MPHISM.

COMP 5 - 4 (RC)

T.E. (COMP) (Semester – V) (RC) Examination, May/June 2015 COMPUTER HARDWARE DESIGN

Duration: 3 Hours Total Marks			00
	ä	Instructions: 1) Answer any 5 questions, at least one question from each Module. 2) Assume suitable data necessary.	
		MODULE-1	
1.	a)	Explain the difference between structure and behaviour in the digital system context. Illustrate your answer by giving:	6
ŧ		i) A purely structural description	
		ii) A purely behaviour description.	
	b)	Explain the following:	6
		i) Single address instruction format of RIC	
		ii) Shift /Rotate instruction format of RIC.	
	c)	Construct the logic block diagram of hardware associated with the register AR providing for the accomplishment of either of the transfers:	8
		$AR \leftarrow \widetilde{A}\widetilde{R}$	
		AR ←BR	
		Given the proper control signals. Both AR and BR are 4 bit registers.	
,	. a)	Bringout the differences between direct access storage and sequential access storage in terms of hardware designs.	6
	b)	Briefly explain the two address instruction supported by RIC.	6
	C)	Construct a detailed logic block diagram of the hardware realization of both the control and data units specified by the following AHPL description, where a and b are flipflops, x is an input and z is a single output line:	8
		i) a ← x ∨ b;	
		ii) b ← x:	
		\rightarrow (a, \overline{a})/(1, 3)	
		iii) $z = 1$; $b \leftarrow x \oplus b$	
		\rightarrow (1).	

MODULE-II

3.	a)	Write Combinational logic unit description for an n - bit ripple carry adder.	6
	b)	Write the sequence of AHPL steps to implement the fetch and address cycles of RIC.	8
	c)	Give flowchart for compiling of data network and briefly explain it.	6
4.	a)	Draw the flowchart to implement the fetch sequence of 16 bit instruction.	6
	b)	Determine control unit target source list for the first 11 steps of RIC.	6
	c)	Give the implementation of HLT using DEAD END. Also explain the implementation of HLT by return to step 1. Support your answer with neat diagram.	8
		MODULE - III	
			76
5.	a)	Explain hardwired control unit and microprogrammed control unit with neat block diagrams.	8
	b)	Draw neat block diagram of 64 bit section carry look ahead adder and explain how it speeds up the addition process.	6
	c)	Write the sequence of AHPL steps to implement division of fixed point quantities.	6
6.	a)	With neat block diagram explain organization of microprogrammable RIC.	8
	b)	Explain with a neat diagram the hardware organization of floating point coprocessor.	6
	c)	Explain signed multiplication with help of flowchart.	6
		MODULE-IV	
7.	a)	Explain the working of nMOS depletion mode transistor with neat diagram.	6 -
	b)	Explain the n-well process to CMOS fabrication with neat diagrams.	8
	c)	List the advantages of CMOS inverter and explain its working with necessary equations and diagrams.	6
8.	a)	Design CMOS logic gates for the following functions:	8
		i) $z = \overline{(A \cdot B) + (C \cdot D)}$	
		ii) 3 input OR gate.	
	b)	Obtain current voltage characteristics for various bias condition of a MOSFET	5000
		channel.	8
	c)	Explain working of a pass transistor.	4