Криптографические системы Лабораторная работа $\mathbb{N}1$

Атака на алгоритм шифрования RSA посредством метода Ферма

ФИО студента: Готовко Алексей Владимирович

Вариант: 3

Учебная группа: Р34101

1 Цель работы

Изучить атаку на алгоритм шифрования RSA посредством метода Ферма.

2 Вариант задания

Используя разложение модуля на простые числа методом Ферма и полученные исходные данные, определить следующие показатели:

- множители модуля (p и q);
- значение функции Эйлера для данного модуля $\varphi(N)$;
- ullet обратное значение экспоненты по модулю $\varphi(N).$

Дешифровать зашифрованный текст. Исходный текст должен быть фразой на русском языке.

Вариант	\mathbf{M} одуль, N	Экспонента, е	Блок зашифрованного текста, C
3	93767386321457	2091619	62984326732858
			22123186696272
			24425203655789
			45995309006047
			8176196426076
			12816278693250
			27474201663022
			86909026690842
			20469575723850
			29205116646939
			21002901408912
			79168478687790

3 Исходный код программы

rsa_attacks.py

```
def to_text(data: int) -> str:
        return data.to_bytes(length=4, byteorder="big").decode("cp1251")
    def fermat(modulo: int, exponent: int, ciphertext: list[int]):
        n = int(modulo ** 0.5) + 1
        w = t ** 2 - modulo
        if n ** 2 != modulo:
10
             while w != int(w ** 0.5) ** 2:
                 t += 1
                 w = t ** 2 - modulo
13
        p = int(t + w ** 0.5)
        q = int(t - w ** 0.5)
16
        phi = int((p - 1) * (q - 1))
        d = pow(exponent, -1, phi)
19
20
        print("Fermat method parameters:\n"
21
               f"t
                      = \{t\} \n''
22
                      = \{w\} \setminus n''
23
               f"p
                      = \{p\} \setminus n''
               f"q
                      = \{q\} \n''
25
               f"phi = {phi} \n"
26
               f''d = \{d\} \setminus n'')
28
        result = ""
29
30
        for element in ciphertext:
31
             msg = pow(element, d, modulo)
32
             result += to_text(msg)
33
        return result
35
```

4 Результат работы программы

```
Fermat method parameters:

t = 9683361

w = 93934864

p = 9693053

q = 9673669

phi = 93767366954736

d = 26651504610523

Вестуртеd text: исследователей с маршрутизацией от источника: ___
```