Московский государственный технический университет им. Н. Э. Баумана

Курс «Технологии машинного обучения» Отчёт по рубежному контролю №1 «Технологии разведочного анализа и обработки данных.» Вариант № 19

Выполнил:	Проверил:
Ювенский Л.А.	Гапанюк Ю.Е
группа ИУ5-63Б	

Дата: 14.03.25

Подпись:

Дата:

Подпись:

Задание:

Номер варианта: 19

Номер задачи: 3

Номер набора данных, указанного в задаче: 3

(https://www.kaggle.com/datasets/carlolepelaars/toy-dataset)

Для студентов групп ИУ5-63Б, ИУ5Ц-83Б - для произвольной колонки данных построить график "Ящик с усами (boxplot)".

Задача №3.

Для заданного набора данных произведите масштабирование данных (для одного признака) и преобразование категориальных признаков в количественные двумя способами (label encoding, one hot encoding) для одного признака. Какие методы Вы использовали для решения задачи и почему?

Ход выполнения:

∨ "Ящик с усами" (boxplot)

[7] df0.boxplot(column='Income', by='Gender', grid=False)

Построим график "ящик с усами" (boxplot) для колонки "Income" с разбивкой по колонке "Gender"

```
Axes: title={'center': 'Income'}, xlabel='Gender'>

Boxplot grouped by Gender

175000

150000

100000

50000

Female

Female

Male

Gender
```

Масштабирование данных

Произведём масштабирование данных колонки "Income" при помощи двух методов: MinMax масштабирование (MinMaxScaler) и Масштабирование данных на основе Z-оценки (StandardScaler).

MinMay масштабивование

Масштабирование данных

Произведём масштабирование данных колонки "Income" при помощи двух методов: MinMax масштабирование (MinMaxScaler) и Масштабирование данных на основе Z-оценки (StandardScaler).

МіпМах масштабирование:

$$x_{\text{новый}} = \frac{x_{\text{старый}} - \min(X)}{\max(X) - \min(X)}$$

В этом случае значения лежат в диапазоне от 0 до 1.

Масштабирование данных на основе Z-оценки:

$$x_{\text{новый}} = \frac{x_{\text{старый}} - AVG(X)}{\sigma(X)}$$

В этом случае большинство значений попадает в диапазон от -3 до 3.

Стандартизированная оценка (z-оценка) - это мера относительного разброса наблюдаемого или измеренного значения, которая показывает, сколько стандартных отклонений составляет его разброс относительного среднего значения.

 \bigvee_0^{\prime} [10] from sklearn.preprocessing import MinMaxScaler, StandardScaler $_{\rm osc}$

[23] plt.hist(df0['Income'], 50) cex. plt.show()

Преобразование категориальных признаков в количественные

Преобразуем категориальный признак "City" в количественный с использованием двух методов: "Label encoding" и "One hot encoding"

Label encoding

5 Dallas

Male

Ориентирован на применение к одному признаку. Предназначен для кодирования целевого признака, но может быть также использован для последовательного кодирования отдельных нецелевых признаков.

Сопоставляет значению категориального признака целое неотрицательное число

Чтобы изменить содержимое ячейки, дважды нажмите на нее (или выберите "Ввод")

No

46 50289.0

Уникализируем строки по значению колонки "City", чтобы наглядко продемонстрировать кодирование для всех возможных значений данного поля

