Лабораторная работа 1.3

Изучение колебаний на примере физического маятника

Зотов Алексей 496 гр.

21 марта 2016 г.

Цель работы: исследовать физический и математический маятники как колебательные системы, измерить зависимость периода колебаний физического маятника от его момента инерции.

В работе используются: физический маятник (однородный стальной стержень), опорная призма, математический маятник, счётчик числа колебаний, линейка, секундомер.

Рис. 1: физический маятник.

Экспериментальная установка. В данной работе в качестве физического маятника используется однородный стальной стержень длиной l На стержне закрепляется опорная призма, острое ребро которой является осью качания маятника. Призму можно перемещать вдоль стержня, меняя расстояние a от точки опоры (точки подвеса) маятника до его центра масс. Используя теорему Гюйгенса-Штейнера и считая стержень тонким (его радиус много меньше длины), вычислим его момент инерции:

$$I = \frac{ml^2}{12} + ma^2 \tag{1}$$

Ход работы

- 1. Проведем n=6 экспериментов, в каждом измерим время $N_T=20$ полных колебаний маятников.
 - (а) <u>Физический маятник.</u> Среднее значение периода $T_{avg} = t_{avg}/20 = 1.5779$ [c]. Среднее значение отклонение измерения: $\sigma = \sqrt{\frac{\Sigma (t_i t_{avg})^2}{n-1}} \approx 0.10187$

Таблица 1: Время 20 полных колебаний

i	1	2	3	4	5	6
$t_{20},(c)$	31.43	31.72	31.56	31.62	31.49	31.53

Относительная погрешность периода: $\varepsilon = \frac{\sigma}{N*T_{avg}} \approx 0.0032 < 0.005$

(b) <u>Математический маятник.</u>

Таблица 2: Время 20 полных колебаний

i	1	2	3	4	5	6
$t_{20},(c)$	31.56	31.34	31.6	31.62	31.63	31.54

Среднее значение $t_{avg} = 31.548$. Среднее значение периода $T_{avg} = t_{avg}/20 = 1.5774$ [c]. Среднеквадратичное отклонение измерения: $\sigma = \sqrt{\frac{\Sigma(t_i - t_{avg})^2}{n-1}} \approx 0.10780$ Относительная погрешность периода: $\varepsilon = \frac{\sigma}{N*T_{avg}} \approx 0.0034 < 0.005$

2. Возбудим малые колебания физического маятника, отклонив на угол $A_0 = 10.0^{\circ}$. Измерим время t затухания в ≈ 1.3 раза по достижении маятником значения амплитуды $A_1 \approx 7.5^{\circ}$. $t \approx 5 \text{ мин } 30 \text{ c} = 330 \text{ (c)}.$

Количество колебаний N=209.

Добротность $Q=\frac{\pi}{\gamma_e T}$, где $\gamma_e=1/\tau_e$ - величина обратная времени убавыния амплитуды A в e раз. Ее вычислим из закона убывания амплитуды: $\gamma_e=\gamma_{1.3}\ln 1.3$, тогда :

$$Q = \frac{\pi \tau_{1.3}}{T \ln(1.3)} \approx 2504.23 \tag{2}$$

3. Найдем зависимость периода колебаний T от расстояния a между точкой опоры и центром масс.

Таблица 3: Время 20 полных колебаний

a, [cm]	4.0	8.0	12.0	16.0	20.0	24.0	28.0	32.0	36.0	40.0	44.0	48.0
$t_{20}, [c]$	53.87	43.19	36.68	33.28	31.69	30.9	30.57	30.68	31.13	31.31	31.85	32.69
T,[c]	2.693	2.159	1.834	1.664	1.585	1.545	1.528	1.534	1.556	1.565	1.593	1.634

Таблица 4: Зависимость $[T^2a](a^2)$

$a^2, [m^2]$	0.002	0.006	0.014	0.026	0.04	0.058	0.078	0.102	0.13	0.16	0.194	0.23
$T^2a, [c^2m]$	0.29	0.373	0.404	0.443	0.502	0.573	0.654	0.753	0.872	0.98	1.116	1.282

Рис. 2: график $[T^2a](a^2)$.

Аппроксимирующая по методу наименьших квадратов прямая y=kx+b , где k=4.1124, b=0.3305.