Problem G. Good Triangle

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 1024 mebibytes

You are given n distinct points on a two-dimensional plane.

We define the distance between two points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ as $d(P, Q) = |x_1 - x_2| + |y_1 - y_2|$.

Let us say that three distinct points U, V, W form a good triangle if there exists a point T such that d(U,T) = d(V,T) = d(W,T). Note that T does not have to be a lattice point.

Find the number of good triangles that can be formed by the given points.

Input

The first line of the input contains one integer N ($3 \le N \le 5 \cdot 10^5$).

The *i*-th of the next N lines contains two space-separated integers x_i and y_i , meaning that the coordinate of the *i*-th point is (x_i, y_i) $(-10^9 \le x_i, y_i \le 10^9; (x_i, y_i) \ne (x_j, y_j)$ if $i \ne j$).

Output

Print one integer: the number of good triangles that can be formed by the given points.

Examples

standard input	standard output
5	9
1 -1	
1 5	
5 7	
1 3	
4 2	
10	108
-2 -1	
-2 2	
-1 -2	
-1 -1	
-1 1	
0 1	
1 -1	
1 2	
2 -1	
2 1	