Aufgabe 27

(i) Behauptung: Jede Nullmenge ist Lebesgue-messbar.

Beweis. Sei $N \subset E$ eine Nullmenge, sodass gilt $\lambda_E^*(N) = \inf\{\sum_{n=1}^\infty \lambda_E(R_n) : R_n \in \mathscr{R}, N \subset \bigcup_{n \in \mathbb{N}} R_n\} = 0$. Sei $\varepsilon > 0$. Dann ist $\lambda_E^*(N \triangle \emptyset) = \lambda_E^*(N) = 0 < \varepsilon$ und wegen $\emptyset \in \mathscr{R}_E$ ist N Lebesgue-messbar.

(ii) Behauptung: Jede abzählbare Vereinigung von Nullmengen ist eine Nullmenge.

Beweis. Sei $N_i \subset E$ Nullmengen mit $\lambda_E^*(N_i) = 0$ für alle $i \in \mathbb{N}$. Das heißt, für jedes $i \in \mathbb{N}$ gibt es eine Folge $(\{R_n^{(i)}(j) \in \mathscr{R} : n \in \mathbb{N}\})_{j \in \mathbb{N}}$ mit

$$\forall j \in \mathbb{N} : N_i \subset \bigcup_{n \in \mathbb{N}} R_n^{(i)}(j) \quad \text{und}$$
 (1)

$$\lim_{j \to \infty} \sum_{n \in \mathbb{N}} \lambda_E(R_n^{(i)}(j)) = 0. \tag{2}$$

Sei $N := \bigcup_{i \in \mathbb{N}} N_i$. Zu zeigen ist, dass $\lambda_E^*(N) = 0$. Dafür werden wir eine Folge von Überdeckungen $\bigcup_{n \in \mathbb{N}} R(i,n) \supset N$ für alle $i \in \mathbb{N}$ konstruieren und zeigen, dass $\sum_{n \in \mathbb{N}} \lambda_E(R(i,n)) \to 0$ für $i \to \infty$ gilt. Wegen (2) gibt es eine Folge $R(i,n) := \bigcup_{m \in \mathbb{N}} R_m^{(i)}(j(i,n))$ für ein $j(i,n) \in \mathbb{N}$, sodass

$$\lambda_E(R(i,n)) \stackrel{(*)}{\leq} \sum_{n \in \mathbb{N}} \lambda_E(R_n^{(i)}(j(i,n))) < \frac{1}{i2^n}$$

(für (*) wurde die Subadditivität verwendet). Nun ist $\forall i \in \mathbb{N} : \bigcup_{n \in \mathbb{N}} R(i,n) \supset N$ aufgrund von (1). Also

$$\lim_{i\to\infty}\sum_{n\in\mathbb{N}}\lambda_E(R(i,n))\leq\lim_{i\to\infty}\sum_{n\in\mathbb{N}}\frac{1}{i2^n}=\lim_{i\to\infty}\frac{1}{i}=0.$$

Also $\lambda_E^*(N) = 0$.

(iii) Behauptung: Überabzählbare Vereinigungen von Nullmengen sind im Allgemeinen keine Nullmengen.

Beispiel. Sei
$$N(x) := \{x\} \times [0,1]$$
. Dann ist $\bigcup_{0 \le x \le 1} N(x) = [0,1]^2$. Es gilt: $\lambda_E^*(N(x)) = \lambda_E(N(x)) = 0$ für alle $x \in \mathbb{R}$, aber $\lambda_E^*(\bigcup_{0 \le x \le 1} N(x)) = \lambda_E^*([0,1]^2) = \lambda_E([0,1]^2) = 1$.

(iv) Behauptung: Jede abzählbare Teilmenge von E ist eine Nullmenge.

Beweis. Sei $A \subset E$ eine abzählbare Menge. Wegen der Abzählbarkeit gibt es eine bijektive Funktion $\tau: \mathbb{N} \to A$, sodass für jedes $a \in A$ ein $x \in \mathbb{N}$ gibt mit $\tau(x) = a$. Definiere eine Folge von Rechtecken $R_{\tau(x)}(i)$, wobei $(\xi_1, \xi_2) := \tau(x)$, für alle $x \in \mathbb{N}$ wie folgt:

$$R_{\tau(x)}(i) := \left[\xi_1 - \frac{1}{2\sqrt{2^x i}}, \xi_1 + \frac{1}{2\sqrt{2^x i}}\right] \times \left[\xi_2 - \frac{1}{2\sqrt{2^x i}}, \xi_2 + \frac{1}{2x\sqrt{2^x i}}\right], \quad i \in \mathbb{N}_{>0}.$$

Es gilt $\tau(x) \in R_{\tau(x)}(i)$ für alle $i, x \in \mathbb{N}, i > 0$. Nun haben wir eine Überdeckung von A gefunden mit

$$A \subset \bigcup_{x \in \mathbb{N}} R_{\tau(x)}(i), \quad \forall i \in \mathbb{N}_{>0}.$$

Nun gilt

$$\lim_{i\to\infty}\sum_{x=1}^{\infty}\lambda_E(R_{\tau(x)}(i))=\lim_{i\to\infty}\sum_{x=1}^{\infty}\frac{1}{2^xi}=\lim_{i\to\infty}\frac{1}{i}=0.$$

Also folgt $\lambda_E^*(A) = 0$.

(v) *Behauptung:* Die Verbindungsstrecke von zwei beliebigen Punkten aus $[0,1]^2$ ist eine Nullmenge. *Beweis.* Seien $\alpha = (\alpha_1, \alpha_2) \in [0,1]^2, \beta = (\beta_1, \beta_2) \in [0,1]^2$ mit $\alpha_i \leq \beta_i$ für i = 1,2. Betrachte die Strecke $\overline{\alpha\beta} = \{\lambda\alpha + (1-\lambda)\beta : \lambda \in [0,1]\}$. Wir konstruieren eine Folge von Überdeckung $(R_n^{(i)})_{i \in \mathbb{N}_{>0}}$ mit $n \in \mathbb{N}$:

$$R_n^{(i)} := \begin{cases} [\alpha_1 + \frac{\beta_1 - \alpha_1}{i}n, \alpha_1 + \frac{\beta_1 - \alpha_1}{i}(n+1)] \times [\alpha_2 + \frac{\beta_2 - \alpha_2}{i}n, \alpha_2 + \frac{\beta_2 - \alpha_2}{i}(n+1)], & \text{falls } n \in \{0, ..., i-1\} \\ \emptyset, & \text{sonst.} \end{cases}$$

Für jedes $i \in \mathbb{N}_{>0}$ gilt: $\overline{\alpha\beta} \subset \bigcup_{n \in \mathbb{N}} R_n^{(i)}$. Nun ist

$$\sum_{n=1}^{\infty} \lambda_{E}(R_{n}^{(i)}) = \sum_{n=1}^{i} \frac{(\beta_{1} - \alpha_{1})(\beta_{2} - \alpha_{2})}{i^{2}} = \frac{(\beta_{1} - \alpha_{1})(\beta_{2} - \alpha_{2})}{i}.$$

Sei $\varepsilon > 0$. Dann finden wir eine Überdeckung $\bigcup_{n \in \mathbb{N}} R_n^{(\delta)}$ von $\overline{\alpha \beta}$ mit $\delta := \frac{2(\beta_1 - \alpha_1)(\beta_2 - \alpha_2)}{\varepsilon}$, sodass $\lambda_E^*(\overline{\alpha \beta}) \le \sum_{n=1}^{\infty} \lambda_E(R_n^{(i)}) = \frac{\varepsilon}{2} < \varepsilon$. Da $\lambda_E^*(\overline{\alpha \beta}) \ge 0$ und ε beliebig war, folgt $\lambda_E^*(\overline{\alpha \beta}) = 0$.

Aufgabe 28

Notationen: Sei $\lambda_{i,j}^*(A,n) \coloneqq \lambda_{[i,i+n] \times [j,j+n]}^*(A) = \inf\{\sum_{m \in \mathbb{N}} \lambda(R_m) : R_m \in \mathcal{R}, R_m \subset [i,i+n] \times [j,j+n], A \subset \bigcup_{m \in \mathbb{N}} R_m\}$ für alle $A \subset E_{i,j}(n) \coloneqq [i,i+n] \times [j,j+n]$ und $n \in \mathbb{N}_{>0}$.

Lemma 1. Für jede Menge $A \subset E_{i,j}(n)$ mit $n \in \mathbb{N}_{>0}$ gilt:

$$\lambda_{i,j}^*(A,n) = \sum_{x=i}^{i+n-1} \sum_{y=j}^{j+n-1} \lambda_{x,y}^*(A \cap E_{x,y}).$$
 (3)

Beweis. Beweis in zwei Schritten: Sei $A \subset E_{i,j}(n)$ und $n \in \mathbb{N}_{>1}$. Sei $i, j \in \mathbb{N}$. Für n = 1 ist die Aussage klar.

1. Zeige, dass $\lambda_{i,j}^*(A,n) \leq \sum_{x=i}^{i+n-1} \sum_{y=j}^{j+n-1} \lambda_{x,y}^*(A \cap E_{x,y})$. Wir zeigen, dass die überdeckenden Rechtecke R(x,y) von den einzelnen Summanden $\lambda_{x,y}^*(A)$ als Vereinigung auch A überdecken. Für jedes x=i,i+1,...,i+n-1 und y=j,j+1,...,j+n-1 gibt es überdeckende Rechtecke $R_m(x,y) \in \mathscr{R}_{E_{x,y}}$ mit

$$\bigcup_{m\in\mathbb{N}}R_m(x,y)\supset A\cap E_{x,y}$$

Damit können wir eine Überdeckung $R_m(x,y) \subset E_{i,j}(n)$ von A konstruieren mit

$$\bigcup_{x,y,m\in\mathbb{N}} R_m(x,y) \supset A,$$

wobei $R_m(x,y) = \emptyset$ für alle $m \in \mathbb{N}$, falls $x \neq i, i+1, ..., i+n-1$ oder $y \neq j, j+1, ..., j+n-1$. Nun gibt es für alle x, y eine Folge von Rechtecken $(R_m^{(l)}(x,y))_{l \in \mathbb{N}}$ mit $R_m^{(l)}(x,y) \in \mathscr{R}_{E_{x,y}}$ für alle $m, l \in \mathbb{N}$, sodass gilt:

$$\lim_{l\to\infty}\sum_{m\in\mathbb{N}}\lambda\left(R_m^{(l)}(x,y)\right)=\lambda_{x,y}^*(A\cap E_{x,y})\quad\text{und}\quad\forall l\in\mathbb{N}:\bigcup_{m\in\mathbb{N}}R_m^{(l)}(x,y)\supset A\cap E_{x,y}.$$

Dann folgt:

$$\forall l \in \mathbb{N}: \sum_{x=i}^{i+n-1} \sum_{y=j}^{j+n-1} \sum_{m \in \mathbb{N}} \lambda(R_m^{(l)}(x,y)) \geq \inf\{\sum_{m \in \mathbb{N}} \lambda(R_m): R_m \in \mathscr{R}, R_m \subset E_{i,j}(n), A \subset \bigcup_{m \in \mathbb{N}} R_m\}.$$

Damit folgt insbesondere $\sum_{x=i}^{i+n-1} \sum_{y=j}^{j+n-1} \lambda_{x,y}^* (A \cap E_{x,y}) \ge \lambda_{i,j}^* (A,n)$.

- 2. Zeige, dass $\lambda_{i,j}^*(A,n) \geq \sum_{x=i}^{i+n-1} \sum_{y=j}^{j+n-1} \lambda_{x,y}^*(A \cap E_{x,y})$. Sei dafür $(\{R_m^{(l)} : m \in \mathbb{N}\})_{l \in \mathbb{N}}$ die Folge von Rechtecken mit
 - $\sum_{m\in\mathbb{N}}R_m^{(l)}\to\lambda_{i,j}^*(A,n)$ für $l\to\infty$,
 - $\bigcup_{m\in\mathbb{N}} R_m^{(l)} \supset A$ für alle $l\in\mathbb{N}$,
 - sowie $R_m^{(l)} \in \mathcal{R}$ und $R_m^{(l)} \subset E_{i,j}(n)$ für alle $l \in \mathbb{N}$.

Sei $l \in \mathbb{N}$ beliebig. Wir werden für jedes m das Rechteck $R_m^{(l)}$ derart unterteilen, sodass gilt:

$$R_{m}^{(l)} = \bigcup_{p,q=1}^{n} \zeta_{p,q}^{(l)}(m) \quad \text{und} \quad \forall p,q \in \{1,...,n\} : \zeta_{p,q}^{(l)}(m) \in \mathcal{R} \land \zeta_{p,q}^{(l)}(m) \subset E_{i+p-1,j+q-1}.$$
 (4)

Sei $m \in \mathbb{N}$ beliebig. Setze nun

$$\zeta_{p,q}^{(l)}(m) := R_m^{(l)} \cap E_{i+p-1,j+q-1}.$$

Dann ist (4) erfüllt. Somit haben wir eine Überdeckung gefunden für $A \cap E_{x,y}$ mit

$$\forall l \in \mathbb{N} : A \cap E_{x,y} \subset \bigcup_{m \in \mathbb{N}} \zeta_{p,q}^{(l)}(m)$$

für jedes x=i,...,i+n-1 und y=j,...,j+n-1 für geeignete $p,q\in\{1,...,n\}$. Daraus folgt nun

$$\sum_{x=i}^{i+n-1} \sum_{y=j}^{j+n-1} \lambda_{x,y}^*(A \cap E_{x,y}) \leq \sum_{p,q=1}^n \sum_{m}^{\infty} \zeta_{p,q}^{(l)}(m) \ \stackrel{(4)}{\Longrightarrow} \ \sum_{x=i}^{i+n-1} \sum_{y=j}^{j+n-1} \lambda_{x,y}^*(A \cap E_{x,y}) \leq \lambda_{i,j}^*(A,n).$$

Lemma 2. Für jede Menge $A \subset R^2$ gilt:

$$s(A) = \sum_{i,j \in \mathbb{Z}} \lambda_{i,j}^*(A \cap E_{i,j}), \tag{5}$$

wobei $s(A) = \{\sum_{n \in \mathbb{N}} \lambda_E(A) : R_n \in \mathcal{R} \text{ für jedes } n \in \mathbb{N}, A \subset \bigcup_{n \in \mathbb{N}} R_n \}$ wie das äußere Maß im Skript auf Seite 36 definiert ist, bloß für beliebige Rechtecke in \mathbb{R}^2 und nicht nur auf $[0,1]^2$.

Beweis. Es ist klar, dass $s(A) \leq \sum_{i,j \in \mathbb{Z}} \lambda_{i,j}^* (A \cap E_{i,j})$, da jede überdeckende Folge von Rechtecken von $A \cap E_{i,j}$ auch in \mathscr{R} enthalten ist. Bleibt noch zu zeigen, dass $s(A) \geq \sum_{i,j \in \mathbb{Z}} \lambda_{i,j}^* (A \cap E_{i,j})$. Für s(A) gibt es eine Folge von Rechtecken $((R_m(l))_{m \in \mathbb{N}})_{l \in \mathbb{N}}$, die A überdecken. Dann sei $n(l) := \sup \operatorname{diam}(R_m(l))$ für $l \in \mathbb{N}$ und sei $A(i,l) := A \cap E_{i,i}(n(l))$. Es gilt: $s(A(i,l)) \to \lambda_{i,i}^* (A,n)$ für $l \to \infty$ aufgrund von (3). Wegen der σ-Subadditivität folgt dann $s(A) = \lim_{l \to \infty} \sum_{i \in \mathbb{N}} (A(i,l)) \geq \sum_{i,j \in \mathbb{Z}} \lambda_{i,j}^* (A \cap E_{i,j})$.

(i) Zu zeigen: Für jede Menge $A \subset \mathbb{R}^2$ und $x = (x_1, x_2) \in \mathbb{R}^2$ gilt, dass $\lambda^*(A) = \lambda^*(A + x)$.

Beweis. Mit Lemma 2 haben wir eine Überdeckung von beliebig großen, endlichen Rechtecken $(R_m)_{m\in\mathbb{N}}$ von A. Diese Rechtecke sind für jedes $m\in\mathbb{N}$ gegenüber $\lambda(R_m)=\lambda(R_m+x)$ translationinvariant für jedes $x\in\mathbb{R}$ wie aus der Vorlesung bekannt (denn R_m sind Rechtecke). Nun ist auch $(R_m+x)_{m\in\mathbb{N}}$ die Überdeckung von A+x mit dem minimalsten Inhalt $\sum R_m$ (ansonsten würde man für A einen noch kleinere Überdeckung finden, indem man die kleinste Überdeckung von A+x um -x Einheiten verschiebt). Daher ist das äußere Maß translationsinvariant.

(ii) Zu zeigen: Für jede lesbesgue-messbare Menge $A \subset \mathbb{R}^2$ ist auch A + x lesbesgue-messbar.

Beweis. Sei $\varepsilon > 0$. Dann gibt es ein $B \in \mathcal{R}$ mit $\lambda^*(A \triangle B) < \varepsilon$. Nun ist $(A \triangle B) + x = (A + x) \triangle (B + x)$ und aus Ausgabe 29(i) folgt $\lambda^*(A \triangle B) = \lambda^*((A \triangle B) + x) = \lambda^*((A + x) \triangle (B + x)) < \varepsilon$. Damit folgt die Lesbesgue-Messbarkeit.

Aufgabe 30

(i) Zeige, dass $M_x \in \mathcal{F}$. Da M_x die abzählbare Vereinigung von Mengen $F \in \mathcal{F}$ ist, enthält die σ -Algebra \mathcal{F} auch die Menge M_x nach Definition 2.2.1(iii).

Zeige, dass die Mengen M_x und M_y disjunkt oder identisch sind. Betrachte die zwei Fälle:

(a) Die Menge M_x enthält y. Da M_x der abzählbare Schnitt aller Mengen $F \in \mathscr{F}$ mit $x \in F$, muss jede Menge F, die x enthält, auch y enthalten.

$$\forall F \in \mathscr{F} : x \in F \implies y \in F. \tag{6}$$

Dann folgt aus (6), dass

$$M_{x} = \bigcap_{\substack{x \in F \\ F \in \mathscr{F}}} F \supset \bigcap_{\substack{y \in F \\ F \in \mathscr{F}}} F = M_{y}. \tag{7}$$

Falls $x \in M_v$ ist, so folgt $M_x = M_v$ aus (7) und aus

$$M_{y} \supset \bigcap_{\substack{x \in F \\ F \in \mathscr{F}}} F = M_{x}.$$

Bleibt zu zeigen, dass M_y tatsächlich x enthält. Angenommen, $x \notin M_y$. Dann gibt es eine Menge $H \in \mathscr{F}$ mit $y \in H$ und $x \notin H$. Nach Definition 2.2.1(ii) ist das Komplement H^c in der σ -Algebra \mathscr{F} enthalten. Damit ist $y \notin M_x \subset H^c$ im Widerspruch zur Voraussetzung.

(b) Die Menge M_x enthält nicht y. Dann ist y im Komplement von M_x enthalten. Wegen $M_x \cap M_x^c = \emptyset$ und $M_x^c \supset M_y$ gilt $M_x \cap M_y = \emptyset$.

Dies beendet den Beweis.

(ii) Zeige, dass \mathscr{F} endlich ist, falls \mathscr{F} abzählbar ist. Falls X endlich ist, so ist die Potenzmenge von X endlich und somit ist auch $\mathscr{F} \subset \mathscr{P}(X)$ endlich. Im folgenden besitzt X unendlich viele Elemente. Sei \mathscr{F} abzählbar. Angenommen, $|\mathscr{F}| = \infty$. Der Widerspruch folgt in drei Schritten:

(a) Behauptung: Man kann jedes $F \in \mathscr{F}$ darstellen als $F = \bigcup_{x \in F} M_x$. Einerseits gilt $F \subset \bigcup_{x \in F} M_x$ wegen $x \in M_x$ für alle $x \in X$. Andererseits gilt für jedes $y \in \bigcup_{x \in F} M_x$, dass es ein $x \in F$ gibt mit $y \in M_x$ und somit

$$\forall J \in \mathscr{F} : x \in J \implies y \in J. \tag{8}$$

Mit (8) folgt $\bigcup_{x \in F} M_x \subset F$. Damit ist $F = \bigcup_{x \in F} M_x$.

- (b) *Behauptung:* \mathscr{F} enthält unendlich viele unterschiedliche M_x , also $|\{M_x : x \in X\}| = \infty$. Angenommen $N := |\{M_x : x \in X\}| < \infty$. Aus Behauptung (ii)(a) folgt $|\mathscr{F}| \le 2^N$ im Widerspruch zu $|\mathscr{F}| = \infty$. Damit gilt $N = \infty$.
- (c) Sei $\Gamma := \{M_x : x \in X\}$ und es gilt $|\Gamma| = N = \infty$ wegen (ii)(b). Aus $\Gamma \subset \mathscr{F}$ und der Abzählbarkeit von \mathscr{F} folgt die Abzählbarkeit von Γ . Somit existiert eine Bijektion τ zwischen \mathbb{N} und Γ . Wegen der Injektivität von τ gilt für alle $i, j \in \mathbb{N}$ mit $i \neq j$, dass $\tau(i) \neq \tau(j)$ und somit:

$$\tau(i) \cap \tau(j) = \emptyset$$
 wegen 30(i). (9)

Sei $\Phi(A) := \bigcup_{i \in A} \tau(i)$ für beliebiges $A \subset \mathbb{N}$. Insbesondere gilt wegen Definition 2.2.1(iii), $\tau(i) \in \mathscr{F}$ und der Abzählbarkeit von A, dass

$$\Phi(A) \in \mathscr{F}. \tag{10}$$

Wegen der Injektivität von τ und (9) gilt:

$$\forall A, B \subset \mathbb{N} : A \neq B \implies \Phi(A) \neq \Phi(B). \tag{11}$$

Aus Analysis I ist bekannt, dass $\mathscr{P}(\mathbb{N})$ überabzählbar ist. Wegen (10) und (11) enthält \mathscr{F} überabzählbar viele Elemente $\Phi(A)$ für jedes $A \subset \mathbb{N}$ im Widerspruch zur Abzählbarkeit von \mathscr{F} . Also $|\mathscr{F}| < \infty$.

Dies beendet den Beweis.