

Online Coaching for UPSC MATHEMATICS QUESTION BANK SERIES

PAPER 2:08 Complex Analysis

Content:

01 ANALYTIC FUNCTION

02 COMPLEX INTEGRATION

03 TAYLOR LAURENT SERIES

04 POLES RESIDUE

05 COUNTER INTEGRATION

06 ROUCHES THEOREM

07 SINGULARITY

08 POWER SERIES

SuccessClap: Question Bank for Practice 01 ANALYTIC FUNCTION

- (1) If $u + v = \frac{2 \sin 2x}{e^{2y} + e^{-2y} 2 \cos 2x}$, find the corresponding analytic function f(z) = u + iv
- (2) $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ | Real f(z) |² = 2 | f'(z) |² where w = f(z) is analytic.
- (3) If w = f(z) is a regular function of z, prove that $(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}) \log |f'(z)| = 0$. If |f'(z)| is the product of a function of x and a function of y, show that $f'(z) = \exp(\alpha z^2 + \beta z + \gamma)$ where α is a real and β , γ are complex constants.
- (4) Show that a harmonic function satisfies the formal differential equation $\frac{\partial^2 u}{\partial z \partial z} = 0$
- (5) If φ and ψ are functions of x and y satisfying Laplace's equation, show that s+it is analytic, where $x = \frac{\partial \varphi}{\partial y} \frac{\partial \psi}{\partial x}$ and $t = \frac{\partial \varphi}{\partial x} + \frac{\partial \psi}{\partial y}$.
- (6) Show that the function $u = \sin x \cosh y + 2 \cos x \sinh y + x^2 y^2 + 4xy$ satisfies Laplace's equation and find the corresponding analytic function u + iv.
- (7) Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin although the Cauchy Riemann equations are satisfied at that point.
- (8) If $f(z) = \frac{x^3y(y-ix)}{x^6+y^2}$, $z \neq 0$ and f(0) = 0, show that $\frac{f(z)-f(0)}{z} \rightarrow 0$ as $z \rightarrow 0$ along any radius vector but not as $z \rightarrow 0$ in any manner.
- (9) Show that the function f(z) = u+iv where $f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$, $z \ne 0$ and f(0) = 0 is continuous and that Cauchy Riemann equations are satisfied at the origin, yet f'(0) does not exist.

- (10) Examine the nature of the function $f(z) = \frac{x^2y^5(x+iy)}{x^4+y^{10}}$, $z \neq 0$, f(0) = 0 in a region including the origin.
- (11) Show that the function $f(z) = e^{-z^{-4}}$, $z \neq 0$ and f(0) = 0 is not analytic at z = 0, although Cauchy-Riemann equations are satisfied at this point.
- (12) For what values of z the function w defined by $z = e^{-v}(\cos u + i \sin u)$ where w = u + iv ceases to be analytic?
- (13) Find the orthogonal trajectory of the family of curves $x^2 y^2 + x = c$.
- (14) If f(z) = u+iv is an analytic function, regular in D, where $f(z) \neq 0$, prove that the curves u = const, v = const, form two orthogonal families. Verify this in case of f(z) = sin z.
- (15) Two functions u(x,y) and v(x,y) are harmonic conjugates of each other if and only if they are constants.
- (16) Find the analytic function whose real part is given and hence find the imaginary part:
- (i) $e^x \sin y$ (ii) $\sin x \cosh y$ (iii) x^2-y^2
- (17) Find the analytic function whose imaginary part is given and hence the real part:
- (i) $\cos x \cosh y$ (ii) $\frac{x-y}{x^2+y^2}$ (iii) $\tan^{-1} \frac{y}{x}$.
- (18) Determine the analytic function f(z) = u+iv given that $3u+2v = y^2 x^2+16x$.
- (19) Show that e^{x^2} is entire. Find its derivative.
- (20) Determine the analytic function w = u+iv where $u = \frac{2\cos x \cosh y}{\cos 2x + \cosh 2y}$ given that f(0) = 1.

- (21) If f(z) = u + iv is an analytic function of z, find f(z) if $2u + v = e^{2x}[(2x+y)\cos 2y + (x-2y)\sin 2y]$
- (22) Find an analytic function f(z) such that $Re[f'(z)] = 3x^2-4y-3y^2$ and f(1+i) = 0.
- (23) Find a and b if $f(z) = (x^2-2xy+ay^2) + i(bx^2-y^2+2xy)$ is analytic. Hence find f(z) in terms of z.
- (24) Find the conjugate harmonic of $u = e^{x^2 y^2} \cos 2xy$. Hence find f(z) in tems of z.
- (25) Determine p such that the function $f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1}(\frac{px}{y})$ be an analytic function.
- (26) Find the analytic function f(z) = u+iv if $u = a(1+cos \theta)$
- (27) Find a such that the function $f(z) = r^2 \cos 2\theta + ir^2 \sin \theta$ is analytic.
- (28) Find the orthogonal trajectories of the family of curves $x^3y-xy^3 = C = constant$.
- (29) If u is a harmonic function, show that $w = u^2$ is not a harmonic function unless u is a constant.
- (30) Show that $\{\frac{\partial}{\partial x} \mid f(z) \mid\}^2 + \{\frac{\partial}{\partial y} \mid f(z) \mid\}^2 = \{f'(z)\}^2$.
- (31) Prove that z^n (n is a positive integer) is analytic and hence find its derivative.
- (32) Show that the curves $r^n = a \sec n\theta$ and $r^n = \beta \csc n\theta$ cut orthogonally.
- (33) If $w = u + iv = z^3$ prove that $u = c_1$ and $v = c_2$ where c_1 and c_2 are constants, cut each other orthogonally.

- (34) If $w = \exp(z^2)$, find u and v and prove that the curve $u(x,y) = c_1$ and $v(x,y) = c_2$ where c_1 and c_2 are constants cut orthogonally.
- (35) Show that for the function $f(z) = \{\frac{z^5}{|z|^4}, z \neq 0\}$ 0. z = 0

Cauchy – Riemann equations are satisfied at z = 0, but f(z) is not differentiable at 0.

- (36) Find where the function (i) w = 1/z (ii) z/z-1
- (iii) $w = z^3 4z + 1$ (iv) $w = z + 2/z(z^2 + 1)$
- (v) $z = e^{-v}(\cos u + 1 \sin u)$ ceases (fails) to be analytic.
- (37) If w = log z, find $\frac{dw}{dz}$ and determine where w is non analytic.
- (or) Show that the real and imaginary parts of the function $w = \log z$ satisfy the C R equations when z is not zero.
- (38) Show that $f(z) = \frac{xy^2(x+iy)}{x^2+y^4}$, $z \neq 0$

0, if z = 0 is not analytic at z = 0 although C -R equations are satisfied at the origin.

- (39) Show that an analytic function of constant absolute value is constant.
- (40) Show that $f(z) = \sin z$ is analytic everywhere in the complex plane and find f'(z).
- (41) Find the values of a and b such that the function $f(z) = x^3 + ay^2 2xy + i(bx^2 y^2 + 2xy)$ is analytic. Also find f'(z).
- (42) If f(z) = u+iv is analytic function and $u^{-v} = e^x$. (cos y sin y), find f(z) in terms of z.
- (43) If f(z) = u+iv is an analytic function of z and u-v = $\frac{\cos x + \sin x e^{-y}}{2\cos x e^{y} e^{-y}} find f(z) subject to the condition <math>f\left(\frac{\pi}{2}\right) = 0.$

- (44) If f(z) = u + iv is an analytic function of z = x + iy and $u v = \frac{e^y \cos x + \sin x}{\cosh y \cos x}$, find f(z) subject to the condition $f\left(\frac{\pi}{2}\right) = \frac{3-i}{2}$.
- (45) Find the analytic function of which the real part is $e^{-x}\{(x^2-y^2)\cos y + 2x\sin y\}$.
- (46) If $u = e^{x}(x \cos y y \sin y)$, find the analytic function u+iv.
- (47) If $u-v = (x-y)(x^2+4xy+y^2)$ and f(z)=u+iv is an analytic function of z=x+iy, find f(z) in terms of z.
- (48) If w = u+iv represents the complex potential for an electric field and v = $x^2-y^2+\frac{x}{x^2+y^2}$, determine the function u.
- (49) (i) Prove that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial z}$
- (ii) If f(z) is a regular function of z, prove that $(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2})$ | f(z) |² = 4 | f'(z) |²
- (50) If f(z) = u + iv is an analytic function of z, prove that $(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}) \mid f(z) \mid^p = p^2 \mid f(z) \mid^{p-2} \mid f'(z) \mid^2$
- (51) If f(z) = u+iv is an analytic function of z = x+iy, prove that $(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2})|u|^p = p(p-1)|u|^{p-2}|f'(z)|^2$.
- (52) For what values of z do the functions w defined by the following equations cease to be analysis:
- (i) $z = \sinh u \cos v + i \cosh u \sin v, w = u = iv$
- (53) for what value of z, the function w defined by z = $\log \rho$ + $i\phi$ where w = $\rho(\cos\phi + i\sin\phi)$ ceases to be analytic?

SuccessClap: Question Bank for Practice

02 COMPLEX INTEGRATION

(1). Evaluate
$$I = \int_{(0,1)}^{(2,5)} (3x + y) dx + (2y - x) dy$$
 along

- a) The curve $y = x^2 + 1$.
- b) The line joining (0,1) *and* (2,5).
- c) The line from (0,1) to (0,5) and then from (0,5) to (2,5).
- (2). Evaluate $\int (\bar{z})^2 dz$ around the circle.
- a) |z| = 1,
- b) |z 1| = 1.
- (3). Evaluate $\int_C f(z) dz$ where $f(z) = y x 3x^2i$ and C
- a) Is the line segment from z = 0 to z = 1 + i.
- b) Consists of two-line segments, one from z = 0 to z = I and other from z = i to z = 1 + i.
- (4). Evaluate $\int_c^{\cdot} (x+2y)dx + (4-2x)dy$ around the ellipse $x = 4cos\theta, 3sin\theta, 0 \le \theta \le 2\pi$ where the arc C is taken in the anticlockwise direction.
- (5). Evaluate $\int_{L}^{\cdot} \frac{dz}{z}$ where L represents the square described in the positive sense with sides parallel to the axes and of length 2a and having its centre at the origin.
- (6). Poisson's Integral Formula for A Circle.

If f(z) is analytic in the region $|z| \le P$ and R is any number such that 0 < R < P then prove that

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{(R^2 - r^2)f(Re^{i\theta})}{R^2 - 2Rrcos(\theta - \emptyset) + r^2} d\emptyset$$

where $z = re^{i\theta}$ is any point of the domain |z| < p.

(7). Evaluate $\int_C^{\cdot} \frac{1}{z(z-1)} dz$ Where C is the circle |z| = 3.

- (8). Evaluate (without using integral formula)
- a) $\int_C^{\cdot} \frac{z}{z-z_0} dz$.
- b) $\int_{C}^{\cdot} \frac{z}{(z-z_{0})^{2}} dz$.

Where z_0 is any point within C.

- (9). Verify Cauchy's Theorem for the function $5\sin 2z$.. C is the square vertices at $1 \pm i$, $-1 \pm i$.
- (10). Evaluate $\int_{C}^{\cdot} \frac{z-1}{(z+1)^{2}(z-2)} dz$ Where C: |z-i| = 2.
- (11). Evaluate $\int_C^{\infty} \frac{z-3}{z^2+2z+5} dz$ Where C is circle
- a) |z| = 1 And,
- b) |z + 1 i| = 2.
- (12). Evaluate the following integrals by using Cauchy's integrals formula
- a) $\int_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz,$
- b) $\frac{1}{2\pi i} \int_{C} \frac{e^{zt}}{z^2 + 1} dz \ t > 0$,

Where C represents the circle |z| = 3.

- (13). Evaluate $\int_C \frac{z^2-4}{z(z^2+9)} dz$, Where C represents the circle |z|=1.
- (14). Evaluate $\int_{c} \frac{e^{ax}}{(z^2+1)} dz$, Where C represents the circle |z|=2.
- (15). Evaluate $\int_{\mathcal{C}} \frac{e^{ax}}{(z+1)^4} dz$, Where C represents the circle |z|=3.
- (16). Using Cauchy's integrals formula, calculate the following integrals:
- a) $\int_C \frac{zdz}{(9-z^2)(z+i)}$, where C is the circle |z|=2 described in positive sense.

b)
$$\int_C \frac{\cosh(\pi z) dz}{z(z^2+1)}$$
, where C is the circle $|z|=2$.

c)
$$\int_C \frac{e^{az}dz}{(z-\pi i)}$$
, where C is the ellipse $|z-2|+|z+2|=6$.

d)
$$\int_{c} \frac{dz}{z-2}$$
, where C is the circle $|z| = 3$.

(17).

I. Evaluate
$$\int_C \frac{tan(z/2)dz}{(z-x_0)^2},$$

Where C is the boundary of the square whose sides lie along the lines $x = \pm 2$, $v = \pm 2$ and it is described in positive sense, where $|x_0| < 2$.

II. Evaluate
$$\int_{C} \frac{dz}{z^2 + 2z + 2},$$

Where C is the square having vertices at (0,0), (-2,0), (-2,-2), (0,-2) oriented in anticlockwise direction.

III. Evaluate
$$\int_C \frac{\sin z \, dz}{\left(z - \frac{\pi}{4}\right)^3}$$
, Where C is $\left|z - \frac{\pi}{4}\right| = \frac{1}{2}$.

IV. If C is unit circle about the origin, described in positive sense, show that

a)
$$\int_C \frac{e^{-z}}{z^2} dz = -2\pi i \text{ and }$$

b)
$$\int_C \frac{\sin z}{z} dz = 0.$$

(18). Evaluate $\int_{C} f(z) dz$ where f(z) = (z + 2)/z where c is.

- a) The semi-circle $z=2e^{i\theta}$ where θ varies from 0 to π
- b) The semi-circle $z=2e^{i\theta}$ where θ varies from 0 to $-\pi$.
- c) The semi-circle $z=2e^{i\theta}$ where θ varies from $-\pi$ to π .
- (19). Evaluate $\int_c f(z) dz$ where f(z) = z I and C is the arc from z=0 and z=2;

- a) The semi-circle z-1= $e^{i\theta}$ ($\leq \theta \leq \pi$)
- b) The segment of the x-axis.
- (20). Evaluate $\int_c (x-2y)dx + (y^2-x^2)dy$ where C is the boundary of the first quadrant of the circle $x^2 + y^2 = 4$.
- (21). Evaluate $\int_c (z^2 + 3z + 2) dz$ where C is the arc of the cycloid $x = a(\theta + sin\theta)$. $y = a(1 cos\theta)$ between the points (0,0) and $(a\pi, 2a)$.
- (22). Evaluate $\int_{1+i}^{2+4i} z^2 dz$
- a) Along the parabola x = t, $y = t^2$ where $1 \le t \le 2$.
- b) Along the straight line joining I + i and 2 + 4i.
- c) Along straight lines from I + i to 2 + i and then to 2 + 4i.
- (23). Evaluate $\int_c (y^2 + 2xy) dx + (x^2 2xy) dy$ where C is the boundary of the region $y = x^2$ and $x = y^2$.
- (24). Verify Cauchy's theorem for the integral of z^3 taken over the boundary of the rectangle with vertices -1, I, 1+I, -1+i.
- (25). Verify Cauchy's theorem for the function $f(z) = 3z^2 + iz 4$ if C is the square with vertices at 1+I and -1+i.
- (26). B is the positively oriented boundary of the region between the circle |z| = 4 and the square with sides along the lines $x = \pm 1$ and $y = \pm 1$. Evaluate $\int_{\mathcal{B}} f(z)dz$ for the following function.
- a) $f(z) = \frac{1}{3z^2 + 1}$
- b) $f(z) = \frac{z+2}{\sin(z/2)}$.
- c) $f(z) = \frac{z}{1 e^z}$.
- (27). Show that $\int_c \frac{x \, dx y \, dy}{\sqrt{x^2 + y^2}}$ is independent of any path of integration which does not pass through the origin.

(28). Let C denote the boundary of the square whose sides lie along the lines $x = \pm 2$, $y = \pm 2$ where C is described in the positive sense Evaluate each of the following integrals.

a)
$$\int_C \frac{e^{-z} dz}{z - (\pi i)/2}$$

b)
$$\int_C \frac{\cos z \, dz}{z(z^2+8)}$$

c)
$$\int_C \frac{z \, dz}{2z+1}$$

d)
$$\int_C \frac{\tan(z/2)}{(z-x_0)^2} dz \, (|x_0| < 2)$$

e)
$$\int_{C} \frac{\cosh z}{z^4} dz$$

(29). Let C be the unit circle $z = exp(i\theta)$ described from $\theta = -\pi \ to \ \pi \ and \ k$ is any real constant. Show that $\int_c \frac{e^{kz}}{z} dz = 2\pi i$. Then write the integral in terms of θ to derive the formula $\int_c e^{kcos\theta} cos(ksin\theta) d\theta = \pi$.

(30). Evaluate using Cauchy's integral formula:

a)
$$\int_C \frac{\sin^6 z}{(z-\pi/2)^3} dz$$
,

b)
$$\int_C \frac{\sin^6 z}{(z-\pi/6)^3} dz$$
,

Around the circle C: |z| = 1.

(31). Evaluate $\int_C \frac{e^{2z}}{(z+1)^4} dz$ Around the circle C: |z-1|=3.

(32). If
$$\emptyset(e_z) = \int_C \frac{3z^2 + 7z + 1}{z - e_z}$$
 where C is the circle

$$x^2 + y^2 = 4$$
, find $\emptyset(3)$, $\emptyset(1)$, $\emptyset'(1-i)$ and $\emptyset''(1-i)$.

Or

If $F(a) = \int_{c}^{3z^2+7z+1} dz$ where C is |z| = 2 using Cauchy's integral formula

find F(1), F(3), F"(1-i).

(33). Evaluate $\int_{C} \frac{z+4}{z^2+2z+5}$ where C is the circle

- a) |z| = 1,
- b) |z + 1 i| = 2,
- c) |z + 1 + i| = 2.
- (34). Evaluate $\oint_C \frac{dz}{(z-a)^n}$ if z=a is a point inside a simple closed curve C and n is an integer.
- (35). Evaluate $\int_C \frac{z}{z^2+1} dz$ where C is $\left|z + \frac{1}{z}\right| = 2$.
- (36). Evaluate $\int_C \frac{e^z}{(z^2+\pi^2)^2} dz$ where C is |z|=4.
- (37). Evaluate $\int_{c} \frac{dz}{(z-2i)^2(z+2i)^2}$, C being the circumference of the ellipse $x^2 + 4(y-2)^2 = 4$.
- (38). Evaluate using Cauchy's theorem $\int_{c}^{\frac{z^3e^{-z}}{(z-1)^3}}dz$ where C is $|z-1|=\frac{1}{2}$ using Cauchy's integral formula.
- (39). Evaluate $\int_{c}^{\frac{z^{3}-\sin 3z}{\left(z-\frac{\pi}{2}\right)^{3}}}dz$ with C: |z|=2 using Cauchy's integral formula.
- (40). Evaluate $\oint \frac{\sin^2 z}{(z-\pi/6)^3} dz$, if C is the circle |z|=1.
- (41). Evaluate $\int_{c} \frac{ze^{z}}{(z+a)^{3}}$ where C is any simple closed curve enclosing the point z=-a using Cauchy's integral formula.
- (42). Evaluate $\int_{c} \left[\frac{e^{z}}{z^{3}} + \frac{z^{4}}{(z+i)^{2}} \right] dz$ where C: |z| = 2 using Cauchy's integral formula.

(43).

(44). Find.
$$f(4), f(i)$$
 , $f(-1)$ and $f''(-i)$ where $f(\xi) = \int_{c} \frac{4z^2 + z + 5}{z - \xi} dz$ and C is the ellipse $\left(\frac{x}{2}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$.

- (45). If $f(\alpha) = \int_{c}^{\frac{5z^2-4z+3}{z-\alpha}} dz$ where C is the ellipse $\left(\frac{x}{3}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$. Find
- a) f(4.5),
- b) f(2),
- c) f'(i),
- d) f''(-2i).
- (46). Evaluate $\int_{c}^{\frac{z-3}{z^2+2z+5}} dz$ where C is |z+1-i|=2 using Cauchy's integral formula.
- (47). Use Cauchy's integral formula to calculate $\int_{c}^{z^{2}-1} dz$, where C is |z-i|=1.
- (48). Using Cauchy's integral formula, evaluate:
- a) $\int_C \frac{2z+1}{z^2+z} dz$, where C is the circle $|z| = \frac{1}{2}$.
- b) $\int_C \frac{z^3-2z+1}{(z-i)^2} dz$, where C is the circle |z|=2.
- c) $\int_C \frac{z \, dz}{(z+i)(9-z^2)}$, where C is |z| = 2.
- (49). Using Cauchy's integral formula, evaluate
- a) $\int_C \frac{z^2+1}{z(2z+1)} dz$, where C is |z|=1.
- b) $\int_C \frac{\cosh \pi z}{z(z^2+1)} dz$, where C is |z| = 2.
- (50). Evaluate $\int_C \frac{\log z}{(z-1)^3} dz$, where C: $|z-1| = \frac{1}{2}$ using Cauchy's integral

(51). Evaluate
$$\int_C \frac{\cos \pi z^2}{(z-1)(z-2)^3} dz$$
, where C is $|z| = 3$ using Cauchy's integral

(52). Evaluate
$$\int_C \frac{e^z}{z(1-z)^3} dz$$
, if

- a) 0 lies inside C and I lie outside C.
- b) I lie inside C and O lies outside c.
- c) Both lie inside C.
- (53). Using Cauchy's integral formula, evaluate $\int_{c} \frac{z^4}{(z+1)(z-i)^2} dz$, where C is the ellipse $9x^2 + 4y^2 = 36$.
- (54). Evaluate $\int_{C} \frac{\cos z \sin z}{(z+i)^3} dz$, with C: |z| = 2 using Cauchy's integral
- (55). Evaluate $\int_{c}^{c} \frac{e^{z} \sin 2z 1}{z^{2}(z+2)^{2}} dz$, where C is $|z| = \frac{1}{2}$ using Cauchy's integral formula.
- (56). Evaluate $\int_{c} \frac{e^{-2z}z^2}{(z-1)^3(z+2)} dz$, where C is |z+2|=I using Cauchy's integral formula.
- (57). Evaluate using Cauchy's integral formula $\int_{c} \frac{(z+1)dz}{z^2+2z+4}$, where C: |z+1+i|=2.
- (58). Evaluate $\int_{c} \frac{ze^{z}dz}{(z+2)^{3}}$, where C is |z|=3 using Cauchy's integral formula.
- (59). Evaluate $\int_{c} \frac{dz}{e^{z}(z-1)^{3}} dz$, where C is |z| = 2 using Cauchy's integral formula.

- (60). Evaluate $\int_{c} \frac{e^{3z}dz}{(z+1)^4}$, where C is |z|=3 using Cauchy's integral formula.
- (61). Evaluate $\int_c z^{-2} dz$, where C is
- a) |z| = 1, and
- b) |z 1| = 1.
- (62). Use Cauchy's integral formula to evaluate $\oint \frac{z^4 3z^2 + 6}{(z+i)^3} dz$, where C is the circle |z| = 2.
- (63). Use Cauchy's integral formula to evaluate $\oint \frac{e^z}{(z+2)(z+1)^2} dz$, where C is the circle |z|=3.
- (64). Show that $\int_c e^{-2z} dz$, is independent of the path C joining the points $1 \pi i$ and $2 + 3\pi i$ and determine its value.
- (65). Find the value of $\int_{c} \frac{\sin^{6}z}{(z-\pi/6)^{3}} dz$, if C is the circle |z|=1.
- (66). Evaluate $\int \frac{e^{ax}}{z^2+1} dz$, where C is the circle |z|=2.

SuccessClap: Question Bank for Practice 03 TAYLOR LAURENT SERIES

- Expand f(z) = $\frac{1}{(z+1)(z+3)}$ in a Laurent's series valid for the regions
- |z| < 1(i)
- (ii) 1 < |z| < 3.
- (iii)|z| > 3
- (iv) 0 < |z+1| < 2.
- Show that when 0 < |z| < 4, $\frac{1}{4z-z^2} = \sum_{u=0}^{\infty} \frac{z^{n-1}}{4^{n+1}}.$
- Expand $\frac{1}{z(z^2-3z+2)}$ for the regions
- (i) 0 < |z| < 1

- (iii)|z| > 2.
- (4) Expand $\frac{(z-2)(z+2)}{(z+1)(z+4)}$ for (i) |z| < 1 (ii)

- (iii)|z| > 4.
- Find two Laurent's series expansions in powers of z of the function $f(z) = \frac{1}{z(1+z^2)}$.
- (6) Express f(z) = $\frac{1}{z(z+1)^2(z+2)^3}$ in a Laurent's series in the region $\frac{5}{4} \le |z|$
- Obtain the Taylor's or Laurent's series which represents the function $f(z) = \frac{1}{(1+z^2)(z+2)}$ when (i) |z| < 1 (ii) 1 < |z| < 2
- (ii) |z| > 2.

- (8) Find the expansion of $\frac{1}{(z^2+1)(z^2+2)}$ in powers of z when (i) |z| < 1 (ii) 1 $< |z| < \sqrt{2}$ (iii) $|z| > \sqrt{2}$.
- (9) Find different developments of $\frac{1}{(z-1)(z-3)}$ in powers of z according to the position of the point in the z plane. Expand the function in Taylor's series about z = 2 and indicate the circle of convergence.
- (10) Represent the function $f(z) = \frac{4z+3}{z(z-3)(z+2)}$ in Laurent's series
- (i) Within |z|=1
- (ii) In the angular region between |z| = 2 and |z| = 3
- (iii) Exterior to |z| = 3.
- (11) Expand f(z) = $\frac{z+3}{z(z^2-z-2)}$ in powers of z where
- (i) |z| < 1 (ii) 1 < |z| < 2 (iii) |z| > 2.
- (12) For the function $f(z) = \frac{2z^3 + 1}{z^2 + z}$, find
- (i) Taylor's series valid in the neighbourhood of the point z =i
- (ii) A Laurent's series valid within the annulus of which centre is the origin.
- (13) Show that $\log z = (z-1) \frac{(z-1)^2}{2} + \frac{(z-1)^3}{3} \cdots$ when |z-1| < 1.
- (14) Prove that $\tan^{-1} z = z \frac{z^3}{3} + \frac{z^5}{5} \dots$ when |z| < 1.
- (15) Find Taylor's series expansion of the function $f(z) = \frac{z}{z^4+9}$ around z = 0. Find also radius of convergence.
- (16) Find the Laurent expansion of $\frac{z}{(z+1)(z+2)}$ about the singularity z = -2. Specify the region of convergence.
- (17) Expand f(z) = $\frac{z-1}{z+1}$ as a Taylor'sseries about (i)z = 0 and (ii)z = 1 (iii)its Laurent's series for the domain $1 < |z| < \infty$.

- (18) Find Laurent's series of the function $f(z) = \frac{1}{(z^2-4)(z+1)}$ valid in the region 1 < |z| < 2.
- (19) Obtain the Taylor series expansion of f(z) = 1/z about the point z = I.
- (20) (i) Expand e^z as Taylor's series about z = 1.
- (iii) Find the Taylor's series expansion of e^z about z = 3.
- (21) Expand f(z) = $\frac{1}{z^2}$
- (a) In powers of z+1 [or, Prove that when $|z+1| < 1, z^{-2} = 1 + \sum_{n=1}^{\infty} (n+1)(z+1)^n$]
- (b) In powers of z -2. State the region of validity of the expansion in each case.
- (22) Expand sinh z by Taylor's series about $z = \pi i$.
- (23) Within what circle does the Maclaurin's series for the function tanh z converge to the function.
- (24) Expand f(z) = $\frac{z-1}{z+1}$ in Taylor's series about the point (i) z=0 and (ii) z = 1.
- (25) Expand f(z) = $\frac{z-1}{z^2}$ in a Taylor's series in powers of z-1 and determine the region of convergence.
- (26) Find Taylor's expansion for the function $f(z) = \frac{1}{(1+z)^2}$ with centre at -i.
- (27) Obtain the Taylor expansion of $e^{(1+z)}$ in the powers of (z-I).
- (28) Find the Taylor's series expansion of $\frac{1}{z^2+z-6}$ about z=-1.
- (29) Find the Taylor's series expansion of cosh z about $z = \pi i$.
- (30) Expand $\log (1-z)$ when |z| < 1 using Taylor series.
- (31) Find Taylor's expansion of $f(z) = \frac{2z^3 + 1}{z^2 + z}$ about the point
- (i) Z = i

- (ii) Z = 1
- (32) Expand $f(z) = \sin z$ in Taylor's series about
- (i) $Z = \frac{\pi}{4}$. (ii) $Z = \frac{\pi}{2}$.
- (33) Obtain the Taylor's series expansion of $f(z) = \frac{e^z}{z(z+1)}$ about z = 2.
- (34) Obtain the Taylor series expansion of $f(z) = \frac{1}{(z-1)(z-2)}$ about z = 0.
- (35) Expand f(z) = $\frac{1}{z^2-z-6}$ about (i) z = -1 (ii) z = 1
- (36) Obtain the expansion of $\frac{1}{(z-1)(z-3)}$ in a Taylor's series in powers of (z-4) and determine the region of convergence.
- (37) Find the Taylor's series expansion of $f(z) = \frac{z-1}{z^2}$ about the point z = 1. Find its region of convergence.
- (38) Expand in Taylor's series $\frac{z}{z^4+9}$ about the point z =0.
- (39) Show that when $|z+1| < 1, z^{-2} = 1 + \sum_{n=1}^{\infty} (n+1)(z+1)^n$
- (40) Find Taylor's expansion of f(z) = $\frac{z+1}{(z-3)(z-4)}$ about the point z = 2. Determine the region of convergence.
- (41) Expand $\log z$ by Taylor's series about z = 1.
- (42) Find the Taylor series for z/z+2 about z = 1. Also find the region of convergence.
- (43) Expand f(z) = $-\frac{2}{(2z+1)^3}$ about (i) z = 0 (ii) z = 2
- (44) Expand ze^z by Taylor's series about z = 1.

- (45) Expand $\frac{z}{(z+1)(z-2)}$ about z = 1.
- (46) Find the Taylor's series of $log(1+e^z)$ about z=0.
- (47) Let $f(z) = \frac{1}{(1-z)(z-2)}$

Find (a) Maclaurin's series expansion of f(z).

- (b)Laurent's series expansion in the annulas region 1 < |z| < 2.
- (c) Laurent's series expansion in |z| > 2.
- (48) Represent $f(z) = \frac{z+1}{z-1}$ by
- (a) Maclaurin's series giving the region of validity and
- (b) Laurent's series for the domain |z| > 1.
- (49) Give two Laurent's series expansion in powers of z for $f(z) = \frac{1}{z^2(1-z)}$ and specify the regions in which these expansions are valid. (or) Find Laurent's series for $f(z) = \frac{1}{z^2(1-z)}$ and find the region of convergence.
- (50) Expand f(z) = $\frac{1}{z^2 3z + 2}$ in the region (i) 0 < |z-1| < 1
- (ii)1 < |z| < 2.
- (51) Expand the function $f(z) = \frac{z-1}{z}$ as Laurent series for |z-1| > 1.
- (52) Expand $f(z) = e^{2z}/(z-1)^3$ about z = 1 as a Laurent's series. Also find the region of convergence.
- (53) Find the Laurent series expansion of the function $f(z) = \frac{z^2 6z 1}{(z 1)(z 3)(z + 2)}$ in the region 3 < |z + 2| < 5.
- (54) Expand $f(z) = z/z^2 + 1$ for |z-3| > 2.
- (55) Expand $\frac{7z-2}{(z+1)z(z-2)}$ about the point z = -1 in the region 1 < |z+1| < 3 as Laurent's series.

- (56) Expand the Laurent series of $\frac{z^2-1}{(z+2)(z+3)}$, for |z| > 3.
- (57) Find the Laurent series expansion of the function $\frac{z^2-1}{(z+2)(z+3)}$ if 2 < |z| < 3.
- (58) Expand f(z) = $\frac{z+3}{z(z^2-z-2)}$ in powers of z where(i) | z | < 1 (ii)1 < | z | <
- 2 (iii) |z| > 2
- (or) Expand f(z) = $\frac{z+3}{z(z^2-z-2)}$ in powers of z
- Within the unit circle about the origin (a)
- Within the annular region between the concentric circles about the origin having radii 1 and 2 respectively.
- (c) The exterior to the circle of radius 2.
- (59) Obtain Laurent's expansion for $f(z) = \frac{1}{(z+2)(1+z)^2}$ in
- (a) (i) |z| < 2 (ii) |1+z| > 1.
- (b) (i) |z| < 1 (ii) 1 < |z| < 2
- (60) Obtain all the Laurent series of the function $\frac{7z-2}{(z+1)(z)(z-2)}$ about $z_0 = -1$.
- (61) Obtain the Laurent's series expansion of $f(z) = \frac{e^z}{z(1-z)}$ about z = 1.
- (62) Find the Laurent series of the function $f(z) = \frac{z}{(z+1)(z+2)}$ about z = -2.
- (63) (i) Find the Laurent expansion of $\frac{1}{z^2-4z+3}$, for
- 1 < |z| < 3(a)
- (b) |z| < 1
- (c) |z| > 3
 - (ii)Expand $\frac{1}{(z+3)(z+1)}$ in the annular region between |z| = 1 and |z| = 3.

- (64) Express f(z) = $\frac{z}{(z-1)(z-3)}$ in a series of positive and negative powers of (z-1).
- (65) Expand $\frac{1}{(z^2+1)(z^2+2)}$ in a positive and negative powers of z if $1 < |z| < \sqrt{2}$.
- (66) Expand f(z) = $\frac{(z-2)(z+2)}{(z+1)(z+4)}$ in the region (a) 1 < |z| < 4 (b)|z| < 1.
- (67) Find the Laurent series expansion of the function $\frac{z^2-1}{z^2+5z+6}$ about z = 0 in the region 2 < |z| < 3.
- (68) Expand f(z) = $\frac{1+2z}{z^2+z^3}$ in a series of positive and negative powers of z.
- (69) Represent the function $f(z) = \frac{z}{(z-1)(z-3)}$ by a series of positive and negative powers of (z-1) which converges to f(z) when 0 < |z-1| < 2.
- (70) Expand $\frac{1}{z(z-2)}$ when |z| < 2.
- (71) Obtain the Taylor's series to represent the function $\frac{z^2-1}{(z+2)(z+3)}$, in the region |z| < 2.
- (72) Expand f(z) = $\frac{1}{(z+1)^2}$ in Taylor's series about z = -i.
- (73) Expand sin z in a Taylor's series about $z = \frac{\pi}{4}$.

SuccessClap: Question Bank for Practice 04 POLES RESIDUE

- (1) Find the residue of $\frac{z^3}{(z-1)^4(z-2)(z-3)}$ at z = 1.
- (2) Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the residue at each point. Hence evaluate $\int_c f(z)dz$, where C is the circle |z| = 2.5
- (3) Find the residues of $\frac{z^2-2z}{(z+1)^2(z^2+4)}$ at all its poles in the finite plane.
- (4) Find the residue of $\frac{1}{(z^2+a^2)^2}$ at z = ia.
- (5) Find the residues of the function $\frac{\cot \pi z}{(z-a)^2}$.
- (6) Find the residues of $e^z \csc^2 z$ at all its poles in the finite plane.
- (7) Find the residue of $\frac{z^3}{z^2-1}$ at $z = \infty$.
- (8) Evaluate $\int_{c}^{c} \frac{z-3}{x^2+2x+5} dz$ where C is the circle
- (i) |z| = 1 (ii) |z+1-i| = 2 (iii) |z+1+i| = 2.
- (9) Find the residue of $\frac{z^2}{(z-a)(z-b)(z-c)}$ at infinity.
- (10) Evaluate the residues of $\frac{z^3}{(z-1)(z-2)(z-3)}$ at z = 1,2,3 and infinity and show that their sum is zero.
- (11) Evaluate $\int_c \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$, where C is the circle |z| = 3.
- (12) Find the poles and residues of $\frac{1}{z^2-1}$.

- (13) Expand f(z) = $\frac{e^z}{(z-1)^2}$ as a Laurent series about z = 1 and hence find the residue at that point.
- (14) Find zeros and poles of $(\frac{z+1}{z^2+1})^2$
- (15) Determine the poles of the function (i) $\frac{z}{\cos z}$ (ii) cot z.
- (16) Determine the poles of the function f(z) where f(z) = $\frac{e}{z^2 + \pi^2}$ and the residues at these poles.
- (17) Find the residue at z = 0 of the function $f(z) = \frac{1+e^z}{\sin z + z \cos z}$.
- (18) Find the residues of the function $f(z) = \frac{1 e^{2x}}{z^4}$ at the poles.
- (19) Find the residue of f(z) = $\frac{z^3}{(z-1)^4(z-2)(z-3)}$ at z = 1.
- (20) Find the residue of $f(z) = \frac{z^3}{z^2 1}$ at $z = \infty$.
- (21) Find the residue of $\frac{z^2}{z^4+1}$ at these singular points which lie inside the circle |z| = 2.
- (22) Find the residue of $\frac{z^2}{1-z^4}$ at these singular points which lie inside the circle |z| = 1.5
- (23) Find the residue of (i) $\frac{z^2-2z}{(z+1)^2(z^2+1)}$ (ii) tan z at each pole.
- (24) Calculate the residue of e^z . z^{-5} at z = 0.
- (25) Find the poles and residues of $\frac{3z+1}{(z+1)(2z-1)}$.

- (26) Find the poles of f(z) and the residues of the poles which lie on imaginary axis if f(z) = $\frac{z^2+2z}{(z+1)^2(z^2+4)}$.
- (27) Determine the poles and residues of f(z) = $\frac{z^2}{(z+2)z(z-1)^2}$.
- (28) Find the residue of $\frac{z^2}{(z-a)(z-b)(z-c)}$ at $z = \infty$.
- (29) Find the residue of $\frac{z e^{z!}}{(z-3)^2}$ at its pole.
- (30) Find the poles and residues at each pole of tanh z.
- (31) Find the poles and residues at each pole of $f(z) = \frac{\sin^2 z}{(z \frac{\pi}{6})^2}$.
- (32) Find the poles and residues at each pole of $\frac{\cot z \coth z}{z^3}$.
- (33) Find the poles of $\frac{e^{iz}}{z^2+1}$ and corresponding residues.
- (34) Find the poles and residues at each pole of $\frac{2z+1}{1-z^4}$.
- (35) Find the poles and the residues at each pole of $f(z) = \frac{1 e^z}{z^4}$.
- (36) Find the poles and corresponding residues of $\frac{1}{(z^2-1)^3}$.
- (37) Find the poles and residues at each pole $f(z) = \frac{ze^z}{(z+2)^4(z-1)}$ where z = -2 is a pole of order 4.
- (38) Find the poles and residue at each pole of $\frac{z}{z^2-4}$.
- (39) Find the poles and residue at each pole of the function $\frac{z^2}{(z^4-1)}$.

- (40) Find the poles and residues at each pole of the function $\frac{z \sin z}{(z-\pi)^3}$.
- (41) Find the poles and corresponding residues of f(z) = $\frac{e^z}{(1+z)^2}$.
- (42) Evaluate $\oint_C \frac{dz}{(z^2+1)(z^2-4)}$ where c is the circle |z| = 1.5
- (43) Evaluate $\oint_c \tan z \, dz$ where c is the circle |z| = 2.
- (44) Evaluate $\oint_c \frac{dz}{(z^2+4)^2}$ where c: |z-i| = 2.
- (45) Obtain Laurent's series for the function $f(z) = \frac{1}{z^2 \sinh z}$ and evaluate $\int_c \frac{dz}{z^2 \sinh z}$, where C is the circle |z-1| = 2.
- (46) Evaluate $\int_c \frac{dz}{(z^2+4)^2}$ where c is |z-i|=2.
- (47) Evaluate $\int_{c} \frac{z \cos z}{(z \frac{\pi}{2})^3} dz$ where C is (i) |z 1| = 1 (ii) |z| = 2.
- (48) Evaluate $\oint_c \frac{z-3}{z^2+2z+5} dz$, where c is the circle given by
- (i) |z| = 1 (ii) |z+1-i| = 2 (iii) |z+1+i| = 2.
- (49) Evaluate $\int_{c} \frac{\coth z}{z-i} dz$ where C is |z| = 2.
- (50) Evaluate $\int_{c}^{\infty} \frac{dz}{\sinh z}$, where C is the circle |z| = 4, using residue theorem.
- (51) Evaluate $\int_c \frac{e^{2z}}{(z-1)(z-2)} dz$ where C is the circle |z| = 3.
- (52) Evaluate $\int_{c}^{\infty} \frac{12z-7}{(2x+3)(z-1)^2} dz$ where C is $x^2+y^2=4$.
- (53) Evaluate $\int_{c}^{\infty} \frac{e^{z}}{(z^{2}+\pi^{2})^{2}} dz$ where C is |z| = 4.

- (54) Evaluate $\int_{C} \frac{2e^{z}dz}{c^{z(z-3)}}$ where C is |z| = 2 by Residue theorem.
- (55) Evaluate $\int_{c}^{\infty} \frac{(2z+1)^2}{4z^3+z} dz$ where C is the circle |z| = 1 using Residue theorem.
- (56) Evaluate $\int_{c}^{\infty} \frac{e^{2z}}{(z+1)^3} dz$ using Residue theorem, where c is |z| = 2.
- (57) Evaluate $\int_c \frac{\cos \pi z^2}{(z-1)(z-2)} dz$ where c is |z| = 3/2.
- (58) Evaluate $\int_{c} \frac{3 \sin z}{z^2 \frac{\pi^2}{4}} dz$ where c is $|z| = \pi$ by residue theorem.
- (59) Evaluate $\int_{c} \frac{\sin z}{z \cos z} dz$ where c is $|z| = \pi$ by Residue theorem.
- (60) Evaluate $\int_{c} \frac{z}{(z-1)(z-2)^2} dz$ where c is the circle $|z-2| = \frac{1}{2}$ using Residue theorem.
- (61) Evaluate $\int_c \frac{ze^z dz}{(z^2+9)}$ using c is |z| = 5 by residue theorem.
- (62) Evaluate $\int_{c} \frac{dz}{z^2 e^x}$ where c is |z| = 1.
- (63) Evaluate $\int_{c} \frac{z^2 + 2z 2}{z(z-4)(z-1)} dz$, where c is |z| = 1.5.

SuccessClap: Question Bank for Practice

05 COUNTER INTEGRATION

- (1). Show by the method of residues, $\int_0^\pi \frac{d\theta}{a+b\cos\theta} = \frac{\pi}{\sqrt{a^2-b^2}} (a>b>0).$
- (2). Show that

$$\int_0^{\pi} \frac{d\theta}{(a+b\cos\theta)^2} = \frac{\pi}{(a^2-b^2)^{3/2}} (a>b>0).$$

(3). Prove that

$$\int_0^{2\pi} \frac{\sin^2 \theta}{a + b \cos \theta} d\theta = \frac{2\pi}{b^2} \left[a - \sqrt{a^2 - b^2} \right] where (a > b > 0).$$

(4). Show that

$$I = \int_0^{2\pi} \frac{1 + 4\cos\theta}{17 + 8\cos\theta} d\theta = 0.$$

(5). Show that

$$\int_0^{2\pi} \frac{d\theta}{4\cos^2\theta + \sin^2\theta} = \pi.$$

(6). Show that

$$\int_0^{\pi} \frac{d\theta}{a^2 + \sin^2\theta} = \frac{\pi}{a\sqrt{1 + a^2}} \text{ for } a > 0.$$

Show that

$$\int_{0}^{\pi} \frac{ad\theta}{a^{2} + \sin^{2}\theta} = \frac{\pi}{\sqrt{1 + a^{2}}} \ a > 0$$

Using Residue theorem.

(7). Use the method of contour integration to prove that

$$\int_0^{2\pi} \frac{d\theta}{1 + a^2 - 2a\cos\theta} = \frac{2a\pi}{1 - a^2}, 0 < a < 1.$$

(8). Prove that

$$\int_0^{2\pi} \frac{\cos 2\theta}{1 - 2a\cos \theta + a^2} d\theta = \frac{2\pi a^2}{1 - a^2}, (a^2 < 1).$$

(9). Evaluate

$$\int_0^{2\pi} \frac{d\theta}{(5 - 3\sin\theta)^2}$$

Using Residue theorem.

(10). Show that

$$\int_0^{2\pi} \frac{d\theta}{a + bsin\theta} = \int_0^{2\pi} \frac{d\theta}{a + bcos\theta} = \frac{2\pi}{\sqrt{a^2 - b^2}}, a > b > 0$$

Using Residue theorem.

(11). Evaluate

$$\int_0^{2\pi} \frac{\sin 3\theta}{5 - 3\cos \theta} d\theta.$$

Using Residue theorem.

(12). Show that

$$\int_{0}^{\pi} \frac{\cos 2\theta}{1 - 2a\cos \theta + a^{2}} d\theta = \frac{2\pi a^{2}}{1 - a^{2}}, (a^{2} < 1).$$

Using Residue theorem.

(13). Evaluate

$$\int_0^\infty \frac{dx}{(x^2 - a^2)^2}.$$

(14). Evaluate

$$\int_0^\infty \frac{dx}{x^4 + a^4}.$$

(15). Using the method of contour integration, prove that

$$\int_0^\infty \frac{dx}{x^6 + 1} = \frac{\pi}{3}.$$
or

Evaluate

$$\int_0^\infty \frac{dx}{x^6 + 1}$$

Using Residue theorem.

(16). Prove that

$$\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)} = \frac{\pi}{(a+b)} (a > 0, b > 0, a \neq b).$$

(17). Prove that

$$\int_{-\infty}^{\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx = \frac{5\pi}{12}.$$

(18). Evaluate

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+9)(x^2+4)^2}$$

Using Residue theorem

(19). Using the method of contour integration, prove that

$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)^3} dx.$$

(20). Prove that

$$\int_{-\infty}^{\infty} \frac{\cos ax}{(x^2+1)} dx = \pi e^{-a}, a \ge 0.$$

(21). Evaluate

$$\int_0^\infty \frac{x sinmx}{x^4 + 16} dx$$

Using Residue theorem

(22). Show by the method of contour integration that

$$\int_0^\infty \frac{\cos mx}{(a^2 + x^2)^3} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, b > 0)$$

(23). Evaluate

$$\int_{-\infty}^{\infty} \frac{\cos x}{a^2 + x^2} dx (a > 0).$$

Using Residue theorem

(24). Evaluate

$$\int_0^\infty \frac{\sin mx}{x} dx \text{ when } (m > 0).$$

Using Residue theorem

(25). Evaluate

$$\int_{-\infty}^{\infty} \frac{e^{ax}}{e^x + 1} dx.$$

(26). Prove that

$$\int_0^{2\pi} \frac{\cos^2 3\theta}{1 - 2p\cos 2\theta + p^2} d\theta = \pi \frac{1 - p + p^2}{1 - p}, (0$$

(27). Evaluate

$$\int_0^{2\pi} \frac{sinn\theta}{1 + 2acos\theta + a^2} d\theta = \int_0^{2\pi} \frac{cosn\theta}{1 + 2acos\theta + a^2} d\theta.$$

 $a^2 < 1$ and n is a positive integer.

(28). Prove that

$$\int_0^{2\pi} \frac{(1+2\cos\theta)^n \cos n\theta}{3+2\cos\theta} d\theta = \frac{2\pi}{\sqrt{5}} \left(3-\sqrt{5}\right)^n n \in I_+.$$

(29). Show that

$$\int_0^{\pi} \tan(\theta + ia)d\theta = i\pi, where R(a) > 0.$$

(30). By the method of contour integration, prove that

$$\int_0^{2\pi} e^{\cos\theta} \cdot \cos(n\theta - \sin\theta) d\theta = \int_0^{2\pi} e^{\cos\theta} \cdot \cos(\sin\theta - n\theta) d\theta = \frac{2\pi}{n!},$$

Where n is a positive integer.

(31). Prove that

$$\int_0^{2\pi} e^{-\cos\theta} \cdot \cos(n\theta + \sin\theta) d\theta = (-1)^n \frac{2\pi}{n!},$$

Where n is a positive integer.

(32). Show that if m is real and (-1 < a < 1),

a)
$$\int_0^{2\pi} \frac{e^{mcos\theta}[cos(msin\theta) - asin\theta(msin\theta + \theta)]}{1 + a^2 - 2asin\theta} d\theta = 2\pi cosma,$$
 b)
$$\int_0^{2\pi} \frac{e^{mcos\theta}[sin(msin\theta) - acos(msin\theta + \theta)]}{1 + a^2 - 2asin\theta} d\theta = 2\pi sinma.$$

b)
$$\int_0^{2\pi} \frac{e^{m\cos\theta} [\sin(m\sin\theta) - a\cos(m\sin\theta + \theta)]}{1 + a^2 - 2a\sin\theta} d\theta = 2\pi sinma.$$

(33). Use calculus of residues to evaluate the integral

$$\int_0^{2\pi} \cos^{2n}\theta \ d\theta,$$

Where n is a +ve integer.

(34). Prove that

$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)^3} dx = \frac{\pi}{8a^3},$$

provided that R(a) is + ve.

What is the value of this integral when R(a) is negative?

(35). Prove that

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + b^2)(x^2 + c^2)^2} dx = \frac{\pi(b + 2c)}{2bc^3(b + c)^3}, b > 0, c > 0.$$

(36). Show that if m and n are positive integers and m<n

$$\int_0^\infty \frac{x^{2m}}{x^{2n}+1} dx = \frac{\pi}{2n\sin(2m+1)/2n\pi}.$$

(37). Prove by contour integration that

$$\int_0^\infty \frac{dx}{(a+bx^2)^n} = \frac{1}{2^n b^{1/2}} \cdot \frac{1 \cdot 3 \cdot 5 \dots \dots (2n-3)}{1 \cdot 2 \cdot 3 \dots \dots (2n-1)} \cdot \frac{1}{a^{(n-1)/2}}.$$

(38). Use the method of contour integration to prove that

$$\int_0^\infty \frac{dx}{(x^2 + b^2)^{n+1}} = \frac{\pi}{(n!)^2}.$$

Where n is a positive integer.

(39). Prove that

$$\int_{-\infty}^{\infty} \frac{\sin x}{x^2 + 4x + 5} dx = -\frac{\pi}{e} \sin 2.$$

(40). By integrating $e^{iz}/(z-ai)$, (a>0) round a suitable contour, prove that

$$\int_{-\infty}^{\infty} \frac{a\cos x + x\sin x}{x^2 + a^2} dx = 2\pi e^{-a}.$$

(41). By integrating $\frac{e^{iz}}{z+ai}$ round a suitable contour, prove that

$$\int_{-\infty}^{\infty} \frac{-a\cos x + x\sin x}{x^2 + a^2} dx = 0.$$

(42). Evaluate

$$\int_0^\infty \frac{\cos ax}{(x^2 + b^2)^2} dx, a > 0, b > 0.$$

(43). Prove that

$$\int_{-\infty}^{\infty} \frac{\cos x \, dx}{(x^2 + a^2)(x^2 + b^2)} = \frac{\pi}{a^2 - b^2} \left(\frac{e^{-b}}{b} - \frac{e^{-a}}{a} \right), a > 0, b > 0.$$

(44). Prove that when m > 0,

$$\int_{-\infty}^{\infty} \frac{\cos mx}{x^4 + x^2 + 1} \, dx = \frac{2\pi}{\sqrt{3}} \sin\left(\frac{m}{2} + \frac{\pi}{6}\right) e^{-(1/2)m\sqrt{3}}.$$

(45). Prove that when m > 0,

$$\int_0^\infty \frac{\cos mx}{x^4 + a^2} dx = \frac{\pi}{2a^3} e^{-ma/\sqrt{2}} \sin\left(\frac{ma}{\sqrt{2}} + \frac{\pi}{2}\right).$$

Deduce that

$$\int_0^\infty \frac{x sinmx}{x^4 + a^2} dx = \frac{\pi}{2a^2} e^{-ma/\sqrt{2}} sin \frac{ma}{\sqrt{2}}.$$

(46). Prove by contour integration that

$$\int_0^\infty \frac{x^3 sinmx}{x^4 + a^2} dx = \frac{\pi}{2} e^{-ma/\sqrt{2}} cos \frac{ma}{\sqrt{2}}.$$

(47).

$$\int_0^\infty \frac{x^3 \sin x}{(x^2 + a^2)(x^2 + b^2)} dx, a > 0, b > 0.$$

(48). If $a \ge 4$, prove that

a)
$$\int_0^\infty \frac{(1+x^2)^3 \cos ax}{1+x^2+x^4} dx = \frac{\pi}{\sqrt{3}} e^{-a(\sqrt{3}/2)} \cos \frac{a}{2}.$$

b)
$$\int_0^\infty \frac{x \sin ax}{1+x^2+x^4} dx = \frac{\pi}{\sqrt{3}} e^{-a(\sqrt{3}/2)} \sin \frac{a}{2}$$
.

(49). Prove that

$$\int_{-\infty}^{\infty} \frac{\sin x}{(1-x+x^2)^2} dx = \frac{2\pi(\sqrt{3}+2)}{3\sqrt{3}} e^{-\sqrt{3}/2} \sin \frac{1}{2}.$$

(50). Prove that

$$\int_0^\infty \frac{\cos x^2 + \sin x^2 - 1}{x^2} dx = 0.$$

(51). Prove by contour integration

$$\int_0^\infty \frac{\log(1+x^2)}{1+x^2} dx = \pi \log 2.$$

(52). If $0 < \alpha < \pi/2$), prove by contour integration

$$\int_{0}^{\infty} \frac{\tan^{-1} x}{x^2 - 2x\sin\alpha + 1} dx = \frac{\pi\alpha}{2\cos\alpha}$$

Where

$$f(z) = \frac{log(1+iz)}{z^2 - 2zsin\alpha + 1}.$$

(53). Apply the calculus of residues to evaluate

$$\int_0^\infty \frac{\cos ax - \cos bx}{x^2} dx, a > b > 0.$$

(54). Prove that if a > 0

a)
$$p \int_{-\infty}^{\infty} \frac{\cos x}{a^2 - x^2} dx = \frac{\pi \sin a}{a}$$
.

b)
$$p \int_{-\infty}^{\infty} \frac{\cos x}{a^2 - x^2} dx = 0$$
.

(55). Prove that

$$\int_0^\infty \frac{\sin x}{x(x^2 + a^2)} dx = \frac{\pi}{2a^2} (1 - e^{-a}), a > 0.$$

(56). Prove that

$$\int_0^\infty \frac{\sin mx}{x(x^2 + a^2)} dx = \frac{\pi}{2a^4} - \frac{\pi e^{-ma}}{4a^3} \left(m + \frac{2}{a} \right), m > 0, a > 0.$$

(57). Prove that

$$\int_0^\infty \frac{\sin^2 mx}{x^2(x^2+a^2)} dx = \frac{\pi}{4a^3} (e^{-2ma} - 1 + 2ma), m > 0, a > 0.$$

(58). Show that if a and m are positive

$$\int_0^\infty \frac{\sin^2 mx}{x^2(x^2+a^2)^2} dx = \frac{\pi}{8a^5} (e^{-2am}(2am+3) + 4am - 3).$$

(59). Evaluate

$$\int_0^\infty \frac{x - \sin x}{x^3(x^2 + a^2)} dx, a > 0.$$

(60). Prove that

$$\int_{0}^{\infty} \frac{1 - \cos x}{x^2} dx = \frac{\pi}{2}.$$

(61). Prove that

$$\int_0^\infty \frac{\sin \pi x}{x(1-x^2)} dx = \pi.$$

(62). Prove that

$$P \int_0^\infty \frac{x^4}{x^6 - 1} \, dx = \frac{\pi \sqrt{3}}{6}.$$

SuccessClap: Question Bank for Practice 06 ROUCHES THEOREM

- (1) (Fundamental theorem of Algebra) Let $P(z) = a_0 + a_1z + + a_nz^n$, where $n \ge 1$ and $a_n \ne 0$ so that P(z) is a polynomial of degree one or greater. Then the equation P(z) = 0 has at least one root.
- (2) Every polynomial equation $P(z) = a_0 + a_1 z + a_2 z^2 + ... a_n z^n = 0$, where $n \ge 1$, $a_n \ne 0$ has exactly n roots.
- (3) Prove that all the roots of $z^7-5z^3+12=0$ lie between the circles |z|=1 and |z|=2.
- (4) Prove that one root of the equation $z^4+z^3+1=0$ lies in the first quadrant.
- (5) Use Rouche's theorem to show that the equation $z^5+15z+1=0$ has one root in the disc |z| < 3/2 and four roots in the annulus 3/2 < |z| < 2.
- (6) If a > e, use Rouche's theorem to prove that the equation $e^z = az^n$ has n roots inside the circle |z| = 1.
- (7) Using Rouche's theorem determine the number of zeros of the polynomial $P(z) = z^{10}-6z^7+3x^3+1$ in |z| < 1.
- (8) Apply Rouche's theorem to determine the number of roots of the equation $z^8-4z^5+z^2-1=0$ that lie inside the circle |z|=1.
- (9) Show that the polynomial z^5+z^3+2z+3 has just one zero in the first quadrant of the complex plane.
- (10) Show that the equation $z^4+4(1+i)z+1=0$ has one root in each quadrant.

- (11) In which quadrant do the roots of the equation $z^4+4z^3+8z^2+8z+4=0$ lie?
- (12) Show that the equation $z^3+iz+1=0$ has a root in each of the first, second and fourth quadrants.

SuccessClap: Question Bank for Practice 07 SINGULARITY

- (1) Show that a function which has no singularity in the finite part of the plane and has a pole of order n at infinity is a polynomial of degree n.
- (2) A polynomial of degree n has no singularities in the finite part of the plane but has a pole of order n at infinity.
- (3) If a function f(z) is analytic for all finite values of z and as $|z| \to \infty$, $|z| = a |z|^k$ then f(z) is a polynomial of degree $\leq k$.
- (4) If f(z) is a function such that for some positive integer m, a value $\phi(z_0)$ exists with $\phi(z_0) \neq 0$ such that the function $\phi(z) = (z-z_0)^m f(z)$ is analytic at z_0 . Then f(z) has a pole of order m at z_0 .
- (5) If f(z) has a pole of order m at z₀, then the function ϕ defined by ϕ (z) = $(z-z_0)^m$ f(z) has a removable singularity at z₀ and ϕ (z₀) \neq 0. Also show that the residue at z₀ is given by $\frac{\varphi^{m-1}(z_0)}{(m-1)!}$.
- (6) Show that the function $e^{1/z}$ actually takes every value except zero an infinite number of times in the neighbourhood of z = 0.
- (7) Show that the function e^z has an isolated essential singularity at $z = \infty$.
- (8) Show that the function $(z^2+4)/e^z$ has an isolated essential singularity at $z = \infty$.
- (9) What kind of singularity have the following functions:
- (i) $\frac{\cot \pi z}{(z-a)^2}$ at z = 0, $z = \infty$ (ii) $\sin \frac{1}{1-z}$ at z = 1.
- (ii) $\sin z \cos z$ at $z = \infty$ (iv) $\csc 1/z$ at z = 0.

- (10) What kind of singularity have the following functions:
- (i) $\cot z$ at $z = \infty$ (ii) $\sec \frac{1}{z}$ at z = 0
- (11) Specify the nature of singularity at z = -2 of $F(z) = (z-3) \sin \frac{1}{z+2}$.
- (12) (i) Find zeros and poles of $(\frac{z+1}{z^2+1})^2$
- (ii) What kind of singularity has the function $\frac{e^z}{z^2+4}$?
- (13) Find the kind of the singularities of the following function:
- (i) $\frac{1-e^z}{1+e^z} at z = \infty \quad (ii) \frac{1}{\sin z \cos z} at z = \frac{\pi}{4}.$
- (iii) $\sin \frac{1}{z} at z = 0$ (iv) $z \csc z at z = \infty$.
- (14) Show that z = a is an isolated essential singularity of the function $\frac{e^{c/(z-a)}}{e^{z/a}-1}$.
- (15) Find the nature and location of the singularities of the function $f(z) = \frac{1}{z(e^z-1)}$. Prove that f(z) can be expanded in the form $\frac{1}{z^2} \frac{1}{2z} + a_0 + a_2 z^2 + a_4 z^4 + ...$ Where $0 < |z| < 2\pi$ and find the values of a_0 and a_2 .
- (16) Discuss the nature of singularities of the following function:
- (i) Tan z (ii) $\frac{1}{z(1-z^2)}$ (iii) $\frac{z}{1+z^4}$ (iv) $\frac{\sin z}{z-\pi)^2}$
- (17) Find the zeros and discuss the nature of singularities of f(z) = $\frac{z-2}{z^2} \sin \frac{1}{z-1}$.
- (18) Show that the function e^{-1/x^2}
- (19) If $f(z) = \sum_{n=1}^{\infty} \frac{z^2}{4+n^2z^2}$, show that f(z) is finite and continuous for all real values of z but f(z) cannot be expanded in a Maclaurin's series. Show that f(z) possesses Laurent's expansion valid in a succession of the ring shaped spaces.

- (20) The only singularities of a single valued function f(z) are poles of order 2 and 1 at z = 1 and z = 2 with residues of these poles 1 and 3 respectively. If f(0) = 3/2 and f(-1) = 1, determine the function.
- (21) The function f(z) has a double pole at z = 0 with residue 2, a simple pole at z = 1 with residue 2, is analytic at all other finite points of the plane an is bounded as $|z| \to \infty$. If f(z) = 5 and f(-1) = 2, find f(z).
- (22) Let $\phi(z)$ and $\psi(z)$ be analytic functions. If z = a is a once repeated root of $\psi(z) = 0$ such that $\varphi(a) \neq 0$, the residue of $\frac{\varphi(z)}{\psi(z)}$ at z = a is $\frac{6\varphi'(a)\psi''(a)-2\varphi(a)\psi'''(a)}{3[\psi''(a)]^2}$
- (23) The only singularities of a single valued function f(z) are poles of order 1 and 2 at z=-1 and z=2 with residues 1 and 2 respectively at these poles. If f(0)=7/4, f(1)=5/2, determine the function and expand it in a Laurent's series valid in 1 < |z| < 2.
- (24) Show that near z = 1, the function $\log(1+z^2)$ may be expanded in a series of the form $\log 2 + \sum_{n=1}^{\infty} a_n (z-1)^n$ and find the value of a_n , the principal value of the logarithm being taken.
- (25) Consider the singularities of the function represented by the series $\sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{1+(2^nz)^2}$ and obtain the expansion by Laurent's theorem.

SuccessClap: Question Bank for Practice 08 POWER SERIES

- (1) **(Abel's theorem).** If the power series $\sum a_n z^n$ converges for a particular value z_0 of z, then it converges absolutely for all values of z for which $|z| < |z_0|$.
- (2) **(Cauchy Hadamard Theorem).** For every power series $\sum_{n=0}^{\infty} a_n z^n$ there exist a number $R, 0 \le R < \infty$, called the radius of convergence with the following properties:
- (i) The series converges absolutely for all |z| < R.
- (ii) If $0 \le \rho < R$, the series converges uniformly for $|z| \le \rho$.
- (iii) If |z| > R, the terms of the series are unbounded so that the series is divergent.
- (3) Let $\sum_{n=0}^{\infty} a_n z^n$ be a power series and $\sum_{n=1}^{\infty} a_n z^{n-1}$ be the power series obtained by differentiating the series $\sum_{n=1}^{\infty} a_n z^n$ term by term. Then the derived series has the same radius of convergence as the original series.
- (4) Find the radii of convergence of the following power series;

(i)
$$\sum \frac{(n+1)}{(n+2)(n+3)} Z^{n} \qquad \text{(ii)} \sum \frac{z^{n}}{n!} \qquad \text{(iii)} \sum \frac{n!}{n^{n}} Z^{n} \qquad \text{(iv)} \sum \frac{1}{n^{p}} Z^{n}$$

(iv)
$$\sum (1 + \frac{1}{n})^{n^2} z^n$$
. (vi) $\sum \frac{(n!)^2}{2n!} z^n$.

(5) Find the radii of convergence of the following power series:

(i)
$$\sum (\log n)^n z^n$$
 (ii) $\sum (1 - \frac{1}{n})^{n^2} z^n$ (iii) $\sum \frac{z^n}{2^{n+1}}$ (iv) $\sum \frac{i n+2}{2^n} + z^n$

(v)
$$\sum_{2}^{\infty} \frac{z^n}{\log n}$$
 (vi) $\sum_{i=1}^{\infty} (z-2i)^n$

(6) Find the radii of convergence of the following power series:

(i)
$$\sum (3+4i)^n z^n$$
 (ii) $\sum \frac{n\sqrt{2}+i}{1+i \ 2n} z^n$

(7) Find the radius of convergence of the following series:

(i)
$$\sum \frac{2^{-n}}{1+in^2} z^n$$
 (ii) $\sum 2^{\sqrt{n}} z^n$ (iii) $\sum \frac{1}{n^n} z^n$.

(8) Show that the radius of convergence of the series

$$\frac{1}{2}z + \frac{1.3}{2.5}z^2 + \frac{1.3.5}{2.5.8}z^3 + \cdots is \frac{3}{2}.$$

- (9) Prove that $1 + \frac{a.b}{1.c} z + \frac{a(a+1)b(b+1)}{1.2 c(c+1)} z^2 + ...$ has unit radius of convergence.
- (10) Find the radius of convergence of the power series $f(z) = \sum_{0}^{\infty} \frac{z^{n}}{z^{n+1}}$ and prove that $(2-z)f(z) 2 \to 0$ at $z \to 2$.
- (11) Show that the domain of convergence of the series $\sum (\frac{iz-1}{2+i})^n$ is given by $|z+i| < \sqrt{5}$.
- (12) Find the domain of convergence of the series $\sum n^2 \left(\frac{z^2+1}{1+i}\right)^n$.
- (13) Find the region of convergence of the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^{2n-1}}{(2n-1)!}$.
- (14) Determine the set of values of z for which the series $\sum (-1)^n (z^n + z^{n+1})$ converges. Also find the sum of the series.
- (15) For what values of v does the series $\sum_{n=1}^{\infty} \frac{1}{(z^2+1)^n}$ converge. Also find its sum.
- (16) Find the domain of convergence of the following series:

(i)
$$\sum_{1}^{\infty} \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{n!} \left(\frac{1-z}{z}\right)^n$$
 (ii) $\sum_{2}^{\infty} \frac{z^n}{n(\log n)^2}$.

- (17) Find the domain of convergence of the power series $\sum \left(\frac{2i}{z+i+1}\right)^n$.
- (18) Examine the behavior of the following power series on the circle of convergence:

(i)
$$\sum_{1}^{\infty} \frac{z^n}{n}$$
 (ii) $\sum_{2}^{\infty} \frac{z^{4n}}{4n+1}$ (iii) $\sum_{1}^{\infty} (-1)^n \frac{z^n}{n}$.

(19) Find the region of convergence of the series

(i)
$$\sum_{n=1}^{\infty} n! \ z^n$$
 (ii) $\sum_{n=1}^{\infty} \frac{(z+2)^{n-1}}{(n+1)^3 4^n}$.

(20) If R_1 and R_2 are the radii of convergence of the power series $\sum a_n z^n$ and $\sum b_n z^n$ respectively, then show that the radius of convergence of the power series $\sum a_n b_n z^n$ is R_1 and R_2 .