

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Email: ee.shenzhen@sgs.com

Report No.: SZEM151000652004 Page: 1 of 30

FCC REPORT

Application No: SZEM1605003894CR

Applicant:Ducere Technologies Pvt LtdManufacturer:Ducere Technologies Pvt LtdFactory:Ducere Technologies Pvt Ltd

Product Name: Smart Electronics POD

Model No.(EUT): ES
Add Model No.: PR
Trade Mark: Lechal

FCC ID: 2AFSZ-DUCPE

Standards: 47 CFR Part 15, Subpart C (2015) (Only for RF output power, Radiated

Spurious Emissions and Restricted bands around fundamental

frequency (Radiated Emission)

 Date of Receipt:
 2016-05-30

 Date of Test:
 2016-06-14

 Date of Issue:
 2016-06-20

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM151000652004

Page: 2 of 30

2 Version

Revision Record						
Version Chapter Date Modifier Remark						
00		2016-06-20		Original		

Authorized for issue by:		
Tested By	Gebin Sun (Gebin Sun) /Project Engineer	2016-06-14 Date
Prepared By	Iris Zhou	2016-06-20
	(Iris Zhou) /Clerk	Date
Checked By	Eric Fu	2016-06-20
	(Eric Fu) /Reviewer	Date

Report No.: SZEM151000652004

Page: 3 of 30

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10.2013	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

Report No.: SZEM151000652004

Page: 4 of 30

4 Contents

			Page
1	CC	OVER PAGE	1
2	VE	ERSION	2
3		EST SUMMARY	
4		ONTENTS	
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	8
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	8
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	8
	5.10	EQUIPMENT LIST	9
6	TE	EST RESULTS AND MEASUREMENT DATA	10
	6.1	Antenna Requirement	10
	6.2	CONDUCTED PEAK OUTPUT POWER	11
	6.3	RADIATED SPURIOUS EMISSION	14
	6.3	3.1 Spurious Emissions	
	6.4	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	21
7	Pŀ	HOTOGRAPHS - EUT TEST SETUP	29
	7.1	RADIATED SPURIOUS EMISSION	29
8	Pŀ	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	30

Report No.: SZEM151000652004

Page: 5 of 30

5 General Information

5.1 Client Information

Applicant:	Ducere Technologies Pvt Ltd				
Address of Applicant:	#222B, San Marina House, West Marredpally, Secunderabad, Telangana(state), INDIA-500 026				
Manufacturer:	Ducere Technologies Pvt Ltd				
Address of Manufacturer:	#222B, San Marina House, West Marredpally, Secunderabad, Telangana(state), INDIA-500 026				
Factory:	Ducere Technologies Pvt Ltd				
Address of Factory:	#222B, San Marina House, West Marredpally, Secunderabad, Telangana(state), INDIA-500 026				

5.2 General Description of EUT

Product Name:	Smart Electronics POD
Model No.:	ES
Trade Mark:	Lechal
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	BT 4.1 BLE single mode
Modulation Type:	GFSK
Number of Channel:	40
Sample Type:	Portable production
Antenna Type:	Integral
Antenna Gain:	5.3dBi
Power Supply:	Rechargeable battery: DC 3.7V (charge by USB)

Remark:

Model No.: ES. PR

This test report (Ref. No.: SZEM151000652004) is only valid with the original test report (Ref.

No.: SZEM151000652002).

According to the declaration from the applicant, the models in this report and models in original report were identical, only difference with being the antenna.

Considering to the difference, pre-scan were performed on the sample in this report to find the items which can be influential to the result in the original test report for fully retest.

Therefore in this report RF output power, Radiated Spurious Emission and Restricted bands around fundamental frequency (Radiated Emission) were fully retested on model ES and shown the data in this report, other tests please refer to original report SZEM151000652002.

Updated the below standard and method.

Original report standard The newest report standard

47 CFR Part 15, Subpart C (2014) 47 CFR Part 15, Subpart C (2015)

Original Test method The newest Test method

ANSI C63.10 2009 ANSI C63.10 2013

Report No.: SZEM151000652004

Page: 6 of 30

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency	
The lowest channel (CH0)	2402MHz	
The middle channel (CH19)	2440MHz	
The highest channel (CH39)	2480MHz	

Report No.: SZEM151000652004

Page: 7 of 30

5.3 Test Environment

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	55 % RH	
Atmospheric Pressure:	1010mbar	

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM151000652004

Page: 8 of 30

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM151000652004

Page: 9 of 30

5.10 Equipment List

RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic	ETS-	N/A	SEM001-01	2016-05-13	2017-05-13
	Chamber	LINDGREN	,,, .	00	2010 00 10	2017 00 10
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2015-09-16	2016-09-16
3	BiConiLog Antenna (26-3000MHz)	ETS- LINDGREN	3142C	SEM003-01	2014-11-01	2017-11-01
4	Double-ridged horn (1-18GHz)	ETS- LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS- LINDGREN	3160	SEM003-12	2014-11-24	2017-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2016-04-25	2017-04-25
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2015-10-09	2016-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

	RF connected test							
Item Test Equipment		Manufacturer Model N	Model No.	Inventory No.	Cal. date	Cal.Due date		
	rest Equipment	Wallulacturer Woder i		inventory ivo.	(yyyy-mm-dd)	(yyyy-mm-dd)		
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2015-10-09	2016-10-09		
2	Spectrum Analyzer	Rohde &	FSP	SEM004-06	2015-10-17	2016-10-17		
	opectrum Analyzon	Schwarz						
3	Signal Generator	Rohde &	SML03	SEM006-02	2016-04-25	2017-04-25		
3	Signal Generalor	Schwarz	SIVILUS	3EIVI000-02	2010-04-25	2017-04-25		
	Dower Motor	Rohde &	NDVC	0514044.00	201E 10 00	2016 10 00		
4 Power Meter		Schwarz	NRVS	SEM014-02	2015-10-09	2016-10-09		

Report No.: SZEM151000652004

Page: 10 of 30

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 5.3dBi.

Report No.: SZEM151000652004

Page: 11 of 30

6.2 Conducted Peak Output Power

Measurement Data

Micasarciniciti Data								
	GFSK mode							
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result					
Lowest	-2.55	30.00	Pass					
Middle	-7.69	30.00	Pass					
Highest	-8.11	30.00	Pass					

Report No.: SZEM151000652004

Page: 12 of 30

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

Report No.: SZEM151000652004

Page: 13 of 30

Report No.: SZEM151000652004

Page: 14 of 30

6.3 Radiated Spurious Emission

6.3.1 Spurious Emiss	sions									
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205									
Test Method:	ANSI C63.10 2013									
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark				
	0.009MHz-0.090MH	Z	Peak	10kHz	z 30kHz	Peak				
	0.009MHz-0.090MH	Z	Average	10kHz	z 30kHz	Average				
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	z 30kHz	Quasi-peak				
	0.110MHz-0.490MH	Z	Peak	10kHz	z 30kHz	Peak				
	0.110MHz-0.490MH	Z	Average	10kHz	z 30kHz	Average				
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak				
	30MHz-1GHz		Quasi-peak	100 kH	Iz 300kHz	Quasi-peak				
	Above 1GHz		Peak	1MHz	3MHz	Peak				
	Above IGHZ		Peak	1MHz	10Hz	Average				
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)				
	0.009MHz-0.490MHz	2	400/F(kHz)	1	-	300				
	0.490MHz-1.705MHz	24	1000/F(kHz)	1	-	30				
	1.705MHz-30MHz		30	1	-	30				
	30MHz-88MHz		100	40.0	Quasi-peak	3				
	88MHz-216MHz		150	43.5	Quasi-peak	3				
	216MHz-960MHz		200	46.0	Quasi-peak	3				
	960MHz-1GHz		500	54.0	Quasi-peak	3				
	Above 1GHz	54.0	Average	3						
	permitted ave	on peak radio erage emission lies to the total								

Report No.: SZEM151000652004

Page: 15 of 30

Test Setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the

Report No.: SZEM151000652004

Page: 16 of 30

	EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	h. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with GFSK modulation.
Final Test Mode:	Transmitting with GFSK modulation.
	For below 1GHz part, through pre-scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

Report No.: SZEM151000652004

Page: 17 of 30

Radiated Emission below 1GHz						
30MHz~1GHz (QP)						
Test mode: Transmitting mode Vertical						

Condition: 3m Vertical

Job No. : 3894CR Test mode: TX mdoe

	Cable	Ant	Preamp	Read		Limit	0ver
Freq	Loss	Factor	Factor	Level	Level	Line	Limit
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
30.96	0.60	18.36	27.35	34.39	26.00	40.00	-14.00
43.81	0.68	11.45	27.31	34.50	19.32	40.00	-20.68
104.54	1.21	8.91	27.17	35.28	18.23	43.50	-25.27
157.01	1.33	9.58	26.87	31.00	15.04	43.50	-28.46
506.48	2.61	17.81	27.69	29.02	21.75	46.00	-24.25
872.18	3.49	22.74	26.92	26.63	25.94	46.00	-20.06
	30.96 43.81 104.54 157.01 506.48	MHz dB 30.96 0.60 43.81 0.68 104.54 1.21 157.01 1.33 506.48 2.61	MHz dB dB/m 30.96 0.60 18.36 43.81 0.68 11.45 104.54 1.21 8.91 157.01 1.33 9.58 506.48 2.61 17.81	Freq Loss Factor Factor MHz dB dB/m dB 30.96 0.60 18.36 27.35 43.81 0.68 11.45 27.31 104.54 1.21 8.91 27.17 157.01 1.33 9.58 26.87 506.48 2.61 17.81 27.69	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 30.96 0.60 18.36 27.35 34.39 43.81 0.68 11.45 27.31 34.50 104.54 1.21 8.91 27.17 35.28 157.01 1.33 9.58 26.87 31.00 506.48 2.61 17.81 27.69 29.02	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 30.96 0.60 18.36 27.35 34.39 26.00 43.81 0.68 11.45 27.31 34.50 19.32 104.54 1.21 8.91 27.17 35.28 18.23 157.01 1.33 9.58 26.87 31.00 15.04 506.48 2.61 17.81 27.69 29.02 21.75	30.96 0.60 18.36 27.35 34.39 26.00 40.00 43.81 0.68 11.45 27.31 34.50 19.32 40.00 104.54 1.21 8.91 27.17 35.28 18.23 43.50 157.01 1.33 9.58 26.87 31.00 15.04 43.50 506.48 2.61 17.81 27.69 29.02 21.75 46.00

Report No.: SZEM151000652004

Page: 18 of 30

Test mode:	Transmitting mode	Horizontal
------------	-------------------	------------

Condition: 3m Horizontal

Job No. : 3894CR Test mode: TX mdoe

	F			Preamp				
	Freq	Loss	Factor	Factor	revel	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	31.95	0.60	17.73	27.35	27.40	18.38	40.00	-21.62
2	157.01	1.33	9.58	26.87	30.73	14.77	43.50	-28.73
3	247.68	1.66	12.13	26.54	31.22	18.47	46.00	-27.53
4	539.48	2.64	18.75	27.63	28.86	22.62	46.00	-23.38
5 рр	699.30	2.90	21.69	27.41	27.41	24.59	46.00	-21.41
6	932.27	3.63	23.34	26.61	24.02	24.38	46.00	-21.62

Report No.: SZEM151000652004

Page: 19 of 30

Transmitte	Transmitter Emission above 1GHz									
Test mode:		GFSK	Те	st channel:	Lowest	Lowest Rem		ark:	Peak	
Frequency (MHz)	Antenn Facto (dB/m	Loss	Pream Factor (dB)		Level (dBuV/m)		Line IV/m)	Over Limit (dB)	Polarization	
4012.615	33.13	10.55	38.56	37.76	42.88	74	.00	-31.12	Vertical	
4804.000	34.10	11.63	38.75	43.80	50.78	74	.00	-23.22	Vertical	
6431.055	34.86	13.43	38.41	37.31	47.19	74	.00	-26.81	Vertical	
7206.000	35.60	14.57	37.64	34.95	47.48	74	.00	-26.52	Vertical	
9608.000	37.10	17.40	36.35	30.79	48.94	74	74.00	-25.06	Vertical	
12261.500	37.70	21.01	37.43	28.77	50.05	74	.00	-23.95	Vertical	
3437.081	31.86	10.02	38.34	36.90	40.44	74	.00	-33.56	Horizontal	
4804.000	34.10	11.63	38.75	44.40	51.38	74	.00	-22.62	Horizontal	
5711.555	34.24	12.77	38.91	36.73	44.83	74	.00	-29.17	Horizontal	
7206.000	35.60	14.57	37.64	33.95	46.48	74	.00	-27.52	Horizontal	
9608.000	37.10	17.40	36.35	29.64	47.79	74	.00	-26.21	Horizontal	
12458.220	37.76	21.30	37.61	29.55	51.00	74	.00	-23.00	Horizontal	

Test mode:		GFSK	Test	Test channel:		Rem	ark:	Peak
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3853.298	32.95	10.39	38.51	37.57	42.40	74.00	-31.60	Vertical
4880.000	34.18	11.70	38.76	43.31	50.43	74.00	-23.57	Vertical
6421.756	34.84	13.42	38.42	36.96	46.80	74.00	-27.20	Vertical
7320.000	35.54	14.84	37.59	35.36	48.15	74.00	-25.85	Vertical
9760.000	37.10	17.89	36.14	29.86	48.71	74.00	-25.29	Vertical
12173.120	37.69	20.88	37.34	28.36	49.59	74.00	-24.41	Vertical
3462.037	31.89	10.02	38.35	37.56	41.12	74.00	-32.88	Horizontal
4880.000	34.18	11.70	38.76	43.99	51.11	74.00	-22.89	Horizontal
6311.218	34.80	13.31	38.56	36.19	45.74	74.00	-28.26	Horizontal
7320.000	35.54	14.84	37.59	38.79	51.58	74.00	-22.42	Horizontal
9760.000	37.10	17.89	36.14	30.95	49.80	74.00	-24.20	Horizontal
12621.510	37.91	21.44	37.77	30.10	51.68	74.00	-22.32	Horizontal

Report No.: SZEM151000652004

Page: 20 of 30

Test mode:	(GFSK	Tes	t channel:	Highest	Ren	nark:	Peak
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3402.445	31.80	10.02	38.32	37.58	41.08	74.00	-32.92	Vertical
4960.000	34.26	11.78	38.78	43.00	50.26	74.00	-23.74	Vertical
6515.350	35.03	13.52	38.30	37.11	47.36	74.00	-26.64	Vertical
7440.000	35.60	15.13	37.54	34.56	47.75	74.00	-26.25	Vertical
9920.000	37.22	18.40	35.93	31.82	51.51	74.00	-22.49	Vertical
12137.940	37.67	20.83	37.31	28.92	50.11	74.00	-23.89	Vertical
3548.251	32.02	10.07	38.39	37.13	40.83	74.00	-33.17	Horizontal
4960.000	34.26	11.78	38.78	43.92	51.18	74.00	-22.82	Horizontal
5769.698	34.21	12.81	38.92	36.27	44.37	74.00	-29.63	Horizontal
7440.000	35.60	15.13	37.54	31.44	44.63	74.00	-29.37	Horizontal
9920.000	37.22	18.40	35.93	30.37	50.06	74.00	-23.94	Horizontal
12676.420	37.94	21.47	37.82	28.72	50.31	74.00	-23.69	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM151000652004

Page: 21 of 30

6.4 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2013	ANSI C63.10 2013							
Test Site:	Measurement Distance: 3r	n (Semi-Anechoic Chambe	r)						
Limit:	Frequency	Limit (dBuV/m @3m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak Value						
	88MHz-216MHz	43.5	Quasi-peak Value						
	216MHz-960MHz	46.0	Quasi-peak Value	ak Value					
	960MHz-1GHz	54.0	Quasi-peak Value						
	Above 1GHz	54.0	Average Value						
	Above IGHZ	74.0	Peak Value						
Test Setup:									

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and

Report No.: SZEM151000652004

Page: 22 of 30

Exploratory Test	modulation for lowest and highest channel h. Test the EUT in the lowest channel, the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Transmitting with GFSK modulation.
Final Test Mode:	Transmitting with GFSK modulation.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

Report No.: SZEM151000652004

Page: 23 of 30

Test plot as follows:

Test mode: GFSK Test channel: Lowest Remark: Peak Vertical

Condition: 3m Vertical Job No: : 3894CR

Mode: : 2402 Band edge

			Cable	Ant	Preamp	Read		Limit	0ver
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1		2390.000	7.40	28.57	38.11	42.87	40.73	74.00	-33.27
2	pp	2402.288	7.42	28.61	38.11	80.86	78.78	74.00	4.78

Report No.: SZEM151000652004

Page: 24 of 30

Test mode:	GFSK	Test channel:	Lowest	Remark:	Peak	Horizontal
------------	------	---------------	--------	---------	------	------------

Condition: 3m Horizontal

Job No: : 3894CR

Mode: : 2402 Band edge

	Freq			Preamp Factor				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	2390.000	7.40	28.57	38.11	47.79	45.65	74.00	-28.35
2	pp 2402.288	7.42	28.61	38.11	88.45	86.37	74.00	12.37

Report No.: SZEM151000652004

Page: 25 of 30

Test mode:	GFSK	Test channel:	Highest	Remark:	Peak	Vertical
------------	------	---------------	---------	---------	------	----------

Condition: 3m Vertical Job No: : 3894CR

Mode: : 2480 Band edge

Cable Ant Preamp Read Limit 0ver Frea Loss Factor Factor Level Level Line Limit MHz dB/m dBuV dBuV/m dBuV/m dB dB 1 pp 2480.354 7.50 28.97 38.12 84.47 82.82 74.00 2483.500 7.52 28.98 38.12 52.30 50.68 74.00 -23.32

Report No.: SZEM151000652004

Page: 26 of 30

Test mode:	GFSK	Test channel:	Highest	Remark:	Peak	Horizontal
------------	------	---------------	---------	---------	------	------------

Frequency (MHz)

Condition: 3m Horizontal

Job No: : 3894CR

Mode: : 2480 Band edge

		Cable	Ant	Preamp	Kead		Limit	Over
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	·							
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
			,					
1 -	p 2480.354	7 50	20 07	20 12	01 76	00 11	74 00	16 11
ıμ	p 2400.334	7.50	20.57	30.12	91.70	90.11	74.00	10.11
2	2483.500	7.52	28.98	38.12	61.65	60.03	74.00	-13.97

Report No.: SZEM151000652004

Page: 27 of 30

Test mode: GFSK	Test channel:	Highest	Remark:	Average	Vertical	
-----------------	---------------	---------	---------	---------	----------	--

Frequency (MHz)

Condition: 3m Vertical Job No: : 3894CR

Mode: : 2480 Band edge

Cable Ant Preamp Read limit Over Freq Loss Factor Factor Level Level Line Limit dBuV dBuV/m dBuV/m MHz dB/m dΒ dB 1 pp 2480.005 7.50 28.97 38.12 70.82 69.17 54.00 15.17 2 av 2483.500 7.52 28.98 38.12 42.16 40.54 54.00 -13.46

Report No.: SZEM151000652004

Page: 28 of 30

Test mode:	GFSK	Test channel:	Highest	Remark:	Average	Horizontal
------------	------	---------------	---------	---------	---------	------------

Condition: 3m Horizontal

Job No: : 3894CR

Mode: : 2480 Band edge

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
_								
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
pp	2480.055	7.50	28.97	38.12	78.08	76.43	54.00	22.43
av	2483.500	7.52	28.98	38.12	49.37	47.75	54.00	-6.25
		MHz pp 2480.055	$\frac{\text{Freq}}{\text{MHz}} \frac{\text{Loss}}{\text{dB}}$ pp 2480.055 7.50	$\frac{\text{Freq}}{\text{MHz}} = \frac{\text{Loss}}{\text{dB}} \frac{\text{Factor}}{\text{dB/m}}$ $\text{pp 2480.055} = 7.50 = 28.97$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cable Ant Preamp Read Level Limit

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEM151000652004

Page: 29 of 30

7 Photographs - EUT Test Setup

Test model No.: ES

7.1 Radiated Spurious Emission

Report No.: SZEM151000652004

Page: 30 of 30

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1605003894CR.