import pandas as pd
import seaborn as sns

df=sns.load_dataset("tips")
flights=sns.load_dataset("flights")
iris=sns.load_dataset("iris")
titanic=pd.read_csv("/content/train.csv")

df.head()

$\overline{\Rightarrow}$		total_bill	tip	sex	smoker	day	time	size
	0	16.99	1.01	Female	No	Sun	Dinner	2
	1	10.34	1.66	Male	No	Sun	Dinner	3
	2	21.01	3.50	Male	No	Sun	Dinner	3
	3	23.68	3.31	Male	No	Sun	Dinner	2
	4	24.59	3.61	Female	No	Sun	Dinner	4

Scatterplot (Numeric - Numeric)

sns.scatterplot(x=df["total_bill"],y=df["tip"])

20

Multivariaate analysis
sns.scatterplot(x=df["total_bill"],y=df["tip"],hue=df["sex"],style=df["smoker"],size=df["size"])

30

total_bill

40

50

<a < Axes: xlabel='total_bill', ylabel='tip'>

Barplot (Numerical - categorical)

titanic.head()

$\overline{\Rightarrow}$		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily	female	35.0	1	0	113803	53.1000	C123	S

sns.barplot(x=titanic["Pclass"],y=titanic['Fare'],hue=titanic["Sex"])

Boxplot (Numerical - Categorical)

sns.boxplot(x=titanic["Sex"],y=titanic['Age'],hue=titanic["Survived"])

<Axes: xlabel='Sex', ylabel='Age'>

Distplot (Numerical - Categorical)

```
sns.distplot(titanic[titanic["Survived"]==0]["Age"],hist=False)
sns.distplot(titanic[titanic["Survived"]==1]["Age"],hist=False)
```

<ipython-input-18-999863077d3c>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(titanic[titanic["Survived"]==0]["Age"],hist=False)
<ipython-input-18-999863077d3c>:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(titanic[titanic["Survived"]==1]["Age"],hist=False)
<Axes: xlabel='Age', ylabel='Density'>

Heatmap (Categorical - Categorical)

titanic.head()

$\overline{\Rightarrow}$		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S

sns.heatmap(pd.crosstab(titanic["Pclass"],titanic["Survived"]))

 $(\texttt{titanic.groupby("Pclass").mean(numeric_only=True)["Survived"]*100).plot(kind="bar")} \\$

ClusterMap (Categorical - Categorical)

 $\verb|sns.clustermap(pd.crosstab(titanic["SibSp"], titanic["Survived"]))| \\$

⇒ <seaborn.matrix.ClusterGrid at 0x7ca79d4a4ac0>

Pairplot

iris.head()

₹		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa
	4					

It is a collection of scatterplots .It gives all numerical vs numerical scatter plots of the dataset sns.pairplot(iris,hue="species")

Lineplot (Numerical - Numerical)

x will be time based number like date, time, month flights.head()

\rightarrow		year	month	passengers
	0	1949	Jan	112
	1	1949	Feb	118
	2	1949	Mar	132
	3	1949	Apr	129
		1949	May	121
	4			

^{# #} Group by 'year', calculate the sum, and reset the index. new=flights.groupby('year').sum().reset_index() sns.lineplot(x=new['year'],y=new['passengers'])

→ <Axes: xlabel='year', ylabel='passengers'>

 $\verb|sns.heatmap(flights.pivot_table(values="passengers", \verb|index="month", columns="year")||)$

sns.clustermap(flights.pivot_table(values="passengers",index="month",columns="year"))

