Parameter control in the presence of uncertainties

Victor Trappler

Supervisors: Elise Arnaud, Laurent Debreu, Arthur Vidard

November 17, 2017

AIRSEA (Inria) - LJK

Introduction

Bottom friction

- The friction of the ocean bed has an influence on the water circulation
- Depends on the type and/or characteristic length of the asperities —> hard to observe
- Subgrid phenomenon → Parametrization

Outline

Introduction

Deterministic problem

Dealing with uncertainties

Robust minimization

Bayesian inference

Conclusion

Deterministic problem

Computer code: the Shallow Water Equations

Input

- K: Bottom friction (spatially distributed)
- x_e : Environmental variables (fixed and known)

Output

• $W(K) = \{W_i^n(K)\}_{i,n}$, where $W_i^n(K) = [h_i^n(K) \quad q_i^n(K)]^T$ for $0 \le i \le N_x$ and $0 \le n \le N_t$

Computer code: the Shallow Water Equations

Input

- K: Bottom friction (spatially distributed)
- x_e : Environmental variables (fixed and known)

Output

• $W(K) = \{W_i^n(K)\}_{i,n}$, where $W_i^n(K) = [h_i^n(K) \quad q_i^n(K)]^T$ for $0 \le i \le N_X$ and $0 \le n \le N_t$

Data assimilation framework: Twin experiments

$$K_{
m ref}$$
 and ${\cal H}$ observation operator We have $Y={\cal H}W(K_{
m ref})=\{h_i^n(K_{
m ref})\}_{i,n}$
$$j(K)=\frac{1}{2}\|{\cal H}W(K)-Y\|^2$$

Data assimilation framework: Twin experiments

$$\mathcal{K}_{\mathrm{ref}}$$
 and \mathcal{H} observation operator We have $Y = \mathcal{H}W(\mathcal{K}_{\mathrm{ref}}) = \{h_i^n(\mathcal{K}_{\mathrm{ref}})\}_{i,n}$
$$j(\mathcal{K}) = \frac{1}{2}\|\mathcal{H}W(\mathcal{K}) - Y\|^2$$

$$\operatorname*{arg\,min}_{\mathcal{K}\in\mathcal{K}}j(\mathcal{K})$$
?

 \bullet Gradient-free: Simulated annealing, Nelder-mead,... \to High number of runs, very expensive

Data assimilation framework: Twin experiments

$$\mathcal{K}_{\mathrm{ref}}$$
 and \mathcal{H} observation operator We have $Y = \mathcal{H}W(\mathcal{K}_{\mathrm{ref}}) = \{h_i^n(\mathcal{K}_{\mathrm{ref}})\}_{i,n}$
$$j(\mathcal{K}) = \frac{1}{2}\|\mathcal{H}W(\mathcal{K}) - Y\|^2$$

$$\operatorname*{arg\,min}_{\mathcal{K} \in \mathcal{K}} j(\mathcal{K})?$$

- ullet Gradient-free: Simulated annealing, Nelder-mead,... ullet High number of runs, very expensive
- ullet Gradient-based: gradient-descent, (quasi-) Newton method ullet Less number of runs, but need the adjoint code

Dealing with uncertainties

Introducing the uncertainties

Instead of considering x_e fixed, we consider that X_e is a random variable, and the output of the model depends on its realization.

6

Introducing the uncertainties

Instead of considering x_e fixed, we consider that X_e is a random variable, and the output of the model depends on its realization.

The cost function as a random variable

• Output of the computer code (x_e is an input):

$$W(K)$$
 becomes $W(x_e, K)$

• The (deterministic) quadratic error is now

$$j(\mathbf{x}_{e},K) = \frac{1}{2} \|\mathcal{H}W(\mathbf{x}_{e},K) - Y\|^{2}$$

What to do with $j(\mathbf{X}_e, K)$ (r.v.) ?

Variational approach or Bayesian approach?

Variational: Minimize a function of j(X_e, K),
 e.g. Minimize E[j(X_e, K)|K].
 → Estimate efficiently E for a given K?

Variational approach or Bayesian approach?

- Variational: Minimize a function of $j(\mathbf{X}_e, K)$, e.g. Minimize $\mathbb{E}[j(\mathbf{X}_e, K)|K]$.
 - \longrightarrow Estimate efficiently $\mathbb E$ for a given K?
- Bayesian: $e^{-j(x_e,K)} \propto p(Y|K, X_e)$ under gaussian assumptions.

Find posterior distribution p(K|Y) using inference and find Bayesian estimator and/or MAP

 \longrightarrow Assumptions on errors ?

Robust minimization

An illustration

$$(x_e,K)\mapsto f(x_e,K)=\tilde{f}(x_e+K)$$

 $X_e\sim\mathcal{N}(0,s^2)$ truncated on $[-3;3]$. Plot of $f(0,\cdot)=\tilde{f}(\cdot)$

Different approaches for the minimization of f

An illustration

$$(x_e, K) \mapsto f(x_e, K) = \tilde{f}(x_e + K)$$

 $X_e \sim \mathcal{N}(0, s^2)$ truncated on $[-3; 3]$. Plot of $\max_{x_e} \{f(x_e, \cdot)\}$

Different approaches for the minimization of f

An illustration

$$(x_e, K) \mapsto f(x_e, K) = \tilde{f}(x_e + K)$$

 $X_e \sim \mathcal{N}(0, s^2)$ truncated on $[-3; 3]$. Plot of $\mathbb{E}_{x_e}[f(x_e, \cdot)]$

Different approaches for the minimization of f

• Global Optimum: $\min j(x_e, K) \longrightarrow \mathsf{EGO}$

- Global Optimum: $\min j(x_e, K) \longrightarrow EGO$
- ullet Worst case: $\min_K \max_{oldsymbol{x}_e} j(oldsymbol{x}_e,K) \longrightarrow \mathsf{Explorative} \ \mathsf{EGO}$

- Global Optimum: min $j(x_e, K) \longrightarrow EGO$
- Worst case: $\min_K \max_{\mathbf{x}_e} j(\mathbf{x}_e, K) \longrightarrow \text{Explorative EGO}$
- M-robustness: $\min_K \mathbb{E}\left[J(\mathbf{X}_e, K)|K\right] \longrightarrow \text{iterated LHS}$

- Global Optimum: $\min j(x_e, K) \longrightarrow EGO$
- Worst case: $\min_K \max_{\mathbf{x}_e} j(\mathbf{x}_e, K) \longrightarrow \text{Explorative EGO}$
- M-robustness: $\min_{K} \mathbb{E} [J(\mathbf{X}_{e}, K) | K] \longrightarrow \text{iterated LHS}$
- V-robustness: $\min_{\mathcal{K}} \mathbb{V}\mathrm{ar}\left[J(\boldsymbol{X}_{\mathrm{e}},\mathcal{K})|\mathcal{K}\right] \longrightarrow \mathsf{gradient}\text{-descent}$ with PCE

- Global Optimum: min $j(x_e, K) \longrightarrow EGO$
- Worst case: $\min_K \max_{\mathbf{x}_e} j(\mathbf{x}_e, K) \longrightarrow \text{Explorative EGO}$
- M-robustness: $\min_{K} \mathbb{E}[J(\mathbf{X}_{e}, K)|K] \longrightarrow \text{iterated LHS}$
- V-robustness: $\min_{\mathcal{K}} \mathbb{V}\mathrm{ar}\left[J(\boldsymbol{X}_e,\mathcal{K})|\mathcal{K}\right] \longrightarrow \mathsf{gradient}\text{-descent}$ with PCE
- ho-robustness: min $ho(J(X_e,K)) \longrightarrow$ gradient-descent with PCE

- Global Optimum: min $j(x_e, K) \longrightarrow EGO$
- Worst case: $\min_K \max_{\mathbf{x}_e} j(\mathbf{x}_e, K) \longrightarrow \text{Explorative EGO}$
- M-robustness: $\min_{K} \mathbb{E}[J(\mathbf{X}_{e}, K)|K] \longrightarrow \text{iterated LHS}$
- V-robustness: $\min_{K} \mathbb{V}\mathrm{ar}\left[J(\boldsymbol{X}_{e},K)|K\right] \longrightarrow \mathrm{gradient}\text{-descent}$ with PCE
- ullet ho-robustness: min $ho(J(\pmb{X}_e,K))\longrightarrow ext{gradient-descent}$ with PCE
- ullet Multiobjective: choice within Pareto frontier $\longrightarrow 1 L/2 L$ kriging

Bayesian inference

Bayesian approach

Having observed Y, joint distribution of (K, \mathbf{X}_e) ?

Bayes' Theorem

$$p(K, \mathbf{X}_e|Y) \propto p(Y|K, \mathbf{X}_e)\pi(K, \mathbf{X}_e)$$

 $\propto L(K, \mathbf{X}_e; Y)\pi(K)\pi(\mathbf{X}_e)$

Estimation of the posterior distribution: computationally expensive techniques such as Markov Chain Monte Carlo.

Why surrogates?

- Computer model: expensive to run
- ullet dim ${\mathcal K}$ can be very large
- Convenient way to introduce uncertainties upon x_e directly in the model

Why surrogates?

- Computer model: expensive to run
- \bullet dim $\mathcal K$ can be very large
- Convenient way to introduce uncertainties upon x_e directly in the model

Using surrogates for optimization: adaptative sampling

Based on kriging model \longrightarrow mean and variance How to choose a new point to evaluate ? Criterion $\kappa(x) \longrightarrow$ "potential" of the point

$$\mathbf{\textit{x}}_{ ext{new}} = \operatorname{arg\,max} \kappa(\mathbf{\textit{x}})$$

Conclusion

Conclusion

Wrapping up

- Variational and bayesian approaches for this inverse problem results in different methods
- In both case, these strategies rely heavily on surrogate models
 Kriging, Polynomial chaos

Perspective and future work

- ullet Cost of computer evaluations o limit the total number of runs
- \bullet Dimensionality of the input space \to reduction of the input space ?
- ullet How to deal with uncontrollable errors o errors between model and reality ?