3D – MODEL FITTING EXPECTATION MAXIMIZATION

Derek Nowrouzezahrai derek@cim.mcgill.ca

All materials are protected under **copyright** – many slides courtesy of Jakob, Jarosz, Crane and Farid.

What if...

We discussed and related MLE, MAP and LLS estimators

- showed a few examples of how to derive such estimators:
 - simple linear models
 - Normal distribution on the noise and parameter priors
 - 0- and non-zero mean
 - same vs. different variances

What if... things get complicated?

What happens when we deviate from these simple cases?

- more complicated models
- more complicated noise/prior distributions

Still want the same guarantees as MLE or MAP

- maximizing the likelihood or posterior

Not a problem! Just work through the derivation...

- "I did! But I couldn't solve for an analytic expression..."

Given this dataset, if I ask you to fit a simple model (e.g., line or polynomial) you should be comfortable with:

• LS, WLS, MLE, MAP

What if your model is a *little bit* more complicated?

- specifically, sufficiently more complicated that it doesn't fit into the templates we've seen so far...
 - e.g., can't formulate it as a LS

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2x_i + b^2$

If we know which data belong to which model, then estimating model parameters (a^1/b^1 and a^2/b^2) is easy - LS, WLS, MLE, MAP

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2x_i + b^2$

If we know which data belong to which model, then estimating model parameters (a^1/b^1 and a^2/b^2) is easy - LS, WLS, MLE, MAP

$$r_i^k = |a^k x_i + b^k - y_i|$$

 $k = 1, 2$

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2x_i + b^2$

If we know which data belong to which model, then estimating model parameters (a^1/b^1 and a^2/b^2) is easy - LS, WLS, MLE, MAP

$$r_i^k = |a^k x_i + b^k - y_i|$$

 $k = 1, 2$

for each (x_i, y_i) , the model k is that which minimizes the residual r_i^k

Expectation-Maximization (EM)

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2 x_i + b^2$

The EM algorithm is an algorithm that iteratively estimates model parameters

- particularly useful when you cannot derive an analytic expression for an estimator (whether MLE or MAP)

Expectation-Maximization (EM)

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2 x_i + b^2$

In this example, EM will allow us to estimate the **mixture assignment** and **model parameters** that maximize the likelihood or posterior – subject to any models we have for the noise and parameter priors

EM = E + M

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2 x_i + b^2$

E-step: assume the model parameters are known, and compute the probability of each data point (x_i, y_i) belonging to each model (e.g., k = 1, 2)

For each data point i, and for each model k compute the residual, e.g., $r_i^k = |a^k x_i + b^k - y_i|$

Given the residual for each model, what is the probability $P(i \in M_k | r_i^k)$ that a data point (x_i, y_i) belongs to model k?

$$P(i \in M_k | r_i^k) = \frac{P(r_i^k | i \in M_k) P(i \in M_k)}{P(r_i^k)}$$

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2x_i + b^2$

E-step: assume the model parameters are known, and compute the probability of each data point (x_i, y_i) belonging to each model (e.g., k = 1, 2)

Probability that a data point (x_i, y_i) belongs to model k:

$$P(i \in M_k | r_i^k) = \frac{P(r_i^k | i \in M_k) P(i \in M_k)}{P(r_i^k)}$$

According to the law of total probability:

$$P(r_i^k) = P(r_i^1 | i \in M_1) P(i \in M_1) + P(r_i^2 | i \in M_2) P(i \in M_2)$$

model 1: $y_i = a^1x_i + b^1$

model 2: $y_i = a^2 x_i + b^2$

E-step: assume the model parameters are known, and compute the probability of each data point (x_i, y_i) belonging to each model (e.g., k = 1, 2)

Probability that a data point (x_i, y_i) belongs to model k:

$$P(i \in M_k | r_i^k) = \frac{P(r_i^k | i \in M_k) P(i \in M_k)}{P(r_i^k)}$$

According to the law of total probability:

$$P(r_i^k) = P(r_i^1 | i \in M_1) P(i \in M_1) + P(r_i^2 | i \in M_2) P(i \in M_2)$$

Let's assume that model probabilities are equal, so:

$$P(i \in M_k | r_i^k) = \frac{P(r_i^k | i \in M_k)}{P(r_i^1 | i \in M_1) + P(r_i^2 | i \in M_2)}$$

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2 x_i + b^2$

E-step: assume the model parameters are known, and compute the probability of each data point (x_i, y_i) belonging to each model (e.g., k = 1, 2)

Probability that a data point (x_i, y_i) belongs to model k:

$$P(i \in M_k | r_i^k) = \frac{P(r_i^k | i \in M_k)}{P(r_i^1 | i \in M_1) + P(r_i^2 | i \in M_2)}$$

What is $P(r_i^k|i\in M_k)$?

... or, how much noise is in the data?

$$P(r_i^k | i \in M_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} e^{-(r_i^k)^2/2\sigma_k^2}$$

0-mean normal (Gaussian) distribution

model 1: $y_i = a^1x_i + b^1$

model 2: $y_i = a^2x_i + b^2$

E-step: assume the model parameters are known, and compute the probability of each data point (x_i, y_i) belonging to each model (e.g., k = 1, 2)

Probability that a data point (x_i, y_i) belongs to model k:

$$P(i \in M_k | r_i^k) = \frac{P(r_i^k | i \in M_k)}{P(r_i^1 | i \in M_1) + P(r_i^2 | i \in M_2)}$$

What is $P(r_i^k|i\in M_k)$?

... or, how much noise is in the data?

$$P(r_i^k | i \in M_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} e^{-(r_i^k)^2/2\sigma_k^2}$$

0-mean normal (Gaussian) distribution

model 1: $y_i = a^1x_i + b^1$

model 2: $y_i = a^2x_i + b^2$

E-step: assume the model parameters are known, and compute the probability of each data point (x_i, y_i) belonging to each model (e.g., k = 1, 2)

Probability that a data point (x_i, y_i) belongs to model k:

$$P(i \in M_k | r_i^k) = \frac{P(r_i^k | i \in M_k)}{P(r_i^1 | i \in M_1) + P(r_i^2 | i \in M_2)}$$

What is $P(r_i^k|i\in M_k)$?

... or, how much noise is in the data?

$$P(r_i^k | i \in M_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} e^{-(r_i^k)^2/2\sigma_k^2}$$

0-mean normal (Gaussian) distribution

model 1: $y_i = a^1x_i + b^1$

model 2: $y_i = a^2x_i + b^2$

E-step: assume the model parameters are known, and compute the probability of each data point (x_i, y_i) belonging to each model (e.g., k = 1, 2)

Compute the residual for each data point i, and for each model k, e.g., $r_i^k = |a^k x_i + b^k - y_i|$

Compute the probability of each data point i belonging to each model k:

$$P(i \in M_k | r_i^k) = \frac{P(r_i^k | i \in M_k)}{P(r_i^1 | i \in M_1) + P(r_i^2 | i \in M_2)}$$

with, for example, $P(r_i^k|i\in M_k)=\frac{1}{\sqrt{2\pi\sigma_k^2}}e^{-(r_i^k)^2/2\sigma_k^2}$

Note: the probability of belonging to model 1 or 2 sums to 1: a/(a+b) + b/(a+b) = 1

M-step

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2x_i + b^2$

E-step: assume the model parameters are known, and compute the probability of each data point (x_i, y_i) belonging to each model (e.g., k = 1, 2)

M-step: re-estimate model parameters for each model (e.g., k = 1, 2) using probabilistic assignments

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2 x_i + b^2$

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2 x_i + b^2$

$$E(a^k, b^k) = \sum_{i=1}^n (w_i^k (a^k x_i + b^k - y_i))^2$$

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2x_i + b^2$

$$E(a^k, b^k) = \sum_{i=1}^n (w_i^k (a^k x_i + b^k - y_i))^2$$

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2x_i + b^2$

$$E(a^k, b^k) = \sum_{i=1}^n (w_i^k (a^k x_i + b^k - y_i))^2$$

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2 x_i + b^2$

$$E(a^k, b^k) = \sum_{i=1}^n (w_i^k (a^k x_i + b^k - y_i))^2$$

– WLS Solution Formulation

Express the weighted least-squares (WLS) error function in matrix form, differentiate with respect to the unknowns, set equal to zero, and solve for the WLS solution

model 1:
$$y_i = a^1x_i + b^1$$

model 2: $y_i = a^2x_i + b^2$

$$E(\vec{m}^k) =$$

$$egin{pmatrix} w_1^k & 0 & \cdots & 0 \ 0 & w_2^k & \cdots & 0 \ \vdots & \vdots & \ddots & \vdots \ 0 & 0 & \cdots & w_n^k \end{pmatrix}$$

$$E(\vec{m}^k) = \|W^k(X\vec{m}^k - \vec{y})\|^2$$

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2x_i + b^2$

$$E(\vec{m}^k) = ||W^k(X\vec{m}^k - \vec{y})||^2$$

$$\frac{dE(\vec{m}^k)}{d\vec{m}^k} = 2X^T(W_k)^T(W_kX\vec{m}^k - W_k\vec{y})$$

$$2(X^TW_k^2X)\vec{m}^k - 2X^TW_k^2\vec{y} = 0$$

$$\vec{m}^k = (X^TW_k^2X)^{-1}X^TW_k^2\vec{y}$$

EM Algorithm

model 1: $y_i = a^1 x_i + b^1$

model 2: $y_i = a^2 x_i + b^2$

E-step: assume the model parameters are known, and compute the probability of each data point (x_i, y_i) belonging to each model (e.g., k = 1, 2)

M-step: re-estimate model parameters for each model (e.g., k = 1, 2) using probabilistic assignments, e.g., with a WLS solve:

$$\vec{m}^k = (X^T W_k^2 X)^{-1} X^T W_k^2 \vec{y}$$

Iterate: repeat until a convergence criterion is met, e.g.,

- model parameters do not change much, or
- maximum residual is below a threshold

EM – Probabilistic Interpretation

EM – Probabilistic Derivation

We can re-interpret EM as an MLE or MAP estimator, using a more probabilistic interpretation of each EM stage

- **E-step** estimates the expected (log-)likelihood of the data, given the (current) parameters
- M-step solves for parameters that maximize this (log-)likelihood
- recall how Bayes' allows us to relate the posterior and likelihood

Assignment 2 provides one such interpretation in the context of <u>Gaussian mixture models</u>

EM applied

EM Applications

EM is a very powerful and flexible tool

- applies to **any** underlying, parameterized model
 - polynomials, multi-variate Gaussians, sinusoids, mixtures...
 - works as MLE/MAP when their direct derivation isn't possible
- can yield good solutions with few iterations
 - may be slow to converge, but a few iterations may sufficient
- e need to know how many components your mixture model has
- sensitive to initialization

EM Example

