위클리 NLP week 13 ~ week 23

위클리 NLP - jiho-ml

구글 컴퓨터 언어학자가 쓰는 자연어 처리 (natural language processing)에 대한 튜토리얼! 매주 구독해서 받아보세요.

https://jiho-ml.com/tag/weekly-nlp/

Week 13 - language model

language modeling (LM) - 자연스러운 문장을 모델링하는 것 : 인간의 뇌에는 이미 존재함

- → 문장을 단어의 연속으로 봐라
- → 단어가 모여서 문장, 문장이 모여서 데이터, 모든 단어들이 있는 vocabulary

한 문장이 그럴듯함은 joint probability(동시 확률분포)로 계산

데이터(corpus)를 통해 LM을 학습함 → 문장이 주어졌을 때 그 문장이 얼마나 그럴 듯 한지를 확률로 계산하는 모델

Week 14 - N-gram language model

복잡한 input문장을 단순하게 보기 위해 uni-gram, bi-gram 사용

uni-gram (= 1gram) : 단어 1개씩 봄 ⇒ 계산은 단순하지만 단어의 순서를 생각 X

$$\begin{split} P(\text{"My name is Jimmy"}) &= p(\text{"My"}, \text{"name"}, \text{"is"}, \text{"Jimmy"}) \\ &= p(\text{"My"}) \times p(\text{"name"}) \times p(\text{"is"}) \times p(\text{"Jimmy"}) \end{split}$$

bi-gram (= 2gram): 단어 2개씩 봄

조건부 확률로 봄 - P(W2|W1) = W1이 주어졌을 때 W2가 올 확률

 $P(\texttt{"My name is Jimmy"}) = p(\texttt{"My"} | <\texttt{start>}) \times p(\texttt{"name"} | \texttt{"My"}) \times p(\texttt{"is"} | \texttt{"name"}) \times p(\texttt{"Jimmy"} | \texttt{"is"}) \times p(<\texttt{end>} | \texttt{"Jimmy"})$

start와 end는 문장의 시작과 끝

한번에 n개의 연속된 단어를 묶어 생각하는 것을 n-gram LM이라 함

• 학습된 n-gram 모델에 새로운 단어 (out-of-vocabualary : OOV)가 들어오면 smoothing이라는 기술로 확률이 0으로 계산되는 것을 막음

Week 15 - ASR

자동 음성 인식 (Automatic Speech Recognition : ASR) → Nosiy Channel Model을 기 반으로 음성을 텍스트로 변환하는 기술

Nosiy Channel Model : 발신된 메시지에 노이즈가 섞인 경우 노이즈를 제거해 decoding(해독)하여 수신하도록 함

ASR 모델 → 베이지안 이론을 통해 소리 모델 (Acoustic Model), 언어 모델 (Language Model)로 분리

ASR 모델의 input인 소리를 X, 해독할 텍스트를 W

P(W|X) = P(X|W)P(W) / P(X) : 소리 X가 주어졌을 때, 텍스트 W는?

W = argmax P(X|W)P(W)) (P(X|W) - 소리 모델, P(W) - 언어 모델)

Week 16 - AI의 음성 인식 방법

발음의 가장 기본 단위 : 음운(phoneme)

음운을 정리한 phoneme dictionary → CMUdict, IPA 두 종류

AM (소리 모델): 주어진 음성을 연속된 음운으로 변환하는 모델

→ 과거에는 HMM, DTW 등의 모델이 쓰이다 현재는 딥러닝 모델이 쓰임

AM에서 예측된 음운들을 LM과 연계해 읽을 수 있는 단어로 바꾸는게 ASR의 마지막 단계

End-to-end - 여러개로 나누지 않고 한번에

End-to-end ASR - AM과 LM으로 나누지 않고 하나의 모델로 학습

- → 음성과 텍스트로 모델을 학습
- → Connectionist Temporal Classification (CTC) 알고리즘이 나옴
- → 성능은 좋지만, 수많은 데이터가 필요

ASR의 성능 계산 지표 - Word Error rate (WER) : 말한 단어 중 몇 퍼센트의 단어를 틀리게 알아듣는지

Week 17 - 딥러닝이 language model에 필요한 이유

LM ⇒ 어떤 문장의 그럴듯함을 확률로 계산하는 모델

- ⇒ corpus를 학습 데이터로 사용하여 통계 모델 구축
- ⇒ N-gram LM : n개 연속되는 단어의 빈도를 계산하여 LM을 만든 모델
- ⇒ LM으로 여러 문장이 주어졌을 때 가장 그럴듯한 문장을 뽑을 수 있음
- ⇒ LM으로 문장의 앞부분이 주어졌을 때 다음 단어를 예측할 수 있음

N-gram LM의 한계

- 1. 못 본 단어의 조합의 확률은 0 → 일반화 능력이 떨어진다고 함
 - ⇒ 단어를 독립적인 특징으로 보기 때문에 예측에 한계가 있음

- ⇒ 따라서 Neural LM (딥러닝 언어 모델)은 word embedding을 통해 해결
- 2. n이 커질 수록 멀리 있는 과거의 단어를 고려하는 것이 힘듦 → long term dependency 문제
 - ⇒ RNN을 사용해 문제 해결

Week 18 - RNN LM

RNN LM - 딥러닝 언어 모델 (neural LM)

This is a very long sentence explaining about a long sentence.

rnn은 다 본다!

RNN의 hidden state에 단어들의 정보가 압축되어 들어있음

⇒ input vector로 word embedding이 한 개 들어갈 때, 나오는 output vecotr를 hidden state라고 함

학습 데이터에 존재하는 단어들로 vocabulary 리스트를 만듦

∴ hidden state로 RNN모델을 학습해서 단어 예측 → classification

hidden state 벡터와 softmax layer를 연결해 vocabulary에 있는 단어의 숫자만큼 벡터로 만듦 → vocabulary probability

• softmax : 확률 점수로 만드는 함수

학습 데이터를 통해 모델을 개선 - loss function으로

• softmax를 쓰면 loss function으로 cross-entropy function

ex) "I love you", "This is a sentence" 가 있을 때:

```
(input x, output y) # x가 주어졌을 때, y를 예측하기
([], "I")
(["I", "love")
(["I", "love"], "you")
([], "This")
(["This"], "is")
(["This", "is"], "a")
(["This", "is", "a"], "sentence")
```

⇒ 라벨링을 하지 않고 자동으로 생성할 수 있어 LM은 비지도 학습으로 구분됨

Week 19 - neural LM 평가 방법

LM의 평가 지표 : perplexity (held-out test data) - 2^entropy entropy - 불확실성이 커지면 entropy가 높아지고, 확실하면 낮아짐

∴ perplexity가 낮은 모델이 좋다

Text generation : LM으로 새로운 글 생성

- → LM이 확률 분포가 생성되는 probabilistic model임
- → softmax를 통해 확률 점수를 만들고, 그를 통해 다음 단어 예측하는 것을 반복 (샘플링)
- ex) [Math is a]가 주어졌을 때, 다음 단어로 "commom"이 뽑히고, [Math is a common]이 주어졌을 때, 다음 단어로 "democrat"이 뽑힘 .. 글이 끝날 때 까지 반복

Week 20 - 구글 번역기

기계 번역 (Machine Translation: MT)

MT ⇒ NLP에서 가장 확실한 응용 분야

Parallel Corpora : 번역을 하기 위해 필요한 데이터 ⇒ source 언어와 target 언어 (한국어, 영어 쌍)

Pharse-based Machine Translation: 문장을 구절로 나눠서 접근

- 1. 구절 (pharse) 또는 단어 간 대응되는 사전(dictionary)을 만듦ex) play = 놀다 80%, 연극 20% 로 확률 점수로 저장
- 2. 사전을 이용해 문장을 구절로 나눔ex) "나는 너와 라면을 먹었다" → 나는, 너와, 라면을, 먹었다
- 3. 나눈 부분을 번역한 후 순서를 알맞게 맞춤 (언어의 어순을 맞춰줌)
 - ex) I, with you, ramen, eat → I ate ramen with you
 - ⇒ Word alignment : HMM같은 확률 모델로 만들어 학습 후 순서를 찾아냄
 - ⇒ dependency parsing (의존 구조 분석) : 문장 구조를 자동 분석하는 모델

Week 21 - seq2seq 모델

신경망 기계 번역 (Neural Machine Translation: NMT) 등장

번역:

- ⇒ source언어 x가 주어졌을 때, target언어 y의 확률 : 조건부 언어 모델 (conditional language modeling)
- ⇒ ASR에서 쓰인 nosiy channel model과 같이 번역도 encoder-decoder model conditional language modeling, encoder-decoder model과 RNN을 이용한 neural LM 이 합쳐져 seq2seq 모델 탄생

seq2seq 구조

encoder RNN 1개, decoder RNN 1개 decoder의 RNN은 encoder RNN의 최종 hidden state를 계속 참고함

Week 22 - seq2seq 모델

seq2seq

encoder RNN은 번역해야하는 문장(input source)를 한 단어씩 읽음 → 한 단어가 들어갈 때마다 hidden state가 바뀜

encoder RNN의 최종 hidden state : 문장 임베딩 (sentence embedding) - 이 vector에 번역해야 할 문장에 대한 모든 정보가 들어있음

decoder RNN은 순차적으로 한 단어씩 출력

- ⇒ RNN LM과 비슷하지만 다른점 2개
- 1. sentence embedding도 같이 input으로 넣음

2. 랜덤으로 샘플링 하지 않고 확률이 높은 단어를 선택

RNN LM과 마찬가지로 softmax가 생성한 확률 점수와 target 정답을 가지고 crossentropy loss를 계산 \rightarrow 정답에 가까운 것에 높은 확률

첫번째 단어를 잘못 고르게 될 수도 있기 때문에 Top-K beam search 방법을 사용 \rightarrow 확률이 높은 단어 K개를 골라 선택

번역 퀄리티 계산 : BLEU score ⇒ 얼마나 정답과 공통 단어가 많으냐에 따른 점수

Week 23 - 관심법

RNN과 LSTM, RNN 두개를 쓴 seq2seq 모두 기억력에 문제 \Rightarrow 긴 문장을 번역하려고 하면 힘듦

seq2seq의 경우 - sentence embedding에 한 문장의 정보를 다 넣기 때문에 앞의 단어들은 까먹게 됨

∴ Attention Mechanism (관심법)이 등장

 \Rightarrow 문장을 한 vector에 넣지 않고, 매 단어를 넣는 RNN hidden state를 모두 이용하여 여러 vector를 얻음 \Rightarrow 여러 vector를 한번에 묶음

- ⇒ 앞 부분 번역할 때 앞 단어에 더 가중치, 뒷 부분 번역 할 때 뒷 단어에 더 가중치를 갖게 해서 자연스럽게 번역
- ⇒ 어느 부분의 단어들에 더 가중치를 둘지는 pharse alignment로 단어 간 관계를 찾음 transformer, Bert 모델 기반이 Attention Mechanism