Assignment 2

Basic Techniques in Computer Graphics WS 2022/2023 November 7, 2022	Frederik Muthers	412831
	Tobias Broeckmann	378764
	Debabrata Ghosh	441275
	Martin Gäbele	380434

Exercise 1 Linear Basis Transformations

- a) In order to express the point p_B with respect to the standard-basis, we can transform it via $p_I = Bp_B$. If we have the point p_I in regards to the standard-basis, we can express it with respect to the basis C as: $p_C = C^{-1}p_I$. That leaves us with the matrix $M_1 = C^{-1}B$ with $p_C = M_1p_B = C^{-1}Bp_B$.
- **b)** We need to find M_2 , such that $C = M_2B$. Thus $M_2 = CB^{-1}$.
- c) We can see:

$$B^T B = \begin{pmatrix} b_1^T \\ b_2^T \\ b_3^T \end{pmatrix} \begin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix} = \begin{pmatrix} b_1^T b_1 & b_1^T b_2 & b_1^T b_3 \\ b_2^T b_1 & b_2^T b_2 & b_2^T b_3 \\ b_3^T b_1 & b_3^T b_2 & b_3^T b_3 \end{pmatrix}$$

Because b_1, b_2, b_3 are perpendicular this equates to:

$$B^T B = \begin{pmatrix} ||b_1||^2 & 0 & 0\\ 0 & ||b_2||^2 & 0\\ 0 & 0 & ||b_3||^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

As for BB^T we note: $B^TB = I \Rightarrow BB^TB = B \Rightarrow BB^TBB^{-1} = BB^{-1} \Rightarrow BB^T = I$ Thus we conclude $B^TB = BB^T = I$, which means $B^{-1} = B^T$.

- **d)** $M_2 = CB^{-1}$. By applying c) and because $B^{-1} = B^T$, $C^{-1} = C^T$ we see: $M_2^T = (CB^T)^T = (B^T)^T C^T = BC^T = BC^{-1} = (B^{-1})^{-1}C^{-1} = (CB^{-1})^{-1} = M_2^{-1}$
- **e)** We calculate the matrix M like shown in a) and use the fact from c) for orthonormal bases:

$$M = C^{-1}B = C^{T}B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & -1 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix}$$

Then we change the basis for p_B :

$$p_C = Mp_B = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ 0 & 0 & -1\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\\ 0 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}$$

1

Exercise 2 Meaningful Geometric Operations

a)

$$p_1 - 2p_2 + p_3 = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ 1 \end{pmatrix} - 2 \begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ 1 \end{pmatrix} + \begin{pmatrix} x_3 \\ y_3 \\ z_3 \\ 1 \end{pmatrix} = \begin{pmatrix} x_1 - 2x_2 + x_3 \\ y_1 - 2y_2 + y_3 \\ z_1 - 2z_2 + z_3 \\ 1 - 2 + 1 \end{pmatrix} = \begin{pmatrix} x_1 - 2x_2 + x_3 \\ y_1 - 2y_2 + y_3 \\ z_1 - 2z_2 + z_3 \\ 0 \end{pmatrix}$$

Thus $p_1 - 2p_2 + p_3$ yields a **vector**.

b) As offset between two points represents a vector, each of $(p_i - p_0)$, i = 1, ..., n represents a vector. So, we have

$$p_0 + \sum_{i=1}^{n} (p_i - p_0) = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \\ 1 \end{pmatrix} + \begin{pmatrix} \sum_{i=1}^{n} x_i - x_0 \\ \sum_{i=1}^{n} y_i - y_0 \\ \sum_{i=1}^{n} z_i - z_0 \\ 0 \end{pmatrix} = \begin{pmatrix} x_0 + \sum_{i=1}^{n} x_i - x_0 \\ y_0 + \sum_{i=1}^{n} y_i - y_0 \\ z_0 + \sum_{i=1}^{n} z_i - z_0 \\ 1 \end{pmatrix}$$

Thus $p_0 + \sum_{i=1}^n (p_i - p_0)$ yields a **point**.

c)

$$\alpha p_0 + \beta p_1 = \begin{pmatrix} \alpha x_0 \\ \alpha y_0 \\ \alpha z_0 \\ \alpha \end{pmatrix} + \begin{pmatrix} \beta x_1 \\ \beta y_1 \\ \beta z_1 \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha x_0 + \beta x_1 \\ \alpha y_0 + \beta y_1 \\ \alpha z_0 + \beta z_1 \\ \alpha + \beta \end{pmatrix}$$

In general $\alpha + \beta \notin \{0, 1\}$, so this operation is generally **not geometrically meaningful**. But if $\alpha + \beta = 1$ it represents a point or if $\alpha = -\beta$, it yields a vector.

d)

$$\alpha p_{0} + \beta p_{1} + (1 - \alpha - \beta) p_{2} = \begin{pmatrix} \alpha x_{0} \\ \alpha y_{0} \\ \alpha z_{0} \\ \alpha \end{pmatrix} + \begin{pmatrix} \beta x_{1} \\ \beta y_{1} \\ \beta z_{1} \\ \beta \end{pmatrix} + \begin{pmatrix} (1 - \alpha - \beta) x_{2} \\ (1 - \alpha - \beta) y_{2} \\ (1 - \alpha - \beta) z_{2} \\ (1 - \alpha - \beta) z_{2} \\ 1 - \alpha - \beta \end{pmatrix}$$

$$= \begin{pmatrix} \alpha x_{0} + \beta x_{1} + (1 - \alpha - \beta) x_{2} \\ \alpha y_{0} + \beta y_{1} + (1 - \alpha - \beta) y_{2} \\ \alpha z_{0} + \beta z_{1} + (1 - \alpha - \beta) z_{2} \end{pmatrix} = \begin{pmatrix} \alpha x_{0} + \beta x_{1} + (1 - \alpha - \beta) x_{2} \\ \alpha y_{0} + \beta y_{1} + (1 - \alpha - \beta) y_{2} \\ \alpha z_{0} + \beta z_{1} + (1 - \alpha - \beta) z_{2} \end{pmatrix}$$

Thus this operation yields a **point**.

Exercise 3 Linear & Affine Transformations

a) We first use a translation to map the point $\begin{pmatrix} 1.5\\1.5\\1 \end{pmatrix}$ to the origin $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$:

$$A_t = \begin{pmatrix} 1 & 0 & -1.5 \\ 0 & 1 & -1.5 \\ 0 & 0 & 1 \end{pmatrix}$$

Then we rotate the image by 45° :

$$A_r = \begin{pmatrix} \cos(45^\circ) & -\sin(45^\circ) & 0\\ \sin(45^\circ) & \cos(45^\circ) & 0\\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Now we need to scale by $2 \cdot \sqrt{2}$ in x-direction and by $\sqrt{2}$ in y-direction.

$$A_s = \begin{pmatrix} 2 \cdot \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Lastly we need to use a translation once more:

$$A_{t'} = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

In summary we have the transformation matrix

$$A = A_{t'}A_sA_rA_t = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \cdot \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1.5 \\ 0 & 1 & -1.5 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2 \cdot \sqrt{2} & 0 & 4 \\ 0 & \sqrt{2} & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{3}{\sqrt{2}} \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 & 4 \\ 1 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

b) The origin is mapped onto the following:

$$A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 & 4 \\ 1 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix}$$

As for the standard basis:

$$A \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 & -2 & 4 \\ 1 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

$$A \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 & -2 & 4 \\ 1 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$