Na	me Key Period			
Ms. Foglia				
AP: CHAPTER 17: FROM GENE TO PROTEIN				
1.	How did diseases involving metabolic pathways lead to hypotheses about the nature of genes?			
	hypothesis that symptoms of an inherited disease			
	reflect a persons inability to make a particular enright			
2.	Identify some genetic diseases that occur along metabolic pathways.			
	albinism diabetes, adrenoleukodystophy			
	vivenias syndrome			
3.	What was Beadle and Tatum's hypothesis regarding enzymes? 'One-gene-one-chizyrhe			
	function of a overe is to dictate the			
	production of accreain anyme			
4.	How has that hypothesis been modified? Home gene -one-polypoptide			
	- ron-exymes, produces made of several			
	<u>hetypephyle chaunis</u>			
5.	What occurs during transcription?			
	- DMA is transcribed one meschoel PMA			
6.	What occurs during translation?			
	- Prossenger PNA is read to build proteins			

Name		e Ms. Foglia	
7.	Нс	ow does the protein process differ in prokaryotes and eukaryotes?	
	· -	prokaryotes-no nucleus; so translation can begin	
		shire transcription is occurring	
8.	Bri	riefly explain how Marshall Nirenberg and Heinrich Matthaei "cracked the genetic code?"	
	a	entificial system to decode/decipher codons	
		found that "ullil" cooles for phenylalanine	
9.	WI	/hat is the genetic code and why is said to be universal?	
	<u>. C</u>	amino acids coded for by certain codons, shared	
	t	by organisms from simplest bacteria to most	
10.		ist several features about the genetic code.	
		universal, some redundancy but no	
		ambi guid &	
11.	Giv	ive an example of what happens if reading frames are altered?	
	-	proteins are not synthesized properly	
		(mutated)	
		st the highlights of the three stages of transcription.	
	a.	Initiation transcription start point "promoter" (TATA	00
		* transcription initration complex (transcription fac	2101 19m
	b.	Elongation RNA polymerase moves along DNA universing	
	_	it and adding nucleotides to the 3'end of the RNA molec	de
	C.	Termination bacteria-termination signal,	
		Eukaryotes - polyadenylation signal MAUA	AA)

2004-2005

Nam	ie Key	Ms. Foglia
13. V	What happens to the transcript RNA before it leaves the nucleus?	
	it has to be processed - the ends have	e to
	be altered (5'cap, poly-A tail)	
14. V	What is the advantage of the 5' cap and poly A tail?	
<u> </u>	facilitate the export of mature mRNA from	the huleus
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	help protect the MRNA from degradation. Nelp nibosomes attach to the 5 end of - Distinguish between exons and introns.	the mirNA
1	ntrons-non-coding regions that between cod	ing regions
	exons - coding regions that are express	
	Describe the mechanism for splicing RNA.	
1	on RNPs recognize splice sile, several sirN	Ps form a
	spliceosome	
17. V	What does alternative RNA processing do for cells?	
-	a single gene can encode for more +	han
	one kind of polypepticle	
18. ld	dentify the roles of the players of the translation process.	
а	a. Transfer RNA transfers amino acids from	the
	cytoplasm to the growing paypeptide in	
b	o. Aminoacyl-tRNA synthetase <u>Chrymos that match</u>	the
	trava to the amino acid	.
С	e. Ribosomes <u>facilitate the coupling of FRNA</u> to MRNA coclons 3 of 5	anticodons

	Name Key	Ms. Foglia
	19. Identify and briefly describe the steps of translation. Initiation Elongation Termination Initiation - Start codon "Aug"; translation initiation complex for elongation - bases read 5'-3', amin'o acids additermination - Stop codon, release factor	ned ed
	20. What is the advantage of polyribosomes?	
	enable a cell to make many copies of aug	solypeptde
	very quickly	
	21. Give an example of how a polypeptide gets into the ER for additional processing,	
	signal peptide-targets a protein for the ER, SRI	brung
	ribosume to a receptor protein in the ER men	brane
	22. How does protein synthesis differ between prokaryotes and eukaryotes?	
	prokaryotes - Can occur same time as transcripti	101
	gukanyotes- transcription ist translation in a	gtoplasm
imports:	23. Define point mutations. <u>Change In a single nucle one</u>	le
CHO"	pair of a gene	
	24. Define mutations that are:	
	a. Missense substitution that changes one am	
	acid to another (can have minimal e	ffct)
	b. Nonsense <u>Substition</u> that changes an ann	170
	acid to a Stop coden; terminates early	1, non function
	c. Insertion or deletion addition or losses of	
	hucleotide pairs; greater impact than substitution	2001100
	4 of 5	2004-2005

25. Use the diagram to trace the flow of chemical information from the gene to the protein product.

