ADE - Archietettura degli elaboratori

Elia Ronchetti

Marzo 2022

Indice

1	Intr	oduzione e Argomenti	
	1.1	Rappresentazione dell'informazione	
	1.2	Circuiti logici	
	1.3	Instruction Set Architecture (ISA)	
	1.4	Linguaggio Assembly	
	1.5	Datapath	
	1.6	Gestione delle eccezioni	
	1.7	Tecniche di gestione dell'ingresso/uscita	
	1.8	Gerarchie di memoria: cache	
2	Sistemi numerici		
	2.1	Conversione tra basi	
	2.2	Operazioni aritmetiche e Overflow	

Capitolo 1

Introduzione e Argomenti

1.1 Rappresentazione dell'informazione

- Sistemi numerici
- Rappresentazione dei numeri interi con e senza segno
- Rappresentazione dei numeri in virgola fissa e mobile
- Rappresentazione dell'informatica non numerica

1.2 Circuiti logici

- Reti combinatorie
- Reti sequenziali e FSM (Finite State Machine)
- Rassegna di circuiti notevoli (decoder, multiplexer, register file, ALU, etc.)

1.3 Instruction Set Architecture (ISA)

- schema di von Neumann
- CPU, registri, ALU e memoria
- Ciclo fondamentale di esecuzione di una istruzione (fetch/decode/execute)
- Tipi e formati di istruzioni MIPS32

• Modalità di indirizzamento

1.4 Linguaggio Assembly

- Formato simbolico delle istruzioni
- Catena di programmazione (compilatore, assembler, linker, loader, debugger, etc.)
- Pseudo-istruzioni e direttive dell'assemblatore
- Scrittura di semplici programmi assembly
- Convenzioni programmative (memoria, nomi dei registri, etc.)

1.5 Datapath

- Percorsi dei dati per le diverse classi di istruzioni
- Controllo del percorso dei dati con FSM

1.6 Gestione delle eccezioni

- Tassonomia di eccezioni in terminologia MIPS32
- Modifiche alla FSM di controllo, registro Cause

1.7 Tecniche di gestione dell'ingresso/uscita

- Controllo di programma
- Interruzione di programma
- Accesso diretto alla memoria

1.8 Gerarchie di memoria: cache

- Cache a mappature diretta
- Cahce fully associative
- Cache n-way set associative

Capitolo 2

Sistemi numerici

Con il termine bit definiamo l'unità di misura dell'informazione. Un bit può assumero solo il valore di 0 o 1.

Combinando tra loro più bit si ottengono strutture più complesse, per esempio:

- byte, 8 bit
- nybble, 4 bit
- word, 32 bit

Una rappresentazione è un modo per descrivere un'entità Il sistema numerico decimale:

- usa 10 cifre
- è un sistema posizionale: ogni cifra assume un valore diverso a seconda della posizione che occupa

Confronto tra Basi Inserire immagine confronto

2.1 Conversione tra basi

2.2 Operazioni aritmetiche e Overflow