Gadolinium

From Wikipedia, the free encyclopedia

Gadolinium is a chemical element with symbol **Gd** and atomic number 64. It is a silvery-white, malleable and ductile rare-earth metal. It is found in nature only in combined (salt) form. Gadolinium was first detected spectroscopically in 1880 by de Marignac who separated its oxide and is credited with its discovery. It is named for gadolinite, one of the minerals in which it was found, in turn named for chemist Johan Gadolin. The metal was isolated by Paul Emile Lecoq de Boisbaudran in 1886.

Gadolinium metal possesses unusual metallurgic properties, to the extent that as little as 1% gadolinium can significantly improve the workability and resistance to high temperature oxidation of iron, chromium, and related alloys. Gadolinium as a metal or salt has exceptionally high absorption of neutrons and therefore is used for shielding in neutron radiography and in nuclear reactors. Like most rare earths, gadolinium forms trivalent ions with fluorescent properties. Gadolinium(III) salts have therefore been used as green phosphors in various applications.

The gadolinium(III) ion occurring in water-soluble salts is quite toxic to mammals. However, chelated gadolinium(III) compounds are far less toxic because they carry gadolinium(III) through the kidneys and out of the body before the free ion can be released into tissue. Because of its paramagnetic properties, solutions of chelated organic gadolinium complexes are used as intravenously administered gadolinium-based MRI contrast agents in medical magnetic resonance imaging. However, in a small minority of patients with renal failure, at least four such agents have been associated with development of the rare nodular inflammatory disease nephrogenic systemic fibrosis. This is thought to be due to the gadolinium ion itself, since gadolinium(III) carrier molecules associated with the disease differ.

Characteristics

Physical properties

Gadolinium, 64Gd

General properties

Name, symbol gadolinium, Gd
Appearance silvery white

Gadolinium in the periodic table

Atomic number (Z) 64

Group, block group n/a, f-block

Period period 6

Element category \Box lanthanide

Standard atomic $157.25(3)^{[1]}$ weight (\pm) (A_r)

Electron [Xe] 4f⁷ 5d¹ 6s² configuration

per shell 2, 8, 18, 25, 9, 2

Physical properties

Phase solid

Melting point 1585 K (1312 °C, 2394 °F)

Boiling point 3273 K (3000 °C, 5432 °F)

Density near r.t. 7.90 g/cm³

when liquid, at m.p. 7.4 g/cm³

A sample of gadolinium

Gadolinium is a silvery-white malleable and ductile rare-earth metal. It crystallizes in hexagonal, close-packed α -form at room temperature, but, when heated to temperatures above 1235 °C, it transforms into its β -form, which has a body-centered cubic structure. [2]

Gadolinium-157 has the highest thermal neutron capture cross-section among any stable nuclides: 259,000 barns. Only xenon-135 has a higher cross section, 2 million barns, but that isotope is unstable.^[3]

Gadolinium is generally believed to be ferromagnetic at temperatures below 20 °C (68 °F)^[4] and is strongly paramagnetic above this temperature. There is some evidence that gadolinium may be a helical antiferromagnet, rather than a ferromagnet, below 20 °C (68 °F).^[5] Gadolinium demonstrates a magnetocaloric effect whereby its temperature increases when it enters a magnetic field and decreases when it leaves the magnetic field. The temperature is lowered to 5 °C (41 °F) for the gadolinium alloy $Gd_{85}Er_{15}$, and the effect is considerably stronger for the alloy $Gd_5(Si_2Ge_2)$, but at a much lower temperature (<85 K (-188.2 °C; -306.7 °F)).^[6] A significant magnetocaloric effect is observed at higher temperatures, up to 300 K, in the $Gd_5(Si_xGe_{1-x})_4$ compounds.^[7]

Individual gadolinium atoms have been isolated by encapsulating them into fullerene molecules and visualized with transmission electron microscope.^[8] Individual Gd atoms and small Gd clusters have also been incorporated into carbon nanotubes.^[9]

Chemical properties

Gadolinium combines with most elements to form Gd(III) derivatives. It also combines with nitrogen, carbon, sulfur, phosphorus, boron, selenium, silicon and arsenic at elevated temperatures, forming binary compounds.^[10]

Heat of fusion 10.05 kJ/mol
Heat of 301.3 kJ/mol

vaporization

Molar heat 37.03 J/(mol·K)

capacity

Vapor pressure (calculated)

P (Pa)	1	10	100	1 k	10 k	100 k
at T (K)	1836	2028	2267	2573	2976	3535

Atomic properties

Oxidation states 1, 2, 3 (a mildly basic oxide)

Electronegativity Pauling scale: 1.20 **Ionization** 1st: 593.4 kl/mol

energies 2nd: 1170 kJ/mol 3rd: 1990 kJ/mol

Atomic radius empirical: 180 pm

Covalent radius 196±6 pm

Miscellanea

Crystal structure hexagonal close-packed

(hcp)

Speed of sound 2680 m/s (at 20 °C)

thin rod

Thermal α poly: 9.4 μ m/(m·K)

expansion (at 100 °C)

Thermal 10.6 W/(m·K)

conductivity

Electrical α, poly: $1.310 \mu\Omega \cdot m$

resistivity

Magnetic ordering ferromagnetic-paramagnetic

transition at 293.4 K

Young's modulus α form: 54.8 GPa

Shear modulus α form: 21.8 GPa

Unlike other rare earth elements, metallic gadolinium is relatively stable in dry air. However, it tarnishes quickly in moist air, forming a loosely adhering gadolinium(III) oxide (Gd₂O₃), which spalls off, exposing more surface to oxidation.

$$4 \text{ Gd} + 3 \text{ O}_2 \rightarrow 2 \text{ Gd}_2 \text{O}_3$$

Gadolinium is a strong reducing agent, which reduces oxides of several metals into their elements. Gadolinium is guite electropositive and reacts slowly with cold water and guite guickly with hot water to form gadolinium hydroxide:

$$2 \text{ Gd} + 6 \text{ H}_2\text{O} \rightarrow 2 \text{ Gd}(\text{OH})_3 + 3 \text{ H}_2$$

Gadolinium metal is attacked readily by dilute sulfuric acid to form solutions containing the colorless Gd(III) ions, which exist as $[Gd(H_2O)_0]^{3+}$ complexes: [11]

$$2 \text{ Gd} + 3 \text{ H}_2 \text{SO}_4 + 18 \text{ H}_2 \text{O} \rightarrow 2 [\text{Gd}(\text{H}_2 \text{O})_9]^{3+} + 3 \text{ SO}_4^{2-} + 3 \text{ H}_2$$

Gadolinium metal reacts with the halogens (X_2) at temperature about 200 °C:

$$2 \text{ Gd} + 3 \text{ X}_2 \rightarrow 2 \text{ GdX}_3$$

Chemical compounds

In the great majority of its compounds, Gd adopts the oxidation state +3. All four trihalides are known. All are white except for the iodide, which is yellow. Most commonly encountered of the halides is gadolinium(III) chloride (GdCl₃). The oxide dissolves in acids to give the salts, such as gadolinium(III) nitrate.

Gadolinium(III), like most lanthanide ions, forms complexes with high coordination numbers. This tendency is illustrated by the use of the chelating agent DOTA, an octadentate ligand. Salts of [Gd(DOTA)] are useful in magnetic resonance imaging. A variety of related chelate complexes have been developed, including gadodiamide.

Bulk modulus	α form: 37.9 GPa				
Poisson ratio	α form: 0.259				
Vickers hardness	510-950 MPa				
CAS Number	7440-54-2				
	History				
Naming	after the mineral Gado				

lolinite (itself named after Johan

Gadolin)

Discovery Iean Charles Galissard de

Marignac (1880)

Lecog de Boisbaudran First isolation

(1886)

Most stable isotopes of gadolinium

iso	NA	half-life	DM	DE (MeV)	DP		
¹⁴⁸ Gd	syn	75 y	α	3.271	¹⁴⁴ Sm		
¹⁵⁰ Gd	syn	1.8×10 ⁶ y	α	2.808	¹⁴⁶ Sm		
¹⁵² Gd	0.20%	1.08×10 ¹⁴ y	α	2.205	¹⁴⁸ Sm		
¹⁵⁴ Gd	2.18%	is stable with 90 neutrons					
¹⁵⁵ Gd	14.80%	is stable with 91 neutrons					
¹⁵⁶ Gd	20.47%	is stable with 92 neutrons					
¹⁵⁷ Gd	15.65%	is stable with 93 neutrons					
¹⁵⁸ Gd	24.84%	is stable with 94 neutrons					
¹⁶⁰ Gd	21.86%	is stable with 96 neutrons					

Reduced gadolinium compounds are known, especially in the solid state. Gadolinium(II) halides are obtained by heating Gd(III) halides in presence of metallic Gd in tantalum containers. Gadolinium also form sesquichloride Gd_2Cl_3 , which can be further reduced to GdCl by annealing at 800 °C. This gadolinium(I) chloride forms platelets with layered graphite-like structure.^[12]

Isotopes

Naturally occurring gadolinium is composed of 6 stable isotopes, 154 Gd, 155 Gd, 156 Gd, 157 Gd, 158 Gd and 160 Gd, and 1 radioisotope, 152 Gd, with 158 Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of 160 Gd has never been observed (the only lower limit on its half-life of more than 1.3×10^{21} years has been set experimentally $^{[13]}$).

Twenty-nine radioisotopes have been characterized, with the most stable being alpha-decaying 152 Gd (naturally occurring) with a half-life of 1.08×10^{14} years, and 150 Gd with a half-life of 1.79×10^6 years. All of the remaining radioactive isotopes have half-lives of less than 74.7 years. The majority of these have half-lives of less than 24.6 seconds. Gadolinium isotopes have 4 metastable isomers, with the most stable being 143m Gd ($t_{1/2}$ =110 seconds), 145m Gd ($t_{1/2}$ =85 seconds) and 141m Gd ($t_{1/2}$ =24.5 seconds).

Isotopes with atomic masses lower than the most abundant stable isotope, ¹⁵⁸Gd, primarily decay via electron capture to Eu (europium) isotopes. At higher atomic masses, the primary decay mode is beta decay, and the primary products are Tb (terbium) isotopes.

Source

Wikipedia: Gadolinium (https://en.wikipedia.org/wiki/Gadolinium)