REPORT	DOC	JMENT	ATION	PAGE
--------	-----	-------	-------	------

AFOSR-TR-999 97

3100

satteeing and maintaining the data needed, and tomo collection of information, including suggestions for re- Davis eign way, Suite 1204, Arlington, VA 22202-4302	vering and reviewing the collection of into	rmation Send to Jarters Services, E Iget, Paperwork R)159 inis
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT life AN Final Technic	D DATES COVERED :al Report, 30 June 1996
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Design and Synthesis of (Organic Superconducto	ors	
6. AUTHOR(S)	,		61103D 3484 RS
Lawrence K. Montgomery			CIIOD STOT KS
7. PERFORMING ORGANIZATION NAME	S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Indiana University/Bryan	Hall		
PO Box 1847			1
Bloomington, IN 47402-184	.7		
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
AFOSR/NC Building 410, Bolling AF 20332-6448	B DC	7	F49620-92-J-0534
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY STAT	EMENT		12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEA	SE; DISTRIBUTION IS	UNLIMITED.	

13. ABSTRACT (Maximum 200 words)

The principal objectives of this work were the design, synthesis, and preliminary characterization of new organic conductors and superconductors. Electrocrystallization facilities were constructed that accommodate 96 crystal growth cells. Crystal formation takes place in a temperature-controlled (±0.1 C), vibrationally-isolated, (vertical isolation efficiency at 10 Hz in 60-90%), inert-atmosphere environment. A variety of radical-cation salts of bis(ethylenedithio)tetraselenafulvalene were grown and characterized by crystallography, tight-binding band calculations, electronic transport, magnetic properties, and a number of other solid-state methods. Significant findings include the discovery of a tetrachlorogallate salt that is a superconductor with a transition temperature 5.5° higher than any previously known organic material containing selenium and magnetoresistance studies on mercury thiocyanate salts that suggest that strong electron-electron interactions are important in promoting and enhancing superconductivity in organic superconductors. A new organic conductor precursor, bis(ethylenedithio)tetrathiohaphthalene, was synthesized and several of its conducting salts were investigated in a preliminary manner. Numerous collaborative studies were undertaken.

Organic superconduct	ors, electrocrystalliza	ation	15. NUMBER OF PAGES 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRAC
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	200 (70) 2 80)

NSN 7540-01-280-5500

FINAL TECHNICAL REPORT

(FY93 URI/RIP)

Design and Synthesis of Organic Superconductors

Lawrence K. Montgomery (PI)
Department of Chemistry
Indiana University
Bloomington, IN 47405

31 August 1996

ABSTRACT

The principal objectives of this work were the design, synthesis, and preliminary characterization of new organic conductors and superconductors. Electrocrystallization facilities were constructed that accommodate 96 crystal growth cells. Crystal formation takes place in a temperature-controlled (±0.1 C), vibrationally-isolated, (vertical isolation efficiency at 10 Hz in 60-90%), inert-atmosphere environment. A variety of radical-cation salts of bis(ethylenedithio)tetraselenafulvalene were grown and characterized by crystallography, tight-binding band calculations, electronic transport, magnetic properties, and a number of other solid-state methods. Significant findings include the discovery of a tetrachlorogallate salt that is a superconductor with a transition temperature 5.5° higher than any previously known organic material containing selenium and magnetoresistance studies on mercury thiocyanate salts that suggest that strong electron-electron interactions are important in promoting and enhancing superconductivity in organic superconductors. A new organic conductor precursor, bis(ethylenedithio)tetrathiohaphthalene, was synthesized and several of its conducting salts were investigated in a preliminary manner. Numerous collaborative studies were undertaken.

RESEARCH SUMMARY

A. Facilities Development.

With the aid of the departmental electronics, computer, and mechanical services groups, crystal growth facilities were constructed that accommodate 96 electrocrystallization cells. The cells are housed in 150-lb. thermostated (25-80°C, ± 0.1 °C) boxes (12 cells per box, dry nitrogen or argon available) constructed of angle iron and chip board and lined with acoustical foam composite. Each box rests on a Technical Manufacturing Corporation Series 64 table-top vibration isolation system (vertical isolation efficiency @ 10 Hz: 60-90%). A 96-cell constant current/voltage (0-40.95 μ A/0-10.23 volts) system that was designed by the department's

electronics group and is computer controlled. It has a back-up computer and emergency power sources. The electrical history of each cell is available on a monitor and is routinely recorded for each experiment. To our knowledge, this is the premier electrocrystallization facility in the United States.

A Vacuum Atmospheres Glove Box was equipped with six vibrationally-isolated electrocrystallization cells. The glove box was used for growing and handling air-sensitive materials. A helium refrigerator system was designed in collaboration with the of RMC Corporation for resistance measurements that maintains highly stable temperatures to below 10 K. It has a double sample holder that is particularly useful for comparative measurements and isotope effect studies. The helium refrigerator apparatus was one of our primary instruments for screening new crystals. Additionally, AC and DC resistance measurements and AC susceptibility measurements were made to 2.3 K with a Lakeshore Model 7110 helium cryostat system.

B. Radical-Cation Based Conductors.

1. Bis(ethylenedithio)tetraselenafulvalene, BEDT-TSF or BETS (1). Our interest in BETS-based conductors arose from a comparison of the similarities and differences

$$\left(\begin{array}{c} S \\ S \end{array} \right) \left(\begin{array}{c} S \\$$

BEDT-TSF or BETS

between the organic radical-cation superconductors with T_c 's over 10 K and the high- T_c cuprate superconductors. ¹

A multistep synthesis of BETS was outlined in 1983.² Since a number of factors suggested that the reported BETS synthesis was less than ideal, our initial efforts focused on an improved preparation of BETS starting from tetraselenafulvalene.³ An alternative route to BETS was published while this work was in progress.⁴

In preparing radical-cation salts of BETS, our emphasis was on systems that are isostructural with known ET superconductors (e.g., κ -(BETS)₂Cu[N(CN)₂]X where X = Br⁵ and Cl,⁶ κ -(BETS)₂Cu[NCS]₂,⁷ and β -(BETS)₂I₃).⁸ Because of the very limited solubility of BETS in typical electrocrystallization solvents, the preparation of BETS salts was attempted at elevated

(40-55°C) temperatures. This modest change in reaction conditions greatly facilitated the synthesis of BETS conductors. Several solvents were screened for electrocrystallization (1,1,2-trichloroethane (TCE), TCE-ethanol mixtures, 1,1,1-trichloroethane (1,1,1-TCE), TCE:1,1,1-TCE mixtures, chlorobenzene, and benzonitrile). TCE-ethanol proved to be one of the most useful solvents. Over two dozen salts were screened: $Cu[N(CN)_2]X^-$ where $X^- = Cl$, Br, I; $Cu(NCS)_2^-$, $GaCl_4^-$, SbF_6^- , CF_3^- SO $_3^-$, CH_3^- SO $_3^-$, NO_3^- , I_3^- , IBr_2^- , $AuCl_4^-$, $GaBr_4^-$, $TICl_4^-$, $TIBr_4^-$, TII_4^- , TII

As a class, the BETS conductors are quite interesting; many are metallic (resistivity decreases with temperature) at room temperature and remain so to at least 10-15 K. κ - and θ -phases, which have yielded the ET superconductors with the highest T_c 's, abound. No κ - or θ -phases were superconducting, however.

We succeeded in preparing κ -(BETS)₂Cu[N(CN)₂]Br,⁹ which is isostructural (300 K, 95 K, and 20 K) with the radical-cation superconductor κ -(ET)₂Cu[N(CN)₂]Br (T_c = 11.6 K).⁵ The resistivity of κ -(BETS)₂Cu[N(CN)₂]Br decreases monotonically from 300-4 K, but a superconducting state is never achieved.¹ Complementary RF penetration depth measurements (~500 kHz) failed to detect superconductivity at 0.5 K (J. M. Williams and G. W. Crabtree). Structurally, the most significant difference between κ -(BETS)₂Cu[N(CN)₂]Br and κ -(ET)₂Cu[N(CN)₂]Br is that one of the ethylenedithio groups of the BETS component is disordered to at least 20 K (C. E. Strouse and S. I. Khan). It is likely that this disorder is responsible for the lack of superconductivity in K-(BETS)₂Cu[N(CN)₂]Br. Pressure (0.5-5 kbar at 4K) does not induce superconductivity (J. E. Schirber).

Our most significant finding to date is the discovery of superconductivity in λ -(BETS)₂GaCl₄. ¹⁰ We reported the synthesis and resistivity profile of κ -(BETS)₂GaCl₄ in 1992. ³ A relatively sharp resistive transition is observed in the λ -phase material with an onset of about 7.5 K, a midpoint of 6 K, and negligible resistivity below 5 K. Superconductivity was confirmed by AC susceptibility (onset 5.1 K, midpoint 4.5 K, $\Delta T = 1$ K). X-ray crystal structures

(P1) at 300 and 100 K show that the BETS dimers (nonequivalent BETS molecules) pack in a zig-zag fashion (denoted λ) in the ac-plane in layers, alternating with GaCl₄- layers. Pressure measurements (J. E. Schirber) have demonstrated a negative pressure effect on T_c (d T_c /dP ~ -0.3 K/kbar). Several samples had much broader resistive transitions with higher onsets (>9 K). It was also found that the application of gold paste can raise the onset of superconductivity as measured by AC susceptibility by several degrees. The effect is reversible (onset, sharpness), but the final absolute susceptibility after removing the gold paste is lowered somewhat. These interesting observations are being examined further. Tight-binding band calculations (M.-H. Whangbo) suggest that λ -(BETS)₂GaCl₄ has both 1-D and 2-D Fermi surfaces, the most prominent feature being a closed hole pocket centered at X accounting for ~33% of the first Brillouin zone. STM and AFM measurements on λ -(BETS)₂GaCl₄ have been completed (S. N. Maganov) and the results are being compared with theoretical electron density calculations (M.-H. Whangbo).

The discovery of superconductivity in λ -(BETS)₂GaCl₄ is noteworthy from several points of view. It is the first superconductor derived from BETS. The onset of superconductivity at 7.5 K is 5.5° higher than any other organic superconductor containing selenium. ¹² There are only four other radical-cation based superconductors that have higher T_c 's than λ -(BETS)₂GaCl₄. ¹² Kobayashi and coworkers have published resistivity data and a room temperature crystal structure of λ -(BETS)₂GaCl₄. ¹³ Their results are in complete experimental agreement with our work.

The vortex dynamics and pinning parameter, α , have been examined recently for λ -(BETS)₂GaCl₄ (C. C. Agosta). The pinning parameter is 44 N/m², almost three orders of magnitude less than the layered cuprate superconductor YBCO. It is readily conceivable that pinning studies like this on organic superconductors might be of considerable value in understanding pinning phenomena in the copper oxide superconductors. ¹⁴

In an attempt to understand the variable T_c 's in λ -(BETS)₂GaCl₄, nine different crystal morphologies we isolated from the electrocrystallization products of BETS and tetrabutylammonium tetrachlorogallate. ¹⁵ The morphologies were examined by X-ray crystallography and electrical transport measurements and have been assigned to several different crystal systems: K-, λ -, and K'-(BETS)₂GaCl₄, α -(BETS)₃GaCl₄•TCE, and an incompletely characterized semiconductor. Anisotropic pressure studies are continuing on this system (J. S. Brooks).

Two BETS salts, α -(BETS)₂MHg(SCN)₄ (M = NH₄ and K), were prepared that are isostructural with the BEDT-TTF compounds α -(BEDT-TTF)₂MHg(SCN)₄ (M = NH₄ and K). ¹⁶ α -(BEDT-TTF)₂NH₄Hg(SCN)₄ is a superconductor (T_c = 1.1K); α -(BEDT-TTF)₂KHg(SCN)₄ is metallic to at least 50mK but is not a superconductor. Both BETS compounds are metallic to at least 0.4K but neither exhibit superconductivity. Tight-binding band calculations were published comparing the BEDT-TTF and BEDT-TSF systems (M.-H. Whangbo). ¹⁷ The calculations suggest some interesting differences in the Fermi surfaces of the BEDT-TTF and BEDT-TSF (BETS) systems, that should be possible to verify experimentally employing angle-dependent magnetoresistance studies. Such experiments are in progress (J. S. Brooks). Simple magnetoresistance studies on α -(BETS)MHg(SCN)₄ (M = NH₄ and K) have been completed (C. C. Agosta). ¹⁸ Cyclotron resonance studies are also being performed on the BETS salts (J. Singleton). The results of these studies to date suggest that strong electron-electron interactions are important in promoting and enhancing superconductivity and enhancing superconductivity in organic superconductors. Electron-electron interactions are greatly reduced in BETS compounds compared to their isostructural ET relatives.

A. Bis(ethylenedithio)tetrathionaphthalene (BEDT-TTN) 1). Recently, the synthesis of the potential organic superconductor precursor, BEDT-TTN, was achieved. The seven step synthesis is shown below.

$$CI \longrightarrow S \longrightarrow S \longrightarrow CI \longrightarrow N_2 \xrightarrow{\text{Cu(acac)}_2} CI \longrightarrow CI \longrightarrow S \longrightarrow S \longrightarrow CI$$

$$R = Bu \longrightarrow 89\%$$

All of the steps proceed in 60-89% yields, and optimization of the reaction conditions is continuing.

Over a dozen radical cation salts of BEDT-TTN were prepared by electrocrystallization. Three salts, (BEDT-TTN) ClO_4 , (BEDT-TTN) $_3(SCN)_2$, and (BEDT-TTN) $_2I_3$, were characterized by four-probe electrical transport measurements, ESR spectroscopy, and X-ray crystallography. The 1:1 ClO_4 salt is a semiconductor [E $_a$ = 262(15) meV (323-270 K)] as expected. (BEDT-TTN) $_3(SNC)_2$'s room temperature conductivity is six orders of magnitude

greater than that of (BEDT-TTN)ClO₄, but it is also a semiconductor $[E_a = 93(7) \text{ meV } (290-180 \text{ K}), E_a = 62(6) \text{ meV } (180-70 \text{ K})]$. The first metallic system is (BEDT-TTN)₂I₃ $[T_{MI} = 170 \text{ K}, E_a = 88(4) \text{ MEV } (170-90 \text{ K})]$.

C. Collaborations.

In addition to the collaborations noted in sections A and B (affiliations noted below), three manuscripts on organic conductors and superconductors were published with Professor Joseph Brill.

1. AC Calorimetry at Charge Density Wave (CDW) and Spin Density Wave (SDW)

Transitions. 19

The specific heats at the SDW transition in κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl and the CDW transition in (TMTSF)₂ReO₄ have been measured. No anomaly is observed in the SDW transition. For (TMTSF)₂ReO₄ there is a sample-dependent latent heat associated with anion ordering.

2. Electric Field Dependence of Young's Modulul of (TMTSF) 2PF6.²⁰

The Young's modulus (Y) and internal friction (1/Q) in (TMFTSF)₂PF₆ have measured at 5.5K as functions of electric field. No changes (Δ Y/Y, Δ 1/Q < 2 x 10⁻⁴) are observed at fields up to 100 E_T, the threshhold for SDW depinning, in contrast to what is observed for many sliding CDW materials. A possible explanation is that bulk depinning of the SDW is not observed.

3. Thermodynamics of the Anion Ordering Transitions in (TMTSF)₂ReO₄ and (TMTSF)₂BF₄.²¹ The heat capacities were measured by AC calorimetry.

Major collaborators in this grant and their affiliations were:

- J. W. Brill, Department of Physics, University of Kentucky
- M.-H. Whangbo, Department of Chemistry, North Carolina State University
- J. E. Schirber (retired), Sandia National Laboratory
- J. M. Williams and G. W. Crabtree, Divisions of Chemistry and Materials Science, Argonne National Laboratory.
- C. C. Agosta, Physics Department, Clark University
- J. S. Brooks, NHMFL, Department of Physics, Florida State University
- S. N. Magonov, Materials Research Center, Albert-Ludwigs University, Germany
- C. E. Strouse and S. I. Khan, Department of Chemistry, University of California, Los Angeles
- J. Singleton, Clarendon Laboratories, University of Oxford, United Kingdom

REFERENCES

- T. Burgin, T. Miebach, J. C. Huffman, L. K. Montgomery, J. A. Paradis, C. Rovira, M.-H. Whangbo, S. N. Magonov, S. I. Khan, C. E. Strouse, D. L. Overmyer and J. E. Schirber, "20 K Crystal Structure, Electrical Transport, Electronic Band Structure, Scanning Tunnelling Microscopy and Pressure-RF Impedance Studies on the Organic Conducting Salt κ-(BEDT-TSF)₂Cu[N(CN)₂]Br," J. Mater. Chem., 5 (10), 1659 (1995).
- 2. R. R. Schumaker, V. Y. Lee, E. M. Engler, <u>J. Phys. Colloq. (France)</u> 1983, C3, 1139.
- L. K. Montgomery, T. Burgin, C. Husting, L. Tilley, J. C. Huffman, K. D. Carlson, J. D. Dudek, G. A. Yaconi, U. Geiser, J. M. Williams, Mol. Cryst. Liq. Cryst. 1992, 211, 283.
- 4. R. Kato, H. Kobayashi, A. Kobayashi, Synth. Met. 1991, 41, 2093.
- 5. A. M. Kini, U. Geiser, H. H. Wang, K. D. Carlson, J. M. Williams, W. K. Kwok, K. G. Vandervoort, J. E. Thompson, D. Stupka, D. Jung, M.-H. Whangbo, <u>Inorg. Chem.</u> 1990, 29, 2555.
- 6. J. M. Williams, A. M. Kini, H. H. Wang, K. D. Carlson, U. Geiser, L. K. Montgomery, G. J. Pyrka, D. M. Watkins, J. M. Kommers, S. J. Boryschuk, A. V. Strieby Crouch, W. K. Kwok, <u>Inorg. Chem.</u> 1990, 29, 3272.
- 7. H. Urayama, H. Yamochi, G. Saito, K. Nozawa, T. Sugano, M. Kinoshita, S. Sato, K. Oshima, A. Kawamoto, J. Tanaka, J. <u>J. Chem. Lett.</u> 1988, 55.
- 8. R. B. Yagubskii, I. F. Shchegolev, V. N. Laukhin, P. A. Kononovich, M. W. Karatsovnik, A. V. Zvarykina, L. I. Buravov, <u>Pis`ma Zh. Eksp. Teor. Fiz.</u> 1984, 39, 12; <u>JETP Lett.</u> (Engl. Transl.) 1984, 39, 12.
- 9. L.K. Montgomery, T. Burgin, J. C. Huffman, K. D. Carlson, J. D. Dudek, G. A. Yaconi, L. A. Megna, P. R. Mobley, W. K. Kwok, J. M. Williams, J. E. Schirber, D. L. Overmyer, J. Ren, C. Rovira, M.-H. Whangbo, Synth. Met., 1993, 56, 2090.
- 10. L. K. Montgomery, T. Burgin, J. C. Huffman, J. Ren, M.-H. Whangbo, Physica C 1994, 219, 490.
- 11. L. K. Montgomery, B. W. Fravel, J. C. Huffman, C. C. Agosta, and S. A. Ivanov, "Synthesis and Preliminary Characterization of New Conducting Salts Derived from Bis(ethylenedithio)tetraselenafulvalene (BETS)," Synth. Met., 85, in press.
- 12. J. M. Williams, J. R. Ferraro, R. J. Thorn, K. D. Carlson, U. Geiser, H. H. Wang, A. M. Kini, M.-H. Whangbo, <u>Organic Superconductors (Including Fullerenes)</u>; Prentice Hall: Englewood Cliffs, NJ, 1992; Chapt 1.
- 13. H. Kobayashi, T. Udagawa, H. Tomita, K. Bun, T. Naito, A. Kobayashi, <u>Chem. Lett.</u> 1993, 1559.
- 14. C. H. Mielke, Ph.D. thesis, Clark University, 1996.

- 15. L. K. Montgomery, T. Burgin, T. Miebach, D. Dunham, and J. C. Huffman, "Characterization of the Electrocrystallization Products of Bis(ethylenedithio)tetraselenafulvalene (BETS) and Tetrabutylammonium Tetrachlorogallate," Mol. Cryst. Liq. Cryst., 284, 73 (1996).
- 16. L. K. Montgomery, B. W. Fravel, J. C. Huffman, C. C. Agosta, and S. A. Ivanov, "Synthesis and Preliminary Characterization of New Conducting Salts Derived from Bis(ethylenedithio)tetraselenafulvalene (BETS)," Synth. Met., 85, in press.
- 17. D.-K. Seo, M.-H. Whangbo, B. W. Fravel, and L. K. Montgomery, "Comparison of the Fermi Surfaces of Isostructural Organic Conducting Salts (BEDT-TTF)MHg(SCN)₄ and (BEDT-TSF)₂MHg(SCN)₄ (M = NH₄ and K), Solid State Commun., 100, 191 (1996).
- S. A. Ivanov, C. H. Mielke, T. Coffey, D. A. Howe, C. C. Agosta, B. W. Fravel, and L. K. Montgomery, "Electronic-Transport Studies of the Organic Metals α-(BETS)₂NH₄Hg-(SCN)₄ and α-(BETS)₂KHg(SCN)₄ in High Magnetic Fields, Phys. Rev. B, Condens. Matter, 55, 1829 (1996).
- 19. M. Chung, Y. Wang, J.W. Brill, T. Burgin, and L.K. Montgomery, "AC Calorimetry at CDW and SDW Transitions," Synth. Met., 56, 2755 (1993).
- 20. Z.G. Xu, G. Minton, J.W. Brill, T. Burgin, and L.K. Montgomery, "Electric Field Dependence of Young's Modulus of (TMTSF)₂PF₆," Synth. Met., 56, 2797 (1993).
- 21. M. Chung, T. Burgin, E. Figueroa, Y.-K. Kuo, Y. Wang, L. K. Montgomery, and J. W. Brill, "Thermodynamics of the Anion Ordering Transitions in (TMTSF)₂ReO₄ and (TMTSF)₂BF₄," Phys. Rev. B.: Condens. Matter, 48, 9256 (1993).

COMPLETED PROJECT SUMMARY

TITLE: Design and Synthesis of Potential Organic Superconductors

PRINCIPAL INVESTIGATOR: Lawrence K. Montgomery

INCLUSIVE DATES: 30 Sept 1992 - 30 June 1996

CONTRACT/GRANT NUMBER: F49620-92-J-0534 (FY 92 URI/RIP)

SENIOR RESEARCH PERSONNEL: Dr. Steven Kaganove

Dr. Thomas Miebach

JUNIOR RESEARCH PERSONNEL:

Graduate Students

Timothy P. Burgin (Ph.D., 1994)

John J. Becker (M.S., 1995)

Kyle P. Starkey Bradley W. Fravel Heather Peterson

Technical Sheryl Lifer

<u>Undergraduates</u> Christopher Gerst Dennis Dunham Timothy Martin

PUBLICATIONS:

- 1. L. K. Montgomery, B. W. Fravel, J. C. Huffman, C. C. Agosta, and S. A. Ivanov, "Synthesis and Preliminary Characterization of New Conducting Salts Derived from Bis(ethylenedithio)tetraselenafulvalene (BETS)," Synth. Met., 85, in press.
- 2. S. A. Ivanov, C. H. Mielke, T. Coffey, D. A. Howe, C. C. Agosta, B. W. Fravel, and L. K. Montgomery, "Electronic-Transport Studies of the Organic Metals α-(BETS)₂NH₄Hg-(SCN)₄ and α-(BETS)₂KHg(SCN)₄ in High Magnetic Fields, <u>Phys. Rev. B. Condens. Matter</u>, 55, 1829 (1996).
- 3. D.-K. Seo, M.-H. Whangbo, B. W. Fravel, and L. K. Montgomery, "Comparison of the Fermi Surfaces of Isostructural Organic Conducting Salts (BEDT-TTF)MHg(SCN)4 and (BEDT-TSF)2MHg(SCN)4 (M = NH4 and K), Solid State Commun., 100, 191 (1996).
- 4. L. K. Montgomery, T. Burgin, T. Miebach, D. Dunham, and J. C. Huffman, "Characterization of the Electrocrystallization Products of Bis(ethylenedithio)tetraselenafulvalene (BETS) and Tetrabutylammonium Tetrachlorogallate," Mol. Cryst. Liq. Cryst., 284, 73 (1996).
- L. K. Montgomery, T. Burgin, J. C. Huffman, J. Ren, M.-H. Whangbo, J. E. Schirber and D. L. Overmyer, "Characterization of the Organic Superconductor λ-(BETS)₂GaCl₄", Proceedings of the American Chemical Society Division of Polymeric Materials: Science and Engineering, 72, 571 (1995).

- T. Burgin, T. Miebach, J. C. Huffman, L. K. Montgomery, J. A. Paradis, C. Rovira, M.-H. Whangbo, S. N. Magonov, S. I. Khan, C. E. Strouse, D. L. Overmyer and J. E. Schirber, "20 K Crystal Structure, Electrical Transport, Electronic Band Structure, Scanning Tunnelling Microscopy and Pressure-RF Impedance Studies on the Organic Conducting Salt κ-(BEDT-TSF)₂Cu[N(CN)₂]Br," J. Mater. Chem., 5 (10), 1659 (1995).
- Superconductivity, X-ray Structure and Electronic Band Structure of λ-(BETS)₂GaCl₄," Physica C, 219, 490 (1994).
- 8. M. Chung, T. Burgin, E. Figueroa, Y.-K. Kuo, Y. Wang, L. K. Montgomery, and J. W. Brill, "Thermodynamics of the Anion Ordering Transitions in (TMTSF)₂ReO₄ and (TMTSF)₂BF₄," Phys. Rev. B.: Condens. Matter, 48, 9256 (1993).
- 9. L.K. Montgomery, "Chemical Synthesis and Crystal Growth Techniques," in <u>Organic Conductors: Fundamentals and Applications</u>, Applied Physics Series, A.M. Hermann and J.P. Farges, Eds., Marcel Dekkar, New York, NY, Chapt. 4, 1994, p. 115.
- L.K. Montgomery, T. Burgin, J.C. Huffman, K.D. Carlson, J.D. Dudek, G.A. Yaconi, L.A. Megna, P.R. Mobley, W.K. Kwok, J.M. Williams, J.E. Schirber, D.L. Overmyer, J. Ren, C. Rovira, and M.-H Whangbo, "The Synthesis and Characterization of Radical Cation Salts of Bis(ethylenedithio)tetraselenafulvalene," Synth. Met., 56, 2090 (1993).
- 11. M. Chung, Y. Wang, J.W. Brill, T. Burgin, and L.K. Montgomery, "AC Calorimetry at CDW and SDW Transitions," Synth. Met., 56, 2755 (1993).
- 12. Z.G. Xu, G. Minton, J.W. Brill, T. Burgin, and L.K. Montgomery, "Electric Field Dependence of Young's Modulus of (TMTSF)₂PF₆," Synth. Met., 56, 2797 (1993).

ABSTRACT:

The principal objectives of this work were the design, synthesis, and preliminary characterization of new organic conductors and superconductors. Electrocrystallization facilities were constructed that accommodate 96 crystal growth cells. Crystal formation takes place in a temperature-controlled (±0.1 °C), vibrationally-isolated, (vertical isolation efficiency at 10 Hz in 60-90%), inert-atmosphere environment. A variety of radical-cation salts of bis(ethylenedithio)tetraselenafulvalene were grown and characterized by crystallography, tight-binding band calculations, electronic transport, magnetic properties, and a number of other solid-state methods. Significant findings include the discovery of a tetrachlorogallate salt that is a superconductor with a transition temperature 5.5° higher than any previously known organic material containing selenium and magnetoresistance studies on mercury thiocyanate salts that suggest that strong electron-electron interactions are important in promoting and enhancing superconductivity in organic superconductors. A new organic conductor precursor, bis(ethylenedithio)tetrathiohaphthalene, was synthesized and several of its conducting salts were investigated in a preliminary manner. Numerous collaborative studies were undertaken.

Principal Investigator Annual Data Collection (PIADC) Survey Form

Please submit the requested data for the period 1 October 1994through 30 June 1996 . Request you follow the data requirements and format instructions below. This data is due to your AFOSR program manager NLT 30 September 1994.

NOTE: If there is insufficient space on this survey to meet your data submissions, please submit additional data in the same format as identified below.

PI DATA

Name (Last, First, MI):	Montgomery, Lawren	nce K.	AFOSR USE ONLY
Institution	Indiana Universit	у	Project/Subarea
Contract/Grant No.	F49620-92-J-0534		NX
			FY
	AND COLOR		•
	NUMBER OF C	CONTRACT/GRANT CO-INV	ESTIGATORS
Faculty1	Post Doctorates 1	Graduate Students_	3Other1
	PUBLICATIONS RELA	TED TO AFOREMENTIONE	D CONTRACT/GRANT
NOTE: List names in the	e following format: Last N	Jame, First Name, MI	
Include: Articles in peer	r reviewed publications, jou	rnals, book chapters, and edito	rships of books.
Do Not Include: Unrevi reports of new data, and	ewed proceedings and repo articles submitted or accep	rts, abstracts, "Scientific Amer ted for publication, but with a p	ican" type articles, or articles that are not primary publication date outside the stated time frame.
Name of Journal, Bo	ok, etc.: Synthetic Meta	ls	
Title of Article: Syr	thesis and Preliminary	Characterization of New C	Conducting Salts Derived from
Bis(ethylene	dithio)tetraselenafulval	ene (BETS)	
Author(s): L. K. M	ontgomery, B. W. Frav	el, J. C. Huffman, C. C. A	gosta, and S. A. Ivanov
Publisher (if applica	ble):		
Volume: 85	Page(s):	Month Published:	Year Published: in press
Name of Journal, Bo	ok, etc.: Physical Revie	w B, Condensed Matter	
Title of Article: Elec	ctronic-Transport Studi	es of the Organic Metals o	α -(BETS) ₂ NH ₄ Hg-(SCN) ₄ and α -
(BETS) ₂ KH ₂	g(SCN)4 in High Magne	etic Fields	
Author(s): S. A. Iv	anov, C. H. Mielke, T.	Coffey, D. A. Howe, C. C.	Agosta, B. W. Fravel, and L. K.
Montgomery			
Publisher (if applical			
Volume: 55	Page(s): 1829	Month Published:	Year Published: 1996

Name of Journal, Book, etc.: Solid State Communications

Title of Article: Comparison of the Fermi Surfaces of Isostructural Organic Conducting Salts (BEDT-TTF)MHg(SCN)₄ and (BEDT-TSF)₂MHg(SCN)₄ (M = NH₄ and K)

Author(s): D.-K. Seo, M.-H. Whangbo, B. W. Fravel, and L. K. Montgomery

Publisher (if applicable):

Volume: 100

Page(s): 191

Month Published:

Year Published: 1996

Name of Journal, Book, etc.: Molecular Crystals Liquid Crystals

Title of Article: Characterization of the Electrocrystallization Products of Bis(ethylenedithio)tetraselenafulvalene (BETS) and Tetrabutylammonium Tetrachlorogallate

Author(s): L. K. Montgomery, T. Burgin, T. Miebach, D. Dunham, and J. C. Huffman

Publisher (if applicable):

Volume: 284

Page(s): 73

Month Published:

Year Published: 1996

Name of Journal, Book, etc.: Proceedings of the American Chemical Society Division of Polymeric Materials: Science and Engineering

Title of Article: Characterization of the Organic Superconductor λ -(BETS)₂GaCl₄

Author(s): L. K. Montgomery, T. Burgin, J. C. Huffman, J. Ren, M.-H. Whangbo, J. E. Schirber and D. L. Overmyer

Publisher (if applicable):

Volume: 72

Page(s): 571

Month Published:

Year Published: 1995

Name of Journal, Book, etc.: Journal of Materials Chemistry

Title of Article: 20 K Crystal Structure, Electrical Transport, Electronic Band Structure, Scanning Tunnelling Microscopy and Pressure-RF Impedance Studies on the Organic Conducting Salt κ-(BEDT-TSF)₂Cu[N(CN)₂]Br

Author(s): T. Burgin, T. Miebach, J. C. Huffman, L. K. Montgomery, J. A. Paradis, C. Rovira, M.-H. Whangbo, S. N. Magonov, S. I. Khan, C. E. Strouse, D. L. Overmyer and J. E. Schirber

Publisher (if applicable):

Volume: 5 (10)

Page(s): 1659

Month Published:

Year Published: 1995

AFOSR Technology Transfer/Transition Information for 1994

Chemistry and Life Sciences

Program Manager:
Grant # or Lab Task #: No New Information
PI or Lab Task Manager:
PI telephone #:
Institution or AF Lab:
Address:
What is transitioned/transferred? (Biefly describe your basic research idea, result, theory, methodology, process, device, fact, knowledge, software etc., which significantly influences the direction of a customer's applied program in government, industry or academia):
Transitioned to whom (who is the customer?): Name of applied program:
Organization (company, government agency, institution, etc):
Contact (person's name):
Telephone:
Date of transition (year, month or day):
Goal of applied program:
Purpose of transition (how is the direction of the relevant applied program changed by the transition):

Directorate:

HONORS/AWARDS RECEIVED DURING CONTRACT/GRANT LIFETIME

<u>Include</u>: All honors and awards received during the lifetime of the contract or grant, and any life achievement honors such as (Nobel prize, honorary doctorates, and society fellowships) prior to this contract or grant.

<u>Do Not Include</u>: Honors and awards unrelated to the scientific field covered by the contract/grant.

Honor/Award:	No New Information	Year Received:
Honor/Award Red	cipient(s):	
Awarding Organi	zation:	