

Programmation et Méthodes Numériques

Interpolation polynomiale

M. Casaletti (massimiliano.casaletti@upmc.fr)

Laboratoire d'Electronique et Electromagnétisme (L2E)
Université Pierre et Marie Curie

Le problème de l'interpolation

L'interpolation traite de l'approximation d'une fonction dont on ne connaît les valeurs exactes qu'en certains points.

Source: LMS corp.

Quelques exemples d'interpolation :

Interpolation polynomiale.

Approximation trigonométrique (polynôme trigonométrique).

Splines (Interpolation polynomiale par morceaux).

Plan du cours

- Représentation d'un nombre en machine, erreurs numériques, etc...
- Interpolation polynomiale
 - Rappels de mathématique
 - Polynôme d'interpolation: calcul en base canonique
 - Polynôme d'interpolation: calcul en base de Lagrange
 - Polynôme d'interpolation: calcul en base de Newton
 - Erreur d'interpolation
 - Interpolation d'Hermite
 - Limites de l'interpolation polynomiale
 - Spline
- Intégration numérique
- Résolution numérique des équations différentielles ordinaires (EDO)

Rappels de mathématique

Espace vectoriel P_n des fonctions polynômes à coefficients réels

$$p^{(1)}\left(x\right) = a_0^{(1)} + a_1^{(1)}x + a_2^{(1)}x^2 + \dots + a_N^{(1)}x^N \quad p^{(2)}\left(x\right) = a_0^{(2)} + a_1^{(2)}x + a_2^{(2)}x^2 + \dots + a_N^{(2)}x^N$$

$$p_{1}(x) + p_{2}(x) = (a_{0}^{(1)} + a_{0}^{(2)}) + (a_{1}^{(1)} + a_{1}^{(2)})x + (a_{2}^{(1)} + a_{2}^{(2)})x^{2} + \dots + (a_{N}^{(1)} + a_{N}^{(2)})x^{N}$$

$$\alpha p_{1}(x) = \alpha a_{0} + (\alpha a_{1})x + (\alpha a_{2})x^{2} + \dots + (\alpha a_{N})x^{N} \qquad \alpha \in \mathbb{R}$$

Espace vectoriel de dimension N+1

Base de P_n formée par N+1 fonctions polynômes

Isomorphisme avec l'espace \mathbb{R}^{N+1}

$$p(x) \equiv \mathbf{b_0} \mathbf{b_1} \mathbf{m} \mathbf{b_N} \mathbf{b_{N+1}}$$

Produit scalaire

$$\left\langle p^{(1)}, p^{(2)} \right\rangle_{2} = \sum_{i=0}^{N} b_{i}^{(1)} b_{i}^{(2)}$$
$$\left\langle p^{(1)}, p^{(2)} \right\rangle_{L_{2}[a,b]} = \int_{a}^{b} p^{(1)}(x), p^{(2)}(x) dx$$

Norme

$$||p||_2 = \sum_{i=0}^N b_i^2$$
 $||p||_{L_2[a,b]} = \int_a^b p^2(x) dx$

Distance

$$d_{2}(p^{(1)}, p^{(2)}) = \sum_{i=0}^{N} (b_{i}^{(1)} - b_{i}^{(2)})^{2}$$
$$d_{L_{2}[a,b]}(p^{(1)}, p^{(2)}) = \sqrt{\int_{a}^{b} (p^{(1)}(x) - p^{(2)}(x))^{2} dx}$$

Espace P_n: base canonique

Base canonique

$$\left\{ f_n(x) \right\} = \left\{ x^n \right\}_{n=0,1,\dots,N}$$

$$f_0(x) = 1, \quad f_1(x) = x, \dots \quad f_N(x) = x^N$$

$$p_{N}(x) = a_{0} f_{0}(x) + a_{1} f_{1}(x) + \dots + a_{N} g_{N}(x)$$

= $a_{0} + a_{1} x + \dots + a_{N} x^{N}$

Espace P₁

Espace P₂

Espace P_n: exemples des différentes bases

Base canonique centrée:

$$\left\{ g_{n}(x) \right\}_{n=0,1,\dots,N} = \left(x - c_{n} \right)^{n}$$

$$Ap_{\overline{N}} \left[x_{0}^{g} - a_{1}^{gg} g_{0} - a_{1}^{gg} g_{1}(x) + a_{1}^{g} g_{1}(x) + a_{2}^{g} g_{2}(x) + \dots + a_{N}^{g} g_{N}(x) \right]$$

$$g_{0}(x) = 1, \quad g_{1}(x) = x - c_{1}, \dots \quad g_{N}(x) = \left(x - c_{N} \right)^{N}$$

$$= a_{0}^{g} + a_{1}^{g}(x - c_{1}) + \dots + a_{N}^{g}(x - c_{N})^{N}$$

Base de Newton

$$\{\psi_{n}(x)\}_{n=0,1,\dots,N} = \prod_{j=0}^{n-1} (x - x_{j})$$

$$\psi_{0}(x) = 1, \quad \psi_{1}(x) = x - x_{0}, \quad \psi_{2}(x) = (x - x_{0})(x - x_{1}), \quad \psi_{N}(x) = \prod_{j=0}^{N-1} (x - x_{j})$$

$$p_{N}(x) = a_{0}^{h} + a_{1}^{h}(x - x_{0}) + a_{2}^{h}(x - x_{0})(x - x_{1}) + \dots + a_{N}^{h} \prod_{j=0}^{N-1} (x - x_{j})$$

Base de Lagrange

$$\begin{aligned}
\left\{l_{n}^{(N)}(x)\right\}_{n=0,1,\dots,N} &= \prod_{\substack{j\neq n\\j=0}}^{N} \frac{\left(x-x_{j}\right)}{\left(x_{n}-x_{j}\right)} & l_{1}^{(N)}(x) &= \frac{\left(x-x_{0}\right)\left(x-x_{2}\right)...\left(x-x_{N}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)...\left(x_{1}-x_{N}\right)} \\
&\left\{x_{j}\right\}_{j=0,1,\dots,N} & \text{support}
\end{aligned}$$

$$p_{N}(x) = a_{0}^{l} l_{0}^{(N)}(x) + a_{1}^{l} l_{1}^{(N)}(x) + a_{2}^{l} l_{2}^{(N)}(x) + \dots + a_{N}^{l} l_{N}^{(N)}(x)$$

Espace P_n: implémentation en C

Base canonique centrée:

$$p(x) = a_0^g + a_1^g (x - c_1) + ... + a_N^g (x - c_N)^N$$

$$\mathbf{A} = \left[a_0^g, a_1^g, \dots a_N^g \right]$$

$$\mathbf{C} = [0, c_1, ... a_N]$$

Base de Newton

$$p(x) = a_0^h \prod_{\substack{j \neq 0 \\ j=0}}^N \frac{(x - x_j)}{(x_0 - x_j)} + \dots + a_N^h \prod_{\substack{j \neq N \\ j=0}}^N \frac{(x - x_j)}{(x_N - x_j)}$$

$$\mathbf{A} = \left[a_0^h, a_1^h, ... a_N^h \right]$$

$$\mathbf{C} = \left[x_0, ... x_{N-1}, 0\right]$$

Base de Lagrange

$$p(x) = a_0^l + a_1^l (x - x_0) + \dots + a_N^l \prod_{j=0}^{N-1} (x - x_j)$$

$$\mathbf{A} = \left[a_0^l, a_1^l, ... a_N^l \right]$$

$$\mathbf{C} = [x_0, ... x_{N-1}, 0]$$

typedef struct {
int degre;
double* A; ← Coefficients a; du polynôme
double* C; ← Centres c; ou X; du polynôme
} Polynome;

Espace P_n: implémentation en C

Méthode créant un polynôme nul

Méthode de libération de la mémoire occupée par un polynôme

Plan du cours

- Représentation d'un nombre en machine, erreurs numériques, etc...
- Interpolation polynomiale
 - Introduction générale et rappels de mathématique
 - Polynôme d'interpolation: calcul en base canonique
 - Polynôme d'interpolation: calcul en base de Lagrange
 - Polynôme d'interpolation: calcul en base de Newton
 - Erreur d'interpolation
 - Interpolation d'Hermite
 - Limites de l'interpolation polynomiale
 - Spline
- Intégration numérique
- Résolution numérique des équations différentielles ordinaires (EDO)

Polynôme d'interpolation: base canonique

lacktriangle Définition: Une fonction polynôme $p_N \in P_N$ interpole f aux points $x_0, x_1, ..., x_N$ si et seulement si

$$\forall i \in \{0,..,N\}$$
 $p_N(x_i) = f(x_i)$ Interpolation de Lagrange

$$p_N(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

$$\begin{cases} p_N(x_0) = a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = f(x_0) \\ p_N(x_1) = a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = f(x_1) \\ \vdots \\ p_N(x_1) = a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = f(x_n) \end{cases}$$

matrice de Vandermonde

$$\det\left(\mathbf{\underline{\underline{M}}}\right) = \prod_{1 < i < j \le n} \left(x_j - x_i\right)$$

lacksquare si les points $\{x_i\}_{i=0,\dots,n}$ sont distingués: $\det(\mathbf{M}) \neq 0$

Remarque: Besoin d'une inversion de matrice. O(n³) Le calcul pour *n-1* points devient obsolète pour *n* points.

Output Polynôme d'ordre 1 $\{x_0, x_1\}$

$$\begin{bmatrix} 1 & x_0 \\ 1 & x_1 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \end{bmatrix} \Rightarrow \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 1 & x_0 \\ 1 & x_1 \end{bmatrix}^{-1} \begin{bmatrix} f(x_0) \\ f(x_1) \end{bmatrix} \Rightarrow \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \frac{1}{x_1 - x_0} \begin{bmatrix} x_1 & -x_0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} f(x_0) \\ f(x_1) \end{bmatrix}$$

$$a_0 = \frac{x_1 f(x_0) - x_0 f(x_1)}{x_1 - x_0} \qquad p_1(x) = a_0 + a_1 x = \frac{x_1 f(x_0) - x_0 f(x_1)}{x_1 - x_0} + \frac{f(x_1) - f(x_0)}{x_1 - x_0} x$$

$$a_{1} = \frac{-f(x_{0}) + f(x_{1})}{x_{1} - x_{0}}$$

$$p_1(x) = f(x_0) \frac{x_1 - x}{x_1 - x_0} + f(x_1) \frac{-x_0 + x}{x_1 - x_0} x = f(x_0) \frac{x - x_1}{x_0 - x_1} + f(x_1) \frac{-x_0 + x}{x_1 - x_0} x$$

$$= f(x_0)l_0^{(1)}(x) + f(x_1)l_1^{(1)}(x)$$
 (Représentation en base de Lagrange)

$$f(x) = x^2 e^{-\frac{x}{4}} \sin(x) \qquad \{x_0 = -3, x_1 = 3\}$$

$$a_0 = \frac{3f(-3) + 3f(3)}{6} = \frac{9}{2} \left(e^{\frac{3}{4}} \sin(-3) + e^{-\frac{3}{4}} \sin(3) \right) = \frac{9}{2} \sin(3) \left(-e^{\frac{3}{4}} + e^{-\frac{3}{4}} \right)$$

$$a_1 = \frac{-f(-3) + f(3)}{6} = \frac{9}{6} \left(-e^{\frac{3}{4}} \sin(-3) + e^{-\frac{3}{4}} \sin(3) \right) = \frac{3}{2} \sin(3) \left(e^{\frac{3}{4}} + e^{-\frac{3}{4}} \right)$$

Output Polynôme d'ordre 2 $\{x_0, x_1, x_2\}$

$$\begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} f\left(x_0\right) \\ f\left(x_1\right) \\ f\left(x_2\right) \end{bmatrix} \Rightarrow \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix}^{-1} \begin{bmatrix} f\left(x_0\right) \\ f\left(x_1\right) \\ f\left(x_2\right) \end{bmatrix} = \frac{1}{\det\left(\underline{\mathbf{M}}\right)} cof\left(\underline{\underline{\mathbf{M}}}\right) \begin{bmatrix} f\left(x_0\right) \\ f\left(x_1\right) \\ f\left(x_2\right) \end{bmatrix}$$

$$\det\left(\underline{\underline{\mathbf{M}}}\right) = \begin{vmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{vmatrix} = \begin{vmatrix} 1 & x_0 & 0 \\ 1 & x_1 & x_1^2 - x_0 x_1 \\ 1 & x_2 & x_2^2 - x_0 x_2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 1 & x_1 - x_0 & x_1^2 - x_0 x_1 \\ 1 & x_2 - x_0 & x_2^2 - x_0 x_2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 1 & x_1 - x_0 & x_1 (x_1 - x_0) \\ 1 & x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_2 - x_0 & x_2 (x_2 - x_0) \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 (x_1 - x_0) \\ x_1 - x_0 & x_1 & x_1 \\ x_2 - x_0 & x_2 & x_1 & x_1 \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 & x_1 \\ x_1 - x_0 & x_1 & x_1 \\ x_2 - x_0 & x_1 & x_1 & x_1 \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 & x_1 & x_1 \\ x_1 - x_0 & x_1 & x_1 & x_1 \\ x_2 - x_0 & x_1 & x_1 & x_1 & x_1 \end{vmatrix} = \begin{vmatrix} x_1 - x_0 & x_1 & x_1 & x_1 & x_1 \\ x_1 - x_0 & x_1 & x_$$

$$cof\left(\underline{\underline{\mathbf{M}}}\right) = cof\left(\begin{bmatrix}1 & x_{0} & x_{0}^{2} \\ 1 & x_{1} & x_{1}^{2} \\ 1 & x_{2} & x_{2}^{2}\end{bmatrix}\right) = \begin{bmatrix}\begin{vmatrix}x_{1} & x_{1}^{2} \\ x_{2} & x_{2}^{2}\end{vmatrix} & -\begin{vmatrix}1 & x_{1} \\ 1 & x_{2}^{2}\end{vmatrix} & \begin{vmatrix}1 & x_{1} \\ 1 & x_{2} \end{vmatrix} \\ -\begin{vmatrix}x_{0} & x_{0}^{2} \\ x_{2} & x_{2}^{2}\end{vmatrix} & \begin{vmatrix}1 & x_{0}^{2} \\ 1 & x_{2}^{2}\end{vmatrix} & -\begin{vmatrix}1 & x_{0} \\ 1 & x_{2}\end{vmatrix} \\ \begin{vmatrix}x_{0} & x_{0}^{2} \\ x_{1} & x_{2}^{2}\end{vmatrix} & -\begin{vmatrix}1 & x_{0} \\ 1 & x_{2}^{2}\end{vmatrix} & -\begin{vmatrix}1 & x_{0} \\ 1 & x_{1}\end{vmatrix} \\ \begin{vmatrix}x_{0} & x_{0}^{2} \\ x_{1} & x_{2}^{2}\end{vmatrix} & -\begin{vmatrix}1 & x_{0} \\ 1 & x_{2}\end{vmatrix} & -\begin{vmatrix}1 & x_{0} \\ 1 & x_{1}\end{vmatrix} \\ \begin{vmatrix}x_{0} & x_{1}^{2} - x_{0}^{2}x_{1} \\ x_{1} & x_{2}\end{vmatrix} & -(x_{1}^{2} - x_{1}^{2}x_{2} - (x_{2}^{2} - x_{1}^{2}) & x_{2}^{2} - x_{1}^{2} \\ -(x_{0}x_{2}^{2} - x_{0}^{2}x_{2}) & x_{2}^{2} - x_{0}^{2} & -(x_{2} - x_{0}) \\ x_{0}x_{1}^{2} - x_{0}^{2}x_{1} & -(x_{1}^{2} - x_{0}^{2}) & x_{1} - x_{0}\end{bmatrix}$$

Output Polynôme d'ordre 2 $\{x_0, x_1, x_2\}$

$$\underline{\mathbf{M}}^{-1} = \frac{1}{\det(\underline{\mathbf{M}})} \begin{bmatrix} x_1 x_2^2 - x_1^2 x_2 & -(x_2^2 - x_1^2) & x_2 - x_1 \\ -(x_0 x_2^2 - x_0^2 x_2) & x_2^2 - x_0^2 & -(x_2 - x_0) \\ x_0 x_1^2 - x_0^2 x_1 & -(x_1^2 - x_0^2) & x_1 - x_0 \end{bmatrix}^T = \frac{1}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)} \begin{bmatrix} x_1 x_2^2 - x_1^2 x_2 & -(x_0 x_2^2 - x_0^2 x_2) & x_0 x_1^2 - x_0^2 x_1 \\ -(x_2^2 - x_1^2) & x_2^2 - x_0^2 & -(x_1^2 - x_0^2) \\ x_2 - x_1 & -(x_2 - x_0) & x_1 - x_0 \end{bmatrix}$$

$$\begin{bmatrix} \frac{(x_2 - x_1)x_1 x_2}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)} & \frac{(x_1 - x_0)x_0 x_1}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)} \end{bmatrix} \begin{bmatrix} \frac{x_1 x_2}{(x_1 - x_0)(x_2 - x_0)} & \frac{-x_0 x_2}{(x_1 - x_0)(x_2 - x_1)} & \frac{x_0 x_1}{(x_2 - x_0)(x_2 - x_0)(x_2 - x_1)} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{(x_2 - x_1)x_1x_2}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)} & \frac{(x_2 - x_0)(-x_0x_2)}{(x_1 - x_0)(x_2 - x_1)} & \frac{(x_1 - x_0)x_0x_1}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)} \\ \frac{(x_2 - x_1)(-x_2 - x_1)}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)} & \frac{(x_2 - x_0)(x_2 + x_0)}{(x_1 - x_0)(x_2 - x_1)} & \frac{(x_1 - x_0)(-x_1 - x_0)}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)} \\ \frac{x_2 - x_1}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)} & \frac{-(x_2 - x_0)}{(x_1 - x_0)(x_2 - x_1)} & \frac{x_1 - x_0}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)} \end{bmatrix} = \begin{bmatrix} \frac{x_1x_2}{(x_1 - x_0)(x_2 - x_0)} & \frac{-x_0x_2}{(x_1 - x_0)(x_2 - x_1)} & \frac{x_0x_1}{(x_2 - x_0)(x_2 - x_1)} \\ \frac{(x_1 - x_0)(x_2 - x_0)}{(x_1 - x_0)(x_2 - x_0)} & \frac{(x_1 - x_0)(x_2 - x_1)}{(x_1 - x_0)(x_2 - x_0)} \\ \frac{1}{(x_1 - x_0)(x_2 - x_0)} & \frac{1}{(x_1 - x_0)(x_2 - x_1)} & \frac{1}{(x_2 - x_0)(x_2 - x_1)} \\ \frac{1}{(x_1 - x_0)(x_2 - x_0)} & \frac{1}{(x_1 - x_0)(x_2 - x_1)} & \frac{1}{(x_2 - x_0)(x_2 - x_1)} \end{bmatrix}$$

$$a_{1} = P_{2}(x) = \left[\frac{x_{1}x_{2}f(x_{0})}{(x_{1}-x_{0})(x_{2}-x_{0})} - \frac{x_{0}x_{2}f(x_{1})}{(x_{1}-x_{0})(x_{2}-x_{1})} + \frac{x_{0}x_{1}f(x_{2})}{(x_{2}-x_{0})(x_{2}-x_{1})} \right] = a_{0}$$

$$+ \left[\frac{(-x_{2}-x_{1})f(x_{0})}{(x_{1}-x_{0})(x_{2}-x_{0})} + \frac{(x_{2}+x_{0})f(x_{1})}{(x_{1}-x_{0})(x_{2}-x_{1})} + \frac{(-x_{1}-x_{0})f(x_{2})}{(x_{2}-x_{0})(x_{2}-x_{1})} \right] x$$

$$+ \left[\frac{f(x_{0})}{(x_{1}-x_{0})(x_{2}-x_{0})} - \frac{f(x_{1})}{(x_{1}-x_{0})(x_{2}-x_{1})} + \frac{f(x_{2})}{(x_{2}-x_{0})(x_{2}-x_{1})} \right] x^{2}$$

o Polynôme d'ordre 2 $\{x_0, x_1, x_2\}$

$$P_{2}(x) = f(x_{0}) \left[\frac{x_{1}x_{2} + (-x_{2} - x_{1})x + x^{2}}{(x_{1} - x_{0})(x_{2} - x_{0})} \right] + f(x_{1}) \left[\frac{-x_{0}x_{2} + (x_{2} + x_{0})x - x^{2}}{(x_{1} - x_{0})(x_{2} - x_{1})} \right] + f(x_{2}) \left[\frac{x_{0}x_{1} + (-x_{1} - x_{0})x + x^{2}}{(x_{2} - x_{0})(x_{2} - x_{1})} \right]$$

$$= f(x_{0}) \left[\frac{(x - x_{1})(x - x_{2})}{(x_{1} - x_{0})(x_{2} - x_{0})} \right] + f(x_{1}) \left[\frac{(x_{2} - x)(x - x_{0})}{(x_{1} - x_{0})(x_{2} - x_{1})} \right] + f(x_{2}) \left[\frac{(x - x_{1})(x - x_{0})}{(x_{2} - x_{0})(x_{2} - x_{1})} \right]$$

$$= f(x_{0}) \left[\frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} \right] + f(x_{1}) \left[\frac{(x - x_{2})(x - x_{0})}{(x_{1} - x_{0})(x_{1} - x_{2})} \right] + f(x_{2}) \left[\frac{(x - x_{1})(x - x_{0})}{(x_{2} - x_{0})(x_{2} - x_{1})} \right]$$

$$= f(x_{0}) l_{0}(x) + f(x_{1}) l_{1}(x) + f(x_{2}) l_{2}(x)$$
 (Représentation en base de Lagrange)

$$f(x) = x^2 e^{-\frac{x}{4}} \sin(x) \qquad \{x_0 = -3, x_1 = 3\}$$

$$\{x_0 = -3, x_1 = 3\}$$

Polynôme d'interpolation: base canonique

matrice de Vandermonde

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix}$$

matrice mal conditionnée!

Exemple:

X	120.05	120.15	120.25	120.3	120.4	120.5
у	3	1.5	1.5	1	1	0

Problème mal conditionnée. Calcul numérique très difficile voire impossible.

Plan du cours

- Représentation d'un nombre en machine, erreurs numériques, etc...
- Interpolation polynomiale
 - Introduction générale et rappels de mathématique
 - Polynôme d'interpolation: calcul en base canonique
 - Polynôme d'interpolation: calcul en base de Lagrange
 - Polynôme d'interpolation: calcul en base de Newton
 - Erreur d'interpolation
 - Interpolation d'Hermite
 - Limites de l'interpolation polynomiale
 - Spline
- Intégration numérique
- Résolution numérique des équations différentielles ordinaires (EDO)

Espace P_n: base de Lagrange

Définition: On considère un ensemble de points $\{x_j\}_{j=0,1,\dots,N}$. La base de Lagrange $\{l_i\}$ associée au support est définie par les propriétés suivantes:

Espace P₁

On considère 2 points $\{x_0, x_1\}$ et on cherche deux polynômes de degré 1 (droites) qui passent respectivement par les points suivants:

$$\{(x_0,1),(x_1,0)\} \Rightarrow l_0^{(1)}(x) = \frac{(x-x_1)}{(x_0-x_1)}$$

$$\{(x_0,0),(x_1,1)\} \Rightarrow l_1^{(1)}(x) = \frac{(x-x_0)}{(x_1-x_0)}$$

Espace P_n: base de Lagrange

Espace P₂

On considère 3 points $\{x_0, x_1, x_2\}$ et on cherche trois polynômes de degré 2 qui passent respectivement par les points suivants:

$$\{(x_0,1),(x_1,0),(x_2,0)\} \Rightarrow l_0^{(2)}(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}$$

$$l_0^{(2)}(x) = \frac{x^2 - x(x_1+x_2) + x_1x_2}{(x_0-x_1)(x_0-x_2)} = ax^2 + bx + c$$

$$Z_0^{(2)}(x) = \frac{x^2 - x(x_1 + x_2) + x_1 x_2}{(x_0 - x_1)(x_0 - x_2)} = ax^2 + bx + c$$

$$\{(x_0,0),(x_1,1),(x_2,0)\} \implies l_1^{(2)}(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}$$

$$\{(x_0,0),(x_1,1),(x_2,0)\} \Rightarrow l_1^{(2)}(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}$$

$$\{(x_0,0),(x_1,0),(x_2,1)\} \Rightarrow l_2^{(2)}(x) = \frac{(x-x_0)(x-x_1)}{(x_1-x_0)(x_1-x_1)}$$

$$\{l_n^{(N)}(x)\}_{n=0,1,\dots,N} = \prod_{\substack{j \neq n \ i=0}}^{N} \frac{(x-x_j)}{(x_n-x_j)}$$

Polynôme d'interpolation: base de Lagrange

Définition: Une fonction polynôme $p_N \in P_N$ interpole f aux points $x_0, x_1, ..., x_N$ si et seulement si

$$\forall i \in \{0,..,N\}$$
 $p_N(x_i) = f(x_i)$ Interpolation de Lagrange

On considère les fonctions de Lagrange $l_0^{(N)}, l_1^{(N)}, ..., l_N^{(N)}$ associés aux point $x_0, x_1, ..., x_N$. Alors:

$$p_N(x) = \sum_{i=0}^{N} l_i^{(N)}(x) f(x_i)$$

Théorème: Existence et unicité du polynôme d'interpolation Soit f une fonction définie sur $I = [a,b] \subset \mathbb{R}$ et N+1 points distincts de I : $x_0, x_1, ..., x_N$. Alors, il existe une unique fonction polynôme de P_N qui interpole aux points $x_0, x_1, ..., x_N$.

Output Polynôme d'ordre 1 $\{x_0, x_1\}$

$$l_0^{(1)}(x) = \frac{(x - x_1)}{(x_0 - x_1)} \qquad l_1^{(1)}(x) = \frac{(x - x_0)}{(x_1 - x_0)}$$

$$p_1(x) = f(x_0)l_0^{(1)}(x) + f(x_1)l_1^{(1)}(x) = f(x_0)\frac{(x-x_1)}{(x_0-x_1)} + f(x_1)\frac{(x-x_0)}{(x_1-x_0)}$$

Output Polynôme d'ordre 2 $\{x_0, x_1, x_2\}$

$$l_0^{(2)}(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} \qquad l_1^{(2)}(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} \qquad l_2^{(2)}(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_1)}$$

$$p_{2}(x) = f(x_{0})l_{0}^{(2)}(x) + f(x_{1})l_{1}^{(2)}(x) + f(x_{2})l_{2}^{(2)}(x)$$

$$= f(x_{0})\frac{(x-x_{1})(x-x_{2})}{(x_{0}-x_{1})(x_{0}-x_{2})} + f(x_{1})\frac{(x-x_{0})(x-x_{2})}{(x_{1}-x_{0})(x_{1}-x_{2})} + f(x_{2})\frac{(x-x_{0})(x-x_{2})}{(x_{1}-x_{0})(x_{1}-x_{1})}$$

$$f(x) = x^2 e^{-\frac{x}{4}} \sin(x)$$

Polynôme d'ordre 1

Polynôme d'ordre 2

Polynôme d'ordre 3

Polynôme d'ordre 4

Polynôme d'ordre 5

Polynôme d'ordre 6

Remarque: Calculs simplifiés: pas besoin d'inversion de matrices. Le calcul pour *n-1* points devient obsolète pour *n* points.

Plan du cours

- Représentation d'un nombre en machine, erreurs numériques, etc...
- Interpolation polynomiale
 - Introduction générale et rappels de mathématique
 - Polynôme d'interpolation: calcul en base canonique
 - Polynôme d'interpolation: calcul en base de Lagrange
 - Polynôme d'interpolation: calcul en base de Newton
 - Erreur d'interpolation
 - Interpolation d'Hermite
 - Limites de l'interpolation polynomiale
 - Spline
- Intégration numérique
- Résolution numérique des équations différentielles ordinaires (EDO)

3 changements de signe

$$\psi_n(x) = (x - x_0)(x - x_1)...(x - x_{n-1})$$

Polynôme de degré n

n changements de signe

left Polynôme d'ordre 0 $ig\{\chi_0^{}ig\}$

$$p_0(x) = f(x_0) = a_0^h \psi_0(x)$$
 $a_0^h = f(x_0)$

Output Polynôme d'ordre 1 $\{x_0, x_1\}$

$$p_{1}(x) = p_{0}(x) - p_{0}(x_{1})l_{1}^{(1)}(x) + f(x_{1})l_{1}^{(1)}(x) = p_{0}(x) + (f(x_{1}) - p_{0}(x_{1}))l_{1}^{(1)}(x)$$

$$= (f(x_1) - p_0(x_1)) \frac{(x - x_0)}{x_1 - x_0} = p_0(x) + \frac{f(x_1) - p_0(x_1)}{x_1 - x_0} (x - x_0) = p_0(x) + a_1^h \psi_1(x)$$

$$a_1^h = \frac{f(x_1) - p_0(x_1)}{x_1 - x_0} = \frac{f(x_1) - f(x_1)}{x_1 - x_0}$$
Polynôme d'ordre 2 $\{x_0, x_1, x_2\}$

Output Polynôme d'ordre 2 $\{x_0, x_1, x_2\}$

$$p_{2}(x) = p_{1}(x) + (-p_{1}(x_{2}) + f(x_{2}))l_{2}^{(2)}(x) = p_{1}(x) + \frac{f(x_{2}) - p_{1}(x_{2})}{(x_{2} - x_{0})(x_{2} - x_{1})}(x - x_{0})(x - x_{1})$$

$$= p_{1}(x) + a_{2}^{h}\psi_{2}(x)$$

$$a_{2}^{h} = \frac{f(x_{2}) - p_{1}(x_{2})}{(x_{2} - x_{0})(x_{2} - x_{1})}$$

o Polynôme d'ordre N $\{x_0, x_1, x_2, ..., x_N\}$

Polynôme d'ordre N
$$\{x_0, x_1, x_2, ..., x_N\}$$

$$p_N(x) = p_{N-1}(x) + \frac{f(x_N) - p_{N-1}(x_N)}{(x_N - x_0)...(x_N - x_{N-1})}(x - x_0)...(x - x_{N-1})$$

$$= \sum_{i=0}^{N} a_i^h \psi_i(x)$$

$$a_N^h = \frac{f(x_N) - p_{N-1}(x_N)}{(x_N - x_{N-1})}$$

$$a_N^h = \frac{f(x_N) - p_{N-1}(x_N)}{(x_N - x_0)...(x_N - x_{N-1})}$$

$$p_{2}(x) = p_{1}(x) + a_{2}^{h}\psi_{2}(x)$$

$$p_3(x) = p_2(x) + a_3^h \psi_3(x)$$

$$p_4(x) = p_3(x) + a_4^h \psi_4(x)$$

$$p_5(x) = p_4(x) + a_5^h \psi_5(x)$$

$$p_{6}(x) = p_{5}(x) + a_{6}^{h} \psi_{6}(x)$$

Remarque: Soit $p_n(x) = \sum_{i=1}^{n} a_i^h h_i(x)$ la fonction polynôme qui interpole f sur $\{x_0,...,x_k,...,x_n\}$ Alors le polynôme d'interpolation sur $\{x_0,...,x_k\}$ est $p_k(x) = \sum_{i=1}^{n} a_i^h h_i(x)$

$$p_N(x) = p_{N-1}(x) + a_N^h \psi_N(x)$$

Coefficient dominant de
$$P_N$$
 $a_N^h = \frac{f\left(x_N\right) - p_{N-1}\left(x_N\right)}{\left(x_N - x_0\right)...\left(x_N - x_{N-1}\right)} \triangleq f\left[x_0,...,x_N\right]$ Différences divisées relatives à $\{x_0,...,x_N\}$

Propriété: La différence divisée est indépendante de l'ordre des points de support

$$p_{0}(x) = a_{0}^{h} \psi_{0}(x) = a_{0}^{h} \implies f[x_{0}] = f(x_{0})$$

$$p_{1}(x) = p_{0}(x) + \left(\frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}\right) \psi_{1}(x) \implies f[x_{0}, x_{1}] = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}} = \frac{f[x_{1}] - f[x_{0}]}{x_{1} - x_{0}}$$

$$\vdots$$

$$f[x_{0}, x_{1}, x_{2}] = g(f[x_{0}, x_{1}], f[x_{1}, x_{2}]) = ?$$

On cherche une expression récursive pour f[]

$$p_{k}(x) = \frac{x - x_{0}}{x_{k} - x_{0}} p_{1 \to k}(x) + \frac{x_{k} - x}{x_{k} - x_{0}} p_{0 \to k-1}(x)$$

$$= \begin{cases} 0 & \text{si } x = x_{0} \\ \frac{x_{i} - x_{0}}{x_{k} - x_{0}} f(x_{i}) & \text{si } x = x_{i} \neq x_{0}, x_{k} \end{cases} + \begin{cases} f(x_{0}) & \text{si } x = x_{0} \\ \frac{x_{k} - x_{i}}{x_{k} - x_{0}} f(x_{i}) & \text{si } x = x_{i} \neq x_{0}, x_{k} \\ 0 & \text{si } x = x_{k} \end{cases}$$

$$= \begin{cases} f(x_0) & \text{si } x = x_0 \\ \frac{x_k - x_i}{x_k - x_0} f(x_i) + \frac{x_i - x_0}{x_k - x_0} f(x_i) = \frac{x_k - x_0}{x_k - x_0} f(x_i) = f(x_i) & \text{si } x = x_i \neq x_0, x_k \\ f(x_k) & \text{si } x = x_k \end{cases}$$

$$\begin{array}{ll} \text{Coefficient dominant} & = \left(\frac{x-x_0}{x_k-x_0}\right) coefdom \begin{bmatrix} p_{1\rightarrow k}\left(x\right) \end{bmatrix} + \left(\frac{x_k-x}{x_k-x_0}\right) coefdom \begin{bmatrix} p_{k-1}\left(x\right) \end{bmatrix} \\ & f\left[x_0,x_1,...,x_{k-1},x_k\right] \end{array}$$

$$f\left[x_{0}, x_{1}, ..., x_{k-1}, x_{k}\right] = \frac{f\left[x_{1}, ..., x_{k-1}, x_{k}\right] - f\left[x_{0}, x_{1}, ..., x_{k-1}\right]}{x_{k} - x_{0}}$$

Expression récursive

$$f[x_{i}] = f(x_{i})$$

$$f[x_{0}, x_{1}, ..., x_{k-1}, x_{k}] = \frac{f[x_{1}, ..., x_{k-1}, x_{k}] - f[x_{0}, x_{1}, ..., x_{k-1}]}{x_{k} - x_{0}}$$

Expression récursive

$$f[x_{i}] = f(x_{i})$$

$$f[x_{0}, x_{1}, ..., x_{k-1}, x_{k}] = \frac{f[x_{1}, ..., x_{k-1}, x_{k}] - f[x_{0}, x_{1}, ..., x_{k-1}]}{x_{k} - x_{0}}$$

Algorithme

pour i=0 à n faire

$$Df(i,0) \leftarrow f(i)$$

fin pour

pour colonne=1 à n faire

pour ligne=colonne à n faire

$$Df (ligne,colonne) \leftarrow \frac{Df (ligne+1,colonne-1) - Df (ligne,colonne-1)}{x (ligne) - x (ligne-colonne)}$$

fin pour

fin pour

pour i=0 à n faire

$$sortie(i) \leftarrow Df(i,i)$$

fin pour


```
On crée un tableau des x et des y (par simplicité) \mathbf{X} = [x_0, x_1, x_2, ..., y_N] \mathbf{Y} = [y_0, y_2, y_2, ..., y_N]
 double* x = calloc( N, sizeof(double) );
 double* y = calloc( N, sizeof(double) );
 I = 0;
 for( nPts.points->current = nPts.points->root; hasNext( nPts.points ); getNext(
 nPts.points)){
 Point* pt = ((Point*)(nPts.points->current->data));
      // On met les valeurs de x et y
      x[I] = pt->x;
      y[I] = pt->y;
      |++;
On crée une matrice triangulaire et on met les valeurs de y dans la 1ère colonne
 double **matDF = malloc( N * sizeof(double*) );
                                                                   MatDF = \begin{bmatrix} y_0 \\ y_1 & 0 \\ y_2 & 0 & 0 \\ \vdots & \vdots & \ddots & 0 \end{bmatrix} N
for(I = 0; I < N; I++)
      matDF[I] = calloc( l+1, sizeof(double) );
matDF[I][0] = y[I];
```


On calcule les valeurs de f[x0, ..., xN]

On crée un polynome

Polynome pDF = creerPolynome(N);

On complète le polynôme d'interpolation

$$MatDF = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_N \\ * & * \end{bmatrix} N$$

Output Polynôme d'ordre 1 $\{x_0, x_1\}$

$$x_{0}$$
 $f[x_{0}] = f(x_{0})$

$$f[x_{0}, x_{1}] = \frac{f[x_{1}] - f[x_{0}]}{x_{1} - x_{0}} = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$x_{1}$$
 $f[x_{1}] = f(x_{1})$

$$p_{1}(x) = f[x_{0}]\psi_{0} + f[x_{0}, x_{1}]\psi_{1} = f(x_{0}) + \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}(x - x_{0})$$

$$p_{1}(x) = \frac{f(x_{0})x_{1} - f(x_{0})x_{0} - x_{0}f(x_{1}) + x_{0}f(x_{0})}{x_{1} - x_{0}} + \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}x$$

$$= \left(\frac{f(x_{0})x_{1} - x_{0}f(x_{1})}{x_{1} - x_{0}}\right) + \left(\frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}\right)x \quad \text{(représentation en base canonique)}$$

$$a_{0}$$

Output Polynôme d'ordre 2 $\{x_0, x_1, x_2\}$

$$x_{0} f[x_{0}] = f(x_{0})$$

$$f[x_{0}, x_{1}] = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$x_{1} f[x_{1}] = f(x_{1})$$

$$f[x_{1}, x_{2}] = \frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$(x_{2} - x_{0})$$

$$x_{2} f[x_{2}] = f(x_{2})$$

$$p_{2}(x) = f[x_{0}]\psi_{0} + f[x_{0}, x_{1}]\psi_{1} + f[x_{0}, x_{1}, x_{2}]\psi_{2} = p_{1}(x) + f[x_{0}, x_{1}, x_{2}]\psi_{2}(x)$$

$$p_2(x) = p_1(x) + a_2^h \psi_2(x)$$

$$p_3(x) = p_2(x) + a_3^h \psi_3(x)$$

$$p_4(x) = p_3(x) + a_4^h \psi_4(x)$$

$$p_5(x) = p_4(x) + a_5^h \psi_5(x)$$

$$p_6(x) = p_5(x) + a_6^h \psi_6(x)$$

Remarque: Soit $p_n(x) = \sum_{i=1}^{n} a_i^h \psi_i(x)$ la fonction polynôme qui interpole f sur $\{x_0,...,x_k,...,x_n\}$

Alors le polynôme d'interpolation sur $\{x_0,...,x_k\}$ est $p_k(x) = \sum_{i=1}^{n} a_i^h \psi_i(x)$

Plan du cours

- Représentation d'un nombre en machine, erreurs numériques, etc...
- Interpolation polynomiale
 - Introduction générale et rappels de mathématique
 - Polynôme d'interpolation: calcul en base canonique
 - Polynôme d'interpolation: calcul en base de Lagrange
 - Polynôme d'interpolation: calcul en base de Newton
 - Erreur d'interpolation
 - Interpolation d'Hermite
 - Limites de l'interpolation polynomiale
 - Spline
- Intégration numérique
- Résolution numérique des équations différentielles ordinaires (EDO)

Polynôme d'interpolation: erreur

$$f: \mathbf{I} = [a,b] \to \mathbb{R} \qquad \{x_0, ..., x_n\} \qquad \overline{x} \in [a,b]$$

- d'interpolation $e_n(\overline{x}) = f(\overline{x}) p_n(\overline{x}) = f[x_0, ..., x_n, \overline{x}]h_{n+1}(\overline{x})$ $= f\left[x_0, ..., x_n, \overline{x}\right] \prod_{i=0}^{n} (\overline{x} - x_i)$
 - Fonction interpolé

Points du support

Théorème: Si f est de classe C^k sur I et $\{x_0,...,x_k\}$ des points distincts de [a,b]. Alors il existe $\xi \in [a,b]$ tel que:

$$f[x_0,...,x_k] = \frac{f^{(k)}(\xi)}{k!}$$

$$e_n(\overline{x}) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (\overline{x} - x_i)$$

calcul de l'erreur $e_n(\overline{x}) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=1}^{n} (\overline{x} - x_i)$ d'interpolation demande la connaissance de la fonction! connaissance de la fonction!

Polynôme d'interpolation: erreur

$$\left| e_n(\overline{x}) \right| = \frac{\left| f^{(n+1)}(\xi) \right|}{(n+1)!} \left| \prod_{i=0}^n (\overline{x} - x_i) \right| \qquad f \in C^{(n+1)}[a,b] \Rightarrow \left| f^{(n+1)}(\xi) \right| \le M^{(n)} \quad \text{avec} \quad M^{(n)} = \max_{x \in [a,b]} f^{(n+1)}(x)$$

$$\left| e_n(\overline{x}) \right| = \frac{M^{(n)}}{(n+1)!} \left| \prod_{i=0}^n (\overline{x} - x_i) \right|$$

$$\left| \prod_{i=0}^{n} \left(\overline{x} - x_{i} \right) \right| \leq \left(b - a \right)^{n+1} = h^{n+1} \quad \Rightarrow \quad \left| e_{n} \left(\overline{x} \right) \right| \leq M^{(n)} \frac{h^{n}}{(n+1)!}$$

$$\lim_{h \to 0} \left| e_{n} \left(\overline{x} \right) \right| = 0$$

Minimisation de l'erreur

$$\min_{x_i} \left| e_n \left(\overline{x} \right) \right| = \frac{\left| f^{(n+1)} \left(\xi \right) \right|}{(n+1)!} \min_{x_i} \left| \prod_{i=0}^n \left(\overline{x} - x_i \right) \right| \qquad \min \left| \prod_{i=0}^n \left(\overline{x} - x_i \right) \right| = \frac{1}{2^{n-1}} \Leftrightarrow x_i \quad \text{Z\'eros polyn\^ome Tchebychev}$$

$$x_i^{(n)} \in [a,b]$$
 $x_i^{(n)} = \frac{(b-a)}{2} \cos\left(\frac{(2i+1)\pi}{2(n+1)}\right) + \frac{a+b}{2}$ $i = 0,1,...,n$

Choix optimal des points d'interpolation

Polynôme d'interpolation: erreur

nœuds équirépartis

Choix optimal des points d'interpolation

$$I = \left[-\pi, \pi\right] \qquad f(x) = \sin(x) \qquad f^{(n+1)}(x) = \begin{cases} \pm \frac{\sin(x)}{\cos(x)} \\ \left| f^{(n+1)}(\xi) \right| \le 1 \qquad |e_n(x)| \le \frac{(\pi+\pi)^n}{(n+1)!} = \frac{(2\pi)^n}{(n+1)!} \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{\pi} & \text{for } x = 1 \\ \frac{1}{\pi} & \text{for } x = 1 \end{cases}$$

$$d_{\infty}(f, p_n) = \sup_{x \in I} |f(x) - p_n(x)| \le \frac{1}{(n+1)!} \left| \prod_{i=1}^{n} (x - x_i) \right| \le \frac{(2\pi)^n}{(n+1)!}$$

$$f(x) = \frac{1}{1+x^2}$$
 Fonction de Runge

$$f'(x) = -\frac{2x}{(1+x^2)^2}$$

$$f^{(2)}(x) = \frac{8x^2}{(1+x^2)^3} - \frac{2}{(1+x^2)^2}$$

$$\vdots$$

$$f^{(4)}(x) = \frac{384x^4}{(1+x^2)^5} - \frac{288x^2}{(1+x^2)^4} + \frac{24}{(1+x^2)^3}$$

$$\vdots$$

$$f^{(10)}(x) = \frac{3.7 \cdot 10^9 x^{10}}{(1+x^2)^{11}} - \frac{8.4 \cdot 10^9 x^8}{(1+x^2)^{10}} + \frac{6.5 \cdot 10^9 x^6}{(1+x^2)^9}$$

$$-\frac{2 \cdot 10^9 x^4}{(1+x^2)^8} + \frac{2.2 \cdot 10^8 x^2}{(1+x^2)^7} - \frac{3.6 \cdot 10^6}{(1+x^2)^6}$$

$$\vdots$$

nœuds équirépartis

Les polynômes d'interpolation présentent des oscillations qui augmentent avec le degré du polynôme.

$$f(x) = \frac{1}{1+x^2}$$
 Fonction de Runge

$$f'(x) = -\frac{2x}{(1+x^2)^2}$$

$$f^{(2)}(x) = \frac{8x^2}{(1+x^2)^3} - \frac{2}{(1+x^2)^2}$$

$$\vdots$$

$$f^{(4)}(x) = \frac{384x^4}{(1+x^2)^5} - \frac{288x^2}{(1+x^2)^4} + \frac{24}{(1+x^2)^3}$$

$$\vdots$$

$$f^{(10)}(x) = \frac{3.7 \cdot 10^9 \, x^{10}}{(1+x^2)^{11}} - \frac{8.4 \cdot 10^9 \, x^8}{(1+x^2)^{10}} + \frac{6.5 \cdot 10^9 \, x^6}{(1+x^2)^9}$$

$$-\frac{2 \cdot 10^9 \, x^4}{(1+x^2)^8} + \frac{2.2 \cdot 10^8 \, x^2}{(1+x^2)^7} - \frac{3.6 \cdot 10^6}{(1+x^2)^6}$$

$$\vdots$$

Choix optimal des points d'interpolation

Plan du cours

- Représentation d'un nombre en machine, erreurs numériques, etc...
- Interpolation polynomiale
 - Introduction générale et rappels de mathématique
 - Polynôme d'interpolation: calcul en base canonique
 - Polynôme d'interpolation: calcul en base de Lagrange
 - Polynôme d'interpolation: calcul en base de Newton
 - Erreur d'interpolation
 - Interpolation d'Hermite
 - Limites de l'interpolation polynomiale
 - Spline
- Intégration numérique
- Résolution numérique des équations différentielles ordinaires (EDO)

Interpolation d'Hermite

Soit $N \in \mathbb{N}^+$ et $\{x_0,...,x_N\}$ des points distincts de [a,b]. Le **polynôme d'interpolation** d'Hermite est un polynôme p de degré inferieur ou égal à 2(N+1) tel que

$$\begin{cases} p_N^H(x_i) = f(x_i) & \forall i \in \{0,..,N\} \\ p_N^H'(x_i) = f'(x_i) \end{cases}$$
 2(N+1) équations

Remarque: $p_N^H(x) = a_0 + a_1x + ... + a_{2N}x$ avec 2(N+1) constantes à déterminer

Existence et unicité du polynôme d'interpolation d'Hermite

Soit $N \in \mathbb{N}^+$ et $\{x_0,...,x_N\}$ des points distincts de [a,b]. Le polynôme d'interpolation d'Hermite généralisé est un polynôme p de degré inferieur ou égal à K tel que

$$\begin{cases} p(x_i) = f(x_i) & \forall i \in \{0,..,N\} \\ p^{(s)}(x_i) = f^{(s)}(x_i) & \forall s \in \{0,..,P\} \end{cases}$$
 K=N(P+1) équations

Interpolation d'Hermite: exemple

o Polynôme d'ordre 1 $\{x_0\}$ $p_1^H(x_i) = a_0 + a_1x_1$

$$\{x_0\}$$

$$p_1^H\left(x_i\right) = a_0 + a_1 x$$

$$\begin{cases} p_1^H(x_0) = f(x_0) \\ p_1^H'(x_0) = f'(x_0) \end{cases} \Rightarrow \begin{cases} a_0 + a_1 x_0 = f(x_0) \\ a_1 = f'(x_0) \end{cases} \Rightarrow \begin{cases} a_0 = f(x_0) - f'(x_0) x_0 \\ a_1 = f'(x_0) \end{cases}$$
$$p_1^H(x_i) = f(x_0) - f'(x_0) x_0 + f'(x_0) x$$

Polynôme d'ordre 3 $\{x_0, x_1\}$ $p_3^H(x_i) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$

$$p_3^H(x_i) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

$$\begin{cases} p_3^H(x_0) = f(x_0) \\ p_3^H(x_1) = f(x_1) \\ p_3^H'(x_0) = f'(x_0) \end{cases} \Rightarrow \begin{cases} a_0 + a_1 x_0 + a_2 x_0^2 + a_3 x_0^3 = f(x_0) \\ a_0 + a_1 x_1 + a_2 x_1^2 + a_3 x_1^3 = f(x_1) \\ a_1 + 2a_2 x_0 + 3a_3 x_0^2 = f'(x_0) \\ a_1 + 2a_2 x_1 + 3a_3 x_1^2 = f'(x_1) \end{cases}$$

$$\begin{bmatrix} 1 & x_0 & x_0^2 & x_0^3 \\ 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & 2x_0 & 3x_0^2 \\ 0 & 1 & 2x_1 & 3x_1^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ f'(x_0) \\ f'(x_1) \end{bmatrix}$$

Interpolation d'Hermite: exemple

$$f(x) = \sin(x) \quad x_0 = -\pi \quad x_1 = \pi$$

Interpolation d'Hermite: différence finies

$$\lim_{x_1 \to x_0} f[x_0, x_1] = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f'(x_0) = f[x_0, x_0]$$

$$f[x_0, ..., x_0] = \frac{f^{(n)}(x_0)}{n!}$$

$$x_0 \quad f[x_0]$$

$$x_0 \quad f[x_0]$$

$$x_1 \quad f[x_1] = f'(x_1)$$

$$x_1 \quad f[x_1] = f'(x_1)$$

$$\vdots$$

$$x_N$$

$$p_n^H(x) = \sum_{i=0}^n f[x_0, ..., x_i] \psi_i(x)$$

Interpolation d'Hermite: exemple

Output Polynôme d'ordre 1 $\{x_0\}$

$$x_{0} f[x_{0}] = f(x_{0})$$

$$f[x_{0}, x_{0}] = f'(x_{0})$$

$$x_{0} f[x_{0}] = f(x_{0})$$

$$p_{1}^{H}(x) = f(x_{0}) - f'(x_{0})\psi_{1}(x) = f(x_{0}) - f'(x_{0})(x - x_{0})$$

Output Polynôme d'ordre 3 $\{x_0, x_1\}$

$$x_{0} f(x_{0})$$

$$f[x_{0}, x_{0}] = f'(x_{0})$$

$$x_{0} f(x_{0})$$

$$f[x_{0}, x_{0}] = \frac{f'(x_{0})}{x_{0}} f[x_{0}, x_{0}, x_{1}]$$

$$f[x_{0}, x_{1}] = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}} ... f[x_{0}, x_{0}, x_{1}, x_{1}]$$

$$x_{1} f(x_{1}) f[x_{1}, x_{1}] = f'(x_{1})$$

$$x_{1} f(x_{1})$$

Plan du cours

- Représentation d'un nombre en machine, erreurs numériques, etc...
- Interpolation polynomiale
 - Introduction générale et rappels de mathématique
 - Polynôme d'interpolation: calcul en base canonique
 - Polynôme d'interpolation: calcul en base de Lagrange
 - Polynôme d'interpolation: calcul en base de Newton
 - Erreur d'interpolation
 - Interpolation d'Hermite
 - Limites de l'interpolation polynomiale
 - Spline
- Intégration numérique
- Résolution numérique des équations différentielles ordinaires (EDO)

Propriétés et limites de l'interpolation polynomiale

L'erreur est d'autant plus petite que la fonction est lisse.

Remarque: si f est un polynôme de degré <=n, l'erreur est nulle.

Propriétés et limites de l'interpolation polynomiale

L'erreur d'extrapolation est typiquement supérieure à celle d'interpolation

lacktriangle La suite $p_n(x)$ ne converge pas nécessairement vers $m{f}$: même avec des fonctions de classe $C^\infty(I)$

Remarque: Il ne convient pas d'augmenter trop le degré du polynôme d'interpolation

Propriétés et limites de l'interpolation polynomiale

Instabilité de l'interpolation

Une petite variation des données, pour des nœuds équirépartis, cause une large variation de l'approximation.

Plan du cours

- Représentation d'un nombre en machine, erreurs numériques, etc...
- Interpolation polynomiale
 - Introduction générale et rappels de mathématique
 - Polynôme d'interpolation: calcul en base canonique
 - Polynôme d'interpolation: calcul en base de Lagrange
 - Polynôme d'interpolation: calcul en base de Newton
 - Erreur d'interpolation
 - Interpolation d'Hermite
 - Limites de l'interpolation polynomiale
 - Spline
- Intégration numérique
- Résolution numérique des équations différentielles ordinaires (EDO)

Découpage de l'intervalle I=[a,b] in N sous intervalles

La spline s(x) est une fonction définie par morceaux par des polynômes d'ordre K,

$$s(x) = \begin{cases} p_k^{(1)}(x) & \text{si } x_0 \le x < x_1 \\ p_k^{(2)}(x) & \text{si } x_1 \le x < x_2 \\ & \vdots \\ p_k^{(N)}(x) & \text{si } x_{N-1} \le x < x_N \end{cases}$$

tel que

$$s(x_i) = f(x_i) \quad \forall i = 0,...,N$$

Spline

N+1 équations

$$s(x_i) = f(x_i) \quad \forall i = 0,...,N$$

$$p_0^{(i)}\left(x\right) = f\left(x_{i-1}\right)$$

$$p_0^{(i)}(x) = a_0^{(i)} \quad \forall i = 1, ..., N$$

N coefficients à déterminer

La **spline** s(x) est discontinue

ordre K=1 : On impose la continuité de s

(N+1)+(N-1)=2N équations

$$s(x_i) = f(x_i) \quad \forall i = 0,..., N$$
$$p_0^{(i)}(x_i) = p_0^{(i+1)}(x_i) \quad \forall i = 1,..., N-1$$

$$\begin{cases}
s(x_i) = f(x_i) & \forall i = 0, ..., N \\
p_0^{(i)}(x_i) = p_0^{(i+1)}(x_i) & \forall i = 1, ..., N-1
\end{cases}$$

$$p_1^{(i)}(x) = \frac{f(x_{i-1})(x-x_i)}{(x_{i-1}-x_i)} + \frac{f(x_i)(x-x_{i-1})}{(x_i-x_{i-1})}$$

$$p_1^{(i)}(x) = a_0^{(i)} + a_1^{(i)}x \quad \forall i = 1,...,N$$

2N coefficients à déterminer

La dérivé de la spline s'(x) est discontinue

Spline

ordre K=2: On impose la continuité de la dérivé première de s

(N+1)+2(N-1)=3N-1 équations

3N coefficients à déterminer

$$p_2^{(i)}(x) = a_0^{(i)} + a_1^{(i)}x + a_2^{(i)}x^2 \quad \forall i = 1,..., N$$

$$s(x_{i}) = f(x_{i}) \quad \forall i = 0,...,N$$

$$p_{0}^{(i)}(x_{i}) = p_{0}^{(i+1)}(x_{i}) \quad \forall i = 1,...,N-1$$

$$\frac{d}{dx} p_{0}^{(i)}(x_{i}) = \frac{d}{dx} p_{0}^{(i+1)}(x_{i}) \quad \forall i = 1,...,N-1$$

1 degré de liberté

On peux imposer une condition sur la dérivé de s(t)

Spline périodique

$$\frac{d}{dx}s(a) = \frac{d}{dx}s(b) \Leftrightarrow \frac{d}{dx}p_2^{(i)}(x_0) = \frac{d}{dx}p_2^{(i+1)}(x_N)$$

Spline naturelle

$$\frac{d}{dx}s(a) = 0 \Leftrightarrow \frac{d}{dx}p_2^{(i)}(x_0) = 0$$

La dérivé seconde $s^{(2)}(x)$ de la spline est discontinue

Spline

(N+1)+3(N-1)=4N-2 équations

ordre K=3 (spline cubique): On impose la continuité de la dérivé seconde de s

4N coefficients à déterminer

$$p_3^{(i)}(x) = a_0^{(i)} + a_1^{(i)}x + a_2^{(i)}x^2 + a_3^{(i)}x^2 \quad \forall i = 1,..., N$$

$$s(x_{i}) = f(x_{i}) \quad \forall i = 0,..., N$$

$$p_{3}^{(i)}(x_{i}) = p_{3}^{(i+1)}(x_{i}) \quad \forall i = 1,..., N-1$$

$$\frac{d}{dx} p_{3}^{(i)}(x_{i}) = \frac{d}{dx} p_{3}^{(i+1)}(x_{i}) \quad \forall i = 1,..., N-1$$

$$\frac{d^{2}}{dx^{2}} p_{3}^{(i)}(x_{i}) = \frac{d^{2}}{dx^{2}} p_{3}^{(i+1)}(x_{i}) \quad \forall i = 1,..., N-1$$

2 degrés de liberté

On peux imposer deux condition sur les dérivé de s(t)

Spline périodique

$$\frac{d}{dx}s(a) = \frac{d}{dx}s(b) \Leftrightarrow \frac{d}{dx}p_3^{(i)}(x_0) = \frac{d}{dx}p_3^{(i+1)}(x_N)$$

$$\frac{d^2}{dx^2}s(a) = \frac{d^2}{dx^2}s(b) \Leftrightarrow \frac{d^2}{dx^2}p_3^{(i)}(x_0) = \frac{d^2}{dx^2}p_3^{(i+1)}(x_N)$$

Spline naturelle

$$\frac{d}{dx}s(a) = 0 \Leftrightarrow \frac{d}{dx}p_3^{(i)}(x_0) = 0$$
$$\frac{d^2}{dx^2}s(a) = 0 \Leftrightarrow \frac{d^2}{dx^2}p_3^{(i)}(x_0) = 0$$

La dérivé seconde s⁽²⁾(x) de la **spline** est discontinue