AGA KHAN UNIVERSITY EXAMINATION BOARD

SECONDARY SCHOOL CERTIFICATE

CLASS IX

MODEL EXAMINATION PAPER 2018

Mathematics Paper I

Time: 50 minutes Marks: 35

INSTRUCTIONS

- 1. Read each question carefully.
- 2. Answer the questions on the separate answer sheet provided. DO NOT write your answers on the question paper.
- 3. There are 100 answer numbers on the answer sheet. Use answer numbers 1 to 35 only.
- 4. In each question there are four choices A, B, C, D. Choose ONE. On the answer grid black out the circle for your choice with a pencil as shown below.

Candidate's Signature

- 5. If you want to change your answer, ERASE the first answer completely with a rubber, before blacking out a new circle.
- 6. DO NOT write anything in the answer grid. The computer only records what is in the circles.
- 7. You may use a simple calculator if you wish.

- 1. Set *A* is defined as $A = \{1, 2, 3\}$. If $A \cup B = \{1, 2, 3, 4, 5\}$ and $A \cap B = \emptyset$, then set *B* is equal to
 - Α. φ
 - B. {4, 5}
 - C. {1, 2, 3}
 - D. {1, 2, 3, 4, 5}
- 2. If $A = \{a, b\}$ and $B = \{10, 20\}$, then which of the following option(s) is/ are binary relation from A to B?
 - I. $\{(a, 10), (b, 20)\}$
 - II. $\{(10, a), (20, b)\}$
 - III. $\{(a, 20)\}$
 - IV. $\{(10, b)\}$
 - A. I only
 - B. II only
 - C. I and III
 - D. II and IV
- 3. If a universal set is defined as $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and E is the set of even numbers, then E' is
 - Α. φ
 - B. {1, 3, 5, 7, 9}
 - C. {2, 4, 6, 8, 10}
 - D. {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
- 4. If $X = \{10, 20\}$ and $Y = \{p, q, r\}$, then which of the following represents a function from X to Y?
 - A. $\{(10, p)\}$
 - B. $\{(10, p), (10, q)\}$
 - C. $\{(10, p), (20, p)\}$
 - D. $\{(10, p), (10, q), (20, r)\}$
- 5. If $A = \{1, 2, 3, 4\}$ and $B = \{10, 20\}$, then which of the following is an into function from A to B?
 - A. $\{(1, 10), (2, 20)\}$
 - B. $\{(1, 10), (2, 10), (3, 10)\}$
 - C. $\{(1, 10), (2, 10), (3, 10), (4, 10)\}$
 - D. $\{(1, 10), (2, 10), (3, 20), (4, 20)\}$

- 6. On simplification, $\frac{x^2}{x^{-4}}$ becomes
 - A. $\frac{1}{x^2}$
 - B. $\frac{1}{x^6}$
 - C. x^2
 - D. x^6
- 7. If $p = \frac{11}{5}$ and $q + r = \frac{14}{5}$, then (p+q)+r is equal to
 - A. $\frac{3}{5}$
 - B. $\frac{5}{2}$
 - C. 2
 - D. 5
- 8. If p and q are real numbers, and p^{-1} is the multiplicative inverse of p, then which of the following statements is FALSE?

(Note: $p \neq 0$)

- A. $p \times q$ is a real number
- B. $p \times q = q \times p$
- $C. p \times p^{-1} = 0$
- D. $p \times 1 = p$
- 9. $\sqrt{2^3}$ can also be expressed as
 - A. $2^{\frac{3}{2}}$
 - B. $2^{\frac{2}{3}}$
 - C. $8^{\frac{3}{2}}$
 - D. $8^{\frac{2}{3}}$
- 10. The exponential form of $\log_3 5 = 2x$ is
 - A. $3^{2x} = 5$
 - B. $5^{2x} = 3$
 - C. $(2x)^3 = 5$
 - D. $(2x)^5 = 3$

- If $\log_6 x = 2$, then x is equal to
 - A.
 - B. 12
 - C. 36
 - D. 64
- 5.67×10^{-3} is equal to 12.
 - 5670 A.
 - B. 56700
 - C. 0.00567
 - D. 0.000567
- On rationalisation of $\frac{1}{2+\sqrt{3}}$, we get 13.
 - A. $2 + \sqrt{3}$ B. $2 \sqrt{3}$

 - C. $-2 + \sqrt{3}$
 - D. $-2-\sqrt{3}$
- $\frac{a^4 4a^2}{a^2 2a}$ is equal to
 - A. $a^2 + 2a$
 - B. $a^2 2a$
 - C. $a^2 + 4a$
 - D. $a^2 4a$
- 15. $2(\sqrt{2}+1)-3\sqrt{2}$ is equal to
 - A. $2 + \sqrt{2}$
 - B. $2 \sqrt{2}$
 - C. $2 + 5\sqrt{2}$
- 16. $(a+2b+c)^2$ is equal to
 - A. $a^2 + 2b^2 + c^2 + 2ab + 2bc + 2ca$
 - B. $a^2 + 4b^2 + c^2 + 4ab + 2bc + 2ca$
 - C. $a^2 + 4b^2 + c^2 + 4ab + 4bc + 2ca$
 - D. $a^2 + 2b^2 + c^2 + 4ab + 4bc + 2ca$

Page 5 of 12

- $u^3 27v^3$ can also be expressed as
 - A. $(u+3v)(u^2-uv+v^2)$

 - B. $(u-3v)(u^2 + uv + v^2)$ C. $(u+3v)(u^2 3uv + 9v^2)$
 - D. $(u-3v)(u^2+3uv+9v^2)$
- On factorisation of $25x^2 + 5ax + 10x + 2a$, we get 18.
 - (5x+a)(5x+2)A.
 - (5a+x)(5a+2)B.
 - C. $(5x^2 + a)(5x + 2)$
 - D. (5ax + a)(5ax + 2)
- $8p^3 + 12p^2q + 6pq^2 + q^3$ can also be expressed as 19.
 - A. $(2p)^3 + q^3$
 - B. $(2p+q)^3$
 - C. $(p+2q)^3$
 - D. $p^3 + 2q^3$
- When $x^2 + kx 1$ is divided by x 1, the remainder is 2. The value of k is 20.
 - A.
 - В.
 - C. 0
 - D.
- $(t+2)^3$ can also be expressed as
 - $t^3 + 6t^2 + 12t + 8$ A.
 - B. $t^3 6t^2 + 12t 8$
 - $t^3 + 3t^2 + 3t + 8$ \mathbf{C}
 - $t^3 3t^2 + 3t 8$ D.
- If a:b::c:d, then according to componendo property 22.
 - A. a + b : b :: c + d : d
 - B. a-b:b::c-d:d
 - C. a + b : a :: c + d : c
 - D. a-b:a::c-d:c

- 23. Ali bought an efficient washing machine that saves 10 gallons of water per load. How many gallons of water will he save if he washes 15 loads of laundry?
 - A. 0.15
 - B. 1.5
 - C. 15
 - D. 150
- 24. If P is a 1×3 matrix and Q is a 3×1 matrix, then which of the following represents a matrix of order 1×1 ?
 - A. Q^2
 - B. P^2
 - C. PQ
 - D. QP
- 25. If $\begin{bmatrix} 2 & 3 \\ -3 & 0 \end{bmatrix} + Q = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, then Q is equal to
 - A. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - B. $\begin{bmatrix} 0 & -3 \\ 3 & 2 \end{bmatrix}$
 - C. $\begin{bmatrix} 2 & 3 \\ -3 & 0 \end{bmatrix}$
 - D. $\begin{bmatrix} -2 & -3 \\ 3 & 0 \end{bmatrix}$
- 26. The determinant of the matrix $\begin{bmatrix} 5 & -3 \\ 1 & 2 \end{bmatrix}$ is equal to
 - A. 3
 - B. 7
 - C. 10
 - D. 13
- 27. For any three matrices P, Q and R, the order of matrix P and Q is 2×4 and 4×3 respectively. If $R = P \times Q$, then the order of matrix R is
 - A. 2×3
 - B. 3×2
 - C. 4×3
 - D. 4×4

Page 7 of 12

28. For a non-singular matrix A, $(A \times A^{-1}) \times A$ is equal to

(**Note**: *I* is the identity matrix and *0* is the null matrix.)

- A. 0
- B. *I*
- C. A
- D. A^{-1}
- 29. For the given two triangles ABC and DEF, $\angle C$ is equal to

NOT TO SCALE

- A. 27°
- B. 33°
- C. 63°
- D. 67°
- 30. In the given triangle ABC, the side BC is equal to
 - A. b-a
 - B. *a*
 - C. 2*a*
 - D. $\frac{b+a}{2}$

NOT TO SCALE

31. In the given diagram, the side AB is equal to

- A. 3 cm
- B. 4 cm
- C. 6 cm
- D. 7 cm

NOT TO SCALE

Page 8 of 12

- 32. In the given diagram, D and E are the midpoints of the sides AC and BC respectively. If AB = 4x, DE = 16 cm and EC = 40 cm, then the value of x is equal to
 - A. 8 cm
 - B. 12 cm
 - C. 16 cm
 - D. 32 cm

NOT TO SCALE

- 33. In the given diagram, the line *XY* bisects the line segment *AB*. If the length of *AB* is *a* cm, then the length of *OA* is equal to
 - A. *a*
 - B. $\frac{a}{2}$
 - C. a^2
 - D. 2a

NOT TO SCALE

- 34. For the given triangle ABC, which one of the following is TRUE?
 - A. $m \angle C < m \angle A < m \angle B$
 - B. $m \angle B < m \angle A < m \angle C$
 - C. $m\angle A < m\angle B < m\angle C$
 - D. $m \angle C < m \angle B < m \angle A$

NOT TO SCALE

- 35. In the following figure, BD is the angle bisector of $\angle ABC$. If AB = 2 cm, BC = 6 cm, and CD = 3 cm, then the length of AD is
 - A. 1 cm
 - B. 2 cm
 - C. 3 cm
 - D. 4 cm

NOT TO SCALE

