1. X23FF 0010 001 11111 1111

2. 出错:30 不能用 5 位 表示

在汇编的时候就会报错。

3.

symbol address

LOOP X3003

L1 X300A

NEXT X300B

DONE X300D

NUMBERS X300E

	•
	.ORIG x3000
	AND R4, R4, #0
	AND R3, R3, #0
	LD RO, NUMBERS
LOOP	LDR R1, R0, #0
	NOT R2, R1
	BRz DONE
	AND R2, R1, #1
	BRz L1
	ADD R4, R4, #1
	BRnzp NEXT
L1	ADD R3, R3, #1
NEXT	ADD R0, R0, #1
	BRnzp LOOP
DONE	TRAP x25
NUMBERS	.FILL x4000
	.END

R4 = 0

R3 = 0

R0=X4000

R1=[X4000]

if R1 == -1 done

if R1 末尾为 0 R3++

R4++

R0++

JMP LOOP

所以,功能: R4 统计字符数 R3 统计 偶数个数

a: LDR R3, R1, #0

b: NOT R4, R4

c: ADD R4, R4, #1

.ORIG x3000	R0=X300B
LD R0, Addr1	- NO-X300B
LEA R1, Addr1	R1=X300A
LDI R2, Addr1	R2=X000A
LDR R3, R0, #-6	R3=ADD R1 R1 #3=0001 001 001 1 00011=X1236
LDR R4, R1, #0	D4 V200B
ADD R1, R1, #3	R4=X300B
ST R2, #5	R1=X300D
STR R1, R0, #3	[X300C] = X000A ; [ADDR3]=XA
STI R4, Addr4	[X300E] = X300D; [ADDR5]=X300D
	[1000] 10000] [10010] 10000

[X300D]=X300B;[ADDR4]=X300B

所以: a.R0 X300B R1X300D R2X000A R3X1236 R4X300B

b.ADDR1 x300b ADDR2 x000a ADDR3XA ADDR4X300B ADDR5X300D

	.ORIG x3000
	AND R0, R0, #0
	LD R1, NUMBITS
	LDI R2, VECTOR
	ADD R3, R0, #1
CHECK	AND R4, R2, R3
	BRz NOTOPER
	ADD R0, R0, #1
NOTOPER	ADD R3, R3, R3
	ADD R1, R1, #-1
	BRp CHECK
	STR RO, R2, #1
	TRAP x25
NUMBITS	.FILL #16
VECTOR	.FILL x3500
	.END

R0=0

R1=16

R2=X

R3 = 1

R4=X&R3

JMP NOTOPER

R0++

R3<<1

R1--

if R1>0 CHECK

[X+1]=R0 应该是[X3501]=R0

HALT

修改:黄色部分删除并插入

LD R2, VECTOR

STR R0 , R2 , #1

	1	ı
	.ORIG x3000	
	AND R0, R0, #0	F
	ADD R2, R0, #10	F
	LD R1, MASK	F
	LD R3, PTR1	F
	LOOP LDR R4, R3, #0	F
	AND R4, R4, R1	F ii
	BRz NEXT	"
	ADD R0, R0, #1	F
	NEXT ADD R3, R3, #1	 F
	ADD R2, R2, #-1	F
	BRp LOOP	it
	STI RO, PTR2	[,
	HALT	
MASK	.FILL x8000	
PTR1	.FILL x4000	
PTR2	.FILL x5000	

R0=0

R2 = 10

R1=1000 0000 0000 0000

R3=X4000

R4=[X4000]

R4=MSB R4

if R4=0 JMP NEXT

R0++;R0 统计 1 的个数

R3++;

R2--

if R2>0 LOOP

[X5000] = R0

所以,功能为,统计 x4000 开始的 10 个地址中存储的数中负数的个数。

8.polling 方式中,处理器会花费大量时间检查 Ready 位。 而在 interrupt-driven I/O 方式中,如果没有中断发生,处理器还可以执行其他程序。 9.a 不停输出 '2' 直到键盘输入任意一个字符。

b.输出两次输入的字符并返回

c.不停输出'2',输出两个你输入的任意一个字符,并且继续不停输出'2', 其实你根本看不到你输入的东西 233。

10.

.ORIG x3000

LD RO, ASCII RO='A'

LD R1, NEG R1=-74

AGAIN LDI R2, DSR R2=[[DSR]]

BRzp AGAIN if R2 >= 0 AGAIN

STI RO, DDR [[DDR]]=RO ;输出RO

ADD R0, R0, #1 R0++

ADD R2, R0, R1 R2=R0+R1

BRnp AGAIN if R2 = 0 HALT

HALT

ASCII .FILL x0041

NEG .FILL xFFB6

DSR .FILL xFE04 所以 功能是 输出"ABCDEFGHIJ"10 个字符。

DDR .FILL xFE06

.END