ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ

ΤΗΛ301: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ

Εργαστήριο: Ψηφιακής Επεξεργασίας Σήματος & Εικόνας

Καθηγητής: Μιχάλης Ζερβάκης

1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

A. ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

Αν \mathbf{x} (n) ένα διακριτό διάνυσμα το οποίο είναι μη μηδενικό στο διάστημα $0 \le n \le N-1$ ο διακριτός μετασχηματισμός Fourier (DFT) καθορίζεται ως εξής:

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nk/N}$$
 \(\text{k=0, 1, ..., N-1 (1)}\)

Αν μας δοθεί ο DFT το σήμα μπορεί να ανακατασκευασθεί χρησιμοποιώντας τον αντίστροφο μετασχηματισμό Fourier:

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi n\kappa/N} \quad \text{n=0, 1, ..., N-1} \quad (2)$$

Β. ΣΥΝΕΛΙΞΕΙΣ

Η γραμμική συνέλιξη δύο ακολουθιών x(n) και y(n) ορίζεται ως εξής:

$$h(n) = \sum_{-\infty}^{\infty} x(k) y(n-k)$$
 (3)

και συμβολίζεται h[n] = x[n] * y[n].

Γ. ΔΕΙΓΜΑΤΟΛΗΨΙΑ

Έστω x_a(t) ένα αναλογικό σήμα. Με τη δειγματοληψία επιδιώκουμε τη δημιουργία του διακριτού σήματος x(n):

$$x(n) = x_a(nT)$$

Τ: περίοδος δειγματοληψίας και

$$f_s = \frac{1}{T}$$
 : συχνότητα δειγματοληψίας

Ο συνεχής μετασχηματισμός Fourier του Xa(t) είναι:

$$X_a(j\Omega) = \int_{-\infty}^{\infty} x_a(t)e^{-j\Omega t}d\Omega$$

Ο μετασχηματισμός Fourier του x(n) είναι:

$$X(e^{j\omega}) = \sum_{-\infty}^{\infty} x(n)e^{-j\omega n}$$

Οι δύο μετασχηματισμοί ακολουθούν την εξής σχέση:

$$X(e^{j\omega}) = \frac{1}{T} \sum_{-\infty}^{\infty} X_{\alpha} (\frac{j\omega + j2\pi k}{T})$$

Ο $X(e^{j\omega})$ είναι άθροισμα των \mathtt{X}_{a} (jω/T+j2πk/T) για k=- ∞ , ..., + ∞ .

Για να αποφύγουμε επικαλύψεις των αθροιζόμενων Χa(jω/T+j2πk/T)

πρέπει να ισχύει:

 $f_{\rm s} \ge 2f_{\rm max}$

με 2fmax: Συχνότητα Nyquist.

fmax: η μέγιστη συχνότητα για την οποία το $x_a(j\Omega) \neq 0$.

Δηλαδή $x_a(j\Omega) = 0$ για $|f| > f \max$.

Δ. ΑΝΑΚΑΤΑΣΚΕΥΗ

Η μετατροπή από διακριτό σήμα σε αναλογικό φαίνεται στο επόμενο σχήμα:

Για τη σειρά παλμών Sa(t) ισχύει:

$$s_a(t) = \sum_k y(k)\delta(t - kT)$$

Θεωρώντας τους μετασχηματισμούς Fourier των παραπάνω σημάτων θα ισχύει:

 $Y_{\alpha}(\Omega) = S_{\alpha}(\Omega) H_{\alpha}(\Omega)$

Αντί για ιδανικό φίλτρο οι εμπορικοί D/A μετατροπείς
εργάζονται με τα επόμενα φίλτρα:

zero-order-hold: $h\alpha(t)=u(t)-u(t-T)$

και

first-order-hold:
$$h_{\alpha}(t) = \begin{cases} t/T + 1 & \text{av } -T \le t \le 0 \\ -t/T + 1 & \text{av } 0 \le t \le T \\ 0 & \text{allow}. \end{cases}$$

ΑΣΚΗΣΗ 1

- A) Να υλοποιηθεί, χωρίς έτοιμη συνάρτηση της Matlab, η γραμμική συνέλιξη δύο διακριτών, πεπερασμένων ακολουθιών της επιλογής σας (Matlab), υλοποιώντας την παραπάνω σχέση (3). Κατόπιν:
- εμφανίστε τη γραφική αναπαράσταση των δύο αρχικών ακολουθιών και του αποτελέσματος της συνέλιξης.
- επιβεβαιώστε τα αποτελέσματά σας με την έτοιμη συνάρτηση του Matlab (conv) για συνέλιξη.

Β) Αποδείξτε την ιδιότητα:

(συνέλιξη στο πεδίο του χρόνου) = (πολλαπλασιασμός στο πεδίο της συχνότητας)

υλοποιώντας γραμμική συνέλιξη δύο διακριτών, πεπερασμένων ακολουθιών της επιλογής σας στο Matlab, τόσο στο πεδίο του χρόνου όσο και στο πεδίο της συχνότητας. Σε αυτό το ερώτημα, για το πεδίο του χρόνου μπορείτε να χρησιμοποιήσετε τη συνάρτηση **conv** του Matlab.

ΆΣΚΗΣΗ 2

Σχεδιάστε το σήμα $x(t)=5cos(24\pi t)-2sin(1.5\pi t)$ για 0< t< 500ms (Matlab).

Στη συνέχεια, μετατρέψτε θεωρητικά (στην αναφορά, όχι σε Matlab) το x(t) σε X[f] και βρείτε τη συχνότητα Nyquist του σήματος.

Προχωρήστε (σε Matlab) σε δειγματοληψία του σήματος με: α) $T_s{=}1/48s, \;\; \beta) \;\; T_s{=}1/24s \;\; \text{και } \gamma) \;\; T_s{=}1/12s. \;\; \text{Παρουσιάστε, } \;\; \gamma {\rm ια } \;\; \text{κάθε}$ περίοδο δειγματοληψίας, γραφικά το σήμα πριν και μετά τη δειγματοληψία στο ίδιο γράφημα (π.χ. χρήση hold on).

Τι παρατηρείτε να συμβαίνει ανάλογα με την περίοδο δειγματοληψίας και γιατί; (ανακατασκευή σήματος;)

Τέλος, δώστε T_s =1/As, όπου A= ο κωδικός αριθμός της ομάδας σας στο eclass κι εξηγήστε τη μορφή του αποτελέσματος κι αν αυτή είναι αποδεκτή (βάση των κανόνων της δειγματοληψίας).

ΆΣΚΗΣΗ 3

A) $\Theta \epsilon \omega \rho \epsilon i \sigma \tau \epsilon \tau \sigma \sigma \dot{\eta} \mu \alpha x(t) = 10 \cos(2\pi \times 20t) - 4 \sin(2\pi \times 40t + 5)$.

Να γίνει δειγματοληψία 128 δειγμάτων σε συχνότητα της επιλογής σας χωρίς να εμφανιστεί το φαινόμενο της επικάλυψης (aliasing). Παρουσιάστε γραφικά το φάσμα του σήματος (ο οριζόντιος άξονας να είναι σε Hz).

B) Έστω το σήμα $x(t) = \sin(2\pi * f0t + \varphi)$.

Με συχνότητα δειγματοληψίας fs=8ΚΗz και φ: ο κωδικός αριθμός της ομάδας σας στο eclass, έχουμε το διακριτό σήμα: $x[n] = sin(2\pi*(f0/fs)*n+φ). \quad (Γιατί;)$

Σε Matlab:

- να μεταβάλετε τη συχνότητα του σήματος από 100 έως και 475 Hz με βήμα 125 Hz. Δώστε τις γραφικές παραστάσεις του φάσματος του σήματος, παρατηρείστε τι συμβαίνει και αιτιολογήστε τη συμπεριφορά που παρουσιάζει το σήμα.
- Όμοια με το προηγούμενο ερώτημα, μόνο που αυτή τη φορά να μεταβάλετε τη συχνότητα του σήματος από 7525 Ηz έως και 7900 Ηz με βήμα 125 Ηz.

Πως επηρεάζει η επιλογή του φ το αποτέλεσμα και γιατί;

Κατά την <u>παράδοση</u> της παρούσας εργαστηριακής άσκησης παραδίδετε και <u>αναφορά</u>, η οποία να περιέχει:

■ Σύντομη περιγραφή της υλοποίησης σε κάθε ερώτημα, συμπεράσματα ή παρατηρήσεις όπου προκύπτουν.

Σημαντικό είναι (και θα αξιολογηθείτε σε αυτό) να μπορέσετε να κάνετε μία σύντομη περιγραφή του τι κάνατε σε κάθε ερώτημα, πως υπολογίσατε ό,τι χρειάστηκε να υπολογίσετε και που βασίστηκε η σκέψη σας για να υλοποιήσετε την άσκηση (μην αναφέρεστε π.χ. απευθείας σε αποτελέσματα, αλλά δείξτε π.χ. ποιο τύπο ή σχέση της θεωρίας χρειαστήκατε).

Παρουσιάστε τόσο τα σημαντικά και άξια παρουσίασης σημεία του κώδικά σας όσο και τις θεωρητικές γνώσεις που χρειάστηκε να έχετε ώστε να υλοποιήσετε το εργαστήριο και να επιβεβαιώσετε τα αποτελέσματα που πήρατε.

- Τις γραφικές παραστάσεις σχήματα που προέκυψαν σε κάθε ερώτημα.
- Τα γραφήματα να περιλαμβάνουν, απαραιτήτως, κεντρικό τίτλο και τίτλους στους άξονες, ενώ φροντίστε να παρουσιάζετε όλο

- το 'χρήσιμο' εύρος των σημάτων σας (όπου ζητείται γραφική παράσταση) ώστε να μπορούμε να εξάγουμε τις χρήσιμες πληροφορίες.
- Να ΜΗΝ περιέχει κώδικες.
- Προσοχή στην εμφάνιση του κειμένου της αναφοράς: εξώφυλλο με στοιχεία αναφοράς και στοιχεία μελών ομάδας, χωρίς ορθογραφικά ή συντακτικά λάθη, με τίτλους ή σχετική αναφορά στις εικόνες (γραφήματα) που θα παρουσιάσετε, max font size 12, max line spacing 1.5, justified text (αφορά στο κύριο μέρος του κειμένου κι όχι τους τίτλους).
- Η αναφορά παραδίδεται σε ηλεκτρονική μορφή μαζί με τα script(s) που ετοιμάσατε.