Number Systems

Decimal numbers

Binary numbers

Number Systems

Decimal numbers

1's column
10's column
100's column
1000's column

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$
five three seven four thousands hundreds tens ones

Binary numbers

$$\frac{4 \times 10^{-1}}{1000 \times 10^{-1}}$$

$$1101_{2} = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 13_{10}$$
one
eight
one
four
two
one

Unsigned Numbers Representation

• An n-bit binary number $A = a_{n-1}a_{n-2} ... a_2a_1a_0$ has a value of:

$$\sum_{i=0}^{n-1} a_i \times 2^i$$

General Number System

 Decimal, binary and hexadecimal numbers are "fixed-radix positional number systems":

position i has a value of r^i (r= 10, 2, 16)

Non positional system:

Roman or Abjad numerals: I, II, III, IV, V, VI

Non-radix positional number systems:

time in DDHHMMSS format

Powers of Two

•
$$2^0 =$$

•
$$2^1 =$$

•
$$2^2 =$$

•
$$2^3 =$$

•
$$2^4 =$$

•
$$2^5 =$$

•
$$2^6 =$$

•
$$2^7 =$$

•
$$2^8 =$$

•
$$2^9 =$$

•
$$2^{10} =$$

•
$$2^{11} =$$

•
$$2^{12} =$$

•
$$2^{13} =$$

•
$$2^{14} =$$

•
$$2^{15} =$$

Powers of Two

•
$$2^0 = 1$$

•
$$2^1 = 2$$

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^4 = 16$$

•
$$2^5 = 32$$

•
$$2^6 = 64$$

•
$$2^7 = 128$$

•
$$2^8 = 256$$

•
$$2^9 = 512$$

•
$$2^{10} = 1024$$

•
$$2^{11} = 2048$$

•
$$2^{12} = 4096$$

•
$$2^{13} = 8192$$

•
$$2^{14} = 16384$$

•
$$2^{15} = 32768$$

• Handy to memorize up to 29

Number Conversion

- Decimal to binary conversion:
 - Convert 10011₂ to decimal

- Decimal to binary conversion:
 - Convert 47₁₀ to binary

Number Conversion

- Decimal to binary conversion:
 - Convert 10011₂ to decimal
 - $-16\times1+8\times0+4\times0+2\times1+1\times1=19_{10}$

- Decimal to binary conversion:
 - Convert 47₁₀ to binary

$$-32\times1+16\times0+8\times1+4\times1+2\times1+1\times1=101111_2$$

Binary Values and Range

- N-digit decimal number
 - How many values?
 - Range?
 - Example: 3-digit decimal number:

- N-bit binary number
 - How many values?
 - Range:
 - Example: 3-digit binary number:

Binary Values and Range

- N-digit decimal number
 - How many values? 10^N
 - Range? $[0, 10^N 1]$
 - Example: 3-digit decimal number:
 - 10³ = 1000 possible values
 - Range: [0, 999]
- N-bit binary number
 - How many values? 2^N
 - Range: [0, $2^N 1$]
 - Example: 3-digit binary number:
 - 2³ = 8 possible values
 - Range: $[0, 7] = [000_2 \text{ to } 111_2]$

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
A	10	
В	11	
С	12	
D	13	
Е	14	
F	15	

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Hexadecimal Numbers

- Base 16
- Shorthand for binary

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary

- Hexadecimal to decimal conversion:
 - Convert 0x4AF to decimal

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
 - $-0100\ 1010\ 1111_2$

- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal
 - $-16^{2} \times 4 + 16^{1} \times 10 + 16^{0} \times 15 = 1199_{10}$

Bits, Bytes, Nibbles...

Bits

10010110
most least significant bit bit

Bytes & Nibbles

10010110 nibble

Bytes

CEBF9AD7

most least significant byte byte

Large Powers of Two

- $2^{10} = 1 \text{ kilo}$ $\approx 1000 (1024)$
- $2^{20} = 1 \text{ mega} \approx 1 \text{ million } (1,048,576)$
- $2^{30} = 1$ giga ≈ 1 billion (1,073,741,824)

Decimal Prefix	Value	Binary Prefix	Value
K: Kilo	10 ³	Ki: Kibi	2 ¹⁰
M: Mega	10 ⁶	Mi: Mebi	2 ²⁰
G: Giga	10 ⁹	Gi: Gibi	2 ³⁰

Estimating Powers of Two

• What is the value of 2^{24} ?

 How many values can a 32-bit variable represent?

Estimating Powers of Two

• What is the value of 2^{24} ?

$$-2^4 \times 2^{20} \approx 16$$
 million

 How many values can a 32-bit variable represent?

$$-2^2 \times 2^{30} \approx 4$$
 billion

Addition

Decimal

Binary

Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

Overflow!

Overflow

- Digital systems operate on a fixed number of bits
- Overflow: when result is too big to fit in the available number of bits
- See previous example of 11 + 6
- In unsigned numbers, C_{out} of the adder indicates an overflow in addition
- Signed numbers have a different overflow indicator (comes later)

Signed Binary Numbers

- Sign/Magnitude Numbers
- Two's Complement Numbers

Not covered here:

Biased Numbers

One's Complement Numbers

Sign/Magnitude Numbers

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0 $A:\{a_{N-1},a_{N-2},\cdots a_2,a_1,a_0\}$
 - Negative number: sign bit = 1

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

• Example, 4-bit sign/mag representations of \pm 6:

• Range of an *N*-bit sign/magnitude number:

Sign/Magnitude Numbers

- 1 sign bit, N-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0 $A:\{a_{N-1},a_{N-2},\cdots a_2,a_1,a_0\}$
 - Negative number: sign bit = 1

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

• Example, 4-bit sign/mag representations of \pm 6:

$$+6 = 0110$$
 $-6 = 1110$

• Range of an *N*-bit sign/magnitude number:

$$[-(2^{N-1}-1), 2^{N-1}-1]$$

Sign/Magnitude Numbers

• Problems:

- Binary addition doesn't work, for example -6 + 6:

– Two representations of $0 (\pm 0)$:

1000

0000

- Don't have same problems as sign/magnitude numbers:
 - Binary addition works
 - Single representation for 0

• MSB has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- Most positive 4-bit number:
- Most negative 4-bit number:
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit 2's complement number :

• MSB has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- Most positive 4-bit number: 0111
- Most negative 4-bit number: 1000
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit 2's complement number:

$$[-(2^{N-1}), 2^{N-1}-1]$$

• A different formula, very similar to unsigned representation, useful in some occasions

$$A = \sum_{i=0}^{n-1} a_i \times 2^i$$

$$a_{0...n-2} \in \{0, 1\}$$

$$a_{n-1} \in \{0, -1\}$$

Taking the Two's Complement

- Flip the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $6_{10} = 0110_2$

Taking the Two's Complement

- Flip the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $6_{10} = 0110_2$
 - 1. 1001

$$\frac{2. + 1}{1010} = -6_{10}$$

Taking the Two's Complement

- Flip the sign of a two's complement number
- Method:
 - 1. Starting from right, don't touch 0's to first 1
 - 2. Don't touch first 1 (from right)
 - 3. Invert the rest

Proof?

• Example: Flip the sign of $6_{10} = 0110_2$

1010

Increasing Bit Width

- Extend number from N to M bits (M > N):
 - Zero Extension

Used for unsigned numbers

Sign Extension

Used for signed numbers

Zero-Extension

- Zeros copied to MSB's
- Number value is same for unsigned numbers
- Warning: Invalid operation on signed numbers

Example 1:

- 4-bit value =

$$0011_2 = 3_{10}$$

- 8-bit zero-extended value: $00000011 = 3_{10}$

• Example 2:

$$1011 = 11_{10}$$

- 8-bit zero-extended value: $00001011 = 11_{10}$

Sign-Extension

- Sign (=MSB) bit copied to new MSB's
- Number value is same for signed numbers
- Warning: Invalid operation on unsigned integer

• Example 1:

- 4-bit representation of 3 = 0011
- 8-bit sign-extended value: 00000011

• Example 2:

- 4-bit representation of -5 = 1011
- 8-bit sign-extended value: 11111011

Number System Comparison

Number System	Range
Unsigned	$[0, 2^{N}-1]$
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$

For example, 4-bit representation:

Two's Complement Addition

• Add 6 + (-6) using two's complement numbers in a binary adder

• Add -2 + 3 using two's complement numbers

Two's Complement Addition

• Add 6 + (-6) using two's complement numbers 111
0110
+ 1010

• Add -2 + 3 using two's complement numbers

Two's Complement Addition

- C_{out} of binary adder does not indicate anything in a two's complement addition and/or subtraction
- Still we have to be aware of overflow

•
$$6 + 6:0110 + 0110 = 1100 = -4$$

Wrong: 12 can not be represented in a 4-bit signed number

•
$$-6 + -6 : 1010 + 1010 = 0100 = 8$$

Wrong: -12 can not be shown in a 4-bit signed number

Overflow in 2's Complement Addition

• In a two's complement addition, overflow occurs when:

Sum of two positive numbers is negative 0110 + 0110 = 1100

Sum of two negative numbers is positive 1010 + 1010 = 0100

