Testing with Graphs

Alden Green

February 6, 2019

Two-sample non-parametric hypothesis-testing problem. For fixed integers $n_1 + n_2 = n$, let $\mathbf{X} = \{x_1, \dots, x_{n_1}\} \subset \mathbb{R}^d$ and $\mathbf{Y} = \{y_1, \dots, y_{n_2}\}$ be sampled i.i.d from distributions \mathbb{P} and \mathbb{Q} with density functions p and q, respectively, both with support on $D \subset \mathbb{R}^d$. Our statistical problem is testing the null hypothesis $H_0 : \mathbb{P} = \mathbb{Q}$ vs. the alternative $H_1 : \mathbb{P} \neq \mathbb{Q}$, where our knowledge of \mathbb{P} and \mathbb{Q} come from the samples \mathbf{X} and \mathbf{Y} .

Integral Probability Metric. Given \mathcal{F} a class of real-valued bounded measurable functions on D, the *integral probability metric* between \mathbb{P} and \mathbb{Q} with respect to \mathcal{F} is

$$\gamma_{\mathcal{F}}(\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathcal{F}} \left| \int_{D} f d\mathbb{P} - \int_{D} f d\mathbb{Q} \right|$$

One such IPM that has not received close attention until surprisingly recently is the *(weighted) Sobolev IPM*. For $f \in L^2(\mathcal{D})$ and ρ a density function over \mathcal{D} , the $(\rho^2$ -weighted) Sobolev 1,2 norm of f is given by

$$\|f\|_{1,2,\rho^{2}}:=\begin{cases} \int_{\mathcal{D}}\left\|\nabla_{x}f(x)\right\|^{2}\rho^{2}dx, & f\in H^{1}(\mathcal{D})\\ \infty, & f\in L^{2}(\mathcal{D})\setminus H^{1}(\mathcal{D}) \end{cases}$$

where $H^1(\mathcal{D})$ is the Sobolev space of $L^2(\mathcal{D})$ functions with weak derivative $\nabla_x f(x) \in L^2(\mathcal{D})$.

Consider the unit ball of $\|\cdot\|_{1,2,o^2}$,

$$\mathcal{W}^{1,2}(\mathcal{D}, \rho^2) := \left\{ f : \|f\|_{1,2,\rho^2} \le 1 \right\}.$$

The weighted Sobolev IPM is simply $\gamma_{W^{1,2}(\mathcal{D},\rho^2)}(\mathbb{P},\mathbb{Q})$.

Neighborhood graph. Let $G_{n,r_n}=(V,E,w)$ denote a weighted, undirected graph constructed from the samples $\mathbf{Z}=\{z_1,\ldots,z_n\}=(\mathbf{X},\mathbf{Y})$ where $V=\{1,\ldots,n\}$, and $w_{uv}=K(z_u,z_v):=k(\frac{\|z_u-z_v\|}{\epsilon_n})\geq 0$ for $u,v\in V$, and a particular kernel function k. Here $(u,v)\in E$ if and only if $w_{uv}>0$.

Motivated by the integral probability metric, our test statistics will be of the form

$$\gamma_{\mathcal{F}_n}(\mathbb{P}_n, \mathbb{Q}_n) = \sup_{f_n \in \mathcal{F}_n} \left| \int_D f_n d\mathbb{P}_n - \int_D f_n d\mathbb{Q}_n \right|$$

where

$$\mathbb{P}_n := \frac{1}{n_1} \sum_{i=1}^{n_1} \delta_{x_i}, \quad \mathbb{Q}_n := \frac{1}{n_2} \sum_{i=1}^{n_2} \delta_{y_i}$$

are the empirical distributions of **X** and **Y**, respectively, and \mathcal{F}_n is a class of functions $f_n : \mathbf{Z} \to \mathbb{R}$ exhibiting some regularity with respect to the neighborhood graph $G_{n,r}$.

Laplacian smoothing and Total Variation denoising. For convenience, we number the edges $E = (e_1, \ldots, e_m)$. We denote by $\mathbf{B} \in \mathbb{R}^{m \times n}$ the edge incidence matrix of $G_{n,r}$, which for kth edge $e_k = (u, v)$ has kth row $\mathbf{B}_k = (0, \ldots, -w_{uv}, \ldots, w_{uv}, \ldots, 0)$ with a $-w_{uv}$ in the uth location, and a w_{uv} in the vth location. The random (unnormalized) Laplacian matrix is then $\mathbf{L} = \mathbf{B}^T \mathbf{B}$. We also introduce a $label\ vector$, given by $\boldsymbol{\ell} = (\ell_1, \ldots, \ell_n)$ with

$$\ell_k = \begin{cases} \frac{n}{n_1}, & z_k \in \mathbf{X} \\ -\frac{n}{n_2}, & z_k \in \mathbf{Y} \end{cases}$$
 (1)

Our test statistics $T_1(\ell; G_{n,r})$ and $T_2(\ell; G_{n,r})$ are defined as follows:

$$T_1(\ell; G_{n,r}) := \sup_{\mathbf{f} \in \mathbb{R}^n : \|\mathbf{Bf}\|_1 \le C_{n,r}} \frac{1}{n} \sum_{k=1}^n \ell_k f_k$$
$$T_2(\ell; G_{n,r}) := \sup_{\mathbf{f} \in \mathbb{R}^n : \|\mathbf{Bf}\|_2^2 \le C_{n,r}} \frac{1}{n} \sum_{k=1}^n \ell_k f_k$$

where $C_{n,r} = \frac{\sigma_k}{n^2 r_n^{d+2}}$ and we write $\mathbf{f} = (f_1, \dots, f_n)$. We note that, as promised, these satisfy the form

$$T_{1}(\ell; G_{n,r}) = \sup_{f_{n} \in TV_{n}} \left| \int_{D} f_{n} d\mathbb{P}_{n} - \int_{D} f_{n} d\mathbb{Q}_{n} \right|$$
$$T_{2}(\ell; G_{n,r}) = \sup_{f_{n} \in \mathcal{W}_{n}} \left| \int_{D} f_{n} d\mathbb{P}_{n} - \int_{D} f_{n} d\mathbb{Q}_{n} \right|$$

where $TV_n = \{ \mathbf{f} : \|\mathbf{Bf}\|_1 \le C_{n,r} \}$ and $\mathcal{W}_n = \{ \mathbf{f} : \|\mathbf{Bf}\|_2 \le C_{n,r} \}$.

1 Consistency under fixed alternative

Binomialized data model. For technical reasons, we would like z_1, \ldots, z_n to be independent and identically distributed. We consider the following generative model, which we term the *binomialized data model*:

Fix $n \in \mathbb{N} > 0$, and $n_1 \sim \text{Bin}(n, 1/2)$, $n_2 = n - n_1$. Then, let $x_1, \ldots, x_{n_1} \in \mathbb{R}^d$ be a sequence of i.i.d random points chosen according to \mathbb{P} , and $y_1, \ldots, y_{n_2} \in \mathbb{R}^d$ a separate sequence of i.i.d random points chosen according to \mathbb{Q} , with $x_j \perp y_k$ for all j, k. Fix $\widetilde{\mathbf{Z}} = (\widetilde{z}_1, \ldots, \widetilde{z}_n) := (x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2})$. Finally, for a permutation $\pi : [n] \to [n]$ chosen uniformly at random among all such permutations, let $\mathbf{Z} = (z_1, \ldots, z_n) = (\widetilde{z}_{\pi(1)}, \ldots, \widetilde{z}_{\pi(n)})$.

The label vector ℓ remains defined as in (1) with respect to \mathbf{Z} . Note that now $z_i \stackrel{i.i.d}{\sim} \frac{\mathbb{P}}{2} + \frac{\mathbb{Q}}{2}$, as we desired, with density function $\mu(x) := \frac{p(x) + q(x)}{2}$.

Theorem 1 (Pointwise limit of Laplacian smooth test statistic.). Let $d \geq 2$ and let $\mathcal{D} \subset \mathbb{R}^d$ be an open, bounded, connected set with Lipschitz boundary. Let μ satisfy

$$m \le \mu(x) \le M \tag{\forall x \in D}$$

for some $0 < m \le M$. Let (r_n) be a sequence of positive numbers converging to 0 and satisfying

$$\lim_{n \to \infty} \frac{(\log n)^{3/4}}{n^{1/2}} \frac{1}{r_n} = 0 \quad \text{if } d = 2$$

$$\lim_{n\to\infty}\frac{(\log n)^{1/d}}{n^{1/d}}\frac{1}{r_n}=0\quad \text{if } d\geq 3$$

Assume the kernel k satisfies conditions:

$$k(0) > 0$$
 and k is continuous at 0. (K1)

$$k ext{ is non-increasing.}$$
 (K2)

The integral
$$\int_0^\infty k(r)r^{d+1}dr$$
 is finite. (K3)

Then with probability one the following statement holds: For (z_1, \ldots, z_n) chosen under the binomialized data model,

$$\lim_{n\to\infty} T_2(\boldsymbol{\ell}; G_{n,r_n}) = \gamma_{\mathcal{W}^{1,2}(\mathcal{D},\mu^2)}(\mathbb{P},\mathbb{Q}).$$

2 Proofs

Fix $\mu_n = \frac{d\mathbb{P}_n + d\mathbb{Q}_n}{2}$. We will show a variational form of convergence of μ_n to μ .

2.1 Gamma convergence of constraint

Definition 2.1 (TL^2 convergence). Denote by $\mathfrak{B}(\mathcal{D})$ the Borel σ -algebra of \mathcal{D} and $\mathcal{P}(\mathcal{D})$ the set of all Borel probability measures on \mathcal{D} . Given a Borel map

 $T: \mathcal{D} \to \mathcal{D}$, the push-forward of μ by T is given by

$$T_{\star}\mu(\mathcal{A}) := \mu(T^{-1}(\mathcal{A})), \quad \mathcal{A} \in \mathfrak{B}(\mathcal{D}).$$

Given $\widetilde{\mu} \in \mathcal{P}(\mathcal{D})$, we say that T is a transportation map between μ and $\widetilde{\mu}$ if $T_{\star}\mu = \widetilde{\mu}$. If for a sequence (T_n) of transportation maps

$$\int_{\mathcal{D}} |x - T_n(x)|^2 d\mu(x) \to 0, \text{ as } n \to \infty$$

we refer to the sequence as stagnating.

Take $f \in L^2(\mu)$ and a sequence (f_n) with $f_n \in L^2(\mu_n)$ for n = 1, 2, ... If there exists a stagnating sequence of transportation maps (T_n) such that

$$\int_{\mathcal{D}} |f - T_n(f_n(x))|^2 d\mu(x) \to 0, \text{ as } n \to \infty$$

we say that (f_n) converges TL^2 to f, and write $f_n \stackrel{TL^2}{\rightarrow} f$.

We restate Theorem 1.4 of [1], changing notation to match the rest of this paper.

Theorem 2 (Theorem 1.4 of [1]). Under the setup and conditions of Theorem 1, with probability one the following statements hold:

• Liminf inequality: For all $f \in L^2(\mu)$ and all sequences (f_n) with $f_n \in L^2(\mu_n)$ and $f_n \stackrel{TL^2}{\longrightarrow} f$,

$$\liminf_{n \to \infty} \frac{1}{n^2 r_n^{d+2}} \left\| Bf \right\|_2^2 \ge \frac{\sigma_k}{n} \left\| f \right\|_{1,2,\rho^2}$$

• Limsup inequality: For all $f \in L^2(\mu)$, there exists a sequence (f_n) with $f_n \in L^2(\mu_n)$ and $f_n \stackrel{TL^2}{\to} f$ such that

$$\limsup_{n \to \infty} \frac{1}{n^2 r_n^{d+2}} \left\| \mathbf{Bf}_n \right\|_2^2 \le \frac{\sigma_k}{\kappa} \left\| f \right\|_{1,2,\rho^2}$$

where $\mathbf{f}_n = (f_n(z_1), \dots, f_n(z_n)).$

• Compactness property: Every sequence (f_n) with $f_n \in L^2(\mu_n)$ satisfying

$$\sup_{n \in \mathbb{N}} \frac{1}{n^2 r_n^{d+2}} \left\| Bf \right\|_2^2 < \infty$$

is precompact in TL^2 , that is, every subsequence of (f_n) has a further subsequence which converges in the TL^2 -sense to an element of $L^2(\mathcal{D})$.

2.2 Continuity of risk functional

Lemma 1. With probability one the following statement holds: If a sequence (f_n) where $f_n: \{z_1, \ldots, z_n\} \to [-1, 1]^n$ converges TL^2 to $f \in L^2(\mu)$, then

$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \ell_k f_n(z_k) = \int_{\mathcal{D}} f d\mathbb{P}(x) - \int_{\mathcal{D}} f d\mathbb{Q}(x).$$

2.3 Proof of Theorem 1

Let f^* be the witness function for $\gamma_{\mathcal{W}^{1,2}(\mathcal{D},\mu^2)}(\mathbb{P},\mathbb{Q})$, meaning

$$\left| \int_{\mathcal{D}} f^{\star} d\mathbb{P} - \int_{\mathcal{D}} f^{\star} d\mathbb{Q} \right| = \gamma_{\mathcal{W}^{1,2}(\mathcal{D},\mu^2)}(\mathbb{P},\mathbb{Q})$$

where $f^* \in \mathcal{W}^{1,2}(\mathcal{D}, \mu^2)$ implies $f^* \in L^2(\mu)$. By the limsup inequality in Theorem 2, there exists some $(f_n) \stackrel{TL^2}{\to} f$ with $f_n \in L^2(\mu_n)$ such that

$$\limsup_{n \to \infty} \frac{1}{n^2 r_n^{d+2}} \|\mathbf{Bf}_n\|_2^2 \le \sigma_k \|f\|_{1,2,\mu^2} \le \sigma_k.$$
 (2)

From Lemma 1

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ell_k f_n(z_k) = \int_{\mathcal{D}} f d\mathbb{P}(x) - \int_{\mathcal{D}} f d\mathbb{Q}(x) = \gamma_{\mathcal{W}^{1,2}(\mathcal{D},\mu^2)}.$$

and along with (2), this implies

$$\lim_{n\to\infty} T_2(\ell; G_{n,r}) \le \gamma_{\mathcal{W}^{1,2}(\mathcal{D},\mu^2)}(\mathbb{P},\mathbb{Q}).$$

Let \mathbf{L}^{\dagger} be the pseudoinverse of the Laplacian matrix \mathbf{L} . We introduce $f_n^{\star} = \ell^T \mathbf{L}^{\dagger} \ell$, which satisfies

$$\left| \int_{\mathcal{D}} f_n^{\star} d\mathbb{P}_n - \int_{\mathcal{D}} f_n^{\star} d\mathbb{Q}_n \right| = T_2(\ell; G_{n,r})$$

Note that

$$\left\|\mathbf{B}\mathbf{f}_{n}^{\star}\right\|_{2}^{2} \leq C_{n} \Longrightarrow \frac{1}{n^{2}r_{n}^{d+2}} \left\|\mathbf{B}\mathbf{f}_{n}^{\star}\right\|_{2}^{2} \leq \sigma_{k} < \infty$$

and so by the compactness property in Theorem 2, every subsequence of f_n^* has a further subsequence which is TL^2 -convergent. For simplicity, and without loss of generality, let us work along a subsequence which is convergent (and call it f_n^*) to $f \in L^2(\mu)$. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ell_k f_n^{\star}(z_k) = \left| \int_{\mathcal{D}} f d\mathbb{P}(x) - \int_{\mathcal{D}} f d\mathbb{Q}(x) \right|$$
 (3)

and by the liminf inequality of Theorem 2,

$$\liminf_{n \to \infty} \frac{1}{n^2 r_n^{d+2}} \left\| \mathbf{B} \mathbf{f}_n \right\|_2^2 \ge \sigma_k \left\| f \right\|_{1,2,\mu^2}$$

which implies $||f||_{1,2,\mu^2} \le 1$. This, along with (3), implies

$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n \ell_k f_n^{\star}(z_k) \ge \gamma_{\mathcal{W}^{1,2}(\mathcal{D},\mu^2)}(\mathbb{P},\mathbb{Q})$$

REFERENCES

[1] Nicolas Garcia Trillos and Dejan Slepčev. A variational approach to the consistency of spectral clustering. Applied and Computational Harmonic Analysis, 45(2):239-281, 2018.