

Chapitre III – Les fonctions trigonométriques

Bacomathiques — https://bacomathiqu.es

TABLE	DES MATIÈRES	
I - Si	inus et cosinus	1
1.	Définition	1
2.	Périodicité	2
3.	Formules de trigonométrie	2
4.	Résolution d'équations	4
5.	Fonctions réciproques	4
II - Ét	tude des fonctions trigonométriques	5
1.		5
2.	Signe et variations	6
3.	Limite	6
4.	Valeurs remarquables	7
5.	Représentation graphique	8

I - Sinus et cosinus

1. Définition

Dans tout le cours, le plan sera muni d'un repère orthonormé $(O, \overrightarrow{\imath}; \overrightarrow{\jmath})$. Il sera également muni d'un cercle \mathcal{C} appelé **cercle trigonométrique** de centre O et de rayon 1 orienté dans le sens inverse des aiguilles d'une montre (c'est le **sens direct**) :

Soit M un point quelconque situé sur le cercle $\mathcal C$ faisant un angle x avec l'axe des abscisses. Les coordonnées de M sont :

À RETENIR 💡

- L'abscisse de M appelée **cosinus** est notée cos(x).
- L'ordonnée de M appelée **sinus** est notée sin(x).
- Pour tout $x \in \mathbb{R}$, on aura $-1 \le \cos(x) \le 1$ et $-1 \le \sin(x) \le 1$.

2. Périodicité

Les fonctions sinus et cosinus sont périodiques de période 2π . Ainsi pour tout x réel et k entier relatif :

A RETENIR \P $- \cos(x) = \cos(x + 2k\pi)$ $- \sin(x) = \sin(x + 2k\pi)$

À LIRE 99

Concrètement, cela signifie que $\cos(x) = \cos(x + 2\pi) = \cos(x + 4\pi) = \dots = \cos(x + 2k\pi)$ et idem pour $\sin(x)$.

3. Formules de trigonométrie

On a les relations suivantes pour tout $x \in \mathbb{R}$:

```
- \cos(-x) = \cos(x) (la fonction cosinus est paire)
- \sin(-x) = -\sin(x) (la fonction sinus est impaire)
- \cos(x + \pi) = -\cos(x)
- \sin(x + \pi) = -\sin(x)
- \cos(x - \pi) = -\cos(x)
- \sin(x - \pi) = \sin(x)
- \cos(x - \pi) = \sin(x)
- \cos(\frac{\pi}{2} - x) = \sin(x)
- \sin(\frac{\pi}{2} - x) = \cos(x)
- \cos(x + \frac{\pi}{2}) = -\sin(x)
- \sin(x + \frac{\pi}{2}) = \cos(x)
- \cos(x + y) = \cos(x) \times \cos(y) - \sin(x) \times \sin(y)
- \sin(x + y) = \sin(x) \times \cos(y) + \cos(x) \times \sin(y)
- \sin(x + y) = \sin(x) \times \cos(y) + \cos(x) \times \sin(y)
- \cos(x)^2 + \sin(x)^2 = 1
```

À LIRE 99

Il n'est aucunement demandé de mémoriser ces formules (sauf les trois dernières). Cependant, il doit être possible de les retrouver à l'aide du cercle trigonométrique. Ainsi, prenons l'exemple de $\cos(x+\pi)$:

On remarque que l'ordonnée reste la même (le sinus est le même). Cependant, on a bien une abscisse opposée. On a retrouvé la formule $\cos(x+\pi)=-\cos(x)$.

4. Résolution d'équations

Il est possible de résoudre des équations incluant des sinus et des cosinus. Ainsi, soient x et y deux réels et k un entier relatif. On a les relations suivantes :

$$-\cos(x) = \cos(y) \iff \begin{cases} y = x + 2k\pi \\ \text{ou} \\ y = -x + 2k\pi \end{cases}$$

$$-\sin(x) = \sin(y) \iff \begin{cases} y = x + 2k\pi \\ \text{ou} \\ y = \pi - x + 2k\pi \end{cases}$$

Comme précédemment, ces formules peuvent se retrouver à l'aide du cercle trigonométrique.

5. Fonctions réciproques

Soient x et $y \in \mathbb{R}$, on admettra qu'il existe une **fonction réciproque** à cos (notée arccos) et une **fonction réciproque** à sin (notée arcsin). On a les relations suivantes pour $x \in [0; 2\pi]$ et $y \in [-1; 1]$:

A RETENIR
$$\P$$

$$-\cos(x) = y \iff x = \arccos(y)$$

$$-\sin(x) = y \iff x = \sin(y)$$

Cela signifie qu'à tout $x \in [0; 2\pi]$, la fonction arccos y associe son **antécédent** y par rapport à cos (pareil pour arcsin avec sin).

Exemples : $- \cos(0) = 1, \arccos(1) = 0 \\ - \sin(\frac{\pi}{2}) = 1, \arcsin(1) = \frac{\pi}{2}$

II - Étude des fonctions trigonométriques

1. Dérivée

Soit une fonction u dérivable sur un intervalle I, on a pour tout x appartenant à cet intervalle :

A RETENIR
$$\P$$

$$-\cos'(u(x)) = -u'(x)\sin(u(x))$$

$$-\sin'(u(x)) = u'(x)\cos(u(x))$$

Ainsi, si pour tout $x \in I$ on a u(x) = x:

A RETENIR
$$\P$$

$$-\cos'(x) = -\sin(x)$$

$$-\sin'(x) = \cos(x)$$

2. Signe et variations

L'étude du signe des dérivées des fonctions trigonométriques permet d'obtenir les variations de celles-ci. Voici donc le signe et les variations de ces fonctions. Tout d'abord celui de la fonction cosinus :

Veuillez noter que ce tableau est périodique de période 2π .

Voici maintenant celui de la fonction sinus :

Ce tableau est également périodique de période 2π .

3. Limite

Les fonctions trigonométriques ont pour particularité de **ne pas admettre de limite** en $\pm \infty$. Ceci provenant du fait que ces fonctions sont périodiques et que leur valeur oscille entre -1 et 1.

4. Valeurs remarquables

Voici un tableau regroupant quelques valeurs remarquables de sinus et de cosinus :

Valeur de x (à $2k\pi$ près, $k \in \mathbb{Z}$)	Valeur de cos(x)	Valeur de sin(x)
0	1	0
π	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{6}$	2	2
π	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
4	2	
π	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{3}$	$\overline{2}$	2
π	0	1
$\frac{\pi}{2}$	0	1
2π	1	$\frac{\sqrt{3}}{2}$
$\frac{2\pi}{3}$	$-\frac{1}{2}$	
3π	$\sqrt{2}$	$\frac{\sqrt{2}}{2}$
$\frac{3\pi}{4}$	$-{2}$	2
5π	$\sqrt{3}$	1
$\frac{5\pi}{6}$	- 2	$\frac{1}{2}$
π	-1	0

5. Représentation graphique

À l'aide de toutes les informations et valeurs données précédemment, il est possible d'établir une représentation graphique de la fonction cosinus :

De même pour la fonction sinus :

On remarque sur ces graphiques plusieurs propriétés données : parité, signe, périodicité, etc...