Reinforcement Learning Cheat Sheet Action-Value (Q) Function

Agent-Environment Interface

The Agent at each step t receives a representation of the environment's state, $S_t \in S$ and it selects an action $A_t \in A(s)$. Then, as a consequence of its action the agent receives a reward, $R_{t+1} \in R \in \mathbb{R}$.

Policy

A policy is a mapping from a state to an action

$$\pi_t(s|a)$$
 (1)

That is the probability of select an action $A_t = a$ if $S_t = s$.

Reward

The total reward is expressed as:

$$G_t = \sum_{k=0}^{H} = \gamma^k r_{t+k+1} \tag{2}$$

Where γ is the discount factor and H is the horizon, that can be infinite.

Markov Decision Process

A Markov Decision Process, MPD, is a 5-tuple (S, A, P, R, γ) where:

finite set of states:

 $s \in S$

finite set of actions:

 $a \in A$

state transition probabilities:

 $p(s'|s,a) = Pr\{S_{t+1} = s'|S_t = s, A_t = a\}$ expected reward for state-action-nexstate:

 $r(s', s, a) = \mathbb{E}[R_{t+1}|S_{t+1} = s', S_t = s, A_t = a]$

Value Function

Value function describes how good is to be in a specific state sunder a certain policy π . For MDP:

$$V_{\pi}(s) = \mathbb{E}[G_t|S_t = s) \tag{4}$$

Informally, is the expected return (expected cumulative discounted reward) when starting from s and following π

Optimal

$$v_*(s) = \max_{\pi} v^{\pi}(s) \tag{5}$$

We can also denoted the expected reward for state, action pairs.

$$q_{\pi}(s,a) = \mathbb{E}_{\pi} \left[G_t | S_t = s, A_t = a \right]$$
 (6)

Optimal

The optimal value-action function:

$$q_*(s, a) = \max_{\pi} q^{\pi}(s, a)$$
 (7)

Clearly, using this new notation we can redefine v^* , equation 5, using $q^*(s, a)$, equation 7:

$$v_*(s) = \max_{a \in A(s)} q_{\pi*}(s, a)$$
 (8)

Intuitively, the above equation express the fact that the value of a state under the optimal policy must be equal to the expected return from the best action from that state.

Bellman Equation

An important recursive property emerges for booth Value 4 and Q 6 functions if the expand them.

Value Function

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_{t} | S_{t} = s \right]$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} | S_{t} = s \right]$$

$$= \mathbb{E}_{\pi} \left[R_{t+1} + \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} | S_{t} = s \right]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a)$$
Sum of all probabilities \forall possibile r

$$\left[r + \gamma \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} | S_{t+1} = s' \right] \right]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \left[r + \gamma v_{\pi}(s') \right]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \left[r + \gamma v_{\pi}(s') \right]$$

Similarly, we can do the same for the Q function:

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[G_{t} | S_{t} = s, A_{t} = a \right]$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} | S_{t} = s, A_{t} = a \right]$$

$$= \mathbb{E}_{\pi} \left[R_{t+1} + \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} | S_{t} = s, A_{t} = a \right]$$

$$= \sum_{s', r} p(s', r | s, a) \left[r + \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} | S_{t+1} = s' \right] \right]$$

$$= \sum_{s', r} p(s', r | s, a) \left[r + \gamma V_{\pi}(s') \right]$$
(10)

Contraction Mapping

Definition

Let (X,d) be a metric space and $f:X\to X$. We say that f is a contraction if there is a real number $k \in [0,1)$ such that

$$d(f(x), f(y)) \le kd(x, y)$$

for all x and y in X, where the term k is called a Lipschitzcoefficent for f.

Contraction Mapping theorem

Let (X, d) be a complete metric space and let $f: X \to X$ be a contraction. Then there is one and only one fixed point x^* such that

$$f(x^*) = x^*$$

Moreover, if x is any point in X and $f^n(x)$ is inductively defined by $f^2(x) = f(f(x)), f^3(x) = f(f^2(x)), \dots$ $f^n(x) = f(f^{n1}(x))$, then $f^n(x) \to x^*$ as $n \to \infty$. This theorem guarantees a unique optimal solution for the dynamic programming algorithms detailed below.

Dynamic Programming

Taking advantages of the subproblem structure of the V and Q function we can find the optimal policy by just planning

Policy Iteration

1. Initialisation

We can now, find the optimal policy

```
V(s) \in \mathbb{R}, (e.g V(s) = 0) and \pi(s) \in A for all s \in S,
\Delta \leftarrow 0
2. Policy Evaluation
while \Delta < \theta (a small positive number) do
     foreach s \in S do
           V(s) \leftarrow \sum_{a}^{r} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s')\right]
           \Delta \leftarrow \max(\Delta, |v - V(s)|)
     end
end
```

3. Policy Improvement policy-stable $\leftarrow true$

while not policy-stable do foreach $s \in S$ do $old\text{-}action \leftarrow \pi(s)$ $\pi(s) \leftarrow \operatorname*{argmax}_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s') \right]$ policy-stable $\leftarrow old$ -action $\neq \pi(s)$

endend

Algorithm 1: Policy Iteration

Value Iteration

We can avoid to wait until V(s) has converged and instead to policy improvement and truncated policy evaluation step in one operation

```
\begin{split} & \text{Initialise } V(s) \in \mathbb{R}, \text{e.g} V(s) = 0 \\ & \Delta \leftarrow 0 \\ & \text{while } \Delta < \theta \ (a \ small \ positive \ number) \ \mathbf{do} \\ & & | \ v \leftarrow V(s) \\ & | \ V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) \left[ r + \gamma V(s') \right] \\ & | \ \Delta \leftarrow \max(\Delta,|v-V(s)|) \\ & | \ \text{end} \\ & \text{end} \\ & \text{ouput: Deterministic policy } \pi \approx \pi_* \ \text{such that} \\ & \pi(s) = \underset{a}{\operatorname{argmax}} \sum_{s',r} p(s',r|s,a) \left[ r + \gamma V(s') \right] \end{split}
```

Algorithm 2: Value Iteration

Monte Carlo Methods

Monte Carlo (MC) is a *Model Free* method, It does not require complete knowledge of the environment. It is based on **averaging sample returns** for each state-action pair. The following algorithm gives the basic implementation

Algorithm 3: Monte Carlo first-visit

For no-stationary problems, the Monte Carlo estimate for, e.g, V is:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right] \tag{11}$$

Where α is the learning rate, how much we want to forget about pass experiences.

Temporal Difference - Q Learning

Temporal Difference (TD) methods learn directly from raw experience without a model of the environment's dynamics. TD substitutes the expected discounted reward G_t from the episode with an estimation:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1} - V(S_t)) \right]$$
(12)

The following algorithm gives a generic implementation.

```
Initialise Q(s,a) arbitrarily foreach episode \in episodes do while s is not terminal do Choose a from s using policy derived from Q (e.g., \epsilon-greedy) Take action a, observer r,s' Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a)\right] s \leftarrow s' end end
```

Sarsa

Sarsa (State-action-reward-state-action) is to control what Temporal Difference is to policy evaluation.

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

n-step Sarsa

Define the n-step Q-Return

$$q^{(n)} = R_{t+1} + \gamma Rt + 2 + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n})$$

n-step Sarsa update Q(S, a) towards the n-step Q-return

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[q_t^{(n)} - Q(s_t, a_t) \right]$$

Forward View Sarsa(λ)

$$q_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} q_t^{(n)}$$

Forward-view $Sarsa(\lambda)$:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[q_t^{\lambda} - Q(s_t, a_t) \right]$$

Deep Q Learning

Created by DeepMind, Deep Q Learning, DQL, substitutes the Q function with a deep neural network called Q-network. It also keep track of some observation in a memory in order to use them to train the network.

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\underbrace{(r + \gamma \max_{a} Q(s', a'; \theta_{i-1}) - \underbrace{Q(s, a; \theta_i)})^2}_{\text{target}} \right]$$
(13)

Where θ are the weights of the network and U(D) is the experience replay history.

Initialise replay memory D with capacity NInitialise Q(s,a) arbitrarily

Algorithm 5: Q Learning

Copyright © 2018 Francesco Saverio Zuppichini

https://github.com/FrancescoSaverioZuppichini/Reinforcement-Learning-Cheat-Sheet