MAT2006: Elementary Real Analysis Assignment #3

Reference Solution

- 1. Let A be nonempty and bounded above so that $s = \sup A$ exists.
 - (i) Show that $s \in \overline{A}$.
 - (ii) Can an open set contain its supremum?
- *Proof.* (i) Assume $s = \sup A$. Then, for any $\epsilon > 0$, there exists $a \in A$ such that $a > s \epsilon$, thus $V_{\epsilon}(s) \cap A \neq \emptyset$. If $s \in A$, then $s \in \overline{A}$. If $s \notin A$, the above property says that s is a limit point of A, and hence again $s \in \overline{A}$.
- (ii) No. Assume $s = \sup A$ and A is open. Suppose $s \in A$, then there exists a neighbourhood $V_{\epsilon}(s)$ of s contained entirely in A, this means that $s + \epsilon/2 \in A$ which is a contraction with s being an upper bound of A.
- **2.** (i) Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (ii) Does this result about closures extend to infinite unions of sets?

Proof. (i) Let L_A , L_B and $L_{A \cup B}$ denote the sets of limits points of A, B and $A \cup B$ respectively. We claim that $L_A \cup L_B = L_{A \cup B}$.

Firstly, if $x \in L_A \cup L_B$, we may assume $x \in L_A$ and the case $x \in L_B$ is similar. Then, for any $\epsilon > 0$, $V_{\epsilon}^0(x) \cap A \neq \emptyset$, and hence $V_{\epsilon}^0(x) \cap (A \cup B) = (V_{\epsilon}^0(x) \cap A) \cup (V_{\epsilon}^0(x) \cap B) \neq \emptyset$. Thus $x \in L_{A \cup B}$.

Secondly, if $x \in L_{A \cup B}$, we must have $x \in L_A \cup L_B$. Suppose this is not true. There exists $\epsilon_1 > 0$ and $\epsilon_2 > 0$ such that $V^0_{\epsilon_1}(x) \cap A = \emptyset$ and $V^0_{\epsilon_2}(x) \cap B = \emptyset$. Choose $\epsilon = \min\{\epsilon_1, \epsilon_2\} > 0$. Then $V^0_{\epsilon} \cap (A \cup B) = (V_{\epsilon} \cap A) \cup (V_{\epsilon} \cap B) \subset (V_{\epsilon_1} \cap A) \cup (V_{\epsilon_2} \cap B) = \emptyset$, which is a contraception with $x \in L_{A \cup B}$. Thus $x \in L_A \cup L_B$.

Now, we have $L_{A \cup B} = L_A \cup L_B$ and thus

$$\overline{A \cup B} = (A \cup B) \cup L_{A \cup B} = (A \cup B) \cup (L_A \cup L_B) = (A \cup L_A) \cup (B \cup L_B) = \overline{A} \cup \overline{B}.$$

(ii) No. Let $A_n = \left[\frac{1}{n}, 1 - \frac{1}{n}\right]$. Then

$$\overline{\bigcup_{n=1}^{\infty} A_n} = \overline{(0,1)} = [0,1] \quad \text{but} \quad \overline{\bigcup_{n=1}^{\infty} \overline{A_n}} = \overline{\bigcup_{n=1}^{\infty}} \left[\frac{1}{n}, 1 - \frac{1}{n} \right] = (0,1).$$

3. Let A be an uncountable set and let B be the set of real numbers that divides A into two uncountable sets; that is, $s \in B$ if both $\{x \mid x \in A \text{ and } x < s\}$ and $\{x \mid x \in A \text{ and } x > s\}$ are uncountable. Show B is nonempty and open.

Proof. For each $x \in \mathbb{R}$, define two sets

$$C_s = (-\infty, s) \cap A, \quad D_s = (s, \infty) \cap A.$$

Note that

$$C_s \cup D_s = A \setminus \{s\}.$$

For each s, one of C_s and D_s must be uncountable. For otherwise, if both C_s and D_s are at most countable, so is A.

Suppose, for a contradiction, that $B = \emptyset$. Define

$$E = \{ s \in \mathbb{R} \mid C_s \text{ is at most countable} \}.$$

Then E is nonempty. For otherwise, $-n \notin E$ for all $n \in \mathbb{N}$, that is all C_{-n} are uncountable, but noting that $-n \notin B = \emptyset$, D_{-n} must be at most countable. Thus,

$$A = \bigcup_{n=1}^{\infty} D_{-n}$$

is at most countable, which is a contradiction. Thus E is nonempty.

Similarly, E is bounded above. Suppose not, $n \in E$ for all $n \in \mathbb{N}$, which implies that each C_n is at most countable. Then

$$A = \bigcup_{n=1}^{\infty} C_n$$

is at most countable, a contradiction. Therefore, E is a nonempty, bounded above set. By the Least Upper Bound Property, there exists $s \in \mathbb{R}$ such that $x = \sup E$. Note that if $a \in E$ and b < a, then $b \in E$. Thus, for any y > x, it follows that $y \notin E$, that is C_y is uncountable, by noting $y \notin B = \emptyset$ that, D_y must be at most countable. Thus

$$A \setminus \{x\} = C_x \cup D_x = \left(\bigcup_{n=1}^{\infty} C_{x-(1/n)}\right) \bigcup \left(\bigcup_{n=1}^{\infty} D_{x+(1/n)}\right)$$

is at most countable, since each $C_{x-(1/n)}$ and $D_{x+(1/n)}$ is countable. This is a contradiction with that A is uncountable. Therefore, B is nonempty.

Now, we shall show that B is open. For any $s \in B$, then both C_s and D_s are uncountable. Noting that

$$C_s = \bigcup_{n=1}^{\infty} C_{s-(1/n)},$$

there exists $n_1 \in \mathbb{N}$ such that $C_{s-(1/n_1)}$ is uncountable. For otherwise, C_s is at most countable, contradicts with the fact that $s \in B$. Now $t \in B$ for any $t \in [s-1/(n_1), s]$. First C_t is uncountable for such a t, since

$$C_t \supset C_{s-(1/n_1)} \qquad \forall s - \frac{1}{n_1} \le t \le s,$$

and the latter is uncountable. Second, D_t is also uncountable for such a t, since

$$D_t \supset D_s \qquad \forall s - \frac{1}{n_1} \le t \le s$$

and the latter is uncountable. That is $[s - (1/n_1), s] \subset B$.

Similarly, there exists $n_2 \in \mathbb{N}$ such that $[s, s + (1/n_2)] \subset B$. Take

$$\epsilon = \min\{1/n_1, 1/n_2\}.$$

Then $V_{\epsilon}(s) \in B$. Therefore, B is open.

Method II, NIP, sketch. Assume, for contradiction, that $B = \emptyset$. Define $A_n = A \cap [-n, n]$, then

$$A = \bigcup_{n=1}^{\infty} A_n,$$

and use this to show that there exists $M \in \mathbb{N}$ such that A_M is uncountable. (Explain this point.)

Then set $I_1 = [-M, M]$. Bisect this interval. Among of the two halves [-M, 0] and [0, M], one of them intersects A with an uncountable set and the other intersects A with an at-most-countable set. (Explain why.) Let choose the one intersecting A with an uncountable set and denote it as I_2 .

In general, if we have choose $I_n = [a_n, b_n]$, which intersects A with an uncountable set, then we can choose one half of I_n , denoting by $I_{n+1} = [a_{n+1}, b_{n+1}]$, intersects A with an uncountable set while the other half intersects A with an at-most-countable set.

Then there exists $x \in \mathbb{R}$ such that

$$\{x\} = \bigcap_{n=1}^{\infty} I_n$$

(Explain why.) Show that

$$\bigcup_{n=1}^{\infty} (A_M \cap I_n^c) = A_M \cap \left(\bigcup_{n=1}^{\infty} I_n^c\right) = A_M \cap \left(\bigcap_{n=1}^{\infty} I_n\right)^c = A_M \setminus \{x\},$$

and the left-hand side is at most countable, and thus we arrive at a contradiction. (Explain this.) Therefore, $B \neq \emptyset$.

4. Prove that the only sets that are both open and closed are \mathbb{R} and the empty set \emptyset .

Proof. It is known that \mathbb{R} and \emptyset are both open and closed. Suppose A is both open and closed and $A \neq \emptyset$, $A \neq \mathbb{R}$. Then A^c is both open and closed and it is not \emptyset neither \mathbb{R} . Choose $x \in A$ and $y \in A^c$. We may assume x < y and the proof for the case x > y is similar. Let $B := A \cap (-\infty, y)$. Then $x \in B$ thus B is nonempty, and y is an upper bounded of B. Hence, by the Least Upper Bound Property, there exists $s = \sup B$ and it is clear that $s \leq y$. Note that $s \in \overline{A} = A$ according to Problem 1 and the fact A is closed, thus s < y. Now $(s,y] \subset A^c$, and thus $s \in \overline{A^c} = A^c$ since A^c is also closed. But $s \in A$ and $s \in A^c$ is a contradiction, and thus the only sets that are both open and closed are \mathbb{R} and the empty set \emptyset .

5. A dual notion to the closure of a set is the *interior* of a set. The interior of E is denoted E° and is defined as

$$E^{\circ} = \{ x \in E \mid \text{there exists } V_{\epsilon}(x) \subset E \}.$$

Results about closures and interiors possess a useful symmetry.

- (i) Show that E is closed if and only if $\overline{E} = E$. Show that E is open if and only if $E^{\circ} = E$.
 - (ii) Show that $(\overline{E})^c = (E^c)^{\circ}$ and $(E^{\circ})^c = \overline{E^c}$.
- *Proof.* (i) (\Rightarrow) If E is closed, then $L_E \subset E$ and thus $\overline{E} = E \cup L_E \subset E$. Note that $E \subset (E \cup L_E) = \overline{E}$, we must have $\overline{E} = E$.
 - (\Leftarrow) If $\overline{E} = (E \cup L_E) = E$, we have $L_E \subset E$ and thus E is closed.
- (\Rightarrow) If E is open. Then for any $x \in E$, there exists a neighborhood of x contained entirely in E, thus $x \in E^{\circ}$ and hence $E \subset E^{\circ}$. By its definition, we have $E^{\circ} \subset E$. Hence $E^{\circ} = E$.
- (\Leftarrow) If $E^{\circ} = E$. Then any $x \in E = E^{\circ}$, there exists a neighborhood of x contained entirely in E, thus E is open.
- (ii) Let $x \in (\overline{E})^c$. Then $x \notin \overline{E} = E \cup L_E$, which implies that $x \in E^c$ and there exists a neighborhood of x such that $V_{\epsilon}(x) \cap E = \emptyset$. Thus $V_{\epsilon}(x) \subset E^c$, and we have $x \in (E^c)^{\circ}$. We also see that the above argument can be reversed, that is $x \in (E^c)^{\circ}$ also implies $x \in (\overline{E})^c$. Thus $(\overline{E})^c = (E^c)^{\circ}$.

For the second identity, set $A = E^c$ and applying the first identity to A, we have

$$(E^{\circ})^{c} = ((A^{c})^{\circ})^{c} = ((\overline{A})^{c})^{c} = \overline{A} = \overline{E^{c}}.$$

6. Show that if a set $K \subset \mathbb{R}$ is closed and bounded, then it is sequentially compact.

Proof. Assume K is closed and bounded, and let $\{x_n\}$ be a sequence in K and thus a bounded sequence. By the Bolzano-Weierstrass Theorem, there exists a subsequence $\{x_{n_k}\}$ converges to a real number $x \in \mathbb{R}$. Thus x is a limit point of K and then $x \in K$ since K is closed. Therefore, K is sequentially compact.

7. Show that if K is sequentially compact and nonempty, then $\sup K$ and $\inf K$ both exist and are elements of K.

Proof. Since K is sequentially compact, it is closed and bounded. Then the AoC implies $\sup K$ exists since K is not empty and bound above. Let $s = \sup K$. Then $s \in \overline{K} = K$ according to Problem 1 (i). In a similar manner, inf K exists and belongs to K.

8 (NIP+AP implies HB). Provide a proof of a bounded and closed set is compact using the Nested Interval Property.

Suppose $K \subset \mathbb{R}$ is closed and bounded, and let $\{O_{\lambda} \mid \lambda \in \Lambda\}$ be an open cover for K. For contradiction, let's assume that no finite subcover exists. Let I_0 be a closed interval containing K.

- (a) Show that there exists a nested sequence of closed intervals $I_0 \supset I_1 \supset I_2 \supset \cdots$ with the property that, for each n, $I_n \cap K$ cannot be finitely covered and $\lim_{n\to\infty} |I_n| = 0$.
 - (b) Argue that there exists an $x \in K$ such that $x \in I_n$ for all n.
- (c) Because $x \in K$, there must exist an open set O_{λ_0} from the original collection that contains x as an element. Explain how this leads to the desired contradiction.

Proof. (a) Since K is bounded, there exists M>0 such that $|x|\leq M$ for all $x\in K$. Take $I_0=[-M,M]$. Now bisect I_0 into two half closed intervals $H_l=[-M,0]$ and $H_r=[0,M]$. Since we assumed there is no finite subcover of $\{O_\lambda \mid \lambda \in \Lambda\}$ that covers K, then there must be one of the two halves, say H_r , such that $K\cap H_r$ cannot be finitely covered, for otherwise, $K=(K\cap H_l)\cup (K\cap H_r)$ can be finitely covered. Then set $I_1=H_r$. We may define a sequence of nested closed intervals

$$I_0 \supset I_1 \supset I_2 \supset \cdots$$
,

with each of $I_n \cap K$ cannot be finitely covered. It is constructed inductively by the following. Suppose I_n is a closed interval such that $I_n \cap K$ cannot be finitely covered, by splitting it into two halves with each being a closed interval, we can find one half such that its intersection with K cannot be finitely covered, denote that half by I_{n+1} . By the NIP, there exists $x \in \mathbb{R}$ such that

$$x \in \bigcap_{n=0}^{\infty} I_n.$$

Clearly,

$$|I_n| = \frac{2M}{2^n} \to 0$$
 as $n \to \infty$.

(Here we made use of the AP).

- (b) We claim that $x \in K$. Suppose, for a contradiction, $x \notin K$. Since K is closed and thus K^c is open, x is in the open set K^c . There exists $\epsilon_0 > 0$ such that $V_{\epsilon_0}(x) \subset K^c$. A similar manner as in part (i) shows the existence of I_N such that $I_N \subset V_{\epsilon_0}(x)$ and thus $I_N \cap K = \emptyset$, which is a contradiction with $I_N \cap K$ cannot be finitely covered.
- (c) Since $x \in K$ and $\{O_{\lambda} \mid \lambda \in \Lambda\}$ is an open cover of K, there exists λ_0 such that $x \in O_{\lambda_0}$. By the openness, there exists an $\epsilon_0 > 0$ such that $V_{\epsilon_0}(x) \subset O_{\lambda_0}$. Since $|I_n| \to 0$, there exists $N \in \mathbb{N}$ such that $|I_N| < \epsilon_0$. Now, $I_N \cap K$ can be finitely covered, indeed O_{λ_0} , as a single open set covers $I_N \cap K$, we arrive at a contradiction.

Thus, any open cover of K must have a finite subcover, that is K is compact. \square

- **9** (LUBP implies HB). Consider the special case where K is a closed interval. Let $\{O_{\lambda} \mid \lambda \in \Lambda\}$ be an open cover for [a,b] and define S to be the set of all $x \in [a,b]$ such that [a,x] has a finite subcover from $\{O_{\lambda} \mid \lambda \in \Lambda\}$.
 - (a) Argue that S is nonempty and bounded, and thus $s = \sup S$ exists.
 - (b) Now show s = b, which implies [a, b] has a finite subcover.
 - (c) Finally, prove the theorem for an arbitrary closed and bounded set K.
- *Proof.* (a) Note that $a \in [a, b] \subset \bigcup_{\lambda \in \Lambda} O_{\lambda}$. There exists $\lambda_a \in \Lambda$ such that $a \in O_{\lambda_a}$, and thus a single open set O_{λ_a} suffices to cover $[a, a] = \{a\}$, which means $a \in S$, and thus S is not empty. S is bounded above since $x \leq b$ for all $x \in S$. By the LUBP, $s = \sup S$ exists.
- (b) Note that b is an upper bound of S, thus $s \leq b$. Suppose, for a contradiction, $s \neq b$, that is s < b. Since $s \in [a,b]$ which is covered by $\{O_{\lambda} \mid \lambda \in \Lambda\}$, there exists $\lambda_s \in \Lambda$, such that $s \in O_{\lambda_s}$, an open set. Thus, there exists, $\varepsilon > 0$ such that $s \in V_{\varepsilon}(s) \subset O_{\lambda_s}$. Since $s \varepsilon/2 \in S$, thus $[a, s \varepsilon/2]$ can be finitely covered, with one additional open set O_{λ_s} , we see

that $[a, s + \varepsilon/2]$ can also be finitely covered. That is, $s + \varepsilon/2 \in S$, which is a contradiction with s being the least upper bound of S. Therefore, s = b.

With a similar argument as above, there exists a neighborhood $V_{\epsilon}(b) \subset O_{\lambda_b}$ for some $\lambda_b \in \Lambda$. now, since $b - \epsilon/2 \in S$ indicates that $[a, b - \epsilon/2]$ can be finitely covered. With an additional open set O_{λ_b} , we see that [a, b] can be finitely covered. By the definition, [a, b] is compact.

(c) Since K is bounded, there exists M > 0 such that $K \subset [-M, M] := I$. Since K is closed, thus its complement K^c is open. Assume $\{O_{\lambda}\}_{{\lambda}\in\Lambda}$ is an open cover of K, then adding an open set K^c to this collection will yield an open cover for \mathbb{R} , thus an open cover for [-M, M]. By parts (a)-(b), there exists a subcover of [-M, M], and thus a subcover of K. By deleting the possible open set K^c in this subcover, it is readily seen that it is a subcollection of $\{O_{\lambda}\}_{{\lambda}\in\Lambda}$ that covers K, hence K is compact by definition.

10 (HB implies BW). Using the concept of open covers (and explicitly avoiding the Bolzano–Weierstrass Theorem), prove that every bounded infinite set has a limit point. Therefore, every bounded sequence has a convergent subsequence (BW).

Proof. For contradiction, we assume K is a bounded infinite set which has no limit point. Then K is closed. Thus HB implies that K is compact and thus any open cover of K has a finite subcover. For any $x \in K$, since x is not a limit point of K, there exists a neighborhood of x such that $V_{\epsilon_x}(x) \cap K = \{x\}$. Note that $\{V_{\epsilon_x}(x)\}_{x \in K}$ is an open cover of K, thus there is a finite subcover of K, that is there exists $N \in \mathbb{N}$ such that

$$K \subset \bigcup_{n=1}^{N} V_{\epsilon_n}(x_n), \qquad \epsilon_n := \epsilon_{x_n}.$$

But this implies that $K = \{x_1, x_2, \dots, x_N\}$ which is a contradiction with the fact that K is infinite. Thus every bounded infinite set has a limit point.

Let $\{x_n\}$ be a bounded sequence. If as a set, $\{x_n\}$ is finite, then there exist a value x and a subsequence $\{x_{n_k}\}$ such that $x_{n_k} = x$ for all $k \in \mathbb{N}$. If as a set, $\{x_n\}$ is infinite, there is a limit point x of this set. We may choose a subsequence $\{x_{n_k}\}$ by starting with $n_1 = 1$, and in general, after choosing n_k , let

$$n_{k+1} = \min\{n > n_k : |x_n - x| < 1/(k+1)\}.$$

Then $\{x_{n_k}\}$ is a subsequence that converges to x.

11. Show that

- (a) The countable union of F_{σ} sets is an F_{σ} set.
- (b) The finite intersection of F_{σ} sets is an F_{σ} set.
- (c) Give an example of the countable intersection of F_{σ} sets is not F_{σ} .
- (d) The finite union of G_{δ} sets is a G_{δ} set.
- (e) The countable intersection of G_{δ} sets is a G_{δ} set.

Proof. (a) Assume $\{F_n\}_{n=1}^{\infty}$ is a countable collection of F_{σ} sets, thus $F_n = \bigcup_{m=1}^{\infty} F_{nm}$ for each $n \in \mathbb{N}$, where F_{nm} is a closed set for each $n, m \in \mathbb{N}$. Since the set $\mathbb{N} \times \mathbb{N}$ is countable, there is a one-to-one correspondence g from $k \in \mathbb{N}$ to $(n, m) \in \mathbb{N} \times \mathbb{N}$ thus if we denote $E_k = F_{g(k)} := F_{nm}$, we have

$$\bigcup_{n=1}^{\infty} F_n = \bigcup_{n=1}^{\infty} \left(\bigcup_{m=1}^{\infty} F_{nm} \right) = \bigcup_{n,m=1}^{\infty} F_{nm} = \bigcup_{k=1}^{\infty} E_{g(k)}.$$

Thus The countable union of F_{σ} sets is an F_{σ} set.

(b) It suffices to show that the intersection of two F_{σ} sets is still F_{σ} and then apply an induction argument.

Assume F_1 and F_2 are two F_{σ} sets, with

$$F_1 = \bigcup_{n=1}^{\infty} F_{1n}, \qquad F_2 = \bigcup_{n=1}^{\infty} F_{2n},$$

where all F_{in} $(i = 1, 2, n \in \mathbb{N})$ are closed. Now, we claim

$$F_1 \cap F_2 = \left(\bigcup_{n=1}^{\infty} F_{1n}\right) \bigcap \left(\bigcup_{m=1}^{\infty} F_{2m}\right) = \bigcup_{n=1}^{\infty} \left(\bigcup_{m=1}^{\infty} (F_{1n} \cap F_{2m})\right).$$

To see this, we first show that

$$A \cap \left(\bigcup_{n=1}^{\infty} B_n\right) = \bigcup_{n=1}^{\infty} (A \cap B_n).$$

For

$$x \in A \cap \left(\bigcup_{n=1}^{\infty} B_n\right) \iff x \in A \text{ and } x \in \bigcup_{n=1}^{\infty} B_n$$

$$\iff x \in A \text{ and } x \in B_{n_0} \text{ for some } n_0 \in \mathbb{N}$$

$$\iff x \in A \cap B_{n_0} \text{ for some } n_0 \in \mathbb{N}$$

$$\iff x \in \bigcup_{n=1}^{\infty} (A \cap B_n).$$

Therefore, regarding first $(\bigcup_{m=1}^{\infty} F_{2m})$ as A and F_{1n} as B_n in the previous step, we have

$$F_1 \cap F_2 = \left(\bigcup_{n=1}^{\infty} F_{1n}\right) \bigcap \left(\bigcup_{m=1}^{\infty} F_{2m}\right) = \bigcup_{n=1}^{\infty} \left(F_{1n} \bigcap \left(\bigcup_{m=1}^{\infty} F_{2m}\right)\right)$$

which, by applying the previous step again, yields

$$F_1 \cap F_2 = \bigcup_{n=1}^{\infty} \left(\bigcup_{m=1}^{\infty} (F_{1n} \cap F_{2m}) \right).$$

This is a F_{σ} set by part (a), since it is a countable union of F_{σ} sets $-\bigcup_{m=1}^{\infty} (F_{1n} \cap F_{2m})$. An induction argument immediately shows that any finite intersection of F_{σ} sets is still F_{σ} .

(c) Note that the set of irrational numbers \mathbb{I} is not F_{σ} . We may write is as a countable intersection of F_{σ} sets as follows. Write $\mathbb{Q} = \{r_1, r_2, r_3, \dots\}$ and define

$$F_n = \mathbb{R} \setminus \{r_n\} = (-\infty, r_n) \cup (r_n, \infty), \quad \forall n \in \mathbb{N}.$$

Each F_n is F_{σ} since it is a union of two F_{σ} sets – two open intervals. Then, we have

$$\bigcap_{n=1}^{\infty} F_n = \mathbb{I}$$

is not F_{σ} .

(d) Assume $\{G_k\}_{k=1}^n$ is a finite collection of G_δ sets. Recall that a set is F_σ if and only if its complement is G_δ , and vice versa. Then the complement G_k^c is F_σ for each k. By the de Morgan law, we have

$$\left(\bigcup_{k=1}^{n} G_n\right)^c = \bigcup_{k=1}^{n} G_n^c,$$

which is F_{σ} according to part (b). Thus the complement, $\bigcup_{k=1}^{n} G_n$ is G_{δ} .

- (e) A similar manner as what we did in part (d), where we apply part (a) instead of part (b). \Box
- 12. (i) For each of the following sets, determine whether it is an F_{σ} and/or G_{δ} set, explain why.

$$(a) \quad (a,b); \qquad (b) \quad [a,b]; \qquad (c) \quad (a,b]; \qquad (d) \quad \mathbb{Q}; \qquad (e) \quad \mathbb{I};$$

- (ii) [bonus question] We know that any open set is G_{δ} (why?).
- (g) Show that any open set can be written as the union of at most countable intervals.
- (h) Show that any open set is F_{σ} , and any closed set is G_{δ} .

Solution. (i).

(a) The interval (a, b) is both F_{σ} and G_{δ} , since

$$(a,b) = \bigcup_{n=1}^{\infty} \left[a - \frac{1}{n}, b + \frac{1}{n} \right]; \qquad (a,b) = \bigcap_{n=1}^{\infty} I_n, \quad I_n = (a,b).$$

Also note that the empty set is a closed set.

(b) The interval [a, b] is both F_{σ} and G_{δ} , since

$$[a,b] = \bigcup_{n=1}^{\infty} I_n, \quad I_n = [a,b]; \qquad [a,b] = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, b + \frac{1}{n}\right).$$

(c) The interval (a, b] is both F_{σ} and G_{δ} , since

$$(a,b] = \bigcup_{n=1}^{\infty} \left[a - \frac{1}{n}, b \right]; \qquad (a,b] = \bigcap_{n=1}^{\infty} \left(a, b + \frac{1}{n} \right).$$

- (d) \mathbb{Q} is F_{σ} , since $\mathbb{Q} = \{r_1, r_2, r_3, \dots\} = \bigcup_{n=1}^{\infty} \{r_n\}$ and each finite set is closed.
- \mathbb{Q} is not G_{δ} , since \mathbb{I} is not F_{σ} . For otherwise, if \mathbb{I} is F_{σ} , then $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$ could be written as a countable union of closed sets, each of which doesnot contain any open interval, thus each of those closed sets is nowhere dense. This is a contradiction with the Baire category theorem.
 - (e) \mathbb{I} is G_{δ} but not F_{σ} , which follows from $\mathbb{I} = \mathbb{Q}^c$ and part (d).

The set $\bigcup_{n=1}^{\infty} {\mathbb{Q} + \sqrt{n}}$ is not G_{δ} , since its complement is not F_{σ} , which can be shown by a similar argument for \mathbb{I} is not F_{σ} .

- (ii) Let A be an open set, then $A = \bigcap_{n=1}^{\infty} G_n$, with $G_n = A$ for each $n \in \mathbb{N}$. Thus any open set is G_{δ} .
- (g) Let A be a nonempty open set. We may define a binary relation over A by, for any $x, y \in A$

$$x \sim y$$
 if $(x, y) \subset A$.

It is readily seen that, for any $x, y, z \in A$,

(1)
$$x \sim x$$
; (2) if $x \sim y$ then $y \sim x$; (3) if $x \sim y$ and $y \sim z$ then $x \sim z$.

Thus the defined relation is an equivalent relation, and we define the equivalent class of $x \in A$ as

$$[x] = \{ y \in A \mid x \sim y \}.$$

Note that [x] is connected thus it is an interval. Moreover, it is open – for any $y \in [x] \subset A$, there exists $V_{\epsilon}(y) \subset A$, and thus $V_{\epsilon}(y) \subset [x]$. Moreover, since each nonempty open interval must contain a rational number, we may assume x is rational.

Thus the set A can be written as a union of disjoint open intervals of the form [x], and such equivalent classes are at most countable, since \mathbb{Q} is countable.

- (h) Recall that each open interval is F_{σ} , and by (g) and Problem 11(a), any open set is also F_{σ} . Thus any closed set, as the complement of an open set, is G_{δ} .
- 13 (Infinite Limits). Definition: $\lim_{x\to c} f(x) = \infty$ means that for all M > 0 we can find a $\delta > 0$ such that whenever $0 < |x-c| < \delta$, it follows that f(x) > M.
 - (i) Show $\lim_{x\to 0} \frac{1}{x^2} = \infty$ in the sense described in the previous definition.
- (ii) Now, construct a definition for the statement $\lim_{x\to\infty} f(x) = L$. Show $\lim_{x\to\infty} 1/x = 0$.
- (iii) What would a rigorous definition for $\lim_{x\to\infty} f(x) = \infty$ look like? Give an example of such a limit.
- *Proof.* (i) Given any M>0, choose $\delta=\frac{1}{\sqrt{M}}$. Then whenever $|x|<\delta$,

$$f(x) = \frac{1}{x^2} > M,$$

as desired.

(ii) If for any $\epsilon > 0$, there exists an M > 0 such that

$$|f(x) - L| < \epsilon \quad \forall x > M,$$

then we say

$$\lim_{x \to \infty} f(x) = L.$$

Now consider the function f(x) = 1/x. Given any $\epsilon > 0$, choose $M = \frac{1}{\epsilon}$. Then, we have

$$|f(x) - 0| = \left| \frac{1}{x} \right| < \epsilon \qquad \forall x > M.$$

Thus, by definition, $\lim_{x\to\infty} 1/x = 0$.

(iii) If for any M > 0 there exists N > 0 such that

$$f(x) > M \qquad \forall x > N,$$

then we say

$$\lim_{x \to \infty} f(x) = \infty.$$

- 14 (Right and Left Limits). Introductory calculus courses typically refer to the right-hand limit of a function as the limit obtained by "letting x approach c from the right-hand side."
 - (i) Give a proper ϵ - δ definition for the right-hand and left-hand limit statements:

$$\lim_{x \to c^{+}} f(x) = L, \qquad \lim_{x \to c^{-}} f(x) = M.$$

- (ii) Prove that $\lim_{x\to c} f(x) = L$ if and only if both the right and left-hand limits equal L.
- *Proof.* (i) If, given any $\epsilon > 0$, there exists a $\delta_1 > 0$ such that

$$|f(x) - L| < \epsilon$$
 $\forall c < x < c + \delta_1$,

then we say

$$\lim_{x \to c^+} f(x) = L.$$

If, given any $\epsilon > 0$, there exists a $\delta_2 > 0$ such that

$$|f(x) - M| < \epsilon$$
 $\forall c - \delta_2 < x < c$,

then we say

$$\lim_{x \to c^{-}} f(x) = M.$$

(ii) (\Rightarrow) Assume $\lim_{x\to c} f(x) = L$. Then for any $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|f(x) - L| < \epsilon, \quad \forall x \in (c - \delta, c) \cup (c, c + \delta).$$

Thus, by the ϵ - δ definition of the right-hand and left-hand limits, we have

$$\lim_{x \to c^{+}} f(x) = \lim_{x \to c^{-}} f(x) = L.$$

(⇐) Assume

$$\lim_{x \to c^{+}} f(x) = \lim_{x \to c^{-}} f(x) = L.$$

Now, by the definitions, for any given $\epsilon > 0$, there exists a $\delta_1 > 0$ and a $\delta_2 > 0$ such that

$$|f(x) - L| < \epsilon$$
 $\forall c < x < c + \delta_1,$
 $|f(x) - L| < \epsilon$ $\forall c - \delta_2 < x < c.$

Now let $\delta = \min\{\delta_1, \delta_2\}$. We have

$$|f(x) - L| < \epsilon, \quad \forall 0 < |x - c| < \delta,$$

that is

$$\lim_{x \to c} f(x) = L.$$

15 (Upper and Lower Limits). As in the case of sequential limits, we have the upper and lower limits for a function,

$$\limsup_{x \to c} f(x) := \lim_{\delta \to 0^+} \sup_{0 < |x-c| < \delta} f(x),$$

$$\liminf_{x \to c} f(x) := \lim_{\delta \to 0^+} \inf_{0 < |x-c| < \delta} f(x).$$

Show that $\lim_{x\to c} f(x)$ exists if and only if both $\limsup_{x\to c} f(x)$ and $\liminf_{x\to c} f(x)$ exist and they are equal to each other.

Proof. (\Rightarrow) Assume

$$\lim_{x \to c} f(x) = L.$$

By definition, for any $\epsilon > 0$, there exists a $\delta_{\epsilon} := \delta(\epsilon) > 0$ such that

$$L - \epsilon < f(x) < L + \epsilon$$
 $\forall 0 < |x - c| < \delta_{\epsilon}$

Thus,

$$L - \epsilon \le \inf_{0 < |x - c| < \delta_{\epsilon}} f(x) \le \sup_{0 < |x - c| < \delta_{\epsilon}} f(x) \le L + \epsilon$$

If we denote

$$g(\delta) := \inf_{0 < |x-c| < \delta} f(x) \quad \text{and} \quad h(\delta) := \sup_{0 < |x-c| < \delta} f(x), \qquad \text{for } \delta > 0.$$

It is readily seen that $g(\delta)$ is a decreasing function and $h(\delta)$ is an increasing function, and that for any $0 < \delta_1 < \delta_2$

$$g(\delta_2) \le g(\delta_1) \le h(\delta_1) \le h(\delta_2).$$

Therefore, whenever $0 < \delta < \delta_{\epsilon}$

$$L - \epsilon \le g(\delta_{\epsilon}) \le g(\delta) \le h(\delta) \le h(\delta_{\epsilon}) \le L + \epsilon$$

By the definition of upper and lower limits,

$$\liminf_{x \to c} f(x) := \lim_{\delta \to 0^+} g(\delta) = L$$

and

$$\limsup_{x \to c} f(x) := \lim_{\delta \to 0^+} h(\delta) = L.$$

 (\Leftarrow) Now assume

$$\liminf_{x \to c} f(x) := \lim_{\delta \to 0^+} g(\delta) = L$$

and

$$\limsup_{x \to c} f(x) := \lim_{\delta \to 0^+} h(\delta) = L,$$

where $g(\delta)$ and $h(\delta)$ are defined as previously. Now, given any $\epsilon > 0$, there exists a $\delta_1 > 0$ and $\delta_2 > 0$ such that

$$L - \epsilon < g(\delta) < L + \epsilon$$
 $\forall 0 < \delta < \delta_1$

and

$$L - \epsilon < h(\delta) < L + \epsilon$$
 $\forall 0 < \delta < \delta_2$.

Note that,

$$g(\delta) := \inf_{0 < |x-c| < \delta} f(x) \le f(x) \le \sup_{0 < |x-c| < \delta} f(x) := h(\delta) \qquad \forall 0 < |x-c| < \delta.$$

Choose $\delta_0 = \min\{\delta_1, \delta_2\}$. Then, it follows by the monotonicity of g and h that

$$L - \epsilon < g(\delta_0) \le f(x) \le h(\delta_0) < L + \epsilon$$
 $\forall 0 < |x - c| < \delta_0$

that is

$$\lim_{x \to c} f(x) = L.$$

16 (Cauchy Criterion). Let $f: A \to \mathbb{R}$ be a function and c a limit point of A. Show that $\lim_{x\to c} f(x)$ exists if and only if for any $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(y)| < \epsilon$$
 $\forall 0 < |x - c| < \delta$, $\forall 0 < |y - c| < \delta$.

Proof. (\Rightarrow) Assume $\lim_{x\to c} f(x)$ exists and equals to L. For any $\epsilon>0$, there exists $\delta>0$ such that

$$|f(x) - L| < \frac{\epsilon}{2}, \quad \forall 0 < |x - c| < \delta.$$

Thus, whenever $0 < |x - c| < \delta$ and $0 < |y - c| < \delta$. we have

$$|f(x) - f(y)| = |(f(x) - L) - (f(y) - L)| \le |f(x) - L| + |f(y) - L| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

 (\Leftarrow) Assume that, for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - f(y)| < \frac{\epsilon}{2}$$
 $\forall 0 < |x - c| < \delta, \quad \forall 0 < |y - c| < \delta.$

Assume $\{x_n\} \subset A$, $x_n \neq c$ and $\{x_n\} \to c$. Then there exists $N \in \mathbb{N}$ such that

$$|x_n - c| < \delta, \quad \forall n \ge N.$$

Thus

$$|f(x_n) - f(x_m)| < \frac{\epsilon}{2}, \quad \forall n > m \ge N.$$

Thus $\{f(x_n)\}\$ is a Cauchy sequence and hence a convergent sequence, say $\{f(x_n)\}\$ $\to L$.

Assume $\{y_n\} \subset A$, $y_n \neq c$ and $\{y_n\} \to c$. We must also have $f(y_n)$ converges to some value, say $\{f(x_n)\} \to M$. Note that $\{z_n\} = \{x_1, y_1, x_2, y_2, x_3, y_3, \dots\}$ is also a sequence in A, not equal to c and converging to c. Thus $f(z_n)$ converges for the same reason, and as two subsequences $\{f(x_n)\}$ and $\{f(x_n)\}$ must converge to the same value, that is L = M. To summarise, any sequence $\{x_n\}$ in A, not equal to c and converging to c, we have $\{f(x_n)\}$ converges to the same value. According to the sequentially criterion of limit of functions, $\lim_{x\to c} f(x)$ exists.

17. Assume $h: \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and let $K = \{x \mid h(x) = 0\}$. Show that K is a closed set.

Proof. Let x be a limit point of K, that is there exists a sequence $\{x_n\} \subset K$ and $x_n \neq x$ such that $\{x_n\} \to x$. From the definition of K, we have $h(x_n) = 0$. It then follows from the continuity of h that $h(x) = \lim_{n \to \infty} h(x_n) = 0$ and thus $x \in K$. Therefore K is closed. \square

18. Observe that if a and b are real numbers, then

$$\max\{a, b\} = \frac{(a+b) + |a-b|}{2}.$$

(i) Show that if f_1, f_2, \ldots, f_n are continuous functions, then

$$g(x) = \max\{f_1(x), f_2(x), \dots, f_n(x)\}\$$

is a continuous function.

(ii) Let's explore whether the result in (i) extends to the infinite case. For each $n \in \mathbb{N}$, define f_n on \mathbb{R} by

$$f_n(x) = \begin{cases} 1 & \text{if } |x| > 1/n \\ n|x| & \text{if } |x| \le 1/n. \end{cases}$$

Now explicitly compute $h(x) = \sup\{f_1(x), f_2(x), f_3(x), \dots\}$.

Proof. (i) Note that $\max\{f_1(x), f_2(x)\} = \frac{(f_1(x) + f_2(x)) + |f_1(x) - f_2(x)|}{2}$ is a continuous function of x provided that f_1 and f_2 are continuous.

Assume $h(x) = \max\{f_1(x), f_2(x), \dots, f_{n-1}(x)\}$ is continuous. Then

$$g(x) = \max\{f_1(x), f_2(x), \dots, f_n(x)\} = \max\{h(x), f_n(x)\}\$$

is also continuous whenever $f_n(x)$ is also continuous. By induction, g(x) is continuous for any $n \in \mathbb{N}$.

(ii)

$$h(x) = \sup\{f_1(x), f_2(x), f_3(x), \dots\} = \begin{cases} 1 & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Hence, h(x) is not a continuous function.

19. Let $F \subset \mathbb{R}$ be a nonempty closed set and define $g(x) = \inf\{|x-a| : a \in F\}$. Show that g is continuous on all of \mathbb{R} and $g(x) \neq 0$ for all $x \notin F$.

Proof. Let $x \in \mathbb{R}$ be fixed and $\epsilon > 0$ arbitrary. Now let $y \in V_{\epsilon/2}(x)$ also be arbitrary but fixed. By the definition of g(x) as an infimum, there exists $a_1 \in F$ such that

$$|x - a_1| > g(x) + \frac{\epsilon}{2},$$

we also have

$$g(y) \le |y - a|, \quad \forall a \in F.$$

Then, combining the above two inequalities with the triangle inequality, we have

$$|g(y) - g(x)| < |y - a_1| - \left(|x - a_1| - \frac{\epsilon}{2}\right) \le |(y - a_1) - (x - a_1)| + \frac{\epsilon}{2} = |y - x| + \frac{\epsilon}{2} < \epsilon$$

Similarly, there also exists $a_2 \in F$ such that

$$|y - a_2| > g(y) - \frac{\epsilon}{2},$$

$$g(x) \le |x - a| \quad \forall a \in F,$$

and that

$$g(x) - g(y) < |x - a_2| - \left(|y - a_2| - \frac{\epsilon}{2}\right) \le |(x - a_2) - (y - a_2)| + \frac{\epsilon}{2} = |x - y| + \frac{\epsilon}{2} < \epsilon.$$

Therefore, if we choose $\delta = \frac{\epsilon}{2}$, then

$$|g(x) - g(y)| < \epsilon \qquad \forall |x - y| < \delta,$$

which means g(x) is continuous on \mathbb{R} . (Notice that, g is indeed uniformly continuous on \mathbb{R} , since the choice of δ is independent of x)

Suppose g(x) = 0 for some $x \in \mathbb{R}$. Then by the definition of g(x), there exists a sequence $\{a_n\} \subset F$ such that

$$0 \le |x - a_n| < \frac{1}{n},$$

which implies that $\{a_n\}$ converges to x. Then two cases: (i) if $x = a_n$ for some $n \in \mathbb{N}$, $x \in F$; or (ii) if $a_n \neq x$ for each n, it follows that x is a limit point of F and thus in F since F is closed.

20. Recall the theorem "A function that is continuous on a compact set K is uniformly continuous on K." Provide a proof by the definition " $K \subset \mathbb{R}$ is compact if every open cover of K has a finite subcover."

Proof. Given $\epsilon > 0$. For any $x \in K$, f is continuous at x implies that there exists $\delta_x < 0$ such that

$$|f(x) - f(y)| < \frac{\epsilon}{2}, \quad \forall y \in V_{\delta_x}(x) \cap K$$

Notice that $\{V_{\delta_x/2}(x)\}_{x\in K}$ form an open cover of K. Since K is compact, we have a finite subcover $\{V_{\delta_n/2}(x_n)\}_{n=1}^N$ covers K, where we have denoted $\delta_n := \delta_{x_n}$.

Now set

$$\delta = \min_{1 \le n \le N} \left\{ \frac{\delta_n}{2} \right\}.$$

Note that $V_{\delta_n}(x_n) \supset V_{\delta_n/2}(x_n)$, thus $\{V_{\delta_n}(x_n)\}_{n=1}^N$ also covers K. For each $x \in K$, there exists $1 \leq m \leq N$ such that $x \in V_{\delta_m/2}(x_m)$. If $|x - y| < \delta$, then

$$|y - x_m| = |(y - x) + (x - x_m)| \le |y - x| + |x - x_m| < \delta + \frac{\delta_m}{2} \le \frac{\delta_m}{2} + \frac{\delta_m}{2} = \delta_m,$$

hence, $y \in V_{\delta_m}(x_m)$. Therefore, whenever $|x-y| < \delta$, we have

$$|f(x)-f(y)| = |(f(x)-f(x_m))-(f(y)-f(x_m))| \le |f(x)-f(x_m)|+|f(y)-f(x_m)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$
 as desired.

- **21.** (i) Assume that g is defined on an open interval (a, c) and it is known to be uniformly continuous on (a, b] and [b, c), where a < b < c. Prove that g is uniformly continuous on (a, c).
 - (ii) Prove that $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$.
- (iii) Show that $f(x) = x^p$ with $p \in \mathbb{R}$ is uniformly continuous on $(0, \infty)$ if and only if $0 \le p \le 1$.
- (iv) Assume f(x) is a continuous function defined on $[0, \infty)$, and assume that $\lim_{x\to\infty} f(x) = L \in \mathbb{R}$. Show that f(x) is uniformly continuous on $[0, \infty)$.

Proof. (i) Given $\epsilon > 0$. By f(x) is uniformly continuous on (a, b] and [b, c), there exists $\delta_1, \delta_2 > 0$ such that

$$|f(x) - f(y)| < \frac{\epsilon}{2}, \quad \forall |x - y| < \delta_1 \text{ and } x, y \in (a, b],$$

$$|f(x) - f(y)| < \frac{\epsilon}{2}, \quad \forall |x - y| < \delta_2 \text{ and } x, y \in [b, c),$$

Now, take $\delta = \min\{\delta_1, \delta_2\}$. For $x, y \in (a, c)$, there are three cases, (i) both in (a, b]; (ii) both in [b, c); or (iii) each interval contains one of x, y. For cases (i) and (ii), we have

$$|f(x) - f(y)| < \frac{\epsilon}{2} < \epsilon$$
 $\forall |x - y| < \delta.$

For case (iii), when $|x-y| < \delta$, we also have $|x-b| < \delta$ and $|y-b| < \delta$, thus

$$|f(x) - f(y)| = |f(x) - f(b)| + |f(b) - f(b)| \le |f(x) - f(b)| + |f(y) - f(b)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Summarizing all three cases yields that f(x) is uniformly continuous on (a, b).

(ii) Let $f(x) = \sqrt{x}$. When $x, y \ge 1$, we have

$$|f(x) - f(y)| = |\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} \le \frac{|x - y|}{2}.$$

For any $\epsilon > 0$, choose $\delta = 2\epsilon$ yields that

$$|f(x) - f(y)| < \epsilon \qquad \forall |x - y| < \delta,$$

which means f(x) is uniformly continuous on $[1, \infty)$.

Since [0,1] is bounded and closed, thus compact. And f(x) is continuous on the compact set [0,1] implies that it is uniformly continuous there.

By part (i), $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$.

(iii) When $0 \le p \le 1$, the proof of x^p is uniformly continuous on $[0, \infty)$ is similar to part (ii), with an application of the Mean Value Theorem

$$|f(x) - f(y)| = |x^p - y^p| = p\xi^{p-1}|x - y|,$$

where $\xi \in (x,y)$ for x < y. Note that $\xi^{p-1} \le 1$ when $1 \le x < y$. Thus

$$|f(x) - f(y)| = |x^p - y^p| = p\xi^{p-1}|x - y| \le p|x - y|$$

The uniform continuity of $f(x) = x^p$ with $0 \le p \le 1$ now follows by the ϵ - δ definition with choosing $\delta = \epsilon/p$ for $0 and <math>\delta = 1$ for p = 0. Now $f(x) = x^p$ is continuous on [0, 1] and hence uniformly continuous there. Thus, by part (i), $f(x) = x^p$ is uniformly continuous on $[0, \infty)$.

When p > 1, choose two sequences $x_n = n$ and $y_n = n + \frac{1}{n^{p-1}}$ for all $n \ge 1$. Now,

$$|x_n - y_n| = \frac{1}{n^{p-1}} \to 0$$
 as $n \to \infty$,

but, by the Mean Value Theorem,

$$|f(x_n) - f(y_n)| = |x_n^p - y_n^p| = p\xi_n^{p-1}|x_n - y_n| \ge pn^{p-1}\frac{1}{n^{p-1}} = p$$

Thus $f(x) = x^p$ is not uniformly continuous on $(0, \infty)$ when p > 1.

When p < 0, choose two sequences $x_n = \frac{1}{n}$ and $y_n = \frac{1}{2n}$. Now,

$$|x_n - y_n| = \frac{1}{2n} \to 0$$
 as $n \to \infty$.

But, by the Mean Value Theorem,

$$|f(x_n) - f(y_n)| = |x_n^p - y_n^p| = |p|\xi_n^{p-1}|x_n - y_n| \ge |p|\frac{1}{n^{p-1}}\frac{1}{2n} = \frac{|p|}{2n^p} \ge \frac{|p|}{2}.$$

Thus $f(x) = x^p$ is not uniformly continuous on $(0, \infty)$ when p < 0.

- **22.** Give an example of each of the following, or provide a short argument for why the request is impossible.
 - (a) A continuous function defined on [0, 1] with range (0, 1).
 - (b) A continuous function defined on (0,1) with range [0,1].
 - (c) A continuous function defined on (0,1] with range (0,1).

Solution. (a) Not possible, since a continuous function preserves compactness.

(b)
$$f(x) = \frac{1 + \sin(4\pi x)}{2}$$
.
(c) $f(x) = \frac{1}{2} \left(1 + (1 - x) \sin \frac{1}{x} \right)$.

- **23** (Continuous Extension Theorem). (i) Show that a uniformly continuous function preserves Cauchy sequences; that is, if $f: A \to \mathbb{R}$ is uniformly continuous and $\{x_n\} \subset A$ is a Cauchy sequence, then show $f(x_n)$ is a Cauchy sequence.
- (ii) Let g be a continuous function on the open interval (a, b). Prove that g is uniformly continuous on (a, b) if and only if it is possible to define values g(a) and g(b) at the endpoints so that the extended function g is continuous on [a, b]. (In the forward direction, first produce candidates for g(a) and g(b), and then show the extended g is continuous.)
- *Proof.* (i) Given any $\epsilon > 0$, by the uniform continuity of f ion A there exists a $\delta > 0$ such that

$$|f(x) - f(y)| < \epsilon$$
 $\forall |x - y| < \delta$ and $x, y \in A$.

Since $\{x_n\}$ is a Cauchy sequence, there exists $N \in \mathbb{N}$ such that

$$|x_n - x_m| < \delta \qquad \forall n > m \ge N.$$

Therefore,

$$|f(x_n) - f(x_m)| < \epsilon \quad \forall n > m \ge N,$$

which says that $\{f(x_n)\}\$ is also a Cauchy sequence.

(ii) (\Rightarrow) Assume g is uniformly continuous on (a, b). We shall show that $\lim_{x\to a} g(x)$ exists and we shall define g(a) to be this limit value. For any sequence $\{x_n\}$ converges to a, by the Cauchy Criterion, it is a Cauchy sequence. By part (i), $\{g(x_n)\}$ is also a Cauchy sequence, thus converges, say

$$\lim_{n \to \infty} g(x_n) = L.$$

If $\{y_n\}$ is also a sequence that converges to a. Then the sequence $\{z_n\}$ defined by

$$z_{2n-1} = x_n$$
 $z_{2n} = y_n$

also converges to a and thus the previous argument shows that $\{g(z_n)\}$ converges. Since the subsequence $\{g(z_{2n-1})\}$ converges to L, any subsequence will converge to the same value L, that is to say $g(y_n) = g(z_{2n})$ also converges to L. Therefore, for any sequence $\{y_n\}$ converges to a, we have $g(x_n) \to L$. By the sequential criterion of functional limit, we have

$$\lim_{x \to a} g(x) = L.$$

Similarly, the limit of g as $x \to b$ also exists,

$$\lim_{x \to b} g(x) := R.$$

Now define

$$g(a) = L$$
 $g(b) = R$.

We then have a continuous function g on [a, b].

- (\Leftarrow) Assume g(x) can be extended as a continuous function on [a,b]. Since [a,b] is closed and bounded, thus compact, and therefore g is uniformly continuous on [a,b], which implies that g is uniformly continuous on the subset (a,b).
- **24.** Show that the following functions is not uniform continuous on (0,1).

(a)
$$f(x) = \sin \frac{1}{x}$$
; (b) $g(x) = \ln x$; (c) $h(x) = \frac{1}{1-x}$.

Proof. (a) Let $x_n = \frac{1}{2n\pi}$ and $y_n = \frac{1}{2n\pi + \frac{\pi}{2}}$. We then have

$$|x_n - y_n| \to 0$$
 but $|f(x_n) - f(y_n)| = 1$.

(b) Let $x_n = \frac{1}{n}$ and $y_n = \frac{1}{2n}$. We then have

$$|x_n - y_n| \to 0$$
 but $|g(x_n) - g(y_n)| = \ln 2$.

(c) $x_n = 1 - \frac{1}{n}$ and $y_n = 1 - \frac{1}{n+1}$. We then have

$$|x_n - y_n| \to 0$$
 but $|h(x_n) - h(y_n)| = 1$.

- **25.** Let $f:[0,1] \to \mathbb{R}$ be continuous with f(0) = f(1).
 - (i) Show that there must exist $x, y \in [0, 1]$ satisfying |x y| = 1/2 and f(x) = f(y).
- (ii) Show that for each $n \in \mathbb{N}$ there exist $x_n, y_n \in [0, 1]$ with $|x_n y_n| = 1/n$ and $f(x_n) = f(y_n)$.
- (iii) If $h \in (0, 1/2)$ is not of the form 1/n, there does not necessarily exist |x y| = h satisfying f(x) = f(y). Provide an example that illustrates this using h = 2/5.
- **26.** Let f be a continuous function on the closed interval [0,1] with range also contained in [0,1]. Prove that f must have a fixed point; that is, show f(x) = x for at least one value of $x \in [0,1]$.

Proof. Let g(x) = f(x) - x, then g is continuous on [0, 1]. Now,

$$g(0) = f(0) - 0 \ge 0,$$
 $g(1) = f(1) - 1 \le 0.$

If one of g(0) and g(1) is equal to 0 we are done. If not, we have g(0) > 0 and g(1) < 0, by the intermediate value theorem, there exists $c \in (0,1)$ such that g(c) = 0, that is f(c) = c.

27 (Inverse functions). If a function $f: A \to \mathbb{R}$ is one-to-one, then we can define the inverse function f^{-1} on the range of f in the natural way: $f^{-1}(y) = x$ where y = f(x). Show that if f is continuous on an bounded interval [a, b] and one-to-one, then f^{-1} is also continuous.

Proof. Suppose, for a contradiction, that f^{-1} is not continuous on B := f(A) = f([0,1]). There exists a sequence $\{y_n\} \subset B$ such that

$$\lim_{n \to \infty} y_n = y \in B \quad \text{but} \quad \lim_{n \to \infty} f^{-1}(y_n) \neq f^{-1}(y).$$

Now, let

$$x = f^{-1}(y)$$
 and $x_n = f^{-1}(y_n)$.

Now, we have

$$\lim_{n\to\infty} x_n \neq x,$$

thus there exists an $\epsilon_0 > 0$ and a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}$ such that

$$|x_{n_k} - x| \ge \epsilon_0 \qquad \forall k \in \mathbb{N}.$$

Since $\{x_{n_k}\}$ is a bounded sequence, by the Bolzano-Weierstrass theorem, it contains a convergent subsequence, $\{x_{n_{k_j}}\}$ that converges to some $x' \in A$. By the above inequality, we must have $x \neq x'$. The continuity of f implies that

$$\lim_{j \to \infty} y_{n_{k_j}} = \lim_{j \to \infty} f(x_{n_{k_j}}) = f(x'),$$

On the other hand, as a subsequence of $\{y_n\} \to y$, we must also have

$$\lim_{j \to \infty} y_{n_{k_j}} = \lim_{n \to \infty} y_n = y = f(x).$$

The uniqueness of limits now implies that

$$f(x) = f(x'),$$

which is a contradiction with that $x \neq x'$ and f is one-to-one. Therefore, f^{-1} is a continuous function.

Method II. Recall that a function is continuous on A if and only if the preimage of any open set under f is still open. To show f^{-1} is a continuous function now reduces to

$$(f^{-1})^{-1}(O) = f(O)$$

is open for any given open set $O \subset A := [a, b]$.

Let $y_0 \in f(O)$ be fixed. For any $y \in f(A \setminus O) = f(A) \setminus f(O)$, there exists a neighbourhood V_y of y and neighbourhood U_y of y_0 such that $V_y \cap U_y = \emptyset$. Since f is continuous, $O_y = f^{-1}(V_y)$ is an open set in [a, b]. Now, it is readily seen that $\{O, O_y \mid y \in f(A \setminus O)\}$ is an open cover of [a, b]. Since [a, b] is bounded and closed, by the Heine–Borel theorem, [a, b] is compact, and thus there exists a finite subcover $\{O, O_{y_n} \mid n = 1, \dots, N\}$ for [a, b]. Now, $U := \bigcap_{n=1}^N U_{y_n}$ is a open subset of O and O0 and O0 and O1. [Why?] Thus for any point O2 and O3, we find a open subset of O4 that contains O3, which means O4 is open and thus completes the proof.

Remark. A general result in topology says that any bijective continuous function from a compact space to a Hausdorff space has a continuous inverse on its image, thus is a homeomorphism. A Hausdorff space is a topological space with the property: for any two distinct points x_1 and x_2 , there exist two disjoint open sets U_1 and U_2 such that $x_1 \in U_1$ and $x_2 \in U_2$. In particular, \mathbb{R} is Hausdorff.

- **28.** (i) Given a countable set $A = \{a_1, a_2, a_3, \dots\}$, define $f(a_n) = 1/n$ and f(x) = 0 for all $x \notin A$. Find D_f .
 - (ii) Is it possible for a function f such that $D_f = \mathbb{I}$?

Solution. (i) $D_f = A$.

If $x \in A$, then $f(x) = \frac{1}{k}$ for some $k \in \mathbb{N}$. Given any $n \in \mathbb{N}$, $(x - \frac{1}{n}, x + \frac{1}{n})$ is uncountable and thus contains at least one point x_n in A^c . We have $\{x_n\} \to x$, but $\{f(x_n)\} \to 0 \neq 1/k$. Hence f is not continuous at x.

If $x \notin A$ we shall show that f is continuous at x. There are two cases, (a) $x \notin \overline{A}$; or (b) x is a limit point of A. In case (a), $x \in (\overline{A})^c$, thus there exists a neighbourhood of x, $V_{\epsilon}(x) \subset (\overline{A})^c$, and where f(x) = 0, thus f(x) is continuous at x.

In case (b), for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $1/N < \epsilon$. Take $\delta = \min\{|x_n - x|\}_{n=1}^N$. Then, whenever $|y - x| < \delta$ we have either f(y) = 0 or f(y) = 1/n for some n > N. Hence we have

$$|f(y) - f(x)| < \epsilon, \quad \forall |y - x| < \delta.$$

That is f is continuous at x.

(ii) No, since \mathbb{I} is not F_{σ} but D_f must be an F_{σ} set.

- End -