Анализ существующих математических моделей процессов, влияющих на разрушение поверхностей автомобильных дорог

Аннотация. Проведен анализ существующих работ по изучению процессов, влияющих на разрушение дорожных покрытий под воздействием движущегося гранспорта. Выделены математические модели, позволяющие наиболее объективно рассчитать глубину поверхностной колеи и предельную величину продольной неровности проектируемых автомобильных дорог.

Ключевые слова:Продольная и поперечная ровность автодорог, глубина колеи.

Введение.В рамках проекта Национальной технологической инициативы (https://asi.ru/nti/) предполагается прогнозирование развития России на 10-15 лет вперед для обеспечения национальной безопасности, качества жизни людей и развития технологий для обеспечения конкурентоспособности на международном рынке. Одним из направлений, требующем к себе пристального внимания, является транспортная сеть. Без развитой транспортной сети невозможно развитие и работа промышленности (доставка сырья, полуфабрикатов и готовой продукции), должное обеспечение качества жизни людей (доставка продуктов питания и товаров народного потребления) и продвижение продукции на международных рынках.Сейчас одной из главных составляющих транспортной сети является сеть автомобильных дорог. И ее значение в будущем будет только расти.

В настоящее время в России складывается крайне неблагоприятная ситуация с состоянием автомобильных дорог, что негативно сказывается не только на качественной работе транспортной сети, но и на безопасности дорожного движения. Ухудшение состояния дорог зависит от многих факторов, но главным является постоянное увеличение транспортного потока.

По данным на начало 2016 года количество автомототранспортных средств, поставленных на государственную регистрацию в органах ГИБДД России составило 56,6 млн. единиц. Этот показатель вырос за 2015 год более чем на 1,5 %.

За последние 10 лет количество зарегистрированных автомототранспортных средств в России увеличилось более чем на 65%, в 2006 году этот показатель составлял 34 млн. машин.

Согласно этой тенденции к 2035 году в России будет насчитываться более 105 млн. единиц транспортных средств.

В тоже время строительство дорог ведется по старым нормативным документам, не учитывающим современный транспортный поток и тем более его увеличение в будущем. В связи с чем, сроки службы даже вновь строящихся дорог оказываются меньше проектных. Поэтому имеется необходимость пересмотра существующих норм строительства дорог для увеличения их прочности и срока службы.

Основная часть.

Срок службы автомобильной дороги или ее разрушение зависит от совокупного воздействия на нее двух групп факторов — природных и техногенных. К природным факторам относятся климат региона, в котором располагается дорога, воздействие на нее атмосферных осадков, окружающей температуры, влажности, подвижности подстилающих грунтов, частоты циклов перехода температуры через ноль и других.

К техногенным факторам относятся объем транспортного потока через данную дорогу и его скорость.В свою очередь объем потока определяется количеством проезжающих автомобилей и их массой.

Существующие научные работы направлены на рассмотрение разрушения гетерогенной структуры¹ автомобильных дорог под воздействием статических и динамических нагрузок от проезжающего транспорта с созданием математических моделей волновой динамики дорог [1], или на поиск эмпирических зависимостей,

¹Гетерогенная структура автомобильной дороги — структура дорожного покрытия, составленная из слоев асфальтобетона, щебня, песка и подстилающего грунта.

связывающих показатели поперечной и продольной ровности дорог с параметрами деформируемости дорожных конструкций [2].

Разрушение гетерогенных структур дорог, которое представляется сложным, плохо изученным в настоящее время процессом, может быть вызвано, теоретически, причинами двух основных типов: от воздействия статических нагрузок и от воздействия знакопеременных циклов напряжений [3].

Причины первого типа связаны с длительным воздействием постоянных во времени нагрузок. В результате воздействия таких нагрузок в слоях гетерогенной структуры происходят необратимые пластические деформации, приводящие к изменению геометрической формы и механико-технологических свойств слоев [3]. Проявлением такого типа разрушения является колейность, возникающая на протяженных свободных участках дороги в результате интенсивного движения транспортных средств, особенно если нагрузка на ось превышает допустимое значение. В зонах колеи слой асфальтобетона истончается, что приводит к уменьшению площади поперечного сечения и к снижению прочности на сжатие и на изгиб. При дальнейшей эксплуатации дороги в зонах колеи могут образовываться выбоины, расположенные цепочкой.

Причины второго типа связаны с приложением нагрузок, быстро изменяющихся во времени, характеризующихся наличием ускорения, что приводит к появлению перегрузок [4].

Таким образом, при расчете дорожныхконструкций необходимо решить две важные задачи, первой из которых является расчет глубины колеи.

Образование колеи является серьезной причиной разрушения дорог. Особенно вследствие увеличения количества транспортных средств и их массы. Поэтому этому процессу уделяется достаточно много внимания в исследованиях.

В первых работах, направленных на изучение факторов воздействия на дорожное полотно, глубину колеи h_{κ} связывали с числом проходов нагрузки, температурой асфальтобетонного покрытия и рядом параметров математической модели. В общем виде такие математические модели можно представить формулой

$$h_{\kappa} = a \cdot N^b \cdot T^Q, \tag{1}$$

где N — число приложенных нагрузок, ед.; T — температура асфальтобетона; a, b и Q — параметры модели, являющиеся параметрами напряженного состояния (коэффициент

b зависит от величины возникающих напряжений) и материала (коэффициенты a и Q зависят от вида асфальтобетона) [2].

Последующие эксперименты, выполненные Л. Саном и соавторами, показали, что параметр b модели (1) является мерой напряженного состояния, определяемой степенной функцией отношения касательных напряжения в асфальтобетоне τ к их предельному значению τ_{np} , то есть прочности на сдвиг:

$$b = \left(\frac{\tau}{\tau_{\rm np}}\right)^c,\tag{2}$$

где c — параметр модели, зависящий от вида асфальтобетона.

Дальнейшим развитием модели (1) стал учет влияния на глубину колеи скорости движения транспортного средства [2]. В результате этого зависимость (1) с учетом (2) приобрела вид:

$$h_{\rm K} = a \cdot \left(\frac{\vartheta_{\rm \phi}}{\vartheta_{HVS}} \cdot N\right)^{\left(\frac{\tau}{\tau_{\rm np}}\right)^c} \cdot T^Q,\tag{3}$$

где θ_{φ} и θ_{HVS} – фактическая скорость движения транспортного средства и скорость имитатора нагрузки при испытании.

Рассмотренные модели (1) и (3) применимы только в тех случаях, когда колея является поверхностной, то есть формируется вследствие сдвига асфальтобетона в покрытии. Для такой колеи характерны выпоры асфальтобетона по ее краям, вдоль траектории движения.

Для расчета величины глубинной колеи применяют эмпирические методы, отличающиеся от моделей (1) и (3) тем, что глубина колеи связывается с пластической деформацией грунтов или дискретных материалов.

Второй не менее важной задачей расчета дорожных конструкций по критериям ровности является обоснование предельных значений неровностей. Специалистами предпринимались попытки математического обоснования допускаемых и предельных глубин неровностей.

Для объективного обоснования норм продольной ровности авторы работы [2] воспользовались формулой для определения динамического усилия, передаваемого колесом автомобиля на покрытие, в зависимости от величины неровности. Давление от колеса на покрытие определяется по формуле

$$p = \frac{m_{\rm K} \cdot \sqrt{2 \cdot g \cdot h_{\rm H}}}{t \cdot \pi \cdot R^2},\tag{4}$$

где m_k — масса, приходящаяся на колесо автомобиля, кг; g — ускорение свободного падения, м/c²; $h_{\scriptscriptstyle H}$ — глубина неровности (амплитуда волны), м; t — время контактного воздействия, с; R — радиус отпечатка колеса, м.

Решив уравнение (4) относительно величины неровности, была получена формула

$$h_{\rm H} = \frac{\Delta h_{\rm H}}{2 \cdot g} \left(\frac{p \cdot t \cdot \pi \cdot R^2}{m_k} \right)^2, \tag{5}$$

где Δh_{H} — множитель перехода от размерности в м к другим единицам длины.Для упрощения зависимости (5) в нее было введено выражение для определения массы m_{κ} , которое имеет вид:

$$m_k = \frac{p \cdot \pi \cdot R^2}{g}. (6)$$

После подстановки (6) в (5) было получено:

$$h_{\rm H} = \frac{\Delta h_{\rm H} \cdot t^2 \cdot g}{2}.\tag{7}$$

Время контактного воздействия шины на покрытие определяется как продолжительность ее проезда через точку, то есть отношением диаметра контакта $D = 2 \cdot R$ к скорости движения

$$t = \frac{2 \cdot R}{\vartheta}. \tag{8}$$

После подстановки зависимости (8) в выражение (7) получается формула

$$h_{\rm H} = \frac{\Delta h_{\rm H} \cdot 2 \cdot R^2 \cdot g}{g^2}.$$
 (9)

Предельная глубина продольной неровности h_{np} определяется при подстановке в формулу (9) требуемой скорости движения $\vartheta_{\text{тр}}$:

$$h_{\rm np} = \frac{\Delta h_{\rm H} \cdot 2 \cdot R^2 \cdot g}{\vartheta_{\rm np}^2}.$$
 (10)

Значения предельных глубин продольной неровности h_{np} рассчитанных по выражению (10) могут быть использованы при сдаче дорожных конструкций в эксплуатацию.

Проанализируем по выведенным формулам состояние городской автодороги.

Автодорога имеет 6 полос шириной 3,5 м, разделительную полосу шириной 5 м и обочину шириной 3,5 м.Из таблицы 1 видно, что такая дорога будет относиться к категории IB.

Таблица 1.

элементов авт автодороги	томагистраль						Класс автомобильной дороги					
автолороги	автомагистраль скоростная обычная автодорога (нескоростная автодорога)											
шыгодороги		автодорога										
	Tr											
	Категории											
	IA	IБ	IB	II	III	IV	V					
Общее число	4 и более	4 и более	4 и более	4 или 2	2	2	1					
полос												
движения,												
штук												
Ширина	3,75	3,75	3,5 – 3,75	3,5 – 3,75	3,25 – 3,5	3,0 – 3,25	3,5 – 4,5					
полосы												
движения, м												
Ширина	3,75	3,75	3,25 – 3,75	2,5 – 3,0	2,0 – 2,5	1,5 – 2,0	1,0 – 1,75					
обочины												
(не менее), м												
Ширина	6	5	5	-	-	-	-					
разделитель												
ной полосы, м												
Пересечение с	в разных	в разных	Допускается	в одном	в одном	в одном	в одном					
автодорогами	уровнях	уровнях	в одном	уровне	уровне	уровне	уровне					
			уровне с									
			авто									
			дорогами со									
			светофорами									
			не чаще чем									
			через 5 км									
Пересечение с	в разных	в разных	в разных	в разных	в разных	в одном	в одном					
железными	уровнях	уровнях	уровнях	уровнях	уровнях	уровне	уровне					
дорогами												
Доступ к не	допускается	допускается	допускается	допускается	допускается	допускается	допускается					
дороге с		не чаще	не чаще чем									
примыкающей		чем через 5	через 5 км									
дороги в		КМ										
одном уровне												

Максимальный	0,6	0,6	0,7	0,7	0,7	0,7	0,7
уровень							
загрузки							
дороги							
движением							

Средняя скорость легковых автомобилей, которые занимают большую часть транспортного потока на городской автодороге — 27 км/ч или 7,5 м/с. Требуемую скорость движения в конце эксплуатации дороги определим из таблицы 2. Для дороги I категории она будет равна 65 км/ч или 18,1 м/с.

Таблица 2. Требуемая скорость движения смешанного транспортного потока.

Категория дороги	В начале эксплуатации		В конце эксплуатации		Предельная глубина неровностей, мм	
	км/ч	м/с	км/ч	M/C	В начале эксплуатации	В конце эксплуатации
I	100	27,8	65	18,1	0,87	2,06
II	85	23,6	50	13,9	1,20	3,48
III	75	20,8	45	12,5	1,55	4,30
IV	60	16,7	35	9,7	2,42	7,10
V	45	12,5	30	8,3	4,30	9,67

Радиус отпечатка колеса найдем по формуле

$$R_{e} = \sqrt{\frac{F_{d}}{\pi p_{a}}},\tag{11}$$

где F_{d} расчетная нагрузка на колесо, p_a - внутреннее давление воздуха в пневматиках колес. Нагрузка на колесо определяется как вес автомобиля, приходящийся на одно колесо. Так, для автомобиля массой 1500 кг с грузом 300 кг, на одно колесо будет приходиться m=450 кг, g=9.8 м/ c^2

$$F_d = mg$$

Давление в шинах колеса легкового автомобиля $p_a=220~\mathrm{K}$ Па.Исходя из этих данных, получаем $h_{\mathrm{H}}=2$,2мм, $h_{\mathrm{np}}=0$,3мм.Из таблицы 3 можно видеть, что при таких показателях дорога будет находиться в отличном состоянии.

Таблица 3. Предельные значения неровностей.

Категория дороги	Тип конструкции	Предел	Автор		
дороги		Отличное	Хорошее	экрытия, мм Удовлетворительное	
I-IV	Не	1,5	3,0	5,0	A.B.
	классифицируется				Смирнов
I	Капитальный	Нет	Нет	4,6	В.Б.
II	Капитальный	Нет	Нет	4,9	Фадеев
III	Капитальный	Нет	Нет	5,4	
	Облегченный	Нет	Нет	6,1	
IV	Облегченный	Нет	Нет	15,3	
I	Не	Нет	2	5	И.А.
II	классифицируется	Нет	3	7	Золотарь
III		Нет	4	9	
IV		Нет	6	12	
I	Не	Нет	3,1	5,3	M.C.
II	классифицируется	1,4	4,8	6,7	Коганзон
III		2,5	5,5	7,5	
IV		6,0	7,7	8,5	_

Выводы.

Выполненный обзор проведенных ранее работ показал, что существуют работы, анализ которых позволяет разработать методы прогнозирования процессов развития поверхностной и глубинной колеи на асфальтобетонных покрытиях автомобильных дорог. При этом в качестве отправной идеи может быть принята зависимость (1).

Также в работе [2] разработан способ расчета предельных значений глубин продольных неровностей и колеи. Данные формулы позволяют вычислить глубины неровностей для любых видов дорог, но их недостатком является то, что для вычислений берутся средние значения скорости и радиуса отпечатка колеса, хотя по дорогам проезжает разный транспорт с различными характеристиками, поэтому по этим зависимостям сложно узнать действительное значение глубин неровностей. При этом, в отличие от ранних работ, учитывается требуемая скорость движения транспортного потока, что является более обоснованным с позиции обеспечения требуемого уровня потребительских свойств автомобильной дороги.

В тоже время в данных работах не уделяется внимания природной группе факторов разрушения дорог, которые при определенных условиях могут как усиливать действие техногенных факторов, так и ослаблять их.

Поэтому необходимо уделить внимание разработке математической модели воздействия природных факторов на дорожное полотно для ее учета в разработке конструкции автомобильных дорог в будущем.

Список использованной литературы:

- 1. Д. В. Артамонов. Математические модели волновой динамики автомобильных дорог. Технические науки. Машиностроение и машиноведение: журнал.- №3 (15). 2010.
- 2. В. Н. Герцог, Г. В. Долгих, Н. В. Кузин. Расчет дорожных одежд по критериям ровности. Часть 1. Обоснование норм ровности асфальтобетонных покрытий. MagazineofCivilEngineering: журнал. №5. 2015.
- 3. Д. В. Артамонов. Системный анализ процессов разрушения дорожного полотна / Д. В. Артамонов, В. В. Смогунов, Р. В. Умрихин, А. И. Вдовикин // Системный анализ, управление и обработка информации : научно-технический сборник статей. Вып. 1. Пенза, 2006. С. 19-26.
- 4. Смогунов, В. В. Динамика гетерогенных структур. Фундаментальные модели / В. В. Смогунов, О. А. Вдовикина, В. Н. Решилов [и др.]. Пенза, 2003. 598 с.
- 5. http://rosavtodor.ru/activity/public-services/egrad/14221.html
- 6. http://www.gosthelp.ru/text/MetodicheskieukazaniyaNad.html