Vietnam National University Ho Chi Minh City, University of Science Department of Information Technology

Topic 9: Hash function & MAC

Contents

- ☐ Introduction
- Properties of hash function
- Classification of cryptographic hash function
- Some popular hash function architectures
- ☐ MD5 hash function
- SHA hash functions
- ☐ MAC and HMAC

Introduction

Integrity and secrecy

- ☐ Integrity: the attacker cannot intervene to edit the message content
- Encryption is only intended to ensure confidentiality, not to help ensure information integrity
- An attacker can modify the encrypted message without knowing the actual content of the message
- Example:
 - ☐ In an online auction, it is possible to change a competitor's bid without knowing the actual content of the bid

Main ideas of hash function

- \sqcup *H* is a lossy compression function
- Collision: H(x) = H(x') for $x \neq x'$
- \sqcup *H* can apply on data of almost any size
 - \square Result of *H* is a *n*-bit string (fixed *n*) "looks random"
 - \sqcup Easy to compute H(x) for any x
 - \square *H* is one-way function and secure against to "collision"

Digest message

Bit strings of any length!

Fixed length bit string

One-wayness

- ☐ The function H is difficult to reverse transform
 - □ Given random bit string $y \in \{0, 1\}^n$, hard to find bit string x such that H(x) = y
- \square Example: brute-force for each value x, check if H(x) = y for SHA-1 producing a 160-bit string
 - \square Assume the hardware allows it to be done 2^{34} computations/s
 - □ Can perform 2⁵⁹ computations/year
 - Need 2^{101} (~ 10^{30}) years to reverse transform SHA-1 with given random value y

Safety against collisions

- \Box Hand to find x and x' such that H(x) = H(x')
- \square Search collision by Brute-force just $O(2^{n/2})$, not $O(2^n)$
- Birthday paradox
 - \blacksquare We have t_i values of x_{i_i} and corresponding values $y_i = h(x_i)$, $1 \le i \le t$
 - For x_i , x_i , probability of collision is $1/2^n$
 - III Total number of pairs $\mathcal{E}_t^2 t \Rightarrow (t \times 1) \neq 2) \neq 20(t)(t^2)$
 - If $t \approx 2^{n/2} \Rightarrow$ there are $\approx 2^{n}$ exp (x_1, x_2)
 - For each pair, the probability of a collision is $1/2^n$, then probability of finding a pair of values that collide ≈ 1

Birthday Paradox

- Let p(n) be the probability of finding 2 people with the same birthday in a group of n people?
- Let p(n) the thopability it have that p(n) + p(n) = 1
- For $n_1 \leq 365$ people, we have

$$\Box \bar{p}(n) = 1 \left(1 - \frac{1}{365} \right) \left(1 - \frac{2}{365} \right) \dots \left(1 - \frac{n-1}{365} \right) = \frac{365!}{365^n (365 - n)!}$$

$$\Box p(n) = 1 - \frac{365!}{365^n (365 - n)!}$$

Safe from "weak" collisions

- **☐** Weak Collision Resistance
- Given a randomly chosen bit string x, hard to find x' such that H(x) = H(x')
- The attacker must find a value that collides with a given x value. This is harder to find a pair of x and x' colliding each other.
- \square Brute-force attack: O(2ⁿ)
- Comment: safety against "weak" collisions does not guarantee safety against collisions

Properties of the hash function

- ☐ Safe against "preimage" attacks
 - ☐ Preimage resistance or one-wayness
 - \square Given y, hard to find x such that H(x) = y
- Safety against collisions
 - Collision resistance
 - \square Hard to find 2 distinct values x and x' such that H(x') = H(x)
- ☐ Safe against "second preimage" attack
 - □ 2nd preimage resistance or weak collision resistance
 - Given x and y = H(x), hard to find $x' \neq x$ such that H(x') = y

Classification of cryptographic hash function

Merkle-Damgård architecture

- Authors: Ralph Merkle, Ivan Damgård
- Most hash functions use this structure
- Example: SHA-1, MD5

Matyas-Meyer-Oseas architecture

- ☐ Architecture "dual" with architecture **Davies-Mayer**
- At the 1st block (i = 1), need using initial value H_0
- If function E uses key and block with different sizes, function g need converting H_{i-1} to key suitable for function E

$$H_i = E_{g(H_i)}(m_i) \oplus m_i$$

Davies-Meyer architecture

- Architecture "dual" with architecture Matyas-Meyer-Oseas
- At the 1st block (i = 1), need using initial value H_0
- ☐ If function *E* is not safe, then applying method of fixed-point attack to attack corresponding hash function

$$H_i = E_{m_i}(H_{i-1}) \oplus H_{i-1}$$

Miyaguchi-Preneel architecture

- Expansion of architecture **Matyas-Meyer-Oseas**
- At the 1st block (i = 1), need using initial value H_0
- \square If function E uses key and block with different sizes, then function need converting H_{i-1} to key suitable for function *E*

- ☐ Message Digest 4 hash proposed by Rivest in 1990. In 1991, improved version called MD5 was proposed.
- □ Notes:
 - ☐ Little-endian value, for example of a 32-bit integer 0x0A0B0C0D

Big-endian value Mercry example of 32 Big Gibbs gerbi Ox 9A0B0C0D

a 0A

a+1 0B

a+2 0C

a + 3

OD

Steps in algorithm: \square Declare: int i, s[64], K[64] //32-bit variables & mod 2³² when computing \square Define values for left rotation coefficient R[i] of each cycle: $\sqcup s[0..15] = \{7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22\}$ \square s[16..31] = {5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20} \sqcup s[32..47] = {4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23} \square s[48..63] = {6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21} Initialize variables: $\Box a_0 = 0$ x67452301 $\Box b_{\circ} = 0$ xEFCDAB89 $\Box c_0 = 0$ x98BADCFE $\Box d_0 = 0 \times 10325476$

- Steps in algorithm:
 - \square Compute constants K[i] using below loop:
 - **for** *i* **from** 0 **to** 63 { $K[i] = \text{floor}(abs(sin(i + 1)) \times 2^{32})^*$
 - ☐ Pre-processing:
 - \square Add bit 1 at the end of the message
 - \square Add *k* bit 0 such that length of message congruent 448 (mod 512)
 - Add 64 bits to represent the length of original message (little-endian stored value)

- □ Example of pre-processing step: □ Assume input-data is a string m = "hello world"
 - \square Convert m to ASCII code:
 - □ Due to |m| = 88 bits \Rightarrow need more 360 bits to satisfy 448 mod 512 \cong 448 bits \Rightarrow add one bit '1' and 359 bit '0'
 - □ Convert 88 bits to binary form:
 - \square So, we have *m* after padded: (|m| = 512 bits):

	01101000	01100101	01101100	01101100	01101111	00100000	01110111	01101111	01110010	01101100	01100100
	10000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
Ī	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
Ī	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
Ī	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	01011000		

- ☐ Steps in algorithm:
 - □ Divide message (padded *m*) into **512-bit blocks**
 - \square For each 512-bit block (ex: q^{th} block)
 - Divide into 16 words (little-endian 32-bit word) w[0..15]
 - \square Create 4 variables $A = a_0$, $B = b_0$, $C = c_0$, $D = d_0$
 - □ Start 64 cycles processing *A*, *B*, *C*, *D*
 - $\Box a_0 += A, b_0 += B, c_0 += C, d_0 += D$
 - \square Final digest message: $a_0 \mid b_0 \mid c_0 \mid d_0$
 - □ Example of describing **one cycle** from 64 cycles
 - \square *A*, *B*, *C*, *D* are 4 words (32 bits) of a state
 - \square *F* is non-linear function (changed with ith cycle)
 - $\square <<<_s$ is left-rotate s positions taken from s[64]
 - \square \square add modulo 2^{32} .
 - \square K_i is a constant from K[64]

Describe **one cycle** in 64 cycles

Processing cycle of MD5

- ☐ Pseudo-code of 64 cycles
 - □ **for** *i* **from** 0 to 63
 - \Box int f, g
 - □ if $0 \le i \le 15$ then $\{ f = (B \land C) \lor ((\neg B) \land D); g = i \}$
 - □ if $16 \le i \le 31$ then $\{ f = (D \land B) \lor ((\neg D) \land C) ; g = (5 \times i + 1) \bmod 16 \}$
 - □ if $32 \le i \le 47$ then { $f = B \oplus C \oplus D$; $g = (3 \times i + 5) \mod 16$ }
 - □ if $48 \le i \le 63$ then { $f = C \oplus (B^{\vee}(\neg D))$; $g = (7 \times i) \mod 16$ }
 - $\Box f = f + A + K[i] + M[g]$
 - \square A = D; D = C; C = B; $B = B + (f <<<_{s[i]}) // f left-rotates <math>s[i]$ positions
- ☐ Test-vector:
 - □ MD5("") = d41d8cd98f00b204e9800998ecf8427e
 - ☐ MD5("fit.hcmus") = 22227c3065cbf40733e9a11ffa07124a

- ☐ The Secure Hash Standard (SHS or SHA1) method developed by NIST and NSA was published in the Federal Register on January 31, 1992, and then officially became the standard method on May 13, 1993..
- Messages are processed in 512-bit blocks
- Digested message 160-bit length
- Steps in algorithm
 - ☐ Initialize variables:
 - $\Box h_0 = 0x67452301$
 - \Box $h_1 = 0$ xEFCDAB89
 - \Box $h_2 = 0$ x98BADCFE
 - $\Box h_3 = 0 \times 10325476$
 - $\Box h_4 = 0 \text{xC3D2E1F0}$

- Steps in algorithm
 - ☐ Pre-processing data:
 - ☐ Add bit 1 at the end of the message
 - \square Add *k* bits '0' such that the length of message \cong 448 (mod 512)
 - □ Add 64 bits to represents the length of the original message (value stored in big-endian format)

 \square So, *m* after padded: (|m| = 512 bits, sixteen 32-bit words):

01101000	01100101	01101100	01101100	01101111	10000000	00000000	00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00101000		

- ☐ Steps in algorithm
 - □ Divide message (padded *m*) into 512-bit blocks
 - ☐ For each 512-bit block:
 - \square Divide into 16 words (32 bits, big-endian) w[0..15]
 - ☐ for *i* from 16 to 79 // Extend 16 words (32 bits) to 80 words (32 bits)
 - \square $w[i] = (w[i-3] \oplus w[i-8] \oplus w[i-14] \oplus w[i-16])$ <<< 1 (16 \le i < 80)

0x8f1 bbcdc340 6t ≤ 69 $t \leq 59$

 $a62c1d6,60 \le t \le 79$ xca 62 c 1 d \(\), \(\) \(\) \(\)

- \square $A = h_0$, $B = h_1$, $C = h_2$, $D = h_3$, $E = h_4$
- ☐ Start 80 cycles processing
- \square $h_0 += A$, $h_1 += B$, $h_2 += C$, $h_3 += D$, $h_4 += E$
- \square Result = $h_0 \mid h_1 \mid h_2 \mid h_3 \mid h_4$
- ☐ For example, describing **one cycle** in 80 cycles
 - \Box *t* is an ordinal number of the cycle (0 \leq *t* \leq 79)
 - \square *A*, *B*, *C*, *D*, *E* are 5 words (32 bits) of a state

 - $\square <<< n$ is a left-rotate n positions 0.06ed9ebh9.20.51,209 $t \le 39$
 - □ **■** add modulo 232.
 - \square K_{t} is a constant following \Rightarrow

Describe one cycle in 80 cycles

Processing cycle of SHA-1

- □ Pseudo-code of 80 cycles \Box for *i* from 0 to 79
 - □ if $0 \le i \le 19$ then $\{ f = (B \land C) \lor ((\neg B) \land D); K = 0x5A827999 \}$
 - \square if $20 \le i \le 39$ then { $f = B \oplus C \oplus D$; K = 0x6ED9EBA1 }
 - □ if $40 \le i \le 59$ then { $f = (B \land C) \lor (B \land D) \lor (C \land D)$; K = 0x8F1BBCDC }
 - \square if $60 \le i \le 79$ then { $f = B \oplus C \oplus D$; K = 0xCA62C1D6 }
 - \Box temp = (A <<< 5) + f + E + K + w[i]
 - \Box *E* = *D*; *D* = *C*; *C* = *B* <<< 30
 - \square B = A
 - \square A = temp
- ☐ Test-vector:
 - □ SHA-1("") = da39a3ee5e6b4b0d3255bfef95601890afd80709
 - □ SHA-1("fit.hcmus") = 86cb71d2190be898de94356d59e5f0138f8d8496

A group of SHA hash functions

SHA algorithms

Algorithm	Result (bit)	State (bit)	Block (bit)	Maximum message (bit)	Cycle	Operation	Collision
SHA-0		160	512	2 ⁶⁴ – 1	80	+, and, or, xor, rotl +, and,	Yes
SHA-1	160						2 ⁶³ operations
SHA-256/224	256/224	256			64		No
SHA-512/384	512/384	512	1024	$2^{128} - 1$	80	or, xor, shr, rotr	
SHA3- 224/256/384/512	224/256/384/ 512	1600	1152/1088 /832/576	No limit	24	and, xor,	
SHAKE-128/256	Tùy ý		1344/1088			rot, not	

Message authentication code (MAC)

- ☐ Purpose: determine the origin of information (digital signature)
 - ☐ Generate MAC & check MAC shared secret key
 - ☐ The sender & receiver must agree on the secret key in advance
 - □ Does not support non-repudiation
 - ☐ The MAC can be generated from a cryptographic hash function (HMAC) or from a block cipher (OMAC, CBC-MAC, PMAC).

Keyed-hash message authentication code

Pseudo-code:

```
function HMAC(K, m)
  opad = [0x5c × blocksize]
  ipad = [0x36 × blocksize]
  if (length(K) > blocksize) then
  K = hash(K)
  end if
  for i from 0 to length(K) step 1
    ipad[i] ^= K[i]
    opad[i] ^= K[i]
  end for
  return hash(opad || hash(ipad || m))
```

```
HMAC<sub>K</sub>(m) = h((K \oplus opad) || h((K \oplus ipad) || m))

0x5c5c5c...5c5c 0x363636...3636
```


CBC-MAC

- ☐ See more:
 - ☐ How to attack?
 - Reference: CMAC

Example DES or AES