AHP层次分析法:国赛建模典型流程案例(真实场景模拟)

赛题场景 (真实风格)

赛题背景描述(示例):

某市计划建设新型物流中心,候选位置有A区、B区、C区三地。决策团队需综合交通便利性、人才储备、市场前景、建设成本四项指标进行评价排序,权重分配需通过专家两两比较法(AHP)确定。

赛题给出: 1. 三个备选城市(A区、B区、C区)在各项指标上的实际打分(如专家打分、数据采集):

地区	交通	人才	市场	成本
A区	7	8	6	6
B⊠	8	6	7	7
C区	6	7	8	8

1. 专家组成员两两比较四个指标的重要性,填表如下(1~9标度,问卷结果求算术平均):

	交通	人才	市场	成本
交通	1	3	2	0.5
人才	1/3	1	0.5	1/3
市场	0.5	2	1	1/3
成本	2	3	3	1

建模解题流程

1. 分析层次结构

•目标层:选择最优建址方案

• 准则层: 交通、人才、市场、成本

• 方案层:A区、B区、C区

2. 构造判断矩阵A

直接来自专家两两比较(上表),矩阵A为:

A = [[1, 3, 2, 0.5], [1/3, 1, 0.5, 1/3], [0.5, 2, 1, 1/3], [2, 3, 3, 1]]

3. 计算权重(几何平均法)

・交通: $(1 \times 3 \times 2 \times 0.5)^{1/4} = (3)^{1/4} \approx 1.316$

・人才: $(1/3 \times 1 \times 0.5 \times 1/3)^{1/4} = (1/18)^{1/4} \approx 0.375$

・市场: $(0.5 imes 2 imes 1 imes 1/3)^{1/4} = (1/3)^{1/4} pprox 0.759$

・成本: $(2 \times 3 \times 3 \times 1)^{1/4} = (18)^{1/4} \approx 2.060$

权重归一化:总和4.510

• 交通: 1.316/4.510≈0.29

• 人才: 0.375/4.510≈0.08

•市场:0.759/4.510≈0.17

•成本:2.060/4.510≈0.46

4. 一致性检验

• $CI = \frac{\lambda_{max} - n}{n-1}$

•CR=CI/RI, n=4时RI=0.90

•实际计算如前所述,CR<0.1则通过

5. 综合得分与排序

对每个地区:

• A \boxtimes : $7 \times 0.29 + 8 \times 0.08 + 6 \times 0.17 + 6 \times 0.46 = 6.45$

• B \boxtimes : $8 \times 0.29 + 6 \times 0.08 + 7 \times 0.17 + 7 \times 0.46 = 7.21$

• C \boxtimes : $6 \times 0.29 + 7 \times 0.08 + 8 \times 0.17 + 8 \times 0.46 = 7.34$

综合得分最高的C区为最优。

总结

- 赛题一般会给出:
- 指标层/方案层原始数据表
- 专家两两比较表或文字描述让你手动填(有时用语"比...更重要n倍")
- 解题流程:先求权重,再乘原始得分,按加权和排序

(如需"专家意见合成""多个层次递推"等高级场景可补充扩展)