COC-473 ALGEBRA LINEAR COMPUTACIONAL

Trabalhos para a Primeira Prova (P1)

(Exemplos para testes das rotinas computacionais)

Aluno: XXXXX XXXXXX XXXXXX

DRE: XXXXXXX

Data: 25/09/2021

Primeiro Semestre/2021

Resolução do teste referente a P1_TASK_01

Dados Fornecidos/Dados de Entrada

Matriz A

Código escolhido: XX (informar o código escolhido com professor)

Matriz fornecida: (mostrar a matriz completa)

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{bmatrix}$$

Vetor Independente **B**

Código escolhido: XX (informar o código escolhido com professor)

Vetor fornecido: (mostrar o vetor completo)

$$\mathbf{B}^{\mathrm{T}} = [b_1 \quad \cdots \quad b_n]$$

Resolução/ Dados de saída

- 1. Solução do sistema $\mathbf{AX} = \mathbf{B}$ pela decomposição LU ($\mathbf{A} = \mathbf{LU}$)
 - a. Vetor solução $\mathbf{X}^T = [?]$
 - b. Determinante de L = ?
 - c. Determinante de \mathbf{U} = ?
 - d. Determinante de A = ?
- 2. Solução do sistema $\mathbf{A}\mathbf{X}=\mathbf{B}$ pela decomposição de Cholesky ($\mathbf{A}=\mathbf{L}\mathbf{L}^{T}$)
 - a. Vetor solução $\mathbf{X}^T = [?]$
 - b. Determinante de L = ?
 - c. Determinante de $L^T = ?$
 - d. Determinante de A = ?

- 3. Solução do sistema **AX** = **B** pelo método iterativo de Jacobi
 - a. Tolerância limite usada = ?
 - b. Vetor de partida/inicial ${}^{0}\mathbf{X}^{T} = [?]$
 - c. Houve convergência = ? (sim ou não); Se sim; preencha as demais informações abaixo.
 - d. Vetor solução $\mathbf{X}^T = [?]$
 - e. Número de iterações até alcançar a tolerância limite = ?
- 4. Solução do sistema **AX** = **B** pelo método iterativo de Gauss-Seidel
 - a. Tolerância limite usada = ?
 - b. Vetor de partida/inicial ${}^{0}\mathbf{X}^{T} = [?]$
 - c. Houve convergência = ? (sim ou não); Se sim preencha as demais informações abaixo.
 - d. Vetor solução $\mathbf{X}^T = [?]$
 - e. Número de iterações até alcançar a tolerância limite = ?
- 5. Informação complementar
 - a. Foi necessário alterar o código fornecido ao professor (dias atrás) para resolver estas questões acima? (sim ou não); Se sim preencha o item abaixo.
 - b. Descreva de forma resumida quais as alterações realizadas.

Obs.: Anexar abaixo a "imagem" (copy and past) dos arquivos de entrada e saída; **não** inserir arquivo de código.

Resolução do teste referente a P1_TASK_02

Dados Fornecidos/Dados de Entrada

Matriz A

Código escolhido: XX (idêntico ao da matriz A do exemplo anterior)

Matriz fornecida: (mostrar a matriz completa)

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{bmatrix}$$

Resolução/ Dados de saída

- 1. Método de Jacobi
 - a. O vetor (linha) λ contendo todos os autovalores de A; i.e., $\lambda = [?]$
 - b. A matriz **X** contendo todos os autovetores de **A** (os autovertores devem ser colocados como as colunas de **X**); **X** =[?]
 - c. Tolerância limite usada = ?
 - d. Número de iterações até alcançar a tolerância limite = ?
 - e. Produto dos autovalores, $\prod_{i=1}^{n} \lambda_i = ?$
 - f. Determinante de A = ?
- 2. Método de Potência
 - a. Imprima o valor do autovalor obtido, i.e. $\lambda = ?$
 - b. O vetor linha X contendo o autovalor correspondente; $X^T = [?]$
 - c. Tolerância limite usada = ?
 - d. Número de iterações até alcançar a tolerância limite = ?
- 3. Informação complementar
 - a. Foi necessário alterar o código fornecido ao professor (dias atrás) para resolver estas questões acima? (sim ou não); Se sim preencha o item abaixo.
 - b. Descreva de forma resumida quais as alterações realizadas.

Obs.: Anexar abaixo a "imagem" (copy and past) dos arquivos de entrada e saída; **não** inserir arquivo de código.

Resolução do teste referente à P1_TASK_03

Dados Fornecidos/Dados de Entrada

Código escolhido: XX (informar o código escolhido com professor)

Matriz fornecida os pares de pontos fornecidos: (mostrar todos os dados)

x_1	x_2	x_3		x_n
y_1	y_2	y_3	•••	\mathcal{Y}_n

Resolução/ Dados de saída

- 1. Regressão Linear
 - a. Coeficiente angular a da reta y = ax + b; a = ?
 - b. Constante b da reta y = ax + b; b = ?
 - c. Valor y obtido pela reta ajustada para x = 2; y = ?
- 2. Interpolação
 - a. Valor y obtido polinômio ajustado para x = 2; y = ?
 - b. Os valores de y obtidos no item acima e no item c) da regressão linear deveriam ser exatamente iguais? *Sim ou não*;
 - c. Justifique a resposta do item acima.
- 3. Informação complementar
 - a. Foi necessário alterar o código fornecido ao professor (dias atrás) para resolver estas questões acima? (sim ou não); Se sim preencha o item abaixo.
 - b. Descreva de forma resumida quais as alterações realizadas.

Obs.: Anexar abaixo a "imagem" (copy and past) dos arquivos de entrada e saída; **não** inserir arquivo de código.

Formato de entrega

Preencher com as respostas, após as respostas de cada tarefa inserir "imagem" os arquivos de entrada e de saída das rotinas e, finalmente, gerar um pdf único (nome do aluno COC473 TP1 2021.pdf) e enviar para sagrilo@coc.ufrj.br