A Cutoff Rule For Parameterized Distributed Protocols in Prenex Normal Form

Ian Dardik

February 25, 2022

1 Introduction

In this note, we consider the verification problem of a transition system $T = (I, \Delta)$ parameterized by a single sort P of identical elements. We assume that a candidate inductive invariant Φ (which implies our key safety property) is given, and that both Δ and Φ are in Prenex Normal Form (PNF). We adopt the convention of [2] where T(P) is the template of T, and T(|P|) is a finite instantiation. We also will consider the prime (') symbol to be an operator that can be recursively applied to a formula, only affecting (sticking to) state variables.

In this note, we will build several lemmas that lead to an interesting result: $\Phi(P)$ is an inductive invariant for T(P) iff $\Phi(m+n)$ is an inductive invariant for T(m+n), where m is the number of variables that Φ quantifies over and n is the number of variables that Δ quantifies over. This result is useful for the verification problem laid out above because it reduces the burden to model checking the single finite instance T(m+n). Essentially, m+n is a cutoff instance size for proving that our inductive invariant holds.

2 Finitely Instantiated Properties (FIPs)

In this section we introduce the FIP, a key tool for proving the M-N Theorem.

2.1 FIP Basics

Definition 1 (FIP). Let M_{Φ} and M_{Δ} be the respective matrices of Φ and Δ . A Finitely Instantiated Property (FIP) of $[\Phi \wedge \Delta](|P|)$ is a formula $(M_{\Phi} \wedge M_{\Delta})[v_i \mapsto e_i]$, where each free variable v_i has been substituted for a concrete element $e_i \in P$.

Example 1. Let $\Phi = \forall p, q \in P, M_{\Phi}(p, q)$ and $\Delta = \exists p \in P, M_{\Delta}(p)$. Then $M_{\Phi}(1, 3) \wedge M_{\Delta}(2)$ and $M_{\Phi}(1, 1) \wedge M_{\Delta}(1)$ are both FIPs of $[\Phi \wedge \Delta](3)$ (i.e. for the case when $P = \{1, 2, 3\}$).

Remark 1. We will often write a FIPs of $[\Phi \wedge \Delta](|P|)$ in the abstract as $\phi \wedge \delta$. We specifically choose " $\phi \wedge \delta$ " to show the syntactic correspondence of ϕ to Φ and δ to Δ . In other words, if M_{Φ} is the matrix of Φ and M_{Δ} is the matrix of Φ , then it is always the case that $\phi = M_{\Phi}[v_i \mapsto e_i]$ and $\delta = M_{\Delta}[v_i \mapsto e_i]$.

Example 2. Let $\phi \wedge \delta = M_{\Phi}(1,3) \wedge M_{\Delta}(2)$ be a FIP of $[\Phi \wedge \Delta](3)$. By Remark 1, $\phi = M_{\Phi}(1,3)$ and $\delta = M_{\Delta}(2)$.

2.2 Protocol Assumptions

Now that we have formally defined FIPs, we can describe our requirement that "the elements of sort P are identical" in precise terms.

Assumption 1 (Sort Elements Are Identical). Let $\phi \wedge \delta$ be an arbitrary FIP of $[\Phi \wedge \Delta](|P|)$ and $g: P \to P$ be a bijective function. Then we assume:

$$\phi \leftrightarrow \phi[P \mapsto g(P)]$$

and

$$\phi \wedge \delta \leftrightarrow (\phi \wedge \delta)[P \mapsto g(P)]$$

Remark 2. In the context of Assumption 1, $(\phi \wedge \delta)[P \mapsto g(P)]$ is said to be a permutation of $\phi \wedge \delta$, and:

$$(\phi \wedge \delta)[P \mapsto g(P)] = g(\phi \wedge \delta)$$

Example 3. Let $\Phi = \forall p \in P, M_{\Phi}(p)$ and $\Delta = \exists p, q \in P, M_{\Delta}(p, q)$. Consider $M_{\Phi}(2) \wedge M_{\Delta}(1, 3)$ and $M_{\Phi}(3) \wedge M_{\Delta}(1, 2)$ which are both FIPs of $[\Phi \wedge \Delta](3)$. Let g be the permutation:

$$g = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

Then these two FIPs are permutations of each other because

$$g(M_{\Phi}(2) \wedge M_{\Delta}(1,3)) = M_{\Phi}(3) \wedge M_{\Delta}(1,2)$$

and

$$M_{\Phi}(2) \wedge M_{\Delta}(1,3) = g(M_{\Phi}(3) \wedge M_{\Delta}(1,2))$$

Because each sort element is identical, we can make the following assumption without loss of generality:

Assumption 2. For any sort $P, P = \{1, ..., |P|\}$.

This leads to the trivial result:

Lemma 1. Let P and Q be sorts, then $|P| \leq |Q| \leftrightarrow P \subseteq Q$.

Proof. Suppose $|P| \leq |Q|$. Then by Assumption 2:

$$P = \{1, ..., |P|\} \subseteq \{1, ..., |Q|\} = Q$$

Now suppose that $P \subseteq Q$. Then by Assumption 2:

$$\{1, ..., |P|\} = P \subset Q = \{1, ..., |Q|\}$$

Hence it follows that $|P| \leq |Q|$.

2.3 FIP Equivalency

In this section we introduce the notion of equivalency for FIPs and prove some useful lemmas.

Definition 2 (Equivalent). Let $\phi_1 \wedge \delta_1$ and $\phi_2 \wedge \delta_2$ be FIPs, then $\phi_1 \wedge \delta_1 \equiv \phi_2 \wedge \delta_2$ iff $\phi_2 \wedge \delta_2$ is a permutation of $\phi_1 \wedge \delta_1$. In this case, $\phi_1 \wedge \delta_1$ and $\phi_2 \wedge \delta_2$ are said to be *equivalent*.

Example 4. Let $F_1 = M_{\Phi}(1,2) \wedge M_{\Delta}(1)$, $F_2 = M_{\Phi}(2,3) \wedge M_{\Delta}(2)$ and $F_3 = M_{\Phi}(2,2) \wedge M_{\Delta}(2)$ be FIPs of $[\Phi \wedge \Delta](3)$. Let $g = (1\ 2\ 3)$ be a permutation (using cycle notation) on P. Then $F_1 \equiv F_2$ because $g(F_1) = F_2$, however, F_3 is a permutation of neither F_1 nor F_2 and hence is not equivalent to either. \square

The notion of equivalency is important because it partitions a formula $\Phi \wedge \Delta$ into distinct classes of FIPs. In the example above, F_1 and F_2 describe the same class of properties/actions because each element of P is interchangeable for one another. We now present several basic lemmas about FIPs.

Lemma 2 (Equivalency Is Commutative). Let $\phi_1 \wedge \delta_1$ and $\phi_2 \wedge \delta_2$ be FIPs for $[\Phi \wedge \Delta](|P|)$, then

$$(\phi_1 \wedge \delta_1 \equiv \phi_2 \wedge \delta_2) \leftrightarrow (\phi_2 \wedge \delta_2 \equiv \phi_1 \wedge \delta_1)$$

Proof. Suppose that $\phi_1 \wedge \delta_1 \equiv \phi_2 \wedge \delta_2$. Then there exists a permutation g such that $g(\phi_1 \wedge \delta_1) = \phi_2 \wedge \delta_2$. Permutations are bijective and hence are invertible. Then

$$\phi_1 \wedge \delta_1 = g^{-1}(g(\phi_1 \wedge \delta_1)) = g^{-1}(\phi_2 \wedge \delta_2)$$

But g^{-1} is a permutation itself, and hence $\phi_1 \wedge \delta_1$ is a permutation of $\phi_2 \wedge \delta_2$.

We omit the proof in the other direction because the argument is nearly identical.

Lemma 3. Let $\phi_1 \wedge \delta_1$ and $\phi_2 \wedge \delta_2$ both be FIPs of $[\Phi \wedge \Delta](|P|)$. Then:

$$((\phi_1 \wedge \delta_1) \equiv (\phi_2 \wedge \delta_2)) \rightarrow ((\phi_1 \equiv \phi_2) \wedge (\delta_1 \equiv \delta_2))$$

Proof. Suppose $(\phi_1 \wedge \delta_1) \equiv (\phi_2 \wedge \delta_2)$. Then there exists a permutation g such that $g(\phi_1 \wedge \delta_1) = \phi_2 \wedge \delta_2$. But:

$$g(\phi_1) \wedge g(\delta_1) = g(\phi_1 \wedge \delta_1) = \phi_2 \wedge \delta_2$$

From Remark 1, we see that ϕ_1 and ϕ_2 are identical up to a finite instantiation, and hence $g(\phi_1) = \phi_2$; a similar argument shows that $g(\delta_1) = \delta_2$.

Lemma 4. Let ϕ_1 and ϕ_2 be quantifier-free properties parameterized by the sort P. Then:

$$(\phi_1 \equiv \phi_2) \leftrightarrow (\phi_1' \equiv \phi_2')$$

Proof. Suppose that $\phi_1 \equiv \phi_2$. Then there exists a permutation g such that $g(\phi_1) = \phi_2$. Recall that the prime operator only affects state variables, and not P or its elements; on the other hand, g can only affect the elements of P. Thus it is the case that $g(\phi_1)' = g(\phi_1')$. We now see:

$$\phi_2' = g(\phi_1)' = g(\phi_1')$$

Showing that $\phi'_1 \equiv \phi'_2$ by definition. We omit the proof in the other direction since it is nearly identical.

Lemma 5. Let ϕ_1 and ϕ_2 be quantifier-free properties parameterized by the sort P. Suppose that $\phi_1 \equiv \phi_2$. Then:

$$\phi_1 \leftrightarrow \phi_2$$

Proof. Because $\phi_1 \equiv \phi_2$, there exists a permutation g such that $g(\phi_1) = \phi_2$. However g is bijective, and hence by Assumption 1:

$$\phi_1 \leftrightarrow (\phi_1)[P \mapsto q(P)] = \phi_2$$

Lemma 6. Let $\phi_1 \wedge \delta_1$ and $\phi_2 \wedge \delta_2$ both be FIPs for $[\Phi \wedge \Delta](|P|)$. Suppose that $\phi_1 \wedge \delta_1 \equiv \phi_2 \wedge \delta_2$. Then:

$$(\phi_1 \wedge \delta_1) \leftrightarrow (\phi_2 \wedge \delta_2)$$

Proof. Because $\phi_1 \wedge \delta_1 \equiv \phi_2 \wedge \delta_2$, there exists a permutation g such that $g(\phi_1 \wedge \delta_1) = \phi_2 \wedge \delta_2$. However g is bijective, and hence by Assumption 1:

$$\phi_1 \wedge \delta_1 \leftrightarrow (\phi_1 \wedge \delta_1)[P \mapsto g(P)] = \phi_2 \wedge \delta_2$$

2.4 The FIPS Operator

In this section we introduce the FIPS operator:

Definition 3. Let Φ and Δ be PNF properties with respective matrices ϕ and δ . Suppose that Φ quantifies over $m \in \mathbb{N}$ variables while Δ quantifies over $n \in \mathbb{N}$ variables. Then:

$$FIPS(\Phi \wedge \Delta, |P|) := \{ \phi(v_1, ..., v_m) \wedge \delta(w_1, ..., w_n) | v_1, ..., v_m, w_1, ..., w_n \in P \}$$

The FIPS operator simply contains every possible FIP for a given formula $[\Phi \wedge \Delta](|P|)$. Next, we prove an intuitive result:

Lemma 7. FIPS(
$$\Phi \land \Delta, |P|$$
) \subseteq FIPS($\Phi \land \Delta, |Q|$) $\leftrightarrow |P| \leq |Q|$

Proof. We begin by showing that $|P| \leq |Q| \to \text{FIPS}(\Phi \wedge \Delta, |P|) \subseteq \text{FIPS}(\Phi \wedge \Delta, |Q|)$. Suppose $|P| \leq |Q|$, and then it follows that $P \subseteq Q$ by Lemma 1. Then:

$$\begin{aligned} \text{FIPS}(\Phi \wedge \Delta, |P|) = & \{\phi(v_1, ..., v_m) \wedge \delta(w_1, ..., w_n) | v_1, ..., v_m, w_1, ..., w_n \in P\} \\ & \subseteq & \{\phi(v_1, ..., v_m) \wedge \delta(w_1, ..., w_n) | v_1, ..., v_m, w_1, ..., w_n \in P\} \cup \\ & \{\phi(v_1, ..., v_m) \wedge \delta(w_1, ..., w_n) | v_1, ..., v_m, w_1, ..., w_n \in Q \setminus P\} \\ & = & \{\phi(v_1, ..., v_m) \wedge \delta(w_1, ..., w_n) | v_1, ..., v_m, w_1, ..., w_n \in Q\} \\ & = & \text{FIPS}(\Phi \wedge \Delta, |Q|) \end{aligned}$$

Next we show that $FIPS(\Phi \wedge \Delta, |P|) \subseteq FIPS(\Phi \wedge \Delta, |Q|) \rightarrow |P| \leq |Q|$. Suppose that $FIPS(\Phi \wedge \Delta, |P|) \subseteq FIPS(\Phi \wedge \Delta, |Q|)$, then:

$$\{\phi(v_1,...,v_m) \land \delta(w_1,...,w_n) | v_1,...,v_m, w_1,...,w_n \in P\}$$

$$\subseteq \{\phi(v_1,...,v_m) \land \delta(w_1,...,w_n) | v_1,...,v_m, w_1,...,w_n \in Q\}$$

Which implies that $P \subseteq Q$, which in turn implies that $|P| \leq |Q|$ by Lemma 1.

3 M-N Theorem

In this section we present the M-N Theorem. First, we prove a key lemma that shows that FIPs saturate when |P| grows large enough.

Lemma 8 (FIP Saturation). Suppose that Φ quantifies over $m \in \mathbb{N}$ variables and Δ quantifies over $n \in \mathbb{N}$ variables. Then every FIP of $[\Delta \wedge \Phi](k)$, for k > m + n, has an equivalent FIP in $[\Delta \wedge \Phi](m + n)$.

Proof. Let k = |P| = m + n + z where $z \in \mathbb{Z}_{>0}$, and then $P = \{1, ..., k\}$ by Assumption 2. Let $\phi \wedge \delta$ be an arbitrary FIP of $[\Phi \wedge \Delta](k)$. Then, because $[\Phi \wedge \Delta](k)$ quantifies over exactly m + n variables, there must be at least z elements in P that do not appear in $\phi \wedge \delta$. Let $u \leq m + n$ be the number of elements of P that are used in $\phi \wedge \delta$, and let $\{e_1, ..., e_u\} \subseteq P$ be the set of elements that are used. Consider the following permutation:

 $g = \begin{pmatrix} e_1 \dots e_u \\ 1 \dots u \end{pmatrix}$

Notice that $g(\phi \wedge \delta)$ contains only the elements 1...u. Since $u \leq m+n$, it must be the case that $g(\phi \wedge \delta)$ is a FIP of $[\Phi \wedge \Delta](m+n)$.

Theorem 1 (M-N). Suppose that Φ quantifies over $m \in \mathbb{N}$ variables and Δ quantifies over $n \in \mathbb{N}$ variables. Then $\Phi(P)$ is an inductive invariant for T(P) iff it is an inductive invariant for the finite instantiation T(m+n).

Proof. It is clear that if $\Phi(P)$ is an inductive invariant, then it must be an inductive invariant for T(m+n). We prove the opposite direction in the remainder of the proof.

First, consider the case when the finite instantiation is less than or equal to m+n. Suppose that $[\Phi \wedge \Delta](m+n) \to \Phi(m+n)'$. Let $k \leq m+n$, then we must show that $[\Phi \wedge \Delta](k) \to \Phi(k)'$. Consider an arbitrary FIP $\phi \wedge \delta$ of $[\Phi \wedge \Delta](k)$. By Lemma 7, $\phi \wedge \delta$ is also a FIP of $[\Phi \wedge \Delta](m+n)$, and therefore it follows that ϕ' holds.

We will now focus on the case when the finite instantiation is larger than m+n. Suppose that $[\Phi \wedge \Delta](m+n) \to \Phi(m+n)'$. Let k > m+n, then we must show that $[\Phi \wedge \Delta](k) \to \Phi(k)'$. Consider an arbitrary FIP $\phi \wedge \delta$ of $[\Phi \wedge \Delta](k)$. By Lemma 8, there exists a FIP $\phi_2 \wedge \delta_2$ of $[\Phi \wedge \Delta](m+n)$ such that $\phi_2 \wedge \delta_2 \equiv \phi \wedge \delta$. By Lemma 6, we see that $\phi_2 \wedge \delta_2$ holds because $\phi \wedge \delta$ holds. However, because $\phi_2 \wedge \delta_2$ holds, and we know that $[\Phi \wedge \Delta](m+n) \to \Phi(m+n)'$, it follows that ϕ'_2 holds. Now Lemma 3 implies that $\phi \equiv \phi_2$, and Lemma 4 implies that $\phi' \equiv \phi'_2$, so we have ϕ'_2 and $\phi' \equiv \phi'_2$. Thus by Lemma 5 and Lemma 2, we can conclude that ϕ' holds.

4 Case Studies

In this section we visit several (more coming soon) distributed protocols that are parameterized by a single sort and adhere to the property of Assumption 1.

4.1 Peterson's Mutex Protocol

Peterson's Mutex Protocol can be encoded with a transition function Δ in PNF that quantifies over two variables. A sample inductive invariant candidate is given in [1] that quantifies of two variables and works for |P| = 2:

```
Phi == \A p,q \in ProcSet :
/\ pc[p] \in {"a3","a4","cs"} => flag[p]
/\ (p#q /\ pc[p] = "cs" /\ pc[q] = "a4") => turn = p
/\ (p # q) => ~(pc[p] = "cs" /\ pc[q] = "cs")
```

However, by the M-N Theorem, we must show that Φ is an inductive invariant for the case when |P| = 4. In fact, we easily see that Φ fails to be inductive in the case:

This example uses states to describe the counterexample, but we can also describe it using the FIP $M_{\Phi}(1,2) \wedge M_{\Delta}(3,2)$ from $[\Phi \wedge \Delta](4)$. When this FIP is true, both $M_{\Phi}(1,2)$ and $M_{\Phi}(1,3)$ fail to hold in the next state, showing that $M_{\Phi}(1,2)$ -and hence Φ -is not inductive.

This example shows how a FIP describes a specific relationship between Φ and Δ ; in this case the specific relationship leads to a counterexample. It is important to note that it is only possible to describe this particular counterexample using a FIP with a minimum of three elements in P, which is precisely why we do not detect the counter example in Peterson's Protocol when |P| = 2.

It is also worthwhile to note that we could derive the same counterexample using an equivalent FIP, say $M_{\Phi}(3,2) \wedge M_{\Delta}(1,2)$. This shows how FIP equivalency partitions a formula $\Phi \wedge \Delta$ into classes of specific relationships that a transition system can exhibit.

References

- [1] Parametric Peterson's Mutex Protocol. https://github.com/iandardik/iinf/blob/master/ii_cutoff/mn_thm/PetersonParametric.tla, 2022.
- [2] Aman Goel and Karem Sakallah. On Symmetry and Quantification: A New Approach to Verify Distributed Protocols. In NASA Formal Methods Symposium, pages 131–150. Springer, 2021.