

SN74LVC1G11

SCES487G - SEPTEMBER 2003 - REVISED DECEMBER 2015

SN74LVC1G11 Single 3-Input Positive-AND Gate

Features

- Available in the Texas Instruments NanoFree™ Package
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Maximum t_{pd} of 4.1 ns at 3.3 V
- Low Power Consumption, 10-µA Maximum I_{CC}
- ±24-mA Output Drive at 3.3 V
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

Applications

- **AV Receivers**
- **DLP Front Projection System**
- Digital Picture Frames
- Digital Radio
- Digital Still Cameras
- Digital Video Cameras (DVC)
- **Embedded PCs**
- E-Books
- **Ethernet Switchs**
- **GPS: Personal Navigation Devices**
- Handset: Smartphones
- High-Speed Data Acquisition and Generation
- Military: Radar and Sonar
- Mobile Internet Devices
- Notebook PC and Netbooks
- Network-Attached Storage (NAS)
- Power Line Communication Modems
- Server PSU
- STB, DVR, and Streaming Media
- Speakers: USB
- Tablets: Enterprise
- Video Broadcasting and Infrastructure: Scalable Platform and IP-Based Multi-Format Transcoders
- Wireless Headsets, Keyboards, and Mice

3 Description

The SN74LVC1G11 performs the Boolean function $Y = A \cdot B \cdot C$ or $Y = \overline{A + B + C}$ in positive logic.

NanoFree package technology is а major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74LVC1G11DBV	SOT-23 (6)	2.90 mm × 1.60 mm
SN74LVC1G11DCK	SC70 (6)	2.00 mm × 1.25 mm
SN74LVC1G11DRY	SON (6)	1.45 mm × 1.00 mm
SN74LVC1G11DSF	SON (6)	1.00 mm × 1.00 mm
SN74LVC1G11YZP	DSBGA (6)	1.41 mm × 0.91 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Functional Block Diagram

Table of Contents

1	Features 1	8	Detailed Description	10
2	Applications 1		8.1 Overview	10
3	Description 1		8.2 Functional Block Diagram	10
4	Revision History2		8.3 Feature Description	10
5	Pin Configuration and Functions3		8.4 Device Functional Modes	10
6	Specifications4	9	Application and Implementation	11
•	6.1 Absolute Maximum Ratings		9.1 Application Information	11
	6.2 ESD Ratings		9.2 Typical Application	11
	6.3 Recommended Operating Conditions	10	Power Supply Recommendations	12
	6.4 Thermal Information	11	Layout	13
	6.5 Electrical Characteristics 6		11.1 Layout Guidelines	
	6.6 Switching Characteristics, $C_L = 15 \text{ pF}$, $T_A = -40^{\circ}\text{C}$ to		11.2 Layout Example	13
	85°C6	12	Device and Documentation Support	14
	6.7 Switching Characteristics, $C_L = 30 \text{ pF}$ or 50 pF, $T_A =$		12.1 Documentation Support	14
	–40°C to 85°C6		12.2 Community Resources	14
	6.8 Switching Characteristics, C _L = 30 pF or 50 pF, T _A = -40°C to 125°C		12.3 Trademarks	14
			12.4 Electrostatic Discharge Caution	14
	6.9 Operating Characteristics	13	Mechanical, Packaging, and Orderable	
7	**		Information	14
1	Parameter Measurement Information 8			

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision F (December 2013) to Revision G

Page

Added Applications section, Device Information table, ESD Ratings table, Thermal Information table, Feature
Description section, Device Functional Modes, Application and Implementation section, Power Supply
Recommendations section, Layout section, Device and Documentation Support section, and Mechanical,
Packaging, and Orderable Information section.

Changes from Revision E (December 2011) to Revision F

Page

•	Updated document to new TI data sheet format.	1
•	Removed Ordering Information table.	1
•	Updated operating temperature range.	5

Changes from Revision D (January 2007) to Revision E

Page

Submit Documentation Feedback

5 Pin Configuration and Functions

DSF Package 6-Pin SON Top View

See mechanical drawings for dimensions.

Pin Functions

	· ··· · · · · · · · · · · · · · · · ·						
PIN		I/O	DESCRIPTION				
NAME	NO.	1/0	DESCRIPTION				
Α	1	I	A Input				
В	3	1	B Input				
С	6	I	C Input				
GND	2	_	Ground				
V _{CC}	5	_	Power Supply				
Υ	4	0	Y Output				

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V _{CC}	Supply voltage	-0.5	6.5	V
VI	Input voltage ⁽²⁾	-0.5	6.5	V
Vo	Voltage applied to any output in the high-impedance or power-off state (2)	-0.5	6.5	٧
Vo	Voltage applied to any output in the high or low state (2)(3)	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current V _I < 0		-50	mA
I _{OK}	Output clamp current V _O < 0		- 50	mA
lo	Continuous output current		±50	mA
	Continuous current through V _{CC} or GND		±100	mA
T_{J}	Junction temperature		150	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT
	V _(ESD)	Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ Charged-device model (CDM), per JEDEC specification JESD22-0	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	2000	V
			Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Submit Documentation Feedback

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the *Recommended Operating Conditions* table.

6.3 Recommended Operating Conditions

See (1)

			MIN	MAX	UNIT
.,	O complex conflictions	Operating	1.65	5.5	V
V_{CC}	Supply voltage	Data retention only	1.5		V
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		
. ,	LPak Java Parast valtaria	V _{CC} = 2.3 V to 2.7 V	1.7		
V _{IH}	High-level input voltage	V _{CC} = 3 V to 3.6 V	2		V
		V _{CC} = 4.5 V to 5.5 V	0.7 × V _{CC}		
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}	
. ,	Lavo lavol Sanut valtana	V _{CC} = 2.3 V to 2.7 V		0.7	
V_{IL}	Low-level input voltage	V _{CC} = 3 V to 3.6 V		0.8	V
		V _{CC} = 4.5 V to 5.5 V		$0.3 \times V_{CC}$	
VI	Input voltage		0	5.5	V
Vo	Output voltage		0	V _{CC}	V
	High-level output current	V _{CC} = 1.65 V		-4	
		$V_{CC} = 2.3 \text{ V}$		-8	
I_{OH}		V 2V		-16	mA
		V _{CC} = 3 V		-24	
		V _{CC} = 4.5 V		-32	
		V _{CC} = 1.65 V		4	
		$V_{CC} = 2.3 \text{ V}$		8	
I _{OL}	Low-level output current	V 2V		16	mA
		V _{CC} = 3 V		24	
		V _{CC} = 4.5 V		32	
		V _{CC} = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V		20	
Δt/Δν	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V
		V _{CC} = 5 V ± 0.5 V		10	
T _A	Operating free-air temperature		-40	125	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

6.4 Thermal Information

				SN74LVC1G11			
THERMAL METRIC ⁽¹⁾		DBV (SOT-23)	DCK (SC70)	DRY (SON)	YZP (DSBGA)	DSF (SON)	UNIT
		6 PINS	6 PINS	6 PINS	6 PINS	6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	195.9	260.1	424.6	105.8	413.7	°C/W
R _{0JCtop}	Junction-to-case (top) thermal resistance	177.4	98.1	309	1.6	226.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	51.7	63.1	292	10.8	317	°C/W
ΨЈТ	Junction-to-top characterization parameter	61.3	2.2	135.4	3.1	37.4	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	51.3	62.4	292	10.8	317	°C/W
R _{eJCbot}	Junction-to-case (bottom) thermal resistance	_	_	_	_	_	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP MAX	UNIT
		I _{OH} = -100 μA	1.65 V to 5.5 V	V _{CC} – 0.1		
		$I_{OH} = -4 \text{ mA}$	1.65 V	1.2		
V _{OH}		$I_{OH} = -8 \text{ mA}$	2.3 V	1.9		V
		$I_{OH} = -16 \text{ mA}$	2.1/	2.4		
		$I_{OH} = -24 \text{ mA}$	3 V	2.3		
		$I_{OH} = -32 \text{ mA}$	4.5 V	3.8		
		I _{OL} = 100 μA	1.65 V to 5.5 V		0.1	
		I _{OL} = 4 mA			0.45	
.,		I _{OL} = 8 mA	2.3 V		0.3	V
V_{OL}		I _{OL} = 16 mA	2.1/		0.4	V
		I _{OL} = 24 mA	3 V		0.55	
		I _{OL} = 32 mA	4.5 V		0.55	
I _I	All inputs	V _I = 5.5 V or GND	0 to 5.5 V		±5	μA
I _{off}		V_I or $V_O = 5.5 \text{ V}$	0		±10	μA
I _{CC}		$V_I = 5.5 \text{ V or GND}, \qquad I_O = 0$	1.65 V to 5.5 V		10	μA
ΔI _{CC}		One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 5.5 V		500	μA
Ci		$V_I = V_{CC}$ or GND	3.3 V		3.5	pF

6.6 Switching Characteristics, $C_L = 15 \text{ pF}$, $T_A = -40^{\circ}\text{C}$ to 85°C

over recommended operating free-air temperature range, C₁ = 15 pF (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	MIN	MAX	UNIT
			$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$	2.6	15.2	
	A, B, or C	Υ	$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	1.6	5.6	20
T _{pd}			$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.2	4.1	ns
			$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$	1	3.1	

6.7 Switching Characteristics, $C_L = 30$ pF or 50 pF, $T_A = -40$ °C to 85°C

over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	MIN	MAX	UNIT
			$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$	2.9	17.2	
	A, B, or C	$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	1.4	6.2	20	
^L pd		T -	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.3	4.9	ns
			$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$	1	3.5	

6.8 Switching Characteristics, $C_L = 30$ pF or 50 pF, $T_A = -40$ °C to 125°C

over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	MIN	MAX	UNIT
t _{pd}			$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$	2.9	20	
	A, B, or C	Υ	$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	1.4	7.8	
			$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.3	6.2	ns
			$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$	1	4.6	

6.9 Operating Characteristics

 $T_A = 25$ °C

	PARAMETER	TEST CONDITIONS	V _{cc}	TYP	UNIT
			$V_{CC} = 1.8 \text{ V}$	18	
	Dower discination conscitance	f = 10 MHz	V _{CC} = 2.5 V	19	
C _{pd}	Power dissipation capacitance		V _{CC} = 3.3 V	20	pF
			V _{CC} = 5 V	23	

6.10 Typical Characteristics

V_{OH} – V Figure 1. Output Current Drive vs HIGH-level Output Voltage

7 Parameter Measurement Information

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

.,	INPUTS		.,	.,		_	.,	
V _{cc}	V,	t,/t,	V _M	V _{LOAD}	C _L	R _⊾	V _A	
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.15 V	
2.5 V ± 0.2 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.15 V	
3.3 V ± 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	15 pF	1 M Ω	0.3 V	
5 V ± 0.5 V	V _{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.3 V	

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{\circ} = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. $t_{\mbox{\tiny PLZ}}$ and $t_{\mbox{\tiny PHZ}}$ are the same as $t_{\mbox{\tiny dis}}.$
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

Copyright © 2003–2015, Texas Instruments Incorporated

Parameter Measurement Information (continued)

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

,,	INI	PUTS		V		-	.,
V _{cc}	V,	t,/t,	V _M	V _{LOAD}	C _L	R _⊾	$V_{\scriptscriptstyle{\Delta}}$
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	1 k Ω	0.15 V
$2.5~\textrm{V}~\pm~0.2~\textrm{V}$	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	500 Ω	0.15 V
$3.3 \text{ V} \pm 0.3 \text{ V}$	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
5 V ± 0.5 V	V _{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and \dot{t}_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

8 Detailed Description

8.1 Overview

This 3-input AND gate is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC1G11 device features a three-input AND gate. The output state is determined by eight patterns of 3-bit input. All inputs can be connected to V_{CC} or GND.

This device is fully-specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

8.2 Functional Block Diagram

8.3 Feature Description

The SN74LVC1G11 device has a wide operating V_{CC} range of 1.65 V to 5.5 V, which allows use in a broad range of systems. The 5.5-V I/Os allow down translation and also allow voltages at the inputs when V_{CC} = 0 V.

8.4 Device Functional Modes

Table 1 lists the functional modes of SN74LVC1G11.

Table 1. Function Table

	INPUTS	OUTPUT			
Α	В	С	Υ		
Н	Н	Н	Н		
L	X	X	Г		
Х	L	X	L		
Х	X	L	L		

Copyright © 2003–2015, Texas Instruments Incorporated Product Folder Links: *SN74LVC1G11*

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Validate and test the design implementation to confirm system functionality.

9.1 Application Information

The SN74LVC1G11 device offers logical AND configuration for many design applications. This example describes basic power sequencing using the AND gate configuration. Power sequencing is often used in applications that require a processor or other delicate device with specific voltage timing requirements in order to protect the device from malfunctioning. In the application below, the power-good signals from the supplies tell the MCU to continue an operation.

9.2 Typical Application

Figure 4. Typical Application Diagram

9.2.1 Design Requirements

- · Recommended input conditions:
 - For rise time and fall time specifications, see $\Delta t/\Delta v$ in the Recommended Operating Conditions table.
 - For specified high and low levels, see V_{IH} and V_{IL} in the Recommended Operating Conditions table.
 - Inputs and outputs are overvoltage tolerant and can therefore go as high as 5.5 V at any valid V_{CC}.
- Recommended output conditions:
 - Load currents must not exceed ±50 mA.
- Frequency selection criterion:
 - Figure 5 illustrates the effects of frequency on output current.
 - Added trace resistance and capacitance can reduce maximum frequency capability. Follow the layout practices listed in the *Layout* section.

Typical Application (continued)

9.2.2 Detailed Design Procedure

The SN74LVC1G11 device uses CMOS technology and has balanced output drive. Avoid bus contentions that can drive currents that can exceed maximum limits.

The SN74LVC1G11 allows for performing the logical AND function with digital signals. Maintain input signals as close as possible to either 0 V or V_{CC} for optimal operation.

9.2.3 Application Curve

 $V_{CC} = 5 V$

Figure 5. Simulated Input-to-Output Voltage Response Showing Propagation Delay

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating listed in the *Recommended Operating Conditions* table.

To prevent power disturbance, ensure good bypass capacitance for each V_{CC} terminal. For devices with a single-supply, a 0.1- μ F bypass capacitor is recommended. If multiple pins are labeled V_{CC} , then a 0.01- μ F or 0.022- μ F capacitor is recommended for each V_{CC} because the V_{CC} pins are tied together internally. For devices with dual supply pins operating at different voltages, for example V_{CC} and V_{DD} , a 0.1- μ F bypass capacitor is recommended for each supply pin. To reject different frequencies of noise, use multiple bypass capacitors in parallel. Capacitors with values of 0.1 μ F and 1 μ F are commonly used in parallel. Place the bypass capacitor as close to the power terminal as possible for best results.

Submit Documentation Feedback

11 Layout

11.1 Layout Guidelines

When using multiple-bit logic devices, inputs must never float.

In many cases, functions (or parts of functions) of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or when only 3 of the 4 buffer gates are used. Such input pins must not be left unconnected, because the undefined voltages at the outside connections result in undefined operational states. Figure 6 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally they are tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it disables the output section of the part when asserted, which does not disable the input section of the I/Os. Therefore, the I/Os cannot float when disabled.

11.2 Layout Example

Figure 6. Layout Diagrams

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

- Implications of Slow or Floating CMOS Inputs, SCBA004
- Selecting the Right Texas Instruments Signal Switch, SZZA030

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

NanoFree, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

5-Dec-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LVC1G11DBVR	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 125	(C115 ~ C11F ~ C11K ~ C11R)	Samples
SN74LVC1G11DBVRE4	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	C11F	Samples
SN74LVC1G11DBVRG4	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	C11F	Samples
SN74LVC1G11DCKR	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C35 ~ C3F ~ C3K ~ C3R)	Samples
SN74LVC1G11DCKRE4	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C35 ~ C3F ~ C3K ~ C3R)	Samples
SN74LVC1G11DCKRG4	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C35 ~ C3F ~ C3K ~ C3R)	Samples
SN74LVC1G11DRYR	ACTIVE	SON	DRY	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	C3	Samples
SN74LVC1G11DSFR	ACTIVE	SON	DSF	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	C3	Samples
SN74LVC1G11YZPR	ACTIVE	DSBGA	YZP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(C32 ~ C37 ~ C3N)	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

5-Dec-2015

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVC1G11:

Automotive: SN74LVC1G11-Q1

www.ti.com

Enhanced Product: SN74LVC1G11-EP

NOTE: Qualified Version Definitions:

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Jan-2016

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All difficultions are norminal	1											1
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC1G11DBVR	SOT-23	DBV	6	3000	180.0	9.2	3.17	3.23	1.37	4.0	8.0	Q3
SN74LVC1G11DBVR	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1G11DBVRG4	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1G11DCKR	SC70	DCK	6	3000	180.0	9.2	2.3	2.55	1.2	4.0	8.0	Q3
SN74LVC1G11DCKR	SC70	DCK	6	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC1G11DRYR	SON	DRY	6	5000	180.0	9.5	1.15	1.6	0.75	4.0	8.0	Q1
SN74LVC1G11DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74LVC1G11YZPR	DSBGA	YZP	6	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

www.ti.com 18-Jan-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC1G11DBVR	SOT-23	DBV	6	3000	205.0	200.0	33.0
SN74LVC1G11DBVR	SOT-23	DBV	6	3000	180.0	180.0	18.0
SN74LVC1G11DBVRG4	SOT-23	DBV	6	3000	180.0	180.0	18.0
SN74LVC1G11DCKR	SC70	DCK	6	3000	205.0	200.0	33.0
SN74LVC1G11DCKR	SC70	DCK	6	3000	180.0	180.0	18.0
SN74LVC1G11DRYR	SON	DRY	6	5000	184.0	184.0	19.0
SN74LVC1G11DSFR	SON	DSF	6	5000	184.0	184.0	19.0
SN74LVC1G11YZPR	DSBGA	YZP	6	3000	220.0	220.0	35.0

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- Falls within JEDEC MO-178 Variation AB, except minimum lead width.

DBV (R-PDSO-G6)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DCK (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AB.

DCK (R-PDSO-G6)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. SON (Small Outline No-Lead) package configuration.

The exposed lead frame feature on side of package may or may not be present due to alternative lead frame designs.

E. This package complies to JEDEC MO-287 variation UFAD.

 $frac{f}{K}$ See the additional figure in the Product Data Sheet for details regarding the pin 1 identifier shape.

DRY (R-PUSON-N6)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES: A.

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. Reference JEDEC registration MO-287, variation X2AAF.

DSF (S-PX2SON-N6)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask.
- E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy.
- H. Component placement force should be minimized to prevent excessive paste block deformation.

DIE SIZE BALL GRID ARRAY

NOTES:

NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. NanoFree[™] package configuration.

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.
 For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity