1/1 point

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

- 1. True/False: Suppose you learn a word embedding for a vocabulary of 60000 words. Then the embedding vectors could be 60000 dimensional, so as to capture the full range of variation and meaning in those words.
 - False
 - True

	Correct No, the dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors range between 50 and 1000.	
2.	True/False: t-SNE is a non-linear dimensionality reduction technique.	1 / 1 point
	○ False	
	True	
	∠ [¬] Expand	
	Correct t-SNE is a non-linear dimensionality reduction technique.	

3.	Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an
	RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

1/1 point

x (input text)	y (happy?)	
I'm feeling wonderful today!	1	
I'm bummed my cat is ill.	0	
Really enjoying this!	1	

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

- True
- False

Correct
Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic" would contain a positive/happy connotation which will probably make your model classify the sentence as a "1".

✓ Correct Yes!

✓ Correct Yes!

 $e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$

 $ightharpoonup e_{boy} - e_{qirl} pprox e_{brother} - e_{sister}$

 $e_{boy} - e_{brother} pprox e_{sister} - e_{girl}$

Correct

Great, you got all the right answers.

1/1 point

The correct formula is $E^T * o_{1234}$

This doesn't handle unknown words (<UNK>).

It is computationally wasteful.

Yes, the element-wise multiplication will be extremely inefficient.

6. When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.

1/1 point

False

True

⊘ Correct

8. Suppose you have a 10000 word vocabulary, and are learning 100-dimensional word embeddings. The word2vec model uses the following softmax function:

$$P(t \mid c) = rac{e^{ heta_t^T e_c}}{\sum_{t'=1}^{10000} e^{ heta_t^T e_c}}$$

True/False: After training, we should expect $heta_t$ to be very close to e_c when t and c are the same word.

- False
- True

To review this concept watch the lecture.

9. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j' - log X_{ij})^2$$

True/False: X_{ij} is the number of times word j appears in the context of word i.

- True
- False

 X_{ij} is the number of times word j appears in the context of word i.

⊘ Correct

10.	. You have trained word embeddings using a text dataset of t_1 words. You are considering using these word embeddings for a language task, for which you	1/1 point
	have a separate labeled dataset of t_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstances would you expect the word embeddings to be helpful?	
	$igcup$ When t_1 is equal to t_2	
	$igcup$ When t_1 is smaller than t_2	
	$lacksquare$ When t_1 is larger than t_2	
	∠ [¬] Expand	

⊘ Correct

Transfer embeddings to new tasks with smaller training sets.