MEASURING WHITE DWARF ACCRETION RATES VIA THEIR EFFECTIVE TEMPERATURES

DEAN M. TOWNSLEY

Department of Physics Broida Hall, University of California, Santa Barbara, CA 93106; townsley@physics.ucsb.edu

LARS BILDSTEN

Kavli Institute for Theoretical Physics and Department of Physics Kohn Hall, University of California, Santa Barbara, CA 93106; bildsten@kitp.ucsb.edu Accepted by ApJL

ABSTRACT

Our previous theoretical study of the impact of an accreting envelope on the thermal state of an underlying white dwarf (WD) has yielded equilibrium core temperatures, classical nova ignition masses and thermal luminosities for WDs accreting at time averaged rates of $\langle \dot{M} \rangle = 10^{-11} - 10^{-8} M_{\odot} \ \mathrm{yr}^{-1}$. These $\langle \dot{M} \rangle$'s are appropriate to WDs in cataclysmic variables (CVs) of $P_{\mathrm{orb}} \lesssim 7$ hr, many of which accrete sporadically as Dwarf Novae. Approximately thirty nonmagnetic Dwarf Novae have been observed in quiescence, when the accretion rate is low enough for spectral detection of the WD photosphere, and a measurement of T_{eff} . We use our theoretical work to translate the measured T_{eff} 's into local time-averaged accretion rates, confirming the factor of ten drop in $\langle \dot{M} \rangle$ predicted for CV's as they transit the period gap. For DN below the period gap, we show that if $\langle \dot{M} \rangle$ is that given by gravitational radiation losses alone, then the WD masses are $> 0.8 M_{\odot}$. An alternative conclusion is that the masses are closer to $0.6 M_{\odot}$ and $\langle \dot{M} \rangle$ is 3–4 times larger than that expected from gravitational radiation losses. In either case, it is very plausible that a subset of CVs with $P_{\mathrm{orb}} < 2$ hours will have T_{eff} 's low enough for them to become non-radial pulsators, as discovered by van Zyl and collaborators in GW Lib.

Subject headings: binaries: close—novae, cataclysmic variables- stars: dwarf novae —white dwarfs

1. INTRODUCTION

Cataclysmic variables (CVs; Warner 1995) are formed when the low-mass stellar companion of a WD, exposed during a common envelope event, finally (on timescales of 0.1-10 Gyr) fills the Roche lobe as a result of long term angular momentum losses. The WD will cool during this time; a $0.20M_{\odot}$ He WD would have $T_c = 3.3 \times 10^6$ K at 4 Gyr (Althaus & Benvenuto 1997), whereas a $0.6M_{\odot}$ C/O WD would have $T_c = 2.5 \times 10^6$ K in 4 Gyr (Salaris et al. 2000). These WDs have effective temperatures $T_{\rm eff} \approx 4500-5000$ K just before mass transfer starts. However, once the Roche lobe is filled, the WD accretes material at $\langle \dot{M} \rangle \approx 10^{-11}-10^{-8}M_{\odot}$ yr⁻¹ (e.g. Howell, Nelson, & Rappaport 2001) and can be reheated (Sion 1991) to higher $T_{\rm eff}$'s.

Dwarf Novae (DN) are the subset of CVs with low timeaveraged rates $\langle \dot{M} \rangle < 10^{-9} M_{\odot} \ {
m yr}^{-1}$ and thermally unstable accretion disks. The transfer of matter onto the WD occurs in outbursts that last a few days to a week once every month to year (or even longer in some systems). Most DN have orbital periods $P_{\text{orb}} < 2$ hours, below the "period gap", with fewer above the gap (see Shafter 1992). During accretion disk quiescence, the M onto the WD is often low enough that the system's UV (and sometimes optical) emission is dominated by light from the WD surface, allowing for a measurement of the WD $T_{\rm eff}$, nearly all of which exceed 10,000 K (Sion 1999). Thus, the WD is hotter than expected for its age, providing evidence of the thermal impact of prolonged accretion on the WD (Sion 1995). Townsley & Bildsten (2003) (hereafter TB) have calculated $T_{\rm eff}$ and its dependence on $\langle M \rangle$, the WD mass, M, and core temperature, T_c . In this paper we now use that work to constrain these parameters from the measured $T_{\rm eff}$'s.

The gravitational energy released when a particle falls from a large distance to the stellar surface (GM/R) is deposited

near the photosphere and is rapidly radiated away. This energy does not penetrate inwards with the inflowing material, as the time it takes the fluid to move inward is much longer than the time it takes for heat to escape. This eliminates the outer boundary condition and instead points to the importance of energy release deep in the accreting H/He envelope due to both gravitational energy release and a low level of nuclear "simmering" (TB). We begin in §2 by reviewing our work and showing that the best constrained quantity from a measured $T_{\rm eff}$ is $\langle \dot{m} \rangle \equiv \langle \dot{M} \rangle / 4\pi R^2$. At very low $\langle \dot{M} \rangle$'s, $T_{\rm eff}$ also depends on T_c . However, in this regime, we can calculate T_c self consistently (TB), removing it from consideration.

In §3 the $\langle \dot{m} \rangle$'s implied by the available measurements are presented and compared to CV evolutionary scenarios. A detailed comparison is presented for DN with $P_{\rm orb} \lesssim 2$ hours, showing that the observed $T_{\rm eff}$'s imply that either $M > 0.6 M_{\odot}$ or $\langle \dot{M} \rangle$ is larger than implied by gravitational radiation losses alone. We close in §4 with a discussion of future work, especially the seismology of accreting WDs.

2. THE RELATION OF $T_{\rm EFF}$ TO $\langle \dot{M} \rangle$

The high quality UV spectra of quiescent DN from the STIS instrument on *Hubble Space Telescope*, e.g. Howell et al. (2002), Szkody et al. (2002c) and many of the references in the table appearing in Winter & Sion (2003), yield accurate measurements of $T_{\rm eff}$. However, the lack of accurate distance information prohibits the measurement of the WD radius, and hence mass, motivating the identification of a physical parameter which is best constrained by $T_{\rm eff}$ alone. The intent of this section is to demonstrate that, without knowledge of R or M, the best constrained parameter is the accretion rate per unit area. $\langle \dot{m} \rangle$.

Our previous work (TB) presented a detailed discussion of

FIG. 1.— Left Panel: Predicted range of $T_{\rm eff}$ (between lines) for $0.05M_{\rm ign} < M_{\rm acc} < 0.95M_{\rm ign}$ at $M=0.6M_{\odot}$ (solid lines), $1.0M_{\odot}$ (dashed lines), and $1.2M_{\odot}$ (dotted lines), Without knowledge of M, $\langle \dot{m} \rangle$ is still fairly well constrained from $T_{\rm eff}$. Right Panel: Dependence of $T_{\rm eff}$ range (as in left panel) on $\langle \dot{M} \rangle$ for $T_c = T_{c,\rm eq}$ (solid lines), $0.75T_{c,\rm eq}$ (dashed lines), and $0.5T_{c,\rm eq}$ (dotted lines), at $M=0.6M_{\odot}$. This observable does not depend strongly on T_c except at the lowest $\langle \dot{M} \rangle$'s, and therefore is relatively insensitive to the CVs evolution.

the impact of accretion on the thermal structure of a WD. For this paper we are primarily interested in the predictions for the surface luminosity, $L(M, \langle M \rangle, T_c)$, for which we showed that the strongest dependence is $L \simeq \langle \dot{M} \rangle T_c / \mu m_p = 4\pi R^2 \sigma_{SB} T_{\rm eff}^4$ and thus $T_{\rm eff}^4 \propto \langle \dot{M} \rangle / 4\pi R^2 = \langle \dot{m} \rangle$, even for different masses. The prime variance in this simple mapping is from the change in $T_{\rm eff}$ as the mass of the accumulated layer, $M_{\rm acc}$, increases between classical novae (CN). In discussing our theoretical results we use the $T_{\rm eff}$ range for $0.05M_{\rm ign} \le M_{\rm acc} \le 0.95M_{\rm ign}$, which represents where an observed WD is most likely to be found. We set $X_{^{3}\text{He}} = 0.001$ throughout as the difference between this and similar predictions for $X_{^{3}\text{He}} = 0.005$ is less than the uncertainty due to the unknown M_{acc} . Figure 1 shows the range of T_{eff} traversed as a function of $\langle \dot{m} \rangle$ for M = 0.6- $1.2M_{\odot}$, showing that $T_{\rm eff}$ provides a reasonable constraint on $\langle \vec{m} \rangle$ even when M is not known. A $T_{\rm eff}=15,000$ K implies that $0.4\times 10^{-3} \leq \langle \vec{m} \rangle \leq 1.3\times 10^{-3}$ g cm⁻² s⁻¹, whereas a $T_{\rm eff}=30,000$ K implies that $1.0\times 10^{-2} \leq \langle \vec{m} \rangle \leq 1.7\times 10^{-2}$ g cm⁻² s⁻¹.

The insensitivity of L to M is the strongest qualitative difference between our calculation and Sion's (1995) estimate of $L \simeq 0.2 \langle M \rangle GM/R$, made from the steady state models of Iben (1982). While Iben's (1982) models are steady state in the sense of $L_{core} = 0$, they were for high accretion rates, $\langle \dot{M} \rangle = 1.5 \times 10^{-8} M_{\odot} \text{ yr}^{-1}$ for the best discussed models, with one at $\langle \dot{M} \rangle = 1.5 \times 10^{-9} M_{\odot} \text{ yr}^{-1}$, and use steadily burning shells. Such a steady state is inappropriate at the low $\langle M \rangle$'s discussed here, where the burning is always unstable. Iben's (1982) models are also qualitatively very different from ours: in our models compressional energy released in the accreted H/He shell provides the outgoing luminosity and helps to establish the equilibrium configuration of the core, whereas in Iben's (1982) models, the compressional heating term is entirely in the core, a contribution which is likely small (see Appendix A of TB). The results of TB are complementary to Godon & Sion (2002), which focuses on the response of the

WD to the short-timescale \dot{M} variations during DN outbursts. The last parameter dependence to explore is T_c , the WD core temperature. As discussed in TB, DN below the period gap have adequate time to reach an equilibrium core temperature, $T_{c,\rm eq}$, that depends on $\langle \dot{M} \rangle$ and M. However, DN above the period gap have not been accreting long enough for T_c to reach $T_{c,\rm eq}$. Figure 1 shows how the traversed $T_{\rm eff}$ range depends on T_c for a $M=0.6M_{\odot}$ WD. The curves show $T_{\rm eff}$ for $T_c=T_{c,\rm eq}$, $0.75T_{c,\rm eq}$ and $0.5T_{c,\rm eq}$. Due to a strong core/envelope decoupling for $\langle \dot{M} \rangle > 10^{-10} M_{\odot} \ {\rm yr}^{-1}$ (TB), the $T_{\rm eff}$ range is nearly independent of T_c . For lower $\langle \dot{M} \rangle$'s, the WD core temperature should be close to the equilibrium value, allowing us to use $T_{c,\rm eq}$ as representative when finding $\langle \dot{m} \rangle$.

3. INFERRING ACCRETION RATES FROM $T_{\rm EFF}$ MEASUREMENTS

Figure 2 shows the $\langle \dot{m} \rangle$'s inferred from the measured $T_{\rm eff}$'s tabulated in Winter & Sion (2003), with the following modifications: for WX Cet and VY Aqr we use the single-temperature fitted values, for CU Vel we correct the misquoted value, for AL Com we use a measurement longer after superoutburst (Szkody et al. 2002d), and we add GW Lib (Szkody et al. 2002b) and DW UMa (Szkody et al. 2002d). This observational $\langle \dot{m} \rangle$ - $P_{\rm orb}$ relation shows clear evidence for a drop in $\langle \dot{m} \rangle$ below the period gap.

The relationship between $P_{\rm orb}$ and $\langle \dot{M} \rangle$ is still a very active area of theoretical inquiry and one that we hope our work can illuminate. The expectations from "standard" CV evolution (Howell et al. 2001) for $M=0.6M_{\odot}$ (solid line) and $1.1M_{\odot}$ (dashed line) are shown in Figure 2. In this disrupted magnetic braking scenario, $\langle \dot{M} \rangle$ is set by magnetic braking above the period gap and by gravitational radiation below the period gap. Our deduced $\langle \dot{m} \rangle$'s are lower than the expected values above the period gap. It is important that we are inferring the long-term $\langle \dot{M} \rangle$, averaged over the thermal time of the radiative (nondegenerate) layer $\sim c_P T_c M_{\rm nd}/L \approx 10^4 (\langle \dot{M} \rangle/10^{-10} M_{\odot} \ {\rm yr}^{-1})^{-0.75}$ years for $M=0.8M_{\odot}$ (TB), so that this discrepancy cannot be due to a temporarily low \dot{M} .

FIG. 2.— Values for the time averaged accretion rate per WD surface area, $\langle \dot{m} \rangle \equiv \langle \dot{M} \rangle / 4\pi R^2$, derived from the $T_{\rm eff}$ measurements in the table appearing in Winter & Sion (2003). The ranges indicated for each measurement are those allowed for $0.05 M_{\rm ign} < M_{\rm acc} < 0.95 M_{\rm ign}$ and $0.6 M_{\odot} < M < 1.2 M_{\odot}$. The curves show the $\langle \dot{m} \rangle$ predicted by Howell, Nelson, & Rappaport (2001) for $M=0.6 M_{\odot}$ (solid line) and $M=1.1 M_{\odot}$ (dashed line). Patterson's (1984) deduced relation from CV observations is shown by the dotted line for $M=0.6 M_{\odot}$ the dot-dashed line for $1.0 M_{\odot}$. The right hand scale gives $\langle \dot{M} \rangle_{0.6}$, the corresponding accretion rate if R is that for $M=0.6 M_{\odot}$. At the same $\langle \dot{m} \rangle$, $\langle \dot{M} \rangle_{1.0}=0.4 \langle \dot{M} \rangle_{0.6}$.

Although selection effects favor low $\langle \dot{M} \rangle$'s above the period gap, since such systems are more likely to have clean WD spectra, Patterson's (1984) estimates of $\langle \dot{M} \rangle$ for the systems above the gap in Figure 2 are not systematically below his estimates for other CVs. The most recently improved calibration of the magnetic braking law, using spin-down of open cluster stars (Andronov, Pinsonneault, & Sills 2003), yielded $\langle \dot{M} \rangle$'s above the period gap at least a factor of ten lower than Howell et al. (2001), falling below our inferences, so that braking in CVs must be enhanced over that responsible for the spin down of noninteracting low mass stars.

In Figure 2, we also show Patterson's (1984) deduction from observations, $\langle \dot{M} \rangle \approx 5.1 \times 10^{-10} (P_{\rm orb}/4 \, \rm hr) \rm M_{\odot} \, yr^{-1}$, for $M=0.6 M_{\odot}$ (dotted line) and $1.0 M_{\odot}$ (dot-dashed line). Our points are consistent with Patterson (1984) above the period gap, within the uncertainty in his estimates. Below the gap, however, our measurements are roughly a factor of 3 above his. The Patterson (1984) estimates also suffer from the absence of reliable distances, but in a more direct way than ours, making systematic errors difficult to quantify.

The best quality data are for CVs below the period gap, and Howell et al. (2002) and Szkody et al. (2002c) provide examples of these measurements with a discussion of how the uncertainty in the surface gravity, g, affects the $T_{\rm eff}$ results. We display our predictions for the $T_{\rm eff}$ ranges along with observed values for $P_{\rm orb} < 2$ hrs in Figure 3. The $\langle \dot{M} \rangle$ - $P_{\rm orb}$ relation expected from gravitational radiation losses for $M=0.6M_{\odot}$ is from Kolb & Baraffe (1999), and we use the same mass-radius relation for the donor to find $\langle \dot{M} \rangle$ - $P_{\rm orb}$ for $M=1.0M_{\odot}$. This gives $\langle \dot{M} \rangle = 3.6 \times 10^{-11}$ and $5.1 \times 10^{-11} M_{\odot}$ yr⁻¹ for M=0.6 and $1.0M_{\odot}$ respectively at $P_{\rm orb}=1.5$ hours. Due to a difference in the donor mass-radius relation, these differ slightly from the values of Howell et al. (2001) shown in Figure 2, where $\langle \dot{M} \rangle = 4.6 \times 10^{-11}$ and $6 \times 10^{-11} M_{\odot}$ yr⁻¹ for M=0.6 and $1.1M_{\odot}$ at $P_{\rm orb}=1.5$ hours.

The T_{eff} measurements shown by circles are again from the table in Winter & Sion (2003) (with the modifications dis-

FIG. 3.— Comparison of our predicted ranges for $T_{\rm eff}$ with observed values for systems with $P_{\rm orb} < 2$ hours. The filled areas indicate for each $P_{\rm orb}$ the range of $T_{\rm eff}$ that a quiescent CV primary is expected to traverse between thermonuclear outbursts, using the $\langle \dot{M} \rangle$ expected from angular momentum loss due to gravitational radiation (Kolb & Baraffe 1999). Measurements are from the table in Winter & Sion (2003) except as noted in the text. Error bars indicate systematic errors due to the unknown WD mass, and represent the range of $T_{\rm eff}$ obtained with M=0.3-0.9 M_{\odot} . All open points are subject to this same uncertainty. The filled points are systems which have well measured WD masses (Patterson 2001), in order of increasing $P_{\rm orb}$ and in units of M_{\odot} the masses are 0.9 ± 0.15 , 0.82 ± 0.05 , 0.61 ± 0.04 , and 0.84 ± 0.09 for WZ Sge, OY Car, HT Cas, and Z Cha. The diamonds are magnetic CVs (Sion 1999; Gänsicke et al. 2001; Belle et al. 2003).

cussed earlier). The error bars indicate systematic errors due to the unknown WD mass, as the spectral fits cannot independently constrain $T_{\rm eff}$ and g, and represent the range of $T_{\rm eff}$ obtained for $\log g = 8 \pm 0.5$ ($M = 0.3 - 0.9 M_{\odot}$). All spectral measurements of these CV WD $T_{\rm eff}$'s are subject to this same uncertainty. The data with displayed error bars are the best measurements, and others have similar or larger uncertainies. The diamonds show $T_{\rm eff}$ for magnetic systems (Sion 1999; Gänsicke et al. 2001; Belle et al. 2003). The estimated masses for the two magnetic systems at 1.9 hours are 0.5 and $0.6 M_{\odot}$ (Schwope et al. 1993; Schmidt, Stockman, & Grandi 1983), for the lower and higher respectively, placing their measured $T_{\rm eff}$ very close to that expected from our work.

When the WD mass, and thus radius, is known, $\langle \dot{M} \rangle$ can be directly constrained. The filled points are systems which have relatively secure WD masses from eclipse timing (Patterson 2001), in order of increasing $P_{\rm orb}$ and in units of M_{\odot} the masses are 0.9 ± 0.15 , 0.82 ± 0.05 , 0.61 ± 0.04 , and 0.84 ± 0.09 for WZ Sge, OY Car, HT Cas, and Z Cha. The best $T_{\rm eff}$ measurement is that for WZ Sge (Sion et al. 1995) giving $\langle \dot{M} \rangle = 6.4^{+1.7+3.9}_{-1.7-1.4} \times 10^{-11} M_{\odot}$ yr⁻¹ where the first errors represent the unconstrained value of $M_{\rm acc}$ and the second the uncertain mass. If the gravitational radiation prediction of $\langle \dot{M} \rangle$ (Kolb & Baraffe 1999) is taken as a lower limit, then comparison of these CVs to the predicted $T_{\rm eff}$'s of Figure 3 yield a maximum WD mass. For example, none of the CVs denoted with filled circles can have M in excess of $\approx M_{\odot}$, since a more massive WD would yield a higher $T_{\rm eff}$ than observed.

If the current $\langle \dot{M} \rangle$ - $P_{\rm orb}$ relation predicted from gravitational radiation is correct, this comparison favors WD masses near $0.9-1.0M_{\odot}$. However, the systems with measured masses indicate another possible interpretation, that $M \approx 0.85M_{\odot}$ for many systems but $\langle \dot{M} \rangle$ is slightly greater than that predicted by Kolb & Baraffe (1999). The fact that the lower bound of

measured values lies roughly parallel to what is expected for post-turnaround objects provides the exciting possibility that the turnaround is at roughly $P_{\rm orb} = 1.3$ hours and the objects with the lowest $T_{\rm eff}$ values, HV Vir and EG Cnc, are post-turnaround CVs. Under this interpretation, our work would indicate that the $\langle \dot{M} \rangle$'s for these post-turnaround objects are much higher than that expected from current modelling of evolution under the influence of gravitational radiation. Such an "extra" angular momentum loss has been mentioned by Patterson (2001) as a way to understand the location of the period minimum.

4. CONCLUSIONS

We have used our theoretical work on accreting WDs (Townsley & Bildsten 2003) to translate measurements of CV WD $T_{\rm eff}$'s into measurements of $\langle \dot{m} \rangle = \langle \dot{M} \rangle / 4\pi R^2$, the accretion rate per unit WD surface area averaged over the thermal time of the radiative envelope ($\gtrsim 1000$ years). Since the predictions of TB for $L(M, \langle \dot{M} \rangle, T_c)$ are insensitive to T_c (except where its value can be found self-consistently) we allowed for a range of WD masses, 0.6-1.2 M_{\odot} , and accumulated envelope masses, $0.05M_{\rm ign} \le M_{\rm acc} \le 0.95M_{\rm ign}$, to obtain a wellquantified uncertainty on $\langle \dot{m} \rangle$ from the observed $T_{\rm eff}$. We find evidence that above the period gap ($P_{orb} > 3$ hours) DN accretion rates are slightly overestimated by CV evolution models (Howell et al. 2001), but that angular momentum loss is quite enhanced compared to spin down of isolated low-mass stars (Andronov, Pinsonneault, & Sills 2003). Below the period gap, $P_{\text{orb}} < 2$ hours, we find that $\langle M \rangle$ is larger than that predicted by current models of gravitational radiation losses (Kolb & Baraffe 1999) when $M = 0.6M_{\odot}$, indicating either larger M or higher $\langle M \rangle$.

It is well known that an isolated WD will pulsate when its $T_{\rm eff}$ is in the approximate range 11000-12000 K (Bergeron et al. 1995). While a difference in the outer atmospheric composition, H/He in an accreting WD versus pure hydrogen in the isolated case, will shift this range, it is likely that a similar pulsation mechanism will be active in accreting WDs. Our calculations indicate that accreting WDs with $M=0.6-1.0M_{\odot}$ should be near this range when $\langle \dot{M} \rangle = {\rm few} \times 10^{-11} M_{\odot} {\rm yr}^{-1}$. This $\langle \dot{M} \rangle$ is typical of that expected in CVs when accretion is driven by gravitational radiation losses, $P_{\rm orb} < 2$ hours (Kolb & Baraffe 1999). In

fact one system, GW Lib, has been found which does exhibit precisely this type of variability (van Zyl et al. 2000; Szkody et al. 2002b). Using the interior models developed in TB, we are now undertaking a seismological study of these systems. This offers the tantalizing possibility of measuring the WD mass, spin and mass of the accumulated H/He layer.

Since the minimum light of $\langle \dot{M} \rangle < 10^{-10} M_{\odot} \text{ yr}^{-1}$ DN in quiescence is determined by the hot WD, we can now calculate just how deep the large-scale optical surveys are probing into the predicted large population of CVs with very low mass companions ($< 0.1 M_{\odot}$) (Howell, Rappaport, & Politano 1997). A typical survey complete to V = 20 would find all $0.9M_{\odot}$ ($0.6M_{\odot}$) WDs with $T_{\rm eff} > 8500$ K (7000 K) that are within 200 pc (Bergeron, Wesemael, & Beauchamp 1995), and thus all DN with $\langle \dot{M} \rangle > 0.8 \, (1.0) \times 10^{-11} M_{\odot} \, \text{yr}^{-1}$, including most DN below the period gap that have not yet reached the period minimum. Selection of the faint CVs is still a challenge; colorselected surveys utilize their unusual combination of a hot WD plus a main sequence M star (see Townsley & Bildsten 2002 for an earlier discussion and application to CVs in Galactic Globular Clusters). The second round of discoveries of faint CV's from the Sloan Digital Sky Survey (SDSS), sensitive to ~20th magnitude, have just been announced (Szkody et al. 2003). Based on the initial set of 19 CV's and their orbital period distribution, Szkody et al. (2002a) claim that a large fraction of the 400 eventual CV discoveries will be of the low $\langle \dot{M} \rangle$ variety below the period gap. Marsh et al. (2002) have also reported their discovery of three such systems in the 2dF survey, sensitive to ~21st magnitude, and expect to have about 20 low $\langle \dot{M} \rangle$ systems when the survey is complete.

We thank Ed Sion for numerous conversations, Paula Szkody for up to date information on the DN observations, and Boris Gänsicke and Steve Howell for comments on the manuscript. This research was supported by the National Science Foundation under Grants PHY99-07949 and AST02-05956. Support for this work was provided by NASA through grant AR-09517.01-A from STScI, which is operated by AURA, Inc., under NASA contract NAS5-26555. D. T. was an NSF Graduate Fellow and L. B. is a Cottrell Scholar of the Research Corporation.

REFERENCES

Althaus, L. G. & Benvenuto, O. G. 1997, ApJ, 477, 313
Andronov, N., Pinsonneault, M., & Sills, A. 2003, ApJ, 582, 358
Belle, K. E., Howell, S. B., Sion, E. M., Long, K. S., & Szkody, P. 2003, ApJ, 587, 373

Bergeron, P., Wesemael, F., & Beauchamp, A. 1995, PASP, 107, 1047Bergeron, P., Wesemael, F., Lamontagne, R., Fontaine, G., Saffer, R. A., & Allard, N. F. 1995, ApJ, 449, 258

Gänsicke, B. T., Schmidt, G. D., Jordan, S., & Szkody, P. 2001, ApJ, 555, 380 Godon, P. & Sion, E. M. 2002, ApJ, 566, 1084

Howell, S. B., Rappaport, S., & Politano, M. 1997, MNRAS, 287, 929

Howell, S. B., Nelson, L. A., & Rappaport, S. 2001, ApJ, 550, 897

Howell, S. B., Gänsicke, B. T., Szkody, P., & Sion, E. M. 2002, ApJ, 575, 419 Iben, I., Jr. 1982, ApJ, 259, 244

Kolb, U. & Baraffe, I. 1999, MNRAS, 309, 1034

Marsh, T. R. et al. 2002, ASP Conf. Ser. 261: The Physics of Cataclysmic Variables and Related Objects, 200

Patterson, J. 1984, ApJS, 54, 443

Patterson, J. 2001, PASP, 113, 736

Salaris, M., García-Berro, E., Hernanz, M., Isern, J., Saumon, D. 2000, ApJ, 554, 1036

Schmidt, G. D., Stockman, H. S., & Grandi, S. A. 1983, ApJ, 271, 735

Schwope, A. D., Beuermann, K., Jordan, S., & Thomas, H.-C. 1993, A&A, 278, 487

Shafter, A. W. 1992, ApJ, 394, 268

Sion, E. M. 1991, AJ, 102, 295

Sion, E. M. 1995, ApJ, 438, 876

Sion, E. M., et al. 1995, ApJ, 439, 957

Sion, E. M. 1999, PASP, 111, 532

Szkody, P., et al. 2002a, AJ, 123, 430

Szkody, P., Gänsicke, B. T., Howell, S. B., & Sion, E. M. 2002b ApJ, 575, L79

Szkody, P., Gänsicke, B. T., Sion, E. M., & Howell, S. B. 2002c ApJ, 574, 950

Szkody, P., Sion, E. M., Gänsicke, B. T., & Howell, S. B. 2002d, ASP Conf. Ser. 261: The Physics of Cataclysmic Variables and Related Objects, 21

Szkody, P., et al. 2003, AJ, 126, 1499

Townsley, D. M. & Bildsten, L. 2002, ApJ, 565, L35

Townsley, D. M. & Bildsten, L. 2003, submitted to ApJ, (astro-ph/0306080) (TB)

van Zyl, L., Warner, B., O'Donoghue, D., Sullivan, D., Pritchard, J., & Kemp, J. 2000, Baltic Astronomy, 9, 231

Warner, B. 1995, Cataclysmic Variable Stars (Cambridge: Cambridge Univ. Press)
Winter, L & Sion, E. M. 2003, ApJ, 582, 352