Accelerated Bayesian inference of multimessenger astronomy with jax and machine learning

23 - 27 September 2024

Nuclear Multi-Messenger Astrophysics

- NMMA: Nuclear Multi-Messenger Astrophysics (Peter T.H. Pang)
- A Pythonic library for probing nuclear physics and cosmology with multimessenger analysis
- Used for overview of EOS constraints, with "precomputed" EOS set (arXiv:2402.04172)
 - Metamodel
 - Speed-of-sound extension scheme

Next step: Infer EOS parameters directly from multimessenger data

Bayesian inference

Bayesian inference: get posterior of parameters θ from data d

$$p(\theta|d) = \frac{p(d|\theta)p(\theta)}{p(d)} = \frac{\mathsf{likelihood} \times \mathsf{prior}}{\mathsf{evidence}}$$

Problem: Prohibitively expensive with multimessenger data

JAX

- 1 Automatic differentiation
- 2 Just-in-time (JIT) compilation
- 3 GPU acceleration
- 4 Parallelization

Potential for acceleration in various science areas!

Normalizing flows

- Generative machine learning model
- Learn mapping between latent and parameter space
- Enable approximate sampling from complicated distributions
- Training data: MCMC samples

Accelerating Bayesian inference for MMA: progress

- Gravitational waves:
 - Analyze binary neutron stars in 15 30 minutes rather than $\mathcal{O}(\text{hours})$ (arXiv:2404.11397)
 - 🕻 kazewong/jim
- TOV solver:
 - $10-100\times$ faster
 - 🖸 tsunhopang/jose
- 🔹 Kilonovae, GRBs: 🗘 ThibeauWouters/fiesta
- Ongoing:
 - Next-generation gravitational wave detectors
 - Combine into one multimessenger analysis pipeline