TRAIN THE ML MODEL ON IBM

Team ID	PNT2022TMID15174
Project Name	Car Resale value Prediction

TRAIN THE ML MODEL ON IBM

import pandas as pd

import numpy as np

import matplotlib as plt

from sklearn.preprocessing import LabelEncoder

import pickle

print("IMPORTED REQUIRED LIBRARIES")

df = pd.read_csv("C:/Users/SUGARANJAN/Desktop/IBM/Data/autos.csv", header=0, sep=','

,encoding='Latin1',low_memory=False)

df.head()

import os, types

import pandas as pd

from botocore.client import Config

import ibm_boto3

import io

def_iter_(self): return 0

- # @hidden_cell
- # The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials.
- # You might want to remove those credentials before you share the notebook.

cos_client = ibm_boto3.client(service_name='s3',

ibm_api_key_id='DT151-lL0017uhnUGwXyhG_Eort5gohoW6XJTNoT3RKk',

ibm_auth_endpoint="https://iam.cloud.ibm.com/oidc/token",

```
config=Config(signature_version='oauth'),
  endpoint_url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
bucket = 'carresalevalueprediction-donotdelete-pr-yuhtmzidi0ka1p'
object_key = 'autos.csv'
body = cos_client.get_object(Bucket=bucket,Key=object_key)
df = pd.read_csv((io.BytesIO(body['Body'].read())), header=0, sep=',',encoding='Latin1',low_memory=False)
df.head()
# df = pd.read_csv("C:/Users/SUGARANJAN/Desktop/IBM/Data/autos.csv", header=0, sep=','
,encoding='Latin1',low_memory=False)
# df.head()
import os, types
import pandas as pd
from botocore.client import Config
import ibm_boto3
import io
def iter (self): return 0
#@hidden cell
# The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials.
# You might want to remove those credentials before you share the notebook.
cos_client = ibm_boto3.client(service_name='s3',
  ibm_api_key_id='DT151-IL0017uhnUGwXyhG_Eort5gohoW6XJTNoT3RKk',
  ibm_auth_endpoint="https://iam.cloud.ibm.com/oidc/token",
  config=Config(signature version='oauth'),
  endpoint_url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
bucket = 'carresalevalueprediction-donotdelete-pr-yuhtmzidi0ka1p'
object key = 'autos.csv'
body = cos_client.get_object(Bucket=bucket,Key=object_key)
df = pd.read_csv((io.BytesIO(body['Body'].read())), header=0, sep=',',encoding='Latin1',low_memory=False)
df.head()
print(df.seller.value_counts())
df[df.seller !='gewerblich']
df=df.drop('seller',axis=1)
print(df.offerType.value_counts())
df[df.offerType !='Gesuch']
df=df.drop('offerType',axis=1)
print(df.shape)
df=df[(df.powerPS>50) & (df.powerPS<900)]
print(df.shape)
df=df[(df.yearOfRegistration>=1950)&(df.yearOfRegistration<2022)]
print(df.shape)
df.drop(['name','abtest','dateCrawled','nrOfPictures','lastSeen','postalCode','dateCreated'], axis='columns',inplace=True)
new df=df.copy()
new_df=new_df.drop_duplicates(['price','vehicleType','yearOfRegistration','gearbox','powerPS','model','kilometer','mo
nthOfRegistration','fuelType','notRepairedDamage'])
new_df.gearbox.replace(('manuell','automatik'),('manual','automatic'),inplace=True)
new_df.fuelType.replace(('benzin', 'andere', 'elektro'), ('petrol', 'others', 'electric'), inplace=True)
new_df.vehicleType.replace(('kleinwagen','cabrio','kombi','andere'),('samll
car','convertible','combination','others'),inplace=True)
```

```
new_df.notRepairedDamage.replace(('ja','nein'),('Yes','No'),inplace=True)
new_df=new_df[(new_df.price>=100)&(new_df.price<=150000)]
new_df['notRepairedDamage'].fillna(value='not-declared',inplace=True)
new_df['fuelType'].fillna(value='not-declared',inplace=True)
new_df['gearbox'].fillna(value='not-declared',inplace=True)
new df['vehicleType'].fillna(value='not-declared',inplace=True)
new_df['model'].fillna(value='not-declared',inplace=True)
from ibm_watson_machine_learning import APIClient
wml credentials={
  "url": "https://us-south.ml.cloud.ibm.com",
  "apikey":"hEAn_mcoP3u_-ZjagjeqlxDayqUiETpYVYWdR1OLKAby"
client = APIClient(wml_credentials)
def guide_from_space_name(client, space_name):
  space = client.spaces.get_details()
    print(space)
  return(next(item for item in space['resources'] if item['entity']["name"]==space_name)['metadata']['id'])
space_uid=guide_from_space_name(client,'CAR')
print("Space UID"+ space_uid)
client.set.default_space(space_uid)
client.software_specifications.list()
software spec uid = client.software specifications.get uid by name("runtime-22.1-py3.9")
software_spec_uid
print(new_df)
labels=['gearbox','notRepairedDamage','model','brand','fuelType','vehicleType']
mapper={}
for i in labels:
  mapper[i]=LabelEncoder()
  mapper[i].fit(new_df[i])
  tr=mapper[i].transform(new_df[i])
  np.save(str('classes'+i+'.npy'),mapper[i].classes_)
  print(i,":",mapper[i])
  new_df.loc[:, i+ '_labels']=pd.Series(tr,index=new_df.index)
labeled = new_df[['price','yearOfRegistration','powerPS','kilometer','monthOfRegistration']+[x+"_labels" for x in
labels]]
print(labeled.columns)
Y=labeled.iloc[:,0].values
X=labeled.iloc[:,1:].values
Y=Y.reshape(-1,1)
from sklearn.model_selection import cross_val_score,train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.3,random_state=3)
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2 score
regressor = RandomForestRegressor(n_estimators = 1000,max_depth = 10,random_state = 34)
regressor.fit(X_train, np.ravel(Y_train, order='C'))
y_pred = regressor.predict(X_test)
print(r2_score(Y_test,y_pred))
filename='resale model.sav'
pickle.dump(regressor,open(filename,'wb'))
```

```
model_details = client.repository.store_model(model=regressor,meta_props={
     client.repository.ModelMetaNames.NAME: "resale_model",
     client.repository.ModelMetaNames.SOFTWARE SPEC UID: software spec uid,
     client.repository.ModelMetaNames.TYPE: "scikit-learn_1.0"
})
model_id = client.repository.get_model_id(model_details)
model id
X_train[0]
regressor.predict([[2012.0, 179.0, '1500000', 12.0, 0, 0, 30, 1, 1, 4]])
₽
                                                                                                                                                                charan C D's Account v
                                                                                                                                                          ভ
                                                                                                                                                                      Ψ.
     Edit View Insert Cell Kernel Help
                                                                                                                                                                                  Trusted | Python 3.9 O 👢
     ⊕ or In The Primate Code
                              In [1]: import pandas as pd
                                      import pandas as pd
import numpy as np
import matplotlib as plt
from sklearn.preprocessing import LabelEncoder
import pickle
print("IMPORTED REQUIRED LIBRARIES")
                                       IMPORTED REQUIRED LIBRARIES
                              In [9]: # df = pd.read\_csv("C:\Users\happy\Downloads\IBM Project\datasheets\Data\autos.csv", header=0 , sep=',',encoding='Latin1',low_men # <math>df.head()
                                       # df.head()
import os, types
import pandas as pd
from botocore.client import Config
                                       import ibm_boto3
import io
                                       def iter (self): return 0
                                      bucket = 'carresalevalueprediction-donotdelete-pr-yuhtmzidi0ka1p'
object_key = 'autos.csv'
                                       body = cos_client.get_object(Bucket=bucket,Key=object_key)
df = pd.read_csv((io.BytesIO(body['Body'].read())) , header=0 , sep=',' ,encoding='Latin1',low_memory=False)
                                       df.head()
  Projects / car resale value prediction / car resale value
                                                                                                                                                                                   1
                                                                                                                                                                                              0
                                                                                                                                                                                                         01
          View Insert Cell Kernel Help
                                                                                                                                                                                  Trusted | Python 3.9 O 🛂
    In [5]: print(df.seller.value_counts())
               df[df.seller !='gewerblich']
df=df.drop('seller',axis=1)
               print(df.offerType.value_counts())
df[df.offerType !='Gesuch']
df=df.drop('offerType',axis=1)
               privat
                             371534
               gewerblich
               golf
               Name: seller, dtype: int64
               Angebot
                          371525
               Gesuch
150000
               Name: offerType, dtype: int64
      In [6]: print(df.shape)
               df=df[(df.powerPS>50) & (df.powerPS<900)]
print(df.shape)</pre>
               df=df[(df.yearOfRegistration>=1950)&(df.yearOfRegistration<2022)]
               print(df.shape)
               (371539, 18)
(319717, 18)
(319649, 18)
      In [7]: df.drop(['name','abtest','dateCrawled','nrOfPictures','lastSeen','postalCode','dateCreated'], axis-'columns',inplace-True)
      In [8]: new_df=df.copy()
               new_df=new_df.drop_duplicates(['price','vehicleType','yearOfRegistration','gearbox','powerPS','model','kilometer','monthOfRegistration','fuelType','notRepairedDamage']
      In [0]: new_df.gearbox.replace(('manuell','automatik'),('nanual','automatic'),inplace=True)
new_df.fuelType.replace(('benzin','andere','elektro'),('petrol','others','electric'),inplace=True)
new_df.vehicleType.replace(('kleimwagen','cabrio','kombi','andere'),('samlc car','convertible','combination','others'),inplace=True)
new_df.notRepairedOmmage.replace(('ja','nein'),('Yes','No'),inplace=True)
```


