Facultat de Matemàtiques i Estadística Examen final d'Estructures Algebraiques 19 de gener de 2015

Trieu cinc dels sis problemes següents. Tots puntuen igual.

Problema 1. Demostreu un dels dos teoremes següents:

- Tot subgrup finit del grup multiplicatiu d'un cos és cíclic.
- Tot grup finit d'ordre divisible per un primer p conté algun element d'ordre p.

De tots els resultats previs que feu servir en la vostra demostració, escriviu l'enunciat amb tota precisió.

Problema 2. Considereu al grup simètric \mathfrak{S}_9 les permutacions

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 5 & 9 & 1 & 8 & 6 & 3 & 2 & 4 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 5 & 9 & 6 & 1 & 8 & 2 & 4 & 3 \end{pmatrix}$$

i els cicles

$$\gamma_1 = (2\ 4\ 6), \quad \gamma_2 = (2\ 7\ 9), \quad \gamma_3 = (1\ 6\ 3\ 9).$$

- 1. Calculeu σ_1^{2015} i σ_2^{2016} .
- 2. Doneu, si existeix, una permutació σ tal que $\sigma \gamma_1 \gamma_2 \gamma_3 \sigma^{-1} = \gamma_3 \gamma_2 \gamma_1$.
- 3. Demostreu que entre $\sigma_1, \sigma_2, \gamma_1$ i γ_2 no generen tot el grup \mathfrak{S}_9 .
- 4. Doneu dos subgrups de \mathfrak{S}_9 d'ordre 14 no isomorfs.
- 5. Sigui $H = \langle c_5, \tau \rangle$ el subgrup generat pel cicle $c_5 = (1 \ 2 \ 3 \ 4 \ 5)$ i la transposició $\tau = (1 \ 2)$, i sigui N el seu normalitzador dins de \mathfrak{S}_9 . Digueu si els grups N i N/H són o no resolubles.

Solució:

1. La descomposició en cicles disjunts de les dues permutacions és:

$$\sigma_1 = (1 \ 7 \ 3 \ 9 \ 4)(2 \ 5 \ 8), \qquad \sigma_2 = (1 \ 7 \ 2 \ 5)(3 \ 9)(4 \ 6 \ 8)$$

Com que els cicles disjunts commuten s'obté:

$$\sigma_1^{2015} = (1 \ 7 \ 3 \ 9 \ 4)^{2015} (2 \ 5 \ 8)^{2015} = (2 \ 5 \ 8)^2 = (2 \ 8 \ 5).$$

Per altra banda, com que 2016 és divisible per 2, 3 i 4 es dedueix que σ_2^{2016} és la identitat.

2. Calculant la seva expressió com a producte de cicles disjunts s'obté:

$$\gamma_1 \gamma_2 \gamma_3 = (1\ 2\ 7\ 9)(3\ 4\ 6), \qquad \gamma_3 \gamma_2 \gamma_1 = (1\ 6\ 7)(2\ 3\ 4\ 9).$$

Com que l'estructura de totes dues és la mateixa (un producte d'un cicle de longitud 4 per un de longitud 3) són conjugades. Per exemple, una permutació que compleix el que es demana és:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 1 & 6 & 5 & 7 & 4 & 8 & 9 \end{pmatrix}.$$

- 3. Aquestes permutacions no poden generar tot \mathfrak{S}_9 perquè són totes parells i, per tant, el subgrup que generen està contingut dins del grup alternat \mathfrak{A}_9 .
- 4. De grups d'ordre 14 només n'hi ha dos, llevat d'isomorfisme: el cíclic i el diedral. El primer es pot construir, per exemple, com el subgrup de S₉ generat per la permutació (1 2 3 4 5 6 7)(8 9), que té ordre 14; el grup diedral és isomorf, per exemple, al grup generat per r = (1 2 3 4 5 6 7) i s = (2 7)(3 6)(4 5), que és el grup de les isometries d'un heptàgon regular amb vèrtexs numerats de l'1 al 7: el cicle r és la rotació d'angle 2π/7 i el producte de tres transposicions disjuntes s és la simetria que deixa fix el primer vèrtex. Es té r⁵ = s² = 1, rs = sr⁻¹.
- 5. El subgrup H és el subgrup de totes les permutacions dels enters 1, 2, 3, 4, 5, que és isomorf a \mathfrak{S}_5 . Les permutacions $\sigma \in \mathfrak{S}_9$ tals que $\sigma H \sigma^{-1} \in H$ són les que envien el subconjunt dels enters 1, 2, 3, 4, 5 a ell mateix. En efecte, $\sigma(1 \ 2 \ 3 \ 4 \ 5)\sigma^{-1} = (\sigma(1) \ \sigma(2) \ \sigma(3) \ \sigma(4) \ \sigma(5))$ ha de ser de H i per tant els $\sigma(i)$ han de ser enters del conjunt $\{1, 2, 3, 4, 5\}$; recíprocament per a qualsevol σ tot element de $\sigma H \sigma^{-1}$ només permuta enters del conjunt $\{1, 2, 3, 4, 5\}$ i per tant és de H. Per tant, N és el subgrup de \mathfrak{S}_9 que envia els enters 1, 2, 3, 4, 5 a ells mateixos; això vol dir que també envia els enters 6, 7, 8, 9 a ells mateixos: els seus elements són el producte d'una permutació de 1, 2, 3, 4, 5 per una perm

El grup N no és resoluble ja que conté un subgrup isomorf a \mathfrak{A}_5 , que no és resoluble per ser simple no abelià. En canvi el grup H/N és isomorf a \mathfrak{S}_4 i sí que és resoluble (vist a classe).

Problema 3. Sigui $\mathbb{A} = \{\alpha = a + b\sqrt{-5} : a, b \in \mathbb{Z}\} \subset \mathbb{C}$. Es considera l'aplicació $N \colon \mathbb{A} \to \mathbb{N}$ definida per $N(\alpha) = \alpha \overline{\alpha} = |\alpha|^2 = a^2 + 5b^2$. Demostreu que:

- 1. Si $\alpha \mid \beta$ a \mathbb{A} aleshores $N(\alpha) \mid N(\beta)$ a \mathbb{Z} .
- 2. $\alpha \in \mathbb{A}^* \Leftrightarrow N(\alpha) = 1$; trobeu totes les unitats de l'anell \mathbb{A} .
- 3. Tots els elements no nuls de \mathbb{A} descomponen com a producte d'irreductibles.
- 4. $2, 3, 1 + \sqrt{-5}$ i $1 \sqrt{-5}$ són irreductibles no primers.
- 5. N no és una norma euclidiana a \mathbb{A} .

Solució:

- 1. L'aplicació N és multiplicativa: $N(\alpha\beta) = |\alpha\beta|^2 = |\alpha|^2 |\beta|^2$. Si $\alpha \mid \beta$, sigui $\beta = \alpha q$. Aleshores $N(\beta) = N(\alpha)N(q)$ i per tant $N(\alpha) \mid N(\beta)$.
- 2. Sigui $\alpha \in \mathbb{A}^*$. Sigui $\beta = \alpha^{-1}$. Aleshores $\alpha\beta = 1 \Rightarrow N(\alpha)N(\beta) = N(1) = 1$; com que $N(\alpha)$ és un enter positiu ha de ser $N(\alpha) = 1$. Recíprocament, si $N(\alpha) = 1$ es té $\alpha\overline{\alpha} = 1$ i per tant $\overline{\alpha} = \alpha^{-1}$, de manera que $\alpha \in \mathbb{A}^*$.
 - L'equació $a^2 + 5b^2$ admet les úniques solucions $(a, b) = (\pm 1, 0)$ i per tant les unitats de l'anell A són els dos nombres enters ± 1 .
- 3. Per inducció sobre $N(\alpha)$. Si $N(\alpha) = 1$ aleshores α és una unitat, que és un producte buit d'irreductibles. Suposi's demostrat per a tots els elements no nuls de norma menor que la d'un element α . Si α és irreductible aleshores $\alpha = \alpha$ és una descomposició en producte d'irreductibles. En cas contrari existeix una descomposició $\alpha = \beta \gamma$ en la qual ni β ni γ són unitats. Aleshores $N(\alpha) = N(\beta)N(\gamma)$ amb $N(\beta) > 1$

i $N(\gamma) > 1$; per tant $N(\beta) < N(\alpha)$ i $N(\gamma) < N(\alpha)$. Per hipòtesi d'inducció β i γ són producte d'irreductibles i, per tant $\alpha = \beta \gamma$ també ho és.

Alternativa: reducció a l'absurd. Suposi's que no és cert i sigui α un element que no descompon en producte d'irreductibles de norma mínima. Aleshores α no és un irreductible i per tant descompon de la forma $\alpha = \beta \gamma$ amb $\beta, \gamma \notin \mathbb{A}^*$. Però aleshores β i γ tenen norma estrictament menor que α i algun dels dos no descompon en producte d'irreductibles, ja que si tots dos descomponguessin α també ho faria (en el producte).

4. Suposi's que es té una descomposició $2 = \alpha\beta$ amb α i β no unitats. Aleshores $N(\alpha)N(\beta) = N(2) = 4$ i ha de ser $N(\alpha) = N(\beta) = 2$. Però l'equació $a^2 + 5b^2 = 2$ no té solucions amb $a, b \in \mathbb{Z}$, i per tant la descomposició no pot existir. Anàlogament es prova en els demés casos: si $3 = \alpha\beta$ hauria de ser $N(\alpha) = N(\beta) = 3$, i l'equació $a^2 + 5b^2$ no té solució; si $1 \pm \sqrt{-5} = \alpha\beta$ hauria de ser $N(\alpha) = 2$ i $N(\beta) = 3$, o al revés, i les equacions corresponents no tenen solució. Per tant, aquests quatre elements són irreductibles.

En canvi no són primers. En efecte, es té la igualtat $2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}) = 6$. Per tant, 2 divideix el producte $(1 + \sqrt{-5})(1 - \sqrt{-5})$. Però 2 no divideix cap dels dos factors, ja que si fos així N(2) = 4 dividiria $N(1 \pm \sqrt{-5}) = 6$. El mateix argument prova que els altres tampoc són primers.

5. Com que tot anell euclidià és factorial, si N fos una norma euclidiana aleshores \mathbb{A} seria un anell factorial, i en un anell factorial tots els irreductibles són primers, però a l'apartat anterior s'ha vist que això no és cert a l'anell \mathbb{A} .

Problema 4. Sigui E/K una extensió de cossos, i sigui A un anell tal que $K \subseteq A \subseteq E$. Demostreu que, si E/K és algebraica, aleshores A és un cos, però que, si E/K no és algebraica, existeix algun anell A amb $K \subseteq A \subseteq E$ que no és un cos.

SOLUCIÓ: Suposi's que E/K és algebraica. S'ha de veure que, per a tot element no nul $\alpha \in A \setminus \{0\}$, l'invers $\alpha^{-1} \in E$ també pertany a A. Com que $\alpha \in E$ i E/K és algebraica, α és arrel d'algun polinomi no nul a coeficients en K. Sigui $P(X) = \operatorname{Irr}(\alpha, K; X)$ el polinomi irreductible, amb $P(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0 \in K[X]$ i $a_0 \neq 0$ ja que $\alpha \neq 0$. Aleshores

$$\alpha^{n} + a_{n-1}\alpha^{n-1} + \dots + a_{1}\alpha + a_{0} = 0 \quad \Rightarrow \quad \alpha(\alpha^{n-1} + a_{n-1}\alpha^{n-2} + \dots + a_{2}\alpha + a_{1}) = -a_{0}$$

$$\Rightarrow \alpha\beta = 1 \quad \text{amb} \quad \beta = \left(\frac{-1}{a_{0}}\alpha^{n-1} + \frac{-a_{n-1}}{a_{0}}\alpha^{n-2} + \dots + \frac{-a_{2}}{a_{0}}\alpha + \frac{-a_{1}}{a_{0}}\right).$$

L'invers de $\beta = \alpha^{-1}$ és una combinació lineal de potències de α a coeficients en K, i per tant pertany a l'anell A. Alternativament, a classe s'ha vist que quan α és algebraic sobre K aleshores $K[\alpha] = K(\alpha)$. En aquest cas, $\alpha^{-1} \in K[\alpha] \subseteq A$.

Si l'extensió E/K no és algebraica, sigui $\alpha \in E$ un element transcendent sobre K. Aleshores l'anell $A = K[\alpha] = \{P(\alpha) : P(X) \in K[X]\}$ és un subanell de E que conté K i no és un cos, ja que α no és invertible en aquest anell. En efecte, si fos $\alpha^{-1} = P(\alpha)$ aleshores es tindria $\alpha P(\alpha) - 1 = 0$ i α seria arrel d'un polinomi no nul a coeficients en K, en contradicció amb la seva transcendència.

Problema 5. Calculeu el grau, un element primitiu $\alpha \in E$ i el seu polinomi irreductible $Irr(\alpha, K; X)$, per a les extensions E/K següents:

- 1. $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$
- 2. $\mathbb{Q}(e^{\pi i/8}, i + \sqrt{2} + \sqrt{-2})/\mathbb{Q},$
- 3. $\mathbb{F}_5(\sqrt[4]{2}, \sqrt[2]{3})/\mathbb{F}_5$,
- 4. $\mathbb{F}_7(\sqrt[4]{2}, \sqrt[2]{3})/\mathbb{F}_7$.

Solució:

- 1. Com que $\sqrt{2} \notin \mathbb{Q}(\sqrt{3})$ ja que elevant al quadrat la igualtat $\sqrt{2} = a + b\sqrt{3}$ amb $a, b \in \mathbb{Q}$ es tindria que $\sqrt{3} \in \mathbb{Q}$, i com que $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{3}, \sqrt{3})$, es dedueix que l'extensió és de grau 4. Sigui $\alpha = \sqrt{2} + \sqrt{3}$. Com que $(\sqrt{2} + \sqrt{3})(\sqrt{2} \sqrt{3}) = -1$ es té $\alpha^{-1} = \sqrt{3} \sqrt{2}$ i per tant $\sqrt{2} = \frac{1}{2}(\alpha \alpha^{-1}), \sqrt{3} = \frac{1}{2}(\alpha + \alpha^{-1})$. Es dedueix que $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$ i α és un element primitiu de l'extensió. Elevant al quadrat es té $\alpha^2 = 2 + 3 + 2\sqrt{6}$; per tant, $\alpha^2 5 = 2\sqrt{6} \Rightarrow \alpha^4 10\alpha^2 + 25 = 24$ i α és arrel del polinomi $X^4 10X^2 + 1$. Aquest polinomi és $\operatorname{Irr}(\alpha, \mathbb{Q}; X)$.
- 2. Sigui $\zeta=e^{\pi i/8}=e^{2\pi i/16}$, que és una arrel 16-ena primitiva de la unitat. Com que $i=\zeta^4=e^{\pi i/2}$ i $\frac{1+i}{\sqrt{2}}=\zeta^2=e^{\pi i/4}$ es dedueix que $i+\sqrt{2}+\sqrt{-2}=\zeta^4+(1+\zeta^4)\zeta^{-2}+\zeta^4(1+\zeta^4)\zeta^{-2}$. Per tant $\mathbb{Q}(\zeta,i+\sqrt{2}+\sqrt{-2})=\mathbb{Q}(\zeta)$. L'extensió és simple amb element primitiu ζ . El polinomi irreductible d'una arrel primitiva de la unitat és el ciclotòmic, per tant $\mathrm{Irr}(\zeta,\mathbb{Q};X)=\Phi_{16}(X)=X^8+1$. L'extensió té grau 8.
- 3. Sigui $\alpha = \sqrt[4]{2}$ a $E = \mathbb{F}_5(\sqrt[4]{2}, \sqrt{3})$. Aleshores $\alpha^2 = \sqrt{2}$ i $\alpha^{-2} = (\sqrt{2})^{-1} = \sqrt{3}$. Per tant, l'extensió és simple generada per α , $E = \mathbb{F}_5(\alpha)$. Com que 3 no és un quadrat a \mathbb{F}_5 i l'extensió conté la subextensió $\mathbb{F}_5(\sqrt{3}) \simeq \mathbb{F}_{25}$ de grau 2, ha de tenir grau 2 o 4. Si tingués grau 2 aleshores seria isomorfa a \mathbb{F}_{25} i per tant tot element no nul d'aquesta extensió tindria potència 24-ena igual a 1. Com que $\alpha^4 = 2 \Rightarrow \alpha^8 = 4 = -1 \Rightarrow \alpha^{24} = -1 \neq 1$ es dedueix que l'extensió ha de ser de grau 4, i per tant isomorfa al cos \mathbb{F}_{625} . α és arrel del polinomi $X^4 2$, de grau 4, que ha de ser per tant el seu polinomi irreductible.
- 4. Com que $X^4 2 = (X^2 3)(X^2 + 3) = (X^2 3)(X 2)(X 5)$. De les arrels quartes de 2 n'hi ha dues que ja pertanyen a \mathbb{F}_7 , que són 2 i 5, i unes altres dues que no hi pertanyen, que són $\pm \sqrt{3}$. Com que l'extensió que es demana ja conté $\sqrt{3}$ sempre es té $\mathbb{F}_7(\sqrt[4]{2},\sqrt{3}) = \mathbb{F}_7(\sqrt{3})$, sigui quina sigui l'arrel quarta de 2 triada. Per tant l'extensió és igual a $\mathbb{F}_7(\sqrt{3}) \simeq \mathbb{F}_{49}$, de grau 2. Un element primitiu és $\alpha = \sqrt{3}$ i el seu polinomi irreductible és $X^2 3$.

Problema 6. Digueu si els nombres complexos següents són o no construïbles amb regle i compàs, justificant la vostra resposta:

- 1. $\sqrt[3]{3}$,
- 2. $\sqrt{\frac{1}{2}\sqrt{2} \frac{1}{5}\sqrt[4]{5}}$,
- 3. $e^{2\pi i/255} + e^{2\pi i/257}$,
- 4. $\zeta + \zeta^{10}$, on $\zeta = e^{2\pi i/11}$
- 5. $\zeta + \zeta^3 + \zeta^9$, on $\zeta = e^{2\pi i/13}$.

Solució:

- 1. El polinomi irreductible de $\sqrt[3]{3}$ sobre \mathbb{Q} és el polinomi $X^3 3$. Per tant l'extensió $[\mathbb{Q}(\sqrt[3]{3}) : \mathbb{Q}]$ té grau 3. Per tant $\sqrt[3]{3}$ no és construïble ja que els nombres construïbles generen extensions de grau potència de 2.
- 2. És construïble ja que tot nombre complex que es pugui obtenir a partir de nombres racionals fent sumes, restes, productes, quocients i arrels quadrades és construïble. El nombre donat s'obté fent l'arrel quadrada de 2, l'arrel quadrada de l'arrel quadrada de 5, multiplicant per racionals i restant, i finalment fent l'arrel quadrada del resultat.
- 3. $257 = 2^8 + 1$ és un primer de Fermat i, per tant, $e^{2\pi i/257}$ és construïble. $255 = 3 \cdot 5 \cdot 17$, i els tres factors 3 = 2 + 1, $5 = 2^2 + 1$ i $17 = 2^4 + 1$ són primers de Fermat; per tant, el polígon regular de 255 costats és construïble i això és el mateix que dir que $e^{2\pi i/255}$ és construïble. Com que la suma de construïbles és construïble, el nombre donat ho és.
- 4. El subgrup $H = \{1, 10\} \subset (\mathbb{Z}/11\mathbb{Z})^*$ té índex 5 a $(\mathbb{Z}/11\mathbb{Z})^*$. Per tant, l'extensió $\mathbb{Q}(\zeta^H)$ té grau 5 sobre \mathbb{Q} i això implica que el nombre ζ^H no és construïble, ja que els nombres construïbles generen extensions de grau potència de 2.
- 5. El subgrup $H = \{1, 3, 9\} \subset (\mathbb{Z}/13\mathbb{Z})^*$ té índex 4 a $(\mathbb{Z}/13\mathbb{Z})^*$. Per tant, l'extensió $\mathbb{Q}(\zeta^H)$ té grau 4 sobre \mathbb{Q} . El subgrup $K = \{1, 3, 4, 9, 10, 12\}$ conté H com a subgrup d'índex 2 i ell mateix té índex 2 a $(\mathbb{Z}/13\mathbb{Z})^*$. Per tant, es té una torre d'extensions $\mathbb{Q} \subseteq \mathbb{Q}(\zeta^K) \subseteq \mathbb{Q}(\zeta^H)$ on cada salt és una extensió de grau 2. Això assegura que el nombre ζ^H és construïble.