

HiAI DDK V320

算子规格说明

文档版本 04

发布日期 2020-02-29

版权所有 © 华为技术有限公司 2019。 保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

HUAWEI和其他华为商标均为华为技术有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

法律声明

本文所描述内容可能包含但不限于对非华为或开源软件的介绍或引用,使用它们时请遵循对方的版权要求。

注意

您购买的产品、服务或特性等应受华为公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,华为公司对本文档内容不做任何明示或暗示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

华为 HiAI 申请方式

发送申请邮件到邮箱: developer@huawei.com邮件名称: HUAWEI HiAI+公司名称+产品名称邮件正文: 合作公司+联系人+联系方式+联系邮箱

我们将在收到邮件的5个工作日内邮件给您反馈结果,请您注意查收。

官网地址 https://developer.huawei.com/consumer/cn/

前言

概述

本文提供对华为 HiAI DDK V320 支持的算子规格的说明。

本文与以下文档配套使用:

- 华为 HiAI DDK V320 快速入门
- 华为 HiAI DDK V320 模型推理集成指导

修改记录

修改记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

日期	修订版本	修改描述
2020-02-29	04	增加 stridedSlice 约束,补充 CPU 算子
2019-12-31	03	新增 V320 版本内容
2019-11-15	02	增加 avgpool 约束
2019-09-06	01	新增 V310 版本内容

目录

前言	ii
1 参数说明	1
2 NPU 算子约束	
2.1 整体约束	
2.2 Caffe 算子边界	
2.3 Tensorflow 算子边界	23
2.4 AndroidNN 算子边界	70
3 CPII 質子列表	126

1 参数说明

参数	含义说明
ni	批量的大小
ci/co	通道的数量
hi/ho/	高度
wi/wo	宽度
sh/sw	步长
kh/kw	卷积核的大小
window_h(window_y)/ window_w(window_x)	窗口的大小
dh(dilation_h)/ dw(dilation_w)	卷积膨胀系数
FilterHDilation/ FilterWDilation	卷积核膨胀完以后 H/W 维度的长度
FilterH/FilterW	卷积的权重参数的 H/W 维度的值
padWHead/padHHead	W/H 维度补 PAD 后前端多出的一截
PadWTail/padHTail	W/H 维度补 PAD 后尾端多出的一截
dilationsize	用户设置的膨胀系数的值
FilterSize	用户设置的卷积核的数目
INT32_MAX	数据类型 int32 能表示范围的最大值
ALIGN(X, N)	输出 X 向上取整 到 N 的倍数(举例: ALIGN(1,16)=16, ALIGN(16,16)=16, ALIGN(17,16)=32)

2 NPU 算子约束

2.1 整体约束

NCHW 场景和 NHWC 场景, 1<=N<=65535;

对于 caffe 框架,如果存在 axis 参数,则输入维度不能为 1,且输入维度为 2 或 3 时 axis 不能为负数。

- Caffe 支持版本 1.0
- Tensorflow 支持版本 1.12
- AndroidNN 支持版本 API 29

2.2 Caffe 算子边界

序号	算子	含义	边界
1	Absval	对输入求绝对值	【输入】 一个输入 【参数】 engine: 枚举型,默认为 0 (DEFAULT=0, CAFFE=1, CUDNN=2),可选
2	Argmax	返回输入的最大值对 应的索引序号	【输入】 —个输入 【参数】 • out_max_val: 布尔型, 默认为 false, 可选 • top_k: unit32, 默认为 1, 可选 • axis: int32, 可选
3	BatchNorm	对输入做标准化	【输入】

序号	算子	含义	边界
		(x - avg(x)) /x 的标	一个输入
		准差	【参数】
			• use_global_stats: 布尔型,必须为 true
			• moving_average_fraction: float, 默 认为 0.999,可选
			• eps: float, 默认为 1e-5, 可选
			【约束】
			仅支持对 C 维度方向做归一化
			• scale, beta, mean, gamma 的 shape 为[c]
4	ChannelAxp	ChannelAxpy	【输入】
	y (¥210 対	(Squeeze-and-	三个输入
	(V310 新 增)	Excitation Networks)	• 输入 1: tensor,shape 为[N, C, 1, 1]
	H		• 输入 2: tensor, C 通道与输入 1 的 C 通道一致
			• 输入 3: tensors shape 同输入 2
5	Concat	数据按维度拼接	【输入】
			多个输入
			【参数】
			• concat_dim: uint32, 默认为 1, 取 值: 大于 0, 可选
			• axis: int32, 默认 1, 可选; 与 concat_dim 功能相同, 二者择其 一; axis= -1 时, 输入维度必须等于 4, 否则结果可能错误
			【约束】
			• 输入的 tensor,除了进行 concat 的维度外,其他维度的 size 必须相等
			• 输入 tensor 的个数范围[1,32]
6	Convolution	卷积	【输入】
			一个输入
			【参数】
			• num_output: uint32,可选
			• bias_term: 布尔型,默认为 true,可 选
			• pad: uint32, 默认为 0; 数组
			• kernel_size: uint32; 数组
			• stride: uint32, 默认为1; 数组

序号	算子	含义	边界
			• dilation: uint32, 默认为1; 数组
			• pad_h: uint32, 默认为 0, 可选(仅 2D)
			• pad_w: uint32, 默认为 0, 可选 (仅 2D)
			• kernel_h: uint32, 可选(仅 2D)
			• kernel_w: uint32,可选(仅2D)
			• stride_h: uint32,可选(仅2D)
			• stride_w: uint32,可选(仅2D)
			• group: uint32,默认为1,可选
			weight_filler: 类型为FillerParameter,可选
			• bias_filler: 类型为 FillerParameter, 可选
			• engine: 枚举型,默认为0 (DEFAULT=0, CAFFE=1, CUDNN=2),可选
			• force_nd_im2col: 布尔型,默认为 false,可选
			• axis: int32, 默认为 1, 可选
			【约束】
			• filter 必须是常量 4D
			• (inputW + padWHead + padWTail) >= (((FilterW-1) * dilationW) + 1)
			• (inputW + padWHead + padWTail) /StrideW + 1 <= 2147483647
			• (inputH + padHHead + padHTail) >= (((FilterH- 1) * dilationH) + 1)
			• (inputH + padHHead + padHTail) /StrideH + 1 <= 2147483647
			• 0 <= Pad < 256, 0 < FilterSize < 256, 0 < Stride < 64, 1 <= dilationsize < 256
			• StrideW<=(inputW + padW) - ((filterW - 1) * dilationW) + 1)
			• 输入 bias 维度只支持(1,co,1,1), co 与 num_output 相等
7	Crop	截取	【输入】
			两个输入
			【参数】
			• axis: int32,默认为 2,axis=-1,

序号	算子	含义	边界
			input dim 必须等于 4,可选
			• offset: uint32, 数组
8	Correlation (V310 新 增)	相关性	【输入】 两个输入,要求输入在 C 通道必须相同 【参数】 num_output: uint32, 与输入 2 的 N 维相等 kernel_size: uint32, 与输入 2 的 H维、W维相等 stride: uint32, 默认为 1, 可选 group: uint32, 默认为 1, 可选, group 必须是 1 pad: uint32, 默认为 0, 可选 dilation: uint32, 默认为 1, 可选 【约束】 N <= 3840
9	Deconvolution	反卷积	 其他约束和卷积相同 【输入】 一个输入 【参数】 num_output: uint32, 可选 bias_term: 布尔型, 默认为 true, 可选 pad: uint32, 默认为 0; 数组 kernel_size: uint32; 数组 stride: uint32, 默认为 1; 数组 dilation: uint32, 默认为 1; 数组 pad_h: uint32, 默认为 0, 可选 (仅 2D) pad_w: uint32, 默认为 0, 可选 (仅 2D) kernel_h: uint32, 可选 (仅 2D) kernel_w: uint32, 可选 (仅 2D) stride_h: uint32, 可选 (仅 2D) stride_w: uint32, 可选 (仅 2D) group: uint32, 默认为 1 weight_filler: 类型为

序号	算子	含义	边界
			FillerParameter,可选
			• bias_filler: 类型为 FillerParameter, 可选
			• engine: 枚举型,默认为0 (DEFAULT=0, CAFFE=1, CUDNN=2),可选
			• force_nd_im2col: 布尔型,默认为 false,可选
			• axis: int32, 默认为 1, 可选
			【约束】
			filter 必须是常量 4D
			group < 1000
			dilation = 1
			filterH - padHHead - 1 >= 0
			filterW - padWHead - 1 >= 0
			还有一条约束涉及中间变量,公式如 下:
			1\ a = ALIGN(filter_num,16) * ALIGN(filter_c,16) * filter_h * filter_w * 2;
			如果 ALIGN(filter_c,16)%32 = 0, a = a/2;
			2、conv_input_width=(反卷积输入w- 1)*strideW+1;
			3. b = (conv_input_width) * filter_h
			ALIGN(filter_num,16) * 4;
			4、a+b<= 512KB
10	Convolution	深度卷积	【输入】
	Depthwise		一个输入
			【参数】
			• num_output: uint32,可选
			bias_term: 布尔型,默认为 true,可选
			• pad: uint32, 默认为 0; 数组
			• kernel_size: uint32; 数组
			• stride: uint32, 默认为 1; 数组
			• dilation: uint32, 默认为 1; 数组
			pad_h: uint32, 默认为0, 可选(仅

序号	算子	含义	边界
			2D)
			• pad_w: uint32, 默认为 0, 可选 (仅 2D)
			• kernel_h: uint32, 可选(仅 2D)
			• kernel_w: uint32, 可选(仅2D)
			• stride_h: uint32, 可选(仅2D)
			• stride_w: uint32, 可选(仅2D)
			• group: uint32,默认为1,可选
			• weight_filler: 类型为 FillerParameter,可选
			• bias_filler: 类型为 FillerParameter, 可选
			• engine: 枚举型,默认为0 (DEFAULT=0, CAFFE=1, CUDNN=2),可选
			• force_nd_im2col: 布尔型,默认为 false, 可选
			• axis: int32, 默认为 1, 可选
			【约束】
			• filter 必须是常量 4D
			• filterN=inputC=group;
			• StrideW<=(inputW + padW) - ((filterW - 1) * dilationW) + 1);
			• 输入 bias 维度只支持(1,co,1,1), co 与 num_output 相等
11	Eltwise	按元素操作层(求	【输入】
		和、乘积、最大值)	至少两个输入
			【参数】
			 operation: 可选,类型: 枚举型 (PROD = 0; SUM = 1; MAX = 2), 默认为 SUM
			• coeff:数组;类型: float
			• stable_prod_grad: 可选,类型: bool, 默认为 true
			【约束】
			● 最大支持四个输入;
			与原生算子相比,不支持
			stable_prod_grad 参数;
			• 支持 prod、sum、max 三种模式。

序号	算子	含义	边界
12	Elu	激活函数	【输入】 一个输入 【参数】 alpha (optional):类型:float,默认为1
13	Exp	指数运算	【输入】 —个输入 【参数】 • base: 可选, 类型: float, 默认为-1.0 • scale: 可选, 类型: float, 默认为 1.0 • shift: 可选, 类型: float, 默认为 0.0
14	Flatten	数据按第一维度展开输入 n*c*h*w 变为向量 n* (c*h*w)	【输入】 —个输入 【参数】 • axis: 可选,类型: int32,默认为 1 • end_axis: 可选,类型: int32,默认为-1 【约束】 axis 必须小于 end axis
15	InnerProduc t	全连接	【输入】 一个输入 【参数】 num_output: 可选,类型: uint32 bias_term: 可选,类型: bool,默认为 true weight_filler: 可选,类型: FillerParameter,维度为 2 bias_filler: 可选,类型: FillerParameter,维度为 1 axis: 可选,类型: int32,默认为 1 transpose: 可选,类型: bool,默认为 false 【约束】 仅支持 transpose=false, axis=1; Bais_C <= 56832; 输入 bias 维度只支持(1,co,1,1), co 与

序号	算子	含义	边界
			num_output 相等; 如果客户要量化模型时,需要满足下列 维度: 当 N = 1, 2 * ALIGN(C,16) * xH * xW<= 524288; 当 N > 1, 2 * 16 * ALIGN(C,16) * xH * xW <= 524288。
16	Interp	插值层	【输入】 一个输入 【参数】 height: 可选,类型 int32,默认为 0 width: 可选,类型 int32,默认为 0 zoom_factor: 可选,类型 int32,默认为 1 hrink_factor: 可选,类型 int32,默认为 1 pad_beg: 可选,类型 int32,默认为 0 pad_end: 可选,类型 int32,默认为 0 intimate
17	LeakyRelu	LeakyRelu 激活函数	【输入】 一个输入 【参数】 同 Relu
18	Log	对数运算	【输入】 —个输入 【参数】 • base: 可选,类型: float,默认为-1.0 • scale: 可选,类型: float,默认为

序号	算子	含义	边界
			1.0 • shift: 可选, 类型: float, 默认为 0.0 【约束】 scale*x + shift > 0
19	LRN	局部响应归一化层	【输入】 一个输入,不支持常量输入 【参数】 local_size: 可选,类型: uint32,默认为 5 alpha: 可选,类型: float,默认为 1. beta: 可选,类型: float,默认为 0.75 norm_region: 可选,类型: 枚举型, 默认为 ACROSS_CHANNELS, (ACROSS_CHANNELS=0;WITHIN_CHANNEL=1) k: 可选,类型: float,默认为 1. engine: 可选,类型: 枚举型 (DEFAULT=0;CAFFE=1;CUDNN=2) 【约束】 local_size > 0,且必须为奇数 通道间: 当 local_size ∈ [1,15]时,beta>0.01,否则 k 和 beta 为任意值; k 和 alpha 不同时为 0;当 C 维度大于 680 时,local_size < 640;通道内: k=1,local_size ∈ [1,15],beta>0.01;
20	LSTM	长短期记忆网络	【输入】 两个或三个输入 X: 时间序列数据(T*N*Xt) Cont: 序列连续性标志(T*N) Xs: 静态数据(N*Xt), 可选 【参数】 • num_output: 可选,类型: uint32,

序号	算子	含义	边界
			默认为0
			• weight_filler: 可选,类型: FillerParameter
			• bias_filler: 可选,类型: FillerParameter
			• debug_info: 可选,类型: bool, 默 认为 false
			• expose_hidden: 可选,类型: bool, 默认为 false
			【约束】
			此约束涉及中间变量计算,公式如列:
			a = (ALIGN(xt,16) + ALIGN(output,16)) * 64
			b = (ALIGN(xt,16) + ALIGN(output,16)) * 256
			c = use_projection ? ALIGN(ht,16) * ALIGN(output,16) * 2) : 0
			d = 16 * ALIGN(ht, 16) * 2
			e = batchNum* 4
			则,约束为:
			$a + b + c \le 524288;$
			d <= 16384;
			e <= 4096;
21	Normalize	标准化层	【输入】
			一个输入
			【参数】
			● across_spatial: 可选,类型: bool, 默认为 false
			• scale_filler: 可选,默认为 1.0
			• channel_shared:可选,类型: bool,默认为 true
			• eps: 可选,类型: float, 默认为 le- 10
			【约束】
			1、eps 应大于 1e-7,并且小于等于 0.1+(1e-6);
			2、caffe 框架中的参数 across_spatial 目前只支持 false,按 channel 进行 norm操作。
22	Permute	Reshape 操作	【输入】

序号	算子	含义	边界
			一个输入
			【参数】
			order: uint32;数组
23	Pooling	池化层	【输入】
			一个输入
			【参数】
			• pool: 池化方法,可选,类型: 枚 举,取值: MAX=0, AVE=1, STOCHASTIC = 2, 默认为 MAX
			• pad: 可选,类型: uint32, 默认为 0
			• pad_h: 可选,类型: uint32,默认为 0
			• pad_w: 可选,类型: uint32,默认 为 0
			• kernel_size: 可选,类型: uint32, kernel_size 和 kernel_h/kernel_w 不能 同时出现
			• kernel_h: 可选,类型: uint32
			• kernel_w: 可选,类型: uint32, kernel_h/kernel_w 必须同时存在
			• stride: 可选,类型: uint32, 默认为 1
			• stride_h: 可选,类型: uint32
			• stride_w: 可选,类型: uint32
			• engine: 可选,类型: 枚举,取值: DEFAULT=0, CAFFE=1, CUDNN=2
			• global_pooling: 可选,类型: bool, 默认值为 false
			• ceil_mode: 可选,类型: bool,默认为 true
			• round_mode: 可选,类型: 枚举,取 值: CEIL=0, FLOOR=1; 默认为 CEIL
			【约束】
			• KernelH<256, kernelW<256;
			• stride < 64; stride > pad 并且 stride < input+pad-kernel;
			• 当输出 tensor shape H、W 为 1 时, 要求 input H * input W < 65536

序号	算子	含义	边界
			kernelH<=inputH+padTop+padBottom
			kernelW<=inputW+padLeft+padRight
			padTop <windowh< td=""></windowh<>
			padBottom <windowh< td=""></windowh<>
			padLeft <windoww< td=""></windoww<>
			padRight <windoww< td=""></windoww<>
			只支持 globalpool 模式,此模式下的约束条件是:
			1) outputH==1 && outputW==1 && kernelH>=inputH && kernelW>=inputW
			2) inputH*inputW<=10000
24	Power	计算 y=	【输入】
		(scale*x+shift) ^	
		power	【参数】
			● power: 可选,类型: float, 默认为
			1.0
			• scale: 可选,类型: float, 默认为 1.0
			• shift: 可选, 类型: float, 默认为 0.0
			【约束】
			scale*x + shift > 0
25	Prelu	激活函数	【输入】
25	11014	城祖四奴	一个输入
			【参数】
			• filler: 可选
			• channel_shared: 可选,类型: bool, 默认为 false,是否跨 channel 共享斜率参数
26	PriorBox	从目标预选框获取真	【输入】
		实目标的位置	• 输入 0, 必选, 对于此算子, 只关注
			输入的 shape, 忽略输入的值
			• 输入1,可选,输入图片信息
			【参数】
			• min_size: 必须设置,最小框大小 (以像素为单位)
			• max_size: 必须设置,最大框大小 (以像素为单位)
			• aspect_ratio: 数组;类型: float;各种宽高比,重复的比率将被忽略,

如果没有提供,使用默认比率 flip: 可选,类型: bool,默认为true; 如果为 true,将翻转每个比,例如,如果有宽高比'r'将生成宽高比'1.0/r' clip: 可选,类型: bool,默认为false; 如果为 true,将剪切先前值,使其在[0,1]范围内 variance: 数组; 调整先前 bbox差 img_size: 可选,类型: uint32,img_size 与 img_h/img_w 不能同存在	
* img_h: 可选,类型: uint32 * img_w: 可选,类型: uint32 * step: 可选,类型: float, step_step_h/step_w 不能同时存在 * step_h: 可选,类型: float * step_w: 可选,类型: float * offset: 类型: float, 默认为 0.5 【约束】 只支持 ssd 网络。 输出维度: [n,2,检测框*4,1]。 【输入】 三个输入(scores, bbox_pred, im_info) 【参数】 * feat_stride: 可选,类型: float * base_size: 可选,类型: float * min_size: 可选,类型: float * min_size: 可选,类型: float * cratio: 数组; 类型: float * scale: 数组; 类型: float * pre_nms_topn: 可选,类型: int * post_nms_topn: 可选,类型: int * post_nms_topn: 可选,类型: int * post_nms_topn: 可选,类型: float * fastercnn * ProposalParameter PythonParameter PythonPara	A 宽, b 的 的 可

序号	算子	含义	边界
			• preTopK 范围为 1~6144
			• postTopK 范围为 1~1024
			• scaleCnt*ratioCnt 的最大值支持到 64
			● nms_thresh:过滤框使用的阈值, 0 <nms_thresh<=1< td=""></nms_thresh<=1<>
			• min_size:框的边长的最小值,所有小 于此最小值的框将会被过滤掉
			• feat_stride:在生成默认框时,指定两个相邻的框延 H 或 W 的步长
			• base_size:用来生成默认框用到的参数,表示框的基本大小
			• ratio & scale:生成默认框用到的参数
			• imgH&imgW:输入到网络的图片高和 宽,其值必须大于0
			• input 维度约束:
			clsProb: C=2*scaleCnt*ratioCnt
			bboxPred: C=4*scaleCnt*ratioCnt
			bboxPrior: N=clsProb.N, C=4*scaleCnt*ratioCnt
			imInfo: N=clsProb.N, C=3
28	PSROIPooli	位置敏感的区域池化	【输入】
	ng		两个输入
			【参数】
			• spatial_scale: 必须配置,类型: float
			• output_dim: 必须配置,类型: int32,输出通道数
			• group_size: 必须配置,类型: int32, 编码位置敏感分数图的组数
			【约束】
			用于 RFCN 网络
			输入 Roi 框的坐标信息为[roiN, roiC, roiH, roiW],格式范围是 1<= roiN <=65535, roiC == 5, roiH == 1, roiW
			== 1; 1) 输入的 featuremap 维度为
			[xN,xC,xH,xW] pooledH==pooledW==group_size <= 128
			[pooledH ==pooledW]表示 pool 框的长 宽

序号	算子	含义	边界
			输出的格式 y[yN, yC, yH, yW] 2) poolingMode == avg pooling, pooledH == pooledW == groupSize, pooledH <= 128, spatial_scale > 0, group_size > 0, output_dim > 0; 3) 1<=xN<=65535, roiN % xN == 0; 4) xHW = xH * xW, pooledHW = pooledH * pooledW, HW_LIMIT =
			768, xH >= pooledH, xW >= pooledW, xHW >= pooledHW, xHW / pooledHW <= HW_LIMIT; 5) 多 batch 场景时,每个 batch 的 roi 框个数相同,且 roi 的 batch 排列顺序与 feature 相同; 6) yN == roiN,yH == pooledH,yW == pooledW,yC == output_dim; 7) xC == yC * pooledH * pooledW
29	Relu	激活函数,同时包含普通的 relu 和 leaky relu,可通过参数指定	【输入】 一个输入 【参数】 • negative_slope: 可选,类型: float, 默认为 0 • engine: 可选,类型: 枚举,取值: DEFAULT=0, CAFFE=1, CUDNN=2
30	Reorg	实时物体检测	【输入】 一个输入 【参数】 stride: 可选,类型: uint32, 默认为2 reverse: 可选,类型: bool, 默认为false 【约束】 只用于 YOLOV2
31	Reshape	改变输入维度	【输入】 —个输入 【参数】 • shape: 常量,类型: int64或 int32 • axis: 可选,类型: int32,默认为0

序号	算子	含义	边界
			• num_axes: 可选,类型: int32, 默认 为-1
32	Reverse	逆转	【输入】
			一个输入
			【参数】
			axis: 可选,类型: int32, 默认为 1; 控制需翻转的数据轴,内容的布局不会被颠倒
33	ROIAlign	一种区域特征聚集的	【输入】
		方式	至少有两个输入
			【参数】
			pooled_h: 可选,类型: uint32,默认为0
			pooled_w: 可选,类型: uint32, 默认 为 0
			spatial_scale: 可选,类型: float,默认 为 1
			sampling_ratio: 可选,类型: int32,默 认为-1
			【约束】
			主要用于 maskrcnn
			FeatureMap(特征图)约束:
			1、N<65535
			2、H * W <=2464;
			3、C <= 1152;
			4、((C-1)/128+1)*pooledW <= 92;
			RoI (感兴区域) 约束:
			1、N<65535
			2, C=5(caffe), H=1, W=1;
			3、samplingRatio*pooledW <= 128 且 samplingRatio*pooledH <= 128;
			4、H>= pooledH, W>= pooledW。
34	ROIPooling	将"候选框"映射到	【输入】
		特征图上	至少有两个输入
			【参数】
			• pooled_h: 可选,类型: uint32, 默 认为 0
			• pooled_w: 可选,类型: uint32,默

序号	算子	含义	边界
			认为 0 • spatial_scale: 可选,类型: float; 默认为 1; 乘法空间比例因子将 ROI坐标从其输入比例转换为 pool 时使用的比例 【约束】 主要用于 fasterrcnn 支持输入 feature map 最大 H*W: 3888,输出最大 H*W: 256
35	Scale	out=alpha*Input+beta	【输入】 两个输入 【参数】 axis: 可选,类型: int32,默认为 1,仅支持 axis 为 1 或者-3 num_axes: 可选,类型: int32,默认为 1 filler: 可选; filler 被忽略,除非只给一个 bottom 且 scale 是学习参数 bias_term: 可选,类型: bool,默认为 false;是否也学习 bias(相当于ScaleLayer + BiasLayer,但可能更有效率),使用 bias_filler 初始化 bias_filler: 可选,默认为 0 【约束】 scale,bias 的 shape 只支持(n,c,1,1),且 c 维度与 input 的 c 维度相等;
36	ShuffleChan nel	帮助信息在特征通道交叉流动	【输入】 一个输入 【参数】 • group: 可选,类型: uint32,默认为 1
37	Sigmoid	激活函数	【输入】 一个输入 【参数】 engine: 可选,类型: 枚举,取值: DEFAULT=0, CAFFE=1, CUDNN=2
38	Slice	将输入分解成多个输 出	【输入】 一个输入

序号	算子	含义	边界
			【参数】
			• slice_dim: 可选,类型: uint32, 默 认为 1; axis 和 slice_dim 不能同时 存在
			• slice_point: 数组; 类型: uint32
			• axis: 可选,类型: int32, 默认为 1 (表示沿 channel 拼接);
39	Softmax	归一化逻辑函数	【输入】
			一个输入
			【参数】
			• engine: 可选,取值: DEFAULT=0, CAFFE=1, CUDNN=2
			• axis: 可选,类型: int32, 默认为 1; 表示沿哪个 axis 作 softmax
			【约束】
			● axis 输入范围[-rank,rank)
			输入 4 维(NCHW)时可以针对每一维做 softmax:
			axis=0, n<=28544;
			axis=1 即 channel 的话,c<=11136, h*w < 65536;
			axis=2 即 Height 场景下,W=1, 0 <h<=16384;< td=""></h<=16384;<>
			axis=3 即 Width 场景下, 0 <w<=16384;< td=""></w<=16384;<>
			输入维度不足 4 维时,仅支持对最后一维做 softmax 计算,并且最后一维不超过 19968。
40	SSDDetecti	SSD 网络检测输出	【输入】
	onOutput		三个输入
			【参数】
			• num_classes: 必选,类型: int32, 要 预测的分类(含背景分类)
			 share_location: 可选,类型: bool, 默认为 true (表示不同类间共享 bounding box)
			• background_label_id: 可选,类型: int32,默认为 0

序号	算子	含义	边界
			• nms_param: 可选,非最大抑制
			• save_output_param: 可选,用于保存 检测结果
			• code_type: 可选,默认为 CENTER_SIZE
			• variance_encoded_in_target: 可选, 类型: bool, 默认为 true; 如果为 true, 方差编码在目标中, 否则需要 相应地调整预测偏移量
			• keep_top_k: 可选,类型: int32,在 nms 步骤后每个图像要保留的总 bbox 数;
			• confidence_threshold: 可选,类型: float,仅考虑置信度大于阈值的检测;如果没有设置,考虑所有的 box
			• nms_threshold: 可选,类型: float
			• top_k: 可选,类型: int32
			• boxes: 可选,类型: int32, 默认为 1
			• relative: 可选,类型: bool,默认为 true
			• objectness_threshold,可选,类型: float,默认为 0.5
			• class_threshold: 可选,类型: float, 默认为 0.5
			• biases: 数组
			• general_nms_param: 可选
			【约束】
			只支持 Caffe 框架的 SSD 网络结构场景
			preTopK 和 postTopK 的取值范围当前 仅支持 1~1024;
			shareLocation 仅支持 true;
			nmsEta 仅支持 1;
			numClasses 支持的范围是 1~2048;
			code_type 仅支持 CENTER_SIZE;
			nms_threshold 和 confidence_threshold 的 范围为 0.0~1.0;
			多 batch 场景与标准 SSD 不同, priorbox 也会计算生成多 batch 结果
41	Tanh	激活函数	【输入】

序号	算子	含义	边界
			一个输入 【参数】 engine: 可选,类型: 枚举,取值: DEFAULT=0, CAFFE=1, CUDNN=2
42	Upsample	maxpool 的反向传播 过程	【输入】 两个输入 【参数】 scale: 可选,类型: int32, 默认为1
43	SpatialTrans form (V310 新 增)	空间变换	【输入】 一个输入 【参数】 • output_h: 必须设置,类型: uint32,默认为 0 • output_w: 必须设置,类型: uint32,默认为 0 • border_value: 可选,类型: float,默认为 0 • affine_transform: 类型: float • engine: 可选,类型: 枚举,取值: DEFAULT=0, CAFFE=1, CUDNN=2 【约束】 (outputH*outputW)/(inputH*inputW)> 1/7
44	Tile (V320 新 增)	将输入 Blob 的某个 指定维度的数据进行 复制扩展	【输入】 —个输入 【参数】 • axis: int32; 指定扩展轴,取值见 2.1 整体约束 • tiles: int32; 复制扩展的倍数
45	Split (V320 新 增)	将输入数据复制为 1 份或者多份	【输入】 一个输入; 支持的数据类型: float,double,int8,uint8,int32,uint32,int64,u int64,bool; 支持的数据格式: NCHW
46	BatchReind ex	将输入的数据按照不同 batch 的索引进行	【输入】 两个输入

序号	算子	含义	边界
	(V320 新 增)	抽取、重排、复制	input0:输入数据: float; input1:输入的索引数据: uint32; 【约束】 0≤input1 <input0 batch="" 数量,如果<br="" 的="">超出约束,输出结果不可靠</input0>
47	SPP (V320 新 增)	对输入图像按照空间 金字塔结构在区域内 进行最大、平均或者 随机值池化操作,使 不同大小的图像的结 果向量具有相同的大 小,从而在输入图像 上汇聚在一起	【输入】 一个输入 【参数】 • pyramid_height: 必选; 类型: int32; 空间金字塔的层数 • pool: 可选; 类型: int32; 目前仅支持 MAX、AVG 两种方式, MAX、AVG、分别表示 0、1,默认为MAX
48	Threshold (V320 新 增)	遍历各数值与给定阈 值进行比较,大于输 出 1,否则输出 0	【输入】 —个输入 【参数】 • threshold: 可选; float32; 默认为 0.0
49	MVN (V320 新 增)	将输入的数据进行归 一化操作	【输入】 一个输入 【参数】 • normalize_variance: 可选; bool 型; false 表示均值归一化, true 表示方差归一化,默认为 true • across_channels: 可选; bool 型; 若为 false: batch*channel 作为矩阵的行, height*width 作为矩阵的列; 若为 true: batch 作为矩阵的行, channel*height*width 作为矩阵的列; 默认为 false
50	BNLL (V320 新 增)	实现二项正太对数似 然函数(激活函数)	【输入】 一个输入
51	Swish (V320 新 增)	计算输入 tensor 中每 个元素的 swish 函数 值 y=x*σ (scale*x), 其中 scale 为缩放因 子	【输入】 一个输入 【参数】 • beta: swish 函数缩放因子, float32

序号	算子	含义	边界
52	Bias (V320 新 增)	实现两个 tensor 输入 input0 与 bias 相加, 如果 input0 与 bias 的 shape 不相同,需要 将 bias 的维度进行扩展,具体的扩展方式 根据入参 axis 来确定,axis 表示 bias 从哪一维开始匹配 input0	【输入】 两个输入 【参数】 • axis: 标量, int 型, 指定 inputs 从哪个轴与 axis 对齐; 范围为[-4,3]。
53	Dropout (V310 新 增)	防止过拟合的层	【输入】 一个输入 【参数】 • dropout_ratio: 可选,默认为 0.5,类型: float • scale_train: 可选, bool, 默认为 true
54	ReLU6 (V320 新增)	激活函数	【输入】 一个输入 【参数】 negative_slope: 可选,默认为 0,类型: float 【约束】 negative_slope 只支持 0

2.3 Tensorflow 算子边界

序号	Python API	C++ API	边界
1	tf.abs	Abs	【参数】 • x: 输入 Tensor, 类型: float32, int32 • name: optional, string 【输出】 返回 x 的绝对值, Tensor, 尺寸与类型同 x
2	tf.add	Add	【参数】 • x: 输入 Tensor, 类型: float32 • y: 输入 Tensor, 类型同 x;

序号	Python API	C++ API	边界
	API		 name: optional, string 【约束】 支持两组输入的维度不一致,进行广播操作(广播即维度补齐),目前支持以下几种广播场景: NHWC+ NHWC, NHWC+scalar或者 NHWC+1111,或者 NHWC+W 和 HWC+W 和 HW+W(备注,W维度做广播),或者 NCHW+NHIC 和 HWC+HIC 和 HW+HI,还有 HWC+1 WC(备注,H维度做广播);说明:两个 Tensor的输入顺序可以互换。 【输出】
3	tf.add_n (V310 新 增)	AddN	输出 Tensor,类型同 y 【参数】 • inputs: 输入 Tensor list 或者 IndexedSlices list, 其中每个的 tensor 或者 IndexedSlices 具有相同的 type 与 shape,类型: float32 • name: optional, string 【约束】
			不支持单个输入 【输出】 输出 Tensor,类型与 shape 与 inputs 元素相同
4	tf.batch_to_ space_nd	BatchToS paceND	 「参数】 input: 输入 Tensor, 是 N 维的并且具有形状 input_shape = [batch] + spatial_shape + remaining_shape,其中 spatial_shape 有 M 维度; 类型: float32 block_shape: Tensor; 类型: int32; 1-D,shape 为[M],所有值必须>=1 crops: Tensor; 类型: int32; 二维, shape 为[M, 2],所有值必须>=0. 【约束】 block_shape 和 crops 的元素值数据类型必须是 int32, 当 Tensor 维数为 4 时: block_shape 的长度必须等于 2, crops 的长度必须等于 4. block_shape 元素的大小必须要大于等于 1, crops 元素值的大小必须大于等于 0, crops 数组的大小必须满足 crop_start[i] + crop_end[i]

序号	Python API	C++ API	边界
			block_shape[i] * input_shape[i+1];
			【输出】
			输出 Tensor,与 images 具有相同的类型
5	tf.cast	Cast	【参数】
			• x: 输入 Tensor, 类型: float32, int32, bool, int64, int16, int8, uint8, uint16, double
			• dtype: 目标类型,同 x 支持的数据类型
			name: optional, string
			【约束】
			无限制
			【输出】
			Tensor 或 sparseTensor 或 indexedSlices, 同输入 的 dtype、shape
6	tf.math.ceil	Ceil	【参数】
	(V310新		• x: 输入 tensor, 类型: float32
	增)		name: optional, string
			【输出】
			输出 tensor,类型 同 x
7	tf.clip_by_v	ClipByVal	【参数】
	alue	ue	• t: 输入 Tensor
			• clip_value_min: clip 最小值
			• clip_value_max: clip 最大值
			name: optional, string
			【约束】
			min 值要小于或者等于 max 值
			【输出】
			输出 Tensor,返回值范围[clip_value_min,
			clip_value_max]
8	tf.concat	ConcatV2	【参数】
			• values: 输入,包含 Tensor 对象的列表或单个 Tensor, 除要拼接的维度外,其他维度上的值 要一致
			• axis: 0-D Tensor, 类型: int32, 指定要拼接的 维度, 范围在[-rank(values), rank(values)]; python 中, 索引以 0 开始, axis 为正值时, 表示对第 axis 维拼接; axis 为负值时, 对第 axis+rank(values)维拼接;

序号	Python API	C++ API	边界
			【约束】
			• 输入的 Tensor,除了进行 concat 的维度外,其 他维度的 size 必须相等
			• 输入的的 Tensor 个数范围属于[1,32]
			【输出】
			输出 Tensor,为输入 Tensors 拼接后的结果
9	tf.constant	Const	【参数】
			• value: 常量或常量数组
			• dtype: 指定数据类型
			• shape: 维度尺寸(optional), 用于输出
			• name: optional, string
			• verify_shape: 布尔值(optional), 默认 False
			【约束】
			无限制
			【输出】
			1 个常量 Tensor
10	tf.depth_to_	DepthToS	【参数】
	space pa	pace	• input: 输入 Tensor, 类型: float32
			• block_size: scalar, 整型, 值>=2
			• data_format: 数据类型: string 值: NHWC, NCHW, 默认值是 NHWC
			name: optional, string
			【输出】
			输出 Tensor,输出类型 input
11	tf.equal	Equal	【参数】
	ar.oquur	29441	x: 输入 Tensor, 类型: float32, uint8, int32, bool
			 y: 输入 Tensor, 类型同 x
			name: optional, string
			【约束】
			由于支持广播 broadcast,对比 x 和 y 的 shape,在
			同一维度上(右对齐的情况下), xdim[i]和 ydim[i]只能相同或者一方为1或者一方缺失。
			[【输出】
			输出 Tensor,数据类型 bool
12	tf.exp	Exp	【参数】
			• x: 输入 Tensor, 类型: float32, double

序号	Python API	C++ API	边界
			 name: 此操作的名称(可选) 【约束】 无限制 【输出】 输出 Tensor,类型同 x
13	tf.math.exp m1 (V310 新 增)	Expm1	【参数】 • x: 输入 tensor, 类型: float32 • name: optional, string 【输出】 输出 tensor, 类型 同 x
14	tf.expand_di ms	ExpandDi	【参数】 • input: 输入 tensor • axis: 0-D (scalar), 指定扩展 input 形状的维度索引; • name: optional, string • dim: 0-D (scalar), 相当于 axis, 被弃用 【约束】 无限制 【输出】 输出 Tensor, 与 input 数据相同, shape 增加了一维 (值为 1)
15	tf.extract_i mage_patch es	ExtractIm agePatche s	【参数】 • images: 输入 Tensor, 类型: float32, uint8; 4-D Tensor shape: [batch, in_rows, in_cols, depth] • ksizes: 一个整型 list, 长度>=4 • strides: 一个整型 list, 必须是: [1, stride_rows, stride_cols, 1] • rate: 一个整型 list, 必须是: [1, rate_rows, rate_cols, 1] • padding: string, 取值: "VALID"或者"SAME","VALID"表示所取的 patch 区域必须完全包含在原始图中."SAME"表示取超出原始图像的部分,以 0 填充该部分 • name: optional, string 【约束】 无约束

序号	Python API	C++ API	边界
			输出 Tensor,与 images 具有相同的类型
16	tf.fake_quan t_with_min_ max_vars	FakeQuan tWithMin MaxVars	【参数】 • inputs:输入 Tensor,类型: float32 • min: Tensor,类型: float32 • max: Tensor,类型: float32 • num_bits: scalar,整型,默认为8 • narrow_range: bool (optional),默认值 False • name: optional, string 【约束】 -65504<=min<=65504, -65504<=max<=65504。 【输出】 输出 Tensor,类型: float32
17	tf.fill	Fill	【参数】 • dims: 1-D Tensor, 类型: int32 • value: 变量, 类型: int32, float32 • name: optional, string 【约束】 支持 Constant、GivenTensor、Range、Diagonal、Gaussian、MSRA、Uniform、UniformInt、UniqueUniform、XavierFill 这些填充模式,在Uniform 填充、UniformInt 填充、UniqueUniform填充、xavier 填充时,生成的数值区间最大范围介于[min,max)之间 【输出】 输出 Tensor,类型同 value 数据类型
18	tf.floormod	FloorMod	【参数】 • x: 输入 Tensor,类型: float32, int32 • y: 输入 Tensor,与 x 具有相同类型 • name: optional, string 【约束】 由于支持广播 broadcast,对比 x 和 y 的 shape,在同一维度上(右对齐的情况下),xdim[i]和 ydim[i]只能相同或者一方为 1 或者一方缺失。 【输出】 输出 Tensor,与 x 具有相同的类型
19	tf.gather	Gather GatherV2	【参数】

序号	Python API	C++ API	边界
			• params: 输入 Tensor,维度必须大于 `axis + 1`
			• indices: Tensor, 类型: int32, int64, 范围[0, params.shape[axis])
			• axis: Tensor, 类型: int32, int64, 指定 indices 选取的维度, rank=0
			name: optional, string
			【约束】
			无限制
			【输出】
			输出 Tensor,输出数据类型于 params 相同
20	tf.gather_nd	GatherNd	【参数】
			• params: 输入 Tensor,维度必须大于 `axis + 1`
			• indices: 输入 Tensor, 类型: int32, int64
			• name: optional, string
			【约束】
			indices 最后一维的大小不能超过 params 的维数
			indices 最后一维中的元素对应着 params 中的一个 维度上的坐标,必须满足坐标规则
			indices 中对应维度上的坐标不能超过维度的大小
			【输出】
			输出 Tensor,输出数据类型于 params 相同
21	tf.greater	Greater	【参数】
			• x: 输入 Tensor, 类型: float32, int32
			• y: 输入 Tensor, 类型: float32, int32
			• name: optional, string
			【约束】
			仅支持常量输入
			支持广播 broadcast
			【输出】
			输出 Tensor,类型:bool
22	tf.image.cro	CropAnd	【参数】
	p_and_resiz e	Resize	• image: 4-D Tensor, 类型: float32, int8, int32, int64; shape: [batch, image_height, image_width, depth]
			• boxes: 2-D Tensor, 类型: float32; shape: [num_boxes, 4]
			• box_ind: 1-D Tensor, 类型: int32; shape:

序号	Python API	C++ API	边界
			[num_boxes] crop_size: 1-D Tensor,包含 2 个元素,类型: int32 method: string,表示插值方法,值为 "bilinear"(默认), "nearest" extrapolation_value: 可选,数据类型: float32,默认为 0 name: optional, string 【约束】 无限制 【输出】
23	tf.image.non _max_suppr ession (V310 新 增)	NonMaxS uppression V2	【参数】 • boxes: 2-D Tensor, 类型: float32; shape: [num_boxes, 4] • scores: 1-D Tensor, 类型: float32; shape: [num_boxes] • max_output_size: scalar, 类型: int32, 表示最大输出框个数 • iou_threshold: scalar, 类型: float32 • name: optional, string 【输出】 1-D Tensor, int32, shape:[M], M<=max_output_size
24	tf.image.resi ze_bilinear	ResizeBili near	【参数】 • images: 4-D tensor, [batch, height, width, channels]; 类型: float32 • size: 1-D Tensor, 常量, 2个元素(新的高宽) • align_corners: bool 值, 默认为 False; 如果为 True, 输入和输出的 4 个角像素的中心对齐, 保留角像素处的值 【约束】 (outputH*outputW) / (inputH*inputW) > 1/7 【输出】 输出 tensor, shape 同输入,类型: float
25	tf.image.resi ze_nearest_ neighbor	ResizeNea restNeigh bor	【参数】 • images: 4-D Tensor, [batch, height, width, channels]; 类型: float32

序号	Python API	C++ API	边界
			 size: 1-D Tensor,常量,2个元素(新的高宽) align_corners: bool 值,默认为 False;如果为True,输入和输出的4个角像素的中心对齐,保留角像素处的值 【约束】 无限制 【输出】 输出 tensor, shape 同输入,类型: float
26	tf.invert_per mutation	InvertPer mutation	【参数】 • x: 1-D Tensor, 类型: int32, int64 • name: optional, string 【约束】 无限制 【输出】 输出 Tensor, 类型同 x
27	tf.keras.back end.hard_si gmoid	Hardsigm oid	【参数】 x: 输入 Tensor 【约束】 无限制 【输出】 输出 Tensor, 返回值: 当 x < -2.5 时,返回 0; 当 x > 2.5 时,返回 1 当-2.5 <= x <= 2.5,返回 0.2 x + 0.5.
28	tf.keras.laye rs.Threshold edReLU	Threshold edReLU	【参数】 theta: 类型: float32 【约束】 0 <= theta <= 65504 【输出】 输出 Tensor
29	tf.log	Log	【参数】 • x: 输入 Tensor, 类型: float32 • name: optional, string 【约束】 输入数据范围(x>0)

序号	Python API	C++ API	边界
			【输出】 输出 Tensor,类型同 x
30	tf.math.log1 p (V310 新 增)	Log1p	【参数】 • x: 输入 tensor, 类型: float32 • name: optional, string 【输出】 输出 tensor, 类型 同 x
31	tf.math.acos	Acos	 x: 输入 Tensor, 类型: float32 name: optional, string 【约束】 输入数据范围 (-1<=x<=1), 输出数据范围 (0<=y<=π) 【输出】 输出 Tensor, 类型同 x
32	tf.math.acos h	Acosh	【参数】 • x: 输入 Tensor, 类型: float32 • name: optional, string 【约束】 输入数据范围(x>=1) 【输出】 输出 Tensor, 类型同 x
33	tf.math.arg max	ArgMax	【参数】 • input: 输入 Tensor, 类型: int8, uint8, int16, uint16, int32, int64, float32 • axis: Tensor, 类型: int32, int64 • out_type 输出 Tensor, 类型: int32, int64 (optional, 默认为 int64) • name: optional, string 【约束】 无限制 【输出】 输出 Tensor, 输出类型为 out_type
34	tf.math.asin	Asin	【参数】 • x: 输入 Tensor, 类型: float32

序号	Python API	C++ API	边界
			 name: optional, string 【约束】 输入数据范围 (-1<=x<=1),输出数据范围 (-π/2<=y<=π/2)。 【输出】 输出 Tensor,类型同 x
35	tf.math.asin	Asinh	【参数】 • x: 输入 Tensor, 类型: float32 • name: optional, string 【约束】 无约束 【输出】 输出 Tensor, 类型同 x
36	tf.math.atan	Atan	【参数】 • x: 输入 Tensor, 类型: float32 • name: optional, string 【约束】 输入数据范围(-65504<=x<=65504),输出数据范围(-π/2 <y<π 2)。="" td="" tensor,="" x<="" 【输出】="" 类型同=""></y<π>
37	tf.math.atan h	Atanh	【参数】 • x: 输入 Tensor, 类型: float32 • name: optional, string 【约束】 输入数据范围: x∈(-1,1) 【输出】 输出 Tensor, 类型同 x
38	tf.math.cosh	Cosh	【参数】 • x: 输入 Tensor, 类型: float32 • name: optional, string 【约束】 无限制 【输出】 输出 Tensor, 类型同 x

序号	Python API	C++ API	边界
39	tf.math.floor (V310 新 增)	Floor	【参数】 • x: 输入 Tensor, 类型: float32 • name: optional, string 【约束】 不支持 8-bit 量化 【输出】 输出 Tensor, 类型同 x
40	tf.math.great er_equal	GreaterEq ual	【参数】 • x: 输入 Tensor, 类型: float32 • y: 输入 Tensor, 类型同 x • name: optional, string 【约束】 输入数据范围(-65504<=x<=65504) 【输出】 输出 Tensor, 类型: bool
41	tf.math.less	Less	【参数】 • x: 输入 tensor, 类型: float32 • y: 输入 tensor, 类型同 x • name: optional, string 【约束】 无限制 【输出】 输出 tensor, 类型: bool
42	tf.math.logic al_and	LogicalAn d	【参数】 • x: tensor,类型: bool (不支持常量输入) • y: tensor,类型: bool (不支持常量输入) • name: optional, string 【约束】 BroadCast 只支持如下几种维度的广播,NHWC和[1,1,1,1],[N,H,W,C],[N,H,W,1],[1,H,W,C],[N,1,1,C] 【输出】 输出 tensor,类型: bool
43	tf.math.logic al_not	LogicalNo t	【参数】 • x: tensor, 类型: bool • name: optional, string

序号	Python API	C++ API	边界
			【约束】 无限制 【输出】 输出 Tensor,类型: bool
44	al_or	LogicalOr	【参数】 • x: 输入 tensor,类型: bool(不支持常量输入) • y: 输入 tensor,类型: bool(不支持常量输入) • name: optional, string 【约束】 由于支持广播 broadcast,对比 x 和 y 的 shape,在同一维度上(右对齐的情况下),xdim[i]和 ydim[i]只能相同或者一方为 1 或者一方缺失。 【输出】 输出 tensor,类型: bool
45	tf.math.maxi mum	Maximum	【参数】 • x: tensor, 类型: int32, float32 • y: tensor, 类型同 x • name: optional, string 【约束】 无 【输出】 输出 tensor, 返回值(x>y?x:y) 类型同 x
46	tf.math.mini mum	Minimum	【参数】 • x: 输入 tensor, 类型: int32, float32 • y: 输入 tensor, 类型同 x • name: optional, string 【约束】 无 【输出】 输出 tensor, 返回值(x < y?x:y) 类型同 x
47	tf.math.nega tive	Neg	【参数】 • x: 输入 tensor, 类型: float32 • name: optional, string

序号	Python API	C++ API	边界
			【约束】 输入数据范围(-65504<=x<=65504),输出数据范 围(-65504<=y<=65504) 【输出】 输出 tensor,输出= -x
48	tf.math.pow	Pow	【参数】 • x: 输入 tensor, 类型: float32 • y: 输入 tensor, 类型: float32 • name: optional, string 【约束】 无约束 【输出】 输出 tensor
49	tf.math.recip rocal	Reciprocal	【参数】 • x: 输入 tensor, 类型: float32 • name: optional, string 【约束】 不支持输入数据中包含 0 【输出】 输出 tensor, 类型同 x
50	tf.math.redu ce_all	All	【参数】 • input_tensor: 输入 tensor, 类型: bool • axis: reduce 的维度轴向 • keepdims: 标量, 类型: bool • name: optional, string • reduction_indices: axis 旧的别名(不推荐) • keep_dims: keepdims 别名(不推荐) 【约束】 无约束 【输出】 输出 tensor, 类型同 input_tensor
51	tf.math.redu ce_max	ReduceMa x	【参数】 • input_tensor: 输入 tensor, 类型: float32, int64, uint8, uint16, int8, int16 • axis: reduce 的维度轴向

序号	Python API	C++ API	边界
			 keepdims: 标量,类型: bool name: optional, string reduction_indices: axis 旧的别名(不推荐) keep_dims: keepdims 别名(不推荐) 【约束】 axis 输入范围[-rank,rank) 【输出】 输出 tensor,类型同 input_tensor
52	tf.math.redu ce_mean (V310 新 增)	Mean	【参数】 ■ input_tensor: 输入 tensor, 类型: float32 ■ axis: reduce 的维度轴向 ■ keepdims: 标量,类型: bool ■ name: optional, string ■ reduction_indices: axis 旧的别名(不推荐) ■ keep_dims: keepdims 别名 (不推荐) 【约束】 ■ axis 输入范围[-rank,rank) ■ axis 降维方式支持情况: 1D: 支持全场景 2D: 仅支持 1H、C1 两种,其中 0、1 分别代表 C、H 3D: 仅支持 C11、CH1、C1W、111、1H1、1HW 六种,其中 0、1、2 分别代表 C、H、W 4D: 仅支持 NC11、NCH1、NC1W、N111、N1H1、N1HW 六种,其中 0、1、2、3 分别代表 N、C、H、W 【输出】 输出 tensor,类型同 input_tensor
53	tf.math.redu ce_min	Min	【参数】 • input_tensor: 输入 tensor, 类型: float32, int64, int32, uint8, uint16, int8, int16 • axis: reduce 的维度轴向 • keepdims: 标量, 类型: bool • name: optional, string • reduction_indices: axis 旧的别名(不推荐) • keep_dims: keepdims 别名(不推荐)

序号	Python API	C++ API	边界
			【约束】 当输入的 Tensor 维数等于 4 时: 输入 axis={3,{1,2,3}}, keepdims=true, H*W <= 512; 当输入的 Tensor 维数等于 2 时, 输入 axis={1,{1}}, keepdims=true, H*W*ALIGN(C,16) <= 8192 【输出】 输出 tensor, 类型同 input_tensor
54	tf.math.redu ce_prod	Prod	 【参数】 input_tensor: 输入 tensor, 类型: float32, int64, int32, uint8, uint16, int8, int16 axis: reduce 的维度轴向 keepdims: 标量,类型: bool name: optional, string reduction_indices: axis 旧的别名(不推荐) keep_dims: keepdims 别名 (不推荐) 【约束】 当输入的 Tensor 维数等于 4 时: 输入 axis={3,{1,2,3}}, keepdims=true, H*W <= 512; 当输入的 Tensor 维数等于 2 时,输入 axis={1,{1}}, keepdims=true, H*W*ALIGN(C,16) <= 8192 【输出】 输出 tensor, 类型同 input_tensor
55	tf.math.rint	Rint	【参数】 • x: 输入 tensor, 类型: float32 • name: optional, string 【约束】 无限制 【输出】 输出类型同 x, 输出 shape 同 x
56	tf.math.roun	Round	【参数】 • x: 输入 tensor, 类型: float32 • name: optional, string 【输出】 输出 tensor, 类型同 x, 输出 shape 同 x
57	tf.math.rsqrt	Rsqrt	【参数】

序号	Python API	C++ API	边界
			 x: 输入 tensor,类型: float32 name: optional, string 【输出】 输出 tensor,类型 同 x
58	tf.math.sinh	Sinh	【参数】 • x: 输入 tensor, 类型: float32 • name: optional, string 【输出】 输出 tensor, 类型同 x
59	tf.math.sin (V310 新 增)	Sin	【参数】 • x: 输入 tensor, 类型: float32 • name: optional, string 【输出】 输出 Tensor, 类型同 x
60	tf.math.cos (V310 新 增)	Cos	【参数】 • x: 输入 tensor, 类型: float32 • name: optional, string 【输出】 输出 tensor, 类型同 x
61	tf.math.sqrt	Sqrt	【参数】 • x: 输入 tensor, 类型: float32 • name: optional, string 【约束】 无约束 【输出】 输出 tensor, 类型同 x
62	tf.math.squa red_differen ce	SquaredDi fference	【参数】 • x: 输入 tensor, 类型: float32, int64, int32 • y: 输入 tensor, 类型同 x • name: optional, string 【约束】 广播模式只支持下列场景: 第一个的 tensor_format 是 NCHW, 另一个的dim{}可以是[1,1,1,1], [N,C,H,W], [N,1,H,W], [1,C,H,W], [N,C,1,1],[1,C,1,1],[1,1,H,W],[N,1,1,1]这

序号	Python API	C++ API	边界
			几种情况。
			【输出】
			输出 tensor,类型同 x
63	tf.math.tan	Tan	【参数】
			• x: 输入 tensor, 类型: float32
			name: optional, string
			【约束】
			无限制
			【输出】
			输出 tensor,类型同 x
64	tf.math.top_	TopKV2	【参数】
	k		• input: n-D Tensor, n>=1, 最后一个维度大小必须大于 k
			• k: scalar >=1, 类型: int32
			• sorted: bool
			name: optional, string
			【约束】
			K 一定要以常量传入
			【输出】
			• values: tensor 返回最后维度上的 k 个最大向量
			• indices: tensor, values 在 input 中的索引位置
65	tf.matmul	MatMul	【参数】
			• a: 输入 tensor, 2<=rank<=4, 类型: float32
			• b: 输入 tensor, 类型与 rank 同 a
			• transpose_a: 如果属性为 True, a 在乘法前做转置; 当 rank>2 时,属性为 false
			• transpose_b: 如果属性为 True, b 在乘法前做转置;
			• adjoint_a: 只支持 False;
			• adjoint_b: 只支持 False;
			• a_is_sparse: 只支持 False
			• b_is_sparse: 只支持 False,
			name: optional, string
			【约束】
			• rank=2 时,对于矩阵运算[m,n] *[n,k], 要求 n 不大于 1664,如需转置,要求转置后对应的 n

序号	Python API	C++ API	边界
			不大于 1664 • rank>2 时,输入 a 的 shape[-1] <=1024 【输出】
66	tf.multinomi al	Multinomi	输出 Tensor,类型同 a 与 b 【参数】 • logits: 2-D tensor, shape: [batch_size, num_classes] • num_samples: scalar, 抽样个数 • seed: 随机数种子,类型: int32, int64 • name: optional, string • output_dtype: 输出 tensor,类型: 整型,默认 int64 【约束】 seed 为 0 时产生随机数是动态的 【输出】
67	tf.math.mult iply	Multiply	Tensor, shape: [batch_size, num_samples] 【参数】 • x: 输入 tensor, 类型: float32 • y: 输入 tensor, 类型同 x • name: optional, string 【约束】 支持两组输入的维度不一致,进行广播操作(广播即维度补齐),目前支持以下几种广播场景: NHWC+ NHWC, NHWC+scalar或者 NHWC+1111,或者 NHWC+W 和 HWC+W 和 HW+W(备注, W维度做广播),或者 NCHW+NHIC 和 HWC+HIC 和 HW+HI,还有 HWC+1 WC(备注,H维度做广播);说明:两个 Tensor 的输入顺序可以互换。 【输出】
68	tf.nn.avg_po ol	AvgPool	【参数】 • value: 4-D tensor,格式: [batch, height, width, channels],类型: float32

序号	Python API	C++ API	边界
			• ksize: 包含四个 int 的列表或元组,其中每个值 对应相应维度的窗口大小
			• strides: 包含四个 int 的列表或元组,其中每个 值对应相应维度的滑动步长
			● padding: 类型: string,值必须为 VALID 或 SAME
			• data_format: 类型: string, 值为 NHWC(默认值)或 NCHW
			name: optional, string
			【约束】
			• KernelH<256, kernelW<256;
			● 当输出 tensor shape H、W 为 1 时,要求 input H * input W < 65536
			kernelH<=inputH+padTop+padBottom
			kernelW<=inputW+padLeft+padRight
			padTop <windowh< td=""></windowh<>
			padBottom <windowh< td=""></windowh<>
			padLeft <windoww< td=""></windoww<>
			padRight <windoww< td=""></windoww<>
			【输出】
			输出 tensor,类型同 value
69	tf.nn.bias_a	BiasAdd	【参数】
	ad		• value: 输入 tensor
			• bias: 1-D tensor,常量,尺寸与 value 的最后一维一致;除非 value 为量化类型,否则类型需同 value
			• data_format: 类型: string, NHWC 或 NCHW
			• name: optional, string
			【约束】
			1、C < 10000;
			2、input 和 bias 的数据排布要一致;
			3、当在 c 通道上加 bias 时,input 和 bias 的 C 维 度大小要一致。
			【输出】
			输出 Tensor,类型同 value
70	tf.nn.conv2d	Conv2D	【参数】
		. -	 value: 4-D tensor, 格式: [batch, height, width, channels], 类型: float32

序号	Python API	C++ API	边界
	All		 filter: 一个常量 tensor,数据类型与维度与value 相同, [filter_height, filter_width, in_channels, out_channels] strides: 非空,包含四个 int 的列表或元组,其中每个值对应相应维度的滑动步长 padding: 非空,类型: string,值必须为 VALID或 SAME use_cudnn_on_gpu:类型: bool,默认为 True data_format: 非空,类型: string,值为 NHWC(默认值)或 NCHW dilations: 可选参数,一个 int 列表(长度为4);默认为[1,1,1,1],对应输入的每一维;如果 k>1,相应维度做 filter 间跳过 k-1 个单元;维度顺序由 data_format 决定;dilations 的 batch与depth 维度上的值必须是 1 name: optional, string 【约束】 (inputW + padWHead + padWTail) >= (((FilterW-1)*dilationW) + 1) (inputH + padHHead + padHTail) /StrideW + 1 <= INT32_MAX (inputH + padHHead + padHTail) /StrideH + 1 <= INT32_MAX 0 <= Pad < 256, 0 < FilterSize < 256, 0 < Stride < 64, 1 <= dilationsize < 256 StrideW <= (inputW + padW) - ((filterW - 1)*dilationW) + 1) 【输出】tensor,类型同 Value
71	tf.nn.conv2d _transpose	Conv2DB ackpropIn put	【参数】 • value: 4-D tensor,数据格式: NHWC([batch, height, width, in_channels])或 NCHW([batch, in_channel, height, width]) • filter: 4-D tensor,常量, shape: [height, width, output_channels, in_channels] • output_shape: 1-D tensor,表示输出的 shape • strides: int型列表,非空,输入的每个维度的滑动窗口的步长 • padding: 类型: string,值为 VALID 或

序号	Python API	C++ API	边界
			SAME, 非空 data_format: 类型: string, NHWC 或 NCHW, 非空 name: optional, string 【约束】 filterH - padHHead - 1 >= 0 filterW - padWHead - 1 >= 0 还有一条约束涉及中间变量,公式如下: 1、a = ALIGN(filter_num,16) * ALIGN(filter_c,16) * filter_h * filter_w * 2; 如果 ALIGN(filter_c,16)%32 = 0, a = a/2; 2、conv_input_width=(反卷积输入 w - 1) * strideW + 1; 3、b = (conv_input_width) * filter_h * ALIGN(filter_num,16) * 4; 4、a + b <= 512KB 【输出】 输出 Tensor,类型同 value
72	tf.nn.depthw ise_conv2d	Depthwise Conv2dNa tive	 「参数】 input: 4-D tensor filter: 4 维,常量,数据格式: [filter_height, filter_width, in_channels, channel_multiplier] strides: 输入的每个维度的滑动窗口的步长,属性必须是 list(int),且大小为 4 padding: 类型: string,值为'VALID'或'SAME' rate: 1 维,大小为 2;空洞卷积中在 height 和width 维度上对输入值进行采样的扩张率;如果值大于 1,则步长的所有值必须为 1 data_format: 输入的数据格式,可以是 NHWC(默认)或 NCHW name: optional, string 【约束】 filterN=inputC=group StrideW<=(inputW + padW)-((filterW - 1)*dilationW) + 1) 【输出】 4-D Tensor,形状与data_format一致,例如,对于NHWC格式,形状是[batch,out_height,out_width,

序号	Python API	C++ API	边界
			in_channels * channel_multiplier]
73	tf.nn.elu	Elu	【参数】 • features: 输入 tensor • name: optional, string 【约束】 无限制 【输出】 输出 tensor, 类型同 features
74	tf.nn.fused_batch_norm	FusedBatc	 x: 4-D tensor,类型: float32 scale: 1-D tensor,用于缩放 offset: 1-D tensor,偏差 mean: 1-D tensor,用于推理总体均值 variance: 1-D tensor,用于推理总体方差 epsilon:在x的方差中添加的一个小的浮点数 data_format: x的数据格式,值为NHWC(默认)或NCHW is_training: bool值,用于指定操作是用于训练还是推理 name: optional, string 【约束】 scale, bias,mean,var的 shape 只支持(1,C,1,1),且 c维度与 input 的 c维度相等。 【输出】 y:标准化、缩放、偏移x的4-D tensor batch_mean: 1-D tensor,表示x的均值 batch_var: 1-D tensor,表示x的方差
75	tf.nn.l2_nor malize	L2Normal ize	 【参数】 x: 输入 4-D tensor,类型: float32 axis: 指定 normalize 的维度轴向;如果 format 为 NCHW,则 axis 必须为 1如果 format 为 NHWC,则 axis 必须为 3 epsilon:规范化的下限值.如果 norm <sqrt(epsilon),将使用 li="" sqrt(epsilon)作为除数.<=""> name: optional, string dim: axis 旧的别名(不推荐) </sqrt(epsilon),将使用>

序号	Python API	C++ API	边界
			【约束】
			H*W*2 < 32768;
			【输出】
			tensor,类型同 x
76	tf.nn.leaky_r	LeakyRel u	【参数】
	O1G	u	• features: 输入 tensor, 类型: float32
			• alpha: x <0 时激活函数的斜率.
			• name: optional, string
			【约束】
			无限制
			【输出】
			激活值
77	tf.nn.log_sof	LogSoftm	【参数】
	tmax	ax	• logits: 非空 tensor, 类型: float32
	(V310新 增)		• axis: softmax 的维度,默认-1,表示最后一个维度
			• name: optional, string
			● dim: axis 的弃用名
			【约束】
			• axis 输入范围[-rank,rank)
			 输入4维(NCHW)时可以针对每一维做 softmax:
			axis=0, 不支持
			axis=1即 channel的话, c<=11136, h*w < 65536;
			axis=2 即 Height 场景下,W=1, 0 <h<=16384;< td=""></h<=16384;<>
			axis=3 即 Width 场景下,0 <w<=16384;< td=""></w<=16384;<>
			【输出】
			输出 tensor,类型与 shape 同 logits
70	tf nn l	LDM	
78	tf.nn.lrn	LRN	【参数】
			• input: 4-D tensor,类型: float32
			• depth_radius: 0-D int 型,默认值为 5,1-D 标准 化窗口的半宽
			• bias: 可选参数, float 型, 默认为 1; 偏移(通 常为正值,以避免除以 0)
			• alpha: 可选参数, float 型, 默认为 1; 比例因 子,通常为正值

序号	Python API	C++ API	边界
			 beta: 可选参数, float 型, 默认为 0.5; 一个指数 name: optional, string 【约束】 depth_radius >0, 且必须为奇数; 当 depth_radius ∈ [1,15]时, alpha >0.00001 且 beta>0.01, 否则 alpha 和 beta 为任意值; 当 C 维度大于 680 时, depth_radius <640 【输出】 输出 tensor, 类型同 input
79	tf.nn.max_p	MaxPool	同 tf.nn.avg_pool
80	tf.nn.relu	Relu	【参数】 • features: 输入 tensor, 类型: float16, float32 • name: optional, string 【约束】 无限制 【输出】 输出 tensor, 类型同 features
81	tf.nn.relu6	Relu6	【参数】 • features: 输入 tensor, 类型: float16, float32 • name: optional, string 【约束】 无限制 【输出】 输出 tensor, 类型同 features
82	tf.nn.selu	Selu	【参数】 • features: 输入 tensor, 类型: float32 • name: optional, string 【约束】 无约束 【输出】 输出 tensor, 类型同 features
83	tf.nn.softma x	Softmax	【参数】 • logits: 非空 tensor, 类型: float32 • axis: 在该维度上执行 softmax; 默认值为-1,表

序号	Python API	C++ API	边界
			 示最后一个维度,不超过 logits 维度 name: optional, string dim: axis 的已弃用的别名 【约束】 axis 输入范围[-rank,rank) 输入 4 维(NCHW)时可以针对每一维做 softmax: axis=0, n<=28544; axis=1 即 channel 的话, c<=11136, h*w < 65536; axis=2 即 Height 场景下, W=1, 0<h<=16384;< li=""> axis=3 即 Width 场景下, 0<w<=16384;< li=""> 输入维度不足 4 维时,仅支持对最后一维做 softmax 计算,并且最后一维不超过 19968。 【输出】 输出 tensor,类型和 shape 同 logits </w<=16384;<></h<=16384;<>
84	tf.nn.softplu s	Softplus	【参数】 • features: 输入 tensor, 类型: float32 • name: optional, string 【约束】 无限制 【输出】 输出 tensor, 类型同 features
85	tf.nn.softsig n	Softsign	【参数】 • features: 输入 tensor, 类型: float32 • name: optional, string 【约束】 无限制 【输出】 输出 tensor, 类型同 features
86	tf.pad	Pad PadV2 MirrorPad	【参数】 • tensor: 4-D tensor, 类型: float32, int32 • paddings: tensor, 常量, 类型: int32 • mode: string, 值为 CONSTANT, 或 REFLECT, 或 SYMMETRIC。当 mode=CONSTANT, 若 constant_values 等于 0 时, c++接口为 Pad, 否则, c++接口为 PadV2; 当 mode=REFLECT

序号	Python API	C++ API	边界
			或 SYMMETRIC, c++接口是 MirrorPad。 • name: optional, string • constant_values: Pad 默认填充的值标量,数据类型与 tensor 相同 【约束】 CONSTANT 模式时,0= <pad<=128, 0<w<="3000。" td="" 【输出】<=""></pad<=128,>
87	tf.placehold er	Placehold er	输出 tensor, 类型与 tensor 相同 【参数】 dtype: 类型(必须) shape: Tensor 的维度和大小 name: optional, string 【约束】 无限制 【输出】
88	tf.range	Range	【参数】 start: 开始, scalar, 类型: float32, int32, 必须为常量 limit: 结束, scalar, 类型: float32, int32, 必须为常量 delta: 步长, scalar, 类型: float32, int32, 必须为常量 dtype: 返回 Tensor 的类型 name: optional, string 【约束】 无限制 【输出】
89	tf.realdiv	RealDiv	【参数】 • x: 输入 tensor, 类型: float32 • y: 输入 tensor, 类型: float32 • name: optional, string 【约束】 无限制

序号	Python API	C++ API	边界
			【输出】 输出 tensor,类型同 x
90	tf.math.redu ce_sum	Sum	【参数】 • input_tensor: 输入 tensor • axis: reduce 的维度,类型: int32 • keepdims: bool 值,是否保留维度 • name: optional, string • reduction_indices: axis 的旧名(弃用) • keep_dims: 不推荐使用,参数 keepdims 别名 【输出】 输出 Tensor,类型同 tensor
91	tf.reshape	Reshape	【参数】 • tensor: 输入 Tensor; • shape: 定义输出的 shape, 常量 Tensor, 类型: int64, int32 • name: optional, string 【输出】 输出 Tensor, 类型同输入
92	tf.reverse (别名: tf.reverse_v 2)	ReverseV 2	【参数】 • tensor: 输入 tensor; 类型: int8, int16, int32, int64, float16, float32 • axis: tensor, reverse 的维度, 类型: int32 • name: optional, string 【输出】 输出 Tensor, 类型同 tensor
93	tf.reverse_se quence	ReverseSe quence	【参数】 • input: 输入 tensor • seq_lengths: 1-D tensor; 类型: int32, int64 • seq_axis: scalar, 类型: 整型 • batch_axis: scalar (optional),默认为 0,类型:整型 • name: optional, string 【输出】 输出 tensor,类型同 input
94	tf.scatter_nd (V310 新	ScatterNd	【参数】 • indices: tensor, 类型: int32, 不支持负数, 且最

序号	Python API	C++ API	边界
	增)		大值要求小于 shape[0] • updates: tensor, 类型: float32 • shape: 1-D const, 类型: int32 • name: optional, string 【输出】 输出 tensor, 类型同 updates
95	tf.shape	Shape	【参数】 • input: 输入 tensor • name: optional, string • out_type: 指定输出类型: int32, int64 (optional, 默认为 int32) 【输出】 输出 tensor,输出数据类型为 out_type
96	tf.sigmoid	Sigmoid	【参数】 • x: 输入 tensor • name: optional, string 【输出】 输出 tensor,类型同 value
97	tf.math.sign (V310 新 增)	Sign	【参数】 • x: 输入 tensor, 类型: float32 • name: optional, string 【输出】 输出 tensor, 类型同 x
98	tf.size	Size	【参数】 • input: 输入 tensor, 类型: float32 • name: optional, string • out_type: optional, 指定输出类型, 默认 int32 【输出】 输出 tensor, 类型由 out_type 指定
99	tf.slice	Slice	【参数】 • input: 输入 tensor • begin: tensor, 类型: int32, int64 • size: tensor, 类型: int32, int64 • name: optional, string 【输出】

序号	Python API	C++ API	边界
			输出 tensor,类型同 input
100	tf.space_to_ batch_nd	SpaceToB atchND	 input: 4-D Tensor, input_shape = [batch] + spatial_shape + remaining_shape,其中 spatial_shape 有 M 维度; 类型: float32 block_shape: 1-D Tensor, 类型: int32; shape 为[M], 所有值必须>=1 paddings: Tensor, 类型: int32; shape 为[M, 2], 且要求`input_shape[i + 1] + pad_start + pad_end. 能够被 block_shape[i]整除 【约束】 blockShape 的长度必须等于 2, paddings 的长度必须等于 4. blockShape 元素的大小必须要大于等于 1, paddings 元素值的大小必须大于等于 0. padding 后的 h 维度要能够被 blockShape[0]整除, padding 后的 w 维度要能够被 blockShape[1]整除。 【输出】 输出 Tensor, 类型同 input
101	tf.space_to_ depth	SpaceToD epth	【参数】 • input: 输入 Tensor, 类型: float32 • block_size: scalar, 类型: int32, 值>=2 • data_format: optional, string, NHWC 或 NCHW, 默认值是 NHWC • name: optional, string 【输出】 输出 Tensor, 类型同 input
102	tf.split	Split SplitV	【参数】 • value: 输入 Tensor, 类型: float32, bool, int32 • num_or_size_splits: 若为 scalar, 表示指定分割 个数, c++接口为 Split; 若为 1-D Tensor, 表示指定分割大小, c++接口为 SplitV • axis: scalar, 类型: int32, 指定分割维度 • name: optional, string 【输出】 List, 包含 split 后的各 Tensor

序号	Python API	C++ API	边界
103	tf.math.squa	Square	【参数】 • x: 输入 Tensor, 类型: float32 • name: optional, string 【输出】 输出 Tensor, 类型同 x
104	tf.squeeze	Squeeze	 [参数】 input: 输入 Tensor axis: 可选 int 型列表, 指定要移除的维度, 默认为[]; 不能指定非 1 的维度; name: optional, string squeeze_dims: 不推荐使用的参数, axis 和 dim不能同时存在 【输出】 输出 Tensor, 与 input 的类型、数据相同, 但删除了一个或多个值为 1 的维度
105	tf.stack	Pack	【参数】 • values: tensor list,要求每个 tensor 形状与类型相同,类型: float32, int32 • axis:整数,沿 axis 维度堆叠,默认是第一维 • name: optional, string 【输出】 输出 Tensor,类型同 values
106	tf.strided_sli	StridedSli	 input_: 输入 Tensor, 类型: float32 begin: 1-D Tensor, 类型: int32 end: 1-D Tensor, 类型: int32 strides: 1-D Tensor, 类型: int32 begin_mask: 标量, 类型: int32 end_mask: 标量, 类型: int32 ellipsis_mask: 标量, 类型: int32 new_axis_mask: 标量, 类型: int32 shrink_axis_mask: 标量, 类型: int32 var: 与 input_ 或 None 对应的变量 name: optional,string 【约束】 在 shrink_axis_mask 掩码场景下, 只支持正序 mask

序号	Python API	C++ API	边界
			不支持 new_axis_mask
			【输出】
			输出 Tensor,类型同 input_
107	tf.subtract	Subtract	【参数】 • x: 输入 tensor,类型: float32 • y: 输入 tensor,类型同 x; • name: optional,string 【约束】 支持两组输入的维度不一致,进行广播操作(广播即维度补齐)。 目前支持以下几种广播场景: NHWC+NHWC,NHWC+scalar 或者 NHWC+W、和 HWC+W、和 HWC+W(条); W
			或者 NHWC+W 和 HWC+W 和 HW+W(备注, W 维度做广播), 或者 NCHW + NH1C 和 HWC + H1C 和 HW + H1, 还有 HWC + 1 WC(备注, H 维度做广播); 说明: 两个 Tensor 的输入顺序可以互换。 【输出】
108	tf.math.tanh	Tanh	【参数】 • x: 输入 Tensor, 类型: float16, float32 • name: optional, string 【输出】 输出 Tensor, 类型同 x
109	tf.tile	Tile	【参数】 • input: 输入 Tensor, 维度大于等于 1 • multiples: 1-D Tensor, 长度须和 input 的秩相同,数据类型: `int32`, 必须为常量 • name: optional, string; 【输出】 1 个 Tensor
110	tf.transpose	Transpose	【参数】 • a: 输入 Tensor • perm: a 的维数的排列

序号	Python API	C++ API	边界
			 name: 名称(可选) conjugate: optional, 类型: bool, 默认为 False; 不支持 True 【输出】 被转置后的 Tensor
111	tf.unstack	Unpack	【参数】 • value: 输入 Tensor, 类型: float32, int32, bool • num: 整数,表示 axis 维度的长度,类型: int32, 默认为 None • axis: 整数,沿 axis 拆分,默认为 0 • name: optional,string 【输出】 从 value 中拆分出的包含 Tensor 对象的列表
112	tf.where	Where	【参数】 • condition: tensor, 类型: bool • x: None • y: None • name: optional, string 【输出】 tensor, 其 shape 为二维,第一维的大小和输入中元素值为 true 的个数相同
113	tf.where	Select	【参数】 condition: tensor,类型: bool x: tensor,类型: float32, int32, uint8, bool y: tensor, shape 和类型同 x; name: optional, string 【约束】 condition,x,y 三者 shape 相同 condition 为 1-D, x 和 y 的 shape 相同 (rank >=1),且 x,y 的第 0 维的大小(shape[0])和 condition 的大小相同 【输出】 输出 tensor, shape 和类型同 x
114	from tensorflow.p ython.ops import	Switch	【参数】 • data: 输入 Tensor • pred: scalar, 类型: bool

序号	Python API	C++ API	边界
	control_flo w_ops control_flo w_ops.switc h (V310 新 增)		 dtype: optional 指定输出 Tensor 类型 name: optional ,string; 【约束】 算子不能独立支持,需和 merge 一起使用,参考 Merge 【输出】 输出 Tensor, (output_false, output_true): 若 pred 为 true, forward 返回 output_true, 否则, 返回 output_false
115	from tensorflow.p ython.ops import control_flo w_ops control_flo w_ops.merg e (V310 新增)	Merge	【参数】 • inputs: 输入 tensors,至少有一个是可用的 • name: optional, string 【约束】 算子不能独立支持,需和 Switch 一起使用,并且 Merge 不能作为最后的输出 【输出】 一个元组,包含所选 tensor 以及其索引
116	tf. matmul (V320 新 增)	BatchMat Mul	 x:输入 3-4D Tensor 左矩阵 y:输入 3-4D Tensor 右矩阵,类型与 rank 同 x adj_x: Bool,输入 x tensor 的最后两维是否转置 adj_y: Bool,输入 y tensor 的最后两维是否转置 【约束】 输入 tensor,类型: float32 adj_x:默认为 false,目前仅支持 false(暂不支持 true) adj_y:默认为 false,如果属性为 True,y 在乘法前做转置 【输出】 个 Tensor,类型同 x 与 y
117	tf.contrib.la yers.layer_n orm (V320 新 增)		【参数】 • inputs: 2D-4D tensor, 类型: float, 支持的 format: NHWC • center: bool 型, 给 inputs 归一化添加偏移, 默 认为 True • scale: bool 型, 给 inputs 归一化乘以比例系数, 默认为 True

序号	Python API	C++ API	边界
			 activation_fn: 对结果进行激活,默认为 None reuse: 表示是否重用该层及其变量,默认为 None, 且当前仅支持 None variables_collections: 可选变量的集合,默认为 None, 且当前仅支持 None outputs_collections: 添加输出的集合,默认为
			None,且当前仅支持 None trainable:如果为 True,将变量添加到图集合 GraphKeys,默认为 None,且当前仅支持 None begin_norm_axis:归一化起始轴,当前固定为对 CHW 的数据做归一化,输入为 4D 时仅支持 1,输入为 2D、3D 时仅支持 0 begin_params_axis:设置偏移以及比例因子数据的维度起始轴信息,当前固定为对 CHW 的数据添加偏置或乘比例因子,输入为 4D 时仅支持 1,输入为 2D、3D 时仅支持 0 scope:变量的可选范围,默认为 None,且当前仅支持 None 【输出】 一个 Tensor,与输入 inputs 的 shape 和 dtype 相同,对 inputs 输入 N 范围内的数据 CHW 做归一化。
118	tf.stop_gradi ent (V320 新 增)	StopGradi ent	【参数】 • input: 输入 tensor 【输出】 一个 Tensor, 输出和输入的 tensor 一样
119	tf.contrib.la yers.instanc e_norm (V320 新 增)		 【参数】 inputs: 4D tensor,类型: float32,支持的 format: NCHW 和 NHWC center: bool型,给 inputs 归一化添加偏移,默认为 True scale: bool型,给 inputs 归一化乘以比例系数,默认为 True epsilon:添加一个小的浮点数到方差作为除数,避免除数为 0;支持的数据类型: float;默认值为 1e-06,最小值为 1e-7 activation_fn:对结果进行激活,默认为 None param_initializers:用于 beta、gamma 以及方差和均值的初始化,默认为 None

序号	Python API	C++ API	边界
			 reuse:表示是否重用该层及其变量,默认为None,且当前仅支持None variables_collections:可选变量的集合,默认为None,且当前仅支持None outputs_collections:添加输出的集合,默认为None,且当前仅支持None trainable:如果为True,将变量添加到图集合GraphKeys,默认为True data_format:数据格式,支持NHWC和NCHW,默认为NHWC scope:变量的可选范围,默认为None,且当前仅支持None 【输出】 一个Tensor,与输入inputs的shape和dtype相同,对inputs输入NC范围内的HW一个面做归一化。
120	tf.random.n ormal (V320 新 增)	RandomN	 【参数】 shape: 1-D tensor, 常量,表示输出 tensor 的 shape,类型: int32 mean: 0-D 标量,正态分布的平均值;类型: float16 stddev: 0-D 标量,正态分布的标准偏差,类型: float16 seed: 输出 tensor 的随机数种子,类型: int32,可以通过 tf.random.set_random_seed 接口设置该参数,当前会忽略设置的 seed 值,使用 0。 seed2:表示生成的 tensor 随机数种子,类型: int32,该值是 tf.random.random_normal 接口中的 seed 参数值,如果该参数不设置或者设置为 0,则每次计算的结果是不同的,当前会忽略设置的 seed2 值,使用 0。 【输出】 Tensor,类型: float16
121	tf.random.sh uffle (V320 新 增)	RandomS huffle	【参数】 • value: Tensor(支持常量和非常量输入),类型: float16, float32, double, int8, int16, int32, int64, uint8, uint16, bool • seed: 输出 tensor 的随机数种子,类型: int32, 可以通过 tf.random.set_random_seed 接口

序号	Python API	C++ API	边界
			设置该参数,当前会忽略设置的 seed 值,使用 0。 • seed2:表示生成的 tensor 随机数种子,类型: int32,该值是 tf.random.random_shuffle 接口中的 seed 参数值,如果该参数不设置或者设置为 0,则每次计算的结果是不同的,当前会忽略设置的 seed2 值,使用 0。 【输出】 Tensor,类型同 value
122	tf.random.u niform (V320 新 增)	RandomUniformInt	 ・ shape: 1-D 常量 或者输入是 Shape 算子,类型: int32 ・ minval: 0-D (标量),该值表示生成的 tensor的最小值(包括该值),类型: int32 ・ maxval: 0-D (标量),该值表示生成的 tensor的最大值(不包括该值),类型: int32 ・ dtype: 指定输出 tensor的 dtype,类型: int32 ・ seed: 输出 tensor的随机数种子,类型: int32,可以通过 tf.random.set_random_seed 接口设置该参数,当前会忽略设置的 seed 值,使用 0。 ・ seed2:表示生成的 tensor随机数种子,类型: int32,该值是 tf.random.uniform接口中的 seed参数值,如果该参数不设置或者设置为 0,则每次计算的结果是不同的,当前会忽略设置的 seed2值,使用 0。 【输出】 Tensor,类型: int32
123	tf.random.u niform (V320 新 增)	RandomU niform	 【参数】 shape: 1-D 常量 或者输入是 Shape 算子,类型: int32 minval: 0-D (标量),该值表示生成的 tensor的最小值(包括该值),类型: float32 maxval: 0-D (标量),该值表示生成的 tensor的最大值(不包括该值),类型: float32 dtype: 指定输出 tensor的 dtype,类型: float32 seed: 输出 tensor的随机数种子,类型: int32,可以通过 tf.random.set_random_seed 接口设置该参数,当前会忽略设置的 seed 值,使用0。

序号	Python API	C++ API	边界
			• seed2:表示生成的 tensor 随机数种子,类型:int32,该值是 tf.random.uniform 接口中的 seed 参数值,如果该参数不设置或者设置为 0,则每次计算的结果是不同的,当前会忽略设置的 seed2 值,使用 0。 【输出】
124	tf.math.arg min (V320 新 增)	ArgMin	【参数】 • input: Tensor (支持常量和非常量输入),类型: float32, uint8, int32 • axis: Tensor, 常量,类型: int32 • dimension: 被废弃,使用 axis • out_type: 输出 Tensor 的类型: int32 • name: optional, string 【输出】 1 个 Tensor,输出类型为 out_type
125	tf.rank (V320 新 增)	Rank	【参数】 • input: Tensor(支持常量和非常量输入),类型: int32, float32, uint8, bool • name: optional, string 【输出】 Tensor,类型: int32
126	tf.truncatem od (V320 新 增)	Truncatem od	【参数】 • x: Tensor(支持常量和非常量输入),类型: int32, float32 • y: Tensor,类型: int32, float32 • name: optional, string 【输出】 Tensor,shape 与类型同 x
127	tf.math.unso rted_segmen t_sum (V320 新 增)	UnsortedS egmentSu m	【参数】 • data: Tensor (支持常量和非常量输入),类型: int32, float32, uint8 • segment_ids: 必选, Tensor (支持常量和非常量), shape与 data一致,用于指定结果为out[i],类型: int32 • num_segments: 必选, 0-D 常量输入,取值为segment_ids 的长度大小,类型: int32

序号	Python API	C++ API	边界
			 name: optional, string 【约束】 num_segments 大于等于 segment_id 分组的个数 【输出】 Tensor,类型同 data
128	tf.math. cumsum (V320 新 增)	Cumsum	 【参数】 x: Tensor (支持常量和非常量输入),类型: float32, uint8, int32 axis: Tensor,范围为 [-rank(x), rank(x)],类型: int32,默认为0 exclusive: 可选, bool型,若为 true,输出的第一个值从0开始,若为 false,采用第一个元素进行初始化;默认为 false reverse: 可选, bool型;设置为 true 时, cumsum将以反方向执行;默认为 false name: optional, string 【输出】 Tensor,类型同 x
129	tf.math.cum prod (V320 新 增)	Cumprod	【参数】 • x: Tensor, 类型: float32, uint32, uint8 • axis: Tensor, 范围为 [-rank(x), rank(x)], 类型: int32, 默认为 0 • exclusive: 可选, bool型, 若为 true, 输出的第一个值从 0 开始, 若为 false, 采用第一个元素进行初始化; 默认为 false • reverse: 可选, bool型; 设置为 true 时, cumprod 将以反方向执行; 默认为 false • name: optional, string 【输出】 Tensor, 类型同 x
130	tf.nn.conv1d (V320 新 增)		【参数】 • value: 输入, 3-D Tensor, 类型: float32 • filters: 输入, 3-D Tensor, 常量, 类型: float32 • stride: int 型 • padding: 填充类型, 'SAME' or 'VALID' • use_cudnn_on_gpu: 可选, bool 型, 默认为 true • data_format: 可选, NWC 或者 NCW, 默认

序号	Python API	C++ API	边界
			NWC • name: optional, string 【输出】 Tensor, 类型同 value
131	tf.nn.atrous_conv2d (V320 新 增)		【参数】 • value: 输入, 4-D Tensor, 类型: float32, 数据格式: NHWC • filters: 输入, 4-D Tensor, 常量, 类型: float32, 类型和 shape 与 value 一致 • rate: 在 H 和 W 上对输入值进行采样的步长, 类型: int32 • padding: 填充类型, 'SAME' or 'VALID' • name: optional, string 【输出】 Tensor, 类型同 value
132	tf.math.redu ce_any (V320 新 增)	Any	【参数】 • input_tensor: Tensor, 类型: bool • axis: reduce 的维度轴向, 范围: [- rank(input_tensor),rank(input_tensor)] • keepdims: 标量, 类型: bool, 默认值 false • name: optional, string • reduction_indices: axis 的旧名字 • keep_dims: keepdims 的弃用名 【输出】 Tensor, 类型: bool
133	tf.math.logic al_xor (V320 新 增)		【参数】 • x: Tensor (支持常量和非常量输入),类型: bool • y: Tensor (支持常量和非常量输入),类型: bool • name: optional, string 【约束】 不支持双向广播 【输出】 Tensor,类型同输入
134	tf.nn.fractio nal_max_po	Fractional MaxPool	【参数】 • value: 输入,4-D Tensor,类型: flaot32, int32,

序号	Python API	C++ API	边界
	ol		int64;仅支持 NHWC
	(V320 新 增)		• pooling_ratio: list,类型: float32 ,表示池化窗口的长宽比率,长度必须等于 4, ratio 值必须不小于 1.0,且 ratio[0]和 ratio[3]必须等于 1.0
			• pseudo_random: 可选,bool 型,表示生成的rowSeq 和 colSeq 是否伪随机,默认为 false
			 overlapping:可选,bool型,表示pooling的窗口之间是否允许重叠,默认为false
			• deterministic:可选,bool型,表示生成的rowSeq和 colSeq 是否确定,默认为 false
			• seed:输出 tensor 的随机数种子,类型:int32
			• seed2:表示生成的 tensor 随机数种子,类型: int32
			【约束】
			如果 deterministic 设置为 false,则 seed 和 seed2 必须同时设置为 0,此时表示生成真随机数,每次运行的结果是不一样的;如果 deterministic 设置为true,则 seed 和 seed2 不能同时设置为 0,此时表示生成伪随机数,每次运行的结果是一样的。
			【输出】
			y: Tensor,类型同 value
			row_pooling_sequence: Tensor, 类型: int64
			col_pooling_sequence: Tensor, 类型: int64
135	tf.nn.fractio	Fractional	【参数】
	nal_ avg _pool	AvgPool	• value: 输入,4-D Tensor,类型: float32, int32, int64; 仅支持 NHWC
	(V320 新 增)		• pooling_ratio: list,类型: float32 ,表示池化窗口的长宽比率,长度必须等于 4, ratio 值必须不小于 1.0,且 ratio[0]和 ratio[3]必须等于 1.0
			• pseudo_random: 可选,bool 型,表示生成的rowSeq 和 colSeq 是否伪随机,默认为 false
			 overlapping:可选,bool型,表示pooling的窗口之间是否允许重叠,默认为false
			• deterministic:可选,bool型,表示生成的rowSeq和colSeq是否确定,默认为false
			• seed:输出 tensor的随机数种子,类型:int32
			• seed2:表示生成的 tensor 随机数种子,类型: int32
			【约束】
			如果 deterministic 设置为 false,则 seed 和 seed2 必

序号	Python API	C++ API	边界
			须同时设置为 0,此时表示生成真随机数,每次运行的结果是不一样的;如果 deterministic 设置为true,则 seed 和 seed2 不能同时设置为 0,此时表示生成伪随机数,每次运行的结果是一样的。 【输出】 y: Tensor,类型同 value row_pooling_sequence: Tensor,类型: int64 col_pooling_sequence: Tensor,类型: int64
136	tf.math.not_ equal (V320 新 增)	NotEqual	【参数】 • x: 输入 Tensor,类型: float32 • y: 输入 Tensor,类型: float32 【输出】 Tensor,类型: bool
137	tf.math.less_ equal (V320 新 增)	LessEqual	【参数】 • x: 输入 Tensor, 类型: float32 • y: 输入 Tensor, 类型: float32 【输出】 Tensor, 类型: bool
138	tf.quantizati on.quantize (V320 新 增)	QuantizeV 2	 「input: Tensor (支持常量和非常量输入),类型: float32 min_range: Tensor,常量,input数据可能的最小值,需小于等于0,类型: float32 max_rang: Tensor,常量,input数据可能的最大值,类型: float32 T: 指定量化的数据类型,类型: uint8 mode: 可选,类型: string;值可为: "MIN_COMBINED", "MIN_FIRST", "SCALED",目前仅支持MIN_COMBINED round_mode:可选,类型: string;值可为: "HALF_AWAY_FROM_ZERO", "HALF_TO_EVEN",目前仅支持HALF_AWAY_FROM_ZERO 【输出】 Tensor,类型: uint8
139	tf.quantizati on.dequanti ze	Dequantiz e	【参数】 • input: Tensor(支持常量和非常量输入),类

序号	Python API	C++ API	边界
	(V320 新 增)		型: quint8 min_range: Tensor, 常量, input 数据可能的最小值,需小于等于 0,类型: float32 max_rang: Tensor,常量, input 数据可能的最大值,类型: float32 mode: 可选,类型: string; 值可为: "MIN_COMBINED", "MIN_FIRST", "SCALED",目前仅支持 MIN_COMBINED 【输出】 Tensor,类型: float32
140	tf.math.floor _div (V320 新 增)	FloorDiv	【参数】 • x: Tensor, 类型: int32, float, uint8 • y: Tensor, 类型: int32, float, uint8 【输出】 Tensor, shape 与类型同 x
141	tf.quantizati on.fake_qua nt_with_min _max_vars_ per_channel (V320 新 增)	FakeQuan tWithMin MaxVarsP erChannel	 【参数】 x: 1-D Tensor(支持常量和非常量输入),类型: float32 min: 1-D, 常量,最小值,类型: float32 max: 1-D, 常量,最大值,类型: float32 num_bits: 可选,量化范围的位宽; int型,默认值为8 narrow_range: 可选,量化范围标识; bool型,默认值为 false 【输出】 Tensor, shape 与类型同 x
142	tf.one_hot (V320 新 增)	OneHot	【参数】 • indices: Tensor (支持常量和非常量输入),表示输入的多个数值,类型: uint8, int32 • depth: Tensor,常量,输出的尺寸,类型: int32 • on_value: 可选, Tensor (支持常量和非常量输入),类型: uint8, int32, float, bool,默认为1 • off_value: 可选,与on_value的dtype保持一致,默认为0 • axis:可选,int型,默认值为-1 • dtype:类型

序号	Python API	C++ API	边界
			【输出】
			返回一个 tensor,在 axis 轴上添加维度,类型: uint8, int32, float, double, bool
143	tf.math.seg	Segment	【参数】
	ment_max (V320 新	Max	• data: Tensor,表示输入的 tensor,类型: float32
	增)		• segment_ids: 1-D 常量;表示分段,相同的 id 为一段;类型: int32
			【约束】
			1、输入 data 的第 0 维 等于输入 segment_ids 的元 素个数;
			2、segment_ids 不支持负数索引,且从0开始并且 升序排列;
			【输出】
			Tensor
144	tf.math.seg ment_min (V320 新 增)	Segment Min	【参数】
			• data: Tensor,表示输入的 tensor,类型: float32
			• segment_ids: 1-D 常量;表示分段,相同的 id 为一段;类型: int32
			【约束】
			1、输入 data 的第 0 维 等于输入 segment_ids 的元 素个数;
			2、segment_ids 不支持负数索引,且从0开始并且 升序排列;
			【输出】
			Tensor
145	tf.math.seg	Segment Mean	【参数】
	ment_mean (V320 新		• data: Tensor,表示输入的 tensor,类型: float32
	增)		• segment_ids: 1-D 常量;表示分段,相同的 id 为一段;类型: int32
			【约束】
			1、输入 data 的第 0 维 等于输入 segment_ids 的元 素个数;
			2、segment_ids 不支持负数索引,且从0开始并且 升序排列;
			【输出】

序号	Python API	C++ API	边界
			Tensor
146	tf.math.seg ment_ prod (V320 新 增)	SegmentP	【参数】 • data: Tensor,表示输入的 tensor,类型: float32 • segment_ids: 1-D常量;表示分段,相同的 id 为一段;类型: int32 【约束】 1、输入 data 的第 0 维 等于输入 segment_ids 的元素个数; 2、segment_ids 不支持负数索引,且从 0 开始并且升序排列; 【输出】 Tensor
147	tf.math.seg ment_sum (V320 新 增)	SegmentS um	【参数】 • data: Tensor,表示输入的 tensor,类型: float32 • segment_ids: 1-D常量;表示分段,相同的 id 为一段;类型: int32 【约束】 1、输入 data 的第 0 维等于输入 segment_ids 的元素个数; 2、segment_ids 不支持负数索引,且从 0 开始并且升序排列; 【输出】 Tensor
148	tf.zeros_like (V310 新 增)	ZerosLike	【参数】 • x: 0-4D Tensor, 支持常量和 tensor, 类型: float32 【输出】 Tensor, shape 与类型同 x
149	tf.identity (V310 新 增)	Identity	【参数】 • x: Tensor 【输出】 Tensor, shape 与类型同 x
150	tf.Assert (V310 新 增)	Assert	【参数】 • condition:评估条件 • data: list of tensors,当 condition为 false 时输

序号	Python API	C++ API	边界
			出的数据 • summarize: 可选,默认为 None,决定输出 data 为几位数 【约束】 构建模型时,为确保 assert 执行,需附加一个依赖关系,通常与 tf.control_dependencies([assert_op])连用 【输出】 返回一个 operation,如果条件为 false,报 tf.errors.InvalidArgumentError
151	tf.keras.laye rs.PReLU (V310 新 增)		【参数】 • x: Tensor, 类型: float • slope: 训练出来的系数 【输出】 Tensor, shape 与类型同 x
152	GELU(x)=0 .5x(1+tanh[((2/ π)^0.5)*(x +0.044715x ^3)]) (V320 新 増)		【参数】 • features: 输入 tensor, 类型: float32 • name: optional, string 【输出】 输出 tensor, 类型同 features
153	tf.nn.bidirec tional_dyna mic_rnn (V320 新 增)		 【输入】 cell_fw: 前向计算单元,可通过 tf.nn.rnn_cell.BasicLSTMCell 方式生成 cell_bw:反向计算单元,可通过 tf.nn.rnn_cell.BasicLSTMCell 方式生成 inputs: RNN 输入,与 time_major 的设置有 关,默认 time_major 为 False,此时 inputs 必须 形状是 BTX([batch_size,max_time,depth])的 张量或此类元素的嵌套元祖 ,time_major 为 True 时,其形状需要是 TBX([max_time,batch_size,depth])的张量或此类元素的嵌套元组。 sequence_length: (可选)一个 int32 的向量,尺寸为[batch_size]若指定,则包含单个 batch 里要设定的各个序列的有效长度,如果未指定,使用最大长度(max_time),如果序列的长度不同,请使用此参数,它是各个序列长度构成的数组,该参数不支持常量输入。 initial_state_fw: (可选)前向的初始化状态,

序号	Python API	C++ API	边界
	API		当前只支持为 none 的场景。 • initial_state_bw: (可选)后向的初始化状态,当前只支持为 none 的场景。 • dtype: (可选)初始状态和预期输出的的数据类型,当前支持 fp32 的格式。 • time_major:设置输入输出张量的形状格式,默认 time_major 为 False,此时 inputs 必须形状是 BTX([batch_size,max_time,depth])的张量或此类元素的嵌套元祖,time_major 为 True 时,其形状需要是 TBX • scope: 指定生成的 rnn 子图名称,默认为bidirectional_rnn,用户可自行设置 【约束】 fw、bw 的基础 Cell 的所有参数需要一致,即 cell 的名称,激活函数,num_units 等 API 中所有需要输入的参数必须全部一致。 当前仅支持 BasicLSTMCell,激活函数包含: Tanh、sigmoid、relu、relu6。 动态 rnn 的参数 initial_state_fw 与 initial_state_bw只支持为 none。 state_is_tuple 只支持为 True 的场景。 BasicLSTMCell 的 num_units 当前仅支持为 16 整数倍。 【输出】 支持分别输出前向 output 和后向 output; 支持前向 Cell state,Hidden state 和后向 Cell
154	tf.nn.static_bidirectional_rnn (V320新增)		state, Hidden state 分成 4 路输出。 【输入】 cell_fw: (必填)前向计算单元,可通过

序号	Python API	C++ API	边界
			• dtype: (可选)初始状态的数据类型,当前只支持 fp32 类型。
			• sequence_length: (可选)一个 int32 的向量, 尺寸为[batch_size]若指定,则包含单个 batch 里 要设定的各个序列的有效长度,如果未指定, 使用最大长度(max_time),如果序列的长度 不同,请使用此参数,它是各个序列长度构成 的数组,该参数不支持常量输入;
			• scope: (可选)指定生成的 rnn 子图名称,默认为 bidirectional_rnn,用户可自行设置。
			【约束】
			fw、bw 的基础 Cell 的所有参数需要一致,即 cell 的名称,激活函数,num_units 等 API 中所有需要输入的参数必须全部一致。
			当前仅支持 BasicLSTMCell,激活函数包含: Tanh、sigmoid、relu、relu6。
			静态 rnn 的参数 initial_state_fw 与 initial_state_bw 只支持为 none。
			state_is_tuple 只支持为 True 的场景。
			BasicLSTMCell 的 num_units 当前仅支持为 16 整数倍。
			【输出】
			支持 T 个输出通过 stack 之后输出;
			支持前向 Cell state, Hidden state 和后向 Cell state, Hidden state 分成 4 路输出。

2.4 AndroidNN 算子边界

序号	Operation	含义	边界
1	ANEURALNE TWORKS_AB S (V310新增)	绝对值	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 • 输入 0: 输入 tensor 【约束】

序号	Operation	含义	边界
			输入 0 的最后一个维度不超过 400 【输出】 输出 0: 输出 tensor , shape 同输入 0
2	ANEURALNE TWORKS_AD D	加法	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_QUANT8_ASYMM TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 • 输入 0: tensor • 输入 1: tensor, OperandCode 与输入 0 相同 • 输入 2: scalar, 类型为 INT32,必须是 FuseCode 值之一,指定 activation: FuseCode { ANEURALNETWORKS_FUSED_NONE = 0, ANEURALNETWORKS_FUSED_RELU = 1, ANEURALNETWORKS_FUSED_RELU1 = 2, ANEURALNETWORKS_FUSED_RELU6 = 3 } 【约束】 无限制 【输出】 输出 0: tensor, OperandCode 与输入 0 相同
3	ANEURALNE TWORKS_AR GMAX (V310新增)	查找最 大值 引	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] • 输入 1: scalar, TENSOR_INT32 【约束】 无限制 【输出】 输出 0: (n-1)D tensor, type: TENSOR_INT32
4	ANEURALNE TWORKS_AR GMIN	查找最 小值索 引	【输入】 • 支持的 tensor OperandCode:

序号	Operation	含义	边界
	(V310新增)		TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] • 输入 1: scalar, TENSOR_INT32 【约束】 无限制 【输出】
5	ANEURALNE TWORKS_AV ERAGE_POO L_2D	平均池	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: 4 支持"NHWC"数据布局 显式 padding 输入: • 输入 0: 4-D tensor, shape 为 [batches, height, width, depth_in]; • 输入 1: scalar, INT32, 指定 padding 的左边'width'维度, 0 <= Pad < 256 • 输入 2: scalar, INT32, 指定 padding 的右边'width'维度, 0 <= Pad < 256 • 输入 3: scalar, INT32, 指定 padding 的顶部'height'维度, 0 <= Pad < 256 • 输入 4: scalar, INT32, 指定 padding 的顶部'height'维度, 0 <= Pad < 256 • 输入 5: scalar, INT32, 指定 padding 的底部'height'维度, 0 <= Pad < 256 • 输入 6: scalar, INT32, 指定 stride 的'width'维度, 0 < Stride < 64 • 输入 6: scalar, INT32, 指定 stride 的'height'维度, 0 < Stride < 64 • 输入 7: scalar, INT32, 指定 filter width • 输入 8: scalar, INT32, 指定 filter height • 输入 9: scalar, INT32, 指定 activation • 输入 10: scalar, optional, BOOL, 指定输入输出数据格式,只支持默认格式"NHWC"

序号	Operation	含义	边界
			(API29) 隐式 padding 输入: • 输入 0: 4-D tensor, shape 为[batches, height, width, depth], 指定 input; • 输入 1: scalar, INT32, 指定 padding scheme, 必须为 PaddingCode 值, 为 SAME 或 VALID 之一: PaddingCode { ANEURALNETWORKS_PADDING_SAME = 0, ANEURALNETWORKS_PADDING_VALID = 1 } • 输入 2: scalar, INT32, 指定 stride 的 'width' dimension, strideW < 64 • 输入 3: scalar, INT32, 指定 stride 的 'height' dimension, strideH < 64 • 输入 4: scalar, INT32, 指定 filter width • 输入 5: scalar, INT32, 指定 filter height • 输入 6: scalar, INT32, 指定 activation • 输入 7: scalar , optional , BOOL, 指定输入输出数据格式, 只支持默认格式"NHWC"(API29) 【输出】 输出 0: 4-D tensor, shape [batches, out_height, out_width, depth] 【约束】 • KernelH<256, kernelW<256; • 当输出 tensor shape H、W 为 1 时,要求 input H * input W < 65536
6	ANEURALNE TWORKS_BA TCH_TO_SPA CE_ND	用于 N 维张量 的 BatchTo Space	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: 4 • 输入 0: 4-D tensor • 输入 1: 1-D tensor, 类型为 TENSOR_INT32, 指定输出 tensor 的每个空间维度的 block sizes, 所有值必须>=1 • 输入 2: optional , BOOL 类型,只支持默认

序号	Operation	含义	边界
			格式 "NHWC" (API29) 【约束】 输入 0 的 shape 乘积需小于 500 【输出】 输出 0: tensor, OperandCode 与输入 0 相同
7	ANEURALNE TWORKS_CA ST (V310 新增)	类型转换	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] 【输出】 输出 0: n-D tensor
8	ANEURALNE TWORKS_CO NCATENATI ON	数指度据定拼接	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: up to 4 • 输入 0~n-1: 输入 n 个 tensors 的列表, shape 为 [D0, D1,, Daxis(i),, Dm], 若为 TENSOR_QUANT8_ASYMM 类型, 所有输入 tensors 的 scale 与 zeroPoint 与输出 tensor 的相 同 • 输入 n: scalar, 类型为 INT32,指定拼接轴 【约束】 • 输入的 tensor,除了进行 concat 的维度外,其 他维度的 size 必须相等 • 输入的 tensor 个数范围属于[2,32] • 输入 0~n-1: 不支持常量输入 • QUANT8 输入,不支持 axis=2 【输出】 输出 0: tensor, OperandCode 与输入相同,输出 shape 为 [D0, D1,, sum(Daxis(i)),, Dm]
9	ANEURALNE TWORKS_CO NV_2D	卷积	【输入】 • 支持的 tensor OperandCode:

序号	Operation	含义	边界
			TENSOR_FLOAT32(仅支持 relaxed 场景)
			TENSOR_FLOAT16 (API29)
			TENSOR_QUANT8_ASYMM
			支持的 tensor 维数: 4
			支持"NHWC"数据布局
			显式 padding 输入:
			• 输入 0: 4-D tensor, shape 为 [batches, height, width, depth_in]
			• 输入 1: 4-D tensor, shape [depth_out, filter_height, filter_width, depth_in], 指定 filter, 0 < FilterSize < 256
			 输入 2: 1-D tensor, shape [depth_out], 指定 bias, 输入 tensor 类型为 TENSOR_FLOAT32 时 bias 必须为 TENSOR_FLOAT32; 类型为 TENSOR_QUANT8_ASYMM 时, bias 为 TENSOR_INT32, 并且 zeroPoint = 0, bias_scale == input_scale * filter_scale
			• 输入 3: scalar, INT32, 指定 padding 的左边 width 维度, 0 <= Pad < 256
			• 输入 4: scalar,INT32,指定 padding 的右边 width 维度,0 <= Pad < 256
			 输入 5: scalar, INT32, 指定 padding 的顶部 height 维度, 0 <= Pad < 256
			 输入 6: scalar, INT32, 指定 padding 的底部 height 维度, 0 <= Pad < 256
			 输入7: scalar, INT32, 指定 stride 的 width 维度, 0 < Stride < 64
			• 输入 8: scalar, INT32, 指定 stride 的 height 维度, 0 < Stride < 64
			• 输入 9: scalar, INT32, 指定 activation
			• 输入 10: optional, scalar, BOOL, 默认为 false, 设置为 true 时表示输入 0 和输出 0 的数 据格式为 NCHW
			• 输入11: optional, scalar, INT32, 指定 width 的膨胀因子, 只支持默认值1, 若设置该输入也必须指定输入12
			• 输入 12: optional, scalar, INT32, 指定 height 的膨胀因子, 只支持默认值 1, 若设置该输入也必须指定输入 11
			隐式 padding 输入:
			• 输入 0: 4-D tensor, shape 为[batches, height,

序号	Operation	含义	边界
			width, depth_in] • 输入 1: 4-D tensor, shape [depth_out, filter_height, filter_width, depth_in], 指定 filter, 0 < FilterSize < 256 • 输入 2: 1-D tensor, shape [depth_out], 指定 bias, 输入 tensor 类型为 TENSOR_FLOAT32 时 bias 必须为 TENSOR_FLOAT32; 类型为 TENSOR_QUANT8_ASYMM 时, bias 为 TENSOR_INT32, 并且 zeroint = 0, bias_scale == input_scale * filter_scale • 输入 3: scalar, INT32, 指定 padding scheme, 必须为 PaddingCode 值, 为 SAME 或 VALID 之一 • 输入 4: scalar, INT32, 指定 stride 的 width 维度, 0 < Stride < 64 • 输入 5: scalar, INT32, 指定 stride 的 height 维度, 0 < Stride < 64 • 输入 6: scalar, INT32, 指定 activation • 输入 7: optional, scalar, BOOL, 默认为 false, 设置为 true 时表示输入 0 和输出 0 的数 据格式为 NCHW • 输入 8: optional, scalar, INT32, 指定 width 的膨胀因子, 只支持默认值 1, 若设置该输入也必须指定输入 9 • 输入 9: optional, scalar, INT32, 指定 height 的膨胀因子, 只支持默认值 1, 若设置该输入也必须指定输入 8 【约束】 • 输入类型为 QUANT8 时, 仅支持输入 0 和输出 0 为 NHWC 格式 【输出】
10	ANEURALNE TWORKS_DE PTH_TO_SPA CE	数据排深为数据 新探空 据	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: 4 支持 "NHWC"数据布局 • 输入 0: 4-D tensor, shape [batches, height,

序号	Operation	含义	边界
			width, depth_in], 指定 input • 输入 1: scalar, 类型为 INT32。指定 block_size, block_size >=1 且为输入 tensor 高 度和宽度的除数 • 输入 2: optional , BOOL, 只支持默认格式 "NHWC" (API29) 【约束】 无约束 【输出】 输出 0: 4-D tensor, shape [batch, height*block_size, width*block_size, depth/(block_size*block_size)]
11	ANEURALNE TWORKS_DE PTHWISE_CO NV_2D	深积	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: 4 支持"NHWC"数据布局 显式 padding 输入: • 输入 0: 4-D tensor, shape 为 [batches, height, width, depth_in] • 输入 1: 4-D tensor, shape [1, filter_height, filter_width, depth_out], 指定 filter, 0 < FilterSize < 256 • 输入 2: 1-D tensor, shape [depth_out], 指定 bias, 输入 tensor 类型为 TENSOR_FLOAT32 时 bias 必须为 TENSOR_FLOAT32: 类型为 TENSOR_QUANT8_ASYMM 时, bias 为 TENSOR_INT32, 并且 zeroPoint = 0, bias_scale == input_scale * filter_scale • 输入 3: scalar, INT32, 指定 padding 的左边 width 维度, 0 <= Pad < 256 • 输入 5: scalar, INT32, 指定 padding 的 面动 width 维度, 0 <= Pad < 256 • 输入 6: scalar, INT32, 指定 padding 的 高动 height 维度, 0 <= Pad < 256 • 输入 6: scalar, INT32, 指定 padding 的底部 height 维度, 0 <= Pad < 256 • 输入 7: scalar, INT32, 指定 stride 的 width 维度, 0 < Stride < 64

序号	Operation	含义	边界
			• 输入 8: scalar, INT32, 指定 stride 的 height 维度, 0 < Stride < 64
			• 输入 9: scalar, INT32, 指定 depthwise multiplier
			• 输入 10: scalar, INT32, 指定 activation
			• 输入 11: optional, scalar, BOOL, 默认为 false, 设置为 true 时表示输入 0 和输出 0 的数 据格式为 NCHW
			• 输入 12: optional, scalar, INT32, 指定 width 的膨胀因子, 只支持默认值 1, 若设置该输入也必须指定输入 13
			• 输入 13: optional, scalar, INT32, 指定 height 的膨胀因子, 只支持默认值 1, 若设置该输入也必须指定输入 12
			隐式 padding 输入:
			• 输入 0: 4-D tensor, shape 为 [batches, height, width, depth_in], 指定输入
			• 输入 1: 4-D tensor, shape [1, filter_height, filter_width, depth_out], 指定 filter, 0 < FilterSize < 256
			• 输入 2: 1-D tensor, shape [depth_out], 指定 bias, 输入 tensor 类型为 TENSOR_FLOAT32 时 bias 必须为相同类型; filter tensor 为 TENSOR_QUANT8_ASYMM 时, bias 为 TENSOR_INT32, 并且 zeroint = 0, bias_scale == input_scale * filter_scale
			 输入 3: scalar, INT32, 指定 padding scheme, 必须为 PaddingCode 值, 为 SAME 或 VALID 之一
			● 输入 4: scalar, INT32, 指定 stride 的 width 维度, 0 < Stride < 64
			• 输入 5: scalar, INT32, 指定 stride 的 height 维度, 0 < Stride < 64
			• 输入 6: scalar, INT32, 指定 depthwise multiplier
			• 输入 7: scalar, INT32, 指定 activation
			• 输入 8: optional, scalar, BOOL, 默认为 false, 设置为 true 时表示输入 0 和输出 0 的数 据格式为 NCHW
			• 输入 9: optional, scalar, INT32, 指定 width 的膨胀因子, 只支持默认值 1, 若设置该输入也必须指定输入 10

序号	Operation	含义	边界
			 输入 10: optional, scalar, INT32, 指定 height 的膨胀因子, 只支持默认值 1, 若设置该输入也必须指定输入 9 【约束】 filterN=inputC=group StrideW<=(inputW + padW) -((filterW - 1) * dilationW) + 1) 输入类型为 QUANT8 时, 仅支持输入 0 和输出 0 为 NHWC 格式 【输出】 输出 0: 4-D tensor, shape [batches, out_height, out_width, depth_out];
12	ANEURALNE TWORKS_DE QUANTIZE	反量化	【输入】 • 支持的输入 tensor OperandCode: TENSOR_QUANT8_ASYMM • 支持的输出 tensor OperandCode: TENSOR_FLOAT32 TENSOR_FLOAT16 支持的 tensor 维数: up to 4 • 输入 0: 输入 tensor 【输出】 输出 0: 输出 tensor; shape 与输入 0 相同
13	ANEURALNE TWORKS_DI V	除法	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] • 输入 1: tensor, OperandCode 与输入 0 相同 • 输入 2: scalar, 类型为 INT32, 必须是 FuseCode 值之一,指定对结果调用的 activation 【约束】 无限制 【输出】 输出 0: tensor, OperandCode 与输入 0 相同
14	ANEURALNE TWORKS_QU ANTIZED_16	使用 16bit 量	【输入】 • 输入 0: 2-D tensor, shape 是[batch_size,

序号	Operation	含义	边界
	Operation BIT_LSTM (V320新增)	含 化状式TM LSTM	input_size]。 • 输入 1: input-to-input weights, 2-D tensor, shape 是[nums_units,input_size],nums_units 对应单元位的数量,只支持常量。 • 输入 2: 2-D tensor, input-to-forget weights, shape 是[nums_units,input_size],只支持常量。 • 输入 3: 2-D tensor, input-to-cell weights, shape 是[nums_units,input_size],只支持常量。 • 输入 4: 2-D tensor, input-to-output weights, shape 是[nums_units,input_size],只支持常量。 • 输入 5: 2-D tensor, recurrent-to-input weights, shape 是[nums_units,output_size],output_size 对应于单元位的数量(num_units);或者如果定义了projection_weights,对应它的第 2 个维度,只支持常量。 • 输入 6: 2-D tensor, recurrent-to-forget weights, shape 是[nums_units,output_size],只支持常量。 • 输入 7: 2-D tensor, recurrent-to-cell weights, shape 是[nums_units,output_size],只支持常量。 • 输入 8: 2-D tensor, recurrent-to-output weights, shape 是[nums_units,output_size],只支持常量。 • 输入 9: 1-D tensor input gate bias, shape 是[num_units],只支持常量。 • 输入 10: 1-D tensor forget gate bias, shape 是[num_units],只支持常量。 • 输入 11: 1-D tensor cell bias, shape 是[num_units],只支持常量。 • 输入 12: 1-D tensor output gate bias, shape 是[num_units],只支持常量。 • 输入 13: 2-D tensor, pre_cell_state, 前一个单元的cell 状态, shape 为[numBatches, outputSize] • 输入 14: 2-D tensor, pre output state, shape 为[numBatches, outputSize] • 输入 14: 2-D tensor, pre output state, shape 为[numBatches, outputSize] • input 1~Input 12 需为常量 • Input 13 需为 UINT16 格式, 其他输入为 UINT8 格式, 对应 Output0 为 UINT16 格式, Output1 为 UINT8 格式, 对应 Output0 为 UINT16 格式, Output1
			【输出】

序号	Operation	含义	边界
			 输出 0: 2-D tensor, cell 状态, shape 为 [numBatches, outputSize]; 输出 1: 2-D tensor, 输出值, shape 为 [numBatches, outputSize]
15	ANEURALNE TWORKS_EQ UAL(V310 新增)	等于	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16 (API29) 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] • 输入 1: OperandCode、维度与输入 0 相同 【约束】 输入 0 与输入 1 的维度相同 输入 0 与输入 1 的各维度上数的乘积需小于 3000 【输出】 输出 0: 输出 tensor, TENSOR_BOOL8
16	ANEURALNE TWORKS_EX P (V310 新增)	指数运 算	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] 【约束】 无限制 【输出】 输出 0: 输出 tensor, shape 同输入 0
17	ANEURALNE TWORKS_FL OOR	向下取 整	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16 (API29) 支持的 tensor 维数: up to 4 • 输入 0: tensor 【约束】 不支持量化 【输出】 输出 0: tensor, OperandCode 和 dimensions 输入 0

序号	Operation	含义	边界
			相同
18	ANEURALNE TWORKS_FU LLY_CONNE CTED	全连接	 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16 (API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: 2,4 输入 0: tensor, 维度为 2 或 4, 指定 input。若大于 2,则会被压缩为 2-D Tensor, shape 为 [batch_size, input_size] 输入 1: 2-D tensor, shape [num_units, input_size], 其中 "num_units" 对应于输出节点的数量。指定 weights 输入 2: 1-D tensor, shape [num_units], 若为 TENSOR_FLOAT32 的输入张量, bias 相同; 若为 TENSOR_QUANT8_ASYMM 的输入张量, bias 应为 TENSOR_INT32, 并且 zeroPoint=0, bias_scale == input_scale * filter_scale。指定 bias 输入 3: scalar, 类型为 INT32, 必须是 FuseCode 值之一, 指定 activation 【输出】 输出 0: tensor, shape [batch_size, num_units]; API29 之前, 若为 TENSOR_QUANT8_ASYMM 类型, 需满足 output_scale > input_scale * filter_scale.
19	ANEURALNE TWORKS_GR EATER (V310新增)	大于	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] • 输入 1: tensor, OperandCode 与输入 0 相同 【约束】 输入 0 与输入 1 的维度相同 输入 0 与输入 1 的各维度上数的乘积需小于 3000 【输出】 输出 0: 输出 tensor, TENSOR_BOOL8
20	ANEURALNE	大于等	【输入】

序号	Operation	含义	边界
	TWORKS_GR EATER_EQU AL (V310新增)	于	 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 输入 0: n-D tensor, n 范围[1,4] 输入 1: tensor, OperandCode 与输入 0 相同 【约束】 输入 0 与输入 1 的维度相同 输入 0 与输入 1 的各维度上数的乘积需小于 3000 【输出】 输出 0: 输出 tensor, TENSOR_BOOL8
21	ANEURALNE TWORKS_HA SHTABLE_L OOKUP	查找	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: from 2 up to 4 • 输入 0: Lookups,1-D tensor,类型为 TENSOR_INT32, shape[k] • 输入 1: Keys,1-D tensor,类型为 TENSOR_INT32, shape[n]; Keys 与 Values 构成一个 map, i.e., Keys(Keys [i])中的第 i 个元素是在 Values(Values [i])中选择第 i 个子张量的关键,其中 0<=i<=n-1,Keys 必须按照升序排序 • 输入 2: Values, tensor, shape[n,···],i.e.,第一个维度必须是 n 【输出】 输出 0: Output, tensor, shape[k···],对于类型为 TENSOR_QUANT8_ASYMM 时, scale 和 zeroPoint 必须与输入 2 相同 输出 1: Hits, boolean tensor, shape[k],表示是否查找到 True/False 非零字节表示 True,即 hits,否则为 0 【约束】 ALIGN(Lookups, 32)*2 + ALIGN(Keys, 32) + ALIGN(Values, 256) * 32 <= 49152
22	ANEURALNE TWORKS_L2 _NORMALIZ	沿深度 维度的	【输入】 • 支持的 tensor OperandCode:

序号	Operation	含义	边界
	ATION	L2 归一 化	TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] • 输入 1: optional, scalar, IINT32, 指定 normalization 的维度(API29) 【输出】
23	ANEURALNE TWORKS_L2 _POOL_2D	L2 池化	 ▼支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: 4 支持 "NHWC"数据布局 显式 padding 输入: • 输入 0: 4-D tensor, shape 为 [batches, height, width, depth] • 输入 1: scalar, INT32, 指定 padding 的左边'width'维度, 0 <= Pad < 256 • 输入 2: scalar, INT32, 指定 padding 的石边'width'维度, 0 <= Pad < 256 • 输入 3: scalar, INT32, 指定 padding 的顶部'height'维度, 0 <= Pad < 256 • 输入 4: scalar, INT32, 指定 padding 的顶部'height'维度, 0 <= Pad < 256 • 输入 5: scalar, INT32, 指定 stride 的'width'维度, strideW < 64 • 输入 6: scalar, INT32, 指定 stride 的'height'维度, strideH < 64 • 输入 7: scalar, INT32, 指定 filter width • 输入 8: scalar, INT32, 指定 filter height • 输入 9: scalar, INT32, 指定 activation • 输入 10: scalar, optional, BOOL, 只支持默认格式"NHWC"(API29) 隐式 padding 输入: • 输入 0: 4-D tensor, shape [batches, height, width, depth], 指定 input • 输入 1: scalar, 类型为 INT32。指定 padding

序号	Operation	含义	边界
			scheme, 必须为 PaddingCode 值, 为 SAME 或 VALID 之一。 • 输入 2: scalar, 类型为 INT32。指定 stride 的 'width' 维度, strideW < 64 • 输入 3: scalar, 类型为 INT32。指定 stride 的 'height' 维度, strideH < 64 • 输入 4: scalar, 类型为 INT32。指定 filter width • 输入 5: scalar, 类型为 INT32。指定 filter height • 输入 6: scalar, 类型为 INT32,必须是 FuseCode 值之一,指定对结果调用的 activation • 输入 7: scalear, optional, BOOL ,只支持默 认格式"NHWC"(API29) 【输出】
24	ANEURALNE TWORKS_LE SS (V310新增)	小于	 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16 (API29) 支持的 tensor 维数:up to 4 输入 0: n-D tensor, n 范围[1,4] 输入 1: tensor, OperandCode 与输入 0 相同 【约束】 输入 0 与输入 1 的维度相同 输入 0 与输入 1 的各维度上数的乘积需小于 3000 【输出】 输出 0: 输出 tensor, TENSOR_BOOL8
25	ANEURALNE TWORKS_LE SS_EQUAL (V310 新增)	小于等	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] • 输入 1: tensor, OperandCode 与输入 0 相同 【约束】 输入 0 与输入 1 的维度相同

序号	Operation	含义	边界
			输入 0 与输入 1 的各维度上数的乘积需小于 3000 【输出】 输出 0: 输出 tensor, TENSOR_BOOL8
26	ANEURALNE TWORKS_LO CAL_RESPO NSE_NORMA LIZATION	局应化	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: only 4 • 输入 0: 4-D tensor, shape [batches, height, width, depth], 指定 input • 输入 1: scalar, INT32, 指定归一化窗口的 radius • 输入 2: scalar, 不能为 0, 指定 bias 输入 0 类型为 FLOAT16, bias 类型为 FLOAT16 输入 0 类型为 FLOAT32, bias 类型为 FLOAT32 • 输入 3: scalar, 指定 alpha 输入 0 类型为 FLOAT32, alpha 类型为 FLOAT32 • 输入 0 类型为 FLOAT32, alpha 类型为 FLOAT32 • 输入 4: scalar, 指定 beta 输入 0 类型为 FLOAT16, beta 类型为 FLOAT16 输入 0 类型为 FLOAT16, beta 类型为 FLOAT16 输入 0 类型为 FLOAT16, beta 类型为 FLOAT16 输入 0 类型为 FLOAT16, beta 类型为 FLOAT16 输入 0 类型为 FLOAT32, beta 类型为 FLOAT16 输入 0 类型为 FLOAT32, beta 类型为 FLOAT32 • 输入 5: scalar, optional, INT32, 指定 normalization 的维度(API29) 【约束】 如果 input 有 6 个,则最后一个 INT32 类型的输入 是-1 或 input0 的维度减 1(即 3) 【输出】
27	ANEURALNE TWORKS_LO G (V310 新增)	对数运 算	【输入】 ■ 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29)

序号	Operation	含义	边界
			支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] 【输出】 输出 0: 输出 tensor, shape 同输入 0
28	ANEURALNE TWORKS_LO GICAL_AND (V310新增)	逻辑与	【输入】 • 支持的 tensor OperandCode: TENSOR BOOL8 支持的 tensor 维数: up to 4 • 输入 0: 输入 tensor • 输入 1: 输入 tensor, shape 同输入 0 【输出】 输出 0: 输出 tensor
29	ANEURALNE TWORKS_LO GICAL_NOT (V310 新增)	逻辑非	【输入】 • 支持的 tensor OperandCode: TENSOR BOOL8 支持的 tensor 维数: up to 4 • 输入 0: 输入 tensor 【输出】 输出 0: 输出 tensor
30	ANEURALNE TWORKS_LO GICAL_OR (V310 新增)	逻辑或	【输入】 • 支持的 tensor OperandCode: TENSOR BOOL8 支持的 tensor 维数: up to 4 • 输入 0: 输入 tensor • 输入 1: 输入 tensor, shape 同输入 0 【输出】 输出 0: 输出 tensor
31	ANEURALNE TWORKS_LO GISTIC	LOGISTI C 激活	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: up to 4 • 输入 0: tensor 【约束】

序号	Operation	含义	边界
			无限制 【输出】 输出 0: tensor, shape 与输入 0 相同,若为 TENSOR_QUANT8_ASYMM 类型,scale 为 1.f / 256, zeroPoint 为 0
32	ANEURALNE TWORKS_LO G_SOFTMAX (V310新增)	激数 softmax 取对算	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 • 输入 0: 输入 tensor • 输入 1: scalar,数据类型 TENSOR_FLOAT32,指定运算中的系数因子 • 输入 2: scalar, INT32,指定 reduce 的维度(axis)。 【约束】 • axis 输入范围[-rank,rank) 输入 4 维(NCHW)时可以针对每一维做 softmax: axis=0,不支持axis=1即 channel 的话,c<=11136,h*w <65536; axis=2即 Height 场景下,W=1,0 <h<=16384; 19968="" 4="" axis="3即" softmax="" td="" width="" 【输出】<="" 场景下,0<w<="16384;" 维时,仅支持对最后一维做="" 计算,并且最后一维不超过="" 输入维度不足=""></h<=16384;>
33	ANEURALNE TWORKS_LS H_PROJECTI ON	局部敏 感哈希 (LSH) 投影变 换	【输入】 支持的 tensor OperandCode TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16 (API29) TENSOR_QUANT8_ASYMM 支持 tensor 维度: up to 4 ● 输入 0: Hash functions, 2-D tensor, 类型: FLOAT , tensor [0] .Dim [0]: 哈希函数的数量,tensor [0] .Dim [1]: 每个散列函数生成的投影输出位数。如果投影类型为 Sparse: Tensor

序号	Operation	含义	边界
			[0] .Dim [1] <= 32 • 输入 1: tensor, Dim.size >= 1, 类型没有限制 • 输入 2 (Optional): Weight, tensor, Dim.size == 1, DataType: Float。若没有设置,则认为每个输入元素具有 1.0 的相同权重, Tensor [1] .Dim [0] == Tensor [2] .Dim [0] • 输入 3: scalar, 类型为 INT32, Type: Sparse: Value LSHProjectionType_SPARSE(=3) (API29),每个输出元素都是一个由散列函数计算出的多位组成。 Type:Dense: Value LSHProjectionType_DENSE(=2),计算的位向量被认为是密集的。每个输出元素代表一个位,可以取 0 或 1 的值。 【输出】 输出 0: tensor, 若投射类型为 Sparse: Output.Dim == { Tensor[0].Dim[0] }; 若为 Dense: Output.Dim == { Tensor[0].Dim[0] * Tensor[0].Dim[1] }
34	ANEURALNE TWORKS_M AX_POOL_2 D	最大池化	 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16 (API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: 4 显式 padding 输入: 输入 0: 4-D tensor, shape 为[batches, height, width, depth] 输入 1: scalar, INT32, 指定 padding 的左边'width'维度, 0 <= Pad < 256 输入 2: scalar, INT32, 指定 padding 的布边'width'维度, 0 <= Pad < 256 输入 3: scalar, INT32, 指定 padding 的顶部'height'维度, 0 <= Pad < 256 输入 4: scalar, INT32, 指定 padding 的底部'height'维度, 0 <= Pad < 256 输入 5: scalar, INT32, 指定 stride 的'width'维度, strideW < 64

序号	Operation	含义	边界
			 输入 6: scalar, INT32, 指定 stride 的 'height' 维度, strideH < 64 输入 7: scalar, INT32, 指定 filter width 输入 8: scalar, INT32, 指定 filter height 输入 9: scalar, INT32, 指定 activation 输入 10: scalar, optional , BOOL, 指定数据格式, 只支持默认格式"NHWC" (API29) 隐式 padding 输入: 输入 0: 4-D tensor, shape 为 [batches, height, width, depth], 指定 input 输入 1: scalar, INT32, 指定 padding scheme, 必须为 PaddingCode 值, 为 SAME 或 VALID 之一 输入 2: scalar, INT32, 指定 stride 的 'width' dimension, strideW < 64 输入 3: scalar, INT32, 指定 stride 的 'height' dimension, strideH < 64 输入 4: scalar, INT32, 指定 filter width 输入 5: scalar, INT32, 指定 filter height 输入 6: scalar, INT32, 指定 activation 输入 7: scalar, optional , BOOL, 指定数据格式,只支持默认格式"NHWC" (API29) 【输出】 输出 0: 4-D tensor, shape [batches, out_height, out_width, depth] 【约束】 KernelH<256, kernelW<256; 当输出 tensor shape H、W 为 1 时,要求 input H*input W < 65536
35	ANEURALNE TWORKS_M AXIMUM (V310新增)	对应元 素取最 大	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持 tensor 维度: up to 4 • 输入 0: tensor • 输入 1: tensor, OperandCode、维度与输入 0 相同; 【约束】

序号	Operation	含义	边界
			输入 0 与输入 1 的维度相同 输入 0 与输入 1 的各维度上数的乘积需小于 3000 【输出】 输出 0: 输出 tensor, TENSOR_BOOL8; 对于 QUANT8_ASYMM, scale 和 zeroPoint 可以不同于 输入
36	ANEURALNE TWORKS_ME AN	平均值	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16 (API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: up to 4 • 输入 0: tensor • 输入 1: 1-D tensor,类型为 TENSOR_INT32, range [-rank(input_tensor), rank(input_tensor))。 指定削减的维度 • 输入 2: scalar,类型为 INT32,若为正,则保持维度为 1 削减。指定 keep_dims 【输出】
37	ANEURALNE TWORKS_MI NIMUM (V310新增)	对应元素小	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持 tensor 维度: up to 4 • 输入 0: tensor • 输入 1: tensor, OperandCode 与输入 0 相同; 对于 QUANT8_ASYMM, scale 和 zeroPoint 可以不同于输入 0 【约束】 输入 0 与输入 1 的维度相同 输入 0 与输入 1 的络维度上数的乘积需小于 3000 【输出】 输出 0: 输出 tensor, TENSOR_BOOL8; 对于QUANT8_ASYMM, scale 和 zeroPoint 可以不同于输入
38	ANEURALNE	乘法	【输入】

序号	Operation	含义	边界
	TWORKS_M UL		 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16 (API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: up to 4 输入 0: tensor 输入 1: tensor, OperandCode 与输入 0 相同 输入 2: scalar, 类型为 INT32, 必须是 FuseCode 值之一, 指定 activation 【约束】 无限制 【输出】 输出 0: tensor, OperandCode 与输入 0 相同; 若为 TENSOR_QUANT8_ASYMM 类型, 需满足 output_scale > input1_scale * input2_scale
39	ANEURALNE TWORKS_NE G (V310新增)	取反运 算	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] 【输出】 输出 0: 输出 tensor, shape 同输入 0。
40	ANEURALNE TWORKS_NO T_EQUAL (V310新增)	不等于	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 输入 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] • 输入 1: tensor, OperandCode、维度与输入 0 相 同 【约束】 输入 0 与输入 1 的维度相同 输入 0 与输入 1 的各维度上数的乘积需小于 3000 【输出】 输出 0: 输出 tensor, TENSOR_BOOL8

序号	Operation	含义	边界
41	ANEURALNE TWORKS_PA D	填充 0	 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16 (API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: up to 4 输入 0: n-D tensor, n 范围[1,4] 输入 1: 2-D tensor, 类型为 TENSOR_INT32, shape {rank(input0), 2}, padding[i, 0]指定相应 i 维前填充的数量,padding[i, 1]指定相应 i 维后填充的数量。指定输入 0 的每个空间维度填充数 【输出】 输出 0: tensor, OperandCode 和维度与输入 0 相同
42	ANEURALNE TWORKS_PA D_V2 (V310新增)	支持指数	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: only 4 • 输入 0: 4-D tensor • 输入 1: 2-D tensor, 类型为 TENSOR_INT32, shape {rank(input0), 2}, padding[i, 0]指定相应 i 维前填充的数量,padding[i, 1]指定相应 i 维后填充的数量。指定输入 0 的每个空间维度填充数 • 输入 2: scalar 指定 padding 使用的数输入 0 为 TENSOR_FLOAT32 时,输入 2 类型为 FLOAT32 输入 0 为 TENSOR_FLOAT16 时,输入 2 类型为 FLOAT16 【输出】
43	ANEURALNE TWORKS_PR ELU (V310 新增)	激活函 数 PRELU	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4

序号	Operation	含义	边界
			 输入 0: 输入 tensor 输入 1: 输入 tensor,用于指定 alpha 【输出】 输出 0: 输出 tensor
44	ANEURALNE TWORKS_QU ANTIZE (V310新增)	量化	【输入】 • 支持的输入 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 • 输入 0: 输入 tensor 【输出】 输出 0: 输出 tensor, shape 与输入 0 相同,类型 TENSOR_QUANT8_ASYMM.
45	ANEURALNE TWORKS_RE LU	激活函 数 relu	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: up to 4 • 输入 0: tensor 【约束】 无限制 【输出】 输出 0: tensor, shape 与输入 0 相同
46	ANEURALNE TWORKS_RE LU1	激活函 数 relu1	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API 29) TENSOR_QUANT8_ASYMM; 支持的 tensor 维数: up to 4 • 输入 0: tensor 【约束】 无限制 【输出】 输出 0: tensor, shape 与输入 0 相同

序号	Operation	含义	边界
47	ANEURALNE TWORKS_RE LU6	激活函 数 relu6	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: up to 4 • 输入 0: tensor 【约束】 无限制 【输出】 输出 0: tensor, shape 与输入 0 相同
48	ANEURALNE TWORKS_RE SHAPE	改变输入维度	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: up to 4 • 输入 0: tensor • 输入 1: 1-D tensor, TENSOR_INT32, 指定输出张量的 shape 【约束】 无约束 【输出】
49	ANEURALNE TWORKS_RE SIZE_BILINE AR	调整图像大小	 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16 (API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: only 4 输入 (通过 shape 指定缩放): 输入 0: 4-D tensor, shape [batches, height, width, depth]。指定 input; 输入 1: scalar, 类型为 TENSOR_INT32。指定输出 tensor 的 width 输入 2: scalar, 类型为 INT32。指定输出 tensor

序号	Operation	含义	边界
			 的 height 输入 3: BOOL,指定输出数据格式,只支持默认格式"NHWC"(API29) 输入 0: 4-D tensor, shape [batches, height, width, depth]。指定 input 输入 1: scalar,类型为 TENSOR_INT32, TENSOR_INT16。指定缩放 width 因子, new_width = floor(width * width_scale) 输入 2: scalar,类型为 TENSOR_INT32, TENSOR_INT16。指定缩放 height 因子, new_height = floor(height * height_scale) 输入 3: scale, optional, BOOL,指定输出数据格式,只支持默认格式"NHWC" 【输出】 输出 0: 4-D tensor, shape [batches, new_height, new_width, depth]
50	ANEURALNE TWORKS_RS QRT (V310 新增)	平方根 倒数	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] 【输出】 输出 0: 输出 tensor, shape 同输入 0。
51	ANEURALNE TWORKS_SI N (V310 新增)	正弦函 数	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] 【输出】 输出 0: 输出 tensor, shape 同输入 0。
52	ANEURALNE TWORKS_SO FTMAX	归一化 逻辑函 数	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29)

序号	Operation	含义	边界
5			TENSOR_QUANT8_ASYMM 支持的 tensor 维数: 2 or 4 • 输入 0: 2-D 或 4-D tensor • 输入 1: scalar, 指定 beta 的正比例因子; 如果 input0 的类型为 TENSOR_FLOAT32 或者 TENSOR_QUANT8_ASYMM, scalar 必须是 TENSOR_FLOAT32; 如果为 TENSOR_FLOAT16, scalar 必须是 TENSOR_FLOAT16 • 输入 2: scalar, INT32, 指定运算的维度 (API29) 【约束】 axis 输入范围[-rank,rank); 输入 4 维(NCHW)时可以针对每一维做 softmax: axis=0, n<=28544; axis=1 即 channel 的话, c<=11136, h*w < 65536; axis=2 即 Height 场景下, W=1, 0 <h<=16384; 0:="" 0<w<="16384;" 19968。="" 4="" axis="3" input0="" scale="1.f/256,</td" shape="" softmax="" tensor,="" tensor_quant8_asymm,="" width="" 【输出】="" 与="" 仅支持对最后一维做="" 即="" 场景下,="" 相同,="" 维时,="" 若为="" 计算,并且最后一维不超过="" 输入维度不足="" 输出=""></h<=16384;>
53	ANEURALNE TWORKS_SP ACE_TO_BA TCH_ND	用于 N 维张量 的 SpaceTo Batch	zeroPoint = 0. 【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: 4 • 输入 0: n-D tensor, 指定 input, n 范围[1,4] • 输入 1: 1-D tensor, 类型为 TENSOR_INT32。 指定输出 tensor 的每个空间维度的 block sizes,所有值必须>= 1 • 输入 2: 2-D tensor, 类型为 TENSOR_INT32, shape{M, 2}, 其中 M 是空间维数,padding [i, 0]指定在维度 i 的前面填充的数量,padding [i, 1]指定在维度 i 结束之后要填充的数量。指

序号	Operation	含义	边界
			定输出 tensor 的每个空间维度的 paddings,所有值必须>=0 • 输入 3: BOOL,可选,指定数据格式,只支持默认格式"NHWC"(API29) 【约束】 当 tensor 维数为 4 时: blockShape 的长度必须等于 2,paddings 的长度必须等于 4. blockShape 元素的大小必须要大于等于 1,paddings 元素值的大小必须大于等于 0. padding 后的 h 维度要能够被 blockShape[0]整除,padding 后的 w 维度要能够被 blockShape[1]整除.输入 0 的 shape 乘积需小于 500. 【输出】
54	ANEURALNE TWORKS_SP ACE_TO_DEP TH	数新从转度据排空为	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16 (API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: 4 • 输入 0: 4-D tensor, shape [batches, height, width, depth_in], 指定 input • 输入 1: scalar, 类型为 INT32, 指定 block_size, block_size >=1 且为输入 tensor 高度和宽度的除数 • 输入 2: BOOL, optional, 指定数据格式,只支持默认格式"NHWC"(API29) 【约束】 blockSize 的大小必须大于等于 1, 且能被 H 和 W整除 【输出】 输出 0: 4-D tensor, shape [batches, height/block_size, width/block_size, depth_in*block_size*block_size]
55	ANEURALNE TWORKS_SQ RT (V310 新增)	平方根	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29)

序号	Operation	含义	边界
			支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] 【输出】 输出 0: 输出 tensor ,shape 同输入 0。
56	ANEURALNE TWORKS_SQ UEEZE	压缩	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] • 输入 1(optional): 1-D tensor, 类型为 TENSOR_INT32,若不指定,则压缩所有维度,维度索引从 0 开始,若不是单维度,则报错。指定压缩维度 【输出】 输出 0: tensor, OperandCode 与输入 0 相同
57	ANEURALNE TWORKS_ST RIDED_SLIC E	切片	【输入】 ■ 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: up to 4 ■ 输入 0: n-D tensor, 指定 input, n 范围[1,4] ■ 输入 1: begin, 1-D tensor, 类型为 TENSOR_INT32,长度为输入 0 的 rank ■ 输入 2: end, 1-D tensor, 类型为 TENSOR_INT32,长度为输入 0 的 rank ■ 输入 3: strides, 1-D tensor, 类型为 TENSOR_INT32,长度为输入 0 的 rank ■ 输入 3: strides, 1-D tensor, 类型为 TENSOR_INT32,长度为输入 0 的 rank ■ 输入 4: begin_mask, scalar, 类型为 INT32, 若设置了 begin_mask 的第 i 位,则忽略 begin [i]并使用该维度中的最大可能范围 ■ 输入 5: end_mask, scalar, 类型为 INT32,若设置了 end_mask 的第 i 位,则忽略 end[i]并使用该维度中的最大可能范围 ■ 输入 6: shrink_axis_mask, scalar, 类型为 INT32,若设置了 shrink_axis_mask 的第 i 位,则

序号	Operation	含义	边界
			则第 i 个维度指定 shrinks 维度为 1,值为索引begin [i]处的值。 【约束】 strides 不为 0 【输出】 输出 0: tensor, OperandCode 与输入 0 相同
58	ANEURALNE TWORKS_SU B	减法	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) TENSOR_QUANT8_ASYMM 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, 指定 input, n 范围[1,4] • 输入 1: tensor, OperandCode 与输入 0 相同 • 输入 2: scalar, 类型为 INT32,必须是 FuseCode 值之一,指定 activation 【约束】 无限制 【输出】 输出 0: tensor, OperandCode 与输入 0 相同
59	ANEURALNE TWORKS_TA NH	激活函 数 tanh	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) 支持的 tensor 维数: up to 4 • 输入 0: tensor 【约束】 无限制 【输出】 输出 0: tensor, shape 与输入 0 相同
60	ANEURALNE TWORKS_TR ANSPOSE	转置	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16(API29) TENSOR_QUANT8_ASYMM

序号	Operation	含义	边界
61	ANEURALNE TWORKS_SP LIT (V320 新增)	将输sor定进约。 人按定进约。	支持的 tensor 维数: up to 4 • 输入 0: n-D tensor, n 范围[1,4] • 输入 1 (optional): 1-D tensor, TENSOR_INT32, 指定输入 tensor 的维度确定转置方式 【约束】 无限制 【输出】 输出 0: tensor, OperandCode 与输入 0 相同 【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor • 输入 1: 标量, TENSOR_INT32, 指分割的轴 axis • 输入 2: 标量, TENSOR_INT32, 分割的数目 num_split 【约束】 无限制 【输出】
62	ANEURALNE TWORKS_SLI CE (V320新增)	从位始入Tensor取大切定开输。OF取大切	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景), TENSOR_FLOAT16 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor • 输入 1: 1-D tensor, TENSOR_INT32,对应维度的开始切片的索引 • 输入 2: 1-D tensor,TENSOR_INT32,切片对应维度的大小 【约束】 不支持 size 为 0 的 tensor。 只支持输入 1 和输入 2 为常量输入。 【输出】

序号	Operation	含义	边界
			输出 0: n-D tensor, 类型与输入 0 一致。
63	ANEURALNE TWORKS_RE SIZE_NEARE ST_NEIGHBO R (V320新增)	使近值整大用邻来图小	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 • 输入 0: 4-D tensor • 输入 1: 标量,类型为 TENSOR_INT32 时表示输出 0 的 width;类型为 TENSOR_FLOAT16 或 TENSOR_FLOAT32 时,表示 width 的缩放系数 new_width = floor(width * width_scale)。 • 输入 2: 标量,类型为 TENSOR_INT32 时表示输出 0 的 height;类型为 TENSOR_INT32 时表示输出 0 的 height;类型为 TENSOR_FLOAT16 或 TENSOR_FLOAT32 时,表示 height 的缩放 0 系数 new_height = floor(height * height_scale) • 输入 3: 标量,Bool, true:输入 0 和输出 0 的数 据格式为 NCHW,false 为 NHWC。 【约束】 不支持 batch 为 0 的 tensor 【输出】 输出 0: 4-D tensor,类型与输入 0 一致。
64	ANEURALNE TWORKS_HE ATMAP_MA X_KEYPOINT (V320新增)	从中最的并这的点以标热找大点计个关分及值图出值,算点键数坐	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 • 输入 0: 4-D tensor, shape [num_boxes, heatmap_size, heatmap_size, num_keypoints], heatmaps 的宽、高相同,且大于等于 2 • 输入 1: 2-D tensor, [num_boxes, 4], 指定边界框,格式 [x1, y1, x2, y2]. • 输入 2: 标量,Bool, true:指定输入 0 的数据格式为 NCHW,false 为 NHWC 【约束】 不支持 NCHW 格式。 【输出】 输出 0: 2-D tensor, 类型与输入 0 一致,shape [num_boxes, num_keypoints], 指定 keypoints 的 score。 输出 1: 3-D tensor 类型与输入 1 一致,shape [num_boxes, num_keypoints, 2], 指定 keypoints 的

序号	Operation	含义	边界
			位置。
65	ANEURALNE TWORKS_GA THER (V320新增)	按定和轴入进据照索指对数行收指引定输据数集	 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 支持的 tensor 维数: up to 4 输入 0: n-D tensor 输入 1: 标量 axis, 指定进行数据收集的轴,数据类型为 INT32, 范围是 [-n, n) 输入 2: k维向量 indices, 指定 input0 对应 axis维度上的索引,该输入仅支持常量输入 【约束】 输入 1 的取值范围为[-n,n) 输入 2 中的元素值需满足 0<=indices 的元素值 =input0 的 dim[axis]-1 输入 2 中 indices 仅支持常量 【输出】 输出 0: (n+k-1)-D tensor,数据类型与输入 0一致
66	ANEURALNE TWORKS_PO W (V320 新增)	对两个 输入 tensor 进 行幂运 算	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor,幂运算的底 • 输入 1: n-D tensor,幂运算的幂 【约束】 • 该算子不支持广播 • 当底或幂为常量输入时,不支持 TENSOR_FLOAT16 【输出】 输出 0: n-D tensor,数据类型与输入 0 一致
67	ANEURALNE TWORKS_TI LE (V320 新增)	该算子 实现对 一个 tensor 在 多个维	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景), TENSOR_FLOAT16

序号	Operation	含义	边界
		度的平铺操作	支持的 tensor 维数: up to 4
68	ANEURALNE TWORKS_CH ANNEL_SHU FFLE (V320新增)	将tensor中的维参num进,进匀中,是有量的,并且的,并是有量的,并是有量的。	 支持的 tensor OperandCode: TENSOR_FLOAT32 , TENSOR_FLOAT16 支持的 tensor 维数: up to 4 输入 0: n-D tensor, 用于分组的向量 输入 1: 标量,指定分组的组数 输入 2: 标量,用于指定进行分组的轴 【约束】 输入 2 的取值范围为[-n,n) 【输出】 输出 0: n-D tensor,数据类型和维数与输入 0 一致
69	ANEURALNE TWORKS_SE LECT (V320新增)	该的能: put() finput()	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor,数据类型: TENSOR_BOOL8;设置每个元素的值选择是从输入 1 (如果为 true)还是从输入 2 (如果为false)中获取输出中的对应元素。 • 输入 1: n-D tensor,与输入 0 的 shape 一致 • 输入 2: n-D tensor,与输入 1 的 shape、type 一致 【约束】 每个维度的维度值不超过 256. 【输出】 输出 0: n-D tensor,类型和维数与输入 1 和输入 2 一致。

序号	Operation	含义	边界
70	ANEURALNE TWORKS_TO PK_V2 (V320新增)	该用取最个的个值降出及的算于输后维前最(序)他索子获入一度 K 大以输以们引	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor • 输入 1: 标量,用于表明需要获取的前多少个最大的数。 【约束】 输入 1 的值不超过输入最后一个维度的维度值。 【输出】 输出 0: n-D tensor, 类型与输入 0 一致。 输出 1: n-D tensor, 类型为 TENSOR_INT32。
71	ANEURALNE TWORKS_EX PAND_DIMS (V320 新增)	对给 tensor, 增加 1 个度。	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景), TENSOR_FLOAT16 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor • 输入 1: 标量,数据类型: TENSOR_INT32,指定需要扩维的维度。 【约束】 Axis 值不超过输入的维度数,范围: [-(n+1), (n+1)) 【输出】 输出 0: n+1-D tensor,类型与输入 0 一致。
72	ANEURALNE TWORKS_RE DUCE_ALL (V320新增)	表示在 给度上 进行 logical_a nd 操作	【输入】 • 支持的 tensor OperandCode: TENSOR_BOOL8 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor • 输入 1: 标量, TENSOR_INT32 类型表示在哪个维度上进行 reduce。 • 输入 2: BOOL 类型的标量, 如果是 true, 则输入 input0 的维度不变, x 维度还是 x 维度,只是将 input1 中轴所表示的那个维度的维度值置为 1。如果是 false,则 input0 由 x 维变为 x-1

序号	Operation	含义	边界
			维。 【约束】 不支持广播。 【输出】 输出 0: tensor, 类型与输入 0 一致。
73	ANEURALNE TWORKS_RE DUCE_ANY (V320新增)	表给维进logical_o r	【输入】 • 支持的 tensor OperandCode: TENSOR_BOOL8 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor • 输入 1: 标量, TENSOR_INT32 类型表示在哪个维度上进行 reduce。 • Input2: BOOL 类型的标量, 如果是 true, 则输入 input0 的维度不变, x 维度还是 x 维度,只是将 input1 中轴所表示的那个维度的维度值置为 1。如果是 false,则 input0 由 x 维变为 x-1维。 【约束】 不支持广播。 【输出】 输出 0: tensor,类型与输入 0 一致。
74	ANEURALNE TWORKS_RE DUCE_PROD (V320新增)	表给维进乘在的上累作	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor • 输入 1: 1-D 的 tensor, 数据类型: TENSOR_INT32;指定需要进行 reduce 操作的维度,且维度值的范围 [-n, n); • 输入 2: BOOL, keep_dims, 若为 true, 保持 reduce 操作的维度值为 1, false 不保存 reduce 后的维度. 【约束】 不支持广播。 【输出】 输出 0: tensor, 类型与输入 0 一致。

序号	Operation	含义	边界
75	ANEURALNE TWORKS_RE DUCE_MAX (V320 新增)	表给维进最操不的上取值	 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) , TENSOR_FLOAT16 支持的 tensor 维数: up to 4 输入 0: n-D tensor 输入 1: 1-D 的 tensor, 数据类型: TENSOR_INT32;指定需要进行 reduce 操作的维度,且维度值的范围 [-n, n); 输入 2: BOOL, keep_dims, 若为 true, 保持 reduce 操作的维度值为 1, false 不保存 reduce 后的维度. 【约束】 不支持广播。 【输出】 输出 0: tensor, 类型与输入 0 一致。
76	ANEURALNE TWORKS_RE DUCE_MIN (V320新增)	表给维进最操不定度行小作	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 支持的 tensor 维数: up to 4 • 输入 0: n-D tensor • 输入 1: 1-D 的 tensor, 数据类型: TENSOR_INT32;指定需要进行 reduce 操作的维度,且维度值的范围 [-n, n); • 输入 2: BOOL, keep_dims, 若为 true, 保持 reduce 操作的维度值为 1, false 不保存 reduce 后的维度. 【约束】 不支持广播。 【输出】 输出 0: tensor, 类型与输入 0 一致。
77	ANEURALNE TWORKS_RE DUCE_SUM (V320 新增)	表示在 给度上 进行累 加操作	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 支持的 tensor 维数: up to 4

序号	Operation	含义	边界
			 输入 0: n-D tensor 输入 1: 1-D 的 tensor,数据类型: TENSOR_INT32;指定需要进行 reduce 操作的维度,且维度值的范围 [-n, n); 输入 2: BOOL, keep_dims,若为 true,保持 reduce 操作的维度值为 1, false 不保存 reduce 后的维度. 【约束】 不支持广播。 【输出】 输出 0: tensor,类型与输入 0 一致。
78	ANEURALNE TWORKS_RA NDOM_MUL TINOMIAL (V320新增)	从式中样多分抽本	 【输入】 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 输入 0: 2-D tensor, 指定所有类的未归一化对数概率 输入 1: 标量,用于指定从每个行切片抽取的独立样本数。 输入 2: 1-D tensor, dim 值为 2,指定用于初始化随机分布的种子。 【约束】 输入 1 需为正整数 输入 2 需为常量输入 【输出】 输出 0: 2-D tensor, 抽取得到的样本
79	ANEURALNE TWORKS_DE TECTION_PO STPROCESSI NG (V320新增)	NN 后算得并排滤 NMS 存到进序及 NMK 作到检果 NMS ,最测	 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 输入 0: 3-D tensor, score, 维度为[batches, num_anchors, num_classes] 输入 1: 3-D tensor, delta, 维度为[batches, num_anchors, length_box_encoding] 输入 2: 2-D tensor, anchor, 维度为 [num_anchors, 4]。 输入 3: 标量, scaleY, 指定 dy 的缩放系数 输入 4: 标量, scaleX, 指定 dx 的缩放系数

序号	Operation	含义	边界
			 输入 5: 标量, scaleH, 指定 dh 的缩放系数 输入 6: 标量, scaleW, 指定 dw 的缩放系数 输入 7: 标量, 指定最大 BOX 输出个数 输入 8: 标量, 指定最大 BOX 输出个数 输入 9: 标量, input7 为 false 时有效, 指定每个 class 的最大输出检测 anchor 数 输入 10: 标量, input7 为 true 时有效, 指定每个 class 的最大输出检测 anchor 数 输入 11: 标量, score 的阈值, 低于该值会在 NMS 前被过滤 输入 12: 标量, iou 阈值, 在 NMS 时, 大于该 阈值且 score 较小的 anchor 将会在 NMS 过程中 被抑制(过滤) 输入 13: 标量, 指定是否包括背景类, 当为 true 时,包括背景概率,输出的 class 的 label 从 1 开始,否则从 0 开始计数 【约束】 输入 8、输入 9 需大于 0 且不超过 1024,输入 10 只能为 1; 2 <= num_classes < 1024; 0 < num_anchors < 65536; 输入 11、输入 12 需大于等于 0; scaleX、scaleY、scaleH、scaleW 需大于 1e-5; 【输出】 输出 0: 2-D tensor, 检测到的 score, [batches, max_num_detections] 输出 1: 3-D tensor, 检测到的目标的 roi, 维度为[batches, max_num_detections, 4] 输出 2: 2-D tensor, 检测到的 class label, [batches, max_num_detections] 输出 3: 1-D tensor, 有效检测结果个数, [batches]
80	ANEURALNE TWORKS_GR OUPED_CON V_2D (V320 新增)	分组卷 积	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景), TENSOR_FLOAT16 显式 padding 输入: • 输入 0: 4-D tensor,shape 为[batches, height, width, depth]

序号	Operation	含义	边界
			 输入 1: 4-D tensor, shape [depth_out, filter_height, filter_width, depth_in], 指定 filter 输入 2: 1-D tensor, shape [depth_out], 指定 bias
			 输入 3: scalar, INT32, 指定 padding 的左边 'width' 维度
			 输入 4: scalar, INT32, 指定 padding 的右边 ' width' 维度
			 输入 5: scalar, INT32, 指定 padding 的顶部 'height' 维度
			• 输入 6: scalar, INT32, 指定 padding 的底部 'height' 维度
			• 输入 7: scalar, INT32, 指定 stride 的'width' 维度
			• 输入 8: scalar, INT32, 指定 stride 的 'height' 维度
			• 输入 9: scalar, INT32, 指定 groups 的数量
			• 输入 10: scalar, INT32, 指定 activation
			• 输入 11: scalar, optional ,BOOL,指定数据格式, true 为格式"NCHW",false 为格式"NHWC"
			隐式 padding 输入:
			• 输入 0: 4-D tensor, shape 为 [batches, height, width, depth], 指定 input
			• 输入 1: 4-D tensor, shape [depth_out, filter_height, filter_width, depth_in], 指定 filter
			• 输入 2: 1-D tensor, shape [depth_out], 指定 bias
			 输入 3: scalar, INT32, 指定隐式 padding scheme, 必须为 PaddingCode 值, 为 SAME 或 VALID 之一
			• 输入 4: scalar, INT32, 指定 stride 的'width' dimension
			• 输入 5: scalar, INT32, 指定 stride 的 'height' dimension
			• 输入 6: scalar, INT32, 指定 groups 的数量
			• 输入 7: scalar, INT32, 指定 activation
			• 输入 8: scalar, optional, BOOL, 指定数据格式, true 为格式"NCHW", false 为格式"NHWC"

序号	Operation	含义	边界
			【约束】 inputC=group*filterC; filterN%group=0 【输出】 输出 0: 4-D 输出 tensor, shape [batches, out_height, out_width, depth_out]。
81	ANEURALNE TWORKS_TR ANSPOSE_C ONV_2D (V320新增)	反卷积	 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景), TENSOR_FLOAT16 显式 padding 输入: 输入 0: 4-D tensor, shape 为[batches, height, width, depth] 输入 1: 4-D tensor, shape [depth_out, filter_height, filter_width, depth_in], 指定 filter 输入 2: 1-D tensor, shape [depth_out], 指定 bias 输入 3: scalar, INT32, 指定 padding 的左边'width'维度 输入 4: scalar, INT32, 指定 padding 的石边'width'维度 输入 5: scalar, INT32, 指定 padding 的顶部'height'维度 输入 6: scalar, INT32, 指定 padding 的底部'height'维度 输入 7: scalar, INT32, 指定 stride 的'width'维度 输入 8: scalar, INT32, 指定 stride 的'height'维度 输入 9: scalar, INT32, 指定 stride 的'height'维度 输入 9: scalar, INT32, 指定 activation 输入 10: scalar, optional, BOOL, 指定数据格式, true 为格式"NCHW", false 为格式"NHWC" 隐式 padding 输入: 输入 0: 4-D tensor, shape 为 [batches, height, width, depth], 指定 input 输入 1: 4-D tensor, shape [depth_out, filter_height, filter_width, depth_in], 指定 filter 输入 2: 1-D tensor, shape [depth_out], 指定 bias

序号	Operation	含义	边界
			 输入 3: tensor, INT32, 指定输出 tensor 的 shape 输入 4: scalar, INT32, 指定隐式 padding scheme, 必须为 PaddingCode 值, 为 SAME 或 VALID 之一
			 输入 5: scalar, INT32, 指定 stride 的 'width' dimension
			 输入 6: scalar, INT32, 指定 stride 的 'height' dimension
			• 输入 7: scalar, INT32, 指定 activation
			• 输入 8: scalar, optional ,BOOL, 指定数据格式, true 为格式"NCHW",false 为格式"NHWC"
			【约束】
			• 输入 1,2 只支持常量输入。
			• (inputH - 1) * strideH + 1 + aH <= 4000;
			(inputW - 1) * strideW + 1 + aW \leq 4000;
			group ==1; dilationH == dilationW == 1;
			filterH <= 15 && filterW <= 15;
			filterH - padHHead - $1 \ge 0$;
			filterW - padWHead - $1 \ge 0$;
			其中:
			aH = (inputH + padHHead + padHTail - filterH) % strideH
			aW = (inputW + padHHead + padHTail - filterW) % strideW
			 (inputH - 1) * strideH - padHHead - padHTail <= outputH <= inputH * strideH - padHHead - padHTail; (inputW - 1) * strideW - padWHead - padWTail <= outputW <= inputW * strideW - padWHead - padWHead - padWTail
			【输出】
			输出 0: 4-D 输出 tensor
82	ANEURALNE	LSTM 单	【输入】
	TWORKS_LS TM	元	• 支持的 tensor OperandCode:
	(V320 新增)		TENSOR_FLOAT32(仅支持 relaxed 场景) ,
	, , , , , , , , , , , , , , , , , , ,		TENSOR_FLOAT16
			• 输入 0: 2-D tensor,非常量输入, shape 是 [batch_size,input_size]
			● 输入 1: 2-D tensor,input-to-input weights 可选输

序号	Operation	含义	边界
			入,shape 为[num_units,input_size]
			• 输入 2: 2-D tensor,input-to-forgot weights, shape 为[num_units,input_size]
			• 输入 3: 2-D tensor,input-to-cell weights, shape 为 [num_units,input_size]
			• 输入 4: 2-D tensor,input-to-output weights, shape 为[num_units,input_size]
			● 输入 5: 2-D tensor,recurrent-to-input weights 可选输入, shape 为[num_units,output_size]
			 输入 6: 2-D tensor,recurrent-to-forgot weights, shape 为[num_units,output_size]
			• 输入 7: 2-D tensor,recurrent-to-cell weights, shape 为[num_units,output_size]
			• 输入 8: 2-D tensor,recurrent-to-output weights, shape 为[num_units,output_size]
			 输入 9: 1-D tensor,cell-to-input weights 可选输 入, shape 为[num_units]
			● 输入 10: 1-D tensor,cell-to-forgot weights 可选输入, shape 为[num_units]
			● 输入 11: 1-D tensor,cell-to-output weights 可选输入, shape 为[num_units]
			● 输入 12: 1-D tensor, input gate bias 可选输入, shape 为[num_units]
			• 输入 13: 1-D tensor,forget gate bias, shape 为 [num_units]
			• 输入 14: 1-D tensor,cell gate bias, shape 为 [num_units]
			• 输入 15: 1-D tensor,output gate bias, shape 为 [num_units]
			• 输入 16: 2-D tensor, project weights 可选输入, shape 为[output_size, num_units]
			• 输入 17: 1-D tensor, project bias 可选输入,shape 为[output_size]
			• 输入 18: 2-D tensor,output state(in), shape 为 [batch_size,output_size]
			• 输入 19: 2-D tensor,cell state(in), shape 为 [batch_size,num_units]
			• 输入 20: 标量,标识激活函数,支持 1:Relu, 2:Relu6, 3:Tanh,4:Sigmoid
			• 输入 21: 标量, cell_clip 门限, 取值范围[-cell_clip,cell_clip],设置值为 0 时, 忽略 cell_clip

序号	Operation	含义	边界
			 ○ 输入 22: 标量, proj_clipp 门限, 取值范围[-proj_clip,proj_clip],设置值为 0 时, 忽略 proj_clip 门限。 ● 输入 23: 1-D tensor,input layer normalization weights,shape 是[num_units] ● 输入 24: 1-D tensor,forget layer normalization weights,shape 是[num_units] ● 输入 25: 1-D tensor,cell layer normalization weights,shape 是[num_units] ● 输入 26: 1-D tensor,output layer normalization weights,shape 是[num_units] 【约束】 ● 不支持输入 23-26 layer normalization 参数参与计算。 ● 输入 1 到输入 17 仅支持常量输入 ● 不支持输出中间值状态,即不支持输出 scratch buffer。 【输出】 ● 输出 0: 2-D 输出 tensor, 使能 CIFG 时 shape 是[batch_size,num_units*3]。不使能 CIFG 时, shape 是[batch_size,num_units*4] ● 输出 1: 2-D 输出 tensor, output state(out) shape 是[batche_size,output_size] ● 输出 2: 2-D 输出 tensor, cell state(out) shape 是 [batche_size, num_units] ● 输出 3: 2-D 输出 tensor, shape 是 [batch size output size]
83	ANEURALNE TWORKS_UN IDIRECTION AL_SEQUEN CES_LSTM (V320新增)	单向 LSTM 单 元	【输入】 ■ 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景), TENSOR_FLOAT16 ■ 输入 0: 3-D tensor,非常量输入,time-major 时 shape 是[max_time,batch_size,input_size],batch-major 时 shape 是 [batch_size,max_time,input_size] ■ 输入 1: 2-D tensor,input-to-input weights 可选输入,shape 为[num_units,input_size] ■ 输入 2: 2-D tensor,input-to-forgot weights,shape 为[num_units,input_size]

序号	Operation	含义	边界
			• 输入 3: 2-D tensor,input-to-cell weights, shape 为 [num_units,input_size]
			• 输入 4: 2-D tensor,input-to-output weights, shape 为[num_units,input_size]
			● 输入 5: 2-D tensor,recurrent-to-input weights 可选输入, shape 为[num_units,output_size]
			• 输入 6: 2-D tensor,recurrent-to-forgot weights, shape 为[num_units,output_size]
			• 输入 7: 2-D tensor,recurrent-to-cell weights, shape 为[num_units,output_size]
			• 输入 8: 2-D tensor,recurrent-to-output weights, shape 为[num_units,output_size]
			● 输入 9: 1-D tensor,cell-to-input weights 可选输 入,shape 为[num_units]
			● 输入 10: 1-D tensor,cell-to-forgot weights 可选输入,shape 为[num_units]
			• 输入 11: 1-D tensor,cell-to-output weights 可选输入,shape 为[num_units]
			• 输入 12: 1-D tensor, input gate bias 可选输入, shape 为[num_units]
			• 输入 13: 1-D tensor, forget gate bias, shape 为 [num_units]
			• 输入 14: 1-D tensor,cell gate bias, shape 为 [num_units]
			• 输入 15: 1-D tensor,output gate bias, shape 为 [num_units]
			● 输入 16: 2-D tensor,project weights 可选输入, shape 为[output_size,num_units]
			• 输入 17: 1-D tensor, project bias 可选输入,shape 为[output_size]
			• 输入 18: 2-D tensor,output state(in), shape 为 [batch_size,output_size]
			• 输入 19: 2-D tensor,cell state(in), shape 为 [batch_size,num_units]
			• 输入 20: 标量,标识激活函数,支持 1:Relu, 2:Relu6, 3:Tanh,4:Sigmoid
			• 输入 21: 标量, cell_clip 门限,取值范围[-cell_clip,cell_clip],设置值为 0 时,忽略 cell_clip 门限。
			● 输入 22: 标量,proj_clipp 门限,取值范围[- proj_clip,proj_clip],设置值为 0 时,忽略

序号	Operation	含义	边界
84	ANEURALNE TWORKS_RO I_POOLING (V320 新增)	对输特进大选入征行池取的图最化	proj_clip 门限。 输入 23: 标量, true:time_major false:batch_major。 输入 24: 1-D tensor,input layer normalization weights,shape 是[num_units] 输入 25: 1-D tensor,forget layer normalization weights,shape 是[num_units] 输入 26: 1-D tensor,cell layer normalization weights,shape 是[num_units] 输入 27: 1-D tensor,output layer normalization weights,shape 是[num_units] 【约束】 不支持输入 24-27 layer normalization 参数参与计算。 输入 1 到输入 17 仅支持常量输入 不支持输出中间值状态,即不支持输出 scratch buffer。 【输出】 输出 0: 3-D 输出 tensor time-major 时 shape 是[max_time,batch_size,output_size], batch-major 时 shape 是[batch_size,max_time,output_size] 【输入】 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 输入 0: 4-D tensor,shape 是[nums_rois,4] 输入 1: 2-D tensor,shape 是[nums_rois,4] 输入 2: 1-D tensor,shape 是[nums_rois] 输入 3: 标量,最大池化的 H 维度 输入 4: 标量,最大池化的 W 维度 输入 5: 标量,原始图像的高度到特征图的高度的比率 输入 6: 标量,原始图像的高度到特征图的高度的比率 输入 7: 标量,原始图像的宽度到特征图的宽度的比率 输入 7: 标量,标识输入 0 和输出 0 数据排布。true 为 NCHW,false 为 NHWC 【约束】 输入 1 中不支持空区域计算,且需为常量

序号	Operation	含义	边界
			输入 2 需为常量【输出】输出 0: 4-D 输出 tensor。
85	ANEURALNE TWORKS_SV DF (V320新增)	通每点奇分近理列集层过个进异解似一的连对节行值来处系密接	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 • 输入 0: 2-D tensor,shape 为 [batch_size,input_size] • 输入 1: 2-D tensor, shape 为 [num_units,input_size] • 输入 2: 2-D tensor,shape 为 [num_units,memory_size] • 输入 3: 1-D tensor, 可选输入, shape 为 [num_units] • 输入 4: 2-D tensor, shape 为 [batch_size,memory_size*num_units*rank] • 输入 5: 标量, rank 值 • 输入 6: 标量, 激活函数, 不支持 None 【约束】 输入 1 到输入 4 仅支持常量输入。 【输出】 • 输出 0: 2-D 输出 tensor,shape 是 [batch_size,memory_size*num_units*rank] • 输出 1: 2-D 输出 tensor, shape 是 [batch_size,num_units]
86	ANEURALNE TWORKS_IN STANCE_NO RMALIZATIO N (V320新增)	对输入 tensor 进 行 instance normaliz ation 归 一化	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 • 输入 0: N-D tensor,非常量输入 • 输入 1: 标量, gamma 标识缩放 • 输入 2: 标量, beta 标识偏移 • 输入 3: 标量, epsilon 防止除 0 【约束】 无

序号	Operation	含义	边界
			输出 0: N-D 输出 tensor。
	ANEURALNE TWORKS_BI DIRECTIONA L_SEQUENC E_LSTM (V320 新增)	含义 双向 LSTM 第子	 輸出 0: N-D 輸出 tensor。 【输入】 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 輸入 0: 3-D tensor, 维度为[max_time, batch_size, input_size]或[batch_size, max_time, input_size]。 輸入 1~4: 2-D tensor, 前向 input-to-input、 input-to-forget、input-to-cell、input-to-output 权重。大小为[fw_num_units, input_size], input-to-input 输入为可选输入 輸入 5~8: 2-D tensor, 前向 recurrent-to-input、 recurrent-to-forget、recurrent-to-cell、recurrent-to-output 权重。大小为[fw_num_units, fw_output_size]。recurrent-to-input 输入为可选输入 輸入 9~11: 1-D tensor, 前向 cell-to-input、 cell-to-forget、cell-to-output 权重。大小为 [fw_num_units, input_size]。这 3 个输入均为可选输入 输入 12~15: 1-D tensor, 前向 input、forget、 cell、output 偏置。大小为[fw_num_units]。 输入 16: 2-D tensor, 前向 投影枫重。大小为 [fw_output_size, fw_num_units]。 该输入为可选输入 输入 17: 1-D tensor, 前向 投影偏置。大小为 [fw_output_size]。该输入为可选输入 输入 18~21: 2-D tensor, 后向 input-to-input、 input-to-forget、input-to-cell、input-to-output 权
			重。大小为[bw_num_units, input_size], input-to-input 输入为可选输入 ● 输入 22~25: 2-D tensor, 后向 recurrent-to-input、recurrent-to-forget、recurrent-to-cell、recurrent-to-output 权重。大小为[bw_num_units,
			bw_output_size]。recurrent-to-input 输入为可选输入 • 输入 26~28: 1-D 输入 tensor, 前向 cell-to-input、 cell-to-forget、cell-to-output 权重。大小为[bw_num_units]。这 3 个输入均为可选输入 • 输入 29~32: 1-D tensor, 前向 input、forget、

序号	Operation	含义	边界
			cell、output 偏置。大小为[bw_num_units]。 • 输入 33: 2-D tensor,前向 投影权重。大小为 [bw_output_size, bw_num_units]。该输入为可选输入
			• 输入 34: 1-D tensor, 前向 投影偏置。大小为 [bw_output_size], 可选输入
			 输入 35: 2-D tensor,前向输入的激活状态。 大小为 [batch_size, bw_output_size]
			 输入 36: 2-D tensor,前向输入的 cell 状态。 大小为 [batch_size, bw_num_units]
			 输入 37 : 2-D tensor,后向输入的激活状态。 大小为 [batch_size, bw_output_size]
			• 输入 38: 2-D tensor,后向输入的 cell 状态。大小为 [batch_size, bw_num_units]
			• 输入 39: 3-D tensor, 辅助输入。大小为 [max_time, batch_size, input_size]。可选
			 输入 40~43: 2-D tensor,前向辅助 input-to-input、input-to-forget、input-to-cell、input-to-output 权重。大小为[fw_num_units,input_size],均为可选输入
			• 输入 44~47: 2-D tensor, 后向辅助 input-to-input、input-to-forget、input-to-cell、input-to-output 权重。大小为[bw_num_units, input_size],均为可选输入
			• 输入 48: 激活函数, 支持 1:Relu, 2:Relu6, 3:Tanh, 4:Sigmoid
			● 输入 49~50: 限幅阈值。
			• 输入 51: 标量。指定是否应合并前向和后向单 元的输出。
			• 输入 52: 标量。指定输入和输出张量的形状格式
			• 输入 53~56: 1-D tensor, 前向 input、forget、cell、output 层的归一化权重。可选
			• 输入 57~60: 1-D tensor,后向 input、forget、cell、output 层的归一化权重。可选
			【约束】
			• 除输入 0、输入 35~38 外,其他输入仅支持常量输入
			• 不支持辅助输入(39~47),不支持归一化权重(53~60)
			● 不支持 merge_output (即 Concat, 输入 51 需设

序号	Operation	含义	边界
			置为 false)
			【输出】
			• 输出 0: 3-D tensor, 前向 LSTM 计算结果
			• 输出 1: 3-D tensor,后向 LSTM 计算结果
88	ANEURALNE TWORKS_UN IDIRECTION AL_SEQUEN CE_RNN (V320新增)	单向 RNN	 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16 输入 tensor 数据类型必须相同 输入 0: 3-D tensor, 如果 input 6 (timeMajor) 参数设置为 0, 输入输出 shape: [batchSize, maxTime, numUnits],设置为 1, 输入输出 shape: [maxTime, batchSize, numUnits]. 输入 1: weights, 2-D tensor, shape [num_units, input_size],只支持常量输入 输入 2: recurrent_weights, 2-D tensor, shape [num_units, num_units], 只支持常量输入 输入 3: bias, 1-D tensor, shape [num_units], 只支持常量输入 输入 4: hidden state (in). 2-D tensor, shape [batch_size, num_units]. 输入 5: fused_activation_function. optional FuseCode value, 不支持"NONE". 输入 6: timeMajor, 只能取值为 0 或者 1. 设置
			为 0,输入输出 shape : [batchSize, maxTime, numUnits],设置为 1,输入输出 shape: [maxTime, batchSize, numUnits]. 【输出】 输出 0: 3-D tensor,如果 input 6(timeMajor)timeMajor 参数设置为 0,输入输出 shape:[batchSize, maxTime, numUnits],设置为 1,输入输出 shape: [maxTime, batchSize, numUnits].
89	ANEURALNE	双向	【输入】
	TWORKS_BI DIRECTIONA	RNN	• 支持的 tensor OperandCode:
	L_SEQUENC		TENSOR_FLOAT32(仅支持 relaxed 场景)
	E_RNN		TENSOR_FLOAT16
	(V320新增)		输入 tensor 数据类型必须相同
			• 输入 0: 3-D tensor, 如果 input 6 (timeMajor) 参数设置为 0, 输入输出 shape : [batchSize,

序号	Operation	含义	边界
			maxTime, numUnits],设置为 1, 输入输出 shape: [maxTime, batchSize, numUnits].
			• 输入 1: fwWeights. A 2-D tensor of shape [fwNumUnits, inputSize],只支持常量输入.
			 输入 2: fwRecurrentWeights. A 2-D tensor of shape [fwNumUnits, fwNumUnits],只支持常量输 入.
			• 输入 3: fwBias. A 1-D tensor of shape [fwNumUnits],只支持常量输入.
			• 输入 4: fwHiddenState. A 2-D tensor of shape [batchSize, fwNumUnits]. Specifies a hidden state input for the first time step of the computation.
			• 输入 5: bwWeights. A 2-D tensor of shape [bwNumUnits, inputSize],只支持常量输入.
			• 输入 6: bwRecurrentWeights. A 2-D tensor of shape [bwNumUnits, bwNumUnits], 只支持常量输入.
			• 输入 7: bwBias. A 1-D tensor of shape [bwNumUnits].
			• 输入 8: bwHiddenState A 2-D tensor of shape [batchSize, bwNumUnits]. Specifies a hidden state input for the first time step of the computation.
			• 输入 9: auxInput. A 3-D tensor. The shape is the same as of the input 0,不支持该参数.
			• 输入 10: fwAuxWeights. A 2-D tensor of shape [fwNumUnits, inputSize],不支持该参数.
			• 输入 11: bwAuxWeights. A 2-D tensor of shape [bwNumUnits, inputSize],不支持该参数.
			• 输入 12: fused_activation_function. optional FuseCode value,不支持 "NONE".
			• 输入 13: timeMajor, 只能取值为 0 或者 1. 设置为 0, 输入输出 shape: [batchSize, maxTime, numUnits],设置为 1, 输入输出 shape: [maxTime, batchSize, numUnits].
			• 输入 14: mergeOutputs.BOOL 指定 fwOutput 和 bwOutput 的输出是否分开,如果设置为 0 表示分开输出;如果设置为 1 表示合并输出;
			【约束】:
			mergeOutputs 只支持 false
			【输出】
			• 输出 0: fwOutput. A 3-D tensor. 如果 input 6

序号	Operation	含义	边界
			(timeMajor) timeMajor 参数设置为 0,输入输出 shape: [batchSize, maxTime, numUnits],设置为 1,输入输出 shape: [maxTime, batchSize, numUnits]. ● 输出 1: bwOutput. A 3-D tensor. 如果 input 6 (timeMajor) timeMajor 参数设置为 0,输入输出 shape: [batchSize, maxTime, numUnits],设置为 1,输入输出 shape: [maxTime, batchSize, numUnits].
90	ANEURALNE TWORKS_RN N (V320新增)	RNN 网络	 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景) TENSOR_FLOAT16 输入 tensor 数据类型必须相同 输入 0: input , 2-D tensor, shape [batch_size, input_size] 输入 1: weights, 2-D tensor, shape [num_units, input_size], 只支持常量输入 输入 2: recurrent_weights, 2-D tensor , shape [num_units, num_units], 只支持常量输入 输入 3: bias, 1-D tensor , shape [num_units], 只支持常量输入 输入 4: hidden state (in). 2-D tensor , shape [batch_size, num_units]. 输入 5: fused_activation_function. optional FuseCode value,不支持"NONE" 【输出】 输出 0: hidden state (out). 2-D tensor , shape [batch_size, num_units]. 输出 1: output. 2-D tensor , shape [batch_size, num_units].
91	ANEURALNE TWORKS_RO I_ALIGN (V320新增)	通均来线值样选个趣的过合自性的点择感区特平并双插采,每兴域征	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 • 输入 0: 4-D tensor feature map. • 输入 1: 2-D tensor,shape 是[nums_rois,4] • 输入 2: 1-D tensor,每个框的 batch 索引, shape 是[nums_rois]

序号	Operation	含义	边界
		图其到的大并缩统输小	 输入 3: 标量,平均池化的 H 维度 输入 4: 标量,平均池化的 W 维度 输入 5: 标量,原始图像的高度到特征图的高度的比率 输入 6: 标量,原始图像的宽度到特征图的宽度的比率 输入 7: 标量,H 方向上的采样点数。 输入 8: 标量,W 方向上的采样点数 输入 9: 标量,标识输入 0 和输出 0 数据排布。true 为 NCHW, false 为 NHWC 【约束】 输入 1 中不支持空区域计算,且需为常量 输入 2 需为常量 输出】 输出 0: 4-D 输出 tensor。
92	ANEURALNE TWORKS_GE NERATE_PR OPOSALS (V320新增)	GENER ATE_PR OPOSAL S	【输入】 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景) TENSOR_FLOAT16 • 输入 0: 4-D Tensor shape 是[batches, num_anchors, height, width]. • 输入 1: 4-D Tensor 标识边界框, shape 是 [batches, num_anchors * 4, height, width]. • 输入 2: 2-D Tensor, shape 是[num_anchors, 4], • 输入 3: 2-D Tensor, 标识每个 batch 的 size, shape 是[batches, 2] • 输入 4: scalar, float32, 指定原始图像到特征图的高度比 • 输入 5: scalar, float32, 指定原始图像到特征图的宽度比 • 输入 6: scalar, int32, 指定用于 NMS 处理的最大输入 Box 数量,设置非正数指定无上限 • 输入 7: scalar, int32, 指定返回 NMS 处理的最大输入 Box 数量,设置非正数指定无上限 • 输入 8: scalar, float32,指定 NMS 处理参数 IoU(交并比) • 输入 9: scalar, float32,指定 Boxes 的最小尺寸 • 输入 10: BOOL ,表示输入 0 和输入 1 的格

序号	Operation	含义	边界
93	ANEURALNE TWORKS_AX IS_ALIGNED _BBOX_TRA NSFORM	该 算 引 形 按 短 料 经 照 数 形 数 形 数 形 数 形 数 形 数 形 数 形 数 形 数 形 数	式,true 表示 NCHW,false 表示 NHWC 【约束】 • 仅支持 NHWC 【输出】 • 输出 1: 1-D of shape [num_output_rois],标识每个输出框的得分 • 输出 2: 2-D tensor.标识每个分类的每个框的坐标 shape 是 [num_output_rois, 4]. • 输出 3: 1-D of shape [num_output_rois],每个框的索引,数据类型 int32 【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32(仅支持 relaxed 场景),
	(V320 新增)	一规行变只对进作的进齐,要标操	 TENSOR_FLOAT16 输入 0: 2-D 输入 tensor, 维度为[num_rois, 4]。 输入 1: 2-D 输入 tensor, 维度为[num_rois, num_classes * 4] 输入 2: 1-D 输入 tensor, 维度为[num_rois], 该输入格式为 NCHW 输入 3: 2-D 输入 tensor, 维度为[batches, 2] 【约束】 无 【输出】 输出 0: 2-D tensor, 维度为[num_rois, num_classes * 4]
94	ANEURALNE TWORKS_BO X_WITH_NM S_LIMIT (V320新增)	基 婪略分序边的集 按降择框	【输入】 • 支持的 tensor OperandCode: TENSOR_FLOAT32 (仅支持 relaxed 场景), TENSOR_FLOAT16 • 输入 0: 2-D 输入 tensor, 维度为[num_rois, num_classes]。 • 输入 1: 2-D 输入 tensor, 维度为[num_rois, num_classes * 4] • 输入 2: 1-D 输入 tensor, 维度为[num_rois] • 输入 3: 标量, score_threshold • 输入 4: 标量,每张图片最多选择的框个数

序号	Operation	含义	边界
			 输入 5:标量,NMS 方式 输入 6:标量,IOU 门限 输入 7:标量,当 NMS 方式为高斯时,该值表示高斯核的 SIGMA 值。在本次迭代中该值不生效。 输入 8:标量,nms_score_threshold 【约束】 NMS 方式仅支持 HARD 模式 【输出】 输出 0: 1-D 输出 tensor,维度为[num_output_rois] 输出 1: 2-D 输出 tensor,维度为[num_output_rois, 4]
			 输出 2: 1-D 输出 tensor, 维度为 [num_output_rois] 输出 3: 1-D 输出 tensor, 维度为 [num_output_rois]

3 CPU 算子列表

序号	算子	含义
1	Abs	对输入做求绝对值运算
2	Add	计算2个输入的和
3	Argmax	返回输入的最大值对应的索引序号
4	BatchNorm	对输入在 batch 上做归一化计算
5	BiasAdd	计算输入 tensor 和 1 个常量输入的和
6	Cast	转换输入的数据类型。
7	Concat	数据按维度拼接
8	Convolution	卷积
9	ConvolutionDepthwise	深度卷积
10	Cos	计算 cos
11	Crop	截取
12	Deconvolution	反卷积
13	Eltwise	按元素操作层(求和、乘积、最大值)
14	ExpandDims	对输入 shape 进行补维
15	Fill	使用输入的维度和值信息,生成一个 tensor。
16	Flatten	保留输入的第一个维度,把第一个维度包含的每个子张量展开成一个行向量。
17	FractionalPooling	分数池化
18	FullConnection	全连接
19	GreaterEqual	按元素返回(x1 >= x2)真值

序号	算子	含义
20	InstanceNorm	对输入在像素上做归一化计算
21	Interp	插值层
22	LeakyRelu	激活函数
23	Less	按元素返回(x1 < x2)真值
24	Matmul	对 2 个输入做矩阵乘法运算
25	Maximum	计算2个输入中的较大值
26	Mul	计算2个输入的乘积
27	Multinomial	生成多项式分布的随机数据
28	Pack	将多个输入堆叠拼接成1个
29	Pad	对输入做 shape 填充
30	Permute	对输入做维度转置操作
31	Pooling	池化层
32	Pow	计算幂
33	Power	计算 y = (scale*x+shift)^ power
34	Prelu	激活函数
35	PriorBox	在特征图的每个位置生成默认框。
36	RandomNormal	生成正太分布的随机数据
37	RandomShuffle	按照第一个维度随机打乱数据
38	RandomUniformNoSeed	生成均匀分布的随机数据
39	RealDiv	根据实际数据类型,按元素返回 x1/x2
40	ReduceMean	计算一个张量中各维元素的均值
41	Relu	激活函数
42	Reshape	改变输入维度
43	ResizeBilinear	将图片尺寸调整到指定的大小。
44	Scale	out=alpha*Input+beta
45	Select	根据条件选择输出
46	Sigmoid	激活函数
47	Sin	计算 sin
48	Softmax	归一化逻辑函数

序号	算子	含义
49	SSDDetectionOutput	SSD 网络的一个算子,它的作用是根据 priorbox 和其对应的偏移量、评分信息来生 成检测目标的数量和候选框。
50	StrideSlice	对输入从起始位置到结束位置按照步长截 取数据
51	Sub	计算2个输入的差
52	Tan	计算 Tan
53	Tile	平铺给定矩阵
54	ТорК	提取最后一个维度的 k 个最大值