BUOYANCY ALGEBRA — PLAIN-LANGUAGE VALIDATION

Goal

This demonstration shows how strongly worded or absolute statements can be rewritten through three fixed operators—Re-express (R), Contextualize (C), and Frame (F)—to produce calmer, more proportional language. Each repair is measured numerically using the Π (Pi) metric, defined as harm / (1 + provocation). The worked example below illustrates how a single repair cycle can lower linguistic pressure ($\Delta\Pi$) and maintain algebraic symmetry (ρ^3 = I).

Method (short)

- R (Re-express): soften absolutes, reduce ALL-CAPS or "!!!", adjust harsh nouns.
- C (Contextualize): add an evidence hedge ("according to available evidence").
- F (Frame): add balance ("While X, rehabilitation and prevention can reduce harm.").
- Metric: Π = harm / (1 + provocation). Lower Π = calmer; $\Delta\Pi$ = Π _before Π _after.

Worked Example

Input: All criminals deserve life in jail!!!

Output: While some people convicted of crimes deserve serious sentences according to available evidence, rehabilitation and prevention can reduce harm.

П before	0.52	Пafter	0.37	ΔΠ	0.15
Interpretation	on	_		_	

- Why Π drops: R removes negative/absolute tokens; C and F reduce provocation by a dding evidence and balance. Recomputing Π after the edit yields a lower value ($\Delta\Pi$ = 0. 15).
- What the number means: □ ranges 0–1. Values near 0.6 indicate high pressure (absolutes, shouting). Values near 0.3–0.4 indicate proportional language.
- Symmetry check: ρ cycles stance buckets (negative \rightarrow neutral \rightarrow positive). The identit y after three rotations (ρ ³ = I) confirms stable algebraic behavior.
- Limitations: This is a small, transparent heuristic (no external model). It is intentionally conservative; further grammar polish can be layered later without changing the math.

Created by Michael Dixon · Buoyancy Algebra v1.0

Batch Results: Π before vs Π after (n=91)

Across 91 inputs, the buoyancy-repair operator monotonically lowered Π on every example (100% win rate). Mean Π dropped from 0.496 to 0.358 (Δ =0.138), a 27.8% relative reduction, with the paired t-test showing a highly significant effect (t(90)=25.5, p=5.80e-43) and a confirmatory Wilcoxon signed-rank test (W=4186, p=5.63e-17, one-sided). The improvement is consistent (median Δ =0.150, range 0.060–0.240). ρ^3 =I held throughout and the secondary pass rarely changed Π , indicating the primary repair step drives most of the lift.

Figure 1. Buoyancy Repair: Π before vs Π after (batch run).

Metric	Value
n (examples)	91
Improved / Same / Worse	91 / 0 / 0
Mean Π (before \rightarrow after)	$0.496 \rightarrow 0.358$
Relative drop	27.8%
Mean $\Delta\Pi$ (median)	0.138 (0.150)
Paired t-test	t(90)=25.51, p=5.80e-43
Wilcoxon (one-sided)	W=4186, p=5.63e-17

Notes: $\Delta\Pi = \Pi$ _before – Π _after. Tests assume paired design; Wilcoxon is one-sided (before > after).