TECHNISCHE UNIVERSITÄT BERLIN Geometrische Grundlagen der Linearen Optimierung I

Prof. Dr. Martin Henk Prof. Dr. Martin Skutella Hannes Pollehn

WS 2015

2. Übungsblatt

Abgabe am 27.10.2015 vor der Vorlesung

Aufgabe 2.1 (1+1+1+1 Punkte).

- i) Seien $a, b \in \mathbb{R}^n$ gegeben. Zeigen Sie, dass die Menge der Punkte, deren euklidischer Abstand zu a nicht größer ist als zu b, ein abgeschlossener Halbraum ist.
- ii) Zeigen Sie, dass ein abgeschlossener Halbraum Durchschnitt von offenen Halbräumen ist.
- iii) Sei $K \subset \mathbb{R}^n$ mit $\operatorname{int}(B_n) \subseteq K \subseteq B_n$. Zeigen Sie, dass K konvex ist.
- iv) Zeigen Sie, dass $K = \text{int} [0, 1]^2 \cup \text{conv} \{(1/4, 0)^{\intercal}, (3/4, 0)^{\intercal}\}$ eine konvexe Menge ist, die kein Durchschnitt von offenen Halbräumen ist.

Aufgabe 2.2 (1+1+1+1 Punkte).

- i) Sei $K \subseteq \mathbb{R}^n$ konvex und $f: K \to \mathbb{R}$. Die Menge $\Gamma_f = \{(\boldsymbol{x}^T, x_{n+1})^T : \boldsymbol{x} \in K, x_{n+1} \ge f(\boldsymbol{x})\}$ heißt Epigraph von f. Zeigen Sie: Γ_f ist genau dann konvex, wenn f konvex ist.
- ii) Set $X \subseteq \mathbb{R}^n$ konvex und sei $f : \mathbb{R}^n \to \mathbb{R}$ affin. Zeigen Sie, dass jedes lokale Maximum (Minimum) von f ein globales Maximum (Minimum) ist.
- iii) Sei $X \subseteq \mathbb{R}^n$ konvex und $f: \mathbb{R}^n \to \mathbb{R}^m$ eine affine Funktion. Zeigen Sie: f(X) ist konvex.
- iv) Seien $K_1, K_2 \subseteq \mathbb{R}^n$ konvex. Man zeige: $K_1 + K_2$ ist konvex.

Aufgabe 2.3 (2+2 Punkte).

- i) Sei $X \subset \mathbb{R}^n$ kompakt. Man zeige: conv X ist kompakt.
- ii) Seien $K_1, K_2 \subset \mathbb{R}^n$ konvexe Mengen sowie K_1 kompakt, K_2 abgeschlossen und $K_1 \cap K_2 = \emptyset$. Man zeige, dass es eine streng trennende Hyperebene von K_1 und K_2 gibt, d.h. es gibt ein $\boldsymbol{a} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\}$ und ein $\alpha \in \mathbb{R}$, so dass $K_1 \subset \operatorname{int} H^-(\boldsymbol{a}, \alpha)$ und $K_2 \subset \operatorname{int} H^+(\boldsymbol{a}, \alpha)$.

Aufgabe 2.4 (2+2 Punkte).

- i) Sei $C \subseteq \mathbb{R}^n$ konvex, und sei \mathcal{X} eine endliche Familie konvexer Mengen in \mathbb{R}^n mit der Eigenschaft, dass für je n+1 Mengen $X_1, \ldots, X_{n+1} \in \mathcal{X}$ ein $\mathbf{t} \in \mathbb{R}^n$ existiert, so dass $(\mathbf{t}+C) \subseteq \cap_{i=1}^{n+1} X_i$. Zeigen Sie, dass es dann auch ein $\bar{\mathbf{t}} \in \mathbb{R}^n$ gibt mit $(\bar{\mathbf{t}}+C) \subseteq \cap_{X \in \mathcal{X}} X$.
- ii) Sei $C \subseteq \mathbb{R}^n$ konvex und \mathcal{H} eine endliche Familie von Halbräumen, die C überdeckt, d.h. $C \subseteq \bigcup_{H \in \mathcal{H}} H$. Zeigen Sie, dass es n+1 Halbräume in \mathcal{H} gibt, die C überdecken.

TECHNISCHE UNIVERSITÄT BERLIN

Geometrische Grundlagen der Linearen Optimierung I

Prof. Dr. Martin Henk Prof. Dr. Martin Skutella

Hannes Pollehn

WS 2015

1. Übungsblatt

Abgabe am 20.10.2015 vor der Vorlesung

Aufgabe 1.1 (4 Punkte). Sei $m \geq 2$. Zeigen Sie, dass $x_1, \ldots, x_m \in \mathbb{R}^n$ genau dann affin unabhängig sind, wenn für jedes $k \in \{1, \ldots, m\}$ die Vektoren $x_i - x_k$, $1 \leq i \neq k \leq m$, linear unabhängig sind.

Aufgabe 1.2 (1+2+1 Punkte). Sei $C \subseteq \mathbb{R}^n$. C heißt Kegel, falls für jedes $\boldsymbol{x} \in C$ gilt $\{\lambda \boldsymbol{x} : \lambda \geq 0\} \subseteq C$.

- i) Geben Sie ein Beispiel für einen nicht konvexen Kegel an.
- ii) Sei C ein Kegel. Zeigen Sie, dass C genau dann ein konvexer Kegel ist, wenn C + C = C.
- iii) Sei $A \in \mathbb{R}^{m \times n}$. Zeigen Sie, dass die Mengen

$$\{x \in \mathbb{R}^n : Ax \leq 0\}$$
 und $\{M \in \mathbb{R}^{n \times n} : M \text{ ist positiv semidefinit}\}$

konvexe Kegel sind.

Aufgabe 1.3 (3+1 Punkte). Sei $C \subseteq \mathbb{R}^n$ abgeschlossen und für alle $x, y \in C$ gelte $\frac{x+y}{2} \in C$.

- i) Beweisen Sie, dass C konvex ist.
- ii) Kann auf die Abgeschlossenheit von C verzichtet werden? Geben Sie ggf. ein Gegenbeispiel an.

Aufgabe 1.4 (1+1+1+1 Punkte). Beweisen oder widerlegen Sie die folgenden Aussagen:

- i) Falls $X \subseteq \mathbb{R}^n$ abgeschlossen ist, dann ist auch conv X abgeschlossen.
- ii) Falls X konvex, dann ist auch $\operatorname{cl} X$ konvex.
- iii) Falls $X \subseteq \mathbb{R}^n$ offen, dann ist auch conv X offen.
- iv) Seien $X_1, X_2 \subset \mathbb{R}^n$. Es gilt $\operatorname{conv}\{X_1 + X_2\} = \operatorname{conv} X_1 + \operatorname{conv} X_2$.

TECHNISCHE UNIVERSITÄT BERLIN Geometrische Grundlagen der Linearen Optimierung I

Prof. Dr. Martin Henk Prof. Dr. Martin Skutella Hannes Pollehn

WS 2015

0. Übungsblatt

Besprechung in den Tutorien vom 19.10.-20.10.2015

Aufgabe 0.1. Eine Abbildung $g: \mathbb{R}^m \to \mathbb{R}^n$ heißt affin, falls es eine lineare Abbildung $f: \mathbb{R}^m \to \mathbb{R}^n$ und ein $t \in \mathbb{R}^n$ gibt, so dass g(x) = f(x) + t für alle $x \in \mathbb{R}^m$. Zeigen Sie:

- i) g ist genau dann affin, wenn g(x) g(0) linear ist.
- ii) Bild(g) ist ein affiner Unterraum.
- iii) Ist g injektiv und $x_1, \ldots, x_k \in \mathbb{R}^m$ affin unabhängig, dann sind auch $g(x_1), \ldots, g(x_k)$ affin unabhängig.

Aufgabe 0.2. Seien $A, B \subseteq \mathbb{R}^n$ affine Unterräume. Beweisen Sie die folgende Verallgemeinerung der Dimensionsformel für lineare Unterräume:

$$\dim(A) + \dim(B) - \dim(A + B) \begin{cases} = \dim(A \cap B), & \text{falls } A \cap B \neq \emptyset \\ \ge -1, & \text{sonst.} \end{cases}$$

Aufgabe 0.3. Sei $M \in \mathbb{R}^{n \times n}$. Eine lineare Abbildung $P \colon \mathbb{R}^n \to \mathbb{R}^n$, $P(\boldsymbol{x}) = M\boldsymbol{x}$, heißt orthogonale Projektion, falls es einen Unterraum $U \subseteq \mathbb{R}^n$ gibt, so dass für alle $\boldsymbol{u} \in U$ und $\boldsymbol{v} \in U^{\perp}$ gilt: $P(\boldsymbol{u}) = \boldsymbol{u}$ und $P(\boldsymbol{v}) = \boldsymbol{0}$.

Beweisen Sie die Äquivalenz der folgenden Aussagen.

- i) P ist eine Projektion.
- ii) Es gibt einen Unterraum $U \subseteq \mathbb{R}^n$, so dass

$$P(\boldsymbol{x}) \in U, \quad \boldsymbol{x} - P(\boldsymbol{x}) \in U^{\perp}$$

für alle $\boldsymbol{x} \in \mathbb{R}^n$.

- iii) $P \circ P = P$ und $ker(P) \perp Bild(P)$.
- iv) Es gibt ein $k \in \mathbb{N}$ und eine Matrix $X \in \mathbb{R}^{n \times k}$, so dass $XX^{\mathsf{T}} = M$ und $X^{\mathsf{T}}X = I_k$.
- v) M ist symmetrisch und besitzt nur die Eigenwerte 0 und 1.