Poultry Disease Classifier Project Report

Project Title:

Transfer Learning-Based Classification of Poultry Diseases for Enhanced Health Management

Objective:

To develop an efficient image classification system using **transfer learning** that detects poultry diseases based on poultry droppings or related images. The goal is to help farmers identify diseases early and manage flock health effectively.

Problem Statement:

Poultry diseases like Newcastle Disease, Coccidiosis, and Salmonella cause significant losses in the poultry industry. In rural or resource-limited settings, veterinary assistance is not always readily available. A fast, automated image classification system can help mitigate this by providing immediate disease detection and guidance.

Technologies Used:

- Python
- TensorFlow / Keras
- · Streamlit (UI)
- · MobileNetV2 (Transfer Learning)
- Pillow (PIL)
- NumPy

Dataset:

Folder Structure:

data/	
├─ train/	
│ ├─ Healthy/	
├── Newcastle Disease/	
├─ Coccidiosis/	
│	

- Images are placed into respective class folders.
- Dataset was split into training and validation using validation_split.

Model Architecture:

- Pre-trained MobileNetV2 used as the base model (ImageNet weights)
- Added custom layers:
- GlobalAveragePooling2D
- Dense layer (64 units, ReLU)
- Dropout (0.3)
- Output layer with Softmax for multi-class classification

Training Setup:

Batch Size: 16Epochs: 3

Steps per epoch: 50Validation steps: 20Optimizer: Adam

• Loss Function: Categorical Crossentropy

This configuration ensures fast training (under 10 minutes) for testing/demo purposes.

Streamlit Web Application:

The web app allows the user to:

- Upload a poultry image (droppings or symptoms)
- View the image preview
- Receive a prediction with confidence score

Features:

- Lightweight UI
- Fast predictions
- Caching for loading models
- Output: Disease Name + Confidence %

Prediction Output Example:

🧠 Prediction: Newcastle Disease

Confidence: 96.85%

Future Enhancements:

- Increase dataset size for better accuracy
- Add support for video-based detection
- Deploy to mobile using Streamlit Cloud or TFLite
- Provide treatment suggestions with prediction

Conclusion:

This system demonstrates how transfer learning and Streamlit can be combined to create a practical disease diagnosis tool for poultry farms. It offers a low-cost, fast-response solution especially useful in rural and underserved communities.