

WEST

Freeform Search

Database:	US Patents Full-Text Database US Pre-Grant Publication Full-Text Database JPO Abstracts Database EPO Abstracts Database Derwent World Patents Index IBM Technical Disclosure Bulletins		
Term:	<pre>(timing or synch\$7) same ((added or combin\$3) near5 (subcarrier\$) or (sub adj carrier\$)) same (satellit\$3)</pre>		
Display:	62 Documents in <u>Display Format</u> : - Starting with Number 1		
Generate:	○ Hit List ● Hit Count ○ Side by Side ○ Image		
	Search Clear Help Logout Interrupt		
	Main Menu Show S Numbers Edit S Numbers Preferences Cases		

Search History

DATE: Friday, February 07, 2003 Printable Copy Create Case

et Na	me Query side	Hit Count	Set Name result set
DB=	USPT,JPAB,EPAB,DWPI,TDBD; PLUR=YES; OP=OR		
<u>L7</u>	(timing or synch\$7) same ((added or combin\$3) near5 (subcarrier\$) or (sub adj carrier\$)) same (satellit\$3)	7	<u>L7</u>
<u>L6</u>	(timing or synch\$7) and ((added or combin\$3) near5 (subcarrier\$) or (sub adj carrier\$)) and (satellit\$3)	239	<u>L6</u>
<u>L5</u>	(timing or synch\$7) and ((added or combin\$3) near5 subchannel\$) and (satellit\$3)	22	<u>L5</u>
<u>L4</u>	(timing or synch\$7) and ((added) or (combin\$3) near5 subchannel\$) and (satellit\$3)	7419	<u>L4</u>
<u>L3</u>	(4901307 5233626 5859874 5867109 5987037 6067442 6154501)![pn]	14	<u>L3</u>
<u>L2</u>	(timing or synch\$7) same (combin\$3 near5 subchannel\$) same satellit\$3	4	<u>L2</u>
<u>L1</u>	(timing or synch\$7) same (added near5 subchannel\$) same satellit\$3	2	<u>L1</u>

WEST

Generate Collection

Print

Search Results - Record(s) 1 through 22 of 22 returned.

☐ 1. Document ID: US 6452989 B1

L5: Entry 1 of 22

File: USPT

Sep 17, 2002

US-PAT-NO: 6452989

DOCUMENT-IDENTIFIER: US 6452989 B1

TITLE: System and method for combining multiple satellite channels into a virtual

composite channel

DATE-ISSUED: September 17, 2002

INVENTOR-INFORMATION:

NAME

CITY

STATE ZIP CODE

COUNTRY

Friedman; Robert F.

Fayetteville

AR

ASSIGNEE-INFORMATION:

MAME

CITY

STATE ZIP CODE COUNTRY TYPE CODE

Virtual Satellite Corporation Fayetteville AK

0.2

APPL-NO: 09/ 438865

DATE FILED: November 12, 1999

PARENT-CASE:

CROSS-REFERENCES TO RELATED APPLICATIONS The present application is a continuation-in-part of Application No. 09/243,910 filed Feb. 3, 1999, now U.S. Pat. No. 6,154,501, and claims priority to Provisional Application No. 60/142,179 filed Jul. 1, 1999.

INT-CL: [07] H04 B 7/10

US-CL-ISSUED: 375/347; 375/344, 455/137 US-CL-CURRENT: 375/347; 375/344, 455/137

FIELD-OF-SEARCH: 375/260, 375/371, 375/267, 375/316, 375/211, 375/347, 375/130, 375/34.4, 455/132, 455/137, 455/138, 455/13.1, 455/13.2, 455/13.3, 455/11.1,

455/12.1, 455/139, 370/315, 370/316, 370/326, 370/274, 370/480

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4901307	February 1990	Gilhousen et al.	375/130
5233626	August 1993	Ames	375/130
5859874	January 1999	Wiedeman	375/267
5867109	February 1999	Wiedeman	455/13.1
5987037	November 1999	Gans	370/480
6067442	May 2000	Wiedeman et al.	455/13.1
6154501	November 2000	Friedman	375/211

ART-UNIT: 2631

PRIMARY-EXAMINER: Bocure; Tesfaldet

ABSTRACT:

A satellite communications system provides an information channel between remotely located transmitters and receivers. A virtual satellite system provides the same service, but divides the signal either in power or in data content into subchannels such that any particular signal is conducted to the intended receiver via a plurality of traditional satellite channels. The receiving terminal accepts the plurality of signals simultaneously from a possible plurality of satellites, combining the subchannels comprising the virtual channel into the original signal content as if conducted via a single channel. The receiving antenna system receives satellite subchannel signals from a plurality of directions using multiple antennas or a single antenna with multi-direction capability. Prior to signal combining, the receiver necessarily time-synchronizes the plurality of subchannels by introducing time delay in some channels before combining the subsignals into the original composite. A timing signal present in the virtual satellite system assists the receiver in determining the amount of delay to apply to each incoming signal. The timing signal is either a separate carrier or an additional modulation on the existing information-bearing carrier.

21 Claims, 6 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims KMIC Draw Desc Image

☐ 2. Document ID: US 6433835 B1

L5: Entry 2 of 22

File: USPT

Aug 13, 2002

US-PAT-NO: 6433835

DOCUMENT-IDENTIFIER: US 6433835 B1

TITLE: Expanded information capacity for existing communication transmission systems

DATE-ISSUED: August 13, 2002

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Hartson; Ted E. Scottsdale AZ
Dickinson; Robert V. C. Allentown PA
Ciciora; Walter S. Southport CT

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Encamera Sciences Corporation Mountain View CA 02

APPL-NO: 09/ 062225

DATE FILED: April 17, 1998

INT-CL: $[07] \underline{H04} \underline{N} \underline{5/21}$

US-CL-ISSUED: 348/608; 348/723 US-CL-CURRENT: 348/608; 348/723 K)

FIELD-OF-SEARCH: 348/608, 348/723, 348/473, 348/429.1, 348/432.1, 348/470

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3873771	March 1975	Kleinerman et al.	179/2
3999005	December 1976	Dickinson	358/259
4081497	March 1978	Tokumitsu et al.	260/880R
4302626	November 1981	Streeter	179/1
4310920	January 1982	Hayes	370/11
4316215	February 1982	Yasumoto et al.	358/37
4322842	March 1982	Martinez	370/11
4337479	June 1982	Tomimoto et al.	358/37
4379947	April 1983	Warner	179/1
4469437	September 1984	Yuasa et al.	355/68
4476484	October 1984	Haskell	358/11
4513415	April 1985	Martinez	370/92
4523225	June 1985	Masuda et al.	358/56
4535352	August 1985	Haskell	358/16
4551011	November 1985	Yuasa et al.	355/35
4575225	March 1986	Yuasa et al.	355/38
4576470	March 1986	Yuasa et al.	355/38
4589011	May 1986	Rzeszewski	358/12
4704025	November 1987	Yuasa et al.	355/38
4750036	June 1988	Martinez	358/147
4821097	April 1989	Robbins	358/143
4870489	September 1989	Ducret	358/140
4879606	November 1989	Walter et al.	358/330
4882614	November 1989	Kageyama et al.	358/12
4907218	March 1990	Inoue et al.	370/20
4926244	May 1990	Ismardi	358/12
4928177	May 1990	Martinez	358/142
4944032	July 1990	Kageyama et al.	358/12
4958230	September 1990	Jonnalagadda et al.	358/186
4985769	January 1991	Yasumoto et al.	358/141
5006926	April 1991	Tsinberg	358/12
5036386	July 1991	Yasumoto et al.	358/12
5038402	August 1991	Robbins	455/3
5087975	February 1992	Citta et al.	358/183
5103295	April 1992	Uwabata et al.	358/21R
5103310	April 1992	Gibson et al.	358/141
5126998	June 1992	Stem, Jr.	370/11
5134464	July 1992	Basile et al.	358/12
5142353	August 1992	Kageyama et al.	358/12
5151783	September 1992	Faroudja	358/133
5177604	January 1993	Martinez	358/86
5214501	May 1993	Cavallerano et al.	358/12
5247351	September 1993	Cho	358/11
5270817	December 1993	Hayashi et al.	358/142
5276507	January 1994	Uwabata et al.	358/36
5287180	February 1994	White	358/484
5291289	March 1994	Hulyalkar et al.	358/723

5293633	March 1994	Robbins	455/3.1
5321514	June 1994	Martinez	348/723
5357284	October 1994	Todd	348/486
5386239	January 1995	Wang et al.	348/472
5442403	August 1995	Yasumoto et al.	348/432
5448299	September 1995	Yang et al.	348/475
5461426	October 1995	Limberg et al.	348/475
5534933	July 1996	Yang	348/433
5550579	August 1996	Martinez	348/12
5563664	October 1996	Yang et al.	348/475
5586121	December 1996	Moura et al.	370/404
5589872	December 1996	Martinez	348/12
5596361	January 1997	Martinez	348/12
RE35774	April 1998	Moura et al.	348/12
5812184	September 1998	Martinez	348/12
5818845	October 1998	Moura et al.	370/449
5828655	October 1998	Moura et al.	370/236
5859852	January 1999	Moura et al.	370/449
5909253	June 1999	Junnalagadda et al.	348/608
5946047	August 1999	Lavan	348/473
5946048	August 1999	Levan	348/473
5946322	August 1999	Moura et al.	370/468
5956346	September 1999	Levan	370/480
5959660	September 1999	Levan	348/12
5959997	September 1999	Moura et al.	370/404
6005850	December 1999	Moura et al.	370/282
6016316	January 2000	Moura et al.	370/389
6104727	August 2000	Moura et al.	370/468

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO PUBN-DATE COUNTRY US-CL 0 577 351 January 1994 EP

OTHER PUBLICATIONS

Press Release of WavePhore, Inc. entitled "WavePhore and the Canadian Broadcasting Corporation Enter an Agreement to Deliver Data Broadcasting Nationwide in Canada," dated Mar. 29, 1995.

Advertisement in Investor's Business Daily, "Technology Offers TV Broadcasters An Avenue Into Interactive Services", Monday, Apr. 19, 1993.

News Release of WavePhore "WavePhore and Belcom Sign Agreement to Co-Develop Russian Data Broadcasting System" (two pages, believed to have been released Apr. 10, 1995).

Press Release of WavePhore entitled FCC Proposed to Allow Digital Data Transmission Within the Video Portion of TV Broadcasts, in Response to WavePhore's Request, (two pages, believed to have been released Apr. 25, 1995).

Advertisement in The Indianapolis News, WavePhore Stock Is On Roll , dated May 23, 1995.

Advertisement in Investor's Business Daily, Intel, WavePhore Set Technology Alliance, dated Monday, May 8, 1995.

Advertisement The Arizona Republic Business, "Tempe firm, Intel Team Up to Send Data via TV", dated Saturday, May 6, 1995.

Advertisement, Arizona Business Gazette, entitled "Skyway System Rides TV Signals to Distribute Data--Speed Key to WavePhore Technology", dated Jul. 13, 1995.

Advestisement, Arizona Business Gazette, entitled "Motivated CEO Leads WavePhore", Jul. 13, 1995.

1

Press Release of WavePhore, entitled WavePhore Develops Data Casting System for Television Azteca in Mexico (two pages, believed to have been released Aug. 8, 1995).

Press Release of WavePhore, entitled WavePhore and Arizona State University Launch Distance Learning Service, (two pages, beleived to have been released Aug. 17, 1995.

"Digital Data Transmision Within the Video Portion of Television Broadcast Station Transmissions", MM docket No. 95-42.

G.M. Glasford, Fundamentals of Televison Engineering, McGraw-Hill 1955.

D.G. Fink, Televison Engineering, 2nd Edition, McGraw-Hill 1952.

C.G. Eilers, "TV Mutichannel Sound--The BTSC System," IEEE Transactions on Consumer electronics, Aug. 1984.

Taylor, "The Vestigal Sideband and Other Tribulations," P. 203 of the 1988 National Cable Television Association Technical Papers.

"HDTV & Vestigal Sidebank Syndrome" in the IEEE Transactions on Broadcasting, Mar. 1990, p. 8.

Wave Generation & Shaping, Leonard Strauss, McGraw-Hill 1970, Chapters 1 and 2. W. Ciciora et al., "A Tutorial on Ghost Canceling in Television Systems," IEEE Transactions on Consumer Electronics, vol. CE-25, No. 1, Feb. 1979, pp. 9-44. V. Thomas Rhyne, Fundamentals of Digital System Design.

Hill, et al.--Introduction to Switching Theory & Logical Design, John Wiley & Sons 1968, SBN 471 39880 K.

Tanenbaum, A. "Computer Networks," Prentice Hall 1996, ISBN 0-1-349945-6. Spohn, D.L., "Data Network Design," McGraw Hill, 1993 ISBN 0-07-06-360-X. Kaufman, C., "Network Security," Prentice Hall, 1995 ISBN 0-13-061466.1. International Search Report of PCT/US99/08513 mailed from European Searching Authority of PCT on Aug. 13, 1999.

ART-UNIT: 2611

PRIMARY-EXAMINER: Kostak; Victor R.

ABSTRACT:

A system for transmitting digital programming includes a program source providing digital information, circuitry for modulating the digital information onto a visual carrier modulated with analog television programming, and a visual transmitter coupled to the modulating circuitry. Using a phase modulation method, the system phase modulates the digital information onto a visual carrier, reduces the baseband frequencies of the phase modulated visual carrier, and amplitude modulates the phase-modulated video carrier onto a video signal. The amplified and encoded video signal are combined with an amplified sound signal and transmitted. Using an additive method, the system modulates the sidebands of the video carrier with the digital information and amplitude modulates the video signal onto the video carrier. The data-modulated sidebands are phase-shifted such that they will be in quadrature with the amplitude-modulated video signal. The system combines the amplitude-modulated video carrier and the data-modulated quadrature sidebands. With a blended multiplicative/additive method, the system provides phase modulation and quadrature sideband addition to provide an optimized result. Process, systems, circuits and devices for abating or otherwise correcting effects of the information on the analog television signal are also disclosed.

20 Claims, 83 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KMC Draw Desc Image

☐ 3. Document ID: US 6256357 B1

L5: Entry 3 of 22

File: USPT

Jul 3, 2001

US-PAT-NO: 6256357

DOCUMENT-IDENTIFIER: US 6256357 B1

TITLE: Communication system

DATE-ISSUED: July 3, 2001

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Oshima; Mitsuaki Kyoto JP

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Matsushita Electric Industrial Co., Ltd. Osaka JP 03

APPL-NO: 09/ 379746

DATE FILED: August 24, 1999

PARENT-CASE:

This application is a Divisional of application Ser. No. 09/061,979, now U.S. Pat. No. 5,999,569, filed Apr. 17, 1998 which is a Division of application Ser. No. 08/037,108, now U.S. Pat. No. 5,819,000, filed Mar. 25, 1993.

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY APPL-NO APPL-DATE

JP 4-67934 March 26, 1992

JP 4-256070 September 25, 1992

INT-CL: [07] H04 N 5/46

US-CL-ISSUED: 375/261; 375/280, 375/298, 375/308, 375/324, 375/332, 348/433, 348/555, 348/726, 329/304, 332/103 US-CL-CURRENT: 375/261; 329/304, 332/103, 348/433.1, 348/555, 348/726, 375/280, 375/298, 375/308, 375/324, 375/332

FIELD-OF-SEARCH: 375/261, 375/279, 375/280, 375/284, 375/298, 375/308, 375/324, 375/329, 375/332, 348/555, 348/426, 348/432, 348/433, 348/726, 329/304, 332/103

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3909721	September 1975	Bussgang et al.	
4048572	September 1977	Dogliotti et al.	
4227152	October 1980	Godard et al.	
4271527	June 1981	Armstrong	
4525846	July 1985	Bremer et al.	
4630287	December 1986	Armstrong	
4636876	January 1987	Schwartz	
4751478	June 1988	Yoshida	
4855692	August 1989	Kennard et al.	
4873701	October 1989	Tretter	
4891806	January 1990	Farias et al.	
4903125	February 1990	Parker	
4937844	June 1990	Kao	
4958360	September 1990	Sari	
5038219	August 1991	Yamashita et al.	
5050188	September 1991	Dirr	
5086340	February 1992	Citta et al.	
5087975	February 1992	Citta et al.	
5105442	April 1992	Wei	
5115453	May 1992	Calderbank et al.	
5142353	August 1992	Kageyama et al.	
5164963	November 1992	Lawrence et al.	
5166924	November 1992	Moose	
5168509	December 1992	Nakamura et al.	
5197061	March 1993	Halbert-Lassalle et al.	
5267021		Ramchandran et al.	
5282019	January 1994	Basile et al.	
5291289	March 1994	Hulyalkar et al.	
5311547	May 1994	Wei	
5311550	May 1994	Fouche et al.	
<u>5398073</u>	March 1995	Wei	
5452015	September 1995	Hulyalkar	
5481412	•	Bannai et al.	
5555275	September 1996	Oshima	
5565926	October 1996	Bryan et al.	348/426
5565932	October 1996	Gitta et al.	

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
0031193	July 1981	EP	
0122805	October 1984	EP	
0282298	September 1988	EP	
0311188	April 1989	EP	
0329158	August 1989	EP	
0365431	April 1990	EP	
0392538	October 1990	EP	
0448492A1	September 1991	EP	
0485108A2	May 1992	EP	
0485105	May 1992	EP	
0490552	June 1992	EP	
0506400A2	September 1992	EP	
0525641A2	February 1993	EP	
0531046A2	March 1993	EP	
0540231A2	May 1993	EP	
53-108215	September 1978	JP	
53-137657	December 1978	JP	
62-133842	June 1987	JP	
63-28145	February 1988	JP	
63-180280	July 1988	JP	
64-5135	January 1989	JP	
64-68144	March 1989	JP	
64-74836	March 1989	JP	
85/04541	October 1985	WO	
89/08366	September 1989	WO	
92/14343	August 1992	WO	

OTHER PUBLICATIONS

Shinji Matsumoto et al., "200 Mb/s 16 QAM Digital Radio-Relay System Operating in 4 and 5 GHz Bands", Japan Telecommunications Review, Jan. 1982, vol. 24, No. 1, pp.

M. Pecot et al., "Complatible Coding of Television Images, Part 2. Compatible System", Signal Processing Image Communication, Oct. 2, 1990, No. 3, pp. 259-268. Mitsuaki Oshima, "Constellation-Code Division Multiplex for Digital HDTV", IEEE, 1992, pp. 1086-1092.

Tricia Hill et al., "A Performance Study of NLA 64-State QAM", IEEE Transactions on Communications, vol. COM-31, Jun. 1983, No. 6, pp. 821-826.

Hideki Ishio et al., "A Proposal of a Carrier Digital Transmission System Using Multi-Level APSK", pp. 1-20.

Khaled Fazel et al., Combined multilevel coding and multiresolution modulation, Feb. 8, 1993, pp. 1081-1085.

P. Hoeher et al., Performance of an RCPC-Coded OFDM-based Digital Audio Broadcasting (DAB) System, IEEE Global Telecommunications Conference "Globecom '91", Dec. 2-5, 1991, vol. 1 of 3, pp. 2.1.1-2.1.7.

K. M. Uz et al., Combined multiresolution source coding and modulation for digital broadcast of HDTV*, 1992, pp. 283-292.

K. M. Uz et al., Multiresolution Source and Channel Coding for Digital Broadcast of HDTV, 1992, pp. 61-69.

Nambi Seshadri et al., Multi-Level Block Coded Modulations with Unequal Error Protection for the Rayleigh Fading Channel, vol 4, No. 3, May-Jun. 1993, pp. 325-334.

William F. Schreiber, Spread-Spectrum Television Broadcasting, SMPTE Journal, Aug. 1992, pp. 538-549.

Martin Vetterli et al., Multiresolution Coding Techniques for Digital Television: A Review, Multidimensional Systems and Signal Processing, vol. 3, May 1992, pp. 161-187.

Ezio Biglieri et al., Introduction to Trellis-Coded Modulation with Applications,

Apr. 6, 1992, pp. 173-207.

English Language Abstract of European Patent No. 93 30 7575.

Kazuhiko Nitadori, Synthesis of Multichannel Orthogonal VSB Signals by Quadrature Method, 1976 International Conference on Communications, Jun 14-16, 1976, vol. 1, pp. 3-25--3-29.

Thomas M. Cover, Broadcast Channels, IEEE Transactions on Information Theory, Jan. 1972, pp. 2-14.

"Optimum Weighted PCM for Speech Signals", Sundberg, IEEE Transactions on Communications, vol. COM-26, No. 6, Jun. 1978, pp. 872-881.

ART-UNIT: 274

PRIMARY-EXAMINER: Le; Amanda T.

ABSTRACT:

At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into, low and high, frequency band components which are designated as a first and a second data stream respectively. Upon receiving the TV signal, a receiver can reproduce only the low frequency band component or both the low and high frequency band component or both the

5 Claims, 142 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KMIC Draw Desc Image

☐ 4. Document ID: US 6154501 A

L5: Entry 4 of 22

File: USPT

Nov 28, 2000

US-PAT-NO: 6154501

DOCUMENT-IDENTIFIER: US 6154501 A

TITLE: Method and apparatus for combining transponders on multiple satellites into

virtual channels

DATE-ISSUED: November 28, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Friedman; Robert F. Fayetteville AR 72701

APPL-NO: 09/ 243910

DATE FILED: February 3, 1999

PARENT-CASE:

This application claims benefit to provisional application 60/073619 filed Feb. 4, 1998 and application 60/113693 filed Dec. 24, 1998.

INT-CL: [07] $\underline{\text{H04}}$ $\underline{\text{B}}$ $\underline{3/36}$, $\underline{\text{H04}}$ $\underline{\text{B}}$ $\underline{7/17}$, $\underline{\text{H04}}$ $\underline{\text{L}}$ $\underline{27/28}$, $\underline{\text{H04}}$ $\underline{\text{L}}$ $\underline{23/02}$

US-CL-ISSUED: 375/260; 375/211, 375/267, 455/13.1, 455/61

-1

US-CL-CURRENT: 375/260; 375/211, 375/267, 455/13.1, 455/61

FIELD-OF-SEARCH: 375/260, 375/267, 375/211, 375/295, 375/347, 375/316, 375/299, 455/13.3, 455/12.1, 455/13.1, 455/61, 455/59, 455/101, 455/132, 455/137, 455/139, 370/316, 370/480, 370/315

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
5410731	April 1995	Rouffet et al.	455/13.1
5592471	January 1997	Briskman	375/130
5625876	April 1997	Gilhousen et al.	455/33.3
5642358	June 1997	Dent	455/13.3
5720039	February 1998	Lieberman	455/10
5745839	April 1998	Lieberman	455/10
5758261	May 1998	Wiedeman	455/13.1
5781845	July 1998	Dybdal et al.	455/103
5790939	August 1998	Malcolm et al.	455/13.2
5859874	January 1999	Wiedeman et al.	375/267
5867109	February 1999	Wiedeman	340/827
5987037	November 1999	Ganes	455/103

ART-UNIT: 271

PRIMARY-EXAMINER: Bocure; Tesfaldet

ABSTRACT:

A satellite communications system provides an information channel between remotely located transmitters and receivers. A virtual satellite system provides the same service, but divides the signal either in power or in data content into subchannels such that any particular signal is conducted to the intended receiver via a plurality of traditional satellite channels. The receiving terminal accepts the plurality of signals simultaneously from a possible plurality of satellites, combining the subchannels comprising the virtual channel into the original signal content as if conducted via a single channel. The receiving antenna system receives satellite subchannel signals from a plurality of directions using multiple antennas or a single antenna with multi-direction capability. Prior to signal combining, the receiver necessarily time-synchronizes the plurality of subchannels by introducing time delay in some channels before combining the subsignals into the original composite. A timing signal present in the virtual satellite system assists the receiver in determining the amount of delay to apply to each incoming signal. The timing signal is either a separate carrier or an additional modulation on the existing information-bearing carrier.

34 Claims, 5 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KWIC Draw Desc Image

☐ 5. Document ID: US 6049651 A

L5: Entry 5 of 22

File: USPT

Apr 11, 2000

US-PAT-NO: 6049651

03

DOCUMENT-IDENTIFIER: US 6049651 A

TITLE: Communication system

DATE-ISSUED: April 11, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Oshima; Mitsuaki Kyoto JP

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Matsushita Electric Industrial Co., Ltd. Osaka JP

APPL-NO: 09/ 064147

DATE FILED: April 22, 1998

PARENT-CASE:

This application is a Division of application Ser. No. 08/126,589 filed Sep. 27, 1993 now U.S. Pat. No. 5,892,879 which is a continuation of Ser. No. 08/037108 filed Mar. 25, 1993 now U.S. Pat. No. 5,819,000.

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY APPL-NO APPL-DATE

 JP
 4-67934
 March 26, 1992

 JP
 4-256070
 September 25, 1992

 JP
 5-66461
 March 25, 1993

INT-CL: [07] H04 N 5/91, H04 N 7/015, H04 N 5/38

US-CL-ISSUED: 386/46; 386/123, 348/726 US-CL-CURRENT: 386/46; 348/726, 386/123

FIELD-OF-SEARCH: 386/46, 386/92, 386/37, 386/95, 386/109, 386/111, 386/112, 386/123, 386/124, 386/27, 386/33, 386/40, 386/1, 348/726, 348/729, 348/723, 348/725, 348/737,

348/21, 348/22, 348/24, 348/608, 348/636

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO ISSUE-DATE PATENTEE-NAME US-CL 5087975 February 1992 Citta et al. 348/724

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO PUBN-DATE COUNTRY US-CL 0485108 May 1992 EP

0485105 May 1992 EP 0506400 September 1992 EP 0540231 May 1993 EP

OTHER PUBLICATIONS

4th International Workshop on HDTV, Sep. 1991, Torino, IT; Elsevier 1992; pp. 61-69, Uz et al.: "Multiresolution source and channel coding for digital broadcast of HDTV".

SMPTE Journal, vol. 101, No. 8, Aug. 1992, Scarsdale, NY US; pp. 538-549, Schreiber `Spread--spectrum television broadcasting`.

Signal Processing: Image Communication, vol. 4, Aug. 1992, Amsterdam NL; pp. 283-292, Uz et al.: `Combined multiresolution source coding and modulation for digital broadcast of HDTV`.

Multidimensional Systems and Signal Pocessing, vol. 3, No. 2-3, May 1992, NL pp. 161-187, Vetterli Et and Uz: `Multiresolution coding techniques for digital television: a review`.

IEEE Transactions on Information Theory, vol. 18, No. 1, Jan. 1972, New York, US; pp. 2-14, Cover: `Broadcast channels`.

IEEE Global Telecommunications Conference 1991, 2-5/12/1991, Phoenix, US; IEEE New York, US, 1991: pp 40-46, Hoeher et al.: "Performance of an RCPC--coded OFDM--based digital audio broadcasting (DAB) system".

Biglieri et al. `Introduction to Trellis-Coded Modulation with Applications` 1991, MacMillan, New York, US.

IEEE International Conference on Communications, May 23-26, 1993, Geneva, CH; New York, US, 1993; pp. 1081-1085, Fazel & Ruf: `Combined multilevel coding and multiresolution modulation`.

European Transactions on Telecommunications and Related Technologies, vol. 4, No. 3, May 1993, Italy; pp. 325-334, Seshadri & Sundberg `Multi-level block coded modulations with unequal error protection for the Rayleigh fading channel`.

ART-UNIT: 272

PRIMARY-EXAMINER: Chevalier; Robert

ABSTRACT:

At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into, low and high, frequency band components which are designated as a first and a second data streams respectively. Upon receiving the TV signal, a receiver can reproduce only the low frequency band component or both the low and high frequency band components, depending on its capability. Furthermore, a communication system based on an OFDM system is utilized for data transmission of a plurality of subchannels, wherein the subchannels are differentiated by changing the length of a guard time slot or a carrier wave interval of a symbol transmission time slot, or changing the transmission electric power of the carrier.

3 Claims, 168 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KWC Draw Desc Image

☐ 6. Document ID: US 5999569 A

L5: Entry 6 of 22

File: USPT

Dec 7, 1999

US-PAT-NO: 5999569

DOCUMENT-IDENTIFIER: US 5999569 A

TITLE: Communication system

DATE-ISSUED: December 7, 1999

6

INVENTOR - INFORMATION:

STATE ZIP CODE COUNTRY CITY NAME

JΡ Oshima; Mitsuaki Kyoto

ASSIGNEE-INFORMATION:

CITY STATE ZIP CODE COUNTRY TYPE CODE NAME

JP 03 Matsushita Electric Industrial Co., Ltd. Osaka

APPL-NO: 09/ 061979

DATE FILED: April 17, 1998

PARENT-CASE:

This application is a Division of application Ser. No. 08/037,108 filed Mar. 25,

1993 U.S. Pat. No. 5,819,000.

FOREIGN-APPL-PRIORITY-DATA:

APPL-DATE COUNTRY APPL-NO

4-067934 March 26, 1992 JΡ JΡ 4-256070 September 25, 1992

INT-CL: [06] $\underline{\text{H04}}$ $\underline{\text{L}}$ $\underline{27/28}$, $\underline{\text{H04}}$ $\underline{\text{L}}$ $\underline{5/12}$, $\underline{\text{H04}}$ $\underline{\text{L}}$ $\underline{23/02}$

US-CL-ISSUED: 375/265; 348/608, 348/607, 348/726 US-CL-CURRENT: 375/265; 348/607, 348/608, 348/726

FIELD-OF-SEARCH: 348/155, 348/384-385, 348/389, 348/432, 348/471, 348/487, 348/554,

348/726, 371/37.5, 371/37.11, 371/43.4, 375/265, 375/340-341

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

ISSUE-DATE	PATENTEE-NAME	US-CL
February 1992	Citta et al.	358/141
February 1992	Citta et al.	358/183
April 1992	Wei	375/39
August 1992	Kageyama et al.	358/554
March 1995	Wei	348/487
September 1995	Hulyalker	348/608
October 1996	Citta et al.	348/678
	February 1992 February 1992 April 1992 August 1992 March 1995 September 1995	February 1992 Citta et al. February 1992 Citta et al. April 1992 Wei August 1992 Kageyama et al. March 1995 Wei September 1995 Hulyalker

ART-UNIT: 274

PRIMARY-EXAMINER: Chin; Stephen

ASSISTANT-EXAMINER: Roundtree; Joseph

ABSTRACT:

At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second

e

data streams is developed by shifting the signal points to other positions in the space diagram. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into, low and high, frequency band components which are designated as a first and a second data stream respectively. Upon receiving the TV signal, a receiver can reproduce only the low frequency band component or both the low and high frequency band components, depending on its capability.

13 Claims, 138 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KWC Draw Desc Image

☐ 7. Document ID: US 5956346 A

L5: Entry 7 of 22

File: USPT

Sep 21, 1999

US-PAT-NO: 5956346

DOCUMENT-IDENTIFIER: US 5956346 A

TITLE: Broadband communication system using TV channel roll-off spectrum

DATE-ISSUED: September 21, 1999

INVENTOR-INFORMATION:

NAME

CITY

STATE

ZIP CODE

COUNTRY

Levan; William

San Jose

CA

ASSIGNEE-INFORMATION:

NAME

CITY

STATE ZIP CODE

COUNTRY

TYPE CODE

Hybrid Networks, Inc.

San Jose CA

02

APPL-NO: 08/ 735110

DATE FILED: October 22, 1996

INT-CL: [06] H04 J 1/00

US-CL-ISSUED: 370/480; 370/312, 348/385 US-CL-CURRENT: 370/480; 370/312, 375/240.01

FIELD-OF-SEARCH: 370/480, 370/477, 370/486, 370/487, 370/312, 370/522, 370/535,

370/481, 370/482, 370/484, 370/485, 370/488, 348/385, 348/423

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
5530471	June 1996	Gockler et al.	370/487
5553064	September 1996	Paff et al.	370/487
5610916	March 1997	Kostreski et al.	370/487
5646942	July 1997	Oliver et al.	370/312

ART-UNIT: 272

PRIMARY-EXAMINER: Olms; Douglas W.

ASSISTANT-EXAMINER: Hom; Shick

ABSTRACT:

An apparatus and method for channelizing wide band data at radio frequencies (RF) above that of a highest television channel a television headend is equipped to utilize or below 54MHz. In particular, the apparatus and method functioning so as to transmit 2MHz subchannels of data at roll-off band frequencies to at least one client in full-duplex, asymmetric hybrid network communication system.

43 Claims, 11 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KWIC Draw Desc Image

☐ 8. Document ID: US 5946326 A

L5: Entry 8 of 22

File: USPT

Aug 31, 1999

US-PAT-NO: 5946326

DOCUMENT-IDENTIFIER: US 5946326 A

TITLE: Method and an equipment for transmitting a file-based multimedia and hypermedia service to a mobile receiver

DATE-ISSUED: August 31, 1999

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Rinne; Mika Espoo FI

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Nokia Telecommunications Oy Espoo FI 03

APPL-NO: 08/ 782926

DATE FILED: January 13, 1997

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY APPL-NO APPL-DATE
FI 952298 May 11, 1995

PCT-DATA:

APPL-NO DATE-FILED PUB-NO PUB-DATE 371-DATE 102(E)-DATE PCT/FI96/00247 May 3, 1996 WO96/36141 Nov 14, 1996 Jan 13, 1997 Jan 13, 1997

INT-CL: [06] H04 J 11/00

US-CL-ISSUED: 370/486; 370/522, 370/538, 370/208, 348/385, 348/7 US-CL-CURRENT: 725/54; 348/385.1, 370/208, 370/522, 370/538

FIELD-OF-SEARCH: 370/465, 370/468, 370/522, 370/486, 370/487, 370/537, 370/493, 370/496, 370/473, 370/474, 370/203, 370/208, 370/538, 348/7, 348/12, 348/13,

348/331, 348/385, 348/387

PRIOR-ART-DISCLOSED:

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4713758	December 1987	De Kelaita	364/200
5124943	June 1992	Lubarsky	395/200
5359601	October 1994	Wasilewski et al.	
5400401	March 1995	Wasilewski et al.	
5446888	August 1995	Pyne	395/600
5452288	September 1995	Rahuel et al.	
5799192	August 1998	Yasuda	309/705

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO

PUBN-DATE

COUNTRY US-CL

43 19 217

February 1995

DE

OTHER PUBLICATIONS

Kimmo Hakkarainen, "A Channel Encoder/Decoder for DAB Demonstrator", Mar. 1995, pp. I-51.

ART-UNIT: 272

PRIMARY-EXAMINER: Nguyen; Chau

ASSISTANT-EXAMINER: Vu; Thinh

ABSTRACT:

An apparatus and a method for transferring an audio/video/data service from a transmission end to a reception end over a radio interface. The audio/video/data service includes one of audio information, video information and data. The radio interface includes a plurality of subchannels and a plurality of carriers for transmitting the audio/video/data service and at least one information channel. The audio/video/data service is divided into a set of files, wherein the set of files forms a service ensemble. A parameter group is associated with and describes each corresponding one of the files. Each of the files, along with a corresponding parameter group is placed onto one of the subchannels. A placement indicator and a corresponding parameter group is placed on the at least one information channel. The subchannels and the at least one information channel are multiplexed into a plurality of transmission frames which are digitally modulated for transmission to the reception end over the radio interface using the plurality of carriers. The reception end receives the plurality of carriers and demodulates, from the carriers, the transmission frames, separating the subchannels and the at least one information channel. Information received from the at least one information channel is used for separating the parameter groups from the subchannels. The parameter groups are used for forming a selective service by combining and processing substantially only desired files.

12 Claims, 5 Drawing figures

KMIC Draw Desc Image Full Title Citation Front Review Classification Date Reference Sequences Attachments

☐ 9. Document ID: US 5892879 A

L5: Entry 9 of 22

File: USPT

Apr 6, 1999

US-PAT-NO: 5892879

DOCUMENT-IDENTIFIER: US 5892879 A

TITLE: Communication system for plural data streams

DATE-ISSUED: April 6, 1999

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Oshima; Mitsuaki Kyoto JP

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Matsushita Electric Industrial Co., Ltd. Osaka JP 03

APPL-NO: 08/ 126589

DATE FILED: September 27, 1993

PARENT-CASE:

CROSS-REFERENCE TO RELATED APPLICATIONS This application is a Continuation-in-Part of application Ser. No. 08/037,108 filed Mar. 25, 1993.

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY	APPL-NO	APPL-DATE
JP	4-067934	March 26, 1992
JP	4-256070	September 25, 1992
JP	5-066461	March 25, 1993
JP	5-132984	May 10, 1993

INT-CL: [06] $\underline{\text{H04}}$ $\underline{\text{N}}$ $\underline{\text{5/91}}$, $\underline{\text{H04}}$ $\underline{\text{N}}$ $\underline{\text{5/38}}$

US-CL-ISSUED: 386/46; 348/726 US-CL-CURRENT: 386/46; 348/726

FIELD-OF-SEARCH: 358/335, 348/17, 348/729, 348/21, 348/22, 348/608, 348/636,

348/723, 348/725, 348/737, 348/24, 386/46

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
5164963	November 1992	Lawrence et al.	375/39
5166924	November 1992	Moose	370/32.1
5267021	November 1993	Ramchandram et al.	358/12
5291289	March 1994	Hulyalkar et al.	348/723
5600672	February 1997	Oshima et al.	375/219

FOREIGN PATENT DOCUMENTS

PUBN-DATE	COUNTRY US-CL
September 1991	EP
May 1992	EP
May 1992	EP
September 1992	EP
March 1993	EP
May 1993	EP
	September 1991 May 1992 May 1992 September 1992 March 1993

OTHER PUBLICATIONS

Biglieri et al. `Introduction to Trellis-Coded Modulation with Applications` 1991, MacMillan, New York, US.

IEEE International Conference on Communications, 23-26 May, 1993, Geneva, CH; New York, US, 1993; pp. 1081-1085, Fazel & Ruf: `Combined multilevel coding and multiresolution modulation`.

European Transactions on Telecommunications and Related Technologies, vol. 4, No. 3, May 1993, Italy; pp. 325-334, Seshadri & Sundberg `Multi-level block coded modulations with unequal error protection for the Rayleigh fading channel`. 4th International Workshop on HDTV, Sep. 1991, Torino, IT; Elsevier 1992; pp. 61-69, Uz et al.: "Multiresolution source and channel coding for digital broadcast of HDTV".

SMPTE Journal, vol. 101, No. 8, Aug. 1992, Scarsdale, NY US; pp. 538-549, Schreiber `Spread-spectrum television broadcasting`.

Signal Processing: Image Communication, vol. 4, Aug. 1992, Amsterdam NL; pp. 283-292, Uz et al.: `Combined multiresolution source coding and modulation for digital broadcast of HDTV`.

Multidimensional Systems and Signal Processing, vol. 3, No. 2-3, May 1992, NL pp. 161-187, Vetterli Et and Uz: `Multiresolution coding techniques for digital television: a review`.

IEEE Transactions on Information Theory, vol. 18, No. 1, Jan. 1972, New York, US; pp. 2-14, Cover: `Broadcast channels`.

IEEE Global Telecommunications Conference 1991, 2-5 Dec, 1991, Phoenix, US; IEEE New York, US, 1991; pp. 40-46, Hoeher et al.: "Performance of an RCPC-coded OFDM-based digital audio broadcasting (DAB) system".

ART-UNIT: 272

PRIMARY-EXAMINER: Chevalier; Robert

ABSTRACT:

At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into, low and high, frequency band components which are designated as a first and a second data streams respectively. Upon receiving the TV signal, a receiver can reproduce only the low frequency band component or both the low and high frequency band components, depending on its capability. Furthermore, a communication system based on an OFDM system is utilized for data transmission of a plurality of subchannels, wherein the subchannels are differentiated by changing the length of a guard time slot or a carrier wave interval of a symbol transmission time slot, or changing the transmission electric power of the carrier.

17 Claims, 171 Drawing figures

Full | Title | Citation | Front | Review | Classification | Date | Reference | Sequences | Attachments | KMC | Draw Desc | Image |

10. Document ID: US 5864747 A

L5: Entry 10 of 22

File: USPT Jan 26, 1999

US-PAT-NO: 5864747

DOCUMENT-IDENTIFIER: US 5864747 A

TITLE: Data bridge

DATE-ISSUED: January 26, 1999

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Clark; Anthony S. Eagan MN Nelson; Curtis L. Excelsior MN

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

General Dynamics Information Falls Church VA 02

Systems, Inc.

APPL-NO: 08/ 701344

DATE FILED: August 22, 1996

INT-CL: [06] H04 N 7/10

US-CL-ISSUED: 455/3.2; 370/487

US-CL-CURRENT: 725/67; 370/487, 725/68

FIELD-OF-SEARCH: 455/3.2, 455/6.2, 455/12.1, 455/400, 370/349, 370/350, 370/345,

370/347, 370/487, 370/490, 370/493

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
5412416	May 1995	Nemirofsky	455/3.1
5418782	May 1995	Wasilewski	455/3.1
5583562	December 1996	Birch et al.	455/3.1
5594490	January 1997	Dawson et al.	455/3.2
5633870	May 1997	Gaytan et al.	370/412

ART-UNIT: 271

PRIMARY-EXAMINER: Kostak; Victor R.

ABSTRACT:

A digital data delivery system which uses <u>satellite</u> broadcasting to deliver digital data along with audio and video signals. Digital data files are divided into packets and combined with audio and video packets in a time-division-multiplexed format. The time-division-multiplexed data is digitally modulated and then uplinked to a <u>satellite</u> transponder. The <u>satellite</u> transponder broadcasts the data to a <u>multiplicity</u> of user stations. The data which are broadcast by the <u>satellite</u> transponder are received by a <u>satellite</u> dish at each user station. Each <u>satellite</u> dish then relays the data to a receiver. The receiver identifies and separates the digital data file packets from the audio and video packets and outputs the digital data file packets to a data output port. A data bridge receives the packets from the data output port, buffers the packets, and converts the packets into a format that can be read by standard commercial I/O cards.

9 Claims, 5 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KMiC Draw Desc Image

☐ 11. Document ID: US 5819000 A

L5: Entry 11 of 22

File: USPT

Oct 6, 1998

US-PAT-NO: 5819000

DOCUMENT-IDENTIFIER: US 5819000 A

TITLE: Magnetic recording and playback apparatus

DATE-ISSUED: October 6, 1998

INVENTOR-INFORMATION:

NAME

CITY

STATE

ZIP CODE

COUNTRY

Oshima; Mitsuaki

Kyoto

JP

ASSIGNEE-INFORMATION:

NAME

CITY STATE ZIP CODE COUNTRY TYPE CODE

Matsushita Electric Industrial Co., Ltd. Osaka

JP

03

APPL-NO: 08/ 037108

DATE FILED: March 25, 1993

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY

APPL-NO

APPL-DATE

JP

7-067934

March 26, 1992

JР

4-256070

September 25, 1992

INT-CL: [06] <u>H04</u> N <u>5/91</u>, <u>H04</u> N <u>5/38</u>

US-CL-ISSUED: 386/46; 348/723 US-CL-CURRENT: 386/46; 348/723

FIELD-OF-SEARCH: 358/335, 358/342, 358/360, 358/330, 348/723, 348/724, 348/21, 348/24, 348/729, 348/17, 348/22, 348/608, 348/636, 348/725, 348/737, 386/46

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
5038219	August 1991	Yamashita et al.	358/310
5164963	November 1992	Lawrence et al.	348/723
5267021	November 1993	Ramchandran et al.	358/12
5282019	January 1994	Basile et al.	348/723
5311547	May 1994	Wei	375/18
5481412	January 1996	Bamair et al.	360/18

ART-UNIT: 272

PRIMARY-EXAMINER: Chevalier; Robert

ABSTRACT:

At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into, low and high, frequency band components which are designated as a first and a second data stream respectively. Upon receiving the TV signal, a receiver can reproduce only the low frequency band component or both the low and high frequency band component or both the

12 Claims, 142 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KWIC Draw Desc Image

☐ 12. Document ID: US 5802241 A

L5: Entry 12 of 22

File: USPT

Sep 1, 1998

US-PAT-NO: 5802241

DOCUMENT-IDENTIFIER: US 5802241 A

TITLE: Communication system

DATE-ISSUED: September 1, 1998

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Oshima; Mitsuaki Kyoto JP

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Matsushita Electric Industrial Co., Ltd. Osaka JP 03

APPL-NO: 08/ 706376

DATE FILED: August 30, 1996

PARENT-CASE:

This application is a continuation of application Ser. No. 08/217,895 filed Mar. 25, 1994 now abandoned, which in turn is a Continuation-in-Part of application Ser. No. 08/126,589, filed Sep. 27, 1993, which in turns is a Continuation-in-Part of application Ser. No. 08/037,108, filed Mar. 25, 1993.

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY	APPL-NO	APPL-DATE
JP	4-67934	March 26, 1992
JP	4-256070	September 25, 1992
JP	5-66461	March 25, 1993
JP	5-132984	May 10, 1993
JP	5-261612	September 24, 1993
JP	5-349972	December 27, 1993

INT-CL: [06] $\underline{H04}$ \underline{N} $\underline{5/91}$, $\underline{H04}$ \underline{N} $\underline{5/38}$

242/522

US-CL-ISSUED: 386/46; 348/723 US-CL-CURRENT: 386/46; 348/723

FIELD-OF-SEARCH: 348/21, 348/24, 348/729, 348/17, 348/22, 348/608, 348/636, 348/723,

348/725, 348/737, 386/46

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
5087975	February 1992	Citta et al.	
5282019	January 1994	Basile et al.	
5291289	March 1994	Hulyalkar et al.	348/273

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
0485108	May 1992	EP	
0485105	May 1992	EP	
0506400	September 1992	EP	
0540231	May 1993	EP	

OTHER PUBLICATIONS

4th International Workshop on HDTV, Sep. 1991, Torino, IT; Elsevier 1992; pp. 61-69, Uz et al.: "Multiresolution Source and Channel Coding for Digital Broadcast of HDTV".

SMPTE Journal, vol. 101, No. 8, Aug. 1992, Scarsdale, NY US; pp. 538-549, Schreiber "Spread-Spectrum Television Broadcasting".

Signal Processing: Image Communication, vol. 4, Aug. 1992, Amsterdam, NL; pp. 283-292, Uz et al: "Combined Multiresolution Source Coding and Modulation for Digital Broadcast of HDTV".

Biglieri et al, "Introduction to Trellis-Coded Modulation with Applications", 1991, MacMillan, New York, US.

IEEE International Conference on Communications, 23-26 May 1993, Geneva, CH; New York, US, 1993; pp. 1081-1085, Fazel & Ruf: "Combined Multilevel Coding and Multiresolution Modulation".

European Transactions on Telecommunications and Related Technologies, vol. 4, No. 3, May 1993, Italy; pp. 325-334, Seshadri & Sundberg, "Multi-level Block Coded Modulations with Unequal Error Protection for the Rayleigh Fading Channel". Multidimensional Systems and Signal Processing, vol. 3, No. 2-3, May 1992, NL, pp. 161-187, Vetterli et and Uz: "Multiresolution Coding Techniques for Digital Television: A Review".

IEEE Transactions on Information Theory, vol. 18, No. 1, Jan. 1972, New York, US; pp. 2-4, Cover: "Broadcast Channels".

IEEE Global Telecommunications Conference 1991, 2-5 Dec. 1991, Phoenix, US; IEEE New York, US. 1991; pp. 40-46, Hoeher et al.: "Performance of an RCPC-Coded OFDM-Based Digital Audio Braodcasting (DAB) System".

ART-UNIT: 272

PRIMARY-EXAMINER: Chevalier; Robert

ABSTRACT:

At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also,

data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into, low and high, frequency band components which are designated as a first and a second data streams respectively. Upon receiving the TV signal, a receiver can reproduce only the low frequency band component or both the low and high frequency band components, depending on its capability. Furthermore, a communication system based on an OFDM system is utilized for data transmission of a plurality of subchannels, wherein the subchannels are differentiated by changing the length of a guard time slot or a carrier wave interval of a symbol transmission time slot, or changing the transmission electric power of the carrier.

5 Claims, 205 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KWAC Draw Desc Image

☐ 13. Document ID: US 5600672 A

L5: Entry 13 of 22

File: USPT

Feb 4, 1997

US-PAT-NO: 5600672

DOCUMENT-IDENTIFIER: US 5600672 A

TITLE: Communication system

DATE-ISSUED: February 4, 1997

INVENTOR - INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Oshima; Mitsuaki Kyoto JP Sakashita; Seiji Osaka JP

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Matsushita Electric Industrial Co., Ltd. Osaka JP 03

APPL-NO: 08/ 240521

DATE FILED: May 10, 1994

PARENT-CASE:

CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of application Ser. No. 07/857,627, filed Mar. 25, 1992, pending.

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY	APPL-NO	APPL-DATE
JP	3-62798	March 27, 1991
JP	3-95813	April 25, 1991
JP	3-155650	May 29, 1991
JP	3-182236	July 23, 1991
JP	4-60739	March 17, 1992
JP	5-132984	May 10, 1993
JP	5-261612	September 24, 1993
JP	5-349972	December 27, 1993
JP	6-79668	March 24, 1994

INT-CL: [06] H04 L 5/16, H04 B 1/38

US-CL-ISSUED: 375/219; 375/270, 375/301, 375/321 US-CL-CURRENT: 375/219; 375/270, 375/301, 375/321

FIELD-OF-SEARCH: 375/219, 375/259, 375/260, 375/261, 375/262, 375/265, 375/270, 375/240, 375/321, 375/326, 375/341, 375/354, 348/725, 348/726, 348/723, 348/724

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO

ISSUE-DATE

PATENTEE-NAME

US-CL

5164963

November 1992

Lawrence et al.

375/265

OTHER PUBLICATIONS

Shanmugam, "Digital and Analog Communication Systems" 1979, p. 272.

ART-UNIT: 264

PRIMARY-EXAMINER: Chin; Stephen

ASSISTANT-EXAMINER: Phan; Hai H.

ABSTRACT:

At the transmitter side, carrier waves are modulated according to an input signal for producing relevant signal points in a signal space diagram. The input signal is divided into, two, first and second, data streams. The signal points are divided into signal point groups to which data of the first data stream are assigned. Also, data of the second data stream are assigned to the signal points of each signal point group. A difference in the transmission error rate between first and second data streams is developed by shifting the signal points to other positions in the space diagram expressed at least in the polar coordinate system. At the receiver side, the first and/or second data streams can be reconstructed from a received signal. In TV broadcast service, a TV signal is divided by a transmitter into low and high frequency band components which are designated as first and second data streams respectively. Upon receiving the TV signal, a receiver can reproduce only the low frequency band component or both the low and high frequency band components, depending on its capability. Furthermore, a communication system based on an OFDM system is utilized for data transmission of a plurality of subchannels, wherein the subchannels are differentiated by changing the length of a guard time slot or a carrier wave interval of a symbol transmission time slot, or changing the transmission electric power of the carrier.

12 Claims, 213 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KMC Draw Desc Image

☐ 14. Document ID: US 5355374 A

L5: Entry 14 of 22

File: USPT

Oct 11, 1994

US-PAT-NO: 5355374

DOCUMENT-IDENTIFIER: US 5355374 A

TITLE: Communication network with divisible auxilliary channel allocation

€.

DATE-ISSUED: October 11, 1994

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Hester; PhillipIndian Harbour BeachFLHighsmith; WilliamIndialanticFLMcDaniel; DonIndialanticFLLusk; AlanDallasTX

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Scientific-Atlanta, Inc. Atlanta GA 02

APPL-NO: 08/ 165830

DATE FILED: December 14, 1993

PARENT-CASE:

This application is a division of application Ser. No. 880,209, filed May 8, 1992,

now abandoned.

INT-CL: [05] H04J 3/22

US-CL-ISSUED: 370/84; 370/95.1, 455/54.2 US-CL-CURRENT: 370/461; 370/468, 455/509

FIELD-OF-SEARCH: 455/49.1, 455/53.1, 455/54.2, 455/68, 379/58, 379/63, 370/69.1,

370/84, 370/95.1, 370/95.3, 340/825.03, 340/825.07, 340/825.54

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4477809	October 1984	Bose	455/54.2
4553262	November 1985	Coe	455/54.2
4763325	August 1988	Wolfe et al.	370/95.3
4780715	October 1988	Kasagai	455/54.2
5005171	April 1991	Modisette, Jr. et al.	370/84

ART-UNIT: 263

PRIMARY-EXAMINER: Safourek; Benedict V.

ABSTRACT:

A communication network having a master and a plurality of remotes, these remotes supporting a plurality of co-services, in which access to inbound frequencies among the remotes is shared. When a need by a remote for an extraordinary amount of bandwidth is detected, a reserved spillover frequency from a set of frequencies is reserved for that remote. This bandwidth is reallocated when the need for extraordinary bandwidth for that remote has ended.

9 Claims, 7 Drawing figures

ents

į,

L5: Entry 15 of 22

File: USPT

Sep 27, 1994

US-PAT-NO: 5351240

DOCUMENT-IDENTIFIER: US 5351240 A

☐ 15. Document ID: US 5351240 A

TITLE: Communication link having dynamically allocatable auxiliary channel for data

bursts

DATE-ISSUED: September 27, 1994

INVENTOR-INFORMATION:

NAME

CITY

STATE ZIP CODE

COUNTRY

Highsmith; William

Indialantic

ASSIGNEE-INFORMATION:

NAME

CITY

STATE ZIP CODE

FL

COUNTRY TYPE CODE

Scientific-Atlanta, Inc.

Atlanta GA

02

APPL-NO: 08/ 165829

DATE FILED: December 14, 1993

PARENT-CASE:

This application is a division of application Ser. No. 880,209, filed May 8, 1992, now abandoned.

INT-CL: [05] H04J 3/22

US-CL-ISSUED: 370/84; 370/95.1, 455/54.2 US-CL-CURRENT: 370/461; 370/468, 455/509

FIELD-OF-SEARCH: 455/49.1, 455/53.1, 455/54.2, 455/68, 379/58, 379/63, 370/69.1,

370/84, 370/95.1, 370/95.3, 370/85.7, 340/825.03, 340/825.07, 340/825.54

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4477809	October 1984	Bose	455/54.2
4553262	November 1985	Coe	455/54.2
4780715	October 1988	Kasugai	455/54.2
5005171	April 1991	Modisette et al.	370/84

ART-UNIT: 263

PRIMARY-EXAMINER: Safourek; Benedict V.

ABSTRACT:

A communication network having a master and a plurality of remotes, these remotes supporting a plurality of co-services, in which access to inbound frequencies among the remotes is shared. When a need by a remote for an extraordinary amount of bandwidth is detected, a reserved spillover frequency from a set of frequencies is reserved for that remote. This bandwidth is reallocated when the need for extraordinary bandwidth for that remote has ended.

19 Claims, 7 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KWWC Draw Desc Image

☐ 16. Document ID: US 5349580 A

L5: Entry 16 of 22

File: USPT

Sep 20, 1994

US-PAT-NO: 5349580

DOCUMENT-IDENTIFIER: US 5349580 A

TITLE: Method and apparatus for channel allocation integrity in a communication

network

DATE-ISSUED: September 20, 1994

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Hester; Phillip Indian Harbour Beach FL Highsmith; William Indialantic FL

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Scientific-Atlanta, Inc. Atlanta GA 02

APPL-NO: 08/ 165889

DATE FILED: December 14, 1993

PARENT-CASE:

This application is a division of application Ser. No. 880,209, filed May 8, 1992, now abandoned.

INT-CL: [05] H04J 3/22

US-CL-ISSUED: 370/84; 370/95.1, 455/54.2 US-CL-CURRENT: 370/461; 370/468, 455/509

FIELD-OF-SEARCH: 455/49.1, 455/53.1, 455/54.2, 455/68, 379/58, 379/63, 370/69.1,

370/84, 370/95.1, 370/95.3, 340/825.03, 340/825.07, 340/825.54

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4477809	October 1984	Bose	455/54.2
4553262	November 1985	Coe	455/54.2
4763325	August 1988	Wolfe et al.	370/95.3
4780715	October 1988	Kasugai	455/54.2
5005171	April 1991	Modisett, Jr. et al.	370/84

ART-UNIT: 263

PRIMARY-EXAMINER: Safourek; Benedict V.

ABSTRACT:

A communication network having a master and a plurality of remotes, these remotes supporting a plurality of co-services, in which access to inbound frequencies among the remotes is shared. When a need by a remote for an extraordinary amount of bandwidth is detected, a reserved spillover frequency from a set of frequencies is reserved for that remote. This bandwidth is reallocated when the need for extraordinary bandwidth for that remote has ended.

10 Claims, 7 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KWIC Draw Desc Image

☐ 17. Document ID: US 5265150 A

L5: Entry 17 of 22

File: USPT

Nov 23, 1993

US-PAT-NO: 5265150

DOCUMENT-IDENTIFIER: US 5265150 A

TITLE: Automatically configuring wireless PBX system

DATE-ISSUED: November 23, 1993

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Helmkamp; David J. Jersey City NJ Smith; James W. Middletown NJ

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

AT&T Bell Laboratories Murray Hill NJ 02

APPL-NO: 07/ 647943

DATE FILED: January 30, 1991

INT-CL: [05] H04M 11/00, H04B 7/15, H04B 1/00

US-CL-ISSUED: 379/58; 379/59, 379/60, 455/11.1, 455/17, 455/56.1

US-CL-CURRENT: $\frac{455}{555}$; $\frac{455}{11.1}$, $\frac{455}{17}$, $\frac{455}{411}$, $\frac{455}{418}$

FIELD-OF-SEARCH: 379/58, 379/56, 379/60, 379/59, 455/33.3, 455/33.4, 455/54.1, 455/31, 455/39, 455/18, 455/15, 455/33.2, 455/10, 455/56.1, 455/17, 455/16

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4112257	September 1978	Frost	379/60
4284848	August 1981	Frost	455/11.1
4347626	August 1982	Wenzel	455/18
4528654	July 1985	Morais	379/58
4578815	March 1986	Persinotti	455/15
4659878	April 1987	Dinkins	455/33.2
4672658	June 1987	Kavehrad	379/63
4803738	February 1989	Ikeda	455/10
4833702	May 1989	Shitara et al.	379/60
4881271	November 1989	Yamauchi et al.	455/56.1
4941200	July 1990	Leslie et al.	455/17
4972456	November 1990	Kaczmarek et al.	379/59
5095529	March 1992	Comroe et al.	455/16
5129096	July 1992	Burns	455/18
5133001	July 1992	Bohm	379/58
5170488	December 1992	Furuya	455/56.1

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
0107542	May 1987	JP	455/39

ART-UNIT: 268

PRIMARY-EXAMINER: Ng; Jin F.

ASSISTANT-EXAMINER: Cumming; William D.

ABSTRACT:

A wireless PBX system provides ease of installation without site engineering or trial-and-error placement of components within the system. In its basic form, the wireless PBX system consists of only two types of components: a control unit including an radio frequency transceiver; and fixed location terminals, such as telephones and voice/data stations, which also include radio frequency transceivers. Portable handsets are optionally included in the system to allow for customer mobility. Installation of the PBX system is achieved simply by placing the system components in the desired locations at a premises, plugging them into line power, and performing some simple programming steps including a final step of initiating an automatic configuring process. Through this process, the system automatically configures itself for optimum operation in view of the radio environment and placement of components within the system at the customer premises. In the operation of this process, the control unit exchanges various radio messages with the terminals, decides which terminals should also serve as repeaters for linking those more distantly located terminals, and determines the appropriate frame structure for the system. A positive display indication at the control unit, following the end of the automatic configuring process, shows that all terminals have been linked and that the system is operating normally.

20 Claims, 12 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KMC Draw Desc Image

☐ 18. Document ID: US 5054071 A

L5: Entry 18 of 22

File: USPT

Oct 1, 1991

US-PAT-NO: 5054071

DOCUMENT-IDENTIFIER: US 5054071 A

TITLE: Volume control for optimum television stereo separation

DATE-ISSUED: October 1, 1991

INVENTOR-INFORMATION:

NAME CITY

STATE ZIP CODE COUNTRY

Bacon; Kinney C. Duluth GA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Scientific-Atlanta, Inc. Atlanta GA 02

APPL-NO: 07/ 306010

DATE FILED: February 3, 1989

INT-CL: [05] H04H 5/00, H04N 5/44

US-CL-ISSUED: 381/12; 358/194.1, 455/4 US-CL-CURRENT: 381/12; 348/734, 725/151

FIELD-OF-SEARCH: 381/1, 381/10, 381/11, 381/12, 381/104, 381/109, 358/144, 358/197,

358/194.1, 455/4, 455/232

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
2980766	April 1961	Nulton, Jr. et al.	381/1
4239937	December 1980	Kampmann	381/28
4536798	August 1985	Reid, Jr. et al.	358/194.1
4591622	February 1986	Davidov et al.	358/194.1
4591915	May 1986	Davidov et al.	358/194.1
4603349	July 1986	Robbins	358/86
4646150	February 1987	Robbins et al.	358/144
4652924	March 1987	Davidov	358/194.1
4691358	September 1987	Bradford	381/12
4748501	May 1988	Long	358/86
4748669	May 1988	Klayman	381/25
4751574	June 1988	Mogi et al.	358/194.1
4954899	September 1990	Tanabe et al.	358/194.1

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO PUBN-DATE COUNTRY US-CL

55-4167(A) January 1980 JP

OTHER PUBLICATIONS

"Cable and BTSC Stereo" by James O. Farmer, IEEE Transactions on Consumer

Electronics, vol. CE-33, No. 1, Feb. 1987.
"Stereo Sound for TV" by Alex Best, International TV Symposium, Symposium Record, Jun. 1989.

Patent Abstracts of Japan, vol. 4, No. 32 (E-2)(514), Mar. 19, 1989.

Frank McClatchle, "How BTSC Brings Stereo to the TV Set", published Mar. 1988, Communications Technology, pp. 49, 50, 52 and 54.

Luis A. Rovira, "BTSC Stereo Separation on the Cable" presented at an SMPTE Meeting.

Mitsubishi Linear IC M5144P data sheets having an unknown publication date. 1989 NCTA Technical Papers, pp. 15-20, The Importance of Setting and Maintaining Correct Signal and Modulation Levels in a CATV System Carrying BTSC Stereo Signals, by Chris Bowick.

ART-UNIT: 261

PRIMARY-EXAMINER: Isen; Forester W.

ABSTRACT:

Volume control for use in a cable television set top converter or the like is calibrated for optimum television stereo channel separation. The volume control controls the volume to predetermined levels. One of the predetermined levels is a particular level calibrated for optimum stereo separation. An indicator on the converter indicates the optimum stereo separation volume level. When an internal VCR timer turns on the set top converter, the set top converter is forced to the optimum stereo separation volume level. The calibration is performed during manufacture and ensures that the indicated volume level for optimum stereo separation is indeed the optimum volume level.

54 Claims, 13 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KMC Draw Desc Image

19. Document ID: US 4982288 A

L5: Entry 19 of 22

File: USPT

Jan 1, 1991

US-PAT-NO: 4982288

DOCUMENT-IDENTIFIER: US 4982288 A

TITLE: High definition television receiver enabling picture-in picture display

DATE-ISSUED: January 1, 1991

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Isobe; Mitsuo Osaka JP Hamada; Masanori Kadoma JP

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Matsushita Electric Industrial Co., Ltd. Osaka JP 03

APPL-NO: 07/ 310925

DATE FILED: February 16, 1989

INT-CL: [05] H04N 5/273

US-CL-ISSUED: 358/183; 358/22

US-CL-CURRENT: 348/565; 348/452, 348/568

FIELD-OF-SEARCH: 358/183, 358/22, 358/138, 358/140

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO

ISSUE-DATE

PATENTEE-NAME

US-CL

4853765

August 1989

Katsumata et al.

358/22 X

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO

PUBN-DATE

COUNTRY

US-CL

492419

January 1974

JP

OTHER PUBLICATIONS

"HD-TV Broadcasting System Using Single Channel Satellite (MUSE)".

ART-UNIT: 262

PRIMARY-EXAMINER: Groody; James J.

ASSISTANT-EXAMINER: Powell; Mark R.

ABSTRACT:

A television signal receiving apparatus of the type in which when performing a picture in picture operation by receiving a plurality of picture signals compressed in band width by multiple sub-Nyquist sampling, a sub-channel signal is first subjected to a spatial interpolating process and combined with a main-channel signal. The still picture portion and moving picture portion of a first input signal are restored to a field offset sub-sampled first picture signal, and a second input signal is restored to a field offset sub-sampled picture signal, subjected to a size-reducing process by time base compression in the vertical and horizontal directions of the picture and delivered as a second picture signal of the form synchronized in phase with a given position of the first picture signal. The first and second picture signals are time-division multiplexed to deliver a third picture signal onto a picture screen.

1 Claims, 3 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KWC Draw Desc Image

☐ 20. Document ID: WO 9940693 A1

L5: Entry 20 of 22

File: EPAB

Aug 12, 1999

PUB-NO: WO009940693A1

DOCUMENT-IDENTIFIER: WO 9940693 A1

TITLE: METHOD AND APPARATUS FOR COMBINING TRANSPONDERS ON MULTIPLE SATELLITES INTO

VIRTUAL CHANNELS

PUBN-DATE: August 12, 1999

ASSIGNEE-INFORMATION:

Record List Display * 6.3 A

NAME

COUNTRY

US

APPL-NO: US09902333

FRIEDMAN ROBERT F

APPL-DATE: February 3, 1999

PRIORITY-DATA: US07361998P (February 4, 1998), US11369398P (December 24, 1998)

INT-CL (IPC): H04 B 7/185 EUR-CL (EPC): H04B007/185

ABSTRACT:

CHG DATE=19990902 STATUS=O>A satellite communications system provides an information channel between remotely located transmitters and receivers. A virtual satellite system provides the same service, but divides the signal either in power or in data content into subchannels such that any particular signal is conducted to the intended receiver via a plurality of traditional satellite channels. The receiving terminal (16) accepts the plurality of signals (26A, 26B, 26C, 26D) simultaneously from a possible plurality of satellites (14A, 14B, 14C, 14D), combining the subchannels comprising the virtual channel into the original signal content as if conducted via a single channel. The receiving antenna system (16) receives satellite subchannel signals (14A, 14B, 14C, 14D) from a plurality of directions using multiple antennas or a single antenna (30) with multi-direction capability. Prior to signal combining, the receiver (16) necessarily time-synchronizes the plurality of subchannels by introducing time delay in some channels before combining the subsignals into the original composite.

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KWC Draw, Desc Image

☐ 21. Document ID: US 20020057745 A1

L5: Entry 21 of 22

File: DWPI

May 16, 2002

DERWENT-ACC-NO: 2002-462970

DERWENT-WEEK: 200305

COPYRIGHT 2003 DERWENT INFORMATION LTD

TITLE: Multi-channel satellite uplink transmission system for satellite communication system, has modulator to modulate subchannel signals received through satellites and combiner to combine modulated signals

INVENTOR: FRIEDMAN, R F

PATENT-ASSIGNEE: FRIEDMAN R F (FRIEI)

PRIORITY-DATA: 1999US-142179P (July 1, 1999), 1999US-0243910 (February 3, 1999), 1999US-0438865 (November 12, 1999), 2001US-0039632 (October 26, 2001)

PATENT-FAMILY:

PUR-NO PUB-DATE LANGUAGE PAGES MAIN-IPC US 20020057745 A1 May 16, 2002 016 H04L027/12

APPLICATION-DATA:

PUB-NO APPL-DATE APPL-NO DESCRIPTOR February 3, 1999 1999US-0243910 CIP of US20020057745A1 US20020057745A1 July 1, 1999 1999US-142179P Provisional Cont of November 12, 1999 US20020057745A1 1999US-0438865 US20020057745A1 October 26, 2001 2001US-0039632

INT-CL (IPC): H04 L 27/04; H04 L 27/12; H04 L 27/20

RELATED-ACC-NO: 2003-056729

ABSTRACTED-PUB-NO: US20020057745A

BASIC-ABSTRACT:

NOVELTY - A transmitting subsystem (12) has a subchannel divider (24) which divides a digital signal into several subchannel signals of lower bit rate. Several antennas (28a-28d) transmit the divided signals to a receiving subsystem (16) through satellites (14a-14d). Several demodulators (34) in the receiving subsystem demodulate the received subchannel signals. A combiner (38) combines the demodulated signals to generate the original digital signal (40).

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is included for receiving system.

USE - For satellite communication system.

ADVANTAGE - Bandwidth requirements need not be increased to accommodate $\underline{\text{timing}}$ signal and the full bandwidth of the information channel is available.

DESCRIPTION OF DRAWING(S) - The figure shows a schematic block diagram of the multi-channel satellite uplink transmission system.

Transmitting subsystem 12

Satellite 14a-14d

Receiving subsystem 16

Subchannel divider 24

Antennas 28a-28d

ABSTRACTED-PUB-NO: US20020057745A

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.1/6

DERWENT-CLASS: W01 W02

EPI-CODES: W01-A09E1; W02-C03A1A; W02-C03B1A; W02-C03B1C;

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KWMC Draw Desc Clip Img Image

22. Document ID: WO 9940693 A1 AU 9927605 A EP 1046246 A1 US 6154501 A

L5: Entry 22 of 22

File: DWPI

Aug 12, 1999

DERWENT-ACC-NO: 1999-540064

DERWENT-WEEK: 199945

COPYRIGHT 2003 DERWENT INFORMATION LTD

TITLE: Satellite communications system

INVENTOR: FRIEDMAN, R F

PRIORITY-DATA: 1998US-113693P (December 24, 1998), 1998US-073619P (February 4, 1998), 1999US-0243910 (February 3, 1999)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
WO 9940693 A1	August 12, 1999	E	036	H04B007/185
AU 9927605 A	August 23, 1999		000	
EP 1046246 A1	October 25, 2000	E	000	H04B007/185
US 6154501 A	November 28, 2000		000	H04B003/36

DESIGNATED-STATES: AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL OA PT SD SE SZ UG ZW AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

APPLICATION-DATA:

PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
WO 9940693A1	February 3, 1999	1999WO-US02333	
AU 9927605A	February 3, 1999	1999AU-0027605	
AU 9927605A		WO 9940693	Based on
EP 1046246A1	February 3, 1999	1999EP-0908092	
EP 1046246A1	February 3, 1999	1999WO-US02333	
EP 1046246A1		WO 9940693	Based on
US 6154501A	February 4, 1998	1998US-073619P	Provisional
US 6154501A	December 24, 1998	1998US-113693P	Provisional
US 6154501A	February 3, 1999	1999US-0243910	

INT-CL (IPC): H04 B 3/36; H04 B 7/17; H04 B 7/185; H04 L 23/02; H04 L 27/28

ABSTRACTED-PUB-NO: US 6154501A

BASIC-ABSTRACT:

NOVELTY - A delay is coupled to each demodulator output to delay the first-arriving subchannel signals so that outputs of the delays are synchronized in time.

DETAILED DESCRIPTION - The <u>satellite</u> communications system which provides an enhanced digital communication channel includes:

- (a) a multi-channel uplink system that divides the original signal into several subchannels and adds a common <u>timing</u> signal to each subchannel, the multi-channel uplink system comprises:
- (b) a subchannel divider to transform the original digital signal into several digital subchannels such that each digital subchannel signal contains at least some information unique to that subchannel and also such that the bit rate of each digital subchannel signal is lower than the bit rate of the original digital signal;
- (c) a timing generator to create a periodic signal,
- (d) signal combiner coupled to the timing generator output and the subchannel divider output associated with each subchannel to add the common timing signal to each subchannel information signal and within the bandwidth of each subchannel information signal such that no additional bandwidth allocation is r equired to transmit the timing information signal;
- (e) upconverter coupled to the signal combiner output associated with each

subchannel to translate the frequency of the timing-added subchannel signal to the frequency of the selected satellite transponder;

- (f) amplifier coupled to the upconverter output associated with each subchannel to increase the power of the translated, timing-added subchannel signal; and
- (g) antenna coupled to the amplifier output associated with each subchannel directing a radio frequency wave toward the receiving antenna of the <u>satellite</u> containing the transponder selected for the associated subchannel; and
- (h) a receiving terminal system to collect signals from several selected <u>satellite</u> transponders and create a delayed reconstruction of the original signal, where the receiving terminal system comprises:
- (i) a multiple beam antenna to simultaneously receive signals from the transponders and present each of the signals on a separate output port;
- (j) a tuner coupled to each multiple beam antenna output port to translate the frequency of each received signal to a fixed intermediate frequency;
- (k) a demodulator coupled to each tuner output to demodulate tuner output and create a bit stream corresponding to the information content of the associated subchannel;
- (1) delay coupled to each demodulator output to delay first-arriving subchannel signals such that outputs of the delays are synchronized in time;
- (m) a digital combiner coupled to the output of the delays to <u>combine the</u> <u>information in each subchannel</u> into a delayed reconstruction of the original digital signal;
- (n) a <u>timing</u> signal correlator coupled to each tuner output to measure the relative delay between arriving subchannel signals;
- (o) a nonvolatile memory to store information about the frequency and propagation delay properties of the virtual channels to be selected; and
- (p) a controller coupled to the multiple beam antenna, the tuners, the delays, the timing signal correlator, and the nonvolatile memory to receive signals from the timing signal correlator and the nonvolatile memory and issue control signals to the multiple beam antenna to set beam direction and polarization, control signals to the tuners to set subchannel receive frequencies, and control signals to the delays to synchronize delay outputs.

USE - For satellite communications systems.

ADVANTAGE - Does not increase the bandwidth requirements of the virtual channel to accommodate the <u>timing</u> signal. The full bandwidth of the information channel is available to the <u>timing</u> signal resulting in higher resolution relative delay estimate.

DESCRIPTION OF DRAWING(S) - The drawing shows a schematic and block diagram of the system.

ABSTRACTED-PUB-NO: WO 9940693A EOUIVALENT-ABSTRACTS:

NOVELTY - A delay is coupled to each demodulator output to delay the first-arriving subchannel signals so that outputs of the delays are synchronized in time.

DETAILED DESCRIPTION - The <u>satellite</u> communications system which provides an enhanced digital communication channel includes:

(a) a multi-channel uplink system that divides the original signal into several subchannels and adds a common <u>timing</u> signal to each subchannel, the multi-channel uplink system comprises:

- (b) a subchannel divider to transform the original digital signal into several digital subchannels such that each digital subchannel signal contains at least some information unique to that subchannel and also such that the bit rate of each digital subchannel signal is lower than the bit rate of the original digital signal;
- (c) a timing generator to create a periodic signal,
- (d) signal combiner coupled to the timing generator output and the subchannel divider output associated with each subchannel to add the common timing signal to each subchannel information signal and within the bandwidth of each subchannel information signal such that no additional bandwidth allocation is r equired to transmit the timing information signal;
- (e) upconverter coupled to the signal <u>combiner output associated with each</u> <u>subchannel to translate the frequency of the timing-added subchannel</u> signal to the <u>frequency of the selected satellite transponder;</u>
- (f) amplifier coupled to the upconverter output associated with each subchannel to increase the power of the translated, timing-added subchannel signal; and
- (g) antenna coupled to the amplifier output associated with each subchannel directing a radio frequency wave toward the receiving antenna of the <u>satellite</u> containing the transponder selected for the associated subchannel; and
- (h) a receiving terminal system to collect signals from several selected <u>satellite</u> transponders and create a delayed reconstruction of the original signal, where the receiving terminal system comprises:
- (i) a multiple beam antenna to simultaneously receive signals from the transponders and present each of the signals on a separate output port;
- (j) a tuner coupled to each multiple beam antenna output port to translate the frequency of each received signal to a fixed intermediate frequency;
- (k) a demodulator coupled to each tuner output to demodulate tuner output and create a bit stream corresponding to the information content of the associated subchannel;
- (1) delay coupled to each demodulator output to delay first-arriving subchannel signals such that outputs of the delays are synchronized in time;
- (m) a digital combiner coupled to the output of the delays to <u>combine the</u> <u>information in each subchannel</u> into a delayed reconstruction of the original digital signal;
- (n) a <u>timing</u> signal correlator coupled to each tuner output to measure the relative delay between arriving subchannel signals;
- (o) a nonvolatile memory to store information about the frequency and propagation delay properties of the virtual channels to be selected; and
- (p) a controller coupled to the multiple beam antenna, the tuners, the delays, the $\frac{\text{timing}}{\text{signal}}$ signal correlator, and the nonvolatile memory to receive signals from the $\frac{\text{timing}}{\text{timing}}$ signal correlator and the nonvolatile memory and issue control signals to the multiple beam antenna to set beam direction and polarization, control signals to the tuners to set subchannel receive frequencies, and control signals to the delays to $\frac{\text{synchronize}}{\text{synchronize}}$ delay outputs.
- USE For satellite communications systems.

ADVANTAGE - Does not increase the bandwidth requirements of the virtual channel to accommodate the <u>timing</u> signal. The full bandwidth of the information channel is available to the <u>timing</u> signal resulting in higher resolution relative delay estimate.