<u>Dashboard</u> / My courses / <u>COMP2100 Sem1 2021</u> / <u>Quizzes</u> / <u>Quiz 2</u>

Started on	Sunday, 4 April 2021, 7:51 PM	
State	e Finished	
Completed on	Sunday, 4 April 2021, 8:51 PM	
Time taken	1 hour	
Grade	13.00 out of 20.00 (65 %)	
Question 1		
Correct		
Mark 1.00 out of 1.00		

Which one of the following statements is INCORRECT?

Select one:

- a. Divide and conquer reduces a big problem to simpler sub-problems and solve sub-problems recursively
- ob. The efficiency of divide and conquer depends on the size of sub-problems
- oc. The efficiency of divide and conquer depends on the number of sub-problems
- od. Divide and conquer approach can always produce more efficient algorithms than non-divide and conquer approaches

~

Your answer is correct.

The correct answer is:

Divide and conquer approach can always produce more efficient algorithms than non-divide and conquer approaches

| IVIUI K 1.00 OUL OI 1.00

Fill in the blanks in the following statement:

- 1) A binary search tree is ______.
- 2) A red-black tree is _____.
- 3) A red-black tree is a _____ with additional properties.

Select one:

Select one:

- a. unbalanced, unbalanced, B-tree
- b. balanced, unbalanced, binary search tree
- oc. unbalanced, close to balanced tree, binary search tree
- od. unbalanced, balanced, binary search tree

Your answer is correct.

The correct answer is: unbalanced, close to balanced tree, binary search tree

Question 3

Incorrect

Mark 0.00 out of 1.00

Which one of the following T(n) is the second fastest in asymptotic analysis?

Select one:

$${\tiny \scriptsize @} \ \text{a.} \ T(n) = 2 \cdot T(n/2) + O(n)$$

$$\circ$$
 b. $T(n) = 3.3 \cdot T(n/3) + O(n^{1.1})$

$$\circ$$
 c. $T(n) = 3.1 \cdot T(n/3) + O(n)$

$$\bigcirc$$
 d. $T(n) = T(n/4) + O(n^{1.2})$

Your answer is incorrect.

The correct answer is:
$$T(n) = 3.1 \cdot T(n/3) + O(n)$$

Apply Master Theorem, noting that
$$log_3(3.1) = 1.0298$$

TYTUTE			

Is this statement true or false?

$$O(n!)\subseteq O(2^n)$$

Select one:

- True 🗶
- False

Factorial grows much after than 2^n

The correct answer is 'False'.

Question **5**

Correct

Mark 1.00 out of 1.00

Is this statement true or false?

$$O(n^2) \subseteq \Theta(n^2)$$

Select one:

- True
- False

It should be

$$\Theta(n^2) \subseteq O(n^2)$$

The correct answer is 'False'.

IVIUIN 1.00 OUL OF 1.00

Which one of the following statements is INCORRECT?

Select one:

- \odot a. $2n^2+n+100$ is in $\Theta(n^3)$
- \odot b. n^2+9999 is in $\Omega(100n^2)$
- $\text{ c. } 100n^3 + 10000 \text{ is in } O(2n^3)$
- $\odot \text{ d. } 0.01n^2 10000 \text{ is } \ln\Omega(n \cdot \log(n))$

Your answer is correct.

The correct answer is: $2n^2 + n + 100$ is in $\Theta(n^3)$

Question **7**

Correct

Mark 1.00 out of 1.00

If you insert the following keys to an empty AVL tree: 34, 5, 8, 22, 9, 12

What will be the balance of the root of the final tree?

Select one:

- a. 1
- b. -1
- c. 0
- d. -2

Your answer is correct.

The correct answer is:

U

14101K 1.00 OUL OF 1.00

[Discarded] Compute the time complexity of the following method:

(Assume that function c() requires a constant number of operations)

```
public void method(int n) {
    c();
    if (n > 0) { method(n/3); method(n/2);}
}
```

Select one:

- \circ a. $O(\log(n))$
- \bigcirc b. O(1)
- \odot c. $\Theta(n)$
- \odot d. $\Omega(n)$

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$

. Apply Master Theorem

Your answer is correct.

The correct answers are: $\Theta(n)$ $O(\log(n))$

Question **9**

Correct

Mark 1.00 out of 1.00

What is the black-height of the root of a red-black tree with tree height as 5?

Select one:

Select one:

- a. The black-height is at least 1
- b. The black-height is at most 3
- oc. The black-height is at least 2
- d. The black-height is at most 5

Your answer is correct.

The correct answers are: The black-height is at least 2, The black-height is at most 5, The black-height is at least 1

If a red-black tree has n internal nodes and a height h. Which one of the values of n and h are possible?

Select one:

IVIUI K 0.00 OUL OF 1.00

 \odot a. n = 2, h = 3

There are two internal nodes. h cannot be 3

- $oldsymbol{b}$. n = 3, h = 5
- \circ c. n = 10, h = 7
- \bigcirc d. n = 5, h = 3

Your answer is incorrect.

The correct answer is:

$$n = 5, h = 3$$

Question 11

Correct

Mark 1.00 out of 1.00

What is the height of a balanced binary search tree with 55 leaf nodes? (Note: The height of the root-only tree is 0)

Select one:

Select one:

- a. 5
- b. 3
- o. 4
- d. 6

Your answer is correct.

The correct answer is: 6

Maik 1.00 Out 01 1.00								
Which one the following multiplication algorithms is the fastest, when the	ne input size is large?							
Select one:								
a. Long multiplication algorithm								
 b. Schönhage–Strassen multiplication algorithm c. Karatsuba multiplication algorithm d. Divide-and-conquer multiplication algorithm 								
							Your answer is correct.	
							The correct answer is:	
Schönhage–Strassen multiplication algorithm								
Question 13								
Incorrect								
Mark 0.00 out of 1.00								
Which one of the following statements is INCORRECT?								
Select one:								
a. Karatsuba Multiplication uses divide-and-conquer.								
b. Long multiplication algorithm is faster than Karatsuba Multiplicat	ation, when the input size is small							
\circ c. Karatsuba Multiplication's running time is $O(3^{\log(n)})$	f x Karatsuba Multiplication is divided into 3 subproblems, each of size $n/2$							
d Karatsuba Multiplication is divided into 3 subproblems, each of s	size $n/3$							

Your answer is incorrect.

The correct answer is:

Karatsuba Multiplication is divided into 3 subproblems, each of size n/3

	WAT
Walk 1.00 out of 1.00	
Which one of the following statements is INCORRECT?	
Select one:	
\bigcirc a. Merge sort for sorting intervals will take $O(n\log(n))$	
\odot b. Merge sort takes $O(n\log(n))$ running time for any input size	
c. Insertion sort is slower than merge sort when the input size is large	ie
 d. Merge sort is the fastest algorithm if the input sequence is alread 	y sorted 🗸
Your answer is correct. The correct answer is: Merge sort is the fastest algorithm if the input sequence is already sorted	
Question 15 Correct Mark 1.00 out of 1.00	
Is this statement true or false? $O(n!) \subseteq O(n^n)$	
Select one:	
True ✓	
○ False	
The correct answer is 'True'.	
Question 16	
Correct Mark 1.00 out of 1.00	
Wark 1.00 out of 1.00	

Which one of the following properties is INCORRECT in a red-black tree?

Select one:

Select one:

- a. The root and leaves should be black.
- ob. Every node must be either red or black.
- o. All simple paths from any node x to a descendant leaf have the same number of black nodes.
- od. If a parent is red, then its children can be either red or black
- Correct, this is not a property of red-black trees. If a node is red, both children are black

Your answer is correct.

The correct answer is: If a parent is red, then its children can be either red or black

Which one of the following statements is CORRECT?

Select one:

a. AVL Tree can maintain absolute balance

B-tree is a generalized binary search tree

- b. B-tree is a generalized binary search tree
- oc. B-tree has at most 5 children per node
- od. Red-black tree is always more balanced than AVL tree

Your answer is incorrect.

The correct answer is:

B-tree is a generalized binary search tree

Question 18

Incorrect

Mark 0.00 out of 1.00

Which one of the following statements is CORRECT?

Select one:

- a. Breath-first search explores one possible option recursively at each step
- b. Depth-first search explores only one option at each step until hitting a deadend, then return to the start and explore another option
- Binary search **d**ivides the search range by half at each step
- oc. Binary search applies divide-and-conquer by dividing into 2 subproblems, each of which has only a half of the problem size.
- igcup d. Binary search takes at most $\log(n)$ steps to find an item in unstructured space

Your answer is incorrect.

The correct answer is:

Binary search applies divide-and-conquer by dividing into 2 subproblems, each of which has only a half of the problem size.

17101K 0.00 OUL OF 1.00

Which one of the following statements is CORRECT?

Select one:

$$\ \, \text{ o. } \ \, 5^{\log(n)} = O(n^{2.322}), \\ 5^{\log(n)} = \Omega(n^{2.322}), \\ 5^{\log(n)} = \Theta(n^{2.322})$$

$$\bigcirc$$
 b. $\log(n) = O(n), \log(n) = \Omega(n), \log(n) = \Theta(n)$

c.
$$\log(\log(n)) = O(\log(n)), \log(\log(n)) = \Omega(\log(n)), \log(\log(n)) = \Theta(\log(n))$$

$$5^{\log(n)} = n^{\log(5)} = n^{2.322}$$

$$0$$
 d. $n^2 \log(n) = O(n^2), n^2 \log(n) = \Omega(n^2), n^2 \log(n) = \Theta(n^2)$

Your answer is incorrect.

```
The correct answer is: 5^{\log(n)} = O(n^{2.322}), 5^{\log(n)} = \Omega(n^{2.322}), 5^{\log(n)} = \Theta(n^{2.322})
```

Question 20

Correct

Mark 1.00 out of 1.00

Compute the time complexity of the following method:

(Assume that function c() requires a constant number of operations)

```
c();
for (int i = 0; i<n; i++ ) {
    c();
    for (int j=0;j<i;j++) {
        c();
    }</pre>
```

public void someMethod(int n) {

Select one:

}

Select one:

}

- \bigcirc a. $O(n \log n)$
- \bigcirc b. O(1)
- \bigcirc c. $O(\log \log n)$
- \odot d. $O(n^2)$

Your answer is correct.

The correct answer is: $O(n^2)$

WATTLE

Quiz 3 ►