UNIVERSITY OF ROCHESTER, ECE DEPARTMENT ADVANCE CMOS VLSI ASSIGNMENT -5

Submitted By CHINMAI

CONTENT

l	Part A	.2
	Part B	
III.	Part C	_

Part I

16X16 Multiplier

A(28,886) * B(54,896) = C (1,585,725,856) Time take to compute the result by this Multiplier is 33000ps

Worse Case Path Delay for the Multiplier measured is 264ps

Part II

DBNS Converter:

In this DBNS converter a decimal number can be represented as base of 3 and 2. Therefore 22 can be represented as $3^2 2^1 + 3^0 2^2$. Let us consider ai and bi as the powers of 3 and 2 $[3^{ai} 2^{bi}]$. The range of ai and bi can be varied depending of the number to be represented. For Ex. 8 bit number can be represented as powers of 3 and 2 with ai & bi, having range between 0 - 3. Number of combinations with this range is 3x3 = 9 bits. Therefore we will require 9 bit Register to represent DBNS number using binary number 0 & 1. Thus 22 can be represented as

	1	2	4
1	0[8]	0 _[7]	1 _[6]
3	0 _[5]	0 _[4]	0[3]
9	0[2]	1[1]	0[0]

DBNS 22[9:0] = 0 0100 0010

Hence the following algorithm is used to represent a DBNS number. Store the value in a temporary variable called difference. Subtract difference this with next least value, which is combination of powers of 3 &2. The bit which represents this combination has to b set to 1. Perform this until difference is 0.

For Eg: diff =
$$22 - 3^2 2^1 = 4$$
 A[1] = 1 -> diff = diff - $3^0 2^2$ A[6] = 1 diff = 0 => A = 0 0100 0010

Time Take by the Converter(speed) = 45000ps

DBNS DeConverter

To convert DBNS number to a decimal number, we will have to multiply every bit of DBNS number with its respective exponent value and add it altogether.

For Eg: A = 0 0100 0010 x = x + A[1] *
$$3^2 2^1$$
 = 18 x = 18 + A[6] * $3^0 2^2$ x => 22

Below is the algorithm shown for DBNS Deconverter.

Time Take by the DeConverter(speed) = 525000ps

Part III

DBNS Multiplier

16 bit Decimal number received in REGA and REGB is sent to the converter and 35 bit A and B DBNS number along with an Enable signal. Once enable signal goes high, we perform DBNS multiplication i.e every exponential bit of A is multiplied with every exponential bit of B.

- a. This Multiplier can be efficiently used by pipelining the converter and DEconverter operations such that when Multiplier is performing Multiplication of A0 & B0, Converter is converting A1 and B1 into DBNS number in parallel. Thus for a stream of inputs DBNS Multiplier can work efficiently.
- b. Time Consumed to perform Multiplication is very less since operands are small numbers also if the bit value is 0 multiplication will not be performed. Hence number of multiplication operations performed p x m . Where p is the number of exponential components in number A and number of exponential components in number B.

Time Take by the DBNS Multiplier(speed) = 546,000ps

Time Take by the DBNS_Multiplier without the converter or de converter i.e when the enable signal is 1(speed) = 12,054 ps

CODE:

Following zip file contains Test case and code for all the above :

