МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА»

(БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №3

по дисциплине: Исследование операций тема: «Модификации симплекс метода. Методы искусственного базиса и больших штрафов»

Выполнил: ст. группы ПВ-233 Мороз Роман Алексеевич

Проверил: Вирченко Юрий Петрович Цель работы: изучение методов искусственного базиса и больших штрафов решения задач ЛП в канонической форме, не подготовленных к работе симплекс-методом в чистом виде.

Задания для подготовки к работе

- 1. Изучить метод и алгоритм искусственного базиса и составить программу решения задачи ЛП этим методом.
- 2. Изучить метод и алгоритм больших штрафов и составить программу решения задачи ЛП этим методом.
- 3. Запрограммировать изученные алгоритмы и отладить соответствующие программы. В рамках подготовки тестовых данных решить вручную одну из следующих ниже задач.

Вариант 9

Листинг программы:

```
from math import factorial, fabs
from itertools import *
# Функция для ввода матрицы
def readMatr():
   print("Введите количество строк: ")
   count string = int(input())
   print("Введите матрицу: ")
   matr = [[float(x) for x in input().split()] for y in range(count_string)]
   return matr
# Функция для перевода ведущего столбца в единичный
def basic_collumn(matr_cof, number_string, number_x):
    # Сохраняем значение элемента в ведущей строке и ведущем столбце
   cof = matr_cof[number_string][number_x]
    # Делаем ведущий элемент равным 1 путем деления всей строки на этот элемент
    for i in range(len(matr cof[number string])):
        matr cof[number string][i] /= cof
    # Вычитаем ведущую строку из всех остальных строк так, чтобы элементы под
    # ведущим столбцом стали равными нулю
```

```
for i in range(len(matr cof)):
        if i != number string:
            # Находим коэффициент, на который нужно умножить ведущую строку, чтобы
            # вычесть ее из текущей строки
           cof = matr_cof[i][number_x]
            # Вычитаем ведущую строку, умноженную на найденный коэффициент
           for j in range(len(matr_cof[i])):
               matr_cof[i][j] -= matr_cof[number_string][j] * cof
    # Возвращаем измененную матрицу коэффициентов
    return matr cof
# Функция удаления строк с нулевыми коэффициентами и решения несовместных систем
def delZeroOrNesov(matr cof):
    for i in range(len(matr_cof)):
       flag = True
        # Проверяем, все ли коэффициенты в текущей строке равны нулю
        for j in range(len(matr cof[i])):
            if (matr cof[i][j] != 0):
               flag = False
        # Если все коэффициенты в строке равны нулю, и свободный член также равен
        # нулю, удаляем строку
        if flag & (matr_cof[i][-1] == 0):
           matr_cof.pop(i)
        # Если все коэффициенты в строке равны нулю, но свободный член не равен
        # нулю, система несовместима
        elif flag:
           print ("Ваша система несовместима")
           exit(6)
# Функция для получения списка базисных переменных
def getBasicList(matr_cof):
   usage string = [] #Список номеров строк, в которых базисные переменные равны 1
    # Проходим по столбцам матрицы коэффициентов
    for i in range(len(matr cof[0])):
       count one = 0 # Счетчик единиц в столбце
        # Счетчик других значений (не нулей и не единиц) в столбце
       count another = 0
       one_index = 0 # Индекс строки, в которой нашлась единица
        # Проходим по строкам столбца
        for j in range(len(matr cof)):
            # Если текущий элемент равен 1, увеличиваем счетчик единиц и
            # запоминаем индекс строки
           if matr cof[j][i] == 1:
               count one += 1
               one index = j
            # Если текущий элемент не равен 0 и не равен 1, увеличиваем счетчик
            # других значений
           elif matr cof[j][i] != 0:
               count another += 1
        # Если в столбце ровно одна единица и других значений нет, добавляем
        # столбец в список базисных переменных
        if ((count one == 1) & (count another == 0)):
           basicList.append(i)
           usage_string.append(one_index)
    # Возвращаем список базисных переменных и список номеров строк
    return [basicList, usage_string]
# Функция для проверки равенства базисных переменных
def checkEqual(arr, basic, comb):
    # Проходим по всем парам элементов массива
    for i in range(len(arr) - 1):
```

```
for j in range(i + 1, len(arr)):
            # Если элементы равны и соответствующие базисные переменные находятся
            # в заданной комбинации
           if (arr[i] == arr[j]) & (basic[i] in comb) & (basic[j] in comb):
               return True # Возвращаем True, если найдены равные базисные
                             # переменные
   return False # Возвращаем False, если равных базисных переменных не найдено
# Функция для получения базисной матрицы
def getBasicMatr(matr cof, comb):
    # Создаем копию матрицы коэффициентов, чтобы не изменять исходную матрицу
   new matr = [[el for el in row] for row in matr cof]
   # Получаем списки базисных переменных и соответствующих им строк матрицы
   basic_list, basic_string = getBasicList(new_matr)
   usage_strings = [] # Список использованных строк
   # Проходим по всем базисным переменным из комбинации
   for el in comb:
        if el not in basic list: # Если переменная не является базисной
            # Находим строку, где можно сделать эту переменную базисной
            for i in range(len(new matr)):
                if (new matr[i][el] != 0) & (i not in usage strings):
                    # Переводим соответствующий столбец в единичный, чтобы сделать
                    # переменную базисной
                   basic collumn(new matr, i, el)
                    # Добавляем использованную строку в список
                   usage strings.append(i)
                   break
            # Удаляем строки с нулевыми коэффициентами и проверяем на
            # несовместность
           delZeroOrNesov(new_matr)
            # Обновляем списки базисных переменных
           basic_list, basic_string = getBasicList(new_matr)
            # Проверяем, не равны ли какие-либо базисные переменные, и возвращаем
            # пустую матрицу, если равны
           if checkEqual(basic_string, basic_list, comb):
               return []
       else:
            # Если переменная уже является базисной, добавляем соответствующую
            # строку в список использованных строк
           usage strings.append(basic string[basic list.index(el)])
   return new matr # Возвращаем базисную матрицу
# Функция для чтения функции
def readFunck():
   print("Input Z: ")
   return [float(x) for x in input().split()]
# Функция для получения первой таблицы
def getFirstTable(matr cof, z):
    # Получаем списки базисных переменных и соответствующих им строк матрицы
   basic, stringBasic = getBasicList(matr_cof)
    # Выделяем базисные переменные и соответствующие им строки из списков
   basic = [basic[i] for i in range(len(basic) - len(matr cof), len(basic))]
```

```
stringBasic = [stringBasic[i] for i in range(
        len(stringBasic) - len(matr cof), len(stringBasic))]
    # Создаем пустую таблицу с нужными размерами и заполняем ее заголовками
    table = [[0 for y in range(len(matr_cof[0]) + 1)]
             for x in range(len(basic) + 2)]
   table[0][0] = "Базисные переменные"
   table[0][1] = "Свободные члены"
    for i in range(2, len(table[0])):
        table[0][i] = 'X' + str(i - 1)
    # Заполняем таблицу базисными переменными и соответствующими им свободными
    # членами
   for x in range(len(basic)):
       table[stringBasic[x] + 1][0] = 'X' + str(basic[x] + 1)
    for i in range(1, len(table) - 1):
       table[i][1] = matr cof[i - 1][len(matr cof[0]) - 1]
    # Заполняем остальные ячейки таблицы коэффициентами из матрицы коэффициентов
   for i in range(len(matr cof)):
        for j in range(len(matr_cof[0]) - 1):
            table[i + 1][j + 2] = matr_cof[i][j]
    # Заполняем строку функции Z коэффициентами и свободным членом
   table[len(table) - 1][0] = 'Z'
   table[len(table) - 1][1] = z[0]
    for i in range(1, len(z)):
       table[len(table) - 1][i + 1] = -z[i]
   return table
# Функция для проверки решения
def checkSolution(table):
   for i in range(2, len(table[0])):
        if (table[len(table) - 1][i] < 0):</pre>
            return False
   return True
# Функция для получения опорного столбца
def getOpSt(table):
   max_index = 2 # Индекс начального опорного столбца
    # Проходим по всем столбцам таблицы, начиная с третьего
   for i in range(2, len(table[0])):
        # Если элемент последней строки в текущем столбце отрицательный
        if table[len(table) - 1][i] < 0:</pre>
            # Если текущий элемент меньше элемента с индексом max index
            if table[len(table) - 1][i] < table[len(table) - 1][max index]:</pre>
                max index = i # Обновляем индекс опорного столбца
   return max index # Возвращаем индекс опорного столбца
# Функция для выполнения следующего шага в методе искусственного базиса
def nextStep(table):
   indexMin = getOpSt(table) # Получаем индекс опорного столбца
   indexChange = 0 # Инициализируем индекс строки для изменения
   min val = float('inf') # Инициализируем минимальное значение
    # Находим строку для изменения с минимальным отношением свободного члена к
    # элементу в опорном столбце
   for i in range(1, len(table) - 1):
        if table[i][indexMin] > 0:
            ratio = table[i][1] / table[i][indexMin] # Вычисляем отношение
            if ratio < min val:</pre>
```

```
min val = ratio
                indexChange = i
    # Проверяем, если indexChange все еще равно 0, значит функция не ограничена
    if indexChange == 0:
       print("Функция не ограничена")
       exit(5)
   delit = table[indexChange][indexMin] # Получаем делитель
    # Делим все элементы строки, включая свободный член, на значение делителя
    for i in range(1, len(table[indexChange])):
        table[indexChange][i] /= delit
   newTable = [[y for y in x] for x in table] # Создаем новую таблицу
    # Устанавливаем индекс опорного столбца в строке изменения
   newTable[indexChange][0] = 'X' + str(indexMin - 1)
    # Проходим по всем строкам кроме строки изменения
   for i in range(1, len(table)):
       if i != indexChange:
            # Получаем коэффициент для умножения строки изменения
            cof = -table[i][indexMin]
            # Добавляем к строке і строку изменения, умноженную на коэффициент cof
            for j in range(1, len(table[i])):
                newTable[i][j] = table[i][j] + table[indexChange][j] * cof
   return newTable # Возвращаем обновленную таблицу
# Функция для вывода таблицы
def printTable(table):
   for str in table:
        for el in str:
            print(el, end=" ")
       print()
# Функция для вывода решения
def print solution(table):
   print("Решение")
   solution = [0 for x in range(len(table[0]) - 2)]
   for i in range(1, len(table) - 1):
       print(int(table[i][0][1]))
        solution[int(table[i][0][1]) - 1] = table[i][1]
   print(solution)
   print("Значение в точке максимума")
   print("Zmax =", table[len(table) - 1][1])
# Функция для вывода вспомогательной таблицы
def printFict(table, n):
    for i in range(len(table)-1):
        for j in range(len(table[0])):
           print(table[i][j], end=" ")
       print()
# Функция для получения опорного столбца во вспомогательной таблице
def getOpStlog(table):
   max index = 2 # Индекс начального опорного столбца
    # Проходим по всем столбцам таблицы, начиная с третьего
    for i in range(2, len(table[0])):
        # Если элемент предпоследней строки в текущем столбце отрицательный
        if table[len(table) - 2][i] < 0:</pre>
            # Если текущий элемент меньше элемента с индексом max index
            if table[len(table) - 2][i] < table[len(table) - 2][max_index]:</pre>
                \max_{i} max_index = i # Обновляем индекс опорного столбца
```

```
return max index # Возвращаем индекс опорного столбца
# Функция для выполнения следующего шага в вспомогательной таблице
def nextStepFict(table):
   indexMin = getOpStlog(table) # Получаем индекс опорного столбца
   indexChange = 0 # Инициализируем индекс строки для изменения
   min val = float('inf') # Инициализируем минимальное значение
    # Находим строку для изменения с минимальным отношением свободного члена к
    # элементу в опорном столбце
   for i in range(1, len(table) - 2):
       if table[i][indexMin] > 0:
           ratio = table[i][1] / table[i][indexMin] # Вычисляем отношение
           if ratio < min val:</pre>
               min val = ratio
                indexChange = i
    # Проверяем, если indexChange не является строкой Y, выбираем первую строку Y
   if table[indexChange][0][0] != 'Y':
        for i in range(1, len(table) - 2):
           if table[i][0][0] == 'Y':
                indexChange = i
                break
        # Если indexMin равен нулю или больше или равен длине таблицы - 2,
        # выбираем первый ненулевой столбец
        if (table[indexChange][indexMin] == 0) or (indexMin >= len(table[0]) -
                                                               len(table) + 2):
            for i in range(2, len(table[0]) - len(table) + 2):
                if abs(table[indexChange][i]) > 1e-5:
                    indexMin = i
   delit = table[indexChange][indexMin] # Получаем делитель
   for i in range(1, len(table[indexChange])):
        # Делим все элементы строки на значение делителя
        table[indexChange][i] /= delit
   newTable = [[y for y in x] for x in table] # Создаем новую таблицу
    # Устанавливаем индекс опорного столбца в строке изменения
   newTable[indexChange][0] = 'X' + str(indexMin - 1)
    # Проходим по всем строкам, кроме строки изменения
   for i in range(1, len(table)):
       if i != indexChange:
            # Получаем коэффициент для умножения строки изменения
           cof = -table[i][indexMin]
            # Добавляем к строке і строку изменения, умноженную на коэффициент соf
            for j in range(1, len(table[i])):
                newTable[i][j] = table[i][j] + table[indexChange][j] * cof
   return newTable # Возвращаем обновленную таблицу
# Функция для добавления фиктивных переменных
def putFict(matr):
    # Создаем новую матрицу, увеличивая количество столбцов на количество строк
   newMatr = [[0.0 for j in range(len(matr[0]) + len(matr))]
               for i in range(len(matr))]
    # Заполняем новую матрицу
   for i in range(len(matr)):
        for j in range(len(matr[0]) - 1):
            # Если свободный член отрицательный, меняем знак элементов матрицы
            if matr[i][len(matr[0]) - 1] < 0:</pre>
```

```
newMatr[i][j] = -matr[i][j]
            else:
                newMatr[i][j] = matr[i][j]
    # Добавляем фиктивные переменные в последние столбцы
    for i in range(len(matr)):
        newMatr[i][len(matr[0]) + i - 1] = 1.0
    # Заполняем последний столбец матрицы значениями свободных членов
    for i in range(len(matr)):
        if matr[i][len(matr[0]) - 1] < 0:</pre>
            newMatr[i][len(newMatr[0]) - 1] = -matr[i][len(matr[0]) - 1]
        else:
            newMatr[i][len(newMatr[0]) - 1] = matr[i][len(matr[0]) - 1]
    return newMatr # Возвращаем новую матрицу с добавленными фиктивными
                    # переменными
# Функция для вычисления значений Z в вспомогательной таблице
def fictZ(matr):
    zf = [0.0 \text{ for i in range(len(matr[0]))}]
    for j in range(len(matr)):
        zf[0] = matr[j][len(matr[0]) - 1]
    for i in range(1, len(zf) - len(matr)):
        for j in range(len(matr)):
            zf[i] += matr[j][i - 1]
    return zf
# Функция для получения таблицы с фиктивным базисом
def getFictBasisTable(matr, z):
    # Добавляем фиктивные переменные к матрице
    newMatr = putFict(matr)
    # Вычисляем значения функции Z с учетом фиктивных переменных
    zf = fictZ(newMatr)
    # Получаем первоначальную таблицу с фиктивным базисом
    table = getFirstTable(newMatr, zf)
    # Добавляем строку для функции Z
    table.append([0 for i in range(len(table[0]))])
    table[len(table) - 1][0] = 'Z'
    table[len(table) - 1][1] = z[0]
    for i in range(1, len(z)):
        table[len(table) - 1][i + 1] = -z[i]
    # Преобразуем переменные Y в соответствии с таблицей
    for i in range(1, len(table) - 2):
        table[i][0] = 'Y' + table[i][0][1]
    # Выводим таблицу на экран перед выполнением искусственного базиса
    printFict(table, len(matr[0]) - 1)
    # Проводим шаги искусственного базиса
    for i in range(len(matr)):
        table = nextStepFict(table)
        printFict(table, len(matr[0]) - 1)
    # Удаляем лишнюю строку с искусственной функцией Z
    newTable = [[0 for i in range(len(table[0]) - len(matr))]
                for i in range(len(table))]
    for i in range(len(newTable)):
        for j in range(len(newTable[0])):
            newTable[i][j] = table[i][j]
    newTable.pop(len(newTable) - 2)
    newTable[len(newTable) - 1][0] = 'Z'
    return newTable
# Функция для вывода решения с фиктивными переменными
def printFictSolution(matr, z):
```

```
table = getFictBasisTable(matr, z)
    printTable(table)
    while not checkSolution(table):
        table = nextStep(table)
        printTable(table)
    print_solution(table)
# Функция для вычисления значений Z с большими штрафами
def getMz(matr, z, M):
    # Инициализируем массив значений функции Z
    zf = [0.0 for i in range(len(matr[0]))]
    # Добавляем к Z исходные коэффициенты функции
    for i in range(len(z)):
        zf[i] += z[i]
    # Вычисляем значения с учетом больших штрафов (М)
    for j in range(len(matr)):
        # Вычитаем из Z значение М * свободный член
        zf[0] -= M * matr[j][len(matr[0]) - 1]
    # Вычисляем остальные значения функции Z с учетом больших штрафов (M)
    for i in range(1, len(zf) - len(matr)):
        for j in range(len(matr)):
             # Добавляем к Z значение М * коэффициент
            zf[i] += M * matr[j][i - 1]
    return zf # Возвращаем массив значений функции Z
# Функция для получения таблицы с большими штрафами
def getBigTable(matr, z):
   M = 1000
    newMatr = putFict(matr) # Добавляем фиктивные переменные
    {\tt zf} = {\tt getMz} \, ({\tt newMatr}, {\tt z}, {\tt M}) \, + \, {\tt Bычисляем} \, {\tt значения} \, {\tt Z} \, {\tt c} \, {\tt учетом} \, {\tt больших} \, {\tt штрафов}
    table = getFirstTable(newMatr, zf) # Получаем первоначальную таблицу
    return table # Возвращаем таблицу
# Функция для вывода решения с большими штрафами
def printBigSolution(matr, z):
   table = getBigTable(matr, z)
    printTable(table)
    while not checkSolution(table):
        table = nextStep(table)
        printTable(table)
    print solution(table)
# Основная функция
def main():
   matr cof = readMatr()
   z = readFunck()
   print("Искусственный базис")
   printFictSolution(matr cof, z)
   print("\nБольшие штрафы")
   printBigSolution(matr cof, z)
if __name__ == "__main__":
   main()
```

				+					+							
Базисные переменные =========	x1 +=====	x2 +=====	x +====	3 : ==+===:	<4 ===+===	x5 ====+=	x6 =====	x7 +=====	 +							
	-1	3 +	 +	2 +					 +							
	4	2 +	ļ +	5 ·					ļ +							
	5 +	6 +	 +	3 -				62 +	 +							
аблица с искусственными	перемен	ными														
Базисные переменные				3 :	+ <4		 x6		 u1	 u2			+ 			
x6	+=====+ 3		+==== 	==+===: 3	==+=== 2	1	1	+======	+=====+ 0	===== e		22	+ 			
u1	1 1	4	ļ	2	5	-2	0	0	1 1	е	- 	45	* 			
u2	+ -2	5	† 	+ б	3	-7	Ø	-1	+ - 0	1	- 	62	* 			
ромежуточная таблица										+		+	·			,
Базисные переменные	x1 +		<u>i</u>	x2				x4			x5 	x6 +		u1		Свободные члены
x6	3.25		<u>i</u>		3.5			3.25			0.5		0	0.25		33.25
x2	0.25		į	1	0.5		i	1.25		į	-0.5	0	0	0.25	0	11.25
x3	-3.25		ļ	0	3.5		ļ	-3.25		į	-4.5	0	-1	-1.25	1	5.75
	-8.25+	+3.25.3	f M		-3.5	-3.5.3	3f M	-16.25	+3.25.3f	M	-7.5+4.5.3f M	0	+ М	-1.25+2.25.3f M		+ -63.75-5.75.3f M
													+			

 Базисные переменные		x2		+ x4	x5	 x6		u1		+ Свободные		+ 			
x6	3	-1	+====== 3	+===== 2	1	1	=+=====- 0	+===== 0		+======= !	22	+ 			
u1	1	4	2	5	-2	0	0	1	0	! !	45	† 			
u2	-2	5] 3	-7	0	-1	0	1	 	62	- 			
Промежуточная таблица															
 Базисные переменные					 x3		+ x4		 ×	 5	+ x6	+ x7			+ Свободные члены
-=====================================	-+====== 3.25	======	:===+==: !	====+== 0 3	======= 3.5	=====	+====== 3.25	======	=====+== 0 !	 .5	+=====- 1	+====: 0	==+===================================	-=====	+=====================================
x2	0.25		<u>i</u>	1 (0.5		1.25		ļ -	0.5	0	0 0	0.25	0	11.25
х3	-3.25		į	0 3	3.5		-3.25		į -	4.5	0 	-1	-1.25	1	5.75
Δ	-8.25+	+3.25.31	f M	0 -	-3.5-3.5.	.3f M	-16.25	+3.25.3	3f M -	7.5+4.5.3f M	0	М	-1.25+2.25.3f M	0	-63.75-5.75.3f M
инальная таблица															
Базисные переменные		x2		+ x4				+ k6					u2		+ вободные члены
x4	1	0	0			9231				=+====================================			-0.15384615384615385		4.23077
x2	-1	1	0	0	-1.175	582	-0.2637	36 -6	0.120879	0.03296703	29670329	97	0.12087912087912088	!	3.17582
x3	0	0	1	0	-0.571	1429	0.1428	57 -6	0.142857	-0.1428571	4285714	285	0.14285714285714285	į	5.57143
Δ					-+ 18	+			`	-+ -2+M			-2+M		32

9.
$$z = 7x_1 - 5x_2 + x_3 + 10x_4 - 5x_5 \rightarrow \max;$$

$$\begin{cases} 3x_1 - x_2 + 3x_3 + 2x_4 + x_5 \le 22, \\ x_1 + 4x_2 + 2x_3 + 5x_4 - 2x_5 = 45, \\ -2x_1 + 5x_2 + 6x_3 + 3x_4 - 7x_5 \ge 62, \end{cases}$$

$$x_i \ge 0 \ (i = \overline{1,5}).$$

Аналитическое решение:

$$7 \cdot x_1 - 5 \cdot x_2 + x_3 + 10 \cdot x_4 - 5 \cdot x_5 \rightarrow \max$$

 $3 \cdot x_1 - x_2 + 3 \cdot x_3 + 2 \cdot x_4 + x_5 \le 22$
 $x_1 + 4 \cdot x_2 + 2 \cdot x_3 + 5 \cdot x_4 - 2 \cdot x_5 = 45$
 $-2 \cdot x_1 + 5 \cdot x_2 + 6 \cdot x_3 + 3 \cdot x_4 - 7 \cdot x_5 \ge 62$

Решение методом искусственного базиса

Для каждого ограничения c неравенством добавляем дополнительные переменные x_6 и x_7 .

Ограничение 1 содержит неравенство, базисной будет добавленная дополнительная переменная x_6

Ограничение 2 содержит равенство. Базисная переменная для этого ограничения будет определена позднее.

Ограничение 3 содержит неравенство с ≥. Базисная переменная для этого ограничения будет определена позднее.

Начальная симплекс-таблица

I I CO I CO I D		-						
С	7	-5	1	10	-5	0	0	0
базис	X ₁	x ₂	х ₃	x ₄	X ₅	х ₆	x ₇	b
х ₆	3	-1	3	2	1	1	0	22
?1	1	4	2	5	-2	0	0	45
?2	-2	5	6	3	-7	0	-1	62

Для ограничения 2 добавляем искусственную переменную u_1 и делаем её базисной.

Для ограничения 3 добавляем искусственную переменную u_2 и делаем её базисной.

B целевую функцию добавляем искусственные пременные с коэффициентом -M, где M — очень большое число.

Таблица с искусственными переменными

С	7	-5	1	10	-5	0	0	-M	-M	0
базис	x_1	x ₂	х ₃	x ₄	X ₅	х ₆	x ₇	u_1	u_2	b
х ₆	3	-1	3	2	1	1	0	0	0	22
u ₁	1	4	2	5	-2	0	0	1	0	45
u ₂	-2	5	6	3	-7	0	-1	0	1	62

Перепишем условие задачи с учётом добавленных искусственных переменных:

$$F = 7x_1 - 5x_2 + 1x_3 + 10x_4 - 5x_5 - Mu_1 - Mu_2 \rightarrow max$$

$$3 \cdot x_1 - x_2 + 3 \cdot x_3 + 2 \cdot x_4 + x_5 + x_6 = 22$$

$$x_1 + 4 \cdot x_2 + 2 \cdot x_3 + 5 \cdot x_4 - 2 \cdot x_5 + u_1 = 45$$

$$-2 \cdot x_1 + 5 \cdot x_2 + 6 \cdot x_3 + 3 \cdot x_4 - 7 \cdot x_5 - x_7 + u_2 = 62$$

Выразим искусственные переменные через базовые и дополнительные:

$$u_1 = 45 - x_1 - 4 \cdot x_2 - 2 \cdot x_3 - 5 \cdot x_4 + 2 \cdot x_5$$

$$u_2 = 62 + 2 \cdot x_1 - 5 \cdot x_2 - 6 \cdot x_3 - 3 \cdot x_4 + 7 \cdot x_5 + x_7$$

Вычисляем дельты: :
$$\Delta_i = C_6 \cdot a_{1i} + C_8 \cdot a_{2i} + C_9 \cdot a_{3i} - C_i$$

$$\begin{array}{l} \Delta_1 = C_6 \cdot a_{11} + C_8 \cdot a_{21} + C_9 \cdot a_{31} - C_1 = 0.3 + -M.1 + -M.(-2) - 7 = -7 + M \\ \Delta_2 = C_6 \cdot a_{12} + C_8 \cdot a_{22} + C_9 \cdot a_{32} - C_2 = 0.(-1) + -M.4 + -M.5 - -5 = 5 - 9M \\ \Delta_3 = C_6 \cdot a_{13} + C_8 \cdot a_{23} + C_9 \cdot a_{33} - C_3 = 0.3 + -M.2 + -M.6 - 1 = -1 - 8M \\ \Delta_4 = C_6 \cdot a_{14} + C_8 \cdot a_{24} + C_9 \cdot a_{34} - C_4 = 0.2 + -M.5 + -M.3 - 10 = -10 - 8M \\ \Delta_5 = C_6 \cdot a_{15} + C_8 \cdot a_{25} + C_9 \cdot a_{35} - C_5 = 0.1 + -M.(-2) + -M.(-7) - -5 = 5 + 9M \\ \Delta_6 = C_6 \cdot a_{16} + C_8 \cdot a_{26} + C_9 \cdot a_{36} - C_6 = 0.1 + -M.0 + -M.0 - 0 = 0 \\ \Delta_7 = C_6 \cdot a_{17} + C_8 \cdot a_{27} + C_9 \cdot a_{37} - C_7 = 0.0 + -M.0 + -M.(-1) - 0 = M \\ \Delta_8 = C_6 \cdot a_{18} + C_8 \cdot a_{28} + C_9 \cdot a_{38} - C_8 = 0.0 + -M.1 + -M.0 - -M = 0 \\ \Delta_9 = C_6 \cdot a_{19} + C_8 \cdot a_{29} + C_9 \cdot a_{39} - C_9 = 0.0 + -M.0 + -M.1 - -M = 0 \\ \Delta_9 = C_6 \cdot b_1 + C_8 \cdot b_2 + C_9 \cdot b_3 - C_{10} = 0.22 + -M.45 + -M.62 - 0 = -107M \\ \end{array}$$

Симплекс-таблица с дельтами

С	7	-5	1	10	-5	0	0	-M	-M	0
базис	x ₁	X ₂	х ₃	x ₄	Х ₅	x ₆	х ₇	u_1	u_2	b
х ₆	3	-1	3	2	1	1	0	0	0	22
u ₁	1	4	2	5	-2	0	0	1	0	45
u ₂	-2	5	6	3	-7	0	-1	0	1	62
Δ	-7 + M	5 - 9M	-1 - 8M	-10 - 8M	5 + 9M	0	М	0	0	-107M

Текущий план Х: [0, 0, 0, 0, 0, 22, 0, 45, 62]

Целевая функция \mathbf{F} : 7.0 + -5.0 + 1.0 + 10.0 + -5.0 + 0.22 + 0.0 + -M.45 + -M.62 = -107M

Проверяем план на оптимальность: план **не оптимален**, так как Δ_2 = 5 - 9M отрицательна.

Итерация 1

Определяем разрешающий столбец - столбец, в котором находится минимальная дельта: 2, Δ_2 : 5 - 9M Находим симплекс-отношения Q, путём деления коэффициентов b на соответствующие значения столбца 2 В найденном столбце ищем строку с наименьшим значением Q: $Q_{min} = \frac{45}{4}$, строка 2.

На пересечении найденных строки и столбца находится разрешающий элемент: 4 В качестве базисной переменной u_1 берём x_2 .

С	7	-5	1	10	-5	0	0	-M	-M	0	
базис	x ₁	x ₂	х ₃	x ₄	X ₅	x ₆	x ₇	u ₁	u ₂	b	Q
х ₆	3	-1	3	2	1	1	0	0	0	22	-
x ₂	1	4	2	5	-2	0	0	1	0	45	$45 / 4 = \frac{45}{4}$
u ₂	-2	5	6	3	-7	0	-1	0	1	62	$62 / 5 = \frac{62}{5}$
Δ	-7 + M	5 - 9M	-1 - 8M	-10 - 8M	5 + 9M	0	М	0	0	-107M	

Делим строку 2 на 4. Из строк 1, 3 вычитаем строку 2, умноженную на соответствующий элемент в столбце 2.

Вычисляем новые дельты: $\Delta_{i} = C_{6} \cdot a_{1i} + C_{2} \cdot a_{2i} + C_{9} \cdot a_{3i} - C_{i}$

$$\begin{split} &\Delta_1 = C_6 \cdot a_{11} + C_2 \cdot a_{21} + C_9 \cdot a_{31} - C_1 = 0 \cdot \frac{13}{4} + -5 \cdot \frac{1}{4} + -M \cdot (-\frac{13}{4}) - 7 = -\frac{33}{4} + \frac{13}{4}M \\ &\Delta_2 = C_6 \cdot a_{12} + C_2 \cdot a_{22} + C_9 \cdot a_{32} - C_2 = 0 \cdot 0 + -5 \cdot 1 + -M \cdot 0 - -5 = 0 \\ &\Delta_3 = C_6 \cdot a_{13} + C_2 \cdot a_{23} + C_9 \cdot a_{33} - C_3 = 0 \cdot \frac{7}{2} + -5 \cdot \frac{1}{2} + -M \cdot \frac{7}{2} - 1 = -\frac{7}{2} - \frac{7}{2}M \\ &\Delta_4 = C_6 \cdot a_{14} + C_2 \cdot a_{24} + C_9 \cdot a_{34} - C_4 = 0 \cdot \frac{13}{4} + -5 \cdot \frac{5}{4} + -M \cdot (-\frac{13}{4}) - 10 = -\frac{65}{4} + \frac{13}{4}M \\ &\Delta_5 = C_6 \cdot a_{15} + C_2 \cdot a_{25} + C_9 \cdot a_{35} - C_5 = 0 \cdot \frac{1}{2} + -5 \cdot (-\frac{1}{2}) + -M \cdot (-\frac{9}{2}) - -5 = \frac{15}{2} + \frac{9}{2}M \\ &\Delta_6 = C_6 \cdot a_{16} + C_2 \cdot a_{26} + C_9 \cdot a_{36} - C_6 = 0 \cdot 1 + -5 \cdot 0 + -M \cdot 0 - 0 = 0 \\ &\Delta_7 = C_6 \cdot a_{17} + C_2 \cdot a_{27} + C_9 \cdot a_{37} - C_7 = 0 \cdot 0 + -5 \cdot 0 + -M \cdot (-1) - 0 = M \\ &\Delta_8 = C_6 \cdot a_{18} + C_2 \cdot a_{28} + C_9 \cdot a_{38} - C_8 = 0 \cdot \frac{1}{4} + -5 \cdot \frac{1}{4} + -M \cdot (-\frac{5}{4}) - -M = -\frac{5}{4} + \frac{9}{4}M \\ &\Delta_9 = C_6 \cdot a_{19} + C_2 \cdot a_{29} + C_9 \cdot a_{39} - C_9 = 0 \cdot 0 + -5 \cdot 0 + -M \cdot 1 - -M = 0 \\ &\Delta_b = C_6 \cdot b_1 + C_2 \cdot b_2 + C_9 \cdot b_3 - C_{10} = 0 \cdot \frac{133}{4} + -5 \cdot \frac{45}{4} + -M \cdot \frac{23}{4} - 0 = -\frac{225}{4} - \frac{23}{4}M \end{split}$$

Симплекс-таблица с обновлёнными дельтами

С	7	-5	1	10	-5	0	0	-M	-M	0	
базис	x ₁	x ₂	х ₃	x ₄	X ₅	x ₆	x ₇	u ₁	u ₂	b	Q
x ₆	13 4	0	7/2	13 4	1/2	1	0	<u>1</u>	0	133 4	-
x ₂	$\frac{1}{4}$	1	1/2	<u>5</u> 4	- 1 2	0	0	<u>1</u>	0	45 4	45 4
u ₂	- 13 4	0	7/2	- 13 4	- 9 2	0	-1	- 5	1	23 4	62 5
Δ	$-\frac{33}{4} + \frac{13}{4}M$	0	$-\frac{7}{2}-\frac{7}{2}M$	$-\frac{65}{4} + \frac{13}{4}M$	$\frac{15}{2} + \frac{9}{2}M$	0	М	$-\frac{5}{4} + \frac{9}{4}M$	0	- $\frac{225}{4}$ - $\frac{23}{4}$ M	

Текущий план X: $[0, \frac{45}{4}, 0, 0, 0, \frac{133}{4}, 0, 0, \frac{23}{4}]$ Целевая функция F: $7 \cdot 0 + -5 \cdot \frac{45}{4} + 1 \cdot 0 + 10 \cdot 0 + -5 \cdot 0 + 0 \cdot \frac{133}{4} + 0 \cdot 0 + -M \cdot 0 + -M \cdot \frac{23}{4} = -\frac{225}{4} - \frac{23}{4}$ М Проверяем план на оптимальность: план не оптимален, так как $\Delta_3 = -\frac{7}{2} - \frac{7}{2}$ М отрицательна.

Итерация 2

Определяем разрешающий столбец - столбец, в котором находится минимальная дельта: 3, Δ_3 : - $\frac{7}{2}$ - $\frac{7}{2}$ М Находим симплекс-отношения Q, путём деления коэффициентов b на соответствующие значения столбца 3 В найденном столбце ищем строку с наименьшим значением Q: $Q_{min} = \frac{23}{14}$, строка 3.

На пересечении найденных строки и столбца находится разрешающий элемент: $\frac{7}{2}$ В качестве базисной переменной u_2 берём x_3 .

С	7	-5	1	10	-5	0	0	-M	-M	0	
базис	X ₁	X ₂	х ₃	X ₄	X ₅	x ₆	x ₇	u ₁	u_2	b	Q
x ₆	13 4	0	7/2	13 4	1/2	1	0	<u>1</u>	0	133 4	$\frac{133}{4}$ / $\frac{7}{2} = \frac{19}{2}$
x ₂	<u>1</u>	1	1/2	<u>5</u> 4	- 1 2	0	0	<u>1</u>	0	45 4	$\frac{45}{4}$ / $\frac{1}{2} = \frac{45}{2}$
х ₃	- 13 4	0	7/2	- 13 4	- 9	0	-1	- 5	1	23 4	$\frac{23}{4}$ / $\frac{7}{2} = \frac{23}{14}$
Δ	$-\frac{33}{4} + \frac{13}{4}M$	0	$-\frac{7}{2}-\frac{7}{2}M$	$-\frac{65}{4} + \frac{13}{4}M$	$\frac{15}{2} + \frac{9}{2}M$	0	М	$-\frac{5}{4} + \frac{9}{4}M$	0	- $\frac{225}{4}$ - $\frac{23}{4}$ M	

Делим строку 3 на $\frac{7}{2}$. Из строк 1, 2 вычитаем строку 3, умноженную на соответствующий элемент в столбце 3. Вычисляем новые дельты: $\Delta_i = C_6 \cdot a_{1i} + C_2 \cdot a_{2i} + C_3 \cdot a_{3i} - C_i$

$$\begin{split} &\Delta_1 = C_6 \cdot a_{11} + C_2 \cdot a_{21} + C_3 \cdot a_{31} - C_1 = 0 \cdot \frac{13}{2} + -5 \cdot \frac{5}{7} + 1 \cdot (-\frac{13}{14}) - 7 = -\frac{23}{2} \\ &\Delta_2 = C_6 \cdot a_{12} + C_2 \cdot a_{22} + C_3 \cdot a_{32} - C_2 = 0 \cdot 0 + -5 \cdot 1 + 1 \cdot 0 - -5 = 0 \\ &\Delta_3 = C_6 \cdot a_{13} + C_2 \cdot a_{23} + C_3 \cdot a_{33} - C_3 = 0 \cdot 0 + -5 \cdot 0 + 1 \cdot 1 - 1 = 0 \\ &\Delta_4 = C_6 \cdot a_{14} + C_2 \cdot a_{24} + C_3 \cdot a_{34} - C_4 = 0 \cdot \frac{13}{2} + -5 \cdot \frac{12}{7} + 1 \cdot (-\frac{13}{14}) - 10 = -\frac{39}{2} \\ &\Delta_5 = C_6 \cdot a_{15} + C_2 \cdot a_{25} + C_3 \cdot a_{35} - C_5 = 0 \cdot 5 + -5 \cdot \frac{1}{7} + 1 \cdot (-\frac{9}{7}) - -5 = 3 \\ &\Delta_6 = C_6 \cdot a_{16} + C_2 \cdot a_{26} + C_3 \cdot a_{36} - C_6 = 0 \cdot 1 + -5 \cdot 0 + 1 \cdot 0 - 0 = 0 \\ &\Delta_7 = C_6 \cdot a_{17} + C_2 \cdot a_{27} + C_3 \cdot a_{37} - C_7 = 0 \cdot 1 + -5 \cdot \frac{1}{7} + 1 \cdot (-\frac{2}{7}) - 0 = -1 \\ &\Delta_8 = C_6 \cdot a_{18} + C_2 \cdot a_{28} + C_3 \cdot a_{38} - C_8 = 0 \cdot \frac{3}{2} + -5 \cdot \frac{3}{7} + 1 \cdot (-\frac{5}{14}) - -M = -\frac{5}{2} + M \\ &\Delta_9 = C_6 \cdot a_{19} + C_2 \cdot a_{29} + C_3 \cdot a_{39} - C_9 = 0 \cdot (-1) + -5 \cdot (-\frac{1}{7}) + 1 \cdot \frac{27}{7} - -M = 1 + M \\ &\Delta_b = C_6 \cdot b_1 + C_2 \cdot b_2 + C_3 \cdot b_3 - C_{10} = 0 \cdot \frac{55}{2} + -5 \cdot \frac{73}{7} + 1 \cdot \frac{23}{14} - 0 = -\frac{101}{2} \end{split}$$

Симплекс-таблица с обновлёнными дельтами

С	7	-5	1	10	-5	0	0	-M	-M	0	
базис	x ₁	x ₂	х ₃	x ₄	X ₅	x ₆	x ₇	u ₁	u ₂	b	Q
x ₆	13 2	0	0	13 2	5	1	1	3 2	-1	<u>55</u> 2	<u>19</u> 2
x ₂	5 7	1	0	12 7	1 7	0	1 7	3 7	- 1 7	73 7	<u>45</u> 2
х ₃	- 13 14	0	1	- 13 14	- 9 7	0	- 2 7	- <u>5</u>	2 7	23 14	23 14
Δ	- 23 2	0	0	- 39 2	3	0	-1	$-\frac{5}{2} + M$	1 + M	- <u>101</u> 2	

Текущий план X: [$0, \frac{73}{7}, \frac{23}{14}, 0, 0, \frac{55}{2}, 0, 0, 0]$

Целевая функция F: $7 \cdot 0 + -5 \cdot \frac{73}{7} + 1 \cdot \frac{23}{14} + 10 \cdot 0 + -5 \cdot 0 + 0 \cdot \frac{55}{2} + 0 \cdot 0 + -M \cdot 0 + -M \cdot 0 = -\frac{101}{2}$

Проверяем план на оптимальность: план не оптимален, так как $\Delta_1 = -\frac{23}{2}$ отрицательна.

Итерация 3

Определяем разрешающий столбец - столбец, в котором находится минимальная дельта: 4, Δ_4 : - $\frac{39}{2}$ Находим симплекс-отношения Q, путём деления коэффициентов b на соответствующие значения столбца 4 В найденном столбце ищем строку с наименьшим значением Q: $Q_{min} = \frac{55}{13}$, строка 1.

На пересечении найденных строки и столбца находится *разрешающий элемент*: $\frac{13}{2}$

В качестве базисной переменной х₆ берём х₄.

С	7	-5	1	10	-5	0	0	-M	-M	0	
базис	x ₁	X ₂	х3	х ₄	X ₅	x ₆	х ₇	u ₁	u ₂	b	Q
x ₄	13 2	0	0	13 2	5	1	1	3 2	-1	<u>55</u> 2	$\frac{55}{2}$ / $\frac{13}{2}$ = $\frac{55}{13}$
x ₂	5 7	1	0	12 7	1 7	0	1 7	3 7	- 1 7	73 7	$\frac{73}{7} / \frac{12}{7} = \frac{73}{12}$
х ₃	- 13 14	0	1	- 13 14	- 9 7	0	- ² / ₇	- <u>5</u>	2 7	23 14	-
Δ	- 23 2	0	0	- 39 2	3	0	-1	$-\frac{5}{2} + M$	1 + M	- 101 2	

Делим строку 1 на $\frac{13}{2}$. Из строк 2, 3 вычитаем строку 1, умноженную на соответствующий элемент в столбце 4. Вычисляем новые дельты: $\Delta_i = C_4 \cdot a_{1i} + C_2 \cdot a_{2i} + C_3 \cdot a_{3i} - C_i$

$$\begin{array}{l} \Delta_1 = C_4 \cdot a_{11} + C_2 \cdot a_{21} + C_3 \cdot a_{31} - C_1 = 10 \cdot 1 + -5 \cdot (-1) + 1 \cdot 0 - 7 = 8 \\ \Delta_2 = C_4 \cdot a_{12} + C_2 \cdot a_{22} + C_3 \cdot a_{32} - C_2 = 10 \cdot 0 + -5 \cdot 1 + 1 \cdot 0 - -5 = 0 \\ \Delta_3 = C_4 \cdot a_{13} + C_2 \cdot a_{23} + C_3 \cdot a_{33} - C_3 = 10 \cdot 0 + -5 \cdot 0 + 1 \cdot 1 - 1 = 0 \\ \Delta_4 = C_4 \cdot a_{14} + C_2 \cdot a_{24} + C_3 \cdot a_{34} - C_4 = 10 \cdot 1 + -5 \cdot 0 + 1 \cdot 0 - 10 = 0 \\ \Delta_5 = C_4 \cdot a_{15} + C_2 \cdot a_{25} + C_3 \cdot a_{35} - C_5 = 10 \cdot \frac{10}{13} + -5 \cdot \left(-\frac{107}{91}\right) + 1 \cdot \left(-\frac{4}{7}\right) - -5 = 18 \\ \Delta_6 = C_4 \cdot a_{16} + C_2 \cdot a_{26} + C_3 \cdot a_{36} - C_6 = 10 \cdot \frac{2}{13} + -5 \cdot \left(-\frac{24}{91}\right) + 1 \cdot \frac{1}{7} - 0 = 3 \\ \Delta_7 = C_4 \cdot a_{17} + C_2 \cdot a_{27} + C_3 \cdot a_{37} - C_7 = 10 \cdot \frac{2}{13} + -5 \cdot \left(-\frac{11}{91}\right) + 1 \cdot \left(-\frac{1}{7}\right) - 0 = 2 \\ \Delta_8 = C_4 \cdot a_{18} + C_2 \cdot a_{28} + C_3 \cdot a_{38} - C_8 = 10 \cdot \frac{3}{13} + -5 \cdot \frac{3}{91} + 1 \cdot \left(-\frac{1}{7}\right) - -M = 2 + M \\ \Delta_9 = C_4 \cdot a_{19} + C_2 \cdot a_{29} + C_3 \cdot a_{39} - C_9 = 10 \cdot \left(-\frac{2}{13}\right) + -5 \cdot \frac{11}{91} + 1 \cdot \frac{1}{7} - -M = -2 + M \\ \Delta_b = C_4 \cdot b_1 + C_2 \cdot b_2 + C_3 \cdot b_3 - C_{10} = 10 \cdot \frac{55}{13} + -5 \cdot \frac{289}{91} + 1 \cdot \frac{39}{7} - 0 = 32 \\ \end{array}$$

Симплекс-таблица с обновлёнными дельтами

С	7	-5	1	10	-5	0	0	-M	-M	0	
базис	x ₁	x ₂	х ₃	x ₄	X ₅	х ₆	х ₇	u ₁	u ₂	b	Q
x ₄	1	0	0	1	10 13	2 13	2 13	3 13	- 2 13	55 13	55 13
x ₂	-1	1	0	0	- <u>107</u> 91	- 24 91	- <u>11</u> 91	3 91	11 91	289 91	73 12
х ₃	0	0	1	0	- 4 7	1 7	- 1 7	- 1 7	1 7	39 7	-
Δ	8	0	0	0	18	3	2	2 + M	-2 + M	32	

Текущий план X: [$0, \frac{289}{91}, \frac{39}{7}, \frac{55}{13}, 0, 0, 0, 0, 0]$

Целевая функция F: $7 \cdot 0 + -5 \cdot \frac{289}{91} + 1 \cdot \frac{39}{7} + 10 \cdot \frac{55}{13} + -5 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + -M \cdot 0 + -M \cdot 0 = 32$

Проверяем план на оптимальность: отрицательные дельты отсутствуют, следовательно план оптимален.

ОТВЕТ:
$$x_1 = 0$$
, $x_2 = \frac{289}{91}$, $x_3 = \frac{39}{7}$, $x_4 = \frac{55}{13}$, $x_5 = 0$, $F = 32$

Вывод: в ходе выполнения работы были изучены методы искусственного базиса и больших штрафов решения задач ЛП в канонической форме, не подготовленных к работе симплекс-методом в чистом виде.

Проведённые задания по подготовке к работе помогли разработать программу для решения задач линейного программирования искусственного базиса и больших штрафов. Программа преобразует систему линейных ограничений в таблицу, определяет оптимальное решение путём выбора опорного элемента и выполнения шагов методов, и наконец, записывает значения целевой функции и переменных для анализа. Результатом работы программы являются точки максимума, где линейная целевая функция достигает оптимального значения при соблюдении заданных линейных ограничений. Была создана программа,

которая правильно реализует методы искусственного базиса и больших штрафов.