MATH 460

Name:

Homework 3, Fall 2022

I have neither given nor received unauthorized assistance on this assignment.

Homework 3 has questions 1 through 4 with a total of 20 points. Edit this file and append you answers using LaT_EX. Be sure to fill in your name. Upload the converted pdf of your work to Canvas. This assignment is due *Saturday 10 September at 11:59* PM.

Link to your Overleaf work: XXX

5 1. Show that $(\forall x \in (-1,1)) (\exists r \in \mathbf{R}_{>0}) ((x-r,x+r) \subset (-1,1))$.

Solution:

5 2. Define $S = \{(-k, k) | k \in \mathbb{Z}_{>0}\}$. Show that $\bigcup_{q \in S} q = \mathbb{R}$.

Solution:

 $\boxed{5}$ 3. On \mathbb{R}^2 define the binary operators + and × by

$$(a,b) + (c,d) = (a+c,b+d),$$

 $(a,b) \times (c,d) = (ac+2bd,ad+bc).$

These operators are commutative and associative. Further, the additive identity is (0,0) and the multiplicative identity is (1,0). Given these facts, show that $(\mathbf{R}^2,+,\times)$ is a field.

Solution:

5 4. Show that the complex field is not ordered. Hint: Suppose it is. Let P be its positive set. Since $i \neq 0$, either $i \in P$ or $-i \in P$. Show that both $i \in P$ or $-i \in P$ are contradictions.

Solution: We will prove this by contradiction. Suppose the complex field is ordered, and let P be its positive set. Since $i \neq 0$, either $i \in P$ or $-i \in P$. If $i \in P$, closer of P under multiplication implies that $i^2 \in P$ and $i^4 \in P$. But this says that $-1 \in P$ and $1 \in P$. That violates tricotomy.

Similarly, the assumption $-i \in P$ violates tricotomy; therefore the assumption the complex field is ordered is false.

Fun Fact It is possible to define < on the complex field that has the properties

(a) for all $a, b \in \mathbb{C}$ exactly one of the following is true: a < b or a = b or b < a.

(b) for all $a, b, c \in \mathbb{C}$, we have a < b and b < c implies a < c.

But the set $\{z \in \mathbb{C} | 0 < z\}$ does not have the properties required by an ordered field to be a positive set.