Министерство образования Республики Беларусь

Учреждение образования

«Белорусский государственный университет информатики и радиоэлектроники»

Кафедра электронных вычислительных машин

Лабораторная работа №4 «Исследование работы параллельного регистра и регистра сдвига»

Выполнил:

Студент группы 950501 Деркач А.В. Проверил:

Преподаватель Коников А.Д.

1. Цель работы

- Изучить режимы работы параллельного регистра.
- Изучить режимы работы регистра сдвига.

2. Ход работы

1. Исследование работы параллельного регистра в статическом режиме

1.1. Режим параллельной загрузки и хранения

Таблица истинности параллельного регистра

				-				•						
	R	E2	E1	P2	P1	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	0	0	0	0	0	0	1	1	0	LΓ	0	1	1	0
Шаг 2	0	0	0	1	0	0	1	1	0	LΓ	0	0	0	0
Шаг 3	0	0	0	0	1	0	1	1	0	LΓ	0	0	0	0
Шаг 4	0	0	0	1	1	0	1	1	0	LΓ	0	0	0	0

Диаграмма состояний параллельного регистра

Параллельная загрузка регистра происходит, если на входы P1 и P2 подан активный уровень сигнала равный нулю. Параллельный регистр работает в режиме хранения информации, если хотя бы на один из входов (P1 или P2) подан неактивный уровень сигнала.

1.2. Режим управления выходом регистра

Таблица истинности параллельного регистра

	R	E2	E1	P2	P1	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	0	0	0	0	0	0	1	1	0	LΓ	0	1	1	0
Шаг 2	0	1	0	0	0	0	1	1	0	LΓ	0	0	0	0
Шаг 3	0	0	1	0	0	0	1	1	0	LΓ	0	0	0	0
Шаг 4	0	1	1	0	0	0	1	1	0	LΓ	0	0	0	0

Считывание состояния регистра с выходов Q разрешено, если подан активный уровень сигнала на входы E1 и E2.

2. Исследование работы параллельного регистра в динамическом режиме 2.1. Режим параллельной загрузки регистра, E1=E2=P1=P2=R=0

2.2. Режим хранения, E1=E2=0, P1/P2=1

Диаграмма состояний параллельного регистра

2.3. Режим запрета вывода, P1=P2=0, R=0, E1 / E2 = 1

Диаграмма состояний параллельного регистра

2.4. Очистка регистра, R=1, остальные не имеют значения

По вышеприведённым диаграммам работы видно, что регистр меняет своё состояние по положительному перепаду импульса на входе $C\ (0 \to 1)$.

3. Исследование работы сдвигового регистра в статическом режиме

3.1. Режим сдвига вправо

Таблица истинности регистра сдвига

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	1	0	0	1	0	0	0	0	LΓ	1	0	0	0
Шаг 2	1	1	0	0	0	0	0	0	0	LΓ	0	1	0	0
Шаг 3	1	1	0	0	0	0	0	0	0	LΓ	0	0	1	0
Шаг 4	1	1	0	0	0	0	0	0	0	LΓ	0	0	0	1

Диаграмма состояний регистра сдвига

Логическая единица смещается от Q3 к Q0.

3.2. Режим сдвига влево

Таблица истинности регистра сдвига

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	0	1	1	0	0	0	0	0	LΓ	0	0	0	1
Шаг 2	1	0	1	0	0	0	0	0	0	LΓ	0	0	1	0
Шаг 3	1	0	1	0	0	0	0	0	0	LΓ	0	1	0	0
Шаг 4	1	0	1	0	0	0	0	0	0	LΓ	1	0	0	0

Логическая единица смещается от Q0 к Q3.

3.3. Режим параллельной загрузки

Таблица истинности регистра сдвига

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	1	1	0	0	0	1	0	1	LΓ	0	1	0	1
Шаг 2	1	1	1	0	0	1	1	1	1	LΓ	1	1	1	1
Шаг 3	1	1	1	0	0	0	0	1	0	LΓ	0	0	1	0
Шаг 4	1	1	1	0	0	0	0	1	0	LΓ	0	0	1	0

Диаграмма состояний регистра сдвига

Значения на выходах Q0-Q3 соответствуют значениям на входах параллельной загрузки D0-D3.

3.4. Режим хранения

Таблица истинности регистра сдвига

					-									
	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	0	0	1	1	0	1	0	1	LΓ	0	1	0	1
Шаг 2	1	0	0	1	1	1	1	1	1	LΓ	0	1	0	1
Шаг 3	1	0	0	1	1	0	0	1	0	LΓ	0	1	0	1
Шаг 4	1	0	0	1	1	0	0	1	0	LΓ	0	1	0	1

Если на входы S0 и S1 подан сигнал ноль, а также на входы DR и DL подан сигнал единица, то регистр работает в режиме хранения информации.

Таблица истинности регистра сдвига

R	S1	S0	С	$Q3_{n+1}$	$Q2_{n+1}$	$Q1_{n+1}$	$Q0_{n+1}$	
0	-	ı	-	0	0	0	0	Сброс
1	0	0	-	Q3 _n	Q2 _n	Q1 _n	$Q0_n$	Хранение
1	0	1	0-1	Q2 _n	Q1 _n	$Q0_n$	DR	Сдвиг вправо
1	1	0	0-1	DL	Q3 _n	Q2 _n	Q1 _n	Сдвиг влево
1	1	1	0-1	D3	D2	D1	D0	Загрузка

4. Исследование работы сдвигового регистра в динамическом режиме

4.1. Режим сдвига вправо

Диаграмма состояний регистра сдвига

4.2. Режим сдвига влево

Диаграмма состояний регистра сдвига

4.3. Режим параллельной загрузки

Диаграмма состояний регистра сдвига

4.4. Режим хранения

Диаграмма состояний регистра сдвига

Тактирование происходит по перепаду из нуля в единицу.

3. Вывод

В процессе данной работы исследовалась работа регистров на практике, в результате которой были получены таблицы истинности для параллельного регистра и регистра сдвига, а также их диаграммы состояний.