

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
26. Februar 2004 (26.02.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/017450 A2

(51) Internationale Patentklassifikation⁷: **H01M 8/04**

(21) Internationales Aktenzeichen: **PCT/DE2003/002200**

(22) Internationales Anmeldedatum:
2. Juli 2003 (02.07.2003)

(25) Einreichungssprache: **Deutsch**

(26) Veröffentlichungssprache: **Deutsch**

(30) Angaben zur Priorität:
102 35 757.2 18. Juli 2002 (18.07.2002) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): **DAIMLERCHRYSLER AG [DE/DE]**; Epplestrasse 225, 70567 Stuttgart (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): **BERGER, Gerhard** [DE/DE]; Natternweg 3, 73061 Ebersbach (DE). **INTROP, Jens** [DE/DE]; Friedenstrasse 6, 89073 Ulm (DE). **KONRAD, Gerhard** [DE/DE]; Mendelstrasse 16, 89081 Ulm (DE). **LAMM, Arnold** [DE/DE]; Thalfinger Strasse 63, 89275 Elchingen (DE). **SCHNETZLER, Sven** [DE/DE]; Zwischenhausen 4, 35037 Marburg (DE).

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

[Fortsetzung auf der nächsten Seite]

(54) Title: DEVICE AND METHOD FOR HUMIDIFYING A GAS FLOW

(54) Bezeichnung: VORRICHTUNG UND VERFAHREN ZUR BEFEUCHTUNG EINES GASSTROMS

WO 2004/017450 A2

(57) Abstract: A device used for humidifying the flow of a gas which is to be humidified, e.g., fed to a fuel cell system. A moist gas, e.g. a moist waste gas from said fuel cell system is used for said humidification, whereby said gas flows together with the gas flow in a humidifying device. The two gas flows are separated from each other by a membrane in the humidifying device. The membrane is exclusively permeable for water vapour. According to the invention, at least one bypass line is provided. At least one of the gas flows can be partially guided via said bypass line around the region of the membrane in the humidifying device. The saturation point can thus be freely adjusted in an advantageous manner in the gas which is to be humidified.

(57) Zusammenfassung: Eine Vorrichtung dient zum Befeuchten eines zu befeuchtenden Gasstroms, welcher z.B. einem Brennstoffzellensystem zugeführt wird. Zur Befeuchtung wird dabei ein feuchtes Gas, z.B. ein feuchtes Abgas aus dem Brennstoffzellensystem, genutzt, welches zusammen mit dem zu befeuchtenden Gasstrom in eine Befeuchtereinrichtung strömt. Die beiden Gasströme sind dabei durch

[Fortsetzung auf der nächsten Seite]

SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN,
YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Vorrichtung und Verfahren zur Befeuchtung eines Gasstroms

Die Erfindung betrifft eine Vorrichtung zur Befeuchtung wenigstens eines Gasstroms, insbesondere eines zu einem Brennstoffzellensystem strömenden Gasstroms, nach der im Oberbegriff von Anspruch 1 näher definierten Art.

Prinzipiell kennt der Stand der Technik zwei verschiedene Arten von PEM-Brennstoffzellensystemen (PEM = Polymer-Elektrolyt-Membran). Man unterscheidet dabei zwischen Brennstoffzellensystemen mit einem Gaserzeugungseinrichtung und solchen, welche unmittelbar mit Wasserstoff betrieben werden. Bei Brennstoffzellensystemen mit Gaserzeugungseinrichtung wird in der Gaserzeugungseinrichtung ein wasserstoffhaltiges Gas zum Betreiben der Brennstoffzelle erzeugt. Im allgemeinen wird dazu eine kohlenwasserstoffhaltige Verbindung, beispielsweise Alkohol, Benzin oder Diesel, zusammen mit Wasser und gegebenenfalls Luft in ein wasserstoffreiches Gas und Kohlendioxid umgewandelt.

Bei beiden oben beschriebenen Brennstoffzellensystemen muß die dem Kathodenbereich der PEM-Brennstoffzelle zugeführte Luft, oder ein anderes sauerstoffhaltiges Medium, entsprechend befeuchtet werden, um die PEM vor der Austrocknung zu bewahren. Zusätzlich muß bei Brennstoffzellensystemen mit einer Gaserzeugungseinrichtung die Wasserbilanz des Brennstoffzellensystems nach Möglichkeit in sich geschlossen sein, um einerseits die Befeuchtung der PEM sicherzustellen und andererseits ohne andauerndes Nachtanken genügend Wasser für den Betrieb der Gaserzeugungseinrichtung bereitzustellen. Das Wasser dient, insbesondere in flüssiger Form gespeichert,

dann für eine Heissdampfreformierung oder autothermen Reformierung der zur Wasserstoffgewinnung eingesetzten kohlenwasserstoffhaltigen Verbindung in der Gaserzeugungseinrichtung.

- 5 In der PEM-Brennstoffzelle selbst wird ein Anodenraum, welchem der Wasserstoff oder das wasserstoffhaltige Gas zugeführt wird, durch die PEM, welche üblicherweise im Rahmen einer Membran-Elektroden-Einheit (MEA - Membrane Elektrode Assembly) verbaut wird, von dem Kathodenraum getrennt, welchem ein sauerstoffhaltiges Medium, insbesondere Luft, zugeführt wird. In der Brennstoffzelle wird bei den derzeit üblichen Aufbauten gleichzeitig Wasser von der Anodenseite auf die Kathodenseite der PEM transportiert. Ebenso entsteht bei der Umsetzung von Wasserstoff und Sauerstoff das Produktwasser.
- 10 Dieses Produktwasser wird üblicherweise durch einen Abgasstrom aus dem Kathodenraum abgeführt.
- 15

Die US 6,007,931 sowie die US 6,048,383 beschreiben nun entsprechende Verfahren, bei denen der feuchte Abgasstrom aus dem Kathodenraum durch eine Befeuchtereinrichtung geführt wird, welche über eine für Wasserdampf durchlässige Membran verfügt. Der in dem Abgasstrom enthaltene Wasserdampf kann so durch Membran hindurchtreten und einen in der Befeuchtereinrichtung auf der anderen Seite der Membran strömenden Gasstrom befeuchten. Dieser Gasstrom kann dabei insbesondere die im Kathodenraum zugeführte Luft sein.

Bei diesem Verfahren stellt sich nun in dem dem Kathodenraum zuströmenden, zu befeuchtenden Gasstrom ein Taupunkt ein, welcher im wesentlichen von der Temperatur des Kathodenabgases, der Übertragungsleistung der Membran und dem Lastpunkt des Brennstoffzellensystems abhängt. Dabei kann es bei höherer Übertragungsleistung jedoch dazu kommen, dass sich in dem zu befeuchtenden, dem Kathodenraum zugeführten Gasstrom derart hohe Taupunkte einstellen, dass ein zuverlässiger Betrieb der Brennstoffzelle nicht mehr gewährleistet ist. Anstatt einer sinnvollen Befeuchtung kommt es praktisch zu einer „Über-

flutung" der PEM bzw. der in ihrem Bereich angeordneten Elektronen/Katalysatoren und/oder des Kathodenraums, die elektrische Leistung der Brennstoffzelle fällt damit ab.

5 Es ist daher die Aufgabe der vorliegenden Erfindung, eine einfache und kompakt auszuführende Vorrichtung und ein Verfahren zum Befeuchten wenigstens eines Gasstroms, insbesondere zu einem Brennstoffzellensystem strömenden Gasstroms, zu schaffen, bei dem die Möglichkeit besteht, den Taupunkt in
10 dem wenigstens einen zu befeuchtenden Gasstrom zu variieren und insbesondere auf einem jeweils vorgegebenen Wert einzustellen.

Erfindungsgemäß wird diese Aufgabe durch die im Kennzeichnenden Teil von Anspruch 1 genannten Merkmale gelöst.

Ein Verfahren zur Lösung der oben genannten Aufgabe in Kombination mit der Vorrichtung gemäß Anspruch 1 ergibt sich aus dem kennzeichnenden Teil des Anspruchs 14.

20 Besonders günstige Verwendungen für die oben genannte erfundungsgemäße Vorrichtung und gegebenenfalls das oben genannte erfundungsgemäße Verfahren ergeben sich aus den Ansprüchen 15 oder 16.

25 Durch die wenigstens eine Bypassleitung lässt sich in besonders einfacher und effektiver Weise der Volumenstrom auf zumindest einer Seite der für Wasserdampf durchlässigen Membran beeinflussen.

30 So kann der Volumenstrom, welcher befeuchtet werden soll und den Wasserdampf aufnimmt, variiert werden. Dieser kann dann z.B. mit dem durch die Bypassleitung gelangenden Teil vermischt werden, wodurch sich in dem Gemisch der gewünschte
35 Taupunkt einstellen lässt. Eine Variation des Taupunkts wird so durch eine einfache Einrichtung, beispielsweise mittels Proportionalventilen oder dergleichen möglich.

Alternativ dazu kann auch ein Teil des feuchten Gases durch eine Bypassleitung um die Membran herumgeführt werden. Dadurch lässt sich über eine ebenfalls sehr einfache Beeinflusung der Volumenströme, z.B. durch eine Ventileinrichtung, die Menge an angebotenem Wasserdampf verändern, wodurch sich auch die Befeuchtung des zu befeuchtenden Gasstroms variiert lässt. Auch so lässt sich mit sehr einfachen Mitteln der Taupunkt in dem zu befeuchtenden und später z.B. einer Brennstoffzelle zugeleiteten Gasstrom beeinflussen.

Gemäß einer besonders günstigen Weiterbildung der oben genannten Erfindung wird der feuchte Abgasstrom nach dem Durchströmen der Befeuchtereinrichtung und/oder der Bypassleitung in eine weitere vergleichbar aufgebaute Befeuchtereinrichtung zur Befeuchtung eines weiteren Gasstroms geführt. In diesem Aufbau wird sichergestellt, dass die gesamte in dem Abgasstrom vorliegende Feuchte bzw. der Wasserdampf zurückgewonnen und dem System zur Verfügung gestellt wird. Dies wirkt sich beispielsweise bei einem Brennstoffzellensystem besonders positiv auf dessen Wasserbilanz aus, so dass hier auf ein Nachtanken von Wasser zum Betreiben des Brennstoffzellensystems verzichtet werden kann.

Gemäß einer weiteren sehr günstigen Ausgestaltung der Erfindung ist die wenigstens eine Bypassleitung in die Befeuchtereinrichtung selbst integriert.

Dadurch entsteht ein sehr kompakter und platzsparender Aufbau, welcher insbesondere bei der Verwendung der Erfindung in einem Brennstoffzellensystem in einem Kraftfahrzeug, Boot oder dergleichen von besonderem Vorteil ist.

In einer Weiterbildung der Erfindung lässt sich die erfindungsgemäße Vorrichtung auch zum Trocknen eines Gasstroms nutzen.

Dafür ist lediglich eine Umkehrung von „Nutzgasstrom“ und „Abgas(Stripgas)-strom notwendig. So kann ein feuchter Gasstrom über einen zuerst trockenen und nach der Befeuchtereinrichtung dann feuchten Stripgasstrom in einem genau einstellbaren Verhältnis entfeuchtet werden.

Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den restlichen Unteransprüchen und werden anhand des nachfolgend beschriebenen Ausführungsbeispiels unter Bezugnahme auf die Zeichnungen näher erläutert.

Dabei zeigen:

Fig. 1 ein Brennstoffzellensystem in einer erfindungsgemäßen Ausführung;

Fig. 2 ein möglicher Aufbau einer Befeuchtereinrichtung gemäß der Erfindung in einer Prinzipdarstellung;

Fig. 3 ein Aufbau der Befeuchtereinrichtung gemäß Fig. 2 mit einer Einrichtung zur Variation des Volumenstroms durch eine Bypassleitung;

Fig. 4 ein weiterer möglicher Aufbau einer Einrichtung zur Variation des Volumenstroms durch die Bypassleitung;

Fig. 5 ein weiterer Alternativer Aufbau einer Einrichtung zur Variation des Volumenstroms durch die Bypassleitung;

Fig. 6 ein weiterer möglicher Aufbau einer Befeuchtereinrichtung gemäß der Erfindung in einer Prinzipdarstellung;

Fig. 7 eine alternative Ausführungsform des erfindungsgemäßen Brennstoffzellensystems; und

Fig. 8 eine weitere alternative Ausführungsform des erfindungsgemäßen Brennstoffzellensystems.

Nachfolgend ist die Erfindung anhand einer Vorrichtung zum Befeuchten eines Gasstroms für ein Brennstoffzellensystem 5 eingehend beschrieben, sie soll damit jedoch nicht auf diesen konkreten Anwendungsfall eingeschränkt sein.

In Fig. 1 ist ein Brennstoffzellensystem 1 dargestellt. Das Brennstoffzellensystem 1 weist wenigstens eine Brennstoffzelle 2 auf, welche als einzelne Zelle oder insbesondere als ein aus mehreren Einzelzellen bestehender Brennstoffzellenstack aufgebaut sein kann. Die Brennstoffzelle 2 weist eine Protonen leitende Membran 3, insbesondere eine PEM, auf, welche einen Anodenraum 4 von einem Kathodenraum 5 der Brennstoffzelle 2 trennt. In der Brennstoffzelle 2 wird nun aus einem wasserstoffhaltigen Medium, welches dem Anodenraum 4 zugeführt wird und einem sauerstoffhaltigen Medium, welches dem Kathodenraum 5 zugeführt wird, elektrische Leistung in an sich bekannter Weise erzeugt. Für die hier dargestellten Vorrichtungen zur Befeuchtung spielt dabei weder diese elektrische Leistung noch die Art und Weise, auf welche das wasserstoffhaltige Medium erzeugt und/oder zugeführt wird, eine Rolle.

Beispielhaft ist bei dem hier dargestellten Brennstoffzellensystem 1 eine optionale Gaserzeugungseinrichtung 6 angedeutet, in welcher aus einer Kohlenstoff und Wasserstoff aufwesenden Verbindung zusammen mit Wasser und gegebenenfalls einem sauerstoffhaltigen Medium ein wasserstoffreiches Gas erzeugt wird. Die Funktionsweise der Erfindung ist prinzipiell jedoch auch bei anderen Brennstoffzellensystemen 1, beispielsweise bei solchen, welche in einem Tank gespeichertes Wasserstoffgas zugeführt bekommen, möglich.

Im hier dargestellten Brennstoffzellensystem 1 wird das von der Brennstoffzelle 2 erzeugte Produktwasser, üblicherweise

im Bereich des Kathodenraums 5, anfallen. Dieses Produktwasser wird dann zusammen mit einem Abgasstrom aus dem Kathodenraum 5 abgeführt. Gleichzeitig benötigt der Kathodenraum 5 bei der Zufuhr des sauerstoffhaltigen Mediums, insbesondere 5 Luft, jedoch auch einen definierten Feuchtegehalt bzw. Taupunkt, um eine Austrocknung der beispielsweise als Polymer-elektrolytmembran aufgebauten Membran 3 zu verhindern.

Der Abgasstrom aus dem Kathodenraum 5 wird daher in eine Befeuhtereinrichtung 7 geleitet. In dieser Befeuhtereinrichtung 7 befindet sich wenigstens eine Membran 8, welche für das Abgas an sich undurchlässig und dem in dem Abgas enthaltenen Wasserdampf durchlässig ist. Derartige Membranen 8 sind aus dem Stand der Technik bekannt und können aus verschiedenen Polymerwerkstoffen, Hohlfasermembranen oder dergleichen, bestehen. Auf der anderen Seite der Membran 8 strömt ein zu befeuchtender Gasstrom, welcher den durch die Membran 8 gelangenden Wasserdampf aufnimmt und im hier dargestellten Ausführungsbeispiel dann dem Kathodenraum 5 als befeuchtete Zuluft zugeführt wird. Zur Förderung dieses Gasstromes befindet sich vor der Befeuhtereinrichtung 7 eine entsprechende Fördereinrichtung 9, z.B. ein Kompressor. Der Abgasstrom wird, bevor er aus dem Bereich des Kathodenraums 5 in die Befeuhtereinrichtung 7 gelangt, mittels eines Wärmetauschers 10 abgekühlt, so dass ein Teil des Produktwassers auskondensieren kann. Dieser auskondensierte und ein weiterer, von dem Abgasstrom flüssig mitgerissener Teil des Produktwassers der Brennstoffzelle wird zwischen dem Wärmetauscher 10 und der Befeuhtereinrichtung 7 in einem Flüssigkeitsabscheider 11 flüssig abgeschieden. Dieses flüssig abgeschiedene Wasser kann dann für andere Zwecke verwendet werden, worauf in den nachfolgend noch dargestellten Ausführungsbeispielen näher eingegangen wird.

35 In einem derartigen Brennstoffzellensystem 1 wird somit auf einfache und effektive Weise dafür gesorgt, dass zumindest der wenigstens annähernd größte Teil des in dem Abgasstrom

befindlichen Wassers zurückgewonnen wird. Insbesondere wird ein Teil des in dem Abgasstrom befindlichen Wasserdampfs zur notwendigen Befeuchtung eines Gasstroms, insbesondere der Zuluft zu dem Kathodenraum 5 genutzt. Nachteilig ist es nun,
5 dass die Übertragung des Wasserdampfes und damit die Befeuchtung des zu befeuchtenden Gasstroms durch die Größe der Membran 8 fest vorgegeben ist. Um hier jedoch eine wünschenswerte Einstellung des Taupunkts in dem befeuchteten Gasstrom realisieren zu können, was bei bestimmten Lastzuständen notwendig
10 ist, um einen zu hohen Wassergehalt um Bereich des Kathodenraums 5 zu verhindern, da dies der Leistungsfähigkeit der Brennstoffzelle 2 abträglich wäre.

Zur Beeinflussung des Taupunkts des zu befeuchtenden Gasstroms sieht das hier dargestellte Brennstoffzellensystem 1 nun wenigstens eine von zwei, hier gestrichelt dargestellten, Bypassleitungen 12, 13, vor. Prinzipiell ist dabei jede der beiden Bypassleitungen 12, 13 alleine in der Lage eine Einstellung des Taupunkts in dem zu befeuchtenden Gasstrom mit einfachsten Mitteln zu realisieren. Neben jeder einzelnen der Bypassleitungen 12, 13 kann darüber hinaus eine Kombination, also das Vorhandensein von beiden Bypassleitungen 12 und 13 in dem Brennstoffzellensystem 1, vorgesehen sein. Nachfolgend wird die Funktionsweise der Bypassleitungen im einzelnen erläutert.
15
20
25

Die Bypassleitung 12, welche über eine hier nicht dargestellte Einrichtung zur Variation des in Ihr strömenden Volumenstroms verfügt, durch welche der Anteil des Volumenstroms des Abgases, welcher durch die Bypassleitung 12 strömt, einstellbar ist, funktioniert dabei folgendermaßen. Ein Teil des den Wasserdampf transportierenden Abgasstroms gelangt in die Bypassleitung 12, während nur der verbleibende Teil in die Befeuchtereinrichtung 7 gelangt. Damit lässt sich mit einfachsten Mitteln das Angebot an Wasserdampf in der Befeuchtereinrichtung 7 variieren, so dass der zu befeuchtende Gasstrom nur den zur Verfügung stehenden Wasserdampf aufnehmen kann
30
35

und somit der Taupunkt in dem zu befeuchtenden Gasstrom durch das Angebot an Wasserdampf eingestellt werden kann. Diese Variante hat dabei den Nachteil, dass ein Teil des feuchten Abgases bei dem Brennstoffzellensystem 1 gemäß Fig. 1 ungenutzt aus dem Brennstoffzellensystem 1 entweicht und damit auch Wasser ungenutzt an die Umgebung gelangt. Dies kann jedoch durch einen Aufbau, wie er in Fig. 8 nachfolgend beschrieben ist, vermieden werden.

10 Die alternative oder gegebenenfalls auch zusätzlich verwendbare Variante mit der Bypassleitung 13 sieht vor, dass nur ein Teil des zu befeuchtenden Gasstroms durch die Befeuchteinrichtung 7 strömt. Dieser kann dann nach der Befeuchteinrichtung 7 wieder mit dem durch die Bypassleitung 13 strömenden und damit trocken bleibenden Gasstrom vermischt werden. Durch eine entsprechende Einstellung des Volumenverhältnisses durch die Bypassleitung 13 einerseits und die Befeuhtereinrichtung 7 andererseits kann der Taupunkt in dem Gasstrom, welcher in dem hier dargestellten Ausführungsbeispiel dann in den Kathodenraum 5 eintritt, variiert bzw. eingestellt werden.

15

20

In Fig. 2 ist nun eine konkrete Ausführungsform der Befeuhtereinrichtung 7 im Querschnitt dargestellt. Auf die Darstellung einer Einrichtung zur Variation der Volumenströme durch den Bereich der Membran 8 einerseits und den Bereich der Bypassleitung 12, 13 andererseits ist hier noch verzichtet worden. Eine derartige Einrichtung ist jedoch vorhanden.

25

30 Die Bypassleitung 12, 13 (es spielt für die Funktionsweise keine Rolle, welche der Bypassleitungen in der hier dargestellten Art ausgebildet ist) ist in die Befeuhtereinrichtung 7 integriert. Besonders günstig ist dies, wenn die Membran 8 als Bündel von Hohlfasern ausgebildet ist, da dann die Bypassleitung 12, 13 einfach als Rohrleitung in das Bündel integriert werden kann. Es sind jedoch auch alle anderen Varianten von Membranen 8 denkbar. Auch die geometrische Form

35

der Befeuchtereinrichtung 7 und/oder der Bypassleitung 12, 13 kann annähernd beliebig variiert werden.

Der eine der Gasströme strömt dann vom Eintrittsbereich 14
5 der Befeuchtereinrichtung 7 zum Austrittsbereich 15 derselben. Der andere strömt durch weitere Leitungselemente 16, welche hier nur prinzipiell angedeutet sind, in den Bereich der Membranen 8. Setzt man nun einen höheren Strömungsdruckverlust für den von dem Eintrittsbereich 14 zu dem Austrittsbereich 15 strömenden Gasstrom im Bereich der Membran 8 als
10 im Bereich der Bypassleitung 12, 13 voraus, so wird der Gasstrom überwiegend durch den Bereich der Bypassleitung 12, 13 strömen. Aufgrund der großen Oberflächen der Membranen 8 ist dies im allgemeinen immer gegeben.

15 Um nun eine Steuerung/Regelung der Volumenströme zu erreichen, wird der Querschnitt der Bypassleitung 12, 13 durch eine Einrichtung zur Variation des Volumenstroms verändert. In Fig. 3 ist diese Einrichtung als Ventilstößel 17 dargestellt.
20 Durch eine Bewegung in axialer Richtung kann der verbleibende Einström- oder Ausströmquerschnitt (Die Strömungsrichtung spielt für die Funktionsweise keine Rolle) in oder aus der Bypassleitung 12, 13 zwischen „Geschlossen“ und „Offen“ stufenlos variiert werden. Der dann nicht mehr durch die Bypassleitung 12, 13 strömende restliche Teil des Volumenstroms
25 durchströmt dann den Bereich der Membranen 8 und wird dort befeuchtet oder gibt den in ihm enthaltenen Wasserdampf ab.

In Fig. 4 ist eine weitere der Einrichtung in einer alternativen Ausführungsform dargestellt. Dies ist für eine runde bzw. rohrförmige Ausführung der Befeuchtereinrichtung 7 geeignet. Die beiden dargestellten Scheiben 18 mit ihren Öffnungen 19 werden im Eintritts- oder Austrittsbereich 14, 15 konzentrisch in Strömungsrichtung unmittelbar nacheinander angeordnet. Werden Sie nun gegeneinander verdreht, so geben durch die sich unterschiedlich stark überlappenden Öffnungen

19 unterschiedliche Bereiche der Membranen 8 und/oder der Bypassleitung 12, 13 zur Durchströmung frei.

In Fig. 5 ist eine weitere Möglichkeit einer Einrichtung dar-
5 gestellt, bei der die Variation des durchströmbaren Quer-
schnitts über eine auf der Scheibe 18 exzentrisch befestigte
Blendenscheibe 20 erfolgt, welche in den Bereich des Durch-
strömbaren Querschnitts gebracht werden kann. Zur Variation
des durchströmbaren Querschnitts im Bereich der Membranen 8,
10 kann hier wieder eine zweite Scheibe im Sinne der Figur 4
Verwendung finden.

Neben diesen hier dargestellten Einrichtungen zur Variation
des durchströmbaren Querschnitts können auch alle weiteren
15 Varianten, Kombinationen aus denkbaren und geeigneten Ein-
richtung eingesetzt werden, insbesondere Blenden und dergle-
ichen, welche axial und/oder in ihren Durchmesser variiert
werden können. Der besondere Vorteil der kompakten Bauweise
erschließt sich dabei mit allen Ausführungsformen, welche so
20 ausgebildet sind, dass eine Integration in den Eintritts- o-
der Austrittsbereich möglich wird.

In Fig. 6 ist ein weiteres Ausführungsbeispiel der Befeucht-
ereinrichtung 7 dargestellt. Abweichend von dem in Fig. 2
25 dargestellten Ausführungsbeispiel ist die Bypassleitung 12,
13 hier exzentrisch angeordnet. Wird die Bypassleitung 12, 13
nun gegenüber dem Rest der Befeuchtereinrichtung 7 in Rich-
tung der Schwerkraft nach unten angeordnet, so kann sich im
Bereich der Befeuchtereinrichtung ggf. sammelndes auskonden-
30 sierendes Wasser durch die Bypassleitung 12, 13 ideal ange-
führt werden. Das Wasser kann dann durch die Bypassleitung
12, 13 selbst oder durch eine optionale Abflussöffnung 21 ab-
geführt und dem System wieder zur Verfügung gestellt werden,
analog zu dem im Flüssigkeitsabscheider 11 anfallenden Was-
ser.
35

Fig. 7 zeigt eine alternative Variante des Brennstoffzellensystems 1, wobei hier vergleichbare Bauteile mit den analogen Bezugszeichen wie in Fig. 1 versehen sind. Die Gaserzeugungseinrichtung 6 ist in dem hier dargestellten Ausführungsbeispiel des Brennstoffzellensystems 1 dabei eine notwendige Einrichtung und nicht, wie bei dem oben gezeigten Ausführungsbeispiel, als Option zu sehen. Bei dem Brennstoffzellensystem 1 in dem Ausführungsbeispiel gemäß Fig. 7 ist dabei ausschließlich die Bypassleitung 13 zur Einstellung des Taupunkts in dem zu befeuchtenden Gasstrom vorhanden, wobei diese nach dem oben bereits beschriebenen Prinzip arbeitet. Außerdem wird das in dem Flüssigkeitsabscheider 11 in flüssiger Form abgeschiedene Wasser über eine Leitung 21 wieder der Gaserzeugungseinrichtung 6 zugeführt.

In der Gaserzeugungseinrichtung 6 wird dieses Wasser zusammen mit einer kohlenwasserstoffhaltigen Verbindung, beispielsweise Benzin, Diesel, Alkohol oder dergleichen, in an sich bekannter Weise zu einem wasserstoffreichen Gas zum Betreiben der Brennstoffzelle 2 umgesetzt. Zusätzlich zu dem Wasser, welcher über die Leitung 22 der Gaserzeugungseinrichtung 6 zugeführt wird, und der kohlenwasserstoffhaltigen Verbindung, deren Zuführung hier nicht dargestellt ist, wird der Gaserzeugungseinrichtung 6 ein sauerstoffhaltiges Medium zgeführt, welches über eine Fördereinrichtung 23 durch eine weitere Befeuchtereinrichtung 24 zu der Gaserzeugungseinrichtung 6 gefördert wird. Auch diese weitere Befeuchtereinrichtung 23 ist im Prinzip analog zu der Befeuchtereinrichtung 7 aufgebaut. Auch sie weist vergleichbare Membranen 8 auf, welche lediglich für Wasserdampf durchlässig sind. Die Feuchtigkeit zur Befeuchtung der Zuluft zu der Gaserzeugungseinrichtung 6 stammt dabei ebenfalls von dem Abgasstrom, welcher nach der Befeuchtereinrichtung 7 noch eine gewisse Restfeuchte enthält, welche er in der weiteren Befeuchtereinrichtung 24 an die Zuluft zu dem Gaserzeugungssystem 6 abgibt. In diesem Aufbau kann bei durch die Bypassleitung 13 weiterhin gegebener Möglichkeit der Einstellung des Taupunkts in der Zuluft

zu dem Kathodenraum 5 die ideale Ausnutzung der in dem Abgasstrom enthaltenen Feuchte sichergestellt werden. Eine Variation des Taupunkts ist bei der Zuluft zu der Gaserzeugungseinrichtung 6 dabei nicht notwendig, da hier durch die geregelte Zufuhr von flüssigem Wasser die für die ideale Umsetzung der Ausgangsstoffe benötigte Wasseranteil ohnehin nachträglich eingestellt wird und der Anteil an Wasserdampf in der befeuteten Zuluft nur einen vergleichsweise geringen Teil des benötigten Wassers bereitstellt.

10

In Fig. 8 ist ein weiteres Ausführungsbeispiel dargestellt, wobei auch hier die Bezugszeichen von vergleichbar funktionierenden Bauelementen analog zu den vorhergehenden Figuren gewählt wurden.

15

Das in Fig. 8 dargestellte Brennstoffzellensystem 1 weist zum Einstellen des Taupunkts in dem dem Kathodenraum 5 zugeführten Zuluftstrom die oben bereits beschriebene Variante unter Verwendung der Bypassleitung 12 auf. Wie oben bereits erwähnt, hat diese Variante den prinzipiellen Nachteil, dass ein Teil des feuchten Abgases um die Befeuchtereinrichtung 7 strömt und die in ihm enthaltene Feuchte damit prinzipiell verloren geht. Bei dem Ausführungsbeispiel gemäß Fig. 8 ist dieser Nachteil nun so vermieden, dass der Anteil des Abgasstroms, welcher durch die Bypassleitung 12 strömt, nicht unmittelbar mit dem Abgasstrom nach der Befeuchtereinrichtung 7 vermischt wird, sondern dass dazwischen die weitere Befeuchtereinrichtung 24 angeordnet ist. Die in dem Abgasstrom, welcher durch die Bypassleitung 12 strömt, enthaltene Feuchte kann somit in der weiteren Befeuchtereinrichtung 24, analog zu Fig. 7, in die Zuluft für die Gaserzeugungseinrichtung 6 übertragen werden. Analog zu Fig. 7 ist auch hier wieder eine Fördereinrichtung 23 dargestellt, welche für die Förderung der Zuluft zu der Gaserzeugungseinrichtung 6 benötigt wird. Das Brennstoffzellensystem 1 gemäß Fig. 8 weist nun eine weitere optionale Fördereinrichtung 25 auf. Diese ist notwendig bzw. kann notwendig sein, wenn in der Gaserzeugungseinrich-

tung 6 ein deutlich höherer Druck vorliegt als im Bereich der weiteren Befeuchtereinrichtung 24. In diesem Fall wäre die Fördereinrichtung 23 als Niederdruckverdichter und die Fördereinrichtung 25 dementsprechend als Hochdruckverdichter 5 ausgelegt, um den für die Gaserzeugungseinrichtung 6 gegebenenfalls notwendigen Systemdruck sicherzustellen.

Auch bei dem hier dargestellten Ausführungsbeispiel wird der annähernd größte Teil der Feuchte in dem Abgasstrom genutzt, 10 um die entsprechenden zu befeuchtenden Gasströme zu befeuften und oder das für die Gaserzeugungseinrichtung 6 benötigte Wasser bereitzustellen.

Neben den hier diskret dargestellten Ausführungsbeispielen 15 sind selbstverständlich auch alle denkbaren und sinnvollen Kombinationen hieraus sowie die Verwendung mit einer Gaserzeugungseinrichtung 6 oder mit in entsprechenden Speichereinrichtungen gespeichertem Wasserstoff denkbar. Für sämtliche Brennstoffzellensysteme 1 gilt dabei, dass mit dem in dem Abgas vorhandenen Wasserdampf eine ideale Befeuchtung von zu 20 befeuchtenden Gasströmen, und hier insbesondere von der Zuluft zu dem Kathodenraum 5, gewährleistet werden kann, wobei der Taupunkt in diesem Gasstrom frei eingestellt werden kann. Die Ausführungsbeispiele der Fig. 7 und 8 zeigen darüber hin- 25 aus Möglichkeiten, auch die in dem Abgasstrom verbleibende Restfeuchte zurückzugewinnen, z.B. zum Betreiben der Gaserzeugungseinrichtung 6, sofern vorhanden.

Aufgrund der besonders kompakten und robusten Bauweise sind 30 die Vorrichtung zum Befeuchten besonders für Brennstoffzellensysteme 1 in Fahrzeugen zu Lande, zu Wasser und in der Luft geeignet, und hierbei sowohl für Brennstoffzellensysteme 1, welche Energie zu Antriebszwecken bereitstellen, als insbesondere auch für als Hilfsenergieerzeuger (APU / Auxiliary 35 Power Unit) genutzte Brennstoffzellensysteme 1.

Patentansprüche

5 1. Vorrichtung zur Befeuchtung wenigstens eines Gasstroms, insbesondere eines zu einem Brennstoffzellensystem strömenden Gasstroms, wobei dieser Gasstrom durch eine Befeuhtereinrichtung strömt, durch welche ausserdem ein feuchter Gasstrom, insbesondere eine feuchter Abgasstrom
10 aus dem Brennstoffzellensystem, strömt, und wobei die beiden Gasströme durch eine oder mehrere für Wasserdampf durchlässige Membran(en) voneinander getrennt sind,
d a d u r c h g e k e n n z e i c h n e t ,
dass wenigstens eine Bypassleitung (12, 13) vorgehen ist,
15 durch welche zumindest einer der Gasströme teilweise so geführt ist, dass er nicht mit der Membran (8) in Kontakt kommt.

2. Vorrichtung nach Anspruch 1,
20 d a d u r c h g e k e n n z e i c h n e t ,
dass ein Teil des zu befeuchtenden Gasstroms in der Bypassleitung (13) geführt ist, wobei dieser Teil des zu befeuchtenden Gasstroms nach der Bypassleitung (13) wieder mit dem die Befeuhtereinrichtung (7) durchströmenden
25 Teil des zu befeuchtenden Gasstroms zusammengeführt ist.

3. Vorrichtung nach Anspruch 1 oder 2,
d a d u r c h g e k e n n z e i c h n e t ,
dass ein Teil des feuchten Abgasstroms in der Bypasslei-
30 tung (12) geführt ist.

4. Vorrichtung nach Anspruch 1, 2 oder 3,
dadurch gekennzeichnet,
dass der zu befeuchtende Gasstrom die Zuluft zu einem Ka-
thodenraum (5) einer Brennstoffzelle (2) eines Brenn-
stoffzellensystems (1) ist.
5. Vorrichtung nach einer der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
dass der zu feuchte Gasstrom zumindest einen Teil der Ab-
gase aus einer Brennstoffzelle (2) eines Brennstoffzel-
lensystems (1) enthält.
6. Vorrichtung nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
dass die wenigstens eine Bypassleitung (12,13) in die Be-
feuchtereinrichtung (7) selbst integriert ist.
7. Vorrichtung nach Anspruch 6,
dadurch gekennzeichnet,
dass die wenigstens eine Bypassleitung (12,13) in die Be-
feuchtereinrichtung (7) so angeordnet ist, dass sich ge-
gebenenfalls sammelndes Kondensat durch die Bypassleitung
(12,13) abfließt.
8. Vorrichtung nach Anspruch 6 oder 7,
dadurch gekennzeichnet,
dass eine Einrichtung zur Variation des Volumenstroms
durch die wenigstens eine Bypassleitung (12,13) ebenfalls
in die Befeuchtereinrichtung (7) integriert ist.
9. Vorrichtung nach Anspruch 8,
. dadurch gekennzeichnet,
dass die Einrichtung zur Variation des Volumenstroms
durch die wenigstens eine Bypassleitung (12,13) in der Art
eines Ventilstörsels (17) ausgebildet ist, welcher je nach
Abstand zu einer Ein- oder Austrittsöffnung der Bypass-

leitung (12,13) einen unterschiedlichen Querschnitt der Bypassleitung (12,13) freigibt.

10. Vorrichtung nach Anspruch 8,

5 durch gekennzeichnet,
dass die Einrichtung zur Variation des Volumenstroms
durch die wenigstens eine Bypassleitung(12,13) in der Art
einer variablen Blende ausgebildet ist, welche je nach
Position und Öffnungs durchmesser einen unterschiedlichen
10 Querschnitt der Bypassleitung (12,13) freigibt.

11. Vorrichtung nach Anspruch 8,

15 durch gekennzeichnet,
dass die Einrichtung zur Variation des Volumenstroms
durch die wenigstens eine Bypassleitung(12,13) in der Art
zweier relativ zueinander drehbarer mit Öffnungen (19)
versehener Scheiben (18) ausgebildet ist, welche je nach
Drehwinkel zueinander einen unterschiedlichen Querschnitt
der Bypassleitung (12,13) und/oder des Bereichs mit der
20 Membran (8) freigeben.

12. Vorrichtung nach einem der Ansprüche 1 bis 11,

25 durch gekennzeichnet,
dass der feuchte Gasstrom nach dem Durchströmen der Be-
feuchtereinrichtung (7) und/oder der Bypassleitung (12)
in eine weitere vergleichbar aufgebaute Befeuchterein-
richtung (24) zur Befeuchtung eines weiteren zu befeuch-
tenden Gasstroms geführt ist.

30 13. Vorrichtung nach Anspruch 12,

durch gekennzeichnet,
dass der weitere zu befeuchtende Gasstrom die Zuluft in
eine Gaserzeugungseinrichtung (6) des Brennstoffzellen-
systems (1) ist.

35

14. Verfahren zur Befeuchtung eines Gasstroms mit einer Vor-
richtung nach einem der Ansprüche 1 bis 13,

dadurch gekennzeichnet,
dass zum Einstellen eines vorgegebenen Taupunkts in dem
wenigstens einen zu befeuchtenden Gasstrom, wobei die
Menge an durch die wenigstens eine Bypassleitung (12, 13)
5 geführten zu befeuchtenden Gas und/oder feuchtem Gas ent-
sprechend variiert wird.

15. Verwendung der Vorrichtung nach einem der Ansprüche 1 bis
13 zum Trocknen eines feuchten Gasstroms.

10 16. Verwendung der Vorrichtung nach einem der Ansprüche 1 bis
13 zum Befeuchten und/oder Trocknen eines Gasstroms in
einem Brennstoffzellensystem, zusammen mit dem Verfahren
nach Anspruch 15.

15 17. Verwendung nach Anspruch 16, wobei das Brennstoffzellen-
system (1) als elektrischer Energieerzeuger in einem
Fahrzeug zu Lande, zu Wasser oder in der Luft eingesetzt
wird.

20 18. Verwendung nach Anspruch 17, wobei der elektrische Ener-
gieerzeuger zur Bereitstellung von Antriebsenergie ge-
nutzt wird.

25 19. Verwendung nach Anspruch 17 oder 18, wobei der elektri-
sche Energieerzeuger als Hilfsenergieerzeuger (APU) ge-
nutzt wird.

Fig. 1Fig. 2Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro(43) Internationales Veröffentlichungsdatum
26. Februar 2004 (26.02.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/017450 A3

(51) Internationale Patentklassifikation⁷: **H01M 8/04, B01F 3/02**

(21) Internationales Aktenzeichen: PCT/DE2003/002200

(22) Internationales Anmeldedatum:
2. Juli 2003 (02.07.2003)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
102 35 757.2 18. Juli 2002 (18.07.2002) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): DAIMLERCHRYSLER AG [DE/DE]; Epplestrasse 225, 70567 Stuttgart (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): BERGER, Gerhard [DE/DE]; Natternweg 3, 73061 Ebersbach (DE). INTROP, Jens [DE/DE]; Friedenstrasse 6, 89073 Ulm (DE). KONRAD, Gerhard [DE/DE]; Mendelstrasse 16, 89081 Ulm (DE). LAMM, Arnold [DE/DE]; Thalfinger Strasse 63, 89275 Elchingen (DE). SCHNETZLER, Sven [DE/DE]; Zwischenhausen 4, 35037 Marburg (DE).

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

[Fortsetzung auf der nächsten Seite]

(54) Title: DEVICE AND METHOD FOR HUMIDIFYING A GAS FLOW

(54) Bezeichnung: VORRICHTUNG UND VERFAHREN ZUR BEFEUCHTUNG EINES GASSTROMS

WO 2004/017450 A3

(57) Abstract: A device used for humidifying the flow of a gas which is to be humidified, e.g., fed to a fuel cell system. A moist gas, e.g. a moist waste gas from said fuel cell system is used for said humidification, whereby said gas flows together with the gas flow in a humidifying device. The two gas flows are separated from each other by a membrane in the humidifying device. The membrane is exclusively permeable for water vapour. According to the invention, at least one bypass line is provided. At least one of the gas flows can be partially guided via said bypass line around the region of the membrane in the humidifying device. The saturation point can thus be freely adjusted in an advantageous manner in the gas which is to be humidified.

(57) Zusammenfassung: Eine Vorrichtung dient zum Befeuchten eines zu befeuchtenden Gasstroms, welcher z.B. einem Brennstoffzellensystem (1) zugeführt wird. Zur Befeuchtung wird dabei ein feuchtes Gas, z.B. ein feuchtes Abgas aus dem Brennstoffzellensystem, genutzt, welches zusammen

[Fortsetzung auf der nächsten Seite]

SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN,
YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (*regional*): ARIPO Patent (GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL,
PT, RO, SE, SI, SK, TR), OAPI Patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— mit internationalem Recherchenbericht

— vor Ablauf der für Änderungen der Ansprüche geltenden
Frist; Veröffentlichung wird wiederholt, falls Änderungen
eintreffen

(88) Veröffentlichungsdatum des internationalen
Recherchenberichts:

20. Januar 2005

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

mit dem zu befeuchtenden Gasstrom in eine Befeuchtereinrichtung (7) strömt. Die beiden Gasströme sind dabei durch eine Membran (8) in der Befeuchtereinrichtung voneinander getrennt, wobei die Membran lediglich für Wasserdampf durchlässig ist. Erfundsgemäß ist wenigstens eine Bypassleitung (12, 13) vorgesehen, durch welche zumindest einer der Gasströme teilweise um dem Bereich der Membran in der Befeuchtereinrichtung führbar ist. Dadurch kann der Taupunkt in dem zu befeuchtenden Gasstrom in vorteilhafter Weise frei eingestellt werden.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE 03/02200

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H01M8/04 B01F3/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H01M B01D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X A	US 2001/010875 A1 (KATAGIRI TOSHIKATSU ET AL) 2 August 2001 (2001-08-02) figures 1,4 paragraph '0001! - paragraph '0007! paragraph '0011! - paragraph '0013! paragraph '0016! - paragraph '0019! paragraphs '0045!, '0052!, '0054!, '0056!, '0057! paragraph '0066! - paragraph '0080!	1-8, 14-19 9-13
X A	US 2002/039674 A1 (KATAGIRI TOSHIKATSU ET AL) 4 April 2002 (2002-04-04) figure 1 paragraph '0001! - paragraph '0003! paragraph '0072! - paragraph '0074!	1,2,4,5, 7,8,12 9-11, 13-19

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

24 November 2004

Date of mailing of the international search report

30/11/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax (+31-70) 340-3016

Authorized officer

Kuhn, T

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE 03/02200

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2001/015500 A1 (KATAGIRI TOSHIKATSU ET AL) 23 August 2001 (2001-08-23) figures 1,5,12 paragraphs '0001!, '0002!, '0005! paragraphs '0009! - '0011! paragraphs '0035! - '0037! paragraphs '0045!, '0057!	1,6, 15-19
A	US 6 048 383 A (BREAULT RICHARD D ET AL) 11 April 2000 (2000-04-11) cited in the application figure 1	1,15-19

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/DE 03/02200

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 2001010875	A1	02-08-2001	JP	2001216984 A JP 2001216985 A		10-08-2001 10-08-2001
US 2002039674	A1	04-04-2002	JP	2002184440 A		28-06-2002
US 2001015500	A1	23-08-2001	JP	2001202978 A		27-07-2001
US 6048383	A	11-04-2000	AU BR CN EP ID JP WO	1202400 A 9914332 A 1142007 C 1121188 A1 29479 A 2002526905 T 0020102 A1		26-04-2000 26-06-2001 17-03-2004 08-08-2001 30-08-2001 20-08-2002 13-04-2000

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 03/02200

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 H01M8/04 B01F3/02

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 H01M B01D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X A	US 2001/010875 A1 (KATAGIRI TOSHIKATSU ET AL) 2. August 2001 (2001-08-02) Abbildungen 1,4 Absatz '0001! - Absatz '0007! Absatz '0011! - Absatz '0013! Absatz '0016! - Absatz '0019! Absätze '0045!, '0052!, '0054!, '0056!, '0057! Absatz '0066! - Absatz '0080! ----- US 2002/039674 A1 (KATAGIRI TOSHIKATSU ET AL) 4. April 2002 (2002-04-04) Abbildung 1 Absatz '0001! - Absatz '0003! Absatz '0072! - Absatz '0074!	1-8, 14-19 9-13 1,2,4,5, 7,8,12 9-11, 13-19 -/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E' älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldeatum veröffentlicht worden ist
- *L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P' Veröffentlichung, die vor dem internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T' Spätere Veröffentlichung, die nach dem Internationalen Anmeldeatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

24. November 2004

Absendedatum des Internationalen Recherchenberichts

30/11/2004

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Kuhn, T

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 03/02200

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 2001/015500 A1 (KATAGIRI TOSHIKATSU ET AL) 23. August 2001 (2001-08-23) Abbildungen 1,5,12 Absätze '0001!, '0002!, '0005! Absätze '0009! – '0011! Absätze '0035! – '0037! Absätze '0045!, '0057! -----	1,6, 15-19
A	US 6 048 383 A (BREAUT RICHARD D ET AL) 11. April 2000 (2000-04-11) in der Anmeldung erwähnt Abbildung 1 -----	1,15-19

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/DE 03/02200

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 2001010875	A1	02-08-2001	JP	2001216984 A JP 2001216985 A		10-08-2001 10-08-2001
US 2002039674	A1	04-04-2002	JP	2002184440 A		28-06-2002
US 2001015500	A1	23-08-2001	JP	2001202978 A		27-07-2001
US 6048383	A	11-04-2000	AU BR CN EP ID JP WO	1202400 A 9914332 A 1142007 C 1121188 A1 29479 A 2002526905 T 0020102 A1		26-04-2000 26-06-2001 17-03-2004 08-08-2001 30-08-2001 20-08-2002 13-04-2000