AS-IntroVAE: Adversarial Similarity Distance Makes Robust IntroVAE

 ${\sf Changjie}\ {\sf Lu}^1, {\it ShenZheng}^{1,3}, {\it ZiruiWang}^2, {\it OmarDib}^1, {\it GauravGupta}^1$

Wenzhou Kean University, Zhejiang University, Carnegie Mellon University

Introspective VAE(Intro-VAE)[Hua+18]

Combine VAE(statistical analysis) and GAN(adversarial learning) together.

$$\mathcal{L}_{E} = ELBO(x) + \sum_{s=r,g} \left[m - KL \left(q_{\phi} \left(z | x_{s} \right) \| p(z) \right]^{+} \right]$$

$$\mathcal{L}_{D} = \sum_{s=r,g} \left[KL \left(q_{\phi} \left(z | x_{s} \right) \| p(z) \right) \right]$$

$$\tag{1}$$

where x_r is the reconstructed image, x_g is the generated image, and m is the hard threshold for constraining the KL divergence.

Soft-IntroVAE[DT21]

The hard threshold makes training stability sensitive to the hyper parameter, S-IntroVAE introduces a soft expression.

$$\mathcal{L}_{E} = ELBO(x) - \frac{1}{\alpha} \sum_{s=r,g} \exp(\alpha ELBO(x_{s}))$$

$$\mathcal{L}_{D} = ELBO(x) + \gamma \sum_{s=r,g} ELBO(x_{s})$$
(2)

where α, γ are both hyperparameters.

Figure 1: AS-IntroVAE workflow. In the first phase, the encoder-decoder receives the real image and produce the reconstructed image. In the second phase, the **same** encoder-decoder conduct adversarial learning in the latent space for the reconstructed image and the fake image.

Limitation and Solution

Those introspective learning-based methods suffer from the **posterior collapse** problem and the **vanishing gradient** problem.

Contribution:

- A new introspective variational autoencoder named Adversarial Similarity Distance Introspective Variational Autoencoder (AS-IntroVAE)
- A new theoretical understanding of the posteriors collapse and the vanishing gradient problem in VAEs.
- A novel similarity distance named Adversarial Similarity Distance (AS-Distance) for measuring the differences between the real and the synthesized images.
- Promising results on image generation and image reconstruction tasks with significantly faster convergence speed

$$D(p_r, p_g) = \mathbb{E}_{x \sim p(z)} \left[\left(\mathbb{E}_{x \sim p_r} \left[q(z|x) \right] - \mathbb{E}_{x \sim p_g} \left[q(z|x) \right] \right) \right]^2$$
 (3)

where p_r is distribution of real data, p_g is distribution of generated data. The encoder and the decoder plays an adversarial game on this distance:

$$\underset{Dec \ Enc}{\min \max} D(p_r, p_g) \tag{4}$$

Short Presentation Details

We use 2-Wasserstein so that we could apply a kernel trick on Equ.3.

$$D(p_r, p_g) = \mathbb{E}_{x \sim p_{r,g}} \left[k \left(x_r^i, x_r^j \right) + k \left(x_g^i, x_g^j \right) - 2k \left(x_r^i, x_g^j \right) \right]$$
 (5)

where $k\left(x_r^i, x_g^i\right) = \mathbb{E}_{z \sim p(z)}[q(z|x_r^i) \cdot q(z|x_g^i)].$

Since the latent space is a normal distribution. This kernel k can be deduced as

$$k\left(x_{r}^{i}, x_{g}^{j}\right) = \frac{-\frac{1}{2} \frac{\left(u_{r}^{i} - u_{g}^{j}\right)^{2}}{\lambda_{r}^{i} + \lambda_{g}^{j}}}{\left(2\pi\right)^{\frac{n}{2}} \cdot \left(\lambda_{r}^{i} + \lambda_{g}^{j}\right)^{\frac{1}{2}}}$$
(6)

where u, λ represent the variational inference on the mean and variance of x, i, j represent the ith, jth pixel in images.

We derive the loss function for AS-IntroVAE as:

$$\mathcal{L}_{E_{\phi}} = ELBO(x) - \frac{1}{\alpha} \sum_{s=r,g} \exp(\alpha(\mathbb{E}_{q(z|x_s)}[\log p(x \mid z)] + cKL(q_{\phi}(z|x_s)||p(z)) + (1-c)D(x_r, x_g)))$$

$$\mathcal{L}_{D_{\theta}} = ELBO(x) + \gamma \sum_{s=r,g} (\mathbb{E}_{q(z|x_s)}[\log p(x \mid z)] + cKL(q_{\phi}(z|x_s)||p(z)) + (1-c)D(x_r, x_g))$$
(7)

where c = min(i * 5/T, 1), i is the current iteration and T is total iteration.

hort Title 9/16 Short Presentation Details

Results

Figure 2: Visual Comparison on 2D Toy Dataset 8 Gaussians. From top to bottom row: results with different hyperparameters. From left to right column: VAE, IntroVAE, S-IntroVAE, Ours.

Short Presentation Details

Figure 3: Image Generation Visual Comparison at CelebA-128 dataset. From left to Right: WGAN-GP, S-IntroVAE, Ours

Figure 4: Image Generation Visual Comparison at CelebA-256 dataset. 1 (1)

AS-IntroVAE

Figure 5: Image Reconstruction Visual Comparison at CelebA-128 dataset.

		VAE		S-IntroVAE		-	WGAN-GP	S-IntroVAE	Ours
2*C1	KL	220.2	192.4	50.2	3.4	MNIST	139.02	98.84	96.16
	JSD	110.1	56.0	16.9	5.6			30.0.	
2*C2	KL	220.3	191.1	136.5	1.3	CIFAR-10	434.11	275.20	271.69
	JSD	110.0	68.0	36.6	4.4	CelebA-128	160 53	140.35	130.74
2*C3	KL	220.2	64.0	46.2	2.0	00.007.1220	170.70		
	JSD	109.8	53.0	9.6	7.1	CelebA-256	170.79	143.33	129.61

Table 1: 2D Toy Dataset 8 Gaussians Score $KL\downarrow/JSD\downarrow$ Table

Table 2: Image Generation FID Score↓ Table.

	PSNI	R	SSIM		MSE	
	S-IntroVAE	Ours	S-IntroVAE	Ours	S-IntroVAE	Ours
MNIST	20.282	21.014	0.885	0.898	0.011	0.009
CIFAR-10	19.300	19.445	0.599	0.620	0.019	0.019
Oxford	15.372	20.168	0.348	0.604	0.049	0.013
CelebA-128	17.818	22.924	0.561	0.801	0.018	0.006
CelebA-256	22.422	23.156	0.790	0.758	0.007	0.006

Table 3: Image Reconstruction PSNR↑/SSIM↑/MSE↓ Score Table

Short Presentation Details

990

Figure 6: The training stability visual comparison at CelebA-128 dataset. From left to right panel: 10 epoch, 20 epoch, 50 epoch.

1 (1) AS-IntroVAE Results

14/16 Short Presentation Details

Figure 7: Image generation visual comparisons at CelebA-128 dataset (resolution: 128×128).

(□) → (□) → (□) → (豆) → (□) → (

15/16 Short Presentation Details

Figure 8: Image generation visual comparisons at CelebA-256 dataset (resolution: 256×256).

Figure 9: Image generation visual comparisons at MNIST dataset (resolution: 28 \times 28).