Introduction to Artificial Intelligence Single-layer Neural Networks

Martha Lewis

Department of Engineering Mathematics University of Bristol martha.lewis@bristol.ac.uk

Single Layer Neural Networks

Q: When was the first neural network architecture proposed?

Single Layer Neural Networks

Q: When was the first neural network architecture proposed?

A: McCulloch and Pitts first proposed a model artificial neural networks in 1943.

Rosenblatt then proposed the Perceptron in 1958.

For a short history, have a look at https://www.ibm.com/uk-en/cloud/learn/neural-networks#toc-history-of-rIfu5uF2

Perceptron Model

- Suppose we have a data set of labelled examples $(\underbrace{x_1,\ldots,x_k,y})$ where $\underbrace{x_i\in\mathbb{R}}$ for $i=1,\ldots,k$ and also $\underbrace{y\in\mathbb{R}}$.
 - In these examples labels and attributes are related by an unknown function $\underline{f}: \mathbb{R}^k \to \mathbb{R}$ such that $y = f(x_1, \dots, x_k)$.

Limitations of Single Layer NNs

Consider the XOR function $f: \{0,1\}^2 \rightarrow \{0,1\}$ defined by the following table:

<i>X</i> ₂	$f(x_1,x_2)$
1	0
0	1
1	1
0	0
	x ₂ 1 0 1 0

Let
$$\underline{\phi(z)} = \begin{cases} 0 : z \le 0 \\ 1 : z > 0 \end{cases}$$

Let $\phi(z) = \begin{cases} 0 : z \le 0 \\ 1 : z > 0 \end{cases}$ then for a single-layer neural network we

require $\phi(w_1x_1 + w_2x_2) = f(x_1, x_2)$. This means we need that: $\phi(w_1 + w_2) = 0$, $\phi(w_1) = 1$, $\phi(w_2) = 1$ and $\phi(0) = 0$.

But then, $w_1 + w_2 \le 0$ and $w_1 > 0$ and $w_2 > 0$. These constraints are inconsistent!

Linearly Separable

- Single-layer NNs can only solve linearly separable problems.
- A problem with n inputs is linearly separable if it is possible to find a n-dimensional hyperplane which geometrically separates the sets.
- This is a serious restriction e.g. there are 2^{2^n} *n*-dimensional Boolean functions and only of order 2^{n^2} separable Boolean functions.

■ The equation for a line is...

- The equation for a line is...
- y = mx + c

- The equation for a line is...
- y = mx + c
- Suppose we have a single layer neural network on a 2D space with a step function as non-linearity (not sigmoid)

$$\underbrace{\phi([x_1, x_2])}_{0} = \begin{cases}
1 & \text{if } w_1x_1 + w_2x_2 + b > 0 \\
0 & \text{otherwise}
\end{cases}$$

- The equation for a line is...
- y = mx + c
- Suppose we have a single layer neural network on a 2D space with a step function as non-linearity (not sigmoid)

$$\phi([x_1, x_2]) = \begin{cases} 1 & \text{if } w_1x_1 + w_2x_2 + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

■ Then:

$$((x_1, x_2) = \underbrace{w_1 x_1 + w_2 x_2 + b} > 0 \iff x_2 + \underbrace{\frac{w_1}{w_2} x_1 + \frac{b}{w_2}} > 0 \qquad w_2$$

$$\iff x_2 > -\underbrace{\frac{w_1}{w_2} x_1 - \frac{b}{w_2}}$$

Summary

- The first artificial neural networks used a single layer
- This kind of architecture was quickly shown to be inadequate since only linearly separable problems can be solved.
- In the 2D case we can calculate the line that the network models.
- Adding more layers allows a wider range of problems to be solved - in principle with one hidden layer any continuous function can be approximated