${\bf Description:}$

Simply Supported Circular plate with point load at the center.

Reference:

S. Timoshenko , S . Woinowsky , Theory of Plates and Shells , pg:69, Article : 19 .

Material and Geometric data:

Figure 1: TIM69

Table 1: Input Data

Material Property		Geometric Data		Loading Data		
Young's Modulus (E)	5E11 <i>Pa</i>	Radius (r)	1 m	Point Load (F_z)	-1000 N	
Poission's Ratio (ν)	0.3	Thickness (t)	0.01~m			

Mesh and boundary condition :

Figure 2: Geomentry and Mesh of TIM68

0.5

Table 2: FEM and Boundary condition data

Direchlet Boundary			Neumann Boundary				
Geo -Entity	w	θ_x	θ_y	Geo -Entity	F_z	M_x	M_y
line {1,2,3,4}	Fixed	Fixed	Fixed	Point {1}	-1000 N		

Analytically solution:

The target analytically solution given as

$$w = \frac{F_z}{16\pi D} \left[r^2 - a^2 \right] + \frac{F_z r^2}{8\pi D} \left[\log \frac{a}{r} \right] \tag{1}$$

The displacement at center is obtained by substituting $a \approx 0$. The analytical solution is -0.000434 m

Result and error analysis:

Figure 3: FEM solution plot

The maximum displacement of the domain is our solution . w displacement at center is -0.000429in.

So the Error percentage is 1.26%.