HyperDrive: Autonomous Self-Driving Car in an Urban Setting using Deep Reinforcement Learning

Sana Haider p180011@nu.edu.pk Syed Asad Zaman p180034@nu.edu.pk

Supervisor Mr. Waqas Ali September 30, 2021

Table of contents

- 1. Introduction
- 2. Motivation
- 3. Literature Review
- 4. Problem
- 5. Work Breakdown
- 6. Tools
- 7. Deliverable
- 8. References

Introduction

Reinforcement Learning Achievements

Games

- Chess (1997)
- Atari (2013)
- AlphaGo (2016)
- AlphaZero (2017)

Robotics

Introduction

Self-Driving Car

CARLA (Car Learning to Act)

Deep Reinforcement Learning

Scope

Simulated Environment

Urban & Dynamic Environment

Goal-Oriented Driving

Urban Environment of CARLA

Motivation

Motivation

Automation

- Industrial
- Healthcare
- Engineering

Motivation

Automation

- Industrial
- Healthcare
- Engineering

So, why not Cars?

Literature Review

Literature Review

DrivingMatter [1]

- Limited Observation & Action Space
- SLAM

Robustness in Reinforcement Learning [2]

- low accuracy
- DQN

CARLA [3]

Problem

Problem

Autonomous Car's Routing in a Dynamic Urban Environment of CARLA.

How HyperDrive is Different?

How HyperDrive is Different?

• Simulated Dynamic Urban Environment

How HyperDrive is Different?

- Simulated Dynamic Urban Environment
- Route Planning for aimed driving

Work Breakdown

Sensors attachment to the Car Reading input and Visualizing it Result visualization complete Collision and Object Detection Taking Optimal Action Q-Learning Result Visualization Result Visualization Complete Implement DQN Path Planning using DQN Result Visualization Final Product Testing Documentation

Tools

Tools

Language Utilized

Python

Visual Library

OpenCV

Deep Learning Library

- TensorFlow
- Keras

Plot Library

- Seaborn
- Qt

Deliverable

Deliverable

FYP-I

- Getting Familiar & Environment Setup of CARLA
- Static Driving
- Static Path Planning

Deliverable

FYP-I

- Getting Familiar & Environment Setup of CARLA
- Static Driving
- Static Path Planning

FYP-II

- Training Agent in Dense Urban Environment
- Route Planning using DQN

References

References

- S. O. Chishti, S. Riaz, M. BilalZaib, and M. Nauman, "Self-driving cars using cnn and q-learning," in *2018 IEEE 21st International Multi-Topic Conference (INMIC)*. IEEE, 2018, pp. 1–7.
- Y. Jaafra, J. L. Laurent, A. Deruyver, and M. S. Naceur, "Seeking for robustness in reinforcement learning: application on carla simulator," 2019.
- A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, "Carla: An open urban driving simulator," in *Conference on robot learning*. PMLR, 2017, pp. 1–16.

Thank you!
Any Questions?