

2023秋季

计算机系统概论

Introduction to Computer Systems

整数

- ⑧ Zhang, Youhui (张悠慧)
- zyh02@tsinghua.edu.cn

计算机体系结构

数的机器表示(初步)

整数的表示

预备知识

•
$$1K = 2^{10} = 1024$$
 (kilo) • $1M = 1024K = 2^{20}$ (Mega)

• 1G =
$$1024M = 2^{30}$$
 (Giga) • 1T = $1024G = 2^{40}$ (Tera)

• 1P =
$$1024T = 2^{50}$$
 (Peta) • 1E = $1024P = 2^{60}$ (Exa)

- 1个二进制位: bit (比特)
- 8个二进制位: Byte (字节) 1Byte = 8bit
- 2个字节: Word (字) 1Word = 2Byte = 16bit*

* X86架构下如此,RISC-V的话1-word = 32-bit

数的机器表示

- 机器字(machine word)长
 - 》一般指计算机进行一次整数运算所能处理的二进制数据的位数
 - ▶ 通常也指数据地址长度
- 》32位字长
 - ▶ 地址的表示空间是4GB

▶ 对很多内存需求量大的应用而言,非常有限

- 》64位字长
 - ▶ 地址的表示空间约是1.8 X 10¹⁹ bytes
 - ▶ 目前的X86-64 机型实际支持 48位宽的地址: 256 TB

机器字在内存中的组织

地址按照字节(byte)来定位

机器字中第一个字节的地址

▶ 相邻机器字的地址相差4 (32位字) 或者8 (64位字)

Addr = 0000Addr = 0000Addr = 0004Addr = 0008Addr = 0008Addr = 0012

32位字编址

64位字编址

字节编址 地址

字节序(Byte Ordering)

一个机器字内的各个字节如何排列?

- ▶ 大端 (Big Endian): Sun, PowerPC, Internet, Java 低位字节(Least significant byte, LSB) 占据高地址
- ▶ 小端 (Little Endian) : X86, RISC-V, ARM(默认) 与LSB相反

数值是0x01234567, 地址是0x100

Dia Endian	0x100 0x101 0x102 0x103						
Big Endian		01 23 45 67					
		0 400	0 404	0 400	0.400		
Little Endian		UX1UU	0x101	UX1U2	UX1U3		
Little Englan		67	45	23	01		

Gulliver's Travels

字节序 (Byte Ordering)

十进制: 12345

二进制: 0011 0000 0011 1001

十六进制: 3 0 3 9

Show Bytes示例

```
typedef unsigned char *byte_pointer;
void show_bytes(byte_pointer start, size_t len)
  for (int i = 0; i < len; i++)
     printf("%.2x\t", start[i]);
void show_int(int x)
  show_bytes((byte_pointer)&x, sizeof(int));
void show_double(double x)
void show_float(float x)
int main(void)
  int x = 0x12345678;
  show_int(x);
```

staı	rt[0]	start[1]		start[2]		start[3]	
byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7
8	7	6	5	4	3	2	1

整数表示

C语言中基本数据类型的大小 (单位为字节)

C Data Type	32-bit	x86-32	x86-64	
char	1	1	1	
short	2	2	2	
int	4	4	4	
long	4	4	8	(Linux)
long long	8	8	8	
float	4	4	4	
double	8	8	8	
long double	8	10/12	10/16	
char * or any other pointer	4	4	8	
	1	1	1	

计算机中整数的二进制编码方式(w表示字长)

● 无符号数 (原码表示)

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

● 带符号数 (补码, Two's Complement)

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$
 符号位

short int x = 12345; short int y = -12345;

	Decimal	Hex	Binary
X	12345	30 39	00110000 00111001
у	-12345	CF C7	11001111 11000111

》符号位 (sign bit)

- 对于补码表示, MSB (Most Significant Bit) 表示整数的符号

非负数: 补码 = 原码

(反码是原码各位取反)

- 负数: 补码 = 绝对值的反码 + 1 = 2w + 该负数
- 一个数的补码:它的相反数的补码的按位取 反加一

取值范围

• 无符号数

• 带符号数

$$V_{min} = 0$$
 000...0 $V_{min} = -2^{w-1}$ 100...0

 $V_{\text{max}} = 2^{w} - 1$ 111...1 $V_{\text{max}} = 2^{w-1} - 1$ 011...1

▶ 负1 = 111.	1
-------------	---

假设字长为16(w=16)

	Decimal	Hex	Binary
U _{max}	65535	FF FF	11111111 11111111
T _{max}	32767	7F FF	01111111 11111111
T _{min}	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

无符号数与带符号数

Х	B2U(X)	B2T(X)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

》无符号数与带符号数之间的转换

● 二进制位串的表示是不变的

$$ux = \begin{cases} x & x \ge 0 \\ x + 2^w & x < 0 \end{cases}$$

带符号/无符号整数的加减操作

带符号数的补码系统的核心:

把负整数映射到无符号数的高数值范围

带符号/无符号整数的加减操作

X: 圆环上的任意一个位子 **y**: 正数 (y>0)

X+y: x顺时针移动y个位子

X-y: x逆时针移动y个位子

x逆时针移动y个位子=x顺时针移动(R-y)个位子

w位整数: R=2^w

带符号/无符号整数的加减操作

减法可以用取反和加法代替

实现了加法和减法在电路层面的统一

公 式 1

公式 2

公 式 3

$$x - y = x + (R-y)$$
 $- y = R-y$
 $- y = (\sim y) + 1$
 $x - y = x + (\sim y) + 1$

补码加法公式*

 $|x| + |y| + |x| = |x + y| + \pmod{2^w}$

意义:

负整数用补码表示后,可以和正整数一样来处理,这样(处理器的)运算器只需要加法器

证明:

$$[y] \stackrel{\wedge}{\uparrow} = 2^w + y \ (y < 0)$$

- x>0;y>0 由于正数的补码和原码一致, x+y>0, 所以在这种情况下[x]补 + [y]补 ≡ [x+y]补
- x>0;y<0且x+y>0 我们有如下的等式: [x]补=x [y]补= 2*+y, 所以, [x]补+ [y]补
 =x+y+2* ≡ x+y= [x+y]补:
- x>0;y<0且x+y<0,可以发现以下等式: [x]补=x [y]补= 2*+y, 所以, [x]补+ [y]补 =x+y+2* = [x+y]补:

C语言中的无符号数与带符号数

- 》常数 (Constants)
 - 默认是带符号数
 - ▶ 如果有"U"作为后缀则是无符号数,如 0U, 4294967259U

- 》无符号数与带符号数混合使用
 - 带符号数默认转换为无符号数
 - ▶ 包括比较操作符 实例 (w=32)

Constant ₁	Constant ₂	比较大小
0	0U	
-1	0	
-1	0U	
2147483647	-2147483647-1	
2147483647U	-2147483647-1	
-1	-2	
(unsigned)-1	-2	
2147483647	2147483648U	
2147483647	(int)2147483648U	

C语言中的无符号数与带符号数

Constant ₁	Constant ₂	比较大小	带符号数或无符号数处理
0	0U	==	unsigned
-1	0	<	signed
-1	0 U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned) -1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

何时采用无符号数

• 模运算

• 按位运算

建议:不能仅仅因为取值范围是非负而使用

》示例一

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

》示例二

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
...
```

无符号数加法

操作数位宽: w bits

真实结果位宽: w + 1 bits

放弃进位: w bits

$$s = UAdd_w (u, v) = (u + v) \mod 2^w$$

补码加法

操作数位宽: w bits

真实结果位宽: w + 1 bits

放弃进位: w bits

》与无符号数的一致

• C语言中的带符号数 / 无符号数加法

$$t = u + v$$

补码加法的溢出

填空题

101: 0x00000067

- 已知某32位整数X, 其值为-101 (十进制) 则其16进制补码为 [填空1] [[東京] [[東京]] [[東]] [[x]] [[
- 另一32位整数Y的补码为0xFFFFF6A
 则 X + Y 的16进制补码(32位)为 [填空2]
 X Y 的16进制补码为 [填空3]

u >> k 等价于 [u / 2^k]

采用逻辑右移

	Division	Computed	Hex	Binary
X	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

```
unsigned udiv8(unsigned x)
{
   return x/8;
}
```

等价的汇编代码

shrl \$3, %eax

C代码的解释

逻辑右移 return x >> 3;

x >> k 等价于 [x / 2^k]

采用算术右移

但是x < 0时,舍入错误

	Division	Computed	Hex	Binary
X	-15213	-15213	C4 93	11000100 10010011
x >> 1	-7606.5	-7607	E2 49	11100010 01001001
x >> 4	-950.8125	-951	FC 49	11111100 01001001
x >> 8	-59.4257813	-60	FF C4	11111111 11000100

》期望的结果是「x/2^k](需要向0舍入,而不是向"下"舍入)

→Bias / 偏置量

- 所以引入偏置量 [(x+2k-1)/2k]
 - ▶ C语言: (x + (1<<k)-1) >> k

情况一: 能够被2^k整除

被除数:	u	k 1 ••• 0 0 0
	+2 ^k -1	0 ••• 0 0 1 ••• 1 1
		1 … 1 … 11 , 少数点
除数:	/ 2 ^k	0 ••• 0 1 0 ••• 0 0
此时偏置量不起作用	$\lceil u / 2^k \rceil$	1 ••• 111 ••• 11

C函数

等价的汇编代码

```
C代码的解释
```

```
int idiv8(int x)
{
    return x/8;
}
```

```
testl %eax, %eax
js L4
L3:
sarl $3, %eax
ret
L4:
addl $7, %eax
jmp L3
```

```
if x < 0
x += 7;
# 算术右移
return x >> 3;
```

整数运算的一些可能极端情况

判断以下的推断或者关系式是否成立 (不成立则给出示例)

- x, y 为32位带符号整数 ux, uy为与x, y具有相同二进制表示的32位无符号整数

$$\Rightarrow ((x^*2) < 0)$$

$$\Rightarrow$$
 ((x<<30) < 0

•
$$x > 0 & y > 0$$

$$\Rightarrow x + y > 0$$

•
$$x >> 3$$
 == $x/8$

$$== ux/c$$

$$== x/8$$

大この

以上仅从带符号整数、无符号数的定义出发,不涉及C语言的编译器具体 实现,有兴趣同学可以深入参考C语言的"未定义行为"