MODELOS DE COMPUTACION

Preguntas Tipo Test - Tema 1

- 1. Si un lenguaje es generado por una gramática dependiente del contexto, entonces dicho lenguaje no es independiente del contexto.
- 2. Los alfabetos tienen siempre un número finito de elementos, pero los lenguajes, incluso si el alfabeto tiene sólo un símbolo, tienen infinitas palablas.
- 3. Si L es un lenguaje no vacío, entonces L^* es infinito.
- 4. Todo lenguaje con un número finito de palabras es regular e independiente del contexto.
- 5. Si L es un lenguaje, entonces siempre L^* es distinto de L^+ .
- 6. $L.\emptyset = L$
- 7. Si A es un afabeto, la aplicación que transforma cada palabra $u \in A^*$ en su inversa es un homomorfismo de A^* en A^* .
- 8. Si $\epsilon \in L$, entonces $L^+ = L^*$.
- 9. La transformación que a cada palabra sobre $\{0,1\}^*$ le añade 00 al principio y 11 al final es un homomorfismo.
- 10. Se puede construir un programa que tenga como entrada un programa y unos datos y que siempre nos diga si el programa leido termina para esos datos.
- 11. La cabecera del lenguaje L siempre incluye a L.
- 12. Un lenguaje nunca puede ser igual a su inverso.
- 13. La aplicación que transforma cada palabra u sobre el alfabeto $\{0,1\}$ en u^3 es un homomorfismo.
- 14. El lenguaje que contiene sólo la palabra vacía es el elemento neutro para la concatenación de lenguajes.
- 15. Si L es un lenguaje, en algunas ocasiones se tiene que $L^* = L^+$.
- 16. Hay lenguajes con un número infinito de palabras que no son regulares.
- 17. Si un lenguaje tiene un conjunto infinito de palabras sabemos que no es regular.
- 18. Si L es un lenguaje finito, entonces su cabecera (CAB(L)) también será finita.
- 19. El conjunto de palabras sobre un alfabeto dado con la operación de concatenación tiene una estructura de monoide.
- 20. La transformación entre el conjunto de palabras del alfabeto $\{0,1\}$ que duplica cada símbolo (la palabra 011 se transforma en 001111) es un homomorfismo.
- 21. Si f es un homomorfismo entre palabras del alfabeto A_1 en palabras del alfabeto de A_2 , entonces si conocemos f(a) para cada $a \in A_1$ se puede calcular f(u) para cada palabra $u \in A_1^*$.
- 22. Si A es un afabeto, la aplicación que transforma cada palabra $u \in A^*$ en su inversa es un homomorfismo de A^* en A^* .
- 23. Si $\epsilon \in L$, entonces $L^+ = L^*$.
- 24. Si f es un homomorfismo, entonces necesariamente se verifica $f(\epsilon) = \epsilon$.
- 25. Si A es un alfabeto, entonces A^+ no incluye nunca la palabra vacía.
- 26. Es posible diseñar un algoritmo que lea un lenguaje cualquiera sobre el alfabeto $\{0,1\}$ y nos diga si es regular o no.