• Systematic Error:

- From if M_1 and M_2 are *perfectly matched*, still I_0 may not equal I_{REF} !
- > Recall:

$$I_{D} = \frac{k_{N}}{2} V_{GT}^{2} \left(1 + \lambda V_{DS} \right)$$

> Thus:

$$\frac{I_0}{I_{REF}} = \frac{1 + \lambda V_{DS2}}{1 + \lambda V_{DS1}} = \frac{1 + \lambda V_0}{1 + \lambda V_{GS}}$$

 \succ Therefore, $I_0 = I_{REF}$ only when $V_0 = V_{GS}$

• Output Resistance R_0 :

 \succ First, *investigate* M_1

- The *small-signal equivalent* consists simply of $1/g_m$, which is similar to r_D for *diodes*
 - Hence the name diode-connected MOSFET

• For the complete circuit:

Left part of the circuit has no source

$$\Rightarrow$$
 v₂ = 0

$$\Rightarrow$$
 $g_{m2}v_2 = 0$

- ightharpoonup Thus, $R_0 = v_t/i_t = r_{02} = 1/(\lambda I_0)$
- For a good current source, R_0 should be as large as possible (ideally infinite)
 - \Rightarrow λ should be as small as possible and/or I_0 should be as small as possible

- Golden Rule for Calculation of R_0 :
 - \succ For a **BJT** (or **MOSFET**):
 - With E (or S) *grounded*
 - No electrical connection (feedback) between C (or D) and B (or G)
 - **Looking from** the C (or D)
 - **❖** The only resistance seen will be the output resistance of the BJT (or MOSFET)

• npn Current Repeater:

- > Uses multi-emitter BJTs
- ➤ Maximum number of emitters = 4
- > All emitters tied together
- \succ All Qs have same V_{BE}
- $ightharpoonup I_{REF} = (V_{CC} V_{BE})/R$

