

مبانی رمزنگاری و امنیت شبکه

سیستمهای رمزنگاری کلید همگانی

Public Key Cryptography

مهتاب ميرمحسني

نیمسال دوم (بهار) ۹۹-۹۸

مقدمه

- رمزنگاری متقارن
- ۰ جانشینی و جابجایی
- $\binom{n}{2} = \frac{n(n-1)}{2}$ کاربر n کاربر عداد کلید مورد نیاز برای ارتباط n کاربر n
 - رمزنگاری کلید همگانی
 - انقلاب در تاریخ رمزنگاری
 - بر اساس توابع ریاضی
 - نامتقارن بر پایه دوکلید
 - سیستم نامتقارن یا دو کلیدی (Asymmetric=Two Key)
 - رابطه مشکل (یک طرفه) میان تبدیلات (کلیدهای) رمزگذاری و رمزگشایی
 - یکی از کلیدها میتواند آشکار (همگانی) باشد \longrightarrow رمزنگاری کلید همگانی
 - به دنبال حل مساله توزیع کلید و امضا در رمز متقارن، پیدا شد

رمزنگاری کلید همگانی

- برخی برداشتهای نادرست از این سیستمها وجود دارد
- 1. رمزنگاری کلید همگانی (نامتقارن) امن تر از رمزنگاری متقارن است!
- امنیت وابسته به طول کلید و امکان پردازش (قدرت محاسباتی) دشمن میباشد
 - 2. با معرفی رمزنگاری کلید همگانی، رمزهای متقارن کاربردی ندارند!
 - ۰ سربار محاسبات پیچیده در رمزنگاری کلید همگانی
 - ۰ توزیع کلید و امضا
 - 3. مساله توزیع کلید در رمزنگاری کلید همگانی بدیهی است!
 - اید مطمئن شویم که کلید همگانی متعلق به شخص مدعی است
 - نیاز به مرجع سوم و پروتکل مربوطه دارد

مفاهيم

- کلیدهای نامتقارن: دو کلید برای رمزگذاری و رمزگشایی (یا امضا و تایید آن) \circ کلید همگانی (\mathbf{PU})
 - O کلید خصوصی (PR)
 - بدست آوردن کلید خصوصی از روی کلید همگانی (از نظر محاسباتی) غیر ممکن است
 - گواهینامه کلید همگانی (Public Key Certificate)
- گواهینامهای از طرف مرجع معتبر جهت اختصاص کلید به کاربرها (امضا شده توسط کلید خصوصی مرجع معتبر)
 - زيرساخت كليد همگاني (Public Key Infrastructure (PKI))
 - زیرساختی برای صدور، نگهداری و ابطال (revoke) گواهینامه و زوج کلیدها
 - مجموعهای از سیاستها، پردازشها، سرورها، نرمافزارها و ...

سیستمهای رمزنگاری کلید همگانی Public Key Cryptosystems

- معرفی در سال ۱۹۷۶ توسط دیفی و هلمن (Diffie & Hellman)
 - حل مساله توزیع کلید و امضا
 - معرفی مستقلاً توسط مرکل (Merkle)
 - هر کاربر دارای دو کلید است: مثلاً کاربر
 - (PU_a) یک کلید همگانی (public): همه می دانند \circ
 - (PR_a) مخفی: تنها نزد خود کاربر (private) مخفی یک کلید خصوصی \circ
 - توابع یکطرفه:
 - از روی PU از نظر محاسباتی غیرممکن ightharpoons
 - ساده PR از روی PU ساده lacktriangleright
 - کلید سیستمهای متقارن: کلید مخفی (secret)
- برخی الگوریتمها مانند RSA: یکی از کلیدها برای رمزگذاری و دیگری برای رمزگشایی

رمزگذاری با کلید همگانی

- هر کاربر دو کلید تولید می کند
- یکی را در اختیار دیگران قرار میدهد (در یک فایل قابل دسترس)؛ کلید همگانی
 - کلید دیگر: کلید خصوصی
- باب برای ارسال پیام محرمانه به آلیس، آن را با کلید همگانی آلیس رمز و ارسال می کند
 - آلیس، پیام دریافتی را با کلید خصوصی خود (تنها در اختیار آلیس) میگشاید

رمزگذاری با کلید همگانی

- همه کلیدهای همگانی را دارند
- کلیدهای خصوصی توزیع نمیشوند
- امنیت: تا زمانی که کلید خصوصی مخفی بماند
- با تغییر کلید خصوصی توسط کاربر، کلید همگانی متناظر جدید، انتشار می یابد

محرمانگی با استفاده از رمزنگاری کلید همگانی

رمزگذاری با کلید خصوصی

- باب پیام ارسالی را توسط کلید خصوصی خود رمز و ارسال می کند
 - آلیس با استفاده از کلید همگانی باب آن را رمزگشایی می کند
 - احراز اصالت منبع و پیام (یکپارچگی داده)، امضای دیجیتال

رمزگذاری با کلید خصوصی

احراز اصالت با استفاده از رمزنگاری کلید همگانی امضای دیجیتال

- عدم ایجاد محرمانگی: کلید همگانی A را همه میدانند
 - کلید خصوصی A تنها در اختیار خودش است
- تنها A میتواند این پیام را بفرستد \longrightarrow امضای دیجیتال (احراز اصالت منبع- انکارناپذیری) \circ
- بدون دسترسی به این کلید خصوصی، امکان تغییر پیام وجود ندارد (احراز اصالت پیام- یکپارچگی داده)

احراز اصالت با استفاده از رمزنگاری کلید همگانی امضای دیجیتال

- نیاز به حافظه زیاد
- هر متن اصلی و متن رمزشده متناظر باید ذخیره شوند (جهت بررسی در صورت اختلاف)
 - قسمتی (یا تابعی) از پیام رمز شود (authenticator)
 - بدون تغییر آن، نتوان متن اصلی را تغییر داد
- اگر با کلید خصوصی فرستنده رمز شود، امضایی است که منبع، محتوای داده و ترتیب آن را تایید می کند

محرمانگی و احراز اصالت توام در سیستمهای کلید همگانی

- دو بار استفاده از رمز کلید همگانی
- ایراد: چهار بار اعمال الگوریتم پیچیده (محاسباتی) کلید همگانی

کاربردهای سیستمهای رمزنگاری کلید همگانی

• رمزنگاری (محرمانگی)

○ فرستنده پیام را با استفاده از کلید همگانی گیرنده رمز می کند

• امضای دیجیتال

○ فرستنده پیام (یا authenticator) را با کلید خصوصی خود امضا می کند

• مبادله کلید (Key exchange)

- دو طرف جهت توافق بر کلید نشست (کلید مخفی رمز متقارن) مشارکت میکنند
 - روشهای متفاوتی بر پایه کلید خصوصی یک طرف یا هر دو طرف وجود دارد

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

الزامات سیستمهای رمزنگاری کلید همگانی

در کار اولیه دیفی و هلمن، الگوریتم مناسب دو سیستم قبلی پیشنهاد نشده بود ولی الزامات چنین الگوریتمی مطرح شده بود

- 1. تولید زوج کلید (همگانی و خصوصی) برای هر کاربر از نظر محاسباتی ساده باشد
- رمز شده برای کاربر A، با دانستن پیام و کلید همگانی گیرنده (PU_b)، از $C = E(PU_b, M)$
- نظر (PR_b)، از نظر

الزامات سیستمهای رمزنگاری کلید همگانی

- بدست آوردن کلید خصوصی (PR_b) برای مهاجم با دانستن کلید همگانی (PU_b)، از نظر محاسباتی غیر ممکن باشد
- رمزشده (C)، بدست آوردن پیام (M) برای مهاجم با دانستن کلید همگانی (PU_b) و متن رمزشده (S)، از نظر محاسباتی غیر ممکن باشد
 - 6. ترتیب دو کلید مهم نباشد (شرط لازم نیست)

 $M = D[PU_b, E(PR_b, M)] = D[PR_b, E(PU_b, M)]$

تابع یکطرفه دریچهدار trap-door one-way function

- تابع یکطرفه: تابع یک-به-یکی که محاسبه آن از نظر محاسباتی ساده ولی محاسبه معکوس (یکتا) آن از نظر محاسباتی غیر ممکن باشد
 - ساده: قابل محاسبه در زمان چندجملهای

$$Y = f(X)$$
 easy

 $X = f^{-1}(Y)$ infeasible

کلاس p از نظر پیچیدگی \circ

- تابع یک طرفه دریچه دار: تابع یک طرفه ای که محاسبه معکوس آن با داشتن $Y = f_k(X)$ easy, if k and X are known
- $X = f_k^{-1}(Y)$ easy, if k and Y are known
- $X = f_k^{-1}(Y)$ infeasible, if Y is known but k is not known
 - طراحی الگوریتم کلید همگانی، متناظر با یافتن تابع یکطرفه دریچهدار مناسب است

حملات سیستمهای رمزنگاری کلید همگانی

- حمله جستجوی فراگیر
- راه حل: افزایش طول کلید
- افزایش نمایی پیچیدگی رمزگذاری و رمزگشایی با طول کلید (بر اساس محاسبه تابع معکوس)
- \bigcirc طول کلید مناسب برای مقابله با این حمله \longrightarrow سرعت الگوریتم بسیار کم برای کاربردهای کلی
- کاربرد سیستمهای رمزنگاری کلید همگانی محدود به توزیع کلید و امضای دیجیتال
 شده است

- محاسبه کلید خصوصی از کلید همگانی
- از نظر ریاضی اثبات نشده که غیرممکن است
- تمامي الگوريتمها (حتى RSA پر كاربرد) مورد شك است \longrightarrow ديد متفاوت

حملات سیستمهای رمزنگاری کلید همگانی

- حمله پیام احتمالی (probable-message attack)
 - مخصوص رمزنگاری کلید همگانی
- $^{\circ}$ اگر طول پیام کوتاه باشد (مثلا کلید ۵۶ بیتی $^{\circ}$)، مهاجم با استفاده از کلید همگانی گیرنده (که در اختیار دارد) میتواند تمامی پیامهای ممکن را رمز کرده و با مقایسه آن ها با متن رمز شده، پیام را بیابد
 - مستقل از طول کلید رمز الگوریتم کلید همگانی، حمله تبدیل به جستجوی فراگیر
 یک کلید ۵۶ بیتی میشود
 - مقابله: افزودن بیتهای تصادفی به پیامهای ساده

- توسط Rivest-Shamir-Adleman در سال ۱۹۷۷ در MIT طراحی شد و
 در ۱۹۷۸ به چاپ رسید
 - معروف ترین و پر کاربرد ترین الگوریتم رمزنگاری کلید همگانی
 - $oldsymbol{0}$ رمز قالبی است که (هر قالب) متن اصلی و متن رمز شده اعداد صحیح بین n-1 و n-1
 - $n \le 2^{1024}$ است ا ۱۰۲۴ طول قالب معمولا برابر با
 - بر اساس توان رسانی (نمای) پیمانهای
 - (np) امنیت بر اساس تجزیه یک عدد به عوامل اول آن (کلاس ullet

$$C = M^{e} \mod n$$

$$C^{d} \mod n = (M^{e})^{d} \mod n = M^{ed} \mod n = M$$

- Mقالب پيام ullet
- $oldsymbol{C}$ قالب متن رمز شده $oldsymbol{\bullet}$
- n=pq ویرگ یومانه محاسبات = حاصلضرب دو عدد اول بزرگ $oldsymbol{n}$
 - (p,q,d) :کلید خصوصی
 - (n,e) کلید همگانی: \bullet
- $C^d \mod n = M$ و $ed \equiv 1 \mod \phi(n)$ باشند، آنگاه: $ed \equiv 1 \mod \phi(n)$

$$C^d \bmod n = M^{ed} \bmod n = M^{1+l\phi(n)} \bmod n = M \left(\underbrace{M^{\phi(n)} \bmod n}_{1} \right)^l \bmod n = M$$

$$d = e^{-1} \bmod \phi(n)$$

$$C = M^{e} \mod n$$

$$M = C^{d} \mod n = (M^{e})^{d} \mod n = M^{ed} \mod n$$

- Mقالب ييام ullet
- $oldsymbol{C}$ قالب متن رمز شده $oldsymbol{\bullet}$
- n = pq ییمانه محاسبات = حاصلضرب دو عدد اول بزرگ:n = pq
- کلید همگانی: (n,e)
- (p,q,d) کلید خصوصی: \bullet
- $d = e^{-1} \mod \phi(n)$ شکستن: بدست آور دن \mathbf{d}
 - $\phi(n)$ محاسبه
 - کلاس np
- $\phi(n) = (p-1)(q-1)$ p معلوم: کلاس $q \in p$ معلوم

محرمانگی با استفاده از الگوریتم رمز RSA

کاربر ${f A}$ بخواهد پیام محرمانه ${f M}$ را برای کاربر ${f B}$

$$PR = (n,d) = (p,q,d)$$
 کلید خصوصی: •

$$PU = (n, e)$$

$$C = M^{e_B} \mod n_B$$

$$C^{d_B} \bmod n_B = M^{e_B d_B} \bmod n_B = M$$

احراز اصالت با استفاده از الگوریتم رمز RSA

- ارسال کند: \mathbf{B} کاربر \mathbf{A} بخواهد پیام معتبر \mathbf{M} را برای کاربر \mathbf{B}
 - PR = (n,d) = (p,q,d) : کلید خصوصی
 - PU = (n, e)

• کلید همگانی:

 $C = M^{d_A} \mod n_A$

کاربر A:

 $C^{e_A} \bmod n_A = M^{e_A d_A} \bmod n_A = M$

• کاربر **B**:

الزامات RSA

$$(M,n)=1$$
 $M^{ed} \mod n = M$ پیدا شوند که: e,d,n پیدا شوند که: e,d,n مقادیر e,d,n $gcd(e,\phi(n))=1$, $gcd(d,\phi(n))=1$ ($gcd(e,\phi(n))=1$) $gcd(e,\phi(n))=1$ $gcd(e,\phi(n))=1$

Key Generation Alice

Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calcuate $\phi(n) = (p-1)(q-1)$

Select integer e $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \equiv e^{-1} \pmod{\phi(n)}$

Public key $PU = \{e, n\}$

Private key $PR = \{d, n\}$

Encryption by Bob with Alice's Public Key

Plaintext: M < n

Ciphertext: $C = M^e \mod n$

Decryption by Alice with Alice's Public Key

Ciphertext:

Plaintext: $M = C^d \mod n$

شال RSA

$$p = 17, q = 11$$

$$n = pq = 187$$

$$\phi(n) = (p-1)(q-1) = 160$$

$$\gcd(e, \phi(n)) = 1 \rightarrow e = 7$$

$$d = e^{-1} \mod \phi(n) = 7^{-1} \mod 160 = 23$$

مثال RSA

$$88^1 \mod 187 = 88$$

$$88^2 \mod 187 = 7744 \mod 187 = 77$$

$$88^4 \mod 187 = 59,969,536 \mod 187 = 132$$

$$88^7 \mod 187 = (88 \times 77 \times 132) \mod 187 = 894,432 \mod 187 = 11$$

$$11^1 \mod 187 = 11$$

$$11^2 \mod 187 = 121$$

$$11^4 \mod 187 = 14,641 \mod 187 = 55$$

$$11^8 \mod 187 = 214,358,881 \mod 187 = 33$$

$$11^{23} \mod 187 = (11 \times 121 \times 55 \times 33 \times 33) \mod 187 = 79,720,245 \mod 187 = 88$$

Sender Plaintext P Decimal string Blocks of numbers P_1, P_2, \dots Ciphertext C $C_1 = P_1^e \bmod n$ $C_2 = P_2^e \bmod n$ Public key e, nn = pqTransmit Private key Recovered d, ndecimal text $P_1 = C_1^{\ d} \bmod n$ $P_2 = C_2^{\ d} \bmod n$ $d = e^{-1} \bmod \phi(n)$ $\phi(n) = (p-1)(q-1)$ n = pqe, p, qRandom number Receiver generator

محاسبات توان رسانی (نمای) پیمانهای

$$[(a \bmod n) \times (b \bmod n)] \bmod n = (a \times b) \bmod n$$

• تکرار مرحلهای

$$x^{11} = x \cdot x^2 \cdot x^8$$

 a^{t}

$$b = \sum_{b_i \neq 0} 2^i$$

$$a^b = a^{\left(\sum_{b_l \neq 0}^{\sum_{l'} 2^l}\right)} = \prod_{b_l \neq 0} a^{(2^l)}$$

$$a^b \mod n = \left[\prod_{b_i \neq 0} a^{(2^i)}\right] \mod n = \left(\prod_{b_i \neq 0} \left[a^{(2^i)} \mod n\right]\right) \mod n$$

 $b_k b_{k-1} \dots b_0$ نمایش باینری: •

```
\begin{array}{l} c \leftarrow 0; \ f \leftarrow 1 \\ \\ \textbf{for} \ i \leftarrow k \ \textbf{downto} \ 0 \\ \\ \textbf{do} \ c \leftarrow 2 \ \times c \\ \\ f \leftarrow (f \ \times \ f) \ \text{mod} \ n \\ \\ \textbf{if} \ b_i = 1 \\ \\ \textbf{then} \ c \leftarrow c + 1 \\ \\ f \leftarrow (f \ \times \ a) \ \text{mod} \ n \\ \\ \textbf{return} \ f \end{array}
```

محاسبات توان رسانی (نمای) پیمانهای استفاده از کلید خصوصی

$$M = C^d \mod n$$
 $n = pq$ $V_p = C^d \mod p$ $V_q = C^d \mod q$ $X_p = q \times (q^{-1} \mod p)$ $X_q = p \times (p^{-1} \mod q)$

$$M = (V_p X_p + V_q X_q) \bmod n$$

• قضیه باقیمانده چینی (CRT)

• قضيه فرمت

$$V_p = C^d \operatorname{mod} p = C^{d \operatorname{mod} (p-1)} \operatorname{mod} p$$
 $V_q = C^d \operatorname{mod} q = C^{d \operatorname{mod} (q-1)} \operatorname{mod} q$

RSA حملات

• حمله جستجوی فراگیر (به فضای کلید)

• حملات ریاضی

- حمله زمانی
- حمله متن رمز منتخب (Chosen ciphertext attacks)
 - حمله نوع چهارم

حملات RSA

- حمله جستجوی فراگیر (به فضای کلید)
 - کلید (d) طولانی \circ
 - كاهش سرعت الگوريتم
 - حملات ریاضی
- $d=e^{-1} \operatorname{mod} \phi(n)$ تجزیه $oldsymbol{n}$ به دو عامل اول $oldsymbol{\leftarrow}$ محاسبه $\phi(n)=(p-1)(q-1)$ تجزیه $oldsymbol{n}$
 - $\phi(n)$ محاسبه مستقیم \circ
 - d محاسبه مستقیم \circ
 - حمله زمانی
 - حمله متن رمز منتخب (Chosen ciphertext attacks)
 - $E(PU, M_1) \times E(PU, M_2) = E(PU, [M_1 \times M_2])$

حملات ریاضی RSA

- $d = e^{-1} \mod \phi(n)$ تجزیه n به دو عامل اول $d = e^{-1} \mod \phi(n)$ محاسبه $\phi(n) = (p-1)(q-1)$
 - محاسبه مستقیم $\phi(n)$ پیچیدگی: معادل با تجزیه n به دو عامل اول $\phi(n)$
 - محاسبه مستقیم d: پیچیدگی الگوریتمهای پیشنهادی (تا کنون)، معادل با تجزیه n به دو عامل اول است
 - $^{1\cdot ^{1\cdot \cdot}}$ در حال حاضر $^{1\cdot ^{1}}$ با طول کلید $^{1\cdot ^{1}}$ تا $^{1\cdot ^{1}}$ بیت: q و p از مرتبه $^{1\cdot ^{1}}$ تا $^{1\cdot ^{1}}$

Number of Decimal Digits	Number of Bits	Date Achieved
100	332	April 1991
110	365	April 1992
120	398	June 1993
129	428	April 1994
130	431	April 1996
140	465	February 1999
155	512	August 1999
160	530	April 2003
174	576	December 2003
200	663	May 2005
193	640	November 2005
232	768	December 2009

حمله زمانی RSA

- با مشاهده زمان رمزگشایی یک متن رمز شده، اطلاعاتی در مورد کلید و متن اصلی بدست میآید
 - مهم: دید متفاوت + حمله نوع اول (فقط با متن رمز)

مقابله:

- ثابت کردن زمان توان رسانی پیمانهای
 - کاهش کارآیی
 - تاخیر تصادفی
 - نویز کافی
- کورسازی (Blinding): متن رمزشده پیش از به توان رسیدن در یک عدد تصادفی ضرب شود
 - O در پیادهسازیها گنجانده شده است (RSA Data Security)
 - ۰ ۲٪ الی ۱۰٪ کاهش کارآیی

مبادله کلید دیفی –هلمن Diffie-Hellman key exchange

- معرفی در سال ۱۹۷۶ توسط دیفی و هلمن
 - تعریف سیستمهای کلید همگانی
- مبادله کلید (راز) \rightarrow توافق بر روی کلید مخفی (الگوریتم رمز متقارن)
 - بر اساس سختی محاسبه لگاریتم گسسته
- برای هر عدد صحیح b و ریشه اولی a (برای عدد اول p)، نمای یکتای a و جود دارد، $b \equiv a^i \pmod p$ where $0 \le i \le (p-1)$
 - p لگاریتم گسسته b در مبنای a و پیمانه \circ

$$i = \mathrm{d}\log_{a,p}\left(b\right)$$

مبادله کلید دیفی-هلمن

- (p و عدد صحیح α ریشه اولی q و عدد صحیح α
 - و A و B به مبادله کلید میپردازند \bullet
- $Y_A = lpha^{X_A} mod q$ کاربر A: عدد تصادفی صحیح $X_A < q$ کاربر A: عدد تصادفی صحیح $X_A < q$
- $Y_B = lpha^{X_B} mod q$ کاربر $m{\mathrm{B}}$: به طور مستقل عدد تصادفی صحیح $X_B < q$ کاربر $m{\mathrm{B}}$
 - هر دو کاربر مقادیر X را به طور خصوصی نزد خود نگهمی دارد و مقادیر Y را به طور همگانی به کاربر دیگر ارسال می کند
 - $K = (Y_B)^{X_A} \mod q$:A کلید در کاربر
 - $K = (Y_A)^{X_B} \mod q$:B کلید در کاربر
 - دو کلید برابرند!

مبادله کلید دیفی-هلمن

$$Y_A = \alpha^{X_A} \mod q$$
, $Y_B = \alpha^{X_B} \mod q$

$$K_A = (Y_B)^{X_A} \bmod q$$

$$K_B = (Y_A)^{X_B} \bmod q$$

$$K = (Y_B)^{X_A} \bmod q$$

- $= (\alpha^{X_B} \operatorname{mod} q)^{X_A} \operatorname{mod} q$
- $= (\alpha^{X_B})^{X_A} \mod q$
- $= \alpha^{X_B X_A} \mod q$
- $= (\alpha^{X_A})^{X_B} \operatorname{mod} q$
- $= (\alpha^{X_A} \operatorname{mod} q)^{X_B} \operatorname{mod} q$
- $= (Y_A)^{X_B} \operatorname{mod} q$

- مهاجم به q, α, Y_A, Y_B دسترسی دارد lacktriangle
 - مجبور به محاسبه لگاریتم گسسته
- f B مثلا برای بدست آوردن کلید خصوصی f O

$$X_B = \operatorname{dlog}_{\alpha,p}(Y_B)$$

- ${\bf B}$ سپس، می تواند کلید را به طریقی که کاربر محاسبه می کند، بیابد
- محاسبه لگاریتم گسسته برای اعداد اول بزرگ
 از نظر محاسباتی غیر ممکن به نظر میرسد

Global Public Elements

prime number

$$\alpha$$

 $\alpha < q$ and α a primitive root of q

User A Key Generation

Select private
$$X_A$$

$$X_A < q$$

Calculate public
$$Y_A$$

$$Y_A = \alpha^{XA} \mod q$$

User B Key Generation

Select private
$$X_B$$

$$X_B < q$$

Calculate public
$$Y_B$$

$$Y_B = \alpha^{XB} \mod q$$

Calculation of Secret Key by User A

$$K = (Y_R)^{XA} \mod q$$

Calculation of Secret Key by User B

$$K = (Y_A)^{XB} \bmod q$$

مبادله کلید دیفی-هلمن

src: wikipedia

پروتکلهای مبادله کلید

پروتکل مبادله کلید در شبکه

- گروهی از کاربرها (مثلا کاربرها در یک LAN)
- کنند خصوصی (X_i) را تولید و کلید همگانی (Y_i) را محاسبه می کنند ullet
- کلیدهای همگانی همراه با مقادیر همگانی q و lpha در یک مرجع معتبر ذخیره میشوند
- کاربر j میتواند به کلید همگانی کاربر i دسترسی یابد و با محاسبه کلید مخفی، پیام خود را به آن ارسال کند
 - محرمانگی: تنها کاربر $m{j}$ و کاربر $m{i}$ به کلید مخفی دسترسی دارند lacksquare
- احراز اصالت: کاربر j میداند که تنها کاربر این کلید رمز کند $oldsymbol{i}$
 - آسیبپذیر در برابر حمله تکرار

 X_{D1}, X_{D2} : انتخاب تصادفی کلیدهای خصوصی Y_{D1}, Y_{D2} محاسبه کلیدهای همگانی

Bob

 X_{D1}, X_{D2} انتخاب تصادفی کلیدهای خصوصی: Y_{D1}, Y_{D2} محاسبه کلیدهای همگانی: Y_{D1}, Y_{D2}

$$K2 = (Y_A)^{X_{D2}} \mod q$$
 محاسبه:

 X_{D1}, X_{D2} : انتخاب تصادفی کلیدهای خصوصی Y_{D1}, Y_{D2} محاسبه کلیدهای همگانی

$$K2 = (Y_A)^{X_{D2}} \mod q$$
 محاسبه:

$$K1 = (Y_{D1})^{X_B} \bmod q$$

 X_{D1}, X_{D2} انتخاب تصادفی کلیدهای خصوصی: Y_{D1}, Y_{D2} محاسبه کلیدهای همگانی: Y_{D1}, Y_{D2}

 $K2 = (Y_A)^{X_{D2}} \mod q$ محاسبه:

 $K1 = (Y_B)^{X_{D1}} \mod q$ محاسبه:

$$K1 = (Y_{D1})^{X_B} \bmod q :$$

 X_{D1}, X_{D2} :نتخاب تصادفی کلیدهای خصوصی Y_{D1}, Y_{D2} محاسبه کلیدهای همگانی

 $K2 = (Y_A)^{X_{D2}} \mod q$ محاسبه:

 $K1 = (Y_B)^{X_{D1}} \operatorname{mod} q$ محاسبه:

$$K1 = (Y_{D1})^{X_B} \bmod q :$$

 $K2 = (Y_{D2})^{X_A} \mod q$ محاسبه:

• مقابله: استفاده از امضای دیجیتال یا گواهینامه کلید همگانی

سیستم رمزنگاری Elgamal

- 1914
- بر پایه سختی مساله لگاریتم گسسته
 - استاندارد امضای دیجیتال
- digital signature standard (DSS) o
 - استاندارد ایمیل S/MIME

Global Public Elements

q

prime number

α

 $\alpha < q$ and α a primitive root of q

Key Generation by Alice

Select private X_A

$$X_A < q - 1$$

Calculate Y_A

$$Y_A = \alpha^{X_A} \bmod q$$

Public key

$$\{q, \alpha, Y_A\}$$

Private key

 X_A

Encryption by Bob with Alice's Public Key

Plaintext:

Select random integer k

Calculate K

$$K = (Y_A)^k \bmod q$$

Calculate C1

$$C_1 = \alpha^k \mod q$$

Calculate C2

$$C_2 = KM \bmod q$$

Ciphertext:

$$(C_1,C_2)$$

Decryption by Alice with Alice's Private Key

Ciphertext:

$$(C_1, C_2)$$

Calculate K

$$K = (C_1)^{X_A} \bmod q$$

Plaintext:

 $M = (C_2 K^{-1}) \bmod q$

• سیستم رمزنگاری

Elgamal

رمزگذاری با کلید
همگانی

محرمانگی

صحت سیستم رمزنگاری Elgamal

$$K = (Y_A)^k \mod q$$

$$= (\alpha^{X_A} \mod q)^k \mod q$$

$$= \alpha^{kX_A} \mod q$$

$$= (C_1)^{X_A} \mod q$$

$$m{K}$$
 بدست آوردن کلید • $C_1 = \alpha^k \mod q$

$$(C_2K^{-1}) \bmod q = KMK^{-1} \bmod q$$
$$= M \bmod q$$
$$= M$$

بدست آوردن پیام (متن اصلی) •
$$C_2 = KM \mod q$$
 از $C_2 = KM \mod q$

امنیت سیستم رمزنگاری Elgamal

- پيام طولاني: تقسيم به قالبها
 - استفاده از $oldsymbol{k}$ یکتا برای هر قالب \circ
- بر پایه سختی مساله لگاریتم گسسته
- $X_A = d\log_{\alpha,q}(Y_A)$
 - $k = \operatorname{dlog}_{\alpha,q}\left(C_1\right)$

- بدست آوردن کلید خصوصی ۹
- $oldsymbol{K}$ بدست آوردن کلید یکبار مصرف •

خم بیضوی – Elliptic curve

$$y^2 + axy + by = x^3 + cx^2 + dx + e$$

• فضای پیوسته

$$y^2 = x^3 + ax + b$$

 $oldsymbol{b}$ و $oldsymbol{a}$ و خم بیضوی با دو پارامتر ullet

 $oldsymbol{O}$ همه نقاط خم فوق + نقطه $E\left(a,b
ight)$

• تشكيل گروه آبلي

$$4a^3 + 27b^2 \neq 0$$

اپراتور جمع گروه در خم بیضوی

اپراتور جمع گروه در خم بیضوی

$$P + \mathcal{O} = \mathcal{O} + P = P$$
 for all $P \in E$.
 $P + (-P) = \mathcal{O}$ for all $P \in E$.
 $P + (Q + R) = (P + Q) + R$ for all $P, Q, R \in E$.
 $P + Q = Q + P$ for all $P, Q \in E$.

• گروه جابجاپذیر

خم بیضوی

$$GF\left(2^m
ight)$$
فضای گسسته: Z_p یا Z_p فضای گسسته: z_p عا z_p فضای z_p فضای گسسته: z_p

$$a = 1, b = 1, p = 23$$

 $E_{Z_{23}}(1,1)$

سیستم رمزنگاری مبتنی برخم بیضوی

- جمع در خم بیضوی مشابه ضرب در DH یا RSA
- \mathbf{RSA} یا \mathbf{DH} فرب در خم بیضوی مشابه توان رسانی در

$$a^k \mod q = \underbrace{(a \times a \times \ldots \times a)}_{k \text{ times}} \mod q$$

$$a \times k = \underbrace{(a + a + \dots + a)}_{k \text{ times}}$$

- مساله سخت در در خم بیضوی مشابه مساله لگاریتم گسسته (DLP) در DH یا DH
 - را مخاسبه کن k ، $(a \times k)$ و a

مبادله کلید مبتنی بر خم بیضوی (مشابه DH) ECC Diffie-Hellman Key Exchange

Global Public Elements

 $E_q(a, b)$ elliptic curve with parameters a, b, and q, where q is a

prime or an integer of the form 2^m

G point on elliptic curve whose order is large value n

User A Key Generation

Select private n_A $n_A < n$

Calculate public P_A $P_A = n_A \times G$

User B Key Generation

Select private n_B $n_B < n$

Calculate public P_R $P_R = n_R \times G$

Calculation of Secret Key by User A

 $K = n_A \times P_B$

Calculation of Secret Key by User B

 $K = n_B \times P_A$

رمزگذاری مبتنی بر خم بیضوی

Global Public Elements

 $E_q(a, b)$ elliptic curve with parameters a, b, and q, where q is a prime or an integer of the form 2^m

G point on elliptic curve whose order is large value n

User A Key Generation

Select private n_A $n_A < n$

Calculate public P_A $P_A = n_A \times G$

 ${f B}$ اربر ${f A}$ برای ارسال پیام محرمانه ${f A}$ به کاربر

- عدد صحیح مثبت k را انتخاب می کند ullet
- $C_m = \{kG, P_m + kP_B\}$ رمزگذاری •
- $P_m + kP_B n_B(kG) = P_m + k(n_BG) n_B(kG) = P_m$ رمزگشایی

امنیت سیستم رمزنگاری مبتنی بر خم بیضوی NIST SP-800-57

• بهترین الگوریتم شناخته شده لگاریتم خم بیضوی: Pollard rho method

• توصیه استانداردها از ۲۰۳۰ برای طول کلید:

RSA بیت برای ۱۴۳۶۰–۳۰۷۲ ه

ECC بیت برای ۵۱۲-۲۵۶ ○

• پیچیدگی محاسباتی RSA و ECC برای طول کلید یکسان تقریبا برابر است

Symmetric Key Algorithms	Diffie–Hellman, Digital Signature Algorithm	RSA (size of <i>n</i> in bits)	ECC (modulus size in bits)
80	L = 1024 N = 160	1024	160–223
112	L = 2048 $N = 224$	2048	224–255
128	L = 3072 N = 256	3072	256–383
192	L = 7680 N = 384	7680	384–511
256	L = 15,360 N = 512	15,360	512+

تولید دنباله شبه تصادفی بر اساس رمز نامتقارن

- پیچیدگی محاسباتی رمز کلید همگانی: مناسب برای PRF
 - RSA بريايه Micali–Schnorr PRNG •
 - ISO standard 18031 , ANSI standard X9.82 o

$$N = [\log_2 n] + 1$$
$$r + k = N$$

• مشابه سبک OFB رمز متقارن

