LLM is all you need

LLM의 모든 것

Contents

01

소개

Team

소개

신동원

- Backend
- Technology Director
- Al
- ✓ 로컬 및 클라우드 MLOps
- ✓ LangChain + Model 빌드
- ✓ Backend 기능 구현 및 단위 테스트
- ✓ 통합 테스트

전진환

- Frontend
- Project Manager
- Al

- ✓ Frontend 기능 구현 및 단위 테스트
- ✓ UI / UX 제작

전대엽

- UI UX design
- Al
- ✓ UI 제작
- ✓ Prompt Engineering
- ✔ 평가지표 제작

공통

- ✔ 코드리뷰 및 논문리뷰
- ✔ 결과 분석
- ✔ 함수 기능 및 성능 테스트
- ✔ 자료조사 및 정리

02

기획

Research & Services

GOal: Gemini / PaLM2를 활용한 RAG + In-Context Learning 실험 및 적용

- How to tune for LLM?
 - LLM을 학습하는 방법 찾기
- HuggingFace PEFT(Parameter Efficient Fine Tuning)
 - o PEFT란?
- PEFT applicability range for PaLM2 and Gemini Pro
 - o 프로젝트 기간동안 구현 가능한 범위 설정
- RAG(Retrieval Augmented Generation) + In-Context Learning
 - o LangChain을 활용한 PDF 인식 및 Prompt Tuning
- Research & Services
 - ㅇ 평가 지표 생성
 - 구현한 기술을 바탕으로 한 실험 및 서비스

Project Schedule

Task	Description	Date	J 15	J 17	J 26	F2	F 5	F 8	Status
Local Docker setting	Local 환경 Docker container 설치 및 테스트 준비	Jan 15 (1일)							Completed
Prompt Tuning	모델 및 용도별 Prompt tuning	Jan 15 - Jan 17 (2일)							Completed
Frontend	HTML, CSS, bootstrap, Ajax를 활용한 UI/UX 및 기능 구현	Jan 15 - Jan 26 (12일)							Completed
LangChain	PaLM2 / Gemini /KoLlama 2 RAG 관련 세부 기능 구현 및 테스트	Jan 16 - Feb 2 (14일)							Completed
Backend	Flask + LangChain + docker 등을 활용한 기능 구현	Jan 16 - Feb 2 (14일)							Completed
Evaluation & Analysis & Clean up	평가지표 생성 & 분석 & 정리	Jan 31 - Feb 5 (6일)							Completed
Cloud Deploy	Docker Hub 배포 Google Cloud Platform 배포	Feb 2 - Feb 5 (3일)							Completed

03

시스템 아키텍처

Frontend & Backend

System Architecture

Tree

Git Graph

RAG(Retrieval-Augmented Generation)

Backend

RAG

```
fileFullPath = os.path.join(PDF_DN_FOLDER, fullFilename)

# Ingest PDF files
loader = PyPDFLoader(fileFullPath)
documents = loader.load_and_split()
```

```
# Test search
query = embeddings.embed_query(msg)
docs = db.similarity_search_by_vector(query)
print(docs[0].page_content)
# Retrieval
retriever = db.as_retriever()
```

```
# Customize the default retrieval prompt template
template = """
{context}

Question: {question}
"""

prompt = ChatPromptTemplate.from_template(template)
```



```
# Embeddings
embeddings = VertexAIEmbeddings(model_name="textembedding-gecko@001")

# Vector Store Indexing
db = FAISS.from_documents(doc_splits, embeddings)
```

Backend

Issue

문제점

- 2023년 12월에 출시된 Gemini의
 버전별 코드가 다르고 샘플코드가 X
 - o Google Al Gemini
 - Vertex Al Gemini
- LangChain도 Gemini를 대응하기 위한 샘플코드가 많지 않음
- RAG 구현 후 첫번째 테스트에서 10번의 request 중 1번의 response만 받는 경우가 발생

해결

- Gemini 샘플코드 분류 후 분석 임베딩과 질의, 벡터 스토어 개념 재학습 LangChain 버전 안정화 확인하고 LangChain 구조를 변경하여 RAG 성공
- 두 버전 중 Google Al Gemini를 사용
- Vector store를 FAISS로 변경

Deploy

Prototype

시연 이미지 및 영상

https://drive.google.com/files/dr/STMCM/2WQ WR1dShu-Sbyss.vt3-io-Xview/bsp=sharing 04

분석 및 평가

Analysis and Evaluation

Issue

Use Cases

Get comparable performance to full finetuning by adapting LLMs to downstream tasks using consumer hardware

GPU memory required for adapting LLMs on the few-shot dataset ought/raft/twitter_complaints. Here, settings considered are full finetuning, PEFT-LoRA using plain PyTorch and PEFT-LoRA using DeepSpeed with CPU Offloading.

Hardware: Single A100 80GB GPU with CPU RAM above 64GB

Model	Full Finetuning	PEFT-LoRA PyTorch	PEFT-LoRA DeepSpeed with CPU Offloading
bigscience/T0_3B (3B params)	47.14GB GPU /	14.4GB GPU /	9.8GB GPU / 17.8GB
	2.96GB CPU	2.96GB CPU	CPU
bigscience/mt0-xxl (12B params)	OOM GPU	56GB GPU / 3GB CPU	22GB GPU / 52GB CPU
bigscience/bloomz-7b1	OOM GPU	32GB GPU /	18.1GB GPU / 35GB
(7B params)		3.8GB CPU	CPU

----- Vram이 너무 크다!

GCP로 학습을 하려는데 하드웨어 자원이 너무 비싸다!

1개월 내에 여러개의 논문을 구현 할 시간이 부족하다!

18

PEFT vs In-Context Learning

In-Context Learning

- 학습 없음
- New task 수행 가능
- Mixed-task batches

Parameter-efficient Fine-tuning

- 학습 시 적은 파라미터 사용
- New task에 대해 높은 성능
- Mixed-task batches 가능

PEFT

Paramter Efficient Fine-Tuning

State-of-the-art Parameter-Efficient Fine-Tuning (PEFT) methods

Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs) to various downstream applications without fine-tuning all the model's parameters. Fine-tuning large-scale PLMs is often prohibitively costly. In this regard, PEFT methods only fine-tune a small number of (extra) model parameters, thereby greatly decreasing the computational and storage costs. Recent State-of-the-Art PEFT techniques achieve performance comparable to that of full fine-tuning.

Seamlessly integrated with Seamlessly integrated with Accelerate for large scale models leveraging DeepSpeed and Big Model Inference.

Supported methods:

- 1. Lora: Lora: Low-rank adaptation of large language models
- Prefix Tuning: Prefix-Tuning: Optimizing Continuous Prompts for Generation, P-Tuning v2:
 Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
- 3. P-Tuning: GPT Understands, Too

4. Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning

httes://bithub.com/huosinaface/betf/1ab=readme_qv-file

Prompt Tuning

Hard prompt vs Soft prompt

(A) Model Tuning vs. Prompt Tuning

공통

- 1. 모델(PaLM2, Gemini, GPT4, Kollama 2) 기준
- 2. 각 모델에 PDF 내용에 대한 질문 30문항씩
- 3. 한 질문 당 5점 만점 기준으로 각 문항별 점수 산출 후 총점 합산 후 정답률 산출

Service 01

Stable

Diffusion

PDF의 질문(Answer)에 "n개의 keyword"가 있다면 chat model의 응답(Response)을 받을 때 몇 개의 keyword가 포함되어 있는가. (0 ≤ m ≤ n)

0점: keyword가 전혀 포함되지 않음

중간점수 :
$$\frac{response}{\$ keyword} \times 5$$

5점: keyword가 모두 포함되어 있음

항목 당 점수
$$(S_i) = \frac{m}{n} \times 5$$
 총점 $(S_t) = \sum S_i$

정답률 =
$$\frac{\text{총점}}{(30문항 \times 5)} * 100$$

History / Law

순서

- 1. PaLM2 한글프롬프트 vs 영문프롬프트 (History)
- 2. PaLM2 영문프롬프트 vs 영문번역프롬프트 (History) 2-1. PaLM2 vs Gemini (History)
- 3. PaLM2 (History vs Law)
- 4. PaLM2 vs Gemini vs KoLlama2 (Law)

1	한글 프롬프트	영문 프롬프트		
총점(score)	36.00(150.00)	48.17(150.00)		
정답률(%)	24.0	32.1	8% 상승	
			•	
2	영문 프롬프트	영문번역 프롬프트		
총점(score)	48.17(150.00)	49.50(150.00)		
정답률(%)	32.1	33.0	0.9% 상승	
2-1	PaLM2	Gemini		
총점(score)	49.50(150.00)	6.00(150.00)		
정답률(%)	33.0	4.0	※ pdf 적합성 의심	
			•	
3	History	Law		
총점(score)	49.50(150.00)	119.50(150.00)		
정답률(%)	33.0	79.7	46.7 % 상승	
4	PaLM2	Gemini	Kollama 2	
총점(score)	119.50(150.00)	144.00(150.00)	57.83(150.00)	
정답률(%)	79.7	96.0	38.6	
	•			

```
. .
   elif fullFilename == "Korean_Ancient_History.pdf":
      template = """질문에 대하여 오직 아래의 context에 근거하여 답변해주세요:
      당신은 "Korean_Ancient_History.pdf"에 대한 해박한 전문가입니다. \
      내가 질문하는 사항에 대해, 당신은 "Korean_Ancient_History.pdf"에 서술된 순서에 따라 알기 쉽게 설명해주기 바랍니다. \
      나의 질문이 "Korean Ancient History.pdf"에 없는 내용이라면, "제공된 PDF에 없는 내용이므로 답변할 수 없다."라고 대답해주세요. \
      Ouestion:
      2. 당신은 "Korean_Ancient_History.pdf"에 대한 해박한 전문가입니다. \
      3. pdf 내부에 없는 내용은 답할 수 없습니다. pdf와 관련된 질문이 아니라면 답변하지 마세요. \
```

한글로만 작성된 프롬프트(한글 프롬프트)

```
# Prompt 2. 한글을 영어로 단순 번역한 프롬프트
    elif fullFilename == "Korean_Ancient_History.pdf":
       template = """Answer the question based only on the following context:
       Hello. I am a student in Seoul, South Korea. \
       You are a knowledgeable expert on "Korean_Ancient_History.pdf". \
       For the questions I ask, I hope you can explain them clearly in the order described in "Korean_Ancient_History.pdf". \
       If you answer kindly and logically, I will reward you. \
       Please answer in Korean. \
       If your answer is in English, please translate your answer into Korean \
       If there is content that is not in the pdf, please reply, "I don't know. Please only ask questions about what is in the pdf.". \
        Ouestion:
       1. Please answer in Korean only. \
       2. You are a knowledgeable expert on "Korean_Ancient_History.pdf". \
       3. If there is content that is not in the pdf, please reply, "I don't know. Please only ask questions about what is in the pdf.". \
```

한글을 영어로 단순 번역한 프롬프트(영문 프롬프트)

프롬프트를 step별로 작성하고,
PDF와 질문을 영어로 인식하도록 영어로 프롬프트 작성 (영문 번역 프롬프트)

Stable Diffusion

추가

- 1. 만든문장을 바탕으로 프롬프트를 생성할 때 영어 문장처럼 자연스럽게 나올 수 있도록 프롬프트
- 2. TF-IDF + cosine similarity

$$TFIDF(t, d, D) = TF(t, d) * IDF(t, D)$$

$$TF(t,d) = rac{\mathbb{E} H \ d \cap M \ \mathbb{E} H \ d \cap t}{\mathbb{E} H \ d \cap d}$$
등장한 모든단어수

df(t) = 특정 단어 t가 등장한 문서의 수

$$IDF(t,D) = log \; rac{ \mbox{\& 8 문서의 개수}}{\mbox{단어 } t \equiv \mbox{판함하는 문서의 수}}$$

$$similarity = cos(\Theta) = \frac{A \cdot B}{||A|| \ ||B||} :$$

Stable Diffusion prompt

https://docs.google.com/spreadsheets/d/1ZW AzvLLYELYoLHo41dWE77cYYmBhiglr6d3YC DrPGE/edit?usp=sharing

Stable Diffusion

입력 프롬프트

니콘카메라로 촬영한 (흑백)의 모나리자 배경안에 엠마스톤이 정면을 바라보고 있습니다.

정답 프롬프트

Emma Stone is looking straight ahead in the background of the Mona Lisa (black and white) taken with a Nikon camera.

Model	생성 프롬프트	점수	유사도
PaLM2	Emma Stone looking straight ahead against a background of the Mona Lisa (in black and white) shot with a Nikon camera.	4.5	0.858
Gemini Pro	Emma Stone looking at the camera in front of the Mona Lisa background in black and white, taken with a Nikon camera.	5	0.829
GPT4	Emma Stone, shot with a Nikon camera, facing forward within a black and white background of the Mona Lisa.	4.8	0.566
Llama 2	비교 대상 제외		

Stable Diffusion

Model	총점 (score)	정답률 (%)	문장 유사도	
PaLM2	132.20 (150)	88.13	0.78	
Gemini Pro	128.80	85.87	0.710	
GPT4	120.30	80.20	0.527	
Llama 2	비교 대상 제외	-	-	

정답률이 상승함에 따른 문장 유사도 상승 **양의 상관관계!**

결론

Conclusion

Conclusion

- PaLM2 / Gemini / Llama2 RAG + Prompt Tuning 구현
 - o Law / Stable Diffusion / Chat 모델 구현
 - GCP를 통한 서비스 배포
- RAG + Prompt Tuning을 통한 효율적인 Tuning
 - 비용절감
- 지표 생성을 바탕으로한 객관적인 평가
 - **Prompt** 평가를 위한 **공통 지표 (평균, 정답률)**
 - o TF-IDF + cosine simirarity (문장 유사도)
 - o 정답률과 문장 유사도간의 **상관관계** 확인
- Prompt Tuning을 통한 성능 향상
 - 한글과 영문프롬프트실험 결과 8% 상승
 - 영문 번역프롬프트실험 결과 0.9% 상승
 - o Pdf 파일의 형식에 따른 성능 차이 확인, 이에 따른 프롬프팅 개선 및 향상 방법 발견
 - 프롬프팅을 통한 효율적인 성능 향상 확인 16% 상승

향후계획

PEFT 추가 적용

- P-tuning
- Prefix tuning

Prompt Tuning

- Cognitive prompting
- CoT / ToT ...

다른 Tuning 방법 적용

- PPO(Proximal Policy Optimization)
- DPO(Direct Preference Optimization)
- RLHF(Reinforcement Learning Human Feedback)

06

QnA

궁금한 것이 있다면 물어보세요.

Sources and Results

Github / Notion

- LLM is all you need (Github)
- LLM is all you need (Notion)

Experiment result

- History Evaluation
- Total Evaluation