Méthode de KACMARZ

Clarence Kineider

Leçons: 162, 208, 226, 233

Référence : \emptyset

On souhaite résoudre un système linéaire de la forme Ax = b où $A \in GL_d(\mathbf{R})$ et $b \in \mathbf{R}^d$. Notons \overline{x} l'unique solution du système.

On écrit la matrice A sous la forme $A = \begin{pmatrix} \frac{t}{a_1} \\ \frac{t}{a_2} \\ \vdots \\ t \\ a_d \end{pmatrix}$, de sorte que les $a_i \in \mathbf{R}^d$ soient les vecteurs colonnes correspon-

dants aux lignes de A. On pose pour $i \in \{1, \dots, d\}$, $u_i = \frac{a_i}{||a_i||} \in \mathbf{R}^d$ et $\beta_i = \frac{b_i}{||a_i||} \in \mathbf{R}$.

On définit les hyperplans affines $H_i = \{z \in \mathbf{R}^d \mid {}^tu_iz = \beta_i\} = \beta_iu_i + Vect(u_i)^{\perp}$ et les hyperplans vectoriels associés $E_i = Vect(u_i)^{\perp}$. Ces hyperplans affines sont l'écriture ligne par ligne de l'égalité Az = b. On a donc naturellement le résultat suivant :

Lemme : On a $\bigcap_{i=1}^d H_i = \{\overline{x}\}.$

Démonstration : Soit $z \in \mathbb{R}$. On a :

$$z \in \bigcap_{i=1}^{d} H_i \Leftrightarrow \forall i \in \{1, \dots, d\} \frac{{}^{\mathsf{t}} a_i}{||a_i||} z = \frac{b_i}{||a_i||}$$
$$\Leftrightarrow \forall i \in \{1, \dots, d\} {}^{\mathsf{t}} a_i z = b_i$$
$$\Leftrightarrow Az = b.$$

On fixe maintenant $x_0 \in \mathbf{R}^d \setminus \{0\}$ (pint de départ de notre algorithme itératif).

L'idée de la méthode de Kacmarz est de considérer les projections orthogonales successives de x_0 sur les hyperplans H_i . En notant M_i la projection orthogonale sur le sous-espace vectoriel E_i pour $i \in \{1, ..., d\}$, on a :

$$x_{1} = M_{1}x_{0} + \beta_{1}u_{1}$$

$$x_{2} = M_{2}x_{1} + \beta_{2}u_{2}$$

$$\vdots$$

$$x_{d} = M_{d}x_{d-1} + \beta_{d}u_{d}$$

$$x_{d+1} = M_{1}x_{d} + \beta_{1}u_{1}$$

$$\vdots$$

FIGURE 1 – Début de la méthode de Kacmarz dans \mathbb{R}^2

On obtient ainsi une suite $(x_n)_{n \in \mathbb{N}} \in (\mathbb{R}^d)^{\mathbb{N}}$.

Proposition : La suite $(x_n)_n$ converge vers la solution \overline{x} du système Ax = b.

Démonstration : Posons, pour tout $n \in \mathbb{N}$, $\epsilon_n = x_n - \overline{x}$ (l'erreur au rang n), et montrons que $||\epsilon_n|| \underset{n \to \infty}{\longrightarrow} 0$. Soit $n \in \mathbb{N}^*$, on a $\epsilon_n = x_n - \overline{x} = M_n x_{n-1} - (\overline{x} - \beta_n u_n)$ (pour les indices sous M, β et u, on considère le représentant de $n \pmod{d}$ pris entre 1 et d).

Or, $\overline{x} \in H_n = E_n + \beta_n u_n$, donc $\overline{x} - \beta_n u_n \in E_n$, et donc $M_n(\overline{x} - \beta_n u_n) = \overline{x} - \beta_n u_n$. Donc $\epsilon_n = M_n(x_{n-1} + \beta_n u_n - \overline{x})$. Comme $u_n \in E_n^{\perp}$, on a $M_n(\beta_n u_n) = 0$, donc $\epsilon_n = M_n(x_{n-1} - \overline{x}) = M_n \epsilon_{n-1}$.

De plus, les M_i sont des matrices de projections orthogonales, leur norme est donc égale à 1, et on a :

$$||\epsilon_n|| \le ||M_n|| ||\epsilon_{n-1}|| = ||\epsilon_{n-1}||.$$

La suite $(||\epsilon_n||)_n$ est donc décroissante. Puisqu'elle est minorée par 0, elle converge.

Il reste à montrer que sa limite est 0. Pour cela, il suffit de trouver une sous-suite qui converge vers 0. On considère la sous-suite $(\epsilon_{nd})_n$, et on pose $M=M_dM_{d-1}\dots M_1$. On a ainsi $\epsilon_{nd}=M\epsilon_{(n-1)d}$.

Montrons que ||M|| < 1. Soit $x \in \mathbf{R}^{\mathbf{d}} \setminus \{0\}$.

— S'il existe $i \in \{1, \dots, d\}$ tel que $||M_i M_{i-1} \cdots M_1 x|| < ||x||$, alors

$$||Mx|| \le ||M_d|| \cdot ||M_{d-1}|| \cdot \cdot \cdot ||M_{i+1}|| \cdot ||M_iM_{i-1} \cdot \cdot \cdot M_1x|| = ||M_iM_{i-1} \cdot \cdot \cdot M_1x|| < ||x||.$$

— Sinon, on a pour tout $i \in \{1, ..., d\}$, $||M_i \cdots M_1 x|| = ||x||$. En particulier, $||M_1 x|| = ||x||$. Cela signifie que $x \in E_1$ et donc $M_1 x = x$. On en déduit par récurrence que $x \in \bigcap_{i=1}^d E_i = \{0\}$ car $\forall i \in \{1, ..., d\}$, $E_i = Vect(u_i)^{\perp}$ et les u_i forment une base de \mathbf{R}^d . Donc x = 0, absurde.

Ainsi, ||Mx|| < ||x|| pour tout $x \in \mathbf{R}^d \setminus \{0\}$. Or $||M|| = \sup_{x \in \mathbf{S}^{d-1}} \frac{||Mx||}{||x||}$, et comme la dimension est finie, \mathbf{S}^{d-1} est compacte, le sup est atteint et donc $||M|| = \max_{x \in \mathbf{S}^{d-1}} \frac{||Mx||}{||x||} < 1$.

Ainsi, $\forall n \in \mathbb{N}, ||\epsilon_{nd}|| \leq ||M||^n ||\epsilon_0||$, avec ||M|| < 1. La suite converge donc bien vers 0.

Remarques:

• Quelle est la complexité de cette méthode? À chaque itération, on doit calculer

$$x_{n+1} = M_{n+1}x_n + \beta_{n+1}u_{n+1}.$$

Pas besoin de calculer un produit matrice-vecteur en $O(d^2)$ opérations puisque $M_i x = x - u_i^{\ t} u_i x = x - \langle x, u_i \rangle u_i$. Le calcul de x_{n+1} à partir de x_n se fait donc en O(d) opérations. On converge vers la solution à vitesse géométrique toute les d itérations, la complexité est donc en $O(d^2)$ opérations pour une convergence géométrique, comme les méthodes usuelles (Jacobi, Gauss-Seidel etc.)

• Cette méthode fonctionne également lorsque la matrice A n'est pas inversible. Alors l'intersection des hyperplans affines H_i n'est pas réduit à un unique point (mais est toujours l'ensemble des solutions du système) et la suite (x_n) convergera vers la projection orthogonale de x_0 sur cette intersection.

Merci à David Xu pour ce développement.