Randomization

Muestra aleatoria vs Asignación aleatoria

Muestra aleatoria: seleccionar de una población con una probabilidad

Conocida

Asignación aleatoria: Asignar sujetos con una probabilidad conocida a

condiciones experimentales

Muestreo aleatorio

Asignación aleatoria

Definición de asignación aleatoria

Cada observación <u>debe</u> tener la misma probabilidad de ser colocado en el grupo de tratamiento

Oportunidad	Descrpición
Nuevo programa	Cuando un programa está en la fase piloto
Nuevo servicio	Cuando un programa existente ofrece un nuevo servicio
Nuevas personas	Cuando un programa en funcionamiento se piensa expandir a más presonas.
Nueva cobertura geográfica	Cuando un programa en funcionamiento piensa extenderse a otras áreas.
Sobredemanda	Cuando el programa es más demandado que las plazas que tiene disponible.
Puntos de corte para admisión	Cuando existe un punto de corte para la admisión al programa en base a algún atributo de las personas y solo algunos abajo de la línea pueden ser admitidos aleatoriamiente.
Admisión en fases	Cuando por razones logísticias y/o de restricción de recursos no todos los potenciales beneficiarios puedes ser incorporados al programa al mismo tiempo y se establecen faces para el acceso.

¿En qué medida la aleatorización contribuye a la inferencia causal?

Tratamiento y control, en promedio, no tienen diferencias estadísticamente significativas

La asignación aleatoria implica que no hay variables que causen que los individuos con altos o bajos valores de resultados potenciales vayan sistemáticamente al grupo de tratamiento o al de control

Nivel de aleatorización

Individuos, grupos, instituciones, localidades...etc.

La elección de la unidad de análisis determina lo que el estudio puede responder/demostrar

Cuando el tratamiento se aplica a nivel individual, el investigador puede optar por aleatorizar individuos o grupos de individuos. Sin embargo, cuando el tratamiento solo puede aplicarse a un grupo, la aleatorización solo puede ser a nivel de grupo. Se pueden medir efectos a nivel individual pero el tratamiento fue a nivel de grupo. Por lo tanto, la unidad de análisis es diferente a la unidad de observación.

Nunca se puede aleatorizar a un nivel inferior al que se aplicó el tratamiento.

Importancia del grupo de control / placebo.

¿Qué podemos aleatorizar?

1. Acceso (ejemplo: elegimos a las personas que se le ofrece acceso al programa)

2. tiempo en el acceso (elegimos cuándo se proveerá acceso al programa)

3. aliento (elegimos a qué personas alentar para participar en el programa)

Formas de implementar la aleatorización

Simple

Cluster (grupo)

Block (estratificada)

Factorial

Aleatorización simple

Gender	Random n Ran	ık	Select?
F	0.1011	7	1
F	0.3943	5	1
F	0.6757	3	0
F	0.0184	8	1
M	0.2660	6	1
M	0.9889	1	0
M	0.7971	2	0
М	0.5499	4	0
Average			0.5

Asignar un número aleatorio a cada una de las N unidades Luego elegir T unidades con los números (aleatorios) más grandes

Aleatorización por cluster (grupo)

Cuando el tratamiento es a un grupo de unidades (no a individuos)

Se pierde poder estadístico (ya hablaremos de esto en estos días)

Procurar que los clusters sean lo más pequeño posible (para no perder poder)

Procurar heterogeneidad dentro de cada cluster

Aleatorización por cluster (grupo)

City	Cluster		Random n Rai	nk	Select?
Α	:	1	0.1993	3	1
Α	:	1			1
В	:	2	0.3836	2	0
В		2			0
С	:	3	0.1247	4	_ 1
С	:	3			1
D	4	4	0.4267	1	0
D		4			0
Average					0.5

Asignar un número aleatorio a cada uno de los N CLUSTERS Luego elegir los T CLUSTERS con los números (aleatorios) más grandes

Blocking (estratificada)

En general, la aleatorización nos permite conseguir un buen balance en todas las variables de control (observadas y no observadas)

Pero puede no conseguirse un buen balance

Hacer una aleatorización estratificada me ayuda a asegurar un balance en las variables en función de las cuales se estratificó

Asegura el mismo número de unidades de tratamiento y de control por cada bloque

Es como hacer muchos "mini experimentos"

Blocking (estratificada)

Gender	Block	Random number	Rank	Select?
F	1	0.1378	4	1
F	1	0.4557	3	1
F	1	0.4660	2	0
F	1	0.7909	1	0
M	2	0.9317	1	0
M	2	0.2312	4	1
M	2	0.3993	3	1
М	2	0.9291	2	0
Average				0.5

Factorial

Permite testear más de un tratamiento

No reduce poder estadístico (no es necesario tener un nuevo grupo para agregar una nueva intervención-pregunta)

	T2=0	T2=1
T1=0	25%	25%
T1=1	25%	25%

Factorial

Gender	Block	Random n	Rank	T1	T2
F	1	0.0444	4	1	1
F	1	0.8061	2	0	1
F	1	0.0660	3	1	0
F	1	0.9680	1	0	0
M	2	0.5482	2	0	1
M	2	0.9003	1	0	0
M	2	0.0784	4	1	1
M	2	0.2565	3	1	0
Average				0.5	0.5

Buenas prácticas

Asegurarse que la aleatorización funcionó (t test)

Recordar: la aleatorización nos da, en promedio, balance en variables de control

Set a seed (ahora lo vamos a ver)

Aleatorización en experimentos naturales

Muchas veces no tenemos la posibilidad de hacer intervenciones para responder preguntas teóricas relevantes.

Sin embargo, puede haber procesos políticos, sociales o naturales que generen una asignación aleatoria o "como si fuera aleatoria"

Dunning (2012) los llama "experimentos naturales":

- 1. Grupo de Tratamiento y de Control
- 2. Asignación aleatoria del tratamiento o "como si fuera" aleatoria
- 3. El investigador no controla la asignación

Entonces: es un estudio observacional (sin manipulación experimental) donde la asignación al tratamiento y al control es aleatoria (o como si fuera)

Precisamente, como el investigador no controla la asignación al tratamiento y al control el método <u>obliga</u> al investigador a conocer muchos detalles

Por ejemplo, ¿hay auto-selección al tratamiento?

Los sorteos en la aplicación de programas de política pública son una buena fuente de diseños de experimentos naturales