

Avec solutions

Avec solutions

- L3 MIASHS/Ingémath
- Université Paris Cité
- Année 2024-2025
- Course Homepage
- Moodle

Définitions

Une dépendance fonctionnelle est une expression de la forme

$$A_1, A_2, \dots, A_k \to A_{k+1}, \dots, A_n$$

où $A_1,A_2,\dots,A_k,A_{k+1},\dots,A_n$ sont des attributs (colonnes) d'une base de données.

Elle signifie que deux tuples ayant la même valeur sur A_1,\dots,A_k doivent avoir la même valeur sur chaque colonnes A_{k+1},\dots,A_n (en français : A_1,\dots,A_k déterminent A_{k+1},\dots,A_n . On dit que les attributs A_{k+1},\dots,A_n dépendent fonctionnellement de A_1,A_2,\dots,A_k .

La notion de dépendance est transitive : si $A \to B$ et $B \to C$ alors $A \to C$.

Un ensemble de dépendances fonctionnelles \mathcal{F} est 1 si aucune dépendance ne peut être déduite des autres en utilisant les règles suivantes :

- trivialité : si $Y \subseteq X$ alors $X \to Y$
- augmentation : si $X \to Y$ alors $X, Z \to Y, Z$ pour toute suite d'attributs Z.
- transitivité : si $X \to Y$ et $Y \to Z$ alors $X \to Z$
- union : si $X \to Y$ et $X \to Z$ alors $X \to Y, Z$
- décomposition/séparation si $X \to Y$ et $Z \subseteq Y$ alors $X \to Z$

La clôture transitive des attributs A_1, \ldots, A_k pour un ensemble de dépendances fonctionnelles $\mathcal F$ est l'ensemble des attributs B_1, \ldots, B_ℓ qui dépendent fonctionnellement de A_1, \ldots, A_k .

On la note

$$[A_1,\ldots,A_k]_{\mathscr{F}}^+$$

en oubliant \mathcal{F} si le contexte est clair.

Un ensemble d'attributs A_1, \ldots, A_k est une super-clé pour une relation $R(B_1, \ldots, B_\ell)$ si ce sont des attributs de R et si sa clôture transitive contient B_1, \ldots, B_ℓ . C'est une clé si elle est minimale, c'est-à-dire, aucun sous-ensemble strict de cette super-clé n'est une clé.

Un schéma est en :

- FN_1 si tout attribut est atomique.
- $\bullet\,$ ${\rm FN_2}$ si un attribut ne fait pas partie d'une clef, il ne peut pas dépendre d'une partie stricte d'une clef.
- FN₃ Pour toute dépendance fonctionnelle non triviale, le membre de gauche contient une clef ou tout attribut du membre de droit appartient à une clef.

Un schéma et un ensemble de dépendances fonctionnelles peut se décomposer en une collection de schémas, dans le sens où chaque relation R peut se décomposer en R_1, \ldots, R_k tels que $R_i = \pi_i(R)$ pour une certaine projection π_i .

On dit cette décomposition sans perte d'information si toute relation R du schéma d'origine peut être retrouvée à partir des relations $R_1, \ldots, R_k : R = \pi_1(R) \bowtie \ldots \bowtie \pi_k(R)$.

On dit que cette décomposition respecte les dépendances fonctionnelles si celles-ci sont toujours satisfaites par la nouvelle décomposition.

Exercice

Soit une relation concernant des personnes en France avec les attributs suivants~:\ Nom, Numéro de sécurité sociale, Commune, Département, Code postal, Numéro de téléphone

Quelles sont les dépendances fonctionnelles censées être satisfaites~?

Solution

- Numéro de sécurité sociale → Nom, Commune, Département, Code postal, Numéro de téléphone
- Commune, Département \longrightarrow Code postal
- Code postal \rightarrow Département

Exercice

Soit un schéma d'attributs $A_1, A_2, \dots A_n$ et un ensemble de dépendances fonctionnelles. Calculer le nombre de super-clefs (en fonction de n) dans les cas suivants \sim :

- La seule clef est $\{A_1\}$.
- Les seules clefs sont $\{A_1\}$ et $\{A_2\}$.
- Les seules clefs sont $\{A_1,A_2\}$ et $\{A_3,A_4\}.$
- Les seules clefs sont $\{A_1, A_2\}$ et $\{A_1, A_3\}$.

Solution

- $2^{n-2} + 2^{n-2} + 2^{n-2}$ $2^{n-4} \times 3 \times 2 + 2^{n-4}$

Exercice

Soit le schéma $\mathcal{A} = \{A, B, C, D\}$ et l'ensemble de dépendances fonctionnelles

$$\Sigma = \{A \longrightarrow B, B \longrightarrow C\}$$

Quelle est la fermeture $\{A\}^+$ de $\{A\}$?

Solution

Initialisation : $X = \{A\}$

Etape 1 : Il existe une DF dont la partie gauche est incluse dans X: $A \longrightarrow B$. On rajoute les attributs en partie droite. D'où $X = \{A, B\}$

Etape 2 : Il existe une DF dont la partie gauche est incluse dans X: $B \longrightarrow C$. On rajoute les attributs en partie droite. D'où $X = \{A, B, C\}$.

C'est fini, plus de DF à utiliser. Conclusion $\{A\}^+ = \{A, B, C\}$

• Quelles sont les super-clés? Les clés?

Solution

Une clef doit contenir $\{A, D\}$ puisque ces deux attributs ne sont à droite d'aucune DF de Σ . De plus $\{A, D\}^+ = \{A, B, C, D\}$. La seule clef est donc $\{A, D\}$.

Exercice

Soit le schéma $\mathcal{A} = \{A, B, C, D, E, F\}$ et l'ensemble de dépendances fonctionnelles

$$\Sigma = \Big\{ \{A,B\} \rightarrow C, \{B,C\} \rightarrow \{A,D\}, D \rightarrow E, \{C,F\} \rightarrow B \Big\}$$

• Calculer la fermeture $\{A, B\}^+$ de $\{A, B\}$.

- Est-ce que Σ implique la dépendance fonctionnelle $\{A,B\} \to D \sim ?$
- Est-ce que Σ implique la dépendance fonctionnelle $D \to A {\sim}\, ?$

Solution

- On obtient $\{A, B\}^+ = \{A, B, C, D, E\}$.
- Oui car $D \in \{A, B\}^+$
- Non car $\{D\}^+ = \{D, E\}$ ne contient pas A.

Exercice

Montrer que les assertions suivantes sont fausses \sim :

- $A \to B$ implique $B \to A$.
- Si $\{A, B\} \to C$ et $A \to C$ alors $B \to C$.
- Si $\{A, B\} \to C$ alors $A \to C$ ou $B \to C$.

Solution

• La relation

A	B
1	2
4	2

satisfait $A \to B$ mais pas $B \to A$.

• La relation

A	B	C
1	2	3
4	2	4

satisfait $\{A, B\} \to C$ et $A \to C$ mais pas $B \to C$.

• La relation

A	B	C
1	2	3
4	2	4
1	3	1

satisfait $\{A,B\} \to C$ mais ni $A \to C$ ni $B \to C$.

Exercice

- Soit le schéma $\mathcal{A} = \{A, B, C, D, E, F, G, H\}$ et soit

$$\Sigma = \{AB \longrightarrow C; B \longrightarrow D; CD \longrightarrow E; CE \longrightarrow GH; G \longrightarrow A\}$$

Est-ce que les dépendances

- $A, B \longrightarrow E$
- $B, G \longrightarrow C$
- $A, B \longrightarrow G$

sont déductibles de $\Sigma \sim$?

Solution

oui... Méthode à suivre : pour la première et la troisième, on calcule la fermeture de $\{A,B\}$. On a $\{A,B\}^+=\{A,B,C,D,E,G,H\}$.

Pour la seconde, on a $\{B, G\}^+ = \{A, B, C, D, E, G, H\}.$

Solution

Pour que \mathcal{F} soit minimale, il y a 3 conditions à remplir :

- F est sous forme canonique, un seul attribut à droite.
- Aucune DF redondante, i.e. ne pouvant être déduite des autres.
- Aucune DF redondante à gauche.

n'est pas minimale : \$C,E H \$ est redondante à gauche.

On la remplace par \$C H \$.

De même $A \longrightarrow H$ est redondante.

Une version minimale est:

$$\mathcal{F} = \{A \longrightarrow B; C \longrightarrow H; C \longrightarrow E; A \longrightarrow C\}$$

• Soit

$$\Sigma_1 = \{A \longrightarrow B; C, E \longrightarrow H; C \longrightarrow E; A \longrightarrow C, H\}$$

et

$$\Sigma_2 = \{A \longrightarrow B, C; C \longrightarrow E, H\}$$

Les deux ensembles de dépendances fonctionnelles Σ_1 et Σ_2 sont-ils équivalents?

Solution

Montrons que Σ_1 implique Σ_2 . $A \to B$ et $C \to E$ sont dans Σ_1 . $A \to C$ est impliqué par $A \to CH \in \Sigma_1$. Donc $A \to BC$ se déduit de Σ_1 . De plus Σ_1 implique $C \to H$ (puisque Σ_1 contient $C \to E$ et $CE \to H$). Donc Σ_1 implique $C \to EH$. On a montré que toutes les DF de Σ_2 sont impliquées par Σ_1 .\ Montrons que Σ_2 implique Σ_1 .\ Σ_2 contient $A \to B$.\ Σ_2 contient $C \to EH$ qui implique $C \to H$ qui implique $C \to H$.\ Σ_2 contient $C \to EH$ qui implique $C \to E$.\ Σ_2 implique $C \to CH$...

Exercice: Décomposition et perte d'information

• On considère le schéma de relation $\mathcal{A} = \{A, B, C\}$ et la dépendance fonctionnelle suivante :

$$\Sigma = \{A, B \longrightarrow C\}.$$

Déterminer si la décomposition suivante est sans perte d'information

$$\mathcal{A}_1 = \{A, B\}, \quad \mathcal{A}_2 = \{B, C\}$$

en étudiant le cas de la table suivante :

Solution

Cette relation satisfait $AB \to C$. De plus, la jointure naturelle des deux projections contient les deux nouveaux tuples (1,2,5) et (4,2,3). Donc il y a perte d'information.

• On considère le schéma de relation $\mathcal{A}=\{A,B,C,D,E\}$ et les dépendances fonctionnelles suivantes :

$$\Sigma = \{A \longrightarrow C; B \longrightarrow C; C \longrightarrow D; D, E \longrightarrow C; C, E \longrightarrow A\}.$$

Appliquer l'algorithme de poursuite pour déterminer si la décomposition suivante est sans perte d'information :

$$\mathcal{A}_1 = \{A, D\}, \mathcal{A}_2 = \{A, B\}, \mathcal{A}_3 = \{B, E\}, \mathcal{A}_4 = \{C, D, E\}, \mathcal{A}_5 = \{A, E\}$$

Même question pour la décomposition :

$$\mathcal{A}_1 = \{A, D\}, \mathcal{A}_2 = \{A, B\}, \mathcal{A}_3 = \{B, E\}, \mathcal{A}_4 = \{C, D\}, \mathcal{A}_5 = \{D, E\}, \mathcal{A}_6 = \{A, E\}$$

Solution

La première décomposition est SPI. On doit montrer que :

 $R=\pi_{A,D}(R)\bowtie \pi_{A,B}(R)\bowtie \pi_{B,E}(R)\bowtie \pi_{C,D,E}(R)\bowtie \pi_{A,E}(R).$

On voit facilement que : $R \subseteq \pi_{A,D}(R) \bowtie \pi_{A,B}(R) \bowtie \pi_{B,E}(R) \bowtie \pi_{C,D,E}(R) \bowtie \pi_{A,E}(R)$ et il faut montrer l'autre inclusion.\ On considère un tuple t=(a,b,c,d,e) de la jointure naturelle. Pour $1 \leq i \leq 5$, comme $\pi_{\mathcal{A}_i}(t) \in \pi_{\mathcal{A}_i}(R)$ il existe un tuple $t_i \in R$ tel que $\pi_{\mathcal{A}_i}(t) = \pi_{\mathcal{A}_i}(t_i)$, ce que l'on représente par le tableau

A	B	C	D	E
a	b_1	c_1	d	e_1
a	b	c_2	d_2	e_2
a_3	b	c_3	d_3	e
a_4	b_4	c	d	e
a	b_5	c_5	d_5	e

Par la dépendance $A \to C$, on sait que deux tuples ayant la même valeur sur A, ont la même sur C. On remplace dans la table les valeurs indicées par la valeur c quand c'est possible, ou on unifie simplement les valeurs indicées sinon (ici on prendra c_1).

A	B	C	D	$\mid E \mid$
a	b_1	c_1	d	e_1
a	b	c_1	d_2	e_2
a_3	b	c_3	d_3	e
a_4	b_4	c	d	e
a	b_5	c_1	d_5	e

Solution (suite)

On traite maintenant $B \longrightarrow C$.

A	B	C	D	E
\overline{a}	b_1	c_1	d	e_1
\overline{a}	b	c_1	d_2	e_2
a_3	b	c_1	d_3	e
a_4	b_4	c	d	e
a	b_5	c_1	d_5	e

Pour la dépendance $C \longrightarrow D$, on obtient :

A	B	C	D	E
a	b_1	c_1	d	e_1
a	b	c_1	d	e_2
a_3	b	c_1	d	e
a_4	b_4	c	d	e
a	b_5	c_1	d	e

Solution (suite)

Pour $D, E \longrightarrow C$, on a cette fois (notez qu'on remplace tous les c_1 du coup comme l'un d'entre eux devait l'être) :

A	B	C	D	E
a	b_1	c	d	e_1
a	b	c	d	e_2
a_3	b	c	d	e
a_4	b_4	c	d	e
a	b_5	c	d	e

Enfin, on termine avec $C, E \longrightarrow A$:

A	B	C	D	E
a	b_1	c	d	e_1
a	b	c	d	e_2
a	b	c	d	e
a	b_4	c	d	e
a	b_5	c	d	e

On voit que le tuple (a,b,c,d,e) apparait. En d'autres termes : $R\supset\pi_{A,D}(R)\bowtie\pi_{A,B}(R)\bowtie\pi_{B,E}(R)\bowtie\pi_{C,D,E}(R)\bowtie\pi_{A,E}(R)$. La décomposition est donc SPI.

Solution (suite)

La seconde décomposition n'est pas SPI~ : l'algorithme de poursuite échoue. Le tableau de départ s'écrit~ :

A	B	C	D	E
a	b_1	c_1	d	e_1
a	b	c_2	d_2	e_2
a_3	b	c_3	d_3	e
a_4	b_4	c	d	e_4
a_5	b_5	c_5	d	e
a	b_6	c_6	d_6	e

• $A \rightarrow C$ donc $c_1 = c_2 = c_6$

A	B	C	D	E
a	b_1	c_1	d	e_1
a	b	c_1	d_2	e_2
a_3	b	c_3	d_3	e
a_4	b_4	c	d	e_4
a_5	b_5	c_5	d	e
a	b_6	c_1	d_6	e

Solution (suite)

• $B \to C$ donc $c_3 = c_1$

A	B	C	D	$\mid E \mid$
a	b_1	c_1	d	e_1
a	b	c_1	d_2	e_2
a_3	b	c_1	d_3	e
a_4	b_4	c	d	e_4
a_5	b_5	c_5	d	e
a	b_6	c_1	d_6	e

• $C \rightarrow D$ donc $d_1 = d_3 = d_6 = d$

A	B	C	D	E
a	b_1	c_1	d	e_1
a	b	c_1	d	e_2
a_3	b	c_1	d	e
a_4	b_4	c	d	e_4
a_5	b_5	c_5	d	e
a	b_6	c_1	d	e

Solution (suite)

• $DE \to C \text{ donc } c_5 = c1$

A	B	C	D	E
a	b_1	c_1	d	e_1
a	b	c_1	d	e_2
a_3	b	c_1	d	e
a_4	b_4	c	d	e_4
a_5	b_5	c_1	d	e
a	b_6	c_1	d	e

• $CE \rightarrow A \text{ donc } a_3 = a_5 = a$

A	B	C	D	E
a	b_1	c_1	d	e_1
a	b	c_1	d	e_2
a	b	c_1	d	e
a_4	b_4	c	d	e_4
a	b_5	c_1	d	e
a	b_6	c_1	d	e

Toutes les DF de Σ sont satisfaites et aucune ligne n'est égale à (a,b,c,d,e). Donc la décomposition n'est pas SPI.\ Si on suppose que pour tout $1 \leq i \leq 6, \ a_i \neq a, \ b_i \neq b, \ c_i \neq c, \ d_i \neq d, \ e_i \neq e$, ce dernier tableau fournit un exemple de relation strictement plus petite que la jointure naturelle des projections. En effet Σ est satisfait et (a,b,c,d,e) est clairement dans la jointure naturelles des projections. Or (a,b,c,d,e) n'est pas dans la relation.

Exercice

Soit $\mathcal{A} = \{A, B, C, D, E\}$ un schéma et soit la décomposition $\{\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3\}$ où

$$\mathcal{A}_1 = \{A,B,C\} \quad \mathcal{A}_2 = \{B,C,D\} \quad \mathcal{A}_3 = \{A,C,E\}$$

Pour chaque ensemble Σ de dépendances fonctionnelles ci-dessous, appliquer l'algorithme de poursuite pour déterminer si la décomposition est sans perte d'information. Dans le cas où il y a perte d'information, donner une relation R de schéma \mathcal{A} satisfaisant Σ et telle que

$$\pi_{\mathcal{A}_1}(R) \bowtie \pi_{\mathcal{A}_2}(R) \bowtie \pi_{\mathcal{A}_3}(R) \not\subset R$$

- $\Sigma = \{B \rightarrow E, CE \rightarrow A\}$
- $\Sigma = \{AC \rightarrow E, BC \rightarrow D\}$
- $\Sigma = \{A \rightarrow D, D \rightarrow E, B \rightarrow D\}$
- $\Sigma = \{A \rightarrow D, CD \rightarrow E, E \rightarrow D\}$

Solution

•

	A	B	C	D	E
A,B,C	a	b	c	d_1	e_1
$\{B,C,D\}$	a_2	b	c	d	e_2
$\{A,C,E\}$	a	b_3	c	d_3	e

 $B \to E$ donc $e_1 = e_2.$ Ensuite $CE \to A$ donc $a_2 = a.$ On obtient

	A	B	C	D	E
$\{A,B,C\}$	a	b	c	d_1	e_1
$\{B,C,D\}$	a	b	c	d	e_1
$\{A,C,E\}$	a	b_3	c	d_3	e

Toutes les DF de Σ sont satisfaites. Donc il y a perte d'information. Ce dernier tableau est une relation R qui satisfait Σ et telle que

$$\pi_{\mathcal{A}_1}(R) \bowtie \pi_{\mathcal{A}_2}(R) \bowtie \pi_{\mathcal{A}_3}(R) \not\subset R$$

puisque $(a, b, c, d, e) \notin R$.

Solution (suite)

•

	A	B	C	D	E
$\{A,B,C\}$	a	b	c	d_1	e_1
$\{B,C,D\}$	a_2	b	c	d	e_2
$\{A,C,E\}$	a	b_2	c	d_2	e

 $AC \to E$ donc $e_1 = e.$ Ensuite $BC \to D$ donc $d_1 = d.$ On obtient

	A	B	C	D	E
$\{A,B,C\}$	a	b	c	d	e
$\{B,C,D\}$	a_2	b	c	d	e_2
$\{A,C,E\}$	a	b_3	c	d_3	e

Le premier tuple est (a,b,c,d,e). Donc la décomposition est SPI.

Solution (suite)

•

	A	B	C	D	E
$\{A,B,C\}$	a	b	c	d_1	e_1
$\{B,C,D\}$	a_2	b	c	d	e_2
$\{A,C,E\}$	a	b_3	c	d_3	e

 $A \to D$ donc $d_3 = d_1$.

	A	B	C	D	E
$\{A,B,C\}$	a	b	c	d_1	e_1
$\{B,C,D\}$	a_2	b	c	d	e_2
$\{A,C,E\}$	a	b_3	c	d_1	e

 $D \to E$ donc $e_1 = e$

	A	B	C	D	E
$\{A,B,C\}$	a	b	c	d_1	e
$\{B,C,D\}$	a_2	b	c	d	e_2
$\{A,C,E\}$	a	b_3	c	d_1	e

 $B \to D$ donc $d_1 = d$

	A	В	C	D	E
$\{A,B,C\}$	a	b	c	d	e
$\{B,C,D\}$	a_2	b	c	d	e_2
$\{A,C,E\}$	a	b_3	c	d_1	e

La décomposition est donc SPI.

Solution (suite)

.

	A	B	C	D	E
$\{A,B,C\}$	a	b	c	d_1	e_1
$\{B,C,D\}$	a_2	b	c	d	e_2
$\{A,C,E\}$	a	b_3	c	d_3	e

 $A \to D \text{ donc } d_3 = d_1.$

	A	B	C	D	$\mid E \mid$
$\{A,B,C\}$	a	b	c	d_1	e_1
$\{B,C,D\}$	a_2	b	c	d	e_2
$\{A,C,E\}$	a	b_3	c	d_1	e

 $CD \to E \text{ donc } e_1 = e.$

	A	B	C	D	$\mid E \mid$
$\{A,B,C\}$	a	b	c	d_1	e
$\{B,C,D\}$	a_2	b	c	d	e_2
$\{A,C,E\}$	a	b_3	c	d_1	e

 $E \to D$ est satisfaite ainsi que les deux premières DF. Donc la décomposition n'est pas SPI.

Exercice: Normalisation

On considère le schéma de relation R(C,T,H,S,E,N) :

R(Cours, Enseignant, Horaire, Salle, Étudiant, Note)

et les dépendances fonctionnelles suivantes :

$$\mathcal{F} = \{ \mathtt{C} \to \mathtt{T}; \quad \mathtt{H}, \mathtt{S} \to \mathtt{C}; \quad \mathtt{H}, \mathtt{T} \to \mathtt{S}; \quad \mathtt{C}, \mathtt{E} \to \mathtt{N}; \quad \mathtt{H}, \mathtt{E} \to S \}.$$

• Calculer une clé.

Solution

H,E n'étant jamais à droite, ils font obligatoirement partis d'une clé. Or HE+=ALL

• Mettre en Boyce-Codd Normal Form (BCNF), donner plusieurs résultats possibles.

Solution

ler version :
C -> T donne T1(CT) et T2(CHSEN).
CE -> N donne T1(CT),T2(C,E,N) T3(CHSE)
HE -> S donne (HES ; HEC)
2eme version :
CE -> N donne T1(CENT), T2(CEHS) ...