Lec 7*: Inference on One Population

1 Motivation

• Last lecture, we learned how to perform hypothesis testing regarding population mean μ , assuming that population standard deviation σ parameter is known.

Instructor: Travis Cao

- The technique we learned can be extended to testing other population parameters obtained from one single population, and we are going to focus on three extensions this today:
 - 1. Testing μ , but remove the assumption that σ is known
 - 2. Testing σ^2
 - 3. Testing *p* (proportion of success from a binomial experiment)

2 Cookbook

2.1 How is the test statistic & rejection region method generally applied?

- 1. Does the test statistic follow (exactly or approximately) some known distribution? And what is it?
- 2. Based on the test (two-tailed or one-tailed), select the appropriate tail of the distribution for rejection using the specified significance level. This constitutes of the rejection region.
- 3. Calculate the test statistic with the given sample, and see if it falls within the rejection region.
 - If it falls within the rejection region, then we reject H_0 at the specified α significance level;
 - If it doesn't fall within the rejection region, then we fail to reject H_0 at α significance level.

Two-tailed Test	Left-tailed Test	Right-tailed Test
H_0 : parameter = parameter ₀	H_0 : parameter = parameter ₀	H_0 : parameter = parameter ₀
H_1 : parameter \neq parameter ₀	H_1 : parameter < parameter ₀	H_1 : parameter > parameter ₀
Distribution of test statistic left right cutoff	Distribution of test statistic Cutoff	Distribution of test statistic
Reject H_0 if test statistic < left cutoff, or if test statistic > right cutoff	Reject H_0 if test statistic $<$ cutoff	Reject H_0 if test statistic $>$ cutoff

^{*}Some exercise questions are taken from or slightly modified based on Dr. Gregory Pac's Econ 310 discussion handout.

2.2 How to construct a confidence interval in general?

1. Based on the distribution of the test statistic, one can set probability of drawing sample statistic across multiple samples to be the confidence level $(1 - \alpha)$ by

$$P$$
 (left cutoff \leq test statistic \leq right cutoff) = $1 - \alpha$

2. Shuffle some terms around to rewrite the above equation as

$$P(LB \le \text{parameter} \le UB) = 1 - \alpha$$

Then the confidence interval of $(1 - \alpha)$ confidence level is [LB, UB]

Note: In the special case where test statistic = $\frac{\text{statistic-parameter}}{\text{se(statistic)}}$, step 2 is achieved through the following procedure:

$$P\left(\text{left cutoff} \le \frac{\text{statistic} - \text{parameter}}{se(\text{statistic})} \le \text{right cutoff}\right) = 1 - \alpha$$

 $P(\text{left cutoff} \times se(\text{statistic}) \leq \text{statistic} - \text{parameter} \leq \text{right cutoff} \times se(\text{statistic})) = 1 - \alpha$

 $P(\text{left cutoff} \times se(\text{statistic}) - \text{statistic} \le -\text{parameter} \le \text{right cutoff} \times se(\text{statistic}) - \text{statistic}) = 1 - \alpha$

 $P(\text{statistic} - \text{left cutoff} \times se(\text{statistic}) \geq \text{parameter} \geq \text{statistic} - \text{right cutoff} \times se(\text{statistic})) = 1 - \alpha$

which implies that, in this special case, the confidence interval of $(1 - \alpha)$ confidence level is

 $[statistic - right cutoff \times se(statistic), statistic - left cutoff \times se(statistic)]$

- Using the constructed confidence interval of confidence level (1α) , one can perform a **two-tailed** test under significance level α :
 - If parameter₀ is NOT contained within the (1α) confidence interval, then we reject H_0 at α significance level;
 - If parameter₀ is contained within the (1α) confidence interval, then we fail to reject H_0 at α significance level.

3 Inferences on Three Parameters from a Single Population

3.1 Inference on μ , when σ is unknown

- Last lecture, we looked at how to perform hypothesis testing (inference) on μ using \bar{X} , while assuming that the population standard deviation of X (i.e. σ) is known.
 - Recall: if σ is known, then

test statistic =
$$\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1^2)$$

(If *X* is already normally distributed, then test statistic is exactly normally distributed; otherwise, as long as $n \ge 30$, then CLT implies that test statistic is approximately normally distributed.)

- However, often in practice, σ is unknown.
 - To address this problem, one might think about substituting σ with unbiased sample estimate s.
 - Replacing σ with s introduces some problem though: s is an estimated object, instead of something that's known for certain (like σ).
 - So the new test statistic $\frac{\bar{X}-\mu_0}{s/\sqrt{n}}$ follows a different distribution. One figured out that this new distribution is called **student-t distribution**:

test statistic =
$$\frac{\bar{X} - \mu_0}{s / \sqrt{n}} \sim t_{n-1}$$

where n-1 is the degree of freedom (DOF).

(Regardless of how X is distributed, the test statistic with estimated s always follows student-t distribution.)

– Since this falls under the special case that test statistic is standardized by subtracting parameter and then divided by standard error of the statistic, the $(1 - \alpha)$ confidence interval is

$$\left[\bar{X} - t_{\alpha/2,n-1} \times \frac{s}{\sqrt{n}}, \quad \bar{X} + t_{\alpha/2,n-1} \times \frac{s}{\sqrt{n}}\right]$$

[Go to Exercise 1 & 2]

3.2 Inference on σ^2

- Since we are assuming away from knowing σ with certainty, one might be interested in conducting hypothesis testing on population standard deviation / population variance.
 - Since variance = standard deviation², let's just always perform the test on variance.
- The test statistic used for testing variance follows a **Chi-squared distribution**:

test statistic =
$$\frac{(n-1)s^2}{\sigma_0^2} \sim \chi_{n-1}^2$$

where n-1 is the DOF.

• To construct the confidence interval with $(1 - \alpha)$ confidence level, we need to find the relevant cutoff values that yield middle portion probability of $(1 - \alpha)$:

Hence,

$$\begin{split} P\left(\chi_{1-\frac{\alpha}{2},n-1}^{2} \leq \frac{(n-1)s^{2}}{\sigma^{2}} \leq \chi_{\frac{\alpha}{2},n-1}^{2}\right) &= 1-\alpha \\ P\left(\frac{\chi_{1-\frac{\alpha}{2},n-1}^{2}}{(n-1)s^{2}} \leq \frac{1}{\sigma^{2}} \leq \frac{\chi_{\frac{\alpha}{2},n-1}^{2}}{(n-1)s^{2}}\right) &= 1-\alpha \\ P\left(\frac{(n-1)s^{2}}{\chi_{\frac{\alpha}{2},n-1}^{2}} \leq \sigma^{2} \leq \frac{(n-1)s^{2}}{\chi_{1-\frac{\alpha}{2},n-1}^{2}}\right) &= 1-\alpha \end{split}$$

The confidence interval with $(1 - \alpha)$ confidence level for σ^2 is constructed to be

$$\left[\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}\right]$$

4

[Go to Exercise 3]

3.3 Inference on p (proportion of success from a binomial experiment)

- Recall from our discussion on sampling distribution that a binomial $X \stackrel{a}{\sim} N(np, np(1-p))$ if the following conditions both hold:
 - 1. $np \geq 5$, and
 - 2. $n(1-p) \ge 5$

This implies that the sample success proportion $\hat{p} \stackrel{a}{\sim} N\left(p, \left(\sqrt{\frac{p(1-p)}{n}}\right)^2\right)$.

- To perform hypothesis testing, we can check, under the sample proportion \hat{p} from the given sample, if we can first approximate \hat{p} as a normally distributed variable:
 - 1. $n\hat{p} \geq 5$, and
 - 2. $n(1-\hat{p}) \geq 5$

If both conditions hold, we will use the standardized version of \hat{p} as our test statistic, so that the test statistic follows (approximately) a standard normal distribution $N(0, 1^2)$. That is,

test statistic =
$$\frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} \stackrel{a}{\sim} N(0, 1^2)$$

• This also falls under the special case that test statistic is standardized by subtracting parameter and then divided by standard error of the statistic. So the $(1 - \alpha)$ confidence interval is

$$\left[\hat{p} - Z_{\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \quad \hat{p} + Z_{\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$$

[Go to Exercise 4]

4 Exercises

- 1. A researcher would like to estimate the average weight of American middle school students. She collects a sample of size 51 and calculates a sample mean of 120. The standard deviation is 15.
 - (a) Assuming the standard deviation given above is the true population standard deviation, construct an 80 percent confidence interval for the population mean.

(b) Assuming the standard deviation above is the sample standard deviation, construct an 80 p cent confidence interval for the population mean.	er-
(c) Which of the above confidence intervals is wider? Does this match up with what you wo	uld
expect? Why?	
2. A citrus fruit dryer randomly sampled 10 observations, finding a sample mean drying time of	103
and a sample standard deviation of 17.(a) Is there sufficient evidence to conclude the population mean drying time is less than 110 wit 10% significance level?	:h a

(b) Repeat part (a) assuming that you know that the population standard deviation is $\sigma=17$ (for this part, assume that citrus fruit drying time follows a normal distribution).
(c) Did you draw the same conclusion in the previous two parts? If there was a difference, explain
why.
3. A company produces machined engine parts that are supposed to have diameter variance no larger than 0.2 cm (centimeters). A random sample of 31 parts yields a sample variance of 0.3 cm.
(a) Using a 5% significance level, test whether the variance is larger than 0.2 cm.

	(b) Construct 99% confidence interval for σ^2 .	
Л	A poll asks a simple random sample of 100 Madison residents who makes better pizza: Romai	n Candle
Τ.	or Glass Nickel. They find that 55% of their sample prefers Roman Candle. (a) Test whether more than half of Madison residents prefer Roman Candle pizza to Glass using a 5% size of test.	
	(b) What was the distribution of your test statistic in the previous part? Explain your reaso	ning.
	(c) Construct a 95% confidence interval for the population proportion of Madison reside prefer Roman Candle pizza to Glass Nickel.	nts who

Probability table for a standard normal distribution (z \geq 0)

TABLE **3** (Continued)

		\								
	0	z								
	$P(-\infty < Z < Z$	7)								
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Probability table for a t-distribution

TABLE **4**Critical Values of the Student *t* Distribution

egrees of		4		4		
reedom	t _{.100}	t _{.050}	t _{.025}	t _{.010}	t _{.005}	
1	3.078	6.314	12.706	31.821	63.657	
2	1.886	2.920	4.303	6.965	9.925	
3	1.638	2.353	3.182	4.541	5.841	
4	1.533	2.132	2.776	3.747	4.604	
5	1.476	2.015	2.571	3.365	4.032	
6	1.440	1.943	2.447	3.143	3.707	
7	1.415	1.895	2.365	2.998	3.499	
8	1.397	1.860	2.306	2.896	3.355	
9	1.383	1.833	2.262	2.821	3.250	
10	1.372	1.812	2.228	2.764	3.169	
11	1.363	1.796	2.201	2.718	3.106	
12	1.356	1.782	2.179	2.681	3.055	
13	1.350	1.771	2.160	2.650	3.012	
14	1.345	1.761	2.145	2.624	2.977	
15	1.341	1.753	2.131	2.602	2.947	
16	1.337	1.746	2.120	2.583	2.921	
17	1.333	1.740	2.110	2.567	2.898	
18	1.330	1.734	2.101	2.552	2.878	
19	1.328	1.729	2.093	2.539	2.861	
20	1.325	1.725	2.086	2.528	2.845	
21	1.323	1.723	2.080	2.518	2.831	
22	1.323	1.717	2.074	2.508	2.819	
23	1.319	1.714	2.069	2.500	2.807	
24	1.318	1.714	2.064	2.492	2.797	
25	1.316	1.708	2.060	2.485	2.787	
26	1.315	1.706	2.056	2.479	2.779	
26	1.315					
		1.703	2.052	2.473	2.771	
28	1.313	1.701	2.048	2.467	2.763	
29	1.311	1.699	2.045	2.462	2.756	
30	1.310	1.697	2.042	2.457	2.750	
35	1.306	1.690	2.030	2.438	2.724	
40	1.303	1.684	2.021	2.423	2.704	
45	1.301	1.679	2.014	2.412	2.690	
50	1.299	1.676	2.009	2.403	2.678	
55	1.297	1.673	2.004	2.396	2.668	
60	1.296	1.671	2.000	2.390	2.660	
65	1.295	1.669	1.997	2.385	2.654	
70	1.294	1.667	1.994	2.381	2.648	
75	1.293	1.665	1.992	2.377	2.643	
80	1.292	1.664	1.990	2.374	2.639	
85	1.292	1.663	1.988	2.371	2.635	
90	1.291	1.662	1.987	2.368	2.632	
95	1.291	1.661	1.985	2.366	2.629	
100	1.290	1.660	1.984	2.364	2.626	
110	1.289	1.659	1.982	2.361	2.621	
120	1.289	1.658	1.980	2.358	2.617	
130	1.288	1.657	1.978	2.355	2.614	
140	1.288	1.656	1.977	2.353	2.611	
150	1.287	1.655	1.976	2.351	2.609	
160	1.287	1.654	1.975	2.350	2.607	
170	1.287	1.654	1.974	2.348	2.605	
180	1.286	1.653	1.973	2.347	2.603	
190	1.286	1.653	1.973	2.346	2.602	
200	1.286	1.653	1.972	2.345	2.601	
∞	1.282	1.645	1.960	2.326	2.576	

Probability table for a χ^2 -distribution

TABLE **5** Critical Values of the χ^2 Distribution

$f(\chi^2)$											
$ \begin{array}{c c} & A \\ \hline 0 & \chi_A^2 \\ \end{array} $											
Degrees of reedom	χ ² _{.995}	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^2_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$	
1	0.000039	0.000157	0.000982	0.00393	0.0158	2.71	3.84	5.02	6.63	7.88	
2	0.0100	0.0201	0.0506	0.103	0.211	4.61	5.99	7.38	9.21	10.6	
3	0.072	0.115	0.216	0.352	0.584	6.25	7.81	9.35	11.3	12.8	
4	0.207	0.297	0.484	0.711	1.06	7.78	9.49	11.1	13.3	14.9	
5	0.412	0.554	0.831	1.15	1.61	9.24	11.1	12.8	15.1	16.7	
6	0.676	0.872	1.24	1.64	2.20	10.6	12.6	14.4	16.8	18.5	
7	0.989	1.24	1.69	2.17	2.83	12.0	14.1	16.0	18.5	20.3	
8	1.34	1.65	2.18	2.73	3.49	13.4	15.5	17.5	20.1	22.0	
9	1.73	2.09	2.70	3.33	4.17	14.7	16.9	19.0	21.7	23.6	
10	2.16	2.56	3.25	3.94	4.87	16.0	18.3	20.5	23.2	25.2	
11	2.60	3.05	3.82	4.57	5.58	17.3	19.7	21.9	24.7	26.8	
12	3.07	3.57	4.40	5.23	6.30	18.5	21.0	23.3	26.2	28.3	
13	3.57	4.11	5.01	5.89	7.04	19.8	22.4	24.7	27.7	29.8	
14	4.07	4.66	5.63	6.57	7.79	21.1	23.7	26.1	29.1	31.3	
15	4.60	5.23	6.26	7.26	8.55	22.3	25.0	27.5	30.6	32.8	
16	5.14	5.81	6.91	7.96	9.31	23.5	26.3	28.8	32.0	34.3	
17	5.70	6.41	7.56	8.67	10.1	24.8	27.6	30.2	33.4	35.7	
18	6.26	7.01	8.23	9.39	10.9	26.0	28.9	31.5	34.8	37.2	
19	6.84	7.63	8.91	10.1	11.7	27.2	30.1	32.9	36.2	38.6	
20	7.43	8.26	9.59	10.9	12.4	28.4	31.4	34.2	37.6	40.0	
21	8.03	8.90	10.3	11.6	13.2	29.6	32.7	35.5	38.9	41.4	
22	8.64	9.54	11.0	12.3	14.0	30.8	33.9	36.8	40.3	42.8	
23	9.26	10.2	11.7	13.1	14.8	32.0	35.2	38.1	41.6	44.2	
24	9.89	10.9	12.4	13.8	15.7	33.2	36.4	39.4	43.0	45.6	
25	10.5	11.5	13.1	14.6	16.5	34.4	37.7	40.6	44.3	46.9	
26	11.2	12.2	13.8	15.4	17.3	35.6	38.9	41.9	45.6	48.3	
27	11.8	12.9	14.6	16.2	18.1	36.7	40.1	43.2	47.0	49.6	
28	12.5	13.6	15.3	16.9	18.9	37.9	41.3	44.5	48.3	51.0	
29	13.1	14.3	16.0	17.7	19.8	39.1	42.6	45.7	49.6	52.3	
30	13.8	15.0	16.8	18.5	20.6	40.3	43.8	47.0	50.9	53.7	
40	20.7	22.2	24.4	26.5	29.1	51.8	55.8	59.3	63.7	66.8	
50	28.0	29.7	32.4	34.8	37.7	63.2	67.5	71.4	76.2	79.5	
60	35.5	37.5	40.5	43.2	46.5	74.4	79.1	83.3	88.4	92.0	
70	43.3	45.4	48.8	51.7	55.3	85.5	90.5	95.0	100	104	
80	51.2	53.5	57.2	60.4	64.3	96.6	102	107	112	116	
90	59.2	61.8	65.6	69.1	73.3	108	113	118	124	128	
100	67.3	70.1	74.2	77.9	82.4	118	124	130	136	140	