Мини-задача **#37** (1 балл)

Найти количество уникальных (по форме) BST. Используйте алгоритм динамического программирования.

https://leetcode.com/problems/unique-binary-search-trees

Мини-задача #38 (1 балла)

Помогите рыцарю выйти из подземелья!

https://leetcode.com/problems/dungeon-game

Алгоритмы и структуры данных

Динамическое программирование: основные принципы, примеры

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Варианты решения?

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Варианты решения: полный перебор дает экспоненциальную сложность

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Варианты решения: жадный алгоритм?

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Варианты решения: жадный алгоритм?

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Варианты решения: жадный алгоритм?

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Варианты решения: жадный алгоритм? Дает неправильный ответ даже на тривиальном примере выше (6 против 8)

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Варианты решения: divide and conquer?

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Варианты решения: divide and conquer?

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Варианты решения: divide and conquer? Абсолютно непонятно, как эффективно организовать слияние в случае конфликта.

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Варианты решения: divide and conquer? Абсолютно непонятно, как эффективно организовать слияние в случае конфликта.

Есть алгоритм, D&C который это сделает за O(N^2). Как лучше?

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Мысленный эксперимент: если бы у нас было оптимальное решение, чтобы мы могли про него сказать?

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Мысленный эксперимент: если бы у нас было оптимальное решение, чтобы мы могли про него сказать? И как бы оно было связано с оптимальным решением для задачи меньшего размера?

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Пусть S - искомое подмножество. Подумаем о последней вершине в нашем пути v_n . Есть два варианта:

1) v_n не входит в S.

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Пусть S - искомое подмножество. Подумаем о последней вершине в нашем пути v_n . Есть два варианта:

1) v_n не входит в S.

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Пусть S - искомое подмножество. Подумаем о последней вершине в нашем пути v_n . Есть два варианта:

1) v_n не входит в S. Тогда, во-первых, S - множество несмежных вершин в G'.

Дано: пусть есть простой путь G = (V, E) в графе с весами на вершинах.

Найти: подмножество несмежных вершин (независимое множество) максимального веса.

Пусть S - искомое подмножество. Подумаем о последней вершине в нашем пути v_n . Есть два варианта:

1) v_n не входит в S. Тогда, во-первых, S - множество несмежных вершин в G'. Более того, оно там является максимальным (иначе, почему мы не взяли его в качестве ответа?)

- 1) v_n не входит в S. Тогда S максимальное множество несмежных вершин в G'.
- 2) v_n входит в S.

- 1) v_n не входит в S. Тогда S максимальное множество несмежных вершин в G'.
- 2) v_n входит в S.

- 1) v_n не входит в S. Тогда S максимальное множество несмежных вершин в G'.
- 2) v_n входит в S. Значит v_{n-1} не входит в S.

- 1) v_n не входит в S. Тогда S максимальное множество несмежных вершин в G'.
- 2) v_n входит в S. Значит v_{n-1} не входит в S.

- 1) v_n не входит в S. Тогда S максимальное множество несмежных вершин в G'.
- 2) v_n входит в S. Значит v_{n-1} не входит в S. Тогда множество $S-\{v_n\}$ является максимальным множеством несмежных вершин в подграфе G''.

Пусть S - искомое подмножество. Подумаем о последней вершине в нашем пути v_n . Есть два варианта:

- 1) v_n не входит в S. Тогда S максимальное множество несмежных вершин в G'.
- 2) v_n входит в S. Значит v_{n-1} не входит в S. Тогда множество $S-\{v_n\}$ является максимальным множеством несмежных вершин в подграфе G''.

Т.е. в любом случае оптимальное решение выражается через оптимальные решения для подзадач (для G' или G'')!

v_1 v_2 v_3 v_{n-1} v_n G''

Оптимальная подструктура

- 1) Либо S максимальное множество несмежных вершин в G'.
- 2) Либо $S-\{v_n\}$ макс. множество несмежных вершин в G''.

Но понять, какой именно рекурсивный вызов нужно делать можно только в зависимости от v_n .

v_1 v_2 v_3 v_{n-1} v_n G''

Оптимальная подструктура

- 1) Либо S максимальное множество несмежных вершин в G'.
- 2) Либо $S-\{v_n\}$ макс. множество несмежных вершин в G''.

Но понять, какой именно рекурсивный вызов нужно делать можно только в зависимости от v_n .

Почему бы не попробовать оба рекурсивных вызова?

Алгоритм:

1. Вычисляем S_1 для G^\prime

Алгоритм:

- 1. Вычисляем S_1 для G^\prime
- 2. Вычисляем S_2 для $G^{\prime\prime}$

Алгоритм:

- 1. Вычисляем S_1 для G'
- 2. Вычисляем S_2 для G''
- 3. Берем в ответ v_n или нет в зависимости от того, что больше (ведь мы ищим максимальное множество)

Алгоритм:

- 1. Вычисляем S_1 для G'
- 2. Вычисляем S_2 для G''
- 3. Берем в ответ v_n или нет в зависимости от того, что больше (ведь мы ищим максимальное множество)

Проблемы?

Алгоритм:

- 1. Вычисляем S_1 для G'
- 2. Вычисляем S_2 для $G^{\prime\prime}$
- 3. Берем в ответ v_n или нет в зависимости от того, что больше (ведь мы ищим максимальное множество)

Проблемы? Это же полный перебор! Экспоненциальная сложность!

Алгоритм:

- 1. Вычисляем S_1 для G'
- 2. Вычисляем S_2 для G''
- 3. Берем в ответ v_n или нет в зависимости от того, что больше (ведь мы ищим максимальное множество)

Но сколько раз в этой рекурсии будут встречаться различные подмножества?

Алгоритм:

- 1. Вычисляем S_1 для G'
- 2. Вычисляем S_2 для G''
- 3. Берем в ответ v_n или нет в зависимости от того, что больше (ведь мы ищим максимальное множество)

Но сколько раз в этой рекурсии будут встречаться различные подмножества?

Алгоритм:

- 1. Вычисляем S_1 для G'
- 2. Вычисляем S_2 для G''
- 3. Берем в ответ v_n или нет в зависимости от того, что больше (ведь мы ищим максимальное множество)

Но сколько раз в этой рекурсии будут встречаться различные подмножества? Всего N штук!

Алгоритм:

- 1. Вычисляем S_1 для G'
- 2. Вычисляем S_2 для G''
- 3. Берем в ответ v_n или нет в зависимости от того, что больше (ведь мы ищим максимальное множество)

Но сколько раз в этой рекурсии будут встречаться различные подмножества? Всего N штук! Т.к. мы всегда работаем с префиксом пути, а их количество линейно.

Алгоритм:

- 1. Вычисляем S_1 для G'
- 2. Вычисляем S_2 для G''
- 3. Берем в ответ v_n или нет в зависимости от того, что больше (ведь мы ищим максимальное множество)

Как исправить алгоритм?

Алгоритм:

- 1. Вычисляем S_1 для G^\prime
- 2. Вычисляем S_2 для $G^{\prime\prime}$
- 3. Берем в ответ v_n или нет в зависимости от того, что больше (ведь мы ищим максимальное множество)

Как исправить алгоритм? Мемоизация вполне сработает.

Алгоритм:

- 1. Вычисляем S_1 для G^\prime
- 2. Вычисляем S_2 для $G^{\prime\prime}$
- 3. Берем в ответ v_n или нет в зависимости от того, что больше (ведь мы ищим максимальное множество)

Как исправить алгоритм? Мемоизация вполне сработает.

Но можно лучше!

Алгоритм (для нахождения веса макс. независимого множества):

о Заводим массив A для результата. В i-ой ячейке будет ответ для префикса размера i.

- о Заводим массив A для результата. В i-ой ячейке будет ответ для префикса размера i.
- Инициализируем: A[0] = ?, A[1] = ?

- о Заводим массив A для результата. В i-ой ячейке будет ответ для префикса размера i.
- \circ Инициализируем: A[0] = 0, A[1] = w_1

- о Заводим массив A для результата. В i-ой ячейке будет ответ для префикса размера i.
- \circ Инициализируем: A[0] = 0, A[1] = w_1
- Идем слева направо: А[i] = ?

- о Заводим массив A для результата. В i-ой ячейке будет ответ для префикса размера i.
- \circ Инициализируем: A[0] = 0, A[1] = w_1
- \circ Идем слева направо: A[i] = max(A[i-1], A[i-2] + w_i)

Линейное решение

Алгоритм (для нахождения веса макс. независимого множества):

- о Заводим массив A для результата. В i-ой ячейке будет ответ для префикса размера i.
- \circ Инициализируем: A[0] = 0, A[1] = w_1
- \circ Идем слева направо: A[i] = max(A[i-1], A[i-2] + w_i)

И все! Это один проход по массиву - линейная сложность!

Линейное решение

Алгоритм (для нахождения веса макс. независимого множества):

- о Заводим массив A для результата. В i-ой ячейке будет ответ для префикса размера i.
- \circ Инициализируем: A[0] = 0, A[1] = w_1
- \circ Идем слева направо: A[i] = max(A[i-1], A[i-2] + w_i)

И все! Это один проход по массиву - линейная сложность!

Очень похожая история с вычислением чисел Фибоначчи в Лекции #1 прошлого курса.

Вопрос: а что, если нужен не только вес, но и само множество?

Вопрос: а что, если нужен не только вес, но и само множество?

Ответ #1: можно просто хранить максимальные подмножества префикса размера і (сохранять их на каждом шаге алгоритма).

Вопрос: а что, если нужен не только вес, но и само множество?

Ответ #1: можно просто хранить максимальные подмножества префикса размера і (сохранять их на каждом шаге алгоритма). Можем быть неэффективно по памяти.

Вопрос: а что, если нужен не только вес, но и само множество?

Ответ #1: можно просто хранить максимальные подмножества префикса размера і (сохранять их на каждом шаге алгоритма). Можем быть неэффективно по памяти.

Вопрос: а что, если нужен не только вес, но и само множество?

Ответ #1: можно просто хранить максимальные подмножества префикса размера і (сохранять их на каждом шаге алгоритма). Можем быть неэффективно по памяти.

Вопрос: а что, если нужен не только вес, но и само множество?

Ответ #1: можно просто хранить максимальные подмножества префикса размера і (сохранять их на каждом шаге алгоритма). Можем быть неэффективно по памяти.

Вопрос: а что, если нужен не только вес, но и само множество?

Ответ #1: можно просто хранить максимальные подмножества префикса размера і (сохранять их на каждом шаге алгоритма). Можем быть неэффективно по памяти.

Вопрос: а что, если нужен не только вес, но и само множество?

Ответ #1: можно просто хранить максимальные подмножества префикса размера і (сохранять их на каждом шаге алгоритма). Можем быть неэффективно по памяти.

Вопрос: а что, если нужен не только вес, но и само множество?

Ответ #1: можно просто хранить максимальные подмножества префикса размера і (сохранять их на каждом шаге алгоритма). Можем быть неэффективно по памяти.

Вопрос: а что, если нужен не только вес, но и само множество?

Ответ #1: можно просто хранить максимальные подмножества префикса размера і (сохранять их на каждом шаге алгоритма). Можем быть неэффективно по памяти.

Ответ #2: восстановить ответ по нашему массиву А!

Теперь проходим по массиву А справа, "вспоминая", какой выбор мы здесь сделали.

6

Α[3]

Вопрос: а что, если нужен не только вес, но и само множество?

Ответ #1: можно просто хранить максимальные подмножества префикса размера і (сохранять их на каждом шаге алгоритма). Можем быть неэффективно по памяти.

Ответ #2: восстановить ответ по нашему массиву А!

8

A[4]

A[2]

A[0]

A[1]

Теперь проходим по массиву A справа, "вспоминая", какой выбор мы здесь сделали.

Если A[i-1] >= A[i-2] + w_i, значит мы не брали i-ый элемент, идем дальше.

Вопрос: а что, если нужен не только вес, но и само множество?

Ответ #1: можно просто хранить максимальные подмножества префикса размера і (сохранять их на каждом шаге алгоритма). Можем быть неэффективно по памяти.

Вопрос: а что, если нужен не только вес, но и само множество?

Ответ #1: можно просто хранить максимальные подмножества префикса размера і (сохранять их на каждом шаге алгоритма). Можем быть неэффективно по памяти.

Ответ #2: восстановить ответ по нашему массиву А!

A[4]

69

Теперь проходим по массиву А справа,

Иначе, добавляем і в ответ (и і -= 2).

0

AΓ1] ΑΓ07

A[2]

A[3]

Динамическое программирование

Динамическое программирование

1. Думаем про структуру и свойства оптимального решения,

Динамическое программирование

- 1. Думаем про структуру и свойства оптимального решения,
- 2. Понимаем связь с оптимальной подструктурой. В этот момент естественно выписать рекурсивное решение,

- 1. Думаем про структуру и свойства оптимального решения,
- 2. Понимаем связь с <mark>оптимальной подструктурой.</mark>
 В этот момент естественно выписать рекурсивное решение,
- 3. Если:
 - а. (различных) подзадач мало,

Еще говорят, что решение содержит перекрывающиеся вспомогательные задачи.

- 1. Думаем про структуру и свойства оптимального решения,
- 2. Понимаем связь с <mark>оптимальной подструктурой</mark>. В этот момент естественно выписать рекурсивное решение,
- 3. Если:
 - а. (различных) подзадач мало,
 - b. задачи большей размерности быстро решаются через задачи меньше размерности,

- 1. Думаем про структуру и свойства оптимального решения,
- 2. Понимаем связь с <mark>оптимальной подструктурой.</mark>
 В этот момент естественно выписать рекурсивное решение,

3. Если:

- а. (различных) подзадач мало,
- b. задачи большей размерности быстро решаются через задачи меньше размерности,
- с. финальное решение быстро вычисляется после решения всех подзадач,

То вам подойдет динамическое программирование!

1. "Динамическое" потому, что в алгоритме мы динамически принимает решение на каждом шаге,

- 1. "Динамическое" потому, что в алгоритме мы динамически принимает решение на каждом шаге,
- 2. А "программирование" это скорее замена слова "планирование", к программированию в привычном нам смысле имеет мало отношения.

- 1. "Динамическое" потому, что в алгоритме мы динамически принимает решение на каждом шаге,
- 2. А "программирование" это скорее замена слова "планирование", к программированию в привычном нам смысле имеет мало отношения.

Использовалось Ричардом Беллманом для отвода глаз, чтобы военные не думали, что в их организации кто-то занимается математическими исследованиями.

Дано: дан набор из п предметов, при этом:

- 1. v_i ценность і-ого предмета (неотрицательная)
- 2. w_i размер i-ого предмета (положительное целое!)

Дано: дан набор из n предметов, при этом:

- 1. v_i ценность і-ого предмета (неотрицательная)
- 2. w_i размер i-ого предмета (положительное целое!)
- 3. W вместительность рюкзака (тоже целое).

Дано: дан набор из n предметов, при этом:

- 1. v_i ценность і-ого предмета (неотрицательная)
- 2. w_i размер i-ого предмета (положительное целое!)
- 3. W вместительность рюкзака (целое).
- Найти: $S \in \{1,2,\dots,n\}$ подмножество предметов, такое что значение $\sum\limits_{i \in S} v_i$ максимально, при этом $\sum\limits_{i \in S} w_i \leq W$

- 1. Думаем про структуру и свойства оптимального решения,
- 2. Понимаем связь с <mark>оптимальной подструктурой.</mark>
 В этот момент естественно выписать рекурсивное решение,
- 3. Если:
 - а. (различных) подзадач мало,
 - b. задачи большей размерности быстро решаются через задачи меньше размерности,
 - с. финальное решение быстро вычисляется после решения всех подзадач,

То вам подойдет динамическое программирование!

Пусть есть оптимальное решение S, максимизирующее $\sum\limits_{i \in S} v_i$.

Порассуждаем о том, как к нему относится "последний" предмет $v_n.$

Случай #1: предмет n не входит в S.

Пусть есть оптимальное решение S, максимизирующее $\sum\limits_{i \in S} v_i$. Порассуждаем о том, как к нему относится "последний" предмет v_n .

Пусть есть оптимальное решение S, максимизирующее $\sum\limits_{i \in S} v_i$.

Порассуждаем о том, как к нему относится "последний" предмет $v_n.$

Случай #1: предмет n не входит в S. Тогда S - решение для задачи о рюкзаке с набором из оставшихся предметов $1,2,\ldots,n-1$ (с той же вместительностью рюкзака W)

Пусть есть оптимальное решение S, максимизирующее $\sum\limits_{i \in S} v_i$.

Порассуждаем о том, как к нему относится "последний" предмет $v_n.$

Случай #1: предмет n не входит в S. Тогда S - решение для задачи о рюкзаке с набором из оставшихся предметов $1,2,\ldots,n-1$ (с той же вместительностью рюкзака W)

(иначе, если есть решение получше, взяли бы его и для задачи из п предметов)

Пусть есть оптимальное решение S, максимизирующее $\sum\limits_{i \in S} v_i$.

Порассуждаем о том, как к нему относится "последний" предмет $v_n.$

Случай #1: предмет n не входит в S. Тогда S - решение для задачи о рюкзаке с набором из оставшихся предметов $1,2,\ldots,n-1$ (с той же вместительностью рюкзака W)

Случай #2: предмет n входит в S. Что можете сказать про решение для задачи меньшей размерности?

Пусть есть оптимальное решение S, максимизирующее $\sum\limits_{i \in S} v_i$.

Порассуждаем о том, как к нему относится "последний" предмет $v_n.$

Случай #1: предмет n не входит в S. Тогда S - решение для задачи о рюкзаке с набором из оставшихся предметов $1,2,\ldots,n-1$ (с той же вместительностью рюкзака W)

Случай #2: предмет n входит в S. Что можете сказать про решение для задачи меньшей размерности?

 $S-\{n\}$ - это решение задачи о рюкзаке...

Пусть есть оптимальное решение S, максимизирующее $\sum\limits_{i \in S} v_i$.

Порассуждаем о том, как к нему относится "последний" предмет $v_n.$

Случай #1: предмет n не входит в S. Тогда S - решение для задачи о рюкзаке с набором из оставшихся предметов $1,2,\ldots,n-1$ (с той же вместительностью рюкзака W)

Случай #2: предмет n входит в S. Что можете сказать про решение для задачи меньшей размерности?

 $S - \{n\}$ - это решение задачи о рюкзаке из первых $1, 2, \dots, n-1$ предметов...

Пусть есть оптимальное решение S, максимизирующее $\sum\limits_{i \in S} v_i$.

Порассуждаем о том, как к нему относится "последний" предмет $v_n.$

Случай #1: предмет n не входит в S. Тогда S - решение для задачи о рюкзаке с набором из оставшихся предметов $1,2,\ldots,n-1$ (с той же вместительностью рюкзака W)

Случай #2: предмет n входит в S. Что можете сказать про решение для задачи меньшей размерности?

 $S-\{n\}$ - это решение задачи о рюкзаке из первых $1,2,\ldots,n-1$ предметов при ограничении вместительности рюкзака $W-\{w_n\}!$

Пусть есть оптимальное решение S, максимизирующее $\sum_{i \in S} v_i$.

Порассуждаем о том, как к нему относится "последний" предмет $v_n.$

Случай #1: предмет n не входит в S. Тогда S - решение для задачи о рюкзаке с набором из оставшихся предметов $1,2,\ldots,n-1$ (с той же вместительностью рюкзака W)

Случай #2: предмет n входит в S. Что можете сказать про решение для задачи меньшей размерности?

 $S-\{n\}$ - это решение задачи о рюкзаке из первых $1,2,\dots,n-1$ предметов при ограничении вместительности рюкзака $W-\{w_n\}!$

Док-во: если есть решение лучше - возьмите его и добавьте n.

Рекуррентное соотношение

Обозначим $V_{i,x}$ оптимальное решение задачи о рюкзаке, такое что:

- 1. Используем только $1,2,\ldots,i$ предметов,
- 2. Размерность рюкзака ограничена x.

Рекуррентное соотношение

Обозначим $V_{i.x}$ оптимальное решение задачи о рюкзаке, такое что:

- 1. Используем только $1,2,\ldots,i$ предметов,
- 2. Размерность рюкзака ограничена x.

Тогда:

$$V_{i,x} = max \left\{ egin{aligned} V_{i-1,x} \ v_i + V_{i-1,x-w_i} \end{aligned}
ight.$$

Рекуррентное соотношение

Обозначим $V_{i,x}$ оптимальное решение задачи о рюкзаке, такое что:

- 1. Используем только $1,2,\ldots,i$ предметов,
- 2. Размерность рюкзака ограничена x.

Тогда:

$$V_{i,x} = max \left\{ egin{aligned} V_{i-1,x} \ v_i + V_{i-1,x-w_i} \end{aligned}
ight.$$

Но есть важное исключение! Если $w_i>x$, то $V_{i,x}=V_{i-1,\,x}$ (і-ый предмет просто не влезает)

Какие есть подзадачи?

Какие есть подзадачи?

1. Подзадачи с меньшим количеством используемых предметов. Полная аналогия с независимыми множествами: рассматриваются префиксы множества $\{1,2,\ldots,i\}$

Какие есть подзадачи?

- 1. Подзадачи с меньшим количеством используемых предметов. Полная аналогия с независимыми множествами: рассматриваются префиксы множества $\{1,2,\ldots,i\}$
- 2. Но кроме того, мы уменьшаем вместимость рюкзака в подзадачах! Подзадачи с какими размерами могут встретиться?

Дано: дан набор из n предметов, при этом:

- 1. v_i ценность і-ого предмета (неотрицательная)
- 2. w_i размер i-ого предмета (положительное **целое**!)
- 3. W вместительность рюкзака (тоже **целое**).

Какие есть подзадачи?

- 1. Подзадачи с меньшим количеством используемых предметов. Полная аналогия с независимыми множествами: рассматриваются префиксы множества $\{1,2,\ldots,i\}$
- 2. Но кроме того, мы уменьшаем вместимость рюкзака в подзадачах! Подзадачи с какими размерами могут встретиться?
 - T.к. и W и все w_i целые, то размерности рюкзака в подзадачах (в самом худшем случае) будут $\{0,1,2,\ldots,W\}$.

Какие есть подзадачи?

- 1. Подзадачи с меньшим количеством используемых предметов. Полная аналогия с независимыми множествами: рассматриваются префиксы множества $\{1,2,\ldots,i\}$
- 2. Но кроме того, мы уменьшаем вместимость рюкзака в подзадачах! Подзадачи с какими размерами могут встретиться?

T.к. и W и все w_i целые, то размерности рюкзака в подзадачах (в самом худшем случае) будут $\{0,1,2,\ldots,W\}$.

В обоих смыслах подзадач у нас мало - линейное количество.

Раз у нас две шкалы подзадач, то теперь нам нужен двумерный массив А, в котором будем записывать результат.

Раз у нас две шкалы подзадач, то теперь нам нужен двумерный массив А, в котором будем записывать результат.

Инициализация: A[0][x] = 0 для всех $x \in \{0,1,2,\ldots,W\}$

Раз у нас две шкалы подзадач, то теперь нам нужен двумерный массив А, в котором будем записывать результат.

Раз у нас две шкалы подзадач, то теперь нам нужен двумерный массив А, в котором будем записывать результат.

Заполнение массива: for
$$i = 1, 2, 3, ..., n$$
: for $x = 0, 1, 2, ..., W$:

Раз у нас две шкалы подзадач, то теперь нам нужен двумерный массив А, в котором будем записывать результат.

Заполнение массива:

for i = 1, 2, 3, ..., n:
for x = 0, 1, 2, ..., W:

$$A[i][x] = max(A[i - 1][x], A[i - 1][x - w_i] + v_i)$$

Раз у нас две шкалы подзадач, то теперь нам нужен двумерный массив А, в котором будем записывать результат.

Заполнение массива:

```
for i = 1, 2, 3, ..., n: 
for x = 0, 1, 2, ..., W: 
 A[i][x] = max(A[i-1][x], A[i-1][x-w_i] + v_i)
```

Решение через восходящий анализ

Сложность алгоритма?

Bcero-то O(n*W)!

Решение через восходящий анализ

Сложность алгоритма?

Bcero-то O(n*W)!

Замечание: мы опять нашли только суммарный вес вещей из оптимального решения, но и само решение можно восстановить из таблички за один проход (аналогично независимым множествам).


```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```


Решение через восходящий анализ

Раз у нас две шкалы подзадач, то теперь нам нужен двумерный массив А, в котором будем записывать результат.

Заполнение массива:

```
for i = 1, 2, 3, ..., n: 

for x = 0, 1, 2, ..., W: 

A[i][x] = max(A[i - 1][x], A[i - 1][x - w_i] + v_i)
```

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1									
2									
3									
4									
5									
Х	: 0	1	2	3	4	5	6	7	8

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1									
2									
3									
4									
5									
Х	: 0	1	2	3	4	5	6	7	8

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1	0								
2	0								
3	0								
4	0								
5	0								
X	: 0	1	2	3	4	5	6	7	8

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0					
2	0								
3	0								
4	0								
5	0								
X	: 0	1	2	3	4	5	6	7	8

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3				
2	0								
3	0								
4	0								
5	0								
	. ^			7	4			7	

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3	3	3
2	0								
3	0								
4	0								
5	0								
X	: 0	1	2	3	4	5	6	7	8

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3	3	3
2	0	0	1	1					
3	0								
4	0								
5	0								
Х	: 0	1	2	3	4	5	6	7	8

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3	3	3
2	0	0	1	1	3				
3	0								
4	0								
5	0								
X	: 0	1	2	3	4	5	6	7	8

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3	3	3
2	0	0	1	1	3	3			
3	0								
4	0								
5	0								
X	: 0	1	2	3	4	5	6	7	8

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3	3	3
2	0	0	1	1	3	3			
3	0								
4	0								
5	0								
X	: 0	1	2	3	4	5	6	7	8

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3	3	3
2	0	0	1	1	3	3	4		
3	0								
4	0								
5	0								
X	: 0	1	2	3	4	5	6	7	8

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3	3	3
2	0	0	1	1	3	3	4	4	4
3	0								
4	0								
5	0								
X	: 0	1	2	3	4	5	6	7	8

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3	3	3
2	0	0	1	1	3	3	4	4	4
3	0	0	1	1	3				
4	0								
5	0								
X	: 0	1	2	3	4	5	6	7	8

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3	3	3
2	0	0	1	1	3	3	4	4	4
3	0	0	1	1	3	5	5	6	6
4	0								
5	0								
X	: 0	1	2	3	4	5	6	7	8

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

٧									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3	3	3
2	0	0	1	1	3	3	4	4	4
3	0	0	1	1	3	5	5	6	6
4	0	0	1	4	4	5	5	7	9
5	0								
X	: 0	1	2	3	4	5	6	7	8

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3	3	3
2	0	0	1	1	3	3	4	4	4
3	0	0	1	1	3	5	5	6	6
4	0	0	1	4	4	5	5	7	9
5	0	0	1	4	4	5	6	7	9
	. 0	1	<u> </u>	7	1	г		7	0

Пусть
$$W = 8$$
, $\{v1 = 3, w1 = 4\}$, $\{v2 = 1, w2 = 2\}$, $\{v3 = 5, w3 = 5\}$, $\{v4 = 4, w4 = 3\}$, $\{v5 = 2, w5 = 3\}$

V									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3	3	3
2	0	0	1	1	3	3	4	4	4
3	0	0	1	1	3	5	5	6	6
4	0	0	1	4	4	5	5	7	9
5	0	0	1	4	4	5	6	7	9
X	: 0	1	2	3	4	5	6	7	8

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3	3	3
2	0	0	1	1	3	3	4	4	4
3	0	0	1	1	3	5	5	6	6
4	0	0	1	4	4	5	5	7	9
5	0	0	1	4	4	5	6	7	9
X	: 0	1	2	3	4	5	6	7	8

for i = 1, 2, 3, ..., n: for x = 0, 1, 2, ..., W: A[i][x] = max(A[i - 1][x], $A[i - 1][x - w_i] + v_i)$


```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```

V									
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3	3	3
2	0	0	1	1	3	3	4	4	4
3	0	0	1	1	3	5	5	6	6
4	0	0	1	4	4	5	5	7	9
5	0	0	1	4	4	5	6	7	9
X	: 0	1	2	3	4	5	6	7	8

for i = 1, 2, 3, ..., n: for x = 0, 1, 2, ..., W: $A[i][x] = \max(A[i - 1][x], A[i - 1][x - w_i] + v_i)$

Это максимум, сколько
вы соберете, а какие

были предметы?

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```


for i = 1, 2, 3, ..., n: for x = 0, 1, 2, ..., W: A[i][x] = $\max(A[i - 1][x],$ $A[i - 1][x - w_i] + v_i)$

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```


for i = 1, 2, 3, ..., n:
for x = 0, 1, 2, ..., W:
A[i][x] =

$$\max(A[i - 1][x],$$

 $A[i - 1][x - w_i] + v_i)$

```
Пусть W = 8, \{v1 = 3, w1 = 4\}, \{v2 = 1, w2 = 2\}, \{v3 = 5, w3 = 5\}, \{v4 = 4, w4 = 3\}, \{v5 = 2, w5 = 3\}
```


for i = 1, 2, 3, ..., n:
for x = 0, 1, 2, ..., W:
A[i][x] =

$$\max(A[i - 1][x],$$

 $A[i - 1][x - w_i] + v_i)$

Дискретная задача о рюкзаке

Дано: дан набор из n предметов, при этом:

- 1. v_i ценность і-ого предмета (неотрицательная)
- 2. w_i размер i-ого предмета (положительное целое!)
- 3. W вместительность рюкзака (целое).
- Найти: $S \in \{1,2,\dots,n\}$ подмножество предметов, такое что значение $\sum\limits_{i \in S} v_i$ максимально, при этом $\sum\limits_{i \in S} w_i \leq W$

Дано: дан набор из п предметов, при этом:

- 1. v_i ценность і-ого предмета (неотрицательная)
- 2. w_i размер i-ого предмета (положительное целое!)
- 3. W вместительность рюкзака (целое).
- Найти: $S \in \{1,2,\dots,n\}$ подмножество предметов, такое что значение $\sum\limits_{i \in S} v_i$ максимально, при этом $\sum\limits_{i \in S} w_i \leq W$

Дано: дан набор из п предметов, при этом:

- 1. v_i ценность і-ого предмета (неотрицательная)
- 2. w_i размер i-ого предмета (положительное целое!)
- 3. W вместительность рюкзака (целое).

И теперь можно брать часть предмета, не обязательно целиком.

Найти нужно такие пропорции каждого из предметов, чтобы максимизировать прибыль.

В непрерывной задаче о рюкзаке динамика не сработает, ведь нет четкого перехода на подзадачу.

В непрерывной задаче о рюкзаке динамика не сработает, ведь нет четкого перехода на подзадачу.

Сработает жадный алгоритм: сортируем все задачи по удельной стоимости (т.е. v_i/w_i), сначала заполняем рюкзак самым дорогим товаром, когда он кончится - берем дешевле и т.д.

В непрерывной задаче о рюкзаке динамика не сработает, ведь нет четкого перехода на подзадачу.

Сработает жадный алгоритм: сортируем все задачи по удельной стоимости (т.е. v_i/w_i), сначала заполняем рюкзак самым дорогим товаром, когда он кончится - берем дешевле и т.д.

Упражнение #1: доказать корректность жадного алгоритма.

В непрерывной задаче о рюкзаке динамика не сработает, ведь нет четкого перехода на подзадачу.

Сработает жадный алгоритм: сортируем все задачи по удельной стоимости (т.е. v_i/w_i), сначала заполняем рюкзак самым дорогим товаром, когда он кончится - берем дешевле и т.д.

Упражнение #1: доказать корректность жадного алгоритма.

Упражнение #2: доказать, что такой алгоритм не сработает с дискретной задачей о рюкзаке.

Задача о порядке перемножения матриц

Пусть есть набор матриц совместных размеров: $A_1, A_2, A_3, \ldots, A_n$

Задача о порядке перемножения матриц

```
Пусть есть набор матриц совместных размеров: A_1, A_2, A_3, \ldots, A_n При вычислении их произведения A_1A_2A_3\ldots A_n можем поставить скобки в разных местах: (A_1(A_2(A_3\ldots A_n)\ldots)) ((A_1A_2)(A_3\ldots A_n)\ldots) (((A_1A_2)A_3)\ldots A_n)\ldots)
```

```
Пусть есть набор матриц совместных размеров: A_1, A_2, A_3, \dots, A_n
```

```
При вычислении их произведения A_1A_2A_3\dots A_n можем поставить скобки в разных местах: (A_1(A_2(A_3\dots A_n)\dots))) ((A_1A_2)(A_3\dots A_n)\dots) (((A_1A_2)A_3)\dots A_n)\dots)
```

На что влияет расстановка скобок?

Пусть есть набор матриц совместных размеров: $A_1, A_2, A_3, \dots, A_n$

```
При вычислении их произведения A_1A_2A_3\dots A_n можем поставить скобки в разных местах: (A_1(A_2(A_3\dots A_n)\dots))) ((A_1A_2)(A_3\dots A_n)\dots) (((A_1A_2)A_3)\dots A_n)\dots)
```

На что влияет расстановка скобок? Точно не на корректность, операция ассоциативна.

Пусть есть набор матриц совместных размеров: $A_1, A_2, A_3, \dots, A_n$

```
При вычислении их произведения A_1A_2A_3\dots A_n можем поставить скобки в разных местах: (A_1(A_2(A_3\dots A_n)\dots))) ((A_1A_2)(A_3\dots A_n)\dots) (((A_1A_2)A_3)\dots A_n)\dots)
```

На что влияет расстановка скобок? Точно не на корректность, операция ассоциативна.

На время работы!

Пусть есть A - матрица размера $p \times q$, a B - матрица размера $q \times r$. A * B = C - матрица размера $p \times r$.

Количество скалярных операций при таком перемножении будет p*q*r

```
Пусть есть A - матрица размера p \times q, a B - матрица размера q \times r . A * B = C - матрица размера p \times r.
```

Количество скалярных операций при таком перемножении будет p*q*r

```
Пример: A_1 - матрица размера 10 x 100, A_2 - матрица размера 100 x 5, A_3 - матрица размера 5 x 50.
```

Вычисляем $(A_1A_2)A_3$ за (10*100*5) + (10*5*50) = 7500 операций

```
Пусть есть A - матрица размера p \times q, a B - матрица размера q \times r . A * B = C - матрица размера p \times r.
```

Количество скалярных операций при таком перемножении будет p*q*r

```
Пример: A_1 - матрица размера 10 x 100, A_2 - матрица размера 100 x 5, A_3 - матрица размера 5 x 50.
```

```
Вычисляем (A_1A_2)A_3 за (10*100*5) + (10*5*50) = 7500 операций, A_1(A_2A_3) за (100*5*50) + (10*100*50) = 75000 операций.
```

Пусть есть A - матрица размера $p \times q$, a B - матрица размера $q \times r$. A * B = C - матрица размера $p \times r$.

Количество скалярных операций при таком перемножении будет p*q*r

```
Пример: A_1 - матрица размера 10 x 100, A_2 - матрица размера 100 x 5, A_3 - матрица размера 5 x 50.
```

Вычисляем
$$(A_1A_2)A_3$$
 за $(10*100*5)$ + $(10*5*50)$ = 7500 операций, $A_1(A_2A_3)$ за $(100*5*50)$ + $(10*100*50)$ = 75000 операций.

Т.е. большая разница, в каком порядке перемножать матрицы!

Пусть есть набор матриц совместных размеров: $A_1, A_2, A_3, \ldots, A_n$

```
При вычислении их произведения A_1A_2A_3\dots A_n можем поставить скобки в разных местах: (A_1(A_2(A_3\dots A_n)\dots))) ((A_1A_2)(A_3\dots A_n)\dots) (((A_1A_2)A_3)\dots A_n)\dots)
```

Задача: выбрать расстановку скобок, минимизирующую общее количество скалярных операций при перемножении.

Пусть есть набор матриц совместных размеров: $A_1, A_2, A_3, \dots, A_n$

```
При вычислении их произведения A_1A_2A_3\dots A_n можем поставить скобки в разных местах: (A_1(A_2(A_3\dots A_n)\dots))) ((A_1A_2)(A_3\dots A_n)\dots) (((A_1A_2)A_3)\dots A_n)\dots)
```

Задача: выбрать расстановку скобок, минимизирующую общее количество скалярных операций при перемножении.

Если решать простым перебором, получим экспоненциальную сложность (прямолинейно доказывается по индукции).

Обозначим произведение $A_iA_{i+1}\dots A_j$, как $A_{i..j}$ (здесь $i\leq j$).

Обозначим произведение $A_iA_{i+1}\dots A_j$, как $A_{i..j}$ (здесь $i\leq j$).

Если задача не является тривиальной, т.е. i < j, то любая расстановка скобок разобьет $A_{i..j}$ на перемножение двух матриц: A_k и A_{k+1} , где $i \le k < j$.

Обозначим произведение $A_iA_{i+1}\dots A_j$, как $A_{i..j}$ (здесь $i\leq j$).

Если задача не является тривиальной, т.е. i < j, то любая расстановка скобок разобьет $A_{i..j}$ на перемножение двух матриц: A_k и A_{k+1} , где $i \le k < j$.

 ${
m T.e.}$ сначала будет вычислено произведение $A_{i..k}$, затем $A_{k+1..j}$, после чего получившиеся матрицы перемножаются.

Обозначим произведение $A_iA_{i+1}\dots A_j$, как $A_{i..j}$ (здесь $i\leq j$).

Если задача не является тривиальной, т.е. i < j, то любая расстановка скобок разобьет $A_{i..j}$ на перемножение двух матриц: A_k и A_{k+1} , где $i \le k < j$.

T.e. сначала будет вычислено произведение $A_{i..k}$, затем $A_{k+1..j}$, после чего получившиеся матрицы перемножаются.

Суммарное количество скалярных операций будет суммой операций при вычислении $A_{i..k}$ и $A_{k+1..j}$ + скалярные операции из их перемножения.

Пусть теперь есть оптимальная расстановка скобок в $A_iA_{i+1}\dots A_j$, приводящая к перемножению матриц $A_{i..k}$ и $A_{k+1..j}$

Пусть теперь есть оптимальная расстановка скобок в $A_iA_{i+1}\dots A_j$, приводящая к перемножению матриц $A_{i..k}$ и $A_{k+1..j}$

Тогда в последовательности $A_i * A_{i+1} * \dots A_k$ скобки тоже расставлены оптимально.

Пусть теперь есть оптимальная расстановка скобок в $A_iA_{i+1}\dots A_j$, приводящая к перемножению матриц $A_{i..k}$ и $A_{k+1..j}$

Тогда в последовательности $A_i * A_{i+1} * \dots A_k$ скобки тоже расставлены оптимально (если бы была более оптимальная расстановка, ее бы и взяли в общем оптимальном решении).

Пусть теперь есть оптимальная расстановка скобок в $A_iA_{i+1}\dots A_j$, приводящая к перемножению матриц $A_{i..k}$ и $A_{k+1..j}$

Тогда в последовательности $A_i * A_{i+1} * \dots A_k$ скобки тоже расставлены оптимально (если бы была более оптимальная расстановка, ее бы и взяли в общем оптимальном решении).

Аналогичное верно и для $A_{k+1} * A_{k+2} * \dots A_j$.

Пусть теперь есть оптимальная расстановка скобок в $A_iA_{i+1}\dots A_j$, приводящая к перемножению матриц $A_{i..k}$ и $A_{k+1..j}$

Тогда в последовательности $A_i * A_{i+1} * \dots A_k$ скобки тоже расставлены оптимально (если бы была более оптимальная расстановка, ее бы и взяли в общем оптимальном решении).

Аналогичное верно и для $A_{k+1} * A_{k+2} * \dots A_j$.

Из этого факта получим рекуррентное соотношение: нужно найти наиболее эффективное разбиение, финальным ответом будет сумма скалярных величин из префикса и суффикса (и плюс скалярные операции из их перемножения).

Обозначим m[i, j] - минимальное количество скалярных операций при перемножении последовательности $A_iA_{i+1}\dots A_j$, где $1\leq i\leq j\leq n$.

Ответом на всю задачу будет m[1, n].

Обозначим m[i, j] - минимальное количество скалярных операций при перемножении последовательности $A_iA_{i+1}\dots A_j$, где $1\leq i\leq j\leq n$.

Ответом на всю задачу будет m[1, n].

Случай і = ј - тривиален. Имеем одну матрицу => перемножать ничего не нужно => m[i, i] = 0.

Обозначим m[i, j] - минимальное количество скалярных операций при перемножении последовательности $A_iA_{i+1}\dots A_j$, где $1\leq i\leq j\leq n$.

Ответом на всю задачу будет m[1, n].

Случай і = ј - тривиален. Имеем одну матрицу => перемножать ничего не нужно => m[i, i] = 0.

Обозначим размерности каждой матрицы A_i через $p_{i-1} imes p_i$.

Обозначим m[i, j] - минимальное количество скалярных операций при перемножении последовательности $A_iA_{i+1}\dots A_j$, где $1\leq i\leq j\leq n$.

Ответом на всю задачу будет m[1, n].

Случай і = ј - тривиален. Имеем одну матрицу => перемножать ничего не нужно => m[i, i] = 0.

Обозначим размерности каждой матрицы A_i через $p_{i-1} imes p_i$.

Если знаем структуру оптимального разбиения (т.е. знаем k), то имеем: $m[i,j]=m[i,k]+m[k+1,j]+p_{i-1}p_kp_j$.

Обозначим m[i, j] - минимальное количество скалярных операций при перемножении последовательности $A_iA_{i+1}\dots A_j$, где $1\leq i\leq j\leq n$.

Ответом на всю задачу будет m[1, n].

Случай і = ј - тривиален. Имеем одну матрицу => перемножать ничего не нужно => m[i, i] = 0.

Обозначим размерности каждой матрицы A_i через $p_{i-1} imes p_i$.

Если знаем структуру оптимального разбиения (т.е. знаем k), то имеем: $m[i,j]=m[i,k]+m[k+1,j]+p_{i-1}p_kp_j$.

Но мы не знаем! Поэтому, давайте перебирать все варианты.

Тогда получаем:
$$m[i,j] = egin{cases} 0 & i = j \ \min_{i \leq k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & i < j \end{cases}$$

Тогда получаем:
$$m[i,j] = egin{cases} 0 & i = j \ \min_{i \leq k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & i < j \end{cases}$$

Если будем вычислять в лоб, то снова получим экспоненциальную сложность. Поэтому опять нужен восходящий анализ.

Тогда получаем:
$$m[i,j] = egin{cases} 0 & i = j \ \min_{i \leq k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & i < j \end{cases}$$

Если будем вычислять в лоб, то снова получим экспоненциальную сложность. Поэтому опять нужен восходящий анализ.

Что важно: можем найти m[i, j] зная только m от меньших промежутков. Поэтому снова заполняем таблицу.

Тогда получаем:
$$m[i,j] = egin{cases} 0 & i = j \ \min_{i \leq k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & i < j \end{cases}$$

Если будем вычислять в лоб, то снова получим экспоненциальную сложность. Поэтому опять нужен восходящий анализ.

Что важно: можем найти m[i, j] зная только m от меньших промежутков. Поэтому снова заполняем таблицу.

Дополнительно заведем таблицу s, куда будем записывать индекс k, при котором получилась оптимальная расстановка.

```
for i in [1, n]:
    m[i, i] = 0
```

```
for i in [1, n]:
   m[i, i] = 0
for l in [2, n]: ←
                                             длина подпоследовательности
   for i in [1, n - l + 1]:
      j = i + l - 1
      m[i, j] = \infty
       for k in \lceil i, j - 1 \rceil:
          q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j
```

```
for i in [1, n]:
   m[i, i] = 0
for l in [2, n]: ←
                                                длина подпоследовательности
   for i in [1, n - l + 1]:
       j = i + l - 1
       m[i, j] = \infty
       for k in \lceil i, j - 1 \rceil:
           q = m \lceil i, k \rceil + m \lceil k + 1, j \rceil + p_{i-1} p_k p_j
           if q < m[i, j]: { m[i, j] = q, s[i, j] = k }
```

Пример

```
A_1 30 x 35 A_2 35 x 15 A_3 15 x 5 A_4 5 x 10 A_5 10 x 20 A_6 20 x 25
```

Пример

m

A_1	30 x 35
A_2	35 x 15
A_3	15 x 5
A_4	5 x 10
A_5	10 x 20
A_6	20 x 25

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

```
for i in [1, n]:
   m[i, i] = 0
for l in [2, n]: ←
                                                длина подпоследовательности
   for i in [1, n - l + 1]:
       j = i + l - 1
       m[i, j] = \infty
       for k in \lceil i, j - 1 \rceil:
           q = m \lceil i, k \rceil + m \lceil k + 1, j \rceil + p_{i-1} p_k p_j
           if q < m[i, j]: { m[i, j] = q, s[i, j] = k }
```

Пример

m

A_1	30 x 35
A_2	35 x 15
A_3	15 x 5
A_4	5 x 10
A_5	10 x 20
A_6	20 x 25

1	2	3	4	5	6
0					
	0				
		0			
			0		
				0	
					0

```
for i in [1, n]:
   m[i, i] = 0
for l in [2, n]: ←
                                                длина подпоследовательности
   for i in [1, n - l + 1]:
       j = i + l - 1
       m[i, j] = \infty
       for k in \lceil i, j - 1 \rceil:
           q = m \lceil i, k \rceil + m \lceil k + 1, j \rceil + p_{i-1} p_k p_j
           if q < m[i, j]: { m[i, j] = q, s[i, j] = k }
```

```
for i in [1, n]:
   m[i, i] = 0
for i in [1, n - l + 1]:
      j = i + l - 1
      m[i, j] = \infty
       for k in \lceil i, j - 1 \rceil:
          q = m \lceil i, k \rceil + m \lceil k + 1, j \rceil + p_{i-1} p_k p_j
          if q < m[i, j]: { m[i, j] = q, s[i, j] = k }
```

```
for i in [1, n]:
   m[i, i] = 0
for l in [2, n]: ←
   for i in [1, n - l + 1]:
                                                  i in \lceil 1, 5 \rceil
                                                  i = i + 1
       i = i + l - 1
       m[i, j] = \infty
        for k in \lceil i, j - 1 \rceil:
           q = m \lceil i, k \rceil + m \lceil k + 1, j \rceil + p_{i-1} p_k p_j
           if q < m[i, j]: { m[i, j] = q, s[i, j] = k }
```

 A_1 30 x 35 A_2 35 x 15 A_3 15 x 5 A_4 5 x 10 A_5 10 x 20 A_6 20 x 25


```
for i in [1, n]:
  m[i, i] = 0
i in [1, 5]
   for i in \lceil 1, n - l + 1 \rceil:
                                       i = i + 1
      i = i + l - 1
     m[i, j] = \infty
      q = m \lceil i, k \rceil + m \lceil k + 1, j \rceil + p_{i-1} p_k p_j
         if q < m[i, j]: { m[i, j] = q, s[i, j] = k }
```

```
for i in [1, n]:
    m[i, i] = 0
for l in \lceil 2, n \rceil: \longleftarrow
    for i in \lceil 1, n - l + 1 \rceil:
                                                         i in \lceil 1, 5 \rceil
                                                         i = i + 1
        i = i + l - 1
        m[i, j] = \infty
         for k in \lceil i, j - 1 \rceil:
             \mathsf{q} = \mathsf{m[i, k]} + \mathsf{m[k+1, j]} + p_{i-1}p_kp_j \qquad \mathsf{q = m[i, i]} +
                                                                          m[j, j] + ...
             if q < m[i, j]: { m[i, j] = q, s[i, j] = k }
```

```
for i in [1, n]:
    m[i, i] = 0
for l in [2, n]:
     for i in [1, n - l + 1]:
                                                                 i in \lceil 1, 5 \rceil
                                                                  i = i + 1
          i = i + l - 1
          m[i, j] = \infty
          for k in \lceil i, j - 1 \rceil:
               \mathsf{q} = \mathsf{m} \llbracket \mathsf{i}, \mathsf{k} \rrbracket + \mathsf{m} \llbracket \mathsf{k} + \mathsf{1}, \mathsf{j} \rrbracket + p_{i-1} p_k p_j \mathsf{q} = p_{i-1} * p_i * p_{i+1}
               if q < m[i, j]: { m[i, j] = q, s[i, j] = k }
```

m

A_1	30 x 35
A_2	35 x 15
A_3	15 x 5
A_4	5 x 10
A_5	10 x 20
A_6	20 x 25

1	2	3	4	5	6
0	15 750				
	0				
		0			
			0		
				0	
					0

m

A_1	30 x 35
A_2	35 x 15
A_3	15 x 5
A_4	5 x 10

	1	2	3	4	5	6
1	0	15 750				
2		0	2625			
3			0			
4				0		
5					0	
6						a

0

m

6

A_1	30 x 35
A_2	35 x 15
A_3	15 x 5
A_4	5 x 10
A_5	10 x 20
A_6	20 x 25

•						
	1	2	3	4	5	6
	0	15 750				
		0	2625			
			0	750		
				0		
					0	
						0

m

A_1	30 x 35
A_2	35 x 15
A_3	15 x 5
A_4	5 x 10
A_5	10 x 20
A_6	20 x 25

•						
	1	2	3	4	5	6
	0	15 750				
		0	2625			
			0	750		
				0	1000	
					0	500
						0

```
for i in [1, n]:
    m[i, i] = 0
for l in [2, n]:
     for i in [1, n - l + 1]:
                                                                 i in \lceil 1, 5 \rceil
                                                                  i = i + 1
          i = i + l - 1
          m[i, j] = \infty
          for k in \lceil i, j - 1 \rceil:
               \mathsf{q} = \mathsf{m} \llbracket \mathsf{i}, \mathsf{k} \rrbracket + \mathsf{m} \llbracket \mathsf{k} + \mathsf{1}, \mathsf{j} \rrbracket + p_{i-1} p_k p_j \mathsf{q} = p_{i-1} * p_i * p_{i+1}
               if q < m[i, j]: { m[i, j] = q, s[i, j] = k }
```

```
for i in [1, n]:
   m[i, i] = 0
for l in [2, n]: ←
   for i in [1, n - l + 1]:
                                                  i in \lceil 1, 4 \rceil
                                                  i = i + 2
       i = i + l - 1
       m[i, j] = \infty
        for k in \lceil i, j - 1 \rceil:
           q = m \lceil i, k \rceil + m \lceil k + 1, j \rceil + p_{i-1} p_k p_j
           if q < m[i, j]: { m[i, j] = q, s[i, j] = k }
```

 A_1 30 x 35

 A_2 35 x 15

 A_3 15 x 5

 A_4 5 x 10

 A_5 10 x 20

 A_6 20 x 25

m

1 2 3 4 5 6

1 0 15 750 2 0 2625 3 0 750

4 0 1000 5 0

6 0

500

```
for i in [1, n]:
   m[i, i] = 0
for l in [2, n]: ←
   for i in [1, n - l + 1]:
                                                  i in \lceil 1, 4 \rceil
                                                  i = i + 2
       i = i + l - 1
       m[i, j] = \infty
        for k in \lceil i, j - 1 \rceil:
           q = m \lceil i, k \rceil + m \lceil k + 1, j \rceil + p_{i-1} p_k p_j
           if q < m[i, j]: { m[i, j] = q, s[i, j] = k }
```

```
for i in [1, n]:
   m[i, i] = 0
for l in [2, n]:
                                       i in [1, 4]
   for i in \lceil 1, n - l + 1 \rceil:
                                             i = i + 2
      i = i + l - 1
      m[i, j] = \infty
       for k in [i, j - 1]: ←
                                           ——— k in [i, i + 1]
          q = m \lceil i, k \rceil + m \lceil k + 1, j \rceil + p_{i-1} p_k p_j
          if q < m[i, j]: { m[i, j] = q, s[i, j] = k }
```

m

6

 A_1 30 x 35 A_2 35 x 15 A_3 15 x 5 A_4 5 x 10 A_5 10 x 20 A_6 20 x 25 m

	1	2	3	4	5	6
1	0	15 750				
2		0	2625			
3			0	750		
4				0	1000	
5					0	500
6						0

$$A1(A2A3) => m[1,1] + m[2,3] + (30 imes 35) imes 5 = 0 + 2625 + 5250 = 7875$$

 A_2

 A_1 30 x 35

35 x 15

 A_3 15 x 5

 A_4 5 x 10

 A_5 10 x 20

 A_6 20 x 25

m

15 750

$$A1(A2A3) => m[1,1] + m[2,3] + (30 \times 35) \times 5 = 0 + 2625 + 5250 = 7875 \ (A1A2)A3 => m[1,2] + m[3,3] + (30 \times 15) \times 5 = 15750 + 0 + 2250 = 18000$$

 A_1 30 x 35 A_2 35 x 15 A_3 15 x 5 A_4 5 x 10 A_5 10 x 20 A_6 20 x 25 m

	1	2	3	4	5	6
1	0	15 750	7875			
2		0	2625			
3			0	750		
4				0	1000	
5					0	500
5						0

$$A1(A2A3) => m[1,1] + m[2,3] + (30 \times 35) \times 5 = 0 + 2625 + 5250 = 7875 \ (A1A2)A3 => m[1,2] + m[3,3] + (30 \times 15) \times 5 = 15750 + 0 + 2250 = 18000$$

 A_1 30 x 35 A_2 35 x 15 A_3 15 x 5 A_4 5 x 10 A_5 10 x 20 A_6 20 x 25

$$A1(A2A3) => m[1,1] + m[2,3] + (30 \times 35) \times 5 = 0 + 2625 + 5250 = 7875 \ (A1A2)A3 => m[1,2] + m[3,3] + (30 \times 15) \times 5 = 15750 + 0 + 2250 = 18000$$

 A_1 30 x 35 A_2 35 x 15 A_3 15 x 5 A_4 5 x 10 A_5 10 x 20 A_6 20 x 25 m

 A_1 30 x 35 A_2 35 x 15 A_3 15 x 5 A_4 5 x 10 A_5 10 x 20 A_6 20 x 25 m

 A_1 30 x 35 A_2 35 x 15 A_3 15 x 5 A_4 5 x 10 A_5 10 x 20 A_6 20 x 25 m

3

5

6

1	2	3	4	5	6
0	15 750	7875			
	0	2625	4375		
		0	750	2500	
			0	1000	3500
				0	500
					0

 A_1 30 x 35 A_2 35 x 15 A_3 15 x 5 A_4 5 x 10 A_5 10 x 20 A_6 20 x 25

 A_1 30 x 35 A_2 35 x 15 A_3 15 x 5 A_4 5 x 10 A_5 10 x 20 A_6 20 x 25 m

3

5

6

1	2	3	4	5	6
0	15 750	7875	9375	11875	15125
	0	2625	4375	7125	10500
		0	750	2500	5375
			0	1000	3500
				0	500
					0

Т.е. чтобы найти значение в ячейке на текущей активной диагонали, перебираем варианты из треугольника под ним

В конце концов заполняем всю верхнетреугольную матрицу

m

A_1	30 x 35
A_2	35 x 15
A_3	15 x 5
A_4	5 x 10
A_5	10 x 20
A_6	20 x 25

	1	2	3	4	5	6
1	0	15 750	7875	9375	11875	15125
2		0	2625	4375	7125	10500
3			0	750	2500	5375
4				0	1000	3500
5					0	500
6						0

m

A_1	30 x 35
A_2	35 x 15
A_3	15 x 5
A_4	5 x 10
A_5	10 x 20
A_6	20 x 25

1	2	3	4	5	6
0	15 750	7875	9375	11875	15125
	0	2625	4375	7125	10500
		0	750	2500	5375
			0	1000	3500
				0	500
					0

A_1	30 x 35
A_2	35 x 15
A_3	15 x 5
A_4	5 x 10
$egin{array}{c} A_4 \ A_5 \end{array}$	5 x 10 10 x 20

m						
	1	2	3	4	5	6
1	0	15 750	7875	9375	11875	15125
2		0	2625	4375	7125	10500
3			0	750	2500	5375
4				0	1000	3500
5					0	500
6						0

 A_1 30 x 35

 A_2 35 x 15

 A_3 15 x 5

 A_4 5 x 10

 A_5 10 imes 20

 A_6 20 x 25

m

1 2 3 4 5 6 0 15 750 7875 9375 11875 15125

 2
 0
 2625
 4375
 7125
 10500

 3
 0
 750
 2500
 5375

 4
 0
 1000
 3500

A_1	30 x 35
A_2	35 x 15
A_3	15 x 5
A_4	5 x 10
A_5	10 x 20
$A_5 \ A_6$	10 x 20 20 x 25

m						
	1	2	3	4	5	6
1	0	15 750	7875	9375	11875	15125
2		0	2625	4375	7125	10500
3			0	750	2500	5375
4				0	1000	3500
5					0	500
6						0

A_1	30	Χ	35
A_2	35	Х	15

 A_3 15 x 5

 A_4 5 x 10

 A_5 10 x 20

 A_6 20 x 25

Аналогично прошлым задачам заполняется матрица S, в которой фиксируется выбор, какое k выбирали.

A_1	30 x 35
A_2	35 x 15
A_3	15 x 5
A_4	5 x 10
A_5	10 x 20
A_6	20 x 25

Аналогично прошлым задачам заполняется матрица S, в которой фиксируется выбор, какое k выбирали.

Сложность алгоритма?

```
for i in [1, n]:
   m[i, i] = 0
for l in [2, n]: ←
                                                длина подпоследовательности
   for i in [1, n - l + 1]:
       j = i + l - 1
       m[i, j] = \infty
       for k in \lceil i, j - 1 \rceil:
           q = m \lceil i, k \rceil + m \lceil k + 1, j \rceil + p_{i-1} p_k p_j
           if q < m[i, j]: { m[i, j] = q, s[i, j] = k }
```

m

A_1	30 x 35
A_2	35 x 15
A_3	15 x 5
A_4	5 x 10
A_5	10 x 20
$A_5 \ A_6$	10 x 20 20 x 25

	1	2	3	4	5	6
1	0	15 750	7875	9375	11875	15125
2		0	2625	4375	7125	10500
3			0	750	2500	5375
4				0	1000	3500
5					0	500
6						0

Аналогично прошлым задачам заполняется матрица S, в которой фиксируется выбор, какое k выбирали.

Сложность алгоритма? 0(n^3)

Мини-задача **#37** (1 балл)

Найти количество уникальных (по форме) BST. Используйте алгоритм динамического программирования.

https://leetcode.com/problems/unique-binary-search-trees

Мини-задача #38 (1 балла)

Помогите рыцарю выйти из подземелья!

https://leetcode.com/problems/dungeon-game

Takeaways

- Новый инструмент решения задач: динамическое программирование!
- Ищите оптимальную подструктуру.
- Выписывайте рекуррентное соотношение.
- о Убеждайтесь, что подзадач мало, после чего используйте восходящий анализ.