

Academic Year

Program Software Engineering

Syllabus of Course 10145

Computer Organization and Assembly

2025

Academic real	2023	
No. of course hours	6.00 Semestrial hours [Lecture 4.00 + tutorial -2.00]	
Academic credits	5.00	
Prerequisites	Pre: 10006 Introduction To Computer Science -or- 10016	
	Introduction To Computer Science	
Please note that		
The prerequisites are for	all programs, you are required to be updated on the prerequisites you need	
according to your person	al program.	
Class Attendance	Not mandatory	
Objectives	- To implement the principles of logic system hardware.	
	- To understand the basic structure of a digital computer and to	
	study in detail the basic CPU unit organization in different ways of	
	implementation till Modern computer technology.	
	- To learn the basic of assembly language programing focused on	
	the Hardware software interface.	
Abstract	This course will give you an in-depth understanding of the inner-	
	workings of modern digital computer systems in all the levels of	
	abstraction and tradeoffs present at the hardware-software	
	interface.	
	The MIPS architecture is used as guiding example throughout the	
	course.	
	Topics include:	
	- Performance of a processor system.	

- Computer arithmetic (Binary integer and floating point number systems)
- Boolean Algebra and logic gates.
- Assembly language including instruction formats, addressing modes, instruction types. flow of control, the assembly process, linking, loading, Pseudo instructions, and Rules for Procedures.
- Combinational logic and synchronous sequential logic, building the basic CPU units.
- The processor Single cycle, Multi Cycle and pipeline implementation.
- pipeline hazards.
- interrupts and exceptions.
- memory hierarchies.

Academic learning outcomes

Learning outcomes related to the content of the course

- The student could explain how modern computer works in all the levels of abstraction
- The student could interpretant assembly instruction into machine instruction and transform it into a logic circuit
- Vice versa The student could implement logic circuit and transform it into a machine instruction and interpretant assembly instruction
- The graduate student could understand how to enhance performance via multicycle and parallelism (pipeline) and solve problems (Hazards) that parallel configuration make.
- The graduate student can write and read a basic assembly code with regard to the hardware-software interface, include load store mechanism and procedure rules.

Learning outcomes - Skills

Problem solving: defining problems and identifying strategies. The ability to identify one or more approaches to problem solving without application in a specific context.

Programming: writing a working, high-quality program, adding to an existing program, reading, and understanding a program. The ability to identify types of variables, output and input, using conditionals, loops, functions, and the ability to read a simple program.

Integrative learning: linking to practical experience. The ability to identify connections between experience and similarly perceived ideas.

Further points of emphasis	4 hours

Lecture topics by weeks

The order of the topics can be changed at the lecturer's discretion.

1	An introduction to the course. The basic concepts of a von Neuman architecture system.
	The importance of Instruction sets Architecture (ISA) RISC vs. CISC.
	- Digital systems and binary numbers.
2	Performance: Assessing and understanding Performance.
	Boolean Algebra and logic gates.
3	MIPS Assembly language: (R format I Format J Format), Arithmetic Logic operations,
	Data transfer, Conditional Branch, Unconditional JUMP. Addressing modes.
4	Combinational logic: building ALU and other arithmetic units
	synchronous sequential logic: building the register file
5	Single Cycle CPU Datapath and Control implementation
6	Advanced Single Cycle CPU critical path.
	Multicycle implementation (Finite state machine)
7	Multicycle implementation

	Compiler, linker, loader. Rules for Procedures. (Stack and variables)
8	Introduction to pipeline
	Pipeline: Data Hazard
9	midterm exam
	Continue advanced Data Hazard.
10	Pipelinine hazards: Control hazards. Branch prediction, pipeline scheduling
	Exceptions: The Interrupt Mechanism
11	floating point numbers (IEEE754)
	introduction to Memory Hierarchies
12	Memory Hierarchies
13	Measuring and improving Cache performance Virtual Memory & Review

Tutorials / Labs topics by weeks

The order of the topics can be changed at the lab instructor's / tutor's discretion.

1	Numbers representation (sign unsigned ,operation, overflow, radix)
2	Exercise: Performance and Boolean Algebra and logic gates.
3	Introduction to MARS and The MIPS ISA format
4	Lab1: Arithmetic and Logic and shift Instructions; implement simple for loop.
5	Lab2-3: I/O- Exception Handler- syscall
6	Lab4: Nested loops
7	Lab 5 :Arrays string and pointers (memory load and store mechanism)
8	Finish Lab5 and simulation for midterm exam
9	Lab6: Stack ,procedures (The conventions of variables)
10	final program assignment on nested procedure
11	Lab7:Floating point arithmetic on MIPS
12	Exercise: Cache
13	Review and advanced exercise on cache

Course coordinator	Dr. Busani Ram	
Language of instruction	Hebrew	
Subjects for self-tutoring		
Textbooks and Recommended Bibliography	1. Patterson and Hennessy, "Computer Organization	
	& Design:	
	The Hardware/Software Interface" 6th edition,	
	Morgan Kaufmann Publishers, 2021.	
	2. M.Morris.Mano and Michael d. Ciletti "DIGITAL	
	DESIGN" 6th edition Pearson Education. Inc, 2017	

Course Requirements and Calculation of Final Grade

Task Type	Percentage of Final Grade
Final Exam Grade	80
Midterm Exam Grade	10
Homework Assignments	10
A project in a course where there is no Final Exam	0
A project in a course where there is a Final Exam	0
Final Grade	0

Clarification to pass the course:

In order to pass the course, students must fulfill the following conditions [excluding the English Beginners Course, Labs and Workshops]:

- 1. Final course grade of at least 60 [taking into consideration all the above course requirements].
- 2. Attendance according to the attendance requirement [see section regarding attendance].

Exam and Midterm Exam

Type of Midterm Exam Frontal (in the classroom)

Duration of Midterm Exam 70 minutes

Location of Midterm exam Computer lab

Duration of Final Exam 210 minutes

Location of Final exam Regular class (no computers)

Permitted Material/Tools for Exams

Any written or printed material

Details of permitted materials for exam

Formula Sheets

Number of single-sided sheets