Chapitre 13 : Espace \mathbb{R}^n Limite et continuité des fonctions d'une partie de \mathbb{R}^p dans \mathbb{R}^n .

Dans tout ce chapitre, *n* et *p* sont deux entiers naturels non nuls.

I Normes sur un R-espace vectoriel

Pour ce paragraphe, E désigne un \mathbb{R} -ev.

A) Norme (rappels)

Définition:

Une norme sur E, c'est une application N de E dans \mathbb{R}^+ vérifiant :

- (1) $\forall x \in E, (N(x) = 0 \Rightarrow x = 0)$
- (2) $\forall x \in E, \forall \lambda \in \mathbb{R}, N(\lambda x) = |\lambda| N(x)$
- (2) $\forall x, y \in E, N(x+y) \le N(x) + N(y)$

Il résulte aisément des propriétés (1), (2), (3) que si N est une norme sur E, on a : $\forall x \in E, (N(x) = 0 \Leftrightarrow x = 0)$

$$\forall x \in E, N(-x) = N(x)$$

$$\forall x, y \in E, |N(x) - N(y)| \le N(x - y) \le N(x) + N(y)$$

$$\forall x_1, x_2, ... x_n \in E, N(x_1 + x_2 + ... + x_n) \le N(x_1) + N(x_2) + ... + N(x_n)$$

Notation : une norme quelconque sur E est souvent notée $\| \cdot \|$.

B) Distance associée à une norme

On suppose que E est muni d'une norme notée $\| \|$. Pour tous x, y de E, on pose :

$$d(x,y) = ||y-x||.$$

Alors d est une distance sur E, c'est-à-dire que d est une application de $E \times E$ dans \mathbb{R}^+ vérifiant :

$$\forall x, y \in E, d(x, y) = 0 \Leftrightarrow x = y$$

$$\forall x, y \in E, d(y, x) = d(x, y)$$

$$\forall x, y, z \in E, d(x, y) \le d(x, y) + d(y, z)$$

On dit que d est la distance associée à la norme $\| \|$.

C) Exemples de normes sur \mathbb{R}^n .

Pour chaque x de \mathbb{R}^n , on notera $x = (x_1, x_2, ... x_n)$.

- L'application $\| \|_2$ définie sur \mathbb{R}^n par $\|x\|_2 = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$ est une norme sur \mathbb{R}^n : c'est la norme naturelle.
- L'application $\| \|_{\infty}$ définie sur \mathbb{R}^n par $\|x\|_{\infty} = \max_{i \in [1,n]} |x_i|$ est aussi une norme sur \mathbb{R}^n .

En effet, $\| \|_{\infty}$ est à valeurs dans \mathbb{R}^+ , les propriétés (1) et (2) sont évidentes, et pour le (3) :

Soient $x, y \in \mathbb{R}^n$.

Pour tout $i \in [1, n]$, on $a|x_i + y_i| \le |x_i| + |y_i| \le |x|| + |y||_{\infty}$, d'où $|x + y||_{\infty} \le |x||_{\infty} + |y||_{\infty}$.

D) Partie bornée, fonction bornée

Soit $\| \|$ une norme sur E.

- Etant donnée une partie A de E, on dit que A est bornée pour la norme $\| \|$ lorsqu'il existe $M \in \mathbb{R}^+$ tel que pour tout x de A, on a $\|x\| \le M$.
- Etant donnée une fonction f à valeurs dans E et définie sur un ensemble quelconque D, on dit que f est bornée pour la norme $\| \ \|$ lorsqu'il existe $M \in \mathbb{R}^+$ tel que pour tout x de D, on a $\| f(x) \| \leq M$, autrement dit lorsque $\operatorname{Im} f$ est une partie bornée de E pour la norme $\| \ \|$.

E) Boules

Soit $\| \|$ une norme sur E.

Définition:

Pour tout $A \in E$, et tout $r \in \mathbb{R}^+$, on appelle boule ouverte de centre a et de rayon r pour la norme $\| \|$ la partie B(a,r) définie par $B(a,r) = \{x \in E, \|x-a\| < r\}$.

Et on appelle boule fermée de centre a et de rayon r pour la norme $\| \|$ la partie $\overline{B}(a,r)$ définie par $\overline{B}(a,r) = \{x \in E, \|x-a\| \le r\}$.

Remarque:

Si r = 0, B(a,r) est vide et $\overline{B}(a,r)$ est réduit à $\{a\}$ mais si r > 0, B(a,r) n'est pas vide (contient par exemple a)

Exemple:

Des boules de centre O et de rayon 1 dans \mathbb{R}^2

F) Normes équivalentes

Définition:

Soient N_1 et N_2 deux normes sur E. On dit que N_1 et N_2 sont équivalentes lorsqu'il existe $a \in \mathbb{R}_+^*$ tel que $\forall x \in E, N_1(x) \le aN_2(x)$ et $b \in \mathbb{R}_+^*$ tel que $\forall x \in E, N_2(x) \le bN_1(x)$.

Il est évident que cette relation est une relation d'équivalence sur l'ensemble des normes sur E, c'est-à-dire qu'elle est réflexive, symétrique et transitive.

Exemple:

Dans \mathbb{R}^n , les normes $\| \cdot \|_2$ et $\| \cdot \|_{\infty}$ sont équivalentes.

En effet, pour chaque $x = (x_1, x_2, ... x_n)$ de \mathbb{R}^n , on a, en posant $\left|x_p\right| = \max_{i \in [1,n]} \left|x_i\right|$:

$$\sqrt{x_p^2} \le \sqrt{x_1^2 + x_2^2 + ... + x_n^2} \le \sqrt{nx_p^2}$$
, c'est-à-dire $||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}$.

En fait, sur \mathbb{R}^n , toutes les normes sont équivalentes, ce qui résulte du théorème :

Théorème (admis):

Dans un R-ev de dimension finie, toutes les normes sont équivalentes.

Proposition:

Soient N_1 et N_2 deux normes équivalentes sur E, et soit A une partie de E. Alors A est bornée pour N_1 si et seulement si A est bornée pour N_2 . (Immédiat)

Par conséquent, dans \mathbb{R}^n , le caractère borné est indépendant du choix de la norme.

Proposition:

Si N_1 et N_2 sont deux normes équivalentes sur E, alors toute boule ouverte non vide pour N_1 contient une boule ouverte non vide et de même centre pour N_2 , et viceversa.

Démonstration:

Notons $B_1(,)$ les boules ouvertes pour N_1 et $B_2(,)$ les boules ouvertes pour N_2 .

Soit $\alpha_1 > 0$ tel que $\forall x \in E, N_1(x) \le \alpha_1 N_2(x)$

Alors, pour tout $a \in E$ et tout r > 0, on a $B_2(a, \frac{r}{\alpha_1}) \subset B_1(a, r)$

(car si $N_2(x-a) < \frac{r}{\alpha_1}$, alors $N_1(x-a) < r$).

Et on peut refaire la même chose en échangeant 1 et 2.

II Eléments de topologie de ^R".

Soit $\| \|$ une norme sur \mathbb{R}^n . Toutes les boules considérées sont pour cette norme.

A) Voisinages d'un point de \mathbb{R}^n .

Soit a un élément de \mathbb{R}^n .

On appelle voisinage de a (dans \mathbb{R}^n) toute partie U de \mathbb{R}^n qui contient une boule ouverte non vide de centre a.

D'après l'équivalence des normes sur \mathbb{R}^n , cette définition est indépendante du choix de la norme.

Proposition:

- Toute partie de \mathbb{R}^n qui contient un voisinage de a est un voisinage de a (stabilité par extension)
- Toute intersection finie de voisinages de *a* est un voisinage de *a* (stabilité par intersection finie)
- Etant donnés deux éléments distincts a et a' de \mathbb{R}^n , on peut toujours trouver un voisinage de a et un voisinage de a' qui ne se rencontrent pas (séparation des voisinages)

Démonstration:

- Soit D une partie de \mathbb{R}^n contenant un voisinage V de a.

Comme V est un voisinage de a, il contient une boule ouverte non vide de centre a, par exemple $B(a,\varepsilon)$. Alors $B(a,\varepsilon) \subset V \subset D$, donc D contient une boule ouverte non vide de centre a (à savoir $B(a,\varepsilon)$), donc est un voisinage de a.

- Soit $(V_i)_{i \in K}$ une famille de voisinages de a, indexée par K fini.

Notons
$$V = \bigcap_{i \in K} V_i$$
.

Pour tout $i \in K$, soit \mathcal{E}_i tel que $B(a, \mathcal{E}_i) \subset V_i$ (il en existe car V_i est un voisinage de a). Alors, pour $\mathcal{E} = \min_{i \in K} \mathcal{E}_i$, on a $\forall i \in K, B(a, \mathcal{E}) \subset B(a, \mathcal{E}_i) \subset V_i$. (En effet, pour tout $i \in K$, si $x \in B(a, \mathcal{E})$, alors $||x - a|| < \mathcal{E}$, donc $||x - a|| < \mathcal{E} \le \mathcal{E}_i$, soit $x \in B(a, \mathcal{E}_i)$)

Donc $B(a,\varepsilon) \subset \bigcap_{i \in K} V_i$. Donc $B(a,\varepsilon) \subset V$, donc V est un voisinage de a.

- Soient a, a' deux éléments distincts de \mathbb{R}^n .

Soit
$$\varepsilon > 0$$
 tel que $\varepsilon < \frac{\|a - a'\|}{2}$.

Alors $B(a,\varepsilon) \cap B(a',\varepsilon) = \emptyset$.

En effet, supposons que $B(a,\varepsilon) \cap B(a',\varepsilon) \neq \emptyset$.

Soit alors $x \in B(a, \varepsilon) \cap B(a', \varepsilon)$.

Alors $||x-a|| < \varepsilon$ soit $||a-x|| < \varepsilon$ et $||x-a||| < \varepsilon$. Donc $||a-a|| \le ||a-x|| + ||x-a|| < 2\varepsilon$ ce qui est impossible car $\varepsilon < \frac{||a-a'||}{2}$.

Pour la suite, on notera $V_n(a)$ l'ensemble des voisinages, dans \mathbb{R}^n , d'un point a de \mathbb{R}^n .

B) Ouverts de \mathbb{R}^n .

Définition:

Soit Ω une partie de \mathbb{R}^n . On dit que Ω est ouverte lorsque Ω est voisinage de chacun de ses points.

Compte tenu de la définition de voisinage, on a donc aussi l'équivalence :

 Ω est ouverte $\Leftrightarrow \forall a \in \Omega, \exists \varepsilon > 0, B(a, \varepsilon) \subset \Omega$.

La notion est indépendante du choix de la norme, puisqu'elle ne dépend que de la notion de voisinages.

Exemple:

Les boules ouvertes sont ouvertes :

Soit $B(a, \varepsilon)$ une boule ouverte.

Soit $x \in B(a, \varepsilon)$. Donc $||x-a|| < \varepsilon$. Soit alors $\mu > 0$ tel que $\mu < \varepsilon - ||x-a||$.

Alors $B(x, \mu) \subset B(a, \varepsilon)$. En effet :

Soit $y \in B(x, \mu)$. Alors $||y - x|| < \mu < \varepsilon - ||x - a||$

Donc $||y-x|| + ||x-a|| < \varepsilon$.

Or, $\|(y-x)+(x-a)\| \le \|y-x\|+\|x-a\|$. Donc $\|y-a\| < \varepsilon$, donc $y \in B(a,\varepsilon)$, d'où l'inclusion. Donc $B(a,\varepsilon)$ est un voisinage de x.

Donc $B(a, \varepsilon)$ est voisinage de chacun de ses points, donc ouverte.

 \emptyset et \mathbb{R}^n sont aussi ouverts.

Proposition:

Toute réunion d'ouverts est un ouvert.

Toute intersection finie d'ouverts est un ouvert.

Démonstration:

Soit $(\Omega_i)_{i\in I}$ une famille d'ouverts indexée par un ensemble I.

Notons $\Omega = \bigcup_{i \in I} \Omega_i$.

Soit $x \in \Omega$. Il existe alors $i \in I$ tel que $x \in \Omega_i$. Comme Ω_i est ouvert, il existe $\varepsilon > 0$ tel que $B(x, \varepsilon) \subset \Omega_i$. Comme $\Omega_i \subset \Omega$, on a donc $B(x, \varepsilon) \subset \Omega$.

Donc Ω est voisinage de x. C'est valable pour tout $x \in \Omega$. Donc Ω est ouvert.

Soit maintenant $(\Omega_i)_{i \in K}$ une famille d'ouverts indexée par un ensemble K fini.

Notons $\Omega = \bigcap_{i \in K} \Omega_i$.

Soit $x \in \Omega$. Alors $\forall i \in K, x \in \Omega_i$.

Pour tout $i \in K$, on pose alors ε_i tel que $B(x, \varepsilon_i) \subset \Omega_i$ (ce qui est possible car les ensemble sont ouverts)

Posons $\varepsilon = \min_{i \in K} \varepsilon_i$. Alors $\forall i \in K, B(x, \varepsilon) \subset B(x, \varepsilon_i) \subset \Omega_i$. Donc $B(x, \varepsilon) \subset \Omega$.

D'où le résultat.

Proposition:

Soient *n* intervalles ouverts $I_1, I_2, ... I_n$ de \mathbb{R} .

Alors le produit cartésien $I_1 \times I_2 \times ... \times I_n$ est un ouvert de \mathbb{R}^n .

Une telle partie est appelée un pavé ouvert.

Démonstration:

Soit $a = (a_1, a_2, ... a_n)$ un élément de $I_1 \times I_2 \times ... \times I_n$.

Alors, pour chaque k entre 1 et n, a_k est élément de l'intervalle ouvert I_k , donc il existe $\varepsilon_k > 0$ tel que $]a_k - \varepsilon_k, a_k + \varepsilon_k[\subset I_k]$.

Si on pose $\mathcal{E} = \min_{k \in [\![1,n]\!]} \mathcal{E}_k$, alors on a bien $\mathcal{E} > 0$ et la boule ouverte de centre a et de rayon \mathcal{E} pour la norme $\| \cdot \|_{\mathbb{R}^n}$ est contenue dans $I_1 \times I_2 \times ... \times I_n$.

En effet, soit $x \in B_{\infty}(a, \varepsilon)$ (où on a noté $B_{\infty}(a, \varepsilon)$) une boule ouverte pour $\| \cdot \|_{\infty}$)

Alors
$$||x-a||_{\infty} < \varepsilon$$
, donc $\max_{k \in ||1,n||} |x_k - a_k| < \varepsilon$, où $x = (x_1, x_2, ...x_n)$.

Donc
$$\forall k \in [1, n], |x_k - a_k| < \varepsilon \le \varepsilon_k$$
. Donc $\forall k \in [1, n], x_k \in]a_k - \varepsilon_k, a_k + \varepsilon_k [\subset I_k]$.

Donc $x \in I_1 \times I_2 \times ... \times I_n$.

Donc $I_1 \times I_2 \times ... \times I_n$ est un voisinage de a.

Donc $I_1 \times I_2 \times ... \times I_n$ est ouvert.

C) Fermés de \mathbb{R}^n .

Soit F une partie de \mathbb{R}^n . On dit que F est un fermé lorsque le complémentaire de F dans \mathbb{R}^n est un ouvert.

Exemples, propositions:

- Les boules fermées sont fermées.
- \mathbb{R}^n et \emptyset sont fermés (et ce sont les seules parties à la fois ouvertes et fermées)
- Toute intersection de fermés est un fermé, toute réunion finie de fermés est un fermé.
- Tout produit cartésien de n intervalles fermés de \mathbb{R} est un fermé de \mathbb{R}^n (qu'on appelle un pavé fermé de \mathbb{R}^n).

Démonstration:

• Soit $\overline{B}(a,\varepsilon)$ une boule fermée. Notons Ω son complémentaire dans \mathbb{R}^n .

Ainsi,
$$\Omega = \{x \in \mathbb{R}^n, ||x - a|| > \varepsilon\}.$$

Soit $x \in \Omega$. Soit $\mu > 0$ tel que $\mu < ||x - a|| - \varepsilon$.

Alors $B(x, \mu) \subset \Omega$. En effet, soit $y \in B(x, \mu)$.

Alors
$$||y-a|| = ||(a-x)-(y-x)|| \ge ||a-x||-||y-x||| \ge ||a-x||-||y-x||| \ge \varepsilon$$

Donc $y \in \Omega$. Donc Ω est un voisinage de x. Ce résultat est valable pour tout x, donc Ω est ouvert.

- Les complémentaires de \mathbb{R}^n et \emptyset sont respectivement \emptyset et \mathbb{R}^n qui sont ouverts, donc sont fermés.
- Soit $(\Omega_i)_{i \in I}$ une famille de fermés indexée par un ensemble I quelconque. Si on note $\Omega = \bigcap_{i \in I} \Omega_i$, Alors $C_{\mathbb{R}^n}(\Omega) = \bigcup_{i \in I} C_{\mathbb{R}^n}(\Omega_i)$, donc Ω est une réunion d'ouverts qui est un ouvert. On fait le même raisonnement pour une réunion finie de fermés.
- Soient *n* intervalles fermés $I_1, I_2, ... I_n$ de \mathbb{R} .

Soit Ω le complémentaire dans \mathbb{R}^n de $I_1 \times I_2 \times ... \times I_n$.

Soit $x \in \Omega$. On note $x_1, x_2, ... x_n$ ses composantes dans \mathbb{R}^n . L'un au moins des x_i est dans $C_{\mathbb{R}}(I_i)$, disons x_q où $q \in [\![1,n]\!]$. Pour chaque $i \in [\![1,n]\!]$, on pose $\mathcal{E}_i = 1$ si $x_i \in I_i$, et $\mathcal{E}_i > 0$ tel que $]x_i - \mathcal{E}_i, x_i + \mathcal{E}_i[\subset C_{\mathbb{R}}(I_i)]$ sinon.

Alors, si on note $\varepsilon = \min_{i \in [[1,n]]} \varepsilon_i$, on a $B(x,\varepsilon) \subset \Omega$.

En effet:

Soit $y \in B_{\infty}(x, \varepsilon)$ (où on a noté $B_{\infty}(x, \varepsilon)$) une boule ouverte pour $\|\cdot\|_{\infty}$).

Montrons que $y \notin I_1 \times I_2 \times ... \times I_n$.

On a
$$||x-y||_{\infty} < \varepsilon$$
.

Donc, en notant $y_1, y_2, ... y_n$ les composantes de y dans \mathbb{R}^n , on a :

$$\forall i \in \left[\left[1, n \right] \right] \left| x_i - y_i \right| \leq \max_{k \in \left[\left[1, n \right] \right]} \left| x_k - y_k \right| < \mathcal{E} \leq \mathcal{E}_i \,. \ \, \text{Donc en particulier} \ \, \left| x_q - y_q \right| < \mathcal{E}_q \,, \ \, \text{soit}$$

$$y_q \in \left[x_q - \mathcal{E}_q, x_q + \mathcal{E}_q \right] \subset C_{\mathbb{R}}(I_q) \,, \text{ c'est-\`a-dire } \, y_q \in C_{\mathbb{R}}(I_q) \,.$$

Donc $y \notin I_1 \times I_2 \times ... \times I_n$, c'est-à-dire $y \in \Omega$. D'où l'inclusion.

Donc Ω est un voisinage de x, donc Ω est ouvert (puisque le résultat est valable pour tout x). donc $I_1 \times I_2 \times ... \times I_n$ est fermé.

D) Points intérieurs

Soit A une partie de \mathbb{R}^n .

Définition:

Etant donné $a \in \mathbb{R}^n$, on dit que a est intérieur à A lorsque A est un voisinage de a, c'est-à-dire lorsqu'il existe $\varepsilon > 0$ tel que $B(a, \varepsilon) \subset A$.

L'ensemble des points intérieurs à A est appelé l'intérieur de A, noté \mathring{A} .

Proposition:

Soit A une partie de \mathbb{R}^n . L'intérieur de A est un ouvert contenu dans A; et c'est le plus grand, au sens de l'inclusion, des ouverts contenus dans A.

Démonstration:

Déjà, \mathring{A} est ouvert :

Supposons \mathring{A} non vide (sinon il est bien ouvert).

Soit $x \in \mathring{A}$. Alors A est un voisinage de x, il existe donc $\varepsilon > 0$ tel que $B(x, \varepsilon) \subset A$.

Alors $B(x,\varepsilon) \subset \mathring{A}$. En effet, $B(x,\varepsilon)$ est ouverte, donc est voisinage de chacun de ses points. Donc A est voisinage de tout les points de $B(x,\varepsilon)$ (stabilité par extension), d'où l'inclusion.

De plus, il est évidemment contenu dans A.

Montrons maintenant que c'est le plus grand :

Soit Ω un ouvert contenu dans A. Soit $x \in \Omega$. Comme Ω est ouvert, c'est un voisinage de x. Mais $\Omega \subset A$. Donc A est un voisinage de x. Donc $X \in A$. Donc $X \in A$.

Il résulte en particulier de la proposition que A est ouvert si et seulement si $A = \mathring{A}$.

Exemple:

Dans \mathbb{R}^2 , l'intérieur de $[0;1]\times]1;2]$ est $]0;1[\times]1;2[$.

E) Points adhérents

Soit A une partie de \mathbb{R}^n .

Définition:

Etant donné $a \in \mathbb{R}^n$, on dit que a est adhérent à A lorsque tout voisinage de a rencontre A, c'est-à-dire lorsque $\forall \varepsilon > 0, B(a, \varepsilon) \cap A \neq \emptyset$.

L'ensemble des points adhérents à A est appelé l'adhérence de A, noté \overline{A} .

Proposition:

Soit A une partie de \mathbb{R}^n . L'adhérence de A est un fermé contenant A, et c'est le plus petit, au sens de l'inclusion, des fermés contenant A.

Démonstration:

Déjà, \overline{A} contient bien A...

Posons maintenant $\Omega = C_{\mathbb{R}^n} \overline{A}$. Montrons que Ω est ouvert.

Soit $x \in \Omega$. Alors $x \notin \overline{A}$, il existe donc $\varepsilon > 0$ tel que $B(x, \varepsilon) \cap A = \emptyset$.

Alors $B(x,\varepsilon) \subset \Omega$. En effet : soit $y \in B(x,\varepsilon)$. Alors $B(x,\varepsilon)$ est un voisinage de y, et il ne rencontre pas A, donc $y \notin \overline{A}$, donc $y \in \Omega$.

Donc Ω est un voisinage de x. C'est valable pour tout x de Ω , donc Ω est ouvert. Donc \overline{A} est fermé.

Soit enfin F un fermé contenant A. Montrons qu'alors $\overline{A} \subset F$.

Soit $x \in \overline{A}$, montrons que $x \in F$. Supposons que $x \notin F$. Alors $x \in C_{\mathbb{R}^n}F$, qui est ouvert. Il existe donc $\varepsilon > 0$ tel que $B(x,\varepsilon) \subset C_{\mathbb{R}^n}F$. Ainsi, $B(x,\varepsilon) \cap F = \emptyset$. Mais alors $B(x,\varepsilon) \cap A = \emptyset$ (puisque $A \subset F$), ce qui est impossible car $x \in \overline{A}$. Donc $x \in F$. Donc $\overline{A} \subset F$. Donc \overline{A} est bien le plus petit des fermés contenant A.

Ainsi, il résulte de la définition que A est fermé si et seulement si $A = \overline{A}$.

Exemples:

- Dans \mathbb{R}^2 , l'adhérence de $[0;1]\times[1;2]$ est $[0;1]\times[1;2]$.
- L'adhérence d'une boule ouverte est la boule fermée de même centre et même rayon.

III Commentaires et précisions sur les fonctions d'une partie de \mathbb{R} dans \mathbb{R}^n .

A) Limite en un point de \mathbb{R} pour une fonction d'une partie de \mathbb{R} dans \mathbb{R}^n .

On a déjà défini cette notion, dans le cours sur les foncions vectorielles, mais ici la norme n'est pas forcément euclidienne.

Etant donnés une partie D de \mathbb{R} , une fonction f de D dans \mathbb{R}^n , un point a de \mathbb{R} adhérent à D, et un élément l de \mathbb{R}^n , on a vu :

$$\lim_{\alpha} f = l \iff \forall \varepsilon > 0, \exists \alpha > 0, \forall x \in D, (\left| x - a \right| < \alpha \Longrightarrow \left\| f(x) - l \right\| < \varepsilon)$$

où $\| \ \|$ désignait la norme euclidienne sur \mathbb{R}^n .

Mais, vu l'équivalence des normes sur \mathbb{R}^n , il est clair que $\| \|$ peut désigner n'importe quelle norme sur \mathbb{R}^n sans que cela change la notion.

On peut même traduire la définition sous forme de voisinage, qui montre bien l'indépendance de la norme :

$$\lim_{a} f = l \Leftrightarrow \forall V \in V_n(l), \exists U \in V_1(a), f(U \cap D) \subset V$$

Remarque:

En prenant comme norme sur \mathbb{R}^n la norme $\|\ \|_{\infty}$, on retrouve immédiatement le fait que :

$$\lim_{a} f = l \Leftrightarrow \forall k \in [1, n], \lim_{a} f_{k} = l_{k}$$
Où on a noté $l = (l_{1}, l_{2}, ..., l_{n})$ et $\forall x \in D, f(x) = (f_{1}(x), f_{2}(x), ..., f_{n}(x))$

B) Précisions sur les suites à valeurs dans \mathbb{R}^n .

Notons $\| \|$ une norme quelconque sur \mathbb{R}^n .

Etant donnée une suite $u=(u_k)_{k\in\mathbb{N}}$ à valeurs dans \mathbb{R}^n , nous noterons $u^{(1)},u^{(2)},...u^{(n)}$ les suites à valeurs réelles telles que $\forall k\in\mathbb{N},u_k=(u_k^{(1)},u_k^{(2)},...u_k^{(n)})$ (suites coordonnées)

Définition:

Soit u une suite à valeurs dans \mathbb{R}^n , et soit $l \in \mathbb{R}^n$. On dit que la suite u converge vers l lorsque pour tout voisinage V de l, il existe $N \in \mathbb{N}$ tel que $\forall k \geq N, u_k \in V$.

Cela revient à dire : u converge vers l lorsque $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall k \ge N, ||u_k - l|| < \varepsilon$. Remarque :

On vérifie aisément que la définition est encore en accord avec le cours sur les fonctions vectorielles dans le cas de limite en $+\infty$ d'une fonction de $D = \mathbb{N}$ dans \mathbb{R}^n .

Ainsi, les résultats suivants sont des cas particuliers de choses déjà dites :

- u tend vers l si et seulement si la suite réelle $(\|u_k l\|)_{k \in \mathbb{N}}$ tend vers 0.
- u tend vers $l = (l_1, l_2, ... l_n)$ si et seulement si chaque suite coordonnée $u^{(i)}$ tend vers l_i .
- Si u tend vers l et u' tend vers l', alors pour tout réel λ , $u + \lambda u$ ' tend vers $l + \lambda l$ '.

Autre remarque:

Dans le cas n=2, on voit aussi que la suite à valeurs dans \mathbb{R}^2 de terme général (x_k,y_k) converge vers l'élément (a,b) de \mathbb{R}^2 revient à dire que la suite complexe de terme général $x_k+i.y_k$ converge vers le complexe a+i.b.

On a aussi les résultats suivants :

- Toute suite convergente d'éléments de \mathbb{R}^n est bornée (reprendre exactement la démonstration du cas réel en remplaçant les valeurs absolues par des $\| \cdot \|$).
- De toute suite bornée d'éléments de \mathbb{R}^n , on peut extraire une suite convergente (Théorème de Bolzano-Weierstrass ; la démonstration faite dans le cas complexe se généralise aisément à \mathbb{R}^n).

Enfin, ajoutons cette caractérisation (dite séquentielle) des points adhérents à une partie :

Proposition:

Soit A une partie de \mathbb{R}^n , et soit $a \in \mathbb{R}^n$. Alors a est adhérent à A si et seulement si a est la limite d'une suite convergente de points de A.

Démonstration :

• Supposons que $a = \lim u$ où u est une suite de points de A.

Soit V un voisinage de a. Alors il existe $N \in \mathbb{N}$ tel que pour tout $k \ge N$, $u_k \in V$. Donc $V \cap A$ n'est pas vide, et comme c'et valable pour tout voisinage de a, ce point est donc adhérent à A.

• Inversement, supposons a adhérent à A.

Alors pour tout $k \in \mathbb{N}$, $B(a,2^{-k}) \cap A$ n'est pas vide, et donc on peut introduire $u_k \in A$ tel que $||u_k - a|| < 2^{-k}$, et la suite $u = (u_k)_{k \in \mathbb{N}}$ est une suite de points de A qui converge vers a.

Conséquence :

Une partie A de \mathbb{R}^n est un fermé si et seulement si toute suite convergente de points de A a sa limite dans A. (Résulte immédiatement du fait que A est fermé si et seulement si $A = \overline{A}$.

IV Limite et continuité pour les fonctions d'une partie de R^p dans Rⁿ.

A) Notations

On note $\| \|$ une norme quelconque sur \mathbb{R}^p , et on note aussi $\| \|$ une norme quelconque sur \mathbb{R}^n : c'est ce qui est à l'intérieur qui permet de distinguer.

Si n ou p vaut 1, on prendra de préférence sur \mathbb{R} la norme $| \cdot |$.

D désigne ici une partie non vide de \mathbb{R}^p , et f est une application de D dans \mathbb{R}^n . On désigne par $f_1, f_2, ..., f_n$ les applications coordonnées de f, c'est-à-dire les applications de D dans \mathbb{R} définies par $\forall x \in D, f(x) = (f_1(x), f_2(x), ..., f_n(x))$.

Enfin, si $x = (x_1, x_2, ... x_p)$ est un élément de D (qui est une partie de \mathbb{R}^p), on note $f(x) = f(x_1, x_2, ..., x_p)$, c'est-à-dire qu'on omet une paire de parenthèses (d'où le nom de « fonction de p variables »)

B) Limite

Dans tout ce sous paragraphe, a est un élément de \mathbb{R}^p adhérent à D. Définition :

Soit $l \in \mathbb{R}^n$. On dit que f tend vers l en a lorsque pour tout voisinage V de l (dans \mathbb{R}^n), il existe un voisinage U de a (dans \mathbb{R}^p) tel que $f(D \cap U) \subset V$.

Compte tenu de ce que sont les voisinages, cela revient à dire que f tend vers l en a si et seulement si :

$$\forall \varepsilon \in \mathbb{R}_{+}^{*}, \exists \alpha \in \mathbb{R}_{+}^{*}, \forall x \in D, (\|x - a\| < \alpha \Rightarrow \|f(x) - l\| < \varepsilon)$$
 (Et ce quel que soit le choix des normes)

On vérifie aisément les résultats suivants :

- Unicité de la limite éventuelle (séparation des voisinages)
- Si f a une limite en a, alors cette limite est dans l'adhérence de f(D).
- Si $a \in D$, et si f a une limite en a, alors cette limite est f(a).
- La notion de limite en a est locale :

Si U est un voisinage de a, alors f tend vers l en a si et seulement si f restreinte à $D \cap U$ tend vers l en a.

- f admet la limite l en a si et seulement si pour toute suite $(u_k)_{k \in \mathbb{N}}$ à valeurs dans D qui converge vers a, la suite $(f(u_k))_{k \in \mathbb{N}}$ converge vers l.
- Limites et opérations simples sur les fonctions définies sur *D* :

Si f tend vers l en a, et si g (à valeurs dans \mathbb{R}^n) tend vers l' en a, alors f+g tend vers l+l' en a.

Si f tend vers l en a et si λ est un réel, alors λf tend vers λl en a.

Plus généralement, si f tend vers l en a, et si φ (à valeurs réelles) tend vers λ en a, alors φ . f tend vers λl en a.

• On montre aussi facilement le théorème de composition de limites :

Soit f une fonction à valeurs dans \mathbb{R}^n définie sur D, soit Φ une fonction à valeur dans \mathbb{R}^m définie sur une partie de \mathbb{R}^n contenant f(D).

Si f tend vers l en a, et si Φ tend vers Λ en l, alors la fonction $\Phi \circ f$ tend vers Λ en a.

• Enfin, dans le cas n = 1, c'est-à-dire pour les fonctions à valeurs réelles, on a aussi les résultats classiques portant sur les inégalités :

Passage à la limite dans une inégalité : si f tend vers l en a, si g tend vers l' en a et si $f \le g$, alors $l \le l$ '.

Théorème des gendarmes :

Si f et h tendent vers l en a, et si $f \le g \le h$, alors g tend vers l en a.

Pour les démonstrations de <u>tous</u> ces résultats, il suffit de reprendre exactement les démonstrations vues dans le cas des fonctions réelles à variable réelle – chapitre « limite en un point » –, en changeant si nécessaire les intervalles en boules (en particulier pour le 5^{ème} point, et en retirant les cas où $a, l = \pm \infty$).

De plus, deux résultats importants permettent de se ramener aux fonctions à valeurs réelles :

- f tend vers l en a si et seulement si la fonction $x \mapsto ||f(x) l||$ tend vers 0 en a (immédiat)
- f tend vers $l = (l_1, l_2, ... l_n)$ en a si et seulement si pour chaque $k \in [1, n]$, la fonction coordonnée f_k tend vers l_k en a.

En effet

On prend sur \mathbb{R}^n la norme $\|\cdot\|_{\infty}$. On a les équivalences :

$$f$$
 tend vers $l = (l_1, l_2, ... l_n)$ en a

$$\Leftrightarrow \forall \varepsilon > 0, \exists \alpha > 0, \forall x \in D, (\|x - a\| < \alpha \Rightarrow \|f(x) - l\|_{\infty} < \varepsilon)$$

$$\Leftrightarrow \forall \varepsilon > 0, \exists \alpha > 0, \forall x \in D, (\|x - a\| < \alpha \Rightarrow \max_{k \in [[1, n]]} f_k(x) - l_k | < \varepsilon)$$

 $\Leftrightarrow \forall k \in [\![1,n]\!], \forall \varepsilon > 0, \exists \alpha > 0, \forall x \in D, (|\![x-a]\!] < \alpha \Rightarrow |\![f_k(x)-l_k]\!] < \varepsilon)$ $\Leftrightarrow \text{ pour chaque } k \in [\![1,n]\!], \text{ la fonction coordonnée } f_k \text{ tend vers } l_k \text{ en } a.$ D'où l'équivalence.

C) Continuité en un point

Définition:

Soit a un élément de D. On dit que f est continue en a lorsque f admet une limite en a (cette limite étant alors f(a))

Par simple traduction, dans le cas $a \in D$, des résultats sur l'éventuelle limite en a, on obtient :

- f est continue en a si et seulement si pour tout suite $(u_k)_{k \in \mathbb{N}}$ à valeurs dans D qui converge vers a, la suite $(f(u_k))_{k \in \mathbb{N}}$ converge vers f(a).
- Continuité et opérations simples sur les fonctions définies sur *D* :

Si f et g sont continues en a, alors f + g est continue en a.

Si f est continue en a, et si φ (à valeurs réelles) est continue en a, alors φf est continue en a.

• Et le théorème de composition de limites donne :

Soit f une fonction à valeurs dans \mathbb{R}^n définie sur D, soit Φ une fonction à valeur dans \mathbb{R}^m définie sur une partie de \mathbb{R}^n contenant f(D).

Si f est continue en a, et si Φ est continue en f(a), alors la fonction $\Phi \circ f$ est continue en a.

Enfin, pour se ramener aux fonctions réelles :

- f est continue en a si et seulement si la fonction réelle $x \mapsto ||f(x) f(a)||$ tend vers 0 en a.
- f est continue en a si et seulement si les fonctions coordonnées sont continues en a.

D) Fonctions continues

Définition:

On dit que f est continue (sur D) lorsque f est continue en tout point a de D. Les résultats précédents donnent :

• Opérations sur les fonctions continues sur *D* :

Si f et g sont continues, alors f + g est continue.

Si f est continue, et si φ (à valeurs réelles) est continue, alors φf est continue.

• Composition :

Si f est une fonction continue à valeurs dans \mathbb{R}^n définie sur D, si Φ est une fonction continue à valeur dans \mathbb{R}^m définie sur une partie de \mathbb{R}^n contenant f(D), alors $\Phi \circ f$ est continue.

• Enfin, f est continue si et seulement si les fonctions coordonnées sont continues

Ainsi, on remarque que la nouveauté et la difficulté vient non pas du fait que les fonctions considérées sont à valeurs dans \mathbb{R}^n , mais dans le fait que leur ensemble de départ est une partie de \mathbb{R}^p .

Exemples:

- L'application identité sur \mathbb{R}^p , les applications constantes sur \mathbb{R}^p sont continues : évident
- La norme est continue, c'est-à-dire que l'application de \mathbb{R}^p dans \mathbb{R} qui à x associe ||x|| est continue (quelle que soit la norme)

En effet, pour tous x, x' de \mathbb{R}^p , on a $||x|| - ||x||| \le ||x - x|||$; la continuité en tout x de \mathbb{R}^p en résulte immédiatement, avec $\alpha = \varepsilon$: $||x - x||| < \alpha \Rightarrow ||x|| - ||x||| < \varepsilon$.

- Pour chaque k entre 1 et p, la k-ième projection canonique de \mathbb{R}^p sur \mathbb{R} , c'està-dire l'application p_k de \mathbb{R}^p dans \mathbb{R} qui à $(x_1, x_2, ... x_p)$ associe x est continue.

En effet, pour tous x, x' de \mathbb{R}^p , on a : $|p_k(x) - p_k(x')| = |x_k - x'_k| \le ||x - x'||_{\infty}$

La continuité de p_k en tout x de \mathbb{R}^p en résulte immédiatement (par le théorème des gendarmes, vu le théorème précédent)

- Ainsi, compte tenu de cela et des résultats portant sur les opérations sur les fonctions continues, la continuité sur \mathbb{R}^3 d'une application du genre $(x, y, z) \mapsto \frac{3x + \sin(xy + z^3)}{\sqrt{1 + y^2 z^2}}$ est évidente.

En détails :

L'application $(x, y, z) \mapsto z^3$ est continue (sur \mathbb{R}^3) et à valeurs dans \mathbb{R} ;

L'application $\varphi:(x,y,z)\mapsto x$ est continue et à valeurs dans \mathbb{R} , et l'application $f:(x,y,z)\mapsto y$ est aussi continue et à valeurs dans \mathbb{R} , donc $\varphi.f$ est continue (sur \mathbb{R}^3) et à valeurs dans \mathbb{R} .

Donc $(x, y, z) \mapsto xy + z^3$ est continue et à valeurs dans \mathbb{R} .

Or, l'application $u \mapsto \sin u$ est continue sur \mathbb{R} , et à valeurs dans \mathbb{R} . Donc $(x, y, z) \mapsto \sin(xy + z^3)$ est continue (sur \mathbb{R}^3) et à valeurs dans \mathbb{R} .

De plus, l'application $(x, y, z) \mapsto 3x$ est continue et à valeurs dans \mathbb{R} .

Il en résulte que $\psi:(x,y,z)\mapsto 3x+\sin(xy+z^3)$ est continue et à valeurs dans \mathbb{R} .

D'autre part, l'application $u \mapsto \frac{1}{\sqrt{1+u^2}}$ est continue sur \mathbb{R} , et l'application

 $(x, y, z) \mapsto yz$ est continue sur \mathbb{R}^3 et à valeurs dans \mathbb{R} . Donc $g:(x, y, z) \mapsto \frac{1}{\sqrt{1 + y^2 z^2}}$ est continue sur \mathbb{R}^3 .

Donc ψ .g est continue sur \mathbb{R}^3 .

- Soit f la fonction définie sur \mathbb{R}^2 par $f(x,y) = \begin{cases} 0 & \text{si } (x,y) = (0,0) \\ \frac{xy}{\sqrt{x^2 + y^2}} & \text{sinon} \end{cases}$

La continuité de f en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$ est encore évidente.

En (0,0): pour tout $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, on a:

$$|f(x,y)| = \frac{|x||y|}{\sqrt{x^2 + y^2}} \le \frac{\sqrt{x^2 + y^2}\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} \le \sqrt{x^2 + y^2}$$

Et l'inégalité est encore valable pour (x, y) = (0,0).

De plus,
$$(x, y) \mapsto \sqrt{x^2 + y^2}$$
 est continue en $(0,0)$, donc $\sqrt{x^2 + y^2} \xrightarrow{(x,y) \mapsto (0,0)} 0$
Donc, d'après le théorème des gendarmes, $|f(x,y)| \xrightarrow{(x,y) \mapsto (0,0)} 0 = f(0,0)$.

Ajoutons maintenant deux résultats importants sur les fonctions continues (on travaille toujours sur les fonctions d'une partie de \mathbb{R}^p dans \mathbb{R}^n :

Théorème (admis, vu en spé):

L'image d'une partie fermée et bornée par une fonction continue est une partie fermée et bornée.

Conséquence:

Toute fonction <u>réelle</u> f continue sur une partie (non vide) fermée et bornée de \mathbb{R}^p est bornée et atteint ses bornes.

En effet, les bornes inférieures et supérieures d'une partie non vide et bornée de \mathbb{R} sont dans l'adhérence de cette partie, donc les parties non vides fermées et bornées de \mathbb{R} contiennent leurs bornes inférieures et supérieures.

Théorème:

L'image réciproque d'un ouvert par une fonction continue de \mathbb{R}^p dans \mathbb{R}^n est un ouvert. L'image réciproque d'un fermé par une fonction continue de \mathbb{R}^p dans \mathbb{R}^n est un fermé.

Démonstration:

Soit $f: \mathbb{R}^p \to \mathbb{R}^n$, continue.

- Soit Ω un ouvert de \mathbb{R}^n . Soit $a \in f^{-1}(\Omega)$. Alors $f(a) \in \Omega$, et comme Ω est ouvert, il constitue un voisinage de f(a) dans \mathbb{R}^n . Comme f est continue en a, on peut donc introduire un voisinage U de a dans \mathbb{R}^p tel que $f(U) \subset \Omega$. Mais alors $f^{-1}(\Omega)$ contient U, et donc est un voisinage de a. Comme c'est valable pour tout $a \in f^{-1}(\Omega)$, $f^{-1}(\Omega)$ est bien un ouvert.
- Soit F un fermé de \mathbb{R}^n . Soit Ω le complémentaire de F dans \mathbb{R}^n . Ω est ouvert, donc, selon le résultat précédent, $f^{-1}(\Omega)$ est ouvert. Or, de façon purement logique, $f^{-1}(F)$ est le complémentaire de $f^{-1}(\Omega)$ dans \mathbb{R}^p : $C = (f^{-1}(\Omega)) = \left\{ x \in \mathbb{R}^p \mid x \notin f^{-1}(\Omega) \right\} = \left\{ x \in \mathbb{R}^p \mid f(x) \notin \Omega \right\}$

$$C_{\mathbb{R}^{p}}(f^{-1}(\Omega)) = \{x \in \mathbb{R}^{p}, x \notin f^{-1}(\Omega)\} = \{x \in \mathbb{R}^{p}, f(x) \notin \Omega\}$$
$$= \{x \in \mathbb{R}^{p}, f(x) \in F\} = \{x \in \mathbb{R}^{p}, x \in f^{-1}(F)\}$$
$$= f^{-1}(F)$$

C'est donc le complémentaire d'un ouvert, c'est-à-dire d'un fermé.

Conséquence:

Si f est une fonction réelle continue sur \mathbb{R}^p , alors pour tout réel α , l'ensemble des $(x_1, x_2, ... x_p)$ de \mathbb{R}^p tels que $f(x_1, x_2, ... x_p) > \alpha$ est un ouvert de \mathbb{R}^p et l'ensemble des $(x_1, x_2, ... x_p)$ de \mathbb{R}^p tels que $f(x_1, x_2, ... x_p) \ge \alpha$ est un fermé de \mathbb{R}^p .

En effet, $]\alpha,+\infty[$ et $[\alpha,+\infty[$ sont respectivement un ouvert et un fermé de \mathbb{R} .

E) Applications partielles et continuité

Soit toujours $f: D \to \mathbb{R}^n$ et soit $a = (a_1, a_2, ..., a_n) \in D$.

Pour chaque entier k entre 1 et p, on note $D_{a,k}$ l'ensemble des réels t tels que $(a_1,a_2,...,\underset{\substack{k\text{-ième} \\ \text{place}}}{t},...a_p) \in D$, et $\varphi_{a,k}$ l'application de $D_{a,k}$ dans \mathbb{R}^n qui à t associe $f(a_1,a_2,...,\underset{\substack{k\text{-ième} \\ \text{place}}}{t},...a_p)$. $\varphi_{a,k}$ s'appelle la k-ième application partielle associée à f en a.

Définition:

Si l'application $\varphi_{a,k}$ est continue en a_k , on dit que f est, au point a, continue par rapport à la k-ième variable.

Proposition:

Si f est continue en a, alors f est, en a, continue par rapport à chaque variable.

Démonstration:

On peut écrire que $\varphi_{a,k} = f \circ \delta_{a,k}$ où $\delta_{a,k}$ est l'application qui à t associe $(a_1,a_2,...,t,...a_p)$. Or, cette application est continue, donc on obtient le résultat par composition : $\delta_{a,k}$ est continue en a_k , donc si f est continue en $a = \delta_{a,k}(a_k)$, alors $\varphi_{a,k} = f \circ \delta_{a,k}$ est continue en a_k .

Attention : la réciproque de la proposition est fausse. Cela signifie que l'étude de la continuité d'une fonction de plusieurs variables ne se ramène pas à l'étude de la continuité de fonctions d'une variable.

Exemple: Soit f la fonction définie sur
$$\mathbb{R}^2$$
 par $f(x,y) = \begin{cases} 0 & \text{si } (x,y) = (0,0) \\ \frac{xy}{x^2 + y^2} & \text{sinon} \end{cases}$

Alors les applications partielles en (0,0) sont les applications $x \mapsto f(x,0)$ et $y \mapsto f(0,y)$, qui sont nulles, donc f est, en (0,0), continue par rapport à chaque variable. Mais si $x \neq 0$, alors $f(x,x) = \frac{1}{2}$, et il en résulte alors que f n'est pas continue en (0,0):

Comme f(0,0) = 0, si f était continue en (0,0), elle tendrait vers 0 en (0,0). Mais si on prend $\varepsilon < \frac{1}{2}$, on ne trouvera jamais $\alpha > 0$ tel que $||(x,y)||_{\infty} < \alpha \Rightarrow |f(x,y)| < \varepsilon$ (l'implication sera toujours fausse avec $(x,y) = (\frac{\alpha}{2},\frac{\alpha}{2})$).

Autre manière : comme $x \mapsto (x, x)$ est évidemment continue, si f était continue en (0,0), alors d'après le théorème de composition l'application $x \mapsto f(x,x)$ serait continue en 0, ce qui n'est évidemment pas le cas (nulle en 0 et constante non nulle sur \mathbb{R}^*)