Infraestrutura de Hardware

Introdução

Encontramos computadores em todo lugar!
 Entretenimento, Transporte, Comunicação, Saúde, etc

Computadores no Transporte

 Maior parte dos veículos atualmente tem um computador embarcado

Computadores na Saúde

 Computadores presentes cada vez mais no monitoramento, auxílio a diagnóstico e tratamento de pacientes

Demanda Crescente de Computadores

Reconhecimento de Face

TV Digital

Aumento do número e complexidade das aplicações!

Categorias de Computadores

- Desktops
- Servidores/Clusters
- Embarcados
- Dispositivos Móveis Pessoais (PMD)

Desktops

- Tipo mais popular
- Computador pessoal que roda aplicativos genéricos

Exs: Editor de texto, browser, media player, jogos etc

- Alia bom desempenho a baixo custo
- Fatia importante do mercado de computadores

Impulsionou boa parte dos avanços tecnológicos dos últimos 30 anos

Servidores/Clusters

- Roda aplicações complexas
 Foco em disponibilidade, escalabilidade e throughput
- Usado para rodar aplicações que atendem muitos usuários simultaneamente

Exs: servidor web, sistema de gerenciamento de BD, "cloud computing"

- Acessados geralmente via rede
- Grande poder de processamento e armazenamento

Custo alto!

Computadores Embarcados

Estão em todo lugar!
 Ex: carro, avião, televisão,
 cameras digitais etc

- Rodam uma aplicação específica ou classe de aplicações relacionadas
 Aplicações com forte integração com HW
- Aplicacões devem ser otimizadas para conseguir o máximo desempenho em um HW que deve ter custo e consumo de energia reduzido
- Devem ser robustos
 Muito utilizados em sistemas críticos

Dispositivos Móveis Pessoais

 Dispositivos pequenos móveis capazes de executar diversos aplicativos

Ex: smartphone, tablets

Têm como características marcantes:

Capacidade de comunicação com internet e outros dispositivos (wi-fi, bluetooth, GPS, etc) Dependência de bateria

 Possuem características de desktops e embarcados

Variedade de dispositivos de E/S, capazes de rodar vários aplicativos diferentes

Restrições de memória e processamento, e otimiza consumo de energia

Quantidade de Processadores Vendidos por Tipo

Worldwide Smart Connected Device Shipments, 2010-2016 (Unit Millions)

Mercado de Processadores (2013)

2013 MPU Sales by Applications (Fcst, \$61.0B)

^{*}Includes ARM-based and x86 processors.

Source: IC Insights

Mercado de Processadores (Previsão para 2018)

*Includes ARM-based and x86 processors. **Includes ARM-based and other RISC processors. Source: IC Insights

Aumento do impacto econômico de aplicações embarcadas!

Hardware e Software

Computador = Hardware + Software

Hardware

Parte física do computador Chips, monitores, teclado, etc

Software

Programas e dados

Editores de texto, navegadores, sistemas operacionais, etc

Por que Aprender Conceitos de Arquitetura e Organização de Computadores?

- Desempenho é um importante fator de qualidade para tornar software competitivo
- Desenvolver software com bom desempenho requer o entendimento de como um computador funciona
 - Componentes de um computador
 - Como os componentes interagem entre si
 - Como o software interage com os componentes

Novas Tendências: Computadores Vestíveis (Wearable Computers)

 Computadores embarcados miniaturizados com poder de processamento e memória limitados que aderem ao corpo ou fazem parte da vestimenta

Novas Tendências: Internet of Things (IoT)

 Conjunto de sensores e computadores embarcados com poder de processamento e memória limitados que estão conectados

Por que Aprender Conceitos de Arquitetura e Organização de Computadores?

Aumento progressivo de venda de processadores para aplicações embarcadas

- Novas tendências exigirão o aumento de aplicações embarcadas
- Desenvolver aplicações embarcadas requerem bom conhecimento do HW

Perguntas que Devem ser Respondidas ao Final do Curso

- Como um programa escrito em uma linguagem de alto nível é entendido e executado pelo HW?
- Qual é a interface entre SW e HW e como o SW instrui o HW a executar o que foi planejado?
- O que determina o desempenho de um programa e como ele pode ser melhorado?
- Que técnicas um projetista de HW pode utilizar para melhorar o desempenho?

Modelo de um Computador

Processamento de Informações... Em um Escritório

- Como se dá o processamento das informações?
 - Informações que não tem uso no momento ficam no fichário.
 - A pasta sobre a mesa contém cópias das informações que precisaremos naquele dia.

<u>Fichário</u>

- Na mesa mantemos os papéis que estamos usando <u>naquele</u> <u>momento</u>
- Completada uma tarefa, pomos os papéis alterados de volta no fichário.
- Após o expediente, a faxineira joga no lixo tudo que está na mesa.

Processamento de Informações... Em um Escritório

Empregado pode mostrar para outra pessoa o resultado da execução da tarefa

Outra pessoa pode entregar mais papéis (informações) necessários à execução da tarefa

Processamento (Computador x Escritório)

Unidade Central de Processamento (CPU)

- A CPU é o "cérebro" do computador
- Implementado em um chip chamado de microprocessador
- Faz continuamente 3 ações:

Componentes Principais de uma CPU

Estado da Arte: Processadores Multicores

 Mais de um núcleo (CPU) em um mesmo processador

Estado da Arte: Intel i7

4 núcleos

CPU e Memória Principal

- CPU busca programas e dados residentes na memória
- CPU também armazena dados na memória

Memória Principal

Também chamada de memória RAMRandom Access Memory

- Acesso aos endereços de memória podem ser feita de forma direta sem ter que passar por endereços anteriores
- Armazena dados e programas utilizados pelo processador num dado instante

Processador x Memória Principal

 Processadores cada vez mais rápidos, porém velocidade de acesso a memória representa gargalo para desempenho de aplicações

Armazenamento Secundário

Memória Principal (RAM)

CPU ↑ CPU procura programa/dados na RAM

Não encontrando, CPU espera transferência de dados da memória secundária para a memória principal

Programa/dados são transferidos para RAM

> Tipos de memória para armazenamento de longa duração de dados/programas

Armazenamento Secundário (Disco Rígido)

- Dispositivo magnético
- Partes que são gravadas são magnetizadas

Memória Principal x Memória Secundária

- Memória RAM é mais rápida do que memórias secundárias
- Memória RAM é volátil
 Informação é perdida quando não há corrente elétrica
- Memórias secundárias não são voláteis
- Memórias secundárias geralmente são mais baratas que a memória RAM

Por serem mais baratas, geralmente a capacidade de armazenamento é maior (Ex: Disco Rígido)

Dispositivos de Entrada/Saída

Dispositivos de Entrada/Saída

- Teclado
- Mouse
- Leitor Óptico
- Joystick
- Monitor de vídeo
- Impressora

Característica comum: Baixa Velocidade

Exemplo de Dispositivo de Entrada: Mouse Óptico

Possui:

LED

Câmera preto e branco

Processador óptico (Controller IC)

 LED ilumina superfície, e câmera captura cerca de 1500 imagens por segundo e envia para processador óptico que calcula deslocamento

Conectando Todos os Componentes de um Computador

 Placa-mãe é uma placa plástica dentro de um computador que contém chips, incluindo processador, caches, memória e conexões para dispositivos de E/S

Placa-mãe

Avanços em Processamento

Mudança para multi-cores

Redução de Potência e Energia

- 80386 consumia ~ 4 W de potência
- 3.3 GHz Intel Core i7 consome 130 W
- Calor deve ser dissipado de um chip de 1.5 x 1.5 cm
- Limite para ser resfriado pelo ar
- Processador deve ser também eficiente em termos de energia para dispositivos dependentes de bateria

Avanços em Capacidade de Armazenamento e Custo

Memória DRAM

Aumento de capacidade de 25 – 40% ao ano (diminuição da taxa de aumento)

Custo por bit: melhora 25% por ano

Memória Flash

Aumento de capacidade de 50 – 60% ao ano Custo por bit 15-20X menor do que DRAM

Disco

Capacidade sobe a uma taxa de 40% ao ano Custo por bit: melhora em média 60% por ano 15-25X mais barato que Flash 300-500X mais barato que DRAM

E Agora Para Onde Vamos?

 Projetistas de HW buscam maximizar desempenho e minimizar consumo de energia de processadores
 Foco em dispositivos móveis

Projetistas de SW devem desenvolver aplicações que maximizam uso eficiente das novas arquiteturas de HW

Computador: Hardware + Software

 Módulo 1:Conceitos Básicos de Arquitetura de Computadores

Introdução

Conceitos Básicos de Arquitetura

Usando o simulador MIPS

Implementação Mono-ciclo e Multi-ciclo

 Módulo 2: Implementação em Pipeline e Superescalar, e Multiprocessadores

Implementação Pipeline

Resolução de Conflito de Dados e Controle

Implementação Superescalar

Multiprocessadores

Módulo 3: Hierarquia de Memória

Memória Cache

- Tipos de Cache
- Melhorando o desempenho de uma cache

Memória RAM

Memória Virtual

- Módulo 4: Entrada/Saída
 - Entrada/Saída
 - Tipos de E/S
 - Componentes de um sistema de E/S

Avaliação

- Provas, Projeto e Listas de Exercícios
 - Projeto e Listas feitas em grupo
- Nota Final = ((Prova1+0,1x(Lista1)) + Projeto + ((Prova2+0,1x(Lista2)) + ((Prova3+0,1x(Lista3)))/4

