$\begin{array}{c} \text{Math 1113} -- \text{xxxxx} \\ \text{Quiz 10} \end{array}$

Friday, 2 April

- 1. This is an open notes and open book quiz. You may also use resources available on ELC or the class website, as well as a calculator (although a calculator should not be necessary).
- 2. You may not use any other resources and may not consult with any person other than the course instructor.
- 3. All answers should be exact, i.e. no numerical approximations unless otherwise specified.
- 4. You are graded on your solution, but more importantly you also graded on your supporting arguments and work you use to justify your answers.
- 5. Please submit your completed quiz on Gradescope by Friday, 2 April.

By providing my signature below I acknowledge that I abide by the University's academic honesty policy. This is my work, and I did not get any help from anyone else:	
Name (sign):	Name (print):

- 1. (20 points) Let θ be some unknown abstract angle in the first quadrant.
 - 1. Write a **proportionality relationship** between the abstract angle θ , the number θ_D corresponding to measuring θ in degrees, and the number θ_R corresponding to measuring θ in radians.

2. Suppose you make contact with an alien race, and they tell you that they refer to "1 revolution" around the circle as $7\Pi \, \mathbf{AU}$ ("alien units"), where Π is some unknown alien constant. Write a formula that converts an angle θ_{AU} measured in alien units to θ_D in degrees, and a separate formula that converts θ_{AU} to θ_R in radians.

- 2. (20 points) Let θ be an abstract angle in the first quadrant.
 - 1. Let θ_R be the number corresponding to measuring θ in **radians**. Write down 2 new angles $\theta_{R1}, \theta_{R3}, \theta_{R3}$ measured in radians which are **coterminal** to θ_R .

2. Let θ_D be the number corresponding to measuring θ in **degrees**. Write down 2 new angles $\theta_{D1}, \theta_{D3}, \theta_{D3}$ measured in degrees which are **coterminal** to θ_D .

- 3. (20 points) Let θ_R be an abtract angle in the first quadrant measured in radians.
 - 1. Draw a large, detailed diagram of the Cartesian plane with the following clearly labeled:
 - (a) An origin O.
 - (b) The coordinate axes \hat{x}, \hat{y} .
 - (c) A circle C of unknown radius r.
 - (d) A vector $\mathbf{p}(r, \theta_R)$ of length r at an angle of θ_R , starting at O and ending on the circle C.
 - (e) The angle θ_R between $\vec{\mathbf{p}}(r,\theta_R)$ and the horizontal axis \hat{x} .
 - (f) The circular arc $s(r, \theta_R)$ corresponding to $\vec{\mathbf{p}}(r, \theta_R)$.
 - (g) The sector area $A(r, \theta)$ corresponding to $\vec{\mathbf{p}}(r, \theta_R)$.

2. Write a **proportionality relationship** that relates θ_R , $s(r, \theta_R)$, and $A(r, \theta_R)$.

3. Suppose that we measure θ and find it to be $\theta_R = \pi/3$ in radians. Now supposing that r = 1 so we are on the unit circle, solve for the sector area $A(r, \theta_R)$ and arc length $s(r, \theta_R)$ corresponding to $\vec{\mathbf{p}}(r, \theta_R)$.

Note: this should end up being a number with no unknowns! You do not need to evaluate this with a calculator, an exact answer is preferable.

You may continue your work for the previous question here.

4. (10 points) (Extra Credit): Find a cool math video.

Note: if you did this on the last quiz, you can do it again! Just choose a different video.

Find an online video which discusses a mathematical topic that might be of interest to people outside of a math class. This can be from sites like Youtube or other social media (provided it's publicly viewable).

Write 3-4 precise sentences explaining or summarizing the mathematical idea, as though you were explaining it to a friend or relative. If you use words that fall under "mathematical vocabulary" or terminology, try to explain what those words mean.

Here are a few places you can look to get started:

- 1. Vihart
- 2. Numberphile
- 3. 3Blue1Brown
- 4. Mathologer
- 5. Stand-up Maths
- 6. Henry Segerman
- 7. Tipping Point Math