Analysis 2 Examples

Jil Zerndt May 2024

Partielle Integration -

$$\begin{split} \int \ln(x) \cdot x^2 \, \, \mathrm{d}x &= \ln(x) \cdot \frac{x^3}{3} - \int \frac{1}{x} \cdot \frac{x^3}{3} \, \, \mathrm{d}x \\ &= \ln(x) \cdot \frac{x^3}{3} - \int \frac{x^2}{3} \, \, \mathrm{d}x \\ &= \ln(x) \cdot \frac{x^3}{3} - \frac{x^3}{9} + C \quad (C \in \mathbb{R}) \end{split}$$

Mit einer ersten partiellen Integration erhält man

$$\int x^2 \cdot e^{-x} \, dx = x^2 \cdot \left(-e^{-x} \right) - \int 2x \cdot \left(-e^{-x} \right) dx = -x^2 \cdot e^{-x} + 2 \int x \cdot e^{-x} \, dx$$

Eine zweite partielle Integration ergibt

$$\int x \cdot e^{-x} \, dx = x \cdot \left(-e^{-x} \right) - \int 1 \cdot \left(-e^{-x} \right) dx = -x \cdot e^{-x} - e^{-x} + C$$

Insgesamt ergibt sich

$$\int x^2 \cdot e^{-x} \, dx = -x^2 \cdot e^{-x} - 2x \cdot e^{-x} - 2e^{-x} + C = -\left(x^2 + 2x + 2\right) \cdot e^{-x} + C$$

Wir integrieren zweimal partiell und erhalten:

$$\int e^{3x} \cdot (x^2 + 7) dx = \frac{1}{3} e^{3x} (x^2 + 7) - \int \frac{1}{3} e^{3x} \cdot 2x dx$$

$$= \frac{1}{3} e^{3x} (x^2 + 7) - \left(\frac{1}{9} e^{3x} \cdot 2x - \int \frac{1}{9} e^{3x} \cdot 2 dx\right)$$

$$= \frac{1}{3} e^{3x} (x^2 + 7) - \frac{1}{9} e^{3x} \cdot 2x + \frac{2}{27} e^{3x} + C$$

$$= \frac{1}{3} e^{3x} \left(x^2 - \frac{2}{3}x + \frac{65}{9}\right) + C$$

Eine erste partielle Integration ergibt

$$\int e^{x} \cdot \cos(x) dx = e^{x} \cdot \sin(x) - \int e^{x} \cdot \sin(x) dx$$

Eine weitere partielle Integration ergibt

$$\int e^x \sin(x) dx = e^x \cdot (-\cos(x)) - \int e^x \cdot (-\cos(x)) dx$$

Damit erhalten wir insgesamt

$$\int e^x \cdot \cos(x) dx = e^x \cdot \sin(x) + e^x \cdot \cos(x) - \int e^x \cdot \cos(x) dx$$

Dies ist eine Gleichung, die nach dem gesuchten Integral aufgelöst werden kann, und man erhält

$$\int e^x \cdot \cos(x) dx = \frac{1}{2} e^x \cdot (\sin(x) + \cos(x)) + C$$

a. Wir erhalten mit der Formel $\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$

$$\int_0^{\pi} \sin^2(x) dx = \int_0^{\pi} \left(\frac{1}{2} (1 - \cos(2x)) \right) dx = \left(\frac{x}{2} - \frac{1}{4} \sin(2x) \right) \Big|_0^{\pi} = \frac{\pi}{2}$$

b. Wir integrieren zuerst partiell:

$$\int_0^{\pi} \sin^2(x) dx = -\cos(x) \sin(x) \Big|_0^{\pi} + \int_0^{\pi} \cos^2(x) dx = \int_0^{\pi} \cos^2(x) dx$$

Einsetzen von $\cos^2(x) = 1 - \sin^2(x)$ führt dann zu

$$\int_0^{\pi} \sin^2(x) dx = \int_0^{\pi} \cos^2(x) dx = \int_0^{\pi} \left(1 - \sin^2(x)\right) dx = \pi - \int_0^{\pi} \sin^2(x) dx$$

Dies ist eine Gleichung, die nach dem gesuchten Integral aufgelöst werden kann, und man erhält

$$\int_0^\pi \sin^2(x) \mathrm{d}x = \frac{\pi}{2}$$

Substitution -

$$\int x^2 \cdot \sqrt{1 + x^3} \, \mathrm{d}x$$

Substitution: $u(x) = 1 + x^3$, $\frac{du}{dx} = 3x^2$, $dx = \frac{du}{3x^2}$. Berechnung:

$$\int x^2 \cdot \sqrt{1+x^3} \, dx = \int x^2 \cdot \sqrt{u} \cdot \frac{du}{3x^2} = \int \frac{1}{3} \cdot u^{\frac{1}{2}} \, du = \frac{1}{3} \cdot \frac{u^{3/2}}{3/2} + C$$
$$= \frac{2}{9} \cdot \sqrt{(1+x^3)^3} + C$$

$$\int \frac{1}{\sqrt[3]{1-t}} \, \mathrm{d}t$$

Substitution: $u(t)=1-t, \frac{\mathrm{d}u}{\mathrm{d}t}=-1, \ \mathrm{d}t=-\mathrm{d}u.$ Berechnung:

$$\int \frac{1}{\sqrt[3]{1-t}} dt = \int \left(-u^{-1/3}\right) du = -\frac{3}{2} \cdot u^{2/3} + C = -\frac{3}{2} \cdot \sqrt[3]{(1-t)^2} + C$$

$$\int \frac{\mathrm{d}z}{z \cdot \ln(z)}$$

Substitution: $u(z) = \ln(z)$, $\frac{du}{dz} = \frac{1}{z}$, $dz = z \cdot du$. Berechnung:

$$\int \frac{\mathrm{d}z}{z \cdot \ln(z)} = \int \frac{z \cdot \mathrm{d}u}{z \cdot u} = \int \frac{\mathrm{d}u}{u} = \ln(|u|) + C = \ln(|\ln z|) + C$$

$$\int_0^{\pi} \cos^3(x) \cdot \sin(x) \mathrm{d}x$$

Substitution: $u(x) = \cos(x), \frac{du}{dx} = -\sin(x)$. Berechnung

$$\int_0^{\pi} \cos^3(x) \cdot \sin(x) dx = \int_1^{-1} \left(-u^3 \right) du = \int_{-1}^1 u^3 du = \left[\frac{u^4}{4} \right]_{-1}^1 = 0$$

$$\int_0^1 \frac{\arctan(z)}{1+z^2} dz$$

Substitution: $u(z) = \arctan(z), \frac{du}{dz} = \frac{1}{1+z^2}$. Berechnung:

$$\int_0^1 \frac{\arctan(z)}{1+z^2} dz = \int_0^{\pi/4} u du = \left[\frac{u^2}{2} \right]_0^{\pi/4} = \frac{(\pi/4)^2}{2} = \frac{\pi^2}{32}$$

Partialbruchzerlegung -

Berechnen Sie das unbestimmte Integral

$$\int \frac{2x+4}{x^2+4x-21} \, \mathrm{d}x$$

durch Partialbruchzerlegung und Substitution

Partialbruchzerlegung: Die Nullstellen von $x^2 + 4x - 21$ sind $x_1 = -7$ und $x_2 = 3$, also haben wir den Ansatz

$$\frac{2x+4}{x^2+4x-21} = \frac{A}{x+7} + \frac{B}{x-3}$$

Daraus ergibt sich die Bedingung A(x-3)+B(x+7)=2x+4, und durch Einsetzen von x=3 und x=-7 erhalten wir dann A=B=1. Die gesuchte Partialbruchzerlegung ist also

$$\frac{2x+4}{x^2+4x-21} = \frac{1}{x+7} + \frac{1}{x-3}$$

Wir können jetzt integrieren und erhalten

$$\int \frac{2x+4}{x^2+4x-21} dx = \int \frac{1}{x+7} dx + \int \frac{1}{x-3} dx$$

$$= \ln|x+7| + \ln|x-3| + C$$

$$= \ln|(x+7)(x-3)| + C$$

$$= \ln|x^2+4x-21| + C$$

Substitution $u = x^2 + 4x - 21$, mit du = (2x + 4)dx bzw. $dx = \frac{du}{2x+4}$ führt auf

$$\int \frac{2x+4}{x^2+4x-21} \; \mathrm{d}x = \int \frac{2x+4}{u} \frac{\mathrm{d}u}{2x+4} = \int \frac{\mathrm{d}u}{u} = \ln|u| + C$$

Rücksubstitution ergibt

$$\ln|u| + C = \ln|x^2 + 4x - 21| + C$$

also insgesamt

$$\int \frac{2x+4}{x^2+4x-21} \, \mathrm{d}x = \ln \left| x^2 + 4x - 21 \right| + C$$

$$\int \frac{5x+11}{x^2+3x-10} \, \mathrm{d}x$$

Ansatz: $\frac{5x+11}{x^2+3x-10} = \frac{A}{x-2} + \frac{B}{x+5} \Rightarrow 5x+11 = A(x+5) + B(x-2)$ Bestimmung von A und B: x=2 einsetzen $\Rightarrow A=3; \quad x=-5$ einsetzen $\Rightarrow B=2$ Berechnung des Integrals:

$$\int \frac{5x+11}{x^2+3x-10} dx = \int \frac{3}{x-2} + \frac{2}{x+5} dx$$
$$= 3 \cdot \ln(|x-2|) + 2 \cdot \ln(|x+5|) + C$$

$$\int \frac{-9-y}{y^2-2y-24} \, \mathrm{d}y$$

Ansatz: $\frac{-9-y}{y^2-2y-24} = \frac{A}{y-6} + \frac{B}{y+4} \Rightarrow -9-y = A(y+4) + B(y-6)$ Bestimmung von A und B: y=6 einsetzen $\Rightarrow A=-1.5; \quad y=-4$ einsetzen $\Rightarrow B=0.5$ Berechnung des Integrals:

$$\int \frac{-9 - y}{y^2 - 2y - 24} \, dy = \int \frac{-1.5}{y - 6} + \frac{0.5}{y + 4} \, dy$$
$$= -1.5 \cdot \ln(|y - 6|) + 0.5 \cdot \ln(|y + 4|) + C$$

Uneigentliche Integrale

Berechnen Sie den Flächeninhalt, den die Kurven der drei Funktionen $y=e^{ax}, y=e^{-bx}$ und y=0 miteinander einschliessen (a>0,b>0). Die gesuchte Fläche ist

$$A = \int_{-\infty}^{0} e^{ax} dx + \int_{0}^{\infty} e^{-bx} dx = \frac{1}{a} + \frac{1}{b}$$

Sei a > 0 gegeben.

a. Für welches $c \in \mathbb{R}$ gilt

$$\int_{a}^{\infty} e^{-ax} \, \mathrm{d}x = 1?$$

b. Für welches $c \in \mathbb{R}$ gilt

$$\int_{-\infty}^{c} e^{ax} \, \mathrm{d}x = 2 \quad ?$$

a. Berechnung des uneigentlichen Integrals:

$$\int_{c}^{\infty} e^{-ax} dx = \lim_{\lambda \to \infty} \left(\int_{c}^{\lambda} e^{-ax} dx \right) = \lim_{\lambda \to \infty} \left(\frac{1}{a} \left(-e^{-a\lambda} + e^{-ac} \right) \right) = \frac{1}{a} e^{-ac}$$

Aus der Forderung $\int_c^\infty e^{-ax} \, \mathrm{d}x = 1$ ergibt sich also die Gleichung $\frac{1}{c}e^{-ac} = 1$, aufgelöst nach c erhalten wir die Lösung

$$c = -\frac{\ln(a)}{a}$$

b. Berechnung des uneigentlichen Integrals:

$$\int_{-\infty}^{c} e^{-ax} dx = \lim_{\lambda \to -\infty} \left(\int_{\lambda}^{c} e^{ax} dx \right) = \lim_{\lambda \to -\infty} \left(\frac{1}{a} \left(e^{ac} - e^{a\lambda} \right) \right) = \frac{1}{a} e^{ac}$$

Aus der Forderung $\int_{-\infty}^{c} e^{ax} dx = 2$ ergibt sich also die Gleichung $\frac{1}{2}e^{ac} = 2$, aufgelöst nach c erhalten wir die Lösung

$$c = \frac{\ln(2a)}{a}$$

Die Engelstrompete entsteht durch Rotation der Kurve von $f(x) = \frac{1}{x}$ um die x-Achse im Intervall $I = [1, \infty)$, d.h. es handelt sich um einen üneigentlichen Rotationskörper".

- a. Berechnen Sie das Volumen der Engelstrompete.
- b. Stellen Sie die Mantelfläche der Engelstrompete als Integral dar.
- a. Volumen des Rotationskörpers:

$$V = \pi \int_1^\infty \left(\frac{1}{x}\right)^2 dx = \pi \int_1^\infty \frac{1}{x^2} dx = \pi$$

b. Mantelfäche des Rotationskörpers

$$M = 2\pi \int_1^\infty \frac{1}{x} \sqrt{1 + \frac{1}{x^4}} \, \mathrm{d}x$$

Es kann durch einen Vergleich mit einem einfacheren Integral gezeigt werden, dass die Mantelfläche divergent ist:

$$M = 2\pi \int_1^\infty \frac{1}{x} \underbrace{\sqrt{1 + \frac{1}{x^4}}}_{1} dx > 2\pi \int_1^\infty \frac{1}{x} dx = \infty$$

Hier wird also ein endliches Volumen von einer unendlichen Fläche umschlossen!

Bestimmen Sie die gesamte Fläche, die die Kurve der Funktion

$$y = \frac{2}{x(x+1)}$$

mit der x-Achse über dem Intervall $[1, \infty)$ einschliesst.

Partialbruchzerlegung der gegebenen Funktion: $\frac{2}{x(x+1)} = \frac{2}{x} - \frac{2}{x+1}$. Berechnung der gesuchten Fläche:

$$A = \int_{1}^{\infty} \left(\frac{2}{x} - \frac{2}{x+1}\right) dx$$

$$= \lim_{\lambda \to \infty} \left(\int_{1}^{\lambda} \left(\frac{2}{x} - \frac{2}{x+1}\right) dx\right)$$

$$= 2 \cdot \lim_{\lambda \to \infty} \left(\ln\left(\frac{x}{x+1}\right)\Big|_{1}^{\lambda}\right)$$

$$= 2 \cdot \lim_{\lambda \to \infty} \left(\ln\left(\frac{\lambda}{\lambda+1}\right) - \ln\left(\frac{1}{2}\right)\right)$$

$$= 2 \cdot \ln(2)$$

$$\approx 1.38629$$

Bemerkung: Die Fläche kann nicht als $A=\int_1^\infty \frac{2}{x} \;\mathrm{d}x - \int_1^\infty \frac{2}{x+1} \;\mathrm{d}x$ berechnet werden, da diese Teilintegrale beide divergent sind.

Bestimmen Sie die gesamte Fläche, die die Kurve der Funktion

$$y = (x - 1) \cdot e^{-x}$$

mit der x-Achse über dem Intervall $[0,\infty)$ einschliesst. Hinweis: Es gilt $\lim_{\lambda\to\infty}\lambda e^{-\lambda}=0$.

Die Funktion f(x) hat im Intervall $[0,\infty)$ bei x=1 eine Nullstelle. Deshalb zerfällt die gesuchte Fläche in zwei Teilflächen, welche separat berechnet werden müssen, nämlich

$$A = \left| \int_0^1 (x - 1)e^{-x} \, dx \right| + \left| \int_1^\infty (x - 1)e^{-x} \, dx \right|$$

Das unbestimmte Integral von f(x) ist (partielle Integration):

$$\int (x-1)e^{-x} dx = -(x-1)e^{-x} - \int (-e^{-x}) dx = -(x-1)e^{-x} \int e^{-x} dx$$
$$= -(x-1)e^{-x} - e^{-x} + C = -xe^{-x} + C$$

Berechnung der Teilintegrale:

$$\int_{0}^{1} (x-1)e^{-x} dx = -xe^{-x} \Big|_{0}^{1} = -\frac{1}{e}$$

$$\int_{1}^{\infty} (x-1)e^{-x} dx = \lim_{\lambda \to \infty} \left(\int_{1}^{\lambda} (x-1)e^{-x} dx \right) = \lim_{\lambda \to \infty} \left(\left(-xe^{-x} \right) \Big|_{1}^{\lambda} \right) =$$

Es gilt $\lim_{\lambda\to\infty}\lambda e^{-\lambda}=0$ (vgl. Hinweis). Also folgt $\int_1^\infty (x-1)e^{-x}\ \mathrm{d}x=\frac{1}{e}$. Insgesamt ist also die gesuchte Fläche

$$A = \left| -\frac{1}{e} \right| + \left| \frac{1}{e} \right| = 2 \cdot \frac{1}{e} = \frac{2}{e} \approx 0.7358$$

Taylorreihen -

Bestimmen Sie das Taylorpolynom 4. Ordnung $p_4(x)$ der Funktion

$$f(x) = \frac{1}{\sqrt{x}}$$

um das Entwicklungszentrum $x_0 = 1$

Die Ableitungen von f(x) bis zur Ordnung 4 sind

$$f(x) = x^{-1/2}, f'(x) = -\frac{1}{2}x^{-3/2}, f''(x) = \frac{3}{4}x^{-5/2},$$
$$f^{(3)}(x) = -\frac{15}{9}x^{-7/2}, f^{(4)}(x) = \frac{105}{16}x^{-9/2}$$

Ausgewertet an der Stelle $x_0 = 1$:

$$f(1) = 1, f'(1) = -\frac{1}{2}, f''(1) = \frac{3}{4}, f^{(3)}(1) = -\frac{15}{8}, f^{(4)} = \frac{105}{16}$$

Also ist das gesuchte Taylor-Polynom $p_4(x)$: $p_4(x) = \frac{1}{0!} + \frac{-1/2}{1!}(x-1) + \frac{3/4}{2!}(x-1)^2 + \frac{-15/8}{3!}(x-1)^3 + \frac{105/16}{4!}(x-1)^4$ $= 1 - \frac{1}{2}(x-1) + \frac{3}{8}(x-1)^2 - \frac{5}{16}(x-1)^3 + \frac{35}{128}(x-1)^4$

Bestimmen Sie das Taylorpolynom 2. Ordnung

$$f(x) = x \cdot \ln(x)$$

um das Entwicklungszentrum $x_0 = e$.

Die Ableitungen von f(x) bis zur Ordnung 2 sind

$$f(x) = x \cdot \ln(x), f'(x) = \ln(x) + 1, f''(x) = \frac{1}{x}$$

Ausgewertet an der Stelle $x_0 = e$:

$$f(e) = e, f'(e) = 2, f''(e) = \frac{1}{e}$$

Also ist das gesuchte Taylor-Polynom:

$$p_2(x) = \frac{e}{0!} + \frac{2}{1!}(x - e) + \frac{1/e}{2!}(x - e)^2 = e + 2(x - e) + \frac{1}{2e}(x - e)^2$$
$$f(x) = \frac{1}{1 - \sin(x)}$$

soll in der Umgebung von $x_0 = 0$ durch eine Parabel (d.h. ein Polynom 2. Ordnung) ersetzt werden. Berechnen Sie dieses Näherungspolynom $p_2(x)$ und vergleichen Sie die Werte von f(x) und $p_2(x)$ an der Stelle x = 0.2.

Die Ableitungen von f(x) bis zur Ordnung 2 sind

$$f(x) = \frac{1}{1 - \sin(x)}, f'(x) = \frac{\cos(x)}{(1 - \sin(x))^2}$$
$$f''(x) = \frac{-\sin(x)(1 - \sin(x)) + 2\cos^2(x)}{(1 - \sin(x))^3}$$

Ausgewertet an der Stelle $x_0 = 0$:

$$f(0) = 1, f'(0) = 1, f''(0) = 2.$$

Also ist das gesuchte Taylor-Polynom:

$$p_2(x) = \frac{1}{0!} + \frac{1}{1!}x + \frac{2}{2!}x^2 = 1 + x + x^2$$

Vergleich der Funktionswerte: $f(0.2) \approx 1.2479, p_2(0.2) = 1.24.$

Taylorreihe $t_f(x)$ von $f(x) = -\ln(1-x)$ an der Stelle $x_0 = 0$.

$$t_f(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots = \sum_{k=1}^{\infty} \frac{x^k}{k}$$

Taylorreihe $t_g(x)$ von $g(x) = \frac{1}{1-x}$ an der Stelle $x_0 = 0$.

$$t_g(x) = 1 + x + x^2 + \dots = \sum_{k=0}^{\infty} x^k$$

Bestimmen Sie das Taylorpolynom 4. Ordnung an der Stelle $x_0=0$ der Funktion $y=\cos^2(x)$

a. Formel für die Taylorkoeffizienten

b. Taylorreihe für $\cos(x)$ als Ausgangspunkt nehmen und quadrieren, d.h. von dem Produkt

$$\cos^{2}(x) = \left(1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} \mp \dots\right) \left(1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} \mp \dots\right)$$

genügend viele Terme ausmultiplizieren.

a. Die Ableitungen von $y=\cos^2(x)$ sind $y'=-2\cos(x)\sin(x)=-\sin(2x), \quad y''=-2\cos(2x), \quad y^{(3)}=4\sin(2x), \quad y^{(4)}=8\cos(2x)$ Also

$$a_0 = 1$$
, $a_1 = 0$, $a_2 = \frac{-2}{2!} = -1$, $a_3 = 0$, $a_4 = \frac{8}{4!} = \frac{1}{3}$

Das gesuchte Taylorpolynom ist also $p_4(x) = 1 - x^2 + \frac{x^4}{3}$ b. Ausmultiplizieren liefert

$$\left(1 - \frac{x^2}{2} + \frac{x^4}{24} \mp \dots\right) \left(1 - \frac{x^2}{2} + \frac{x^4}{24} \mp \dots\right)$$
$$= 1 + \frac{x^4}{4} + \dots - 2 \cdot \frac{x^2}{2} + 2 \cdot \frac{x^4}{24} \pm \dots = 1 - x^2 + \frac{x^4}{3} \mp$$

Daraus folgt ebenfalls $p_4(x) = 1 - x^2 + \frac{x^4}{3}$

Bestimmen Sie das Taylorpolynom 4. Ordnung an der Stelle $x_0=0$ der Funktion $y=\cos\left(x^2\right)$

a. Formel für die Taylorkoeffizienten

b. Taylorreihe für $f(u)=\cos(u)$ als Ausgangspunkt, die Substitution $u=x^2$

a. Die Ableitungen von $y = \cos(x^2)$ sind

$$y' = -2x\sin\left(x^2\right), \quad y'' = -2\sin\left(x^2\right) - 4x^2\cos\left(x^2\right),$$
$$y^{(3)} = -12x\cos\left(x^2\right) + 8x^3\sin\left(x^2\right)$$

$$y^{(4)} = -12\cos(x^2) + 48x^2\sin(x^2) + 16x^4\cos(x^2)$$

Also $a_0 = 1$, $a_1 = 0$, $a_2 = 0$, $a_3 = 0$, $a_4 = \frac{-12}{4!} = -\frac{1}{2}$ Das gesuchte Taylorpolynom ist also $p_4(x) = 1 - \frac{x^4}{2}$

b. Die (bekannte) Taylorreihe von $f(u) = \cos(u)$ ist

$$t_{\cos}(u) = 1 - \frac{u^2}{2} + \frac{u^4}{4!} \mp \dots$$

Einsetzen von $u=x^2$ und Abbrechen nach dem Term 4. Ordnung liefert $p_4(x)=1-\frac{x^4}{2}$

Wir betrachten die Funktion

$$f(x) = \frac{1}{1-2x}$$

a. Bestimmen Sie die Taylorreihe von f(x) um $x_0=0$, indem Sie die Formel für die Taylor
Koeffizienten verwenden.

b. Bestätigen Sie das Resultat von a., indem Sie die Summenformel der unendlichen geometrischen Reihe auf den Funktionsausdruck anwenden.

a. Die Ableitungen von $f(x) = \frac{1}{1-2x}$ sind

$$f(x) = \frac{1}{1 - 2x}, f'(x) = \frac{2}{(1 - 2x)^2}, f''(x) = \frac{8}{(1 - 2x)^3},$$
$$\dots, f^{(k)}(x) = \frac{k!2^k}{(1 - 2x)^{k+1}}$$

An der Stelle $x_0=0$: $f^{(k)}(0)=k!2^k$, also $a_k=\frac{f^{(k)}(0)}{k!}=2^k$. Die Taylorreihe von f(x) an der Stelle $x_0=0$ ist also

$$t_f(x) = 1 + 2x + 4x^2 + 8x^3 + \dots = \sum_{k=0}^{\infty} 2^k x^k$$

b. Aus der Summenformel der unendlichen geometrischen Reihe, nämlich

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q} \quad \text{für } |q| < 1$$

folgt, angewendet für q=2x, dieselbe Reihe wie bei a.

Bestimmen Sie die positive Lösung der Gleichung $\cos(x)=2x^2$ näherungsweise durch Approximation von $\cos(x)$ durch

a. das Taylorpolynom 2. Ordnung an der Stelle $x_0 = 0$,

b. das Taylorpolynom 4. Ordnung an der Stelle $x_0 = 0$.

a. Taylorpolynom 2. Ordnung von $f(x)=\cos(x)$ an der Stelle $x_0=0$: $p_2(x)=1-\frac{x^2}{2}$. Also erhalten wir die Gleichung

$$1 - \frac{x^2}{2} = 2x^2$$

Positive Lösung dieser Gleichung:

$$x = \sqrt{\frac{2}{5}} \approx 0.6325$$

b. Taylorpolynom 4. Ordnung von $f(x)=\cos(x)$ an der Stelle $x_0=0$: $p_2(x)=1-\frac{x^2}{2}+\frac{x^4}{24}$. Also erhalten wir die Gleichung

$$1 - \frac{x^2}{2} + \frac{x^4}{24} = 2x^2$$

bzw.

$$x^4 - 60x^2 + 24 = 0$$

Positive Lösungen dieser Gleichung (biquadratische Gleichung; mit Substitution $u=x^2$ lösen): $x_{1,2}=\sqrt{30\pm\sqrt{876}}$; wir brauchen hier x_2 , d.h.

$$x = \sqrt{30 - \sqrt{876}} \approx 0.6345$$

$$f(x) = \left(1 + e^x\right)^2$$

a. Bestimmen Sie das Taylorpolynom 3. Ordnung $p_3(x)$ der Funktion f(x) um das Entwicklungszentrum $x_0=0$.

b. Welchen Näherungswert erhält man mit $p_3(x)$ für den Funktionswert an der Stelle x=0.2? Bestimmen Sie auch die Abweichung vom exakten Funktionswert

a. Mit Hilfe der Kettenregel berechnet man - f(0) = 4 - $f'(0) = 2\left(e^x + e^{2x}\right)\Big|_{x=0} = 4$ - $f''(0) = 2\left(e^x + 2e^{2x}\right)\Big|_{x=0} = 6$ - $f'''(0) = 2\left(e^x + 4e^{2x}\right)\Big|_{x=0} = 10$ Daraus folgt

$$p_3(x) = 4 + 4x + 3x^2 + \frac{5}{3}x^3$$

b. Man berechnet

$$f(0.2) - p_3(0.2) \approx 0.0013$$

Lösen Sie die Gleichung

$$\frac{1}{2} \left(e^x + e^{-x} \right) = 4 - x^2$$

näherungsweise durch Entwicklung von $\frac{1}{2}\left(e^x+e^{-x}\right)$ in ein Taylorpolynom 4. Ordnung bei $x_0=0$.

Mit Hilfe der Taylorreihe

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

um 0 erhält man $\frac{1}{2} \left(e^x + e^{-x} \right)$

$$=\frac{1}{2}\left(1+1+x-x+\frac{1}{2}x^2+\frac{1}{2}x^2+\frac{1}{6}x^3-\frac{1}{6}x^3+\frac{1}{24}x^4+\frac{1}{24}x^4+\ldots\right)$$

und somit ist das Taylorpolynom 4. Ordnung p_4 der Funktion $\frac{1}{2}\left(e^x+e^{-x}\right)$ gegeben durch

$$p_4(x) = 1 + \frac{1}{2}x^2 + \frac{1}{24}x^4$$

Die Gleichung $p_4(x) = 4 - x^2$ ist also die biquadratische Gleichung

$$\frac{1}{24}x^4 + \frac{3}{2}x^2 - 3 = 0 \quad \Leftrightarrow \quad x^4 + 36x^2 - 72 = 0$$

Mit der Substitution $u=x^2$ erhält man mit Hilfe der Auflösungsformel für quadratische Gleichungen

$$u_{\pm} = \frac{-36 \pm \sqrt{1584}}{2} = -18 \pm 6\sqrt{11}$$

Da nur $u_{+}>0$, folgt für die Näherungslösung x_{\pm} der Gleichung

$$x_{\pm} = \pm \sqrt{6\sqrt{11} - 18}$$

Berechnen Sie das Integral

$$\int_{0}^{0.3} \sqrt{1 + x^2} \, dx$$

durch Entwicklung des Integranden in ein Taylorpolynom 6. Ordnung bei $x_0 = 0$ und gliedweise Integration.

Hinweis: Finden Sie zuerst ein geeignetes Taylorpolynom von $\sqrt{1+x}$ und ersetzen Sie dann x durch x^2 .

Das Taylorpolynom 3. Ordnung p_3 der Funktion $\sqrt{1+x}$ um 0 ist gegeben durch

$$p_3(x) = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3$$

Diese Formel findet man beispielsweise in einer Formelsammlung. Somit ist das Taylorpolynom 6. Ordnung der Funktion $\sqrt{1+x^2}$ gegeben durch

$$p_3\left(x^2\right) = 1 + \frac{1}{2}x^2 - \frac{1}{8}x^4 + \frac{1}{16}x^6$$

Wir berechnen den Näherungswert des gegebenen Integrals

$$\int_0^{0.3} \sqrt{1+x^2} dx \approx \int_0^{0.3} dx + \frac{1}{2} \int_0^{0.3} x^2 dx - \frac{1}{8} \int_0^{0.3} x^4 dx + \frac{1}{16} \int_0^{0.3} x^6 dx$$
$$= 0.3 + \frac{1}{6} 0.3^3 - \frac{1}{40} 0.3^5 + \frac{1}{112} 0.3^7$$
$$\approx 0.304441$$

Berechnen Sie das Integral

$$\int_0^{0.5} \frac{1}{2} \left(e^{\sqrt{x}} + e^{-\sqrt{x}} \right) dx$$

durch Entwicklung des Integranden in ein Taylorpolynom 3. Ordnung bei $x_0=0$ und gliedweise Integration.

Hinweis: Finden Sie zuerst ein geeignetes Taylorpolynom von $\frac{1}{2}\left(e^x+e^{-x}\right)$ und ersetzen Sie dann x durch \sqrt{x} .

Mit Hilfe der Aufgabe 2 ergibt für sich das Taylorpolynom 6. Ordnung p_6 der Funktion $\frac{1}{2}\left(e^x+e^{-x}\right)$ um 0

$$p_6(x) = 1 + \frac{1}{2}x^2 + \frac{1}{24}x^4 + \frac{1}{720}x^6$$

Somit ist das Taylorpolynom 3. Ordnung der Funktion $\frac{1}{2}\left(e^{\sqrt{x}}+e^{-\sqrt{x}}\right)$ um 0 gegeben durch

$$p_6(\sqrt{x}) = 1 + \frac{1}{2}x + \frac{1}{24}x^2 + \frac{1}{720}x^3$$

Wir erhalten schliesslich $\int_0^{0.5} \frac{1}{2} \left(e^{\sqrt{x}} + e^{-\sqrt{x}}\right) dx \approx \int_0^{0.5} \left(1 + \frac{1}{2}x + \frac{1}{24}x^2 + \frac{1}{720}x^3\right) dx \approx 0.56426$

Potenzreihen

$$p(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots$$

- a. Bestimmen Sie die Ableitung p'(x) von p(x),indem Sie Term für Term ableiten.
- b. Schreiben Sie p'(x) in geschlossener Form (geometrische Reihe!).
- c. Integrieren Sie das bei b. erhaltene Resultat (mit p(0)=0), um einen geschlossenen Ausdruck für p(x) zu erhalten.
- a. Die Ableitung von p(x) ist

$$p'(x) = 1 - x^2 + x^4 - x^6 \pm \dots$$

b. Die bei a. erhaltene Reihendarstellung für p'(x) ist eine unendliche geometrische Reihe mit Summe

$$p'(x) = \frac{1}{1+x^2}$$
 (für $|x| \le 1$)

c. Wir integrieren das Resultat von b. unbestimmt und erhalten

$$p(x) = \int \frac{1}{1+x^2} dx = \arctan(x) + C$$

Einsetzen von p(0) = 0 liefert C = 0, also $p(x) = \arctan(x)$.

Konvergenzbereich von $p_1(x) = 1 + 2x + 3x^2 + 4x^3 + \dots$

Es gilt $a_k = k + 1$, also ist der Konvergenzradius:

$$\rho = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = \lim_{k \to \infty} \left| \frac{k+1}{k+2} \right| = \lim_{k \to \infty} \frac{1 + \frac{1}{k}}{1 + \frac{2}{k}} = 1$$

(Berechnung auch mit der Regel von Bernoulli-de l'Hospital möglich.) Verhalten am Rand des Konvergenzbereichs:

$$x = \rho = 1:1+2+3+4+5+\dots$$
: divergent $x = -\rho = -1:1-2+3-4+5\mp\dots$: divergent

Die Potenzreihe konvergiert also für

$$-1 < x < 1$$

Konvergenzbereich von $p_2(x) = 1 + \frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{8} + \dots$

Es gilt $a_k = \frac{1}{2^k}$, also ist der Konvergenzradius

$$\rho = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = \lim_{k \to \infty} \left| \frac{\frac{1}{2^k}}{\frac{1}{2^{k+1}}} \right| = \lim_{k \to \infty} \frac{2^{k+1}}{2^k} = \lim_{k \to \infty} (2) = 2$$

Verhalten am Rand des Konvergenzbereichs:

$$x = \rho = 2:1 + 1 + 1 + 1 + 1 + \dots$$
: divergent

$$x = -\rho = -2:1-1+1-1+1 \mp \dots$$
: divergent

Die Potenzreihe konvergiert also für

$$-2 < x < 2$$

Konvergenz von $p_3(x) = 1 + \frac{x}{4 \cdot 2} + \frac{x^2}{4^2 \cdot 3} + \frac{x^3}{4^3 \cdot 4} + \frac{x^4}{4^4 \cdot 5} + \dots$

Die Koeffizienten der gegebenen Potenzreihe sind $a_n=\frac{1}{4^n\cdot (n+1)}.$ Der Konvergenzradius ist also

$$\rho = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{4^{n+1} \cdot (n+2)}{4^n \cdot (n+1)} = \lim_{n \to \infty} 4 \cdot \left(1 + \frac{1}{n+1}\right) = 4 \cdot 1 = 4$$
 Verhalten am Rand des Konvergenzbereichs:

$$x = \rho = 4$$
: $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$: divergent $x = -\rho = -4$: $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$: konvergent

Die Potenzreihe konvergiert also für $-4 \le x < 4$

Wir betrachten die Binomialreihe für $\alpha \notin \mathbb{N}$ beliebig, d.h. die Taylorreihe der Funktion

$$f(x) = (1+x)^{\alpha}$$

für ein beliebiges $\alpha \notin \mathbb{N}$, und den Konvergenzradius ρ dieser Reihe.

- a. Empirisch sieht man, dass $\rho=1$ gelten muss. Bestätigen Sie dieses Ergebnis analytisch, indem Sie in die Formel für den Konvergenzradius einsetzen.
- b. Warum ist die bei a. durchgeführte Rechnung nicht gültig für den Fall $\alpha \in \mathbb{N}$?

a. Einsetzen von $a_n=\binom{\alpha}{n}=\frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!}$ in die Formel $\rho=\lim_{n\to\infty}\left|\frac{a_n}{a_n+1}\right|$:

(die letzte Tatsache kann man mit der Regel von Bernoulli-de l'Hospital oder anderen Überlegungen sehen).

b. Im Fall $\alpha \in \mathbb{N}$ ist $\binom{\alpha}{n} = 0$ für $\alpha > n$. Deshalb sind die in der Formel $\rho = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$ auftretenden Quotienten für grosse n alle von der Form $\frac{0}{0}$ und damit undefiniert.

Wir betrachten die Funktion $f(x) = \frac{1}{1-2x}$ Die Taylorreihe von f(x) um $x_0 = 0$ ist

$$t_f(x) = 1 + 2x + 4x^2 + 8x^3 + \dots = \sum_{k=0}^{\infty} 2^k x^k$$

- a. Bestimmen Sie den Konvergenzradius ρ dieser Reihe.
- b. Überlegen Sie sich, ob die Reihe auf dem Rand des Konvergenzbereichs konvergiert oder nicht (d.h. für $x=\rho$ und $x=-\rho$).
- a. Berechnung des Konvergenzradius:

$$\rho = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = \lim_{k \to \infty} \frac{2^k}{2^{k+1}} = \lim_{k \to \infty} \frac{1}{2} = \frac{1}{2}$$

b. Untersuchung des Verhaltens auf dem Rand des Konvergenzbereichs:

$$\begin{array}{ll} x=\rho=\frac{1}{2}: & 1+1+1+1+1+1+\ldots: \text{ divergent} \\ x=-\rho=-\frac{1}{2}: & 1-1+1-1+1\mp\ldots: \text{ divergent} \end{array}$$

Differentialgleichungen -

Ordnen Sie die folgenden Differentialgleichungen ihren jeweiligen Richtungsfeldern zu: a. y'=x-y b. y'=x-y+1 c. 2yy'=x d. yy'+x=0 e. y'x+y=0 f. $y'=e^{x-y}$

- a. Für Werte mit x = y ist die Steigung 0; rechts von diesen Wertepaaren ist die Steigung positiv, links davon ist sie negativ. \Rightarrow Bild (D).
- b. Die Steigung 0 wird für die Werte mit y=x+1 erreicht, ansonsten ist die Situation analog wie bei (a). \Rightarrow Bild (E)
- c. Umformen ergibt $y' = \frac{x}{2y}$. Für x = 0 und $y \neq 0$ ist die Steigung gleich 0; für y = 0 und $x \neq 0$ strebt die Steigung gegen ∞ . Für die restlichen Werte ist die Steigung ist genau dann positiv, wenn x und y beide das gleiche Vorzeichen haben. \Rightarrow Bild (C)
- d. Umformen ergibt $y'=-\frac{x}{y}$. Die Situation ist ähnlich wie bei (c), aber die Steigung ist jetzt genau dann positiv, wenn x und y verschiedene Vorzeichen haben. \Rightarrow Bild (A)
- e. Umformen ergibt $y'=-\frac{y}{x}$. Die Steigung ist 0 für die Werte auf der x-Achse mit $x\neq 0$, und sie gehen gegen unendlich für die Werte auf der y-Achse mit $y\neq 0$. \Rightarrow Bild (F)
- f. Für x=y ist die Steigung 1; wenn der x-Wert viel grösser als der y-Wert ist, dann wird die Steigung sehr gross, im umgekehrten Fall ist sie nahe bei $0.\Rightarrow$ Bild (B)

Wir betrachten das Anfangswertproblem

$$\begin{cases} y' = \sqrt{x+y} \\ y(1) = 1 \end{cases}$$

Bestimmen Sie approximativ y(1.2), d.h. den Wert der Lösungskurve an der Stelle x=1.2, durch 4 Schritte (von Hand) mit dem Euler-Verfahren, d.h. mit der Schrittweite h=0.05.

Vier Euler-Schritte mit h = 0.05, d.h. $x_0 = 1, x_1 = 1.05, x_2 = 1.1, x_3 = 1.15, x_4 = 1.2$, and $f(x, y) = \sqrt{x + y}$:

$$y_0 = 1$$

 $y_1 = y_0 + hf(x_0, y_0) \approx 1.07$
 $y_2 = y_1 + hf(x_1, y_1) \approx 1.1435$
 $y_3 = y_2 + hf(x_2, y_2) \approx 1.2184$

Insgesamt erhalten wir also die Approximation

$$y(1.2) \approx 1.2954$$

 $y_4 = y_3 + hf(x_3, y_3) \approx 1.2954$

Finden und klassifizieren Sie die konstanten Lösungen der folgenden Differentialgleichungen: (alles konstante Lösungen) a. $y'=y^2-1$ - $y_1=-1$: stabil - $y_2=1$: instabil

b.
$$y' = y^2 - y_1 = 0$$
 : semistabil
c. $y' = y^3 - y_1 = 0$: instabil
d. $y' = -y^3 - y_1 = 0$: stabil

Lösen Sie mit Separation der Variablen das AWP

$$\begin{cases} -\dot{N}(t) = k \cdot N(t) \\ N(0) = N_0 \end{cases}$$

des radioaktiven Zerfalls. Dabei ist N(t) die Konzentration zur Zeit t und N_0 die Konzentration zu Beginn.

Standardform der DGL: $\frac{\mathrm{d}N}{\mathrm{d}t} = -k \cdot N.$ Separation der Variablen:

$$\int \frac{\mathrm{d}N}{N} = -k \int \mathrm{d}t$$

also

$$ln |N| = -k(t+C) = -kt + \tilde{C}$$

Auflösen nach N:

$$N(t) = M \cdot e^{-kt} \quad (M \in \mathbb{R})$$

Einsetzen der Anfangsbedingung $N(0)=N_0$ ergibt $M=N_0,$ also ist die Lösung des AWPs

$$N(t) = N_0 \cdot e^{-kt}$$

Ein Körper besitzt zur Zeit t=0 die Temperatur T_0 und wird in der Folgezeit durch vorbeiströmende Luft der konstanten Temepratur T_L gekühlt ($T_L < T_0$). Der Abkühlungsprozess wird dabei durch die Differentialgleichung

$$\dot{T} = -a \left(T - T_L \right) \quad (a > 0)$$

beschrieben.

- a. Bestimmen Sie die zeitliche Entwicklung der Temperatur T(t) des Körpers.
- b. Gegen welchen Endwert $\lim_{t\to\infty}T(t)$ strebt die Temperatur des Körpers?

a. Standardform der DGL: $T' = \frac{dT}{dt} = -a(T - T_L)$, also

$$\int \frac{\mathrm{d}T}{T-T_L} = -a \int \mathrm{d}t, \quad \text{ integriert: } \quad \ln|T-T_L| = -at + C, C \in \mathbb{R}$$

also $|T-T_L|=e^{-at+C}$ bzw. $T=T_L\pm e^{-at+C}, C\in\mathbb{R};$ die allgemeine Lösung der Gleichung ist damit

$$T = T_L + K \cdot e^{-at}, \quad K \in \mathbb{R}$$

(Für K=0 ergibt sich die konstante Lösung $T=T_L$.) Einsetzen der Anfangsbedingung $T(0)=T_0$ ergibt $T_0=T_L+K$, also $K=T_0-T_L$, damit ist die gesuchte spezielle Lösung der DGL

$$T(t) = T_L + (T_0 - T_L) \cdot e^{-at}$$

b. Es gilt $\lim_{t\to\infty} T(t) = T_L + (T_0 - T_L) \cdot \lim_{t\to\infty} e^{-at} = T_L$ (wegen a<0), d.h. die Temperatur des Körpers gleicht sich für $t\to\infty$ der Temperatur der Umgebungsluft an.

Bestimmen Sie die allgemeine Lösung der Differentialgleichung y'=y-7 auf zwei verschiedene Arten.

a. Lösung mit Separation der Variablen: Standardform der DGL: $y'=\frac{\mathrm{d}y}{\mathrm{d}x}=y-7,$ also

$$\int \frac{1}{y-7} \, \mathrm{d}y = \int 1 \, \mathrm{d}x, \quad \text{ integriert:} \quad \ln|y-7| = x+C, C \in \mathbb{R}$$

weiter umgeformt: $y-7=\pm e^{x+C}=K\cdot e^x$, woei $K=\pm e^C$, also ist die allgemeine Lösung der DGL

$$y = K \cdot e^x + 7 \quad (K \in \mathbb{R})$$

b. Lösung mit Variation der Konstanten: Einsetzen in die Lösungsformel $y=e^{-F(x)}\int g(x)e^{F(x)}\mathrm{d}x$ für g(x)=-7 und F(x)=-x:

$$y = e^x \int (-7) \cdot e^{-x} dx = e^x (7e^{-x} + C) = C \cdot e^x + 7 \quad (C \in \mathbb{R})$$

Wir betrachten die Differentialgleichung $\dot{N}(t) = k \cdot N(t) \cdot (A - N(t))$ des Wachstums mit oberer Grenze A > 0.

a. Bestimmen Sie mit Separation der Variablen die allgemeine Lösung dieser DGL.

b. Bestimmen Sie die spezielle Lösung zum Anfangswert $N(0)=\epsilon>0$ und berechnen Sie den Grenzwert $\lim_{t\to\infty}N(t)$

a. Standardform der DGL: $\frac{\mathrm{d}N}{\mathrm{d}t}=kN(A-N).$ Es gibt die konstanten Lösungen N=0 und N=A;um die übrigen Lösungen zu erhalten, separieren wir die Variablen, also

$$\int \frac{\mathrm{d}N}{N(A-N)} = k \int \mathrm{d}t$$

Partialbruchzerlegung von $\frac{1}{N(A-N)}$:

$$\frac{1}{N(A-N)} = \frac{1}{A} \cdot \frac{1}{N} + \frac{1}{A} \cdot \frac{1}{A-N}$$

und damit

$$\int \frac{\mathrm{d}N}{N(A-N)} = \frac{1}{A} \left(\int \frac{\mathrm{d}N}{N} + \int \frac{\mathrm{d}N}{A-N} \right) = \frac{1}{A} (\ln|N| - \ln|A-N|) + C$$
$$= \frac{1}{A} \ln\left| \frac{N}{A-N} \right| + C$$

also

$$\frac{1}{A} \ln \left| \frac{N}{A - N} \right| = kt + C \quad (C \in \mathbb{R})$$

Auflösen nach N

$$N(t) = \frac{ACe^{Akt}}{1 + Ce^{Akt}} = \frac{A}{1 + L \cdot e^{-Akt}} \quad (L \in \mathbb{R})$$

b. Einsetzen der Anfangsbedingung $N(0)=\epsilon$ ergibt $\epsilon=\frac{A}{1+L}$, also $L=\frac{A}{\epsilon}-1$, damit ist die gesuchte spezielle Lösung der DGL

$$N(t) = \frac{A}{1 + \left(\frac{A}{\epsilon} - 1\right)e^{-Akt}}$$

mit $\lim_{t\to\infty} N(t) = A$ (wegen A>0 und k>0 gilt $e^{-Akt}\to 0$ für $t\to\infty$). Dies ist auch von der Anwendung her sinnvoll: Für $t\to\infty$ nähert sich der Bestand der oberen Grenze A und wächst nicht darüber hinaus.

Wir betrachten das Anfangswertproblem

$$\begin{cases} y' = 2y + \\ y(0) = 1 \end{cases}$$

a. Bestimmen Sie approximativ y(1), d.h. den Wert der Lösungskurve an der Stelle x=1, durch 4 Schritte (von Hand) mit dem Euler-Verfahren, d.h. mit der Schrittweite h=0.25.

b. Bestimmen Sie analytisch y(1), d.h. bestimmen Sie analytisch die exakte Lösung y(x) und berechnen Sie y(1).

a. Vier Euler-Schritte mit h=0.25, d.h. $x_0=0, x_1=0.25, x_2=0.5, x_3=0.75, x_4=1,$ und f(x,y)=2y+x :

$$y_0 = 1$$

$$y_1 = y_0 + hf(x_0, y_0) = \frac{3}{2} = 1.5$$

$$y_2 = y_1 + hf(x_1, y_1) = \frac{37}{16} = 2.3125$$

$$y_3 = y_2 + hf(x_2, y_2) = \frac{115}{32} = 3.59375$$

$$y_4 = y_3 + hf(x_3, y_3) = \frac{357}{64} = 5.578125$$

Insgesamt erhalten wir also die Approximation

$$y(1) \approx 5.578$$

b. Um die exakte Lösung zu bestimmen, verwenden wir die Formel $y=e^{-F(x)}\int g(x)e^{F(x)}\mathrm{d}x$ für g(x)=x und f(x)=-2, also F(x)=-2x und (mit partieller Integration)

$$y = e^{2x} \int x \cdot e^{-2x} dx$$

$$= e^{2x} \left(-\frac{1}{4} (2x+1)e^{-2x} + C \right)$$

$$= -\frac{1}{4} (2x+1) + Ce^{2x} \quad (C \in \mathbb{R})$$

Einsetzen der Anfangsbedingung y(0)=1 ergibt $1=-\frac{1}{4}+C,$ also $C=\frac{5}{4}$ und damit die Lösung des AWPs

$$y = -\frac{1}{4}(2x+1) + \frac{5}{4}e^{2x}$$

Für x = 1 ergibt sich

$$y(1) = -\frac{3}{4} + \frac{5}{4}e^2 \approx 8.486$$

3. Wir betrachten das Anfangswertproblem

$$\begin{cases} y' = x - y \\ y(0) = 1 \end{cases}$$

Gesucht ist y(2), d.h. die Lösung an der Stelle x=2.

a. Wir erinnern uns von Serie 11 (Aufgabe 6), dass $y = 2e^{-x} + x - 1$ die exakte Lösung des AWPs ist. Berechnen Sie damit y(2).

b. Bestimmen Sie (von Hand) mit dem Euler-Verfahren die approximative Lösung an der Stelle x=2 mit den Schrittweiten h=2,h=1 und h=0.5 (d.h. in 1 Schritt, in 2 Schritten und in 4 Schritten).

c. Führen Sie (mit Software) das Euler-Verfahren mit den Schrittweiten h=0.1,h=0.01 und h=0.001 aus, um immer bessere Approximationen für y(2) zu erhalten.

a. Die analytisch berechnete Lösung hat an der Stelle x=2 also den Wert

$$u(2) = 2 \cdot e^{-2} + 1 \approx 1.2707$$

b. Mit den verschiedenen Schrittweiten ergeben sich folgende Approximationen: - $h=2:x_0=0, x_1=2; y_0=1, y_1=-1,$ also $y(2)\approx -1$ - $h=1:x_0=0, x_1=1, x_2=2; y_0=1, y_1=0, y_2=1,$ also $y(2)\approx 1$ - $h=0.5:x_0=0, x_1=0.5, x_2=1, x_3=1.5, x_4=2; y_0=1, y_1=0.5, y_2=0.5, y_3=0.75, y_4=1.125,$ also $y(2)\approx 1.125$

c. Mit den verschiedenen Schrittweiten ergeben sich folgende Approxi-

Man sieht also, dass die Approximation immer besser wird, wenn die Schrittweite verkleinert wird.

Wir betrachten das Anfangswertproblem

$$\begin{cases} y' = \cos(x+y) + \sin(x-y) \\ y(0) = 0 \end{cases}$$

Gesucht ist y(1), d.h. die Lösung an der Stelle x = 1.

b. Führen Sie (von Hand) das Euler-Verfahren mit der Schrittweite h=0.5 aus, um in zwei Schritten zur Lösung zu gelangen.

c. Führen Sie (mit Software) das Euler-Verfahren mit den Schrittweiten h=0.1,h=0.01 und h=0.001 aus, um immer bessere Approximationen für y(1) zu erhalten.

b. Zwei Euler-Schritte mit h=0.5, d.h. $x_0=0, x_1=0.5, x_2=1$ und

$$f(x,y) = \cos(x+y) + \sin(x-y) :$$

 $y_0 = 0$

$$y_1 = y_0 + hf(x_0, y_0) = 0 + 0.5 \cdot (\cos(0+0) + \sin(0-0)) = 0.5$$

$$y_2 = y_1 + hf(x_1, y_1) = 0.5 + 0.5 \cdot (\cos(0.5 + 0.5) + \sin(0.5 - 0.5)) \approx 0.770$$

Dies ergibt also die Approximation

$$y(1) \approx 0.770$$

c. Mit den verschiedenen Schrittweiten ergeben sich folgende Approximationen:

	Schrittweite h	Approximierter Funktionswert $y(1)$	
1	0.1	0.0710	
	0.1	0.6718	
ı	0.01	0.0550	
	0.01	0.6558	
1	0.001	0.6542	
	0.001	0.0542	