. CHECK-LIST			
	fiz	incompleto U tem vasolução U não entendi U	
	. 7.	wrificar os isomatórios	
	.	verificar proprieda de telescópica	
	.3.	calcular a voma da vérie	•
	4.	calcular a voma da vérie	
	. S .	determinar convergência ou divergência das vieries	•
	 .6.	determinar use converge ou não	
	; f ;	determinar use converge ou não.	
	8.		•
_	. e.	convergente ou divergente? justifique	
	70.	de terminar use é con vergonte ou divergente.	
-	. 77 ·		
	. 7 % ·	de terminar us é con vergente ou divergente.	
	. 73		
-,	.24.		

2.1) 1.e).

$$\sum_{\kappa=0}^{\infty} \frac{(4\kappa+7)(4\kappa+2)}{7}$$

como i uma visia telescópica , podemes esselvor como.

$$PK = \frac{(4K+7)}{7}$$
 $PK+7 = \frac{(4(K+7)+7)}{7}$
 $PK+7 = \frac{7}{7}$

temes ainder

$$=> \infty \left[\frac{4K+5-(4K+5)}{(4K+1)(4K+5)} \right] = \frac{1}{(4K+1)(4K+5)}$$

. assim., temos

$$\frac{K=0}{2} \cdot \frac{(4K+7) \cdot (4K+2)}{7} = \frac{7}{7} \cdot \frac{1}{2} \cdot \frac{(4K+7)}{7} - \frac{7}{7} \cdot \frac{7$$

agoca, farem es . o . 1º . tumo .com . K.L

agera, caballames e limite

$$\lim_{K \to \infty} \frac{1}{4} \left[1 - \frac{1}{4} + 5 \right] = \frac{1}{4} \left[1 - 0 \right] = \frac{1}{4}$$

arrive 1. a regis
$$\sum_{\infty} \frac{(AK+7)(AK+2)}{7}$$
 converge base $\frac{A}{7}$

EXERCÍCIOS DO GUIDORIZZI PARECIDOS COM O EX 3 E 4

2.1) 1.a. calcule a voma da vérie dada:

$$\sum_{K=0}^{+\infty} \left(\frac{1}{2}\right)^{K} =$$

podemos perceber que é uma vérie geométrica de ração $x = \frac{1}{2}$ ve x < 1, então a vérie converge para $\frac{a_1}{1 - x}$. termos que $a_1 = \left(\frac{1}{2}\right)^\circ$, então

 $\sum_{K=0}^{+\infty} = \frac{1}{2} = \frac{1}{2} = 2$

portante. a veri converge para 2

2.13 1.6 calcule a voma da vérie dada:

$$\sum_{K=a}^{\infty} \left(\frac{3}{3}\right)^{K}$$

podemes perceber que lé uma vérie geométrica de varjos $x = \frac{1}{3}$. Le x < 1, ento a vérie converge para $\frac{a_1}{1-a_1}$. Etmos que $a_1 = \left(\frac{1}{3}\right)^2 = \frac{1}{2}$.

 $\sum_{K=0}^{+\infty} = \frac{3}{9} = \frac{1}{4} \cdot \frac{3}{3} = \frac{3}{18} = \frac{1}{6}$

partante, a vivie con verge para 1

2.1) 1.0) calcule a voma da vérie dada:

$$\sum_{\kappa=0}^{\infty} e^{-\kappa} = \sum_{\kappa=0}^{\infty} \frac{7}{6}$$

micro. 1. \$\frac{1}{9} . agris . mas sind mass. siràr. somu is.

$$\sum_{K=0}^{K=0} e^{-K} = \frac{1}{1} = \frac{1}{e} = \frac{1}{1} = \frac$$

2.1) 1. d) calcule a voma da vérie dada:

$$\sum_{k=1}^{K=7} \left[7 + (-7)_{K} \right]$$

bogomes bestepex due
$$\sum_{\infty} [1+(-7)K] = \sum_{\infty} 7 + \sum_{\infty} (-7)K$$

temos que

$$\sum_{N} 7 = N \qquad \text{or} \qquad \sum_{N} (-7)_{N}$$

compo n -> 00

$$\lim_{N \to \infty} N + (-1)^{N} = \infty$$

eu veja, a vivie tende ao infinito. e, avim, diverge

Calcule a soma da série dada.

(a)
$$\sum_{k=0}^{+\infty} \left(\frac{1}{10}\right)^k.$$

padames perceper que se agraso mas as istèmago sirère some a vérie converge para. part anto

 $\sum_{+\infty}^{K=0} \left(\frac{70}{7}\right)_{K} = \left(\frac{70}{7}\right)_{0}$ = 1.10

(b) $\sum_{k=0}^{+\infty} \pi^{-k}$.

. podemos perceber que é uma vérie geométrica com vação or use or >1, a vienie converge para ... as assim, temos. que

(c) $\sum_{k=0}^{+\infty} \frac{1}{(4k+1)(4k+5)}$.

uma viene telescopica, podemos

K=0 pk - pk+7

pk+7 = (+(K+7)+7) = bk = (4K + 1)

temos ainda

 $\infty \left[\frac{4k+5-(4k+5)}{(4k+5)} \right]$ (4x + 1) (4x + 5)

assim., temps

$$K=0 \quad \frac{(AK+7)(AK+2)}{7} = \frac{A}{7} \times \frac{K=0}{2} \frac{(AK+7)}{7} - \frac{7}{7} = \frac{7}{7} \times \frac{1}{1} \times \frac{$$

agoca, laigemos o 1º temo com K.L

agera, calculames e limite

$$\lim_{K \to \infty} \frac{1}{7} \left[7 - \frac{1}{7} \right] = \frac{1}{7} \left[7 - 0 \right] = \frac{1}{7}$$

arring 1 or regard \sum_{∞} \sum_{γ} \sum

(d)
$$\sum_{k=1}^{+\infty} \frac{1}{(k+1)(k+2)(k+3)}$$
.

mesmo que a. c)

4. Calcule a soma da série dada

(a)
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(n+2)(n+3)}$$

mesmo que a 3)c)

(b)
$$\sum_{n=1}^{+\infty} n\alpha^n$$
, $0 < \alpha < 1$.

respect de varier per la sixte per la serve de varier d

$$\sum_{\infty}^{N=0} |x_N| = \frac{1-\alpha}{\infty} = \frac{1-\alpha}{T}$$

temos. que

$$\frac{q\alpha}{q} \cdot \frac{n=0}{2} \cdot \alpha_{\mu} \cdot = \sum_{n=1}^{n=1} n \alpha_{n}$$

part anto

$$\sum_{n=1}^{\infty} n\alpha_n = \frac{q}{q\alpha} \left(\frac{q}{q}\right) = -\frac{q}{q\alpha} \frac{(q-\alpha)^2}{(q-\alpha)^2} = \frac{q}{q} \frac{(q-\alpha)^2}{(q-\alpha)^2}$$

(c)
$$\sum_{n=1}^{+\infty} \frac{1}{n^2(n+1)(n+2)^2}$$

mesmo que as outras que não fiz

5. Determine a convergência ou divergência das séries (v. Guidorizzi, Vol. 4).

(a)
$$\sum_{k=0}^{+\infty} \frac{1}{k^2+1}$$

. veja.
$$f(x) = \frac{1}{x^{2} + 1}$$

ternos que.

. fr é . continua

· f é positiva

e
$$f'(\infty) = -\frac{2\infty}{(\infty^2 + 1)^2}$$
, portante f is decressente.

portante, podemos utilizar o critério da integral para determinar a convergência

agesca, calculames a integral definida de 0 a b (vendo que $b \to \infty$) de b

 $\lim_{b \to \infty} \int_0^b \frac{1}{x^2 + 2} dx = \text{valumos que a primitiva & arctg(x)} = \text{arctgx} \int_0^b \frac{1}{x^2 + 2} dx$

= lim arctg(b) - arctg(0) = .lim arctg(b) = n.

assim., como f⁺20 . 1 . converge para I

 $\sum_{\chi=0}^{\infty} \frac{1}{\chi^2 + \chi} \cdot \text{também} \cdot \text{converge} \cdot \text{para} \cdot \frac{\pi}{2}$

(b)
$$\sum_{k=3}^{+\infty} \frac{1}{k^2 \log(k)} .$$

pourément just la serie ara sirèr serie les partes per ceber que serie la sirèr serie la seri

Generalizada: $\sum_{n=3}^{\infty} \frac{1}{n^{\alpha}}$, nerse caro $\alpha = 3$, portanto $\sum_{n=3}^{\infty} \frac{1}{n^2}$ converge

pela critéria da un tegral para a verie harmênica generalizada.

sendo assim, pelo cuitério da comparação, temos:

$$\int_{3}^{+\infty} \frac{\Delta}{K^{2} \log^{3}(K)} \leq \int_{3}^{+\infty} \frac{\Delta}{K^{2}}$$

aisim, como $\frac{1}{2}$ converdo $\frac{1}{2}$ converdo $\frac{1}{2}$ $\frac{K_2 \log(CK)}{2}$ também converdo o hoctanto

 $\sum_{K=3}^{2} \frac{1}{K^2 \log(K)} con wege$

7. Determine se convergem ou não as séries abaixo.

(a)
$$\sum_{n=0}^{+\infty} \frac{3^n}{1+4^n}$$
.

podemes observer pelo termo deminante que $\frac{3^n}{1+4^n} > \frac{3^n}{4^n}$, assim, pelo critério da comparação, se $\sum_{n=0}^{\infty} \frac{3^n}{4^n}$ con vergir, en também interconvergir.

assim, para de terminar us É converge ou não, viennos utilizar o critério da vaiz, então temos:

 $\lim_{n\to\infty} \sqrt{\frac{3^n}{4^n}} = \lim_{n\to\infty} \frac{3}{4} = \frac{3}{4} < 1$

como o limite à menor que 2, temos pelo critério da asiz que a sirie analisada converge, portanto, pelo critério da comparação, temos que $\sum_{n=0}^{\infty} \frac{3^n}{2+4^n}$ também converge

(b) $\sum_{n=1}^{+\infty} \frac{n! \, 2^n}{n^n}$

como tesmo n! vamos utilizar o teste da varção

 $\lim_{N \to \infty} \frac{(n+1)! \, 2^{(n+1)}}{(n+1)! \, 2^{(n+1)}} = \frac{n! \, 2^n}{(n+1)! \, 2^{(n)} \, 2^n} = \frac{(n+1)! \, 2^{(n)} \, 2^n}{(n+1)! \, 2^n}$

 $=\frac{2 \cdot n^{n}}{(n+2) \cdot n} = 2 \cdot (\frac{n}{n+2})^{n} = 2 \cdot \lim_{n \to \infty} (\frac{n}{n+2})^{n} = 2 \cdot 2 \cdot e^{-2} = 2 \cdot 2 \cdot 2$

assim, tennos que $\sum_{N=1}^{\infty} \frac{n! \, 2^n}{N^n}$ converge pois o limite resultou em un valor memor que Σ

(c)
$$\sum_{n=3}^{+\infty} \left[\sqrt{n+1} - \sqrt{n} \right]$$

escepandindo a visice, temos

 $\sum_{n=3}^{K} \left[\sqrt{n+1} - \sqrt{n} \right] = \left[\sqrt{4} - \sqrt{3} \right] + \left[\sqrt{5} - \sqrt{4} \right] + \left[\sqrt{6} - \sqrt{6} \right] + \dots + \left[\sqrt{K+1} - \sqrt{K} \right]$

podemos perceher que es termos ve anulam, isobrando $\sqrt{K+1} - \sqrt{3}$ isabendo que $K \to \infty$

lim . VK+1 - V3 = 0

então, a vérie diverge

(d) $\sum_{n=4}^{+\infty} \frac{n^3+4}{2^n}$

para determinar ve a vivie converge ou diverge, vaimes utilizar o critério da vação.

assim,

 $\lim_{n \to \infty} \frac{(n+1)^{\frac{3}{3}} + 4}{2^{(n+1)}} \cdot \frac{2^{n}}{n^{3} + 4} = \frac{(n+1)^{\frac{3}{3}} + 4}{2 \cdot (n^{3} + 4)} = \frac{(n+1)^{\frac{3}{3}} + 4}{2(n^{3} + 4)}$

 $= \frac{1}{2} \cdot \frac{n^3 + 3n^2 + 3n + 5}{n^3 + 3n^2 + 3n + 5} = \frac{1}{2} \lim_{n \to \infty} \frac{n^3 + 3n^2 + 3n + 5}{n^3 + 4}$

 $= \frac{1}{2} \lim_{n \to \infty} \frac{1 + \frac{3n^2}{3^3} + \frac{3n}{n^3} + \frac{5}{n^3}}{2} = \frac{1}{2} \left(\frac{1}{1} \right)$

7 + 4

como o limite é menor que 1, a vivie $\sum_{n=4}^{\infty} \frac{n^3+4}{2^n}$ converge

10. Determine se é convergente ou divergente a série dada abaixo.

(b)
$$\sum_{n=1}^{+\infty} n^2 \left(1 - \cos \frac{1}{n^2}\right)$$

rejam an = n^2 (1 - $\cos\left(\frac{1}{n^2}\right)$) e $bn = \frac{1}{n^2}$ requências numéricas positivas pelo critério da comparação no limite, vamos calcular

$$\lim_{n \to \infty} \frac{cm}{bn} = \lim_{n \to \infty} \frac{n^2 \left(\frac{1}{2} - \cos \left(\frac{1}{n^2} \right) \right)}{\frac{1}{n^2}} = \underbrace{1 - \cos \left(\frac{1}{n^2} \right)}_{n^4}$$

Hopital $-\left(-\text{ u.em }\left(\frac{1}{n^2}\right) \cdot -2\frac{1}{n^3}\right) = -2 \text{ u.em }\left(\frac{1}{n^2}\right) = -2 \text{ n.em }\left(\frac{1}{n^2}\right)$

$$= \underbrace{\frac{1}{2} \lim_{n \to \infty} \text{ ven} \left(\frac{1}{n^2}\right) \cdot n \cdot a}_{\text{n} = 2} = \underbrace{\frac{1}{2} \lim_{n \to \infty} \text{ ven} \left(\frac{1}{n^2}\right)}_{\text{n} = 2} = \underbrace{\frac{1}{2} \left[-2 \cos \left(\frac{1}{n^2}\right)\right]}_{\text{n} = 2}$$

 $\frac{1}{2} \lim_{n \to \infty} \frac{-2 \cos \left(\frac{1}{n^2}\right)}{n^3 \left(-2\right)} = \frac{1}{2} \lim_{n \to \infty} \cos \left(\frac{1}{n^2}\right) = \frac{1}{2} \cdot 1$

assim, como o limite L= 1 está no intervalo 0 < L 2+00, as duas véries são comparáreis

portante, como a vérie hormônica $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge, a vérie

 $\sum_{N=1}^{\infty} N^{2} \left(1 - \cos \frac{1}{N^{2}} \right) também converge.$

(c)
$$\sum_{n=1}^{+\infty} \log(1 + \frac{1}{n^2})$$

vejam an = leg $(1+\frac{1}{n^2})$ is $bn = \frac{1}{n^2}$ bequências numéricas positivas pelo critério da comparação no limite, vamos calcular

 $\lim_{n \to \infty} \frac{\alpha m}{bn} = \lim_{n \to \infty} \frac{\log\left(\frac{1}{1} + \frac{1}{n^2}\right)}{\frac{1}{n^2}} = \frac{1}{\frac{1}{1} + \frac{1}{n^2}} \cdot \left(-\frac{2}{2}\right)$

 $= \lim_{n \to \infty} \frac{1 + \frac{1}{2}}{1 + \frac{1}{2}} = \frac{1}{2}$

portanto, as duas isequências vão comparáveis

como a verie harmônica $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge, pelo critério da comparação $\sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{\infty} \log \left(1 + \frac{1}{n^2}\right)$ também converge.