ESERCIZIO 1

Provare che nell'anello $(Z_8,+,\cdot)$ l'equazione lineare $[a]_8$ $x = [3]_8$ è impossibile o ammette una ed una sola soluzione. Determinare tale soluzione quando esiste.

ESERCIZIO 2

Considerato l'anello Z_{10} :

- 1. si risolva l'equazione [8] x = [2];
- 2. si verifichi che il sottoinsieme $I = \{[0],[5]\}$ di Z_{10} è un ideale bilatero e si determini il quoziente Z_{10}/I ;
- 3. stabilire se esistono ideali propri di Z_{10} che contengono I.

ESERCIZIO 3

Sia R un'algebra di Boole. Mostrare che vale:

$$(x \cap y') \cup (x' \cap y) = 0 \Leftrightarrow x = y$$

(ove x' e y' indicano i complementi rispettivamente di x e y).

ESERCIZIO 4

Sia (G,.) un gruppo.

- 1) Mostrare che l'intersezione di due sottogruppi di G è un sottogruppo di G.
- 2) Siano H e K due sottogruppi di G, mostrare che l'unione insiemistica di H e K è un sottogruppo di G se e solo se H è contenuto in K o K è contenuto in H.