目录

1	第一	·部分:作业题整理	2
	1.1	集合与映射作业题	2
	1.2	数列极限作业题	4
	1.3	有限覆盖上下极限作业题	9
	1.4	连续函数作业题	16
	1.5	可微函数作业题	22
	1.6	函数性质作业题	33
	1.7	积分作业题	37
2	第二	部分:等距分划下的 Riemann 积分	49
	2.1	黎曼积分的定义	49
	2.2	问题	49
	2.3	可积的第一第二充要条件	49
	2.4	Riemann 积分引理	51
	2.5	问题 2.2 解答	52
3	第三	部分: 离散动力系统的混沌现象	54
	3.1	周期点、周期轨道与不动点	54
	3.2	问题	54
		3.2.1 问题 1 (Brouwer 不动点定理)	54
		3.2.2 问题 2 (构造 2-周期点函数)	54
		3.2.3 问题 3 (构造 3-周期点函数)	54
		3.2.4 问题 4(Li-Yorke 定理)	55
	3.3	两个补充定理	55
		3.3.1 零点存在定理	55
		3.3.2 介值定理	55
	3.4	问题解答	55
参	考文詞	款	61

П

1 第一部分:作业题整理

1.1 集合与映射作业题

1.1.1

试证:映射左可逆当且仅当它是单射;右可逆当且仅当它是满射

证明. (1) 设 f 映射左可逆, 当且仅当它是单射。

- (a) 必要性:设 g 是 f 的左逆,则对 $\forall t \in T$,有 g(f(t)) = t。即 $g \circ f = I_T = I_T(t)$ 。有 $g \circ f = I_T$,而 I_T 是双射,故 f 是单射。
- (b) 充分性: 定义 $g: S \to T$ 如下 $g(s) = t_1, s \in f(T)$ 且 $f(t_1) = s$ 。对每个 $s \in S$, g(s) 只有一个值,且若 $f(t_1) = s$,因 $g \circ f(t_1) = g(s) = t$ 。 故 $g \in f$ 的左逆。
 - (2) 右可逆当且仅当它是满射。
- (a) 必要性:设 g 是 f 的右逆,则对 $\forall s \in S$,有 f(g(s)) = s。有 $f \circ g = I_S$,而 I_S 是双射,故 f 是满射。
- (b) 充分性: 若 f 是满射,则对任意 $s \in S$,至少存在一个 $t \in T$,使得 f(t) = s。定义 $g: S \to T$ 如下,对每个 $s \in S$,有:
 - 1. 若只有一个 $t \in T$ 使得 f(t) = s, 令 g(s) = t。
 - 2. 若有 $t_1, t_2, \ldots, t_n \in T$,使得 $f(t_1) = f(t_2) = \cdots = f(t_n) = s$,则取某一个 t_i ,令 $g(s) = t_i$ 。

这样,对每个 $s \in S$, g(s) 只有一个值,且 f(g(s)) = s。故 $g \notin f$ 的右逆。

1.1.2

试证:全体有理数是可数的。

证明. 我们先证明 [0,1) 中全体有理数是可数的。显然,排列

$$0, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \dots$$

这样就列举出了 [0,1) 中的所有有理数。我们把这些数重新排列:从第一行开始,从 左到右排列成

$$0, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \dots$$

然后剔除重复的数,可得列出的就是[0,1)中有理数的全集。

很明显,当有理数 $r \in [0,1)$ 时,对任何整数 n,映射 $r \to r + n$ 是 [0,1) 中的有理数和 [n,n+1) 中的有理数之间的一一对应。因此,[n,n+1) 的全体有理数也是可数的。

这样,上述全体有理数可以表示为

$$\bigcup_{n=-\infty}^{\infty} \{x : x \in [n, n+1), \ x \in \mathbb{Q}\},\$$

这是可数个互不相交的可数集的并。

因此,全体有理数是可数的。

1.1.3

试证:可数个至多可数集的并集是至多可数的。

证明. 设意即为 $S = \bigcup E_n (n = 1, 2, 3, ...)$ 是一列至多可数集。

令 $S = \bigcup E_n$,那么 S 是至多可数集。不妨对每个 $n \in \mathbb{N}^*$, $E_n = \{x_{n1}, x_{n2}, \ldots, x_{nk}, \ldots\}$ 。 考虑下列无限矩阵列:

$$x_{11}, x_{12}, x_{13}, x_{14}, \dots$$
 $x_{21}, x_{22}, x_{23}, x_{24}, \dots$
 $x_{31}, x_{32}, x_{33}, x_{34}, \dots$
 $x_{41}, x_{42}, x_{43}, x_{44}, \dots$
 $\vdots \vdots \vdots \vdots \dots$

其中第n行由 E_n 的元素组成,这个矩阵列包含S中的所有元素。按照简单指示图的那样,这些元素可以排成一行:

$$x_{11}, x_{12}, x_{21}, x_{13}, x_{22}, x_{31}, x_{14}, x_{23}, x_{32}, x_{41}, \ldots$$

当两个集合 E_i 和 E_j 有公共元素时,这些元素在这一行中会重复出现。我们从 左到右顺次,重复元素仅保留第一次出现的那个。

这样以后,得到的单集合 S 即为 S 的所有元素。因此,S 是至多可数的。 \square

1.1.4

试构造一个开区间(0,1)与闭区间[0,1]之间的一一对应。

证明. 我们构造下面函数从 [0,1] 到 (0,1) 上的映射 f:

$$f(x) = \begin{cases} \frac{1}{2}, & \exists x = 0 \text{ ft}, \\ \frac{1}{n+2}, & \exists x = \frac{1}{n} \text{ ft}(n \in \mathbb{N}^*), \\ x, & \exists x \notin \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \text{ ft}. \end{cases}$$

显然, $f \in (0,1)$ 与 [0,1] 之间的一一对应关系。

1.1.5

试证:每个无限集与自身的一个真子集对等。

证明. 因为有限集是不存在自反真子集对等的,若证明 A 为无限集的充要条件为 A 与其某真子集对等,即可证明题目。

- 1. 充分性: 因为有限集不存在真子集对等,故充要性显然成立。
- 2. 必要性:取A中一个非空有限子集B。显然,有 $A \sim (A \setminus B)$,即得必要性。

故每个无限集都与自身的一个真子集对等。

1.2 数列极限作业题

1.2.1

设 a > 0。求极限 $\lim_{n \to \infty} \sqrt[n]{a}$ 和 $\lim_{n \to \infty} \frac{a^n}{n!}$ 。

证明. (1) 证明 $\lim_{n\to\infty} \sqrt[n]{a} = 1$:

- 1. 当 a=1 时,显然存在 $\lim_{n\to\infty} \sqrt[n]{a} = \lim_{n\to\infty} \sqrt[n]{1} = 1$ 。
- 2. 当 a > 1 时,记 $a^{1/n} = 1 + d_n$,则 $d_n > 0$ 。由 $a = (1 + d_n)^n = 1 + nd_n + \frac{n(n-1)}{2}d_n^2 + \cdots$,得:

$$d_n = a^{1/n} - 1 \le \frac{\ln a}{n}.$$

显然, 当 $n \to \infty$ 时, $a^{1/n} \to 1$ 。

1 第一部分: 作业题整理

5

3. 当 0 < a < 1 时,令 $\frac{1}{a} > 1$,同理可得 $\lim_{n \to \infty} \sqrt[n]{a} = 1$ 。 综上, $\lim_{n \to \infty} \sqrt[n]{a} = 1$ 。

(2) 证明 $\lim_{n\to\infty}\frac{a^n}{n!}=0$:

1. 当 $a \neq 0$ 时,设 k = ||a|| + 1,表示不大于 |a| 的整数加 1,则:

$$\frac{a^n}{n!} = \frac{|a|^n}{1 \cdot 2 \cdot \dots \cdot n} \le \frac{k}{n \cdot n \cdot \dots \cdot n}.$$

2. 对于任意给定的 $\varepsilon > 0$,取 $N = \max\{k, \frac{k|a|}{\varepsilon}\}$,当 n > N 时,有:

$$\frac{a^n}{n!} \le k \cdot \frac{|a|}{n!} < \varepsilon.$$

故 $\lim_{n\to\infty}\frac{a^n}{n!}=0$ 。

综上:

$$\lim_{n \to \infty} \sqrt[n]{a} = 1, \quad \lim_{n \to \infty} \frac{a^n}{n!} = 0.$$

1.2.2

已知 $\lim_{n\to\infty} a_n = a$,试证

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \lim_{n \to \infty} \frac{\lfloor na_n \rfloor}{n} = a$$

此处方括号表示取整函数。

证明. (1) 证明 $\lim_{n\to\infty} \frac{a_1+a_2+\cdots+a_n}{n} = a$:

已知 $\lim_{n\to\infty}a_n=a$,即对于任意 $\varepsilon>0$,存在 $m\in\mathbb{N}$,当 n>m 时,有 $|a_n-a|<\varepsilon$ 。 取自然数 m,设 $|a_1-a|+|a_2-a|+\cdots+|a_m-a|=A$ 是正数,已知 $\lim_{n\to\infty}\frac{A}{n}=0$,即对于上述同样的 $\varepsilon>0$,存在 $N\in\mathbb{N}^*$ 且 N>m,当 n>N 时,有 $\frac{A}{n}<\varepsilon$ 。

从而有:

$$\left| \frac{a_1 + a_2 + \dots + a_n}{n} - a \right| = \left| \frac{(a_1 - a) + (a_2 - a) + \dots + (a_n - a)}{n} \right|$$

$$\leq \frac{|a_1 - a| + |a_2 - a| + \dots + |a_m - a|}{n} + \frac{|a_{m+1} - a| + \dots + |a_n - a|}{n}.$$

前一项小于 $\frac{A}{n}$, 后一项小于 ε , 因此:

$$\frac{A}{n} + \frac{n-m}{n}\varepsilon < \varepsilon + \varepsilon = 2\varepsilon$$

由 ε 的任意性,可得 $\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=a_{\circ}$

(2) 证明 $\lim_{n\to\infty}\frac{\lfloor na_n\rfloor}{n}=a$:

因为 $\lfloor na_n \rfloor - na_n \vert < 1$,故:

$$\lim_{n \to \infty} \frac{\lfloor na_n \rfloor - na_n}{n} = 0$$

又有:

$$\left| \frac{\lfloor na_n \rfloor}{n} - a \right| = \left| \frac{\lfloor na_n \rfloor - na_n}{n} + \frac{na_n}{n} - a \right| \le \frac{\left| \lfloor na_n \rfloor - na_n \right|}{n} + \left| a_n - a \right|$$

因为 $\lim_{n\to\infty} a_n = a$,有 $\lim_{n\to\infty} |a_n - a| = 0$,从而:

$$\lim_{n \to \infty} \frac{\lfloor n a_n \rfloor}{n} = a$$

综上:

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \lim_{n \to \infty} \frac{\lfloor n a_n \rfloor}{n} = a$$

1.2.3

设 $a_0 + a_1 + \cdots + a_p = 0$ 。试证:

$$\lim_{n \to \infty} \left(a_0 \sqrt{n} + a_1 \sqrt{n+1} + \dots + a_p \sqrt{n+p} \right) = 0$$

证明. 注意到:

$$\sum_{k=0}^{p} a_k \sqrt{n+k} = \sum_{k=0}^{p} (a_0 + a_1 + \dots + a_k) (\sqrt{n+k} - \sqrt{n+k+1}),$$

$$= \sum_{k=0}^{p} \frac{a_0 + a_1 + \dots + a_k}{\sqrt{n+k} + \sqrt{n+k+1}}.$$

由于 $a_0 + a_1 + \cdots + a_p = 0$, 显然:

$$\lim_{n \to \infty} \left(a_0 \sqrt{n} + a_1 \sqrt{n+1} + \dots + a_p \sqrt{n+p} \right) = \lim_{n \to \infty} 0 = 0$$

1.2.4

设数列 $\{a_n\}_{n=1}^{\infty}$ 满足 $\lim_{n\to\infty}(a_n-a_{n-2})=0$,试证:

$$\lim_{n \to \infty} \frac{a_n - a_{n-1}}{n} = 0$$

证明. 为方便起见, 令 $a_0 = 0$, 那么:

$$\lim_{n \to \infty} \frac{a_{2n}}{n} = \lim_{n \to \infty} \frac{(a_2 - a_0) + (a_4 - a_2) + \dots + (a_{2n} - a_{2n-2})}{n}.$$

由已知条件 $\lim_{n\to\infty}(a_{2n}-a_{2n-2})=0$, 因此:

$$\lim_{n \to \infty} \frac{a_{2n}}{n} = 0$$

同理,可得:

$$\lim_{n\to\infty} \frac{a_{2n+1}}{2n+1} = 0$$

合并后得:

$$\lim_{n \to \infty} \frac{a_n}{n} = 0$$

进一步, 计算:

$$\lim_{n \to \infty} \frac{a_n - a_{n-1}}{n} = \lim_{n \to \infty} \left(\frac{a_n}{n} - \frac{a_{n-1}}{n-1} \cdot \frac{n-1}{n} \right)$$

由 $\lim_{n\to\infty} \frac{a_n}{n} = 0$ 和 $\lim_{n\to\infty} \frac{n-1}{n} = 1$,有:

$$\lim_{n \to \infty} \frac{a_n - a_{n-1}}{n} = 0 - 0 = 0$$

党上, $\lim_{n \to \infty} \frac{a_n - a_{n-1}}{n} = 0$ 。

1.2.5

设数列 $\{a_n\}_{n=1}^{\infty}$ 满足 $0 < a_n < 1$, $(1-a_n)a_{n+1} > \frac{1}{4}$, $n \in \mathbb{N}$ 。 试证:

$$\lim_{n\to\infty}a_n=\frac{1}{2}$$

证明. 注意到函数 (1-x)x 在 [0,1] 上的最大值为 $\frac{1}{4}$,因此由条件 $(1-a_n)a_{n+1} > \frac{1}{4} \geq (1-a_n)a_n$,可知 $\{a_n\}$ 是严格单调递增的。

进而可得 $\{a_n\}$ 有极限, 令其为 a, 那么有:

$$(1-a)a \ge \frac{1}{4}$$

解得 $a = \frac{1}{2}$ 。

因此,
$$\lim_{n\to\infty} a_n = a = \frac{1}{2}$$
。

1.2.6

设数列 $\{a_n\}_{n=1}^{\infty}$ 对所有正整数 n, p 满足

$$|a_{n+p} - a_n| \le \frac{p}{n}$$

问 $\{a_n\}_{n=1}^{\infty}$ 是否是基本列?

证明. $\{a_n\}$ 不一定是基本列。例如取 $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$,那么 $|a_{n+p} - a_n| \leq \frac{p}{n}$ 是成立的,但 $\{a_n\}$ 显然发散,不是基本列。

1.2.7

设数列 $\{a_n\}_{n=1}^{\infty}$ 对所有正整数 n, p 满足

$$|a_{n+p} - a_n| \le \frac{p}{n^2}$$

问 $\{a_n\}_{n=1}^{\infty}$ 是否是基本列?

证明. $\{a_n\}$ 是基本列。

对 $\varepsilon > 0$,只要取 $N = \lfloor \frac{1}{\varepsilon} \rfloor + 1$,那么当 n > N 时,有:

$$|a_{n+p} - a_n| \le |a_{n+p} - a_{n+p-1}| + |a_{n+p-1} - a_{n+p-2}| + \dots + |a_{n+1} - a_n|$$

$$\le \frac{1}{(n+p-1)^2} + \frac{1}{(n+p-2)^2} + \dots + \frac{1}{n^2}$$

$$\le \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{(n+p-1)n}$$

$$= \frac{1}{n(n-1)} < \varepsilon$$

即 $\{a_n\}$ 是柯西收敛级列,故 $\{a_n\}$ 是基本列。

1.2.8

设数列 $\{a_n\}_{n=1}^{\infty}$ 有界且发散,试证 $\{a_n\}_{n=1}^{\infty}$ 必有两个子列收敛于不同的极限。

证明. 1. 由列紧性定理知 $\{a_n\}$ 有一个收敛子列,极限设为 a。

2. 因为 $\{a_n\}$ 不以 a 为极限,所以 $\exists \varepsilon_0 > 0$,使得对于每行 j > 0,都存在 $k_j > 0$ 使得 $|a_{k_j} - a| \ge \varepsilon_0$ 。

3. 不妨让 $k_{j+1} > k_j$,那么从子列 $\{a_{k_j}\}$ 中又可以取出另一个收敛子列。显然,这是 $\{a_n\}$ 的一个收敛子列,且不以 a 为极限。

综上,
$$\{a_n\}$$
 有界发散, $\{a_n\}$ 必有两个子列收敛于不同的极限。

1.3 有限覆盖上下极限作业题

1.3.1

设 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ 为有界数列, 试证:

 $\liminf a_n + \liminf b_n \leq \liminf (a_n + b_n) \leq \liminf a_n + \limsup b_n \leq \limsup a_n + \limsup b_n$ 证明. 注意到上下极限的关系,要证的是不等式,仅需证明:

$$\liminf a_n + \liminf b_n \le \liminf (a_n + b_n) \le \liminf a_n + \limsup b_n \tag{1}$$

$$\liminf(a_n + b_n) \le \liminf a_n + \limsup b_n \le \limsup a_n + \limsup b_n$$
 (2)

我们只需证明其中的不等式 (1) 和 (2), 其余不等式可以由类似推导得到。 证明不等式 (1):

$$\inf a_k + \inf b_k \le \inf(a_k + b_k) \le \inf a_k + \sup b_k$$

1. $k \rightarrow \infty$ 时:

$$\inf a_k \le a_k$$
, $\inf b_k \le b_k \implies a_k + b_k \ge \inf a_k + \inf b_k$

因此, $\inf a_k + \inf b_k$ 是 $a_k + b_k$ 的一个下界, 从而:

$$\inf a_k + \inf b_k \le \inf(a_k + b_k) \tag{3}$$

2. 记 $c_k = a_k + b_k$, 则 $a_k = c_k - b_k$ 。 由此可得:

$$\inf a_k = \inf(c_k - b_k) \ge \inf c_k - \sup b_k$$

根据 $\inf c_k = \inf(a_k + b_k)$,因此:

$$\inf(a_k + b_k) \le \inf a_k + \sup b_k \tag{4}$$

由(3)和(4),可得:

$$\inf a_k + \inf b_k \le \inf(a_k + b_k) \le \inf a_k + \sup b_k \tag{5}$$

证明不等式(2): 类似证明,可以得到:

 $\liminf a_n + \liminf b_n \le \liminf (a_n + b_n) \le \limsup a_n + \limsup b_n$

综上,证明了所需的不等式:

 $\liminf a_n + \liminf b_n \leq \liminf (a_n + b_n) \leq \liminf a_n + \limsup b_n \leq \limsup a_n + \limsup b_n$

1.3.2

设 $\{a_n\}_{n=1}^{\infty}$ 是正数列,且 $\liminf a_n > 0$ 。试证:

$$\limsup \frac{1}{a_n} = \frac{1}{\liminf a_n}, \quad \liminf \frac{1}{a_n} = \frac{1}{\limsup a_n}$$

证明. 1. 证明 $\limsup \frac{1}{a_n} = \frac{1}{\liminf a_n}$:

(1) 存在 $\{a_{n_k}\}$ 的子列,使得:

$$\limsup \frac{1}{a_n} = \lim \frac{1}{a_{n_k}} = \frac{1}{\liminf a_n}$$

(2) 又存在另一子列 $\{a_{m_k}\}$, 使得:

$$\lim\inf\frac{1}{a_n}=\lim\frac{1}{a_{m_k}}=\frac{1}{\limsup a_n}$$

因此:

$$\limsup \frac{1}{a_n} = \frac{1}{\liminf a_n}$$

2. 证明 $\lim \inf \frac{1}{a_n} = \frac{1}{\lim \sup a_n}$:

由上述结论 $\limsup \frac{1}{a_n} = \frac{1}{\liminf a_n}$, 可得:

$$(\limsup \frac{1}{a_n}) \cdot (\liminf a_n) = 1$$

因为 $\{a_n\}$ 是正数列,且 $\liminf a_n > 0$,显然有:

$$(\limsup a_n) \cdot (\liminf \frac{1}{a_n}) = 1$$

由 $\{a_n\}$ 的任意性,故有:

$$\lim\inf\frac{1}{a_n} = \frac{1}{\limsup a_n}$$

1.3.3

设 $\{a_n\}_{n=1}^{\infty}$ 为正数列,且

$$(\limsup a_n) \left(\limsup \frac{1}{a_n} \right) = 1$$

试证 $\{a_n\}_{n=1}^{\infty}$ 收敛。

证明. 易知 $\{a_n\}$ 为正数列, 故 $\liminf a_n \geq 0$ 。

由题意可知:

$$(\limsup a_n) \left(\limsup \frac{1}{a_n} \right) = 1$$

得:

$$\limsup \frac{1}{a_n} = \frac{1}{\limsup a_n}$$

若 $\liminf a_n > 0$,则显然有 $\liminf a_n = \limsup a_n$,故 $\{a_n\}$ 收敛。

若 $\liminf a_n = 0$,那么:

$$\limsup \frac{1}{a_n} = +\infty$$

同理 $\limsup a_n = 0$ 。 因此 $\{a_n\}$ 收敛。

综上,
$$\{a_n\}$$
 收敛。

1.3.4

设 $\{a_n\}_{n=1}^{\infty}$ 为正数列, 试证:

$$\limsup \sqrt[n]{a_n} \le \limsup \frac{a_{n+1}}{a_n}$$

证明. 记 $\alpha = \limsup \frac{a_{n+1}}{a_n}$ 。若 $\alpha = +\infty$,则不等式显然成立。

当 $0 \le \alpha < +\infty$ 时,需证明 $\limsup \sqrt[n]{a_n} \le \alpha$ 。只需证明对任意 $\varepsilon > 0$,有 $\limsup \sqrt[n]{a_n} < \alpha + \varepsilon$ 。

由定义,对于任意 $\varepsilon > 0$,存在 N > 0,当 n > N 时,有:

$$\frac{a_{n+1}}{a_n} < \alpha + \varepsilon$$

取 $n = N, N + 1, \ldots$, 则 n - N 个相乘得:

$$\frac{a_n}{a_N} = \frac{a_{N+1}}{a_N} \cdot \frac{a_{N+2}}{a_{N+1}} \cdots \frac{a_n}{a_{n-1}} < (\alpha + \varepsilon)^{n-N}$$

即有:

$$a_n < a_N(\alpha + \varepsilon)^{n-N}$$

<math> <math>

$$a_n < M(\alpha + \varepsilon)^n$$

因此:

$$\sqrt[n]{a_n} < \sqrt[n]{M}(\alpha + \varepsilon)$$

当 $n \to \infty$ 时, $\sqrt[n]{M} \to 1$,取上极限得:

$$\limsup \sqrt[n]{a_n} \le \alpha + \varepsilon$$

由于 ε 的任意性,得:

$$\limsup \sqrt[n]{a_n} \le \alpha$$

综上,得:

$$\limsup \sqrt[n]{a_n} \le \limsup \frac{a_{n+1}}{a_n}$$

1.3.5

给定数列 $\{a_n\}_{n=1}^{\infty}$, 记

$$b_n = 2a_n - 3a_{n+1}, \quad n = 1, 2, \dots$$

试证: 数列 $\{b_n\}_{n=1}^{\infty}$ 收敛的充要条件是数列 $\{a_n\}_{n=1}^{\infty}$ 收敛。

证明. 必要性若 $\{a_n\}$ 收敛,不妨设 $\lim_{n\to\infty} a_n = a$,则:

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} (2a_n - 3a_{n+1}) = 2a - 3a = a$$

显然 $\{b_n\}$ 收敛。

充分性若 $\{b_n\}$ 收敛,设 $\lim_{n\to\infty}b_n=b$ 。由定义:

$$b_n = 2a_n - 3a_{n+1}$$

可得:

$$a_{n+1} = \frac{2}{3}a_n - \frac{1}{3}b_n$$

令 $C_n = a_{n+1} - a_n$, 作差得:

$$C_{n+1} = \frac{2}{3}C_n - \frac{1}{3}(b_{n+1} - b_n)$$

$$\lim_{n \to \infty} C_n = \frac{2}{3} \lim_{n \to \infty} C_n$$

显然 $\lim_{n\to\infty} C_n = 0$,即:

$$\lim_{n \to \infty} (a_{n+1} - a_n) = 0$$

由 $\{a_n\}$ 的递推公式,可知 $\{a_n\}$ 收敛。

综上, $\{b_n\}$ 收敛的充要条件是 $\{a_n\}$ 收敛。

1.3.6

设 $\alpha, \beta > 0, a_1 > 0$, 且

$$a_{n+1} = \alpha + \frac{\beta}{a_n}, \quad n = 1, 2, \dots$$

试证数列 $\{a_n\}_{n=1}^{\infty}$ 收敛,并求其极限。

证明. 由于 $a_1 > 0, \alpha > 0, \beta > 0$,由递推关系 $a_{n+1} = \alpha + \frac{\beta}{a_n}$ 可知,对于任意 $n \geq 1$,均有 $a_n > \alpha > 0$ 。

将递推公式写为:

$$a_{n+1} = \alpha + \frac{\beta}{a_n}$$

定义函数 $f(x) = \alpha + \frac{\beta}{x}$, 解方程 f(x) = x, 得:

$$x_1 = \frac{\alpha + \sqrt{\alpha^2 + 4\beta}}{2}, \quad x_2 = \frac{\alpha - \sqrt{\alpha^2 + 4\beta}}{2}$$

显然 $x_1 > 0$ 且 $x_2 < 0$,由于 $a_n > 0$,因此只能有 a_n 收敛于 x_1 。 令 $a_n - x_1 = b_n$,则:

$$a_{n+1} - x_1 = f(a_n) - x_1$$

将 f(x) 线性化,得:

$$f(a_n) - x_1 = \frac{\beta}{a_n} - \frac{\beta}{x_1} = -\frac{\beta}{x_1^2}(a_n - x_1)$$

于是:

$$b_{n+1} = -\frac{\beta}{x_1^2} b_n$$

显然, $\left|\frac{\beta}{x_1^2}\right| < 1$, 因此 $b_n \to 0$, 即 $a_n \to x_1$ 。

综上, $\{a_n\}$ 收敛,且极限为:

$$\lim_{n \to \infty} a_n = \frac{\alpha + \sqrt{\alpha^2 + 4\beta}}{2}$$

1.3.7

设数列 $\{a_n\}_{n=1}^{\infty}$ 满足 $a_{p+q} \leq a_p + a_q$, $p, q = 1, 2, \ldots$, 试证:

$$\lim_{n\to\infty}\frac{a_n}{n}=\inf_{n\geq 1}\frac{a_n}{n}$$

证明. 对于不等式 $a_{p+q} \le a_p + a_q$,考虑其意义,便于想象,不妨先设 p=10。此时,对于任意 a_q ,例如 $a_{11} \le a_{10} + a_1, a_{20} \le 2a_{10} + a_2$ 。

一般地,对于任意自然数 n 可以表示为 $n=k\cdot 10+r$,其中 $k=0,1,2,\ldots$, $r=0,1,2,\ldots,9$ 。从而有:

$$a_n \le ka_{10} + a_r$$

 $\diamondsuit k = \frac{n-r}{10} \to +\infty$,由此式可知:

$$\inf_{n>1} \frac{a_n}{n} \le \frac{a_n}{n} \le \frac{ka_{10}}{n} + \frac{a_r}{n}$$

此式对一切 n 成立。

令 $n \to +\infty$, 取上下极限。注意 $k/n \to 1/10$, 我们有:

$$\inf_{n\geq 1}\frac{a_n}{n}\leq \liminf_{n\to\infty}\frac{a_n}{n}\leq \limsup_{n\to\infty}\frac{a_n}{n}\leq \inf_{n\geq 1}\frac{a_n}{n}$$

因此:

$$\liminf_{n \to \infty} \frac{a_n}{n} = \limsup_{n \to \infty} \frac{a_n}{n} = \inf_{n \ge 1} \frac{a_n}{n}$$

综上:

$$\lim_{n\to\infty} \frac{a_n}{n} = \inf_{n>1} \frac{a_n}{n}$$

1.3.8

设 $\{a_n\}_{n=1}^{\infty}$ 为正数列, 试证:

$$\limsup_{n \to \infty} n \left(\frac{1 + a_{n+1}}{a_n} - 1 \right) \ge 1$$

证明. 假设 $\limsup_{n\to\infty} n\left(\frac{1+a_{n+1}}{a_n}-1\right)<1$,则存在 $n_0\in\mathbb{N}$,当 $n\geq n_0$ 时,总有:

$$n\left(\frac{1+a_{n+1}}{a_n}-1\right) < 1$$

即:

$$\frac{1+a_{n+1}}{a_m} < 1 + \frac{1}{n}$$

从而:

$$a_n - a_{n+1} > \frac{a_n}{n}$$

依次可得:

$$\frac{a_{n_0}}{n_0} - \frac{a_{n_0+1}}{n_0+1} > \frac{a_{n_0}}{n_0} - \frac{a_{n_0+1}}{n_0+1} + \frac{a_{n_0+1}}{n_0+2} > \cdots$$

相加可得:

$$\frac{a_{n_0}}{n_0} > \frac{1}{n_0} + \frac{1}{n_0 + 1} + \dots + \frac{1}{n}$$

当 n_0 选定后, $\frac{a_{n_0}}{n_0}$ 为定值,而显然:

$$\frac{1}{n_0} + \dots + \frac{1}{n}$$

为无界的,这与假设矛盾。

故假设不成立,得:

$$\limsup_{n\to\infty} n\left(\frac{1+a_{n+1}}{a_n}-1\right)\geq 1$$

1.3.9

设 $\{a_n\}_{n=1}^{\infty}$ 为有界数列,记

$$A_n = \frac{a_1 + a_2 + \dots + a_n}{n}$$

指出 $\limsup a_n$ 与 $\limsup A_n$ 的大小关系并给出证明。

证明. $\limsup A_n \leq \limsup a_n$. 下证。

已知 $\{a_n\}$ 有界,故 $\exists M$ 使得 $|a_n| \leq M$,不妨令 $A = \limsup a_n$, $B = \limsup A_n$ 。 对 $\forall \varepsilon > 0$,由 $A = \limsup A_n$ 及 $|a_n| \leq M$ 可知,在 $\{a_n\}$ 中,只有有限项大于 $A + \varepsilon$,记这些项的最大下标为 m。则当 n > m 时,

$$A_n \le \frac{mM + (n-m)(A+\varepsilon)}{n} \le M\frac{m}{n} + A + \varepsilon$$

当 n 充分大时,有 $A_n \le A + \varepsilon$,由 ε 的任意性可知 $A_n \le A$,故 $B \le A$ 。

因此 $\limsup A_n \leq \limsup a_n$ 。

1.3.10

设 $\{a_n\}_{n=1}^{\infty}$ 是闭区间 [a,b] 内的数列, f 是 [a,b] 上的连续函数。是否一定有

$$f(\limsup a_n) = \limsup f(a_n)?$$

说明理由。

证明. 不一定成立。

不妨令 [a,b] = [0,1],令 $f \in [0,1]$ 上单调连续的概率空间 P。 设 $\{a_n\}$ 构成 P 上的一个事件列。那么

$$P(\limsup A_n) = P\left(\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n\right) = \lim_{k \to \infty} P\left(\bigcup_{n=k}^{\infty} A_n\right) \ge \limsup_{k \to \infty} P(A_n) = \limsup P(A_n)$$

即 $P(\limsup A_n) \ge \limsup P(A_n)$ 。 因此,不一定有 $f(\limsup a_n) = \limsup f(a_n)$ 。 \square

1.4 连续函数作业题

1.4.1

设

$$\lim_{x \to 0} \frac{f(x)}{x} \in \mathbb{R},$$

又有常数 $\alpha \neq 1$ 使得

$$f(x) - f(\alpha x) = o(x) \quad (x \to 0).$$

试证:

$$f(x) = o(x) \quad (x \to 0).$$

证明. 不妨令 $\lim_{x\to 0} \frac{f(x)}{x} = A \in \mathbb{R}$,则显然有

$$\lim_{x \to 0} \frac{f(\alpha x)}{x} = \alpha A$$

结合已知条件可得

$$0 = \lim_{x \to 0} \frac{f(x) - f(\alpha x)}{x} = A - \alpha A = (1 - \alpha)A$$

于是显然 A=0。

由此得证
$$f(x) = o(x) \quad (x \to 0)$$
。

1.4.2

设函数 f,g 在区间 I 上连续,记

$$F(x) = \min\{f(x), g(x)\}, \quad G(x) = \max\{f(x), g(x)\},\$$

试证: F,G 在 I 上连续。

证明. 易知

$$F(x) = \frac{1}{2} \left[f(x) + g(x) - |f(x) - g(x)| \right], \quad G(x) = \frac{1}{2} \left[f(x) + g(x) + |f(x) - g(x)| \right].$$

对于任意 $x_0 \in I$,若 f 在点 x_0 连续,g 在点 x_0 连续,则 f(x), g(x) 在 I 上均连续。易知 |f(x) - g(x)| 在 I 上也连续,故 |f(x) - g(x)| 在区间 I 上连续。

故显然,
$$F(x)$$
, $G(x)$ 在 I 上均连续。

1.4.3

设函数 f 在区间 [a,b] 上连续,记

$$m(x) = \inf_{a \le t \le x} f(t).$$

试证:函数m在[a,b]上连续。

证明. 设 $x_0 \in [a,b]$, 先证明 m(x) 在点 x_0 右连续。

任给 $\epsilon > 0$,由于 f(x) 在点 x_0 处连续,故存在 $\delta > 0$,使得当 $|x - x_0| < \delta$ 时, 恒有 $|f(x) - f(x_0)| < \epsilon$,于是当 $x_0 < x < x_0 + \delta$ 时,有

$$f(x) > f(x_0) - \epsilon \ge m(x_0) - \epsilon$$

而当 $a \le s \le x_0$ 时, $f(s) \ge m(x_0) \ge m(x_0) - \epsilon$,由此可知

$$m(x) \ge \min\{m(x_0), f(x)\} \ge m(x_0) - \epsilon$$

又因为 $m(x_0)$ 显然是递减的,故 $m(x_0) > m(x) \ge m(x_0) - \epsilon$ (当 $x_0 < x < x_0 + \delta$)。 由此可知

$$\lim_{x \to x_0^+} m(x) = m(x_0)$$

即 m(x) 在 x_0 处右连续。

下面证明左连续。不妨设 f(x) 在 $[a, x_0]$ 上的最小值在 $x = x_0$ 时取得,即

$$m(x_0) = f(x_0)$$
 \coprod $m(x) = f(x_0), a \le x < x_0$

显然成立。

当 $x \to x_0^-$ 时, $m(x) = m(x_0)$,从而右连续。

任给 $\epsilon > 0$,同理,存在 $\delta > 0$,当 $x_0 - \delta < x < x_0$ 时,恒有

$$f(x) < f(x_0) + \epsilon = m(x_0) + \epsilon$$

因此

$$m(x_0) \le m(x) \le m(x_0) + \epsilon$$

从而

$$\lim_{x \to x_0^-} m(x) = m(x_0)$$

即 m(x) 在 x_0 处左连续。

综上, m(x) 在 x_0 处左右连续, 由 x_0 的任意性可知, 函数 m 在 [a,b] 上连续。 \square

1.4.4

设函数 f 在原点的某邻域 U 内有界, 且有常数 $\alpha, \beta > 1$ 满足

$$f(\alpha x) = \beta f(x), \quad x \in U$$

试证: f 在原点处连续。

证明. 在 $f(\alpha x) = \beta f(x)$ 中,令 x = 0,而 $\alpha, \beta > 1$,即 $f(0) = f(\alpha \cdot 0) = \beta f(0)$,所以 f(0) = 0。

若证明 $\lim_{x\to 0} f(x) = 0$,则由 $U(0,\delta)$ 有界知 f 在原点连续。由 $f(\alpha x) = \beta f(x)$ 推得 $f(\alpha^n x) = \beta^n f(x)$,f 在 $U(0,\delta)$ 内有界,故当 $x \in (-\delta,\delta)$ 时,|f(x)| < M。

对任意 $\varepsilon > 0$,由 $\beta > 1$,可知存在 $N \in \mathbb{N}$,使得 $\frac{M}{\beta^n} < \varepsilon$ 。取定 n,当 $|x| < \frac{\delta}{\alpha^n}$ 时,显然有

$$|f(x) - 0| = |f(x)| = \beta^n |f(\alpha^n x)| < \beta^n \cdot \frac{M}{\beta^n} < \varepsilon$$

故 $\lim_{x\to 0} f(x) = 0 = f(0)$ 。

综上, f 在原点连续。

1.4.5

设函数 $f: \mathbb{R} \to \mathbb{R}$ 在 0,1 两点连续,且满足

$$f(x^2) = f(x), \quad x \in \mathbb{R}.$$

试证: f是常函数。

证明. 当 $x \in (0,1)$, 由条件可知 $f(x) = f(x^2) = f(x^4) = \cdots = f(x^{2^n})$ 。 由于 f 在 x = 0 处连续,令 $n \to \infty$,则有

$$f(x) = \lim_{n \to \infty} f(x^{2^n}) = f(0)$$

当 x = 1, 由 f 的连续性可得

$$f(1) = \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

又当 $x \in (1, +\infty)$ 时,有

$$f(x) = f(\sqrt{x}) = f((\sqrt{x})^2) = \dots = f((x^{\frac{1}{2^n}})^2)$$

再由 f 在 x = 1 处的连续性有

$$f(x) = \lim_{n \to \infty} f(x^{\frac{1}{2^n}}) = \lim_{x \to 1^+} f(x) = f(1) = f(0)$$

易见 f 为相同常数,故 $f(x) \equiv f(0), x \in (-\infty, +\infty)$ 。 综上,f 为常函数。

1.4.6

设函数 $f: \mathbb{R} \to \mathbb{R}$ 在 x = 0 处有有限的左极限和右极限,且满足

$$f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}, \quad x, y \in \mathbb{R}.$$

试证:

$$f(x) = (f(1) - f(0))x + f(0).$$

证明. 由条件有

$$f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2},$$

记 b = f(0), 则有

$$f(x) + f(y) = f(x+y) + b$$

进而有

$$f(x) - b + f(y) - b = f(x + y) - b$$

 $\Rightarrow q(x) = f(x) - b$, \square

$$g(x) + g(y) = g(x+y)$$

显然, g(x) 满足 Cauchy 方程, 因此 g(x) = g(1)x, 从而有

$$f(x) = g(1)x + b = [f(1) - f(0)]x + f(0)$$

1.4.7

设函数 f 在 [0,2a] 上连续,且 f(0)=f(2a)。试证:存在 $\xi \in [0,a]$ 使得 $f(\xi)=f(\xi+a)$ 。

证明. 因为 f(x) 在 [0,2a] 上连续,则 $\varphi(x)=f(x)-f(x+a)$ 在 [0,a] 上连续。令 $\varphi(0)=f(0)-f(a)$, $\varphi(a)=f(a)-f(2a)=f(a)-f(0)$ 。

若 f(0) - f(a) = 0, 则有 $\xi = 0$ 或 $\xi = a$, 使得 $f(\xi) = f(\xi + a)$ 。

若 $f(0) - f(a) \neq 0$,则有 $\varphi(0) \cdot \varphi(a) < 0$,由零点存在定理可知存在 $\xi \in (0, a)$,使得 $\varphi(\xi) = 0$,即 $f(\xi) = f(\xi + a)$ 。

1.4.8

设函数 f 在 [0,1] 上连续,且 f(0)=f(1)。试证:对于任意正整数 n,存在实数 $\xi\in\left[0,1-\frac{1}{n}\right]$ 满足

$$f\left(\xi + \frac{1}{n}\right) = f(\xi)$$

证明. 当 n = 1 时,因 f(0) = f(1),则取 $\xi = 0$,结论成立。 当 n > 1 时,令 $F(x) = f\left(x + \frac{1}{n}\right) - f(x)$,则

$$F(0) + F\left(\frac{1}{n}\right) + \dots + F\left(\frac{n-1}{n}\right)$$

$$= \left[f\left(\frac{1}{n}\right) - f(0)\right] + \left[f\left(\frac{2}{n}\right) - f\left(\frac{1}{n}\right)\right] + \dots + \left[f(1) - f\left(\frac{n-1}{n}\right)\right]$$

$$= f(1) - f(0) = 0$$

若 $F(0) = F\left(\frac{1}{n}\right) = \cdots = F\left(\frac{n-1}{n}\right) = 0$,取任意 $\xi = 0, \frac{1}{n}, \cdots, \frac{n-1}{n}$ 中一点即可。 若 $F(0), F\left(\frac{1}{n}\right), \cdots, F\left(\frac{n-1}{n}\right)$ 均不全可为 0,则有两项极必为异号。

即 $\exists i, j$, 使得 $F(\xi_i)F(\xi_j) < 0$, $\xi_i, \xi_j \in \{0, \frac{1}{n}, \dots, \frac{n-1}{n}\}$ 。

又因 f(x) 在 [0,1] 连续,由根值存在定理可知,存在 $\xi \in \left[0,1-\frac{1}{n}\right]$,使得 $F(\xi)=0$ 。 即 $f\left(\xi+\frac{1}{n}\right)=f(\xi)$ 。

综上,存在
$$\xi \in \left[0, 1 - \frac{1}{n}\right]$$
满足 $f\left(\xi + \frac{1}{n}\right) = f(\xi)$ 。

1.4.9

设函数 f, g 在 [a, b] 上连续,f 单调,且有数列 $\{x_n\}_{n=1}^{\infty} \subset [a, b]$ 使得对任意正整数 n,有 $g(x_n) = f(x_{n+1})$ 。试证:存在 $\xi \in [a, b]$ 满足 $f(\xi) = g(\xi)$ 。

证明. 设 F(x) = f(x) - g(x),那么 $F(x_n) = f(x_n) - g(x_n) = f(x_n) - f(x_{n+1})$ 。 根据连续函数的介值性可知,存在 $\xi_n \in [x_n, x_{n+1}]$,使得

$$F(\xi_n) = \frac{F(x_n)}{n}.$$

取 $\{\xi_n\}$ 的一个收敛子列 $\{\xi_{n_k}\}$, 其极限设为 ξ , 利用 f 的单调收敛性可知

$$F(\xi) = \lim_{k \to \infty} F(\xi_{n_k}) = \lim_{k \to \infty} \frac{F(x_{n_k})}{n_k} = 0$$

所以 $F(\xi) = 0$,即 $f(\xi) = g(\xi)$, $\xi \in [a, b]$ 。

1.4.10

设函数 f 在 $[0, +\infty)$ 上连续且有界,又对任意实数 c, f(x) = c 只有有限多个解。 试证:

$$\lim_{x\to+\infty}f(x)$$
 存在.

证明. 不妨设 $m_1 < f(x) < M_1$, $x \in [a, +\infty)$, $C_1 = \frac{m_1 + M_1}{2}$, 因为方程 $f(x) = C_1$ 至多只有有限个实根,所以当 x 充分大时,曲线 y = f(x) 与直线 $y = C_1$ 无公共交点,因此当 x 充分大时,f(x) 始终属于 $(m_1, C_1]$ 或 $[C_1, M_1)$ 内。

若 f(x) 属于前者,则令 $[m_2, M_2] = [m_1, C_1]$,否则令 $[m_2, M_2] = [C_1, M_1]$ 。依此 类推,则可得到闭区间列 $\{[m_n, M_n]\}$,满足:

- 1. $[M_{n+1}, M_{n+1}] \subseteq [M_n, M_n], n = 1, 2, 3, \dots$
- 2. $M_n m_n = \frac{M_1 m_1}{2^n} \to 0, \ n \to \infty$
- 3. 对于每个 n, 当 x 充分大时, $f(x) \in (m_n, M_n)$

由闭区间套定理,存在唯一的点 $\xi \in \bigcap_{n=1}^{\infty} [m_n, M_n]$,下证 $\lim_{x\to\infty} f(x) = \xi$ 。 对于任意 $\epsilon > 0$,存在 N,当 n > N 时, $[m_n, M_n] \subset (\xi - \epsilon, \xi + \epsilon)$ 。取 $n_0 > N$,存在 X > 0,当 x > X 时, $f(x) \in (m_{n_0}, M_{n_0})$,于是当 x > X 时,有 $|f(x) - \xi| < 0$

 $M_{n_0} - m_{n_0} < 2\epsilon_{\,\circ}$

$$\epsilon$$
 任意,因此 $\lim_{x\to\infty} f(x) = \xi$ 即 $\lim_{x\to\infty} f(x)$ 存在。

1.5 可微函数作业题

1.5.1

设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,试证:存在点 $\xi \in (a,b)$ 使得

$$f(\xi) - f(a) = f'(\xi)(b - \xi)$$

证明. 要证 $f(\xi) - f(a) = f'(\xi)(b - \xi)$, 只需证

$$(b - \xi)f'(\xi) - [f(\xi) - f(a)] = 0$$

即可。

构造函数 F(x) = (b-x)[f(x)-f(a)], 由题设可知,显然 F(x) 在 [a,b] 上连续,在 (a,b) 上可导。

观察函数 F(x) 可知,F(a) = F(b) = 0,因此 F(x) 在 [a,b] 上满足罗尔定理,由罗尔定理可知,存在一点 $\xi \in (a,b)$,满足 $F'(\xi) = 0$ 。

由
$$F'(x) = (b-x)f'(x) - [f(x) - f(a)]$$
 可知

$$F'(\xi) = (b - \xi)f'(\xi) - [f(\xi) - f(a)] = 0 \iff f(\xi) - f(a) = f'(\xi)(b - \xi)$$

1.5.3

设 f(x), g(x) 在 [a,b] 上连续,在 (a,b) 内可导, $g(x) \neq 0$,且有 f(a)g(b) = f(b)g(a)。 试证:存在点 $\xi \in (a,b)$ 使得

$$f'(\xi)g(\xi) = f(\xi)g'(\xi)$$

证明. 构造 $F(x)=\frac{f(x)}{g(x)}$,由题设可知,F(x) 在 [a,b] 上连续,在 (a,b) 上可导,且 F(a)=F(b)=0。

显然 F(x) 在 [a,b] 上满足罗尔定理,故至少存在一点 $\xi \in (a,b)$,满足 $F'(\xi) = 0$ 。 计算 F'(x):

$$F'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^{2}(x)}$$

因此

故

$$f'(\xi)g(\xi) = f(\xi)g'(\xi)$$

1.5.4

设 f(x) 在 [0,3] 上连续,在 (0,3) 内可导,且

$$f(0) + f(1) + f(2) = 3, \quad f(3) = 1,$$

试证: 存在点 $\xi \in (0,3)$ 使得 $f'(\xi) = 0$ 。

证明. f(x) 在 [0,3] 上连续,所以 f(x) 在 [0,2] 上也连续,从而 f(x) 在 [0,2] 上可取到最大值 M 和最小值 m,于是

$$m \le f(0) \le m$$
, $m \le f(1) \le m$, $m \le f(2) \le M \implies m \le \frac{f(0) + f(1) + f(2)}{3} \le M$.

由介值定理可知,至少存在一点 $\zeta \in [0,2]$,使得

$$f(\zeta) = \frac{f(0) + f(1) + f(2)}{3} = 1.$$

又因为 f(x) 在 $[\zeta,3]$ \subset [0,3] 上连续,在 $(\zeta,3)$ 上可导,且 $f(\zeta)=1=f(3)$,由罗尔定理可知,必存在一点 $\xi \in (\zeta,3) \subset (0,3)$,使得

$$f'(\xi) = 0.$$

1.5.5

设
$$x_1 = 14$$
, $x_{n+1} = \sqrt{2 + x_n}$ $(n = 1, 2, 3, \dots)$ 。

(1) $\not \propto \lim_{n\to\infty} x_n$;

(2)
$$\vec{\times} \lim_{n\to\infty} \left(\frac{4(x_{n+1}-2)}{x_n-2}\right)^{\frac{1}{x_n-2}}$$

证明. **解 5-1**: 不难发现对于 $n \in \mathbb{Z}^+$,都有 $x_n > 0$,首先通过做差法考虑数列的单调性:

$$x_{n+1} - x_n = \sqrt{2 + x_n} - \sqrt{2 + x_{n-1}} = \frac{x_n - x_{n-1}}{\sqrt{2 + x_n} + \sqrt{2 + x_{n-1}}}.$$

从第一个等式可以看出 $x_{n+1}-x_n$ 的正负性与 x_n-x_{n-1} 有关,递推可知 $x_{n+1}-x_n \le x_2-x_1$,由 $x_2-x_1=\sqrt{2+14}-14=-10<0$ 。

因此显然 x_n 单调递减,结合第二个等式显然可得知 x_n 有下界 2。由单调有界定理,不动点定理和压缩映射定理可知 $\sqrt{2+A}=A$,显然 A=2 (此数列的非负性),因此:

$$\lim_{n \to \infty} x_n = A = 2$$

解 5-2: 结合 5-1 结论,令 $I = \lim_{n\to\infty} \left(\frac{4(x_{n+1}-2)}{x_n-2}\right)^{\frac{1}{x_n-2}}$,做出变量替换 $x_n-2=t$, $t\to 0$ 。

$$I = \lim_{t \to 0} \left(\frac{4(\sqrt{t+4}-2)}{t} \right)^{\frac{1}{t}} = \lim_{t \to 0} \left(1 - t + 4(\sqrt{t+4}-2) \right)^{\frac{-t}{t+4(\sqrt{t+4}-2)}}.$$

利用洛必达法则得:

$$\lim_{t \to 0} \frac{-t}{t + 4(\sqrt{t+4} - 2)} = \lim_{t \to 0} \frac{-1}{1 + \frac{4}{2\sqrt{t+4}}} = \frac{-1}{4}$$

故:

$$I = e^{-\frac{1}{16}}$$

1.5.6

设 f(x) 在 [a,b] 上有二阶导数,且满足 f'(a)=f'(b)=0。试证:存在点 $\xi\in(a,b)$ 使得

$$|f''(\xi)| \ge 4 \frac{|f(b) - f(a)|}{(b-a)^2}.$$

证明. 由泰勒定理,对 $\forall x \in (a,b)$,均存在对应的 $\xi_1,\xi_2 \in (a,b)$,使得

$$f(x) = \begin{cases} f(a) + f'(a)(x - a) + \frac{f''(\xi_1)}{2!}(x - a)^2, \\ f(b) + f'(b)(x - b) + \frac{f''(\xi_2)}{2!}(x - b)^2 \end{cases}$$

结合 f'(a) = f'(b) = 0,上面两式相减有

$$|f(b) - f(a)| = \left| \frac{1}{2} f''(\xi_1)(x - a)^2 - \frac{1}{2} f''(\xi_2)(x - b)^2 \right|.$$

观察题证等式,令 $x = \frac{a+b}{2}$,此时 $(x-a)^2 = (x-b)^2 = \frac{(b-a)^2}{4}$,带入上述表达式可得

$$|f(b) - f(a)| = \frac{1}{8}(b - a)^2 \cdot |f''(\xi_1) - f''(\xi_2)|.$$

 $|f''(\xi)| = \max\{|f''(\xi_1)|, |f''(\xi_2)|\}$,则

$$|f(b) - f(a)| \le \frac{1}{8}(b - a)^2 \cdot 2|f''(\xi)|.$$

因此有

$$|f(b) - f(a)| \le \frac{1}{4}(b-a)^2|f''(\xi)|,$$

即

$$|f''(\xi)| \ge 4 \frac{|f(b) - f(a)|}{(b-a)^2}.$$

设 f(x) 有 n+1 阶导数,满足

$$f(a+h) = f(a) + f'(a)h + \frac{f''(a)}{2!}h^2 + \dots + \frac{f^{(n)}(a+\theta h)}{n!}h^n,$$

其中 $0 < \theta < 1$,且 $f^{(n+1)}(a) \neq 0$ 。试证:

$$\lim_{h \to 0} \theta = \frac{1}{n+1}$$

证明. 已知 f(x) 是区间上 n+1 阶可导函数, 所以 f(a+h) 本可以展开到 h^{n+1} , 即有

$$f(a+h) = f(a) + f'(a)h + \frac{f''(a)}{2!}h^2 + \dots + \frac{f^{(n)}(a)}{n!}h^n + \frac{f^{(n+1)}(\eta)}{(n+1)!}h^{n+1},$$

其中 $\eta \in (a,b)$ 。

上面两式作差化简后得

$$\frac{f^{(n+1)}(\eta)}{(n+1)}h = f^{(n)}(a+\theta h) - f^{(n)}(a)$$

拉格朗日中值定理得存在 $\xi \in (a, a+h)$, 使得

$$f^{(n)}(a + \theta h) - f^{(n)}(a) = f^{(n+1)}(\xi) \cdot \theta h,$$

带入得

$$\frac{f^{(n+1)}(\eta)}{(n+1)} = f^{(n+1)}(\xi) \cdot \theta$$

现在利用 $f^{(n+1)}(x)$ 的连续性,结合 $\xi, \eta \to a$ $(h \to 0)$,对上述两端关于 $h \to 0$ 取极限有

$$\frac{f^{(n+1)}(a)}{(n+1)} = f^{(n+1)}(a) \cdot \lim_{h \to 0} \theta$$

再结合 $f^{(n+1)}(a) \neq 0$ 可得证

$$\lim_{h \to 0} \theta = \frac{1}{n+1}$$

设

$$y = x^3 \ln(1+x),$$

求 $y^{(99)}(0)$ 。

证明. 观察变量形式, 根据麦克劳林展开式可得

$$y = x^3 \cdot \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{n+3}}{n}.$$

又由 Taylor 展开式

$$y = y(0) + y'(0)x + \frac{y''(0)}{2}x^2 + \dots + \frac{y^{(99)}(0)}{99!}x^{99} + \dots$$

故而由其唯一性可知,有n+3=99,即n=96,此时

$$y^{(99)}(0) = (-1)^{96-1} \frac{99!}{96} \implies y^{(99)}(0) = -\frac{99!}{96}.$$

1.5.9

试比较 2023²⁰²⁴ 和 2024²⁰²³ 的大小。

证明. 观察发现 2024 > 2023 > e,构造函数 $f(x) = \frac{\ln x}{x}$,观察 f(x) 在 $(e, +\infty)$ 上的单调性。

$$f'(x) = \frac{(\ln x)' \cdot x - x' \cdot \ln x}{r^2} = \frac{1 - \ln x}{r^2} < 0, \quad x \in (e, +\infty)$$

显然, f(x) 在 $(e, +\infty)$ 上单调递减, 即 f(2024) < f(2023)。

$$0 < \frac{\ln 2024}{2024} < \frac{\ln 2023}{2023} \implies 2023 \ln 2024 < 2024 \ln 2023 \implies \ln 2024^{2023} < \ln 2023^{2024}$$
 显然

$$2024^{2023} < 2023^{2024}.$$

就k的不同取值情况,讨论方程

$$x - \frac{\pi}{2}\sin x = k$$

在区间 $(0,\frac{\pi}{2})$ 内根的个数。

证明. 观察方程形式, 构造函数

$$f(x) = x - \frac{\pi}{2}\sin x,$$

研究 f(x) 在 $\left(0, \frac{\pi}{2}\right)$ 上的单调性。

计算 f'(x), 得

$$f'(x) = 1 - \frac{\pi}{2}\cos x.$$

令 f'(x) = 0,可得驻点

$$x_0 = \arccos \frac{2}{\pi}$$
.

结合 $f(0) = f\left(\frac{\pi}{2}\right) = 0$,研究 y = f(x) 与 y = k 的交点。 分情况讨论:

- i. 当 $k \ge 0$ 或 $k < f\left(\arccos\frac{2}{\pi}\right)$ 时,原方程没有根;
- ii. 当 $k = f\left(\arccos\frac{2}{\pi}\right)$ 时,原方程有一个根;
- iii. 当 $f\left(\arccos\frac{2}{\pi}\right) < k < 0$ 时,原方程有两个根。

1.5.11

设p(x)是一个多项式,试证:

- 1. $\lim_{x\to\infty} \frac{p(x)}{e^{|x|}} = 0$;
- 2. $\lim_{x \to \infty} \frac{p(x)}{e^{x^2}} = 0$.

证明. 解 11-1: 不妨设 $p(x) = a_0 + a_1 x + \dots + a_n x^n \ (n \in \mathbb{Z}^+, a_n \in \mathbb{R})$,我们有 $p^{(n)}(x) = n! a_n$ 。

先考虑 x > 0 的情况,此时

$$\lim_{x \to \infty} \frac{p(x)}{e^{|x|}} = \lim_{x \to \infty} \frac{p(x)}{e^x}$$

此时 $p(x), e^x \to \infty (x \to +\infty)$, 洛必达法则

$$\lim_{x \to \infty} \frac{p(x)}{e^x} = \lim_{x \to \infty} \frac{p^{(n)}(x)}{(e^x)^{(n)}} = \lim_{x \to \infty} \frac{n! a_n}{e^x} = 0$$

同理 x<0 的情况, $p(x), e^{|x|} \to \infty (x \to -\infty)$,显然可以得到相同的结论。 因此,综上所述

$$\lim_{x \to \infty} \frac{p(x)}{e^{|x|}} = 0$$

解 11-2:参考 11-1 的解法,

$$\lim_{x \to \infty} \frac{p(x)}{e^{x^2}} = 0$$

分子有限次求导后结果为 0,而分母任意阶导数在 $x \to \infty$ 时都是无穷大量,反复使用洛必达法则即可得

$$\lim_{x \to \infty} \frac{p(x)}{e^{x^2}} = 0$$

1.5.12

定义函数

$$f(x) = \begin{cases} e^{-x^{-2}}, & \exists x \neq 0; \\ 0, & \exists x = 0. \end{cases}$$

1. 对任意正整数 n, 总是有多项式 $p_n(x)$ 使得当 $x \neq 0$ 时

$$f^{(n)}(x) = p_n\left(\frac{1}{x}\right)e^{-x^{-2}};$$

2. $f^{(n)}(0) = 0$, $n = 0, 1, 2, \dots$

证明. 解 12-1: 使用数学归纳法

- 1. 当 n=1 时, $f'(x)=\frac{2}{x^3}e^{-x^{-2}}$ 可知结论成立。
- 2. 现在设 $f^{(k)}(x) = p_k(\frac{1}{x}) e^{-x^{-2}}$ 成立,其中 $p_k(\frac{1}{x})$ 是 $\frac{1}{x}$ 的多项式。
- 3. 则

$$f^{(k+1)}(x) = p_k'\left(\frac{1}{x}\right)\left(-\frac{1}{x^2}\right)e^{-x^{-2}} + p_k\left(\frac{1}{x}\right)\left(\frac{2}{x^3}\right)e^{-x^{-2}} = p_{k+1}\left(\frac{1}{x}\right)e^{-x^{-2}},$$

其中

$$p_{k+1}\left(\frac{1}{x}\right) = \frac{2}{x^3} p_k\left(\frac{1}{x}\right) - \frac{1}{x^2} p_k'\left(\frac{1}{x}\right)$$

仍是 $\frac{1}{x}$ 的多项式。因此假设成立,故对任意正整数 n,总是有多项式 $p_n(x)$ 使得 当 $x \neq 0$ 时有

$$f^{(n)}(x) = p_n\left(\frac{1}{x}\right)e^{-x^{-2}}$$

解 12-2: 结合 11-2 和 12-1 两个结论,再用数学归纳法证明本题:

1. 当 n = 1 时,有

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{e^{-x^{-2}} - 0}{x} \stackrel{y = \frac{1}{x}}{=} \lim_{y \to +\infty} \frac{e^{-y^{2}}}{\frac{1}{y}} = \lim_{y \to +\infty} \frac{y}{e^{y^{2}}} = 0$$

- 2. 现在设 $f^{(k)}(0) = 0$ 成立。
- 3. 则

$$f^{(k+1)}(0) = \lim_{x \to 0} \frac{f^{(k)}(x) - f^{(k)}(0)}{x} = \lim_{x \to 0} \frac{p_k\left(\frac{1}{x}\right)e^{-x^{-2}}}{x} \stackrel{y = \frac{1}{x}}{=} \lim_{y \to +\infty} \frac{p_k(y)e^{-y^2}}{\frac{1}{y}} = 0$$

综上所述,

$$f^{(n)}(0) = 0 \quad (n = 1, 2, 3, \dots)$$

1.5.13

设 f(x) 在全实轴上可导,且有实数 A 使得

$$\lim_{x \to +\infty} \left(f(x) + xf'(x) \right) = A.$$

试证:

$$\lim_{x \to +\infty} f(x) = A.$$

证明. 设函数 f 和 g 在 (a,b) 上可导, $g(x) \neq 0$ 且 $\lim_{x\to a^+} g(x) = \infty$ 。如果极限

$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

存在,那么

$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = \lim_{x \to a^+} \frac{f(x)}{g(x)}.$$

证明如下:

令

$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = l \in \mathbb{R},$$

对任意给定的 $\varepsilon > 0$,存在一个 $\delta > 0$,当 $x \in (a, a + \delta)$ 时,有

$$l - \varepsilon < \frac{f'(x)}{g'(x)} < l + \varepsilon.$$

因此对 $(x,c) \subset (a,a+\delta)$,根据 Cauchy 中值定理,必存在 $\xi \in (x,c)$,使得

$$l - \varepsilon < \frac{f(x) - f(c)}{g(x) - g(c)} = \frac{f'(\xi)}{g'(\xi)} < l + \varepsilon.$$

固定 c, 对 $x \to a^+$ 取上极限,得

$$\limsup_{x\to a^+}\frac{f(x)}{g(x)}\leq l+\varepsilon.$$

$$\limsup_{x \to a^+} \frac{f(x)}{g(x)} \le l.$$

同理可得

$$\liminf_{x \to a^+} \frac{f(x)}{g(x)} \ge l.$$

因此

$$\lim_{x\to a^+}\frac{f(x)}{g(x)}=l\implies \lim_{x\to a^+}\frac{f'(x)}{g'(x)}=\lim_{x\to a^+}\frac{f(x)}{g(x)}=l.$$

令 h(x) = xf(x), g(x) = x,由题目可知,h'(x), g(x), f(x), h(x) 在 \mathbb{R} 上均可导。 分别令 $a = \pm \infty$,即可得到

$$\frac{h'(x)}{g'(x)} = \lim_{x \to \infty} \frac{h(x)}{g(x)} = \lim_{x \to \infty} f(x) = A.$$

因此

$$\lim_{x \to \infty} f(x) = A.$$

设
$$a = \sqrt[3]{3}$$
, $x_1 = a$, $x_{n+1} = a^{x_n} (n = 1, 2, \cdots)$ 。
试证:

- 1. $\lim_{n\to\infty} x_n$ 存在;
- 2. $\lim_{n\to\infty} x_n \neq 3$.

证明. 解 14-(1) 首先用数学归纳法证明对 $\forall n \in \mathbb{Z}^+$,都有 $\sqrt[3]{3} \le x_n < 3$ 。

- 1. 对 n = 1, 2 显然有 $\sqrt[3]{3} \le x_1 < x_2 < 3$;
- 2. 现在设当 k = n 时, $\sqrt[3]{3} \le x_n < 3$ 仍成立;
- 3. 当 k = n + 1 时,显然 $\sqrt[3]{3} < x_n < x_{n+1} = a^{x_n} = a^{a^n} < 3$ 成立。

因此,对 $\forall n \in \mathbb{Z}^+$,都有 $\sqrt[3]{3} \le x_n < 3$,从而得到 x_n 有界。然后通过做差法研究 x_n 的单调性:

$$x_{n+2} - x_{n+1} = a^{x_{n+1}} - a^{x_n} = a^{x_n} (a^{x_{n+1} - x_n} - 1) = a^{x_n} (a^{x_{n+1} - x_n} - 1), \quad [a^n > 0, a^0 = 1].$$

不难看出 $x_{n+2} - x_{n+1}$ 的正负性与 $x_{n+1} - x_n$ 相同,反复递代可知只与 $x_2 - x_1$ 的正负性有关。

 $x_2 - x_1 > 0$,因此对 $\forall n \in \mathbb{Z}^+$,都有 $x_{n+1} - x_n > 0$,易知 x_n 单调递增。由单调有界定理可知,数列 x_n 必有极限,即

$$\lim_{n\to\infty} x_n$$
存在.

解 14-(2) 首先构造函数 $h(x) = \frac{\ln x}{x}$, 研究 h(x) 的单调性。 $h'(x) = \frac{1-\ln x}{x^2} = 0$ (x = e) h(x) 在 (0,e) 上单调递增,在 $(e,+\infty)$ 上单调递减。在 $(0,+\infty)$ 上有极大值 $\frac{1}{e}$ 。

再构造函数 $p(x)=x^x$,不难看出 $p(x)=\frac{1}{e}e^{x\ln x}=e^{h(x)}$,因此有 $p(3)< p(e)\Longrightarrow 3^{\frac{1}{e}}<\frac{1}{e}$ 。

考虑方程 $f(x)=x^x$ 的不动点问题,令 $g(x)=x-a^x$,显然 g(x)=0 的解就是 f(x) 的不动点。

 $g'(x) = a^x \ln a - 1, g''(x) = a^x (\ln a)^2 > 0$,显然 g(x) 单调递增。当 g'(x) < 0 时, $x^* = -\frac{\ln a}{\ln a}$ 。

因此 g(x) 有最小值 $g(x) = \frac{1 + \ln \ln a}{\ln a}$,当 g'(x) < 0 时,解得 $x^* = \frac{1}{e^e}$ 。

当 $1 < a = \frac{1}{33}$ 时,由于 g(x) = 0 是凸函数,g(x) = 0 有且仅有两个根,分别令其为 x_1, x_2 ,它们是 f(x) 的两个不动点,不失一般性,令 $x_1 < x^* < x_2$ 。

- 1. 对于 $x_2 = x^* = -\frac{\ln \ln a}{\ln a}$,由于 $a^{x^2} = x_2$,可得 $|f'(x_2)| = |a^{x^2} \ln a| = x_2 \ln a > -\ln a > 1$ 。
- 2. 对于 $x_1 < x^*$,由于 $f'(x) = x^{x_1} \ln a$,可得 $|f'(x_1)| = |a^{x_1} \ln a| = f(x) \ln a < 1$ 。

因此,当 $1 < a < e^e$ 时,f(x) 有且仅有两个不动点,且较小的点为稳定的不动点,较大的点为不稳定的不动点。

对于 g(x) = 0, 显然有一个解 x = 3, 但

$$3 - x = 3 + \frac{\ln a}{\ln \ln 3} = 3 + \frac{\ln(3\ln 3)}{\ln 3} = 3(\ln 3\ln \ln 3).$$

显然 $x_2 = 3$ 是较大的不稳定的不动点,故 f(x) 不可能收敛于 $x_2 = 3$ 。因此,可得

$$\lim_{n\to\infty} x_n \neq 3.$$

1.6 函数性质作业题

1.6.1

设 n 为正整数, 函数

$$f(x) = \begin{cases} x^n \sin \ln |x|, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

试证: $f \propto x = 0$ 处有 n - 1 阶导数, 但 $f^{(n)}(0)$ 不存在。

证明. 当 n=1 时,由于

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{x^2 \sin(\ln|x|) - 0}{x} = \lim_{x \to 0} x \sin(\ln|x|) = 0,$$

所以 f'(0) = 0。

又因为

$$f'(x) = \begin{cases} 2x \sin(\ln|x|) + x \cos(\ln x), & x > 0, \\ 2x \sin(\ln|x|) + x \cos(\ln(-x)), & x < 0, \end{cases}$$

所以

$$f''(x) = \begin{cases} x \left(2\sin(\ln|x|) + \cos(\ln|x|) \right), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

由于

$$\lim_{x \to 0} \frac{f'(x) - f'(0)}{x} = \lim_{x \to 0} \frac{x \left(2\sin(\ln|x|) + \cos(\ln|x|) \right) - 0}{x} = \lim_{x \to 0} \left(2\sin(\ln|x|) + \cos(\ln|x|) \right),$$

不存在,因此 f''(0) 不存在。

假设 n = k 时,结论成立。当 n = k + 1 时,可得

$$f'(x) = \begin{cases} x^{k+1} ((k+2)\sin(\ln|x|) + \cos(\ln|x|)), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

类似证明,结论成立。

由此可知, 当 f 在 x=0 处有 n-1 阶导数, 必有 $f^{(n)}(0)$ 不存在。

1.6.2

试构造可微函数 f(x) 使得 f'(0) > 0,但对任意 $\delta > 0$,f(x) 在开区间 $(-\delta, \delta)$ 上都不是递增函数。

证明. 设

$$f(x) = \begin{cases} \frac{x}{2} + x^2 \sin \frac{1}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

计算导数,首先验证 x = 0 时:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{\frac{x}{2} + x^2 \sin \frac{1}{x} - 0}{x} = \lim_{x \to 0} \left(\frac{1}{2} + x \sin \frac{1}{x}\right) = \frac{1}{2} > 0.$$

对于 $x \neq 0$, f'(x) 为:

$$f'(x) = \frac{1}{2} - \cos\frac{1}{x} + 2x\sin\frac{1}{x}.$$

 $\stackrel{\text{"}}{=} x_k = \frac{1}{k\pi} (k = 1, 2, \dots)$ 时,

$$f'(x_k) = \frac{1}{2} - (-1)^k.$$

从上述公式可见,在包含零点的任意开区间内,f'(x) 可以取不同符号的值。因此,f(x) 在该开区间内不是单调函数。

1.6.3

试构造在整个实数轴上可导的函数 f(x),使得对任意给定的 $\delta>0$ 和 $\xi\in\mathbb{R}$,总是有一个点列

$$x_n \in (0, \delta), \quad n = 1, 2, 3, \dots$$

使得

证明. 定义函数

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

1. f(x) 在整个实数轴上可导: 当 $x \neq 0$ 时,有

$$f'(x) = \sin\left(\frac{1}{x}\right) - \frac{\cos\left(\frac{1}{x}\right)}{x}.$$

当 x = 0 时,计算

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \sin\left(\frac{1}{x}\right) = 0.$$

2. 导数为任意值 ξ 的点列: 选择点列 $x_n = \frac{1}{n\pi + \arccos(-\xi)}$, 有

$$f'(x_n) = \sin\left(\frac{1}{x_n}\right) - \frac{\cos\left(\frac{1}{x_n}\right)}{x_n} = \xi.$$

3. $\lim_{n\to\infty} x_n = 0$: 因为 $x_n = \frac{1}{n\pi + \arccos(-\xi)}$,随着 $n\to\infty$,有 $\lim_{n\to\infty} x_n = 0$ 。 综上,函数 f(x) 满足题意。

1.6.4

试构造可微函数 f(x) 使得 f'(0) > 0,但对任意 $\delta > 0$,f(x) 在开区间 $(-\delta, \delta)$ 上都不是递增函数。

证明. 设

$$f(x) = \begin{cases} \frac{x}{2} + x^2 \sin \frac{1}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

计算导数,首先验证 x = 0 时:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{\frac{x}{2} + x^2 \sin \frac{1}{x} - 0}{x} = \lim_{x \to 0} \left(\frac{1}{2} + x \sin \frac{1}{x}\right) = \frac{1}{2} > 0.$$

对于 $x \neq 0$, f'(x) 为:

$$f'(x) = \frac{1}{2} - \cos\frac{1}{x} + 2x\sin\frac{1}{x}.$$

 $\stackrel{\underline{\,}}{\underline{\,}} x_k = \frac{1}{k\pi} (k = 1, 2, \dots) \; \exists \!\!\!\! \uparrow \, ,$

$$f'(x_k) = \frac{1}{2} - (-1)^k.$$

从上述公式可见,在包含零点的任意开区间内,f'(x) 可以取不同符号的值。因此,f(x) 在该开区间内不是单调函数。

1.6.5

试构造在整个实数轴上有任意阶导数的函数 f(x),使得 f(x) 的任意阶 Maclaurin 多项式都等于零,但对任意 $x \neq 0$,都有

$$f(x) > 0.$$

证明. 从可微函数) 第12题(1.5.12)可以得到如下结论:

设

$$f(x) = \begin{cases} e^{-x^{-2}}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

有

$$f^{(n)}(0) = 0.$$

由此结论可知,此函数在 x=0 这一点的泰勒展开式为零多项式,即此函数的任意阶 Maclaurin 多项式都等于零,且满足题干所要求的值域问题。

1.7 积分作业题

1.7.1

求积分

$$I = \int_0^2 \frac{x}{e^x + e^{2-x}} \, \mathrm{d}x.$$

证明. 设

$$I = \int_0^2 \frac{x}{e^x + e^{2-x}} \, \mathrm{d}x = I_1 + I_2,$$

其中

$$I_1 = \int_0^1 \frac{x}{e^x + e^{2-x}} dx, \quad I_2 = \int_1^2 \frac{x}{e^x + e^{2-x}} dx.$$

对于 I_2 , 作变量替换 t = 2 - x, 则有

$$I_2 = \int_1^2 \frac{2-x}{e^x + e^{2-x}} dx = \int_0^1 \frac{t}{e^{2-t} + e^t} dt.$$

注意到 $I_2 = -I_1 + \int_0^1 \frac{2}{e^x + e^{2-x}} \, \mathrm{d}x$ 。

因此

$$I = I_1 + I_2 = 2 \int_0^1 \frac{\mathrm{d}x}{e^x + e^{2-x}}.$$

 $t = e^x$,则

$$\int_0^1 \frac{\mathrm{d}x}{e^x + e^{2-x}} = \int_1^e \frac{\mathrm{d}t}{t^2 + e^2}.$$

从而

$$I = \frac{2}{e} \arctan \frac{t}{e} \Big|_{1}^{e} = \frac{2}{e} \left(\arctan 1 - \arctan \frac{1}{e} \right).$$

计算得

$$I = \frac{2}{e} \left(\frac{\pi}{4} - \arctan \frac{1}{e} \right).$$

1.7.2

设函数 f 是 [0,1] 上的连续函数,且满足

$$\int_0^1 x^n f(x) \, \mathrm{d}x = 1, \quad \int_0^1 x^k f(x) \, \mathrm{d}x = 0, \quad k = 0, 1, \dots, n - 1.$$

试证:

$$\max_{0 \le x \le 1} |f(x)| \ge 2^n (n+1).$$

证明. 此题可化简为证明: 存在 $\xi \in [0,1]$, 使得 $|f(\xi)| \ge 2^n(n+1)$ 。 使用反证法,假设对 $\forall x \in [0,1]$, $|f(x)| < 2^n(n+1)$, 则

$$I = \int_0^1 x^n f(x) \, \mathrm{d}x = \int_0^1 (x - \frac{1}{2})^n f(x) \, \mathrm{d}x.$$

根据绝对值不等式,有

$$\leq \int_0^1 |(x-\frac12)^n| \cdot |f(x)| \,\mathrm{d} x < 2^n (n+1) \int_0^1 |(x-\frac12)^n| \,\mathrm{d} x.$$

$$= 2^n (n+1) \left[\int_0^{1/2} (x-\frac12)^n \,\mathrm{d} x + \int_{1/2}^1 (x-\frac12)^n \,\mathrm{d} x \right].$$

$$< 2^n (n+1) \cdot 2 \int_0^{1/2} (x-\frac12)^n \,\mathrm{d} x = 2^{n+1} (n+1) \cdot \frac{1}{n+1} (x-\frac12)^{n+1} \Big|_0^{1/2} = 1.$$
 矛盾。因此,必定存在 $\xi \in [0,1]$,使得 $|f(\xi)| \geq 2^n (n+1)$ 。

$$\max_{0 \le x \le 1} |f(x)| \ge 2^n (n+1).$$

1.7.3

设函数 f 在 [0,1] 上有二阶连续导数,f(0) = f(1) = 0,且当 $x \in (0,1)$ 时 $f(x) \neq 0$ 。试证:

$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| \, \mathrm{d}x \ge 4.$$

证明. 利用连续函数性质及拉格朗日微分中值定理证明。

由于题意,设 f(x) 在 [0,1] 上有最大值,记为 $f(x_0)$,其中 $x_0 \in (0,1)$ 。 由拉格朗日微分中值定理,有

$$\frac{f(x_0) - f(0)}{x_0} = f'(\xi_1), \quad \xi_1 \in (0, x_0);$$

$$\frac{f(1) - f(x_0)}{1 - x_0} = f'(\xi_2), \quad \xi_2 \in (x_0, 1).$$

即

$$f'(\xi_1) = \frac{f(x_0)}{x_0}, \quad f'(\xi_2) = -\frac{f(x_0)}{1 - x_0}.$$

于是

$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| \, \mathrm{d}x \ge \int_0^{\xi_1} \left| \frac{f''(x)}{f(x)} \right| \, \mathrm{d}x + \int_{\xi_1}^{\xi_2} \left| \frac{f''(x)}{f(x)} \right| \, \mathrm{d}x + \int_{\xi_2}^1 \left| \frac{f''(x)}{f(x)} \right| \, \mathrm{d}x.$$

由拉格朗日中值定理,

$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| \, \mathrm{d}x \ge \frac{1}{f(x_0)} \left(\frac{f(x_0)}{x_0} + \frac{f(x_0)}{1 - x_0} \right).$$

进一步化简得

$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| \, \mathrm{d} x \ge \frac{1}{x_0(1-x_0)}.$$

当 $x_0 = \frac{1}{2}$ 时, $x_0(1 - x_0) = \frac{1}{4}$,从而

$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| \, \mathrm{d}x \ge 4.$$

故得证。

1.7.4

设函数 f(x) 在 [a,b] 上连续可导。试证:

$$\max_{a \le x \le b} |f(x)| \le \frac{1}{b-a} \left| \int_a^b f(x) \, \mathrm{d}x \right| + \int_a^b |f'(x)| \, \mathrm{d}x.$$

证明. 由于 f(x) 在 [a,b] 上连续,可设 $|f(\xi)| = \max_{a \le x \le b} |f(x)|, \xi \in [a,b]$ 及 $|f(\eta)| = \min_{a \le x \le b} |f(x)|, \eta \in [a,b]$ 。于是

$$\max_{a\leq x\leq b}|f(x)|-\min_{a\leq x\leq b}|f(x)|=|f(\xi)|-|f(\eta)|\leq |f(\xi)-f(\eta)|=\left|\int_{\eta}^{\xi}f'(x)\,\mathrm{d}x\right|\leq \int_{a}^{b}|f'(x)|\,\mathrm{d}x.$$

另一方面,由积分中值定理, $\exists \zeta \in [a,b]$,使得

$$f(\zeta) = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x,$$

于是

$$\min_{a \le x \le b} |f(x)| \le |f(\zeta)| = \frac{1}{b-a} \left| \int_a^b f(x) \, \mathrm{d}x \right|.$$

因此

$$\begin{split} \max_{a \leq x \leq b} |f(x)| &= \min_{a \leq x \leq b} |f(x)| + (\max_{a \leq x \leq b} |f(x)| - \min_{a \leq x \leq b} |f(x)|) \\ &\leq \frac{1}{b-a} \left| \int_a^b f(x) \, \mathrm{d}x \right| + \int_a^b |f'(x)| \, \mathrm{d}x. \end{split}$$

故得证。

1.7.5

设函数 f(x) 在 [0,a] 上二阶连续可导 (a>0),且 $f''(x) \ge 0$ 。试证:

$$\int_0^a f(x) \, \mathrm{d}x \ge a f\left(\frac{a}{2}\right).$$

证明. 将 f(x) 在 $x = \frac{a}{2}$ 展开成 1 阶 Taylor 公式,有

$$f(x) = f\left(\frac{a}{2}\right) + f'\left(\frac{a}{2}\right)\left(x - \frac{a}{2}\right) + \frac{1}{2}f''(\xi)\left(x - \frac{a}{2}\right)^2, \quad (0 < \xi < a).$$

由 $f''(x) \ge 0$,得到

$$f(x) \ge f\left(\frac{a}{2}\right) + f'\left(\frac{a}{2}\right)\left(x - \frac{a}{2}\right).$$

对上述不等式两边从0到 a 积分,由于

$$\int_0^a \left(x - \frac{a}{2} \right) \, \mathrm{d}x = 0,$$

就得到

$$\int_0^a f(x) \, \mathrm{d}x \ge a f\left(\frac{a}{2}\right).$$

1.7.6

设函数 f 在区间 $[-\pi,\pi]$ 上是凸函数,f'(x) 在 $(-\pi,\pi)$ 内存在且有界。试证:

$$\int_{-\pi}^{\pi} f(x) \cos((2n+1)x) \, \mathrm{d}x \le 0.$$

证明. 由条件可知, f'(x) 在 $[-\pi,\pi]$ 上必为一递增函数。

即有

$$\int_{-\pi}^{\pi} f(x) \cos((2n+1)x) \, \mathrm{d}x = -\frac{1}{2n+1} \int_{-\pi}^{\pi} f'(x) \sin((2n+1)x) \, \mathrm{d}x \ge 0.$$

1.7.7

设函数 f(x), g(x) 在区间 [a,b] 上可积, 试证:

$$\left(\int_a^b f(x)g(x)\,\mathrm{d}x\right)^2 \le \int_a^b f(x)^2\,\mathrm{d}x \cdot \int_a^b g(x)^2\,\mathrm{d}x.$$

证明. 设 t 为实参数,则

$$\int_{a}^{b} \left(f(x) + tg(x) \right)^{2} dx \ge 0,$$

即

$$\int_{a}^{b} g(x)^{2} dx \cdot t^{2} + 2 \left[\int_{a}^{b} f(x)g(x) dx \right] t + \int_{a}^{b} f(x)^{2} dx \ge 0.$$

\$

$$A = \int_a^b g(x)^2 dx$$
, $B = \int_a^b f(x)g(x) dx$, $C = \int_a^b f(x)^2 dx$,

作为 t 的一元二次不等式 $At^2+2Bt+C\geq 0$,则必有 $B^2-AC\leq 0$,即 $B^2\leq AC$ 。 因此

$$\left(\int_a^b f(x)g(x)\,\mathrm{d}x\right)^2 \le \int_a^b f(x)^2\,\mathrm{d}x \cdot \int_a^b g(x)^2\,\mathrm{d}x.$$

1.7.8

设函数 f(x), g(x) 在区间 [a,b] 上可积, 试证:

$$\left(\int_a^b (f(x) + g(x))^2 \, \mathrm{d}x \right)^{\frac{1}{2}} \le \left(\int_a^b f(x)^2 \, \mathrm{d}x \right)^{\frac{1}{2}} + \left(\int_a^b g(x)^2 \, \mathrm{d}x \right)^{\frac{1}{2}}.$$

证明. 由展开式

$$\left(\left(\int_{a}^{b} f^{2}(x) \, \mathrm{d}x \right)^{\frac{1}{2}} + \left(\int_{a}^{b} g^{2}(x) \, \mathrm{d}x \right)^{\frac{1}{2}} \right)^{2}$$

$$= \int_{a}^{b} f^{2}(x) \, \mathrm{d}x + \int_{a}^{b} g^{2}(x) \, \mathrm{d}x + 2\sqrt{\int_{a}^{b} f^{2}(x) \, \mathrm{d}x \cdot \int_{a}^{b} g^{2}(x) \, \mathrm{d}x}.$$

根据 Cauchy-Schwarz 不等式,

$$\sqrt{\int_a^b f^2(x) \, \mathrm{d} x \cdot \int_a^b g^2(x) \, \mathrm{d} x} \ge \left| \int_a^b f(x) g(x) \, \mathrm{d} x \right|.$$

因此

$$\left(\left(\int_a^b f^2(x) \, \mathrm{d}x \right)^{\frac{1}{2}} + \left(\int_a^b g^2(x) \, \mathrm{d}x \right)^{\frac{1}{2}} \right)^2 \geq \int_a^b f^2(x) \, \mathrm{d}x + \int_a^b g^2(x) \, \mathrm{d}x + 2 \int_a^b f(x) g(x) \, \mathrm{d}x.$$

由此可得

$$\left(\left(\int_a^b f^2(x) \, \mathrm{d}x \right)^{\frac{1}{2}} + \left(\int_a^b g^2(x) \, \mathrm{d}x \right)^{\frac{1}{2}} \right)^2 \ge \int_a^b \left(f(x) + g(x) \right)^2 \, \mathrm{d}x.$$

两边取平方根,即得

$$\left(\int_{a}^{b} (f(x) + g(x))^{2} dx \right)^{\frac{1}{2}} \leq \left(\int_{a}^{b} f^{2}(x) dx \right)^{\frac{1}{2}} + \left(\int_{a}^{b} g^{2}(x) dx \right)^{\frac{1}{2}}.$$

1.7.9

求定积分

$$I_n = \int_0^{\frac{\pi}{2}} \cos^n x \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x, \quad n = 0, 1, 2, \dots$$

证明. 首先证明等式

$$\int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \cos^n x \, \mathrm{d}x.$$

设 $x = \frac{\pi}{2} - t$, 则 dx = -dt, 当 x = 0 时, $t = \frac{\pi}{2}$; 当 $x = \frac{\pi}{2}$ 时, t = 0。于是

$$\int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x = \int_{\frac{\pi}{2}}^0 \sin^n \left(\frac{\pi}{2} - t\right) (-\mathrm{d}t) = \int_0^{\frac{\pi}{2}} \sin^n \left(\frac{\pi}{2} - t\right) \, \mathrm{d}t.$$

由 $\sin\left(\frac{\pi}{2} - t\right) = \cos t$,得

$$\int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \cos^n t \, \mathrm{d}t = \int_0^{\frac{\pi}{2}} \cos^n x \, \mathrm{d}x.$$

再由定积分分部积分公式,得

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx = \int_0^{\frac{\pi}{2}} \sin^{n-1} x \cdot \cos x \, dx,$$

令 $u = \sin^{n-1} x, v' = \cos x$, 则 $u' = (n-1)\sin^{n-2} x \cos x$, $v = \sin x$, 于是

$$I_n = \sin^{n-1} x \sin x \Big|_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \sin x \cdot (n-1) \sin^{n-2} x \cos x \, \mathrm{d}x.$$

化简得

$$I_n = (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x (1 - \sin^2 x) \, \mathrm{d}x,$$

$$I_n = (n-1) \int_0^{\frac{n}{2}} \sin^{n-2} x \, \mathrm{d}x - (n-1) \int_0^{\frac{n}{2}} \sin^n x \, \mathrm{d}x.$$

 $\Leftrightarrow \int_0^{\frac{\pi}{2}} \sin^{n-2} x \, \mathrm{d}x = I_{n-2}, \ \text{M}$

$$I_n = (n-1)I_{n-2} - (n-1)I_n,$$

$$I_n + (n-1)I_n = (n-1)I_{n-2},$$

$$I_n = \frac{n-1}{n}I_{n-2}, \quad (n \ge 2).$$

这个等式叫作积分 I_n 关于下标 n 的递推公式。如果将 n 换成 n-2,则有

$$I_{n-2} = \frac{n-3}{n-2}I_{n-4}.$$

同样地依次进行下去,直到 I_n 的下标递减到 0 或 1 为止,于是

$$I_{2m} = \frac{2m-1}{2m} \cdot \frac{2m-3}{2m-2} \cdot \dots \cdot \frac{1}{2} \cdot I_0,$$

$$I_{2m+1} = \frac{2m}{2m+1} \cdot \frac{2m-2}{2m-1} \cdot \dots \cdot \frac{2}{3} \cdot \frac{2}{1} \cdot I_1.$$

其中当 n=0 时, $\sin^0 x=1$,

$$I_0 = \int_0^{\frac{\pi}{2}} \mathrm{d}x = \frac{\pi}{2}.$$

因此,

$$I_1 = \int_0^{\frac{\pi}{2}} \sin x \, \mathrm{d}x = -\cos x \Big|_0^{\frac{\pi}{2}} = 1.$$

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdots \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}, \quad n \neq \emptyset$$

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdots \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} \cdot 1, \quad n \not \in \hat{\pi} \not \&.$$

1.7.10

设 $(0, +\infty)$ 上的连续函数 f(x) 满足

$$f(x) = \ln x - \int_1^e f(x) \, dx,$$

求

$$I = \int_1^e f(x) \, dx.$$

证明. 记

$$\int_{1}^{e} f(x) \, \mathrm{d}x = a,$$

则 $f(x) = \ln x - a$,于是

$$a = \int_{1}^{e} f(x) dx = \int_{1}^{e} \ln x dx - a(e - 1),$$

所以

$$a = \frac{1}{e} \int_{1}^{e} \ln x \, \mathrm{d}x = \frac{1}{e} \left(x \ln x - x \right) \Big|_{1}^{e} = \frac{1}{e}.$$

1.7.11

设函数 f(x) 连续且满足

$$\int_0^1 t f(2x - t) dt = \frac{1}{2} \arctan x^2, \quad f(1) = 1.$$

求

$$I = \int_1^2 f(x) \, dx.$$

证明.由

$$\int_0^x f(2x - t) dt = \int_x^{2x} (2x - u) f(u)(-du),$$

即

$$\int_0^x f(2x-t) \, \mathrm{d}t = \int_x^{2x} (2x-u) f(u) \, \mathrm{d}u = 2x \int_x^{2x} f(u) \, \mathrm{d}u - \int_x^{2x} u f(u) \, \mathrm{d}u.$$

得

$$2x \int_{x}^{2x} f(u) du - \int_{x}^{2x} u f(u) du = \frac{1}{2} \arctan^{2} x,$$

等式两边对 x 求导得

$$2\left[2xf(2x) + 2x\int_{x}^{2x} f(u) du - f(x) - 4xf(x)\right] + xf(x) = \frac{x}{1+x^{2}},$$

整理得

$$2\int_{x}^{2x} f(u) \, \mathrm{d}u - x f(x) = \frac{x}{1 + x^{2}}.$$

取 x = 1 得

$$2\int_{1}^{2} f(u) \, \mathrm{d}u - f(1) = \frac{1}{2},$$

故

$$\int_1^2 f(x) \, \mathrm{d}x = \frac{3}{4}.$$

1.7.12

设函数

$$S(x) = \int_0^x |\cos t| \, dt,$$

求

$$\lim_{x \to +\infty} \frac{S(x)}{x}.$$

证明. 设 $n\pi < x \le (n+1)\pi, n$ 为正整数,则 $\frac{x}{n} \to \pi$ 当 $x \to +\infty$ 。由

$$\int_0^{n\pi} |\cos x| \, dx = n, \quad \int_0^x |\cos x| \, dx = 2n \le \int_{n\pi}^x |\cos x| \, dx \le \int_{n\pi}^\infty |\cos x| \, dx = \pi,$$

可知

$$2n \le S(x) \le 2n + \pi.$$

因此,得

$$\frac{2n}{x} \le \frac{S(x)}{x} \le \frac{2n + \pi}{x}.$$

当 $x \to +\infty$ 时, $\frac{2n}{x} \to 0$ 和 $\frac{2n+\pi}{x} \to 0$,从而

$$\lim_{x \to +\infty} \frac{S(x)}{x} = \frac{2}{\pi}.$$

1.7.13

设函数 f(x) 在 $(0,+\infty)$ 上连续, 证明

$$\int_{1}^{4} f\left(\frac{x}{2} + \frac{2}{x}\right) \frac{\ln x}{x} dx = \ln 2 \int_{1}^{4} f\left(\frac{x}{2} + \frac{2}{x}\right) \frac{1}{x} dx.$$

$$\int_{1}^{4} f\left(\frac{x}{2} + \frac{2}{x}\right) \ln \frac{x}{x} dx = \int_{4}^{1} f\left(\frac{t}{2} + \frac{2}{t}\right) t \left(\ln 4 - \ln t\right) \left(-\frac{4}{t^{2}}\right) dt.$$

$$= \int_{1}^{4} f\left(\frac{x}{2} + \frac{2}{x}\right) \ln 4 - \ln x \, dx$$

所以

$$\int_{1}^{4} f\left(\frac{x}{2} + \frac{2}{x}\right) \ln \frac{x}{x} dx = (\ln 2) \int_{1}^{4} f\left(\frac{x}{2} + \frac{2}{x}\right) dx.$$

1.7.14

设函数 f(x) 在 [0,1] 上有二阶连续导数,满足

$$f(0) = f(1) = 0$$
, $f'(0) = 0$, $f'(1) = 1$.

试证

$$\int_{0}^{1} (f''(x))^{2} dx \ge 4,$$

并指出不等式中等号成立的条件。

证明. 构造一个三次多项式 p(x),满足 p(0)=p(1)=0, p'(0)=0, p'(1)=1。于是有 $p(x)=kx^2(x-1),\quad 1=p'(1)=k\cdot 1\cdot (1-1)=k,\quad \ \ \, \exists \quad p(x)=x^3-x^2,\quad p'(x)=3x^2-2x,$ $p''(x)=6x-2,\quad p^{(3)}(x)=0.$

因此

$$\int_0^1 [p''(x)]^2 dx = \int_0^1 (36x^2 - 24x + 4) dx = 12 - 12 + 4 = 4.$$

当 $f(x) = x^3 - x^2$ 时, 等号成立。考虑积分

$$\int_0^1 \left(f''(x)^2 - [p''(x)]^2 \right) dx$$

有

$$= \int_0^1 [f''(x) - p''(x)]^2 dx + 2 \int_0^1 f'(x)p^{(3)}(x)dx - 2 \int_0^1 p''(x)f^{(3)}(x)dx = 8$$

所以

$$\int_0^1 (f''(x))^2 dx \ge \int_0^1 [p''(x)]^2 dx = 4$$

且等号成立当 f(x) = p(x) 时。再由 f 与 p 满足条件,得

$$f(x) = p(x) = x^3 - x^2$$
.

1.7.15

设函数 f(x) 在 [0,1] 上非负连续,且严格递增。对每个正整数 n,记

$$F_n(x) = f(x)^n$$
, $\mathfrak{F}_n(x) = f(x)^n$.

证明

$$\lim_{n\to\infty}\theta_n=1.$$

证明. 由条件,对每个 $n, F_n(x)$ 在 [0,1] 上也都是非负、严格递增的连续函数。 对 $\epsilon > 0$ ($\epsilon < \frac{1}{2}$),因为

$$0 \le \frac{f(1-2\epsilon)}{f(1-\epsilon)} < 1 \quad \Rightarrow \quad \lim_{n \to \infty} \left(\frac{f(1-2\epsilon)}{f(1-\epsilon)}\right)^n = 0,$$

所以存在 N > 0, 当 n > N 时,

$$\left(\frac{f(1-2\epsilon)}{f(1-\epsilon)}\right)^n = \frac{F_n(1-2\epsilon)}{F_n(1-\epsilon)} < \epsilon.$$

从而又有

$$F_n(1-2\epsilon) < \epsilon F_n(1-\epsilon) < \int_{1-\epsilon}^1 F_n(x) \, dx < \int_0^1 F_n(x) \, dx = F_n(\theta_n).$$

再由 $F_n(x)$ 为严格递增,得知 n > N 时满足

$$1 - 2\epsilon < \theta_n < 1.$$

这就证明得

$$\lim_{n\to\infty}\theta_n=1.$$

2 第二部分: 等距分划下的 Riemann 积分

2.1 黎曼积分的定义

设 f 是定义在 [a,b] 上的一个函数。如果存在一个实数 I,使得任意 $\epsilon > 0$,存在 $\delta > 0$,对于 [a,b] 的任意一个分割

$$P: a = x_0 < x_1 < \dots < x_{n-1} < x_n = b,$$

只要其宽度

$$||P|| = \max_{1 \le k \le n} \Delta x_k < \delta, \quad \text{iff} \quad \Delta x_k = x_k - x_{k-1}, \ k = 1, 2, \dots, n,$$

那么,在每个子区间 $[x_{k-1},x_k]$ 上任取一点 ξ_k ,都有

$$\left| \sum_{k=1}^{n} f(\xi_k) \Delta x_k - I \right| < \epsilon,$$

我们就说 f 在 [a,b] 上可积, 称为 f 在 [a,b] 上的黎曼积分, 简称积分, 记为

$$\lim_{\|P\|\to 0} \sum_{k=1}^n f(\xi_k) \Delta x_k = \int_a^b f(x) \, \mathrm{d}x = I.$$

2.2 问题

如果将上述定义中的分割 P 改成对区间 [a,b] 实行 n 等分,即要求所有 Δx_k 都相等,这样得出的可积性以及积分的定义与原来的定义是否等价? 为什么?

2.3 可积的第一第二充要条件

等距分划

称点集 $P = \{x_0, x_1, \dots, x_{n-1}, x_n\}$ 为 [a, b] 的一个分割,如果满足条件:

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b.$$

记 $\Delta x_i = x_i - x_{i-1}, \ i = 1, \dots, n$,并称 $\|P\| = \max_{1 \le i \le n} \{\Delta x_i\}$ 为分割 P 的细度。 如果 $\Delta x_i = \frac{b-a}{n}, \ i = 1, \dots, n$,则称 P 为**等距分划**。

介点集与 Riemann 积分和

设 $P = \{x_0, x_1, \cdots, x_{n-1}, x_n\}$ 为区间 [a, b] 的一个分割。对每个子区间 $[x_{i-1}, x_i]$,任选 $\xi_i \in [x_{i-1}, x_i]$,则称 $\xi = \{\xi_i \mid i = 1, 2, \cdots, n\}$ 为从属于 P 的一个 **介点集**;并称和式

$$\sum_{i=1}^{n} f(\xi_i) \Delta x_i \quad \overrightarrow{\mathbb{P}} \quad \sum_{P} f(\xi_i) \Delta x_i$$

为 f 在区间 [a,b] 上的一个 **Riemann (积分)** 和。

可积与定积分

设 I 为实数,且有

$$\lim_{\|P\| \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i = I,$$

即 $\forall \epsilon > 0, \exists \delta > 0$,对 $\|P\| < \delta$ 的每个分割 P,以及对从属于 P 的每个介点集 ξ ,成立

$$\left| \sum_{i=1}^{n} f(\xi_i) \Delta x_i - I \right| < \epsilon,$$

则称函数 f 在区间 [a,b] 上 **Riemann 可积**或简称 **可积**,记为

$$f \in R[a,b],$$

并称 I 为 f 在区间 [a,b] 上的 **Riemann 积分**或 定积分,简称积分,记为

$$\int_{a}^{b} f(x) \, \mathrm{d}x = I, \quad$$
或其简化记号
$$\int_{a}^{b} f = I.$$

振幅与振幅面积

为叙述可积的充分必要条件,需要引入以下概念。设函数 f 在区间 [a,b] 上有界, $P = \{x_0, x_1, \cdots, x_{n-1}, x_n\}$ 为 [a,b] 的一个分割,对 $i = 1, \cdots, n$,记

$$M_i = \sup\{f(x) \mid x \in [x_{i-1}, x_i]\} \quad = \inf\{f(x) \mid x \in [x_{i-1}, x_i]\},\$$

称 $\omega_i = M_i - m_i$ 为 f 在 $[x_{i-1}, x_i]$ 上的振幅, $\sum_{i=1}^n \omega_i \Delta x_i$ 为 f 的振幅面积。

可积的第一充分必要条件

命题 2.3.5 (可积的第一充分必要条件)

有界函数 $f \in R[a,b]$ 的充分必要条件是

$$\lim_{\|P\| \to 0} \sum_{i=1}^{n} \omega_i \Delta x_i = 0.$$

可积的第二充分必要条件

命题 2.3.6 (可积的第二充分必要条件)

有界函数 $f \in R[a,b]$ 的充分必要条件是对每个 $\varepsilon > 0$,存在区间 [a,b] 的一个分割 P,使成立

$$\sum_{P} \omega_i \Delta x_i < \varepsilon.$$

这两个命题在许多教科书上都有具体的证明过程,在此不作证明直接使用。 证明过程可详见参考文献[1][2]

2.4 Riemann 积分引理

引理叙述

设 $f \in R[a,b]$ 且

$$\int_{a}^{b} f = I,$$

其充分必要条件是存在 [a,b] 的一个分割序列 $\{P_k\}_{k\in\mathbb{N}_+}$,满足条件

$$\lim_{k\to\infty} ||P_k|| = 0,$$

使得

$$\lim_{k \to \infty} \sum_{i=1}^{n_k} f(\xi_{k,i}) \Delta x_{k,i} = I,$$

且极限值不依赖于介点集的选取。

引理证明

必要性显然,下面证明充分性。

既然极限值不依赖于介点集的选取, 那么我们有

$$\lim_{k \to \infty} \sum_{i=1}^{n_k} \left(\sup_{(\xi_{k,i} \in [x_{k,i-1}, x_{k,i}])} f(\xi_{k,i}) \right) \Delta x_{k,i} = \lim_{k \to \infty} \sum_{i=1}^{n_k} \left(\inf_{(\xi_{k,i} \in [x_{k,i-1}, x_{k,i}])} f(\xi_{k,i}) \right) \Delta x_{k,i} = I.$$

两者相减得到

$$\lim_{k \to \infty} \sum_{i=1}^{n_k} \omega_i \Delta x_{k,i} = 0,$$

其中 $\omega_i = M_i - m_i$ 表示 f 在 $[x_{k,i-1}, x_{k,i}]$ 上的振幅。

故根据可积的第一充分必要条件, $f \in R[a,b]$ 。由于

$$\lim_{k \to \infty} \sum_{i=1}^{n_k} f(\xi_{k,i}) \Delta x_{k,i} = I,$$

根据积分函数点集选取的任意性性质,有

$$\int_{a}^{b} f(x) \, \mathrm{d}x = I.$$

2.5 问题 2.2 解答

问题描述

如果将黎曼积分定义中的分割 P 改成对区间 [a,b] 进行 n 等分,即所有 Δx_k 相等,这样得出的可积性以及积分的定义是否与原定义等价?为什么?

问题解答

引理 2.4.1 表明 Riemann 积分的定义中分划的任意性要求可以降低,例如等距分划也是可以的。[3] 对于任意一个函数 f,若其在 [a,b] 上 Riemann 可积,则对于任意分割序列 $\{P_k\}$,只要 $\|P_k\| \to 0$,都可以得出相同的积分值。因此,将分割改为等距分划不会改变函数的可积性以及积分值。

具体而言,设 P_k 为等距分割,每个子区间长度为

$$\Delta x = \frac{b - a}{n_k},$$

根据 Riemann 积分定义,当 $n_k \to \infty$ 时,仍满足

$$\lim_{n_k \to \infty} \sum_{i=1}^{n_k} f(\xi_{k,i}) \Delta x = \int_a^b f(x) \, \mathrm{d}x.$$

因此, 等距分划定义的黎曼积分与原定义等价。

3 第三部分: 离散动力系统的混沌现象

3.1 周期点、周期轨道与不动点

假设 I 是一个区间,函数 $f:I\to I$ 。对任意 $x\in I$,我们规定

$$f^{0}(x) = x$$
, $f^{1}(x) = f(x)$, $f^{n+1}(x) = f(f^{n}(x))$, $n = 1, 2, 3, \dots$

这样得到的函数 $f^n: I \to I$ 称为 f 的第 n 次迭代 $(n = 0, 1, 2, \cdots)$ 。显然, f^0 就是恒等映射, f^1 就是 f 自身。

对给定的 $x \in I$, 我们考虑点列

$$x, f(x), f^2(x), \cdots$$

如果有正整数 m 使得 $f^m(x) = x$,则 x 称为 f 的一个**周期点**,把 m 称为 x 的**一个周期。**

如果 x 的最小周期是 n, 则称 x 是 f 的一个 \mathbf{n} - 周期点。这时点列

$$x, f(x), f^{2}(x), \cdots, f^{m-1}(x)$$

是由n个互不相同的点组成的有限数列,称为x的n- 周期轨道。 f的 1 周期点也称为f的不动点。

3.2 问题

3.2.1 问题 1 (Brouwer 不动点定理)

证明:如果 I 是一个闭区间, $f:I \to I$ 连续,则 f 必有不动点。

3.2.2 问题 2 (构造 2-周期点函数)

试构造一个 [0,1] 上的连续函数, 使得 f 有 2-周期点。

3.2.3 问题 3 (构造 3-周期点函数)

试构造一个 [0,1] 上的连续函数, 使得 f 有 3-周期点。

3.2.4 问题 4 (Li-Yorke 定理)

证明:如果 $f:I\to I$ 连续,且有 3-周期点,那么对任意正整数 n,f 必有 n-周期点。

3.3 两个补充定理

3.3.1 零点存在定理

设 $f \in C[a,b]$, 并满足条件 f(a)f(b) < 0, 则存在点 $\xi \in (a,b)$ 使得 $f(\xi) = 0$ 。

3.3.2 介值定理

区间上的连续函数的值域必是区间(可缩为一点)。

这两个定理在许多教科书上都有具体的证明方法,在此直接使用不作证明。详细证明过程在参考文献[4]。

3.4 问题解答

3.4.1 问题 1 解答

这是著名的 Brouwer(布劳威尔)不动点定理的特例,下面给出一种证明。

原问题: 如果 I 是一个闭区间, $f:I\to I$ 连续, 则 f 必有不动点等价于以下命

Brouwer 不动点定理如果 $I = [a,b] \subseteq \mathbb{R}$,并且 $f: I \to I$ 是连续函数,那么 f 至少有一个不动点。[5]

解: 如果 f(a) = a 或 f(b) = b,那么命题显然成立。否则,f(a) > a 且 f(b) < b。 定义一个辅助函数:

$$g(x) = f(x) - x, \quad x \in [a, b].$$

显然, g(a) = f(a) - a > 0, 而 g(b) = f(b) - b < 0。

又因为 f 是连续函数,故 g(x) 也是 [a,b] 上的连续函数。因此,根据介值定理 (Intermediate Value Theorem),存在 $x^* \in (a,b)$,使得

$$g(x^*) = 0.$$

由 $g(x^*) = f(x^*) - x^* = 0$ 可得

$$f(x^*) = x^*.$$

因此, x^* 是 f 的不动点。命题得证。

从而原问题"如果 $I=[a,b]\subseteq\mathbb{R}$,并且 $f:I\to I$ 是连续函数,那么 f 至少有一个不动点"得证。

3.4.2 问题 2 解答

原问题: 试构造一个 [0,1] 上的连续函数, 使得 f 有 2-周期点。

解: 构造函数 $f(x) = x^2 - 1$

点 $x_0 = -1$ 是函数 $f(x) = x^2 - 1$ 的一个周期为 2 的 2-周期点,因为

$$f(-1) = 0$$
 \exists $f^2(-1) = -1$.

同样地, $x_0 = 0$ 也是函数 f(x) 的一个周期为 2 的 2-周期点。

3.4.3 问题 3 解答

原问题: 试构造一个 [0,1] 上的连续函数, 使得 f 有 3-周期点。

解: 构造函数 $f(x) = 1 - \frac{1}{2}x - \frac{3}{2}x^2$

点 $x_0 = 1$ 是函数 $f(x) = 1 - \frac{1}{2}x - \frac{3}{2}x^2$ 的一个周期为 3 的 3-周期点,因为

$$f(1) = -1, \quad f^2(1) = 0, \quad \exists \quad f^3(1) = 1.$$

3.4.4 问题 4 解答

这是中国台湾数学家李天岩和美国数学家 Yorke, J.A. 于 1975 年发表在《美国数学月刊》的论文《周期 3 蕴涵混沌》(《Period three implies chaos》)提出。被普遍称为 Li-Yorke Theorem,是 Sharkovsky 定理的一种特殊变形,下面给出两种证明方法。

问题: 如果 $f:I\to I$ 连续,且有 3-周期点,那么对任意正整数 n,f 必有 n-周期点。

方法一

П

证明. 设 x_1 是周期为 3 的点,且 $f(x_1) = x_2$ 和 $f(x_2) = x_3$ 。假设 $x_1 < x_2 < x_3$ (其他可能的排列方式可采用类似的证明)。令

$$I_1 = [x_1, x_2], \quad I_2 = [x_2, x_3].$$

那么有

$$f(I_1) = I_2, \quad f(I_2) = I_1 \cup I_2.$$

由于 $I_2 \to I_2$,区间 I_2 中存在一个不动点 p_1 (周期为 1)。同时有 $I_1 \to I_2 \to I_1$,这意味着在 I_1 中存在一个周期为 2 的周期点 p_2 。这两个点显然与 x_1, x_2, x_3 不同,因为它们的周期小于 3。

此外,对于任意给定的整数n > 3,可以构造以下序列:

$$I_1 \rightarrow I_2 \rightarrow I_2 \rightarrow \cdots \rightarrow I_2 \rightarrow I_1$$
,

其中区间 I_2 出现了 n-1 次。

这表明在 I_1 中存在一个周期为 n 的点 p_n , 其满足以下条件:

$$f^{n}(p_{n}) = p_{n}$$
, $f^{i}(p_{n}) \in I_{2}$ 对于所有 $0 < i \le n-1$.

注意, $p_n \neq x_2$, 因为 $f^2(x_2) \in I_1 \setminus I_2$ 。因此,

$$f^i(p_n) \neq p_n$$
 对于所有 $0 < i \le n-1$,

这表明 p_n 的周期正好为 n。

方法二

证明. **引理 1(其实为问题 1)** 设函数 $f: I \to I$ 连续,且 $J = [a,b] \subset I$ 。如果 $f(J) \subset J$,那么 f 在 J 上有一个不动点。

解:由于 $f(J) \subset J$,可以找到 $c,d \in J$,使得 f(c) = a 以及 f(d) = b。若 c = a 或 d = b,那么 a 或 b 就是 f 的不动点。如果不是这样,则说明 c > a 且 d < b。这时,连续函数 $\varphi(x) = f(x) - x$ 满足

$$\varphi(c) = f(c) - c = a - c < 0, \quad \varphi(d) = f(d) - d = b - d > 0.$$

因此由零值定理可知, φ 在 c 与 d 之间必有一个零点, 这一点正是 f 的不动点。 \square

引理 2 设函数 $f: I \to I$ 连续, $J_1, J_2 \in I$ 的两个闭子区间。如果 $f(J_1) \supset J_2$,那 么必存在 J_1 的闭子区间 K,使得 $f(K) = J_2$ 。

解:设 $J_1 = [a, b], J_2 = [U, V]$,由于 $f(J_1) \supset J_2$,必存在 $u, v \in [a, b]$,使得 f(u) = U, f(v) = V。不妨设 $u < v \ (u > v \ \text{的情形可类似处理})$ 。令

$$E = \{s : f(s) = U, u \le s \le v\}.$$

因为 f(u) = U,故 E 为非空集且有上界,因此 E 必有上确界。记 $u^* = \sup E$,我们证明 $f(u^*) = U$ 。由上确界的定义知,对于任意的正整数 n,必有 $s_n \in E$,使得

$$u^* - \frac{1}{n} < s_n \le u^*.$$

由此可得 $\lim s_n = u^*$ 。由于 $s_n \in E$,故 $f(s_n) = U$ 。令 $n \to \infty$,并利用 f 的连续性,即得 $f(u^*) = U$ 。这就证明了 $u^* \in E$,而且 $u^* \neq v$ (因为 f(v) = V)。有了 u^* 之后,可以定义

$$F = \{t : f(t) = V, u^* < t \le v\}.$$

F 当然有下确界,记 $v^* = \inf F$ 。同理可证 $f(v^*) = V$ 。由此可知 $u^* \neq v^*$ 。记

$$K = [u^*, v^*].$$

那么对于任意的 $x \in (u^*, v^*)$,由于 $x > u^*$,必有 $f(x) \neq U$;又因 $x < v^*$,必有 $f(x) \neq V$,故由介值定理,对任意的 $\eta \in (U, V)$,必有 $\xi \in [u^*, v^*]$,使得 $f(\xi) = \eta$ 。这 就证明了

$$f([u^*, v^*]) \supset [U, V]. \tag{1}$$

为了证明 $f([u^*,v^*]) \subset [U,V]$,必须证明: 对任意的 x < U (或 x > V),不可能存在 $s \in [u^*,v^*]$,使得 f(s) = x。如果有这样的 x,我们再取一点 $x' \in (U,V)$ 。根据式 (1),存在 $s' \in [u^*,v^*]$,使得 f(s') = x',那么由于 f(s') = x',而且 x < U < x',故由介值定理,必有 ξ 介于 s' 与 s 之间,使得 $f(\xi) = U$ 。由于 $\xi > U$,这是不可能的。这就证明了

$$f([u^*, v^*]) \subset [U, V]. \tag{2}$$

综合式 (1) 与 (2), 即得 f(K) = [U, V]。

引理 3 设函数 $f: I \to I$ 连续, J_0, J_1, \dots, J_{n-1} 是 I 的 n 个闭子区间。

如果

$$f(J_0) \supset J_1, f(J_1) \supset J_2, \cdots, f(J_{n-2}) \supset J_{n-1}, f(J_{n-1}) \supset J_0,$$

那么:

- (1) 存在 $x_0 \in J_0$,使得 $f^n(x_0) = x_0$;
- (2) $f(x_0) \in J_1, f^2(x_0) \in J_2, \dots, f^{n-1}(x_0) \in J_{n-1}$

用一句通俗的话来说,当 j 从 0 跑过 $1,2,\dots,n-1$ 时, $f(x_0)$ 依次地"拜访" J_0,J_1,\dots,J_{n-1} ,最后仍然回到 x_0 。

解: 因为 $f(J_{n-1}) \supset J_0$,由引理 2 知,有一个闭子区间 $K_{n-1} \subset J_{n-1}$,使得 $f(K_{n-1}) = J_0$ 。类似地,因 $f(J_{n-2}) \supset J_{n-1} \supset K_{n-1}$,又可以找到一个闭子区间 $K_{n-2} \subset J_{n-2}$,使得 $f(K_{n-2}) = K_{n-1}$ 。同理,可以找到一个闭子区间 $K_1 \subset J_1$,使得 $f(K_1) = K_2$ 。最后,存在在 J_0 的闭子区间 K_0 ,使得 $f(K_0) = K_1$ 。

因此,我们看到

$$f(K_0) = K_1,$$

$$f^2(K_0) = K_2,$$

$$f^3(K_0) = K_3,$$

$$\vdots$$

$$f^{n-1}(K_0) = K_{n-1},$$

$$f^n(K_0) = f(K_{n-1}) = J_0 \supset K_0.$$

对函数 f^n 运用引理 1,我们可以找到一点 $x_0 \in K_0 \subset J_0$,使得 $f^n(x_0) = x_0$ 。很显然,我们有 $f^k(x_0) \in K_k \subset J_k$ $(k = 1, 2, \dots, n - 1)$ 。因此,引理 3 得证。

现在可以来证明问题 4。

根据假定,设 η 是f的一个3周期点,那么 η , $f(\eta)$, $f^2(\eta)$ 构成 η 的3周期轨。不妨设

$$\eta < f(\eta) < f^2(\eta).$$

为简单起见,设 $a = \eta, \beta = f(\eta), \gamma = f^2(\eta)$,于是有

$$f(a) = \beta$$
, $f(\beta) = \gamma$, $f(\gamma) = a$.

记 $H = [a, \beta], K = [\beta, \gamma]$ 。由于 $f(a) = \beta, f(\beta) = \gamma$,故由介值定理,知

$$f(H) \supset K.$$
 (3)

又因 $f(\beta) = \gamma, f(\gamma) = a$, 仍由介值定理, 知

$$f(K) \supset [a, \gamma] = H \cup K. \tag{4}$$

现在来证明,对于任意的 $n \in \mathbb{N}^*$, f^n 必有 n 周期点。当 n = 1 时,由式 (4),知 $f(K) \supset K$,故由引理 1,f 在 K 上有一个不动点,即 1 周期点。再设 n = 2,由式 (4),知

$$f(K) \supset H$$
.

由式 (3), 知 $f(H) \supset K$ 。于是由引理 3 知, 存在一点 $x_0 \in K$, 使得

$$f^2(x_0) = x_0, \ f(x_0) \in H.$$

我们证明 2 是 x_0 的最小周期。若 $f(x_0) = x_0$,那么 $x_0 \in H \cap K = \{\beta\}$,即 $x_0 = \beta$,这就导致

$$f(x_0) = f(\beta) = \gamma > \beta = x_0.$$

的矛盾。现设n > 3,记

$$J_0 = J_1 = \cdots = J_{n-2} = K, J_{n-1} = H.$$

从式 (4),知 $f(J_j) \supset J_{j+1}$ ($j=0,1,\cdots,n-2$)。又从式 (3),有 $f(J_{n-1}) \supset J_0$,即引 理 3 的要求都满足。因此有一点 $x_0 \in J_0 = K$,使得 $f^n(x_0) = x_0$,且

$$f^{j}(x_{0}) \in J_{j} \quad (j = 1, 2, \cdots, n - 1).$$
 (5)

现在证明 n 是 x_0 的最小周期。否则,存在 k < n,使得 $f^k(x_0) = x_0$,于是 $x_0, f(x_0), \cdots, f^{k-1}(x_0)$ 构成 x_0 的 k 周期轨。由于 $n > 1 \Rightarrow n > 2 \Rightarrow k-1$,所以 $f^{n-1}(x_0)$ 必是

$$x_0, f(x_0), \cdots, f^{n-2}(x_0)$$

中的一个。由式 (5) 知,它们都在 K 中。但是 $f^{n-1}(x_0) \in J_{n-1} = H$ 。这说明 $f^{n-1}(x_0) \in K \cap H = \{\beta\}$,因此 $x_0 = f^n(x_0) = f(\beta) = \gamma$,而

$$a = f(\gamma) = f(x_0) = f(\beta) = \gamma \Rightarrow K = [\beta, \gamma].$$

这是不可能的。

这样就完全证明了问题 4。

Li-Yorke 定理告诉我们,看似简单的映射可能表现出非常复杂的动态行为。反之,也存在一些情形,映射表现得极为简单。

参考文献

- [1] 徐森林, 薛春华. 数学分析[M]. 清华大学出版社, 2005.
- [2] 裴礼文. 数学分析中的典型问题与方法[M]. 科学出版社, 2006.
- [3] 谢惠民, 恽自求, 易法槐, 等. 数学分析习题课讲义: 上册[M]. 北京: 高等教育出版 社, 2003.
- [4] 常庚哲, 史济怀. 数学分析教程. 上册[M]. 高等教育出版社, 2003.
- [5] ELAYDI S N. Discrete Chaos: With Applications in Science and Engineering[M]. Chapman, 2007.
- [6] 谢惠民, 恽自求, 易法槐, 等. 数学分析习题课讲义: 下册[M]. 北京: 高等教育出版 社, 2003.
- [7] 常庚哲, 史济怀. 数学分析教程. 下册[M]. 高等教育出版社, 2003.
- [8] 李傅山. 数学分析中的问题与方法[M]. 科学出版社, 2016.