ENG204 - Signals and Linear Systems - Assignment 1.3

Baley Eccles - 652137 and Tyler Robards - 651790

[2024-09-12 Thu 14:12]

Contents

1	$\mathbf{E}\mathbf{N}$	${ m G204}$ - ${ m Signals}$ and	l Linear Sy	ystems - Assignment 1.3 1
	1.1	a		
	1.2	b		
	1.3	c		
	1.4	d		
		1.4.1 a		
		1.4.2 b		
		1.4.3 c		
	1.5	e		
	1.6	$f \dots \dots \dots$		
	1.7	g		
	1.8	$h\ \dots \dots \dots \dots$		
	1.9	$i \ \dots \dots \dots \dots$		
	1.10	j		

1 ENG204 - Signals and Linear Systems - Assignment 1.3

1.1 a

In 1D convolution, the output signal is computed by sliding a filter (also called a kernel) across the input signal, multiplying and summing at each point of overlap. Mathematically, if x(t) is the input signal and h(t) is the filter (impulse response), the output signal y(t) is given by:

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

This process "blends" the input signal with the filter, smoothing, sharpening, or otherwise transforming it depending on the characteristics of h(t).

In 2D convolution, we apply the same principles to 2D data, such as images. An image is represented as a matrix of pixel intensities, and the convolution is performed by sliding a 2D kernel (a small matrix) over the image. At each position, the pixel values of the image are multiplied element-wise by the corresponding values of the kernel, and the results are summed to produce the new pixel value in the output image.

The 2D convolution of an image I(x,y) with a filter H(u,v) is defined as:

$$G(x,y) = I(x,y) * H(u,v) = \sum_{u} \sum_{v} I(u,v)H(x-u,y-v)$$

This operation captures how local regions in the image are influenced by the surrounding pixels, which is critical for tasks like edge detection, blurring, and sharpening.

In 1D, convolution combines signals by blending neighboring values. In 2D, the same idea is

extended to neighboring pixels in both the x- and y-directions, which are weighted by the filter kernel. The kernel can be designed to highlight edges, smooth out noise, or enhance specific features of the image.

1.2 b

```
clear
clc
close
pkg load symbolic
sigma=100; % Filter size

G = @(x, y) (1/(2*pi*sigma^2)) * exp(-1 * (x.^2 + y.^2) / (2 * sigma^2));
size=ceil(6*sigma);
GFilter=zeros(size);

for xCoord = -size/2:size/2
    for yCoord = -size/2:size/2
        Gval=G(xCoord,yCoord);
        GFilter(size/2+xCoord+1,size/2+yCoord+1)=double(Gval);
end
end

% Normalise the matrix
GFilter=(GFilter - min(GFilter(:))) / (max(GFilter(:)) - min(GFilter(:)));
```

Image produced with $\sigma = 10$:

Image produced with $\sigma = 100$:

From these results we can see that the Gaussian filter blurs the image. When we increase σ the amount of blur increases. At the edges the images go dark, this is because we are taking the non existant values that are out side the image to be the min value (R,G,B)=(0,0,0) and when we do the convolution we are effectively bluring black.

1.3 c

clear clc

```
close
pkg load symbolic

syms x y p phi sigma
G =(1/(2*pi*sigma)) * exp(-1 * (x^2 + y^2) / (2 * sigma^2));
% Sub in the cylindrical coordinates
xCyl=p*cos(phi);
yCyl=p*sin(phi);
G=subs(G,x,xCyl);
G=subs(G,y,yCyl);
latex(xCyl)
latex(yCyl)
latex(simplify(G))
```

To do this we can convert the function to cylindrical coordinates. using:

$$x = \rho \cos(\phi)$$
$$y = \rho \sin(\phi)$$

Which will give:

$$\frac{e^{-\frac{\rho^2}{2\sigma^2}}}{2\pi\sigma}$$

As we can see this does not depend on ϕ , which is the rotational aspect, so it is rotationally symmetric.

1.4 d

1.4.1 a

$$G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2}{2\sigma^2}} e^{-\frac{y^2}{2\sigma^2}}$$

$$\Rightarrow G_x(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$$
and $G_y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{y^2}{2\sigma^2}}$

This shows that the Guassian kernel can be sperated into two individual components that can be acted seperately in the x and y direction. We can see that the $G_x(x)$ and $G_y(y)$ are varible substitutions of one another, this means that they will result in the same values given the same input, and hence when formed into their matrices they will be transposes of one another.

1.4.2 b

We are taking the convolution of G and I resulting in O:

$$O = I * G$$

$$O = I * (G_x \cdot G_y)$$

$$I' = I * G_x$$

$$O = I' * G_y$$

$$O = (I * G_x) * G_y$$

This shows that the Guassian kernel can be convoluted with the image in the x direction to get some intermediate image, which then can be convoluted in the y direction to get the final image.

1.4.3 c

The output with $\sigma = 10$ is:

- The time to calculate the convolution of the single matrix is $0.430982~\mathrm{s}$
- The time to calculate the convolution of the two matrices is 0.100643 s

As we can see the convolution of the two matricies is about four times as fast. And we can also see that this creates the exact same result.

Image with one convolution:

Image with two convolutions:

Increasing the σ we will see that the difference between the two times increases. For $\sigma = 50$:

- The time to calculate the convolution of the single matrix is 6.112394 s
- The time to calculate the convolution of the two matrices is 0.139590 s

Here we get a ≈ 50 times increase in speed. These results will vary based upon the hardware that it is being ran on. How ever we would still expect to see the increase in speed from one convolution to two.

We can also notice that the the increase in time between each σ grows faster for the single convolution compared to the double convolution. That is, for the single convolution, from $\sigma=10$ to $\sigma=50$, we get a ≈ 14 times time requirement, and for the double convolution we ≈ 1.4 times time requirement. This shows that not only does the double convolution preform better than the single convolution, but it also grows slower when σ increases. So, it is better to calculate the one dimetional matricies then the two dimentional ones. This could also be improved by using the transpose property disscussed in a, this would eliminate the need to calculate the second matrix.

1.5 e

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$
 substitute in $\frac{\partial^2 f}{\partial x^2} \approx f(x+1,y) - 2f(x,y) + f(x-1,y)$ and $\frac{\partial^2 f}{\partial y^2} \approx f(x,y+1) - 2f(x,y) + f(x,y-1)$ gives $\nabla^2 f \approx [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4f(x,y)$

Reading the coefficients for the matrix:

$$L = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

1.6 f

```
imshow(EdgeDetect,[]);
EdgeDetect = EdgeDetect / max(EdgeDetect(:)) * 65535;
imwrite(uint16(EdgeDetect), 'ENG204-Assignment-3-f-1.png');
```

Noise in the image makes the derivative of the image contain a lot of larger values. The noise makes the difference between each pixel a larger result than without the noise. This resulst in the edge detect image having alot of large values, requiring the threshold to be larger and reducing the amount of true edges being detected. We can see this in the image:

1.7 g

$$\begin{split} LoG(x,y) &= \nabla^2 G(x,y) = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2} \\ \frac{\partial G}{\partial x} &= -\frac{xe^{-\frac{x^2+y^2}{2\sigma^2}}}{2\pi\sigma^3} \\ &\Rightarrow \frac{\partial^2 G}{\partial x^2} = -\frac{e^{-\frac{x^2+y^2}{2\sigma^2}}}{2\pi\sigma^3} + \frac{x^2e^{-\frac{x^2+y^2}{2\sigma^2}}}{2\pi\sigma^5} \\ \frac{\partial G}{\partial y} &= -\frac{ye^{-\frac{x^2+y^2}{2\sigma^2}}}{2\pi\sigma^4} \\ &\Rightarrow \frac{\partial^2 G}{\partial y^2} = -\frac{e^{-\frac{x^2+y^2}{2\sigma^2}}}{2\pi\sigma^4} + \frac{y^2e^{-\frac{x^2+y^2}{2\sigma^2}}}{2\pi\sigma^6} \\ &\Rightarrow LoG(x,y) = -\frac{e^{-\frac{x^2+y^2}{2\sigma^2}}}{\pi\sigma^4} + \frac{x^2e^{-\frac{x^2+y^2}{2\sigma^2}}}{2\pi\sigma^6} + \frac{y^2e^{-\frac{x^2+y^2}{2\sigma^2}}}{2\pi\sigma^6} \\ &\Rightarrow LoG(x,y) = -\frac{1}{\pi\sigma^4} \left(1 - \frac{x^2+y^2}{2\sigma^2}\right) e^{-\frac{x^2+y^2}{2\sigma^2}} \end{split}$$

1.8 h

Focusing on $1 - \frac{x^2 + y^2}{2\sigma^2}$ in the kernel. We can see that it contains $x^2 + y^2$, which is not separable, so the entire kernel is not separable.

The second derivatives of the Gaussian kernel can be expressed as a product of an individual varible and the Gaussian kernel. That is:

$$\begin{split} \frac{\partial^2 G}{\partial x^2} &= -\frac{e^{-\frac{x^2+y^2}{2\sigma^2}}}{2\pi\sigma^3} + \frac{x^2 e^{-\frac{x^2+y^2}{2\sigma^2}}}{2\pi\sigma^5} \\ \frac{\partial^2 G}{\partial x^2} &= \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \left(\frac{x^2}{\sigma^3} - \frac{1}{\sigma}\right) \\ \frac{\partial^2 G}{\partial x^2} &= G(x,y) \left(\frac{x^2}{\sigma^3} - \frac{1}{\sigma}\right) \end{split}$$

Similarly for
$$\frac{\partial^2 G}{\partial y^2}$$

$$\frac{\partial^2 G}{\partial y^2} = \frac{1}{2\pi\sigma^2} e^{-\frac{y^2 + x^2}{2\sigma^2}} \left(\frac{y^2}{\sigma^3} - \frac{1}{\sigma}\right)$$

$$\frac{\partial^2 G}{\partial y^2} = G(x, y) \left(\frac{y^2}{\sigma^3} - \frac{1}{\sigma}\right)$$

We know that the Gaussian kernel is separable, and that is being multiplied by a function of the respective varible. So, the derivatives of the Guassian kernel are separable.

To speed up the computation of the LoG kernel we can use:

$$\nabla^2 G \approx \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}$$

Where we can calculate the first and second derivatives from their separable forms.

1.9 i

```
close
noise=imread("/home/Baley/UTAS/ENG204 - Signals And Linear Systems/Assignment
→ 1.3/Pic/image_1_noise.jpg");
noise = double(noise);
noise = uint8(255 * (noise - min(noise(:))) / (max(noise(:)) - min(noise(:))));
output=conv2(noise,LoGFilter,'same');
imshow(output,[]);
output = double(output);
output = uint8(255 * (output - min(output(:))) / (max(output(:)) - min(output(:))));
Threshold = 150;
EdgeDetect = output < Threshold;</pre>
subplot(1, 2, 1);
imshow(output,[]);
title('LoG');
subplot(1, 2, 2);
imshow(EdgeDetect,[]);
title('Edge Detect');
imwrite(EdgeDetect, 'ENG204-Assignment-3-i-EdgeDetect.png');
imwrite(output, 'ENG204-Assignment-3-i-LoG.png');
```

The LoG image:

The new edge detect image:

1.10 j

To do this we will get an edge detect of the image and then add it back onto the original image. How ever, as mentioned before the noise in the image will make it look bad, so first we are going to apply the Gaussian filter and then the edge detect.

```
clear
clc
close
pkg load symbolic
sigma=3; % Filter size
size=ceil(6*sigma);
Gx = Q(x) (1/(sqrt(2*pi*sigma^2))) * exp(-1 * (x.^2) / (2 * sigma^2));
Gy = Q(y) (1/(sqrt(2*pi*sigma^2))) * exp(-1 * (y.^2) / (2 * sigma^2));
GxFilter=zeros(size,1);
GyFilter=zeros(1,size);
for xCoord = -size/2:size/2
 Gxval=Gx(xCoord);
  GxFilter(size/2+xCoord+1,1)=double(Gxval);
for vCoord = -size/2:size/2
  Gyval=Gy(yCoord);
  GyFilter(1,size/2+yCoord+1)=double(Gyval);
GxFilter=(GxFilter - min(GxFilter(:))) / (max(GxFilter(:)) - min(GxFilter(:)));
GyFilter=(GyFilter - min(GyFilter(:))) / (max(GyFilter(:)) - min(GyFilter(:)));
LFilter=[0, 1, 0;
        1,-4, 1;
0, 1, 0];
```

```
close
noise=imread("/home/Baley/UTAS/ENG204 - Signals And Linear Systems/Assignment
→ 1.3/Pic/image_5_noise.jpg");
noise = double(noise);
noise = uint8(255 * (noise - min(noise(:))) / (max(noise(:)) - min(noise(:))));
Blur1=conv2(noise,GxFilter,'same');
Blur=conv2(Blur1,GyFilter,'same');
Edge=conv2(Blur, LFilter, 'same');
output=noise-2*Edge;
subplot(1, 4, 1);
imshow(output, []);
title('Sharpened');
subplot(1, 4, 2);
imshow(Edge, []);
title('Edge');
subplot(1, 4, 3);
imshow(Blur, []);
title('Blur');
subplot(1, 4, 4);
```

```
imshow(noise, []);
title('Original');

imwrite(output, 'ENG204-Assignment-3-Sharpened.png');
imwrite(Edge, 'ENG204-Assignment-3-Edge.png');
imwrite(Blur, 'ENG204-Assignment-3-Blur.png');
imwrite(noise, 'ENG204-Assignment-3-Original.png');
```

Here is the original image:

Here is the sharpened image:

