Basic Electrical Technology

[ELE 1051]

CHAPTER 3 - SINGLE PHASE AC CIRCUITS
(3.1)

Introduction

➤ Alternating Quantity

- An alternating quantity is time dependent or frequency dependent.
- The direction changes over every half cycle.
- Eg: Time varying voltage, current etc.

DC vs. AC

	DC	AC
Obtained from	Battery / cell / derived from AC	AC Generator
Polarity	Positive and Negative	Oscillatory
Frequency	Zero	50Hz or 60Hz
Types	Constant or pulsating	Sinusoidal, Trapezoidal, Triangular, Square

Generation of Alternating EMF

Generator working principle

EMF Equation

EMF induced per conductor is

$$e = B I v sin \theta$$

EMF Induced in one turn of a coil is

$$e = 2 B I v sin \theta$$

If, b = width of the coil,

 $\mathbf{v} = \mathbf{\pi} \mathbf{b} \mathbf{n}$ 'n' is the speed in revolutions per sec.

 $e = 2 B I b \pi n sin\theta$

= $2BA\pi n \sin\theta$

If there are N turns in the coil, the emf induced is,

$$e = 2 \pi n BA N sin\theta$$

$$e = E_m \sin\theta$$

Turn of a coil

Terminologies in AC waveform

Cycle: Each repetition of the alternating quantity, recurring at equal intervals

Period (T): Duration of one cycle

Instantaneous Value (e(t)): The magnitude of a waveform at any instant in time

Peak Amplitude: Maximum value or peak value of alternating quantity

Frequency (f): Number of cycles in one second (Hz) $f = \frac{1}{T}$

Average value of Sinusoidal Alternating Current

Definition: "The average value of an alternating quantity is defined as that value which is obtained by averaging all the instantaneous values over a period of half cycle".

For a periodic function f(t) $F_{avg} = \frac{1}{T} \int_{0}^{T} f(t) dt$ with period T,

$$F_{avg} = \frac{1}{T} \int_{0}^{I} f(t) dt$$

For sinusoidal signal,

$$I_{avg} = \frac{1}{T/2} \int_{0}^{T/2} I_{m} \sin \omega t dt$$

$$I_{avg} = \frac{2I_m}{\pi}$$

RMS value of Sinusoidal Alternating Current

Definition: "The RMS value is the square root of the mean (average) value of the squared function of the instantaneous values".

$$I_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} I_{m}^{2} sin^{2} \omega t \ dt}$$

$$I_{RMS} = \frac{I_m}{\sqrt{2}}$$

$$Form \ Factor = \frac{RMS \ Value}{Average \ Value} = 1.11 \ for \ sinusoidal$$

$$Peak Factor = \frac{Maximum Value}{RMS Value} = \sqrt{2} for sinusoidal$$

Illustration I

If an alternating voltage has the equation

$$v(t) = 155.56 \sin 314t$$

Calculate:

- a. Maximum voltage value
- b. RMS value of the voltage
- c. Frequency
- d. The instantaneous voltage when t = 3ms

Illustration 2

Determine the rms value, average value, and form factor of the current waveform shown in Fig.

Illustration 3

For the circuit shown below, sketch the voltage across the resistance, & then find the Average value and RMS value of the same.

$$Vavg = \frac{2Vm}{\pi}$$

Vrms = Vm/2

Solution:

Average Value

$$V_{avg} = \frac{1}{2\pi} \left[\int_{0}^{\pi} V_{m} \sin \omega t \cdot d\omega t + \int_{\pi}^{2\pi} 0 \cdot d\omega t \right]$$

$$V_{avg} = \frac{V_m}{2\pi} (-\cos \omega t)_0^{\pi}$$

$$V_{avg} = \frac{-V_m}{2\pi}(-1-1)$$

$$V_{avg} = \frac{V_m}{\pi}$$

RMS Value

$$V_{avg} = \frac{1}{2\pi} \left[\int_{0}^{\pi} V_{m} \sin \omega t \cdot d\omega t + \int_{\pi}^{2\pi} 0 \cdot d\omega t \right] \qquad V_{rms}^{2} = \frac{1}{2\pi} \left[\int_{0}^{\pi} V_{m}^{2} \sin^{2} \omega t \cdot d\omega t + \int_{\pi}^{2\pi} 0 \cdot d\omega t \right]$$

$$V_{rms}^2 = \frac{V_m^2}{2\pi} \left[\int_0^\pi \frac{1 - \cos 2\omega t}{2} . d\omega t \right]$$

$$V_{rms}^{2} = \frac{V_{m}^{2}}{4\pi} \left[\omega t |_{0}^{\pi} - \sin 2\omega t |_{0}^{\pi} \right]$$

$$V_{rms}^2 = \frac{V_m^2}{4\pi} [\pi]$$

$$V_{rms} = \frac{V_m}{2}$$

Thank You!