深度學習

指導教授 李俊宏 教授 主講人 蘇禎佑

神經元

神經元

• Neural Network 是參考生物神經系統的結構,神經元(Neuron)之間互相連結,由外部神經元接收信號,再層層傳導至其他神經元,最後作出反應的過程。

圖.神經元構造

圖, 進一步抽象化神經元的構造

人工神經元

感知器 Perceptron

輸入資料

進行加總

加上偏差值

判斷後輸出

輸入資料

進行加總

加上偏差值

判斷後輸出

輸入資料

進行加總

加上偏差值

判斷後輸出

3. 將加總後的值,加上一個偏差值bias

$$z = f\left(\sum_{i=1}^{n} w_i x_i\right) + b_{ias}$$

輸入資料

進行加總

加上偏差值

判斷後輸出

4. 將輸出的值,作為激活函數的輸入從而判斷輸入資料的種類

這裡是採用階梯函數 step function

$$f(z) \begin{cases} 1, & if \ z > s \\ 0, & else \end{cases}$$

1. 資料輸入的部份為輸入層,也就是把資料拿給機器看,讓他學習,或者稱為"試著預測"

輸入層

輸出層

2. 資料輸出的部份,則為看過資料後, 嘗試預測的判斷依據與結果。

神經網路 neural network

輸入層

隱藏層

輸出層

需要將資料轉變成輸入特徵

如左圖所示 輸入特徵為 x1, x2, x3

輸入層

隱藏層

輸出層

輸入特徵經過神經元進行運算

如左圖所示

$$h_1 = x_1 W_{11} + x_2 W_{21} + x_3 W_{31}$$

$$\vdots$$

$$h_4 = x_1 W_{14} + x_2 W_{24} + x_3 W_{34}$$

輸入層

隱藏層

輸出層

把隱藏層神經元的輸出,進行一個彙整

如左圖所示

$$y = h1 + h2 + h3 + h4$$

- 由前往後,一層層傳遞輸入值,並經過權重計算,產生輸出值。
- 學術上,稱之為「前向傳播法」(forward-propagation)

資料來源: Kirk Borne's Twiter https://twitter.com/kirkdborne/status/1079062765778669571?lang=zh-Hant

反向傳播

描述過程

根據損失函數計算出的值,來判斷模型有沒有學到東西,從而動態調整模型內部的特徵權重。

CNN 卷積神經網路

卷積神經網路

- Convolutional Neural Network, 簡稱 CNN。
- CNN 基本上是在深度學習裡必教的一個模型,主要用在視覺領域。
- 它會模仿人類大腦的認知方式
- 舉例來說,辨識一個圖像時,會先注意到顏色鮮明的特徵
- 而後將它們組裝成眼睛、鼻子等形狀
- 這個抽象化的過程,就是 CNN 演算法建立模型的方式。

卷積神經網路

- 在正式介紹 CNN 前
- 要先簡單的介紹,我們是如何將影像變成機器能夠學習的狀態。
- 可以分成以下階段
- 1. 影像 -> 影像特徵 (讓電腦看的懂)
- 2. 卷積 (把影像特徵變小)
- 3. 池化 (挑選合適的特徵,一般越大越好)
- 4. flatten後,接續一個隱藏層和輸出層 (跟神經網路一樣)

影像前處理

• 要先將影像處理成電腦看的懂的形式。

20	225	171	34		20
87	71	224	75		87
130	95	165	81		30
60	40	187	0		60
,————————————————————————————————————					

20	225	201	34
87	71	174	75
30	95	36	21
60	40	187	0

處理後的矩陣(圖像特徵)

輸入資料

滑動窗口

進行運算

產生新矩陣

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

圖像特徵

1	1	1
1	1	1
1	1	1

卷積核

輸入資料

滑動窗口

進行運算

產生新矩陣

1	1	1
1	1	1
1	1	1

卷積核

產生新矩陣

卷積核的作用

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	1	0	1	0	0
0	0	0	1	0	0	0
0	0	1	0	1	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0

1	0	1	0	2
0	1	0	3	0
1	0	3	0	1
0	3	0	1	0
2	0	1	0	1

可以很明顯地看到,斜線的部份被增強

池化運算

• 假設這個地方採用2X2的池化運算。

特徵圖

用顏色表示 數字越小顏色越深

圖被壓縮,且保留了更強烈的斜線樣式。

平坦層

• 將資料進行攤平 Flatten

1	3	2
3	3	1
2	1	1

經過池化層後的圖片特徵

Flatten

 $\begin{bmatrix} 1 \end{bmatrix}$

全連接層

• Full Connection / 全連接層

經過平坦層後的圖像特徵、

輸入至神經網路 (全連接層)

完整的模型架構

一維卷積

• 因為金融的資料多為一維特徵。

Thanks for your listening