Элементы криптографического анализа

Автор курса: Тимонина Елена Евгеньевна Составитель: Смирнов Дмитрий Константинович

Версия от 23:04, 2 марта 2022 г.

2 ОГЛАВЛЕНИЕ

Оглавление

1	Домашние задания		1
	1.1	Введение	1
	1.2	Определение шифра. Простейшие примеры	1
	1.3	Стойкость шифров. Метод полного перебора	3

Часть 1

Домашние задания

1.1 Введение

1.2 Определение шифра. Простейшие примеры.

Задача 2.1 Что такое подстановка?

Решение. Подстановка — это взаимно однозначная функция, которая переводит буквы алфавита в буквы того же самого алфавита.

Задача 2.2 Что такое группа, и почему множество S_m из примера 2.1 образует группу?

Решение. Множество $G \neq \emptyset$ с бинарной операцией " \circ ", называется группой, если выполнены условия:

- 1. $\forall a, b \in G \ a \circ b \in G$;
- 2. $\forall a, b, c \in G \ a \circ (b \circ c) = (a \circ b) \circ c;$
- 3. $\exists e \in G : \forall a \in G \ e \circ a = a \circ e = a;$
- 4. $\forall a \in G \ \exists b \in G : a \circ b = b \circ a = e$

Множество S_m вводится как множество всех подстановок на конечном алфавите $A = \{a_1, ..., a_m\}$. Проверим выполнение аксиом группы:

- 1. Подстановка $k \in S_m$ отображение $k \colon A \to A$. $\forall k_1, k_2 \in S_m$ рассмотрим суперпозицию $k_1 \circ k_2$. Так как $k_1 \circ k_2 \colon A \to A \to A$, то $k_1 \circ k_2 \in S_m$ и первая аксиома верна.
- 2. $\forall k_1, k_2, k_3 \in S_m$ $k_1 \circ (k_2 \circ k_3) = k_1 \circ k_2(k_3(a)) = k_1(k_2(k_3(a))) = k_1(k_2(a)) \circ k_3(a) = (k_1 \circ k_2) \circ k_3.$
- 3. Поскольку S_m множество всех подстановок, то найдётся тождественная подстановка: $\exists e \in S_m \colon \forall a \in A \ e(a) = a$. Тогда $\forall k \in S_m$ верно

```
e \circ k = e(k(a)) = k(a) = k(e(a)) = k \circ e.
```

4. Так как подстановка – взаимно однозначная функция, то $\forall k \in S_m$ существует обратная функция: $\exists k^{-1} \colon A \to A \Rightarrow k^{-1} \in S_m$, для которой будет выполнено равенство $k \circ k^{-1} = k(k^{-1}(a)) = k^{-1}(k(a)) = k^{-1} \circ k$. При этом, $\forall a \in A \ k^{-1}(k(a)) = a = e(a)$.

Выполнены все аксиомы группы, следовательно S_m – группа.

Задача 2.3 Почему группа S_n из примера 2.2 является симметрической?

Решение. Симметрической группой n-го порядка называется множество S(X) всех биективных отображений $f\colon X\to X$, где X – конечное множество из n элементов. Группа S_n в примере 2.2 определяется как группа подстановок на множестве $X=\{1,...,n\}$. Подстановка – это биективное отображение, X – конечное множество из n элементов. Следовательно, по определению, группа S_n является симметрической.

Задача 2.4 Что такое кольцо? Что такое кольцо вычетов по модулю m?

Решение. Множество K называется *кольцом*, если в K определены две операции "+" (сложение) и "·" (умножение) и выполняются следующие условия $\forall a,b,c\in K$:

- 1. $a + b \in K, a \cdot b \in K$;
- 2. a + (b + c) = (a + b) + c, a(bc) = (ab)c;
- 3. a + b = b + a;
- 4. (a + b)c = ac + bc;
- 5. $\exists 0 \in K : a + 0 = a$.

Кольцом вычетов по модулю m называется такое кольцо

 $\mathbb{Z}_{/m} = \{C_0, C_1, ..., C_{m-1}\}$ $(C_r$ – смежный класс вычетов по модулю m), в котором операции сложения и умножения определяются следующими правилами:

- 1. $C_a + C_b = C_r$, где $r \equiv (a+b) \pmod{m}$;
- 2. $C_a C_b = C_r$, где $r \equiv ab \pmod{m}$

То есть, $C_a + C_b$ – это класс, в который входит число a + b, а $C_a C_b$ – класс, в который входит число ab.

Задача 2.5 Какую алгебраическую структуру представляет собой кольцо $\mathbb{Z}_{/m}$ при m=2?

Решение.

Теорема 2.1 Если p – простое число и $p \ge 2$, то $\mathbb{Z}_{/m}$ – поле характеристики p.

По теореме 1.2 кольцо $\mathbb{Z}_{/2}$ является полем характеристики 2.

1.3 Стойкость шифров. Метод полного перебора.

Задача 3.1 Дан алфавит $A = \{1, 2, ..., n\}$, x – открытый текст в алфавите A. Ключ шифрования (T_1, T_2, T_3) , где T_i – случайные подстановки. Алгоритм шифрования: $T_3(T_2(T_1(x))) = y$. Какова формула для расшифрования? Мощность пространства различных ключей? Сложность МПП?

Решение.

- 1. Формула для расшифрования $x = T_1^{-1}(T_2^{-1}(T_3^{-1}(y)))$.
- 2. В каждой подстановке на первое место можно поставить n различных букв, на второе -n-1, и т.д. В итоге получаем n! вариантов на каждую подстановку, следовательно, $|K| = (n!)^3$ для трёх подстановок.
- 3. Пусть в тексте a букв. Тогда необходимо провести 3a операций подстановки, чтобы проверить один ключ. В среднем нужно проверить количество ключей, равное средней трудоёмкости МПП: $E\tau = \frac{|K|+1}{2} = \frac{(n!)^3+1}{2}$. Следовательно, сложность МПП равна $\frac{3}{2}a[(n!)^3+1]$.

Задача 3.2 Найти минимальную среднюю трудоёмкость в следующей схеме шифрования:

Решение.

В предложенной схеме используется три блока DES с разными ключами. Для одного блока DES $|K|=2^{56}$, тогда для всей схемы: $|K|=(2^{56})^3=2^{168}$. Окончательно, $E\tau=\frac{|K|+1}{2}=\frac{2^{168}+1}{2}\approx 2^{167}$.

Задача 3.3 В сообщении каждая буква записывается два раза. Для шифрования используется шифр перестановки длины 2n. Сложность МПП?

Решение.

В данной схеме используется две подстановки, причём для каждой нечётной буквы применяется первая подстановка, а для каждой чётной – вторая: $T(x) = T(x_1, x_2, ..., x_{2l-1}, x_{2l}) = (T_1(x_1), T_2(x_2), ..., T_1(x_{2l-1}), T_2(x_{2l}))$, где l – половина длины сообщения. Тогда длина ключа для каждой из подстановок будет равна n, а мощность пространства различных ключей для всей системы будет равна $|K| = (n!)^2$.

Для проверки одного ключа (T_1,T_2) требуется 2l операций подстановки. Тогда сложность МПП равна $2lE\tau=2l\frac{|K|+1}{2}=l[(2n)!+1].$

В данной схеме байт ОТ $x=x_1x_2...x_8$ шифруется с помощью функции F следующим образом:

$$x'_1 = x_1;$$

 $x'_2 = x_2 + f_1(x_1);$
...
 $x'_8 = x_8 + f_8(x_1, x_2, ..., x_7),$

где $f_1, ..., f_7$ – случайные булевы функции, A – невырожденная матрица. Ключом являются F и A. Оценить сложность нахождения ключа с помощью МПП.

Решение.

Определим мощность пространства ключей для F. Так как количество функций, зависящих от n переменных, равно 2^{2^n} , то

$$|K_F| = \prod_{i=1}^{7} 2^{2^i} = 2^{\sum_{i=1}^{7} 2^i} = 2^{\frac{2(2^7 - 1)}{2 - 1}} = 2^{2^8 - 2} = 2^{254}.$$

Теперь рассмотрим матрицу A. Мы на неё умножаем вектор длины 8 и на выходе тоже получаем вектор длины 8. Следовательно, $A \in \{0,1\}^{8\times 8}$. Тогда $|K_A|=2^{8\cdot 8}=2^{64}$. Таким образом,

$$|K| = |K_F| \cdot |K_A| = 2^{254} \cdot 2^{64} = 2^{318}$$

Если бы нам были известны функции $f_1, ..., f_7$, то можно было бы рассчитать количество операций на каждый ключ точно. Но нам они неизвестны, поэтому примем за общее число операций для проверки одного ключа за p. Тогда сложность МПП равна $\frac{|K|+1}{2}p = \frac{2^{318}+1}{2}p \approx 2^{317}p$.

Комментарий к задачам о многочлене Жегалкина.

В полином Жегалкина степени не выше m от функции n переменных входит C_n^k различных мономов степени k. При этом перед каждым из них стоит коэффициент, следовательно, $2^{C_n^k}$ – количество различных вариантов выбрать 0 или 1 перед мономами.

Если полином степени ровно m, то хотя бы при одном мономе этой степени стоит коэффициент 1. Это означает, что число различных вариантов выбрать 0 или 1 перед мономами степени m в таком полиноме равно $2^{C_n^m-1}$.

Используя полином Жегалкина степени не выше m, будем считать, что n=m.

Задача 3.5 Ключ шифрования k — многочлен Жегалкина степени 2. Мощность пространства различных ключей? Сложность МПП? Решение.

Теннение.
$$|K|=2^{C_n^0+C_n^1+C_n^2-1}=2^{n+\frac{(n-1)n}{2}}=2^{\frac{n^2+n}{2}}.$$
 Количество операций $p=C_n^1(1+1)+C_n^2(1+2)=2n+3\frac{(n-1)n}{2}=\frac{3}{2}n^2+\frac{1}{2}n$ Сложность: $pE\tau=(\frac{3}{2}n^2+\frac{1}{2}n)\frac{2^{\frac{n^2+n}{2}}+1}{2}\approx (3n^2+n)2^{\frac{n^2+n-4}{2}}$ С учётом последнего комментария получим $|K|=8$, $pE\tau=31.5$.

Задача 3.6 Ключ шифрования k — многочлен Жегалкина степени не выше m. Мощность пространства различных ключей? Сложность МПП? Решение.

$$|K|=2^{\sum_{i=0}^m C_n^i}$$
. Количество операций $p=\sum_{i=1}^m C_n^i(i+1)$ Сложность: $pE au=[\sum_{i=1}^m C_n^i(i+1)]^{\frac{2\sum_{i=0}^m C_n^i}{2}}\approx [\sum_{i=1}^m C_n^i(i+1)]2^{\sum_{i=1}^m C_n^i}$

Задача 3.7 Ключ шифрования k – многочлен вида:

$$\sum_{1 \le i < j \le n} a_{ij} x_i x_j, a_{ij} \in \{0, 1\}.$$

Мощность пространства различных ключей? Сложность МПП? **Решение.**

Множество a_{ij} образует верхнетреугольную матрицу без главной диагонали. Следовательно, $|K|=2^{(n-1)+(n-2)+\dots+1+0}=2^{\frac{(n-1)n}{2}}$. Количество операций $p=\frac{(n-1)n}{2}(1+2)-1=\frac{3}{2}n^2-\frac{3}{2}n-1$ Сложность: $pE\tau=(\frac{3}{2}n^2-\frac{3}{2}n-1)^2\frac{2^{\frac{(n-1)n}{2}}+1}{2}\approx (3n^2-3n-2)2^{\frac{n^2-n-4}{2}}$