Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Тульский государственный университет»

КАФЕДРА ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

ГЕНЕРАЦИЯ НОРМАЛЬНОГО И ЗАДАННОГО РАСПРЕДЕЛЕНИЙ

отчет о

лабораторной работе №2

по дисциплине

ТЕХНОЛОГИИ И МЕТОДЫ ПРОГРАММИРОВАНИЯ

ВАРИАНТ 6

Выполнила: ст. гр. 230711 Павлова В.С.

Проверил: асс. каф. ИБ Курбаков М.Ю.

ЦЕЛЬ И ЗАДАЧА РАБОТЫ

Цель: изучить генерацию случайных величин по заданному и нормальному законам распределения.

Задача: в данной работе требуется написать программы, демонстрирующие использование изученных принципов.

ЗАДАНИЕ НА РАБОТУ

- 1) С помощью метода обратной функции получить случайную величину с заданной по варианту плотностью распределения f(x), график которой приведён на рисунке 1.
- 2) Построить нормальное распределение с заданными математическим ожиданием и дисперсией. Полученную в результате генерирования плотность вероятности сравнить с теоретической.

Рисунок 1 – График функции плотности распределения

СХЕМА ПРОГРАММЫ

1) Схема алгоритма, предназначенного для генерации заданного распределения, представлена на рисунке 2.

Рисунок 2 – Схема алгоритма для генерации заданного распределения

2) Схема алгоритма, предназначенного для генерации нормального распределения, представлена на рисунке 3.

Рисунок 3 – Схема алгоритма для генерации нормального распределения

ТЕКСТ ПРОГРАММЫ

Текст программы на языке программирования C++ для генерации заданного распределения представлен в листинге 1.

Листинг 1. Текст программы

```
#include <iostream>
#include <cmath>
#include <map>
double Rnd(int* x0) //(0;1)
    int c = 15, m = 65536, a = 13;
    int val = (a * (*x0) + c) % m;
    *x0 = val;
    return (float)val / m;
int main()
    setlocale(LC_ALL, "Russian");
    int n, x0 = 12;
    int* adressX0 = &x0;
    float x, y, sumY = 0;
    std::map <float, int> crd;
    std::cout << "\t\tВведите длину заданного распределения: ";
    std::cin >> n;
    std::cout << "\n";</pre>
    for (int i = 0; i < n; ++i)
        y = Rnd(adressX0);
        if (y \le 0.5) x = 3 * sqrt(2 * y);
        else x = 6 - 3 * sqrt(2 - 2 * y);
        crd[floor(x * 10) / 10]++;
    } std::cout << "\n";</pre>
    for (auto to : crd)
        std::cout << to.first << "\t
          << (float)to.second / n << "\n";
    return 0;
}
```

Текст программы на языке программирования C++ для генерации нормального распределения представлен в листинге 2.

Листинг 2. Текст программы

```
#include <iostream>
#include <fstream>
#include <cmath>
```

Листинг 2. Текст программы (продолжение)

```
#include <map>
double Rnd(int* \times 0) //(0;1)
    int c = 15, m = 65536, a = 13;
    int val = (a * (*x0) + c) % m;
    *x0 = val;
    return (float)val / m;
int main()
    setlocale(LC_ALL, "Russian");
    int n, m, x0 = 12;
    float mathExp, disp;
    int* adressX0 = &x0;
    float x, y, sumY = 0;
    std::map <float, int> crd;
    std::cout << "\t\tВведите длину нормального распределения:
п ;
    std::cin >> n;
    std::cout << "\t\tВведите дисперсию и математическое
ожидание: ";
    std::cin >> mathExp >> disp;
    float RMSD = sqrt(disp);
    std::cout << "\n";</pre>
    for (int i = 0; i < n; ++i)
    {
        sumY = 0;
        for (size_t i = 0; i < 12; i++)</pre>
            sumY += Rnd(adressX0);
        x = RMSD * (sumY - 6) + mathExp;
        crd[floor(x * 10) / 10]++;
    } std::cout << "\n";</pre>
    std::map<float, int>::iterator to = crd.begin();
    for (size_t i = 0; i < crd.size(); i++)</pre>
        std::cout << to->first << "\t" << (float)to->second / n
<< "\n";
        to++;
    } std::cout << "\n\n";</pre>
    return 0;
}
```

ИНСТРУКЦИЯ ПОЛЬЗОВАТЕЛЯ

Первая программа предназначена для генерации заданного распределения. При запуске программы пользователю предлагается ввести длину последовательности. После программа формирует последовательность чисел

заданной длины, а также рассчитывает координаты точек для построения графика плотности вероятности и выводит эти координаты на экран.

программа работает Вторая аналогично первой. При запуске пользователю так же предлагается ввести длину последовательности, а ещё математическое ожидание и дисперсию. После программа формирует последовательность заданной длины, а также рассчитывает координаты точек ДЛЯ построения графика плотности вероятности И выводит их.

ИНСТРУКЦИЯ ПРОГРАММИСТА

Структуры данных, используемые в обеих программах, аналогичны, поэтому все они приведены в одной таблице (таблица 1).

Таблица 1 – Структуры данных в программе

Имя	Тип (класс)	Предназначение	
n	int	Длина последовательности	
crd	map	Структура для расчёта точек графика плотности распределения	
X	float	Величина	
x0	int	Начальное число для линейного конгруэнтного генератора	
adressX0	*int	Адрес ячейки памяти х0	
у	float	Величина, полученная линейным конгруэнтным генератором	
sumY	float	Счётчик суммы чисел	
mathExp	float	Математическое ожидание	
disp	float	Дисперсия	
RMSD	float	Среднеквадратичное отклонение (сигма)	

В обеих программах имеется следующая подпрограмма:

1) double Rnd(int *x0) - функция, генерирующая случайное число с использованием линейного конгруэнтного метода. Структуры данных, используемые в подпрограмме, приведены в таблице 2.

Таблица 2 – Структуры данных, используемые в подпрограмме Rnd ()

Имя	Тип	Предназначение	
	1	формальные параметры	
x0	*int	Ссылка на предыдущее полученное число	
	•	локальные переменные	
c, a, m	const int	Параметры линейного конгруэнтного генератора	
val	double	Величина	

ДЕМОНСТРАЦИОННЫЙ ПРИМЕР

1) Для получения случайной величины с заданной по варианту плотностью распределения методом обратной функции сперва проведём аналитические расчёты и определим эту обратную функцию. Согласно заданию варианта, плотность распределения имеет вид, представленный на рисунке 4:

Рисунок 4 – Плотность распределения

Прежде всего, определим постоянную a, используя условие нормировки $\int_{-\infty}^{\infty} f(x) dx = 1.$ Поскольку интеграл является площадью под графиком, то его

можно определить как $S = \frac{1}{2}a * b = 1$. Здесь b – сторона треугольника, равная 6. Отсюда $a = \frac{2}{6} = \frac{1}{3}$. Запишем теперь функцию распределения, учтя константу a:

$$f(x) = \begin{cases} \frac{x}{9}, & x \in [0,3] \\ \frac{2}{3} - \frac{x}{9}, & x \in (3,6] \end{cases}$$

Далее найдём функцию распределения $F(x) = \int_{-\infty}^{x} f(x) dx$:

$$F(x) = \begin{cases} \frac{x^2}{18}, & x \in [0, 3] \\ \frac{2}{3}x - \frac{x^2}{18} - 1, & x \in (3, 6] \end{cases}$$

Теперь найдем функцию, обратную к F(x). Для этого выразим x через y:

1)
$$y = \frac{x^2}{18}$$
, отсюда $x = \sqrt{18 y} = 3\sqrt{2y}$

Пересчитаем область определения, подставив значения x=0, x=3 в полученное уравнение $x=3\sqrt{2y}$. Если x=0, тогда y=0. Если же x=3, тогда имеем y=0.5.

Отсюда первое уравнение из системы: $x = 3\sqrt{2y}$, $y \in (0, 0.5]$

2)
$$y = \frac{2}{3}x - \frac{x^2}{18} - 1$$
, домножим на 18 и получим

$$x^2 - 12x + 18y + 18 = 0$$
, отсюда

$$x_1 = \frac{-\sqrt{b^2 - 4ac} - b}{2a} = \frac{-\sqrt{144 - 4*(18y + 18)} + 12}{2} = 6 - 3\sqrt{2 - 2y},$$

$$x_2 = \frac{\sqrt{b^2 - 4ac - b}}{2a} = \frac{\sqrt{144 - 4*(18y + 18)} + 12}{2} = 6 + 3\sqrt{2 - 2y}.$$

Пересчитаем область определения, подставив значения x=3, x=6 в уравнение $x_1=6$ – $3\sqrt{2-2y}$. Если $x_1=3$, тогда y=0.5. Если $x_1=6$, тогда y=1.

Попробуем подставить x=3 во второе уравнение, которое имеет вид $x_2=6+3\sqrt{2-2y}$. Это уравнение не подходит, т.к. не будет иметь решений, ведь квадратный корень не может быть отрицательным. Тогда второе уравнение системы – это уравнение $x=6-3\sqrt{2-2y}$, а обратная функция имеет вид:

$$F^{-1}(y) = \begin{cases} 3\sqrt{2y}, & y \in [0, 0.5] \\ 6 - 3\sqrt{2 - 2y}, & y \in (0.5, 1] \end{cases}$$

С помощью полученных формул программа, приведённая в листинге 1, производит расчёты. Рассмотрим теперь результат работы этой программы для n = 600000 чисел, он приведён на рисунке 5.

	Вве	дите длину	заданного	распределения: 600000
)	0.00056	0.1	0.00166	
).2	0.00277	0.3	0.00389	
.4	0.00499	0.5	0.0061	
.6	0.00722	0.7	0.00833	
8.0	0.00944	0.9	0.01054	
	0.01165	1.1	0.01274	
2	0.0139	1.3	0.01499	
.4	0.01612	1.5	0.01726	
6	0.01835	1.7	0.01943	
.8	0.02054	1.9	0.02164	
	0.02281	2.1	0.02389	
2	0.02502	2.3	0.02609	
.4	0.02719	2.5	0.02833	
2.6	0.02945	2.7	0.03055	
2.8	0.0316	2.9	0.03275	
3	0.03277	3.1	0.03169	
3.2	0.03062	3.3	0.02946	
3.4	0.02833	3.5	0.02719	
3.6	0.02611	3.7	0.02496	
8.8	0.02389	3.9	0.02278	
Į.	0.02164	4.1	0.02055	
1.2	0.01943	4.3	0.01834	
1.4	0.01724	4.5	0.01608	
1.6	0.01496	4.7	0.01391	
1.8	0.01275	4.9	0.0117	
5	0.01056	5.1	0.00944	
.2	0.00832	5.3	0.00723	
.4	0.0061	5.5	0.00499	
.6	0.00388	5.7	0.00279	
5.8	0.00166	5.9	0.00055	

Рисунок 5 – Результат работы программы

Необходимо сравнить полученную плотность распределения с заданной по варианту. Для проверки полученного результата построим график f(x) плотности распределения, согласно значениям, полученным в программе.

Рисунок 6 – График плотности заданного распределения

Промежуточный вывод: как видно по рисунку 6, есть незначительное отклонение от теоретического, однако график в целом соответствует теоретической плотности распределения.

2) Исходя из рисунка 1, приведённого в задании на работу, найдем математическое ожидание и дисперсию для заданного распределения:

$$m = \int_0^3 x \frac{x}{9} dx + \int_3^6 x \left(\frac{2}{3} - \frac{x}{9}\right) dx = 3.$$

$$D = \int_0^3 (x - 3) \frac{x}{9} dx + \int_3^6 (x - 3)^2 \left(\frac{2}{3} - \frac{x}{9}\right) dx = 1.5.$$

Для генерации нормального распределения воспользуемся этими параметрами и формулой $X=\frac{12\sigma}{n}\Big(\sum_{i=1}^n Y_i-\frac{n}{2}\Big)+m$, где $\sigma=\sqrt{D}, n=12$, а Y_i – независимая случайная равномерная величина.

🔤 Выбр	Выбрать Консоль отладки Microsoft Visual Studio								
	Вве	дите длину н	ормального	распределения	: 600000				
	Вве	дите дисперс	ию и матем	атическое ожид	ание: 1.5 3				
-6.1	6e-05	-5.2	6e-05	-5.1	6e-05				
-4.8	6e-05	-4.7	6e-05	-4.6	0.00012				
-4.5	0.00012	-4.4	6e-05	-4.3	0.00012				
-4.2	0.00012	-4.1	0.00018	-4	0.0003				
-3.9	0.00018	-3.8	0.0003	-3.7	0.00036				
-3.6	0.00036	-3.5	0.00061	-3.4	0.00055				
-3.3	0.00097	-3.2	0.00092	-3.1	0.00122				
-3	0.00116	-2.9	0.00121	-2.8	0.00164				
-2.7	0.00183	-2.6	0.0025	-2.5	0.00226				
-2.4	0.00286	-2.3	0.00305	-2.2	0.00385				
-2.1	0.00396	-2	0.00415	-1.9	0.00487				
-1.8	0.00427	-1.7	0.00542	-1.6	0.00488				
-1.5	0.00599	-1.4	0.00622	-1.3	0.00695				
-1.2	0.00764	-1.1	0.00951	-1	0.00892				
-0.9	0.00969	-0.8	0.01116	-0.7	0.01042				
-0.6	0.01155	-0.5	0.01152	-0.4	0.0128				
-0.3	0.01311	-0.2	0.01464	-0.1	0.01594				
0	0.01593	0.1	0.01763	0.2	0.01752				
0.3	0.01721	0.4	0.01886	0.5	0.01911				
0.6	0.01801	0.7	0.01922	0.8	0.01972				
0.9	0.02019	1	0.02001	1.1	0.02104				
1.2	0.0224	1.3	0.02001	1.4	0.02048				
1.5	0.02105	1.6	0.02074	1.7	0.02056				
1.8	0.02046	1.9	0.02166	2	0.02055				
2.1	0.01971	2.2	0.02057	2.3	0.01982				
2.4	0.01794	2.5	0.01872	2.6	0.01745				
2.7	0.01825	2.8	0.01528	2.9	0.01622				
3	0.01612	3.1	0.01643	3.2	0.01441				
3.3	0.01368	3.4	0.01244	3.5	0.01129				
3.6	0.00999	3.7	0.01037	3.8	0.01028				
3.9	0.0094	4	0.00812	4.1	0.00807				
4.2	0.00682	4.3	0.00739	4.4	0.00555				
4.5	0.00563	4.6	0.00488	4.7	0.0039				
4.8	0.00409	4.9	0.00354	5	0.0036				
5.1	0.00322	5.2	0.00305	5.3	0.00274				
5.4	0.00268	5.5	0.0014	5.6	0.00146				
5.7	0.00146	5.8	0.00134	5.9	0.00134				
6	0.00109	6.1	0.00145	6.2	0.00091				
6.3	0.00048	6.4	0.00061	6.5	0.00036				
6.6	0.00054	6.7	0.00024	6.8	0.00018				
6.9	0.00024	7	0.00012	7.1	0.00018				
7.2	0.00024	7.3	0.00018	7.4	0.00018				
7.5	0.00018	7.7	0.00018	7.8	6e-05				
7.9	6e-05	8	6e-05	8.1	0.00012				
8.2	6e-05								

Рисунок 7 – Результат работы программы

Для проверки полученного результата построим график f(x) для нормального распределения, согласно значениям, полученным в программе. Этот график приведён на рисунке 8.

Рисунок 8 – Графики плотности полученного распределения

Теперь необходимо построить кривую распределения Гаусса, рассчитав значения функции для заданных параметров математического ожидания и дисперсии. Полученный график приведен на рисунке 9.

Рисунок 9 — Кривая распределения Гаусса для заданных параметров математического ожидания и дисперсии

Промежуточный вывод: как видно по рисункам 8 и 9, общий вид функции плотности полученного нормального распределения соответствует кривой распределения Гаусса с некоторым отклонением.

выводы

В ходе данной лабораторной работы был изучен принцип генерации случайных величин по заданному и нормальному законам распределения. Для демонстрации полученных знаний была написаны программы для генерации соответствующих распределений, результат работы которой был проверен аналитически. В ходе проверки с помощью плотностей распределения обнаружилось, что полученные распределения соответствуют теоретическим с незначительным отклонением.