

# 2019 年《网络技术与应用》 第一次实验报告

共享和交换以太网



李科 1711344 计算机科学与技术

## Contents

| —、 | 实验内容. |                 | 2  |
|----|-------|-----------------|----|
| =\ | 实验过程. |                 | 2  |
| 1. | 第一部分: | 第二章实验:单集线器以太网组网 | 2  |
| 2. | 第二部分: | 第二章练习题三(3)      | 5  |
| 3. | 第三部分: | 第三章实验           | 8  |
| 4  | 笙四部分: | 第三音练习题三(3)      | 15 |

# 一、实验内容

- 1. 在 Packet Tracer 环境下完成第二章和第三章的实验。
- 2. 完成第二章练习题三(3)、第三章练习题三(3)。
- 3. 提交完成实验后的工程文件和实验报告。

# 二、实验过程

## 1. 第一部分: 第二章实验: 单集线器以太网组网

- 1) 首先启动 Packet Tracer、保证工作区处于逻辑工作模式。
- 2) 添加器件:在设备类型中选择"网络设备",子类型选择"集线器",拖拽一个集线器到工作区。 然后在设备类型中选择"终端设备",子类型选择"PC",拖拽两个 PC 到工作区。
- 3) 连线:在设备选择区选择"连接"。单击自动连接,然后再单击集线器与PC。重复 3)操作。



4) 设备的配置与连通性测试, PC 配置 ID。192.168.0.1-192.168.0.2



#### 由 PC15 发送 ping 到 PC16



数据包内容如下:



# 2. 第二部分: 第二章练习题三 (3)

1) 在第一部分的基础上添加一个集线器和两个 PC, IP 分别设置为 192.168.0.4- 192.168.0.5



#### 从 PC15 ping 到 18

```
Physical Config Desktop Programming Attributes

Command Prompt

Packet Tracer PC Command Line 1.0
c:\>ping 192.168.0.5
Invalid Command.

c:\>ping 192.168.0.5
Pinging 192.168.0.5: bytes=32 time=6ms TTL=128
Reply from 192.168.0.5: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.0.5:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 6ms, Average = 1ms

C:\>
```

## 主机与集线器用直通双绞线,集线器与集线器用交叉双绞线。

| vent List |           |             |           |    |      |
|-----------|-----------|-------------|-----------|----|------|
| Vis.      | Time(sec) | Last Device | At Device | Ту | pe   |
|           | 0.000     |             | PC15      |    | ARP  |
|           | 0.000     |             | PC15      |    | ICMP |
|           | 0.000     |             | PC15      |    | ARP  |
|           | 0.001     | PC15        | Switch1   |    | ARP  |
|           | 0.001     |             | PC15      |    | ARP  |
|           | 0.002     | PC15        | Switch1   |    | ARP  |
|           | 0.002     | Switch1     | PC16      |    | ARP  |
|           | 0.002     | Switch1     | Switch2   |    | ARP  |
|           | 0.003     | Switch1     | PC16      |    | ARP  |
|           | 0.003     | Switch1     | Switch2   |    | ARP  |
|           | 0.003     | Switch2     | PC17      |    | ARP  |
|           | 0.003     | Switch2     | PC18      |    | ARP  |
|           | 0.004     | Switch2     | PC17      |    | ARP  |
|           | 0.004     | Switch2     | PC18      |    | ARP  |
|           | 0.005     | PC18        | Switch2   |    | ARP  |
|           | 0.006     | Switch2     | Switch1   |    | ARP  |
|           | 0.007     | Switch1     | PC15      |    | ARP  |
|           | 0.007     |             | PC15      |    | ICMP |
|           | 0.008     | PC15        | Switch1   |    | ICMP |
|           | 0.009     | Switch1     | Switch2   |    | ICMP |
|           | 0.010     | Switch2     | PC18      |    | ICMP |
|           | 0.011     | PC18        | Switch2   |    | ICMP |
|           | 0.012     | Switch2     | Switch1   |    | ICMP |
|           | 0.013     | Switch1     | PC15      |    | ICMP |



# 3. 第三部分: 第三章实验

1) 首先启动 Packet Tracer, 保证工作区处于逻辑工作模式。

- 2) 添加器件:在设备类型中选择"网络设备",子类型选择"集线器",拖拽一个集线器到工作区。 在设备类型中选择"网络设备",子类型选择"交换机",拖拽两个交换机到工作区。然后在设备 类型中选择"终端设备",子类型选择"PC",拖拽8个PC到工作区。
- 3) 连线:在设备选择区选择"连接"。单击自动连接,然后再单击交换机/集线器与 PC。重复 3)操作。
- 4) 配置 PC 的 IP, 依次为: 192.168.0.1-192.168.0.6
- 5) 单击交换机,对交换机进行配置在 CLI 界面可以直接配置交换机



#### 输入命令:

vlan database

Vlan 0002 name VLAN0002 //这就创建好了一个编号为 0002,名字为 VLAN0002 的虚拟网络

Exit

**Show VLAN** 



可以看到已经创建好

#### 接着输入:

configure terminal 进入配置终端模式

Interface Fa0/1 通知交换机配置的端口号为 1

Switchport mode access

Switchport access vlan 0002 把交换机口 1 分配给 VLAN0002

Exit

就可以看到 VLAN0002 对应的端口号已经设置好了



按照同样的方式把第5个端口也加入局域网。

6) 然后从 PC10 发送 ping 到 PC7, 也就是 192.168.0.1 到 192.168.0.5







7) 然后从 PC10 发送 ping 到 PC9, 也就是 192.168.0.1 到 192.168.0.6



8) 然后从 PC10 发送 ping 到 PC12,也就是 192.168.0.1 到 192.168.0.3



失败。

9) 现在的交换机里的 mac 地址表有了变化



#### 10) 结论:

- A. 如果不在一个局域网里的终端是不能进行交流的。
- B. 交换机的 mac 地址表是边学习边更新的。
- C. 交换机不能分配局域网功能,也就是共享的网络都在一个局域网里。

## 4. 第四部分: 第三章练习题三(3)

1) 在第三部分的基础上加一个交换机,和两个 PC。并把交换机 1 第六个端口按上面的方法加入 VLAN0002; PC 的 IP 为 192.168.0.20-192.168.0.21



2) 配置交换机 2, 先按第三部分的方法新建一个 VLAN, 序号和名字分别为: 0002, VLAN0002; 然后把交换机 2 的第 1, 2, 3 个端口都加入 VLAN0002。



这样交换机 1, 2 都在局域网里了。

3) 从 PC10 发送 ping 到 PC1



成功。

如果把 PC1 的端口也就是交换机 2 的 3 端口从 VLAN 里移除,那么就会失败



#### 4) 结论:

- A. 不同交换机之间也可以构建 VLAN,但网络序号和名称必须相同。并且,交换机互相连接的端口也必须接入局域网。
- B. 但端口变化, 那局域网里相应的终端也变化。