

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

Question Bank - Unit 1

Questions from the Prescribed Textbook

Topic	Exercise No.	Question No's
Regular expression	3.1 3.2	12 to 21, 27, 28 6,7, 15
Regular expression to Finite Automata	3.2	1-9
Finite Automata to regular expression	3.2	12
Regular expression in practice	3.2	17

Extra Questions

- 1) Construct regular expression for each of the following
 - a) Binary strings containing at least one 00 and at least one 11
 - b) Binary strings with at least two occurrences of at least two consecutive 1 s, the two occurrences not being adjacent (i.e., 011011 is acceptable but 011111 is not).
 - c) Strings over $\{a, b, c\}$ in which the fourth symbol from the beginning is a c.
 - d) $\{w \mid w \text{ begins with a 1 and ends with a 0} \}$ over the alphabet Σ (0,1)
 - e) $\{w \mid w \text{ has length at least 3 and its third symbol is a 0 over the alphabet } \Sigma (0,1)$

2)convert the following RegEx to an equivalent NFA

- a) $(0+\lambda)(1+\lambda)(1+2)*0(2+1)*$
- b) (0+11+10(1+00)*01)*
- c) $(a+b+c)*c(a+b)c(a+b)(c+\lambda)*$
- d) 0*1*0* with three states

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

- e) 1*(001*)* with three states
- 3) Convert the following DFA/NFA to an equivalent RegEx

PES UNIVERSITY, Bangalore (Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013) **Department of Computer Science & Engineering**

Automata Formal Languages & Logic

- 4) Are the following pairs of RegEx's equivalent(do they represent same set of strings
 - a) $(0+\lambda)(11*0)*(1+\lambda)$ and $(1+\lambda)(011*)*(0+\lambda)$
 - b) (0*1*)* and (0+1)*
 - c) $(0+1)^*(0+\lambda)$ and $(1+\lambda)(1+0)^*(0+1+\lambda)$
- 5) Construct regular expression for each of the following
 - a) All valid dates in the year 2012 expressed in the dd/mm format.
 - b) All valid names of people: a first name and an optional last name and any number of middle names or middle initials (e.g., James Bond or James H. H. E. Bond); or any number of initials followed by a single name (e.g., J. H. H. E. Bond). First name, middle name and last name are all in init-caps (i.e., only the first letter is capitalized); initials are a capital letter followed by a period.
 - c) 20. All valid monetary amounts: starting with the Rupee symbol with an optional decimal point and a two-digit fractional amount; if it is larger than three digits, then commas separate billions, millions and thousands (e.g., Rs. 101.99 or Rs. 10,000 or Rs. 1,670,439,444.49).