Q: Figures correspond to two circular motions. The radius of the circle, the period of revolution, the initial position and the sense of revolution(i.e. clockwise or anti-clockwise) are indicated on each figure. Obtain the corresponding simple harmonic motions of the x-projections of the radius vector of resolving particle P in each case.

Solution:

Parameter	Value(a)	Value(b)	Description
Radius(r)	3cm	2m	Radius of each circle
Time Period(T)	2s	4s	Time period
Sense	clockwise	anti-clockwise	Indicated by arrow
Initial Phase(ϕ)	$\frac{\pi}{2}$	π	Initial angle with x-axis

TABLE I Input parameters table

Given (r) as radius vector making angle θ with positive x-axis, its x-projection = $(r)\cos\theta$

a. At t = 0, the radius vector makes an angle $\frac{\pi}{2}$ with the positive x-axis, $\phi = \frac{\pi}{2}$, From Table I, equation of x-projection of radius:

$$x(t) = r\cos\left(\frac{2\pi}{T}t + \phi\right) \tag{1}$$

$$=3\cos\left(\frac{2\pi}{2}t+\frac{\pi}{2}\right)\tag{2}$$

$$= -3\sin(\pi t)\,\mathrm{cm} \tag{3}$$

b. Similarly,

At t = 0, radius vector makes an angle π with x-axis in anti-clockwise direction, $\phi = \pi$,

$$x(t) = r \cos\left(\frac{2\pi}{T}t + \phi\right)$$

$$= 2\cos\left(\frac{2\pi}{4}t + \pi\right)$$

$$= -2\cos\left(\frac{\pi}{2}t\right)$$
(6)

$$=2\cos\left(\frac{2\pi}{4}t+\pi\right)\tag{5}$$

$$= -2\cos\left(\frac{\pi}{2}t\right)\mathbf{m}\tag{6}$$

