Diameter of polytopes and Hirsch conjecture

Thibault Manneville (LIX, Polytechnique) supervised by Vincent Pilaud (LIX, CNRS)

January 14th, 2016

 $P \subseteq \mathbb{R}^d$ is a polytope if P = conv(S) with $|S| < \infty$.

 $P \subseteq \mathbb{R}^d$ is a **polytope** if P = conv(S) with $|S| < \infty$.

 $P \subseteq \mathbb{R}^d$ is a **polytope** if P = conv(S) with $|S| < \infty$.

 $P \subseteq \mathbb{R}^d$ is a **polytope** if $P = \bigcap_{\mathcal{H} \in \mathbb{H}} \mathcal{H}^+$ and P is bounded.

mathematically:
$$\operatorname{conv}(S) \iff \bigcap_{\mathcal{H} \in \mathbb{H}} \mathcal{H}^+ + \operatorname{bounded}.$$

BUT

algorithmically: $\mathsf{conv}(S) \longleftrightarrow \bigcap_{\mathcal{H} \in \mathbb{H}} \mathcal{H}^+ \text{ is } \mathit{NP}\text{-hard}.$

mathematically:
$$\operatorname{conv}(S) \iff \bigcap_{\mathcal{H} \in \mathbb{H}} \mathcal{H}^+ + \operatorname{bounded}.$$

BUT

algorithmically:
$$\mathsf{conv}(S) \longleftrightarrow \bigcap_{\mathcal{H} \in \mathbb{H}} \mathcal{H}^+$$
 is $\mathit{NP}\text{-hard}.$

Prop. The intersection of two polytopes is a polytope.

Prop. The projection of a polytope is a polytope.

Linear Programming

$$\max_{A.x \le b} c.x = ??$$

economics, physics, flow problems...

Linear Programming

$$\max_{A.x \le b} c.x = \max_{x \in P} c.x$$

where
$$\mathcal{H}_i^+: \sum_{1 \leq i \leq n} a_{i,j} x_j \leq b_i$$
 and $P = \bigcap_{i \in [m]} \mathcal{H}_i^+$

Linear Programming

 \Rightarrow test all vertices!

Solving linear Programming

- ♦ ellipsoid method: polynomial but inefficient.
- ♦ simplex algorithm: not polynomial but efficient in practice.

The simplex algorithm

Pick a vertex and move to a better neighbor with a simple pivot rule.

The simplex algorithm

Pick a vertex and move to a better neighbor with a simple pivot rule.

A problem of the century: find a polynomial version of the simplex algorithm.

Strategy:

- keep pivot rules simple;
- achieve paths of polynomial length.

Diameter of polytopes

Conjecture (Hirsch)

The diameter of $conv(v_1, \ldots, v_n) \in \mathbb{R}^d$ is smaller than n - d.

Diameter of polytopes

Conjecture (Hirsch)

The diameter of $conv(v_1, \ldots, v_n) \in \mathbb{R}^d$ is smaller than n - d.

WRONG

Santos

A counterexample in dimension 43.

Conjecture (Polynomial Hirsch)

The diameter of $conv(v_1, ..., v_n) \in \mathbb{R}^d$ is smaller than f(n, d).

duality on polytopes: reversing the inclusion order on faces.

Geometry

Geometrical simplex of dimension n: $\Sigma_n = \operatorname{conv}\{e_i\}_{i \in [n+1]}$

Geometry

Geometrical simplex of dimension n: $\Sigma_n = \text{conv}\{e_i\}_{i \in [n+1]}$

Geometry

Geometrical simplex of dimension n: $\Sigma_n = \text{conv}\{e_i\}_{i \in [n+1]}$

 $\forall I \subseteq [n+1], \operatorname{conv}\{e_i\}_{i \in I} \text{ is a face of } \Sigma_n.$ Simplexes: only polytopes with this property.

Simplicial complexes

Definition

 $\Delta \subseteq \mathcal{P}(S)$ is a simplicial complex if $\sigma' \subseteq \sigma \in \Delta \Longrightarrow \sigma' \in \Delta$. $\sigma \in \Delta$: simplex or face of Δ .

Simplicial complexes

Definition

 $\Delta \subseteq \mathcal{P}(S)$ is a simplicial complex if $\sigma' \subseteq \sigma \in \Delta \Longrightarrow \sigma' \in \Delta$. $\sigma \in \Delta$: simplex or face of Δ .

Example $S = \{1, 2, 3, 4\}$

$$\Delta = \big\{\!\{1\},\!\{2\},\!\{3\},\!\{4\},\!\{1,2\},\!\{1,3\},\!\{1,4\},\!\{2,3\},\!\{3,4\},\!\{1,3,4\}\big\}\!$$

Simplicial complexes

Definition

 $\Delta \subseteq \mathcal{P}(S)$ is a simplicial complex if $\sigma' \subseteq \sigma \in \Delta \Longrightarrow \sigma' \in \Delta$. $\sigma \in \Delta$: simplex or face of Δ .

Example $S = \{1, 2, 3, 4\}$

$$\Delta \!=\! \big\{\!\{1\}\!,\!\{2\}\!,\!\{3\}\!,\!\{4\}\!,\!\{1,2\}\!,\!\{1,3\}\!,\!\{1,4\}\!,\!\{2,3\}\!,\!\{3,4\}\!,\!\{1,3,4\}\!\big\}$$

geometrical representation:

THANK YOU FOR YOUR CAREFUL ATTENTION!