Semiparametric Zero-Inflated Regression Models

Eric S. Roemmele

Department of Statistics, University of Kentucky

Oral Exam Presentation April 16th, 2018

- Motivational Data: Meth Lab Seizures
- 2 Introduction to Zero-Inflated Regression
- Semiparametric Extension to ZIP
 - Overview and Estimation
 - Theoretical Results
 - Inference
 - Preliminary Simulations
 - Application to Meth Lab Seizures Data
- Spatial ZIP
- 5 Conclusions & Future Directions

- Motivational Data: Meth Lab Seizures
- 2 Introduction to Zero-Inflated Regression
- 3 Semiparametric Extension to ZIP
 - Overview and Estimation
 - Theoretical Results
 - Inference
 - Preliminary Simulations
 - Application to Meth Lab Seizures Data
- Spatial ZIP
- 5 Conclusions & Future Directions

Meth Labs Counts in KY

- ► The outcome of interest is the number of clandestine meth lab seizures in each county of Kentucky for the year of 2011.
- Overall, the outcome is highly right-skewed, with about 20% zero observations, which is the most frequent count.
- ► The median number of lab seizures is 3.
- ▶ Thus if we considered our response Poisson distributed, we would expect about $e^{-3} \times 120 \approx 2$ zero observations.
- ► Motivation How can we define a process in which excessive zeros arise?

Data Description Cont.

▶ Here are a summary of the counts beyond 20:

Number
5
3
4
4
1
2

- ▶ Observe *over-dispersion* variance exceeds mean
- ► Predictors include
 - ► The amount of pseudophedrine sold (in grams) per 100 people.
 - ► Socioeconomic variables such as median age, median income, percent poverty, etc.

- 1 Motivational Data: Meth Lab Seizures
- 2 Introduction to Zero-Inflated Regression
- 3 Semiparametric Extension to ZIP
 - Overview and Estimation
 - Theoretical Results
 - Inference
 - Preliminary Simulations
 - Application to Meth Lab Seizures Data
- 4 Spatial ZIF
- **5** Conclusions & Future Directions

Problems with Excessive Zero Counts

- ▶ Suppose $\{(Y_i, X_i)\}_{i=1}^n$ is observed, where the response Y_i is a discrete random variable, and X_i are covariates.
- Typically, we would model such a process by Poisson or negative binomial regression.
- \blacktriangleright However, the behavior of zero counts in the observed Y_i can create difficulties.
- ► For example, data may structurally exclude zeros (i.e., zero-truncation), or have different generating processes for the zero and non-zero counts.
- Moreover, data can exhibit zero-inflation excessive zeros relative to the assumed count distribution

Zero-Generating Process

- ► How do zeros arise in the Y_is?
- Two common approaches Hurdle Models and Zero-Inflated Models.
 - ▶ Both employ a mixture structure
- Hurdle Models Zeros come from a different process than the positive counts
 - ▶ $f(y|\pi,\mu) = \pi I\{y=0\} + (1-\pi)I\{y \in \mathbb{Z}^+\} \Big[p(y|\mu)/(1-p(0|\mu))\Big]$ where $p(y|\mu)$ is some pmf.
 - i.e., Distribution of the response is a mix between a degenerate component at zero and a left truncated response at zero.
- Zero-Inflated Models Define a latent process which says zeros come from two states - a degenerate and random state (i.e., zero comes from a count distribution)
- ► In this presentation, we'll focus on the latter of the aforementioned.

ZI Regression Model Definition

Definition

Let the discrete random variable Y_i be a count variable of interest and $(\boldsymbol{X}_i,\boldsymbol{Z}_i)$ be vectors of predictor variables measured for each subject i, where $i=1,\dots,n$. Let $p\left(y|\mu,\theta\right)$ be a pmf function with mean μ and dispersion/scale/heterogeneity parameter θ . The **ZI pmf** f is given by

$$f(y_i|x_i, z_i, \mu, \theta) = \pi_i I\{y_i = 0\} + (1 - \pi_i)p(y|\mu_i, \theta)$$
, (1)

where $0 \le \pi_i \le 1$. Parameterizing the count distribution in terms of its mean, μ_i , we relate this quantity to the predictor vector as

$$\log(\mu_i) = \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{\beta},$$

while the mixing proportions are typically modeled as

$$\mathsf{logit}(\pi_i) = \boldsymbol{z}_i^{\mathrm{T}} \boldsymbol{\alpha},$$

where the predictors in z_i may be uncoupled from those predictors in x_i .

ZI Reg Continued

- ▶ Did zero come from the degenerate or count component?
- ► Ex: Number of visits to a physician in a year
 - ► A patient could have zero visits because they were never ill, and thus had no reason to visit a doctor (strategic zero).
 - Or, maybe the patient was ill, but didn't have insurance, or followed alternative medicine (incidental zero).
- ▶ The most common choices for $p(\cdot)$ are the Poisson and negative binomial (NB).

► NB -
$$p(y|\mu, \theta) = \frac{\Gamma(\theta+y)}{y!\Gamma(\theta)} \left(\frac{\mu}{\theta+\mu}\right)^y \left(\frac{\theta}{\theta+\mu}\right)^{\theta}$$

- ▶ The expectation and variance are μ and $\mu + \mu^2 \theta$, respectively.
- ► The NB is commonly used to characterize *over-dispersion* the variability is increasing with the mean.
- ► For this presentation, we'll focus on the Poisson pmf

NB vs Poisson

Literature Review - Applications

- Highly utilized across various disciplines
- Manufacturing ZI Poisson (ZIP) regression was first developed by Lambert (1992) to characterize the number of defects in a switchboard.
 - ► Perfect State defects are impossible (degenerate)
 - ► Imperfect State defects are possible (Poisson)
- Ecology Martin et al. (2005) modeled woodland bird patch occupancy
 - ► True Zero Bird species does not naturally occupy that site (degenerate)
 - False Zero Bird species occurs at the site, but was not detected during study period (Poisson)
- Insurance Yip and Yau (2005) discuss zero claims in automobile insurance
 - ► Incidental Zero Did not have any issues regarding their car (degenerate)
 - Strategic Zero Had issue, but did not file the claim since it was small (Poisson)

Optimization

► The observed log-likelihood for ZIP Regression is

$$\ell(\boldsymbol{\beta}, \boldsymbol{\alpha} | \boldsymbol{y}, \boldsymbol{x}) = \sum_{y_i = 0} \log(\boldsymbol{z}_i^{\mathrm{T}} \boldsymbol{\alpha} + \exp(-e^{\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{\beta}})) + \sum_{y_i > 0} (y_i \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{\beta} - \exp(\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{\beta}))$$
$$- \sum_{i=1}^n \log(1 + \exp(\boldsymbol{z}_i^{\mathrm{T}} \boldsymbol{\alpha})) - \sum_{i=1}^n \log(y_i!)$$

- Could always use a gradient-based method (Newton-Raphson, IRLS, etc.)
- We'll employ the expectation-maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977)

EM Algorithm for ZIP Regression

EM Algorithm for ZIP

Define

$$R_i = \begin{cases} 1 & Y_i \text{ is from the zero state} \\ 0 & Y_i \text{ is from the Poisson state} \end{cases}$$

Then, $R_i \sim \mathrm{Bern}(\pi_i)$ and

$$Y_i|R_i \sim \begin{cases} \mathsf{Poisson}(\mu_i) & R_i = 0 \\ 0 & R_i = 1 \end{cases}$$

Then, the log-likelihood for the complete data $(\boldsymbol{Y},\boldsymbol{R})$ is

$$\begin{split} \ell_c(\pmb{\alpha}, \pmb{\beta}) &= \sum_{i=1}^n \log \left(f_{R_i}(r_i) f_{Y_i \mid R_i}(y_i) \right) \\ &= \sum_{i=1}^n \log (f_{R_i}(r_i)) + \sum_{i=1}^n \log (f_{Y_i \mid R_i}(y_i)) \\ &= \sum_{i=1}^n \left[r_i \mathrm{logit}(\pi_i) - \log \left(1 + \exp(\pi_i) \right) \right] + \sum_{i=1}^n I\{r_i = 0\} \left[y_i \log(\mu_i) - \mu_i - \log(y_i!) \right] \\ &\propto \sum_{i=1}^n \left(r_i \pmb{z}^\mathrm{T} \pmb{\alpha} - \log(1 + \exp(\pmb{z}^\mathrm{T} \pmb{\alpha})) \right) + \sum_{i=1}^n (1 - r_i) \left(y_i \pmb{x}_i^\mathrm{T} \pmb{\beta} - \exp(\pmb{x}_i^\mathrm{T} \pmb{\beta}) \right) \\ &= \ell_c(\pmb{\alpha}) + \ell_c(\pmb{\beta}) \end{split}$$

EM Algorithm for ZIP Regression Cont.

EM Algorithm for ZIP Cont.

Iterate from $k = 0, 1, \ldots$ til convergence :

E-Step Update posterior memberships

$$r_i^{(k)} = \mathbb{P}(R_i = 1|y_i, \boldsymbol{\theta}^{(k)})$$

- **M-Step** Maximize $\ell_c(\boldsymbol{\theta})$ with $R_i = r_i^{(k)}$ by the following:
 - **1** Maximize $\ell_c(\boldsymbol{\beta})$, which is equivalent to running a Poisson regression of y_i on \boldsymbol{x}_i with weights $1-r_i^{(k)}$. Call this $\boldsymbol{\beta}^{(k+1)}$
 - **@** Maximize $\ell_c(\alpha)$, which is equivalent to running logistic regression of $r_i^{(k)}$ on z_i . Call this $\alpha^{(k+1)}$.

- 1 Motivational Data: Meth Lab Seizures
- 2 Introduction to Zero-Inflated Regression
- Semiparametric Extension to ZIP
 - Overview and Estimation
 - Theoretical Results
 - Inference
 - Preliminary Simulations
 - Application to Meth Lab Seizures Data
- 4 Spatial ZIP
- 5 Conclusions & Future Directions

- 1 Motivational Data: Meth Lab Seizures
- 2 Introduction to Zero-Inflated Regression
- Semiparametric Extension to ZIP
 - Overview and Estimation
 - Theoretical Results
 - Inference
 - Preliminary Simulations
 - Application to Meth Lab Seizures Data
- 4 Spatial ZIP
- **(5)** Conclusions & Future Directions

Semiparametric Extension

- ► The (linear) ZIP and ZINB models are great at modeling zero-inflated data,
- Count data is commonly heteroskedastic, so the assumption of globally linear mixing proportions may be too strong.
- Thus, we propose a semiparametric extension to the ZIP model.
 - ▶ Same set-up as before, but we now let $\pi(z)$ be an arbitrary, smooth function of continuous covariates.
 - ► For simplicity, let z be one dimensional, although the theory can be extended to higher dimensions analogously.
 - ▶ If the dimension of z is high (above 2 or 3), then one needs to be cognizant of the "curse of dimensionality" (Bellman, 1961)

Literature Review - Semiparametric ZIP Modeling

- ▶ Lam, Xue, and Cheung (2006) developed a partially linear model for the Poisson mean, λ , with $\log(\lambda) = x^T \beta + m(T)$, where a single predictor T is modeled nonparametrically.
 - ightharpoonup Made inference about m by sieve method.
 - lacktriangle He, Xue, and Shi (2010) later extended this with $\operatorname{logit}(\pi) = {m z}^{\mathrm{T}} {m lpha} + k(T)$
- ► Liu and Chan (2011) modeled jellyfish abundance by a GAM in both the count and degenerate state.
 - Allowed for constraints that a covariate can affect the zero-inflation state proportionally to the Poisson mean state
 - ► Employed penalized regression splines
- ► Feng and Zhu (2011) incorporated smoothing into the Poisson state, with a random intercept, to assess side effects of medication longitudinally.
 - ► Used Monte Carlo EM (MC-EM) algorithm.

Our Approach

- Since the ZIP regression model is a mixture model, we take inspiration from the mixtures-of-regression literature
- ▶ Quandt and Ramsey (1978) first proposed "switching regressions" where

$$y_i = m{x}_i^{\mathrm{T}} m{eta}_1 + \epsilon_{1i}$$
 with probablity λ $y_i = m{x}_i^{\mathrm{T}} m{eta}_2 + \epsilon_{2i}$ with probablity $1 - \lambda$

where
$$\epsilon_{1i} \sim \mathcal{N}(0, \sigma_1^2)$$
 and $\epsilon_{2i} \sim \mathcal{N}(0, \sigma_2^2)$

- Jordan and Jacobs (1994) later proposed the "hierarchical-mixture-of-experts" model where the λ depend on covariates.
- ► There has been recent work in semiparametric mixtures of (normal) regressions by Young and Hunter (2010), and Huang and Yao (2012), where the mixing proportions are modeled locally.
- ► Cao and Yao (2012) employed a semiparametric mixture of binomial regressions to model rainfall in Edmonton.

Identifiability

- ► *Identifiability* is a key concern in the mixture setting.
- ▶ Let $\mathcal{F} = \{f(y|\boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta\}$ be a statistical model.
- ightharpoonup We say ${\mathcal F}$ is identifiable if

$$f(y|\boldsymbol{\theta}_1) = f(y|\boldsymbol{\theta}_2)$$

implies that $\theta_1 = \theta_2$.

- ▶ Li (2012) proved identifiability of the ZIP regression when $\log(\lambda) = \beta_0 + \beta_1 x$ and $\operatorname{logit}(\pi) = \pi(x)$.
- ► Under more general conditions, we can prove the semiparametric ZIP model is identifiable with the aid of Wang, Yao, and Huang (2014), who studied identifiability in mixtures of GLMs.

Local Likelihoods

- ▶ To learn $\pi(\cdot)$, we'll use local or smoothed likelihood method (Loader, 1999)
- Assume $Y_i|Z_i = z_i \sim f(y_i|\theta(z_i))$
- For z close to z_0 , we assume $\theta(z)$ can be approximated by a polynomial.
- ▶ More formally, when $|z z_0| < h$,

$$\theta(z) \approx a_0 + a_1(z - z_0) + \frac{1}{2}a_2(z - z_0)^2 + \dots + \frac{1}{d}(z - z_0)^d$$

= $\mathbf{a}^{\mathrm{T}}A(z - z_0)$

where $\boldsymbol{a}=(a_0,\ldots,a_d)^{\mathrm{T}}$ and $A(v)=\left(1,v,\ldots,\frac{1}{d}v^d\right)^{\mathrm{T}}$ is a polynomial basis.

lacktriangle At a fixed point z_0 in the range of z, define the smoothed log-likelihood at z_0 as

$$\ell_{z_0}^s(\mathbf{a}) = \sum_{i=1}^n w_i \log(f(y_i | \mathbf{a}^{\mathrm{T}} A(z - z_0))) , \qquad (2)$$

where $w_i = h^{-1}K\left(\frac{z_i-z_0}{h}\right)$ and $K(\cdot)$ is a kernel function with bandwidth h.

- ▶ Let \hat{a} be the maximizer of (2).
- ▶ Then, we estimate $\widehat{\theta}(z_0) = \widehat{a}_0$.

Bandwidth Selection

- ▶ Bandwidth selection is a critical component in any kernel method.
- ► We propose a K-Fold likelihood-based cross-validation.
- ▶ For k = 1, ..., K, partition the data set into $\mathcal{D} = \mathcal{T}_k \cup \mathcal{R}_k$, where \mathcal{T}_k is a training set and \mathcal{R}_k is a test set.
- ▶ For a reasonable grid of values $h \in \{h_1, h_2, \dots, h_t\}$, evaluate

$$CV = \sum_{k=1}^{K} \sum_{l \in \mathcal{T}_k} \log f(y_l | \widehat{\theta}(z_l))$$

where f is the ZIP pmf

- Advantages of CV doesn't typically miss features in the data
- Downsides of CV computationally expensive and noisy

Bandwidth Selection Cont.

- ➤ To counter the high variability, it is recommend to repeat the CV process 30 to 50 times, and take the average of the resulting bandwidths.
- ► Could also consider plug-in bandwidths
 - ► Ex: Minimum of integrated mean square error (MISE) -

$$MISE(h) = \int \mathbb{E}\Big[\{\widehat{\theta}(z) - \theta(z)\}^2\Big]dz$$

► Ex : Average Square Error (ASE) -

$$ASE(h) = n^{-1} \sum_{i=1}^{n} \left(\widehat{\theta}(Z_i) - \theta(Z_i) \right)^2$$

► Recent work by Kpotufe and Garg (2013) takes a confidence interval approach to choosing *h*.

Estimation of the Semiparametric ZIP

- ► The challenge in estimating our model is that in addition to the mixture structure, the model contains both (global) parametric and local components.
- ► Therefore, we propose a one-step "back-fitting" algorithm, which alternates between local and global estimation.
- ► An "EM-like" algorithm is proposed for each step.
- ▶ Define $\theta(z_0) = (\pi(z_0), \beta(z_0))$.

Backfitting Procedure

Backfitting Procedure

$$\ell_1^S(\boldsymbol{\theta}(z_i)) = \sum_{i=1}^n K_h(z_j - z_i) \log f(y_i | \boldsymbol{x}_i, z_i, \boldsymbol{\theta}(z_j))$$
(3)

To do this use an "EM" Algorithm analogous to the parametric EM Algorithm. Call these estimates $\widetilde{\pi}(z_j)$ and $\widetilde{\beta}(z_j)$.

② Global Step - Given the mixing proportions estimates $\widetilde{\pi}(z_i)$ for $i=1,\dots,n$, perform a global estimation of $\pmb{\beta}$ by maximizing

$$\ell_2(\boldsymbol{\beta}) = \sum_{i=1}^n \log f(y_i|\boldsymbol{\beta}, \widetilde{\pi}(z_i), \boldsymbol{x}_i, z_i)$$
 (4)

As before, an EM algorithm is implemented for estimation. Call this estimate $\widehat{oldsymbol{eta}}$.

 $oldsymbol{\mathfrak{S}}$ Final Local Step - Given the global estimate of $oldsymbol{eta}$, update the mixing proportions at each z_i by maximizing

$$\ell_3^S(\pi(z_i)) = \sum_{j=1}^n K_h(z_j - z_i) \log f(y_i | \pi(z_i), \hat{\beta}, \mathbf{x}_i, z_i)$$
 (5)

Again, this is done by an "EM" Algorithm. Call this estimate $\widehat{\pi}(z_i)$.

- 1 Motivational Data: Meth Lab Seizures
- 2 Introduction to Zero-Inflated Regression
- Semiparametric Extension to ZIP
 - Overview and Estimation
 - Theoretical Results
 - Inference
 - Preliminary Simulations
 - Application to Meth Lab Seizures Data
- 4 Spatial ZIP
- **5** Conclusions & Future Directions

Asymptotic Properties of Estimators

Asymptotic Properties of Estimators

 $\textbf{1} \quad \text{Let } \boldsymbol{\theta}(z) = (\pi(z), \boldsymbol{\beta}(z)). \text{ Assume } \sqrt{nh} \to \infty \text{ and } h \to 0.$ Then, the estimator at Step 1 has

$$\sqrt{nh}\{\widetilde{\boldsymbol{\theta}}(z) - \boldsymbol{\theta}(z) - \widetilde{b}(z)h^2 + o(h^2)\} \stackrel{L}{\to} N(0, g^{-1}(z)\mathcal{I}^{-1}(z)v)$$
 (6)

2 The estimator of β at Step 2 has

$$\sqrt{n}\{\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\} \stackrel{L}{\to} N(0, B^{-1}\Sigma B^{-1})$$
(7)

 $oldsymbol{3}$ Finally, the final estimator of the mixing proportions $\pi(z)$ has

$$\sqrt{nh}\{\widehat{\pi}(z) - \pi(z) - \widehat{b}(z)h^2 + o(h^2)\} \stackrel{D}{\to} N(0, g^{-1}(z)\mathcal{I}_{\pi}^{-1}(z)v)$$
 (8)

It can be shown that the asymptotic bias and variance of $\widehat{\pi}(z)$ is smaller than $\widetilde{\pi}(z).$

Ascent Properties

- The classic EM Algorithm possess the ascent property the objective function increases at each iteration.
- ► Can't claim the overall likelihood increases at each iteration, but weaker ascent properties can be established.

Ascent Property (Huang & Yao, 2012)

 \blacksquare Asymptotic Ascent For the "EM" Algorithm in step one, if $nh\to\infty$ and $h\to0,$ it follows

$$\liminf_{n \to \infty} n^{-1} \left[\ell_1^S(\boldsymbol{\theta}^{(k+1)}(z)) - \ell_1^S(\boldsymbol{\theta}^{(k)}(z)) \right] \ge 0$$

in probability.

- The ascent property in Step 2 follows immediately from the theory of ordinary EM Algorithms
- **③** For the EM Algorithm in Step 3, the local likelihood will be monotonically increasing at any z; that is, $\ell_3^S(\pi^{(k+1)}(z)) \geq \ell_3^S(\pi^{(k)}(z))$

- 1 Motivational Data: Meth Lab Seizures
- 2 Introduction to Zero-Inflated Regression
- Semiparametric Extension to ZIP
 - Overview and Estimation
 - Theoretical Results
 - Inference
 - Preliminary Simulations
 - Application to Meth Lab Seizures Data
- Spatial ZIP
- **5** Conclusions & Future Directions

Generalized Likelihood Ratio Test

► We are interested in testing

$$H_0: \pi(z) \equiv \pi_0$$

$$H_1: \pi(z) \not\equiv \pi_0$$

► And,

$$H_0: \pi(z) \in \mathcal{M}_{\alpha}$$

 $H_1: \pi(z) \notin \mathcal{M}_{\alpha}$

where \mathcal{M}_{α} is a parametric family of models.

► Fan, Zhang, and Zhang (2001) argued that the LRT is still a good test provided that the nonparametric quantity is replaced with a good estimator.

$$\lambda_n(h) = \ell(H_1) - \ell(H_0) \tag{9}$$

where $\ell(H_1)$ and $\ell(H_0)$ is the likelihood under H_0 and H_1 .

Inference Cont.

- ▶ Furthermore, the limiting distribution should be free of any nuisance parameters (β and the true value $\pi(z)$), and should be χ^2 with r_n degrees of freedom under H_0 .
- ▶ However, calculating r_n can be intractable.
- ▶ But, we can employ a parametric bootstrap to estimate the null limiting distribution, and then obtain a bootstrap test.
- Issues Negative bootstrap LRT statistics.
 Could be due to:
 - ▶ Convergence rates of H_0 are faster than H_1 .
 - ► Non-negligible smoothing bias
- ► Härdle, Müller, Sperlich, and Werwatz (2004) recommends a bias-adjusted LRT statistic.

- 1 Motivational Data: Meth Lab Seizures
- 2 Introduction to Zero-Inflated Regression
- Semiparametric Extension to ZIP
 - Overview and Estimation
 - Theoretical Results
 - Inference
 - Preliminary Simulations
 - Application to Meth Lab Seizures Data
- Spatial ZIF
- **5** Conclusions & Future Directions

Simulation Results

- ▶ Single covariate in both states was generated from a $\mathsf{Unif}(0,1)$. The true $\pmb{\beta}$ vector is (.5,1), and the mixing proportions were set as $\pi(x) = .2 + .75\sin(\pi x)$.
- ▶ Examined three sample sizes of $n \in \{75, 200, 400\}$
- ▶ Also compared three bandwidths of $\{n^{-2/15} \times \widehat{h}, \widehat{h}, 2\widehat{h}\}$, where \widehat{h} is the CV-chosen bandwidth.
- ► Call these bandwidths under, cv, and over smoothed, respectively.
- ▶ Compared β by MSE, and π by Root of Average Squared Errors (RASE)

RASE =
$$\sqrt{n^{-1} \sum_{i=1}^{n} [\widehat{\pi}(x_i) - \pi(x)]^2}$$

MSE Comparison

Figure: MSE of β_0

Figure: MSE of β_1

RASE Comparison

Figure: RASE Comparison

Future Simulations - Proposal

► Accuracy Comparison

- \blacktriangleright More complicated forms of the mixing proportions $\pi(\cdot)$
- Accuracy when z is of dimension 2 or $\frac{3}{2}$
- lacktriangle Examining bandwidth between \widehat{h} and $2\widehat{h}$

► Bootstrap Examination

- ▶ Coverage of bootstrap Z-Intervals for β and $\pi(\cdot)$
- lacktriangle Bootstrap bias approximates true bias for π

▶ LRT Power

- ▶ Power of LRT under different bandwidths and sample sizes
- ► Examine hypothesis of the form

$$H_0: \pi_0 + \delta g(z)/\sqrt{nh}$$

where $g(\cdot)$ is a smooth function and $\delta \in [0,1]$.

▶ Study conditions in which the proposed model fails.

Outline of Topics

- 1 Motivational Data: Meth Lab Seizures
- 2 Introduction to Zero-Inflated Regression
- Semiparametric Extension to ZIP
 - Overview and Estimation
 - Theoretical Results
 - Inference
 - Preliminary Simulations
 - Application to Meth Lab Seizures Data
- Spatial ZIF
- 5 Conclusions & Future Directions

Model Fit to Meth Data

▶ There are n=120 counties in Kentucky. The main predictor of interest is the amount (in grams) of pseudophedrine sold per 100 people (PSE).

► Summary of Fits

Model	h	β_0 (s.e.)	β_1 (s.e)	ℓ_0
Parametric	*	1.88 (.06)	.01 (.001)	-1248.15
Under	28.89	1.88 (.06)	.01 (.001)	-1247.04
CV	54.70	1.88 (.05)	.01 (.001)	-1248.99
Over	75	1.88 (.06)	.01 (.001)	-1249.49

Poisson State Fit

Comparison of Mixing Proportions

LRT Application

- We tested $H_0:\pi(x)=\pi_0$ versus $H_1:\pi(x)\neq\pi_0$
- ▶ The test statistic is $\lambda_n(h) = 3.66$ where h = 54.7 is the CV bandwidth.
- ▶ The bootstrap p-value = .01 on m = 200 bootstrap samples.

Multivariate Analysis

- Based on a previous analysis, median family income and median age were found to affect the count component, but not the zero inflation probability.
- ► Thus, we fit the both the parametric and semiparametric models with covariates:
 - ▶ Poisson median income (scaled by 1000), median age, and PSE
 - Zero PSE
- ► Model Comparison

Model	h	β_0	β_1	β_2	β_3	ℓ_0
Parametric	*	4.85 (.42)	03 (.01)	05 (.01)	.01 (.001)	-1224.22
Under	28.89	4.85 (.45)	03 (.01)	05 (.01)	.01 (.001)	-1223.11
CV	54.7	4.85 (.40)	03 (.01)	05 (.01)	.01 (.001)	-1225.03
Over	75	4.85 (.45)	03 (.01)	05 (.01)	.01 (.001)	-1225.57

Outline of Topics

- 1 Motivational Data: Meth Lab Seizures
- 2 Introduction to Zero-Inflated Regression
- 3 Semiparametric Extension to ZIP
 - Overview and Estimation
 - Theoretical Results
 - Inference
 - Preliminary Simulations
 - Application to Meth Lab Seizures Data
- Spatial ZIP
- 5 Conclusions & Future Directions

Heat Map for KY

Summary by ADD Level

► Summary by ADD (Area Development District) Level -

ADD	$oldsymbol{n}_j$	Mean	Median	# of Zeros
Barren River	10	35.9	23	0
Big Sandy	5	2.2	0.0	3
Bluegrass	17	3.71	1.0	3
Buffalo Trace	5	.80	0.0	3
Cumberland Valley	8	28.63	15.0	1
FIVCO	5	4.00	3.0	0
Gateway	5	.80	0.0	3
Green River	7	14.00	5.0	1
Kentucky River	8	6.75	3.5	1
KIPDA	7	19.86	6.0	1
Lake Cumberland	10	17.30	12.5	0
Lincoln Trail	8	12.50	5.0	1
Northern Kentucky	8	3.00	2.5	1
Pennyrile	9	4.33	3.0	3
Purchase	8	2.38	1.5	2

► Could consider clustering at ADD Level

Spatial ZIP - Literature Review

- Agarwal, Gelfand, and Citron-Pousty (2002) employed a conditionally autoregressive prior (CAR) to model abundance of isopod nest burrows.
- ▶ Neelson, Ghosh, and Loebs (2013) also developed a CAR prior for the Poisson hurdle model to study ER visits in Durham County, NC.
- ► Hoef and Jansen (2007) applied the CAR random effect and a AR(1) for the spatio-temporal correlation to investigate harbor seal abundance.
- ▶ All are estimated through a Bayesian approach.

CAR Model with Proposed Extension

- ► Homogeneous CAR Gaussian model due to Cressie (1993)
- ▶ Let Y(s) be the outcome at lattice location s.
- ► Then.

$$Y(\mathbf{s}_i)|\{y(\mathbf{s}_j)\}_{j\neq i} \sim \mathcal{N}\left(\mu_i + \rho \sum_{j=1}^n c_{ij} \left(y(\mathbf{s}_j) - \mu_j\right), \tau^2\right)$$

where $c_{ii} = 0$, $c_{ij} = 0$ unless sites i and j are spatial neighbors.

▶ Besag (1974) then derived (using Brook's Lemma) the joint distribution of Y is

$$Y \sim \mathcal{N}_n(\boldsymbol{\mu}, \tau^2 (I - \rho C)^{-1})$$

CAR Prior for ZIP

Spatial-ZIP with CAR - Employ mixed model

$$\log(\mu_i) = \log(\mu(\mathbf{s}_i)) = \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\beta} + \delta_{1i}$$
$$\log(\pi_i) = \log(\pi(\mathbf{s}_i)) = \mathbf{z}_i^{\mathrm{T}} \boldsymbol{\alpha} + \delta_{2i}$$

where
$$\delta_k \sim \mathcal{N}(\mathbf{0}, \sigma_k^2 (I - \rho_k C)^{-1})$$
 for $k = 1, 2$.

- ► The above assumes the spatial process for the degenerate and count component are independent.
- Neelson et al. (2013) relaxed this by introducing a bivariate CAR for the two spatial processes.
- ightharpoonup Let $\psi_i = (\delta_{1i}, \delta_{2i})^{\mathrm{T}}$
- ► The likelihood is

$$L(\boldsymbol{\theta}|\boldsymbol{y}, \boldsymbol{\psi}) = \prod_{i=1}^{n} f(y_i|\boldsymbol{\theta}, \boldsymbol{x}_i, \boldsymbol{\psi}_i) f_{\boldsymbol{\psi}_i}(\boldsymbol{\psi}_i)$$

which is difficult to optimize from a frequentist perspective.

► Thus, MCMC is utilized, typically with "flat" priors on the parameters, to make inferences

Proposed Extension to CAR ZIP

- Extensions to CAR
 - Incorporate smoothing into both components in a partially linear model:

$$\log(\mu_i) = \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{\beta} + f_2(w) + \delta_{1i}$$
$$\log \operatorname{it}(\pi_i) = \boldsymbol{z}_i^{\mathrm{T}} \boldsymbol{\alpha} + f_1(w) + \delta_{2i}$$

- ► Integrate a time effect to analyze the 2011 and 2012 data, simultaneously
- ► Model mixing proportions as $logit(\pi_i) = f_1(\boldsymbol{w})$ using tensor splines?
- Also look at simpler analysis with random effect of ADD?
 - ► Employ the EM algorithm of Hall (2000) incorporating Gaussian quadrature in E-Step?

Outline of Topics

- 1 Motivational Data: Meth Lab Seizures
- 2 Introduction to Zero-Inflated Regression
- Semiparametric Extension to ZIP
 - Overview and Estimation
 - Theoretical Results
 - Inference
 - Preliminary Simulations
 - Application to Meth Lab Seizures Data
- 4 Spatial ZIF
- **5** Conclusions & Future Directions

Conclusions

- Zero-Inflated models are a great way to account for excessive zeros in the response.
- ► The semiparametric ZIP model provides flexibility in modeling zero inflation, and can be a confirmation of the parametric model.
- The Generalized LRT is a promising technique for semiparametric inference.
- ► The CAR ZIP model is typically employed for spatial zero-inflated data.

Future Directions

- ► Semiparametric Work
 - ► Extend to ZINB
 - ► Refine Bandwidth selection
 - Computationally EM Algorithms are slow.
- ► Spatial Model
 - ► Extend to ZINB
 - ► More novel spatial methods scan statistic? (Kulldorff, 1997)

References I

- Agarwal, D., Gelfand, A., & Citron-Pousty, S. (2002). Zero-inflated models with application to spatial count data. *Environmental and Ecological Statistics*, 9(4), 341–255.
- Bellman, R. (1961). *Adaptive control processes*. Princeton, NJ: Princeton University Press.
- Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. *Journal of the Royal Statistical Society, Series B*, *36*, 192–236.
- Cao, J., & Yao, W. (2012). Semiparametric mixture of binomial regression with a degenerate component. *Statistical Sinica*, *22*, 27–46.
- Cressie, N. A. (1993). Statistics for spatial data. Hoboken, New Jersey: John Wiley & Sons, Inc.
- Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. *JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B*, 39(1), 1–38.
- Fan, J., Zhang, C., & Zhang, J. (2001). Generalized likelihood ratio statistics and wilks phenomenon. *The Annals of Statistics*, *29*(1), 153–193.
- Feng, J., & Zhu, Z. (2011). Semiparametric analysis of longitudinal zero-inflated count data. *Journal of Multivariate Analysis*, 102, 61–72.

References II

- Hall, D. B. (2000). Zero-inflated poisson and binomial regression with random effects: A case study. *Biometrics*, *56*, 1030 1039.
- Härdle, W., Müller, M., Sperlich, S., & Werwatz, A. (2004). *Nonparametric and semiparametric models*. Berlin, Germany: Springer-Verlag Berlin Heidelberg.
- He, X., Xue, H., & Shi, N.-Z. (2010). Sieve maximum likelihood estimation for doubly semiparametric zero-inflated models. *Journal of Multivariate Analysis*, 101, 2026–2038.
- Hoef, J. M. V., & Jansen, J. K. (2007). Space-time zero-inflated count models of harbor seals. *Environmetrics*, 18, 697–712.
- Huang, M., & Yao, W. (2012). Mixture of regression modesl with varying mixing proportions: A semiparametric approach. *Journal of the American Statistical Association*, 107, 711–424.
- Jordan, M. I., & Jacobs, R. A. (1994). Hierarchiacal mixtures of experts and the em algorithm. *Neural Computation*, *6*, 181–214.
- Kpotufe, S., & Garg, V. K. (2013). Adaptivity to local smoothness and dimension in kernel regression. *Neural Information Processing Systems*.
- Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics Theory and Methods, 26, 1481–1496.

References III

- Lam, K., Xue, H., & Cheung, Y. (2006). Semiparametric analysis of zero-inflated count data. *Biometrics*, 62(4), 996–1003.
- Lambert, D. (1992). Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. *Technometrics*, *34*(1), 1–14.
- Li, C.-S. (2012). Identifiability of zero-inflated poisson models. *Brazilian Journal of Probability and Statistics*, 26(3), 306–312.
- Liu, H., & Chan, K.-S. (2011). Generalized additive models for zero-inflated data with partial constraints. Scandinavian Journal of Statistics, 38(4), 650-665.
- Loader, C. (1999). Local regression and likelihood. New York City, New York: Springer-Verlag New York.
- Martin, T., Wintle, B., Rhodes, J., Kunhert, P., Field, S., Low-Choy, S., ... Possingham, H. (2005). Zero tolerance ecology: Improving ecological inference by modelling the source of zero observations. *Ecology Letters*, 8(11), 1235–1246.
- Neelson, B., Ghosh, P., & Loebs, P. F. (2013). A spatial poisson hurdle model for exploring geographic variation in emergency department visits. *Journal of the Royal Statistical Society, Series A, 176*(2), 389–413.

References IV

- Quandt, R. E., & Ramsey, J. B. (1978). Estimating mixtures of normal distributions and switching regressions. *Journal of the American Statistical Association*, 73(364), 730–738.
- Wang, S., Yao, W., & Huang, M. (2014). A note on the identifiability of nonparametric and semiparametric mixtures of glms. Statistics and Probablity Letters, 93, 41–45.
- Yip, K., & Yau, K. (2005). On modeling claim frequency data in general insurance with extra zeros. *Insurance: Mathematics and Economics*, 36(2), 153–163.
- Young, D., & Hunter, D. (2010). Mixtures of regressions with predictor dependent mixing proportions. Computational Statistics & Data Analysis, 54, 2253-2266.

