

UNIVERSITY ADMIT ELIGIBILITY PREDICTOR

A PROJECT REPORT

TEAM ID: PNT2022TMID08646

Submitted by

YAZHINI R(727619BCS086) SABARI RAJ KUMAR M (727619BCS068)

LOKAJANANI K C(727619BCS032) SHYAM D (727619BCS078)

in partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE AND ENGINEERING
Dr. MAHALINGAM COLLEGE OF
ENGINEERING & TECHNOLOGY

(Autonomous)

POLLACHI - 642 003

NOV 2022

CONTENTS

1. Introduction	
	1.1 Project Overview
	1.2 Purpose
2. Literature Survey	
	2.1 Existing Problem
	2.2 References
	2.3 Problem Statement Definitions
3. Ideation & Proposed Solution	
	3.1 Empathy Map Canvas
	3.2 Ideation & Brainstorming
	3.3 Proposed Solution
	3.4 Problem Solution Fit
4. Requirement Analysis	
	4.1 Functional Requirement
	4.2 Non-Functional Requirement
5. Project Design	
	5.1 Data Flow Diagrams
	5.2 Solution & Technical Architecture
	5.3 User Stories
6. Project Planning & Scheduling	
	6.1 Sprint Planning & Estimation
	6.2 Sprint Delivery Schedule
7. Coding & Solutioning	
	7.1 Feature 1
	7.2 Feature 2
8. Testing	
	8.1 Test Cases
	8.2 User Acceptance Testing
9. Results	
10.41. (0.75.)	9.1 Performance Metrics
10. Advantages & Disadvantages	

11. Conclusion	
12. Future Scope	
13. Appendix	
13. Appendix	
	13.1 Source Code
	13.2 GitHub

1. INTRODUCTION

The world's business sector is escalating and is constantly seeking information and experiences that are commonly beneficial to individuals. Young specialists who need to stay in their current positions are always looking for advanced degrees to help them address their skills and information. As such, the number of her sophomores applying for graduation exams has increased over the past decade. One of her main concerns is getting into fantasy her university. You can see that undergraduates are actually choosing to get their education at prestigious universities. Furthermore, when it comes to international alumni, the United States is the main trend for most of them. The most prestigious universities offer a wide range of courses accessible in any order, exceptionally accredited teaching and education programs, an international second Research scholarships for degrees are available.

According to Gauges, more than 4,444 of her 10 million international sophomores are enrolled in her 4,200+ colleges and universities, both private and public. In general, the number of undergraduates concentrated in America comes from Asian countries such as India, Pakistan, Sri Lanka, Japan and China. Select the United Kingdom, Germany, Italy, Australia, Canada as well as the United States. These countries are witnessing a rapid increase in the number of individuals seeking more advanced investigations. The basic reason why sophomores go on to master's programs in foreign graduate schools is that the number of vacancies is low and the number of people in these positions in each country is huge. This has led many professional undergraduates to pursue postgraduate studies. You can see that there are quite a few bachelor's degrees and master's degrees in computer science at US universities. The focus of this study applies to these undergraduate degrees. Many schools in the US follow comparative requirements for undergraduate accreditation. Schools consider several variables, including placement in fitness assessments and school performance ratings. English rankings are determined by exposure in English proficiency tests such as TOEFL and IELTS.

The University's Admissions Advisory Board makes decisions regarding the acceptance or rejection of specific young researchers based on the general profile of the applicant's application. Records recorded with this company are marked with informative areas. Acknowledgment is a 400-row data set containing seven different autonomic factors. ie

- Graduate Record Examination 1 (GRE) score. The score consists of 340 foci.
- English as a Foreign Language (TOEFL) test score. It consists of 120 priority areas.
- Uni.Rating. Shows the position of colleges offering bachelor's degrees among various colleges. Your score will be out of 5.
- Statement of Purpose (SOP), a record written to reveal the life, motivations and inspirations of a selected degree/college applicant. The score consists of five focal points.
- The strength of a letter of recommendation (LOR) verifies the applicant's professional experience, falsifies validity, supports certainty, and guarantees your competence. The score consists of five focal points.
- Undergraduate GPA (CGPA) from 10.
- Research experience (either 0 or 1) that could support the application, such as distributing research papers at conferences or filling out as a right-hand exam for university faculty. One ward variable can be anticipated which is possibility of affirmation, that is as per the input given will be going from 0 to 1.

1.1 PROJECT OVERVIEW

PRE-REQUISTIES

Anaconda Installation:

Anaconda is a distribution of the Python and R programming languages for scientific computing that aims to simplify package management and deployment. The distribution includes datascience packages suitable for Windows, Linux, and macOS. Developed and maintained by Anaconda. Founded in 2012 by Peter Wang and Travis Olyphant. As Anaconda, also known as Anaconda Distribution or Anaconda Individual Edition, the company's other products include his Anaconda Team Edition and Anaconda Enterprise Edition, neither of which are free.

WAY TO INSTALL ANACONDA:

STEP 1: Download and Anaconda

Individual Edition is now ANACONDA DISTRIBUTION

The world's most popular opensource Python distribution platform

STEP 2: Install the Anaconda

STEP 3: Click I Agree

STEP 4: Choose the Installation Location

STEP 5: Installing the Requiring packages

STEP 6: Setting up the base environment

STEP 7: Successfully Installed and check the Anaconda Navigator working or not

Python packages installation:

Step 1: Open the anaconda navigator in the start menu

Step 2: Open the CMD.exe prompt

Step 3: Install the NUMPY package

To enter the numpy package enter the command in the CMD.exe

Command: Pip install numpy

Numpy:

This package is used to perform numerical computations. This package comes pre-installed with Anaconda. NumPy is used for manipulating arrays. NumPy stands for Numerical Python.

Step 4: Install the pandas package.

To enter the pandas package enter the command in the CMD.exe

Command: Pip install pandas

Pandas:

Pandas is one of the most widely used Python libraries for data science. It provides powerful and easy-to-use structure and data analysis tools. This package comes pre-installed with Anaconda. An open source library built on top of the NumPy library. A Python package that provides various data structures and operations for working with numerical data and time series. Mainly, it's common for data to be imported and analyzed much easier. Pandas is fast, providing users with high performance and productivity.

```
Anaconda Prompt (anaconda3) - pip install pandas

(base) C:\Users\DELL>pip install pandas

Requirement already satisfied: pandas in c:\users\dell\anaconda3\lib\site-packages (1.4.2)

Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\dell\anaconda3\lib\site-packages (from pandas) (2.8.2)

Requirement already satisfied: numpy>=1.18.5 in c:\users\dell\anaconda3\lib\site-packages (from pandas) (1.21.5)

Requirement already satisfied: pytz>=2020.1 in c:\users\dell\anaconda3\lib\site-packages (from pandas) (2021.3)

Requirement already satisfied: six>=1.5 in c:\users\dell\anaconda3\lib\site-packages (from python-dateutil>=2.8.1->panda
s) (1.16.0)
```

Step 5: Install the Matplotlib package.

To enter the Matplotlib package enter the command in the CMD.exe

Command: Pip install Matplotlib

Matplotlib:

Matplotlib is a comprehensive library for creating static, animated and interactive visualizations in Python. This package comes pre-installed with Anaconda. Matplotlib is a nice visualization library in Python for 2D plotting of arrays. Matplotlib is a cross-platform data visualization library based on NumPy arrays and designed to work with the wider SciPy stack. Introduced by John Hunter in 2002.

Step 6: Install the Scikit-learn package.

To enter the Scikit-learn package enter the command in the CMD.exe

Command: Pip install Scikit-learn

Scikit-learn:

This is a machine learning library for the Python programming language. This package comes pre-installed with Anaconda. Scikit Learn in Python is primarily used to focus on modeling in Python. It was only focused on modeling, not loading data.

Step 7: Install the Flask package.

To enter the Flask package enter the command in the CMD.exe

Command: Pip install Flask

Flask:

Flask is a lightweight WSGI web application framework Flask is a web application framework written in Python. It is developed by Armin Ronacher, who leads an international group of Python enthusiasts called Pocco. Flask is based on the WSGI toolkit tools and the Jinja2 template engine. Both are Pocco projects.

PROJECT FLOW

You will go through all the steps mentioned below to complete the project.

- User interacts with the UI (User Interface) to enter Data
- The entered data is analyzed by the model which is integrated
- Once model analyses the input the prediction is showcased on the UI

To accomplish this, we have to complete all the activities and tasks listed below

- Data Collection.
 - Collect the dataset or Create the dataset
- Data Preprocessing.
 - Import the Libraries.
 - Importing the dataset.
 - Checking for Null Values.
 - o Data Visualization.
 - Taking care of Missing Data.
 - o Label encoding.
 - One Hot Encoding.
 - o Feature Scaling.
 - Splitting Data into Train and Test.
- Model Building
 - Training and testing the model
 - Evaluation of Model
- Application Building
 - Create an HTML file
 - Build a Python Code

PROJECT OBJECTIVES

- To understand regression and classification problems.
- To grab insights from data through visualization.
- Applying different Machine Learning algorithms to determine the probability of acceptance in a particular university.
- Evaluation metrics build a web application using the Flask framework

PROJECT STRUCTURE

Create a Project folder that contains files as shown below

DATA COLLECTION

The path to common information varies by project type. ML projects use real-time information. Information indexes can be collected from a variety of sources such as documents, data sets, sensors, and other sources, using free information collection from the Internet. Kaggle and the UCI Machinelearning Repository are the most commonly used repositories for sorting

information for machine learning models. Kaggle is probably the most visited website used for information gathering. Collect the dataset or Create the dataset.

DATA PRE-PROCESSING

Importing the Libraries:

It is important to import all the necessary libraries such as pandas, numpy, matplotlib.

Numpy-

It is an open-source numerical Python library. It contains a multi-dimensional array and matrix data structures. It can be used to perform mathematical operations on arrays such as trigonometric, statistical, and algebraic routines.

• Pandas-

It is a fast, powerful, flexible and easy to use open-source data analysis and manipulation tool, built on top of the Python programming language.

• Seaborn-

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics.

• Matplotlib-

Visualisation with python. It is a comprehensive library for creating static, animated, and interactive visualizations in Python

Reading the Datasets:

You might have your data in .csv files, .excel files

Let's load a .csv data file into pandas usingread_csv() function. We will need to locate the directory of the CSV file at first

```
#read_csv is a pandas function to read csv files
data = pd.read_csv('Admission_Predict.csv')
```

If your dataset is in some other location, Then see below command

Data= pd.read_csv(r"File_location/filename.csv")

Note: r stands for "raw" and will cause backslashes in the string to be interpreted as actual backslashes rather than special characters.

Our Dataset Admission_Predict contains following Columns 1.Serial No.

- 2.GRE Score
- 3.TOEFL Score
- 4. University Rating
- 5.SOP
- 6.LOR
- 7.CGPA
- 8. Chance of Admit

Handling Missing Values:

After loading it is important to check the complete information of data as it can indicate many of the hidden information such as null values in a column or a row

Check for the null values. if it is present then the following steps can be performed

- Imputing data using the Imputation method in sklearn.
- Filling NaNvalues with mean, median, and mode using fillna() method.

You can check the null values with the function isnull().any()

```
data.isnull().any()
 GRE Score
                     False
 TOEFL Score
                     False
 University Rating
                     False
 SOP
                     False
 LOR
                     False
                     False
 Research
 Chance of Admit
                     False
 dtype: bool
```

• If the dataset contains null values then the above functions return as true. But if you look at the dataset you can observe that the dataset does not have any null values.

• You can also check the number of null values present in the columns by the using isnull().sum() function

As we don't have categorical data then we can skip the steps of label encoding and one-hot encoding

Data Visualization:

Data visualization is where a given dataset is presented in a graphical format. It helps the detection of patterns, trends and correlations that might go undetected in text-based data. Understanding your data and the relationship present within it is just as important as anyalgorithm used to train your machine learning model. Machine learning models will perform poorly on data that wasn't visualized and understood properly.

To visualize the dataset we need libraries called Matplotlib and Seaborn. The Matplotlib library is a Python 2D plotting library that allows you to generate plots, scatter plots, histograms, bar charts etc.

Splitting Dependent And Independent Columns:

We need to split our dataset into the matrix of independent variables and the vector or dependent variable. Mathematically, Vector is defined as a matrix that has just one column.

• To read the columns, we will useiloc of pandas (used to fix the indexes for selection) which takes two parameters — [row selection, column selection].

Let's split our dataset into independent and dependent variables.

```
x=data.iloc[:,0:7].values
x

y=data.iloc[:,7:].values
y
```

From the above code ":" indicates that you are considering all the rows in the dataset and "0:7" indicates that you are considering columns 0 to 7 such as year, month, and day as input values and assigning them to variable x. In the same way in the second line ":" indicates you are considering all the rows and "7:" indicates that you are considering only the last column as output value and assigning them to variable y.

Let's Check the shape of x and Y

```
x.shape
(1991, 7)
y.shape
(1991, 1)
```

 You can see in x we have 1991 rows with 7 columns and y has 1 column with the same number of rows

Splitting The Data Into Train And Test:

To train the model, first split the model into two segments: "training data" and "testing data". The classifier is trained using a 'training data set' and the performance of the classifier is tested on a non-fitting 'test data set'.

Training Set: The training Set is material for computers to learn how to process data. The AI uses computation to do the training part. The training dataset is used to learn and tune the classifier parameters.

Test set: A set of unseen data used solely to evaluate the performance of thefully displayed classifier.

When you are working on a model and you want to train it, you obviously have a dataset. But after training, we have to test the model on some test dataset. For this, you will need a dataset that is different from the training set you used earlier. But it might not always be possible to haveso much data during the development phase. In such cases, the solution is to split the dataset into two sets, one for training and the other for testing.

To help us with this task, the Scikit library provides a tool, called the Model Selection library. There is a class in the library which is, 'train_test_split.' Using this we can easily split the dataset into the training and the testing datasets in various proportions.

The train-test split is a technique for evaluating the performance of a machine learning algorithm.

- Train Dataset: Used to fit the machine learning model.
- Test Dataset:Used to evaluate the fit machine learning model.

```
from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test = train_test_split(x,y,test_size = 0.2,random_state = 10)
```

In general, you can allocate 80% of the dataset to the training set and the remaining 20% to the test set. We will create 4 sets

- x_train
- x_test
- y_train

• y_test.

There are a few other parameters that we need to understand before we use the class:

- test_size: this parameter decides the size of the data that has to be split as the test dataset. This is given as a fraction. For example, if you pass 0.5 as the value, the dataset will be split 50% as the test dataset and remaining a train dataset
- random_state: here you pass an integer, which will act as the seed for the random number generator during the split. Or, you can also pass an instance of the Random_state class, which will become the number generator. If you don't pass anything, the Random_state instance used by np.random will be used instead.

1.2 PURPOSE

This is the project for a new web-based University Admit Eligibility Predictor. Predictor is an ML based application that asks for the users to input their academic transcripts data and calculates their chances of admission into the University Tier that they selected. It also provides an analysis of the data and shows how chances of admissions can depend on various factors. This document describes the scope, objectives and goals of the system. In addition to describing the non-functional requirements, this document models the functional requirements with use cases, interaction diagrams and class models. This document is intended to direct the design and implementation of the target system in an object-oriented language.

2. LITERATURE SURVEY

2.1 Existing Problem

It's almost admission season and I've couple of friends who are in panic mode waiting for a call from the universities they've applied at.

This made me think — How can we predict whether a student will get an admit or not? What are the parameters for selection? Can it be mathematically expressed?

All of these questions started popping up. This is the main existing problem.

2.2 References

➤ https://ieeexplore.ieee.org/document/9418279

A person's education plays a vital role in their life. While planning for education students often have several questions regarding the courses, universities, job opportunities, expenses involved, etc. Securing admission in their dream university is one of their main concerns. It is seen that often students prefer to pursue their education from universities which have global recognition. And when it comes to international students the first choice of the majority of them is the United States of America. With the majority of worlds highly reputed universities, wide range of courses offered in every sector, highly accredited education system and teaching, scholarships provided to students, best job market and many more advantages make it the dream destination for the international students. According to research, there are above 8 million international students studying in more than 1700 public and 2500 private universities and colleges across the USA. (MasterPortal (2017)).

➤ https://ieeexplore.ieee.org/document/9410717

Bayesian Networks were used by (Thi et al. (2007)) to create a decision support system for evaluating the application submitted by international students in the university. This model was designed to predict the performance of the aspiring students by comparing them with the performance of students currently studying at the university and who had similar profiles during their application. In this way based on the current students' profile, the model predicted whether the aspiring student should be granted admission to the university. Since the comparisons were made only with the students who were already admitted to the university and the data of the students who were denied admission were not included in the research this model proved to be less efficient due to the problem of class imbalance.

➤ https://ieeexplore.ieee.org/document/6416521

(Abdul Fatah S; M (2012)) developed a model that can provide a list of universities/colleges were the best suitable for a student based on their academic records and college admission criteria. The model was developed by applying data mining techniques and knowledge discovery rules to the already existing in-house admission prediction system of the university. (Mane (2016)) conducted similar research that predicted the chance of a student getting admission to college based on their Senior Secondary School, Higher Secondary School, and Common Entrance Examination scoresusing the pattern growth approach to association rule mining.

➤ https://dl.acm.org/doi/10.1145/3388818.3393716

Acharya et al. (July 2020) proposed a comparative approach by developing four machine learning regression models: linear regression, support vector machine, decision tree, and random forest for predictive analytics of graduate admission chances. Then compute error functions for the developed models and compare their performances to select the best performing model out of these developed models the linear regression is the best performing model with an R2 score of 0.72. Janani Pet al. proposed a developed project that uses machine learning techniques specifically a decision tree algorithm based on the test attributes like GRE, TOEFL, CGPA, research papers, etc. According to their scores, the possibility of a chance of admission is calculated. The developed model has 93% accuracy.

GRADE system was developed by (Waters and Miikkulainen (2013)) to support the admission process for the graduate students in the University of Texas Austin Department of Computer Science. The main objective of the project was to develop a system that can help the admission committee of the university to take better and faster decisions. Logistic regression and SVM were used to create the model, both models performed equally well and the final system was developed using Logistic regression due to its simplicity. The time required by the admission committee to review the applications was reduced by 74% but human intervention was required to make the final decision on status if the application. (Nandeshwar et al. (2014)) created a similar model to predict the enrolment of the student in the university based on the factors like SAT score, GPA score, residency race etc. The Model was created using the Multiple Logistic regression algorithm, it was able to achieve accuracy rate of 67% only.

Analysis & Prediction of American Graduate Admissions Process by (Bhavya Ghai (2018)) This project tries to understand American Graduate Admissions process by specifically analyzing MS Computer Science application over past 5 years. They have tried to model admissions data based on patterns extracted from data and domain knowledge. The key to analyzing Graduate Admissions data is to analyze data in buckets rather than considering all in one bucket. The project aims to help students choose the right Universities by predicting whether a student will be admitted to a specific University.

This model uses four types of machine learning algorithms Decision Tree, Random Forest, AdaBoost and Naive Bayes and achieved highest accuracy of 69.79.

Applications of Supervised Learning Techniques on Undergraduate Admissions Data by (Thomas Lux,Randall Pittman,Maya Shende,Anil Shende(2016)) Here they discussed about the use of supervised learning techniques,namely perceptrons and support vector machines, in predicting admission decisions and enrollment based on historical applicant data. They show through experimental results that a classifier, trained and validated on previous years' data, can identify with reasonable accuracy those applicants that the admissions office is likely to accept (based on historical decisions made by the admissions office), and of the accepted applicants, those ones that are likely to enroll at the institution. Additionally, the results from our feature selection experiments can inform admissions offices of the significance of applicant features relative to acceptance and enrollment, thus aiding the office in future data collection and decision making. They achieved a highest accuracy of 94.57 in this model.

Student Admission Predictor by (HimanshuSonaware(2017)) Apart from these the education consultancy firms there are few websites and blogs that guide the students on the admission procedures. The drawback of the currently available resources is that they are very limited and also, they are not truly dependable taking into consideration of their accuracy and reliability. The aim of this research is to develop a system using machine learning algorithms. It will help the students to identify the chances of their application to a university being accepted. Also, it will help them in identifying the universities which are best suitable for their profile and also provide them with the details of those universities. A simple user interface will be developed for the users to access the SAP system.

Graduate Admission Prediction Using Machine Learning by (K. JeevanRatnakar, G.Koteswara Rao,DurgaPrasanth Kumar(2020)) This paper addresses machine learning models to predict the chance of a student to be admitted to a master's program. This will assist students to know in advance if they have a chance to get accepted. The machine learning models are multiple linear regression, k-nearest neighbor, random forest, and Multilayer Perception. Experiments show that the Multilayer Perception model surpasses other models with an accuracy of 95.43.

2.3 Problem Statement Definition

Educational institutions have always played an important role in society for development and growth of any individual. There are many college prediction apps and websites are being maintained, but using them is endless to some extent, due to the lack of accurate information from colleges. The problem statement is to design a college prediction system and to provide a probabilistic insight into college administration for overall rating, cut-offs of the colleges, admission intake and preferences of students. It helps students avoid spending time and money on counselor and stressful research related to finding a suitable college. We aim to provide a place which would give a perfect output as to how likely it is to enter into a university given upon their own details.

3. IDEATION AND PROPOSED SOLUTION

Ideation is the process where you generate ideas and solutions through sessions such as Sketching, Prototyping, Brainstorming, Brainwriting, Worst Possible Idea, and a wealth of other ideation techniques. Ideation is also the third stage in the Design Thinking process. In this project the ideation phase consist of,

- Empathy Map
- Brainstorming
- Proposed Solution
- Problem Solution Fit

3.1 Empathy Map

3.2Ideation & Brainstorming

2.1 Proposed Solution

1	D 11	
1.	Problem	Educational institutions have always played an important
	Statement	role in society for development and growth of any
	(Problem to	individual. There are many college prediction apps and websites are being maintained, but using them is endless to
	besolved)	websites are being maintained, but using them is endiess to some extent, due to the lack of accurate information from colleges. The problem statement is to design a college prediction system and to provide a probabilistic insight into college administration for overall rating, cut-offs of the colleges, admission intake and preferences of students. It helps students avoid spending time and money on counselor and stressful research related to finding a suitable college. We aim to provide a place which would give a perfect output as to how likely it is to enter into a university given upon their own details
2.	Idea/	University and College research being one part of the
	Solution	university application process is itself an arduous and
	description	lengthy task. These issues being a big problem for
		students have not been solved till now. There are
		recognized sites which filter the best universities and
		colleges based on the location, tuition fees, major and
		degree but none of them have use machine learning
		algorithm to solve the issue. Hence, we have done this
		research project to solve that issue to some extent with
		the use of data mining techniques.

3.	Novelty /	University Application process itself	
	Uniquenes	being a tedious task Students needs lots	
	S	of endeavor and determination for	
		completing overall application process. It	
		would definitely be easier forstudents if	
		they get relief from step of selecting	
		bestsuited universities and collegesfor	
		application.	

4.	Social	Results of this project are not applicable to college
	Impact /	graduates of each and every major. Asthere was
	Customer	limitation of information on datasetthis system
	Satisfaction	could not predict and recommenduniversities to
		students of every major.
		, s

5.	Business Model (Revenue Model)	From this project, financially can earn from the students admission fees but while they want to first select in their selected college in prediction. Although which is done by this project for prediction. In this project, this problem has been addressed by modeling a recommender system based on various classification algorithms. The required data was obtained from thegradcafe.com. Based on this data set, various models were trained and one best and some other similar properties carrying universities are suggested for the students such that it maximizes the chances of a student getting an admit from that university list.
6.	Scalability of the Solution	In this project, this problem has been addressed by modeling a recommender system based on various classification algorithms. To predict the best University for the particular student his/her GPA score, GRE (Verbal and Quant) Score, TOEFL score has been used as attributes for classification. K nearest neighbor has been used to predict best University and K means clustering has been used to find more similar universities. Support Vector Machine and random forest has been used to predict the admission chance of particular student on specific University.

2.2 Problem Solution Fit

3. REQUIREMENT ANALYSIS

3.1 Functional Requirements

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement	Sub Requirement (Story / Sub-Task)
	(Epic)	
FR-1	User Profile	Complete user profile by providing the Student Academic details.
FR-2	User Search	Search for desired University based on their Academic Performance and eligibility criteria.
FR-3	User Preference	Search for Universities based on their location preference.
FR-4	Result	The list of universities is filtered based on the eligibility of the students where the order of the list will be based on the ratings of the university.

3.2 Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	Filters the universities based on the user profile.
NED 0	la ·	
NFR-2	Security	User details are secured from unauthorised parties.

NFR-3	Reliability	The users can find universities based on their preferred location and results.
NFR-4	Performance	The website will provide the
		list of universities within 30
		seconds.

NFR-5	Availability	Students across India can access the website anytime.
NFR-6	Scalability	The solution will be helpful for the students in India to know the details about universities they are eligible

4. PROJECT DESIGN

4.1 Data Flow Diagram

Data Flow Diagram:

4.2 Solution & Technical Architecture

Solution Architecture Diagram:

4.3 User Stories

CUSTOMER JOURNEY MAP CUSTOMER **CUSTOMER ACTIVITY CUSTOMER GOALS CUSTOMER SURVEY SOLUTIONS** Awareness Searching To get accurate Make listening to Recommendation for the free result for chances of customers top for friends, social university priority across the of cost Consideration media, search admission business university engines admission Conversion To find the Use customer prediction feedback to develop best solution for Web app and their needs an in-depth quick updates on Customer Browse and visit understanding of Service through the web admission your customers To resolve any issue app store criteria quickly Implement a system to help you collect Loyalty Uses the web app Social media, To provide to predict accurate and feedback, analyze it, review sites admission legitimate data and act on it changes regularly

5. PROJECT PLANNING & SCHEDULING

5.1 Sprint Planning & Estimation

miro

5.2 Sprint Delivery Schedule

Sprint	Functional Requirem ent (Epic)	User Story Number	User Story/ Task	Story Points	Priority	Team Members
Sprint-	Registration	USN-1	As a user, you can register in the application by entering your emailaddress, password,	2	High	Yazhini R

			and confirming thepassword			
Sprint-		USN-2	As a user, you will receive a confirmation emailafter registering in the application	1	High	Yazhini R
Sprint- 2		USN-3	As a user, youcan register in the application via Facebook	2	Low	Shyam D
Sprint-		USN-4	As a user, you can register in the application via Gmail	2	Medium	Sabari Raj Kumar M
Sprint-	Login	USN-5	As a user, you can login to the application by entering your emailand password	1	High	Lokajanani K C

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Plann ed)	Story Points Complet ed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	5 Days	29 Oct 2022	04 Nov 2022	20	03 Nov 2022
Sprint-2	20	4 Days	04 Oct 2022	08 Nov 2022	20	07 Nov 2022
Sprint-3	20	4 Days	08 Nov 2022	11 Nov 2022	20	10 Nov 2022
Sprint-4	20	4 Days	11 Nov 2022	14 Nov 2022	20	13 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points perday)

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile <u>software development</u> methodologies such as <u>Scrum</u>. However, burn down charts canbe applied to any project containing measurable progress over time.

6. CODING & SOLUTIONING

6.1 Feature 1

The new feature will predict the chances in the admission of the university. The feature was designed in the html code connected with app.py as the backend.

Source Code:

```
The model has predicted that you have chance
<a href="/home" class="btn btn-primary">Go Back</a>
</div>
</div>
</div>
{/div>
{/div>
</div>
</div>
```

6.2 Feature 2

The new feature will predict the low chances in the admission of the university. The feature was designed in the html code connected with app.py as the backend.

Source Code:

6.3 Database Schema

The database used here in this project was Admission_Predict.csv. The sample screenshot of the database are,

7. TESTING

7.1 Test Cases

Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	51	0	0	51
Security	2	0	0	2
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

7.2 User Acceptance Testing

• Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the University Admit Eligibility Predictor project at the time of the release to User Acceptance Testing (UAT).

Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	19
Duplicate	0	0	0	0	0
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduce d	0	0	0	0	0
Skipped	0	0	1	1	2
Won't Fix	0	0	0	0	0
Totals	24	14	13	26	64

Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	51	0	0	51
Security	2	0	0	2
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

8. RESULTS

8.1 Performance Metrics

Measure the performance using Metrics

print(classification_report(Y_Test,y_predict))

	precision	recall	f1-score	support
Ø	0.41	0.43	0.42	249
1	0.73	0.77	0.75	291
2	0.45	0.41	0.43	296
accuracy			0.54	836
macro avg	0.53	0.54	0.53	836
weighted avg	0.54	0.54	0.54	836

Measuring the performance using metrics

```
from sklearn.metrics import mean_squared_error,mean_absolute_error
from sklearn.metrics import accuracy_score
mse = mean_squared_error(pred_test,y_test)
print("The Mean squared error is: ", mse)
rmse = np.sqrt(mse)
print("The Root mean squared error is: ", rmse)
mae = mean_absolute_error(pred_test,y_test)
print("The Mean absolute error is: ", mae)
acc = lr.score(x_test,y_test)
print("The accuracy is: ", acc)
```

The Mean squared error is: 3.403389401193475
The Root mean squared error is: 1.8448277429596172
The Mean absolute error is: 1.3537325298790688
The accuracy is: 0.0657871258637811

9. ADVANTAGES & DISADVANTAGES

9.1 Advantages

- It helps student for making decision for choosing a right college.
- Here the chance of occurrence of error is less when compared with the existing system.
- It is fast, efficient and reliable.
- Avoids data redundancy and inconsistency.
- Very user-friendly.
- Easy accessibility of data.

9.2 Dis-Advantages

- Required active internet connection.
- System will provide inaccurate results if data entered incorrectly.

10. CONCLUSION

This system ,being the first we have created in Python using ML algorithms and other front end languages such as html, css, java script, has proven more difficult than originally imagined. While it may sound simple to fill out a few forms and process the information, much more is involved in the selection of applicants than this. Every time progress was made and features were added, ideas for additional features or methods to improve the usability of the system made themselves apparent. Furthermore, adding one feature meant that another required feature was now possible, and balancing completing these required features with the ideas for improvement as well as remembering everything that had to be done was a project in itself. Debugging can sometimes be a relatively straight forward process, or rather rather finding out what you must debug can be. Since so many parts of the admissions system are integrated into one another, if an error occurs on one page, it may be a display error, for example; it may be the information is not correctly read from the database; or even that the information is not correctly stored in the database initially, and all three must be checked on each occasion. This slows down the process and can be frustrating if the apparent cause of a problem is not obvious at first. Language used must be simple and easy to understand and compatibility is paramount. If this system were not designed as an entirely web based application, it would not have been possible to recreate its current state of portability. Overall, the system performs well, and while it does not include all of the features that may have been desired, it lives up to initial expectations. The majority of features that are included work flawlessly and the errors that do exist are minor or graphical.

11. FUTURE SCOPE

The future scope of this project is very broad. Few of them are:

- This can be implemented in less time for proper admission process.
- This can be accessed anytime anywhere, since it is a web application provided only an internet connection.
- The user had not need to travel a long distance for the admission and his/her time is also saved as a result of this automated system.

12. APPENDIX

12.1 Source Code

PYTHON CODE

Uploading the python code,

IMPORT STATEMENTS

In [1]:

import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline

LOAD THE DATASET

In [2]:

```
import os, types
import pandas as pd
from botocore.client import Config
import ibm_boto3
def iter (self): return 0
#@hidden cell
# The following code accesses a file in your IBM Cloud Object Storage. It includes your
credentials.
# You might want to remove those credentials before you share the notebook.
cos_client = ibm_boto3.client(service_name='s3',
  ibm_api_key_id='T6FhPnWEPrnR91XKAfpiopbqTZ8j-gbLtjakMGexd6v0',
  ibm_auth_endpoint="https://iam.cloud.ibm.com/oidc/token",
  config=Config(signature_version='oauth'),
  endpoint_url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
bucket = 'university-donotdelete-pr-1ijujvyruwxy5c'
object key = 'Admission Predict.csv'
body = cos_client.get_object(Bucket=bucket,Key=object_key)['Body']
# add missing iter method, so pandas accepts body as file-like object
if not hasattr(body, "__iter__"): body.__iter__ = types.MethodType(__iter_, body)
data = pd.read\_csv(body)
data.head()
```

Out[2]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit	of
0	1	337	118	4	4.5	4.5	9.65	1	0.92	
1	2	324	107	4	4.0	4.5	8.87	1	0.76	

2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

In [3]:

data.drop(["Serial No."], axis=1, inplace=True)

In [4]:

data.describe()

Out[4]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
count	400.0000 00	400.0000 00	400.0000 00	400.0000 00	400.0000 00	400.0000 00	400.0000 00	400.0000 00
mean	316.8075 00	107.4100 00	3.087500	3.400000	3.452500	8.598925	0.547500	0.724350
std	11.47364 6	6.069514	1.143728	1.006869	0.898478	0.596317	0.498362	0.142609
min	290.0000 00	92.00000 0	1.000000	1.000000	1.000000	6.800000	0.000000	0.340000
25%	308.0000 00	103.0000 00	2.000000	2.500000	3.000000	8.170000	0.000000	0.640000
50%	317.0000 00	107.0000 00	3.000000	3.500000	3.500000	8.610000	1.000000	0.730000
75%	325.0000 00	112.0000 00	4.000000	4.000000	4.000000	9.062500	1.000000	0.830000
max	340.0000 00	120.0000 00	5.000000	5.000000	5.000000	9.920000	1.000000	0.970000

In [5]:

data.info()

Out[5]:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 400 entries, 0 to 399

Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	GRE Score	400 non-null	int64

1 TOEFL Score 400 non-null int64

2 University Rating 400 non-null int64

3 SOP 400 non-null float64

4 LOR 400 non-null float64

5 CGPA 400 non-null float64

6 Research 400 non-null int64

7 Chance of Admit 400 non-null float64

dtypes: float64(4), int64(4) memory usage: 25.1 KB

In [6]:

data.isnull().sum()

Out[6]:

GRE Score	0
TOEFL Score	0
University Rating	0
SOP	0
LOR	0
CGPA	0
Research	0
Chance of Admit	0
dtype: int64	

VISUALIZATION

In [7]:

```
plt.scatter(data['GRE Score'],data['CGPA'])
plt.title('CGPA vs GRE Score')
plt.xlabel('GRE Score')
plt.ylabel('CGPA')
```

plt.show()

Out [7]:

In [8]:

plt.scatter(data['CGPA'],data['SOP'])
plt.title('SOP for CGPA')
plt.xlabel('CGPA')
plt.ylabel('SOP')
plt.show()

Out [9]:

In [9]:

```
data[data.CGPA >= 8.5].plot(kind='scatter', x='GRE Score', y='TOEFL
Score',color="BLUE")

plt.xlabel("GRE Score")

plt.ylabel("TOEFL SCORE")

plt.title("CGPA>=8.5")

plt.grid(True)

plt.show()
```

Out [9]:

In [10]:

```
data["GRE Score"].plot(kind = 'hist',bins = 200,figsize = (6,6))
plt.title("GRE Scores")
plt.xlabel("GRE Score")
plt.ylabel("Frequency")
plt.show()
```


In[11]:

```
p = np.array([data["TOEFL Score"].min(),data["TOEFL Score"].mean(),data["TOEFL Score"].max()])
r = ["Worst","Average","Best"]
plt.bar(p,r)

plt.title("TOEFL Scores")
plt.xlabel("Level")
plt.ylabel("TOEFL Score")
```

plt.show()

In[13]:

plt.figure(figsize=(10, 10))
sns.heatmap(data.corr(), annot=True, linewidths=0.05, fmt='.2f',cmap="magma")
plt.show()

Out[13]:

In[14]:

data.Research.value_counts()
sns.countplot(x="University Rating",data=data)

Out[14]:

<AxesSubplot:xlabel='University Rating', ylabel='count'>

In[15]:

sns.barplot(x="University Rating", y="Chance of Admit ", data=data)

Out[15]:

<AxesSubplot:xlabel='University Rating', ylabel='Chance of Admit '>

TRAINING AND TESTING SPLIT

In [16]:

X=data.drop(['Chance of Admit '],axis=1) #input data_set y=data['Chance of Admit '] #output labels

In [17]:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15)

MODELING AND TRAINING

In [18]:

from sklearn.ensemble import GradientBoostingRegressor rgr = GradientBoostingRegressor() rgr.fit(X_train,y_train)

Out[18]:

GradientBoostingRegressor()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [19]:

rgr.score(X_test,y_test)

Out[19]:

0.7214021715194154

In [20]:

y_predict=rgr.predict(X_test)

In [21]:

from sklearn.metrics import mean_squared_error, r2_score,mean_absolute_error

```
import numpy as np
print('Mean Absolute Error:', mean_absolute_error(y_test, y_predict))
print('Mean Squared Error:', mean_squared_error(y_test, y_predict))
print('Root Mean Squared Error:', np.sqrt(mean_squared_error(y_test, y_predict)))
Mean Absolute Error: 0.061115035673946834
Mean Squared Error: 0.007194293635482686
Root Mean Squared Error: 0.08481918200196631
In [22]:
y_{train} = (y_{train} > 0.5)
y_{test} = (y_{test} > 0.5)
In [23]:
from sklearn.linear_model._logistic import LogisticRegression
lore = LogisticRegression(random_state=0, max_iter=1000)
lr = lore.fit(X_train, y_train)
In [24]:
y_pred = lr.predict(X_test)
In [25]:
from sklearn.metrics import accuracy_score, recall_score, roc_auc_score, confusion_matrix
print('Accuracy Score:', accuracy_score(y_test, y_pred))
print('Recall Score:', recall_score(y_test, y_pred))
print('ROC AUC Score:', roc_auc_score(y_test, y_pred))
print('Confussion Matrix:\n', confusion_matrix(y_test, y_pred))
Out [25]:
Accuracy Score: 0.916666666666666
Recall Score: 1.0
ROC AUC Score: 0.722222222222222
Confussion Matrix:
[[ 4 5]
[051]
```

SAVING THE MODEL

In [26]:

import pickle

In [27]:

pickle.dump(lr, open("university.pkl", "wb")) #logistic regression model

HOSTING THE MODEL

In [28]:

import pickle

In [29]:

lr = pickle.load(open("university.pkl", "rb")) #logistic regression model

In [30]:

pip install -U ibm-watson-machine-learning

Out [30]:

Requirement already satisfied: ibm-watson-machine-learning in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (1.0.255)

Collecting ibm-watson-machine-learning

Downloading ibm_watson_machine_learning-1.0.256-py3-none-any.whl (1.8 MB)

| 1.8 MB 22.1 MB/s eta 0:00:01

Requirement already satisfied: packaging in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-machine-learning) (21.3)

Requirement already satisfied: importlib-metadata in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-machine-learning) (4.8.2)

Requirement already satisfied: urllib3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-machine-learning) (1.26.7)

Requirement already satisfied: lomond in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-machine-learning) (0.3.3)

Requirement already satisfied: pandas<1.5.0,>=0.24.2 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-machine-learning) (1.3.4)

Requirement already satisfied: ibm-cos-sdk==2.11.* in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-machine-learning) (2.11.0)

Requirement already satisfied: requests in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-machine-learning) (2.26.0)

Requirement already satisfied: tabulate in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-machine-learning) (0.8.9)

Requirement already satisfied: certifi in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-machine-learning) (2022.9.24)

Requirement already satisfied: ibm-cos-sdk-s3transfer==2.11.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-sdk==2.11.*->ibm-watson-machine-learning) (2.11.0)

Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-sdk==2.11.*->ibm-watson-machine-learning) (0.10.0)

Requirement already satisfied: ibm-cos-sdk-core==2.11.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-sdk==2.11.*->ibm-watson-machine-learning) (2.11.0)

Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-sdk-core==2.11.0->ibm-cos-sdk==2.11.*->ibm-watson-machine-learning) (2.8.2)

Requirement already satisfied: pytz>=2017.3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from pandas<1.5.0,>=0.24.2->ibm-watson-machine-learning) (2021.3)

Requirement already satisfied: numpy>=1.17.3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from pandas<1.5.0,>=0.24.2->ibm-watson-machine-learning) (1.20.3)

Requirement already satisfied: six>=1.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from python-dateutil<3.0.0,>=2.1->ibm-cos-sdk-core==2.11.0->ibm-cos-sdk==2.11.*->ibm-watson-machine-learning) (1.15.0)

Requirement already satisfied: charset-normalizer~=2.0.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from requests->ibm-watson-machine-learning) (2.0.4)

Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from requests->ibm-watson-machine-learning) (3.3)

Requirement already satisfied: zipp>=0.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from importlib-metadata->ibm-watson-machine-learning) (3.6.0)

```
pyparsing!=3.0.5,>=2.0.2 in /opt/conda/envs/Python-
Requirement
               already
                         satisfied:
3.9/lib/python3.9/site-packages (from packaging->ibm-watson-machine-learning) (3.0.4)
Installing collected packages: ibm-watson-machine-learning
 Attempting uninstall: ibm-watson-machine-learning
  Found existing installation: ibm-watson-machine-learning 1.0.255
  Uninstalling ibm-watson-machine-learning-1.0.255:
   Successfully uninstalled ibm-watson-machine-learning-1.0.255
Successfully installed ibm-watson-machine-learning-1.0.256
Note: you may need to restart the kernel to use updated packages.
In [31]:
from ibm_watson_machine_learning import APIClient
import ison
In [32]:
uml_credentials = {
  "url": "https://us-south.ml.cloud.ibm.com",
  "apikey": "poJ22ua6BCG9qY33B8fkgnz1bnP1f9DZqUIF9NkBM1bZ"
}
client = APIClient(uml_credentials)
In [33]:
def guid_from_space_name(client, space_name):
  space = client.spaces.get_details()
  idr = []
  for i in space['resources']:
    idr.append(i['metadata']['id'])
  return idr
In [34]:
space_uid = guid_from_space_name(client, "university")
print(space_uid[0])
4f0253e5-f162-4eec-84ba-72e01fb69ab9
```

In [35]:

client.set.default_space(space_uid[0])

Out[35]:

'SUCCESS'

In [36]:

client.software_specifications.list()

NAME ASSET_ID **TYPE** 0062b8c9-8b7d-44a0-a9b9-46c416adcbd9 base default_py3.6 kernel-spark3.2-scala2.12 020d69ce-7ac1-5e68-ac1a-31189867356a base pytorch-onnx_1.3-py3.7-edt 069ea134-3346-5748-b513-49120e15d288 base scikit-learn_0.20-py3.6 09c5a1d0-9c1e-4473-a344-eb7b665ff687 base spark-mllib_3.0-scala_2.12 09f4cff0-90a7-5899-b9ed-1ef348aebdee base pytorch-onnx rt22.1-py3.9 0b848dd4-e681-5599-be41-b5f6fccc6471 base ai-function_0.1-py3.6 0cdb0f1e-5376-4f4d-92dd-da3b69aa9bda base 0e6e79df-875e-4f24-8ae9-62dcc2148306 base shiny-r3.6 tensorflow_2.4-py3.7-horovod 1092590a-307d-563d-9b62-4eb7d64b3f22 base pytorch_1.1-py3.6 10ac12d6-6b30-4ccd-8392-3e922c096a92 base tensorflow_1.15-py3.6-ddl 111e41b3-de2d-5422-a4d6-bf776828c4b7 base runtime-22.1-py3.9 12b83a17-24d8-5082-900f-0ab31fbfd3cb base scikit-learn_0.22-py3.6 154010fa-5b3b-4ac1-82af-4d5ee5abbc85 base default r3.6 1b70aec3-ab34-4b87-8aa0-a4a3c8296a36 base 1bc6029a-cc97-56da-b8e0-39c3880dbbe7 base pytorch-onnx_1.3-py3.6 kernel-spark3.3-r3.6 1c9e5454-f216-59dd-a20e-474a5cdf5988 base pytorch-onnx rt22.1-py3.9-edt 1d362186-7ad5-5b59-8b6c-9d0880bde37f base tensorflow_2.1-py3.6 1eb25b84-d6ed-5dde-b6a5-3fbdf1665666 base spark-mllib_ 3.2 20047f72-0a98-58c7-9ff5-a77b012eb8f5 base tensorflow_2.4-py3.8-horovod 217c16f6-178f-56bf-824a-b19f20564c49 base runtime-22.1-py3.9-cuda 26215f05-08c3-5a41-a1b0-da66306ce658 base do_py3.8 295addb5-9ef9-547e-9bf4-92ae3563e720 base autoai-ts_3.8-py3.8 2aa0c932-798f-5ae9-abd6-15e0c2402fb5 base tensorflow_1.15-py3.6 2b73a275-7cbf-420b-a912-eae7f436e0bc base

kernel-spark3.3-py3.9	2b7961e2-e3b1-5a8c-a491-482c8368839a base
pytorch_1.2-py3.6	2c8ef57d-2687-4b7d-acce-01f94976dac1 base
spark-mllib_2.3	2e51f700-bca0-4b0d-88dc-5c6791338875 base
pytorch-onnx_1.1-py3.6	32983cea-3f32-4400-8965-dde874a8d67e base
spark-mllib_3.0-py37	36507ebe-8770-55ba-ab2a-eafe787600e9 base
spark-mllib_2.4	390d21f8-e58b-4fac-9c55-d7ceda621326 base
xgboost_0.82-py3.6	39e31acd-5f30-41dc-ae44-60233c80306e base
pytorch-onnx_1.2-py3.6	6-edt 40589d0e-7019-4e28-8daa-fb03b6f4fe12 base
default_r36py38	41c247d3-45f8-5a71-b065-8580229facf0 base
autoai-ts_rt22.1-py3.9	4269d26e-07ba-5d40-8f66-2d495b0c71f7 base
autoai-obm_3.0	42b92e18-d9ab-567f-988a-4240ba1ed5f7 base
pmml-3.0_4.3	493bcb95-16f1-5bc5-bee8-81b8af80e9c7 base
spark-mllib_2.4-r_3.6	49403dff-92e9-4c87-a3d7-a42d0021c095 base
xgboost_0.90-py3.6	4ff8d6c2-1343-4c18-85e1-689c965304d3 base
pytorch-onnx_1.1-py3.6	50f95b2a-bc16-43bb-bc94-b0bed208c60b base
autoai-ts_3.9-py3.8	52c57136-80fa-572e-8728-a5e7cbb42cde base
spark-mllib_2.4-scala_2	2.11 55a70f99-7320-4be5-9fb9-9edb5a443af5 base
spark-mllib_3.0	5c1b0ca2-4977-5c2e-9439-ffd44ea8ffe9 base
autoai-obm_2.0	5c2e37fa-80b8-5e77-840f-d912469614ee base
spss-modeler_18.1	5c3cad7e-507f-4b2a-a9a3-ab53a21dee8b base
cuda-py3.8	5d3232bf-c86b-5df4-a2cd-7bb870a1cd4e base
autoai-kb_3.1-py3.7	632d4b22-10aa-5180-88f0-f52dfb6444d7 base
pytorch-onnx_1.7-py3.8	634d3cdc-b562-5bf9-a2d4-ea90a478456b base
spark-mllib_2.3-r_3.6	6586b9e3-ccd6-4f92-900f-0f8cb2bd6f0c base
tensorflow_2.4-py3.7	65e171d7-72d1-55d9-8ebb-f813d620c9bb base
spss-modeler_18.2	687eddc9-028a-4117-b9dd-e57b36f1efa5 base

Note: Only first 50 records were displayed. To display more use 'limit' parameter.

In [37]:

import sklearn sklearn.__version___

Out[37]:

'1.0.2'

```
In [38]:
MODEL_NAME = 'university'
DEPLOYMENT NAME = 'uni'
DEMO\_MODEL = lr
In [39]:
software_spec_uid = client.software_specifications.get_id_by_name('runtime-22.1-py3.9')
In [40]:
model_props = {
  client.repository.ModelMetaNames.NAME: MODEL_NAME,
  client.repository.ModelMetaNames.TYPE: 'scikit-learn_1.0',
  client.repository.ModelMetaNames.SOFTWARE_SPEC_UID: software_spec_uid
}
In [41]:
model_details = client.repository.store_model(
  model = DEMO_MODEL,
  meta_props = model_props,
  training_data = X_train,
  training_target = y_train
)
model_details
Out[41]:
{'entity': {'hybrid_pipeline_software_specs': [],
 'label_column': 'Chance of Admit',
 'schemas': {'input': [{'fields': [{'name': 'GRE Score', 'type': 'int64'},
   {'name': 'TOEFL Score', 'type': 'int64'},
   {'name': 'University Rating', 'type': 'int64'},
   {'name': 'SOP', 'type': 'float64'},
   {'name': 'LOR ', 'type': 'float64'},
   {'name': 'CGPA', 'type': 'float64'},
```

```
{'name': 'Research', 'type': 'int64'}],
   'id': '1',
   'type': 'struct'}],
 'output': []},
 'software_spec': {'id': '12b83a17-24d8-5082-900f-0ab31fbfd3cb',
 'name': 'runtime-22.1-py3.9'},
 'type': 'scikit-learn_1.0'},
'metadata': {'created_at': '2022-11-03T05:20:49.371Z',
 'id': '566cfcae-49ab-4bd3-b5df-abc981fa27b9',
 'modified_at': '2022-11-03T05:20:51.730Z',
 'name': 'university',
 'owner': 'IBMid-6630041JHH',
 'resource_key': 'a61934d2-41d0-413d-9f54-49589e7c7741',
'space_id': '4f0253e5-f162-4eec-84ba-72e01fb69ab9'},
'system': {'warnings': []}}
In [42]:
model_id = client.repository.get_model_id(model_details)
model_id
Out[42]:
'566cfcae-49ab-4bd3-b5df-abc981fa27b9'
In [43]:
deployment_props = {
  client.deployments.ConfigurationMetaNames.NAME:DEPLOYMENT_NAME,
  client.deployments.ConfigurationMetaNames.ONLINE: {}
}
deployment = client.deployments.create(
   artifact_uid = model_id,
  meta_props = deployment_props
)
```


HTML CODES

Uploading Html codes

Chance.html

Demo2.html

Students are often worried about their chances of admission to University. The aim of this project is to help students in shortlisting universities with their profiles. The predicted output gives them a fair idea about their admission chances in a particular university. This

analysis should also help students who are currently preparing or will be preparing to get a better idea.

```
<div class="d-flex justify-content-right">
            <img src="../static/img/anime.png" class="card-img-top" alt="..." />
         </div>
         </div>
       <div class="col-8">
         <div class="card p-2 ms-2 my-2">
           <div class="card-body">
              <h5 class="card-title pb-4">
                Enter the details
              </h5>
              <form action="/" method="post" id="theForm">
                <div class="row mb-3">
                  <label for="gre" class="col-lg-2 col-form-label">GRE Score:</label>
                  <div class="col-lg-10">
                     <input type="number" class="form-control" id="gre" name="gre"</pre>
min="250" max="340" required>
                  </div>
                </div>
                <div class="row mb-3">
                  <label for="tofel" class="col-lg-2 col-form-label">TOFEL Score:</label>
                  <div class="col-lg-10">
                     <input type="number" class="form-control" id="tofel" name="tofel"</pre>
min="50" max="120" required>
                   </div>
                </div>
                <div class="row mb-3">
```

```
<label for="university_rating" class="col-lg-2 col-form-label">University
Rating:</label>
                  <div class="col-lg-10">
                     <input
                              type="number"
                                               class="form-control"
                                                                      id="university_rating"
step="0.01" name="university_rating" min="1" max="5" required>
                  </div>
                </div>
                <div class="row mb-3">
                  <label for="sop" class="col-lg-2 col-form-label">SOP:</label>
                  <div class="col-lg-10">
                     <input type="number"
                                              class="form-control" id="sop" name="sop"
step="0.01" min="1" max="5" required>
                  </div>
                </div>
                <div class="row mb-3">
                  <label for="lor" class="col-lg-2 col-form-label">LOR:</label>
                  <div class="col-lg-10">
                             type="number" class="form-control" id="lor"
                                                                                name="lor"
                     <input
step="0.01" min="1" max="5" required>
                  </div>
                </div>
                <div class="row mb-3">
                  <label for="cgpa" class="col-lg-2 col-form-label">CGPA:</label>
                  <div class="col-lg-10">
                     <input type="number" class="form-control" id="cgpa" name="cgpa"</pre>
step="0.01" min="5" max="10" required>
                  </div>
                </div>
                <fieldset class="row mb-3">
                  <le>elegend class="col-form-label col-sm-2 pt-0">Research:</legend></le>
```

```
<div class="col-sm-10">
                     <div class="form-check">
                        <input class="form-check-input" type="radio" name="yes_no_radio"
id="gridRadios1" value="1">
                        <label class="form-check-label" for="yes_no_radio">
                        Yes
                        </label>
                     </div>
                     <div class="form-check">
                        <input class="form-check-input" type="radio" name="yes_no_radio"
id="gridRadios2" value="0" checked>
                       <label class="form-check-label" for="yes_no_radio">
                       No
                        </label>
                     </div>
                   </div>
                </fieldset>
                <div class="row lg-3">
                   <div class="col-lg-2 mb-2 me-3">
                                                             class="btn
                                                                                btn-primary"
                     <button
                                      type="submit"
id="button">Predict</button>
                   </div>
                   <div class="col-lg-2" id="spinner">
                     <div class="spinner-border text-primary m-1" role="status">
                       <span class="visually-hidden">Loading...</span>
                     </div>
                     <div class="spinner-grow text-primary m-1" role="status">
                        <span class="visually-hidden">Loading...</span>
                     </div>
```

```
</div>
```

Index.html

```
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1,</pre>
user-scalable=no">
  link
             rel="stylesheet"
                                   type="text/css"
                                                        rel="noopener"
                                                                             target="_blank"
href="../static/css/styles.css">
  link
                 href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css"
rel="stylesheet"
                                                                          integrity="sha384-
Zenh87qX5JnK2Jl0vWa8Ck2rdkQ2Bzep5IDxbcnCeuOxjzrPF/et3URy9Bv1WTRi"
crossorigin="anonymous">
  <script type="text/javascript" src="../static/js/script.js" async></script>
  <title>University Admit Eligibility Predictor</title>
</head>
```

```
<body>
  <nav class="navbar navbar-expand-lg bg-light">
    <div class="container-fluid">
       <a class="navbar-brand text-responsive-h" href="/">
         <img src="..\static\img\hat1.png" alt="Logo" width="30" height="24" class="d-inline-</pre>
block align-text-top ">
         University Admission Eligibility Prediction System
       </a>
    </div>
  </nav>
  {% block body %}
  <h1> Index Page </h1>
  {% endblock %}
              src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/js/bootstrap.bundle.min.js"
  <script
integrity="sha384-
OERcA2EqjJCMA+/3y+gxIOqMEjwtxJY7qPCqsdltbNJuaOe923+mo//f6V8Qbsw3"
crossorigin="anonymous"></script>
</body>
</html>
```

Nochance.html

Script.js

```
const button = document.getElementById('button');
const theForm = document.getElementById('theForm');
const loading = document.getElementById('spinner');

const disableButton = () => {
    console.log('Submitting form...');
    button.disabled = true;
    button.className = "btn btn-outline-primary";
    button.innerHTML = "Predicting..."
    loading.style.display = "block"
};

const enableButton = () => {
    console.log('Loading window...');
    button.disabled = false;
```

```
button.className = "btn btn-primary"
button.innerHTML = "Predict"
loading.style.display = "none"
}
theForm.onsubmit = disableButton;
window.onload = enableButton;
```

Styles.css

```
* {
    margin: 0;
    padding: 0;
    border: 0;
}
body {
    font: 62.5%/1.5 "Lucida Grande", "Lucida Sans", Tahoma, Verdana, sans-serif;
    background: #e0eafc;
    background: -webkit-linear-gradient(to right, #e0eafc, #cfdef3);
    background: linear-gradient(to right, #e0eafc, #cfdef3);
    color: #000000;
    text-align:center;
}
h1 {
    font-size: 2.2em;
}
```

```
h2 {
  font-size: 2.0em;
}
h4 {
  font-size: 1.6em;
}
p {
  font-size: 1.2em;
}
input.text
 padding: 3px;
 border: 1px solid #999999;
}
img {
  max-width: auto;
  height: auto;
}
.text-responsive \{
  font-size: calc(50\% + 0.6vw + 0.6vh);
}
```

```
.text-responsive-h { font\text{-size: } calc(80\% + 0.6vw + 0.6vh);} \\ Footer \\
```

REQUIRED IMAGES IN THE HTML CODES:

PYTHON CODE

App.py

```
from flask import Flask, render_template, redirect, url_for, request
import requests
app = Flask( name )
@app.route("/", methods = ['POST', 'GET'])
def index():
  if request.method == 'POST':
    arr = []
    for i in request.form:
      val = request.form[i]
      if val == ":
        return redirect(url_for("demo2"))
      arr.append(float(val))
    API_KEY = "poJ22ua6BCG9qY33B8fkgnz1bnP1f9DZqUlF9NkBM1bZ"
    token_response = requests.post('https://iam.cloud.ibm.com/identity/token', data={
      "apikey": API_KEY,
      "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'
      })
    mltoken = token_response.json()["access_token"]
    header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
```

```
payload_scoring = {
       "input_data": [{"fields":[ 'GRE Score',
                         'TOEFL Score',
                        'University Rating',
                         'SOP',
                         'LOR',
                         'CGPA',
                         'Research'],
                 "values": [arr]
                 }]
    response_scoring = requests.post(
       'https://us-south.ml.cloud.ibm.com/ml/v4/deployments/28aea4f7-0bec-4310-82bf-
06e502d2cd4d/predictions?version=2022-11-03',
       json=payload_scoring,
       headers=header
    ).json()
    result = response_scoring['predictions'][0]['values']
    if result[0][0] > 0.5:
       return redirect(url_for('chance', percent=result[0][0]*100))
     else:
       return redirect(url_for('no_chance', percent=result[0][0]*100))
  else:
     return redirect(url_for("demo2"))
```

```
@app.route("/home")
def demo2():
  return render_template("demo2.html")
@app.route("/chance/<percent>")
def chance(percent):
  return render_template("chance.html", content=[percent])
@app.route("/nochance/<percent>")
def no_chance(percent):
  return render_template("noChance.html", content=[percent])
@app.route('/<path:path>')
def catch_all():
  return redirect(url_for("demo2"))
if__name__== "_main_":
  app.run()
```

OUTPUT IMAGES:

127.0.0.1:5000

12.2 GITHUB LINK:	
12.2 GIIHUD LINK:	
1	
https://github.com/IBM-EPBL/IBM-Project-9196-1658986187	

