Generative Models - DRE7053 Lecture 1

NORA Summer School 2024

Rogelio A Mancisidor Assistant Professor Department of Data Science and Analytics BI Norwegian Business School

June 10-14, 2024

Outline

- About the course
- Background and Motivation
 - Joint Probability
 - Directed Graphical Models
 - Learning and Inference
- Variational Inference
 - Latent Variable Models
 - Bayes' Theorem
 - Variational Inference
 - Evidence Lower Bound
 - Mean-Field Variational Inference

Outline

- About the course
- 2 Background and Motivation
 - Joint Probability
 - Directed Graphical Models
 - Learning and Inference
- Wariational Inference
 - Latent Variable Models
 - Bayes' Theorem
 - Variational Inference
 - Evidence Lower Bound
 - Mean-Field Variational Inference

Schedule

Time	Day 1	Day 2	Day 3	Day 4	Day 5
09:00-10:00	Introduction	Reading	Reading	Reading	Reading
		discussion	discussion	discussion	discussion
10:00-12:00	Bakground & motivation	Variational Inference II	Variational Autoencoder II	Multimodal Variational Autoencoder I	Diffusion Models (if we have time)
12:00-13:00	LUNCH				
13:00-15:00	Variational Inference I	Variational Autoencoder I	Variational Autoencoder III	Multimodal Variational Autoencoder II	Closing
15:00-17:00	Lab session	Lab session	Lab session	Lab session	

Figure: Tentative plan

Practical Information

- 45 min. sessions followed by 15 min. break
- Course GitHub website: link
- I will keep the level of the lab session to basic
- If your programming and TensorFlow level is advanced, you can skip the lab sessions
- Evaluation details:
 - Individual paper, limited to 8 content pages
 - Ideas for the paper: replicate a previous work with your own data/problem setting or propose a new idea/model, which fits into your own research, clearly stating the research question(s), method(s), and experimental design.
 - Pass/fail
 - Submission by August 23 12:00 in WiseFlow

Lab sessions

- We focus on two aspects:
 - Object oriented programming
 - 2 TensorFlow and TensorFlow Probability
- 1) it is easier to think and understand models as classes with methods.
- 2) leverage automatic differentiation libraries and probabilistic programming.

Reading discussions

- We start the day by discussing one (or two) selected paper(s).
- I guide the discussion, but all of you must engage to have a good understanding about the paper(s).
- See the course GitHub website for selected papers.

Outline

- About the course
- Background and Motivation
 - Joint Probability
 - Directed Graphical Models
 - Learning and Inference
- Wariational Inference
 - Latent Variable Models
 - Bayes' Theorem
 - Variational Inference
 - Evidence Lower Bound
 - Mean-Field Variational Inference

The joint probability

• Given a set of n events $\{\cap_{i=1}^n E_i\} = \Omega$, the chain rule of conditional probabilities is

$$Pr(E_1, E_2, \dots, E_n) = Pr(E_1)Pr(E_2|E_1) \dots Pr(E_n|E_{n-1}, \dots, E_1),$$
 (1)

that is, the joint probability of all possible events in Ω (sample space) can be expressed in terms of conditional probabilities.

A simple example

- Assume that we have the following variables:
 - age
 - salary
 - gender
 - marital status
 - a binary class label y
- Continuous variables are discretisized, hence: $age \in \{a_1, a_2, a_3\}$, $salary \in \{s_1, s_2, s_3\}$, $gender \in \{g_1, g_2\}$, $ms \in \{ms_1, ms_2\}$, and $y \in \{0, 1\}$.

Directed Graphical Models - I

A directed graphical model specifies probabilistic dependencies

- Nodes represent random events (variables)
- Arrows indicate probabilistic dependencies

Directed Graphical Models - II

- Based on expert knowledge:
 - age, gender and ms are independent variables
 - y only depends on gender and salary
 - salary depends on both age and ms

What is the joint probability?

- We can use the directed graphical models to specify joint probability!
- Chain rule of conditional probability:

$$p(age, salary, gender, ms, y) = p(age)p(salary|age)p(gender|salary, age)$$

 $p(ms|gender, salary, age)p(y|ms, gender, salary, age)$

Using expert knowledge:

$$p(age, salary, gender, ms, y) = p(age)p(gender)p(ms)$$

 $p(salary|ms, age)p(y|salary, gender)$

Unknown parameters and non-redundant parameters

- Number of parameters using the chain rule:
 - unknown probabilities: 138
- Number of parameters based on the factorization using expert knowledge:
 - unknown probabilities: 37
- The number of probabilities has decreased drastically!
- Note that we do not need to learn all unknown probabilities!

Conditional Probability Tables

Advantages of Directed Graphical Models

- Compact representation for complex joint distributions
- Where knowledge is used to specify conditional independence
- Key concept in Deep Generative Models that we (should) leverage!

Outline

- About the course
- 2 Background and Motivation
 - Joint Probability
 - Directed Graphical Models
 - Learning and Inference
- Variational Inference
 - Latent Variable Models
 - Bayes' Theorem
 - Variational Inference
 - Evidence Lower Bound
 - Mean-Field Variational Inference

Latent Variable Models

- Suppose that we observe a vector $\mathbf{x} = (x_1, x_2, \cdots, x_\ell)^T$, where $\mathbf{x} \in \mathbb{R}^\ell$
- It makes sense to assume that \mathbf{z} is generated, or governed, by an unseen (latent) variable $\mathbf{z} = (z_1, z_2, \cdots, z_d)^T$, $\mathbf{z} \in \mathbb{R}^d$
- Latent Variable Models (LVMs) were introduced in a study during World War II.
- A popular LVM is the Bayesian Gaussian Mixture Model (GMM)

The Bayesian GMM - I

- Suppose that we observe
 - $\boldsymbol{X} = \{x_1, x_2, \cdots, x_n\}$ univariate Gaussian variables
 - $\pmb{Z} = \{\pmb{z}_1, \pmb{z}_2, \cdots, \pmb{z}_n\}$ one-hot-encoded latent variables
 - Hence, for each x_i there is a z_i indicating the k-th component in the GMM to which x_i belongs to
- Let $\mu = (\mu_1, \mu_2, \cdots, \mu_k)^T$ be the vector of expectation parameters
- The variance parameter in the Gaussian likelihood-function is also known
- ullet Assume, for simplicity, μ_k is drawn independently from a common and known Gaussian distribution

The Bayesian GMM - II

• The probabilistic graphical model of the GMM:

• The distributions in the GMM are as follow:

$$\begin{aligned} \mu_k \sim & \mathcal{N}(0, \sigma_0^2) & k = 1, ..., K, \\ & \mathbf{z}_i \sim & \mathsf{cat}(\boldsymbol{\pi}) & i = 1, ..., n, \\ & x_i | \mathbf{z}_i, \boldsymbol{\mu} \sim & \mathcal{N}(\mathbf{z}_i^T \boldsymbol{\mu}, \sigma^2) & i = 1, ..., n, \end{aligned}$$

The Bayes' Theorem

Intractable Model

• (As usual) we need to arrive at the posterior distribution

• How can we evaluate the marginal distribution in the denominator?

- This K-dimensional integral has $\mathcal{O}(K^n)$ complexity!
- Therefore, this (simple) Bayesian GMM model is intractable!

Variational Inference

- Let's look into the most simple case
 - $\mathbf{x} = (x_1, x_2, \dots, x_\ell)^T$ is modulated by a latent variable $\mathbf{z} = (z_1, z_2, \dots, z_d)^T$ through the conditional distribution $p(\mathbf{x}|\mathbf{z})$
 - we want to arrive at the posterior distribution p(z|x), which has a prior distribution p(z)

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)},$$
 (2)

- The problem is that the marginal distribution $p(x) = \int p(x, z) dz$ is intractable, so the posterior!
- VI replaces p(z|x) with the variational distribution $q(z; \lambda) \in \mathcal{Q}$.
- ullet Where $oldsymbol{\lambda}$ are variational parameters and $\mathcal Q$ is the familiy of variational distributions

Kullback-Leibler Divergence

• It is tempting to minimize the Kullback-Leibler (KL) divergence:

$$KL[q(z; \lambda)||p(z|x)]$$
 (3)

• wait a second... is p(x) not intractable?

Evidence Lower Bound - Version 1

• Let's instead do the following:

• Note that ELBO = $\log p(x) - KL[p(z|x)||q(z|x)]$, i.e., maximizing the ELBO is equivalent to minimizing the KL divergence.

Figure: Learn λ to minimize the variational gap

Mean-Field (MF) Approximation - I

ullet MF assumes that ${\mathcal Q}$ is in the class of fully factorized distributions

$$q(\boldsymbol{Z}; \boldsymbol{\lambda}) = \prod_{i=i}^N q(\boldsymbol{z}_i; \boldsymbol{\lambda}_i)$$

- Intuitively, MF optimizes each z_i one at a time while holding the other fixed
- Let's write the ELBO for the entire data set as

$$egin{aligned} extit{ELBO} = & \mathbb{E}_q igg[\log rac{p(oldsymbol{X}, oldsymbol{Z})}{q(oldsymbol{Z})} igg] \ = & \log p(oldsymbol{X}) + \mathbb{E}_q [\log p(oldsymbol{Z} | oldsymbol{X})] - \mathbb{E}_q [q(oldsymbol{Z})] \ & \propto & \mathbb{E}_q [\log p(oldsymbol{Z} | oldsymbol{X})] - \mathbb{E}_q [q(oldsymbol{Z})] \end{aligned}$$

Mean-Field Approximation - II

 Due to the mean-field assumption and chain rule of conditional probabilites

$$ELBO = \sum_{i} \mathbb{E}_{q}[\log p(\pmb{z}_{i}|\pmb{z}_{-i},\pmb{X})] - \mathbb{E}_{q}[q(\pmb{Z})]$$

where z_{-i} means all variables in Z but z_i .

The ELBO as a function of the j-th variational distribution is

$$\begin{split} \textit{ELBO}(q_j) = & \mathbb{E}_{q_j} [\mathbb{E}_{q_{-j}}[\log p(\pmb{z}_i|\pmb{z}_{-i}, \pmb{X})]] - \mathbb{E}_{q_j}[q_j(\pmb{Z})] \\ = & \mathbb{E}_{q_j}[\log(\exp\{\mathbb{E}_{q_{-j}}[\log p(\pmb{z}_i|\pmb{z}_{-i}, \pmb{X})]\})] - \mathbb{E}_{q_j}[q_j(\pmb{Z})] \\ = & - \textit{KL}[q_j||\exp\{\mathbb{E}_{q_{-j}}[\log p(\pmb{z}_i|\pmb{z}_{-i}, \pmb{X})]\})] \end{split}$$

Mean-Field Approximation - III

- Recall that KL[p||q] is minimized when p = q, hence
- Hence, the MF update is

$$q_j^* \propto \exp\{\mathbb{E}_{q_{-j}}[\log p(\mathbf{z}_i|\mathbf{z}_{-i},\mathbf{X})]\}$$

- Note that
 - the updating step computes an expectation (hence *mean* in MF)
 - we need to be able to evaluate the expectation (an overoptimistic assumption)
 - optimization does not scale to large datasets