(14)

SPANNING SET: Let V be a vector space over iR. Vectors v_1, v_2, \dots, v_n in V are said to span V or to form a spanning set of V if every v in v is a linear combination of the vectors v_1, v_2, \dots, v_n , that is, if there exist scalars $\alpha_1, \alpha_2, \dots, \alpha_n$ in R such that $v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$

Examples: Let us take $V = \mathbb{R}^3$.

CLAIM: The vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ form a spanning set of \mathbb{R}^3 .

Take any vector $w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \in \mathbb{R}^3$, then

$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = v_1 \begin{pmatrix} \frac{1}{0} \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + v_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

CLAIM: The vectors $\omega_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \omega_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\omega_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ form a spanning set of \mathbb{R} .

$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \lambda_1 = v_3 \\
\lambda_2 = v_2 - v_3 \\
\lambda_3 = v_1 - v_3 - (v_2 - v_3)$$

CLAIM: The vectors $\binom{1}{1}$, $\binom{1}{0}$, $\binom{1}{0}$ $\binom{1}{0}$ form $q = 2q_1 - 2q_2$ Spanning set of \mathbb{R}^3

CLAIM: The vectors $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$, $\begin{pmatrix} 1\\3\\5 \end{pmatrix}$, $\begin{pmatrix} 1\\5\\9 \end{pmatrix}$ do NOT span \mathbb{R}^3 .

Do not span 123

LINEAR INDEPENDENCE OF VECTORS:

tet V be a vector space. A finite set of vectors $\{v_1, v_2, \dots, v_n\}$ of V is said to be linearly independent if $\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n = 0 \Rightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0$ (λ_i 's are scalars)

Example: Investigate linear independence of $v_1 = (1,-1,0)$, $v_2 = (0,1,-1)$, $v_3 = (0,0,1)$

Consider 7, 12, + 12 12 + 13 123 = 0

 $\Rightarrow \lambda_1(1,-1,0) + \lambda_2(0,1,-1) + \lambda_3(0,0,1) = (0,0,0)$

=) $(\lambda_1, -\lambda_1 + \lambda_2, -\lambda_2 + \lambda_3) = (0,0,0)$

 $\Rightarrow \lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 0$

=> The given set of vectors is linearly independent.

Example: check if 21 = (0,0), 22 (1,2) o'sre linearly independent.

 $\lambda_1(0,0) + \lambda_2(1,2) = (0,0)$

We know that $\lambda_1(010) + 0 \cdot (112) = (010) \quad \forall \lambda_1 \in \mathbb{R}$

=> Given rectors are linearly dependent.

NOTE: If O is one of the vectors in the set, then the set must be linearly dependent, as $\lambda \cdot 0 + 0 \cdot 9 + 0 \cdot 9 + 0 \cdot 9 + \cdots \cdot 0 \cdot 9 = 0$, for any $\lambda \in \mathbb{R}$

Example: Examine if the set

$$\mathcal{V}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathcal{V}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \mathcal{V}_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathcal{V}_4 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

is linearly independent.

Consider,
$$\lambda_1 \cdot \vartheta_1 + \lambda_2 \cdot \vartheta_2 + \lambda_3 \cdot \vartheta_3 + \lambda_4 \cdot \vartheta_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Augmented matrix
$$[A1b] = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & 0 & -1 & -1 & 0 \\
0 & -1 & -1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & -1 & -1 & 0 & 0 \\
0 & 0 & -1 & -1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
24 & 32 & 33 & 1 & 0 \\
0 & -1 & -1 & 0 & 0 \\
0 & 0 & -1 & -1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
34 & 6 & 6 & 6 & 6 & 6 & 6 \\
0 & 0 & 0 & -1 & -1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
34 & 6 & 6 & 6 & 6 & 6 & 6 \\
0 & 0 & 0 & -1 & -1 & 0
\end{bmatrix}$$

Take $\lambda_4 = 1$. $\lambda_3 = -1$, $\lambda_2 = 1$, $\lambda_1 = -1$.

Example: Examine if the set $\{(2,1,1),(1,2,2),(1,1,1)\}$ is linearly dependent in \mathbb{R}^3 .

$$[A1b] = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 1 & 1 & 0 \\ 1 & 2 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & 1 & 1 & 0 \\ 0 & 3/2 & 1/2 & 0 \\ 0 & 3/2 & 1/2 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 3/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$2 = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 2 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 3/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 3/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$2 = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 3/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 3/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

BASIS & DIMENSION OF A VECTOR SPACE

DIMENSION: maximum number of linearly independent vectors in a vector space V.

BASIS: Set of these linearly independent vectors.

OR

Basis is a set of linearly undependent set that span a vector space V.

The number of elements in a basis is called the DIMENSION of the vector space V.

- · Note that every vector in V can be conitten (uniquely) as a linear combination of the basis vectors.
- · The vector space E03 is defined to have dimension ZERO.

EXAMPLES:

☐ Vector space Rn:

Consider $e_1 = (1_1 0_1 0 \cdots 0)^T$, $e_2 = (0_1 1_1 0_1 \cdots 0)^T$ $e_n = (0_1 0 \cdots 1)^T$.

Note that these vectors are linearly independent and we have, for any $v = (v_1, v_2, \dots, v_n)^T$.

U= U1C+ 12C2+---+ 12n en

Dimension: n

2)

Vector space of all rxs matrices

Consider, for example, 2x3 matrices

The vectors $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$... $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

These vectors are linearly independent and spon the Vector space of all 2x3 natrices.

The dimension: 2x3 = 6.

Basis in example 1) and 2) are called usual or Standard basis.

3) Vector space Pn(t) of all polynomials of clegree ≤ n.

The Set $S = \{1, t, t^2, --, t^n\}$ is a basis for $P_m(t)$.

Dimension: (n+1).