GIIN06 - Álgebra Unidad Competencial 4

David Zorío Ventura

Universidad Internacional de Valencia Grado en Ingeniería Informática

Definición

Un **espacio vectorial** asociado a un cuerpo K (cuyos elementos reciben el nombre de **escalares**), consiste en un conjunto $V \neq 0$ con una operación interna, suma (+), y una operación externa, producto (\cdot) , involucrando elementos de K y de V, cumpliendo:

 $u + (v + w) = (u + v) + w, \quad \forall u, v, w \in V.$

1. La suma es asociativa:

 $u + v = v + u, \quad \forall u, v \in V.$

3. Existencia de elemento neutro para la suma:

$$\exists 0 \in V : v + 0 = v$$

4. Existencia de elemento opuesto para la suma:

$$\forall v \in V, \exists -v \in V : v + (-v) = 0.$$

Grado en Ingeniería Informática Módulo de Formación Básica

Álgebra

$$a \cdot (b \cdot u) = (a \cdot b) \cdot u, \quad \forall a, b \in K, \forall u \in V.$$

$$\exists 1 \in K : 1 \cdot u = u, \quad \forall u \in V.$$

$$a \cdot (u + v) = a \cdot u + a \cdot v, \quad \forall a \in K, \, \forall u, v \in V.$$

$$(a+b)\cdot u=a\cdot u+b\cdot u,\quad \forall a,b\in K,\, \forall u\in V.$$

1. \mathbb{R}^n es un espacio vectorial sobre \mathbb{R} , $\forall n \in \mathbb{N}$, dotado de las siguientes operaciones suma y producto: Dados $u, v \in \mathbb{R}^n$, $u = (u_1, u_2, \dots, u_n), v = (v_1, v_2, \dots, v_n), \lambda \in \mathbb{R}$:

$$u + v = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n),$$

 $\lambda \cdot u = (\lambda u_1, \lambda u_2, \dots, \lambda u_n).$

2. El grupo de matrices $\mathbb{R}^{n \times n}$ es también un espacio vectorial sobre \mathbb{R} , mediante sus operaciones suma y producto por escalares habituales.

Definición

Dados $v_1, v_2, \ldots, v_k \in V$, una combinación lineal de los k vectores anteriores es cualquier expresión de la forma

 $a_1 v_1 + a_2 v_2 + \ldots + a_k v_k$

con $a_1, a_2, \ldots, a_k \in K$.

Definición

Sean $v_1, v_2, \ldots, v_k \in V$. Diremos que los vectores anteriores son linealmente independientes si se cumple que la ecuación

$$a_1v_1 + a_2v_2 + \ldots + a_kv_k = 0$$

tiene como única solución $a_1 = a_2 = \cdots = a_k = 0$. En caso contrario, se dice que dichos vectores son linealmente dependientes.

Ejemplos

- 1. Los vectores de \mathbb{R}^3 $v_1 = (1,0,2)$ y $v_2 = (-2,0,-4)$ son linealmente dependientes, ya que
- $2 \cdot v_1 + 1 \cdot v_2 = 0$
- 2. Los vectores $v_1 = (1, -1, 2)$ y $v_2 = (0, 1, 1)$ son linealmente independientes. En efecto, supongamos que

$$a_1v_1+a_2v_2=0,$$

es decir.

$$a_1 \cdot (1, -1, 2) + a_2 \cdot (0, 1, 1) = 0$$
 $(a_1, -a_1, 2a_1) + (0, a_2, a_2) = 0$

De lo anterior se induce el siguiente sistema de ecuaciones:

De lo anterior se induce el siguiente sistema de ecuaciones:
$$\begin{vmatrix} a_1 &=0\\ -a_1+a_2=0\\ 2a_1+a_2=0 \end{vmatrix} \longrightarrow A = \begin{pmatrix} 1 &0\\ -1 &1\\ 2&1 \end{pmatrix}, \quad A|b = \begin{pmatrix} 1 &0&0\\ -1 &1&0\\ 2&1&0 \end{pmatrix}.$$

- ▶ $rank(A) = rank(A|b) = 2 = n \rightarrow sistema\ compatible$ determinado.
- $ightharpoonup a_1 = a_2 = 0$ es la única solución.

Grado en Ingeniería Informática Módulo de Formación Básica

Álgebra

6ECTS

Teorema

Sean
$$k$$
 vectores $v_1, v_2, \ldots, v_k \in \mathbb{R}^n$:

$$\begin{array}{rcl}
v_1 &=& (v_{1,1}, v_{1,2}, \dots, v_{1,n}) \\
v_2 &=& (v_{2,1}, v_{2,2}, \dots, v_{2,n})
\end{array}$$

$$\begin{array}{rcl}
v_1 & \equiv & (v_{1,1}, v_2) \\
v_2 & \equiv & (v_{2,1}, v_2)
\end{array}$$

$$\begin{array}{ccc}
\vdots \\
v_k &= (v_{k,1}, v_{k,2}, \dots, v_{k,n})
\end{array}$$

Entonces el sistema de vectores
$$\{v_1, v_2, \dots, v_k\}$$
 es linealmente independiente si y sólo si rank $(A) = k$, donde $A \in \mathbb{R}^{n \times k}$:

$$A = \begin{pmatrix} v_{1,1} & v_{2,1} & \cdots & v_{k,1} \\ v_{1,2} & v_{2,2} & \cdots & v_{k,2} \\ \vdots & \vdots & \ddots & \vdots \\ v_{1,n} & v_{2,n} & \cdots & v_{k,n} \end{pmatrix}$$

Ejemplos

1. Los vectores $v_1 = (1, 0, -1)$ y $v_2 = (1, -2, 0)$ son linealmente independientes, ya que

$$\operatorname{rank}\left(\begin{array}{cc} 1 & 1 \\ 0 & -2 \\ -1 & 0 \end{array}\right) = 2.$$

2. Los vectores $v_1 = (1, 0, -1)$, $v_2 = (1, -2, 0)$ y $v_3 = (1, 4, -3)$ son linealmente dependientes, pues

$$rank \begin{pmatrix} 1 & 1 & 1 \\ 0 & -2 & 4 \\ -1 & 0 & -3 \end{pmatrix} = 2 < 3.$$

Grado en Ingeniería Informática Módulo de Formación Básica

Álgebra

Sea V un espacio vectorial sobre un cuerpo K. Diremos que un subconjunto $W \subseteq V$ es un subespacio vectorial de V, denotado por W < V, si se cumple:

 $\forall v, w \in W, \forall a, b \in K, \quad a \cdot v + b \cdot w \in W.$

 $W = \{(\lambda, 1) \mid \lambda \in \mathbb{R}\}$

Ejemplos

1. Sea
$$V = \mathbb{R}^2$$
 v $K = \mathbb{R}$. Entonces

1. Sea
$$V = \mathbb{R}^ y \in \mathbb{R}$$
. Entonice

no es un subespacio vectorial de
$$\mathbb{R}^2$$
, ya que por ejemplo

 $(0,1) \in W$, $(1,1) \in W$, pero $(0,1) + (1,1) = (1,2) \notin W$.

2. Sea $V = \mathbb{R}^2$ v $K = \mathbb{R}$. Entonces

$$W = \{(\lambda, 0) \mid \lambda \in \mathbb{R}\}$$

es un espacio vectorial.

En efecto, tomamos $v, w \in W$ y $a, b \in K$. Entonces $v = (\lambda_0, 0)$ $y w = (\lambda_1, 0)$, para ciertos $\lambda_0, \lambda_1 \in \mathbb{R}$. Por tanto,

 $a \cdot v + b \cdot w = a \cdot (\lambda_0, 0) + b \cdot (\lambda_1, 0) = (a\lambda_0 + b\lambda_1, 0) \in W$.

En consecuencia, W es un subespacio vectorial de \mathbb{R}^2 .

Entonces el conjunto definido por

Álgebra

Teorema

El conjunto de las soluciones de un sistema de ecuaciones lineal homogéneo (es decir, con términos independientes nulos) es un espacio vectorial de \mathbb{R}^n , donde n es el número de incógnitas.

Teorema

Sea V un espacio vectorial sobre un cuerpo K y sean $v_1, \ldots, v_k \in V$.

$$\langle v_1, v_2, \ldots, v_k \rangle = \left\{ \sum_{i=1}^k \lambda_i v_i \mid \lambda_i \in K \right\}$$

es un subespacio vectorial de V. Éste recibe el nombre de subespacio **generado** por v_1, v_2, \ldots, v_k .

Sean $V = \mathbb{R}^3$ y $K = \mathbb{R}$.

1. Tomamos
$$v = (1, 1, 1)$$
. Entonces:

$$\langle \mathbf{v} \rangle = \{ \lambda \mathbf{v} \mid \lambda \in \mathbb{R} \} = \{ (\lambda, \lambda, \lambda) \mid \lambda \in \mathbb{R} \}.$$

2. Sean
$$v_1 = (1, 2, 0), v_2 = (0, 1, -1)$$
. Entonces:

$$\langle v_1, v_2 \rangle = \{ \lambda_1 v_1 + \lambda_2 v_2 \mid \lambda_1, \lambda_2 \in \mathbb{R} \}$$

 $= \{ \lambda_1 (1, 2, 0) + \lambda_2 (0, 1, -1) \mid \lambda_1, \lambda_2 \in \mathbb{R} \}$
 $= \{ (\lambda_1, 2\lambda_1, 0) + (0, \lambda_2, -\lambda_2) \mid \lambda_1, \lambda_2 \in \mathbb{R} \}$
 $= \{ (\lambda_1, 2\lambda_1 + \lambda_2, -\lambda_2) \mid \lambda_1, \lambda_2 \in \mathbb{R} \}.$

Definición

Sea V un espacio vectorial sobre un cuerpo K. Un subconjunto $S \subseteq V$ se dice **sistema libre** de vectores si todos ellos son linealmente independientes.

Ejemplos

- ▶ $\{(1,-1,2),(0,1,1)\}$ es un sistema libre, pues el rango de la matriz asociada es 2 (que coincide con el número de vectores, 2).
- $\{(1,0,-1),(1,-2,0),(1,-4,3)\}$ no es un sistema libre, ya que el rango de la matriz asociada es 2 (menor que el número de vectores, 3).

Definición

Sea V un espacio vectorial sobre un cuerpo K. Un subconjunto $S \subseteq V$ se dice sistema generador de vectores si $\langle S \rangle = V$.

Ejemplos

• $S = \{(1,0), (0,1), (1,1)\}$ es un sistema generador de \mathbb{R}^2 , ya que cualquier vector $v=(a,b)\in\mathbb{R}^2$ puede escribirse como una combinación de los vectores de S:

$$(a,b) = a \cdot (1,0) + b \cdot (0,1) + 0 \cdot (1,1).$$

 $ightharpoonup S = \{(1,0),(2,0)\}$ no es un sistema generador de \mathbb{R}^2 , ya que por ejemplo (0,1) no puede escribirse como una combinación lineal de sus dos vectores.

- **Ejemplos**
- 1. $B = \{(1,0), (0,1)\}$ es base de \mathbb{R}^2 .
 - 2. $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ es base de \mathbb{R}^3 . 3. En general, $B = \{e_1, e_2, \dots, e_n\}$, con
 - $e_1 = (1, 0, \ldots, 0)$ $e_2 = (0, 1, \dots, 0)$
- $e_n = (0, 0, \dots, 1)$ es base de \mathbb{R}^n . Ésta recibe el nombre de base canónica de \mathbb{R}^n .

Sea V un espacio vectorial sobre un cuerpo K y B una base finita (como conjunto) de V. Entonces, si B' es otra base de V, se tiene que B' también es finita, y, además, |B'| = |B|.

Definición

Sea V un espacio vectorial sobre un cuerpo K. Si B es una base finita de V, con |B| = n, diremos que la **dimensión** de V es n, y lo denotaremos como $\dim(V) = n$.

Ejemplo

 $\dim(\mathbb{R}^n) = n$.

Sea $S = \{v_1, v_2, \dots, v_k\} \subseteq \mathbb{R}^n$ y A la matriz cuyas columnas son las componentes de cada vector de S. Entonces:

- ▶ S es un sistema libre si y sólo si rank(A) = k.
- ▶ S es un sistema generador si y sólo si rank(A) = n.
- ▶ S es base si y sólo si rank(A) = k = n.

Además, $dim(\langle S \rangle) = rank(A)$.

Ejemplos

- 1. Sea $S = \{(1,0), (2,0)\} \rightarrow k = 2, n = 2, A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$, luego:
- - ▶ S no es sistema libre de \mathbb{R}^2 , ya que rank(A) = 1 < 2 = k.
 - ▶ S no es sistema generador de \mathbb{R}^2 , pues rank(A) = 1 < 2 = n. ▶ Por tanto, S no es base de \mathbb{R}^2 .

2. Sea
$$S = \{(1, 2 - 1), (0, 0, 1)\}, k = 2, n = 3, A = \begin{pmatrix} 1 & 0 \\ 2 & 0 \\ -1 & 1 \end{pmatrix}$$
, luego:

- \mathcal{L} as sistence libra do \mathbb{D}^3 we are real (Λ)
- S es sistema libre de R³, ya que rank(A) = 2 = k.
 S no es sistema generador de R³, pues rank(A) = 2 < 3 = n.
- Por tanto, S no es base de \mathbb{R}^3 . 3. $S = \{(1,0), (1,1), (-1,0)\}, k = 3, n = 2, A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \end{pmatrix}$,
 - luego:
 - So no es sistema libre de \mathbb{R}^2 , ya que $\operatorname{rank}(A) = 2 < 3 = k$.
 - S es sistema generador de R², pues rank(A) = 2 = n.
 Por tanto, S no es base de R².

4. Sea $S = \{(2, -1, 0), (0, 1, 1), (1, -1, 1)\} \rightarrow k = 3, n = 3.$

La matriz asociada, A, es, por tanto:

$$A=\left(egin{array}{ccc} 2&0&1\ -1&1&-1\ 0&1&1 \end{array}
ight)
ightarrow {\sf rank}(A)=3.$$

Así pues, se tiene:

- ▶ S es sistema libre de \mathbb{R}^3 , ya que rank(A) = 3 = k.
- ▶ S es sistema generador de \mathbb{R}^3 , pues rank(A) = 3 = n.
- ▶ Por tanto, S es base de \mathbb{R}^3 , en tanto que rank(A) = 3 = n = k.

Definición

Sean U, V espacios vectoriales sobre un mismo cuerpo K. Diremos que una aplicación $f: U \to V$ es una **aplicación lineal** $si \ \forall u_1, u_2 \in U$ $y \ \forall a,b \in K$ se cumple

$$f(au_1 + bu_2) = af(u_1) + bf(u_2).$$

Ejemplos

1. Sea $U = \mathbb{R}^3$, $V = \mathbb{R}^2$ y $K = \mathbb{R}$. Entonces la aplicación $f : \mathbb{R}^3 \to \mathbb{R}^2$ dada por f(x,y,z) = (x+y,2z-x) es lineal. En efecto, tomando $u_1 = (x,y,z), u_2 = (x',y',z') \in \mathbb{R}^3$ y $a,b \in \mathbb{R}$, se tiene:

pero

 $f(au_1 + bu_2) = f(a \cdot (x, y, z) + b \cdot (x', y', z'))$

Algebra

6FCTS

$$= (ax + bx' + ay + by', 2(az + bz') - (ax + bx'))$$

$$= (a(x + y) + b(x' + y'), a(2z - x) + b(2z' - x'))$$

$$= a(x + y, 2z - x) + b(x' + y', 2z' - x')$$

$$= a \cdot f(x, y, z) + b \cdot f(x', y', z').$$
2. Sean $U = V = \mathbb{R}^2$, $K = \mathbb{R}$ y $f : \mathbb{R}^2 \to \mathbb{R}^2$ dada por $f(x, y) = (x, x^2 - y)$. Entonces f no es lineal, ya que por ejemplo, para $(2, 0), (0, 0) \in \mathbb{R}^2$ y $(2, 0) \in \mathbb{R}$, se tiene

 $f(2 \cdot (2,0) + 0 \cdot (0,0)) = f(4,0) = (4,16),$

 $2 \cdot f(2,0) + 0 \cdot f(0,0) = 2 \cdot (2,4) + 0 \cdot (0,0) = (4,8).$

= f(ax + bx', ay + by', az + bz')

Teorema

Toda aplicación lineal $f: \mathbb{R}^n \to \mathbb{R}^m$ tiene una matriz que la representa, que además es única. Concretamente, $\exists ! A \in \mathbb{R}^{m \times n}$ tal que $\forall v \in \mathbb{R}^n$ puede escribirse:

$$f(v) = Av$$
.

Ejemplo

Sea $f: \mathbb{R}^3 \to \mathbb{R}^4$ dada por

Sea
$$f: \mathbb{R}^3 o \mathbb{R}^4$$
 dada po $igg($

$$f(x,y,z) = \begin{pmatrix} x+y \\ y-z \\ 2x+y+z \\ 3z \end{pmatrix} \rightarrow A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 2 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$

Grado en Ingeniería Informática Módulo de Formación Básica

Álgebra

6ECTS

Definición de la constanta de

Sea $A \in \mathbb{R}^{n \times n}$ una matriz cuadrada. Un valor propio o autovalor $\lambda \in \mathbb{R}$ asociado a A es aquel que cumple que $\exists v \in \mathbb{R}^{n \times 1}$, $v \neq 0$, llamado vector propio o autovector, tal que se verifica $Av = \lambda v$.

Ejemplo

Sea $A = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix}$. $\lambda_1 = 2$ y $\lambda_2 = -3$ son valores propios de A

a los vectores pro
$$(7-10)(2$$

asociados a los vectores propios
$$v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 y $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, resp.:

$$Av_1 = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2v_1,$$

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} =$$

$$=\begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

$$\left(\frac{1}{2}\right) =$$

$$Av_1 = \begin{pmatrix} 7 & 10 \\ 5 & -8 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2v_1,$$

$$Av_2 = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ -3 \end{pmatrix} = -3 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = -3v_2.$$

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Definición

Sea $A \in \mathbb{R}^{n \times n}$ una matriz cuadrada.

Diremos que A es diagonalizable si $\exists P \in \mathbb{R}^{n \times n}$ regular tal que

$$P^{-1}AP = D.$$

siendo D una matriz diagonal, es decir, de la forma

$$D = \left(\begin{array}{cccc} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{array}\right).$$

6ECTS

Si $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{R}$ es un valor propio de A y $v \in \mathbb{R}^{n \times 1}$ es un vector propio asociado a λ , entonces:

 $Av = \lambda v \leftrightarrow Av - \lambda v = 0 \leftrightarrow Av - \lambda I_n v = 0 \leftrightarrow (A - \lambda I_n)v = 0.$

Por tanto, denotando $A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix}, I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, v = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},$

se tiene que la relación anterior se traduce en

 $\begin{pmatrix} a_{1,1} - \lambda & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} - \lambda & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$

Grado en Ingeniería Informática Módulo de Formación Básica

La condición anterior es equivalente al sistema homogéneo

Álgebra

$$(a_{1,1}-\lambda)x_1 + a_{1,2}x_2 + \cdots + a_{1,n}x_n = 0 \ a_{2,1}x_1 + (a_{2,2}-\lambda)x_2 + \cdots + a_{2,n}x_n = 0 \ \vdots \ a_{n,1}x_1 + a_{n,2}x_2 + \cdots + (a_{n,n}-\lambda)x_n = 0$$

es claramente una solución. **b** Buscamos soluciones $v \neq 0$. Por tanto, queremos que el sistema

▶ El sistema anterior siempre es compatible, pues $x_i = 0$, $1 \le i \le n$

- $(A I_n \lambda)v = 0$ sea compatible indeterminado (puesto que si es determinado, v = 0 sería la única solución).
- ▶ Para que sea compatible indeterminado, $rank(A \lambda I_n) < n$, que en este caso es equivalente a la condición $\det(A - \lambda I_n) = 0$.

Teorema

 λ es un valor propio de A si y sólo si $\det(A - \lambda I_n) = 0$.

Definición

La expresión $det(A - \lambda I_n)$ es un polinomio de grado n que recibe el nombre de polinomio característico.

Análogamente, la ecuación $det(A - \lambda I_n) = 0$ recibe el nombre de ecuación característica.

Definición

Sea λ un valor propio asociado a una matriz A. Entonces se define:

- **Dimensión algebraica:** es la multiplicidad de λ como raíz de la ecuación polinómica asociada al polinomio característico $\det(A - \lambda I_n) = 0.$
- ▶ Dimensión geométrica: $n \text{rank}(A \lambda I_n)$.

Teorema

Sea $A \in \mathbb{R}^{n \times n}$. Entonces A es diagonalizable si y sólo si todas las dimensiones algebraicas asociadas a cada valor propio coinciden con las correspondientes dimensiones geométricas y, además, la suma de todas las dimensiones asociadas a los diferentes valores propios es n.

Además, en este caso la matriz D está formada por todos los valores propios ubicados en la diagonal (cada uno de ellos repetidos tantas veces como su multiplicidad) y la matriz P por vectores propios linealmente independientes colocados por columnas, de forma que el vector propio de la columna i de P está asociado al valor propio de la entrada (i, i) de la matriz D.

 $\lambda_1 = -1 \ \ \ \ \lambda_2 = 2$:

Algebra

1. Sea

$$A = \left(\begin{array}{cc} 5 & -3 \\ 6 & -4 \end{array}\right).$$

Veamos si A es diagonalizable y, en ese caso, obtengamos $P \in \mathbb{R}^{2 \times 2}$ regular, $D \in \mathbb{R}^{2 \times 2}$ diagonal tal que $P^{-1}AP = D$.

Ecuación característica, valores propios y matriz diagonal D:

 $\det(A - \lambda I_2) = 0 \leftrightarrow \det\begin{pmatrix} 5 - \lambda & -3 \\ 6 & -4 - \lambda \end{pmatrix} = 0 \leftrightarrow \lambda^2 - \lambda - 2 = 0$

$$\leftrightarrow \begin{cases} \lambda_1 = -1 \\ \lambda_2 = 2 \end{cases} \rightarrow D = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}.$$

$$\blacktriangleright \textit{ Cálculo de vectores propios asociados a los valores propios}$$

Módulo de Formación Básica

$\lambda_1 = -1$: rank $(A - (-1)I_2) = 1$. Dimensión geométrica: 2 - 1 = 1.

Algebra

$$(A - (-1)I_2)v = 0 \leftrightarrow \begin{pmatrix} 6 & -3 \\ 6 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\leftrightarrow \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} \alpha \\ 2\alpha \end{array}\right) \xrightarrow{\alpha=1} \mathsf{v}_1 = \left(\begin{array}{c} 1 \\ 2 \end{array}\right)$$
$$= 2: \mathsf{rank}(A - 2\mathsf{I}_2) = 1. \ \mathsf{Dimensi\acute{o}n} \ \mathsf{geom\acute{e}trica} : 2 -$$

$$(A-2I_2)v=0$$

► Matrices P y P^{-1} : $P = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \rightarrow P^{-1} = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$.

$$(A - 2I_2)v = 0$$

$$\lambda_2 = 2 : \operatorname{rank}(A - 2I_2) = 1. \ \text{Dimensión geométrica: } 2 - 1 = 1.$$

$$(A - 2I_2)v = 0 \leftrightarrow \begin{pmatrix} 3 & -3 \\ 6 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$=\begin{pmatrix} 0 \end{pmatrix}$$

$$\leftrightarrow \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} \alpha \\ \alpha \end{array}\right) \xrightarrow{\alpha=1} v_2 = \left(\begin{array}{c} 1 \\ 1 \end{array}\right)$$

Grado en Ingeniería Informática Módulo de Formación Básica

Álgebra

6FCTS

2. Sea

$$A = \left(\begin{array}{rrr} -2 & -1 & 1 \\ 0 & 1 & 0 \\ -6 & -2 & 3 \end{array}\right).$$

Ecuación característica:
$$\det(A - \lambda I_3) = 0 \leftrightarrow \det\begin{pmatrix} -2 - \lambda & -1 & 1 \\ 0 & 1 - \lambda & 0 \\ -6 & -2 & 3 - \lambda \end{pmatrix} = 0 \leftrightarrow \lambda (1 - \lambda)^2 = 0.$$

$$\leftrightarrow \lambda = egin{cases} \lambda_1 = 0 \ \lambda_2 = 1 \ \lambda_3 = 1 \end{cases}
ightarrow D = \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight).$$

 Cálculo de vectores propios asociados a los valores propios $\lambda_1 = 0 \ v \ \lambda_2 = \lambda_3 = 1.$

Grado en Ingeniería Informática Módulo de Formación Básica

6ECTS

Álgebra

Ejemplos

$$\lambda_1 = 0$$
: rank $(A - 0I_3) = 2$. Dimensión geométrica: $3 - 2 = 1$.

$$(A - 0I_3)v = 0 \leftrightarrow \begin{pmatrix} -2 & -1 & 1 \\ 0 & 1 & 0 \\ -6 & -2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{\alpha}{2} \\ 0 \\ \alpha \end{pmatrix} \xrightarrow{\alpha=2} v_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

$$\lambda_2 = \lambda_3 = 1$$
: rank $(A - 1I_3) = 1$. Dimensión geométrica: $3 - 1 = 2$.

$$\lambda_2 = \lambda_3 = 1 : \operatorname{rank}(A - II_3) = 1. \text{ Dimension geometrica: } 3 - 1 = 2.$$

$$(A - Ib)_{V} = 0 \leftrightarrow \begin{pmatrix} -3 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \leftrightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

$$(A - 1I_3)v = 0 \leftrightarrow \begin{pmatrix} -3 & -1 & 1 \\ 0 & 0 & 0 \\ -6 & -2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ 3\alpha + \beta \end{pmatrix}$$

$$(A - 1l_3)v = 0 \leftrightarrow \begin{pmatrix} -3 & -1 & 1 \\ 0 & 0 & 0 \\ -6 & -2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ 3\alpha + \beta \end{pmatrix}$$

$$\frac{\alpha=1}{\beta=0} v_2 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \quad \frac{\alpha=0}{\beta=1} v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\blacktriangleright \quad \textit{Matrices P y P}^{-1} : P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 3 & 1 \end{pmatrix} \rightarrow P^{-1} = \begin{pmatrix} 3 & 1 & -1 \\ -2 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

$$\frac{\alpha=1}{\beta=0} \quad v_2 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \quad \frac{\alpha=0}{\beta=1} \quad v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Módulo de Formación Básica

 $A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right).$

Grado en Ingeniería Informática

no tiene raíces reales:

$$\det(A-\lambda I_2)=0 \leftrightarrow \det\left(egin{array}{cc} 0-\lambda & 1 \ -1 & 0-\lambda \end{array}
ight)=0 \leftrightarrow \lambda^2+1=0$$

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$
 Entonces A no es diagonalizable, ya que hay dimensiones algebraicas y geométricas que no coinciden.

Álgebra

Entonces A no es diagonalizable, ya que la ecuación característica

$$\begin{pmatrix} 1 \\ -\lambda \end{pmatrix} = 0 \leftrightarrow \lambda^2 + 1 = 0$$

Grado en Ingeniería Informática Módulo de Formación Básica **Ejemplos**

Álgebra

En efecto.

$$\det(A-\lambda I_2)=0 \leftrightarrow \det\left(egin{array}{cc} 0-\lambda & 1 \ 0 & 0-\lambda \end{array}
ight)=0 \leftrightarrow \lambda^2=0.$$

- Así pues, por una parte, se obtiene una raíz doble, $\lambda_1 = 0$ y $\lambda_2 = 0$, luego A tiene un valor propio con multiplicidad algebraica doble.
 - No obstante, por otra parte, se tiene que

multiplicidad algebraica, 2.

 $rank(A - 0I_2) = rank\begin{pmatrix} 0 - 0 & 1 \\ 0 & 0 - 0 \end{pmatrix} = 1,$ luego la multiplicidad geométrica asociada al valor propio $\lambda=0$ es 2 - rank $(A - 0I_2) = 2 - 1 = 1$, que no se corresponde con su