Chemistry Fundamentals

Lecture 13: Ions and Ionic Compounds

Mohamed Kamal

Ion Formation - Gaining and Losing Electrons

Ion Definition

Atom or group of atoms with net electrical charge

Cation Formation

Metal atoms lose electrons \rightarrow positive charge

Anion Formation

Nonmetal atoms gain electrons \rightarrow negative charge

Examples:

- Na \rightarrow Na⁺ + e⁻ (loses 1 electron, becomes +1)
- Cl + $e^- \rightarrow Cl^-$ (gains 1 electron, becomes -1)
- $Mg \rightarrow Mg^{2+} + 2e^{-}$ (loses 2 electrons, becomes +2)

Ions have same electron configuration as nearest noble gas. Cations are smaller than atoms, anions larger than atoms.

Predicting Ion Charges from Periodic Table

Group 1 (Alkali Metals)

Form +1 ions (Li⁺, Na⁺, K⁺)

Group 2 (Alkaline Earth)

Form +2 ions (Mg²⁺, Ca²⁺, Ba²⁺)

Group 13

Form +3 ions (Al³⁺, Ga³⁺)

Group 15

Form -3 ions (N³-, P³-)

Group 16

Form -2 ions (O²-, S²-)

Group 17 (Halogens)

Form -1 ions (F-, Cl-, Br-, I-)

Transition Metals: Variable charges (Fe²⁺, Fe³⁺, Cu⁺, Cu²⁺)

Memory Device: Group number for metals = positive charge

Pattern: Gain/lose electrons to achieve nearest noble gas configuration

Polyatomic Ions - Charged Molecular Groups

Definition: Groups of atoms covalently bonded with overall charge

NH₄⁺ (ammonium)	+1 charge
SO ₄ ²⁻ (sulfate)	-2 charge
PO ₄ ³- (phosphate)	-3 charge
NO₃⁻ (nitrate)	-1 charge
CO ₃ ²⁻ (carbonate)	-2 charge

1

Naming Patterns

- -ate ending: more oxygen (SO₄²- sulfate)
- -ite ending: less oxygen (SO₃²- sulfite)

2

Behavior

Act as single units in compound formation

Common polyatomic ions must be memorized

Ionic Compound Formation and Formulas

Fundamental Rule: Total positive charge = total negative charge

Step 1

Identify cation and anion

Step 3

Balance charges with subscripts

Step 2

Determine charges

Step 4

Write cation first, then anion

(i) Example: Aluminum Oxide

- Al³⁺ and O²⁻
- Need 2 Al³⁺ and 3 O²⁻ to balance
- Formula: Al₂O₃

Criss-Cross Method: Use charge numbers as subscripts (then simplify)

Polyatomic Examples: Ca^{2+} and $SO_4^{2-} \rightarrow CaSO_4$, Al^{3+} and $PO_4^{3-} \rightarrow AlPO_4$

Naming Ionic Compounds

Binary Ionic Compounds

Metal name + nonmetal root + "-

- NaCl (sodium chloride)
- MgO (magnesium oxide)

Compounds with Polyatomic lons

Use polyatomic ion name

- CaSO₄ (calcium sulfate)
- NH₄Cl (ammonium chloride)

Transition Metal Compounds

Include charge in Roman numerals

- FeCl₂ (iron(II) chloride)
- FeCl₃ (iron(III) chloride)

Naming Systems

- Stock System: Modern method using Roman numerals
- Older System: -ous (lower charge), -ic (higher charge)

Properties of Ionic Compounds

Crystal Structure

Regular 3D arrangement of ions

Melting/Boiling Points

High due to strong electrostatic forces

Brittleness

Stress causes like charges to align and repel

Electrical Conductivity

- Solid: No (ions fixed in place)
- Molten: Yes (ions mobile)
- Aqueous solution: Yes (ions separated)

Examples

NaCl	mp 801°C, soluble in water
CaCO₃	mp 825°C, insoluble in water
MgO	mp 2852°C, slightly soluble

Dissolution of Ionic Compounds

Dissolution Process

Water molecules surround and separate ions

Hydration: Water molecules orient around ions

Equation Example: NaCl(s) \rightarrow Na⁺(aq) + Cl⁻(aq)

Energy Consideration s

- Lattice energy: Energy to separate ions
- Hydration energy: Energy released when ions hydrate
- Solubility depends on balance

Solubility Rules

- All nitrates (NO₃⁻) soluble
- All acetates (CH₃COO⁻) soluble
- Most chlorides soluble (except AgCl, PbCl₂)
- Most sulfates soluble (except BaSO₄, PbSO₄)
- Most carbonates insoluble (except Group 1)

Ionic Compounds in Everyday Life

Table Salt (NaCl)

Food preservation, seasoning

Calcium Carbonate (CaCO₃)

Limestone, marble, antacids

Sodium Bicarbonate (NaHCO₃)

Baking soda, antacid

Applications

- Medicine: Electrolyte balance, treatments
- Agriculture: Fertilizers provide essential ions
- Industry: Ceramics, glass, metallurgy

Other examples: Calcium Phosphate $(Ca_3(PO_4)_2)$ in bones, Potassium Chloride (KCl) as salt substitute, Magnesium Sulfate $(MgSO_4\cdot7H_2O)$ as Epsom salt

Next Lecture:

Hydrate Compounds

Mohamed Kamal