2 Automata

[Linz, Chapter 1, p.26 –, Chapter 2]

Definition: An automaton, A, is an abstract model of a digital computer.

It contains:

- An **input file** (over a given alphabet)
- (temporary) storage device: a set of cells, each holding 1 symbol (maybe)
- control unit, in one of a number of internal states

Discrete time frame:

At any moment, A has a **configuration** (state, input symbol, storage info)

Transition function:

configurations o configurations (moves)

Our automata are special simple versions of these.

They may be **deterministic** or **nondeterministic**.

Deterministic: each move is **uniquely** determined.

Acceptor A

Given an input string, A makes a series of moves, and if it halts, its output is "Yes" or "No"

(i.e. 0 or 1).

i.e. it accepts or rejects the input string.

A language, $L \subseteq \Sigma^*$, is **accepted** by A if

 $L = \{u \in \Sigma^* \mid A \text{ accepts } u\}.$

Definition: Deterministic finite acceptor (dfa) is a quintuple

$$M = (Q, \Sigma, \delta, q_0, F)$$
 [Linz, § 2.1]

where

Q is a finite set of states

 Σ is a finite **input alphabet** (input symbols)

 $\delta \colon Q \times \Sigma \to Q$ is the **transition function**

 q_0 is the initial state

 $F \subseteq Q$ is the set of **final states**

dfa's can be represented by **transition tables** or **transition graphs**

Example:

[Linz, Example 2.1]

$$M=(Q,\ \Sigma,\ \delta,\ q_0,\ F),$$
 where $Q=\{q_0,q_1,q_2\}$ $\Sigma=\{0,1\}$ $F=\{q_1\}$ and δ is given by:

$$\begin{array}{c|cccc}
 & 0 & 1 \\
\hline
 & \rightarrow q_0 & q_0 & q_1 \\
F: q_1 & q_0 & q_2 \\
q_2 & q_2 & q_1
\end{array}$$

Corresponding transition graph: See Linz, Fig. 2.1.

Note:

In transition graph,

show **initial state** by ' \longrightarrow '

and final state by double circle.

Extended transition function

Given dfa: $M = (Q, \Sigma, \delta, q_0, F)$

Define the extended transition function

$$\delta^*: Q \times \Sigma^* \to Q$$

 $\delta^*(q, u) = \text{state of } M \text{ starting in } q \text{ after reading } u.$

E.g.
$$\delta^*(q, abc) = \underline{\delta(\delta(\delta(q, a), b), c)}$$

Recursive definition of δ^* :

$$\delta^*(q,\lambda) = \underline{q}$$

$$\delta^*(q,ua) = \delta(\delta^*(q,u),a)$$

This definition is by structural recursion on $u \in \Sigma^*$ or by recursion on |u| (see p.).

Now we can define

Definition: The language accepted by a dfa, $M=(Q, \Sigma, \delta, q_0, F)$ is:

$$L(M) = \{ u \in \Sigma^* \mid \delta^*(q_0, u) \in F \}$$

This connects δ^* with the transition graph of M:

Theorem [L, Theorem 2.1]

If $M=(Q, \Sigma, \delta, q_0, F)$ is a dfa with transition graph, G_M , then:

 $\forall q_i, q_j \in Q, u \in \Sigma^*$,

 $\delta^*(q_i, u) = q_j \iff$ there is a **path** in G_n with label u from q_i to q_j . [Linz uses "walk" instead of "path"]

Proof By structural induction on u.

Examples of transition graphs for dfa's:

see Linz:

Example 2.2: $L = \{a^n b \mid n \ge 0\}$

Example 2.3: $L = \{abu \mid u \in \Sigma^*\}$ for $\Sigma = \{a, b\}$

Examples of dfa's

Assume $\Sigma = \{a, b\}$.

Construct dfa's for the following languages over Σ :

(1) The set of all words containing only ' $a' = \{a\}^*$:

The second state is a **trap state** (not a final state).

(2) The set of all **non-empty** words containing only $a' = \{a\}^+$:

(3) The set of all words containing at least one 'b':

This is the **complement** of language (1)! That means we can interchange the final and non-final states of (1) to get the appropriate dfa:

(4) The set of all words of lengths that are multiples of 3:

(5) The set of words with at least 3 'a''s:

(6) The set of words containing 'aaa':

