# 1 Introduction à la théorie des graphes

## 1.1 Concepts généraux

Définition Un graphe G = (X, U) est constitué de deux éléments X et U. X est l'ensemble de ses sommets et U est l'ensemble de ses arcs.

- Graphe est orienté si ses arces sont constitués des couples de sommets ordonnés.
- Graphe est non orienté si ses arêtes sont constitués des couples de sommets non ordonnés.
- Chaine est un ensemble d'arcs de longueur q reliant deux sommets x et y  $(u_1, u_2, ..., u_q)$  tel que  $u_1$  est incident par ses extrémités à à x et  $u_q$  est incident à y par l'un de ses extremités. Pour tout arc  $u_r$  avec  $1 \le r \le q 1$  est incident à son précedent et son suivant.
- Chaine est simple si tous ses arcs sont distincts.
- Chaine est élémentaire si tous ses sommets sont distincts.
- cycle est une chaine dont les extrémités sont confondues (x=y).
- Un graphe est connexe s'il existe une une chaine entre toutes paire de sommets.
- Un graphe sans cycle est une forêt.

## Définition

- Dans un graphe orienté, chaque arc u=(i,j) est ordonné
- i est appelé l'initial de l'arc u, i=I(u)
- j est appelé le terminal de l'arc u, j=T(u).
- Un chemin est une chaine orienté dans le même sens
- Un circuit est un chemin dont ses extrémités sont confondues.
- l'arc u=(i,j) estincident à i et à j.
- cycle est une chaine dont les extrémités sont confondues (x=y).

a.u: 2022-2023/uit

- Un graphe est connexe s'il ne contient aucun cycle (il existe au moins une chaine entre toute paire de sommets).
- Un graphe sans cycle est une forêt.
- On appel un sous graphe G'=(X', U') du graphe G =(X, U) tel que  $X' \in XetU' \in U$  ayant des extrémités dans X.
- Graphe partiel engendré par U' ayant les mêmes sommets que G.

### Définition

- Le degré d'un sommet x dans un graphe G =(X, U) est noté  $d_G(x) = d_G^+(x) + d_G^-(x)$
- $d_G^+(x) = |\{u \in U | x = I(u)\}|$ : degré sortant de x (nombre d'arcs sortants de x)
- $d_G^-(x) = |\{u \in U | x = T(u)\}|$ : degré entrant de x (nombre d'arcs entrant au sommet x)
- si  $d_G^-(x) \neq 0$  et  $d_G^+(x)=0$ , le sommet x est un puits
- si  $d_G^+(x) \neq 0$  et  $d_G^-(x)=0$ , le sommet x est une source
- Un circuit est un chemin dont ses extrémités sont confondues.
- L'ensemble des prédesseurs d'un sommet i est noté P(i).
- L'ensemble des successeurs d'un sommet i est noté S(i).
- Deux arcs sont adjacents s'ils sont incidents à un même sommet.
- Deux sommets x et y sont adjacents s'il existe (x,y) ou (y,x) dans U.
- l'arc u=(i, j) est une boucle si i=j.
- Le nombre de sommets est appelé l'ordre du graphe G.



Graphe non orienté

# 1.2 Modélisation d'un graphe

## Modélisation d'un graphe

Le dessin d'un graphe ne suffit pas pour des graphes de grande dimension, il faut recourir à un ordinateur selon le type de problème.

- Matrice d'adjacence
- Matrice d'incidence
- Liste d'adjacence

Matrice d'adjacence sommets-sommets Un graphe G = (X, U) est constitué de deux éléments X et U. X est l'ensemble de ses sommets et U est

l'ensemble de ses arcs.

- Le graphe G est modélisé par une matrice d'ajacence  $A = (a_{i,j})$  carrée d'ordre n (nombre de sommets) dont les éléments sont les relations entre ses sommets.
- si le graphe est non orienté, alros  $a_{i,j} = \left\{ \begin{array}{ll} 1 & \text{si } il \ existe \ une \ arete \ entre \ i \ et \ j \\ 0 & \text{sinon.} \end{array} \right.$
- La présence de 1 en diagonale signifie qu'il y a des boucles.
- La matrice est sysmétrique  $(a_{ij} = a_{ji})$
- si le graphe est orienté

$$a_{i,j} = \left\{ \begin{array}{ll} 1 & \text{si il existe} \ \ un \ arc \ entre \ i \ \ et \ j \\ 0 & \text{sinon.} \end{array} \right.$$

• La matrice est non sysmétrique

Matrice d'incidence sommets - arcs Un graphe G = (X, U) est constitué de deux éléments X et U sans boucle. X est l'ensemble de ses sommets et U est l'ensemble de ses arcs.

• Soient n le nombre de sommets de G et m le nombre d'arcs de G. Le graphe est représenté par une matrice  $A = (a_{i,j})$  de la forme suivante: n lignes et m colonnes tel que, si le graphe est orienté:

$$a_{i,j} = \begin{cases} 1 & \text{si } i = T(u_j) \\ -1 & \text{si } i = I(u_j) \\ 0 & \text{sinon.} \end{cases}$$

pour  $i \in X$ ,  $j \in U$ 

Matrice d'incidence sommets - arcs Un graphe G = (X, U) est constitué de deux éléments X et U sans boucle. X est l'ensemble de ses sommets et U est l'ensemble de ses arcs.

• si le graphe est non orienté:

$$a_{i,j} = \left\{ \begin{array}{ll} 1 & \text{si i est une extrémité de l'arc } u_j \\ 0 & \text{sinon.} \end{array} \right.$$

pour  $i \in X, j \in U$ 

Liste d'adjacence Une autre manière de représenter un graphe est d'utiliser les listes d'adjacence de chacun des sommets. Un graphe G = (X, U) est constitué de deux éléments X et U. X est l'ensemble de ses sommets et U est l'ensemble de ses arcs.

- Chaque sommet i a une liste de ses successuers S(i)
- Chaque sommet i a une liste de ses prédesseurs P(i)
- Cas d'un graphe orienté

### Liste d'adjacence

• Cas d'un graphe non orienté. On donne pour chaque sommet i la liste de ses voisins  $(S(i) \cup P(i))$ 

## Connexité et graphe réduit

- Un graphe est connexe s'il existe au moins une chaîne entre toute paire de ses sommets
- Un graphe est fortement connexe s'il existe au moins un chemin entre toute paire de ses sommets.
- Un graphe G=U', X') est un graphe réduit de G=(X, U) si
  - Les éléments de X' sont des composantes fortement connexe de G.
  - Un arc  $(C_i, C_j) \in U'$  s'il existe au moins dans le graphe G un arc en tre un sommet de  $C_i$  et un sommet de  $C_j$ .
- Recherche d'une composante fortement connexe : Soit  $S \in X$ , la composante fortement connexe de G contenant S est déterminée comme suit:
  - déterminer l'ensemble des sommets accessibles à partir de S noté  $(X_1)$
  - déterminer l'ensemble des sommets qui peuvent atteindre S  $(X_2)$   $CFC(S) = X_1 \cap X_2$

Coloriage d'un graphe Il y a plusieurs problèmes qui peuvent modélisés par la coloration des graphes.

- Affectation des fréquences aux cellules d'un opérateur de télécoms.
- Organisation des examens

- Cohabiter des personnes incompatible
- Coloration des sommets:affecter une couleur à tous les sommets sans que deux sommets ajacents ont la même couleur
- Coloration des arrêtes: affecter une couleur à tous les arrêtes telle que les arrêtes ayant des sommets en commun sont de couleurs différentes.
- Indice chromatique : nombre minimum de couleurs pour colorier le graphe  $\xi(G)$ .

#### Généralité sur les arbre

- Un arbre T=(X, U) est un graphe connexe sans cycle.
- L'orientation des arcs est sans importance pour l'arbre.
- Un arbre de  $n \ge 2$  sommets comporte n-1 arcs.
- Tout graphe connexe possède un graphe partiel qui est un arbre.
- Feuille d'un arbre est un sommet de degré 1.
- Un arbre T d'ordre n suppérieur à 2 comportes au moins deux fauilles.
- Forêt est tout graphe sans cycle.
- Les composantes fortement connexes d'une forêt sont des arbres
- Exemple d'arbre:



### Arbre binaire

• Un arbre binaire T est un arbre de n sommets comportant un seul sommet de dégré 2 et dont tous les autres sommets sont de degré 1 ou 3 (voir l'exemple précédent avec n=11).

- Le sommet de degré 2 est appelé racine de T.
- Le sommet de degré 3 est appelé un sommet interne de T.
- La racine a deux fils, chaque sommet interne a un père et deux fils et chaque feuille a un père.
- La distance entre deux sommets est la longueur de l'unique chaîne entre eux.
- Un sommet x est dit de niveau i si x à une distance i de la racine de T.
- La racine de T est au niveau 0
- La profondeur d'un arbre binaire T est le niveau maximum associé à ces sommets.

#### Arborescence

- Racine d'un graphe: un sommet a d'un graphe est une racine s'il existe dans G un chemin joignant a à tout autre sommet du G.
- Un graphe G est une arborescence de racine a si :
  - Le sommet a est une racine de G
  - G est un arbre
- L'arborescence est un arbre mais l'inverse est fausse.
- Le concept d'arborescence est orienté
- Exemple d'arborescence de racine  $A_0$ :



# 2 Arbre de couvrant de poids minimum

Arbre couvrant de poids minimum

- Un arbre couvrant est un graphe partiel d'un graphe connexe.
- Chaque arc u est associé à une longueur ou un poids l(u) ou pondération.
- Soit G=(X, U) un graphe connexe. L'abre couvrant de poids minimum est un graphe partiel dont la somme des poids des arcs est minimum.
- Soit  $\Gamma = (X, T)$  un arbre couvrant de G, alors

$$l(\Gamma) = \sum_{u} l(u)$$

est la longueur de  $\Gamma$ 

• Soit E l'ensemble des arbres couvrant de G. Alors l'abre couvrant à poids minimum est l'arbre dont

$$l(\gamma) = \min_{\Gamma \in E} \quad l(\Gamma) \tag{1}$$

a.u: 2022-2023/uit

# 2.1 Algorithme KRUSKAL

Algorithmes de recherche d'un arbe couvrant - 1 On distingue deux algorithmes de recherche dans un graphe G=(X, U) connexe.

• Algorithme KRUSKAL: Permet de construire un arbre couvrant de poids minimums en commençant par construire les arcs de poids minimums de telle sorte que les cycles soient interdits.

$$T := \emptyset$$
  
 $i := 1$   
 $Tant \ que \ (i < n) \ Faire$ 

- Choisir un arc e<sub>i</sub> de poids minimum dans U-T ne déterminant aucun cycle avec des arcs de T.
- $T := T \cup \{e_i\}$
- -i := i+1

Fin Tant que

## 2.2 Algorithme PRIM

Algorithmes de recherche d'un arbe couvrant - 2

- Algorithme PRIM: Soit un arc v=(x, y) d'un graphe G=(X, U). Le graphe  $C_v(G)$  résultant de la conraction de l'arc v est obtenu à partir de G:
  - -En remplaçant les sommets x et y par un seul sommet xy.
  - L'extrémité I(u) (resp. T(u)) de l'arc  $u \in C_v(G)$  est xy si et seulement si l'extrémité initiale (resp. terminale) de l'arc correspondant dans G

$$T := \varnothing$$

$$Tant \ que \ (G \ comporte \ plus \ qu'un \ sommet) \ Faire$$

$$- \ Choisir \ un \ sommet \ x \ de \ G.$$

$$- \ Déterminer \ un \ arc \ v \ incident \ à \ x \ tel \ que :$$

$$l(v) = \min \ (l(u))$$

$$\left\{ \substack{u \in V \\ x \in \{I(u), T(u)\} \\ u \neq bouole} \right\}$$

$$- \ T := T \cup \{v\}$$

$$- \ G := C_v(G)$$
Fin Tant \ que

est x ou y.

Exemple de conraction de l'arc (x, y).

