MIMO-OFDM Wireless Communications

The Wireless Channel: Propagation and Fading

Edward Kwao

Hanbat National University

11th November, 2021

Contents

- ☐ Classification of Fading Channels
- ☐ Large Scale fading General Path Loss Models
- General Path Loss Models MATLAB simulations
- Okumura/Hata Model
- Hata Model Simulation: Urban, Suburban & Open Area
- Small Scale Fading
- **☐** SISO Channels
 - Indoor Models

Classification of fading channels

Large Scale Fading – General Path Loss Models

■ The Friis' equation for received power is given as:

$$P_r(d) = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2 L}$$
 (1) Where

■ Given system loss = 1,

 P_t = transmit power

 G_t = Gain of transmit antenna

 G_r = Gain of receive antenna

 $\lambda = Wave\ length\ of\ the\ signal$

d = transmitter-receiver separation

L = System loss factor

■ The Path Loss in dB is:

$$PL_F(d) = 10log\left(\frac{P_t}{P_r}\right) = 10\log(G_t) + 10\log(G_r) + 20\log(\lambda) - 20\log(4\pi d)\dots(2)$$

This is called Free-space Path Loss Model

By modifying the free-space path loss with the path loss exponent n, that varies with the environments, a more generalized path loss model called logdistance path loss model is constructed:

$$PL_{LD}(d)[dB] = PL_F(d_o) + 10nlog\left(\frac{d}{d_o}\right)...............(3)$$

Where d_o is the reference distance at which the log-distance path loss inherits the characteristics of (2).

n accommodates all lossy environments

Environment	Path-Loss Exponent n
Free-Space	2
Urban area cellular radio	2.7 to 3.5
Shadowed urban cellular radio	3 to 5
In building line-of-sight	1.6 to 1.8
Obstructed in building	4 to 6
Obstructed in factories	2 to 3

- Distance between two points alone cannot fully explain the signal strength level at the e receiver.
- Shadowing is introduced in the log-distance model to account for variation of signal propagation behavior between two different signal paths assuming the same propag ation distance.

$$\Rightarrow PL_{LN}(d)[dB] = PL_{LD}(d)[dB] + X_{\sigma}$$

$$\therefore PL_{LN}(d)[dB] = PL_{F}(d_{o}) + 10nlog\left(\frac{d}{d_{o}}\right) + X_{\sigma}....(4)$$

• (4) is called log-normal shadowing model

 X_{σ} = shadowing parameter (zero mean Gaussian distributed random variable in dB with standard deviation σ , also in dB)

Free-space, Log-distance & Log-normal shadowing path loss MATLAB simulations

Okumura/Hata Model

■ Mobile Communication System Characteristics:

• frequency band: 500-1500 MHz

• Cell radius: 1-100 Km

Antenna height: 30-1000m

$$PL_{Ok}(d)[dB] = PL_F + A_{MU}(f,d) - G_{Rx} - G_{Tx} + G_{AREA}$$
(1)

Where, $A_{MU}(f,d) = median$ attenuation factor at frequency, f $G_{Rx} = Receive$ antenna gain, $G_{Tx} = Transmit$ antenna gain $G_{AREA} = Gain$ due to type of environment

Hata Model extends Okumura model for urban, suburban and open area environments.

$$PL_{Hata,U}(d)[dB] = 69.55 + 26.16 \log f_c - 13.82 \log h_{TX} - C_{RX} + (44.9 - 6.55 \log h_{TX}) \log d$$
(2)

Where, $C_{Rx} = correlation coefficient of receive antenna$

$$C_{Rx} = 0.8 + (1.1 \log f_c - 0.7) h_{Rx} - 1.56 \log f_c$$

$$C_{RX} = \begin{cases} 8.29(\log(1.54h_{RX}))^2 - 1.1 & \text{if } 150 \,\text{MHz} \le f_c \le 200 \,\text{MHz} \\ 3.2(\log(11.75h_{RX}))^2 - 4.97 & \text{if } 200 \,\text{MHz} \le f_c \le 1500 \,\text{MHz} \end{cases}$$

$$PL_{Hata,SU}(d)[dB] = PL_{Hata,U}(d) - 2\left(\log\frac{f_c}{28}\right)^2 - 5.4$$
(3)

$$PL_{Hata,O}(d)[dB] = PL_{Hata,U}(d) - 4.78(\log f_c)^2 + 18.33\log f_c - 40.97$$
(4)

Hata Model Simulation for Urban, Suburban and Open Area Environment

Small Scale Fading

Parameters derived from the Power Delay Profile:

- RMS Delay Spread, $\sigma_{ au}$
- Mean Excess Delay, $\overline{ au}$

•
$$\sigma_{\tau} = \sqrt{\overline{\tau^2} - (\overline{\tau})^2}$$
....(5) where

$$\overline{\tau} = \frac{\sum_{k} \tau_{k} P(\tau_{k})}{\sum_{k} P(\tau_{k})} \dots (6) \quad \text{and} \quad \overline{\tau^{2}} = \frac{\sum_{k} \tau_{k}^{2} P(\tau_{k})}{\sum_{k} P(\tau_{k})} \dots (7)$$

■ The bandwidth within which the multipath channel is considered to be flat, Coherence Bandwidth is given as: $B_c \approx \frac{1}{\sigma_\tau}$

Flat Fading requirement: $B_S \ll B_C$ and $T_S \gg \sigma_{\tau}$ & Frequency selective fading: $T_S \gg T_C$ and $T_S \gg T_C$

- Depending on the relative motion between the transmitter and the receiver, the multipath channel is either coherent in time or not.
- The **Coherent time**, $T_c \approx \frac{1}{f_m}$ where f_m = Doppler Spread
- The bandwidth of the Doppler Spectrum, $B_d = 2f_m$

Fast Fading condition: $T_s > T_c$ and $B_s < B_d$ & Slow Fading requirement: $T_s \ll T_c$ and $T_c \gg B_d$

SISO Channels

- In order to create an accurate channel model in a specific environment, we must have full knowledge on the:
- Characteristics of reflectors (orientation and movement).
- Power of the reflected signal at any specified time.

- Not possible in reality
- We resort to the specific channel model which can represent an average channel condition in the given environment.
- The channel model can vary with the antenna configuration in the transmitter and receiver.

Indoor Channel Models

- The two most popular indoor channel models:
 - (i) 2-ray model (ii) exponential model

- Two rays, one for a direct path with a zero delay ($au_0=0$) and the other for a path which is a reflection with delay, $au_1>0$
- Not accurate: Magnitude of the second path is less than the first path in practice.
- Acceptable only when there is significant loss in the first path.

 Average channel power decreases exponentially with channel delay.

$$P(\tau) = \frac{1}{\tau_d} e^{-\frac{\tau}{\tau_d}}$$

 More appropriate for an indoor channel environment

