Implementasi *Kansei Engineering* dalam Perancangan Desain *Interface E-Learning* Berbasis web (Studi Kasus: SMK Negeri 1 Sukabumi)

Indra Griha Tofik Isa#1, Ana Hadiana*2

¹Teknik Informatika, Universitas Muhammadiyah Sukabumi (UMMI) Jl. R. Syamsudin, SH, Kota Sukabumi

iqtiku@qmail.com

²Pusat Penelitian Informatika, Lembaga Ilmu Pengetahuan Indonesia (LIPI) Jl. Cisitu Sangkuriang, Dago, Kota Bandung

anahadiana68@gmail.com

Abstract — Human Computer Interaction is how to make a good communication between computer and user. In its development, not only focused on usability aspect and technical, but also how to make product more persuasive in psychological aspect. Kansei Engineering (KE) comes to fulfill the product designing which involves user's psychological or affective factors. There are several KE method in designing product, one of them is Kansei Engineering Type I which is involved in this research. The purpose of this research is to know some psychological factors related with web based interface e-learning design and how to make web based e-learning guideline matrix recommendation by Kansei Engineering Type I. 10 web based e-learning specimens, 20 Kansei Words and 30 participants are involved in the research.

Keywords — E-Learning, HCI, Kansei Engineering, KEPack

I. PENDAHULUAN

E-Learning atau disebut dengan Electronic Learning adalah sebuah proses pembelajaran yang berbasis elektronik dengan salah satu media pembelajarannya adalah jaringan komputer. Hal ini memungkinkan proses belajar mengajar dalam e-learning terintegrasi dalam jaringan web, sehingga dapat dikembangkan ke jaringan komputer yang lebih luas yaitu internet. Dalam perkembangannya, beberapa vendor web developer atau institusi berlomba mengembangkan E-Learning. Namun dari kesekian banyak tersebut perlu diketahui mana yang sesuai dengan peserta didik atau bahkan membuat usulan baru dari E-Learning yang sudah ada. Human Computer Interaction (HCI) digunakan untuk merancang pemodelan E-Learning dengan kunci utama dri HCI adalah usability [1].

Salah satu bahasan terpenting dalam *usability* adalah antar muka *(interface)* [1]. Namun pada perkembangan selanjutnya, kebutuhan desain *interface* tidak hanya sebatas

faktor *usability*, maka perlu mengembangkan situs melampaui *usefulness* dan *functional usability* [2]. yang membuat tampilan antar muka bersifat persuasif bagi pengguna. Dalam hal ini faktor psikologis / emosional pengguna menjadi parameter dalam perancangan desain *interface*, artinya *Kansei Engineering* (KE) dilibatkan dalam pendekatan analisis pada penelitian ini.

e-ISSN: 2443-2229

Beberapa masalah yang diidentifikasi dalam penelitian ini adalah bagaimana analisis faktor-faktor yang diperlukan dalam merancang desain interface e-learning dengan pendekatan Kansei Engineering, bagaimana penerapan Kansei Engineering dalam membuat rekomendasi desain interface e-learning berbasis web dan bagaimana elemen desain e-learning yang dihasilkan melalui pendekatan Kansei Engineering.

Tujuan penelitian ini adalah menganalisis faktor-faktor yang diperlukan dalam merancang desain interface elearning dengan pendekatan Kansei Engineering, menerapkan Kansei Engineering dalam membuat rekomendasi desain interface e-learning berbasis web, membuat rekomendasi elemen desain e-learning yang dihasilkan melalui pendekatan Kansei Engineering.

Adapun batasan masalah dalam penelitian ini adalah penelitian ini menghasilkan suatu rancangan desain interface E-Learning berbasis web, Kansei Engineering digunakan untuk menghasilkan rancangan desain interface E-Learning tersebut, Kansei Engineering Type I / KEPack digunakan dalam proses analisis Kansei Engineering, Kansei Word (KW) yang digunakan dalam kuisioner sejumlah 20 KW, Analisis perhitungan data menggunakan analisis statistik multivariat yang meliputi Correlation Coefficient Analysis (CCA), PC Analysis (PCA), Factor Analysis (FA), Partial Least Square Analysis (PLS), Cluster Analysis (CA), Penelitian menggunakan 10 spesimen E-Learning berbasis web, sejumlah 30 partisipan dilibatkan

dalam penelitian ini yang meliputi siswa kelas XII dan guru di SMK Negeri 1 Kota Sukabumi.

Adapun manfaat yang didapatkan dari penelitian ini adalah:

- 1) Mengetahui faktor-faktor psikologis yang dikaitkan dengan desain *interface e-learning*.
- 2) Mengetahui bagaimana rekomendasi usulan tampilan *e-learning* melalui pendekatan *Kansei Engineering*.

A. Pengertian E-Learning

Istilah E-Learning banyak para ahli yang mendefinisikan E-Learning sesuai sudut pandangnya. Karena E-Learning kepanjangan dari elektronik learning ada yang menafsirkan E-Learning sebagai bentuk pembelajaran memanfaatkan teknologi elektronik (radio, televisi, film, komputer, internet). E-Learning dapat didefinisikan sebagai sebuah bentuk teknologi informasi yang diterapkan di bidang pendidikan dalam bentuk dunia maya. Istilah elearning lebih tepat ditujukan sebagai usaha untuk membuat sebuah transformasi proses belajar mengajar yang ada di sekolah atau kampus ke dalam bentuk digital yang dijembatani oleh teknologi internet [3].

B. Human Computer Interaction (HCI)

Dilihat dari perspektif ilmu komputer, fokus HCI adalah pada interaksi, khususnya interaksi antara satu atau lebih pengguna (sebagai pengguna komputer) dengan satu atau lebih mesin komputasi (komputer) [4]. Seperti yang sudah diuraikan sebelumnya bahwa kunci utama dalam HCI adalah daya guna (usability). Usability adalah tingkat produk dapat digunakan yang ditetapkan oleh pengguna, untuk mencapai tujuan secara efektif, efisien dan memuaskan dalam menggunakannya. Interface pengguna merupakan bahasan yang terpenting dalam HCI, oleh karenanya bentuk dan pembangunan antar muka pengguna perlu dilihat sebagai salah satu proses utama dalam keseluruhan pembangunan suatu system.

C. Kansei Engineering

Menurut kamus Bahasa Jepang, Kansei (忌性+ berarti kepekaan [5]. Kansei melibatkan kepekaan, sensibility, perasaan dan emosi yang diharmoniskan melalui lima penginderaan; penglihatan (vision), pendengaran (hearing), penciuman (smell), perasaan (taste), perabaan (skin sensation). Istilah Kansei kemudian diterjemahkan dalam sebuah metode keteknikan bernama Kansei Engineering. Metode ini pertama kali diperkenalkan oleh Mitsuo Nagamachi (Dean of Hiroshima International University) sebagai sebuah metode keteknikan yang baru dalam desain dan pengembangan produk industri yang berorientasi perasaan manusia [6].

Tahapan Kansei Engineering diawali oleh Kansei Investigation, diikuti oleh Kansei Analysis dan diterjemahkan ke dalam *Product Design*, seperti pada Gambar 1.

Gambar 1. Diagram Metode Kansei Engineering [7]

Terdapat enam kategori *Kansei Engineering* yang sering digunakan [7]:

1) KE Type I: Category Classification

Merupakan penurunan teknik dari konsep target sebuah produk baru yang terkait dalam subjektif *Kansei* dengan objektif dari parameter desain. Contoh dari implementasi KE tipe 1 ini adalah dalam pengembangan *sport car* tersukses dalam sejarah dari Mazda yang bernama Miata.

2) KE Type II: KE System adalah Computer Aided KE System (KES).

KES terdiri dari *database* dan mesin inferensi untuk mendukung sistem komputerisasi yang menangani proses menafsirkan perasaan konsumen dan emosi untuk elemen desain persepsi. Proses KES berdasar pada aturan "*if – then*" dimana *Kansei* diinput kedalam sistem, mengacu pada *database Kansei* dan mengeksekusi perangkat inferensi.

3) KE Type III: KE Modeling.

KE tipe ini memanfaatkan pemodelan matematika sebagai pelogikaan dalam sistem komputerisasi. Hal ini terutama digunakan untuk menangani logika *fuzzy* untuk membentuk kecerdasan mesin. Sistem diagnosa suara kata adalah sebuah contoh implementasi dari KE tipe ini.

4) KE Type IV: Hybrid KE.

Sebuah sistem KE yang dimulai dengan evaluasi *Kansei* dan analisis data kemudian diterjemahkan ke dalam elemen desain dinamakan *Forward KE*. Dalam *Hybrid* KE memungkinan melakukan *Backward KE* yang merupakan alur mundur dari *Forward KE*. Setelah desainer mensketsa *prototype* yang direkomendasi melalui *forward KE*, *prototype* tersebut dievaluasi melalui *Backward KE*.

5) KE Type V: Virtual KE

merupakan gabungan *Kansei Engineering* dengan simulasi virtual, mengadopsi dari *Virtual Reality Sistem* yang dikembangkan oleh NASA untuk membuat simulasi ruang angkasa sehingga menjadi nampak nyata.

6) KE Type VI: Collaborative KE.

Dalam jenis *Kansei Engineering*, desainer dan atau konsumen di tempat yang berbeda menggunakan *database mutual kansei* dan berkolaborasi melalui jaringan untuk mengembangkan desain produk baru.

D. Kansei Engineering Type I

Kansei Engineering Type 1 merupakan teknik Kansei yang paling popular, dinamakan dengan KEPack [7]. Tahapan dari KEPack terdiri dari 10 alur seperti ditunjukan dalam gambar 2.

Gambar 2 Tahapan Kansei Engineering Type I

1) Menentukan Strategi

Merupakan tahapan awal dalam *KEPack*, penguasaan teoritis dan konsep *Kansei Engingeering* dilakukan pada tahapan ini. "Menentukan Strategi" juga berarti menentukan berapa jumlah *Kansei Word* (KW) maupun spesimen yang dibutuhkan, berapa jumlah partisipan yang dilakukan dan metode *Kansei* yang dilakukan.

2) Menentukan Kansei Word

Kansei Word (KW) yang berupa kata kunci berhubungan dengan emosional atau afektif manusia. KW merepresentasikan aspek psikologis manusia terhadap penilaian sesuatu hal [8]. Menentukan KW sangat mempengaruhi kesuksesan dari penelitian Kansei. Akan ada perbedaan lingkup KW, misalnya dalam meneliti produk olahan makanan akan berbeda dengan melakukan penelitian terhadap bahan pakaian. Karena aspek psikologis yang direpresentasikan ke dalam KW tentu berbeda pula.

Salah satu langkah yang digunakan dalam menentukan KW dapat kita temukan misalnya, di majalah atau buku yang berhubungan dengan produk diteliti seperti majalah fesyen digunakan dalam mencari KW produk bahan pakaian, ataupun dengan mendengar percakapan penjualan antara pembeli dan penjual. Kita pun dapat mengkompilasikan KW berdasar pendapat ahli maupun studi teoritis [9].

3) Menyusun Struktur Skala Semantic Differential (SD) untuk Kansei Word

Setelah dilakukan investigasi *Kansei* melalui pemilihan KW yang berkaitan dengan penelitian yang diteliti, langkah berikutnya yakni menyusun KW tersebut menjadi struktur skala *Semantic Differential* (SD). Skala SD digunakan untuk mempermudah partisipan dalam pengisian kuisioner.

4) Mengumpulkan Sampel Produk/Spesimen

Mengumpulkan sampel produk/spesimen atau yang selanjutnya disebut dengan *Preparation of Specimen*. Ada 4 tahapan dalam *Preparation of Specimen* [9] yaitu:

- a. Identifikasi Spesimen Awal
- b. Investigasi Elemen Desain
- Klasifikasi Elemen Desain (dilakukan pada tahapan kelima)

- d. Finalisasi Spesimen valid (dilakukan pada tahapan kelima)
- 5) Mengklasifikasikan item/kategori

Dua langkah dilakukan dalam tahapan ini, mengacu pada *Preparation of Specimen*, yakni klasifikasi elemen desain dan finalisasi spesimen valid.

6) Evaluasi Penelitian

Langkah berikutnya yakni evaluasi penelitian, pada tahapan ini partisipan terlibat mengisi Skala SD dengan *Kansei Word* yang sudah disusun sebelumnya.

Sebanyak 20 atau 30 partisipan cukup untuk terlibat dalam penelitian *Kansei* [10]. Skala SD diberikan kepada 20 atau 30 partisipan tersebut. Satu lembar Skala SD *Kansei Word* digunakan untuk satu sampel produk, misalnya dalam hal penelitian parfum, ada 10 jenis sampel parfum yang berbeda, maka kita memerlukan 10 lembar SD *Scale Kansei Word* untuk seorang partisipan.

7) Analisis Menggunakan Metode Statistik Multivariat

Dalam Kansei Engineering, analisis dapat dilakukan dengan statistik multivariat, dimana dapat mempertimbangkan sekian banyak faktor untuk menjelaskan hubungan yang terjadi dalam sebuah fenomena yang kompleks [11]. Dengan menggabungkan beberapa analisis perhitungan, umumnya Kansei Engineering menggunakan metode perhitungan statistika sebagai berikut [7]:

- a. Analysis of Variance. Metode statistik untuk pengujian variasi dan cara. Melalui metode ini, kita dapat melihat bahwa data terdiri dari klaster berkualitas yang berbeda.
- b. Correlation Coefficient Analysis. Rasio koefisien korelasi yang melihat bahwa kesamaan diakui diantara grup data yang berbeda dari sudut pandang realibilitas statistic.
- c. Principal Component Analysis (PCA). Merupakan analisis yang sangat penting, menggunakan pendekatan kelayakan (feasible) yang memungkinkan untuk mengurangi dimensi. Misalnya, dengan melibatkan 25 Kansei Word, lingkup Kansei akan meliputi 25 dimensi. PCA dapat menghilangkan dimensi tersebut ke dalam 2 atau 5 atau lebih dari komponen prinsip dan menunjukkan positioning sampel.
- d. Factor Analysis. Hampir sama dengan analisis PCA, mereduksi jumlah dimensi Kansei ke dalam jumlah axis yang lebih sedikit dan menunjukan faktor-faktor psikologis utama.
- e. *Quantification Theory Type I* (QTI). Ini adalah metode khusus yang menggunakan analisis regresi ganda yang dapat menganalisis data kategori seperti *Kansei*.

8) Interpretasi Analisis Data

Dalam menganalisis persyaratan desain, *Partial Least Square* (PLS) dilakukan untuk mengidentifikasi hubungan dari emosi dan elemen desain.Lalu, *Cluster Analysis* (CA) dilakukan untuk menginvestigasi klaster dari faktor

psikologis (emosi/KW) *website* [9], yang selanjutnya dijadikan acuan dalam mengembangkan desain web.

9) Interpretasi Data pada Desainer

Serangkaian analisis sudah dilakukan pada tahapan sebelumnya, langkah berikutnya adalah menerjemahkan data tersebut ke dalam matriks yang mudah dipahami oleh seorang desainer web [9].

10) Menggabungkan sketsa desainer dengan proposal *Kansei Engineering*.

Ini merupakan tahap implementasi dari penelitian *Kansei Engineering*, namun dalam penelitian ini hanya dilakukan sampai pada tahap 9. Tahapan ini sejumlah ahli dan *web* desainer dilibatkan, ide dalam penelitian *Kansei Engineering* dituangkan ke dalam perancangan *web* dan menghasilkan desain final yang dinamakan "*Super Design*" [7].

E. Analisis Statistik Multivariat

Analisis statistik multivariat digunakan untuk beberapa variabel yang memiliki hubungan antar variabel saling berkorelasi. Terdapat 4 analisis statistik yang digunakan dalam analisis ini yaitu:

1) Coefficient Correlation Analysis

Coefficient Correlation Analysis atau yang sering disebut dengan analisis korelasi Pearson ditemukan pertama kali oleh Karl Pearson.Korelasi Pearson berguna untuk mengetahui hubungan beberapa variabel. Ada tiga asumsi dasar yang digunakan apabila dilakukan analisis korelasi Pearson [12]:

- a. Distribusi nilai variabel berdistribusi normal atau mendekati normal.
- b. Dua variabel yang akan dicari korelasinya adalah variabel kontinyu yang bersifat rasional atau minimal bersifat interval.
- c. Hubungan kedua variabel yang akan dikorelasikan adalah linier.

2) Principal Component Analysis (PCA)

PCA secara aljabar merupakan kombinasi linear khusus untuk p variable random $X_1,...,X_D$. Secara geometri, kombinasi linear menyatakan pemilihan sistem koordinat baru yang diperoleh dari merotasi sistem mula-mula $X_1,...X_D$ sebagai sumbu-sumbu koordinat [13]. Sumbu koordinat yang baru sangat tergantung dari matriks kovariansi (atau matriks korelasi).

Dalam penelitian ini PCA dilakukan untuk mereduksi 20 axis dari emosi (KW), ke dalam dua atau tiga axis dengan langkah awal menentukan nilai *eigenvalue*, seperti dalam kutipan [9]:

"PCA is to enable the research to understand the structure of emotion clearly and the description of subject respond is much constructive. PCA is also used to help identify space in overlapping positive values in each component, which can be used to strategise new target concept of website design from the perspective of emotion"

PCA membantu untuk memahami struktur emosi (*Kansei Word*) secara jelas dan deskripsi dari respon partisipan lebih konstruktif. Lebih jauh lagi, dikatakan bahwa ada tiga jenis PCA yang digunakan untuk mengukur *Principal Componen* (PC), yakni:

- a. PC Loading, yang digunakan untuk menganalisa ruang semantik dari emosi untuk menunjukkan seberapa banyak evaluasi dari emosi mempengaruhi variabel.
- b. PC *Score*, yang digunakan untuk menentukan hubungan antara emosi dengan spesimen *website*.
- c. PC *Vector*, yang digunakan untuk memvisualisasi arah dan kekuatan emosi atas struktur emosi, dan bagaimana menentukan konsep baru *website*.

3) Factor Analysis (FA)

Tujuan dari analisis faktor adalah menggambarkan hubungan-hubungan kovarian antara beberapa variabel yang mendasari tetapi tidak teramati, kualitas random yang disebut factor. Vektor random teramati X dengan p komponen, memiliki rata-rata μ dan matrik kovarian.

4) Analisis Partial Least Square (PLS)

Dijelaskan bahwa PLS merupakan metode analisis yang powerful karena dapat diterapkan pada semua skala data, tidak membutuhkan banyak asumsi dan ukuran sampel tidak harus besar.PLS selain dapat digunakan sebagai konfirmasi teori juga dapat digunakan untuk membangun hubungan yang belum ada landasan teorinya atau untuk pengujian proposisi. PLS juga dapat digunakan untuk pemodelan struktural dengan indikator bersifat reflektif maupun formatif [14].

II. METODE PENELITIAN

Metode penelitian ditunjukkan pada gambar 3 di bawah ini :

Gambar 3. Metode Penelitian

A. Inisiasi Penelitian

Merupakan tahapan awal dalam proses ini, dimana bahan dan objek penelitian ditentukan serta penentuan teknik *Kansei* yang dilakukan. Dalam penelitian ini hal yang diteliti adalah *e-learning* berbasis web dimana sebagai objek penelitiannya adalah SMK Negeri 1 Sukabumi. Dalam penelitian ini akan menggunakan 20 *Kansei Word* dan 10 spesimen, serta langkah-langkah yang digunakan mengacu pada *KEPack*.

B. Mengumpulkan dan Menentukan Kansei Word

Kansei Word (KW) yang selanjutnya digunakan untuk kuisioner bagi partisipan berupa kata sifat (adjective) atau kata benda (noun). Penentuan KW menjadi dasar bagi tahapan berikutnya. KW diperoleh dengan melalui beberapa referensi seperti kamus, majalah, literatur terkait, pendapat ahli maupun komentar dari khalayak umum atau komunitas kemudian dikaitkan dengan objek yang diteliti. Dalam penelitian ini KW didapatkan dari buku / majalah / jurnal yang berkaitan dengan web e-learning, pemikiran subjektif, pendapat ahli desain web dan para pengajar.

C. Menerjemahkan Kansei Word ke dalam Struktur Skala SD

D. Mengumpulkan dan Menentukan Spesimen E-Learning Sebanyak 10 spesimen valid yang dihasilkan dari hasil penyeleksian digunakan dalam penelitian ini.

E. Mengklasifikasikan item E-Learning

Langkah selanjutnya yakni mengklasifikasikan 10 spesimen tersebut berdasarkan kategori elemen desain, seperti yang sudah diuraikan pada Bab 2. Ada 6 kategori utama dalam elemen desain, sesuai dengan *layout* laman web yakni *Header, Top Menu, Left Menu, Main Menu, Right Menu* dan *Footer*.

F. Proses Pengambilan Data Kuisioner dari Partisipan

Sebanyak 20 – 30 orang cukup untuk dijadikan subyek dalam penelitian *Kansei* [7], sehingga penelitian ini melibatkan 30 siswa SMK Negeri 1 Sukabumi.

G. Analisis Statistik Multivariat

Data rata-rata yang sudah dihasilkan pada tahapan sebelumnya kemudian dikonversi ke dalam format .txt agar dapat diolah dengan metode statistik multivariat.

H. Menerjemahkan Data Statistik ke dalam Elemen Desain

Tahap ini masih berkaitan dengan tahapan sebelumnya, perhitungan analisis statistik *Partial Least Square Analysis* (*PLS*) dan *Cluster Analysis* (*CA*) digunakan untuk menginterpretasi data statistik ke dalam elemen desain.

I. Membuat Matriks Hasil Analisis Kansei Engineering

Sebagai tahap akhir setelah dilakukan analisis statistik adalah membuat matriks berdasarkan hasil analisis tersebut, yang berisi kriteria usulan desain (selanjutnya disebut Matrik Pedoman Desain).

III. HASIL DAN PEMBAHASAN

Kansei Engineering Type I (KEPack) digunakan dalam analisis penelitian ini dengan melibatkan 10 spesimen, 20 Kansei Word yang distrukturkan ke dalam skala SD dan 30 partisipan. 20 Kansei Word dapat dilihat pada Tabel I.

TABEL I
KANSEI WORD DALAM PENELITIAN

No	Kansei Word	No	Kansei Word	No	Kansei Word	No	Kansei Word
1	DINAMIS	6	TAJAM	11	NYAMAN	16	CHILDISH
2	FUTURISTIK	7	TERANG	12	KAKU	17	COLORFUL
3	INFORMATIF	8	FEMINIM	13	RUMIT	18	FORMAL
4	LEMBUT	9	ALAMI	14	UNIK	19	MANIS
5	SEDERHANA	10	SERASI	15	BERGAIRAH	20	MEWAH

Kansei Word yang sudah diseleksi yang merepresentasikan karakteristik dari website, kemudian distrukturkan kedalam skala SD dengan menggunakan 5 skor penilaian, nilai tertinggi 5 menunjukkan "positif" dan nilai terendah 1 menunjukkan "negatif", seperti Tabel II di bawah ini.

TABEL III *Kansei Word* ke dalam Skala SD

No	Kansei Word		Skor	Peni	laian	Kansei Word	
140	Kunsei wora	5	4	3	2	1	Kunsei word
1	Dinamis (<i>Tidak Membosankan</i>)						Tidak Dinamis
2	Futuristik (Memberikan Kesan Modern dan Canggih)						Tidak Futuristik
3	Tajam (Memberikan Kesan Tegas)						<i>Tidak</i> Tajam
	•••			:			***

A. Spesimen E-Learning

Dari beberapa *E-Learning* yang direkomendasikan, maka ditentukan sebanyak 10 spesimen tampilan *E-Learning* yang memiliki karakteristik berbeda-beda berdasarkan tema tampilan, pewarnaan dan struktur penempatan menu. Tabel III dan Tabel IV menunjukkan daftar *E-Learning* serta *screenshot* dari *E-Learning* tersebut yang dilibatkan dalam penelitian ini.

TABEL IIIII
DATA 10 SPESIMEN *E-LEARNING*

No	Nama Instansi	Alamat Web
1	Universitas Parahyangan	https://elearning.unpar.ac.id
2	Edmodo	https://www.edmodo.com
3	Training Course	https://www.coursetraining.com
4	Getting Smart	www.gettingsmart.com
5	Jaringan Informasi Bersama Antar Sekolah (JIBAS)	www.demo.jibas.net
6	Universitas Guna Darma	https://vclass.gunadarma.ac.id
7	Belajar Online Anak Sekolah	www.eboas.com
8	STIKOM Dinamika Bangsa – Jambi	http://msilearning.coolpage.biz
9	SMA Negeri 1 Cepu	www.sman1cepu.sch.id/elearning .html
10	Universitas Padjadjaran	https://elearning.unpad.ac.id

TABEL IVV Screenshot 10 Spesimen E-Learning

No	Screenshot E-Learning	No	Screenshot E-Learning
1	To the control of the	6	The state of the s
2	Section Section Control Contro	7	
3	Cratical Executing, Colory, February and Passesh	8	Section of the control of the contro
4	The second of th	9	The Market 1 to 20 The Ma
5		10	The property of the property o

Untuk memudahkan pengelompokan, 10 spesimen tersebut diubah kedalam elemen desain untuk diuraikan hingga bagian terkecil, dimulai dengan kategori utama yakni body, main menu, header, top menu, left menu, right menu dan footer. Sehingga bila disimpulkan didapatkan:

- 1) 7 kategori utama elemen desain : Body, Header, Top Menu, Main Menu, Right Menu, Left Menu, Footer.
- 2) 26 sub elemen desain yang merupakan penjabaran dari 7 kategori utama tersebut.
- 3) 76 kategori elemen desain yang merupakan rincian dari 26 sub elemen desain.

Klasifikasi elemen desain seperti ditunjukan oleh Tabel V di bawah ini.

TABEL V Klasifikasi Elemen Desain

	BODY								
ID		Back	groun	d Color		Backg	round Style		
	Blue	White	Gray	Green	Maroon	Solid	Picture		
1	\checkmark						√		
2		√				√			
3		√				√			
4			√			√			
5				√		√			

B. Pengambilan Data Kuisioner

Skala SD yang dibuat sebelumnya kemudian disebar kepada 30 partisipan. Hasil rekapitulasi kuisioner terdapat pada Tabel VI.

TABEL VI Rata-rata Hasil Rekapitulasi Partisipan

NO		WEBSITE ID							
NO	Kansei Word	1	2	3	4	5			
1	DINAMIS	2.40	3.70	1.75	3.95	3.60			
2	FUTURISTIK	2.50	3.95	2.00	3.90	3.90			
3	INFORMATIF	3.05	3.65	2.90	3.80	4.00			
4	LEMBUT	2.25	3.05	2.50	3.40	3.55			
5	SEDERHANA	3.60	3.25	3.35	3.25	3.65			

Keseluruhan data dirata-ratakan secara manual dengan Microsoft Excel. Selanjutnya data rata-rata tersebut digunakan untuk analisis statistik multivariat dalam langkah berikutnya.

C. Hasil Analisis Multivariat

Untuk memberikan gambaran konsep *emotion* ke dalam struktur specimen *E-Learning*, dimana terdapat beberapa relasi antar variabel maka analisis statistik multivariat dilakukan dengan melibatkan *Coefficient Correlation Analysis* (CCA), *Principal Component Analysis* (PCA) dan

Factor Analysis (FA). Berikut ini hasil dari ketiga analisis tersebut:

1) Coefficient Correlation Analysis (CCA)

Dalam mengetahui korelasi antar *Kansei Word* atau yang selanjutnya disebut dengan *emotion*, dilakukan CCA dengan metode korelasi *Pearson*, hasil analisis ditunjukkan oleh tabel VII.

TABEL VII HASIL ANALISIS CCA

Variables	Dinamis	Futuristik	Informatif	Lembut	
Dinamis	1				
Futuristik	0.957	1			
Informatif	0.865	0.933	1		
Lembut	0.850	0.777	0.766	1	

Beberapa *emotion* menunjukkan nilai tingkatan keberpengaruhan, seperti "Dinamis" dengan "Futuristik" yang memiliki keterikatan kuat sebesar 0.957 atau memiliki pengaruh kuat, sama halnya antara "Futuristik" dengan "Informatif" yang memiliki pengaruh sebesar 0.933. Namun beberapa *emotion* menunjukkan tidak adanya keberpengaruhan seperti halnya antara "Feminim" dengan "Rumit". Dari analisis CCA dapat diketahui *emotion* manakah yang tidak memiliki pengaruh untuk direduksi, namun dalam penelitian ini, mengacu pada seluruh *emotion* digunakan dalam analisis berikutnya untuk mengeksplorasi subjektifitas penilaian pengguna *E-Learning* terhadap *emotion* [6].

2) Principal Component Analysis (PCA)

PCA dilakukan untuk mengetahui hubungan antara spesimen dengan *emotion* dengan mereduksi faktor-faktor *emotion* yang tidak terlalu signifikan. Analisis PCA menggunakan *software* XLStat 2010 dengan melibatkan data rekapitulasi rata-rata partisipan sebagai bahan analisis data. Berdasarkan perhitungan analisis PCA dihasilkan beberapa faktor atau disebut dengan *Principal Component* (PC) seperti ditunjukkan oleh tabel VIII.

TABEL VIII NILAI *PRINCIPAL COMPONENT*

	PC1	PC2	PC3	PC4	PC5	PC6
Eigenvalue	12.727	3.681	1.195	0.947	0.436	0.322
Variability (%)	63.637	18.403	5.976	4.734	2.182	1.609
Cumulative %	63.637	82.040	88.016	92.750	94.932	96.541

Terdapat nilai *eigenvalue* atau varians dan *variability* yang ditunjukkan pada tabel 4.8. Nilai *eigenvalue* PC1 dan PC2 memiliki sebesar 12.727 dan 3.681 dengan tingkat *variability* pada PC1 sebesar 63.637% dan PC2 sebesar

18.403%. Pada baris *cumulative* menunjukkan akumulasi hingga PC2 sebesar 82.040% dan artinya nilai PC1 dan PC2 sudah mewakili dari analisis data atau berpengaruh terhadap *emotion*. Bila diamati pada PC3 hingga PC9, memiliki nilai *eigenvalue* rendah dan tidak terlalu signifikan pada nilai *cumulative*, karena sudah diwakili oleh nilai PC1 dan PC2 dengan tingkat *cumulative* di atas 80% maka didapat dua faktor yakni PC1 dan PC2, yang selanjutnya disebut dengan F1 dan F2.

Tiga tahapan analisis PCA dikalkulasikan untuk menganalisis F1 dan F2 dalam memberikan gambaran hubungan *emotion* maupun spesimen, yakni:

a. *PC Loading*, dimana dalam penelitian ini digunakan untuk mengetahui sebaran *emotion* sehingga dapat disimpulkan konsep *emotion* yang berpengaruh dalam spesimen.

Gambar 4. Hasil PC Loading F1 dan F2

Pada gambar 4 disimpulkan terdapat dua axis, yakni axis x dan axis y. Pada axis x terdapat dua emotion yang berlawanan, yang bernilai positif dan negatif. Di sisi kiri terdapat dua emotion yakni "Rumit" dan "Kaku", sebaliknya pada sisi kanan terdapat beberapa emotion yakni "Dinamis", "Lembut", "Terang", "Colorful" dan "Mewah", secara subjektif axis ini kemudian disebut "Attractiveness". Bila diisimpulkan pada sisi kiri menunjukkan hal yang "tidak atraktif" sedangkan sisi kanan menujukkan sesuatu "atraktif" seperti pada gambar 5.

Gambar 5. Axis X, Attractiveness

Selanjutnya pada axis y dimana terdapat *emotion* berlawanan, bagian atas yang merupakan zona positif terdiri dari *emotion* "Feminim" dan "*Childish*" sedangkan bagian bawah nampak satu *emotion* yakni "Formal". Secara subjektif, axis y yang ditunjukkan oleh gambar 6 dinamakan axis "*Cuteness*", dimana pada zona positif / bagian atas menandakan "*Cute*" sedangkan zona negative / bagian bawah menandakan "Tidak *Cute*".

b. *PC Score*, untuk mengetahui hubungan antara *emotion* dan specimen *E-Learning*.

Gambar 7. PC Score F1 dan F2

Pada gambar 7, spesimen 1 dan 3 berada di posisi kiri bawah yang berarti spesimen tersebut berada pada "Tidak Atraktif' untuk axis "Attractiveness", dan berada pada axis "Tidak Cute" untuk axis y atau "Cuteness". Bila diamati, warna yang cenderung senada dan dominasi warna putih dengan dominan teks menyebabkan spesimen tersebut berada pada kuadran negatif. Berbeda halnya dengan spesimen nomor 4 yang berada pada kanan atas, yang berarti "Atraktif" dan "Cute", secara layout memadukan beberapa warna dan terlihat sedikit ruang kosong. Spesimen 6 memiliki nilai "Cute" yang kuat (yang ditandai dengan posisi teratas pada axis y / "Cuteness") dengan dominasi warna merah muda dan memiliki unsur "Atraktif". Sama halnya dengan spesimen 8, dimana memiliki unsur "Cute" yang kuat, namun berada pada posisi kiri, yang berarti "Tidak Atraktif". Spesimen 7 memiliki unsur "Atraktif" yang kuat (yang ditandai dengan posisi di sebelah kanan) namun memiliki nilai "Tidak Cute".

c. *PC Vector*, untuk mengetahui seberapa besar pengaruh *emotion* dengan spesimen *E-Learning*, juga menentukan area *Kansei* dalam usulan perancangan desain *E-Learning* berbasis *web*. Gambar 8 di bawah ini menunjukan dimana posisi area *kansei* mengacu pada sebaran positif *e-learning* dan *emotion*.

Gambar 8. Area Kansei

PC Vector menunjukkan sebaran spesimen dan emotion, seperti pada spesimen 6 dimana emotion yang mendekati adalah manis dan childish sedangkan pada spesimen 10 cenderung sederhana dan formal. Area Kansei ditunjukkan oleh lingkaran lonjong pada kuadran positif. Hal ini artinya bahwa emotion yang terdapat pada lingkaran tersebut menjadi acuan dalam perancangan konsep E-Learning berbasis web.

Kesimpulan dari analisis PCA terhadap F1 dan F2 menghasilkan dua konsep axis x dan y yang dinamakan "Attractiveness" dan "Cuteness".

3) Factor Analysis (FA)

Untuk memperinci dan memperkuat hasil dari PCA, diperlukan analisis lanjutan yakni *Factor Analysis* (FA) dengan menggunakan *software* XLStat. Data rekapitulasi rata-rata digunakan sebagai bahan analisis FA dengan menggunakan *varimax rotation* untuk memperoleh nilai yang lebih akurat. Tabel IX menunjukan hasil analisis faktor dengan *varimax rotation*.

TABEL IX HASIL ANALISIS FAKTOR DENGAN VARIMAX ROTATION

	Faktor 1	Faktor 2	Faktor 3
Contribution (%)	59.881	18.626	7.081
Cumulative %	59.881	78.507	85.588

Terdapat tiga faktor dengan faktor 1 tingkat *Contribution* sebesar 59.88%, faktor 2 sebesar 18.63% dan faktor 3 sebesar 7.08%. Hal ini berarti besaran faktor 1 memiliki tingkat keberpengaruhan yang tinggi yakni 59.88% dan faktor 2 dengan tingkat keberpengaruhan dibawah faktor 1. Dilihat dari faktor 3 dengan tingkat keberpengaruhan yang rendah yakni 7.08%, faktor 1 dan faktor 2 menjadi faktor dominan dan menjadi parameter keberpengaruhan dengan *emotion*, sedangkan faktor 3 dapat

dihilangkan karena memiliki tingkat keberpengaruhan rendah. Pada persentase kumulatif faktor 1 dan faktor 2 sudah mewakili data sebanyak 78.50% dan ini sudah representatif. Bila ketiga faktor di atas dianalisis untuk menentukan nilai *emotion*, maka akan didapat variasi nilai yang berbeda pada tiap *emotion*. Seperti pada tabel X yang menunjukkan besaran korelasi antara ketiga faktor dengan *emotion*.

TABEL X HASIL ANALISIS FAKTOR DENGAN VARIMAX ROTATION

Emotion	Faktor 1	Faktor 2	Faktor 3
Sederhana	-0.222	-0.229	-0.754
Rumit	-0.876	-0.056	-0.237
Serasi	0.936	0.033	-0.187
Childish	0.120	0.919	-0.088
Alami	0.582	-0.076	-0.080
Tajam	0.795	-0.409	0.013
Bergairah	0.974	0.022	0.014
Unik	0.953	0.196	0.054

Korelasi di atas disusun berurutan dengan nilai terkecil hingga terbesar untuk mengetahui emotion yang memiliki nilai terbesar. Tabel XI merupakan uraian dari tabel X. Nilai minimum yang digunakan adalah > 0.7, namun untuk mempersempit jumlah emotion dan berfokus pada emotion yang memiliki nilai berpengaruh besar, maka pada faktor 1 berpatokan terhadap nilai > 0.9, dimana terdapat emotion "Bergairah", "Nyaman", "Futuristik", "Unik", "Serasi" dan "Informatif", secara subjektif emotion tersebut terangkum kedalam konsep "Keatraktifan" atau "Attractiveness". Tidak ada patokan khusus dalam penamaan konsep tersebut, katakata yang dapat merepresentasikan emotionlah yang diberikan dalam penamaan konsep. Sedangkan pada faktor kedua terdapat 3 emotion yang berada mendekati nilai 1 atau > 0.7 yakni "Manis", "Feminim", "Childish" yang secara subjektif dinamakan konsep "Keimutan" atau "Cuteness". Sedangkan pada factor 3 dapat dilihat bahwa tidak ada emotion yang memiliki pengaruh kuat dalam artian > 0.7, maka faktor 3 dapat direduksi, seperti yang diuraikan pada tabel XI.

TABEL XI Konsep Emotion Berdasarkan Faktor

Variabel	Faktor 1	Variabel	Faktor 2	Variabel	Faktor 3
Kaku	-0.945	Formal	-0.915	Sederhana	-0.835
Rumit	-0.886	Tajam	-0.424	Rumit	-0.242
Mewah	0.899	Dinamis	0.268	Kaku	0.192
Informatif	0.925	Terang	0.318	Terang	0.203
Serasi	0.938	Colorful	0.322	Dinamis	0.279
Unik	0.955	Lembut	0.385	Mewah	0.290
Futuristik	0.962	Manis	0.761	Lembut	0.363
Nyaman	0.963	Feminim	0.905	Feminim	0.402
Bergairah	0.973	Childish	0.942	Manis	0.469

Variabel	Faktor 1	Variabel	Faktor 2	Variabel	Faktor 3
(ATTRACTI	VENESS)	(CUTENESS)			

D. Menerjemahkan Data Statistik ke Dalam Elemen Desain
Analisis Partial Least Square (PLS) digunakan dalam
menerjemahkan data statistik menjadi elemen desain
berdasarkan emotion yang berkaitan. sehingga
menghasilkan rekomendasi elemen desain sesuai dengan

emotion yang terdapat dapat konsep "Attractiveness" dan "Cuteness". Analisis PLS menggunakan software XLStat. Data-data yang dilibatkan dalam analisis PLS adalah:

Variabel y berupa hasil rekapitulasi rata-rata 20 emotion dari 20 partisipan
 Variabel y barupa element desain yang ditariamehkan

2) Variabel *x* berupa elemen desain yang diterjemahkan ke dalam *dummy variable*.

3) 10 Spesimen *E-Learning* berbasis web

Sebelum tahapan berikutnya, kategori elemen desain (pada contoh tabel 5) diterjemahkan ke dalam *dummy variable* dengan mengubah tanda ceklis diberi nilai 1 dan kolom kosong diberi nilai 0 sehingga dihasilkan sebanyak 76 variabel, seperti terlihat pada tabel XII.

TABEL XII

DUMMY VARIABLE

ID SPESIMEN	BodyBGCol DarkBlue	BodyBGCol Blue	BodyBGCol White	BodyBGCol Gray	BodyBGCol Green	BodyBGCol Maroon	BGStyle Solid	
1	1	0	0	0	0	0	0	
2	0	0	1	0	0	0	1	
3	0	0	1	0	0	0	1	
4	0	0	0	1	0	0	0	
5	0	0	0	0	1	0	1	
6	0	0	0	1	0	0	1	
			,					
10	0	0	1	0	0	0	1	

Selanjutnya data *dummy variable* tersebut disebut dengan variabel *x* dan variabel *y* berupa hasil rata-rata *emotion* dari partisipan disortir dan diolah dengan menggunakan fasilitas PLS *Regression* dari *software* XLStat, sehingga menghasilkan data seperti pada tabel XIII.

TABEL XIII HASIL ANALISIS PLS

DINAMIS		FUTURISTIE		
Variable	Coef- ficient	Variable	Coef- ficient	
BodyBGColDarkBlue	-0.043	BodyBGColDarkBlue	-0.046	
BodyBGColBlue	0.039	BodyBGColBlue	0.045	
BodyBGColWhite	-0.044	BodyBGColWhite	-0.024	

DINAMIS		FUTURISTIE		
Variable	Coef- ficient	Variable	Coef- ficient	
BodyBGColGray	0.035	BodyBGColGray	0.012	
BodyBGColGreen	0.014	BodyBGColGreen	0.025	
BodyBGColMaroon	0.002	BodyBGColMaroon	-0.005	
BGStyleSolid	0.008	BGStyleSolid	0.025	
	•••		•••	•••

Variabel yang memiliki nilai tersebut pada tabel XIII kemudian dikategorikan berdasarkan jenisnya seperti pada tabel XIV dan dicari nilai *Range* dari setiap kategori. Nilai *Range* Kategori dilakukan untuk mengetahui seberapa besar nilai pengaruh variabel (elemen desain) terhadap konsep *emotion*. Langkah yang dilakukan dalam menentukan *range* kategori adalah sebagai berikut.

- (1) Tentukan nilai *coefficient* terbesar variabel dalam satu kategori.
- (2) Tentukan nilai *coefficient* terkecil variabel dalam satu kategori.
- (3) Cari selisih nilai *coefficient* terbesar dan terkecil dengan rumus *Coefficient(Max)-Coefficient(Min)*.
- (4) Lakukan cara yang sama untuk seluruh kategori di bawahnya.
- (5) Setelah seluruh nilai *range* kategori ditentukan, cari *range* patokan dengan menghitung rata-rata hasil *range* kategori.
- (6) Nilai *range* kategori tertinggi memiliki pengaruh kuat terhadap konsep *emotion*, sedangkan *range* kategori yang memiliki nilai dibawah *range* patokan tidak memiliki pengaruh terhadap konsep *emotion*.

Nilai *range* diurut berdasarkan nilai terbesar hingga terkecil untuk diketahui besaran pengaruh elemen desain terhadap konsep *emotion*, seperti ditunjukkan oleh tabel XIV.

TABEL XIV Peringkat *Range* Kategori

DINAMIS	Range FUTURISTIK		Range		
Category	0.054	Category	0.059		
Body Font Color	0.164 Right Menu Font Color		0.173		
Right Menu Font Color	0.147	Body Font Color	0.166		
Footer Font Color	0.134	Footer Font Color	0.130		
Left Menu Font Color	0.106	Left Menu Font Color	0.125		
Top Menu	0.102	Head Position	0.105		
Left Menu Font	0.097	Footer Font	0.098		
Footer Font	0.092	Top Menu	0.095		
Body BGColor	0.083	Body BGColor	0.091		
Main Menu BGColor	0.082	Top Menu BGColor	0.085		
Head Position	0.080	Top Menu Style	0.078		
Top Menu BGColor	0.075	Top Menu Name	0.076		

DINAMIS	Range	FUTURISTIK	Range	
Category	0.054	Category	0.059	
Top Menu Style	0.073	Left Menu Font	0.075	
Head Font	0.063	Top Menu Position	0.074	
Left Menu Picture	0.054	Body BGStyle	0.070	
Top Menu Name	0.053	Footer Position	0.067	
Top Menu Position	0.053	Main Menu BGColor	0.066	
Right Menu Font	0.053	Head Font	0.065	
Body BGStyle	Body BGStyle 0.051 Footer P		0.053	

Pada tabel XIV kategori yang memiliki nilai di atas atau sama dengan range rata-rata adalah variabel-variabel yang memiliki pengaruh dalam perancangan layout konsep emotion. Seperti halnya pada kolom "Dinamis", variabel yang memiliki pengaruh adalah Body Font Color hingga Left Menu Picture. Dengan nilai tertinggi Body Font Color yang berarti kategori tersebut memiliki pengaruh yang kuat dalam perancangan layout konsep emotion "Dinamis". Sedangkan Top Menu Name, Top Menu Position hingga variabel terakhir dibawahnya memiliki nilai lebih rendah dari range patokan, artinya variabel-variabel tersebut tidak memiliki pengaruh terhadap perancangan desain konsep emotion "Dinamis".

E. Matriks Usulan Analisis Kansei Engineering

Hasil akhir berupa matriks usulan tampilan *E-Learning*, data direkap secara manual berdasarkan hasil analisis PLS. Skor nilai variabel tertinggi dalam PLS dimasukan ke dalam tabel matriks usulan tampilan *E-Learning*. *Emotion* dimasukkan ke dalam tabel matrik usulan merupakan *emotion* berpengaruh hasil *Factor Analysis* dimana *emotion* tersebut dirangkum dalam dua konsep tampilan *E-Learning*, yakni "*Attractiveness*" dan "*Cuteness*".

Factor Analysis (FA) yang sudah dilakukan dalam analisis sebelumnya menghasilkan beberapa emotion yang terdapat dalam konsep tampilan E-Learning, "Attractiveness" dan "Cuteness" serta menjadi referensi dalam perancangan usulan matriks. Tabel XV menunjukan bagian dari matriks usulan Analisis Kansei Engineering.

TABEL XV Matriks Usulan Kategori *Body* dan *Main Menu*

I NO I	Design	Emotion		MAIN MENU			
	Concept		BG Color	BG Style	Font Color	BG Color	•••
		Bergairah	Green	Solid	White	Green	
1	Attrac-	Nyaman	Green	Solid	Gray	Light- Gray	
	Tiveness	Futuristik	Blue	Solid	Gray Blue	Light- Gray	
		Unik	Blue	Solid		Gray	
		Serasi	Green	N/S	White	Gray	

No	Design	Emotion	BODY			MAIN MENU	
No Concept		Emotion	BG Color	BG Style	Font Color	BG Color	
		Informatif	Blue	Solid	Gray	Light- Gray	
	CHIPPIN	Childish	Gray	N/S	Red	Green	
2 CUTEN ESS		Feminim	Gray	N/S	Black	Pink	
	Loo	Manis	Gray	N/S	Black	Pink	

Dalam tabel XV data diinterpretasikan, misalnya pada konsep "Attractiveness" dengan emotion "Bergairah" menunjukkan bahwa:

- a. Warna tampilan *background interface E-Learning* berwarna hijau.
- b. Style tampilan background adalah solid (Hijau Solid).
- c. Warna huruf yang digunakan adalah putih.
- d. Warna dasar untuk Main Menu adalah hijau.

IV. KESIMPULAN

Perancangan desain interface E-Learning dilakukan dengan pendekatan Kansei Engineering menghasilkan usulan rekomendasi serta melibatkan faktor psikologis dan Langkah-langkah komprehensif emotion. Kansei Engineering melalui tahapan analisis statistik multivariat vakni Coefficient Component Analysis, Principal Component Analysis, Factor Analysis, Partial Least Square Analysis dan Cluster Analysis dilibatkan dalam proses analisis data untuk menerjemahkan konsep emotion dan menghasilkan elemen desain berdasarkan emotion, dapat disimpulkan penelitian ini menghasilkan:

- 1. Dua konsep *emotion* yakni "Attractiveness" yang terdiri dari elemen *emotion* "Bergairah", "Nyaman", "Futuristik", "Unik", "Serasi" dan "Informatif serta "Cuteness" yang terdiri dari elemen *emotion* "Childish", "Feminim" dan "Manis".
- 2. Matrik Usulan Tampilan *E-Learning* berupa elemen desain berdasarkan konsep *emotion* dan elemen *emotion* (tabel XV).

Sebagai pelengkap akhir dalam bagian ini, ada sejumlah saran yang dapat diajukan, yaitu sebagai berikut:

- 1. Perlunya analisis lanjutan yakni Confirmatory Study, yang bersifat pembuktian terbalik dan dilakukan setelah pembuatan prototipe untuk memvalidasi serta mengembangkan hasil analisis Kansei Engineering.
- 2. Perlu melibatkan partisipan yang memiliki pengetahuan mendalam dalam produk yang diteliti dalam penerapan *Kansei Engineering*.
- 3. Analisis *Kansei Engineering* tidak hanya dapat diterapkan dalam sisi desain tampilan / *interface*, namun dapat diterapkan dalam perancangan sistem, perancangan menu atau fitur.

DAFTAR PUSTAKA

- [1] Prihati, "Penerapan Model Human Computer Interaction (HCI) dalam Analisis Sistem Informasi (Studi Kasus SAS DIKMENTI DKI Jakarta)", M.Kom, Thesis Universitas Diponegoro, Semarang, Indonesia. 2012.
- [2] A.M. Lokman, M.N.N Laila & M. Nagamachi, "Kansei Engineering: A Study on Perception of Online Clothing Website", 10th QMOD Conference. Our Dreams of Excellence, 18-20 June 2007, No. 026, Linkoping University Press, 2008.
- [3] Tim Pengembang Ilmu Pendidikan FIP UPI, Ilmu dan Aplikasi Pendidikan, Bagian 4 Pendidikan Lintas Bidang, Bandung: Imtima, 2007.
- [4] I. Santoso, *Interaksi Manusia & Komputer*, Yogyakarta: CV. Andi Offset, 2009.
- [5] T.T.Shiang, Kamus Lengkap Jepang Indonesia, Jakarta: GAKUSHUDO, 2013.
- [6] A.M.Lokman, "Design & Emotion: The Kansei Engineering Methodology", Malaysian Journal of Computing 1.1, 2010, p.1-11.
- [7] A.M.Lokman & M. Nagamachi, Kansei Engineering A Beginner Perspective, Malaysia: UPENA UiTM, 2010.

- [8] I.G.T.Isa, A. Hadiana & Asriyanik, "Web Based E-Learning System Analysis Using Kansei Engineering", *Prosiding SENTRA UMM*, 2-3 September 2016, Vol. 2.
- [9] A.M. Lokman, "Emotional user experience in web design: The Kansei Engineering Approach", Malaysia: Universiti Teknologi Mara, 2009.
- [10] M.Nagamachi & A.M.Lokman, "Innovation in Kansei/Affective Engineering", Boca Raton, FL: CRC Press, 2010.
- [11] S.Santoso, Statistik Multivariat, Jakarta: PT. Gramedia, 2010.
- [12] Wahana Komputer, Solusi Mudah dan Cepat Menguasai SPSS 17.0 untuk Pengolahan Data Statistik, Jakarta: PT. Elex Media Komputindo, 2009.
- [13] H.A. Parhusip, D.Widyananto & K.B.Desinova, "Properti dan Perdagangan sebagai Sektor Dominan pada Data Bursa Saham dengan Principal Component Analysis (PCA)", Prosiding Seminar Nasional Sains dan Pendidikan Sains, 2008, No.1.
- [14] I.G.N.Mindrajaya & I.M.Sumertajaya, "Pemodelan Persamaan Struktural dengan Partial Least Square", Semnas Matematika dan Pendidikan Matematika, 2008.

