Géométrie repérée

Définition. Etant donnés un vecteur \vec{u} , et une droite d dont A et B sont deux points distincts, \vec{u} est un **vecteur directeur de la droite** d ssi \vec{u} est colinéaire à \overrightarrow{AB} .

Remarque. Deux vecteurs directeurs d'une même droite, sont colinéaires.

Propriété. Un vecteur directeur d'une droite d d'équation cartésienne « ax + by + c = 0 » est $\binom{-b}{a}$.

Exemple. La droite d'équation cartésienne « 4x - 5y + 2 = 0 » admet comme vecteur directeur $\vec{u} = {5 \choose 4}$.

Propriété. Etant donnés un point A et un vecteur \vec{u} non nul, il existe une unique droite d passant par le point A et ayant pour vecteur directeur \vec{u} .

Exemple. Déterminer une équation cartésienne de la droite passant par A = (-1; 3) et de vecteur directeur $\vec{u} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$. Soit M = (x; y) un point du plan.

$$M \in d \Leftrightarrow \overrightarrow{AM}$$
 colinéaire à $\overrightarrow{u} \Leftrightarrow \det(\overrightarrow{AM}; \overrightarrow{u}) = 0 \Leftrightarrow \det\left(\binom{x+1}{y-3}; \binom{-2}{1}\right) = 0 \Leftrightarrow (x+1)(1) - (y-3)(-2) = 0$ $M \in d \Leftrightarrow x+1+2y-6=0 \Leftrightarrow x+2y-5=0$. Donc une équation de d est « $x+2y-5=0$ ».

Définition. Vecteur normal

Un vecteur $\underline{non\ nul}\ \vec{n}$ est normal à une droite d s'il est orthogonal à tout vecteur directeur de cette droite.

Remarque. Deux vecteurs normaux à une même droite, sont colinéaires.

Propriété. Un vecteur normal à une droite d d'équation cartésienne « ax + by + c = 0 » est $\vec{n} = \binom{a}{b}$.

Exemple. La droite d'équation cartésienne « 4x - 5y + 2 = 0 » admet comme vecteur normal le vecteur $\vec{n} = \begin{pmatrix} 4 \\ -5 \end{pmatrix}$ et comme vecteur directeur $\vec{u} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$. On remarque qu'on a bien $\vec{n} \cdot \vec{u} = 4 \times 5 - 5 \times 4 = 0$.

Propriété. Etant donnés un point A et un vecteur \vec{n} non nul, il existe une unique droite d passant par le point A et ayant pour vecteur normal \vec{n} .

Exemple. Déterminer une équation cartésienne de la droite d passant par A = (-2; 3) et de vecteur normal $\vec{n} = \binom{2}{5}$. Soit M = (x; y) un point du plan.

$$M \in d \Leftrightarrow \overrightarrow{AM} \perp \overrightarrow{n} \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0 \Leftrightarrow {x+2 \choose y-3} \cdot {2 \choose 5} = 0 \Leftrightarrow (x+2) \times 2 + (y-3) \times 5 = 0$$

 $M \in d \Leftrightarrow 2x+4+5y-15=0 \Leftrightarrow 2x+5y-11=0$ Donc une équation de d est « $2x+5y-11=0$ ».

Propriété. Equation cartésienne d'un cercle.

Le cercle $\mathcal C$ de centre le point A=(a;b), de rayon r>0 admet pour équation « $(x-a)^2+(y-b)^2=r^2$ »

Démonstration. Soit M = (x; y) un point du plan.

$$M \in \mathcal{C} \Leftrightarrow AM = r \Leftrightarrow \sqrt{(x-a)^2 + (y-b)^2} = r \Leftrightarrow (x-a)^2 + (y-b)^2 = r^2$$

Exemple. Une équation du cercle de centre A = (1, -2) et de rayon 3 est $(x - 1)^2 + (x + 2)^2 = 9$.