1. Sean $\{u_1, u_2, u_3, u_4\}$ vectores no nulos de \mathbb{R}^n tal que $u_3 = 2u_1 - 5u_2 + u_4$. Demuestre que:

(a)
$$u_1 \in \langle u_2, u_3, u_4 \rangle$$

(b)
$$\langle u_1, u_2, u_3, u_4 \rangle = \langle u_1, u_2, u_3 \rangle = \langle u_1, u_2, u_4 \rangle = \langle u_1, u_3, u_4 \rangle = \langle u_2, u_3, u_4 \rangle$$

2. Sea $S = \{u_1, u_2, u_3\} \subset \mathbb{R}^n$ un conjunto L.I. Demuestre que el conjunto $\{u_1 - 2u_2, u_2 + 2u_3\}$ es un conjunto L.I.

3. Suponga que los vectores v_1, v_2, v_3 son L.I. Determine si $v_3 - v_2$ pertenece o no al conjunto generado S, donde:

$$S = \{v_1 + v_2, v_1 - v_2 + v_3, v_2 - 2v_3 - v_1, v_3 + v_1\}$$

4. Resuelva el sistema matricial:

$$X^T + Y = A^T$$
$$X - 2Y^T = 2B$$

5. Dadas las matrices

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & -4 \\ -2 & -1 \end{bmatrix}, C = \begin{bmatrix} 6 & 7 \\ -2 & -5 \end{bmatrix}$$

determine matrices X e Y que satisfagan el sistema:

$$\begin{array}{rcl} AX & = & Y \\ AX + BY & = & C \end{array}$$