

Università degli Studi di Milano-Bicocca

Scuola di Scienze

Dipartimento di Informatica, Sistemistica e Comunicazione

Corso di Laurea in Informatica

RETI NEURALI PER L'APPRENDIMENTO DEI TRATTI DELLA PERSONALITÀ DAL LINGUAGGIO NATURALE

Relatore: Prof. Stella Fabio Antonio

Co-relatore: Dott. Marelli Marco

Relazione della prova finale di:

Giorgia Adorni

Matricola 806787

Anno Accademico 2017-2018

Introduzione al problema

Perché la personalità?

Introduzione al problema

- Mappatura diretta tra una review e il vettore di personalità OCEAN [1]
- Ogni tratto di personalità viene calcolato come la media del valore degli aggettivi presenti nel testo

Adjective	0	C	E	A	N
•••		•••	•••	•••	•••
Courteous	0,000	0,230	-0,070	0,530	0,020
Cowardly	0,037	-0,154	-0,335	0,176	0,268
Creative	0,492	0,019	0,135	0,073	-0,115
Critical	0,170	0,060	-0,010	-0,320	0,310
Cruel	0,000	-0,040	0,000	-0,400	-0,060
Cute	-0,030	0,110	0,450	0,020	0,180
Cynical	0,165	-0,088	-0,096	-0,401	0,078
Dangerous	-0,050	-0,110	0,220	-0,430	0,110
	0,140	-0,150	0,030	-30,000	0,070
	0,150	0,430	0,180	-0,030	-0,220
★ ☆	-0,050	-0,040	-0,170	-0,170	0,410
	-0,094	-0,156	0,292	-0,017	0,538
ı	-0,183	0,388	0,240	-0,153	-0,154
	0,220	0,140	0,330	-0,070	-0,130
X	-0,040	-0,160	-0,240	-0,450	-0,040
	-0,037	-0,180	0,031	-0,316	0,058
	-0,190	0,050	-0,280	0,240	-0,040
	-0,110	0,060	-0,040	-0,100	0,010
nant	0,051	0,170	0,450	-0,333	0,028
tric	-0,320	-0,140	0,390	0,190	-0,010
mical	0,010	0,390	-0,130	0,140	-0,140
Effective	0,040	0,200	0,460	-0,150	-0,090
Efficient	-0,023	0,463	-3,249	0,010	0,062
Egocentric	0,120	-0,120	0,040	-0,340	0,130

[1] Paul T. Costa e Robert R. McCrae. «The revised neo personality inventory (neo-pi-r)». In: The SAGE handbook of personality theory and assessment 2.2 (2008).

Introduzione al problema

Openness

apertura all'esperienza

creativo/curioso vs coerente/cauto

Neuroticism

nevroticismo

sensibile/nervoso

VS

sicuro/fiducioso

Cosa sono

i Big Five?

Coscientiousness

coscenziosità

organizzato

VS

negligente

Agreeableness

gradevolezza

amichevole vs provocatorio

Extraversion

estroversione

estroverso/energetico

VS

solitario/riservato

Preparazione e preprocessing

- Suddivisione di ciascuna review in frasi
- **■** Segmentazione di parole
- **Stemming:** ogni parola viene ridotta alla sua forma radice (es. "argued", "arguing" sono mappati ad "argu")
- Eliminazione delle stop-word ovvero le parole considerate senza uno specifico significato semantico.
- Costruzione di un dizionario del corpus di training
- Codifica di ogni parola del dizionario con un valore intero univoco

the girl who took our order was friendly

334 105 45 -1 girl took order friendly

Esperimento 1

■ Input Features: i dati testuali vengono rappresentati come una bag-of-words [2].

food is well prepared

- Architettura della rete: viene utilizzata una rete feed-forward [3] densa o fully-connected [4].
- [2] Hanna M Wallach. «Topic modeling: beyond bag-of-words». In: Proceedings of the 23rd ICML. ACM. 2006.
- [3] Daniel Svozil, Vladimir Kvasnicka e Jiri Pospichal. «Introduction to multi-layer feed-forward neural networks». In: Chemometrics and intelligent laboratory systems 39.1 (1997).
- [4] Tara N Sainath et al. «Convolutional, long short-term memory, fully connected deep neural networks». In: Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE IC on. IEEE. 2015.

■ Come funzione di loss viene utilizzato l'errore quadratico medio, in inglese *mean squared error* (MSE).

Prestazioni esperimento 1

	Train loss	Test loss	Tempo di training
Modello 1	0,061	0,062	$235 \min$
Modello 2	$0,\!090$	0,061	$250 \min$
Modello 3	0,068	0,062	$265 \mathrm{min}$

Modelli		Root Mean Squared Error					
		O	C	\mathbf{E}	A	N	
Modello 1	Modello Modello 0	$0,148 \\ 0,145$	$0,227 \\ 0,224$	0,224 $0,213$	$0,251 \\ 0,218$	0,351 0,318	
Modello 2	Modello Modello 0	$0,147 \\ 0,141$	$0,226 \\ 0,227$	$0,225 \\ 0,213$	$0,251 \\ 0,208$	$0,341 \\ 0,305$	
Modello 3	Modello Modello 0	$0,147 \\ 0,233$	$0,226 \\ 0,307$	$0,225 \\ 0,262$	$0,262 \\ 0,373$	0,348 0,546	

Esperimento 2

■ Input Features: viene costruito un embedding di tutte parole tramite il modello *skip*-gram, una versione dell'algoritmo word2vec di Mikolov [5].

i personally love crackers

[5] Tomas Mikolov et al. «Distributed representations of words and phrases and their compositionality». In: Advances in neural information processing systems. 2013.

Esperimento 2

■ Architettura della rete: viene utilizzata una rete convoluzionale [6]. Come funzione di loss viene utilizzato il mean squared error (MSE).

Prestazioni

Modelli		Train loss	Test loss	Tempo di training	
Embedding 1	Modello 4 Modello 5 Modello 6	$0,061 \\ 0,052 \\ 0,042$	$0,058 \\ 0,060 \\ 0,060$	$200 \mathrm{\ min}$ $310 \mathrm{\ min}$ $540 \mathrm{\ min}$	
Embedding 2	Modello 7 Modello 8	0,038 0,058	0,057 0,117	$225~\mathrm{min}$ $250~\mathrm{min}$	

^[6] Yoon Kim. «Convolutional neural networks for sentence classification». In: arXiv preprint arXiv:1408.5882 (2014).

Esperimento 3

- Input Features: si ricorre al modello *skip-gram*, ma definendo l'embedding solo per le coppie degli aggettivi contenuti nel dizionario OCEAN e i loro contesti.
- Architettura della rete: viene utilizzata una rete *convoluzionale.*Come funzione di loss viene utilizzato il *mean squared error* (MSE).

Prestazioni

	Train loss		Tempo di training		
Modello 9	0,043	0,060	18 h		
Modello 10	$0,\!050$	$0,\!059$	17 h		

Esperimento 4

- Input Features: si riutilizzano i metodi precedenti più efficienti.
- Output: il problema viene trasformato in un compito di classificazione binaria multi-label.
- Architettura della rete: viene utilizzata una rete convoluzionale.

Prestazioni

Modelli		Train/Test Accuracy [%]					
		O	\mathbf{C}	${ m E}$	\mathbf{A}	N	
	Modello 11	61/61	60/59	63/60	58/56	57/54	
Embedding 2	Modello 12	62/59	61/50	64/45	61/56	61/56	
	Modello 13	63/ 65	63/ 60	63/61	63/ 58	62/ 59	
Embedding 3	Modello 14	61/61	61/57	62/52	60/57	60/56	
	Modello 15	63/60	62/48	64/60	62/49	62/48	

Conclusioni e sviluppi futuri

Conclusioni

- Il problema è estremamente complesso, ad oggi non è stato affrontato in modo approfondito
- La scelta di rappresentazione del testo è fondamentale: che domanda poniamo al modello?
- La classificazione sembra mostrare risultati lievemente migliori rispetto alla regressione

Sviluppi

- Rappresentazioni alternative del testo ricorrendo ad altri strumenti di NLP, annotazioni, part-of-speech [7]
- Utilizzo di altre architetture di apprendimento: reti ricorrenti [8]
- [7] Roger W Brown. «Linguistic determinism and the part of speech.» In: The Journal of Abnormal and Social Psychology 55.1 (1957)
- [8] Tomas Mikolov et al. «Recurrent neural network based language model. »In: Eleventh Annual Conference of the International Speech Communication Association. ISO 690 (2010).