IAP16 Rec'd PCT/PTO 22 SEP 2006 10/593841

SEQUENCE LISTING

<110>	University of Texas at San Antonio Louisiana State University Health Sciences Center Heidner, Hans Walter Klimstra, William Brown Ryman, Katherine Diana	
<120>	METHODS AND COMPOSITIONS COMPRISING PROTEIN L IMMUNOGLOBULIN BINDING DOMAINS FOR CELL-SPECIFIC TARGETING	
<130>	9237.21WO	
<160>	27	
<170>	PatentIn version 3.2	
<210><211><212><213>	2657	
	CDS (301)(2460) protein L	
	repeat_unit (592)(819) PpL1	
	repeat_unit (820)(1035) PpL2	
<220><221><222><222>	repeat_unit (1036)(1251) PpL3	
	repeat_unit (1252)(1467) PpL4	
	repeat_unit (1468)(1686) PpL5	
· - - - ·	1 ctac aataaaggat ggcactgaac taccgaacct aacgcttgtg gacattgtct	50
	attt ggacagtgga cgaatcaaga acaccattaa ttaaattggt gaagttcgat 12	20

tgttgatcac cctttttg	gg taaacaataa ct	aaggaatg gc	caatatatt tgctt	ggaaa 180
cgaatttgat ttaaatag	rca ttgaatgcaa aa	aaatttaa aa	aggaggaga caaat	tccac 240
ccttattaga agggaagt	tt ccattgtcat ga	tattatga aa	aattaataa gaaat	tatta 300
atg gct gca ctt gca Met Ala Ala Leu Ala 1 5				
tac gca gct gat gaa Tyr Ala Ala Asp Glu 20	-			
gat aaa gaa aat gta Asp Lys Glu Asn Val 35				
gat ggt tca gaa aat Asp Gly Ser Glu Asn 50			sp Phe Asp Asp	
gcc agt aca aga ttt Ala Ser Thr Arg Phe 65			he Glu Glu Lys	
gtt gtt tct gat aac Val Val Ser Asp Asr 85				
aat aaa gaa gaa aca Asn Lys Glu Glu Thr 100		Glu Thr As		
gta aca atc aaa gct Val Thr Ile Lys Ala 115		•		
gca gaa ttc aaa gga Ala Glu Phe Lys Gly 130		Ala Thr Se		
tat gca gat act ttg Tyr Ala Asp Thr Lev 145				
gca gat aaa ggt tat Ala Asp Lys Gly Tyr 165	Thr Leu Asn Ile			
aca cca gaa gaa cca Thr Pro Glu Glu Pro 180		Thr Ile Ly	_	_
tat gca gat gga aaa Tyr Ala Asp Gly Lys				

	195			200					205				
gaa gca Glu Ala 210	-	Glu Ala											972
aat gga Asn Gly 225													1020
att aaa Ile Lys	_	~ ~	_				_				_	_	1068
gtt act Val Thr		_				_	_			_	_	_	1116
gca gaa Ala Glu			Phe	_	_	_		_	_	_		_	1164
tat gct Tyr Ala 290	_	-				_							1212
gca gat Ala Asp 305													1260
aca cca Thr Pro	_												1308
tat gca Tyr Ala													1356
gaa gca Glu Ala	-	_	Tyr	_									1404
aat ggt Asn Gly 370		=											1452
att aga Ile Arg 385		ggt aag Gly Lys 390											1500
caa gta Gln Val		_					_						1548

act gca aca ttt aaa gga aca ttt gca gaa gcg aca gca gaa gca tac

Thr Ala Thr Phe Lys Gly Thr Phe Ala Glu Ala Thr Ala Glu Ala Tyr

_		_	_					gaa Glu								1644
								aac Asn								1692
								cca Pro								1740
								gct Ala								1788
_	_							aga Arg 505								1836
		_				_	_	gct Ala	_	-	-					1884
Gln	Asn 530	Gly	Tyr	Ala	Thr	Tyr 535	Glu	gaa Glu	Ala	Glu	Ala 540	Ala	Ala	Lys	Lys	1932
Ala 545	Leu	Glu	Asn	Asp	Pro 550	Ile	Asn	aaa Lys	Ser	Tyr 555	Ser	Ile	Arg	Gln	Gly 560	1980
Ala	Asp	Gly	Arg	Tyr 565	Tyr	Tyr	Val	tta Leu	Ser 570	Pro	Val	Glu	Ala	Glu 575	Thr	2028
	_							gaa Glu 585								2076
								cca Pro								2124
_								gaa Glu								2172
				_				aac Asn								2220
					_			cct Pro			-					2268

•

	_				_									gaa Glu		2316
	_			_	-									gca Ala	tta Leu	2364
														gct Ala	tca Ser	2412
		_	gtt Val	_		_								aaa Lys	taa	2460
ttaa	atct	cag a	ataaa	aaaat	ta ga	attaa	atcta	a aaa	aaat	ggg	actt	ttal	caa g	gtcc	catttt	2520
tgat	tgca	aat g	gaaa	ctgat	ta ca	aaaaa	aatgt	ato	cagtt	ttt	tcat	tta	cgc 1	ttatt	ttcct	2580
gtga	agtat	gt d	ccaaç	gtttg	gt c	gtata	aatca	a tct	tatca	aaaa	gcct	ggcg	gag 1	tttc	getttt	2640
tgga	attt	tgt d	cttc	gaa												2657
<210 <211)> 2 L> '	2 719														

<211> 719

<212> PRT

<213> Peptostreptococcus magnus

<400> 2

Met Ala Ala Leu Ala Gly Ala Ile Val Val Thr Gly Gly Val Gly Ser 1 10 15

Tyr Ala Ala Asp Glu Pro Ile Asp Leu Glu Lys Leu Glu Glu Lys Arg 20 25 30

Asp Lys Glu Asn Val Gly Asn Leu Pro Lys Phe Asp Asn Glu Val Lys 35 40 45

Asp Gly Ser Glu Asn Pro Met Ala Lys Tyr Pro Asp Phe Asp Asp Glu 50 55 60

Ala Ser Thr Arg Phe Glu Thr Glu Asn Asn Glu Phe Glu Glu Lys Lys 65 70 75 80

Val Val Ser Asp Asn Phe Phe Asp Gln Ser Glu His Pro Phe Val Glu 85 90 95

Asn Lys Glu Glu Thr Pro Glu Thr Pro Glu Thr Asp Ser Glu Glu Glu

100 105 110

Val Thr Ile Lys Ala Asn Leu Ile Phe Ala Asn Gly Ser Thr Gln Thr 115 120 125

Ala Glu Phe Lys Gly Thr Phe Glu Lys Ala Thr Ser Glu Ala Tyr Ala 130 135 140

Tyr Ala Asp Thr Leu Lys Lys Asp Asn Gly Glu Tyr Thr Val Asp Val 145 150 155 160

Ala Asp Lys Gly Tyr Thr Leu Asn Ile Lys Phe Ala Gly Lys Glu Lys
165 170 175

Thr Pro Glu Glu Pro Lys Glu Glu Val Thr Ile Lys Ala Asn Leu Ile 180 185 190

Tyr Ala Asp Gly Lys Thr Gln Thr Ala Glu Phe Lys Gly Thr Phe Glu 195 200 205

Glu Ala Thr Ala Glu Ala Tyr Arg Tyr Ala Asp Ala Leu Lys Lys Asp 210 215 220

Asn Gly Glu Tyr Thr Val Asp Val Ala Asp Lys Gly Tyr Thr Leu Asn 225 230 235 240

Ile Lys Phe Ala Gly Lys Glu Lys Thr Pro Glu Glu Pro Lys Glu Glu 245 250 255

Val Thr Ile Lys Ala Asn Leu Ile Tyr Ala Asp Gly Lys Thr Gln Thr 260 265 270

Ala Glu Phe Lys Gly Thr Phe Glu Glu Ala Thr Ala Glu Ala Tyr Arg 275 280 285

Tyr Ala Asp Leu Leu Ala Lys Glu Asn Gly Lys Tyr Thr Val Asp Val 290 295 300

Ala Asp Lys Gly Tyr Thr Leu Asn Ile Lys Phe Ala Gly Lys Glu Lys 305 310 315 320

Thr Pro Glu Glu Pro Lys Glu Glu Val Thr Ile Lys Ala Asn Leu Ile 325 330 335

Tyr Ala Asp Gly Lys Thr Gln Thr Ala Glu Phe Lys Gly Thr Phe Ala Glu Ala Thr Ala Glu Ala Tyr Arg Tyr Ala Asp Leu Leu Ala Lys Glu Asn Gly Lys Tyr Thr Ala Asp Leu Glu Asp Gly Gly Tyr Thr Ile Asn Ile Arg Phe Ala Gly Lys Lys Val Asp Glu Lys Pro Glu Glu Lys Glu Gln Val Thr Ile Lys Glu Asn Ile Tyr Phe Glu Asp Gly Thr Val Gln Thr Ala Thr Phe Lys Gly Thr Phe Ala Glu Ala Thr Ala Glu Ala Tyr Arg Tyr Ala Asp Leu Leu Ser Lys Glu His Gly Lys Tyr Thr Ala Asp Leu Glu Asp Gly Gly Tyr Thr Ile Asn Ile Arg Phe Ala Gly Lys Glu Glu Pro Glu Glu Thr Pro Glu Lys Pro Glu Val Gln Asp Gly Tyr Ala Ser Tyr Glu Glu Ala Glu Ala Ala Ala Lys Glu Ala Leu Lys Asn Asp Asp Val Asn Lys Ser Tyr Thr Ile Arg Gln Gly Ala Asp Gly Arg Tyr Tyr Tyr Val Leu Ser Pro Val Glu Ala Glu Glu Glu Lys Pro Glu Ala Gln Asn Gly Tyr Ala Thr Tyr Glu Glu Ala Glu Ala Ala Ala Lys Lys Ala Leu Glu Asn Asp Pro Ile Asn Lys Ser Tyr Ser Ile Arg Gln Gly

Ala Asp Gly Arg Tyr Tyr Tyr Val Leu Ser Pro Val Glu Ala Glu Thr Pro Glu Lys Pro Val Glu Pro Ser Glu Pro Ser Thr Pro Asp Val Pro Ser Asn Pro Ser Asn Pro Ser Thr Pro Asp Val Pro Ser Thr Pro Asp Val Pro Ser Asn Pro Ser Thr Pro Glu Val Pro Ser Asn Pro Ser Thr Pro Gly Asn Glu Glu Lys Pro Gly Asn Glu Gln Lys Pro Asp Gln Pro Ser Lys Pro Glu Lys Glu Glu Asn Gly Lys Gly Gly Val Asp Ser Pro Lys Lys Glu Lys Ala Ala Leu Pro Lys Ala Gly Ser Glu Ala Glu Ile Leu Thr Leu Ala Ala Ser Leu Ser Ser Val Ala Gly Ala Phe Ile Ser Leu Lys Lys Arg Lys 715. <210> 3 <211> 228 <212> DNA <213> Peptostreptococcus magnus <220> <221> CDS <222> (1)..(228) <223> PpL1 <400> 3 aaa gaa gaa aca cca gaa aca cca gaa act gat tca gaa gaa gaa gta Lys Glu Glu Thr Pro Glu Thr Pro Glu Thr Asp Ser Glu Glu Val

```
aca atc aaa gct aac cta atc ttt gca aat gga agc aca caa act gca
                                                                   96
Thr Ile Lys Ala Asn Leu Ile Phe Ala Asn Gly Ser Thr Gln Thr Ala
                                                  30
                              25
           20
gaa ttc aaa gga aca ttt gaa aaa gca aca tca gaa gct tat gcg tat
                                                                  144
Glu Phe Lys Gly Thr Phe Glu Lys Ala Thr Ser Glu Ala Tyr Ala Tyr
                                              45
                           40
       35
gca gat act ttg aag aaa gac aat gga gaa tat act gta gat gtt gca
                                                                  192
Ala Asp Thr Leu Lys Lys Asp Asn Gly Glu Tyr Thr Val Asp Val Ala
                       55
                                          60
   50
                                                                  228
gat aaa ggt tat act tta aat att aaa ttt gct gga
Asp Lys Gly Tyr Thr Leu Asn Ile Lys Phe Ala Gly
                                      75
65
                   70
<210> 4
<211> 76
<212> PRT
<213> Peptostreptococcus magnus
<400> 4
Lys Glu Glu Thr Pro Glu Thr Pro Glu Thr Asp Ser Glu Glu Glu Val
                                                      15
               5
                                  10
1
Thr Ile Lys Ala Asn Leu Ile Phe Ala Asn Gly Ser Thr Gln Thr Ala
                                                  30
                              25
           20
Glu Phe Lys Gly Thr Phe Glu Lys Ala Thr Ser Glu Ala Tyr Ala Tyr
       35
Ala Asp Thr Leu Lys Lys Asp Asn Gly Glu Tyr Thr Val Asp Val Ala
                       55
    50
                                          60
Asp Lys Gly Tyr Thr Leu Asn Ile Lys Phe Ala Gly
                   70
65
                                      75
<210> 5
<211> 216
<212> DNA
<213> Peptostreptococcus magnus
<220>
<221> CDS
<222> (1)..(216)
<223> PpL2
<400> 5
48
```

Lys Glu Lys Thr Pro Glu Glu Pro Lys Glu Glu Val Thr Ile Lys Ala 10 15 aac tta atc tat gca gat gga aaa aca caa aca gca gaa ttc aaa gga 96 Asn Leu Ile Tyr Ala Asp Gly Lys Thr Gln Thr Ala Glu Phe Lys Gly 25 30 20 aca ttt gaa gaa gca aca gca gaa gca tac aga tat gca gat gca tta 144 Thr Phe Glu Glu Ala Thr Ala Glu Ala Tyr Arg Tyr Ala Asp Ala Leu 45 35 40 192 aag aag gac aat gga gaa tat aca gta gac gtt gca gat aaa ggt tat Lys Lys Asp Asn Gly Glu Tyr Thr Val Asp Val Ala Asp Lys Gly Tyr 55 60 50 216 act tta aat att aaa ttt gct gga Thr Leu Asn Ile Lys Phe Ala Gly 65 70 <210> 6 <211> 72 <212> PRT Peptostreptococcus magnus <213> <400> 6 Lys Glu Lys Thr Pro Glu Glu Pro Lys Glu Glu Val Thr Ile Lys Ala 10 15 5 1 Asn Leu Ile Tyr Ala Asp Gly Lys Thr Gln Thr Ala Glu Phe Lys Gly 25 20 30 Thr Phe Glu Glu Ala Thr Ala Glu Ala Tyr Arg Tyr Ala Asp Ala Leu 45 35 40 Lys Lys Asp Asn Gly Glu Tyr Thr Val Asp Val Ala Asp Lys Gly Tyr 60 50 55 Thr Leu Asn Ile Lys Phe Ala Gly 65 70 <210> 7 <211> 216 <212> DNA <213> Peptostreptococcus magnus <220> <221> CDS <222> (1)..(216) <223> PpL3

<400> 7 48 Lys Glu Lys Thr Pro Glu Glu Pro Lys Glu Glu Val Thr Ile Lys Ala 10 15 5 1 aac tta atc tat gca gat gga aaa aca caa aca gca gaa ttc aaa gga 96 Asn Leu Ile Tyr Ala Asp Gly Lys Thr Gln Thr Ala Glu Phe Lys Gly 30 25 20 aca ttt gaa gaa gca aca gca gaa gca tac aga tat gct gac tta tta 144 Thr Phe Glu Glu Ala Thr Ala Glu Ala Tyr Arg Tyr Ala Asp Leu Leu 45 35 40 gca aaa gaa aat ggt aaa tat aca gta gac gtt gca gat aaa ggt tat 192 Ala Lys Glu Asn Gly Lys Tyr Thr Val Asp Val Ala Asp Lys Gly Tyr 60 50 55 216 act tta aat att aaa ttt gct gga Thr Leu Asn Ile Lys Phe Ala Gly 65 70 <210> 8 <211> 72 <212> PRT <213> Peptostreptococcus magnus <400> 8 Lys Glu Lys Thr Pro Glu Glu Pro Lys Glu Glu Val Thr Ile Lys Ala 15 5 10 Asn Leu Ile Tyr Ala Asp Gly Lys Thr Gln Thr Ala Glu Phe Lys Gly 30 25 20 Thr Phe Glu Glu Ala Thr Ala Glu Ala Tyr Arg Tyr Ala Asp Leu Leu 40 35 45 Ala Lys Glu Asn Gly Lys Tyr Thr Val Asp Val Ala Asp Lys Gly Tyr 50 55 60 Thr Leu Asn Ile Lys Phe Ala Gly 65 70 <210> 9 <211> 216 <212> DNA <213> Peptostreptococcus magnus

<220>

<221> CDS <222> (1)(216) <223> PpL4	
	aaa gaa gat act att aaa gca 48 Lys Glu Glu Val Thr Ile Lys Ala 10 15
	act caa aca gca gag ttc aaa gga 96 Thr Gln Thr Ala Glu Phe Lys Gly 30
	gca tac aga tac gct gac tta tta 144 Ala Tyr Arg Tyr Ala Asp Leu Leu 45
	gca gac tta gaa gat ggt gga tac 192 Ala Asp Leu Glu Asp Gly Gly Tyr 60
act att aat att aga ttt gca ggt Thr Ile Asn Ile Arg Phe Ala Gly 65 70	216
<210> 10 <211> 72 <212> PRT <213> Peptostreptococcus magnus	5
<400> 10	
Lys Glu Lys Thr Pro Glu Glu Pro 1 5	Lys Glu Glu Val Thr Ile Lys Ala 10 15
Asn Leu Ile Tyr Ala Asp Gly Lys 20	Thr Gln Thr Ala Glu Phe Lys Gly 30
Thr Phe Ala Glu Ala Thr Ala Glu 35 40	Ala Tyr Arg Tyr Ala Asp Leu Leu 45
Ala Lys Glu Asn Gly Lys Tyr Thr 50 55	Ala Asp Leu Glu Asp Gly Gly Tyr 60
Thr Ile Asn Ile Arg Phe Ala Gly	

<220> <221> CDS <222> (1)..(219) <223> PpL5 <400> 11 48 aag aaa gtt gac gaa aaa cca gaa gaa aaa gaa caa gta aca att aaa Lys Lys Val Asp Glu Lys Pro Glu Glu Lys Glu Gln Val Thr Ile Lys 15 10 5 1 96 gaa aat ata tat ttt gaa gat gga aca gta caa act gca aca ttt aaa Glu Asn Ile Tyr Phe Glu Asp Gly Thr Val Gln Thr Ala Thr Phe Lys 30 25 20 gga aca ttt gca gaa gcg aca gca gaa gca tac aga tat gca gat ttg 144 Gly Thr Phe Ala Glu Ala Thr Ala Glu Ala Tyr Arg Tyr Ala Asp Leu 45 35 40 tta tca aaa gaa cat ggt aaa tac aca gca gac ttg gaa gat ggt gga 192 Leu Ser Lys Glu His Gly Lys Tyr Thr Ala Asp Leu Glu Asp Gly Gly 50 55 60 219 tac act atc aac att aga ttt gct gga Tyr Thr Ile Asn Ile Arg Phe Ala Gly 65 70 <210> 12 <211> 73 <212> PRT <213> Peptostreptococcus magnus <400> 12 Lys Lys Val Asp Glu Lys Pro Glu Glu Lys Glu Gln Val Thr Ile Lys 15 10 Glu Asn Ile Tyr Phe Glu Asp Gly Thr Val Gln Thr Ala Thr Phe Lys 30 20 25 Gly Thr Phe Ala Glu Ala Thr Ala Glu Ala Tyr Arg Tyr Ala Asp Leu 35 45 Leu Ser Lys Glu His Gly Lys Tyr Thr Ala Asp Leu Glu Asp Gly Gly 60 50 55 Tyr Thr Ile Asn Ile Arg Phe Ala Gly 65 70

<210> 13

```
<211> 1269
<212> DNA
<213> Sindbis virus
<220>
<221> misc feature
<222> (1)..(1269)
<223> E2 potein gene from strain AR339
<220>
<221> CDS
<222> (1)..(1269)
<223> E2 glycoprotein
<220>
<221> variation
<222> (3)..(3)
<223> a in AR339; c in HRsp
<220>
<221> variation
<222> (8)..(8)
<223> c in AR339; t in HRsp
<220>
<221> variation
<222> (68)..(68)
<223> a in AR339; t in HRsp
<220>
<221> variation
<222> (208)..(208)
<223> g in AR339; a in HRsp
<220>
<221> variation
<222> (514)..(514)
<223> g in AR339; a in HRsp
<400> 13
aga gtc act gac gac ttt acc ctg acc agc ccc tac ttg ggc aca tgc
                                                                      48
Arg Val Thr Asp Asp Phe Thr Leu Thr Ser Pro Tyr Leu Gly Thr Cys
                                                        15
                                    10
tcg tac tgc cac cat act gaa ccg tgc ttc agc cct gtt aag atc gag
                                                                      96
Ser Tyr Cys His His Thr Glu Pro Cys Phe Ser Pro Val Lys Ile Glu
                                                    30
            20
                                25
cag gtc tgg gac gaa gcg gac gat aac acc ata cgc ata cag act tcc
                                                                     144
Gln Val Trp Asp Glu Ala Asp Asp Asn Thr Ile Arg Ile Gln Thr Ser
                            40
                                                45
        35
gcc cag ttt gga tac gac caa agc gga gca gca agc gca aac aag tac
                                                                     192
Ala Gln Phe Gly Tyr Asp Gln Ser Gly Ala Ala Ser Ala Asn Lys Tyr
    50
                                            60
                        55
```

						cag Gln										240
_	_		_			acc Thr										288
						gca Ala		_								336
_	_			_	_	aac Asn										384
_						gtg Val 135										432
						cct Pro									_	480
		_				act Thr				_						528
						tca Ser										576
		_				tat Tyr	_				_					624
						acc Thr 215										672
						agc Ser										720
						gac Asp										768
_						ccg Pro										816
						ggc Gly										864
aca	gac	cac	ttg	aca	ttg	ctc	acc	acc	agg	aga	cta	aaa	gca	aac	ccg	912

Thr Asp His Leu Thr Leu Leu Thr Thr Arg Arg Leu Gly Ala Asn Pro 290 295 300	
gaa cca acc act gaa tgg atc gtc gga aag acg gtc aga aac ttc acc Glu Pro Thr Thr Glu Trp Ile Val Gly Lys Thr Val Arg Asn Phe Thr 305 310 315 320	960
gtc gac cga gat ggc ctg gaa tac ata tgg gga aat cat gag cca gtg Val Asp Arg Asp Gly Leu Glu Tyr Ile Trp Gly Asn His Glu Pro Val 325 330 335	1008
agg gtc tat gcc caa gag tca gca cca gga gac cct cac gga tgg cca Arg Val Tyr Ala Gln Glu Ser Ala Pro Gly Asp Pro His Gly Trp Pro 340 345 350	1056
cac gaa ata gta cag cat tac tac cat cgc cat cct gtg tac acc atc His Glu Ile Val Gln His Tyr Tyr His Arg His Pro Val Tyr Thr Ile 355 360 365	1104
tta gcc gtc gca tca gct acc gtg gcg atg atg att ggc gta acc gtt Leu Ala Val Ala Ser Ala Thr Val Ala Met Met Ile Gly Val Thr Val 370 375 380	1152
gca gtg tta tgt gcc tgt aaa gcg cgc cgt gag tgc ctg acg cca tac Ala Val Leu Cys Ala Cys Lys Ala Arg Arg Glu Cys Leu Thr Pro Tyr 385 390 395 400	1200
gcc ctg gcc cca aac gcc gta atc cca act tcg ctg gca ctc ttg tgc Ala Leu Ala Pro Asn Ala Val Ile Pro Thr Ser Leu Ala Leu Leu Cys 405 410 415	1248
tgc gtt agg tcg gcc aat gct Cys Val Arg Ser Ala Asn Ala 420	1269
<210> 14 <211> 423 <212> PRT <213> Sindbis virus	
<400> 14	
Arg Val Thr Asp Asp Phe Thr Leu Thr Ser Pro Tyr Leu Gly Thr Cys 1 10 15	
Ser Tyr Cys His His Thr Glu Pro Cys Phe Ser Pro Val Lys Ile Glu 20 25 30	
Gln Val Trp Asp Glu Ala Asp Asp Asn Thr Ile Arg Ile Gln Thr Ser 35 40 45	
Ala Gln Phe Gly Tyr Asp Gln Ser Gly Ala Ala Ser Ala Asn Lys Tyr 50 55 60	

Arg 65	Tyr	Met	Ser	Leu	Glu 70	Gln	Asp	His	Thr	Val 75	Lys	Glu	Gly	Thr	Met 80
Asp	Asp	Ile	Lys	Ile 85	Ser	Thr	Ser	Gly	Pro 90	Cys	Arg	Arg	Leu	Ser 95	Tyr
Lys	Gly	Tyr	Phe 100	Leu	Leu	Ala	Lys	Cys 105	Pro	Pro	Gly	Asp	Ser 110	Val	Thr
Val	Ser	Ile 115	Val	Ser	Ser	Asn	Ser 120	Ala	Thr	Ser	Cys	Thr 125	Leu	Ala	Arg
Lys	Ile 130	Lys	Pro	Lys	Phe	Val 135	Gly	Arg	Glu	Lys	Tyr 140	Asp	Leu	Pro	Pro
Val 145	His	Gly	Lys	Lys	Ile 150	Pro	Cys	Thr	Val	Tyr 155	Asp	Arg	Leu	Lys	Glu 160
Thr	Thr	Ala	Gly	Tyr 165	Ile	Thr	Met	His	Arg 170	Pro	Gly	Pro	His	Ala 175	Tyr
Thr	Ser	Tyr	Leu 180	Glu	Glu	Ser	Ser	Gly 185		Val	Tyr	Ala	Lys 190	Pro	Pro
Ser	Gly	Lys 195	Asn	Ile	Thr	Tyr	Glu 200	Cys	Lys	Cys	Gly	Asp 205	Tyr	Lys	Thr
Gly	Thr 210	Val	Ser	Thr	Arg	Thr 215	Glu	Ile	Thr	Gly	Cys 220	Thr	Ala	Ile	Lys
Gln 225	Cys	Val	Ala	Tyr	Lys 230	Ser	Asp	Gln	Thr	Lys 235	Trp	Val	Phe	Asn	Ser 240
Pro	Asp	Leu	Ile	Arg 245	His	Asp	Asp	His	Thr 250	Ala	Gln	Gly	Lys	Leu 255	His
Leu	Pro	Phe	Lys 260	Leu	Ile	Pro	Ser	Thr 265	Cys	Met	Val	Pro	Val 270	Ala	His
Ala	Pro	Asn 275	Val	Ile	His	Gly	Phe 280	Lys	His	Ile	Ser	Leu 285	Gln	Leu	Asp

Thr Asp His Leu Thr Leu Leu Thr Thr Arg Arg Leu Gly Ala Asn Pro 290 295 300

Glu Pro Thr Thr Glu Trp Ile Val Gly Lys Thr Val Arg Asn Phe Thr 305 310 315 320

Val Asp Arg Asp Gly Leu Glu Tyr Ile Trp Gly Asn His Glu Pro Val 325 330 335

Arg Val Tyr Ala Gln Glu Ser Ala Pro Gly Asp Pro His Gly Trp Pro 340 345 350

His Glu Ile Val Gln His Tyr Tyr His Arg His Pro Val Tyr Thr Ile 355 360 365

Leu Ala Val Ala Ser Ala Thr Val Ala Met Met Ile Gly Val Thr Val 370 375 380

Ala Val Leu Cys Ala Cys Lys Ala Arg Arg Glu Cys Leu Thr Pro Tyr 385 390 395 400

Ala Leu Ala Pro Asn Ala Val Ile Pro Thr Ser Leu Ala Leu Leu Cys 405 410 415

Cys Val Arg Ser Ala Asn Ala 420

<210> 15

<211> 11703

<212> DNA

<213> Sindbis virus

<220>

<221> misc feature

<222> (1)..(11703)

<223> Sindbis virus HRsp and wild-type strains complete genome

<220>

<221> CDS

<222> (8439)..(8630)

<223> E3 protein

<220>

<221> CDS

<222> (8631)..(9899)

<223> E2 protein

<400> 15 attgacggcg tagtacacac tattgaatca aacagccgac caattgcact accatcacaa 60 tggagaagcc agtagtaaac gtagacgtag acccccagag tccgtttgtc gtgcaactgc 120 180 aaaaaagctt cccgcaattt gaggtagtag cacagcaggt cactccaaat gaccatgcta 240 atgccagagc attttcgcat ctggccagta aactaatcga gctggaggtt cctaccacag 300 cgacgatett ggacatagge agegeacegg etegtagaat gtttteegag caccagtate 360 attgtgtctg ccccatgcgt agtccagaag acccggaccg catgatgaaa tacgccagta aactggcgga aaaagcgtgc aagattacaa acaagaactt gcatgagaag attaaggatc 420 teeggacegt acttgatacg eeggatgetg aaacaceate getetgettt cacaacgatg 480 ttacctgcaa catgcgtgcc gaatattccg tcatgcagga cgtgtatatc aacgctcccg 540 gaactatcta tcatcaggct atgaaaggcg tgcggaccct gtactggatt ggcttcgaca 600 660 ccacccagtt catgttctcg gctatggcag gttcgtaccc tgcgtacaac accaactggg 720 ccgacgagaa agtccttgaa gcgcgtaaca tcggactttg cagcacaaag ctgagtgaag 780 gtaggacagg aaaattgtcg ataatgagga agaaggagtt gaagcccggg tcgcgggttt atttctccgt aggatcgaca ctttatccag aacacagagc cagcttgcag agctggcatc 840 ttccatcggt gttccacttg aatggaaagc agtcgtacac ttgccgctgt gatacagtgg 900 960 tgagttgcga aggctacgta gtgaagaaaa tcaccatcag tcccgggatc acgggagaaa 1020 ccgtgggata cgcggttaca cacaatagcg agggcttctt gctatgcaaa gttactgaca 1080 cagtaaaagg agaacgggta tcgttccctg tgtgcacgta catcccggcc accatatgcg atcagatgac tggtataatg gccacggata tatcacctga cgatgcacaa aaacttctgg 1140 ttgggctcaa ccagcgaatt gtcattaacg gtaggactaa caggaacacc aacaccatgc 1200 1260 aaaattacct tctgccgatc atagcacaag ggttcagcaa atgggctaag gagcgcaagg 1320 atgatcttga taacgagaaa atgctgggta ctagagaacg caagcttacg tatggctgct 1380 tgtgggcgtt tcgcactaag aaagtacatt cgttttatcg cccacctgga acgcagacct 1440 gcgtaaaagt cccagcctct tttagcgctt ttcccatgtc gtccgtatgg acgacctctt 1500 tgcccatgtc gctgaggcag aaattgaaac tggcattgca accaaagaag gaggaaaaac 1560 tgctgcaggt ctcggaggaa ttagtcatgg aggccaaggc tgcttttgag gatgctcagg 1620 aggaagccag agcggagaag ctccgagaag cacttccacc attagtggca gacaaaggca 1680 tcgaggcagc cgcagaagtt gtctgcgaag tggaggggct ccaggcggac atcggagcag

1740 cattagttga aaccccgcgc ggtcacgtaa ggataatacc tcaagcaaat gaccgtatga 1800 tcggacagta tatcgttgtc tcgccaaact ctgtgctgaa gaatgccaaa ctcgcaccag 1860 cgcacccgct agcagatcag gttaagatca taacacactc cggaagatca ggaaggtacg 1920 cggtcgaacc atacgacgct aaagtactga tgccagcagg aggtgccgta ccatggccag 1980 aattcctagc actgagtgag agcgccacgt tagtgtacaa cgaaagagag tttgtgaacc 2040 gcaaactata ccacattgcc atgcatggcc ccgccaagaa tacagaagag gagcagtaca aggttacaaa ggcagagctt gcagaaacag agtacgtgtt tgacgtggac aagaagcgtt 2100 2160 gcgttaagaa ggaagaagcc tcaggtctgg tcctctcggg agaactgacc aaccctccct 2220 atcatgaget agetetggag ggaetgaaga eeegaeetge ggteeegtae aaggtegaaa 2280 caataggagt gataggcaca ccggggtcgg gcaagtcagc tattatcaag tcaactgtca 2340 cggcacgaga tcttgttacc agcggaaaga aagaaaattg tcgcgaaatt gaggccgacg 2400 tgctaagact gaggggtatg cagattacgt cgaagacagt agattcggtt atgctcaacg gatgccacaa agccgtagaa gtgctgtacg ttgacgaagc gttcgcgtgc cacgcaggag 2460 2520 cactacttgc cttgattgct atcgtcaggc cccgcaagaa ggtagtacta tgcggagacc 2580 ccatgcaatg cggattcttc aacatgatgc aactaaaggt acatttcaat caccctgaaa aagacatatg caccaagaca ttctacaagt atatctcccg gcgttgcaca cagccagtta 2640 cagctattgt atcgacactg cattacgatg gaaagatgaa aaccacgaac ccgtgcaaga agaacattga aatcgatatt acaggggcca caaagccgaa gccaggggat atcatcctga 2760 2820 catgtttccg cgggtgggtt aagcaattgc aaatcgacta tcccggacat gaagtaatga cagccgcggc ctcacaaggg ctaaccagaa aaggagtgta tgccgtccgg caaaaagtca 2880 2940 atgaaaaccc actgtacgcg atcacatcag agcatgtgaa cgtgttgctc acccgcactg aggacagget agtgtggaaa accttgcagg gcgacccatg gattaagcag cccactaaca 3000 3060 tacctaaagg aaactttcag gctactatag aggactggga agctgaacac aagggaataa ttgctgcaat aaacagcccc actccccgtg ccaatccgtt cagctgcaag accaacgttt 3120 3180 gctgggcgaa agcattggaa ccgatactag ccacggccgg tatcgtactt accggttgcc 3240 agtggagcga actgttccca cagtttgcgg atgacaaacc acattcggcc atttacgcct 3300 tagacgtaat ttgcattaag tttttcggca tggacttgac aagcggactg ttttctaaac 3360 agagcatece actaacgtae catecegeeg atteagegag geeggtaget cattgggaea

acageceagg aaccegeaag tatgggtacg atcaegeeat tgeegeegaa eteteeegta 3420 3480 gatttccggt gttccagcta gctgggaagg gcacacaact tgatttgcag acggggagaa 3540 ccagagttat ctctgcacag cataacctgg tcccggtgaa ccgcaatctt cctcacgcct 3600 tagtccccga gtacaaggag aagcaacccg gcccggtcaa aaaattcttg aaccagttca 3660 aacaccactc agtacttgtg gtatcagagg aaaaaattga agctccccgt aagagaatcg 3720 aatggatcgc cccgattggc atagccggtg cagataagaa ctacaacctg gctttcgggt 3780 ttccgccgca ggcacggtac gacctggtgt tcatcaacat tggaactaaa tacagaaacc 3840 accactttca gcagtgcgaa gaccatgcgg cgaccttaaa aaccctttcg cgttcggccc 3900 tgaattgcct taacccagga ggcaccctcg tggtgaagtc ctatggctac gccgaccgca acagtgagga cgtagtcacc gctcttgcca gaaagtttgt cagggtgtct gcagcgagac 3960 4020 cagattgtgt ctcaagcaat acagaaatgt acctgatttt ccgacaacta gacaacagcc 4080 gtacacggca attcaccccg caccatctga attgcgtgat ttcgtccgtg tatgagggta 4140 caagagatgg agttggagcc gcgccgtcat accgcaccaa aagggagaat attgctgact 4200 gtcaagagga agcagttgtc aacgcagcca atccgctggg tagaccaggc gaaggagtct gccgtgccat ctataaacgt tggccgacca gttttaccga ttcagccacg gagacaggca 4260 4320 ccgcaagaat gactgtgtgc ctaggaaaga aagtgatcca cgcggtcggc cctgatttcc 4380 ggaagcaccc agaagcagaa gccttgaaat tgctacaaaa cgcctaccat gcagtggcag acttagtaaa tgaacataac atcaagtctg tcgccattcc actgctatct acaggcattt 4440 4500 acgcagccgg aaaagaccgc cttgaagtat cacttaactg cttgacaacc gcgctagaca 4560 gaactgacgc ggacgtaacc atctattgcc tggataagaa gtggaaggaa agaatcgacg 4620 cggcactcca acttaaggag tctgtaacag agctgaagga tgaagatatg gagatcgacg 4680 atgagttagt atggatccat ccagacagtt gcttgaaggg aagaaaggga ttcagtacta 4740 caaaaggaaa attgtattcg tacttcgaag gcaccaaatt ccatcaagca gcaaaagaca 4800 tggcggagat aaaggtcctg ttccctaatg accaggaaag taatgaacaa ctgtgtgcct 4860 acatattggg tgagaccatg gaagcaatcc gcgaaaagtg cccggtcgac cataacccgt 4920 cgtctagccc gcccaaaacg ttgccgtgcc tttgcatgta tgccatgacg ccagaaaggg 4980 tccacagact tagaagcaat aacgtcaaag aagttacagt atgctcctcc acccccttc 5040 ctaagcacaa aattaagaat gttcagaagg ttcagtgcac gaaagtagtc ctgtttaatc 5100 cgcacactcc cgcattcgtt cccgcccgta agtacataga agtgccagaa cagcctaccg

5160 ctcctcctgc acaggccgag gaggcccccg aagttgtagc gacaccgtca ccatctacag 5220 ctgataacac ctcgcttgat gtcacagaca tctcactgga tatggatgac agtagcgaag 5280 gctcactttt ttcgagcttt agcggatcgg acaactctat tactagtatg gacagttggt cgtcaggacc tagttcacta gagatagtag accgaaggca ggtggtggtg gctgacgttc 5340 5400 atgccgtcca agagcctgcc cctattccac cgccaaggct aaagaagatg gcccgcctgg 5460 cagcggcaag aaaagagccc actccaccgg caagcaatag ctctgagtcc ctccacctct 5520 cttttggtgg ggtatccatg tccctcggat caattttcga cggagagacg gcccgccagg cagcggtaca acccctggca acaggcccca cggatgtgcc tatgtctttc ggatcgtttt 5580 5640 ccgacggaga gattgatgag ctgagccgca gagtaactga gtccgaaccc gtcctgtttg gatcatttga accgggcgaa gtgaactcaa ttatatcgtc ccgatcagcc gtatcttttc 5700 5760 cactacgcaa gcagagacgt agacgcagga gcaggaggac tgaatactga ctaaccgggg 5820 taggtgggta catattttcg acggacacag gccctgggca cttgcaaaag aagtccgttc 5880 tgcagaacca gcttacagaa ccgaccttgg agcgcaatgt cctggaaaga attcatgccc 5940 cggtgctcga cacgtcgaaa gaggaacaac tcaaactcag gtaccagatg atgcccaccg 6000 aagccaacaa aagtaggtac cagtctcgta aagtagaaaa tcagaaagcc ataaccactg 6060 agcgactact gtcaggacta cgactgtata actctgccac agatcagcca gaatgctata agatcaccta tecgaaacca ttgtaeteca gtagegtaee ggegaactae teegateeae 6120 6180 agttcgctgt agctgtctgt aacaactatc tgcatgagaa ctatccgaca gtagcatctt 6240 atcagattac tgacgagtac gatgcttact tggatatggt agacgggaca gtcgcctgcc 6300 tggatactgc aaccttctgc cccgctaagc ttagaagtta cccgaaaaaa catgagtata 6360 gagccccgaa tatccgcagt gcggttccat cagcgatgca gaacacgcta caaaatgtgc 6420 tcattgccgc aactaaaaga aattgcaacg tcacgcagat gcgtgaactg ccaacactgg actcagcgac attcaatgtc gaatgctttc gaaaatatgc atgtaatgac gagtattggg 6480 6540 aggagttcgc tcggaagcca attaggatta ccactgagtt tgtcaccgca tatgtagcta 6600 gactgaaagg ccctaaggcc gccgcactat ttgcaaagac gtataatttg gtcccattgc 6660 aagaagtgcc tatggataga ttcgtcatgg acatgaaaag agacgtgaaa gttacaccag 6720 gcacgaaaca cacagaagaa agaccgaaag tacaagtgat acaagccgca gaacccctgg cgactgctta cttatgcggg attcaccggg aattagtgcg taggcttacg gccgtcttgc 6780 ttccaaacat tcacacgctt tttgacatgt cggcggagga ttttgatgca atcatagcag 6840 6900 aacacttcaa gcaaggcgac ccggtactgg agacggatat cgcatcattc gacaaaagcc 6960 aagacgacgc tatggcgtta accggtctga tgatcttgga ggacctgggt gtggatcaac 7020 cactactcga cttgatcgag tgcgcctttg gagaaatatc atccacccat ctacctacgg gtactcgttt taaattcggg gcgatgatga aatccggaat gttcctcaca ctttttgtca 7080 acacagtttt gaatgtcgtt atcgccagca gagtactaga agagcggctt aaaacgtcca 7140 7200 gatgtgcagc gttcattggc gacgacaaca tcatacatgg agtagtatct gacaaagaaa 7260 tggctgagag gtgcgccacc tggctcaaca tggaggttaa gatcatcgac gcagtcatcg 7320 gtgagagacc accttacttc tgcggcggat ttatcttgca agattcggtt acttccacag cgtgccgcgt ggcggatccc ctgaaaaggc tgtttaagtt gggtaaaccg ctcccagccg 7380 7440 acgacgagca agacgaagac agaagacgcg ctctgctaga tgaaacaaag gcgtggttta 7500 gagtaggtat aacaggcact ttagcagtgg ccgtgacgac ccggtatgag gtagacaata 7560 ttacacctgt cctactggca ttgagaactt ttgcccagag caaaagagca ttccaagcca 7620 tcagagggga aataaagcat ctctacggtg gtcctaaata gtcagcatag tacatttcat 7680 ctgactaata ctacaacacc accaccatga atagaggatt ctttaacatg ctcggccgcc 7740 gccccttccc ggccccact gccatgtgga ggccgcggag aaggaggcag gcggccccga 7800 tgcctgcccg caacgggctg gcttctcaaa tccagcaact gaccacagcc gtcagtgccc 7860 taqtcattqq acaqqcaact aqacctcaac ccccacgtcc acgcccgcca ccgcgccaga 7920 aqaaqcaqqc qcccaaqcaa ccaccqaagc cgaagaaacc aaaaacgcag gagaagaaga 7980 agaagcaacc tgcaaaaccc aaacccggaa agagacagcg catggcactt aagttggagg ccgacagatt gttcgacgtc aagaacgagg acggagatgt catcgggcac gcactggcca 8040 8100 tggaaggaaa ggtaatgaaa cctctgcacg tgaaaggaac catcgaccac cctgtgctat 8160 caaagctcaa atttaccaag tcgtcagcat acgacatgga gttcgcacag ttgccagtca 8220 acatgagaag tgaggcattc acctacacca gtgaacaccc cgaaggattc tataactggc accacggagc ggtgcagtat agtggaggta gatttaccat ccctcgcgga gtaggaggca 8280 gaggagacag cggtcgtccg atcatggata actccggtcg ggttgtcgcg atagtcctcg 8340 8400 gtggcgctga tgaaggaaca cgaactgccc tttcggtcgt cacctggaat agtaaaggga agacaattaa gacgaccccg gaagggacag aagagtgg tcc gca gca cca ctg gtc 8456 Ser Ala Ala Pro Leu Val

_	_	_			ctc Leu									8504
		_			cgc Arg									8552
_					gag Glu									8600
					ggc Gly 60									8648
	-				tac Tyr	_								8696
_	_	_		_	cct Pro							_	_	8744
_	_				cgc Arg		-							8792
					agc Ser									8840
					aaa Lys 140									8888
					aga Arg									8936
					gly ggg									8984
					tgt Cys			_		_				9032
			-		tat Tyr	-								9080
	_				gac Asp 220									9128

		_										tcc Ser					!	9176
			_									Gly 333					•	9224
												acc Thr						9272
	r G											tgc Cys 290				aag Lys		9320
_	r As			_	_		_					gac Asp						9368
_	_											cct Pro	_			_	:	9416
	-	_		_	_	_		_	_			ccg Pro		_			:	9464
						_				_		gac Asp	_	_		_		9512
	u Th				_			_		_	_	cca Pro 370			_	=		9560
IJ	_			_	_	_	 -				_	gac Asp	_	_		_		9608
_												gtc Val						9656
												gaa Glu						9704
												gcc Ala						9752
	ır Va			_	_			_		_		gtg Val 450						9800
aa	a go	cg	cgc	cgt	gag	tgc	ctg	acg	cca	tac	gcc	ctg	gcc	cca	aac	gcc	(9848

Lys Ala Arg Arg Glu Cys Leu Thr Pro Tyr Ala Leu Ala Pro Asn Ala
455

gta atc cca act tcg ctg gca ctc ttg tgc tgc gtt agg tcg gcc aat
Val Ile Pro Thr Ser Leu Ala Leu Leu Cys Cys Val Arg Ser Ala Asn
475

480

485

gct gaaacgttca ccgagaccat gagttacttg tggtcgaaca gtcagccgtt Ala

9949

10009 cttctgggtc cagttgtgca tacctttggc cgctttcatc gttctaatgc gctgctgctc ctgctgcctg ccttttttag tggttgccgg cgcctacctg gcgaaggtag acgcctacga 10069 10129 acatgcgacc actgttccaa atgtgccaca gataccgtat aaggcacttg ttgaaagggc 10189 agggtatgcc ccgctcaatt tggagatcac tgtcatgtcc tcggaggttt tgccttccac 10249 caaccaagag tacattacct gcaaattcac cactgtggtc ccctccccaa aaatcaaatg 10309 ctgcggctcc ttggaatgtc agccggccgc tcatgcagac tatacctgca aggtcttcgg 10369 aggggtctac ccctttatgt ggggaggagc gcaatgtttt tgcgacagtg agaacagcca gatgagtgag gcgtacgtcg aattgtcagc agattgcgcg tctgaccacg cgcaggcgat 10429 taaggtgcac actgccgcga tgaaagtagg actgcgtatt gtgtacggga acactaccag 10489 10549 tttcctagat gtgtacgtga acggagtcac accaggaacg tctaaagact tgaaagtcat agctggacca atttcagcat cgtttacgcc attcgatcat aaggtcgtta tccatcgcgg 10609 cctggtgtac aactatgact tcccggaata tggagcgatg aaaccaggag cgtttggaga cattcaagct acctccttga ctagcaagga tctcatcgcc agcacagaca ttaggctact 10729 10789 caagcettee gecaagaacg tgeatgteee gtacaegeag geeteateag gatttgagat 10849 gtggaaaaac aactcaggcc gcccactgca ggaaaccgca cctttcgggt gtaagattgc 10909 agtaaatccg ctccgagcgg tggactgttc atacgggaac attcccattt ctattgacat 10969 cccgaacgct gcctttatca ggacatcaga tgcaccactg gtctcaacag tcaaatgtga 11029 agtcagtgag tgcacttatt cagcagactt cggcgggatg gccaccctgc agtatgtatc cgaccgcgaa ggtcaatgcc ccgtacattc gcattcgagc acagcaactc tccaagagtc 11089 gacagtacat gtcctggaga aaggagcggt gacagtacac tttagcaccg cgagtccaca 11149 11209 ggcgaacttt atcgtatcgc tgtgtgggaa gaagacaaca tgcaatgcag aatgtaaacc 11269 accagctgac catatcgtga gcaccccgca caaaaatgac caagaatttc aagccgccat ctcaaaaaca tcatggagtt ggctgtttgc ccttttcggc ggcgcctcgt cgctattaat 11329 tataggactt atgattttg cttgcagcat gatgctgact agcacacgaa gatgaccgct 11389
acgccccaat gatccgacca gcaaaactcg atgtacttcc gaggaactga tgtgcataat 11449
gcatcaggct ggtacattag atccccgctt accgcgggca atatagcaac actaaaaact 11509
cgatgtactt ccgaggaagc gcagtgcata atgctgcgca gtgttgccac ataaccacta 11569
tattaaccat ttatctagcg gacgccaaaa actcaatgta tttctgagga agcgtggtgc 11629
ataatgccac gcagcgtctg cataacttt attattctt ttattaatca acaaaatttt 11689
gttttaaca tttc

<210> 16

<211> 64

<212> PRT

<213> Sindbis virus

<400> 16

Ser Ala Ala Pro Leu Val Thr Ala Met Cys Leu Leu Gly Asn Val Ser 1 5 10 15

Phe Pro Cys Asp Arg Pro Pro Thr Cys Tyr Thr Arg Glu Pro Ser Arg 20 25 30

Ala Leu Asp Ile Leu Glu Glu Asn Val Asn His Glu Ala Tyr Asp Thr 35 40 45

Leu Leu Asn Ala Ile Leu Arg Cys Gly Ser Ser Gly Arg Ser Lys Arg 50 55 60

<210> 17

<211> 423

<212> PRT

<213> Sindbis virus

<400> 17

Ser Val Ile Asp Asp Phe Thr Leu Thr Ser Pro Tyr Leu Gly Thr Cys
1 10 15

Ser Tyr Cys His His Thr Val Pro Cys Phe Ser Pro Val Lys Ile Glu 20 25 30

Gln Val Trp Asp Glu Ala Asp Asp Asn Thr Ile Arg Ile Gln Thr Ser 35 40 45

Ala	Gln 50	Phe	Gly	Tyr	Asp	Gln 55	Ser	Gly	Ala	Ala	Ser 60	Ala	Asn	Lys	Tyr
Arg 65	Tyr	Met	Ser	Leu	Lys 70	Gln	Asp	His	Thr	Val 75	Lys	Glu	Gly	Thr	Met 80
Asp	Asp	Ile	Lys	Ile 85	Ser	Thr	Ser	Gly	Pro 90	Cys	Arg	Arg	Leu	Ser 95	Tyr
Lys	Gly	Tyr	Phe 100	Leu	Leu	Ala	Lys	Cys 105	Pro	Pro	Gly	Asp	Ser 110	Val	Thr
Val	Ser	Ile 115	Val	Ser	Ser	Asn	Ser 120	Ala	Thr	Ser	Cys	Thr 125	Leu	Ala	Arg
Lys	Ile 130	Lys	Pro	Lys	Phe	Val 135	Gly	Arg	Glu	Lys	Tyr 140	Asp	Leu	Pro	Pro
Val 145	His	Gly	Lys	Lys	Ile 150	Pro	Cys	Thr	Val	Tyr 155	Asp	Arg	Leu	Lys	Glu 160
Thr	Thr	Ala	Gly	Tyr 165	Ile	Thr	Met	His	Arg 170	Pro	Arg	Pro	His	Ala 175	Tyr
Thr	Ser	Tyr	Leu 180	Glu	Glu	Ser	Ser	Gly 185	Lys	Val	Tyr	Ala	Lys 190	Pro	Pro
Ser	Gly	Lys 195	Asn	Ile	Thr	Tyr	Glu 200	Cys	Lys	Cys	Gly	Asp 205	Tyr	Lys	Thr
Gly	Thr 210	Val	Ser	Thr	Arg	Thr 215	Glu	Ile	Thr	Gly	Cys 220	Thr	Ala	Ile	Lys
Gln 225	Cys	Val	Ala	Tyr	Lys 230	Ser	Asp	Gln	Thr	Lys 235	Trp	Val	Phe	Asn	Ser 240
Pro	Asp	Leu	Ile	Arg 245	His	Asp	Asp	His	Thr 250	Ala	Gln	Gly	Lys	Leu 255	His
Leu	Pro	Phe	Lys 260	Leu	Ile	Pro	Ser	Thr 265	Cys	Met	Val	Pro	Val 270	Ala	His
Ala	Pro	Asn	Val	Ile	His	Gly	Phe	Lys	His	Ile	Ser	Leu	Gln	Leu	Asp

275 280 285

Thr Asp His Leu Thr Leu Leu Thr Thr Arg Arg Leu Gly Ala Asn Pro 290 295 300

Glu Pro Thr Thr Glu Trp Ile Val Gly Lys Thr Val Arg Asn Phe Thr 305 310 315 320

Val Asp Arg Asp Gly Leu Glu Tyr Ile Trp Gly Asn His Glu Pro Val 325 330 335

Arg Val Tyr Ala Gln Glu Ser Ala Pro Gly Asp Pro His Gly Trp Pro 340 345 350

His Glu Ile Val Gln His Tyr Tyr His Arg His Pro Val Tyr Thr Ile 355 360 365

Leu Ala Val Ala Ser Ala Thr Val Ala Met Met Ile Gly Val Thr Val
370 375 380

Ala Val Leu Cys Ala Cys Lys Ala Arg Arg Glu Cys Leu Thr Pro Tyr 385 390 395 400

Ala Leu Ala Pro Asn Ala Val Ile Pro Thr Ser Leu Ala Leu Leu Cys 405 410 415

Cys Val Arg Ser Ala Asn Ala 420

<210> 18

<211> 51

<212> DNA

<213> Artificial sequence

<220>

<223> Linker

<220>

<221> CDS

<222> (1)..(51)

<400> 18

48

```
51
tct
Ser
<210> 19
<211> 17
<212> PRT
<213> Artificial sequence
<220>
<223> Linker
<400> 19
Arg Ser Gly Gly Gly Ser Gly Gly Gly Gly Gly Gly Gly Gly
                             10
1
Ser
<210> 20
<211> 45
<212> DNA
<213> Artificial sequence
<220>
<223> Linker
<220>
<221> CDS
<222> (1)..(45)
<400> 20
                                                          45
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
                             10
                                              15
<210> 21
<211> 15
<212> PRT
<213> Artificial sequence
<220>
<223> Linker
<400> 21
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
             5
                                              15
                             10
1
```

<210> 22

<211> 1050 <212> DNA <213> Bluetongue vir	rus 10		
<220> <221> CDS <222> (1)(1050) <223> VP7 gene			
<400> 22 atg gac act atc gcc g Met Asp Thr Ile Ala A 1 5	_	Val Met Arg Ala	<u>_</u>
acg ctt caa gag gca a Thr Leu Gln Glu Ala A 20			
ttg ggg ata gct atc a Leu Gly Ile Ala Ile A 35			
acg atg cgc ccg acc t Thr Met Arg Pro Thr S 50			
tgt ttg gat atg atg c Cys Leu Asp Met Met L 65			
tcg cca gac tat act c Ser Pro Asp Tyr Thr G 85		Ile Gly Val Leu	
ccg gaa ata cct ttt a Pro Glu Ile Pro Phe T 100		<u> </u>	_
act ggg gag act tcg a Thr Gly Glu Thr Ser T 115	_		
ttc ctt gaa act gag g Phe Leu Glu Thr Glu G 130		_	
gcc gct caa gca gta a Ala Ala Gln Ala Val T 145			
gtg tca ctt aat gct g Val Ser Leu Asn Ala G 165		Val Gln Gln Ile	
ggt cgt aat gat ccc a Gly Arg Asn Asp Pro M	_		_

180		185	190	
aac ttt gcg atg gcg Asn Phe Ala Met Ala 195				
act gtc agt gtt ggt Thr Val Ser Val Gly 210		Met Arg Ala		
tgg gat gga cag gcc Trp Asp Gly Gln Ala 225				
gcg atg gtg caa ata Ala Met Val Gln Ile 245			<u> </u>	Thr
tta aac cag tac ccc Leu Asn Gln Tyr Pro 260	-		-	
ttc agg gac cac aca Phe Arg Asp His Thr 275				
acc aca ctg cca aac Thr Thr Leu Pro Asn 290			_	-
gat agc atc tta act Asp Ser Ile Leu Thr 305				
act gtt tta agg cca Thr Val Leu Arg Pro 325	_			Pro
ggg ccg ctc aca cgt Gly Pro Leu Thr Arg 340				1050
<210> 23 <211> 349 <212> PRT <213> Bluetongue v	irus 10			
<400> 23 Met Asp Thr Ile Ala	Ala Arg Ala	Leu Thr Val	Met Arg Ala Cvs	Ala
1 5	THE THY RICE	10	15	
Thr Leu Gln Glu Ala	Arg Ile Val	Leu Glu Ala	Asn Val Met Glu	Ile

Leu Gly Ile Ala Ile Asn Arg Tyr Asn Gly Leu Thr Leu Arg Gly Val Thr Met Arg Pro Thr Ser Leu Ala Gln Arg Asn Glu Met Phe Phe Met Cys Leu Asp Met Met Leu Ser Ala Ala Gly Ile Asn Val Gly Pro Ile Ser Pro Asp Tyr Thr Gln His Met Ala Thr Ile Gly Val Leu Ala Thr Pro Glu Ile Pro Phe Thr Thr Glu Ala Ala Asn Glu Ile Ala Arg Val Thr Gly Glu Thr Ser Thr Trp Gly Pro Ala Arg Gln Pro Tyr Gly Phe Phe Leu Glu Thr Glu Glu Thr Phe Gln Pro Gly Arg Trp Phe Met Arg Ala Ala Gln Ala Val Thr Ala Val Val Cys Gly Pro Asp Met Ile Gln Val Ser Leu Asn Ala Gly Ala Arg Gly Asp Val Gln Gln Ile Phe Gln Gly Arg Asn Asp Pro Met Met Ile Tyr Leu Val Trp Arg Arg Ile Glu Asn Phe Ala Met Ala Gln Gly Asn Ser Gln Gln Thr Gln Ala Gly Val Thr Val Ser Val Gly Gly Val Asp Met Arg Ala Gly Arg Ile Ile Ala Trp Asp Gly Gln Ala Ala Leu His Val His Asn Pro Thr Gln Gln Asn Ala Met Val Gln Ile Gln Val Val Phe Tyr Ile Ser Met Asp Lys Thr

260 265 270	
Phe Arg Asp His Thr Trp His Gly Leu Arg Thr Ala Ile Leu Asn Arg 275 280 285	
Thr Thr Leu Pro Asn Met Leu Pro Pro Ile Phe Pro Pro Asn Asp Arg 290 295 300	
Asp Ser Ile Leu Thr Leu Leu Leu Leu Ser Thr Leu Ala Asp Val Tyr 305 310 315 320	
Thr Val Leu Arg Pro Glu Phe Ala Ile His Gly Val Asn Pro Met Pro 325 330 335	
Gly Pro Leu Thr Arg Ala Ile Ala Arg Ala Ala Tyr Val 340 345	
<210> 24 <211> 585 <212> DNA <213> Coccidioides immitis	
<220> <221> CDS <222> (1)(585) <223> Ag2/PRA gene	
<221> CDS <222> (1)(585)	48
<221> CDS <222> (1)(585) <223> Ag2/PRA gene <400> 24 atg cag ttc tct cac gct ctc atc gct ctc gcc gcc gcc ctc gcc Met Gln Phe Ser His Ala Leu Ile Ala Leu Val Ala Ala Gly Leu Ala	48
<pre><221> CDS <222> (1)(585) <223> Ag2/PRA gene <400> 24 atg cag ttc tct cac gct ctc atc gct ctc gct gcc ggc ctc gcc Met Gln Phe Ser His Ala Leu Ile Ala Leu Val Ala Ala Gly Leu Ala 1</pre>	
<pre><221> CDS <222> (1)(585) <223> Ag2/PRA gene </pre> <pre> <400> 24 atg cag ttc tct cac gct ctc atc gct ctc gtc gct gcc ggc ctc gcc Met Gln Phe Ser His Ala Leu Ile Ala Leu Val Ala Ala Gly Leu Ala 1</pre>	96
<pre> <221> CDS <222> (1)(585) <223> Ag2/PRA gene </pre> <pre> <400> 24 atg cag ttc tct cac gct ctc atc gct ctc gtc gct gcc ggc ctc gcc Met Gln Phe Ser His Ala Leu Ile Ala Leu Val Ala Ala Gly Leu Ala 1</pre>	96 144

85 90 95 	
acc acc gcc gct ccc gag cca tcc gag acc gct gag ccc acc gct gag Thr Thr Ala Ala Pro Glu Pro Ser Glu Thr Ala Glu Pro Thr Ala Glu 100 105 110	336
cca acc gag gag ccc act gcc gag cct acc gct gag ccc acc gct gag Pro Thr Glu Glu Pro Thr Ala Glu Pro Thr Ala Glu Pro Thr Ala Glu 115 120 125	384
ccg act cat gag ccc acc gag gag ccc act gcc gtc cca acc ggc act Pro Thr His Glu Pro Thr Glu Glu Pro Thr Ala Val Pro Thr Gly Thr 130 135 140	432
ggc ggt ggt gtc ccc act ggc acc ggt tcc ttc acc gtc act ggc aga Gly Gly Gly Val Pro Thr Gly Thr Gly Ser Phe Thr Val Thr Gly Arg 150 155 160	480
cca act gcc tcc acc cca gct gag ttc cca ggt gct ggc tcc aac gtc Pro Thr Ala Ser Thr Pro Ala Glu Phe Pro Gly Ala Gly Ser Asn Val 165 170 175	528
cgt gcc agc gtt ggc ggc att gct gct gct ctc ctc ggt ctc gcc Arg Ala Ser Val Gly Gly Ile Ala Ala Ala Leu Leu Gly Leu Ala Ala 180 185 190	576
tac ctg taa Tyr Leu	585
<210> 25 <211> 194 <212> PRT <213> Coccidioides immitis	
<211> 194 <212> PRT	
<211> 194 <212> PRT <213> Coccidioides immitis	
<211> 194 <212> PRT <213> Coccidioides immitis <400> 25 Met Gln Phe Ser His Ala Leu Ile Ala Leu Val Ala Ala Gly Leu Ala	
<pre><211> 194 <212> PRT <213> Coccidioides immitis <400> 25 Met Gln Phe Ser His Ala Leu Ile Ala Leu Val Ala Ala Gly Leu Ala 1</pre>	
<pre><211> 194 <212> PRT <213> Coccidioides immitis <400> 25 Met Gln Phe Ser His Ala Leu Ile Ala Leu Val Ala Ala Gly Leu Ala 1</pre>	

Thr Thr Ala Ala Pro Glu Pro Ser Glu Thr Ala Glu Pro Thr Ala Glu Pro Thr Glu Glu Pro Thr Ala Glu Pro Thr Ala Glu Pro Thr Ala Glu Pro Thr His Glu Pro Thr Glu Glu Pro Thr Ala Val Pro Thr Gly Thr Gly Gly Gly Val Pro Thr Gly Thr Gly Ser Phe Thr Val Thr Gly Arg Pro Thr Ala Ser Thr Pro Ala Glu Phe Pro Gly Ala Gly Ser Asn Val Arg Ala Ser Val Gly Gly Ile Ala Ala Ala Leu Leu Gly Leu Ala Ala Tyr Leu <210> 26 <211> <212> DNA <213> Streptococcus pneumoniae <220> <221> CDS <222> (1)..(906) <223> PspA gene <400> 26 gaa gaa tct ccc gta gcc agt cag tct aaa gct gag aaa gac tat gat Glu Glu Ser Pro Val Ala Ser Gln Ser Lys Ala Glu Lys Asp Tyr Asp gca gcg aag aaa gat gct aag aat gcg aaa aaa gca gta gaa gat gct Ala Ala Lys Lys Asp Ala Lys Asn Ala Lys Lys Ala Val Glu Asp Ala caa aag gct tta gat gca aaa gct gct cag aaa aaa tat gac gag Gln Lys Ala Leu Asp Asp Ala Lys Ala Ala Gln Lys Lys Tyr Asp Glu

Asp Gln Cys Ser Lys Ala Gly Val Pro Ile Asp Ile Pro Pro Val Asp

_	_	_			gag Glu										192
					gca Ala 70										240
			_		gac Asp		_	_							288
	_	_ -			aaa Lys					_				_	336
	_				gta Val										384
				_	gaa Glu										432
				-	aaa Lys 150	=									480
	_	_			aaa Lys										528
		_	_	_	gaa Glu			_		_		_		_	576
			_		tct Ser	_		_	_		_		_		624
_	_				tct Ser		_	_							672
		_			agt Ser 230	=									720
_			_	_	caa Gln			_	-	_	_				768

gct gaa tta ga Ala Glu Leu G 275					
cca gaa aaa c Pro Glu Lys P 290	ro Ala Pro A				
<210> 27 <211> 302 <212> PRT <213> Strept	ococcus pnei	umoniae			
<400> 27					
Glu Glu Ser P	ro Val Ala S 5	Ser Gln Ser	Lys Ala Glu 10	Lys Asp Ty	c Asp
Ala Ala Lys L 2	ys Asp Ala I 0	Lys Asn Ala 25	Lys Lys Ala	Val Glu Ası 30	o Ala
Gln Lys Ala L 35	eu Asp Asp A	Ala Lys Ala 40	Ala Gln Lys	Lys Tyr Asj 45	o Glu
Asp Gln Lys L	_	Glu Lys Ala 55	Ala Leu Glu 60	Lys Ala Ala	a Ser
Glu Glu Met A 65	asp Lys Ala V 70	Val Ala Ala	Val Gln Gln 75	Ala Tyr Le	u Ala 80
Tyr Gln Gln A	ala Thr Asp I 85	Lys Ala Ala	Lys Asp Ala 90	Ala Asp Ly 95	s Met
Ile Asp Glu A 1	ala Lys Lys <i>1</i> .00	Arg Glu Glu 105	Glu Ala Lys	Thr Lys Pho	e Asn
Thr Val Arg A 115	la Met Val V	Val Pro Glu 120	Pro Glu Gln	Leu Ala Gl	u Thr
Lys Lys Lys S 130		Ala Lys Gln 135	Lys Ala Pro 140	Glu Leu Th	r Lys
Lys Leu Glu G 145	lu Ala Lys A 150	Ala Lys Leu	Glu Glu Ala 155	Glu Lys Ly	s Ala 160

Thr Glu Ala Lys Gln Lys Val Asp Ala Glu Glu Val Ala Pro Gln Ala

165 170 175

Lys Ile Ala Glu Leu Glu Asn Gln Val His Arg Leu Glu Gln Glu Leu 180 185 190

- Lys Glu Ile Asp Glu Ser Glu Ser Glu Asp Tyr Ala Lys Glu Gly Phe 195 200 205
- Arg Ala Pro Leu Gln Ser Lys Leu Asp Ala Lys Lys Ala Lys Leu Ser 210 215 220
- Lys Leu Glu Glu Leu Ser Asp Lys Ile Asp Glu Leu Asp Ala Glu Ile 225 230 235 240
- Ala Lys Leu Glu Asp Gln Leu Lys Ala Ala Glu Glu Asn Asn Asn Val 245 250 255
- Glu Asp Tyr Phe Lys Glu Gly Leu Glu Lys Thr Ile Ala Ala Lys Lys 260 265 270
- Ala Glu Leu Glu Lys Thr Glu Ala Asp Leu Lys Lys Ala Val Asn Glu 275 280 285
- Pro Glu Lys Pro Ala Pro Ala Pro Glu Thr Pro Ala Pro Glu 290 295 300