Assignment Title

Leonardo Pedro

Novemember 20, 2018

Abstract

This is the abstract.

1 Introduction

- 1. A
- 2. B
- 3. C

1.1 Discussion

1.2 Conclusion

Contents

1	Introduction	2
	1.1 Discussion	2
	1.2 Conclusion	2
2	Ex. 2	2
3	Ex. 3	3
4	Ex. 5	3
5	Ex. 6	4
6	Ex. 8	4
7	Ex. 9	4
8	Ex. 10	5
9	Ex. 11 This is bold This is italic ¹	5

2 Ex. 2

$$\frac{\sin mx}{\sin x} = (-4)^{(m-1)/2} \prod_{j=1}^{(m-1)/2} \left(\sin^2 x - \sin^2 \frac{2\pi j}{m}\right)$$

$$f_n = f_{n-1} + f_{n-2} \tag{1}$$

¹Footnote right here!

3 Ex. 3

		World Record	
Name	Country	Event	Result
Anna-Karin Kammerling	Sweden	50 m butterfly	25.57
Wilson Kipketer	Denmark	$800 \mathrm{m}$	2:11.96
Jan Železný	Czech Republic	javelin throw	98.5
Sergei Bubka	Ukrain	pole vault	6.14

Reference (3)

4 Ex. 5

Figure 1 on page 3

5 Ex. 6

Figure 2: Lion

Figure 5 on page 4

6 Ex. 8

a)
$$(x^n)^2 + y^{n+1} = z^n$$
 (2)

(b) The Johansson Brothers \mathcal{C} Son

(c) \dots end of a paragraph. A new paragraph \dots

7 Ex. 9

```
int main()
{
    int i;
    puts("LateX Program!");

    for (i = 0; i < N; i++)
    {
        puts("Exercise 9");
    }

    return 0;
}</pre>
```

- 8 Ex. 10
 - $\sum_{i=0}^{n} \alpha_i$
 - $\sum_{i=0}^{n} \beta_i$

9 Ex. 11

References

- [1] P. J. Cameron, *Permutations Groups*, Cambridge University Press, Cambridge, 1999.
- [2] P. Morton'Periods of Maps on Irreducible Polynomials over Finite Field', Finite Fields and their Applications (Finite Fields Appl.), vol. 3, p. 11-24, 1997.