

Description

The VST08N021 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- V_{DS} =85V,I_D =250A
- $R_{DS(ON)}$ <2.8m Ω @ V_{GS} =10V• Excellent gate charge x $R_{DS(on)}$ product
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

TO-247

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST08N021-T7	VST08N021	TO-247	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	85	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	250	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	180	А	
Pulsed Drain Current	I _{DM}	1000	А	
Maximum Power Dissipation	P _D	360	W	
Derating factor		2.4	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	2000	mJ	
Operating Junction and Storage Temperature Range	T., Tstg	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{θJC}	0.42	°C/W
---	------------------	------	------

Electrical Characteristics (T_C=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	urce Breakdown Voltage BV _{DSS} V _{GS} =0V I _D =250µA		85		-	V
Zero Gate Voltage Drain Current	Gate Voltage Drain Current I _{DSS} V _{DS} =85V,V _{GS} =0V		-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.5	3.5	4.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =100A	-	2.1	2.8	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =100A	-	90	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	\/ -40\/\/ -0\/	-	10700	-	PF
Output Capacitance	Coss	V_{DS} =40V, V_{GS} =0V, F=1.0MHz	-	1700	-	PF
Reverse Transfer Capacitance	C _{rss}	r-1.0IVIn2	-	76	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	28	-	nS
Turn-on Rise Time	t _r	V_{DD} =40 V , I_{D} =100 A	-	73	-	nS
Turn-Off Delay Time	t _{d(off)}	$V_{GS}\text{=}10V,R_{G}\text{=}1.6\Omega$	-	86	-	nS
Turn-Off Fall Time	t _f		-	33	-	nS
Total Gate Charge	Qg	V _{DS} =40V,I _D =100A,	-	142		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=40V,I_{D}=100A,$ $V_{GS}=10V$	-	56		nC
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	24		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _F = I _S	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	250	Α
Reverse Recovery Time	t _{rr}	$T_J = 25$ °C, $I_F = I_S$	-	115		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	320		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}\,\text{,V}_\text{DD}\text{=}42.5\text{V},\text{V}_\text{G}\text{=}10\text{V},\text{L=}0.5\text{mH},\text{Rg=}25\Omega$

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Power Dissipation (W) 250 200 150 100 50 0 + 125 150

Figure 7 Capacitance vs Vds

 T_J -Junction Temperature($^{\circ}$ C) Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

400 350

300

Figure 11 Normalized Maximum Transient Thermal Impedance