Density-Based Clustering for Adaptive Density Variation - Supplementary

Li Qian*, Claudia Plant[†], Christian Böhm*

*Institute of Informatics, Ludwig Maximilian University of Munich, Munich, Germany

{li.qian, boehm}@dbs.ifi.lmu.de

[†]Faculty of Computer Science, ds:UniVie, University of Vienna, Vienna, Austria

claudia.plant@univie.ac.at

I. IMPLEMENTATION AND PARAMETER SETTINGS

The proposed algorithm DBADV is implemented in Python. Source code, synthetic data sets, and supplementary material are available at https://dmm.dbs.ifi.lmu.de/cms/downloads. We run all experiments on a machine equipped with six cores (Intel Core i7-8700 3.19GHz) and 32GB memory.

We conduct experiments on two synthetic data sets Shape3 and Shape5 generated by us, five common data sets with multivariate including Seeds, Dermatology, Image Segment, Page Blocks, and Crowdsourced Mapping (Crowdsourced) from the UCI Machine Learning Repository [1], and one face image data set warpPIE10P with high dimensionality from the Feature Selection Repository¹. The statistics of these data sets are briefly described in Table I. We preprocess datasets using the MinMaxScaler such that each feature ranges in [0,1] before the experiments. Besides, we run all initialization dependent algorithms (e.g., k-means, Spectral clustering) 10 times and report the best results.

Table I STATISTICS OF DATA SETS

Data set	# Samples	# Features	# Classes
Shape3	2250	2	3
Shape5	3150	2	5
Seeds	210	7	3
Dermatology	358	34	6
Image Segment	2310	19	7
Page Blocks	5473	10	5
Crowdsourced	10545	28	6
warpPIE10P	210	2420	10

To extensively evaluate the performance of the proposed DBADV, we take a range of competitive clustering algorithms as our baselines, including density-based methods DBSCAN² and its variants OPTICS², HDBSCAN³, CRAD⁴, DBSCAN-DScale⁵, SpectACl⁶, and other categories of clus-

tering algorithms k-means², Spectral clustering⁷, Self-tuning spectral clustering⁷, Affinity Propagation², and Sync⁸. For each baseline, we search for the best achievable clustering result in a reasonable range of parameters, or the default value of parameters recommended by the authors, as shown in Table II. Notably, Sync is a parameter-free clustering algorithm.

Table II

PARAMETERS AND THEIR SEARCH RANGE FOR EACH CLUSTERING ALGORITHM. nSample is the number of samples; N denotes the number of clusters; median presents the median of the similarity matrix.

Algorithm	Parameters with search range
DBADV	$MinPts \in \{1, 2,, 30\}$; $perp \in \{1, 2,, 30\}$; $prob = 0.977$
DBSCAN	$MinPts \in \{1, 2,, 30\}; eps \in \{0.01, 0.02,, 1\}$
OPTICS	$MinPts \in \{1, 2,, 30\}; \xi \in \{0.01, 0.02,, 0.99\}$
HDBSCAN	$minSample = minCluster \in \{2, 3,, 30\}; \alpha = 1$
CRAD	$StepSize = 1; Nbin \in (0.2 * nSample - 100, 0.2 * nSample + 100)$
DBSCAN-DScale	$MinPts \in \{1, 2,, 30\}; eps \in \{0.01, 0.02,, 1\}; \eta \in \{0.1, 0.2,, 0.5\}$
SpectACl	$eps \in \{0.01, 0.02,, 1\}$; $numCluster = N; d = 50$
k-means	numCluster = N
Spectral	$numCluster = N; \sigma = 0.04$
Self-tuning	$numCluster \in \{2, 3,, 100\}; K = 7$
Affinity Prop.	$lam \in \{0.5, 0.55,, 0.95\}; p = median$

REFERENCES

[1] D. Dua and C. Graff, "{UCI} Machine Learning Repository," 2017. [Online]. Available: http://archive.ics.uci.edu/ml

¹https://jundongl.github.io/scikit-feature/datasets.html

²https://scikit-learn.org/stable/modules/clustering.html

³https://github.com/scikit-learn-contrib/hdbscan

⁴https://github.com/DataMining-ClusteringAnalysis/CRAD-Clustering/

⁵https://sourceforge.net/projects/distance-scaling/

⁶https://sfb876.tu-dortmund.de/spectacl/index.html

⁷http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html

⁸http://dm.uestc.edu.cn/publication/