Instituto Politécnico do Porto, Instituto Superior de Engenharia, Licenciatura em Eng. Electrotécnica e de Computadores, Teoria dos Sistemas, 17-Julho-2012

Todas as perguntas devem ser respondidas unicamente na folha de respostas. Seleccione apenas uma das 4 alternativas assinalando-a na matriz de respostas. O teste é sem consulta. Duração da prova: 1:30

1. Considere o seguinte diagrama de blocos de um sistema de controlo representado na figura. Sejam $s \in \mathcal{L}$, respectivamente a variável e o operador de Laplace e sejam $R(s) = \mathcal{L}[r(t)]$ e $Y(s) = \mathcal{L}[y(t)]$, respectivamente, as transformadas de Laplace do sinais de entrada e de saída. Simplificando o diagrama de blocos de modo a obter a função de transferência do sistema $\frac{Y(s)}{R(s)}$, resulta:

A)
$$\frac{Y(s)}{R(s)} = \frac{G_1 G_2 G_3 + H_2}{1 + G_1 G_2 G_3 H_1 H_3}$$

B)
$$\frac{Y(s)}{R(s)} = \frac{G_1(G_2G_3 + H_2)}{1 + G_1G_2G_3H_1H_3}$$

A)
$$\frac{Y(s)}{R(s)} = \frac{G_1G_2G_3 + H_2}{1 + G_1G_2G_3H_1H_3}$$

B) $\frac{Y(s)}{R(s)} = \frac{G_1(G_2G_3 + H_2)}{1 + G_1G_2G_3H_1H_3}$
C) $\frac{Y(s)}{R(s)} = \frac{G_1G_2G_3 + H_2}{1 + G_1H_1(1 + G_2G_3H_3)}$

- D) Outro resultado
- 2. Considere o sistema mecânico representado na figura onde x_1, x_2 e x_3 representam, respectivamente, os deslocamentos das massas M_1 , M_2 e M_3 . O modelo matemático é dado por:

A)
$$M_1\ddot{x}_1 + K_1(x_1 - x_2) + B_1(\dot{x}_1 - \dot{x}_2) = 0$$

$$M_2\ddot{x}_2 + K_1(x_2 - x_1) + B_1(\dot{x}_2 - \dot{x}_1) + K_2(x_2 - x_3) + B_2(\dot{x}_2 - \dot{x}_3) = 0$$

$$M_3\ddot{x}_3 + K_2(x_3 - x_2) + B_2(\dot{x}_3 - \dot{x}_2) = 0$$

$$B)M_1\ddot{x}_1 + K_1x_1 + B_1\dot{x}_1 = 0$$

$$M_2\ddot{x}_2 + K_1x_2 + B_1\dot{x}_2 + K_2x_2 + B_2\dot{x}_2 = 0$$

$$M_3\ddot{x}_3 + K_2x_3 + B_2\dot{x}_3 = 0$$

C)
$$M_1\ddot{x}_1 = K_1(x_1 - x_2) + B_1(\dot{x}_1 - \dot{x}_2)$$

$$M_{2}\ddot{x}_{2} = K_{1}(x_{1} - x_{2}) + B_{1}(\dot{x}_{1} - \dot{x}_{2})$$

$$M_{2}\ddot{x}_{2} = K_{1}(x_{2} - x_{1}) + B_{1}(\dot{x}_{2} - \dot{x}_{1}) - K_{2}(x_{2} - x_{3}) - B_{2}(\dot{x}_{2} - \dot{x}_{3})$$

$$M_3\ddot{x}_3 = K_2(x_3 - x_2) + B_2(\dot{x}_3 - \dot{x}_2)$$

- D) Outro resultado
- 3. Considere a resposta temporal c(t) de um sistema de segunda ordem descrito pela função de transferência $\frac{C(s)}{U(s)}=\frac{18}{s^2+2s+9}$ e um sinal de entrada u(t) em degrau unitário. Sejam $s \in \mathcal{L}$, respectivamente a variável e o operador de Laplace, sejam $U(s) = \mathcal{L}[u(t)]$, $C(s) = \mathcal{L}[c(t)]$. Resulta t_p o tempo de pico e $c(t_p)$ o valor do pico da resposta temporal:

A)
$$t_p = 1{,}111 \text{ seg}, c(t_p) = 2{,}659$$

B)
$$t_p = 1.238 \text{ seg}, c(t_p) = 1,906$$

C)
$$t_p = 1,305 \text{ seg}, c(t_p) = 2,125$$

- D) Outro resultado
- 4. Considere a resposta temporal c(t) representada na figura de um sistema de segunda ordem para um sinal de entrada u(t)em degrau unitário. Então, o sistema é descrito pela função de transferência $G(s) = \frac{C(s)}{U(s)}$:

A)
$$G(s) = \frac{16}{s^2 + 4s + 16}$$

B)
$$G(s) = \frac{16}{s^2 + 4s + 4}$$

A)
$$G(s) = \frac{16}{s^2 + 4s + 16}$$

B) $G(s) = \frac{16}{s^2 + 4s + 4}$
C) $G(s) = \frac{16}{s^2 + 8s + 16}$
D) $G(s) = \frac{16}{s^2 + 4s + 8}$

D)
$$G(s) = \frac{16}{s^2 + 4s + 8}$$

5. Considere a resposta temporal c(t) de um sistema em malha fechada com função de transferência na malha directa $G(s) = \frac{1}{s(s^2+s+10)}$ e com realimentação unitária. Considere um sinal de entrada $r(t) = 1, t \ge 0$, em degrau unitário. Seja o erro da resposta temporal do sistema em malha

fechada dado por e(t) = r(t) - c(t). Então, em regime permanente (steadystate) o erro ao degrau unitário vem:

$$A) e_{ss} = 0$$

B)
$$e_{ss} = 10$$

C)
$$e_{ss} = \frac{1}{10}$$

C) $e_{ss} = \frac{1}{10}$ D) Outro resultado

6. Considere um sistema com função de transferência (em malha aberta) G(s) e o respectivo lugar de raízes directo (LRD) que se encontra representado na figura. Sabe-se que existem polos/zeros, simples ou múltiplos, em $\sigma = 0$, $\sigma = -1$, $\sigma = -2$, $\sigma = -3$, e que o traçado no LRD no eixo real situa-se nos intervalos $\sigma \in [-\infty, -3] \cup [-2, 0]$. Então resulta:

B)
$$G(s) = \frac{K(s+3)}{s(s+1)^2(s+2)}$$

C)
$$G(s) = \frac{K(s+2)}{(s+2)^2(s+2)}$$

D)
$$G(s) = \frac{K(s+3)}{s(s+1)(s+2)^2}$$

7. Considere um sistema cuja função de transferência G(s) dá origem aos diagramas de Bode das amplitudes (eixo vertical em dB, encontrando-se assinalada a linha de 0 dB) e fases (eixo vertical em graus, encontrando-se assinalada a linha de -180 graus) representados na figura. Então, sabe-se:

3.657

A)
$$G(s) = \frac{1}{(s+1)(s+2)}$$

B)
$$G(s) = \frac{s+1}{s^2(s+2)}$$

C)
$$G(s) = \frac{s+3}{s(s+1)(s+2)}$$

A)
$$G(s) = \frac{1}{(s+1)(s+2)}$$

B) $G(s) = \frac{s+1}{s^2(s+2)}$
C) $G(s) = \frac{s+3}{s(s+1)(s+2)}$
D) $G(s) = \frac{(s+3)(s+4)}{s(s+1)(s+2)}$

8. Considere um sistema cuja função de transferência (em malha aberta) é dada por $G\left(s\right)=\frac{1}{\left(s+1\right)^{4}}$. Pretende-se sintonizar um controlador PID (Proporcional, Integral e Diferencial) pelo método de Ziegler e Nichols "closed loop". Assim, os parâmetros K (ganho proporcional), T_i (constante de tempo integral) e T_d (constante de tempo diferencial) resultam:

B)
$$K = 1.600, T_i = 4.163, T_d = 0.509$$

C)
$$K = 2.400, T_i = 3.142, T_d = 0.785$$

D) Outro resultado

$$|\mathcal{H}_{1}\ddot{x}_{1} + \xi_{1}(x_{1}-x_{2}) + \beta_{1}(\ddot{x}_{1}-\ddot{x}_{2}) = 0$$

$$|\mathcal{H}_{2}\ddot{x}_{2} + \xi_{1}(\chi_{2}-\chi_{1}) + \beta_{1}(\ddot{x}_{2}-\ddot{x}_{1}) + k_{2}(\chi_{2}-\chi_{3}) + \beta_{2}(\ddot{x}_{2}-\ddot{x}_{3}) = 0$$

$$|\mathcal{H}_{3}\ddot{x}_{3} + \xi_{2}(\chi_{3}-\chi_{2}) + \beta_{2}(\ddot{x}_{3}-\ddot{x}_{2}) = 0$$

3)
$$G(s) = \frac{2 \times 9}{5^2 + 25 + 9}$$
 | $25 \text{ Wa} = 2$ | $5 = 0.333$ | $5 = 1.111 \text{ dy}$
 $5 = 1.111 \text{ dy}$
 $5 = 2.659$

4)
$$G(s) = \frac{16}{s^2 + 44 + 16}$$
 $|w_n|^2 = 16$ $|$

Fase = -2×90 = -180° fara w baixo e fen walto

8)
$$\frac{k}{(s+1)!} + 1 = 0$$

 $k + 5'' + 45^3 + 65^2 + 45 + 1 = 0$

Jane K=4 obtéen-dr me linhe de se 5 x2+5=0 => s=±j

Ku=4 -> W=1 -> Pn=21 =6,28

2. N closed loop