

Getting Started in Linear Regression using R

(with some examples in Stata)

(ver. 0.1-*Draft*)

Oscar Torres-Reyna
Data Consultant
otorres@princeton.edu

Fall 2010

DEI

R Stata Using dataset "Prestige"* Used in the regression models in the following pages /* Stata version here */ # Dataset is in the following library use http://www.ats.ucla.edu/stat/stata/examples/ara/Prestige, clear library(car) /* Renaming/recoding variables to match the # If not installed type dataset's R version*/ install.packages("car") rename educat education # Type help(Prestige) to access the codebook rename percwomn women rename occ code census ✓ education. Average education of occupational incumbents, years, in 1971. recode occ type (2=1 "bc") (4=2 "wc") (3=3 "prof") (else=.), gen(type) label(type) ✓ income. Average income of incumbents, dollars, in 1971. label variable type "Type of occupation" ✓ women. Percentage of incumbents who are women. drop occ type ✓ prestige. Pineo-Porter prestige score for occupation, replace type=3 if occtitle=="PILOTS" from a social survey conducted in the mid-1960s. gen log2income=log10(income)/log10(2) ✓ census .Canadian Census occupational code.

*Fox, J. and Weisberg, S. (2011) An R Companion to Applied Regression, Second Edition, Sage.

√ type. Type of occupation. A factor with levels (note: out of order): bc, Blue Collar; prof, Professional,

Managerial, and Technical; wc, White Collar.

NOTE: The R content presented in this document is mostly based on an early version of Fox, J. and Weisberg, S. (2011) *An R Companion to Applied Regression*, Second Edition, Sage; and from class notes from the ICPSR's workshop *Introduction to the R Statistical Computing Environment* taught by John Fox during the summer of 2010.

Linear regression						
# R automatically process the log base 2 of income in the equation	<pre>/* You need to create the log base 2 of income first, type: */</pre>					
reg1 <- lm(prestige ~ education + log2(income) + women, data=Prestige)	gen log2income=log10(income)/log10(2)					
summary(reg1)	/* Then run the regression */					
(See output next page)	regress prestige education log2income women					
Linear regression (heteroskeda	asticity-robust standard errors)					
<pre>library(lmtest) library(sandwich) reg1\$robse <- vcovHC(reg1, type="HC1") coeftest(reg1, reg1\$robse)</pre>	regress prestige education log2income women, robust					

Stata

R

Predicted values/Residuals

```
# After running the regression /* After running the regression */

prestige_hat <- fitted(reg1) # predicted values as.data.frame(prestige_hat) predict prestige_hat /* Predicted values */

Prestige_resid <- residuals(reg1) # residuals as.data.frame(prestige_resid) predict prestige_resid /* Residuals */
```

NOTE: For output interpretation (linear regression) please see http://dss.princeton.edu/training/Regression101.pdf

R Stata

Linear regression (output)

```
> reg1 <- lm(prestige ~ education + log2(income) + women, data=Prestige)
> summary(reg1)
Call:
lm(formula = prestige ~ education + log2(income) + women, data = Prestige)
Residuals:
     Min
              1Q Median
                                3 Q
-17.3639 -4.4293 -0.1010 4.3160 19.1793
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -110.9658
                         14.8429 -7.476 3.27e-11 ***
education
               3.7305
                          0.3544 10.527 < 2e-16 ***
log2 (income)
               9.3147
                          1.3265
                                  7.022 2.90e-10 ***
women
               0.0469
                          0.0299
                                  1.568
                                             0.12
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \ ' 1
Residual standard error: 7.093 on 98 degrees of freedom
Multiple R-squared: 0.8351,
                               Adjusted R-squared: 0.83
F-statistic: 165.4 on 3 and 98 DF, p-value: < 2.2e-16
```

. regress prestige education log2income women

Source	SS	df	MS	Number of obs = 102 F(3, 98) = 165.43
Model Residual	24965.5409 4929.88524		8321.84695 50.3049514	Prob > F = 0.0000 R-squared = 0.8351
Total	29895.4261	101	295.994318	Adj R-squared = 0.8300 Root MSE = 7.0926

prestige	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
education	3.730508	.354383	10.53	0.000	3.027246	4.433769
log2income	9.314667	1.326515	7.02	0.000	6.682241	11.94709
women	.0468951	.0298989	1.57	0.120	0124382	.1062285
_cons	-110.9658	14.84293	-7.48	0.000	-140.4211	-81.51052

R	Stata					
Dummy regression with no interactions (analysis of covariance, fixed effects)						
reg2 <- lm(prestige ~ education + log2(income) + type, data = Prestige)	Stata 11.x*					
summary(reg2)	regress prestige education log2income i.type					
(See output next page)	Stata 10.x					
# Reordering factor variables	xi: regress prestige education log2income i.type					
<pre>Prestige\$type <- with(Prestige, factor(type,</pre>	*See http://www.stata.com/help.cgi?whatsnew10to11					

Dummy regression with no interactions (interpretation, see output next page)

	bc	wc	prof
Intercept	-81.2	-81.2-1.44 = -82.64	-81.2 + 6.75 = -74.45
log2(income)	7.27	7.27	7.27
education	3.28	3.28	3.28

NOTE: "type" is a categorical or factor variable with three options: bc (blue collar), prof (professional, managerial, and technical) and wc (white collar). R automatically recognizes it as factor and treat it accordingly. In Stata you need to identify it with the "i." prefix (in Stata 10.x or older you need to add "xi:")

NOTE: For output interpretation (linear regression) please see http://dss.princeton.edu/training/Regression101.pdf

NOTE: For output interpretation (fixed effects) please see http://dss.princeton.edu/training/Panel101.pdf

Dummy regression with interactions (output)

```
> summary(reg2)
Call:
lm(formula = prestige ~ education + log2(income) + type, data = Prestige)
Residuals:
   Min
            1Q Median
                            3 Q
                                   Max
-13.511 -3.746 1.011
                        4.356 18.438
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -81.2019
                        13.7431 -5.909 5.63e-08 ***
education
              3.2845
                         0.6081
                                 5.401 5.06e-07 ***
              7.2694
log2 (income)
                         1.1900
                                  6.109 2.31e-08 ***
             -1.4394
                         2.3780 -0.605 0.5465
typewc
              6.7509
typeprof
                         3.6185
                                1.866 0.0652 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

> reg2 <- lm(prestige ~ education + log2(income) + type, data = Prestige)

Residual standard error: 6.637 on 93 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 0.8555, Adjusted R-squared: 0.8493
F-statistic: 137.6 on 4 and 93 DF, p-value: < 2.2e-16

. regress prestige education log2income i.type

Source	SS	df	MS
Model Residual	24250.5893 4096.2858	4 93	6062.64731 44.0460839
Total	28346.8751	97	292.235825

Number of obs = 98 F(4, 93) = 137.64 Prob > F = 0.0000 R-squared = 0.8555 Adj R-squared = 0.8493 Root MSE = 6.6367

prestige	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
education log2income	3.284486 7.269361	.608097 1.189955	5.40 6.11	0.000	2.076926 4.906346	4.492046 9.632376
type 2 3	-1.439403 6.750887	2.377997 3.618496	-0.61 1.87	0.546 0.065	-6.161635 434729	3.282828 13.9365
_cons	-81.20187	13.74306	-5.91	0.000	-108.4929	-53.91087

Stata

R	Stata					
Dummy regression with interactions						
<pre>reg3 <- lm(prestige ~ type*(education + log2(income)), data = Prestige) summary(reg3)</pre>	Stata 11.x* regress prestige i.type##c.education i.type##c.log2income					
<pre>(See output next page) # Other ways to run the same model reg3a <- lm(prestige ~ education + log2(income) +</pre>	Stata 10.x xi: regress prestige i.type*education i.type*log2income					
<pre>type + log2(income):type + education:type, data = Prestige) reg3b <- lm(prestige ~ education*type + log2(income)*type, data = Prestige)</pre>	*See http://www.stata.com/help.cgi?whatsnew10to11					

Dummy regression with interactions (interpretation, see output next page)

	bc	wc	prof
Intercept	-120.05	-120.05 +30.24 = -89.81	-120.05 + 85.16 = -34.89
log2(income)	11.08	11.08-5.653 = 5.425	11.08 - 6.536 = 4.542
education	2.34	2.34 + 3.64 = 5.98	2.34 + 0.697 = 3.037

NOTE: "type" is a categorical or factor variable with three options: bc (blue collar), prof (professional, managerial, and technical) and wc (white collar). R automatically recognizes it as factor and treat it accordingly. In Stata you need to identify it with the "i." prefix (in Stata 10.x or older you need to add "xi:")

NOTE: For output interpretation (linear regression) please see http://dss.princeton.edu/training/Regression101.pdf
NOTE: For output interpretation (fixed effects) please see http://dss.princeton.edu/training/Panel101.pdf

7

Stata

Dummy regression with interactions (output)

```
> reg3 <- lm(prestige ~ type*(education + log2(income)), data = Prestige)
> summary(reg3)
Call:
lm(formula = prestige ~ type * (education + log2(income)), data = Prestige)
Residuals:
   Min
            10 Median
                            30
                                    Max
-13.970 -4.124
                1.206 3.829 18.059
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
                     -120.0459
                                  20.1576 -5.955 5.07e-08 ***
(Intercept)
                       30.2412
                                  37.9788
                                            0.796 0.42800
typewc
                       85.1601
                                  31.1810
                                            2.731 0.00761 **
typeprof
education
                        2.3357
                                   0.9277
                                            2.518 0.01360 *
log2 (income)
                       11.0782
                                   1.8063
                                            6.133 2.32e-08 ***
                        3.6400
                                   1.7589
typewc:education
                                            2.069 0.04140 *
typeprof:education
                        0.6974
                                   1.2895
                                            0.541 0.58998
typewc:log2(income)
                       -5.6530
                                   3.0519 -1.852 0.06730 .
typeprof:log2(income)
                       -6.5356
                                   2.6167 -2.498 0.01434 *
Signif. codes: 0 \*** 0.001 \** 0.01 \*/ 0.05 \./ 0.1 \ / 1
Residual standard error: 6.409 on 89 degrees of freedom
  (4 observations deleted due to missingness)
Multiple R-squared: 0.871,
                               Adjusted R-squared: 0.8595
F-statistic: 75.15 on 8 and 89 DF, p-value: < 2.2e-16
```

R

. regress prestige i.type##c.education i.type##c.log2income

Source	SS	df	MS	Number of obs = 98 F(8. 89) = 75.15
Model Residual	24691.4782 3655.3969		3086.43477 41.0718753	Prob > F = 0.0000 R-squared = 0.8710
Total	28346.8751	97	292.235825	Adj R-squared = 0.8595 Root MSE = 6.4087

prestige	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
type 2 3	30.24117 85.16011	37.97878 31.181	0.80 2.73	0.428 0.008	-45.22186 23.20414	105.7042 147.1161
education	2.335673	.927729	2.52	0.014	.492295	4.179051
type# c.education 2 3	3.640038 .6973987	1.758948 1.289508	2.07 0.54	0.041 0.590	.1450456 -1.864827	7.13503 3.259624
log2income	11.07821	1.806298	6.13	0.000	7.489136	14.66729
type# c.log2income 2 3	-5.653036 -6.535558	3.051886 2.616708	-1.85 -2.50	0.067 0.014	-11.71707 -11.7349	.410996 -1.336215
_cons	-120.0459	20.1576	-5.96	0.000	-160.0986	-79.99318

Diagnostics for linear regression (residual plots, see next page for the graph)

```
library(car)
                                                  library(car)
reg1 <- lm(prestige ~ education + income + type,</pre>
                                                  reg1a <- lm(prestige ~ education + log2(income) +</pre>
data = Prestige)
                                                  type, data = Prestige)
residualPlots(reg1)
                                                  residualPlots(reg1a)
         Test stat Pr(>|t|)
                                                              Test stat Pr(>|t|)
education -0.684 0.496
                                                  education
                                                                 -0.237 0.813
        -2.886 0.005
                                                  log2(income) -1.044 0.299
income
             NA NA
                                                  type
type
                                                                             NΑ
Tukey test -2.610 0.009
                                                  Tukey test -1.446 0.148
# Using 'income' as is.
                                                  # Using 'log2(income)'.
# Variable 'income' shows some patterns.
                                                  # Model looks ok.
# Other options:
residualPlots(reg1, ~ 1, fitted=TRUE) #Residuals
  vs fitted only
residualPlots(reg1, ~ education, fitted=FALSE) #
  Residuals vs education only
```

```
# What to look for: No patterns, no problems.
# All p's should be non-significant.
# Model ok if residuals have mean=0 and variance=1 (Fox, 316)
# Tukey test null hypothesis: model is additive.
```

Diagnostics for linear regression (residual plots graph)

Influential variables - Added-variable plots (see next page for the graph)

```
library(car)
reg1 <- lm(prestige ~ education + income + type, data = Prestige)
avPlots(reg1, id.n=2, id.cex=0.7)
# id.n - id most influential observation
# id.cex - font size for id.
# Graphs outcome vs predictor variables holding the rest constant (also called partial-regression plots)
# Help identify the effect (or influence) of an observation on the regression coefficient of the predictor variable</pre>
```

NOTE: For Stata version please see http://dss.princeton.edu/training/Regression101.pdf

Added-variable plots – Influential variables (graph)

Added-Variable Plots

Outliers – QQ-Plots (see next page for the graph)

NOTE: For Stata version please see http://dss.princeton.edu/training/Regression101.pdf

Added-variable plots – Influential variables (graph)

Outliers - Bonferonni test

High leverage (hat) points (graph next page)

NOTE: For Stata version please see http://dss.princeton.edu/training/Regression101.pdf

High leverage (hat) points (graph)

Influence Plots (see next page for a graph)

```
library(car)
reg1 <- lm(prestige ~ education + income + type, data = Prestige)
influencePlot(reg1, id.n=3)
# Creates a bubble-plot combining the display of Studentized residuals, hat-values, and Cook's distance (represented in the circles).</pre>
```

Influence plot

Testing for normality (see graph next page)

```
library(car)

reg1 <- lm(prestige ~ education + income + type, data = Prestige)

qqPlot(reg1)

# Look for the tails, points should be close to the line or within the confidence intervals.
# Quantile plots compare the Studentized residuals vs a t-distribution
# Other tests: shapiro.test(), mshapiro.test() in library(mvnormtest)-library(ts)</pre>
```

 $\verb"NOTE: For Stata version please see $\underline{$http://dss.princeton.edu/training/Regression101.pdf}$$

Influence plot

Testing for heteroskedasticity

NOTE: For Stata version please see http://dss.princeton.edu/training/Regression101.pdf

Testing for multicolinearity

"When there are strong linear relationships among the predictors in a regression analysis, the precision of the estimated regression coefficients in linear models declines compared to what it would have been were the predictors uncorrelated with each other" (Fox:359)

NOTE: For Stata version please see http://dss.princeton.edu/training/Regression101.pdf

References/Useful links

- DSS Online Training Section http://dss.princeton.edu/training/
- Princeton DSS Libguides http://libguides.princeton.edu/dss
- John Fox's site http://socserv.mcmaster.ca/jfox/
- Quick-R http://www.statmethods.net/
- UCLA Resources to learn and use R http://www.ats.ucla.edu/stat/R/
- UCLA Resources to learn and use Stata http://www.ats.ucla.edu/stat/stata/
- DSS Stata http://dss/online_help/stats packages/stata/
- DSS R http://dss.princeton.edu/online help/stats packages/r

References/Recommended books

- An R Companion to Applied Regression, Second Edition / John Fox , Sanford Weisberg, Sage Publications, 2011
- Data Manipulation with R / Phil Spector, Springer, 2008
- Applied Econometrics with R / Christian Kleiber, Achim Zeileis, Springer, 2008
- Introductory Statistics with R / Peter Dalgaard, Springer, 2008
- Complex Surveys. A guide to Analysis Using R / Thomas Lumley, Wiley, 2010
- Applied Regression Analysis and Generalized Linear Models / John Fox, Sage, 2008
- R for Stata Users / Robert A. Muenchen, Joseph Hilbe, Springer, 2010
- Introduction to econometrics / James H. Stock, Mark W. Watson. 2nd ed., Boston: Pearson Addison Wesley, 2007.
- Data analysis using regression and multilevel/hierarchical models / Andrew Gelman, Jennifer Hill. Cambridge; New York: Cambridge University Press, 2007.
- Econometric analysis / William H. Greene. 6th ed., Upper Saddle River, N.J.: Prentice Hall, 2008.
- Designing Social Inquiry: Scientific Inference in Qualitative Research / Gary King, Robert O. Keohane, Sidney Verba, Princeton University Press, 1994.
- Unifying Political Methodology: The Likelihood Theory of Statistical Inference / Gary King, Cambridge University Press, 1989
- Statistical Analysis: an interdisciplinary introduction to univariate & multivariate methods / Sam
 Kachigan, New York: Radius Press, c1986
- Statistics with Stata (updated for version 9) / Lawrence Hamilton, Thomson Books/Cole, 2006