Joseph Camacho-Terrazas 9/28/2020 Chapter 4 Problem Set

- 1. Perform the pairwise disjointness test for the following grammar rules.
 - a. $A \rightarrow aB \mid b \mid cBB$
 - b. $B \rightarrow aB \mid bA \mid aBb$
 - c. C → aaA | b | caB
- a. $FIRST(aB) = \{a\}$
 - FIRST $(b) = \{b\}$
 - FIRST (CBB) = $\{c\}$
 - Passed doesn't intersect
- b. $FIRST(aB) = \{a\}$
 - FIRST $(bA) = \{b\}$
 - $FIRST (aBb) = {a}$
 - Fail Intersection
- c. $FIRST (aaA) = {a}$
 - FIRST $(b) = \{b\}$
 - FIRST (caB) = $\{c\}$
 - Passed doesn't intersect
- 3. Show a trace of the recursive descent parser given in Section 4.4.1 for the string a + b * c.
- Call lex(): next lexeme is a
- Enter <expr>
- Enter <term>
- Enter <factor>
- Call lex(): next lexeme is +
- Exit <factor>
- Exit <term>
- Call lex(): next lexeme is b
- Enter <term>
- Enter <factor>
- Call lex(): next lexeme is *
- Exit <factor>
- Call lex(): next lexeme is c
- Enter <factor>
- Call lex(): next lexeme is EOF
- Exit <factor>
- Exit <term>
- Exit <expr>

Joseph Camacho-Terrazas 9/28/2020

Chapter 4 Problem Set

5. Given the following grammar and the right sentential form, draw a parse tree and show the phrases and simple phrases, as well as the handle.

$$S \mathop{\rightarrow} aAb \ | \ bBA \quad A \mathop{\rightarrow} ab \ | \ aAB \quad B \mathop{\rightarrow} aB \ | \ b$$

- a. aaAbb
- b. bBab
- c. aaAbBb

a.

Parse tree:

Phrases: aaAbb, aaABb, aAb

Simple Phrase: b

Handles: b, aAB

b.

Parse Tree:

Phrases: bBab, bBA

Simple Phrase: ab

Handles: ab

Joseph Camacho-Terrazas 9/28/2020 Chapter 4 Problem Set

c.

Cannot derive from current grammar