# Correlation between the Glass Transition Temperatures and Repeating Unit Structure for High Molecular Weight Polymers

Chenzhong Cao\*,†,‡ and Yuanbin Lin†

Institute of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China, and Department of Chemistry, Xiangtan Normal University, Xiangtan 411201, People's Republic of China

Received September 28, 2002

A set of five-parameter descriptors,  $\sum MV_{ter}(R_{ter})$ ,  $L_F$ ,  $\Delta X_{SB}$ ,  $\sum PEI$ , and  $Q_\pm$ , are developed to express the chain stiffness (or mobility) and the intermolecular forces of polymers. Investigated results show a good correlation (R=0.9517,  $R^2=0.9056$ , s=20.86 K) between the glass transition temperatures ( $T_g$ s) and the five parameters for a diverse set of 88 polymers. The descriptors are easy to calculate directly from the repeating unit structure and have clear physical meanings. This approach provides a new insight for Quantitative Structure—Property Relationship (QSPR) correlation of glass transition temperatures of high molecular weight polymers.

#### 1. INTRODUCTION

Glass transition temperature,  $T_{\rm g}$ , is also known as glass temperature or glass-rubber transition temperature. The glass transition is perhaps the most important single parameter which one needs to know before one can decide on the application of the many noncrystalline polymers that are now available.<sup>2</sup> Even if in the design of the polymer molecule, it is also necessary to predict the glass transition temperature of the designed polymer for evaluating its application. For the available polymers, their glass transition temperatures can be determined experimentally, but they cannot be done for those being designed. Additionally,  $T_{\rm g}$  is not a precise point<sup>2</sup> and is more difficult to determine experimentally than the boiling or melting point because the transition takes place over a comparatively wide range of temperatures. Therefore it is known to heavily depend on both the method and the duration of an experiment.<sup>3</sup> For this reason, the discrepancy between reported values in the literature can be quite high.<sup>1</sup> Thus, we can say that a quantitative structure-property relationship (QSPR) analysis of  $T_g$  would be of large theoretical and applied utility. A good QSPR equation can help us to understand the effect of the repeating unit structure on the  $T_{\rm g}$ s of polymers and guide us to design the polymer molecule. It is also used to predict the  $T_{\rm g}$ s of polymers and to judge the accuracy of  $T_{\rm g}$  determined experimentally for specific polymer.

There have been numerous attempts to predict  $T_{\rm g}$ s for polymers by various approaches. According to the view of Katrizky et al., these methods can be roughly divided into two kinds of empirical method and theoretical estimation. Empirical methods were based on the correlation with other physical or chemical properties of polymers, such as the group additive property (GAP) theory for predicting  $T_{\rm g}$ . GAP approaches can sometimes give relatively good predictive

correlations, but a serious limitation is that these methods are only applicable for polymers containing chemical structural groups previously investigated. Theoretical estimations are based on the molecular descriptors of a repeating unit in polymers instead of based on the group-containing or GAP theory to predict the  $T_{\rm g}$ s, such as the topological method based on the monomer structure.<sup>5</sup> Recently Camelio et al.<sup>6</sup> correlated the  $T_{\rm g}$  values of some 50 acrylates and methylacrylates with their "backbone flexibility" and got a relatively good correlation with  $R^2$  of 0.83. In this approach, all necessary parameters were calculated with molecular mechanics. Katritzky et al.<sup>7</sup> used the Comprehensive Descriptors for Structural and Statistical Analysis (CODESSA) program to develop a four-parameter model with  $R^2$  of 0.928 for a set of  $T_{\rm g}$  values of 22 linear, medium molecular weight polymers and copolymers. After this work, Katritzky et al.<sup>1</sup> further chose 88 un-cross-linked homopolymers including polyethylenes, polyacrylates, polymethylacrylates, polystyrenes, polyethers, and polyoxides as the data set. They developed a five-parameter correlation of molar glass transition temperatures  $(T_g/M)$  for the above polymers covering a relatively wide range of  $T_{g}$ s and representing an extensive variety of chemical groups with the CODESSA program. This important progress shows that it is possible to perform a QSPR analysis of the  $T_g$  values for a large set of polymers with diverse chemical structures only from the molecular structure descriptors. In this work we propose a new QSPR model of the  $T_{\rm g}$  values with a set of simple repeating unit structure descriptors.

### 2. PREPARATION OF MOLECULAR DESCRIPTORS

It is impossible to calculate descriptors directly for entire molecule because all the polymers possessed high molecular weights.<sup>1</sup> As we know, if the molecular weight is high enough, the terminal groups hold only a very small proportion in a polymer and its effect on the  $T_{\rm g}$  can be ignored. The 88 polymers in Katritzky et al.'s work<sup>1</sup> have relatively wide representation, and all the polymers in the set considered have molecular weights of >50 000.<sup>8</sup> Therefore, we also

<sup>\*</sup> Corresponding author fax: 00086-0732-8291001; e-mail: czcao@ xtnu.edu.cn. Corresponding author address: Department of Chemistry, Xiangtan Normal University, Xiangtan 411201, People's Republic of China.

<sup>†</sup> Xiangtan University.

<sup>&</sup>lt;sup>‡</sup> Xiangtan Normal University.

**Figure 1.** The repeating unit structures for some polyethylenes. The digit above the carbon atom in the side chain is a serial number far from the backbone chain of polymer.

Figure 2. The repeating unit structures for some polyethylenes with the side chain containing a ring.

chose these polymers as model compounds. Here we only focus on their repeating unit structures to calculate the molecular descriptors and use these descriptors to correlate the  $T_{\rm g}$ s of polymers. Generally, the major factors affecting the  $T_{\rm g}$ s of polymers are the chain stiffness (or mobility) and the intermolecular forces.<sup>2</sup> The mobility of polymer chains is primarily affected by the barrier of rotation around backbone carbon-carbon bonds. This, in turn, is determined primarily by the size of the substituent group on the carbon atoms. For the polymers with structure  $-(CH_2-CHR)_n$ , the larger the substituent R, the higher the glass transition temperature, and the longer the side chain, the lower the glass transition temperature. The intermolecular forces include the hydrogen bond between the backbone chains, polarities of repeating units, and substituent groups. Thus, this paper abstracts the repeating unit molecular descriptors from the chain stiffness and intermolecular forces.

To simplify the procedure of abstracting molecular descriptors, we start with the nonpolar polyethylenes. Know from the structure  $-(CH_2-CHR)_n-$ , when the substituent group R is alkyl (that is, its sp³ hybrid orbital connects the backbone carbon), that the polymer chains are nonpolar. Their  $T_g$ s are determined primarily by the size and the length of the substituent groups R. The following fact was found by our careful analysis: it is the size of the terminal group  $(R_{ter})$  in the substituent group R (or side chain) instead of the total size of the substituent group R that affects the  $T_g$ s of polyethylenes. Therefore, we take the volume of the terminal group  $(MV_{ter})$  in the substituent group R and the free length  $(L_F)$  of side chain as parameters to correlate the  $T_g$ s of polyethylenes.

The values of  $MV_{ter}$  and  $L_F$  are calculated as below.

First, we define the nonfree rotation terminal part of the side chain as the terminal group (whose volume is expressed by the symbol  $MV_{ter}$ ) and the bond count of the free rotation part of side chain as the free length ( $L_F$ ). For example, for polyethylenes (A), (B), (C), and (D) of Figure 1, their lengths of the side chain are 2, 3, 3, and 3 bonds (ignore hydrogen atom), respectively. In polymer (A), the bond  ${}^2C^{-1}C$  can rotate freely around the bond  ${}^1C^{-0}C$  and so do the  ${}^3C^{-2}C$ 

around the  ${}^{2}C^{-1}C$  in the (B). But in polymer (C), if one of the two bonds  ${}^{3}C^{-2}C$  rotates around the bond  ${}^{2}C^{-1}C$ , another bond  ${}^{3}C^{-2}C$  also rotates around the bond  ${}^{2}C^{-1}C$ , that is, two bonds  ${}^{3}C^{-2}C$  rotate around the bond  ${}^{2}C^{-1}C$  simultaneously. For the polymer (D), the three bonds  ${}^{3}C^{-2}C$  rotate around the bond  ${}^{2}C^{-1}C$  simultaneously. Thus we say that the nonfree rotation terminal parts of the side chains or the terminal groups are  ${}^{-}CH_3$ ,  ${}^{-}CH_3$ ,  ${}^{-}CH(CH_3)_2$ , and  ${}^{-}C(CH_3)_3$ , respectively, for (A), (B), (C), and (D) in Figure 1. From the length discrepancy between the side chain and its terminal group, we can get the free length ( $L_F$ ) of side chain, 1, 2, 1, and 1 for (A), (B), (C), and (D), respectively.

For the polyethylenes with the side chain containing ring, (A), (B), (C), and (D) of Figure 2, their terminal groups are cyclopentyl, phenyl, methyl-phenyl, and methyl-cyclohexyl, and the free lengths ( $L_{\rm F}$ ) of their side chain are 0, 1, 1, and 1, respectively.

Second, we calculate the volume (MV<sub>ter</sub>) (unit:  $10^{-24}$  cm<sup>3</sup>) of terminal group ( $R_{ter}$ ) in side chain R using the MSS program packages in SYBYL 6.6 of Tripos Inc. Here we calculate the molecular volume (MV) of ethane (H<sub>3</sub>C-CH<sub>3</sub>), MV(ethane) =  $204.0 \times 10^{-24}$  cm<sup>3</sup> first, take its 1/2 as the MV<sub>ter</sub>(Me) (that is  $102.0 \times 10^{-24}$  cm<sup>3</sup>) of methyl group. Then we use eq 1 to compute the MV<sub>ter</sub>( $R_{ter}$ ) of other terminal groups ( $R_{ter}$ ), after obtaining the molecular volume MV-(H<sub>3</sub>C- $R_{ter}$ ) of H<sub>3</sub>C- $R_{ter}$ :

$$MV_{ter}(R_{ter}) = MV(H_3C - R_{ter}) - MV_{ter}(Me)$$
 (1)

Further, we find that the polymer  $-(CH_2-CR^1R^2)_n$ — with two equal side groups (that is  $R^1=R^2$ ) has lower  $T_g$  than the polymer with two different side groups (that is  $R^1 \neq R^2$ ). For example, the  $T_g$  (199 K) of poly(1,1-dimethylethylene)  $-(CH_2-CMe_2)_n$ — is lower than  $T_g$  (228 K) of poly(ethylethylene)  $-(CH_2-CHE_t)$ —. We think that the backbone chain of symmetric substituted polymer rotates more freely than that of unsymmetrical substituted polymer, which results in a lower  $T_g$  for the former than the latter. Therefore, this paper uses the sum volume of two terminal groups in the two side chains to express the influence on the  $T_g$  for the

**Table 1.**  $\sum MV_{ter}(R_{ter})$ ,  $L_F$ , and  $T_g$  Values of Some Polyethylenes

|     |                                           | -     | $(CH_2-CR^1R^2)_n$                                 |                                            |                                         |                                        |            |                                             |
|-----|-------------------------------------------|-------|----------------------------------------------------|--------------------------------------------|-----------------------------------------|----------------------------------------|------------|---------------------------------------------|
| no. | name                                      | $R^1$ | $\mathbb{R}^2$                                     | $R_{	ext{ter}}^1 \ 	ext{MV}_{	ext{ter}}^a$ | ${R_{ m ter}}^2 \ { m MV}_{ m ter}{}^a$ | $\sum$ MV <sub>ter</sub> ( $R_{ter}$ ) | $L_{ m F}$ | $T_{ m g,exp}/ m k$<br>$T_{ m g,calc}/ m k$ |
| 1   | poly(ethylene)                            | Н     | Н                                                  | Н                                          | Н                                       | 0                                      | 0          | 195                                         |
|     |                                           |       |                                                    | 0                                          | 0                                       |                                        |            | 193                                         |
| 2   | poly(ethylethylene)                       | Н     | Et                                                 | Н                                          | Me                                      | 102.0                                  | 1          | 228                                         |
| _   |                                           |       | _                                                  | 0                                          | 102.0                                   |                                        | _          | 237                                         |
| 3   | poly(butylethylene)                       | H     | Bu                                                 | Н                                          | Me                                      | 102.0                                  | 3          | 220                                         |
|     |                                           |       |                                                    | 0                                          | 102.0                                   | 202.2                                  |            | 216                                         |
| 1   | poly(cyclopentyl ethylene)                | Н     | cyclopentyl                                        | H                                          | cyclopentyl                             | 282.2                                  | 0          | 348                                         |
| _   | 1 ( 11 1 1 1 )                            |       | 1 1 1                                              | 0                                          | 282.2                                   | 210.5                                  | 0          | 345                                         |
| 5   | poly(cyclohexyl ethylene)                 | Н     | cyclohexyl                                         | H                                          | cyclohexyl                              | 310.5                                  | 0          | 363<br>360                                  |
|     | - al-v(laa)                               | 11    | Me                                                 | 0<br>H                                     | 310.5<br>Me                             | 102.0                                  | 0          | 233                                         |
| Ó   | poly(propylene)                           | Н     | Me                                                 | н<br>0                                     | 102.2                                   | 102.0                                  | U          | 233<br>248                                  |
| 7   | poly(pentene)                             | Н     | Pr                                                 | H                                          | Me                                      | 102.0                                  | 2          | 220                                         |
|     | pory(pentene)                             | 11    | 11                                                 | 0                                          | 102.0                                   | 102.0                                  | 2          | 227                                         |
| 3   | poly(1,1-dimethylethylene)                | Me    | Me                                                 | Me                                         | Me                                      | 0                                      | 0          | 199                                         |
| ,   | pory(1,1-dimentryrettryrette)             | IVIC  | IVIC                                               | 102.0                                      | 102.0                                   | O                                      | U          | 193                                         |
| )   | poly(heptene)                             | Н     | -(CH <sub>2</sub> ) <sub>4</sub> Me                | H                                          | Me                                      | 102.0                                  | 4          | 220                                         |
|     | poly(neptene)                             |       | (0112)41.10                                        | 0                                          | 102.0                                   | 102.0                                  | •          | 206                                         |
| 0   | poly(3-methyl-1-butene)                   | Н     | i-Pr                                               | H                                          | i-Pr                                    | 211.3                                  | 0          | 323                                         |
|     | r y ( , , , , , , , , , , , , , , , , , , |       |                                                    | 0                                          | 211.3                                   |                                        |            | 306                                         |
| 11  | poly(5-methyl-1-hexene)                   | Н     | -(CH <sub>2</sub> ) <sub>2</sub> CHMe <sub>2</sub> | Н                                          | i-Pr                                    | 211.3                                  | 2          | 259                                         |
|     |                                           |       |                                                    | 0                                          | 211.3                                   |                                        |            | 285                                         |
| 12  | poly(4-methyl-1-pentene)                  | Н     | i-Bu                                               | Н                                          | i-Pr                                    | 211.3                                  | 1          | 302                                         |
|     |                                           |       |                                                    | 0                                          | 211.3                                   |                                        |            | 296                                         |
| 13  | poly(3-cyclopentyl-1-propene)             | Н     | -CH <sub>2</sub> -cyclopentyl                      | Н                                          | cyclopentyl                             | 282.2                                  | 1          | 333                                         |
|     |                                           |       |                                                    | 0                                          | 282.2                                   |                                        |            | 334                                         |
| 4   | poly(3-phenyl-1-propene)                  | H     | -CH <sub>2</sub> -phenyl                           | Н                                          | phenyl                                  | 275.2                                  | 1          | 333                                         |
| _   |                                           |       |                                                    | 0                                          | 275.2                                   |                                        |            | 330                                         |
| 15  | poly(3-cyclohexyl-1-propene)              | Н     | -CH <sub>2</sub> -cyclohexyl                       | H                                          | cyclohexyl                              | 310.5                                  | 1          | 348                                         |
|     |                                           |       |                                                    | 0                                          | 310.5                                   |                                        |            | 349                                         |

<sup>a</sup> Unit: 10<sup>-24</sup> cm<sup>3</sup>. <sup>b</sup> Taken from ref 1. <sup>c</sup> Calculated by eq 4.

unsymmetrical substituted polymer and the margin volume of two terminal groups in the two side chains to express the influence on the  $T_{\rm g}$  for the symmetric substituted polymer. That is for the unsymmetrical substituted polymer

$$\sum MV_{\text{ter}}(R_{\text{ter}}) = MV_{\text{ter}}(R_{\text{ter}}^{1}) + MV_{\text{ter}}(R_{\text{ter}}^{2})$$
 (2)

and for the symmetric substituted polymer

$$\sum MV_{\text{ter}}(R_{\text{ter}}) = MV_{\text{ter}}(R_{\text{ter}}^{1}) - MV_{\text{ter}}(R_{\text{ter}}^{2}) = 0 \quad (3)$$

The values of  $\sum MV_{ter}(R_{ter})$  and  $L_F$  for some polyethylenes are listed in Table 1.

Correlating the  $T_{\rm g}$ s to the parameters  $\sum MV_{\rm ter}(R_{\rm ter})$  and  $L_{\rm F}$ for polyethylenes in Table 1, we get the following regression analysis equation:

$$T_{\rm g}({\rm K}) = 192.62(\pm 6.85) + 0.53831(\pm 0.0294) \sum {\rm MV}_{\rm ter}(R_{\rm ter}) - 10.459(\pm 2.587) L_{\rm F}$$
 (4)

$$R = 0.9845, R^2 = 0.9693, s = 11.72, F = 189.20,$$
  
 $n = 15$ 

Equation 4 and Table 1 show that the  $T_g$ s of polyethylenes can be estimated well by the volume  $\sum MV_{ter}(R_{ter})$  of terminal group in side chain R and the free length  $(L_F)$  of side chain. The term of  $\sum MV_{ter}(R_{ter})$  heightens the  $T_g$  of polymer, and the  $L_{\rm F}$  drops the  $T_{\rm g}$  of polymer. So we can take the parameters,  $\sum MV_{ter}(R_{ter})$  and  $L_F$  as repeating unit molecular descriptors for quantitative structure-property relationship (QSPR) correlation of glass transition temperatures of polymers.

In the case of the repeating unit having polarity, the factors affecting the  $T_g$ s of polymers are the chain stiffness (or mobility) and the intermolecular forces. Only two parameters  $\sum MV_{ter}(R_{ter})$  and  $L_F$  are not enough to quantify the  $T_g$ s of polymers (for the entire  $T_{\rm g}$ s data set of 88 polymers, the correlation between  $T_{\rm g}$ s and the two parameters  $\sum MV_{\rm ter}(R_{\rm ter})$ and  $L_F$  is R = 0.8090, s = 39.20), and the intermolecular forces must be accounted as well. Taking polymer -(CH<sub>2</sub>- $CYZ)_n$ , for example, the polarity of repeating unit  $-CH_2$ CYZ- results mainly from the following factors: (a) electronegativity discrepancies (i) between Y and Z and (ii) between CH<sub>2</sub> and CYZ and (b) the polarizability effects of side groups Y and Z. Additionally, if there is an OH or NH group in side groups Y and Z, the hydrogen bond will be formed between the main chains of polymer. When the -C≡N group exists in the side groups, there is also an additional electrostatic attraction between the main chains of polymer. Both hydrogen bond and electrostatic attraction will enhance the intermolecular force between the backbones of polymer  $-(CH_2-CYZ)_n$ . Here, we develop three parameters, the substituted backbone electronegativity discrepancy  $\Delta X_{\rm SB}$ , the polarizability effect  $\Sigma$ PEI of side group, and the hydrogen bond (or electrostatic attract)  $Q_{\pm}$  between the main chains to describe the intermolecular forces of the polymer.

The  $\Delta X_{SB}$  of repeating unit  $-CH_2-CYZ-$  is calculated by the following steps: (a) the group electronegativities  $X_Y$ 

**Table 2.**  $\triangle$ PEI Values of the *i*th Essential Unit in Alkyl Substituent<sup>10</sup>

| $N_{\rm i}$ | ΔΡΕΙ      |
|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|
| 1           | 1.000 000 | 6           | 0.009 052 | 11          | 0.002 375 | 16          | 0.001 073 |
| 2           | 0.140 526 | 7           | 0.006 388 | 12          | 0.001 972 | 17          | 0.000 945 |
| 3           | 0.048 132 | 8           | 0.004 748 | 13          | 0.001 628 | 18          | 0.000 838 |
| 4           | 0.023 503 | 9           | 0.003 666 | 14          | 0.001 421 | 19          | 0.000 749 |
| 5           | 0.013 800 | 10          | 0.002 196 | 15          | 0.001 229 | 20          | 0.000 673 |

and  $X_{\rm Z}$  are computed by Bratsch's electronegativity equalization method<sup>9</sup> (harmonic mean, with Pauling electronegativity units) for side groups Y and Z, respectively. And then their absolute electronegativity discrepancy ( $\Delta X_{\rm YZ} = |X_{\rm Y} - X_{\rm Z}|$ ) is obtained. (b) The group electronegativities  $X_{\rm CH_2}$  and  $X_{\rm CYZ}$  are computed with the same method for groups CH<sub>2</sub> and CYZ, respectively, and then their absolute discrepancy ( $\Delta X_{\rm RU} = |X_{\rm CH_2} - X_{\rm CYZ}|$ ) is obtained. (c) Finally, the substituted backbone electronegativity discrepancy  $\Delta X_{\rm SB}$  is calculated by eq 5:

$$\Delta X_{\rm SR} = \left[\Delta X_{\rm YZ} \Delta X_{\rm RH}\right]^{(1/2)} \tag{5}$$

According to our previous work,  $^{10}$  the stabilizing energy caused by polarizability effect for a substituent R interacting with a point charge q is expressed as

$$E_{(R)} = \frac{-q^2}{2Dl^4} \sum \frac{\alpha_i}{\left[ N_i \frac{1 + \cos\theta}{1 - \cos\theta} - \frac{2\cos\theta(1 - \cos^{N_i}\theta)}{(1 - \cos\theta)^2} \right]^2}$$
(6)

where  $\alpha_i$  is the polarizability of the *i*th essential unit in the substituent R, D is the effective dielectric constant, l is the length of C-C bond,  $N_i$  is the carbon atom number from the point charge (q) to the *i*th essential unit, and  $\theta$  is the supplementary angle of bond angle  $\angle$ CCC (that is,  $\theta = 180^{\circ} - 109.5^{\circ} = 70.5^{\circ}$  for the sp<sup>3</sup> hybridization).

For the alkyl substitutent,  $\alpha_i$  is approximately equal to a constant and eq 6 was defined as<sup>10</sup>

$$E_{(R)} = K \sum \frac{1}{\left[N_i \frac{1 + \cos\theta}{1 - \cos\theta} - \frac{2\cos\theta(1 - \cos^{N_i}\theta)}{(1 - \cos\theta)^2}\right]^2} = K \sum \Delta PEI = K(PEI) \quad (7)$$

Here  $K = -q^2\alpha_i/(2Dl^4)$ . PEI is called the Polarizability Effect Index (PEI).<sup>10</sup> The PEI value of an alkyl substituent is the term of  $\Sigma(1/[\ ]^2)$  in eq 7.  $\Delta$ PEI =  $1/[\ ]^2$  is the PEI increments of the *i*th essential unit. Some  $\Delta$ PEI values are relisted in Table 2.

When the substituent group  $R_{YZ}$  contains other atoms besides carbon and hydrogen,  $\alpha_i$  is no longer a constant and eq 7 will not work well. It needs to be modified. Here, we use eq 8 evaluating the stabilizing energy caused by the polarizability effect for a substituent  $R_{YZ}$ :

$$E_{(R_{yz})} = K_{m} \sum \alpha_{i}(\Delta PEI)$$
 (8)

where  $K_{\rm m} = -q^2/(2Dl^4)$ .  $\alpha_i$  is the polarizability (unit:  $10^{-24}$  cm<sup>3</sup>)<sup>11</sup> of the *i*th atom in substituent R<sub>YZ</sub>. Some atomic  $\alpha_i$  values are listed in Table 3.

**Table 3.**  $\alpha_i$  Values and the Pauling Electronegativities ( $X_P$ ) of Some Atoms

| atom | Н              | C | N | O | F | Cl | Br | I | S | P |
|------|----------------|---|---|---|---|----|----|---|---|---|
|      | 0.6668<br>2.20 |   |   |   |   |    |    |   |   |   |

<sup>a</sup> Taken from ref 11, unit: 10<sup>-24</sup> cm<sup>3</sup>. <sup>b</sup> Taken from ref 12.



Figure 3. The repeating unit of poly(acrylic acid).



**Figure 4.** The tiers of atoms in the side group CO<sub>2</sub>H (The digit above the dotted line indicates a atom serial number far from the backbone chain of polymer).

Because  $K_{\rm m}$  is a constant, this work only calculates the term  $\sum \alpha_i(\Delta {\rm PEI})$  of eq 8. Then take the sum of  $\sum \alpha_i(\Delta {\rm PEI})$  for all side groups of a repeating unit in a polymer as the polarizability effect  $\sum {\rm PEI}$ , that is

$$\sum PEI = \sum (\sum \alpha_i(\Delta PEI))$$
 (9)

If the side group is only a hydrogen, its  $\sum \alpha_i(\Delta PEI)$  is ignored.

The calculation of hydrogen bond or electrostatic attract descriptor  $Q_{\pm}$ , take XH (X = O or N) for example, is divided into two steps. At first, compute the group electronegativity ( $X_{\rm XH}$ ) of XH and part charges on X ( $q_{\rm X}$ ) and H ( $q_{\rm H}$ ), respectively, with Bratsch's electronegativity equalization method. Then calculate the  $Q_{\pm}$  with eq 10:

$$Q_{+} = q_{\mathbf{X}} q_{\mathbf{H}} \tag{10}$$

Here we take poly(acrylic acid) (Figure 3 shows its repeating unit) as the calculating example. In accordance with presume, the side group Y is  $CO_2H$  and Z is H. The Pauling electronegativities ( $X_P$ ) of some atoms are listed in Table 3.

The electronegativity of the side group CO<sub>2</sub>H is  $X_Y = X_{\text{CO}_2\text{H}} = 4/(1/2.55 + 2/3.44 + 1/2.20) = 2.8009$ . The electronegativity of hydrogen  $X_Z = X_H = 2.20$ . Then the  $\Delta X_{YZ} = |X_{\text{CO}_2}\text{H} - X_H| = |2.8009 - 2.20| = 0.6009$ .

The electronegativity of CYZ is  $X_{\rm CYZ}=3/(1/2.55+1/2.20+1/2.8009)=2.4923$ . The electronegativity of CH<sub>2</sub> is  $X_{\rm CH_2}=3/(1/2.55+2/2.20)=2.3055$ . Then the  $\Delta X_{\rm RU}=|X_{\rm CH_2}-X_{\rm CYZ}|=|2.3055-2.4923|=0.1868$ .

Thus, according to eq 5, we obtain  $\Delta X_{\rm SB} = [0.6009 \times 0.1868]^{(1/2)} = 0.3350$ .

The  $\Sigma \alpha_i(\Delta PEI)$  of side group CO<sub>2</sub>H is calculated as follows: First, set up the tier for each atom as shown in Figure 4. So the C, O, and H atoms are in the first, second, and third tier, in other words, their  $N_i$  (in eq 7 and Table 2) are 1, 2, and 3, respectively. Second, combine Tables 2 and 3 to calculate its  $\Sigma \alpha_i(\Delta PEI) = 1.76 \times 1 + 2(0.802 \times 0.1405)$ 

**Table 4.** Parameters  $\Sigma$ MV<sub>ter</sub>( $R_{ter}$ ),  $L_F$ ,  $\Delta X_{SB}$ ,  $\Sigma$ PEI,  $Q_{\pm}$ , and  $T_g$ s for Some Polymers

| no.a | name                               | $\sum$ MV <sub>ter</sub> ( $R_{ter}$ ) | $L_{\mathrm{F}}$ | $\Delta X_{\mathrm{SB}}$ | ΔΡΕΙ   | $Q_\pm$       | $\operatorname{Tg}(K)_{\exp^b}$ | $\operatorname{Tg}(K)_{\operatorname{calc}}{}^{c}$ $\operatorname{Tg}(K)_{\operatorname{LOO}}{}^{c}$ | $\Delta 1^d$ $\Delta 2^d$ |
|------|------------------------------------|----------------------------------------|------------------|--------------------------|--------|---------------|---------------------------------|------------------------------------------------------------------------------------------------------|---------------------------|
| 1    | poly(ethylene)                     | 0.0                                    | 0                | 0.0000                   | 0.0000 | 0             | 195                             | 204                                                                                                  | -9<br>-10                 |
| 2    | poly(ethylethylene)                | 102.0                                  | 1                | 0.0000                   | 2.2909 | 0             | 228                             | 205<br>256                                                                                           | -10 $-28$                 |
| 3    | poly(butylethylene)                | 102.0                                  | 3                | 0.0000                   | 2.4438 | 0             | 220                             | 256<br>239                                                                                           | -28 $-19$                 |
| 4    | poly(cyclopentylethylene)          | 282.2                                  | 0                | 0.0000                   | 2.7085 | 0             | 348                             | 240<br>339                                                                                           | -20<br>9                  |
| 5    | poly(cyclohexylethylene)           | 310.5                                  | 0                | 0.0000                   | 2.7683 | 0             | 363                             | 338<br>350                                                                                           | 10<br>13                  |
| 6    | poly(acrylic acid)                 | 139.2                                  | 0                | 0.3350                   | 2.0174 | -0.0483       | 379                             | 349<br>380                                                                                           | 14<br>-1                  |
| 7    | poly(methyl acrylate)              | 102.0                                  | 2                | 0.2096                   | 2.1170 | 0             | 281                             | 380<br>274                                                                                           | $-1 \\ 7$                 |
| 8    | poly(ethyl acrylate)               | 102.0                                  | 3                | 0.1634                   | 2.1703 | 0             | 251                             | 274<br>259                                                                                           | 7<br>-8                   |
| 9    | poly(sec-butyl acrylate)           | 102.0                                  | 3                | 0.1245                   | 2.2567 | 0             | 253                             | 259<br>255                                                                                           | $-8 \\ -2$                |
| 10   | poly(vinyl alcohol)                | 77.9                                   | 0                | 0.2737                   | 0.8957 | -0.0483       | 358                             | 255<br>337                                                                                           | -2 21                     |
| 11   | poly(vinyl chloride)               | 93.2                                   | 0                | 0.5126                   | 2.1800 | 0             | 348                             | 331<br>331                                                                                           | 27<br>17                  |
| 12   | poly(acrylonitrile)                | 106.0                                  | 0                | 0.3209                   | 1.9146 | $-0.0692^{f}$ | 378                             | 330<br>388                                                                                           | 18<br>-10                 |
|      |                                    |                                        |                  |                          |        |               |                                 | 398                                                                                                  | -20                       |
| 13   | poly(vinyl acetate)                | 166.4                                  | 1                | 0.2096                   | 1.2195 | 0             | 301                             | 300<br>300                                                                                           | 1                         |
| 14   | poly(styrene)                      | 275.2                                  | 0                | 0.1050                   | 2.5699 | 0             | 373                             | 349<br>348                                                                                           | 24<br>25                  |
| 15   | poly(2-chrolostyrene)              | 307.8                                  | 0                | 0.1466                   | 2.6427 | 0             | 392                             | 368<br>367                                                                                           | 24<br>25                  |
| 16   | poly(3-chrolostyrene)              | 315.7                                  | 0                | 0.1466                   | 2.6055 | 0             | 363                             | 371<br>371                                                                                           | $-8 \\ -8$                |
| 17   | poly(4-chrolostyrene)              | 309.0                                  | 0                | 0.1466                   | 2.5908 | 0             | 389                             | 368<br>367                                                                                           | 21<br>22                  |
| 18   | poly(2-methylstyrene)              | 323.3                                  | 0                | 0.0958                   | 2.6695 | 0             | 409                             | 368<br>365                                                                                           | 41<br>44                  |
| 19   | poly(3-methylstyrene)              | 327.1                                  | 0                | 0.0958                   | 2.6232 | 0             | 374                             | 369<br>368                                                                                           | 5                         |
| 20   | poly(4-methylstyrene)              | 319.6                                  | 0                | 0.0958                   | 2.6030 | 0             | 374                             | 366<br>365                                                                                           | 8                         |
| 21   | poly(4-fluorostyrene)              | 290.4                                  | 0                | 0.1669                   | 2.5684 | 0             | 379                             | 364                                                                                                  | 15                        |
| 22   | poly(propylene)                    | 102.0                                  | 0                | 0.0000                   | 2.0411 | 0             | 233                             | 363<br>262                                                                                           | 16<br>-29                 |
| 23   | poly(1-pentene)                    | 102.0                                  | 2                | 0.0000                   | 2.3905 | 0             | 220                             | 263<br>247                                                                                           | -30 $-27$                 |
| 24   | poly(ethoxyethylene)               | 102.0                                  | 2                | 0.1117                   | 1.2451 | 0             | 254                             | 248<br>253                                                                                           | -28                       |
| 25   | poly( <i>tert</i> -butyl acrylate) | 258.1                                  | 2                | 0.1245                   | 2.2769 | 0             | 315                             | 252<br>325                                                                                           | $-10^{2}$                 |
| 26   | poly( <i>n</i> -butyl acrylate)    | 102.0                                  | 5                | 0.1245                   | 2.2261 | 0             | 219                             | 325<br>236                                                                                           | $-10 \\ -17$              |
| 27   | poly(vinyl hexyl ether)            | 102.0                                  | 6                | 0.0821                   | 1.3705 | 0             | 209                             | 237<br>214                                                                                           | -18<br>-5                 |
| 28   | poly(1,1-dimethylethylene)         | 0.0                                    | 0                | 0.0000                   | 4.0821 | 0             | 199                             | 214<br>241                                                                                           | -5 $-42$                  |
| 29   | poly(1,1-dichloroethylene)         | 0.0                                    | 0                | 0.0000                   | 4.3600 | 0             | 256                             | 249<br>243                                                                                           | -50<br>13                 |
| 30   | poly(1,1-difluoroethylene)         | 0.0                                    | 0                | 0.0000                   | 1.1140 | 0             | 233                             | 240<br>214                                                                                           | 16<br>19                  |
| 31   | poly(a-methylstyrene)              | 377.2                                  |                  | 0.0000                   | 4.6110 | 0             | 409                             | 213<br>406                                                                                           | 20                        |
|      |                                    |                                        | 0                |                          |        |               |                                 | 406                                                                                                  | 3                         |
| 32   | poly(methyl methylacrylate)        | 211.3                                  | 2                | 0.2084                   | 4.1581 | 0             | 378                             | 335<br>333                                                                                           | 43<br>45                  |
| 33   | poly(ethyl methylacrylate)         | 211.3                                  | 3                | 0.1595                   | 4.2114 | 0             | 324                             | 320<br>320                                                                                           | 4<br>4                    |
| 34   | poly(isopropyl methylacrylate)     | 258.1                                  | 2                | 0.1336                   | 4.2647 | 0             | 327                             | 344<br>345                                                                                           | $-17 \\ -18$              |
| 35   | poly(ethyl chloroacrylate)         | 195.2                                  | 3                | 0.5175                   | 4.3503 | 0             | 366                             | 364<br>364                                                                                           | 2 2                       |
| 36   | poly(2-chloroethyl methylacrylate) | 195.2                                  | 4                | 0.2108                   | 4.2323 | 0             | 365                             | 312<br>310                                                                                           | 53<br>55                  |
| 37   | poly(tert-butyl methylacrylate)    | 408.0                                  | 2                | 0.1174                   | 4.3180 | 0             | 380                             | 401<br>402                                                                                           | -21 $-22$                 |

Table 4 (Continued)

| no.a | name                                     | $\sum$ MV <sub>ter</sub> ( $R_{ter}$ ) | $L_{ m F}$ | $\Delta X_{\mathrm{SB}}$ | ΔΡΕΙ   | $Q_{\pm}$ | $\operatorname{Tg}(K)_{\exp^b}$ | $Tg(K)_{calc}^{c}$ $Tg(K)_{LOO}^{c}$ | $\Delta 1^d$ $\Delta 2^d$ |
|------|------------------------------------------|----------------------------------------|------------|--------------------------|--------|-----------|---------------------------------|--------------------------------------|---------------------------|
| 38   | poly(phenyl methylacrylate)              | 377.2                                  | 2          | 0.1709                   | 4.2929 | 0         | 393                             | 396<br>396                           | -3<br>-3                  |
| 39   | poly(chlorotrifluoroethylene)            | 162.0                                  | 0          | 0.4322                   | 3.8510 | 0         | 373                             | 362<br>361                           | 11<br>12                  |
| 40   | poly(oxymethylene)                       | 0.0                                    | 0          | 0.0000                   | 0.0000 | 0         | 218                             | 204<br>203                           | 14<br>15                  |
| 41   | poly(oxyethylene)                        | 0.0                                    | 0          | 0.0000                   | 0.0000 | 0         | 206                             | 204<br>204                           | 2 2                       |
| 42   | poly(oxytrimethylene)                    | 0.0                                    | 0          | 0.0000                   | 0.0000 | 0         | 195                             | 204<br>204<br>205                    | -9 $-10$                  |
| 43   | poly(oxytetramethylene)                  | 0.0                                    | 0          | 0.0000                   | 0.0000 | 0         | 190                             | 204                                  | -14                       |
| 44   | poly(ethylene terephthalate)             | 58.0                                   | 0          | 0.7449                   | 0.8020 | 0         | 345                             | 205<br>337                           | -15<br>8                  |
| 45   | poly(vinyl <i>n</i> -octyl ether)        | 102.0                                  | 8          | 0.0776                   | 1.3915 | 0         | 194                             | 336<br>196                           | 9<br>-2                   |
| 46   | poly(vinyl <i>n</i> -decyl ether)        | 102.0                                  | 10         | 0.0748                   | 1.4053 | 0         | 197                             | 196<br>178                           | -2<br>19                  |
| 47   | poly(oxyoctamethylene)                   | 0.0                                    | 0          | 0.0000                   | 0.0000 | 0         | 203                             | 174<br>204                           | 23<br>-1                  |
| 48   | poly(oxyhexamethylene)                   | 0.0                                    | 0          | 0.0000                   | 0.0000 | 0         | 204                             | 204<br>204                           | $-1 \\ 0 \\ 0$            |
| 49   | poly(vinyl <i>n</i> -pentyl ether)       | 102.0                                  | 5          | 0.0855                   | 1.3541 | 0         | 207                             | 204<br>223                           | -16                       |
| 50   | poly(vinyl 2-ethylhexyl ether)           | 102.0                                  | 6          | 0.0796                   | 1.4238 | 0         | 207                             | 224<br>214                           | -17<br>-7                 |
| 51   | poly(n-octyl acrylate)                   | 102.0                                  | 9          | 0.0976                   | 2.2706 | 0         | 208                             | 214<br>197                           | -7 11                     |
| 52   | poly( <i>n</i> -octyl methylacrylate)    | 211.3                                  | 9          | 0.0871                   | 4.3117 | 0         | 253                             | 196<br>257                           | 12<br>-4                  |
| 53   | poly(n-heptyl acrylate)                  | 102.0                                  | 8          | 0.1019                   | 2.2634 | 0         | 213                             | 257<br>207                           | -4<br>6                   |
| 54   | poly(n-nonyl acrylate)                   | 102.0                                  | 10         | 0.0942                   | 2.2773 | 0         | 216                             | 206<br>188                           | 7<br>28                   |
| 55   | poly(n-hexyl acrylate)                   | 102.0                                  | 7          | 0.1073                   | 2.2550 | 0         | 216                             | 184<br>216                           | 32<br>0                   |
| 56   | poly(1-heptene)                          | 102.0                                  | 4          | 0.0000                   | 2.4768 | 0         | 220                             | 216<br>230                           | -10                       |
| 57   | poly(vinyl <i>n</i> -butyl ether)        | 102.0                                  | 4          | 0.0905                   | 1.3315 | 0         | 221                             | 231<br>233                           | $-11 \\ -12$              |
| 58   | poly( <i>n</i> -propyl acrylate)         | 102.0                                  | 4          | 0.1393                   | 2.2034 | 0         | 229                             | 233<br>247                           | $-12 \\ -18$              |
| 59   | poly(vinylisobutyl ether)                | 211.3                                  | 2          | 0.0905                   | 1.3517 | 0         | 251                             | 248<br>293                           | -19 $-42$                 |
| 60   | poly(vinyl sec-butyl ether)              | 102.0                                  | 3          | 0.0905                   | 1.3980 | 0         | 253                             | 295<br>242                           | -44<br>11                 |
| 61   | poly(pentafluoroethyl ethylene)          | 68.8                                   | 2          | 0.6374                   | 2.2442 | 0         | 314                             | 242<br>322                           | 11<br>-8                  |
| 62   | poly(2,3,3,3-tetrafluoropropylene)       | 137.6                                  | 1          | 0.6712                   | 2.5518 | 0         | 315                             | 323<br>365                           | -9 $-50$                  |
| 63   | poly(3,3-dimethylbutyl methacrylate)     | 408.0                                  | 4          | 0.0751                   | 4.3124 | 0         | 318                             | 371<br>377                           | -56<br>-59                |
| 64   | poly(N-butyl acrylamide)                 | 211.3                                  | 5          | 0.1267                   | 4.3411 | -0.0257   | 319                             | 382<br>329                           | -64 $-10$                 |
| 65   | poly(vinyl trifluoroacetate)             | 68.8                                   | 3          | 0.5793                   | 1.2118 | 0         | 319                             | 330<br>295                           | -11 24                    |
| 66   | poly(3-methyl-1-butene)                  | 211.3                                  | 0          | 0.0000                   | 2.5407 | 0         | 323                             | 293<br>309                           | 26<br>14                  |
| 67   | poly( <i>n</i> -butyl a-chloroacrylate)  | 195.2                                  | 5          | 0.5228                   | 4.4061 | 0         | 330                             | 309<br>348                           | -14 $-18$                 |
| 68   | poly(sec-butyl methacrylate)             | 211.3                                  | 4          | 0.1174                   | 4.2978 | 0         | 330                             | 349<br>306                           | -19<br>24                 |
| 69   | poly(heptafluoropropyl ethylene)         | 68.8                                   | 3          | 0.6268                   | 2.3413 | 0         | 331                             | 305<br>312                           | 25<br>19                  |
| 70   | poly(3-pentyl acrylate)                  | 102.0                                  | 4          | 0.1145                   | 2.2898 | 0         | 257                             | 310<br>245                           | 21<br>12                  |
| 71   | poly(5-methyl-1-hexene)                  | 211.3                                  | 2          | 0.0000                   | 2.4971 | 0         | 259                             | 244<br>291                           | 13<br>-32                 |
| 72   | poly(oxy-2,2-dichloromethyltrimethylene) | 0.0                                    | 1          | 0.0083                   | 4.5173 | 0         | 265                             | 292<br>237                           | -33<br>28                 |
| 73   | poly( <i>n</i> -hexyl methacrylate)      | 211.3                                  | 7          | 0.0982                   | 4.2960 | 0         | 268                             | 231<br>276                           | 34<br>-8                  |
| 74   | poly(vinyl isopropyl ether)              | 211.3                                  | 1          | 0.0981                   | 1.3447 | 0         | 270                             | 277<br>303                           | -9<br>-33                 |
|      | I - V()E-ok), emer)                      |                                        |            | 2.0701                   |        | ~         | _, 0                            | 304                                  | -34                       |

Table 4 (Continued)

|      |                                            | _                                      |            |                          |         |           |                                 | $\operatorname{Tg}(K)_{\operatorname{calc}}^c$    | $\Delta 1^d$ |
|------|--------------------------------------------|----------------------------------------|------------|--------------------------|---------|-----------|---------------------------------|---------------------------------------------------|--------------|
| no.a | name                                       | $\sum$ MV <sub>ter</sub> ( $R_{ter}$ ) | $L_{ m F}$ | $\Delta X_{\mathrm{SB}}$ | ΔΡΕΙ    | $Q_{\pm}$ | $\operatorname{Tg}(K)_{\exp^b}$ | $\operatorname{Tg}(K)_{\operatorname{LOO}}{}^{c}$ | $\Delta 2^d$ |
| 75   | poly[ <i>p</i> -( <i>n</i> -butyl)styrene] | 102.0                                  | 3          | 0.0828                   | 2.6546  | 0         | 279                             | 252                                               | 27           |
|      |                                            |                                        |            |                          |         |           |                                 | 252                                               | 27           |
| 76   | poly( <i>n</i> -butyl methacrylate)        | 211.3                                  | 5          | 0.1174                   | 4.2671  | 0         | 293                             | 297                                               | -4           |
|      | 1.0 1 1 1 1 1 1                            | 211.2                                  | -          | 0.1640                   | 2 2000  | 0         | 202                             | 297                                               | -4           |
| 77   | poly(2-methoxyethyl methacrylate)          | 211.3                                  | 5          | 0.1648                   | 2.2008  | 0         | 293                             | 285                                               | 8            |
| 78   | poly(3,3,3-trifluoropropylene)             | 68.8                                   | 1          | 0.6643                   | 1.9948  | 0         | 300                             | 284<br>332                                        | -32          |
| 70   | pory(5,5,5-triffuoropropylene)             | 00.0                                   | 1          | 0.0043                   | 1.9946  | U         | 300                             | 336                                               | -32 $-36$    |
| 79   | poly(4-methyl-1-pentene)                   | 211.3                                  | 1          | 0.0000                   | 2.4901  | 0         | 302                             | 300                                               | 2            |
| 1)   | pory(+ methyr r pentene)                   | 211.5                                  | 1          | 0.0000                   | 2.4701  | O         | 302                             | 300                                               | 2            |
| 80   | poly(vinyl chloroacetate)                  | 93.2                                   | 3          | 0.2831                   | 1.2551  | 0         | 304                             | 264                                               | 40           |
|      | 1 3 3                                      |                                        |            |                          |         |           |                                 | 263                                               | 41           |
| 81   | poly(n-propyl methacrylate)                | 211.3                                  | 4          | 0.1336                   | 4.2445  | 0         | 306                             | 308                                               | -2           |
|      |                                            |                                        |            |                          |         |           |                                 | 308                                               | -2           |
| 82   | poly(3-cyclopentyl-1-propene)              | 282.2                                  | 1          | 0.0000                   | 2.5469  | 0         | 333                             | 328                                               | 5            |
|      |                                            |                                        |            |                          |         |           |                                 | 328                                               | 5            |
| 83   | poly(3-phenyl-1-propene)                   | 275.2                                  | 1          | 0.0000                   | 2.5267  | 0         | 333                             | 325                                               | 8            |
| 0.4  | 1.4                                        | 107.0                                  | 4          | 0.5010                   | 4.202.4 | 0         | 244                             | 325                                               | 8            |
| 84   | poly(n-propyl a-chloroacrylate)            | 195.2                                  | 4          | 0.5210                   | 4.3834  | 0         | 344                             | 356                                               | -12          |
| 85   | poly(sec-butyl a-chloroacrylate)           | 195.2                                  | 4          | 0.5228                   | 4.4367  | 0         | 347                             | 357<br>357                                        | $-13 \\ -10$ |
| 65   | pory(sec-butyr a-cinoroacryrate)           | 195.2                                  | 4          | 0.3228                   | 4.4307  | U         | 347                             | 358                                               | -10          |
| 86   | poly(3-cyclohexyl-1-propene)               | 310.5                                  | 1          | 0.0000                   | 2.5832  | 0         | 348                             | 340                                               | 8            |
| 00   | pory(3 cyclonexy) i propene)               | 310.3                                  | 1          | 0.0000                   | 2.3032  | O         | 340                             | 339                                               | 9            |
| 87   | poly(vinyl acetal)                         | $310.5^{e}$                            | 1          | 0.1810                   | 2.0150  | 0         | 355                             | 360                                               | $-5^{-}$     |
|      | 1 3 3 7                                    |                                        |            |                          |         |           |                                 | 360                                               | -5           |
| 88   | poly(vinyl formal)                         | $310.5^{e}$                            | 0          | 0.2589                   | 1.9154  | 0         | 378                             | 378                                               | 0            |
|      |                                            |                                        |            |                          |         |           |                                 | 378                                               | 0            |

<sup>a</sup> The number is the same order as the polymers of Table 1 in ref 1. <sup>b</sup> Taken from ref 1. <sup>c</sup>  $Tg(K)_{calc}$  is calculated by eq 11,  $Tg(K)_{LOO}$  is predicted by the Leave-One-Out method.  $^d\Delta 1 = Tg(K)_{exp} - Tg(K)_{calc}, \Delta 2 = Tg(K)_{exp} - Tg(K)_{LOO}$ . Take cyclohexyl as its terminal group because of a backbone containing hexatomic ring. Calculated by the charges  $q_C$  and  $q_N$  on group  $-C \equiv N$ .

**Table 5.** Interrelations of  $\sum MV_{ter}(R_{ter})$ ,  $L_F$ ,  $\Delta X_{SB}$ ,  $\sum PEI$ , and  $Q_{\pm}$ 

|                                        | $\sum$ MV <sub>ter</sub> ( $R_{ter}$ ) | $L_{ m F}$ | $\Delta X_{ m SB}$ | ΣΡΕΙ    | $Q_{\pm}$ |
|----------------------------------------|----------------------------------------|------------|--------------------|---------|-----------|
| $\sum$ MV <sub>ter</sub> ( $R_{ter}$ ) | 1                                      |            |                    |         |           |
| $L_{ m F}$                             | -0.08787                               | 1          |                    |         |           |
| $\Delta X_{\mathrm{SB}}$               | -0.04591                               | -0.01058   | 1                  |         |           |
| ∑PEI                                   | 0.53043                                | 0.19117    | 0.12952            | 1       |           |
| $Q_\pm$                                | 0.07982                                | 0.13895    | -0.13951           | 0.07320 | 1         |

 $+0.6668 \times 0.0481 = 2.0174$ . For the repeating unit of poly-(acrylic acid), its polarizability effect  $\Sigma PEI = 2.0174$  (from eq 9) because of no other side groups but for group CO<sub>2</sub>H.

In the side group CO<sub>2</sub>H, there is an O-H bond. It will result in a hydrogen bond between the backbone chains of the poly(acrylic acid). Based on the Bratsch's electronegativity equalization method,9 the electronegativity of OH is  $2/(1/2.20 + 1/3.44) = 2.6837, q_0 = (2.6837 - 3.44)/3.44$  $= -0.2199, q_H = (2.6837 - 2.20)/2.20 = +0.2199.$  Thus its  $Q_{\pm}$  is obtained by eq 10:  $Q_{\pm}=q_{\rm O}q_{\rm H}=(-0.2199)$ -(+0.2199) = -0.0483.

By now, we have introduced all five parameters,  $\sum$ MV<sub>ter</sub>( $R_{ter}$ ),  $L_F$ ,  $\Delta X_{SB}$ ,  $\sum$ PEI, and  $Q_{\pm}$ . These parameters of some polymers are listed in Table 4, and their interrelations are also studied (see Table 5). Results of Table 5 show that the five parameters are independent of each other. Therefore this paper employs the above parameters as the repeating unit descriptors for high molecular weight polymers.

## 3. RESULTS AND DISCUSSION

Taking the same  $T_{\rm g}$ s data of 88 polymers as Katritzky et al. we carry out the correlation between the  $T_g$ s and the five parameters  $\sum MV_{ter}(R_{ter})$ ,  $L_F$ ,  $\Delta X_{SB}$ ,  $\sum PEI$ , and  $Q_{\pm}$  and get

**Table 6.** The *t*-Test of Parameters  $\sum MV_{ter}(R_{ter})$ ,  $L_F$ ,  $\Delta X_{SB}$ ,  $\sum PEI$ , and  $Q_{\pm}$  in Eq 11

| descriptor | intercept | $\sum$ MV <sub>ter</sub> ( $R_{ter}$ ) | $L_{\mathrm{F}}$ | $\Delta X_{\mathrm{SB}}$ | ΣΡΕΙ | $Q_{\pm}$ |
|------------|-----------|----------------------------------------|------------------|--------------------------|------|-----------|
| t test     | 36.55     | 15.38                                  | -9.91            | 11.26                    | 4.12 | -5.41     |

the following regression equation:

$$T_{\rm g}({\rm K}) = 203.97(\pm 5.58) + 0.39(\pm 0.03) \sum_{\rm ter} MV_{\rm ter}(R_{\rm ter}) - 8.93(\pm 0.90) L_{\rm F} + 138.82(\pm 12.33) \Delta X_{\rm SB} + 9.01(\pm 2.18) \sum_{\rm ter} PEI - 1174.41(\pm 216.89) Q_{\pm}$$
(11)

$$R = 0.9517$$
,  $R^2 = 0.9056$ ,  $s = 20.86$ ,  $F = 157.41$ ,  $n = 88$ 

Equation 11 shows a good correlation between the  $T_g$ s and the parameters,  $\sum MV_{ter}(R_{ter})$ ,  $L_F$ ,  $\Delta X_{SB}$ ,  $\sum PEI$ , and  $Q_{\pm}$ . The standard deviation is 20.86 K, and the absolute average error between the experimental and calculated  $T_{\rm g}$  values is only 15.30 K for the 88 polymers in Table 4. Figure 4(a) shows the plot of calculated  $T_{\rm g}$ s versus experimental  $T_{\rm g}$ s. Katritzky et al. even developed a five-parameter correlation equation of molar glass transition temperature ( $T_g/M$ ) with CODESSA program for the same date set of 88 polymers and got a good correlation equation. The standard error 32.9 K was estimated for  $T_g$  from predicted  $T_g/M$  values. This paper obtained a smaller standard deviation than that obtained by Katritzky et al. Additionally, the t-test (see Table 6) indicates that the five parameters all are significant descriptors in the QSPR model (eq 11).

To test the reliability of eq 11, we further finished the multiple linear regressions and predicted the  $T_{\rm g}$ s values with



Figure 5. (a) Plot of experimental  $T_g(K)_{exp}$  versus  $T_g(K)_{calc}$  calculated by eq 11. (b) Plot of experimental  $T_g(K)_{exp}$  versus  $T_g(K)_{LOO}$  predicted by the Leave-One-Out method.

the Leave-One-Out (LOO) method for the same 88  $T_{\rm g}$ s data set in Table 4, using the MSS program packages in SYBYL 6.6 of Tripos Inc. The predicted  $T_{\rm g}(K)_{\rm LOO}$  values are very close to the calculated  $T_{\rm g}(K)_{\rm calc}$  values (see Table 4). As compared with the  $T_{\rm g}(K)_{\rm calc}$  calculated by eq 11, the plot of  $T_{\rm g}(K)_{\rm exp}$  versus  $T_{\rm g}(K)_{\rm LOO}$  is also shown in Figure 5(b). The values of  $T_{\rm g}(K)_{\rm calc}$  and  $T_{\rm g}(K)_{\rm LOO}$  in Table 4 and the plots of Figure 5 confirm the eq 11 reliable.

Seen from eq 11, the  $\sum MV_{ter}(R_{ter})$  increases the  $T_{gs}$  of polymers, which can be understood that the volume of the terminal group increase will result in an increase of the rotational barrier of backbone chain. In the solid state, one polymer chain is tightly surrounded by other polymer chains, the terminal group of the side chain is closer to the neighbor polymer chains, so the terminal group with a larger volume will resist more heavily the free-rotation of its backbone chain. This explanation is somewhat different from Mark's<sup>2</sup> explanation, who considered "for flexible alkyl side chains, it is only the first unit of side chain, which is attached rigidly to the main chain, that increases the glass transition temperature". Seen from Table 1, the nos. 2, 12, 13, and 15 of polymers all have the same first unit CH<sub>2</sub> of the side chain, but they have different  $T_g$ s, 228, 302, 333, and 348(K). While their terminal group volumes increase in the order of Me < i-Bu < cyclopentyl < cyclohexyl, which is corresponds to their  $T_{\rm g}$ s change. For the free length of side chain  $L_{\rm F}$ , it drops the  $T_{\rm g}$ s of polymers. As pointed out by Mark<sup>2</sup> the effect of a flexible alkyl side chain in a main chain on the  $T_{\rm g}$  of polymer is like the addition of low molecular weight materials to the polymers, which depresses the glass transition temperature. Of course, it should be more reasonable for the length of the side chain replaced by the free length. For example, nos. 20 and 83 in Table 4 have the same length of side chain,  $-CH_2Ph$  and p-PhMe, but their  $T_gs$  are 333 and 374(K), respectively. The reason for this phenomenon can be mainly due to the different free lengths 1 and 0 for -CH<sub>2</sub>Ph and p-PhMe. Thus the stiffness of the polymer chain can be described by the  $\sum MV_{ter}(R_{ter})$  and  $L_F$  together. The parameters,  $\Delta X_{\rm SB}$ ,  $\Sigma {\rm PEI}$ , and  $Q_{\pm}$  all increase the  $T_{\rm g}$ s of polymers. The larger  $\Delta X_{\rm SB}$  indicates a larger polarity of the repeating unit, the larger  $\Sigma$ PEI value represents a larger charge-induced dipole of the side group, and the more negative  $Q_{\pm}$  stands for a stronger hydrogen bond or

electrostatic attract between the main chains of a polymer. The parameters,  $\Delta X_{\rm SB}$ ,  $\Sigma {\rm PEI}$ , and  $Q_{\pm}$  together express the intermolecular forces of polymers.

The descriptors developed by this paper are easy to calculate directly from the repeating unit structure and have clear physical meanings. This approach provides a new insight for Quantitative Structure—Property Relationship (QSPR) correlation of glass transition temperatures of high molecular weight polymers.

#### ACKNOWLEDGMENT

The project was supported by the National Natural Science Foundation of China no. 20172043(NSFC) and Hunan Province Education Commission (HPEC).

## REFERENCES AND NOTES

- Katritzky, A. R.; Sild, S.; Lobanov, V.; Karelson, M. Quantitative Structure—Property Relationship (QSPR) Correlation of Glass Transition Temperatures of High Molecular Weight Polymers. *J. Chem. Inf. Comput. Sci.* 1998, 38, 300—304.
- (2) Mark, J. E.; Eisenberg, A.; Graessley, W. W.; Mandelkern, L.; Koenig, J. L. Physical Properties of Polymers; American Chemical Society: Washington, DC, 1984; Chapter 2.
- (3) Krause, S.; Gormley, J. J.; Roman, N.; Shetter, J. A.; Watanabe, W. H. Glass Temperatures of Acrylic Polymers. J. Polym. Sci.: Part A 1965, 3, 3575–3586.
- (4) Van Krevelen, D. W. Properties of Polymers. Their Estimation and correlation with Chemical Structure, 2nd ed.; Eksevier: Amsterdam, 1976.
- Bicerano, J. Prediction of Polymer Properties, 2nd ed.; Marcel Dekker, Inc.: New York, 1996.
- (6) Cameilio, P.; Lazzeri, V.; Waegell, B. QSPR in Polymers: A Straightforward New Approach to Calculate the Glass Transition Temperature. *Polym. Preprints: Am. Chem. Soc., Div. Polym. Chem.* 1995, 36, 661–662.
- (7) Katrizky, A. R.; Rachwal, P.; Law, K. W.; Karelson, M.; Lobanov, V. S. Prediction of Polymer Glass Transition Temperatures Using a General Quantitative Structure—Property Relationship Tretment. J. Chem. Inf. Comput. Sci. 1996, 36, 3879—884.
- (8) Brandrup, J.; Immergut, E. H. Polymer Handbook; John Wiley & Sons: New York, 1989.
- (9) Bratsch, S., G. Electronegativity Equalization with Pauling Units. J. Chem. Educ. 1984, 61, 588–589.
- (10) Cao, C.; Li, Z.-L. Molecular polarizability I: relationship to water solubility of alkanes and alcohols. J. Chem. Inf. Comput. Sci. 1998, 38, 1–7
- (11) Weast, R. C. CRC Handbook of Chemistry and Physics, 70th ed.; CRC Press, Inc.: Boca Raton, FL, 1989–1990; E–72–73.
- (12) Dean, J. A. Lange's Handbook of Chemistry, 15th ed.; McGraw-Hill: 1999; Section 6, Table 4.5.

CI0202990