Week 4: User Profiles and Content Based RSs - Cont.

CSX4207/ITX4207: Decision Support and Recommender Systems

Asst. Prof. Dr. Rachsuda Setthawong

Objectives

- To understand text classification methods
- To be familiar with additional algorithms in this approach
- To understand evaluation measures and to be able to apply them
- To understand the limitations of content-based approach

Outlines

- Recommendation as Text Classification Problems
 - Naïve Bayes
 - Additional Probabilistic Methods
- Additional Algorithm
- Limitations of Content-based Recommendation Methods
- Evaluation Measures

How to Generate Recommendation Using Content Based Approach

- etc.

Recommendation as Text Classification Problem

- Probabilistic-based approach:
 - Given Boolean representation with 2 classes:
 - *like* (class label = 1)
 - **dislike** (class label = 0)
 - For each unseen document, calculate probability of *like* and *dislike* using
 Bayes theorem

$$P(Y|X) = \frac{\prod_{i=1}^{d} P(X_i|Y) \times P(Y)}{P(X)}$$

- where, *Y* is is class label,
- X is the set of attributes of the document, and
- *d* is no. of attributes.

(Note: The calculation of P(X) can be omitted.)

• ACTION: An unseen document should be recommended to the user if P(Label=1|X) > P(Label=0|X).

(the probability distribution of v given a class C_k)

Bayes Classifier

(A Simplified Model of Bayes Theorem)

• The function that assigns a class label $\hat{y} = C_k$ using the following formula:

$$\hat{y} = \operatorname*{argmax}_{k \in \{1, \ldots, K\}} p(C_k) \prod_{i=1}^{n} p(x_i \mid C_k).$$
 where, $p(C_k)$ is prior probability (class probability) $p(x=v \mid C_k)$ is posterior probability

The target user's profile:

(class label = 1) \rightarrow *like* (class label = 0) \rightarrow *dislike*

Doc-ID	python	amazon	forest	program	Label
1	1	1	1	0	1
2	0	0	1	1	0
3	1	1	0	0	1
4	1	O	1	1	1
5	0	O	O	1	O

Unseen Document

Doc-ID	python	amazon	forest	program	Label
6	1	1	0	0	?

The target user's profile:

Doc-ID	python	amazon	forest	program	Label
1	1	1	1	0	1
2	0	0	1	1	O
3	1	1	0	0	1
4	1	0	1	1	1
5	0	0	O	1	0

Unseen Document

Doc-ID	python	amazon	forest	program	Label
6	1	1	0	0	?

Prior Probabilites:

$$P(Label=1) = 3/5$$

 $P(Label=0) = 2/5$

The target user's profile:

Doc-ID	python	amazon	forest	program	Label
1	1	1	1	0	1
2	0	0	1	1	O
3	1	1	O	0	1
4	1	O	1	1	1
5	0	O	O	1	0

Doc-ID	python	amazon	forest	program	Label
6	1	1	0	0	?

posterior probability:

The model built from the target user's profile:

Prior Probabilites:

```
P(Label=1) = 3/5
P(Label=0) = 2/5
```

posterior probability:

```
\begin{array}{ll} P(python=1|Label=1)=3/3 & P(python=1|Label=0)=0/2 \\ P(amazon=1|Label=1)=2/3 & P(amazon=1|Label=0)=0/2 \\ P(forest=0|Label=1)=1/3 & P(forest=0|Label=0)=1/2 \\ P(program=0|Label=1)=2/3 & P(program=0|Label=0)=0/2 \end{array}
```

$P(Y|X) = \frac{\prod_{i=1}^{d} P(X_i|Y) \times P(Y)}{P(X)}$

Unseen Document

Doc-ID	python	amazon	forest	program	Label	
6	1	1	0	0	?	

$$P(Label=1|X) = [P(python=1|Label=1) \times P(amazon=1|Label=1) \times P(forest=0|Label=1) \times P(program=0|Label=1) \times P(Label=1)] / (P(X))$$

$$= [(3/3 \times 2/3 \times 1/3 \times 2/3) \times (3/5)]/P(X)$$

$$= (0.149 \times 3/5)/P(X) = \mathbf{0.089}/P(X)$$

The model built from the target user's profile:

Prior Probabilites:

```
P(Label=1) = 3/5
P(Label=0) = 2/5
```

posterior probability:

```
\begin{array}{ll} P(\text{python=1}|\text{Label=1}) = 3/3 & P(\text{python=1}|\text{Label=0}) = 0/2 \\ P(\text{amazon=1}|\text{Label=1}) = 2/3 & P(\text{amazon=1}|\text{Label=0}) = 0/2 \\ P(\text{forest=0}|\text{Label=1}) = 1/3 & P(\text{forest=0}|\text{Label=0}) = 1/2 \\ P(\text{program=0}|\text{Label=1}) = 2/3 & P(\text{program=0}|\text{Label=0}) = 0/2 \\ \end{array}
```

Unseen Document

P(Y X) =	$\prod_{i=1}^{d} P(X_i Y) \times P(Y)$
$\left(F(I X) - \right)$	P(X)

Doc-ID	python	amazon	forest	program	Label	
6	1	1	0	0	?	

$$P(Label=o|X) = [P(python=1|Label=o) \times P(amazon=1|Label=o) \times P(forest=o|Label=o) \times P(program=o|Label=o) \times P(Label=o)] / (P(X))$$

$$= [(0/2 \times 0/2 \times 1/2 \times 0/2) \times (2/5)]/P(X)$$

$$= 0/P(X) = 0$$

$$\hat{y} = egin{array}{c} rgmax \ k \in \{1, \ldots, K\} \end{array} p(C_k) \prod_{i=1}^n p(x_i \mid C_k).$$

•
$$P(Label=1|X) > P(Label=0|X)$$
 (class label = 1) \rightarrow like (class label = 0) \rightarrow dislike (class label = 0) \rightarrow dislike

... DocID 6 should be recommended to the user.

Pros of Naïve Bayes

- Boolean representation is simple with the assumption of positional independence.
- The component of the classifier can be easily updated.
- The learning time complexity remains linear to the number of examples.

Cons of Naïve Bayes

- It does not enforce conditional independence of events,
 - e.g., "San Fancisco", "United State of America"
- The **cold start problem** (**new user**'s problem) still exists.
 - Solution 1: let the user manually label a set of documents.
 - Solution 2: ask the user to provide a list of interest words for each topic category.

Additional Probabilistic Methods

Alter the posterior probability of the the original Bayes theorem;

$$P(Y|X) = \frac{\prod_{i=1}^{d} P(X_i|Y) \times P(Y)}{P(X)}$$

• Estimate probability of term v_i occurring in a document of class C by relative frequency of v_i in all documents of the class.

$$P(v_i|C=c) = \frac{CountTerms(v_i, docs(c))}{AllTerms(docs(c))}$$

Laplace smoothing

$$\hat{P}(v_i|C=c) = \frac{CountTerms(v_i, docs(c)) + 1}{AllTerms(docs(c)) + |V|}$$

 $CountTerms(v_i, docs(c)) =$ **the number of appearances of term** v_i in documents labeled with c

AllTerms(docs(c)) = **the number of all terms** in the documents labeled with c

|V| = the number of distinct terms appearing in all documents (vocabulary)

Example 2: should DocID 6 be recommended to the user whose profiles are given below?

(class label = 1) \rightarrow *like* (class label = 0) \rightarrow *dislike*

The target user's profile:

DocID	Words	Label
1	recommender intelligent recommender	1
2	recommender recommender learning	1
3	recommender school	1
4	teacher homework recommender	0

Unseen Document

DocID	Words	Label
6	recommender recommender teacher homework	;

Example 2: should DocID 6 be recommended to the user whose profiles are given below? - *Cont*.

The target user's profile:

DocID	Words	Label
1	recommender intelligent recommender	1
2	recommender recommender learning	1
3	recommender school	1
4	teacher homework recommender	O

6 distinct terms:

- recommender
- 2. intelligent
- 3. learning
- 4. school
- 5. teacher
- 6. homework

Unseen Document

 $P(Label=1|DocID_6) = ?$

 $P(Label=0|DocID_6) = ?$

DocID	Words	Label
6	recommender recommender teacher homework	?

```
P(recommender|Label = 1) = (5+1)/(8+6) = 6/14

P(homework|Label = 1) = (0+1)/(8+6) = 1/14

P(teacher|Label = 1) = (0+1)/(8+6) = 1/14

P(recommender|Label = 0) = (1+1)/(3+6) = 2/9

P(homework|Label = 0) = (1+1)/(3+6) = 2/9

P(teacher|Label = 0) = (1+1)/(3+6) = 2/9

P(Label=1) = 3/4

P(Label=0) = 1/4
```

$$\hat{P}(v_i|C=c) = \frac{CountTerms(v_i, docs(c)) + 1}{AllTerms(docs(c)) + |V|}$$

$$P(Y|X) = \frac{\prod_{i=1}^{d} P(X_i|Y) \times P(Y)}{P(X)}$$

 $CountTerms(v_i, docs(c))$ = **the number of appearances of term** v_i in documents labeled with c

AllTerms(docs(c)) = **the number of all terms** in the documents labeled with c

|V| = **the number of distinct terms** appearing in all documents (vocabulary)

```
Unseen Document
                                                        Label
DocID
       Words
                                                                \hat{P}(v_i|C=c) = \frac{CountTerms(v_i, docs(c)) + 1}{AllTerms(docs(c)) + |V|}
       recommender recommender teacher homework
                    (The word 'recommender' presents 3 times in DocID 6.)
     P(\text{recommender}|\text{Label} = 1) = 3/7
                                                                        P(Y|X) = \frac{\prod_{i=1}^{d} P(X_i|Y) \times P(Y)}{P(X)}
     P(\text{homework}|\text{Label} = 1) = 1/14
     \hat{P}(\text{teacher}|\text{Label} = 1) = 1/14
     \hat{R}(recommender|Label = 0) = 2/9
     P(homework|Label = 0) = 2/9
     \hat{P}(\text{teacher}|\text{Label} = 0)
                                  = 2/9
                                                               P(Label=1) = 3/4 P(Label=0) = 1/4
     P(Label=1|v_1...v_n) = [(3/7)^{3}*1/14*1/14*3/4]/P(v_1...v_n) \approx 0.0003/P(v_1...v_n)
     P(Label=0|v_1...v_n) = [(2/9)^3 * 2/9 * 2/9 * 1/4] / P(v_1...v_n) \approx 0.0001 / P(v_1...v_n)
```

$$P(Label=1|v_1...v_n) > P(Label=0|v_1...v_n)$$

... DocID 6 should be recommended to the user.

Outlines

- Recommendation as Text Classification Problems
 - Naïve Bayes
 - Additional Probabilistic Methods
- Additional Algorithm
- Limitations of Content-based Recommendation Methods
- Evaluation Measures

Additional Algorithm

• Decision Tree

Applying Decision Trees to the Recommendation Problem

- Basic idea:
 - Construct a tree whose inner nodes are keywords in documents (item features).
 - Tree's branches (edges) relates to *present* (= 0) or *absent* (= 1) of related keywords (inner nodes).
 - Leave nodes relates to recommendations (relevant/irrelevant).

An Example of User Profile's Tree

Generating a Recommendation:

Traverse the User Profile's Tree Using an UnSeen Item

Unseen Document			
DocID	Words	Label	
6	recommender recommender teacher homework	?	

Constructing A Decision Tree Using Hunt's Algorithm

 Let D_t be the set of training records that reach a node t

General Procedure:

- If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 Recursively apply the procedure to each subset.
- If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
- If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.

Recursively apply the procedure to each subset.

Age	Gender	PlaySport	PassCourse?
16	Male	No	No
17	Female	No	Yes
20	Male	Yes	No
20	Male	No	No

Age	Gen der	Play- Sport	Pass- Course?
16	Male	No	No
20	Male	Yes	No
20	Male	No	No

Age	Gender	Play- Sport	Pass- Course?
17	Female	No	Yes

Constructing A Decision Tree Using Hunt's Algorithm

Age

Gen

der

 Let D_t be the set of training records that reach a node t

General Procedure:

- If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
- If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
- If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.

Recursively apply the procedure to each subset.

Age	Gender	PlaySport	PassCourse?
16	Male	No	No
17	Female	No	Yes
20	Male	Yes	No
20	Male	No	No

Constructing A Decision Tree Using Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t contains records that belong to more than one class, use an attribute test (e.g., Gender) to split the data into smaller subsets.

Recursively apply the procedure to each subset.

Let's Construct Decision Tree

DocID	Words	Label
1	computer java programming computing	1
2	computer programming python programming	1
3	python amazon rainforest python	0
4	python anaconda rainforest rainforest	0
5	program computer programming	1

Remark about A Decision Tree Constructing

- We didn't discuss about how to select the best split in this course.
- For further reading, see also
 - https://en.wikipedia.org/wiki/Decision_tree_learning

Suggestions on Decision Tree Learners

- A decision tree model performs well when the number of features is relatively small.
- The model is more appropriate to apply on "meta" features
 - E.g., author name, and genre than on TF-IDF calculations.

Outlines

- Recommendation as Text Classification Problems
 - Naïve Bayes
 - Additional Probabilistic Methods
- Additional Algorithm
- Limitations of Content-based Recommendation Methods
- Evaluation Measures

Limitations of Content-based Recommendation Methods

- Limit judgement on quality/relevance of a document (item)
 - It cannot judge up-to-date-ness, utility, and beauty
- Content's size and extraction issue
 - Too short; feature vector's sparsity
 - Not be automatically extractable (e.g., multimedia).
- A need of ramp-up phase
 - Need some training data for its initialization.
- Overspecialization
 - Suggest "more of the same" items.

Outlines

- Recommendation as Text Classification Problems
 - Naïve Bayes
 - Additional Probabilistic Methods
- Additional Algorithm
- Limitations of Content-based Recommendation Methods
- Evaluation Measures

Basic Evaluation Measures

- Ground truth is given.
 - Accuracy
 - Precision
 - Recall
 - F-measure
- Otherwise,
 - Real users's evaluation (questionnaires, survey, etc.)

Accuracy

Predicted Answer

Actual Answer

	isRelevant=Yes	isRelevant=No
isRelevant=Yes	a	b
isRelevant=No	С	d

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Precision, Recall and F-measure

			Predicted Answer		
			isRelevant=Yes	isRelevant=No	
mswer	r <	isRelevant=Yes	a	b	
\ctual A		isRelevant=No	c	d	

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p}$$
 = $\frac{2a}{2a+b+c}$

Example 3:

User ID	Items	Prediction (Recommendation)	True Answer
1	1	Relevant	Relevant
1	2	Relevant	Relevant
1	3	Not Relevant	Not Relevant
1	4	Relevant	Not Relevant
1	5	Not Relevant	Not Relevant
1	6	Relevant	Relevant
1	7	Relevant	Relevant
1	8	Not Relevant	Relevant
1	9	Not Relevant	Not Relevant
1	10	Not Relevant	Relevant

•		isRelevant= Yes	isRelevant= No
wer	isRelevant=Yes	4 (a)	2 (b)
Answer		TP	FN
ual	isRelevant=No	1 (c)	3 (d)
Actual		FP	TN

Example 3:

User ID	Items	Prediction (Recommendation)	True Answer
1	1	Relevant	Relevant
1	2	Relevant	Relevant
1	3	Not Relevant	Not Relevant
1	4	Relevant	Not Relevant
1	5	Not Relevant	Not Relevant
1	6	Relevant	Relevant
1	7	Relevant	Relevant
1	8	Not Relevant	Relevant
1	9	Not Relevant	Not Relevant
1	10	Not Relevant	Relevant

•		isRelevant= Yes	isRelevant= No
wer	isRelevant=Yes	4 (a)	2 (b)
Answer		TP	FN
ctual	isRelevant=No	1 (c)	3 (d)
Actı		FP	TN

Example 3:

User ID	Items	Prediction (Recommendation)	True Answer
1	1	Relevant	Relevant
1	2	Relevant	Relevant
1	3	Not Relevant	Not Relevant
1	4	Relevant	Not Relevant
1	5	Not Relevant	Not Relevant
1	6	Relevant	Relevant
1	7	Relevant	Relevant
1	8	Not Relevant	Relevant
1	9	Not Relevant	Not Relevant
1	10	Not Relevant	Relevant

•		isRelevant= Yes	isRelevant= No
wer	isRelevant=Yes	4 (a)	2 (b)
Answer		TP	FN
ctual	isRelevant=No	1 (c)	3 (d)
Actı		FP	TN

Example 3:

User ID	Items	Prediction (Recommendation)	True Answer
1	1	Relevant	Relevant
1	2	Relevant	Relevant
1	3	Not Relevant	Not Relevant
1	4	Relevant	Not Relevant
1	5	Not Relevant	Not Relevant
1	6	Relevant	Relevant
1	7	Relevant	Relevant
1	8	Not Relevant	Relevant
1	9	Not Relevant	Not Relevant
1	10	Not Relevant	Relevant

		isRelevant= Yes	isRelevant= No
ver	isRelevant=Yes	4 (a)	2 (b)
Answer		TP	FN
	isRelevant=No	1 (c)	3 (d)
Actual		FP	TN

Example 3: Accuracy

		isRelevant= Yes	isRelevant= No
nswer	isRelevant=Yes	4 (a)	2 (b)
Ans		TP	FN
ctual	isRelevant=No	1 (c)	3 (d)
Act		FP	TN

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

= $(4+3)/(4+2+1+3)$
= 0.7

Example 3: Precision

			isRelevant= Yes	is	Relevant= No
ľ		\angle	100		
ve.	isRelevant=	es	4 (a)		2 (b)
Answer			TP		FN
al	isRelevant=N	(o	1 (c)		3 (d)
Actual			FP		TN

Precision (p) =
$$\frac{a}{a+c}$$

= $4/(4+1)$
= 0.8

Example 3: Recall

		isRelevant= Yes	isRelevant= No
swer	isRelevant=Yes	4 (a)	2 (b)
Ahs		TP	FN
Actual	isRelevant=No	1 (c)	3 (d)
Act		FP	TN

Recall (r) =
$$\frac{a}{a+b}$$

= 4 / (4+2)
= 0.67

Example 3: F-measure (F)

•		isRelevant= Yes	isRelevant= No
Answer	isRelevant=Yes	4 (a)	2 (b)
Actual	isRelevant=No	1 (c)	3 (d)

F - measure (F) =
$$\frac{2rp}{r+p}$$
 = $\frac{2a}{2a+b+c}$
= $(2*4) / [(2*4)+2+1)$
= 0.73