CLAIMS

- 1. A method for preparing a trisaccharide (Man β 1 \rightarrow 4GlcN β 1 \rightarrow 4GlcN) of the reducing terminal in the core sugar chain structure of an asparagine-linked glycoprotein, comprising
- (1) a process of preparing a mannose disaccharide compound (a type of ManP¹ β 1 \rightarrow 4ManP¹) of the formula (I)

$$P^{1}OP^{1$$

5

10

15

20

25

wherein P^1 is an OH-protecting group and the wavy line means that - OP^1 is linked at an axial or equatorial position or mixture of both, by hydrolyzing a polysaccharide having mannose β -1,4-bonds and protecting OH groups of the resulting hydrolysate.

- 2. The method for preparing a trisaccharide (Man β 1 \rightarrow 4GlcN β 1 \rightarrow 4GlcN) of the reducing terminal in the core sugar chain structure of an asparagine-linked glycoprotein of claim 1, further comprising each of
- (2) a process of preparing a glycal compound, in which mannose of the reducing terminal of the mannose disaccharide is converted to glycal, by halogenation and reduction of the mannose disaccharide (a type of ManP¹ β 1 \rightarrow 4ManP¹), and
- (3) a process of preparing an azide disaccharide compound (a type of ManP¹ β 1 \rightarrow 4ManP¹) shown with formula (II) in which the 2-azide group of mannose in the reducing terminal is linked at the equatorial position;

$$P^{1}O$$
 $P^{1}O$
 $P^{1}O$
 $P^{1}O$
 $OP^{1}O$
 $OP^{1}O$

wherein P1 is the same above, the wavy line means that -NO2 is linked

at an axial or equatorial position or mixture of both, by azidenitration reaction of the glycal compound above.

- 3. The method for preparing a trisaccharide (Man β 1 \rightarrow 4GlcN β 1 \rightarrow 4GlcN) of the reducing terminal in the core sugar chain structure of an asparagine-linked glycoprotein of claim 2, further comprising
- (4) a process of substituting the nitro group of the azide disaccharide compound (a type of ManP¹ β 1→4ManP¹) with a leaving group, and
- (5) a process of preparing a trisaccharide compound (a type of Man β 1 \rightarrow 4GlcNP¹ β 1 \rightarrow 4GlcNP²) shown with the formula (III);

$$P_{10}^{10} \longrightarrow P_{10}^{10} \longrightarrow$$

wherein P¹, P², P³ and P¹¹ are the same above, by a reaction of the product having the leaving group with aminoprotected glucopyranoside shown with the formula;

5

10

15

20

wherein P^2 is an OH-protecting group, P^3 is an amino-protecting group and P^{11} is an OH-protecting group.

- 4. The method for preparing a trisaccharide (Man β 1 \rightarrow 4GlcN β 1 \rightarrow 4GlcN) of the reducing terminal in the core sugar chain structure of an asparagine-linked glycoprotein of claim 3, further comprising
- (6) a process of preparing an asparagine-linked trisaccharide (Man β 1 \rightarrow 4GlcNP¹ β 1 \rightarrow 4GlcNP²) compound shown with the formula (IV);

wherein P¹ and P² are the same above, P⁴ and P⁶ are independently amino-protecting groups and P⁵ is a carboxyl-protecting group, by coupling of the reducing terminal of the trisaccharide compound above with the protected asparagine derivative.

5. A method for preparing a mannose disaccharide compound (a type of ManP¹ β 1 \rightarrow 4ManP¹) shown with the formula (I);

$$P^{1}O$$
 $P^{1}O$
 $P^{1}O$
 $P^{1}O$
 $P^{1}O$
 $P^{1}O$
 $P^{1}O$
 $P^{1}O$
 $OP^{1}O$
 OP

5

10

15

20

wherein P^1 is an OH-protecting group and the wavy line means that - OP^1 is linked at an axial or equatorial position or mixture of both, by hydrolyzing a polysaccharide having mannose β -1,4-bonds and protecting OH groups of the resulting hydrolysate.

6. A method for preparing the azide disaccharide (a type of ManP¹ β 1 \rightarrow 4ManP¹) shown with the formula (II) in which the 2-azide group of mannose in the reducing terminal is linked at the equatorial position;

$$P^{1}O$$
 $P^{1}O$
 $P^{1}O$
 $P^{1}O$
 $P^{1}O$
 N_{3}
 NO_{2}
(II)

wherein P¹ is an OH-protecting group, and the wavy line means that – NO₂ is linked at an axial or equatorial position or mixture of both, comprising a process of preparing a glycal compound, in which mannose of the reducing terminal of the mannose disaccharide is converted to glycal, by halogenation and reduction of the mannose

disaccharide compound (a type of ManP¹ β 1 \rightarrow 4ManP¹) shown with the formula (I);

$$P^{1}O$$
 $P^{1}O$
 $P^{1}O$
 $P^{1}O$
 $P^{1}O$
 $P^{1}O$
 $OP^{1}O$
 $OP^{1}O$

5

20

wherein P¹ is the same above and the wavy line means that -OP¹ is linked at an axial or equatorial position or mixture of both, and subsequent azidenitration reaction of the glycal compound.

7. A method for preparing the trisaccharide compound shown with the formula (III);

$$P_{p_{10}}^{10} \xrightarrow{Op_{1}} Op_{1}^{10} Op$$

wherein P¹, P², P³ and P¹¹are the same above, comprising a process of substituting the nitro group of the azide disaccharide compound (a type of ManP¹ β 1 \rightarrow 4ManP¹) shown with the formula (II) with a leaving group;

$$P_{P_{0}}^{10} \longrightarrow P_{0}^{10} \longrightarrow P_{N_{3}}^{10} \longrightarrow N_{0}^{10} \longrightarrow N_{0}^{1$$

wherein P¹ is the same above, the wavy line means that -NO₂ is linked at an axial or equatorial position or mixture of both, and the 2-azide group of mannose in the reducing terminal is linked at the equatorial position,

and next, reacting the substituted compound having the leaving group with amino-protected glucopyranoside of the formula;

wherein P^2 is an OH-protecting group, P^3 is an amino-protecting group and P^{11} is an OH-protecting group.

8. A method for preparing an asparagine-linked trisaccharide compound (Man β 1 \rightarrow 4GlcNP¹ β 1 \rightarrow 4GlcNP²) shown with the formula (IV)

wherein P¹ and P² are the same above, P⁴ and P⁶ are independently amino-protecting groups and P⁵ is a carboxyl-protecting group, by coupling of the reducing terminal of the trisaccharide compound (III)

wherein P¹, P², P³ and P¹¹are the same above, with a protected asparagine derivative.

5

9. The azide disaccharide (a type of ManP¹ β 1 \rightarrow 4ManP¹) compound shown with the formula (II);

$$P_{P_{0}}^{1} \longrightarrow P_{0}^{1} \longrightarrow$$

- wherein P¹ is an OH-protecting group, and the wavy line means that NO₂ is linked at an axial or equatorial position or mixture of both.
 - 10. The trisaccharide compound (a type of Man β 1 \rightarrow 4GlcNP¹ β 1 \rightarrow 4GlcNP²) shown with the formula of (III);

wherein P^1 , P^2 and P^{11} are OH-protecting group, and P^3 is an aminoprotecting group.