Rata-Rata Berbobot

Weighted Averages

Rita Prasetyowati Fisika FMIPA UNY 2012

Pengujian Kecocokan

Pengecekan/pengujian kecocokan dapat dilakukan pada :

- Dua hasil pengukuran
- Hasil pengukuran dengan nilai standar yang berlaku

Dua hasil pengukuran:

$$(X_1 \pm S_{X_1}) \operatorname{dan}(X_2 \pm S_{X_2})$$

Dikatakan cocok jika:

nilai diskripansi kedua hasil ukur \leq nilai S_{X_1} dan S_{X_2}

Pengujian kecocokan 2 data dapat dituliskan :

 $\delta \leq S_{X_1} + S_{X_2}$, maka kedua data dikatakan cocok.

Data pengukuran yang dikatakan saling cocok apabila ada *range* (daerah jangkauan) pengukuran yang saling *overlaping* (tumpang tindih) antara kedua data.

Jika data yang dicocokan adalah data hasil pengukuran dan nilai standar yang berlaku maka nilai standar akan berada didalam range data hasil pengukuran.

Dari contoh:

Pengukuran massa jenis air oleh dua mahasiswa A dan B, diperoleh :

$$\delta = \left| \rho_{airA} - \rho_{airB} \right|$$

$$= \left| 0.95 - 0.93 \right|$$

$$= 0.02,$$

Sedangkan nilai : $S_{X_1} + S_{X_2} = 0.04 + 0.03 = 0.07$

Jadi:
$$\delta \langle S_{X_1} + S_{X_2} \rangle \rightarrow \text{cocok}$$

Perhitungan Rata-rata berbobot

Langka-langkah:

- Menentukan bahwa besaran yang diratarata merupakan besaran yang sama
- Melakukan uji kecocokan terhadap data. Pengujian kecocokan data dilakukan sepasang demi sepasang. Jika ada data yang saling tidak cocok maka data tidak diikutkan dalam rata-rata berbobot
- 3. Menghitung rata-rata berbobot
- Menghitung ketidakpastian rata-rata berbobot

Dari contoh pengukuran massa jenis mahasiwa A dan B, rata-rata berbobot dari besaran yang diukur dapat dilakukan dengan perhitungan sebagai berikut:

$$\overline{X} = \frac{\frac{X_A}{S_A^2} + \frac{X_B}{S_B^2}}{\frac{1}{S_A^2} + \frac{1}{S_B^2}}$$

Nilai $\frac{1}{S_A^2}$ dan $\frac{1}{S_B^2}$ disebut faktor pembobot

$$\overline{X} = \frac{w_A X_A + w_B X_B}{w_A + w_B}$$

Jika data pengukuran diperoleh :

$$X_1 \pm S_{1,} X_2 \pm S_{2,} X_3 \pm S_{3,...,} X_n \pm S_{N,}$$

Maka:

$$\overline{X} = \frac{w_1 X_1 + w_2 X_2 + w_3 X_3 + \dots + w_N X_N}{w_1 + w_2 + w_3 + \dots + w_N}$$

$$\overline{X} = \frac{\sum_{i=1}^{n} w_i X_i}{\sum_{i=1}^{N} w_i}$$

Bepara ketidakpastian rata-ratanya????

$$S_{\overline{X}} = \left(\sum w_i\right)^{-\frac{1}{2}}$$

Atau

$$S_{\overline{X}} = \frac{1}{\sqrt{w_i}}$$

Rumus Rata-rata Berbobot

$$\overline{x} = \frac{\sum_{i=1}^{N} w_i x_i}{\sum_{i=1}^{N} w_i}, \quad w_i = \frac{1}{s_i^2}$$

$$s_{\bar{x}} = \sqrt{\frac{1}{\sum_{i=1}^{N} w_i}}$$

Pengukuran pada sebuah eksperimen dapat dilakukan pada beberapa waktu dan lokasi atau oleh beberapa orang

Dalam setiap pengukuran dalam beberapa waktu atau lokasi akan memperoleh hasil pengukuran yang berupa $(x \pm Sx)$, dengan x adalah nilai terbaik dan Sx merupakan ketidakpastian.

Contoh:

- mengukur suhu lingkungan setiap hari pada siang hari selama satu bulan
- mengukur hambatan (R) di laboratorium fisika dasar dan laboratorium elektronika Pengukuran pada waktu dan lokasi yang berbeda akan diperoleh hasil ukur yang berupa (x ± Sx) pada setiap pengukuran.

Berapa hasil ukur terbaik dan ketidakpastian dari seluruh nilai pengukuran?

Solusi: RATA-RATA BERBOBOT

Digunakan jika:

- Diperlukan nilai rata-rata $\overline{x} \pm s_{\overline{x}}$ dari $x_1 \pm s_1$, $x_2 \pm s_2$, $x_3 \pm s_3$, ..., $x_i \pm s_i$
- Atau dengan kata lain nilai yang ingin dirata-rata masing-masing mempunyai ketakpastian

Syarat:

- Nilai-nilai yang ingin dirata-ratakan harus mewakili besaran fisika yang sama
- Setiap nilai yang ingin dirata-ratakan harus saling cocok satu sama lain. Hal ini dapat kita uji dengan melihat diskripansinya satu sama lain.

Contoh:

Dua mahasiswa (A dan B) melakukan pengukuran massa jenis air di lab fisika dasar. Air yang diukur sama.

Kedua mahasiswa bekerja terpisah.

Misalkan:

mahasiswa A \rightarrow ρ_{Air} A = (0,95 ±0,04) gram/cm³ Mahasiswa B \rightarrow ρ_{Air} B = (0,93 ± 0,03) gram/cm³

Berapa perkiraan terbaik dari ρ_{air} yang dilakukan oleh kedua mahasiswa tersebut???

Apakah nilai pengukuran terbaik massa jenisnya adalah :

$$\left(\frac{\rho_{airA} + \rho_{airB}}{2}\right).$$

BUKAN, karena kedua hasil pengukuran tsb memiliki ketidakpastian yang berbeda kesalahan dari hasil ukur tersebut akan memberikan bobot yang berbeda pada nilai perkiraan pengukuran terbaiknya

Solusi > Rata-rata berbobot
Rata-rata berbobot dapat dilakukan jika:
diskripansi dari kedua hasil ukur tidak
signifikan atau
kedua data tersebut harus cocok.

Diskripansi

Pengukuran besaran yang sama dapat menghasilkan hasil ukur yang berbeda. Perbedaan hasil ukur ini disebut dengan diskripansi.

Diskripansi adalah perbedaan antara dua nilai hasil pengukuran dari besaran yang sama.

$$\delta = |\mathbf{X_1} - \mathbf{X_2}|$$

X₁: hasil terbaik pengukuran 1

X₂: hasil terbaik pengukuran 2

Dari contoh sebelumnya, diperoleh :

$$\delta = \left| \rho_{airA} - \rho_{airB} \right|$$

$$= \left| 0.95 - 0.93 \right|$$

$$= 0.02.$$

Nilai diskripansi dari kedua pengukuran mahasiswa A dan mahasiswa B adalah 0,02

Manfaat lain diskripansi: mengetauhi perbedaan nilai hasil pengukuran dengan nilai acuan atau standar yang berlaku.