David Bromberg

- IP
 - L'adressage Internet
 - Format des datagrammes IP
 - ARP
 - RARP
 - Routage statique

• ICMP

- Messages
- Commandes
- Erreurs
- Contrôle de congestions
- Modifications de routes

• <u>UDP</u>

- Services
- Ports
- Formats

• TCP

- Connexion
- Segmentation
- Acquittement
- Fenêtrage
- Retransmission
- Congestions
- Ports

Notion de Protocole

Qu'est qu'un protocole de communication ?

Définit :

- •Un ensemble de procédures et informations échangées pour établir et gérer une communication.
- •Le format des informations échangées.

- Cas concret:
 - Chaque chef de département dispose d'un secrétariat. Quels sont les phases successives de l'établissement d'une communication téléphonique entre les deux chefs ?

Notion de Protocole (Suite 1)

Phase 1:

 Le chef CA demande à sa secrétaire d'appeler le chef de département CB.

Notion de Protocole (Suite 2)

Phase 2:

 La secrétaire SA demande compose le numéro de téléphone du chef du département CB.

Notion de Protocole (Suite 3)

Phase 3:

 La secrétaire SA compose le numéro de téléphone du chef du département CB.

Notion de Protocole (Suite 4)

- La secrétaire SA demande si elle peut parler au chef CB.
- La secrétaire SB demande à chef CB s'il accepte :
 - Si oui, SB répond à SA qu'elle lui passe CB.
 - SA confirme à CA que CB est en ligne.

Notion de Protocole (Suite 5)

Phase 5:

• CA et CB communique.

Notion de Protocole (Suite 6) Synthèse

Introduction

- Protocole ouvert
 - Les sources (C) disponibles gratuitement
 - Développés indépendamment d'une architecture particulière
- Indépendant du support physique du réseau.
 - TCP/IP peut se retrouver sur une ligne série, un câble coaxial Ethernet, une liaison louée, un réseau token-ring, une liaison radio (satellites, ``wireless" 802.11b), une liaison FDDI 600Mbits, une liaison infrarouge, xDSL, ATM, fibre optique. Le mode d'adressage est commun à tous les utilisateurs de TCP/IP quelle que soit la plate-forme qui l'utilise. Si l'unicité de l'adresse est respectée, les communications aboutissent même si les hôtes sont aux antipodes.

Comparaison TCP/IP -- ISO

Couche Réseau (1/2)

- La *couche Réseau* se charge de :
 - Assurer l'acheminement des données regroupées en paquets.
 - Déterminer la façon dont les paquets sont routés de la source vers la destination.
 - Assurer la qualité de service :
 - Délai
 - Temps de transit
 - Gigue
 - Etc..

Contrôle de flux et d'erreurs

Couche Réseau (2/3)

- Pour atteindre le destinataire :
 - Les paquets sont acheminés d'un réseau à un autre.
- Problèmes d'<u>hétérogénéités</u> entre les sous réseaux qui peuvent être de nature différentes :
 - Technique d'adressage différent...
 - Paquets trop grands...
 - ...etc...

Couche Réseau (3/3)

- Pour résumer :
 - 1. Adressage.
 - 2. Routage.
 - 3. Contrôle de flux.

Couche Transport (1/2)

- La <u>couche Transport</u> se charge :
 - Du contrôle du transfert des informations de <u>bout en</u> <u>bout</u>.
 - 1. Du découpage des <u>messages</u> en <u>paquets</u> pour le compte de la couche réseau.
 - 2. Du réassemblage des *paquets* en *messages* pour les couches supérieures.
 - Assure un transfert de donnée entre les entités de sessions.

Couche Transport (2/2)

- ⇔ Les <u>couches supérieures</u> sont isolées des <u>couches inférieures</u>.
- Informations transmises indépendamment des changements matériels éventuels.
- ⇔ Transport transparent.
- Offre un <u>service de bout-en-bout</u> de la source à la destination.
 - Acheminement de l'information.

Couche Session

- Interface entre
 - 1. Les applications communicantes.
 - 2. Le transport des données.
- La couche session :
 - 1. Assure
 - L'ouverture
 - La fermeture
 - 2. Définit les règles
 - D'organisation
 - Synchronisation

Services de la couche

Comparaison TCP/IP -- ISO

Couche Internet (1/3)

- Permet aux hôtes d'émettre des paquets sur n'importe quel réseau.
- Acheminement des paquets indépendamment des réseaux.
- Les paquets sont acheminés dans le désordre.

Couche Internet (2/3)

Couche Internet (3/3)

- La couche Internet définit
 - Un format de paquet et un protocole nommé IP
 - ⇒ Acheminer les paquets jusqu'à leur destination.
 - **⇒** Routage.
 - ⇒ Similaire à la couche OSI Réseau.

TCP/IP Couche Transport (1/2)

- Permet à des entités paires de mener une conversation.
- Deux protocoles de bout en bout on été définis:
 - TCP (Transmission Control Protocol)
 - UDP (User Datagram Protocol)

Couche Transport - TCP

- TCP: Protocole de bout en bout
 - Protocole:
 - Fiable.
 - Garantit la livraison sans erreur.
 - Orienté connexion.
 - Contrôle de flux.

TCP/IP Couche Transport - UDP

- **UDP**: protocole non fiable.
 - Sans connexion.
 - Sans garantit d'acheminement.
 - ⇔ Les applications doivent assurer elles-mêmes :
 - Le séquencement.
 - Le contrôle de flux.

TCP/IP Couche Application

- Le Modèle TCP/IP n'inclut pas :
 - De couche session.
 - De couche présentation.
- Couche Application directement au-dessus de la couche transport.

TCP/IP Couche Hôte-Réseau

Pas de spécifications.

Architecture IP Vue d'ensemble

Adressage IP 31

Adressage (1/5)

Adressage :

- Maillon essentiel
- ⇒Pour rendre transparents
 - · Les détails physiques des réseaux
 - Faire apparaître l'Internet comme une entité uniforme.

Adressage (2/5)

- Fournir un service de communication universel
 - ⇒ Permettre à toute machine de communiquer avec toute autre machine de l'interconnexion
- Une machine doit être accessible aussi bien par des humains que par d'autres machines

Adressage (3/5)

- Une machine doit pouvoir être identifiée par :
 - Un nom (mnémotechnique pour les utilisateurs),
 - Une adresse qui doit être un identificateur universel de la machine,
 - Une route précisant comment la machine peut être atteinte.

Adressage (4/5)

- Le nom
- ⇔ « QUI » est l'hôte distant
- L'adresse
 - ⇔ « OU » se trouve l'hôte
- La route
- ⇔ « COMMENT » on y parvient

Adressage (5/5)

Pour les utilisateurs

- Noms symboliques pour identifier les machines
- ⇔ Réalisé à un autre niveau que la couche IP

Pour les machines

Les adresses IPv4

Structure d'une adresse IPV4

Adresses IP:

- Standardisées sous forme d'un nombre de 32 bits
- Permet à la fois l'identification de chaque hôte et du réseau (netid,hostid) auquel il appartient.

Structure d'une adresse

Identificateur de 32 bits

- 4 Octets
- Chaque octet est représenté en décimal et séparé par un point.
- La valeur de chaque octet va de 0 à 255
 - ⇔ 00000000 111111111

Conversion Binaire-Décimal

- Le bit de poids le plus faible à la valeur 2⁰
- Le suivant 2¹ et ainsi de suite jusqu'à 2⁷

Structure d'une adresse

 La paire (NET ID, HOST ID) est structurée de manière à définir cinq classes d'adresses A, B, C, D,E.

Anatomie d'une adresse IP Les classes

Class A

• Le Premier bit est à 0.

Class B

• Les deux premiers bits sont 10

Class C

• Les trois premiers bits sont 110

Class D

- Si les quatre premiers bits de l'adresse sont 1110
 - Il s'agit d'une classe d'adressage spéciale, la classe D.

Class E

• Si les quatre premiers bits de l'adresse sont 1111

Adresses particulières

• Certaines adresses IP ont une signification particulière.

Signification	exemples	
Adresse de diffusion dirigée ⇔ Diffusion sur toutes les machines situées sur le réseau spécifié.	192.168.1.255	
Adresse de diffusion	255.255.255	
Adresse du réseau	192.168.1.0	
Boucle locale	127.0.0.1	

Adressage multicast

- Employé pour s'adresser en une seule fois à un groupe de machines.
- Exemple :
 - Serveur vidéo/audio.
 - Découverte de routeurs
 - Téléphonie sur internet

Multicast group address

⇔ 268 millions de groupes possibles

Résumé

0 8 16 24 31 Désigne la machine Tout à zéro courante **Machine Host-id** Tout à zéro **Host-id** sur le réseau courant Diffusion limitée sur Tout à un le réseau courant Diffusion dirigée sur Tout à un **Net-id** le réseau Net-id **Boucle locale** 127 N'importe quoi

Notions de masques (1)

- Tout appareil doit être en mesure
 - ⇒ De déterminer la classe de l'adresse IP de destination.
 - ⇒ D'utiliser un masque.
- Une @IP est toujours associée à un masque
 - ⇒ Ce masque sert à déterminer la portion de l'adresse réservée à l'hôte et celle réservée au réseau.

Notions de masques (2)

- Exemple :
 - Un routeur effectue un **ET logique** entre :
 - Le masque et,
 - •L'adresse.
 - Chaque classe d'adresse a un masque par défaut.

Notions de masques (3)

Classe	Masque de sous- réseau	Masque de sous-réseau (binaire)
A	255.0.0.0	11111111.00000000.00000000.00000000
В	255.255.0.0	111111111111111111111111111111111111111
C	255.255.255.0	11111111.11111111111111.00000000

Notions de masques Exemples

@IP: 10.8.15.1 = 0000 1010. 0000 1000. 0000 1111. 0000 0001 &

Classe A Masque: 1111 1111. 0000 0000. 0000 0000. 0000 0000

NetId

- Une @IP de classe A a un **netmask** de 255.0.0.0
 - ⇔ net id = 10
 - ⇔ host id = 8.15.1

Sous-réseaux ou sous adressage (1)

- En 1984 une nouvelle notion apparaît :
 - Le « subnet » ou sous-réseau
 - Objectif:
 - Permettre aux administrateurs de gérer plus finement de grands réseaux.

Sous-réseaux ou sous adressage (2)

- Augmentation du nombre de réseaux :
 - Croissance de la consommation d'@IP
 - Pénurie d'@IP

Sous-réseaux ou sous adressage (3)

Sous adressage permet de diminuer :

- La consommation d'adresses IP,
- La gestion administrative des adresses IP,
- La taille des tables de routage des routeurs,
- La taille des informations de routage,
- Le traitement effectué au niveau des routeurs.

Sous-réseaux Principes (1)

- Sans sous réseaux
 - ☑ Il n'y a qu'un seul réseau pour une classe A,B ou C
- Avec Sous Réseaux
 - ☑ Création de plusieurs réseaux logiques au sein d'une même classe A, B ou C.
- Pour créer des sous réseaux :
 - On étend le masque sur la partie host id d'une @IP.

Sous-réseaux Principes (2)

- La partie Host Id dans le plan d'adressage initial est subdivisée :
 - Subnet ID + Host ID sur ce sous réseau.

Sous-réseaux Exemple(s) (1)

Sous-réseaux Exemple(s) (2)


```
@IP = 211.11.2.0 & NETMASK = 255.255.255.224

>211.11.2.0 255.255.255.224 \( \Rightarrow \) @IP de 1 à 30
```

>211.11.2.32 255.255.255.224 \(\Display \) @IP de 33 à 62

>211.11.2.64 255.255.255.224 \(\Rightarrow \) @IP de 65 à 94

>211.11.2.96 255.255.255.224 \(\Display \) @IP de 97 à 126

>211.11.2.128 255.255.255.224 ⇔ @IP de 129 à 158

>211.11.2.160 255.255.255.224 ⇔ @IP de 161 à 190

>211.11.2.192 255.255.255.224 ⇔ @IP de 193 à 222

>211.11.2.224 255.255.255.224 ⇔ @IP de 225 à 254

• 2³ - 2⇔ 6 réseaux de 2⁵-2 stations

Sous-réseaux Exemple(s) (3)

Sous-réseaux Exemple(s) (4)

Sous-réseaux Exemple(s) (Bilan 1)

- Le site utilise une seule adresse de classe C
 - Et dispose de 8 réseaux physiques.
- A l'exception du routeur R, tout routeur de l'internet route comme s'il n'existait qu'un seul réseau.
- Seul le routeur R doit router vers l'un des 8 sous réseaux possibles;

Sous-réseaux Exemple(s) (Bilan 2)

 Le découpage du site en sous réseaux a été effectué sur la base des 3 premiers bits du 4e octet de l'adresse.

Sous-réseaux Exercice 1 ;-)

11000001.01101000.00000001.00000000

?

128 64 32 16 8 4 2 1

193 104 1 0

Sous-réseaux Exercice 2 ;-)

Créer 4 sous-réseaux ou subnetwork du réseau 193.104.1.192 !!

193.104.1.192: 11000001.01101000.00000001.??000000

	Numéro du réseau	``Netmask"	``Broadcast"	Adressage hôte
	193.104.1.0	255.255.255.192	0 + 63 = 63	.1 à .62
	193.104.1.64	255.255.255.192	64 + 63 = 127	.65 à .126
A	193.104.1.128	255.255.255.192	128 + 63 = 191	.129 à .190
	193.104.1.192	255.255.255.192	192 + 63 = 255	.193 à .254

Sous-réseaux Exercice 2 ;-) (détails)

Sous réseau	Adresse	Décomposition
00	193.104.1.1	0 + 1 = 1
01	193.104.1.65	64 + 1 = 65
10	193.104.1.129	128 + 1 = 129
11	193.104.1.193	192 + 1 = 193

CIDR

- En 1992, l'Internet est confronté à plusieurs problèmes cruciaux :
 - Les Classes B sont presque épuisées.
 - La croissance des tables de routage sur l'Internet global est très rapide.
 - L'espace d'adressage IPv4 s'épuise de manière générale.
- Les projections de croissance annonçaient qu'en 94 ou 95, les deux premiers problèmes deviendraient critiques

Avantages de CIDR Suppression des classes A,B,C

- CIDR améliore l'allocation des adresses IPv4
 - CIDR supprime l'usage des classes A, B et C pour généraliser celui du préfixe réseau étendu.
 - Les classes A, B ou C n'existent plus; toutes les adresses de réseaux sont annoncées avec leur préfixe qui peut être de taille arbitraire : /9, /10, / 11, /12
 - Les routeurs ne se basent plus sur les 3 premiers bits de chaque adresse pour déterminer la classe du réseau : seul le préfixe fait loi.

- >211.11.2.0 255.255.255.224 \(\Rightarrow /27
- >211.11.2.<mark>32</mark> 255.255.255.224 \(\Rightarrow /27
- >211.11.2.64 255.255.255.224 \IPPrime /27
- >211.11.2.96 255.255.255.224 \IPPrime /27
- >211.11.2.128 255.255.255.224 \IPPrime /27
- >211.11.2.160 255.255.255.224 \IPPrime /27
- >211.11.2.192 255.255.255.224 \IPPrime /27
- >211.11.2.224 255.255.255.224 \IPPrime /27

- Le netmask est identique pour chaque sousréseaux
 - ⇔ Chaque sous-réseaux à un nombre identique d'@IP

VLSM

Compréhension 1

Quelle stratégie doit on adopter pour être en mesure d'obtenir les réseaux suivants ?

net1: 14 stations net2: 28 stations net3: 2 stations net4: 7 stations net5: 28 stations

- Net1 : nécessite un /28 => 2⁴ 2 stations
- Net2: nécessite un /27 => 2^5 2 stations
- Net3: nécessite un /30 => 2^2 2 stations
- Net4 : nécessite un /29?
- Net5: nécessite un /27 => 2^5 2 stations

VLSM Compréhension 2

2⁶ **2**⁵ **2**⁴ **2**³ **2**² **2**¹ **2**⁰ **128 64 32** 16 8 4 2

>211.11.2.0 255.255.255.224 \(\Rightarrow @IP de 1 \) \(\alpha \) 30

>211.11.2.32 255.255.255.224 ⇔ @IP de 33 à 62

>211.11.2.64 255.255.255.224 ⇔ @IP de 65 à 94

>211.11.2.96 255.255.255.224 \(\Rightarrow \)@IP de 97 à 126

@IP consommées

>211.11.2.128 255.255.255.224 \(\Rightarrow\) @IP de 129 à 158

>211.11.2.160 255.255.255.224 ⇔ @IP de 161 à 190

@IP sauvées >211.11.2.192 255.255.255.224 \(\Display @IP de 193 \) \(\alpha 222

>211.11.2.224 255.255.255.224 \(\Rightarrow \) @IP de 225 à 254

Attributions:

Net2: 211.11.2.0 /27 ⇔@IP de 1 à 30

Net5: 211.11.2.32 /27 ⇔@IP de 33 à 62

Net1: 211.11.2.64 /28 ⇔@IP de 65 à 78

- Net4: 211.11.2.80 /28 ⇔@IP de 81 à 94

Net3: 211.11.2.96 /30 ⇔@IP de 97 à 98

Avantages de CIDR Compréhension 1

Un FAI dispose d'un bloc d'adresses : 201.0.64.0/18. Un de ses clients lui demande 800 adresses. Quelle stratégie le FAI adopte t'il ?

- Avantages de CIDR
 - Les préfixes réseaux sont variables
 - ⇒ FAI peuvent allouer à leurs clients
 Un espace d'adressage adapté à leur besoin.
- 201.0.64.0/18
 - ⇔ Soit 2^14 (16384) @IP ou 64 réseaux /24.

Avantages de CIDR Compréhension 2

- Un client demande 800 adresses :
 - On peut soit lui assigner une classe B
 - **⇔** Et perdre environ 64700 adresses
 - Soit lui assigner 4 Classes C
 - ⇔ Et devoir rentrer quatre routes dans ses tables de routage
 - Avec CIDR, le FAI peut assigner à son client le bloc 201.0.68.0/22 : 1024 adresses.

Avantages de CIDR 128 64 32 Compréhension 3

2⁷ **2**⁶ **2**⁵ 2⁴ 2³ 2² 2¹ 2⁰ **128 64 32** 16 8 4 2 1

FAI: **11001001.0000000.01**000000.00000000

201.0.64.0/18

Client: 11001001.00000000.010001XX.00000000

201.0.68.0/22

11001001.00000000.01000100.00000000

201.0.68.0/24

11001001.00000000.01000101.00000000

201.0.69.0/24

11001001.00000000.01000110.00000000

201.0.70.0/24

11001001.00000000.01000111.00000000

201.0.71.0/24

CLASSES C du client

CIDR

Agrégation de routes

- Un FAI dispose du bloc d'adresse 200.25.0.0/16.
 - Le FAI alloue :
 - 8 blocs /24 à l'organisation A,
 - 4 blocs à l'organisation B,
 - 2 blocs à C et 2 blocs à D.

Grâce à l'agrégation :

- A agrége ses 8 réseaux /24 dans une seule annonce (200.25.16.0/21),
- B agrége ses 4 /24 dans la seule annonce 200.25.24.0/22
- C agrège ses 2 /24 avec l'annonce 200.25.28.0/23
- D fait de même avec l'annonce 200.25.30.0/23.
- Enfin, le FAI agrège les 254 blocs /24 de ses clients par une seule annonce : 200.25.0.0/16.

CIDR

Agrégation de routes

• 200.25.0.0/16

16 réseaux=00010000

\$\precep200.25.16.0/20

- 200.25.00010000.00000000
- 200.25.00010xxx.00000000 => 8 Réseaux

⇔200.25.16.0/21

• 200.25.00011xxx.00000000 => 8 Réseaux

\$\preceq\$200.25.24.0/21

• 200.25.000110xx.00000000 => 4 Réseaux

⇔200.25.24.0/22

200.25.000111xx.00000000 => 4 Réseaux

⇔200.25.28.0/22

• 200.25.0001110x.00000000 => 2 réseaux

⇔200.25.28.0/23

• 200.25.0001111x.00000000 => 2 réseaux

⇔200.25.30.0/23

Agrégation de routes Compréhension

