Latencia

Se quiere calcular el RTT para medir la latencia entre dos host bajo la siguiente configuración:

En donde:

	LA	L1-2	L1-3	L2-4	L3-4	LB
Distancia	150 m	7 km	10 km	8 km	1 km	25 m
Ancho de Banda	10 Mbps	100 Mbps	200 Mbps	150 Mbps	200 Mbps	50 Mbps
Velocidad de Propagación	1,7 x 10^5 km/s	2 x 10^5 km/s	1,7 x 10^5 km/s	2 x 10^5 km/s	2 x 10^5 km/s	1,7 x 10^5 km/s

1 Mbps = 10^6 bits / seg

Se sabe que cada router tiene su propia tabla de ruteo. A continuación se muestran las tablas del router 1 y 4:

i		4		
157.128.128.0/20	ifo	168,14.128.0/24	ifo	
168.12.0.0/14	if2	157.128.0.0/16	if2	
168.8.0.0/13	if3	157.128.128.0/18	if3	

Se pide calcular el RTT utilizando un segmento de prueba de 1500 Bytes. El mismo se utilizará tanto para la ida como para la vuelta. Considerar los tiempos de encolado y de procesamiento como despreciables. Expresar la solución en militenundos.

$$TP_{L1-3} = \frac{1.5 \times 10^{2} \text{ M}}{1.7 \cdot 10^{8} \text{ M}}$$

$$TP_{L1-3} = \frac{1.10^{4} \text{ M}}{1.7 \times 10^{8} \text{ M}}$$

$$TP_{L2-2} = \frac{7.10^{3} \text{ M}}{2 \times 10^{8} \text{ M}}$$

$$TP_{L3-4} = \frac{1.10^{3} \text{ M}}{2 \times 10^{8} \text{ M}}$$

$$TP_{L3-4} = \frac{9 \times 10^{3} \text{ M}}{2 \times 10^{8} \text{ M}}$$

$$TP_{L3-4} = \frac{9 \times 10^{3} \text{ M}}{2 \times 10^{8} \text{ M}}$$

$$TP_{L3-4} = \frac{1.10^{3} \text{ M}}{2 \times 10^{8} \text{ M}}$$

$$TP_{L3-4} = \frac{1.10^{3} \text{ M}}{2 \times 10^{8} \text{ M}}$$

$$TP_{L3-4} = \frac{1.10^{3} \text{ M}}{2 \times 10^{8} \text{ M}}$$

Fragmentación IPv4

Dada la topología y las tablas de ruteo del ejercicio anterior, el host A envía un paquete cuya IP destino corresponde al host B.

Teniendo en cuenta los siguientes datos:

Datagram Header Fields	Header Size	Datagram Length	Identifier	Do Not Fragment
	20 Bytes	1400 Bytes	oXF1B1	0

Enlace	LA	L1-2	L2-4	L1-3	L3-4	LB
MTU (bytes)	1500	1280	600	600	500	1500

Se pide describir a continuación los campos del header IP de los paquetes que llegan al host B la red completando la

		Datagram Header						
Frag ID	Payload Size	~		IP	Flags	Fragment Offset		
	5126	Total Length	ID	Do Not Fragment	More Fragments			
		-		-	-			

		Datagram Header					
	Payload Size	Total Length	ID	IP Flags		Fragment	
				Do Not Fragment	More Fragments	Offset	
F1-1	576	596	0 x F181	0	1	0	
F1-2	576	596	")	0	1	71,	
F ₁₋₃	104	124	N	0	1	144	
F ₂	124	144	,,	O	0	157	

```
PAYLOAD = 1380 bytes
HEADER . 20 bytes
IDENTIFIER - 0xF181
Camino
```

MTUS

LA L1-2 L2-4 L8
1500 -> 1280 -> 600 -> 1500

LA no fragmenta

L1-2 fragmenta

Max payload = | 1290-20 | *8 = 1256 bytes

F1 - Payload Size = 1256 bytes

- Total Lenght = 1276 bytes

_ ID: 0x F181

- DO NOT FRAG. O

_ MORE FRAGS : 1 - FOFFSET - O

F2 _ Payload Size = 1380-1256 = 124 bytes

- Total Lenght = 1276 bytes = 144 bytes

_ ID: 0x F181

- DO NOT FRAG. O

_ MORE FRAGS : O _ FOFFSET - 157

Lzy Fragmenta F1

Max PayLoad = 600-20 | . 8 = 576 bytes

F1.1 - Payload Size = 576 bytes

- Total Lenght = 596 bytes

_ ID: 0x F181

- DO NOT FRAG O

- MORE FRAGS : 1

- FOFFSET - O

F1.2 - Payload Size = 576 bytes

- Total Lenght = 596 bytes

_ ID: 0x F181

- DO NOT FRAG. O

_ MORE FRAGS : 1

- FOFFSET = 72

