Sistemi

Laurea Magistrale in Ingegneria e Scienze Informatiche Anno Accademico 2009-2010

Docenti: Vincenzo Manca, Riccardo Muradore, Tiziano Villa

4 Febbraio 2010

Metodi di Specifica 4 Febbraio 2010

Nome e Cognome:

Corso di Laurea:

Matricola:

Posta elettronica:

problema	punti massimi	i tuoi punti
problema 1	4	
problema 2	6	
totale	10	

1. Una rete di Petri marcata e' specificata da una quintupla: $\{P, T, A, w, x\}$, dove P sono i posti, T le transizioni, A gli archi, w la funzione di peso sugli archi, e x il vettore di marcamento (numero di gettoni per posto). $I(t_i)$ indica l'insieme dei posti in ingresso alla transizione t_i , $O(t_j)$ indica l'insieme dei posti in uscita dalla transizione t_j .

Per associare un linguaggio a una rete di Petri s'introduce un insieme di eventi E, una funzione che etichetta le transizioni con eventi $l: T \to E$, e un insieme di stati che accettano $X_m \subseteq N^n$ (n e' il numero di posti).

Si consideri la rete di Petri P_8 definita da:

- $P = \{p_1, p_2\}$
- $T = \{t_1, t_2\}$
- $A = \{(p_1, t_2), (p_2, t_2), (t_1, p_1), (t_2, p_2)\}$
- $w(p_1, t_2) = 1$, $w(p_2, t_2) = 1$, $w(t_1, p_1) = 1$, $w(t_2, p_2) = 1$
- (a) Si disegni il grafo della rete di Petri P_8 con la marcatura $x_1 = [0, 1]$.
- (b) Si associ a P_8 un linguaggio basato sul seguente alfabeto degli eventi $\{a,d\}$, con $l(t_1)=a$ (cioe', l'evento a e' associato alla transizione t_1) e $l(t_2)=d$.

Si descriva il linguaggio accettato da P_8 .

Si costruisca un automa a stati finiti che riconosca il linguaggio di P_8 , se esiste.

Si costruisca un automa a stati infiniti che riconosca il linguaggio di P_8 , se esiste.

Si commentino i risultati in relazione all'espressivita' delle reti di Petri rispetto agli automi regolari.

Traccia di soluzione.

Il linguaggio accettato da P_8 e' l'insieme di tutte le stringhe in $\{a, d\}^*$ dove ogni prefisso di ogni stringa contiene un numero di eventi d minore o uguale al numero di eventi a.

Non e' un linguaggio regolare, quindi non esiste un automa finito che lo accetta.

L'automa a stati infiniti che lo accetta e':

- $E = \{a, d\}$
- $X = \{0, 1, 2, 3, \dots\}$

- $\Gamma(x) = \{a, d\}$ per x > 0, $\Gamma(0) = \{a\}$
- $f(x,a) = x + 1 \operatorname{per} x \ge 0$
- $f(x,d) = x 1 \operatorname{per} x > 0$

La classe dei linguaggi accettati da reti di Petri e' strettamente maggiore di quella dei linguaggi accettati da automi a stati finiti (linguaggi regolari).

- 2. Si consideri il seguente automa temporizzato con due orologi x_1 e x_2 (e un'uscita $y(t) \equiv (x_1, x_2)$):
 - locazioni: l_1, l_2 , dove l_1 e' una locazione iniziale, con condizioni iniziali $x_1 := 0, x_2 := 0.$
 - dinamica della locazione l_1 : $\dot{x}_1 = 1, \dot{x}_2 = 1$, invariante della locazione l_1 : $(x_1, x_2) \in Reali \times Reali$, dinamica della locazione l_2 : $\dot{x}_1 = 1, \dot{x}_2 = 1$, invariante della locazione l_2 : $(x_1, x_2) \in Reali \times Reali$;
 - transizione e_1 da l_1 a l_2 : $A/y(t), x_1^{'} := 0, x_2^{'} := x_2,$ transizione e_2 da l_2 a l_1 : $B/y(t), x_1^{'} := x_1, x_2^{'} := x_2,$ dove $A = \{(x_1, x_2) \mid x_1 \leq 3 \land x_2 \leq 2\},$ dove $B = \{(x_1, x_2) \mid x_1 \leq 1\}$ (la sintassi delle annotazioni di una transizione e' guardia/uscita, azione);
 - ingresso assente perche' il sistema e' autonomo;
 - uscita $y(t) \in Reali \times Reali$.
 - (a) Si disegni il diagramma di transizione dell'automa, annotando con precisione locazioni e transizioni.

(b) Si considerino gli stati (prodotto cartesiano di una locazione e una regione in \mathbb{R}^2)

$$\begin{split} &\text{i. } P_1 = (l_1, \{1 < x_2 < x_1 < 2\}),\\ &\text{ii. } P_2 = (l_1, \{0 < x_2 = x_1 < 1\}),\\ &\text{iii. } P_3 = (l_2, \{0 < x_2 < 1, 1 < x_1 < 2, x_2 < x_1 - 1\},\\ &\text{iv. } P_4 = (l_2, \{1 < x_2 < 2, x_1 = 0\}). \end{split}$$

Si rappresentino tali stati graficamente (con un diagramma cartesiano per la locazione l_1 e uno per la locazione l_2).

(c) Si calcolino gl'insiemi $Pre_{e_1}(P_1)$, $Pre_{e_1}(P_2)$, $Pre_{e_1}(P_3)$, $Pre_{e_1}(P_4)$, $Pre_{e_2}(P_1)$, $Pre_{e_2}(P_2)$, $Pre_{e_2}(P_3)$, $Pre_{e_2}(P_4)$, dove $Pre_{e_2}(P)$ e' l'operatore predecessore di P per la transizione discreta e, cioe' l'insieme degli stati che finiscono in P per effetto della transizione e.

Traccia di risposta.

S'introducano i seguenti insiemi per facilitare la discussione:

i.
$$Q_1 = (l_2, \{1 < x_2 < x_1 < 2\}),$$

ii.
$$Q_2 = (l_2, \{0 < x_2 = x_1 < 1\}).$$

Gl'insiemi predecessori si calcolano come segue:

- i. $Pre_{e_1}(P_1) = Pre_{e_1}(P_2) = \emptyset$, perche' la locazione di P_1 e di P_2 e' l_1 e la transizione $e_1 = (l_1, l_2)$ porta a stati con locazione l_2 .
- ii. $Pre_{e_2}(P_3) = Pre_{e_2}(P_4) = \emptyset$, perche' la locazione di P_3 e di P_4 e' l_2 e la transizione $e_2 = (l_2, l_1)$ porta a stati con locazione l_1 .
- iii. Per calcolare $Pre_{e_2}(P_1)$, si noti che e_2 lascia la regione invariata e percio' ci si aspetterebbe che tutti gli stati in Q_1 finissero in P_1 per la transizione e_2 ; pero' la transizione e_2 avviene solo se e' vera la guardia $x_1 \leq 1$, per cui

$$Pre_{e_2}(P_1) = Q_1 \cap (l_2, \{x_1 \le 1\})$$

$$= (l_2, \{1 < x_2 < x_1 < 2\} \cap \{x_1 \le 1\})$$

$$= \emptyset.$$

iv. Similmente, per calcolare $Pre_{e_2}(P_2)$, si noti che e_2 lascia la regione invariata e inoltre che questa volta tutti gli stati in Q_2 finiscono in P_2 per la transizione e_2 , perche' la guardia $x_1 \leq 1$ e' soddisfatta dagli stati in Q_2 , per cui

$$Pre_{e_2}(P_2) = Q_2 \cap (l_2, \{x_1 \le 1\})$$

$$= (l_2, \{0 < x_2 = x_1 < 1\} \cap \{x_1 \le 1\})$$

$$= (l_2, \{0 < x_2 = x_1 < 1\})$$

$$= Q_2.$$

v. Per calcolare $Pre_{e_1}(P_3)$, si noti che e_1 riassegna x_1 a 0, ma in P_3 tutti gli stati hanno $x_1 > 1$ percio' la transizione e_1 non puo' portare ad alcuno stato in P_3 , per cui

$$Pre_{e_1}(P_3) = \emptyset.$$

vi. Per calcolare $Pre_{e_1}(P_4)$, si noti che in P_4 tutti gli stati hanno $x_1=0$ sicche' potrebbero finire in P_4 tutti gli stati con $x_1 \in [0,\infty)$ e $x_2 \in (1,2)$; pero' la transizione e_1 avviene solo se e' vera la guardia $x_1 \leq 3$ e $x_2 \leq 2$, per cui

$$Pre_{e_1}(P_4) = (l_1, \{0 \le x_1 < \infty \land 1 < x_2 < 2\} \cap \{x_1 \le 3 \land x_2 \le 2\})$$
$$= (l_1, \{0 \le x_1 \le 3 \land 1 < x_2 < 2\}).$$