DISPERSION - A SURVEY

@ Intro:

B = set of axis parallel boxes in To, 17d = \(\int_{\alpha_1}^{\alpha_1} \bar{\alpha_2} \\ \alpha_1 \\ \alpha_2 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \\ \alp

disp (3) = sup { 181: B&D, Bn7 = 03 · disp (n, d) = inf { disp (P) : # P1 = n}

 $= N(\epsilon, d) = \min_{n \in \mathbb{N}} \left\{ n : disp(n, d) \leq \epsilon \right\}$

die selling $\widetilde{\mathcal{B}}$, $\widetilde{\mathcal{A}}_{ip}(3_n)$, $\widetilde{\mathcal{A}}_{ip}(u,d)$ $\widetilde{\mathcal{N}}(\varepsilon,d)$ $\widetilde{\mathcal{A}}_{isp} \geq d_{isp}$, $\widetilde{\mathcal{N}} \geq \mathcal{N}$ · periodic selling

$$disp (1, d) = \frac{1}{2}$$

disp
$$(1, d) = \frac{1}{2}$$
 $W(\varepsilon, d) = 1$ if $\varepsilon \ge \frac{1}{2}$

· lower bound for discrepancy.

for N(E, d) EL] 1dilililated posses in IO, 17d. 3 [HKKR] max (= h(=), 5-covers Tink Collection 18120