Approximate Nearest Neighbor Search based on Product Quantization

Wei Wang CSE, UNSW

Nearest Neighbor (NN) and its Variants

- Given: n points in d-dimensional Euclidean space
- NN query: find the closest point, o*, in D, wrt a query point q
- Approximate NN query: find a near point
- All extendible to kNN versions for k > 1

Motivations

- Theoretical interest
 - Fundamental geometric problem: "post-office problem"
 - Known to be hard due to high-dimensionality
- Many applications
 - Feature vectors: Data Mining, Multimedia DB
 - Applications based on similarity queries, e.g.,
 - Quantization in coding/compression
 - Recommendation systems
 - Bioinformatics/Chemoinformatics
 - Machine Learning
 - Representation learning (e.g., embedding)
 - Dimensionality reduction; collaborative filtering; kNN classifier; Kernel?

19/3/20

Dimensionality reduction for ML

- Start with high-dimensional data
- Run dimensionality reduction
- Do stuff in a small dimensional space

Deep Learning for food

 Deep model trained on a GPU on 6M random pics downloaded from Yelp

Distance in Smaller Space

- 1. Run image through the network
- Use the 128-dimensional bottleneck layer as an item vector
- 3. Use cosine distance in the reduced space

$$f(\mathbf{v}) = \mathbf{V} \quad (\mathbf{v} \in \mathbb{R}^{128})$$

$$d(\mathbf{u}, \mathbf{v}) = \left(\frac{\mathbf{u}}{|\mathbf{u}|} - \frac{\mathbf{v}}{|\mathbf{v}|}\right)^2$$

Nearest Neighbor Food Pics

Preliminary: Vector Quantization (with K-means)

- Idea: compressed representation of vectors
 - Each D-dim vector x is represented by QZ(x), where QZ() is a quantizer
 - $dist(x, o) \approx dist(x, QZ(o))$
- Encode the vectors:
 - Learn a codebook W = $\{c_1, c_2, ..., c_K\}$ via K-means
 - Assign o to its nearest codeword in W
 - E.g., $QZ(o) = c_i (i \in 1...K)$, such that $dist(x, c_i) \le dist(x, c_i)$ for $\forall j$
 - Represent each vector o by its assigned codeword
- Assume D = 256, $K = 2^{16}$
 - Before: 4 bytes * 256 = 1024 bytes for each vector
 - Now:
 - data: 16 bits = 2 bytes
 - codebook: 4 * 256 * 2¹⁶

smaller when $n > 4*256*2^{16}/1022 = 65,664$

Vector Quantization – Query Processing

 Given query q, how to find a point close to q?

Vector Quantization – Query Processing

- Given query q, how to find a point close to q?
- Algorithm:
 - 1. Compute QZ(q)
 - Candidate set C = all data vectors associated with QZ(q)
 - 3. Verification: compute distance between Q and $o_i \in C$
 - Requires loading the vectors in C

Any problem/improvement?

Inverted index: a hash table that maps c_j to a list of o_i that are associated with c_i

Limitations of VQ

- To achieve better accuracy, fine-grained quantizer with large K is needed
- Large K →
 - Costly to run K-means
 - Computing QZ(q) is expensive: O(K M)
 - May need to look beyond q(Q) cell

• Solutions:

- Product Quantization, or
- Hierarchical k-means

Product Quantization

- Idea:
 - Partition the dimension into m partitions
 - Accordingly a vector → m subvectors
 - Use separate VQ with k codewords for each chunk
- Example:
 - 10-dim vector decomposed in m = 2 subvectors
 - $o^T = [o_1 : o_2]^T$
 - Each codebook has 4 codewords, denoted as ci,i
 - Total space in bits:
 - data: m log(K)
 - codebook: m * ((D/m) * K)

7	2	-1	5	6	4	3	-5	-1	-7
-2	3	0	6	4	2	2	4	5	-8
						•••	•••		

0	1	0	0
1	0	1	1

$C_{1,1}$	5.9	2.3	-2.7	3.9	6.1
$C_{1,2}$	-1.3	1.8	7.4	5.5	0.9
$C_{1,3}$:			
C _{1,4}					

$C_{2,1}$	-0.1	3.5	1.4	9.6	5.5
$C_{2,2}$:		:	:
$C_{2,3}$					
C _{2,4}					

q 7 2 -1 5 6 4 3 -5 -1 -7

- Euclidean distance between a query point
 q and a data point encoded as t
 - Restore the virtual joint center by looking up each partition of t in the corresponding codebooks → p

$$d^{2}(\mathbf{q}, \mathbf{t}) = \sum_{i=1}^{D} (\mathbf{q}_{i} - \mathbf{p}_{i})^{2}$$

This is the Asymmetric Distance (AD)

$$d^{2}(\mathbf{q}, \mathbf{t}) = \sum_{i=1}^{m} (\mathbf{q}_{(i)} - \mathbf{c}_{i, \mathbf{t}_{(i)}})^{2}$$

1.8

7.4

5.5

0.9

3.5

9.6

• Naïve:

- Perform ADC for every **t** in the database
- Candidate = those with the k smallest AD
- [Optional] Reranking (if k > 1):
 - Load the data vectors and compute the actual Euclidean distance
 - Return the one with the smallest distance

Pruning:

AD is monotonic in each component

$$d^{2}(\mathbf{q}, \mathbf{t}) = \sum_{i=1}^{m} (\mathbf{q}_{(i)} - \mathbf{c}_{i, \mathbf{t}_{(i)}})^{2}$$

There is an optimal order to consider each encoded points!

$$(\mathbf{q}_{(1)} - \mathbf{c}_{i,\mathbf{t}_{(1)}})^2 + (\mathbf{q}_{(2)} - \mathbf{c}_{i,\mathbf{t}_{(2)}})^2$$

5

0

0

0

$$(\mathbf{q}_{(1)} - \mathbf{c}_{i,\mathbf{t}_{(1)}'})^2 + (\mathbf{q}_{(2)} - \mathbf{c}_{i,\mathbf{t}_{(2)}'})^2$$

Compute it efficiently and incrementally!

Multi-index Algorithm

- 1. Sort each code book in increasing order of their partial AD distance to q
- 2. Maintain the non-dominated combinations into a min heap H

NOTE: slightly different from the paper – Skyline algorithm

 $(i,j) \rightarrow \text{pushes } (i+1, j) \text{ and } (i, j+1) \text{ into } H$

Dedup: need to check if it has EVER been pushed into H or not

Multi-index Algorithm

- 1. Sort each code book in increasing order of their partial AD distance to q
- 2. Maintain the non-dominated combinations into a min heap H

(2,2) not pushed again

 $u_3 u_4 u_5 u_2 u_1 u_6$

Exercises:

- Write out H
- How to perform dedup?
- Generalize to mdimensional case
- [hard] perform dedup without additional data structure (and cost)

References

- Herve Je gou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search. TPAMI 2014.
- Artem Babenko and Victor Lempitsky. The Inverted Multi-Index. TPAMI 2014.