

2.- Estudio del manipulador

- 2.1 Morfología de los robots industriales
 - (Apartados 2.1, 2.2, 2.5 y 9.2 de BARRIENTOS)
 - (Apartados 2.1, 2.2 y 2.3 de TORRES)
- 2.2 Análisis geométrico y cinemático
 - (Capítulos 3 y 4 de BARRIENTOS y TORRES)
- 2.3 Análisis dinámico
 - (Capítulo 5 de BARRIENTOS y TORRES)

ROBÓTICA INDUSTRIAL

Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Morfología de los robots industriales

- - Introducción
- Características estructurales y prestaciones
- Estructuras mecánicas
- - La orientación del órgano terminal: la muñeca
- - Elementos de transmisión del movimiento
- - Compensación fuerzas de gravedad
- - Órganos terminales
- Algunos criterios en la selección de robots

Objetivo: Situar objetos en el espacio

- Posicionar (Necesarios 3 g.d.l.).
- Orientar (Necesarios 3 g.d.l.).

Manipulador: Estructura poliarticulada:

- **Eslabones** (Sólidos rígidos)
- Pares cinemáticos (articulaciones)

Formada por:

- Brazo (posicionamiento muñón)
- Muñeca (orientación definitiva)
- Organo terminal

ROBÓTICA INDUSTRIAL

Antonio Romeo

Configuración geométrica

- **Matemática** (formal): vector descriptivo de la geometría articular formado por las variables articulares.
- Cualitativa (gestual): descriptiva de la postura del robot.

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Estructuras mecánicas

Condicionadas por la naturaleza y secuenciación de las articulaciones

Cartesiana

Cilíndrica

Estructuras mecánicas

Angular

ROBÓTICA INDUSTRIAL

Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Estructuras mecánicas

Scara

Paralelo

Morfología de los robots industriales

- Introducción
- Características estructurales y prestaciones
- Estructuras mecánicas
- - La orientación del órgano terminal: la muñeca
- - Elementos de transmisión del movimiento
- - Compensación fuerzas de gravedad
- - Órganos terminales
- - Algunos criterios en la selección de robots

ROBÓTICA INDUSTRIAL

Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Características estructurales

- Numero de articulaciones
- Características geométricas y mecánicas de los eslabones
- Emplazamiento de accionamientos
- Rigidez estructural
- Frecuencia de resonancia
- Rango articular
- Volumen de trabajo
- Accesibilidad

ROBÓTICA INDUSTRIAL

Prestaciones

- Velocidades y aceleraciones máximas
- Precisión estática
- Precisión dinámica
- Repetibilidad
- Resolución espacial
- · Capacidad de carga

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Precisión estática vs. repetibilidad

- Suele darse sólo para posición
- En ocasiones se da para orientación

Punto deseado

• Formalmente se podrían integrar las 2

• Se usan valores medios cuadráticos

Punto alcanzable

PRECISION

PRECISION

PRECISION

REPETIBILIDAD

ROBÓTICA INDUSTRIAL Antonio Romeo

RESOLUCION

Precisión estática: una métrica

- Desde diferentes config. L'ancese el robot a un destino (x_d, y_d, z_d)
- Posiciones alcanzadas: (x_i, y_i, z_i)
- Calcúlense los Errores Cuadráticos Medios en x, y, z
- Intégrense los RMS como suma euclídea

$$PE = \sqrt{e_x^2 + e_y^2 + e_z^2}, \quad donde:$$

$$e_x = \sqrt{\frac{\sum_{i=1}^{n} (x_d - x_i)^2}{n}}, \quad e_y = \sqrt{\frac{\sum_{i=1}^{n} (y_d - y_i)^2}{n}}, \quad e_z = \sqrt{\frac{\sum_{i=1}^{n} (z_d - z_i)^2}{n}}$$

- Cada destino elegido presenta una precisión diferente => repetir el proceso para un número de destinos representativo
- La precisión estática del robot podrá ser el valor medio (o el mayor)

ROBÓTICA INDUSTRIAL

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Antonio Romeo

Repetibilidad: una métrica

- Desde diferentes configuraciones láncese el robot a destino (x_d, y_d, z_d)
- Posiciones alcanzadas: (x_i, y_i, z_i)
- Calcúlese la varianza en x, y, z
- Intégrense las varianzas como suma euclídea

$$REP = \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2} + \sigma_{z}^{2}}, \quad donde:$$

$$\sigma_{x} = \frac{\sum_{n} (x_{i} - x_{m})^{2}}{n}, \quad \sigma_{y} = \frac{\sum_{n} (y_{i} - y_{m})^{2}}{n}, \quad \sigma_{z} = \frac{\sum_{n} (z_{i} - z_{m})^{2}}{n}$$

$$x_{m} = \frac{\sum_{n} x_{i}}{n}, \quad y_{m} = \frac{\sum_{n} y_{i}}{n}, \quad z_{m} = \frac{\sum_{n} z_{i}}{n}$$

• Cada destino elegido presenta una repetibilidad diferente => repetir el proceso para un número de destinos representativo

Precisión dinámica: una métrica

- Para trayectoria deseada "tipo" $(x_d(t), y_d(t), z_d(t))$
- Trayectoria obtenida: (x(t), y(t), z(t))
- Duración T

$$PE = \sqrt{e_x^2 + e_y^2 + e_z^2}, \quad donde:$$

$$e_x = \frac{1}{T} \int_T (x_d(t) - x(t))^2 \partial t, \quad e_y = \frac{1}{T} \int_T (y_d(t) - y(t))^2 \partial t, \quad e_z = \frac{1}{T} \int_T (z_d(t) - z(t))^2 \partial t$$

ROBÓTICA INDUSTRIAL

Antonio Romeo

Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Morfología de los robots industriales

- - Introducción
- - Características estructurales y prestaciones
- - Estructuras mecánicas
- - La orientación del órgano terminal: la muñeca
- - Elementos de transmisión del movimiento
- - Compensación fuerzas de gravedad
- - Órganos terminales
- - Algunos criterios en la selección de robots

ROBÓTICA INDUSTRIAL

Estructuras mecánicas: criterios para su comparación

- Se establece la comparación únicamente para el brazo (3 primeros eslabones)
- Sólidos de longitud equiparable (L)
- Rango articular de 360° para articulaciones rotacionales
- Rango articular de valor L para articulaciones translacionales

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Estructuras mecánicas: Cartesiana

- 2 tipos: pórtico y rectilíneo
- Volumen de trabajo teórico L³
- Capacidad de carga independiente de la configuración
- Precisión y resolución constantes en el volumen de trabajo
- Aplicaciones: paletizado y alimentación de máquinas
- Geometría sencilla para el sistema de control

Estructuras mecánicas: Cartesiana

ROBÓTICA INDUSTRIAL Antonio Romeo

Estructuras mecánicas: Cartesiana

Estructuras mecánicas: Cilíndrica

- 2 tipos: θ -z- ρ y z- θ - ρ
- Volumen de trabajo teórico 9L³
- Capacidad de carga independiente de la configuración
- Precisión y resolución variables en el volumen de trabajo
- Aplicaciones: Carga y descarga, alimentación de máquinas
- Geometría + compleja para el sistema de control

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Estructuras mecánicas: Cilíndrica

Estructuras mecánicas: Esférica o polar

- Volumen de trabajo teórico 29L³
- Capacidad de carga dependiente de la configuración
- Precisión y resolución variables en el volumen de trabajo
- Aplicaciones: Carga y descarga, alimentación de máquinas, soldadura, montaje....
- Geometría compleja para el sistema de control

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Estructuras mecánicas: angular o antropomórfica

- Volumen de trabajo teórico 33L³
- Capacidad de carga dependiente de la configuración
- Precisión y resolución variables en el volumen de trabajo
- Aplicaciones: todas
- Geometría compleja para el sistema de control
- Mejor accesibilidad que estructuras anteriores

Estructuras mecánicas: angular o antropomórfica

ROBÓTICA INDUSTRIAL Antonio Romeo

KUKA

Payload:30 kg

Max. reach: 2041 mm

Repeatability: <± 0.15 mm

Weight: 867 kg

KUKA

Payload:150 kg

Max. reach: 2041 mm Repeatability: <± 0.2 mm

Weight: 1140 kg

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

ABB

Payload:200 kg

Max. reach: 2999 mm Repeatability: <± 0.15 mm Weight: 2060-2390 kg

ABB

Payload:60 kg

Max. reach: 1955 mm Repeatability: <± 0.07 mm Weight: 980-1200 kg

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

ABB

Payload:500 kg

Max. reach: 2300 mm Repeatability: ???? Weight: 2500 kg

FANUC

Payload:400 kg Max. reach: 2488 mm Repeatability: +-0.5

Weight: 2045 kg

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

FANUC

FANUC

Payload:50 kg

Max. reach: 1855 mm Repeatability: +-0.5 Weight: 520 kg

ROBÓTICA INDUSTRIAL

Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

FANUC

Payload:3 kg

Max. reach: 856 mm Repeatability: +-0.04

Weight: 43 kg

MOTOMAN

ROBÓTICA INDUSTRIAL

Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES STÄUBLI

Estructuras mecánicas: SCARA

- Volumen de trabajo teórico 12.5L³
- Capacidad de carga independiente de la configuración
- Precisión y resolución variables en el volumen de trabajo
- Aplicaciones: montaje de precisión
- Geometría compleja para el sistema de control

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Payload:25 kg

Max. reach: 1140 mm Repeatability x-y: +-0.025 Repeatability z: +-0.038

Weight: 266 kg

ADEPT

Estructuras mecánicas: Robot paralelo

- 6 enlaces rotulianos (2 gdl)
- 6 enlaces esféricos (3 gdl)
- 6 enlaces prismáticos (o rotacionales)
- Volumen de trabajo de tipo casquete esférico
- Gran rigidez, robustez y compacidad
- Grandes aceleraciones
- Geometría compleja para el sistema de control

Schematic Of A Hexapod Six-Axis Machining Center

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Payload:100 kg Repeatability: +-0.1 Weight: 190 kg

ABB

Payload:2 kg

Repeatability: +-0.1

Antonio Romeo

Weight: 140 kg

ROBÓTICA INDUSTRIAL

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Morfología de los robots industriales

- Introducción
- Características estructurales y prestaciones
- Estructuras mecánicas
- - La orientación del órgano terminal: la muñeca
- - Elementos de transmisión del movimiento
- Compensación fuerzas de gravedad
- Órganos terminales
- Algunos criterios en la selección de robots

ROBÓTICA INDUSTRIAL

Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Orientación definitiva del órgano terminal por medio de las 3 últimas articulaciones de tipo rotacional

Habitualmente: Roll - Pitch - Roll:

- Dos de sus ejes son perpendiculares a un tercero
- La secuencia de giro corresponde con los ángulos de Euler
- Son más sencillas de construir y las más extendidas actualmente.

Muñecas especiales

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Morfología de los robots industriales

- Introducción
- - Características estructurales y prestaciones
- Estructuras mecánicas
- - La orientación del órgano terminal: la muñeca
- Elementos de transmisión del movimiento
- Compensación fuerzas de gravedad
- Órganos terminales
- Algunos criterios en la selección de robots

Elementos de transmisión de movimiento 2 políticas:

Motricidad distribuida

Gran incremento de:

- La inercia
- La carga gravitatoria
- Los pares de acoplo inercial
- Las fuerzas centrífugas

Motricidad centralizada

Incremento de:

- La flexibilidad estructural
- Holguras
- Fricciones

Gran influencia en prestaciones y características estructurales. Solución mixta

ROBÓTICA INDUSTRIAL

Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Ejemplo de solución mixta: PUMA

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Elementos de transmisión de movimiento

3 tipos: *R-R R-T T-R*

De rotación a rotación:

- Engranajes (ejes paralelos, perpendiculares y que se cruzan)
- Trenes epicicloidales
- Reductores armónicos
- Cadenas y correas dentadas

Trenes epicicloidales: el diferencial

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Reductores armónicos

- Generador de onda elíptico (entrada)
- Flexpline de acero dentado (salida)
- Corona circular dentada

Reductores armónicos

- Gran relación de reducción / transferencia de par (1:320).
- Alineamiento ejes entrada / salida
- Ligero, pequeño y diseño simple.
- Gran precisión y repetibilidad
- Baja fricción
- Holguras pequeñas

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Reductores armónicos

Angulo girado: $2\pi R/r$ En círculo: $2\pi (R/r-1)$

2πΙ

- Si \mathbf{R} es similar a \mathbf{r} , \mathbf{r}_t puede ser enorme
- ¡El centro describiría una circunferencia!. Solución: *flexpline* con un elemento que le "obligue" a engarzar

Reductores armónicos

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Reductores armónicos. Eiemplo

Reductores armónicos. Ejemplo

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Reductores armónicos. Ejemplo

Reductores armónicos. Ejemplo

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Morfología de los robots industriales

- Introducción
- Características estructurales y prestaciones
- Estructuras mecánicas
- La orientación del órgano terminal: la muñeca
- Elementos de transmisión del movimiento
- Compensación fuerzas de gravedad
- Órganos terminales
- Algunos criterios en la selección de robots

Compensación fuerzas de gravedad

A considerar....

- Mayor potencia de accionamientos
- Asimetrías en movimiento
- Inmovilización del manipulador en caso de corte de energía

Soluciones:

- Mecanismos irreversibles (tornillo – tuerca)
- Frenos
- Contrapesos (>Inercia)
- Resortes

ROBÓTICA INDUSTRIAL

Antonio Romeo

Uso de contrapesos

Morfología de los robots industriales

- Introducción
- Características estructurales y prestaciones
- Estructuras mecánicas
- - La orientación del órgano terminal: la muñeca
- Elementos de transmisión del movimiento
- Compensación fuerzas de gravedad
- - Órganos terminales
- - Algunos criterios en la selección de robots

ROBÓTICA INDUSTRIAL

Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Criterios de selección

La tarea a realizar puede imponer restricciones:

- Volumen de trabajo (estructura, dimensiones y rango articular)
- Accesibilidad (nº articulaciones y estructura)
- Precisión (nº articulaciones y estructura)
- Capacidad de carga

2005 World Robot Market

- Caída de instalaciones en 2001 y 2002
- Recuperación en 2003 y crecimiento en 2004 (29% en Asia)
- Despegue mundial en 2005 (30%)
- España en el grupo de los 7 grandes desde 2001

ROBÓTICA INDUSTRIAL

Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Estadísticas

Table 1

Installations and operational stock of multipurpose industrial robots in 2004 and 2005 and forecasts for 2006-2009.

Number of units

Country	Yearly installations				Operational stock at year-end				
	2004	2005	2006	2009	2004	2005	2006	2009	
America	15,400	21,555	17,200	20,100	126,961	143,203	153,500	182,500	
Brazil	208	320			2,352	2,672			
North America (Canada, Mexico, USA)	15,170	21,136	16,500	19,100	123,663	139,553	149,400	176,000	
Other America a/	22	99			946	978			
Asia/Australia	52,311	76,047	65,000	76,000	443,193	481,664	502,000	583,000	
China	3,493	4,461			7,096	11,557			
India	369	450			619	1,069			
Indonesia	74	193			121	314			
Japan (see note below)	37,086	50,501	40,000	46,000	356,483	373,481	372,000	388,500	
Malaysia	250	243			1,452	1,695			
Philippines	65	80			93	173			
Republic of Korea (all types of industria	5,457	13,005			51,302	61,576			
Singapore a/	244	424			5,443	5,463			
Taiwan, Province of China a/	3,680	4,096			11,881	15,464			
Thailand	757	1,458			1,014	2,472			
Vietnam	14	99			14	113			
Other Asia a/	170	124			3,505	3,349			
Australia/New Zealand a/	652	913			4,170	4,938			

Europe	29,409	28,863	28,200	33,800	279,019	297,374	307,700	345,400
Austria a/	545	485			3,907	4,148		
Benelux a/	536	1,097			8,749	9,362		
Denmark	296	354			2,342	2,661		
Finland	401	556			3,712	4,159		
France	3,009	3,275	3,000	3,700	28,133	30,434	32,200	37,900
Germany	13,401	10,506	10,700	13,000	120,544	126,725	132,300	142,700
Italy	5,679	5,425	5,100	6,200	53,244	56,198	58,900	66,400
Norway	61	115			724	811		
Portugal	211	144			1,488	1,542		
Spain	2,826	2,649			21,893	24,081		
Sweden	833	939			7,341	8,028		
Switzerland a/	310	442			3,539	3,732		
Turkey	24	207			196	403		
United Kingdom	785	1,363	800	1,200	14,176	14,948	14,700	14,300
Central/Eastern European countries a/	419	1,149			8,372	9,337		
other Europe a/	73	157			659	805		
Africa	87	204	220	250	430	634	900	1,600
Total	97,207	126,669	110,620	130,150	849,603	922,875	964,100	1,112,500

Sources: IFR, national robot associations and UNECE (up to 2004).

a/ Estimated by UNECE and IFR for some or for all the years.

ROBÓTICA INDUSTRIAL

Antonio Romeo

Estadísticas

ROBÓTICA INDUSTRIAL Antonio Romeo

Estadísticas

ROBÓTICA INDUSTRIAL Antonio Romeo

Estadísticas

Morfología de los robots industriales

- Introducción
- Características estructurales y prestaciones
- Estructuras mecánicas
- - La orientación del órgano terminal: la muñeca
- Elementos de transmisión del movimiento
- - Compensación fuerzas de gravedad
- Órganos terminales
- - Algunos criterios en la selección de robots

ROBÓTICA INDUSTRIAL

Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Órganos terminales

- Fuerte especificidad
- Herramientas directamente acopladas a muñeca
- A mayor nº de g.d.l., mayor complejidad mecánica y de control
- En ocasiones combinado con sensores (proximetría, tacto, esfuerzos...)
- Aplicaciones:

Manipulación

Ensamblado

Procesado

Medida e inspección

ROBÓTICA INDUSTRIAL

Órganos terminales: manipulación

- Agarre y sustentación
- Simplicidad: nº de g.d.l. reducido (complejidad mecánica y de control)
- Factores de influencia:

Tamaño

Forma

Fragilidad

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Órganos terminales

Garras con movimiento no paralelo de dedos y mecanismo corredera-manivela (SMC)

Garras con movimiento no paralelo de dedos y mecanismo cremallera-husillo (SMC)

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Órganos terminales

Garras con movimiento paralelo de dedos y mecanismo corredera-manivela-corredera (SMC)

Single acting/normally open

Double acting/with fingers open

Garras con movimiento paralelo de dedos y mecanismo de leva plana (SMC)

Open Closed

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Órganos terminales

Garras con movimiento paralelo de dedos y doble pistón. Sincronización mediante piñones

Garras con movimiento paralelo de dedos y doble pistón. Sincronización mediante piñones

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Órganos terminales

Garras con movimiento paralelo de dedos y doble pistón. Sincronización mediante tornillo doble

Garras con movimiento paralelo de dedos y doble pistón.

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Órganos terminales

Garras especiales

Garras especiales: con movimiento rotativo adicional

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Órganos terminales

Garras especiales: para tubos, de ventosa....

Garras especiales: antropomorfas

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Órganos terminales: ensamblado

Accesorios: dispositivos de acomodación pasiva (RCC)

Soldadura por arco

ROBÓTICA INDUSTRIAL Antonio Romeo

2.1.- MORFOLOGÍA DE LOS ROBOTS INDUSTRIALES

Órganos terminales

Soldadura por puntos

Soldadura por puntos

