Conditional Random Fields for Dense Stereo Matching

Christopher Yeh Los Alamitos High

Dr. Alex Ihler (mentor)
UC Irvine

Stereo Correspondence Problem

Left Image

Right Image

Depth Map

Darker colors indicate greater distance from the camera to the object.

Stereo Image Datasets

- Middlebury 2005 datasets
 - Accurate ground truth depth maps
 - Widely-used → easy to make comparisons

Local Matching

Find matching **disparity** (x_i) between individual pixels or patches of pixels in left and right images.

Local Matching Cost

Data Term:
$$U(x_i) = \begin{bmatrix} \Box & - \Box \end{bmatrix}$$

- $U(x_i)$ measures the similarity of two patches between the left and right images.
 - Patches are similar \rightarrow small value for $U(x_i)$
 - Patches are different \rightarrow large value for $U(x_i)$
- Similarity measured in terms of absolute intensity difference

Smoothness

Majority of an image is "smooth"

Disparities for neighboring pixels should be

similar

Let pixel *i* and pixel *j* be neighboring pixels. In most cases, they will have the same disparity.

Smoothness

Majority of an image is "smooth"

Disparities for neighboring pixels should be

similar

Let pixel *i* and pixel *j* be neighboring pixels. In most cases, they will have the same disparity.

 $X_i \approx X_j$

Smoothness Cost

Basic Smoothness Term

$$V(x_i, x_j) = \begin{cases} 0, & \text{if } x_i = x_j \\ \theta, & \text{if } x_i \neq x_j \end{cases}$$

- Penalize when the disparities between neighboring pixels *i* and *j* are different
- Known as <u>Potts Model</u>

Using CRFs for Stereo

Basic Cost (Energy) Function

$$F(X) = \sum_{i} U(x_i) + \sum_{i \sim j} V(x_i, x_j)$$

- Combine local and smoothness costs into one function
- F(X) = total cost for a certain configuration of disparities X
 - Goal = minimize F(X)
- Known as a Conditional Random Field (CRF)

Purpose of Smoothness Term

- Majority of an image is "smooth"
 - in most cases,
 penalize for
 disparity jumps
- Allow for disparity jumps at edges
 - Requires accurate edge detection

Histogram of Disparity Differences between Adjacent Pixels

Smoothness Cost: Gradients

Gradient-Modulated Potts Model Smoothness Term

$$V(x_i, x_j) = \begin{cases} 0, & \text{if } x_i = x_j \\ \theta_z, & \text{if } x_i \neq x_j \text{ and } g_{ij} \in B_z \end{cases}$$

- Vary the cost based on color gradient g_{ij} between neighboring pixels using z = 6 discrete bins B_z
 - Color gradient (g_{ij}) = root mean square color difference between adjacent pixels
 - $-B_z$ = intervals on [0, 2, 4, 8, 12, 16, ∞]

Gradient Bins

Bin (B _z)	1	2	3	
Color Gradient (g _{ij})	[0, 2)	[2, 4)	[4, 8)	
θ	$\theta_1 = 3.23$	$\theta_2 = 2.92$	$\theta_3 = 2.87$	

Edge Detection

- Color gradient is not a true edge detector
- Separate parameters for non-edge vs. edge pixels
- Combine color gradient feature with Canny edge detection feature > produces more accurate results

Problems with the Potts Model

- Uses discrete costs
- Uses simple binary approach to account for differences in disparity between neighboring pixels
 - Only considers $x_i = x_j$ or $x_i \neq x_j$
 - Fails to factor in x_i x_j

Smoothness Cost: Log Model

Disparity Difference and Gradient-Modulated Log Model

$$V(x_i, x_j) = \begin{cases} 0, & \text{if } x_i = x_j \\ f(i, j, z), & \text{if } x_i \neq x_j \text{ and } g_{ij} \in B_z \end{cases}$$

$$f(i, j, z) = \theta_{a,z} \ln \left(1 + e^{\theta_{b,z}} \left(x_i - x_j \right) \right)$$

- Cost for difference in disparity modeled logarithmically
- Takes 2 parameters (θ_a and θ_b) per gradient bin
 - Twice as many as Potts Model

Why Log Model

Histogram of Disparity Differences between Adjacent Pixels

Why Log Model

Difference in Disparity between Neighboring Pixels

<u>Disclaimer:</u> The equations used in graph above are $y=3*ln(1+e^{-3}x)$ and y=4. These values are for demonstration purposes only. They were not actually used in the research.

Solving Parameters: Machine Learning

- What is Machine Learning?
- 5 "Training" Datasets from Middlebury
- JGMT Toolbox for MATALB

Results Summary

- ED = Canny Edge **D**etection
- EG = Color Gradients

Ground Truth

What the depth map should look like.

Potts
Model
w/ED+CG

Error: **0.18425**

Log. Model w/ED+CG

Error: **0.17602**

Potts Model

Log Model

Number of Parameters

	# of Local Matching Parameters	# of Smoothness Parameters
Potts Model	1	1
Potts Model + ED	1	2
Potts Model + CG	1	6
Potts Model + ED + CG	1	12
Log Model	1	2
Log Model + ED	1	4
Log Model + CG	1	12
Log Model + ED + CG	1	24

Key:

- ED = Canny Edge **D**etection
- EG = Color Gradients

Normalized Results

2 Parameters

- Potts Model w/ ED
 - Error: 0.1802
- Basic Log Model
 - Error: **0.1707**
- Improvement: 5.3%

12 Parameters

- Potts Model w/ ED and CG
 - Error: 0.1764
- Log Model w/CG
 - Error: **0.1656**
- Improvement: 6.1%

Testing on a Different Set

- Potts Model actually does better here
- Suggests that log model may be over-fitting the data
 - Solution: train on more datasets

Conclusions + Future Work

- Logarithmic Model is able to assign more accurate smoothness costs than a Potts Model
- Future work
 - Train model on more data to avoid over-fitting
 - Try different models

