# UNIVERSITÄT BONN

Juergen Gall

Linear Filtering
MA-INF 2201 - Computer Vision
WS24/25



#### Lecturer:

- Prof. Dr. Juergen Gall
- http://gall.cv-uni-bonn.de/

#### Teaching:

| Prof. Dr. Juergen<br>Gall | <u>Teaching</u>                                                                                                                                                                         |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Research Interests        |                                                                                                                                                                                         |
| Job Offers/Theses         | <b>PhD Seminar - Graphics, Vision, Audio for Intelligent Systems</b> , SS13, WS13/14, SS14, WS14/15, SS15, WS15/16, SS16, WS16/17, SS17, WS17/18, SS18, WS18/19, SS19, WS19/20          |
| Publications              |                                                                                                                                                                                         |
| Software                  | PhD Machine Learning Seminar, Dates                                                                                                                                                     |
| Data                      | <b>BA-INF 062 - Begleitseminar zur Bachelorarbeit: Computer Vision</b> , SS14, WS14/15, SS15, WS15/16, SS16, WS16/17, SS17, WS17/18, SS18, WS18/19, SS19, WS19/20, SS20, WS20/21, SS21, |
| Projects                  | WS21/22, SS22, WS22/23, SS23, WS23/24                                                                                                                                                   |
| Conferences               | MA-INF 2201 - Computer Vision, WS13/24, WS14/15, WS15/16, WS16/17, WS17/18, WS18/19, WS19/20, WS21/22, WS22/23, WS23/24                                                                 |
| Teaching                  |                                                                                                                                                                                         |
| Talks                     | MA-INF 2213 - Advanced Computer Vision (Computer Vision II), SS14, SS15, SS16, SS17, SS18, SS19, SS20, SS21, SS22, SS23                                                                 |

Awards

MA-INF 2218 - Video Analytics, SS17, SS18, SS19, SS21, SS22, SS23



#### Slides:

http://gall.cv-uni-bonn.de/teaching/Lectures/cv23.html

# MA-INF 2201 - Computer Vision

4L + 2E, WS23/24

#### Lecturer

Juergen Gall

#### Content

Tentative: Linear filters, Edges, Derivatives, Hough Transform, Segmentation, Graph Cuts, Mean Shift

Background Subtraction, Temporal Filtering, Active Appearance Models, Shapes, Optical Flow, 2D Tra

Estimation, Articulated Pose Estimation, Deformable Meshes, RGBD Vision

#### Material

The slides and recordings are available at Slides/Recordings.

#### **Prerequisites**

Basic knowledge of linear algebra, analysis, probability theory, Python programming



Slides via sciebo (<a href="https://hochschulcloud.nrw/en/">https://hochschulcloud.nrw/en/</a>):



Password: MA-INF2201



- Structure: 4+2 SWS
- Lecture:
  - Tuesday, 10:15-11:45, HSZ / HS 3
  - Friday, 10:15-11:45, HSZ / HS 3
  - Lectures will be recorded
- Exercise:
  - Start: 16.10.
  - Wednesday, 12:15-13:45, 2.025, Informatikzentrum
  - Wednesday, 14:15-15:45, 2.025, Informatikzentrum



- Image
- Image processing
  - Filtering
  - Edges







Detecting objects with single template





Track objects





#### Segment objects





- Motion segmentation
- Optical Flow





### Statistical shape models















Align images / Panorama views





- Cameras
- Camera calibration







3D Reconstruction / Stereo / Structure from motion





#### Pose estimation









Depth sensors



#### Overview - Bonus



### Graphical models





#### Literature





Chapter 2 and 3. Computer Vision - Algorithms and Applications, Szeliski, Richard, Springer, 2011

# Image as function





| 45 | 60 | 98 | 127 | 132 | 133 | 137 | 133 |
|----|----|----|-----|-----|-----|-----|-----|
| 46 | 65 | 98 | 123 | 126 | 128 | 131 | 133 |
| 47 | 65 | 96 | 115 | 119 | 123 | 135 | 137 |
| 47 | 63 | 91 | 107 | 113 | 122 | 138 | 134 |
| 50 | 59 | 80 | 97  | 110 | 123 | 133 | 134 |
| 49 | 53 | 68 | 83  | 97  | 113 | 128 | 133 |
| 50 | 50 | 58 | 70  | 84  | 102 | 116 | 126 |
| 50 | 50 | 52 | 58  | 69  | 86  | 101 | 120 |

Mapping from image domain (pixels) to values

Gray image:  $f: \Omega \to \mathbb{R}$ 

Color images:  $f: \Omega \to \mathbb{R}^3$ 

Image represented as matrix or tensor



# **Color Spaces**



There are many color spaces
Popular: Intensity, RGB, Lab, HSV



#### Pixel transforms



Image operator h:

$$g(\boldsymbol{x}) = h(f(\boldsymbol{x}))$$

$$g(i,j) = h(f(i,j))$$
  $\boldsymbol{x} = (i,j)$ 

Blend two images linearly

$$g(\mathbf{x}) = (1 - \alpha)f_0(\mathbf{x}) + \alpha f_1(\mathbf{x})$$

Gamma correction:

$$g(\boldsymbol{x}) = [f(\boldsymbol{x})]^{1/\gamma}$$

# Histogram equalization



#### Pixels as distribution:

$$p_f(y) = \frac{|\{x \in \Omega : f(x) = y\}|}{|\Omega|}$$

$$F_f(y) = \int_0^y p_f(y')dy' = \sum_{y'=0}^y p_f(y')$$

Cumulative distribution function



#### Make CDF linear:

$$h(f(x)) = F(f(x)) \cdot 255$$

$$p_h(z) = \frac{|\{x \in \Omega : h(f(x)) = z\}|}{|\Omega|} = \frac{1}{255}$$

#### **Proof**



#### Probability theory:

$$F_h(z) = \int_0^z p_h(z')dz' = \int_0^{h^{-1}(z)} p_f(y')dy' = F_f(h^{-1}(z))$$

$$y = h^{-1}(z)$$

We get:

$$p_h(z) = \frac{d}{dz}F_h(z) = \frac{d}{dz}F_f(h^{-1}(z)) = p_f(h^{-1}(z))\frac{d}{dz}h^{-1}(z)$$

Since 
$$h(f(x)) = F(f(x)) \cdot 255$$
 and  $\frac{d}{dy}h(y) = 255 \cdot p_f(y)$ :

$$p_f(h^{-1}(z))\frac{d}{dz}h^{-1}(z) = \frac{1}{255} \cdot \frac{d}{dy}h(y)\Big|_{y=h^{-1}(z)} \cdot \frac{d}{dz}h^{-1}(z)$$

$$p_h(z) = \frac{1}{255} \qquad \qquad \frac{d}{dz} h(h^{-1}(z)) = 1$$

# Linear filtering







Source: S. Lazebnik

# Motivation: Image denoising



How can we reduce noise in a photograph?



# Moving average



Let's replace each pixel with a weighted average of its neighborhood

The weights are called the filter kernel

What are the weights for the average of a 3x3 neighborhood?

| 1 | 1 | 1 | 1 |
|---|---|---|---|
| 9 | 1 | 1 | 1 |
|   | 1 | 1 | 1 |

"box filter"

# **Defining convolution**



Let f be the image and h be the kernel. The output of convolving f with h is denoted: g = f \* h

$$g(i,j) = \sum_{k,l} f(i-k,j-l)h(k,l) = \sum_{k,l} f(k,l)h(i-k,j-l)$$

| 45 | 60 | 98 | 127 | 132 | 133 | 137 | 133 |
|----|----|----|-----|-----|-----|-----|-----|
| 46 | 65 | 98 | 123 | 126 | 128 | 131 | 133 |
| 47 | 65 | 96 | 115 | 119 | 123 | 135 | 137 |
| 47 | 63 | 91 | 107 | 113 | 122 | 138 | 134 |
| 50 | 59 | 80 | 97  | 110 | 123 | 133 | 134 |
| 49 | 53 | 68 | 83  | 97  | 113 | 128 | 133 |
| 50 | 50 | 58 | 70  | 84  | 102 | 116 | 126 |
| 50 | 50 | 52 | 58  | 69  | 86  | 101 | 120 |

| 0.1 | 0.1 | 0.1 |
|-----|-----|-----|
| 0.1 | 0.2 | 0.1 |
| 0.1 | 0.1 | 0.1 |

| 69 | 95 | 116 | 125 | 129 | 132 |
|----|----|-----|-----|-----|-----|
| 68 | 92 | 110 | 120 | 126 | 132 |
| 66 | 86 | 104 | 114 | 124 | 132 |
| 62 | 78 | 94  | 108 | 120 | 129 |
| 57 | 69 | 83  | 98  | 112 | 124 |
| 53 | 60 | 71  | 85  | 100 | 114 |

#### Convolution



#### Continuous convolution:

$$g(\mathbf{x}) = \int f(\mathbf{x} - \mathbf{u}) h(\mathbf{u}) d\mathbf{u}$$

h is called impulse response function:

$$h * \delta = h$$
 
$$\delta(x) = \begin{cases} \infty & \text{if } x = 0 \\ 0 & \text{otherwise} \end{cases}$$

Proof:

$$g(x) = \int \delta(x - u)h(u)du = h(x)$$

# Key properties



Linearity: filter(f1 + f2) = filter(f1) + filter(f2)

Shift invariance: same behavior regardless of pixel

location: filter(shift(f)) = shift(filter(f))

Theoretical result: any linear shift-invariant operator can be represented as a convolution

#### **Proof**



#### Linear shift-invariant operator T as a convolution

Using 
$$f(i,j) = \sum_{p=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} f(p,q) \delta(i-p,j-q)$$
 with  $\delta(p,q) = \begin{cases} 1 & \text{if } p=0 \text{ and } q=0 \\ 0 & \text{otherwise} \end{cases}$  we get:

$$\begin{split} (T\circ f)(i,j) &= T\left\{\sum_{p=-\infty}^{\infty}\sum_{q=-\infty}^{\infty}f(p,q)\delta(i-p,j-q)\right\}\\ &= \sum_{p=-\infty}^{\infty}\sum_{q=-\infty}^{\infty}f(p,q)(T\circ\delta)(i-p,j-q) & \text{linear}\\ &= \sum_{p=-\infty}^{\infty}\sum_{q=-\infty}^{\infty}f(i-p,j-q)(T\circ\delta)(p,q) & \text{shift-invariant}\\ &= (f*(T\circ\delta))(i,j) \end{split}$$

# Properties in more detail



- Commutative: a \* b = b \* a
- Conceptually no difference between filter and signal
   Associative: a \* (b \* c) = (a \* b) \* c
  - Often apply several filters one after another: (((a \* b1) \* b2) \* b3)
  - This is equivalent to applying one filter: a \* (b1 \* b2\* b3)
- Distributes over addition: a \* (b + c) = (a \* b) + (a \* c)Scalars factor out: ka \* b = a \* kb = k (a \* b)Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...],

# Border padding and output size





# Rectangular filter









# Rectangular filter







# Rectangular filter







# Integral image



#### Precompute average



Get average values of any size by reading only 4 values!

## Integral image



| 3 | 2 | 7 | 2 | 3 |
|---|---|---|---|---|
| 1 | 5 | 1 | 3 | 4 |
| 5 | 1 | 3 | 5 | 1 |
| 4 | 3 | 2 | 1 | 6 |
| 2 | 4 | 1 | 4 | 8 |

Original image

| 3  | 5  | 12 | 14 | 17 |
|----|----|----|----|----|
| 4  | 11 | 19 | 24 | 31 |
| 9  | 17 | 28 | 38 | 46 |
| 13 | 24 | 37 | 48 | 62 |
| 15 | 30 | 44 | 59 | 81 |

Integral image

$$s(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} f(k,l)$$

#### Recursive:

$$s(i,j) = s(i-1,j) + s(i,j-1) - s(i-1,j-1) + f(i,j)$$

$$17+19-11+3=28$$

# Integral image



| 3 | 2 | 7 | 2 | 3 |
|---|---|---|---|---|
| 1 | 5 | 1 | 3 | 4 |
| 5 | 1 | 3 | 5 | 1 |
| 4 | 3 | 2 | 1 | 6 |
| 2 | 4 | 1 | 4 | 8 |

| 3  | 5  | 12 | 14 | 17 |
|----|----|----|----|----|
| 4  | 11 | 19 | 24 | 31 |
| 9  | 17 | 28 | 38 | 46 |
| 13 | 24 | 37 | 48 | 62 |
| 15 | 30 | 44 | 59 | 81 |

| 3  | 5  | 12 | 14 | 17 |
|----|----|----|----|----|
| 4  | 11 | 19 | 24 | 31 |
| 9  | 17 | 28 | 38 | 46 |
| 13 | 24 | 37 | 48 | 62 |
| 15 | 30 | 44 | 59 | 81 |

Original image

Integral image

Integral image

#### 4 values independent of size:

$$s(i_1, j_1) - s(i_1, j_0 - 1) - s(i_0 - 1, j_1) + s(i_0 - 1, j_0 - 1)$$

$$48-13-14+3 = 24 = 5+1+3+1+3+5+3+2+1$$





| 0 | 0 | 0 |
|---|---|---|
| 0 | 1 | 0 |
| 0 | 0 | 0 |

?

Original





Original

| 0 | 0 | 0 |
|---|---|---|
| 0 | 1 | 0 |
| 0 | 0 | 0 |

100

Filtered (no change)





| 0 | 0 | 0 |
|---|---|---|
| 1 | 0 | 0 |
| 0 | 0 | 0 |

?

Original





Original

| 0 | 0 | 0 |
|---|---|---|
| 1 | 0 | 0 |
| 0 | 0 | 0 |



Shifted *left* By 1 pixel





Original

| 1        | 1 | 1 | 1 |
|----------|---|---|---|
| <u> </u> | 1 | 1 | 1 |
| 9        | 1 | 1 | 1 |

?





Original





Blur (with a box filter)





Original

| 0 | 0 | 0 | 1        | 1 | 1 | 1 |
|---|---|---|----------|---|---|---|
| 0 | 2 | 0 | <u> </u> | 1 | 1 | 1 |
| 0 | 0 | 0 | 9        | 1 | 1 | 1 |

(Note that filter sums to 1)

?





| 0 | 0 | 0 |
|---|---|---|
| 0 | 2 | 0 |
| 0 | 0 | 0 |





Original

#### **Sharpening filter**

- Accentuates differences with local average

# Sharpening







before

after

Source: D. Lowe

# Sharpening



#### What does blurring take away?







#### Let's add it back:







# Image rotation





7



It is linear, but not a spatially invariant operation. There is no convolution.

# Smoothing with box filter revisited



What's wrong with this picture?



#### Gaussian Kernel



Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$





| 0.003 | 0.013 | 0 022 | 0.013 | 0 003 |
|-------|-------|-------|-------|-------|
|       | 0.059 |       |       |       |
| 0.022 | 0.097 | 0.159 | 0.097 | 0.022 |
| 0.013 | 0.059 | 0.097 | 0.059 | 0.013 |
| 0.003 | 0.013 | 0.022 | 0.013 | 0.003 |

$$5 \times 5$$
,  $\sigma = 1$ 

# Choosing kernel width



#### Rule of thumb: set filter half-width to about 3σ





# Gaussian vs. box filtering





#### Gaussian filters



Remove "high-frequency" components from the image (low-pass filter)

Convolution with itself is another Gaussian

- So can smooth with small-σ kernel, repeat, and get same result as larger-σ kernel would have
- Convolving two times with Gaussian kernel with std. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$

#### Separable kernel

Factors into product of two 1D Gaussians

## Separability of the Gaussian filter



$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

# Separability example



2D convolution (center location only)

| 1 | 2 | 1 |   | 2 | 3 | 3 |
|---|---|---|---|---|---|---|
| 2 | 4 | 2 | * | 3 | 5 | 5 |
| 1 | 2 | 1 |   | 4 | 4 | 6 |

The filter factors into a product of 1D filters:

Perform convolution along rows:

Followed by convolution along the remaining column:

# Why is separability useful?



What is the complexity of filtering an n×n image with an m×m kernel?

 $-O(n^2 m^2)$ 

What if the kernel is separable?

 $-O(n^2 m)$ 

## Is a kernel separable?



Kernel as matrix:

$$oldsymbol{K} = \sum_i \sigma_i oldsymbol{u}_i oldsymbol{v}_i^T$$

- Singular Value Decomposition (SVD)
- If only the first singular value  $\sigma_0$  is non-zero, kernel is separable
- Vertical and horizontal kernels:

$$\sqrt{\sigma_0} oldsymbol{u}_0$$
 and  $\sqrt{\sigma_0} oldsymbol{v}_0^T$ 

• Approximation:  $K \approx \sigma_0 u_0(v_0)^T$ 

#### **SVD** - Definition



#### $A[m \times n] = U[m \times r] \Sigma[r \times r] (V[n \times r])T$

- A: Input data matrix
  - m x n matrix
- **U**: Left singular vectors
  - m x r matrix
- Σ: Singular values
  - r x r diagonal matrix (r : rank of the matrix A)
- V: Right singular vectors
  - n x r matrix









#### SVD







 $\sigma_i$  ... scalar

u<sub>i</sub> ... vector

v<sub>i</sub> ... vector

## **SVD** - Properties



It is always possible to decompose a real matrix A into A = U  $\Sigma$  V<sup>T</sup>, where

- U,  $\Sigma$ , V: unique
- U, V: column orthonormal:
  - $-U^{T}U = I; V^{T}V = I$  (I: identity matrix)
  - (Cols. are orthogonal unit vectors)
- Σ: diagonal
  - Entries (singular values) are positive, and sorted in decreasing order ( $\sigma_1 \ge \sigma_2 \ge ... \ge 0$ )

## SVD - Example



#### $A = U \Sigma V^{T}$ - example:

$$= \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix}$$

## Geometric interpretation



#### Change of basis vectors:



$$m{A}_{M imes N} = m{U}_{M imes P} m{\Sigma}_{P imes P} m{V}_{P imes N}^T$$
  $m{A}m{V} = m{U}m{\Sigma} \quad ext{or} \quad m{A}m{v}_j = \sigma_j m{u}_j$ 

#### Noise



Salt and pepper noise: contains random occurrences of black and white pixels

Impulse noise: contains random occurrences of white pixels

Gaussian noise: variations in intensity drawn from a Gaussian normal distribution



Original



Impulse noise



Salt and pepper noise



Gaussian noise

Source: S Seitz

# Reducing Gaussian noise





Smoothing with larger standard deviations suppresses noise, but also blurs the image

# Reducing salt-and-pepper noise



#### What's wrong with the results?



# Alternative idea: Median filtering



A median filter operates over a window by selecting the median intensity in the window



Is median filtering linear?

#### Median filter



What advantage does median filtering have over Gaussian filtering?

Robustness to outliers





# Gaussian vs. median filtering



Gaussian







Median







#### Bilateral filter



#### Filter is data dependent

$$g(i,j) = \frac{\sum_{k,l} f(k,l) w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}$$



Input

Domain kernel

Range kernel

$$d(i, j, k, l) = \exp\left(-\frac{(i - k)^2 + (j - l)^2}{2\sigma_d^2}\right) \qquad r(i, j, k, l) = \exp\left(-\frac{\|f(i, j) - f(k, l)\|^2}{2\sigma_r^2}\right)$$

#### Bilateral filter



#### Filter is data dependent



#### Slow, but methods for approximation exist

# Binary images



#### Neighborhoods



4 Neighborhood

8 Neighborhood

#### **Erosion**





Change a foreground pixel to background if it has a background pixel as a 4-neighbor.

#### **Dilation**









Change a background pixel to foreground if it has a foreground pixel as a 4-neighbor.

## **Threshold**





Original image

Initial threshold

# Opening = Dilate(Erode)





Original image

After opening

# Closing = Erode(Dilate)





Original image



After closing

Thank you for your attention.



# UNIVERSITÄT BONN