Hybrid Robust Convolutional Autoencoder for Unsupervised Anomaly Detection of Machine Tools under Noises Shen Yan, Haidong Shao, Yiming Xiao, Bin Liu, Jiafu Wan

Robotics and Computer-Integrated Manufacturing (22023)

vol. 79, DOI: https://doi.org/10.1016/j.rcim.2022.102441

Smart Factory 논문리뷰 신승준 교수님 한양대학교 산업 데이터 엔지니어링학과 석사과정 강병모 2023.05.30

Background

- ➤ 공작기계(Machine Tools)
 - ✓ 제조업에 사용되는 기계를 만드는 기계
 - →금속 및 단단한 재료를 절삭 및 가공
 - →대표적인 공작기계 선반: 소재를 회전시켜 깎거나 파내는 가공
 - → Industry 4.0에 맞춰 CNC(Computer Numerical Control) 선반을 통해 자동화 및 지능화를 향해 발전
 - ✓ 공작 기계의 이상탐지의 중요성
 - →생산 중단으로 인한 손실 극대화 및 인명피해 초래
 - →실시간 이상탐지를 통한 경제적이고 안정적인 생산

<선반>

<CNC 선반>

Summary

- Motivation: 공작기계의 문제 발생으로 인한 생산 중단 및 인명피해를 방지 할수 있는 방법은 무엇일까?
- ▶ 본 연구의 목적: 노이즈가 있는 데이터를 사용한 공작기계의 이상 탐지→딥러닝 기반의 비지도 학습 Hybrid Robust Convolutional Autoencoder
- ➤ Contribution 1.실제 CNC 공작기계에 HRCAE를 적용함으로써, 라벨링 지정 안된 데이터에서 이상 탐지 가능
 - 2. Parallel Convolutional Denoising Feature(PCDF)을 구축하여 다중 센서 정보를 통합, 데이터 분포를 더 잘 학습
 - 3.Feature Difference Distance(FDD)를 설계, 모델의 강건성 향상
- →노이즈 환경에서 공작 기계 이상 탐지에 도움이 되는 시사점 제공 가능

Why Do They Use Unsupervised Learning

- 과거 공작기계 이상 탐지 방법: 머신러닝과 지도학습 기반 딥러닝
 - ✓ 머신러닝의 한계-소규모 데이터에서만 적용 가능, 수동적으로 feature 추출→일반화 가능성 제한
 - ✓ 지도학습 기반 딥러닝(LSTM, RNN, CNN, etc.)
 - -장점: feature 추출의 용이성과 End to end 방식의 편의성
 - -한계:충분한 레이블이 지정된 데이터에 의존
 - →연구실에서 레이블 데이터 획득 용이
 - →산업 현장 적용 한계
 - ✓ 산업 현장 데이터- 라벨링된 데이터 부족 및 사용불가
 - 다양한 노이즈가 포함(ex.전자기적 간섭, 신호 간섭 etc.)
 - 공작 기계 작동 →정상 상태
 - → 다양한 노이즈가 존재하는 환경에서 정상 작동 데이터를 기반으로 한비지도 학습 모델 개발 공작 기계의 이상 탐지를 진행

Hybrid Robust Convolutional Autoencoder

- Hybrid Robust Convolutional Autoencoder(HRCAE)
 - ✓ 기존 Convolutional Autoencoder의 단점을 개선한 방식
- ➤ Convolutional Autoencoder(CAE): 고전적인 비지도 학습 방법
 - ✓ CNN의 Convolution 연산을 통한 feature 추출& 오토 인코더의 인코더 및 디코더를 통한 비지도

feature 재구성 기능 결합

-인코더: Convolution layer-그리드 데이터에서 feature 추출
Pooling layer-입력 데이터 크기 축소 중요한 정보 추출

-디코더: Up-sampling layer-데이터 크기 확대 데이터 복원

Deconvolution layer-feature 재구성

-MSE(재구성 오류): 인코더, 디코더 데이터 축소/확대로 인한 오차 최소화

<Convolution 진행 과정>

Type: conv - Stride: 1 Padding: 0

<CAE>

Hybrid Residual Convolutional Autoencoder

- ➤ CAE의 단점 1.노이즈에 약함
 - →입력 데이터에 노이즈가 포함된 경우에도 재구성 시도
 - →노이즈가 중요한 영향을 미쳐 잘못된 결과를 초래함
 - →PCDF(Parallel convolutional distribution fitting) 모듈 구성을 통해 여러 센서로 부터 다양한 정보를 획득하여 노이즈 환경에서 이상 탐지
 - 2.정보 손실
 - →CAE 입력데이터 재구성 과정에서 정보 손실 발생할 수 있음
 - →MSE는 유클리드 거리를 통해 네트워크 최소화 -유클리드 거리: 복잡한 feature 공간의 유사성 설명하기 어려움
 - →유클리드 거리와 코사인 유사도 결합 FDD(Fused directional distance)을 통해 공간적 거리와 공간적 차원 모두를 고려함
- ➤ PCDF와 FDD Loss function으로 구성된 HRCAE를 통해 노이즈 상황에서 공작기계의 이상 탐지

HRCAE-PCDF

- > PCDF: 두 개 convolution network 병렬 연결 보다 많은 feature 학습
 - ✓ CAE network와의 차이점: 1.Pooling layer와 Up-sampling 유무
 - →Pooling, up-sampling 데이터 크기 축소 및 확대 과정에서 정보 손실이 발생함
 - →노이즈가 중요한 영향력 행사할 수 있음
 - 2.Convolution network 병렬 연결
 - →다양한 센서로부터 다양한 정보 습득
 - → 많은 feature를 학습, 노이즈로 부터 강건함

<PCDF Module>
HANYANG UNIVERSITY

HRCAE-FDD Loss Function

- ➤ FDD(Fused Directional Distance): 유클리디안 거리와 코사인 유사도 결합 손실 함수
 - ✓ Euclidean distance: 피타고라스의 정리에 기반한 두 점 사이의 거리 측정
 - -장점: 점과 점 사이의 직선거리 측정→직관적임
 - -단점: 복잡한 차원의 공간의 유사성을 설명하기 어려움
 - ✓ Cosine similarity: 두 점 사이의 각도 측정
 - -장점: 다차원의 공간 설명가능
 - -단점: 벡터의 방향만 맞으면 유사도가 높게 측정됨
 - →유클리디안 거리의 거리 장점과 코사인 유사도의 방향 장점을 결합하여 FDD loss function을 구성 →데이터 간의 거리 및 방향 차이 고려 정보 손실 최소화

$$MSE = rac{1}{n} \sum_{i=1}^{n} \left(\widehat{X}_i - X_i
ight)^2 \qquad CS = rac{\sum_{i=1}^{n} \left(\widehat{X}_i imes X_i
ight)}{\sqrt{\sum_{i=1}^{n} \left(\widehat{X}_i
ight)^2} imes \sqrt{\sum_{i=1}^{n} \left(X_i
ight)^2}}$$

<MSE: 유클리디안 거리 기반 재구성 오류>

<Cosine Similarity, CS∈[-1,1]>

$$FDD = MSE + \lambda \frac{(1-CS)}{2}$$

 $FDD = MSE + \lambda rac{(1-CS)}{2}$ λ : 데이터 간 거리와 각도 차이의 가중치 균형 하이퍼 파라미터

<FDD loss function>

<유클리다안 거리와 코사인 유사도의 차이>

Steps of HRCAE

> Steps of HRCAE

- 1.Data Preparation-Train set & Validation set: 노이즈 없는 정상 데이터
 - -Test set: 정상 및 이상 데이터+ 랜덤 노이즈 추가 데이터
- 2.Model Initialization: 학습 전 가중치와 편향 초기화-가중치 계수(λ), 학습 속도(α), 반복횟수(T), PCDF 모듈 개수

-학습 파라미터 θ 로 무작위 초기화

- 3.Model Training: 정상 데이터만 있는 training set을 PCDF에 넣어 학습
- 4.Model Validation: 정상 데이터만 있는 validation set을 학습된 PCDF를 통해 검증
- 5.Model Test: 정상 및 이상 데이터에 noise 추가된 test set을 학습된 PCDF 모듈에

적용하여 모델 평가

<Steps of HRCAE>
 HANYANG UNIVERSIT

Experimental Verifications

- ▶ Experiment: 고속 CNC 밀링 공작기계 부품의 이상 탐지
 - -밀링: 회전하는 커터를 사용하여 작업물의 표면을 절삭하는 공정
- Data: 기계 부품들의 마모 이미지 데이터
 - →두 개의 데이터 셋을 사용함-데이터셋 기준: 마모도 정도를 X,Y,Z로 측정하여 평균값으로 나눔
 - C1 데이터 셋-Train & validation set: 0.04~0.09mm 마모의 정상 데이터(각각 600개)
 - -Test set: 0.04~0.09mm 마모의 정상 데이터+0.1~0.16mm 이상 데이터(1300개)

with noise(SNR-Signal to Noise Ratio-1dB~7dB)

C4 데이터 셋-Train & validation set: 0.03~0.09mm 마모의 정상 데이터(각각 700개)

-Test set: 0.03~0.09mm 마모의 정상 데이터+0.1~0.2mm 이상 데이터(1300개)

without noise

<밀링 기계의 데이터 수집> HANYANG UNIVERSIT

Evaluation Metrics

▶ 모델 평가 지표

- ✓ Accuracy(정확도)= TP+TN TP+TN+FP+FN
 TP: 이상→이상 데이터로 탐지, FP:이상→정상 데이터로 탐지(Type- I)
 FN: 정상→이상 데이터로 탐지(Type- II),TN:정상→정상 데이터로 탐지
 - →모델이 정상 데이터와 이상 데이터를 잘 탐지했는지 평가하는 지표
- ✓ Precision(정밀도)= $\frac{TP}{TP+FP}$
 - →모델이 이상 데이터를 잘 탐지하였는지 평가하는 지표
- ✓ Recall(재현율)= $\frac{TP}{TP+FN}$
 - →이상으로 분류된 데이터 중 실제 이상치가 얼마나 재현되었는지 평가하는 지표
- ✓ F-score= $2 * \frac{Precision*Recall}{Precision+Recall}$
 - →정밀도와 재현율의 조화평균으로 구성
- ✓ AUC(Area Under the Curve): ROC(Receiver Operating Characteristic) 곡선 아래의 면적
 -ROC: TP에 대한 FP의 변화를 나타냄
 →이진 분류 모델의 성능을 평가함
 - →0부터 1의 값, 1에 가까울수록 모델 성능 우수

Experimental Results

- 실험 결과 1
 - ✓ 노이즈가 있는 C1데이터-제안된 HRCAE가 정확도와 F-Score에서 좋은 결과
 - →모든 방법 중 가장 안정적이고 최적의 결과
 - 단일 컨볼루션 네트워크와 비교시 더 나은 성능
 - →병렬로 구성된 PCDF 모듈이 단일 컨볼루션 네트워크보다 더 강력한 견고성
 - ✓ 노이즈가 없는 C4 데이터-제안된 HRCAE가 정확도 및 재현율, F-Score에서 좋은 결과 -기존의 모델에 FDD 손실 함수 추가했을 경우, 성능이 더 우수
 - →FDD가 MSE보다 적은 정보 손실로 높은 성능

Unsupervised	Evaluation indexes (%)				Unsupervised	Evaluation indexes (%)				
methods	Accuracy	Precision	Recall	F-score	methods	Accuracy	Precision	Recall	F-score	
					_					
HRCAE	95.95 ±	96.85 \pm	95.60	96.21	HRCAE	96.25 +	96.01 ±	97.95	96.95	
	0.75	0.25	± 1.50	± 0.74		1.17	1.09	+ 2.32	+ 0.99	
PCDF-MSE	94.85 ±	96.15 \pm	94.20	95.15	PCDF-MSE	93.91 ±	96.72 ±	93.20	94.89	
	1.61	0.98	± 2.75	± 1.58	1 CD1 INIOL	2.42	0.48	± 4.15	± 2.18	
CAE-FDD	$94.68 \pm$	96.05 \pm	94.00	94.89	CAE-FDD	93.00 ±	95.71 ±	92.89	94.10	
	1.65	0.75	$\pm \ 3.59$	± 1.64	Criz-122	2.79	2.52	± 6.85	± 2.58	
CAE-MSE	$88.90 \pm$	92.91 \pm	86.31	89.29	CAE-MSE	88.31 ±	96.11 ±	84.26	89.67	
	4.46	5.75	± 6.56	± 4.29	CAE-IVISE					
MAE-FDD	$94.00 \pm$	96.02 \pm	92.71	94.30		5.48	2.95	± 7.84	± 5.03	
	1.75	0.84	$\pm \ 3.63$	± 1.78	MAE-FDD	94.43 \pm	96.34 \pm	94.49	95.38	
MAE-MSE	$85.79 \pm$	90.74 \pm	82.37	86.03		1.83	0.89	\pm 3.31	± 1.59	
	3.96	4.67	+ 9.15	± 4.37	MAE-MSE	$91.14 \pm$	95.78 \pm	89.56	92.35	
DAGMM	$84.51 \pm$	78.35 \pm	98.43	87.24		4.32	1.65	\pm 8.49	\pm 4.08	
	1.56	1.17	± 2.51	± 1.38	DAGMM	$53.22 \pm$	97.81 ±	23.98	38.37	
SAE-FDD	$90.62 \pm$	96.76 \pm	85.37	90.41		2.63	0.32	± 4.32	± 5.39	
	6.23	1.16	±	± 6.84	SAE-FDD	92.21 \pm	96.25 ±	90.80	93.43	
			11.35			1.65	1.08	± 2.55	± 1.47	
SAE-MSE	$83.72 \pm$	90.97 ±	77.74	83.19	SAE-MSE	78.95 ±	95.69 ±	68.53	79.37	
	10.05	7.97	±	±		8.05	1.19	+	± 9.20	
			15.67	11.13		0.00	1.12	12.91		
DAE-FDD	$88.11 \pm$	97.81 ±	79.69	87.03	DAE-FDD	88.66 ±	95.21 ±	85.60	89.90	
	8.62	0.61	±	±	DAE-PDD	6.68	3.63	± 8.54	± 6.12	
			16.25	10.98	DATE MOD					
DAE-MSE	$82.03 \pm$	95.02 \pm	70.11	79.23	DAE-MSE	77.57 ±	94.66 ±	66.89	77.87	
	11.67	2.20	±	±		8.47	2.98	±	±	
. 61 데이터 경기.			22.15	14.96				13.39	10.09	
<c1 결과="" 데이터=""></c1>					<c4 결과="" 데이터=""></c4>		HANYANG UNIVERSITY			

2023-05-09

Experimental Results

실험 결과 2

- ✓ 다양한 노이즈가 존재하는 C4데이터에서의 AUC 결과-a에서 d로 갈수록 노이즈 심해짐
 →제안된 HRCAE가 CAE보다 다양한 노이즈 상황에서 성능이 뛰어남
 →MSE를 FDD로 대체했을 때 성능이 뛰어남
- ✓ 다중센서(XYZ 방향)데이터 결과가 단일 센서보다 더 뛰어남-a,b: C4데이터, c,d: C1데이터(노이즈)
 →실제 공작기계의 센서 위치 배치 및 선택에 대한 요구사항이 줄어듦

2023-05-09

Conclusion

- ▶ 공작 기계 문제 발생: 생산 중단으로 인한 손해 및 인명 피해 야기
- ▶ 과거 공작 기계 이상 탐지: 머신러닝 및 지도학습 기반 딥러닝(CAE)-라벨링이 부족한 산업 현장에 적용 한계-노이즈 약함
 - → 병렬 컨볼루션 네트워크 PCDF와 거리와 방향을 고려한 FDD손실함수 결합 비지도 기반 HRCAE 모델 구축을 통해 노이즈 환경에서 이상 탐지
- ▶ 병렬 컨볼루션 PCDF는 단일 컨볼루션보다 노이즈에 강건함, 거리와 방향을 고려한 FDD는 MSE 보다 개선된 성능
- ➤ HRCAE 다중 센서 데이터에 좋은 성능
 - →실제 공작기계의 센서 위치 배치 및 선택에 대한 요구사항이 줄어듦

HANYANG UNIVERSITY

2023-05-09

Further Study

- > 모델 일반화 필요
 - →HRCAE의 결과는 같은 기계의 CNC 공작기계에만 유효함
 - →다른 공작기계 실험을 통해 모델 성능 비교 평가 연구 필요
- ➤ Hyper-parameter의 조정
 - →본 연구 가중치 계수(*\lambda*)를 0.05~0.3를 적용
 - →0.2가 가장 좋은 성능→다른 실험에서는 다르게 적용될 수 있음
 - →하이퍼파리미터를 연구에 맞게 자동 결정 방식 연구 → 모델 준비 어려움 감소
- 불규칙한 노이즈 적용 필요
 - →테스트 데이터 셋에 노이즈를 추가하여 모델 평가 진행
 - → 포함된 노이즈는 규칙적인 진동-실제 환경 불규칙한 노이즈가 빈번하게 발생
 - →불규칙 노이즈 포함하여 테스트를 진행할 필요