# Neurodynamics Homework 4

Timothy Sheehan

November,  $3^{rd}$  2017

### 1 Uncoupled Neurons

We simulated two independent uncoupled neurons with  $I_{ext}=(10,20)\mu A$  respectively. We visualized their spiking patterns and spike rates over time (Figures 1,2) and found that the cell with  $I_{ext}=10\mu A$  had an ISI of  $14.6\pm0.08$  while the neuron with  $I_{ext}=20\mu A$  had an ISI of  $11.6\pm0.09$ . This fits with what we would expect where lower input currents result in lower spike rates.

### 2 Inhibitory (GABA) Coupled Neurons

Next, we simulated two neurons with an inhibitory coupling. We modified the rate of coupling by changing the conductance g of  $GABA_A$ . We found at various values of  $g_{GABA}$  that while the spike rates matched up, the timing did not synchronize (Figures 3,4,5). The two neurons were effectively coupled at  $g_{GABA} = 0.4$  and remained coupled trough  $g_{GABA} = 1.0$  (Figures 6,7).

#### 3 In-Phase Oscillations

Here, we set the external current to our two neurons be very close but distinct,  $I_{ext} = (10.0, 10.1) \ \mu A$ . We held our inhibitory conductance  $g_{GABA}$  constant while varying out gate closing probability in our Markov process for  $GABA_A$  channels. We found that when the gates had a low probability of closing  $(GABA_A \leq 0.1)$ , they were much more likely to become synchronized, while at higher closing rates  $(GABA_A > 0.1)$  they became anti-synchronized (Figures 8,9,10,11).

## 4 Excitatory Synapse Model

Next, we introduced excitatory (glutamate) synapses with neuron 1 receiving an  $I_{ext} = 10.0 \mu A$  with an excitatory glutamate synapse to neuron 2 which receives no external current. We experimented with several conductance values between  $g_{Glu} = 0.0$  to 0.5 and found that neuron 2 does not fire at all below

 $g_{Glu} = 0.25$  and steadily increases its firing rate until  $g_{Glu} = 0.5$  where it has the same firing rate as neuron 1 of 70 Hz (Figures 12,13,14,15,16).

### 5 Feedforward Inhibition

We simulated a feedforward inhibition circuit with three neurons where neuron 1 received an external current and had excitatory connections to neurons 2 and 3 while neuron 2 had an inhibitory connection to neuron 3. With this circuit, we first experimented varying the excitatory current  $g_{Glu}$  while keeping the inhibitory conductance constant  $g_{GABA} = 0.5$ . As was expected from what we found with our excitatory synapse model, both neurons 2 and 3 increased there firing rates once above threshold of  $g_{Glu} = 0.3$  until they matched the firing rate of neuron 1 (Figure 17). Neuron 3's firing rate was always below Neuron 2's until it reached maximum due to the proportional inhibition it was receiving from 2.

Next, we varied  $g_{GABA}$  while keeping  $g_{Glu}$  constant at 0.4 (Figure 18). Here we found that, as expected, neurons 1 and 2 were unaffected while neuron 3's firing rate robustly decreased as a function of  $g_{GABA}$ . Interestingly, neuron 3's firing rate seemed to behave in a quantal manner, it plateaued at a few specific firing rates across many values of  $g_{GABA}$ , specifically 45 and 35 Hz. Finally, we took intermediate values of  $g_{GABA}$  and  $g_{Glu}$ , (0.4, 0.4), and stimulated with varying external currents to visualize how it might affect phase locking. At any external current above  $10\mu A$ , neurons 2 and 3 were strongly phase locked indicating they were both being strongly driven by neuron 1 (Figures 19,20,21).

#### 6 Feedback Inhibition

Feedback inhibition consists of one neuron inhibiting the neuron that provides it an excitatory input. In our construction, this is a circuit where 1 excites 3, 3 excites 2, and 2 inhibits 3. While increasing  $I_{ext}$ , we find that Neuron 1 continually increases its firing rate while Neurons 2 and 3 decrease between 10 and 15  $\mu A$  before increasing steadily through 30  $\mu A$  (Figure 22). Strikingly, Neurons 2 and 3 have identical spike rates across all current injections, a characteristic of Feedback inhibition. Looking at the voltage traces themselves, we see that no spiking occurs at all below 10  $\mu A$ , and that while Neurons 2 and 3 have a similar spike rate, they are anti-phaselocked (Figure 23,24,25).

#### 7 Function of Mini-Networks

Feedforward networks lead to very high synchrony between neurons with the down-stream neuron occasionally missing a beat (Figures 17,19). Feedback networks on the other hand, lead to very high frequency locking between neurons but with no synchrony and possibly anti-phase locking (Figures 22,25).



Figure 1: Spiking Uncoupled Neurons



Figure 2: ISI Uncoupled Neurons



Figure 3:  $g_{GABA} = 0.1$ 



Figure 4:  $g_{GABA} = 0.4$ 



Figure 5:  $g_{GABA} = 3.0$ 



Figure 6: ISI Inhibitory (GABA) Coupled Neurons



Figure 7: Spike Rate Inhibitory (GABA) Coupled Neurons



Figure 8: Phase Offset f(r)



Figure 9:  $\beta_r = 0.1$ 



Figure 10:  $\beta_r = 0.3$ 



Figure 11:  $\beta_r = 0.5$ 



Figure 12: Spike Rate vs.  $G_{Glu}$ 



Figure 13:  $G_{Glu} = 0.2$ 



Figure 14:  $G_{Glu} = 0.3$ 



Figure 15:  $G_{Glu} = 0.4$ 



Figure 16:  $G_{Glu} = 0.5$ 



Figure 17:  $SR(G_{Glu})$ 



Figure 18:  $SR(G_{GABA})$ 



Figure 19:  $I_{ext} = 10 \mu A$ 



Figure 20:  $I_{ext} = 15 \mu A$ 



Figure 21:  $I_{ext} = 25 \mu A$ 



Figure 22: (SR( $I_{ext}$ )



Figure 23:  $I_{ext} = 6\mu A$ 



Figure 24:  $I_{ext} = 10 \mu A$ 



Figure 25:  $I_{ext} = 26 \mu A$