

Aula 001 – Apresentação da Disciplina

Visão Geral e Introdução aos Conceitos Básicos

Prof. Rogério Aparecido Gonçalves¹ rogerioag@utfpr.edu.br

¹Universidade Tecnológica Federal do Paraná (UTFPR) Departamento de Computação (DACOM) Campo Mourão - Paraná - Brasil

Bacharelado em Ciência da Computação Ciência da Computação BCC34B - Linguagens Formais, Autômatos e Computabilidade

Agenda i

- 1. Disciplina
- 2. Ensino
- 3. Visão Geral
- 4. Exercícios
- 5. Linguagem
- 6. Próximas Aulas

Disciplina

BCC34B - Linguagens Formais, Autômatos e Computabilidade

Objetivo

Oferecer ao aluno noções formais de algoritmo, computabilidade e do problema de decisão, de modo a deixá-lo consciente das limitações da Ciência da Computação e capacitá-lo a identificar tais limitações em problemas típicos de Computação.

Ementa

Linguagens regulares, livres e sensíveis a contexto. Autômatos. Máquina de Turing. Computabilidade. Problema da parada. Classes de Problemas P, NP, NP-Completo e NP-Difícil. Noções de Lambda calculus e funções recursivas.

Linguagens Formais, Autômatos e Computabilidade

- · É uma disciplina básica para a Computação.
- Outros nomes: Teoria da Computação, Linguagens Formais e Autômatos...
- Cursos relacionados à computação necessitam de disciplinas dessa natureza para sua fundamentação conceitual/teórica.
- · Na Computação: Ingresso na pós-graduação: POSCOMP
- Para vocês: Entendimento de Sistemas de Computação.
- Dependência de Entrada: Lógica Matemática (Teoria dos Conjuntos, Funções, Métodos de Prova...)
- Dependência de Saída: Compiladores Análise Léxica (Autômatos, Expressões Regulares) e Análise Sintática (Gramática Livre de Contexto).

Relação disciplina e curso

Figura 1: Matriz Curricular

Ensino

Plano de Ensino i

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Campo Mourão

60

Informações da disciplina

Código Ofertado	Disciplina/Unidade Curricular	Modo de Avaliação	Modalidade da disciplina	Oferta
BCC34B	Linguagens Formals, Automatos E Computabilidade	Nota/Concelto E Frequência	Presencial	Semestral
	Cama	Horária		

AT	AP	APS
3	1	4
. Et anote	See Teóricas (autes a	emanais)

- AP: Attividades Práticas (aulas semanais).
 ANP: Attividades não presenciais (horas no período).
- APS: Atividades Práticas Supervisionadas (sulas no período).
 APSC: Atividades Práticas Supervisionadas (sulas no período).
 APSC: Atividades Práticas como Componente Curricular (sulas no período, esta carga horária está incluida em AP e AT).

Total: carga horária total da disciplina em horas.

APCC

Objetivo

Oferecer ao aluno noções formais de algoritmo, computabilidade e do problema de decisão, de modo a deixá-lo consciente das limitações da Ciência da Computação e capacitá-lo a identificar tais limitações em problemas típicos de Computação.

Ementa

Linguagens regulares, livres e sensíveis a contexto. Autômatos. Máquina de Turing. Computabilidade. Problema da parada, Classes de Problemas P. NP. NP-Completo e NP-Difícil. Nocões de Lambda calculus e funções recursivas.

Conteúdo Programático

Ordem	Ementa	Conteúdo
1	Linguagens regulares e livres de contexto. Autômatos.	Linguagens regulares. Autômatos finitos determinísticos e não determisticos Pumping lemma. Linguagens livres do contexto. Autômatos de pilha determinísticos e não determinísticos Expressões regulares. Gramática: regulares e livres de contexto. Forma Normal de Backus.
2	Linguagens sensíveis a contexto. Máquina de Turing.	Linguagens sensíveis a contexto Máquina de Turing. Variações de máquinas de Turing.
3	Computabilidade. Problema da parada. Noções de Lambda calculus e funções recursivas.	Computabilidade. Problema da parada Tese de Church-Turing. Cálculo lambda e funções recursivas. Máquina de Turing Universal. Redução.
4	Classes de Problemas P, NP, NP-Completo e NP- Difícil.	Definição de classes de problemas computacionais. Implicações de P = NP.

Bibliografia Básica

MENEZES, Paulo Blauth. Linguagene formale e autômatos. 6. ed. Porto Alegre: Bookman, 2011. 256 p. (Livros didáticos (Universidad Redesal do Rio Grande do Sul. Instituto de Informática); 3). ISBN 9788577807659. SIPSIR, Michael. Entrodução à teoria da computação. São Paulo, SP: Thomson Learning, c2006. xxi, 459 p. ISBN 9788522104994.

IPCROFT, John E.; ULLMAN, Jeffrey D.; MOTWANI, Rejeev. Introdução à teoria de autômatos, linguagens e computação. Rio de seiro, RJ: Campus, c2003. 560 p. ISBN 8535210725.	
Bibliometic Complements	

HOPCROTT, John E.; ULIMAN, Jeffrey D.; MOTWANI, Rajeev. Introduction to automata theory, languages, and computation. 3 rd. ed. Boston, MA: Addison Wesley, 2007. 535 p. ISBN 0321455363.
RODGER, Susan H.; FINLEY, Thomas W. JFLAP: An Interactive Formal Languages and Automata Package. 1 ⁹ ed., Sudbury, MA, EUK: Jones and Barlett, 2056, 102p. 15599 9780763736341.

ERA, Newton José. Introdução aos fundamentos da computação: linguagens e méquinas. São Paulo, SP: Cengage Learning, 2014. I, 319 p. ISBN 8522105081.	
WRTIN, John C. Introduction to languages and the theory of computation. 4th ed. New York: McGraw-Hill, 2011. 436 p. ISSIN 80073191461.	
RGAS, Aurélio Marinho. Expressões regulares: uma abordagem divertida . 4. ed. rev. e ampl. São Paulo: Novatec, 2012. 223 p. ISBN 88575222126.	

#	Resumo da Alteração	Edição	Data	Aprovação	Data
	Atualização de Plano de Ensino para aprovação.	Andre Luis Schwerz	24/08/2017	Andre Luis Schwerz	24/08/2017

01/03/2022 17:13

R. A. GONÇALVES (UTFPR) BCC34B-BCC - - v.2022.01

Planejamento das Aulas i

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Campo Mourão

1º semestre de 2022

Planejamento de Aula
LINGUAGENS FORMAIS, AUTOMATOS E COMPUTABILIDADE
BCC348-1C4A
Professorial Report Augustifus Georgius

_				rioneason(_	Hogerio Apa		JUINANTES
L				[Ex	portar CSV (Excel)	
#	Data pre	rvista	Tipo	Aulas/p	eso	Qtde Aulas Sincronas		Conteúdo previsto
1	03/03/2022	Quinta	Aula normal	2			do plan	ntação da disciplina, do plano de ensino e ejamento das aulas. Introdução e visão a disciplina. Conceitos básicos de em.
2	07/03/2022	Segunda	Aula normal	2		2	Lingua	gens Regulares.
3	10/03/2022	Quinta	Aula normal	2		2	Autôm	atos Finitos Deterministicos.
4	14/03/2022	Segunda	Aula normal	2		2	Autôm	atos Finitos Deterministicos.
5	17/03/2022	Quinta	Aula normal	2		2	Autôm	atos Finitos Não Determinísticos.
6	21/03/2022	Segunda	Aula normal	2		2	Autôm	atos Finitos Não Determinísticos.
7	24/03/2022	Quinta	Aula normal	2		2	Minimi	ração de AFDs.
8	28/03/2022	Segunda	Aula normal	2				sões Regulares.
9	31/03/2022	Quinta	Aula normal	2		2	Regula	
10	04/04/2022	Segunda	Aula normal	2				itos Finitos com saída (Máquinas de Mealy ina de Moore).
11	07/04/2022	Quinta	Aula normal	2		2	18 Ava	iação (P1)
12	11/04/2022	Segunda	Aula normal	2		2	Entreg	e Apresentação do 1º Trabalho.
13	14/04/2022	Quinta	Aula normal	2		2	Gramá	icas Livres de Contexto.
14	18/04/2022		Aula normal	2		2		icas Livres de Contexto.
	21/04/2022	Quinta					Tirade	tes
15	25/04/2022	Segunda	Aula normal	2		2	Formas	Normais.
16	28/04/2022	Quinta	Aula normal	2		2	Formas	Normais.
17	02/05/2022	Segunda	Aula normal	2		2	Autôm	ato com Pilha.
18	05/05/2022	Quinta	Aula normal	2		-		ato com Pilha.
19	09/05/2022	Segunda	Aula normal	2		2	Lema o Contex	le Bombeamento para Linguagens Livre de to.
20	12/05/2022	Quinta	Aula normal	2		2	29 Ava	iação.
21	16/05/2022	Segunda	Aula normal	2		2	Entreg	e Apresentação do 2º Trabalho.

				Exp	portar CSV	Excel)
#	Data pro	evista	Tipo	Aulas/peso	Qtde Aulas Sincronas	Conteúdo previsto
22	19/05/2022	Quinta	Aula normal	2	2	Máquinas de Turing.
23	23/05/2022	Segunda	Aula normal	2	2	Máquinas de Turing.
24	26/05/2022	Quinta	Aula normal	2	2	Máquina de Turing Universal.
25	30/05/2022	Segunda	Aula normal	2	2	Complexidade. P. NP. NP-Completo. Problemas NP-Completo.
26	02/06/2022	Quinta	Aula normal	2	2	Complexidade. P. NP. NP-Completo. Problemas NP-Completo.
27	06/06/2022	Segunda	Aula normal	2	2	Complexidade. P. NP. NP-Completo. Problemas NP-Completo.
28	09/06/2022	Quinta	Aula normal	2	2	Complexidade. P. NP. NP-Completo. Problemas NP-Completo.
29	13/06/2022	Segunda	Aula normal	2	2	Complexidade. P. NP. NP-Completo. Problemas NP-Completo.
	16/06/2022	Quinta				Corpus Christi
30	20/06/2022	Segunda	Aula normal	2	2	3º Avaliação.
31	23/06/2022	Quinta	Aula normal	2	2	Entrega e Apresentação do 3º Trabalho.
32	27/06/2022	Segunda	Aula normal	2	2	Atividades de Recuperação.
	30/06/2022		Aula normal	2		Atividades de Recuperação.
18	04/07/2022	Segunda	Avaliação	1,00		NF
34	04/07/2022	Segunda	Aula	2	2	Fechamento e Finalização das Atividades.

	Procedimentos de ensino
Atividade	Descrição
	As atividades de complementação de carga horária serão contempladas com exercícios e o desenvolvimento de atividades.
	As qualax combination indicode expositivos e ativos. A patrie expositivo será validada. As participares de la completa de completa e demonstrações. Co exemplos e indures laborar. As participares de la completa de completa e demonstrações. Co exemplos e indures participares de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la comple
de Ensino - Aulas Práticas - AP	As autius prédircias serdio realizadais, osando possível, em laboratério. As autius sedes outilizadas para conduciri estudos que contemplem ou conceitos distudados nas autius teóricas, implementação de soluções computacionais com autématos indiquinas de Turingi com auxilio de fermamentas computacionais. Com Meterial necessário: Laboratório semanais de computação, projetor multimidia, seados, princias, computados / Pilos, visualizador de sociemente PIOF, pacida de secretório Liberdiffico, acesso à Internet, na vegador Well, compilador Javo, interpretador / Piron, Modolis.
Procedimentos de Avaliação	O procedimento de avaliação consistirá de três provas (P1, P2, P3), três trabalilhos (T1, T2, T3) e uma nota de Aproveitamento e Cumprimento de Atividades (AT), que será calculada com base na entrega do conjunto de atividades, como exercícios e resumos, por exemplo.

Planejamento das Aulas ii

	Data	Histórico de alterações Observação Planeiamento de Aula (da turn	60h				
			60h				
			60h				
	CHT da disciplina						
	CCH		4h				
	Autas sinomnas		68				
	Autas	Iotals	68				
		Totais					
nk para Aulas ncronas	Aula presencia	il no ambiente alocado conform	e confirmação de matrícul	à.			
	planilha compartili será disponibilizad	nada com os estudantes, cujo e o no Moodle.	ndereço para acesso tamb	ém			
		as avaliações serão divulgadas					
	NFR = (NF -	$+2 \times PR)/3$					
	peso 2), ou seja:						
	recuperação, a not	ta final de Avaliação após recup original (com peso 1) e a nota o	eração (NFR) será a médi				
		não alcançar a média, será ofer todo o conteúdo trabalhado na		io			
	$NF = (3 \times P1 + 3 \times P2 + 3 \times P3 + T1 + T2 + T3 + AT)/13$						
	Desta forma, a nota final - NF - será calculada com a seguinte fórmula:						
	cada trabalho e o o	conjunto de atividades terão pe	so 1.				
		idades desenvolvido no período acões serão da seguinte forma		130			
	atividades serão in Cada prova e traba						
	As provas serão in	dividuais, os trabalhos serão in	dividuais ou em dupla e as				

Canais de Comunicação

Departamento: DACOM

· Coordenação: COCIC

· Sala: E006/12

· Horários de atendimento

· E-mail institucional: rogerioag@utfpr.edu.br

Moodle: Informações, materiais e avaliações moodle.utfpr.edu.br

· Página da disciplina no Moodle.

Código de Inscrição: BCC34B-IC4A

Grupo de Whatsapp ou Telegram.

· E-mails dos Sistema Acadêmico? Redes Sociais?

Critério i

- O procedimento de avaliação consistirá de três provas (P1, P2, P3), três trabalhos (T1, T2, T3) e uma nota de Aproveitamento e Cumprimento de Atividades (AT), que será calculada com base na entrega do conjunto de atividades, como exercícios e resumos, por exemplo.
- As provas serão individuais, os trabalhos serão individuais ou em dupla e as atividades serão individuais.
- · Cada prova e trabalho valerá 10,0.
- O conjunto de Atividades desenvolvido no período valerá 10,0.
- Os pesos das avaliações serão da seguinte forma: cada prova possuirá peso 3 e cada trabalho e o conjunto de atividades terão peso 1.

Critério ii

Desta forma, a nota final - NF - será calculada com a seguinte fórmula:

$$NF = (3 \times P1 + 3 \times P2 + 3 \times P3 + T1 + T2 + T3 + AT)/13$$

Ao estudante que não alcançar a média, será oferecida prova de recuperação (PR), abrangendo todo o conteúdo trabalhado na disciplina. Em caso de recuperação, a nota final de Avaliação após recuperação (NFR) será a média entre a nota final original (com peso 1) e a nota da prova de recuperação (com peso 2), ou seja:

$$NFR = (NF + 2 \times PR)/3$$

As notas de todas as avaliações serão divulgadas no Moodle da disciplina ou em planilha compartilhada com os estudantes, cujo endereço para acesso também será disponibilizado no Moodle.

Visão Geral

Visão Geral da Disciplina i

 Existem basicamente/tradicionalmente três áreas centrais da Teoria da Computaçõa: Autômatos, Computabilidade e Complexidade. Áreas que estão interligadas pela questão:

Quais são as capacidades e limitações fundamentais dos computadores?

- LFAC é uma disciplina que utiliza alguns conteúdos de outras disciplinas e gera conteúdos para outras.
- Autômatos, Expressões Regulares e Gramática Livre de Contexto são necessárias para a Análise Léxica e Análise Sintática de Compiladores.

Linguagens e Autômatos i

- · Modelos Matemáticos de Computação:
 - · Definição.
 - · Propriedades.
- · Linguagens Formais / Autômatos
 - Modelo Matemático de Computação para a especificação e reconhecimento de linguagens.
- Linguagem
 - · Conjunto de soluções para um problema computacional.

Máquina Automática de Venda de Produtos i

Qual a linguagem para a venda de um produto nessa máquina?

Conceitos Básicos i

Alfabeto

Um **alfabeto** é um conjunto finito não vazio de símbolos ou caracteres. O alfabeto sobre o qual as cadeias são definidas pode variar com a aplicação.

Portanto:

- · um conjunto infinito não é um alfabeto;
- · o conjunto vazio é um alfabeto.
- · Os membros do alfabeto são os símbolos do alfabeto.
- Geralmente, usamos letras gregas maiúsculas Σ e Γ para designar alfabetos e a escrita **máquina de escrever** para símbolos de um alfabeto.

Exemplos

- \cdot Σ_1 = {0,1} (Binário)
- \cdot Σ_2 = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z} (26 símbolos)
- \cdot Σ_3 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} (10 símbolos)
- \cdot Γ_1 = {1, 5, 10, 25, 50, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O} (20 símbolos)

Conceitos Básicos iii

Palavra, cadeia ou sentença

Uma **palavra** ou **cadeia** sobre um alfabeto é uma sequência finita de símbolos (do alfabeto) justapostos.

Portanto:

- · uma cadeia sem símbolos é uma palavra válida.
- \cdot ϵ denota a cadeia vazia ou palavra vazia.

Exemplos

- \cdot Σ_1 = {0,1} (Binário)
 - \cdot 01001 é uma palavra sobre Σ_1 .
- \cdot Σ_2 = {a, b, c, ..., z}
 - · abracadabra
 - · abacaxi
 - · apple
 - · wyyzywwzz
 - · zyd
- $\Sigma_3 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - 1
 - 33
 - 00031
 - . 00

Conceitos Básicos v

Exemplos

```
\cdot \Gamma_1 = {1, 5, 10, 25, 50, A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0}
```

- · 5 5 10 5 K (Chocolate Hershey's)
- · 1 1 1 1 1 A (Spearmint)

Palavras: Propriedades i

Comprimento

O **comprimento** de uma palavra é a quantidade de símbolos que compõem a palavra.

Se w é uma cadeia sobre um alfabeto, o **comprimento** de w, escrito |w|, é o número de símbolos que ela tem.

Se w tem comprimento n , podemos escrever $w=w_1w_2...w_n$, onde cada $w_i\in \Sigma.$

Exemplos

|00031| = 5|00| = 2

```
\begin{array}{l} \cdot \ \Sigma_2 = \{ {\rm a, \ b, \ c, \ d, \ e, \ f, \ g, \ h, \ i, \ j, \ k, \ l, \ m, \ n, \ o, \ p, \ \\ {\rm q, \ r, \ s, \ t, \ u, \ v, \ w, \ x, \ y, \ z} \\ \cdot \ |abacaxi| = 7 \\ \cdot \ |apple| = 5 \\ \cdot \ |wyyzywwzz| = 9 \\ \cdot \ |zyd| = 3 \\ \cdot \ \Sigma_3 = \{ {\rm 0, \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \ 9} \} \\ \cdot \ |1| = 1 \\ \cdot \ |33| = 2 \end{array}
```

Exemplos

```
\cdot \Gamma_1 = {1, 5, 10, 25, 50, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O}
```

- |55105K| = 5
- $\cdot |11111A| = 6$

Palavras: Palavra "vazia" i

Palayra yazia

A palavra vazia é uma palavra de comprimento zero, ou seja, uma palavra que não contém símbolos!

Representação

- ϵ (geralmente utilizaremos esta para palavra vazia.)
- λ (geralmente utilizaremos como representação de um símbolo "coringa", sem tamanho)

Palavras: Reverso i

Reverso

O reverso de w, escrito w^R , é a cadeia obtida escrevendo w em ordem inversa, isto é, $w_nw_{n-1}...w_1$

Exemplos

- \cdot w = abacate
- \cdot $w^R = {
 m etacaba}$

Palavras: Operações i

Concatenação

Uma palavra pode ser concatenada/somada/anexada a outra palavra, formando uma nova palavra.

Se temos a cadeia x de comprimento m e a cadeia y de comprimento n, a **concatenação** de x e y, escrito como xy, é a cadeia obtida concatenando-se y ao final de x, como em $x_1...x_my_1...y_n$.

Para concatenar uma cadeia com ela mesma muitas vezes usamos a notação com expoente.

$$\overbrace{xx...x}^k = x^k$$

$$x^k = xx^{k-1}$$

$$x^0 = \epsilon$$

Exemplos

```
\cdot \Sigma_2 = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p,
  q, r, s, t, u, v, w, x, y, z
   \cdot abacaxi \cdot apple = abacaxiapple
   \cdot apple \cdot abacaxi = appleabacaxi
   \cdot abacaxi \cdot = abacaxi
   \cdot \epsilon \cdot apple = apple
   \cdot \epsilon \cdot \epsilon =
\Sigma_3 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
  \cdot 1 \cdot 33 = 133
  \cdot 00031 \cdot 0 = 000310
```

Palavras: Composição de palavras i

Composição de palavras

Uma palavra pode ser composta por outras (consequência das operações de concatenação).

Formas de Composição

- Sufixo
- Prefixo
- Subpalavra

Algumas Convenções

Representaremos palavras como "variáveis" nomeados com letras gregas em minúsculo: α,β,γ .

Palavras: Composição de palavras ii

Prefixo

Uma palavra α é prefixo de outra palavra β se é possível escrever β como $\alpha \cdot \gamma$

Exemplos de prefixo

- · ab é prefixo de __ab__c
 - β = abc
 - $\cdot \alpha$ = ab
 - γ = c
 - · Logo: $\beta = \alpha \cdot \gamma$

Palavras: Composição de palavras iii

Prefixo

Uma palavra α é prefixo de outra palavra β se é possível escrever β como $\alpha \cdot \gamma$

Exemplos de prefixo

- \cdot ϵ é prefixo de ${\sf abc}$
 - β = abc
 - α = ε
 - γ = abc
 - · Logo: $\beta = \alpha \cdot \gamma$
 - α = abc
 - $\cdot \gamma = \epsilon$
 - \cdot β = $\alpha \cdot \gamma$

Palavras: Composição de palavras iv

Sufixo

Uma palavra α é sufixo de outra palavra β se é possível escrever β como $\gamma \cdot \alpha$

Exemplos de Sufixo

- · bd é sufixo de a__bc__
 - β = abc
 - · α = bc
 - $\cdot \gamma = a$
 - · Logo: $\beta = \gamma \cdot \alpha$

Palavras: Composição de palavras v

Sufixo

Uma palavra α é sufixo de outra palavra β se é possível escrever β como $\gamma \cdot \alpha$

Exemplos de Sufixo (com epsilon)

- \cdot ϵ é sufixo de abc
 - β = abc
 - α = ε
 - γ = abc
 - · Logo: $\beta = \gamma \cdot \alpha$

Palavras: Composição de palavras vi

Subpalavra

Uma palavra α é subpalavra de outra palavra β se é possível escrever β como $\gamma \cdot \alpha \cdot \delta$

Exemplos de Subpalavras

- · bc é subpalavra de abcd
 - β = abcd
 - $\cdot \gamma = a$
 - \cdot α = bc
 - \cdot δ = d
 - · Logo: $\beta = \gamma \cdot \alpha \cdot \delta$

Palavras: Composição de palavras vii

Subpalavra

Uma palavra α é subpalavra de outra palavra β se é possível escrever β como $\gamma \cdot \alpha \cdot \delta$

Exemplos de Subpalavras (com epsilon)

- \cdot ϵ é subpalavra de abcd
 - β = abcd
 - $\cdot \gamma$ = a
 - $\cdot \alpha = \epsilon$
 - \cdot δ = bcd
 - · Logo: $\beta = \gamma \cdot \alpha \cdot \delta$

Palavras: Composição de palavras viii

Palavra Vazia

A *palavra vazia* é prefixo, sufixo e subpalavra de qualquer outra palavra.

Palavras: Composição de palavras ix

Ordenação Lexográfica

A **ordenação lexográfica** de cadeias é a mesma que a ordenação familiar do dicionário, exceto que as cadeias curtas precedem as cadeias mais longas.

Exemplo

O ordenação lexográfica de todas as cadeias sobre o alfabeto

$$\Sigma_1=\{0,1\}.$$

$$(\epsilon, 0, 1, 00, 01, 10, 11, 000, ...)$$

Uma linguagem é um conjunto de cadeias.

Exercícios

Exercícios: Alfabetos e Palavras i

- · Oual é o alfabeto?
- · Quantos símbolos ele possui?
- Qual seria uma palavra para enviar dados e fechar uma conexão?
- A concatenação de qualquer palavra ainda é uma palavra válida?

Linguagem

Linguagem i

Definição

Uma linguagem é um **conjunto**, finito ou infinito, de palavras sob um determinado alfabeto.

Uma linguagem formal ou simplesmente linguagem L sobre um alfabeto Σ , é um conjunto de palavras sobre Σ , ou seja:

 $L\subseteq \Sigma^*$

Linguagem ii

Exemplos

- . {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q,
 r, s, t, u, v, w, x, y, z}
 - · Língua Portuguesa
 - · Língua Inglesa
- $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - · Números Naturais
 - · Números quadrados perfeitos (0, 1, 4, 9, ...)

Linguagem iii

Operações Suportadas

- · Operações de conjuntos (união,. interseção, diferença, ...)
- Concatenação
- · Fechamento (*, +)

Linguagem iv

Operações: Concatenação

A concatenação de duas linguagens X e Y $(X \cdot Y)$ resulta em uma linguagem Z formada pela concatenação de todas as palavras em X com todas as palavras em Y.

$$Z = X \cdot Y = XY\{xy | x \in X \land y \in Y\}$$

Exemplo

- $\cdot X = \{a, b, c\}$
- $Y = \{d, ae\}$
- $\cdot X \cdot Y = \{ad, aae, bd, bae, cd, cae\}$
- $\cdot Y \cdot X = \{da, db, dc, aea, aeb, aec\}$

Concatenação

Também podemos concatenar uma linguagem com ele mesma.

Linguagem v

Exemplo

- $\cdot X = \{a, b, c\}$
- $\cdot \ X \cdot X = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$
- $\cdot \{ac, ba\} \cdot \{ac, ba\} = \{acac, acba, baac, baba\}$

Linguagem vi

Concatenação e Potência de Alfabeto

 Σ^i (potência de um alfabeto)

A concatenação $\Sigma\Sigma$, que gera cadeias de comprimento 2 formadas sobre o alfabeto Σ , é também representada por Σ^2 . Podemos generalizar para:

$$\Sigma^i = \Sigma \cdot \Sigma^{i-1} \text{, } i \geq 0.$$

Sendo, por definição, que $\Sigma^0 = \{\epsilon\}$

Linguagem vii

Exemplo

Considere o alfabeto $\Sigma = \{a,b\}$. Temos que:

$$\begin{split} & \cdot \ \Sigma^0 = \{\epsilon\} \\ & \cdot \ \Sigma^1 = \Sigma \cdot \Sigma^0 = \{a,b\} \cdot \{\} = \{a,b\} \\ & \cdot \ \Sigma^2 = \Sigma \cdot \Sigma^1 = \{a,b\} \cdot \{a,b\} = \{aa,ab,ba,bb\} \\ & \cdot \ \Sigma^3 = \Sigma \cdot \Sigma^2 = \{a,b\} \cdot \{aa,ab,ba,bb\} = \\ & \{aaa,aab,aba,abb,baa,bab,bba,bbb\} \\ & \cdot \ \Sigma^4 = ? \end{split}$$

Linguagem viii

Fechamento: Fecho Reflexivo

Fecho Reflexivo: Σ^*

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots = \bigcup_{k=0}^{\infty} \Sigma^k$$

Exemplo

Considere o alfabeto $\Sigma = \{a, v\}$. Temos que:

 $\begin{array}{l} \cdot \ \Sigma^* = \{\epsilon\} \cup \{a,b\} \cup \{aa,ab,ba,bb\} \cup \\ \{aaa,aab,aba,abb,baa,bab,bba,bbb\} \cup \dots \end{array}$

Linguagem ix

Fechamento: Fecho Transitivo

Fecho Transitivo: Σ^+

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \ldots = \bigcup_{k=1}^\infty \Sigma^k$$

ou

$$\Sigma^+ = \Sigma^* - \{\epsilon\} = \bigcup_{k=1}^{\infty} \Sigma^k$$

Exemplo

Considere o alfabeto $\Sigma=\{a,v\}$. Temos que:

 $\begin{array}{l} \cdot \ \Sigma^+ = \{a,b\} \cup \{aa,ab,ba,bb\} \cup \\ \{aaa,aab,aba,abb,baa,bab,bba,bbb\} \cup \dots \end{array}$

Linguagem x

Complemento

Complemento da linguagem X : \overline{X}

$$\overline{X} = \Sigma^* - X$$

Exemplo

Sejam $A=\{a,b,c\}$, $B=\{a,b,c,d\}$ e $C=\{d,c,a,b\}$. Então, $\overline{A_B}=\{d\}$ e $\overline{B_C}=\emptyset$.

Sendo $D=\{a,b,c,d,e\}$ o conjunto universo, $\overline{A}=\{d,e\}$, $\overline{B}=\overline{C}=\{e\}$ e $\overline{D}=\emptyset$.

- O conjunto vazio \emptyset e o conjunto formado pela palavra vazia $\{\epsilon\}$ são linguagens sobre qualquer alfabeto. Obviamente, vale que:

$$\emptyset \neq \{\epsilon\}$$

Linguagem xi

- Os conjuntos Σ^* e Σ^+ são linguagens sobre um alfabeto Σ qualquer. Obviamente, que:

$$\Sigma^* \neq \Sigma^+$$

· Suponha o alfabeto $\Sigma=\{a,b\}$. Então, o conjunto de *palíndromos* (palavras que tem a mesm leitura da esquerda para a direita e vice-versa) sobre Σ é um exemplo de linguagem infinita. Assim, são palavras dessa linguagem:

$$\epsilon, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, \dots$$

- O conjunto de todas as linguagens sobre um alfabeto Σ é o conjunto das partes de Σ^* , ou seja:

 2^{Σ^*}

Exercícios i

Exercício

Dados o alfabeto $\{a,b\}$ e as linguagens $L_1=\{a,ab\}$ e $L_2=\{\epsilon,a,ba\}$, determine:

- 1. $L_1 \cup L_2$
 - $\{a,ab\} \cup \{\epsilon,a,ba\} \rightarrow \{a,ab,\epsilon,ba\}$
- 2. $L_1 \cap L_2$

$$\{a,ab\} \cap \{\epsilon,a,ba\} \rightarrow \{a\}$$

- 3. $L_1 L_2$
 - $\{a,ab\}-\{\epsilon,a,ba\}\to\{ab\}$

Exercícios

- 4. $L_2 L_1$
 - $\{\epsilon,a,ba\}-\{a,ab\}\to\{\epsilon,ab\}$
- 5. $L_1 \cdot L_2$
 - $\{a,ab\}\cdot\{\epsilon,a,ba\}\rightarrow\{a,aa,aba,ab,abba\}$
- 6. $L_2 \cdot L_1$
 - $\{\epsilon, a, ba\} \cdot \{a, ab\} \rightarrow \{a, ab, aa, aab, baa, baab\}$

Exercícios

- 7. $L_1^2=L_1\cdot L_1$ $\{a,ab\}\cdot \{a,ab\}\to \{aa,aab,aba,abab\}$
- 8. $L_2^2=L_2\cdot L_2$ $\{\epsilon,a,ba\}\cdot \{\epsilon,a,ba\} \to \{\epsilon,a,ba,aa,aba,baa,baba\}$
- 9. $\overline{L_1} = A^* L_1$

Figura 2: Relação entre símbolo, alfabeto, palavra e linguagem

Figura 3: alfabeto $\Sigma=\{a\}$, palavra = aaa, linguagem = {aaa}

Próximas Aulas

Próximas Aulas: Linguagens Regulares

· Linguagens Regulares

Livros Texto

MENEZES, P. B. Linguagens formais e autômatos. Porto Alegre: Bookman, 2011. ISBN 9788577807994.

SIPSER, M. Introdução à teoria da computação. [s. l.]: Thomson Learning, 2006. ISBN 9788522104994.

Referências i

Notas de Aula do Prof. Dr. Marco Aurélio Graciotto Silva.

Menezes, Paulo Blauth. 2011. *Linguagens Formais e Autômatos*. Bookman. https://search.ebscohost.com/login.aspx?direct=true&db=edsmib&A N=edsmib.000000444&lang=pt-br&site=eds-live&scope=site.

Sipser, Michael. 2007. *Introdução à Teoria Da Computação*. Cengage
Learning. https://search.ebscohost.com/login.aspx?direct=true&db=ed
smib&AN=edsmib.000008725&lang=pt-br&site=eds-live&scope=site.