Wstęp do Fizyki Ciała Stałego

2015/2016 – projekt #2

Zadanie #1 – nanostruktury półprzewodnikowe (7 pkt.)

Zaprojektuj nanostrukturę półprzewodnikową opartą na studni kwantowej, która dzięki zjawisku elektroluminescencji emituje światło o długości fali λ . Dobierając materiały uwzględnij dopasowanie stałej sieci krystalicznej poszczególnych warstw. W obliczeniach użyj wartości stanów energetycznych dla prostokątnej studni kwantowej o nieskończonym potencjale.

Długość fali obliczamy indywidualnie według wzoru: $\lambda = (z+2)\cdot 100\,\mathrm{nm} + i (mod\ 100)\cdot 1\,\mathrm{nm}$, gdzie z – numer przydzielonego zestawu, i – numer albumu autora.

Na jaki kolor świeci zaprojektowana struktura?

Zadanie #2 - zależność Arrheniusa (7 pkt.)

Metodą spektroskopii impedancyjnej zmierzono przewodność elektryczną serii próbek szkła i nanomateriałów układu potrójnego LiF– V_2O_3 – P_2O_5 . Pierwsza kolumna plików z danymi pomiarowymi zawiera temperaturę (w skali Celsjusza), druga – zmierzony opór elektryczny (w omach). Wyznacz wartości przewodności właściwej materiału w funkcji temperatury (tj. $\sigma(T)$) oraz wykreśl ją w odpowiednim układzie współrzędnych, celem sprawdzenia, czy spełnia ona zależność Arrheniusa.

Wyznacz wartość energii aktywacji oraz podaj wartości przewodności właściwej w temperaturze 25°C (z interpolacji / ekstrapolacji dopasowanej prostej).

Zestaw	Nazwa pliku	Grubość / mm	Powierzchnia / mm²
1	zad2_is_1.txt	0,50	23,6
2	zad2_is_2.txt	0,80	10,1
3	zad2_is_3.txt	1,04	18,9
4	zad2_is_4.txt	0,56	9,8
5	zad2_is_5.txt	1,04	18,9
6	zad2_is_6.txt	0,79	25,3
7	zad2_is_7.txt	0,50	23,6

Uwaga! W wyższej temperaturze dane w niektórych zestawach mogą odbiegać od liniowości w skali Arrheniusa. Należy wówczas dopasować możliwie długi odcinek od strony niskiej temperatury.

Zadanie #3 - fonony (6 pkt.)

Dokonaj skrupulatnych obliczeń zależności dyspersyjnej $\omega(q)$ dla fali fononów propagującej się w jednowymiarowym, dwuatomowym łańcuchu periodycznym (czytelny rękopis obliczeń). Dopiero na samym końcu podstaw znane masy atomów M_1 i M_2 oraz stała sprężystości k "sprężyn" łączących atomy. Narysuj wykres otrzymanych gałęzi fononowych dla pierwszej strefy Brillouina (tj. $0 \le q \le \pi/a$, gdzie a jest znaną stałą sieci) dla odpowiadających wylosowanemu zestawowi wielkości parametrów (w jednostkach umownych).

Zestaw	M_1	M_2	k
1	4	1	2
2	3	2	2
3	2	3	3
4	1	4	4
5	2	2	1
6	3	2	3
7	2	3	2

Literatura pomocnicza:

H. Ibach, H. Lüth: Fizyka ciała stałego. PWN 1996

Szczegółowa punktacja

Lp.	Opis	Pkt.	
Zadanie #1			
1	Określenie grubości studni	1	
2	Określenie przerw energetycznych materiałów	2	
3	Wybór materiałów ze wskazaniem ich stałych sieciowych	2	
4	Rysunek – schemat struktury	1	
5	Wskazanie koloru emitowanego światła	1	
	Zadanie #2		
1	Wyznaczenie współczynnika kształtu próbki (tj. $l\ /\ S$)	1	
2	Wykreślenie danych w żądanych współrzędnych	2	
3	Oznaczenie wykresu (jednostki i opisy osi)	0,5	
4	Dopasowanie prostej i wyznaczenie parametrów dopasowania	1,5	
5	Obliczenie energii aktywacji	1	
6	Obliczenie wartości przewodności w 25°C	1,5	
	Zadanie #3		
1	Przekształcenia i otrzymanie układu równań	3	
2	Wyznaczenie wyznacznika	1	
3	Rozwiązanie równania dwukwadratowego	1	
4	Estetyczne wykreślenie otrzymanych funkcji dla pierwszej strefy Brillouina	1	