POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI

KIERUNEK: INFORMATYKA

SPECJALNOŚĆ: SYSTEMY INFORMATYKI W MEDYCYNIE

PRACA DYPLOMOWA INŻYNIERSKA

System inspekcji obszarów z wykorzystaniem autonomicznych dronów

Autonomous drone-based scouting system

AUTOR:

Mateusz Bączek

PROWADZĄCY PRACĘ:

Dr inż. Michał Kucharzak, Katedra Systemów i Sieci Komputerowych

OCENA PRACY:

Spis treści

1.	Wst	tęp	8
	1.1.	Geneza pracy	8
	1.2.	Cel pracy	8
	1.3.	Zakres pracy	9
2.	Wy	magania funkcjonalne systemu	10
	2.1.	Oprogramowanie na dronie	10
	2.2.	Protokoły wymiany danych	10
	2.3.	Oprogramowanie serwerowe	10
	2.4.	Oprogramowanie klienckie	10
3.	Wy	bór technologii i architektura systemu	11
	3.1.	Oprogramowanie na dronie	11
	3.2.	Protokoły wymiany danych	11
	3.3.	Oprogramowanie serwerowe	11
	3.4.	Oprogramowanie klienckie	11
	3.5.	Struktura repozytoriów	11
	3.6.	Praca z wieloma repozytoriami	11
	3.7.	Wspólne punkty stykowe - git submodules	11
4.	Wd	rażanie systemu	12
	4.1.	Konteneryzacja	12
	4.2.	Automatyczne budowanie projektów	12
	4.3.	Automatyczne aktualizacje kontenerów	12
	4.4.	Automatyczne wdrażanie statycznego kodu	12
5.	Test	ty systemu	13
	5.1.	Testy jednostkowe	13
	5.2.	Testy integracyjne	13
		5.2.1. Symulacja i symulatory	13
	5.3.	Systemy ciągłej integracji	13
	<i>5</i> 1	That we have in	12

6.	Podsumowanie				
	6.1.	Wyniki testów	14		
	6.2.	Osiągnięta sprawność	14		
	6.3.	Pola do poprawy	14		
	6.4.	Wnioski	14		
Li	teratı	ıra	15		
Indeks rzeczowy					

Spis rysunków

Spis listingów

Spis tabel

Skróty

GCS (ang. Ground control station)

JSON (ang. JavaScript Object Notation)

Wstęp

1.1. Geneza pracy

Lotnictwo autonomiczne to prężnie rozwijający się segment branży lotniczej. Technologie pozwalające na wykorzystanie autonomicznych dronów i samolotów w nowych projektach biznesowych są dostępne na wyciągnięcie ręki - istnieją zarówno systemy zamknięte, w pełni komercyjne, jak i projekty zupełnie otwarte, pozwalające na zapoznanie się z kodem źródłowym oprogramowania sterującego statkami powietrznymi.

W świecie biznesu powstają coraz to nowe rozwiązania, wykorzystujące autonomiczne maszyny do świadczenia różnorakich usług - od razu nasuwającym się rozwiązaniem jest autonomiczne dostarczanie paczek [2]. Warto wspomnieć, że branża jest bardzo otwarta na innowatorów - firmy takie jak Boeing i Lockheed Martin sponsorują międzynarodowe konkursy dla młodych konstruktorów [3].

Zainteresowani autonomicznym lotnictwem inwestorzy nie ograniczają się do prywatnych firm. Rząd australijskiego stanu Queensland współorganizuje UAV Challenge - zawody skupione wokół rozwijania systemów wspierających służby medyczne [1].

Wykorzystanie otwartych technologii skupionych wokół awiacji autonomicznej i połączenie ich z nowoczesnymi praktykami wdrażania oprogramowania to temat atrakcyjny zarówno z perspektywy inżynierii oprogramowania jak i z perspektywy biznesowej.

Szczególnie interesujące są zagadnienia integracji komponentów systemu, oraz testowanie - które w przypadku systemu angażującego rzeczywiste maszyny nie może ograniczyć się jedynie do standardowych testów jednostkowych.

1.2. Cel pracy

Celem pracy jest stworzenie prototypu systemu monitorującego, wykorzystującego autonomiczne drony. System ma wykorzystywać już istniejące oprogramowanie sterujące autonomicznymi maszynami, wykorzystywać napisaną na potrzeby pracy infrastrukturę służącą do plano-

wania tras lotów, przechwytywanie i wyświetlanie telemetrii oraz rozpoznawanie obiektów na zdjęciach wykonanych w czasie lotu za pomocą sztucznej inteligencji.

Prototyp ma być w pełni testowalny - testy muszą angażować wszystkie komponenty systemu, uruchomione wewnątrz w pełni zautomatyzowanego środowiska testowego.

1.3. Zakres pracy

Zakres pracy obejmuje elementy projektu związane z inżynierią oprogramowania - proces projektowania architektury systemu, wybór technologii, zaprojektowanie punktów stykowych w systemie. Praca opisuje też sposób testowania systemu - od weryfikacji poprawności działania poszczególnych komponentów, po pełne automatyczne testy integracyjne, wykorzystujące wszystkie komponenty systemu oraz zintegrowany symulator drona.

Wymagania funkcjonalne systemu

- 2.1. Oprogramowanie na dronie
- 2.2. Protokoły wymiany danych
- 2.3. Oprogramowanie serwerowe
- 2.4. Oprogramowanie klienckie

Wybór technologii i architektura systemu

- 3.1. Oprogramowanie na dronie
- 3.2. Protokoły wymiany danych
- 3.3. Oprogramowanie serwerowe
- 3.4. Oprogramowanie klienckie
- 3.5. Struktura repozytoriów
- 3.6. Praca z wieloma repozytoriami
- 3.7. Wspólne punkty stykowe git submodules

Wdrażanie systemu

- 4.1. Konteneryzacja
- 4.2. Automatyczne budowanie projektów
- 4.3. Automatyczne aktualizacje kontenerów
- 4.4. Automatyczne wdrażanie statycznego kodu

Testy systemu

- 5.1. Testy jednostkowe
- 5.2. Testy integracyjne
- **5.2.1.** Symulacja i symulatory
- 5.3. Systemy ciągłej integracji
- **5.4.** Testy w terenie

Podsumowanie

- 6.1. Wyniki testów
- 6.2. Osiągnięta sprawność
- 6.3. Pola do poprawy
- 6.4. Wnioski

Literatura

- [1] UAV Challenge . Sponsors and supporters 2019 & 2020. 2019. https://uavchallenge.org/about/sponsors-and-supporters/.
- [2] Amazon Inc. Amazon prime air. 2013. https://www.amazon.com/ Amazon-Prime-Air/b?ie=UTF8&node=8037720011.
- [3] Rafał Pogrzebny and Katarzyna Florencka. Sukces polskich studentów na zawodach sae aero design w usa. 2018. https://naukawpolsce.pap.pl/aktualnosci/news%2C29012% 2Csukces-polskich-studentow-na-zawodach-sae-aero-design-w-usa.html.