CENG 216 - NUMERICAL COMPUTATION

SOLVING EQUATIONS

Mustafa Özuysal mustafaozuysal@iyte.edu.tr March 24, 2022

izmir Institute of Technology

SLIDE CREDITS

Slides are based on material from the main textbook:

"Numerical Analysis", The new international edition, 2ed, by Timothy Sauer

1

Introduction

$$f(x) = g(x) \to f(x) - g(x) = 0$$

$$f(x) = g(x) \to f(x) - g(x) = 0$$

Numerical

- $f(x) = g(x) \to f(x) g(x) = 0$
- Numerical
 - · As opposed to symbolic (algebraic) computation
 - · As opposed to analytic (closed-form) solution
 - · Computer Algebra Systems (CAS)

$$f(x) = g(x) \to f(x) - g(x) = 0$$

- Numerical
 - · As opposed to symbolic (algebraic) computation
 - As opposed to analytic (closed-form) solution
 - · Computer Algebra Systems (CAS)
- Iterative

$$x_0 \to x_1 \to \cdots \to x_i \to \cdots \to x_N$$

$$f(x) = g(x) \to f(x) - g(x) = 0$$

- Numerical
 - · As opposed to symbolic (algebraic) computation
 - As opposed to analytic (closed-form) solution
 - · Computer Algebra Systems (CAS)
- Iterative
 - $x_0 \to x_1 \to \cdots \to x_i \to \cdots \to x_N$
 - Initialization: How to pick x_0 ?

$$f(x) = g(x) \to f(x) - g(x) = 0$$

- Numerical
 - · As opposed to symbolic (algebraic) computation
 - · As opposed to analytic (closed-form) solution
 - · Computer Algebra Systems (CAS)
- Iterative
 - $x_0 \to x_1 \to \cdots \to x_i \to \cdots \to x_N$
 - Initialization: How to pick x_0 ?
 - · Convergence: Will x_N be a solution for large enough N?

$$f(x) = g(x) \to f(x) - g(x) = 0$$

- Numerical
 - · As opposed to symbolic (algebraic) computation
 - · As opposed to analytic (closed-form) solution
 - · Computer Algebra Systems (CAS)
- Iterative
 - $x_0 \to x_1 \to \cdots \to x_i \to \cdots \to x_N$
 - Initialization: How to pick x_0 ?
 - · Convergence: Will x_N be a solution for large enough N?
 - Accuracy: How to decide if x_N is a good solution?

$$f(x) = g(x) \to f(x) - g(x) = 0$$

- Numerical
 - · As opposed to symbolic (algebraic) computation
 - · As opposed to analytic (closed-form) solution
 - · Computer Algebra Systems (CAS)
- Iterative
 - $x_0 \to x_1 \to \cdots \to x_i \to \cdots \to x_N$
 - Initialization: How to pick x_0 ?
 - · Convergence: Will x_N be a solution for large enough N?
 - Accuracy: How to decide if x_N is a good solution?
 - \cdot Convergence Speed: How large should N be?

$$f(x) = g(x) \to f(x) - g(x) = 0$$

- Numerical
 - · As opposed to symbolic (algebraic) computation
 - As opposed to analytic (closed-form) solution
 - · Computer Algebra Systems (CAS)
- Iterative
 - $x_0 \to x_1 \to \cdots \to x_i \to \cdots \to x_N$
 - Initialization: How to pick x_0 ?
 - · Convergence: Will x_N be a solution for large enough N?
 - Accuracy: How to decide if x_N is a good solution?
 - · Convergence Speed: How large should N be?
 - · Complexity: Evaluation of $f(x_i)$ and possibly $f'(x_i), f''(x_i), \dots$

• Def: The function f(x) has a root at x = r if f(r) = 0.

- Def: The function f(x) has a root at x = r if f(r) = 0.
- · How to check existence of a root in a given interval [a, b]?

- Def: The function f(x) has a root at x = r if f(r) = 0.
- · How to check existence of a root in a given interval [a, b]?
- Thm: Let f(x) be a continuous function on [a,b] such that f(a)f(b) < 0 then f(x) has a root in [a,b].

- Def: The function f(x) has a root at x = r if f(r) = 0.
- · How to check existence of a root in a given interval [a, b]?
- Thm: Let f(x) be a continuous function on [a,b] such that f(a)f(b) < 0 then f(x) has a root in [a,b].

- **Def:** The function f(x) has a **root** at x = r if f(r) = 0.
- · How to check existence of a root in a given interval [a, b]?
- Thm: Let f(x) be a continuous function on [a,b] such that f(a)f(b) < 0 then f(x) has a root in [a,b].

- Def: The function f(x) has a root at x = r if f(r) = 0.
- · How to check existence of a root in a given interval [a,b]?
- Thm: Let f(x) be a continuous function on [a,b] such that f(a)f(b) < 0 then f(x) has a root in [a,b].

· Search in an address book

• Search in an address book \rightarrow Binary Search

end

- Search in an address book \rightarrow Binary Search
- Bisection: Given [a,b] such that f(a)f(b)<0 while $\frac{(b-a)}{2}>TOL$ do

۵

- Search in an address book \rightarrow Binary Search
- Bisection: Given [a,b] such that f(a)f(b) < 0

while
$$\frac{(b-a)}{2} > TOL$$
 do $c = \frac{(a+b)}{2}$

end

- · Search in an address book \rightarrow Binary Search
- Bisection: Given [a,b] such that f(a)f(b) < 0

```
while \frac{(b-a)}{2} > TOL do
    c = \frac{(a+b)}{2}
    if f(c) = 0 then
         stop
    end
```

end

- Search in an address book \rightarrow Binary Search
- Bisection: Given [a,b] such that f(a)f(b) < 0

$$\begin{array}{l} \text{while } \frac{(b-a)}{2} > \textit{TOL} \, \operatorname{do} \\ & c = \frac{(a+b)}{2} \\ & \text{if } f(c) = 0 \text{ then} \\ & | \, \operatorname{stop} \\ & \text{end} \\ & \text{if } f(a)f(c) < 0 \text{ then} \\ & | \, b = c \\ & | \, a = c \\ & | \, \text{end} \\ & \text{end} \\ & \text{end} \end{array}$$

- Search in an address book → Binary Search
- $\,\cdot\,\,$ Bisection: Given [a,b] such that f(a)f(b)<0

```
while \frac{(b-a)}{2} > TOL do
   c = \frac{(a+b)}{2}
   if f(c) = 0 then
       stop
    end
    if f(a)f(c) < 0 then
    b = c
    else
     a = c
    end
```

end

The final interval [a, b] contains the root, which is approximately at $\frac{a+b}{2}$.

a	f(a)	b	f(b)	c	f(c)	(b - a)/2

i	a	f(a)	b	f(b)	c	f(c)	(b - a)/2
0	0.00000	-1.00000	1.00000	1.00000	0.50000	-0.37500	0.50000

i	a	f(a)	b	f(b)	c	f(c)	(b - a)/2
0	0.00000	-1.00000	1.00000	1.00000	0.50000	-0.37500	0.50000
1	0.50000	-0.37500	1.00000	1.00000	0.75000	0.17187	0.25000

i	a	f(a)	b	f(b)	c	f(c)	(b - a)/2
0	0.00000	-1.00000	1.00000	1.00000	0.50000	-0.37500	0.50000
1	0.50000	-0.37500	1.00000	1.00000	0.75000	0.17187	0.25000
2	0.50000	-0.37500	0.75000	0.17187	0.62500	-0.13086	0.12500

i	a	f(a)	b	f(b)	c	f(c)	(b - a)/2
0	0.00000	-1.00000	1.00000	1.00000	0.50000	-0.37500	0.50000
1	0.50000	-0.37500	1.00000	1.00000	0.75000	0.17187	0.25000
2	0.50000	-0.37500	0.75000	0.17187		-0.13086	0.12500
3		-0.13086	0.75000	0.17187	0.68750	0.01245	0.06250

i	a	f(a)	b	f(b)	c	f(c)	(b - a)/2
0	0.00000	-1.00000	1.00000	1.00000	0.50000	-0.37500	0.50000
1	0.50000	-0.37500	1.00000	1.00000	0.75000	0.17187	0.25000
2	0.50000	-0.37500	0.75000	0.17187	0.62500	-0.13086	0.12500
3	0.62500	-0.13086	0.75000	0.17187	0.68750	0.01245	0.06250
4	0.62500	-0.13086		0.01245	0.65625	-0.06113	0.03125

i	a	f(a)	b	f(b)	c	f(c)	(b - a)/2
0	0.00000	-1.00000	1.00000	1.00000	0.50000	-0.37500	0.50000
1	0.50000	-0.37500	1.00000	1.00000	0.75000	0.17187	0.25000
2	0.50000	-0.37500	0.75000	0.17187	0.62500	-0.13086	0.12500
3	0.62500	-0.13086	0.75000	0.17187	0.68750	0.01245	0.06250
4	0.62500	-0.13086	0.68750	0.01245		-0.06113	0.03125
5		-0.06113	0.68750	0.01245	0.67187	-0.02483	0.01562

i	a	f(a)	b	f(b)	c	f(c)	(b - a)/2
0	0.00000	-1.00000	1.00000	1.00000	0.50000	-0.37500	0.50000
1	0.50000	-0.37500	1.00000	1.00000	0.75000	0.17187	0.25000
2	0.50000	-0.37500	0.75000	0.17187	0.62500	-0.13086	0.12500
3	0.62500	-0.13086	0.75000	0.17187	0.68750	0.01245	0.06250
4	0.62500	-0.13086	0.68750	0.01245	0.65625	-0.06113	0.03125
5	0.65625	-0.06113	0.68750	0.01245		-0.02483	0.01562
6		-0.02483	0.68750	0.01245	0.67969	-0.00631	0.00781

i	a	f(a)	b	f(b)	c	f(c)	(b - a)/2
0	0.00000	-1.00000	1.00000	1.00000	0.50000	-0.37500	0.50000
1	0.50000	-0.37500	1.00000	1.00000	0.75000	0.17187	0.25000
2	0.50000	-0.37500	0.75000	0.17187	0.62500	-0.13086	0.12500
3	0.62500	-0.13086	0.75000	0.17187	0.68750	0.01245	0.06250
4	0.62500	-0.13086	0.68750	0.01245	0.65625	-0.06113	0.03125
5	0.65625	-0.06113	0.68750	0.01245	0.67187	-0.02483	0.01562
6	0.67187	-0.02483	0.68750	0.01245		-0.00631	0.00781
7		-0.00631	0.68750	0.01245	0.68359	0.00304	0.00391

Find the root of the function $f(x) = x^3 + x - 1$ in [0,1].

i	a	f(a)	b	f(b)	c	f(c)	(b - a)/2
0	0.00000	-1.00000	1.00000	1.00000	0.50000	-0.37500	0.50000
1	0.50000	-0.37500	1.00000	1.00000	0.75000	0.17187	0.25000
2	0.50000	-0.37500	0.75000	0.17187	0.62500	-0.13086	0.12500
3	0.62500	-0.13086	0.75000	0.17187	0.68750	0.01245	0.06250
4	0.62500	-0.13086	0.68750	0.01245	0.65625	-0.06113	0.03125
5	0.65625	-0.06113	0.68750	0.01245	0.67187	-0.02483	0.01562
6	0.67187	-0.02483	0.68750	0.01245	0.67969	-0.00631	0.00781
7	0.67969	-0.00631	0.68750	0.01245		0.00304	0.00391
8	0.67969	-0.00631	0.68359	0.00304	0.68164	-0.00165	0.00195

Find the root of the function $f(x) = x^3 + x - 1$ in [0,1].

i	a	f(a)	b	f(b)	c	f(c)	(b - a)/2
0	0.00000	-1.00000	1.00000	1.00000	0.50000	-0.37500	0.50000
1	0.50000	-0.37500	1.00000	1.00000	0.75000	0.17187	0.25000
2	0.50000	-0.37500	0.75000	0.17187	0.62500	-0.13086	0.12500
3	0.62500	-0.13086	0.75000	0.17187	0.68750	0.01245	0.06250
4	0.62500	-0.13086	0.68750	0.01245	0.65625	-0.06113	0.03125
5	0.65625	-0.06113	0.68750	0.01245	0.67187	-0.02483	0.01562
6	0.67187	-0.02483	0.68750	0.01245	0.67969	-0.00631	0.00781
7	0.67969	-0.00631	0.68750	0.01245	0.68359	0.00304	0.00391
8	0.67969	-0.00631	0.68359	0.00304	0.68164	-0.00165	0.00195

$$r_c = 0.682617$$
, max. error = ± 0.000977

Reminder: Absolute Error = $|x_c - r|$, where x_c is the computed root.

- Reminder: Absolute Error = $|x_c r|$, where x_c is the computed root.
- At i = 0:

- Reminder: Absolute Error = $|x_c r|$, where x_c is the computed root.
- · At i= 0: Absolute Error $< \frac{b-a}{2}$

- Reminder: Absolute Error = $|x_c r|$, where x_c is the computed root.
- · At i= 0: Absolute Error $<\frac{b-a}{2}$
- At i = 1:

- Reminder: Absolute Error = $|x_c r|$, where x_c is the computed root.
- · At i= 0: Absolute Error $<\frac{b-a}{2}$
- \cdot At i= 1: Absolute Error $< rac{b-a}{2^2}$

- Reminder: Absolute Error = $|x_c r|$, where x_c is the computed root.
- · At i= 0: Absolute Error $< \frac{b-a}{2}$
- · At i= 1: Absolute Error $< rac{b-a}{2^2}$
- ٠ . . .
- · At i=n:

- Reminder: Absolute Error = $|x_c r|$, where x_c is the computed root.
- · At i= 0: Absolute Error $< \frac{b-a}{2}$
- · At i= 1: Absolute Error $< rac{b-a}{2^2}$
- ٠ . . .
- · At i=n: Absolute Error $< \frac{b-a}{2^{n+1}}$

- Reminder: Absolute Error = $|x_c r|$, where x_c is the computed root.
- · At i= 0: Absolute Error $<\frac{b-a}{2}$
- · At i= 1: Absolute Error $< rac{b-a}{2^2}$
- ٠ . . .
- · At i=n: Absolute Error $< rac{b-a}{2^{n+1}}$
- · Number of required function evaluations is

- Reminder: Absolute Error = $|x_c r|$, where x_c is the computed root.
- · At i= 0: Absolute Error $<\frac{b-a}{2}$
- · At i= 1: Absolute Error $< rac{b-a}{2^2}$
- ٠ . . .
- · At i=n: Absolute Error $< rac{b-a}{2^{n+1}}$
- Number of required function evaluations is n + 2.

- Reminder: Absolute Error = $|x_c r|$, where x_c is the computed root.
- · At i= 0: Absolute Error $<\frac{b-a}{2}$
- · At i= 1: Absolute Error $< rac{b-a}{2^2}$
- ٠ . . .
- At i=n: Absolute Error $< \frac{b-a}{2^{n+1}}$
- Number of required function evaluations is n + 2.
- **Def:** A solution is correct to p decimal places if the error is less than $0.5 \cdot 10^{-p}$.

$$\frac{1}{2^{n+1}} < 0.5 \cdot 10^{-6}$$

$$\frac{1}{2^{n+1}} < 0.5 \cdot 10^{-6} \to n > \frac{6}{\log_{10} 2}$$

$$\frac{1}{2^{n+1}} < 0.5 \cdot 10^{-6} \to n > \frac{6}{\log_{10} 2} \approx \frac{6}{0.301} \approx 19.9$$

Find the number of iterations of the bisection method required to compute a root of the function $f(x) = \cos x - x$ in [0,1] to six correct decimal places.

$$\frac{1}{2^{n+1}} < 0.5 \cdot 10^{-6} \to n > \frac{6}{\log_{10} 2} \approx \frac{6}{0.301} \approx 19.9$$

Take n = 20.

FIXED POINT ITERATIONS

• Def: A real number r is a fixed point of f(x) if f(r) = r.

- Def: A real number r is a fixed point of f(x) if f(r) = r.
- Fixed point iterations:

$$x_0 =$$
 "initial guess" $x_{i+1} = f(x_i), \quad \forall i = 0, 1, 2, \dots$

- Def: A real number r is a fixed point of f(x) if f(r) = r.
- Fixed point iterations:

$$x_0=$$
 "initial guess" $x_{i+1}=f(x_i), \quad orall i=0,1,2,\ldots$ · $f(x)=\cos(x), x_0=0.0$: $x_1=\cos(0.0)=1.0$

- Def: A real number r is a fixed point of f(x) if f(r) = r.
- Fixed point iterations:

$$x_0 =$$
 "initial guess" $x_{i+1} = f(x_i), \quad \forall i = 0, 1, 2, \dots$ $f(x) = \cos(x), x_0 = 0.0$: $x_1 = \cos(0.0) = 1.0$ $x_2 = \cos(1.0) = 0.5403023058681398$

- Def: A real number r is a fixed point of f(x) if f(r) = r.
- Fixed point iterations:

$$x_0 =$$
 "initial guess" $x_{i+1} = f(x_i), \quad \forall i = 0, 1, 2, \dots$ $f(x) = \cos(x), x_0 = 0.0$: $x_1 = \cos(0.0) = 1.0$ $x_2 = \cos(1.0) = 0.5403023058681398$ \vdots $x_k = \cos(0.739085133215) = 0.739085133215$

Find a root of the function $f(x) = x^3 + x - 1.0$.

$$0 = x^{3} + x - 1.0$$
$$x = 1.0 - x^{3} = p(x)$$

Find a root of the function $f(x) = x^3 + x - 1.0$.

$$0 = x^{3} + x - 1.0$$

$$x = 1.0 - x^{3} = p(x)$$

$$0 = y^{3} + y - 1.0$$

$$y^{3} = 1.0 - y$$

$$y = \sqrt[3]{1.0 - y} = q(y)$$

Find a root of the function $f(x) = x^3 + x - 1.0$.

$$0 = x^{3} + x - 1.0$$

$$x = 1.0 - x^{3} = p(x)$$

$$0 = y^{3} + y - 1.0$$

$$y^{3} = 1.0 - y$$

$$y = \sqrt[3]{1.0 - y} = q(y)$$

$$0 = z^{3} + z - 1.0$$

$$z = 1 - z^{3}$$

$$3z^{3} + z = 1 + 2z^{3}$$

$$(3z^{2} + 1)z = 1 + 2z^{3}$$

$$z = \frac{1 + 2z^{3}}{3z^{2} + 1} = r(z)$$

i	$x_i = p(x_{i-1})$	$y_i = q(y_{i-1})$	$z_i = r(z_{i-1})$
0	0.50000000	0.50000000	0.50000000

i	$x_i = p(x_{i-1})$	$y_i = q(y_{i-1})$	$z_i = r(z_{i-1})$
0	0.50000000	0.50000000	0.50000000
1	0.87500000	0.79370053	0.71428571

i	$x_i = p(x_{i-1})$	$y_i = q(y_{i-1})$	$z_i = r(z_{i-1})$
0	0.50000000	0.50000000	0.50000000
1	0.87500000	0.79370053	0.71428571
2	0.33007813	0.59088011	0.68317972

i	$x_i = p(x_{i-1})$	$y_i = q(y_{i-1})$	$z_i = r(z_{i-1})$
0	0.50000000	0.50000000	0.50000000
1	0.87500000	0.79370053	0.71428571
2	0.33007813	0.59088011	0.68317972
3	0.96403747	0.74236393	0.68232842

i	$x_i = p(x_{i-1})$	$y_i = q(y_{i-1})$	$z_i = r(z_{i-1})$
0	0.50000000	0.50000000	0.50000000
1	0.87500000	0.79370053	0.71428571
2	0.33007813	0.59088011	0.68317972
3	0.96403747	0.74236393	0.68232842
4	0.10405419	0.63631020	0.68232780

i	$x_i = p(x_{i-1})$	$y_i = q(y_{i-1})$	$z_i = r(z_{i-1})$
0	0.50000000	0.50000000	0.50000000
1	0.87500000	0.79370053	0.71428571
2	0.33007813	0.59088011	0.68317972
3	0.96403747	0.74236393	0.68232842
4	0.10405419	0.63631020	0.68232780
5	0.99887338	0.71380081	0.68232780

i	$x_i = p(x_{i-1})$	$y_i = q(y_{i-1})$	$z_i = r(z_{i-1})$
0	0.50000000	0.50000000	0.50000000
1	0.87500000	0.79370053	0.71428571
2	0.33007813	0.59088011	0.68317972
3	0.96403747	0.74236393	0.68232842
4	0.10405419	0.63631020	0.68232780
5	0.99887338	0.71380081	0.68232780
6	0.00337606	0.65900615	0.68232780

i	$x_i = p(x_{i-1})$	$y_i = q(y_{i-1})$	$z_i = r(z_{i-1})$
0	0.50000000	0.50000000	0.50000000
1	0.87500000	0.79370053	0.71428571
2	0.33007813	0.59088011	0.68317972
3	0.96403747	0.74236393	0.68232842
4	0.10405419	0.63631020	0.68232780
5	0.99887338	0.71380081	0.68232780
6	0.00337606	0.65900615	0.68232780
7	0.99999996	0.69863261	0.68232780

i	$x_i = p(x_{i-1})$	$y_i = q(y_{i-1})$	$z_i = r(z_{i-1})$
0	0.50000000	0.50000000	0.50000000
1	0.87500000	0.79370053	0.71428571
2	0.33007813	0.59088011	0.68317972
3	0.96403747	0.74236393	0.68232842
4	0.10405419	0.63631020	0.68232780
5	0.99887338	0.71380081	0.68232780
6	0.00337606	0.65900615	0.68232780
7	0.99999996	0.69863261	0.68232780
8	0.00000012	0.67044850	0.68232780

i	$x_i = p(x_{i-1})$	$y_i = q(y_{i-1})$	$z_i = r(z_{i-1})$
0	0.50000000	0.50000000	0.50000000
1	0.87500000	0.79370053	0.71428571
2	0.33007813	0.59088011	0.68317972
3	0.96403747	0.74236393	0.68232842
4	0.10405419	0.63631020	0.68232780
5	0.99887338	0.71380081	0.68232780
6	0.00337606	0.65900615	0.68232780
7	0.99999996	0.69863261	0.68232780
8	0.00000012	0.67044850	0.68232780
9	1.00000000	0.69072912	0.68232780
10	0.00000000	0.67625892	0.68232780
11	1.00000000	0.68664554	0.68232780
12	0.00000000	0.67922234	0.68232780

ROOT FINDING EXAMPLE

i	$x_i = p(x_{i-1})$	$y_i = q(y_{i-1})$	$z_i = r(z_{i-1})$
0	0.50000000	0.50000000	0.50000000
1	0.87500000	0.79370053	0.71428571
2	0.33007813	0.59088011	0.68317972
3	0.96403747	0.74236393	0.68232842
4	0.10405419	0.63631020	0.68232780
5	0.99887338	0.71380081	0.68232780
6	0.00337606	0.65900615	0.68232780
7	0.99999996	0.69863261	0.68232780
8	0.00000012	0.67044850	0.68232780
9	1.00000000	0.69072912	0.68232780
10	0.00000000	0.67625892	0.68232780
11	1.00000000	0.68664554	0.68232780
12	0.00000000	0.67922234	0.68232780
24	0.00000000	0.68227157	0.68232780
25	1.00000000	0.68236807	0.68232780

LINEAR CONVERGENCE OF FIXED POINT ITERATIONS

• **Def:** Let $e_i = |x_i - r|$ be the error at step i. If

$$\lim_{i \to \infty} \frac{e_{i+1}}{e_i} = s < 1$$

then the method is linearly convergent with rate s.

LINEAR CONVERGENCE OF FIXED POINT ITERATIONS

· Def: Let $e_i = |x_i - r|$ be the error at step i. If

$$\lim_{i\to\infty}\frac{e_{i+1}}{e_i}=s<1$$

then the method is linearly convergent with rate s.

• Thm: Assume f(x) is continuously differentiable,

$$f(r) = r$$
 and $s = \left| f'(r) \right| < 1$

then fixed point iterations converges linearly with rate s to the fixed point r for initial guesses sufficiently close to r.

LINEAR CONVERGENCE OF FIXED POINT ITERATIONS

• Def: Let $e_i = |x_i - r|$ be the error at step i. If

$$\lim_{i\to\infty}\frac{e_{i+1}}{e_i}=s<1$$

then the method is linearly convergent with rate s.

• Thm: Assume f(x) is continuously differentiable,

$$f(r) = r$$
 and $s = \left| f'(r) \right| < 1$

then fixed point iterations converges linearly with rate s to the fixed point r for initial guesses sufficiently close to r.

$$f(x) = \cos x, f'(x) = -\sin x, f'(0.739085133215) \approx -0.67.$$

Find the fixed points of $2.8x - x^2 = f(x)$.

Find the fixed points of $2.8x - x^2 = f(x)$.

Find the fixed points of $2.8x - \overline{x^2 = f(x)}$.

Find the fixed points of $2.8x - x^2 = f(x)$.

 $x_0 = 0.1000$

Find the fixed points of $2.8x - x^2 = f(x)$.

Find the fixed points of $2.8x - x^2 = f(x)$.

Find the fixed points of $2.8x - x^2 = f(x)$.

f'(x) = 2.8 - 2x

Find the fixed points of $2.8x - x^2 = f(x)$.

$$x_0 = 0.1000$$

 $x_1 = 0.2700$
 $x_2 = 0.6831$
 $x_3 = 1.4461$
 $x_4 = 1.9579$
 $x_5 = 1.6487$
 \vdots
 $x_{11} = 1.7660$

 $\overline{x_{12}} = 1.8260$

Find the fixed points of $2.8x - x^2 = f(x)$.

$$x_0 = 0.1000$$

 $x_1 = 0.2700$
 $x_2 = 0.6831$
 $x_3 = 1.4461$
 $x_4 = 1.9579$
 $x_5 = 1.6487$
 \vdots
 $x_{11} = 1.7660$

 $\overline{x_{12}} = 1.8260$

STOPPING CRITERIA

$$|x_{i+1} - x_i| < TOL$$

STOPPING CRITERIA

$$\begin{aligned} |x_{i+1} - x_i| &< \textit{TOL} \\ \frac{|x_{i+1} - x_i|}{|x_{i+1}|} &< \textit{TOL} \end{aligned}$$

STOPPING CRITERIA

$$\begin{aligned} |x_{i+1}-x_i| &< TOL \\ \frac{|x_{i+1}-x_i|}{|x_{i+1}|} &< TOL \\ \frac{|x_{i+1}-x_i|}{\max\left(|x_{i+1}|,\theta\right)} &< TOL, \text{ with } \theta > 0.0 \end{aligned}$$

NEWTON'S METHOD

Newton-Raphson Approach

NEWTON-RAPHSON APPROACH

$$y - f(x_i) = f'(x_i)(x - x_i)$$

NEWTON-RAPHSON APPROACH

$$y - f(x_i) = f'(x_i)(x - x_i)$$
$$y_1 = 0 \implies x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

NEWTON-RAPHSON APPROACH

$$y - f(x_i) = f'(x_i)(x - x_i)$$
$$y_1 = 0 \implies x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Alternatively,

$$0=f\overbrace{(x_i+\Delta x_i)}^{x_{i+1}}$$
 $0=f(x_i)+\Delta x_if'(x_i)+ ext{H.O.T}$
 $\Delta x_ipprox -rac{f(x_i)}{f'(x_i)}$

Find a root of the equation $x^3 + x - 1$.

$$f'(x) = 3x^2 + 1$$

Find a root of the equation $x^3 + x - 1$.

$$f'(x) = 3x^{2} + 1$$

$$x_{i+1} = x_{i} - \frac{x_{i}^{3} + x_{i} - 1}{3x_{i}^{2} + 1}$$

$$= \frac{2x_{i}^{3} + 1}{3x_{i}^{2} + 1}$$

Find a root of the equation $x^3 + x - 1$.

$$f'(x) = 3x^{2} + 1$$

$$x_{i+1} = x_{i} - \frac{x_{i}^{3} + x_{i} - 1}{3x_{i}^{2} + 1}$$

$$= \frac{2x_{i}^{3} + 1}{3x_{i}^{2} + 1}$$

$$x_{0} = -0.7$$

$$x_{1} = 0.12712551$$

$$\vdots$$

$$x_{6} = 0.68232780$$

$$x_{7} = 0.68232780$$

QUADRATIC CONCERGENCE OF NEWTON'S METHOD

• Def: Iterations are quadratically convergent if

$$M = \lim_{i \to \infty} \frac{e_{i+1}}{e_i^2} < \infty$$

QUADRATIC CONCERGENCE OF NEWTON'S METHOD

• Def: Iterations are quadratically convergent if

$$M = \lim_{i \to \infty} \frac{e_{i+1}}{e_i^2} < \infty$$

Thm: Let f be twice continuously differentiable and f(r)=0. If $f'(r)\neq 0$ then Newton's Method is quadratically convergent to r with $M=\frac{f''(r)}{2f'(r)}$.

QUADRATIC CONCERGENCE OF NEWTON'S METHOD

· Def: Iterations are quadratically convergent if

$$M = \lim_{i \to \infty} \frac{e_{i+1}}{e_i^2} < \infty$$

- Thm: Let f be twice continuously differentiable and f(r)=0. If $f'(r)\neq 0$ then Newton's Method is quadratically convergent to r with $M=\frac{f''(r)}{2f'(r)}$.
- If f'(r) = 0, which happens in case of double roots, convergence is linear. See Modified Newton's Method in the textbook.

EXAMPLE OF NON-CONVERGENCE

Apply Newton's Method to $f(x)=4x^4-6x^2-\frac{11}{4}$ starting at $x_0=\frac{1}{2}$

EXAMPLE OF NON-CONVERGENCE

Apply Newton's Method to
$$f(x)=4x^4-6x^2-\frac{11}{4}$$
 starting at $x_0=\frac{1}{2}$
$$x_{i+1}=x_i-\frac{4x_i^4-6x_i^2-\frac{11}{4}}{16x_i^3-12x_i}$$

EXAMPLE OF NON-CONVERGENCE

Apply Newton's Method to
$$f(x)=4x^4-6x^2-\frac{11}{4}$$
 starting at $x_0=\frac12$
$$x_{i+1}=x_i-\frac{4x_i^4-6x_i^2-\frac{11}{4}}{16x_i^3-12x_i}$$

$$x_1=-\frac12 \text{ and } x_2=\frac12$$

LIMITS OF ACCURACY

Use Bisection Method to find the root of $f(x)=x^3-2x^2+\frac{4}{3}-\frac{8}{27}$ to within six correct digits.

Use Bisection Method to find the root of $f(x)=x^3-2x^2+\frac{4}{3}-\frac{8}{27}$ to within six correct digits.

$$f(0) = -\frac{8}{27}$$
$$f(1) = \frac{1}{27}$$

Use Bisection Method to find the root of $f(x)=x^3-2x^2+\frac{4}{3}-\frac{8}{27}$ to within six correct digits.

$$f(0) = -\frac{8}{27}$$

$$f(1) = \frac{1}{27}$$
Solution in [0,1]

Use Bisection Method to find the root of $f(x) = x^3 - 2x^2 + \frac{4}{3} - \frac{8}{27}$ to within six correct digits.

$$f(0) = -\frac{8}{27}$$
 Solution in $[0,1] \to f(\frac{2}{3}) = f(0.6\overline{6}) = 0$

Use Bisection Method to find the root of $f(x) = x^3 - 2x^2 + \frac{4}{3} - \frac{8}{27}$ to within six correct digits.

$$f(0) = -\frac{8}{27}$$
 Solution in $[0,1] \to f(\frac{2}{3}) = f(0.6\overline{6}) = 0$

Due to rounding errors f(0.6666641)=0 so Bisection terminates with r=0.6666641 which is close in y but not in x.

Def: Assume f is a function and r is a root such that f(r) = 0. Assume x_a is an approximation of r.

Def: Assume f is a function and r is a root such that f(r) = 0. Assume x_a is an approximation of r. For the root finding problem:

• backward error = $|f(x_a)|$

Def: Assume f is a function and r is a root such that f(r) = 0. Assume x_a is an approximation of r. For the root finding problem:

- backward error = $|f(x_a)|$
- forward error = $|r x_a|$

Def: Assume f is a function and r is a root such that f(r) = 0. Assume x_a is an approximation of r. For the root finding problem:

- backward error = $|f(x_a)|$
- forward error = $|r x_a|$

 $x_a = 0.6666641 \rightarrow \text{backward error} \approx \epsilon_{\text{mach}}, \text{ forward error} \approx 10^{-5}.$

EXAMPLE: WILKINSON POLYNOMIAL

$$W(x) = (x - 1)(x - 2) \cdots (x - 20)$$
$$= x^{20} + ax^{19} + bx^{18} + \dots$$

EXAMPLE: WILKINSON POLYNOMIAL

$$W(x) = (x - 1)(x - 2) \cdots (x - 20)$$

$$= x^{20} + ax^{19} + bx^{18} + \dots$$

$$x_0 = 16.0$$

$$x_a = 16.01468\dots$$

$$r \to f(x) = 0$$

$$r + \Delta r \to f(x) + \epsilon g(x) = 0$$

$$r \to f(x) = 0$$

$$r + \Delta r \to f(x) + \epsilon g(x) = 0$$

$$f(r + \Delta r) + \epsilon g(r + \Delta r) = 0$$

$$f(r) + \Delta r f'(r) + \epsilon g(r) + \epsilon \Delta r g'(r) + \mathcal{O}(\Delta r^2) = 0$$

$$r \to f(x) = 0$$

$$r + \Delta r \to f(x) + \epsilon g(x) = 0$$

$$f(r + \Delta r) + \epsilon g(r + \Delta r) = 0$$

$$f(r) + \Delta r f'(r) + \epsilon g(r) + \epsilon \Delta r g'(r) + \mathcal{O}(\Delta r^2) = 0$$

$$\Delta r \left(f'(r) + \epsilon g'(r) \right) \approx -f(r) - \epsilon g(r) = -\epsilon g(r)$$

$$r \rightarrow f(x) = 0$$

$$r + \Delta r \rightarrow f(x) + \epsilon g(x) = 0$$

$$f(r + \Delta r) + \epsilon g(r + \Delta r) = 0$$

$$f(r) + \Delta r f'(r) + \epsilon g(r) + \epsilon \Delta r g'(r) + \mathcal{O}(\Delta r^2) = 0$$

$$\Delta r \left(f'(r) + \epsilon g'(r) \right) \approx -f(r) - \epsilon g(r) = -\epsilon g(r)$$

$$\Delta r \approx \frac{-\epsilon g(r)}{f'(r) + \epsilon g'(r)} \approx -\epsilon \frac{g(r)}{f'(r)} \quad \epsilon \ll f'(r), f'(r) \neq 0$$

$$P(x) = (x-1)(x-2)(x-3)(x-4)(x-5)(x-6) - 10^{-6}x^{7}.$$

$$P(x) = (x-1)(x-2)(x-3)(x-4)(x-5)(x-6) - 10^{-6}x^{7}.$$

$$f(x) = (x-1)(x-2)(x-3)(x-4)(x-5)(x-6), g(x) = x^7, \epsilon = 10^{-6}.$$

$$P(x) = (x-1)(x-2)(x-3)(x-4)(x-5)(x-6) - 10^{-6}x^{7}.$$

$$f(x) = (x-1)(x-2)(x-3)(x-4)(x-5)(x-6), g(x) = x^7, \epsilon = 10^{-6}.$$

Largest root of $f(x) = 6$.

$$P(x) = (x-1)(x-2)(x-3)(x-4)(x-5)(x-6) - 10^{-6}x^{7}.$$

$$f(x) = (x-1)(x-2)(x-3)(x-4)(x-5)(x-6), g(x) = x^7, \epsilon = 10^{-6}.$$

Largest root of $f(x) = 6$.

$$\Delta r \approx -\frac{\epsilon 6'}{5!} = -2332.6\epsilon \implies r + \Delta r = 6.0023328$$

$$error magnification factor = \frac{relative forward error}{relative backward error}$$

· Def:

error magnification factor
$$= \frac{\text{relative forward error}}{\text{relative backward error}}$$

 $= \left| \frac{\Delta r/r}{\epsilon g(r)/g(r)} \right| = \frac{|g(r)|}{|rf'(r)|}$

 Def: Condition number is the maximum error magnification factor over all input changes.

$$\begin{array}{l} \text{error magnification factor} = \frac{\text{relative forward error}}{\text{relative backward error}} \\ = \left| \frac{\Delta r/r}{\epsilon g(r)/g(r)} \right| = \frac{|g(r)|}{|rf'(r)|} \end{array}$$

- Def: Condition number is the maximum error magnification factor over all input changes.
- · High condition number \rightarrow ill-conditioned problem.

$$\begin{array}{l} \text{error magnification factor} = \frac{\text{relative forward error}}{\text{relative backward error}} \\ = \left| \frac{\Delta r/r}{\epsilon g(r)/g(r)} \right| = \frac{|g(r)|}{|rf'(r)|} \end{array}$$

- Def: Condition number is the maximum error magnification factor over all input changes.
- \cdot High condition number \rightarrow ill-conditioned problem.
- · Condition number \approx 1 \rightarrow well-conditioned problem.

error magnification factor
$$= \frac{\text{relative forward error}}{\text{relative backward error}}$$

 $= \left| \frac{\Delta r/r}{\epsilon g(r)/g(r)} \right| = \frac{|g(r)|}{|rf'(r)|}$

- Def: Condition number is the maximum error magnification factor over all input changes.
- High condition number → ill-conditioned problem.
- · Condition number \approx 1 \rightarrow well-conditioned problem.
- We will revisit conditioning for different numerical problems throughout the course.

- A ball throwing robot arm throws a ball with initial velocity V_0 at an angle θ from the ground. Assuming that the robot arm is at x=0, the ball will hit the ground at $x_f=\frac{V_0^2\sin2\theta}{g}$, where $g=9.8~\mathrm{m/s^2}$ is the gravitational constant.

- A ball throwing robot arm throws a ball with initial velocity V_0 at an angle θ from the ground. Assuming that the robot arm is at x=0, the ball will hit the ground at $x_f=\frac{V_0^2\sin2\theta}{g}$, where $g=9.8~\mathrm{m/s^2}$ is the gravitational constant.
- · We want to ensure that the ball hits the ground at $x_f=$ 0.17 meters.

- A ball throwing robot arm throws a ball with initial velocity V_0 at an angle θ from the ground. Assuming that the robot arm is at x=0, the ball will hit the ground at $x_f=\frac{V_0^2\sin2\theta}{g}$, where $g=9.8~\mathrm{m/s^2}$ is the gravitational constant.
- · We want to ensure that the ball hits the ground at $x_f=0.17$ meters.
- The robot design constrains the speed to be $V_0=k(1+\cos\theta)$, where k=0.75 is a design parameter.

- A ball throwing robot arm throws a ball with initial velocity V_0 at an angle θ from the ground. Assuming that the robot arm is at x=0, the ball will hit the ground at $x_f=\frac{V_0^2\sin2\theta}{g}$, where $q=9.8~\mathrm{m/s^2}$ is the gravitational constant.
- · We want to ensure that the ball hits the ground at $x_f=0.17$ meters.
- The robot design constrains the speed to be $V_0=k(1+\cos\theta)$, where k=0.75 is a design parameter.
- Solve for θ in the interval $[0^{\circ}, 40^{\circ}]$ and calculate the required V_0 .

· Writing $V_0 = k(\mathbf{1} + \cos \theta)$ into the equation for x_f , we have

$$x_f = \frac{k^2}{g} (1 + \cos \theta)^2 \sin 2\theta.$$

· Writing $V_0=k(\mathrm{1}+\cos\theta)$ into the equation for x_f , we have

$$x_f = \frac{k^2}{g} (1 + \cos \theta)^2 \sin 2\theta.$$

This can solve this as a root finding problem with

$$f(\theta) = \frac{k^2}{g} (1 + \cos \theta)^2 \sin 2\theta - x_f = 0$$

· Writing $V_0=k(\mathrm{1}+\cos\theta)$ into the equation for x_f , we have

$$x_f = \frac{k^2}{g} (1 + \cos \theta)^2 \sin 2\theta.$$

This can solve this as a root finding problem with

$$f(\theta) = \frac{k^2}{g} (1 + \cos \theta)^2 \sin 2\theta - x_f = 0$$

• $f(0^\circ) = -0.17 < 0$ and $f(40^\circ) \approx 0.0063 > 0$

· Writing $V_0 = k(1 + \cos \theta)$ into the equation for x_f , we have

$$x_f = \frac{k^2}{g} (1 + \cos \theta)^2 \sin 2\theta.$$

This can solve this as a root finding problem with

$$f(\theta) = \frac{k^2}{g} (1 + \cos \theta)^2 \sin 2\theta - x_f = 0$$

- $f(0^\circ) = -0.17 < 0$ and $f(40^\circ) \approx 0.0063 > 0$
- After 20 iterations $\theta \approx$ 28.53°, $f(\theta) \approx$ 6.76 · 10⁻⁸, and $V_0 \approx$ 1.41 m/s.