Causal Inference

MIXTAPE SESSION

Roadmap

Counterfactuals and causality
Causality and models
Potential outcomes
Randomization and selection bias
Randomization inference

Directed Acyclic Graphs
Graph notation
Backdoor criterion
Collider bias
Front door criterion
Concluding remarks

SUTVA

- Potential outcomes model places a limit on what we can measure: the "stable unit-treatment value assumption". Horrible acronym.
 - 1. S: stable
 - 2. **U**: across all **u**nits, or the population
 - 3. TV: treatment-value ("treatment effect", "causal effect")
 - 4. A: assumption
- As this is a bit of a pregnant concept, let's go slow

SUTVA: Unit-level assignment only

- Most people, if they know of SUTVA, tend to associate with one of its elements not its core definition
- It's core definition is actually the switching equation:

$$Y_{i,t} = D_{i,t}Y_{i,t}^1 + (1 - D_{i,t})Y_{i,t}^0$$

- Notice now the i and t subscripts; think of what that means
- A particular unit i and some contemporaneous time t is assigned potential outcome based on its contemporanous treatment assignment for the same i unit at the same t time
- Not someone else's (spillovers), and not some future assignment (anticipation)

SUTVA: (1) Homogenous dose

- SUTVA requires each unit receive the same treatment dosage; this is what it means by "stable"
- If we are estimating the effect of vents on covid symptoms, we assume everyone is getting the same kinds of vents more or less.
- Easy to imagine violations if hospital quality, staffing or even the vents themselves vary across treatment group
- Be careful what we are and are not defining as the treatment

SUTVA: (2) No spillovers to other units

- What if putting someone on a ventilator causes someone else to be more or less likely to develop severe covid symptoms?
- Have to think hard about externalities, particularly with transmissible diseases
- SUTVA means that you don't have a problem like this.
- If there are no externalities from treatment, then δ_i is stable for each i unit regardless of whether someone else receives the treatment too, but herd immunity must be considered when it comes to cures

SUTVA: (3) Partial equilibrium only

Easier to imagine this with a different example.

- Let's say we estimate a causal effect of early childhood intervention in Texas
- Now President Biden wants to roll it out for the whole United States –
 will it have the same effect as we found?
- Scaling up a policy can be challenging to predict if there are rising costs of production
- What if expansion requires hiring lower quality teachers just to make classes?
- That's a general equilibrium effect; we only estimated a partial equilibrium effect (external versus internal validity)