

planetmath.org

Math for the people, by the people.

Pfaffian

Canonical name Pfaffian

 Date of creation
 2013-03-22 14:22:13

 Last modified on
 2013-03-22 14:22:13

 Owner
 PrimeFan (13766)

 Last modified by
 PrimeFan (13766)

Numerical id 26

Author PrimeFan (13766)

Entry type Definition Classification msc 15A15

The *Pfaffian* is an analog of the determinant that is defined only for a $2n \times 2n$ antisymmetric matrix. It is a polynomial of the polynomial ring in elements of the matrix, such that its square is equal to the determinant of the matrix.

The Pfaffian is applied in the generalized Gauss-Bonnet theorem.

Examples
$$Pf \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix} = a,$$

$$Pf \begin{bmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{bmatrix} = af - be + dc.$$

Let

$$A = \begin{bmatrix} 0 & a_{1,2} & \dots & a_{1,2n} \\ -a_{1,2} & 0 & \dots & a_{2,2n} \\ \vdots & \vdots & \vdots & \vdots \\ -a_{2n,1} & -a_{2n,2} & \dots & 0 \end{bmatrix}.$$

Let Π be the set of all partition of $\{1, 2, \dots, 2n\}$ into pairs of elements $\alpha \in \Pi$, can be represented as

$$\alpha = \{(i_1, j_1), (i_2, j_2), \dots, (i_n, j_n)\}\$$

with $i_k < j_k$ and $i_1 < i_2 < \cdots < i_n$, let

$$\pi = \begin{bmatrix} 1 & 2 & 3 & 4 & \dots & 2n \\ i_1 & j_1 & i_2 & j_2 & \dots & j_n \end{bmatrix}$$

be a corresponding permutation and let us define $sqn(\alpha)$ to be the signature of a permutation π ; clearly it depends only on the partition α and not on the particular choice of π . Given a partition α as above let us set a_{α} $a_{i_1,j_1}a_{i_2,j_2}\dots a_{i_n,j_n}$, then we can define the *Pfaffian* of A as

$$Pf(A) = \sum_{\alpha \in \Pi} sgn(\alpha)a_{\alpha}.$$

Alternative definition

One can associate to any antisymmetric $2n \times 2n$ matrix $A = \{a_{ij}\}$ a bivector $:\omega = \sum_{i < j} a_{ij} e_i \wedge e_j$ in a basis $\{e_1, e_2, \dots, e_{2n}\}$ of \mathbb{R}^{2n} , then

$$\omega^n = n! Pf(A) e_1 \wedge e_2 \wedge \cdots \wedge e_{2n},$$

where ω^n denotes exterior product of n copies of ω .

Identities

For any antisymmetric $2n \times 2n$ matrix A' and any $2n \times 2n$ matrix B

$$Pf(A)^{2} = \det(A)$$

$$Pf(BAB^{T}) = \det(B)Pf(A)$$