LEC 12: OHM'S LAW. SIMPLE CIRCUITS

#### CHAPTER 19:

19.1: ELECTRIC CURRENT

19.2: BATTERIES AND EMF

19.3: MAKING AND REPRESENTING SIMPLE CIRCUITS 19.4: OHM'S LAW

19.5: QUALITATIVE ANALYSIS OF CIRCUITS

19.6: Joule's Law

19.7: KIRCHHOFF'S RULES

19.8 RESISTOR AND CAPACITOR CIRCUITS

19.9 SOLVING CIRCUIT PROBLEMS

19.10: Properties of resistors

## **REVIEW**

Electric current

$$I = \frac{|Q|}{\Delta t}$$

Unit: ampere

Ampere is a basic SI unit (like meter, kilogram, and second).

A coulomb is defined as:  $1C = 1A \cdot 1s$ 

## 19.3 CIRCUIT ELEMENTS AND DIAGRAMS

| ELEMENT   | PICTURE     | SYMBOL      |
|-----------|-------------|-------------|
| BATTERY   | BATTERY     | <u></u>   + |
| Wire      |             |             |
| Resistor  |             |             |
| Вицв      |             | $-\otimes$  |
| JUNCTION  |             |             |
| CAPACITOR | Temporal of |             |
| Switch    |             |             |

## 19.4 RESISTANCE AND OHM'S LAW



A – cross section of the wire

*L* − length of the wire

 $\rho$  – resistivity of the material

 $\Delta V$  – potential difference between the ends of the wire

*I* – current in the wire

Current in the conductor is proportional to the potential difference between the ends of the conductor.

The proportionality constant is called **RESISTANCE** and for a conductor it is defined to be:

$$R = \frac{\rho L}{A}$$

Units of the resistance:  $10hm = 1\Omega = \frac{1V}{1A}$ 

Current through the conductor can be written as  $I = \frac{\Delta V}{R}$ 

#### RESISTIVITY

$$R = \rho \frac{L}{A}$$

| Material | $\begin{array}{c} RESISTIVITY \\ (\Omega \mathrm{m}) \end{array}$ | CONDUCTIVITY $(\Omega^{-1} m^{-1})$ |
|----------|-------------------------------------------------------------------|-------------------------------------|
| ALUMINUM | $2.8 \times 10^{-8}$                                              | $3.5 \times 10^7$                   |
| COPPER   | $1.7 \times 10^{-8}$                                              | $6.0 \times 10^{7}$                 |
| GOLD     | $2.4 \times 10^{-8}$                                              | $4.1\times10^7$                     |
| Iron     | $9.7 \times 10^{-8}$                                              | $1.0\times10^7$                     |
| Silver   | $1.6 \times 10^{-8}$                                              | $6.2 \times 10^{7}$                 |
| Tungsten | $5.6 \times 10^{-8}$                                              | $1.8\times10^7$                     |
| NICHROME | $1.5 \times 10^{-8}$                                              | $6.7 \times 10^{5}$                 |
| Carbon   | $3.5 \times 10^{-5}$                                              | $2.9 \times 10^4$                   |

Resistivity  $\rho$  tells us how reluctantly the charges move in response to an electric field.

It is a property of the material (like density) and is measured in  $\Omega m$ .

### **OHMIC MATERIALS**

We identify three kinds of ohmic materials:

- a) wires (ideal, R = 0)
- b) resistors
- c) insulators (ideal,  $R = \infty$ )

Non-ohmic materials,  $I = \frac{\Delta V}{R}$  but only at given time.

Resistance changes due to other

factors.

Ohmic material,  $I \propto V$ through the entire range

Metallic conductor



Semiconductor diode

Filament lamp

## RESISTANCE AND RESISTIVITY

If we apply the same potential difference between the ends of geometrically similar materials, we will get various results.

The characteristic of a conductor that plays part here is resistance.

$$R = \frac{\Delta V}{I}.$$

The SI units:  $1 \text{ } ohm = 1\Omega = 1 \text{ } volt \text{ } per \text{ } ampere$ 

A conductor, whose function in a circuit is to provide specific resistance is a **resistor**.

Resistivity of the material defined as

$$\rho = \frac{E}{J}.$$

(in vectorial form  $\vec{E} = \rho \vec{J}$ )

Conductivity 
$$\sigma = \frac{1}{\rho}$$





Resistance is a property of an object. Resistivity is a property of a material.

## **VARIATION OF TEMPERATURE**

Resistivity is a function of temperature. The empirical (first order) approximation equation that works for most application is

$$\rho = \rho_0 \big( 1 + \alpha (T - T_0) \big)$$



Graph above: log of conductivity as a function of temperature for Si and W.

# SINGLE LOOP CIRCUITS

**EMF** ( $\epsilon$ ) - "electromotive force" — the energy per unit charge that is converted reversibly from chemical, mechanical or other forms of energy into electrical energy in a battery or dynamo.

Consider a circuit consisting of a battery connected to a resistor. Assume connecting wires have no resistance.

Real batteries have **internal resistance** r. As a result, the voltage provided is not equal to the *emf*.



The terminal voltage of the battery:



Solving for current:

The internal resistance of a functioning battery is typically small (a few thousands of an ohm for a new car battery) but its effect is not negligible.