

Diabetes Predictor using K Nearest Neighbours

Consider below dataset

Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	0
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	1
5	116	74	0	0	25.6	0.201	30	0
3	78	50	32	88	31	0.248	26	1
10	115	0	0	0	35.3	0.134	29	0
2	197	70	45	543	30.5	0.158	53	1
8	125	96	0	0	0	0.232	54	1

Diabetes predictor application using K nearest neighbour algorithm

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split

print("---- Marvellous Infosystems by Piyush Khairnar-----")

print("---- Diabetes predictor using K Nearest neighbour -----")

diabetes = pd.read_csv('diabetes.csv')

print("Columns of Dataset")
print(diabetes.columns)

print("First 5 records of dataset")
print(diabetes.head())

print("Dimension of diabetes data: {}".format(diabetes.shape))

X_train, X_test, y_train, y_test = train_test_split(diabetes.loc[:, diabetes.columns != 'Outcome'], diabetes['Outcome'], stratify=diabetes['Outcome'],
```

random state=66)


```
training_accuracy = []
test accuracy = []
# try n_neighbors from 1 to 10
neighbors_settings = range(1, 11)
for n neighbors in neighbors_settings:
   # build the model
   knn = KNeighborsClassifier(n_neighbors=n_neighbors)
   knn.fit(X_train, y_train)
   # record training set accuracy
   training_accuracy.append(knn.score(X_train, y_train))
   # record test set accuracy
   test accuracy.append(knn.score(X_test, y_test))
plt.plot(neighbors_settings, training_accuracy, label="training accuracy")
plt.plot(neighbors_settings, test_accuracy, label="test accuracy")
plt.ylabel("Accuracy")
plt.xlabel("n_neighbors")
plt.legend()
plt.savefig('knn_compare_model')
plt.show()
knn = KNeighborsClassifier(n_neighbors=9)
knn.fit(X train, y_train)
print('Accuracy of K-NN classifier on training set: {:.
2f}'.format(knn.score(X_train, y_train)))
print('Accuracy of K-NN classifier on test set: {:.2f}'.format(knn.score(X_test,
y test)))
Output of above application
---- Marvellous Infosystems by Piyush Khairnar----
---- Diabetes predictor using K Nearest neighbour -----
Columns of Dataset
Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
    'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
    dtype='object')
```

©Marvellous Infosystems

FII'St 3	record	s or data	aset		
Pregnancies Glucose			ucose BloodPressure	DiabetesPedigree	Function Age
Outco	me			3	
0	6	148	72	0.627 50 1	
1	1	85	66	0.351 31 0	
2	8	183	64	0.672 32 1	
3	1	89	66	0.167 21 0	
4	0	137	40	2.288 33 1	

[5 rows x 9 columns]

Dimension of diabetes data: (768, 9)

Accuracy of K-NN classifier on training set: 0.79

Accuracy of K-NN classifier on test set: 0.78

