Load necessary packages

Load file and do some preprocessing

Analysis

Page 1

[1] "What do you think Group 1 should say about whether their data agree with \n the model?"

agree with the

Q1b_5 The two spring constant values do not agree within experimental uncertainties The percent difference between the spring constant values is large ## Q1b_8 ## Q1b_35 The average periods for the two masses are different ## Q1b_28 The size of the uncertainty (or variability between measurements) is large ## Q1b 19 Other (Please describe) ## Q1b_37 The two spring constant values are similar ## Q1b_33 The two spring constant values agree within experimental uncertainties ## Q1b_34 The percent difference between the spring constant values is small ## Q1b_16 The average periods for the two masses are similar ## Q1b 36 The size of the uncertainty (or variability between measurements) is small

[1] "Which statements below support your reasoning for whether Group 1s data \n

[1] "Group 1 evaluate methods"

[1] "How effective do you think Group 1s method was for testing whether the \n

data obey the mo-

[1] "What feature was most important to you in evaluating the effectiveness of \n

Group 1s meth

[1] "What do you think Group 1 should do next?"

```
##
                                                                                t.info...cols.temp..
## Q134_1
                                                                     Test or control other variables
## Q134_2
           Reduce uncertainty (e.g., more trials for the same masses, more bounces per trial, etc.)
                                                                             Account for human error
## Q134_10
## Q134 3
                                               Repeat the experiment with more and different masses
## Q134_9
                                                         Repeat the experiment with better equipment
## Q134_4
                 Use a different analysis (e.g., graph the results, incorporate systematic effects)
## Q134_6
                                                        Compare their k-values to the expected value
## Q134_8
                                                         Design a new experiment to test the results
## Q134_5
                                                                    Check their work and write it up
## Q134_7
                                                                                               Other
```


Page 2

[1] "What do you think Group 2 should say about whether their data agree with \n the model?"

[1] "Which statements below support your reasoning for whether Group 2s data \n

agree with the

##		t.infocols.temp
##	Q2b_8	The points are close to the line
##	Q2b_11	The points are close to the line compared to the uncertainties
##	Q2b_21	There are equal numbers of points above and below the line
##	Q2b_2	The points are randomly scattered above and below the line
##	Q2b_9	There are very few outliers
##	Q2b_36	The uncertainty in the points is small
##	Q2b_6	Many of the points cross the line (when considering their uncertainties)
##	Q2b_1	The data are approximately linear
##	Q2b_38	Other (Please describe)
##	Q2b_39	The points are far from the line
##	Q2b_40	The points are far from the line compared to the uncertainties
##	Q2b_41	There are not equal numbers of points above and below the line
##	Q2b_42	There is a pattern in how the points are scattered above and below the line
##	Q2b_43	There are too many outliers
##	Q2b_44	The uncertainty in the points is large
##	Q2b_45	Too few points cross the line (when considering their uncertainties)
##	Q2b_46	The data are curved (not linear)

[1] "Group 2 evaluate methods"

[1] "How effective do you think Group 2s method was for testing whether the data \n

obey the mo

[1] "What feature was most important to you in evaluating the effectiveness of \n

Group 2s meth

[1] "What do you think Group 2 should do next?"

```
t.info...cols.temp..
##
## Q2e_6
                                                                    Test or control other variables
## Q2e_4
                                                        Repeat the experiment with better equipment
## Q2e_12
              Change the analysis (e.g., use a different fit line, incorporate systematic effects)
## Q2e 14
                                                        Compare their k-value to the expected value
## Q2e_15
                                                        Design a new experiment to test the results
## Q2e_16 Reduce uncertainty (e.g., more trials for the same masses, more bounces per trial, etc.)
## Q2e_17
                                                                   Check their work and write it up
## Q2e_34
                                              Repeat the experiment with more and different masses
## Q2e_11
                                                                            Other (Please describe)
```


Page 3

[1] "What do you think Group 2 should say about whether their data agree with \n the model?"

[1] "Which statements below support your reasoning for whether Group 2s data \n

agree with the

##		t.infocols.temp
##	Q145_8	The points are close to the line
##	Q145_11	The points are close to the line compared to the uncertainties
##	Q145_21	There are equal numbers of points above and below the line
##	Q145_2	The points are randomly scattered above and below the line
##	Q145_9	There are very few outliers
##	Q145_36	The uncertainty in the points is small
##	Q145_6	Many of the points cross the line (when considering their uncertainties)
##	Q145_1	The data are approximately linear
##	Q145_38	Other (Please describe)
##	Q145_39	The points are far from the line
##	Q145_40	The points are far from the line compared to the uncertainties
##	Q145_41	There are not equal numbers of points above and below the line
##	Q145_42	There is a pattern in how the points are scattered above and below the line $$
##	Q145_43	There are too many outliers
##	Q145_44	The uncertainty in the points is large
##	Q145_45	Too few points cross the line (when considering their uncertainties)
##	Q145_46	The data are curved (not linear)

[1] "Which fit do you think Group 2 should use?"

[1] "Others: Either fix the intercept at zero or change the model., both, \n I think the result

[1] "Which items below best reflect your reasoning?"

```
##
                                                                        t.info...cols.temp..
## Q3d_8
                                                                           The fit is better
## Q3d_11
                                    The uncertainty in the spring constant value is smaller
## Q3d_1
                                        There may have been mistakes in the data collection
## Q3d_7
                                                     There may have been random uncertainty
## Q3d_9
                                                            There may have been human error
                       There may have been an invalid assumption (or something was ignored)
## Q3d_5
## Q3d_6
                                           The intercept is irrelevant in the investigation
                                     The ideal model doesn't really apply in the real world
## Q3d_4
## Q3d_3 The model says the intercept should be zero (and they can't just add a parameter)
## Q3d 29
```


[1] "What do you think Group 2 should do next?"

```
t.info...cols.temp..
##
## Q147_6
                                                                     Test or control other variables
## Q147_4
                                                         Repeat the experiment with better equipment
## Q147_12
               Change the analysis (e.g., use a different fit line, incorporate systematic effects)
## Q147 14
                                                         Compare their k-value to the expected value
## Q147_15
                                                         Design a new experiment to test the results
## Q147_16 Reduce uncertainty (e.g., more trials for the same masses, more bounces per trial, etc.)
## Q147_17
                                                                    Check their work and write it up
## Q147_34
                                               Repeat the experiment with more and different masses
## Q147_11
                                                                             Other (Please describe)
```


Page 4 ## [1] "Which group do you think did a better job of testing the model?"

[1] "Compare methods"

[1] "What feature was most important to you for comparing the two groups?"

