### **CHAPTER 1.1: DATA REPRESENTATION**

## 1.1.1 Binary Systems

### **DIFFERENT UNITS OF STORAGE**

- -Different units of data can be used to represent the size of a file, as it changes in size
- -Bit is the smallest unit of storage
- -1 Byte is equal to 8 bits

The units of data increase in size from smallest to largest as:

| Storage Unit | Size in decimal | Number of Bits         |
|--------------|-----------------|------------------------|
|              | Size in decimal | Number of bits         |
| Bit          | -               |                        |
| Byte         | 8 bits          |                        |
| Nibble       | 4 Bits          |                        |
| Kilobyte     | 1024 bytes      | 2 <sup>10</sup>        |
| Megabyte     | 1024 Kilobytes  | <b>2</b> <sup>20</sup> |
| Gigabyte     | 1024 Megabyte   | 2 <sup>30</sup>        |
| Terabyte     | 1024 Gigabyte   | 2 <sup>40</sup>        |
| Petabyte     | 1024 Terabyte   | <b>2</b> <sup>50</sup> |

#### WHAT IS BINARY SYSTEM

- -Binary system works in base of 2
- -The only possible values are 0 or 1
- -A typical binary value is a string of 0s and 1s e.g. 0101010000
- -Computer has to translate every single instruction into Binary

#### WHY DOES COMPUTER STORE DATA IN BINARY

- -Computer uses logic circuit / switches
- -They work in only two states / On or Off / True or False / 1 or 0

#### **USE OF BINARY NUMBERS IN COMPUTER SYSTEMS / REGISTERS**

- -Data
- -ASCII value / Unicode value / character
- -Number
- -Part of image / small image
- -A sound / sound sample / small sound track
- -Instruction

## **CHAPTER 1.1: DATA REPRESENTATION**

## 1.1.1 Binary Systems

#### EXPLAIN THE DIFFERENCES BETWEEN BINARY AND DENARY SYSTEM

- -A binary number system is a base-2 system /denary number system is a base-10 system
- -A binary number system uses 0 and 1 values/ denary number system uses 0 to 9 values
- -A binary number system has units / that increase by the power of 2
- -A denary number system has units that increase by the power of 10
- -Binary has more digit for the same value / Denary has less digits for the same value

#### **CONVERSION FROM BINARY TO DECIMAL/DENARY (BASE 10)**

- -Start from the right most bit
- -Multiply first bit by 20, second bit by 21, third bit by 22 and nth bit by 2n-1
- -Find the sum of products and it would give us the Decimal/Denary value

#### 1. $010_2 = 2_{10}$

| 0                     | 1              | 0              |
|-----------------------|----------------|----------------|
| <b>2</b> <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |

Sum= 
$$(2^0 \times 0) + (2^1 \times 0) + (2^2 \times 1) = 2$$

#### 2. $1001_2 = 9_{10}$

| 1                     | 0                     | 0              | 1                     |
|-----------------------|-----------------------|----------------|-----------------------|
| <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | 2 <sup>1</sup> | <b>2</b> <sup>0</sup> |

Sum= 
$$(2^0 \times 1) + (2^1 \times 0) + (2^2 \times 0) + (2^3 \times 1) = 9$$

### 3. 100011<sub>2=</sub> 35<sub>10</sub>

| 1                     | 0  | 0              | 0                     | 1              | 1              |
|-----------------------|----|----------------|-----------------------|----------------|----------------|
| <b>2</b> <sup>5</sup> | 24 | 2 <sup>3</sup> | <b>2</b> <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |

Sum= 
$$(2^0 \times 1) + (2^1 \times 1) + (2^2 \times 0) + (2^3 \times 0) + (2^4 \times 0) + (2^5 \times 1) = 35$$

#### 4. $1001001_2 = 73_{10}$

| 1              | 0                     | 0     | 1     | 0     | 0              | 1              |
|----------------|-----------------------|-------|-------|-------|----------------|----------------|
| 2 <sup>6</sup> | <b>2</b> <sup>5</sup> | $2^4$ | $2^3$ | $2^2$ | 2 <sup>1</sup> | 2 <sup>0</sup> |

Sum= 
$$(2^0 \times 1) + (2^1 \times 0) + (2^2 \times 0) + (2^3 \times 1) + (2^4 \times 0) + (2^5 \times 0) + (2^6 \times 1) = 73$$

## **CHAPTER 1.1: DATA REPRESENTATION**

# 1.1.1 Binary Systems

#### **CONVERSION FROM DECIMAL/DENARY (BASE 10) TO BINARY**

- -Divide the decimal number by 2 repeatedly. Note the remainder which will be 0 or 1.
- -You can append 0s on the left side to fill the registers since they don't make a difference
- -The answer is read from last reminder till the top

#### 1. $2_{10} = 10_2$

| Division | Result | Remainder |
|----------|--------|-----------|
| 2/2      | 1      | 0         |
| 1/2      | 0      | 1         |

#### 2. $9_{10} = 1001_2$

| Division | Result | Remainder |
|----------|--------|-----------|
| 9/2      | 4      | 1         |
| 4/2      | 2      | 0         |
| 2/2      | 1      | 0         |
| 1/2      | 0      | 1         |

### 3. $35_{10} = 100011_2$

| Division | Result | Remainder |
|----------|--------|-----------|
| 35/2     | 17     | 1         |
| 17/2     | 8      | 1         |
| 8/2      | 4      | 0         |
| 4/2      | 2      | 0         |
| 2/2      | 1      | 0         |
| 1/2      | 0      | 1         |

### $3.73_{10} = 1001001_2$

| Division | Result | Remainder |
|----------|--------|-----------|
| 73/2     | 36     | 1 🔺       |
| 36/2     | 18     | 0         |
| 18/2     | 9      | 0         |
| 9/2      | 4      | 1         |
| 4/2      | 2      | 0         |
| 2/2      | 1      | 0         |
| 1/2      | 0      | 1         |

### CHAPTER 1.1: DATA REPRESENTATION

# 1.1.1 Binary Systems

#### **USE OF BINARY SYSTEM IN APPLICATIONS**

- -Binary system is used to store everything inside computer
- -One of the most common use is to store information in registers of control systems
- -Also used for error detection through parity bit

An 8 bit register is being used to control the movements of a vacuum cleaner



If the register is filled with values: 1010 1010 then reading from left to right, this means:

- -Motor B is On, Motor C is On, B is moving forward, C is moving forward
- -overall the vacuum cleaner is moving forward

If the register is filled with values 0101 0101 then reading from left to right, this means:

- -Motor B is Off, Motor C is Off, Motor B and C to move in backward directions
- -since the motors are off so there won't be any movement overall