Transferring Positioning Model for Device-free Passive Indoor Localization

Kazuya Ohara*, Takuya Maekawa (Graduate School of Information Science and Technology, Osaka University)

Yasue Kishino, Yoshinari Shirai, Futoshi Naya (NTT Communication Science Laboratories)

Research Background

Device-free passive indoor positioning

- Estimate position of person in indoor environment
- Need not to carry any device

- surveillance of elderly person
- smart homes automation

Research Purpose

Collecting labeled training data at many positions in the target environment is costly

Purpose Construct an indoor positioning model by transferring training data from other environments (source environments)

variance of signal strength to track the person

Overview of proposed method

Proposed method (Necessary information)

source environment

RSSI RSSI t

target environment

- Floor plans (layout of walls)
- RSSI when there is no person
- <u>Labeled RSSI</u>e.g. by video recording

- Floor plans (layout of walls)
- > RSSI when there is no person
- Unlabeled RSSI

Learning variance model

Learning variance model

Transferring variance model

- 1. Find top-k similar source sub-line segments
 - i. the same end points of sub-line segment
 - ii. the same number of walls
 - iii. kNN search according to three criteria

source environment

2. Transferring variance model

Averaging parameters of top-k source models

Transferring variance model

Criteria used for selecting source sub-line segments with *k*NN search

1. Length of sub-line segment 2. Signal strength when there is a

Transferring variance model

Criteria used for selecting source sub-line segments with kNN search

1. Length of sub-line segment 2. Signal strength when there is no person materials on segments are similar 3m target source **Probability** 2m compare distribution **RSSI** 3. Variance value when a person passes randomly compare Variance distribution source Probability From unlabeled data Time target Variance outlier detection Variance Time

Learning models

Passing detection model

- Detecting whether or not a person passes
- Training data : variance values observed by selected source sub-line segments

Variance

Learning models

Positioning model

- Estimate position of a person when passing is detected
- Compute variance values at some points from a transferred

Two positions match

Tracking by using particle filter

Tracking by using particle filter

Particle filter

- Particle : position of a person
- ➤ High density particles
 - High probability that the person is there

Evaluation (Environments)

- 1 Wi-Fi AP and 10 receivers
- Walk around for 20 minutes in each environment
- Leave-one-out cross-validation evaluation

Evaluation (Results)

Evaluating proposed method

Supervised • • • trained on labeled data obtained in the same environment Random • • • select randomly *k sub-line* segments while transferring variance model

Conclusion

 We proposed a new method that enables us to construct a positioning model for device-free passive indoor localization with little effort

 As a part of our future work, we plan to automatically obtain unlabeled data in an end user's daily life to reduce burdens imposed on the user