Polosite ie zobaseni g:
$$R^4 - 3R^2$$
 $S(\binom{\omega}{k}) = \binom{3c - \alpha}{k}$ je Linestri.

s uržete in (g).

Chr. Jokázst, že je zobasení Linestri. Tedy má být

uzsviené na sčitání a násobaní skatúrem. Ted očelsíván,

že byle plotit obacně $f(\vec{x}_1 \cdot \vec{x}_2) = f(\vec{x}) + f(\vec{x})$ a

 $f(\vec{x}_1) = \alpha \cdot f(x)$, khe a je skatúr, $x_1 \cdot \vec{x}_2 = f(\vec{x}) + f(\vec{x})$ a

 $f(\vec{x}_1 \cdot \vec{x}_2) = g(\binom{\alpha_1}{k_1}) + g(\binom{\alpha_2}{k_2}) = g(\binom{\alpha_1}{k_2}) = g(\binom{\alpha_2}{k_1}) = g(\binom{\alpha_2}{k_2}) = g(\binom{\alpha$

h:
$$\mathbb{R}^{2} - > \mathbb{R}^{2}$$

h($\{\frac{1}{8}\}\} = b(g\{\frac{1}{8}\})$

a) write h($Se_{1} - 3e_{2}$)

Incline matici wheaten' with such chim biring

 $A_{h}^{i_{1} \rightarrow i_{1}} = A \cdot B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ -5 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ -2 & 2 \end{pmatrix}$

Tests

 $h(\{\frac{1}{8}\}) = \begin{pmatrix} 5 & 4 \\ -2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 5 \begin{pmatrix} 2 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} -3 \\ 4 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ -2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 19 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 79 - 4 & 3 \\ -2 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 63 \\ -2 & 2 \end{pmatrix}$

b) Doksiterie C je bize \mathbb{R}^{2}

2 definice bize B musi' splijount: $C = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 4 \end{pmatrix} = \begin{pmatrix} 63 \\ -22 \end{pmatrix}$

1) $X \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \partial \begin{pmatrix} -3 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

2 $X + 3 = 0$

2 $X + 4 = 0$

1, $X = 0$

2 $X + 3 = 0$

2 $X + 4 = 0$

3 $X = 0$

2 $X + 4 = 0$

3 $X = 0$

4 $X + 3 = 0$

5 $X = 0$

5 $X + 4 = 0$

6 $X + 6 = 0$

7 $X + 6 = 0$

7 $X + 6 = 0$

8 $X + 6 = 0$

9 $X + 6 = 0$

10 $X + 6 = 0$

11 $X + 6 = 0$

12 $X + 6 = 0$

13 $X + 6 = 0$

14 $X + 6 = 0$

15 $X + 6 = 0$

16 $X + 6 = 0$

17 $X + 6 = 0$

18 $X + 6 = 0$

19 $X + 6 = 0$

10 $X + 6 = 0$

10 $X + 6 = 0$

11 $X + 6 = 0$

11 $X + 6 = 0$

12 $X + 6 = 0$

13 $X + 6 = 0$

14 $X + 6 = 0$

15 $X + 6 = 0$

16 $X + 6 = 0$

17 $X + 6 = 0$

18 $X + 6 = 0$

19 $X + 6 = 0$

19 $X + 6 = 0$

10 $X + 6 = 0$

10 $X + 6 = 0$

11 $X + 6 = 0$

12 $X + 6 = 0$

13 $X + 6 = 0$

14 $X + 6 = 0$

15 $X + 6 = 0$

16 $X + 6 = 0$

17 $X + 6 = 0$

18 $X + 6 = 0$

19 $X + 6 = 0$

19 $X + 6 = 0$

10 $X + 6 = 0$

10 $X + 6 = 0$

11 $X + 6 = 0$

12 $X + 6 = 0$

13 $X + 6 = 0$

14 $X + 6 = 0$

15 $X + 6 = 0$

17 $X + 6 = 0$

18 $X + 6 = 0$

19 $X + 6 = 0$

19 $X + 6 = 0$

10 $X + 6 = 0$

10 $X + 6 = 0$

10 $X + 6 = 0$

11 $X + 6 = 0$

12 $X + 6 = 0$

13 $X + 6 = 0$

14 $X + 6 = 0$

15 $X + 6 = 0$

16 $X + 6 = 0$

17 $X + 6 = 0$

17 $X + 6 = 0$

18 $X + 6 = 0$

19 $X + 6 = 0$

19 $X + 6 = 0$

10 $X + 6 = 0$

10 $X + 6 = 0$

10 $X + 6 = 0$

11 $X + 6 = 0$

11 $X + 6 = 0$

12 $X + 6 = 0$

13 $X + 6 = 0$

14 $X + 6 = 0$

15