AutoKAP

Korkiakoski, Paasonen, Sirviö

Sisällys:

- Yleistä
- GPS
- Paikannus ilman GPS signaalia
- Kuvantunnistus
- AutoKAP-sovellus

Yleistä

Raspberry Pi 3 Model B		Sparkfun V	Sparkfun Venus GPS	
-	64 GB suoritin, 1GB keskusmuistia	-	NMEA-0183 Protokolla	
-	32 GB muistikortti.	-	3.3V	
Raspbian Stretch - käyttöjärjestelmä		-	tarkkuus 2.5m CEP	
- '	lokakuussa 2018 julkaistu	-	1Hz päivitys nopeus (ma	
-	Raspbian GNU/Linux 9	-	UART (baud 9600, max.	
-	·	GY-50		
https://www.raspberrypi.org/downloa		ds/ra-	3-akselinen gyroskoopp	
spbian/		-	+/- 2000dps	
Kameramoduuli		-	I2C	
-	Raspberry Pi 8.0 Mpix v2	GY-61		
-	CSi-portti, GPIO-kaapeli	-	3-akselinen kiihtyvyysa	
-	30 fps	-	+/- 3g	

GPS

Sparkfun Venus GPS

- Poimii GPS datan
- Muodostaa NMEA-standartoidun lauseen (National Marine Electronics Association)
- Sisältää useita eri tapoja ilmaista sijainti tiedot, joista on mahdollista valita mitä komponentti lähettää
- Nucleo lukee data pinniltä lauseen, poimii siitä tarvittavat tiedot, suorittaa laskutoimitukset ja lähettää uudelleen muodostetun lauseen Raspberrylle

```
Receiver Type
         L1 frequency
         GPS C/A code
         SBAS capable
         65-channel architecture
         8 million time-frequency searches per second
Accuracy
         Position 2.5m CEP
         Velocity 0.1m/sec
         Timing 60ns
Open Sky TTFF
         29 second cold start
         3.5 second with AGPS
         1 second hot start
Reacquisition
         < 1s
         Sensitivity
         -165dBm tracking
         -148dBm cold start
Update Rate
         1 / 2 / 4 / 5 / 8 / 10 / 20 Hz (default 1Hz)
Dvnamics
         4G
Operational Limits
         Altitude < 18,000m
         Velocity < 515m/s
Datum
         Default WGS-84
Interface
         UART LVTTL level
Baud Rate
         4800 / 9600 / 38400 / 115200
Protocol
         NMEA-0183 V3.01, GGA, GLL, GSA, GSV, RMC, VTG, SkyTraq Binary
```

NMEA

RMC - NMEA has its own version of essential gps pvt (position, velocity, time) data. It is called RMC, The Recommended Minimum, which will look similar to:

\$GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A

Where:

RMC Recommended Minimum sentence C

123519 Fix taken at 12:35:19 UTC

A Status A=active or V=Void.

4807.038,N Latitude 48 deg 07.038'N

01131.000,E Longitude 11 deg 31.000' E

022.4 Speed over the ground in knots

084.4 Track angle in degrees True

230394 Date - 23rd of March 1994

003.1,W Magnetic Variation

*6A The checksum data, always begins with *

Koordinaattien muuntaminen DMS -> DD: .d = M.m / 60

Decimal Degrees = Degrees + .d

eli: DD latitude = 48 + 7.038/60

DD longitude = 11 + 31.000/60

Nopeus on solmuina, joten se on muutettava km/h:

km/h = knots * 1.852 eli: 22.4 * 1.852

Raspberrylle lähetettävä lause:

A,48.1173,11.5166,41.4,084.4\n

Paikannus kun GPS-signaali katoaa

- Koordinaatit, suunta ja nopeus lähetetään Nucleolle
- Kiihtyvyysanturilta ja gyroskoopilta dataa
- Lasketaan nopeus kiihtyvyydestä ja edelleen kuljettu matka nopeudesta
- Kulkusuunta saadaan kulmanopeuden perusteella
- Herkkä virheelle ja biasille, koska integroidessa virhe kertautuu
- Nyt voidaan käyttää Haversinen kaavaa

Haversinen kaava

- Kaavalla voidaan laskea lyhin etäisyys kahden pallon pinnalla olevan pisteen välillä, kun näiden leveys- ja pituusasteet tiedetään
- Tästä voidaan johtaa kaava uusien koordinaattien laskemiseen
- Ei ota huomioon korkeuseroja eikä sitä että maapallo on ellipsoidi
- ϕ 2 = asin(sin ϕ 1 · cos δ + cos ϕ 1 · sin δ · cos θ)
- $\lambda 2 = \lambda 1 + \text{atan2}(\sin \theta \cdot \sin \delta \cdot \cos \phi 1, \cos \delta \sin \phi 1 \cdot \sin \phi 2)$
- missä φ on leveysasteet, λ pituusasteet, θ suunta
- $\delta = d/R$, eli etäisyys jaettuna maapallon säteellä

Kuvantunnistus

- AutoKAP sovelluksen haluttiin tunnistavan liikennemerkit liikenteessä ja varoittavan alueella vallitsevasta nopeusrajoituksesta.
- AutoKAP:n kuvantunnistus toteutettiin keräämällä kuvista keypointit SIFT-algoritmin avulla ja vertailemalla keypointteja OpenCV:n liitännäisenä olevan FLANN -kirjaston FlannBasedMatcher-liitännäiseen pohjautuen.
- FLANN tulee sanoista Fast Library for Approximate Nearest Neighbors
- Vertailu toteutetaan sovelluksessa run_flann metodissa, minne parametrinä viedään kameran videolta napattu kuva, joka on kevenntty pienentämällä ja käsittelemällä kuva mustavalkoiseksi OpenCV:n avulla.

- FLANN-kirjaston avulla freimistä tunnistetaan keypointit ja niitä verrataan projektin kansios<mark>sa</mark> oleviin kuviin liikennemerkeistä. Kuvat on nimetty kuvassa olevan liikennemerkin nopeuden arvon mukaan. Kun vertailun tulos saa positiivisen tuloksen, sovellus palauttaa kuvan nimen eli nopeuden arvon.

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_matcher/py_matcher.html

OpenCV.VideoCapture

- Kameraolio luotiin OpenCV:n VideoCapture-luokasta : capture = cv2.VideoCapture(0)
 - VideoCapture luokka videoiden, kuvien ja kameran käsittelyyn
 - Luotua oliota kamerasta voidaan käsitellä OpenCV:n omilla metodeilla.
 - Oliosta saadaan napattua freimejä ja jokaista freimiä pystyään muokkaamaan muuntamalla esimerkiksi kuvan värejä ja kuvan kokoa.
- OpenCV:n asennus vie ohjeiden mukaan 2-8 tuntia
 - Asennus: https://www.deciphertechnic.com/install-opencv-python-on-raspberry-pi/

Kuva selaimeen

- Miniserveri
 - Kuva striimataan selaimeen luoden ohjelmassa yksinkertainen pieni serveripalvelinolio
 BaseHTTPRequestHandler-luokan avulla käsitelläksemme muutamia HTTP pyyntöjä GET-metodilla

Cascade Classifier Training

- Haar & Lbp -koulutus

AutoKAP-sovellus

- Voidaan asentaa mille tahansa PC:lle tai Raspberrylle
- Django framework
- Käytettyjä kieliä: Python, HTML, Javascript (Nucleo: C++)
- Tekee internet sivun, luo palvelimen
- Sisältää SerialRead luokan, jota käytetään Nucleoiden lähettämän datan keräämiseen.
- Lukee dataa erillisessä säikeessä ja tallentaa arvot sekä tietokantaan, että tekstitiedostoon
- Sivu hakee Google karttapohjan ja näyttää sijainnin. Kartta ja sijainti päivittyy sekunnin välein. Ei tarvetta koko sivun päivittämiselle.
- Mikäli yhteys GPS satelliitteihin katkeaa, SerialRead lähettää viimeisimmät sijainti-, nopeus- ja suuntatiedot toiselle Nucleolle ja jää odottamaan laskettua uutta sijainti tietoa.
- Videokuva tuodaan toisesta osoitteesta ja näytetään kartan alla

