Variant annotation

ANNOVAR and CellBase

University of Cambridge

Cambridge, UK 18th June 2015

Javier López

fjlopez@ebi.ac.uk

EBML-European Bioinformatics Institute

Acknowledgements: Marta Bleda Latorre

The pipeline

What is functional annotation?

Why we do that?

- Each individual exome carries ~25,000 variants → PRIORITIZATION!
- We want to identify a small subset of functionally important variants to pinpoint the putative disease causal variants
- We need strategies to estimate the deleteriousness of our variants to better identify disease-causal variants

CAUTION!

On average, each *normal* person is found to carry:

- ~11,000 synonymous variants
- ~11,000 non-synonymous variants

250 to 300 los-of-function variants in annotated genes

50 to 100 variants previously implicated in inherited disorders

1000 Genomes Project Consortium. *A map of human genome variation from population-scale sequencing.* **Nature**. 2010 Oct 28;467(7319):1061-73. PubMed PMID: 20981092

Sources of functional information

Table 1 Publicly available tools and databases for various tasks of genetic variant annotation and prioritization

Category Database/tool/project		Description	URL	
Genetic variant data	dbSNP ⁶⁸	Comprehensive, curated SNP and short indel database	http://www.ncbi.nlm.nih.gov/projects/S	
sources	DbVar ⁶⁹	Comprehensive, curated database for structural variants	http://www.ncbi.nlm.nih.gov/dbvar	
	DGV ⁷⁰	Human structural variants from samples with no phenotype	http://projects.tcag.ca/variation	
Functional characterization of	ENCODE ⁷¹	High-throughput functional characterization of DNA elements, including noncoding regions	http://www.genome.gov/10005107	
genomic elements	SIFT ⁷² , PolyPhen ⁷³	Prioritization of nonsynonymous SNPs	http://sift.jcvi.org, http://genetics.bwh. harvard.edu/pph2	
Public gene–trait associations	dbGaP ³⁴	Comprehensive listing of genotype-to-phenotype mappings	http://www.ncbi.nlm.nih.gov/gap	
	EGA ⁷⁴	Genotype–phenotype experiment archive	http://www.ebi.ac.uk/ega	
Disease-associated	HGMD ³⁵	Database for human disease mutations	http://www.hgmd.org	
mutations	OMIM ³⁶	Mendelian disease gene associations	http://www.ncbi.nlm.nih.gov/omim	
	SwissVar ⁷⁶	Variant catalog of the UniProt knowledge bases	http://swissvar.expasy.org	
	GAD ⁷⁷	NCBI source for genotype – disease associations	http://geneticassociationdb.nih.gov	
	GWAS catalog from NHGRI ⁷⁸	SNP-phenotype associations found by GWAS	http://www.genome.gov/gwastudies	
Whole-genome repositories	Complete genomics public genomes ⁷⁹	Complete genomics for 69 genomes from multiple ancestries (includes samples from the NHGRI and NIGMS repositories)	http://www.completegenomics.com/ sequence-data/download-data	
	1,000 Genomes ⁸⁰	Expanding resource currently housing three low-coverage whole genomes of multiple ancestries	http://www.1000genomes.org	
Ancestry-focused	HapMap ²⁶	Haplo-block mapping for diverse populations	http://www.hapmap.org	
variant data sources	HGDP ²⁷	SNP profiles of samples from several endogenous populations	http://hagsc.org/hgdp	
Pharmacogenomic associations and data sources	PharmGKB ⁵⁶	Variant–pharmacokinetic/pharmacodynamic trait associations and gene–drug interactions	http://www.pharmgkb.org	
	DrugBank ⁸¹	Drug-target database with biochemical properties	http://drugbank.ca	

Cordero P, Ashley EA. *Whole-genome sequencing in personalized therapeutics*. **Clin Pharmacol Ther**. 2012 Jun ;91(6):1001-9. PubMed PMID: 22549284

Computational method and tools

- Annotated information is sometimes limited, particularly for rare and complex traits
- Computational methods can measure deleteriousness by using comparative genomics and knowledge of protein biochemistry and structure

Comparative Genomics

Focus on sequences that have not been remove by **natural selection**.

Quantify evolutionary changes in genes or genomes and define conserved and neutral regions.

Variants observed in conserved sites are highly likely to be **deleterious**.

A C G A T G A C A A C A A T A A G A A C A

Effects in protein-coding variants

Can combine **evolutionary** and **biochemical** information

Use alignments of homologous proteins to estimate mutational deleteriousness

Use **biochemical data** such as amino acid properties, binding information and structural information to estimate the impact.

Effects in non-coding variants

The majority of the human genetic variation is in non-coding regions.

No detectable conservation outside vertebrates.

Main strategy for estimation is testing the **mammalian conservation** of the non-coding variants.

Cooper GM, Shendure J. *Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data.* **Nature Reviews Genetics**. 2011 Aug 18;12(9):628-40. Pubmed PMID: 21850043

Computational methods and tools

Prediction scores for non-synonymous variants

Kircher M. et al. *A general framework for estimating the relative pathogenicity of human genetic variants.* **Nature Genetics**. 2014; Pubmed PMID: 24487276.

Shihab H. A.. et al. *An integrative approach to predicting the functional effects of non-coding and coding sequence variation.* **Bioinformatics**. 2014; Pubmed PMID: 25583119.

Table 1 | Tools for protein-sequence-based prediction of deleteriousness

Name	Туре	Information	URL	Refs
MAPP	Constraint-based predictor	Evolutionary and biochemical	http://mendel.stanford.edu/SidowLab/downloads/MAPP/index.html	27
SIFT	Constraint-based predictor	Evolutionary and biochemical (indirect)	http://sift.bii.a-star.edu.sg/	39
PANTHER	Constraint-based predictor	Evolutionary and biochemical (indirect)	http://www.pantherdb.org/	41
MutationTaster*	Trained classifier	Evolutionary, biochemical and structural	http://www.mutationtaster.org/	40
nsSNP Analyzer	Trained classifier	Evolutionary, biochemical and structural	http://snpanalyzer.uthsc.edu/	44
PMUT	Trained classifier	Evolutionary, biochemical and structural	http://mmb2.pcb.ub.es:8080/PMut/	38
polyPhen	Trained classifier	Evolutionary, biochemical and structural	http://genetics.bwh.harvard.edu/pph2/	35
SAPRED	Trained classifier	Evolutionary, biochemical and structural	http://sapred.cbi.pku.edu.cn/	42
SNAP	Trained classifier	Evolutionary, biochemical and structural	http://www.rostlab.org/services/SNAP/	36
SNPs3D	Trained classifier	Evolutionary, biochemical and structural	http://www.snps3d.org/	51
PhD-SNP	Trained classifier	Evolutionary and biochemical (indirect)	http://gpcr2.biocomp.unibo.it/~emidio/ PhD-SNP/PhD-SNP_Help.html	37

^{*}Also makes predictions for synonymous and non-coding variant effects: for example, splicing. MAPP, Multivariate Analysis of Protein Polymorphism; polyPhen, polymorphism phenotyping.

Cooper GM, Shendure J. *Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data.* **Nature Reviews Genetics.** 2011 Aug 18;12(9):628-40. Pubmed PMID: 21850043

Computational methods and tools

Prediction scores for non-coding variation

Table 2 | Tools for nucleotide-sequence-based prediction of deleteriousness

Name	Туре	Information	URL	Refs
phastCons	Phylogenetic HMM	Evolutionary	http://compgen.bscb.cornell.edu/phast/	60
GERP	Single-site scoring	Evolutionary	http://mendel.stanford.edu/SidowLab/ downloads/gerp/index.html	67
Gumby	Single-site scoring	Evolutionary	http://pga.jgi-psf.org/gumby/	21
phyloP	Single-site scoring	Evolutionary	http://compgen.bscb.cornell.edu/phast/	66
SCONE	Single-site scoring	Evolutionary	http://genetics.bwh.harvard.edu/scone/	68
binCons	Sliding-window scoring	Evolutionary	http://zoo.nhgri.nih.gov/binCons/index.cgi	69
Chai Cons	Sliding-window scoring	Evolutionary and structural	http://research.nhgri.nih.gov/software/chai	71
VISTA	Visualization tool (various scores)	Evolutionary	http://genome.lbl.gov/vista/index.shtml	70

GERP, Genomic Evolutionary Rate Profiling; HMM, hidden Markov model; SCONE, Sequence Conservation Evaluation.

Cooper GM, Shendure J. *Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data.* **Nature Reviews Genetics**. 2011 Aug 18;12(9):628-40. Pubmed PMID: 21850043

Tools for functional annotation

Align GVD

- We need to measure the impact of each variant in the genome
- We cannot annotate 25,000 variants manually checking more than 20 databases

Tools integrate biological information and ease the functional annotation of hundreds of thousand variants **PANTHFR** CellBase **SNPseek** Parepro SeattleSeq LS-SNP **PMUT SNPHunter** SNPs&GO Oncotator **Annotation** CandiSNPer **SNPnexus SNPeffect HSF** SCONE **PHAST PupaSNP CUPSAT** 4.0 **SNP Function FANS SNPper** SNPdbe Finder F-SNP CHASM and Portal **ABSOLUTE** SIFT **SNVBox** SCAN Auto-mute nsSNPAnalyzer MutationTaster PolyPhen-2 PhD-SNP AnnTools **FastSNP** pfSNP FOLD-X MAPP **SNAP** GERP++ **HOPE PESX SAPRED** ResqueESE **VEP** SegAnt **FFSD** QuikSNP SNPs3D **PolyDoms** MutaGeneSys MutPred NGS-SNP **ANNOVAR** SiPhy SVA **ESEfinder ESRSearch GSITIC** PolyMAPr dbNSFP MuD MutSlq SegProfCod Stephan Pabinger et al. A survey of tools for variant I-Mutant2.0 SNP@Domain analysis of next-generation genome sequencing MutationAssesor data, Briefings in Bioinformatics, 2013 Jan. Pubmed

PMID: 23341494

AnnoVar

ANNOVAR web site: http://www.openbioinformatics.org/annovar/

- Free and open source
- Can annotate SNV, insertions and deletions
- Regulatory information: Conserved genomic regions, TFBSs, miRNA targets and predicted miRNA secondary structures. ENCODE DNAse I hypersensitive sites, Histone methylations, ChIP and RNA-Seq peaks
- DbSNP, 1000 genomes, SIFT and GERP filtering
- Predictions: Polyphen, LRT, MutationTaster, PhyloP
- Can handle custom annotations in GFF3
- Can handle 1 o 0-based coordinates
- 5 Species (human, mouse, worm, fly, yeast)

Accepts VCF4, GFF3-SOLiD and CSV BUT after conversion to their particular input file:

Chr	Start	End	Ref	0bs	Comments
1	161003	161003	С	Т	comments: rs1000050

- Perl written program
- Installation required
- Users need to download every annotation database and save them locally (~35GB per assembly)
- Need to be run several times
- Output: several files depending on the query

Wang K, Li M, Hakonarson H. *ANNOVAR: Functional annotation of genetic variants from next-generation sequencing data.* **Nucleic Acids Research**. Sep;38(16):e164 Pubmed PMID: 20601685

AnnoVar

EXAMPLE of ANNOVAR usage

```
DOWNLOADING BIOLOGICAL DATA:
user@computer:~$ annotate variation.pl -buildver hg19 -downdb refgene humandb/
user@computer:~$ annotate variation.pl -buildver hg19 -downdb snp135 -webfrom annovar humandb/
user@computer:~$ annotate variation.pl -buildver hg19 -downdb phastConsElements46way humandb/
 user@computer:~$ annotate variation.pl -buildver hg19 -downdb 1000g2012apr -webfrom annovar
humandb/
user@computer:~$ annotate variation.pl -buildver hg19 -downdb cytoBand humandb/
EXTRACTING THE EFFECT:
user@computer:~$ annotate variation.pl -geneanno example/ex1.human humandb/
 user@computer:~$ annotate variation.pl -regionanno -dbtype band example/ex1.human humandb/
 user@computer:~$ annotate variation.pl -filter -dbtype 1000g2012apr eur example/ex1.human
humandb/
```

Variant Effect Predictor (VEP)

VEP documentation site: http://www.ensembl.org/info/docs/variation/vep/index.html

- Backed by Ensembl
- Free and open source
- 3 ways of functionality: web interface, standalone Perl script and Ensembl's Perl API
- Input formats: CSV, VCF, Pileup and HGVS
- Regulatory information: TFBSs
- Filtering by coding regions and MAF
- Predictions: SIPF, PolyPhen
- 1000 genomes and dbSNP information
- Uses Sequence Ontology
- Many species

- Regulatory information does not include miRNA targets
- The standalone Perl script needs:
 - Perl and MySQL support
 - **Download**, **install** and **update** every ~ 2 months
- Perl API requires:
 - Installation
 - Downloads and update
 - API documentation → Hard to understand

McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. *Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor.* **BMC Bioinformatics** 26(16):2069-70(2010) Pubmed PMID: 20562413

Variant Effect Predictor (VEP)

VEP web interface: http://www.ensembl.org/Homo_sapiens/Tools/VEP

McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. *Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor.* **BMC Bioinformatics** 26(16):2069-70(2010) Pubmed PMID: 20562413

Variant Effect Predictor (VEP)

```
1 use strict:
 2 use warnings:
                                                                 EXAMPLE of API usage: Getting all variations in a particular human
3 use Bio::EnsEMBL::Registry;
                                                               transcript and see what is the effect of that variation in the transcript
5 my $registry = 'Bio::EnsEMBL::Registry';
7 $registry->load registry from db(
      -host => 'ensembldb.ensembl.org'.
      -user => 'anonymous'
10):
11
12 my $stable id = 'ENST00000393489'; #this is the stable id of a human transcript
13 my $transcript_adaptor = $registry->get adaptor('homo sapiens', 'core', 'transcript'); #get the adaptor to get the Transcript from the database
14 my $transcript = $transcript_adaptor->fetch_by_stable_id($stable_id); #get the Transcript object
16 my $trv_adaptor = $registry->get_adaptor('homo_sapiens', 'variation', 'transcriptvariation'); #get the adaptor to get TranscriptVariation objects
17 my $trvs = $trv_adaptor->fetch all by Transcripts([$transcript]); #get ALL effects of Variations in the Transcript
19 foreach my $tv (@{$trvs}) {
20
          my $tvas = $tv->get all alternate TranscriptVariationAlleles():
21
22
          foreach my $tva(@{$tvas}) {
23
                 my @ensembl_consequences;
24
                 my @so_consequences;
25
                 my $ocs = $tva->get_all_OverlapConsequences();
26
27
                 foreach my $oc(@{$ocs}) {
28
                        push @ensembl_consequences, $oc->display_term;
29
30
                        push @so_consequences, $oc->SO_term;
31
32
33
                 my $sift = $tva->sift_prediction;
                 my $polyphen = $tva->polyphen_prediction;
35
36
37
                        "Variation ", $tv->variation_feature->variation_name,
38
                         " allele ", $tva->variation feature seg,
                         " has consequence ", join(",", @ensembl_consequences),
39
                         " (SO ", join(",", @so_consequences), ").";
                 if(defined($sift)) {
                        print " SIFT=$sift":
                 if(defined($polyphen)) {
                        print " PolyPhen=$polyphen";
                 print "\n";
```

McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. *Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor.* **BMC Bioinformatics** 26(16):2069-70(2010) Pubmed PMID: 20562413

50

51 }

CellBase v3.1.0

- NoSQL database that integrates the most relevant biological information:
 - Core features: genes, transcripts, exons, proteins, genome sequence, etc.
 - Regulatory: Ensembl regulatory, TFBS, miRNA targets, CTCF, Open chromatin, etc.
 - Functional annotation: OBO ontologies (Gene Ontology, Human Disease Ontology), etc.
 - Genomic variation: Ensembl Variation, ClinVar, COSMIC, etc.
 - Systems biology: IntAct, Biogrid, Reactome, gene co-expression, etc.
 - More than 20 species available
- An exhaustive RESTful Web service API has been implemented:

http://wwwdev.ebi.ac.uk/cellbase/webservices/rest/v3/hsapiens/genomic/region/22:17449263:17449264/gene

- New features included in v3.1.0
 - New CLI that integrates CellBase building and query commands
 - New Variant Annotation functionality
 - New data:
 - RefSeg annotation
 - DisGeNET
 - Gene Expression Atlas

Bleda M, et al. *CellBase, a comprehensive collection of RESTful web services for retrieving relevant biological information from heterogeneous sources*. **Nucleic Acids Research**. 2012 Pubmed PMID: 22693220

CellBase v3.1.0 annotator

https://github.com/opencb/cellbase/

CellBase documentation site: https://github.com/opencb/cellbase/wiki

- Free and open source.
- Institutions using it: EBI EVA, GEL
- 2 ways of functionality: CLI program, Java RESTful WS API
- Cloud variant annotator. Requires no installation or updates
- Consequence type in Ensembl and RefSeq genes (Sequence Ontology)
- Regulatory regions: TFBS, miRNA target, ENCODE
- Conservation scores: phastCons and phyloP.
- Protein substitution effect scores: PolyPhen-2, SIFT
- Control studies frequencies: 1000 genomes, EVS
- Gene/Transcript Expression: Gene Expression Atlas
- Clinical phenotype information: ClinVar, COSMIC, GWAS catalog
- 13 species (human, mouse, rat, zebra fish, worm, fly, yeast, dog, pig, mosquito, etc.)

- Young program, many new features coming
 - UniProt, InterPro, Intact, Emory clinical data, DGIdb, DisGeNET, GERP++ and many others
 - Many more species (~25 new species)
 - Large structural variants annotation

Bleda M, et al. *CellBase, a comprehensive collection of RESTful web services for retrieving relevant biological information from heterogeneous sources*. **Nucleic Acids Research**. 2012 Pubmed PMID: 22693220

CellBase v3.1.0 annotator

https://github.com/opencb/cellbase/

Download CellBase code and save it into your course/variant_annotation folder:

https://github.com/opencb/cellbase/releases

Extract the contents

Usage:

cellbase.sh variant-annotation --input-file file.vcf --output-file file.vep

REST API:

http://bioinfo.hpc.cam.ac.uk/cellbase/webservices/rest/v3/hsapiens/genomic/variant/19:45411941:T:C/full_annotation

