

H.T No

Sreenidhi Institute of Science and Technology

Regulations: A22

(An Autonomous Institution)

Code No:9HC07

Date: 16-August-2024 (FN)

B.Tech I-Year II- Semester External Examination, August-2024 (Supplementary) ENGINEERING PHYSICS (CSE, IT, CS, AIML, DS and IOT)

Time: 3 Hours Max.Marks:60

Note: a) No additional answer sheets will be provided.

- b) All sub-parts of a question must be answered at one place only, otherwise it will not be valued.
- c) Missing data can be assumed suitably.

Bloom's Cognitive Levels of Learning (BCLL)

Remember	L1	Apply	L3	Evaluate	L5	
Understand	L2	Analyze	L4	Create	L6	

Part - A

Max.Marks: 6x2=12

ANSWER ALL QUESTIONS, EACH QUESTION CARRIES 2 MARKS.

		DULL	CO(S)	Warks
1	How is the probability density related to the wave function?	L2	CO1	[2M]
2	What are the advantages of using optical fibers for communication?	L1	CO2	[2M]
3	What is meissner effect?	L1	CO3	[2M]
4	Define Electric Susceptibility.	L1	CO4	[2M]
5	Sketch I-V characteristics of a PN junction diode.	L3	CO5	[2M]
6	Define the nano scale in terms of length.	L1	CO6	[2M]

Part – B

Max.Marks: 6x8=48

ANSWER ALL QUESTIONS. EACH QUESTION CARRIES 8 MARKS.

		DOLL	CO(S)	IVIAI NO
7.	Derive the Schrödinger time independent wave equation for a particle in a	L6	CO1	[8M]
	potential field.			
	<u> </u>			

OR

- 8 Provide a detailed account of the Davisson and Germer experiment. How did this L3 ^{CO1} [8M] experiment confirm the wave nature of electrons?
- 9. Describe construction and working principles of Ruby Laser L6 ^{CO2} [8M]
- Derive the mathematical expression for numerical aperture and discuss its L6 CO2 [8M] significance in determining the light-gathering ability of an optical fiber.
- 11 What is Hysteresis? Explain B-H curve nature in Ferro magnetic materials based L4 CO3 [8M] on domain theory.

OR

- 12 Explain the BCS theory of superconductivity. L4 CO3 [8M]
- 13 Derive an expression for Clausius-Mossotti equation L6 CO4 [8M]

OR

- Describe the underlying principles and mechanisms of piezo-electricity and ferro- L6 CO4 [8M] electricity.
- 15 Discuss the principles and operation of an LED L6 CO5 [8M]

OR

- 16 Describe the working principle of a solar cell L6 CO5 [8M]
- 17 Describe the bottom-up fabrication approach using the sol-gel method L6 CO6 [8M]
- 18 Explain the chemical vapor deposition (CVD) technique for nano material L4 ^{CO6} [8M] fabrication.