

Correction de l'examen nº 1 - Contrôle optimal

EXERCICE Nº 1 (stabilisation par retour d'état) Soient T > 0 et $\theta \in \mathbb{R}$, des paramètres réels. Soit $u \in L^{\infty}([0,T];\mathbb{R})$, une fonction de contrôle. On considère le système commandé

$$\begin{cases} x' = x \cos \theta - y \sin \theta \\ y' = x \sin \theta + y \cos \theta + u \\ (x(0), y(0)) = (x_0, y_0) \in \mathbb{R}^2. \end{cases}$$

1. Pour quelle(s) valeur(s) de θ , ce système est-il contrôlable? La matrice de Kalman associée à ce système, notée Kal est donnée par :

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad et \quad \mathrm{Kal} = [B, AB] = \begin{pmatrix} 0 & -\sin \theta \\ 1 & \cos \theta \end{pmatrix}.$$

La matrice Kal est de rang plain si, et seulement si det Kal $\neq 0$, soit $\sin \theta \neq 0$ ou encore $\theta \not\equiv 0[\pi]$. Le système est donc contrôlable si, et seulement si $\theta \not\equiv 0[\pi]$.

- 2. On suppose dans cette question que $u(\cdot) = 0$.
 - (a) Calculer la dérivée de la fonction $F: t \mapsto x(t)^2 + y(t)^2$ et en déduire l'expression de F(t) pour tout $t \ge 0$.

On
$$a: F'(t) = 2x(t)x'(t) + 2y(t)y'(t) = \cos\theta \left(x(t)^2 + y(t)^2\right) = \cos\theta F(t)$$
. Par conséquent, $F(t) = e^{t\cos\theta}(x_0^2 + y_0^2)$.

- (b) Pour quelles valeurs de θ la propriété suivante est-elle satisfaite ?
 - (A): "quelles que soient les données initiales $(x(0),y(0)) \in \mathbb{R}^2$, on a $(x(t),y(t)) \xrightarrow[t \to +\infty]{} 0$."

Cette propriété est satisfaite si, et seulement si $\cos \theta < 0$, autrement dit $\theta \in]\pi/2, 3\pi/2[+2\pi\mathbb{Z}.$

3. On suppose que $\theta = \pi/2$. Montrer qu'il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que, si l'on choisit la commande $u(\cdot) = \alpha x + \beta y$, la propriété (A) est satisfaite.

 $u(\cdot) = \alpha x + \beta y$, la propriete (A) est satisfaite. Choisissons la commande comme dans l'énoncé. Le système devient x' = -y et $y' = (1+\alpha)x + \beta y$, soit encore X' = MX en posant $X = [x,y]^{\top}$ et $M = \begin{pmatrix} 0 & -1 \\ 1+\alpha & \beta \end{pmatrix}$. La trace de M est β et son déterminant est $1+\alpha$. Choisissons $\beta < 0$ et $1+\alpha > 0$, par exemple $\alpha = 0$ et $\beta = -1$. Alors, les valeurs propres de M sont de partie réelle strictement négative et il s'ensuit que (A) est satisfaite.

EXERCICE No 2 (contrôles bang-bang)

Une voiture commandée en vitesse est modélisée de la façon suivante :

$$\frac{d}{dt} \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & 0 \\ \sin \theta & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix}.$$

où les commandes v et w sont les vitesses linéaires et angulaires instantanées.

Quitte à effectuer un changement de repère, on suppose qu'à l'instant initial, on a $(x(0), y(0), \theta(0))^{\top} = 0_{\mathbb{R}^3}$.

- 1. Le système est-il contrôlable si l'une des deux commandes v ou w est choisie identiquement nulle? Si $v(\cdot) = 0$, alors $(x(\cdot), y(\cdot)) = (x(0), y(0))$ et on ne peut donc pas atteindre une position (x, y)différente de la position initiale. Si $w(\cdot) = 0$, l'analyse est la même, cette fois sur l'angle θ .
- 2. Le linéarisé en une position (x_1, y_1, θ_1) quelconque et un choix de commande (v, w) = (0, 0) est-il contrôlable? Comment interpréter ce résultat?

Posons $f: \mathbb{R}^3 \times \mathbb{R}^2 \ni (x, y, \theta, v, w) \mapsto (\cos \theta v, \sin \theta v, w)$. Le linéarisé du système s'écrit $\dot{Y} =$ AX + Bu avec

$$A = \frac{\partial f}{\partial(x,y,\theta)} \Big|_{\substack{(x,y,\theta) = (x_1,y_1,\theta_1) \\ (v,w) = (0,0)}} = \begin{pmatrix} 0 & 0 & -\sin\theta w \\ 0 & 0 & \cos\theta w \\ 0 & 0 & 0 \end{pmatrix} \Big|_{\substack{(x,y,\theta) = (x_1,y_1,\theta_1) \\ (v,w) = (0,0)}} = 0_{\mathcal{M}_3(\mathbb{R})}$$

$$B = \frac{\partial f}{\partial(x,y,\theta)} \Big|_{\substack{(x,y,\theta) = (x_1,y_1,\theta_1) \\ (v,w) = (0,0)}} = \begin{pmatrix} \cos\theta & 0 \\ \sin\theta & 0 \\ 0 & 1 \end{pmatrix} \Big|_{\substack{(x,y,\theta) = (x_1,y_1,\theta_1) \\ (v,w) = (0,0)}} = \begin{pmatrix} \cos\theta_1 & 0 \\ \sin\theta_1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$B = \frac{\partial f}{\partial(x, y, \theta)}\Big|_{\substack{(x, y, \theta) = (x_1, y_1, \theta_1) \\ (y, w) = (0, 0)}} = \begin{pmatrix} \cos \theta & 0 \\ \sin \theta & 0 \\ 0 & 1 \end{pmatrix} \Big|_{\substack{(x, y, \theta) = (x_1, y_1, \theta_1) \\ (y, y) = (0, 0)}} = \begin{pmatrix} \cos \theta_1 & 0 \\ \sin \theta_1 & 0 \\ 0 & 1 \end{pmatrix}$$

Ainsi, le rang de la matrice de Kalman associée est 2 (< 3) est le système linéarisé n'est pas commandable. On ne peut donc rien en déduire sur le système non-linéaire.

3. Montrer que le système est contrôlable (et préciser ce qu'on entend par ce mot) à l'aide de commandes constantes par morceaux $(v, w) = (0, \pm 1)$ ou $(\pm 1, 0)$.

Indication : on suggère de construire pas à pas la trajectoire contrôlée.

Il suffit de montrer que l'on peut amener la voiture de l'origine à une configuration (x_1, y_1, θ_1) quelconque. Or ceci peut être réalisé par la commande suivante :

- faire pivoter la voiture jusqu'à ce que son axe pointe vers (x_1, y_1) , à l'aide d'une commande $(v,w) = (0,\pm 1)$;
- amener la voiture en ligne droite jusqu'à la position (x_1, y_1) , en utilisant la commande (v, w) =
- refaire pivoter la voiture jusqu'à ce qu'elle soit orientée selon l'angle θ_1 , à l'aide d'une commande $(v, w) = (0, \pm 1)$.

EXERCICE No 3 (problème LQ) Une usine fabrique un certain produit dont le stock est x(t)avec x(0) = 1 et le taux de production x'(t) vérifie x'(t) = x(t) + u(t). Pour $\varepsilon > 0$ donné, on considère la fonctionnelle J_{ε} donnée par

$$J_{\varepsilon}(u) = \frac{1}{2\varepsilon}x^{2}(1) + \frac{1}{2}\int_{0}^{1}u(t)^{2}dt.$$

1. On suppose d'abord que la production est donnée par $\bar{u}(\cdot) = 1$ (constante au cours du temps). Calculer le coût $J_{\varepsilon}(\bar{u})$ associé.

Pour ce choix de fonction u, on calcule aisément : $x(t) = -1 + 2e^t$. Ainsi, x(1) = 2e - 1 et

$$J_{\varepsilon}(1) = \frac{(2e-1)^2}{2\varepsilon} + \frac{1}{2}.$$

2. Démontrer l'existence d'un contrôle optimal $u_{\varepsilon}(\cdot)$ pour le problème de minimisation de J_{ε} sur $L^2(]0,1[).$

Il s'agit d'un problème LQ et avec les notations du cours, on $a:A=(1), B=(1), x_0=1, Q=(0),$ R=(1) et $D=(1/\varepsilon)$. Puisque Q et D sont semi-définies positives et R est définie positive, le problème LQ ci-dessus poss! de une unique solution u_{ε} .

3. Déterminer ce contrôle optimal.

Les CNS d'optimalité permettent d'écrire $u_{\varepsilon} = -R^{-1}B^{\top}p_{\varepsilon} = -p_{\varepsilon}$, avec p_{ε} solution de

$$\left\{ \begin{array}{l} p_{\varepsilon}'+p_{\varepsilon}=0 \quad sur \ [0,1] \\ p_{\varepsilon}(1)=\frac{x(1)}{\varepsilon}. \end{array} \right.$$

Ainsi, $p_{\varepsilon}(t) = \frac{x(1)}{\varepsilon}e^{-(t-1)}$. Déterminons l'état x_{ε} , solution de

$$x'_{\varepsilon} = x_{\varepsilon} - p_{\varepsilon} \Leftrightarrow x'_{\varepsilon} = x_{\varepsilon} - \frac{x_{\varepsilon}(1)}{\varepsilon} e^{-(t-1)}$$

On utilise la méthode de variation de la constante, ce qui conduit à écrire $x_{\varepsilon} = we^{t}$. En injectant cette expression dans l'équation, on trouve $e^{t}w'(t) = -\frac{x_{\varepsilon}(1)}{\varepsilon}e^{-(t-1)}$ et ainsi, $w(t) = \frac{x_{\varepsilon}(1)}{2\varepsilon}e^{-(2t-1)} + w_{0}$, avec $w_{0} \in \mathbb{R}$. Finalement, $x_{\varepsilon}(t) = \frac{x_{\varepsilon}(1)}{2\varepsilon}e^{-(t-1)} + w_{0}e^{t}$. Puisque $x_{\varepsilon}(0) = 1$, il vient $w_{0} + ex_{\varepsilon}(1)/(2\varepsilon) = 1$. Ainsi,

$$x_{\varepsilon}(t) = \frac{x_{\varepsilon}(1)}{2\varepsilon}e^{-(t-1)} + \left(1 - \frac{ex_{\varepsilon}(1)}{2\varepsilon}\right)e^{t}.$$

Evaluons cette expression en t = 1. On obtient :

$$x_{\varepsilon}(1) = \frac{x_{\varepsilon}(1)}{2\varepsilon} + \left(1 - \frac{ex_{\varepsilon}(1)}{2\varepsilon}\right)e \Leftrightarrow x_{\varepsilon}(1) = \frac{2\varepsilon e}{2\varepsilon + e^2 - 1}.$$

Finalement,

$$u_{\varepsilon}(t) = -\frac{2e^{2-t}}{2\varepsilon + e^2 - 1}, \quad x_{\varepsilon}(t) = \frac{e^{2-t}}{2\varepsilon + e^2 - 1} + \frac{(2\varepsilon - 1)}{2\varepsilon + e^2 - 1}e^t.$$

4. Quel est le gain comparé à une production constante?

On calcule:

$$J(u_{\varepsilon}) = \frac{2\varepsilon e^2}{(2\varepsilon + e^2 - 1)^2} + \frac{e^2(e^2 - 1)}{(2\varepsilon + e^2 - 1)^2}$$

5. Déterminer les limites de toutes les quantités en jeu lorsque $\varepsilon \searrow 0$? Proposer une interprétation. Lorsque $\varepsilon \searrow 0$, on a

$$x_{\varepsilon}(1) \to 0$$
, $u_{\varepsilon}(t) \to -\frac{2e^{2-t}}{e^2-1}$, $x_{\varepsilon}(t) \to \frac{e^{2-t}-e^t}{e^2-1}$, $J(u_{\varepsilon}) \to \frac{e^2}{e^2-1}$.

Ce problème LQ peut se voir comme une pénalisation du problème

$$\inf\{J(u), u \in L^2(]0,1[), x'_u = x_u + u, x_u(1) = 0\}.$$

On peut donc conjecturer que l'asymptotique obtenue fournit la solution du problème ci-dessus (ce qui pourrait se vérifier de façon analytique).

EXERCICE Nº 4 (équation de Riccati) Soient $A \in \mathbb{M}_n$, $B \in \mathbb{M}_{n,m}$. Considérons un système dynamique linéaire autonome

$$\begin{cases} \dot{x}(t) = Ax(t) + Bv(t) & t \in [0, T], \\ x(0) = x_0 \in \mathbb{R}^n \end{cases}$$

associé à la fonction coût quadratique J définie par

$$J(v) = \frac{1}{2} \int_0^T \left[(Qx(s), x(s)) + (Rv(s), v(s)) \right] ds + \frac{1}{2} (Dx(T), x(T))$$

où R est une matrice de $\mathbb{M}_m(\mathbb{R})$ définie positive, $Q \in \mathbb{M}_n(\mathbb{R})$ et $D \in \mathbb{M}_n(\mathbb{R})$ sont supposées semi-définie positives.

On considère le problème

$$\inf_{v \in L^2(0,T,\mathbb{R}^m)} J(v) \tag{LQ}$$

et on désigne par p la variable adjointe associée à ce problème.

Rappelons qu'il existe une unique matrice symétrique $E \in C^1([0,T])$ de taille n telle que la trajectoire $x(\cdot)$ et l'état adjoint $p(\cdot)$ sont liés par la relation p(t) = E(t)x(t). La matrice E est solution de l'équation matricielle de Riccati

$$\begin{cases} \dot{E}(t) = -Q - A^{\top} E(t) - E(t) A + E(t) B R^{-1} B^{\top} E(t) & t \in [0, T] \\ E(T) = D. \end{cases}$$

1. Démontrer que pour tout $t \ge 0$, on a :

$$\frac{d}{dt}(E(t)x(t),x(t)) = -(Qx(t),x(t)) + (Bu(t),p(t)).$$

On calcule:

$$\begin{split} \frac{d}{dt}(Ex,x) &= (\dot{E}x,x) + (E\dot{x},x) + (Ex,\dot{x}) \\ &= (\dot{E}x,x) + 2(E\dot{x},x) \\ &= -(Qx,x) - (A^{\top}Ex,x) - (EAx,x) + (EBR^{-1}B^{\top}Ex,x) + 2(EAx,x) + 2(EBu,x) \\ &= -(Qx,x) - (EBu,x) + 2(EBu,x) = -(Qx,x) + (Bu,p), \end{split}$$

en utilisant que E est symétrique, que $(A^{\top}Ex, x) = (Ex, Ax)$ et que $u = -R^{-1}B^{\top}Ex$.

2. En déduire que $\frac{1}{2}(E(0)x_0, x_0)$ est la valeur optimale du problème LQ. Intégrons la relation précédente entre 0 et T. On trouve :

$$(Ex(T), x(T)) - (Ex_0, x_0) = \int_0^T [-(Qx, x) + (Bu, p)].$$

Or, (Ex(T), x(T)) = (Dx(T), x(T)) et

$$\int_{0}^{T} (Bu, p) = -\int_{0}^{T} (u, B^{\top} p) = -\int_{0}^{T} (u, Ru)$$

d'après l'expression de u. Par conséquent,

$$(Ex_0, x_0) = \int_0^T [(Qx, x) + (Ru, u)] + (Dx(T), x(T)).$$

 $Le\ r\'esultat\ escompt\'e\ s'ensuit.$