Лабораторная работа 1.4.5 Изучение колебаний струны

Лёвин Андрей

6 декабря 2019

1 Аннотация

В работе изучается явление поперечных стоячих волн в струне: определяются собственные частоты колебаний струны в зависимости от натяжения струны и определение скорости распространения поперечных волн в струне с помощью звукового генератора, двухканального осциллографа, частотомера, набора грузов и станины, с закрепленной на ней струной.

2 Теоретические сведения

Стоячая волна возникает в результате интерференции и представляет собой колебательный процесс с устойчивым в пространстве расположением максимумов (пучностей) и минимумов (узлов). Колебания ограниченной, закрепленной на концах струны, являющиеся стоячими волнами задаются уравнением:

$$\frac{\delta^2 y}{\delta t^2} = -u^2 \frac{\delta^2 y}{\delta x^2},$$

где:

$$u = \sqrt{\frac{T}{\rho_l}}. (1)$$

Так как на концах струны амплитуда колебаний равна нулю, в струну длиной L должно укладываться целое число полуволн:

$$L = \frac{\lambda_n}{2}n.$$

Поскольку длина волны однозначно связана с ее частотой, стуна может колебаться только с определенными частотами:

$$\nu_n = \frac{u}{\lambda_n} = \frac{n}{2L} \sqrt{\frac{T}{\rho_l}}, \ n \in \mathbb{N}.$$

Набор таких частот называют собственными частотами колебаний струны.

Стоячие волны (собственные моды колебаний струны) для n = 1,2,3

Резонанс возникает при совпадении внешней синусоидальной силы с частотой собственных колебаний пружины. Струна возбуждается синусоидальным сигналом от генератора при помощи датчика у конца струны. Сигнал в катушке, которая находится в пучности, регистрируется осциллографом.

3 Оборудование и инструментальные погрешности

В работе используются: звуковой генератор, двухканальный осциллограф, частотомер, набор грузов, станина, с закрепленной на ней струной.

- 1. Точность измерения массы грузов 0,1 г.
- 2. Точность измерения с помощью линейки 0,5 мм.
- 3. Точность измерения частот 0,1 Гц.

4 Результаты измерений и обработка данных

4.1 Подготовка к эксперименту

Схема экспериментальной установки:

- 1. Освободим зажим струны на стойке 3, установим длину струны L=50 см. Натянем струну, поставив на платформу грузы (примерно 0.5 кг) (учитывая вес платформы и крепежа). Осторожно зажмем струну в стойке, не деформируя струну. Возбуждающий датчик 6 должен располагаться рядом с неподвижной стойкой 2, т.е. вблизи узла стоячей волны.
- 2. Проведем предварительные расчёты. Оцените скорость распространения волн, используя табличное значение плотности стали и приняв диаметр струны равным $d \approx 0.3$ мм. Для заданных значений длины струны и силы натяжения рассчитаем частоту основной гармоники ν_1 согласно формулам, написанным выше.

$$u = 110 \pm 2 \, \frac{\mathrm{M}}{\mathrm{c}},$$

3. Включим в сеть звуковой генератор и частотомер. Установим на генераторе тип сигнала — синусоидальный, частоту основной гармоники ν_1 и максимальную амплитуду напряжения. При этом сигнал с выхода генератора должен быть подан на возбуждающий датчик 6 (проверим правильность соединения проводов!).

4.2 Наблюдение стоячих волн прямым наблюдением

1. Медленно меняя частоту звукового генератора в диапазоне $\nu = \nu_1 \pm 5 \Gamma$ ц, добьемся возбуждения стоячей волны на основной гармонике (одна пучность). Если при колебаниях струна касается регистрирующего датчика 8, осторожно сдвинем датчик по скамье в сторону подвижного зажима струны 3. Определим частоту первой гармоники по частотомеру. 2. Увеличив частоту в 2 раза, получим картину стоячих волн на второй гармонике, а затем и на более высоких гармониках.

№	ν, Гц
1	100,6
2	205,8
3	305,4
4	413,2
5	515,3
6	620,9
7	726,0

4.3 Регистрация стоячих волн с помощью осциллографа

- 1. Визуально настроем струну на основной гармонике, не меняя нагрузку струны и её длину. Установим регистрирующий датчик 8 в центре под струной (в пучности стоячей волны). Уменьшим уровень выходного сигнала генератора так, чтобы при колебаниях струна не касалась датчика. Проверим правильность соединения проводов.
- 2. Включим осциллограф в сеть и проверим его настройку. Подстроим частоту генератора так, чтобы амплитуда сигнала была максимальна. Добьемся отсутствия нелинейных искажений, уменьшая уровень возбуждения (амплитуду напряжения генератора) и подстраивая при этом частоту так, чтобы она соответствовала максимуму сигнала.

				_			_			_		
№	ν, Гц	№	ν, Гц		$N_{\overline{0}}$	ν, Гц		$N_{\overline{0}}$	ν , Гц		$N_{\overline{0}}$	ν , Гц
1	100,6	1	129,3		1	158,6		1	182,0		1	205,0
2	205,8	2	258,4		2	313,2		2	365,8		2	410,2
3	305,4	3	388,1	1	3	469,4		3	549,8		3	616,2
4	413,2	4	523,6	1	4	629,2		4	733,4		4	821,9
5	515,3	5	651,2	1	5	786,1		5	916,0		5	1028,4
6	620,9	6	783,3		6	944,1		6	1100,3		6	1232,2
7	726,0	7	915,2		7	1102,1		7	1286,0		7	1441,1
8	830,3	8	1050,1		8	1264,1]	8	1472,5		8	1647,6
9	930,9	9	1184,0		9	1423,3]	9	1658,4		9	1861,3
10	1033,4	10	1322,0		10	1586,5]	10	1847,2		10	2062,0
П	Іагрузка		Нагрузка		L	Іагрузка		L	Іагрузка		ы	агрузка
11	iai pyska	J	naipyska		1.	iai pyska		1.	iaipyska		11	.ai pyska
	6,89 H		$10,24 \; \mathrm{H}$			$15,03~{ m H}$			$19,75~{ m H}$		4	24,48 H

Графики зависимости частоты от n представлены ниже:

Из графиков имеем зависимость и от Т:

T, H	$u, \frac{M}{c}$	$u^2, \frac{M^2}{C^2}$
6,89	103,06	10621
10,24	130,69	17080
15,03	157,5	24806
19,75	183,64	33724
24,48	205,8	42353

Так как

$$u^2 = \frac{T}{a}$$

то из последнего графика получим $ho_l = 594 \pm 26 \ {M \over M}$

4.4 Наблюдение "четверти"волны

Благодаря высокой добротности струны, возможно возбуждение её колебаний при кратных частотах генератора, меньших, чем ν_1 . Для наблюдения явления переключим осциллограф в режим (X-Y) и настроим установку на наблюдение основной гармоники. Затем уменьшим частоту возбуждения в два раза, установив на генераторе $\nu = \frac{1}{2}\nu_1$. На экране осциллографа наблюдается фигура Лиссажу с одним самопересечением.

Данное явление происходит потому что отношение частот в струне и в генераторе отличаются в 2 раза.

4.5 †. Определение добротности Q струны как колебательной системы

Измерим её амплитудно-частотную характеристику (AЧX) вблизи одной из резонансных частот – ν_1

u, Гц	A, y.e.
238.4	1
238.5	1.5
238.6	2.5
238.7	4
238.8	7
238.85	8
238.9	4
239.0	2
239.1	1.5
239.2	1

Откуда можно найти добротность

$$Q = \frac{\nu_1}{\Delta \nu} = 1200$$

5 Обсуждение результатов и выводы

Теоретические и экспериментальные значения погонной плотности совпали в пределах погрешности, меньшей 5%

$$\frac{\Delta u}{u} = \sqrt{\left(\frac{\Delta T}{T}\right)^2 + \left(\frac{\Delta \rho_l}{\rho_l}\right)^2} = 0.5\%$$

Так как для каждого измерения вращения использовалась серия измерений, то необходимо учитывать случайную погрешность.

$$\sigma_{\mathrm{cn}_u} = \frac{1}{N} \sqrt{\sum_{i=1}^n (u - \bar{u})} (\mathrm{в} \ \mathrm{пределаx} \ \mathrm{до} \ 0, 5\%)$$

Полная погрешность считается по формуле

$$\sigma = \sqrt{\sigma_{\rm ch}^2 + \sigma_{\rm chct}^2}$$

Откуда получаем выражение для погрешности для погонной плотности материала

$$\sigma_f = \sqrt{\sigma_{\text{c.r.}}^2 + 4(\frac{\Delta u}{u})^2 + (\frac{\Delta T}{T})^2} = 4\%$$