CLIPLoss and Norm-Based Data Selection Methods for Multimodal Contrastive Learning

Yiping Wang^{1,*}, Yifang Chen^{1,*}, Wendan Yan^{1,3}, Alex Fang¹, Wenjing Zhou², Kevin Jamieson¹, Simon Shaolei Du¹

¹ University of Washington, ²University of Michigan, ³Microsoft Corporation, *Equal Contribution

Background

- Data selection is critical for large-scale multimodal pretraining, particularly for noisy web-curated datasets.
- Current best data selection approaches for CLIP pretraining leverage external non-CLIP models [2,3] (like BLIP and OCR models, etc) or the external large-scale high-quality pretraining datasets (like HQITP-350M[1]), while the potential of CLIP embedding is under-explored.

Key Takeaway

- CLIP Loss is better than CLIPScore in image-text data selection. Simply replacing CLIPScore with negative CLIP Loss (negCLIPLoss) can consistently produce better quality measurement in data selection for CLIP pretraining.
- New SOTA on DataComp-medium. Our methods can achieve a new SOTA on the DataComp benchmark by combining them with the current top techniques.
- High Efficiency and Universality. Our methods don't need external non-CLIP models or the external large-scale pretraining datasets as in previous works. They are very efficient and also universal to different CLIP teacher models.

Code: https://github.com/ypwang61/negCLIPLoss NormSim DataComp samples and checkpoint: https://huggingface.co/ypwang61/negCLIPLoss NormSim/tree/main/medium scale DataComp Benchmark: https://www.datacomp.ai/dcclip/leaderboard.html

negCLIPLoss ourperforms CLIPScore

- The difference between CLIPScore (similarity of one) image-text pair) and the negative of CLIP Loss (negCLIPLoss) is only a normalization term.
- This term calculates the similarity among crossimage-text pairs, which penalizes the image/text features **shared** by different data (Like monotonous patterns/colors in images, or "Photo"/"Image" in texts), and rewards more distinctive data.
- Compared with CLIPScore, negCLIPLoss consistently provides better estimates of data quality.

Quality Metric for data i

CLIPScore $= f_i^T g_i$ $negCLIPLoss := f_i^T g_i - \Re \propto negative CLIP loss for data i$ where the normalization term $\mathfrak{R} := \frac{\tau}{2} [\log \left(\sum_{j \in B} e^{\int_i^T g_j / \tau} \right) + \log \left(\sum_{j \in B} e^{\int_j^T g_i / \tau} \right)]$

CLIPScore can underestimate the quality

"San Juan Islands

negCLIPLoss: Top 34%

n: Top 100%

"CIMG5175 Woolly

"Caruba Step-down "17596 Green Willow verloopring 67-46" Place - Photo 25'

CLIPScore can overestimate the quality

negCLIPLoss: Top 30% negCLIPLoss: Top 39% n: Top 17%

negCLIPLoss: Top 52%

NormSim: Estimate source-target similarity

- Quality and source-target similarity are orthogonal metrics. OCR-style imagetext pairs can also have high-quality scores.
- Using p-norm similarity on the image embeddings to evaluate the sourcetarget relevance. We use the validation data from the 24 downstream tasks as target. When p = 2, it's theoretically provable that NormSim₂ is optimal under a linear setting. And in experiments, $p=\infty$ has the best performance.
- We also have a variant NormSim₂-D (Dynamic) which is target-data-free.

Experiment Results

Setup: Following DataComp-medium pipeline. It contains 128M low-quality data for filtering (successfully download 110M). After obtaining subsets with some data filtering strategies, it will train a CLIP-B/32 model with a fixed budget.

E1: methods Just utilizing CLIP embedding

Strategy	IN-1k	VTAB	Avg.
CLIPScore	26.4	32.6	32.2
negCLIPLoss (Ours)	27.9	33.2	32.9
negCLIPLoss ∩ NormSim ₂ -D (Ours)	<u>29.8</u>	34.8	<u>34.1</u>
$negCLIPLoss \cap NormSim_{\infty}$ (Ours)	31.7	36.0	35.0

E2: Comparing All methods

Strategy	IN-1k	VTAB	Avg.
DFN [1]	36.0	36.2	35.4
Devil [2]	31.0	35.9	34.5
DFN U HYPE [3]	<u>36.4</u>	<u>38.5</u>	36.8
DFN ∪ Ours	<u>36.4</u>	38.6	<u>37.6</u>
DFN U HYPE U Ours	37.3	<u>38.5</u>	37.7

E3: Universality: Our methods applied for OpenAl's CLIP-B/32, CLIP-L/14, and the public version of DFN models.

More details in our papers. In Leadboard we are applying our methods on the complete data pool (i.e., 128M data pool)