Machine Learning from Data

Lecture 12: Spring 2021

Today's Lecture

- Regularization
- Constraining the Model
- Augmented Error

Overfit (Recap)

Fitting the data more than is warranted

Stochastic Noise Deterministic Noise 3 $= h^*(x) + \text{det. noise}$ f(x)+stoch, noise x \boldsymbol{x}

Stochastic and Deterministic Noise Hurt Learning

Human: Good at extracting the simple pattern, ignoring the noise and complications.

Computer: Pays equal attention to all pixels. Needs help simplifying → (features, regularization).

What is Regularization?

- A cure for our tendency to fit noise, hence improve out-of-sample Error.
- It works by constraining the model so that we cannot fit noise.
- Side effects: If we cannot fit noise maybe we cannot fit the actual signal (f)

constrain weights to be smaller

Constraining the Model

no regularization

$$\mathsf{bias} = 0.21$$

$$var = 1.69$$

regularization

$$\mathsf{bias} = 0.23$$

$$var = 0.33$$

← side effect

← treatment

(Constant model had bias=0.5 and var=0.25.)

Bias Variance

Mathematics of Regularization

•

\mathcal{H}_{o} : polynomials of order Q.

Standard Polynomial

$$\mathbf{z} = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^Q \end{bmatrix} \qquad h(x) = \mathbf{w}^{\mathsf{T}} \mathbf{z}(x) \\ = w_0 + w_1 x + \dots + w_Q x^Q$$

Legendre Polynomial

$$\mathbf{z} = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^Q \end{bmatrix} \qquad h(x) = \mathbf{w}^{\mathsf{T}} \mathbf{z}(x) \\ = w_0 + w_1 x + \dots + w_Q x^Q \qquad \qquad \mathbf{z} = \begin{bmatrix} 1 \\ L_1(x) \\ L_2(x) \\ \vdots \\ L_Q(x) \end{bmatrix} \qquad h(x) = \mathbf{w}^{\mathsf{T}} \mathbf{z}(x) \\ = w_0 + w_1 L_1(x) + \dots + w_Q L_Q(x) \\ & = w_1 L_1(x) + \dots + w_Q L_Q(x) \\ & = w_1 L_1(x) + \dots + w_Q L_Q(x) \\ & = w_1 L_1(x) + \dots + w_Q L_Q(x) \\ & = w_1 L_1(x) + \dots + w_Q L_Q(x) \\ & = w_1 L_1(x) + \dots + w_Q L_Q(x) \\ & = w_1 L_1(x) + \dots + w_Q$$

min:
$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} (\mathbf{Z}\mathbf{w} - \mathbf{y})^{\text{T}} (\mathbf{Z}\mathbf{w} - \mathbf{y})$$

subject to: $\mathbf{w}^{\mathrm{T}}\mathbf{w} \leq C$

Observations:

- 1. Optimal \mathbf{w} tries to get as 'close' to \mathbf{w}_{lin} as possible. Optimal \mathbf{w} will use full budget and be on the surface $\mathbf{w}^{\mathsf{T}}\mathbf{w} = C$.
- 2. Surface $\mathbf{w}^{\mathsf{T}}\mathbf{w} = C$, at optimal \mathbf{w} , should be perpindicular to ∇E_{in} . Otherwise can move along the surface and decrease E_{in} .
- 3. Normal to surface $\mathbf{w}^{\mathsf{T}}\mathbf{w} = C$ is the vector \mathbf{w} .
- 4. Surface is $\perp \nabla E_{\text{in}}$; surface is \perp normal. ∇E_{in} is parallel to normal (but in opposite direction).

Regularization In Action

Minimizing
$$E_{\rm in}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\rm T} \mathbf{w}$$
 with different λ 's

$$\underline{\lambda} = \underline{0}$$

$$\underline{\lambda} = 0.0001$$

$$\underline{\lambda} = 0.001$$

$$\underline{\lambda} = 1$$

Low Order Fit

Weight Growth!

$$\sum_{q=0}^{Q} w_q^2$$

$$\sum_{q=0}^{Q} q w_q^2$$

$$\sum_{q=0}^{Q} \frac{1}{w_q^2}$$

Choosing a Regularizer – A Practitioner's Guide

The perfect regularizer:

constrain in the 'direction' of the target function. target function is $\underline{\text{unknown}}$ (going around in circles \bigcirc).

The guiding principle:

constrain in the 'direction' of **smoother** (usually simpler) hypotheses hurts your ability to fit the 'high frequency' noise smoother and simpler $\stackrel{\text{usually means}}{\longrightarrow}$ weight decay not weight growth.

Stochastic noise \longrightarrow nothing you can do about that.

Good features \longrightarrow helps to reduce deterministic noise.

Regularization:

Helps to combat what noise remains, especially when N is small.

Typical modus operandi: sacrifice a little bias for a huge improvement in var.

VC angle: you are using a smaller \mathcal{H} without sacrificing too much E_{in}

$$E_{
m aug}(h) = E_{
m in}(h) + rac{\lambda}{N} \Omega(h)$$
 this was w^Tw

$$E_{
m out}(h) \leq E_{
m in}(h) + \Omega(\mathcal{H})$$
this was $O\left(\sqrt{\frac{d_{
m vc}}{N} \ln N}\right)$

 E_{aug} can beat E_{in} as a proxy for E_{out} .

depends on choice of λ

Thanks!