Отчёт по лабораторной работе 1

Простейший вариант

Арфонос Дмитрий

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Самостоятельная работа	22
4	Вывод	25

Список иллюстраций

2.1	Настройка каталогов	6
2.2	Настройка хост клавиш	7
2.3	Создание виртуальной машины	7
2.4	Установка оперативки	8
2.5	жесткий диск	8
2.6	видеопамять	9
2.7	уч запись	10
2.8	дата и время	11
2.9		11
2.10		12
	образ опт диска	13
2.12	Запуск	14
2.13	•	15
	обновление	15
2.15	обновление	16
2.16	установка программ	16
	7 · · · · · · · · · · · · · · · · · · ·	17
2.18	установка таймера	17
		17
	T - T - T - T - T - T - T - T - T - T -	18
2.21	Установите средства разработки:	18
2.22	установка программ	18
2.23	установка пдрайвера	19
2.24	перезагрузка	19
2.25	установка имени хоста	20
2.26		20
2.27	установка программ	20
2.28	установка программ	21
3.1	последовательность загрузки	22
3.2	Версия ядра Linux	22
3.3	Частота процессора	23
3.4		23
3.5		23
3.6		23
3.7	тип файловой системы	24

3 8	Последовательность монти	пования файловых систем	24
J.0	TIOCACHODA I CAIDAOC I D MORTH	рования фаиловых систем.	 47

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Выполнение лабораторной работы

1 Настроиваю каталог для виртуальной машины (рис. [2.1])

Рис. 2.1: Настройка каталогов

2 Настроиваю хост-клавиши с ctrl на num-lock (рис. [2.2])

Рис. 2.2: Настройка хост клавиш

3 Создаю виртуальную машину: выбираю установленный привод оптических дисков и даю ей имя своего логина(рис. [2.3])

Рис. 2.3: Создание виртуальной машины

4 Устанавливаю объем оперативной памяти 2 гб и 3 цп (рис. [2.4])

Рис. 2.4: Установка оперативки

5 Устанавливаю объем жесткого диска 80 гб (рис. [2.5])

Рис. 2.5: жесткий диск

6 Устанавливаю объем видеопамяти(рис. [2.6])

Рис. 2.6: видеопамять

7 Создаю учетную запись для виртуальной машины(рис. [2.7])

Рис. 2.7: уч запись

8 Настраиваю дату и время(рис. [2.8])

Рис. 2.8: дата и время

9 Устанавливаю автоматическую конфигурацию.(рис. [2.9])

Рис. 2.9: Конфигурация

10

Ждем пока все установится для работы.(рис. [2.10])

Рис. 2.10: установка

11Добавляю новый привод оптических дисков.(рис. [2.11])

Рис. 2.11: образ опт диска

Запускаю виртуальную машину.(рис. [2.12])

Рис. 2.12: Запуск

13Запускаю режим суперпользователя.(рис. [2.13])

Рис. 2.13: Запуск root

14 Обновляю все пакеты.(рис. [2.15])

Рис. 2.14: обновление

Рис. 2.15: обновление

15 Программа для удобства работы в консоли.(рис. [2.16])

Рис. 2.16: установка программ

16

Ввожу команду для автообновления системы.(рис. [2.17])

```
[root@fedora -]# dnf install dnf-automatic
Последняя проверка окончания срока действия метаданных: 0:06:14 назад, Сб 02 мар 2024 16:56:54.
Зависимости разрешены.

Пакет Архитектура Версия Ре

"Сстановка: поатсћ 4.19.0-1.fc38 ид

dnf-automatic noarch 4.19.0-1.fc38 ид

dnf-data noarch 4.19.0-1.fc38 ид

dnf-data 1bdnf, x86_64 0.72.0-1.fc38 ид

замена lbdnf, x86_64 0.72.0-1.fc38 ид

замена python3-dnf noarch 4.19.0-1.fc38 ид

замена python3-hawkey, x86_64 0.72.0-1.fc38 ид

замена python3-lbdnf, x86_64 0.72.0-1.fc38 ид

замена python3-lbdnf поатсћ 4.19.0-1.fc38 ид

замена python3-lbdnf, x86_64 0.72.0-1.fc38 ид

Результат транзакции

Установка 1 Пакет
Обновление 7 Пакето
Общий размер: 2.8 М
```

Рис. 2.17: установка программ

Устанавливаю таймер(рис. [2.18])

```
[root@fedora ~]# systemctl enable --now dnf-automatic.timer
Created symlink /etc/systemd/system/timers.target.wants/dnf-automatic.timer → /usr/lib/systemd/system/dnf-automatic.time
[root@fedora ~]# [
```

Рис. 2.18: установка таймера

18

Отключение SELinux изменяя конфигурацию нужной папки (рис. [2.19])

```
Pote the second section of targeted policy. Only selected processes are protected.

# mls - Multi Level Security protection.

**Config / etc/selinux

# # grubby --update-kernel ALL --remove-args selinux

# # selinuxTyPE= can take one of these three values:

# targeted - Iargeted processes are protected,

# minimum - Modification of targeted policy. Only selected processes are protected.

# mls - Multi Level Security protection.

**SELINUXTYPE=targeted**
```

Рис. 2.19: Отключение SELinux

19

Установите средства разработки для драйверов виртуал бокс. (рис. [2.21])

```
[darfonos@fedora -]$ sudo -i
[sudo] пароль для darfonos:
Попробуйте ещё раз.
[sudo] пароль для darfonos:
[root@fedora -]# dnf -y group install "Development Toopls"
```

Рис. 2.20: Установите средства разработки:

Рис. 2.21: Установите средства разработки:

Установка dkms(рис. [2.22])

Рис. 2.22: установка программ

21

Подмонтирую диск и запускаю установку драйвера(рис. [2.23])

```
[root@fedora -]# mount /dev/sr0 /media
mount: /media: /dev/sr0 already mounted on /run/media/darfonos/VBox_GAs_7.0.10.
dmesg(1) may have more information after failed mount system call.
[root@fedora -]# /media/VBoxLinuxAdditions.run
Vprifying archive integrity... 100% MD5 checksums are OK. All good.
Uff.compressing virtualBox 7.0.10 Guest Additions for Linux 100%
VirtualBox Guest Additions installer
Removing installed version 7.0.10 of VirtualBox Guest Additions...
```

Рис. 2.23: установка пдрайвера

22 Перезагружаю машину(рис. [2.24])

Рис. 2.24: перезагрузка

23

Установите и проверка имени хоста(рис. [2.25])

Рис. 2.25: установка имени хоста

Внутри виртуальной машины добавляю своего пользователя в группу vboxsf(puc. [2.26])

```
Firmware Date: Fri 2006-12-01
[root@fedora -]# gpasswd -a darfonos vboxsf
Добавление пользователя darfonos в группу vboxsf
[root@fedora -]#

I
```

Рис. 2.26: создание общей папки

25

Устанавливаю пакет pandoc для редактирование текстов(рис. [2.27])

```
[darfonos@darfonos ~]$ sudo -i
†sudo] пароль для darfonos:
troot@darfonos ~]# dnf -y install pandoc
```

Рис. 2.27: установка программ

26

Устанавливаю из внешних источников репозиторий с pandoc-crossref(рис. [2.28])

Рис. 2.28: установка программ

Устанавливаю полную версию пакетов texlive(рис. [??])

```
[root@darfonos ~]# dnf -y install texlive
Последняя проверка окончания срока действия метаданных: 2:28:40 назад, С6 02 мар 2024 16:56:54.
Пакет texlive-10:2022-65.fc38.noarch уже установлен.
Зависимости разрешены.
Нег действий для выполнения.
Выполнено!
[root@darfonos ~]# SS
```

{#fig:27 width=70%}

3 Самостоятельная работа

29

В окне терминала проанализирую последовательность загрузки системы, выполнив команду dmes(рис. [3.1])

```
| 0.000000 | Limux version 6.7.6-100.fc38.x86_04 (mockbuild|ele|225e|d254ae|8c5108cae4c0fa8) (gcc (GCC) 13.2.1 20231011 (Red Hat 13.2.1-4), GNU ld version 2.39-16.clo) # 1 509 PEREMPTJONALC FOR FARM 15.000 | PEREMPTJONALC
```

Рис. 3.1: последовательность загрузки

28

Получаю информацию о Версия ядра Linux(рис. [3.2])

```
[root@darfonos -]# dmesg | grep -i "Linux version"
[ 0.00000] tinux version 6.7.6-100.fc38.x86_64 (mockbuild@cle7225e7d254ae18cc5108caa4c0fa8) (gcc (GCC) 13.2.1 202318
2.39-16.fc38) #l SMP PREEMPT_DYNAMIC Fri Feb 23 18:29:24 UTC 2024
[root@darfonos ~]#
[
```

Рис. 3.2: Версия ядра Linux

29

Узнаю частоту процессора(рис. [3.3])

```
[root@darfonos ~]# dmesg | grep -i "Mhz processor"
[ 0.000015] tsc: Detected 2095.994 MHz processor
[root@darfonos ~]# ■
```

Рис. 3.3: Частота процессора

Узнаю Модель процессора(рис. [3.4])

```
[root@darfonos -]# dmesg | grep -i "CPU0"
[ 0.283978] smpboot: CPU0: AMD Ryzen 5 5500U with Radeon Graphics (family: 0x17, model: 0x68, stepping: 0x1)
[root@darfonos -]#
```

Рис. 3.4: Модель процессора

31

Вывожу на экран объём доступной оперативной памяти(рис. [3.5])

```
[root@darfonos ~]# dmesg | grep -i "available"

[ 0.004643] On node 0, zone DMA: 1 pages in unavailable ranges

[ 0.004672] On node 0, zone DMA: 1 pages in unavailable ranges

[ 0.013541] On node 0, zone Normal: 16 pages in unavailable ranges

[ 0.017287] [mem 0xe00000000-0xfebfffff] available for PCI devices

[ 0.05417] Memory: 3063180K/4193848K available (204800K kernel code, 3276K rwdata, 14748K rodata, 4588K init, 4892K t

[ 0.284355] Performance Events: PMU not available due to virtualization, using software events only.

[ 5.232000] vmwgfx 0000:00:02.0: [drm] Available shader model: SM_5.
```

Рис. 3.5: Объём доступной оперативной памяти

32

Тип обнаруженного гипервизора(рис. [3.6])

Рис. 3.6: гипервизор

33

Вывожу Тип файловой системы корневого раздела. (СРИО).(рис. [3.7])

Рис. 3.7: тип файловой системы

вывожу на экран последовательность монтирования файловых систем.(рис. [3.8])

```
[root@darfonos -]# mount

proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime,seclabel)
sevtmpfs on /dev type devtmpfs (rw,nosuid,seclabel,size-4096k,nr_inodes-4095436,mode=755,inode64)
securityfs on /sys/kernel/security type securityfs (rw,nosuid,nodev,noexec,relatime)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev,seclabel,inode64)
sevts on /dev/pts type devpts (rw,nosuid,nodev,seclabel,inode64)
servous on /dev/pts type devpts (rw,nosuid,nodev,seclabel,inode64)
servous on /sys/fs/cgroup type cgroup2 (rw,nosuid,nodev,noexec,relatime,seclabel,inode=620,ptmxmode=000)
tmpfs on /run type tmpfs (rw,nosuid,nodev,noexec,relatime,seclabel)
servous on /sys/fs/sprot type pstore (rw,nosuid,nodev,noexec,relatime,seclabel)
opf on /sys/fs/bpf type bpf (rw,nosuid,nodev,noexec,relatime,seclabel)
opf on /sys/fs/bpf type bpf (rw,nosuid,nodev,noexec,relatime,seclabel)
onfigfs on /sys/kernel/config type configfs (rw,nosuid,nodev,noexec,relatime)
'dev/sda3 on / type btfs (rw,relatime,seclabel,compress=2std:1,space_cache=v2,subvolid=257,subvol=/root)
selinuxfs on /sys/fs/splinux type selinuxfs (rw,nosuid,nodev,noexec,relatime)
systemd-1 on /proc/sys/fs/binfat_misc type autofs (rw,relatime,fd=33,ggrp=1,timeout=0,minproto=5,maxproto=5,direct,pipe,
nqueue on /dev/mqueue type mqueue (rw,nosuid,nodev,noexec,relatime,seclabel)
ungetUbfs on /sys/kernel/debug type debugfs (rw,nosuid,nodev,noexec,relatime,seclabel)
pracefs on /sys/kernel/tracing type tracefs (rw,nosuid,nodev,noexec,relatime,seclabel)
pracefs on /sys/kernel/tracing type tracefs (rw,nosuid,nodev,noexec,relatime,seclabel)
pracefs on /sys/kernel/tracing type tracefs (rw,nosuid,nodev,noexec,relatime,seclabel)
```

Рис. 3.8: Последовательность монтирования файловых систем.

4 Вывод

В данной лабораторной работе я приобрел практические навыки установки операционной системы на виртуальную машину на Windows 11, и научился настроивать минимально необходимые для дальнейшей работы сервисы.