$\lambda \in \mathbb{F}$ 是给定的常数, $A \in \mathbb{F}^{n \times n}$ 是矩阵.

1.置换矩阵.

答: $(-1)^{\stackrel{\circ}{=} p \pm \delta}$.

2.初等变换矩阵 $D_i^{\lambda}, T_{j,i}^{\lambda}$,以及 $S_{i,j}$.

答: $\det D_i^{\lambda} = \lambda$, $\det T_{i,i}^{\lambda} = 1$, 以及 $\det S_{i,j} = -1$.

3.若A是对角矩阵,求 $\det A$.

答: 对角元乘积.

4.若 A 是上三角矩阵, 求 $\det A$.

答: 对角元乘积.

 ${}^{5.}$ 若 $A=egin{pmatrix} X & O \ Y & Z \end{pmatrix}$,其中X与Z是方阵,求 $\det A$.

答: $\det A = \det X \cdot \det Z$.

 $6.A^{-1}$ (若存在) 的行列式.

答: $\det(A^{-1}) = (\det A)^{-1}$.

7. 方阵乘积的行列式。

答: $\det AB = \det A \cdot \det B$.

8.若 $\operatorname{rank}(A) < n$, 求 $\det A$.

答: 0.

 $9.\lambda A$ 的行列式 (用 $\det A$ 表示).

答: $\lambda^{$ 矩阵阶数 $\cdot \det A$.

 $10.A^T$ 的行列式 (用 $\det A$ 表示).

答: $\det A^T = \det A$.

11. 将 A 顺时针旋转 $\pi/2$ 后的行列式 (用 $\det A$ 表示).

答: 顺时针旋转 $\pi/2$ 后取转置, 无非对换第 i 行与第 n-i 行 (取遍 $1 \le i \le \lfloor n/2 \rfloor$). 符号 $(-1)^{n(n-1)/2}$.

12. f 是 \mathbb{F} 上的多项式, 求 $\det(f(A))$.

答: 没什么确切的答案. 错误答案: $f(\det A)$.

13.求 $\det e^A$.

答: (为定义 e^A , 需默认数域). 依照 $e^{x+y}=e^x\cdot e^y$, 可以猜到答案是 $e^{\mathrm{tr}(A)}$. 严格的证明步骤如下:

1.在 \mathbb{C} 上使用 Jordan 标准型 $A=P^{-1}JP$. 依照 e 的级数定义得

$$e^{P^{-1}JP} = P^{-1}e^{J}P (1)$$

2.由于 J 是上三角矩阵,故 e^J 上三角,且 e^J 在 (i,i) 处分量是 J 在 (i,i) 处分量的指数. 因此 $\det e^J = e^{\mathrm{tr}(J)}$. 从而 $\det e^A = e^{\mathrm{tr}(A)}$.

3. 依照定义, ${f tr}$ 与 ${f det}$ 不依赖域的选取. 式 ${f det}$ $e^A=e^{{
m tr}(A)}$ 在 ${\Bbb F}$ 上成立,当且仅当在 ${\Bbb C}$ 上成立.

1. 举出 $\det(A - B) = 0$ 但 $\det(A^2 - B^2) = 1$ 的例子.

答: 例如
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 与 $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

2. 举出 $\det(A - B) = 1$ 但 $\det(A^2 - B^2) = 0$ 的例子.

答: 例如 A = (1/2) 与 B = (-1/2).

3. 假设 AB = BA, 则 $\det(A^2 - B^2) = \det(A - B) \det(A + B)$.

答: 交換性条件保证了 $A^2 - B^2 = (A - B)(A + B)$.

记
$$M=egin{pmatrix}A&B\\C&D\end{pmatrix}$$
, 其中 $A,B,C,D\in\mathbb{R}^{2 imes2}$. 记 $N=DA-CB$.

此处的 ℝ 可以换做一般的域.

1. 举出 $\det M = 0$ 但 $\det N \neq 0$ 的例子.

答: 找出 A = C, B = D, 以及 DA - AD 可逆的例子即可.

例 如 , 考 虑
$$A=C=\begin{pmatrix}1&1\\0&1\end{pmatrix}$$
 与 $B=D=\begin{pmatrix}1&0\\1&1\end{pmatrix}$. 由 $r(M)=2$ 知 $\det M=0$. 另 一 方 面 ,
$$N=DA-AD=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$$
 可逆 . 这一构造对任意域也是成立的,因为 -1 一定是域的可逆元 .

2. 举出 $\det M \neq 0$ 但 $\det N = 0$ 的例子.

答: 依照下一问的提示, 每对相邻的 2×2 方块乘法不可交换. 简单试验得

$$M = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}. \tag{2}$$

经初等变换, M 可以变作置换矩阵, 从而 $\det M \neq 0$. 计算知 $\det N = 0$. 这一构造对任意域也是成立的.

3.假设 AB=BA,则 $\det M=\det N$. 对称的命题略.

答:以下的说理方式在一般域上可行,但需要一些多项式,扩域方面的知识储备.我们仅考虑 $A,B,C,D\in\mathbb{F}^{n\times n}$ (\mathbb{F} 是数域).

若 AB = BA,则有以下分块矩阵的恒等式

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot \begin{pmatrix} O & B \\ I & -A \end{pmatrix} = \begin{pmatrix} B & O \\ D & CB - DA \end{pmatrix}. \tag{3}$$

因此 $\det M \cdot \det B \cdot (-1)^{n^2} = \det B \cdot \det(CB - DA)$. 依照 $\det(CB - DA) = (-1)^n \det(DA - CB)$, 得

$$\det B \cdot (\det M - \det(DA - CB)) = 0. \tag{4}$$

对任意 $x\in\mathbb{F}$,记 $B^{(x)}:=B+xI$,以及 $M^{(x)}:=egin{pmatrix}A&B^{(x)}\\C&D\end{pmatrix}$.此时仍有 $AB^{(x)}=B^{(x)}A$.遂有

$$\det B^{(x)} \cdot (\det M^{(x)} - \det(DA - CB^{(x)})) = 0.$$
 (5)

ullet 试回顾这一个事实: 若数域上的两个多项式满足 $f\cdot g=0$, 则 f=0 或 g=0. 若将数域换成一般域, 需要做一些细微调整.

依照行列式的展开式 (或考虑特征值), 当 x 足够大时 $\det B^{(x)} \neq 0$. 这说明

$$\det M^{(x)} - \det(DA - CB^{(x)}) \tag{6}$$

是恒零的多项式. 取 x=0, 得证.

$$\stackrel{\textbf{4}}{\cdot}$$
 计算 $\det \begin{pmatrix} I & B \\ C & D \end{pmatrix}$.

答: 使用上一问的结论, 得 $\det(D-CB)$.

Ex 3. 使用矩阵初等变换, 证明对任意 $A\in\mathbb{F}^{m\times n}$, $B\in\mathbb{F}^{n\times m}$, 以及 $\lambda\in\mathbb{F}$, 总有

$$\lambda^n \cdot \det(\lambda I_m - AB) = \lambda^m \cdot \det(\lambda I_n - BA). \tag{7}$$

答: 对 $\lambda \neq 0$, 考虑列初等变换

$$\begin{pmatrix} \lambda I_m - AB & O \\ B & \lambda I_n \end{pmatrix} \overset{\text{freek}}{\sim} \begin{pmatrix} \lambda I_m & \lambda A \\ B & \lambda I_n \end{pmatrix} \overset{\text{preek}}{\sim} \begin{pmatrix} \lambda I_m & O \\ B & \lambda I_n - BA \end{pmatrix}. \tag{8}$$

从而

$$\lambda^n \cdot \det(\lambda I_m - AB) = \lambda^m \cdot \det(\lambda I_n - BA). \tag{9}$$

推广: 对方阵 $A, B \in C$ (未必可逆), 总有 $\det(A+B+ACB) = \det(A+B+BCA)$.

答: 类似 Ex2-3 的证明. 选定数域, 取 $A^{(x)}:=A+xI$ 以及 $B^{(x)}:=B+xI$. 对足够大的 x, $A^{(x)}$ 与 $B^{(x)}$ 均是可逆的. 此时

$$\det(A^{(x)} + B^{(x)} + A^{(x)}CB^{(x)}) = \det A^{(x)} \cdot \det B^{(x)} \cdot \det((A^{(x)})^{-1} + (B^{(x)})^{-1} + C), \tag{10}$$

$$\det(A^{(x)} + B^{(x)} + B^{(x)}CA^{(x)}) = \det A^{(x)} \cdot \det B^{(x)} \cdot \det((A^{(x)})^{-1} + (B^{(x)})^{-1} + C). \tag{11}$$

因此 $\det(A^{(x)}+B^{(x)}+A^{(x)}CB^{(x)})-\det(A^{(x)}+B^{(x)}+B^{(x)}CA^{(x)})$ 是恒零的多项式. 取 x=0 即可.

○ 此题似乎用 Ex. 2-4 的结论就行了; 但 Ex. 2-4 本质上还是涉及了扰动法.

$$\begin{pmatrix} 0 & & & a_n \\ 1 & 0 & & & a_{n-1} \\ & 1 & \ddots & & \vdots \\ & & \ddots & 0 & a_2 \\ & & 1 & a_1 \end{pmatrix}. \tag{12}$$

答: 此题过于简单了. 将最后一列提至第一列, 得上三角矩阵. 符号 $(-1)^{n-1}\cdot a_n$. 原题是求解特征多项式 $\det(xI-A)$.

$$\det(xI - A) = -(a_n + a_{n-1}x + \dots + a_1x^{n-1}) + x^n.$$
(13)

注: 这是习题课的原题. 证明题的解答从略.

1. 求以下三对角矩阵的行列式

$$\begin{pmatrix}
a & b & & & \\
c & a & b & & & \\
& c & \ddots & \ddots & \\
& & \ddots & a & b \\
& & c & a
\end{pmatrix}.$$
(14)

提示: 使用归纳法, 需讨论 $a^2 = 4bc$ 与否.

答: 记 D_n 是 n 阶此形式矩阵的行列式,则有递推式

$$D_1 = a, \quad D_2 = a^2 - bc, \quad D_{n+2} = aD_{n+1} - bcD_n.$$
 (15)

ullet 今假定在合适的扩域下, $x^2-ax+bc=0$ 的两解是 x_1 与 x_2 . 或简单地说, 假定矩阵在数域上, 则方 程在 \mathbb{C} 上的根是 x_1 与 x_2 .

若
$$a^2 \neq 4bc$$
,则 $D_n = \frac{x_1^{n+1} - x_2^{n-1}}{x_1 - x_2}$. 若 $a^2 = 4bc$,则 $D_n = (n+1) \cdot (a/2)^n$.

- 2.原题有误, 现已删去. 应当是左侧行列式与右侧分子相同.
- 3.证明

$$\det\begin{pmatrix} a_1 & b_1 & & & \\ c_1 & a_2 & b_2 & & & \\ & c_2 & \ddots & \ddots & & \\ & & \ddots & a_{n-1} & b_{n-1} \\ & & & c_{n-1} & a_n \end{pmatrix} = (a_1 \quad b_1) \begin{pmatrix} a_2 & b_2 \\ -c_1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_{n-1} & b_{n-1} \\ -c_{n-2} & 0 \end{pmatrix} \begin{pmatrix} a_n \\ -c_{n-1} \end{pmatrix}$$
特别注明:可以采用此结论证明第一问。 $\begin{pmatrix} a & b \\ -c & 0 \end{pmatrix}^k$ 的计算方式是通常是对角化,这也回到了高中所学的所谓特征根。

所谓特征根.

1. 记 $V:=(x_i^j)\in\mathbb{F}^{n imes n}$, 直接写出 $\det V$.

答: 这与通常的 Vandermonde 矩阵稍有不同, 行列式是 $x_1\cdots x_n\cdot\prod_{1\leq i< j\leq n}(x_j-x_i).$

2.将V删去k行与k列,得V'.求 $\det V'$.

答: 此方法可以用于求解 Vandermonde 矩阵的 Adj-矩阵, 从而求得其逆矩阵.

igo 为表述方便,我们假定将矩阵删去第 k 列 (所有 k-次幂) 与第 1 行,并计算新矩阵的行列式.

在原矩阵中记 $t=x_1$ 与 $y_k=x_{k+1}$ $(1\leq k\leq n-1)$, 则行列式为

$$(-1)^{n-1}(y_1 \cdots y_{n-1} \cdot t) \prod_{1 \le i < j \le n-1} (y_j - y_i) \cdot \prod_{1 \le l \le n-1} (t - y_l). \tag{17}$$

新矩阵的行列式即 t^k -项系数的 $(-1)^{k-1}$ 倍.

3.将 V 的各项 (共 n^2 项) 加上 1, 求新矩阵的行列式。

答: 使用加边技巧 $\det A = \det \begin{pmatrix} 1 \\ \alpha & A \end{pmatrix}$. 此处取 A 为新矩阵, $\alpha = \mathbf{1}$. 使用初等变换,

$$\det A = \det \begin{pmatrix} 1 & -\mathbf{1}^T \\ \mathbf{1} & V \end{pmatrix}. \tag{18}$$

行列式关于第一行向量是线性的, 从而原式是两个 Vandermonde 行列式差.

$$\det\begin{pmatrix} 1 & -\mathbf{1}^T \\ \mathbf{1} & V \end{pmatrix} = \det\begin{pmatrix} 2 & 0 \\ \mathbf{1} & V \end{pmatrix} - \det\begin{pmatrix} 1 & \mathbf{1}^T \\ \mathbf{1} & V \end{pmatrix}. \tag{19}$$

计算得

$$\prod_{1 \le i < j \le n} (x_j - x_i) \cdot \left(2 \prod_{l=1}^n x_l - \prod_{l=1}^n (x_l - 1) \right). \tag{20}$$

4. 记 $\{x_i\}_{i=1}^n$ 是整数,证明 $\prod_{1 \leq i < j \leq n} \frac{x_i - x_j}{i - j}$ 是整数.

提示: 记 $\binom{n}{k} = C_n^k$ 为组合数. 假定所有 x_i 充分大, 考虑 $\det(\binom{x_i}{i})$.

答: $\{\binom{n}{k}\}_{k\geq 0}$ 作为 n 的多项式是线性无关组,因此可以只看各组合数的最高次项. 使用 Vandermonde 行列式计算得

$$\det\left(\binom{x_i}{j}\right) = \prod_{1 \le i < j \le n} \frac{x_i - x_j}{i - j}.$$
 (21)

由于这是整数矩阵的行列式,从而是整数.

Ex 7. 令 $P=\begin{pmatrix}a_1&a_2&\cdots&a_n\\b_1&b_2&\cdots&b_n\end{pmatrix}$, $Q=\begin{pmatrix}c_1&c_2&\cdots&c_n\\d_1&d_2&\cdots&d_n\end{pmatrix}$. 对 $\det(PQ^T)$ 使用 Cauchy-Binet 公式,并与直接计算行列式所得的结果比较,得 Lagrange 恒等式 (请验证):

$$\sum_{i=1}^{n}(a_{i}c_{i})\sum_{i=1}^{n}(b_{i}d_{i})=\sum_{i=1}^{n}(a_{i}d_{i})\sum_{i=1}^{n}(b_{i}c_{i})+\sum_{1\leq i_{1}< i_{2}\leq n}(a_{i_{1}}b_{i_{2}}-a_{i_{2}}b_{i_{1}})(c_{i_{1}}d_{i_{2}}-c_{i_{2}}d_{i_{1}}). \quad (22)$$

特别地, 对向量 $\mathbf{a},\mathbf{b}\in\mathbb{R}^n$, 证明

$$\|\mathbf{a}\|^2 \|\mathbf{b}\|^2 = (\mathbf{a} \cdot \mathbf{b})^2 + \sum_{1 \le i_1 < i_2 \le n} (a_{i_1} b_{i_2} - a_{i_2} b_{i_1})^2.$$
 (23)

若 n=3, 试求 $\|\mathbf{a} \times \mathbf{b}\|$?

答: 一方面, Cauchy-Binet 公式给出

$$\det(PQ^T) = \sum_{1 \le i_1 < i_2 \le n} \det \begin{pmatrix} a_{i_1} & b_{i_1} \\ a_{i_2} & b_{i_2} \end{pmatrix} \cdot \det \begin{pmatrix} c_{i_1} & d_{i_1} \\ c_{i_2} & d_{i_2} \end{pmatrix}; \tag{24}$$

另一方面, 直接计算得

$$\det(PQ^T) = \sum_{i=1}^n (a_i c_i) \sum_{i=1}^n (b_i d_i) - \sum_{i=1}^n (a_i d_i) \sum_{i=1}^n (b_i c_i).$$
(25)

后略

Ex 8. 取 $(a_i)_{i\geq 1}$ 是周期为 n 的 $\mathbb F$ 中的数列,定义 $n\times n$ 矩阵的第 (i,j) 项为 a_{i+j-1} . 计算这一循环矩阵的行列式.

答: 不妨将矩阵翻转 (符号改变方式见 Ex.1-11), 记矩阵 A 的第 (i,j) 项为 $a_{n+1+i-j}$.

记 Ω 的 (i,j) 项是 $\omega^{(i-1)(j-1)}$, 其中 $\omega=e^{2\pi i/n}$ 是单位根. 记多项式

$$f(x) = a_1 + a_2 x + a_3 x^2 + \dots + a_n x^{n-1}.$$
 (26)

将 A 左乘在 Ω 的第 k 列上, 相当于数乘 $f(\omega^{k-1})$. 因此

$$\det A \cdot \det \Omega = \det(A\Omega) = f(1)f(\omega) \cdots f(\omega^{n-1}) \cdot \det \Omega. \tag{27}$$

依照 Vandermonde 矩阵可逆, $\det\Omega \neq 0$. 从而 $\det A = \prod_{0 \leq l \leq n-1} f(\omega^l)$.

Ex 9. 给定常数 (c_1,\ldots,c_n) . 试计算 $ig(c_{\min(i,j)}ig)\in\mathbb{F}^{n imes n}$ 的行列式.

答: $c_1 \cdot (c_2 - c_1) \cdot (c_3 - c_2) \cdots (c_n - c_{n-1})$.

Ex 10. 计算 Hilbert 矩阵的行列式. 关于 Hilbert 矩阵的定义, 以及此题答案可参考逆矩阵习题.

答: 答案见先前习题:

$$\det\left(\frac{1}{x_i + y_j}\right)_{1 \le i, j \le n} = \frac{\prod_{1 \le i < j \le n} (x_j - x_i)(y_j - y_i)}{\prod_{i,j=1}^n (x_i + y_j)}.$$
 (28)

Ex 11. 计算并总结以下行列式的通式

$$\det\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ x & h & -1 & 0 & 0 \\ x^{2} & hx & h & -1 & 0 \\ x^{3} & hx^{2} & hx & h & -1 \\ x^{4} & hx^{3} & hx^{2} & hx & h \end{pmatrix}.$$
 (29)

答: 直接归纳得 $(x+h)^4$.

Ex 12. 记分块矩阵
$$A=egin{pmatrix}A_1&A_2\\A_3&A_4\end{pmatrix}$$
 与 $B=egin{pmatrix}B_1&B_2\\B_3&B_4\end{pmatrix}$, 满足 $r(A)=r(A_1)$ 与 $r(B)=r(B_1)$. 此时

$$\det(A+B)\cdot\det(A_1)\cdot\det(B_4)=\det\begin{pmatrix}A_1&A_2\\B_3&B_4\end{pmatrix}\cdot\begin{pmatrix}A_1&B_2\\A_3&B_4\end{pmatrix}. \tag{33}$$

答: 若将题设改作 $r(B) = r(B_4)$, 解答会清晰许多.

依题意, 存在矩阵 P,Q,R,S 使得

$$A = \begin{pmatrix} A_1 & A_1P \\ QA_1 & QA_1P \end{pmatrix}, \quad B = \begin{pmatrix} SB_4R & SB_4 \\ B_4R & B_4 \end{pmatrix}. \tag{35}$$

此时

$$\begin{split} \det A_1B_4 \cdot \det(A+B) &= \det A_1B_4 \cdot \det \begin{pmatrix} A_1 + SB_4R & A_1P + SB_4 \\ QA_1 + B_4R & QA_1P + B_4 \end{pmatrix} \\ &= \det A_1B_4 \cdot \det \begin{pmatrix} I & S \\ Q & I \end{pmatrix} \cdot \begin{pmatrix} A_1 & A_1P \\ B_4R & B_4 \end{pmatrix} \\ &= \det \begin{pmatrix} A_1 & SB_4 \\ QA_1 & B_4 \end{pmatrix} \cdot \begin{pmatrix} A_1 & A_1P \\ B_4R & B_4 \end{pmatrix} \end{split}.$$

原题的解答类似, 或将上述 $\{S,R\}$ 扰动作满秩矩阵.

Ex 13. (Ptolemy 定理) 给定矩阵
$$\begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \end{pmatrix}$$
,记 $\Delta_{i,j} = \det \begin{pmatrix} a_i & a_j \\ b_i & b_j \end{pmatrix}$. 证明
$$\Delta_{1,2}\Delta_{3,4} + \Delta_{1,4}\Delta_{2,3} = \Delta_{1,3}\Delta_{2,4}. \tag{36}$$

答: 略.

Ex 14. 通常的正整数矩阵 $A\in\mathbb{F}^{n imes n}$ 的行列式. 其中 $a_{i,j}=\gcd(i,j)$ 是最小公倍数.

提示: 证明对任意整数都有 $m=\sum_{k|m}\phi(k)$. 其中 k 取遍 m 的所有因子, ϕ 是通常的 Euler totient 函数 . 此时 $a_{i,j}=\sum_{k|i\perp k|j}\phi(k)$. 这表明 $A=X^T\cdot D\cdot X$, 其中

- igcolon $D=\mathrm{diag}(\phi(1),\phi(2),\ldots,\phi(n))$ 是对角矩阵,
- ${\color{red} \bullet}$ X 是 $\{0,1\}$ -下三角矩阵, 其中 $X_{i,j}=1$ 当且仅当 $j\mid i.$

答: 提示已经很详细了. 答案是 $\det D = \prod_{1 \leq i \leq n} \phi(i)$.

Ex 15. (对任意域而言) 若 $A^T=-A$, 则 $\det A$ 是完全平方式. 这称作 Pfaffian.

ullet 特殊的 Pfaffian (来自 Cauchy 矩阵的基本性质): $\det\left(rac{x_i-x_j}{x_i+x_j}
ight)_{n imes n}=\left(\prod_{i< j}rac{x_i-x_j}{x_i+x_j}
ight)^2$.

答: 假定结论对 n-阶矩阵成立, 往证结论对 n+2 阶反对称矩阵 A 成立. 可以对 A 做相同的行交换与列交 换 (不改变行列式), 使得新矩阵的 (n+1,n+2)-项不为零. 因此不妨设 A 的 (n+1,n+2)-项不为零. 考 虚分块矩阵

$$A = \begin{pmatrix} A' & B \\ B^T & U \end{pmatrix}, \quad U = \begin{pmatrix} 0 & x \\ -x & 0 \end{pmatrix}. \tag{37}$$

依照 Schur 补, $\det A = \det(A' - BU^{-1}B^T) \cdot \det U$. 结合归纳假设, $\det A$ 是完全平方式.

ullet 可以证明, 完全平方式 $\det A=p^2$ 中, p 是以 $\{a_{i,j}\}$ 为系数的. 将 p 写作 x 的有理函数, 需证明所有 x^{-k} -项系数为 0. 依照行列式的定义, $\det A$ 中不出现 x^{-k} 之类的项.

Ex 16. 记 a,b,c 是常数. 若矩阵 A 的严格下三角部分均为 a, 严格上三角部分均为 b, 对角线上均为 c. 求 $\det A$.

一般地, 记多项式 $f(x)=c_0+c_1x+c_2x^2+\cdots c_{n-1}x^{n-1}$, 考虑 n 阶 $\mathbb C$ -方阵

$$M := \begin{pmatrix} c_0 & c_1 & c_2 & \cdots & c_{n-2} & c_{n-1} \\ zc_{n-1} & c_0 & c_1 & \cdots & c_{n-3} & c_{n-2} \\ zc_{n-2} & zc_{n-1} & c_0 & \cdots & c_{n-4} & c_{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ zc_2 & zc_3 & zc_4 & \cdots & c_0 & c_1 \\ zc_1 & zc_2 & zc_3 & \cdots & zc_{n-1} & c_0 \end{pmatrix}.$$
(38)

则 $\det M = \prod_{k=1}^n f(w_k)$, 其中 w_k 是 $w^n = z$ 的 n 个复根.

答: 见 Ex. 8.

Ex 17. 记 $(a_i)_{i=1}^n$ 与 $(b_i)_{i=1}^n$ 是给定的常数, 且 $a_ib_j \neq 1$. 记 $m_{i,j} = \frac{1-(a_ib_j)^n}{1-a_ib_j}$, 计算 $\det(m_{i,j})$.

答: 可以直接归纳计算, 或是使用如下技巧:

- igcolon 对任意 $t:=a_ib_j$ 行列式是关于 t 的 n-1 次多项式;
- igorup 行列式以一切 a_i-a_j 与 b_i-b_j 为因子.

从而行列式只能是 $\prod_{1\leq i < j \leq n} (a_i-a_j)(b_i-b_j)$ 的数乘倍. 检验 a_1b_1 的系数, 以上就是行列式的值.

注: 以上行列式是两个 Vandermonde 行列式的乘积,的确可以使用矩阵乘积来计算 M. 此外,计算 $m_{i,j}=(a_i+b_j)^n$ 的行列式时,也会出现类似双 Vandermonde 行列式 (差一个数乘倍).

答: 使用数学归纳. n=1 显然; 假定 n=k 成立, 下证 n=k+1 成立. 任取 k+1-阶矩阵 M, 记分块矩阵

$$M = \begin{pmatrix} A & v \\ u^T & \lambda \end{pmatrix}. \tag{39}$$

存在 D' 使得 (D'+A) 可逆,下证 $M+\begin{pmatrix}D'\\1\end{pmatrix}$ 或 $M+\begin{pmatrix}D'\\-1\end{pmatrix}$ 可逆即可. 由于行列式关于最后一列线性,故

$$\det\left(M + \begin{pmatrix} D' \\ 1 \end{pmatrix}\right) - \det\left(M + \begin{pmatrix} D' \\ -1 \end{pmatrix}\right) \tag{40}$$

$$= \det \begin{pmatrix} A + D' & v \\ u^T & \lambda + 1 \end{pmatrix} - \det \begin{pmatrix} A + D' & v \\ u^T & \lambda - 1 \end{pmatrix}$$
 (41)

$$= \det \begin{pmatrix} A + D' & v \\ & 2 \end{pmatrix} \neq 0. \tag{42}$$