Introdução à Probabilidade e Estatística

Teoria de Probabilidades Variáveis Aleatórias

Departamento de Matemática Universidade de Évora Ano lectivo de 2016/17

> Patrícia Filipe Dulce Gomes

Teoria das Probabilidades

Experiência Aleatória e Espaço Amostra

Uma experiência diz-se aleatória sse verificar as seguintes características:

- cada vez que é efetuada desconhecemos à partida qual o resultado que vamos obter;
- é conhecido o conjunto de todos os resultados possíveis;
- a experiência pode ser repetida em condições similares e existe regularidade quando é repetida muitas vezes.

O espaço amostra ou universo, Ω , é o conjunto de todos os resultados possíveis de uma experiência aleatória.

Acontecimentos

Um acontecimento A respeitante a um determinado espaço amostra Ω e associado a uma experiência aleatória é simplesmente um conjunto de resultados possíveis. Dizemos que A se realizou, se o resultado da experiência aleatória, ω , é um elemento de A, i.e., $\omega \in A$.

Um acontecimento pode ser um conjunto formado por um só elemento de Ω , e nesse caso, diz-se acontecimento elementar chamamos aos outros acontecimentos compostos.

Ao espaço amostra, Ω , também se chama acontecimento certo.

Álgebra dos Acontecimentos

Representando os acontecimentos por *A*, *B*, *C*, ..., temos:

- ▶ União de acontecimentos: $A \cup B$, consiste na realização de pelo menos um dos acontecimentos. Ocorre A ou B.
- ▶ Interseção de acontecimentos: $A \cap B$ ocorre sse ocorrerem $A \in B$, em simultâneo ou em sequência.
- ▶ Diferença de acontecimentos: A B (ou $A \setminus B$) ocorre A mas não B.
 - Se $A = \Omega$, $\Omega B = \overline{B}$ diz-se o complementar de B, e ocorre quando não ocorre B.

Propriedades das Operações — União

Propriedades	União		
Comutativa	$A \cup B = B \cup A$		
Associativa	$(A \cup B) \cup C = A \cup (B \cup C)$		
Distributiva	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$		
Idempotência	$A \cup A = A$		
Lei do Complementar	$A\cup\overline{A}=\Omega$		
Leis de De Morgan	$\overline{A\cap B}=\overline{A}\cup\overline{B}$		
Elemento Neutro	$A \cup \emptyset = A$		
Elemento Absorvente	$A\cup\Omega=\Omega$		

Propriedades das Operações — Intersecção

Propriedades	Intersecção		
Comutativa	$A \cap B = B \cap A$		
Associativa	$(A \cap B) \cap C = A \cap (B \cap C)$		
Distributiva	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$		
Idempotência	$A \cap A = A$		
Lei do Complementar	$A\cap \overline{A}=\emptyset$		
Leis de De Morgan	$\overline{A \cup B} = \overline{A} \cap \overline{B}$		
Elemento Neutro	$A\cap\Omega=A$		
Elemento Absorvente	$A\cap\emptyset=\emptyset$		

Definição Clássica (ou de Laplace) de Probabilidade

Para uma experiência aleatória em que os resultados possíveis são disjuntos e igualmente prováveis.

Probabilidade Laplaciana

$$P(A) = \frac{\text{Número de casos favoráveis a A}}{\text{Número de casos possíveis}}$$

Conceito frequencista de probabilidade

Se em N realizações de uma experiência aleatória, o acontecimento A ocorreu n vezes, diz-se que a frequência relativa de A nas N realizações é

$$f_A = \frac{n}{N}$$

a frequência relativa do acontecimento A.

Define-se probabilidade do acontecimento A, como o número para que tende a frequência relativa f_A , quando se aumenta o número de provas, ou seia.

$$P[A] = \lim_{N \to \infty} f_A$$

Exemplo: O jogo das cartas

Vamos considerar um baralho de cartas normal. Ou seja, um baralho com 52 cartas com 4 naipes: ouros, espadas, copas e paus. Existem 13 cartas de cada naipe.

Qual a probabilidade de retirar ao acaso do baralho um rei de ouros?

- Qual o acontecimento a que pretendemos atribuir uma probabilidade?
- Número de resultado possíveis associados à experiência aleatória de retirar uma carta do baralho?
- Número de resultado favoráveis associados à experiência aleatória de retirar uma carta do baralho?

Seja A="Sair um rei de ouros" ← Acontecimento Elementar Espaço de Resultados:

$$\Omega = \{ As , 2 , 3 , ..., Dama , Rei \}$$

 $\sharp(\Omega) = 52$

$$P(A) = \frac{1}{52} = 0.01923 \ (1,923\%)$$

Exemplo: O jogo continua...

Suponhamos agora que voltamos a colocar a carta no baralho. Voltamos a baralhar as cartas e retiramos de novo, ao acaso.

uma carta. Qual a probabilidade de retirar agora, ao acaso, um às de

espadas?

Qual a probabilidade de retirar, ao acaso, um às?

Qual a probabilidade de retirar, ao acaso, uma carta copas de número par?

Exemplo: O jogo continua ...

Suponhamos agora que retirámos uma carta do baralho (um às de copas) e não a voltamos a colocar no baralho.

Perante este cenário, qual é a probabilidade de ao retirar uma outra carta do baralho esta seja um dois de copas?

E qual a probabilidade de sair um às?

A extração faz-se Com Reposição ou Sem Reposição?

Definição Axiomática de Probabilidade

Teoremas

- 1. $P(\emptyset) = 0 \quad \rightsquigarrow \quad \emptyset \quad \text{\'e o acontecimento impossível;}$
- **2**. $0 \le P(A) \le 1$;
- 3. $P(\overline{A}) = 1 P(A)$;
- **4.** $P(A \cup B) = P(A) + P(B) P(A \cap B)$;

Probabilidade Condicionada

Suponhamos que retirámos uma carta do baralho (um às de copas) e não a voltamos a colocar no baralho. Perante este cenário, qual é a probabilidade de ao retirar uma outra carta do baralho esta seja um dois de copas? A="Às de copas"; B="Dois de copas".

$$P(B|A) = \frac{P(B \cap A)}{P(A)} \Leftrightarrow P(B|A) = \frac{P(A \cap B)}{P(A)} \quad (P(A) > 0)$$

De onde se deduz a seguinte expressão para a probabilidade conjunta:

$$P(A \cap B) = P(B|A) \times P(A)$$
 ou $P(A \cap B) = P(A|B) \times P(B)$

Acontecimentos Independentes

Suponhamos que retirámos uma carta do baralho (um às de copas) e a voltamos a colocar no baralho. Qual é a probabilidade de ao retirar uma outra carta do baralho esta seja um dois de copas? A="Dois de copas"; B="Às de copas".

A e B dizem-se independentes sse

$$P(A \cap B) = P(A) \times P(B)$$

ou

$$P(A|B) = P(A) \ e \ P(B|A) = P(B)$$

Acontecimentos Mutuamente Exclusivos

Acontecimentos disjuntos, incompatíveis ou mutuamente exclusivos são acontecimentos em que a realização de um deles implica a não realização do outro.

A e B são disjuntos
$$\Leftrightarrow A \cap B = \emptyset \Leftrightarrow P(A \cap B) = 0$$

Acontecimentos independentes versus acontecimentos mutuamente exclusivos

Dados dois acontecimentos, $A \in B$, tais que P[A] > 0 e P[B] > 0,

> se os acontecimentos são mutuamente exclusivos, então

$$A \cap B = \emptyset$$
 e $P[A \cap B] = 0$,

pelo que não podem ser independentes, pois para tal,

$$P[A \cap B] = P[A] . P[B] > 0;$$

se os acontecimentos são independentes, então

$$P[A \cap B] = P[A] . P[B] > 0,$$

não podendo ser mutuamente exclusivos, pois para tal, $P[A \cap B] = 0$.

Exemplo

Na empresa Sojoga será desenvolvida uma aplicação para Smartphones que permita decidir qual o melhor caminho para que um indivíduo se desloque de um qualquer ponto A para um outro qualquer ponto B, tendo em conta o tráfego em tempo real. Um estudo prévio revelou que 72% das pessoas afirmaram que iriam comprar a aplicação, e destas 27% afirmaram registar-se no site da empresa. Tendo em conta os resultados e admitindo que 37% das pessoas se iriam registar no site, diga qual a probabilidade de uma pessoa, seleccionada ao acaso,

- (a) não comprar a aplicação?
- (b) comprar a aplicação e registar-se no site?
- (c) registar-se no site, sabendo que não comprou a aplicação?

Como apresentar a informação numa tabela de dupla entrada?

Exemplo

A poluição do ar de certa cidade é causada essencialmente por gases industriais (75% dos casos) e por gases dos escapes de automóveis (25% dos casos). Nos próximos 4 anos prevê-se que a possibilidade de controlar com sucesso a poluição dado que provêem dessas duas fontes de poluição sejam de 70% e de 60%, respectivamente.

(a) Qual a probabilidade de haver controlo bem sucedido da poluição do ar dessa cidade (i.e. controlar com sucesso pelo menos uma das fontes de poluição) nos próximos 4 anos?

Seja C="Controlo bem sucedido da poluição do ar", I="Gases industriais" e E="Gases de escape".

P(I) = 0,75 P(E) = 0,25 P(C|I) = 0,7 P(C|E) = 0,6. P(C) = ? **R:** $P(C) = P(C|I)P(I) + P(C|E)P(E) = 0,7 \times 0,75 + 0,6 \times 0,25 = 0,675$. Teorema da Probabilidade Total \leadsto

Exemplo

A poluição do ar de certa cidade é causada essencialmente por gases industriais (75% dos casos) e por gases dos escapes de automóveis (25% dos casos). Nos próximos 4 anos prevê-se que a possibilidade de controlar com sucesso a poluição dado que provêem dessas duas fontes de poluição sejam de 70% e de 60%, respectivamente.

(a) Qual a probabilidade de haver controlo bem sucedido da poluição do ar dessa cidade (i.e. controlar com sucesso pelo menos uma das fontes de poluição) nos próximos 4 anos?

Seja C="Controlo bem sucedido da poluição do ar", I="Gases industriais" e E="Gases de escape".

$$P(I) = 0,75$$
 $P(E) = 0,25$ $P(C|I) = 0,7$ $P(C|E) = 0,6$. $P(C) = ?$

R: $P(C) = P(C|I)P(I) + P(C|E)P(E) = 0,7 \times 0,75 + 0,6 \times 0,25 = 0,675.$

Exemplo

A poluição do ar de certa cidade é causada essencialmente por gases industriais (75% dos casos) e por gases dos escapes de automóveis (25% dos casos). Nos próximos 4 anos prevê-se que a possibilidade de controlar com sucesso a poluição dado que provêem dessas duas fontes de poluição sejam de 70% e de 60%, respectivamente.

(a) Qual a probabilidade de haver controlo bem sucedido da poluição do ar dessa cidade (i.e. controlar com sucesso pelo menos uma das fontes de poluição) nos próximos 4 anos?

Seja C="Controlo bem sucedido da poluição do ar", I="Gases industriais" e E="Gases de escape".

$$P(I) = 0,75$$
 $P(E) = 0,25$ $P(C|I) = 0,7$ $P(C|E) = 0,6$. $P(C) = ?$

R:
$$P(C) = P(C|I)P(I) + P(C|E)P(E) = 0,7 \times 0,75 + 0,6 \times 0,25 = 0,675.$$

Teorema da Probabilidade Total ~>>

Partição do universo

Os acontecimentos $A_1, A_2,..., A_n$ definem uma partição em Ω , quando se verificam simultaneamente as seguintes condições:

 (i) a união de todos os acontecimentos é o próprio espaço amostra, Ω:

$$\bigcup_{i=1}^n A_i = \Omega;$$

(ii) os acontecimentos são mutuamente exclusivos, dois a dois.

$$A_i \cap A_j = \emptyset, \ i \neq j, \ i, j = 1, 2, ..., n;$$

(iii) todos os acontecimentos têm probabilidade não nula:

$$P[A_i] > 0, i = 1, 2, ..., n.$$

Teorema da probabilidade total

Se os acontecimentos $A_1, A_2, ..., A_n$ definem uma partição sobre Ω , então para qualquer acontecimento B definido em Ω , tem-se que

$$P[B] = \sum_{i=1}^{n} P[B|A_i] . P[A_i] =$$

$$= P[B|A_1] . P[A_1] + P[B|A_2] . P[A_2] + ... + P[B|A_n] . P[A_n].$$

 $(P(C) = P(C|I)P(I) + P(C|E)P(E) = 0,7 \times 0,75 + 0,6 \times 0,25 = 0,675.$

Teorema da probabilidade total

Se os acontecimentos $A_1, A_2, ..., A_n$ definem uma partição sobre Ω , então para qualquer acontecimento B definido em Ω , tem-se que

$$P[B] = \sum_{i=1}^{n} P[B|A_i] . P[A_i] =$$

$$= P[B|A_1] . P[A_1] + P[B|A_2] . P[A_2] + ... + P[B|A_n] . P[A_n].$$

$$(P(C) = P(C|I)P(I) + P(C|E)P(E) = 0,7 \times 0,75 + 0,6 \times 0,25 = 0,675.)$$

Exemplo (continuação)

(b) Constatando-se que houve controlo bem sucedido de poluição do ar ao fim de 4 anos, qual a probabilidade de isso ser devido ao controlo de gases dos escapes de automóveis?

Existem efeitos na poluição do ar que são originados por duas causas possíveis (e disjuntas). Conhecem-se essas probabilidades (**probabilidades** à *priori*). O que se pretende agora é calcular uma probabilidades à *posteriori*. Ou seja, após se ter verificado a ocorrência da poluição do ar, qual a probabilidade desta ter sido determinada por uma das causas.

P(E|C) = ?

Exemplo (continuação)

(b) Constatando-se que houve controlo bem sucedido de poluição do ar ao fim de 4 anos, qual a probabilidade de isso ser devido ao controlo de gases dos escapes de automóveis?

Existem efeitos na poluição do ar que são originados por duas causas possíveis (e disjuntas). Conhecem-se essas probabilidades (**probabilidades** à *priori*). O que se pretende agora é calcular uma probabilidades à *posteriori*. Ou seja, após se ter verificado a ocorrência da poluição do ar, qual a probabilidade desta ter sido determinada por uma das causas.

$$P(E|C) = ?$$

Teorema da Bayes

Se $A_1, A_2,..., A_n$ definem uma partição sobre Ω , então para qualquer acontecimento B definido em Ω , com P[B] > 0,

Fórmula de Bayes

$$P[A_j|B] = \frac{P[A_j] . P[B|A_j]}{\sum_{i=1}^{n} P[A_i] P[B|A_i]}, \quad j = 1, 2, ..., n.$$

$$(P(E|C) = \frac{P(C|E)P(E)}{P(C)} = \frac{0.6 \times 0.25}{0.675} = 0.222.)$$

Variáveis Aleatórias

Definição de Variável Aleatória

Variável aleatória

Chama-se variável aleatória (v.a), X, a toda a função que associa um número real a cada elemento do espaço de resultados Ω , ou seja,

$$X: \quad \Omega \to \mathbb{R}$$

$$\omega \to x = X(\omega)$$

- 2. Uma variável aleatória é contínua \leadsto se toma valores num certo intervalo.

Variável Aleatória Discreta

Exemplo: Consideremos a experiência aleatória que consiste no lançamento de uma moeda equilibrada três vezes consecutivas. Sendo F = "sair cara" e C = "sair coroa" o conjunto de todos os resultados possíveis é dado por

$$\Omega = \{ (F, F, F), (F, F, C), (F, C, F), (C, F, F), (F, C, C), (C, F, C), (C, C, F), (C, C, C) \}$$

Neste espaço amostra, podemos definir uma variável aleatória

X = número de vezes que saiu caras.

Esta variável pode tomar valores 0, 1, 2 ou 3.

Distribuição de Probabilidade de uma Variável Aleatória Discreta

À função que a todo o x faz corresponder a respectiva probabilidade chama-se função massa de probabilidade (abreviadamente, f.m.p.) da v.a. X

e representa-se por $P(X = x_i)$, $f(x_i)$ ou simplesmente f(x).

$X = x_i$	0	1	2	Soma
$P(X=x_i)$	2/9	5/9	2/9	1

Propriedades

1.
$$0 \le f(x_i) \le 1$$

2.
$$\sum_{i=1}^{n} f(x_i) = 1$$

Exemplo (continuação):

X=número de vezes que saiu caras em três lançamentos de uma moeda,

►
$$P[X = 0] = P[(C \cap C \cap C)] = \frac{1}{8}$$

►
$$P[X = 1] = P[(F \cap C \cap C) \cup (C \cap F \cap C) \cup (C \cap C \cap F)] = \frac{3}{8}$$

►
$$P[X = 2] = P[(F \cap F \cap C) \cup (F \cap C \cap F) \cup (C \cap F \cap F)] = \frac{3}{8}$$

►
$$P[X = 3] = P[(F \cap F \cap F)] = \frac{1}{8}$$

х	0	1	2	3
f(x)	1/8	3/8	3/8	1/8

Função de Distribuição

$$F(x) = P(X \leqslant x) \Rightarrow$$
 Função de Distribuição da v.a. X

Propriedades:

Para qualquer f.d. F(x), dados os números reais x, y, (y > x),

- 1. $0 \le F(x) \le 1$
- **2.** $P(X < x) < P(X < y) \iff F(x) < F(y)$
- **3.** $P(X > x) = 1 P(X \le x) \iff P(X > x) = 1 F(x)$
- **4.** $P(x < X \le y) = P(X \le y) P(X \le x) = F(y) F(x)$.

Exemplo (continuação):

A função distribuição da variável X é dada por

$$F(x) = \begin{cases} 0 & x < 0 \\ 1/8 & 0 \le x < 1 \\ 4/8 & 1 \le x < 2 \\ 7/8 & 2 \le x < 3 \\ 1 & x \ge 3 \end{cases}$$

$$F(0) = P[X \le 0] = \sum_{x \le 0} f(x) = 1/8$$

$$F(1) = P[X \le 1] = \sum_{x \le 1} f(x) = 4/8;$$

►
$$F(0) = P[X \le 0] = \sum_{x \le 0} f(x) = 1/8;$$

► $F(1) = P[X \le 1] = \sum_{x \le 1} f(x) = 4/8;$
► $F(2) = P[X \le 2] = \sum_{x \le 2} f(x) = 7/8;$
► $F(3) = P[X \le 3] = \sum_{x \le 3} f(x) = 1;$

$$F(3) = P[X \le 3] = \sum_{x \le 3} f(x) = 1$$

Distribuição de Probabilidade de uma Variável Aleatória Contínua

X v.a. com f.d. F(x). Se existir uma função real de variável real f(x) > 0, não-negativa, tal que

$$F(x) = \int_{-\infty}^{x} f(u) \, du \quad x \in \mathbb{R}$$

Neste caso, diz-se que a v.a. X é contínua.

$$f(x) \Rightarrow$$
 Função Densidade de probabilidade (f.d.p.) da v.a. X

Propriedades

- 1. $f(x) \ge 0$
- $2. \int_{-\infty}^{\infty} f(x) dx = 1$
- 3. $\int_{x}^{y} f(u) du = F(y) F(x), x < y$
- **4.** $F'(x) = \frac{dF(x)}{dx} = f(x)$

Algumas situações típicas do cálculo de probabilidades envolvendo variáveis aleatórias contínuas:

- 1. P[X = x] = 0:
- **2**. $P[X < a] = P[X \le a] = F(a)$;
- 3. $P[X > a] = 1 P[X \le a] = 1 F(a)$;
- **4.** $P[a < X < b] = P[a \le X < b] = P[a < X \le b] = P[a < X \le b] = P[a \le X \le b] =$

Momentos — Variáveis Discretas

Valor Esperado (ou Média Populacional) da v.a. X discreta (que toma os valores $x_1, x_2 \dots, x_n$):

$$\mu = E[X] = \sum_{i=1}^{n} x_i P(X = x_i)$$

$$\mu = E[X] = \sum_{i=1}^{n} x_i f(x_i)$$

Nota: A este parâmetro também se chama *momento de ordem* 1 em relação à origem.

Variância da v.a. X discreta (que toma os valores x_1, x_2, \dots, x_n):

$$\sigma^2 = Var[X] = \sum_{i=1}^{n} (x_i - \mu)^2 f(x_i)$$

$$\sigma^{2} = Var[X] = E[X^{2}] - (E[X])^{2} = \sum_{i=1}^{n} x_{i}^{2} f(x_{i}) - \mu^{2}$$

Desvio-padrão da variável aleatória X (ou desvio-padrão populacional) \leadsto $\sigma = \sqrt{\sigma^2}$

Nota: À Variância também se chama *momento de 2^a ordem em relação* à *média*.

Momentos — Variáveis Contínuas

Valor Esperado da variável aleatória X (que toma os valores em \mathbb{R}):

$$\mu = E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

Variância da v.a. X contínua (que toma os valores em \mathbb{R}):

$$\sigma^2 = Var[X] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

ou

$$\sigma^2 = E[X^2] - (E[X])^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$$

Vectores Aleatórios

A (X_1, X_2, \dots, X_k) chama-se Vector Aleatório Multivariado

- 1. $F(x_1, x_2, ..., x_k) = P(X_1 \leqslant x_1, X_2 \leqslant x_2, ..., X_k \leqslant x_k)$ Função de Distribuição Conjunta do vector $(X_1, X_2, ..., X_k)$.
- 2. $f(x_1, x_2, ..., x_k)$ Função Densidade de Probabilidade Conjunta do vector $(X_1, X_2, ..., X_k)$.

Caso Particular $k=2 \Rightarrow (X,Y)$ Vector Aleatório Bivariado ou Par aleatório

Função de probabilidade conjunta

A função de probabilidade conjunta do par aleatório (X, Y) é uma função f(x, y) que associa a cada elemento de \mathbb{R}^2 uma probabilidade,

$$f_{(X,Y)}(x, y) = P[X = x, Y = y].$$

Verifica as seguintes propriedades:

- 1. $0 \le f_{(X,Y)}(x, y) \le 1, \ \forall \ (x, y) \in \mathbb{R}^2;$
- **2.** $\sum_{i} \sum_{j} f_{(X,Y)}(x_i, y_j) = 1.$

Função de distribuição conjunta

Dada uma v.a. bidimensional (X, Y), discreta, a função de distribuição conjunta de (X, Y) é definida da seguinte forma:

$$F_{(X,Y)}(x,y) = P[X \leqslant x, Y \leqslant y] = \sum_{x_i \leqslant x} \sum_{y_i \leqslant y} f_{(X,Y)}(x_i, y_j),$$

e satisfaz as seguintes condições:

- 1. $\lim_{x \to -\infty} F_{(X,Y)}(x,y) = 0$, com y fixo;
- 2. $\lim_{y\to-\infty}F_{(X,Y)}\left(x,y\right)=0$, com x fixo;
- 3. $\lim_{x,y\to-\infty} F_{(X,Y)}(x,y) = 0;$
- 4. $\lim_{x,y\to +\infty} F_{(X,Y)}(x,y) = 1;$
- **5.** $0 \le F_{(X,Y)}(x,y) \le 1, \ \forall (x,y) \in \mathbb{R}^2$;
- **6.** $F_{(X,Y)}(x_1, y_1) \leqslant F_{(X,Y)}(x_2, y_2), \ \forall x_1 < x_2, \ y_1 < y_2.$

Funções de probabilidade marginais

Dada uma v.a. bidimensional (X, Y), é possível definir:

função de probabilidade marginal de X,

$$f_X(x) = P[X = x, -\infty < Y < +\infty] = \sum_{y} f_{(X,Y)}(x,y)$$

função de probabilidade marginal de Y

$$f_Y(y) = P[-\infty < X < +\infty, Y = y] = \sum_{x} f_{(X,Y)}(x,y)$$

Funções de probabilidade condicionadas

Dada uma v.a. bidimensional discreta (X, Y), definimos

função de probabilidade de X condicionada a Y = y

$$f_{X|Y=y}(x) = \frac{f_{(X,Y)}(x,y)}{f_{Y}(y)}$$

função de probabilidade de Y condicionada a X = x

$$f_{Y|X=x}(y) = \frac{f_{(X,Y)}(x,y)}{f_X(x)}$$

Valor esperado condicionado

Dada uma v.a. bidimensional discreta (X, Y), definimos

Valor esperado de X condicionado a Y = y

$$\mu_{X|Y=y} = E[X|Y=y] = \sum_{i=1}^{n} x_i f_{X|Y=y}(x_i)$$

Valor esperado de Y condicionado a X = x

$$\mu_{Y|X=x} = E[Y|X=x] = \sum_{i=1}^{n} y_i f_{Y|X=x}(y_i)$$

Variância condicionada

Dada uma v.a. bidimensional discreta (X, Y), definimos

Variância de X condicionada a Y = y

$$\sigma_{X|Y=y}^2 = Var[X|Y=y] = \sum_{i=1}^n (x_i - \mu_{X|Y=y})^2 f_{X|Y=y}(x_i)$$

Variância de Y condicionada a X = x

$$\sigma_{Y|X=x}^2 = Var[Y|X=x] = \sum_{i=1}^n (y_i - \mu_{Y|X=x})^2 f_{Y|X=x}(y_i)$$

Variáveis Independentes

X e Y, dizem-se **independentes** sse

$$f_{(X,Y)}(x,y) = f_X(x) . f_Y(y), \forall (x,y) \in \mathbb{R}^2.$$

Consequentemente:

$$f_{X|Y=y}(x) = f_X(x), \forall x \in \mathbb{R}.$$

$$f_{Y|X=x}(y) = f_Y(y), \forall y \in \mathbb{R}.$$

Propriedades dos Momentos

Propriedades da Média:

Sejam X e Y duas v.a.'s e k uma dada constante.

- 1. E[k] = k
- **2**. E[kX] = kE[X]
- 3. $E[X \pm Y] = E[X] \pm E[Y]$
- 4. Se X e Y forem independentes então E[XY] = E[X] . E[Y]

Propriedades dos Momentos

Propriedades da Variância:

Sejam X e Y duas v.a.'s e k uma dada constante.

- 1. Var[k] = 0
- 2. $Var[kX] = k^2 Var[X]$
- 3. Var[k + X] = Var[X]
- 4. $Var[X \pm Y] = Var[X] + Var[Y] \pm 2Cov(X, Y)$

Covariância

Define-se a Covariância entre X e Y por

$$\sigma_{X,Y} = \mathsf{Cov}(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = \sum_i \sum_j (x_i - \mu_X) (y_j - \mu_Y) f_{(X\,Y)}(x_i,y_j)$$

Uma outra fórmula para calcular a covariância é

$$\sigma_{X,Y} = Cov(X, Y) = E[XY] - E[X]E[Y].$$

onde

$$E[XY] = \sum_{i} \sum_{j} x_{i} y_{j} f_{(X,Y)}(x_{i}, y_{j})$$

Avalia a influência que o afastamento de X, em relação à sua média, tem sobre o afastamento de Y à sua média.

Com base nesta medida, deduz-se ainda que:

$$E[X \times Y] = \mathsf{Cov}(X, Y) + E[X] \times E[Y]$$

Propriedades dos Momentos

Propriedades da Covariância: $\sigma_{X,Y} = \text{Cov}(X,Y)$ Seiam X e Y duas v.a.'s e a, b, c e d duas constante.

- ▶ X e Y são variáveis independentes $\Rightarrow Cov(X, Y) = 0$ (Nota: O recíproco pode não ser verdadeiro. O facto de Cov(X, Y) = 0 não implica a independência entre X e Y, pode existir uma relação não linear entre as variáveis.);
- ightharpoonup Cov(X,X) = Var[X];
- ightharpoonup Cov(aX+b,cY+d) = acCov(X,Y).

A covariância depende das unidades em que se exprimem as variáveis aleatórias X e Y. Sendo assim, é importante a introdução de um parâmetro para caracterizar a intensidade da ligação entre X e Y, mas que não dependa das unidades, como é o caso do coeficiente de correlação.

Coeficiente de correlação

O coeficiente de correlação é definido como:

$$\rho = \rho_{X,Y} = \frac{Cov\left[X,Y\right]}{\sqrt{Var\left[X\right].Var\left[Y\right]}} = \frac{\sigma_{X,Y}}{\sigma_X \sigma_Y}$$

Propriedades do coeficiente de correlação: Sejam *X* e *Y* duas variáveis aleatórias, e *a*, *b*, *c* e *d* constantes

- ► $-1 < \rho_{X,Y} < 1$;
- Se X e Y são variáveis aleatórias independentes, então ρ_{X,Y} = 0;
- O coeficiente de correlação não se altera quando as variáveis sofrem uma transformação linear positiva, ou seja,

$$\rho_{aX+b,cY+d} = \rho_{X,Y}$$
 se $ac > 0$.