Studies on Various Maximal Covering Location Problems using Genetic and ABC Algorithms

Subhrajit Das

Roll: 90/MCS No: 210015

Supervisors:

Prof. Priya Ranjan Sinha Mahapatra

Department of CSE, University of Kalyani

Dr. Soumen Atta

Asst. Prof., Centre For Information Technologies and Applied Mathematics University of Nova Gorica, Slovenia

Department of Computer Science and Engineering University of Kalyani

I am deeply grateful to my supervisors:

Prof. Priya Ranjan Sinha Mahapatra, Department of CSE, University of Kalyani **Dr. Soumen Atta**, School of Engineering and Management, University of Nova Gorica.

Their guidance, support, and motivation have been invaluable in shaping my research and propelling me to new achievements.

I also extend my thanks to the **CSE Department** at the **University of Kalyani** for granting me access to essential laboratory resources that played a vital role in the successful completion of this project. The unwavering support and encouragement from the faculty and staff in the department have been a constant source of inspiration.

Lastly, I want to express my heartfelt appreciation to **my family and friends** who have been with me throughout my academic journey. Their love, encouragement, and unwavering support have been the solid foundation of my accomplishments.

. Content

Chapter 1:

Implementation of Maximal Covering Location Problem using Genetic Algorithm with Local Refinement

Chapter 2:

Solving Probabilistic Maximal Covering Location Allocation Problem using Artificial Bee Colony Algorithm with Regional Facility Enhancement

Let us understand Basic MCLP^[3]

Let us understand Basic MCLP^[3]

- Location (x,y)
- Service Radius r

Implementation of MCLP using GA with local refinement^[1]

Experimental Results of Implementation

Table 1.1: Experimental Results with GA with refinement-based solving for SJC324 MCLP

\overline{n}	p	S	Cov.(%)	$\mathrm{Gap}\ (\%)$	Time(s)
324	1	800	44.94	0	1.64
324	2	800	72.33	0	2.47
324	3	800	95.49	0	3.43
324	4	800	99.62	0	5.66
324	5	800	100	0	2.95
324	1	1200	81.73	0	4.62
324	2	1200	95.08	0	4.18
324	3	1200	100	0	3.17
324	1	1600	99.76	0	5.65
324	2	1600	100	0	3.77

Table 1.2: Experimental Results with GA with refinement-based solving for SJC402 MCLP

n	p	S	Cov.(%)	$\mathrm{Gap}\ (\%)$	Time(s)
402	1	800	41.01	0	1.58
402	2	800	70.94	0	2.71
402	3	800	91.9	0	4.65
402	4	800	97.85	0.11	5.51
402	5	800	99.91	0	4.89
402	6	800	100	0	4.03
402	1	1200	66.36	0	4.16
402	2	1200	92.79	0	4.95
402	3	1200	100	0	4.53
402	1	1600	96.58	0	7.37
402	2	1600	100	0	5.53

Cov.(%) Gap (%) Time(s) 800 40.31 0 1.84 800 63.23.41 800 79.820 4.81800 90.180.118.03 800 95.715.8399.08 17.20800 11.87 99.920 800 99.975.426376 12003.2054.436.52120091.69120098.417.05160075.126.401600 99.87.74500 3 1600 6.14100

Table 1.4: Experimental Results with GA with refinement-based solving for SJC708 MCLP

n	p	S	$\mathrm{Cov.}(\%)$	$\mathrm{Gap}\ (\%)$	$\operatorname{Time}(s)$
708	1	800	34.69	0	2.58
708	2	800	55	0	4.65
708	3	800	71.4	0	6.29
708	4	800	84.07	0	17.57
708	5	800	88.81	0	35.01
708	6	800	92.69	0.33	30.68
708	7	800	94.75	0.95	24.42
708	8	800	97.83	0	26.25
708	9	800	98.5	0.6	14.48
708	10	800	98.95	1.4	20.93
708	11	800	100	0	14.828
708	1	1200	48	0	4.52
708	2	1200	84.23	0	9.10
708	3	1200	92.68	0	12.58
708	4	1200	98.73	0	27.78
708	5	1200	99.66	0.13	20.04
708	6	1200	100	0	10.31
708	1	1600	69.56	0	9.41
708	2	1600	96.59	0	18.10
708	3	1600	98.59	0.15	10.36
708	4	1600	100	0	8.66

Experimental Results of

· Implementation

Table 1.5: Experimental Results with GA with refinement-based solving for SJC818 MCLP

			G (PT)	G (M)	m ()
n	p	S	Cov. (%)	Gap(%)	Time (s)
818	1	800	28.77	0	2.67
818	2	800	45.62	0	10.84
818	3	800	60.02	0	15.53
818	4	800	73.10	0.36	7.64
818	5	800	83.21	0.89	21.21
818	6	800	87.49	1.33	24.52
818	7	800	90.19	2.15	24.96
818	8	800	94.06	1.29	35.48
818	9	800	96.59	0.77	37.87
818	10	800	97.67	0.88	37.47
818	11	800	98.93	0.81	29.14
818	12	800	99.14	0.67	26.68
818	13	800	99.98	0	34.59
818	14	800	100	0	15.56
818	1	1200	39.81	0	7.98
818	2	1200	69.56	0	16.68
818	3	1200	86.43	0	23
818	4	1200	92.46	0.21	27.09
818	5	1200	97.35	0.40	26.63
818	6	1200	99.59	0.30	29.47
818	7	1200	99.96	0.04	11.74
818	1	1600	57.69	0	10.12
818	2	1600	84.5	0	15.12
818	3	1600	94.87	0	21.76
818	4	1600	98.95	0	22.39
818	5	1600	100	0	10.91

. Recall: MCLP^[3]

- Location (x,y)
- Service Radius r

PMCLAP^[12]: MCLP with minimum service quality

- •Clients will arrive to a facility according to a Poisson distribution with parameter rate µ.
- •The parameter α defines the minimum probability of
- at most a queue with b clients, or;
- •a waiting time of C minutes.

Mathematical Formulation [14]

To model the PMCLAP, we define two sets of binary variables: one of location and the other for one for allocation decisions. Variables y_j are equal to one if and only if location $j \in N$ is opened, and variables x_{ij} are equal to one if and only if the demand of node i is associated with facility j, $i,j \in N$. The problem can be formulated as follows:

$$maximize \sum_{i \in N} \sum_{j \in N_i} d_i x_{ij} \tag{1}$$

subject to

$$\sum_{j \in N_i} x_{ij} \le 1, \quad i \in N \tag{2}$$

$$\sum_{i \in N} y_j = p \tag{3}$$

$$x_{ij} \le y_j, \quad i \in N, \ j \in N$$
 (4)

$$\sum_{i \in N} f_i x_{ij} \le \mu \sqrt[b+2]{1-\alpha} \quad j \in N$$
 (5)

$$\sum_{i \in N} f_i x_{ij} \le \mu + \frac{1}{\tau} \ln(1 - \alpha), \quad j \in N$$
 (6)

$$y_j, x_{ij} \in \{0, 1\}, i \in N, j \in N$$
 (7)

Proposed Experimental Methodology

Solving using Artificial Bee Colony Algorithm with Regional Facility Enhancement

Allocation Strategy

GET-LEAST-CONGESTED-FACILITY

For each customer choose the least congested feasible facility

GET-MAX-WEIGHTED-CUSTOMER

For each facility choose the feasible customer having max (demand/distance)

GET-RANDOM-FACILITY

For each customer allocate a feasible facility randomly

Initial 50 epochs, best of 3 strategies is used

Remaining, roulette wheel selection is used.

Proposed Regional Facility Enhancement

- For each facility in a solution vector of colony
 - N% nearest neighbors of the facility are taken
 - Randomly one facility is chosen and inserted into solution vector
 - If nectar(new solution vector) >= nectar(existing solution vector)
 - Update: existing solution vector <- new solution vector
 - Repeat for all remaining facilities in the updated or unchanged solution vector

Software used for implementation

- Matlab™ R2021a
 - Machine Configuration-> Intel i5™ 7th Gen, 8GB Ram
 - All of the instances consumed less than 500 MB of Ram

. Experimental Results

	CF	LEX	MS Heuristic [12]		GRASP [6]				CS ^[4]			ANLS [14]		Proposed ABC with Enhancement					:
Instance	Best	Time(s)	Best	Time(s)	Best	Average	Time(s)	Best	Average	Time(s)	Best	Average	Time(s)		Best	Average	Std. Dev	Gap (%)	Time(s)
30_2_0_0_85	3700	0	3700	0.000	3700	3700	0.007	3700	3700	0.009	3700	3700	12.333		3700	3700	0	0	2.28
30_2_0_1_85	5100	0	4630	0.000	5090	5090	0.016	5090	5090	0.018	5100	5100	9.000		5090	5090	0	0.19	2.51
30_2_0_2_85	5210	0	4780	0.000	5210	5210	0.015	5210	5210	0.016	5210	5210	4.667		5210	5210	0	0	2.63
30_2_0_2_95	4520	0	4470	0.000	4520	4520	0.013	4520	4520	0.015	4520	4520	11.333		4520	4520	0	0	2.85
30_3_0_0_85	5390	0	5210	0.000	5390	5390	0.025	5390	5390	0.025	5390	5390	5.000		5390	5390	0	0	3.17
30_3_0_1_85	5390	0	5210	0.000	5390	5390	0.024	5390	5390	0.024	5390	5390	3.000		5390	5390	0	0	3.30
30_3_0_1_95	5270	6	5080	0.000	5240	5240	0.024	5240	5240	0.024	5270	5270	44.667		5260	5244	8	0.18	3.15
30_3_0_2_85	5390	1	5210	0.000	5390	5390	0.022	5390	5390	0.023	5390	5390	3.667		5390	5390	0	0	3.29
30_3_0_2_95	5390	0	5230	0.000	5390	5390	0.023	5390	5390	0.027	5390	5390	3.667		5390	5390	0	0	3.25
30_3_1_49_90	2160	0	2160	0.000	2160	2160	0.007	2160	2160	0.009	2160	2160	13.333		2160	2160	0	0	3.56
30_4_0_1_95	5390	0	5260	0.000	5390	5390	0.022	5390	5390	0.026	5390	5390	8.333		5390	5390	0	0	3.96
30_4_1_42_85	4600	0	4550	0.000	4600	4600	0.016	4600	4600	0.022	4600	4600	105.667		4600	4600	0	0	5.45
30_4_1_48_90	1920	0	1890	0.000	1920	1920	0.011	1920	1920	0.014	1920	1920	17.333		1920	1920	0	0	5.70
30_4_1_49_90	2880	0	2870	0.000	2880	2880	0.008	2880	2880	0.013	2880	2880	15.000		2880	2871	3	0	3.28
30_5_0_0_95	5330	13	5210	0.000	5330	5312.8	0.032	5330	5317.6	0.041	5330	5330	288.667		5330	5314	22.44	0	4.62
30_5_1_40_85	3050	93	2910	0.000	3050	3033.2	0.016	3050	3033.2	0.021	3050	3050	234.000		3000	3000	0	1.63	3.95
30_5_1_42_85	5390	1	5210	0.000	5390	5390	0.027	5390	5390	0.035	5390	5390	15.000		5390	5390	0	0	5.75
30_5_1_48_90	2400	1	2280	0.000	2400	2398.8	0.013	2400	2398.8	0.019	2400	2400	26.667		2390	2390	0	0.41	4.45
30_5_1_50_90	4700	1	4670	0.000	4700	4700	0.018	4700	4700	0.028	4700	4700	42.667		4700	4698	4	0	4.82
30_6_0_0_95	5410	1	5390	0.000	5390	5390	0.029	5410	5391	0.037	5410	5410	62.333		5410	5391.33	4.98	0	5.47
30_6_1_40_85	3610	10803	3480	0.000	3610	3606.8	0.021	3610	3608.8	0.031	3610	3610	514.000		3610	3604	8	0	5.83
30_6_1_41_85	5330	10802	5120	0.000	5270	5270.0	0.028	5330	5286.4	0.038	5330	5330	322.333		5330	5320	8.94	0	5.78
30_6_1_50_90	5390	1	5060	0.000	5390	5390	0.027	5390	5390.0	0.038	5390	5390	31.667		5390	5390	0	0	7
30_7_1_40_85	4060	1	3860	0.000	4060	4060	0.028	4060	4060	0.039	4060	4060	301.00		4060	4060	0	0	6.41
30_7_1_41_85	5410	1	5300	0.000	5390	5390	0.023	5390	5390	0.035	5410	5410	61.333		5390	5390	0	0.37	6.61
30_8_1_41_85	5470	0	5390	0.000	5470	5470	0.019	5470	5470	0.032	5470	5470	8.333		5470	5470	0	0	8.05
Average	4533.1	835.577	4389.6	0.000	4527.7	4526.2	0.02	4530.8	4527.1	0.025	4533.1	4533.1	83.269		4529.2	4526.24	2.28	0.10	4.5

. Experimental Results

	CP	LEX	MS Heu	ristic ^[12]		GRASP [6]			CS ^[4]			ANLS [14]		Proposed ABC with Enhancement						
Instance	Best	Time(s)	Best	Time(s)	Best	Average	Time(s)	Best	Average	Time(s)	Best	Average	Time(s)	Best	Average	Std. Dev	Gap (%)	Time(s)		
324_10_0_0_85	37180	13	37081	0.220	37157	37155.8	2.24	37173	37163.2	3.460	37180	37180	1255.333	37172	37161.60	5.49	0.02	38.28		
324_10_0_0_95	21460	9	21386	0.140	21446	21441.2	2.05	21455	21447.2	3.160	21460	21460	865.667	21456	21450.60	3.97	0.01	46.60		
324_10_0_1_85	51000	22	50750	0.200	50948	50946.3	2.30	50948	50946.3	3.410	51000	51000	1435.000	50944	50919.50	22.57	0.10	44.64		
324_10_0_1_95	35360	14	35250	0.160	35339	35336.5	2.06	35359	35354.6	3.170	35360	35360	857.000	35357	35355.90	1.70	0.08	36.35		
324_10_0_2_85	59740	22	59598	0.200	59693	59688.5	2.24	59693	59688.5	3.330	59740	59740	987.667	59666	59644.50	12.31	0.12	35.80		
324_10_0_2_95	45390	9	45300	0.200	45341	45334.6	2.01	45374	45354.6	3.100	45390	45390	1292.000	45366	45359.80	3.31	0.05	49.25		
324_10_1_40_85	27700	14	27283	0.170	27670	27666.6	2.18	27698	27692.1	3.370	27700	27700	1406.333	27692	27687.30	3.95	0.02	38.51		
324_10_1_41_85	29360	6	29288	0.140	29658	29656.1	2.24	29351	29341.9	3.520	29360	29360	1182.667	29350	29346.60	2.57	0.03	37.78		
324_10_1_42_85	30950	11	30902	0.170	30928	30920.8	2.21	30948	30943.3	3.330	30950	30950	1034.667	30947	30944.10	3.20	0.009	39.62		
324_10_1_48_90	26920	15	26885	0.140	26899	26896.6	2.18	26917	26910.6	3.500	26920	26920	1492.667	26914	26907.10	4.34	0.02	49.02		
324_10_1_49_90	28330	22	28206	0.250	28295	28285.0	2.24	28318	28310.3	3.430	28330	28330	1747.000	28317	28310.80	4.21	0.01	36.58		
324_10_1_50_90	29680	6	29638	0.220	29658	29656.1	2.24	29672	29665.5	3.360	29680	29680.0	1127.33	29669	29665.30	2.75	0.03	48.54		
324_20_0_0_85	74360	198	73981	0.830	74165	74106.0	4.80	74165	74106.7	9.710	74360	74357.7	6191.667	74188	74039.10	89.77	0.23	96.91		
324_20_0_0_95	42920	22	42714	0.730	42813	42792.2	4.24	42840	42804.9	9.370	42920	42919.7	3936.333	42852	42835.50	12.04	0.15	77.06		
324_20_0_1_85	102000	612	100628	1.020	101374	101177.4	4.88	101374	101177.4	9.070	101978	101974	7212.667	101045	100600.10	273.21	0.93	105.92		
324_20_0_1_95	70720	55	70368	0.740	70561	70529.8	4.43	70656	70628.2	9.060	70720	70720	4417.333	70762	70641.20	11.26	0.05	102.59		
324_20_0_2_85	119740	10804	118451	0.770	118771	118613.6	4.86	118771	118613.6	8.990	119455	119447.3	6388.000	118193	117927.40	169.44	1.29	97.45		
324_20_0_2_95	90780	74	90424	0.810	90550	90518.9	4.64	90556	90521.2	9.400	90780	90780	6667.333	90604	90529.90	50.54	0.19	68.40		
324_20_1_40_85	55400	52	55006	0.840	55193	55147.4	4.63	55306	55226.7	9.650	55396	55398.3	5488.667	55303	55249.50	41.96	0.17	72.03		
324_20_1_41_85	58720	85	58577	1.020	58602	58582.6	4.72	58604	58583.4	10.330	58720	58720	7417.667	58626	58515.40	81.26	0.16	109.16		
324_20_1_42_85	61900	35	61637	0.880	61746	61715.1	4.68	61847	61822.6	9.740	61900	61900	3561.333	61849	61831.30	14.10	0.01	102.38		
324_20_1_48_90	53840	49	53377	0.630	53647	53607.5	4.54	53793	53689.5	9.820	53839	53838.7	5912.667	53760	53711.90	36.52	0.14	88.30		
324_20_1_49_90	56660	167	56180	1.340	56321	56254.3	4.59	56532	56429.9	9.550	56655	56655	7130.667	56533	56466.70	63.78	0.22	88.03		
324_20_1_50_90	59360	56	59119	0.940	59253	59237.0	4.74	59285	59242.6	10.080	59360	59360	5551.333	59287	59262.50	18.91	0.12	102.29		
Average	52883.3	515.5	52595.8	0.532	52751.1	52719.4	3.41	52776.5	52736.0	6.455	52881.5	52880.9	3523.292	52,743.8	52681.8	38.8	0.17	67.14		

. Experimental Results

	CF	PLEX	MS Heu	ristic ^[12]	GRASP [6]				CS [4]			ANLS [14]		Proposed ABC with Enhancement						
Instance	Best	Time(s)	Best	Time(s)	Best	Average	Time(s)	Best	Average	Time(s)	Best	Average	Time(s)	-	Best	Average	Std.	Gap	Time(s)	
						Ŭ	, ,			, ,		ŭ				ŭ	Dev	(%)		
818_10_0_0_95	21460	557	21429	4.94	21459	21458.3	6.30	21460	21459.9	11.23	21460	21460	6818	2	21460	21460	0	0	60.37	
818_10_0_1_95	35360	657	35339	13.05	35360	35360	6.65	35360	35360	11.54	35360	35360	10407	3	35360	35359	1.54	0	61.82	
818_10_0_2_95	45390	648	45375	12.09	45389	45388.2	6.97	45390	45390	12.17	45390	45390	7400	4	45390	45389.40	0.80	0	62.96	
818_10_1_48_90	26290	586	26907	11.38	26899	26896.6	2.18	26920	26920	11.320	26920	26920	8212	2	26920	26919.60	1.20	0	103.70	
818_10_1_49_90	28330	659	28309	8.630	28295	28285	2.24	28330	28330	12.230	28330	28330	8052.6667	2	28330	28328.10	2.25	0	83.17	
818_10_1_50_90	29680	682	29661	18.280	29658	29656.1	2.24	29680	29680	11.330	29680	29680	9078.333	2	29680	29679.90	0.30	0	83.07	
818_20_0_0_85	74360	785	74313	75.05	74353	74352.1	16.27	74360	74359.8	66.81	74360	74360	17183.667	7	74360	74355	3.92	0	102.90	
818_20_0_0_95	42920	562	42793	25.67	42903	42900	14.51	42920	42918.9	54.84	42920	42920	9890.333	4	42918	42917.10	0.53	0.004	96.32	
818_20_0_1_85	102000	1491	101933	76.06	101996	101991.9	19.24	102000	101998.9	67.36	102000	102000	16602	1	102000	101990.80	10.21	0	103.511	
818_20_0_1_95	70720	610	70644	37.03	70717	70715.1	16.90	70720	70719.2	62.91	70720	70720	16880.667	7	70720	70717.80	1.77	0	96.18	
818_20_0_2_85	119480	1579	119397	105.48	119468	119466	21.26	119480	119477.6	74.36	119480	119480	19074.667	1	119480	119472.20	13.15	0	104.08	
818_20_0_2_95	90780	841	90730	75.19	90772	90769.5	19.18	90780	90779.6	66.80	90780	90780	14622.667	9	90780	90774.20	4.48	0	102.11	
818_20_1_40_85	55400	833	55325	66.110	55193	55147.4	4.63	55400	55399	61.040	55400	55400	15044.333		55400	55395.30	8.92	0	163.10	
818_20_1_41_85	58720	641	58637	69.630	NA	NA	NA	58720	58719.9	57.310	58720	58720	14384		58720	58715.90	7.35	0	169.17	
818_20_1_42_85	61900	929	61814	71.810	NA	NA	NA	61900	61898.8	58.710	61900	61900	14487	6	61899	61886	17.64	0.001	157.11	
818_20_1_48_90	53840	640	56602	34.340	NA	NA	NA	53840	53839.6	59.560	53840	53840	13808.667		53840	53836.30	4.51	0	155.97	
818_20_1_49_90	56660	948	56602	34.340	NA	NA	NA	56660	56660	67.420	56660	56660	13008.333		56660	56655.10	4.84	0	166.31	
818_20_1_50_90	59360	877	59269	39.840	NA	NA	NA	59360	59359.9	58.480	59360	59360	14568.667		59360	59357	3.76	0	161.33	
818_50_0_0_85	185900	2956	185426	756.72	1857791	185755.8	50.62	185880	185775.6	364.20	185637	185587.7	24094.33	1	185855	185801	59.16	0.02	339.63	
818_50_0_1_85	255000	6332	254509	730.20	254860	254836.6	58.37	254985	254905.0	387.37	254996	254987.3	23978	2	254934	254868.50	61.11	0.02	360.95	
818_50_0_2_85	298700	4435	298217	757.73	2988547	298511.2	63.58	298582	298517.6	392.29	298692	298648.3	23978	2	298548	298344.50	114.98	0.05	390.01	
818_50_1_48_90	134600	785	134088	596.110	NA	NA	NA	134598	134561.6	335.000	134597	134593.3	24094.333	1	134592	134578.70	10.24	0.05	481.34	
818_50_1_49_90	141650	1719	141281	571.170	NA	NA	NA	141586	141532.8	356.800	141650	141606.7	24425	1	141614	141597	13.09	0.02	506.78	
818_50_1_50_90	148400	1946	147931	667.670	NA	NA	NA	148383	148321.9	337.400	148397	148378	25031.667	1	148366	148327.30	26.88	0.02	510.95	
Average	91563.8	1363.417	91402.4	201.941	NA	NA	NA	91553.9	91536.9	124.937	91552	91545.1	15659.125		91549.42	91530.24	15.52	0.007	192.61	

Conclusion

Promising results for the 30 node data-set and 818 node data-set

However, for 324-node dataset the benchmark results were missed by a small margin.

Overall achieves the optimal benchmark results of CPLEX in 50% of time, with an average computational time of 85.83 seconds

The quality of the heuristic solutions depends largely on the customer allocation strategy

Future research will focus on developing improved allocation strategies to enhance the performance of the heuristic method.

Bibliography

- 1. S. Atta, P. R. Sinha Mahapatra, and A. Mukhopadhyay. Solving maximal covering location problem using genetic algorithm with local refinement. Soft Computing, 22:3891–3906, 2018.
- 2. S. Atta, P. R. S. Mahapatra, and A. Mukhopadhyay. Solving a new variant of the capacitated maximal covering location problem with fuzzy coverage area using metaheuristic approaches. Computers & Industrial Engineering, 170:108315, 2022. ISSN 0360-8352. doi: https://doi.org/10.1016/j.cie.2022.108315. URL https://www.sciencedirect.com/science/article/pii/S0360835222003710.
- 3. R. Church and C. ReVelle. The maximal covering location problem. In Papers of the regional science association, volume 32, pages 101–118. Springer-Verlag Berlin/Heidelberg, 1974.
- 4. F. de Assis Corrêa, A. A. Chaves, and L. A. N. Lorena. Hybrid heuristics for the probabilistic maximal covering location-allocation problem. Operational Research, 7: 323–343, 2007.
- 5. F. de Assis Corrêa, L. A. N. Lorena, and G. M. Ribeiro. A decomposition approach for the probabilistic maximal covering location-allocation problem. Computers & Operations Research, 36(10):2729–2739, 2009.
- 6. T. Feo and M. G. Resende. Greedy randomized adaptive search procedures. Journal of Global Optimization, 6(2):109–133, 1995.
- 7. D. E. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison Wesley, 1989. 41
- 8. Y.-Y. Huang, Q.-K. Pan, L. Gao, Z.-H. Miao, and C. Peng. A two-phase evolutionary algorithm for multi-objective distributed assembly permutation flowshop scheduling problem. Swarm and Evolutionary Computation, 74:101128, 2022.
- 9. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM computing surveys (CSUR), 31(3):264–323, 1999.
- 10. D. Karaboga. Artificial bee colony algorithm. scholarpedia, 5(3):6915, 2010.
- 11. D. Karaboga et al. An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, computer . . . , 2005.
- 12. V. Marianov and D. Serra. Probabilistic, maximal covering location—allocation models for congested systems. Journal of Regional Science, 38(3):401–424, 1998.
- 13. A. Mukhopadhyay, U. Maulik, and S. Bandyopadhyay. A survey of multi objective evolutionary clustering. ACM Computing Surveys (CSUR), 47(4):1–46, 2015.
- 14. M. A. Pereira, L. C. Coelho, L. A. Lorena, and L. C. De Souza. A hybrid method for the probabilistic maximal covering location—allocation problem. Computers & Operations Research, 57:51–59, 2015.

