Corollary: Let F be a field. A nonzero polynomial p(x) & F[x] of degree n has at most n roots, including multiplicities.

Example: Consider $x^n-1 \in C[x]$. Recall that $e^{i\theta}=cos(\theta)+isin(\theta)$, then by De Moiure's Theorem, we have that $(e^{i\theta})^n=e^{in\theta}$. Then if we let $0 \le k \le n-1$ be such that $0 = \frac{3\pi k}{n}$, we have $(e^{i\frac{2\pi k}{n}})^n=e^{2\pi ki}=cos(2\pi k)+isin(2\pi k)=1$ and therefore, our n roots of unity are $1,e^{\frac{2\pi}{n}i},e^{\frac{4\pi}{n}i},...,e^{\frac{(n-i)\pi}{n}i}$. When n=3,4,5

Remark: If p is prime, then $x^p-1=(x-1)(x^{p-1}+x^{p-2}+\cdots+x+1)$ is called the cyclotomic polynomial, where it has no roots on IR and (p-1) roots on C.

Fundamental Theorem of Algebra: A polynomial of degree n in C[x] has exactly n roots in C.

Proposition: Let F be an infinite field, and let $f(x) \in F[x]$. If f(a) = 0 for infinitely many elements as F, then f(x) = 0.

Proof: Assume that $f(x) \neq 0$. Then $deg(f(x)) = n \in \mathbb{N}$ and so by the above Corollary, f(x) has at most n distinct roots in F, so f(x) does not have

- infinitely many roots.
- Corollary: Let $g(x)_1h(x) \in F[x]$ for some field F such that the degree of g(x) is the same as the degree of h(x). If g(a) = h(a) for n+1 distinct elements as F, then g(x) = h(x).
- Example: In \mathbb{Z}_3 , if $f(x) = x^{k_1}(x-1)^{k_2}(x-3)^{k_3}$, then f(x) is a nonzero polynomial in \mathbb{Z}_3 [x] that contains every element of \mathbb{Z}_3 as a root.
- Exercise: Prove that for every positive integer n, a field F can have at most a finite number of elements of multiplicative order at most n.

Irreducible Polynomials

- Definition: Let F be a field and let $p(x) \in F[x]$ with $deg(p(x)) = n \in \mathbb{N}$.
 - · p(x) is said to be irreducible over F, if p(x) cannot be expressed as a product of polynomials in F[x] with degree at least 1
- p(x) is reducible over F if f(x) = g(x) h(x) for some polynomial that have degree at least 1.
- Example: Consider $f(x) = 2x^2 + 2$ over IR. Then note that $f(x) = 2(x^2 + 1)$, but it is irreducible over IR, because if g(x) = a and $h(x) = x^2 + 1$, then $deg(g(x)) = 0 \neq 1$, so f(x) cannot be reducible.
- Example: Consider $f(x) = 2x^2 + 2$ over C. Then because we are in C₁ we can now write $f(x) = (\sqrt{2}x \sqrt{2}i)(\sqrt{2}x + \sqrt{2}i)$ where if $g(x) = \sqrt{2}x \sqrt{2}i$ and $h(x) = \sqrt{2}x + \sqrt{2}i$, then $deg(g(x)) = deg(h(x)) = 1 \ge 1$, so it is reducible.

Example: By the Fundamental Theorem of Algebra, the irreducible polynomials in CIXI have degree 1.

Example: In \mathbb{Z}_3 , $f(x) = x^2 + 1$ is not irreducible.

 $f(0) = 0^2 + 4 = 1$ f(1) = 2 f(2) = 2.

Because $f(x) \neq 0$ for all $x \in \mathbb{Z}_3$, then f(x) has no roots and therefore cannot be reducible over \mathbb{Z}_3 . Since f(x) has degree a, if f(x) = g(x)h(x) then either one of g(x) and h(x) has degree a, or each of g(x) and h(x) has degree 1.

If f(x) was reducible over \mathbb{Z}_3 , then it would have 2 rods, but $f(0) \neq 0$, $f(1) \neq 0$, $f(2) \neq 0$, so f(x) has no roots. Therefore, f(x) is irreducible over \mathbb{Z}_3 .

Example: In \mathbb{Z}_5 , $f(x) = x^2 + 1$ is irreducible. Note that $f(3) = 3^2 + 1 = 0$ in \mathbb{Z}_5 , so f(x) = (x + 2)(x + 3).

Proposition: Let F be a field and let $f(x) \in F(x)$ with deg(f(x)) = 2 or deg(f(x)) = 3. Then f(x) is reducible over F if and only if f(x) has a root in F.

Proof: Exercise.

Theorem: If F is a field,

(1) Every ideal I 4 F[x] is a principal ideal $\{f(x)\} = \{r(x)f(x): r(x) \in F[x]\}$

(2) FIX]/(f(x)) is a quotient ring.

(3) \{f(x)\} is a maximal ideal if and only if \f(x)\/\((f(x)\)\) is a field.

Theorem: Let F be a field and let f(x) & F[x]. Then (f(x)) is a maximal
ideal of F[x] if and only if it is an irreducible polynomial.