Problemas físicos

César Eduardo Rosete

Noviembre 2022

Problema 1

Sabiendo que las definiciones de velocidad y aceleración son:

$$\vec{v} = \frac{dx}{dt} \tag{1}$$

$$\vec{a} = \frac{d\vec{v}}{dt} \tag{2}$$

Dadas las definiciones de derivadas, i.e. un cambio sumamente pequeño; de (2) podemos decir:

$$\vec{a} * t = d\vec{v}$$
$$\vec{a} * t = \vec{v_f} - \vec{v_0}$$
$$\vec{a} * t + \vec{v_0} = \vec{v_f}$$

Ahora si integramos ambos lados:

$$\int \vec{a} * t + \vec{v_0} dt = \int \vec{v_f} dt$$
$$\frac{1}{2} * \vec{a} * t^2 + \vec{v_0} t = \vec{v_f} * t$$

Pero por (1) sabemos que $\vec{v} = \frac{dx}{dt}$ entonces se sigue:

$$\Delta x = \frac{1}{2} * \vec{a} * t^2 + \vec{v_0} * tx - x_0 = \frac{1}{2} * \vec{a} * t^2 + \vec{v_0} * tx = \frac{1}{2} * \vec{a} * t^2 + \vec{v_0} * t + x_0$$

Reorganizando los términos tenemos:

$$x = x_0 + \vec{v_0} * t + \frac{1}{2} * \vec{a} * t^2$$
(3)

Promblema 2

a)

Del problema 1 retomamos (3). De tal manera que:

$$x_{C_1} = x_{C_10} + \vec{v_{C_10}} * t + \frac{1}{2} * \vec{a_{C_1}} * t^2$$
(4)

$$x_{C_2} = x_{C_20} + v_{C_20} * t + \frac{1}{2} * a_{C_2} * t^2$$
(5)

Sustituyendo los valores dados en (4) y (5) en $t = t_0$ considerando t_0 el momento en el que parte el segundo carro:

$$x_{C_1} = 1.75 + 3.5 * t + \frac{1}{2} * 3.5 * t^2$$
(6)

$$x_{C_2} = 0 + 0 * t + \frac{1}{2} * 4.9 * t^2 \tag{7}$$

Igualando las posiciones x_{C_1} y x_{C_2} se obtiene:

$$1.75 + 3.5 * t + \frac{1}{2} * 3.5 * t^{2} = 0 + 0 * t + \frac{1}{2} * 4.9 * t^{2}$$
(8)

$$1.75 + 3.5 * t + \frac{1}{2} * 3.5 * t^2 = \frac{1}{2} * 4.9 * t^2$$
(9)

$$1.75 + 3.5 * t + = \frac{1}{2} * 1.4 * t^2 \tag{10}$$

$$\frac{1}{2} * 1.4 * t^2 - 3.5 * t - 1.75 = 0 \tag{11}$$

(12)

Por la fórmula del chicharonero se obtiene:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{3.5 \pm \sqrt{(-3.5)^2 - 4(\frac{1.4}{2})(-1.75)}}{2(\frac{1.4}{2})}$$

$$x = \frac{3.5 \pm \sqrt{(3.5)^2 + 4(\frac{1.4}{2})(1.75)}}{2(\frac{1.4}{2})}$$

De donde se obtiene

$$x_1 = \frac{5 + \sqrt{35}}{2}$$
$$x_2 = \frac{5 - \sqrt{35}}{2}$$

El valor que nos interesa en este caso es x_1 :. El carro 2 alcanza al carro 1 a los 5.46 s

b)

De evaluar en a),(6) se obtiene que x=73 m

c)

Retomando del problema 1, del desarrollo de (2) sabemos que:

$$\vec{a} * t + \vec{v_0} = \vec{v_f} \tag{13}$$

Sustituyendo para C_1 obtenemos que $v_{C_1f} = 22.61 \frac{m}{s}$. Por otro lado, para C_2 obtenemos que $v_{C_2f} = 26.75 \frac{m}{s}$.

d)

Carro 1				
No dependientes del tiempo	Dependientes del tiempo			
$a[m/s^2]$	t[s]	x[m]	v[m/s]	
3.5	2	15.75	10.5	
3.5	3	28	14	
3.5	4	43.75	17.5	
3.5	6	85.75	24.5	
3.5	7	112	28	

Tabelle 1: Cinética carro 1

Carro 2					
No dependientes del tiempo	Dependientes del tiempo				
$a[m/s^2]$	t[s]	x[m]	v[m/s]		
4.9	2	9.8	9.8		
4.9	3	22.05	14.7		
4.9	4	39.2	19.6		
4.9	6	88.2	29.4		
4.9	7	120.05	34.3		

Tabelle 2: Cinética carro 2

Problema 3

Por la fórmula $\vec{F} = m\vec{a}$ podemos decir que el problema consiste de dos componentes, pues hay una serie de fuerzas que afectan a los cuerpos sobre el eje vertical y otra que afecta a los cuerpos de manera horizontal.

3

Debido a que en el sistema no hay friccíon, sabemos que $\sum \vec{F_y} = 0$.

3

Abbildung 1: La imagen son los diagramas de flujo del cuerpo de masa m_1 y m_2 de forma decendente respectivamente

Por otro lado, podemos observar que en el eje X la suma no es necesariamente igual a cero, por lo que tenemos:

$$\sum \vec{F_x} = A - T_1 - T_2$$

Por esta ecuación y la tercera ley de Newton podemos decir que:

$$\sum \vec{F_x} = (m_1 + m_2) * \vec{a}$$
$$\vec{a} = \frac{\sum \vec{F_x}}{(m_1 + m_2)}$$