The University of Jordan

School of Engineering

Department of Electrical Engineering

Fall Term - A.Y. 2020-2021

Special Topics: Optimization Techniques, EE729

Optimization Project

Project is due 15/1/2021

Problem 1: One-dimensional Problem

x_i	0	1	2	3	4	5
y_i	2.1	7.7	13.6	27.2	40.9	61.1

1) Use iterative steepest descent method to approximate by a first order polynomial:

$$y_i = a_1 x_i + a_0$$

Use initial guess for
$$a = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.

- 2) Repeat using iterative Levenberg-Marquardt algorithm.
- 3) It is required to approximate by a second order polynomial:

$$y_i = a_2 x_i^2 + a_1 x_i + a_0$$

Use Iterative Levenverg-Marquardt algorithm to find the best fitting curve.

Use
$$a = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 as initial guess.

- 4) In all cases above, plot the real data and the approximated curve on the same figure.
- 5) Plot the learning curve for each case, i.e. the sum of squared errors versus the number of iterations.
- 6) Plot the estimated coefficients versus the number of iterations and show the convergence of these parameters.

Problem 2: Two-dimensional Problem

x_{1i}	0	2	2.5	1	4	7
x_{2i}	0	1	2	3	6	2
y_i	5	10	9	0	3	27

1) Use Iterative Levenverg-Marquardt algorithm to find the best fitting curve. Use the approximation

$$y_i = a_2 x_{2i} + a_1 x_{1i} + a_0$$

Use
$$a = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 as initial guess.

- 2) Plot the learning curve for each case, i.e. the sum of squared errors versus the number of iterations.
- 3) Plot the estimated coefficients versus the number of iterations and show the convergence of these parameters.

Problem 3: Particle Swarm Optimization (PSO)

Repeat Problem 1 and Problem 2 using PSO algorithm to find the best fitting curves.