Topic: Complementary and supplementary angles

Question: Find the supplementary angle.

The angle θ that's supplementary to 126°

Answer choices:

$$\mathbf{A} \qquad \theta = 154^{\circ}$$

B
$$\theta = 36^{\circ}$$

C
$$\theta = 54^{\circ}$$

D
$$\theta = 180^{\circ}$$

Solution: C

Since θ is supplementary to an angle of 126° we have

$$\theta + 126^{\circ} = 180^{\circ}$$

Solving for θ :

$$\theta = 180^{\circ} - 126^{\circ}$$

$$\theta = 54^{\circ}$$

Topic: Complementary and supplementary angles

Question: Find the complementary angle.

The angle θ (in radians) that's complementary to $\pi/6$ radians

Answer choices:

$$A \qquad \theta = \frac{5}{12}\pi$$

$$\theta = \frac{\pi}{2}$$

$$C \qquad \theta = \frac{5}{6}\pi$$

$$D \qquad \theta = \frac{1}{3}\pi$$

$$D \qquad \theta = \frac{1}{3}\pi$$

Solution: D

 θ and the angle of $\pi/6$ radians are complementary, so

$$\theta + \frac{\pi}{6} = \frac{\pi}{2}$$

Solving for θ :

$$\theta = \frac{\pi}{2} - \frac{\pi}{6}$$

$$\theta = \left(\frac{1}{2} - \frac{1}{6}\right)\pi$$

Combining the two terms on the right-hand side by using 6 as a common denominator, we find that

$$\theta = \left(\frac{3-1}{6}\right)\pi$$

$$\theta = \frac{2}{6}\pi$$

$$\theta = \frac{1}{3}\pi$$