ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

(51) Classification internationale des brevéts ⁶ :	1	(11) Numéro de publication internationale: WO 95/33049	
C12N 15/12, C07K 14/22, 16/12, A61K 35/74, 39/40	A2	(43) Date de publication internationale: 7 décembre 1995 (07.12	
(21) Numéro de la demande internationale: PCT/FF (22) Date de dépôt international: 30 mai 1995		(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC.	

(30) Données relatives à la priorité: 94/06594

31 mai 1994 (31.05.94) FR Publiée

Sans rapport de recherche internationale, sera republiée dès réception de ce rapport.

- (71) Déposants (pour tous les Etats désignés sauf US): PASTEUR MERIEUX SERUMS ET VACCINS [FR/FR]; 58, avenue Leclerc, P-69007 Lyon (FR). TRANSGENE S.A. [FR/FR]; 11, rue de Molsheim, F-67000 Strasbourg (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (US seulement): MILLET, Marie-José. Bernadette, Jacqueline [FR/FR]; 70, cours Emile-Zola, F-69100 Villeurbanne (FR). LISSOLO, Ling [FR/FR]; 691, rue du Vallon, F-69280 Marcy-L'Etoile (FR). MAZARIN, Véronique [FR/FR]; 11, rue Pouteau, F-69001 Lyon (FR). LEGRAIN, Michèle [FR/FR]; 107, grande-rue, F-67120 Dorlisheim (FR). JACOBS, Eric [FR/FR]; 107, grande-rue, F-67120 Dorlisheim (FR).
- (74) Mandataires: BERNASCONI, Jean etc.; Cabinet Lavoix, 2. place dEstienne-d'Orves, F-75441 Paris Cédex 09 (FR).
- (54) Title: Tbp2 FRAGMENTS OF THE TRANSFERRINE RECEPTOR OF NEISSERIA MENINGITIDIS
- (54) Titre: FRAGMENTS Tbp2 DU RECEPTEUR TRANSFERRINE DE NEISSERIA MENINGITIDIS

(57) Abstract

Polypeptide having a sequence of amino acids derived from that of the Top2 subunit of the transferrine receptor of a Neisseria meningitidis strain of the IM2169 or IM2394 type, the first, second and third domains being defined by maximum homologous alignment on the Tbp2 subunit sequence of the respective IM2169 or IM2394 reference strain, especially by total or partial deletion of at least one domain of said Top2 subunit of the IM2169 or IM2394 type provided the first and second domains are not fully deleted at the same time.

(57) Abrégé

L'invention a pour objet un polypeptide ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 du récepteur transferrine d'une souche de Neisseria meningitidis de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394, notamment par délétion totale ou partielle d'au moins un domaine de ladite sous-unité Top2 de type IM2169 ou IM2394, à condition que le premier et le deuxième domaine ne soient pas simultanément et totalement délétés.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	GB	Royaume-Uni	MR	Mauritanie
AU	Australie	GE	Géorgie	MW	Malawi
BB	Barbade	GN	Guinée	NB	Niger
BE	Belgique	GR	Grèce	NL	Pays-Bas
BF	Burkina Faso	HU	Hongrie	NO	Norvège
BG	Bulgarie	IB	Irlande	NZ	Nouvelle-Zélande
BJ	Bénin	IT	Italic	PL	Pologne
BR	Brésil	JP	Japon	PT	Portugal
BY	Bélarus	KB	Kenya	RO	Roumanie
CA	Canada	KG	Kirghizistan	RU	Fédération de Russie
CF	République centrafricaine	KP	République populaire démocratique	SD	Soudan
CG	Congo		de Corée	SE	Suède
CH	Suisse	KR	République de Corée	SI	Slovénie
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovaquie .
CM	Cameroun	Ц	Liechtenstein	SN	Sénégal
CN	Chine	LK	Sri Lanka	TD	Tchad
CS	Tchécoslovaquie .	LÜ	Luxembourg	TG	Togo
CZ	République tchèque	LV	Lettonie	TJ	Tadjikistan
DE	Allemagne	MC	Monaco	TT	Trinité-et-Tobago
DK	Danemark	MD	République de Moldova	UA	Ukraine
ES	Espagne	MG	Madagascar	US	Etats-Unis d'Amérique
FI	Finlande	ML	Mali	UZ	Ouzhekistan
FR	Prance	MN	Mongolie	VN	Viet Nam
GA	Gebon			***	

FRAGMENTS Tbp2 DU RECEPTEUR TRANSFERRINE DE NEISSERIA MENINGITIDIS

La présente invention a pour objet des polypeptides dérivés de la sous-unité Tbp2 du récepteur transferrine de *Neisseria meningitidis*, leur utilisation à titre thérapeutique notamment vaccinal, ainsi que les fragments d'ADN codant pour ces polypeptides.

5

D'une manière générale, les méningites sont soit d'origine virale, soit d'origine bactérienne. Les bactéries principalement responsables sont : N. meningitidis et Haemophilus influenzae, respectivement impliquées dans environ 40 et 50 % des cas de méningites bactériennes.

10

15

20

25

30

35

On dénombre en France, environ 600 à 800 cas par an de méningites à N. meningitidis. Aux Etats-Unis, le nombre de cas s'élève à environ 2 500 à 3 000 par an.

L'espèce N. meningitidis est subdivisée en sérogroupes selon la nature des polysaccharides capsulaires. Bien qu'il existe une douzaine de sérogroupes, 90 % des cas de méningites sont attribuables à 3 sérogroupes : A, B et C.

Il existe des vaccins efficaces à base de polysaccharides capsulaires pour prévenir les méningites à N. meningitidis sérogroupes A et C. Ces polysaccharides tels quels ne sont que peu ou pas immunogéniques chez les enfants de moins de 2 ans et n'induisent pas de mémoire immunitaire. Toutefois, ces inconvénients peuvent être surmontés en conjuguant ces polysaccharides à une protéine porteuse.

Par contre, le polysaccharide de *N. meningitidis* groupe B n'est pas ou peu immunogène chez l'homme, qu'il soit sous forme conjuguée ou non. Ainsi, il apparait hautement souhaitable de rechercher un vaccin à l'encontre des méningites induites par *N. meningitidis* notamment du sérogroupe B autre qu'un vaccin à base de polysaccharide.

A cette fin, différentes proteines de la membrane externe de N. meningitidis ont déjà été proposées. Il s'agit en particulier du récepteur membranaire de la transferrine humaine.

D'une manière générale, la grande majorité des bactéries ont besoin de fer pour leur croissance et elles ont développé des systèmes spécifiques d'acquisition de ce métal. En ce qui concerne notamment N. meningitidis qui est un pathogène strict de l'homme, le fer ne peut être prélevé qu'à partir de protéines humaines de transport du fer telles que la transferrine et la lactoferrine puisque la quantité de fer sous forme libre est négligeable chez

l'homme (de l'ordre de 10⁻¹⁸ M), en tout cas insuffisante pour permettre la croissance bactérienne.

Ainsi, N. meningitidis possède un récepteur de la transferrine humaine et un récepteur de la lactoferrine humaine qui lui permettent de fixer ces protéines chélatrices du fer et de capter par la suite le fer nécessaire à sa croissance.

Le récepteur de la transferrine de la souche N. meningitidis B16B6 a été purifié par Schryvers et al (WO 90/12591) à partir d'un extrait membranaire. Cette protéine telle que purifiée apparait essentiellement constituée de 2 types de polypeptides : un polypeptide d'un poids moléculaire apparent élevé de 100 kD et un polypeptide d'un poids moléculaire apparent moindre d'environ 70 kD, telles que révélés après électrophorèse sur gel de de polyacrylamide en présence de SDS.

Le produit de la purification notamment mise en oeuvre par Schryvers est par définition arbitraire et pour les besoins de la présente demande de brevet, appelé récepteur de la transferrine et les polypeptides le constituant, des sous-unités. Dans la suite du texte, les sous-unités de poids moléculaire élevé et de poids moléculaire moindre sont respectivement appelées Tbp1 et Tbp2.

20

25

10

15

D'autre part, depuis les travaux pionniers de Schryvers et al, on a découvert qu'il existait en fait au moins 2 types de souches qui différent par la constitution de leurs récepteurs de la transferrine respectifs. Ceci a été mis en évidence en étudiant des extraits membranaires de plusieurs dizaines de souches de N. meningitidis d'origines variées. Ces extraits membranaires ont tout d'abord été soumis à une électrophorèse sur gel de polyacrylamide en présence de SDS, puis électrotransférés sur feuilles de nitrocellulose. Ces feuilles de nitrocellulose ont été incubées :

- a) en présence d'un antisérum de lapin dirigé contre le récepteur de la transferrine purifié à partir de la souche N. meningitidis B16B6, aussi appelée IM2394;
 - b) en présence d'un antisérum de lapin dirigé contre le récepteur de la transferrine purifié à partir de la souche N. meningitidis M982, aussi appelée IM2169; ou
- c) en présence de la transferrine humaine conjuguée à la peroxydase.

En ce qui concerne a) et b), la reconnaissance des sous-unités du récepteur de la transferrine est révélée par addition d'un anticorps anti-immunoglobulines de lapin couplé à la peroxydase, puis par addition du substrat de cette enzyme.

Les tableaux I et II ci-dessous indiquent le profil de certaines souches représentatives tel qu'il apparait sur gel de polyacrylamide à 7,5 % après électrophorèse en présence de SDS; les bandes sont caractérisées par leur poids moléculaires apparents exprimés en kilodaltons (kD):

10

		Souches	
. Tableau I	2394 (B; 2a; P1.2:L2,3) 2228 (B; nd) 2170 (B; 2a:P1.1:L3)	2234 (Y; nd) 2154 (C; nd) 2448 (B; nd)	550 (C; 2a:) 179 (C; 2a:P1.2)
Détection avec l'antisérum	93	93	99
Détection avec l'antisérum	93	93	99
Détection avec la transferrine peroxydase	. 68	69	69

N.B.: Entre parenthèses sont indiqués dans l'ordre le sérogroupe, le sérotype, le sous-type et l'immunotype.

					Souches				
Tableau II	2169	1000	1604	132	1001	876	1981	2449	867
	(B:9:P1.9	(B:nd)	(B:nd)	(C:15:P1.16) (A:4:P1.9)	(A:4:P1.9)	(B:19:P1.6)	(A:nd)	(B:nd)	(R-2h-P1 2)
Détection avec									(3:1 3:03:02)
l'antisérum anti-	96	86	86	86	86	96	94	94	03
récepteur 2394									?
Détection avec	96	86	86	86	86	96	98	94	93
l'antisérum anti-									3
récepteur 2169	87	85	83	8	79	80	87	88	· v
Détection avec la									S
transferrine	87	85	83	8	79	88	87	\$8	8
peroxydase					·				}

N.B.: Entre parenthèses sont indiqués dans l'ordre le sérogroupe, le sérotype, le sous-type et l'immunotype.

25

35

Les résultats répertoriés dans les 2 premières lignes des tableaux montrent qu'il existe 2 types de souches :

Le premier type (Tableau I) correspond à des souches qui possèdent un récepteur dont les 2 sous-unités dans les conditions expérimentales utilisées, sont reconnues par l'antisérum anti-récepteur IM2394 tandis que seule la sous-unité de haut poids moléculaire est reconnue par l'antisérum anti-récepteur IM2169.

Le second type (Tableau II) correspond à des souches qui possèdent un récepteur dont les 2 sous-unités dans les conditions expérimentales utilisées, sont reconnues par l'antisérum anti-récepteur IM2169 tandis que seule la sous-unité de haut poids moléculaire est reconnue par l'antisérum anti-récepteur IM2394.

En conséquence, il existe une diversité antigénique au niveau de la sous-unité de moindre poids moléculaire. Cette diversité est toutefois restreinte puisqu'elle se résout en 2 grands types, contrairement à ce qui est suggéré par Griffiths et al, FEMS Microbiol. Lett. (1990) 69:31.

Conformément à cela, il sera fait référence dans la suite du texte à des souches de type IM2169 ou de type IM2394.

Outre les souches cités dans le tableau II, des souches de type IM2169 sont par exemples les souches S3032 (12, P 1.12.16), 6940 (19, P 1.6), M978 (8, P 1.1, 7), 2223 (B:nd), 1610 (B:nd), C708 (A:4, P 1.7), M981 (B:4), aussi appelée 891, et 2996 (B:2b, P 1.2). Le déposant a reçu, par envoi gracieux, les souches S3032, M978 et M981 du Dr. J. Poolman (RIVM, Bilthoven, Pays-Bas), et la souche C708 du Dr. Achtman (Max Plank Institute, Berlin, Allemagne).

La souche IM2154 (sérogroupe C) est citée à titre d'exemple comme étant de type 30 IM2394.

En vertu des précédentes constatations, on pouvait supposer qu'un vaccin efficace à l'encontre de toutes les infections à N. meningitidis pourrait être constitué de manière suffisante, de la sous-unité de haut poids moléculaire, quelle que soit la souche d'origine du récepteur, puisque cette dernière est reconnue par les 2 types d'antisérums. Toutefois, il semble que cela ne puisse être le cas dans la mesure où la sous-unité de haut poids

20

moléculaire ne serait pas capable d'induire la production d'anticorps de type neutralisant. Seule la plus petite des 2 sous-unités du récepteur (Tbp2) serait capable de remplir cette fonction.

Les séquences en acides aminés des sous-unités Tbp2 des souches IM2169 et IM2394 ont été divulguées dans la demande de brevet EPA 586 266 (publiée le 9 Mars 1994) ainsi que les fragments d'ADN correspondants. Ces séquences sont reprises dans les SEQ ID NO 1 à 4 de la présente demande.

Dans les SEQ ID NO 5 à 10 sont présentées les séquences des sous-unités Tbp2 des souches de type IM2169, soient les souches M978, 6940 et S3032.

On indique de plus que la séquence de la sous-unité Tbp2 IM2154 (type IM2394) différe par deux acides aminés de la séquence de la sous-unité Tbp2 IM2394, en positions 306 et 510.

On a maintenant trouvé qu'une sous-unité Tbp2 quelque soit la souche d'origine, présentait en termes de structures, trois domaines principaux associés pour au moins l'un d'entre eux à des propriétés particulières. Par définition, les domaines de Tbp2 IM2169 et Tbp2 IM2394 ont été fixés comme le montre le tableau ci-après, en indiquant la position des acides aminés, bornes incluses des différents domaines, et par référence à la numérotation apparaissant dans les SEQ ID NO 1 et 3.

	Tbp2 IM2169	Tbp2 IM2394
Domaine N-terminal		
ou premier domaine	1-345	1-325
Domaine charnière		
ou deuxième domaine	346-543	326-442
Domaine C-terminal		
ou troisième domaine	544-691	443-579

Cette définition s'applique de même à toutes les Tbp2 de type IM2169 ou IM2394, après alignement d'une séquence type IM2169 ou IM2394 sur la séquence de référence, au maximum d'homologie. Ainsi, à titre d'exemple et par référence à la Figure 1, on indique la position des domaines de la sous-unité Tbp2 de M978 comme suit : premier domaine (1 - 346), deuxième domaine (347 - 557) et troisième domaine (558 - 705).

D'autre part, on a aussi trouvé que le domaine N-terminal ou premier domaine et/ou le domaine charnière ou deuxième domaine pourrait être nécessaire et suffisant, en vue d'induire un effet vaccinal chez les humains ; en conséquence de quoi, il ne serait pas indispensable d'utiliser une Tbp2 sous une forme complète. On a en particulier trouvé que le premier domaine contenait dans sa quasi intégralité le site de liaison à la transferrine, se trouvait donc très vraisemblablement exposé vers l'extérieur et par conséquent constituait un élément de choix à des fins vaccinales.

Enfin, on a trouvé que certaines régions du deuxième domaine des Tbp2 de type IM2169 étaient assez généralement variables et immunodominantes. Deux approches sont donc possibles, en vue d'un vaccin : soit on considère que les épitopes immunodominants peuvent masquer d'autres épitopes d'intérêt vaccinal et par conséquent, on les délète, soit on se sert de cette variabilité, pour ne conserver que ces régions dans un vaccin.

15 C'est pourquoi l'invention fournit un polypeptide ayant une séquence en acides aminés qui dérive de celle d'une sous-unité Tbp2 du récepteur transferrine d'une souche de N. meningitidis de type IM2169 ou IM2394 dont le premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; notamment par délétion totale ou partielle d'au moins un domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394 à condition que le premier et deuxième domaines ne soient pas simultanément et totalement délétés.

Par "séquence qui dérive d'une autre séquence" on entend bien évidemment une séquence issue par processus intellectuel de cette autre séquence.

De manière plus particulière, un polypeptide selon l'invention possède une séquence d'acides aminés qui dérive d'une sous-unité Tbp2 de type IM2169 ou IM2394 :

- (i) notamment par délétion totale ou partielle d'au moins un domaine de ladite sous-unité Tbp2 sélectionné parmi les deuxième et troisième domaines ; de préférence par délétion totale ou partielle du troisième domaine ou des deuxième et troisième domaines ;
- 35 (ii) notamment par délétion totale des premier et troisième domaines, ou

- (iii) notamment par délétion intégrale du troisième domaine et par délétion partielle du premier domaine, optionellement par délétion partielle du deuxième domaine.
- D'une manière avantageuse, un polypeptide selon l'invention présente une délétion partielle, quasi totale ou totale du troisième domaine, de préférence totale. Dans ce cas là, le premier ainsi que le deuxième domaine peuvent être maintenus dans leur intégralité, partiellement ou totalement délété; ceci indépandemment l'un de l'autre.
- Sont possibles les combinaisons suivantes (sachant que les premier, deuxième et troisième domaines dans leur intégralité sont respectivement représentés par 1, 2 et 3, et que O et Δ signifient de manière respective, partiellement et totalement délété):

```
1, 2, Δ3; 1, O2, Δ3; 1, Δ2, Δ3;
O1, 2, Δ3; O1, O2, Δ3; O1, Δ2, Δ3;
Δ1, 2, Δ3; Δ1, O2, Δ3;

1, 2, O3; 1, O2, O3; 1, Δ2, O3;
O1, 2, O3; O1, O2, O3; O1, Δ2, O3;
Δ1, 2, O3; Δ1, O2, O3;
```

30

35

Est aussi d'intérêt, un polypeptide selon l'invention dérivé d'une sous-unité Tbp2 de type IM2169 par délétion partielle du deuxième domaine, qui comporte dans leur intégralité ou quasi intégralité le premier et troisième domaines; soit la combinaison 1, O2, 3. (Par "domaine maintenu dans sa quasi-intégralité" on entend ici et dans la suite du texte, un domaine modifié en un très faible nombre de positions, environ 5 maximum.) Un polypeptide selon l'invention peut aussi répondre à la combinaison O1, O2, 3, la délétion partielle du premier domaine portant avantageusement sur la région homologue de celle de Tbp2 IM2169 allant de l'acide aminé en position 1 à l'acide aminé approximativement en position 40.

Lorsqu'un polypeptide selon l'invention dérive notamment par délétion partielle du deuxième domaine d'une sous-unité Tbp2 de type IM2169, cette délétion partielle porte avantageusement sur une ou des régions du deuxième domaine qui est (sont) l'(les) homologue(s) des régions de la séquence IM2169 allant :

-9-

- (i) de l'acide aminé en position 362 à l'acide aminé en position 379;
- (ii) de l'acide aminé en position 418 à l'acide aminé en position 444;
- 5 (iii) de l'acide aminé en position 465 à l'acide aminé en position 481 ; et
 - (iv) de l'acide aminé en position 500 à l'acide aminé en position 520.

De préférence, la délétion partielle porte simultanément sur les quatre régions (i) à 10 (iv) sus-décrites.

Lorsqu'un polypeptide selon l'invention dérive notamment par délétion intégrale du troisième domaine et délétion quasi intégrale du deuxième domaine d'une sous-unité Tbp2 de type IM2169 et comporte l'intégralité du premier domaine ou dérive en outre par délétion de la partie N-terminale du premier domaine, la délétion quasi intégrale du deuxième domaine s'étend sur la région qui :

- dans le cas d'un polypeptide dérivé d'une sous-unité Tbp2 de type IM2169, est l'homologue de la région du deuxième domaine de la sous-unité Tbp2 IM2169 allant de l'acide aminé dans l'une des positions 346 à 361 à l'acide aminé en position 543;
- dans le cas d'un polypeptide dérivé d'une sous-unité Tbp2 de type IM2394, est l'homologue de la région du deuxième domaine de la sous-unité Tbp2 IM2394 allant de l'acide aminé dans l'une des positions 326 à 341 à l'acide aminé en position 442.

Lorsqu'un polypeptide selon l'invention dérive notamment par délétion partielle du premier domaine d'une sous-unité Tbp2 de type IM2169 ou IM2394, cette délétion partielle porte avantageusement sur tout ou partie de la région :

(i) qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2169 allant de l'acide aminé en position 1 à l'acide aminé en position 281; ou

15

20

25

(ii) qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2394 allant de l'acide aminé en position 1 à l'acide aminé en position 266.

A titre d'exemple de ce qui précède, on cite une délétion d'intérêt portant sur la 5 région:

- (i) qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2169 allant de l'acide aminé en position 1 à l'acide aminé approximativement en position 40; ou
- (ii) qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2394 allant de l'acide aminé en position 1 à l'acide aminé approximativement en position 45.

15

10

La séquence de type IM2169 ou IM2394 à partir de laquelle est dérivée celle d'un polypeptide selon l'invention présente un degré d'homologie avec la séquence de référence respective, IM2169 ou IM2394, avantageusement d'au moins 70-75%, de préférence d'au moins 80%, de manière plus particulièrement préférée d'au moins 90%.

20

25

30

35

Selon un mode de réalisation tout particulièrement préféré, un polypeptide selon l'invention possède une séquence dérivée de celle de la sous-unité Tbp2 IM2169 ou IM2394.

Le degré d'homologie peut être aisément calculé en alignant les séquences de manière à obtenir le degré maximal d'homologie ; pour ce faire, il peut être nécessaire d'introduire artificiellement des emplacements vacants, comme cela est illustré dans les Figures 1 à 4 et 8 à 10. Une fois que l'alignement optimal est réalisé, le degré d'homologie est établi en comptabilisant toutes les positions dans lesquelles les acides aminés des deux séquences se retrouvent à l'identique, par rapport au nombre total de positions.

Il serait fastidieux de décrire des séquences homologues autrement que de manière générique, en raison du trop grand nombre de combinaisons. L'homme du métier connaît toutefois les règles générales qui permettent de remplacer un acide aminé par un autre sans abolir la fonction biologique ou immunologique d'une protéine.

20

25

35

A titre d'exemple préféré, on cite un polypeptide selon l'invention dont la séquence possède au moins 70-75%, de manière avantageuse au moins 80%, de préférence au moins 90%, de manière tout à fait préférée 100% d'homologie avec :

- 5 (i) la séquence telle que montrée dans l'ID SEQ NO 1, de l'acide aminé en position 1 à l'acide aminé en position 345;
 - (ii) la séquence telle que montrée dans l'ID SEQ NO 3, de l'acide aminé en position 1 à l'acide aminé en position 325 ou 442;
 - (iii) la séquence telle que montrée dans l'ID SEQ NO 1, de l'acide aminé en position 1 à l'acide aminé en position 691 ou 543, délétée des régions 362-379, 418-444, 465-481 et 500-520;
- (iv) la séquence telle que montrée dans l'ID SEQ NO 1, de l'acide aminé en position 346 à l'acide aminé en position 543.

Des polypeptides répondant à la définition donnée au paragraphe précédent sont illustrés comme suit :

- (i) Un polypeptide selon l'invention dont la séquence est substantiellement telle que montrée dans l'ID SEQ NO 1, 5, 7, 9, 36 ou 38, de l'acide aminé en position 1 à l'acide aminé en position 350, 351, 354, 358, 322 ou 346 respectivement;
- (ii) Un polypeptide selon l'invention dont la séquence est substantiellement telle que montrée dans l'ID SEQ NO 3 de l'acide aminé en position 1 à l'acide aminé en position 330;
- 30 (iii) Un polypeptide selon l'invention dont la séquence est substantiellement telle que montrée dans :
 - l'ID SEQ NO 1, de l'acide aminé en position 1 à l'acide aminé en position 691, délétée des régions 362-379, 418-444, 465-481 et 500-520 ;

	- l'ID SEQ NO 5, de l'acide aminé en position 1 à l'acide aminé en position
	705, délétée des régions 365-382, 421-453, 474-495 et 514-534 ;
	- l'ID SEQ NO 7, de l'acide aminé en position 1 à l'acide aminé en position
5 .	693, délétée des régions 366-383, 422-448, 469-485 et 504-524 ;
	- l'ID SEQ NO 9, de l'acide aminé en position 1 à l'acide aminé en position
	699, délétée des régions 372-389, 428-454, 475-491 et 510-529 ;
10	- l'ID SEQ NO 36, de l'acide aminé en position 1 à l'acide aminé en position
	699, délétée des régions 339-356, 395-421, 443-458 et 477-497 ; ou
	- ITD SEQ NO 38, de l'acide aminé en position 1 à l'acide aminé en position
15	699, délétée des régions 363-380, 419-445, 467-482 et 501-521 ; et
	(iv) Un polypeptide selon l'invention dont la séquence est substantiellement telle que montrée dans :
20	 l'ID SEQ NO 1, de l'acide aminé en position 346 à l'acide aminé en position 543,
	- l'ID SEQ NO 5, de l'acide aminé en position 347 à l'acide aminé en position 557,
25	- l'ID SEQ NO 7, de l'acide aminé en position 350 à l'acide aminé en position 557,
	- l'ID SEQ NO 9, de l'acide aminé en position 354 à l'acide aminé en position 551,
30	- l'ID SEQ NO 36, de l'acide aminé en position 323 à l'acide aminé en position 521, ou
35	- l'ID SEQ NO 38, de l'acide aminé en position 345 à l'acide aminé en position 544.

10

15

20

30

Des polypeptides particuliers répondant aux définitions données aux points (i) à (iv) sont décrits dans les exemples qui suivent.

Un polypeptide selon l'invention possède une séquence d'acide aminés qui comprend au moins 10, avantageusement au moins 20, de préférence au moins 50, de manière tout à fait préférée au moins 100 acides aminés.

Bien évidemment, un polypeptide selon l'invention peut aussi comprendre de manière additionnelle, une séquence d'acides aminés qui ne présente pas d'homologie avec les séquences des sous-unités Tbp2 des souches IM2169 et IM2394; séquences qui sont montrées dans les ID SEQ NO 1 et 3 de l'acide aminé en position 1 à l'acide aminé en position C-terminale.

D'une manière générale, une séquence additionnelle peut être celle de tout autre polypeptide à l'exclusion de Tbp2.

Par exemple, une séquence additionnelle peut être celle d'un peptide signal localisée en position N-terminale d'un polypeptide selon l'invention. Des exemples de séquence signal sont montrés dans les ID SEQ NO 1 à 4. D'autre part, on indique qu'une séquence signal hétérologue appropriée peut être une séquence signal d'un gène codant pour une lipoprotéine.

L'invention a aussi pour objet :

- 25 (i) un fragment d'ADN isolé codant pour un polypeptide selon l'invention ;
 - (ii) une cassette d'expression qui comprend au moins un fragment d'ADN selon l'invention, placé sous le contrôle d'éléments capables d'assurer son expression dans une cellule-hôte appropriée; et
 - (iii) un procédé de production d'un polypeptide selon l'invention, selon lequel on cultive une cellule-hôte comportant une cassette d'expression selon l'invention.
- Par "fragment d'ADN isolé", on signifie qu'un fragment d'ADN selon l'invention n'est pas intégré dans un fragment d'ADN codant pour une sous-unité Tbp2 complète.

- 14 -

Dans la cassette d'expression, le fragment d'ADN selon l'invention peut être ou non associé à un bloc d'ADN codant pour un peptide signal hétérologue ou non, au polypeptide codé par ledit fragment d'ADN, selon que l'on recherche ou non la sécrétion du polypeptide. De préférence, cette sécrétion sera recherchée.

5

Des éléments tels qu'un bloc d'ADN codant pour un peptide signal hétérologue (région signal) ou un promoteur existent déjà en assez grand nombre et sont connus de l'homme du métier. Ses compétences générales lui permettront de choisir une région signal ou un promoteur particulier qui seront adaptés à la cellule-hôte dans laquelle il envisage l'expression.

Aux fins du procédé selon l'invention, la cellule-hôte peut être une cellule de mammifère, une bactérie ou une levure ; ces deux dernières étant préférées. Là aussi, le choix d'une lignée particulière est à la portée de l'homme du métier.

15

10

L'invention concerne également un anticorps monoclonal :

20

(i) capable de reconnaître un épitope présent dans le premier domaine d'une sous-unité Tbp2 de type IM2169 ou IM2394; ledit épitope ayant une séquence homologue à celle présente dans le premier domaine de la sousunité Tbp2 de la souche IM2394 et sélectionnée parmi YKGTW (SEQ ID NO 32), EFEVDFSDKTIKGTL (ID SEQ NO 33), EGGFYGPKGEEL (ID SEQ NO 34) et AVFGAK (ID SEQ NO 35); et de manière optionnelle,

25

30

(ii) incapable de reconnaître l'épitope présent dans le troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, dont la séquence est homologue à celle de l'épitope du premier domaine qui est reconnu.

Afin d'illustrer le point (ii) précédent, on indique à titre d'exemple que les séquences du troisième domaine de la sous-unité Tbp2 IM2394 homologues deux à deux à celles du premier domaine se trouvent respectivement en position 443 - 447, 472 - 485, 537 - 548 et 568 - 573;

De préférence, un monoclonal selon l'invention est :

- (i) capable de reconnaître la région présente dans le premier domaine d'une sous-unité Tbp2 de type IM2169 ou IM2394 dont la séquence est homologue à la séquence EGGFYGPKGEEL présente dans le premier domaine de la sous-unité Tbp2 de la souche IM2394; et de manière optionnelle,
- (ii) incapable de reconnaître l'épitope présent dans le troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, épitope équivalent de celui qui est reconnu, dont la séquence est homologue à la séquence SGGFYGKNAIEM présente dans le troisième domaine de la sous-unité Tbp2 de la souche IM2394.

Un monoclonal préféré est :

- (i) capable de reconnaître l'épitope GFYGPK, présent dans le premier domaine d'une sous-unité Tbp2 de la souche IM2394; et
 - (ii) incapable de reconnaître l'épitope équivalent présent dans le troisième domaine de ladite sous-unité Tbp2 IM2394.

20

30

35

5

10

15

En effet, un tel monoclonal a été reconnu comme bactéricide et par conséquent on peut envisager de l'utiliser comme principe actif dans une composition pharmaceutique, en immunothérapie passive pour combattre une infection à N. meningitidis.

Enfin, l'invention concerne également une composition pharmaceutique comprenant à titre de principe actif, au moins un polypeptide selon l'invention.

Une composition pharmaceutique selon l'invention est notamment utile pour induire une réponse immunitaire chez les humains à l'encontre de N. meningitidis, entre autre un effet vaccinal de manière à protéger les humains contre des infections à N. meningitidis, en prévention ou en thérapie.

Une composition selon l'invention comprend avantageusement, à titre de principe actif, au moins deux polypeptides selon l'invention; soit au moins un premier polypeptide dont la séquence dérive de celle d'une sous-unité Tbp2 de type IM2169 et au moins un deuxième polypeptide dont la séquence dérive de celle d'une sous-unité Tbp2 de type

IM2394. De manière alternative, une composition selon l'invention peut aussi contenir au moins un polypeptide dont la séquence dérive de celle d'une sous-unité Tbp2 de type IM2169 et au moins une sous-unité Tbp2 de type IM2394.

Pour ce qui concerne le polypeptide de type IM2394, élément de la composition pharmaceutique, il est très préférable que celui-ci comporte tout ou partie de la séquence qui est homologue à celle du premier domaine de la sous-unité Tbp2 IM2394 dont il est dérivé. La partie de la séquence qui doit de préférence, être maintenue est l'homologue de la région de la sous-unité Tbp2 IM2394 allant de l'acide aminé en position 267 à l'acide aminé en position 325. La séquence d'un tel polypeptide peut dériver de celle d'une sous-unité Tbp2 de type IM2394 notamment par délétion totale ou partielle de la région du deuxième ou troisième domaine de la sous-unité Tbp2 de type IM2394.

Ainsi, en vue d'une composition pharmaceutique à deux types d'éléments (type IM2394 et type IM2169), sont plus particulierement préférés les polypeptides de type IM2394 suivants :

1, 2, 03; 1, 2,
$$\Delta$$
3; 1, 02, Δ 3; 1, Δ 2, Δ 3
01, 2, 03; 01, 2, Δ 3; 01, 02, Δ 3; 01, Δ 2, Δ 3.

20

35

Pour ce qui concerne le polypeptide de type IM2169, élément de la composition pharmaceutique, deux approches préférées sont possibles :

(A) - Soit associer au polypeptide de type IM2394, un polypeptide qui comporte tout ou partie de la séquence qui est homologue à celle du premier domaine de la sous-unité Tbp2 IM2169 dont il est dérivé. Dans ce cas là, la partie de la séquence qui doit de préférence, être maintenue est l'homologue de la région de la sous-unité Tbp2 IM2169 allant de l'acide aminé en position 282 à l'acide aminé en position 345. La séquence d'un tel polypeptide peut dériver de celle d'une sous-unité Tbp2 de type IM2169 notamment par délétion totale ou partielle de la région du deuxième ou troisième domaine de la sous-unité Tbp2 de type IM2169.

Ainsi, selon cette alternative et en vue d'une composition pharmaceutique à deux types d'éléments (type IM2394 et type IM2169), sont plus particulierement préférés les polypeptides de type IM2169 suivants :

- 17 -

1, 2, O3; 1, 2, Δ 3; 1, O2, Δ 3; 1, Δ 2, Δ 3 O1, 2, O3; O1, 2, Δ 3; O1, O2, Δ 3; O1, Δ 2, Δ 3.

1, 02, 3; 01, 02, 3.

5

Pour ce qui concerne les deux dernières possibilités (1, O2, 3; O1, O2, 3), la délétion partielle du deuxième domaine peut très avantageusement porter sur une ou des régions du deuxième domaine qui est (sont) l'(les) homologue(s) des régions de la séquence IM2169 allant:

10

15

- (i) de l'acide aminé en position 362 à l'acide aminé en position 379 ;
- (ii) de l'acide aminé en position 418 à l'acide aminé en position 444;
- (iii) de l'acide aminé en position 465 à l'acide aminé en position 481; et
 - (iv) de l'acide aminé en position 500 à l'acide aminé en position 520.

De préférence, la délétion partielle porte simultanément sur les quatre régions (i) à 20 (iv) sus-décrites.

(B) - Soit associer au polypeptide de type IM2394, un polypeptide dont la séquence dérive par délétion partielle du deuxième domaine et par délétion totale ou quasi totale du premier ou troisième domaine de la sous-unité Tbp2 de type IM2169 et comporte le deuxième domaine dans son intégralité (Δ 1, 2, Δ 3). Dans cette alternative, la composition pharmaceutique à deux types d'éléments (type IM2394 et type IM2169), peut avantageusement contenir plusieurs polypeptides (Δ 1, 2, Δ 3) de type IM2169 ; par exemple deux ou plus des polypeptides sélectionnés parmi (Δ 1, 2, Δ 3) IM2169, M978, 6940 et S3032.

30

35

25

Une composition pharmaceutique selon l'invention peut être fabriquée de manière conventionnelle. En particulier on associe le ou les polypeptide(s) selon l'invention avec un adjuvant, un diluant ou un support acceptable d'un point de vue pharmaceutique. Une composition selon l'invention peut être administrée par n'importe quelle voie conventionnelle en usage dans le domaine des vaccins, en particulier par voie sous-cutanée, par voie intra-musculaire ou par voie intra-veineuse, par exemple sous forme de suspension

injectable. L'administration peut avoir lieu en dose unique ou répétée une ou plusieurs fois après un certain délai d'intervalle. Le dosage approprié varie en fonction de divers paramètres, par exemple, de l'individu traité ou du mode d'administration.

Afin de déterminer l'objet de la présente invention, on précise que les souches de N. meningitidis IM2394 et IM2169 sont publiquement disponibles auprès de la Collection Nationale de Culture des Microorganismes (CNCM), Institut Pasteur, 25 rue du Dr Roux 75015 Paris sous les numéros d'enregistrement respectifs LNP N 1511 et LNP N 1520.

L'invention est décrite plus en détails dans les exemples ci-après et par référence aux Figures 1 à 10.

Les Figures 1 à 3, 8 et 9 présentent respectivement les alignements des séquences Tbp2, M978, 6940, S3032, BZ83 et BZ163 avec la séquence Tbp2 IM2169, au maximum d'homologie. Les degrés d'homologies respectifs sont de 78.9, 81.2, 79.6, 71.3 et 81.8%.

La Figure 4 présente les alignements au maximum d'homologie des séquences des domaines charnières (deuxième domaine) de Tbp2 IM2169 (1), 6940 (2), 2223 (3), C708 (4), M978 (5), 1610 (6), 867 (7), S3032 (8) et 891 (9). En italiques est donnée la numérotation de IM2169, telle qu'elle apparaît dans ID SEQ NO 2. En gras apparaissent les séquences que l'on peut déléter selon un mode préféré. (C) indique la séquence consensus.

Les Figures 5 à 7 illustrent respectivement la construction des plasmides pTG5782, pTG5755 et pTG5783.

25

30

10

15

20

La Figure 10 présente les alignements au maximum d'homologie des séquences des domaines charnières (deuxième domaine) de Tbp2 IM2169 (1), 2223 (2), 708 (3), M528 (4), 6940 (5), M978 (6), 1610 (7), S3032 (8), 867 (9), BZ83 (10) et BZ163 (11). En italiques est donnée la numérotation de IM2169, telle qu'elle apparaît dans ID SEQ NO 2. En gras apparaissent les séquences que l'on peut déléter selon un mode préféré. (C) indique la séquence consensus.

- 19 -

EXEMPLE 1: Polypeptide T/2169 (1, O2, Δ3; 1-350) dont la séquence telle que montrée dans l'ID SEQ NO 1 (IM2169), de l'acide aminé en position 1 à l'acide aminé en position 350.

5 1A - Préparation du fragment d'ADN codant pour T/2169 (1-350) : Construction du vecteur pTG 5782.

A partir du plasmide pTG3721 décrit dans la demande EPA 586 266, on introduit, par mutagénèse dirigée, un site de restriction *Hin*dIII en aval de la séquence codant pour Tbp2, pour générer le plasmide pTG4704.

A partir du plasmide pTG3721, on amplifie par PCR, à l'aide des amorces OTG4915 et OTG4651, un fragment comportant la séquence codant pour le signal de sécrétion de RlpB et du début de la séquence codant pour Tbp2 mature jusqu'au site *HaeII* interne.

OTG4915 : AAACCCGGATCCGTTGCCAGCGCTGCCGT
HaeII

20

10

15

OTG4651 :

BspHI

TTTTTTCATG AGA TAT CTG GCA ACA TTG TTG TTA TCT CTG

Met Arg Tyr Leu Ala Thr Leu Leu Leu Ser Leu

25

35

GCG GTG TTA ATC ACC GCC GGG TGC CTG GGT GGC

Ala Val Leu Ile Thr Ala Gly Cys Leu Gly ...

_clivage du peptide signal

30 GGC GGC AGT TTC

Le fragment PCR est ensuite digéré par BspHI et HaeII et inséré simultanément avec le fragment HaeII-HindIII de pTG4704 qui comporte la partie 3' de la région codant pour Tbp2, dans le plasmide pTG3704 décrit dans la demande EPA 586 266, digéré par NcoI et HindIII, pour générer le plasmide pTG5768.

A partir de plasmide pTG3721, on amplifie par PCR, à l'aide des amorces OTG4928 et OTG5011, un fragment comportant la séquence codant pour la partie N-terminale de Tbp2.

5

SphI

OTG4928 : GTG TTT TTG TTG AGT GCA TGC CTG GGT GGC

Val Phe Leu Leu Ser Ala Cys Leu Gly Gly

_Clivage du peptide

signal

10

15

20

25

30

35

OTG5011 : TGCGCAAGCTTACAGTTTGTCTTTGGTTTTCGCGCTGCCG
Hindlil

Ce fragment PCR est digéré par *Sph*I et *Hind*III, puis cloné dans le plasmide pTG4710 décrit dans la demande EPA 586 266 ; on génère ainsi le plasmide pTG5740.

Le fragment *Hae*II-*Hin*dIII de pTG5740 comportant la partie 3' de la séquence codant pour le domaine de liaison à la transferrine humaine (hTf) (3' de la région codant pour le premier domaine) est inséré dans le plasmide pTG3704 digéré par *Bam*HI et *Hin*dIII, simultanément avec le fragment *Bam*HI-*Hae*II de pTG5768 comportant le promoteur *ara*B, la séquence signal *rlp*B et le début de la séquence codante de Tbp2; on génère ainsi le plasmide pTG5782. Ce vecteur comporte le promoteur *ara*B, la séquence codant pour le signal de sécrétion de RlpB fusionnée à la séquence codant pour le domaine N-terminal de Tbp2 (1 - 350).

1B - Production et purification de T/2169 (1-350)

Une souche d'E. coli (Xac-I) est transformée par pTG5782. Les transformants sont mis en culture à 37°C en milieu M9 + succinate 0,5% + arginine 50µg/ml + ampicilline100 µg/ml. En phase exponentielle, on ajoute 0,2% d'arabinose (inducteur). Après une heure d'induction, on prélève des cellules et des extraits sont préparés. Une analyse en Western Blot suivie d'une révélation par la hTF-peroxidase permet de détecter une bande majoritaire dont le P.M. correspond à celui attendu pour cette forme tronquée de Tbp2.

Dans un test tel décrit dans l'exemple 4 de WO93/6861 (publié : 15. 04. 93) T/2169 purifié se révèle capable d'induire des anticorps bactéricides et par conséquent devrait être utile à des fins vaccinales.

5

EXEMPLE 2: Polypeptide T/2394 (1, O2, $\Delta 3$; 1-340) dont la séquence telle que montrée dans l'ID SEQ NO 2 (IM2394), de l'acide aminé en position 1 à l'acide aminé en position 340.

10 2A - Préparation du fragment d'ADN codant pour T/2394 (1-340) : Construction du vecteur pTG 5755

A partir du plasmide pTG4710 décrit dans la demande EPA 586 266, on amplifie par PCR, à l'aide des amorces OTG4873 et OTG4877, un fragment comportant la région codant pour la partie C-terminale du domaine de liaison à la hTf. Ce fragment est ensuite digéré par MluI et HindIII.

OTG4873 : AAAAAGCATGCATAAAAACT<u>ACGCGT</u>TACACCATTCAAGC
MluI

20

25

30

15

OTG4877 : TATATAAGCTTACGTTGCAGGCCCTGCCGCGTTTTCCCC

HindIII

Le plasmide pTG4710 est digéré par MluI et HindIII. Le fragment MluI-HindIII comportant la partie 3' de la séquence codant pour Tbp2 est remplacé par le fragment PCR codant pour la partie C-terminale du domaine de liaison à la hTf. On génère ainsi le plasmide pTG5707. On remplace ensuite dans le plasmide pTG5707, un fragment BamHI-MluI comportant le promoteur araB et le début de la séquence codant pour Tbp2, par un fragment BamHI-MluI de pTG4764 décrit dans la demande EPA 586 266 qui comporte le promoteur araB, la séquence codant pour le signal de sécrétion RlpB fusionnée à la séquence codant pour le domaine N-terminal de Tbp2. On génère ainsi le plasmide pTG5755. Ce vecteur comporte le promoteur araB, la séquence codant pour le signal de sécrétion de RlpB fusionnée à la séquence codant pour le domaine N-terminal de Tbp2 (1 - 340).

2B - Production et purification de T/2394 (1-340)

T/2394 (1-340) est produit et purifié tel que décrit dans l'Exemple 1B.

- Dans un test tel décrit dans l'exemple 4 de WO93/6861 (publié : 15. 04. 93)

 T/2394 purifié se révèle capable d'induire des anticorps bactéricides et par conséquent devrait être utile à des fins vaccinales.
- 10 EXEMPLE 3: Polypeptide D4/2169 (1, O2, 3) dont la séquence est identique à celle telle que montrée dans l'ID SEQ NO 1, de l'acide aminé en position 1 à l'acide aminé en position 691, délétée des régions 362-379, 418-444, 465-481 et 500-520.

15 3A - Préparation du fragment d'ADN codant pour D4/2169

1.1. Clonage du fragment d'ADN.

Le fragment d'ADN codant pour la sous-unité Tbp2 de la souche de N.

meningitidis IM2169 est amplifié par PCR (Polymerase chain reaction) à l'aide d'amorces spécifiques complémentaires des régions 5' et 3', (respectivement A5' et A3') sur 10 ng d'ADN génomique extrait d'une culture de bactéries de la souche IM2169.

25 A5': 5' CCCGAATTCTGCCGTCTGAAGCCTTATTC 3'

A3' : 5' CCCGAATTCTGCTATGGTGCTGCCTGTG 3'

Un fragment d'ADN est ainsi obtenu et après digestion par EcoRI, il compte 2150 nt. Ce fragment EcoRI est ensuite ligué aux extrémités EcoRI déphosphorylées du phagemide pBluescriptSK(-) (Stratagene) pour donner le phagemide recombinant pSK/2169tbp2.

1.2. Mise en oeuvre des délétions.

Le clone pSK/2169tbp2 contenant les séquences *tbp2* de la souche M982 est délété par la technique de Kunkel, PNAS (1985) <u>82</u> : 448.

5

En bref, la forme phagique du phagemide recombinant pSK/2169tbp2 est obtenue après sauvetage par le phage "helper" VCS M13 selon la technique décrite par Stratagene, fournisseur du vecteur de base, et utilisée pour infecter la souche bactérienne CJ236. Les mutations dut et ung portées par la souche CJ236 ont pour conséquence la synthèse de molécules d'ADN ayant incorporé le précurseur nucléotidique dUTP.

10

Les phages sont récoltés et l'ADN simple brin est extrait par un mélange phénol/chloroforme. Cet ADN est hybridé dans les conditions classiques, aux oligonucléotides suivants :

15

2169d1 : 5' CGCATCCAAAACCGTACCTGTGCTGCCTGA 3' 2169d2 : 5' TTTATCACTTTCCGGGGGCAGGAGCGGAAT 3' 2169d3 : 5' GTTGGAACAGCAGACAGCGGTTTGCGCCCC 3' 2169d4 : 5' GAACATACTTTGTTCGTTTTTTGCGCGTCAA 3'

20

La réaction d'hybridation est poursuivie 30 min, en température décroissante à partir de 70°C jusqu'à 30°C.

25

Le second brin complémentaire est ensuite achevé par synthèse complète en présence des quatre desoxynucléotides, de la T4 DNA polymérase et de la T4 DNA ligase, selon les conditions classiques.

30

La souche *E. coli* SURE (Stratagene) est transformée par l'ADN ainsi obtenu. Dans cette souche, les molécules porteuses de dUTP, c'est-à-dire non-mutées, sont détruites.

35

Les phages obtenus sont analysés par les techniques classiques de préparation rapide d'ADN plasmidique et de digestion par les enzymes de restriction appropriées. La présence de la mutation recherchée est ensuite vérifiée par séquençage nucléotidique.

Le clone pSK2169#7, porteur des quatre mutations Δ 1203-1256, Δ 1371-1451, Δ 1512-1562, et Δ 1617-1679 est sélectionné.

3B - Construction du vecteur d'expression pTG5783

5

10

Le plasmide pTG5768 décrit précédemment est digéré par *Hpa*I et *Xcm*I. On insère simultanément dans ce vecteur un fragment *Xcm*I-*Xcm*I de pTG5768 et le fragment *Hpa*I-*Xcm*I du plasmide pSK/2169ed#7, pour générer le plasmide pTG5783. Ce vecteur comporte le promoteur *ara*B, la séquence codant pour le signal de sécrétion de RlpB fusionnée à la séquence *tbp*2 modifiée (délétions d1 à d4).

3C - Préparation et purification de D4/2169.

D4/2169 est produit et purifié selon l'Exemple 1B.

15

Dans un test tel décrit dans l'exemple 4 de WO93/6861 (publié : 15. 04. 93) D4/2169 purifié s'est révélé capable d'induire des anticorps bactéricides et par conséquent devrait être utile à des fins vaccinales.

20

EXEMPLES 4 à 8 : Polypeptides 4) C/2223, 5) C/M981, 6) C/1610, 7) C/M978 et 8) C/C708 correspondants au deuxième domaine (région charnière) de Tbp2s de diverses souches.

25

Les fragments d'ADN codant pour les Tbp2 des souches de N. meningitidis 2223, M981, 1610, M978 et C708 ont été clonés par amplification PCR comme décrit dans l'exemple 3A, en utilisant les deux même amorces. De même, ces fragments ont été insérés aux sites EcoRI ou EcoRI/BamHI du phagemide pBluescriptSK(-). Le séquençage de la région codant pour le deuxième domaine a été effectué et la séquence en acides aminés déduite telle chacune d'elle apparait à la Figure 4.

30

Sur la base de chacune des séquences nucléotidiques, des amorces spécifiques de chacuns des deuxièmes domaines sont créées en introduisant des sites de clivage appropriés en vue d'un futur clonage en phase avec séquence signal *rlpB*, sous le contrôle du promoteur *araB*. ces amorces sont utilisées en PCR pour amplifier la région codant pour le deuxième domaine de chacune des Tbp2. Ces régions sont

clonées comme indiqué ci-dessus dans un plasmide comportant la séquence signal rlpB, sous le contrôle du promoteur araB.

L'expression des peptides est conduite comme décrit à l'Exemple 1B.

5

EXEMPLE 9: Composition vaccinale (T/2169 - T/2394) destinée à prévenir des infections à N. meningitidis

Des solutions stériles de T/2169 et T/2394 tels que purifiés dans les exemples 1B et 2B sont décongelées. Afin de préparer un litre de vaccin renfermant 100 μg/ml de chacun des principes actifs, on mélange stérilement les solutions suivantes :

15	 Solution de T/2394 à 1 mg/ml dans du tampon C (tampon phosphate 500 mM, pH8, Sarkosyl 0,05 %) 	100 ml
	- Solution de T/2169 à 1mg/ml dans du tampon C	100 mi
20	- Eau physiologique tamponnée (PBS)) pH 6.0	300 ml
20	- Hydroxyde d'aluminium à 10 mg Al***/ml	50 ml
	- Merthiolate à 1 % (p/v) dans du PBS	10 ml
25	- PBS asp	1.000 mi

EXEMPLE 10: Composition vaccinale (D4/2169 - Tbp2/2394) destinée à prévenir des infections à N. meningitidis

30

Une solution stérile de D4/2169 tel que purifié dans l'exemple 3C est décongelée. On fait de même avec une solution stérile de Tbp2/2394 tel que préparé et purifié dans l'exemple 3 de EPA 586 266. Afin de préparer un litre de vaccin renfermant 100 µg/ml de chacun des principes actifs, on mélange stérilement les solutions suivantes :

35

- Solution de Tbp2/2394 à 1 mg/ml dans du tampon C

100 ml

- 26 -

	- Solution de D4/2169 1mg/ml dans du tampon C	100 ml
5	- Eau physiologique tamponnée (PBS)) pH 6.0	300 ml
	- Hydroxyde d'aluminium à 10 mg Al+++/ml	50 ml
	- Merthiolate à 1 % (p/v) dans du PBS	10 ml
10	- PBS qsp	1.000 ml

EXEMPLE 11: Obtention d'un anticorps capable de reconnaître l'épitope GFYGPKGE du premier domaine de Tbp2 IM2394.

15

20

11A -Immunisation des souris et production des hybridomes

Des souris MRL/Lpr-Lpr connues pour produire plus d'IgG2a, IgG2b et IgG3 que les souris Balb/C (J. Immunol. Methods (1991) 144 : 165) reçoivent une première injection intrapéritonéale de 50 µg de la fraction membranaire IM2394 en présence d'adjuvant complet de Freund. La fraction membranaire que l'on utilise est préparée comme suit :

25

La souche IM2394 conservée sous forme lyophilisée est reprise et cultivée sur gélose Mueller - Hinton pendant une nuit à 37°C dans une atmosphère contenant 20% de CO₂. La nappe est reprise et sert à ensemenser un erlen-meyer contenant du bouillon Mueller - Hinton additionné de 30 µM EDDA (ethylene diamine di orthohydroxy acetic acid - Sigma). Après 5 heures d'incubation à 37°C sous agitation rotative, la culture est centrifugée. Le culot est repris par du tampon Tris-HCl pH 8 et la suspension est lysée dans un appareil à ultrasons fonctionnant à haute pression (Rannie, modèle 8.30H). La suspension obtenue est centrifugée à basse vitesse pour éliminer les débris cellulaires et les membranes sont recueillies par ultracentrifugation (140 000 xg, 75 min, 4°C). La fraction membranaire est finalement reprise en tampon Tris-HCl 50 mM pH 8 et sa concentration protéique déterminée.

35

Cette première injection est suivie de deux injections de rappel 21 et 49 jours plus tard. Les doses de rappel contiennent 25 µg de la protéine Tbp2 telle que purifiée dans l'Exemple 3 de EPA 586 266, sous la forme d'une émulsion dans l'adjuvant incomplet de Freund.

5

10

15

56 jours après, la souris ayant développé le titre en anticorps le plus élevé (contrôle des immunsérums par ELISA) est sélectionnée pour la production d'anticorps monoclonaux spécifiques. Celle-ci reçoit une dernière injection de rappel (78 jours après l'injection initiale) en inoculant 25 µg de la protéine Tbp2 telle que purifiée dans l'Exemple 3 de EPA 586 266 à la fois par voie intraveineuse et par voie intrapéritonéale. 3 jours après, la rate de l'animal est prélevée et les splénocytes sont fusionnés avec les cellules myélomateuses murines P3 x 63 Ag 8653 dans un rapport d'une cellule myélomateuse pour 4 cellules spléniques. Le protocole de fusion utilisé est dérivé de celui décrit initialement par G. Köhler et C. Milstein, Nature (1975) 256 : 495. Après fusion, les cellules sont disposées dans des micropuits stériles (Nunc) recouverts d'un "feeder" nourricier à raison de 100 000 cellules par puits dans un volume de 200 µl de milieu sélectif [milieu D.M.E.M contenant 20% de SVF et un mélange hypoxanthine - azaserine - thymidine à 2% (V/V) (Gibco. Réf 043-01060H)]. Le milieu sélectif est remplacé 6 jours après, par un milieu non sélectif [milieu D.M.E.M contenant 20% de SVF et un mélange hypoxanthine - thymidine à 2% (V/V) (Gibco. Réf 043-01065H)].

11B - Criblage des hybridomes

25

20

Les surnageants de culture des hybridomes sont testés par ELISA selon la méthode suivante :

30

35

Dans des micropuits de plaque ELISA "sensibilisés" pendant une nuit à +4°C par 100 µl d'une solution à 5 µg/ml de RT 2394 en tampon carbonate (50 mM pH 9,6), puis saturés pendant 1 heure à 37°C avec 200 µl d'un tampon phosphate 0,1 M contenant 1% de sérum albumine bovine (poids/volume) (PBS-AB), sont déposés 100 µl de surnageant de culture d'hybridomes (ou les dilutions d'immunsérums effectuées en tampon PBS-AB contenant 0,05% de Tween 20) (PBS-T-AB). Après une nouvelle incubation de 1h30 à 37°C suivie de 5 lavages en PBS-Tween, les puits sont recouverts par 100 µl d'une solution mixte d'anticorps conjugués à la phosphatase alcaline (PA) spécifiques des isotypes IgG_{2a}, IgG_{2b} et IgG₃ murins de façon à ne

WO 95/33049

sélectionner que les hybridomes sécrétant des anticorps spécifiques et fonctionnels dans le test de bactéricidie. La solution mixte d'anticorps conjugués est préparée en diluant les 3 immunsérums de chèvre suivants : chèvre anti IgG_{2a} - PA (Caltag), chèvre anti IgG_{2b} -PA (Caltag), chèvre anti IgG₃-PA (Caltag) au 1/1500è en tampon PBS-T-AB. Après incubation de la solution d'anticorps conjugués 1h30 à 37°C, suivie de 5 lavages, la réaction enzymatique est révélée par 100 μl d'une solution de paranitrophényl phosphate à 5 mg/ml en tampon diéthanolamine 0,1 M, pH 9,8. Le développement de la réaction est arrêté au bout de 30 min. en rajoutant 50 μl de soude 1N avant analyse au spectrophotomètre à 405 nm.

10

5

Les clones positifs après ce premier criblage sont analysés pour leur capacité à reconnaître la sous-unité Tbp2 par Western blot.

15

Pour ce faire, les récepteurs transferrine IM2394 (0,863 mg/ml) et IM2169 (0,782 mg/ml) tels que préparés dans les exemples 1 et 2 de WO93/6861, sont dilués au 1/10 dans un tampon Tris 1 M pH 6,8, puis dénaturés en ajoutant 10% (V/V) d'une solution de SDS à 25% dans un tampon TE (Tris/HCl 100 mM, EDTA 10 mM) pH 8,0 et 5% (V/V) de β-mercaptoéthanol. Après un traitement de 15 min à 56°C, un aliquot de 110 μl contenant le récepteur transferrine dénaturé IM2394 ou IM2169, est déposé sur un gel de polyacrylamide à 7,5%. Après migration (1 heure sous 200 volts dans une cuve Biorad), les protéines sont électrotransférées sur une membrane de nitrocellulose (100 volts pendant 50 min.). La membrane est saturée pendant 1 nuit à température ambiante dans un tampon Tris 20 mM, NaCl 137 mM pH 7,6 (TBS) contenant 5% (P/V) de poudre de lait écrémé puis montée sur miniblotter. Les anticorps que l'on teste sont ajustés à la concentration de 25 μg/ml en tampon TBS contenant 1% (P/V) de poudre de lait avant d'être déposés à raison de 50 μl par canal.

25

20

Après 45 min. d'incubation, suivies de rinçages en tampon TBS/lait 1%, 50 µl d'un immunsérum de lapin anti IgG.A.M de souris (Zymed) conjugué à la phosphatase alcaline préalablement dilué 1000 fois en tampon TBS/lait 1% sont déposés dans chaque canal.

30

Après une nouvelle incubation de 45 min. suivie de rinçages, la réaction enzymatique est révélée à l'aide d'un substrat chromogénique (B.C.I.P/NBT (Sigma Fast R). La réaction est arrêtée au bout de 15 min. par trempage dans l'eau distillée. Les clones positifs sont caractérisés par leur capacité à révéler une bande

- 29 -

correspondant à une protéine d'environ 69 kD (sous-unité Tbp2) après électrotransfert du récepteur transferrine IM2394 sur membrane de nitrocellulose.

A l'issue de ce second criblage par Western blot, les clones sont analysés pour leur capacité à produire une immunoglobuline réagissant avec la séquence peptidique GFYGPKGE dans un système ELISA; la méthodologie est identique à celle décrite ci-dessus à l'exception de la sensibilisation des plaques qui est réalisée par addition dans chaque puits de 100 µl d'une solution de peptide GFYGPKE à 2 µg/ml.

10

15

25

30

5

Parmi les hybridomes que l'on teste, on en sélectionne un qui se révèle capable de réagir avec le peptide; puis on le stabilise par clonage successifs (au moins 2) à raison de 5 cellules/puits lors du premier clonage, de une cellule/puits lors des suivants.

11C -Production et purification de l'anticorps monoclonal

L'anticorps monoclonal est produit en ascite de souris Nude swiss males.

15 jours après injection de 500 µl de pristane par voie intrapéritonéale, les souris nudes reçoivent une deuxième injection intrapéritonéale de 7 millions de cellules provenant de l'hybridome.

Les liquides d'ascites sont prélevés stérilement puis purifiés par chromatographie d'affinité sur une colonne de protéine G. L'ascite diluée au 1/5è dans un tampon phosphate 0,1M pH 7,4 et filtrée sur filtre millipore 0,22 µ est passée au travers d'une colonne de protéine G préalablement équilibrée dans le même tampon phosphate, à raison de 40 ml/heure.

Les anticorps fixés sur la colonne sont élués à l'aide d'un tampon glycine 0,1M pH 2,7. Les fractions éluées sont immédiatement neutralisées à l'aide d'un tampon Tris 1 M pH 8,0 (à raison de 1 volume de Tris pour 10 volumes d'éluat).

L'éluat est ensuite dialysé une nuit à +4°C dans un tampon phosphate 0,1M pH 7,4, aliquoté et conservé congelé.

La pureté de l'anticorps est contrôlée par électrophorèse sur gel de polyacrylamide à 7,5% et par chromatographie de perméation sur Superose 12. Le taux de pureté généralement est supérieur à 95%.

5

En appliquant le protocole décrit ci-dessus et en criblant environ 800 hybridomes, on a notamment sélectionné un monoclonal capable de réagir avec l'épitope GFYGPKGE du premier domaine de Tbp2 IM2394 et incapable de réagir avec l'épitope correspondant situé dans le troisième domaine (soit GFYGKNAI).

10

Ce monoclonal (appelé 475E7) est une IgG2b, de point isoélectrique compris entre 7,8 et 8,1, et possède un titre bactéricide de 512.

Ce titre a été déterminé comme suit :

15

A partir d'une solution de Mab 475 E7, des dilutions de raison deux sont réalisées et incubées en présence de 50 µl d'une suspension de méningocoques à 1.10⁴. CFU/ml et de 50 µl de complément de lapereau [la suspension bactérienne est obtenue par culture de la souche *N. meningitidis* B16B6 à 37°C pendant 5 heures dans le bouillon Mueller-Hinton-Difco contenant 30 µM d'EDDA (éthylène diamine di ortho hydroxyphenyl acetic acid - Sigma)].

20

Après une heure d'incubation à 37°C, 25 µl de mélange sont prélevés et cultivés sur gélose Mueller-Hinton supplémentée. Les boîtes de gélose sont incubées une nuit à 37°C sous une atmosphère contenant 10 % de CO₂. Les colonies sont numérées et le titre bactéricide est exprimé comme l'inverse de la dernière dilution en présence de laquelle on observe 50% ou plus de lyse des bactéries par rapport au contrôle.

25

Dans ces conditions, il a été déterminé que le Mab 475 E7 possédait un titre bactéricide de 512.

15

20

EXEMPLE 12: Mise en évidence de l'activité bactéricide des immunoglobulines spécifiques de la protéine T/2169 (1-350) vis-à-vis de diverses souches de N. meningitidis.

5 12A -Production et purification de T/2169 (1-350)

Une souche d'*E. coli* B est transformée par le plasmide pTG5782 décrit dans l'Exemple 1. Le transformant sélectionné est amplifié pour donner des lots de semence. A partir d'un tube d'*E. coli* B transformée par pTG 5782, on procède à une amplification de la culture dans le milieu M9 + succérate 0,5 %. La culture est réalisée dans un fermenteur de 20 l.

En phase exponentielle, on ajoute l'arabinose (inducteur d'expression). Après une heure d'induction, les cellules sont récoltées, cassées dans un appareil fonctionnant à haute pression (Rannie) et la fraction membranaire est récoltée par centrifugation.

Une analyse en Western blot suivie d'une révélation par la transferrineperoxidase permet de détecter une bande majoritaire dont le poids moléculaire correspond à celui attendu pour cette forme tronquée. La protéine est purifiée par SDS-Page préparatif à partir de gel d'acrylamide à 10 %.

12B - Production des immunoglobulines spécifiques de T/2169 (1-350)

La fraction protéique ainsi obtenue sert à immuniser des lapins. Brièvement, des lapins (New-Zealand White) sont immunisés (i) à J/0 avec 50 µg de protéine T/2169 preparée comme décrit en 12A, en présence d'adjuvant complet de Freund et (ii) à J/21 et J/42 avec 50 µg de protéine T/2169 en présence d'adjuvant de Freund incomplet. A J/56, les lapins sont sacrifiés et le sérum est récolté. A partir de ce sérum, les immunoglobulines sont purifiées par chromatographie d'affinité sur une résine de protéine A-Sépharose (Pharmacia). La purification est réalisée selon les recommandations du fournisseur. La fraction d'IgG purifiée est lyophilisée et le lyophilisat est repris par un certain volume de façon à ce que la concentration protéique finale de la solution soit voisine de 25 mg/ml.

12C - Test de bactéricidie

En parallèle à la purification de T/2169, on procède à une purification par SDS-Page préparatif d'une fraction d'E. coli B obtenue après transformation avec le plasmide pTG3704 (ce vecteur est identique au plasmide pTG5782 mais ne comprend aucune séquence de Tbp2). La fraction protéique obtenue par SDS-Page préparatif sert à immuniser des lapins comme cela est décrit précédemment, et les IgG sont purifiées à partir du sérum récolté.

10

5

On dispose donc de deux fractions sériques dénommées IgG T/2169 et IgG Témoin. Elles sont analysées pour leur capacité à lyser différentes souches de N. meningitidis dans le test de bactéricidie, tel que décrit dans l'Exemple 4 de WO93/6861 (publié le 15.04.1993).

15

Les résultats obtenus sur différents isolats sont résumés dans le tableau ci-après et démontrent que la protéine T/2169 purifiée se révèle capable d'induire des anticorps bactéricides vis-à-vis de plusieurs souches du groupe de type IM2169. Ces résultats de bactéricidie croisée démontrent que T/2169 devrait être utile à des fins vaccinales.

20

Détermination de l'activité bactéricide des immunoglobulines spécifiques de la protéine T/2169 en comparaison avec les immunoglobulines témoin vis-à-vis de six souches de N. meningitidis

Souche	Sérogroupe	Titres bac	téricides*
	Sérotype/sous-type	IgG Témoin	IgG T/2169
2169	B:9;P1.9	< 4	128
RH 873	B;8;P1.1.7	<4	16
RH 876	B;19,P1.6	<4	64
351	B:NT:P1.7	<4	256
NG G40	B:1:-	<4	512
EG 328	B:NT;-	<4	64

^{*} Les titres bactéricides sont exprimés en inverse de la dilution pour laquelle on observe 50 % de lyse des colonies initiales

EXEMPLE 13: Mise en évidence de l'activité bactéricide des immunoglobulines spécifiques de la protéine D4/2169 vis-à-vis de diverses souches de N. meningitidis.

5 13A -Production et purification de D4/2169

D4/2169 est produit et purifié selon l'Exemple 12A.

13B - Production des immunoglobulines spécifiques de D4/2169

10

Cette production est effectuée de manière similaire à cell décrite dans l'Exemple 12B.

13C - Test de bactéricidie

15

On dispose de deux fractions d'immunoglobulines dénommées IgG D4/2169 et IgG Témoin. Elles sont analysées pour leur capacité à lyser différentes souches de N. meningitidis dans le test de bactéricidie tel que décrit dans l'Exemple 4 de WO 93/6861 (publié le 15.04.93).

20

Les résultats obtenus sur différents isolats sont résumés dans le tableau ci-après et démontrent que D4/2169 purifié se révèle capable d'induire des anticorps bactéricides vis-à-vis de plusieurs souches et par conséquent devrait être utile à des fins vaccinales.

Détermination de l'activité bactéricide des immunoglobulines spécifiques de la protéine D4/2169 en comparaison avec les immunoglobulines témoin vis-à-vis de six souches de N. meningitidis

Souche	Sérogroupe	Titres ba	ctéricides*
21/0	Sérotype/sous-type	IgG Témoin	IgG D4/2169
2169	B:9;P1.9	< 4	32
RH 873	B;8;P1.1.7	<4	
RH 876	B;19,P1.6	< 4	16
351	B:NT;P1.7	< 4	128
NG G40	B;1:-	< 4	64
EG 328	B:NT:-	< 4	16

³⁰

^{*} Les titres bactéricides sont exprimés en inverse de la dilution pour laquelle on observe 50 % de lyse des colonies initiales.

SEQ ID NO	Nom du projet	Séquence
1, 2	IM2169-2	Tbp2 IM2169 complète
3, 4	IM2394-2	Tbp2 IM2394 complète
5, 6	M978	Tbp2 M978 complète
7, 8	6940	Tbp2 6940 complète
9, 10	S3032	Tbp2 S3032 complète
11	2D IM2169	2ième domaine de Tbp2 IM2169
12	2D 6940	2ième domaine de Tbp2 6940
13	2D 2223	2ième domaine de Tbp2 2223
14	2D C708	2ième domaine de Tbp2 C708
15	2D M978	2ième domaine de Tbp2 M978
` 16	2D 1610	2ième domaine de Tbp2 1610
17	2D 867	2ième domaine de Tbp2 867
18	2D S3032	2ième domaine de Tbp2 S3032
19	2D 891	2ième domaine de Tbp2 M981
20	OTG 4915	OTG 4915
21	OTG 4651	OTG 4651
22	OTG 4928	OTG 4928
23	OTG 5011	OTG 5011
24	OTG 4873	OTG 4873
25	OTG 4877	OTG 4877
. 26	A 5'	A 5'
27	A 3'	A 3'
28	2169 D1	2169D1
29	. 2169 D2	2169D2
30	2169 D3	2169D3
31	2169 D4	2169D4
32	MAB1	lère boîte du 1er domaine de Tbp2 IM 2169
33	MAB2	2ième boîte du 1er domaine de Tbp2 IM 2169
34	MAB3	3ième boîte du 1er domaine de Tbp2 IM 2169
35	MAB4	4ième boîte du 1er domaine de Tbp2 IM 2169
36, 37	BZ83	Tbp2 BZ83 complète
38, 39	BZ163	Tbp2 BZ163 complète

- 35 -

40	2D BZ83	2ième domaine de Tbp2 BZ83
41	2D BZ163	2ième domaine de Tbp2 BZ163
42	2D M528	2ième domaine de Tbp2 M528

LISTE DE SEQUENCES

(1) INFORMATION GENERALE:

- (i) DEPOSANT:
 - (A) NOM: Pasteur Merieux serums et vaccins
 - (B) RUE: 58, avenue leclerc
 - (C) VILLE: Lyon
 - (E) PAYS: France
 - (F) CODE POSTAL: 69007
 - (A) NOM: Transgene
 - (B) RUE: 11, rue de Molsheim(C) VILLE: Strasbourg

 - (E) PAYS: France
 - (F) CODE POSTAL: 67000
- (ii) TITRE DE L' INVENTION: Fragments Tbp2 de N. meningitidis
- (iii) NOMBRE DE SEQUENCES: 35
- (iv) FORME LISIBLE PAR ORDINATEUR:
 - (A) TYPE DE SUPPORT: Tape
 - (B) ORDINATEUR: IBM PC compatible
 - (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
 - (D) LOGICIEL: PatentIn Release #1.0, Version #1.25 (OEB)
- (2) INFORMATION POUR LA SEQ ID NO: 1:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 2230 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN (génomique)
 - (vi) ORIGINE:
 - (A) ORGANISME: Neisseria meningitidis
 - (B) SOUCHE: IM2169
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: sig_peptide
 - (B) EMPLACEMENT: 60..119
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: mat peptide
 - (B) EMPLACEMENT: 120..2192
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 60..2192
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: misc_feature
 - (B) EMPLACEMENT: 120..1154
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: misc feature
 - (B) EMPLACEMENT: 1155..1748

ATTT

635

- 37 -

(ix)	CARACTERISTIQUE ADDITIONELLE:
	(A) NOM/CLE: misc feature
	(B) EMPLACEMENT: 17492192
(ix)	CARACTERISTIQUE ADDITIONELLE:
	(A) NOM/CLE: misc binding
	(B) EMPLACEMENT: 2371169
(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:
GTTA	AA AATAAATAAA ATAATAATCC TTATCATTCT TTAATT

145

160

CATTCT TTAATTGAAT TGGGTTTAT 59 ATG AAC AAT CCA TTG GTA AAT CAG GCT GCT ATG GTG CTG CCT GTG TTT 107 Met Asn Asn Pro Leu Val Asn Gln Ala Ala Met Val Leu Pro Val Phe TTG TTG AGT GCC TGT CTG GGC GGC GGC GGC AGT TTC GAT CTT GAT TCT 155 Leu Leu Ser Ala Cys Leu Gly Gly Gly Gly Ser Phe Asp Leu Asp Ser GTC GAT ACC GAA GCC CCG CGT CCC GCG CCA AAG TAT CAA GAT GTT TCT 203 Val Asp Thr Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser 20 TCC GAA AAA CCG CAA GCC CAA AAA GAC CAA GGC GGA TAC GGT TTT GCG 251 Ser Glu Lys Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala 35 ATG AGG TTG AAA CGG AGG AAT TGG TAT CCG GGG GCA GAA GAA AGC GAG 299 Met Arg Leu Lys Arg Arg Asn Trp Tyr Pro Gly Ala Glu Glu Ser Glu GTT AAA CTG AAC GAG AGT GAT TGG GAG GCG ACG GGA TTG CCG ACA AAA 347 Val Lys Leu Asn Glu Ser Asp Trp Glu Ala Thr Gly Leu Pro Thr Lys CCC AAG GAA CTT CCT AAA CGG CAA AAA TCG GTT ATT GAA AAA GTA GAA 395 Pro Lys Glu Leu Pro Lys Arg Gln Lys Ser Val Ile Glu Lys Val Glu ACA GAC GGC GAC AGC GAT ATT TAT TCT TCC CCC TAT CTC ACA CCA TCA 443 Thr Asp Gly Asp Ser Asp Ile Tyr Ser Ser Pro Tyr Leu Thr Pro Ser 95 100 AAC CAT CAA AAC GGC AGC GCT GGC AAC GGT GTA AAT CAA CCT AAA AAT 491 Asn His Gln Asn Gly Ser Ala Gly Asn Gly Val Asn Gln Pro Lys Asn CAG GCA ACA GGT CAC GAA AAT TTC CAA TAT GTT TAT TCC GGT TGG TTT 539 Gln Ala Thr Gly His Glu Asn Phe Gln Tyr Val Tyr Ser Gly Trp Phe 135 TAT AAA CAT GCA GCG AGT GAA AAA GAT TTC AGT AAC AAA AAA ATT AAG 587 Tyr Lys His Ala Ala Ser Glu Lys Asp Phe Ser Asn Lys Lys Ile Lys

150

TCA GGC GAC GAT GGT TAT ATC TTC TAT CAC GGT GAA AAA CCT TCC CGA

Ser Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Glu Lys Pro Ser Arg

CAA CTT CCT GCT TCT GGA AAA GTT ATC TAC AAA GGT GTG TGG CAT TTT Gln Leu Pro Ala Ser Gly Lys Val Ile Tyr Lys Gly Val Trp His Phe

165

- 38 -

GTA Val	ACC Thr 190	Asp	ACA Thr	AAA Lys	AAG Lys	GGT Gly 195	Gln	GAT Asp	TTI Phe	CGI Arg	GAA Glu 200	Ile	ATC Ile	CAG Gln	CCT Pro	731
TCA Ser 205	Lys	AAA Lys	CAA Gln	GGC Gly	GAC Asp 210	Arg	TAT Tyr	AGC Ser	GGA Gly	Phe 215	Ser	GGT	GAT Asp	GGC	AGC Ser 220	779
GAA Glu	GAA Glu	TAT	TCC Ser	AAC Asn 225	AAA Lys	AAC Asn	GAA Glu	TCC Ser	ACG Thr 230	Leu	AAA Lys	GAT Asp	GAT Asp	CAC His 235	GAG Glu	827
GGT Gly	TAT Tyr	GGT Gly	TTT Phe 240	ACC Thr	TCG Ser	AAT Asn	TTA Leu	GAA Glu 245	Val	GAT Asp	TTC Phe	GGC Gly	AAT Asn 250	Lys	AAA Lys	875
TTG Leu	ACG Thr	GGT Gly 255	Lys	TTA Leu	ATA Ile	CGC Arg	AAT Asn 260	AAT Asn	GCG Ala	AGC Ser	CTA Leu	AAT Asn 265	AAT Asn	AAT Asn	ACT Thr	923
Asn	Asn 270	Asp	Lys	His	Thr	Thr 275	Gln	Tyr	Tyr	Ser	Leu 280	GAT Asp	Ala	Gln	Ile	971
Thr 285	Gly	Asn	Arg	Phe	Asn 290	Gly	Thr	Ala	Thr	Ala 295	Thr	GAC Asp	Lys	Lys	Glu 300	1019
Asn	Glu	Thr	Lys	Leu 305	His	Pro	Phe	Val	Ser 310	Asp	Ser	TCT Ser	Ser	Leu 315	Ser	1067
Gly	Gly	Phe	Phe 320	Gly	Pro	Gln	Gly	Glu 325	Glu	Leu	Gly	TTC Phe	Arg 330	Phe	Leu	1115
Ser	Asp	Asp 335	Gln	Lys	Val	Ala	Val 340	Val	Gly	Ser	Ala	AAA Lys 345	Thr	Lys	Asp	1163
Lys	Leu 350	Glu	Asn	Gly	Ala	Ala 355	Ala	Ser	Gly	Ser	Thr 360	GGT Gly	Ala	Ala	Ala	1211
Ser 365	Gly	сjЯ	Ala	Ala	Gly 370	Thr	Ser	Ser	Glu	Asn 375	Ser	AAG Lys	Leu	Thr	Thr 380	1259
Val	Leu	qeA	Ala	Val 385	Glu	Leu	Thr	Leu	Asn 390	Ąsp	Lys	AAA Lys	Ile	Lys 395	Asn	1307
Leu	Asp	Asn	Phe 400	Ser	Asn	Ala	Ala	Gln 405	Leu	Val	Val	GAC Asp	Gly 410	Ile	Met	1355
Ile	Pro	Leu 415	Leu	Pro	Lys	Asp	Ser 420	Glu	Ser	Gly	Asn	ACT Thr 425	Gln	Ala	Asp	1403
AAA Lys	GGT Gly 430	AAA Lys	AAC Asn	G] A GCC	GGA Gly	ACA Thr 435	GAA Glu	TTT Phe	ACC Thr	CGC Arg	AAA Lys 440	TTT Phe	GAA Glu	CAC His	ACG Thr	1451

Pro 445	o Gli	A AG	TAD 7	AAA Lys	A AAA Lys 450	Asp	GCC Ala	CAA Gln	GCA Ala	GGT Gly 455	Thi	G CAG	ACG Thr	AAT Asn	GGG Gly 460	1499
GC(Ala	G CAP	ACC Thr	GCT Ala	TCA Ser 465	Asn	ACG Thr	GCA Ala	GGI Gly	GAT Asp 470	Thr	AA] Asr	GGC Gly	Lys	ACA Thr 475	_	1547
ACC	TAT	GAA Glu	GTC Val 480	Glu	GTC Val	TGC Cys	TGT Cys	TCC Ser 485	Asn	CTC Leu	AAT Asn	TAT Tyr	CTG Leu 490	Lys	TAC Tyr	1595
GGA Gly	ATG Met	TTG Leu 495	Thr	CGC Arg	AAA Lys	AAC Asn	AGC Ser 500	AAG Lys	TCC Ser	GCG Ala	ATG Met	Gln 505	GCA Ala	GGA Gly	GGA Gly	1643
AAC Asn	AGT Ser 510	Ser	CAA Gln	GCT Ala	GAT Asp	GCT Ala 515	AAA Lys	ACG Thr	GAA Glu	CAA Gln	GTT Val 520	GAA Glu	CAA Gln	AGT Ser	ATG Met	1691
TTC Phe 525	CTC Leu	CAA Gln	GGC	GAG Glu	CGT Arg 530	ACC Thr	GAT Asp	GAA Glu	AAA Lys	GAG Glu 535	ATT Ile	CCA Pro	ACC Thr	GAC Asp	CAA Gln 540	1739
AAC Asn	GTC Val	GTT Val	TAT Tyr	CGG Arg 545	GGG Gly	TCT Ser	TGG Trp	TAC Tyr	GGG Gly 550	CAT His	ATT Ile	GCC Ala	AAC Asn	GGC Gly 555	ACA Thr	1787
Ser	Trp	Ser	Gly 560	Asn	Ala	Ser	Asp	Lys 565	Glu	Gly	Gly	AAC Asn	Arg 570	Ala	Glu	1835
Phe	Thr	Val 575	Asn	Phe	Ala	Asp	Lys 580	Lys	Ile	Thr	Gly	AAG Lys 585	Leu	Thr	Ala	1883
Glu	Asn 590	Arg	Gln	Ala	Gln	Th <i>r</i> 595	Phe	Thr	Ile	Glu	Gly 600	ATG Met	Ile	Gln	Gly	1931
Asn 605	Gly	Phe	Glu	Gly	Thr 610	Ala	Lys	Thr	Ala	Glu 615	Ser	GGT Gly	Phe	Asp	Leu 620	1979
Asp	Gln	Lys	Asn	Thr 625	Thr	Arg	Thr	Pro	Lys 630	Ala	Tyr	ATC Ile	Thr	Asp 635	Ala	2027
AAG Lys	GTA Val	AAG Lys	GGC Gly 640	GGT Gly	TTT Phe	TAC Tyr	GGG Gly	CCT Pro 645	AAA Lys	GCC Ala	GAA Glu	GAG Glu	TTG Leu 650	GGC Gly	GGA Gly	2075
TGG Trp	TTT Phe	GCC Ala 655	TAT Tyr	CCG Pro	GGC Gly	Asp	AAA Lys 660	CAA Gln	ACG Thr	GAA Glu	AAG Lys	GCA Ala 665	ACA Thr	GCT Ala	ACA Thr	2123
Ser	Ser 670	Asp	Gly .	Asn	Ser .	Ala 675	Ser	Ser	Ala	Thr	Val 680	GTA Val	Phe	Gly .	Ala	2171
AAA Lys 685	CGC Arg	CAA Gln	CAG Gln	Pro	GTG Val 690	CAA Gln	TAAG	CACG	GT T	GCCG	AACA	A TC	AAGA	ATAA ·	•	2222

- 40 -

GGCTTCAG 2230

(2)	INFORMATION	POUR	I.A	SEO	ID	NO:	2:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 711 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:

Met Asn Asn Pro Leu Val Asn Gln Ala Ala Met Val Leu Pro Val Phe
-20 -15 -10 -5

Leu Leu Ser Ala Cys Leu Gly Gly Gly Gly Ser Phe Asp Leu Asp Ser 1 5

Val Asp Thr Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser 15 20 25

Ser Glu Lys Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala 30 35 40

Met Arg Leu Lys Arg Arg Asn Trp Tyr Pro Gly Ala Glu Glu Ser Glu 45 50 55 60

Val Lys Leu Asn Glu Ser Asp Trp Glu Ala Thr Gly Leu Pro Thr Lys
65 70 75

Pro Lys Glu Leu Pro Lys Arg Gln Lys Ser Val Ile Glu Lys Val Glu 80 85

Thr Asp Gly Asp Ser Asp Ile Tyr Ser Ser Pro Tyr Leu Thr Pro Ser 95 100 105

Asn His Gln Asn Gly Ser Ala Gly Asn Gly Val Asn Gln Pro Lys Asn 110 115 120

Gln Ala Thr Gly His Glu Asn Phe Gln Tyr Val Tyr Ser Gly Trp Phe 125 130 135 140

Tyr Lys His Ala Ala Ser Glu Lys Asp Phe Ser Asn Lys Lys Ile Lys 145 150 155

Ser Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Glu Lys Pro Ser Arg 160 165 170

Gln Leu Pro Ala Ser Gly Lys Val Ile Tyr Lys Gly Val Trp His Phe 175 180 185

Val Thr Asp Thr Lys Lys Gly Gln Asp Phe Arg Glu Ile Ile Gln Pro 190 200

Ser Lys Lys Gln Gly Asp Arg Tyr Ser Gly Phe Ser Gly Asp Gly Ser 205 210 215 220

Glu Glu Tyr Ser Asn Lys Asn Glu Ser Thr Leu Lys Asp Asp His Glu 225 230 235 -41-

Gly Tyr Gly Phe Thr Ser Asn Leu Glu Val Asp Phe Gly Asn Lys Lys 240 245 250

Leu Thr Gly Lys Leu Ile Arg Asn Asn Ala Ser Leu Asn Asn Asn Thr

255 260 265

Asn Asn Asp Lys His Thr Thr Gln Tyr Tyr Ser Leu Asp Ala Gln Ile 270 275 280

Thr Gly Asn Arg Phe Asn Gly Thr Ala Thr Ala Thr Asp Lys Lys Glu 285 290 295 300

Asn Glu Thr Lys Leu His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser 305 310 315

Gly Gly Phe Phe Gly Pro Gln Gly Glu Glu Leu Gly Phe Arg Phe Leu 320 325 330

Ser Asp Asp Gln Lys Val Ala Val Val Gly Ser Ala Lys Thr Lys Asp 335 340 345

Lys Leu Glu Asn Gly Ala Ala Ala Ser Gly Ser Thr Gly Ala Ala Ala 350 360

Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr 365 370 380

Val Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys Ile Lys Asn 385 390 395

Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met 400 405 410

Ile Pro Leu Leu Pro Lys Asp Ser Glu Ser Gly Asn Thr Gln Ala Asp 415 420 425

Lys Gly Lys Asn Gly Gly Thr Glu Phe Thr Arg Lys Phe Glu His Thr 430 440

Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln Thr Asn Gly 445 450 455 460

Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly Lys Thr Lys 465 470 475

Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr 480 485 490

Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln Ala Gly Gly 495 500 505

Asn Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu Gln Ser Met 510 520

Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Thr Asp Gln 525 530 540

Asn Val Val Tyr Arg Gly Ser Trp Tyr Gly His Ile Ala Asn Gly Thr 545 550 555

Ser Trp Ser Gly Asn Ala Ser Asp Lys Glu Gly Gly Asn Arg Ala Glu 560 565 570

- 42 -

Phe Thr Val Asn Phe Ala Asp Lys Lys Ile Thr Gly Lys Leu Thr Ala 575 580 585

- Glu Asn Arg Gln Ala Gln Thr Phe Thr Ile Glu Gly Met Ile Gln Gly 590 595 600
- Asn Gly Phe Glu Gly Thr Ala Lys Thr Ala Glu Ser Gly Phe Asp Leu 605 610 615 620
- Asp Gln Lys Asn Thr Thr Arg Thr Pro Lys Ala Tyr Ile Thr Asp Ala
 625 630 635
- Lys Val Lys Gly Gly Phe Tyr Gly Pro Lys Ala Glu Glu Leu Gly Gly 640 645 650
- Trp Phe Ala Tyr Pro Gly Asp Lys Gln Thr Glu Lys Ala Thr Ala Thr 655 660 665
- Ser Ser Asp Gly Asn Ser Ala Ser Ser Ala Thr Val Val Phe Gly Ala 670 675 680
- Lys Arg Gln Gln Pro Val Gln 685 690
- (2) INFORMATION POUR LA SEQ ID NO: 3:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 1808 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN (génomique)
 - (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: IM2394
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: sig_peptide
 - (B) EMPLACEMENT: 1..60
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: mat_peptide
 - (B) EMPLACEMENT: 61..1797
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1..1797
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: misc_feature
 - (B) EMPLACEMENT: 61..1035
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: misc_feature
 - (B) EMPLACEMENT: 1036..1386
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: misc_feature
 - (B) EMPLACEMENT: 1387..1797
 - (ix) CARACTERISTIQUE ADDITIONELLE:

- 43 -

(A) NOM/CLE: misc binding (B) EMPLACEMENT: 46..1050

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3:

							_			_						
ATG Met -20	Asn	TAA neA	CCA Pro	TTG Leu	GTA Val -15	AAT Asn	CAG Gln	GCT Ala	GCT Ala	ATG Met -10	GTG Val	CTG Leu	CCT Pro	GTG Val	TTT Phe -5	48
											TTC Phe					96
											AAG Lys				GAA Glu	144
AAA Lys	AGC Ser 30	CAG Gln	CCT Pro	GAA Glu	AGC Ser	CAA Gln 35	CAG Gln	GAT Asp	GTA Val	TCG Ser	GAA Glu 40	AAC Asn	AGC Ser	GGC Gly	GCG Ala	192
GCT Ala 45	TAT Tyr	GGC Gly	TTT Phe	GCA Ala	GTA Val 50	AAA Lys	CTA Leu	CCT Pro	CGC Arg	CGG Arg 55	AAT Asn	GCA Ala	CAT His	TTT Phe	AAT Asn 60	240
CCT Pro	AAA Lys	TAT Tyr	AAG Lys	GAA Glu 65	AAG Lys	CAC His	AAA Lys	CCA Pro	TTG Leu 70	GGT Gly	TCA Ser	ATG Met	GAT Asp	TGG Trp 75	AAA Lys	288
AAA Lys	CTG Leu	CAA Gln	AGA Arg 80	GGA Gly	GAA Glu	CCA Pro	AAT Asn	AGT Ser 85	TTT Phe	AGT Ser	GAG Glu	AGG Arg	GAT Asp 90	GAA Glu	TTG Leu	336
GAA Glu	AAA Lys	AAA Lys 95	CGG Arg	GGT Gly	AGT Ser	TCT Ser	GAA Glu 100	CTT Leu	ATT Ile	GAA Glu	TCA Ser	AAA Lys 105	TGG Trp	GAA Glu	GAT Asp	384
GGG Gly	CAA Gln 110	AGT Ser	CGT Arg	GTA Val	GTT Val	GGT Gly 115	TAT Tyr	ACA Thr	AAT Asn	TTC Phe	ACT Thr 120	TAT Tyr	GTC Val	CGT Arg	TCG Ser	432
GGA Gly 125	TAT Tyr	GTT Val	TAC Tyr	CTT Leu	AAT Asn 130	AAA Lys	AAT Asn	AAT Asn	ATT Ile	GAT Asp 135	ATT Ile	AAG Lys	AAT Asn	AAT Asn	ATA Ile 140	480
GTT Val	CTT Leu	TTT Phe	GGA Gly	CCT Pro 145	GAC A sp	GGA Gly	TAT Tyr	CTT Leu	TAC Tyr 150	TAT Tyr	AAA Lys	GT A	AAA Lys	GAA Glu 155	CCT Pro	528
TCC Ser	AAG Lys	GAG Glu	CTG Leu 160	CCA Pro	TCG Ser	GAA Glu	AAG Lys	ATA Ile 165	ACT Thr	TAT Tyr	AAA Lys	GGT Gly	ACT Thr 170	TGG Trp	GAT Asp	576
TAT Tyr	GTT Val	ACT Thr 175	GAT Asp	GCT Ala	ATG Met	GAA Glu	AAA Lys 180	CAA Gln	AGG Arg	TTT Phe	GAA Glu	GGA Gly 185	TTG Leu	GGT Gly	AGT Ser	624
GCA Ala	GCA Ala 190	GGA Gly	GGA Gly	GAT Asp	AAA Lys	TCG Ser 195	GGG Gly	GCG Ala	TTG Leu	TCT Ser	GCA Ala 200	TTA Leu	GAA Glu	GAA Glu	GGG Gly	672
GTA Val 205	TTG Leu	CGT Arg	AAT Asn	CAG Gln	GCA Ala 210	GAG Glu	GCA Ala	TCA Ser	TCC Ser	GGT Gly 215	CAT His	ACC Thr	GAT Asp	TTT Phe	GGT Gly 220	720

ATG Met	ACT Thr	'AGT	GAG	Phe	Glu	GTT Val	GAT Asp	TT1	TCT Ser 230	Asp	AA# Lys	A ACA Thr	ATA Ile	AAG Lys 235	GGC Gly	768
ACA Thr	CTT Leu	TAT	CGT Arg 240	AAC Asn	AAC Asn	CGT	ATT	Thr 245	Gln	AAT Asn	' AAT Asn	AGT Ser	GAA Glu 250	Asn	AAA Lys	816
CAA Gln	ATA Ile	AAA Lys 255	Thr	ACG Thr	CGT Arg	TAC Tyr	ACC Thr 260	Ile	CAA Gln	GCA Ala	ACT Thr	CTT Leu 265	CAC His	GGC	AAC Asn	864
CGT Arg	TTC Phe 270	Lys	GGT Gly	AAG Lys	GCG Ala	TTG Leu 275	GCG Ala	GCA Ala	GAT Asp	AAA Lys	GGT Gly 280	GCA Ala	ACA Thr	AAT Asn	GGA Gly	912
AGT Ser 285	His	CCC	TTT Phe	ATT Ile	TCC Ser 290	GAC Asp	TCC Ser	GAC Asp	AGT Ser	TTG Leu 295	GAA Glu	GGC	GGA Gly	TTT Phe	TAC Tyr 300	960
GGG Gly	CCG Pro	AAA Lys	GGC Gly	GAG Glu 305	GAA Glu	CTT Leu	GCC Ala	GGT Gly	AAA Lys 310	TTC Phe	TTG Leu	AGC Ser	AAC Asn	GAC Asp 315	AAC Asn	1008
AAA Lys	GTT Val	GCA Ala	GCG Ala 320	GTG Val	TTT Phe	GGT Gly	GCG Ala	AAG Lys 325	CAG Gln	AAA Lys	GAT Asp	AAG Lys	AAG Lys 330	GAT Asp	GGG Gly	1056
Glu	Asn	Ala 335	Ala	Gly	Pro	Ala	Thr 340	Glu	Thr	Val	Ile	GAT Asp 345	Ala	Tyr	Arg	1104
Ile	Thr 350	Gly	Glu	Glu	Phe	Lys 355	Lys	Glu	Gln	Ile	Asp 360	AGT Ser	Phe	Gly	Asp	1152
Val 365	Lys	Lys	Leu	Leu	Val 370	Asp	Gly	Val	Glu	Leu 375	Ser	CTG Leu	Leu	Pro	Ser 380	1200
Glu	Gly	Asn	Lys	Ala 385	Ala	Phe	Gln	His	Glu 390	Ile	Glu	CAA Gln	Asn	Gly 395	Val	1248
Lys	Ala	Thr	Val 400	Cys	Cys	Ser	Asn	Leu 405	Asp	Tyr	Met	AGT Ser	Phe 410	Gly	Lys	1296
CTG Leu	TCA Ser	AAA Lys 415	GAA Glu	AAT Asn	AAA Lys	GAC Asp	GAT Asp 420	ATG Met	TTC Phe	CTG Leu	CAA Gln	GGT Gly 425	GTC Val	CGC Arg	ACT Thr	1344
CCA Pro	GTA Val 430	TCC Ser	GAT A sp	GTG Val	GCG Ala	GCA Ala 435	AGG Arg	ACG Thr	GAG Glu	GCA Ala	AAC Asn 440	GCC . Ala	AAA Lys	TAT Tyr	CGC Arg	1392
GGT Gly 445	ACT Thr	TGG Trp	TAC Tyr	Gly	TAT Tyr 450	ATT Ile	GCC Ala	AAC Asn	Gly	ACA Thr 455	AGC Ser	TGG . Trp	AGC Ser	GGC Gly	GAA Glu 460	1440
GCC Ala	TCC Ser	AAT Asn	Gln	GAA Glu 465	GGT Gly	GGT . Gly .	AAT Asn	AGG Arg	GCA Ala 470	GAG Glu	TTT Phe	GAC Asp	Val	GAT Asp 475	TTT Phe	1488

- 45 -

								AAA Lys			1536
 		 	 					AAC Asn	 	 	1584
 		 	 					GAT Asp 520	 	 	1632
		 	 					GTA Val			1680
			 					TTC Phe	 		1728
			 					GTG Val	 	 	1776
 	CAA Gln 575	 	 CAA Gln	TAAG	CAC	GC 1	•				1808

(2) INFORMATION POUR LA SEQ ID NO: 4:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 599 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4:

Met Asn Asn Pro Leu Val Asn Gln Ala Ala Met Val Leu Pro Val Phe

Leu Leu Ser Ala Cys Leu Gly Gly Gly Gly Ser Phe Asp Leu Asp Ser 1 5

Val Glu Thr Val Gln Asp Met His Ser Lys Pro Lys Tyr Glu Asp Glu 15 25

Lys Ser Gln Pro Glu Ser Gln Gln Asp Val Ser Glu Asn Ser Gly Ala 30 40

Ala Tyr Gly Phe Ala Val Lys Leu Pro Arg Arg Asn Ala His Phe Asn 45 55 60

Pro Lys Tyr Lys Glu Lys His Lys Pro Leu Gly Ser Met Asp Trp Lys 65 70 75

Lys Leu Gln Arg Gly Glu Pro Asn Ser Phe Ser Glu Arg Asp Glu Leu 80 85 90

Glu Lys Lys Arg Gly Ser Ser Glu Leu Ile Glu Ser Lys Trp Glu Asp 95 100 105

Gly Gln Ser Arg Val Val Gly Tyr Thr Asn Phe Thr Tyr Val Arg Ser Gly Tyr Val Tyr Leu Asn Lys Asn Asn Ile Asp Ile Lys Asn Asn Ile Val Leu Phe Gly Pro Asp Gly Tyr Leu Tyr Tyr Lys Gly Lys Glu Pro Ser Lys Glu Leu Pro Ser Glu Lys Ile Thr Tyr Lys Gly Thr Trp Asp Tyr Val Thr Asp Ala Met Glu Lys Gln Arg Phe Glu Gly Leu Gly Ser Ala Ala Gly Gly Asp Lys Ser Gly Ala Leu Ser Ala Leu Glu Glu Gly Val Leu Arg Asn Gln Ala Glu Ala Ser Ser Gly His Thr Asp Phe Gly Met Thr Ser Glu Phe Glu Val Asp Phe Ser Asp Lys Thr Ile Lys Gly 230 Thr Leu Tyr Arg Asn Asn Arg Ile Thr Gln Asn Asn Ser Glu Asn Lys 245 Gln Ile Lys Thr Thr Arg Tyr Thr Ile Gln Ala Thr Leu His Gly Asn Arg Phe Lys Gly Lys Ala Leu Ala Ala Asp Lys Gly Ala Thr Asn Gly Ser His Pro Phe Ile Ser Asp Ser Asp Ser Leu Glu Gly Gly Phe Tyr 290 Gly Pro Lys Gly Glu Glu Leu Ala Gly Lys Phe Leu Ser Asn Asp Asn Lys Val Ala Ala Val Phe Gly Ala Lys Gln Lys Asp Lys Lys Asp Gly
320 325 330 Glu Asn Ala Ala Gly Pro Ala Thr Glu Thr Val Ile Asp Ala Tyr Arg Ile Thr Gly Glu Glu Phe Lys Lys Glu Gln Ile Asp Ser Phe Gly Asp Val Lys Lys Leu Leu Val Asp Gly Val Glu Leu Ser Leu Leu Pro Ser Glu Gly Asn Lys Ala Ala Phe Gln His Glu Ile Glu Gln Asn Gly Val 390 Lys Ala Thr Val Cys Cys Ser Asn Leu Asp Tyr Met Ser Phe Gly Lys 405 Leu Ser Lys Glu Asn Lys Asp Asp Met Phe Leu Gln Gly Val Arg Thr Pro Val Ser Asp Val Ala Ala Arg Thr Glu Ala Asn Ala Lys Tyr Arg

Gl ₃	Thr	Trp	Tyr	Gly	Tyr 450	Ile	Ala	Asn	Gly	Thr 455	Ser	Trp	Ser	Gly	Glu 460	
Ala	Ser	Asn	Gln	Glu 465	Gly	Gly	Asn	Arg	Ala 470		Phe	Asp	Val	Asp 475		
Ser	Thr	Lys	Lys 480	Ile	Ser	Gly	Thr	Leu 485	Thr	Ala	Lys	Asp	Arg 490	Thr	Ser	
Pro	Ala	Phe 495	Thr	Ile	Thr	Ala	Met 500		Lys	Asp	Asn	Gly 505	Phe	Ser	Gly	
Val	Ala 510	Lys	Thr	Gly	Glu	Asn 515	Gly	Phe	Ala	Leu	Asp 520	Pro	Gln	Asn	Thr	
Gly 525	Asn	Ser	His	Tyr	Thr 530	His	Ile	Glu	Ala	Thr 535	Val	Ser	Gly	Gly	Phe 540	
Tyr	Gly	Lys	Asn	Ala 545	Ile	Glu	Met	Gly	Gly 550	Ser	Phe	Ser	Phe	Pro 555	Gly	
Asn	Ala	Pro	Glu 560	Gly	Lys	Gln	Glu	Lys 565	Ala	Ser	Val	Val	Phe 570	Gly	Ala	
Lys	Arg	Gln 575	Gln	Leu	Val	Gln										
	(ii) (vi) (ix) (ix)	CAF (A) (E) (C) (D) (A) (A) (B) (A) (B) (CAR (A) (B) (B) (CAR (B) (CAR (CAR (CAR (CAR (CAR (CAR (CAR (CAR	RACTE (A) LC (B) TY (C) NC (C) CO (C)	RIST PMGUE PE: PMBRE PMFIG MOL GANI PUCHE RIST M/CL PLAC TION	EQUE EXAMPLE COLOR SME: SME: SME: SME: SME: SME: SME: SME	ES DE 2255 le nu BRIN PION: AE: A N. 78 ADD AT: 1 CDS T: 1 LA S	LA paicléi cléi S: s lir DN (meni ITIC cepti 21 ITIC	SEQUITES Lque Simpl Méair Géno .ngit .de .15 .NELL .15	ENCE de b e e e miqu idis E: E:	e)	··					
TGT Cys 1	CTG Leu	GGT Gly	GGC Gly	GGC Gly 5	GGC . Gly	ACG Thr	TTC Phe	GAT Asp	CTT Leu .	GAT ' Asp :	TCT Ser	GTC Val	GAT Asp	ACC Thr 15	GAA Glu	48
GCC Ala	CCG Pro	CGT Arg	CCC Pro 20	GCC (CCA Pro	AAA Lys	TAT Tyr	CAA Gln 25	GAT Asp	GTT :	TCT Ser	TCC Ser	GAA Glu 30	AAA Lys	CCG Pro	96
CAA Gln	GCC Ala	CAA . Gln 35	AAA Lys	GAC Asp	CAA Gln	GGC Gly	GGA Gly 40	TAC Tyr	GCT Gly	TTT Phe	GCA . Ala	ATG Met 45	CGC Arg	CTC Leu	AAG Lys	144

Arg	Arg	Ası	r TGG	G CAT	r CCC	G CAC O Glr 55	Ala	A AAT	r cci	Lys	A GAZ S Glu 60	u Ası	r GA	G AT	A AAA e Lys	192
CTT Leu 65	Ser	GAA Glu	A AAT I Asr	GAT Asp	TGG Trp 70	Glu	GCG Ala	ACA Thi	GGA Gly	TTC Lev 75	Pro	A GGC	AA! Ası	r CCC	C AAA C Lys 80	240
AAC Asn	TTA Leu	Pro	GAC	CGA Arg 85	, Gln	AAA Lys	TCG Ser	GTI Val	Ile 90	Glu	L AAA	A GTA Val	Lys	A ACA	GGC Gly	288
Ser	Asp	Ser	100	Ile	Туг	Ser	Ser	Pro 105	Tyr	Leu	Thr	Gln	Ser 110	Asn)	CAT His	336
CAA Gln	AAC Asn	GGC Gly 115	Ser	GCA Ala	AAC Asn	CAA Gln	CCA Pro 120	Lys	ÀAT Asn	GAA Glu	GTA Val	AAA Lys 125	Asp	TAT Tyr	AAA Lys	384
GAG Glu	TTC Phe 130	AAA Lys	TAT	GTT Val	TAT Tyr	TCC Ser 135	GGT Gly	TGG Trp	TTT Phe	TAC Tyr	AAA Lys 140	His	GCT Ala	AAA Lys	CTC Leu	432
GAA Glu 145	ATC Ile	ATA Ile	AAA Lys	GAA Glu	AAC Asn 150	AAC Asn	TTA Leu	ATT Ile	AAG Lys	GGT Gly 155	GCA Ala	AAG Lys	AGC Ser	GGC	GAC Asp 160	480
Asp	Gly	Tyr	Ile	Phe 165	Tyr	CAC His	Gly	Glu	Lys 170	Pro	Ser	Arg	Gln	Leu 175	Pro	528
vaı	ser	GIY	Glu 180	Val	Thr	TAC Tyr	Lys	Gly 185	Val	Trp	His	Phe	Val 190	Thr	Asp	576
Thr	гàз	195	Gly	Gln	Lys	TTT Phe	Asn 200	Asp	Ile	Leu	Gly	Thr 205	Ser	Lys	Lys	624
GIN	G1y 210	Asp	Arg	Tyr	Ser	GGA Gly 215	Phe	Pro	Gly	Asp	Asp 220	Gly	Glu	Glu	Tyr	672
Ser . 225	Asn	Lys	Asn	Glu	Ala 230	ACT Thr	Leu	Gln	Gly	Ser 235	Gln	Glu	Gly	Tyr	Gly 240	720
Phe '	Thr	Ser	Asn	Leu 245	Lys	GTG Val	Asp	Phe	Asn 250	Lys	Lys	Lys	Leu _.	Thr 255	Gly	768
slu :	Leu	Ile	Arg 260	Asn	Asn	AGA Arg	Val	Thr 265	Asn .	Ala	Thr	Ala	Asn 270	Asp	Lys	816
ryr '	Thr '	Thr 275	Gln	Tyr	Tyr		Leu 280	Glu .	Ala	Gln	Val	Thr 285	Gly	Asn	Arg	864
Phe 1	AAC Asn 290	GGC .	AAG Lys	GCA . Ala	Thr .	GCA A Ala 1 295	ACC Thr	GAC . Asp	AAA Lys	Pro	GGC Gly 300	ACT Thr	GGA Gly	GAA Glu	ACC Thr	912

AA/ Ly: 30!	Glr	A CAT	r ccc	TTI Phe	GTI Val	Ser	GAC Asp	TCC Ser	TCT Ser	TCT Ser 315	: Le	G AGO	GGC GL	GGC Gly	TTT Phe 320	960
TTC Phe	GGC Gly	CCC Pro	AAG Lys	GGT Gly 325	Glu	GAA Glu	TTG Leu	GGT Gly	Phe 330	: Arg	TTI Phe	r TTG 2 Leu	AGC Ser	AAC Asn 335	GAT Asp	1008
CAA Glm	Lys	Val	GCC Ala 340	Val	GTC Val	GGC Gly	AGC Ser	GCG Ala 345	Lys	ACC	CAF Glr	A GAC	Lys 350	Ala	GCA Ala	1056
AAT Asn	Gly	AA1 Asn 355	Thr	GCG Ala	GCG Ala	GCT Ala	TCA Ser 360	Gly	GGC	ACA Thr	GAT Asp	GCG Ala 365	Ala	GCA Ala	TCA Ser	1104
AAC Asn	GGT Gly 370	Ala	GCA Ala	GGC Gly	ACG Thr	TCG Ser 375	TCT Ser	GAA Glu	AAC Asn	AGT Ser	AAG Lys 380	CTG Leu	ACC Thr	ACG Thr	GTT Val	1152
TTG Leu 385	Asp	GCG Ala	GTT Val	GAA Glu	TTG Leu 390	ACA Thr	CTA Leu	AAC Asn	GAC Asp	AAG Lys 395	AAA Lys	ATC Ile	AAA Lys	AAT Asn	CTC Leu 400	1200
Asp	Asn	Phe	Ser	Asn 405	Ala	Ala	Gln	Leu	Val 410	Val	Asp	GGC Gly	Ile	Met 415	Ile	1248
Pro	Leu	Leu	Pro 420	Glu	Thr	Ser	Glu	Ser 425	Gly	Ser	Asn	CAG Gln	Ala 430	Asp	Lys	1296
GTA	Lys	Lys 435	Gly	Lys	Asn	Gly	Lys 440	Asn	Gly	Gly	Thr	GAC Asp 445	Phe	Thr	Tyr	1344
Lys	450	Thr	Tyr	Thr	Pro	Lys 455	Asn	Asp	Asp	Lys	Asp 460	ACC Thr	Lys	Ala	Gln	1392
Thr 465	Gly	Ala	Ala	Gly	Ser 470	Ser	Gly	Ala	Gln	Thr 475	Asp	TTG Leu	Gly	Lys	Ala 480	1440
Asp	Val	Asn	Gly	Gly 485	Lys	Ala	Glu	Thr	Lys 490	Thr	Tyr	GAA Glu	Val	Glu 495	Val	1488
Cys	Cys	Ser	Asn 500	Leu	Asn	Tyr :	Leu	Lys 505	Tyr	Gly	Met		Thr 510	Arg	Lys	1536
AAC Asn	AGC Ser	AAG Lys 515	TCC Ser	GCG Ala	ATG Met	Gln A	GCA Ala 520	GGA Gly	GGA . Gly .	AAC Asn	AGT Ser	AGT Ser 525	CAA Gln	GCT Ala	GAT Asp	1584
GCT Ala	AAA Lys 530	ACG Thr	GAA Glu	CAA Gln	Val	GAA (Glu (535	CAA /	AGT Ser	ATG Met	Phe	CTC Leu 540	CAA Gln	GGC GGC	GAG Glu	CGT Arg	1632
ACC Thr 545	GAT A sp	GAA Glu	AAA Lys	Glu	ATT Ile 550	CCA I	AAC Asn J	GAC Asp	Gln .	AAC Asn 555	GTC Val	GTT Val	TAT Tyr	CGG Arg	GGG Gly 560	1680

TCT	TGG Trp	TAC Tyr	GGG Gly	CAT His 565	ATT	GCC Ala	AGC Ser	AGC Ser	ACA Thr 570	AGC Ser	TGG Trp	AGC Ser	GGC Gly	AAT Asn 575	GCT Ala	1728
TCC Ser	AAT Asn	GCA Ala	ACG Thr 580	AGT Ser	GGC Gly	AAC Asn	AGG Arg	GCĢ Ala 585	GAA Glu	TTT Phe	ACT Thr	GTG Val	AAT Asn 590	TTC Phe	GAT Asp	1776
ACG Thr	AAA Lys	AAA Lys 595	ATT Ile	AAC Asn	GGC	ACG Thr	TTA Leu 600	ACC Thr	GCT Ala	GAA Glu	AAC Asn	AGG Arg 605	CAG Gln	GAG Glu	GCA Ala	1824
ACC Thr	TTT Phe 610	ACC Thr	ATT Ile	GAT Asp	GGT Gly	AAG Lys 615	ATT Ile	GAG Glu	GGC Gly	AAC Asn	GGT Gly 620	TTT Phe	TCC Ser	GGT Gly	ACG Thr	1872
GCA Ala 625	AAA Lys	ACT Thr	GCT Ala	GAC Asp	TTA Leu 630	GGT Gly	TTT Phe	GAT Asp	CTC Leu	GAT Asp 635	CAA Gln	AGC Ser	AAT Asn	ACC Thr	ACC Thr 640	1920
GGC Gly	ACG Thr	CCT Pro	AAG Lys	GCA Ala 645	TAT Tyr	ATC Ile	ACA Thr	GAT Asp	GCC Ala 650	AAG Lys	GTG Val	CAG Gln	GGC Gly	GGT Gly 655	TTT Phe	1968
TAC Tyr	GGG Gly	CCT Pro	AAA Lys 660	GCC Ala	GAA Glu	GAG Glu	TTG Leu	GGC Gly 665	GGA Gly	TGG Trp	TTT Phe	GCC Ala	TAT Tyr 670	CCG Pro	GGC Gly	2016
GAT Asp	JAN Lys	CAA Gln 675	ACG Thr	GAA Glu	AAG Lys	GCA Ala	ACG Thr 680	GTT Val	GCA Ala	TCC Ser	GGC Gly	GAT Asp 685	GGA Gly	AAT Asn	TCA Ser	2064
GCA Ala	AGC Ser 690	AGC Ser	GCG Ala	ACC Thr	GTG Val	GTA Val 695	TTC Phe	GGT Gly	GCG Ala	AAA Lys	CGC Arg 700	CAA Gln	CAG Gln	CCT Pro	GTG Val	2112
CAA Gln 705	TAAC	TAAA	TG A	AGTT	GTCT	e GG	TGGC	GGCG	GCA	CGTT	CGA	TCTT	GATT	CT		2165
GTCG	ATAC	CG A	AGCC	CCGC	G TC	CCGC	CCCA	. AAA	TATC	AAG	ATGT	TTCT	TC C	GAAA	AACCG	2225
CAAG	CCCA	AA A	AGAC	CAAG	G CG	GATA	.CGGT									2255

(2) INFORMATION POUR LA SEQ ID NO: 6:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 705 acides aminés
 (B) TYPE: acide aminé

 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6:

Cys Leu Gly Gly Gly Thr Phe Asp Leu Asp Ser Val Asp Thr Glu 1 5 15

Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys Pro

Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu Lys 35 40 45

- Arg Arg Asn Trp His Pro Gln Ala Asn Pro Lys Glu Asp Glu Ile Lys 50 55 60
- Leu Ser Glu Asn Asp Trp Glu Ala Thr Gly Leu Pro Gly Asn Pro Lys 75 80
- Asn Leu Pro Glu Arg Gln Lys Ser Val Ile Glu Lys Val Lys Thr Gly 85 90 95
- Ser Asp Ser Asn Ile Tyr Ser Ser Pro Tyr Leu Thr Gln Ser Asn His 100 105 110
- Gln Asn Gly Ser Ala Asn Gln Pro Lys Asn Glu Val Lys Asp Tyr Lys 115 120 125
- Glu Phe Lys Tyr Val Tyr Ser Gly Trp Phe Tyr Lys His Ala Lys Leu 130 135 140
- Glu Ile Ile Lys Glu Asn Asn Leu Ile Lys Gly Ala Lys Ser Gly Asp 150 155 160
- Asp Gly Tyr Ile Phe Tyr His Gly Glu Lys Pro Ser Arg Gln Leu Pro 165 170 175
- Val Ser Gly Glu Val Thr Tyr Lys Gly Val Trp His Phe Val Thr Asp 180 185 190
- Thr Lys Gln Gly Gln Lys Phe Asn Asp Ile Leu Gly Thr Ser Lys Lys 195 200 205
- Gln Gly Acp Arg Tyr Ser Gly Phe Pro Gly Asp Asp Gly Glu Glu Tyr 210 225 220
- Ser Asn Lys Asn Glu Ala Thr Leu Gln Gly Ser Gln Glu Gly Tyr Gly 225 230 235 240
- Phe Thr Ser Asn Leu Lys Val Asp Phe Asn Lys Lys Lys Leu Thr Gly 245
- Glu Leu Ile Arg Asn Asn Arg Val Thr Asn Ala Thr Ala Asn Asp Lys 260 265 270
- Tyr Thr Thr Gln Tyr Tyr Ser Leu Glu Ala Gln Val Thr Gly Asn Arg 275
- Phe Asn Gly Lys Ala Thr Ala Thr Asp Lys Pro Gly Thr Gly Glu Thr 290 295 300
- Lys Gln His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser Gly Gly Phe 305
- Phe Gly Pro Lys Gly Glu Glu Leu Gly Phe Arg Phe Leu Ser Asn Asp 325 330 335
- Gln Lys Val Ala Val Val Gly Ser Ala Lys Thr Gln Asp Lys Ala Ala. 340 345 350
- Asn Gly Asn Thr Ala Ala Ala Ser Gly Gly Thr Asp Ala Ala Ala Ser 355 360 365
- Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr Val 370 380

- 52 -

Leu 385	Asp	Ala	Val	Glu	Leu 390	Thr	Leu	Asn	Asp	Lys 395		Ile	Lys	Asn	Leu 400
Asp	Asn	Phe	Ser	Asn 405	Ala	Ala	Gln	Leu	Val 410		Asp	Gly	Ile	Met 415	Ile
Pro	Leu	Leu	Pro 420	Glu	Thr	Ser	Glu	Ser 425	Gly	Ser	Asn	Gln	Ala 430	-	Lys
Gly	Lys	L <u>y</u> s 435	Gly	Lys	Asn	Gly	Lys 440	Asn	Gly	Gly	Thr	Asp 445	Phe	Thr	Tyr
Lys	Thr 450	Thr	Tyr	Thr	Pro	Lys 455	Asn	Asp	Asp	Lys	Asp 460	Thr	Lys	Ala	Gln
Thr 465	Gly	Ala	Ala	Gly	Ser 470	Ser	Gly	Ala	Gln	Thr 475	Asp	Leu	Gly	Lys	Ala 480
Asp	Val	Asn	Gly	Gly 485	Lys	Ala	Glu	Thr	Lys 490	Thr	Tyr	Glu	Val	Glu 495	Val
Cys	Cys	Ser	Asn 500	Leu	Asn	Tyr	Leu	Lys 505	Tyr	Gly	Met	Leu	Thr 510	Arg	Lys
Asn	Ser	Lys 515	Ser	Ala	Met	Gln	Ala 520	Gly	Gly	Asn	Ser	Ser 525	Gln	Ala	Asp
Ala	Lys 530	Thr	Glu	Gln	Val	Glu 535	Gln	Ser	Met	Phe	Leu 540	Gln	Gly	Glu	Arg
Thr 545	Asp	Glu	Lys	Glu	Ile 550	Pro	Asn	Asp	Gln	Asn 555	Val	Val	Tyr	Arg	Gly 560
Ser	Trp	Tyr	Gly	His 565	Ile	Ala	Ser	Ser	Thr 570	Ser	Trp	Ser	Gly	Asn 575	Ala
Ser	Asn	Ala	Thr 580	Ser	Gly	Asn	Arg	Ala 585	Glu	Phe	Thr	Val	Asn 590	Phe	Asp
Thr	Lys	Lys 595	Ile	Asn	Gly	Thr	Leu 600	Thr	Ala	Glu	Asn	Arg 605	Gln	Glu	Ala
Thr	Phe 610	Thr	Ile	Asp	Gly	Lys 615	Ile	Glu	Gly	Asn	Gly 620	Phe	Ser	Gly	Thr
Ala 625	Lys	Thr	Ala	Asp	Leu 630	Gly	Phe	Asp	Leu	Asp 635	Gln	Ser	Asn	Thr	Thr 640
Gly	Thr	Pro	Lys	Ala 645	Tyr	Ile	Thr	Asp	Ala 650	Lys	Val	Gln	Gly	Gly 655	Phe
Tyr	Gly	Pro	Lys 660	Ala	Glu	Glu	Leu	Gly 665	Gly	Trp	Phe	Ala	Tyr 670	Pro	Gly
Asp	Lys	Gln 675	Thr	Glu	Lys	Ala	Thr 680	Val	Ala	Ser	Gly	Asp 685	Gly	Asn	Ser
Ala	Ser 690	Ser	Ala	Thr	Val	Val 695	Phe	Gly	Ala	Lys	Arg 700	Gln	Gln	Pro	Val

Gln 705 - 53 -

(2)	INE	ORM	ATIO	POI	JR LA	SEC	D ID	NO:	7:							
	(i	1	(A) I (B) I (C) N	TERIS LONGU TYPE: IOMBF CONFI	EUR: aci E DE	211 de n BRI	.4 pa uclé NS:	ires ique simp	de e le	E: base	÷s					
	(ii	.) TY	PE I	E MC	LECU	LE:	ADN	(gén	omiç	rue)						
	(vi	(IE: PRGAN SOUCH			men	ingi	tidi	.s						
	(ix	(A) N	ERIS OM/C MPLA	LE:	mat_	pept	ide	LE:							
	(ix	(A) N	ERIS OM/C MPLA	LE:	CDS			LE:							
	(xi) DE	SCRI	PTIO	N DE	LA .	SEQU	ENCE	: SE	Q ID	NO:	7:				
TGT Cys 1	TTG Leu	GGT Gly	GGC Gly	GGC Gly 5	GGC	ACG Thr	TTC Phe	GAT Asp	CTT Leu 10	GAT Asp	TCT Ser	GTC Val	GAT Asp	ACC Thr 15	GAA Glu	. 48
GCC Ala	CCG Pro	CGT Arg	CCC Pro 20	GAC Asp	CCA Pro	AAG Lys	TAT Tyr	CAA Gln 25	GAT Asp	GTT Val	TCT Ser	TCC Ser	GAA Glu 30	AAA Lys	CCG Pro	96
CAA Gln	GCC Ala	CAA Gln 35	AAA Lys	GAC Asp	CAA Gln	GGC Gly	GGA Gly 40	TAC Tyr	GGT Gly	TTT Phe	GCG Ala	ATG Met 45	AGG Arg	TTG Leu	AAA Lys	144
CGG Arg	AGG Arg 50	AAT Asn	TGG Trp	TAT Tyr	TCC Ser	GCA Ala 55	GCA Ala	AAA Lys	GAA Glu	GAC Asp	GAG Glu 60	GTT Val	AAA Lys	CTG Leu	AAC Asn	192
GAG Glu 65	AGT Ser	GAT Asp	TGG Trp	GAG Glu	ACG Thr 70	ACA Thr	GGA Gly	TTG Leu	CCG Pro	ACA Thr 75	GAA Glu	CCC Pro	AAG Lys	AAA Lys	CTG Leu 80	240
CCA Pro	TTA Leu	AAA Lys	CAA Gln	GAA Glu 85	TCC Ser	GTC Val	ATT Ile	TCA Ser	AAA Lys 90	GTA Val	CAA Gln	GCA Ala	AAC Asn	AAT Asn 95	GGC Gly	288
GAC Asp	AAC Asn	AAT Asn	ATT Ile 100	TAC Tyr	ACT Thr	TCC Ser	CCC Pro	TAT Tyr 105	CTC Leu	ACG Thr	CAA Gln	TCA Ser	AAC Asn 110	CAT His	CAA Gln	336
AAT Asn	AGC Ser	AGC Ser 115	ATT Ile	AAT Asn	GGC Gly	GGT Gly	GCA Ala 120	AAC Asn	CTG Leu	CCA Pro	AAA Lys	AAC Asn 125	GAA Glu	GTA Val	ACA Thr	384
TAA neA	TAT Tyr 130	AAA Lys	GAT Asp	TTC Phe	AAA Lys	TAT Tyr 135	GTT Val	TAT Tyr	TCC Ser	GGC Gly	TGG Trp 140	TTT Phe	TAT Tyr	AAA Lys	CAT His	432

GCT AAA AAC GAA ATC ATA AGA GAA AAC AGC TCA ATT AAG GGT GCA AAG Ala Lys Asn Glu Ile Ile Arg Glu Asn Ser Ser Ile Lys Gly Ala Lys 145 155 160

480

- 54 -

AS	n Gi	. у А:	sp A	.sp	Gly 165	Туг	· Ile	≥ Ph	е Ту	r Hi. 17	s Gl	y Ly	s Gl	u Pr	o Se 17	_	528
CA G1:	A CT n Le	T CO	:O A	CT 1 la 2 80	TCT Ser	GGA Gly	ACZ Thi	Val	r ACC	Ty:	r AAi r Ly:	A GG s Gl	r GTO y Val	G TG	p Hi	T TTT s Phe	576
GC: Ala	G AC a Th	C GA r As 19	p V	rc /	AAA Lys	AAA Lys	TCC Ser	CA/ Glr 200	Ası	TTT Phe	CGC Arg	GA' JAS	7 ATT 116 205	: Ile	CA(G CCT	624
TC(E AA Ly: 21	а гл	A C	AA (GC Sly	GAC Asp	AGG Arg 215	Tyr	AGC Ser	GG#	TTT Phe	TC(Se) 22(: Gly	GAT Asp	GA?	GAT Asp	672
GA/ Glu 225	I GT	A TA n Ty	T TO	T A	AT Lsn	AAA Lys 230	AAC Asn	GAA Glu	TCC Ser	ATG Met	CTG Leu 235	Lys	GAT Asp	GGI	CAZ Glr	GAG Glu 240	720
GGT Gly	TA1	r GG c Gl	r TI y Pi	e T	hr 45	TCG Ser	AAT Asn	TTA Leu	GAA Glu	GTG Val 250	Asp	TTC Phe	GGC Gly	AGT Ser	AAA Lys 255	AAA Lys	768
TTG Leu	ACC Thr	GI:	r A# Y Ly 26	's L	TA .	ATA Ile	CGC Arg	AAT Asn	AAT Asn 265	AGA Arg	GTT Val	ACA Thr	AAC Asn	GCT Ala 270	CCT Pro	ACT Thr	816
AAC Asn	GAI	Ly: 27:	з ту	C A	CC .	ACC Thr	CAA Gln	TAC Tyr 280	TAC Tyr	AGC Ser	CTT Leu	GAT Asp	GCC Ala 285	CAA Gln	ATA Ile	ACA Thr	864
GIĀ	290	Arg	, Pn	e A	sn (дГÀ	Lys 295	Ala	Ile	Arg	Thr	Asp 300	AAA Lys	Pro	Asp	Thr	912
GGA Gly 305	GGA Gly	ACC	AA.	A C.	eu I	CAT His 310	CCC Pro	TTT Phe	GTT Val	TCC Ser	GAC Asp 315	TCG Ser	TCT Ser	TCT Ser	TTG Leu	AGC Ser 320	960
GIY	GIÀ	Phe	Ph	e G1 32	Ly 1 25	Pro	Lys	Gly	Glu	Glu 330	Leu	Gly.	TTC Phe	Arg	Phe 335	Leu	1008
ser	Asp	Asp	14:) P	/S \	/al /	Ala	Val	Val 345	Gly	Ser	Ala	AAA Lys	Thr 350	Lys	Asp	1056
rys	Thr	355	ASI	1 G1	.у А	lla '	Val .	Ala 360	Ser	Gly	Gly	Thr	GAT Asp 365	Ala	Ala	Ala	1104
TCA Ser	AAC Asn 370	GGT Gly	GC(G GC	A G	lly :	ACG Thr 375	TCG Ser	TCT Ser	GAA Glu	AAC Asn	AGT Ser 380	AAG Lys	CTG Leu	ACC Thr	ACG Thr	1152
GTT Val 385	TTG Leu	TAD qzA	GC (GT Va	T G	AG (lu 1 90	CTG :	AAA Lys	TTG Leu	Gly .	GAT Asp 395	AAG Lys	GAA Glu	GTC Val	CAA Gln	AAG Lys 400	1200
CTC Leu	GAC Asp	AAC Asn	TTC Phe	AG Se 40	r A	AC (SCC (GCC (Ala (Gln	CTG Leu 410	GTT Val	GTC Val	GAC Asp	Gly	ATT Ile 415	ATG Met	1248

			TTG Leu 420	Pro												1296
			AAT Asn													1344
			GAT Asp													1392
			GCT Ala													1440
ACC Thr	TAT Tyr	GAA Glu	GTC Val	GAA Glu 485	GTC Val	TGC Cys	TGT Cys	TCC Ser	AAC Asn 490	CTC Leu	AAT Asn	TAT Tyr	CTG Leu	AAA Lys 495	TAC Tyr	1488
			ACG Thr 500													1536
			CAA Gln													1584
TTC Phe	CTC Leu 530	CAA Gln	GGC Gly	GAG Glu	CGC Arg	ACC Thr 535	GAT Asp	GAA Glu	AAA Lys	GAG Glu	ATT Ile 540	CCA Pro	AGC Ser	GAG Glu	CAA Gln	1632
AAC Asn 545	ATC Ile	GTT Val	TAT Tyr	CGG Arg	GGG Gly 550	TCT Ser	TGG Trp	TAC Tyr	GGA Gly	TAT Tyr 555	ATT Ile	GCC Ala	AAC Asn	GAC Asp	AAA Lys 560	1680
Ser	Thr	Ser	TGG Trp	Ser 565	Gly	Asn	Ala	Ser	Asn 570	Ala	Thr	Ser	Gly	Asn 575	Arg	1728
GCG Ala	GAA Glu	TTT Phe	ACT Thr 580	GTG Val	AAT Asn	TTT Phe	GCC Ala	GAT Asp 585	AAA Lys	AAA Lys	ATT Ile	ACT Thr	GGT Gly 590	ACG Thr	TTA Leu	1776
ACC Thr	GCT Ala	GAC Asp 595	AAC Asn	AGG Arg	CAG Gln	GAG Glu	GCA Ala 600	ACC Thr	TTT Phe	ACC Thr	ATT Ile	GAT Asp 605	GGT Gly	AAT Asn	ATT Ile	1824
AAG Lys	GAC Asp 610	AAC Asn	Gly	TTT Phe	GAA Glu	GGT Gly 615	ACG Thr	GCG Ala	AAA Lys	ACT Thr	GCT Ala 620	GAG Glu	TCA Ser	GGT Gly	TTT Phe	1872
GAT Asp 625	CTC Leu	GAT Asp	CAA Gln	AGC Ser	AAT Asn 630	ACC Thr	ACC Thr	CGC Arg	ACG Thr	CCT Pro 635	AAG Lys	GCA Ala	TAT Tyr	ATC Ile	ACA Thr 640	1920
GAT Asp	GCC Ala	AAG Lys	GTG Val	CAG Gln 645	GGC Gly	GGT Gly	TTT Phe	TAC Tyr	GGG Gly 650	CCC Pro	AAA Lys	GCC Ala	GAA Glu	GAG Glu 655	TTG Leu	1968
GGC Gly			TTT Phe 660													2016

2064

2114

AA' As:	T GC.	A TC a Se 67	r GI	C AA y As	T AG	C AG r Se	T GC. r Ala	a Th	T GT r Va	C GT 1 Va	A TT 1 Ph	C GG e Gl 68	y Al	G AA a Ly	A CGC s Arg
CA) Gl:	A CA6 n Gl: 690	n Pr	T GT	G CG	A TAI	ACGC.	AAGC	CCA	AAAA	GAC	CAAG	GCGG	AT A	CGGT	
(2)	INI	FORM	ATIO	N POI	JR L	A SE	Q ID	NO:	8:						
			(A) 1 (B) 1	LONG(TYPE:	RISTI JEUR: aci GURA	693 de a	3 aci miné	ides	amiı	ENCE nés	:				
	(ii	.) T	PE I	DE MO	LECU	LE:	prot	:éine	:						
	(xi	.) DE	ESCRI	PTIC	N DE	LA	SEQU	ENCE	: SE	EQ II	NO:	8:			
Cys 1	Leu	Gly	Gly	Gly 5	Gly	Thr	Phe	Asp	Leu 10		Ser	: Val	Asp	Thr 15	Glu
Ala	Pro	Arg	Pro 20	Asp	Pro	Lys	Tyr	Gln 25		Val	. Ser	Ser	Glu 30		Pro
Gln	Ala	Gln 35	Lys	Asp	Gln	Gly	Gly 40	Tyr	Gly	Phe	Ala	Met 45		Leu	Lys
Arg	Arg 50	Asn	Trp	Tyr	Ser	Ala 55	Ala	Lys	Glu	Asp	Glu 60		Lys	Leu	Asn
Glu 65	Ser	Asp	Trp	Glu	Thr 70	Thr	Gly	Leu	Pro	Thr 75		Pro	Lys	Lys	Leu 80
Pro	Leu	Lys	Gln	Glu 85	Ser	Val	Ile	Ser	Lys 90	Val	Gln	Ala	Asn	Asn 95	Gly
Asp	Asn	Asn	Ile 100	Tyr	Thr	Ser	Pro	Tyr 105	Leu	Thr	Gln	Ser	Asn 110	His	Gln
Asn	Ser	Ser 115	Ile	Asn	Gly	Gly	Ala 120	Asn	Leu	Pro	Lys	Asn 125	Glu	Val	Thr
Asn	Tyr 130	Lys	Asp -	Phe	Lys	Tyr 135	Val	Tyr	Ser	Gly	Trp 140	Phe	Tyr	Lys	His
Ala 145	Lys	Asn	Glu	Ile	Ile 150	Arg	Glu	Asn	Ser	Ser 155	Ile	Lys	Gly	Ala	Lys 160
Asn	Gly	Asp	Asp	Gly 165	Tyr	Ile	Phe	Tyr	His 170	Gly	Lys	Glu	Pro	Ser 175	Arg
Gln	Leu	Pro	Ala 180	Ser	Gly	Thr	Val	Th <i>r</i> 185	Tyr	Lys	Gly	Val	Trp 190	His	Phe
Ala	Thr	Asp 195	Val	Lys	Lys	Ser	Gln 200	Asn	Phe	Arg	Asp	Ile 205	Ile	Gln	Pro
Ser	Lys	Lys	Gln	Gly	Asp	Àrg	Tyr	Ser	Gly	Phe	Ser	Gly	Asp	Asp	Asp

Glu Gln Tyr Ser Asn Lys Asn Glu Ser Met Leu Lys Asp Gly Gln Glu 225 230 235 240

Gly Tyr Gly Phe Thr Ser Asn Leu Glu Val Asp Phe Gly Ser Lys Lys 245 250 255

Leu Thr Gly Lys Leu Ile Arg Asn Asn Arg Val Thr Asn Ala Pro Thr

Asn Asp Lys Tyr Thr Thr Gln Tyr Tyr Ser Leu Asp Ala Gln Ile Thr 275 280 285

Gly Asn Arg Phe Asn Gly Lys Ala Ile Arg Thr Asp Lys Pro Asp Thr 290 295 300

Gly Gly Thr Lys Leu His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser 305 310 315 320

Gly Gly Phe Phe Gly Pro Lys Gly Glu Glu Leu Gly Phe Arg Phe Leu 325 330 335

Ser Asp Asp Lys Lys Val Ala Val Val Gly Ser Ala Lys Thr Lys Asp 340 345

Lys Thr Glu Asn Gly Ala Val Ala Ser Gly Gly Thr Asp Ala Ala Ala 355 360 365

Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr 370 375 380

Val Leu Asp Ala Val Glu Leu Lys Leu Gly Asp Lys Glu Val Gln Lys 385 390 395 400

Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met 405 410 415

Ile Pro Leu Pro Glu Ala Ser Glu Ser Gly Asn Asn Gln Ala Asn 420 425 430

Gln Gly Thr Asn Gly Gly Thr Ala Phe Thr Arg Lys Phe Asp His Thr 435 440 445

Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln Thr Asn Gly 450 460

Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly Lys Thr Lys 465 470 475 480

Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr 485 490 495

Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln Ala Gly Glu 500 505 510

Ser Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu Gln Ser Met 515 520 525

Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Ser Glu Gln 530 . 535 540

Asn Ile Val Tyr Arg Gly Ser Trp Tyr Gly Tyr Ile Ala Asn Asp Lys 545 550 555 560

Ser Thr Ser Trp Ser Gly Asn Ala Ser Asn Ala Thr Ser Gly Asn Arg 565 570 575

- 58 -

Alā	Glu	ı Phe	Thr 580	Val	Asn	Phe	Ala	Asp 585	Lys	Lys	Ile	Thi	r Gl		r Leu	ı
Thr	Ala	Asp 595	Asn	Arg	Gln	Glu	Ala 600	Thr	Phe	Thr	Ile	Asp 605		y As:	n Ile	
Lys	Asp 610	Asn	Gly	Phe	Glu	Gly 615	Thr	Ala	Lys	Thr	Ala 620		. Sei	r Gl	y Phe	
Asp 625	Leu	Asp	Gln	Ser	Asn 630	Thr	Thr	Arg	Thr	Pro 635	Lys	Ala	Туг	: Ile	Thr 640	
Asp	Ala	Lys	Val	Gln 645	Gly	Gly	Phe	Tyr	Gly 650	Pro	Lys	Ala	Glu	Gl: 655	Leu	
Gly	Gly	Trp	Phe 660	Ala	Tyr	Pro	СĴЪ	Asp 665	Lys	Gln	Thr	Lys	Asn 670		Thr	
Asn	Ala	Ser 675	Gly	Asn	Ser	Ser	Ala 680	Thr	Val	Val	Phe	Gly 685	Ala	Lys	Arg	
Gln	Gln 690	Pro	Val	Arg												
(2)	INF	ORMAT	CION	POUR	LA	SEQ	ID N	10: 9):							
	(i)	() () ()	ACTE 1) I.O 3) TY 3) NO 0) CO	NGUE PE: MBRE	UR: acid DE	2114 e nu BRIN	pai cléi S: s	res que impl	de b	: ases						
	(11)	TYP	E DE	MOL	ECUL	E: A	DN (géno	miqu	e)						
	(vi)	(A	GINE .) OR .) SO	GANI:	SME: : S3	N. 1 032	meni	ngit	idis							-
	(ix)	(A	ACTEI) NOI) EMI	M/CLI	E: ma	at pe	epti	de	E:							
	(ix)	(A	ACTEI) NOI) EMI	4/CLE	E: CI	os			E:							
	(xi)	DES	CRIPT	rion	DE I	LA SE	EQUE	NCE:	SEQ	ID N	10: 9	9 :				
rgr Cys 1	TTG Leu	GGC (GGA (Gly (GGC G Gly G	GC (GC A	GT T	TTC (Phe)	GAT (Asp 1	CTT (Leu A	SAT 1	CT Ser	GTC Val	GAT Asp 15	ACC Thr	4.6
EAA (GCC (Ala)	CCG (Pro /	CGT C Arg E 20	CCC G	CG C	CA A	AG 1	TAT (Tyr (CAA (Gln /	ASP V	TT T	CT Ser	TCC Ser 30	GAA Glu	AAA Lys	96
CCG (CAA (Gln)	GCC (Ala (35	CAA A Sln I	AA G .ys A	AC C	AA G	GC G ly G 40	GA 1	rac o	GT T	TT C	CG 1 La 1 45	ATG . Met .	AGG Arg	TTG Leu	144
AA (ys)	CGG / Arg / 50	AGG # Arg #	NAT T Nsn T	GG T	yr P	CG T ro S 55	CG G er A	CA A	NAA G	AA A lu A	AC G sn G	AG (STT . Val	AAA Lys	CTG Leu	192

Asn 65	Gli	S AG	. Asp	Trp	Glu 70	Thr	Thr	GGA Gly	Leu	Pro 75	Ser	C AAI C Asn	Pro	C AA/	A AAC s Asn 80	24
TTA Leu	Pro	GA0	G CGA	CAG Gln 85	Lys	TCG Ser	GTT Val	'ATT	GAT Asp 90	Gln	GTA Val	A GAA Glu	ACA	A GAT	GGC Gly	28
Asp	Ser	Asn	100	Ser	Asn	Ile	Tyr	Ser 105	Ser	Pro	Tyr	Leu	Thr 110	Glr	A TCA Ser	33
Asn	His	G1n 115	Asn	Gly	Asn	Thr	Gly 120	Asn	Gly	Val	Asn	Gln 125	Pro	Lys	AAC Asn	384
GIU	130	Thr	Asp	Tyr	Lys	Asn 135	Phe	Lys	Tyr	Val	Tyr 140	Ser	Gly	Trp	TTT Phe	432
Tyr 145	Lys	His	Ala	Lys	Arg 150	Glu	Val	Asn	Leu	Ala 155	Val	Glu	Pro	Lys	Ile 160	480
Ala	Lys	Asn	GGC	Asp 165	Asp	Gly	Tyr	Ile	Phe 170	Tyr	His	Gly	Lys	Asp 175	Pro	528
ser	Arg	GIn	CTT Leu 180	Pro	Ala	Ser	Gly	Lys 185	Ile	Thr	Tyr	Lys	Gly 190	Val	Trp	576
Hls	Phe	A1a 195	ACC Thr	Asp	Thr	Lys	Arg 200	Gly	Gln	Lys	Phe	Arg 205	Glu	Ile	Ile	624
GIN	210	Ser	AAA Lys	Asn	Gln	Gly 215	Asp	Arg	Tyr	Ser	Gly 220	Phe	Ser	Gly	Asp	672
225	Asp	GLu	CAA Gln	Tyr	Ser 230	Asn	Lys	Asn	Glu	Ser 235	Met.	Leu	Lys	Asp	Gly 240	720
nls	GIU	GIÀ	TAT Tyr	G1 y 245	Phe .	Ala	Ser	Asn	Leu 250	Glu	Val	Asp	Phe	Asp 255	Asn	768
Lys	ràs	Leu	ACG Thr 260	GIÀ	Lys	Leu	Ile .	Arg 265	Asn .	Asn .	Ala	Asn	Gln 270	Asn	Asn	816
Asn '	Thr	Asn 275	AAT Asn	Asp	Lys	His '	Thr 280	Thr	Gln	Tyr	Tyr	Ser 285	Leu	Asp	Ala	864
rnr .	CTT Leu 290	AAG Lys	GGA Gly	AAC Asn	Arg	TTC I Phe i 295	AGC Ser	GGA Gly	AAA Lys .	Ala	GAA Glu 300	GCA . Ala	ACC Thr	GAC Asp	AAA Lys	912
CCC : Pro : 305	AAA Lys	AAC Asn	GAC Asp	Gly	GAA Glu 310	ACC :	AAG Lys	GAA Glu	His	CCC Pro 315	TTT Phe	GTT ' Val	TCC Ser	GAC Asp	TCG Ser 320	960

TC: Se:	r TC r Se	T TT	G AGO	GG Gl: 32	A CT	C TT: y Phe	TTO Pho	C GG e Gl	C CCC y Pro 330	o Gli	G GG n Gl	T GA	G GA u Gl	A TT u Le 33	G GGT u Gly 5	1008
TT(Phe	C CG ≥ Ar	C TTT	T TTC 2 Leu 340	ı Sei	AA C Ası	GA1 Asp	CA/	A AA 1 Lys 34!	Va]	C GCC	GT:	r gro l Val	GGG L G1: 350	y Se	C GCG r Ala	1056
AAA Lys	A ACC	Lys 355	: Asp	Lys	A CCC	GCA Ala	AAT Asr 360	ı Gly	AAT Asn	ACT Thr	GCC Ala	G GAC A Glu 365	Ala	TC.	A GGC r Gly	1104
GGC Gly	ACA Thi 370	: Asp	GCG Ala	GCA Ala	A GCA	TCG Ser 375	Gly	GGT Gly	GCG Ala	GCA Ala	GGC Gly 380	/ Thr	TCC Ser	TC: Se:	r GAA r Glu	1152
AAC Asn 385	Ser	'AAG Lys	CTG Leu	ACC	Thr 390	Val	TTG Leu	GAT Asp	GCG	GTC Val 395	Glu	CTG Leu	ACG Thr	CAC His	GGC Gly 400	1200
GGC	ACA Thr	GCA Ala	ATC Ile	AAA Lys 405	Asn	CTC Leu	GAC Asp	AAC Asn	TTC Phe 410	AGC Ser	AAT Asn	GCC Ala	GCC	Glr 415	CTG Leu	1248
GTT Val	GTC Val	GAC Asp	GGC Gly 420	ATT Ile	ATG Met	ATT Ile	CCG Pro	CTC Leu 425	CTG Leu	CCT Pro	CAA Gln	AAT Asn	TCA Ser 430	ACA Thr	GGC	1296
AAA Lye	AAT Asn	AAT Asn 435	CAG Gln	CCC Pro	GAT Asp	CAA Gln	GGT Gly 440	AAA Lys	AAC Asn	GGC Gly	GGA Gly	ACA Thr 445	GCC Ala	TTT Phe	ATC Ile	1344
TAT Tyr	AAA Lys 450	ACG Thr	ACC Thr	TAC Tyr	ACG Thr	CCG Pro 455	AAA Lys	AAC Asn	GAT Asp	GAC Asp	AAA Lys 460	GAT Asp	ACC Thr	AAA Lys	GCC Ala	1392
CAA Gln 465	ACA Thr	GTC Val	ACG Thr	GGC Gly	GGC Gly 470	ACG Thr	CAA Gln	ACC Thr	GCT Ala	TCA Ser 475	AAT Asn	ACG Thr	GCA Ala	GGT Gly	GAT Asp 480	1440
GCC Ala	AAT Asn	GC Gly	AAA Lys	ACA Thr 485	AAA Lys	ACC Thr	TAT Tyr	GAA Glu	GTC Val 490	GAA Glu	GTC Val	TGC Cys	TGT Cys	TCC Ser 495	AAC Asn	1488
CTC Leu	AAT Asn	TAT Tyr	CTG Leu 500	AAA Lys	TAC Tyr	GGG Gly	TTG Leu	CTG Leu 505	ACG Thr	CGC Arg	AAA Lys	ACT Thr	GCC Ala 510	GGC Gly	AAC Asn	1536
ACG Thr	GTG Val	GGA Gly 515	AGC Ser	GGC Gly	AAC Asn	AGC Ser	AGC Ser 520	CCA Pro	ACC Thr	GCC Ala	GCC Ala	GCC Ala 525	CAA Gln	ACG Thr	GAC Asp	1584
GCG Ala	CAG Gln 530	AGT Ser	ATG Met	TTC Phe	CTC Leu	CAA Gln 535	GGC Gly	GAG Glu	CGC . Arg	Thr .	GAT Asp 540	GAA Glu	AAC Asn	AAG Lys	ATT Ile	1632
CCA Pro 545	AGC Ser	GAG Glu	CAA . Gln .	Asn	GTC Val 550	GTT ' Val '	TAT Tyr .	CGG Arg	Gly	TCT Ser S	TGG Trp	TAC Tyr	GGG Gly	CAT His	ATT Ile 560	1680
GCC .	AGC Ser	AGC . Ser	Thr	AGC Ser	TGG . Trp	AGC (GGC . Gly .	Asn .	GCT ^c Ala : 570	TCT (Ser)	GAT . Asp	AAA Lys	Glu	GGC Gly 575	GGC Gly	1728

-61-

AAC Asn	AGG Arg	GCG Ala	GAA Glu 580	Phe	ACT Thr	GTG Val	AAT Asn	TTT Phe 585	Gly	GAG Glu	AAA Lys	AAA Lys	ATT Ile 590	ACC Thr	GGC Gly	1776
ACG Thr	TTA Leu	ACC Thr 595	GCT Ala	GAA Glu	AAC Asn	AGG Arg	CAG Gln 600	Glu	GCA Ala	ACC Thr	TTT Phe	ACC Thr 605	ATT Ile	GAT Asp	GGT Gly	1824
AAG Lys	ATT Ile 610	GAG Glu	GGC Gly	AAC Asn	GGT Gly	TTT Phe 615	TCC Ser	GGT Gly	ACG Thr	GCA Ala	AAA Lys 620	ACT Thr	GCT Ala	GAA Glu	TTA Leu	1872
GGT Gly 625	TTT Phe	GAT Asp	CTC Leu	GAT Asp	CAA Gln 630	AAA Lys	TAA neA	ACC Thr	ACC Thr	CGC Arg 635	ACG Thr	CCT Pro	AAG Lys	GCA Ala	TAT Tyr 640	1920
ATC Ile	ACA Thr	GAT Asp	GCC Ala	AAG Lys 645	GTA Val	AAG Lys	GGC Gly	GGT Gly	TTT Phe 650	TAC Tyr	GGG Gly	CCC Pro	AAA Lys	GCC Ala 655	GAA Glu	1968
GAG Glu	TTG Leu	GGC	GGA Gly 660	TGG Trp	TTT Phe	GCC Ala	TAT Tyr	TCG Ser 665	GAC Asp	GAT Asp	AAA Lys	CAA Gln	ACG Thr 670	AAA Lys	TAA neA	2016
GCA Ala	ACÁ Thr	GAT Asp 675	GCA Ala	TCC Ser	GGC Gly	AAT Asn	GGA Gly 680	AAT Asn	TCA Ser	GCA Ala	AGC Ser	AGT Ser 685	GCA Ala	ACT Thr	GTC Val	2064
GTA Val	TTC Phe 690	GGT Gly	GCG Ala	AAA Lys	CGC Arg	CAA Gln 695	CAG Gln	CCT Pro	GTG Val	CAA Gln	ТААД	CCAA	.GG C	GGAT	'AC	2114
(2)	INFO	RMAT	NOI	POUF	LA	SEQ	ID N	io: 1	.0:							
	((A) LO	NGUE	UR:	UES 699	acid									

- (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10:

Cys Leu Gly Gly Gly Gly Ser Phe Asp Leu Asp Ser Val Asp Thr 1 . 5 10 15

Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys 20 25 30

Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu 35 40 45

Lys Arg Arg Asn Trp Tyr Pro Ser Ala Lys Glu Asn Glu Val Lys Leu 50 60

Asn Glu Ser Asp Trp Glu Thr Thr Gly Leu Pro Ser Asn Pro Lys Asn 65 70 75 80

Leu Pro Glu Arg Gln Lys Ser Val Ile Asp Gln Val Glu Thr Asp Gly 85 90 95

Asp Ser Asn Asn Ser Asn Ile Tyr Ser Ser Pro Tyr Leu Thr Gln Ser 105 Asn His Gln Asn Gly Asn Thr Gly Asn Gly Val Asn Gln Pro Lys Asn Glu Val Thr Asp Tyr Lys Asn Phe Lys Tyr Val Tyr Ser Gly Trp Phe Tyr Lys His Ala Lys Arg Glu Val Asn Leu Ala Val Glu Pro Lys Ile Ala Lys Asn Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Lys Asp Pro Ser Arg Gln Leu Pro Ala Ser Gly Lys Ile Thr Tyr Lys Gly Val Trp His Phe Ala Thr Asp Thr Lys Arg Gly Gln Lys Phe Arg Glu Ile Ile Gln Pro Ser Lys Asn Gln Gly Asp Arg Tyr Ser Gly Phe Ser Gly Asp Asp Asp Glu Gln Tyr Ser Asn Lys Asn Glu Ser Met Leu Lys Asp Gly His Glu Gly Tyr Gly Phe Ala Ser Asn Leu Glu Val Asp Phe Asp Asn Lys Lys Leu Thr Gly Lys Leu Ile Arg Asn Asn Ala Asn Gln Asn Asn Asn Thr Asn Asn Asp Lys His Thr Thr Gln Tyr Tyr Ser Leu Asp Ala Thr Leu Lys Gly Asn Arg Phe Ser Gly Lys Ala Glu Ala Thr Asp Lys 295 Pro Lys Asn Asp Gly Glu Thr Lys Glu His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser Gly Gly Phe Phe Gly Pro Gln Gly Glu Glu Leu Gly 330 Phe Arg Phe Leu Ser Asn Asp Gln Lys Val Ala Val Val Gly Ser Ala Lys Thr Lys Asp Lys Pro Ala Asn Gly Asn Thr Ala Glu Ala Ser Gly Gly Thr Asp Ala Ala Ala Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu 375 Asn Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr His Gly Gly Thr Ala Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met Ile Pro Leu Leu Pro Gln Asn Ser Thr Gly 425

- 63 -

Lys Asn Asn Gln Pro Asp Gln Gly Lys Asn Gly Gly Thr Ala Phe Ile 435 440 445

Tyr Lys Thr Thr Tyr Thr Pro Lys Asn Asp Asp Lys Asp Thr Lys Ala
450
460

Gln Thr Val Thr Gly Gly Thr Gln Thr Ala Ser Asn Thr Ala Gly Asp 465 470 475 480

Ala Asn Gly Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn 485 490 495

Leu Asn Tyr Leu Lys Tyr Gly Leu Leu Thr Arg Lys Thr Ala Gly Asn 500 505 510

Thr Val Gly Ser Gly Asn Ser Ser Pro Thr Ala Ala Ala Gln Thr Asp 515 520 525

Ala Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Asn Lys Ile 530 535 540

Pro Ser Glu Gln Asn Val Val Tyr Arg Gly Ser Trp Tyr Gly His Ile 545 550 555 560

Ala Ser Ser Thr Ser Trp Ser Gly Asn Ala Ser Asp Lys Glu Gly Gly 565 570 575

Asn Arg Ala Glu Phe Thr Val Asn Phe Gly Glu Lys Lys Ile Thr Gly
580 585 590

Thr Leu Thr Ala Glu Asn Arg Gln Glu Ala Thr Phe Thr Ile Asp Gly 595 600 605

Lys Ile Glu Gly Asn Gly Phe Ser Gly Thr Ala Lys Thr Ala Glu Leu 610 620

Gly Phe Asp Leu Asp Gln Lys Asn Thr Thr Arg Thr Pro Lys Ala Tyr 625 630 635 640

Ile Thr Asp Ala Lys Val Lys Gly Gly Phe Tyr Gly Pro Lys Ala Glu 645 650 655

Glu Leu Gly Gly Trp Phe Ala Tyr Ser Asp Asp Lys Gln Thr Lys Asn 660 665 670

Ala Thr Asp Ala Ser Gly Asn Gly Asn Ser Ala Ser Ser Ala Thr Val 675 680 685

Val Phe Gly Ala Lys Arg Gln Gln Pro Val Gln 690 695

(2) INFORMATION POUR LA SEQ ID NO: 11:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 198 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: IM2169

- 64 -

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 11:

Thr Lys Asp Lys Leu Glu Asn Gly Ala Ala Ala Ser Gly Ser Thr Gly
1 10 15

Ala Ala Ala Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys 20 25 30

Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr Leu Asp Asp Lys Lys 35 40 45

Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp 50 60

Gly Ile Met Ile Pro Leu Leu Pro Lys Asp Ser Glu Ser Gly Asn Thr 65 70 75 80

Gln Ala Asp Lys Gly Lys Asn Gly Gly Thr Glu Phe Thr Arg Lys Phe 85 90

Glu His Thr Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln
100 105 110

Thr Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly 115 120 125

Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr 130 140

Leu Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln 145 155 160

Ala Gly Gly Asn Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu 165 170 175

Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro 180 185 190

Thr Asp Gln Asn Val Val 195

(2) INFORMATION POUR LA SEQ ID NO: 12:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 198 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: 6940
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 12:

Thr Lys Asp Lys Thr Glu Asn Gly Ala Val Ala Ser Gly Gly Thr Asp 1 5 15

Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys 20 25 30

- Leu Thr Thr Val Leu Asp Ala Val Glu Leu Lys Leu Gly Asp Lys Glu
- Val Gln Lys Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp
- Gly Ile Met Ile Pro Leu Leu Pro Glu Ala Ser Glu Ser Gly Asn Asn
- Gln Ala Asn Gln Gly Thr Asn Gly Gly Thr Ala Phe Thr Arg Lys Phe
- Asp His Thr Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln
- Thr Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly
- Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr
- Leu Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln
- Ala Gly Glu Ser Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu
- Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro 185

Ser Glu Gln Asn Ile Val 195

(2) INFORMATION POUR LA SEQ ID NO: 13:

- (1) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 198 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: 2223
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 13:
- Thr Lys Asp Lys Thr Glu Asn Gly Ala Val Ala Ser Gly Gly Thr Asp
- Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys
- Leu Thr Thr Val Leu Asp Ala Val Glu Leu Lys Leu Gly Asp Lys Glu
- Val Gln Lys Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp
- Gly Ile Met Ile Pro Leu Leu Pro Glu Ala Ser Glu Ser Gly Asn Asn

- 66 -

Gln Ala Asn Gln Gly Thr Asn Gly Gly Thr Ala Phe Thr Arg Lys Phe 85 90 95

Asp His Thr Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln 100 105 110

Ala Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly 115 120 125

Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr 130 140

Ala Gly Glu Ser Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Gly 165 170 175

Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro 180 185 190

Ser Glu Gln Asn Ile Val 195

(2) INFORMATION POUR LA SEQ ID NO: 14:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 198 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: C708
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 14:

Thr Gln Asp Lys Pro Arg Asn Gly Ala Val Ala Ser Gly Gly Thr Gly
1 5 10 15

Ala Ala Arg Ser Asn Gly Ala Ala Gly Gln Ser Ser Glu Asn Ser Lys 20 25 30

Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys
35 40 45

Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp 50 55 60

Gly Ile Met Ile Pro Leu Leu Pro Glu Ala Ser Glu Ser Gly Lys Asn 65 70 75 80

Gln Ala Asn Gln Gly Thr Asn Gly Gly Thr Ala Phe Thr Arg Lys Phe 85 90 95

Asn His Thr Pro Lys Ser Asp Glu Lys Asp Thr Gln Ala Gly Thr Ala 100 105 110

Glu Asn Gly Asn Pro Ala Ala Ser Asn Thr Ala Gly Asp Ala Asn Gly 115 120 125

- 67 -

Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr 130 135 140

Leu Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln 145 150 155 160

Ala Gly Glu Ser Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Gly 165 170 175

Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro 180 . 185 . 190

Asn Asp Gln Asn Val Val 195

(2) INFORMATION POUR LA SEQ ID NO: 15:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 211 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: M978
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 15:

Thr Gln Asp Lys Ala Ala Asn Gly Asn Thr Ala Ala Ala Ser Gly Gly
1 10 15

Thr Asp Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn 20 25 30

Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr Leu Asn Asp
35 40 45

Lys Lys Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val 50 55

Val Asp Gly Ile Met Ile Pro Leu Leu Pro Glu Thr Ser Glu Ser Gly 65 70 75 80

Ser Asn Gln Ala Asp Lys Gly Lys Lys Gly Lys Asn Gly Lys Asn Gly 85 90

Gly Thr Asp Phe Thr Tyr Lys Thr Thr Tyr Thr Pro Lys Asn Asp Asp 100 105 110

Lys Asp Thr Lys Ala Gln Thr Gly Ala Ala Gly Ser Ser Gly Ala Gln 115 120 125

Thr Asp Leu Gly Lys Ala Asp Val Asn Gly Gly Lys Ala Glu Thr Lys 130 135 140

Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr 145 150 155 160

Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln Ala Gly Gly 165 170 175 Asn Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu Gln Ser Met 180 185 190

Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Asn Asp Gln 195 200 205

Asn Val Val 210

(2) INFORMATION POUR LA SEQ ID NO: 16:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 200 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: 1610
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 16:

Lys Arg Asp Lys Ala Glu Ser Gly Gly Gly Asn Gly Ala Ser Gly Gly
1 5 10 15

Thr Asp Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn 20 25 . 30

Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Lys Ser Gly Gly 35 40

Lys Glu Val Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val 50 55 60

Val Asp Gly Ile Met Ile Pro Leu Leu Pro Lys Asp Ser Glu Ser Gly 65 70 75 80

Asn Thr Gln Ala Asp Lys Gly Lys Asn Gly Gly Thr Lys Phe Thr Arg 85 90 95

Lys Phe Glu His Thr Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly
100 105 110

Thr Gln Thr Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr 115 120 125

Asn Gly Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu 130 135 140

Asn Tyr Leu Lys Tyr Gly Leu Leu Thr Arg Lys Thr Ala Gly Asn Thr 145 150 155 160

Gly Glu Gly Gly Asn Gly Ser Gln Thr Ala Ala Ala Gln Thr Ala Gln
165 170 175

Gly Ala Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu 180 185 190

Ile Pro Ser Glu Gln Asn Val Val 195 200 - 69 -

(2) INFORMATION POUR LA SEQ ID NO: 17:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 200 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: 867
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 17:

Thr Lys Asp Lys Pro Arg Asn Gly Ala Val Ala Ser Gly Gly Thr Asp
1 5 10 15

Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Gly Lys
20 25 30

Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys
35 40 45

Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Ser
50 60

Gly Ile Met Ile Pro Leu Met Pro Glu Thr Ser Glu Ser Gly Asn Asn 65 70 75 80

Gln Ala Asp Lys Gly Lys Asn Gly Gly Thr Ala Phe Thr Arg Lys Phe 85 90 95

Asp His Thr Pro Lys Ser Asp Glu Lys Asp Thr Gln Ala Gly Thr Pro 100 105 110

Thr Asn Gly Ala Gln Thr Ala Ser Gly Thr Ala Gly Val Thr Gly Gly 115 120 125

Gln Ala Gly Lys Thr Tyr Ala Val Glu Val Cys Cys Ser Asn Leu Asn 130 135 140

Tyr Leu Lys Tyr Gly Leu Leu Thr Arg Lys Thr Ala Asp Asn Thr Val 145 150 155 160

Gly Ser Gly Asn Gly Ser Ser Thr Ala Ala Ala Gln Thr Ala Gln Gly 165 170 175

Ala Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile 180 185 190

Pro Lys Glu Gln Gln Asp Ile Val 195 200

(2) INFORMATION POUR LA SEQ ID NO: 18:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 198 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide

- 70 -

- (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: S3032
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 18:

Thr Lys Asp Lys Pro Ala Asn Gly Asn Thr Ala Glu Ala Ser Gly Gly

Thr Asp Ala Ala Ala Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu Asn

Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr His Gly Gly

Thr Ala Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val

Val Asp Gly Ile Met Ile Pro Leu Leu Pro Gln Asn Ser Thr Gly Lys

Asn Asn Gln Pro Asp Gln Gly Lys Asn Gly Gly Thr Ala Phe Ile Tyr

Lys Thr Thr Tyr Thr Pro Lys Asn Asp Asp Lys Asp Thr Lys Ala Gln

Thr Val Thr Gly Gly Thr Gln Thr Ala Ser Asn Thr Ala Gly Asp Ala

Asn Gly Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu

Asn Tyr Leu Lys Tyr Gly Leu Leu Thr Arg Lys Thr Ala Gly Asn Thr

Val Gly Ser Gly Asn Ser Ser Pro Thr Ala Ala Ala Gln Thr Asp Ala

Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Asn Lys Ile Pro

Ser Glu Gln Asn Val Val 195

- (2) INFORMATION POUR LA SEQ ID NO: 19:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 195 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: peptide
 - (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: 891
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 19:

Thr Lys Asp Lys Pro Gly Asn Gly Ala Arg Leu Gln Ala Ala Arg Cys

- 71 -

Gly Thr Ser Asn Gly Ala Ala Gly Gln Ser Ser Glu Asn Ser Lys Leu 20 25 30

Thr Thr Val Leu Asp Ala Val Glu Leu Lys Leu Gly Asp Lys Glu Val 35 40 45

Gln Lys Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly 50 60

Ile Met Ile Pro Leu Leu Pro Lys Asp Ser Glu Ser Gly Lys Asn Gln 65 70 75 80

Ala Asp Lys Gly Lys Asn Gly Glu Thr Glu Phe Thr Arg Lys Phe Glu 85 90 95

His Thr Pro Glu Ser Asp Glu Lys Asp Ala Gln Ala Gly Thr Pro Ser

Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly Lys 115 120 125

Thr Lys Thr Tyr Glu Val Asn Leu Cys Ser Asn Leu Asn Tyr Leu Lys 130 135 140

Tyr Gly Leu Leu Thr Arg Lys Thr Ala Gly Asn Thr Gly Glu Gly Gly 145 155 160

Asn Ser Ser Pro Thr Ala Ala Gln Thr Ala Gln Gly Ala Gln Ser Met 165 170 175

Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Asn Asp Gln 180 185 190

Asn Val Val 195

- (2) INFORMATION POUR LA SEO ID NO: 20:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 29 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN (génomique)
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 20:

AAACCCGGAT CCGTTGCCAG CGCTGCCGT

29

- (2) INFORMATION POUR LA SEQ ID NO: 21:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 85 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN (génomique)
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 21:

- 72 -

TTTTTTCATG AGATATCTGG CAACATTGTT GTTATCTCTG GCGGTGTTAA TCACCGCCGG	60
GTGCCTGGGT GGCGGCGCA GTTTC	85
(2) INFORMATION POUR LA SEQ ID NO: 22:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 30 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 22:	
GTGTTTTTGT TGAGTGCATG CCTGGGTGGC	30
(2) INFORMATION POUR LA SEQ ID NO: 23:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 40 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 23:	
TGCGCAAGCT TACAGTTTGT CTTTGGTTTT CGCGCTGCCG	40
(2) INFORMATION POUR LA SEQ ID NO: 24:	
(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 40 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 24:	
AAAAAGCATG CATAAAAACT ACGCGTTACA CCATTCAAGC	40
(2) INFORMATION POUR LA SEQ ID NO: 25:	
(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 39 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 25:	
TATATAAGCT TACGTTGCAG GCCCTGCCGC CTTTTCCCC	20

- 73 -

(2)	INFORMATION POUR LA SEQ ID NO: 26:	
	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 29 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
	(ii) TYPE DE MOLECULE: ADN (génomique)	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 26:	
CCC	GAATTCT GCCGTCTGAA GCCTTATTC	29
(2)	INFORMATION POUR LA SEQ ID NO: 27:	
	(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 28 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii) TYPE DE MOLECULE: ADN (génomique)	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 27:	
CCC	SAATTCT GCTATGGTGC TGCCTGTG	28
(2)	INFORMATION POUR LA SEQ ID NO: 28:	
	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 30 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
	(ii) TYPE DE MOLECULE: ADN (génomique)	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 28:	
ĊGCĮ	TCCAAA ACCGTACCTG TGCTGCCTGA	30
(2)	INFORMATION POUR LA SEQ ID NO: 29:	
	(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 30 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii) TYPE DE MOLECULE: ADN (génomique)	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 29:	
TTT	TCACTT TCCGGGGGCA GGAGCGGAAT	30
	•	

(2) INFORMATION POUR LA SEQ ID NO: 30:

- 74 -

					•							
	(i)	(A) (B) (C)	LONGU TYPE: NOMBR	EUR: 3 acide E DE B	DE LA SI O paires nucléiqu RINS: sin ON: linéa	de ba ne mple	CE: ases					
	(ii)	TYPE :	DE MO	LECULE	: ADN (gé	nomiq	ue)					
	(xi)	DESCR	IPTIO	N DE L	A SEQUENC	E: SE	Q ID NO:	30:				
GTTG	GAAC	ag Cag	ACAGC	GG TTT(SCGCCCC							30
(2)	INFO	RMATION	N POU	R LA SE	Q ID NO:	31:						
	(i)	(A) I (B) I (C) N	Longui Lype: Iombri	EUR: 30 acide E DE BR	DE LA SE paires nucléiqu INS: sim N: linéa	de ba: e ple	E: ses					
	(ii)	TYPE D	E MOI	ECULE:	ADN (gé	nomiqu	ıe)					
	(xi)	DESCRI	PTION	DE LA	SEQUENC	E: SE(ID NO:	31:				
GAAC	ATACI	T TGTT	CGTTT	T TGCG	CGTCAA							30
(2)	Infor	Mation	POUR	LA SE	Q ID NO:	32:						
	(i)	(A) L (B) T	ONGUE YPE:	UR: 5 acide a	DE LA SE(acides an aminé N: linéai	ninés	: :					
((ii)	TYPE D	E MOL	ECULE:	peptide							
((vi)	ORIGIN (A) O (B) S	RGANI	SME: N. : IM23	. meningi 94	tidis					٠	
. ((xi)	DESCRI	PTION	DE LA	SEQUENCE	: SEQ	ID NO:	32:				
	Tyr :	Lys Gly	y Thr	Trp 5								
(2) I	NFOR	MATION	POUR	LA SEC	ID NO:	33:						
	(i) ((A) LO	ONGUET YPE: a	JR: 15 acide a	DE LA SEQ acides a miné I: linéai	minés	:					
(ii) 7	TYPE DE	MOLE	ECULE:	peptide							
(-	vi) (RGANIS	ME: N.	meningi 4	tidis						
(:	xi) I	ESCRIF	PTION	DE LA	SEQUENCE	: SEQ	ID NO:	33:				
:	Glu F 1	he Glu	Val	Asp Ph 5	e Ser As _l	p Lys	Thr Ile	Lys	Gly T	hr L		

- (2) INFORMATION POUR LA SEQ ID NO: 34:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 12 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: peptide
 - (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: IM2394
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 34:
 - Glu Gly Gly Phe Tyr Gly Pro Lys Gly Glu Glu Leu
- (2) INFORMATION POUR LA SEQ ID NO: 35:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 6 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: peptide
 - (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: IM2394
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 35:

Ala Val Phe Gly Ala Lys 1

- (2) INFORMATION POUR LA SEQ ID NO: 36:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 2070 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: double
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN (génomique)
 - (vi) ORIGINE:
 - (A) ORGANISME: Neisseria meningitidis
 - (B) SOUCHE: BZ83
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: sig_peptide (B) EMPLACEMENT: 1..60
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: mat_peptide
 - (B) EMPLACEMENT: 61..2067
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1..2067

ATGAACAATCCATTGGTAAATCAGGCTGCTATGGTGCTGCCTGTGTTTTTGTTGAGTGCT	ŗ
TACTTGTTAGGTAACCATTTAGTCCGACGATACCACGGACACAAAAACAACTCACGA	
MetAsnAsnProLeuValAsnGlnAlaAlaMetValLeuProValPheLeuLeuSerAla	
,+,,,,,	
TGTCTGGGCGGAGGCGGCAGTTTCGATCTTGATTCTGTCGATACCGAAGCCCCGCGTCCC	
ACAGACCCGCCTCCGCCGTCAAAGCTAGAACTAAGACAGCTATGGCTTCGGGGCGCAGGG	
${\tt CysLeuGlyGlyGlySerPheAspLeuAspSerValAspThrGluAlaProArgPro}$	
,	
GCGCCAAAGTATCAAGATGTTTCTTCCGAAACACCGCAAGCCCAAAAAGACCAAGGCGGA	
CGCGGTTTCATAGTTCTACAAAGAAGGCTTTGTGGCGTTCGGGTTTTTCTGGTTCCGCCT	180
${\tt AlaProLysTyrGlnAspValSerSerGluThrProGlnAlaGlnLysAspGlnGlyGly}$	
TACGGTTTTGCAATGCGCTTCAAGCGGCGGAATTGGTACCCAAAAAATGAAGAAGATCAT	
ATGCCAAAACGTTACGCGAAGTTCGCCGCCTTAACCATGGGTTTTTTACTTCTTCTAGTA	240
${\tt TyrGlyPheAlaMetArgPheLysArgArgAsnTrpTyrProLysAsnGluGluAspHis}$	
,	
AAGGCATTATCAGAAGCGGATTGGGAGAAGTTAGGTGCGGGTAAGCCAGATGAGTTTCCC	
THEOTIANIAGIC TEGECTAACCCTCTTCAATCCACGCCCATTCGGTCTACTCAAAGGG	300
LysAlaLeuSerGluAlaAspTrpGluLysLeuGlyAlaGlyLysProAspGluPhePro	
,,,	
CAAAGGAATGAATATTGAATATGACTGACGGAATTCTGAGTGAG	
GTTTCCTTACTTTATAACTTATACTGACTGCCTTAAGACTCACTC	360
GlnArgAsnGluIleLeuAsnMetThrAspGlyIleLeuSerGluSerLeuGlnLeuGly	
,,,,,,	

GAGGGCGGCAAAAGCCGCGTAGAAGGATACACGGATTTCCAATATGTCCGCTCGGGCTAT	
CTCCCGCCGTTTTCGGCGCATCTTCCTATGTGCCTAAAGGTTATACAGGCGAGCCCGATA	420
GluGlyGlyLysSerArgValGluGlyTyrThrAspPheGlnTyrValArgSerGlyTyr	
,,,,,,	
ATCTACCGCAACGGTGCCAATAAAATCGATTTCCAAAAAAAA	
TAGATGGCGTTGCCACGGTTATTTTAGCTAAAGGTTTTTTTT	480
${\tt IleTyrArgAsnGlyAlaAsnLysIleAspPheGlnLysLysIleAlaLeuSerGlyPro}$	
,	
GACGGCTACCTTTCTACAAAGGCAGCAATCCTTCCCAAGCTCTGCCGATGGGTAAGGTA	
CTGCCGATGGAAAGATGTTTCCGTCGTTAGGAAGGGTTCGAGACGGCTACCCATTCCAT	540
${\tt AspGlyTyrLeuPheTyrLysGlySerAsnProSerGlnAlaLeuProMetGlyLysVal}$	
·	
GGTTATAAAGGTACTTGGGATTATGTAACCGATGCCAAGATGGGACAAAAATTTTCCCAG	500
CCAATATTTCCATGAACCCTAATACATTGGCTACGGTTCTACCCTGTTTTTAAAAGGGTC	600
${\tt GlyTyrLysGlyThrTrpAspTyrValThrAspAlaLysMetGlyGlnLysPheSerGln}$	
,,,,,,	
TTGGCTGGTTTTCCAGCGGGGGATAGGTATGGGGCTTTGTCTGCCGAGGAAGCGGATGTG	
AACCGACCAAAAGGTCGCCCCCTATCCATACCCCGAAACAGACGGCTCCTTCGCCTACAC	660
LeuAlaGlyPheProAlaGlyAspArgTyrGlyAlaLeuSerAlaGluGluAlaAspVal	
,,,,,,	
TTGCGCAACAAAAGCGAGGCACAGCAAGGTCAGACCGATTTCGGGCTGACCAGCGAGTTT	•
	720
LeuArgAsnLysSerGluAlaGlnGlnGlyGlnThrAspPheGlyLeuThrSerGluPhe	
,,,,,	
GAGGTGGATTTCGCCGCAAGACCATGACCGGCGCGCTCTACCGCAATAACCGGATTACT	
CTCCACCTAAAGCGGCGGTTCTGGTACTGGCCGCGCGAGATGGCGTTATTGGCCTAATGA	780
GluValAspPheAlaAlaLysThrMetThrGlyAlaLeuTyrArgAsnAsnArgIleThr	

AATAACGAAACCGAAAATAAAGCCAAACAAATTAAACGTTACGACATTCAGGCTGACCTC	;
TTATTGCTTTGGCTTTTATTTCGGTTTGTTTAATTTGCAATGCTGTAAGTCCGACTGGAC	:
AsnAsnGluThrGluAsnLysAlaLysGlnIleLysArgTyrAspIleGlnAlaAspLeu	ſ
,	
CACGGTAACCGCTTCAGCGGCAAGGCAACGGCAACCGACAAAACCCAAAAACGACG	
GTGCCATTGGCGAAGTCGCCGTTCCGTTGCCGTTGGCTGTTTTGCTGCTTTTGG	900
HisGlyAsnArgPheSerGlyLysAlaThrAlaThrAspLysProLysAsnAspGluThr	
,+,+,+,	
AAGGAACATCCCTTTGTTTCCGACTCGTCTTCTTTGAGCGGCGGCTTTTTCGGTCCGAAG	
TTCCTTGTAGGGAAACAAAGGCTGAGCAGAAGAAACTCGCCGCCGAAAAAAGCCAGGCTTC	960
LysGluHisProPheValSerAspSerSerSerLeuSerGlyGlyPhePheGlyProLys	
,+,	
GGTGAGGAATTGGGTTTCCGCTTTTTGAGCGACGATCAAAAAGTTGCCGTTGTCGGCAGC	
CCACTCCTTAACCCAAAGGCGAAAAACTCGCTGCTAGTTTTTCAACGGCAACAGCCGTCG	1020
${\tt GlyGluGluLeuGlyPheArgPheLeuSerAspAspGlnLysValAlaValValGlySer}$	
,	
GCGAAAACCAAAGACAAACTGGAAAATGGCGCGGCGCTTCAGGCAGCACAGGTGCGGCA	
CGCTTTTGGTTTCTGTTTGACCTTTTACCGCCGCCGAAGTCCGTCGTCGTCCACGCCGT	1080
AlaLysThrLysAspLysLeuGluAsnGlyAlaAlaAlaSerGlySerThrGlyAlaAla	
,+,+	
GCATCGGGCGGTGCGGCAGATATGCCGTCTGAAAACGGTAAGCTGACCACGGTTTTGGAT	
CGTAGCCCGCCACGCCGTCTATACGGCAGACTTTTGCCATTCGACTGGTGCCAAAACCTA	1140
AlaSerGlyGlyAlaAlaAspMetProSerGluAsnGlyLysLeuThrThrValLeuAsp	
,	
GCGGTTGAGCTGAAATCTGGCGGTAAGGAAGTCAAAAATCTCGACAACTTCAGCAATGCC	
CGCCAACTCGACTTTAGACCGCCATTCCTTCAGTTTTTAGAGCTGTTGAAGTCGTTACGG	1200
AlaValGluLeuLysSerGlyGlyLysGluValLysAsnLeuAspAsnPheSerAsnAla	

GCCCAACTGGTTGTCGACGGCATTATGATTCCGCTCCTGCCCAAGAATTCCGAAAGCGAG	:
CGGGTTGACCAACAGCTGCCGTAATACTAAGGCGAGGACGGGTTCTTAAGGCTTTCGCTC	
AlaGlnLeuValValAspGlyIleMetIleProLeuLeuProLysAsnSerGluSerGlu	
,,,,,,	
AGCAATCAGGCAGATAAAAGGTAAAAACGGCGGAACAGCCTTTACCCGCAAATTTGAACAC	
TCGTTAGTCCGTCTATTTCCATTTTTGCCGCCCTTGTCGGAAATGGGCGTTTAAACTTGTG	1320
SerAsnGlnAlaAspLysGlyLysAsnGlyGlyThrAlaPheThrArgLysPheGluHis	•
,+,+,+,+,+	
ACGCCGGAAAGTGATAAAAAAAGACACCCAAGCAGGTACGGCGGAGAATGGCAATCCAGCC	
IGCGGCCTTTCACTATTTTTCTGTGGGTTCGTCCATGCCGCCTCTTACCGTTAGGTCGG	1380
ThrProGluSerAspLysLysAspThrGlnAlaGlyThrAlaGluAsnGlyAsnProAla	
,+,+,+,+	
GCTTCAAATACGGCAGGTGATACCAATGGCAAAACAAAA	
COARGITTATGCCGTCCACTATGGTTACCGTTTTGTTTTTTGGATACTTCAGCCTTCAGACG	1440
AlaSerAsnThrAlaGlyAspThrAsnGlyLysThrLysThrTyrGluValGluValCys	
,,,,,	
TGTTCCAACCTCAATTATCTGAAATACGGAATGTTGACGCGTAAAAACAGCAAGTCCGCG	
ACAAGGTTGGAGTTAATAGACTTTATGCCTTACAACTGCGCATTTTTGTCGTTCAGGCGC	1500
CysSerAsnLeuAsnTyrLeuLysTyrGlyMetLeuThrArgLysAsnSerLysSerAla	
,	
ATGCAGGCAGGCGAAAACGGTAGTCTAGCTGACGCTAAAACGGAACAAGTTGAACAAAGT	1560
TACGTCCGTCCGCTTTTGCCATCAGATCGACTGCGATTTTGCCTTGTTCAACTTGTTTCA	1300
MetGlnAlaGlyGluAsnGlySerLeuAlaAspAlaLysThrGluGlnValGluGlnSer	
,+,+,+,+,+,+,+,+	
ATGTTCCTCCAAGGCGAGCGCACCGATGAAAAAGAGATTCCAAAAGAGCAACAAGACATC	
TACAAGGAGGTTCCGCTCGCGTGGCTACTTTTTCTCTAAGGTTTTCTCGTTGTTCTGTAG	1620
MetPheLeuGlnGlyGluArgThrAspGluLysGluIleProLysGluGlnGlnAspIle	

GTTTATCGGGGGTCTTGGTACGGGCATATTGCCAACGACACAAGCTGGAGCGGCAATGCT	
THE CONTROL OF THE CO	1
ValTyrArgGlySerTrpTyrGlyHisIleAlaAsnAspThrSerTrpSerGlyAsnAla	١.
,	
TCAGATAGAGAGGGGGGCAACAGGGGGGGACTTTACCGTGAATTTTGGTACGAAAAAAATT	
AGTCTATCTCCCCGCCGTTGTCCCGCCTGAAATGGCACTTAAAACCATGCTTTTTTTAA	1740
${\tt SerAspArgGluGlyGlyAsnArgAlaAspPheThrValAsnPheGlyThrLysLysIle}$	
,,,,,	
AACGGAACGTTAACCGCTGAAAACAGGCAGGAGGCAACCTTTACCATTGTGGGCGATATT	
TTGCCTTGCAATTGGCGACTTTTGTCCGTCCTCCGTTGGAAATGGTAACACCCGCTATAA	1800
${\tt AsnGlyThrLeuThrAlaGluAsnArgGlnGluAlaThrPheThrIleValGlyAspIle}$	
,	
AAGGACAACGGCTTTGAAGGTACGGCGAAAACTGCTGACTCAGGTTTTGATCTCGATCAA	
TTCCTGTTGCCGAAACTTCCATGCCGCTTTTGACGACTGAGTCCAAAACTAGAGCTAGTT	1860
${\tt LysAspAsnGlyPheGluGlyThrAlaLysThrAlaAspSerGlyPheAspLeuAspGln}$	
,,,,	
AGCAATACCACCCGCACGCCTAAGGCATATATCACAGATGCCAAGGTGAAGGGCGGTTTT	
TO THE OUTGOING COURT TO CONTACT TO THE OUTGOING COURT TO	1920
SerAsnThrThrArgThrProLysAlaTyrIleThrAspAlaLysValLysGlyGlyPhe	
,,,,,,,	
TACGGGCCTAAAGCCGAAGAGTTGGGCGGATGGTTTGCCTATCCGGGCGATAAACAAAC	
	1980
TyrGlyProLysAlaGluGluLeuGlyGlyTrpPheAlaTyrProGlyAspLysGlnThr	
,,,,,,,	

2040 ${\tt GluLysAlaThrValThrSerGlyAspGlyAsnSerAlaSerSerAlaThrValValPhe}$ GGTGCGAAACGCCAAAAGCCTGTGCAATAA -----+ 2070 CCACGCTTTGCGGTTTTCGGACACGTTATT GlyAlaLysArgGlnLysProValGlnTer

- (2) INFORMATION POUR LA SEQ ID NO: 37:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 669 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: protéine
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 37:
- (2) INFORMATION POUR LA SEQ ID NO: 38:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 2136 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: double
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN (génomique)
 - (vi) ORIGINE:
 - (A) ORGANISME: Neisseria meningitidis
 - (B) SOUCHE: BZ163
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: sig_peptide
 - (B) EMPLACEMENT: 1..60
 - (ix) CARACTERISTIQUE ADDITIONELLE:

 - (A) NOM/CLE: mat_peptide (B) EMPLACEMENT: 61..2133
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1..2133

ATGAACAATCCATTGGTAAATCAGGCTGCTATGGTGCTGCCTGTGTTTTTGTTGAGTGCT	60
THE TITLE THE TARGET CONTROL OF THE TRANSPORT OF THE TRANSPORTER OF THE TRANSPORT OF THE TR	00
MetAsnAsnProLeuValAsnGlnAlaAlaMetValLeuProValPheLeuLeuSerAla	
,+,	
TGTTTGGGCGGAGCGGCAGTTTCGATCTTGATTCTGTCGATACCGAAGCCCCGCGTCCC	
ACAAACCCGCCTCCGCCGTCAAAGCTAGAACTAAGACAGCTATGGCTTCGGGGCGCAGGG	120
${\tt CysLeuGlyGlyGlySerPheAspLeuAspSerValAspThrGluAlaProArgPro}$	
,	
GCGCCAAAATATCAAGATGTTTCTTCCGAAAAACCGCAAGCCCAAAAAGACCAAGGCGGA	
CGCGGTTTTATAGTTCTACAAAGAAGGCTTTTTGGCGTTCGGGTTTTTCTGGTTCCGCCT	180
AlaProLysTyrGlnAspValSerSerGluLysProGlnAlaGlnLysAspGlnGlyGly	
,	
TACGGTTTTGCGATGAGGTTGAAACGGAGGAATCGGCATCCGCAGGCAAAAGAAGACAAA	
	240
TyrGlyPheAlaMetArgLeuLysArgArgAsnArgHisProGlnAlaLysGluAspLys	
,	
GTTGAACTAAACCCAAATGATTGGGAGGAGGACAGGATTGCCGAGCAAGCCCCAAAACTTA	
CAACTTGATTTGGGTTTACTAACCCTCCTCTGTCCTAACGGCTCGTTCGGGGTTTTGAAT	300
ValGluLeuAsnProAsnAspTrpGluGluThrGlyLeuProSerLysProGlnAsnLeu	
,	•
CCCGAGCGACAGCAATCGGTTATTGATAAAGTAAAAACAGACGATGGCAGCAATATTTAC	
	60
ProGluArgGlnGlnSerValIleAspLysValLysThrAspAspGlySerAsnIleTyr	
·,,,,,,	

ACTTCCCCTTATGTCACGCAATCAAACCATCAAAACGGCAGCACTAATAGCGGTGCAAAC	
TGAAGGGGAATAGAGTGCGTTAGTTTGGTAGTTTTGCCGTCGTGATTATCGCCACGTTTG	1 20
ThrSerProTyrLeuThrGlnSerAsnHisGlnAsnGlySerThrAsnSerGlyAlaAsn	
,,,,,,	
CAACCAAAAAACGAAGTAAAAGATTACAAAAATTTCAAATATGTTTATTCCGGCTGGTTT	
GTTGGTTTTTTGCTTCATTTTCTAATGTTTTTAAAGTTTATACAAATAAGGCCGACCAAA	480
GlnProLysAsnGluValLysAspTyrLysAsnPheLysTyrValTyrSerGlyTrpPhe	
,,,	
TATAAACATGCAGAGAGTGAAAGAGAATTCAGTAAAATCAAATTTAAGTCAGGCGACGAC	
ATATTTGTACGTCTCACTTTCTCTTAAGTCATTTTAGTTTAAATTCAGTCCGCTGCTG	540
TyrLysHisAlaGluSerGluArgGluPheSerLysIleLysPheLysSerGlyAspAsp	
,+,+,+	
GGCTATATTTTTATCACGGTAAAGACCCTTCCCGACAACTTCCCACTTCTGAAAAAGTT	
CCGATATAAAAAATAGTGCCATTTCTGGGAAGGGCTGTTGAAGGGTGAAGACTTTTTCAA	600
GlyTyrIlePheTyrHisGlyLysAspProSerArgGlnLeuProThrSerGluLysVal	
,+,+,+	
ATCTACAAAGGCGTATGGCATTTTGTAACCGATACTGAAAAGGGACAAAAATTTAACGAT	
TAGATGTTTCCGCATACCGTAAAACATTGGCTATGACTTTTCCCTGTTTTTAAATTGCTA	660
IleTyrLysGlyValTrpHisPheValThrAspThrGluLysGlyGlnLysPheAsnAsp	
,,,	
ATTCTTGAAACCTCAAAAGGGCAAGGCGACAGATACAGCGGATTTTCGGGCGATGACGGC	
	720
IleLeuGluThrSerLysGlyGlnGlyAspArgTyrSerGlyPheSerGlyAspAspGly	
,,,,,,,,,	
GAAACAACTTCCAATAGAACTGATTCCAACCTTAATGATAAGCACGAGGGTTATGGTTTT	
CTTTGTTGAAGGTTATCTTGACTAAGGTTGGAATTACTATTCGTGCTCCCAATACCAAAA	780
GluThrThrSerAsnArgThrAspSerAsnLeuAsnAspLysHisGluGlyTyrGlyPhe	

ACCTCGAATTTAGAAGTGGATTTCGGCAGTAAAAAATTGACGGGTAAATTAATACGCAAT	
TGGAGCTTAAATCTTCACCTAAAGCCGTCATTTTTTAACTGCCCATTTAATTATGCGTTA	840
ThrSerAsnLeuGluValAsp?heGlySerLysLysLeuThrGlyLysLeuIleArgAsn	
,	
AATAGAGTTACAAACGCTACTAACGATAAATACACCACCCAATACTACAGCCTTGAT	
TTATCTCAATGTTTGCGATGATGATTGCTATTTATGTGGTGGGTTATGATGTCGGAACTA	900
AsnArgValThrAsnAlaThrThrAsnAspLysTyrThrThrGlnTyrTyrSerLeuAsp	
,	
GCCCAAATAACAGGCAACCGCTTCAACGGTAAGGCGATAGCGACCGAC	
CGGGTTTATTGTCCGTTGGCGAAGTTGCCATTCCGCTATCGCTGGCTG	960
AlaGlnIleThrGlyAsnArgPheAsnGlyLysAlaIleAlaThrAspLysProAspThr	
GGAGGAACCAAACTACATCCCTTTGTTTCCGACTCGTCTTCTTTGAGCGGCGGCTTTTTC	
CCTCCTTGGTTTGATGTAGGGAAACAAAGGCTGAGCAGAAGAAACTCGCCGCCGAAAAAG	1020
GlyGlyThrLysLeuHisProPheValSerAspSerSerSerLeuSerGlyGlyPhePhe	
,+,,,,	
GGTCCGAAGGGTGAGGAATTGGGTTTCCGCTTTTTGAGCGACGATAAAAAAGTTGCGGTT	
CCAGGCTTCCCACTCCTTAACCCAAAGGCGAAAAACTCGCTGCTATTTTTTCAACGCCAA	1080
GlyProLysGlyGluGluLeuGlyPheArgPheLeuSerAspAspLysLysValAlaVal	
,,,	
GTCGGCAGCGCGAAAACCAAAGACAAAACGGAAAATGGCGCGGTGGCTTCAGGCGGCACA	
CAGCCGTCGCGCTTTTGGTTTCTGTTTTGCCTTTTACCGCGCCACCGAAGTCCGCCGTGT	1140
ValGlySerAlaLysThrLysAspLysThrGluAsnGlyAlaValAlaSerGlyGlyThr	
,,,,,,	

GAT	GCGGCAGCATCAAACGGTGCGGCAGGCACGTCGTCTGAAAACAGTAAGCTGACCACG	
	CGCCGTCGTAGTTTGCCACGCCGTCCGTGCAGCAGACTTTTGTCATTCGACTGGTGC	
	AlaAlaAlaSerAsnGlyAlaAlaGlyThrSerSerGluAsnSerLysLeuThrThr	
	-,,,,	
GTT	TTGGATGCGGTCGAGCTGAAATTGGGCGATAAGGAAGTCCAAAAAGCTCGACAACTTC	
	AACCTACGCCAGCTCGACTTTAACCCGCTATTCCTTCAGGTTTTCGAGCTGTTGAAG	1260
	LeuAspAlaValGluLeuLysLeuGlyAspLysGluValGlnLysLeuAspAsnPhe	
	-,+,+,+,+,+	
	NACGCCGCCCAACTGGTTGTCGACGGCATTATGATTCCGCTCTTGCCCGAGACTTCC	1320
	TGCGGCGGGTTGACCAACAGCTGCCGTAATACTAAGGCGAGAACGGGCTCTGAAGG LSnAlaAlaGlnLeuValValAspGlyIleMetIleProLeuLeuProGluThrSer	
	+	•
	· · · · · · · · · · · · · · · · · · ·	
CTTT	GTGGGAACAATCAAGCCAATCAAGGTACAAATGGCGGAACAGCCTTTACCCGCAAA + CACCCTTGTTAGTTCGGTTAGTTCCATGTTTACCGCCTTGTCGGAAATGGGCGTTT	1380
Glus	erGlyAsnAsnGlnAlaAsnGlnGlyThrAsnGlyGlyThrAlaPheThrArgLys	
	+ + + + + +	
TTTG	ACCACACGCCGGAAAGTGATAAAAAAGACGCCCAAGCAGGTACGCAGACGAATGGG	
muc.	AGGIGIGEGGCC I TICACTATTITITCTGCGGGTTCGTCCATGCGTCTGCTTACCC	1440
PheAs	spHisThrProGluSerAspLysLysAspAlaGlnAlaGlyThrGlnThrAsnGly	
,	.===++===,+,+,+,+,+	
GCGC	· \AACCGCTTCAAATACGGCAGGTGATACCAATGGCAAAACAAAAACCTATGAAGTC	
- •	TTGGCGAAGTTTATGCCGTCCACTATGGTTACCGTTTTGTTTTTGGATACTTCAG	1500
	nThrAlaSerAsnThrAlaGlyAspThrAsnGlyLysThrLysThrTyrGluVal	
GAAGT	CTGCTGTTCCAACCTCAATTATCTGAAATACGGAATGTTGACGCGCAAAAACAGC	
•		1560
	llCysCysSerAsnLzuAsnTyrLeuLysTyrGlyMetLeuThrArgLysAsnSer	

AAGTCCGCGATGCAGGCAGGAGAAGCAGTAGTCAAGCTGATGCTAAAACGGAACAAGTT	
TTCAGGCGCTACGTCCGTCCTTTCGTCATCAGTTCGACTACGATTTTGCCTTGTTCAA	1620
LysSer Ala MetGlrAlaGlyGluSerSerSerGlnAlaAspAlaLysThrGluGlnVal	
,,	
GGACAAAGTATGTTCCTCCAAGGCGAGCGCACCGATGAAAAAGAGATTCCAAGCGAGCAA	
CCTGTTTCATACAAGGAGGTTCCGCTCGCGTGGCTACTTTTCTCTAAGGTTCGCTCGTT	1680
GlyGlnSerMetPheLeuGlnGlyGluArgThrAspGluLysGluIleProSerGluGln	
,,,	
AACATCGTTTATCGGGGGTCTTGGTACGGGCATATTGCCAGCAGCACAAGCTGGAGCGGC	
TTGTAGCAAATAGCCCCCAGAACCATGCCCGTATAACGGTCGTCGTGTTCGACCTCGCCG	1740
AsnIleValTyrArgGlySerTrpTyrGlyHisIleAlaSerSerThrSerTrpSerGly	
,,,,,,	
AATGCTTCTGATAAAGAGGGCGGCAACAGGGCGGAATTTACTGTGAATTTTGGCGAGAAA	
TTACGAAGACTATTTCTCCCGCCGTTGTCCCGCCTTAAATGACACTTAAAACCGCTCTTT	1800
${\tt AsnAlaSerAspLysGluGlyGlyAsnArgAlaGluPheThrValAsnPheGlyGluLys}$	
,+,+,+,+	
AAAATTACCGGCACGTTAACCGCTGAAAACAGGCAGGAGGCAACCTTTACCATTGATGGT	
TTTTAATGGCCGTGCAATTGGCGACTTTTGTCCGTCCTCCGTTGGAAATGGTAACTACCA	1860
LysIleThrGlyThrLeuThrAlaGluAsnArgGlnGluAlaThrPheThrIleAspGly	
,	
AAGATTGAGGGCAACGGTTTTTCCGGTACGGCAAAAACTGCTGAATTAGGTTTTGATCTC	
TTCTAACTCCCGTTGCCAAAAAGGCCATGCCGTTTTTGACGACTTAATCCAAAACTAGAG	1920
LysIleGluGlyAsnGlyPheSerGlyThrAlaLysThrAlaGluLeuGlyPheAspLeu	
,	

GATCAAAAAATACCACCCGCACGCCTAAGGCATATATCACAGATGCCAAGGTGCAGGGC	
CTAGTTTTTTTATGGTGGGCGTGCGGATTCCGTATATAGTGTCTACGGTTCCACGTCCCG	1980
AspGlnLysAsnThrThrArgThrProLysAlaTyrIleThrAspAlaLysValGlnGly	
,+,+,+,+,+	
GGTTTTTACGGGCCCAAAGCCGAAGAGTTGGGCGGATGGTTTGCCTATCAGGGCGATAAA	
CCAAAAATGCCCGGGTTTCGGCTTCTCAACCCGCCTACCAAACGGATAGTCCCGCTATTT	2040
GlyPheTyrGlyProLysAlaGluGluLeuGlyGlyTrpPheAlaTyrGlnGlyAspLys	
,	
CAAACGGAAAATACAACAGTTGCATCCGGCAATGGAAATTCAGCAAGCA	
GTTTGCCTTTTATGTTGTCAACGTAGGCCGTTACCTTTAAGTCGTTCGT	2100
${\tt GlnThrGluAsnThrThrValAlaSerGlyAsnGlyAsnSerAlaSerSerAlaThrVal}$	
GTATTCGGTGCGAAACGCCAAAAGCCTGTGCAATAA	
CATAAGCCACGCTTTGCGGTTTTCGGACACGTTATT	
ValPheGlyAlaLysArgGlnLysProValGlnTer	

- (2) INFORMATION POUR LA SEQ ID NO: 39:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 692 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: protéine
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 39:

Revendications

- 1. Un polypeptide ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 du récepteur transferrine d'une souche de Neisseria meningitidis de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394, telle que montrée dans l'ID SEQ NO 1 ou 3, notamment par délétion totale ou partielle d'au moins un domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, à condition que le premier et deuxième domaine ne soient pas simultanément et totalement délétés.
- 2. Un polypeptide selon la revendication 1, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; notamment par délétion partielle du troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.
- 3. Un polypeptide selon la revendication 1, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; notamment par délétion totale du troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.
- 4. Un polypeptide selon la revendication 2 ou 3, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; et qui comporte dans son intégralité, le deuxième domaine de la séquence dont elle est dérivée.
- 5. Un polypeptide selon la revendication 2 ou 3, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum

d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; notamment par délétion partielle du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.

- 6. Un polypeptide selon la revendication 2 ou 3, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; notamment par délétion totale du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.
- 7. Un polypeptide selon la revendication 4, 5 ou 6, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; et qui comporte dans son intégralité, le premier domaine de la séquence dont elle est dérivée.
- 8. Un polypeptide selon la revendication 4, 5 ou 6, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; par délétion partielle du premier domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.
- 9. Un polypeptide selon la revendication 4 ou 5, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394; par délétion totale du premier domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.
- 10. Un polypeptide selon les revendications 2 ou 3, 4 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.

WO 95/33049

- Un polypeptide selon les revendications 2 ou 3, 4 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
- 12. Un polypeptide selon les revendications 2 ou 3, 4 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
- 13. Un polypeptide selon les revendications 2 ou 3, 4 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
- 14. Un polypeptide selon les revendication 12, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2169 par délétion de tout ou partie de la région qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2169 allant de l'acide aminé en position 1 à l'acide aminé en position 281.
- 15. Un polypeptide selon la revendication 13, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2394 par délétion de tout ou partie de la région qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2394 allant de l'acide aminé en position 1 à l'acide aminé en position 266.
- 16. Un polypeptide selon les revendications 2 ou 3, 4 et 9, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
- 17. Un polypeptide selon les revendications 2 ou 3, 4 et 9, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
- 18. Un polypeptide selon la revendications 2 ou 3, 5 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
- 19. Un polypeptide selon les revendications 2 ou 3, 5 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.

- 20. Un polypeptide selon les revendications 2 ou 3, 5 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
- Un polypeptide selon les revendications 2 ou 3, 5 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
- 22. Un polypeptide selon la revendication 18 ou 20, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement, au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2169, par délétion de la région du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui est l'homologue de la région du deuxième domaine de la sous-unité Tbp2 IM2169 allant de l'acide aminé dans l'une des positions 346 à 361 à l'acide aminé en position 543.
- 23. Un polypeptide selon la revendication 19 ou 21, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement, au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2394, par délétion de la région du deuxième domaine de ladite sous-unité Tbp2 de type IM2394 qui est l'homologue de la région du deuxième domaine de la sous-unité Tbp2 IM2394 allant de l'acide aminé dans l'une des positions 326 à 341 à l'acide aminé en position 442.
- 24. Un polypeptide selon la revendication 18 ou 20, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, par délétion d'au moins une des régions du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui sont les homologues des régions de la sous-unité Tbp2 IM2169 allant :
 - (i) de l'acide aminé en position 362 à l'acide aminé en position 379;
 - (ii) de l'acide aminé en position 418 à l'acide aminé en position 444;
 - (iii) de l'acide aminé en position 465 à l'acide aminé en position 481; et

- (iv) de l'acide aminé en position 500 à l'acide aminé en position 520.
- 25. Un polypeptide selon la revendication 24, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, par délétion des régions du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui sont les homologues desdites régions (i) à (iv) de la sous-unité Tbp2 IM2169.
- 26. Un polypeptide selon les revendications 20 et 24 ou 25, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, par délétion de tout ou partie de la région qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2169 allant de l'acide aminé en position 1 à l'acide aminé en position 281.
- 27. Un polypeptide selon les revendications 3, 6 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
- 28. Un polypeptide selon les revendications 3, 6 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
- 29. Un polypeptide selon les revendications 3, 6 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
- 30. Un polypeptide selon les revendications 3, 6 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
- 31. Un polypeptide selon la revendication 1, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2169; par délétion partielle du deuxième domaine de ladite sous-unité Tbp2 de type IM2169, notamment par délétion d'au moins une des régions du deuxième domaine de ladite sous-unité

Tbp2 de type IM2169 qui sont les homologues des régions de la sous-unité Tbp2 IM2169 allant :

- (i) de l'acide aminé en position 362 à l'acide aminé en position 379,
- (ii) de l'acide aminé en position 418 à l'acide aminé en position 444,
- (iii) de l'acide aminé en position 465 à l'acide aminé en position 481, et
- (iv) de l'acide aminé en position 500 à l'acide aminé en position 520 ; et

qui comporte dans leur intégralité, le premier et troisième domaine de la séquence dont elle est dérivée.

- 32. Un polypeptide selon la revendication 1, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2169; par délétion partielle du deuxième domaine de ladite sous-unité Tbp2 de type IM2169, notamment par délétion partielle du premier domaine et par délétion d'au moins une des régions du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui sont les homologues des régions de la sous-unité Tbp2 IM2169 allant:
 - (i) de l'acide aminé en position 362 à l'acide aminé en position 379,
 - (ii) de l'acide aminé en position 418 à l'acide aminé en position 444,
 - (iii) de l'acide aminé en position 465 à l'acide aminé en position 481, et
 - (iv) de l'acide aminé en position 500 à l'acide aminé en position 520 ; et

qui comporte dans son intégralité, le troisième domaine de la séquence dont elle est dérivée.

33. Un polypeptide selon la revendication 32, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et

troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, par délétion de tout ou partie de la région qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2169 allant de l'acide aminé en position 1 à l'acide aminé en position 281.

- 34. Un polypeptide selon l'une des revendication 31 à 33, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, telle que montrée dans l'ID SEQ NO 1, par délétion des régions du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui sont les homologues desdites régions (i) à (iv) de la sous-unité Tbp2 IM2169.
- 35. Un polypeptide selon l'une des revendications 10, 12, 14, 16, 18, 20, 22, 24 à 27, 29, et 31 à 33, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 IM2169.
- 36. Un polypeptide selon l'une des revendications 11, 13, 15, 17, 19, 21, 23, 28 et 30, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 IM2394.
- 37. Un polypeptide selon l'une des revendications 1 à 36, ayant une séquence qui comprend au moins 50 acides aminés.
- 38. Un fragment d'ADN isolé codant pour un polypeptide selon l'une des revendications 1 à 37.
- 39. Une composition pharmaceutique pour induire une réponse immunitaire à l'encontre de *N. meningitidis*, comprenant à titre de principe actif, au moins un polypeptide selon l'une des revendications 1 à 37.
- 40. Une composition pharmaceutique selon la revendication 39, qui comprend à titre de principe actif, au moins un premier et au moins un deuxième polypeptides selon l'une des revendications 1 à 37; ledit premier polypeptide ayant une séquence qui dérive de celle d'une sous-unité Tbp2 de type IM2169 et ledit deuxième polypeptide ayant une séquence qui dérive de celle d'une sous-unité Tbp2 de type IM2394.

- 41. Une composition pharmaceutique selon la revendication 40, dans laquelle ledit au moins un deuxième polypeptide est selon l'une des revendications 11, 13, 15, 19, 21, 23, 28 et 30.
- 42. Une composition pharmaceutique selon la revendication 41, dans laquelle ledit au moins un deuxième polypeptide est selon l'une des revendications 11, 19, 23 et 28.
- 43. Une composition pharmaceutique selon la revendication 40, 41 ou 42, dans laquelle ledit au moins un deuxième polypeptide a une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 IM2394.
- 44. Une composition pharmaceutique selon l'une des revendications 40 à 43, dans laquelle ledit au moins un premier polypeptide est selon l'une des revendications 10, 12, 14, 18, 20, 22, 27 et 29.
- 45. Une composition pharmaceutique selon la revendication 44, dans laquelle ledit au moins un premier polypeptide est selon l'une des revendications 10, 18, 22 et 27.
- 46. Une composition pharmaceutique selon l'une des revendications 40 à 43, dans laquelle ledit au moins un premier polypeptide est selon l'une des revendications 31 à 34.
- 47. Une composition pharmaceutique selon l'une des revendications 40 à 43, dans laquelle ledit au moins un un premier polypeptide est selon la revendication 16.
- 48. Une composition pharmaceutique selon l'une des revendications 44 à 47, dans laquelle ledit au moins un premier polypeptide a une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 IM2169.
- 49. Une composition pharmaceutique selon la revendication 47, qui comprend au moins un troisième polypeptide qui est selon la revendication 16.
- 50. Un anticorps monoclonal:
 - (i) capable de reconnaître un épitope présent dans le premier domaine d'une sousunité Tbp2 de type IM2169 ou IM2394; ledit épitope ayant une séquence homologue à celle présente dans le premier domaine de la sous-unité Tbp2 de

- la souche IM2394 et sélectionnée parmi YKGTW, EFEVDFSDKTIKGTL, EGGFYGPKGEEL et AVFGAK; et de manière optionnelle,
- (ii) incapable de reconnaître l'épitope présent dans le troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, dont la séquence est homologue à celle de l'épitope du premier domaine qui est reconnu.
- 51. Un anticorps monoclonal selon la revendication 50,
 - (i) capable de reconnaître la région présente dans le premier domaine d'une sousunité Tbp2 de type IM2169 ou IM2394 dont la séquence est homologue à la séquence EGGFYGPKGEEL présente dans le premier domaine de la sousunité Tbp2 de la souche IM2394; et de manière optionnelle,
 - (ii) incapable de reconnaître l'épitope présent dans le troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, épitope équivalent de celui qui est reconnu, dont la séquence est homologue à la séquence SGGFYGKNAIEM présente dans le troisième domaine de la sous-unité Tbp2 de la souche IM2394.
- 52. Un anticorps monoclonal selon la revendication 51,
 - capable de reconnaître l'épitope GFYGPK, présent dans le premier domaine d'une sous-unité Tbp2 de la souche IM2394; et
 - (ii) incapable de reconnaître l'épitope équivalent présent dans le troisième domaine de ladite sous-unité Tbp2 IM2394.
- 53. Une composition pharmaceutique pour traiter par immunothérapie passive une infection à N. meningitidis, qui comprend à titre de principe actif, un anticorps monoclonal selon l'une des revendications 50 à 52.

1/16

Figure 1

IM2169 -----M978

2/16

 ${\tt VVYRGSWYGHIANGTSWSGNASDKEGGNRAEFTVNFADKKITGKLTAENRQAQTFTIEGMIQGNGFEGTA}$ ${\tt VVYRGSWYGHIASSTSWSGNASNATSGNRAEFTVNFDTKKINGTLTAENRQEATFTIDGKIEGNGFSGTA}$ 560 570 580 KTAESGFDLDQKNTTRTPKAYITDAKVKGGFYGPKAEELGGWFAYPGDKQTEKATATSSDGNSASSATVV ${\tt KTADLGFDLDQSNTTGTPKAYITDAKVQGGFYGPKAEELGGWFAYPGDKQTEKATVASGDGNSASSATVV}$

FGAKRQQPVQ FGAKRQQPVQ 3/16

Figure 2

IM2169 ====== 6940

10 CLGGGGSFDLDSVI	20 DTEAPRPAPKYO	30 DVSSEKPQA	40, DKDQGGYGFAI	50 IRLKRRNWYP	60 Gaeesevkln	70 ESDWEA
CLGGGGTFDLDSVI	TEAPRPDPKYC 20	DVSSEKPQA(QKDQGGYGFAN 40		-= = ==== AAKEDEVKLN 60	ESDWET 70
80 TGLPTKPKELPKRQ	90 KSVIEKVETD-	100 GDSDIYSSPY	110 (LTPSNHQNGS	120 Sagngvnopki		YVYSGW
TGLPTEPKKLPLKÇ 80	ESVISKVQANN 90	GDNNIYTSPY 100	/LTQSNHQNSS	INGGANLPK 120	IEVTNYKDFK 130	YVYSGW 140
150 FYKHAASEKDFS	160 NKK-IKSGDDG = = ======	170 YIFYHGEKPS	180 RQLPASGKVI	190 YKGVWHFVTI	200 TKKGQDFRE	IIQPSK
FYKHAKNEIIRENS 150	SIKGAKNGDDG 160	YIFYHGKEPS 170	RQLPASGTVT	YKGVWHFATI 190	VKKSQNFRD: 200	IIQPSK 210
210 220 KQGDRYSGFSGDGS		240 KDDHEGYGFT	250 SNLEVDFGNK	260 KLTGKLIRNN	270 ASLNNNTNNI	кнтто
KQGDRYSGFSGDDD 220			SNLEVDFGSK 250	KLTGKLIRNN 260	- = == -RVTNAPTNI 270	KYTTQ
280 290 YYSLDAQITGNRFNO	300 STATATDKKENI	310 E-TKLHPFVS	DSSSLSGGFF	GPOGEELGFR	FT.SDDOKVAV	VGSAK
YYSLDAQITGNRFNO 290		GTKLHPFVS 310	DSSSLSGGFF0 320	GPKGEELGFR 330	FLSDDKKVAV 340	VGSAK
350 360 TKDKLENGAAASGST		380 SSENSKLTT	390 VLDAVELTLNI	400 KKIKNLDNF:	410 SNAAQLVVDG	IMIPL
TKDKTENGAVASGGT 360	Daaasngaagt 370	SSENSKLTT 380	VLDAVELKLGI 390	KEVQKLDNF:	NAAQLVVDG 410	IMIPL
420 430 LPKDSESGNTQADKG		450 EHTPESDKKI	460 PAQAGTQTNG	470 QTASNTAGD	480 NGKTKTYEV	EVCCS
LPEASESGNNQANQG 430	TNGGTAFTRKF 440	DHTPESDKKI 450	PAQAGTQTNGA 460	QTASNTAGD1 470	NGKTKTYEV 480	EVCCS
490 500 NLNYLKYGMLTRKNS	KSAMQAGGNSS	520 QADAKTEQVE	530 QSMFLQGERT	540 DEKEIPTDQN	550 VVYRGSWYG	HIANG
NLNYLKYGMLTRKNS 500	====== ==					
560 5 TSWSGNASDKEGG	70 58 NRAEFTVNFAD	KKITGKLTAE	NROAOTETTE	GMTOGNGEEG	0 62 Taktaesgfi	DLDQK
KSTSWSGNASNATSG 570	NRAEFTVNFAD		~			

4/16

5/16

Figure 3

IM2169 * s3032

WO 95/33049

6/16

630 640 650 660 670 680 690
DQKNTTRTPKAYITDAKVKGGFYGPKAEELGGWFAYPGDKQTEKATATSSDGNSASSATVVFGAKRQQPVQ
DQKNTTRTPKAYITDAKVKGGFYGPKAEELGGWFAYSDDKQTKNATDASGNGNSASSATVVFGAKRQQPVQ
640 650 660 670 680 690

7/16

Figure 4

	1	0	20	30	40	50	60	
	346		361		380			
1	TKDKLENGA	AASG	STGAAAS	ggaagts sens	KLTTVLDAVE	LTLNDKKIKN	LDNFSNA	58
2					KLTTVLDAVE			58
3					KLTTVLDAVE			58
4					KLTTVLDAVE			58
5					KLTIVLDAVE			60
6					KLTIVLDAVE			60
7					KLTTVLDAVE			58
8					KLTTVLDAVE			60
9	TKDKPGNGA	RLQ	AARCGTS	ngaagossens	KLTTVLDAVE	LKLGDKEVQK	LDNFSNA	57
С	*+DK::*G+	:+:***	**+**+S	+gaag+ssen+	KLTTVLDAVE	L:+:+*::++]	LDNFSNA	
	7(n	80	90	100	110	120	
	• *	417	•	30	100	445	120	
1	AOLVVDGIM		DSESGNT	DADKGK	-nggteftrk		חשממממ	112
2	AOLVVDGIM	IPLLPE	ASESGNNO	DANOGT	-nggtaftrki	FDRTPESDKKI	DADACTO CTOACAC	112
3	AQLVVDGIM	IPLLPE	ASESGNNO	DANOGT	-NGGTAFTRKI	POHTPESDKKI	OTOAGAG	112
4	AQLVVDGIM	IPLLPE	ASESGRNO	DANOGT	-NGGTAFTRKI	ENHTPKSDEKI	YTOACTA	112
5	AQLVVDGIM	PLLPE	rsesgsno	DADRGKKGKNG	ENGGTDFTYK:	TYTPKNDDKI	TKAOTG	120
6	AQLVVDGIM	PLLPKI	SESGNI	ADKGK	-NGGTKFTRKI	EHTPESDKKI	DAOAGTO	114
7	AQLVVSGIM	PLMPE	rsesgnn(DADKGK	-NGGTAFTRKI	DHTPKSDEKI	TOAGTP	112
8					-nggtafiyk:			114
9					-ngeteftrki			111
С	AQLVV*GIM					+.+TP:+D:KI		
	130		140	150				
	465	,	140	150 <i>482</i>	160	170	180	
1		יא כרויישיני	WT		NLNYLKYGMLI	499	5001000	1.67
2					NLNYLKYGMLI			167 167
3					NLNYLKYGMLI			167
4					NLNYLKYGMLT			167
5					NLNYLKYGMLI			180
6					NLNYLKYGLLI			169
7					NLNYLKYGLLT			168
8					NLNYLKYGLLT			169
9					NLNYLKYGLLT			165
C	:+G+++A*+*				NLNYLKYG: LT			
	3.0.0		200		_			
	190	•	200	,210	•			
	521	CMET OF						
1	ADARTEQUEO							198
2	ADAKTEQVEO	_						198
	ADAKTEOVGO			-			•	198
4 5	ADARTEQUEO			-				198
6	ADARTEQVEQ			-				211
7	AAAQTAQGAQ							200
8	AAAQTDAQ	_						200
9	AA-QTAQGAQ	_		- -		•		198
C	A:*:T:*::0	_		_				195
_			·					

8/16

Figure 5

9/16

Figure 6

10/16

Figure 7

11/16

Figure 8

M982 ==== B283

 ${\tt CLGGGGSFDLDSVDTEAPRPAPKYQDVSSEKPQAQKDQGGYGFAMRLKRRNWYPGAEESEVKLNESDWEA}$ ----- ${\tt CLGGGGSFDLDSVDTEAPRPAPKYQDVSSETPQAQKDQGGYGFAMRFKRRNWYPKNEEDHKALSEADWEK}$ TGLPTKPKELPKRQKSVIEKVETDGDSDIYSSPYLTPSNHQNGSAGNGVNQPKNQATGHENFQYVYSGWF = -== = = = --- = == = QL GE G G KSRVEGYTDFQYVRSGYI LG AGKPDEFPQRNE ILN M TDG ILSES L 110 120 YKHAASEKDFSNKKIKSGDDGYIFYHGEKPSRQLPASGKVIYKGVWHFVTDTKKGQDFREIIQPSKKQGD YRNGANKIDFQKKIALSGPDGYLFYKGSNPSQALPM GKVGYKGTWDYVTDAKMGQKFSQL AGFPAGD ${\tt RYSGFSGDGSEEYSNKNESTLKDDHEGYGFTSNLEVDFGNKKLTGKLIRNNASLNNNTNNDKHTTQYYSL}$ RYGALSAEEADVLRNKSEA QQGQTDFGLTSEFEVDFAAKTMTGALYRNNRITNNETENKAKQIKRYDI 200 210 220 DAQITGNRFNGTATATDK KENETKLHPFVSDSSSLSGGFFGPQGEELGFRFLSDDQKVAVVGSAKTKDK QADLHGNRFSGKATATDKPKNDETKEHPFVSDSSSLSGGFFGPKGEELGFRFLSDDQKVAVVGSAKTKDK LENGAAASGSTGAAASGGAAGTSSENSKLTTVLDAVELTLNDKKIKNLDNFSNAAQLVVDGIMIPLLPKD lengaaasgstgaaasggaadmpsengklttvldavelksggkevknldnfsnaaqlvvdgimipllpkn SESGNTQADKGKNGGTEFTRKFEHTPESDKKDAQAGTQTNGAQTASNTAGDTNGKTKTYEVEVCCSNLNY ------SESESNQADKGKNGGTAFTRKFEHTPESDKKDTQAGTAENGNPAASNTAGDTNGKTKTYEVEVCCSNLNY LKYGMLTRKNSKSAMQAGGNSSQADAKTEQVEQSMFLQGERTDEKEIPTDQ NVVYRGSWYGHIANGTSW = =-= == LKYGMLTRKNSKSAMQAGENGSLADAKTEQVEQSMFLQGERTDEKEIPKEQQDIVYRGSWYGHIANDTSW 520 530 SGNASDKEGGNRAEFTVNFADKKITGKLTAENRQAQTFTIEGMIQGNGFEGTAKTAESGFDLDQKNTTRT ${\tt SGNASDREGGNRADFTVNFGTKKINGTLTAENRQEATFTIVGDIKDNGFEGTAKTADSGFDLDQSNTTRT}$ 540 550 560 570

12/16

640 650 660 670 680 690
PKAYITDAKVKGGFYGPKAEELGGWFAYPGDKQTEKATATSSDGNSASSATVVFGAKRQQPVQ

PKAYITDAKVKGGFYGPKAEELGGWFAYPGDKQTEKATVTSGDGLSASSATVVFGAKRQKPVQ
610 620 630 640 650 660

13/16

Figure 9

M982 -----BZ163

D&103							
CLGGGG	10 SFDLDSVDTE	20 APRPAP F	30 KYQDVSSEKPQA				
CLGGGG:	SFDLDSVDTE 10	APRPAPPK 20	YQDVSSEKPQA 30	QKDQGGYGF.			NPNDWE
ATGLPT	80 KPKELPKRQK	90 SVIEKVET	100 DGDSDIYSSPY	110 LTPSNHQNG	120 SAGNGVNQPKN	130 QATGHENFO	
ETGLPSI			DDGSNIYTSPY				
FYKHAA!		160 KSGDDGYI	170 FYHGEKPSRQL		190 GVWHFVTDTKK		
FYKHAES	SEREFSKIKFI 150	KSGDDGYI 160	FYHGKDPSRQL 170	PTSEKVIYKO 180	GVWHFVTDTEK 190	GQKFNDILE 200	TSKGQG 210
DRYSGFS	220 SGDGSEEYSNE	230 CNESTLKD = = =	240 DHEGYGFTSNLI	250 EVDFGNKKLT		270 NNNTNNDKH	
DRYSGFS			KHEGYGFTSNLI 240			TNATTNDKY 270	TTQYYS
LDAQITO	290 INRFNGTATAT		310 TKLHPFVSDSS				
			TKLHPFVSDSS: 310				
			380 SENSKLTTVLDA				IPLLPK
			SENSKLTTVLDA 380				IPLLPE
DSESGNT	430 QADKGKNGGT	440 EFTRKFE	450 HTPESDKKDAQA	460 AGTQTNGAQT	470 ASNTAGDTNG	480 KTKTYEVEV	CCSNLN
			HTPESDKKDAQA 450	AGTOTNGAOT 460	'ASNTAGDTNG 470	KTKTYEVEV 480	CCSNLN
YLKYGML	500 TRKNSKSAMQ	510 AGGNSSQA	520 ADAKTEQVEQSM	530 MFLQGERTDE	540 KEIPTDQNVV	550 YRGSWYGHI	ANGTSW
YLKYGML	TRKNSKSAMO 500	AGESSSQI 510	ADAKTEQVGQSN 520	FLOGERTDE 530	KEIPSEQNIV	YRGSWYGHI 550	ASSTSW
SGNASDK	570 EGGNRAEFTV	580 NFADKKI:	590 IGKLTAENRQAÇ		610 GNGFEGTAKT		
SGNASDK	EGGNRAEFTV 570	NFGEKKI' 580	IGTLTAENRQEA 590				

14/16

640 650 660 670 680 690
PKAYITDAKVKGGFYGPKAEELGGWFAYPGDKQTEKATATSSDGNSASSATVVFGAKRQQPVQ

PKAYITDAKVQGGFYGPKAEELGGWFAYQGDKQTENTTVASGNGNSASSATVVFGAKRQKPVQ
640 650 660 670 680 690

15/16

Figure 10

	10	2	0 30	40	50	60	
	346	361		380			
1	TKDKLENG-	AAASGSTG	aaasggaagts:	SENSKLTTVLDA	VELTLNDKKIK	ILDNFSN	57
2	TKDKTENG-	AVASGGTD	aaasngaagts:	ENSKLTTVLDA	VELKLGDKEVQI	CLDNFSN	57
3				ENSKLTTVLDA			57
4				ENGKLTTVLDA			60
5				ENSKLTT VLDA			57
6				ENSKLT TVLDA			59
7				ENSKLTTV LDA			59
8				ENSKLTIV LDA			59
9				ENGKLT IVLDAV			57
10				ENGKLT TVLDAV			57
11	TKDKTENG-	AVASGGTDI	Vaasngaagts s	ENSKLTTVLDAV	/ELKLGDKEVQK	LDNFSN	57
С	**D*.:*G.	.*:ASG*T+/	\A *S+GAA***S	EN+KLTTVLDAV	/EL:+:+*::++	LDNFSN	
	70) 80	90	100	110	100	
	,,	417	, 30	100	110 <i>445</i>	120	
1	AAOLVVDGIM		GNTOADEGE	nggtefti		מארש מים	111
2	AAOLVVDGIM	IPLLPEASES	GNNOANOGT	NGGTAFTE	KEDHTPESDKK KEDHTPESDKK	DAGAGT	111
3	AAQLVVDGIM	IPLLPEASES	GKNOANOGT	nggtafti	KENHTPKSDEK	DAGAGT	111
4	AAQLVVDGIM	IPLLPEASES	GNNOANOGT	nggtafti	KFAHTPKSDEK	DTHAGT	114
5	AAQLVVDGIM	IPLLPEASES	GNNQANQGT	nggtafti	KFDETPESDKK	DAOAGT	111
6	AAQLVVDGIM	IPLLPETSES	GSNQADKGKKG	KNGKNGGTDFTY	KTTYTPKNDDK	DTKAOT	119
7	AAQLVVDGIM	IPLLPKDSES	gntoadkgr	NGGTKFTF	KFEHT PESDKK	DAQAGT	113
8	AAQLVVDGIM	IPLLPQNSTO	KNNQPDQGK	nggtafiy	KTTYTPKNDDK	DTKAQT	113
9	AAQLVVSGIM	IPLMPETSES	GNNQADKGK	nggtaftf	KFDHTPKSDEK	DTQAGT	111
10	AAQLVVDGIM	I PLLP KNSE S	esnqadkgk	nggtafte	KFEETPESDKK	DTQAGT	111
11	AAQLVVDGIM	I PL LPETSES	GNNQANQGT	nggtaftr	KFDHTPESDKK	DAQAGT	111
С	AAQLVV*GIM	IPL*P+.S**	*+*Q*::G:	NGGT+F**	K*.*TP:*D:K	D:+A*T	
	130	140	150	160	170	180	
	. 465	140	482		499	100	
1		TAGDING		CCSNLNYLKYGM		A CANG Q	166
2	OANGAOTASN	TAGDTNG	KTKTYEVEV	CCSNLNYLKYGM	TTDENGERGAMO:	ACPCCC	166
3				CCSNLNYLKYGM			166
4				CCSNLNYLKYGL			169
5				CCSNLNYLKYGM			166
6				CCSNLNYLKYGM			179
7				CCSNLNYLKYGL			168
8				CCSNLNYLKYGL			168
9				CCSNLNYLKYGL			167
10	AENGNPAASN	TAGDTNG	KTKTYEVEV	CCSNLNYLKYGM	LTRKNSKSAMO	AGENGS	166
11				CCSNLNYLKYGM			166
С	::*G:++A**	**G*+**		CCSNLNYLKYG+			

16/16

Figure 10 (continuation)

	190	200	210	
	521			
1	QADAKTEQVE QSMI	LOGERTDEKE	IPTDQ-NVV	198
2	QADAKTEQV GQSMI	LOGERTDEKE	IPSEQ-NIV	198
3	QADARTEQ VGQSME	LOGERTDEKE	IPNDQ-NVV	198
4	TAAAQTAQGAQSME	LOGERTDEKE	IPSEQ-NV-	200
5	QADAKTEQVE QSME	LOGERTDEKE	IPSEQ-NIV	198
6	QADAKTEQVEQSME	LQGERTDEKE	IPNDQ-NV-	210
7	TAAAQTAQG AQSME	Logertdeke	IPSEQ-NV-	199
8	TAAAQTDAQSME	LOGERTDENK	IPSEQ-NVV	198
9	TAAAQTAQGAQSMF	LQGERTDEKE	IPKEQQDIV	200
10	LADAKTEQVEQSMF	LQGERTDEKE	IPKEQQDIV	199
11	QADAKTEQV GQSMF	LOGERTDEKE	IPSEQ-NIV	198
С	:A+A+T+*+.QSMF	LQGERTDE**	IP:+Q *:+	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

_
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.