Conditional Execution

Boolean Expressions

- A Boolean expression, sometimes called a predicate, may have only one of two possible values: false or true.
- We have seen that the simplest Boolean expressions are False and True.
- Boolean variable is also a Boolean expression.
- Other kinds of Boolean expressions use relational operators to compare two expressions.

The Python relational operators

Expression	Meaning			
x == y	True if $x = y$ (mathematical equality, not assignment); otherwise, false			
<i>x</i> < <i>y</i>	True if $x < y$; otherwise, false			
x <= y	True if $x \le y$; otherwise, false			
<i>x</i> > <i>y</i>	True if $x > y$; otherwise, false			
x >= y	True if $x \ge y$; otherwise, false			
x != y	True if $x \neq y$; otherwise, false			

Expression	Value			
10 < 20	True			
10 >= 20	False			
x < 100	True if x is less than 100; otherwise, False			
x != y	True unless x and y are equal			

The Simple if Statement

The general form of the if statement is:

Example: betterdivision.py

flowchart no Is divisor ≠ 0? yes do the division and print result

Example: betterdivision.py

```
print('Please enter two numbers to divide.')
dividend = int(input('Please enter the first number to divide: '))
divisor = int(input('Please enter the second number to divide: '))
# If possible, divide them and report the result
if divisor != 0:
    print(dividend, '/', divisor, "=", dividend/divisor)
```

Please enter two numbers to divide.

Please enter the first number to divide: 32

Please enter the second number to divide: 8

32 / 8 = 4.0

The if/else Statement

The general form of an if/else statement is

```
if condition

if-block

else:

    else-block
```

Example: betterfeedback.py

Example: betterfeedback.py

```
# Get two integers from the user
dividend = int(input('Please enter the number to divide: '))
divisor = int(input('Please enter dividend: '))
# If possible, divide them and report the result
if divisor != 0:
    print(dividend, '/', divisor, "=", dividend/divisor)
else:
    print('Division by zero is not allowed')
```

Please enter the number to divide: 32 Please enter dividend: 0 Division by zero is not allowed

Nested Conditionals

• We can use these nested if statements to develop arbitrarily complex program logic.

```
value = int(input("Please enter an integer value in the range 0...10: ")
if value >= 0:  # First check
    if value <= 10:  # Second check
        print("In range")
print("Done")</pre>
```

Compound Boolean Expressions

 We can combine simple Boolean expressions, each involving one relational operator, into more complex Boolean expressions using the logical operators and, or, not.

Logical operators— e_1 and e_2 are Boolean expressions

e_1	e_2	e_1 and e_2	e_1 or e_2	$not e_1$
False	False	False	False	True
False	True	False	True	True
True	False	False	True	False
True	True	True	True	False

Compound Boolean Expressions

```
value = int(input("Please enter an integer value in the range 0...10: ")
if value >= 0 and value <= 10: # Only one, slightly more complicated check
    print("In range")
print("Done")</pre>
```

Some points

Python allows an expression like

$$x \le y$$
 and $y \le z$

which means $x \le y \le z$ to be expressed more naturally:

$$x \le y \le z$$

Similarly, Python allows a programmer to test the equivalence of three variables as

```
if x == y == z:
    print('They are all the same')
```

The base 10 place value system

$$473,406 = 4 \times 10^{5} + 7 \times 10^{4} + 3 \times 10^{3} + 4 \times 10^{2} + 0 \times 10^{1} + 6 \times 10^{0}$$

= 400,000 + 70,000 + 3,000 + 400 + 0 + 6
= 473,406

The base 2 place value system

$$100111_{2} = 1 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

$$= 32 + 0 + 0 + 4 + 2 + 1$$

$$= 39$$

```
# Get number from the user
value = int(input("Please enter an integer value in the range 0...1023: "))
# Create an empty binary string to build upon
binary_string = ''
# Integer must be less than 1024
if 0 <= value < 1024:
    if value >= 512:
        binary_string += '1'
        value %= 512
    else:
        binary_string += '0'
    if value >= 256:
        binary_string += '1'
        value %= 256
    else:
        binary_string += '0'
    if value >= 128:
```

```
binary_string += '1'
    value %= 128
else:
    binary_string += '0'
if value >= 64:
    binary_string += '1'
    value %= 64
else:
    binary_string += '0'
if value >= 32:
    binary_string += '1'
    value %= 32
else:
    binary_string += '0'
if value >= 16:
    binary_string += '1'
    value %= 16
else:
    binary_string += '0'
if value >= 8:
    binary_string += '1'
    value %= 8
else:
    binary_string += '0'
```

```
if value >= 4:
       binary_string += '1'
       value %= 4
    else:
       binary_string += '0'
    if value >= 2:
       binary_string += '1'
       value %= 2
    else:
       binary_string += '0'
    binary_string += str(value)
# Display the results
if binary_string != '':
    print(binary_string)
else:
    print('Cannot convert')
```


MULTI-WAY DECISION STATEMENTS

```
if
     condition-1
        block-1
      condition-2:
elif
        block-2
elif
      condition-3:
        block-3
elif
      condition-4:
        block-4
else:
      default-block
```

CONDITIONAL EXPRESSIONS

The general form of the conditional expression is

```
expression-1 if condition else expression-2
```

```
# Get the dividend and divisor from the user
dividend = int(input('Enter dividend: '))
divisor = int(input('Enter divisor: '))
# We want to divide only if divisor is not zero; otherwise,
# we will print an error message
msg = dividend/divisor if divisor != 0 else 'Error, cannot divide by zero'
print(msg)
```