Rekurentne relacije

Bogdan Ljubinković, Miljan Jokić, Dalibor Nikolić, Lazar Jović, Anastazija Petrov, Marko Djordjević, Aleksa Nenadović i Meris Bilalović

Oktobar 2024, FTN

Problemi kojima ćemo se baviti

- Generisanje rekurentnih relacija
- Homogene linearne rekurentne relacije
- ► Nehomogene linearne rekurentne relacije

Uvod u rekurentne relacije

Rekurentne relacije su relacije koje definišu članove niza u zavisnosti od prethodnih članova. One se često koriste za modeliranje sekvenci i nizova.

Primer rekurentne relacije: Fibonacijev niz:

$$F_n = F_{n-1} + F_{n-2}, \quad F_0 = 0, F_1 = 1$$

Rekurentne relacije se dele na homogene i nehomogene, u zavisnosti od prisustva nezavisnog člana.

Povezanost sa diferencijalnim jednačinama

Diferencijalne jednačine često se koriste za modelovanje fenomena koji se mogu izraziti kao promenljive u zavisnosti od prethodnih stanja, što je sličan koncept kao kod rekurentnih relacija.

Sličnosti:

- ► Homogene rekurentne relacije mogu se povezati sa linearnim diferencijalnim jednačinama sa konstantnim koeficijentima.
- Nehomogene rekurentne relacije mogu se povezati sa nehomogenim diferencijalnim jednačinama, gde dodatni član može predstavljati spoljne uticaje.
- Obradjivali smo ove teme na analizi u okviru modeliranja i rešavanja sistema, gde su metode slične.

Razumevanje rekurentnih relacija pomaže u rešavanju i analizi diferencijalnih jednačina, omogućavajući nam uvid u ponašanje sistema kroz vreme.

Generisanje rekurentnih relacija

Generisanje rekurentnih relacija podrazumeva odredjivanje pravila kojim se svaki član sekvence izražava u zavisnosti od prethodnih članova.

Aritmetički niz sa konstantnom razlikom d ima rekurentnu relaciju oblika:

$$a_n = a_{n-1} + d$$

► Geometrijski niz sa konstantnim količnikom *r*:

$$a_n = r \cdot a_{n-1}$$

Definicija aritmetičkog niza

Aritmetički niz je niz brojeva u kojem je razlika izmedju svakog uzastopnog člana konstantna. Ova konstantna razlika naziva se razlika i obeležava se sa d.

Matematički oblik:

$$a_n = a_1 + (n-1) \cdot d$$

gde je:

- ▶ a_n n-ti član niza,
- ▶ a₁ prvi član niza,
- ▶ d razlika.

Primer: Ako je $a_1 = 3$ i d = 2, članovi niza su $3, 5, 7, 9, \dots$

Zbir članova aritmetičkog niza

Zbir prvih n članova aritmetičkog niza može se izračunati koristeći formulu:

$$S_n = \frac{n}{2} \cdot (a_1 + a_n)$$

gde je:

- $ightharpoonup S_n$ zbir prvih n članova niza,
- ▶ n broj članova,
- ▶ a₁ prvi član niza,
- ► a_n n-ti član niza.

Primer: Za aritmetički niz sa $a_1 = 3$, d = 2 i n = 5:

$$a_5 = a_1 + (5-1) \cdot d = 3+8 = 11$$

 $S_5 = \frac{5}{2} \cdot (3+11) = \frac{5}{2} \cdot 14 = 35$

Definicija geometrijskog niza

Geometrijski niz je niz brojeva u kojem je odnos izmeu svakog uzastopnog člana konstantan. Ovaj konstantni odnos naziva se **količnik** i obeležava se sa r.

Matematički oblik:

$$a_n = a_1 \cdot r^{n-1}$$

gde je:

- ▶ a_n n-ti član niza,
- ▶ a₁ prvi član niza,
- r količnik.

Primer: Ako je $a_1 = 2$ i r = 3, članovi niza su 2, 6, 18, 54, ...

Zbir članova geometrijskog niza

Zbir prvih n članova geometrijskog niza može se izračunati koristeći formulu:

$$S_n = a_1 \cdot \frac{1 - r^n}{1 - r} \quad (r \neq 1)$$

gde je:

 $ightharpoonup S_n$ - zbir prvih n članova niza,

▶ a₁ - prvi član niza,

r - količnik,

▶ *n* - broj članova.

Primer: Za geometrijski niz sa $a_1 = 2$, r = 3 i n = 4:

$$S_4 = 2 \cdot \frac{1 - 3^4}{1 - 3} = 2 \cdot \frac{1 - 81}{-2} = 2 \cdot 40 = 80$$

Rekurzivni metodi kao primer rekurentnih relacija

Primeri rekurzivnih metoda:

- Fibonačijev metod: koristi se za približavanje rešenja, primenjuje rekurzivnu relaciju koja se temelji na Fibonacijevom nizu.
- ▶ **Metod sečice:** koristi rekurziju za približavanje nule funkcije f(x) koristeći poslednje dve aproksimacije.

Zašto su dobri primeri?

- Oba algoritma ilustruju kako rekurzivne metode koriste prethodne iteracije za računanje sledeće vrednosti.
- Lako se implementiraju rekurzivno u programiranju i jasno pokazuju zavisnost vrednosti od prethodnih.

Homogene linearne rekurentne relacije

Homogena linearna rekurentna relacija reda k sa konstantnim koeficijentima definiše se kao:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

gde su c_1, c_2, \ldots, c_k konstante, a k predstavlja red relacije. **Karakteristična jednačina:** Ova relacija ima karakterističnu jednačinu:

$$x^{k} - c_1 x^{k-1} - c_2 x^{k-2} - \dots - c_k = 0$$

Rešenja karakteristične jednačine odredjuju oblik opšteg rešenja:

- Ako su koreni različiti, opšte rešenje je linearna kombinacija oblika $a_n = \alpha_1 x_1^n + \alpha_2 x_2^n + \cdots + \alpha_k x_k^n$.
- Ako postoje ponovljeni koreni, opšte rešenje sadrži i faktore *n* za svaki ponovljeni koren.

Teorema za rešenje homogene rekurentne relacije

Teorema: Neka je $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ homogena rekurentna relacija sa konstantnim koeficijentima. Neka x_1, x_2, \ldots, x_k budu koreni karakteristične jednačine.

Ako su svi koreni različiti, opšte rešenje je oblika:

$$a_n = \alpha_1 x_1^n + \alpha_2 x_2^n + \dots + \alpha_k x_k^n$$

gde su $\alpha_1, \alpha_2, \dots, \alpha_k$ konstante odreene početnim uslovima.

Ako neki koreni imaju multiplicitet, tada se za svaki ponovljeni koren dodaje faktor n, n^2, \ldots do stepena multipliciteta, tj. ako je x_i ponovljen m puta, rešenje sadrži članove $\alpha_{i1}x_i^n, \alpha_{i2}nx_i^n, \ldots, \alpha_{im}n^{m-1}x_i^n$.

Dokaz teoreme za homogenu rekurentnu relaciju

Formiramo karakterističnu jednačinu:

$$x^{k} - c_1 x^{k-1} - c_2 x^{k-2} - \dots - c_k = 0$$

- Ako su koreni različiti, možemo pretpostaviti rešenje oblika $a_n = \alpha_1 x_1^n + \alpha_2 x_2^n + \cdots + \alpha_k x_k^n$.
- Svaki član x_iⁿ zadovoljava relaciju, jer se pri uvoenju u rekurentnu relaciju svi članovi svedu na nulu (prema definiciji korena karakteristične jednačine).
- ► Kada postoje ponovljeni koreni, dodajemo faktore n, n²,... do stepena multipliciteta korena, da bi se obezbedila linearna nezavisnost rešenja.

Opšte rešenje je linearna kombinacija rešenja sa različitim ili ponovljenim korenima.

Stabilnost rekurentnih relacija

Stabilnost rekurentnih relacija zavisi od korena karakteristične jednačine:

- Ako su svi koreni manji od 1, niz konvergira.
- Ako je barem jedan koren veći od 1, niz divergira.

Primer: Za $a_n = 2a_{n-1}$ niz divergira.

Primer za homogenu rekurentnu relaciju

Razmotrimo rekurentnu relaciju:

$$a_n = 3a_{n-1} - 2a_{n-2}$$

sa početnim uslovima $a_0=1$ i $a_1=4$. Karakteristična jednačina je:

$$x^2 - 3x + 2 = 0$$

Rešenja su x = 1 i x = 2. Opšte rešenje je:

$$a_n = A \cdot 1^n + B \cdot 2^n$$

Nehomogene linearne rekurentne relacije

Nehomogena linearna rekurentna relacija reda k sa konstantnim koeficijentima ima oblik:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + f(n)$$

gde f(n) predstavlja nehomogeni član koji zavisi od n i može biti polinom, eksponencijalna funkcija, trigonometrijska funkcija itd. **Rešenje nehomogene relacije** sastoji se iz dva dela:

- ► Homogeno rešenje a_n^h : rešenje odgovarajuće homogene relacije.
- **Partikulartno rešenje** a_n^p : zavisi od oblika f(n) i odredjuje se metodom neodredjenih koeficijenata ili varijacijom parametara.

Ukupno rešenje: Konačno rešenje je zbir homogenog i partikulartnog rešenja:

$$a_n = a_n^h + a_n^p$$

Teorema za partikulartno rešenje nehomogene relacije

Teorema: Ako je nehomogeni član f(n) polinom, eksponencijalna funkcija, sinusna ili kosinusna funkcija, tada oblik partikulartnog rešenja a_n^p zavisi od oblika f(n):

- Ako je $f(n) = P_m(n)$ polinom stepena m, tada je a_n^p polinom stepena m.
- Ako je $f(n) = \lambda^n$ eksponencijalna funkcija, tada je $a_n^p = C\lambda^n$.
- Ako je $f(n) = \sin(\omega n)$ ili $f(n) = \cos(\omega n)$, tada je $a_n^p = C_1 \sin(\omega n) + C_2 \cos(\omega n)$.

Ako je oblik f(n) sličan rešenju homogene jednačine, partikulartno rešenje se množi faktorom n do odgovarajućeg stepena.

Dokaz teoreme za partikulartno rešenje nehomogene rekurentne relacije

- Nada je f(n) polinom stepena m, partikulartno rešenje se pretpostavlja u obliku polinoma istog stepena, jer će derivacije i linearne kombinacije zadržati isti stepen.
- ► Kada je $f(n) = \lambda^n$ (eksponencijalna funkcija), $a_n^p = C\lambda^n$ je rešenje jer će zamena u relaciju očuvati eksponencijalnu formu.
- Ako je $f(n) = \sin(\omega n)$ ili $\cos(\omega n)$, pretpostavljamo rešenje $a_n^p = C_1 \sin(\omega n) + C_2 \cos(\omega n)$, jer će sinusni i kosinusni članovi ostati isti pod linearnim transformacijama.
- Ako je f(n) sličan homogenom rešenju, tada se partikulartno rešenje množi faktorom n kako bi se obezbedila linearna nezavisnost.

Oblik a_n^p zavisi od f(n) i mora biti linearno nezavisan od homogenog rešenja.

Primena nehomogenih rekurentnih relacija

- Nehomogene relacije su korisne u modeliranju stvarnih fenomena.
- Uključuju dodatne članove koji mogu predstavljati spoljne uticaje.
- Na primer, modeliranje populacije može uključivati spoljne faktore.

Rešavanje nehomogenih relacija

Nehomogene relacije se rešavaju tako što se prvo nadje homogeno rešenje, zatim partikulartno rešenje:

- Koristeći metode kao što su metoda neodredjenih koeficijenata ili metoda varijacija parametara.
- Na kraju, ukupno rešenje je zbir homogenog i partikulartnog rešenja.

Primer nehomogene relacije

Razmotrimo relaciju:

$$a_n = 2a_{n-1} + 1$$

gde je f(n) = 1. Karakteristična jednačina:

$$x-2=0 \implies x=2$$

Opšte rešenje je:

$$a_n = A \cdot 2^n + C$$

Zadatak 1

Zadatak: Napišite rekurentnu relaciju za niz koji se sastoji od aritmetičkog i geometrijskog niza, gde je svaki član zbir prethodna dva člana, a prethodni članovi su aritmetički i geometrijski niz. **Rekurentna relacija:**

$$a_n = a_{n-1} + a_{n-2}$$
 (gde je $a_{n-1} = a_1 + (n-1)d$ i $a_{n-2} = a_1r^{n-2}$)

Početni uslovi:

$$a_0 = a_1, \quad a_1 = {\sf prvi}$$
 član aritmetičkog niza, $a_2 = {\sf prvi}$ član geometrijskog niza

Ovaj niz prikazuje interakciju izmedju aritmetičkih i geometrijskih nizova.

Rešenje za Zadatak 1

Niz se sastoji od aritmetičkog i geometrijskog niza, pa je potrebno prvo odrediti članove ovih nizova.

Aritmetički niz je definisan kao:

$$a_n^{(A)} = a_1 + (n-1)d$$

Geometrijski niz je definisan kao:

$$a_n^{(G)} = a_2 \cdot r^{n-2}$$

Zbir članova u nizu je:

$$a_n = a_{n-1}^{(A)} + a_{n-2}^{(G)}$$

Koristeći početne uslove, možemo izračunati nekoliko prvih članova:

$$a_0 = a_1 + a_2$$
 (prvi član) $a_1 = a_1 + (1-1)d + a_2 \cdot r^{1-2}$ $a_2 = a_1 + (2-1)d + a_2 \cdot r^{2-2}$

Zadatak 2

Rešite homogenu rekurentnu relaciju $a_n = 3a_{n-1} - 2a_{n-2}$ sa početnim uslovima $a_0 = 5$ i $a_1 = 7$.

Zadatak 2: Karakteristična jednačina i rešenje

Karakteristična jednačina:

$$x^2 - 4x + 4 = 0$$

Rešenja:

$$x_1 = 2$$
 (dvostruki koren)

Opšte rešenje:

$$a_n = (A + Bn) \cdot 2^n$$

Zadatak 2: Početni uslovi i konačno rešenje

Koristeći početne uslove:

$$a_0 = 1 \Rightarrow A = 1$$

 $a_1 = 4 \Rightarrow A + 2B = 4$

Rešavamo sistem:

$$A + 2B = 4$$
$$A = 1$$

Rešenje za B:

$$1 + 2B = 4 \implies 2B = 3 \implies B = \frac{3}{2}$$

Konačno rešenje:

$$a_n = \left(1 + \frac{3}{2}n\right) \cdot 2^n$$

Zadatak 3

Rešite nehomogenu rekurentnu relaciju $a_n=2a_{n-1}+3n$ sa početnim uslovima $a_0=1$ i $a_1=4$.

Zadatak 3: Rešenje nehomogene rekurentne relacije

Korak 1: Homogena relacija:

$$a_n^h = 2a_{n-1}$$

Karakteristična jednačina:

$$x-2=0 \implies x=2$$

Homogeno rešenje:

$$a_n^h = A \cdot 2^n$$

Korak 2: Pretpostavka za partikulartno rešenje:

$$a_n^p = Bn + C$$

Zadatak 3: Rešenje i korišćenje početnih uslova

Korak 3: Ubacivanje u rekurentnu relaciju:

$$Bn + C = 2(B(n-1) + C) + 3n$$

Proširivanjem i izjednačavanjem koeficijenata dobijamo:

$$B = -3$$
, $C = -6$

Kombinovanjem rešenja:

$$a_n = A \cdot 2^n - 3n - 6$$

Koristeći početne uslove:

$$a_0 = A - 6 = 1 \implies A = 7$$

 $a_1 = 2A - 3 - 6 = 4 \implies A = 7$

Konačno rešenje:

$$a_n = 7 \cdot 2^n - 3n - 6$$

