Exploring the Photoactive Properties of MXenes for Water Splitting

Diego Ontiveros, Francesc Viñes, Carme Sousa

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain.

Institut de Química Teòrica i Computacional

UNIVERSITAT DE BARCELONA

General Properties

- An effective photocatalyst needs good band alignment, efficient charge separation, minimal **VBM/CBM** overlap, anisotropic mobilities, strong visible light absorption, and high solar-to-hydrogen (STH) efficiency.
- Cohesive energy, phonons \rightarrow energetical and dynamical stability.

MXene	$E_{ m coh}$ (eV/at.)	$E_{ m g}^{ m PBE0}$ (eV)	$E_{ m opt}$ (eV)	Overlap (%)	η _{STH} (%)
Zr_2CO_2	-7.68	2.26	2.87	27.9	2.5
$\mathbf{Sc_2CS_2}$	- 5.52	3.23	3.34	35.2	0.9
Y_2CS_2	- 5 . 52	3.42	2.93	38.5	2.7
Sc_2CSe_2	-5.16	2.75	3.15	31.9	1.4
Y_2CSe_2	-5.17	3.21	2.99	34.5	2.3
$\mathbf{Sc_{2}CCl_{2}}$	-5.4 1	2.48	2.30	26.2	11.0
Y_2CCl_2	-5.42	2.44	1.89	31.7	21.3
Sc_2CBr_2	-5.09	2.31	2.31	27.1	10.9
Y_2CBr_2	- 5.13	2.36	1.85	30.7	22.6
Y_2CI_2	-4.77	1.94	1.79	25.2	12.2

Band Alignment

- pH = 0: \checkmark band alignment for all cases, excepting Sc_2CSe_2 (on H_X surface).
- pH = 7: Some halide-terminated MXenes become unable to photocatalyze HER.
- H_{MX} : Janus \rightarrow intrinsic $\vec{E} \rightarrow e^- h^+$ separation.

MXenes $(M_{n+1}X_nT_x)$

M = Transition Metal (Groups 3 – 6) $X = C \text{ or } N \quad n = 1 - 4$ T = Termination (Groups 16 - 17)

Promising candidates for photocatalysing the water splitting process and produce clean H₂.^[1,2]

Objective: Explore the photoactive effectiveness of MXenes in the water splitting process, through different photocatalytic properties.

10 promising MXenes studied Sc_2CT_2 , Y_2CT_2 Sc₂CT₂, Y₂CT₂ (T = Cl, Br),(T = S, Se)Y₂CI₂, Zr₂CO₂ $ABC H_{M}$ $ABC H_{MX}$

Methods: DFT with PBE0 hybrid functional for electronic structure and GW-BSE for optical properties.

Electronic Structure • Semiconductors $E_{\mathbf{g}} \approx \text{visible range}$.

- H_{MX} MXene structures: $E_g \approx UV$.
- Indirect $\Gamma \rightarrow M$ (H_M) or $\Gamma \rightarrow K$ (H_{MX}) transitions.
- $VB \rightarrow C$ and M atoms, and T at lower energies.
- $CB \rightarrow d$ orbitals of M.

Charge Density

- Overlap(VBM, CBM) $\approx 25 38 \%$.
- $H_M: VBM \to p(C)$ orbitals, $CBM \to M$ layers.
- H_{MX} : VBM \rightarrow H_X face, CBM \rightarrow M-C layers. ☐ asymmetry in charge distribution.

Optical Absorption

- H_M : Good optical absorption in visible range.
- H_{MX} : Optical absorption shifted to UV.
- $E_{\text{opt}}(Y) < E_{\text{opt}}(Sc)$.
- BSE \rightarrow Exciton \rightarrow $E_{\rm b} \approx 0.3 0.7$ eV.
- STH efficiency:
 - halide (11-23%) > chalcogen (1-3%).

Charge Carrier Mobility

- Along x (zigzag $\wedge \wedge$) and y (armchair \supset).
- Anisotropic electron carrier mobility, $\mu_e^x \neq \mu_e^y$.
- H_{MX} : $\mu_e^x < \mu_e^y$, H_{M} : $\mu_e^x > \mu_e^y$.
- Isotropic hole carrier mobility, $\mu_h^x \approx \mu_h^y$.
- L Except for $Sc_2CBr_2 \rightarrow Asymmetric anisotropy$ both in e and h (charge separation \checkmark)

CONCLUSIONS

The photoactive potential of a group of 10 MXenes has been deeply explored using DFT calculations, showcasing robust stability, high charge carrier mobilities, strong visible light absorption, and promising solar-to-hydrogen efficiency. These features make them leading candidates for efficient water splitting photocatalysis, with H_{M} structures generally outperforming H_{MX} structures.

REFERENCES

Chem. A, 2023, 11, 13754–13764.

[2] D. Ontiveros, S. Vela, F. Viñes, C. Sousa, Energy Environ. Mater., 2024, 7, e12774.

\(\simega \) diego.ontiveros@ub.edu

diegonti.github.io

Acknowledgments ***

PID2021-126076NB-I00 CEX2021-001202-M

QHS-2023-2-0017 QHS-2023-3-0012