MTH 207A: Assignment 2

- **P** 1. Prove that a matrix is a projection matrix if and only if it is symmetric and idempotent.
- **P 2.** Let \mathcal{U} represent a subspace of the linear space \mathbb{R}^n of all n-dimensional column vectors, take X to be an $n \times p$ matrix such that $\mathcal{C}(X) = \mathcal{U}$, and let \mathbf{y} represent a vector in \mathbb{R}^n . Then, for $\mathbf{w} \in \mathcal{U}$, the sum of squares $(\mathbf{y} \mathbf{w})'(\mathbf{y} \mathbf{w})$ of the elements of the difference $\mathbf{y} \mathbf{w}$ between \mathbf{y} and \mathbf{w} is minimized uniquely by taking $\mathbf{w} = X\mathbf{b}^*$, where \mathbf{b}^* is any solution to the normal equations $X'X\mathbf{b} = X'\mathbf{y}$, or, equivalently, by taking $\mathbf{w} = P_X\mathbf{y}$. Further, the minimum value of the sum of squares is expressible as

$$(\mathbf{y} - X\mathbf{b}^*)'(\mathbf{y} - X\mathbf{b}^*) = \mathbf{y}'(\mathbf{y} - X\mathbf{b}^*) = \mathbf{y}'(I - P_X)\mathbf{y}.$$

- **P** 3. Let Y represent a matrix in a linear space \mathcal{V} , let \mathcal{U} and \mathcal{W} represent subspaces of \mathcal{V} , and take $\{X_1,\ldots,X_s\}$ to be a set of matrices that spans \mathcal{U} and $\{Z_1,\ldots,Z_t\}$ to be a set that spans \mathcal{W} . Then, Y $\perp \mathcal{U}$ if and only if Y \cdot X_i = 0 for $i=1,\ldots,s$; that is, Y is orthogonal to \mathcal{U} if and only if Y is orthogonal to each of the matrices X_1,\ldots,X_s , and similarly, $\mathcal{U}\perp\mathcal{W}$ if and only if $X_i\cdot Z_j=0$ for $i=1,\ldots,s$ and $j=1,\ldots,t$; that is, \mathcal{U} is orthogonal to \mathcal{W} if and only if each of the matrices X_1,\ldots,X_s is orthogonal to each of the matrices Z_1,\ldots,Z_t .
- **P 4.** Let \mathcal{U} and \mathcal{V} represent subspaces of $\mathbb{R}^{m \times n}$. Show that if $\dim(\mathcal{V}) > \dim(\mathcal{U})$, then \mathcal{V} contains a nonnull matrix that is orthogonal to \mathcal{U} .
- **P 5.** Suppose that X is a symmetric matrix of dimensions $m \times m$ and $A = \{a_{ts}\}$ to be an $m \times m$ matrix of constants. Then find $\partial tr(AX)/\partial X$.
- **P 6.** Let F represent a $p \times p$ matrix of functions, defined on a set S, of a vector $\mathbf{x} = (x_1, \dots, x_m)'$ of m variables. Let \mathbf{c} represent any interior point of S at which F is continuously differentiable. Show that if F is idempotent at all points in some neighborhood of \mathbf{c} , then (at $\mathbf{x} = \mathbf{c}$)

$$F\frac{\partial F}{\partial x_i}F = 0.$$

P 7. Let $X = \{x_{ij}\}$ represent an $m \times n$ matrix of "independent" variables, and suppose that X is free to range over all of $\mathbb{R}^{m \times n}$. Show that, for $k = 2, 3, \ldots$,

$$\frac{\partial \operatorname{tr}(\mathbf{X}^k)}{\partial \mathbf{X}} = k(\mathbf{X}')^{k-1}.$$

P 8. Let $X = \{x_{st}\}$ represent an $m \times n$ matrix of "independent" variables, let A represent an $m \times n$ matrix of constants, and suppose that the range of X is a set S comprising some or all X-values for which $\det(X'AX) > O$. Show that $\det(X'AX)$ is continuously differentiable at any interior point C of S and that (at X = C)

$$\frac{\partial \mathrm{log} \ \mathrm{det}(X'AX)}{\partial X} = AX(X'AX)^{-1} + [(X'AX)^{-1}X'A]'.$$

1