I Un problème variationnel

Soit Ω ouvert borné de \mathbb{R}^n . Le problème est :

$$\begin{cases}
\text{Trouver } u \in H^{1}(\Omega) \text{ tel que} \\
-2\frac{\partial^{2} u}{\partial x^{2}} + 2\frac{\partial^{2} u}{\partial x \partial y} - 2\frac{\partial^{2} u}{\partial y^{2}} + 3u = f \quad \text{dans } \Omega, \\
u = 0 \quad \text{sur } \Gamma_{0}, \\
(2\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y})n_{1} + (-\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y})n_{2} = g \quad \text{sur } \Gamma_{1}.
\end{cases}$$
(I.1)

On supposera $f \in L^2(\Omega)$, et notant $\gamma_1 : H^2(\Omega) \to L^2(\Gamma)$ la deuxième application trace, on supposera $g \in \gamma_1(H^2(\Omega))$.

On a posé $\Gamma = \Gamma_0 \bigcup \Gamma_1$ où $\Gamma_0 \bigcap \Gamma_1 = \emptyset$ (partition de Γ).

Faire un dessin.

On notera $V = \{v \in H^1(\Omega) : v_{|\Gamma_0} = 0\}.$

1 On suppose $\Gamma = \Gamma_0$.

Comment est appelé V dans ce cas? Choisir une norme usuelle sur V qui en fait en espace de Hilbert.

Montrer que le problème (I.1) est bien posé. Pour cela :

- 1. réécire le problème fort en introduisant une matrice A, i.e. l'écrire sous la forme $-\text{div}(A.\text{grad}u)+\dots=\dots$; dans la suite on pourra noter $\vec{X}=A.\text{grad}u$ (intermédiaire de calcul),
- 2. donner la formulation faible (variationnelle) associée,
- 3. préciser le type des conditions aux limites,
- 4. montrer l'équivalence problème fort problème faible,
- 5. rappeler le théorème de Poincaré,
- 6. rappeler le théorème de Lax-Milgram et l'appliquer : on commencera par écrire les définitions de continuités et de coercivité.
- 7. expliciter le terme "bien posé", et conclure.

2 On suppose meas(Γ_0) $\neq 0$ et meas(Γ_1) $\neq 0$

2.1 Équivalence de normes

Vérifier que la semi-norme sur $H^1(\Omega)$ définie pour $v \in V$ par :

$$|v|_V = ||\operatorname{grad} v||_{L^2(\Omega)} \tag{I.2}$$

est une norme sur V. On admettra alors que, dès que meas $(\Gamma_0) \neq 0$ (la mesure de Γ_0) est non nulle, la norme de $H^1_0(\Omega)$ est une norme équivalente à la norme $H^1(\Omega)$ sur l'espace V. En particulier on notera c_1 la constante :

$$\forall v \in V, \quad ||v||_{H^1(\Omega)} \le c_1 |v|_V. \tag{I.3}$$

On munira V de cette norme.

2.2 Montrer que le problème est bien posé dans V

Écrire proprement la formulation variationnelle du problème. Expliquer pourquoi l'espace de Hilbert à considérer est V. Puis appliquer le théorème de Lax-Milgram.

II Exercice

Dans
$$[0,1]$$
, on considère $\bigcup_{i=1}^n [x_{i-1},x_i]$ où $x_0=0, x_n=1$ et $x_{i-1}< x_i$ pour tout $i=1,...,n$. On

définit l'espace P_3 comme étant l'espace des fonctions continues sur [0,1] qui sont des polynômes de degré 3 sur chaque $[x_{i-1},x_i]$ (pour i=1,...,n). Construire une base simple de P_3 .

Déterminerer des points intermédiaires $x_{i+\frac{1}{3}}$ et $x_{i+\frac{2}{3}}$ et les fonctions de base associées (valant 1 en un point et 0 aux autres points).