

计算机系统与网络安全技术

周世杰

计算机科学与工程学院

EMail: sjzhou@uestc.edu.cn

DES算法简介

- 数据加密标准 (DES: Data Encryption Standard)
 - 对称分组密码算法
 - 1979年,美国银行协会批准使用
 - 1980年,美国国家标准局(ANSI)同意DES作为私人使用的标准,称之为DEA(ANSI X.392)
 - 1983年,国际化标准组织ISO同意DES作为国际标准,称之为DEA-1
 - 该标准规定每五年审查一次,计划十年后采用新标准
 - 最近的一次评估是在1994年1月,已决定1998年12月以后,DES将不再作为联邦加密标准。

DES算法概述

· DES属于分组密码,其分组长度为64位

DES算法详细过程

明文分组及 初始置换

16轮迭代

逆置换

DES算法

DES算法详细过程

初始置换 IP

初始置换表

 58
 50
 42
 34
 26
 18
 10
 2

 60
 52
 44
 36
 28
 20
 12
 4

 62
 54
 46
 38
 30
 22
 14
 6

 64
 56
 48
 40
 32
 24
 16
 8

 57
 49
 41
 33
 25
 17
 9
 1

 59
 51
 43
 35
 27
 19
 11
 3

 61
 53
 45
 37
 29
 21
 13
 5

初始逆置换表

初始逆置换 IP⁻¹ 40 8 48 16 56 24 64 32 39 7 47 15 55 23 63 31 38 6 46 14 54 22 62 30 37 5 45 13 53 21 61 29 36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27 34 2 42 10 50 18 58 26

57

未实求真 大气大为

DES算法的一轮运算过程

扩充/置换表 32 | 01 02 03 04 | 05 04 | 05 06 07 08 | 09 08 | 09 10 11 12 | 13 12 | 13 14 15 16 | 17 16 | 17 18 19 20 | 21 20 | 21 22 23 24 | 25 24 | 25 26 27 28 | 29 28 | 29 30 31 32 | 01

置换表

16 07 20 21 29 12 28 17 01 15 23 26 05 18 31 10 02 08 24 14 32 27 03 09 19 13 30 06 22 11 04 25

DES算法的代换/选择运算

DES算法

DES算法的S盒设计

	行\列	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
នុ	1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
~1	2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
	0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
S_2	1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
~	2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
	0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
S_3	1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
	2	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	3	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
	0	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
S_{\bullet}	1	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
	2	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
	3	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

	0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
S,	1	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
رد	2	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
	3	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
	0	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
S_{i}	1	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
~ '	2	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
	3	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
	0	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
S_7	1	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
, ,	2	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
	3	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
	0	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
S_8	1	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
"	2	1	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
	3	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

DES算法的S盒示例

	行\列	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
	1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
~1	2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
ç	0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
	1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
~2	2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

- 对每个盒,6比特输入中的第1和第6比特组成的二进制数确定的行
- 中间4位二进制数用来确定的列
- 相应行、列位置的十进制数的4位二进制数表示作为输出。
- · 例如的输入为101001,则行数和列数的二进制表示分别是11和0100,即第3行和第4列
- 第3行和第4列的十进制数为3,用4位二进制数表示为0011,所以的输出为0011。

DES算法子密钥的生成

置换选择2 (PC-2)

			PC-2	?		
14	17	11	24	1	5	
3	28	15	6	21	10	
23	19	12	4	26	8	
16	7	27	20	13	2	
41	52	31	37	47	55	
30	40	51	45	33	48	
44	49	39	56	34	53	
46	42	50	36	29	32	

DES算法形式化描述及证明

- 令*i*表示迭代次数,⊕表示逐位模2求和,*f*为加密函数
 - ▶ 加密过程:

$$L_0 R_0 \leftarrow IP(<64bit$$
输入码>)
$$L_i \leftarrow R_{i-1} \qquad i = 1, 2, \dots, 16$$

$$R_i \leftarrow L_{i-1} \oplus f(R_{i-1}, k_i) \qquad i = 1, 2, \dots, 16$$

$$<64bit$$
密文>← $IP^{-1}(R_{16}L_{16})$

▶ 解密过程:

$$R_{16}L_{16} \leftarrow IP(<64bit$$
密文>)
$$R_{i-1} \leftarrow L_{i} \qquad i = 16,15,\cdots,1$$

$$L_{i} \leftarrow R_{i-1} \oplus f(R_{i-1},k_{i}) \qquad i = 16,15,\cdots,1$$

$$<64bit$$
明文>← $IP^{-1}(R_{0}L_{0})$

