Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ Отчёт по лабораторной работе №2-2

«Электронный осциллограф»

Выполнил студент:

Белобородов Дмитрий Александрович группа: 23.С02-мм

Проверил:

к.ф.-м.н., доцент Кац Виктор Михайлович

Содержание

1	Введение					
	1.1	Задачи работы				
2	Осн	овная часть				
	2.1	Теоретическая часть				
		Электронно-лучевая трубка				
		Блок-схема осциллографа				
	2.2	Эксперимент				
	2.3	Обработка данных и обсуждение результатов				
		Исходный код				
		Графики				
3	Выі	ВОДЫ				

1 Введение

Осциллограф является одним из важнейших исследовательских приборов. Чаще всего он применяется для наблюдения и исследования переменных во времени электрических сигналов.

1.1 Задачи работы

- 1. Исследовать чувствительность пластин вертикального и горизонтального отклонений осциллографической трубки.
- 2. Наблюдать с помощью осциллографа синусоидальное напряжение, полученное с выхода генератора.
- 3. Получить фигуры Лиссажу и определить частоту исследуемого напряжения по фигурам Лиссажу.

2 Основная часть

2.1 Теоретическая часть

Электронно-лучевая трубка

Основным рабочим элементом осциллографа является электронно-лучевая трубка.

Для возникновения термоэлектронной эмиссии катод трубки нагревают, подавая на его нагреватель переменное напряжение. Высвободившиеся электроны ускоряются электрическим полем и движутся к аноду. На их пути расположен фокусирующий электрод, который формирует электроны в узкий пучок, создавая электронный луч. Совокупность нити накала, катода, фокусирующего электрода и анода называется электронной пушкой.

Электронный луч проходит через отверстие в аноде и попадает между пластинами двух взаимно перпендикулярных конденсаторов. При подаче напряжения:

- 1. Первый конденсатор отклоняет луч в горизонтальном направлении.
- 2. Второй конденсатор изменяет траекторию луча в вертикальном направлении.

После прохождения отклоняющих пластин луч попадает в расширенную часть трубки, где ударяет в покрытый люминофором экран. Под воздействием электронов вещество экрана светится, создавая яркое пятно.

Если на пластины конденсатора C1 и C2 подать напряжение, то пятно на экране перемещается как в горизонтальном (вдоль оси x), так и вертикальном

(вдоль оси у) направлениях. При изменении напряжения на обоих конденсаторах пятно перемещается по некоторой траектории в плоскости экрана.

При подаче на конденсатор вертикального отклонения постоянного напряжение пучок электронов, проходя через электрическое поле конденсатора, отклоняется под действием поля в вертикальном направлении. В итоге пятно на экране смещается вверх или вниз от первоначального положения.

Измерив напряжение $U_{(+-)}$ и вызванное им смещение $L_{(+-)}$, можно вычислить чувствительность пластин вертикального отклонения по следующей формуле:

$$S_y = \frac{L_{(+-)}}{U_{(+-)}} (\frac{MM}{B}) \tag{1}$$

При подаче на конденсатор переменного напряжения (например, синусоидального) пятно будет совершать гармонические колебания. При достаточной большой частоте f на экране будет наблюдаться светящаяся линия. Её размер L_{\sim} будет соответствовать двойной амплитуде приложенного напряжения. В этом случае чувствительность пластин осциллографа вычисляется по формуле:

$$S_y = \frac{L_{(+-)}}{2\sqrt{2}U_{eff}} \left(\frac{\text{MM}}{\text{B}}\right),\tag{2}$$

где U_{eff} - эффективное значение синусоидального напряжения $(U_{eff} = \frac{U_0}{\sqrt{2}})$. Если на конденсаторы подать на пластины от различных источников:

- 1. На пластины горизонтального отклонения $U_x = (U_0)_x * cos(2\pi f_x + \phi_x)$
- 2. На пластины вертикального отклонения $U_y = (U_0)_y * cos(2\pi f_y + \phi_y),$

то на экране будет наблюдаться неустойчивое мелькающее изображение. Наблюдать неподвижную картинку можно только при определенном соотношении частот:

$$f_x = nf_y, (3)$$

где $n=1,2,\frac{1}{2},\frac{1}{3}$ и т.д. При таком соотношении на экране осциллографа можно наблюдать фигуры Лиссажу.

Применение в осциллографе электронно-лучевой трубки дает возможность использовать осциллограф для наблюдения электрических сигналов, переменных во времени. Пусть на пластины вертикального отклонения подается обычное синусоидальное напряжение и одновременно на пластины горизонтального отклонения подается пилообразное напряжение.

При постоянном увеличении напряжения пятно движется по экрану слева направо с некоторой постоянной скоростью, зависящей от частоты развертки . Затем, когда напряжение быстро уменьшается, пятно практически мгновенно возвращается справа налево. Через интервал времени, равный периоду пилообразного напряжения, движение пятна повторяется.

Одновременно с этим пятно перемещается в вертикальном направлении под действием синусоидального напряжения. В случае, когда периоды напряжения удовлетворяют следующему соотношению:

$$T_x = nT_y, (4)$$

где n=1,2,3 и т.д. картинка на экране окажется неподвижной.

Блок-схема осциллографа

Помимо электронно-лучевой трубки осциллограф состоит из следующих устройств: генератора "Развёртки усилителей горизонтального и вертикального отклонения и других.

2.2 Эксперимент

Упрощённая блок-схема осциллографа представлена на рисунке 1.

Рис. 1. Схема электронно-лучевой трубки

Фотография установки представлена на рисунке 2.

Рис. 2. Схема электронно-лучевой трубки

Одна из задач лабораторной работа заключается в исследовании чувствительности пластин вертикального и горизонтального отклонений электронно-лучевой трубки. На рисунке 3 представлена схема для исследования чувствительности пластин.

Другой задачей работы является наблюдение с помощью осциллографа синусоидального напряжения, полученного с выхода генератора. На рисунке 4 представлена схема для наблюдения исследуемого напряжения и определения максимальной чувствительности осциллографа.

Рис. 3. Схема электрической цепи для исследования чувствительности пластин электронно-лучевой трубки и получения фигур Лиссажу

Рис. 4. Схема электрической цепи для наблюдения исследуемого напряжения и определения максимальной чувствительности осциллографа

2.3 Обработка данных и обсуждение результатов

Чувствительность вычисляется по формуле (2)

50

	n 1 1	
Длина линии на	Эффективное	II.
экране, L	напряжение, U_{eff}	Чувствительность, S
MM	В	мм/В
10	5.50	0.64
20	11.5	0.62
30	18.1	0.59
40	24.5	0.58

Таблица 1. Пластины вертикального отклонения (ПВО)

Было высчитано среднее значение чувствительности пластин вертикального отклонения и погрешность результата прямых измерений по общепринятым правилам по отклонению от среднего: $\overline{S_y} = 0.60$ мм

31.5

Длина линии на	Эффективное	Uуратритан наат С	
экране, L	напряжение, U_{eff}	Чувствительность, Ѕ	
MM	В	мм/В	
10	4.70	0.75	
20	11.1	0.64	
30	17.1	0.62	
40	24.1	0.59	
50	29.3	0.60	

Таблица 2. Пластины горизонтального отклонения (ПГО)

Было высчитано среднее значение чувствительности пластин горизонтального отклонения и погрешность результата прямых измерений по общепринятым правилам по отклонению от среднего: $\overline{S_x} = 0.64$ мм

Графики зависимости $S_y = f(U_{eff})$ и $S_x = f(U_{eff})$ представлены на рисунках и соотвествеенно.

Максимальная чувствительность осциллографа вычисляется по формуле:

$$(S'_y)_m = \frac{L'}{2\sqrt{2}U'_{eff}},$$
 (5)

0.56

где $L^{'}$ - амплитуда синусоиды на экране осциллографа (двойная), в мм, $U_{eff}^{'}$ - напряжение, подаваемое на вход осциллографа и измеренное вольметром, в В.

Таблица 3. Максимальная чувствительность осциллографа

Длина линии на	Эффективное напря-	Uуротрито на ноота С		
экране, L	жение, U_{eff}	Чувствительность, S		
MM	В	мм/В		
10	0.010	35*10		
20	0.023	31*10		
30	0.037	29*10		
40	0.052	27*10		
50	0.064	28*10		

Был высчитан максимальный коэффициент усиления осциллографического усилителя по формуле:

$$K_m = \frac{(\overline{S_y'})_m}{\overline{S_y}},\tag{6}$$

где $\overline{(S_y')_m}$ и $\overline{S_y}$ среднее значение максимальной чувствительности осциллографа и среднее значение чувствительности пластин вертикального отклонения соотвественно.

Таблица 4. Измерение неизвестной частоты при наблюдении фигур Лиссажу

Вид фигуры Лиссажу				
Отношение частот	1:1	2:1	1:3	1:2
Частота по лимбу генератора, f_y , Γ ц	50 ± 0.5	25 ± 0.5	150 ± 0.5	100 ± 0.5
Исследуемая частота, f_x , Γ ц	50 ± 0.5	50 ± 0.5	50 ± 0.5	50 ± 0.5

Исходный код

Графики

На рис. 5 приведён график зависимости результатов наблюдений от времени.

Рис. 5. Зависимость результатов наблюдений от времени

3 Выводы

Список литературы

[1] https://github.com/st117207/Workshop3 (дата обращения: 10.04.2024)