ADVANCED MATH TEST 3

Name		Date Some questions may requ	uire more than one answ	or			
		2	une more than one answ	C1.			
1. What is the <i>x</i> coordinate of	of the vertex for $x = -3y^2$	$+5y-\frac{2}{36}$?					
(A) $-\frac{77}{36}$	(B) $-\frac{51}{18}$	(C) 2	(D) $\frac{49}{18}$	(E) $\frac{73}{36}$			
2. A line passes through (16,-4) and has a slope of $-\frac{7}{4}$. Find the value of $\frac{2}{3}\left(y+\frac{7}{4}x\right)$.							
(A) -6	(B) $-\frac{64}{3}$	(C) $\frac{64}{3}$	(D) 6	(E) 16			
3. $l_1 \perp l_2$, $l_1 \parallel l_3$, and the eq	uation of l_2 is $5x - 3y =$	78,456 . Using the equat	ion for l_3 that goes through	h (5,000,-2,000),			
find the value of $y + \frac{3}{5}x - 8{,}000$.							
(A) −9,000	(B) −8,000	(C) -7,000	(D) −6,000	(E) −5,000			
4. If $y = jx + 10$ is a linear	equation that goes through		Find c .				
(A) -610	(B) −590	(C) −564	(D) −542	(E) -532			
5. If each leg of an isosceles (A) 28	triangle has a length of 10 (B) 33	and the altitude to the ba (C) 34	se is 6, what is the perime (D) 35	ter of the triangle? (E) 36			
6. The width of a large square	re is $3x + 2$ and the perime	eter of a small square is 8	x-8. Find the difference	between the two areas.			
(A) $5x^2 + 4x - 16$	(B) $5x^2 + 4x + 8$	(C) $5x^2 + 4x$	(D) $5x^2 + 20x + 8$	(E) $5x^2 + 20x$			
7. Simplify $\frac{8x^3 - 27}{\left(4x^3 + 6x^2 + 9x\right)\left(4x^2 - 9\right)} \cdot x^4 \left(2x + 3\right)$							
· ·	$(\mathbf{B}) x^4$		(D) $x^4(2x-3)$	(E) $x^5(2x-3)$			
8. Solve $6(x-y)^2 - 11(x-y)^2 - 11(x-y)^$	-y) $-2 < 0$ for x .						
(A) $y-2 < x < y+\frac{1}{6}$ (B) $y+\frac{1}{6} < x < y+2$ (C) $y+\frac{1}{6} < x < y-2$ (D) $y-\frac{1}{6} < x < y+2$ (E) $y+2 < x < y+\frac{1}{6}$							
9. When solving $-5x^2 - 9x - 3 = 0$ by completing the square, what would $\left(x + \frac{9}{10}\right)^2$ equal?							
(A) $\frac{66}{25}$	(B) $\frac{96}{25}$	(C) $\frac{17}{100}$	(D) $\frac{21}{100}$	(E) $\frac{141}{100}$			
10. Which of the following is $\left(a\sqrt{b} - a\sqrt{d}\right)\left(a\sqrt{b} + a\sqrt{d}\right)$ equivalent to assuming $d - b = -3$?							
(A) $-3a^2$	(B) $-2a^2$	(C) 0	(D) $2a^2$	(E) $3a^2$			
11. What is the area of a 30-60-90 degree triangle if the hypotenuse has a length of 12?							
(A) $18\sqrt{2}$	(B) $36\sqrt{2}$	(C) $18\sqrt{3}$	(D) $36\sqrt{3}$	(E) 108			
12. $\triangle ABC$ where $BC = 4$ (A) $\tan A$, AC = 5, and $m\angle B = 90$ (B) $\cos C$	O . Which of the following (C) cos A	ng is the smallest? (D) tan C	(E) sin A			
13. What type of roots does $-5x^3 - 3x = 9x^2$ have? (A) 2 real and 2 complex (B) 3 complex (C) 2 real and 1 complex (D) 1 real and 2 complex (E) 3 real							
This test is property of Mathfax. Permission is granted to copy for your school only for the 2017-2018 school year.							

and largest. (A) -52	(B) −48	(C) −36	(D) −25	(E) −24
15. For a trapezoid, the nonp	parallel sides have lengths	$3\sqrt{5}$ and $7\sqrt{2}$, the bases	s have lengths of $2\sqrt{5}$ and	d $3\sqrt{10}$, and half the
height is $8\sqrt{5}$. Find the area	1.			
(A) $40 + 60\sqrt{2}$	(B) $80 + 120\sqrt{2}$	(C) $16\sqrt{5} + 120\sqrt{2}$	(D) $80 + 48\sqrt{5}$	(E) $160 + 240\sqrt{2}$
16. Solve $-3\log_x 2 = -\frac{3}{5}$.				
(A) 1	(B) 32	(C) -32	(D) $\frac{1}{32}$	(E) $-\frac{1}{32}$
17. Which choice is equivale	ent to			
$4\sqrt{b+c}\sin\left(\frac{x_1}{x_3}\right)\cos\left(\frac{x_2}{x_1}\right) - 4$	(3) (1)	(3) (1)	(3)	
$(\mathbf{A}) -4\sqrt{b+c}\sin\left(\frac{x_2x_3-x_3}{x_3x_1}\right)$	`	31)	(C) $-4\sqrt{b+c}\sin\left(\frac{x_2x_3+x_3}{x_3x_3}\right)$	$\left(\frac{-x_1^2}{x_1}\right)$
$\mathbf{(D)} 4\sqrt{b+c} \sin\left(\frac{x_2x_3+x_1}{x_3x_1}\right)$	$(\mathbf{E}) 4\sqrt{b+c} \sin \left \frac{1}{a} \right $	$\left(\frac{x_2x_3+{x_1}^2}{-x_3x_1}\right)$		
18. Which of the following (A) 30°	satisfy $-2\cos^2 x + \sin x +$ (B) 300°	$1 = 0$? (C) 150°	(D) 180°	(E) 240°
_	_			
19. Simplify $\left[\left(\ln e \right)^2 - \sec^2 \right]$	-			
$(\mathbf{A}) -\cos 2v$	(B) $\cos 2v$	(C) 1	(D) 0	(E) −1
20. Simplify $\frac{5+5\sin\left(\frac{\pi}{2}+\frac{\pi}{2}\right)}{3}$	$\frac{x}{1}$ $+\frac{10\sin^2\frac{x}{2}}{3} + \frac{2}{3}$			
(A) −1	(B) $-\frac{2}{3}$	(C) $\frac{1}{3}$	(D) $\frac{2}{3}$	(E) 1
21. The average of $-6a^6b^9$,	$-12a^9b^6$, and c is $-8a^6b^6$	$b^9 - 4a^9b^6$. Find the value	\mathbf{c} ie of c .	
	(B) $-24a^6b^9$		(D) $-12a^6b^9$	(E) $-6a^6b^9$
22. Given $(a+b+c)^3 - 8(a+b+c)^3 - 8(a+b+c)^2 - 8(a+b+c$	$(a+b+c)^2+12(a+b+c)^2$	(c) = 0. Find the value of	a+b. Assume $a+b+a$	$c \neq 6 \text{ or } 0.$
$(\mathbf{A}) \ 2-c$	(B) $2+c$	(C) $-2-c$	(D) $-2+c$	(E) $-6-c$
23. Which is an equivalent e			6 ?	
(A) $\frac{(x+6)^2}{3} - \frac{(y-4)^2}{4} =$	3	4	(C) $\frac{(x+4)^2}{3} - \frac{(y+6)^2}{4}$	=1
(D) $\frac{(x+4)^2}{4} - \frac{(y+6)^2}{3} =$	(E) $\frac{(x+4)^2}{3}$	$-\frac{\left(y-6\right)^2}{4}=1$		
24. Simplify $\left(i^{\cos 90^{\circ} + \ln e - \sin 270^{\circ}}\right)$	$^{-6,573}$) $\left(i^{\sin 30^{\circ}}\right)^{4}$.			
(\mathbf{A}) $-i$	(B) 0	(C) −1	(D) <i>i</i>	(E) 1
25. Which of the following s	,	,	2	2
(A) 2	(B) $\frac{3}{2}$	(C) $\frac{1}{3}$	(D) $-\frac{2}{3}$	$(\mathbf{E}) \ \frac{2}{3}$
This test is property of	of Mathfax. Permission is Adva	granted to copy for your sanced Math Test 3 Page 2	school only for the 2017-2	018 school year.

14. When the largest of 4 consecutive multiples of 4 is doubled, it becomes 8 less than the smallest. Find the sum of the smallest

ADVANCED MATH TEST 3 ANSWERS

1. E	2. E	3. C	4. B	5. E
6. E	7. A	8. D	9. D	10. E
11. C	12. C	13. E	14. A	15. B
16. B	17. A	18. A, C	19. E	20. C
21. C	22. A	23. E	24. A	25. A, B

1.
$$x = -3\left(y - \frac{5}{6}\right)^2 + \frac{73}{36}$$

$$x = -3\left(y - \frac{5}{6}\right)^2 + \frac{73}{36}$$
2. $y + \frac{7}{4}x = 24 \rightarrow \frac{2}{3}\left(y + \frac{7}{4}x\right) = 16$

3.
$$y + \frac{3}{5}x = 1000 \rightarrow y + \frac{3}{5}x - 8000 = -7000$$

4.
$$\frac{c+240}{12-5} = -50 \rightarrow c = -590$$

5.
$$10+10+16=36$$

6.
$$9x^2 + 12x + 4 - 4x^2 + 8x - 4 = 5x^2 + 20x$$

7.
$$x^3$$

8.
$$-\frac{1}{6} < x - y < 2 \rightarrow y - \frac{1}{6} < x < y + 2$$

9.
$$\frac{21}{100}$$

10.
$$a^2b - a^2d = a^2(b-d) = 3a^2$$

11.
$$\frac{1}{2} \cdot 6 \cdot 6\sqrt{3} = 18\sqrt{3}$$

14.
$$-30-20=-52$$

15.
$$8\sqrt{5}(2\sqrt{5}+3\sqrt{10})=80+120\sqrt{2}$$

16.
$$x^{-\frac{3}{5}} = \frac{1}{8} \to x^{-\frac{3}{5}} = 2^{-3} \to \left(x^{-\frac{3}{5}}\right)^{-\frac{5}{3}} = \left(2^{-3}\right)^{-\frac{5}{3}} \to x = 32$$

17.
$$a(\sin p \cos q - \cos p \sin q) = a \sin(p-q) = 4\sqrt{b+c} \sin\left(\frac{x_1}{x_3} - \frac{x_2}{x_1}\right) = 4\sqrt{b+c} \sin\left(\frac{x_1^2 - x_2 x_3}{x_3 x_1}\right) = -4\sqrt{b+c} \sin\left(\frac{x_2 x_3 - x_1^2}{x_3 x_1}\right)$$

18.
$$-2(1-\sin^2 x) + \sin x + 1 = 0 \rightarrow 2\sin^2 x + \sin x - 1 = 0 \rightarrow (2\sin x - 1)(\sin x + 1) = 0 \rightarrow x = 30, 150, 270$$

19.
$$(1-\sec^2 v)(1+\cos 2v)-\cos 2v = -\tan^2 v(1+\cos 2v)-\cos 2v = -(1-\cos 2v)-\cos 2v = -1$$

20.
$$\frac{5+5\cos x - 11}{3} + \frac{10\left(\frac{1-\cos x}{2}\right)}{3} + \frac{2}{3} = \frac{5+5\cos x - 11 + 5 - 5\cos x + 2}{3} = \frac{1}{3}$$

21.
$$c = -18a^6b^9$$

22.
$$x(x-2)(x-6) = 0 \rightarrow a+b+c=2 \rightarrow a+b=2-c$$

23.
$$4(x^2+8x+16)-3(y^2-12y+36)=56+64-108 \rightarrow 4(x+4)^2-3(y-6)^2=12 \rightarrow \frac{(x+4)^2}{2}-\frac{(y-6)^2}{4}=1$$

24.
$$i^{-6569} = i^{-1} = -i$$

25.
$$4x^3 - 8x^2 - 9x - 1 + 20 = 1 \rightarrow 4x^2(x - 2) - 9(x - 2) = 0 \rightarrow (4x^2 - 9)(x - 2) = 0 \rightarrow x = \pm \frac{3}{2}$$
, 2