Diszkrét matematika 2.C szakirány

2. előadás

Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/~nagy

Komputeralgebra Tanszék

2016. ősz

Gráfok alapfogalmai

Állítás

Egy G gráfban a különböző v és v' csúcsokat összekötő sétából alkalmasan törölve éleket és csúcsokat a v-t v'-vel összekötő utat kapunk.

Bizonyítás

Legyen az állításban szereplő séta a következő:

$$v = v_0, e_1, v_1, e_2, v_2, \dots, v_{n-1}, e_n, v_n = v'.$$

Ha valamely i < j esetén $v_i = v_i$, akkor töröljük az

$$e_{i+1}, v_{i+1}, e_{i+2}, v_{i+2}, \dots, v_{j-1}, e_j, v_j$$

részt, és ismételjük ezt, amíg van csúcsismétlődés. Ha már nincs, akkor utat kaptunk. Mivel minden lépésben csökken a séta hossza, ezért az eljárás véges sok lépésben véget ér.

Gráfok alapfogalmai

Definíció

Egy gráfot összefüggőnek nevezünk, ha bármely két csúcsa összeköthető sétával.

A $G = (\varphi, E, V)$ gráf esetén V elemeire vezessük be a \sim relációt: $v \sim v'$ pontosan akkor, ha G-ben vezet út v-ből v'-be.

A \sim ekvivalenciareláció (Miért?), így meghatároz egy osztályozást V-n.

A csúcsok egy adott ilyen osztálya által meghatározott feszített részgráf a gráf egy komponense.

Megjegyzés

Bármely él két végpontja azonos osztályba tartozik (Miért?), így a gráf minden éle hozzátartozik egy komponenshez.

Megjegyzés

Egy gráf akkor és csak akkor összefüggő, ha minden csúcs ugyanabba az osztályba tartozik, azaz ha csak egyetlen komponense van.

2016. ősz

Fák

Definíció

Egy gráfot fának nevezünk, ha összefüggő és körmentes.

Tétel

Egy *G* egyszerű gráfra a következő feltételek ekvivalensek:

- (1) G fa;
- (2) *G* összefüggő, de bármely él törlésével kapott részgráf már nem összefüggő;
- (3) ha v és v' a G különböző csúcsai, akkor pontosan 1 út van v-ből v'-be:
- (4) *G*-nek nincs köre, de bármilyen új él hozzávételével kapott gráf már tartalmaz kört.

A bizonyítás menete

 $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$

Bizonyítás

$$(1) \Rightarrow (2)$$

G összefüggősége következik a fa definíciójából. Az állítás másik részét indirekten bizonvítjuk.

Tfh. létezik egy olyan e él (a végpontjai legyenek v és v') a gráfban, aminek a törlésével kapott gráf összefüggő. Ekkor létezne út v-ből v'-be, amit kiegészítve a törölt éllel és a megfelelő csúccsal egy kört kapnánk:

$$v, e_1, v_1, e_2, \ldots, v_{n-1}, e_n, v', e, v.$$

$$(2) \Rightarrow (3)$$

Legalább egy út létezik az összefüggőség miatt. Indirekten bizonyítjuk, hogy nem létezhet két különöző út:

Tfh. 2 út is létezik a különböző v és v' csúcsok között, legyenek ezek: $v, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v'$ és $v, e_1', v_1', e_2', \dots, v_{m-1}', e_m', v'$. Legyen k a legkisebb olyan index, amelyre $v_k \neq v'_k$. (Miért létezik ilyen e_k élt törölve összefüggő gráfot kapunk, mert a v_{k-1}, e_k, v_k séta hervettesíthető a $v_{k-1}, e'_k, v'_k, \dots, e'_m, v', e_n, v_{n-1}, e_{n-1}, v_{n-2}, \dots, v_{k+1}, e_{k+1}, v_k$ sétával.

Gráfelmélet

Bizonyítás

 $(3) \Rightarrow (4)$

Annak a bizonyítása, hogy nincs kör a gráfban indirekt:

tfh. létezik kör: $v, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v$. Ekkor v_1 és v között két

különböző út is van: $v_1, e_2, \ldots, v_{n-1}, e_n, v$ illetve v_1, e_1, v .

Ha a hozzávett e él hurokél, és a v csúcsra illeszkedik, akkor v, e, v kör lesz. Ha a hozzávett e él a különböző v és v' csúcsokra illeszkedik, akkor a köztük lévő utat megfelelően kiegészítve kapunk kört:

$$v, e_1, v_1, e_2, \ldots, v_{n-1}, e_n, v', e, v.$$

$$(4) \Rightarrow (1)$$

Az, hogy G-nek nincs köre triviálisan teljesül. Kell, hogy G összefüggő, vagyis tetszőleges v és v' csúcsa között van út. Vegyük a gráfhoz a v-re és v'-re illeszkedő e élet. Az így keletkező körben szerepel e (Miért?):

 $v', e, v, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v'$. Ekkor $v, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v'$ út

lesz v és v' között.

Lemma

Ha egy G véges gráfban nincs kör, de van él, akkor G-nek van legalább 2 elsőfokú csúcsa.

Bizonvítás

A G-beli utak között van maximális hosszúságú (hiszen G véges), és a hossza legalább 1, így a végpontjai különbözőek. Megmutatjuk, hogy ezek elsőfokúak. Legyen az említett út: $v_0, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v_n$. Ha lenne az e_1 -től különböző v_0 -ra illeszkedő e él, annak másik végpontja (v') nem lehet az útban szereplő csúcsoktól különböző, mert akkor $v', e, v_0, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v_n$ út hossza nagyobb lenne, mint a maximális út hossza. Ha viszont e másik végpontja az út valamely v_k csúcsa, akkor v_k , e, v_0 , e_1 , v_1 , e_2 , ..., v_{k-1} , e_k , v_k kör lenne, ami szintén ellentmondás.

Tétel

Egy G egyszerű gráfra, amelynek n csúcsa van $(n \in \mathbb{Z}^+)$ a következő feltételek ekvivalensek:

- (1) G fa;
- (2) *G*-ben nincs kör, és n-1 éle van;
- (3) G összefüggő, és n-1 éle van.

Bizonyítás

n = 1 esetén az állítás triviális. (Miért?)

 $(1) \Rightarrow (2)$: n szerinti TI: tfh. n = k-ra igaz az állítás. Tekintsünk egy k+1 csúcsú G fát. Ennek legyen v egy olyan csúcsa, aminek a foka 1. (Miért van ilyen?) Hagyjuk el a gráfból v-t. Az így kapott gráf, G' nyilván körmentes. Összefüggő is lesz, hiszen v egy G-beli útnak csak kezdő- vagy végpontja lehet, így a G' tetszőleges v' és v'' csúcsa közti G-beli út nem tartalmazhatja sem v-t, sem a rá illeszkedő élt, így G'-beli út is lesz egyben. Tehát G' fa, ezért alkalmazva az indukciós feltevést

k-1 éle van, és így G-nek k éle van.

Bizonyítás

- (2) \Rightarrow (3): n szerinti TI: tfh. n = k-ra igaz az állítás. Tekintsünk egy k+1 csúcsú körmentes G gráfot, aminek k éle van. Ennek legyen v egy olyan csúcsa, aminek a foka 1. (Miért van ilyen?) Hagyjuk el a gráfból v-t. Az így kapott G' gráf az indukciós feltevés miatt összefüggő, tehát tetszőleges v' és v'' csúcsa között vezet út G'-ben, ami tekinthető G-beli útnak is. G' tetszőleges csúcsa és v közötti utat úgy kaphatunk, hogy az adott csúcs és a v-vel szomszédos csúcs közötti utat kiegészítjük az elhagyott éllel és v-vel.
- $(3) \Rightarrow (1)$: Ha a feltételnek eleget tevő gráfban van kör, akkor az abban szereplő tetszőleges él elhagyásával összefüggő gráfot kapunk. (Miért?) Folytassuk az élek törlését, amíg már nincs több kör a kapott gráfban, tehát fa lesz. Ha k élt hagytunk el, akkor a kapott gráfnak n-1-k éle van, ugyanakkor az $(1) \Rightarrow (2)$ rész miatt a kapott fának n-1 éle van, így k = 0, tehát a gráfunkban nem volt kör, így fa.

2016. ősz

Feszítőfa

Definíció

A G gráf egy F részgráfját a feszítőfájának nevezzük, ha a csúcsainak halmaza megegyezik G csúcsainak halmazával, és fa.

Példa

Feszítőfa

Állítás

Minden összefüggő véges gráfnak létezik feszítőfája.

Bizonyítás

Amíg van kör a gráfban, hagyjuk el annak egy élét. A kapott gráf összefüggő marad. Véges sok lépésben fát kapunk.

Feszítőfa

Állítás

Egy $G=(\varphi,E,V)$ összefüggő véges gráfban létezik legalább |E|-|V|+1 kör, amelyek élhalmaza különböző.

Bizonyítás

Tekintsük G-nek egy F feszítőfáját. Ennek |V|-1 éle van. Jelöljük E'-vel G azon éleinek halmazát, amelyek nem élei F-nek. $e \in E'$ -t hozzávéve F-hez keletkezik egy K_e kör (Miért?), ami kör G-ben. A K_e kör tartalmazza e-t (Miért?), és $e \neq e' \in E'$ esetén $K_{e'}$ nem tartalmazza e-t. Így kapunk |E|-|V|+1 kört, amiknek az élhalmaza különbözik.

Megjegyzés

Előfordulhat, hogy a becslés nem pontos (3 > 7 - 6 + 1 = 2).

Feszítőfa

Definíció

Legyen $G=(\varphi,E,V)$, $v,v'\in V$ és $E'\subset E$. Azt mondjuk, hogy E' elvágja a v és v' csúcsokat, ha minden v-ből v'-be menő út tartalmaz E'-beli élet.

Ha léteznek olyan csúcsok, amelyeket E' elvág, akkor E'-t elvágó élhalmaznak nevezzük.

Definíció

Ha egy elvágó élhalmaznak nincs olyan valódi részhalmaza, amely maga is elvágó élhalmaz, akkor vágásnak nevezzük.

2016. ősz

Feszítőfa

Példa

 $\{e_2, e_5, e_6\}$ elvágó élhalmaz, mert elvágja v_4 -et és v_2 -t, hiszen mindhárom v₄ kezdőpontú és v₂ végpontú útban van olyan él, ami eleme:

 $V_4, e_6, V_3, e_4, V_2,$

 $V_4, e_5, V_5, e_3, V_2,$

 $V_4, e_5, V_5, e_2, V_1, e_1, V_2.$

Ugyanakkor nem vágás, mert $\{e_5, e_6\}$ olyan valódi részhalmaza, ami szintén elvágó.

Utóbbi vágás, hiszen sem $\{e_5\}$, sem $\{e_6\}$, sem \emptyset nem elvágó élhalmaz.