PID Control for Quadcopter Stabilization

Andrew Gibiansky

andrew.gibiansky@gmail.com

November 30, 2012

System

Suppose we have some system with the transfer function

$$G(s)=\frac{1}{a_0s^2+a_1s}.$$

We would like this system to follow some desired trajectory θ . However, we have a disturbance (due to modeling error or external factors) summarized by a term D(s). In addition, this system is clearly not asymptotically stable.

PD Control

We can drive the difference between the true trajectory and the desired trajectory to zero. The open loop system would be:

$$\theta_t(s) = \theta(s)G(s).$$

In order to drive the error to zero, we introduce a PD compensator:

$$F(s) = K_p + K_d s.$$

The new input is given by

$$U(s) = F(s)(\theta_t(s) - \theta(s)).$$

Then, the output is

$$\theta_t(s) = (F(s)(\theta_t(s) - \theta(s)) + D(s))G(s) \implies$$

$$\theta_t(s) = \frac{K_p\theta(s) - D(s) + K_d\theta(s)s}{K_p + K_ds - a_1s - a_0s^2}$$

Final Value Theorem

Theorem: Suppose F(s) is the unilateral Laplace transform of f(t), and f(t) converges to some value as $t \to \infty$. Then,

$$\lim_{t\to\infty}f(t)=\lim_{s\to 0}sF(s).$$

PD Control Results

Suppose we have a step trajectory

$$\theta(s) = \mathcal{L}\left\{T\right\} = \frac{T}{s}$$

and a similar constant disturbance term

$$D(s) = \mathcal{L}\{D\} = \frac{D}{s}$$

Then, the tracking error is

$$E(s) = \theta(s) - \theta_t(s)$$

$$= \frac{a_0 T s^2 + T a_1 s - D}{s(K_p + K_d s - a_1 s - a_0 s^2)}$$

Steady State Error

By the final value theorem:

$$\lim_{t\to\infty} \mathbf{e}(t) = \lim_{s\to 0} sE(s) = -\frac{D}{K_p}.$$

Steady state error!

In physical systems, we cannot make the gain K_p arbitrarily large, so this becomes a real problem. A PD controller cannot accurately track a trajectory with a step in it.

(The error comes from the fact that eventually the system has zero derivative error, so K_d is ineffective, and the constant disturbance balances out the proportional gain K_p .)

PID Control

Add an integral term:

$$F(s) = K_p + K_d s + K_i/s.$$

This integral term ensures that if we remain in a steady state error for long enough, the build-up will overcome any constant disturbance. The error becomes:

$$E(s) = \frac{Ta_0s^2 + Ta_1s - D}{K_i + K_ps + K_ds^2 - a_0s^3 - a_1s^2}$$

Final value theorem:

$$\lim_{t\to\infty} e(t) = \lim_{s\to 0} sE(s) = 0.$$

General Case: PD Control

Suppose we have a system with transfer function H(s)/s, such that $H(0) \neq 0$. Then, using a PD controller where $F(s) = K_p + K_d s$ we have

$$E(s) = (F(s)E(s) + D(s))H(s)/s - \theta(s)$$

$$E(s) = \frac{F(s)H(s)/s + D(s)H(s)/s - \theta(s)}{1 - F(s)H(s)/s}$$

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{F(s)H(s) + D(s)H(s) - s\theta(s)}{s - F(s)H(s)}$$
$$= \lim_{s \to 0} \frac{sF(s)H(s) + s(D/s)H(s) - s^2\theta(s)}{s - F(s)H(s)} = -\frac{D}{K_p}$$

We have the steady state error shown before.

General Case: PID Control

With a PID control with $F(s) = K_p + K_d s + K_i / s$, we obtain the same form of the result:

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} \frac{sF(s)H(s) + s(D/s)H(s) - s^2\theta(s)}{s - F(s)H(s)}$$
$$= \lim_{s \to 0} \frac{D}{-K_p + K_d s + K_i/s} = 0$$

Thus, the result we found before generalize for any transfer function of the form H(s)/s where $H(0) \neq 0$.

Quadcopters

Quadcopter Thrusts

Degrees of freedom provided by extra motors.

Coordinate Systems

Figure: Quadcopter Body Frame and Inertial Frame

Forces and Torques

Thrust force:

$$T_B = \sum_{i=1}^4 T_i = k \begin{bmatrix} 0 \\ 0 \\ \sum \omega_i^2 \end{bmatrix}$$
.

Drag force:

$$F_D = \begin{bmatrix} -k_d \dot{x} \\ -k_d \dot{y} \\ -k_d \dot{z} \end{bmatrix}$$

• Motor torques:

$$\tau_{B} = \begin{bmatrix} Lk(\omega_{1}^{2} - \omega_{3}^{2}) \\ Lk(\omega_{2}^{2} - \omega_{4}^{2}) \\ b(\omega_{1}^{2} - \omega_{2}^{2} + \omega_{3}^{2} - \omega_{4}^{2}) \end{bmatrix}$$

Equations of Motion: Linear

Inertial Frame:

$$m\ddot{x} = \begin{bmatrix} 0 \\ 0 \\ -mg \end{bmatrix} + RT_B + F_D$$

Body Frame:

$$m\ddot{x} = R^{-1} \begin{bmatrix} 0\\0\\-mg \end{bmatrix} + T_B + R^{-1}F_D - \omega \times (m\dot{x})$$

Equations of Motion: Rotational

Euler's Equations (Rigid Body Dynamics):

$$I\dot{\omega} + \omega \times (I\omega) = \tau$$

Body Frame Dynamics:

$$I = \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}.$$

$$\dot{\omega} = \begin{bmatrix} \tau_{\phi} I_{xx}^{-1} \\ \tau_{\theta} I_{yy}^{-1} \\ \tau_{\psi} I_{zz}^{-1} \end{bmatrix} - \begin{bmatrix} \frac{I_{yy} - I_{zz}}{I_{xx}} \omega_{y} \omega_{z} \\ \frac{I_{zz} - I_{xx}}{I_{yy}} \omega_{x} \omega_{z} \\ \frac{I_{xy} - I_{yy}}{I_{zz}} \omega_{x} \omega_{y} \end{bmatrix}$$

Simulation

```
1 % Simulation times, in seconds.
 2 start time = 0; end time = 10; dt = 0.005;
 3 times = start time:dt:end time;
 4 N = numel(times):
 6 % Initial simulation state.
   x = [0: 0: 10]; xdot = zeros(3, 1); theta = zeros(3, 1);
 9 % Simulate some disturbance in the angular velocity.
10 % The magnitude of the deviation is in radians / second.
11 deviation = 100:
12 thetadot = deg2rad(2 * deviation * rand(3, 1) - deviation);
13
14 % Step through the simulation, updating the state.
15 for t = times
                                                                            % Get controller input
16
        i = input(t);
17
                                                                            % Convert (\dot{\phi}, \dot{\theta}, \dot{\psi}) \rightarrow \dot{\omega}
        omega = thetadot2omega(thetadot, theta);
18
        a = acceleration(i, theta, xdot, m, q, k, kd);
                                                                            % Compute linear acceleration
19
        omegadot = angular acceleration(i, omega, I, L, b, k); % Compute angular acceleration
20
        omega = omega + dt * omegadot;
                                                                            \vartheta \omega = \omega + dt \times \dot{\omega}
21
        thetadot = omega2thetadot(omega, theta);
                                                                            % Convert \omega \rightarrow (\dot{\phi}, \dot{\theta}, \dot{\psi})
                                                                            \vartheta \vec{\theta} = \vec{\theta} + dt \times (\dot{\phi}, \dot{\theta}, \dot{\psi})
22
        theta = theta + dt * thetadot;
23
        xdot = xdot + dt * a:
                                                                            \hat{x} = \dot{x} + dt \times a
24
                                                                            x = x + dt \times \dot{x}
        x = x + dt * xdot:
25 end
```

Visualization

YouTube Movie

PD Control

Control signal should be turned into a torque:

$$\tau = Iu(t) = I\dot{\omega}$$

We can set torques:

$$\begin{bmatrix} \tau_{\phi} \\ \tau_{\theta} \\ \tau_{\psi} \end{bmatrix} = \begin{bmatrix} -I_{xx} \left(K_{d} \dot{\phi} + K_{\rho} \int_{0}^{T} \dot{\phi} \, \mathrm{d}t \right) \\ -I_{yy} \left(K_{d} \dot{\theta} + K_{\rho} \int_{0}^{T} \dot{\theta} \, \mathrm{d}t \right) \\ -I_{zz} \left(K_{d} \dot{\psi} + K_{\rho} \int_{0}^{T} \dot{\psi} \, \mathrm{d}t \right) \end{bmatrix}$$

 Our electronic gyro outputs angular velocities, so we integrate them to get the angle. This integral is multiplied by the *proportional* gain.

Motor Angular Velocities

- We do not actually set torques, we set voltages over the motors. These correspond directly to the motor angular velocities ω_i .
- We can solve for the inputs $\gamma_i = \omega_i^2$:

$$\tau_{B} = \begin{bmatrix} Lk(\gamma_{1} - \gamma_{3}) \\ Lk(\gamma_{2} - \gamma_{4}) \\ b(\gamma_{1} - \gamma_{2} + \gamma_{3} - \gamma_{4}) \end{bmatrix} = \begin{bmatrix} -I_{xx} \left(K_{d} \dot{\phi} + K_{p} \int_{0}^{T} \dot{\phi} \, dt \right) \\ -I_{yy} \left(K_{d} \dot{\theta} + K_{p} \int_{0}^{T} \dot{\phi} \, dt \right) \\ -I_{zz} \left(K_{d} \dot{\psi} + K_{p} \int_{0}^{T} \dot{\psi} \, dt \right) \end{bmatrix}$$

 For the last constraint, choose one to keep the quadcopter aloft:

$$T = \frac{mg}{\cos\theta\cos\phi}$$

PD Control

Figure: Left: Angular velocities. Right: angular displacements (ϕ , θ , ψ). Note that there is some small steady-state error (approximately 0.3°).

 We can do better by adding an integral term to make this a PID controller.

$$egin{aligned} oldsymbol{e}_{\phi} &= K_{d}\dot{\phi} + K_{p}\int_{0}^{T}\dot{\phi}\,\mathrm{d}t + K_{i}\int_{0}^{T}\int_{0}^{T}\dot{\phi}\,\mathrm{d}t\,\mathrm{d}t \\ oldsymbol{e}_{ heta} &= K_{d}\dot{\theta} + K_{p}\int_{0}^{T}\dot{\theta}\,\mathrm{d}t + K_{i}\int_{0}^{T}\int_{0}^{T}\dot{\theta}\,\mathrm{d}t\,\mathrm{d}t \\ oldsymbol{e}_{\psi} &= K_{d}\dot{\psi} + K_{p}\int_{0}^{T}\dot{\psi}\,\mathrm{d}t + K_{i}\int_{0}^{T}\int_{0}^{T}\dot{\psi}\,\mathrm{d}t\,\mathrm{d}t \end{aligned}$$

 To avoid integral wind-up, only start integrating the double-integral once the angle deviation is relatively small.

Integral Windup

Figure: In some cases, integral wind-up can cause lengthy oscillations instead of settling. In other cases, wind-up may actually cause the system to become unstable, instead of taking longer to reach a steady state.

PID Control

Figure: With a properly implemented PID, we achieve an error of approximately 0.06° after 10 seconds.

Automatic Gain Tuning

- Tuning the PID gains $(K_i, K_p, \text{ and } K_d)$ can be difficult.
- Quality of results depends on gain values and the ratios of the different gain values.
- "Best" gains might be different for different modes of operation.
- Requires expert intuition and a lot of time to tune them.
- We would like to do this automatically.

Extremum Seeking

 Define a cost function, defining the quality of a set of parameters:

$$J(\vec{\theta}) = \frac{1}{t_f - t_o} \int_{t_0}^{t_f} e(t, \vec{\theta})^2 dt$$

 Use gradient descent to minimize this cost function in parameter-space:

$$\vec{\theta}(k+1) = \vec{\theta}(k) - \alpha \nabla J(\vec{\theta})$$

Approximate gradient numerically:

$$\nabla J(\vec{\theta}) = \left(\frac{\partial}{\partial K_p} J(\vec{\theta}), \frac{\partial}{\partial K_i} J(\vec{\theta}), \frac{\partial}{\partial K_d} J(\vec{\theta})\right).$$

$$\frac{\partial}{\partial K} J(\vec{\theta}) \approx \frac{J(\vec{\theta} + \delta \cdot \hat{u}_K) - J(\vec{\theta} - \delta \cdot \hat{u}_K)}{2\delta}$$

Gradient Descent Tricks

- Adjust step size α as we go along, to become more precise as time goes on.
- Computing $e(t, \vec{\theta})$ means running a simulation with some random initial disturbance. Use many simulations, take the average. As we go along, average more simulations.
- Repeat many times to produce many local minima, then choose the best one and call it the "global minimum".
- Automatically choose a time to stop iterating (when we're no longer improving our average cost).

Manual Gains vs. Automatically Tuned Gains

PD Control
PID Control
Automatic Gain Tuning

Questions?

Thank you to Professors Donatello Materassi and Rob Wood for their help.