1) Q). We are given (that $f(t) - p(t) = \frac{1}{n!} f(n) \qquad (1 - t)(t - t_1) \cdots (t + t_n)$ $o \in [t_1 t_n]$ also $f''(0) \leq M + 0$ Now let ti < ti+1 then $|(t-t;)(t-t;+)| \leq \frac{h^2}{4} \rightarrow 0$ algo, Sinica ti+1-t; =h algo, Sinca $t_{i+1-t_{i-1}}$ $(t-t_{i-1}) = 2 = 3 \dots 1$ $(met \neq t = t_{i+1})$ for $t \in [t_{i}, t_{i+1}]$ $|t-t_{i+2}|(t-t_{i+3})...t-t_{i+y}| \leq 2-3...$ s n! (mak at t st; Hence $|f(t)-p(t)| = \int_{n}^{\infty} f^{n}(0) (t-t_{n}) \dots t_{-t_{n}}|$ < 1 Mh2/(t-ti,)...(t-ti-i)/(t-ti+2-...t-tn)/

 $\leq \frac{4h^2}{4n!}$ i! (n-i)! using $\emptyset \notin \emptyset$

< Mh 2 honce proved

Assignment -3 (93) To prove the second order condition for convexity we need to prove i). F: Rh - R is convex then its Herstan Vf(x) is posture semidefinite aveywhere prof: if f is convex then Its Herran Porting is posture semidefuse To prove this we will use taylors theorem with lagrange seminder for a one dimensionel case (n=1) f(x+t)=f(x)+f(x)++yf(c)+~ where cis number STAGE of is convex we know that f(x+t) = f(x) + f'(x) + + x, + = R consider & t >0 and choose smell (t) such that 2+1 and coupth with in domerin of f :. f(x) + f(x)t +/2 f(c)t 2 f(x) + f(x)t surract fox) and f(x)t from both sides /2 f'(c)12 26 Since t 20, > Ext(c) = 0 kg hold & tog 5/w x' and x+t lim f (x) zo + x in domain of f. So, the hessian & F(x) is positive somidefinite everywhere

COL726

K. Laxman 2018450408 Thus we have shown that function is convex.

4) or To prove x (0) (1) x ... converges to x if (f'(2) converge to zero we can use the first order optimality condition for convex functions The first order optimality condition states that a point it is a mininger of a convex fin f if f (it) =0 prove both directions i) if $\chi^{(1)}, \chi^{(2)}$. converges to $\chi^{(2)}$, then $f(\chi^{(2)})$ converges to zero Cliven that it is untique minimized of fond fix two ce deflected when fix the corner for f'(x*) = 0

Since X', X', n''. converges to x'' (we can use continuty of $f \in f'$)

to establish $f'(x^k)$ converges to $f'(x^m)$ which is equal to fel aThus f'(xk) converges to 200 1) if $f'(x^k)$ converges to zero then x^0, x', x^2 ... converge to x^0 Lets assume p'(xk) converge to 200 Since f is conver & f'(xck) -> 0 we can use continuity of f' that f(x)=0 here x is unique minimized of L Now by contradition assume that 2°,2', 4". does not converge to 20 Now of confirmation of it is a sussequence of x^{kn} that converges to some $\bar{x} \neq x^{n}$ Since 2 + x and f is convex we have tix/ use taylor theorem with lagrange reminder $f(\bar{\chi}) > f(\chi^*) \longrightarrow 0$ $f(x) = f(x) + f(c)(x-x^*)(:c)$ is number $4\omega \times and x^*$ $f(x^k) = f(x^k) + f(c)(x-x^*)(:c)$ we can chose sufficiently large kn such that f'(e)=0 +xky rusing taylor thoosen above f(xkn)=f(xn)+f(c)(xkn-x*) Now I'm f(xkn) -> f(x) using continuity of f. hence we get $(\bar{x}) = f(\bar{x})$ is a contradiction O Thus the assumption $\chi^0, \chi^0_1 \chi^0_2$. doesnot conseque to χ^0 must be false ξ conclude that $\chi^0, \chi^0_1, \chi^0_2$. conveyed to χ^0

(b) NO, it is not supported to guarantee that $x \to x''$ as $k \to \infty$.

Let f(x) = |x| and let $x' = (-1)^{k/k}$ then we have that $f(x^0) > f(x') > f(x'') > f(x'') > \dots$ but the sequence $\{x^k\}$ does not converge cost any point.

1

$$f(x) = \sum_{i=1}^{k} |a_i^T x + b_i|$$

$$f(x) = \sum_{i=1}^{k} |a_i^T x + (1-\lambda)a_i^T y + b_i|$$

$$f(x) = \sum_{i=1}^{k} |\lambda a_i^T x + (1-\lambda)b_i|$$

$$= \sum_{i=1}^{k} |\lambda a_i^T x + \lambda b_i| + (1-\lambda)b_i + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda)b_i$$

$$\leq |\lambda a_i^T x + \lambda b_i| + (1-\lambda)a_i^T y + (1-\lambda$$

20) The interpolatory guadedness este e'n geherel form is given by $\int f(x)dx = \omega, f(x_1) + \omega_2 f(x_2)$ NOW WE take f(x)=1, we SIdx = COX UX. 1 + WZXI 2 = w1 +w2 Now we take f(x) = X Jxdx = 4x, tw2x2 0 = Wx, fw2 42 In order to have stable algorithm 4 & we must be (+1) $\omega_{i} = \frac{2}{1 - \lambda_{i}}, \quad \omega_{r} = \frac{2}{1 - \lambda_{r}}$ For $\omega_1 > 0 \Rightarrow \left(1 - \frac{\chi_1}{\chi_2}\right) > 0 \quad \therefore \quad \frac{\chi_1}{\chi_2} < 1$ For $\omega_1 70 \Rightarrow \left(1 - \frac{\chi_1}{\chi_1}\right) > 0$ This is only possible when 2, & 72 hate opposite signs 50, RE[-1,0) & X2E(0,1] 216 [0,1] or 4 2 6 [-1,0]

2 b) A point interpolatory quadrature rule has degree I and Thorder to obtain rule with deglee 3, we need to choose nodes such that the interpolating polynomial has degle æ 3. Por f(x) = 1 $\omega_1 + \omega_2 = \int_{-1}^{1} f(\mathbf{r}) = 2$ f(x) = x $\omega_1 x_1 + \omega_2 x_2 = 0$ $f(x) = x^{2}$ $\omega_{1}x_{1}^{2} + \omega_{1}x_{2}^{2} = \int_{-1}^{1} x^{2} dx = \frac{1}{2}$ $F(x) = x^{3} = 0$ $w_{1}x_{1}^{3} + w_{2}x_{1}^{3} = \int_{1}^{1} x_{2}^{3} dx = 0$ we can find a solution by taking $\omega_1 = \omega_2 = 1$ and $\chi_1 = -\chi_2$ hence $\chi_1^2 + \chi_2^2 = \chi_3^2 = 1$ $\chi_1^2 = 1$ $\chi_2^2 = 1$ $\chi_3^2 = 1$ $\chi_4^2 = 1$ $\chi_5^2 = 1$ $\chi_5^2 = 1$ $\chi_5^2 = 1$ $\chi_5^2 = 1$ hence for modes $x_1 = 1$ $\sqrt{3}$, $x_2 = \sqrt{3}$ x15 0 -1/3 or x25 1/3 we get the required solution