Aufgabe 1 (Frühjahr 2015). Ein Ring R mit Eins heißt idempotent, wenn $a \cdot a = a$ für alle $a \in R$ gilt Beweisen Sie:

- (a) -1 = 1 in R. (Haben wir bereits besprochen.)
- (b) Jeder idempotente Ring ist kommutativ. (Haben wir bereits besprochen.)
- (c) Jeder idempotente Integritätsbereich is isomorph zu F₂, dem Körper mit zwei Elementen.

Aufgabe 2 (Frühjahr 2013). Beweisen Sie, daß jeder endliche Integritätsbereich ein Körper ist. Hinweis: Man betrachte eine durch Multiplikation gegebene Abbildung.

Aufgabe 3 (Frühjahr 1978). Sei A ein Integritätsbereich, der eine endlichdimensionale \mathbb{R} -Algebra mit Dimension $n \geq 2$ ist. Man identifiziere \mathbb{R} mit dem Untervektorraum $\mathbb{R} \cdot 1_A = \langle 1_A \rangle \subset A$.

- (a) Man zeige, daß jedes Element $0 \neq a \in A$ invertierbar ist.
- (b) Sei $a \in A \setminus \mathbb{R}$. Man zeige, daß die Familie $\{1_A, a\}$ linear unabhängig ist, die Familie $\{1_A, a, a^2\}$ aber linear abhängig.
- (c) Man schließe daraus, daß $i_A \in \langle 1_A, a \rangle$ existiert mit $i_A^2 = -1.$
- (d) Man zeige, daß dim(A) = 2 und $A \cong \mathbb{C}$.

Aufgabe 4 (??). Sei A ein Integritätsring, der nur eine endliche Anzahl von Idealen hat. Zeigen Sie, daß A bereits ein Körper ist.

Aufgabe 5 (Herbst 1998). Betrachten Sie das Gitter

$$R = \left\{ n + m \frac{1 + \sqrt{-7}}{2} \; ; \; n, m \in \mathbb{Z} \right\}$$

n der komplexen Ebene \mathbb{C} .

- (a) Zeigen Sie, daß R ein Ring ist.
- (b) Sei

$$d(z,R) = \min\{|z-r| \; ; \; r \in R\}$$

der Abstand einer komplexen Zahl vom Gitter R. Bestimmen Sie das Maximum dieser Abstände, also

$$d = \max_{z \in \mathbb{C}} d(z, R),$$

und zeigen Sie d < 1.

(c) Folgern Sie aus (b) daß R ein euklidischer Ring ist, wobei die euklidische Wertfunktion auf R der Absolutbetrag der komplexen Zahlen sei.

Aufgabe 6 (Herbst 1976). Man zeige daß der Ring $\mathbb{R}[X,Y]$ der reellen Polynome in zwei Veränderlichen kein Hauptidealring ist.