### UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA

|             | .1         |       | C     | 4 |
|-------------|------------|-------|-------|---|
| Fundamentos | de Program | acion | Serie | 1 |

Nombre del alumno: Ponce Vivas Leonardo Grupo: 20 Fecha: 28/10/2020

Número de cuenta: <u>318001409</u>

#### MANEJO INTERNO DE DATOS

1.- Obtener para los siguientes incisos la conversión a Base 2.

#### Binario

- A) 4516.358
  - = 100101001110.111012
- B) AB402.63<sub>16</sub>
  - = 1010101101000000010.11000112
- 2.- Obtener para los siguientes incisos la conversión a Base 8.

#### Octal

- A) 36542.65<sub>10</sub>
  - = 107276. 1018
- B) 9BF0<sub>16</sub>
  - = 1157608
- 3.- Obtener para los siguientes incisos la conversión a Base 16.
  - A) 467318
    - = 4DD916
  - B) 1101110110.010112
    - = 376.5816
- 4. Realizar las siguientes operaciones en Base 2.

94610 11101100102

<u>-358<sub>10</sub></u> <u>101100110</u>2

58810 10010011002

| 946/2 = 473 = 0 | 358/2 = 179 = 0       | 588/2 = 294 = 0       |
|-----------------|-----------------------|-----------------------|
| 473/2 = 236 = 1 | 179/2 = 89 = 1        | 294/2 = 147 = 0       |
| 236/2 = 118 = 0 | 89/2 = 44 = 1         | 147/2 = 73 = 1        |
| 118/2 = 59 = 0  | 44/2 = 22 = 0         | 73/2 = 36 = 1         |
| 59/2 = 29 = 1   | 22/2 = 11 = 0         | 36/2 = 18 = 0         |
| 29/2 = 14 = 1   | 11/2 = 5 = 1          | 18/2 = 9 = 0          |
| 14/2 = 7 = 0    | 5/2 = 2 = 1           | 9/2 = 4 = 1           |
| 7/2 = 3 = 1     | 2/2 = 1 = 0           | 4/2 = 2 = 0           |
| 3/2 = 1 = 1     | $\frac{1}{2} = 0 = 1$ | 2/2 = 1 = 0           |
| 1/2 = 0 = 1     |                       | $\frac{1}{2} = 0 = 1$ |
|                 |                       |                       |

 208010
 11101100102

 -69610
 1011001102

138410 10010011002

| 2080/2 = 1040 = 0     | 696/2 = 348 = 0 | 1384/2 = 692 = 0 |
|-----------------------|-----------------|------------------|
| 1040/2 = 520 = 0      | 348/2 = 174 = 0 | 692/2 = 346 = 0  |
| 520/2 = 260 = 0       | 174/2 = 87 = 0  | 346/2 = 173 = 0  |
| 260/2 = 130 = 0       | 87/2 = 43 = 1   | 173/2 = 86 = 1   |
| 130/2 = 65 = 0        | 43/2 = 21 = 1   | 86/2 = 43 = 0    |
| 65/2 = 32 = 1         | 21/2 = 10 = 1   | 43/2 = 21 = 1    |
| 32/2 = 16 = 0         | 10/2 = 5 = 0    | 21/2 = 10 = 1    |
| 16/2 = 8 = 0          | 5/2 = 2 = 1     | 10/2 = 5 = 0     |
| 8/2 = 4 = 0           | 2/2 = 1 = 0     | 5/2 = 2 = 1      |
| 4/2 = 2 = 0           | 1/2 = 0 = 1     | 2/2 = 1 = 0      |
| 2/2 = 1 = 1           |                 | 1/2 = 0 = 1      |
| $\frac{1}{2} = 0 = 1$ |                 |                  |

### 5. ¿Por qué estudiamos la numeración binaria?

Porque el lenguaje binario es la base de muchos lenguajes y este es el más universal. Este lo utilizamos desde cosas simples sin darnos cuenta o hasta en conversiones a otros lenguajes, en la carrera es indispensables conocerlo y practicarlo ya que forma parte de la formación; siendo base de la programación, y también le haremos uso en nuestra vida laboral para ciertos trabajos.

#### DISEÑO DE ALGORITMOS

Obtener el algoritmo y diagrama de flujo para los siguientes incisos, generar pruebas de escritorio:

1.- Determinar cuántos números pares hay entre 1 y 100

Análisis del problema

Datos de entrada: Números pares, entre 1 a 100

Restricciones: No ser permiten números no enteros

Datos de salida: Números pares de 1 al 100

Algoritmo

1.- Inicio

- 2.- Leer contador "a" indica que inicia en 0, contador termina en 100
- 3.- Si el número no es entero; no es válido, de lo contrario ir a paso 4
- 4.- Sumar a+2, paso 5
- 5.- Hasta que se llegue a 100 e ir a paso 6, de lo contrario repetir paso 4 hasta que se cumpla
- 6.- Imprimir los números pares, ir a paso 7
- 7.- Fin

# Diagrama de Flujo



2.- Obtener los valores correspondientes de n, para la siguiente Función:

$$n=(3b+b4)+sen(1/b)$$

Desde b=1 hasta b=10 con incrementos de 1.

Análisis del problema

Datos de entrada: función n=(3b+b4)+sen(1/b), de 1 al 10

Restricciones: No ser permiten números no enteros

Datos de salida: Resultado de la función n=(3b+b4)+sen(1/b) del 1 al 10

Algoritmo

- 1.- Inicio
- 2.- Leer contador "b" indica que inicia en 1, contador termina en 10
- 3.- Si el número no es entero; no es válido, de lo contrario ir a paso 4
- 4.- Realizar (b+1) + (3b+b4) + sen(1/b)
- 5.- Hasta que se llegue a 10 e ir a paso 6, de lo contrario repetir paso 4 hasta que se cumpla
- 6.- Imprimir los resultados de las funciones, ir a paso 7
- 7.- Fin

# Diagrama de Flujo



3.- Obtener e imprimir la suma de los cuadrados de los primeros 25 números impares.

Análisis del problema

Datos de entrada: Suma de cuadrados, 25 números impares

Restricciones: No ser permiten números no enteros

Datos de salida: Suma de los cuadrados de los primeros 25 números impares

Algoritmo

1.- Inicio

2.- Leer contador "n" indica que inicia en -1, contador termina en 99

3.- Si el número no es entero; no es válido, de lo contrario ir a paso 4

4.- Sumar n+2 y el resultado se llama "m", ir a paso 5

5.- Sumar  $(n+2)^2 + (m)^2$ 

6.- Hasta que se llegue a 99 e ir a paso 7, de lo contrario regresar desde el paso 4

7.- Imprimir la suma de los cuadrados de los 25 números impares, ir a paso 8

8.- Fin

# Diagrama de Flujo



4.- Calcula el perímetro, área y volumen si el lado es mayor a cero

Análisis del problema

Datos de entrada: valor de lado, mayor a cero

Restricciones: Menor a cero

Datos de salida: Resultado de perímetro, área y volumen

Algoritmo

1.- Inicio

2.- Leer valor de lado "I", perímetro "p", área "a", volumen "v"

3.- Si "I" es menor a cero; no es válido, de lo contrario ir a paso 4

4.- p= multiplicar 4 por I, ir a paso 7

5.- a = multiplicar I por I, ir a paso 7

6.-  $v = elevar I^3$ , ir a paso 7

7.- Imprimir los resultados de p, a y v; ir a paso 8

8.- Fin



5.- Realiza un menú que le permita al usuario elegir entre los 4 programas anteriores

Análisis del problema

Datos de entrada: Menú de 4 elecciones, 4 programas

Restricciones: No querer ninguna opción

Datos de salida: Elegir algún programa

Algoritmo

1.- Inicio

2.- Leer Seleccionar "a", opciones de programa; Determinar cuántos números pares hay entre 1 y 100 "1", Obtener los valores correspondientes de n "2", Obtener e imprimir la suma de los cuadrados de los primeros 25 números impares "3", Calcula el perímetro, área y volumen si el lado es mayor a cero "4"

3.- Seleccione "a", ir a paso 4

4.- Seleccione un programa; 1, 2, 3, 4, ir a paso 5

5.- Fin

