Sistemas Periciais Tradicionais

Funcionam assumindo que tudo é Verdadeiro ou Falso

Qualquer regra cujas condições sejam satisfeitas é disparável

→ as suas conclusões são Verdadeiras

Estas assunções são simplistas

→ e conduzem a Sistemas Periciais Frágeis

n Conhecimento Incerto

1

Fontes de Incerteza

- Informação incompleta
- Informação imprecisa

Raciocínio com Incerteza exige:

- Quantificação de Incerteza
- Método de combinação dos valores de Incerteza

stemas Periciais com Conhecimento Incerto

2

3

Comparação das Teorias Quantitativas

Método	Bayes	Demp Schafer	Fact. Certeza	Conj. Vagos
Fundamentos Teóricos	Forte	Forte	Fraca	Moderada
Complexidade Computacional	Baixa	Moderada	Baixa	Moderada
Dificuldade Construção Modelo	Moderada	Moderada	Baixa	Moderada
Dificuldade Execução do Modelo	Moderada	Moderada	Baixa	Baixa
Complexidade da Teoria	Moderada	Moderada	Baixa	Baixa
Facilidade de Aplicação	Moderada	Difficil	Fácil	Fácil

Sistemas Periciais com Conhecimento Incerto

Como escolher?

Método	Bayes Demp Schafer		Fact. Certeza	Conj. Vagos	
Definição do Problema	Bem Definido	Bem Definido	Bem/Mal Definido	Bem/Mal Definido	
Volume de Computação	Pequeno	Pequeno a Grande	Pequeno	Pequeno a Grande	
Treino na Teoria	Moderado	Moderado	Pouco	Pouco	
Treino na Aplicação	Pouco	Grande	Pouco	Moderado	

Sistemas Pariaisis com Conhecimento Incerto

5

5

Fontes de Incerteza

Dada a regra

Regra R1: Se A & B então C

Existem três potenciais áreas de Incerteza:

- Incerteza nos dados (quão verdadeiros são A e B)
- Incerteza na regra (com que frequência A & B implicam C)
- Imprecisão em geral
- As duas primeiras podem ser tratadas usando Probabilidades
- A terceira usando Lógica Fuzzy

6

Sistemas Periciais com Conhecimento Incerto

Teoria da Probabilidade

- É uma aproximação matemática para processar informação incerta
- As suas raízes remontam ao séc. XVII, foi criada por um grupo de jogadores franceses, com o intuito de tornar o jogo menos aleatório
- Mais tarde Pascal e Fermat desenvolveram a Teoria da Probabilidade Clássica usada ainda hoje para extrair inferências numéricas de dados
- Propõe a existência de um valor P(E) Probabilidade que consiste na possibilidade de ocorrência de um evento E a partir de uma experiência de eventos aleatórios
- Ou seja, se realizarmos uma determinada experiência um número considerável de vezes, então podemos ter quase a certeza que a frequência relativa do evento **E** é aproximadamente igual a **P**(**E**)
- O conjunto de todos os possíveis resultados de uma experiência é denominado **espaço da amostra S.**

Sistemas Periciais com Conhecimento Incerto

7

7

Probabilidade Discreta

Experiências com resultados discretos

$$P(E) = W(E)/N$$

em que

W(E) – n° de vezes que um particular evento ocorreu N – n° de experiências realizadas

Exemplo

Considere-se o seguinte espaço resultante da experiência de rodar um dado

 $S = \{1, 2, 3, 4, 5, 6\}$

Cada evento neste espaço da amostra representa um possível resultado da experiência. N será o número de vezes que o dado é rodado e W(E) o número de resultados de um particular evento.

A probabilidade de cada evento neste espaço

$$P(E) = W(E)/N = 1/6$$

nas Periciais com Conhecimento Incerto

8

Probabilidades Compostas

Em muitos problemas é necessário considerar combinações de diferentes eventos, por exemplo, calcular a probabilidade de ocorrência de dois eventos diferentes, ou a probabilidade de nenhum deles ocorrer.

Intersecção

Para problemas relativos a múltiplos eventos, é necessário determinar a intersecção dos espaços das amostras de todos os eventos. A partir disto é possível determinar a **probabilidade conjunta**

$$P(A \cap B) = n(A \cap B) / n(S) = P(A) * P(B) \rightarrow f\'{o}rmula v\'{a}lida para eventos independentes sendo $P(A) = n(A)/n(S)$$$

Exemplo

Considere-se a probabilidade de retirar do conjunto $S = \{1, 2, 3, 4, 5, 6\}$ um número ímpar <u>e</u> um número divisível por 3 – dois eventos independentes.

$$A = \{1,3,5\}$$
 $B = \{3,6\}$ $A \cap B = \{3\}$ $P(A) = 3/6$ $P(B) = 2/6$ $P(A \cap B) = 1/6$

Donde, a probabilidade de retirar do conjunto um número ímpar e divisível por 3 é de 1/6.

Fisterne Besision of Control of Learning

9

9

Probabilidades Compostas

União

Por vezes pode ser necessário determinar a probabilidade de nenhum ou vários eventos ocorrerem

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Exemplo

Considere-se a probabilidade de retirar do conjunto $S = \{1, 2, 3, 4, 5, 6\}$ um número ímpar <u>ou</u> um número divisível por 3 – dois eventos independentes.

A=
$$\{1,3,5\}$$
 B= $\{3,6\}$ A \cap B = $\{3\}$
P(A) = 3/6 P(B) = 2/6 P(A \cap B) = 1/6
P(A \cup B) = 3/6 + 2/6 - 1/6 = 2/3

Donde, a probabilidade de retirar do conjunto um número ímpar <u>ou</u> divisível por 3 é de 2/3.

stemas Periciais com Conhecimento Incerto

10

Probabilidade Condicional

São usadas quando os eventos não são mutuamente exclusivos, ou seja, quando os eventos se podem influenciar.

A probabilidade de ocorrência de um evento A sabendo que um evento B ocorreu é chamada **Probabilidade Condicional** e é dada por:

$$P(A \mid B) = P(A \cap B) / P(B)$$

A probabilidade condicional permite obter a probabilidade de um evento A sabendo que o evento B ocorreu

Exemplo

Qual a probabilidade de se retirar do conjunto S o número 3 (evento A) sabendo que um número divisível por 3 ocorreu (evento B)

$$P(A | B) = (n(A \cap B) / n(S)) / (n(B)/n(S)) = n(A \cap B) / n(B)$$

= 1/6 / 2/6 = 1/2

Sistemas Periciais com Conhecimento Incerto

11

11

Fórmulas Básicas de Probabilidade

Regra do Produto: Probabilidade de conjunção de dois eventos A e B

$$P(A \wedge B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

Regra da Soma: Probabilidade de disjunção de dois eventos A e B

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

Teorema da Multiplicação de Probabilidades: permite calcular a probabilidade de ocorrência simultânea de vários eventos a partir das probabilidades condicionais

$$P(A_1 \cap ... \cap A_n) = P(A_n | A_1 \cap ... \cap A_{n-1}) ... P(A_2 | A_1) \times P(A_1)$$

12

Sistemas Periciais com Conhecimento Incerto

Teorema da Probabilidade Total

Se os eventos $B_1,...,B_n$ são mutuamente exclusivos e formam uma partição certa do evento A

13

Probabilidade à Posteriori

A probabilidade condicional permite obter a probabilidade de um evento A sabendo que o evento B (anterior a A) ocorreu

Muitas vezes estamos interessados na situação inversa:

Qual é a probabilidade de um evento anterior ter ocorrido sabendo que um evento posterior ocorreu ?

→ Probabilidade à Posteriori

O problema em determinar a probabilidade à posteriori foi resolvido por Thomas Bayes sendo conhecido por **Teorema de Bayes**

14

13

Sistemas Periciais com Conhecimento Incerto

Probabilidade à Posteriori

Probabilidade de A dado B é (probabilidade condicional):

$$p(A|B) = \frac{p(A \cap B)}{p(B)} \quad (1)$$

De forma análoga, a probabilidade de B dado A é:

$$p(B|A) = \frac{p(B \cap A)}{p(A)}$$

Sendo a probabilidade conjunta comutativa:

$$p(B|A) = \frac{p(B \cap A)}{p(A)} = \frac{p(A \cap B)}{p(A)} \Leftrightarrow p(A \cap B) = p(B|A)p(A)$$

Substituindo p(B|A)p(A) em (1):

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$
 \rightarrow Fórmula de Bayes

15

15

Probabilidade à Posteriori

- Em vez de A e B, vamos considerar h (uma hipótese) e E (evidência que suporta a hipótese)
- Dada a observação de E, qual é a probabilidade de h ser verdadeira?
- P(h|E) é referida como probabilidade à posteriori de h dada a evidência E
- Os peritos fornecem probabilidades à priori para p(h), p(~h), assim como probabilidades condicionais p(E|h) e $p(E|\sim h)$

16

Teorema de Bayes

$$P(h \mid E) = \frac{P(E \mid h)P(h)}{P(E)}$$

- P(h | E): probabilidade à posteriori de h dado E (reflete a confiança da hipótese h depois de se observar – E)
- P(E | h): probabilidade de E dado h
- P(h): probabilidade a priori da hipótese h (representa o conhecimento de domínio, se este conhecimento prévio não existir pode ser atribuída a mesma probabilidade a cada hipótese candidata)
- P(E): probabilidade a priori de E (sem conhecimento prévio)

Sistemas Periciais com Conhecimento Incerto

17

17

Teorema de Bayes

A aplicação do teorema de Bayes como classificador requer que se conheçam:

- duas probabilidades a priori p (decisão_i); p(x)
- uma probabilidade condicional p (x | decisão_i)

Em recursos ricos estatisticamente, é possível determinar a probabilidade das hipóteses serem verdadeiras, através de algumas evidências acerca do problema

18

Sistemas Periciais com Conhecimento Incerto

19

Exercício

Pacientes com problemas cardíacos são sujeitos a um electrocardiograma (ECG)

Os resultados são classificados:

- positivos (+ECG) sugerindo doença cardíaca (+DC)
- negativos (-ECG) no caso de não haver doença cardíaca (-DC)

Assumindo que um dado paciente realizou um electrocardiograma positivo pretende-se saber qual a probabilidade deste ter doença cardíaca?

$$\rightarrow$$
 P(+DC | + ECD)

Sabendo que

- 10 pessoas em 100 têm um ataque cardíaco
- 90 pessoas em 100 que tiveram doença cardíaca produziram um electrocardiograma positivo
- 95 pessoas em 100 que não tiveram doença cardíaca produziram um electrocardiograma negativo

20

Exercício

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$$

• 10 pessoas em 100 têm um ataque cardíaco

$$\rightarrow$$
 P(+DC) = 0.1
 \rightarrow P(-DC) = 1 - P(+DC) = 1 - 0.1 = 0.9

• 90 pessoas em 100 que tiveram doença cardíaca produziram um electrocardiograma positivo (+ECD)

$$\rightarrow$$
 P(+ECD | +DC) = 0.9

• 95 pessoas em 100 que não tiveram doença cardíaca produziram um electrocardiograma negativo (-ECD)

$$\begin{array}{c} \rightarrow P \ (\ \text{-ECD} \ | \ \text{-DC}) = 0.95 \\ \rightarrow P \ (\text{+ECD} \ | \ \text{-DC}) = 1 \ \text{-} \ P(\text{-ECD} \ | \ \text{-DC}) = 1 \ \text{-} \ 0.95 = 0.05 \\ P(\text{+ECD}) = P(\text{+ECD} \ | \ \text{+DC}) * P(\text{+DC}) + P(\text{+ECD} \ | \ \text{-DC}) * P(\text{-DC}) \\ = 0.9 * 0.1 + 0.05 * 0.9 = 0.135 \end{array}$$

```
P(+DC \mid + ECD) = P(+ECD \mid +DC) * P(+DC) / P(+ECD)
P(+DC \mid + ECD) = 0.1 * 0.9 / 0.135 = 0.67 \rightarrow 67\%
```

Sistemas Periciais com Conhecimento Incerto

21

21

Aplicação do teorema de Bayes

- Consideremos a seguinte regra:
 - Se há fuga de vapor Então saída de vapor está bloqueada
 - Se E Então H
- Considerando agora uma abordagem probabilistica:
 - Se E Então actualizar (P(H))
- O valor actualizado de P(H) é dado por P(H|E)

22

Sistemas Periciais com Conhecimento Incerto

Probabilidades versus Odds

- Probabilidades podem ser expressas como *Odds* (chance): razão entre a probabilidade de um evento e a probabilidade de todos os demais eventos
- Exemplo: consideremos o evento "apanhar uma constipação"
 - Probabilidade: número esperado de pessoas constipadas /número de pessoas de uma população
 - Odds: número esperado de pessoas constipadas / número esperado de pessoas não constipadas
 - Numa população de 10 pessoas, se 1 estiver constipada, então:
 - P=1/10 O=1/9

amas Pariainis aom Conhacimento Incarto

23

23

Probabilidades versus Odds

- A uma probabilidade de 1/10 corresponde uma chance (odd) de 1/9 ("9 para 1 contra")
- A uma probabilidade de 9/10 corresponde uma chance de 9 ("9 para 1 a favor")

$$O(H) = \frac{P(H)}{1 - P(H)}$$
 $P(H) = \frac{O(H)}{O(H) + 1}$

- Se $P(H) = 0 \Rightarrow O(H) = 0$
- Se $P(H) = 1 => O(H) = \infty$

24

Sistemas Periciais com Conhecimento Incerto

Utilização dos rácios de likelihood

- Os rácios de likelihood constituem uma alternativa para a representação da actualização bayesiana – conduz a regras do tipo:
 - Se há fuga de vapor Então saída de vapor bloqueada É X vezes mais provável
- Assim, perante a evidência, a probabilidade da hipótese pode ser actualizada se conhecermos uma expressão para X
- O valor de X pode ser expresso mais facilmente se a hipótese for expressa através de uma *chance* (odd) em vez de uma probabilidade

Sistemas Periciais com Conhecimento Incerto

25

25

Utilização dos rácios de likelihood

 Partindo da expressão de P(H|E) podemos chegar às seguintes expressões:

$$O(H \mid E) = LS \times O(H), \text{ em que LS} = \frac{P(E \mid H)}{P(E \mid \sim H)}$$

$$O(H \mid \sim E) = LN \times O(H), \text{ em que LN} = \frac{P(\sim E \mid H)}{P(\sim E \mid \sim H)} = \frac{1 - P(E \mid H)}{1 - P(E \mid \sim H)}$$

26

Sistemas Periciais com Conhecimento Incerto

Aplicação do Teorema de Bayes aos SP

O Teorema de Bayes é usado no desenvolvimento de Sistemas Periciais

Dada a estrutura de uma regra típica

If E then H (LS, LN)

A fórmula de Bayes pode ser usada para cálculo da probabilidade da hipótese H partindo da probabilidade a priori do facto E

A utilização dos rácios LS e LN tem a vantagem destes serem definidos em termos da probabilidade condicional da evidência, dada um hipótese – estas probabilidades normalmente são mais fáceis de obter

Se os valores exatos das probabilidades condicionais não forem conhecidos é possível recorrer a valores heurísticos de LS e LN

-t----- B--i--i-- ---- C--t--i----t- I----t-

27

27

Aplicação do Teorema de Bayes aos SP

Exemplo:

Diagnóstico de avaria de uma máquina. Podemos observar os sintomas apresentados pela máquina mas o diagnóstico está relacionado com os eventos anteriores que causaram os sintomas que a máquina apresenta

A aplicação do teorema de Bayes corresponde à aplicação de raciocínio abdutivo (para determinação de causas) a partir do uso de informação dedutiva (observação de sintomas, efeitos ou evidências)

Uma das justificações para a utilização do teorema de Bayes reside no facto de que a informação dedutiva é mais fácil de obter do que a informação abdutiva

28

Sistemas Periciais com Conhecimento Incerto

LS versus LN

As regras são da forma

IF E THEN H (LS, LN)

E – denota alguma Evidência

H – representa alguma Hipótese

LS - Likelihood of Sufficiency (A - Affirms)

representa a medida de **suporte da Hipótese** H dada a Evidência E

$$LS = P(E \mid H) / P(E \mid \sim H)$$

LN – Likelihood of Necessity (D – Denies)

representa a medida de **descrédito da Hipótese H** se a Evidência E estiver em falta

$$LN = P(\sim E \mid H) / P(\sim E \mid \sim H)$$

29

Sistemas Periciais com Conhecimento Incerto

29

LS versus LN

IF E THEN H (LS, LN)

Ambos os factores LS e LN são fornecidos pelo perito e são usados para calcular a Probabilidade à Posterior da Hipótese P (H | E)

Ambos os factores variam:

 $0 < \Gamma S < \infty$

 $0 < \Gamma N < \infty$

LS Efeito na Hipótese

H é Falso quando E é Verd ou ~E é necessário para concluir H

Pequeno E não é favorável para concluir H

E não tem efeito para concluir H

Grande E é favorável para concluir H

∞ E é logicamente suficiente para concluir H

Sistemas Periciais com Conhecimento Incerto

30

LS versus LN

LN	Efeito na Hipótese
0	H é Falso quando E ausente ou E é necessário para concluir H
Pequeno	Ausência de E não é favorável para concluir H
1	Ausência de E não tem efeito para concluir H
Grande	Ausência de E é favorável para concluir H
∞	Ausência de E é logicamente suficiente para concluir H
	3

31

E se não há certeza quanto às evidências?

- Até aqui considerámos que uma evidência está garantidamente presente ou ausente; no entanto a probabilidade de uma evidência pode ser diferente de 1 ou 0:
 - a evidência pode corresponder a uma proposição gerada por outra regra probabilística
 - a evidência pode advir de informação que não é completamente fiável (associada por exemplo à leitura de um sensor)
- Um alternativa consiste em modificar os pesos LS e LN de forma a refletir a incerteza inerente à evidência E – pode ser alcançado através de um interpolação linear dos pesos à medida que a probabilidade de E varia de 0 a 1

32

Sistemas Periciais com Conhecimento Incerto

E se não há certeza quanto às evidências?

- LS' e LN' representam os pesos interpolados
- Enquanto P(E) é maior que 0.5, é o usado o peso LS
- Enquanto P(E) é menor que 0.5, é usado o peso LN

$$LS' = [2(LS-1) \times P(E)] + 2 - LS$$

$$LN' = [2(1-LN) \times P(E)] + LN$$

Sistemas Periciais com Conhecimento Incerto

33

33

Combinação de evidências

• Como combinar várias evidências que suportam a mesma hipótese? $O(H \mid E_1 \& E_2 \& E_3 ... E_n) = LS \times O(H)$

onde LS =
$$\frac{P(E_1 \& E_2 \& E_3 ... E_n | H)}{P(E_1 \& E_2 \& E_3 ... E_n | \sim H)}$$

- No entanto estas expressões serão de pouca utilidade se os eventos que suportam a hipótese H não forem todos observados
- Neste caso será necessário conhecer os valores de LS para todas as combinações possíveis de evidências observadas e não observadas
- O problema será simplificado se considerarmos que há independência estatística entre os vários eventos:
 - E_1 e E_2 são independentes se $P(E_1|E_2)=P(E_1)$ e $P(E_2|E_1)=P(E_2)$

34

Sistemas Periciais com Conhecimento Incerto

Combinação de evidências

• Considerando que os eventos são independentes:

$$\begin{split} LS_i &= \frac{P(E_i \mid H)}{P(E_i \mid \sim H)} \\ LN_i &= \frac{P(\sim E_i \mid H)}{P(\sim E_i \mid \sim H)} \\ O(H \mid E_1 \& E_2 \& E_3 \dots E_n) &= LS_1 \times LS_2 \times LS_3 \times \dots \times LS_n \times O(H) \\ O(H \mid \sim E_1 \& \sim E_2 \& \sim E_3 \dots \sim E_n) &= LN_1 \times LN_2 \times LN_3 \times \dots \times LN_n \times O(H) \end{split}$$

Sistemas Periciais com Conhecimento Incerto

35

35

Combinação de evidências

- E se os eventos não são independentes?
 - Quando as evidências não são independentes, não devem ser combinadas na mesma regra
 - Devem ser usadas conclusões intermédias de forma a garantir que apenas eventos independentes são combinados numa mesma regra
 - Esta estratégia não reduz o número de probabilidades condicionais necessárias para o cálculo da probabilidade da hipótese – no entanto permite reduzir as interações entre evidências
 - As redes de inferência (redes bayesianas) constituem um método adequado para representar as relações entre evidências, conclusões intermédias e conclusões finais

Sistemas Periciais com Conhecimento Incerto

36

Redes Bayesianas (RN)

• Uma RB é um grafo cujos nós têm a ele associados tabelas de probabilidades

- Os nós representam variáveis discretas ou contínuas; por exemplo, a variável 'Greve nos comboios' é discreta e pode assumir dois valores: verdadeiro ou falso (evidências, conclusões intermédias ou conclusões finais)
- Os ramos representam relações causais entre as variáveis; por exemplo, o arco entre as variáveis 'Greve nos comboios' e 'João atrasado' indica que a existência de greve pode influenciar o atraso do João

Sistemas Periciais com Conhecimento Incerto

37

37

Redes Bayesianas (RB)

- As RB permitem modelar e raciocinar sobre incerteza
- No exemplo, uma greve nos comboios não implica que o João chegue atrasado, mas existe uma probabilidade acrescida de que ele chegará atrasado. Este tipo de conhecimento é modelado através do preenchimento de tabelas de prioridades para cada nó

	Greve nos combolos				
João atrasado	V	F			
V	0.8	0.1			
F	0.2	0.9			
	Greve nos comboios				
	Greve no	s comboios			
Maria atrasada	Greve nos	s comboios F			
Maria atrasada V	V 0.6				

Corresponde à probabilidade condicional da variável 'João atrasado' dada a variável 'Greve nos comboios': P(João atrasado | Greve nos comboios)

stemas Periciais com Conhecimento Incerto

38

Redes Bayesianas (RB)

Tabela de probabilidades do nó raiz (nós que não têm pais):

Greve nos comboios	
V	0.1
F	0.9

- Existem várias formas de obter os valores para as tabelas de probabilidades:
 - através da frequência de eventos ocorridos no passado
 - se não existir informação estatística, os valores podem ser adquiridos a partir de peritos
- As RB tanto podem usar probabilidades subjectivas como probabilidades baseadas em dados objectivos.

Sistemas Periciais com Conhecimento Incerto

39

39

Redes Bayesianas (RB)

Depois de definidas as tabelas de probabilidades é possível usar a probabilidade bayesiana para efectuar vários tipos de análises. Por exemplo, se pretendermos calcular a probabilidade (incondicional) de João chegar atrasado (probabilidade marginal):

 $P(João \ atrasado) = P(João \ atrasado \ | \ Greve) * P(Greve) + \\ P(João \ atrasado \ | \ \neg \ Greve) * P(\neg \ Greve) = (0.8 * 0.1) + (0.1 * 0.9) = 0.17$

Da mesma forma:

P(Maria atrasada) = 0.51

No entanto, a maior utilidade das RB diz respeito à revisão de probabilidades perante a observação da ocorrência de eventos. No exemplo podemos **introduzir a evidência** de que 'Greve nos comboios' é verdadeiro. As tabelas de probabilidade condicional já nos dizem qual é a probabilidade revista de 'João atrasado' (0.8).

40

Sistemas Periciais com Conhecimento Incerto

Redes Bayesianas (RB)

No entanto, vamos supor que não conhecemos se existe greve de comboios mas sabemos que o João está atrasado.

Então podemos introduzir a evidência de que 'João atrasado' = verdadeiro e podemos usar esta observação para determinar:

- 1. a probabilidade (revista) de que existe greve
- 2. a probabilidade (revista) de Maria estar atrasada

Para calcular 1 usamos o teorema de Bayes:

$$P(Greve \mid João_atrasado) = \frac{P(João_atrasado \mid Greve) \times P(Greve)}{P(João_atrasado)} = \frac{0.8 \times 0.1}{0.17} = 0.47$$

Sistemas Periciais com Conhecimento Incer

41

Redes Bayesianas (RB)

Assim, a observação de que João está atrasado aumenta significativamente a probabilidade dos comboios estarem em greve (de 0.1 para 0.47). Podemos agora usar esta probabilidade revista para calcular 2:

```
P(Maria\_atrasada) = P(Maria\_atrasada | Greve) \times P(Greve) + + P(Maria\_atrasada | \neg Greve) \times P(\neg Greve) = = (0.6 \times 0.47) + (0.5 * 0.53) = 0.55
```

Assim, a observação de que João está atrasado aumenta ligeiramente a probabilidade de Maria estar atrasada (0.51 para 0.55).

Quando uma evidência é introduzida e de seguida é usada para actualizar probabilidades de outras variáveis estamos perante um processo de **propagação**.

42

Sistemas Periciais com Conhecimento Incerto

Redes Bayesianas (RB)

- Vantagens
 - As RBs permitem modelar eventos incertos. A representação visual intuitiva pode ser útil para clarificar assumpções ou raciocínios existentes mas não estruturados na memória de um perito
 - As RBs tornam explícitas as dependências entre diferentes variáveis.
 Geralmente existe um número reduzido de dependências directas (modeladas por arcos entre nós) – isto significa que as variáveis são condicionalmente independentes, reduzindo drasticamente o esforço computacional requerido
 - Contudo, a grande vantagem das RBs surge quando são aplicadas as regras bayesianas para propagar de forma consistente o impacto de evidências nas probabilidades de resultados incertos
 - As RBs têm sido aplicadas com sucesso em aplicações práticas, como diagnósticos médicos, diagnóstico de falhas mecânicas, interfaces adaptativas e tutores inteligentes

Sistemas Periciais com Conhecimento Incerto

43

43

Redes Bayesianas (RB)

- Desvantagens
 - O preenchimento das tabelas de probabilidades condicionais nem sempre é fácil
 - O processo de propagação em redes com muitas variáveis, com nós que podem assumir mais do que 2 valores ou que contenham muitas relações de dependência, torna-se computacionalmente complexo (NP-hard). No entanto, actualmente já existem algoritmos eficientes capazes de tratar RBs de grandes dimensões

44

Sistemas Periciais com Conhecimento Incerto

45

Exemplo greve(2)

- Formato geral das regras:
 - IF E THEN H (LS, LN), em que
 - LS = $P(E \mid H) / P(E \mid \sim H)$ medida de suporte
 - LN = $P(\sim E \mid H) / P(\sim E \mid \sim H)$ medida de descrédito
- No exemplo:
 - Qual é a probabilidade de haver greve perante a evidência de que João está atrasado?
 - E = João está atrasado
 - H = Há greve
 - IF joão_atrasado THEN greve (LS, LN)
 - LS, LN?

46

Sistemas Periciais com Conhecimento Incert

Exemplo greve(3)

- No exemplo:
 - Qual é a probabilidade de haver greve perante a evidência de que João está atrasado?
 - E = João está atrasado
 - H = Há greve
 - Consultando as tabelas de probabilidades condicionais obtém-se:
 - $P(E \mid H) = P(joão atrasado \mid greve) = 0.8$
 - $P(\sim E \mid H) = P(\sim jo\tilde{a}o_atrasado \mid greve) = 0.2$
 - $P(E \mid \sim H) = P(jo\tilde{a}o_atrasado \mid \sim greve) = 0.1$
 - $P(\sim E \mid \sim H) = P(\sim joão_atrasado \mid \sim greve) = 0.9$
 - Logo:
 - LS = 0.8 / 0.1 = 8
 - LN = 0.2 / 0.9 = 0.2222

Sisteman Besision of Control of Learning

47

47

Exemplo greve(4)

- uncertainty_rule r1
 - if joão_atrasado is yes (affirms 8; denies 0.2222) then greve is yes.
- Agora o restante código:

48

istemas Periciais com Conhecimento Incerto

Exemplo greve(5)

```
frame probabilidades_apriori
default greve_comboios is 0.1 and
default joão_atrasado is 0.17 and
default maria_atrasada is 0.51 .

uncertainty_rule r1
   if joão_atrasado is yes (affirms 8 ; denies 0.2222)
   then greve is yes.

group rs r1.

relation fire(PJoãoAtrasado, PGreve, PGreveAct) if
   reset all probability values and
   the probability that joão_atrasado is yes = PJoãoAtrasado and
   the probability that greve is yes = PGreve and
   propagate rs probability rules and
   the probability that greve is yes = PGreveAct .
```

49

Exemplo greve(6)

```
?- fire(1, 0.1, PGreveAct).
PGreveAct = 0.470588235294118
```

- A probabilidade revista de greve perante a evidência do João estar atrasado passa a ser 0.47, enquanto que inicialmente esta probabilidade era 0.1
- Assim conclui-se que a evidência contribui para fortalecer a hipótese

50

Sistemas Periciais com Conhecimento Incerto

Flint: exemplo diagnóstico de caldeira (1)

- Regras:
 - regra r1: Se válvula de escape está bloqueada
 Então limpar válvula de escape
 - regra r2: Se luz de aviso está ligada
 Então válvula de escape está bloqueada
 - regra r3: Se pressão é alta
 Então válvula de escape está bloqueada
 - regra r4: Se temperatura é alta E Não (nível de água é baixo)
 Então pressão é alta

3 eventos independentes: temperatura, luz de aviso e nível de água

Sistemas Periciais com Conhecimento Incerto

51

51

Flint: exemplo diagnóstico de caldeira (2)

• Valores de probabilidade e pesos LS e LN estimados:

	Н	E	P(H)	O(H)	P(E H)	P(E ~H)	LS (A)	LN (D)
(1)	limpar válvula de escape	válvula de escape bloqueada	-	-	-	-	-	-
	válvula de escape bloqueada	luz aviso acesa	0.02	0.02	0.88	0.4	2.20	0.20
	válvula de escape bloqueada	pressão alta	0.02	0.02	0.85	0.01	85.0	0.15
(2)	pressão alta	temperatura alta	0.1	0.11	0.90	0.05	18.0	0.11
(2)	pressão alta	nível água baixo	0.1	0.11	0.05	0.5	0.10	1.90

- 1) Considera-se que sempre que a válvula de escape está bloqueada há necessidade de a limpar (P(H|E)=1)
- 2) A regra r4 indica que a evidência Não (nível de água é baixo) suporta a hipótese pressão é alta; este suporte é expresso através do valor do peso LS (affirms) do facto nível de água é baixo menor que 1, e através do valor do peso LN (denies) superior a 1

istemas Periciais com Conhecimento Incerto

52

Flint: exemplo diagnóstico de caldeira (3)

- Regras probabilísticas:
 - regra r1: Se válvula de escape está bloqueada
 Então limpar válvula de escape
 - regra r2: Se luz de aviso está ligada (LS 2.20; LN 0.20)
 Então válvula de escape está bloqueada
 - regra r3: Se pressão é alta (LS 85.0; LN 0.15)
 Então válvula de escape está bloqueada
 - regra r4: Se temperatura é alta (LS 18.0; LN 0.11) E nível de água é baixo (LS 0.10; LN 1.90) Então pressão é alta

Neste caso considerou-se que não há incerteza em relação à regra r1- é possível combinar os dois tipos de regras

Sistemas Periciais com Conhecimento Incerto

53

53

Flint: exemplo diagnóstico de caldeira (4)

Implementação (base de regras)

```
uncertainty_rule r1 if
  valvula_escape is bloqueada
then limpar_valvula_escape is verdadeiro.
uncertainty_rule r2 if
  luz_aviso is ligada
                           (affirms 2.20; denies 0.20) then
   valvula_escape is bloqueada.
uncertainty_rule r3 if
                           (affirms 85.0; denies 0.15)
  pressao is alta
then valvula_escape is bloqueada.
uncertainty_rule r4 if
  temperatura is alta
                           (affirms 18.0; denies 0.11)
and
  nivel_agua is baixo
                           (affirms 0.10; denies 1.90)
then pressao is alta.
group rulesets r4, r3, r2, r1.
```

istemas Periciais com Conhecimento Incerto

54

Flint: exemplo diagnóstico de caldeira (5) Implementação (acção principal – propagação – versão 1) relation run(P_limpar_valvula_escape, O_limpar_valvula_escape) if trace propagation and reset all probability values and priori das hipóteses the probability that valvula_escape is bloqueada = 0.02 and the probability that pressao is alta = 0.1 and the probability that nivel_agua is baixo = 0.0 and the probability that luz_aviso is ligada = 1.0 and Dados de entrada: the probability that temperatura is alta = 1.0 and nível água não é baixo · luz aviso está ligada propagate rulesets probability rules and • temperatura é alta the probability that limpar_valvula_escape is verdadeiro = P_limpar_valvula_escape and the odds that limpar_valvula_escape is verdadeiro = O limpar valvula escape . 55

55

```
Flint: exemplo diagnóstico de caldeira (6)
• Implementação (acção principal – propagação – versão 2)
 relation run(P_limpar_valvula_escape, O_limpar_valvula_escape) if
    trace propagation and
                                                              Probabilidades a
    reset all odds values and
                                                              priori das hipóteses
    the odds that valvula_escape is bloqueada = 0.02 and
    the odds that pressao is alta = 0.11 and
    the odds that nivel_agua is baixo = 0.0 and
    the odds that luz_aviso is ligada = 1.9999E100 and
    the odds that temperatura is alta = 1.9999E100 and
                                                            Dados de entrada:

    nível água não é baixo

                                                            · luz aviso está ligada
    propagate rulesets probability rules and
                                                            · temperatura é alta
    the probability that limpar valvula escape is verdadeiro =
                             P_limpar_valvula_escape and
    the odds that limpar_valvula_escape is verdadeiro =
                             O_limpar_valvula_escape .
                                                                             56
```

Flint: exemplo diagnóstico de caldeira (7)

- Obtenção do resultado
 - Regra r4

 $\begin{array}{ll} \mbox{H= pressao \'e alta;} & O(\mbox{H)=0.11} \\ E_1 = \mbox{temperatura \'e alta;} & LS_1 = 18.0 \\ E_2 = \mbox{nivel agua \'e baixo;} & LN_2 = 1.90 \end{array}$

O(H|(E₁&~E₂))=O(H)xLS₁xLN₂=3.76 (odds de pressao é alta actualizada para 3.76)

Regra r3

H= valvula escape está bloqueada; O(H)=0.02 E= pressao é alta; LS=85.0

Como E é não é certo ($P(E)=0.79 \le 1$), o motor de inferência deve calcular um valor interpolado de LS'

LS' = [2(LS-1)xP(E)] + 2 - LS = 49.7

O(H|E)=O(H)xLS'=0.99 (odds de válvula escape está bloqueada atualizada para 0.99, correspondendo a uma probabilidade aproximada de 0.5)

Sisteman Besision of Control of Learning

57

57

Flint: exemplo diagnóstico de caldeira (8)

- Obtenção do resultado
 - Regra r2

H= valvula escape está bloqueada; O(H)=0.99 E= luz aviso está ligada; LS=2.20

O(H|E)=O(H)xLS=2.18 (odds de valvula escape está bloqueada é actualizada para 2.18)

Regra r1

H= limpar valvula escape é verdadeiro;

E= valvula escape está bloqueada;

O(E)= 2.18 implica O(H)= 2.18 (tratando-se de uma regra não probabilística, a conclusão obtida é associada com um valor de probabilidade igual ao da evidência; o valor actualizado de odds de limpar valvula escape é verdadeiro é 2.18, correspondendo a uma probabilidade aproximada de 0.69)

```
?- run(P_limpar_valvula_escape, O_limpar_valvula_escape).
P_limpar_valvula_escape=0.69
O_limpar_valvula_escape=2.18
```

istemas Periciais com Conhecimento Incerte

58

Vantagens da abordagem Bayesiana

- Técnica fundamentada por teorema estatístico
- As relações de dependência são expressas através de probabilidades
- A técnica requer probabilidades dedutivas, geralmente mais fáceis de obter do que as abdutivas; são fornecidos valores para probabilidades de evidências (os sintomas) dada uma hipótese (causa)
- LS, LN e probabilidades a priori podem ser obtidos de forma empírica
- Evidências contra e a favor de uma hipótese podem ser combinadas numa mesma regra, usando os rácios LS (*affirms*) e LN (*denies*)
- Incerteza relativa às evidências pode ser considerada através de interpolação dos rácios LS e LN (embora de forma ad hoc)
- A probabilidade de uma hipótese pode ser atualizada em função de mais do que uma evidência

Sistemas Periciais com Conhecimento Incerto

59

59

Inconvenientes da Abordagem Bayesiana

- Só é matematicamente correta se os eventos respeitarem a independência estatística
- Requer a existência de valores difíceis de obter Probabilidades à Priori
- Embora as probabilidades condicionais sejam mais fáceis de obter, os resultados podem não ser corretos quando é necessário recorrer a estimativas
- O valor de probabilidade de veracidade de um facto não revela qualquer informação quanto à sua precisão
- O tratamento da incerteza associada às evidências não é justificada matematicamente
- Em alguns problemas em que os dados ou a informação está continuamente a ser alterada é necessário recalcular as probabilidades
- Em bases de conhecimento de dimensão apreciável, torna-se difícil efetuar alterações dado que se tem de verificar $P(H_1) + P(H_2) + ... + P(H_n) = 1$

60

30

Sistemas Periciais com Conhecimento Incerto