교과과정

1학년		2학년		3학년		4학년	
1 학기	2 학기	1 학기	2 학기	1 학기	2 학기	1 학기	2 학기
컴퓨터실습		전산영어I	정보컴퓨터 교과교육론	정보컴교과 교재및연구법	정보통신 윤리및실습	정보컴퓨터 교과교수법	정보컴교과 논리및논술
이산수학	논리회로	컴퓨터구조론	컴퓨터구조론	운영체제론	프로그래밍 언어론	컴파일러	
프로그래밍 언어및실습 I	프로그래밍 언어및실습 II	자료구조	(선택) 알고리즘	(선택) 정보처리론	데이터베이스		
		멀티미디어 통신	컴퓨터 네트워크		소프트웨어 공학	프로젝트실무 I	프로젝트실무
	비쥬얼 프로그래밍 (Visual Basic)	시스템 프로그래밍	객체지향 프로그래밍 (C++)	모바일 프로그래밍 (Java)	네트워크 프로그래밍 (Java)		전산영어 I
알고리즘학습 (8급, 900)	알고리즘학습 (6급, 1500)		ACM ICPC (local)		ACM ICPC (Asia Region)	SW 공모전 입상	
TOEIC 400	TOEIC 450	TOEIC 500	TOEIC 550	TOEIC 600	TOEIC 650 TOEIC Speaking	TOEIC 700 TOEIC Speaking	TOEIC 750 TOEIC Speaking 5

- □ 선수과목
 - □ C언어, 전산수학, 자료구조, 알고리즘, 컴퓨터구조, 운영체제, 정보처리론
- □ 평가
 - □ 중간고사 40% 기말고사 50% 과제 10%
- □ 유의사항
 - □ 절대평가(60% 미만 F처리) 후 상대평가
 - □ 과제물이 자신의 노력 없이 작성된 것으로 판단되는 경우 0점 처리

데이터베이스시스템 개관

배을 내용

- □ 데이터베이스 (Database: DB)
- □ 데이터베이스 관리 시스템(DB Management System: DBMS)
- □ 데이터베이스 시스템 (DB System)

정보와 데이터

- 데이터(data)
 - □ 현실세계로부터 관찰 또는 측정을 통해 수집된 사실(fact)이나 값(value)
- □ 정보(information)
 - □ 의사결정에 도움이 되는 지식(knowledge)으로 데이터의 유효한 해석이나 데이터 상호간의 관계

데이터/정보의 표현과 저장

- □ 데이터/정보의 표현
 - □ 비트 또는 바이트로 표현
 - □ 데이터의 유형
 - □ 수치 데이터 (정수형, 실수형)
 - □ 비수치 데이터 (문자형, 논리형, 포인터형...)
 - □추상화된 데이터
- □ 데이터 구조 = 자료 구조 = Data Structure
 - □ 어떤 관련성에 의해 구조적인 성질을 갖는 자료(데이터 객체: 구조적 데이터 형태)들의 집합
 - □ 데이터 객체에 대한 연산 집합

데이터 구조

배을 내용

☐ 데이터 (Data)

- □ 데이터베이스 관리 시스템
 (DB Management System: DBMS)
- □ 데이터베이스 시스템 (DB System)

데이터베이스란?

한 조직의 여러 응용 시스템들이 공용(Shared)하기 위해 통합(Integrated)하여 저장(Stored)한 다음 운영(Operational)하는 데이터의 집합

- □ 공용 데이타 (Shared data)
 - □ 한 조직의 여러 응용 프로그램이 공동으로 소유, 유지, 이용하는 데이타
- 통합된 데이타 (Integrated data)
 - □ 최소의 중복(minimal redundancy)
 - □ 통제된 중복(controlled redundancy)
- 저장 데이타 (Stored data)
 - □ 컴퓨터가 접근 가능한 저장 매체에 저장
 - □ 테이프, 디스크 등
- □ 운영 데이타 (Operational data)
 - □ 한 조직의 고유 업무를 수행하기 위해 필요한 데이타

데이터베이스의 특성

- □ 실시간 접근성 (Real-time accessibilities)
 - □ 질의에 대한 실시간 처리 및 응답
- □ 계속적인 변화 (Continuous evolution)
 - □ 갱신, 삽입, 삭제 : 동적 특성
- □ 동시 공용 (Concurrent sharing)
 - □ 여러 사용자가 동시에 사용
- 내용에 의한 참조 (Content reference)
 - □ 위치나 주소가 아닌 값에 따라 참조

데이터베이스 구성요소

- □ 논리적 구성요소
 - □ 사용자의 입장
 - □ 데이타베이스 = {개체, 관계}
- □ 물리적 구성요소
 - □ bit, byte, block, cylinder, ...

1.11

데이터베이스 논리적 구성요소(I)

□ 개체(entity)

□ 데이터베이스에 표현하려는 유형, 무형의 개체로 현실세계에서 사람이 생각 하는 개념이나 정보의 단위

데이터베이스 논리적 구성요소(II)

- □ 관계(relationship)
 - □ 속성 관계(attribute relationship)
 - □ 개체내(intra-entity) 관계
 - □ 개체 관계(entity relationship)
 - □ 개체간(inter-entity) 관계

데이터베이스의 구조

□ 논리적 구조 vs. 물리적 구조

데이터베이스의 3단계 표현

- □ 데이타베이스의 3단계 표현
 - □ 데이타베이스에 대한 관점(View)에 따라
 - □개인 → 외부 단계 / 뷰(view) 단계
 - □ 기관전체 → 개념 단계 / 논리(logical) 단계
 - □저장장치 → 내부 단계 / 물리(physical) 단계

□ 데이타베이스의 구조(객체, 관계)와 제약조건 명세

- □ 3단계 데이타베이스 구조
 - □ 외부 스키마 (external schema)
 - □ 개념 스키마 (conceptual schema)
 - □ 내부 스키마 (internal schema)

데이터베이스의 3계층 구조

- □ 물리 단계 : 레코드가 어떻게 저장되는지를 기술
- □ 논리 단계 : DB에 저장된 데이터와 데이터간의 관계를 기술

□ 뷰 단계 : 개개 사용자 입장에서 필요한 일부 데이터베이스전체 데이터베이스의 일부분으로 여러 개 존재

데이터베이스의 3계층 스키마 구조

- □ 외부 스키마(external schema) subschema
 - □ 개개 사용자 관점에서의 데이타베이스 정의
 - □ 전체 데이타베이스의 한 논리적인 부분
- □ 개념 스키마(conceptual schema) schema
 - □ 범 기관적인 관점에서의 데이타베이스 정의
 - □ 모든 응용에 대한 전체적인 통합된 데이타 구조
- □ 내부 스키마(internal schema)
 - □ 저장장치 관점에서의 데이타베이스 정의
 - □ 개념 스키마에 대한 저장구조를 정의

1.18

3계층 데이터베이스의 예

데이터베이스에서 데이터의 독립성

- □ 차상위 단계의 스키마 정의에 영향을 주지 않고 어떤 단계의 스키 마 정의를 수정할 수 있는 능력
- □ 다양한 단계와 구성 요소 간의 인터페이스는 어떤 부분의 변화가 다른 부분에 심각한 영향을 주지 않도록 잘 정의되어야 함
- □ 데이터 독립성의 두 종류
 - □ 물리적 데이터 독립성
 - □ 논리적 데이터 독립성

데이터 구조 간의 사상과 데이터 독립성

배을 내용

- ☐ 데이터 (Data)
- □ 데이터베이스 (Database: DB)
- □ 데이터베이스 관리 시스템

(DB Management System: DBMS)

□ 데이터베이스 시스템 (DB System)

DBMS 발전 배경(I)

- □ 운영체제의 파일시스템 기능을 이용한 화일 중심 자료처리의 한 계
 - □ 논리적 파일 구조와 물리적 파일 구조간의 일대일(1:1) 대응 요구
 - □ 응용 프로그램에 물리적 데이타 구조에 대한 접근 방법이 구현되어야 함
 - □ 데이타 화일의 공용이 불가능

Note

□ 데이타의 종속성과 중복성을 야기

<u>합일시스템</u>

□ 응용프로그램과 파일 간의 관계

DBMS 발전 배경(II)

- 데이타 종속성(Data Dependency)
 - □ 응용 프로그램과 데이타 간의 상호 의존관계
 - □ 데이타의 구성 방법이나 접급 방법의 변경 시 관련 응용 프로그램도 동시에 변경
 - □ 응용 프로그램의 관리 곤란
- 데이타 중복성(Data Redundancy)
 - □ 한 시스템 내에 같은 내용의 데이타가 중복되어 저장 관리
 - □ 일관성(consistency) 문제
 - □ 보안성(security) 문제
 - □ 경제성(economics) 문제
 - □ 무결성(integrity) 문제

□ 응용프로그램과 파일관리시스템

데이터베이스를 파일로 저장/관리하면….

- □ 운영체제의 파일시스템을 이용하여 저장, 관리할 경우 다음과 같은 문제점을 가짐
 - □ 데이터의 중복과 불일치
 - □ 데이터 액세스상의 어려운 점
 - □ 데이터의 고립성 여러 파일과 포맷
 - □ 무결성 문제
 - □ 갱신의 원자성
 - 여러 사용자에 의한 동시 액세스
 - □ 보안 문제

데이터베이스 관리 시스템

□ 데이터베이스 관리 시스템(DBMS)이란?

응용 프로그램과 데이타 사이의 중재자로서 모든 응용 프로그램들이 데이타베이스를 공용할 수 있게 관리해 주는 소프트웨어 시스템

DBMS의 필수 기능 - 정의기능

- □ 정의(definition) 기능
 - □ 하나의 저장 구조로 여러 사용자의 요구를 지원할 수 있도록 데이타를 조직 하는 기능
 - □ 정의 기능의 요건
 - □ 데이타의 논리적 구조를 명세
 - □데이타의 물리적 구조 명세
 - □물리적/논리적 사상 명세

DBMS의 필수 기능 - 쪼깍기능

- □ 조작(manipulation) 기능
 - □ 사용자- 데이타베이스 간의 인터페이스
 - □ 체계적 데이타 처리 지원 능력(검색, 갱신, 삽입, 삭제)
 - □ 조작 기능의 요건
 - □ 사용이 쉽고 자연스러운 도구
 - □ 원하는 연산의 명세 가능
 - □ 효율적인 접근

DBMS의 필수 기능 - 제어기능

- 제어(control) 기능
 - □ 데이타의 정확성과 보안성을 유지하는 기능
 - □ 제어 기능의 요건
 - □ 무결성(integrity) 유지
 - □ 보안, 권한 검사
 - □ 병행 수행 제어(concurrency control)

DBMS의 장점

- □ 데이타 중복(redundancy)의 최소화
- □ 데이타의 공용(sharing)
- □ 일관성(consistency) 유지
- □ 무결성(integrity) 유지
- □ 보안(security) 보장
- □ 표준화(standardization) 용이
- □ 전체 데이타 요구의 파악 조정

DBMS의 단점

- □ 운영비의 오버헤드
- □ 복잡한 자료 처리 방법
- □ 어려운 백업, 회복
- □ 시스템의 취약성

DBMS의 구성요소(I)

1.34

DBMS의 구성요소(II)

- □ 질의어 처리기
 - □ 질의문을 파싱, 분석, 컴파일하고 목적 코드를 생성
- □ 컴파일러
 - □ DDL 컴파일러
 - □ DDL로 명세 된 스키마를 내부 형태로 변환하여 카탈로그에 저장
 - □ 예비 컴파일러
 - □ 응용 프로그램에 삽입된 DML(DSL)을 추출하고 그 자리에 procedure call로 대체
 - □ 추출된 DML은 DML 컴파일러로 전달
 - □ DML 컴파일러
 - □ DML 명령어를 목적 코드로 변환
- □ 런타임 데이타베이스 처리기
 - □ 런타임에 데이타베이스를 접근
 - □ 데이타베이스 연산을 수행

DBMS의 구성요소(III)

DBMS의 구성요소(IV)

- 트랜잭션(transaction) 관리자
 - /□ 트랜잭션?
 - □ 데이터베이스 응용에서 하나의 논리적 기능을 수행하는 연산들의 모임
 - ▶<mark>□</mark> 트랜잭션 실행 시 데이터베이스가 일관성 있는 상태를 유지하도록 보장해 주 는 프로그램 모듈
 - □ 회복(recovery) 기능
 - □시스템 고장(정전 및 운영체제 손상) 또는 트랜잭션의 실패에도 불구하고 데이터 베이스가 일관성 있는(정확한) 상태를 유지하도록 보장해줌
 - □ 동시성 제어(concurrency control) 기능
 - □ 동시에 실행되는 트랜잭션 간의 상호 작용을 통제하여 데이터베이스가 일관성 있는(정확한) 상태를 유지하도록 보장해줌

DBMS의 구성요소(V)

DBMS의 구성요소(VI)

- □ 저장장치(storage) 관리자
 - □ 데이터베이스에 저장된 low-level의 데이터와 응용프로그램(및 시스템에 제시된 질의) 간의 인터페이스를 제공해 주는 프로그램 모듈
 - □ 디스크에 있는 데이터베이스에 대한 접근을 제어
 - □ 운영체제의 화일관리자, 디스크관리자 기능을 이용
 - □ 저장장치 관리자의 기능
 - □ 운영체제의 화일관리자 기능과 상호작용
 - □ 데이터를 효율적으로 저장, 검색, 갱신

배을 내용

- ☐ 데이터 (Data)
- □ 데이터베이스 (Database: DB)

데이터베이스

- □ 데이터베이스 관리 시스템 (DB Management System: DBMS)
- □ 데이터베이스 시스템 (DB System)

데이터베이스 시스템 구성요소

- □ 컴퓨터 하드웨어 및 운영체제 DB Computer
- □ 3계층 데이터베이스
- □ 데이터베이스 관리 시스템
- □ 데이터 정의/조작/제어 언어
- □ 데이터베이스 관리자(DB Administrator: DBA)
- □ 데이터베이스 사용자

DB시스템 구성요소 - Database

- 데이터 파일(data file)
 - □ 데이터베이스 자체를 저장
- □ 인덱스(index)
 - □ 특정 값을 가지는 데이터 항목(data item)을 신속히 접근하는데 사용되는 데 이터 집합
- 통계 데이터(statistical data)
 - □ 데이터베이스의 데이터에 대한 통계 정보로 질의 처리시 질의를 효과적으로 실행하는데 사용됨
- □ 데이터 사전(data dictionary)
 - □ 데이터베이스의 구조에 관한 메타 데이터

DB시스템 구성요소 - DBMS

- □ 사용자와 관리자의 요구에 따라 데이타베이스에 대한 모든 연산을 수행
 - 1. 사용자의 접근 요구 접수/분석
 - 2. 시스템이 이해할 수 있는 형태로 요구를 변환
 - 3. 외부/개념/내부/저장 구조간의 사상 수행
 - 4. 저장 데이타베이스에 대해 연산 실행

DB^|스템 구성요소 - Data Language(I)

- □ 데이타베이스의 정의, 조작, 제어를 위한 시스템과의 통신수단
- □ 데이타 정의어(DDL : Data Definition Language)
 - □ 데이타베이스의 정의 및 수정
 - □ 정의 내용
 - □ 논리적 데이타 구조의 정의
 - □ 스키마, 외부 스키마의 기술
 - □물리적 데이타 구조의 정의
 - □ 내부 스키마 기술
 - 데이타 저장정의어 (Data Storage Definition Language)
 - 논리적 데이타 구조와 물리적 데이타 구조 간의 사상 정의

DB^|스템 구성요소 - Data Language(II)

- 데이터 조작어(DML: Data Manipulation Language)
 - □ 사용자(응용 프로그램)와 DBMS 간의 통신 수단
 - □ 데이타 처리에 필요한 연산의 집합
 - □ 데이타의 검색, 삽입, 삭제, 변경 연산
 - 절차적(procedural) DML
 - □ what과 how를 명세하고, 한번에 하나의 레코드만 처리
 - □ 응용 프로그램 속에 삽입(embedded)되어 사용
 - □ DML 예비 컴파일러에 의해 처리
 - □ 비절차적(non-procedural) DML
 - □ what만 명세(dedarative)하고, 한번에 여러 개의 레코드 처리
 - 질의어 (Query Language)
 - □ 독자적, 대화식 사용 : 커맨드 타입
 - □ 프로그램의 추상적 표현

DB^|스템 구성요소 - Data Language(III)

- 데이터 제어 언어(DCL : Data Control Language)
 - □ 공용 데이타베이스 관리를 위해 데이타 제어를 정의하고 기술
 - □ 데이타 제어 내용
 - □ 데이타 보안(security)
 - □ 데이타 무결성(integrity)
 - □ 데이타 회복(recovery)
 - □ 병행 수행(concurrency)
 - □ 관리 목적으로 데이타베이스 관리자(DBA)가 사용

DB시스템 구성요소 - Database 사용자

- □ 일반 사용자(end user)
 - □ 비절차적 DML(질의어)을 통해서 데이타베이스를 접근
 - menu, form, graphics
 - □ 데이타의 삽입, 삭제, 갱신, 검색
- □ 응용 프로그래머(application programmer)
 - □ 호스트 언어 + DML(DSL)을 통해서 데이타베이스를 접근
 - □ PL/I, COBOL, PASCAL, C
- □ 데이타베이스 관리자 (DBA: DB Administrator)
 - □ DDL과 DCL 을 통해 DB를 정의하고 제어하는 사람

DB시스템 구성요소 - DBA(I)

- □ 데이타베이스 시스템의 관리운영에 대한 모든 책임을 지고 있는 사람
- DBA의 업무
 - □ 데이타베이스 설계와 운영
 - □ 데이타베이스의 구성요소를 결정
 - □ 스키마 정의
 - □ 저장구조와 접근 방법 설정
 - □보안 정책 수립, 권한부여, 유효성 검사
 - □ 예비(backup), 회복(recovery) 절차의 수립
 - □ 데이타베이스의 무결성 유지
 - □성능 향상과 새로운 요구에 대응한 데이타베이스의 재구성
 - □ 데이타 사전의 유지 관리

DB^|스템 구성요소 - DBA(II)

- □ DBA의 업무(계속)
 - □ 행정 및 불평 해결
 - □ 데이타의 표현과 시스템의 문서화에 표준 설정
 - □사용자의 요구 및 불평 해결
 - □ 시스템 감시 및 성능 분석
 - □ 시스템 성능의 청취
 - □ 자원의 이용도, 병목 현상, 장비 성능 등
 - □ 사용자 요구의 변화, 데이타 사용 추세, 각종 통계의 종합 분석

1.55

요약

- □ 데이터 (Data)
- □ 데이터베이스 (Database: DB)
- □ 데이터베이스 관리 시스템 (DB Management System: DBMS)
- □ 데이터베이스 시스템 (DB System)

다음 배울 내용: 개체-관계 모델