所示:

读取旋转状态(读操作):

发送:01 03 02 0B 00 01 F4 70 返回:01 03 02 xx xx crc1 crc2

2.3.3.16 写入保存

该命令为夹爪写入保存配置参数相关命令,地址为 0x0300。具体写入保存详细介绍如下表2.19所示。

功能	地址	说明	写入	读取
写入保存	0x0300	保存手动配置的参数	0:默认, 1:将所有参数写入flash	不可读取,默认返回0

表2.19 写入保存

写入保存可用于保存IO配置以及RS485的参数配置。具体设置指令如下所示:

写入保存(写操作):

发送:01 06 03 00 00 01 48 4E 返回:01 06 03 00 00 01 48 4E

注意

·若对夹爪进行过IO配置以及RS485的参数配置。必须要在此命令下对参数进行FLASH写入保存。(提示:写入操作会持续1-2秒,期间不会响应其他命令,因此建议不要在实时控制中使用此命令)

2.3.3.17 初始化方向

该命令为夹爪设置夹爪初始化方向相关命令,地址为 0x0301。具体设置初始化方向命令详细介绍如下表2.20所示

功能	地址	说明	写入	读取
初始化方向	0x0301	配置初始化方向	0:打开; 1:关闭;(默认:0)	读取当前设定值

表2.20 初始化方向

设备ID可用于配置夹爪初始化方向为打开或关闭,默认为0打开。 当写入0时,夹爪会运行到最大的张开位置,并作为初始起点。 当写入1时,夹爪会运行到最小的闭合位置,并作为初始起点。

设置初始化方向 为关闭 (写操作): 发送:010603010001198E

返回:010603010001198E

2.3.3.18 设备ID

该命令为夹爪设置夹爪设备ID相关命令,地址为 0x0302。具体设置设备ID命令详细介绍如下表2.21所示。

功能	地址	说明	写入	读取
设备ID	0x0302	配置夹爪Modbus ID	1-247 (默认:1)	读取夹爪Modbus ID

表2.21 设备ID

设备ID可用于配置夹爪Modbus ID,默认为1。当有多个采用modbus-RTU协议的设备时,可以通过改变ID的方式同时控制多台设备,具体设置夹爪ID命令如下:

设置设备ID为1(写操作):

发送:01 06 03 02 00 01 E9 8E 返回:01 06 03 02 00 01 E9 8E

2.3.3.19 波特率

该命令为夹爪配置波特率相关命令,地址为 0x0303。具体波特率配置详细介绍如下表2.22 所示。

功能	地址	说明	写入	读取
波特率	0x0303	0-5:115200,57600, 38400,19200,9600, 4800(0:默认)	0;1;2;3;4;5	读取波特率

表2.22 波特率设置

波特率命令可用于修改波特率大小,默认为115200,推荐默认。具体设置波特率指令如下:设置夹爪波特率为115200(写操作):

发送:01 06 03 03 00 00 79 8E 返回:01 06 03 03 00 00 79 8E

2.3.3.20 停止位

该命令为夹爪配置停止位相关命令,地址为 0x0304。具体设置停止位详细介绍如下表2.23 所示。

功能	地址	说明	写入	读取
停止位	0x0304	配置夹爪Modbus 停止位	0:1停止位;1:2停止位	读取停止位

表2.23 停止位设置

停止位命令可用于修改停止位位数,默认为1停止位,推荐默认。具体设置停止位指令如下:

设置夹爪停止位为1 (写操作): 发送:01060304000C84F 返回:01060304000C84F

2.3.3.21 校验位

该命令为夹爪配置波特率相关命令,地址为 0x0303。具体波特率配置详细介绍如下表2.22 所示。

功能	地址	说明	写入	读取
校验位	0x0305	配置夹爪Modbus 校验位	0:无校验; 1:奇校验; 2:偶校验	读取校验位

表2.24 校验位设置

校验位命令可用于修改校验位,默认为无校验位,推荐默认。具体设置校验位指令如下:设置夹爪校验位为无校验位(写操作):

发送:01 06 03 05 00 00 99 8F 返回:01 06 03 05 00 00 99 8F

2.3.3.22 旋转停止

该命令可用于夹爪运行过程中停止旋转角度,具体控制详细介绍如下表2.25所示。

功能	地址	说明	写入	读取
停止旋转	0x0502	在夹爪旋转过程 中停止旋转	写入1:夹爪停止	读取当前的设定值

表2.25 停止指令

此命令用于夹爪旋转停止,旋转过程中旋转速度较快,冲量较大,为防止旋转过程中突然停止对电爪造成损耗,停止过程是一个规划性的停止,最大持续时间在0.5S内会停止。

[注:此命令为软件版本1.14以后新加指令]

设置夹爪停止(写操作):

发送:01 06 05 02 00 01 E9 06 返回:01 06 05 02 00 01 E9 06

2.3.3.23 自动初始化

该命令为夹爪设置是否自动初始化指令,具体控制详细介绍如下表2.26所示。

功能	地址	说明	写入	读取
自动初始化	0x0504	上电自动初始 化配置	0:上电不初始化; 1:上电自动初始化 (0:默认)	读取当前的设定值 (需在0x300处写入01, 重新上电有效)

表2.26 自动初始化

此命令用于设置夹爪上电后是否自动进行初始化。上电后,夹爪会自动发送01初始化进行初始化,可以查阅**2.3.3.1 初始化夹爪**中对01初始化的解释。

设置夹爪自动进行初始化(写操作):

发送:01 06 05 04 00 01 09 07 返回:01 06 05 04 00 01 09 07

再发送:01 06 03 00 00 01 48 4E 返回:01 06 03 00 00 01 48 4E

2.3.3.24 旋转堵转停转配置

该命令为夹爪设置旋转堵转停转配置指令,具体控制详细介绍如下表2.27所示。

功能	地址	说明	写入	读取
旋转堵转	0x0505	旋转堵转	0:旋转堵转不停转;	读取当前的设定值
停转配置		停转配置	1:旋转堵转停转(0:默认)	(需在0x300处写入01保存)

表2.27 旋转堵转停转配置

此命令用于设置夹爪上电后是否旋转堵转后停止。

设置夹爪旋转堵转后停止(写操作):

发送:01 06 05 05 00 01 58 C7 返回:01 06 05 05 00 01 58 C7

再发送:01 06 03 00 00 01 48 4E 返回:01 06 03 00 00 01 48 4E

2.3.3.25 复位旋转角度

该命令为夹爪手动复位绝对旋转角度指令,具体控制详细介绍如下表2.28所示。

功能	地址	说明	写入	读取
复位绝对 旋转角度	0x0506	复位无限旋转轴的 多圈转动量	写入01: 复位旋转角度 为±360°以内, 写入A5: 实际旋转到 初始化位置(0°),并复 位旋转角度为0°	读取当前的设定值

表2.28 手动复位绝对旋转角度

写入01:将外部轴位置复位为1圈内的当前位置,夹爪不动:复位前的位置大于0度时:0~360, 复位前的位置小于0度时:-360~0

写入A5:将外部轴位置复位为1圈内的位置,夹爪运动到0°。

写入01复位夹爪绝对旋转角度(写操作):

发送:01 06 05 06 00 01 A8 C7 返回:01 06 05 06 00 01 A8 C7

写入A5复位夹爪绝对旋转角度(写操作):

发送:01 06 05 06 00 A5 A9 7C 返回:01 06 05 06 00 A5 A9 7C

2.3.3.26 堵转检测时间

该命令为夹爪堵转停转的检测时间设定指令,具体控制详细介绍如下表2.29所示。

功能	地址	说明	写入	读取
堵转检测时间	0x0508	设置堵转停转的 检测时间,即堵多少 毫秒后停转	0-255,默认为100	读取当前的设定值

表2.29 堵转检测时间

在具体堵转停转过程中,停转过程受夹爪旋转力和夹爪速度相关,一般不设置。**设置堵转检测时间是为了更准确的让夹爪堵转后停转,单位为10ms,默认为100也就是1s**。

检测时间越大,需要堵住的时间越长,最大为2.5s 检测时间越小,需要堵住的时间越短,最小为10ms。 检测时间值设置为0,则取消堵转。

设置堵转阈值等级为50(写操作):

发送:01 06 05 08 00 32 89 05 返回:01 06 05 08 00 32 89 05

保存参数:

发送:01 06 03 00 00 01 48 4E 返回:01 06 03 00 00 01 48 4E

3. 附录

3.1 夹爪接线方式

夹爪采用标准Modbus-RTU通讯协议,RS-485接口通讯。接线方式为半双工接线,如图3.2

图3.2

USB转485模块正面朝上, USB转485模块通电之后**电源指示灯亮红色**;

上方接口处左侧2个接口为485A/B线。**示范夹爪**颜色为**绿色A**,**蓝色B**。夹爪信号线颜色定义请参考**线标为准**。

3.2 夹爪通讯格式详解

夹爪默认通讯格式为:115200波特率;数据长度8;停止位1,无奇偶检验。上位机与夹爪通讯格式要一致。如不一致无法通讯请修改上位机或者夹爪通讯格式,夹爪通讯格式修改之后需重启。修改夹爪通讯格式请参考相应的夹爪说明书。

3.2.1 485指令03功能码详解

硬件采用RS-485,主从式半双工通讯,主站呼叫从站,从站应答方式通讯 [注:485指令均为16进制;寄存器地址请参考夹爪说明书内的**命令总览**] 夹爪常用功能码为03;06两个功能码,下方表1-1为03功能码使用简绍。

1	2	3	4	5	6	7	8
ID	功能码	起始寄存 器高字节	起始寄存 器低字节	寄存器数量 高字节	寄存器数量	CRC校验 码低字节	CRC校验 码高字节
01	03	01	03	00	01	75	F6

表1

举例指令:01 03 01 03 00 01 75F6

第1字节为从站ID 第2字节为功能码03H 第3、4字节为起始寄存器 第5、6字节为要读取寄存器的数量 第7、8字节为CRC校验码 03功能码:读取寄存器值

范围(1~254); 读取寄存器内数值;

要读取寄存器的开始地址;

00 01代表只读取当前0103寄存器;

计算1~6字节的CRC16校验和

举例指令说明:主站读取从站ID为1,0103寄存器开始的0001个寄存器的值返回主站。 注意事项:

如读取寄存器数量改为0002,就是读取0103开始的2个寄存器,0103与0104。需注意,读取数量是按照顺序往下读取,无法跳跃读取。例如0104寄存器和0106寄存器,需通过两个读取指令。或者读取数量改为0003,读取0104 0105 0106三个寄存器的值。不能通过一个指令单独读取0104 与0106。

从站返回指令:01 03 02 03 E8 B8FA

1	2	3	4	5	6	7
ID	功能码	返回 字节总数	寄存器当前 数据1	寄存器当前 数据2	CRC校验码 低字节	CRC校验码 高字节
01	03	02	03	E8	B8	FA

表2

第1字节为从站ID 第2字节为功能码03H 第3字节为返回数据长度 第4、5字节为返回数据内容 第6、7字节为CRC校验码 范围(1~254); 主站读取数值返回; 返回2个字节长度数据; 返回的数据内容为03E8; 计算1~6字节CRC16校验和。

返回指令说明:

主站向从站发送读取指令0103 0103 0001 75F6,从站给主站返回指令0103 02 03E8 B8FA。

解释:ID为1的从站返回2个字节长度的数据03E8(16进制),转化为10进制为1000。0103寄存器地址在夹爪设定里面代表位置寄存器。返回的数据代表当前夹爪在1000位置上。

3.2.2 485指令06功能码详解

举例指令:0106 0103 03E8 7888

第1字节为从站ID 第2字节为功能码06H 第3、4字节为寄存器地址 第5、6字节为写入数据 第7、8字节为CRC校验码

06功能码:写单个寄存器值

范围(1~254);

主站写入数值到从站寄存器; 写入数据的单个寄存器地址; 03E8转换成10进制为1000; 计算1~6字节的CRC16校验和。

举例指令说明:

主站写入数据到ID为1的从站单个寄存器0103内。写入的数据为03E8。0103

1	2	3	4	5	6	7	8
ID	功能码	寄存器 地址高字节	寄存器地址 低字节	写入数据 高字节	写入数据 低字节	CRC校验码 低字节	CRC校验 码高字节
01	06	01	03	03	E8	78	88

表3

为位置寄存器,此指令表示控制夹爪移动到1000位置上。

注意事项:

使用06功能码写入数据,当从站接受正确时会返回一样的指令与校验码,表示此指令正确接受写入。

例如主站发送:0106 0103 03E8 7888 从站返回:0106 0103 03E8 7888

微信公众号

深圳市大寰机器人科技有限公司 DH-Robotics Technology Co., Ltd.

深圳市南山区粤兴三道二号虚拟大学园综合楼A507 www.dh-robotics.com info@dh-robotics.com