Napster 2.0 Churn

Predicting customer churn rate for the next month

Junhai Ma, Cinny Lin

The problem

Company

Napster 2.0 is a music streaming service.

Context

Subscribers pay **\$10** for access to the service monthly.

Problem statement

Customers have an average lifetime of only **1.75 months**.

Executive Summary

Revenue impact

Offering a 30% discount to potential churners can improve our revenue by 7% under 30% acceptance rate.

Scope of Offering

We should offer discount to those with more than 60% probability of churning as predicted by our model

Solution

Offer discount to churners

According to our models and projected revenues, we can see that offering discounts to potential churners will extend customer lifetime value and increase our projected revenue.

Implementation

Solution

Predictive modeling to identify those who are likely to churn

Linear probability model

OLS Regression Results

Dep. Variable:		chur	n_TF I	R-squared:			0.122		
Model:			OLS A	Adj. R-squared:			0.122		
Method:		Least Squ	ares I	F-statistic:			244.1		
Date:		ie, 17 Nov 2020		Prob (F-statisti	c):	1.46e-196		
Time:		10:09:22		Log-Li	kelihood:		-4546.0		
No. Observations:			7000 A	AIC:			9102.		
Df Residuals:			6995 I	BIC:			9136.		
Df Model: 4			4						
Covariance Type: nonrobust			bust						
	goof	std err		=====: t	D> +	 [0.025	0.0751		
	coef	sta err		L	P> t	[0.025	0.975]		
age	0.1309	0.006	23.6	518	0.000	0.120	0.142		
income	-0.0903	0.006	-16.3	391	0.000	-0.101	-0.080		
hours	-0.0636	0.006	-11.5	531	0.000	-0.074	-0.053		
female	0.0590	0.011		322	0.000	0.037	0.081		
const	0.5465	0.008	70.4	410	0.000	0.531	0.562		

Logistic regression model

Logit Regression Results

Dep. Variable:		chur	n_TF No.	Observation	s:	7000				
Model:		Lo	ogit Df I	Residuals:		6995				
Method:			MLE Df 1	Model:		4				
Date:	Tu	e, 17 Nov 2	2020 Pset	ıdo R-squ.:		0.09580				
Time:		08:34	1:50 Log-	-Likelihood:		-4317.9				
converged:		7	True LL-1	Null:		-4775.4				
Covariance Typ	e:	nonrol	oust LLR	p-value:		9.545e-197				
						========				
	coef	std err	z	P> z	[0.025	0.975]				
	0 (100	0.020	21 007		0.556	0.666				
age	0.6109	0.028	21.887	0.000	0.556	0.666				
income	-0.4219	0.027	-15.818	0.000	-0.474	-0.370				
hours	-0.2967	0.026	-11.315	0.000	-0.348	-0.245				
female	0.2755	0.052	5.321	0.000	0.174	0.377				
const	0.2113	0.036	5.876	0.000	0.141	0.282				
==========										

Feature importance

Single factor relationship with churn

Churn T/F (actual) Linear probability model Logit probability

Model consistency

ROC curve

Impact of probability threshold on revenue

Under assumptions:

- 1. Discount amount 30%
- 2. Acceptance rate 30%

Sensitivity of our assumptions

Under assumptions: probability threshold 50%

Other issues

How much should the discount be?

It depends on the relationship between discount rate and acceptance rate.

2. What are channels to offer discount to potential churners?

Email could have a higher acceptance rate than phone call

3. Offering discount is expensive, how to cut more cost?

Call or send emails checking customer satisfaction before making the offer

Thank you!

Any question?