Jan-Paul Vincent Ramos-Dávila

 ${\cal S}$ mail@jpramos.me | \blacksquare jpramos.me | \Box jpramos-me

Education

Cornell University

08/2021 - 05/2025

Bachelor of Arts in Computer Science & Bachelor of Arts in Philosophy

Ithaca, NY

Experience

Amazon 06/2023 - 08/2023

Software Verification Research Intern, advised by Dr. Jonathan Aldrich

Pittsburgh, PA

- λ . Developed a second-order logic algorithm to significantly optimizate runtime check assertions in Gradual C_0 .
- λ. Participated in an industry experience workshop led by Amazonians Myles Shiroma & Korin Torrence Johnson.

Carnegie Mellon University

06/2022 - Present

Software Verification Research Intern, advised by Dr. Jonathan Aldrich & Dr. Joshua Sunshine

Pittsburgh, PA

- λ . Exploring the application of gradual verification techniques to smart contracts on the *Algorand* blockchain platform in developing Gradually Verified Teal.
- λ . Worked on formal proofs for establishing semantic correspondence to ensure soundness between the static and dynamic verifier for Gradual C_0 .
- λ . Fixed optimization bugs and implemented a Property Based Testing tool for evaluating the soundness of Gradual C_0 source code. Presented work at POPL '23 SRC.

Cornell University 10/2021 - 12/2022

Programming Languages Undergraduate Researcher, advised by Dr. Adrian Sampson

Ithaca, NY

- λ . Worked on a symbolic execution tool for verifying parallelism in Calyx.
- λ . Fixed compiler front-end bugs and implemented *Graphicionado Graph Analytics* algorithm in Calyx.

Publications

Evaluating Soundness of a Gradual Verifier with Property Based Testing Jan-Paul Ramos-Dávila In Principles of Programming Languages Student Research Competition (POPL 2023 &) (POPL Video &) (POPL Poster &) & In Cornell Undergraduate Research Journal (CURJ Vol. 2 No. 1 &).

Notable Projects

Incremental Specification Mining (Cornell CS 6156 Runtime Verification 2) Instrumentation for Maven-based projects that *incrementally* mines specifications for runtime verification. Significantly decreases overhead for evolutionary-aware specification mining. Supports integration with Javert and BDDMiner.

EtaC (Cornell CS 4120 Intro to Compilers \Box) Compiler for the <u>Eta programming language</u> in OCaml with $\sim 7,200$ lines of code. Made use of Jane Streetś expect testing suite for $\sim 90\%$ code coverage.

RNAfoldml (Cornell CS 3110 Functional Programming ©) OCaml package that enables users to input both RNA sequences in FASTA format and a set of constraints to predict RNA secondary structure.

Diffeq-lang (Senior High School Project 2) Domain specific language for automatically solving and graphing differential equations via web interface.

Honors

Winner, Third Place, ACM SIGPLAN Symposium POPL SRC

Travel Scholarship, ACM SIGPLAN Conference PLDI

Finalist, Mathematics, Regeneron International Science and Engineering Fair

2020 & 2021

Academic Service

Student Volunteer, ACM SIGPLAN ICFP 2023

Seattle, WA

Technical Skills

Languages: OCaml, Python, Scala, Haskell, Rust, Racket, Java, JavaScript, C, English, Español, Italiano

Tools: Unix, Git, VSCode, Bash, IntelliJ IDEA, Neovim, Docker, Heroku, LATEX