DM3 - Preuves sur ordinateur Omniscience

Yassine Hamoudi

25 novembre 2014

1 Remarques

Les questions suivantes n'ont pas été résolues complètement, le code Coq correspondant comporte la tactique admit :

- Question 4 : une preuve par induction a été essayée mais seule l'étape d'initialisation est démontrée.
- Question 15
- Question 17

2 Question 10

On utilise le principe du tiers exclu.

D'après ce principe, on démontre que pour tout élément $x \in \text{set } \mathbb{N}_{\infty}$:

$$\exists k, \text{proj1} \text{ sig } x \ k = false \lor \forall k, \text{proj1} \text{ sig } x \ k = true$$

Considérons un élément $x \in \text{set } \mathbb{N}_{\infty}$.

Supposons qu'il existe $k \in \mathbb{N}$ tel que proj1_sig x k = false. Alors : min proj1_sig x k = false. Donc, d'après la question 6, il existe $p \in \mathbb{N}$ tel que x = of nat p.

A l'inverse, si $\forall k$, proj1 sig x k = true alors $x = \omega$.

Ceci démontre que $\mathbb{N}_{\infty} = \text{of_nat}(\mathbb{N}) \cup \omega$ en logique classique.

3 Question 12

On considère une énumération sur \mathbb{N} des machines de Turing (chaque entier n représente une machine de Turing notée M_n).

Pour tout $n \in \mathbb{N}$, on note $p_n : nat \to bool$ la fonction constamment vraie si M_n s'arrête sur chacune de ses entrées, ou constamment fausse sinon. Le problème consistant à savoir si $p_n(m)$ est vraie ou faux (quelque soit m) est indécidable (il s'agit du problème de l'arrêt).

Supposons qu'il soit possible de prouver que \mathbb{N} est omniscient dans une logique satisfaisant le théorème de disjonction. Alors, par définition de l'omniscience, on prouve que pour tout $n \in \mathbb{N}$: $\exists m, p_n(m) = faux \lor \forall m, p_n(m) = vraie$. Cela implique, d'après le théorème de disjonction, que pour tout $n \in \mathbb{N}$ on ait une preuve constructive de $\exists m, p_n(m) = faux$ ou de $\forall m, p_n(m) = vraie$. Autrement dit, pour tout $n \in \mathbb{N}$ on parvient à décider si M_n s'arrête sur chacune de ses entrées ou non, ce qui est impossible.

Il n'est donc pas possible de prouver que $\mathbb N$ est omniscient dans une logique satisfaisant le théorème de disjonction.