

SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO SUL E SUDESTE DO PARÁ - UNIFESSPA INSTITUTO DE GEOCIÊNCIAS E ENGENHARIAS - IGE FACULDADE DE COMPUTAÇÃO E ENG. ELÉTRICA – FACEEL CURSO ENGENHARIA DE COMPUTAÇÃO

Microeletrônica

T- 2018

Prof. José Carlos Da Silva jcdsilv@hotmail.com jose-carlos.silva@unifesspa.edu.br whatsApp: 19-993960156

Março/2022

Conteúdo

- Introdução;
- Processo de fabricação de CI-CMOS;
- Introdução ao desenvolvimento de fabricação de máscaras de CI (Layout – CI);
- Introdução a ferramenta "Eletric" como ferramenta para desenvolvimento de máscaras de CI (Layout – CI).

Introdução

Vacuum Tube Op-Amps

- First op amps built in 1930's-1940's
 - Technically feedback amplifiers due to only having one useable input
- Used in WWII to help how to strike military targets
 - Buffers, summers, differentiators, inverters
- Took ±300V to ± 100V to power

(Exemplos de AmpOp - 1964 - Op-Amp A702, Fairchild)

Referência: Notas de Aulas do Prof. Wilhelmus Van Noije

Introdução

FET 4

Processo de fabricação de circuitos integrados (CMOS) Design → Layout

Processo de fabricação de circuitos integrados (CMOS) Design → Layout

I_{D} versus V_{DS} – Transistor NMOS

Processo de fabricação de circuitos integrados (CMOS) Design → Layout

Relação I_D - V_{DS}

Região Triodo:

$$i_D = \mu_n C_{ox} \frac{W}{L} \left[(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

Região de Saturação:

$$i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (v_{GS} - V_t)^2$$

$$k_n' = \mu_n C_{ox}$$

 $k_n' = \mu_n C_{ox}$ Parâmetro de transcondutância do processo

Transistor Efeito de Campo (FET)

• JFET:

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

MOSFET

$$I_D = k(V_{GS} - V_T)^2$$

Processo de fabricação de circuitos integrados (CMOS) Design → Layout

- Principais Etapas de Processo:
 - ⇒ WAFER
 - ⇒ Oxidação Térmica
 - ⇒ Deposição de óxido de silício
 - ⇒ Fotogravação
 - ⇒ Corrosão Química
 - ⇒ Difusão de Impurezas
 - ⇒ Implantação Iônica

"WAFER - Método Czochralski"

Processo de fabricação de circuitos integrados (CMOS) Sala Limpa ("Cleanroom")

Processo de fabricação de circuitos integrados (CMOS) Oxidação Térmica

Objetivo:

 Obtenção de óxido de silício (SiO₂) sobre o silício.

Funções Principais:

 Mascaramento contra impurezas;

10Å - 1000Å

Dielétrico de porta.

Processo de fabricação de circuitos integrados (CMOS) Oxidação Térmica

Deposição de Óxido de Silício: (Chemical Vapor Deposition)

Objetivo:

 Obtenção de óxido de silício (SiO₂) sobre o silício ou outra superfície qualquer.

Funções Principais:

 Mascaramento contra impurezas.

Retirada do Oxido de Silício

Objetivo:

 processo pelo qual retiramos o óxido de silício, silício policristalino ou alumínio de certas regiões, determinadas pela fotomáscara.

Funções Principais:

- No SiO₂: posterior difusão localizada;
- No alumínio ou silício policristalino: definição das vias de interconexão.

Obtenção da Fotomáscara (Fotolitografia)

Processo de fabricação de circuitos integrados (CMOS) Exemplo de Fotomáscara

Exemplo de Ampliação de uma fotomáscara de campo claro

Exemplo de Ampliação de uma fotomáscara de campo escuro

Aplicação de Fotorresiste na lâmina

- 1. Limpeza da lâmina de Si e aplicação do promotor de aderência (HMDS);
- 2. Deposição do fotoresiste (positivo, tipo 1518, por "Spin coating");
- 3. Secagem em estufa a 80°C, por 20 minutos;
- 4. Alinhamento da máscara;
- 5. Exposição a luz ultravioleta (λ);
- 6. Revelação do fotoresiste;
- 7. Cura (endurecimento) do fotoresiste; em estufa a 100°C por 30 minutos;
- 8 Corrosão química;
- 9 Remoção do Fotorresiste.

Mascar de campo escuro

Mascar de campo claro

Aplicação de Fotorresiste na lâmina

Exposição à luz ultravioleta

Visão após a revelação do fotorresiste

Visão após a corrosão do SiO₂

Visão após a remoção do fotorresiste

Exemplo de "Sala Limpa" para réalização do processo

Difusão de Impurezas

Objetivo:

Introduzir na rede cristalina do Si impurezas doadoras (fósforo, arsênio...) aceitadoras (boro...).

Funções Principais:

 criação de uma região com características doadora ou aceitadora.

Sip Difusão SiO, Tempo Temperatura Tipo de dopante Si n Si p 28

800°to 1400°C

Processo de fabricação de circuitos integrados (CMOS) Difusão de Impurezas

Objetivo:

 Introduzir na rede cristalina do Si impurezas doadoras ou aceitadoras por impacto.

Funções Principais:

 criação de uma região com características doadora ou aceitadora.

Perfil da concentração:

Tecnologia CMOS cavidade N de 1,2µm (FoundryEuropean Silicon Structure (ES2))

Tecnologia CMOS cavidade N de 1,2µm (Foundry ES2)

Referencias

- http://www4.pucsp.br/~elo2eng/Processo%20de%20fabricacao%20de%20dispositivos.pdf;
- http://gnmd.webgrupos.com.br/arquivo_disciplinas_download/1-2-Revisao-Microeletronica-2a-Aula-2.pdf;
- Boylestad e Nashelsky. "Dispositivos Eletrônicos e teoria de circuitos", Prentice Hall, 11 Edição, 784p, 2013;
- Sedra e Smith, "Microeletrônica", Pearson Prentice Hall, 5 Edição, 948p, 2007.