Paths of analysis*

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 90.31

Figure 1: Outline of path 1

2.1.1 Acid catalyzed transesterification

Substrates:

- 1. sorbic alcohol
- 2. 4-oxobutenoate methyl ester

Products:

 $1. \ \, CC=CC=CCOC(=O)C=CC=O$

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004

Retrosynthesis ID: 50438

2.1.2 Diels-Alder

Substrates:

 $1. \ \, CC=CC=CCOC(=O)C=CC=O$

Products:

 $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2C1C}{=}\mathrm{O}$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.1.3 Takai olefination

Substrates:

1. a,a-diiodotoluene

2. CC1C=CC2COC(=O)C2C1C=O

Products:

1. CC1C=CC2COC(=O)C2C1/C=C/c1ccccc1

Typical conditions: CrCl2.THF.DMF

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

Retrosynthesis ID: 10942

2.1.4 Claisen Condensation

Substrates:

 $1. \ CC1C = CC2COC(=O)C2C1/C = C/c1ccccc1$

2. Methyl acetate - available at Sigma-Aldrich

Products:

1. CC(=O)C12C(=O)OCC1C=CC(C)C2/C=C/c1ccccc1

Typical conditions: Base.Solvent

Protections: none

Reference: 10.1021/cr020703u and 10.1021/cr60088a002

2.2 Path 2

Score: 90.31

Figure 2: Outline of path 2

2.2.1 Acid catalyzed transesterification

Substrates:

1. sorbic alcohol

 $2. \ \ \text{methyl 4-bromobut-2-enoate} - \quad \quad \textit{SYNTHONIXCORPORATION}$

Products:

 $1. \ CC{=}CC{=}CCOC({=}O)C{=}CCBr$

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004 Retrosynthesis ID: 50438

2.2.2 Diels-Alder

Substrates:

1. CC=CC=CCOC(=O)C=CCBr

Products:

1. CC1C=CC2COC(=O)C2C1CBr

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.2.3 Wittig-Schlosser olefination

Substrates:

1. Benzaldehyde - available at Sigma-Aldrich

2. CC1C=CC2COC(=O)C2C1CBr

Products:

 $1. \ CC1C = CC2COC(=O)C2C1/C = C/c1ccccc1$

 ${\bf Typical\ conditions:}\ 1. PPh3\ or\ trialkylphosphite. 2. base. aldehyde. 3. base$

Protections: none

Reference: 10.1021/ol049701h and 10.1021/ja00535a063 and Kurti and Czako; Strategic Applications of Named Reactions in Organic Synthesis. 1st edn., 488-489.

2.2.4 Claisen Condensation

Substrates:

- $1. \ CC1C = CC2COC(=O)C2C1/C = C/c1ccccc1$
- 2. Methyl acetate available at Sigma-Aldrich

Products:

 $1. \ \mathrm{CC(=O)C12C(=O)OCC1C=CC(C)C2/C=C/c1ccccc1}$

Typical conditions: Base.Solvent

 ${\bf Protections:}\ {\bf none}$

Reference: 10.1021/cr020703u and 10.1021/cr60088a002

Retrosynthesis ID: 5015

2.3 Path 3

Score: 90.31

Figure 3: Outline of path 3

2.3.1 Acylation of primary alcohols

Substrates:

- 1. sorbic alcohol
- 2. g-bromocrotonic acid

Products:

 $1. \ \mathrm{CC}{=}\mathrm{CC}{=}\mathrm{CCOC}(=\mathrm{O})\mathrm{C}{=}\mathrm{CCBr}$

Typical conditions: DCC.DMAP.DCM

Protections: none

Reference: 10.1016/j.molstruc.2016.10.087 and 10.1016/j.bmc.2014.12.043 and 10.1016/j.steroids.2013.03.004 and 10.3390/molecules21091123

Retrosynthesis ID: 9998689

2.3.2 Diels-Alder

Substrates:

$$1. \ CC = CC = CCOC(=O)C = CCBr$$

Products:

1. CC1C=CC2COC(=O)C2C1CBr

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.3.3 Wittig-Schlosser olefination

Substrates:

1. Benzaldehyde - available at Sigma-Aldrich

 $2. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2C1CBr}$

Products:

1. CC1C=CC2COC(=O)C2C1/C=C/c1ccccc1

 $\textbf{Typical conditions:} \ 1. PPh 3 \ \text{or trialkylphosphite.} 2. base. aldehyde. 3. base$

Protections: none

Reference: 10.1021/ol049701h and 10.1021/ja00535a063 and Kurti and Czako; Strategic Applications of Named Reactions in Organic Synthesis. 1st edn., 488-489.

2.3.4 Claisen Condensation

Substrates:

- 1. CC1C=CC2COC(=O)C2C1/C=C/c1cccc1
- 2. Methyl acetate available at Sigma-Aldrich

Products:

1. CC(=O)C12C(=O)OCC1C=CC(C)C2/C=C/c1ccccc1

 ${\bf Typical\ conditions:}\ {\bf Base. Solvent}$

Protections: none

Reference: 10.1021/cr020703u and 10.1021/cr60088a002

Retrosynthesis ID: 5015

2.4 Path 4

Score: 93.83

Figure 4: Outline of path 4

2.4.1 Synthesis of lactones from epoxides

Substrates:

- 1. pent-3t()-enoic acid ethyl ester
- 2. Oxirane available at Sigma-Aldrich

Products:

1. 3-(1-propenyl)-tetrahydro-2-furanone

Typical conditions: EtONa.EtOH.rt

Protections: none

Reference: 10.1021/ja9049959 and 10.1016/j.tetlet.2014.12.024 and 10.1021/jo00077a012 and 10.1016/0040-4039(96)00494-7 and 10.1002/chem.201403294

Retrosynthesis ID: 21258

2.4.2 Enol esters and ethers synthesis

Substrates:

- 1. 3-(1-propenyl)-tetrahydro-2-furanone
- 2. TMSCl available at Sigma-Aldrich

Products:

$1. \ C/C = C/C1 = C(O[Si](C)(C)C)OCC1$

Typical conditions: 1. Et3N.Electrophile

Protections: none

Reference: 10.1016/S0040-4020(03)00977-3 AND 10.1021/ja00056a002

Retrosynthesis ID: 7799

2.4.3 Dehydrogenation of silyl enol ethers

Substrates:

1. C/C=C/C1=C(O[Si](C)(C)C)OCC1

Products:

1. C/C=C/C1=CCOC1=O

 $\textbf{Typical conditions:} \ \mathrm{Pd}(\mathrm{OAc})2.\mathrm{Cu}(\mathrm{OAc})2.\mathrm{O2.MeCN}$

Protections: none

Reference: 10.1271/bbb.60.405 and 10.1039/C3CC46778C and US2015284405 p.40 and 10.1016/S0040-4039(01)81518-5 and US2010204477 p. 15-16 and 10.1016/0040-4039(95)00694-8 and 10.1021/jo00089a034 and 10.1016/S0040-4020(01)90587-3 and 10.1080/00397919008052802 and 10.1021/ja00218a060

2.4.4 Diels-Alder

Substrates:

1. Calcium carbide - available at Sigma-Aldrich

 $2. \ \mathrm{C/C}{=}\mathrm{C/C1}{=}\mathrm{CCOC1}{=}\mathrm{O}$

Products:

1. CC1C=CC2COC(=O)C2=C1

Typical conditions: H2O.MeOH.EtOH.isooctane

Protections: none

 $\textbf{Reference:} \ \ 10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-37020(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-37020(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-37020(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)41:10<16000(20020517)410000(20020517)410000(20020517)41000(20020517)41000(20020517)41000(20020517)410000(20020517)410$

Retrosynthesis ID: 10557

2.4.5 Alkenylation-Acylation of enones and enoate esters

Substrates:

1. b-Bromostyrene - available at Sigma-Aldrich

 $2. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$

3. Acetyl chloride - available at Sigma-Aldrich

Products:

 $1. \ \mathrm{CC(=O)C12C(=O)OCC1C=CC(C)C2/C=C/c1ccccc1}$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.1246/cl.1989.1063 AND 10.1248/cpb.33.1815 AND 10.1021/ja0320018 AND 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3

Retrosynthesis ID: 13033

2.5 Path 5

Score: 95.31

Figure 5: Outline of path 5

2.5.1 Wittig olefination

Substrates:

1. 3-bromomethyl-5h-furan-2-one

2. Ethanal - available at Sigma-Aldrich

Products:

 $1. \ CC = CC1 = CCOC1 = O$

Typical conditions: 1.PPh3 or trialkylphosphite.2.base.aldehyde

Protections: none

Reference: 10.1021/ja0015287 and 10.1021/ja404673s and 10.1021/ol901979x

Retrosynthesis ID: 9545

2.5.2 Diels-Alder

Substrates:

- $1. \ CC = CC1 = CCOC1 = O$
- 2. dimethyl-vinyl-amine

Products:

1. CC1C=C2C(=O)OCC2CC1N(C)C

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

2.5.3 Alkenylation-Acylation of enones and enoate esters

Substrates:

1. b-Bromostyrene - available at Sigma-Aldrich

2. Acetyl chloride - available at Sigma-Aldrich

3. CC1C=C2C(=O)OCC2CC1N(C)C

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C12C}(=\mathrm{O})\mathrm{OCC1CC}(\mathrm{N}(\mathrm{C})\mathrm{C})\mathrm{C}(\mathrm{C})\mathrm{C2}/\mathrm{C} = \mathrm{C}/\mathrm{c1cccc1}$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.1246/cl.1989.1063 AND 10.1248/cpb.33.1815 AND 10.1021/ja0320018 AND 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3

2.5.4 Hofmann Elimination

Substrates:

 $1. \ CC(=O)C12C(=O)OCC1CC(N(C)C)C(C)C2/C=C/c1ccccc1$

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}12\mathrm{C}(=\mathrm{O})\mathrm{O}\mathrm{C}C1\mathrm{C}=\mathrm{CC}(\mathrm{C})\mathrm{C}2/\mathrm{C}=\mathrm{C}/\mathrm{c}1\mathrm{c}\mathrm{c}\mathrm{c}\mathrm{c}c1$

 $\textbf{Typical conditions:} \ 1. \ \mathrm{MeI} \ 2. \ \mathrm{Ag2O} \ \mathrm{or} \ \mathrm{NaOMe.heat}$

Protections: none

Reference: 10.1021/ja00023a034 and 10.1021/jo00301a036 and

10.1021/ja00716a066