

★ zirouq.me✓ zq5au@virginia.edu★ +1 (864) 633-4466

Research Interest

My research advances the foundation of **large-scale complex systems** represented as graphs (e.g., social networks, multi-agent systems, infrastructure and transportation systems) through the lens of machine learning, optimization, computational modeling, network science and game theory.

I develop **formal computational models and techniques** to simulate, analyze and optimize large real-world systems, aiming to improve system performance, unveil system behaviors, and benefit the social good. I have performed extensive research on topics such as fairness in social systems, complex system optimization, routing, and planning, optimal resource allocation, agent-based modeling, and black-box system inference.

Select Research Projects and Papers [All publications]

*Note: I often use *dynamical systems* as a mathematical model for complex systems. However, the problems, techniques, and results in my work extend to the much border realm of real-world systems (e.g., social, multi-agent, and infrastructure systems).

Project I: Optimal Resource Planning and Allocation in Large-scale Systems

Lead Researcher

- **Project goal**: Design formal computational models and methodologies for *optimal* resource planning and allocation in real-world large-scale systems represented as graphs.
- **Methods**: Optimization, game theory, mathematical modeling and simulation, network analysis
- Proposed various frameworks for modeling resource allocation in complex systems.
- Developed efficient allocation strategies that are *provably* optimal or near-optimal, while accounting for fairness and diversity constraints.
- Conducted comprehensive agent-based simulations for resource allocation in large systems.

Project Outcomes:

[1] Welfare Optimization for Resource Allocation with Peer Effects [pdf] In Submission to PNAS Zirou Qiu, Daniel Rosenkrantz, Matthew O. Jackson, Simon Levin, S. S. Ravi, Richard Stearns, Madhav Marathe

- Developed a principled model for resource allocation with externalities (e.g., mutual influences among the resources or the population) in complex systems.
- Proposed efficient strategies that guarantees optimal or near-optimal welfare outcomes for real-world resource allocation scenarios.

[2] Assigning Agents to Increase Network-Based Neighborhood Diversity [pdf] **AAMAS-23** (Acc: 23.3%) **Zirou Qiu**, Andrew Yuan, Chen Chen, Madhav Marathe, S.S. Ravi, Daniel Rosenkrantz, Richard Stearns, Anil Vullikanti (**Oral**)

- Developed a formal model for real-world spatial resources allocation problems, such as public housing assignment and urban spatial planning, and inventory placement.
- Presented rigorous methodologies for resource allocation with provable close-to-optimal guarantees, while ensuring social diversity and fairness.

Project II: Efficient Inference of Complex Systems

Lead Researcher

- **Project goal**: Develop efficient algorithms and techniques for analyzing and learning large-scale complex systems represented as graphs (e.g., social systems, dynamical systems and multi-agent systems).
- **Methods**: Machine learning on graphs, sequential modeling, probabilistic analysis and inference, empirical evaluation on heterogeneous datasets.
- Proposed several efficient, effective, and highly scalable learning methods for black-box system inference.
- Established performance guarantees of the proposed methods both theoretically and experimentally.

Project Outcomes:

[1] Learning Discrete Dynamical Systems under Classification Noise [pdf] In submission to ICLR-25

Zirou Qiu*, Zakaria Mehrab*, Abhijin Adiga, Madhav Marathe, S.S. Ravi, Daniel Rosenkrantz, Richard Stearns, and Anil Vullikanti

- Proposed efficient noise-tolerant algorithms for learning the behaviors of large-scale systems in realistic noisy environments, with a provable high learning accuracy.
- Our algorithms are highly scalable to large networks, and the amount of training data required is provably near-optimal.

[2] Theoretical Foundations for Parent Divorcing Transformations [pdf] In submission to TCS
With Daniel Rosenkrantz, Madhav Marathe, and S.S. Ravi

- Estabilished a theoretical groundwork for dimensionality reduction in Bayesian inference.
- Proposed efficient algorithms for dimensionality reduction with provable guarantees.

[3] Efficient PAC Learnability of Dynamical Systems Over Multilayer Networks [pdf] ICML-24 (Acc: 27.8%) Zirou Qiu, Abhijin Adiga, Madhav Marathe, S.S. Ravi, Daniel Rosenkrantz, Richard Stearns, and Anil Vullikanti

- Proposed the first efficient learning method for inferring the behaviors of large-scale multilayer social systems and multi-agent systems.
- Our algorithm achieves a high learning accuracy both theoretically and empirically. Further, the amount of training data required is provably near-optimal.
- Develop the foundations of learning multilayer complex systems with an exact analysis of the model complexity and expressiveness.

[4] Learning the Topology and Behavior of Discrete Dynamical Systems [pdf] AAAI-24 (Acc: 23.8%) Zirou Qiu, Abhijin Adiga, Madhav Marathe, S.S. Ravi, Daniel Rosenkrantz, Richard Stearns, and Anil Vullikanti

- Investigated the core principles of learning both the behaviors and the topology of black-box social systems and multi-agent systems.
- Proposed several efficient learning algorithms with provable guarantees for real-world scenarios of learning large complex systems.

[5] Learning Networked Dynamical Systems Via Active Queries [pdf] ICML-22 (Acc: 22%) Daniel Rosenkrantz, $(\alpha^{-\beta})$ Abhijin Adiga, Madhav Marathe, **Zirou Qiu**, S.S. Ravi, Richard Stearns, and Anil Vullikanti (**Spotlight**)

- Developed the first collection of active learning based methods for inferring both the behaviors and the topology of black-box social systems and multi-agent systems.
- Conducted an extensive experimental study on the empirical performs on the proposed algorithms on real-world networks over various learning scenarios.

Project III: Modeling and Simulation of Complex Systems

Lead Researcher

- **Project goal**: Advance the understanding of real-world complex systems by modeling various intricate dynamic processes and uncovering novel properties of systems via (agent-based) simulation.
- Methods: Computational (sequential) modeling, large-scale simulation and data analysis
- Designed principled models for multi-contagion diffusion on complex systems.
- Performed extensive simulations for dynamic processes over large systems on real datasets.
- Revealed novel phenomena and intrinsic properties of complex system dynamics.
- Derived policy guidelines for betterment of social good.

Project Outcomes:

[1] Airborne disease transmission during indoor gatherings over multiple time scales [pdf] **PNAS-23**Avinash Dixit, Baltazar Espinoza, **Zirou Qiu**, Anil Vullikanti, and Madhav Marathe

- Introduced a principled modeling framework that couples the fast dynamics of viral loads in the local scale and the slow dynamics of disease progression at the population level.
- Derived policy guidelines to lessen the negative impact of epidemics.

Zirou Qiu, Baltazar Espinoza, Vitor V. Vasconcelos, Chen Chen, Sara M. Constantino, Stefani A. Crabtree, Luojun Yang, Anil Vullikanti, Jiangzhuo Chen, Jörgen Weibull, Kaushik Basu, Avinash Dixit, Simon Levin, Madhav Marathe

- Presented a fundamental model for dueling dynamics of social and biological contagions both cooperating and completing in a population.
- Conducted extensive agent-based simulations. Through our modeling, we uncovered a collection of previously unknown properties of contagion dynamics.
- Derived corresponding policy guidelines to suppress epidemics and prevent their resurgence.

Project IV: Dynamics and Stability of Complex Systems

Lead Researcher

- Project goal: Build the foundations of stochastic behavior and stability of complex systems.
- Methods: Mathematical (sequential) modeling, optimization, game theory
- Conducted rigorous analytical studies of diffusion in complex systems.
- Performed extensive agent-based simulations of dynamic processes on complex systems.

Project Outcomes:

[1] Networked Anti-Coordination Games Meet Graphical Dynamical Systems [pdf] AAAI-23 (Acc: 19.6%)

Zirou Qiu, Chen Chen, Madhav Marathe, S.S. Ravi, Daniel Rosenkrantz, Richard Stearns, and Anil Vullikanti (Oral)

- Presented a formal groundwork for stability and convergence in real-word strategic situations such as resources sharing and competition within a society.
- Addressed a collection of previously open problems, including a result showing the fast convergence of the dynamics and finding a Nash equilibrium in graphical games.

[2] Finding Nontrivial Minimum Fixed Points in Networked Dynamical Systems [pdf] AAAI-22 (Acc: 15%)

Zirou Qiu, Chen Chen, Madhav Marathe, S.S. Ravi, Daniel Rosenkrantz, Richard Stearns, and Anil Vullikanti (Oral)

- Established the principles of finding equilibrium points in contagion diffusion within a population, with the goal of minimizing the overall scale of infection in a society.
- Presented several efficient and effective algorithms on finding such equilibrium points with minimum numbers of infections.

Other ongoing key projects

Lead Researcher / Engineer

Large-scale Market Modeling

- Building a scalable system to model large commodity markets, incorporating components such as demand & supply, consumers & producers, strategies, and trading mechanisms.
- Applying the system on large-scale dataset of over 1 million consumers.
- Working with the software team at biocompleixy institute on designing software, system architecture, and agent based methodology.

World models in LLM

• Building a benchmark dataset of games to investigate the emergent world models in LLM including GPT, Claude, LLaMA and Mistral. Finishing one paper .

Research Experience

Biocomplexity Institute and Initiative

Mentors: S. S. Ravi, Dan Rosenkrantz, Dick Stearns Division Sep 2020 – **Present** (Virginia, US)

Research Assistant at the Network Systems and Advanced Computing Division

- Working with a team of over 40 scientists from various domains such as CS, social science, and economics.
- Researching the foundations of complex systems from the perspective of computational modeling, optimization, machine learning, and game theory.
- Developing large-scale frameworks for socio-technical system modeling and data analysis using Python and tools such as spark, networkx, CPLEX, Gruobi, ArcGIS.

- The lead researcher in four research projects, all resulted in multiple publications (see Select Projects and Papers Section).
- Eight published works (PNAS 22 & 23, AAMAS 23, AAAI 22, 23, & 24, ICML 22 & 24), plus three in-submission papers. Made important contribution to the prestigious NSF Expeditions Project in Computing.

Fujitsu Research of America

Research Intern at the Quantum Group

Supervisors: Ankit Kulshrestha, Xiaoyuan Liu Sep 2024 – **Present** (Remote, US)

- Investigating the problem of optimal resource allocation and routing in infrastructure systems by building mathematical models and optimization.
- Applying graph representation learning methods (e.g., GNN, clustering) to the qubit mapping problem.

Clemson UniversityAdvisor: Ilya Safro

Graduate Research Assistant at the Algorithms and Computational Science Lab

Jan 2019 - May 2020 (South Carolina, US)

- Investigated computational problems in network science and biology.
- Built a pipeline for microbiome modeling. Discovered novel microbiome migration pattern.
- Collaborated with biologists from Argonne National Lab and UChicago.

Argonne National Laboratory

Graduate Research Aide at the Data Science Division

Host: Chris Henry May 2019 - Aug 2019 (Illinois, US)

- Performed comprehensive analysis of microbiome data.
- Investigated the network alignment problem with applications in computational biology.
- One first-author published work at ACM-JEA.

Education

University of Virginia

Ph.D. Candidate in Computer Science (GPA: 4.0) - Advisor: Madhav Marathe

Clemson University

M.S. in Computer Science (GPA: 3.75) - Advisor: Ilya Safro

Southeast Missouri State University

B.S. in Computer Science (GPA: 3.7) - Dean's List, Cum Laude

Charlottesville, USA

Aug 2020 – Present

Clemson, USA

Aug 2018 - May 2020

Cape Girardeau, USA

Aug 2013 - May 2018

Skills

Research: Machine learning, optimization, large-scale system modeling, mathematical modeling and programming, computational methods, network science, social network analysis, algorithm design and analysis, game theory, deep learning, foundation models, generative AI

Languages: C/C++, Python, MATLAB, R, React.js, Node.js, PHP

Frameworks and Tools: PyTorch, TensorFlow, Scikit-Learn, Hugging face, DeepSpeed, Megatron-LM, MXNet, PEFT, FSDP, Transformers, LoRA, Docker, Anaconda, Git, AWS (SageMaker), Pandas, Numpy, CUDA, Spark, Linux Bash, Optuna, Gurobi, SQL, Mathematica, ArcGIS Pro, Laravel, Tailwind CSS, npm