

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS DOCENTE: NIKOLA KAMBUROV

Ayudante: Matías Díaz

MAT2555 - Análisis Funcional

Tarea 3 - Omar Neyra, Sebastián Sánchez

PROBLEMA 1 -

Sea (Ω, M, μ) un espacio de medida y suponga que $f \in L^{p_0}(\mu) \cap L^{\infty}(\mu)$ para algún $p_0 \in [1, \infty)$. Pruebe que $f \in L^p$ para todo $p \ge p_0$ y que

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_{p}.$$

SOLUCIÓN El caso $p = p_0$ es directo, así que supongamos que la desigualdad es estricta y denotemos $p' := p - p_0 > 0$. Notando que $|f(x)| \le ||f||_{\infty}$ (c.t.p) tenemos que

$$\int |f|^p = \int |f|^{p_0} |f|^{p'} \le \int |f|^{p_0} ||f||_{\infty}^{p'} \le ||f||_{\infty}^{p'} ||f||_{p_0}^{p_0} \tag{1}$$

Todas las cantidades son positivas, así que tomando raíz obtenemos que

$$||f||_{p} \le ||f||_{\infty}^{p'/p} ||f||_{p_{0}}^{p_{0}/p} < \infty, \tag{2}$$

pues la norma uniforme y p_0 están acotadas. Tomando límite se ve directamente que

$$\lim_{p \to \infty} \|f\|_p \le \|f\|_{\infty} \tag{3}$$

pues $p'/p = 1 - p_0/p \rightarrow 1$ y $p_0/p \rightarrow 0$ cuando $p \rightarrow \infty$.

Para la otra dirección, consideremos $\varepsilon > 0$. Luego,

$$\begin{split} \|f\|_p &= \left(\int |f|^p\right)^{1/p} \\ &\geq \left(\int_{\{|f|+\varepsilon>\|f\|_\infty\}} |f|^p\right)^{1/p} \\ &\geq \left(\int_{\{|f|+\varepsilon>\|f\|_\infty\}} (\|f\|_\infty - \varepsilon)^p\right)^{1/p} \\ &\geq (\|f\|_\infty - \varepsilon)\mu(\{|f|+\varepsilon>\|f\|_\infty\})^{1/p}. \end{split}$$

Notar que $\mu(\{|f|+\varepsilon>\|f\|_{\infty}\}) < \infty$ pues $f \in L^p$. Tomando límite tenemos que $\lim_{p\to\infty} \|f\|_p \ge \|f\|_{\infty} - \varepsilon$. Como ε es arbitrario, se concluye el resultado.

PROBLEMA 2 -

Para todo $a \in \mathbb{R}$ construya una función $f_a \in L^{\infty}(\mathbb{R})$ con $||f_a - f_b||_{L^{\infty}(\mathbb{R})} \ge 1$ cuando $a \ne b$. Demuestre que esto implica que $L^{\infty}(\mathbb{R})$ no es separable.

SOLUCIÓN Basta considerar $f_a(x) = \chi_{[a,\infty]}(x)$. Para lo otro. Supongamos que es separable. Sea $\{x_n\}_n$ un conjunto denso y numerable. Fijemos $1/4 > \varepsilon > 0$. Luego, existe N tal que al menos para dos reales a y b se tiene que $f_a, f_b \in B(x_N, \varepsilon)$ (Un palomar, hay numerables bolas y tenemos no-numerables elementos que disponer). De esta forma:

$$1 = ||f_a - f_b|| \le ||f_a - x_N|| + ||f_b - x_N|| \le 2\varepsilon < 1$$

Dada la contradicción, concluimos que L^{∞} no puede ser separable.

- PROBLEMA 3 —

Suponga que el espacio de medida (Ω, M, μ) es σ -finito. Decimos que una sucesión $f_n \in L^p$ converge débilmente a $f \in L^p$ si $c(f_n) \to c(f)$ para todo $c \in (L^p)^*$. Escribimos $f_n \to f$ en L^p .

(a) Demuestre que $f_n \rightharpoonup f$ en L^p , $p \in [1, \infty)$, si y solo si

$$\int f_n g o \int f g$$

para toda $g \in L^q$, con 1/p + 1/q = 1.

- (b) Pruebe que cuando $f_n \rightharpoonup f$ en L^p , $||f||_p \le \liminf_{n \to \infty} ||f_n||_p$
- (c) (Compacidad débil de L^p) Sea $p \in (1, \infty)$ y suponga que L^q es separable. Pruebe que si $\sup_n \|f_n\|_p < \infty$, entonces existe $f \in L^p$ y una sucesión $f_{n_k} \in L^p$ tal que $f_{n_k} \rightharpoonup f$.
- (d) De un contraejemplo del ítem anterior cuando p = 1.

SOLUCIÓN

(a) \implies : Notamos que para todo $g \in L^q$, el mapa $\Phi \colon L^p \to \mathbb{K}$ dado por $a \mapsto \int ag$ define un funcional lineal acotado. En efecto, la linealidad es directa por la linealidad de la integral y la cota sale por Hölder:

$$|\Phi(a)| \le \int |ag| \le ||a||_p ||g||_q < \infty.$$

Luego, la convergencia débil nos da que

$$\lim_{n\to\infty}\Phi(f_n)=\Phi(f)\Rightarrow\lim_{n\to\infty}\int f_ng=\int fg.$$

 \leftarrow : Por el teorema de representación de Riesz para espacios de funciones integrables, para todo $T \in (L^p)^*$ existe $h \ge 0$ en L^q tal que

$$T(a) = \int ah.$$

Por la hipótesis, se sigue que

$$\lim_{n\to\infty} T(f_n) = \lim_{n\to\infty} \int f_n h = \int f h = T(f).$$

(b) Sea $x' \in (L^p)^*$ de norma 1 tal que $|x'(f)| = ||f||_p$. Esto lo podemos pedir por Hahn-Banach. Por hipótesis, se cumple que $x'(f_n) \to x'(f)$. Se sigue que:

$$||f||_p = \left| x'(f) \right| = \left| \lim_{n \to \infty} x'(f_n) \right| \le \liminf_{n \to \infty} \left| x'(f_n) \right| \le \liminf_{n \to \infty} \left| x' \right| ||f_n||_p = \liminf_{n \to \infty} ||f_n||_p.$$

(c) Recordemos que para $1 , <math>L^q \cong (L^p)^*$. Luego, $(L^p)^*$ es separable. Tomemos $(\phi_n)_{n \in \mathbb{N}}$ en $(L^p)^*$ denso y numerable. Luego, $(\phi_1(f_n))_n$ define una sucesión acotada de números en el cuerpo. Se sigue que existe una subsecuencia $f_{n,1}$ tal que $\phi_1(f_{n,1}) \to c_1 \in \mathbb{K}$. De manera inductiva tenemos secuencias $(f_{n,k})_n \subset (f_{n,k-1})_n$ tal que

$$\phi_k(f_{n,k}) \to c_k \in \mathbb{K}$$
.

Definamos la secuencia diagonal $f_{n_k} = f_{n_k,n_k}$. Luego, para todo $n \in \mathbb{N}$:

$$\phi_n(f_{n_k}) \xrightarrow{n_k \to \infty} c_n \in \mathbb{K}.$$

Definamos $f = \lim_{n \to \infty} f_{n_k}$. Notar que $\phi_n(f_{n_k}) \to \phi_n(f)$. Sea $g \in (L^p)^*$. Luego,

$$|g(f) - g(f_{n_k})| \le |g(f) - \phi_n(f)| + |\phi_n(f_{n_k} - \phi_n(f))| + |\phi_n(f_{n_k}) - g(f_{n_k})| \xrightarrow{n,n_k \to \infty} 0.$$

PROBLEMA 4 -

PROBLEMA 5 —

Sea μ_i , ν_i medidas σ -finitas en (Ω_i, M_i) tales que $\nu_i \ll \mu_i$ para i = 1, 2. Pruebe que la medida producto $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$ y que la derivada de Radon-Nikodým:

$$\left[\frac{d(v_1 \times v_2)}{d(\mu_1 \times \mu_2)}\right] = \left[\frac{dv_1}{d\mu_1}\right](x_1) \left[\frac{dv_2}{d\mu_2}\right](x_2)$$

SOLUCIÓN Denotemos por $h_i \coloneqq [dv_i/d\mu_i]$ y por $H = [d(v_1 \times v_2)/d(\mu_1 \times \mu_2)]$. Además, pongamos $\Pi_{\alpha} = \alpha_1 \times \alpha_2$.

 $\Pi_{\nu} \ll \Pi_{\mu}$: Sea $E \in \Pi_{M}$ un medible en el producto. Supongamos que $\Pi_{\mu}(E) = 0$. Denotemos por $\overline{E^{\bullet}, E_{\bullet}}$ a las secciones en Ω_{2} y Ω_{1} , respectivamente. Luego (usando que las medidas son σ -finitas):

$$0 = \Pi_{\mu}(E) = \int_{\Omega_{1}} \mu_{2}(E^{x_{1}}) d\mu_{1}(x_{1}) = \int_{\Omega_{2}} \mu_{1}(E_{x_{2}}) d\mu_{2}(x_{2})$$

$$\implies \mu_{1}(E_{\bullet}) = 0 \lor \mu_{2}(E^{\bullet}) = 0$$

$$\implies v_{1}(E_{\bullet}) = 0 \lor v_{2}(E^{\bullet}) = 0$$

$$\implies \Pi_{v}(E) = \int_{\Omega_{1}} v_{2}(E^{x_{1}}) dv_{1}(x_{1}) = \int_{\Omega_{2}} v_{1}(E_{x_{2}}) dv_{2}(x_{2}) = 0.$$

 $H(x_1,x_2)=h_1(x_1)h_2(x_2)$: Para toda $f\in L^1(\Pi_{\mu})$ se tiene:

$$\int_{\Omega_1 \times \Omega_2} f \, d\Pi_V = \int_{\Omega_1 \times \Omega_2} f H \, d\Pi_{\mu} \tag{4}$$

Por otro lado:

$$\int_{\Omega_{1}\times\Omega_{2}} f d\Pi_{V} \stackrel{\text{fubini}}{=} \int_{\Omega_{1}} \left(\int_{\Omega_{2}} f dv_{2} \right) dv_{1}$$

$$\stackrel{\text{RN}}{=} \int_{\Omega_{1}} \left(\int_{\Omega_{2}} f h_{2}(x_{2}) d\mu_{2}(x_{2}) \right) h_{1}(x_{1}) d\mu_{1}(x_{1})$$

$$= \int_{\Omega_{1}} \left(\int_{\Omega_{2}} f h_{1}(x_{1}) h_{2}(x_{2}) d\mu_{2}(x_{2}) \right) d\mu_{1}(x_{1})$$

$$\stackrel{\text{fubini}}{=} \int_{\Omega_{1}\times\Omega_{2}} f h_{1}(x_{1}) h_{2}(x_{1}) d\Pi_{\mu}$$
(5)

Restando (4) y (5) nos da que:

$$H(x_1, x_2) = h_1(x_1)h_2(x_2)$$
 c.t.p. en $\Omega_1 \times \Omega_2$.

- PROBLEMA 6 -

PROBLEMA 7 —

Sea $x_0(t) \in X = C([0,1])$ una función continua fija ($||x_0||_{\infty} = 1$) y $L = Gen(x_0)$. Defina L el funcional lineal:

$$f(\lambda x_0) := \lambda$$
.

- (a) Pruebe que $||f||_{L^*} = 1$.
- (b) De acuerdo con el Teorema de Hahn-Banach, f se puede extender a un funcional lineal $F \in X^*$ con norma $||F||_{X^*} = 1$. ¿Es la extensión única en los siguientes casos?
 - $x_0(t) = t$.
 - $x_0(t) = 1 2t$.

SOLUCIÓN

(a) Apliquemos la definición:

$$||f||_{L^*} = \sup_{\|\lambda x_0\|=1} |f(\lambda x)| = \sup_{|\lambda|=1} |\lambda| = 1.$$

(b) \blacksquare $Gen(x_0) = \{\lambda t : t \in [0,1]\}$. El mapa f entrega las pendientes de las rectas. Sea $F \in X^*$ una extensión. Notemos que f está dominada por x(x-2).

PROBLEMA 8 -

Suponga que *X* es un espacio de Banach.

- (a) Pruebe que X es reflexivo si y solo si X^* es reflexivo.
- (b) Demuestre que si X^* es separable, entonces X es separable. (Sugerencia: Para cada $n \in \mathbb{N}$, escoja $x_n \in X$ con $||x_n|| = 1$ y $|f_n(x_n)| \ge \frac{1}{2} ||f_n||$, donde $f_n \in X^*$ es un subconjunto contable denso, y demuestre (por contradicción) que $Gen_{\mathbb{K}_c}(\{x_n\}_n) = X$, donde $Gen_{\mathbb{K}_c}(S)$ denota el conjunto de combinaciones lineales finitas de S, con coeficientes en $\mathbb{K}_c = \mathbb{Q}$ cuando $\mathbb{K} = \mathbb{R}$ y $\mathbb{K}_c = \mathbb{Q} + i\mathbb{Q}$ cuando $\mathbb{K} = \mathbb{C}$. Note que la combinación de esta proposición y la Pregunta 2 muestra que, en general, $(L^{\infty})^* \not\cong L^1$.

SOLUCIÓN Denotemos $X^{(0)} := X y X^{(i)} := (X^{(i-1)})^*$ para i > 0.

(a) \Longrightarrow : Supongamos que $X^{(0)}$ es reflexivo. Entonces, el mapa

$$J^{(0)}: X^{(0)} \to X^{(2)}$$
 $x \mapsto ev_x: X^{(1)} \to \mathbb{K}$
 $x^{(1)} \mapsto x^{(1)}(x)$

es un isomorfismo isométrico. Queremos probar lo mismo para el mapa:

$$J^{(1)} \colon X^{(1)} \to X^{(3)}$$

$$x^{(1)} \mapsto ev_{x^{(1)}} \colon X^{(2)} \to \mathbb{K}$$

$$x^{(2)} \mapsto x^{(2)}(x^{(1)}).$$

Para esto, basta probar que es sobreyectivo.

Dado que $J^{(0)}$ es sobreyectivo, todo elemento $x_0^{(2)} \in X^{(2)}$ se puede escribir como $J^{(0)}(x_0)$ para algún $x_0 \in X$. Sea $x^{(3)} \in X^{(3)}$ se tiene que

$$x^{(3)}(x_0^{(2)}) = x^{(3)}(J^{(0)}(x_0)) = (x^{(3)} \circ J^{(0)})(x_0)$$

Denotemos por $x^{(1)} := x^{(3)} \circ J^{(0)} \in X^{(1)}$. Luego,

$$x^{(3)}(x_0^{(2)}) = x^{(1)}(x_0) = J^{(0)}(x_0)(x^{(1)}) = x_0^{(2)}(x^{(1)}).$$

Y el último término lo podemos expresar como $J^{(1)}(x^{(1)})(x_0^{(2)})$. Esto demuestra la sobreyectividad. $\stackrel{\longleftarrow}{}$:

(b) Supongamos X^* separable. Consideremos la esfera unitaria en X^*

$$S^{(1)} := \left\{ \left\| x^{(1)} \right\| = 1 \right\}.$$

Luego, $S^{(1)}$ también es separable. Sean $\left\{x_n^{(1)}\right\}_{n\in\mathbb{N}}$ elementos densos y numerables. Asociemos, para cada n, un elemento $x_n\in X$ tal que $0<\delta\leq\left|x_n^{(2)}(x_n)\right|\leq 1$. Probaremos que esos x_n son densos (en el sentido del espacio generado) en X. Buscando una contradicción, supongamos que no lo son. Entonces existe un $x^{(1)}\in S^{(1)}$ tal que $x^{(1)}$ se anula en todo $U=Gen_{\mathbb{K}_c}(\{x_n\})$ pero no es nulo fuera de U. (equivalentemente, existe un abierto en $X\setminus U$ y podemos definir un funcional que se anule en todo menos ese abierto. Reescalando lo podemos pedir unitario). Por densidad en $S^{(1)}$, existe N tal que $\left\|x^{(1)}-x_N^{(1)}\right\|>\delta/2$. Luego,

$$\delta \le \left| x_N^{(1)}(x_N) \right| = \left\| x_N^{(1)}(x_N) - x^{(1)}(x_N) \right\| \le \delta/2.$$

Dada la contradicción, concluimos que $x^{(1)}$ es nulo en X y por lo tanto los $Gen_{\mathbb{K}_c}(\{x_n\})$ es denso y numerable en X.

La numerabilidad viene de la numerabilidad de los coeficientes y las sumas finitas del generado. La densidad viene de la densidad de los coeficientes y lo que acabamos de probar.