

FCC PART 15.249 TEST REPORT

For

Jiaxing Shufude Electric Bed Co., Ltd.

East No. 07 Provincial Road, Tengyun Village Wangjiangjing Development Zone, Jiaxing, Zhejiang, China

FCC ID: WKZRF365A

Report Type: Original Report		Product Type: Remote Control			
Test Engineer:	Chris Wang	Chris. Wang			
Report Number:	RKS160912001-00A				
Report Date:	2016-09-14 Jesse Huang				
Reviewed By:	EMC Manager	Jesse-Huanf			
Test Laboratory:	Chenghu Road,	88934268			

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Kunshan). This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	4
JUSTIFICATION	4
EUT Exercise Software	
BLOCK DIAGRAM OF TEST SETUP	4
SUMMARY OF TEST RESULTS	
FCC§15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
Antenna Connector Construction	6
FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS& OUT OF BAND EMISSION	7
APPLICABLE STANDARD	7
MEASUREMENT UNCERTAINTY	7
EUT Setup	
TEST EQUIPMENT SETUP	9
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS	
TEST RESULTS SUMMARY	
Test Data	
FCC §15.215(C) – 20 DB BANDWIDTH TESTING	
APPLICABLE STANDARD	15
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
Trom Dama	1.7

Report No.: RKS160912001-00A

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Jiaxing Shufude Electric Bed Co., Ltd.'s product, model number: RF365A (FCC ID: WKZRF365A) (the "EUT") in this report was a Remote Control, was measured approximately: 140mm (L) x47mm (W) x 20mm (H), rated input voltage: 3*battery AAA 1.5V.

Report No.: RKS160912001-00A

All measurement and test data in this report was gathered from production sample serial number: 20160906001.

(Assigned by BACL, Kunshan). The EUT was received on 2016-09-06.

Objective

This type approval report is prepared on behalf of Jiaxing Shufude Electric Bed Co., Ltd. in accordance with Part 2-Subpart J, and Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.249 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.249 DXX Submittal with FCC ID: WKZCU3582L.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Lab Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.91 dB for 30MHz-1GHz.and 4.92 dB for above 1GHz, 1.95dB for conducted measurement.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the Chenghu Road, Kunshan Development Zone No.248, Kunshan, Jiangsu, China.

Test site at Bay Area Compliance Laboratories Corp. (Kunshan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.249 Page 3 of 17

SYSTEM TEST CONFIGURATION

Justification

The system was configured in testing mode which was provided by manufacturer.

Report No.: RKS160912001-00A

EUT was tested with Channel 2403MHz, 2442MHz and 2480MHz.

EUT Exercise Software

No software was used during the test.

Block Diagram of Test Setup

FCC Part 15.249 Page 4 of 17

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result	
§15.203	Antenna Requirement	Compliance	
§15.207(a)	Conduction Emissions	Not Applicable*	
15.205, §15.209, §15.249	Radiated Emissions& Out of Band Emission	Compliance	
§15.215 (c)	20 dB Bandwidth	Compliance	

Report No.: RKS160912001-00A

Not Applicable*: The EUT is battery operated equipment.

FCC Part 15.249 Page 5 of 17

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used.

Report No.: RKS160912001-00A

Antenna Connector Construction

The EUT has a PCB antenna arrangement and antenna gain is 1dBi, which was permanently attached ,fulfill the requirement of this section, please refer to the EUT photos.

Result: Compliant.

FCC Part 15.249 Page 6 of 17

FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS& OUT OF BAND EMISSION

Report No.: RKS160912001-00A

Applicable Standard

As per FCC§15.249 (a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)			
902–928 MHz	50	500			
2400–2483.5 MHz	50	500			
5725–5875 MHz	50	500			
24.0–24.25 GHz	250	2500			

As per FCC§15.249 (c), Field strength limits are specified at a distance of 3 meters.

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If U_{lab} is greater than U_{cispr} of Table 1, then:
- compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} U_{cispr})$, exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit.

Based on CISPR 16-4-2: 2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Kunshan) is:

30M~1GHz: 5.91 dB Above 1G: 4.92 dB

FCC Part 15.249 Page 7 of 17

Table 1 – Values of U_{cispr}

Measurement						
Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB					
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB					
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB					

EUT Setup

Below 1 GHz:

Above 1 GHz:

The radiated emission and out of band emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209/15.205 and FCC 15.249 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

FCC Part 15.249 Page 8 of 17

Test Equipment Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector	
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP	
Above 1 CHz	1MHz	3 MHz	/	PK	
Above 1 GHz	1MHz	10 Hz	/	Ave.	

Report No.: RKS160912001-00A

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detection mode from 30MHz to 1GHz, Peak and average detection mode above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit –Corrected Amplitude

FCC Part 15.249 Page 9 of 17

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sonoma Instrunent	Amplifier	330	171377	2015-09-16	2016-09-16
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2015-11-12	2016-11-11
Sunol Sciences	Broadband Antenna	JB3	A090314-2	2015-11-07	2016-11-06
ETS	Horn Antenna	3115	6229	2015-11-07	2016-11-06
EMCO	Horn Antenna	3116	9510-2384	2015-11-7	2016-11-6
DUCOMMUN	Pre-amplifier	ALN- 22093530-01	990147	2016-9-16	2017-9-15
Rohde & Schwarz	Signal Analyzer	FSIQ26	100048	2015-11-12	2016-11-11
Rohde & Schwarz	Signal Analyzer	FSV40	101116	2016-07-04	2017-07-03
Mini	Pre-amplifier	ZVA-183-S+	857001418	2015-09-16	2016-09-16
R&S	Auto test Software	EMC32	V 09.10.0	-	-
BACL	RF cable	KS-LAB-012	KS-LAB-012	2015-12-16	2016-12-15
BACL	RF cable	KS-LAB-010	KS-LAB-010	2015-12-16	2016-12-15

Report No.: RKS160912001-00A

Test Results Summary

According to the data in the following table, the EUT complied with the FCC Part 15.209 &15.205 & 15.249, with the worst margin reading of:

6.50 dB at 2480 MHz in the Vertical polarization for High Channel

Test Data

Environmental Conditions

Temperature:	24.3°C
Relative Humidity:	52%
ATM Pressure:	101.2 kPa

The testing was performed by Chris Wang on 2016-09-08.

FCC Part 15.249 Page 10 of 17

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

30MHz-1GHz:

Report No.: RKS160912001-00A

	Receiver			Rx Antenna		,		FCC Part 15.249/15.205/15.209		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Turntable Degree		Height (cm)	Polar (H/V)	Corrected Factor (dB)	Corrected Amplitude (dBµV/m)	Limit (dB µ V/m)	Margin (dB)
38.7	20.92	QP	327.0	100.0	V	-9.7	11.22	40.00	28.78	
67.3	19.74	QP	178.0	100.0	V	-17.1	2.64	40.00	37.36	
83.1	18.72	QP	314.0	100.0	V	-17.0	1.72	40.00	38.28	
98.0	18.45	QP	140.0	100.0	V	-15.0	3.45	43.50	40.05	
201.4	20.68	QP	271.0	100.0	V	-12.5	8.18	43.50	35.32	
433.9	37.02	QP	21.0	100.0	V	-7.50	29.52	46.00	16.48	

FCC Part 15.249 Page 11 of 17

Test Mode: Transmitting (Scan with X, Y, Z axis, the worst case is X axis)

	Receiver			Rx An	Rx Antenna		Corrected Amplitude		C Part .205/15.209
Frequency	Reading	Detector	Turntable	Height	Polar	Corrected Factor	Ampituue	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(cm)	(H/V)	(dB)	(dBµV/m)	(dB μ V/m)	(dB)
			Low	Channel (2	2403 MH	(z)			
2403.0	88.64	PK	32	226	V	4.9	93.54	114.00	20.46
2403.0	82.47	Ave	32	226	V	4.9	87.37	94.00	6.63
2403.0	85.14	PK	125	187	Н	4.9	90.04	114.00	23.96
2403.0	78.59	Ave	125	187	Н	4.9	83.49	94.00	10.51
2390.0	33.86	PK	42	216	V	4.9	38.76	74.00	35.24
2390.0	19.98	Ave	42	216	V	4.9	24.88	54.00	29.12
2400.0	34.29	PK	189	171	V	4.9	39.19	74.00	34.81
2400.0	28.54	Ave	189	171	V	4.9	33.44	54.00	20.56
1210.0	33.55	PK	357	155	Н	1.4	34.95	74.00	39.05
1210.0	26.89	Ave	357	155	Н	1.4	28.29	54.00	25.71
4806.0	31.37	PK	326	189	Н	13.3	44.67	74.00	29.33
4806.0	25.41	Ave	326	189	Н	13.3	38.71	54.00	15.29
7209.0	29.67	PK	14	240	Н	19.7	49.37	74.00	24.63
7209.0	21.84	Ave	14	240	Н	19.7	41.54	54.00	12.46

-	Receiver		-	Rx An	tenna	Corrected	Corrected Amplitude		C Part .205/15.209
Frequency (MHz)	Reading	Detector	Turntable Degree	Height	Polar	Factor		Limit	Margin
(WIIIZ)	(dBµV)	(PK/QP/Ave)	Degree	(cm)	(H/V)	(dB)	(dBµV/m)	(dB μ V/m)	(dB)
			Middle	e Channel	(2442MI	Hz)			
2442.0	88.43	PK	278	202	V	4.9	93.33	114.00	20.67
2442.0	82.20	Ave	278	202	V	4.9	87.10	94.00	6.90
2442.0	84.96	PK	24	182	Н	4.9	89.86	114.00	24.14
2442.0	78.68	Ave	24	182	Н	4.9	83.58	94.00	10.42
1210.0	33.49	PK	248	231	Н	1.4	34.89	74.00	39.11
1210.0	19.69	Ave	248	231	Н	1.4	21.09	54.00	32.91
4884.0	33.43	PK	65	247	Н	13.6	47.03	74.00	26.97
4884.0	28.60	Ave	65	247	Н	13.6	42.20	54.00	11.80
6681.0	33.32	PK	203	156	V	17.9	51.22	74.00	22.78
6681.0	25.99	Ave	203	156	V	17.9	43.89	54.00	10.11
6948.0	32.22	PK	258	209	Н	18.8	51.02	74.00	22.98
6948.0	25.19	Ave	258	209	Н	18.8	43.99	54.00	10.01
7326.0	30.13	PK	207	190	Н	20.0	50.13	74.00	23.87
7326.0	20.99	Ave	207	190	Н	20.0	40.99	54.00	13.01

FCC Part 15.249 Page 12 of 17

Frequency	Receiver		Turntable	Rx An	tenna	Corrected	Corrected Amplitude	FCC 15.249/15.2	
(MHz)	Reading	Detector	Degree	Height	Polar	Factor (dB)	•	Limit	Margin
	(dBµV)	(PK/QP/Ave)		(cm)	(H/V)	(ub)	(dBµV/m)	$(dB\mu V/m)$	(dB)
			High	Channel (2480MF	Iz)			
2480.0	89.15	PK	181	244	V	5.0	94.15	114.00	19.85
2480.0	82.50	Ave	181	244	V	5.0	87.50	94.00	6.50
2480.0	85.91	PK	265	222	Н	5.0	90.91	114.00	23.09
2480.0	78.70	Ave	265	222	Н	5.0	83.70	94.00	10.30
2483.5	34.08	PK	88	151	Н	5.0	39.08	74.00	34.92
2483.5	18.81	Ave	88	151	Н	5.0	23.81	54.00	30.19
2489.0	33.29	PK	83	150	Н	5.0	38.29	74.00	35.71
2489.0	28.72	Ave	83	150	Н	5.0	33.72	54.00	20.28
1238.0	34.20	PK	285	170	Н	1.5	35.70	74.00	38.30
1238.0	25.70	Ave	285	170	Н	1.5	27.20	54.00	26.80
4960.0	33.13	PK	329	220	Н	13.9	47.03	74.00	26.97
4960.0	25.98	Ave	329	220	Н	13.9	39.88	54.00	14.12
7440.0	29.46	PK	243	190	Н	20.4	49.86	74.00	24.14
7440.0	21.36	Ave	243	190	Н	20.4	41.76	54.00	12.24

FCC Part 15.249 Page 13 of 17

Out of Band Emission

Band Edge, Left Side

Report No.: RKS160912001-00A

Date: 8.SEP.2016 14:24:03

Band Edge, Right Side

Date: 8 SEP .2016 14:35:04

FCC Part 15.249 Page 14 of 17

FCC §15.215(c) – 20 dB BANDWIDTH TESTING

Applicable Standard

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Report No.: RKS160912001-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSV40	101116	2016-07-04	2017-07-03
BACL	RF cable	KS-LAB-012	KS-LAB-012	2015-12-16	2016-12-15

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	24.3°C
Relative Humidity:	51 %
ATM Pressure:	101.2kPa

^{*} The testing was performed by Chris Wang on 2016-09-08.

Test Result: Compliant.

Please refer to following tables and plots

FCC Part 15.249 Page 15 of 17

Test Mode: Transmitting

Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
Low	2403	1.12
Middle	2442	1.09
High	2480	1.11

Low Channel

Date: 8 SEP .2016 15:13:11

FCC Part 15.249 Page 16 of 17

Middle Channel

Report No.: RKS160912001-00A

Date: 8.SEP.2016 15:09:54

High Channel

***** END OF REPORT *****

FCC Part 15.249 Page 17 of 17