$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1+2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{-}lpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2k^2r_5+t_1}{(t_1+2k^2t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$
$\sigma_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
·	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1+}^{\#2} +^{\alpha\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_{1}^{#2} +^{\alpha}$

density	
gian der	
Lagrangian	

Unitarity conditions $r_2 < 0 \&\& t_1 < 0$

(No massless particles)

 $-t_1\;\omega_{_A}^{\;lpha_I}\;\omega_{_{Klpha}}^{\;\;\;K}-t_1\;\omega_{_K\lambda}^{\;\;K}\;\omega_{_{K\lambda}}^{\;\;\;I_5}\,\partial_{_I}\omega_{_K\lambda}^{\;\;K}\,\partial^{_I}\omega_{_A}^{\;\;lpha}+rac{2}{3}\,r_2\,\partial^{_B}\omega_{^Blpha_R}^{\;\;eta_A}\,\partial_{_B}\omega_{_{lpha_B}}^{\;\;\;K} \frac{1}{3}r_{2}\partial_{\theta}\omega_{\alpha\beta}^{\beta}\partial_{\kappa}\omega^{\alpha\beta\theta} - \frac{2}{3}r_{2}\partial_{\theta}\omega_{\alpha\beta}^{\beta}\partial_{\kappa}\omega^{\theta\alpha\beta} - r_{5}\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} +$ $\alpha^{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta}$

 $r_5\,\partial_ heta \omega_\lambda^{lpha}\,\partial_\kappa \omega^{ heta \kappa\lambda}$ - $r_5\,\partial_lpha \omega_\lambda^{c}$

 $2t_1 \,\, \omega_{\iota\kappa\theta} \, \partial^\kappa f^{\iota\theta} - t_1 \,\, \omega_{\iota\alpha}^{\ \alpha} \, \partial^\kappa f^{\iota}_{\ \kappa} - t_1 \,\, \omega_{\iota\lambda}^{\ \lambda} \, \partial^\kappa f^{\iota}_{\ \kappa} + \tfrac{1}{2} \, t_1 \, \partial^\alpha f^{\lambda}_{\ \kappa}$ $\frac{1}{2}t_1\partial^\alpha f_{\theta k}\partial^\kappa f_\alpha^{\ \theta} - \frac{1}{2}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_\alpha^{\ \theta} - \frac{1}{2}t_1\partial^\alpha f^\lambda_{\ k}\partial^\kappa f_{\alpha\lambda} +$

 $_{\kappa}^{\lambda}\partial^{\kappa}f_{\lambda\alpha}+$

 $\frac{1}{3} r_2 \, \partial_\kappa \omega^{\alpha\beta\theta} \, \partial^\kappa \omega_{\alpha\beta\theta} + \frac{2}{3} r_2 \, \partial_\kappa \omega^{\theta\alpha\beta} \, \partial^\kappa \omega_{\alpha\beta\theta} - \frac{2}{3} r_2 \, \partial^\beta \omega^{\alpha\lambda}_{\ \ \alpha\beta} + \frac{1}{3} r_3 \, \partial^\beta \omega^{\alpha\lambda}_{\ \ \alpha\beta} + \frac{1}{3} r_4 \, \partial^\beta \omega^{\alpha\lambda}_{\ \ \alpha\beta} + \frac{1}{3} r_5 \, \partial^$ $_{\theta}\partial^{\kappa}f_{\lambda}^{\theta}-t_{1}\,\partial^{\alpha}f^{\lambda}_{\alpha}\,\partial^{\kappa}f_{\lambda\kappa}\,+$ $\frac{1}{2}t_1\partial_{\kappa}f_{\theta}^{\ \lambda}\partial^{\kappa}f_{\lambda}^{\ \theta} + \frac{1}{2}t_1\partial_{\kappa}f^{\lambda}_{\ \lambda}$

 $rac{2}{3}r_2\,\partial^{eta}\omega_{\lambda}{}^{\lambdalpha}\,\partial_{\lambda}\omega_{lphaeta}{}^{\prime}+r_5\,\partial_{lpha}\omega_{\lambda}{}^{lpha}\,\partial^{\lambda}\omega^{eta\kappa}_{}-r_5\,\partial_{eta}\omega_{\lambda}{}^{lpha}\,\partial^{\lambda}\omega^{eta\kappa}_{}$ Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

 $\bar{l}\,k\,t_1$ $f_{1}^{\#2}$ 0 0 0 0 0 0 $f_{1}^{\#1}$ 0 0 0 0 0 0 0 $\omega_{1^-}^{\#2}{}_{lpha}$ $\frac{t_1}{\sqrt{2}}$ 0 0 0 0 0 0 <u>t</u>1 $\omega_{1^{-}}^{\#1}{}_{\alpha}$ $-\bar{l}\,k\,t_1$ $k^2 r_5 \frac{t_1}{\sqrt{2}}$ 0 0 0 0 $\omega_{1+\alpha\beta}^{\#2} \ f_{1+\alpha\beta}^{\#1}$ $-\frac{ikt_1}{\sqrt{2}}$ 0 0 0 0 0 0 $-\frac{t_1}{\sqrt{2}}$ 0 0 0 0 0 0 $k^2 r_5 - \frac{t_1}{2}$ $\omega_{1}^{\#1}{}_{\alpha\beta}$ $-\frac{t_1}{\sqrt{2}}$ $\frac{i k t_1}{\sqrt{2}}$ 0 0 0 0 $\omega_1^{\#1} + \alpha \beta$ $\omega_1^{\#2} + ^{\alpha\beta}$ $\omega_{1}^{\#1} +^{\alpha}$ $f_{1^-}^{\#1} \dagger^\alpha$ $f_1^{\#1} \dagger^{\alpha\beta}$ $\omega_1^{\#2} \uparrow^{\alpha}$ $f_1^{\#2} + \alpha$

 $au_{0}^{\#2}$

0

0

0

0

 $\sigma_0^{\#1}$

0

0

0

1

 $\frac{1}{k^2 r_2 - t_1}$

 $\tau_{0}^{\#1}$

i √2 k

 $(1+2k^2)^2t_1$

 $2k^{2}$

 $\frac{1}{(1+2k^2)^2t_1}$

0

0

i √2 k

 $(1+2k^2)^2t_1$

0

0

 $\tau_{0}^{#2}$ †

 $\sigma_0^{\#1}$ †

	#1	a#1	41
	$\omega_{2}^{*+}\alpha\beta$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2}^{\#,1}\alpha_{\mu}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

constraint reps		#	1	1	3	3	3	2	16
	Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$+2\bar{i}k\sigma_{1^{\bar{-}}}^{\#2}{}^{\alpha}$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$+\bar{l}k\sigma_1^{\#2}\alpha\beta$	$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

	$\omega_{0}^{\#1}+$	/ ₀ + f ^{#2} ₀ +	$\omega_{0^-}^{\#1} \dagger$
$\sigma_{2^{-}}^{\#1}lphaeta\chi$		0	$\frac{2}{t_1}$
$\tau_{2}^{\#1}{}_{\alpha\beta}$ $\sigma_{2}^{\#}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$ τ	$\frac{2}{(1+2k^2)^2t_1}\left -\frac{2}{(1+2k^2)^2t_1}\right $	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1} \frac{1}{(1+k^2)^2}$	0
d, 2, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	$\sigma_2^{#1} + \alpha \beta$	$\tau_{2+}^{\#1} + \alpha \beta \frac{2i}{(1+2k)}$	$\sigma_{2}^{*1} + ^{\alpha\beta\chi}$
	$\sigma_{2}^{\#1}$	$\tau_2^{\#1}$	$\sigma_{2}^{\#1}$.

 $k^2 r_2 - t_1$

0

0

 $\omega_{0}^{\#1}$

 $f_0^{\#2}$

 $f_{0}^{\#1}$

 $\omega_{0}^{\#1}$

0

0

 $\sqrt{2} kt_1$

-¢1

0

0

 $-2 k^2 t_1$

 $-i\sqrt{2}kt_1$

0

0

0

0 0

	Massive particle		
?	Pole residue:	$-\frac{1}{r_2}$ >	
$\frac{3}{2}$	Polarisations:	1	
$\overline{k^{\mu}}$	Square mass:	$\frac{t_1}{r_2} > 0$	
?	Spin:	0	
·	Parity:	Odd	

particle				
idue:	$-\frac{1}{r_2} > 0$			
tions:	1			
mass:	$\frac{t_1}{r_2} > 0$			
	0			
	Odd			