INTELLIGENT VEHICLE DAMAGE ASSESSMENT AND COST ESTIMATOR FOR INSURANCE COMPANY

A PROJECT REPORT

Submitted by

NEETHIARASAN S 711719104056

NITHESH V 711719104060

SANJAY K 711719104079

VEERAKUMARAVELU M 711719104106

in partial fulfilment for the award of the degree

of

BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE AND ENGINEERING KGISL INSTITUTE OF TECHNOLOGY, SARAVANAMPATTI

ANNA UNIVERSITY:: CHENNAI 600 025

APRIL 2022

ABSTRACT

Analysis of the damaged vehicle that can be automatically claiming insurance that takes human resource, time and effort. Image processing and machine learning techniques are analysing the vehicle damage in the proposed solution. The Advanced solution helps to speed up the claiming process sufficiently. Consider a situation, if a person is driving a car they met an accident the vehicle owner can taken a few photos of the damaged car from a mobile phone that can be send to the insurance company and can just upload the photos to the system. The system can analyse the damage, severity of the damage as well as location of the damage. In this proposed project the insurance company can machine-driven the car damage analysis process without the need for humans to analyse the damage done to the car. Therefore, it is a very challenging task for quality of computer vision techniques and also Machine learning technologies.

TABLE OF CONTENTS

CHAPTER NO.	TITLE	PAGE NO
	ABSTRACT	ii
	LIST OF TABLES	
	LIST OF FIGURES	
	LIST OF ABBREVIATIONS	2
1.	INTRODUCTION	
	1.1 PROJECT OVERVIEW	3
	1.2 PURPOSE	4
2.	LITERATURE SURVEY	
	2.1 EXISTING PROBLEM	5
	2.2 REFERENCES	5
	2.3 PROBLEM STATEMENT DEFINITION	7
3.	IDEATION AND PROPOSED SOLUTION	
	3.1 EMPATHY MAP CANVAS	9
	3.2 IDEATION AND BRAINSTORMING	10
	3.3 PROPOSED SOLUTION	16
	3.4 PROBLEM SOLUTION FIT	19
4.	REQUIREMENT ANALYSIS	
	4.1 FUNCTIONAL REQUIREMENTS	20
	4.2 NON-FUNCTIONAL REQUIREMENTS	21
5.	PROJECT DESIGN	
	5.1 DATA FLOW DIAGRAM	23
	5.2 SOLUTION & TECHNICAL	24
	ARCHITECTURE	
	5.3 USER STORIES	25
6.	PROJECT PLANNING AND SCHEDULING	
	6.1 SPRINT PLANNING AND ESTIMATION	29
	6.2 SPRINT DELIVERY SCHEDULE	31
7.	CODING AND SOLUTIONING	
	7.1 FEATURE 1	32
	7.2 FEATURE 2	32

8.	TESTING	33
	8.1 TEST CASES	
	8.2 USER ACCEPTANCE TESTING	
	8.2.1 Defect Analysis	35
	8.2.2 Test Case Analysis	35
9.	RESULTS	
	9.1 PERFORMANCE METRICS	36
10.	ADVANTAGES AND DISADVANTAGES	37
11.	CONCLUSION	39
12.	FUTURE SCOPE	40
13.	APPENDIX	
	13.1 SOURCE CODE	41
	13.2 GITHUB AND PROJECT DEMO	62
14.	REFERENCES	63

LIST OF ABBREVIATIONS

NN Neural Network

CNN Convolutional Neural Network

MNIST Modified National Institute of Standardand

Technology

HTML Hypertext Markup Language

CSS Cascading Style Sheet

INTRODUCTION

A system and method are provided for automatically estimating a repair cost for a vehicle. A method includes: receiving, at a server computing device over an electronic network, one or more images of a damaged vehicle from a client computing device; performing image processing operations on each of the one or more images to detect external damage to a first set of parts of the vehicle; inferring internal damage to a second set of parts of the vehicle based on the detected external damage; and, calculating an estimated repair cost for the vehicle based on the detected external damage and inferred internal damage based on accessing a parts database that includes repair and labor costs for each part in the first and second sets of parts.

1.1 PROJECT OVERVIEW

"Intelligent Vehicle Damage Assessment and Cost Estimator for Insurance Companies" Is the project developed to automate the process of insurance claiming. The rise of AI has been phenomenal in various fields, and the BFSI sector is no different. AI systems can analyze accident images to identify repair costs on a real-time basis. Insurance companies can experience better productivity by implementing AI in insurance claims processing and managing manual time for important tasks. AI accelerates the claims process and helps insurance companies experience better productivity.

Furthermore, in situations like a pandemic where social distancing norms are necessary, surveyors can perform their duties remotely. It not only helps save costs but also leads to savings in time. Automating routine processes like manual damage inspection of cars can overcome inconsistencies that can prove to be costly errors. Document capture technologies also help in handling large volumes of documents at once.

1.2 PURPOSE

By using application or managing expense tracking will help to control unnecessary expenses. It will distribute your expenses in different categories suitable for the user. An expense history will also be provided in application. Our goal is to create an "Intelligent Vehicle Damage Assessment & Cost Estimator for Insurance Companies" where user can be claim insurance through online and the process will be automated.

- > To estimate the cost for damaged body parts
- > To reduce the man power and time consumption
- > To reduce the leakage claims and increase the efficiency

LITERATURE SURVEY

2.1 EXISTING PROBLEM

Intelligent damage assessment system can assist the damage locator in the front-end damage detection process. The operator only needs to take several photos to upload according to the requirements, and the system can automatically identify the damage degree of the damaged parts and components. The system in the back-end nuclear damage link can provide auxiliary nuclear damage and anti-fraud services. It can identify the cases of fixed-loss errors through the logical recognition of vehicle parts, image fraud recognition, fixed-loss logic recognition, etc. At the same time, it can also meet the demands of anti-fraud and leakage prevention. At present, the intelligent damage assessment system can realize the appearance damage of passenger cars, including CAR, SUV, MPV and VAN. The applicable damage range covers all types of damage of vehicle exterior parts; the applicable environment range covers rain and snow environment, dark environment (vehicle can be seen by human eyes), strong light environment and other scenarios.

2.2 REFERENCES

Title:

Automatic assessment of damage and repair costs in vehicles

Authors:

Vikas Taliwal, Boston, Siddhartha Dalal, Kaigang Li, Brooklyn

Description:

A method for automatically estimating a repair cost for a vehicle, comprising, receiving, at a server computing device over an electronic network, one or more images of a damaged vehicle from a client computing device; performing image processing operations on each of the one or more images to detect external damage to a first set of parts of the vehicle; inferringinternal damage to a second set of parts of the vehicle based on the detected external damage; and, calculating an estimated repair cost for the vehicle based on the detected external damage and

inferred internal damage based onaccessing a parts database that includes repair and labour costs for each part in the first and second sets of parts. Additionally in some embodiments, the server

computing device may classify the loss as a total, medium or small loss.

Year: October 12, 2017

Title:

Automatic Car Insurance using Image Analysis

Authors:

Aniket Gupta, Jitesh Chogale, Shashank Shrivastav

Description:

Image analysis methods extract information from an image by using semi-automatic or automatic techniques termed: image understanding, image description, scene analysis, pattern

recognition, computer/machine vision etc). Image analysis is different from the various other

types of imageprocessing methods, such as the restoration or enhancement in that the end result

of image analysis procedures is a numerical output rather than an imageor some pictorial output.

By analyzing different techniques in literature review we conclude different technologies used

to provide solutions for insurance companies, such as Srimal Jayawardena uses 3D model of

car andother latest papers uses CNN model and categories different types of damages which

provide efficient machine learning concepts to predict cost evaluation for damage.

Year: April 5, 2020

Title:

Car Damage Detection using Machine Learning

Authors:

Girish N, Mohammed Ageel Arshad

Description:

One of the key research topics in computer vision is object detection. On the instance level, it

determines the category and position information of the object of interest in the image. RCNN,

Fast RCNN, Faster RCNN, and SSD are some of the most popular target detection algorithms.

These frameworks, on the other hand, necessitate a large quantity of training data and thus end-

to-end detection is not possible. The detection frame's positioning ability is limited, and the

gradient disappearance or gradient explosion is common when a feature is extracted as the

number of convolution layers grows. For these drawbacks, Author proposed a residual network

6

(ResNet) that uses the residual module to help the model converge, accelerates neural network training, and integrates it with the Mask RCNN target detection model to achieve object detection and segmentation, significantly enhancing model detection accuracy. Mask RCNN is the first deep learning model that incorporate target identification and segmentation in a single network.

Year:

May 15, 2021

2.3 PROBLEM STATEMENT DEFINITION

Mr.Abdul is a 55 years old man. He had a own Car and he worked at basic salary for past 30 Years, In this 30 Years he Faced a problem in Choosing Car Damage and Insurance claim.

- Vimal Rajesh wants to know the better recommendation for insurance claiming.
- He has faced huge losses for a long time.
- This problem is usually faced by lot of Customers.
- Mr. Vimal Rajesh needs to know he result immediately for Insurance claim.

Who does the problem affect?	Persons was claim the assessment amount.
What are the boundaries of the problem?	People who vehicle and facing Issues of Insurance claiming.
When does this issue occur?	The issues occurred in damage part not fully estimation interior part not estimated so issues occur in company side.
Where is the issue occurring?	The issue occurs in Automobile industry interior part damage not fully estimated so issues occur in company side, particularly City side.
Why is it important that we fix the problem?	The required for Automobile industry day by developing so the opposite side accident count also increase accident car owner has claim the actual amount of damage so they consider to fix problem And also customer can see the each and every part

	repairing cost that problem also ratified in this
	process.
What solution to solve this issue?	An automated system is introduced to identify
	different diseases on plants by checking the
	symptoms shown on the leaves of the plant.
What methodology used to solve the issue?	Deep learning techniques are used to identify the
	specific part of damage repair cost and suggest
	modify cost rate.

IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes. It is a useful tool to helps teams better understand their users. Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

3.2 IDEATION & BRAINSTORMING

Brainstorm & Idea Prioritization:

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich number of creative solutions.

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

① 20 minutes

Step-3: Idea Prioritization

3.3 PROPOSED SOLUTION

S.NO	PARAMETER	DESCRIPTION
1	Problem Statement (Problem to be solved)	Insurance company frequently suffer loses. Because they did not provide a proper explanation regards the estimation of the damage to the customer.
2	Idea / Solution Description	 We create an AI Model to sense and detect the precise amount damage that occurred inthe vehicle. Then we create a user accessible portal and securely store the data provided by the user. Finally compare the gathered image percentage with the statistical cost estimation value to predict the cost.
3	Novelty / Uniqueness	1.The AI Model automatically calculates the damaged vehicle cost.2.The deep learning algorithm provides progressively higher level features.

4	Social Impact / Customer Satisfaction	 It's the user friendlywebsite. All the images and personal data will be secured in the cloud data security. 		
5	Business Model (Revenue Model)	Insurance companies have two primary sources of income Underwriting & Investment income. Financial investmentsincluding Listed shares, Government bonds, and Corporate bonds, make up the majority of insurance firms' assets. By estimating the level of car damage using our AI model and providing insurance accordingly, they cansave more money and invest it in their businesses.		

6	Scalability of the Solution	 With the use of advanced machine Learning techniques analyze damaged vehicles with highaccuracy levels and keep on improving thelearning ability of the model. Our AI model can operate at the scale, speed, and complexity required for the aim.
---	-----------------------------	--

3.4 PROBLEM SOLUTION FIT

REQUIREMENT ANALYSIS

4.1 Functional requirements

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through
		Form
		Registration through
		Gmail
FR-2	User Confirmation	Confirmation via
		Email
		Confirmation via
		OTP
FR-3	User details	Users are required to register their personal details
		likename, age, date of birth, driving license, car
		number etc.
FR-4	User requirements	The user simply inputs vehicle damage images. The
		software will instantly generate an accurate reading
		of the image detection analysis in a readable format
		familiar to thecustomer. It compares the information
		already given and states the defect percentage and
		cost inthat vehicle damage image.

${\bf Non-functional\ Requirements:}$

Following are the non-functional requirements of the proposed solution.

NFR No.	Non-Functional Requirement	Description
NFR-1	Usability	More efficient for the frequent users.
		users can easily understand what the
		applicationdoes and feel satisfied with
		the system.
NFR-2	Security	AI powered vehicle damage assessment
		and cost estimator for insurance company
		should contain more security in which our
		data whichentered or maintained should be
		more security With the help of the
		username and password it provides more
		security in which it can access more
		securable and the data are private.
NFR-3	Reliability	This application must perform without failure in
		90 percent of use cases during a month. it is more
		reliable.
NFR-4	Performance	This application supporting 1,050 users per hour
		must provide 5 seconds or less response time in
		a desktop browser, including the rendering of
		text and images, over an LTE connection. The
		performance of this application is effective and
		efficient.

NFR-5	Availability	The web dashboard must be available to user's		
		99.9 percent of the time every month during		
		business hours EST. Users can access any time		
		and any where.		
NFR-6	Scalability	The application must be scalable enough to		
		support 10,000 visits at the same time while		
		maintaining optimal performance and efficient to		
		retrieve image in large scale thus improving		
		scalability.		

PROJECT DESIGN

5.1 Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 Solution & Technical architecture

5.3 User Stories

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
	Registration	USN-1	As a user, I can	I can access my	High	Sprint-1
			register for the	account/dashboard		
			application by			
Customer			entering my			
			email,password,			
			and confirming			
			my password			
	Login	USN-2	As a user, I can	I can access my	High	Sprint-1
			register for the	account/dashboard		
			application			
			through Gmail			
	Dashboard	USN-3	As a user, I can	I get all the info	Low	Sprint-2
			log into the	needed in my		
			application by	dashboard.		
			entering email			
			& password			
	Order creation	USN-4	As a customer,	I can ask my query	Medium	Sprint-2
			I can place my			
			order with the			
			detailed			
			description of			
			my query			
	Forgot	USN-5	As a customer, I	I get access to my	High	Sprint-3
	password		can reset my	account again		
			password by			
			this option in			

			case I forgot my			
			old password.			
	Order details	USN-6	As a Customer,	I get better	Medium	Sprint-4
			I can see the	understanding		
			current stats of			
			order			
Agent	Login	USN-1	As an agent I	I can access my	Medium	Sprint-3
(Web			can login to the	account/dashboard		
user)			application by			
			entering correct			
			email and			
			password			
	Dashboard	USN-2	As an agent I	I can see the	High	Sprint-3
			can see the	tickets to which I	_	_
			order details	could answer		
			assigned to me			
			by admin			
	Address	USN-3	As an agent I	I can clarify issues	High	Sprint-3
	column		get to have	,	8	
			conversation			
			with the			
			customer and			
			clear his/her			
			doubts			
	Forget	USN-4		I get to access to	Medium	Sprint-4
	Forgot	USIN-4		I get to access to	ivicululii	Spinit-4
	password		can reset my	my account again		
			password by			
			this option In			

			case I forgot my			
			old password			
Admin	Login	USN-1	As a admin, I	I can access my	High	Sprint-1
user			can login to the	account/dashboard		
(mobile			application by			
user and			entering email			
web user)			and password			
	Dashboard	USN-2	As an admin I	I can assign agents	High	Sprint-1
			can see all the	by seeing those		
			orders raised in	order.		
			the entire			
			system and lot			
			more			
	Agent	USN-	As an admin	I can create	High	Sprint-
	creation	3	I can create an	agents		2
			agent for			
			clarifying the			
			customers			
			queries			
	Assignment	USN-	As an admin	Enable agent	High	Sprint-
	agent	4	I can assign an	to clarify the		1
			agent for each	queries.		
			order created by			
			the customer			

Forgot	USN-	As an admin	I get access to	High	Sprint-
password	5	I can reset my	account		1
		password by			
		this option in			
		case I forgot my			
		old password.			

PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

	Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
	Sprint-	Homepage	USN-	AS a	10	High	Sanjay K
1			1	user I can			
				view the			
				index page			
				to see the			
				about of the			
				Expense			
				tracker			
	Sprint-	Registration	USN-	As a	10	High	Veerakumaravelu M
1			2	User, I need			
				to register			
				user id and			
				passcode			
				for every			
				workers			
				over there in			
				municipality			
	Sprint-	Login	USN-	As a	10	High	Neethiarasan S
1			3	user, I need			
				to login			
				with user id			
				and			
				password to			
				get in to the			
				website			

	Sprint-	Dashboard	USN-	As a	20	Low	Nithesh, Neethiarasan
2			4	User, I will			
				follow Co-			
				Admin's			
				instruction			
				to reach the			
				filling bin in			
				short roots			
				and save			
				time			
	Sprint-	Uploading	USN-	As a	20	Medium	Veerakumaravelu M
3	•	image	5	User I will			
		S		add my			
				expense			
				throughout			
				the month I			
				spend on			
	Sprint-	Cost Estimation	USN-		20	Medium	Sanjay,veerakumaravelu
3	Sprint	Cost Estimation	6	User I can	20	1/10010111	zanjaj, reerakamara rera
				view my			
				expense in a graph of			
				overview of			
				the expense I spend.			
	Sprint-	Deployment		As a	20	High	Neethiarasan,
4		in cloud	7	User I can			Veerakumaravelu,
				access the cloud to			Sanjay,nithesh
				store my			
				data of			
				expense			

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	23 Oct 2022	28 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	30 Oct 2022	04 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	06 Nov 2022	11 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	13 Nov 2022	18 Nov 2022	20	19 Nov 2022

CODING AND SOLUTIONING

7.1 FEATURE 1

7.2 FEATURE 2

The Estimated Cost of the Damage:9000 - 11000 INR

CHAPTER 8 TESTING

8.1 TEST CASES

TEST CASE ID	FEATURE TYPE	COMPONENT	TEST SCENARIO	EXPECTED RESULT	ACTUAL RESULT	STATUS
TC_001	UI	Home Page	Verify UI elements in the Home Page	The Home Page must be displayed properly	Working as expected	PASS
TC_002	UI	Home Page	Verify whether the page is responsive	The Home Page must display in the same way in all devices	The UI is displayed correctly only on the desktop screens	FAIL
TC_003	Functional	Home Page	Check if user could navigate to the next page	The button in the Home Page is directing to next page	Working as expected	PASS
TC_004	Functional	Backend	Check if all the routes are working properly	All the routes should properly work	Working as expected	PASS
TC_005	Functional	Model	Check if the model can handle various image sizes	The model should rescale the image and predict the results	Working as expected	PASS
TC_006	Functional	Model	Check if the model predicts the amount	The model should predict the Amount	Working as expected	PASS

TC_007	Functional	Prediction Page	Reports error if files are not uploaded	Prediction Page pops out error page if file is not uploaded	Working as expected	PASS
TC_008	UI	Prediction Page	Verify UI elements in the Prediction Page	The Prediction page must be displayed properly	Working as expected	PASS
TC_009	UI	Prediction Page	Check if the result is displayed properly	The result should be displayed properly	Working as expected	PASS
TC_010	Functional	Model	Check if the model can handle Complex input image	The model should predict the amount in the complex image	The model fails to identify the amount since the model is not built to handle such data	FAIL

8.2 USER ACCEPTANCE TESTING

Acceptance Testing is a level of the software testing where a system is tested for acceptability. The purpose of this test is to evaluate the system's compliance with the business requirements and assess whether it is acceptable for delivery. Formal testing with respect to user needs, requirements, and business processes conducted to determine whether or not a system satisfies the acceptance criteria and to enable the user, customers or other authorized entity to determine whether or not to accept the system. In this application, the customer's acceptance is been monitored and it is been put into usage.

8.2.1 TEST CASE ANALYSIS

SECTION	TOTAL CASES	NOT TESTED	FAIL	PASS	
Client Application	5	0	1	4	
Security	1	0	0	1	
Performance	3	0	1	2	
Exception Reporting	1	0	0	1	

RESULTS

9.1 PERFORMANCE METRICS

Script: locust.py									
Request Statistics									
Method	Name	# Requests	# Fails	Average (ms)	Min (ms)	Max (ms)	Average size (b	ytes) RPS	6 Failures/s
GET		1043		13	4	290	1079	1.9	0.0
GET	//predict	1005		39648	385	59814	2670	1.8	0.0
	Aggregated	2048	0	19462	4	59814	1859	3.7	0.0
_									
Response Time Statistics									
Method	Name	50%ile (ms)	60%ile (ms)	70%ile (ms)	80%ile (ms)	90%ile (ms)	95%ile (ms)	99%ile (ms)	100%ile (ms)
GET		10	11	13	15	19	22	62	290
GET	//predict	44000	46000	47000	48000	50000	52000	55000	60000
	Aggregated	36	36000	43000	45000	48000	50000	54000	60000

ADVANTAGES AND DISADVANTAGES

10.1 ADVANTAGES

- Estimating damages with over 90% accuracy: Our model for vehicle damage detection is trained with tens of thousands of real images of car accidents. Providing over 90% accuracy for the damage estimation and cost estimation.
- Speeding up the claims process: It is quite evident that using artificial intelligence solutions that can automatically approximate the cost of damages in minutes, would cut down on the extra time taken in the traditional claims process. Hence, insurance holders will not need to wait for weeks for their claim to be approved. This contributes to greatly improved customer experiences.
- Elimination of mistakes: Everything is subject to human error and AI solutions can help
 prevent inaccuracies in the estimation of damages and costs, which can save a lot of money.
 There is no need to worry about mistakes being made regarding the estimation of damage
 caused to a vehicle in an accident because the AI software does all the work in an efficient
 and reliable manner.
- Versatility: The application can be used for any vehicle, irrespective of type, model, origin, etc. This makes the solution versatile as it can be used on any vehicle. In an accident, the model and the type of vehicle heavily influence the amount of money needed for damage reparation. AI can be used to estimate these costs in no time, as it can recognize the unique characteristics of each vehicle and act accordingly.
- Severity analysis: It is of paramount importance to know how severe the damages are. A
 map of the areas affected by the accident is drawn out and the severity is rated. This
 provides a user-friendly solution to understand how each part of the vehicle has been
 affected by the accident.

DISADVANTAGES

- Manually tracking all cash that is spent can be irritating as well as time consuming
- In the growth of technology, images are processed more by the computer vision in a large amount. Together with the trend, there is also the simultaneous rise of fraudulent claims in insurance as a deceptive act. The claims can be repeated for identical damages in order to deceive the system or people, which leads to the big loss to the insurance carrier

CONCLUSION

In the future, we will continue to explore the innovation of insurance technology of 'AI + Vehicle Insurance'. We hope that we can use the power of intelligent damage determination system. On the one hand, the owner can take photos by one click to achieve rapid loss determination, price estimation and immediate compensation. On the other hand, it assists insurance companies to achieve rapid and accurate pricing in the process of fixing losses and claims. Finally, by combining the rapid compensation of accident vehicles to relieve traffic pressure, to avoid more serious personal and property losses caused by secondary accidents.

FUTURE SCOPE

In the future, application can be improved with following features:

- Display the image of the car with scanned analysis.
- Multiple cars can be scanned at a time.
- Now, only cars can be analyzed. In future every vehicles will be made to be scanned and analyzed.
- To build an android app to support on mobile platforms.

APPENDIX

13.1 SOURCE CODE

App.py

from cloudant.client import Cloudant

import os

import tensorflow

from keras.utils import load_img, img_to_array

from werkzeug.utils import secure_filename

import numpy as np

from keras.models import load_model

from tensorflow.python.ops.gen_array_ops import concat

from keras.applications.inception_v3 import preprocess_input

#creating the Cloudant Database

client = Cloudant.iam("4d6e563a-8f74-40cf-959d-a767edfb9e6f-

bluemix","KsH9257a5n7jNU3aWE1zvCKn-1-

wSFw47DVt4_R5zKFm",connect=True)

database = client.create_database("bath4_database")

#load model

model1 = load_model('C:\\Users\\DELL\\Desktop\\IBM PROJECT 4\\IBM-

 $Project-23426-1659882722 \backslash Final\ Deliverables \backslash model \backslash body.h5')$

 $model2 = load_model('C:\Users\DELL\Desktop\IBM PROJECT 4\IBM-PROJECT 4)$

 $Project-23426-1659882722 \backslash Final\ Deliverables \backslash model \backslash level.h5')$

from flask import Flask,render_template,request,redirect,url_for

```
app = Flask(__name__)
@app.route('/')
def home():
  return render_template('index.html')
#login page setting
@app.route('/login')
def login():
  return render_template('login.html')
@app.route('/afterLogin',methods=['POST','GET'])
def afterlogin():
  user = request.form['_id']
  passw = request.form['psw']
  print(user,passw)
  query = {'_id':{'$eq':user}}
  docs = database.get\_query\_result(query)
  print(docs)
  print(len(docs.all()))
  if(len(docs.all())==0):
```

```
return render_template('login.html',message='The username is not found')
  else:
     if((user==docs[0][0]['_id'] and passw==docs[0][0]['psw'])):
       return redirect(url_for('prediction'))
     else:
       return render_template("login.html",message="Invalid User Details")
#Register page setting
@app.route('/register')
def register():
  return render_template('register.html')
@app.route('/afterRegister',methods=['POST'])
def afterregister():
  x = [x \text{ for } x \text{ in request.form.values}()]
  print(x)
  data = {
     '_{id}:x[1],
     'name':x[0],
     'psw': x[2]
   }
  print(data)
  query = {'_id':{'$eq' : data['_id']}}
  docs = database.get_query_result(query)
```

```
if(len(docs.all())==0):
    url = database.create_document(data)
              render_template('register.html',
                                                 message="Registration
                                                                             is
    return
Successfully Completed")
  else:
    return render_template("register.html", message="You are already a
member!")
prediction.Html
@app.route('/prediction')
def prediction():
  return render_template('prediction.html')
#logout page
@app.route('/logout')
def logout():
  return render_template('logout.html')
#results
@app.route('/result', methods = ['GET', 'POST'])
def upload_file():
 if request.method == 'POST':
    f = request.files['_file']
```

```
basepath = os.path.dirname(__name__)
filepath = os.path.join(basepath, 'uploads', f. filename)
f.save(filepath)
img = load_img(filepath,target_size=(224,224))
x = img\_to\_array(img)
x = np.expand\_dims(x,axis=0)
img_data = preprocess_input(x)
prediction1 = np.argmax(model1.predict(img_data))
prediction2 = np.argmax(model2.predict(img_data))
index1 = ['front','near','side']
index2 = ['minor', 'moderate', 'severe']
result1 = index1[prediction1]
result2 = index2[prediction2]
if(result1=="front" and result2=="minor"):
  value= "3000 - 5000 Inr"
elif(result1=="front" and result2=="moderate"):
  value = "6000 - 8000 Inr"
elif(result1=="front" and result2=="severe"):
  value="9000 - 11000 Inr"
elif(result1=="near" and result2=="minor"):
  value="4000 to 6000 Inr"
elif(result1=="near" and result2=="moderate"):
```

```
value="7000 - 9000 Inr"
    elif(result1=="near" and result2=="severe"):
       value="11000 - 13000 Inr"
    elif(result1=="side" and result2=="minor"):
       value="6000 - 8000 Inr"
    elif(result1=="side" and result2=="moderate"):
       value="9000 - 11000Inr"
    elif(result1=="side" and result2=="severe"):
       value="12000 - 15000 Inr"
    else:
       value = "16000 - 50000 Inr"
    return render_template("prediction.html",prediction=value)
if (__name__ == '__main__'):
  app.run(debug=True)
Index.html
<!DOCTYPE html>
<html lang="en">
 <head>
  <meta charset="UTF-8"/>
  <meta http-equiv="X-UA-Compatible" content="IE=edge" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  link
   rel="stylesheet"
```

```
href="{{ url_for('static', filename = 'style.css') }}"
  <title>IVA System</title>
 </head>
 <body>
  <nav class="navbar">
   <div class="navbar_heading">
     Intelligent Vehicle damage Assessment & Cost Estimator for Insurence
Companies
    </marquee>
   </div>
   <div class="navbar__items">
    <a class="navbar items text" href="/">Home</a>
    <a class="navbar__items__text" href="/login">Login</a>
    <a class="navbar__items__text" href="/register">Register</a>
   </div>
  </nav>
  <main>
   <div class="main content">
    <h1 class="main_content_heading">About</h1>
    The project "Intelligent Vehicle Damage Assessment and Cost Estimator
     for Insurance Companies" is a responsive web application powered by
     aritifical Intelligence and IBM Watson Cloud. Deep Learning model is
     trained with the various damaged car images in various views and the
     VGG16 from the TensorFlow library is used for the better Deep Learning
```

model architecture. An attractive front end can be developed using HTML and CSS. The pages such as Index.html, login.html, logout.html, register.html and prediction.html are created and embedded with the IBM cloud databse using python framework called flask. The web application takes the image input and estimate the cost for the insurance companies based on the damages in the car.

```
</div>
  </main>
  <footer class="footer">
   <div class="footer__text">©Copyright@2022</div>
   <div class="footer__logo">
    <a href="https://www.linkedin.com/in/neethiarasan-s-37a023194/"
     ><svg
      xmlns="http://www.w3.org/2000/svg"
      width="18"
      height="18"
      fill="#fff"
      class="bi bi-linkedin"
      viewBox="0 0 16 16"
      <path
       d="M0 1.146C0 .513.526 0 1.175 0h13.65C15.474 0 16 .513 16
1.146v13.708c0 .633-.526 1.146-1.175 1.146H1.175C.526 16 0 15.487 0
14.854V1.146zm4.943 12.248V6.169H2.542v7.225h2.401zm-1.2-8.212c.837 0
```

1.358-.554 1.358-1.248-.015-.709-.52-1.248-1.342-1.248-.822 0-1.359.54-1.359

```
1.248 0 .694.521 1.248 1.327 1.248h.016zm4.908 8.212V9.359c0-.216.016-.432.08-.586.173-.431.568-.878 1.232-.878.869 0 1.216.662 1.216 1.634v3.865h2.401V9.25c0-2.22-1.184-3.252-2.764-3.252-1.274 0-1.845.7-2.165 1.193v.025h-.016a5.54 5.54 0 0 1 .016-.025V6.169h-2.4c.03.678 0 7.225 0 7.225h2.4z"/> </svg > </a> <a href="https://github.com/neethiarasan30"<svg" xmlns="http://ywww.w2.org/2000/svg" xmlns="http://www.w2.org/2000/svg" xmlns="http://www.wa.org/2000/svg" xmlns="http://w
```

```
<a href="https://github.com/neethiarasan30" <svg
xmlns="http://www.w3.org/2000/svg"
width="18"
height="18"
fill="#fff"
class="bi bi-github"
viewBox="0 0 16 16">
<path
```

d="M8 0C3.58 0 0 3.58 0 8c0 3.54 2.29 6.53 5.47 7.59.4.07.55-.17.55-.38 0-.19-.01-.82-.01-1.49-2.01.37-2.53-.49-2.69-.94-.09-.23-.48-.94-.82-1.13-.28-.15-.68-.52-.01-.53.63-.01 1.08.58 1.23.82.72 1.21 1.87.87 2.33.66.07-.52.28-.87.51-1.07-1.78-.2-3.64-.89-3.64-3.95 0-.87.31-1.59.82-2.15-.08-.2-.36-1.02.08-2.12 0 0 .67-.21 2.2.82.64-.18 1.32-.27 2-.27.68 0 1.36.09 2 .27 1.53-1.04 2.2-.82 2.2-.82.44 1.1.16 1.92.08 2.12.51.56.82 1.27.82 2.15 0 3.07-1.87 3.75-3.65 3.95.29.25.54.73.54 1.48 0 1.07-.01 1.93-.01 2.2 0 .21.15.46.55.38A8.012 8.012 0 0 0 16 8c0-4.42-3.58-8-8-8z"/></svg>

</div>
</footer>
</body>
</html>

Login.html

```
<!DOCTYPE html>
<html lang="en">
 <head>
  <meta charset="UTF-8"/>
  <meta http-equiv="X-UA-Compatible" content="IE=edge" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  link
   rel="stylesheet"
   href="{{ url_for('static', filename = 'style.css') }}"
  />
  <title>Login Page</title>
  <style>
    body{
     background-color: rgba(255, 0, 0, 0);
    }
    form {
     margin: 0 auto;
     margin-top: 20px;
     }
     label {
     color: #555;
     display: inline-block;
     margin-left: 18px;
     padding-top: 10px;
     font-size: 14px;
```

```
input[type=text],
    input[type=password] ,input[type=time]{
    color: #777;
    padding-left: 10px;
    margin: 10px;
    margin-top: 12px;
    margin-left: 18px;
    width: 290px;
    height: 35px;
    border: 1px solid #c7d0d2;
    border-radius: 2px;
    box-shadow: inset 0 1.5px 3px rgba(190, 190, 190, .4), 0 0 0 5px #f5f7f8;
    -webkit-transition: all .4s ease;
    -moz-transition: all .4s ease;
    transition: all .4s ease;
    }
 </style>
</head>
<body>
 <nav class="navbar">
  <div class="navbar_heading">Login Page</div>
  <div class="navbar items">
   <a class="navbar__items__text" href="/">Home</a>
   <a class="navbar__items__text" href="/login">Login</a>
```

```
<a class="navbar__items__text" href="/register">Register</a>
  </nav>
  <register_container class="_register_">
    <form action="afterLogin" method="post">
       <label for="Email">Enter your Email ID</label>
       <input type="text" id="_id" name="_id">
       <label for="password">Enter the Password</label>
       <input type="password" id="psw" name="psw">
       <div>
       <input type="submit" value="Login">
       </div>
    </form>
    <div>
     < h3 > \{ \{ message \} \} < /h3 >
    </div>
  </register_container>
  </body>
  </html>
Logout.html
<!DOCTYPE html>
<html lang="en">
 <head>
  <meta charset="UTF-8"/>
  <meta http-equiv="X-UA-Compatible" content="IE=edge" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  link
   rel="stylesheet"
```

```
href="{{ url_for('static', filename = 'style.css') }}"
  <title>Login Page</title>
 </head>
 <body>
  <nav class="navbar">
   <div class="navbar_heading">Logout Page</div>
   <div class="navbar items">
    <a class="navbar__items__text" href="/">Home</a>
    <a class="navbar__items__text" href="/login">Login</a>
    <a class="navbar__items__text" href="/register">Register</a>
  </nav>
  <main>
    <div class="main__content">
     <h1 class="main_content_heading">Successfully Logged Out!</h1>
    </div>
   </main>
  </body>
  </html>
Prediction.html
<!DOCTYPE html>
<html lang="en">
 <head>
  <meta charset="UTF-8"/>
  <meta http-equiv="X-UA-Compatible" content="IE=edge" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  link
```

```
rel="stylesheet"
   href="{{ url_for('static', filename = 'style.css') }}"
  />
  <title>prediction</title>
 </head>
 <body>
  <nav class="navbar">
   <div class="navbar_heading">Vehicle Damage Detection</div>
   <div class="navbar__items">
    <a class="navbar__items__text" href="/">Home</a>
    <a class="navbar__items__text" href="/logout">Logout</a>
  </nav>
  <form action="result" method="post" enctype="multipart/form-data">
   Select image to upload:
   <input type="file" name="_file" id="_file">
   <input type="submit" value="submit" name="submit">
  </form>
  <main>
   <div class="main__content">
    <h1 class="main_content_heading">The Estimated Cost of the
Damage:{{prediction}}</h1>
   </div>
  </main>
 </body>
</html>
```

Register.html

```
<!DOCTYPE html>
<html lang="en">
 <head>
  <meta charset="UTF-8"/>
  <meta http-equiv="X-UA-Compatible" content="IE=edge" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  link
   rel="stylesheet"
   href="{{ url_for('static', filename = 'style.css') }}"
  />
  <title>Registeration Page</title>
  <style>
    body {
     background-color: rgba(255, 0, 0, 0);
    }
    form {
     margin: 0 auto;
     margin-top: 20px;
     }
     label {
     color: rgb(0, 0, 0);
     display: inline-block;
     margin-left: 18px;
     padding-top: 10px;
     font-size: 14px;
```

```
input[type=text],
    input[type=password] ,input[type=time]{
    color: #777;
    padding-left: 10px;
    margin: 10px;
    margin-top: 12px;
    margin-left: 18px;
    width: 290px;
    height: 35px;
    border: 1px solid #c7d0d2;
    border-radius: 2px;
    box-shadow: inset 0 1.5px 3px rgba(190, 190, 190, .4), 0 0 0 5px #f5f7f8;
    -webkit-transition: all .4s ease;
    -moz-transition: all .4s ease;
    transition: all .4s ease;
    }
 </style>
</head>
<body>
 <nav class="navbar">
  <div class="navbar_heading">Vehicle Damage Detection</div>
  <div class="navbar__items">
   <a class="navbar__items__text" href="/">Home</a>
   <a class="navbar__items__text" href="/login">Login</a>
   <a class="navbar__items__text" href="/register">Register</a>
 </nav>
```

```
<register_container class="_register_">
    <form action="afterRegister" method="post">
       <label for="Name">Enter Your Name</label>
       <input type="text" id="Name" name="name" placeholder="Your</pre>
name..">
       <label for="Email">Enter your Email ID</label>
       <input type="text" id="Email" name="Email" placeholder="Your mail</pre>
ID..">
       <label for="password">Enter the Password</label>
       <input type="password" id="password" name="password"</pre>
placeholder="Password..">
       <div>
       <input type="submit" value="Register" >
       </div>
    </form>
    <div>
      < h3 >
       {{message}}
      </h3>
    </div>
  </register_container>
  </body>
  </html>
```

Style.css

```
@import
              url("://cdn.jsdelivr.net/npm/bootstrap-icons@1.9.1/font/bootstrap-
icons.css");
https
*{
  margin: 0;
  padding: 0;
  box-sizing: border-box;
}
.navbar{
  display: flex;
  justify-content: space-between;
  align-items: center;
  padding: 16px 20px;
  background-color: rgb(0, 0, 0);
  color: #fff;
}
.navbar_heading {
  font-size: 25px;
  text-shadow: 0 0 10px #FF0000, 0 0 10px #0000FF;;
}
.navbar__items {
  display: flex;
```

```
gap: 20px;
  align-items:center;
  text-shadow: 0 0 10px #FF0000, 0 0 10px #0000FF;;
}
.navbar__items__text {
  cursor: pointer;
  text-decoration: none;
  color:rgb(255, 255, 255);
  font-size: 25px;
}
.main__content {
  min-height: 90vh;
  display: flex;
  justify-content: center; /* Remove later */
  flex-direction: column;
  align-items: center;
  padding: 50px;
  background-color: rgba(255, 0, 0, 0);
}
.main__content__heading {
```

```
font-size: 50px;
  text-decoration: solid;
}
.main__content__para {
  padding: 20px 200px;
  text-align: center;
  font-size: 20px;
  line-height: 30px;
  font-size: 22px;
}
.footer {
  display: flex;
  justify-content: space-between;
  align-items: center;
  padding: 16px 20px;
  background-color: #000;
  color: #fff;
}
.footer__text{
  font-size: 20px;
}
.footer__logo {
  display: flex;
```

```
gap: 20px;
  align-items: center;
  color: #fff;
._login_{
     position: fixed;
     width: 340px;
     height: 175px;
     top: 50%;
     left: 50%;
     margin-top: -140px;
     margin-left: -170px;
     background: #fff;
     border-radius: 3px;
     border: 1px solid #ccc;
     box-shadow: 0 1px 2px rgba(0, 0, 0, .1);
}
._register_{
  position: fixed;
  width: 340px;
  height: 280px;
  top: 50%;
  left: 50%;
  margin-top: -140px;
  margin-left: -170px;
  background: rgb(255, 255, 255);
  border-radius: 3px;
```

13.2 GitHub & Project Demo Link:

13.2.1 GITHUB LINK - https://github.com/IBM-EPBL/IBM-Project-46173-1660740470

13.2.2 Project Demo Link -

 $\frac{https://drive.google.com/drive/u/0/folders/1MYsnEsEerLustnz8rT5k4GhkJdN}{zYmfL}$

REFERNCES

- [1] LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural computation, 1989, pp. 541-551.
- [2] Krizhevsky, A., Sutskever, I., Hinton, G. Imagenet classification with deep convolutional neural

networks. In NIPS, 2012, pp. 1097-1105.

[3] Zeiler, M. D., Fergus, R. Visualizing and understanding convolutional neural networks. In

ECCV, 2014, pp. 818-833.

- [4] LeCun, Y., Bengio, Y., Hinton, G. Deep learning. Nature, 2015(521), pp. 436-444.
- [5] Simonyan, K., Zisserman, A. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015, pp. 1409.1556.
- [6] Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Faster R-CNN: Towards real-time object

detection with region proposal networks. In NIPS, 2015, pp. 91-99.

[7] Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick. Mask R-CNN. In ICCV, 2017, pp.

2980-2988