Bonus Video!

Bézier Concepts Review

Properties of Bézier Curves

- 1. Interpolate Endpoints
- 2. Tangents from last pairs
- 3. Tangents scaled by degree
- 4. Stay in convex hull
- 5. Variation diminishing
- 6. Affine invariant

n=2 (d=1) - it's a line segment!

Crossing

Two points (n=2), degree = (n-1)

- 1. Interpolate Endpoints
- 2. Tangents from last pairs
- 3. Tangents scaled by degree
- 4. Stay in convex hull
- 5. Variation diminishing
- 6. Affine invariant

n=3 (d=2) - Quadratic Bézier

Three points (n=3), degree = n-1

- 1. Interpolate Endpoints
- 2. Tangents from last pairs
- 3. Tangents scaled by degree
- 4. Stay in convex hull
- 5. Variation diminishing
- 6. Affine invariant (trust me)

Connect them!

G(1) line up points

C(1) line up points and distance

Three points (n=3), degree = n-1

- 1. Interpolate Endpoints
- 2. Tangents from last pairs
- 3. Tangents scaled by degree
- 4. Stay in convex hull
- 5. Variation diminishing
- 6. Affine invariant (trust me)

Convert them!

Hermite Form

we know the ends and tangents

Other Forms determine the ends and tangents

Split Them

Do DeCastleJau, pick the points

