# Шаблон отчёта по лабораторной работе №6

Разложение чисел на множители

Коне Сирики

# Содержание

| 1  | Цель работы                                                                     |                    |
|----|---------------------------------------------------------------------------------|--------------------|
| 2  | Задание                                                                         | 6                  |
| 3  | Теоретическое введение         3.1 Факторизация чисел                           | <b>7</b><br>7<br>7 |
| 4  | Выполнение лабораторной работы 4.1 Алгоритм, реализующий $\rho$ -метод Полларда | <b>11</b><br>12    |
| 5  | Выводы                                                                          | 14                 |
| Сг | писок литературы                                                                | 15                 |

# Список иллюстраций

| 3.1 | Зацикливание числовой последовательности, получаемой методом |    |
|-----|--------------------------------------------------------------|----|
|     | ho-методом Полларда                                          | 8  |
| 4.1 | Примеры нахождения нетривиальных делителей чисел посред-     |    |
|     | ством программной реализации о-метола Полларла               | 13 |

# Список таблиц

| 3.1 | Пример применения $ ho$ -метода Полларда для числа 1, 359, 331       | 9  |
|-----|----------------------------------------------------------------------|----|
| 3.2 | Пример применения $ ho$ -метода Полларда для числа $8,051~(1)~\dots$ | 9  |
| 3.3 | Пример применения $\rho$ -метода Полларда для числа $8,051~(2)$      | 10 |

## 1 Цель работы

Целью данной лабораторной работы является краткое ознакомление с ho-методом Полларда для нахождения нетривиального делителя целого числа, а также его последующая программная реализация.

## 2 Задание

Рассмотреть и реализовать на языке программирования Python ho-метод Полларда для нахождения нетривиального делителя целого числа.

### 3 Теоретическое введение

#### 3.1 Факторизация чисел

Факторизацией целого числа называется его разложение в произведение простых сомножителей [1]. Такое разложение, согласно основной теореме арифметики, всегда существует и является единственным (с точностью до порядка следования множителей).

Мы будем ограничиваться поиском разложения на два (*нетривиальных*) множителя:  $n = ab, 1 < a \le b < n$ . Если алгоритм находит такое разложение за O(f(n)) арифметических операций, то полное разложение n на простые множители будет найдено за  $O(f(n)\log n)$  арифметических операций, поскольку n состоит из произведения не более чем  $\log_2 n$  простых чисел [2].

#### **3.2** $\rho$ -метод Полларда

Этот метод был разработан Джоном Поллардом в 1975 г. Пусть  $n \in \mathbb{N}$  – число, которое следует разложить.  $\rho$ -метод Полларда работает следующим образом [2]:

**1 шаг:** Выбрать отображение  $f: \mathbb{Z}_n \to \mathbb{Z}_n$ . Обычно f(x) – многочлен степени большей или равной 2, например,  $f(x) = x^2 + 1$ .

**2 шаг:** Случайно выбрать  $x_0 \in \mathbb{Z}_n$  и вычислять члены рекуррентной последовательности  $x_0, x_1, x_2, ...$  по правилу  $x_i \equiv f(x_{i-1}) \pmod n$ .

**3 шаг:** Для некоторых номеров j,k проверять условие  $1 < \text{HOД}(x_j - x_k, n) < n$  до тех пор, пока не будет найден делитель числа n.

Сложность алгоритма оценивается как  $O(n^{1/4})$  [3]. Метод строит числовую последовательность, элементы которой образуют цикл, начиная с некоторого номера n, что может быть проиллюстрировано расположением чисел в виде греческой буквы  $\rho$  (см. Рис. 3.1).



Рис. 3.1: Зацикливание числовой последовательности, получаемой методом  $\rho$ -методом Полларда

#### Алгоритм 1. Алгоритм, реализующий $\rho$ -метод Полларда

 $Bxo\partial$ . Число n, начальное значение c, функция f, обладающая сжимающими свойствами.

Bыхо∂. Нетривиальный делитель числа n.

- 1. Положить  $a \leftarrow c, b \leftarrow c$ .
- 2. Вычислить  $a \leftarrow f(a) \pmod{n}, b \leftarrow f(f(b)) \pmod{n}$ .
- 3. Найти  $d \leftarrow \text{HOД}(a b, n)$ .
- 4. При 1 < d < n положить  $p \leftarrow d$  и результат: d. При d = n результат: "Делитель не найден". При d = 1 вернуться на шаг 2.

**Пример 1.** Найдём  $\rho$ -методом Полларда нетривиальный делитель числа n=1359331. Положим  $c=1, f(x)=x^2+5 \pmod n$ . Работа алгоритма проиллюстрирована в Таблице 3.1.

Таблица 3.1: Пример применения ho-метода Полларда для числа 1, 359, 331

| i | a         | b         | d     |
|---|-----------|-----------|-------|
| 0 | 1         | 1         | -     |
| 1 | 6         | 41        | 1     |
| 2 | 41        | 123,939   | 1     |
| 3 | 1,686     | 391,594   | 1     |
| 4 | 123,939   | 438,157   | 1     |
| 5 | 435,426   | 582,738   | 1     |
| 6 | 391,594   | 1,144,026 | 1     |
| 7 | 1,090,062 | 885,749   | 1,181 |
| - | Ответ:    | 1,181     |       |

**Пример 2.** Повторим процедуру для числа n=8051 при c=2 и  $f(x)=x^2+1$  (см. Табл. 3.2) или  $f(x)=x^2+3$  (см. Табл. 3.3).

Таблица 3.2: Пример применения  $\rho$ -метода Полларда для числа 8,051 (1)

| i | a      | b     | d  |
|---|--------|-------|----|
| 0 | 2      | 2     | -  |
| 1 | 5      | 26    | 1  |
| 2 | 26     | 7,474 | 1  |
| 3 | 677    | 871   | 97 |
| - | Ответ: | 97    |    |

Таблица 3.3: Пример применения ho-метода Полларда для числа 8,051 (2)

| i | a      | b     | d  |
|---|--------|-------|----|
| 0 | 2      | 2     | -  |
| 1 | 7      | 52    | 1  |
| 2 | 52     | 1,442 | 1  |
| 3 | 2,707  | 778   | 1  |
| 4 | 1,442  | 3,932 | 83 |
| - | Ответ: | 83    |    |

### 4 Выполнение лабораторной работы

Реализуем описанный выше алгоритм на языке **Python** в среде Jupyter Notebook. Для работы нам понадобится функция нахождения наибольшего общего делителя. Возьмем функцию, реализующую алгоритм Евклида, реализованную в рамках 4-ой лабораторной работы:

```
def euclidean_algorithm(a, b):

"""

Находит НОД чисел а и b с помощью алгоритма Евклида
"""

(a, b) = (abs(int(a)), abs(int(b)))

if b > a:

(a, b) = (b, a)

r = [a, b] # was 1; задаем r0 и r1

# wasu 2-3

while r[1] != 0:

(r[0], r[1]) = (r[1], r[0] % r[1])

return r[0] # was 4
```

### 4.1 Алгоритм, реализующий ho-метод Полларда

Создадим функцию pollard\_rho\_method(n, f, c) следующего вида: def pollard\_rho\_method(n, f, c = 1): 11 11 11 Находит нетривиальный делитель числа п ро-методом Полларда на основе начального значения с и сжимающей функции f H/H/Ha = c; b = c # was 1while True: x = aa = eval(f) % n ## war 2 x = bx = eval(f) # b = eval(f) % n #d = euclidean\_algorithm(abs(a - b), n) # war 3 if d > 1 and d < n: # *#* return d # waz 4 **if** d == n: print("Делитель не найден") #

Теперь с помощью данной функции найдём нетривиальные делители некоторых чисел (см. Рис. 4.1).

return 0

Рис. 4.1: Примеры нахождения нетривиальных делителей чисел посредством программной реализации  $\rho$ -метода Полларда

### 5 Выводы

Таким образом, была достигнута цель, поставленная в начале лабораторной работы: было проведено краткое знакомство с алгоритмом, реализующим  $\rho$ -метод Полларда для нахождения нетривиального делителя целого числа, после чего алгоритм был успешно реализован на языке программирования **Python**.

### Список литературы

- 1. Ишмухаметов Ш.Т. Методы факторизации натуральных чисел: учебное пособие. Казань: Казанский университет, 2011. С. 190.
- Василенко О.Н. Теоретико-числовые алгоритмы в криптографии. Москва: МЦНМО, 2003.
- 3. Википедия. Ро-алгоритм Полларда Википедия, свободная энциклопедия. 2021.