Algebra Lineare

Realizzato da: Giuntoni Matteo

A.A. 2022-2023

1 Introduzione

1.1 Sistemi di equazioni

L'algebra lineare è lo studio delle soluzioni di sistemi di equazioni lineari utilizzando spazi vettoriali.

Esempio 1.1.1. Un esempio di sistemi di equazioni:

1.
$$E_1: x+y=5$$

 $E_2: x+2y=6$ $\Rightarrow E_2-E_1$ (sostituzione):
$$\begin{cases} y=5-3=2\\ x=3-2=1 \end{cases}$$
 Un unica soluzione.

2.
$$E_1: x + y = 3$$

 $E_2: 2x + 2y = 6$ $\Rightarrow E_2 - 2E_1: 0 = 0.$

Infatti $E_2 = 2E_1 \Rightarrow$ hanno le stesse soluzioni $\Rightarrow \exists \infty$ soluzioni.

3.
$$E_1: x+y=3 \\ E_2: 2x+2y=5$$
 \Rightarrow $E_2-2E_1: 0=-1$ è impossibile infatti \nexists soluzioni comuni.

Possiamo vedere da questi esempi che abbiamo tre possibili risultati: 1 soluzione, ∞ e 0.

1.2 Interpretazioni geometrica

In ogni caso le equazioni E_1 ed E_2 rappresentano rette su un piano a 2 dimensioni. Le soluzioni comuni sono i punti di intersezione delle rette.

Nel caso specifico dell'esempio 1.1.1 abbiamo che:

(a) 1° hanno un punto in comune P=(1,2)

(b) 2° coincidono $\Rightarrow \infty$ punti in comune

(c) 3° sono parallele $\Rightarrow \nexists$ punti in comune

Algebra Lineare A.A 2022-2023

1.3 Equazioni a 3 variabili

Un esempio di equazione a 3 variabili è x + 2y + 3z = 4. Ciò crea, invece di una retta, un piano nello spazio 3-dimensionale. Se adesso consideriamo le equazioni viste sopra E_1 ed E_2 come equazioni a 3 variabili possiamo vedere che esse corrispondono a 2 piani nello spazio ed i punti in comune formano una retta.

Se oltre a E_1 ed E_2 consideriamo una terza equazione E_3 essa corrisponde ad un terzo piano.

(b) 2° i due piani coincidono

(c) 3° i due piani sono paralleli

Possiamo vedere come esso si comporta intersecandolo con l'intersezione fra E_1 ed E_2 , $E_1 \cap E_2$.

(a) $E_1 \cap E_2$ è una retta che, in- (b) $E_1 \cap E_2$ può essere contenuto (c) $E_1 \cap E_2$ e E_3 possono non cotersecata con E_3 , crea un punto in E_3 quindi nuova retta incidere

1.4 Caso generale

Possiamo definire un sistema (E) di n equazioni a m variabili con n, m > 0 e con $a_{nm}, b_n \in \mathbb{R}$ come:

$$E_1: a_{11}x_1 + a_{12}x_2 + \ldots + a_{1m}x_m = b_1$$

$$E_2: a_{21}x_1 + a_{22}x_2 + \ldots + a_{2m}x_m = b_2$$

$$\vdots$$

$$E_n: a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nm}x_m = b_n$$

Definizione 1.4.1 (Sistema omogeneo). Il sistema (E) è **omogeneo** se $b_1 = \ldots = b_n = 0$. In caso contrario possiamo considerare il sistema omogeneo associato (E_{om}) definito come:

$$E_1: a_{11}x_1 + a_{12}x_2 + \ldots + a_{1m}x_m = 0$$

$$E_2: a_{21}x_1 + a_{22}x_2 + \ldots + a_{2m}x_m = 0$$

$$\vdots$$

$$E_n: a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nm}x_m = 0$$

Se (E) è **omogeneo**, \exists sempre una soluzione comune del tipo $(x_1,\ldots,x_n)=(0_1,\ldots,0_n)$.

Proposizione 1.4.1. Se $(c_1,...,c_n)$ e $(d_1,...,d_n)$ sono soluzioni di $(E) \implies c_1-d_1,...,c_n-d_n$ è soluzione del sistema omogeneo.

Dimostrazione 1.4.1. Se (c_1, \ldots, c_m) è soluzione vuol dire che :

$$\begin{split} E_1: a_{i1}c_1 + a_{i2}c_2 + a_{im}c_m &= b_i \\ E_2: a_{i1}d_1 + a_{i2}d_2 + a_{im}d_m &= b_i \\ \text{Quindi se sottraggo } E1 - E2 \text{ e raccolgo viene:} \\ a_{i1}(c_1 - d_1) + a_{i2}(c_2 - d_m) + a_{im}(c_m - d_m) &= 0 \ \forall \, i, ..., n \end{split}$$

Algebra Lineare A.A 2022-2023

Teorema 1.4.1. Se (c_1, \ldots, c_m) è soluzione del sistema (E) tutte le soluzioni (E) sono della forma $(c_1 + e_1, c_2 + e_2, \ldots, c_m + e_m)$ dove (e_1, \ldots, e_m) è soluzione di E_{om} .

In sinestesi si può semplificare questo teorema scrivendo:

Dimostrazione 1.4.2. La proposizione 1.4.1 dice che le soluzioni hanno questa forma. Viceversa se (e_1, \ldots, e_m) sono soluzioni di $(E_{om}) \Longrightarrow (c_1 + e_1, c_2 + e_2, \ldots, c_m + e_m)$ sono soluzioni di (E).

Esempio 1.4.1. Prendiamo n=1 e m=2 e prendiamo come sistema di equazioni (E): 2x + 3y = 5 e come equazione omogenea (E_{om}) : 2x + 3y = 0

Vediamo che le soluzioni particolari sono x = y = 1. Per calcolare le soluzioni omogenee si fa 2x = -3y e poi $x = -\frac{3}{2}y$, qui per ogni valore di y trovo un valore di x.

La soluzioni omogenea è $(-\frac{3}{2}p,p)$ dove p è un parametro che può essere qualsiasi valore. Sappiamo che "sol. generale" = "sol. particolare" + "sol. omogenea" \Rightarrow $(1,1)+(-\frac{3}{2}t,t)=(1-\frac{3}{2}t,1+t)$.

Osservazione 1.4.1. (0,...,0) è sempre soluzione di (E_{om}) . Quindi se (E) ammette una soluzione questo soluzione è unica $\iff (0,...,0)$ è l'unica soluzione di (E_{om}) .

1.5 Interpretazione geometrica caso generico

L'interpretazione geometrica per (E_{om}) è un iperpiano attraverso l'origine", e la soluzione è traslazione di questo caso generale per un caso particolare.

- 1. n = 1, m = 2 (E) $a_{1n}x_1 + a_{m2}x_2 = b_1$. Una soluzione \iff retta (E_{om}) $a_1x_1 + a_2x_2 = 0$ una soluzione a (E) \implies retta attraverso (0,0).
- 2. $n = 1, m = 2, a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = a$ (E), punto attraverso (0,0,0).

1.6 Come trovare le soluzioni?

Per trovare le soluzioni comuni di (E) possiamo usare 3 operazioni per semplificare il sistema:

- 1. Scambiare due equazioni.
- 2. Moltiplicare E_i per $\lambda \neq 0$ e fare la somma con E_j , $E_j = E_j + \lambda E_i$.
- 3. Moltiplicare un'equazione E_i per un costate $\lambda \neq 0$, $E_i \Rightarrow \lambda E_i$.

Osservazione 1.6.1. Queste operazioni non cambiano l'insieme delle soluzioni di (E).

Dimostrazione 1.6.1. Dimostriamo le 3 proprietà:

- 1. La prima è ovvia quindi non ha bisogno di una dimostrazione.
- 2. Se (c_1, \ldots, c_n) soluzioni di E_i ed $E_j \Rightarrow$ è anche soluzione di $E_i + \lambda E_j$. Viceversa se (c_1, \ldots, c_n) soluzioni di E_i , $E_j + \lambda E_i \Rightarrow$ anche soluzione di $(E_j + \lambda E_i)$ - $\lambda = E_j$.
- 3. Se (c_1, \ldots, c_n) soluzioni di (E) \Rightarrow anche di λE e viceversa.