Computational Statistics, M1 MAS DS, Aix-Marseille University

Houssam BOUKHECHAM

December 14, 2024

Contents

1	Random variable simulation	2
	1.1 Transformation methods	2
	1.2 Accept-reject method	2
2	Importance sampling	3
3	Bootstrap	3
4	Monte Carlo methods	4
5	Gibbs algorithms for bayesian statistics	4
	5.1 Metropolis Hastings algorithm	4
	5.2 MCMC	4

1 Random variable simulation

[2, 1, 3]

1.1 Transformation methods

Lemma 1. Let $F: \mathbb{R} \to [0,1]$ be an non-decreasing function. If a random variable X has F as its cumulative distribution function (CDF), then the random variable $U = F(X) \sim U(0,1)$.

Example 1 (Normal variable generation). The cumulative distribution function (CDF) of a Gaussian random variable with mean μ and standard deviation σ is given by:

$$F(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{x} e^{-\frac{1}{2}(\frac{t-\mu}{\sigma})^2} dt.$$
 (1)

The function F is a diffeomorphism. Assuming $\mu = 0$ and $\sigma = 1$, an approximation F_a^{-1} of the inverse function F^{-1} can be computed to arbitrary precision ([?], Example 2.6). To generate a random sample of size n from the standard Gaussian distribution, we first generate n random samples from the uniform distribution, $\{u_1, u_2, \ldots, u_n\}$. Then, we map this sample to the Gaussian distribution using the inverse approximation:

$$\{F_a^{-1}(u_1), F_a^{-1}(u_2), \dots, F_a^{-1}(u_n)\}.$$

Exercise 1.

- 1. Generate a sample $S = \{u_1, u_2, \dots, u_n\}$ of size n = 500 from the uniform distribution.
- 2. Implement the function

$$F_a^{-1}(u) = t - \frac{a_0 + a_1 t}{1 + b_1 t + b_2 t^2}, \quad u \in (0, 1),$$

where $t^2 = \log(u^{-2})$ and $a_0 = 2.30753, a_1 = 0.27061, b_1 = 0.99229, b_2 = 0.04481$

- 3. Plot the histogram of the set $F_a^{-1}(S)$ and comment the results.
- 4. \clubsuit Repeat the process for a larger value of n (e.g., n=50000). Compare the generated sample with a standard Gaussian random variable generator and comment the results.

1.2 Accept-reject method

2 Importance sampling

```
# Define the target distribution (Gamma distribution)
target_dist <- function(x, shape = 2, rate = 1) {
  ifelse(x > 0, x^(shape - 1) * exp(-rate * x), 0)
}

# Define the proposal distribution (Normal distribution)
proposal_dist <- function(x) {
  dnorm(x, mean = 2, sd = 2) # Normal(2, 2) PDF
}</pre>
```

```
# Generate samples from the proposal distribution
n_samples <- 2000

# proposal sample
ps <- rnorm(n_samples, mean = 2, sd = 2)

# Compute the weights for each sample
weights <- target_dist(ps) / proposal_dist(ps)

# Estimate the mean of the target distribution using IS
importance_sampling_mean <- sum(weights * ps) / sum(weights)
print(importance_sampling_mean)

## [1] 2.011539</pre>
```

3 Bootstrap

Exercise 2. Let $S = \{x_1, x_2, ..., x_n\}$ be a random sample from the uniform distribution on the interval $(0, \theta)$. Assume we want to estimate the unknown parameter θ , so we use the estimator $X_{(n)} = \max x_i$.

- 1. If X_1, X_2, \dots, X_n are iid with uniform distribution on $(0, \theta)$, what is the distribution of the random variable $X_{(n)} = \max X_i$?
 - (Hint: Determine the cumulative distribution function of $X_{(n)}$)
- 2. Is the estimator $X_{(n)}$ biased?
- 3. How would you use the bootstrap to estimate the bias in $X_{(n)}$ for θ ?

- 4 Monte Carlo methods
- 5 Gibbs algorithms for bayesian statistics
- $5.1 \quad {\rm Metropolis} \ {\rm Hastings} \ {\rm algorithm}$
- **5.2** MCMC

 test

References

- [1] James E Gentle. Computational statistics, volume 308. Springer, 2009.
- [2] CP Robert. Monte carlo statistical methods, 1999.
- [3] Surya T Tokdar and Robert E Kass. Importance sampling: a review. Wiley Interdisciplinary Reviews: Computational Statistics, 2(1):54–60, 2010.