

GENESIS Hands-on Part 2-2: High performance computation with GENESIS

Jaewoon Jung

RIKEN Center for Computational Science 2024/07/01

IUPAB2024 Hands-on Training Program CHARMM-GUI/GENESIS MD Tutorial

Schedule of GENESIS parts (6/30-7/2)

06/30 Part1	
13:30 - 15:00	GENESIS basics and GENESIS on Fugaku (Kobayashi) Lecture
	Hands-on tutorial on Fugaku

07/01 Part 2	
14:30 - 15:30	Coarse-grained simulations in GENESIS (Tan)
15:30 - 16:30	High-performance computation with GENESIS (Jung)

07/02 Part 3	
13:30 - 15:00	Generalized-ensemble simulations using GENESIS (Ito)

Contents

Decision of Nonbonded interaction scheme

Large time step integration with Hydrogen

Mass Repartitioning

Others

Force calculation for biological systems

Force can be divided into bonding and nonbonding interactions.

 $+\sum_{\rm angles} k_{\theta} (\theta - \theta_0)^2$

Angle (ex. 1-2-3, 2-3-4,..)

+ $\sum k_{\varphi}[1 + cos(n\varphi - \delta)]$ Dihedral (ex. 1-2-3-4, ...)

Hydrogen: Light Gray Carbon: Dark Gray

Oxygen: Red Nitrogen: Blue

$$+ \sum_{\substack{\text{non-bonded}\\ \text{poins}}} \left[\varepsilon_{ij}^{min} \left\{ \left(\frac{R_{ij}^{\min}}{r_{ij}} \right)^{12} - \left(\frac{R_{ij}^{\min}}{r_{ij}} \right)^{6} \right\} + \frac{q_i q_j}{r_{ij}} \right]$$

Nonbonding $O(N^2)$

Bonding

O(N)

van der Waals

Coulomb

Nonbonded interactions

- Nonbonded interactions (Coulomb + vdW) are the main bottleneck of simulations.
- Nonbonded interactions are divided into those of real space
 with cutoff-distance and reciprocal lattice space.

 Real space calculation

$$\sum_{ij,\mathbf{n}} \left[\varepsilon_{ij}^{min} \left\{ \left(\frac{R_{ij}^{\min}}{r_{ij,\mathbf{n}}} \right)^{12} - \left(\frac{R_{ij}^{\min}}{r_{ij,\mathbf{n}}} \right)^{6} \right\} + \frac{q_{i}q_{j}}{r_{ij,\mathbf{n}}} \right] \rightarrow \sum_{\substack{ij,\mathbf{n} \\ r_{ij} < R_{c}}} \left[\varepsilon_{ij}^{min} \left\{ \left(\frac{R_{ij}^{\min}}{r_{ij,\mathbf{n}}} \right)^{12} - \left(\frac{R_{ij}^{\min}}{r_{ij,\mathbf{n}}} \right)^{6} \right\} + \frac{q_{i}q_{j}\operatorname{erfc}(\alpha r_{ij,\mathbf{n}})}{r_{ij,\mathbf{n}}} \right]$$

$$\frac{1}{2\pi V} \sum_{\mathbf{k} \neq \mathbf{0}} \frac{\exp(-\pi^2 \mathbf{k}^2 / \alpha^2)}{\mathbf{k}^2} |S(\mathbf{k})|^2 - \frac{\alpha}{\sqrt{\pi}} \sum_{i=1}^N q_i^2$$

Reciprocal space calculation

Range of j-th particle that interacts with i-th particle

Nonbonded interaction kernels in GENESIS

- In GENESIS, there are four interaction kernels for real space nonbonded interaction.
 - 1. Generic
- 2. Fugaku

- 3. Intel 4. GPU
- Please choose the best calculation kernel from MD with small simulation time (We will do at this time).
- We also have four reciprocal space calculation schemes.
- Reciprocal space calculation scheme is decided by GENESIS by executing each scheme before starting MD.

Contents

Decision of Nonbonded interaction scheme

Large time step integration with Hydrogen

Mass Repartitioning

Others

Hydrogen Mass Repartitioning (HMR) scheme

- Increase the mass of hydrogen atoms while reducing the mass of heavy atoms such that the total mass of one hydrogen group is not changed.
- With the HMR scheme, we can avoid the problem of SHAKE/RATTLE error by reducing the displacement of hydrogen atoms.
- We increase the mass of the hydrogen atoms three times.

HMR increases the stability (example of energy drift)

• HMR reduces the energy drift and increases the overall stability.

J. Jung et al., JCTC. 17, 5312 (2021))

Accurate temperature/pressure evaluation is important for large time step!!

J. Jung et al., JCTC, **15**, 84 (2019)) J. Jung et al., JCP, 153, 234115

Conventional temperature and pressure evaluation

Accurate temperature and pressure evaluation 10 in GENESIS

Contents

- Decision of Nonbonded interaction scheme
- Large time step integration with Hydrogen

Mass Repartitioning

Others

Multiple time step integration

We can reduce the computational cost by skipping slow motion force every other step

