

CE7453: Numerical Algorithms

(AY2021/2022 S2)

Instructor

Professor Jianmin ZHENG

Office: N4-02c-82

- Email: ASJMZheng@ntu.edu.sg

- Tel: 6790 6257

Research areas

Computer graphics, geometric modeling, animation, AR/VR, 3D printing, visualization, digital media processing, AI for design

Co-inventor of T-spline technology, ...

Outline

- §1. Organization information
- §2. Course description
- §3. Syllabus

Course material

- Textbook: Numerical Analysis
- Course slides
- Course notes
- Complimentary research papers
- Your own notes

Course homepage (→NTULearn)
 https://ntulearn.ntu.edu.sg/

Course components

- Lectures
- Exercises (Tutorials)
- Coursework (2 assignments)

Organizational details

- Target students
 - Research students (PhD or M.Eng)
- Prerequisites
 - CZ1011 & CZ1012 or equivalent
- Where and when
 - LT11, Mon 2:30pm 5:20pm
- How to pass
 - 50%: coursework (2 assignments)
 - 50%: final written exam (3 hours, closed-book)
 on 25 April 2022, 9am-12noon

Outline

- §1. Organization information
- §2. Course description
- §3. Syllabus

Background & motivation

 Many application problems are formulated into mathematical models, which are then solved numerically to find the solution.

E.g. 3D registration, TrueType fonts, GPS, motion

planning, JPEG compression

- The success of solving the problems is closely related to how to design appropriate numerical algorithms.
 - It is quite often that some "small" or "simple" strategies make difference in applications.

A simple example

- Evaluate $P(x) = 2x^3 + 4x^2 5x + 3$
 - Method 1: 6 "*", 3 "+/-"

$$P(x) = 2 * x * x * x + 4 * x * x - 5 * x + 3$$

– Method 2: 5 "*", 3 "+/-"

$$P(x) = 2 * x * (x^{2}) + 4 * x * (x) - 5 * x + 3$$

— Method 3:
3 "*", 3 "+/-"

$$P(x) = [(2 * x + 4) * x - 5] * x + 3$$

A CG example

M.Desbrun, M.Meyer, P.Schroeder, A.Barr:

"Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow" SIGGRAPH 1999. http://www.multires.caltech.edu/pubs/ImplicitFairing.pdf

Mesh fairing using diffusion process

$$\frac{\partial X}{\partial t} = \lambda L(X)$$

where λ is a diffusion parameter;

X is the set of vertices of a mesh,

L(X) is a Laplacian of X, which can be represented as a linear combination of X, i.e., LX.

A CG example (cont)

– Explicit Euler scheme:

$$\frac{X^{n+1} - X^n}{\Delta t} = \lambda L X^n \qquad \Longrightarrow \qquad X^{n+1} = (I + \lambda \Delta t L) X^n$$

- Implicit integration:

$$\frac{X^{n+1} - X^n}{\Delta t} = \lambda L X^{n+1} \quad \Longrightarrow \quad (I - \lambda \Delta t L) X^{n+1} = X^n$$

Original mesh

10 explicit integrations with $\lambda \Delta t = 1$.

1 implicit integration with $\lambda \Delta t = 10$.

The course is about

- key numerical algorithms that we should really want to know about
 - may provide clear answers to some real-world problems
- performance of the key numerical algorithms
- basic factors that should be considered when we design and analyze numerical algorithms
- some applications

Basic principles

- Convergence: whether and how the approximate solution converges to the correct one
- Complexity: a measure of the resources used in the algorithms
- Conditioning: sensitivity to error magnification
- Compression: realization of data in a shorter way
- Orthogonality: some ways to achieve efficiency & effectiveness

Goals of the course

- To explore algorithms for solving science and engineering problems
- To locate algorithms in a landscape of some potent & far-reaching principles

- To bring the basic mathematical concepts to life
- To learn how to leverage basic mathematics into great payoff in computing / engineering design and applications

Features of the course

- Learning fundamental numerical algorithms
- Understanding basic mathematical background and skills behinds these algorithms
- Learning how to implement the methods and experience the practical aspects
- Exploring real-world problems as examples
- Emphasizing the insights of designing numerical algorithms

Relation with relevant subjects

Outline

- §1. Organization information
- §2. Course description
- §3. Syllabus

Syllabus

- Newton's method
 - Root finding
- Linear systems
- Interpolation & approximation
 - Bezier curves
 - B-splines
 - TrueType fonts
- Differentiation and integration
 - Motion control

Syllabus (cont)

- Least squares
 - GPS location estimation
- Eigenanalysis
 - Google's PageRank
- Fourier transformations
- Case study: ICP for 3D data matching

Tentative schedule

Week #	Time/Date	Topics
Week 1	14:30—17:20, Mon, 10 Jan 2022	Module 0: Introduction Module 1: Root Finding
Week 2	14:30—17:20, Mon, 17 Jan 2022	Module 2: Linear Systems
Week 3	14:30—17:20, Mon, 24 Jan 2022	Review
Week 4	14:30—17:20, Mon, 31 Jan 2022	Module 3: Bezier Techniques (TrueType Fonts)
Week 5	14:30—17:20, Mon, 07 Feb 2022	Module 4: B-spline Techniques
Week 6	14:30—17:20, Mon, 14 Feb 2022	Module 5: Interpolation
Week 7	14:30—17:20, Mon, 21 Feb 2022	Review

Tentative schedule (cont)

Week #	Time/Date	Topics
Week 8	14:30—17:20, Mon, 07 Mar 2022	Module 6: Differentiation and Integration (Motion Control)
Week 9	14:30—17:20, Mon, 14 Mar 2022	Module 7: Least Squares (GPS location estimation)
Week 10	14:30—17:20, Mon, 21 Mar 2022	Module 8: Eigenanalysis (Google PageRank)
Week 11	14:30—17:20, Mon, 28 Mar 2022	Module 9: Fourier Transform (JPEG compression)
Week 12	14:30—17:20, Mon, 04 Apr 2022	Module 10: 3D Data Matching
Week 13	14:30—17:20, Mon, 11 Apr 2022	Final revision

End

