

Seminar Theoretische Informatik

NP-Vollständigkeit des Hamilton-Pfad-Problems und des SUBSET-SUM-Problems

Tobias Kalmes

Saarbrücken, 11. Juli 2013

Inhaltsverzeichnis

Inhaltsverzeichnis			
1	Einl	eitung	1
	1.1	NP-Vollständigkeit	1
	1.2	Polynomialzeitreduktion	1
	1.3		
2	Hamilton-Pfad-Problem		
	2.1	Definition	3
	2.2	Beweis	3
		2.2.1 Gerichtet	
		2.2.2 Ungerichtet	
3	SUBSET-SUM-Problem		
	3.1	Definition	8
	3.2	Beweis	8

1 Einleitung

1.1 NP-Vollständigkeit

Eine Sprache B ist NP-Vollständig wenn gilt:

- 1. $B \in NP$
- 2. $\forall A \in NP : A \prec_p B$

Notiz:

 $A \prec_p B : A$ ist polynomialzeitreduzierbar auf B

1.2 Polynomialzeitreduktion

Eine Sprache A ist polynomialzeitreduzierbar auf Sprache B, $A \prec_p B$, wenn eine in polynomialer Zeit berechenbare Funktion $f: \Sigma * - > \Sigma *$ existiert, für die gilt:

$$\forall w : w \in A \iff f(w) \in B$$

Die Funktion f heißt dann Polynomialzeitreduktion von A nach B.

1.3 Definition 3SAT

Spezialform des Erfüllbarkeitsproblems

- Symbol(literal): x oder \overline{x}
- Klausel(clause): $(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$
- CNF-Formel(cnf-formula conjunctive normal form): $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6})$
- 3CNF-Formel(3cnf-formula): $(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4) \wedge (x_4 \vee x_5 \vee x_6)$

 $3SAT = \{\ \langle \phi \rangle | \phi \ \text{ist eine erfüllbare 3CNF-Formel} \}$ $\phi = 1 \iff \forall c_j \text{: mindestens ein Literal ist } true$

2 Hamilton-Pfad-Problem

2.1 Definition

TODO: machen

2.2 Beweis

2.2.1 Gerichtet

 $\mathsf{3SAT} \prec_p \mathsf{HAMPATH}$

Darstellung x_i

Darstellung c_j

 c_j

High-level structure of G

Horizontale Struktur im Diamond

Zusätzliche Knoten wenn x_i in c_j ist

Zusätzliche Knoten wenn $\overline{x_i}$ in c_j ist

Zig-zagging and Zag-zigging

This situation cannot occur

2.2.2 Ungerichtet

TODO: muss der auch rein?

3 SUBSET-SUM-Problem

3.1 Definition

TODO: machen

3.2 Beweis