Controle de Posição em Sistema Massa-Mola com Conexão Flexível

Rafael Anacleto Alves de Souza^{a,1}, Elvis Correia Lopes dos Santos^{a,2}, Guilherme de Oliveira Costa^{a,3} e Pedro de Carvalho Cedrim^{a,4}

 ${}^{\rm a} {\it Instituto} \ de \ Computação, \ Universidade \ Federal \ de \ Alagoas - Campus \ A.C. \ Simões, \ {}^{\rm 1} raas @ic.ufal.br, \ {}^{\rm 2} ecls @ic.ufal.br, \ {}^{\rm 3} goc@ic.ufal.br, \ {}^{\rm 4} pcc@ic.ufal.br, \ {}^{\rm 4} pcc@$

Prof. Dr. Icaro Bezerra Queiroz de Araujo

Resumo—O projeto tem como objetivo o estudo e implementação de um sistema de controle de posição em uma configuração massa-mola com duas massas acopladas por molas, representando situações práticas de sistemas com ligação elástica entre atuador e carga.

O problema central consiste em manter a posição controlada da massa de saída, mesmo diante das oscilações e acoplamentos internos do sistema. Para isso, pretende-se desenvolver um modelo matemático e realizar simulações computacionais.

O foco é a obtenção do modelo matemático que descreve a dinâmica do sistema e sua simulação em malha aberta, servindo de base para o projeto e implementação do controlador de posição.

Keywords—sistema massa-mola, controle de posição, acoplamento elástico, resposta dinâmica, two-mass system

1. Modelagem Matemática

Nesta seção, a modelagem é desenvolvida a partir das Equações Diferenciais Ordinárias (EDO) que regem o sistema, considerando os efeitos do atrito. O sistema consiste em duas massas (M_1,M_2) acopladas por molas (K_1,K_2) e se movendo em um trilho que introduz atrito. O atrito viscoso do trilho e a resistência do ar são modelados como uma única força de amortecimento proporcional à velocidade, com coeficientes b_1 e b_2 para cada massa, respectivamente.

1.1. Equações Diferenciais Ordinárias

Aplicando a Segunda Lei de Newton para cada massa, definindo o deslocamento a partir da posição de equilíbrio, obtemos o seguinte sistema de EDOs:

Para a Massa 1 (M_1) :

A força resultante em M_1 é a soma da força da mola K_1 , da força da mola K_2 , da força de atrito em M_1 e da força externa y(t).

$$\sum F_{M_1} = -K_1 x_1(t) - b_1 \dot{x}_1(t) + K_2(x_2(t) - x_1(t)) + y(t) = M_1 \ddot{x}_1(t) \tag{1}$$

Reorganizando a equação, temos:

$$M_1\ddot{x}_1(t) + b_1\dot{x}_1(t) + (K_1 + K_2)x_1(t) - K_2x_2(t) = y(t)$$
 (2)

Para a Massa 2 (M_2) :

A força resultante em M_2 é a soma da força da mola K_2 e da força de atrito em M_2 .

$$\sum F_{M_2} = -K_2(x_2(t) - x_1(t)) - b_2 \dot{x}_2(t) = M_2 \ddot{x}_2(t)$$
 (3)

Reorganizando a equação, temos:

$$M_2\ddot{x}_2(t) + b_2\dot{x}_2(t) + K_2x_2(t) - K_2x_1(t) = 0$$
 (4)

1.2. Obtenção da Função de Transferência

Para encontrar a função de transferência $G(s) = \frac{X_2(s)}{Y(s)}$, aplicamos a Transformada de Laplace nas EDOs, assumindo condições iniciais nulas:

Para a EDO da Massa 1:

$$(M_1s^2 + b_1s + K_1 + K_2)X_1(s) - K_2X_2(s) = Y(s)$$
 (5)

Para a EDO da Massa 2:

$$-K_2X_1(s) + (M_2s^2 + b_2s + K_2)X_2(s) = 0 (6)$$

Da equação [6], podemos isolar $X_1(s)$:

$$X_1(s) = \frac{(M_2 s^2 + b_2 s + K_2)}{K_2} X_2(s) \tag{7}$$

Agora, substituimos está expressão para $X_1(s)$ na equação [5]:

$$(M_1s^2 + b1s + K_1 + K_2) \left[\frac{(M_2s^2 + b_2s + K_2)}{K_2} X_2(s) \right] - K_2 X_2(s) = Y(s)$$
(8)

Fatorando $X_2(s)$ e reorganizando os termos, encontramos a função de transferência final:

$$G(s) = \frac{X_2(s)}{Y(s)} = \frac{K_2}{(M_1s^2 + b_1s + K_1 + K_2)(M_2s^2 + b_2s + K_2) - K_2^2} \tag{9}$$

1.3. Consideração sobre a Gravidade

Para a configuração vertical, a força de gravidade $(F_G = M \cdot g)$ atua constantemente em ambas as massas. Este efeito é responsável por estabelecer a posição de equilíbrio estático do sistema, ou seja, a gravidade estica as molas até um novo ponto de repouso. O modelo dinâmico e as EDOs fram desenvolvidas para deslocamentos $(x_1(t)$ e $x_2(t))$ a partir deste ponto de equilíbrio. Como a força da gravidade é constante, ela é cancelada pelas forças estáticas das molas no ponto de equilíbrio, e por isso o termo ${\bf g}$ não aparece na função de transferência dinâmica.

Figura 1. Modelagem do sistema massa-mola

2. Análise do Modelo

A estabilidade do sistema em malha aberta é determinada pelos polos da função de transferência, que são as raizes do polinômio característico do denominador:

$$\Delta(s) = (M_1 s^2 + b_1 s + K_1 + K_2)(M_2 s^2 + b_2 s + K_2) - K_2^2 = 0$$
 (10)

Como o polinômio característico agora é um polinômio de quarta

ordem completo, com termos de todas as potências de s. Consequentemente, para quaisquer valores físicos positivos dos parâmetros (M, b, K), os polos da função de transferência possuirão parte real negativa, deslocando-se do eixo imaginário para o semiplano esquerdo do

Isso garante que o sistema em malha aberta seja estável. O comportamento dinâmico esperado para uma entrada degrau é, portanto, uma resposta oscilátoria amortecida, na qual o deslocamento da massa converge para um valor de regime estacionário após um período transitório. A localização exata dos polos e, por conseguinte, as características da resposta transitória – como a frequência de oscilação amortecida e o tempo de acomodação - dependem dos valores numéricos de todos os parâmetros físicos do sistema $(M_1, M_2, b_1, b_2, K_1, K_2)$.

3. Simulação Computacional

Para validar o comportamento dinâmico previsto pelo modelo matemático, foi realizada uma simulação computacional utilizando o software MATLAB/Simulink.

Para a simulação, foram adotados valores preliminares para as constantes das molas, baseados em componentes comerciais comuns (ex: $K_1 = 100N/m$ e $K_2 = 150N/m$). É importante ressaltar que estes valores serão substituídos pelos valores reais medidos.

Figura 2. Resposta ao Degrau

Figura 3. Resposta ao Impulso

3.1. Análise dos Resultados da Simulação

Os resultados da simulação, apresentados nas Figuras [2] e [3], confirmam visualmente a análise teórica do modelo desenvolvido. A resposta ao degrau (Figura 2) exibe o comportamento característico de uma oscilação amortecida, onde o sistema, após um transitório oscilatório, converge para um valor de regime estacionário de aproximadamente 0.01 m. A presença de um sobressinal e a subsequente atenuação da amplitude das oscilações são consistentes com um sistema estável de ordem superior, como previsto.

De forma análoga, a resposta ao impulso (Figura 3) mostra o sistema sendo deslocado de sua posição de equilíbrio e retornando a ela de forma oscilatória e amortecida, até cessar o movimento. A convergência em ambos os casos valida o caráter estável do sistema previsto pelo modelo que inclui os efeitos do atrito.

4. Conclusão Parcial

A presente etapa do projeto culminou no desenvolvimento e simulação de um modelo matemático para o sistema de duas massas com acoplamento flexível Foi obtida uma função de transferência que incorpora os parâmetros físicos do sistema, incluindo as massas, constantes elásticas e coeficientes de atrito, prevendo corretamente a natureza estável e de oscilação amortecida do sistema. A simulação computacional validou este comportamento dinâmico, fornecendo uma base sólida para a continuidade do projeto.

O modelo agora verificado servirá como referência para a próxima etapa, que consistirá na montagem do protótipo fisíco e na sua validação experimental. O objetivo será determinar os parâmetros reais do sistema construído e comparar sua resposta a um sinal de entrada com os resultados simulados.