S chool of A dvanced P rofessional S tudies

AICOSS - AI Special Program

Text Mining Theory

Content

Introduction to Text Mining

- Terms
- Applications
- Challenges
- Performance Aims
- Gathering Text Data
- Preprocessing Text
 - Tokenization
 - Normalization
 - Stop Word Removal

Vectorizing Text (Feature Generation)

- Frequency-based Approaches
- Prediction-based Approaches

Content

Introduction to Text Mining

- Terms
- Applications
- Challenges
- Performance Aims
- Gathering Text Data
- Preprocessing Text
 - Tokenization
 - Normalization
 - Stop Word Removal
- Vectorizing Text (Feature Generation)
 - Frequency-based Approaches
 - Prediction-based Approaches

Terms

Text Mining

Umbrella term enclosing activities that aim to discover previously unknown information in (mostly) unstructured natural text.

Unstructured Data

 Text data is the primary example of unstructured data which adds new challenges to the ML pipeline and the data you have seen so far (e.g., tabular data) \rightarrow heavy focus on preprocessing.

Text Mining Activities

- Information Retrieval (IR): Search for relevant information in documents (does not only include) text). Search for relevant documents itself.
- Natural Language Processing (NLP): Aims to "understand" text to identify and structure relevant information. Includes the generation of text (e.g., chat bots).
- Data Mining (DM): Classic approach to discover unknown patterns in structured information.

Applications

- Web-search Engines: Retrieving relevant information from web-pages in response to text-based user queries.
- Intelligent Personal Assistants: Reacting and analyzing natural language requests in order to provide relevant information/answers.
- Machine Translations: Translating texts from one language to another. Aims to maintain the natural flow of the target language instead of purely relying on literal word-by-word translations.
- Spelling Correction
- Topic Detection
- Sentiment Analysis
- Spam Detection

Challenges

Language Dependency

- One of the major issues in regards to text mining → methods/techniques/algorithms almost always have to be altered to accommodate the target language.
- Different meaning of words in different languages: "Brief" \rightarrow German? English?

Domain Dependency

- Texts can have different style, meaning, and purpose in different settings (e.g., legal texts vs. classic literature vs. holiday post cards)
- Often domain knowledge and context is needed to properly understand texts.

Ambiguity

- Quantifiers: "I didn't buy a house."
- Word Sense: "I went to the bank."
- Idioms: "To get cold feet."

Performance Aims

Effectiveness

- Due to mentioned challenges, Text Mining is rarely free of errors.
- Circumventing those challenges in order to maximize effectiveness is a primary goal of any text mining related approach.

Efficiency

- Text mining often has to deal with huge amounts of data.
- However, especially in practical applications, it is vital to manage available resources carefully and to optimize run-time and storage needs (e.g., response times for intelligent assistants).

Robustness

- Text mining often needs to handle texts with unknown properties.
- Techniques and methods related to text mining should be effective across different domains, genres, and topics.

Classic Text Mining Pipeline

usually language dependent

Pipeline Approach

- Classic and standard approach to tackle text mining problems.
- Sequentially apply a set of text analysis algorithms to the input texts.

Alternative Approaches

- Joint Models: Realize multiple analysis steps at the same time.
- Neural Networks: Often work best with plain input texts.

Content

Introduction to Text Mining

- Terms
- Applications
- Challenges
- Performance Aims

Gathering Text Data

- Preprocessing Text
 - Tokenization
 - Normalization
 - Stop Word Removal
- Vectorizing Text (Feature Generation)
 - Frequency-based Approaches
 - Prediction-based Approaches

Text Mining Terminology

 First step of the text mining pipeline is to gather and parse text from a document.

- Where to get those documents?
 - Freely available resources (e.g., Kaggle)
 - Scraping textual information (e.g., from the web)
- In terms of text mining, what exactly is a document?

AICOSS - AI Special Program

Example: Tweets by Donald Trump

- Imagine you have a collection of tweets by Donald Trump for which you want to perform a sentiment analysis.
- In this scenario each tweet would be a single document.
- The entirety of all those documents (tweets) is called corpus.
- Documents are usually comprised of multiple terms/tokens.
- The smallest unit of a token is a character.
- Tokens can include alpha-numeric characters as well as special characters (e.g., punctuation, @, #)
- Tokens are usually separated by white spaces (language dependent)

Documents

Can come in various types:

- HTML, LaTeX, PowerPoint, ...
- Tweets, E-Mails, Protocols, ...

Need to have a defined unit:

- A file?
- A tweet?
- An e-mail with 5 attachments?
- A group of files?

Can impose complications in regard to different languages:

- A single document containing terms of several languages
- Multiple languages for different documents (e.g., German e-mail with English attachment)

Web Documents

Web-Crawling / Scraping:

- Process of systematically indexing web documents
 - Fetching the web page, parsing it, extracting data from it
- Can be used to retrieve textual information from a web-page and linked sub-pages (e.g., a corpus of tweets by Donald Trump)
- Might violate the terms of use of some web pages → could constitute copyright infringement

The web and its challenges:

- Unstructured
- Unusual and diverse documents
- Unusual and diverse users, queries, information needs
- Vast and non-static (repeatability)
- Diverse quality of information (correctness, age)

Established Python libraries:

- Beautiful Soup
- Scrapy

Content

- Introduction to Text Mining
 - Terms
 - **Applications**
 - Challenges
 - Performance Aims
- Gathering Text Data
- Preprocessing Text
 - Tokenization
 - Normalization
 - Stop Word Removal
- Vectorizing Text (Feature Generation)
 - Frequency-based Approaches
 - Prediction-based Approaches

Tokenization

- **Input: Document**
 - "I would like to study computer science."
- **Output: Tokens**

 - would
 - like
 - to
 - study
 - computer
 - science
- A token is a sequence of characters in a document.
- Each such taken is a candidate for an index entry after further processing.
- Usually tokens are complete words. However, it is also possible to tokenize sentences, characters or *n*-grams (more on that later).

Tokenization Issues — General

What are valid tokens?

- "Finland's capital" → Finland? Finlands? Finland's?
- "Hewlett-Packard"

 Hewlett and Packard as two tokens?
 - General hyphen issue: split, merge, drop, keep?
 - state-of-the-art
 - co-education
 - *lower-case*, lower case, lowercase
 - Neu-Ulm
- "San Francisco" → one or two tokens?
 - Morpheme analysis might help to make decision

Tokenization Issues – Numbers

- Should numbers be tokenized?
- · 10/12/20
- Dec. 10, 2020
- 55 B.C.
- · (+49) 123 456 7890
- Your PGP key is 123a3df125cb33e
 - Often have embedded whitespace
 - Can be useful depending on the problem (e.g., error codes, logs)

Tokenization Issues – Language

- French
 - *L'ensemble* → one or two tokens?
 - L, L', Le?
- German
 - **Lebensversicherungsgesellschaft** \rightarrow usually **compound splitting** helps a lot
 - Leben, Versicherung, Gesellschaft
- Chinese & Japanese
 - No spaces between words → unique tokenization not always guaranteed
- Japanese
 - Multiple intermingled alphabets → Katakana, Hiragana, Kanji, Romaji
- Arabic & Hebrew
 - Words written from right to left, numbers written from left to right

Lexicon Normalization

- Normalization is the process of transforming tokens into a standard format
- This approach can help to reduce the complexity of the vocabulary and positively affect later modelling phases
- However, too much normalization can lead to loss of information (and, therefore, reduce the performance of some analysis tasks) \rightarrow amount/type of normalization is dependent on the use-case
- Tokenization and Normalization often done concurrently

Special Character Normalization

- Removing punctuation
 - U.S.A. → USA
- Deleting hyphens
 - anti-discriminatory → antidiscriminatory
- Deleting accents
 - résumé → resume
- Changing umlauts
 - Tübingen → Tuebingen
- Alternative approach to umlauts and accents:
 - normalize de-accented tokens
 - Tuebingen, Tübingen → Tubingen

Normalization cont.

- Case folding
 - Reducing all letters to lower case
 - Always a good idea?
 - Fed (US central bank) vs. fed
 - *CAT* (Caterpillar Inc.) vs. *cat*
 - Despite possible ambiguity, almost always best to lower case everything
- Date formats
 - 1.3.20, 01/03/20 → 01.03.20
- Synonyms (advanced)
 - *car* → *automobile* (synonym)
- Correcting spelling mistakes, alternative spellings, and homophones (advanced)
 - donut, dougnut → doughnut
 - $color \rightarrow colour$
 - I would like to eat a carat \rightarrow I would like to eat a carrot

Stemming

- Reducing terms to their word stem (also called base or root form)
- Stemming suggests crude affix chopping
- Language dependent
- automate, automatic, automation \rightarrow automat

for exampl<mark>e</mark> compress<mark>ed</mark> and compression are both reduced to their stem compress

for exampl compress and compress ar both reduc to their stem compress

- Word meaning/spelling can become incorrect
 - example \rightarrow exampl

Porter Stemmer

- Also called Porter's algorithm
- Most common stemmer for English language
- Uses conventions (rules) & 5 phases of reduction
- Typical rules
 - $sses \rightarrow ss$
 - ies \rightarrow i
 - $ational \rightarrow ate$
 - tional \rightarrow tion
- Rules are sensitive to word length
 - replacement → replacement
 - cement \rightarrow cement

Stemming cont.

- Other stemmers
 - Lovins stemmer
 - Single-pass, longest suffix removal, about 250 rules
 - Full morphological analysis → very high effort, modest benefits
- Is stemming worth the effort?
 - (again) very language dependent
 - English: rather mixed results
 - operative (dentristy) → oper
 - operational (research) → oper
 - *operating* (systems) → *oper*
 - Often better suited for other languages (e.g., Spanish, German, Finish)

Lemmatization

- Finding the non-inflected form (i.e., **lemma**) of a term
- Lemmatization suggests proper reduction to the dictionary form of a token instead of simply chopping affixes
 - am, are, $is \rightarrow be$
 - car, cars, car's \rightarrow car

 Lemmatization retains correct spelling and can mostly convey the original meaning of a text

Lemmatization cont.

- To perform proper lemmatization each token must be labeled as a corresponding part of speech (e.g., noun, verb, adjective, etc.)
 - "He rose to the occasion"
 - rose (verb) $\rightarrow rise$
 - *rose* (noun) → *rose*
- Additionally, it is possible to indicate various grammatical categories
 - Tense (e.g., past, present, future)
 - was, were, am, is \rightarrow be
 - Number (singular, plural)
 - window, windows → window
 - Case (e.g., nominative, genitive)
 - Andy's, Andy \rightarrow Andy
- Process is called POS-Tagging which in itself is a text analysis process
- If POS-Tagging is not possible, lemmatization applies the rules of a default tag
 - English: reasonable results when tagging all tokens as verb by default

Stop Words

- A stop word is a token that is very frequent in texts, but does not contribute much value (in terms of understanding the meaning of the text)
- Usually stop words are very common terms
 - the, a, and, be
- Stop words can be excluded to reduce vocabulary and problem size
 - Little semantic impact
 - There can be quite a few of them in a single document

Stop Words cont.

- Apart from shown common terms, stop words are application specific
 - There is no universal list of stop words
- However, in some applications, stop word removal can be disadvantageous
 - Stop words might be needed for:
 - Phrases: "King of Denmark"
 - Relational queries: "flights to London"
 - Song titles, citations, etc.: "Let it be", "To be or not to be"

Content

- Introduction to Text Mining
 - Terms
 - Applications
 - Challenges
 - Performance Aims
- Gathering Text Data
- Preprocessing Text
 - Tokenization
 - Normalization
 - Stop Word Removal
- Vectorizing Text (Feature Generation)
 - Frequency-based Approaches
 - Prediction-based Approaches

Feature Generation

- Result of preprocessing phase: list of cleaned tokens for each document
 - Input: "European Countries are sadly getting clobbered by the China Virus. The Fake News does not like reporting this!"
 - Output: ['europe', 'country', 'sad', 'get', 'clobber', 'china', 'virus', 'fake', 'news', 'like', 'report']
- Issue: categorical (textual) values are not suited for machine learning and analysis tasks
- Categorical values need to be transformed into numerical values
 - Depending on the context, different terms for this **vectorization** process
 - Query search: indexing
 - Machine learning: feature generation
 - Neural Networks: embedding

Vectorization: One Hot Encoding (OHE)

- Basic and intuitive approach
- Boolean vector representation
 - 1 → term is present in a document
 - 0 → term is not present in a document
- Example:

Doc1: "Mike likes cats."

Doc2: "Sandy likes dogs. Sandy and Mike like each other."

	mike	like	cat	sandy	dog	each	other
Doc1	1	1	1	0	0	0	0
Doc2	1	1	0	1	1	1	1

- Issues:
 - Vectors can become very sparse (many **0** entries)
 - Curse of dimensionality
 - Increased memory demands
 - Does not consider semantic relation between terms
 - Does not consider frequency of terms in documents

Vectorization: Frequency Vectors

- OHE only provides binary information (term present, not present)
- Extension to this approach: taking **frequency** of terms into account
- Bag-of-Words (BOW)
 - Still no semantic relation between words (word order does not matter) → words are thrown into a fictional bag
 - However, frequency gives possible insight into more important terms (the higher the frequency, the more important)

Doc1: "Mike likes cats."

Doc2: "Sandy likes dogs. Sandy and Mike like each other."

	mike	like	cat	sandy	dog	each	other
Doc1	1	1	1	0	0	0	0
Doc2	1	2	0	2	1	1	1

Bag-of-Words cont.

- BOW represents a feature vector without order
- Possible extension to this approach: indexing n-grams instead of single terms
 - multiple variations: bi-grams, tri-grams, etc.
 - allows to keep spatial information between terms

Doc1: "Mike likes cats."

Doc2: "Sandy likes dogs. Sandy and Mike like each other."

bi-grams	mike like	like cat		like dog	dog sandy	_	like each	each other
Doc1	1	1	0	0	0	0	0	0
Doc2	1	0	1	1	1	1	1	1

- retains spatial relationship between terms (e.g., like always follows a name)
- Does not counteract sparseness

TF-IDF

- Yet another issue: Frequency-based approaches do not take into account the importance of a word
 - Rare terms are more informative than frequent terms (recall frequent stop words (e.g., a, the, this) without adding to the meaning of a document)
 - To measure importance of a term it is necessary to normalize term frequencies (of a single document) with respect to the entire corpus of documents
 - Terms that are rare across all documents are more important
- Term Frequency Inverse Document Frequency (tf-idf) is a measure to identify the importance/relevance of a single term across a collection of documents
 - Especially important for information retrieval tasks and query searches

Part I: Term Frequency (TF)

- Term frequency tf(t, d) is the number of times a term t occurs in a document d
 - Also called raw term frequency (similar to bag-of-words)
- Other definitions possible: Boolean term frequency (similar to one-hotencoding)
 - $tf(t,d) = \begin{cases} 1 & \text{if } t \in d, \\ 0 & \text{otherwise} \end{cases}$
- Issue: relevance/importance of term is not linear to raw term frequency
 - a document containing the term *dog* 20 times is not 20 times more relevant than a document containing the term *dog* just once
- Solution: log-frequency weighting

•
$$weight(t,d) = \begin{cases} 1 + \log(tf(t,d)), & \text{if } tf(t,d) > 0 \\ 0, & \text{otherwise} \end{cases}$$

Part II: Inverse Document Frequency (IDF)

- Let N be the total number of documents
- Document frequency df(t) is the number of documents that contain a certain term t
- The multiplicative inverse of df(t) is called **inverse document** frequency *idf(t)*:
 - $idf(t) = log \frac{N}{df(t)}$
- idf(t) is a measurement that weighs the rareness of a term within a collection of documents

IDF Example

Doc1: "Mike likes cats."

Doc2: "Sandy likes dogs. Sandy and Mike like each other."

Doc3: "Mike and Sandy like each others dog."

• N = 3

	mike	like	cat	sandy	dog	each	other
df(t)	3	3	1	2	2	2	2
idf(t)	0	0	0.48	0.18	0.18	0.18	0.18

- The term cat is very rare across all documents and receives the highest weight *idf(t)*
- The terms mike and like contribute no informative value (all 3 documents make a statement about something Mike likes)

Part III: TF-IDF

• The product of tf(t, d) and idf(t) is called Term Frequency – Inverse Document Frequency *tf-idf(t, d)*:

•
$$tf.idf(t,d) = tf(t,d) \cdot log \frac{N}{df(t)} = tf(t,d) \cdot idf(t)$$

- One of the most popular weighting schemes for information retrieval
- Value increases with number of term occurrences within a single document
- Value increases with the rarity of the term in the entire corpus

TF-IDF Example

Doc1: "Mike likes cats."

Doc2: "Sandy likes dogs. Sandy and Mike like each other."

Doc3: "Mike and Sandy like each others dog."

• N = 3

	mike	like	cat	sandy	dog	each	other
idf(t)	0	0	0.48	0.18	0.18	0.18	0.18
tf(t, Doc2)	1	2	0	2	1	1	1
tf-idf(t, Doc2)	0	0	0	0.36	0.18	0.18	0.18

- **Sandy** is the term that holds the most information in document 2
 - terms with high **tf-idf** values can be interpreted as salient keywords to a document

Content

- Introduction to Text Mining
 - Terms
 - Applications
 - Challenges
 - Performance Aims
- Gathering Text Data
- Preprocessing Text
 - Tokenization
 - Normalization
 - Stop Word Removal
- Vectorizing Text (Feature Generation)
 - Frequency-based Approaches
 - Prediction-based Approaches

Motivation

- Frequency-based vectorization methods are a good fit for a variety of analysis tasks (e.g., query search, text classification)
- However, despite the improvements made going from one-hot-encoded vectors to tf-idf representations frequency based vectorization still suffers from a variety of issues:
 - Sparse vector representations: dealing with vectors that only have few non-zero values
 - Especially hurtful in applications where artificial neural networks are utilized \rightarrow larger input vectors lead to larger amount of weights to be trained \rightarrow more computational resources required
 - Lack of meaningful relation between words: apart from little spatial relations, it is not possible to retrieve semantic relations between words (e.g., identifying words that are similar to each other)
 - Many modern NLP applications (again mostly driven by ANNs) require knowledge about the relation between words to perform properly (e.g. machine translations)
- Solution: (Dense) Embeddings
 - Translating large sparse vectors into a lower-dimensional space, preserving semantic relationships

Embeddings Intuition

- To understand the idea behind embeddings, let us consider an easy example:
 - We have 5 documents each consisting of a single word only:

D1: male D2: female	D3: blue	D4: yellow	D5: red
---------------------	----------	------------	---------

A (sparse) one-hot-encoding for those documents

	male	female	blue	yellow	red
D1	1	0	0	0	0
D2	0	1	0	0	0
D3	0	0	1	0	0
D4	0	0	0	1	0
D5	0	0	0	0	1

- Each document (word) is represented by a 5-dimensional vector
- Position in the vector space does not give any inside into the semantic relation of the documents (e.g., colors, sex)

Embeddings Intuition cont.

- The general goal is to find a representation that puts those terms with semantic relationships closer to each other in the vector space
- The following image shows how the same 5 documents are embedded into a 2-dimensional vector space

- Instead of utilizing a sparse 5-dimensional representation, the words can be represented in a dense 2-dimensional embedding (x, y coordinates) → dimensionality reduction
- Transferring that idea to larger problems → for example, imagine a corpus which contains 10k different words → 10k-dimensional representations could be reduced to 50 dimensions (features) while retaining semantic information among terms

Embeddings cont.

- What exactly are those features (x and y in our example)?
 - No inherent interpretation possible
 - Usually a neural network will come up with the important relations between terms (feature selection)
 - → word embeddings can be learned by training a neural network
 - -> Embedding size (number of features) is arbitrary
 - Should be large enough to encode meaningful semantic relations
 - Should be small enough so that training times are kept at a minimum
 - Arguably, one the most popular techniques for word embeddings in NLP applications is Word2Vec, introduced in 2013 by Mikolov, Tomas et. al. (Google)

Embedding Examples

- Image shows examples of different semantic relationships from real embeddings
- Semantics are encoded by position in a multi-dimensional vector space (distance and direction)

Word2Vec

- The main idea of Word2Vec is to map semantically similar terms to geometrically close embedding vectors
- It relies on the distributional hypothesis, stating that terms which have the same neighboring words tend to be semantically similar
- E.g., the terms *blue*, *red*, and *yellow* are semantically related, because they often appear close to the word color
- Word2Vec can exploit such contextual information by training a neural network that can distinguish between randomly grouped words from frequently cooccurring words
- The technique comes in two flavors:
 - Continues Bag-of-Words (CBOW)
 - Predicting a word given its context
 - Skip-gram
 - Predicting a context given a word

Continuous Bag-of-Words (CBOW)

- Consider a sliding window over a text taken from the course description for Intelligent Systems:
- "... amount of information available digitally ..."
- The central word information is the target word
- The two terms preceding and following it are the context words
- CBOW aims to predict the target word given the context words
- On the right you can see the schematic representation of the CBOW network used to learn this representation
- Input Layer: Context words $x_{1k} \dots x_{Ck}$ as one-hot-encoded vectors with length V (in our case 5 \rightarrow vocabulary size); C equals to the amount of context words (in our case 4)
- Hidden Layer: (also called Projection Layer) with N dimensions (i.e., embedding size)
- Output layer: contains (softmax activated) possibility distribution for each term of the vocabulary
- How to achieve embedding? → Multiplying onehot-encoded term with trained weight matrix W (embedding matrix)

Image Source: Rong, 2014 – word2vec Parameter Learning Explained

Skip-gram

- In some sense, turns CBOW architecture around
- Skip-gram tries to predict context words given a target word
- Input: one-hot-encoded vector of size $V \rightarrow ([0, 0, 1, 0, 0])$ (information)
- Output: Instead of one probability distribution, now C=4 distributions of predicted context words (in our case, hopefully: amount, of, available, digitally)
- Training objective is to minimize the total prediction error for all context words in the output layer
- Embedding is still achieved by multiplying one-hot-encoded target word with trained W

Image Source: Rong, 2014 – word2vec Parameter Learning Explained

Embeddings

- According to Tomas Mikolov, both approaches valid → application dependent
 - CBOW trains faster; CBOW comes up with better embeddings for frequent/common terms
 - Skip-gram works particularly well for smaller datasets; Skip-gram also represents rare words better
- Luckily, for standard applications, you don't have to train an embedding network yourself -> pre-trained embeddings available
- Apart from Word2Vec, many other predictive approaches to word embeddings possible:
 - Facebook's **fastText** (especially interesting for non-English corpuses)
 - **GloVe** (Global Vectors) → embeddings are learned using matrix factorization techniques