Digital Control Systems - Chapter 2 Notes

Discrete-Time Systems & z-Transform

2.1 Introduction

- Discrete-Time System is one whose operations is described (modeled) by a set of difference equations
- The transform used in the analysis of linear time-invariant discrete-time systems is the z-transform

2.2 Discrete-Time Systems

Examine an example of a Digital Control System

```
f = imread('DigitalControlSystem.png'); imshow(f)
title('Digital Control System Example')
```

Digital Control System Example

- Digital Computer performs the comensation function within the system
- A/D converter converts error signal from continuous-time, into a form that's processed by computer
- D/A converter at output to convert binary signals of computer into form necessary to drive the Plant

Consider example where A/D converter, digital computer, and D/A converter are replaced with CT proportional-integral controller

$$m(t) = K_p e(t) + K_I \int_0^t e(\tau) d\tau$$

where e(t) is controller input, m(t) is controller output signal, and K_p and K_I are constant gains ndetermined by design process

Controller can be realized using digital computer because it can multiply, add, and integrate numerically

Can use Rectangular rule \rightarrow the area under a curve is approximated by the sum of the rectangular areas underneath it

The numerical integral of e(t) can be written

$$x(kT) = x[(k-1)T] + Te(kT)$$

where T is the numerical algorithm step size, in seconds. Then the digital compensator becomes

$$m(kT) = K_p e(kT) + K_I x(kT)$$

The general form for a *first-order difference equation* can be formed from the equations above omitting *T* for convenience

$$x(k) = b_1 e(k) + b_0 e(k-1) - a_0 x(k-1)$$

This equation is $\underline{\text{first-order}}$ since the signals from only the last sampling instant appear explicitly in the equation. The general form on an nth-order linear difference equation is

$$x(k) = b_n e(k) + b_{n-1} e(k-1) + ... + b_0 e(k-n) - a_{n-1} x(k-1) - ... - a_0 x(k-n)$$

Two approaches for design of digital compensators

- 1. Analog compensator may be designed and then converted by some approxiamte procedure to a digital compensator (example above)
- 2. Design a device that realizes a digital filter

Problems of the Control System Designer:

- 1. Choosing T, the sampling period
- 2. Choosing *n*, the order of the difference equation
- 3. Choosing a_i and b_i , the filter coefficients for the digital filter

2.3 Transform Methods

The function E(z) is defined as a power series in z^{-k} with coefficients equal to the values of the number sequences $\{e(k)\}$

•
$$E(z) = z[e(k)] = e(0) + e(1)z^{-1} + e(2)z^{-1} + \dots$$

•
$$e(k) = z^{-1} \{ E(z) \} = \frac{1}{2\pi j} \oint E(z) z^{k-1} dz, j = \sqrt{-1}$$

Compact form of single-sided z-transform

•
$$E(z) = z\{e(k)\} = \sum_{k=0}^{\infty} e(k)z^{-k}$$

If the sequence e(k) is generated from a time function e(t) by sampling every Tseconds, e(k) is understood to be e(kT)

Example 2.2

Given that e(k) = 1 for all k, find E(z).

$$E(z) = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}, \qquad |z^{-1}| < 1$$

```
syms k
ek = 1^k;
Ez = ztrans(ek)
```

Ez =

$$\frac{z}{z-1}$$

```
syms k T
ek = 1^(k*T);
Ez = ztrans(ek)
```

Ez =

$$\frac{z}{z-1}$$

Example 2.3

Given that $e(k) = e^{-akT}$, find E(z), which can be written as a power series form as

$$E(z) = 1 + e^{-aT}z^{-1} + e^{-2aT}z^{-2} + \dots$$
$$= 1 + (e^{-aT}z^{-1}) + (e^{-aT}z^{-1})^2 + \dots$$

$$E(z) = \frac{1}{1 - e^{-aT}z^{-1}} = \frac{z}{z - e^{-aT}}, \quad |e^{-aT}z^{-1}| < 1$$

$$ek = e^{-Tak}$$

Ez =

$$\frac{z}{z - e^{-Ta}}$$

2.4 Properties of z-Transform

Several properties of the z-Transform will now be developed

Addition and Subtraction

$$z[e_1(k) \pm e_2(k)] = E_1(k) \pm E_2(k)$$

Multiplication by a Constant - Linearity Property

$$z[\operatorname{ae}(k)] = \operatorname{az}[e(k)] = \operatorname{aE}(z)$$

Real Translation

Complex Translation

Initial Value

$$e(0) = \lim_{z \to \infty} E(z)$$

Since
$$E(z) = e(0) + e(1)z^{-1} + e(2)z^{-2} + \dots$$

= $e(0) + 0 + 0 + 0 + \dots$

Thus,
$$e(0) = \lim_{z \to \infty} E(z)$$

Final Value

$$\lim_{n\to\infty} e(n) = \lim_{z\to 1} (z-1)E(z)$$

Example 2.7

To illustrate the initial-value property and the final-value property, consider the z-transform of e(k) = 1, k = 0, 1, 2, ...

$$E(z) = z\{1\} = \frac{z}{z-1}$$

Applying the initial-value property, we see that

$$e(0) = \lim_{z \to \infty} \frac{z}{z - 1} = \lim_{z \to \infty} \frac{1}{1 - 1/z} = \frac{1}{1 - 1/\infty} = 1$$

Since the final value of e(k) exists, we may apply the final-value property:

$$\lim_{k \to \infty} e(k) = \lim_{z \to 1} (z - 1)E(z) = \lim_{z \to 1} (z - 1) \left(\frac{z}{z - 1}\right) = \lim_{z \to 1} z = 1$$

2.5 Finding z-Transforms

Sequence	Transform
e(k)	$E(z) = \sum_{k=0}^{\infty} e(k)z^{-k}$
$a_1e_1(k) + a_2e_2(k)$	$a_1E_1(z) + a_2E_2(z)$
$e(k-n)u(k-n); n \ge 0$	$z^{-n}E(z)$
$e(k+n)u(k); n \ge 1$	$z^{n}\bigg[E(z) - \sum_{k=0}^{n-1} e(k)z^{-k}\bigg]$
$\varepsilon^{akT}e(k)$	$E(z\varepsilon^{-aT})$
ke(k)	$-z\frac{dE(z)}{dz}$
$e_1(k) * e_2(k)$	$E_1(z)E_2(z)$
$e_1(k) = \sum_{n=0}^k e(n)$	$E_1(z) = \frac{z}{z-1} E(z)$
Initial value: $e(0) = \lim_{z \to \infty} E(z)$	lette v favour, endgaue aij p

Sequence	Transform
$\delta(k-n)$	Z ⁻ⁿ
1	$\frac{z}{z-1}$
k	$\frac{z}{(z-1)^2}$
k^2	$\frac{z(z+1)}{(z-1)^3}$
a^k	$\frac{z}{z-a}$
ka ^k	$\frac{az}{(z-a)^2}$
sin ak	$\frac{z\sin a}{z^2 - 2z\cos a + 1}$
cos ak	$\frac{z(z-\cos a)}{z^2-2z\cos a+1}$
a ^k sin <i>bk</i>	$\frac{az \sin b}{z^2 - 2az \cos b + a^2}$
a ^k cos bk	$\frac{z^2 - az\cos b}{z^2 - 2az\cos b + a^2}$

Example 2.8

syms a b k ek = $a^k*\cos(b^*k)$

 $\mathsf{ek} = a^k \cos(b \, k)$

Ez = ztrans(ek)

Ez =

$$-\frac{z\left(\cos(b) - \frac{z}{a}\right)}{a\left(\frac{z^2}{a^2} - \frac{2z\cos(b)}{a} + 1\right)}$$

pretty(Ez)

syms a b k T
Ez = ztrans(a^(k*T)*cos(b*k*T))

Ez =

$$-\frac{z\left(\cos(T\ b) - \frac{z}{a^T}\right)}{a^T\left(\frac{z^2}{a^{2T}} - \frac{2z\cos(T\ b)}{a^T} + 1\right)}$$

pretty(Ez)

Thus the relationship is

$$z\{a^{kT}\cos(bkT)\} = \frac{z^2 - a^T z \cos bT}{z^2 - 2a^T z \cos bT + a^{2T}}$$

Example 2.9

Find z-transform of $E(s) = \frac{s^2 + 4s + 3}{s^3 + 6s^2 + 8s}$

First find partial fraction expansion

[]

$$E(s) = \frac{0.375}{s+4} + \frac{0.25}{s+2} + \frac{0.375}{s}$$

Next find the z-transform of each term in the expansion:

$$E(z) = 0.375 \frac{z}{z - 1} + 0.25 \frac{z}{z - e^{-2T}} + 0.375 \frac{z}{z - e^{-4T}}$$

For T = 0.1, we cna express E(z) as a ratio of two polynomials:

$$E(z) = 0.375 \frac{z}{z - 1} + 0.25 \frac{z}{z - 0.8187} + 0.375 \frac{z}{z - 0.6703}$$
$$= \frac{z^3 - 1.658z^2 + 0.6804z}{z^3 - 2.489z^2 + 2.038z - 0.5488}$$

Es =

s^2 + 4 s + 3

----s^3 + 6 s^2 + 8 s

Continuous-time transfer function.

R = 3×1 0.3750 0.2500 0.3750 P = 3×1 -4 -2

```
K =
```

[]

```
for i=1:n-1
    pz(i) = exp(P(i)*T);
end
[numz,denomz] = residue(R,pz,K)
```

```
numz=conv(numz,[1 0]);
Ez = tf(numz,denomz,T)
```

Ez = $z^3 - 1.658 z^2 + 0.6804 z$ $z^3 - 2.489 z^2 + 2.038 z - 0.5488$ Sample time: 0.1 seconds

Discrete-time transfer function.

Alternative Method using ztrans function

T = 0.1;
syms s t k z
Es =
$$(s^2+4*s+3)/(s^3+6*s^2+8*s)$$

Es =
$$\frac{s^2 + 4s + 3}{s^3 + 6s^2 + 8s}$$

et = $\frac{e^{-2t}}{4} + \frac{3e^{-4t}}{8} + \frac{3}{8}$

ekT = $\frac{e^{-\frac{k}{5}}}{1} + \frac{3e^{-\frac{2k}{5}}}{1} + \frac{3}{5}$

Ez =
$$\frac{3z}{8(z-1)} + \frac{z}{4(z-e^{-\frac{1}{5}})} + \frac{3z}{8(z-e^{-\frac{2}{5}})}$$

pretty(Ez)

2.6 Solution of Difference Equations

2.7 The Inverse z-Transform

- Power Series Method Divide Numerator by Denominator
- Partial-Fraction Expansion Real and Complex Poles
- Inversion-Formula Method

[residue]_{z=a} =
$$\frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z-a)^m E(z) z^{k-1}]|_{z=a}$$

Example 2.15

Consider the function E(z) from Examples 2.12 and 2.13

$$E(z) = \frac{z}{(z-1)(z-2)}$$

Substitute equation for residues

$$e(k) = \frac{z^k}{z-2}|_{z=1} + \frac{z^k}{z-1}|_{z=2} = -1 + 2^k$$

2.8 Simulation Diagrams and Flow Graphs

2.9 State Variables

Example 2.18

It is desired to find a state-variable model of the system described by the difference equation

$$y(k + 2) = u(k) + 1.7y(k + 1) - 0.72y(k)$$

Let

$$x_1(k) = y(k)$$

 $x_2(k) = x_1(k+1) = y(k+1)$

Then

$$x_2(k+1) = y(k+2) = u(k) + 1.7x_2(k) - 0.72x_1(k)$$

or, from these equations, we write

$$x_1(k+1) = x_2(k)$$

$$x_2(k+1) = -0.72x_1(k) + 1.7x_2(k) + u(k)$$

$$y(k) = x_1(k)$$

We may express these equations in vector matrix form of (2-49) and (2-50) as

$$\mathbf{x}(k+1) = \begin{bmatrix} 0 & 1 \\ -0.72 & 1.7 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ -1 \end{bmatrix} u(k)$$

$$y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}(k)$$

- 2.10 Other State-Variable Formulations
- 2.11 Transfer Functions
- 2.12 Solutions of State Equations
- 2.13 Linear Time-Varying Systems