Multi-Class Classification

Mario Parente

March 9, 2023

A Real Classification Problem

Classify handwritten digits.

$$3693263017$$
 9530511433
 9530511433
 9566801720
 3813101495
 4164581112
 2283642749
 5546265872
 9166235817
 6476496064
 2386754889
 $y \in \{0,1,2,3,4,5,6,7,8,9\}$

We don't know how to solve this yet

Hand-written digit classification

Input: 20×20 grayscale image

Unroll the image into a vector

$$\begin{bmatrix} x_1 & x_{21} & \dots & x_{381} \\ x_2 & x_{22} & \dots & x_{382} \\ & & \vdots & & \\ x_{20} & x_{40} & \dots & x_{400} \end{bmatrix}$$

Feature vector $\mathbf{x} \in \mathbb{R}^{400}$

$$\mathbf{x} = (x_1, \dots, x_{400})^T$$

Multi-class Classification

```
Input: \mathbf{x} \in \mathbb{R}^m (continuous or discrete) Labels: y \in \{1, \dots, K\}
```

Multi-class Classification

```
Input: \mathbf{x} \in \mathbb{R}^m (continuous or discrete) Labels: y \in \{1, \dots, K\}
```

Exercise: solve using logistic regression

- Use one or more binary $(y \in \{0,1\})$ classifiers
- ▶ Hint: think about prediction first, then training.

Learn a separate classifier for each class $c=1,\dots,K$

Learn a separate classifier for each class $c=1,\ldots,K$ Labels for learning class c?

Learn a separate classifier for each class $c=1,\ldots,K$ Labels for learning class c?

Let
$$y_c^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{otherwise} \end{cases}$$

Learn a separate classifier for each class c = 1, ..., KLabels for learning class c?

Let
$$y_c^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{otherwise} \end{cases}$$

\mathbf{x}^T	y	y_1	y_2	y_3
	1	1	0	0
	2 3	0	1	0
• • •	3	0	0	1

Learn a separate classifier for each class c = 1, ..., KLabels for learning class c?

Let
$$y_c^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{otherwise} \end{cases}$$

Training?

Learn a separate classifier for each class $c=1,\ldots,K$ Labels for learning class c?

Training? for each class c, fit a binary classifier using training labels $y_c^{(i)}$ to get parameter vector $\boldsymbol{\theta}_c$

Learn a separate classifier for each class $c=1,\ldots,K$ Labels for learning class c?

Training? for each class c, fit a binary classifier using training labels $y_c^{(i)}$ to get parameter vector $\boldsymbol{\theta}_c$

Prediction?

Learn a separate classifier for each class c = 1, ..., KLabels for learning class c?

Training? for each class c, fit a binary classifier using training labels $y_c^{(i)}$ to get parameter vector $\boldsymbol{\theta}_c$

Prediction? make a prediction for each class and choose the one with *highest probability*

predict
$$y = \operatorname{argmax}_c h_{\boldsymbol{\theta}_c}(\mathbf{x})$$

Visualization

Format weight vector as an image:

Recall that

$$\text{Prediction } = \begin{cases} 1 & \boldsymbol{\theta}^T \mathbf{x} \geq 0 \\ 0 & \boldsymbol{\theta}^T \mathbf{x} < 0 \end{cases}$$

Dot product = multiply together corresponding pixels and add

Visualization: One vs. All

Fit a classifier for each pair of classes

Fit a classifier for each pair of classes

Labels for discriminating c from d?

Fit a classifier for each pair of classes

Labels for discriminating c from d?

Let
$$y_{cd}^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{if } y^{(i)} = d \end{cases}$$

Fit a classifier for each pair of classes

Labels for discriminating c from d?

Let
$$y_{cd}^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{if } y^{(i)} = d \end{cases}$$

\mathbf{x}^T	y	y_{12}	y_{13}	y_{23}
	1	1	1	-
	2	0	-	1
• • •	3	_	0	0

Fit a classifier for each pair of classes

Labels for discriminating c from d?

$$\text{Let } y_{cd}^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{if } y^{(i)} = d \end{cases}$$

Training? for each pair $c \neq d$, fit a binary classifier with labels $y_{cd}^{(i)}$ using **only examples from class** c **or** d

Fit a classifier for each pair of classes

Labels for discriminating c from d?

$$\text{Let } y_{cd}^{(i)} = \begin{cases} 1 & \text{ if } y^{(i)} = c \\ 0 & \text{ if } y^{(i)} = d \end{cases}$$

Training? for each pair $c \neq d$, fit a binary classifier with labels $y_{cd}^{(i)}$ using **only examples from class** c **or** d

lacktriangle Result: parameter vector $oldsymbol{ heta}_{cd}$

Prediction?

Fit a classifier for each pair of classes

Labels for discriminating c from d?

Let
$$y_{cd}^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{if } y^{(i)} = d \end{cases}$$

\mathbf{x}^T	y	y_{12}	y_{13}	y_{23}
	1	1	1	-
	2	0	-	1
	3	-	0	0

Training? for each pair $c \neq d$, fit a binary classifier with labels $y_{cd}^{(i)}$ using **only examples from class** c **or** d

lacktriangle Result: parameter vector $oldsymbol{ heta}_{cd}$

Prediction? voting scheme.

One vs. one Classification

Prediction? voting scheme.

\mathbf{x}^T	y_{12}	y_{13}	y_{23}	y
$\mathbf{x}^{(1)}^T$	1	1	0	1
$\mathbf{x}^{(2)}^T$	1	0	1	-
$\mathbf{x}^{(3)}^T$	0	1	0	3

Visualization: One vs. One

Multiclass model

Previously we defined our model as

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \mathsf{logistic}(\theta_0 + \theta_1 x_1 + \ldots + \theta_n x_n) = \mathsf{logistic}(\boldsymbol{\theta}^T \mathbf{x})$$

where
$$\mathbf{x} = [1, x_1, \dots, x_n]$$
 and $\theta = [\theta_0, \theta_1, \dots, \theta_n]$.

We will now define our model as

$$h_{\mathbf{w}}(\mathbf{x}) = \operatorname{logistic}(b + w_1 x_1 + \ldots + w_n x_n) = \operatorname{logistic}(\mathbf{w}^T \mathbf{x} + b)$$

where $\mathbf{x} = [x_1, \dots, x_n] \in \mathbb{R}^n$ is the **original feature vector** with no 1 added $\mathbf{w} \in \mathbb{R}^n$ is a **weight vector** (equivalent to $\theta_1, \dots, \theta_n$ in the old notation) b is a scalar **intercept parameter** (equivalent to θ_0 in our old notation)

For each class $c = 1, \ldots, K$

fit a logistic regression model to distinguish class c from the others using the labels

$$y_c^{(i)} = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{otherwise.} \end{cases}$$

This training procedure will result in a weight vector \mathbf{w}_c and an intercept parameter b_c that can be used to predict the probability that a new example x belongs to class c:

$$logistic(\mathbf{w}_c^T\mathbf{x} + b_c) = probability that \mathbf{x} belongs to class c.$$

The overall training procedure will yield one weight vector for each class. To make the final prediction for a new example, select the class with highest predicted probability:

predicted class = the value of c that maximizes $\operatorname{logistic}(\mathbf{w}_c^T\mathbf{x} + b_c)$.

