Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the Experiments

Summary and Future work

Implementation of Contracting Curve Density Algorithm for Applications in Personal Robotics

April 29, 2011

Shulei Zhu Institut für Informatik Technische Universität München

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the Experiments

Summary and Future work

Outline

- Motivation
- 2 How the original CCD algorithm works?
- 3 Improvements of the original algorithm
- 4 The CCD tracker
- **5** Results of the Experiments
- **6** Summary and Future work

Shulei Zhu

Harrista ariainal C

How the original CCD algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the Experiments

Summary and Future work

Motivation

Some challenging tasks in personal robotics

- Image segmentation
- Pose estimation
- Object recognition and tracking

Model-base method

- require much information external to the image
- Curve-fitting: a crucial part of these problems

Requirements

- Robustness: stable even in the presence of heavy texture, clutter, poor contrast, partial occlusion
- Accuracy: high sub-pixel accuracy
- Efficiency: time-constrained, limited computer hardware resources in personal robotics

Shulei Zhu

Motivation

How the original CC algorithm works?

Improvements of the original algorithm

original algorithm

The CCD tracker

Experiments
Summary and Future

work

How the original CCD algorithm works?

Flowchart of the CCD algorithm

Figure: the CCD algorithm

Basic steps of the CCD algorithm

• Contour initialization : initialize the model parameter vector Φ (6-DOF or 8-DOF) and covariance matrix Σ_{Φ}

Shulei Zhu

Motivation

How the original CC algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the Experiments

Summary and Future work

How the original CCD algorithm works?

Flowchart of the CCD algorithm

Figure: the CCD algorithm

Basic steps of the CCD algorithm

- Contour initialization: initialize the model parameter vector Φ (6-DOF or 8-DOF) and covariance matrix Σ_Φ
- Learning of local statistics : evaluate the likelihood; build the cost function

Shulei Zhu

Motivation

How the original CC algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the

Experiments
Summary and Future

work

How the original CCD algorithm works?

Flowchart of the CCD algorithm

Figure: the CCD algorithm

Basic steps of the CCD algorithm

- Contour initialization: initialize the model parameter vector Φ (6-DOF or 8-DOF) and covariance matrix Σ_Φ
- Learning of local statistics: evaluate the likelihood; build the cost function
- Refinement of model parameters

 Maximize the cost function using optimization algorithms

Shulei Zhu

Motivation

How the original CC algorithm works?

Improvements of the original algorithm

original algorithm

The CCD tracker

Results of the

Experiments

Summary and Future work

How the original CCD algorithm works?

Flowchart of the CCD algorithm

Figure: the CCD algorithm

Basic steps of the CCD algorithm

- Contour initialization: initialize the model parameter vector Φ (6-DOF or 8-DOF) and covariance matrix Σ_Φ
- Learning of local statistics: evaluate the likelihood; build the cost function
- Refinement of model parameters
 : Maximize the cost function
 using optimization algorithms
- Check for convergence, if not, go to Step 2

Shulei Zhu

Motivation

How the original CCI algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the Experiments

Summary and Future work

Sketch of the CCD algorithm

Figure: The contour of a pan

Shulei Zhu

Motivation

How the original CC algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the Experiments

Summary and Future work

An alternative view of the CCD algorithm

A classification problem

Figure: A classification problem [1]

Shulei Zhu

Motivation

How the original C algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the

Experiments

Summary and Future work

An alternative view of the CCD algorithm

Probit regression

• Evaluation of conditional distribution $p(\Phi|\mathbf{I})$

$$p(\Phi|\mathbf{I}) \propto \underbrace{p(\mathbf{I}|\mathbf{m}_{\Phi}, \Sigma_{\Phi})}_{\text{local statistics}} \quad \times \quad \underbrace{p(\Phi)}_{\text{prior distribution}}$$

Local statistics (likelihood): a probit function with respect to Φ

 Goal: MAP (maximum a posteriori probability) solution of cost function Q(Φ)

$$Q(\Phi) = \underset{\Phi}{\operatorname{arg\,max}} \ln(p(\Phi|\mathbf{I}))$$

Approach: iterative reweighted least squares (IRLS) e.g. Gaussian Newton method, Gradient decent and SVM Least Squares.

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the

The CCD tracker

Results of the Experiments

Summary and Future work

Quadratic and Cubic B-spline curves

B-spline curves

$$\mathbf{C}(u) = \sum_{i=0}^{m-n-2} P_i B_{i,n}(u) , u \in [u_n, u_{m-n-1}]$$

Figure: B-spline curves of degree = 1, 2, 3

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the

The CCD tracker

Results of the

Experiments

Summary and Future work

Logistic and Probit function

Figure: Logistic function

$$f(\cdot) = \frac{1}{1 + e^{-x}}$$

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the

The CCD tracker

Results of the

Experiments

Summary and Future work

Logistic and Probit function

Logistic function

Figure: Logistic function

$$f(\cdot) = \frac{1}{1 + e^{-x}}$$

Probit function

Figure: Probit function

$$f(\cdot) = \frac{1}{2} \left(\frac{1}{\sqrt{2}} erf(x) + 1 \right)$$

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the

The CCD tracker

Results of the Experiments

Summary and Future work

Logistic and Probit function

Figure: Probit function is highly sensitive for outliers [1]

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the

The CCD tracker

Results of the Experiments

Summary and Future work

Three-dimensional Affine Shape-space

Parallax effect in two-dimensional affine shape-space

Figure: Parallax effect

Three-dimensional affine shape-space

Figure: Three-dimensional affine shape-space

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the

The CCD tracker

Results of the Experiments

Summary and Future work

Automated initialization methods (I)

Initialization from SIFT Features

Figure: Initialization from SIFT Features

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the

The CCD tracker

Results of the Experiments

Summary and Future work

Automated initialization methods (II)

Initialization from projection of point clouds onto the image

Figure: Initialization from projection of point clouds onto the image

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the Experiments

Summary and Future work

Contracting Curve Density (CCD) Tracker

Algorithm 1 Contracting Curve Density (CCD) tracker

- 1: Φ ← **0**
- 2: $\mathbf{C} \leftarrow contour_initialization()$
- 3: while NewFrame do
- 4: **I** ← pre_processing()
- 5: $\mathbf{C} \leftarrow contour_distortion(\Phi)$
 - 6: $\Sigma \leftarrow covariance_initialization()$
 - 7: $\Phi \leftarrow \Phi^{\text{old}}$
 - 8: **while** *convergence* = *FALSE* **do**
 - 9: local_statistics_learning()
- 10: cost_function_MAP()
- 11: end while
- 12: $\Phi \leftarrow \Phi_{MAP}$
- 13: $\Sigma \leftarrow \Sigma_{MAP}$
- 14: end while

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the Experiments

Summary and Future work

Segmentation

Figure: A Comparison of Image Segmentation Algorithms

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the Experiments

Summary and Future work

Manual initialization

Shadow effects

Figure: Shadow effects

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the

Summary and Future work

Initialization from SIFT Features

Tracking initialized from SIFT features

- Match SIFT keypoints between the template image and the test image
- Discard the false matching points using the RANSAC algorithm
- Compute the homography
- Transform the contour of the template image onto the test image
- Apply the CCD tracker to the video

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the Experiments

Summary and Future

Summary

Investigate and implement the CCD approach

- Based on the OpenCV
- A ROS package: provide a ROS node interface to the ccd class

```
http://www.ros.org/wiki/
contracting-curve-density
```

Released under open source BSD license

Improvements

- B-spline curve and three-dimensional affine shape-space
- Logistic regression
- Automated contour initialization methods: SIFT features and point clouds

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the Experiments

Summary and Future

Future work

Future work

- Use statistics based on other image features instead of the RGB statistics
- Integration of the CCD algorithm into a more complex tracking framework (e.g. the Lucas-Kanade method (LKM), the extended Kalman filter (EKF))
- B-spline can not precisely represent many useful simple curves such as circles and ellipses, thus, Non-uniform rational B-spline (NURBS) is required for the CCD algorithm.
- Port to Android system to support mobile applications
-

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the Experiments

Summary and Future work

Thank you

Thank you for your attention!

Shulei Zhu

Motivation

How the original CCD algorithm works?

Improvements of the original algorithm

The CCD tracker

Results of the Experiments

Summary and Future

References

[Bishop, 2006] Christopher M. Bishop Pattern recognition and machine learning