Action-Gap Phenomenon in Reinforcement Learning

Amir-massoud Farahmand* School of Computer Science, McGill University Montreal, Quebec, Canada 2011 Neurips

Contributions

- Smaller Performance loss than the estimated optimal action-value function with action gap regularity
- action gap regularity affects approximate policy iteration algorithms

Markov Chain

- limiting distribution
- stationary distribution
- irreducible
- aperiodic
- ergodicity
- mixing time

Limiting Distribution

1.
$$\pi_j = \lim_{n \to \infty} P_{ij}^n$$

2. $\Sigma_j \pi_j = 1$

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix} \qquad T^{\infty} = \begin{bmatrix} 0.22 & 0.41 & 0.37 \\ 0.22 & 0.41 & 0.37 \\ 0.22 & 0.41 & 0.37 \end{bmatrix}$$

$$\mu(x^{(1)})T^t \to p(x) = (0.22, 0.41, 0.37)$$

http://www.stat.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/ Lecture4_6up.pdf

Stationary Distribution

$$\pi P = \pi$$

$$\pi = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} \qquad P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad P^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Staionary Distribution may not be unique.

For Example, P = I

Limiting Distribution is Stationary Distribution

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix} \qquad T^{\infty} = \begin{bmatrix} 0.22 & 0.41 & 0.37 \\ 0.22 & 0.41 & 0.37 \\ 0.22 & 0.41 & 0.37 \end{bmatrix}$$

[0.22, 0.41, 0.37] T = [0.22, 0.41, 0.37]

Irreducible

$$P^t(x,y) > 0$$
 for some t

$$P = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad P = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

https://pages.dataiku.com/hubfs/Dataiku%20Dec%202016/File s/lecture3.pdf

Aperiodic

$$k = \gcd\{n > 0 : \Pr(X_n = i | X_0 = i) > 0)\}$$

state X is aperiodic if k>1

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad P^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

https://pages.dataiku.com/hubfs/Dataiku%20Dec%202016/File s/lecture3.pdf

Ergodicity

Markov Chain is ergodic if both irreducible and aperiodic

An ergodic Markov Chain has a unique stationary distribution and has limit distribution

$$\pi P = \pi$$

$$P = \begin{pmatrix} 0.1 & 0 & 0.9 \\ 0.1 & 0.5 & 0.4 \\ 0 & 0.3 & 0.7 \end{pmatrix}$$

```
import numpy as np

P = np.array([[0.1,0,0.9],[0.1,0.5,0.4],[0,0.3,0.7]])

C = P
for i in range(100000):
    C = np.dot(P,C)
print(C)

[[0.04 0.36 0.6 ]
    [0.04 0.36 0.6 ]
    [0.04 0.36 0.6 ]]
```

Mixing Time

Markov chain is the time until the Markov chain is "close" to its steady state distribution.

$$\|\mu - \nu\|_{\text{TV}} = \frac{1}{2} \sum_{x \in \mathcal{X}} |\mu(x) - \nu(x)|.$$

$$d(t) = \sup_{\mu \in \mathcal{P}} \|\mu P^t - \pi\|_{\text{TV}},$$

$$t_{\min}(\varepsilon) := \min\{t : d(t) \le \varepsilon\}$$

Concentration Coefficient

Hypothesis 2 (Uniform stochasticity) Let $\overline{\mu}$ be some distribution, for example a uniform distribution. There exists a constant C, such that for all policies π , for all $i, j \in X$,

$$P^{\pi}(i,j) \le C\overline{\mu}(j) \tag{8}$$

Remi Munos. Error bounds for approximate policy iteration. In ICML 2003: Proceedings of the 20th Annual International Conference on Machine Learning, pages 560–567, 2003.

Concentration Coefficients

$$C(\mu) = \max_{x,y \in X, a \in A} \frac{p(x,a,y)}{\mu(y)}$$

Relative smoothness of the immediate transition probabilities w.r.t the denominator μ

$$c(m) = \max_{\pi_1, \dots, \pi_m, y \in X} \frac{(\nu P^{\pi_1} P^{\pi_2} \dots P^{\pi_m})(y)}{\mu(y)},$$

how much the future state distributions may possibly differ from $\,\mu$

$$C_1(\nu, \mu) := (1 - \gamma) \sum_{m \ge 0} \gamma^m c(m),$$

 $C_2(\nu, \mu) := (1 - \gamma)^2 \sum_{m \ge 1} m \gamma^{m-1} c(m).$

Concentration Coefficient

ullet N states and μ is uniform distribution

$$C(\mu) = \max_{x,y \in X, a \in A} \frac{p(x,a,y)}{\mu(y)} \qquad C(\mu) = N$$

$$c(m) = \max_{\pi_1, \dots, \pi_m, y \in X} \frac{(\nu P^{\pi_1} P^{\pi_2} \dots P^{\pi_m})(y)}{\mu(y)},$$

$$C_{1}(\nu,\mu) := (1-\gamma) \sum_{m\geq 0} \gamma^{m} c(m), \qquad (1-\gamma) \sum_{m\geq 0} \gamma^{m} \Pr(x_{m} = y | x_{0} \sim \nu, \pi_{1}, \dots, \pi_{m}) \leq C_{1}(\nu,\mu)\mu(y),$$

$$C_{2}(\nu,\mu) := (1-\gamma)^{2} \sum_{m\geq 1} m \gamma^{m-1} c(m). \qquad (1-\gamma)^{2} \sum_{m\geq 1} m \gamma^{m-1} \Pr(x_{m} = y | x_{0} \sim \nu, \pi_{1}, \dots, \pi_{m}) \leq C_{2}(\nu,\mu)\mu(y).$$

Theorem 5.2. Let μ and ν be two probability measures on X. Consider the AVI algorithm defined by (1.1), write π_n a policy greedy w.r.t. V_n , and $\varepsilon_n = V_{n+1} - \mathcal{T}V_n \in \mathbb{R}^N$ the approximation error. Let $\varepsilon > 0$ and assume that \mathcal{A} returns ε -approximations V_{n+1} in $L_{p,\mu}$ -norm $(p \ge 1)$ of $\mathcal{T}V_n$, i.e. $||\varepsilon_n||_{p,\mu} \le \varepsilon$, for $n \ge 0$. Then:

$$\limsup_{n \to \infty} ||V^* - V^{\pi_n}||_{\infty} \le \frac{2\gamma}{(1 - \gamma)^2} \left[C(\mu) \right]^{1/p} \varepsilon,$$

$$\limsup_{n \to \infty} ||V^* - V^{\pi_n}||_{p,\nu} \le \frac{2\gamma}{(1 - \gamma)^2} \left[C_2(\nu, \mu) \right]^{1/p} \varepsilon.$$

bellman operator

$$(T_{\mu}J)(i) = \sum_{j=0}^{n} p_{ij}(\mu(i))(g(i,\mu(i),j) + J(j)), \qquad i = 1,\ldots,n.$$

$$(TJ)(i) = \min_{u \in U(i)} \sum_{j} p_{ij}(u) \left(g(i, u, j) + \alpha J(j)\right), \qquad i = 1, \dots, n,$$

$$\lim_{k \to \infty} T^{\mu_k} J = J^{\mu}$$

Properties of Bellman Operator

1. Monotonicity property

$$(TJ)(x) \le (TJ')(x), \quad \forall x,$$

$$(T_{\mu}J)(x) \le (T_{\mu}J')(x), \quad \forall x.$$

2. Constant shift property

$$(T(J+re))(x) = (TJ)(x) + \alpha r,$$

$$(T_{\mu}(J+re))(x) = (T_{\mu}J)(x) + \alpha r,$$

Contraction Property of Bellman Operator

$$\max_{x} \left| (TJ)(x) - (TJ')(x) \right| \le \alpha \max_{x} \left| J(x) - J'(x) \right|,$$

$$\max_{x} \left| (T_{\mu}J)(x) - (T_{\mu}J')(x) \right| \le \alpha \max_{x} \left| J(x) - J'(x) \right|.$$

Proof)

$$c = \max_{x \in S} |J(x) - J'(x)|$$

$$J(x) - c \le J'(x) \le J(x) + c$$

Approximate Value Iteration

$$\limsup_{n \to \infty} ||V^* - V^{\pi_n}||_{\infty} \le \frac{2\gamma}{(1 - \gamma)^2} \varepsilon.$$

Proof)

$$\epsilon_{n} = TJ_{n} - J_{n+1}$$

$$||J^{*} - J^{\pi_{n}}||_{\infty} \leq ||TJ^{*} - T^{\pi_{n}}J_{n}||_{\infty} + ||T^{\pi_{n}}J_{n} - T^{\pi_{n}}J^{\pi_{n}}||_{\infty}$$

$$\leq \gamma |||J^{*} - J_{n}|| + \gamma ||J_{n} - J^{\pi_{n}}||$$

$$\leq \gamma |||J^{*} - J_{n}|| + \gamma (||J_{n} - J^{*}|| + ||J_{*} - J^{\pi_{n}}||)$$

$$||J^* - J_{n+1}|| \le ||JV^* - TV_n|| + ||TV_n - V_{n+1}|| \le \gamma ||J^* - J_n|| + \epsilon$$

Approximate Policy Iteration

$$||J_{\mu} - J^*|| \le \frac{2\gamma\epsilon}{1-\gamma}$$

Proof)
$$\begin{split} ||J - J^*|| &= \epsilon \\ ||J^{\mu} - J^*|| &= ||T_{\mu}J^{\mu} - J^*|| \\ &\leq ||T_{\mu}J^{\mu} - T_{\mu}J|| + ||T_{\mu}J - J^*|| \\ &\leq \alpha ||J^{\mu} - J|| + ||TJ - J^*|| \\ &\leq \alpha ||J^{\mu} - J^*|| + \alpha ||J^* - J|| + \alpha ||J - J^*|| \\ &= \alpha ||J^{\mu} - J^*|| + 2\alpha \epsilon, \end{split}$$

Action Gap

$$Loss = \int (V^*(x) - V^{\pi}(x)) d\rho(x)$$

$$g_{Q_*(x)} = |Q^*(x,1) - Q^*(x,2)|$$

Figure 2: The action-gap function $\mathbf{g}_{Q^*}(x)$ and the relative ordering of the optimal and the estimated action-value functions for a single state x. Depending on the ordering of the estimates, the greedy action is the same as (\checkmark) or different from (X) the optimal action. This figure does not show all possible configurations.

Peformance Loss : $E[V^* - V^{\hat{\pi}}]$

Figure 1: Comparison of the action-value estimation error $\|\hat{Q} - Q^*\|_{\infty}$ and the performance loss $\|V^* - V^{\hat{\pi}}\|_1$ ($\hat{\pi}$ is the greedy policy with respect to \hat{Q}) at different iterations of the value iteration algorithm. The rate of decrease for the performance loss is considerably faster than that of the estimation error. The problem is a 1D stochastic chain walk with 500 states and $\gamma = 0.95$.

Assumption

$$\mathbb{P}_{\rho^*} (0 < \mathbf{g}_{Q^*}(X) \le t) \triangleq \int_{\mathcal{X}} \mathbb{I}\{0 < \mathbf{g}_{Q^*}(x) \le t\} \, \mathrm{d}\rho^*(x) \le c_g \, t^{\zeta}.$$

Figure 3: The probability distribution \mathbb{P}_{ρ^*} $(0 < \mathbf{g}_{Q^*}(X) \le t)$ for a 1D stochastic chain walk with 500 states and $\gamma = 0.95$. Here the probability of the action-gap being close to zero is small.

Theorem 1. Consider an MDP $(\mathcal{X}, \mathcal{A}, P, \mathcal{R}, \gamma)$ with $|\mathcal{A}| = 2$ and an estimate \hat{Q} of the optimal action-value function. Let Assumption A1 hold and $C(\rho, \rho^*) < \infty$. Denote $\hat{\pi}$ as the greedy policy w.r.t. \hat{Q} . We then have

$$\operatorname{Loss}(\hat{\pi}; \rho) \leq \begin{cases} 2^{1+\zeta} c_g C(\rho, \rho^*) \| \hat{Q} - Q^* \|_{\infty}^{1+\zeta}, \\ 2^{1+\frac{p(1+\zeta)}{p+\zeta}} c_g^{\frac{p-1}{p+\zeta}} C(\rho, \rho^*) \| \hat{Q} - Q^* \|_{p,\rho^*}^{\frac{p(1+\zeta)}{p+\zeta}}. \end{cases} (1 \leq p < \infty)$$

Proof)

$$\begin{split} F(x) &= \left(Q^{\pi^*}(x, \pi^*(x)) - Q^{\pi^*}(x, \hat{\pi}(x))\right) + \left(Q^{\pi^*}(x, \hat{\pi}(x)) - Q^{\hat{\pi}}(x, \hat{\pi}(x))\right) = F_1(x) + F_2(x). \\ F_2(x) &= \left[r(x, \hat{\pi}(x)) + \gamma \int_{\mathcal{X}} P(dy|x, \hat{\pi}(x))Q^{\pi^*}(y, \pi^*(y))\right] - \\ &\left[r(x, \hat{\pi}(x)) + \gamma \int_{\mathcal{X}} P(dy|x, \hat{\pi}(x))Q^{\hat{\pi}}(y, \hat{\pi}(y))\right] \\ &= \gamma P^{\hat{\pi}}(\cdot|x)F(\cdot). \end{split}$$

$$\begin{split} \rho F &= \sum_{m \geq 0} \rho(\gamma P^{\hat{\pi}})^m F_1 = \sum_{m \geq 0} \gamma^m \int_{\mathcal{X}} \left(\rho(P^{\hat{\pi}})^m \right) (\mathrm{d}y) F_1(y) \\ &= \sum_{m \geq 0} \gamma^m \int_{\mathcal{X}} \frac{\mathrm{d} \left(\rho(P^{\hat{\pi}})^m \right)}{\mathrm{d}\rho^*} (y) \mathrm{d}\rho^*(y) F_1(y) \\ &\leq \sum_{m \geq 0} \gamma^m c(m; \hat{\pi}) \rho^* F_1 \leq C(\rho, \rho^*) \rho^* F_1. \\ \hat{\pi}(x) &\neq \pi^*(x) \qquad |Q^{\pi^*}(x, a) - \hat{Q}(x, a)| \leq \varepsilon \\ \mathbf{g}_{Q^*}(x) &= |Q^{\pi^*}(x, 1) - Q^{\pi^*}(x, 2)| \leq 2\varepsilon \\ \hat{\pi}(x) &\neq \pi^*(x) \qquad |Q^{\pi^*}(x, a) - \hat{Q}(x, a)| \leq \varepsilon \\ \varepsilon_0 &= ||Q^{\pi^*} - \hat{Q}||_{\infty} \\ \mathbf{g}_{Q^*}(x) &= |Q^{\pi^*}(x, 1) - Q^{\pi^*}(x, 2)| \leq 2\varepsilon \\ F_1(x) &= \left[Q^{\pi^*}(x, \pi^*(x)) - Q^{\pi^*}(x, \hat{\pi}(x)) \right] \left[\mathbb{I} \{ \hat{\pi}(x) = \pi^*(x) \} + \mathbb{I} \{ \hat{\pi}(x) \neq \pi^*(x) \} \right] \\ &= \left[Q^{\pi^*}(x, \pi^*(x)) - Q^{\pi^*}(x, 1 - \pi^*(x)) \right] \mathbb{I} \{ \hat{\pi}(x) \neq \pi^*(x) \} \\ &\times \left[\mathbb{I} \{ \mathbf{g}_{Q^*}(x) = 0 \} + \mathbb{I} \{ 0 < \mathbf{g}_{Q^*}(x) \leq 2\varepsilon_0 \} + \mathbb{I} \{ \mathbf{g}_{Q^*}(x) > 2\varepsilon_0 \} \right] \\ &\leq 0 + 2\varepsilon_0 \, \mathbb{I} \{ 0 < \mathbf{g}_{Q^*}(x) \leq 2\varepsilon_0 \} + 0. \end{split}$$

Theorem 2 (Error Propagation for AVI). Consider an MDP $(\mathcal{X}, \mathcal{A}, P, \mathcal{R}, \gamma)$ with $|\mathcal{A}| = 2$ that satisfies Assumption A1 and has $C(\rho, \rho^*) < \infty$. Let $p \ge 1$ be a real number and K be a positive integer. Then for any sequence $(\hat{Q}_k)_{k=0}^K \subset B(\mathcal{X} \times \mathcal{A}, Q_{max})$ and the corresponding sequence $(\varepsilon_k)_{k=0}^{K-1}$ defined in (3), we have

$$\operatorname{Loss}(\hat{\pi}(\cdot, Q_K); \rho) \leq 2 \left(\frac{2}{1-\gamma}\right)^{\frac{p(1+\zeta)}{p+\zeta}} c_g^{\frac{p-1}{p+\zeta}} C(\rho, \rho^*) \left[\sum_{k=0}^{K-1} \alpha_k \|\varepsilon_k\|_{p,\rho^*}^p + \alpha_K (2Q_{max})^p\right]^{\frac{2-\zeta}{p+\zeta}}.$$

$$\varepsilon_k \triangleq T^* \hat{Q}_k - \hat{Q}_{k+1}$$

$$Q^* - \hat{Q}_{k+1} = T^{\pi^*} Q^* - T^{\pi^*} \hat{Q}_k + T^{\pi^*} \hat{Q}_k - T^* \hat{Q}_k + \varepsilon_k \le \gamma P^{\pi^*} (Q^* - \hat{Q}_k) + \varepsilon_k$$

$$Q^* - \hat{Q}_K \le \sum_{k=0}^{K-1} \gamma^{K-k-1} (P^{\pi^*})^{K-k-1} \varepsilon_k + \gamma^K (P^{\pi^*})^K (Q^* - \hat{Q}_0).$$

$$\|Q^* - \hat{Q}_K\|_{p,\rho^*} = \rho^* |Q^* - \hat{Q}_K|^p \qquad \alpha_k = \begin{cases} \frac{(1-\gamma)}{1-\gamma^{K+1}} \gamma^{K-k-1} & 0 \le k < K, \\ \frac{(1-\gamma)}{1-\gamma^{K+1}} \gamma^K & k = K. \end{cases}$$

$$\rho^* |Q^* - \hat{Q}_K|^p \le \left(\frac{1 - \gamma^{K+1}}{1 - \gamma}\right)^p \left[\sum_{k=0}^{K-1} \alpha_k \rho^* (P^{\pi^*})^{K-k-1} |\varepsilon_k| + \alpha_K \rho^* (P^{\pi^*})^K |Q^* - \hat{Q}_0|\right]^p$$

$$\le \left(\frac{1 - \gamma^{K+1}}{1 - \gamma}\right)^p \left[\sum_{k=0}^{K-1} \alpha_k \|\varepsilon_k\|_{p,\rho^*}^p + \alpha_K (2Q_{\text{max}})^p\right],$$

