Question Number	Answer		Mark
21(a)(i)	Use of $\lambda_{\text{max}}T = 2.898 \times 10^{-3} \text{m K}$	(1)	
	T = 3570 (K)	(1)	2
	Example of calculation 2.898×10^{-3} m K		
	$T = \frac{2.898 \times 10^{-3} \text{ m K}}{8.12 \times 10^{-7} \text{ m}} = 3569 \text{ K}$		
21(a)(ii)	Use of $L = \sigma A T^4$ and $A = 4\pi r^2$	(1)	
	Use of $I = \frac{L}{4\pi d^2}$	(1)	
	Use of intensity of radiation at the Earth	(1)	
	Intensity = 0.42 $I_{\rm E}$ (ecf from (a)(i)) Or 552 (Wm ⁻²) \approx 583.0 (W m ⁻²)	(1)	4
	[Using the 'show that' value of T gives $I = 604 W$ and $I = 0.44 I_E$]		
	Example of calculation $L = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^4 \times 4\pi \times (2.03 \times 10^8 \text{ m})^2 \times (3570 \text{ K})^4$		
	$\therefore L = 4.76 \times 10^{24} \mathrm{W}$		
	$I = \frac{4.76 \times 10^{24} \text{ W}}{4\pi \times (2.55 \times 10^{10} \text{ m})^2} = 583.0 \text{ W m}^{-2}$		
	Intensity = $\frac{583 W m^{-2}}{1380 W m^{-2}} I_E = 0.422 I_E$		
	$I = 0.4 \times 1380 \text{ Wm}^{-2} = 552 \text{ Wm}^{-2}$		

21(b)	Use of $V = \frac{4}{3}\pi r^3$	(1)	
	Use of $\rho = \frac{m}{v}$ Use of $g = \frac{GM}{r^2}$	(1)	
	Use of $g = \frac{GM}{r^2}$	(1)	
	$g = 18.4 \text{ N kg}^{-1}$ [Intermediate rounding gives $g = 18.3 \text{ N kg}^{-1}$]	(1)	
	Conclusion consistent with calculated value for g compared with $4g$	(1)	5
	Example of calculation $V = \frac{4}{3}\pi \times (1.02 \times 10^7)^3 = 4.45 \times 10^{21} \text{ m}^3$		
	$m = 6.44 \times 10^3 \text{ kg m}^{-3} \times 4.45 \times 10^{21} \text{ m}^3 = 2.86 \times 10^{25} \text{ kg}$		
	$g = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 2.86 \times 10^{25} \text{ kg}}{(1.02 \times 10^7 \text{ m})^2} = 18.4 \text{ N kg}^{-1}$		
	Ratio = $\frac{18.4 \text{ N kg}^{-1}}{9.81 \text{N kg}^{-1}}$ = 1.87 which is less than 4, so humans could survive the gravitational field strength		

11

Total for question 21