Aprendizado de Máquina

Aula 7: Algoritmos baseados em probabilidade (parte 3)

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos

- Regressão linear
- Regressão polinomial
- Algoritmo de ajuste de parâmetros

Sumarizando

- Regressão linear simples
- Função hipótese: $h_w(x) = w_0 + w_1 x$ ou $f(x) = w_0 + w_1 x$
- Parâmetros: w_0 , w_1
- Função custo: $J(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y^i f(x^i))^2$
 - Para simplificar cálculos, pode ser usada a função $J(w_0, w_1) = \frac{1}{2n} \sum_{i=1}^{n} (y^i f(x^i))^2$
- Objetivo: $\min_{w_0 w_1} J(w_0, w_1)$

- Funciona bem se relação entre variáveis independentes e variável dependente for linear
- Ex.: f(x) = -0.25x + 3
- O que ocorre se a relação for não linear?
 - Regressão linear não será capaz de encontrar um bom ajuste dos dados a uma função linear
 - Solução: usar regressão polinomial
 - Busca ajustar uma curva polinomial aos dados, para minimizar função de custo

Ex.:
$$f(x) = x^4 - 4x^2 + 2x + 4$$

Busca uma boa função hipótese de regressão para os dados

- Busca uma boa função hipótese de regressão para os dados
 - Função constante

- Achar uma boa função hipótese de regressão para os dados
 - Tentar regressão linear

- Achar uma boa função hipótese de regressão para os dados
 - Tentar regressão polinomial

$$f(x) = -3x^2$$

Achar uma boa função hipótese de regressão para os dados

- Achar uma boa função hipótese de regressão para os dados
 - o Tentar regressão polinomial de grau 2

$$f(x) = -\frac{1}{2}x^2 + 8$$

- Achar uma boa função hipótese de regressão para os dados
 - o Tentar regressão polinomial de grau 3

$$f(x) = 2x^3 + 4x^2 + 2$$

- Achar uma boa função hipótese de regressão para os dados
 - o Tentar regressão polinomial de grau 4

$$f(x) = x^4 - 4x^2 + 2x + 4$$

• Achar uma ótima função hipótese de regressão para os dados

Achar uma ótima função hipótese de regressão para os dados

Overfitting

Tarefa não é tão simples

Underfitting

Ajuste de função de regressão

- Como ajustar os parâmetros automaticamente?
 - Usar um algoritmo de ajuste de parâmetros
 - Buscam o conjunto de valores para os parâmetros que mais reduz o custo (processo de otimização)
 - Existe vários
 - Um dos mais usados é o algoritmo gradiente descendente
 - Ajusta os parâmetros de forma iterativa de forma a reduzir o erro cometido com os valores de parâmetro atuais
 - Busca achar o ponto de mínimo da função de custo J(w)

As funções a terem o erro minimizado em geral têm mais de um

parâmetro

A. Amini et al. "Spatial Uncertainty Sampling for End-to-End Control". NeurIPS Bayesian Deep Learning 2018

Fonte: A. Amini et al. "Spatial Uncertainty Sampling for End-to-End Control". NeurIPS Bayesian Deep Learning 2018

- Procura valores de parâmetros que levem ao ponto de mínimo da função de custo $\min_{\mathbf{w}_0 \mathbf{w}_1} J(\mathbf{w}_0, \mathbf{w}_1)$
 - Usa gradiente da função de custo J(w), $\nabla J(w)$, para ajustar o valor dos parâmetros
 - Função vetorial cujos componentes são as derivadas parciais de uma função Derivadas parciais $\nabla J(w) = (\frac{\partial}{\partial w_0} J(w_0, w_1), \frac{\partial}{\partial w_1} J(w_0, w_1)) \quad \text{(vetor gradiente)}$

 - Busca direção da função de custo que desce mais na superfície de erro
 - Deve ser possível calcular a derivada da função de custo (diferenciável)
 - Permite encontrar o valor de cada parâmetro w_i capaz de reduzir o erro
 - Pode ajustar valor de cada parâmetro em paralelo
 - $w_i = w_i \alpha \frac{\partial}{\partial w_i} \Im(w_0, w_1) \quad \alpha : \text{taxa de aprendizado}$

Ajuste dos parâmetros

$$\circ \quad \mathbf{w}_i = \mathbf{w}_i - \alpha \frac{\partial}{\partial \mathbf{w}_i} \Im(\mathbf{w}_0, \mathbf{w}_1)$$

- o Ajuste simultâneo
 - $aux_0 = w_0 \alpha \frac{\partial}{\partial w_0} \Im(w_0, w_1)$
 - $aux_1 = w_1 \alpha \frac{\partial}{\partial w_1} \Im(w_0, w_1)$
 - $\mathbf{w}_0 = \mathsf{aux}_0$
 - $\mathbf{w}_1 = \mathsf{aux}_1$
- Ajuste sequencial

 - $w_1 = w_1 \alpha \frac{\partial}{\partial w_1} J(w_0, w_1)$ (usa valor ajustado de w_0 neste ajuste, mais instável)

Exemplo simples de ajuste de um parâmetro 1

- Minimizar função de custo com um parâmetro
 - \circ Supor que a função de custo J(w) tem apenas um parâmetro, w_1
 - Neste caso, o gradiente da função é uma simples derivada
 - O ajuste do parâmetro w_1 é dado por:
 - $w_1 = w_1 \alpha \frac{d}{dw_1} J(w_1)$
 - = $\mathbf{w}_1 \alpha \mathbf{J}'(\mathbf{w}_1)$
 - Valor de w₁ pode mover em apenas duas direções:
 - o Esquerda ou direita
 - Usar derivada para definir direção
 - Negativa ⇒ direita
 - Aumenta valor de w₁

Valor do parâmetro vai para posição que mais reduz o erro

Exemplo simples de ajuste de um parâmetro 2

- Minimizar função de custo com um parâmetro
 - Supor que a função de custo J(w) tem apenas um parâmetro, w_1
 - Neste caso, o gradiente da função é uma simples derivada
 - O ajuste do parâmetro w_1 é dado por:

•
$$\mathbf{w}_1 = \mathbf{w}_1 - \alpha \frac{d}{d\mathbf{w}_1} \mathbf{J}(\mathbf{w}_1)$$

• =
$$\mathbf{w}_1 - \alpha \mathbf{J}'(\mathbf{w}_1)$$

- Valor de w₁ pode mover em apenas duas direções:
 - Esquerda ou direita
 - Usar derivada para definir direção
 - **Positiva** ⇒ **esquerda**
 - Reduz valor de w₁

Mínimos locais

• Gradiente pode levar a mínimos locais

Nos pontos de

Mínimos locais

 Gradiente pode levar a mínimos locais se função J(w) for não convexa

Mínimos locais

 Gradiente pode levar a mínimos locais se função J(w) for não convexa

- Ajuste dos parâmetros
 - o Dados que $f(x) = w_0 + w_1 x$ e que $w_i = w_i \alpha \frac{\partial}{\partial w_i} J(w_0, w_1)$

Ajuste simultâneo

$$aux_0 = w_0 - \alpha \frac{\partial}{\partial w_0} J(w_0, w_1) = w_0 - \alpha \frac{1}{n} \sum_{i=1}^n (y^i - f(x^i))$$

•
$$aux_1 = w_1 - \alpha \frac{\partial}{\partial w_1} \Im(w_0, w_1) = w_1 - \alpha \frac{1}{n} \sum_{i=1}^n (y^i - f(x^i)) x^i$$

- $\mathbf{w}_0 = \mathsf{aux}_0$
- $\mathbf{w}_1 = \mathsf{aux}_1$

Algoritmo gradiente descendente

Função de custo para regressão linear

- Será sempre uma função convexa
 - Não tem mínimo local (não significa que o menor custo será = 0)

Efeito da taxa de aprendizado

- Valor de α define convergência do gradiente descendente
 - \circ Taxa de aprendizado (lpha)

Continua no próximo vídeo e conjunto de slídes

