Earth's Changing Landscape Systems

The Geologic Cycle and Minerals

The Geologic Cycle

- Two systems operating at the Earthatmosphere interface:
 - Endogenic (internal system) builds land forms
 - Exogenic (external system) wears down the land forms
- The overall cycle is fueled by Earth's internal heat and solar energy

The Geologic Cycle

- Composed of three principal cycles:
 - The hydrologic cycle:
 - Involves erosion, transportation and depositional processes
 - The rock cycle:
 - Produces the three basic rock types found in the crust
 - The tectonic cycle:
 - Brings heat energy and new material to the surface
 - Recycles crustal material
 - Causes movement and deformation of the crust

Exogenic And Endogenic Processes Geologic cycle schematic Endogenic processes Plate tectoric cycle Endogenic processes Plate tectoric processes Pl

Mineral Groups (Key ions or elements)	Mineral Name	Chemical Formula	Economic Use
Carbonates (CO ₃ ²⁻)	Calcite	CaCO ₃	Portland cement, lime
	Dolomite	CaMg(CO ₃) ₂	Portland cement, lime
Halides (CI ¹⁻ , F ¹⁻ , Br ¹⁻)	Halite	NaCl	Common salt
	Fluorite	CaF _o	Used in steelmaking
	Sylvite	KCI	Fertilizer
Oxides (O ²⁻)	Hematite	Fe ₂ O ₃	Ore of iron, pigment
	Magnetite	Fe ₃ O ₄	Ore of iron
	Corundum	Al ₂ O ₃	Gemstone, abrasive
	Ice	H ₂ O	Solid form of water
Sulfides (S ²⁻)	Galena	PbS	Ore of lead
	Sphalerite	ZnS	Ore of zinc
	Pyrite	FeS ₂	Sulfuric acid production
	Chalcopyrite	CuFeS ₂	Ore of copper
	Cinnabar	HaS	Ore of mercury
Sulfates (SO ₄ ²⁻)	Gypsum	CaSO ₄ · 2 H ₂ O	Plaster
	Anhydrite	CaSO ₄	Plaster
	Barite	BaSO ₄	Drilling mud
Native elements (single elements)	Gold	Au	Trade, jewelry
	Copper	Cu	Electrical conductor
	Diamond	C	Gernstone, abrasive
	Sulfur	S	Sulfa drugs, chemicals
	Graphite	C	Pencil lead, dry lubricant
	Silver	Aq	Jewelry, photography
	Platinum	Pt	Catalyst

Earth's Changing Landscape Systems The Rock Cycle

Solid Earth Materials

- Minerals:
 - Minerals are composed of chemical elements.
 - Chemical elements are held together by bonds.
 - Minerals are the building blocks of the solid Earth
- Rocks:
 - Rocks are composed of minerals

- Igneous Rocks (Crystallize from magma and lava)
- Sedimentary Rocks (Lithification of sediment; Precipitation of ions)
- Metamorphic Rocks (Formed when original parent rocks undergo changes due to changing temperature and pressure conditions)

Origin of Magma

- Generating magma from solid rock
- Role of heat:
 - Temperature increase in the upper crust (geothermal gradient) averages between 20°C to 30°C per kilometer depth
 - Rocks in the lower crust and upper mantle are near their melting points
 - Any additional heat may induce melting

Origin of Magma

- Role of volatiles:
 - Volatiles (primarily water) cause rocks to melt at lower temperatures
 - Important factor where oceanic lithosphere descends into the mantle

Origin of Magma Role of pressure: An increase in confining pressure with depth increases a rock's melting temperature (e.g. higher temperatures are required to melt deeper rocks) Conversely, mantle material rising towards the surface experiences a decrease in confining pressure When confining pressure drops, decompression

melting occurs

