# 1 Graph Algorithms

# 1.1 Graphen

## • (Endlicher) gerichteter Graph

- (endlicher) gerichteter Graph G = (V, E)
- besteht aus (endlicher) Knotenmenge V
- besteht aus (endlicher) Kantenmenge  $E \subseteq VxV$
- $(u,v) \in E$ : Kanten von Knoten u zu v
- Kanten haben eine Richtung

## • Ungerichtete Graphen

- (endlicher) ungerichteter Graph G = (V, E)
- besteht aus (endlicher) Knotenmenge V
- besteht aus (endlicher) Kantenmenge  $E \subseteq VxV$ , sodass  $(u,v) \in E \Leftrightarrow (v,u) \in E$
- Kanten haben keine Richtung

#### Pfadfinder

- Knoten v ist von Knoten u erreichbar, wenn es wenn es von u aus einen Pfad über n Knoten nach v
- u ist immer von u per leerem Pfad (k=1) erreichbar
- Länge des Pfades = k 1 = Anzahl Kanten

#### · Zusammenhängende Graphen

- Ungerichtet: Zusammenhängend wenn jeder Knoten von jedem anderen Knoten aus erreichbar ist
- Gerichtet: **Stark** zusammenhängend, wenn obiges auch gemäß Kantenrichtung gilt

## • Bäume und Subgraphen

Graph G ist ein Baum, wenn V leer ist oder wenn es einen Knoten in V gibt, von dem aus jeder andere Knoten eindeutig erreichbar ist (Wurzel). Graph G' = (V', E') ist Subgraph von G = (V, E), wenn  $V' \subseteq V$  und  $E' \subseteq E$ .

#### · Darstellung von Graphen

- Als Adjazentmatrix (1, wenn Kante von i zu j bzw. 0, wenn keine Kante)
- Bei ungerichteten Graphen ist Matrix spiegelsymmetrisch zur Hauptdiagonalen
- Speicherbedarf:  $\Theta(|V^2|)$



- Auch darstellbar als Array mit verketteten Listen
- Speicherbedarf:  $\Theta(|V| + |E|)$

## · Gewichtete Graphen

- gewichteter gerichteter oder ungerichteter Graph G = (V, E)
- besitzt zusätzlich Funktion  $w:E \to R$
- Angabe des Gewichts einer Kante u nach v durch w((u,v))

## 1.2 Breadth-First Search (BFS)

#### Idee

- Besuche zuerst alle unmittelbaren Nachbarn, dann deren Nachbarn, usw.
- Anwendung: Webcrawling, Garbage Collection,...

## Algorithmus

```
BFS(G,s) //G=(V,E) s = source node in V
  BFS(G,s) //G=(V,E) s = source node in V
  FOREACH u in V-{s} DO
                               // Weiß = noch nicht besucht
      u.color = WHITE;
      u.dist = +\infty
                               // Setzen der Distanzen auf Unendlich
                               // Setzen der Vorgänger auf nil
      u.pred = nil;
  s.color = GRAY;
                               // Anfang bei Startnode
  s.dist = 0;
  s.pred = nil;
newQueue(Q);
enqueue(Q,s);
  WHILE !isEmpty(Q) DO
      u = dequeue(Q);
13
      FOREACH v in adj(G,u) DO
14
          IF v.color == WHITE THEN
               v.color == GRAY;
               v.dist = u.dist+1;
17
               v.pred = u;
18
               enqueue(Q, v);
      u.color = BLACK;
                                    // Knoten abgearbeitet
```

## Farben:

- \* WHITE: Knoten noch nicht besucht
- \* GRAY: Knoten in Queue für nächsten Schritt
- \* BLACK: Knoten ist fertig
- Laufzeit: O(|V| + |E|)
- Nach Algorithmus steht in v die kürzeste Distanz von s nach v

## · Kürzeste Pfade ausgeben

```
print-path(G,s,v) // Assumes that BFS(G,s) has already been executed

IF v == s THEN
    print s;

ELSE
    IF v.pred == nil THEN
        print "no path from s to v"

ELSE
    print-path(G,s,v.pred);
    print v;
```

#### · Abgeleiteter BFS-Baum



- Subgraph  $G^s_{pred} = (V^s_{pred}, E^s_{pred})$  von G:
  - \*  $V^s_{pred} = \{v \in V | v.pred \neq nil\} \cup \{s\}$
  - \*  $E^s_{pred} = \{(v.pred,v)|v \in V^s_{pred} \{s\}\}$
- $\,G^s_{pred}\,$ enthält alle von s aus erreichbaren Knoten in G
- Außerdem handelt es sich hier nur um kürzeste Pfade

## 1.3 Depth-First Search(DFS)

#### Idee

- Besuche zuerst alle noch nicht besuchten Nachfolgeknoten
- "Laufe so weit wie möglich weg vom aktuellen Knoten"
- Algorithmus

```
time = time + 1;
u.disc = time;  // discovery time
u.color = GRAY;
FOREACH v in adj(G,u) D0
IF v.color == WHITE THEN
v.pred = u;
DFS-VISIT(G,v);
u.color = BLACK;
time = time + 1;
u.finish = time;  // finish time
```

## • DFS-Wald = Menge von DFS-Bäumen

- Subgraph  $G_{pred} = (V, E_{pred})$  von G
- besteht aus  $E_{pred} = (v.pred, v) | v \in V, v.pred \neq nil$
- DFS-Baum gibt nicht unbedingt den kürzesten Weg wieder



# Kantenarten

- Baumkanten: alle Kanten in  $G_{pred}$ 

- Vorwärtskanten: alle Kanten in G zu Nachkommen in  $G_{pred}$ , die keine Baumkante sind

– Rückwärtskanten: alle Kanten in G zu Vorfahren in  $G_{pred}$ , die keine Baumkante sind (inkl. Schleifen)

- Kreuzkanten: alle anderen Kanten in *G* 

#### Anwendungen DFS

- Job Scheduling (Job X muss vor Job Y beendet sein)
- Topologisches Sortieren
  - \* nur für dag (directed acyclic graph)
  - \* Kanten immer nur nach rechts
  - \* Sortierung aber nicht eindeutig



```
TOPOLOGICAL-SORT(G)

1  new LinkedList(L);
2  run DFS(G) but, each time a node is finished, insert in front of L
3  return L.head;
```

## · Starke Zusammenhangskomponenten

– Knotenmenge  $C\subseteq V$ , so dass es zwischen zwei Knoten  $u,v\in C$  einen Pfad von u nach v gibt und es keine Menge  $D\subseteq V$  mit  $C\subsetneq D$  gibt, für die obiges auch gilt.



#### Eigenschaften:

- \* Verschiedene SCC's sind disjunkt
- \* Zwei SCC's sind nur in eine Richtung verbunden

## - Algorithmus:

- \* DFS zweimal laufen lassen Einmal auf Graph G Einmal auf Graph  $G^T=(V,E^T)$  (transponiert)
- \* Dadurch bleiben die SCC's gleich, die Kanten drehen sich aber jeweils um
- \* Code:

```
\begin{array}{c} {\rm SCC(G)} \\ \\ {\rm 1} \\ {\rm run\ DFS(G)} \\ \\ {\rm 2} \\ {\rm compute\ } G^T \\ \\ {\rm 3} \\ {\rm run\ DFS}(G^T) \ {\rm but\ visit\ vertices\ in\ main\ loop} \\ \\ {\rm 4} \\ {\rm 5} \\ {\rm output\ each\ DFS\ tree\ from\ above\ as\ one\ SCC} \end{array}
```

## 1.4 Minimale Spannbäume

#### Definition

- Verbindung aller Knoten miteinander
- Minimaler Spannbaum ⇒ Minimales Gewicht

## • Allgemeiner Algorithmus

```
genericMST(G,w)

1 A = \emptyset
2 WHILE A does not form a spanning tree for G DO
3 find safe edge \{u,v\} for A
4 A = A \cup \{\{u,v\}\}
5 return A
```

# 

#### Terminologie:

- \* Schnitt (S, V-S) partioniert Knoten in zwei Mengen
- \* {u,v} überbrückt Schnitt, wenn  $u \in S$  und  $v \in V S$
- \* Schnitt respektiert  $A\subseteq E$ , wenn keine Kante  $\{u,v\}$  aus A den Schnitt überbrückt
- \* {u,v} leichte Kante für (S, V-S), wenn w({u,v}) minimal für alle den Schnitt überbrückenden Kanten
- \*  $\{u,v\}$  sicher für A, wenn  $A \cup \{\{u,v\}\}$  Teilmenge eines MST

#### · Algorithmus von Kruskal

- Lässt parallel mehrere Unterbäume eines MST wachsen
- In Worten: Suchen der "kleinsten" Kante und Zusammenfügen von Mengen, falls Mengen ungleich sind
- Laufzeit:  $O(|E| \cdot log|E|)$

```
MST-Kruskal(G,w)

1  A = Ø
2  FOREACH v in V DO
3  set(v) = {v};  // Menge mit sich selbst
4  Sort edges according to weight in nondecreasing order
5  FOREACH {u,v} in E according to order DO
6   IF set(u) != set(v) THEN  // Mengen noch nicht verbunden
7   A = A \cup {{u,v}};
8   UNION(G,u,v);  // Zusammenführen der Mengen aller Knoten aus den Sets
9  return A;
```

## Algorithmus von Prim

- Konstruiert einen MST Knoten für Knoten
- Fügt immer leichte Kante zu zusammenhängender Menge hinzu
- Laufzeit:  $O(|E| + |V| \cdot log|V|)$

## 1.5 Kürzeste Wege in (gerichteten) Graphen

#### Definition

- SSSP Single-Source Shortest Path
- Von Quelle  $\boldsymbol{s}$  ausgehend die kürzesten Pfad zu allen anderen Knoten
- Kürzester Pfad: Pfad mit minimalem Gesamtgewicht von einem zum anderen Knoten
- BFS findet nur minimale Kantenwege (nicht Gewichtswege)
- MST minimiert das Gesamtgewicht des Baumes (nicht zu einzelnen Kanten)
- Negative Kantengewichte sind erlaubt, aber keine Zyklen mit negativem Gesamtgewicht

## • Gemeinsame Idee für Algorithmen - Relax

- Verringere aktuelle Distanz von Knoten v, wenn durch Kante (u, v) kürzer erreichbar



```
relax(G,u,v,w)

IF v.dist > u.dist + w((u,v)) THEN

v.dist = u.dist + w((u,v));

v.pred = u;
```

## • Bellman-Ford-Algorithmus

- Laufzeit:  $\Theta(|E| \cdot |V|)$ 

```
Bellman-Ford-SSSP(G,s,w)

initSSSP(G,s,w);
FOR i = 1 TO |V|-1 DO
FOREACH (u,v) in E DO
relax(G,u,v,w);
FOREACH (u,v) in E DO // Prüfung ob negativer Zyklus
IF v.dist > u.dist+w((u,v)) THEN
return false;
return true;
```

```
initSSSP(G,s,w)

1  FOREACH v in V D0
2     v.dist = ∞;
3     v.pred = nil;
4  s.dist = 0;
```

## TopoSort f ür dag

- Erhalten des kürzesten Pfades durch das topologische Sortieren
- Laufzeit:  $\Theta(|E| + |V|)$

```
TopoSort-SSSP(G,s,w) // G muss dag sein

initSSSP(G,s,w);
execute topological sorting
FOREACH u in V in topological order D0
FOREACH v in adj(u) D0
relax(G,u,v,w);
```

## • Dijkstra-Algorithmus

- Voraussetzung: Keine negativen Kantengewichte
- Laufzeit:  $\Theta(|V| \cdot log|V| + |E|)$

```
Dijkstra-SSSP(G,s,w)

initSSSP(G,s,w);
Q = V;
WHILE !isEmpty(Q) D0
u = EXTRACT-MIN(Q); // smallest distance
FOREACH v in adj(u) D0
relax(G,u,v,w);
```



\* Beispiel für Problem mit negativen Kantengewisten bei Dijkstra: Dijkstra würde Pfad 1-2-3 liefern, da das Kantengewicht 4 größer als der andere Pfad ist.

## 1.6 Maximaler Fluss in Graphen

#### Idee



- \* Kanten haben Flusswert und maximale Kapazität
- \* Jeder Knoten (außer s und t) haben den gleichen eingehenden und ausgehenden Fluss
- \* Ziel: Finde maximalen Fluss von s nach t
- \* s: Source/Ouelle
- \* t: Target/Senke

#### - Flussnetzwerk:

Ein Flussnetzwerk ist ein gewichteter, gerichteter Graph G=(V,E) mit Kapazität c, so dass  $c(u,v)\geq 0$  für  $(u,v)\in E$  und c(u,v)=0 für  $(u,v)\notin E$ , mit zwei Knoten  $s,t\in V$ , so dass jeder Knoten von s aus erreichbar ist und t von jedem Knoten aus erreichbar ist. Damit gilt  $|E|\geq |V|-1$ .

#### - Fluss:

Ein Fluss  $f: VxV \to \mathbb{R}$  für ein Flussnetzwerk G = (V, E) mit Kapazität c und Quelle s und Senke t erfüllt  $0 \le f(u,v) \le c(u,v)$  für alle  $u,v \in V$ , sowie für alle  $u \in V - \{s,t\}$ :  $\sum_{v \in V} f(u,v) = \sum_{v \in V} f(v,u)$  (ausgehend = eingehend)

#### Wert eines Flusses

Der Wert |f| eines Flusses  $f:VxV\to\mathbb{R}$  für ein Flussnetzwerk G ist:  $|f|=\sum_{v\in V}f(s,v)=\sum_{v\in V}f(v,s)$ 

#### Transformationen



## Restkapazitätsgraph

- Wird für Ford-Fulkerson benötigt
- Restkapazität  $c_f(u, v)$ :

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{falls } (u,v) \in E \\ f(v,u) & \text{falls } (v,u) \in E \\ 0 & \text{sonst} \end{cases}$$

–  $G_f=(V,E_f)$  mit  $E_f=\{(u,v)\in VxV|c_f(u,v)>0\}$ 



- Suche eines Pfades von s nach t und Erhöhung aller Flüsse um niedrigsten möglichen Wert auf Pfad

#### · Ford-Fulkerson-Algorithmus

- Idee: Suche Pfad von s nach t, der noch **erweiterbar** ist
- Suche dieses Pfades im Restkapazitätsgraphen  $\mathcal{G}_f$  (mögliche Zu- und Abflüsse)
- Code:

```
Ford-Fulkerson(G,s,t,c)

FOREACH e in E do e.flow = 0;
WHILE there is path p from s to t in G_{flow} DO

c_{flow}(p) = \min \{c_{flow}(u,v) : (u,v) \text{ in p}\}
FOREACH e in p DO

IF e in E THEN
e.flow = e.flow + c_{flow}(p);
ELSE
e.flow = e.flow - c_{flow}(p);
```

- Die Pfadsuche erfolgt z.B. per BFS oder DFS
- Laufzeit:  $O(|E| \cdot u \cdot |f^*|)$   $(O(|V| \cdot |E|^2)$  Mit Verbesserung nach Edmonds-Karp) (wobei  $f^*$  maximaler Fluss und Fluss um bis zu  $\frac{1}{u}$  pro Iteration wächst)

# - Beispiel:

