Chapter 25: Joint densities

Meike Niederhausen and Nicky Wakim 2023-11-08

Table of contents

- Learning Objectives
- Double Integrals Mini Lesson (1/3)
- Double Integrals Mini Lesson (2/3)
- Double Integrals Mini Lesson (3/3)
- How to define the joint pdf for continuous RVs?
- Important properties of the joint pdf
- What is the joint cumulative distribution function?
- What are the marginal pdf's?
- Example of joint pdf
- Example of joint pdf
- Example of a more complicated joint pdf
- Example of a more complicated joint pdf
- Let's complicate this even more!
- Let's complicate this even more!
- Let's complicate this even more!
- Let's complicate this even further!

Learning Objectives

- 1. Solve double integrals in our mini lesson!
- 2. Calculate probabilities for a pair of continuous random variables
- 3. Calculate a joint and marginal probability density function (pdf)
- 4. Calculate a joint and marginal cumulative distribution function (CDF) from a pdf

Double Integrals Mini Lesson (1/3)

Mini Lesson Example 1

Solve the following integral:

$$\int_{2}^{3} \int_{0}^{1} xydydx$$

Double Integrals Mini Lesson (2/3)

Mini Lesson Example 2

Solve the following integral:

$$\int_2^3 \int_0^1 (x + y) dy dx$$

Double Integrals Mini Lesson (3/3)

Do this problem at home for extra practice. The solution is available in Meike's video!

Mini Lesson Example 3

Solve the following integral:

$$\int_2^3 \int_0^1 e^{x+y} dy dx$$

How to define the joint pdf for continuous RVs?

For a single continuous RV X is a function $f_X(x)$, such that for all real values a, b with $a \le b$,

$$\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) dx$$

For two continuous RVs (X and Y), we can define the **joint pdf**, $f_{X,Y}(x,y)$, such that for all real values a,b,c,d with $a \le b$ and $c \le d$,

$$\mathbb{P}(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f_{X,Y}(x,y) dy dx$$

Important properties of the joint pdf

- 1. Note that $f_{X,Y}(x,y) \neq \mathbb{P}(X = x, Y = y)!!!$
- 2. In order for $f_{X,Y}(x,y)$ to be a pdf, it needs to satisfy the properties
 - $f_{X,Y}(x,y) \ge 0$ for all x,y

•
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$$

What is the joint cumulative distribution function?

Definition: Joint cumulative distribution function (Join CDF)

The joint cumulative distribution function (cdf) of continuous random variables X and Y, is the function $F_{X,Y}(x,y)$, such that for all real values of x and y,

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t)dtds$$

Remarks:

- The definition above for $F_{X,Y}(x,y)$ is a **function** of x and y.
- The joint cdf at the point (a, b), is

$$F_{X,Y}(a,b) = \mathbb{P}(X \le a, Y \le b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(s,t)dtds$$

What are the marginal pdf's?

Definition: Marginal pdf's

Suppose X and Y are continuous r.v.'s, with joint pdf $f_{X,Y}(x,y)$. Then the marginal probability density functions are

$$f_{X}(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

$$f_{Y}(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

Example of joint pdf

Example 1.1

Let
$$f_{X,Y}(x,y) = \frac{3}{2}y^2$$
, for $0 \le x \le 2$, $0 \le y \le 1$.

1. Find

$$\mathbb{P}(0 \le X \le 1, 0 \le Y \le \frac{1}{2}).$$

Example of joint pdf

Example 1.2

Let
$$f_{X,Y}(x,y) = \frac{3}{2}y^2$$
, for $0 \le x \le 2$, $0 \le y \le 1$.

2. Find $f_X(x)$ and $f_Y(y)$.

Example of a more complicated joint pdf

Do this problem at home for extra practice. The solution is available in Meike's video!

Example 2.1

Let
$$f_{X,Y}(x,y) = 2e^{-(x+y)}$$
, for $0 \le x \le y$.

1. Find $f_X(x)$ and $f_Y(y)$.

Example of a more complicated joint pdf

Do this problem at home for extra practice. The solution is available in Meike's video!

Example 2.2

Let
$$f_{X,Y}(x,y) = 2e^{-(x+y)}$$
, for $0 \le x \le y$.

2. Find P(Y < 3).

Let's complicate this even more!

Example 3.1

Let X and Y have constant density on the square $0 \le X \le 4, 0 \le Y \le 4$.

1. Find P(|X - Y| < 2)

Let's complicate this even more!

Example 3.1

Let X and Y have constant density on the square $0 \le X \le 4, 0 \le Y \le 4$.

2. Let M = max(X, Y). Find the pdf for M, that is $f_M(m)$.

Let's complicate this even more!

Do this problem at home for extra practice. The solution is available in Meike's video!

Example 3.3

Let X and Y have constant density on the square $0 \le X \le 4, 0 \le Y \le 4$.

3. Let Z = min(X, Y). Find the pdf for Z, that is $f_Z(z)$.

Let's complicate this even further!

Example 4

Let X and Y have joint density $f_{X,Y}(x,y) = \frac{8}{5}(x+y)$ in the region 0 < x < 1, $\frac{1}{2} < y < 1$. Find the pdf of the r.v. Z, where Z = XY.