Question	Answer	Marks	Guidance
(a)	$(3x-2)^{\frac{1}{2}} = \frac{1}{2}x+1 \Rightarrow 3x-2 = \left(\frac{1}{2}x+1\right)^2 = \frac{1}{4}x^2+x+1$	M1	Equating curve and line, attempt to square; $\frac{1}{4}x^2 + 1$ M0
	$\Rightarrow \frac{1}{4}x^2 - 2x + 3[=0][\Rightarrow x^2 - 8x + 12 = 0] \Rightarrow (x-6)(x-2)[=0]$	M1	Forming and solving a 3TQ by factorisation, formula or completing the square – see guidance.
	(2, 2) and (6, 4)	A1 A1	A1 for each point, or A1 A0 for two correct x-values. If M0 for solving, SC B2 possible: B1 for each point or B1 B0 for two correct x-values.
		4	

Question	Answer	Marks	Guidance		
(b)	Area = $\pm \int_{[2]}^{[6]} \left((3x - 2)^{\frac{1}{2}} - \left(\frac{1}{2}x + 1 \right) \right) [dx]$	*M1	For intention to integrate and subtract (M0 if squared).		
	$\pm \left[\frac{2}{9} (3x - 2)^{\frac{3}{2}} - \left(\frac{1}{4} x^2 + x \right) \right]_2^6$	B1 B1	B1 for each bracket integrated correctly (in any form).		
	$\pm \left(\left[\frac{2}{9} (16)^{\frac{3}{2}} - \left(\frac{1}{4} \times 36 + 6 \right) \right] - \left[\frac{2}{9} (4)^{\frac{3}{2}} - \left(\frac{1}{4} \times 4 + 2 \right) \right] \right)$	DM1	$\pm (F(their\ 6) - F(their\ 2))$ with their integral. Allow 1 sign error.		
	$\frac{4}{9}$	A1	AWRT 0.444. SC1 B1 for $\frac{4}{9}$ if *M1 B1 B1 DM0. SC2 B1 for $\frac{4}{9}$ if *M1 B0 B0 DM0, provided limits stated.		
	Alternative method for question 7(b)				
	Area = $\pm \int_{[2]}^{[6]} (3x-2)^{\frac{1}{2}} [dx]$ - area of trapezium (or triangle + rectangle)	*M1	For intention to integrate and subtract (M0 if squared).		
	$\pm \left[\frac{2}{9} (3x - 2)^{\frac{3}{2}} \right]_{2}^{6} - 4 \left(\frac{2+4}{2} \right) \text{or} \pm \left[\frac{2}{9} (3x - 2)^{\frac{3}{2}} \right]_{2}^{6} - \left(\frac{2+4}{2} + (2 \times 4) \right)$	B1 B1 FT	B1 for bracket integrated correctly (in any form). B1 FT for using correct formula with <i>their</i> values.		
	$\pm \left(\left(\frac{2}{9} (16)^{\frac{3}{2}} - \frac{2}{9} (4)^{\frac{3}{2}} \right) - 12 \right)$	DM1	±(F(their 6) – F(their 2)) using their integral. Allow 1 sign error.		

Question	Answer	Marks	Guidance
(b)	$\frac{4}{9}$	A1	AWRT 0.444. SC1 B1 for $\frac{4}{9}$ if *M1 B1 B1 DM0. SC2 B1 for $\frac{4}{9}$ if *M1 B0 B0 DM0, provided limits stated.
		5	