7.12. (Local martingales)

An \mathcal{N}_t -adapted stochastic process $Z(t) \in \mathbf{R}^n$ is called a *local martin-gale* with respect to the given filtration $\{\mathcal{N}_t\}$ if there exists an increasing sequence of \mathcal{N}_t -stopping times τ_k such that

$$\tau_k \to \infty$$
 a.s. as $k \to \infty$

and

$$Z(t \wedge \tau_k)$$
 is an \mathcal{N}_t -martingale for all k .

a) Show that if Z(t) is a local martingale and there exists a constant $T \leq \infty$ such that the family $\{Z(\tau)\}_{\tau \leq T}$ is uniformly integrable (Appendix C) then $\{Z(t)\}_{t \leq T}$ is a martingale.

1. \ Z(+) \{ + xT is N+-adapted, i.e., is N+-measurable for all +.

Theorem C.4. Suppose $\{f_k\}_{k=1}^{\infty}$ is a sequence of real measurable functions on Ω such that

$$\lim_{k \to \infty} f_k(\omega) = f(\omega) \quad \text{for a.a. } \omega.$$

Then the following are equivalent:

- 1) $\{f_k\}$ is uniformly integrable
- 2) $f \in L^1(P)$ and $f_k \to f$ in $L^1(P)$, i.e. $\int |f_k f| dP \to 0$ as $k \to \infty$.

Since $\frac{1}{2}Z(Z)^{2}Z(Z) = \frac{1}{2}Z(Z)$ is uniformly integrable, and $\lim_{k\to\infty} Z_{Z} = Z_{+}$ since $Z = + A Z_{+}$

then
$$Z \in L'(P)$$
 and $\lim_{k \to \infty} \int |Z_z - Z_t| dP = 0$
i.e., $\mathbb{E}[|Z_t|] < \infty$

3. Since $\mathbb{Z}_{+n\mathbb{Z}_{k}}$ is an \mathbb{N}_{+} -martinagale, for $s \leq +$, $\mathbb{E}^{\times} \left[\mathbb{Z}_{\mathbb{Z}_{k}+1} \mid \mathbb{N}_{0} \right] = \mathbb{Z}_{\mathbb{Z}_{k}+s} \xrightarrow{\mathbb{K} \to \infty} \mathbb{Z}_{s}$

Thus,
$$E^{*}[Z_{+}|\mathcal{N}_{s}] = \lim_{k \to \infty} E^{*}[Z_{\tau_{k}+}|\mathcal{N}_{s}] = Z_{s}$$

b) In particular, if Z(t) is a local martingale and there exists a constant $K<\infty$ such that

$$E[Z^2(\tau)] \le K$$

for all stopping times $\tau \leq T$, then $\{Z(t)\}_{t \leq T}$ is a martingale.

Since $Z_z \longrightarrow Z_t$ in L'(P) and $Z_t \in L'(P)$, $Z_t \in S_t$ is uniformly integrable.

By the previous Hem, the result follows.

c) Show that if Z(t) is a lower bounded local martingale, then Z(t) is a supermartingale (Appendix C).

We already vertied that Z(t) is NF-adapted and E[1Z(t))] < 10. Now we need to show that

Notice that, assuming Z+>0,