IGRT par systèmes d'imagerie kV embarqués : quelle précision attendre ?

J. Bellec¹, O. Henry¹, H. Pro¹, L.H. Lelievre¹, A. Simon², J.P. Manens^{1,2}

¹ Centre Eugène Marquis, Rennes
² Laboratoire du Traitement du Signal et de l'Image, INSERM U1099, Université Rennes1

<u>Objectif</u>: Quantifier l'erreur résiduelle de repérage survenant lors du contrôle du positionnement du patient par systèmes d'imagerie kV embarqués

Dispositifs étudiés

Clinac2100C Synergy XVI Precise Table

Processus de repérage en cours de traitement et sources d'erreurs associées

Matériel et Méthode

Evaluation de l'erreur $\varepsilon_{isocentre}$

Analyse des résultats des contrôles de coïncidence du référentiel image avec l'isocentre de traitement

Période de suivi : 6 mois (15 contrôles)

Méthode de contrôle implémentée sur **Artiscan** (Aquilab)

Erreur systématique Σιουοπιτο déduite de la moyenne des décalages observés Erreur aléatoire σιουοπιτο déduite de l'écart-type des observations

Evaluation de l'erreur ε_{image}

Analyse des résultats des contrôles de la dimension effective des pixels et des voxels

	Varian OBI		Elekta XVI	
	2DkV	CBCT	2DkV	CBCT
Protocole	Pelvis / Head	Pelvis Half Fan	Pelvis	M15 F1
Taille des pixels / voxels théorique	0,26 x 0,26 mm	0,88 x 0,88 x 2 mm	0,49 x 0,49 mm	1 x 1 x 2 mm

Liste des protocoles analysés

Contrôle de la dimension des pixels/voxels sur **Artiscan** (Aquilab) a) En 2DkV, à l'aide du **fantôme Tor18FG** (Leeds Test Object) b) En CBCT, à l'aide du **fantôme Catphan504** (Phantom Laboratory)

Erreur aléatoire σ_{image} résultante estimée :

 $\sigma_{image} = \frac{dimension effective des pixels ou voxels}{\sqrt{12}}$

Evaluation de l'erreur ε_{tabl}

Analyse des résultats des contrôles des déplacements de table (30 contrôles)

Matériel : fantôme Pentaguide et station Artiscan

Déplacement
_automatique de la table
_(1 mm < consigne < 10 mm)

Calcul de la position initiale

Ţ

Calcul de la position finale

Erreur aléatoire $\sigma_{déplacement}$ déduite de l'écart-type des décalages résiduels observés

Résolution de la consigne (Varian et Elekta) : 1 mm

Erreur aléatoire $\sigma_{consigne}$ estimée : $\sigma_{consigne} = \frac{résolution de la consigne}{\sqrt{12}}$

Erreur aléatoire σ_{table} résultante : $\sigma_{table} = \sqrt{\sigma_{consigne}^2 + \sigma_{déplacement}^2}$

Déduction de l'erreur de repérage globale $\varepsilon_{\text{globale}}$

Résultats

Erreur aléatoire de repérage globale $\sigma_{globale}$ (niveau de confiance : 95 %)

 $\sigma_{\text{globale}} = 2 * \sqrt{\sigma_{\text{isocentre}}^2 + \sigma_{\text{image}}^2 + \sigma_{\text{table}}^2}$

Erreur systématique $\Sigma_{globale}$ de repérage $\Sigma_{globale} \approx \Sigma_{isocentre}$

Dispositif VARIAN

Dispositif ELEKTA

Conclusion:

- L'erreur résiduelle de repérage inhérente aux systèmes d'imagerie kV embarqués peut dépasser 2 mm
- Sa prise en compte est indispensable pour un calcul optimal des marges autour du CTV (en particulier en RT hypo-fractionnée)
- La mise en œuvre d'un programme de contrôle qualité est indispensable pour maintenir ces erreurs au plus bas

Pas de conflits d'intérêt