Synthetic Homotopy Theory TD3: Homotopy groups

February 11, 2020

Exercise 1 Eckmann-Hilton argument

In this exercise we want to show that $|\Omega^2 X|_0$ has a structure of **abelian** group for any pointed type X.

Question 1 Assume given a set X with two binary operations _-_ and _ \otimes _ with the same unit e, meaning that for all x : X we have:

$$x \cdot e = e \cdot x = x$$

$$x \cdot e = e \cdot x = x$$

Moreover assume that:

$$(a \otimes b) \cdot (c \otimes d) = (a \cdot c) \otimes (b \cdot d)$$

Prove that $_\cdot_$ and $_\otimes_$ coincide and commute.

Question 2 Assume given $A: \mathcal{U}$ with $p, q: x =_A y$ and $p', q': y =_A z$. Moreover assume given h: p = q and h': p' = q'. Define:

$$h \otimes h' : p \cdot q = p' \cdot q'$$

Question 3 Assume given a type X with x: X. Prove that $_{-}$ and $_{-}$ induces operations on refl $_{x} =_{x=_{X}x} \operatorname{refl}_{x}$ obeying the hypothesis from question 1.

Question 4 Conclude that $|\Omega^2 X|_0$ has a structure of abelian group.

Exercise 2 Loop and suspension

Recall that we defined $\Sigma: \mathcal{U}_* \to \mathcal{U}_*$ and $\Omega: \mathcal{U}_* \to \mathcal{U}_*$ by:

$$\Sigma X := (\Sigma X, \mathbf{N})$$

$$\Omega X := (* =_X *, refl_*)$$

In this exercise we want to show that for any $X,Y:\mathcal{U}_*$ we have:

$$(\Sigma X \to_* Y) \simeq (X \to_* \Omega Y)$$

Question 1 Assume given $f: \Sigma X \to_* Y$ (recall this means we have $*_f: f(\mathbf{N}) = *$). We define $\psi(f): X \to \Omega Y$ by:

$$\psi(f,x) := *_f^{-1} \cdot \operatorname{ap}_f(\operatorname{\mathbf{merid}}_x \cdot \operatorname{\mathbf{merid}}_*^{-1}) \cdot *_f$$

Show this actually defines a map:

$$\psi: (\Sigma X \to_* Y) \to (X \to_* \Omega Y)$$

Question 2 Assume given $g: X \to_* \Omega Y$, we define $\phi(g): \Sigma X \to Y$ by:

$$\phi(g, \mathbf{N}) :\equiv *$$

$$\phi(g, \mathbf{S}) := *$$

$$ap_{\phi(g)}$$
merid_x := $f(x)$

Show this actually defines a map:

$$\phi: (X \to_* \Omega Y) \to (\Sigma X \to_* Y)$$

Question 3 Show that given $f, g: \Sigma X \to Y$, in order to prove f = g it is enough to give:

$$p: f(\mathbf{N}) = g(\mathbf{N})$$

$$q: f(\mathbf{S}) = g(\mathbf{S})$$

$$h: (x:X) \to \operatorname{ap}_f(\operatorname{\mathbf{merid}}_x) \cdot q = p \cdot \operatorname{ap}_g(\operatorname{\mathbf{merid}}_x)$$

Using this show that for all $f : \Sigma X \rightarrow_* Y$ we have:

$$\phi(\psi(f)) =_{\Sigma X \to Y} f$$

Question 4 (Optional) Can you prove that:

$$\phi(\psi(f)) =_{\Sigma X \to_* Y} f$$

(Can you understand what you need to prove? Hint: that paths between basepoints agree).

Question 5 Show that:

$$\psi(\phi(g)) =_{X \to \Omega Y} g$$

for all $g: X \to_* \Omega Y$.

Question 6 (Optional) Try to prove:

$$\psi(\phi(g)) =_{X \to_* \Omega Y} g$$

(Can you understand what you need to prove? Hint: that paths between basepoints agree).

1

Question 7 Conclude from the previous questions that:

$$(\Sigma X \to_* Y) \simeq (X \to_* \Omega Y)$$

* Exercise 3 Canonical fiber sequence

Question 1 Prove that any fiber sequence is equal to a canonical one.

Question 2 Show that giving $Y : \mathcal{U}_*$ and a map in $Y \to_* Z$ is the same as giving $P : X \to \mathcal{U}$ and $*_P : P(*_Z)$.

Question 3 Using previous questions, prove that any fiber sequence is of the form:

$$P(*_Z) \xrightarrow{\text{inc}} (x:Z) \times P(x) \xrightarrow{p_Z} Z$$

where $P(Z^*)$ is pointed by $*_P$ and $(z:Z) \times P(x)$ is pointed by $(*_Z, *_P)$, with p_Z the projection and $\mathbf{inc}(q) :\equiv (*_Z, q)$.

Exercise 4 Representable invariants

A representable invariant (implicitly: on based types) is a map $F:\mathcal{U}_*\to\operatorname{Set}_*$ of the form:

$$\lambda(X:\mathcal{U}_*).|A \rightarrow_* X|_0$$

for some fixed A, with $|A \rightarrow_* X|_0$ pointed by the constant map.

Question 1 Show that homotopy groups are representable invariants.

We define the product of two pointed types $X, Y : \mathcal{U}_*$ as $X \times Y$ pointed by $(*_X, *_Y)$.

Question 2 Show that:

$$F(X \times Y) = F(X) \times F(Y)$$

for any representable invariant F.

A family of pointed types is a map $X: I \to \mathcal{U}_*$ for I a set. We denote such a family by $(X_i)_{i:I}$, with X_i denoting the element X(i). The product $\Pi_{i:I}X_i$ of a family of type is defined as the type $(i:I) \to X(i)$ pointed by $\lambda(i:I).*_{X(i)}$.

Question 3 Using an appropriate version of the axiom of choice, prove that:

$$F(\Pi_{i:I}X_i) = (i:I) \to F(X_i)$$

Question 4 (Optional) Let $X \to_* Y \to_* Z$ be a fiber sequence, prove that we have an exact sequence of pointed set:

$$F(X) \rightarrow_* F(Y) \rightarrow_* F(Z)$$

for any representable invariant *F*. (Hint: use the "canonical fiber sequence" exercise)

Exercise 5 The long fiber sequence of a map

We want to prove that given a fiber sequence:

$$X \stackrel{f}{\rightarrow}_* Y \stackrel{g}{\rightarrow}_* Z$$

we have a long fiber sequence:

$$\cdots \rightarrow_* \Omega X \rightarrow_* \Omega Y \rightarrow_* \Omega Z \rightarrow_* X \rightarrow_* Y \rightarrow_* Z$$

Question 1 Show that given a fiber sequence:

$$X \rightarrow_* Y \rightarrow_* Z$$

we have a fiber sequence:

$$\Omega Z \rightarrow_* X \rightarrow_* Y$$

(Hint: use the "canonical fiber sequence" exercise. The necessary map from ΩZ to $P(*_Z)$ sends r to $\mathbf{tr}_r^P(*_P)$).

Question 2 Conclude by iterating the previous question.

Question 3 (Optional) Can you build a long fiber sequence:

$$\cdots \to_* \Omega^2 X \overset{\Omega^2 f}{\to}_* \Omega^2 Y \overset{\Omega^2 g}{\to}_* \Omega^2 Z \overset{\Omega \delta}{\to}_* \Omega X \overset{\Omega f}{\to}_* \Omega Y \overset{\Omega g}{\to}_* \Omega Z \overset{\delta}{\to}_* X \overset{f}{\to}_* Y \overset{g}{\to}_* Z$$

(you need to be careful about maps).