3.4

- 3. The characteristic equation is $4r^2-8r-5=0$, with roots r=-1/2, 5/2. The general solution is $y(t)=c_1e^{-t/2}+c_2e^{5t/2}$.
- 6. The characteristic equation is $r^2 10r + 25 = 0$, with the double root r = 5. The general solution is $y(t) = c_1 e^{5t} + c_2 t e^{5t}$.

Preoblem 9: The characteristic equation is
$$25r^2 - 30r + 9 = 0$$
, with noots r , and r_2 . $\Delta = 30^2 - 4.25.9 = 0$.

 $r_1 = r_2 = \frac{30}{2.25} = \frac{3}{5}$

The general solution is $y(t) = c_1 e^{t_2^3 t} + t_2 c_2 \cdot e^{t_3^3 t}$.

Preoblem 12: the characteristic equation is r2-6r+9=0 with mosts r= r= 3. The general solution is, y(t) = $c_1e^{+3t} + t \cdot c_2 \cdot e^{+3t}$ From y(0)=0 we get that, 0= C1 So, y(t)= C2 t e3t. The derivative is $y'(t) = C_2e^{t^3t} + C_2 \cdot t \cdot 3 \cdot e^{t^3t}$ and invoking the nitral condition y'(0)=3we ostain, The solution is $(2e^0 + 0) \rightarrow (2=3)$ The solution is $(y(t) = 3te^0)$, are have $y(t) \rightarrow \infty$.

- 16. The characteristic roots are $r_1 = r_2 = 1/2$. Hence the general solution is given by $y(t) = c_1 e^{t/2} + c_2 t e^{t/2}$. Invoking the initial conditions, we require that $c_1 = 2$, and that $1 + c_2 = b$. The specific solution is $y(t) = 2e^{t/2} + (b-1)t e^{t/2}$. Since the second term dominates, the long-term solution depends on the sign of the coefficient b-1. The critical value is b=1.
- 23. Set $y_2(t) = t^3 v(t)$. Substitution into the differential equation results in $t^2(t^3v'' + 6t^2v' + 6tv) 4t(t^3v' + 3t^2v) + 6t^3v = 0.$

After collecting terms, we end up with $t^5v'' + 2t^4v' = 0$. Hence $v(t) = c_1 + c_2/t$, and thus $y_2(t) = c_1t^3 + c_2t^2$. Setting $c_1 = 0$ and $c_2 = 1$, we obtain $y_2(t) = t^2$.

25. Set $y_2(t) = t^{-1}v(t)$. Substitution into the differential equation into the differential equation results in

$$t^{2}(2t^{-3}v - t^{-2}v' + v''t^{-1} - t^{-2}v') + 3t(v't^{-1} - t^{-2}v) + t^{-1}v = 0.$$

After collecting terms, we end up with tv'' + v' = 0. This equation is linear in variable w = v'. It follows that $v'(t) = t^{-1} + c_1$, and $v(t) = \ln(t) + c_1t + c_2$. Thus $y_2(t) = t^{-1} \ln(t) + c_1tt^{-1} + c_2t^{-1} = t^{-1} \ln(t) + c_1 + c_2t^{-1}$. Setting $c_1 = 0$ and $c_2 = 0$, we obtain $y_2(t) = t^{-1} \ln(t)$.