Sequence to Sequence Model

COMP3361 — Week 3

Lingpeng Kong

Department of Computer Science, The University of Hong Kong

Recurrent Neural Network

RNN as Encoder

Flashback: Pretraining and Fine-tuning

This movie is absolutely fantastic!

I

I am

I am going

I am going to do an internship in Google

RNN as Decoder (RNNLM)

$$p(y_t \mid \boldsymbol{y}_{< t})$$

Machine Translation

中秋快樂!

 \boldsymbol{x}

Happy mid autumn festival!

y

Happy mid autumn festival!

$$p(\mathbf{y}) = p(y_1 \dots y_n) = \prod_{t=1}^{n} p(y_t \mid \mathbf{y}_{< t})$$

$$p(y_t \mid \boldsymbol{y}_{< t})$$

Machine Translation

中秋快樂!

 \boldsymbol{x}

Happy mid autumn festival!

y

Recurrent Neural Network

Encoder + Decoder

Sequence to Sequence Model

Sequence to Sequence Model

Encoder

Vanishing Gradient in RNNs

In general, the longer the path, the smaller the gradient signal.