Module Physical Computing

1

Team

- Remie Woudt van Broklede
- Leen de Gelder van het GSR
- Eelco Dijkstra van het vaksteunpunt Amsterdam
- Jelmer de Boer, ex-student lerarenopleiding TU Delft
- Martin Bruggink van de lerarenopleiding TU Delft

Module Physical Computing

Toepassing: zelf maken

4

3 platforms

- 1. Arduino
- 2. Micro:bit
- 3. Lego Mindstorms

Opbouw

- 1. Inleiding physical computing
- 2. Vier cycli met geleide opbouw
- 3. Zelf ontwerpen en ontwikkelen van een prototype

6

4 cycli

	Sensor	Context	Zelf maken
Cycle 1	Aanraaksensor	Domotica	Hotelschakeling
Cycle 2	Bewegingssensor	Smart-city	Automatische straatverlichting
Cycle 3	Afstandssensor	Zelfrijdende auto	Parkeersensor
Cycle 4	Versnellingssensor	Wearables	Activity-tracker

Werken in kleine stapjes

- 1. Sensor of actuator aansluiten
- 2. Testen van de sensor / actuator
- 3. Toestandsdiagram maken
- 4. Programma maken
- 5. Testen van het systeem

Tinkering

Toestandsdiagrammen

Unplugged

Knopje met lampje

Knopje met lampje

Knopje met lampje met ander gedrag

Knopje met lampje

Hotelschakeling

16

Gebeurtenissen en acties

Gebeurtenissen:

- Schakelaar A is aan
- Schakelaar B is aan
- Schakelaar A is uit
- Schakelaar B is uit

Acties:

- Zet lamp aan
- Zet lamp uit

Hotelschakeling

Gebeurtenissen en acties

Gebeurtenissen:

- Schakelaar A gaat om (van aan naar uit of andersom)
- Schakelaar B gaat om (van aan naar uit of andersom)

Acties:

- Zet lamp aan
- Zet lamp uit

Hotelschakeling

Vertaling naar programma

Toepassing: activity tracker

Voorbeeld: activity tracker

2/

Oefenopdrachten

Ga naar <u>makecode.microbit.org</u> en maak de dobbelsteen (dice) na, of een ander programma (*)

Maak de opdracht met het drukknopje en lampje, opdracht 1a en 1b (**)

Maak de opdracht met de activitytracker, opdracht 2 (***)

Sensoren

Actuatoren

Uitdagingen

Het werken met hardware leidt gauw tot fouten. Dat kan tot frustratie leiden.

Gestructureerd en iteratief werken

Het werken met toestandsdiagrammen

Er zitten ook mechanische uitdagingen aan de prototypes die leerlingen bouwen.

Expert-methode

Leerlingen werken in groepjes. Vanuit ieder groepje verdiept één leerling zich met leerlingen uit andere groepjes in (het aansluiten van) een sensor of actuator.

Daarna werken de groepsleden samen om tot een eenvoudig systeem te komen waarbij deze sensoren en actuatoren worden gebruikt.

Voorkennis

De keuzemodule bouwt voort op het kernprogramma (m.n. programmeren, toestandsdiagrammen)

Planning

Verbeteren en aanvullen module op basis van testresultaten (november 2018 – januari 2019)

Nascholing (2019)

Hoe nu verder?

URL en Contact

www.physicalcomputing.xyz

Contact:

Martin Bruggink

m.bruggink@tudelft.nl

Einde

