Math 76 Exercises – 5.1B Sequences

1. Determine whether each sequence converges or diverges. If a sequence converges, find the limit.

$$\lim_{N \to \infty} \frac{n^2 + 5}{3 - 4n^2} = \lim_{N \to \infty} \frac{n^2}{-4n^2} = -\frac{1}{4}.$$

(b)
$$\left\{\frac{2n}{\sqrt{n}-107}\right\}$$

$$\lim_{N\to\infty}\frac{2n}{\sqrt{n-107}}=\lim_{N\to\infty}\frac{2n}{\sqrt{n}}=\lim_{N\to\infty}2\sqrt{n}=\infty.$$

So the sequence diverges.

(c)
$$\left\{\frac{\ln n}{n}\right\}$$

$$\frac{H}{=} \lim_{n \to \infty} \frac{1}{n} = 0.$$

When n is even, the terms are positive and go to O. When n is odd, the terms are negative and go to O. (see part (c)). Since all terms go to O, the sequence converges to O.

- 2. Determine whether each sequence above is monotonic or not.
- (a) Every rational function has finitely many critical numbers and vertical asymptotes. So if we let N be the largest x-value that has a critical point or vertical asymptote for $f(x) = \frac{x^2+5}{3-4x^2}$, then the sequence $\left\{\frac{n^2+5}{3-4n^2}\right\}$ is monotonic for all $n \ge N$.
- (b) For a, b > 0 we know that if a < b then $a^2 < b^2$. So we can note that $\left(\frac{2n}{\sqrt{n-107}}\right)^2 = \frac{4n^2}{n-107}$ is a rational function and hence monotonic from some point on; thus $\frac{2n}{\sqrt{n-107}}$ is monotonic as well.
- (c) let $f(x) = \frac{\ln x}{x}$. Then $f'(x) = \frac{x \cdot \frac{1}{x} \ln x}{x^2} = \frac{1 \ln x}{x^2}$ which is negative when $1 \ln x < 0$, i.e. $\ln x > 1$, i.e. x > e. So f(x) is decreasing for all x > e; hence the sequence $\{\frac{\ln x}{n}\}$ is monotonic for $n \ge 3$.

(d) The sequence alternates (-,+,-,+,...) so is not monotonic.

3. Determine whether each sequence above is bounded or not. For each bounded sequence $\{a_n\}$, find a number M such that $|a_n| \leq M$ for all $n \geq 1$.

First of all, every convergent sequence is bounded (why?), so the sequences in parts (a), (c), and (d) are bounded.

Since the sequence in (b) diverges to ∞ , that sequence is not bounded.

(a) For
$$n=1$$
 we get $\frac{1^2+5}{3-4\cdot 1^2}=-6$

For
$$n=2$$
 we get $\frac{2^2+5}{3-4\cdot 2^2} = -\frac{9}{13}$

For n=3 we get $\frac{3^2+5}{3-4\cdot 3^2} = -\frac{14}{33}$, etc. (closer and closer to $-\frac{1}{4}$)

So all terms are bounded by M=6.

For n=2 we get $\frac{\ln 2}{2} \approx 0.347$.

For n=3 we get $\frac{\ln 3}{3} \approx 0.366$.

Since the sequence approaches 0 monotonically for $n \ge 3$, we can use $M = \frac{\ln 3}{3}$.

(d) This sequence is the alternating version of the sequence in part (c), so the absolute values are bounded by the same numbers. So we can use $M = \frac{\ln 3}{3}$ again.

4. Determine whether each sequence converges or diverges. If a sequence converges, find the limit.

(a)
$$\left\{\frac{50\sin^2 n}{n^3}\right\}$$
 Using the Squeeze Theorem, we have $0 \le \sin^2 n \le 1$ for all n , so

$$0 \leq \lim_{n\to\infty} \frac{50\sin^2 n}{n^3} \leq \lim_{n\to\infty} \frac{50}{n^3} = 0.$$

Therefore
$$\lim_{n\to\infty} \frac{50\sin^2 n}{n^3} = 0$$

(b)
$$\left\{\frac{3^n}{n!}\right\}_{n=1}^{\infty}$$
 We have $\frac{3^n}{n!} = \frac{3}{1} \cdot \frac{3}{2} \cdot \frac{3 \cdot 3 \cdot 3 \cdot \dots \cdot 3}{3 \cdot 4 \cdot 5 \cdot \dots \cdot (n-1)} \cdot \frac{3^n}{n}$

$$S_0 \quad 0 \leq \frac{3^n}{n!} \leq \frac{9}{2} \cdot 1 \cdot \frac{3}{n} = \frac{27}{2} \cdot \frac{1}{n}$$

So
$$0 \le \lim_{n \to \infty} \frac{3^n}{n!} \le \lim_{n \to \infty} \frac{27}{2} \cdot \frac{1}{n} = 0$$
. Thus $\lim_{n \to \infty} \frac{3^n}{n!} = 0$

(c)
$$\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$$

Let
$$L = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$
 Indeterminate form of type 1°°

Then
$$\ln L = \lim_{n \to \infty} n \ln (1 + \frac{1}{n})^{\infty}$$
 [Indeterminate form $\infty \cdot 0$]
$$= \lim_{n \to \infty} \frac{\ln (1 + \frac{1}{n})}{\ln n} = \lim_{n \to \infty} \frac{\ln (1 + \frac{1}{$$

$$\frac{1}{m}$$
 $\frac{1}{m}$ $\frac{1}$

$$\frac{H}{n \to \infty} \frac{\lim_{n \to \infty} \frac{-1/n^2}{1 + \frac{1}{n}}}{\lim_{n \to \infty} \frac{-1}{n^2}} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = 1$$
 So $\ln L = 1$.

Therefore L=[e]

(d)
$$\{a_n\}$$
 defined recursively by $a_1 = 4$ and $a_{n+1} = \frac{a_n}{3} + 10$.

Let
$$L = \lim_{n \to \infty} a_n$$
. Then $L = \lim_{n \to \infty} a_{n+1}$, so $\lim_{n \to \infty} (a_{n+1}) = \lim_{n \to \infty} (\frac{a_n}{3} + 10)$ becomes $L = \frac{1}{3}L + 10$. Thus $\frac{2}{3}L = 10$, so $L = \frac{3}{2} \cdot 10 = 15$

5. Recall that the formula for the value of an annuity after k months (where P dollars is invested initially and at the end of every month, at a monthly interest rate of r) is

$$V(k) = \frac{P((1+r)^{k+1} - 1)}{r}.$$

If \$100 is invested monthly in an annuity paying 6% annually (compounded monthly),

(a) What will be the value of the annuity after 3 years?

$$V(36) = \frac{100 ((1.005)^{37} - 1)}{0.005}$$

$$\approx $4053.28$$

(b) How many years will it take to reach a value of \$25,000?

$$V(k) = \frac{100 ((1.005)^{k+1} - 1)}{0.005} = \frac{25,000}{0.005}$$

$$(1.005)^{k+1} - 1 = \frac{25000}{100} (0.005) = 1.25$$

$$(1.005)^{k+1} = 2..25$$

$$(k+1) \ln (1.005) = \ln (2.25)$$

$$k+1 = \ln (2.25)$$

$$\ln (1.005)$$

$$k \approx 161.6 \text{ months}$$

$$\approx 13 \text{ years}, 6 \text{ months}$$