

# Árbol Xor

#### **Problema**

Te es dado un entero N y N-1 aristas con pesos. Estas aristas conectan N vértices de tal forma que exista un camino<sup>1</sup> entre cualesquiera dos vértices (es decir, forman un árbol).

Para cada camino, definimos su peso como el **xor** <sup>2</sup> de cada uno de los pesos de las aristas que componen el camino. Determina la suma de los pesos de todos los caminos simples (caminos que no repiten aristas) del árbol <sup>3</sup>.

## Detalles de Implementación

Debes implementar la función  $Encuentra\_xor()$ . Esta función recibe un entero N, 3 vectores u, v y w, cada uno con N-1 elementos. para cada  $0 \le i \le N-2$ , u[i] y v[i] son los vértices que se conectan con la arista i, y w[i] es su peso. Esta función debe regresar un entero, la suma de los pesos de todos los caminos. La función se vería así:

```
#include <bits/stdc++.h>
using namespace std;
long long Encuentra_xor(int N, vector<int> u, vector<int> v, vector<int> w) {
    // Implementa esta función.
}
```

El evaludor correrá tu programa multiples veces por cada caso.

### **Ejemplos**

Ejemplo 1:

• El evaluador llama la función

```
Encuentra\_xor(5, \{0, 1, 0, 4\}, \{1, 2, 3, 1\}, \{2, 3, 4, 0\})
```

el árbol en este caso se ilustra en la siguiente imagen:

<sup>&</sup>lt;sup>1</sup>Un camino en un grafo es definido como una secuencia de k vértices  $\{v_1, v_2, \dots, v_k\}$ , tal que para todo  $1 \le i \le k-1$ , la arista  $\{v_i, v_{i+1}\}$  existe en el grafo.

 $<sup>^2\</sup>mathrm{Or}$  exclusivo, aquí consideramos la operación bit por bit.

<sup>&</sup>lt;sup>3</sup>El camino  $\{a, b\}$  se considera el mismo que  $\{b, a\}$ .





• los xors de los caminos son:

| $\oplus$ | 0 | 1 | 2 | 3 | 4 |
|----------|---|---|---|---|---|
| 0        | 0 | 2 | 1 | 4 | 2 |
| 1        | 2 | 0 | 3 | 6 | 0 |
| 2        | 1 | 3 | 0 | 5 | 3 |
| 3        | 4 | 6 | 5 | 0 | 6 |
| 4        | 2 | 0 | 3 | 6 | 0 |

■ La función debe regresar 32, la suma del xor de todos los caminos (el camino  $\{a,b\}$  se considera el mismo que  $\{b,a\}$ ).

#### Ejemplo 2:

• El evaluador llama la función

$$Encuentra\_xor(9, \{0, 1, 0, 1, 0, 2, 3, 3\}, \{1, 2, 3, 4, 5, 6, 7, 8\}, \{2, 3, 4, 5, 1, 0, 7, 2\})$$

el árbol en este caso es el siguiente:





• La función debe regresar 132.

# **Consideraciones**

- $\quad \blacksquare \ 1 \le N \le 2 \times 10^5.$
- Los vectores u, v y w tendrán exactamente N-1 elementos.
- Para cada  $0 \le i \le N-2$ , se cumple que  $0 \le u[i] \ne v[i] < N$ .
- $\blacksquare$  Para cada  $0 \leq i \leq N-2,$  se cumple que  $0 \leq w[i] \leq 10^9.$
- Se garantiza que el grafo formado por las aristas es un árbol.
- Sea  $S_N$  la suma total de los valores de N sobre todas las veces que es llamada la función durante un caso. Se garantiza que  $S_N \leq 2 \times 10^5$ .

#### **Subtareas**

- (10 puntos)  $N, S_N \le 2000$ .
- (20 puntos) Para todo  $0 \le i \le N-2$ , se cumple que  $w[i] \le 1$ .
- (25 puntos) Para todo  $0 \le i \le N-2$ , se cumple que u[i] = i, v[i] = i+1.
- (45 puntos) Sin restricciones adicionales.