SIMPLE LINEAR REGRESSION

- The measure of the relationship between two variables is shown by the correlation coefficient. The range of the coefficient lies between -1 to +1. This coefficient shows the strength of the association of the observed data between two variables.
- Linear Regression Equation is given below:

•
$$Y=b_0 + b_1 X$$

Where, X is the independent variable and it is plotted along the x-axis

Y is the dependent variable and it is plotted along the y-axis

Here, the slope of the line is b_1 , and b_0 is the intercept (the value of y when x = 0).

Example 1

Calculate the regression line equation and predict the result for the following data. If x=8.

X	1	2	3	4	5	6	7
Y	9	8	10	12	11	13	14

Solution:

X	Y	X ²	Y ²	X^{Y}
1	9	1	81	9
2	8	4	64	16
3	10	9	100	30
4	12	16	144	48
5	11	25	121	55
6	13	36	169	78
7	14	49	196	98
$\sum X = 28$	$3\sum Y = 77$	$\sum X^2 = 140$	$\sum Y^2 = 875$	$\sum XY = 334$

Table 9.7

$$\overline{X} = \frac{\Sigma X}{N} = \frac{28}{7} = 4,$$

$$\overline{Y} = \frac{\Sigma Y}{N} = \frac{77}{7} = 11$$

$$Y=b_0+b_1(X)$$

METHOD 1:

$$\mathbf{b}_0 = (\sum \mathbf{y})(\sum \mathbf{x}^2) - (\sum \mathbf{x})(\sum \mathbf{x}\mathbf{y})$$

$$n(\sum x^2) - (\sum x)^2$$

$$b_1 = n(\sum xy) - (\sum x) (\sum y)$$

$$n(\sum x^2) - (\sum x)^2$$

$$b_0 = (77) * (140) - (28) * (334)$$

$$b_1 = 7 * 334 - (28 * 77)$$

$$Y=b_0+b_1(X)$$

$$= 7.285 + 0.928 (8)$$

$$= 7.285 + 7.424$$

If x = 8, then y = 14.709, So y = 14.71

METHOD 2:

Х	Y	X - x̄	Y - Ÿ	$(X - \bar{x})(Y - \bar{Y})$	$(X - \bar{x})^2$
1	9	-3	-2	6	9
2	8	-2	-3	6	4
3	10	-1	-1	1	1
4	12	0	1	0	0
5	11	1	0	0	1
6	13	2	2	4	4
7	14	3	3	9	9

 $Y=b_0+b_1(X)$

 $\bar{\mathbf{x}} = \mathbf{4}$

 $\bar{Y} = 11$

 $\mathbf{b}_1 = \underbrace{\sum (\mathbf{X} - \bar{\mathbf{x}})(\mathbf{Y} - \bar{\mathbf{Y}})}_{\sum (\mathbf{X} - \bar{\mathbf{x}})^2}$

= 26

28

= 0.928

 $\mathbf{b}_0 = \mathbf{\bar{Y}} - \mathbf{b}_1(\mathbf{\bar{x}})$

= 7.288

$$Y=b_0+b_1(X)$$

If x=8, then

= 14.712

Y = 14.71

Example 2:

Calculate the regression line equation from the data given below:

Price(Rs.)	10	12	13	12	16	15
Amount	40	38	12	45	27	43
demanded	40	30	45	45	3/	45

Estimate the likely demand when the price is Rs.20.