Classificaion for fMRI curves

2024-05-07

Functional GLM with sparse group lasso using functional manifold components

- Setting 1: $\alpha = 0.2$, FVE = 0.7, d = 2
- Setting 2: $\alpha = 0.2$, FVE = 0.7
- Setting 3: $\alpha = 0.1$, FVE = 0.7
- Setting 4: $\alpha = 0.1$, FVE = 0.95

	Setting 1	Setting 2	Setting 3	Setting 4
d	2	$14 \sim 15$	$14 \sim 15$	$19 \sim 20$
Accuracy	0.580	0.580	0.581	0.582
Sensitivity	0.111	0.039	0.041	0.018
Specificity	0.917	0.965	0.962	0.977

문제점

- 이전에 B-spline이나 FPCA를 이용한 Group lasso와 유사하게 모든 $\beta=0$ 으로 shrinkage 되어 prediction을 1개 class로만 분류해버리는 문제 발생
- 현재 hyperparameter tuning은 하지 않았지만, 급격히 좋아질 것이라 기대되지는 않음
- 데이터의 fluctuatation이 심해서인지 추정된 manifold의 dimension 또한 꽤 커보임
 - 그럼에도 B-spline이나 FPCA으로 차원축소한 것보다는 적은 편임

다른 방법??

- Xue, K., Yang, J., & Yao, F. (2023). Optimal linear discriminant analysis for high-dimensional functional data. Journal of the American Statistical Association, 1-10.
- Chiou, J. M., & Müller, H. G. (2014). Linear manifold modelling of multivariate functional data. Journal of the Royal Statistical Society Series B: Statistical Methodology, 76(3), 605-626.