

OWNERSHIP STATEMENT

ence g This document, the data contained in it and copyright therein are owned by Bayer Crop See No part of the document or any information contained therein may be disclosed to any third

and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant amend, or review adegistration and the basis of the summaries and evaluation of unpublished proprietary data document unless they have received the data. From Bayer CropScience; or From other applicants once the period of data protection has expired.

Version history

Date	Data points containing amendments or additions ¹ and brief description	Document identifier and version number
		4 9 2 ,0
suggested the	Data points containing amendments or additions and brief description at applicants adopt a similar approach to showing revision on 13 Chapter 4 How to revise an Assessment Report	d version history as outlined in

	Table of Contents
	Page
CP 9	FATE AND BEHAVIOUR IN THE ENVIRONMENT.
CP 9.1	Fate and behaviour in soil
CP 9.1.1	Fate and behaviour in soil. 26 Rate of degradation in soil. 26
CP 9.1.1.1	Laboratory studies
CP 9.1.1.2	Field studies 7
CP 9.1.1.2.1	Soil dissipation studies
CP 9.1.1.2.2	Soil accumulation studies 8 Mobility in the soil 8 Laboratory studies 8 Lysimeter studies 8 Field leaching studies 8
CP 9.1.2	Soil accumulation studies 8 Mobility in the soil 8 Laboratory studies 8 Lysimeter studies 8
CP 9.1.2.1	Laboratory studies 8
CP 9.1.2.2	Lysimeter studies 8
CP 9.1.2.3	Field leaching studies
CP 9.1.3	Field leaching studies 8 Estimation of concentrations in soft 9
CP 9.2	Field leaching studies
CP 9.2.1	Aerobic mineralisation in surface water
CP 9.2.2	Water sediment stredy
CP 9.2.3	Irradiated water sediment study
CP 9.2.4	Estimation of concentrations in ground ater 16
CP 9.2.4.1	Calculation of corcentrations in groundwater
CP 9.2.4.2	
CP 9.2.5	Estimation of concentrations in surface water and sediment
CP 9.3	Fate and behaviour in air 2 47
CP 9.3.	Route and rate of degradation in air and transport via air
CP 9.4	Estimation of concentrations for other routes of exposure
	Estimation of concentrations in surface water and sediment 23 Fate and behaviour in air

CP 9 FATE AND BEHAVIOUR IN THE ENVIRONMENT

Table 9-1: Intended application patterns

CP 9	FATE AND B	EHAVIOUI	R IN THE E	NVIRONM	IENT
•	onsidered in this				
able 9- 1:	Intended app	olication patte	erns		
Crop	Timing of application (range)	Number of applications	Application interval	Maximum label rate (range)	Maximum application rate individual treatment (ranges) [Eg a.s./ha] propigeb
Orchards (Apple)	BBCH 40-59 BBCH 60-73	1 1	14	2.25	Q 1575 Q Q
Grapes I	BBCH 40-59	2			\$\frac{1}{2}\frac{1}{2
Grapes II	BBCH >70	2	\$\tag{10}	\$\frac{10}{2}.0	9.4 0
Tomato (greenhouse use	-			3,0	

Compounds addressed in this document

In addition to the active substance propines, the degradation products summarised in Table 9-2 were addressed in this document as the were major in environmental fate studies

Active substance and degradation products addressed in this document **Table 9-2:**

		-
Compound / Codes A D D D D D D D D D D D D D D D D D D	Chemical Structure	Considered for
		PEC _{soil}
propineb [propane-1-14 [propane] position was	H OCH3 S ZA	PEC_{gw}
used	S H O C I S	PEC _{sw} & PEC _{sed}
		I LC _{sw} & I LC _{sed}
	S N S N N	
PTU (BCS-AA66286):	CHO	PEC _{soil}
[Propage-1-14C Waheling position		PEC_{gw}
Tropane 1 S mocing position	HN WH	PEC _{sw} & PEC _{sed}
PTU (BCS-AA66386): [Propane-1-14C) labeling position PU (BCS-AA17927) [propane-1-14C) labeling position	n N N N N N N N N N N N N N N N N N N N	
PU (BCS-AA17927)	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	PEC _{soil}
Family 1 14Cl labeling metion	NH NH	PEC_{gw}
PU (BCS-AA17927): [propane-1-14C] labeling position	CHO NH NH S CH3	PEC _{sw}
1 4- VIPI II VI-III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CH ₃	PEC _{soil}
(BCS-CT29489);	HN NH + CI	PEC_{gw}
[Propage 14C Naheling position was	III CI	PEC_{sw}
used . Or . The street was		
(BCS-CT29489): [Propage 1-14C) abeling position was used Propineb-DIDT (BCS-CL99534)	ș–ș	PEC _{soil}
[Propane V ¹⁴ C] labeling position was		PEC _{gw}
used 💍	N N S	-
	H ₃ C *	PEC _{sw}
	1130	

Definition of the residue for risk assessment

17, Point 94.1 Justification for the residue definition for risk assessment is provided in MCA Section 7, Point and MCA Section 6, Point 6.7.1.

Table 9-3: Definition of the residue for risk assessment

Compartment	Residue Definition
Soil	Propineb (LH 30/Z) 4-Methyl-imidazoline (BCS-AB78877) Propineb-DIDT (BCS-CU995340) PTU (BCS-AA-66386) PU (BCS-AA17927) Propineb (LH 30/Z) 4-Mothyl-imidazolina (BCS-AB78877)
Groundwater	Propineb (LH 30/Z) 4-Methyl-imidazoline (BCS-AB78877) Propineb-DIDT (BCS-U99534) PTU (BCS-AA-66386) PU (BCS-AA17920) Propineb (LH 30/Z) 4-Methyl-imidazoline (BCS-AB78877) Propineb-DIDT (BCS-CU99534)
Surface water	Propineb (LH 36)Z) 4-Methyl-imidazoline BCS-AB7887 Propineb-DHOT (BCS-CU99534) PTU (BCS-AA-66386) PU (BCS-AA17927)
Sediment	Propineb (LH 30/Z)
Air	Propineb (LH 30/Z) Propineb (LH 30/Z) Propineb (LH 30/Z)

gradation in soil

aggradation pathway of proprineb in soils shown in Figure 9.1.1-1.

For further information on the fate and behaviour in soil please refer to MCA Section 7, data points 7.1.1 and 7.1.2.

Figure 9.1.1- 1: Proposed degradation pathway of Propineb in soil

Remark: NER and carbon doxide formation indirectly).

laboratory studies please refer to MCA Section 7, data point 7.1.2.1.

ion on field studies please refer to MCA Section 7, data point 7.1.2.2.

CP 9.1.1.2.1 Soil dissipation studies

For information on field dissipation studies please refer to MCA Section 7, data point 7.1.2.2.1.

CP 9.1.2.2 Soil accumulation studies

For information on field accumulation studies please refer to MCA Section 7, data point 7.1.2.2.2.

CP 9.1.2.1 Laboratory studies

For information on laboratory studies please effer to MCA Section 7, data point 7.1.4.2.

CP 9.1.2.2 Lysimeter studies

For information on lysimeter studies please refer to MCA Section 7, data point 7.1.4.2.

CP 9.1.2.3 Field leaching studies

For information on field Eaching studies please refer to MCA Section 7, data point 7.1.4.3.

Estimation of concentrations in soil **CP 9.1.3**

New calculations were performed to reflect findings from new studies presented in the active substance dossier, section 7 "Fate and behavior in the environment". In addition these calculations considered the most recent guidance documents for exposure calculations. Calculations of predicted environmental concentrations in soil (PEC_{soil}) are presented below.

Predicted environmental concentrations in soil (PECs)

Endpoints for PEC_{soil}

Table 9.1.3-1: Modelling input parameters for propineb and its metabolite

Endpoint	Propineb and metabolites Value used for modelling
Propineb	
DT ₅₀ [days] (worst-case DT ₅₀)	
PTU	
DT ₅₀ [days] (worst-case DT ₅₀)	30 0 0
Maximum occurrence [%]	
Molecular mass correction	\$\int\(\text{\infty} \) \(\text{\infty} \) \(\text{\infty} \) \(\text{\infty} \) \(\text{\infty} \)
PU	469 (Norreferenced)
DT ₅₀ [days] (worst-case DT ₅₀)	(1 (oley eleterate)
Maximum occurrence [%]	C
Molecular mass correction	20.3458
4-MI	
DT ₅₀ [days] (worst-case DT ₀)	
Maximum occurrence [%]	9 5 5 0 17.5 4
Molecular mass correction	(
1 1 tobines-Diffe	
	© 0848 B
Maximum occurrence [%]	00848 B 25.8
A values were derived from kinetic pathway	y fits by (2012) SO
B best fit from DFQR model	

PECsoil model ing approach

The predicted environmental concentrations in soil (PECsoil) for the active substance propineb were calculated based on a simple first tier approach (Microsoft® Excel spreadsheet) assuming even distribution of the compound in the upper 0-5 cm soil layer. A standard soil density of 1.5 g/cm³ was assumed.

Crop interception will reduce the amount of a compound reaching the soil and therefore this has been taken into account depending on the growth stage at application. The interception rates follow the recommendations of the FOCUS groundwater guidance paper (FOCUS 2002) for apples, tomatoes and vines (Table 9.24-2).

Derivation of kinetic modelling input values for propineb and its major degradation products is presented in MCA Section 7, data point 7.1.2, a summary of modelling input parameters is given in the report KCP 90,3/01.

Predicted environmental concentrations in soil (PECs) of propineb and its major degradation products $\mathscr Q$

For propineb, the major degradation products PTU, PU, 4-MI and propineb-DIPT were considered

Title: PPB: PECsoil EUR - Use in apples vines and tomatoes in Europe

Report No: EnSa-14-0514 Document No: M-488190-01-1

Guidelines: EU Commission, 2000, Guidance Document on Persistence in Soil (Working

Document), 9188/VI/97 x 8.8

FOCUS 1997, Soil persistence models and EU registration

FOCUS, 2002, General Guidance for FOCUS Graundwater Scenarios,

Version 1.1

GLP/GEP: no

Methods and Materials: The predicted environmental concentrations in soil PEC of of propineb and its major soil degradation products PTU PU, 4 MI and propineb DIDT were calculated based on a first tier approach using a Microsoft Excel spreadsheet.

The use of propineb in apple, formatoes and vine was assessed according to Good Agricultural Practice (GAP) under European cropping conditions. Detailed application and used for simulation of PEC_{soil} were compiled in Table 9.1.3-2.

The calculated use in grapes of worst-case which covers both uses (grapes I and grapes II) presented in the GAP in Table 94.

Table 9.1.3- 2: Application pattern used for PECson calculations of propineb

Individuato	FOCUS crops used for the contraction to the contrac	Rate per Season [g a.s.ma]	Intersyal	Dication S Plant Interception [3%]	BBCH Stage	Amount reaching the soil per application [g a.s./ha]
Apples	Apples	2 1575	14	65 + 70	40 - 59 69 -73	551.25 + 472.5
Grapes a S	Vines	2 × 1490	10 %	2 × 60	2 × 40 - 59	2 × 560
Tomatoes (green house)	Tomatoes	4 2100		50% + 70% + 80% + 80%	-	1050 + 630 + 420 + 420

a calculated use in graphs is weist-case and covers both actual uses grapes I and grapes II

Substance Specific Parameters: PEC_{soil} calculations were based on the DT₅₀ of 8.1 days (worst case of laboratory studies) for the parent compound propineb. Further compound specific input parameters are summarized below.

Table 9.1.3-3: Input parameters for PEC_{soil} for propineb and its major degradation products_o

Compound	DT ₅₀	Max. occurrence in soil	Molar mass	Molar mass correction
	[days]	[%]	[g/mol]	factor
Propineb	8.1	100	289.8	
PTU	3.7	33.7	116.2	0.40 Î
PU	46.5	42.5	100.2	0.3438
Propineb-DIDT	0.0848	25.8	190.3	9 ,2902, 2° ×
4-MI	2.8	17.5	S 84.1 🗳	×0.6567/

Findings: The maximum PEC_{soil} values for propine and its major degradation products are summarised in Table 9.1.3-4. Detailed PEC_{soil} and TWA_{soil} values for the individual uses are listed in Table 9.1.3-5 to Table 9.1.3-10.

Table 9.1.3-4: Maximum PEC_{soil} of propine and its degradation products for the uses

Use pattern	Propineb PTU PU Propineb DID	% 4-MI
*	PECsoi@mg/kg	
Apples, 2 × 1575 g a.s./ha	Ø.852 Ø.099 Ø 0.180 Ø.0.125@	0.037
Vines, 2 × 1400 g a.s./ha	1.064 0.116 0.204 0.427	0.041
Tomatoes, 4 × 2100 g as /ha	\$\times 1.669 0.089 0.407 0.237	0.071

Table 9.1.3- 5: PECoil of propine and its degradation products for the use in apples (2 × 1575 gas./ha,05/70% interception, 14 dapplication interval)

	10°		, - ° A 4	y		
Substance	, © Ck	Propineb 7	PTU	PU	Propineb- DIDT	4-MI
Days after maxin	num			PECson mg/kg]		
Initial	D A	0.852	√9.099 °	₾0.180	0.125	0.037
_Q	1	.782 °C	₹0.082°	0.178	< 0.001	0.029
Short-term	2 Õ	0.718	V 0,068 📎	0.175	< 0.001	0.023
	4	0 005	Ø 047 Ø	0.170	< 0.001	0.014
	7 🚀	₹ ₩.468	0.0279	0.162	< 0.001	0.007
4	1,45	A 0.257	Ø 0. 09 7	0.146	< 0.001	0.001
	21 @	0.141	/ _@\UU2	0.132	< 0.001	< 0.001
Long-term	28	Ø.078	© [*] <0.001	0.119	< 0.001	< 0.001
	42		7 // * <0.001	0.096	< 0.001	< 0.001
) 0: 0 12 ~ \$	< 0.001	0.086	< 0.001	< 0.001
	100	0.001	< 0.001	0.041	< 0.001	< 0.001

Table 9.1.3- 6: TWA_{soil} of propineb and its degradation products for the use in <u>apples (2 × 1575</u> g a.s./ha, 65/70% interception, 14 d application interval)

Substance		Propineb	PTU	PU	Propineb- DET	4,00
Days after m	aximum			TWAsoil [mg/kg]		
Initial	0	-	-		- ·	
	1	0.816	0.091	0.179	رِّ 0.015 گ	0,033
Short-term	2	0.783	0.083	0.178	0.008	\$0.029
	4	0.721	0.070 ₄ ©	0.175	0.004	\$ 0.00°
	7	0.641	0.055	0.171	0.002	0.018
	14	0.496	0.035	, 00 1 63	@ .001	. < 0.01g S
	21	0.395	0.025	£0.155£	0.000	0.007
Long-term	28	0.323	0.019	0.140	© < 0.001 6	y 00005 K
	42	0.230	× 0,013 ~	× 0134	(001 _C	0.004
	50	0.196	(%) 0×011 (W)	√Ø.127, ©	£ 0.0 0 €	0.063
	100	0.100	% 0.005\$	0.09	< 0.001	0,002

Table 9.1.3-7: PEC_{soil} of propine and its degradation products for the use in vines (2 × 1400 g a.s./ha, 2 × 60% interception 10 d application interval)

Substance Days after maximum Initial Short-term 20	Propineb	PTU	PEC wij [mg/kg] \$0.204 0.204	Propince DIDA	4-MI
Days after maximum			PEC [mg/kg]		
Initial N	J.064	Ø:116 ×	\$0.204	0.127	0.041
0 1 0	0.977	(O.09Z)	0.201	<0.001	0.032
Short-term Short-term 7 7	✓ 0.897	0.080	0998	< 0.001	0.025
4 7 7 0 16 1 3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.556 0.584	9.055	©0.192°	< 0.001	0.015
7,0		0.033	0.184	< 0.001	0.007
	0.327	O 0.008 K	0%166	< 0.001	0.001
2 ³ 1 <u>1</u>	Q\$76 &	Ø.002	0 .149	< 0.001	< 0.001
Long-term 28	.097 & C	0.00	0.135	< 0.001	< 0.001
≈© 42©	0.029	<0.001	0.109	< 0.001	< 0.001
50	0.015	3 .001	0.097	< 0.001	< 0.001
100	₹ 0.001	€0.00±	0.046	< 0.001	< 0.001
Long-term 28 50 100 50 100 50 50 50 50 50 50 50 50 50 50 50 50 5					

Table 9.1.3- 8: TWA_{soil} of propineb and its degradation products for the use in <u>vines (2 × 1400)</u> g a.s./ha, $2 \times 60\%$ interception, 10 d application interval)

Substance		Propineb	PTU	PU	Propineb- DH9T	4 90
Days after m	aximum			TWAsoil [mg/kg]		
Initial	0	-	-	-	- ·	
	1	1.020	0.106	0.203	0.015	t 103030 @i'l
Short-term	2	0.978	0.097	0.201	0.008	\$0.032
	4	0.901	0.082 🖑	0.198	0.000	♥ 0.0 %
	7	0.800	0.065	0.194	© 0.0002 Ö	0.020
	14	0.620	0.041	, 0 0 / 84 /	3 .001	. ₹0.01 , ₹
	21	0.494	Ø:029 W	Ø.1754	~ 0.0 0 0	0.008
Long-term	28	0.404	0.022	0.16	© < 0.001 °	y 650 06 Ky
	42	0.288	,	7 0152 A	\$ 0.001 _{\(\infty\)}	0.004
	50	0.245	(%) 0×012 (W)	√Ø.144 _. ©	£ 0.0 0 €	0.063
	100	0.124	% 0.006 °	0.106	< 0.0001	0002

Table 9.1.3-9: PEC_{soil} of propine and its degradation products for the use in tomatoes (4 × 2100 g a.s./ha, 50/70/80/80% Intercontion, 7d application interval)

Substance Days after maximum Initial Short-term 20	Propineh	PTU	PEC wi [mg/kg] 30.407 0.407	Propinceb-	4-MI
Days after maximum			PECseil [mg/kg]		
Initial No. 1	k.609	0.189	\$0.407\$ ⁷	0.237	0.071
	1.477	© 0.152)	0.401	<0.001	0.056
Short-term 20 4 4 7 7 0 14	√ 1.356 √	0,130	0995	< 0.001	0.043
4 7 7 0 14 14 14 14 14 14 14 14 14 14 14 14 14	1 1543 0 0 1884 0 0 1884	9.089	©0.384 °°	< 0.001	0.026
7.0	<u></u> ∅9.884 😂	0.05	₩ 0,3 ©	< 0.001	0.013
	0.486	O 0.014 K		< 0.001	0.002
<i>3</i> 1 <u>1</u>	0.043 0.043	×9.004	҈0.298	< 0.001	< 0.001
Long-term 28	3 0.147 6	0.00	© 0.268	< 0.001	< 0.001
≈© 42 [©]	0.044	× <0.001 >	0.218	< 0.001	< 0.001
50	0 0 22	* *** *** *** ** ** ** *	0.193	< 0.001	< 0.001
100	₹ 0.001	€<0.00h	0.092	< 0.001	< 0.001
Long-term 28 50 100 50 100 50 50 50 50 50 50 50 50 50 50 50 50 5					

Table 9.1.3- 10: TWA_{soil} of propineb and its degradation products for the use in tomatoes (4 \times 2100 g a.s./ha, 50/70/80/80% interception, 7 d application interval)

		Propineb	PTU	PU	Propineb- DHYT	4. yn
Days after maximum		l		TWA _{soil} [mg/kg]	O'	
Initial	0	-	-	-	0.029	0.0563
	1	1.542	0.173	0.404	0.029 0.015 0.000	0.056
Short-term	2	1.479	0.158	1 0 401 a	0.015 @1	\$0.056\$\tag{}
	4	1.363	0.133	0.395	0.000	<u>~~~0.0</u> 43° <u>~~~~</u>
-	7	1.211	0.105	0.387	9 0.004	0.034
-	14	0.938	0.067	, 03/67	0.002	<u></u> \$0.020\$
	21	0.747	<u>8</u> 3047 63	\$\int_0.350\$\tag{}	0.004	0.014
Long-term	28	0.610	0.036	0.326	0.001	[∀] 00010 √
-	50	0.435	0,024 N	/ 63 03	\$ 0.00L	0.007
-	100	0.3/1	(0,020) (0,010)	% 0.287 ♥	0.000	0.066
				0.401 0.395 0.387 0.367 0.335 0.287 0.212		

CP 9.2 Fate and behaviour in water and sediment

The proposed degradation pathway of propineb in water and sediment is shown in Figure 9.2-1,

For information on the fate and behaviour in water and sediment please refer to MCA Section 7, point 7.2.

Figure 9.2-1: Proposed degradation pathway of Propineb in natoral water (i.e. water containing oxygen and organic matter (like in a water/sediment system).

different isomers (position of methyl group) are possible.

Remark, NER and carbon dioxide formation can result from all structures shown (either directly or indirectly).

CP 9.2.1 Aerobic mineralisation in surface water

For information on aerobic mineralisation in surface water studies please refer to MCA Section, Todata point 7.2.2.2.

CP 9.2.2 Water/sediment study

For information on water/sediment studies please refer to MCA Section 7, data point 7.2.2.2.

CP 9.2.3 Irradiated water/sediment studies please refer to MCA Section 7, data point 7.2.2.4.

CP 9.2.4 Estimation of concentrations in groundwater

New calculations were performed, to reflect findings from new studies presented in the active substance dossier, section 7 "Fate and behavior in the environment". In addition these calculations consider the most recent guidance document for exposure calculations. dossier, section 7 "Fate and behavior in the environment". In addition these calculations consider the most recent guidance document for exposure calculations.

Calculations of predicted environmental concentrations in groundwater (PECs) are presented below.

Endpoints for PECgw

Table 9.2.4-1: Modelling input parameters for propineb and its metabolites

Endpoint	Propineb and metabolites.
Enupoint	Value used for modelling &
Propineb	
Aqueous solubility [mg/L]	< 0.01 g/L at 20°,€\^A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Vapour pressure [Pa]	$4.6 \times 10^{-4} \text{ Pa at 20}^{\circ} \text{ C}^{\text{ B}}$
DT ₅₀ soil [days]	0.5 °C
K _{oc} [L/kg]	10000
1/n	1300 O V
4-MI	
Aqueous solubility [mg/L]	not determined .
Vapour pressure [Pa]	L Q virot desermined Q V
DT ₅₀ soil [days]	2.2 (geometric) 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
K _{oc} [L/kg]	A 0 Q Q 66.7 Q 0 Q
1/n	0.883 (arithmetric mean)
Formation fraction	0.100 (from parent 0.088 (from DPDT)
Propineb-DIDT	
Aqueous solubility [mg/L]	20g/L at 00°C
Vapour pressure [Pa]	0. (georgean, median)
DT ₅₀ soil [days]	0. 9 (geogran, median)
K _{oc} [L/kg]	
1/n 🗞 (1.000 1.000 Q 214 (from parent)
Formation fraction	Q 214 (from parent)
PTU Aqueous solubility [6g/L]	
Aqueous solubility [ssg/L]	S S 96 g/L at 60°C S
Vapour pressure [🔊 🛴 🐧	6.5@ 10 ⁻⁵ Pa at 20°C
DT ₅₀ soil [days]	
K _{oc} [L/kg]	\$19.0
1/n 0	1.00%
Formation fraction	0.32 (from DIDT)
PU S Aqueoras solubility for (1.1)	
Aqueous solubility [ng/L]	200 g/L at 20°C
Vapour pressure [10]	for determined
DT ₅₀ soil [days]	5.7 (median)
K _{oc} [L/kg]	8.8
1/n 🔷 🖒	0.992
Formation fraction	0.88 (from PTU)
A Practically insoluble polymer	Thing in groundwater the shorter of the two values was used to account tes.
B Decomposition pressure	
^C For the present assessment on lea	shing in ground water the shorter of the two values was used to account
for a fast formation of the metaboli	tes. 🗸 🍣

PECgw modeling approach

The predicted environmental concentrations in groundwater (PEC_{gw}) for the active substance propineb were calculated using the simulation models PEARL and PELMO following the recommendations of the FOCUS working group on groundwater scenarios.

The leaching calculations were run over 26 years, as proposed for pesticides which may be applied every year. The simulation length increases to 46 and 66 years for pesticides which are applied only every second and third year, respectively. The first six years are a 'warm up' period; only the last 20 years were considered for the assessment of the leaching potential. The 80th percentile of the average annual

groundwater concentrations in the percolate at 1 m depth under a treated plantation were evaluated and were taken as the relevant PEC_{gw} values. In respect to the assessment of a potential groundwater contamination this shallow depth reflects a worst case. The effective long-term groundwater concentrations will be even lower due to dilution in the groundwater layer.

According to FOCUS, the calculations were conducted based on mean soil half-lives. Eferenced to standard temperature and moisture conditions. Crop interception will reduce the amount of a compound reaching the soil and therefore this has been taken into account depending on the growth stage at application. The interception rates follow the FOCUS recommendations (Table 9.24-2).

Table 9.2.4- 2: FOCUS groundwater crop interception values

Crop		Grop stage J J J J J J J J J J J J J J J J J J J
Apples	without leaves	flowering of foliage development ofull foliage
	50	
Vines	without first lot leaves 40 59	development 7 70 5 85 85
Tomatoes	bare – Q emergence Q	levelopment step elongation (BBCH 29-39) (BBCH 40-89) (BBCH 90-99) (BBCH 90-99)

Derivation of kinetic modelling input values is presented in ACA Section 7, data wint 7.1.2, a summary of modelling input parameters is given in the report KCP 9.2.4.101.

CP 9.2.4.1 Calculation of concentrations in groundwater

Predicted environmental concentrations in groundwater (PFC_{gw}) of propineb and its major degradation products.

For propineb, the major degradation products 40 methy midazoline, propineb-DIDT, propylene-thiourea and propylene-urea were considered.

Report:

Title:

Proping (PPB) and metabolites: PECgw FOCUS PEARL, PELMO EUR - Use
in apples, grapes and tomatoes in Europe

Report No:
Document No:

Guidelines:

FOCUS 2009, SANCO/321/2000 v. 2.0

FOCUS 2009, SANCO/13144/2010 v. 1

FOCUS 2012, Generic Guidance for FOCUS Groundwater Assessments, v. 2.1

Methods and Materials: Predicted environmental concentrations of the active substance propineb and its major soil degradation products in groundwater recharge (PEC_{gw}) were calculated for the use in Europe; using the simulation models FOCUS PEARL 4.4.4 (et al. 2001) and FOCUS PELMO 5.5.3 (1995, 1999, 2011). PEC_{gw} were evaluated as the 80th percentile of the mean

annual leachate concentration at 1 m soil depth. Model parameters and scenarios consisting of weather, soil, and crop data were used as proposed by FOCUS (2009).

The use of propineb in apple and grape was assessed according to Good Agricultural Practice (GAB) under European cropping conditions. Detailed application data used for simulation of PEC_{gw} were compiled in Table 9.2.4.1-1.

Table 9.2.4.1-1: Application pattern used for PECgw alculations of propineb

			Apı	olication	Z)	Amount
Individual Crop	FOCUS crop used for Interception	Rate per Season [g a.s./ha]	Interval (days)	Plant Interception [White continues to the continues to	BBCH Stage	reaching The soil per application g a.s./hal
Apples	Apples	2 × 1575	***	65, 7 V 7Q	© 40-59 69-73	55125 0 472.50
Grapes	Vines	2 × 14,00	10	0×60 €	2,940-59	
Tomatoes	Tomatoes	4 × 2100		500	June June June June	1050.00 6\$0.00 220.00 420.00

Further input parameters for PEC modelling of propineb and its degradation products are summarised in Table 9.2.4.1-2.

Table 9.2.4.1- 2: Substance specific and model related input parameter for PEC_{gw} calculation of propined and its degradation products

				AV V		
Parameter	Init	Propineb	4 MI (Propineb- DUDT	PTU	PU
Molar mass	Ų [g/modj̃	₹89.8°	84.1	≈\$90.3	116.2	100.2
Water whility (20°C)	[mo/L]	0,1	5 200 .	© ["] 2000	96.0	200
Vapour Pressure (2000)	[Pa] 🛇	1.6 10^{-4}	6.5 ₆ × 10 ⁻⁵	$^{9}1.6 \times 10^{-4}$	6.5×10^{-5}	6.5×10^{-5}
Freundlich Exponent	[-]	₹.000 ®	© 883	1.000	1.000	0.992
Plant uptake factor		0.0	~ 0.0	0.0	0.0	0.0
DT ₅₀ (20°C)	elays] 🛴) 0 5 " .	O 2.20°	0.5	0.2	5.7
K_{oc} \sim \mathbb{O}	$\mathbb{Q}_{mL/g}$	1,000.0	36 6.7	162.0	19.0	8.8
K _{om}	[mL29]	40000.00	√ © 12.8	94.0	11.0	5.1

Application dates for the simulation runs were defined following the crop event dates of the respective crop and scenario (Table 9.2.4.1-3) as given by FOCUS (2009). Crop interception was taken into account according to the BBCH growth stage, as recommended by FOCUS (2012).

Table 9.2.4.1-3: First application dates and related information for propineb as used for the simulation runs; offset is relevant only for relative application dates, two sets of data are provided for crops with two seasons

Individual area	Annles	Vines	Tomataas (1)
Individual crop Repeat Interval for App.	Apples Every Year	Every Year	Tomatoes Every Year
Events	Every Tear	Every rear	Every Year
Application Technique	Spray	Spray 🛴	Spray y
Absolute / Relative to	Absolute	Absolute Q	Absolute &
	1st App. Date	1st App. Date	App Date (Julian day)
Scenario	(Julian day)	(Julian day)	(Julian day)
	Offset	Offset	Q \ Offset \ \
	12 Apr (102)	20 Apr 27 (110) 4 (24 May . 1	(Julian day) Offset (152)
	1st App. Date (Julian day) Offset 12 Apr (102)	Absolute Jar App. Date (Julian day) Offset 20 Apr (110)	01 Ium (152) (152) (152) (152) (152) (152) (152) (152)
	19 Apr (109) 5 09 Apr (109) 5 09 Apr (102) (102) (102) (103)	24 May (144)	
	19 Apr (109) 5 09 Apr (109) 5 12 Apr (182) 5 (182) 7 (182) 7 (193) 7 (119) 7 (20 Apr (110) 20 Apr (110) 20 Apr (110) 20 Apr (110) 20 Apr	
	(102) ~	Aby Apr (110)	(152)
			01 Jun
	O O3 April	20% pr	(152)
	(93)	(F10) (-
			01 Jun
	Apr Apr S	v « J° ∠U A (D)r (1°NA)	(152)
		(H0)	- '
	03 Anr 4	©20 Apr	01 Jun
	03 Apr (119) 5	(110)	(152)

Findings: PEC_{gw} were evaluated as the 80 percentile of the mean annual leachate concentration at 1 m soil depth. PEC_{gw} values for proponeb and its metabolites are given in the following tables.

Apples, 2×1575 g a.s./ha

Table 9.2.4.1- 4: FOCUS PEARL PEC_{gw} results of propineb and its major degradation products in μg/L (Apples, 2×1575 g a.s./ha, 65/70% interception, 14 g app. interval)

Scenario	Propineb	4-MI	Propineb-DIDT	PTU	S PUS
	< 0.001	< 0.001	₾.001	<0.001	0.032
	< 0.001	< 0.001	₹0.001	<0.001	1 ~ ₩ .∪ou 🕊 /
	< 0.001	< 0.001	0.001	♥ <0.001 ×√	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
•	< 0.001	< 0.001	<0.001	\$0.001°	0.066
	< 0.001	<0.001 <0.001	* <0.00 [°	© <0.00j	0.033
	< 0.001		0 4//15	~ <0.001 ~ \\	₹\p.008\C
	< 0.001	<0.001	\$\infty \leq 0.001	√ ≪0 .001 🔎	~ 0.003\(\sigma'\)
	< 0.001	8	1) (C) (O)	0.001	0.003
	< 0.001	<0.001	® 0.001 Q	<0.001	D [*] 200 001 /

Table 9.2.4.1- 5: FOCUS PELMO PEC_{gw} results of propineb and its major degradation products in μg/L (Apples, 2/1573g a.s./ha, 65/19% interception, 14d app interval)

Scenario	Propineb	4-MI	Propinel DIDT	Pru	PU
	<0.001	<0.901	<0.001	<0.001	0.006
	< 0.001	> ≤©.001 ©	©<0.001 ×	< 0 √ < 0 √001 Ø	0.001
	<0.001 <0.001 4	Ø0.001©	<0,001 ×	Ø.001.	0.006
	€0.001	0.001 0.001 0.0001 0.0001 0.0001	© < © 001 &	~ ~0.00¢	0.005
		\$	√\$0.001© [™]	<0.001	0.011
	© <0.001	₹ 6 0.001	\$<0.0₺}	< 0.001	0.018
	\$ < 6 0001 \$	″ ₹ 0.00 %	<0.001 <0.001	(7/ n	0.005
	© ≥0.001 °	& <0.001 A	<0.001	<0.001	< 0.001
	<0.001 <0.001 0.001 <0.000	<0.001 <0.001	<0.001 <0.001 ©0.001	@n <0.001	< 0.001

Grapes, 2×1400 g azs/ha

Table 9.2.4.1- 6: FOOUS PLARL PECgy results of propineb and its major degradation products in ng/L Grapes, 2×1400 g as ha, 2×60% interception, 10 d app. interval)

Scenario	Propineb	4-ML	Propineb-DIDT	PTU	PU
	<0.001 <0.001 <0.001 <0.000 <0.000 <0.001 <0.001	<0.00 <0.00 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.021 0.068 0.033 0.007 0.002 0.001 <0.001

Table 9.2.4.1- 7: FOCUS PELMO PEC $_{gw}$ results of propineb and its major degradation products in $\mu g/L$ (Grapes, 2×1400 g a.s./ha, 2×60% interception, 10 d app. interval)

Scenario	Propineb	4-MI	Propineb-DIDT	PTU	P
	< 0.001	< 0.001	< 0.001	<0.001	©0.004
	< 0.001	< 0.001	< 0.001	20 .001	0.0 03
	< 0.001	< 0.001	69 .001	<0.001	0.007
	< 0.001	< 0.001	© 0.001	<0.001	0.011
	< 0.001	< 0.001	<0.001	0.001 × <0.001	
	< 0.001	< 0.001	<0.001	<0.001	<0.002
	< 0.001	<0.001	% _0.00i	© <0.00 ×	<0.001

Tomatoes, 4×2100 g a.s./ha

Table 9.2.4.1- 8: FOCUS PEARL PEC_{gw} kesults of propineb and its major degradation products in μg/L (Tomatoes, 4×2100 g as l/ha, 50/70/80/80% interception, d app. interval)

Scenario	Propinek		Propineb-DIP	s. 9 Po	PU
	<0.991 <0.901	© 0.001 © 0.001 © 0.001 © 0.001	0.001 <0.001	1 ~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.034 0.009
	0.001 0.000 0.000 0.001	💖 <0.001 🔊	©001 % 0.001 © 0.000	. <0.00₽»	0.001 <0.001 <0.001

Table 9.2.4.1- 95 FOCUS PELMC PEC results of propinels and its major degradation products in µg/L romatoes, 4×2100 ga.s./ha 50/70/80/80% interception, 7 d app. interval)

Scenario		Propineb-PVDT	PTU	PU
	0.001	<0.001 <0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001 <0.001	0.002 0.007 <0.001 <0.001 <0.001

Conclusion: There are no concerns for groundwater from the active substance propineb and its metabolites in accordance with the use pattern for the current formulation.

CP 9.2.4.2 Additional field tests

No additional field studies were performed due to low PECgw values calculated (see CP 9.2.4.1).

CP 9.2.5 Estimation of concentrations in surface water and sediment

New calculations were performed, to reflect findings from new studies presented in the active substance dossier, section 7 "Fate and behavior in the curvious most recent guidance documents for exposure calculations.

Calculations of predicted environmental concentrations in surface water (PEC_{sw}) are presented below.

Endpoint	Propried and metabolites Value use Wor modelling
Descript of	
Propineb	0.1 (Step 4, 2) 40.0 (Step 3, 4)
Aqueous solubility [mg/L]	© 0.5 (Step 4, 2) / 10.0 (Step 3, 4)
Vapour pressure [Pa]	
DT ₅₀ soil [days]	0.5 (Step 1-2) / 0.1 (Step 3,4)
$ \frac{K_{oc} [L/kg]}{1/n} $	1.00 \\ \tag{10000}
DT ₅₀ total system [days]	0.5 (Step 1-2) / 0.1 (Step 3, 4) 10000 1.00 1.00 1.00
DT ₅₀ water [days] DT ₅₀ sediment [days]	
PTU	
A 11-:1:4 [/T]	(1) & (200) (200) .
DT ₅₀ soil [days] (geo-mean laboratory)	
K _{oc} [L/kg]	
	19° 67° 4800 77°
Maximum in soil	33.7
Formation fraction	33.7 2 not stated
DT ₅₀ total system [days]	I 'Y I.' ~ ~ MA
DT ₅₀ water [bys]	<u> </u>
DT ₅₀ sediment [days]	1000
Maximum in water/sediment [%]	(0.6)
PU & S	200000 (20°C)
Aqueous solubility mg/Ll	<i>★</i> [↑]
DT soil [days] (Wa maan laham) "	\mathcal{M} \mathcal{O} \mathcal{O} \mathcal{A} 5.6
K _{oc} [L/kg]	5.6 8.8 0.992
1/n	0.992
Maximum in soil [%]	42.5
Maximum in soil [%] Maximum in water/sediment [%]	0.992 42.5 50.4 not stated
Formation fraction	not stated
DT ₅₀ total system [days] DT ₅₀ water [days] DT ₅₀ sediment [days]	147
IDISO WAICI IUAVSI	
DT ₅₀ sediment [days]	147 147 1000
DT ₅₀ sediment days Propineb-DIDT Aqueous solubility mg/L DT ₅₀ soil days K _{oc} [LAg]	*
Aqueous solubility mg/L	20000 (Step 1,2) / 200 (Step 5,4)
DT ₅₀ soil days	
K _{oc} [Leg]	163
	1.00
Maximum an soil (5%)	25.8
	35.8
Maximum in total system [%]	not stated
Formation fraction	0.214 (PRZM) / 0.141 (MACRO)
DT ₅₀ water [days]	1.4
DT ₅₀ sediment [days]	1000

Fr. Jr. ci., 4	Propineb and metabolites
Endpoint	Value used for modelling
DT ₅₀ total system [days]	1.4
4-MI	
Aqueous solubility [mg/L]	200000 💸 🛴
DT ₅₀ soil [days]	2.2
K _{oc} [L/kg]	367-
1/n	0.383
Maximum in soil [%]	
Maximum in water [%]	1 17.5 J 2 J
Maximum in total system [%]	not stated O V
Formation fraction	not Pated O
DT ₅₀ water [days]	
DT ₅₀ sediment [days]	\$\times \times \
DT ₅₀ total system [days]	
^A default	

PEC_{sw} modelling approach

Calculation of PEC values for the active substance according to CUS FOCUS_{sw} is a four step tiered parce and the substance according to CUS

Step 1: All inputs are considered as a single loading to the water body and a worst-case PEC_{sw} and PEC_{sed} is calculated (most consequence). is calculated (most conservative step).

Step 2: Individual loadings into the water body from different entry routes according to the number of applications are considered. Seenarios are also considered for Northern and Southern Europe separately but no specific crop scenarios are defined

Step 3: An exposure assessment using realistic worst-case scenarios is performed. The scenarios are representative for agricultural conditions in Europe and consider weather, soil, crop and different waterbodies. Simulations use the models PRZM, MACRO and TOXSWA

Step 4: PEC values are refined by considering mitigation measures according to the FOCUS Landscape and Mingation Factors i.e. don't reduction or vegetated falter steps, which intercept runoff water and eroded sediment prior to entry into surface water

Derivation of kinetic prodelling input values is presented in MCA Section 7, data point 7.1.2, a summary

Predicted environmental concentrations in surface water (PEC_{SW}) and in sediment (PEC_{SED}) of propineb and its major degradation products

For propineb, the major degradation products propylene-thiourea, propylene-ures, propineb-DET and 4-methyl-imidazoline were considered.

Methods and Materials: Predicted ovironmental concentrations of the active substance propineb and its major degradation products propylene-thiourea, propylene-urea propineb-DIDT and 4-methylimidazoline in surface water (PEC_{sw}) and seament PEC_{sw} were calculated for the use in Europe, employing the tiered FOCUS Surface Water (SW) approach (FOCUS, 2003). All relevant entry routes of a compound into surface water (principally a symbination of spray drift and runoff/erosion or drain flow) were considered in these calculations.

The use of the fungicide propried in apples grapes and tomatoes was assessed according to the Good Agricultural Practice (GAP) in Europe. Detailed application parameters are presented in Table 9.2.5-2.

Table 9.2.5- 2: General and FOCUS-specific data on the use pattern of propineb in Europe (for FOCUS Step 1&2)

	·0	(h) 4		% J		
	FOCH			Application		
Individuat [®] Crop	FOCUS crops used for interception	√season♥ ¶g a.s‰pa]	BBCH stage	y	Plant Interception [%]	Season
Apple EU-C / EU-S, early	pome stone fruit, early appl.	2,07575 ×	4 0 ≠59 \$	14	Average crop cover (40%)	Mar May
Apple EU-C	po ple / stone fruit, late appl. ≈	2×1575	69-70	14	Average crop cover (40%)	Mar May
Grapes FG-C	vinespearly	2×1120	49-59	10	Full canopy (70%)	Mar May
Grapes EU-S	vines, late appl.	2×14 Q 0	70	10	Full canopy (70%)	June – Sep.
Tomato EU-C	_ anumg ⊗	\$1680\Q	June	7	Average crop cover (50%)	June – Sep.
Tomato EU-C	vegetables, fruiting	↓ 4×2× Q 00	June	7	Average crop cover (50%)	June – Sep.

For propineb and its metabolite propineb-DIDT, FOCUS Step 3 and Step 4 values were calculated in addition to FOCUS Step 3 and Step 2 values.

Compound specific input data are summarised below for (Table 9.2.5-3).

Table 9.2.5-3: Substance parameters used for propineb and its major degradation products

						<i>a</i> . "
Parameter	Unit	Propineb	PTU	PU	Propineb- DIDT	4-MI
Molar Mass	[g/mol]	289.8	116.2	100.2	190.3	84.1 Ô
Water Solubility	[mg/L]	0.1 (Step1,2) 10.0 (Step3,4)	96000	200000	©0000 (Step 1,2) 200 % (Step3,4)	200000
Vapour Pressure	[Pa]	1.6×10^{-4}	6.5 × 10 ⁻³	n.d. 🔾	6.5 × 10	Şn.d. ✓
Q_{10}	[-]	2.58	2.5%	2.58 [©] *	2.5	2.58 §
Koc	[mL/g]	10000	_19	1 2 2 3 3	· 163	* 3 67 , 2
Degradation			00° 1	~ . O'	<u> </u>	
Soil	[days]	0.5 (Step1,2) 0.1 (Step3,4)	0.2	5.6		2.25
Total System	[days]	1	49 6	19 47 8	9 194 4	2 0 00
Water	[days]	1	~	~ 4 47 .4	\$1.4	Ø 000 W
Sediment	[days]	1.	~y″1000y″	© 100 Q	~ 100 %	1000
Max Occurrence						
Water / Sediment	[%]	Q00 &	. Q6.6 ~ S	6 0.4	\$ 5.8 &	ž 3 7.5
Soil	[%]	100	33.7	42.5	© 25.8 €	ູ≪12.2

n.d.: not determined

In FOCUS Step 3, the application date for each scenario is determined by the Pesticide Application Timer (PAT), which is part of the FOCUS SW Scenarios. The user may only define an application time window. The actual application date is then set by the PAT in such a way that there are at least 10 mm of rainfall in the first 10 days after application, and at the same time less than 2 mm of rain per day in a five day period around the date of application. If no such date can be found within the application time window, the above rules are step wise refaxed information an application dates can be found in Table 9.2.5-4.

Table 9.2.5- 4: Application dates of propineb for the FOCUS Step 3 calculations for the use in apples and grapes

	uppies unu g	, i	T		T	
Parameter	Apples EU-C	/ EU-S, early	Apples EU-C	C / EU-S, late	Grape	s EU-CO
PAT start date rel./absolute Appl. method (appl. type) No of appl. PAT window range Appl. interval	Emg., -7 days air blast (CAM 2) 2 44 14		Emg., +14 days air blast (CAM 2) 2 44 14		Emg., +14 days air bast (CAM 2) 2 40 40 40	
Application Details	PAT Start Date (Julian Day)	Appl. Date	PAT Start Dato (Julian Day)	Appl. Date	PAT Start Data (Julian Day)	Appl. Date
D3 (1st)	08-Apr	07-Apr.	· Mo Ans	04/May	(
D4 (1st)	(98) - 13-Apr (103)	21-Apr 21-Apr 18-Apr &	04 May \$\frac{119}{(124)}	18-May 30-May 16-Jun		
D5 (1st)	25-Mar (84)	08-Apr 22-Apr	- O 15 Apr (105)	225 Apr 12 May &		- -
D6 (1st)				7 - 7	15-Feb	27-Feb 14-Mar
R1 (1st)	88-Apr (98)	76-Apr	29-Apr	29-App 15-May	29-Apr (119)	29-Apr 09-May
R2 (1st)	08-Mar 6 (67)	4-Mar 0	29-Mar (88)	27-Apr 007-May	29-Mar (88)	22-Apr 07-May
R3 (15t)	25 Mar \$\\ (84) \\ - \\ \\ \\ - \\ \\ \\ \\ \\ \\ \\ \\	28 Mar 11-Apr.	15 Apr 5 105)	15 Apr S-May	15-Apr (105)	15-Apr 25-Apr
R4 (1st)	08-Mar (97)	08-Mar 1.50Apr	© 29-Mar (\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\t	15-Apr 04-May -	24-Mar (83)	25-Mar 29-Apr -

Table 9.2.5- 5: Application dates of propineb for the FOCUS Step 3 calculations for the use in grapes and tomatoes

D	C	ELLC	TF 4	- EU C	. T 4	- EU Ø	
Parameter	Grapes	<u> </u>	<u> 10mate</u>	Tomato EU-C		Tomato EU-C	
PAT start date							
rel./absolute	Emg., +			olute	Abso		
Appl. method	air b		ground		🥏 ground	Psprąy© 🗸	
(appl. type)	(CAI	M 2)	(CA)	M 2)	(QA	M 2) 👸	
No of appl.	2	2	\$\lambda \qu	1 ,			
PAT window			4	OA			
range	4	~		1 🔊 .	, ° 5	i d	
Appl. interval	1	0		7 ¥ <u>©</u> 1 ~ .		7	
Application	PAT Start		PAT Start		PAT Start		
Details	Date	Appl. Date	📞 Dato	Appl. Date	Date.	Appl. Pate	
Details	(Julian Day)	((Julian Day)		(Julian Day)		
D6 (1st)	02-Apr	09-Apr,←	√¶-Jun	06-Jun	Ø1-Jun [□]	#6-Jun	
	(92)	23-Apr	(152)	24-Jun	(15 2)	24-Jon	
	-	_U'		🏸 06-9ail 🌸		06 Jul	
	-		, \$\forall \tag{9}	Ja-Jul 🍣	_ & _ & '	17-Jul	
R1 (1st)	14-Jun	↓\$9-Jun 🂞		- 5°	8 - 5	, LJ -	
	(165)	211-Jed	\$ -\S	[8° -4° /	0 -0	~~ -	
	- (r & &	, -	
5.4	- 3		_ \\		- 0	-	
R2 (1st)	14-May	20-May	Ø1-Jun	04-Jun	01-Jug	04-Jun	
	(134)	03-Jogn	(152)	12-Jan	(152)	12-Jun	
	4, 8	Do 6	, Č	ll-Jul	ĭ , Š	11-Jul	
D2 (1 ()		√3- 01 1 01		∯8-Jul &		18-Jul	
R3 (1st)	31-May	01-Jun	301-Jun	02-Jun	501-Jun (1.52)	02-Jun	
	2 (19)	7/16-xun	(132)	18-Jun-	② (152)	18-Jun- 25-Jun	
				25 Jun	-	25-Jun 11-Jul	
P.4 (1st)	09-M≴y (129)	09-May		005-Iu€	- 01-Jun	11-Jul 05-Jun	
R4 (1st)	(1 <u>2</u> 9) 8	27-MAN	(152)	7. 12- J rin	(152)	03-Jun 12-Jun	
				23-Jun	(132)	12-Jun 23-Jun	
		_ ~ ~ ·		30-Jun	_	23-Jun 30-Jun	
. "		L 🔏 , - 🍣 🗸		I Vyo-Jun	_	JU-Juii	

Findings:

FOCUS Step and 2: The maximum PFO values for FOCUS Step 1 and 2 are given in the tables below for propinels and its major degradation products.

Table 9.2.5- 6: Maximum PEC w values of propineb and its major degradation products according to FOCUS SW Step 2 calculations

Crop	Propins	PTU	PU	Propineb- DIDT	4-MI
			PEC _{sw} [μg/L]		
Apple EUW / EUS, early	P53.3	16.35	57.17	36.03	11.89
Apple FO-C / FO-S, late	82.56	8.805	34.05	19.41	5.700
Grape EU-C	10.08	1.237	8.206	2.369	1.024
Grape's EU-8	37.46	4.410	15.81	8.807	2.951
Tomato FF-C	15.45	1.740	19.17	3.632	2.218
Tomat©EU-C	19.31	2.174	23.97	4.540	2.772
Maximum	153.3	16.35	57.17	36.03	11.89

Table 9.2.5- 7: Summary of the maximum PEC_{sw} values in μg/L of propineb and its major degradation products (FOCUS Steps 1-2)

Scenario Step 1	Propineb	DTH		2 L	
Step 1		PTU	PU	Propineb- DIDT	4-MI
Step 1	PECs	w [μg/L]	1	, ,	
	189.9	1719	205	109.	A0.53
Step 2		****	Q	. W	
N-EU Multi	134.0	€ 6.30	5 0.61	3 59	11.89
S-EU Multi	134.0	△ 16.30	\$7.17, °	£31.59 ₄	D .89
))	31.59	\$36.Q3O*	<i>₻</i> 7.785 <i>®</i>
	// x	16.35	* 37.¥7	₂ 36 0 3	√ 7.78§
	119.2	₽ 56.0€	181.3	927.47	33.35
	5 3 150				
	63.68	0 7244 7 744 %	27.49		5.6490
	(63.68	7 44 O	34,05	15:01 16/41	3./XXV
	Q 82.30 1	~ 0.003~ °	25.16	9.41	4 <u>0</u> 193 4.193
0.7	3 POT 2		1126	2 54 3 5 C	4.193 4.193
		7 100.0			% 16.//
		\$ 237@)	£648 O	≈918 ¢	0.867
		4// 12	\$ 8.206	(C) _ 7/	1.024
N-EU Single	10.08		3.693	2.369	0.536
S-E@Single	£10.08	1.075	5 76	2:369	0.687
Step 1 A	70.02	_@131.05°		3.75	25.99
tep 2 🧬 🗸		9, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 👋		
N-EU Multi	<i>2</i> \$4.23	7 43 7 10 _@	14.21	[™] 7.908	2.951
S-FT Multi	₹33.22	, 9.410 g	4 5.81 €	7.908	2.951
	, 37.46″	_√ 3.996	~8.83Q v		1.903
	37.46	J 3. 99 6	10.08		1.903
	54.52	301.8	336.1	81.57	56.39
. ***			~15 02	2.565	2.005
	10.44	0 1.740	(())		2.005 2.218
N. Fall Single	Q 45 %	1.740	4		0.968
S-ÆU Single	15.45	9648			1.156
3,20 Singer 300 1 . √ 3	© 68°45	₹ 377 %			70.48
oten 2.0 %			120.1	102.0	70.10
N-12 Multi	A3.04	2 .174	18.79	3.206	2.507
S-EU Mudhi	13.04	× 2.174	23.97	3.206	2.772
N-EU Single	19\$1	> 2.060	9.474	4.540	1.209
S-EUSingle	₽ 9 .31 💫	2.060	12.57	4.540	1.445
	N-EU Single Step 1 Step 2 N-EU Multi S-EU Single S-EU Single S-EU Single S-EU Multi N-EU Single S-EU Multi N-EU Single S-EU Multi N-EU Single S-EU Multi N-EU Multi N-EU Single S-EU Single S-EU Single S-EU Single S-EU Single S-EU Single S-EU Single	N-EU Single S-EU Single Step 1 Step 2 N-EU Multi N-EU Single S-EU Single S-EU Single S-EU Single S-EU Multi N-EU Single S-EU Single S-EU Multi N-EU Single S-EU Multi S-EU Multi S-EU Multi S-EU Multi S-EU Multi S-EU Single S-EU	N-EU Single S-EU Single Step 1 Step 2 N-EU Multi N-EU Single S-EU Single S-EU Single S-EU Single S-EU Single S-EU Single S-EU Multi N-EU Single S-EU Singl	N-EU Single	N-EU Single

Table 9.2.5- 8: Summary of the maximum PEC_{sed} values in μg/kg of propineb and its major degradation products (FOCUS Steps 1-2)

Crop	Scenario	Propineb	PTU	PU	Propineb- DIDT	MI S
		PECse	ed [μg/L]		®'	
	Step 1	3660	26.29	13.42	119.1	91.61
Apples EU-C / EU-S,	Step 2		Ĉ _A	L Z.		
early	N-EU Multi	311.7	2.020	4.436b	28.2 6)	34.850
2 × 1575 g a.s./ha	S-EU Multi	311.7	2.020	5,0₹3	28.20	₹ 36. 4 ₹
2 × 1373 g a.s./11a	N-EU Single	356.5	Z .018	2 ,769	33 .14 <	2,0067
	S-EU Single	356.5	2.018	₹3.260 ₆ °	\$32.14	22.23
	Step 1	3660 🙊	26.29	y 13.422°	~~119 ₆ P`	\$91.61@"
Apples EU-C / EU-S,	Step 2	C/)	
late	N-EU Multi	148.5	©0.959	Q.410	43 7.40	1,7.38
2 × 1575 g a.s./ha	S-EU Multi	148.1	~ 0.959	2.987	13.40°	#8.96 _K °
2 · · 13/3 g d.s./11d	N-EU Single	192.0	1:087	1.748	\$ 17.31	\$\\\\$\\\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	S-EU Single	\$192.Q\(\sqrt{\cong}\)	13087 C	2.208	12/31	13.41
	Step 1	2600	18.70 y	9.543	8 4.69 Ş	6 © .14
	Step 2					Ď
Grapes EU-C	N-EU Multi	2"19.70	0.154	× 0.4 9 6	5 1.9 33	ॐ 2.894
2 × 1120 g a.s./ha	S-EU Multi	Q21.70 Q	9 .154 (5)	0 ,721 C	1988	[♥] 3.471
	N-EU Single	23.43	© 0.133 °	0.324	3 .113 👟	1.810
	S-EU Single	* 25 0 ¥3	0.133	(0.49 9)	2.113 [©]	2.364
	Step 1		23937	11.93	1059	81.43
	Step 2					
Grapes EU-S	N-EU Mathi	_∂ 77. ∂ 7°	0.5460	1.246	\$\\ \\$\\ \\$\\ \\$\\ \\$\\ \\$\\ \\$\\ \\$\\	8.980
2 × 1400 g a.s./ha	S-EU Mülti	77.37	0.548	O 1.38%	7.087	9.341
	N-EU Single	7.13	05493 _@	0.775	7.856	5.364
j j	S-Ed Single	₩87.13 _√	\$ 10.493 ©	% .884	7.856	5.711
	Step 1 'V (3918	56.09	28.63	127.0	195.4
T FILE	Step 2 O	× 53. 6		, Q,	2 225	6.700
Tomato EU-C	N-EO Multi	24.53	03217	£.519	2.325	6.720
4 × 1680 g a s./ha	SÆU Mukti	*24.5 <i>3</i>	0.2170	Ø.684	2.325	7.498
	EU Sargle	35.93	0.203	© ⁹ 0.666	3.240	3.311
"	S-EU Single	53:93	0.203		3.240	4.004
Į Š	Step 1	74880	00.11	35.79	158.8	244.3
Q Q	Step 2			1.640	2.007	0.400
Tomato EU-C	NEU Mailti © ↑S-EU Multi 🌂	30,66	0.261	1.649	2.906	8.400
4 × 2100 g a.s. na	ΨU · · · · · · · · · · · · · · · · · ·	39.66 ×	0.2/1	2.105	2.906	9.372
4	N-Ry Single	44.91	Ø9.254	0.832	4.050	4.139
Or y	S-EU Single	@/ 44 .ÿ ₩	∜ 0.254	1.105	4.050	5.005

FOCUS Step 3 and 4: The maximum PEC values for FOCUS Step 3 and 4 are given in the tables below for propineb and its metabolite propineb DIDT considering the application in apples, grapes and tomatoes.

Single and multiple application PEC_{sw} values are presented for all relevant scenarios in Step 3 and 4. PEC_{sed} values are only presented for FOCUS Step 3. For other PEC values please refer to the report. Time dependent PEC values or time-weighted average concentrations are not included in this summary, because they were not used in the risk assessment.

Apple EU-C / EU-S, early, 2×1575 g/ha

FOCUS SW Step 3 values for the application in apples EU-C / EU-S, early, are presented in Table 9.2.5-10 for its metabolite propineb-DIDT.

Table 9.2.5- 9: PEC_{sw} and PEC_{sed} values of propineb in <u>apples EU-C & EU-S</u>, early (2×1578 g a.s./ha), for all calculated scenarios according to <u>FOCUS SW Step</u> 3; letters S, D, and R before correspond to the dominant entry path – spray trift, drainage and runoff

	Si	Single Application			Multiple Application Q		
Scenario	Entry	PEC _{sw}	PEC _{sed}	Entry	₽EÇ _{s®}	PECsec	
	route	[µg/L] ~	[μg/kg]	route	[μ g /Λ]	√ [μg/kg]	
D3 (ditch, 1st)	S	121.3	#\$5.94	KS W	104.3	50.20	
D4 (pond, 1st)	S	7.3,78	√ 9.98 2 ℃	go s	6 .610	₹ ,723 <u>,</u> °	
D4 (stream, 1st)	S	1, F6 , 2	© 420H	\sim S_{i}	S 99.22 €	4.019	
D5 (pond, 1st)	S	377	7.3 05 €	*	© 6. € 1⁄6	7.006	
D5 (stream, 1st)	S	@117.6°	√3.071√°	OS &	1 5 98.7	5 5 8 1	
R1 (pond, 1st)	S	6∜ 7. 3⁄2 7 .	√y 7.49¶y"		83.8 83.8	6.551	
R1 (stream, 1st)	S	98015	11.78	Y 5	83.8	10.06 پي ا	
R2 (stream, 1st)	s ∜	Ø30.0 Ø	2 659				
R3 (stream, 1st)	S.W	° 138.20°	\$\tilde{2}4.79@"	Ž [™] S ©	* \$\frac{1}{2}\text{8.6 \text{\(\lambda \)}	24.10	
R4 (stream, 1st)		98.07	11.8 7	_s © ^v s ⊗	84.300	11.36	

Table 9.2.5- 10: PEC_{sw} and PEC_{sw} value of the metabolite propineb-DIDT in <u>apples EU-C / EU-S</u>, early (2 × 1575 g a.s./ha), for all calculated cenarios according to <u>FOCUS</u>

		& Single Ap	plication 🍣	Multiple A	pplication
	Scenario	OPEC (***)	PECO	PECsw	PEC _{sed}
	<i>\(\text{\tint{\text{\tint{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\texit{\text{\tex{\texi}\text{\text{\text{\text{\texi}\text{\texi}\text{\tin</i>	🖒 [μg/L] 🗳	y [μ g kg]	[fug/L]	[µg/kg]
, 6	Ď3 (ditch, 1st)	7 28 6.70	~5.454~ ~	~√24.71	5.646
	D4 (pond, 18)	₹.748,	ູ ⊙ັ*0.80 ≭ √ັ້	, O 1.662	1.015
•	D4 (stream, 1 st)	<0.06 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	<00001	< 0.001	< 0.001
	D5 (pond/1st)	7 4 7	° 0068 🔪	1.663	0.966
	D5 (stream, 1st) R1 (pond, 1st)	60.001	~ 0.001	< 0.001	< 0.001
	R1 pond, lst	、©ĭ.748⊙″	ູ້ ©ັ [™] 0.67¶ີ້	1.610	0.857
	Rigstream, 1st)	0.003	× <0 0 001	0.057	0.010
	<u>R</u> 2 (stream, 1st)	P 0.4005 Q	© 002	0.070	0.020
	R3 (stream, lst)	40 .001	≈ , ≈0.001	28.09	3.550
	R4 (stream 7st)	<0.001	<0.001	19.97	1.864

FOCUS SW Step 4 values for single and multiple application in apples EU-C / EU- S, early, are presented in Table 9.2.5- 12 for propineb-DIDT.

Table 9.2.5- 11: FOCUS Step 4 PEC_{sw} values of propineb after single and multiple application in apples EU-C / EU-S, early (2×1575 g a.s./ha) with mitigation options; SD denotes spray drift buffer

			Single ap	plication		N	Multiple a	pplication	s 6
Buffer		PECsw [µg/L]					PECsw		A
Width	Scenario	Drift Reduction					Drift Re		
& Type		0%	50%	75%	90%	0% 🕺	50%	75%	×90%
	D3 (ditch, 1st)	95.32	47.66	23.83	₹ 532	80.400	40.20	2 0.10	× 8.040
	D4 (pond, 1st)	8.306	4.153	2.077	ŏ.831	7.43	3.707 🐇	© 1.853	0,741
	D4 (stream, 1st)	99.83	49.92	24.96		84.22	42.110	21.6	© 422
	D5 (pond, 1st)	8.305	4.153	2.07	0.831	₹.421 _©	° 3.7 .√	1(855	0.742(°
5 m	D5 (stream, 1st)	101.0	50.52	2.50.276	10.10 ^	√ 92 ,3©	46.15	\Q3.08.@	
SD	R1 (pond, 1st)	8.306	4.153	"2.076	. ∘0.831@	7.324	" ® ∴662 🍖	1.831	0,732
	R1 (stream, 1st)	84.33	42.16	~21.08 <i>@</i> ;	8.432	₹ 1.13 €	35.5 7	17.78	₄ 7.113
	R2 (stream, 1st)	111.7	55.85 4	ັ 27. 9 ≸∕ັ	1 <u>9</u> 17	€4.23 ©	47.12	23.56	\$\frac{1}{2}9.423(\)
	R3 (stream, 1st)	118.7	59.36	29.68	₹1.87 °	[™] 10 <u>0</u> 36	50,32	25.16	10,0%
	R4 (stream, 1st)	84.34	4247	°2√2.09 €	₹8.43¢	7155	≈3 5.78 ≈	¹ 17.89	7.355
	D3 (ditch, 1st)	58.54	29 .27 §	(14.63C)	5. 85 Å	47.50 ž	¥ 23.7 €	14088	Q .750
	D4 (pond, 1st)	4.555	_ © 2.277_\%	1.139	0,455	©4.2125°	2.196	\$053 g	0.421
	D4 (stream, 1st)	61.31	30.65°	15.33	6.131	49, T3	2 3.88 .	Ĵ12.44€Ĵ	4.975
	D5 (pond, 1st)	4.554	2, 2	2 0.138	0.456	4(2)16	Q.108	1.054	0.422
10 m	D5 (stream, 1st)	62.03	×37.02	15.51	6,205	\$ 4.53	27.20	13,63	5.453
SD	R1 (pond, 1st)	4554	2.277	1.139	0.455	[©] 4.161©	2,080	P.040	0.416
	R1 (stream, 1st)	51.78	₹ 25. 8	12,95	©5.178 ^	42.03	2 1.01	\$\tilde{Q}\$ 10.51	4.203
	R2 (stream, 1st) %	68.60	34230	₹ 7.15 ₹	, 6.8 60 [◊]	5 5467	, 9 27.84	13.92	5.567
	R3 (stream, 1st)	72. 9	€6.46 €	18.23 [©]	7.091	%,59.46 [*]	29.73	14.86	5.946
	R4 (stream, 181)	5 3.80	﴿ 25.90 َ	1205	√5×180 €	D″42.2 % √	21°.144	10.57	4.227
	D3 (ditch, 194)	ر 13.39	6.602	3.346	Ĵ1.33 % ,	12.30	6.149	3.074	1.230
	D4 (pond st) (1.4 7 %	0.5236	~ 0.368 ~	0.147	1 9271 ~	© 0.635	0.318	0.127
	D4 (stream, 1st)	14.02	&7.009 [^]	7 3.50 5	1.402	3 2.88	6.440	3.220	1.288
	D5 (pond, 1st)	__ © 473	©″0.73 %	0.368	3 0×147	🔊 1.272	0.636	0.318	0.127
20 m	D5 (stream, 91 st)	4.19	7.094°	×3,347	\$1.419 [©]	14.12	7.059	3.529	1.412
SD	RJ (pond, 1st) &		Q 7 36	©0.368 °	0.147	©255	0.628	0.314	0.125
	¶tl (stream, 1st)	13.84	3 .920 .	2.960	1.184	⊚10.88	5.440	2.720	1.088
4 %	R2 (stream, 1st)	``\$\$5.69 _≪	, 7.84 3	3.49,22	1.569		7.207	3.603	1.441
	R3 (stream 1st)	[™] 16.67©	8:336	≱ 4168 ∂	1.667	15.39	7.696	3.848	1.539
	R4 (stream, 1st)	11,84	5 .922 s	ي 2.961 °	1.184	10.94	5.472	2.736	1.094
	D3 (ditch, 1st)	5.019	رِي.559 آھي	1.2 89	\$3 12	4.229	2.114	1.057	0.423
	D4 (pond, 18)	Ø.713 ×	√ 0.3 5 √	Ø:¥78 g	0.071	0.562	0.281	0.141	0.056
	D4 (stream, 1st)	5.36b ^y	2,68,1	& P.340 €	0.536	4.430	2.215	1.107	0.443
	D5 (pond, 1st) D5 (stream, 1st)	0.703	6 357 %	y 0.1 78 √	0.071	0.563	0.281	0.141	0.056
30 m ≪	D5 (stream, 1/st)	5.426	2.713	1.356	0.543	4.855	2.428	1.214	0.486
SD 🐇 /	R1 (pond, [st)	△0.713 @	″∩3 <i>≅</i> 77″	n 1°7Ω	0.071	0.555	0.278	0.139	0.056
4	R1 (stream, 1st)	¥ 4.52 8 √	2.264	₹ .132	0.453	3.742	1.871	0.935	0.374
	R2 (stream, 1st)	5.999	2 .999 A	1.500	0.600	4.956	2.478	1.239	0.496
	R3 (stream, kst)	Ø 376 <i>[</i>	≫3.188 ≪	1.594	0.638	5.293	2.647	1.323	0.529
	R4 (stream, 1st)	4.529	2.265	1.132	0.453	3.764	1.882	0.941	0.376
	R4 Stream, 1st)		· ~						

Table 9.2.5- 12: FOCUS Step 4 PEC_{sw} values of propineb-DIDT after single and multiple application in apples EU-C / EU-S, early (2×1575 g a.s./ha) with mitigation options; SD denotes spray drift buffer

D cc			Single ap	plication		I	Multiple a	pplication	\$ (1)
Buffer	G		PECsw	[µg/L]				[µg/L]	
Width	Scenario			eduction			Drift Ro	eduction	
& Type		0%	50%	75%	90%	0% 🕺	[₩] 50%	75%	×90% ×
	D3 (ditch, 1st)	22.55	11.28	5.638	255	<0.000	< 0.001	©0.001	×<0.000
	D4 (pond, 1st)	1.968	0.984	0.492	0.197	<0.00			<0.001
	D4 (stream, 1st)	< 0.001	< 0.001	<0.001		<0.001	<0.000	<0.001	© .001
	D5 (pond, 1st)	1.967	0.984	0.492	0.197	9.001 ₀	°<0.061	<0.001	Q0.00x
5 m	D5 (stream, 1st)	< 0.001	< 0.001	<0.00001	<0.001		<0.001	\Q0.001@	<0.00
SD	R1 (pond, 1st)	1.968	0.984	©0.492	∘0.197	<0,001	,∞0 0.001 %		<0.001
	R1 (stream, 1st)	0.003	0.003	0.003	0.003	6,057	50.057	0.057	40.057
	R2 (stream, 1st)	0.005	0.005 4	0.005	0. 9 05	% .070	0.070	Ø.070	\$30.07Qc,°
	R3 (stream, 1st)	< 0.001	<0.001	<0.001	~ 0.001 °	[™] 0.3 5 7	0:\$57	0.357	0.350
	R4 (stream, 1st)	< 0.001	<0.001	\$\@%.001	≫0.00°	0.319	×0.319×	0.319	0319
	D3 (ditch, 1st)	13.85	6925	~3.463~	1.385	Ø.001	(40.00g)	<0.0001	©0.001
	D4 (pond, 1st)	1.079	©.539\\	0.270	,0°,9°08	0.0015	<0.001	Ø.001	0.001
	D4 (stream, 1st)	<0.001	\$<0.00°	<0.001	<0.001	1000.0	< 6 0001 ,	₿0.00 %	< 0.001
	D5 (pond, 1st)	1.079	′0 ,5 39	@ .270	0.108	<0.001	©0.001		< 0.001
10 m	D5 (stream, 1st)	<0.001	≤0. 001	©0.002	<0@001	.001	<0.0	<0.001	< 0.001
SD	R1 (pond, 1st)	14 0 779 (0.539	0.270	0.108	Q0.00®	< 0.001	< 0.001	< 0.001
	R1 (stream, 1st)	0.003	₹ 0.0 03	00003	2 0.003	0.057	20,057	<a>0.057	0.057
	R2 (stream, 1st) %		0.005	3 9.005 &		0.970	, 90.07 <u>0</u>	0.070	0.070
	R3 (stream, 1st)	<0,001	⊗ 0.001 €		<0 ⊙ 01	& 0.357 °	0.355	0.357	0.357
	R4 (stream, lost)	< 0 001	₹ 0.001	<0.001	£0 7.001	O'0.31 %	0,319	0.319	0.319
	D3 (ditch, 184)	ر 3.167	1.583	0.792	\$0.31%	< 0.001	<0.001	< 0.001	< 0.001
	D4 (pond st) (0.34%	0%₩74	~ 0.087	0.035	\$\frac{0.001}{0.001}	© 0.001	< 0.001	< 0.001
	D4 (stream, 1st)	<0.001	©0.001	><0.0 Q1 "	<0.001	₹ 0.00 k	< 0.001	< 0.001	< 0.001
	D5 (pond, 1st)	€349	0°0.17⊈	0 .5 87	2 035	2 < 0.001	< 0.001	< 0.001	< 0.001
20 m	D5 (stream, st)	₹0.00£	<0.001	*9 .001	×0.001		< 0.001	< 0.001	< 0.001
SD	R (pond, 1st)		0 17 4	0.087	0.035	© .001	< 0.001	< 0.001	< 0.001
Ĺ	R1 (stream, 1st)	0.003	9 .003	0.00	0.003	\bigcirc 0.057	0.057	0.057	0.057
,	R2 (stream, 1st)	°9.005 √		0.005	0.005		0.070	0.070	0.070
	R3 (stream 1st)	×0.004	<0.001	\$9.001 C	1 00.00	0.357	0.357	0.357	0.357
	R4 (stream, 1st)	<0.001	<0.001	0.001	<0.001	0.319	0.319	0.319	0.319
	D3 (ditch, 1st)	1.211	©.606°	0.363	£ 121	< 0.001	< 0.001	< 0.001	< 0.001
	D4 (pond, 18)	0.169		0:042	0.017	< 0.001	< 0.001	< 0.001	< 0.001
		0.000 0.169	<0.901	€0.001 €0.042	<0.001	<0.001	< 0.001	<0.001	< 0.001
30 m	D5 (pond, 1st) D5 (stream, 1st)	<0.901 _×	Ø√085 <0.00∤©	<0.042	0.017	<0.001	< 0.001	<0.001	<0.001
	D1 (stream, PSV)	~0.\\01_\\\\	0.00	0.942	< 0.001	<0.001 <0.001	< 0.001	<0.001 <0.001	<0.001 <0.001
SD	R1 (stream, 1st) R2 (stream, 1st)	₩.109	0.003	0.003	0.017 0.003	0.001	<0.001 0.057	0.001	0.001
y	P2 (streets 1st)	0.005	⊕.005 Å	0.005	0.003	0.037	0.037	0.037	0.037
	D2 (-6 15-6	@ 001 A	$\Re 0.003$	< 0.003	< 0.003	0.070	0.070	0.070	0.070
	R4 Otream 1st)	\$0.001 0.001	້າ<0.001 ∜ <0.0001 ∜	<0.001					
	R4 Stream, 1st)	\$0.001°	√ <0.0001 ~ ○	<0.001	<0.001	0.319	0.319	0.319	0.319

Apple EU-C / EU-S, late, 2×1575 g/ha

FOCUS SW Step 3 values for the application in apples EU-C / EU-S, late, are presented in Table 13 for propineb and in Table 9.2.5- 14 for its metabolite propineb-DIDT.

Table 9.2.5- 13: PEC_{sw} and PEC_{sed} values of propineb in apples EU-C & EU-S, late (20) a.s./ha), for all calculated scenarios according to FOCOS SW Step 3; letter D, and R before correspond to the dominant entry path - spray Wrift, drainage, and runoff

	Si	ngle Applicati	on O	Mı Mı	ıltipleApplica	tion o
Scenario	Entry	PEC _{sw}	PEC _{sed}	Entr	₽EÇ _{s©}	PECsec
	route	[µg/L] ~	[μg/kg]	route	[μg/] ͺ	√ [μg/kg]
D3 (ditch, 1st)	S	57.29	@21.76 _€ ?	L'S	45.42	1,8.11
D4 (pond, 1st)	S	2.5,72	<	S S	2.154	£ 631 °
D4 (stream, 1st)	S	5 ,3.4 4	© 4.594	\sim \sim \sim	\$ 45.48 ^Q	\$5.603\(\text{7} \)
D5 (pond, 1st)	S	£ 572 ~	2 .555 €	* 4 5 * %	© 2. 1 €55	2.138
D5 (stream, 1st)	S	@56.80°\	2.689 Z	JOS W	4 5.50 0	20334
R1 (pond, 1st)	S	5 2. 5 √2) 2.5√2) 3	∠ 2.3 0 €7		2.162 Q ⁷	1.931
R1 (stream, 1st)	S	4 <i>3</i> 0777 "	y 5.253 2	S	35.0	4.207
R2 (stream, 1st)	s 💝	<i>₫</i> 8.07 ₫	3 0463	(Q)	4726	→ 3.467
R3 (stream, 1st)	S @	. ∜61.92°°	#12.49 <i>@"</i>	_Q yS ○	* 👋 9.60 📞	10.00
R4 (stream, 1st)		44.03	, 5.93 0	"® ^Ψ S Ø	35.26℃	4.750

Table 9.2.5- 14: walues of the Inetabolite propine b-DID on apples EU-C/ 1575 g a.s./ha) For all calculated secnarios according to FOCUS

S & 4	& Single A	oplication 🍣	Multiple A	pplication
Scenario 5	©PEC‰	PECO	PECsw	PECsed
	တ္တ [μg√L] ္ခို	y [μ g kg]	[fug/L]	[µg/kg]
D3 (ditch, 1st)	10 7.57	2.521	10.76	2.475
(pond, 18) (b)	6.609 €	(°) 0.201√° .	, O 0.514	0.224
D4 (stream, 1 st)	<i></i> <0.06 €	<0001	10.78	0.939
D5 (pond, 1st) (°>>' ∩ 68910 @	00234	0.517	0.254
D5 (stream, 15t)	0.001 0.609 0.0024	~ 0.001	< 0.001	< 0.001
R1 pond, 1st	° 0.609©″	0.2210 ⁷	0.525	0.267
Rig(stream, 1st)	0.004	<0.001	0.229	0.040
D5 (stream, 1st) R1 (pond, 1st) R1 (pond, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st)) <0.001 0 4.67 X	© .001	0.001	< 0.001
R3 (stream, 189)	4 4.67	1.701	11.75	1.369
R4 (stream Vst)	Q4.67 10.43	∞ 0.932	8.354	0.747
FOCUS SW Steer 4 values for sin		7		
,		•		
FOCUS SW Step 4 values for sin	gleand multipl	e application in	apples EU-C /	EU-S, late, are
in Table 9.2, \$\square\$15 for propine an	nd in Table 9.2.	.5- 16 for propin	neb-DIDT.	
	y ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
in Table 9.2. 2 15 for propine an				

values for single and multiple application in apples EU-C / EU-S, late, are presented

Table 9.2.5- 15: FOCUS Step 4 PEC_{sw} values of propineb after single and multiple application in apples EU-C / EU-S, late (2× 1575 g a.s./ha) with mitigation options; SD denotes spray drift buffer

Prift Ro 50% 22.71 1.077 22.74 1.039 22.75 0081 17.53 23.63 24.80 15.70 1.230 18.10 1.234 1.235 1.	75% 01.35 0.539 01.38 0.539 01.38 0.541 8.764 5.81 12.40 8.816 7.896 615 9.046	90% 4.540 0.216 4.550 0.216 3.506 4.726 4.960 3.526 0.246
22.71 1.077 22.74 1.078 22.75 0.081 17.53 23.63 24.80 7.63 15.70 1.239 18.10 1.234 1.234 1.234 1.234 1.234 1.234	0.539 0.539 0.539 0.539 0.539 0.541 8.764 12.40 8.816 7.896 0.615 0.615 0.617 0.617 0.617	4.540 0.215 0.216 4.550 0.216 3.506 4.726 4.960 3.526 0.158 0.246 3.618 0.246 3.620 0.247
22.71 1.077 22.74 1.078 22.75 0.081 17.53 23.63 27.63 15.70 1.239 18.10 1.234 1.234 1.234 1.234 1.234 1.234 1.234	75% 01.35 0.539 01.38 0.539 01.38 0.541 8.764 12.40 8.816 7.86 0.615 0.615 0.617 0.617 0.617	4.540 0.215 0.216 4.550 0.216 3.506 4.726 4.960 3.526 0.158 0.246 3.618 0.246 3.620 0.247
1.077 22.74 1.078 22.75 0.081 17.53 23.63 24.80 77.63 15.70 1.229 18.10 1.234 1.234 1.234 1.234 1.234 1.234 1.234	0.538 0.539 0.539 0.541 8.764 5.81 12.40 8.816 7.896 6.615 9.046 0.615 9.049 0.617 9.617	0.25 0.548 0.216 4.550 0.216 3.506 4.726 4.90 3.226 0.246 3.618 0.246 3.620 0.247
22.74 1.078 22.75 22.75 20.81 17.53 23.63 24.80 15.70 1.230 18.10 1.234 1.235 1.	11.3 0.539 1.38 0.541 8.764 12.40 8.816 7.36 0.615 0.046 0.617 0.617 0.617	0.216 4.550 0.216 3.506 4.726 4.960 3.526 0.246 3.618 0.246 3.620 0.247
22.74 1.078 22.75 22.75 20.81 17.53 23.63 24.80 15.70 1.230 18.10 1.234 1.235 1.	11.3 0.539 1.38 0.541 8.764 12.40 8.816 7.36 0.615 0.046 0.617 0.617 0.617	0.216 4.550 0.216 3.506 4.726 4.960 3.526 0.246 3.618 0.246 3.620 0.247
17.53 23.63 24.80 7.63 15.70 1.239 18.09 1.234 1.234 1.234 1.234 1.234 1.234 1.234 1.234	91.38 0 0.541 8.764 12.40 8.816 7.896 0.615 9.046 0.617 9.049 0.617	4.550 0.216 3.506 4.726 4.960 3.526 0.158 0.246 3.618 0.246 3.620 0.247
17.53 23.63 24.80 7.63 15.70 1.239 18.09 1.234 1.234 1.234 1.234 1.234 1.234 1.234 1.234	91.38 0 0.541 8.764 12.40 8.816 7.896 0.615 9.046 0.617 9.049 0.617	0.216 3.506 4.726 4.960 3.526 0.158 0.246 3.618 0.246 3.620 0.247
17.53 23.63 24.80 7.63 15.70 1.239 18.09 1.234 1.234 1.234 1.234 1.234 1.234 1.234 1.234	8.764 12.40 8.816 7.896 6.615 9.046 0.613 9.049 6.617 2.6.972	4.726 4.960 3\$26 0.158 0.246 3.618 0.246 3.620 0.247
2 \$30 \$7.63 15.70 1.230 18.00 18.10 1234 15.70 18.10 18.10 12.34 15.70 12.34 15.70 12.34 16.30 16.30 17.30 18.30 19.	7.896 7.	4.726 4.960 3\$26 0.158 0.246 3.618 0.246 3.620 0.247
2 \$30 \$7.63 15.70 1.230 18.00 18.10 1234 15.70 18.10 18.10 12.34 15.70 12.34 15.70 12.34 16.30 16.30 17.30 18.10 18.10 18.10 19.30 19.	12.40 8.816 7.896 615 9.046 0.613 9.049 9.617 2.6.972	4.960 3526 3.158 0.246 3.618 0.246 3.620 0.247
7.63 15.70 1.25 18.09 1.234 1.234 1.234 1.234 1.234 1.234 1.234 1.234	8.816 7.896 6.615 9.046 0.613 9.049 9.617 2 6.972	3\$26 ©.158 0.246 3.618 0.246 3.620 0.247
15.70 1.259 18.09 1.230 18.10 1.234 1.234 1.234 1.234 1.234 1.234 1.234 1.234	7.896 	©.158 0.246 3.618 0.246 3.620 0.247
1.29 18.09 2.230 18.10 1,234 4,7.95 18.80 19.73	9.046 9.046 9.049 9.617 9.617	0.246 3.618 0.246 3.620 0.247
9.230 18.10 1.234 43.95 18.80 19.75 14.03	9.046 9.046 9.049 9.617 9.617	3.618 0.246 3.620 0.247
9.230 18.10 1.234 43.95 18.80 19.75 14.03	59.046√ 0.615⁄ 99049 0.617 \$\&\display 6.972	3.618 0.246 3.620 0.247
18.10 1,234 1,3.95 18.80 19.75 14.03	9%049 0.617 \$\&\phi\$ 6.972	0.246 3.620 0.247
18.10 1,234 1,3.95 18.80 19.75 14.03	9%049 0.617 \$\&\phi\$ 6.972	3.620 0.247
1,234 3,795 18.80 19.70 14.03	Ø.617 ② 6.972	
13.95 18.80 19.75 14.03	<a>6.972	2 789
14.03	0 300	2.707
14.03	7.377	3.759
14.03	9.864	3.946
(*\./	7.014	2.805
7.584	3.792	1.517
© 0.676	0.338	0.135
8.688	4.344	1.738
0.676	0.338	0.135
8.691	4.346	1.738
0.678	0.339	0.136
6.697	3.348	1.339
9.027	4.513	1.805
9.474	4.737	1.895
6.736	3.368	1.347
3.713	1.856	0.743
		0.082
		0.851
		0.082
		0.851
		0.082
		0.656
		0.884
		0.928
		0.660
	3.713 0.409 4.253 0.410 4.255 0.411 3.278 4.419 4.638 3.298	0.409 0.205 4.253 2.126 0.410 0.205 4.255 2.127 0.411 0.206 3.278 1.639 4.419 2.209 4.638 2.319

Table 9.2.5- 16: FOCUS Step 4 PEC_{sw} values of propineb-DIDT after single and multiple application in apples EU-C / EU-S, late (2× 1575 g a.s./ha) with mitigation options; SD denotes spray drift buffer

D 00			Single ap	plication		I	Multiple a	pplication	s © .
Buffer	G .	PEC _{sw} [μg/L]						[µg/L]	A - 24.
Width	Scenario			eduction			Drift Ro		
& Type		0%	50%	75%	90%	0% .	50%	75%	×90% ×
	D3 (ditch, 1st)	13.57	6.786	3.393	₹ 357	10.7 ©	5.380	(2.690, C	7 1.07 ©
	D4 (pond, 1st)	0.609	0.305	0.152	0.061	0.5	0.257	0.1290	0,051
	D4 (stream, 1st)	< 0.001	< 0.001	<0.001		HQ.78	5.387	2.69	0077 S
	D5 (pond, 1st)	0.609	0.305	0.152	0.061	%.517	° 0.258	0(129	0.052C
0 m	D5 (stream, 1st)	< 0.001	< 0.001	<0.00001	<0.001	×<0.000	<0.001	Q0.001@	
SD	R1 (pond, 1st)	0.609	0.305	₆ 0.152	∘0.06₺₡	0.525	, 0 :262 %	0.131	0,033
	R1 (stream, 1st)	0.004	0.004	0.004	0.004	£229	0.229	0,229	₄ 0.229
	R2 (stream, 1st)	< 0.001	<0.001	<0.001	<0.001	% .001 🔊	0.001	Ø001	₹0.001C°
	R3 (stream, 1st)	14.67	7.334	3,667	.467	[™] 11. 7 5	5:\$75	2.937	1.178
	R4 (stream, 1st)	10.43	5.245	°,2607 €	¥1.043 [©]	8.354	×¥.177 ×	2.088	1296
	D3 (ditch, 1st)	9.155	4 578 §	(2.28 9)	0.916	√7,483 ²	(4° 3.74° 20° 3.	1.871	Q .748
	D4 (pond, 1st)	0.697	©.349\\	0.174	0,970	®0.5875°	0.294	€147 ¿	0.059
	D4 (stream, 1st)	<0.001	><0.00°	< 0.001	<0.001	8.5 70	4.286	\$2.14 <i>3</i> €	0.857
	D5 (pond, 1st)	0.697	0,349	© .174	0.070	0,590	9 .295	0.147	0.059
5 m	D5 (stream, 1st)	<0.001	≤0.001	©0.00	<0@001	20 .001	<0.0	<0.001	< 0.001
SD	R1 (pond, 1st)	869 7 ₍₂	0.348		0.070	©0.599©	0,299	9 .150	0.060
	R1 (stream, 1st)	0.004	♥ 0.0 0	00004	©0.004	0.229	20,229	<a>0.229	0.229
	R2 (stream, 1st) %	0.004 <0.001	<09001	\$0.001	٧. ٧٠	0%901	\$0.00 <u>1</u>	0.001	0.001
	K3 (stream, 151)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<i>₫</i> .725 €	2.862	J.Ø45	&9.347	4.67 3	2.337	0.935
	R4 (stream, 181)	8 3 41	∜ 4.070	2.035	√0.814 (O 6.646√	3,323	1.661	1.296
	D3 (ditch, 18t)	4.091	2.046	1.023	>0.409 ₀	3,594	1.797	0.898	0.359
	D4 (pond st) (0.38%	0.493	0.097	0.039		© 0.161	0.081	0.032
	D4 (stream, 1st)	<0.001	©0.001	><0.0 01	<0.001	A .1164)	2.058	1.029	0.412
	D5 (pond, 1st)	© 387	Oʻ0.19 3 ,™	0,597	3 0.039	0.324	0.162	0.081	0.032
10 m	D5 (stream, Tst)	₹0.00£	<0.001	20. 001	×0.001	<0.001	< 0.001	< 0.001	< 0.001
SD	R (pond, 1st)		9 19 3	0.097	0.039	0 0329	0.165	0.082	0.033
	R1 (stream, 1st)	0.0004	®.004 ,	0.004	Q.004	⊙ð.229	0.229	0.229	0.229
* 1	R2 (stream, 1st)	≈ 9.001 _≪	<0.00	<0.001	<0.001		0.001	0.001	0.001
	R3 (stream 1st)	⁸ √5.116©	2.558	279	0.787	4.489	2.244	1.122	0.787
	R4 (stream, 1st)	3.63	1819	(J0.909)	0.364	3.192	1.596	1.296	1.296
	D3 (ditch, 1st)	2.066	CI.033	0.5	£ 207	1.759	0.880	0.440	0.176
	D4 (pond, 16)	9.247	0.124	0:062	0.025	0.196	0.098	0.049	0.020
	D4 (stream, 1st)		<0.001	6.001	<0.001	2.015	1.008	0.504	0.202
1.5	D5 (pond, 1st) D5 (stream, 1st)	0.207	~ ~ ~ ~	0.062	0.025	0.196	0.098	0.049	0.020
	D5 (stream, Ist)	<0.901	<0.00∦≈ 0.12%		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
SD	RI (pond, 15t)	₩9.247@	0.125	0.962	0.025	0.199	0.100	0.050	0.020
	R1 (pond, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st)	0.004%	0.904	0.004	0.004	0.229	0.229	0.229	0.229
	R2 (stream, 1st)	<0.001	©0.001	< 0.001	< 0.001	0.001	0.001	0.001	0.001
	R3 (stream, 1st)	8 927	\$1.292\ 0.9 \(\pi\)	0.787	0.787	2.197	1.099	0.787	0.787
	R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st)	51.031 5 5 7	0.9@s	0.459	0.319	1.562	1.296	1.296	1.296

Grapes EU-C, 2 × 1120 g a.s./ha

FOCUS SW Step 3 values for the application in grapes EU-C are presented in Table 9.2. propineb and in Table 9.2.5-18 for the metabolite propineb-DIDT.

calculated scenarios according to FOCUS SW Step 3, letters S, D, and R before correspond to the dominant entry path – spray down drainers. **Table 9.2.5-17:**

	Si	ingle Application	Mu Mu	ıltiple Applica	tion S
Scenario	Entry route	PEC _{sw} PEC _{sed} [μg/L] [μg/kg]	Entry ° Y route	PEC _{sw}	PEC _{sed} Jug/kg
D6 (ditch, 1st)	S	6.195% 3 447 .*		5, 939	y 2.9⁄2/7
R1 (pond, 1st)	S	0.2140 0.192	' S	191 1	<u>@</u> ,167 °
R1 (stream, 1st)	S	4.581 0.528	Q S	4.1480	200°.478.√
R2 (stream, 1st)	S	6.085 Q.361	\$	5.593	© 0.402
R3 (stream, 1st)	S	6.480 J.241		508 69 🕊	/ 1,4 % 1
R4 (stream, 1st)	S	Q 4.579 0.524 0.524 V	ZS S	¥.180	0.562

PEC_{sw} and PEC_{sed} values of the metabolite propineb-DIDT in grapes EU-C (2 × **Table 9.2.5- 18:** 1120 g a.s. Ma), for all calculated scenarios according to FOCUS SW Step 3

			W U		· * * * * * * * * * * * * * * * * * * *	? 	i
			Single A	pplication (Multiple	Application	
	Scenario	, " 4	REČsw 🍣	PE Csed	@ PECsw PECsw	PECsed	
			«Jμg/L]	Jμg/kg	(μg/L)	🌱 [μg/kg]	
	D6 (ditch	Yst)	1.470	[∞] 0.4362 @	1.361	0.318	
	R1 (pond,	1st) 💍 🔭	0:051	- 0 5018 💆	9 .048	0.025	
	R1 (stream	1, 4 st)	&Q.005 (**)	√√√0.001 [√]	0.062	0.011	
	R2 stream	(Fst) O	©<0.0 %	<0.00	% <0,001	< 0.001	
	R3 (stream), 1st) 🐃	₃ 1.535	0,572	Q.3 36	0.086	
,	R4 (stream	i, 1 st)	<u>° <6</u> 001 (<0.001	Ør.081	0.019	
	7	W.S			, O″		
• //	~ C				Ž		
FOCUS S	SW Step 4	values for	single and n	multipl@applica	ition in grapes	EU-C are pre	esented in
Table 9.2.	5- 19 for pi	oponeb and i	in Table 9.25	- 20 for the fireta	abolite propinel	o-DIDT.	
				, O' O'	• •		
(\Rightarrow	, J		? ~			
	O						
4 1	2	, A					
~	~		y Q	G.			
			W K	,			
	L,	1					
(
	<i>"</i>						
" "							
, Š							
	Ç						
c ^o)						
				polication PEC sed µg/kg 0.182 0.001 0.001 0.001 0.001 0.001 0.001 0.001			

Table 9.2.5- 19: FOCUS Step 4 PEC_{sw} values of propineb after single and multiple application in grapes EU-C (2 × 1120 g a.s./ha) with mitigation options; SD denotes spray wift buffer

Decomposition Decompositio	Doing Drift Reduction Dr	D 00			Single ap	plication]	Multiple a	pplication	s [©] ĉ
Drift Reduction Drift Redu	Doi: Drift Reduction Dri								PEC.	[µg/L]	A
D6 (ditch, 1st)	D6 (ditch, 1st)		Scenario						Drift Re	eduction	
D6 (ditch, 1st) R1 (pond, 1st) 0 m R1 (stream, 1st) D6 (ditch, 1st) R1 (pond, 1st) D7 (0.214	D6 (ditch, 1st)	& Type		0%			90%	0% 8	50%	75%	×90%,
SD R2 (stream, 1st) 6.085 3.043 1.522 0.609 \$.593 2.797 1.398 0.55 R3 (stream, 1st) 6.480 3.240 1.20 0.648 5.869 2.934 9.467 0.58 R4 (stream, 1st) 4.579 2.290 1.145 0.458 4.180 2000 1.045 0.41 D6 (ditch, 1st) 3.693 1.846 0.923 0.369 3.365 1.683 0.841 0.33 R1 (pond, 1st) 0.250 0.125 0.069 0.925 0.225 0.112 6.056 0.02 5 m R1 (stream, 1st) 3.307 1.654 0.827 0.331 2.964 1.482 0.741 0.20 SD R2 (stream, 1st) 4.394 2.197 1.098 0.439 3.97 1.999 0.999 0.300 R3 (stream, 1st) 4.679 2.339 1.170 0.468 1.94 2.097 1.048 0.41 R4 (stream, 1st) 3.306 0.653 0.827 0.31 2.987 1.493 6.747 0.29 D6 (ditch, 1st) 1.300 0.650 0.325 0.130 1.145 6.773 0.286 0.11 R1 (pond, 1st) 0.135 0.667 0.034 0.016 0.18 0.059 0.030 0.01	SD R2 (stream, 1st) 6.085 3.043 1.522 0.609 3.593 2.797 1.398 0. R3 (stream, 1st) 6.480 3.240 1.620 0.648 5.860 2.934 7.467 0. R4 (stream, 1st) 4.579 2.290 1.145 0.458 4.180 2.090 1.045 0. D6 (ditch, 1st) 3.693 1.846 0.923 0.369 3.65 1.683 0.841 0. R1 (pond, 1st) 0.250 0.125 0.067 0.925 0.225 0.112 0.566 0. R1 (stream, 1st) 3.307 1.654 0.827 0.331 2.964 1.482 0.741 0. R2 (stream, 1st) 4.394 2.197 1.098 0.439 3.997 1.999 0		D6 (ditch, 1st)						4		♥ 0.57 ©
SD R2 (stream, 1st) 6.085 3.043 1.522 0.609 \$.593 2.797 1.398 0.55 R3 (stream, 1st) 6.480 3.240 1.620 0.648 5.869 2.934 9.467 0.58 R4 (stream, 1st) 4.579 2.290 1.145 0.458 4.180 2.090 1.045 0.41 D6 (ditch, 1st) 3.693 1.846 0.923 0.369 3.365 1.683 0.841 0.33 R1 (pond, 1st) 0.250 0.125 0.069 0.925 0.225 0.112 6.056 0.02 5 m R1 (stream, 1st) 3.307 1.654 0.827 0.331 2.964 1.482 0.741 0.29 R2 (stream, 1st) 4.394 2.197 1.098 0.439 3.97 1.999 0.999 0.300 R3 (stream, 1st) 4.679 2.339 1.170 0.468 1.94 2.097 1.048 0.41 R4 (stream, 1st) 3.306 0.653 0.827 0.31 2.987 1.493 6.747 0.29 D6 (ditch, 1st) 1.300 0.650 0.325 0.130 1.145 6.73 0.286 0.11 R1 (pond, 1st) 0.135 0.667 0.034 0.016 0.18 0.059 0.030 0.01	SD R2 (stream, 1st) 6.085 3.043 1.522 0.609 3.593 2.79 1.398 0. R3 (stream, 1st) 6.480 3.240 1.620 0.648 5.860 2.934 9.467 0. R4 (stream, 1st) 4.579 2.290 1.145 0.458 4.180 2.090 1.045 0. D6 (ditch, 1st) 3.693 1.846 0.923 0.369 3.365 1.683 0.841 0. R1 (pond, 1st) 0.250 0.125 0.069 0.925 0.225 0.112 0.566 0. SD R1 (stream, 1st) 3.307 1.654 0.827 0.331 2.964 1.482 0.741 0. R2 (stream, 1st) 4.394 2.197 1.098 0.439 3.997 1.999 0.999						\ ∀		0.096	©0.048	0.019
SD R2 (stream, 1st) 6.085 3.043 1.522 0.609 \$.593 2.797 1.398 0.55 R3 (stream, 1st) 6.480 3.240 1.20 0.648 5.869 2.934 9.467 0.58 R4 (stream, 1st) 4.579 2.290 1.145 0.458 4.180 2000 1.045 0.41 D6 (ditch, 1st) 3.693 1.846 0.923 0.369 3.365 1.683 0.841 0.33 R1 (pond, 1st) 0.250 0.125 0.069 0.925 0.225 0.112 6.056 0.02 5 m R1 (stream, 1st) 3.307 1.654 0.827 0.331 2.964 1.482 0.741 0.20 SD R2 (stream, 1st) 4.394 2.197 1.098 0.439 3.97 1.999 0.999 0.300 R3 (stream, 1st) 4.679 2.339 1.170 0.468 1.94 2.097 1.048 0.41 R4 (stream, 1st) 3.306 0.653 0.827 0.31 2.987 1.493 6.747 0.29 D6 (ditch, 1st) 1.300 0.650 0.325 0.130 1.145 6.773 0.286 0.11 R1 (pond, 1st) 0.135 0.667 0.034 0.016 0.18 0.059 0.030 0.01	SD R2 (stream, 1st) 6.085 3.043 1.522 0.609 3.593 2.797 1.398 0. R3 (stream, 1st) 6.480 3.240 1.620 0.648 5.860 2.934 7.467 0. R4 (stream, 1st) 4.579 2.290 1.145 0.458 4.180 2.090 1.045 0. D6 (ditch, 1st) 3.693 1.846 0.923 0.369 3.65 1.683 0.841 0. R1 (pond, 1st) 0.250 0.125 0.069 0.925 0.225 0.112 0.566 0. SD R1 (stream, 1st) 3.307 1.654 0.827 0.331 2.964 1.482 0.741 0. R2 (stream, 1st) 4.394 2.197 1.098 0.439 3.997 1.999 0.99	0 m						4(148	2.0740	1.03	© 415
R3 (stream, 1st) 6.480 3.240 1.620 0.648 5.860 2.934 9.467 0.58 R4 (stream, 1st) 4.579 2.290 1.145 0.458 4.180 2.090 1.045 0.41 0.33 R1 (pond, 1st) 0.250 0.125 0.065 0.225 0.112 8.056 0.02 5.8 M1 (stream, 1st) 3.307 1.654 0.827 0.331 2.964 1.482 0.741 0.29 0.50 R2 (stream, 1st) 4.394 2.197 1.098 0.439 3.497 0.999 0.999 0.40 R3 (stream, 1st) 4.679 2.339 1.170 0.468 4.194 2.090 1.048 0.41 R4 (stream, 1st) 3.306 0.653 0.82 0.31 2.987 1.498 0.41 0.29 0.660 0.11 R1 (pond, 1st) 0.135 0.667 0.325 0.130 1.145 0.573 0.286 0.11 R1 (pond, 1st) 0.135 0.667 0.034 0.016 0.18 0.059 0.030 0.01	R3 (stream, 1st) R4 (stream, 1st) A.579 2.290 1.145 0.458 4.180 2.090 1.045 0.841 0.8					1.522		\$.593 _@	° 2.79		I ≌0.559£
D6 (ditch, 1st)	D6 (ditch, 1st)			6.480	3.240	1.00.20		√ 5.86 9	2.93/4	√Q°467 Ø	0.5800/
D6 (ditch, 1st)	D6 (ditch, 1st) R1 (pond, 1st) 0.250 0.125 0.063 0.925 0.225 0.112 0.56 0. R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4.394 2.197 0.398 0.439 0.439 0.496 0.499 0.99			4.579	2.290	ر 1.1 [°] 45 ر	_∘0.45&©	4.180	2 0090 ?	1.045	0.418
5 m R1 (stream, 1st) 3.307 1.654 0.827 0.331 2.964 1.882 0.741 0.20 SD R2 (stream, 1st) 4.394 2.197 2.098 0.439 3.997 1.999 0.999 0.90 R3 (stream, 1st) 4.679 2.339 1.170 0.368 1.94 2.090 1.048 0.41 R4 (stream, 1st) 3.306 0.653 0.82 0.31 2.987 1.493 0.747 0.29 D6 (ditch, 1st) 1.300 0.650 0.325 0.130 1.145 0.73 0.286 0.11 R1 (pond, 1st) 0.135 0.067 0.034 0.010 0.118 0.059 0.030 0.01	5 m R1 (stream, 1st) 3.307 1.654 0.827 0.331 2.964 1.882 0.741 0.882 SD R2 (stream, 1st) 4.394 2.197 0.098 0.436 3.97 1.999 0.999<					⊙0.923 <i>©</i> i	0.369	3,365	1.683	0,841	₄ 0.336
R2 (stream, 1st) 4.394 2.497 1.098 0.439 3.497 1.999 0.999 0.340 R3 (stream, 1st) 4.679 2.339 1.170 0.468 1.94 2.090 1.048 0.41 R4 (stream, 1st) 3.306 0.653 0.829 0.331 2.987 1.423 4.747 0.29 D6 (ditch, 1st) 1.300 0.650 0.325 0.130 1.149 0.773 0.286 0.11 R1 (pond, 1st) 0.135 0.067 0.034 0.010 0.18 0.059 0.030 0.01	R2 (stream, 1st) 4.394 2.197 1.098 0.439 3.997 1.999 0.999 0.383 (stream, 1st) 4.679 2.339 1.170 0.468 4.194 2.097 1.048 0. R4 (stream, 1st) 3.306 0.653 0.827 0.331 0.2987 1.423 2.747 0.100 0.610 0.325 0.130 1.143 2.747 0.100 0.18 0.059 0.030 0.100 0.18 0.059 0.030 0.100 0.100 0.18 0.059 0.030 0.100 0.100 0.18 0.059 0.030 0.100					0.063	0,925	1 "(M) 225 (C)	0.112	£ 056	0.023
R2 (stream, 1st) 4.394 2.497 1.098 0.439 3.497 1.999 0.999 0.340 R3 (stream, 1st) 4.679 2.339 1.170 0.468 1.94 2.090 1.048 0.41 R4 (stream, 1st) 3.306 0.653 0.827 0.331 2.987 1.423 4.747 0.29 D6 (ditch, 1st) 1.300 0.650 0.325 0.130 1.143 0.773 0.286 0.11 R1 (pond, 1st) 0.135 0.067 0.034 0.010 0.18 0.059 0.030 0.01	R2 (stream, 1st) 4.394 2.197 1098 0.439 3.997 1.999 0.999 0.883 (stream, 1st) 4.679 2.339 1.170 0.468 4.194 2.097 1.048 0.827 0.827 0.827 1.498 0.827					0.827	9.331	*2.9 <u>64</u>	1,482	0.741	0.296
R4 (stream, 1st) 3.306 0.653 0.827 0.31 02.987 1.433 6.747 0.29 D6 (ditch, 1st) 1.300 0.650 0.325 0.130 1.147 0.73 0.286 0.11 R1 (pond, 1st) 0.135 0.067 0.034 0.010 0.18 0.059 0.030 0.01	R4 (stream, 1st) 3.306 0.653 0.827 0.831 02.987 1.493 6.747 0.0 D6 (ditch, 1st) 1.300 0.650 0.325 0.130 1.143 6.573 0.286 0. R1 (pond, 1st) 0.135 0.667 0.034 0.016 0.18 0.059 0.030 0.10 R1 (stream 1st) 1.144 0.82 0.398 0.466 0.009 0.508 0.552 0.0067	SD			2.197		y 0.439€	3.997	×1.999	0.999	02400
D6 (ditch, 1st) 1.300 0.650 0.325 0.130 1.14 0.573 0.286 0.11 0.135 0.067 0.034 0.016 0.18 0.059 0.030 0.01 0.018 0.059 0.030 0.01 0.018 0.059 0.030 0.01 0.018 0.059 0.030 0.018 0.059 0.030 0.018 0.059 0.050 0.0552 0.100 0.0552 0.0552 0.100 0.0552	D6 (ditch, 1st)				3339	√1.17 0 €5	0.468	4.194	¥ 2.09®°	1.40348	
RI (pond, 1st) 0.135 0.007 0.014 0.019 0.018 0.059 0.0307 0.01	R1 (pond, 1st) 0.135 0.007 0.034 0.0105 0.0118 0.059 0.0307 0.050			3.306	O1:653	0.825	0,331		1.493		
10 m	10 m			1.300	0.650	0.325		1.143	(C.57/3	₩0.286 0.028	
SD R2 (stream, 1st)	10 m	10 m				0 2015	0.01(4)	0000	0.039	0.030	
R3 (stream, 1st)	R1 (stream, 1st)	2D 10 M	R1 (stream, 1st)	1,104	77.80	0.294	0.170	01 2600			
R (stream, 1st) 1.104 0.582 0.291 0.116 1.906 0.588 0.254 0.10	R4 (stream, 1st)	SD	R3 (stream 1st)	1647	0.774	0.30/	0.133 A	1.300	1 0 0 0 0 20 1 1 1		
D6 (ditch, 1st), 0.694	D6 (ditch, 1st)		R4 (stream 1st)	\$\int 1.04 / 0	0.023	√07201 s	0.105	1/0/16	502	. "	
R1 (pond, 1so, 0.699	R1 (pond, 150)		D6 (ditch 1st)	0.694	0.332 20.347 @	0.271	0.140	© 0.599			
15 m R1 (stream 4st)	15 m R1 (stream 9st)		R1 (pond 1st)	m 90	₩0.045	0.1	0.000	0.078	0.539		0.008
SD R2 (stream, 1st) 0.826 0.440 0.220 0.083 0.747 0.373 0.187 0.07 R4 (stream, 4st) 0.622 0.314 0.55 0.062 0.532 0.266 0.133 0.05	SD R2 (streat) 1st 0 0.826 0'4413 0.206 0.083 09712 0.356 0.178 0. R3 (streat) 1st 0 0.880 0.4440 0.220 0.088 0.747 0.373 0.187 0. R4 (streat) 1st 0 0.622 0.319 0.355 0.062 0.532 0.266 0.133 0.	15 m	R1 (stream 4st)	0.622	0.30	0.755	\$0.062 _n	0.528	0.264		0.053
R3 (stream, 1st) 0.880 (0.440 0.220 0.088 (0.747 0.373 0.187 0.07 R4 (stream, 1st) 0.622 0.312 0.055 0.062 0.532 0.266 0.133 0.05	R3 (stream, 1st) 0.880 (0.440 0.220 0.088 0.747 0.373 0.187 0.187 0.062 0.062 0.055 0.062 0.053 0.266 0.133 0.187	SD	R2 (stream, 1st.)	0.826	0.4/13	0.206	0.083	\$\frac{12}{3}			0.071
R4 (Septem, 180) 0622 00.312 00.55 00.062 0.532 0.266 0.133 0.05	R4 (speam, 45) 0622 0.314 0.155 0.062 0.532 0.266 0.133 0.134 0.135		R3 (stream, 1st)	0.880	& 0.440 [^]	0.2 20	0.088	Ø.747×	0.373		0.075
			R4 (stream, 15t)	© 622	0.319£ ^{"©}	0 45 5	© :062	0.532	0.266		0.053
								Y			

Table 9.2.5- 20: FOCUS Step 4 PEC_{sw} values of propineb-DIDT after single and multiple application in grapes EU-C (2 × 1120 g a.s./ha) with mitigation options; SD denotes spray drift buffer

D6 (ditch, 1st)
D6 (ditch, 1st)
D6 (ditch, 1st)
SD R2 (stream, 1st) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.
SD R2 (stream, 1st)
SD R2 (stream, 1st) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.
SD R2 (stream, 1st)
D6 (ditch, 1st)
D6 (ditch, 1st)
5 m R1 (stream, 1st) 0.005 0.005 0.005 0.005 0.005 0.062 0.062 0.062 0.05
5 m R1 (stream, 1st) 0.005 0.005 0.005 0.005 0.005 0.062 0.0
SD R2 (stream, 1st)
R3 (stream, 1st) 1.108 9.554 0.336 0.336 0.994 0.490 0.336 0 R4 (stream, 1st) <0.001 0.001 0.001 0.708 0.354 0.77 0 D6 (dich 1st) 0.310 0.0156 0.000 0.33 0.230 0.334 0.706 0.000 0.706 0.000
R4 (stream, 1st) <0.001 ©0.001 <0.001 ©0.708 0.334 0.177 0.
R1 (stream, 1st)
10 m R1 (stream, 1st)
R2 (stream, 1st)
R4 (stream, 1st) 0.375 0.395 0.336 0
D6 (ditch, 1st)
R1 (pond, 1st)
15 m
SD R2 (stream, 1st)
R3 (stream, 1st) 0.336 0.336 0.336 0.336 0.336 0.081 0
R4 (speam, 45) 40.001 20.004 20.004 20.001 20.126 0.081 0.081 0

Grapes EU-S, 2×1400 g a.s./ha

FOCUS SW Step 3 values for the application in grapes EU-S are presented in Table 9.2. propineb and in Table 9.2.5- 22 for the metabolite propineb-DIDT.

Table 9.2.5- 21: PEC_{sw} and PEC_{sed} values of propineb in grapes EU-\$\infty(2 \times 1400 g a)\$ all calculated scenarios according to FOCUS SW Step 3; letters S, D, and R before correspond to the dominant entry path—Fray drift, deainage, and runoff runoff

	Si	ngle Application	A Mul	tipfe Applicat	A @ /
Scenario	Entry route	PECsw PECsed	Entry Foute	PECw [µg/L]	γ [μgૠg]
D6 (ditch, 1st)	S	23.68 4 10.95	S	2 1.07 ∠	.41.80 °°
R1 (pond, 1st)	S	0.849 0 0.489	$\mathbb{Q} S_{\alpha}$. 0.740 [©]	90.407°
R1 (stream, 1st)	S	17.44 1 2.198		D* 1543/8	1.9 3 97
R2 (stream, 1st)	S	©23.36\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		29 .61	1,479
R3 (stream, 1st)	S	Q 2465		Ž1.75 💇	4.220
R4 (stream, 1st)	S	17015 1.548	\$ \$ \$	\$\tilde{	1.367

sed values of the metabolite propines -DIDT in grapes EU-S (2 × PEC_{sw} and PEC Table 9.2.5- 22: 1400 g.a.s./ha) for all calculated scenarios according to FOCUS SW Step 3

	<u> </u>	y (1
	Single A	oplication S	Multiple A	ppication	
Scenario 💸	Single 41 PECsw [µg/L]	PECsed	O PEC	PEC _{sed}	
	β [μg/L]	🧬 [μg/kg] 🕡	μg/L]	[μg/kg]	
D6 (ditch, 1st)	<0.001 °>	<0 .001 Q	≈ 0.001 ≈	< 0.001	
R1 (pond, 1st)	% 9.018	√√0.006 [~]	© 0.01 %	0.006	
R1 (stream (st) 0	0.294	0.079	© 0. 46 7	0.101	
R2 (stream, 1st)	ۇ 0. 0 48 ئ	y 0, 0 17	Q.A65	0.163	
3 (stream, 150)	√ ≤ 6 5001 [©]	<0.001	© 0.001	< 0.001	
R4 (stream, 1st)	©.321 N	<u></u> \$0.074€	0.321	0.074	
FOCUS SW Step 4 values &	r single and n	nultiple applica	ation in grapes	EU-S are pre	esented in
D6 (ditch, 1st) R1 (pond, 1st) R1 (pond, 1st) R2 (stream, 1st) R3 (stream, 1st) FOCUS SW Step 4 values Table 9.2.5-23 for propine and	in Table 92.5-	24 for propinel	o-DIDT.		
		?~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
		y"			
	, Ç Q'				
	w w				
	<u> </u>				
	P*				
J Z A Z					
E R					
, por					
O					

Table 9.2.5- 23: Summary of <u>FOCUS Step 4</u> PEC_{sw} values of propineb after single and multiple application in <u>grapes EU-S (2 × 1400 g a.s./ha)</u> with mitigation options; SD denotes spray drift buffer

Table 9.2.5- 24: Summary of <u>FOCUS Step 4</u> PEC_{sw} values of propineb-DIDT after single and multiple application in <u>grapes EU-S (2 × 1400 g a.s./ha)</u> with mitigation options; SD denotes spray drift buffer

Buffer Width & Type D6 (ditch, 1st) S.510 C.805 1.403 0.561 0.000 0.001 0.
D6 (ditch, 1st)
D6 (ditch, 1st)
R1 (pond, 1st)
R1 (pond, 1st)
0 m R1 (stream, 1st) 4.130 2.065 1.033 0.413 0.467 0.001
SD R2 (stream, 1st) 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.065 0 0.465 0 0.465 0 0.584 0.000 0.001 0.00
R3 (stream, 1st) 5.839 2.920 1460 0.584 0.000 0.001 0.
D6 (ditch, 1st) 3.392 1.696 0.848 0.339 0.001 0.004 0.001 0.
SD R2 (stream, 1st) 0.048 0.048 0.048 0.048 0.048 0.465 0.46
SD R2 (stream, 1st) 0.048 0.048 0.048 0.048 0.048 0.0465 0.4
R2 (stream, 1st)
R2 (stream, 1st) 0.048 0.048 0.048 0.048 0.048 0.465 0
D6 (ditch, 1st) 1.229 0.614 0.307 0.123 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
D6 (ditch, 1st) 1.229 0.614 0.307 0.123 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
10 m R1 (stream, 1st) 1,995 0,044 0,446 0,465 0,
R2 (stream, 1st)
R4 (stream, 1st) 1.341 0.326 9.321 0.324 0.324 0.321 0
R4 (stream), 181) 1.0/2 0.380 3.321 0.0067 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0
15 m R1 (stream 4st) 0.6987 0.044 0.922 0.294 0.467 0.467 0.467 0.467 0.467 0.465 0.
R1 (stream 4st)
SD R2 (stream, 1st)
R3 (stream, 1st) 0.837 (0.419 0.209 0.084 0.001 0.321
R4 (speam, 150) 0.583 0.324 0.324 0.321 0.321 0.321 0.321 0
&V

Tomato EU-C, 4×1680 g a.s./ha

FOCUS SW Step 3 values for the application in tomato EU-C are presented in Table 9.2.5-25 for propineb and in Table 9.2.5-26 for its metabolite propineb-DIDT.

Table 9.2.5- 25: PEC_{sw} and PEC_{sed} values of propineb in <u>tomato EU-Q (4 × 1680 ga.s./ha)</u> for all calculated scenarios according to <u>FOCUS SW Step 3</u>; letters 3, D, and R before correspond to the dominant entry path—pray drift, drainage and runoff

	Si	ngle Application	Anniting Application			
Scenario	Entry route	PECsw PECsed [μg/L] PECsed	Entry route	PECW PECW [µgAvg]		
D6 (ditch, 1st)	S	10.55 4 2.54		9.107 \$\dag{\pi} \dag{\pi} 737 \cdot \cdot \dag{\pi}		
R2 (stream, 1st)	S	9,3,4 . 0 0,6,4	$ \mathcal{S} \leq \mathcal{S} $	6.289		
R3 (stream, 1st)	S	0.857		6.643 . 1.249		
R4 (stream, 1st)	S	@6.992\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	JOS W	£691 0£27		

Table 9.2.5- 26: PEC_{sw} and PEC_{sed} values of the metabolite propineb DIDT in tomato EU-C (4 × 1680 g a.s./ha) for all calculated scenarios according to FOCUS SW Step 3

S	Single Application	Mystiple Spplication
Scenario 🤝	PECsw PECsed	PECsw PECsed
4, 4	hg/L] hg/kg])
D6 (ditch, st)	2.49@ 5 0.389	1.034 0.357
D6 (ditch 1st) R2 (stream, 1st)	1000 000000 1 000000	0.372 0.218
R3 (stream, 1st)	2.335 × 0.281 £	0.218 0.312 0.312
R4 (@ream, Ott)	2.644 0 0.655	2.644 0.736

FOCUS SW Step 4 values for single and multiple application in Comato EU-C are presented in Table 9.2.5-27 for propinely and in Table 9.2.5-28 for its metabolite propinely DIDT.

Table 9.2.5- 27: Summary of <u>FOCUS Step 4</u> PEC_{sw} values of propineb after single and multiple application in <u>tomato EU-C (4 × 1680 g a.s./ha)</u> with mitigation options; SD denotes spray drift buffer

D¢¢		Single application				Multiple applications 0				
Buffer Width & Type	Scenario	PEC _{sw} [μg/L] Drift Reduction				PECsw [µg/L] Drift Reduction				
a Type		0%	50%	75%	90%	0% s	[⊍] ″50%	75%	×90%	
	D6 (ditch, 1st)	2.859	1.429	0.715	286	1.9040	0.952	0.476	90.19 ©	
5 m	R2 (stream, 1st)	3.423	1.712	0.856	ő.342	2.2	1.139 🎣	© 0.5690)	0,228	
SD	R3 (stream, 1st)	3.600	1.800	0.900	0.360	2(395	1.1980	0.599	©240 g	
	R4 (stream, 1st)	2.553	1.277	0.638	0.255	₽.699	° 0.8 5 %	0(425	9.170C	
	D6 (ditch, 1st)	1.516	0.758	0.279	0.151	≱ 1.Q0 ©	0.502	Q.251 Q	0.1000	
10 m	R2 (stream, 1st)	1.816	0.908	©0.454	°0.18 2	1,201	@ .601 (0.300	0/1/20	
SD	R3 (stream, 1st)	1.909	0.955	്0.477 <i>ത്</i>		4 \$263 <i>a</i>	0.632	0,316	«0.126	
	R4 (stream, 1st)	1.354	0.677 4	0.338	0,¥36	6 0.896℃	0.448	£224	₹0.09QÇ	
	D6 (ditch, 1st)	1.035	0.518	0259	9 .104	[™] 0.6 <u>8</u> ¥4	0\$42	Ŭ.171 <i>&</i>	0.069	
15 m	R2 (stream, 1st)	1.240	0. 6\$0	° 02310	70.12A	0.818	×0.409	0.204	Q X 082	
SD	R3 (stream, 1st)	1.304	Ø 652 £	رِيِّ0.32 6	0.13/1	20.860	₩0.43 ©	0.275	@ .086	
	R4 (stream, 1st)	0.925	, 00°.463 ×	" 0.23¶"	0,093	®0.6105	0.203	№ 153 €	0.061	
	D6 (ditch, 1st)	0.788	ັ V 0.394 [©]	0.197 ,	0.079	0.50	© 260	\$0.130€	0.052	
20 m	R2 (stream, 1st)	0.943	0, 49 2	@ .236	0.09	0.621	9.310	0,155	0.062	
SD	R3 (stream, 1st)	0,992	496	0.248	0,099	Q 653	0.326	0.463	0.065	
	R4 (stream, 1st)	€ 704 _{&}	0.352	0.176	0.070	(0.463 Q	0232	0.116	0.046	

Table 9.2.5-28: Summary of FOCUS Step 4 PEC sw values of propineb-DLDT after single and multiple application in tomator EU-C (4 × 1680 g @.s./ha) with mitigation options. SD denotes spray drift boffer

Dffan		-	Single ap	plication		G W	Multiple a	pplication	s
Buffer Width	Scenario F		PEC%w			,	PECsw		
& Type			Drift Re	duction	- ((// n		Drift Re	eduction	
α Type ⊗		92%	\$0%	75%	90%	% 0%	50%	75%	90%
	D6 (ditch, 1st)	~ 0 , 6 77 _/	0.339	0,169	0.068 %	0.451	0.226	0.113	0.045
5 m	R2 (stream Olst)	√0.064€	0.064	Q .064	<a>∅ 0.064	0.372	0.372	0.372	0.372
SD	R3 (stream, 1st)	0.853	Q.426 s	√90.395 [©]	0.395	0.567	0.395	0.395	0.395
	R4 (stream, 1stQ)	2.644	@:644 <u>~</u>	2.64	2:644	2.644	2.644	2.644	2.644
	D6 (Artch, 1st)	0.359 %	0.180°	0.090	0.036	0.238	0.119	0.060	0.024
10 m	R2 (stream, 1st) (0.064	0.0064	© 064	0.064	0.372	0.372	0.372	0.372
SD	(stream, 1st)	0.452	9 ,895 _%	9 0.39 5	0.395	0.395	0.395	0.395	0.395
É	R4 (stream, 1st)	2:044	2.644	2.644	2.644	2.644	2.644	2.644	2.644
	D6 (ditch, 🏋	△ 0.245	× 0.123×	0.061	0.025	0.162	0.081	0.041	0.016
15 m	R2 (stream, 1st)	90.064	0.4064	20 .064	0.064	0.372	0.372	0.372	0.372
SD	R3 (stream, 1st)	0.395	D, 395 J	$^{\circ}_{2}$ 0.395	0.395	0.395	0.395	0.395	0.395
	R4 (stream, 1st)	2644	©2.644Q,	2.644	2.644	2.644	2.644	2.644	2.644
	D6 Oitch, Ast)	3 0.187 ×	0.093	0.047	0.019	0.123	0.062	0.031	0.012
20 m	R2 (stream, 1st)		0:Q64	0.064	0.064	0.372	0.372	0.372	0.372
SD	® 3 (str ea m, 1st) ⊖	0,395	0.395	0.395	0.395	0.395	0.395	0.395	0.395
	R4 (stream, List)	£,644	2.644	2.644	2.644	2.644	2.644	2.644	2.644

Tomato EU-C, 4 × 2100 g a.s./ha

FOCUS SW Step 3 values for the application in tomato EU-C are presented in Table 9.2 propineb and in Table 9.2.5-30 for the metabolite propineb-DIDT.

PEC_{sw} and PEC_{sed} values of propineb in tomato EU_x (4 × 2100, gC Table 9.2.5- 29: all calculated scenarios according to FOCUS SW Step 3; letters S, D, and R. before correspond to the dominant entry path - spray drift, drainage, and runoff

	Si	ngle Application	Multi	ole Applica	tion
Scenario	Entry route	PEC _{sw} PEC _{sed} μg/kg/	Entry route	PEC. [µcg/L]	ℤ PECΩ ν [μg/kg]
D6 (ditch, 1st)	S	13,19 📞 3.170	S S	8.881	2171 <u>"°</u>
R2 (stream, 1st)	S	1,1°,72 0,846	S S	₹ 7.862 ×	©0.570© ⁷
R3 (stream, 1st)	S	2311 C		8,267	1.559
R4 (stream, 1st)	S	©8.740 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		<i>\$</i> ,865 💍	

PECsw and PECsed values of metabolite propine DIDP in tomato EU **Table 9.2.5-30:** 2100 g a.s. (ha), for all calculated scenarios according to FOCUS SW Step 3

	\\ \'\'\'\'			V M *-10	<u> </u>	
	<i>b</i> 5	Single Ap	preation of	yruitipie	Application	
Scenari		PE@sw	PEC _{sed}	PÉCsw.	PECsed	
	ch, (st)	(hg/L)	PEC _{sed}		္ 🔊 [μg/kg]	
D6 (dite	ch, 4 \$t)	3.12 %	\$ 0.475	2.104	0.446	
D7 (ctro	ann, 1st) 🛴 🗼 💍	0. 080	<u> </u>	0.465	0.272	
R3 (stre	ch, st)	2.919	×9.351	N.959	0.390	
R4 (stre	am, (b)	\$3.305 @	√° 0.819 °°	3.305	0.920	
Ö	am, by	3.126 0.080 2.919		0.465		
(V)		4 8	1	**\ **\		
FOCUS SW Step	4 values for si	ingle and mu		tion tomat	to EU-C are pro	esented in
Table 9 2.5- 31 for		Table 🗫 5- 3	of the second	odite propine	b-DIDT.	
14010 7.2.3 31 101				Renne brobine	o BIB I.	
Š	Y A &					
Q 1	Q' , F					
			7 ~			
	, D. ~O ₁	4	, 0			
Ø*		W jy				
			~Q"			
A.			Y			
¥						
<i>©</i>						
Ó		, j ^v				
		~~~~~				
	4 2					
~ O _A						
FOCUS W Step Table 9.2.5-31 for						

Table 9.2.5- 31: Summary of <u>FOCUS Step 4</u> PEC_{sw} values of propineb after single and multiple application in <u>tomato EU-C (4 × 2100 g a.s./ha)</u> with mitigation options; SD denotes spray drift buffer

D¢¢		Single application PEC _{sw} [µg/L] Drift Reduction				Multiple applications  OECsw [µg/L]  Drift Reduction			
Buffer Width & Type	Scenario								
& Type		0%	50%	75%	90%	0% s	[⊍] 50%	75%	×90%
	D6 (ditch, 1st)	3.573	1.787	0.893	357	2.3810	1.190	0.595	♥ 0.23 <b>®</b>
5 m	R2 (stream, 1st)	4.279	2.140	1.070	0.428	2.8₹	1.424 🎺	©0.712	0,285
SD	R3 (stream, 1st)	4.499	2.250	1.125 Ô	0.450	2994	1.497	0.748	©299 g
	R4 (stream, 1st)	3.192	1.596	0.798	0.319	<b>№</b> 124	° 1.062	Q <b>5</b> 31	0.212
	D6 (ditch, 1st)	1.895	0.947	0.474	0.190	√ 1.25 <b>©</b>	0.628	§ 9.314 Q	0.126
10 m	R2 (stream, 1st)	2.269	1.135	©0.567	0.227	1.502	<b></b>	0.375	0/1/30
SD	R3 (stream, 1st)	2.386	1.193	∂0.597 <i>®്</i>	0.239	<b>4</b> √579 €	0.789	0,395	₄ 0.158
	R4 (stream, 1st)	1.693	0.846	0.425	0.969		0.560	<b>£</b> 280 [	₩0.11 <b>2</b> €
	D6 (ditch, 1st)	1.294	0.64	0324	<b>9</b> .129	[™] 0.8 <b>5</b> 5	0.428	0.214	0.086
15 m	R2 (stream, 1st)	1.550	0.7\\$5	° 0∕387 €	× 0.155	1.623	<b>%</b> 0.511	0.255	Q 102
SD	R3 (stream, 1st)	1.630	<b>₽815</b> €	0.40%	0.163	√J.075 ∑	₩0.53 <b>®</b>	0.269	<b>@</b> .108
	R4 (stream, 1st)	1.156	©.578 	0.289	0,116	®0.7 <b>63</b> ≫	0.381	<b>%</b> 191	0.076
20 m	D6 (ditch, 1st)	0.985	У 0.492 [©]	0.246	0.098	0.649	<b>©3</b> 25 ,	Ĵ0.162 [©]	0.065
	R2 (stream, 1st)	1.179	0, <b>\$9</b> 0	<b>9</b> .295	0.118	0076	9.388	0,194	0.078
SD	R3 (stream, 1st)	1,240	0,620	0.310	0,124	<b>@</b> 816	0.408	0.204	0.082
	R4 (stream, 1st)	<b>6</b> € <b>8</b> 80 €	0.440S	0.220	0.088	0.579	0,289	0.145	0.058

Table 9.2.5-32: Summary of FOCUS Step 4 PEC_{sw} values of propineb-DLDT after single and multiple application in tomator EU-C (4 × 2100 g @.s./ha/with mitigation options; SD denotes spray drift boffer

Buffer		~	Single ap	plication		Q 4	y Multiple a	pplication	s
Width & Type	Scenario 6		PECsw Dæift Re	[µgAL] eduction (			PECsw Drift Re		
& Type ⊗		0.25	\$0%	75%	90%	<b>%0</b> %	50%	75%	90%
	D6 (ditch, 1st)	·20,846 _/	0.423	0,292	0.085 %	0.564	0.282	0.141	0.056
5 m	R2 (stream Olst)	√0.080 _€	0.080	<b>Q.080</b>	°√0.080 (√	0.465	0.465	0.465	0.465
SD	R3 (stream, 1st)	1.066	Q 533	√90.493 [©]	0.483	0.709	0.493	0.493	0.493
	R4 (stream, 1sQ)	3.395	<b>®</b> .305 ⋛	∞ 3.3 <b>0</b> \$	3:305	3.305	3.305	3.305	3.305
	D6 (Attch, 1st)	0.449 %	0.224	0,112	0.045	0.298	0.149	0.074	0.030
10 m	R2 (stream, 1st)	₩0.08 <b>Ø</b>	0.030	<b>_0</b> 080	0.080	0.465	0.465	0.465	0.465
SD	R3 (stream, 1st)	0.563	<b>9</b> ,#93 _%	<b>~</b> 0.49 <b>3</b>	0.493	0.493	0.493	0.493	0.493
6	R4 (stream, 1st)	3:905	3.305	⁷ 3.30 <b>≶</b>	3.305	3.305	3.305	3.305	3.305
	D6 (ditch, 🏋	<b>4</b> 0.307	¥ 0.1 <b>53</b> ¥	0.077	0.031	0.203	0.101	0.051	0.020
15 m	R2 (stream, 1st)	$\bigcirc 0.080$	0.0000	<b>©</b> .080	0.080	0.465	0.465	0.465	0.465
SD	R3 (stream, 1st)	0.493	D,493 J	$^{\bigcirc}_{2}$ 0.493	0.493	0.493	0.493	0.493	0.493
	R4 (stream, 1st)	36305	<b>♥</b> 3.305₽	3.305	3.305	3.305	3.305	3.305	3.305
	D6 Qitch, 1st)	<b>3</b> 0.233 **	0.147	0.058	0.023	0.154	0.077	0.038	0.015
20 m	R2 (stream, 1st)		0×Q80	0.080	0.080	0.465	0.465	0.465	0.465
SD	<b>®</b> 3 (str <b>ea</b> m, 1st)	0,493	0.493	0.493	0.493	0.493	0.493	0.493	0.493
	R4 (stream, List)	<b>₹</b> 305	3.305	3.305	3.305	3.305	3.305	3.305	3.305

... of degradation in air and transport via air
... oute and rate of degradation in air and transport via air please refer to Mext.
... oute and rate of degradation in air and transport via air please refer to Mext.
... oute and rate of degradation in air and transport via air please refer to Mext.
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air
... oute and rate of degradation in air and transport via air please refer volumes.
... oute and rate of degradation in air and transport via air please refer volumes.
... oute and rate of degradation in air and transport via air please refer volumes.
... oute and rate of degradation in air and transport via air please refer volumes.
... oute and rate of degradation in air and transport via air please refer volumes.
... oute and rate of degradation in air and transport via air please refer volumes.
..