粒子物理简明教程

第二节 对称性和守恒定律

余钊焕 (Zhao-Huan Yu)

ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, the University of Melbourne

http://yzhxxzxy.github.io

2017年3月

对称性 守恒量 群 同位旋 奇异数 夸克 轻子数 全同粒子交换 宇称 小9 ●**○○○** ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

对称性

自然界中存在着各式各样的对称性。

比如,太阳是一个球体,如果忽略细节结构,它就 具有<mark>球对称性</mark>,也就是说,绕中心进行任意旋转操 作都不会显现出任何形状上的变化。

然而,太阳表面经常出现黑暗的斑点——太阳黑子, 把它们考虑进来,太阳就不再具有严格的球对称性。 这是一种<mark>对称性破缺</mark>现象。

太阳和太阳黑子

在物理学中,如果某个现象或系统在某种变换下不改变,就说此现象或系统 具有与这种变换相对应的对称性。

- 空间对称性: 对空间性质进行变换所对应的对称性
- 时间对称性: 对时间性质进行变换所对应的对称性
- 内部对称性: 对与空间和时间相独立的其它性质进行变换所对应的对称性

连续对称性

对称性

若一种变换可用一组连续变化的参数来描述,则它是一种<mark>连续变换</mark>。连续变换对应的对称性叫<mark>连续对称性</mark>。上述球对称性就是一种连续对称性,因为旋转变换可以用连续变化的转动角描述。

诺特定理:如果一个系统具有某种不明显依赖于时间 的连续对称性,就必然存在一种对应的守恒定律。

对称性	守恒定律	守恒量
时间平移不变性	能量守恒	能量
空间平移不变性	动量守恒	动量
空间转动不变性	角动量守恒	角动量
U(1) 整体不变性	荷数守恒	荷数

诺特定理首先是在经典物理学中给出的,但它实际上对所有物理行为由最小作用量原理决定的系统都成立。因此,将它推广到量子物理学中也得到了普遍证明。

Emmy Noether (1882-1935)

不连续的变换称为<mark>分立变换</mark>。分立变换对应的对称性叫<mark>分立对称性</mark>。在经典物理学中,分立对称性不会导致守恒定律。但在量子物理学中,情况有所不同,若哈密顿量在某个不含时的厄米分立变换下不变,则<mark>变换本身是守恒量</mark>。

例如,<mark>空间反射变换(P 变换</mark>)是使空间坐标都反号而时间坐标不变的一种 分立变换,它对应的分立对称性叫空间反射不变性。

空间反射变换对任意态 $|\psi(\mathbf{x},t)\rangle$ 的作用是 $\hat{P}|\psi(\mathbf{x},t)\rangle = |\psi(-\mathbf{x},t)\rangle$ 。从而, $\hat{P}^2|\psi(\mathbf{x},t)\rangle = |\psi(\mathbf{x},t)\rangle$,即 $\hat{P}^2 = 1$ 。另外,可以证明 \hat{P} 算符是厄米的,故 $\hat{P} = \hat{P}^{-1} = \hat{P}^{\dagger}$.

P 变换对其本征态 $|\psi(\mathbf{x},t)\rangle$ 的作用是 $\hat{P}|\psi(\mathbf{x},t)\rangle = P|\psi(\mathbf{x},t)\rangle = |\psi(-\mathbf{x},t)\rangle$,这里 P 是 \hat{P} 的本征值。作用两次得 $\hat{P}^2|\psi(\mathbf{x},t)\rangle = P^2|\psi(\mathbf{x},t)\rangle = |\psi(\mathbf{x},t)\rangle$ 。因此,P 的取值必为 ± 1 ,叫做相应本征态的宇称 (或 \mathbf{P} 宇称)。P = +1 称为偶宇称,而 P = -1 称为奇宇称。

若哈密顿量 \hat{H} 在 P 变换不变,即 $\hat{p}^{-1}\hat{H}\hat{p}=\hat{H}$,亦即 $[\hat{P},\hat{H}]=0$,则利用 \hat{P} 的不含时性质 $\frac{\partial \hat{P}}{\partial t}=0$ 和薛定谔方程 $i\frac{\partial |\psi\rangle}{\partial t}=\hat{H}|\psi\rangle$ 可得

$$\begin{split} \frac{d}{dt} \left\langle \psi \right| \hat{P} \left| \psi \right\rangle &= \frac{\partial \left\langle \psi \right|}{\partial t} \hat{P} \left| \psi \right\rangle + \left\langle \psi \right| \hat{P} \frac{\partial \left| \psi \right\rangle}{\partial t} \\ &= \frac{1}{-i} \left\langle \psi \right| \hat{H} \hat{P} \left| \psi \right\rangle + \frac{1}{i} \left\langle \psi \right| \hat{P} \hat{H} \left| \psi \right\rangle \\ &= \frac{1}{i} \left\langle \psi \right| [\hat{P}, \hat{H}] \left| \psi \right\rangle = 0 \end{split}$$

可见,Ŷ 算符在任意态下的平均值都不随时间改变,故 Ŷ 是个<mark>守恒量</mark>。

在量子力学中,空间反射不变性导致宇称守恒定律。

守恒量分类

守恒量

从数学的角度看,守恒量可以分为两大类。

- 相加性守恒量:复合体系的总守恒量是各组成部分贡献守恒量的代数和。例如,能量,动量,角动量,电荷,同位旋,奇异数,轻子数,重子数。
- 相乘性守恒量: 复合体系的总守恒量是各组成部分贡献守恒量的乘积。例如, P 字称, C 字称, CP 字称。

有经典对应的守恒量都是相加性的,相乘性守恒量都没有经典对应。

守恒定律是否成立与相互作用有关,从这个角度可以对守恒定律分类。

- 严格守恒定律: 对各种相互作用都成立的守恒定律。
- 近似(或部分)守恒定律:对某些相互作用成立,对另一些相互作用不成立,但在运动过程中后者的影响是次要的。

能量、动量、角动量和电荷是有经典对应的<mark>相加性严格守恒量</mark>,同位旋和奇异数是无经典对应的<mark>相加性近似守恒量</mark>,P 宇称、C 宇称和 CP 宇称是无经典对应的<mark>相乘性近似守恒量</mark>。反粒子所有内部相加性量子数与正粒子相反。

群

在数学上,对称性由群论描述。对称变换的集合称为群,群元素具有乘法。

- 两个群元素的乘积就是两次变换相继作用,乘法满足结合律。
- 群中任意两个元素的乘积仍属于此群(封闭性)。

群 ●00

- 群中必有一个恒元 E,即恒等变换,它与任一元素的乘积仍为此元素。
- 任一元素都可以在群中找到逆元,两者之积为恒元。

若两个群元素的乘积与次序无关,即两次对称变换的结果与次序无关,则称该群是一个阿贝尔群(交换群),否则是一个非阿贝尔群(非交换群)。

如果一些 $m \times m$ 矩阵的乘法关系与群元素完全相同,就可用它们来表示群。 这些矩阵构成了群的 m 维线性表示。

利用线性表示,可将对称变换视作矩阵,将变换所操作的量子态视作列矢量。在粒子物理中,经常见到有 m 种粒子集体满足某种对称性,构成 m 重态。从群表示论角度看,这里每种粒子对应于 m 维表示的一个列矢量基底。

分立群和连续群

分立对称性对应于分立群,连续对称性对应于连续群。

由一个元素 R 和它的幂次构成的分立群称为循环群,是一种阿贝尔群;如果 $R^n = E$,该群就称为 n **阶循环群** Z_n ,R 称为**生成元**。P 变换满足 $\hat{P}^2 = 1$,因 而与恒等变换构成了一个 Z_2 群。所以,空间反射不变性是一种 Z_2 **对称性**。

李群是粒子物理学中常见的一类连续群,具有一定的解析性质(微分流形)。

n 维李群的群元素 R 可用 n 个独立实参数 θ^a 描写,恒元邻域的元素可表达为指数形式 $R=\exp(i\theta^at^a)$ 。n 个厄米算符 t^a 称为<mark>生成元</mark>,满足<mark>李代数</mark>关系

$$[t^a, t^b] = if^{abc}t^c, \quad a, b, c = 1, \dots, n.$$

实数 f^{abc} 称为李群的<mark>结构常数</mark>,满足 $f^{abc} = -f^{bac}$ 。在李群的表示中,生成元表达为厄米矩阵,不同维表示具有不同阶生成元,但结构常数总是一样的。(注意:上面的表达式都省略了求和符号,实际上要对重复的指标从 $1 \subseteq n$ 求和。)

典型的李群: U(n) 群和 SU(n) 群

在线性代数中,矩阵具有乘法,因而可逆方阵能够依靠自身乘法关系构成群。 用来定义矩阵群本身的方阵构成该群的基础表示,这个表示的维数和方阵的 阶数一致。需要注意的是,矩阵群可以拥有维数不同于基础表示的其它表示。

幺正群 U(n) 由 $n \times n$ 幺正矩阵 U 构成,是维数为 n^2 的李群。这些矩阵满足 $U^\dagger U = UU^\dagger = 1, \quad |\det(U)| = 1.$

最常见的幺正群是 U(1) 群,记实数 Q 为它的生成元,则群元素在基础表示 里表达为 $e^{iQ\theta}$ 。电磁相互作用具有 U(1) 对称性,从而导致电荷守恒定律。

特殊幺正群 SU(n) 由 det(U) = 1 的 $n \times n$ 幺正矩阵 U 构成, 是 $n^2 - 1$ 维李群。

SU(2) 群基础表示的生成元 $t^a = \sigma^a/2$,其中 σ^a 为<mark>泡利矩阵</mark>

$$\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

李代数关系为 $[t^a, t^b] = i\varepsilon^{abc}t^c$,结构常数是 Levi-Civita 符号 ε^{abc} 。

可U灰

实验表明,质子和中子质量相近,强相互作用性质相似。 π 介子也有类似性质。在强相互作用中互换质子和中子,系统性质不会改变。类比于自旋,海森堡在 1932 年提出同位旋的概念解释这种现象。

同位旋

粒子	质子 <i>p</i>	中子 n	π+ 介子	π ⁰ 介子	π- 介子
质量 (MeV)	938.27	939.57	139.57	134.98	139.57
电荷 Q	+1	0	+1	0	-1

W. Heisenberg (1901-1976)

同位旋 I 由 SU(2) 群描述,生成元记为 I^a 。在 SU(2) 的 2 维和 3 维表示中, I^3 分别为 diag(1/2, -1/2) 和 diag(1, 0, -1),对角元是多重态的 I^3 本征值。

质子和中子的同位旋为
$$I=\frac{1}{2}$$
,构成二重态 $\binom{p}{n}$, $I^3(p)=+\frac{1}{2}$, $I^3(n)=-\frac{1}{2}$ π 介子的同位旋为 $I=1$,构成三重态 $\binom{\pi^+}{\pi^0}$, $I^3(\pi^\pm)=\pm 1$, $I^3(\pi^0)=0$

强相互作用同位旋 SU(2) 不变性引起同位旋 I 和同位旋第三分量 I^3 的守恒。

因此,在强相互作用过程中,初态与末态的 (I,I^3) 相同: $\Delta I = \Delta I^3 = 0$ 。

对于 π 介子与核子的散射,电荷守恒定律允许存在以下过程:

同位旋

弹性散射	截面	弹性散射	截面	弹性散射	截面	准弹性散射	截面
$\pi^+ p \to \pi^+ p$	σ_1	$\pi^0 p \to \pi^0 p$	σ_3	$\pi^- p \to \pi^- p$	σ_5	$\pi^+ n \longleftrightarrow \pi^0 p$	σ_7
$\pi^+ n \to \pi^+ n$	σ_2	$\pi^0 n \to \pi^0 n$	σ_4	$\pi^- n \rightarrow \pi^- n$	σ_6	$\pi^- p \longleftrightarrow \pi^0 n$	σ_8

强作用在同位旋 SU(2) 变换下不变,则在同位旋空间绕第二个轴转 180°,即

$$p \longleftrightarrow n, \quad \pi^+ \longleftrightarrow \pi^-, \quad \pi^0 \longleftrightarrow \pi^0,$$

得到的散射截面应该不变:

$$\sigma_1 = \sigma_6$$
, $\sigma_2 = \sigma_5$, $\sigma_3 = \sigma_4$, $\sigma_7 = \sigma_8$.

这在实验中得到证实。

同位旋破坏

● 强相互作用同位旋不变性破坏

同位旋

- 在强相互作用中,同位旋量子数是严格守恒的,但同位旋不变性不是完全 严格的。由于同个多重态中不同分量具有<mark>微小质量差</mark>,各分量在运动学上 有微小差异,导致同位旋不变性引起的截面关系式存在微小破坏。
- ② 电磁相互作用同位旋破坏
 - 同个同位旋多重态中各分量带有**不同电荷**,导致电磁相互作用性质不同。 因此,在电磁相互作用中同位旋不守恒。比如, $\pi^0 \to \gamma \gamma$ 电磁衰变就不满 足同位旋守恒(光子同位旋为 0)。不过,电磁相互作用过程中同位旋的 改变比较有限: $\Delta I = 0$ 或 ± 1 , $\Delta I^3 = 0$ (I^3 仍然是守恒的)。
- **③** 弱相互作用同位旋破坏 在弱相互作用中,I 和 I^3 都不守恒。不过,大量实验结果表明,大多数 弱作用过程满足 $|\Delta I| \le 1$ 。

1947 年,宇宙线实验中观察到由两种中性粒子引起的 \lor 型事例,它们是后来称为 K^0 介子和 Λ^0 重子的<mark>奇异粒子</mark>。50 年代,加速器上产生大量奇异粒子,才得以系统研究。奇异粒子具有以下两个特征。

● 奇异粒子在强相互作用中成对产生,再分别衰变为非奇异粒子。

奇异数

例如:
$$\pi^- p \to \pi^0 K^+ \Sigma^-$$
, $K^+ \to \mu^+ \nu_\mu$, $\Sigma^- \to n\pi^-$; $pp \to pK^+ \Lambda^0$, $K^+ \to \pi^+ \pi^0$, $\Lambda^0 \to n\pi^0$ 。

● 奇异粒子以强相互作用典型时间 $t \sim 10^{-23}$ s 快速产生,再以弱相互作用 典型时间 $\tau \sim 10^{-8} - 10^{-10}$ s 缓慢衰变。

例如: K^{\pm} 寿命为 $\tau_{K^{\pm}} = 1.2 \times 10^{-8} \text{ s}$, Λ^{0} 寿命为 $\tau_{\Lambda^{0}} = 2.6 \times 10^{-10} \text{ s}$ 。

有些奇异粒子成对产生过程,如 $nn \to \Lambda^0 \Lambda^0$,虽然阈能很低,却始终没有在实验中发现。这促使西岛和彦在 1953 年提出<mark>奇异数 S</mark> 的概念,指定 K^+ 和 K^0 的奇异数为 +1, K^- 、 Σ^- 和 Λ^0 的奇异数为 -1。强相互作用中奇异数守恒,故 $nn \to \Lambda^0 \Lambda^0$ 这个过程被严格禁戒。弱相互作用中奇异数不守恒,因而奇异粒子可以缓慢衰变成非奇异粒子。

夸克

建立夸克模型之后,奇异数得到了合理的解释。奇异数是由<mark>奇夸克</mark>导致的,正奇夸克 s 的奇异数为 -1,反奇夸克 \bar{s} 的奇异数为 +1。

同理可以定义<mark>粲数 C、底数 B 和顶数 T。另外,还有一个概念是<mark>重子数 B,</mark>介子的重子数为 0,重子的重子数为 ± 1 。这些相加性量子数各自对应于一种 ± 1 ± 1 </mark>

夸克	I	I^3	${\cal S}$	\mathcal{C}	\mathcal{B}	\mathcal{T}	B	Q	质量 (GeV)
d	1/2	-1/2	0	0	0	0	+1/3	-1/3	~0.3 组
и	1/2	+1/2	0	0	0	0	+1/3	+2/3	~ 0.3
S	0	0	-1	0	0	0	+1/3	-1/3	~0.5 质
c	0	0	0	+1	0	0	+1/3	+2/3	~16
b	0	0	0	0	-1	0	+1/3	-1/3	~ 4.6 量
t	0	0	0	0	0	+1	+1/3	+2/3	173 (极点质量)

强子的相加性量子数是价夸克的相加性量子数之和,满足盖尔曼-西岛关系

电荷
$$Q = I^3 + \frac{1}{2}(B + S + C + B + T).$$

轻子数

电子、 μ 子、 τ 子及相应中微子统称为轻子,它们不参与强相互作用。

1962 年,L. Lederman、M. Schwartz 和 J. Steinberger 在中微子束流实验中发现,中微子具有不同味道,存在 μ 子型中微子 ν_{μ} ,它与电子型中微子 ν_{e} 不同。他们在中微子与原子核 N 的散射中探测到反应 $\nu_{\mu}+N\to\mu^{-}+X$ (X 代表不包含带电轻子的其它所有粒子),但没有探测到反应 $\nu_{\mu}+N\to e^{-}+X$ 。

轻子数

这表明不同代轻子在反应过程中不会混合起来。按下表方式指定三种<mark>轻子数</mark>

 L_e 、 L_u 和 L_τ ,则它们在电磁和弱相互作用中守恒。

轻子	L_e	L_{μ}	$L_{ au}$	Q	质量	寿命
e ⁻	+1	0			0.511 MeV	稳定
μ^-	0	+1	0	-1	105.7 MeV	2.2×10^{-6} s
$ au^-$	0	0	+1	-1	1.777 GeV	$2.9\times10^{-13}~\text{s}$
ν_e	+1	0	0	0	< 1 eV	稳定
$ u_{\mu}$	0	+1	0	0	< 1 eV	稳定
$ u_{ au}$	0	0	+1	0	< 1 eV	稳定

轻子数守恒允许:

$$n \rightarrow pe^{-}\bar{\nu}_{e}$$

$$\mu^{-} \rightarrow e^{-}\bar{\nu}_{e}\nu_{\mu}$$

$$\tau^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\nu_{\tau}$$

$$\pi^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}$$

轻子数守恒禁戒: $e^-e^- \leftrightarrow \pi^-\pi^-$

$$\mu^- \nrightarrow e^- \gamma$$
 $\pi^- \nrightarrow \mu^- \bar{\nu}_e$

全同粒子交换不变性

对于含有全同粒子的系统,把交换全同粒子 i 和 j 的分立变换记作 \hat{P}_{ij} 。根据量子力学<mark>全同性原理</mark>,交换全同粒子不会改变系统状态,运动规律对于全同粒子不可分辩。因此, $[\hat{P}_{ij},\hat{H}]=0$,即 \hat{P}_{ij} 是系统的守恒量。由于 $\hat{P}_{ij}^2=1$,有 $|j,i\rangle=\hat{P}_{ij}|i,j\rangle=\pm|i,j\rangle$,即 \hat{P}_{ij} 的本征值只能取 $P_{ij}=\pm1$ 。

全同粒子交换

- $P_{ij} = +1$: 波函数对于交换 i 和 j 是对称的,相应全同粒子是玻色子。
- $P_{ij} = -1$: 波函数对于交换 i 和 j 是反对称的,相应全同粒子是费米子。

全同粒子交换不变性对所有相互作用成立, \hat{P}_{ii} 是相乘性严格守恒量。

对于**两个全同粒子构成的系统**,可以证明,波函数 $|i,j\rangle$ 满足

$$\hat{P}_{ij}|i,j\rangle = (-)^{L+S-2s}|i,j\rangle,$$

其中 s 为粒子的自旋,L 为系统的轨道角动量,S 为系统的总自旋。玻色子的自旋 s 为整数,有 $(-)^{2s} = +1$;费米子的自旋 s 为半整数,有 $(-)^{2s} = -1$ 。因此 L + S 必定为偶数。

C宇称

电荷共轭变换(C 变换)是一个分立变换,将粒子态转换成对应的反粒子态。 纯中性粒子和纯中性系统在 C 变换下不变,因此是 C 变换的本征态,相应的 本征值 C 称为 C 字称。 C 字称在强和电磁作用中守恒,在弱作用中不守恒。

- C 变换使电菏和电流反号,因而电磁场也要反号才能符合麦克斯韦方程组。所以,电磁场的激发态光子的 **C** 宇称为奇,即 $C(\gamma) = -1$ 。
- 如果一个多粒子系统各组分内部相加性守恒量之和均为零,且在 C 变换下不变,则称为**纯中性系统**,比如 $\gamma\gamma$ 系统、 e^+e^- 系统和 $e^+e^-\gamma$ 系统。可以证明,一对正反粒子组成的纯中性系统的 C 宇称为 $C = (-)^{L+S}$,其中 L 为轨道角动量,S 为总自旋。
- 实验上观测到的 π^0 主要衰变道是电磁相互作用过程 $\pi^0 \to \gamma \gamma$ 。末态是由两个光子组成的纯中性系统,故 C 宇称为 $(-)^{L+S}$,另由全同粒子交换不变性可知该系统 L+S 为偶数。因此,C 宇称在电磁相互作用中守恒意味着 π^0 介子的 C 宇称为偶,即 $C(\pi^0)=+1$ 。

宇称 ●000

P 宇称

在 P 变换下,位置算符 $\hat{\mathbf{x}}$ 和动量算符 $\hat{\mathbf{p}}$ 反号,即 $\hat{P}^{-1}\hat{\mathbf{x}}\hat{P} = -\mathbf{x}$, $\hat{P}^{-1}\hat{\mathbf{p}}\hat{P} = -\mathbf{p}$; 而轨道角动量算符 $\hat{\mathbf{L}} \equiv \hat{\mathbf{x}} \times \hat{\mathbf{p}}$ 不变,因为 $\hat{P}^{-1}\hat{\mathbf{L}}\hat{P} = (\hat{P}^{-1}\hat{\mathbf{x}}\hat{P}) \times (\hat{P}^{-1}\hat{\mathbf{p}}\hat{P}) = \mathbf{L}$ 。 也就是说, $[\hat{P},\hat{\mathbf{L}}] = 0$ 。于是, $\hat{\mathbf{L}}$ 和 \hat{P} 具有共同的本征态,可以同时测量。

- <mark>轨道宇称</mark>: 轨道角动量为 L 时轨道波函数由球谐函数 $|LM\rangle = Y_{LM}(\theta, \phi)$ 描述,可得 $\hat{P}|LM\rangle = (-)^L|LM\rangle$,故轨道宇称为 $P = (-)^L$ 。
- ▶ 内禀宇称: 粒子的内部波函数具有的宇称。纯中性粒子具有绝对的内禀宇 称,其它粒子只有相对的,需要约定。实验测得如下绝对内禀宇称:

$$P(\gamma) = P(\pi^0) = P(\rho^0) = P(J/\psi) = -1.$$

总宇称是轨道宇称和内禀宇称之积,在强和电磁相互作用中守恒。

对于一对正反粒子组成的纯中性系统,可以证明,若它由正反费米子对组成,则宇称为 $P = (-)^{L+1}$;若它由正反玻色子对组成,则宇称为 $P = (-)^{L}$ 。 扣除轨道宇称的贡献之后,可以看出,正反费米子的内禀宇称符号相反,而正反玻色子的内禀宇称符号相同。

宇称

弱相互作用中宇称不守恒

1947 年,宇宙线实验中观测到两个弱衰变粒子 τ^+ 和 θ^+ ,两者质量几乎相同,但衰变末态具有不同的宇称: $\theta^+ \to \pi^+\pi^0$ (偶宇称) 和 $\tau^+ \to \pi^+\pi^-\pi^+$ (奇宇称)。当时普遍认为宇称是守恒的,因而 τ^+ 和 θ^+ 看起来不是同一种粒子,却又具有相同的质量。这称为 $\theta^-\tau$ **疑难**。

1956 年,李政道和杨振宁仔细分析了各种实验,发现没有证据表明弱作用过程中宇称是守恒的,提出宇称只在弱相互作用中不守恒的观点,并建议一些实验来检验。这样一来, τ^+ 和 θ^+ 能被认作同种粒子,后来称为 K^+ 介子。

随后,吴健雄在钴 60 衰变 $(^{60}\text{Co} \rightarrow ^{60}\text{Ni} + e^- + \bar{\nu}_e)$ 实验中发现电子优先选择反平行于原子核自旋方向出射,从而证实弱作用没有空间反射不变性。李政道和杨振宁因而获得 1957 年诺贝尔奖。

李政道 (1926-)

杨振宁 (1922-)

吴健雄 (1912-1997)

CP 宇称

CP 变换定义为先作 P 变换,再作 C 变换。纯中性粒子和纯中性系统是 P 变换和 C 变换的共同本征态,因而是 CP 变换本征态。相应本征值是 P 宇称与 C 宇称之积,称为 **CP** 宇称。

对于一对正反粒子组成的纯中性系统,CP 宇称为 $CP = (-)^{S-2s}$,与系统的轨道角动量无关,只由系统的总自旋 S 和粒子的自旋 S 决定。

CP 宇称在强和电磁相互作用中守恒。虽然在弱相互作用中 P 宇称和 C 宇称都不守恒,但 CP 宇称在大多数弱作用过程中守恒。有一小部分弱作用过程存在 CP 破坏效应,根源于三代夸克混合矩阵(CKM 矩阵)中的复相位。

CP 变换将弱衰变过程 $K_L^0 \to \pi^- \mu^+ \nu_\mu$ 变换为 $K_L^0 \to \pi^+ \mu^- \bar{\nu}_\mu$ 。如果 CP 不变性在弱相互作用中严格成立,这两个过程应该具有相同的衰变分宽度,即 $\Gamma(K_L^0 \to \pi^- \mu^+ \nu_\mu) = \Gamma(K_L^0 \to \pi^+ \mu^- \bar{\nu}_\mu)$ 。然而,实验测得

$$\frac{\Gamma(K_L^0 \to \pi^- \mu^+ \nu_\mu) - \Gamma(K_L^0 \to \pi^+ \mu^- \bar{\nu}_\mu)}{\Gamma(K_L^0 \to \pi^- \mu^+ \nu_\mu) + \Gamma(K_L^0 \to \pi^+ \mu^- \bar{\nu}_\mu)} = (0.64 \pm 0.08)\%.$$

说明 K_L^0 介子衰变过程存在千分之几的 CP 破坏效应。

小结

能量 E、动量 p、角动量 J、角动量第三分量 J^3 、电荷 Q、重子数 B、轻子数 $L_{e,\mu,\tau}$ 、同位旋 I、同位旋第三分量 I^3 、奇异数 S、粲数 C、底数 B 和顶数 T 的守恒情况:

相加性守恒量	E, p, J, J^3	Q , B , L_e , L_μ , $L_ au$	I	I^3	\mathcal{S} , \mathcal{C} , \mathcal{B} , \mathcal{T}
强相互作用	✓	\checkmark	\checkmark	√	\checkmark
电磁相互作用	✓	\checkmark	×	√	√
弱相互作用	✓	\checkmark	×	×	×

全同粒子交换 P_{ij} 、C 宇称、P 宇称和 CP 宇称的守恒情况:

相乘性守恒量	P_{ij}	С	P	CP
强相互作用	√	\checkmark	√	√
电磁相互作用	\checkmark	\checkmark	\checkmark	\checkmark
弱相互作用	√	×	×	√×

注: \checkmark 表示守恒; \times 表示不守恒; \checkmark_{\times} 表示基本守恒,但少数过程有微小破坏。

小结