On définit la suite
$$(u_n)_{n\in\mathbb{N}}$$
 par
$$\begin{cases} u_0\in\mathbb{R} \\ u_{n+1}=\frac{1}{3}u_n^2-u_n+3 \end{cases}$$

- 1. Étudier la fonction f associée.
- 2. Étudier le signe de $g: x \mapsto f(x) x$.
- 3. Calculer les limites éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$.
- 4. Que peut-on dire de la suite $(u_n)_{n\in\mathbb{N}}$ lorsque $u_0=3$ ou $u_0=0$?
- 5. On suppose que $u_0 \in]0, 3[$.
 - (a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N} : u_n \in]0,3[$.
 - (b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$.
- 6. On suppose que $u_0 > 3$.
 - (a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N} : u_n > 3$.
 - (b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$.
- 7. On suppose que $u_0 < 0$.
 - (a) Montrer que $u_1 > 3$.
 - (b) En déduire le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$.