

Agenda to be deleted

- Speaker 1:
 - Into and first EDA Slide Scott
- Speaker 2:
 - Additional EDA Naga
- Speaker 3:
 - Preliminary Model Results Andi
- Speaker 4:
 - Stuck Points and Next Steps Aidan

Overview

Problem Statement:

- Predict the predominant kind of tree cover from strictly cartographic variables
- Seven Classification types:
 - Spruce/Fir, Lodgepole Pine, Ponderosa Pine, Cottonwood/Willow, Aspen, Douglas-fir, Krummholz

Data Set:

Actual forest cover type determined by US Forest Service (USFS) for a 30 x
30 meter cell from Northern Colorado

EDA - Dataset

Dataset Analysis:

- Test dataset: 565892 observations with 55 features
- Training dataset: 15120
 observations with 56
 features, including cover
 type

EDA - Cover Type

Exploratory Data Analysis

Elevation has largest impact on cover type

EDA - Features

Feature Dataset:

- Elevation
- Aspect influence on temperature
- Hill Slope
- Distance to Water
- Distance to Roads
- Shade
- Distance to wildfire ignition points
- Wilderness Area
- Soil Type (40 binary columns)
- Cover type (7 designations)

EDA - Wilderness Area Type

There are 4 wilderness area types: Rawah, Neota, Comanche, and Cache la Poudre

- Training data set: Areas 1, 3, and 4 are well represented
- Test data set: Areas 1 and 3 with high representation (areas 2 and 4 being very low)

EDA - Soil Type

There are 40 soil types in our data set

- We see significant difference in representation between the training and the test dataset for the different soil types

Models Planned

Models Planned to Develop

- KNN k-Nearest Neighbors
- Naive Bayes
- Logistic Regression
- Support Vector Machines
- Decision Tree
- Neural Nets
- Ensemble Models

Preliminary Results

Model	Description	Training Score	Kaggle Score
K-Nearest Neighbors	K = 1 from GridSearch and using Euclidean Distance	0.854	0.710
Naive Bayes	Default GaussianNB model	0.590	0.421
Logistic Regression	With C = 10 and Penalty = 'L1' from GridSearch	0.668	0.560
Neural Network	Default SKLearn model + Early stopping	0.651	0.573
Decision Tree	Max Depth of 20 from GridSearch	0.998	0.593

Stuck Points

- Unbalanced class distribution in training data
- Overfitting on training data, lower scores on Kaggle
- Need to refine how data is used by models

Next Steps

- Address class imbalance
 - Bootstrapping
 - Boosting via AdaBoost
- Address overfitting
 - Tune hyperparameters
 - Ensemble methods e.g. bagging
 - Random seeds for optimizers
- Refine models' use of data:
 - Normalize data
 - Feature engineering

Overall accuracy: 66.8%

Questions?