Bandwidth

A function with the Fourier transform X is said to be bandlimited if, for some (finite) nonnegative real constant B, the following condition holds:

$$X(\omega) = 0$$
 for all ω satisfying $|\omega| > B$.

- The bandwidth B of a function with the Fourier transform X is defined as $B = \omega_1 - \omega_0$, where $X(\omega) = 0$ for all $\omega \notin [\omega_0, \omega_1]$.
- In the case of *real-valued* functions, however, this definition of bandwidth is usually amended to consider *only nonnegative* frequencies.
- The real-valued function x_1 and complex-valued function x_2 with the respective Fourier transforms X_1 and X_2 shown below each have bandwidth B (where only nonnegative frequencies are considered in the case of x_1).

One can show that a function cannot be both time limited and bandlimited.

Energy-Density Spectra

By Parseval's relation, the energy E in a function x with Fourier transform X is given by

$$E=\frac{1}{2\pi}\int_{-\infty}^{\infty}E_{x}(\omega)d\omega,$$

where

$$E_{x}(\mathbf{\omega}) = |X(\mathbf{\omega})|^{2}$$
.

- We refer to E_x as the energy-density spectrum of the function x.
- The function E_x indicates how the energy in x is distributed with respect to frequency.
- For example, the energy contributed by frequencies in the range $[\omega_1, \omega_2]$ is given by

$$\frac{1}{2\pi}\int_{\omega_1}^{\omega_2}E_x(\mathbf{\omega})d\mathbf{\omega}.$$

Fourier Transform and LTI Systems

Frequency Response of LTI Systems

- Consider a LTI system with input x, output y, and impulse response h, and let X, Y, and H denote the Fourier transforms of x, y, and h, respectively.
- Since y(t) = x * h(t), we have that

$$Y(\omega) = X(\omega)H(\omega).$$

- The function H is called the **frequency response** of the system.
- A LTI system is completely characterized by its frequency response H.
- The above equation provides an alternative way of viewing the behavior of a LTI system. That is, we can view the system as operating in the frequency domain on the Fourier transforms of the input and output functions.
- The frequency spectrum of the output is the product of the frequency spectrum of the input and the frequency response of the system.

Frequency Response of LTI Systems (Continued 1)

- In the general case, the frequency response H is a complex-valued function.
- Often, we represent $H(\omega)$ in terms of its magnitude $|H(\omega)|$ and argument $arg H(\omega)$.
- The quantity $|H(\omega)|$ is called the magnitude response of the system.
- The quantity $\arg H(\omega)$ is called the **phase response** of the system.
- Since $Y(\omega) = X(\omega)H(\omega)$, we trivially have that

$$|Y(\omega)| = |X(\omega)| \, |H(\omega)| \quad \text{ and } \quad \arg Y(\omega) = \arg X(\omega) + \arg H(\omega).$$

- The magnitude spectrum of the output equals the magnitude spectrum of the input times the magnitude response of the system.
- The phase spectrum of the output equals the phase spectrum of the input plus the phase response of the system.

Frequency Response of LTI Systems (Continued 2)

Since the frequency response H is simply the frequency spectrum of the impulse response h, if h is **real**, then

$$|H(\omega)| = |H(-\omega)|$$
 and $\arg H(\omega) = -\arg H(-\omega)$

(i.e., the magnitude response $|H(\omega)|$ is even and the phase response $arg H(\omega)$ is *odd*).

Block Diagram Representations of LTI Systems

- Consider a LTI system with input x, output y, and impulse response h, and let X, Y, and H denote the Fourier transforms of x, y, and h, respectively.
- Often, it is convenient to represent such a system in block diagram form in the frequency domain as shown below.

Since a LTI system is completely characterized by its frequency response, we typically label the system with this quantity.

Interconnection of LTI Systems

The *series* interconnection of the LTI systems with frequency responses H_1 and H_2 is the LTI system with frequency response H_1H_2 . That is, we have the equivalence shown below.

$$X \longrightarrow H_1 \longrightarrow H_2 \longrightarrow Y \longrightarrow H_1H_2 \longrightarrow Y$$

The *parallel* interconnection of the LTI systems with frequency responses H_1 and H_2 is the LTI system with the frequency response $H_1 + H_2$. That is, we have the equivalence shown below.

LTI Systems and Differential Equations

- Many LTI systems of practical interest can be represented using an Nth-order linear differential equation with constant coefficients.
- Consider a system with input x and output y that is characterized by an equation of the form

$$\sum_{k=0}^{N} b_k \left(\frac{d}{dt}\right)^k y(t) = \sum_{k=0}^{M} a_k \left(\frac{d}{dt}\right)^k x(t),$$

where the a_k and b_k are complex constants and $M \leq N$.

- Let h denote the impulse response of the system, and let X, Y, and H denote the Fourier transforms of x, y, and h, respectively.
- \blacksquare One can show that H is given by

$$H(\omega) = \frac{Y(\omega)}{X(\omega)} = \frac{\sum_{k=0}^{M} a_k j^k \omega^k}{\sum_{k=0}^{N} b_k j^k \omega^k}.$$

Observe that, for a system of the form considered above, the frequency response is a *rational function*.

Application: Filtering

Filtering

- In many applications, we want to *modify the spectrum* of a function by either amplifying or attenuating certain frequency components.
- This process of modifying the frequency spectrum of a function is called filtering.
- A system that performs a filtering operation is called a filter.
- Many types of filters exist.
- Frequency selective filters pass some frequencies with little or no distortion, while significantly attenuating other frequencies.
- Several basic types of frequency-selective filters include: lowpass, highpass, and bandpass.

Ideal Lowpass Filter

- An ideal lowpass filter eliminates all frequency components with a frequency whose magnitude is greater than some cutoff frequency, while leaving the remaining frequency components unaffected.
- Such a filter has a *frequency response* H of the form

$$H(\omega) = egin{cases} 1 & |\omega| \leq \omega_c \\ 0 & ext{otherwise}, \end{cases}$$

where ω_c is the cutoff frequency.

A plot of this frequency response is given below.

Ideal Highpass Filter

- An ideal highpass filter eliminates all frequency components with a frequency whose magnitude is less than some cutoff frequency, while leaving the remaining frequency components unaffected.
- Such a filter has a *frequency response* H of the form

$$H(\omega) = egin{cases} 1 & |\omega| \geq \omega_c \ 0 & ext{otherwise}, \end{cases}$$

where ω_c is the cutoff frequency.

A plot of this frequency response is given below.

Ideal Bandpass Filter

- An ideal bandpass filter eliminates all frequency components with a frequency whose magnitude does not lie in a particular range, while leaving the remaining frequency components unaffected.
- Such a filter has a frequency response H of the form

$$H(\omega) = egin{cases} 1 & \omega_{c1} \leq |\omega| \leq \omega_{c2} \\ 0 & ext{otherwise}, \end{cases}$$

where the limits of the passband are ω_{c1} and ω_{c2} .

A plot of this frequency response is given below.

Application: Equalization

Equalization

- Often, we find ourselves faced with a situation where we have a system with a particular frequency response that is undesirable for the application at hand.
- As a result, we would like to change the frequency response of the system to be something more desirable.
- This process of modifying the frequency response in this way is referred to as equalization. [Essentially, equalization is just a filtering operation.]
- Equalization is used in many applications.
- In real-world *communication systems*, equalization is used to eliminate or minimize the distortion introduced when a signal is sent over a (nonideal) communication channel.
- In *audio applications*, equalization can be employed to emphasize or de-emphasize certain ranges of frequencies. For example, equalization can be used to boost the bass (i.e., emphasize the low frequencies) in the audio output of a stereo.

Equalization (Continued)

- Let H_{orig} denote the frequency response of original system (i.e., without equalization).
- Let H_d denote the *desired* frequency response.
- Let H_{eq} denote the frequency response of the *equalizer*.
- The new system with equalization has frequency response

$$H_{\text{new}}(\omega) = H_{\text{eq}}(\omega)H_{\text{orig}}(\omega).$$

■ By choosing $H_{eq}(\omega) = H_{d}(\omega)/H_{orig}(\omega)$, the new system with equalization will have the frequency response

$$H_{\text{new}}(\omega) = [H_{\text{d}}(\omega)/H_{\text{orig}}(\omega)]H_{\text{orig}}(\omega) = H_{\text{d}}(\omega).$$

In effect, by using an equalizer, we can obtain a new system with the frequency response that we desire.

Application: Circuit Analysis

Electronic Circuits

- An electronic circuit is a network of one or more interconnected circuit elements.
- The three most basic types of circuit elements are:
 - resistors:
 - inductors; and
 - capacitors.
- Two fundamental quantities of interest in electronic circuits are current and voltage.
- Current is the rate at which electric charge flows through some part of a circuit, such as a circuit element, and is measured in units of amperes (A).
- Voltage is the difference in electric potential between two points in a circuit, such as across a circuit element, and is measured in units of volts (V).
- Voltage is essentially a force that makes electric charge (or current) flow.

Resistors

- A resistor is a circuit element that opposes the flow of current.
- A resistor is characterized by an equation of the form

$$v(t) = Ri(t) \quad \left(\text{or equivalently, } i(t) = \tfrac{1}{R} v(t) \right),$$

where R is a nonnegative real constant, and v and i respectively denote the voltage across and current through the resistor as a function of time.

- As a matter of terminology, the quantity R is known as the resistance of the resistor.
- \blacksquare Resistance is measured in units of ohms (Ω).
- In circuit diagrams, a resistor is denoted by the symbol shown below.

Inductors

- An inductor is a circuit element that converts an electric current into a magnetic field and vice versa.
- An inductor uses the energy stored in a magnetic field in order to oppose *changes in current* (through the inductor).
- An inductor is characterized by an equation of the form

$$v(t) = L rac{d}{dt} i(t)$$
 (or equivalently, $i(t) = rac{1}{L} \int_{-\infty}^t v(au) d au$),

where L is a nonnegative real constant, and v and i respectively denote the voltage across and current through the inductor as a function of time.

- As a matter of terminology, the quantity L is known as the inductance of the inductor.
- Inductance is measured in units of henrys (H).
- In circuit diagrams, an inductor is denoted by the symbol shown below.

Capacitors

- A capacitor is a circuit element that stores electric charge.
- A capacitor uses the energy stored in an electric field in order to oppose *changes in voltage* (across the capacitor).
- A capacitor is characterized by an equation of the form

$$v(t) = rac{1}{C} \int_{-\infty}^t i(au) d au \quad ext{(or equivalently, } i(t) = C rac{d}{dt} v(t)),$$

where C is a nonnegative real constant, and v and i respectively denote the voltage across and current through the capacitor as a function of time.

- As a matter of terminology, the quantity C is known as the capacitance of the capacitor.
- Capacitance is measured in units of farads (F).
- In circuit diagrams, a capacitor is denoted by the symbol shown below.

Circuit Analysis with the Fourier Transform

- The Fourier transform is a very useful tool for circuit analysis.
- The utility of the Fourier transform is partly due to the fact that the differential/integral equations that describe inductors and capacitors are much simpler to express in the Fourier domain than in the time domain.
- Let v and i denote the voltage across and current through a circuit element, and let V and I denote the Fourier transforms of v and i. respectively.
- In the frequency domain, the equations characterizing a resistor, an inductor, and a capacitor respectively become:

$$V(\omega)=RI(\omega)$$
 (or equivalently, $I(\omega)=rac{1}{R}V(\omega)$); $V(\omega)=j\omega LI(\omega)$ (or equivalently, $I(\omega)=rac{1}{j\omega L}V(\omega)$); and $V(\omega)=rac{1}{j\omega C}I(\omega)$ (or equivalently, $I(\omega)=j\omega CV(\omega)$).

Note the absence of differentiation and integration in the above equations for an inductor and a capacitor.

Application: Amplitude Modulation (AM)

Motivation for Amplitude Modulation (AM)

- In communication systems, we often need to transmit a signal using a frequency range that is different from that of the original signal.
- For example, voice/audio signals typically have information in the range of 0 to 22 kHz.
- Often, it is not practical to transmit such a signal using its original frequency range.
- Two potential problems with such an approach are:
 - interference; and
 - constraints on antenna length.
- Since many signals are broadcast over the airwaves, we need to ensure that no two transmitters use the same frequency bands in order to avoid interference.
- Also, in the case of transmission via electromagnetic waves (e.g., radio waves), the length of antenna required becomes impractically large for the transmission of relatively low frequency signals.
- For the preceding reasons, we often need to change the frequency range associated with a signal before transmission.