(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 4 August 2005 (04.08.2005)

PCT

(10) International Publication Number WO 2005/071069 A1

(51) International Patent Classification⁷: C12N 7/04, A61K 39/12, C12N 15/62, C07K 14/08, 19/00, C12N 15/87, 15/86, 5/10

(21) International Application Number:

PCT/EP2005/000695

- (22) International Filing Date: 21 January 2005 (21.01.2005)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

P200400120

21 January 2004 (21.01.2004) E

(71) Applicants (for all designated States except US): CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS [ES/ES]; Serrano, 117, E-28006 Madrid (ES). BIONOSTRA, S.L. [ES/ES]; Ronda de Poniente, 4-2° C-D, E-28760 Tres Cantos - Madrid (ES).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RODRIGUEZ AGUIRRE, José Francisco [ES/ES]; Serrano, 117, E-28006 Madrid (ES). RUIZ CASTON, José [ES/ES]; Serrano, 117, E-28006 Madrid (ES). GONZALEZ DE LLANO, María Dolores [ES/ES]; Serrano, 117, E-28006 Madrid (ES). RODRIGUEZ AGUIRRE, María Dolores [ES/ES]; Serrano, 117, E-28006 Madrid (ES). BLANCO CHAPINAL, Soledad [ES/ES]; Serrano, 117, E-28006 Madrid (ES). OÑA BLANCO, Ana María [ES/ES]; Serrano, 117, E-28006 Madrid (ES). SAUGAR GOMEZ, Irene [ES/ES]; Serrano, 117, E-28006 Madrid (ES). ABAITUA ELUSTONDO, Fernando [ES/ES]; Serrano, 117, E-28006 Madrid (ES). LUQUE BUZO,

Daniel [ES/ES]; Serrano, 117, E-28006 Madrid (ES). RODRIGUEZ FERNANDEZ-ALBA, Juan Ramón [ES/ES]; Ronda de Poniente, 4-2° C-D, E-28006 Tres Cantos - Madrid (ES).

- (74) Agent: ARIAS SANZ, Juan; ABG Patentes, S.L., Orense, 68, 7th floor, E-28020 Madrid (ES).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CHIMERIC EMPTY CAPSIDS OF THE INFECTIOUS BURSAL DISEASE VIRUS (IBDV), OBTAINMENT PROCESS AND APPLICATIONS

(57) Abstract: The chimeric empty capsids of the infectious bursal disease virus (IBDV), are constituted by assembly of (i) IBDV pVP2 proteins and (ii) fusion proteins comprising a region A constituted by the IBDV VP3 protein bound to a region B constituted by a heterologous polypeptide comprising a polypeptide of interest, such as a polypeptide useful in vaccination, therapy or diagnosis.

CHIMERIC EMPTY CAPSIDS OF THE INFECTIOUS BURSAL DISEASE VIRUS (IBDV), OBTAINMENT PROCESS AND APPLICATIONS

FIELD OF THE INVENTION

5

10

15

20

25

30

The invention is related to the production of chimeric empty particles of the infectious bursal disease virus (IBDV) and their applications.

BACKGROUND OF THE INVENTION

Viral particles are structures specialized in the packaging and incorporating in vehicles of nucleic acids and proteins. A general feature of viral particles is their excellent ability for the immune response stimulation of the host. These properties make viral particles agents of extraordinary interest for the development both of intracellular delivery systems and for the generation of particulate vaccines. The use of different genetic expression systems has facilitated the production of viral-like particles or empty viral capsids (VLPs) of different types of viruses (US patent 6,458,362 Casal, et al. 2002. Recombinant VP2 parvoviral pseudoparticles encoding CTL or T-helper cell epitopes; US 5,932,426 Baralle, et al. 1999. Molecular presenting system; US 6,602,705 Barnett, et al. 2003 Expression of HIV polypeptides and production of virus-like particles). The genetic manipulation of these expression systems in turn allows the production of VLPs containing heterologous amino acid sequences coming from proteins other than those forming the native viral capsid. These VLPs are generically called heterotypical, recombinant or chimeric VLPs (CVLPs). CVLPs have mainly been used for two purposes: (i) generation of multivalent vaccines by means of immunologically relevant heterologous peptides (Kingsman, A. J., N. R. Burns, G. T. Layton, and S. E. Adams. 1995. Yeast retrotransposon particles as antigen delivery systems. Ann. N. Y. Acad. Sci. 754: 202-213; Lo-Man, R., P. Rueda, C. Sedlik, E. Deriaud, I. Casal, and C. Leclerc. 1998. A recombinant virus-like particle system derived from parvovirus as an efficient antigen carrier to elicit a polarized Th1 immune response without adjuvant. Eur. J. Immunol. 28: 1401–1407; Qiu, Z., D. Ou, H. Wu, T. C. Hobma, and S. Gillam. 1994. Expression and characterization of virus-like particles containing rubella virus structural proteins. J. Virol. 68: 4086-4091); and (ii) modification of the tropism by means of insertion of amino acid sequences involved in interactions with receptor-ligand (Schmidt, U., Rudolf, R, and Bömh, G. 2001. Binding of external ligands onto an engineered virus capsid. Prot. Eng. 14: 769-774; Shin, Y.C., and Folk,

W.R. 2003. Formation of polyoma virus-like particles with different VP1 molecules that bind the urokinase plasminogen activator receptor. J. Virol. 77: 11491-11498).

CVLPs are generally obtained by means of the expression of the viral protein(s) responsible for the formation of the viral capsid, fused to the region encoding the polypeptide of interest.

The infectious bursal disease virus (IBDV), belonging to the *Birnaviridae* family, infects different bird species and is directly responsible for a severe immunosuppressive disease causing important economic losses in the world poultry industry.

5

10

15

20

25

30

IBDV particles are icosahedral, with T=13 symmetry, they lack an envelope and are formed by a single protein layer. Up until now, the approaches aimed at obtaining an atomic model for IBDV particles have failed. As a result, the structural information available is based on three-dimensional models generated from images obtained by electron cryomicroscopy of the purified virus and of the VLPs. Based on these studies, it has been verified that the outer surface of the particle is formed by a continuous lattice of 260 trimers of the VP2 protein (37 kDa) organized in five different formations. The inner face of the particles contains 200 trimers of the VP3 protein (29 kDa), the latter, independent from one another, are bound to the basal area of the VP2 trimers. It has been suggested that a third polypeptide, VP4 (28 kDa), could also be part of the particles, being located at the base of the pentamers forming the vertices of the icosahedral structure.

The VP2, VP3 and VP4 polypeptides are produced from the proteolytic processing of a polypeptide precursor of a size of 109 kDa. This precursor is auto-catalytically processed, releasing the pVP2 (48 kDa), VP3 and VP4 polypeptides. The VP4 domain, which is located in the central region of the polyprotein, belongs to the Lon protease family and is responsible for the proteolytic cleavage. The pVP2 and VP3 polypeptides are directly responsible for the capsid assembly. The pVP2 product undergoes a last cleavage at its C-terminal end before giving rise to the mature form of the protein, VP2, which is the one found in purified particles (Da Costa, B., Chevalier, C., Henry, C., Huet, J. C., Petit, S., Lepault, J., Boot, H. & Delmas, B. (2002). The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2. *Journal of Virology* 76:2393-2402). This pVP2 processing is necessary for the correct formation of the capsids and requires the presence of VP3, although the responsible protease has not yet been identified (Maraver, A., Oña, A., Abaitua, F., González, D., Clemente, R., Diaz-Ruiz, A., Caston, J. R., Pazos, F. & Rodríguez, J. F. (2003). The oligomerization domain of VP3, the scaffolding protein of

infectious bursal disease virus, plays a critical role for capsid formation. *Journal of Virology* 77:6438-49).

In general terms, morphogenesis is a vital process for the viral cycle requiring successive steps associated to modifications in the polypeptide precursors. As a result, viruses have developed strategies allowing the sequential and correct interaction between each one of their components. One of these strategies, frequently used by icosahedral viruses, is the use of polypeptides coming from a single polyprotein as the base of their structural components. In these cases, the suitable proteolytic processing of said polyprotein plays a crucial role in the assembly process.

5

10

15

20

25

30

This concept for the assembly of IBDV capsids has been demonstrated in earlier work (Fernández-Arias, A., Risco, C., Martínez, S., Albar, J. P. & Rodríguez, J. F. (1998). Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. *Journal of General Virology* 79, 1047-1054). Expression of the gene encoding for the IBDV polyprotein in eukaryotic cells gives rise to the formation of VLPs that are completely morphologically and biochemically indistinguishable from the IBDV virions. It has also been shown that the assembly of the capsids requires only the synthesis and correct processing of the viral polyprotein and is independent of the presence of the viral genome or of other proteins encoded by the viral genome, such as VP5 and VP1.

The results obtained to date from the IBDV gene expression in different recombinant systems has allowed concluding that: i) the assembly process is independent of the presence of genetic material of the virus, ii) only the polypeptides encoded by the polyprotein gene are necessary for the assembly, and iii) the assembly requires a coordinated interaction between the pVP2 and VP3 polypeptides.

However, it must be indicated that it is not known if the VP2/VP3 interaction is established between VP2 and VP3 domains of the polyprotein precursor when it has not yet undergone modifications, or on the contrary, if this interaction occurs after the processing of the precursor. Furthermore, current information does not exclude the possibility that VP4 could play a relevant role in the morphogenesis of the viral capsid. In fact, IBDV VLPs formed by assembly of the IBDV VP2, VP3 and VP4 proteins have been disclosed (US 6,528,063, US 5,788,970 and JP 5194597).

The work developed by the same inventors has enabled establishing systems for obtaining IBDV VLPs using different eukaryotic expression vectors. These vectors have been used for IBDV polyprotein expression in the absence or presence of the viral VP1 RNA

polymerase. The biochemical characterization of purified VLPs demonstrates that they contain pVP2, VP2 and VP3 proteins when only the viral polyprotein is expressed, and the pVP2, VP2, VP3 and VP1 proteins when the simultaneous expression of the polyprotein and viral RNA polymerase is carried out (Fernández-Arias, A., Risco, C., Martínez, S., Albar, J. P. & Rodríguez, J. F. (1998). Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. *Journal of General Virology* 79: 1047-1054; Martínez-Torrecuadrada, J. L., Castón, J. R., Castro, M., Carrascosa, J. L., Rodríguez, J. F. & Casal, J. I. (2000). Different architectures in the assembly of infectious bursal disease virus capsid proteins expressed in insect cells. *Virology* 278: 322-331; Maraver, A., *et al.*, (2003) cited *supra*; Lombardo, E., Maraver, A., Castón, J. R., Rivera, J., Fernández-Arias, A., Serrano, A., Carrascosa, J. L. & Rodríguez, J. F. (1999). VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. *Journal of Virology* 73: 6973-6983).

On the other hand, patent application WO 02/088339 discloses IBDV viral-like particles formed by assembly of chimeric proteins comprising the IBDV polyprotein bound at its carboxyl terminal end to a polypeptide.

However, CVLPs solely based on IBDV pVP2 and VP3, the latter VP3 protein being fused to a polypeptide of interest, or their potential as vehicles of products of interest, have not been previously disclosed.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

The invention is faced with the problem of providing new tools for incorporating in vectors or vehicles products of interest, such as molecules with biological activity, for example drugs, polypeptides, proteins, nucleic acids, etc.

The solution provided by this invention is based on it being possible to generate, based on the simultaneous expression of the IBDV pVP2 and VP3 proteins, the latter genetically modified to include a nucleotide sequence encoding for a heterologous polypeptide comprising a polypeptide of interest, IBDV chimeric empty capsids (CVLPs). The resulting CVLPs are formed by assembly of (i) IBDV pVP2 proteins and (ii) fusion proteins comprising a region A constituted by the IBDV VP3 protein bound to a region B constituted by a heterologous polypeptide comprising a polypeptide of interest, wherein said region B is bound to the amino-or carboxy- terminal end of said IBDV VP3 protein. These CVLPs can be used for therapeutic,

10

15

20

25

30

preventive or diagnostic purposes, etc., for example in the manufacture of gene therapy vectors or vaccines.

The inventors had previously found that when IBDV VPX (pVP2) and VP3 proteins are expressed from independent genes, empty IBDV particles (VLPs) are formed. These VLPs are structurally identical to those obtained by means of expression of the ORF corresponding to the IBDV polyprotein. As part of the development of new vaccination strategies, the possibility of using this IBDV VLP production strategy for obtaining CVLPs which contained heterologous amino acid sequences, corresponding to peptides of interest, such as a histidine tag (Example 1), GFP (Example 2) and finally peptides involved in immune response induction (Example 3), was analyzed. As is demonstrated, the fusion of heterologous sequences in these constructs is not an obstacle for the formation of CVLPs.

As a study model of peptide-transporting CVLPs involved in an immune response, the possibility of obtaining CVLPs which had the sequence corresponding to the CD8 epitope (E-CD8) of the malaria CS protein (Plasmodium yoelii) was approached. This epitope is responsible for the CD8-specific cellular immune response induction against this pathogen, which can be quantified by means of the ELISPOT technique in splenocyte cultures from BALB/c mice (Example 3).

In summary, the obtained results clearly show that: (i) the expression system used allows obtaining IBDV CVLPs containing heterologous amino acid sequences; and (ii) immunization with said IBDV CVLPs induces a specific immune response to the heterologous amino acid sequence present in the CVLPs.

Therefore, an aspect of the present invention is related to an IBDV chimeric empty capsid characterized in that it is constituted by assembly of (i) IBDV pVP2 proteins and (ii) fusion proteins comprising a region A constituted by the IBDV VP3 protein bound to a region B constituted by a heterologous polypeptide comprising a polypeptide of interest.

A further aspect of this invention is related to a process for producing said IBDV CVLPs provided by this invention, based on the gene coexpression of said IBDV pVP2 and fusion proteins as two independent genes.

The nucleic acids, gene constructs, expression systems and host cells developed for implementing said process of producing said IBDV CVLPs, as well as their use for the production of said IBDV CVLPs, constitute further aspects of the present invention.

Said IBDV CVLPs have the ability to incorporate in vectors or vehicles products of interest such as molecules with biological activity, for example, polypeptides, proteins,

nucleic acids, etc. In a particular embodiment, said IBDV CVLPs can internally incorporate in vehicles antigens and immune response inducers in animals or humans to whom it is supplied, whereby they can be used in the manufacture of vaccines against human and animal diseases caused by viruses, bacteria, parasites or any other type of microorganism or against tumor diseases. In another particular embodiment, said IBDV CVLPs are used in the manufacture of gene therapy vectors.

Therefore, in a further aspect, the present invention is related to the use of said IBDV CVLPs in the manufacture of medicaments, such as vaccines and gene therapy vectors. Said vaccines and vectors constitute further aspects of the present invention.

10

15

20

25

30

5

BRIEF DESCRIPTION OF THE FIGURES

Figure 1. (a) The diagram schematizes the proteolytic processing steps necessary for the formation of mature VP2 and VP3 capsid proteins from the polyprotein precursor. (b) The diagram reflects different genetic constructs derived from the IBDV polyprotein described up until now, as well as the structures produced by means of its expression in different heterologous systems. The numbers indicate the position corresponding to the first and last amino acid residue of the polyprotein present in each one of the constructs. The lower portion of the figure shows images obtained by means of transmission electron microscopy of the structures obtained by means of expression of the different constructs. The bar corresponds to 50 nm. The data has been taken from the following literature references: Fernández-Arias et al., (1998), cited supra; Maraver et al., (2003), cited supra; Martínez-Torrecuadrada et al., (2000), cited supra; Castón et al., 2001. C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the t number for capsid assembly. Journal of Virology 75, 10815-10828.

Figure 2. Microscopic analysis of H5 insect cells coexpressing pVP2 and VP3. The pVP2 and VP3 protein subcellular distribution was analyzed by means of confocal immunomicroscopy. Cells infected with the FB/pVP2 (a), FB/VP3 (b), or FBD/pVP2-VP3 (c-e) rBVs were incubated with rabbit anti-pVP2 serum and rat anti-VP3 serum. Then the cells were incubated with goat anti-rabbit IgG serum coupled to Alexa 488 (red) and goat anti-rat IgG serum coupled to Alexa 594 (green). The cores were stained with To-Pro 3 (blue). (e) Overlaying of the images shown in panels (c) and (d). Electron microscopy images corresponding to sections of H5 cells infected with different genetic constructs derived from the IBDV polyprotein. (f) Low-magnification image of an H5 cell infected with

a parental Fb virus. The insert corresponds to an enlarged detail of the area indicated by the box. (g) Low-magnification image of an H5 cell infected with the FBD/pVPX-VP3 virus. The insert corresponds to an enlarged detail of the area indicated by the box. (h) High-magnification image of an H5 cell infected with the FBD/pVPX-VP3 virus showing the formation of IBDV structures in detail. (i) High-magnification image of a BSC1 cell infected with the VTLacOI/POLY recombinant vaccine virus showing structures similar to those detected in panel (h). The bars indicate 600 nm (panels f and g) and 200 nm (panels h and i).

5

10

15

20

25

30

Figure 3. Structural and biochemical characterization of the structures derived from IBDV produced in insect cells coinfected with the FB/pVP2 + FB/his-VP3 recombinant baculoviruses (rBV). Cells coinfected with FB/pVP2 and FB/his-VP3 rBVs, or infected with the FBD/Poly-VP1 or FB/pVP2 virus, were used to purify structures derived from IBDV by means of centrifugation on sucrose gradients. Panels (a), (b), and (c) show transmission electron microscopy images corresponding to fraction 4 of the gradients obtained from infections with FBD/Poly-VP1, FB/pVP2+FB/his-VP3, and FB/pVP2, respectively. Panel (d) shows the results of a Western blot analysis of the sucrose gradients corresponding to the cultures infected with FBD/Poly-VP1 and FB/pVP2+FB/his-VP3, respectively. The total extracts (input) and the different fractions of the sucrose gradients (fraction F1 corresponds to the bottom of the gradient) were analyzed by means of Western blot using specific sera against the IBDV VP1, pVP2, VP3, and VP4 proteins, respectively. The molecular mass of the immunoreactive polypeptides is indicated in kDa.

Figure 4. Biochemical and structural characterization of IBDV VLPs produced in S. cerevisiae transformed with the plasmid pESCURA/pVP2-VP3-GFP. A S. cerevisiae culture transformed with the plasmid pESCURA/pVP2-VP3-GFP was grown at 30°C in a medium supplemented with the inducer galactose. At 18 hours, the culture was harvested and centrifuged. The resulting sediment was processed by means of fractioning in a 25-50% linear sucrose gradient. A) Biochemical analysis of samples corresponding to the sediment before fractioning (T) as well as the different fractions of the sucrose gradient. The samples were analyzed by means of SDS-PAGE and Western blot using specific antibodies against VP3 (anti-VP3) and pVP2 (anti-pVP2) proteins. The arrows indicate the positions of the immunoreactive bands corresponding to the VP3-GFP (61 kDa) and pVP2 (48 kDa) proteins, respectively. B) The structural analysis of the obtained samples was carried out by means of TEM. The image corresponds to a micrography obtained from an aliquot corresponding to the mixture of fractions 7, 8 and 9 of the sucrose gradient. The sample was

stained with uranyl acetate and observed by means of TEM. The bar corresponds to 65 nm. C) VLPs sample obtained by means of the IBDV polyprotein expression in mammal cells by means of infection with the VT7/Poly recombinant vaccine virus (Fernández-Arias et al., (1998), cited supra). The bar corresponds to 65 nm.

5

10

15

20

25

30

Figure 5. Structural and biochemical characterization of QVLPs-CD8. Panel A shows a TEM image of a sample stained with uranyl acetate corresponding to fraction 4 of a sucrose gradient used for the purification of structures carried out on an insect cell extract coinfected with the FB/pVP2 and PF/his-CD8-VP3 rBVs. The bar indicates 100 nm. Panel B shows the SDS-PAGE and Western blot analyses carried out with an antibody against VP3 protein, of a sample corresponding to fraction 4 (QVLPs-CD8) of a sucrose gradient used for the purification of structures carried out on an insect cell extract co-infected with the FB/pVP2 and PF/his-CD8-VP3 rBVs (see panel A). A sample of purified IBDV virus (IBDV) was used as a control. The sizes of the molecular mass (MW) markers, as well as the molecular mass estimated for the VP3 and his-CD8-VP3 proteins, were indicated.

Figure 6.- Enhancing effect of the specific anti-malaria CD8 cellular immune response by means of immunization with IBDV CVLPs containing the *Plasmodium yoelii* CD8 epitope. Groups of 4 mice from the BALB/c strain were intraperitoneally inoculated with 50 μg/mouse of QVLPs-CD8 (group IV) or non-chimeric VLPs (group IIII). A group was inoculated with VVpJRCS (10⁷ pfu/mouse), a recombinant virus expression the whole *Plasmodium yoelii* CHITOSAN protein (group II) as a control. 15 days later, the mice of all the groups were intraperitoneally immunized with VVpJRCS (10⁷ pfu/mouse). One of the groups received at that time a single dose of the viral vector (group I). 15 days after the second immunization, the animals were sacrificed, the spleen was removed and the ELISPOT was carried out against the malaria CD8 peptide. Panel A shows the image of the ELISPOT wells carried out with different concentrations of splenocytes obtained from the mice belonging to each one of the groups after their incubation in the presence (+CD8 peptide) or absence (-CD8 peptide) of the CD8 peptide. Panel B shows a graph of the results obtained as a number of specific IFN-γ/10⁶ splenocyte secreting cells.

DETAILED DESCRIPTION OF THE INVENTION

In a first aspect, the invention provides an <u>chimeric empty capsid of the infectious</u> <u>bursal disease virus (IBDV)</u>, hereinafter CVLP of the invention, characterized in that it is constituted by assembly of (i) IBDV pVP2 proteins and (ii) fusion proteins comprising a

5

10

15

20

25

30

region A constituted by the IBDV VP3 protein bound to a region B constituted by a heterologous polypeptide comprising a polypeptide of interest.

The term "IBDV", as it is used in the present invention, refers to the different IBDV strains belonging to any of the known serotypes (1 or 2) [by way of illustration, see the review carried out by van den Berg TP, Eterradossi N, Toquin D, Meulemans G., en *Rev Sci Tech* 2000 19: 509-43] and the terms "IBDV pVP2 protein" and "IBDV VP3 protein" refer to the different forms of the pVP2 and VP3 proteins representative of any of the mentioned IBDV strains [NCBI protein databank], according to the definition made by Sánchez and Rodríguez (1999) (Sánchez AB, Rodríguez JF. Proteolytic processing in infectious bursal disease virus: identification of the polyprotein cleavage sites by site-directed mutagenesis. Virology. 1999 Sep 15; 262(1):190-199), as well as proteins substantially homologous to said IBDV pVP2 and VP3 proteins, i.e. proteins the amino acid sequences of which have a degree of identity regarding said IBDV pVP2 and VP3 proteins of at least 60%, preferably of at least 80%, more preferably of at least 90% and even more preferably of at least 95%.

The IBDV pVP2 protein present in the CVLP of the invention can be any pVP2 protein representative of any IBDV strain, for example, the full-length pVP2 protein of IBDV Soroa strain [NCBI, access number AAD30136].

The fusion protein present in the CVLP of the invention comprises a region A constituted by the IBDV VP3 protein bound to a region B constituted by a heterologous polypeptide comprising a polypeptide of interest. In a particular embodiment, said region B is bound to the amino-terminal region or to the carboxy-terminal region of said IBDV VP3 protein.

The IBDV VP3 protein, constituting region A of said fusion protein, can be any VP3 protein representative of any IBDV strain, for example, the full-length VP3 protein of IBDV Soroa strain [NCBI, access number AAD30136].

Region B present in said fusion protein is constituted by a heterologous polypeptide comprising a polypeptide of interest. As it is used in the present invention, the term "heterologous polypeptide" refers to a polypeptide not belonging to the native IBDV capsid. The size of the polypeptide of interest can vary within a broad interval, from a few amino acids up to hundreds of amino acids. Said polypeptide of interest can be virtually any polypeptide, regardless of its origin (eukaryotic, prokaryotic, viral, etc.), susceptible to being expressed in a recombinant manner. However, in a particular embodiment said polypeptide of interest is a polypeptide useful in vaccination, therapy or diagnosis, such as an epitope or

determining antigen capable of inducing an immune response in animals and humans against diseases caused by viruses, bacteria, parasites or any other type of microorganism, or against tumor diseases.

In a particular embodiment, said region B comprises a single polypeptide of interest. However, in another particular embodiment, said region B comprises two or more polypeptides of interest, equal or different, which can be forming tandems.

5

10

15

20

25

30

In a particular embodiment, said fusion protein comprises a region A bound to a single region B. In this case, said region B can be bound to the amino-terminal region of VP3, or alternatively to the carboxy-terminal region of VP3, present in region A. As previously mentioned region B can contain one or more polypeptides of interest. In a particular embodiment, said region B contains a single polypeptide of interest, whereas in another particular embodiment, said region B comprises two or more different polypeptides of interest.

In another particular embodiment, said fusion protein comprises a region A bound to two regions B, one of them bound to the amino-terminal region of VP3 present in region A and the other one to the carboxy-terminal region of VP3 present in region A. Said regions B can be equal or different, and each one of them can contain one or more polypeptides of interest, which can be equal to or different from one another. In a specific embodiment, the fusion protein comprises a region A bound to a first region B containing a first polypeptide of interest (B1) and a second region B containing a second polypeptide of interest (B2). Said polypeptides of interest (B1) and (B2) can be equal or different. In a specific embodiment, said polypeptides of interest (B1) and (B2) are different from one another.

Generally, region A (constituted by the IBDV VP3 protein) is not bound directly to said region B (constituted by the heterologous polypeptide comprising a polypeptide of interest), but rather through a linker polypeptide between said regions A and B. Therefore, if desired the fusion protein of the invention can further contain a linker polypeptide located between said regions A and B. Advantageously, said linker polypeptide is a peptide with structural flexibility, preferably a polypeptide giving rise to a non-structured domain able to induce an immune response or not. By way of illustration, said flexible peptide can contain repetitions of amino acid residues, particular Gly and Ser residues, or any other suitable repetition of amino acid residues.

The CVLPs of the invention can be obtained by means of the simultaneous expression of said IBDV pVP2 proteins and said fusion protein comprising said regions A and B, in suitable host cells. Said suitable host cells are cells containing the encoding

nucleotide sequence of said fusion protein comprising regions A and B, and the encoding nucleotide sequence of the IBDV pVP2 protein, either in a single gene construct or in two gene constructs. In a particular embodiment, said suitable host cells are cells that are transformed, transfected or infected with a suitable expression system, such as an expression system comprising a gene construct, wherein said gene construct comprises the nucleotide sequence encoding for said fusion protein comprising regions A and B, and the nucleotide sequence encoding for the IBDV pVP2 protein, or else alternatively with an expression system comprising a first gene construct comprising the nucleotide sequence encoding for said fusion protein comprising regions A and B, and a second gene construct comprising the nucleotide sequence encoding for the IBDV pVP2 protein.

5

10

15

20

25

30

Therefore, in another aspect, the invention provides a <u>nucleic acid</u>, the nucleotide sequence of which comprises the nucleotide sequence encoding for said fusion protein forming part of the CVLPs of the invention and comprising a region A constituted by the IBDV VP3 protein bound to a region B constituted by a heterologous polypeptide comprising a polypeptide of interest, wherein said regions B bound to the amino-terminal region or to the carboxy-terminal region of said IBDV VP3 protein. Optionally, the nucleic acid provided by this invention can contain the nucleotide sequence encoding for IBDV pVP2 if desired. More specifically, in a particular embodiment, the nucleic acid sequence provided by this invention comprises (i) a nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV VP3 protein and (ii) a nucleotide sequence comprising the open reading frame or encoding region of one or more heterologous polypeptides comprising one or more polypeptides of interest, and optionally if desired, (iii) a nucleotide sequence comprising the open reading frame or encoding regions corresponding to the IBDV pVP2 protein.

In another particular embodiment, the nucleic acid sequence provided by this invention comprises (i) a nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV VP3 protein, (ii) a first nucleotide sequence comprising the open reading frame or encoding region of one or more heterologous polypeptides comprising the open reading frame or encoding region of one or more heterologous polypeptides comprising one or more polypeptides of interest, (ii') a second nucleotide sequence comprising the open reading frame or encoding region of one or more heterologous polypeptides comprising one or more polypeptides of interest, wherein said nucleotide sequence can be equal to or different from each first nucleotide sequence, and

optionally if desired, (iii) a nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV pVP2 protein. In this case, one of said first or second nucleotide sequence is operatively bound to 5' end of the nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV VP3 protein and the other one is operatively bound to the 3' end of the nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV VP3 protein.

5

10

15

20

25

30

As it is used in this description, the term "open reading frame corresponding to the pVP2 protein" or "open reading frame corresponding to the IBDV VP3 proteins" includes, apart from the nucleotide sequences of said open reading frames, other open reading frames analogous to the same encoding frames of the IBDV pVP2 and VP3 proteins. Likewise, the term "open reading frame of one or more heterologous polypeptides comprising one or more polypeptides", includes any encoding nucleotide sequence of said heterologous polypeptide(s) comprising one or more polypeptides of interest. As it is used herein, the term "analogous" intends to include any nucleotide sequence which can be isolated or constructed on the base of the encoding nucleotide sequence of IBDV pVP2 and VP3, for example by means of the introduction of conservative or non-conservative nucleotide replacements, including the insertion of one or more nucleotides, the addition of one or more nucleotides at any of the ends of the molecule, or the deletion of one or more nucleotides at any end or inside of the sequence. Generally, a nucleotide sequence analogous to another nucleotide sequence is substantially homologous to said nucleotide sequence. In the sense used in this description, the expression "substantially homologous" means that at the nucleotide level, the nucleotide sequences in question have a degree of identity of at least 60%, preferably of at least 80%, more preferably of at least 90%, and even more preferably of at least 95%.

In another aspect, the invention provides a gene construct comprising a nucleic acid provided by this invention, i.e. a nucleic acid the nucleotide sequence of which comprises the nucleotide sequence encoding for said fusion protein comprising regions A and B, and optionally the nucleotide sequence encoding for said IBDV pVP2 protein. More specifically, in a particular embodiment, the gene construct provided by this invention comprises a nucleotide sequence comprising (i) a nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV VP3 protein and (ii) a nucleotide sequence comprising the open reading frame or encoding region of one or more heterologous polypeptides comprising one or more polypeptides of interest, and optionally if desired, (iii)

10

15

20

25

30

a nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV pVP2 protein. In another particular embodiment, the gene construct provided by this invention comprises a nucleotide sequence comprising (i) a nucleotide sequence comprising (i) a nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV VP3 protein, (ii) a first nucleotide sequence comprising the open reading frame or encoding region of one or more heterologous polypeptides comprising one or more polypeptides of interest, (ii') a second nucleotide sequence comprising the open reading frame or encoding region of one or more heterologous polypeptides comprising one or more polypeptides of interest, wherein said second nucleotide sequence can be equal to or different from said first nucleotide sequence, and optionally if desired (iii) a nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV pVP2 protein. In this case, one of said first or second nucleotide sequences is operatively bound to the 5' end of the nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV VP3 protein, and the other one is operatively bound to the 3' end of the nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV VP3 protein.

In another aspect, the invention provides an <u>expression vector or system</u> selected from:

- a) an expression system comprising a gene construct provided by this invention, operatively bound to transcription, and optionally translation, control elements, wherein said gene construct comprises the nucleotide sequence encoding for said fusion protein comprising regions A and B and the nucleotide sequence encoding for the IBDV pVP2 protein; and
- b) an expression system comprising a first gene construct provided by this invention, operatively bound to transcription, and optionally translation, control elements, wherein said first construct comprises the nucleotide sequence encoding for said fusion protein comprising regions A and B, and a second gene construct operatively bound to transcription, and optionally translation, control elements, comprising the nucleotide sequence encoding for the IBDV pVP2 protein.

In a particular embodiment, the expression system provided by this invention comprises a gene construct comprising (i) a nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV VP3, (ii) a nucleotide sequence

comprising the open reading frame or encoding region of one or more heterologous polypeptides comprising one or more polypeptides of interest, and (iii) a nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV pVP2 protein, wherein said gene construct is operatively bound to transcription, and optionally translation, control elements.

In another particular embodiment, the expression system provided by this invention comprises a first gene construct, operatively bound to transcription, and optionally translation, control elements, said first gene construct comprising (i) a nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV VP3 protein, and (ii) a nucleotide sequence comprising the open reading frame or encoding region of one or more heterologous polypeptides comprising one or more polypeptides of interest, and a second gene construct, operatively bound to transcription, and optionally translation, control elements, said second gene construct comprising a nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV pVP2 protein

10

15

20

25

30

The transcription, and optionally translation, control elements present in the expression system provided by this invention include promoters, directing the transcription of the nucleotide sequences of interest (pVP2, VP3 and heterologous polypeptide) to which it is operatively linked, and other sequences necessary or suitable for the transcription and its suitable regulation in time and place, for example, start and end signals, cleavage sites, polyadenylation signal, replication origin, transcriptional activators (enhancers), transcriptional silencers (silencers), etc.

Virtually any suitable expression system or vector can be used in the generation of the expression system provided by this invention. By way of illustration, said suitable expression or vector systems can be selected, according to the conditions and needs of each specific case, from plasmids, bacmids, yeast artificial chromosomes (YACs), bacteria artificial chromosomes (BACs), bacteriophage P1-based artificial chromosomes (PACs), cosmids, or viruses, which can further have a heterologous replication origin, for example, bacterial or of yeast, so that it may be amplified in bacteria or yeasts, as well as a marker usable for selecting the transfected cells different from the gene or genes of interest. These expression systems or vectors can be obtained by conventional methods known by persons skilled in the art [Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory] and form part of the present invention. In a particular embodiment, said expression or vector system is a plasmid, such as

a plasmid suitable for transforming yeasts, for example, the plasmid called pESCURA/pVP2-VP3-GFP (Example 2), or a virus, such as a recombinant baculovirus (rBV), for example, the rBV called FBD/pVP2-his-VP3 (Example 1.2), simultaneously expressing both proteins (IBDV pVP2 and his-VP3) in insect cells during the replication cycle, or the rBVs called FB/pVP2 and FB/his-VP3 (Example 1.1) expressing the IBDV pVP2 and his-VP3 proteins, respectively, when coinfecting insect cells, obtaining IBDV CVLPs with the six histidine (6 his) heterologous polypeptide, or the rBVs called FB/pVP2 and FB/his-CD8-VP3 (Example 3) expressing IBDV pVP2 proteins and his-CD8-VP3, respectively, when co-infecting insect cells, forming the capsids called CD8-CVLPs.

5

10

15

20

25

30

In another aspect, the invention provides a host cell containing the encoding nucleotide sequence of said fusion protein comprising regions A and B, and the encoding nucleotide sequence of the IBDV pVP2 protein, either in a single gene construct or in two different gene constructs. In a particular embodiment, said host cell is a host cell that is transformed, transfected or infected with (i) an expression system provided by this invention comprising either a gene construct wherein said gene construct comprises the nucleotide sequence encoding for said IBDV pVP2 protein and the nucleotide sequence encoding for said fusion protein comprising regions A and B, and the encoding nucleotide sequence of the IBDV pVP2 protein, or else alternatively with (ii) an expression system comprising a first construct comprising the nucleotide sequence encoding for said fusion protein comprising regions A and B, and second gene construct comprising the nucleotide sequence encoding for said IBDV pVP2 protein.

In a particular embodiment, the host cell provided by this invention is a host cell that is transformed, transfected or infected with an expression system comprising a gene construct comprising (i) a nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV VP3 protein, (ii) a nucleotide sequence comprising the open reading frame or encoding region of a heterologous polypeptide comprising a polypeptide of interest, and (iii) a nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV pVP2 protein, wherein said gene construct is operatively bound to transcription, and optionally translation, control elements.

In another particular embodiment, the host cell provided by this invention is a host cell that is transformed, transfected or infected with (a) a first gene construct, operatively bound to transcription, and optionally translation, control elements, said first gene construct comprising (i) a nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV VP3 protein, and (ii) a nucleotide sequence comprising the open reading frame or encoding region of a heterologous polypeptide comprising a polypeptide of interest, and with (b) a second gene construct, operatively bound to transcription, and optionally translation, control elements, said second gene construct comprising a nucleotide sequence comprising the open reading frame or encoding region corresponding to the IBDV pVP2 protein.

5

10

15

20

25

30

Virtually any host cell susceptible to being transformed, transfected or infected by an expression system provided by this invention can be used, for example, mammal cells, bird cells, insect cells, yeasts, etc; however, in a particular embodiment, said host cell is selected from yeasts and insect cells. Yeasts are suitable due to the simplicity and production cost. Insect cells are suitable when the expression system comprises one or two recombinant baculoviruses (rBV). The use of rBV is advantageous due to biosafety issues related to the host range of the baculoviruses, incapable of replicating in other cell types which are not insect cells.

In a particular embodiment, the invention provides a host cell, such as a yeast, for example, Saccharomyces cerevisiae, Saccharomyces pombe, etc., transformed with an expression system, such as a plasmid or an expression vector, comprising a gene construct provided by this invention comprising the nucleotide sequence encoding for said fusion protein comprising regions A and B, and the nucleotide sequence encoding for the IBDV pVP2 protein.

In another particular embodiment, the invention provides a host cell, such as an insect cell, infected with an expression system, such as a recombinant baculovirus, comprising a gene construct provided by this invention comprising the nucleotide sequence encoding for said fusion protein comprising regions A and B, and the nucleotide sequence encoding for the IBDV pVP2 protein.

In another particular embodiment, the invention provides a host cell, such as an insect cell, coinfected with an expression system comprising a first recombinant baculovirus comprising a gene construct provided by this invention comprising the nucleotide sequence encoding for said fusion protein comprising regions A and B, and with a second recombinant baculovirus comprising a gene construct provided by this invention comprising the nucleotide sequence encoding for the IBDV pVP2 protein.

In another aspect, the invention provides a process for the production of CVLPs of the invention comprising culturing a host cell provided by this invention containing the encoding nucleotide sequence of said fusion protein comprising regions A and B, and the encoding nucleotide sequence of IBDV pVP2, either in a single gene construct or in two different gene constructs, and simultaneously expressing said IBDV pVP2 proteins and fusion protein comprising regions A and B, and if desired, recovering said CVLPs of the invention. In a particular embodiment, said host cell provided by this invention is a cell that is transformed, transfected or infected with a suitable expression system, such as an expression system comprising a gene construct, wherein said gene construct comprises the nucleotide sequence encoding for said fusion protein comprising regions A and B, and the nucleotide sequence encoding for IBDV pVP2, or else alternatively with an expression system comprising regions A and B, and a second gene construct comprising the nucleotide sequence encoding for said fusion protein comprising regions A and B, and a second gene construct comprising the nucleotide sequence encoding for IBDV pVP2.

5

10

15

20

25

30

Said process therefore comprises the gene coexpression of said IBDV pVP2 proteins and fusion proteins comprising regions A and B as two independent genes. After the simultaneous expression of said proteins (IBDV pVP2 and fusion proteins comprising regions A and B) in said cells, the expressed proteins are assembled and form the CVLPs of the invention, which can be isolated or withdrawn from the medium and purified if desired. The isolation and purification of said CVLPs of the invention can be carried out by conventional methods, for example, by means of fractioning on sucrose gradients.

In a particular embodiment, the simultaneous gene coexpression of IBDV pVP2 proteins and fusion proteins comprising regions A and B is carried out by means of the use of an rBV allowing the simultaneous expression of said proteins from two independent chimeric genes in insect cells. In this case, the process for the production of CVLPs of the invention provided by this invention comprises, first the obtainment of a gene expression system constituted by an rBV containing a gene construct simultaneously encoding for the IBDV pVP2 proteins and for said fusion proteins comprising regions A and B, such as the rBV called FBD/pVP2-his-VP3 (Example 1.2), or alternatively the obtainment of an rBV containing a gene construct encoding for the IBDV pVP2 protein and the obtainment of another rBV containing a gene construct encoding for said fusion protein comprising regions A and B, such as the rBVs called FB/pVP2 and FB/his-VP3 (Example 1.1), or rBVs called FB/pPV2 and FB/his-CD8-VP3 (Example 3), respectively, followed by the infection of insect cells with said

expression system based on said recombinant baculovirus(es), expression of the recombinant proteins and if desired, isolation of the CVLPs of the invention formed by assembly of said IBDV pVP2 proteins and fusion proteins comprising regions A and B, and optionally subsequent purification of said CVLPs of the invention.

5

10

15

20

25

30

The construction of a recombinant baculovirus allowing the independent expression of the IBDV pVP2 proteins and the fusion proteins comprising regions A and B can be carried out by any person skilled in the art based on that described herein and on the state of the art concerning this technology (Cold Spring Harbor, N.Y.; Leusch MS, Lee SC, Olins PO. 1995. A novel host-vector system for direct selection of recombinant baculoviruses (bacmids) in *Escherichia coli*. Gene 160: 191-4; Luckow VA, Lee SC, Barry GF, Olins PO. 1993. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in *Escherichia coli*. J Virol 67: 4566-79).

In another particular embodiment, the gene coexpression of the IBDV pVP2 proteins and of the previously defined fusion proteins comprising regions A and B is carried out by means of the use of a vector allowing the expression of said proteins in yeast cells. In this case, the process for the production of CVLPs of the invention provided by this invention comprises, first, the obtainment of a gene expression system constituted by a plasmid containing a gene construct simultaneously encoding for the IBDV pVP2 proteins and for said fusion proteins comprising regions A and B, followed by the transformation of yeasts with said expression system, expression of the recombinant proteins, and if desired, isolation of the CVLPs of the invention formed by assembly of said IBDV pVP2 proteins and fusion proteins comprising regions A and B, and optionally subsequent purification of said CVLPs of the invention. In a specific embodiment, the suitable expression system for transforming yeasts is based on a pESC Yeast (Stratagene) expression system such as, for example, the plasmid pESCURA/pVP2/VP3-GFP (Example 2) containing a gene construct encoding for the IBDV pVP2 and VP3-GFP proteins.

The obtainment of yeasts transformed with a gene construct or with a suitable expression system or vector allowing the simultaneous expression of the IBDV pVP2 proteins and the fusion proteins comprising regions A and B can be carried out by any person skilled in the art based on that described herein and on the state of the art concerning this technology (pESC epitope tagging vectors Instructions manual. Stratagene www.stratagene.com;

10

15

20

25

30

Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory).

In another aspect, the invention is related to the <u>use of the gene expression system</u> provided by this invention for producing and obtaining the CVLPs of the invention.

The CVLPs of the invention can be used as vectors or vehicles of products of interest, such as molecules with biological activity, for example, drugs, polypeptides, proteins, nucleic acids, etc., whereby they can be used for therapeutic or diagnostic or research purposes. In a particular embodiment, said molecules of biological interest include polypeptides of interest, such as antigens or immune response inducers in animals or humans to whom they are supplied, or nucleic acid sequences, useful in gene therapy, intended for being introduced inside the suitable cells.

Therefore, in another aspect, the invention is related to the <u>use of the CVLPs of the invention in the manufacture of medicaments</u>, for example vaccines, gene therapy vectors (delivery systems), etc. In a particular embodiment, said medicament is a vaccine intended for conferring protection against human or animal diseases caused by viruses, bacteria, parasites, or any other type of microorganism, or against tumor diseases. In another particular embodiment, said medicament is a gene therapy vector.

In another aspect, the invention provides a vaccine comprising a therapeutically effective amount of CVLPs of the invention, optionally together with one or more pharmaceutically acceptable adjuvants and/or vehicles. Said vaccine is useful for protecting animals and humans against diseases caused by microorganisms (viruses, bacteria, parasites, etc.), or against tumor diseases. In a particular embodiment, said vaccine is especially useful for simultaneously protecting animals or humans against the infection caused by two or more infectious disease-causing agents. By way of illustration, the vaccine provided by this invention can be used to protect birds, for example chickens, turkeys, geese, pheasants, quails, ostriches, etc., against the infectious bursal disease virus (IBDV) and against one or more infectious agents responsible for avian diseases (avian pathogens).

In the sense used in this description, the expression "therapeutically effective amount" refers to the amount of CVLPs of the invention calculated for producing the desired effect and will generally be determined, among others, by the characteristics of the CVLPs and the immunization effect to be achieved.

The pharmaceutically acceptable adjuvants and vehicles which can be used in said vaccines are those adjuvants and vehicles known by the persons skilled in the art and

normally used in the manufacture of vaccines.

5

10

15

20

25

30

In a particular embodiment, said vaccine is prepared in form of an aqueous solution or suspension in a pharmaceutically acceptable diluent, such as saline solution, phosphate-buffered saline solution (PBS), or any other pharmaceutically acceptable diluent.

The vaccine provided by this invention can be administered by any suitable administration route which results in a protective immune response against the heterologous sequence or epitope used, to which end said vaccine will be formulated in the dosage form suited to the chosen administration route. In a particular embodiment, the administration of the vaccine provided by this invention is carried out parenterally, for example, intraperitoneally, subcutaneously, etc.

The following Examples illustrate the invention and should not be considered limiting of the scope thereof.

EXAMPLE 1

Obtaining IBDV CVLPs in insect cells

1.1 Obtaining IBDV CVLPs, VP2-his-VP3, by means of two independent rBVs in insect cells

The results of a series of experiments designed to analyze the possibility of obtaining IBDV CVLPs from the coexpression of the IBDV pVP2 and VP3 proteins and a heterologous polypeptide from two independent chimeric genes are described in this example. To that end, two recombinant baculoviruses (rBVs) described above, FB/his-VP3 (Kochan, G., González, D. & Rodríguez, J. F. (2003). Characterization of the RNA binding activity of VP3, a major structural protein of IBDV. Archives of Virology 148, 723-744) and FB/VPX, herein cited as FB/pVP2, (Martínez-Torrecuadrada, J. L., Castón, J. R., Castro, M., Carrascosa, J. L., Rodríguez, J. F. & Casal, J. I. (2000). Different architectures in the assembly of infectious bursal disease virus capsid proteins expressed in insect cells. Virology 278, 322-331) have been used. These rBVs were generated by means of the cloning into suitable vectors of the complementary DNA (cDNA) encoders of the IBDV pVP2 and pVP3 proteins. Said cDNAs were obtained by RT-PCR from the A segment of the serotype I IBDV Soroa strain genome a (NCBI access number AAD30136). The rBV FB/his-VP3 expresses a chimeric VP3 protein which at its N-terminal end contains a tandem of six histidines fused to the VP3 sequence (Met754-Glu1012 of the polyprotein) called his-VP3. rBV FB/pVP2 expresses the encoding region of the pVP2 protein (Met1-Ala512).

10

15

20

25

30

The analysis of the expression of these pVP2 and his-pVP3 proteins, whether independently or together, was carried out in cell cultures. To carry out these experiments, single layer cell cultures from the insect Trichloplusia ni (H5, Invitrogen) were used, which were grown on cover glasses. Said cultures were independently infected with FB/pVP2, FB/his-VP3, or coinfected with both rBVs. The multiplicity of infection was 5 pfu/cell. The cells were fixed at 48 hours post-infection (h.p.i.), and incubated with rabbit anti-VP2 polyclonal serum and with rat anti-VP3 polyclonal serum (Fernández-Arias, A., Risco, C., Martínez, S., Albar, J. P. & Rodríguez, J. F. (1998). Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. Journal of General Virology 79, 1047-1054). After successive washings, the cover glasses were incubated with goat anti-rat serum conjugated with Alexa 594 and goat anti-rabbit serum conjugated with Alexa 488 (Jackson Immunoresearch Laboratories, Inc.). The cellular cores were stained with the specific To-Pro-3 marker (Molecular Probes, Inc.). The samples were finally viewed by epifluorescence with a Zeiss Axiovert 200 microscope equipped with the Bio Rad Radiance 2100 confocal system. The images obtained were stored using the Laser Sharp Package (Bio Rad) software equipment. As is shown in Figure 2a, in the cultures infected with FB/pVP2, the anti-VP2 serum showed a fine granular signal mixed with tubular structures, both distributed throughout the cytoplasm. The anti-VP3 signal, detected in the cells infected with rBV FB/his-VP3, was characterized by the presence of spherical-shaped, and apparently hollow, accumulations around the core. In the cultures coinfected with both rBVs, a notable modification in the distribution pattern of both proteins was detected. In these cells, the specific signals of pVP2 and VP3 were collocated in spherical and dense accumulations, suggesting that their coexpression allowed the formation of pVP2/his-VP3 complexes (Figure 2c to 2e).

For the purpose of characterizing these structures in greater detail, similar extracts corresponding to cells infected with FB/pVP2+FB/hisVP3 were analyzed by transmission electron microscopy (TEM). As a control, and in parallel, H5 cell cultures infected with the wild strain of the FBD (FastBacDual, Invitrogen) virus were analyzed by the same technique. After the infection, the cells were harvested after 48 hours, and processed as has been previously described (Fernández-Arias A, Risco C, Martínez S, Albar JP & Rodríguez JF. (1998). Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. *Journal of General Virology* 79:1047-1054) for their analysis in ultrathin sections by TRANSMISSION ELECTRON MICROSCOPY. As is shown in Figure

2, the cytoplasm of the coinfected cells contains aggregates formed by a mixture of tubules and structures similar to capsids (Figure 2g, 2h and 2i). These aggregates were not observed in any case in the samples corresponding to cells infected with wild FBD virus (Figure 2f). The appearance and size of the tubules, as well as of the structures similar to capsids, was similar to those previously described in cell cultures infected with VT7/Poly, a recombinant of the vaccinia virus expressing the gene of the IBDV polyprotein (Fernández-Arias A, Risco C, Martínez S, Albar JP & Rodríguez JF. (1998). Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. *Journal of General Virology* 79:1047-1054).

5

10

15

20

25

30

To unmistakably establish that the coexpression of pVP2 and his-VP3 enabled the assembly and, therefore, the obtainment of CVLPs, the decision was made to purify the formed particles. To that end, H5 cell cultures were infected with FB/pVP2+FB/his-VP3. At 60 h.p.i., the cells were homogenized and the extracts were separated on sucrose gradients as previously described (Lombardo E, Maraver A, Castón JR, Rivera J, Fernández-Arias A, Serrano A, Carrascosa JL & Rodríguez JF. (1999). VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. Journal of Virology 73:6973-6983). After their centrifugation, the gradients were fractioned, and the different fractions were analyzed by TEM as previously described (Lombardo E, Maraver A, Castón JR, Rivera J, Fernández-Arias A, Serrano A, Carrascosa JL & Rodríguez JF. (1999). VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. Journal of Virology 73:6973-6983). As a control, and subject to the same process, gradients corresponding to cell extracts infected with rBV FB/VPX or with rBV FBD/Poly-VP1, were fractioned. The recombinant virus FBD/Poly-VP1 simultaneously expresses the VP1 polypeptide and polyprotein. As was predictable, the infection with FBD/Poly-VP1 had a result of an efficient production of VLPs (Maraver A, Oña A, Abaitua F, González D, Clemente R, Diaz-Ruiz A, Castón JR, Pazos F & Rodríguez JF. (2003). The oligomerization domain of VP3, the scaffolding protein of infectious bursal disease virus, plays a critical role for capsid formation. Journal of Virology 77:6438-49). On the other hand, the fractions corresponding to the cells infected with FB/VPX only contain tubules of a twisted The gradients corresponding to cells coinfected with the rBVs FB/pVP2+FB/his-VP3 contain rigid type I tubules in the fractions near the bottom of the

gradient, and CVLPs in the central and top fractions (Figure 3b). The CVLPs isolated from the cells coinfected with rBV FB/pVP2+FB/his-VP3 had a diameter of 65-70 nm, as well as a typical polygonal contour, absolutely indistinguishable from the purified VLPs of cultures infected with FBD/Poly-VP1 (Maraver, A., Oña, A., Abaitua, F., González, D., Clemente, R., Diaz-Ruiz, A., Caston, J. R., Pazos, F. & Rodríguez, J. F. (2003). The oligomerization domain of VP3, the scaffolding protein of infectious bursal disease virus, plays a critical role for capsid formation. *Journal of Virology* 77:6438-49) or of the cultures infected with VT7/Poly (Fernández-Arias, A., Risco, C., Martínez, S., Albar, J. P. & Rodríguez, J. F. (1998). Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. *Journal of General Virology* 79, 1047-1054).

5

10

15

20

25

30

For the purpose of achieving a biochemical characterization of the obtained material, Western blot experiments were carried out in which the different fractions were compared with specific sera against the VP1, pVP2, VP3 and VP4 proteins (Fernández-Arias et al. 1998, cited supra; Lombardo et al., 2000). Cell extracts infected with IBDV were used as a control. The obtained results are shown in Figure 3d. As was expected, the bands corresponding to the VP1 and VP4 polypeptides were only detected in samples corresponding to cells infected with FBD/Poly-VP1. The patterns corresponding to pVP2/VP3 in simples corresponding to cells infected with FBD/Poly-VP1 or coinfected with FB/VPX+ FB/his-VP3 were similar, two bands corresponding to pVP2 and VP3, respectively, being detected.

1.2 Obtaining IBDV CVLPs, pVP2-his-VP3, by means of a single rBV in insect cells

Furthermore, the construction of the plasmid pFBD/pVP2-his-VP3 was carried out. The first step of the construction was carried out by means of the cloning of the encoding region of the pVP2 protein into the pFBDual vector (Invitrogen). The DNA fragment corresponding to pVP2 was obtained by means of PCR with the oligonucleotides identified as Oligo I (SEQ ID NO: 1) and Oligo II (SEQ ID NO: 2) using the plasmid pVOTE.2/Poly as a mold (Fernández-Arias, A., Risco, C., Martínez, S., Albar, J. P. & Rodríguez, J. F. (1998). Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. *Journal of General Virology* 79, 1047-1054). The fragment was purified, subjected to digestion with the BgIII and HindIII enzymes and cloned into the pFBDual vector (Invitrogen) previously digested with the BamHI and Hindi enzymes. The resulting plasmid was called pFBD/pVP2. Then, a DNA fragment containing the open reading frame

corresponding to the VP3 protein was obtained by means of digestion of the plasmid pFB/his-VP3 (Kochan et al., 2003, cited *supra*) with the RsrII enzyme, treatment with Klenow, and subsequent restriction with KpnI. This DNA fragment was purified and cloned into the plasmid pFBD/pVP2 previously digested with the SmaI and KpnI enzymes. The resulting plasmid was called pFBD/pVP2-his-VP3 (SEQ ID NO: 3) and contains the encoding nucleotide sequence of the pVP2 proteins and of the his-pVP3 fusion protein containing a heterologous his 6 sequence (the latter is encoded by the complementary chain to the nucleotides 6734-7585 of SEQ ID NO: 3). The amino acid sequence of the pVP2 protein and of the his-VP3 fusion protein (pVP2-his-VP3) encoded by the nucleotide sequence contained in said plasmid pFBD/pVP2-his-VP3 is shown in SEQ ID NO: 4.

The plasmid pFBD/pVP2-his-VP3 allows obtaining an rBV, called FBD/pVP2-his-VP3, expressing both proteins simultaneously during its replication cycle [http://invitrogen.com/content/sfs/manuals/bevtest.pdf].

10

15

20

25

30

The results obtained with FBD/pVP2-his-VP3 in insect cells are identical to those obtained by means of the coinfection with rBVs FB/pVP2 and FD/his-VP3, IBDV CVLPs with the heterologous six histidine (6 his) polypeptide being obtained.

EXAMPLE 2

Obtaining IBDV CVLPs, pVP2-VP3-GFP, in yeasts

For the purpose of studying the possibility of obtaining IBDV CVLPs in yeast cultures (Saccharomyces cerevisiae) the vector pESCURA/pVP2-VP3-GFP was generated with the heterologous GFP gene bound to the VP3 N-terminal end. The first step in the construction of the vector was carried out by means of the cloning of the encoding region of the pVP2 protein into the vector pESCURAinv. The plasmid pESCURAinv was generated by means of digestion of the vector pRS426 (Stratagene) with the PvuII enzyme and religation of the digestion mixture. The resulting vector, pESCURAinv, contains the multiple cloning region in reversed position with regard to that of parent vector pRS426. The DNA fragment corresponding to the pVP2 protein was obtained by means of PCR with the oligonucleotides called Oligo III (SEQ ID NO: 5) and Oligo IV (SEQ ID NO: 6) using the plasmid pVOTE.2/Poly as a mold (Fernández-Arias, A., Risco, C., Martínez, S., Albar, J. P. & Rodríguez, J. F. (1998). Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. Journal of General Virology 79, 1047-1054). The fragment was purified subjected to digestion with the BgIII and HindIII enzymes and cloned

into the vector pESCURA.inv, previously digested with the BamHI and HindIII enzymes. The resulting plasmid was called pESCURA/pVP2.

5

10

15

20

25

30

The plasmid pFB/VP3-GFP was constructed in two stages. The first one consisted of the cloning of a DNA fragment, generated by means of PCR, containing the ORF of the VP3 protein lacking the termination codon. This PCR was carried out using the oligonucleotides called Oligo V (SEQ ID NO: 9) and Oligo VI (SEQ ID NO: 10) and using the plasmid pVOTE.2/Poly as a mold (Fernández-Arias, A., Risco, C., Martínez, S., Albar, J. P. & Rodríguez, J. F. (1998). Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. *Journal of General Virology* 79, 1047-1054). The resulting DNA was digested with the EcoRI and BamHI enzymes and cloned into the vector pEGFP-N3 (Clontech), also digested with the same enzymes. The resulting plasmid was called pVP3-GFP. Then, the plasmid pEGFP-GFP was digested with the EcoRI and NotI enzymes and cloned into the vector pFastBac1 (Invitrogen). The resulting plasmid was called pFB/VP3-GFP.

Next, a DNA fragment that contained the open reading frame corresponding to the VP3 protein fused to the encoding region of the EGFP protein was obtained by means of digestion of the plasmid pFB/VP3-GFP with the EcoRI and NotI enzymes. This DNA fragment was purified and cloned into the plasmid pESCURA/pVP2 previously digested with the EcoRI and NotI enzymes. The resulting plasmid was called pESCURA/pVP2-VP3-GFP (SEQ ID NO: 7) and contains the ORFs of the pVP2 and VP3-GFP proteins under the transcriptional control of two independent promoters, GAL 1 and GAL 10, both inducible by galactose (the pVP2 protein is encoded by the chain of nucleotides complementary to the nucleotides 5862-7343 of SEQ ID NO: 7). The amino acid sequence of the pVP2 protein and of the VP3-GFP fusion protein (pVP2-VP3-GFP) encoded by the nucleotide sequence contained in said plasmid pESCURA/pVP2-VP3-GFP is shown in SEQ ID NO: 8.

pESCURA/pVP2-VP3-GFP was subsequently used to transform a culture of *S. cerevisiae* yeast haploid strain 499 according to a previously described protocol (Gietz, R.D. and R.A. Woods. (2002), Transformation of yeast by the Liac/SS carrier DNA/PEG method. Methods in Enzymology 350:87-96). The yeasts transformed with the plasmid were selected by means of growth on SC medium plates (CSM + YNB, 2% glucose and bacto agar) supplemented with the amino acids tryptophan, leucine and histidine and lacking uracyl (-Ura). After an incubation of 48 hours at 30°C, a colony was chosen which was used to carry out the following protein expression and CVLP formation analyses.

The pVP2 and VP3 protein expression and CVLP formation analyses were carried out following a protocol previously described for the characterization of IBDV VLPs in other expression systems (Fernández-Arias, A., Risco, C., Martínez, S., Albar, J. P. & Rodríguez, J. F. (1998). Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. Journal of General Virology 79, 1047-1054; Lombardo, E., Maraver, A., Castón, J. R., Rivera, J., Fernández-Arias, A., Serrano, A., Carrascosa, J. L. & Rodríguez, J. F. (1999). VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. Journal of Virology 73, 6973-698). The colony selected was cultured in liquid CSM (-Ura) + YNB medium supplemented with 2% raffinose. The culture was incubated at 30°C for 24 hours. This culture was used to inoculate, at an optical density (O.D.) of 0.2, a flask of 200 ml of CSM (-Ura) + YNB medium supplemented with 2% inducer galactose. The culture was maintained at 30°C for 18 hours (until an O.D. between 1.0 and 2.0). The yeasts were centrifuged at 3,000 radiant power measurement, 5 minutes at 4°C, were washed once with distilled water, and the pellet was resuspended in lysis buffer (TEN: Tris 10 mM, pH 8.0; NaCl 150 mM; EDTA 1 mM) + 2X protease inhibitors (Compl Roche). A volume of glass beads having a size of about 425-600 microns (Sigma) were added for the lysis. This mixture was subjected to vigorous vortex stirring for 30 seconds 4 times, with 30-second intervals, and at 4°C. After this, the soluble fraction was recovered by centrifuging the lysis mixture at 13,000 rpm for 15 minutes at 4°C. This sample was subjected to fractioning on a sucrose gradient according to a previously described protocol (Lombardo, E., Maraver, A., Castón, J. R., Rivera, J., Fernández-Arias, A., Serrano, A., Carrascosa, J. L. & Rodríguez, J. F. (1999). VP1, the putative RNAdependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. Journal of Virology 73, 6973-6983). The samples obtained after fractioning as well as a sample of the starting material were analyzed by means of sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) [Current Protocols in Molecular immunodetection by Western blot (Figure 4A) using anti-pVP2 and anti-VP3 sera [Current Protocols in Molecular Biology]. As is shown in Figure 4A, the Western blot showed the presence of bands, with the predicted molecular mass corresponding to the pVP2 (48 kDa) and VP3-GFP (61 kDa) proteins, as well as other immunoreactive bands of a smaller size probably produced by proteolytic degradation both in the initial sample and in the different

10

15

20

25

fractions of the gradient. These results reliably showed the correct expression of both polypeptides in the *S. cerevisiae* culture transformed with the plasmid pESCURA/pVP2-VP3. Then, the different fractions of the gradient were analyzed by means of TEM as has been previously described (Lombardo, E., Maraver, A., Castón, J. R., Rivera, J., Fernández-Arias, A., Serrano, A., Carrascosa, J. L. & Rodríguez, J. F. (1999). VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. *Journal of Virology* 73, 6973-6983). As is shown in Figure 4B, the TEM analysis of the fractions of the gradient showed the existence of IBDV CVLPs in the top fractions of the gradient. These CVLPs have a diameter of 65-70 nm and a polygonal contour that is indistinguishable from the IBDV CVLPs obtained in other expression systems (Figure 4C).

5

10

15

20

25

30

EXAMPLE 3

Obtaining and characterizing the immunogenicity of IBDV CVLPs

As part of the development of new vaccination strategies, the possibility of using the strategy of producing chimeric IBDV VLPs (CVLPs) which contained heterologous amino acid sequences corresponding to other proteins or peptides involved in the induction of an immune response was analyzed. As a study model, the possibility of obtaining CVLPs which contained, as a heterologous polypeptide comprising a polypeptide of interest, the amino acid sequence corresponding to the CD8 epitope (E-CD8) of the malaria CS protein (Plasmodium yoelii), was approached. (Quantification of antigen specific CD8+ T cells using an ELISPOT assay. J Immunol Methods 181: 45-54; Zavala, F., Rodrigues, M., Rodriguez, D., Rodriguez, J. R., Nussenzweig, R. S. and Esteban, M. (2001). A striking property of recombinant poxviruses: efficient inducers of in vivo expansion of primed CD8(+) T cells. Virology 280: 155-159). This epitope is responsible for the CD8-specific cellular immune response induction against this pathogen (Oliveira-Ferreira J, Miyahira Y, Layton GT, Savage N, Esteban M, Rodriguez D, Rodriguez JR, Nussenzweig RS, Zavala F, Myahira Y. (2000). Immunogenicity of Ty-VLP bearing a CD8(+) T cell epitope of the CS protein of P. yoelii: enhanced memory response by boosting with recombinant vaccinia virus. Vaccine 18: 1863-1869). This response can be quantified by means of the ELISPOT technique (Miyahira Y, Murata K, Rodriguez D, Rodriguez JR, Esteban M, Rodrigues MM, Zavala F. (1995) Quantification of antigen specific CD8+ T cells using an ELISPOT assay. J Immunol Methods 181: 45-54) in splenocyte cultures from BALB/c mice.

For this purpose, the construction of the plasmid pFB/his-CD8-VP3 (SEQ ID NO: 13) was carried out following the cloning strategy described later. This vector was constructed by means of insertion of a 36 bearing portion DNA fragment, generated by means of hybridization of the synthetic oligonucleotides identified as CD8 A (SEQ ID NO: 11) and CD8 B (SEQ ID NO: 12), containing the encoding sequence of the CD8 epitope (SYVPSAEQI, see residues 29 to 37 of the SEQ ID NO: 13 and 14) of the malaria CS protein in the ORF encoding the his-VP3 protein integrated in the pFB/his-VP3 vector. The cloning was carried out by means of ligation of the DNA fragment generated by means of hybridization of the synthetic oligonucleotides CD8 A and B (SEQ ID NO: 11 and SEQ ID NO: 12) to the plasmid pFB/his-VP3 digested with the EheI restriction enzyme. This plasmid pFB/his-CD8-VP3 (SEQ ID NO: 13) contains and ORF encoding a fusion protein called his-CD8-VP3 containing the CD8 epitope inserted in the end corresponding to the N-terminal sequence of the his-VP3 protein ORF. The amino acid sequence of the his-CD8-VP3 fusion protein encoded by the nucleotide sequence contained in said plasmid pFB/his-CD8-VP3 is shown in SEQ ID NO: 14.

The plasmid pFB/his-CD8-VP3 was purified and used to generate the corresponding recombinant baculovirus (rBV), called FB/his-CD8-VP3, following the Bac-to-Bac technology according to the protocols described by the manufacturer (Invitrogen BV, Groningen, The Netherlands).

3. 1 Producing CVLPs

20

25

30

15

10

H5 cell cultures were simultaneously infected with the recombinant baculoviruses FB/His-CD8-VP3 and FB/pVP2. The FB/ pVP2 rBV (see Example 1.1) expresses the region corresponding to the pVP2 protein (Met1-Ala 512) of the IBDV polyprotein. The cells were harvested at 48 hours post-infection (pi), and the corresponding extracts were subjected to the IBDV VLPs purification protocol by means of fractioning on linear sucrose gradients (Lombardo, E., Maraver, A., Castón, J. R., Rivera, J., Fernández-Arias, A., Serrano, A., Carrascosa, J. L. & Rodríguez, J. F. (1999). VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. *Journal of Virology* 73: 6973-6983). Each one of the obtained fractions was viewed by means of transmission electron microscopy (TEM) and analyzed by means of SDS-PAGE and immunoblot using VP3 specific antibody. As is observed in Figure 5A, fraction 4 of the gradient contained abundant assemblies with an identical structure (polygonal perimeter and a diameter of 65-70 nm) as the IBDV VLPs

obtained by means of expression of the viral polyprotein. The biochemical characterization, by means of SDS-PAGE and Western blot (Figure 5B), showed that these CVLPs contain a protein, immunoreactive against the anti-VP3 serum, the molecular mass (33.5 kDa) of which is identical to the aforementioned one for the his-CD8-VP3 fusion protein (33.591 kDa). These results allow concluding that the coexpression of the pVP2 and his-CD8-VP3 genes in insect cells gives rise to the formation of chimeric VLPs (CVLPs) containing the his-CD8-VP3 fusion protein. These CVLPs are called CD8-CVLPs.

5

10

15

20

25

30

3.2 Immunogenicity analysis of CD8-CVLPs

For the purpose of determining the immunogenic capacity of the CD8-CVLPs two identical assays were carried out using two batches of CD8-CVLPs independently produced and purified. Four groups (I, II, III and IV) of three female eight-week old BalbC rats were used. The groups were formed randomly. The immunization strategy was similar to the one used previously in the characterization of other immunogens. This strategy is based on the use of a priming dose with the antigen under study, followed by a second booster dose, which amplifies the primary response, with the recombinant vaccinia virus VVpJRCS, which expresses the malaria CS protein. The induced immune response was determined by means of the detection of the antigen specific CD8⁺ T cells according to their ability to produce IFN-y, by means of an ELISPOT assay (Miyahira Y, Murata K, Rodriguez D, Rodriguez JR, Esteban M, Rodrigues MM, Zavala F. (1995). Quantification of antigen specific CD8+ T cells using an ELISPOT assay. J Immunol Methods 181: 45-54). In summary, 96-well plates with nitrocellulose (Millipore) bottoms were coated with 75 µl/well of a solution containing 6 µg/ml of the rat anti-murine IFN-y monoclonal antibody (R4-6A2, Pharmingen, San Diego, CA) resuspended in PBS. The plates were incubated overnight at room temperature. The wells were subsequently washed three times with RPMI medium, and were finally incubated with RPMI medium supplemented with 10% fetal calf serum (FCS) for one hour at 37°C 5% CO2 atmosphere. On the other hand, the spleens of the immunized rats, maintained in RPMI medium supplemented with 10% FCS, were arranged on a sterile grid on a 60 movable member plate and were homogenized, the extract breaking up by means of its passing through needles of different gauges (21G->25G). The cells thus broken up were centrifuged for 5 minutes at 1,500 rpm at 4°C, and were washed twice with RPMI + 10% FCS medium. In order to lysate the erythrocytes of the samples, sterile 0.1 M NH₄Cl (2 ml/spleen) was added and it was maintained at 4°C for 3-5 minutes, RPMI + 10% FCS was added and it was centrifuged.

Then, they were twice and it was finally resuspended in 1-2 ml RPMI + 10% FCS. The splenocyte viability count was carried out by means of trypan blue staining (4% in water, Sigma).

5

10

15

20

25

The professional antigen-presenting cells (APCs) used in this assay were P815. These cells were adjusted to a concentration of 10⁶ cells/ml and were incubated with the synthetic peptide SYVPSAEQI (corresponding to the CD8 region of the malaria CS protein) 10⁻⁶ M. After treatment with the peptide, the cells were washed and treated with mitomycin C (30 μg/ml) (Sigma) for 15 minutes at 37°C and in CO₂ atmosphere. After subsequent washings, the antigen-presenting cells, to which 30 U/ml of murine interleukin 2 (IL-2) were added, were added at a concentration of 10⁵ cells/well. 100 ul/well of 10⁶ splenocytes/ml and 1/4 and 1/16 dilutions were also added. The plates were incubated for 18 ours at 37°C in CO2 atmosphere, they were washed 5 times with PBST and incubated with 2 µg/ml of the biotinylated rat anti-IFN-y XMG1.2 monoclonal antibody (Pharmingen) diluted in PBST for 2 hours at room temperature. Then the plates were washed five times with PBST and a dilution of 1/800 avidinperoxidase was added (0.5 mg/ml) (Sigma). After 1 hour of incubation at room temperature, it was washed 3 times with PBST and 2 times with PBS, finally adding the developer mixture with 1 µg/ml of the DAB substrate (Sigma), resuspended in Tris-HCl, pH 7.5, 50 mM, containing 0.015% H₂O₂. The reaction was stopped by washing the plate with abundant water, and once dried, the spots were counted with the aid of a Leica MZ122 APO stereomicroscope and the QWIN Imaging System software (Leica, Cambridge, United kingdom).

Immunizations were carried out according to the immunization program described in the following table:

Group	1 st Immunization. Day O	2 nd Immunization. Day 14
I	Not immunized	VVpJRPyCS
П	VVpJRPyCS	VVpJRPyCS
Ш	IBDV VLPs	VVpJRPyCS
IV	CD8-CVLPs	VVpJRPyCS

Immunizations with VVpJRCS were carried out intraperitoneally using 10⁷ plaque forming units (pfu) per anima. Immunizations with VLPs, both non-chimeric IBDV VLPs and CD8-CVLPs, were carried out intraperitoneally with a dose of 50 µg of antigen per animal. In all cases, the antigen preparations were diluted in phosphate-buffered saline (PBS).

28 days after the first immunization, the animals were sacrificed and there spleens were used to carry out the ELISPOT assays. These assays were carried out following the protocol described above. Virtually identical results were obtained in both assays. Figure 6 shows the results corresponding to the first assay. The obtained results demonstrate that when CD8-CVLPs are used as a priming dose followed by a booster dose with the VVpJRCS virus (group IV), a strong stimulation of the specific cellular immune response against the malaria CD8 epitope occurs. This stimulation is much greater (about 20 times greater) than that obtained after the immunization with one (group I) or two (group II)doses of VVpJRCS. The fact that a significant stimulation of the response against E-CD8 dose not occur in animals immunized with non-chimeric IBDV VLPs (group III), with regard to group I, which received a single dose of VVpJRCS, demonstrates that the response obtained in group IV is specifically induced by the E-CD8 present in the his-CD8-VP3 fusion protein forming an integral part of the CD8-CVLPs.

5

10

20

25

30

CLAIMS

- 1. A chimeric empty capsid of the infectious bursal disease virus (IBDV), characterized in that it is constituted by assembly of (i) IBDV pVP2 proteins and (ii) fusion proteins comprising a region A constituted by the IBDV VP3 protein bound to a region B constituted by a heterologous polypeptide comprising a polypeptide of interest.
- 2. Capsid according to claim 1, wherein said region B is bound to the amino-terminal region of IBDV VP3, or alternatively to the carboxy-terminal region of IBDV VP3.
- 3. Capsid according to claim 1, wherein said polypeptide of interest is a polypeptide useful in vaccination, therapy or diagnosis.
- 4. Capsid according to claim 1, wherein said region B comprises a single polypeptide of interest.
 - 5. Capsid according to claim 1, wherein said region B comprises two or more polypeptides of interest.
 - 6. Capsid according to claim 1, wherein said fusion protein comprises a region A bound to a single region B.
 - 7. Capsid according to claim 1, wherein said fusion protein comprises a region A bound to two regions B, equal or different, one of them bound to the amino-terminal region of VP3 present in region A, and the other one to the carboxy-terminal region of VP3 present in region A.
 - 8. Capsid according to claim 7, wherein said regions B contain more than one polypeptides of interest equal to or different from one another.
 - 9. Capsid according to claim 1, wherein said fusion protein further comprises, a linker polypeptide located between said regions A and B.

- 10. A nucleic acid, said nucleic acid having a nucleotide sequence which comprises the nucleotide sequence encoding for the fusion protein defined in anyone of claims 1 to 9.
- 11. A nucleic acid, said nucleic acid having a nucleotide sequence which comprises
 (i) a nucleotide sequence comprising the open reading frame corresponding to the IBDV VP3 protein and (ii) a nucleotide sequence comprising the open reading frame of one or more heterologous polypeptides comprising one or more polypeptides of interest.
- 12. Nucleic acid according to claim 11, further comprising (iii) a nucleotide sequence comprising the open reading frame corresponding to the IBDV pVP2 protein.
 - 13. A gene construct comprising a nucleic acid according to claim 10 or 11.
 - 14. A gene construct comprising a nucleic acid according to claim 12.

- 15. An expression system selected from:
- a) an expression system comprising a first gene construct according to claim 13, operatively bound to transcription, and optionally translation, control elements, and a second gene construct, operatively bound to transcription, and optionally translation, control elements; said second gene construct comprising a nucleotide sequence comprising the open reading frame corresponding to the IBDV pVP2 protein; and
- b) an expression system comprising a gene construct according to claim 14, operatively bound to transcription, and optionally translation, control elements.
- 25 16. Expression system according to claim 15, said expression system being selected from plasmids, bacmids, yeast artificial chromosomes (YACs), bacteria artificial chromosomes (BACs), bacteriophage P1-based artificial chromosomes (PACs), cosmids, or viruses, which optionally contain a heterologous replication origin.
- 30 17. A host cell containing a nucleic acid according to anyone of claims 10 to 12, or a gene construct according to anyon of claims 13 or 14, or an expression system according to anyone of claims 15 or 16.

15

20

- 18. A host cell, said cell having been transformed, transfected or infected with an expression system according to any of claims 15 or 16.
- 19. Host cell according to claim 17 or 18, said cell being selected from a mammal cell, an avian cell, an insect cell and a yeast.
 - 20. A process for the production of chimeric empty capsids of the infectious bursal disease virus (IBDV) according to anyone of claims 1 to 9, comprising culturing a host cell according to anyone of claims 17 to 19, and, if desired, recovering said chimeric empty IBDV capsids.
 - 21. Process according to claim 20, wherein said host cell is an insect cell, comprising the steps of:
 - a) preparing an expression system selected from (I) and (II), wherein:
 - expression system (I) is constituted by a recombinant baculovirus containing a gene construct according to claim 14; and
 - expression system (II) is constituted by a first recombinant baculovirus containing a gene construct encoding for the IBDV pVP2 protein, and a second recombinant baculovirus containing a gene construct according to claim 13;
- 25 b) infecting insect cells with said expression system prepared in step a);
 - c) culturing the infected insect cells obtained in step b) under conditions allowing the expression of recombinant proteins and their assembly to form chimeric empty IBDV capsids; and
 - d) if desired, isolating and optionally purifying the chimeric empty IBDV capsids.

- 22. A process according to claim 20, wherein said host cell is a yeast, comprising the steps of:
- a) preparing an expression system constituted by a plasmid containing a gene
 construct according to claim 14;
 - b) transforming yeast cells with said expression system prepared in step a);
- c) culturing the transformed yeasts obtained in step b) under conditions allowing the
 expression of recombinant proteins and their assembly to form chimeric empty
 IBDV capsids; and
 - d) if desired, isolating and optionally purifying the chimeric empty IBDV capsids.
- 23. The use of a gene expression system according to anyone of claims 15 or 16 for producing chimeric empty IBDV capsids according to anyone of claims 1 to 9.
 - 24. The use of chimeric empty capsids of the infectious bursal disease virus (IBDV) according to anyone of claims 1 to 9 in the manufacture of a medicament.
 - 25. Use according to claim 24, wherein said medicament is a vaccine.
 - 26. Use according to claim 24, wherein said medicament is a gene therapy vector.
- 27. A vaccine comprising a therapeutically effective amount of chimeric empty capsids of the infectious bursal disease virus (IBDV) according to anyone of claims 1 to 9, optionally together with one or more pharmaceutically acceptable adjuvants and/or vehicles.
- 28. A vaccine according to claim 27, useful to simultaneously protect animals or humans against infection caused by two or more disease-causing infectious agents.
 - 29. A gene therapy vector comprising a chimeric empty capsid of the infectious bursal disease virus (IBDV) according to anyone of claims 1 to 9.

 \boldsymbol{b}

Gene Construct

Resulting Structure

VLP (T=13) and Type I Tubules*

Type I Tubules†

Twisted Tubules[‡]

23 nm T = 1 Capsids⁹

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

SEQUENCE LISTING

```
<110> CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
<110> BIONOSTRA, S.L.
<120>
        CHIMERIC EMPTY CAPSIDS OF THE INFECTIOUS BURSAL DISEASE VIRUS
        (IBDV), OBTAINMENT PROCESS AND APPLICATIONS
<130> P1391PC
<150> ES P200400120
<151> 2004-01-21 (January 21, 2004)
<160> 14
<170> PatentIn version 3.1
<210> 1
<211> 35
<212> DNA
<213> Artificial sequence
<220> Synthetic DNA
<223> Oligo I primer
<400> 1
gcgcagatct atgacaaacc tgtcagatca aaccc
                                                                    35
<210> 2
<211> 34
<212> DNA
<213> Artificial sequence
<220> Synthetic DNA
<223> Oligo II primer
<400> 2
gcgcaagctt aggcgagagt cagctgcctt atgc
                                                                    34
<210>
      3
<211> 7595
<212> DNA
<213> Artificial sequence
<220>
<223> Plasmid pFBD/pVP2-his-VP3
<220>
<221> promoter
<222> (157)..(285)
<223> Promoter ppolh
<220>
<221> CDS
<222> (291)..(1289)
<223> pVP2 ORF
```

PCT/EP2005/000695

WO 2005/071069

<220> <221> promoter (7443)..(7503) <222> <223> Promoter pl0 <400> qggtgatcaa gtcttcgtcg agtgattqta aataaaatgt aatttacagt atagtatttt 60 aattaatata caaatgattt gataataatt cttatttaac tataatatat tgtgttgggt 120 tgaattaaag gtccgtatac tccggaatat taatagatca tggagataat taaaatgata 180 accatctcgc aaataaataa gtattttact gttttcgtaa cagttttgta ataaaaaaac 240 ctataaatat teeggattat teatacegte ceaecategg gegeggatet atg aca 296 Met Thr aac ctg tca gat caa acc cag cag att gtt ccg ttc ata cgg agc ctt 344 Asn Leu Ser Asp Gln Thr Gln Gln Ile Val Pro Phe Ile Arg Ser Leu 10 ctg atg cca aca acc gga ccg gcg tcc att ccg gac gac acc ctg gag 392 Leu Met Pro Thr Thr Gly Pro Ala Ser Ile Pro Asp Asp Thr Leu Glu aag cac act ctc agg tca gag acc tcg acc tac aat ttg act gtg ggg 440 Lys His Thr Leu Arg Ser Glu Thr Ser Thr Tyr Asn Leu Thr Val Gly 35 gac aca ggg tca ggg cta att gtc ttt ttc cct gga ttc cct ggc tca 488 Asp Thr Gly Ser Gly Leu Ile Val Phe Pro Gly Phe Pro Gly Ser 55 att gtg ggt gct cac tac aca ctg cag ggc aat ggg aac tac aag ttc 536 Ile Val Gly Ala His Tyr Thr Leu Gln Gly Asn Gly Asn Tyr Lys Phe gat cag atg ctc ctg act gcc cag aac cta ccg gcc agt tac aac tac 584 Asp Gln Met Leu Leu Thr Ala Gln Asn Leu Pro Ala Ser Tyr Asn Tyr 90 tgc agg cta gtg agt cgg agt ctc aca gtg agg tca agc aca ctt cct 632 Cys Arg Leu Val Ser Arg Ser Leu Thr Val Arg Ser Ser Thr Leu Pro 100 105 ggt ggc gtt tat gca cta aac ggc acc ata aac gcc gtg acc ttc caa 680 Gly Gly Val Tyr Ala Leu Asn Gly Thr Ile Asn Ala Val Thr Phe Gln 115 130 gga agc ctg agt gaa ctg aca gat gtt agc tac aat ggg ttg atg tct 728 Gly Ser Leu Ser Glu Leu Thr Asp Val Ser Tyr Asn Gly Leu Met Ser 135 gca aca gcc aac atc aac gac aaa att ggg aac gtc cta gta ggg gaa 776 Ala Thr Ala Asn Ile Asn Asp Lys Ile Gly Asn Val Leu Val Gly Glu 150 155

GJ A GG B	gtc Val	acc Thr 165	Val	ctc Leu	agc Ser	tta Leu	ccc Pro 170	aca Thr	tca Ser	tat Tyr	gat Asp	ctt Leu 175	Gly aga	tat Tyr	gtg Val	824
agg Arg	ctt Leu 180	ggt Gly	gac Asp	ccc Pro	att Ile	ccc Pro 185	gca Ala	ata Ile	Gly ggg	ctt Leu	gac Asp 190	cca Pro	aaa Lys	atg Met	gta Val	872
gcc Ala 195	aca Thr	tgt Cys	gac Asp	agc Ser	agt Ser 200	gac Asp	agg Arg	ccc Pro	aga Arg	gtc Val 205	tac Tyr	acc Thr	ata Ile	act Thr	gca Ala 210	920
gcc Ala	gat Asp	gat Asp	tac Tyr	caa Gln 215	ttc Phe	tca Ser	tca Ser	cag Gln	tac Tyr 220	caa Gln	cca Pro	ggt Gly	G1A aaa	gta Val 225	aca Thr	968
atc Ile	aca Thr	ctg Leu	ttc Phe 230	tca Ser	gcc Ala	aac Asn	att Ile	gat Asp 235	gcc Ala	atc Ile	aca Thr	agc Ser	ctc Leu 240	agc Ser	gtt Val	1016
Gly	gga Gly	gag Glu 245	ctc Leu	gtg Val	ttt Phe	cga Arg	aca Thr 250	agc Ser	gtc Val	cac His	ggc Gly	ctt Leu 255	gta Val	ctg Leu	ggc Gly	1064
gcc Ala	acc Thr 260	atc Ile	tac Tyr	ctc Leu	ata Ile	ggc Gly 265	ttt Phe	gat Asp	GJ Å GG Å	aca Thr	acg Thr 270	gta Val	atc Ile	acc Thr	agg Arg	1112
gct Ala 275	gtg Val	gec Ala	gca Ala	aac Asn	aat Asn 280	GJA aaa	ctg Leu	acg Thr	acc Thr	ggc Gly 285	acc Thr	gac Asp	aac Asn	ctt Leu	atg Met 290	1160
cca Pro	ttc Phe	aat Asn	Leu	gtg Val 295	att Ile	cca Pro	aca Thr	aac Asn	gag Glu 300	ata Ile	acc Thr	cag Gln	cca Pro	atc Ile 305	aca Thr	1208
tcc Ser	atc Ile	aaa Lys	ctg Leu 310	gag Glu	ata Ile	gtg Val	Thr	tcc Ser 315	aaa Lys	agt Ser	ggt Gly	Gly	cag Gln 320	gca Ala	ggg Gly	1256
gat Asp	cag Gln	atg Met 325	tca Ser	tgg Trp	tcg Ser	Ala	aga Arg 330	GJÀ āāā	agc Ser	cta Leu	gcag	tgac	ga t	ccat	ggtgg	1309
caac	tato	ca g	gggc	cctc	c gt	cccg	tcac	gct	agtg	gcc	tacg	aaag	ag t	ggca	acagg	1369
atcc	gtcg	tt a	cggt	cgct	g gg	gtga	gcaa	ctt	cgag	ctg	atcc	caaa	tc c	tgaa	ctagc	1429
aaag	aacc	tg g	ttac	agaa	t ac	ggcc	gatt	tga	ccca	gga	gcca	tgaa	ct a	caca	aaatt	1489
gata	ctga	gt g	agag	ggac	c gt	cttg	gcat	caa	gacc	gtc	tggc	caac	aa g	ggag	tacac	1549
tgac	tttc	gt g	aata	cttc	a tg	gagg	tggc	cga	cctc	aac	tctc	ccct	ga a	gatt	gcagg	1609
agca	ttcg	gc t	tcaa	agac	a ta	atcc	gggc	cat	aagg	agg	atag	ctgt	gc c	ggtg	gtctc	1669
caca	ttgt	tc c	cacc	tgcc	g ct	ccc.	tagc	cca ⁻	tgca	att	gggg	aagg	tg t	agac	tacct	1729
gctg	ggcg	at g	aggc	ccag	g cc	gctt	cagg	aac	tgct	cga	gccg	cgtc	ag g	aaaa	gcaag	1789

agctgcctca ggccgcataa ggcagctgac tctcgcctaa gcttgtcgag aagtactaga 1849 ggatcataat cagccatacc acatttgtag aggttttact tgctttaaaa aacctcccac 1909 acctccccct gaacctgaaa cataaaatga atgcaattgt tgttgttaac ttgtttattg 1969 cagcttataa tggttacaaa taaagcaata gcatcacaaa tttcacaaat aaagcatttt 2029 tttcactgca ttctagttgt ggtttgtcca aactcatcaa tgtatcttat catgtctgga 2089 tetgateact gettgageet aggagateeg aaccagataa gtgaaateta gttecaaact 2149 attitgteat tittaatitt egtattaget taegacgeta caeccagite ceatctatit 2209 tgtcactctt ccctaaataa tccttaaaaa ctccatttcc acccctccca gttcccaact 2269 attttgtccg cccacagcgg ggcattttc ttcctgttat gtttttaatc aaacatcctg 2329 ccaactccat gtgacaaacc gtcatcttcg gctacttttt ctctgtcaca gaatgaaaat 2389 ttttctgtca tctcttcgtt attaatgttt gtaattgact gaatatcaac gcttatttgc 2449 agectgaatg gegaatggga egegeeetgt ageggegeat taagegegge gggtgtggtg 2509 gttacgcgca gcgtgaccgc tacacttgcc agcgccctag cgcccgctcc tttcgctttc 2569 ttcccttcct ttctcgccac gttcgccggc tttccccgtc aagctctaaa tcgggggctc 2629 cetttagggt teegatttag tgetttaegg cacetegace ceaaaaaact tgattagggt 2689 gatggttcac gtagtgggcc atcgccctga tagacggttt ttcgcccttt gacgttggag 2749 tecaegttet ttaatagtgg actettgtte caaactggaa caacacteaa ceetateteg 2809 gtctattctt ttgatttata agggattttg ccgatttcgg cctattggtt aaaaaatgag 2869 ctgatttaac aaaaatttaa cgcgaatttt aacaaaatat taacgtttac aatttcaggt 2929 ggcacttttc ggggaaatgt gcgcggaacc cctatttgtt tatttttcta aatacattca 2989 aatatgtatc cgctcatgag acaataaccc tgataaatgc ttcaataata ttgaaaaagg 3049 aagagtatga gtattcaaca tttccgtgtc gcccttattc ccttttttgc ggcattttgc 3109 cttcctgttt ttgctcaccc agaaacgctg gtgaaagtaa aagatgctga agatcagttg 3169 ggtgcacgag tgggttacat cgaactggat ctcaacagcg gtaagatcct tgagagtttt 3229 cgccccgaag aacgttttcc aatgatgagc acttttaaag ttctgctatg tggcgcggta 3289 ttatcccgta ttgacgccgg gcaagagcaa ctcggtcgcc gcatacacta ttctcagaat 3349 gacttggttg agtactcacc agtcacagaa aagcatctta cggatggcat gacagtaaga 3409 gaattatgca gtgctgccat aaccatgagt gataacactg cggccaactt acttctgaca 3469 acgatcggag gaccgaagga gctaaccgct tttttgcaca acatggggga tcatgtaact 3529 egeettgate gttgggaace ggagetgaat gaageeatae caaacgaega gegtgaeace 3589

acgatgcctg tagcaatggc aacaacgttg cgcaaactat taactggcga actacttact 3649 ctagetteec ggeaacaatt aatagactgg atggaggegg ataaagttge aggaceactt 3709 ctgcgctcgg cccttccggc tggctggttt attgctgata aatctggagc cggtgagcgt 3769 gggtctcgcg gtatcattgc agcactgggg ccagatggta agccctcccg tatcgtagtt 3829 atctacacga cggggagtca ggcaactatg gatgaacgaa atagacagat cgctgagata 3889 ggtgcctcac tgattaagca ttggtaactg tcagaccaag tttactcata tatactttag 3949 attgatttaa aacttcattt ttaatttaaa aggatctagg tgaagatcct ttttgataat 4009 ctcatgacca aaatccctta acgtgagttt tcgttccact gagcgtcaga ccccgtagaa 4069 aagatcaaag gatcttcttg agatcctttt tttctgcgcg taatctgctg cttgcaaaca 4129 aaaaaaaccac cgctaccagc ggtggtttgt ttgccggatc aagagctacc aactcttttt 4189 ccgaaggtaa ctggcttcag cagagcgcag ataccaaata ctgtccttct agtgtagccg 4249 tagttaggcc accacttcaa gaactctgta gcaccgccta catacctcgc tctgctaatc 4309 ctgttaccag tggctgctgc cagtggcgat aagtcgtgtc ttaccgggtt ggactcaaga 4369 égatagttac eggataagge geageggteg ggetgaaegg ggggttegtg cacaeageee 4429 agettggage gaacgaceta cacegaactg agatacetae agegtgagea ttgagaaage 4489 gccacgcttc ccgaagggag aaaggcggac aggtatccgg taagcggcag ggtcggaaca 4549 ggagagcgca cgagggagct tccaggggga aacgcctggt atctttatag tcctgtcggg 4609 tttcgccacc tctgacttga gcgtcgattt ttgtgatgct cgtcaggggg gcggagccta 4669 tggaaaaacg ccagcaacgc ggccttttta cggttcctgg ccttttgctg gccttttgct 4729 cacatgitet ticctgcgtt atcccctgat tctgtggata accgtattac cgcctttgag 4789 tgagetgata eegetegeeg eageegaaeg aeegagegea gegagteagt gagegaggaa 4849 geggaagage geetgatgeg gtattttete ettacgeate tgtgeggtat tteacacege 4909 agaccageeg egtaacetgg caaaateggt taeggttgag taataaatgg atgeeetgeg 4969 taagcgggtg tgggcggaca ataaagtctt aaactgaaca aaatagatct aaactatgac 5029 aataaagtct taaactagac agaatagttg taaactgaaa tcagtccagt tatgctgtga 5089 aaaagcatac tggacttttg ttatggctaa agcaaactct tcattttctg aagtgcaaat 5149 tgcccgtcgt attaaagagg ggcgtggcca agggcatggt aaagactata ttcgcggcgt 5209 tgtgacaatt taccgaacaa ctccgcggcc gggaagccga tctcggcttg aacgaattgt 5269 taggtggcgg tacttgggtc gatatcaaag tgcatcactt cttcccgtat gcccaacttt 5329 gtatagagag ccactgcggg atcgtcaccg taatctgctt gcacgtagat cacataagca 5389

ccaagcgcgt	tggcctcatg	cttgaggaga	ttgatgagcg	cggtggcaat	gecetgeete	5449
cggtgctcgc	cggagactgc	gagatcatag	atatagatct	cactacgcgg	ctgctcaaac	5509
ctgggcagaa	cgtaagccgc	gagagcgcca	'acaaccgctt	cttggtcgaa	ggcagcaagc	5569
gcgatgaatg	tettactacg	gagcaagttc	ccgaggtaat	cggagtccgg	ctgatgttgg	5629
gagtaggtgg	ctacgtctcc	gaactcacga	ccgaaaagat	caagagcagc	ccgcatggat	5689
ttgacttggt	cagggccgag	cctacatgtg	cgaatgatgc	ccatacttga	gccacctaac	5749
tttgttttag	ggcgactgcc	ctgctgcgta	acatcgttgc	tgctgcgtaa	catcgttgct	5809
gctccataac	atcaaacatc	gacccacggc	gtaacgcgct	tgctgcttgg	atgcccgagg	5869
catagactgt	acaaaaaaac	agtcataaca	agccatgaaa	accgccactg	cgccgttacc	5929
accgctgcgt	tcggtcaagg	ttctggacca	gttgcgtgag	cgcatacgct	acttgcatta	5989
cagtttacga	accgaacagg	cttatgtcaa	ctgggttcgt	gccttcatcc	gtttccacgg	6049
tgtgcgtcac	ccggcaacct	tgggcagcag	cgaagtcgag	gcatttctgt	cctggctggc	6109
gaacgagcgc	aaggtttcgg	tctccacgca	tcgtcaggca	ttggcggcct	tgctgttctt	6169
ctacggcaag	gtgctgtgca	cggatctgcc	ctggcttcag	gagatcggta	gacctcggcc	6229
gtegeggege	ttgccggtgg	tgctgacccc	ggatgaagtg	gttcgcatcc	teggttttet	6289
ggaaggcgag	catcgtttgt	tcgcccagga	ctctagctat	agttctagtg	gttggcctac	6349
gtacccgtag	tggctatggc	agggcttgcc	gccccgacgt	tggctgcgag	ccctgggcct	6409
tcacccgaac	ttgggggttg	gggtggggaa	aaggaagaaa	cgcgggcgta	ttggtcccaa	6469
tggggtctcg	gtggggtatc	gacagagtgc	cagccctggg	accgaacccc	gcgtttatga	6529
acaaacgacc	caacacccgt	gcgttttatt	ctgtcttttt	attgccgtca	tagcgcgggt	6589
tccttccggt	attgtctcct	tccgtgtttc	agttagcctc	ccccatctcc	cggtaccgca	6649
tgcctcgaga	ctgcaggctc	tagattcgaa	agcggccgcg	actagtgagc	tcgtcgacgt	6709
aggcctttga	attccggatc	ctcactcaag	gtcctcatca	gagacggtcc	tgatccagcg	6769
gcccagccga	ccagggggtc	tctgtgttgg	agcattgggt	tttggcttgg	gctttggtag	6829
agcccgcctg	ggattgcgat	gcttcatctc	catcgcagtc	aagagcagat	ctttcatctg	6889
ttcttggttt	gggccacgtc	catggttgat	ttcatagact	ttggcaactt	cgtctatgaa	6949
agcttggggt	ggctctgcct	gtcctggagc	cccgtagatc	gacgtagctg	cccttaggat	7009
ttgttcttct	gatgccaacc	ggctcttctc	tgcatgcacg	tagtctagat	agtcctcgtt	7069
tgggtccggt	atttctcgtt	tgttctgcca	gtactttacc	tggcctgggc	ttggccctcg	7129
gtgcccattg	agtgctaccc	attctggtgt	tgcaaagtag	atgcccatgg	tctccatctt	7189

ctttgagatc	cgtgtgtctt	tttccctctg	tgcttcctct	ggtgtggggc	cccgagcctc	7249
cactccgtag	cctgctgtcc	cgtacttggc	cctttgcgac	ttgctgcctg	cttgtggtgc	7309
gtttgcaaga	aaatttcgca	tccgatgggc	gttcgggtcg	ctgagtgcga	agttggccat	7369
gtcagtcaca	atcccattct	cttccagcca	catgaacaca	ctgagtgcag	attggaatag	7429
tgggtccacg	ttggctgctg	cttccattgc	tctgacggca	ctctcgagtt	cgggggtctc	7489
tttgaactct	gatgcagcca	tggcgccctg	aaaatacagg	ttttcggtcg	ttgggatatc	7549
gtaatcgtga	tggtgatggt	gatggtagta	cgacatggtt	teggae		7595

<210> 4

<211> 333

<212> PRT

<213> Artificial sequence

<220>

<223> pVP2-his-VP3 protein

<400> 4

Met Thr Asn Leu Ser Asp Gln Thr Gln Gln Ile Val Pro Phe Ile Arg
1 5 10 15

Ser Leu Leu Met Pro Thr Thr Gly Pro Ala Ser Ile Pro Asp Asp Thr 20 25 30

Leu Glu Lys His Thr Leu Arg Ser Glu Thr Ser Thr Tyr Asn Leu Thr 35 40 45

Val Gly Asp Thr Gly Ser Gly Leu Ile Val Phe Pro Gly Phe Pro 50 55 60

Gly Ser Ile Val Gly Ala His Tyr Thr Leu Gln Gly Asn Gly Asn Tyr 65 70 75 80

Lys Phe Asp Gln Met Leu Leu Thr Ala Gln Asn Leu Pro Ala Ser Tyr 85 90 95

Asn Tyr Cys Arg Leu Val Ser Arg Ser Leu Thr Val Arg Ser Ser Thr 100 105 110

Leu Pro Gly Gly Val Tyr Ala Leu Asn Gly Thr Ile Asn Ala Val Thr 115 120 125

Phe Gln Gly Ser Leu Ser Glu Leu Thr Asp Val Ser Tyr Asn Gly Leu 130 135 140

Met Ser Ala Thr Ala Asn Ile Asn Asp Lys Ile Gly Asn Val Leu Val 145 150 155 160

Gly Glu Gly Val Thr Val Leu Ser Leu Pro Thr Ser Tyr Asp Leu Gly
165 170 175

Tyr Val Arg Leu Gly Asp Pro Ile Pro Ala Ile Gly Leu Asp Pro Lys 180 185 190 WO 2005/071069

<223> Plasmid pESCURA/pVP2-VP3-GFP

PCT/EP2005/000695

Met Val Ala Thr Cys Asp Ser Ser Asp Arg Pro Arg Val Tyr Thr Ile 200 Thr Ala Ala Asp Asp Tyr Gln Phe Ser Ser Gln Tyr Gln Pro Gly Gly 215 Val Thr Ile Thr Leu Phe Ser Ala Asn Ile Asp Ala Ile Thr Ser Leu 230 235 Ser Val Gly Gly Glu Leu Val Phe Arg Thr Ser Val His Gly Leu Val 245 Leu Gly Ala Thr Ile Tyr Leu Ile Gly Phe Asp Gly Thr Thr Val Ile Thr Arg Ala Val Ala Ala Asn Asn Gly Leu Thr Thr Gly Thr Asp Asn 275 280 285 Leu Met Pro Phe Asn Leu Val Ile Pro Thr Asn Glu Ile Thr Gln Pro 295 Ile Thr Ser Ile Lys Leu Glu Ile Val Thr Ser Lys Ser Gly Gln 310 315 Ala Gly Asp Gln Met Ser Trp Ser Ala Arg Gly Ser Leu 325 <210> 5 <211> 35 <212> DNA <213> Artificial sequence <220> Synthetic DNA <223> Oligo III primer 35 gcgcagatct atgacaaacc tgtcagatca aaccc <210> 6 <211> 34 <212> DNA <213> Artificial sequence <220> Synthetic DNA <223> Oligo IV primer <400> 6 34 gcgcaagctt aggcgagagt cagctgcctt atgc <210> 7 <211> 9600 <212> DNA <213> Artificial sequence <220>

```
<220>
<221> promoter
       (5649)..(5859)
<222>
<223>
       Promoter 1 (pVP2)
<220>
<221> promoter
<222>
      (7402)..(8080)
<223> Promoter 2 (VP3-GFP)
<220> .
<221> CDS
<222>
      (8086)..(9597)
<223> VP3-GFP ORF
<400> 7
ggccgcacta gtatcgatgg attacaagga tgacgacgat aagatctgag ctcttaatta
                                                                       60
acaattcttc gccagaggtt tggtcaagtc tccaatcaag gttgtcggct tgtctacctt
                                                                      120
gccagaaatt tacgaaaaga tggaaaaggg tcaaatcgtt ggtagatacg ttgttgacac
                                                                      180
ttctaaataa gcgaatttct tatgatttat gatttttatt attaaataag ttataaaaaa
                                                                      240
aataagtgta tacaaatttt aaagtgactc ttaggtttta aaacgaaaat tcttattctt
                                                                      300
gagtaactet tteetgtagg teaggttget tteteaggta tageatgagg tegeteeaat
                                                                      360
tcagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta ttgggcgctc
                                                                      420
ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc gagcggtatc
                                                                      480
ageteaetea aaggeggtaa taeggttate caeagaatea ggggataaeg caggaaagaa
                                                                      540
                                                                      600
catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt
tttccatagg ctccgcccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg
                                                                      660
g'cgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg
                                                                      720
ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag
                                                                      780
egtggegett teteataget eacgetgtag gtateteagt teggtgtagg tegttegete
                                                                      840
caagctgggc tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct tatccggtaa
                                                                      900
ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg
                                                                      960
taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc
                                                                     1020
taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac
                                                                     1080
cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggtgg
                                                                     1140
tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag aagatccttt
                                                                     1200
gatcttttct acggggtctg acgctcagtg gaacgaaaac tcacgttaag ggattttggt.
```

catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat gaagttttaa 1320 atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct taatcagtga 1380 ggcacctate teagegatet gtetattteg tteatecata gttgeetgae teecegtegt 1440 gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa tgataccgcg 1500 agacccacgo tcaccggoto cagatttato agcaataaac cagccagccg gaagggccga 1560 gegeagaagt ggteetgeaa etttateege etecateeag tetattaatt gttgeeggga 1620 agctagagta agtagttcgc cagttaatag tttqcqcaac gttqttgcca ttqctacagq 1680 catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt cccaacgatc 1740 aaggogagtt acatgatocc coatgitgig caaaaaagog gitagcioct toggiootoc 1800 gategttgtc agaagtaagt tggccgcagt gttatcactc atggttatgg cagcactgca 1860 taattctctt actgtcatgc catccgtaag atgcttttct gtgactggtg agtactcaac 1920 1980 caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgcccgg cgtcaatacg 2040 ggataatacc gcgccacata gcagaacttt aaaagtgctc atcattggaa aacgttcttc 2100 ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt aacccactcg tgcacccaac tgatcttcag catcttttac tttcaccage gtttctgggt gagcaaaaac 2160 aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt gaatactcat 2220 actetteett titeaatatt attgaageat tiateagggt tattgtetea tgageggata 2280 2340 catatttgaa tgtatttaga aaaataaaca aataggggtt ccgcgcacat ttccccgaaa agtgccacct gaacgaagca tctgtgcttc attttgtaga acaaaaatgc aacgcgagag 2400 2460 cgctaatttt tcaaacaaag aatctgagct gcatttttac agaacagaaa tgcaacgcga aagcgctatt ttaccaacga agaatctgtg cttcattttt gtaaaacaaa aatgcaacgc 2520 2580 gagagogota attittoaaa caaagaatot gagotgoatt titacagaac agaaatgoaa cgcgagagcg ctattttacc aacaaagaat ctatacttct tttttgttct acaaaaatgc 2640 atcccgagag cgctattttt ctaacaaagc atcttagatt actttttttc tcctttgtgc 2700 gctctataat gcagtctctt gataactttt tgcactgtag gtccgttaag gttagaagaa 2760 ggctactttg gtgtctattt tctcttccat aaaaaaagcc tgactccact tcccgcgttt 2820 actgattact agcgaagctg cgggtgcatt ttttcaagat aaaggcatcc ccgattatat 2880 tctataccga tgtggattgc gcatactttg tgaacagaaa gtgatagcgt tgatgattct 2940 tcattggtca gaaaattatg aacggtttct tctattttgt ctctatatac tacgtatagg 3000 aaatgtttac attttcgtat tgttttcgat tcactctatg aatagttctt actacaattt 3060

ttttgtctaa agagtaatac tagagataaa cataaaaaat gtagaggtcg agtttagatg 3120 caagttcaag gagcgaaagg tggatgggta ggttatatag ggatatagca cagagatata 3180 tagcaaagag atacttttga gcaatgtttg tggaagcggt attcgcaata ttttagtagc 3240 tegttacagt ceggtgegtt tttggttttt tgaaagtgeg tetteagage gettttggtt 3300 ttcaaaagcg ctctgaagtt cctatacttt ctagagaata ggaacttcgg aataggaact 3360 tcaaagegtt teegaaaaeg agegetteeg aaaatgeaae gegagetgeg cacatacage 3420 tcactgttca cgtcgcacct atatctgcgt gttgcctgta tatatata catgagaaga 3480 acggcatagt gcgtgtttat gcttaaatgc gtacttatat gcgtctattt atgtaggatg 3540 aaaggtagtc tagtacctcc tgtgatatta tcccattcca tgcggggtat cgtatgcttc 3600 cttcagcact accetttage tgttctatat gctgccacte ctcaattgga ttagtctcat 3660 cettcaatge tatcatttee tttgatattg gatcatacta agaaaccatt attatcatga 3720 cattaaccta taaaaatagg cgtatcacga ggccctttcg tctcgcgcgt ttcggtgatg 3780 acggtgaaaa cctctgacac atgcagctcc cggagacggt cacagcttgt ctgtaagcgg 3840 atgccgggag cagacaagcc cgtcagggcg cgtcagcggg tgttggcggg tgtcggggct 3900 ggcttaacta tgcggcatca gagcagattg tactgagagt gcaccatacc acagcttttc 3960 aattcaattc atcattttt ttttattctt ttttttgatt tcggtttctt tgaaattttt 4020 ttgattcggt aatctccgaa cagaaggaag aacgaaggaa ggagcacaga cttagattgg 4080 tatatatacg catatgtagt gttgaagaaa catgaaattg cccagtattc ttaacccaac 4140 tgcacagaac aaaaacctgc aggaaacgaa gataaatcat gtcgaaagct acatataagg 4200 aacgtgctgc tactcatcct agtcctgttg ctgccaagct atttaatatc atgcacgaaa 4260 agcaaacaaa cttgtgtgct tcattggatg ttcgtaccac caaggaatta ctggagttag 4320 ttgaagcatt aggtcccaaa atttgtttac taaaaacaca tgtggatatc ttgactgatt 4380 tttccatgga gggcacagtt aagccgctaa aggcattatc cgccaagtac aattttttac 4440 tettegaaga cagaaaattt getgacattg gtaatacagt caaattgeag tactetgegg 4500 gtgtatacag aatagcagaa tgggcagaca ttacgaatgc acacggtgtg gtgggcccag 4560 gtattgttag cggtttgaag caggcggcag aagaagtaac aaaggaacct agaggccttt 4620 tgatgttagc agaattgtca tgcaagggct ccctatctac tggagaatat actaagggta 4680 ctgttgacat tgcgaagagc gacaaagatt ttgttatcgg ctttattgct caaagagaca 4740 tgggtggaag agatgaaggt tacgattggt tgattatgac acccggtgtg ggtttagatg 4800 acaagggaga cgcattgggt caacagtata gaaccgtgga tgatgtggtc tctacaggat 4860

ctgacattat tattgttgga agaggactat ttgcaaaggg aagggatgct aaggtagagg 4920 4980 gtgaacgtta cagaaaagca ggctgggaag catatttgag aagatgcggc cagcaaaact aaaaaactgt attataagta aatgcatgta tactaaactc acaaattaga gcttcaattt 5040 aattatatca gttattaccc tatgcggtgt gaaataccgc acagatgcgt aaggagaaaa 5100 5160 taccgcatca ggaaattgta aacgttaata ttttgttaaa attcgcgtta aatttttgtt aaatcagctc atttttaac caataggccg aaatcggcaa aatcccttat aaatcaaaag 5220 5280 aatagaccga gatagggttg agtgttgttc cagtttggaa caagagtcca ctattaaaga 5340 acgtggactc caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc ccactacgtg 5400 aaccatcacc ctaatcaagt tttttggggt cgaggtgccg taaagcacta aatcggaacc 5460 ctaaagggag cccccgattt agagcttgac ggggaaagcc ggcgaacgtg gcgagaaagg 5520 aagggaagaa agcgaaagga gcgggcgcta gggcgctggc aagtgtagcg gtcacgctgc 5580 gegtaaccac cacaccegee gegettaatg egeegetaca gggegegteg egeeattege cattcagget gegeaactgt tgggaaggge gateggtgeg ggeetetteg etattaegee 5640 5700 agetggatet tegagegtee caaaacette teaageaagg tttteagtat aatgttacat 5760 gcgtacacgc gtctgtacag aaaaaaaaga aaaatttgaa atataaataa cgttcttaat 5820 actaacataa ctataaaaaa ataaataggg acctagactt caggttgtct aactccttcc ttttcggtta gagcggatct tagctagccg cggtaccaag cttaggcgag agtcagctgc 5880 cttatgcggc ctgaggcagc tcttgctttt cctgacgcgg ctcgagcagt tcctgaagcg 5940 6000 gcctgggcct catcgcccag caggtagtct acaccttccc caattgcatg ggctagggga gcggcaggtg ggaacaatgt ggagaccacc ggcacagcta tcctccttat ggcccggatt 6060 atgtetttga ageegaatge teetgeaate tteaggggag agttgaggte ggeeaeetee 6120 atgaagtatt cacgaaagtc agtgtactcc cttgttggcc agacggtctt gatgccaaga 6180 6240 eggteeetet cacteagtat caattttgtg tagtteatgg etectgggte aaateggeeg 6300 tattctgtaa ccaggttctt tgctagttca ggatttggga tcagctcgaa gttgctcacc 6360 ccagcgaccg taacgacgga tcctgttgcc actctttcgt aggccactag cgtgacggga 6420 eggagggece etggatagtt gecaecatgg ategteactg etaggetece tettgeegae catgacatet gateceetge etgaceaeca ettttggagg teactatete eagtttgatg 6480 6540 gatgtgattg gctgggttat ctcgtttgtt ggaatcacaa gattgaatgg cataaggttg teggtgeegg tegteageee attgtttgeg geeacageee tggtgattae egttgteeea 6600 6660 tcaaagccta tgaggtagat ggtggcgccc agtacaaggc cgtggacgct tgttcgaaac

acgagetete ecceaacget	gaggcttgtg	atggcatcaa	tgttggctga gaacagtgtg	6720
attgttaccc cacctggttg	gtactgtgat	gagaattggt	aatcatcggc tgcagttatc	6780
gtgtagactc tgggcctgtc	actgctgtca	catgtggcta	ccatttttgg gtcaagccct	6840
attgcgggaa tggggtcacc	aagcctcaca	tacccaagat	catatgatgt gggtaagctg	6900
aggacggtga ccccttcccc	tactaggacg	ttcccaattt	tgtcgttgat gttggctgtt	6960
gcagacatca acccattgta	gctaacatct	gtcagttcac	tcaggettee ttggaaggte	7020
acggcgttta tggtgccgtt	tagtgcataa	acgccaccag	gaagtgtgct tgacctcact	7080
gtgagactcc gactcactag	cctgcagtag	ttgtaactgg	ccggtaggtt ctgggcagtd	7140
aggagcatct gatcgaactt	gtagttccca	ttgccctgca	gtgtgtagtg agcacccaca	a 7200
attgagecag ggaatecagg	gaaaaagaca	attagccctg	accetgtgte ceceacagte	7260
aaattgtagg tcgaggtctc	tgacctgaga	gtgtgcttct	ccagggtgtc gtccggaatg	7320
gacgccggtc cggttgttgg	catcagaagg	ctccgtatga	acggaacaat ctgctgggt	7380
tgatctgaca ggtttgtcat	agatccgggg	ttttttctcc	ttgacgttaa agtatagag	g 7440
tatattaaca atttttgtt	gatactttta	ttacatttga	ataagaagta atacaaacc	g 7500
aaaatgttga aagtattagt	taaagtggtt	atgcagtttt	tgcatttata tatctgttaa	a 7560
tagatcaaaa atcatcgctt	cgctgattaa	ttaccccaga	aataaggcta aaaaactaa	t 7620
cgcattatca tcctatggtt	gttaatttga	ttcgttcatt	tgaaggtttg tggggccag	g 7680
ttactgccaa tttttcctct	tcataaccat	aaaagctagt	attgtagaat ctttattgt	t 7740
cggagcagtg cggcgcgagg	cacatctgcg	tttcaggaac	gcgaccggtg aagacgagg	a 7800
cgcacggagg agagtcttcc	ttcggagggc	tgtcacccgc	toggoggott ctaatcogt	a 7860
cttcaatata gcaatgagca	gttaagcgta	ttactgaaag	ttccaaagag aaggttttt	t 7920
taggctaaga taatggggct	ctttacattt	ccacaacata	taagtaagat tagatatgg	a 7980
tatgtatatg gatatgtata	tggtggtaat	gccatgtaat	atgattatta aacttcttt	g 8040
cgtccatcca aaaaaaaagt	aagaatttt	gaaaattcga	attcg atg gct gca tc Met Ala Ala Se 1	
gag ttc aaa gag acc c Glu Phe Lys Glu Thr F 5				8145
gca gca gcc aac gtg g Ala Ala Ala Asn Val A 25				8193
atg tgg ctg gaa gag a	at ggg att	gtg act gac	atg gcc aac ttc gca	8241

Met	Trp	Leu	Glu 40	Glu	Asn	Gly	Ile	Val 45	Thr	Asp	Met	Ala	Asn 50	Phe	Ala		
					gcc Ala											. 82	289
cca Pro	caa Gln 70	gca Ala	ggc Gly	agc Ser	aag Lys	tcg Ser 75	caa Gln	agg Arg	gcc Ala	aag Lys	tac Tyr 80	gly ggg	aca Thr	gca Ala	ggc	83	337
tac Tyr 85	gga Gly	gtg Val	gag Glu	gct Ala	cgg Arg 90	ggc Gly	ccc Pro	aca Thr	cca Pro	gag Glu 95	gaa Glu	gca Ala	cag Gln	agg Arg	gaa Glu 100	83	885
					tca Ser											84	133
gca Ala	aca Thr	cca Pro	gaa Glu 120	tgg Trp	gta Val	gca Ala	ctc Leu	aat Asn 125	Gly ggg	cac His	cga Arg	ggg Gly	cca Pro 130	agc Ser	cca Pro	84	181
					tgg Trp											. 85	529
					tac Tyr											8	577
					agg Arg 170											8	625
					caa Gln											8	673
					cgt Arg											8	721
					gag Glu											8'	769
					aaa Lys											8	817
cgg Arg 245	ctg Leu	ggc	cgc Arg	tgg Trp	atc Ile 250	Arg	acc Thr	gtc Val	tct Ser	gat Asp 255	gag Glu	gac Asp	ctt Leu	gag Glu	gga Gly 260	8	865
tcc Ser	atc Ile	gcc Ala	acc Thr	atg Met 265	gtg Val	agc Ser	aag Lys	ggc Gly	gag Glu 270	gag Glu	ctg Leu	ttc Phe	acc Thr	ggg Gly 275	gtg Val	8	913
gtg	ccc	atc	ctg	gtc	gag	ctg	gac	ggc	gac	gta	aac	ggc	cac	aag	ttc	8	961

Val	Pro	Ile	Leu 280	Val	Glu	Leu	Asp	Gly 285	Asp	Val	Asn	Gly	His 290	Lys	Phe		
agc Ser	gtg Val	tcc Ser 295	ggc Gly	gag Glu	ggc Gly	gag Glu	ggc Gly 300	gat Asp	gcc Ala	acc Thr	tac Tyr	ggc Gly 305	aag Lys	ctg Leu	acc Thr		9009
ctg Leu	aag Lys 310	ttc Phe	atc Ile	tgc Cys	acc Thr	acc Thr 315	ggc Gly	aag Lys	ctg Leu	ccc Pro	gtg Val 320	ccc Pro	tgg Trp	ccc Pro	acc Thr		9057
ctc Leu 325	gtg Val	acc Thr	acc Thr	ctg Leu	acc Thr 330	tac Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 335	ttc Phe	agc Ser	cgc Arg	tac Tyr	ccc Pro 340		9105
gac Asp	cac His	atg Met	aag Lys	cag Gln 345	cac His	gac Asp	ttc Phe	ttc Phe	aag Lys 350	tcc Ser	gcc Ala	atg Met	ccc Pro	gaa Glu 355	ggc Gly		9153
tac Tyr	gtc Val	cag Gln	gag Glu 360	cgc Arg	acc Thr	atc Ile	ttc Phe	ttc Phe 365	aag Lys	gac Asp	gac Asp	ggc Gly	aac Asn 370	tac Tyr	aag Lys		9201
acc Thr	cgc Arg	gcc Ala 375	gag Glu	gtg Val	aag Lys	ttc Phe	gag Glu 380	ggc Gly	gac Asp	acc Thr	ctg Leu	gtg Val 385	aac Asn	cgc Arg	atc Ile	•	9249
											aac Asn 400				cac His		9297
											tat Tyr						9345
											atc Ile						9393
											cag Gln				ccc Pro		9441
											cac His						9489
											cgc Arg 480						9537
											ctc Leu						9585
	tac Tyr		taa	agc													9600

<210> 8 <211> 503 <212> PRT <213> Artificial sequence <220> <223> pVP2-VP3-GFP protein <400> 8 Met Ala Ala Ser Glu Phe Lys Glu Thr Pro Glu Leu Glu Ser Ala Val Arg Ala Met Glu Ala Ala Ala Asn Val Asp Pro Leu Phe Gln Ser Ala 25 Leu Ser Val Phe Met Trp Leu Glu Glu Asn Gly Ile Val Thr Asp Met Ala Asn Phe Ala Leu Ser Asp Pro Asn Ala His Arg Met Arg Asn Phe 55 Leu Ala Asn Ala Pro Gln Ala Gly Ser Lys Ser Gln Arg Ala Lys Tyr Gly Thr Ala Gly Tyr Gly Val Glu Ala Arg Gly Pro Thr Pro Glu Glu Ala Gln Arg Glu Lys Asp Thr Arg Ile Ser Lys Lys Met Glu Thr Met 110 Gly Ile Tyr Phe Ala Thr Pro Glu Trp Val Ala Leu Asn Gly His Arg Gly Pro Ser Pro Gly Gln Val Lys Tyr Trp Gln Asn Lys Arg Glu Ile 135 Pro Asp Pro Asn Glu Asp Tyr Leu Asp Tyr Val His Ala Glu Lys Ser 145 Arg Leu Ala Ser Glu Glu Gln Ile Leu Arg Ala Ala Thr Ser Ile Tyr Gly Ala Pro Gly Gln Ala Glu Pro Pro Gln Ala Phe Ile Asp Glu Val 180 Ala Lys Val Tyr Glu Ile Asn His Gly Arg Gly Pro Asn Gln Glu Gln Met Lys Asp Leu Leu Thr Ala Met Glu Met Lys His Arg Asn Pro Arg Arg Ala Leu Pro Lys Pro Lys Pro Asn Ala Pro Thr Gln

Arg Pro Pro Gly Arg Leu Gly Arg Trp Ile Arg Thr Val Ser Asp Glu 245

Asp Leu Glu Gly Ser Ile Ala Thr Met Val Ser Lys Gly Glu Glu Leu

Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn 280 Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr 290 Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val 315 Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe 330 Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala 345 Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp 360 Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn 390 Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr 410 Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile 420 425 Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His 455

Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg 465 470

Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu 485 490

Gly Met Asp Glu Leu Tyr Lys 500

<210> 9

<211> 33

<212> DNA

<213> Artificial sequence

<220> Synthetic DNA

<223> Oligo V primer

<400> 9

gcgcgaattc gatggcatca gagttcaaag aga

33

<210> 10

<211> 32

```
<212> DNA
<213> Artificial sequence
<220> Synthetic DNA
<223> Oligo VI primer
<400> 10
                                                                     32
cgcggatccc tcaaggtcct catcagagac gg
<210> 11
<211> 36
<212> DNA
<213> Artificial sequence
<220>
<223>
      Oligo CD8 A primer
<400> 11
                                                                     36
aacgaggaca gttatgtccc aagcgcagaa caaata
<210> 12
<211> 36
<212> DNA
<213> Artificial sequence
<220>
<223> Oligo CD8 B primer
<400> 12
                                                                     36
tatttgttct gcgcttggga cataactgtc ctcgtt
<210> 13
<211> 5676
<212> DNA
<213> Artificial sequence
<220>
<223> Plasmid pFB/his-CD8-VP3
<220>
<221> promoter
<222> (1)..(129)
<223> Polyhedrin promoter
<220>
<221> CDS
<222> (147)..(1043)
<223> His-CD8-VP3 ORF
<220>
<221> CDS
<222>
       (222)..(257)
<223> His-CD8 ORF
<400> 13
atcatggaga taattaaaat gataaccatc tcgcaaataa ataagtattt tactgttttc
                                                                      60
                                                                     120
gtaacagttt tgtaataaaa aaacctataa atattccgga ttattcatac cgtcccacca
```

tegggeg	egg atcto	eggtee g	·	atg tcg Met Ser 1	tac Tyr	tac	cat His 5	cac His	cat His	cac	cat His	173
	tac gat Tyr Asp				Asn							221
	gac agt Asp Ser											269
	gag ttc Glu Phe 45											317
	gca gca Ala Ala 60		Val A									365
	atg tgg Met Trp											413
	ctc agc Leu Ser											461
	cca caa Pro Gln											509
	tac gga Tyr Gly 125	Val Gli										557
	aaa gac Lys Asp 140		; Ile s									605
	gca aca Ala Thr											653
	ggc cag Gly Gln		Tyr '									701
	gag gac Glu Asp										Leu	749
	gaa gaa Glu Glu 205	Gln Ile			Ala					Gly		797

cca gga cag gca gag cca ccc caa gct ttc ata gac gaa gtt gcc aaa Pro Gly Gln Ala Glu Pro Pro Gln Ala Phe Ile Asp Glu Val Ala Lys 220 225 230	845
gtc tat gaa atc aac cat gga cgt ggc cca aac caa gaa cag atg aaa Val Tyr Glu Ile Asn His Gly Arg Gly Pro Asn Gln Glu Gln Met Lys 235 240 245	893
gat ctg ctc ttg act gcg atg gag atg aag cat cgc aat ccc agg cgg Asp Leu Leu Thr Ala Met Glu Met Lys His Arg Asn Pro Arg Arg 250 260 265	941
gct cta cca aag ccc aag cca aaa ccc aat gct cca aca cag aga ccc Ala Leu Pro Lys Pro Lys Pro Lys Pro Asn Ala Pro Thr Gln Arg Pro 270 275 280	989
cct ggt cgg ctg ggc cgc tgg atc agg acc gtc tct gat gag gac ctt Pro Gly Arg Leu Gly Arg Trp Ile Arg Thr Val Ser Asp Glu Asp Leu 285 290 295	1037
gag tga ggatceggaa ttcaaaggee taegtegaeg ageteaetag tegeggeege Glu	1093
tttcgaatct agagcctgca gtctcgaggc atgcggtacc aagcttgtcg agaagtact	a 1153
gaggatcata atcagccata ccacatttgt agaggtttta cttgctttaa aaaacctcc	c 1213
acacctcccc ctgaacctga aacataaaat gaatgcaatt gttgttgtta acttgttta	t 1273
tgcagcttat aatggttaca aataaagcaa tagcatcaca aatttcacaa ataaagcat	t 1333
tttttcactg cattctagtt gtggtttgtc caaactcatc aatgtatctt atcatgtct	g 1393
gatctgatca ctagatctgc ctaggagatc cgaaccagat aagtgaaatc tagttccaa	a 1453
ctattttgtc atttttaatt ttcgtattag cttacgacgc tacacccagt tcccatcta	t 1513
tttgtcactc ttccctaaat aatccttaaa aactccattt ccacccctcc cagttccca	a 1573
ctattttgtc cgcccacagc ggggcatttt tcttcctgtt atgtttttaa tcaaacatc	c 1633
tgccaactcc atgtgacaaa ccgtcatctt cggctacttt ttctctgtca cagaatgaa	a 1693
atttttctgt catctcttcg ttattaatgt ttgtaattga ctgaatatca acgcttatt	t 1753
gcagcctgaa tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtg	g 1813
tggttacgcg cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgct	t 1873
tottocotto otttotogoo acgitogoog gotttocoog toaagotota aatoggggg	rc 1933
tocotttagg gttocgattt agtgotttac ggcacotoga coccaaaaaa cttgattag	ıg 1993
gtgatggttc acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttg	ıg 2053
agtocacgtt ctttaatagt ggactottgt tocaaactgg aacaacactc aaccotato	et 2113
cggtctattc ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaat	g 2173

agctgattta acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag 2233 qtggcacttt tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt 2293 caaatatgta teegeteatg agacaataac eetqataaat getteaataa tattgaaaaa 2353 2413 ggaagagtat gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt 2473 tgggtgcacg agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt 2533 ttcgccccga agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg 2593 2653 tattatcccg tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga 2713 atgacttggt tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa 2773 gagaattatg cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga 2833 caacgatcgg aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa 2893 ctcgccttga tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca 2953 ccacgatgcc tgtagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta 3013 ctctagcttc ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac 3073 ttctgcgctc ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc 3133 gtgggtctcg cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag 3193 ttatctacac gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga 3253 taggtgcctc actgattaag cattggtaac tgtcagacca agtttactca tatatacttt 3313 agattgattt aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata 3373 atctcatgac caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag 3433 aaaagatcaa aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa 3493 caaaaaaacc accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt 3553 ttccgaaggt aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc 3613 cgtagttagg ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa 3673 tectgttace agtggetget gecagtggeg ataagtegtg tettaceggg ttggaeteaa 3733 gacgatagtt accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc 3793 ccagcttgga gcgaacgacc tacaccgaac tgagatacct acagcgtgag cattgagaaa 3853 gegecacget teeegaaggg agaaaggegg acaggtatee ggtaagegge agggteggaa caggagagcg cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg 3913 3973 ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc

4033 tatggaaaaa cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg 4093 ctcacatgtt ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg 4153 aqtqaqctqa taccgctcgc cgcagccgaa cqaccgagcg cagcgagtca gtgagcgagg aaqcggaaga gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc 4213 gcagaccage egegtaacet ggcaaaateg gttacggttg agtaataaat ggatgeeetg 4273 4333 cqtaaqcqqq tqtqqqcqqa caataaaqtc ttaaactqaa caaaataqat ctaaactatq acaataaagt cttaaactag acagaatagt tgtaaactga aatcagtcca gttatgctgt 4393 gaaaaagcat actggacttt tgttatggct aaagcaaact cttcattttc tgaagtgcaa 4453 4513 attgcccgtc gtattaaaga ggggcgtggc caagggcatg gtaaagacta tattcgcggc 4573 gttgtgacaa tttaccgaac aactccgcgg ccgggaagcc gatctcggct tgaacgaatt 4633 gttaggtggc ggtacttggg tcgatatcaa agtgcatcac ttcttcccgt atgcccaact 4693 ttgtatagag agccactgcg ggatcgtcac cgtaatctgc ttgcacgtag atcacataag 4753 caccaagcgc gttggcctca tgcttgagga gattgatgag cgcggtggca atgccctgcc 4813 tccggtgctc gccggagact gcgagatcat agatatagat ctcactacgc ggctgctcaa acctgggcag aacgtaagcc gcgagagcgc caacaaccgc ttcttggtcg aaggcagcaa 4873 4933 gcgcgatgaa tgtcttacta cggagcaagt tcccgaggta atcggagtcc ggctgatgtt gggagtaggt ggctacgtct ccgaactcac gaccgaaaag atcaagagca gcccgcatgg 4993 5053 atttgacttg gtcagggccg agcctacatg tgcgaatgat gcccatactt gagccaccta actttgtttt agggcgactg ccctgctgcg taacatcgtt gctgctgcgt aacatcgttg 5113 5173 ctgctccata acatcaaaca tcgacccacg gcgtaacgcg cttgctgctt ggatgcccga ggcatagact gtacaaaaaa acagtcataa caagccatga aaaccgccac tgcgccgtta 5233 ccaccgctgc gttcggtcaa ggttctggac cagttgcgtg agcgcatacg ctacttgcat 5293 tacagtttac gaaccgaaca ggcttatgtc aactgggttc gtgccttcat ccgtttccac 5353 5413 ggtgtgcgtc acccggcaac cttgggcagc agcgaagtcg aggcatttct gtcctggctg gcgaacgagc gcaaggtttc ggtctccacg catcgtcagg cattggcggc cttgctgttc 5473 ttctacggca aggtgctgtg cacggatctg ccctggcttc aggagatcgg aagacctcgg 5533 5593 ccgtcgcggc gcttgccggt ggtgctgacc ccggatgaag tggttcgcat cctcggtttt ctggaaggcg agcatcgttt gttcgcccag gactctagct atagttctag tggttggcta 5653 5676 cgtatactcc ggaatattaa tag

<210> 14

<211> 298

<212> PRT

<213> Artificial sequence

<220>

<223> his-CD8-VP3 protein

<400> 14

Met Ser Tyr Tyr His His His His His Asp Tyr Asp Ile Pro Thr 1 5 10 15

Thr Glu Asn Leu Tyr Phe Gln Gly Ala Asn Glu Asp Ser Tyr Val Pro 20 25 30

Ser Ala Glu Gln Ile Ala Ala Met Ala Ala Ser Glu Phe Lys Glu Thr 35 40 45

Pro Glu Leu Glu Ser Ala Val Arg Ala Met Glu Ala Ala Ala Asn Val 50 55 60

Asp Pro Leu Phe Gln Ser Ala Leu Ser Val Phe Met Trp Leu Glu Glu 65 70 75 80

Asn Gly Ile Val Thr Asp Met Ala Asn Phe Ala Leu Ser Asp Pro Asn 85 90 95

Ala His Arg Met Arg Asn Phe Leu Ala Asn Ala Pro Gln Ala Gly Ser 100 105 110

Lys Ser Gln Arg Ala Lys Tyr Gly Thr Ala Gly Tyr Gly Val Glu Ala 115 120 125

Arg Gly Pro Thr Pro Glu Glu Ala Gln Arg Glu Lys Asp Thr Arg Ile 130 135 140

Ser Lys Lys Met Glu Thr Met Gly Ile Tyr Phe Ala Thr Pro Glu Trp 145 , 150 155 160

Val Ala Leu Asn Gly His Arg Gly Pro Ser Pro Gly Gln Val Lys Tyr 165 170 175

Trp Gln Asn Lys Arg Glu Ile Pro Asp Pro Asn Glu Asp Tyr Leu Asp 180 185 190

Tyr Val His Ala Glu Lys Ser Arg Leu Ala Ser Glu Glu Gln Ile Leu 195 200 205

Arg Ala Ala Thr Ser Ile Tyr Gly Ala Pro Gly Gln Ala Glu Pro Pro 210 215 220

Gln Ala Phe Ile Asp Glu Val Ala Lys Val Tyr Glu Ile Asn His Gly 225 230 235 240

Arg Gly Pro Asn Gln Glu Gln Met Lys Asp Leu Leu Thr Ala Met 245 250 255

Glu Met Lys His Arg Asn Pro Arg Arg Ala Leu Pro Lys Pro Lys Pro 260 265 270

Lys Pro Asn Ala Pro Thr Gln Arg Pro Pro Gly Arg Leu Gly Arg Trp 275 280 285

Ile Arg Thr Val Ser Asp Glu Asp Leu Glu 290 295

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N7/04 A61K39/12
C12N15/87 C12N15/86

C12N15/62 C12N5/10

C07K14/08

C07K19/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BIOSIS, MEDLINE

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	CHEVALIER C ET AL: "The maturation process of pVP2 requires assembly of infectious bursal disease virus capsids" JOURNAL OF VIROLOGY, THE AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 76, no. 5, March 2002 (2002-03), pages 2384-2392, XP002218366 ISSN: 0022-538X the whole document	1-4,6, 9-14, 17-20, 23-29
X	WO 02/088339 A (INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE; DELMAS, BERNARD; CHEVA) 7 November 2002 (2002-11-07) page 2 - page 3 page 9 - page 10; claims 1-14 -/	1-4,6, 9-14, 17-20, 23-29

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance E* earlier document but published on or after the international filing date L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O* document referring to an oral disclosure, use, exhibition or other means P* document published prior to the international filing date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 15 June 2005	Date of mailing of the international search report 11/07/2005
Name and malling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Authorized officer Paresce, D

Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	where appropriate, or the relevant proouges	Televant to Claim No.
Υ	HU Y ET AL: "Chimeric infectious bursal disease virus-like particles expressed in insect cells and purified by immobilized metal affinity chromatography" BIOTECHNOLOGY AND BIOENGINEERING. INCLUDING: SYMPOSIUM BIOTECHNOLOGY IN ENERGY PRODUCTION AND CONSERVATION, JOHN WILEY & SONS. NEW YORK, US, vol. 63, no. 6, 20 June 1999 (1999-06-20), pages 721-729, XPO02190336 ISSN: 0006-3592 page 721 - page 724	1-29
Y	US 5 788 970 A (VAKHARIA ET AL) 4 August 1998 (1998-08-04) cited in the application columns 14-15	1–29
A	FERNÁNDEZ-ARIAS A ET AL: "Expression of ORF AI of infectious bursal disease virus results in the formation of virus-like particles"	1-29
	JOURNAL OF GENERAL VIROLOGY, SOCIETY FOR GENERAL MICROBIOLOGY, READING, GB, vol. 79, no. part 5, May 1998 (1998-05), pages 1047-1054, XPO02218365 ISSN: 0022-1317 cited in the application page 1049 - page 1053	
A	MARTINEZ-TORRECUADRADA J L ET AL: "Different Architectures in the Assembly of Infectious Bursal Disease Virus Capsid Proteins Expressed in Insect Cells" VIROLOGY, ACADEMIC PRESS, ORLANDO, US, vol. 278, no. 2, 20 December 2000 (2000-12-20), pages 322-331, XP004435746 ISSN: 0042-6822 cited in the application the whole document	1-29
	MARTINEZ-TORRECUADRADA J L ET AL: "Structure-dependent efficacy of infectious bursal disease virus (IBDV) recombinant vaccines" VACCINE, BUTTERWORTH SCIENTIFIC. GUILDFORD, GB, vol. 21, no. 23, 4 July 2003 (2003-07-04), pages 3342-3350, XP004429746 ISSN: 0264-410X the whole document	1-29

Information on patent family members

i ከስሞ /ሮቡለለለኮ /ለለለራለ	
PCT/EP2005/00069	ì

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 02088339	Α	07-11-2002	FR WO	2824327 A1 02088339 A2	08-11-2002 07-11-2002
US 5788970	A	04-08-1998	AU AU CA EP JP US WO US	696656 B2 2129195 A 2186856 A1 0755259 A1 9510873 T 6017759 A 9526196 A1 6156314 A	17-09-1998 17-10-1995 05-10-1995 29-01-1997 04-11-1997 25-01-2000 05-10-1995 05-12-2000