1. Considérese la gramática libre de contexto GLC1=({a, b, c}, {S, A, B, C, D, E}, S, P), donde P consta de las siguientes producciones:

$$\begin{split} S &\rightarrow aBC|bBC|DD \\ A &\rightarrow Ac|\lambda \\ B &\rightarrow b|AA \\ C &\rightarrow B|Aa|Bb \\ D &\rightarrow AD|CD|aD \\ E &\rightarrow cAD|AD|aa \end{split}$$

Entonces, las variables anulables son:

- a. AyB
- * b. A, B y C
 - c. S, A, B y C
 - d. Ninguna de las anteriores
- 2. Considérese la gramática libre de contexto GLC1. Tras aplicar el algoritmo visto en clase que permite eliminar las λ -producciones, ¿cuál de las siguientes opciones sería correcta?
 - a. Las producciones para el símbolo E serían: $E \rightarrow cAD|AD|aa$
 - * b. Las producciones para el símbolo E serían: $E \rightarrow cAD|AD|cD|D|aa$
 - c. Las producciones para el símbolo E serían: $E \to cAD|AD|cD|D|c|A|aa$
 - d. Ninguna de las anteriores
- **3.** Considérese la gramática libre de contexto GLC1. Tras aplicar el algoritmo visto en clase que permite eliminar las producciones unidad, ¿cuál de las siguientes opciones sería correcta?
 - * a. Las producciones para el símbolo C serían: $C \rightarrow b|AA|Aa|Bb$
 - b. Las producciones para el símbolo C serían: $C \to AA|Aa|Bb$
 - c. Las producciones para el símbolo C serían: $C \to Aa|Bb$
 - d. Ninguna de las anteriores
- 4. Considérese la gramática libre de contexto GLC1. Los símbolos muertos de esta gramática son
 - a. AyD
 - * b. D
 - c. S, A, C y D
 - d. Ninguna de las anteriores
- 5. Considérese la gramática libre de contexto GLC1. Los símbolos inaccesibles de esta gramática son
 - a. Eyc
 - b. A, Eyc
 - c. AyE
 - * d. Ninguna de las anteriores
- **6.** Considérese la siguiente gramática libre de contexto GLC2=({S, A, B}, {a, b}, P, S), donde P consta de las siguientes producciones:

$$\begin{split} S &\to AB|bbb \\ A &\to bA|b \\ B &\to bB|aBb|a|b \end{split}$$

Si aplicamos el algoritmo visto en clase para obtener una GLC equivalente en FNC GLC2'=(V', T, P', S), ¿cuál de las siguientes opciones sería correcta?

- a. V' tendrá 6 variables
- b. V' tendrá 5 variables
- * c. V' tendrá 7 variables
 - d. Ninguna de las anteriores
- 7. Tenemos un autómata con pila que verifica $f(p, a, A) = \{(p, A), (q, \lambda)\}$. Entonces se cumple
 - * a. $(p, aaa, A) \vdash (p, aa, A) \vdash (q, a, \lambda)$

Modelo 0

- b. $(p, aaa, A) \vdash (p, aa, AA) \vdash (q, a, AA)$
- c. $(p, aaa, A) \vdash (p, aa, A) \vdash (q, a, A)$
- d. Ninguna de las anteriores
- 8. Aplicamos el algoritmo CYK a una cierta gramática cuyo axioma es S y a la cadena baa. Las producciones de la gramática son

$$S \to AB \\ A \to AA|a \\ B \to BB|b$$

Entonces, $V_{1,3}$ (inicio = 1, longitud = 3) es:

- a. $\{S\}$
- b. $\{S, A\}$
- c. $\{S, A, B\}$
- * d. Ninguna de las anteriores
- 9. Si todas las palabras generadas por una gramática tienen dos derivaciones diferentes, entonces:
 - a. la gramática es ambigua
 - b. la gramática no es ambigua
 - * c. no tenemos suficiente información para saber si la gramática es ambigua o no
 - d. Ninguna de las anteriores
- 10. El lenguaje generado por la GLC4 = $({S, A, B}, {0, 1}, P, S)$, donde P consta de las siguientes producciones:

$$S \to BA|a$$

$$A \to CS|a$$

$$B \to AA|b$$

$$C \to CC$$

- a. Es vacío
- * b. Es finito pero no vacío
 - c. Es infinito
 - d. Ninguna de las anteriores