Lecture Notes for Neural Networks and Machine Learning

Fully Convolutional Learning I: Introduction to Semantic Segmentation

Logistics and Agenda

- Logistics
 - Lab Grading
 - Hiring
 - Office Hours (slightly late start today)
- Agenda
 - Intro to Semantic Segmentation
 - Paper Presentation
 - Upsampling Layers
 - Object Segmentation (next time)
 - Instance Segmentation (next time)

Types of Fully Convolutional Problems

- Semantic Segmentation
- Object Detection
- Instance Segmentation

medium.con

Measuring Performance

- mAP(loU=x%)
 - if IoU > X%, check if correct
 - else not correct
 - Usually~50%, 75%, 90%
 - Define precision for each class, take average
- mAP(%), sometimes just AP
 - Formulate precision/recall curve for a class at varying levels of confidence (for given IoU)
 - Calculate dominating points
 - Take area under precision recall curve (AUPRC)
 - Take average AUPRC over all classes (macro or micro, usually macro)

COCO Evaluation

Unless otherwise specified, AP and AR are averaged over multiple Intersection over Union (IoU) values. Specifically we use 10 IoU thresholds of .50:.05:.95. This is a break from tradition, where AP is computed at a single IoU of .50 (which corresponds to our metric AP^{IoU=.50}). Averaging over IoUs rewards detectors with better localization.

https://cocodataset.org/#detection-eval

Introduction to Semantic Segmentation

Semantic Segmentation

 Given a set of pixels, classify each pixel according to what instance it belongs

Popular Semantic Segmentation Datasets

COCO http://cocodataset.org/ Common Objects in Context

Early Training Methods (Pre 2018)

- Init Encoder with traditional CNN (like VGG or DarkNet)
- Freeze encoder and train decoder with segmented image maps
- Unfreeze encoder and fine tune
 - Repeat tuning as needed
- More contemporary: use auxiliary tasks, self-supervise

Putting it all together

Putting it all together

Self Test:

Does it change the architecture if the Image input size changes?

What's in this picture?

The image features an individual wearing glasses and a black jacket, posing with his hand on his chin. He appears to be in an indoor setting with a white ceiling and walls. Nearby, there's a white pillar and a bin with a logo on it.

Semantic Networks

DeepLabV3+

https://github.com/tensorflow/models/tree/master/research/deeplab

https://towardsdatascience.com/semantic-segmentation-with-deep-learning-a-guide-and-code-e52fc8958823

Transformer Based Semantic Segmentation

Builds from CNN backbone, typically

MaskFormer

Per-Pixel Classification is **NOT** All You Need for Semantic Segmentation

NeurIPS 2021, spotlight

Bowen Cheng* Alexander G. Schwing Alexander Kirillov
UIUC UIUC FAIR

https://bowenc0221.github.io/maskformer/

COCO Evaluation

Unless otherwise specified, AP and AR are averaged over multiple Intersection over Union (IoU) values. Specifically we use 10 IoU thresholds of .50:.05:.95. This is a break from tradition, where AP is computed at a single IoU of .50 (which corresponds to our metric AP^{IoU=.50}). Averaging over IoUs rewards detectors with better localization.

https://cocodataset.org/#detection-eval

Student Paper Presentation

Published as a conference paper at ICLR 2025

SAM 2: SEGMENT ANYTHING IN IMAGES AND VIDEOS

Nikhila Ravi^{*,†} Valentin Gabeur^{*} Yuan-Ting Hu^{*} Ronghang Hu^{*} Chaitanya Ryali^{*} Tengyu Ma^{*} Haitham Khedr^{*} Roman Rädle^{*} Chloe Rolland Laura Gustafson Eric Mintun Junting Pan Kalyan Vasudev Alwala Nicolas Carion Chao-Yuan Wu Ross Girshick Piotr Dollár[†] Christoph Feichtenhofer^{*,†}

Meta FAIR, https://github.com/facebookresearch/sam2

Lecture Notes for Neural Networks and Machine Learning

FCN Learning

Next Time:

Fully Convolutional Objects

Reading: None

