1. For each of the following functions find the first, second and third derivatives $(\frac{df}{dx}, \frac{d^2f}{dx^2}, \frac{d^3f}{dx^3})$:

(a)
$$f(x) = \frac{x^4}{24} + \frac{x^3}{6} + \frac{x^2}{2} + x + 1$$

(b)
$$f(x) = \sin x$$

(c)
$$f(x) = \cos x$$

2. Evaluate the following derivatives:

(a)
$$\frac{d}{dx}\left(ae^x + \frac{b}{x} + \frac{c}{x^2}\right)$$

$$(f) \frac{d^2}{dx^2} \left(x^4 e^x \right)$$

(b)
$$\frac{d}{dx} \left(\sqrt{x} + \frac{1}{\sqrt[3]{x}} \right)^2$$

(g)
$$\frac{d}{dx} (x \sec x \tan x)$$

(c)
$$\frac{d}{dx} \left(\frac{x - x^2}{\sqrt{x}} \right)$$

(h)
$$\frac{d}{dx} \left(\frac{ax+b}{cx+d} \right)$$

(d)
$$\frac{d}{dx} ((3x^3+2)(7x+2)))$$

(i)
$$\frac{d}{dx} \left(\frac{1 - \sec x}{\cot x} \right)$$

(e)
$$\frac{d}{dx} (\sec x e^x)$$

$$(j) \frac{d}{dx} \left(\frac{x^3 e^x + 1}{2x + e^x} \right)$$

3. Find the equations of the tangent line of the curves at the given point:

(a)
$$y = xe^x + x^3$$
 at $(0,0)$

(b)
$$y = \sin x + \cos x$$
 at $(0, 1)$

(c)
$$y = e^x \cos x + \sin x$$
 at $(0, 1)$

- 4. (a) Where does $f(x) = e^x \cos x$ have a horizontal tangent line?
 - (b) Where does $f(x) = \frac{x^2+1}{x+1}$ have a tangent line parallel to the line 2y = x 3?
- 5. Let

$$f(x) = \begin{cases} x^2, & x \le 2\\ mx + b, & x > 2. \end{cases}$$

Find the values of m and b that make f differentiable everywhere.

6. Suppose that f, g, h are differentiable functions. Prove that

$$(fgh)' = f'gh + fg'h + fgh'$$

What can you say about the derivative of a product of n differentiable functions?

7. Find the derivative of the function. Do not simplify.

(a)
$$y = (x^2 + 7x + 2)^{20}$$

(e)
$$f(x) = \ln(e^{-x} + xe^{-x})$$

(b)
$$y = x (4x+1)^{100}$$

(f)
$$h(t) = t \ln \left(\frac{1}{t}\right)$$

(c)
$$y = \cos\left(\sqrt{\sin x}\right)$$

(g)
$$f(x) = x^x$$

(d)
$$y = \tan^2(\sin(3x + \ln x))$$

$$(h) y = e^{e^x}$$