

CLEAN VERSION OF REWRITTEN AND/OR ADDED CLAIMS
PURSUANT TO 37 C.F.R. § 1.121(c)(1)(i)

Please replace Claims 1, 25, 28, and 29, with the following Claims that have corresponding numbers.

1. (Twice Amended) A multivalent vaccine composition comprising at least two recombinant variable regions of immunoglobulin molecules derived from B-cell lymphoma cells, wherein said at least two variable regions are from recombinant immunoglobulin molecules that differ by at least one idiotope.

25. (Amended) A multivalent vaccine composition produced according to a method comprising:

- a) providing:
 - i) malignant B cells isolated from a patient having a B-cell lymphoma;
 - ii) an expression vector;
 - iii) an amplification vector comprising a recombinant oligonucleotide having a sequence encoding a first inhibitable enzyme operably linked to a heterologous promoter; and
 - iv) a T lymphoid parent cell line;
- b) isolating nucleic acid from said malignant cells, said nucleic acid comprising nucleotide sequences selected from the group consisting of nucleotide sequences encoding at least one V_H region and at least two V_L regions, nucleotide sequences encoding at least two V_H regions and at least one V_L region, and nucleotide sequences encoding at least two V_H regions and at least two V_L regions, wherein said at least two V_L regions differ by at least one idiotope, wherein said at least two V_H regions differ by at least one idiotope, and wherein said V_H and V_L regions are derived from immunoglobulin molecules expressed by said malignant cells;
- c) inserting said nucleotide sequences encoding said V_H and V_L regions into said expression vector;

- d) introducing said expression vector and said amplification vector into said parent cell line to generate one or more transformed cells;
- e) growing said transformed cells in a first aqueous solution containing an inhibitor capable of inhibiting said first inhibitible enzyme wherein the concentration of said inhibitor present in said first aqueous solution is sufficient to prevent growth of said parent cell line; and
- f) identifying a transformed cell capable of growth in said first aqueous solution, wherein said transformed cell capable of growth expresses said V_H and V_L regions wherein V_H and V_L regions comprise a protein molecule useful as said vaccine.

28. (Amended) A multivalent vaccine composition produced according to a method comprising:

- a) providing:
 - i) malignant B cells isolated from a patient having a B-cell lymphoma;
 - ii) an expression vector;
 - iii) an amplification vector comprising a first recombinant oligonucleotide having a sequence encoding a first inhibitible enzyme operably linked to a heterologous promoter;
 - iv) a selection vector comprising a second recombinant oligonucleotide having a sequence which encodes a selectable gene product; and
 - v) a T lymphoid parent cell line;
- b) isolating nucleic acid from said malignant cells, said nucleic acid comprising nucleotide sequences selected from the group consisting of nucleotide sequences encoding at least one V_H region and at least two V_L regions, nucleotide sequences encoding at least two V_H regions and at least one V_L region, and nucleotide sequences encoding at least two V_H regions and at least two V_L regions, wherein said at least two V_L regions differ by at least one idiotope, wherein said at least two V_H regions differ by at least one idiotope, and wherein said V_H and V_L regions are derived from immunoglobulin molecules expressed by said malignant cells;
- c) inserting said nucleotide sequences encoding said V_H and V_L regions into said expression vector;

- d) introducing said expression vector, said amplification vector and said selection vector into said parent cell line to generate transformed cells;
- e) introducing said transformed cells into a first aqueous solution, said first aqueous solution requiring the expression of said selectable gene product for growth of said transformed cells;
- f) identifying at least one transformed cell capable of growth in said first aqueous solution;
- g) introducing said transformed cell capable of growth in said first aqueous medium into a second aqueous solution, said second aqueous solution comprising an inhibitor capable of inhibiting said first inhibitable enzyme, wherein the concentration of said inhibitor present in said second aqueous solution is sufficient to prevent growth of said parent cell line; and
- h) identifying at least one transformed cell capable of growth in said second aqueous solution, wherein said transformed cell capable of growth expresses said V_H and V_L regions wherein said V_H and V_L regions comprise a protein molecule.

29. (Amended) A multivalent vaccine composition produced according to a method comprising:

- a) providing:
 - i) malignant B cells isolated from a patient having a B-cell lymphoma;
 - ii) an expression vector;
 - iii) an amplification vector comprising a first recombinant oligonucleotide having a sequence encoding a first inhibitable enzyme operably linked to a heterologous promoter;
 - iv) a selection vector comprising a second recombinant oligonucleotide having a sequence which encodes a selectable gene product; and
 - v) a T lymphoid parent cell line;
- b) isolating nucleic acid from said malignant cells, said nucleic acid comprising nucleotide sequences selected from the group consisting of nucleotide sequences encoding at least one V_H region and at least two V_L regions, nucleotide sequences encoding at least two V_H regions and at least one V_L region, and nucleotide sequences encoding at least two V_H

regions and at least two V_L regions, wherein said at least two V_L regions differ by at least one idiotope, wherein said at least two V_H regions differ by at least one idiotope, and wherein said V_H and V_L regions are derived from immunoglobulin molecules expressed by said malignant cells;

- c) inserting said nucleotide sequences encoding said V_H and V_L regions into said expression vector;
- d) introducing said expression vector, said amplification vector and said selection vector into said parent cell line to generate transformed cells;
- e) introducing said transformed cells into a first aqueous solution, said first aqueous solution requiring the expression of said selectable gene product for growth of said transformed cells;
- f) identifying at least one individual clone of transformed cells capable of growth in said first aqueous solution;
- g) introducing said individual clone capable of growth in said first aqueous solution into a second aqueous solution, said second aqueous solution comprising an inhibitor capable of inhibiting said first inhibitable enzyme, wherein the concentration of said inhibitor present in said first aqueous solution is sufficient to prevent growth of said parent cell line; and
- h) identifying at least one individual clone capable of growth in said second aqueous solution, wherein said clone capable of growth expresses said V_H and V_L regions wherein said V_H and V_L regions comprise a protein molecule.

R E M A R K S

Claims 1-24 were originally filed in a parent case, while Claims 1-6 were elected for prosecution in this divisional application. Claims 25-32 were subsequently added, and Claim 2 was canceled in a Response to an Office Action dated December 19, 2000. Thus, Claims 1, 3-6 and 25-32 are currently at issue in the present application. The Examiner has maintained a single rejection in the Final Office Action dated October 19, 2001:

Claims 1, 3-6 and 25-32 stand rejected under 35 U.S.C. §103(a) as allegedly being unpatentable over Tao and Levy, *Nature* 362:755 [1993], and Stevenson *et al.*, *Ann. N. Y. Acad. Sci.* 772:212 [1995], in view of the knowledge of one of ordinary skill in the art as