บทที่ 1 ทรานซิสเตอร์สนามไฟฟ้า (Field effect transistors , FET)

ในบทเรียน นี้เราจะได้กล่าวถึงทรานซิสเตอร์ในยุคที่สองที่เรียกว่า "ทรานซิสเตอร์สนามไฟฟ้า" (Field effect transistors, FET) และได้มีการพัฒนาต่อไปเป็น FET ในยุคที่สอง เรียกว่า "มอสเฟต" (MOSFET) ซึ่งเป็นสิ่งประดิษฐ์ที่นำไปสู่การสร้างวงจรรวมหรือไอซี (IC) ทำให้เกิดการปฏิวัติทางอิเล็กทรอนิกส์นำไปสู่ การสร้างวงจรรวมขนาดใหญ่หรือ VLSI ซึ่งเป็นหัวใจสำคัญของไมโครโปรเซสเซอร์และหน่วยความจำ ใน บทเรียนนี้จะได้อธิบายถึงคุณสมบัติและวงจรไบอัสไฟตรงของ MOSFET เพื่อนำไปสู่การสร้างเป็นวงจรขยาย MOSFET ในบทต่อไป

1.1. มอสเฟต (MOSFET)

"มอสเฟต" หรือ Metal oxide semiconductor field effect transistor เป็นทรานซิสเตอร์ที่สร้างขึ้นมาในช่วง ทศวรรษ 1970s ซึ่งเป็นทรานซิสเตอร์ในยุคที่สองหลังจากที่ได้มีการสร้างทรานซิสเตอร์ไบโพล่า (BJT) มา ก่อนหน้านี้ แล้ว MOSFET เป็นทรานซิสเตอร์ที่มีคุณสมบัติดีกว่าทรานซิสเตอร์ BJT ที่สามารถสร้างได้ง่าย กว่า BJT มาก และยังสามารถลดขนาดให้เล็กลงได้ จึงทำให้สามารถสร้างเป็นวงจรรวมได้ นอกจากนี้การ สร้างวงจรโดยใช้ MOSFET ไม่จำเป็นต้องใช้ ตัวต้านทานหรือไดโอด ช่วยในการไบอัสวงจร เหมือนกับ ทรานซิสเตอร์ BJT เนื่องจาก MOSFET สามารถทำงานได้โดยใช้แรงดันไฟฟ้าในการไบอัส ซึ่งต่างจาก ทรานซิสเตอร์ BJT ที่ต้องใช้กระแส(การป้อนกระแส I_B ซึ่งจะทำให้เกิดกระแส I_C และ I_E ตามลำดับ)ทำให้ วงจร MOSFET มีขนาดเล็กกว่าวงจรของ BJT ในการทำงานของมอสเฟส กระแสจะถูกควบคุมโดยการป้อน สนามไฟฟ้าเข้าที่บริเวณพื้นผิวของสารกึ่งตัวนำทั้งสองฝั่ง ปรากฏการณ์นี้ที่เคยมามาใช้ในการมอดูเลตตัว เก็บประจุของสารกึ่งตัวนำ หรือการควบคุมกระแสในสารกึ่งตัวนำ โดยในการที่ป้อนสนามไฟฟ้าตั้งฉากกับ พื้นผิวนี้จะถูกเรียกว่า field effect

1.1 โครงสร้างของมอสเฟต (MOS structure)

หัวใจสำคัญของ MOSFET ก็คือการสร้างตัวเก็บประจุจากสารกึ่งตัวนำที่เป็นออกไซด์ของโลหะ (Metal oxide semiconductor capacitor) แสดงดังรูป 5-1 โลหะที่กล่าวถึงนี้อาจเป็น อลูมิเนียม หรือสารบางอย่างที่มี ความนำไฟฟ้าสูงเช่น polycrystalline silicon ก็ได้ โดย t_{ox} เป็นค่าเป็นความหนาของออกไซด์โลหะ และ ε_{ox} คือค่าความซาบซึมได้ของออกไซด์ (oxide permittivity)

รูปที่ 1 โครงสร้างพื้นฐานของตัวเก็บประจุมอส (MOS capacitor)

โครงสร้างทางฟิสิกส์ของมอส สามารถอธิบายอย่างง่ายได้ก็คือว่ามันจะมีโครงสร้างคล้ายกับตัวเก็บประจุ (มี แผ่นตัวนำที่ขนานกันและมีฉนานคั่นระหว่างตัวนำทั้งสอง)

(c) MOS structure simply of explanation as a structure of a capacitor

รูปที่ 1 โครงสร้างของ MOS capacitor ซึ่งจำลองแบบมากจากการทำงานของตัวเก็บประจุ

จากรูปที่ 1 ฐานรองของสารกึ่งตัวนำ (semiconductor substrate) ซึ่งอาจจะเป็นสาร n หรือ p ก็ได้ อย่าง ใดอย่างหนึ่ง และจากรูปก็สามารถสร้างให้เป็นตัวเก็บประจุได้ ในรูปที่ 2 เป็นภาพการเกิดสนามไฟฟ้า (Electric field) ภายในตัวเก็บประจุแบบแผ่นขนาน โดยให้แผ่นด้านบนได้รับแรงดันไฟลบเมื่อเทียบกับแผ่น ด้านล่างได้รับแรงดันไฟบวก โดยตรงกลางระหว่างแผ่นทั้งสองเป็นฉนวน (Insulator ในที่นี้คือ Oxide นั่นเอง) ซึ่งการต่อแบบนี้ก็จะทำให้เกิดสนามไฟฟ้าขึ้นระหว่างแผ่นทั้งสอง

รูปที่ 2 (a) แสดงการเกิดสนามไฟฟ้าบนแผ่นตัวเก็บประจุแบบขนาน

(b) แสดงการเกิดสนามไฟฟ้าบน MOS capacitor (c) แสดงการเกิดสะสมประจุบวกหรือโฮล ใน MOS capacitor

จากรูป 2(a) โครงสร้างของตัวเก็บประจุมอสที่มีสารกึ่งตัวนำชนิด P เป็นส่วนประกอบของฐานรอง (substrate) เราจะเรียกชื่อขั้วต่อทางด้านบนที่ติดกับโลหะว่า "เกต" (gate) ซึ่งจะได้รับแรงดันไฟลบเมื่อ เทียบกับฐานรองที่เป็นสารกึ่งตัวนำ และในรูป 2(b) เป็นการแสดงการเกิดสนามไฟฟ้าที่ MOS capacitor ซึ่งเมื่อได้รับแรงดันไฟลบที่ขาเกต ก็จะทำให้มีอิเล็กตรอนสะสมอยู่ในบริเวณโลหะด้านบน และจะทำให้ประจุ บวกหรือโฮลถูกผลักมาอยู่ที่ฐานรองของ MOS capacitor แสดงดังรูป 2(c) เกิดการสะสมโฮลที่ฐานรอง ส่วนบริเวณตรงกลางหรือออกไซด์จะเกิดสนามไฟฟ้า

รูปที่ 3 (a) แสดงผลของการไบอัสศักดาบวกที่ขั้วเกต และทิศทางของสนามไฟฟ้า

(b) แสดงการเกิดย่านปลอดประจุ (space charge region) ในตัว MOS capacitor เมื่อได้รับแรงดันไบอัส บวกค่าหนึ่ง (c) แสดงการเกิด space charge region และ electron inversion layer ในตัว MOS capacitor ในรูปที่ 3 ก็เช่นกันเมื่อมีการจ่ายไฟสลับกับรูปที่ 2 ในที่นี้จะเกิดสนามไฟฟ้า (Electric field) ภายในตัวเก็บ ประจุแบบแผ่นขนานเหมือนกับรูปที่ 2 แต่ให้แผ่นด้านบนได้รับศักย์ไฟฟ้าบวก และสารกึ่งตัวนำ P(ฐานรอง เป็นสารชนิด p) ด้านล่างได้รับศักย์ไฟฟ้าลบแทน ในรูป 3(a) แสดงให้เห็นว่าถ้าขั้วเกตได้รับศักดาบวก ก็ จะทำให้ประจุบวกไปสะสมอยู่ที่แผ่นโลหะด้านบน และเกิดสนามไฟฟ้าในทิศทางตรงกันข้ามกับรูปที่ 2 แต่ ในกรณีนี้ถ้าสนามไฟฟ้าสามารถแพร่กระจายเข้าไปในเนื้อสารกึ่งตัว

นำได้ ก็จะทำให้โฮลที่อยู่ในสารชนิด p ถูกผลัก (เนื่องจากสนามไฟฟ้าจากศักย์ไฟฟ้าบวกจะพลักโฮลซึ่งเป็น พาหะข้างน้อย (minority carrier)ที่อยู่ในสารกึ่งตัวนำชนิด P) ให้ออกไปจากสาร p ในบริเวณรอยต่อ ระหว่างออกไซด์และฐานรองก็จะเกิดย่านปลอดประจุลบ (negative space-charge region) ขึ้นเนื่องจาก จำนวนอะตอมสารเจือผู้รับมีจำนวนจำกัด ดังรูปที่ 3(b) ทำให้มีแต่ประจุลบแทนในบริเวณนั้น ประจุลบ บริเวณรอยต่อระหว่างสาร p กับออกไซด์จะมีจำนวนมากยิ่งขึ้นถ้ามีการป้อนแรงดันไฟบวกมากยิ่งขึ้นซึ่งย่าน ของอิเล็กตรอนซึ่งเป็นพาหะข้างน้อยนี้จะถูกเรียกว่าย่านผันแปรอิเล็กตรอน (electron inversion layer)

รูปที่ 4 บริเวณปลอดพาหะใต้ชั้นออกไซด์ก็จะเปลี่ยนเป็นสาร n เมื่อแรงดันไฟฟ้าเพิ่มขึ้นจนถึงจุดเริ่มเปลี่ยน

เมื่อเพิ่มแรงดันตกคร่อม MOS Capacitor มากขึ้น สนามไฟฟ้าที่คร่อมชั้น oxide จะแรงขึ้นทำให้โฮ ลถูกผลักลงไปด้านล่างมากขึ้น ส่งผลให้บริเวณปลอดพาหะ ที่ใต้ชั้น oxide มีความหนามากขึ้นเรื่อยๆ เมื่อ เพิ่มแรงดันไฟฟ้าจนถึงจุดเริ่มเปลี่ยน (threshold) บริเวณปลอดพาหะใต้ชั้นออกไซด์ก็จะเปลี่ยนเป็นสาร n เรียกว่าชั้นผันแปร (inversion layer) แสดงดังรูปที่ 4 ในทำนองเดียวกัน ถ้าเราเปลี่ยนฐานรองให้เป็นสาร ชนิด n ก็จะมีลักษณะคล้ายกัน แสดงดังรูปที่ 5 โดยในรูปที่ 5(a) เป็นโครงสร้างของ MOS capacitor ที่มีฐานรองเป็นสารชนิด n ที่ถูกไบอัสด้วยแรงดันไฟฟ้าบวกที่ขั้วเกต ก็ทำให้เกิดประจุบวกที่ขั้วโลหะ และเกิด สนามไฟฟ้าขึ้นในออกไซด์เช่นกัน ในกรณีนี้ในบริเวณของสาร n ก็จะมีอิเล็กตรอนสะสมอยู่เป็นจำนวนมาก

รูปที่ 5 (a) แสดงผลของการไบอัสศักดาบวกที่ขั้วเกต ของ MOS capacitor ที่ฐานรองเป็นสารชนิด n
(b) แสดงการเกิดย่านปลอดประจุ (space charge region) ในตัว MOS capacitor เมื่อได้รับแรงดันไบอัส
ลบค่าหนึ่ง

(c) แสดงการเกิด space charge region และ hole inversion layer ในตัว MOS capacitor

ในรูปที่ 5 (b) เป็นการไบอัสแรงดันไฟฟ้าลบที่ขั้วเกต ซึ่งสนามไฟฟ้าก็จะผลักให้ประจุลบอยู่ในสาร ชนิด n ถูกผลักให้ออกไปจากสาร n ในบริเวณรอยต่อระหว่างออกไซด์และฐานรองก็จะเกิดย่านปลอดประจุ ลบขึ้น ดังรูปที่ 5(b) ทำให้มีแต่

ประจุบวกแทน ในบริเวณนั้น เราเรียกบริเวณนี้ว่า "hole inversion layer" ซึ่งปริมาณของย่าน inversion นี้ก็ ขึ้นอยู่กับค่าแรงดัน V อีกเช่นกัน จะเห็นว่า ในรูปที่ 3 และ 5 ถ้าต้องการให้ MOS capacitor เกิดย่าน ปลอดประจุขึ้น ไม่ว่าจะเป็นโฮลหรืออิเล็กตรอนก็ตาม ก็ต้องมีการไบอัสแรงดันไฟฟ้าจากภายนอกมาทำให้ เกิดสนามไฟฟ้าก่อนเสมอ เราเรียกลักษณะการทำงานแบบนี้ว่า "Enhancement mode" (โหมดเพิ่มขึ้น) ซึ่ง

จะได้อธิบายลักษณะของทรานซิสเตอร์ MOSFET แบบ Enhancement ในหัวข้อต่อไป โดยสรุปก็คือว่า Mos capacitor โดยมีฐานรองเป็นสารกึ่งตัวนำชนิดสาร P แรงดังไฟฟ้าบวกจะต้องป้อนเข้าที่ขาเกทเพื่อสร้าง electron inversion layer แต่ในทางกลับกัน Mos capacitor โดยมีฐานรองเป็นสารกึ่งตัวนำชนิดสาร n แรง ดังไฟฟ้าลบจะต้องป้อนเข้าที่ขาเกทเพื่อสร้าง hole inversion layer

1.2. n-Channel Enhancement-Mode MOSFET จากหลักการของ MOS capacitor เราสามารถสร้างทรานซิสเตอร์ MOSFET ได้ดังรูปที่ 6

รูปที่ 6 แผนผังโครงสร้างของ n-channel enhancement-mode MOSFET (b) n-channel MOSFET แสดงโลหะออกไซด์และ polysillicon gate

แชนแนล (Channel) ในรูปที่ 6 ถูกกำหนดให้มีความยาว L และมีความกว้าง W โดยทั่วไปความยาวของ แชนแนลในวงจรรวมมอสเฟตจะมีความยาวน้อยกว่า $1\mu m \left(10^{-6}m\right)$ ซึ่งหมายความว่ามอสเฟตจะเป็น อุปกรณ์ที่มีขนาดเล็ก ความหนาของออกไซด์ t_{ox} จะมีขนาด 400 อังสตรอม (angstrom, 1 อังสตรอม (Å) = 10^{-10} เมตร = 0.1 นาโนเมตร (nm)) หรือน้อยกว่านั้น ไดอะแกรมในรูปที่ 6(a) แสดงถึงภาพอย่างง่าย ของโครงสร้างพื้นฐานของทรานซิสเตอร์ ในรูปที่ 6(b) แสดงรูปตัดขวางของโครงสร้างของมอสเฟตในการ ประดิษฐ์โครงสร้างของวงจรรวม ความหนาของออกไซด์จะถูกเรียกว่า field oxide ซึ่งเป็นส่วนประกอบอยู่ นอกพื้นของการเชื่อมต่อกันในส่วนของโลหะ วัสดุที่ขาเกทโดยส่วนมากจะโดปอย่างมากด้วย polysilicon ถึงแม้ว่าโครงสร้างของมอสเฟตจะมีความยุ่งยากก็ตาม แผนผังอย่างง่ายนี้จะเป็นส่วนที่นำมาใช้เพื่อพัฒนา คุณสมบัติพื้นฐานของทรานซิสเตอร์ต่อไป

1.3. การทำงานของทรานซิสเตอร์เบื้องต้น

หากไม่มีการป้อนแรงดันใดๆ ที่ขาเกทของมอสเฟต (zero bias) ขาซอร์สและเดรนจะถูก แยกออกจากกันโดยส่วนของสาร P ดังในรูปที่ 7(a)

รูปที่ 7 (a) ภาพตัดขวงของ n-channel MOSFET ก่อนที่จะมีการสร้างชั้นผันแปร (inversion layer), (b) วงจรสมมูลย์ของ n-channel MOSFET ที่ประกอบไปด้วยไดโอดสองตัวต่อหันหลังชนกันระหว่างขาเกทกับขา เดรนเมื่อมอสเฟตหยุดทำงาน (cutoff) และ(c) ภาพตัดขวางหลังจากที่มีการป้องแรงดันไฟฟ้าให้กับมอส เฟตและมีการสร้างชั้นผันแปรขึ้น

กระแสที่ถูกสร้างขึ้นในรูปที่ 7 (c) เกิดขึ้นระหว่างขั้วของขาเกทและขั้วของขาเดรน เนื่องจากว่ามักจะมีการ ป้อนเข้าสู่ขาเกทเพื่อสร้างประจุผันแปร (inversion charge) ทรานซิสเตอร์นี้ก็มักจะถูกเรียกว่า enhancement-mode MOSFET เนื่องจากว่าในชั้นผันแปรมีอิเล็กตรอนปรากฏอยู่ อุปกรณ์ดังกล่าวนี้ก็มักจะ ถูกเรียกกันว่า n-channel MOSFET (NMOS) ขั้วของขาชอร์สจะเป็นส่วนที่ป้อนให้พาหะซึ่งจะไหลผ่าน แชนแนล และพาหะเหล่านี้ไหลออกจากแชนแนลผ่านขาเดรน สำหรับ n-channel MOSFET นั้น อิเล็กตรอน จะไหลจากขาชอร์สไปยังขาเดรนโดยที่มีการป้อนแรงดันไฟฟ้าที่ขาเดรนและขาชอร์ส ซึ่งหมายความว่า กระแสไฟฟ้าจะมีทิศทางตรงกันข้ามกับกระแสอิเล็กตรอน (conventional current)จะไหลเข้าสู่ขาเดรนและ ออกไปทางขาชอร์ส ขนาดของกระแสไฟฟ้าเป็นฟังก์ชันของจำนวนของประจุในชั้นผันแปร ซึ่งเป็นฟังก์ชัน ของการป้อนแรงดันที่ขาเกท เนื่องจากขาเกทเป็นขาที่ถูกคั่นด้วยออกไซด์หรือฉนวน (ซึ่งแยกออกจาก แชนแนล) จึงทำให้ไม่มีกระแสที่ขาเกท และเช่นเดียวกันแชนแนลและฐานรองจะถูกแยกออกจากกันโดย ย่านปลอดประจุพาหะ (space charge region) และนี้ก็คือส่วนสำคัญที่ทำให้ไม่มีกระแสไหลผ่านฐานรอง เช่นกัน

1.4. Ideal MOSFET Current-Voltage Characteristics-NMOS Device

แรงดันจุดเริ่มเปลี่ยนของ n-channel MOSFET แสดงด้วย V_{TN} ถูกกำหนดโดยการป้อนแรงดันที่ขาเกทซึ่งต้องการในการสร้างประจุผันแปร โดยที่ความหนาแน่นประจุยังคงเท่ากับการกระจุกตัวของพาหะ ข้างมากในฐานรอง ในเบื้องต้นแรงดันจุดเริ่มเปลี่ยนนี้จะเป็นแรงดันที่ขาเกทต้องการใช้ในการทำให้ ทรานซิสเตอร์ทำงาน (turn on) นั่นเอง สำหรับ n-channel enhancement-mode MOSFET แรงดันจุดเริ่ม เปลี่ยนจะเป็นแรงดันไฟฟ้าบวกเพราะว่าแรงดันที่ขาเกทต้องการที่เป็นไฟบวกนั้นใช้เพื่อสร้างประจุผันแปร ถ้าแรงดันที่เกทนั้นน้อยกว่าแรงดันจุดเริ่มเปลี่ยน กระแสในอุปกรณ์นี้ก็จะเปลี่ยนศูนย์อย่างแน่นอน ถ้า แรงดันที่ขาเกทนี้มากกว่าแรงดันจุดเริ่มเปลี่ยน กระแสที่ไหลจากขาเดรนไปยังขาซอร์สจะถูกสร้างขึ้นมา เช่นเดียวกันกับที่ป้อนแรงดันเข้าที่ขาเดรน-ซอร์ส แรงดันที่เกทและเดรนจะถูกวัดค่าโดยเทียบกับแรงดันที่ ขาซอร์ส

ในรูปที่ 8(a) แสดงรูปของ n-channel enhancement-mode MOSFET โดยที่ขาซอร์สและเกทต่อ กับกราวนด์ แรงดันระหว่างขาเกทกับซอร์สจะมีค่าน้อยกว่าแรงดันจุดเริ่มเปลี่ยน และทำให้แรงดันที่ขา เดรนไปยังขาซอร์ส ด้วยการไบอัสดังกล่าวนี้จะทำให้ไม่เกิด electron inversion layer ขึ้นรอยต่อ pn จากขา เดรนระหว่างฐานรองจะเป็นไบอัสกลับ (reverse bias) และกระแสที่ขาเดรนจะเป็นศูนย์ (โดยคิดว่าไม่มี กระแสรั่วไหลที่รอยต่อ) ในรูปที่ 8(b) แสดงรูปของมอสเฟตชนิดเดียวกันโดยที่มีการป้อนแรงดันที่ขาเกท ให้มากกว่าแรงดันจุดเริ่มเปลี่ยน ในสถานะเช่นนี้จะทำให้เกิด electron inversion layer เมื่อมีแรงดันป้อน ให้กับขาเดรนเล็กน้อย อิเล็กตรอนในชั้นผันแปรจะไหลจากขาซอร์สไปยังขาเดรน แต่ถ้าหากพิจารณาแบบ conventional แล้วละก็ กระแสก็จะไหลจากขาเดรนไปยังขาซอร์ส ในที่นี้แรงดันไฟบวกที่ขาเดรนจะสร้าง ไบอัสกลับให้รอยต่อระหว่างเดรนกับฐานรอง ดังนั้นจะทำให้กระแสไหลผ่านแชนแนลและไม่ได้ไหลผ่าน รอยต่อ pn

ฐปที่ 8 The n-channel enhancement-mode MOSFET (a) with an applied gate voltage $\,v_{GS} < v_{TN}$ and (b) with an applied gate voltage $\,v_{GS} > v_{TN}$

คุณสมบัติระหว่างกระแส i_D กับ v_{DS} ในกรณีที่ v_{DS} มีค่าน้อยดังแสดงในรูปที่ 9 เมื่อ $v_{GS} < v_{TN}$ กระแสที่ขาเดรนจะเป็นศูนย์ เมื่อ $v_{GS} > v_{TN}$ แชนแนลของประจุผันแปรจะถูกสร้างขึ้นและ

กระแสที่ขาเดรนจะเพิ่มขึ้นโดย v_{DS} ด้วยค่าแรงดันที่ขาเกทที่สูงมากกว่า ความหนาแน่นของประจุผันแปรก็ จะมีจำนวนมากขึ้นด้วย และกระแสเดรนก็จะมีจำนวนมากตามค่าแรงดัน v_{DS} ที่ป้อนนี้

รูปที่ 9 Plot of iD versus vDS characteristic for small values of vDS at three vGS Voltages

ในรูปที่ 10(a) แสดงโครงสร้างพื้นฐานของ MOS เมื่อ $v_{GS}>v_{TN}$ (และให้แรงดัน v_{DS} มีค่าน้อยๆ) พบว่าค่าความกว้างของชั้น inversion channel layer จะเป็นตัวกำหนดความหนาแน่นของประจุไฟฟ้า ซึ่งค่า ความกว้างนี้จะมีค่าคงที่ตลอดทั้งเนื้อสาร ถ้า v_{DS} และ i_D แปรผันตามกันเป็นเส้นตรง และในรูป 10(b) แสดงถึงค่า v_{DS} ที่มากขึ้น เนื่องจากแรงดันที่ขาเดรนมีค่ามากขึ้น ทำให้แรงดันที่ตกคร่อมที่ออกไซด์ใกล้ กับขาเดรนมีค่าลดลง ซึ่งทำให้ inversion channel density มีค่า น้อยลง สภาพความนำไฟฟ้าของแชนแนล มีค่าลดลง ทำให้ความชันของกราฟระหว่าง v_{DS} กับ i_D มีค่าลดลงและเมื่อ v_{DS} มีค่าลดลงจนความค่าง ศักย์ที่ขาเดรน มีค่าเท่ากับ v_{TN} จะทำให้ความหนาแน่นของประจุที่ขาเดรนหมดไป ความชันของกราฟ v_{DS} กับ v_{DS} กับ v_{DS} มีค่าเป็นศูนย์ แสดงดังรูป 10(c) ซึ่งเราเขียนสมการความสัมพันธ์ได้เป็น

$$v_{GS} - v_{DS}(sat) = V_{TN} \tag{1}$$

$$v_{DS}(sat) = v_{GS} - V_{TN} \tag{2}$$

เมื่อ $v_{DS}(sat)$ คือแรงดันระหว่างขาเดรนกับซอร์สที่ทำให้ความหนาแน่นของประจุที่ขาเดรนเป็นศูนย์ ถ้า เมื่อป้อนให้ v_{DS} มีค่ามากกว่า $v_{DS}(sat)$ ในกรณีนี้อิเล็กตรอนจะเข้าสู่แชนแนลที่ขาซอร์ส และเดิน ทางผ่านแชนแนลไปยังขาเดรน (ณ จุดที่ประจุกลายเป็นศูนย์) โดยที่อิเล็กตรอนจะถูกกวาดไปด้วย สนามไฟฟ้า E ไปยังขาเดรน ในกรณีมอสเฟตอุดมคตินั้น กระแสเดรนจะมีค่าคงที่เมื่อ $v_{DS} > v_{DS}(sat)$ ย่านนี้ของคุณสมบัติระหว่าง i_D กับ v_{DS} เรียกว่า"ย่านอิ่มตัว" (saturation region) แสดงดังรูป 10(d)

ฐปที่ 10 Cross section and *iD* versus *vDS* curve for an n-channel enhancement-mode MOSFET when vGS > VT N for (a) a small vDS value, (b) a larger vDS value but for vDS < vDS(sat), (c) vDS = vDS(sat), and (d) vDS > vDS(sat)

เมื่อเปลี่ยนค่าแรงดันระหว่างขาเกทกับขาซอร์ส ก็จะทำให้เส้นกราฟของ $\it i_D$ กับ $\it v_{DS}$ เปลี่ยนแปลง ไปด้วยดังในรูปที่ 9 เราจะเห็นว่าเส้นกราฟในตอนแรกของ i_D กับ v_{DS} จะค่อยๆ เพิ่มเมื่อเพิ่มแรงดัน v_{CS} และเช่นเดียวกันในสมการที่ 1 แสดงให้เห็นว่า $v_{DS}(sat)$ เป็นฟังก์ชันของ v_{GS} ดังนั้น เราสามารถ สร้างความสัมพันธ์ของกราฟสำหรับ n-channel enhancement mode MOSFET แสดงได้ดังรูปที่ 11

รูปที่ 11 Family of iD versus vDS curves for an n-channel enhancement-mode MOSFET. Note that the vDS(sat) voltage is a single point on each of the curves. This point denotes the transition between the nonsaturation region and the saturation region

ในย่านอิ่มตัว คุณสมบัติระหว่างกระแสและแรงดันเมื่อ
$$v_{GS}>v_{TN}$$
 ได้ถูกอธิบายโดยสมการดังนี้
$$i_D = K_n v_{GS} - V_{TN})^2 \tag{3}$$

ในย่านอิ่มตัวเนื่องจากว่ากระแสเดรนในอุดมคตินั้นไม่ได้ขึ้นอยู่กับค่าของแรงดันระหว่างเดรนกับซอร์ส เรา จะเห็นว่า

$$r_0 = \Delta v_{DS} / i_D \mid_{v_{GS} = const.} = \infty$$
 (4)

พารามิเตอร์ K_n จะถูกเรียกว่าพารามิเตอร์ transconduction สำหรับอุปกรณ์ n-channel เพื่อความสะดวก เราจะอ้างถึงพารามิเตอร์นี้เป็นเหมือนกับ conduction parameter โดยที่

(5)

โดย μ_n เป็นค่าคงที่เรียกว่า "ความคล่องตัวของอิเล็กตรอน " C_{ox} เป็นค่าความจุไฟฟ้าของสารออกไซด์ ต่อ 1 หน่วยพื้นที่ ซึ่งมาจากสมการเดิมคือ C_{ox} = ε_{0x} t_{ox} โดยที่ t_{ox} เป็นความหนาของออกไซด์ และ $arepsilon_{ox}$ ค่าความซาบซึมได้ของสนามไฟฟ้าหรือ ค่าความสามารถเก็บประจุซึ่งสำหรับสุญญากาศแล้ว $arepsilon_0 = (3.9)(8.85 imes 10^{ ext{-}14})$ ฟารัดต่อเมตร พารามิเตอร์ μ_n นี้คือความคล่องตัวของอิเล็กตรอนในชั้นผัน แปร ส่วนค่าของ W และ L คือความกว้างและความยาวของแชนแนลตามลำดับดังแสดงในรูปที่ 6(a)พารามิเตอร์การนำ (conduction parameter) เป็นฟังก์ชันของพารามิเตอร์ทางไฟฟ้าและทางรูปทรงเลขา คณิต แสดงในสมการที่ (5) ตัวเก็บประจุออกไซด์ (oxide capacitor) และการเคลื่อนที่ของพาหะเป็น ค่าคงที่ที่สำคัญยิ่งสำหรับเทคโนโลยีการประดิษฐ์ชิฟ แต่อย่างไรก็ตามรูปทรงหรืออัตราส่วนระหว่างความ

กว้างต่อความยาว W/L เป็นตัวแปรหนึ่งในการออกแบบมอสเฟต ซึ่งเคยใช้ในการสร้างคุณสมบัติระหว่าง

กระแสและแรงดันในวงจรมอสเฟต เราสามารถเขียนสมการของพารามิเตอร์การนำได้ใหม่ในรูปแบบของ

 $K_n = \underbrace{\frac{k_n'}{2}} \cdot \frac{W}{L}$ (6)

โดยที่ $k_n' = \mu_n C_{ox}$ เละถูกเรียกว่า Process conduction parameter โดยปกติแล้วค่าของ k_n' จะถูก พิจารณาเป็นค่าคงที่สำหรับแต่ละเทคโนโลยีการผลิตไอซี ดังนั้นสมการที่ 6 จะแสดงถึงว่าอัตราส่วนของ ความกว้างต่อความยาวเป็นตัวแปรที่ใช้สำหรับการออกแบบทรานซิสเตอร์ได้

<u>ตัวอย่างที่ 1</u>จงคำนวณหากระแสที่ไหลในแชนแนสของ n-channel MOSFET

างและ เกาะเลือน เพื่อเลือน เพื่อน เพื่อเลือน เพื่อเลือน เพื่อเลือน เพื่อเล้า เพื่อเล้า

<u>คำตอบ</u> พารามิเตอร์การนำแสดงดังสมการที่ (5) อันดับแรกควรพิจารณาหน่วยที่เกี่ยวข้องในสมการ ดังกล่าวดังนี้

$$K_n = \underbrace{\frac{W(cm) \left(\mu_s \left(\frac{cm^2}{V-s}\right) \varepsilon_{ox}\right)}{2L(cm) \left(t_{ox}(cm)\right)}}_{\text{position}} = \frac{F}{V-s} = \frac{\left(C/V\right)}{V-s} = \underbrace{\frac{A}{V^2}}_{\text{position}}$$

$$K_n = \boxed{\frac{W\mu_n C_{ox}}{2L}} = \frac{\left(20\times 10^{-4}\right)\!\left(650\right)\!\left(3.9\right)\!\left(8.85\times 10^{-14}\right)}{2\!\left(0.8\times 10^{-4}\right)\!\left(200\times 10^{-8}\right)}$$
 หรือ $K_n = 1.4$ $M_n = 1.4$

จากสมการที่ (3) สามารถหาค่าของ $\it i_{D}$ ได้ดังต่อไปนี้

(a) เมื่อ
$$V_{GS}=0.8~V$$

(a) เมื่อ
$$V_{GS}=0.8\,V$$

$$i_D=K_n\big(V_{GS}-V_{TN}\big)^2=\big(1.40\big)\big(0.8-0.4\big)^2=\underline{0.224mA}$$
(b) เมื่อ $\underline{V_{GS}=1.6\,V}$

$$i_D = K_n (V_{GS} - V_{TN})^2 = (1.40)(1.6 - 0.4)^2 = 2.02mA$$

A P- Channel Enhancement-Mode MOSFET 1.5.

รูปที่ 12 รูปตัดขวางของ p-channel enhancement-mode MOSFET

Ideal MOSFET Current-Voltage Characteristics ในกรณีของแรงสน Vas หกรณีของ PMOS ก็จะถูกภานหีช่วง VsD ออลมสามารถนาโดงาก Usp(sat) = VsG + VTP กละในใหญ่ A p-chamel of Tuen Trinon od & shun Tues oto (nonsat.)

Bry an work and mon mun Enhancemen Luanes Inwards 1 2 12

Figure 3.12 The n-channel enhancement-mode MOSFET: (a) conventional circuit symbol, (b) circuit symbol that will be used in this text, and (c) a simplified circuit symbol used in more advanced texts.

Figure 3.13 The p-channel enhancement-mode MOSFET: (a) conventional circuit symbol, (b) circuit symbol that will be used in this text, and (c) a simplified circuit symbol used in more advanced texts

ชื่อในที่มีอ: โร้สัญสักษณ์ กลองใชว (3.12(b) กล; 3.13(b)
มีการับ n-channel กล; p-channel การเล็กสิบ

ตารางที่ 5-1 สรุปคุณสมบัติ และสมการกระแส-แรงคัน ของ MOSFET

Table 5.1 Summary of the MOSFET current–voltage relationships	
NMOS	PMOS
Nonsaturation region ($v_{DS} < v_{DS}(\text{sat})$)	Nonsaturation region ($v_{SD} < v_{SD}(sat)$)
$i_D = K_n[2(v_{GS} - V_{TN})v_{DS} - v_{DS}^2]$	$i_D = K_p[2(v_{SG} + V_{TP})v_{SD} - v_{SD}^2]$
Saturation region $(v_{DS} > v_{DS}(sat))$	Saturation region $(v_{SD} > v_{SD}(sat))$
$i_D = K_n (v_{GS} - V_{TN})^2$	$i_D = K_p (v_{SG} + V_{TP})^2$
Transition point	Transition point
$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$	$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$
Enhancement mode	Enhancement mode
$V_{TN} > 0$	$V_{TP} < 0$
Depletion mode	Depletion mode
$V_{TN} < 0$	$V_{TP} > 0$

5.5 การเกิด Early Effect และ Early voltage ของ MOSFET

จากบทที่ 4 เราได้อธิบายถึงการเกิด Early effect ของ bipolar transistor ซึ่งเกิดจากการที่ขั้วคอลเลคเตอร์และอิ มิตเตอร์มีค่าความต้านทางแฝงเกิดขึ้น เนื่องจากคุณสมบัติของสารกึ่งตัวนำที่นำมาสร้างทรานซิสเตอร์ ทำให้กระแสคอล เล็กเตอร์ในย่านอิ่มตัว [i_c (sat)] มีค่าขึ้นอยู่กับ v_{CE} ของวงจร

สำหรับทรานซิสเตอร์ MOSFET ก็เช่นเดียวกัน มีการเกิด Early effect ที่ย่านอิ่มตัวเช่นกัน ทำให้กระแสเครน i_D มีค่าขึ้นอยู่กับแรงคัน v_{DS} ซึ่งจะทำให้สมการ (5.4) และ (5.8) มีค่าไม่ถูกต้อง

จากรูปที่ 5-17 เป็นแสดงกราฟคุณสมบัติ กระแสแรงดันของทรานซิสเตอร์ที่เกิดปรากฏการณ์ Early effect โดยมีค่า V_A เป็นค่า Early voltage ซึ่งจะเกิดขึ้นเฉพาะในย่านอิ่มตัวเท่านั้น และทำให้ สมการกระแสเปลี่ยนเป็น

$$i_D = K_n [(v_{GS} - V_{TN})^2 (1 + \lambda v_{DS})]$$
 (5.11)

สำหรับค่าความต้านทานเอ้าพุต r_o หาค่าได้จาก

$$r_o = \left(\frac{\partial i_D}{\partial v_{DS}}\right)^{-1} \bigg|_{V_{GS=const.}} = \frac{V_A}{I_{DO}}$$
(5.12)

5.6 วงจรไบอัสไฟตรงของ MOSFET (MOSFET DC Circuits)

เนื่องจาก MOSFET เป็นทรานซิสเตอร์ที่ต้องใช้ไฟกระแสตรงในการใบอัสให้ทำงานเช่นเดียวกันกับ ทรานซิสเตอร์ใบโพล่า ดังนั้นเราจึงควรศึกษาวงจรไบอัสไฟตรงของ MOSFET เพื่อที่จะได้นำไปสู่การวิเคราะห์วงจร ขยาย MOSFET ต่อไป

5.5.1 วงจรซอร์สร่วม (Common source circuit) วงจรขยายแบบซอร์สร่วมมีลักษณะคล้ำยกับวงจร common emitter ของทรานซิสเตอร์ใบโพล่าอย่างมาก นั่นก็คือเป็นวงจรที่นำขั้ว source เป็นขา common หรือขาก ราวน์ มีขา gate เป็นอินพุต และขา drain เป็นเอ้าพุต แสดงคังรูป 5-18

ในการวิเคราะห์วงจรไฟตรงของ MOSFET เนื่องจากที่ขั้ว gate ของ MOSFET ไม่ว่าจะเป็น NMOS หรือ PMOS จะมีชั้นซิลิกอนไดออกไซด์ขวางอยู่ ซึ่งมีคุณสมบัติเป็นฉนวน ไม่นำไฟฟ้า ดังนั้น กระแสที่ขั้วเกต (i_G) ของ MOSFET จึงมีค่าน้อยมากจนประมาณให้เป็นศูนย์ได้ นั่นคือ

$$i_G = 0 (5.13)$$

สมการที่ (5.13) นี้สามารถใช้ได้ทั้ง enhancement mode และ depletion mode

ในรูป 5-18 ถ้ากำหนดให้กระแส $i_G=0$ แล้ว ค่าแรงคันที่ขา gate , v_G ก็สามารถหาได้จากกฎการแบ่งแรงคัน นั่น คือ

$$v_G = \left(\frac{R_2}{R_1 + R_2}\right) V_{DD} \tag{5.14}$$

จากรูปถ้า $v_{DS}>v_{DS}({\rm sat})=v_{GS}-V_{TN}$ [จากสมการ 5.1(b)] แสดงว่า MOSFET ทำงานในย่านอิ่มตัว สามารถหากระแสเดรนโดยใช้สมการ (5.4) แต่ถ้า $v_{DS}>v_{DS}({\rm sat})$ แสดงว่า MOSFET ทำงานในย่านไม่อิ่มตัว สามารถหากระแส drain โดยใช้สมการ (5.3)

สำหรับค่าแรงคัน v_{DS} หาได้จากสมการ KVL

เนื่องจากโจทย์ไม่ได้ระบุว่า ทรานซิสเตอร์ทำงานในย่านอะไร จึงต้องสมมุติว่าทรานซิสเตอร์ทำงานในย่านอิ่มตัวไปก่อน เนื่องจากเป็นย่านการทำงานที่มีช่วงแรงดัน V_{DS} กว้างมากกว่าย่านอื่นๆ จากนั้นหาค่า I_D จากสมการ (5.4)

$$I_D = K_n (v_{GS} - V_{TN})^2$$
 แทนค่าใค้ $I_D = 0.1(2-1)^2 = 0.1 \,\mathrm{mA}$

จากนั้นหาค่า V_{DS} ได้จากสมการ (5.15) $V_{DS} = V_{DD} - I_D R_D$ แทนค่าได้

$$V_{DS} = 5 - (0.1 \,\mathrm{m})(20 \,\mathrm{k}) = 3 \,\mathrm{V}$$

จากกำตอบที่ได้พบว่า V_{DS} (3 V) มีค่ามากกว่า $V_{GS}-V_{TN}$ (2 -1 = 1 V) ก็แสดงว่าทรานซิสเตอร์ตัวนี้ทำงานในย่านอิ่ม ตัวจริง

5.5.2 วงจรซอร์สร่วมที่มีความต้านทานที่ขาซอร์ส (Common source circuit with source resistor) เป็น วงจรขยายแบบซอร์สร่วมอีกชนิดหนึ่ง ที่แสดงดังรูป 5-19

รูปที่ 5-19 (a) แสคงวงจร NMOS common source with source resistor และ (b) วงจรเทียบเท่า

ในรูป 5-19(b) ค่าแรงดันเทียบเท่า V_{th} ก็สามารถหาได้จากกฎการแบ่งแรงดัน

$$V_{th} = \left(\frac{R_2}{R_1 + R_2}\right) V_{DD} \tag{5.16}$$

สำหรับ R_G หาได้จากสมการ

$$R_G = \left(\frac{R_1 R_2}{R_1 + R_2}\right) \tag{5.17}$$

พิจารณาจากรูปแล้วตั้งสมการ KVL ที่ Loop i_G ได้

$$V_{th} = i_G R_G + v_{GS} + i_D R_S$$

ถ้ากำหนดให้กระแส $i_G=0$ แล้ว เขียนสมการข้างบนใหม่ได้เป็น

$$v_{GS} = V_{th} - i_D R_S \tag{5.18}$$

ถ้ากำหนดให้ทรานซิสเตอร์ทำงานในย่านอิ่มตัว ก็ให้นำสมการ (5.4) $i_D=K_n(v_{GS}-V_{TN})^2$ แทนค่าลงในสมการ (5.18) เพื่อหาค่า v_{GS} และหาค่า i_D ต่อไป

สำหรับค่าแรงคัน v_{DS} หาได้จากสมการ KVL ที่ loop i_D

$$v_{DS} = V_{DD} - i_D (R_D + R_S) (5.19)$$

<u>ตัวอย่าง 5-3</u> จงคำนวณหาค่าแรงคัน V_{GS} , กระแส I_D และแรงคัน V_{DS} ของวงจร ซอร์สร่วมทางด้านขวา ที่ใช้ NMOS enhancement-mode โดยมีค่า $K_n=0.5$ mA/V² , $V_{TN}=1$ V

 $\overline{2}$ ธิทำ จากวงจรในรูปด้านซ้าย เราสามารถหาค่า V_{th} โดยใช้สมการ (5.16) นั่นคือ

$$V_{th} = \left(\frac{R_2}{R_1 + R_2}\right) V_{DD} - 5 = \left(\frac{40}{60 + 40}\right) 10 - 5 = -1 \text{ V}$$

แทนค่า V_{th} และ R_S ลงในสมการ (5.18) ที่คัดแปลงเล็กน้อย จะได้

$$V_{th}+5=v_{GS}+i_DR_S$$

$$v_{GS}=V_{th}-i_DR_S+5$$
 ได้ $v_{GS}=4-i_D$ จากนั้นแทนค่า i_D จาก

หรือ

สมการ (5.4) ลงไปก็จะได้
$$v_{GS} = 4 - \left[0.5(v_{GS} - 1)^2\right]$$
 จัดสมการใหม่ได้ $v_{GS}^2 - 7 = 0$

แยกตัวประกอบเพื่อหาค่า v_{GS} ได้ $v_{GS} = \sqrt{7} = 2.65 \,\mathrm{V}$ (ค่า v_{GS} ต้องเป็นบวกเท่านั้น) นำค่า v_{GS} ที่ได้แทนลงในสมการ (5.4) ใหม่เพื่อหาค่า i_D ได้ $i_D = 0.5(2.65-1)^2 = 1.36 \,\mathrm{mA}$ สำหรับค่าแรงคัน v_{DS} หาได้จากสมการ KVL ที่ loop i_D

$$V_{DS} = 10 - i_D(R_D + R_S)$$
 แทนค่าได้
 $V_{DS} = 10 - (1.36)(1+2) = 5.92 \,\mathrm{V}$

จากกำตอบที่ได้พบว่า V_{DS} (5.92 V) มีค่ามากกว่า $V_{GS}-V_{TN}$ (2.65 -1 = 1.65 V) ก็แสดงว่าทรานซิสเตอร์ตัวนี้ทำงาน ในย่านอิ่มตัวจริง

วิธีการแก้ปัญหาโจทย์ การวิเคราะห์วงจรไบอัสไฟตรงของ MOSFET

ในการวิเคราะห์วงจรไบอัสไฟตรงของ MOSFET สิ่งแรกที่ต้องทราบก่อนคือ MOSFET นี้ทำงานในย่านอะไร (อิ่มตัวหรือไม่อิ่มตัว) ซึ่งในบางครั้งอาจต้องคาดเดา ซึ่งมีเทคนิคในการวิเคราะห์คือ

- 1.) กำหนดให้ทรานซิสเตอร์ทำงานในย่านอิ่มตัว โดยต้องกำหนดให้ $v_{GS} > V_{TN}$, $I_D > 0$ และ $v_{DS} \geq v_{DS}(\mathrm{sat})$.
- 2.) วิเคราะห์วงจรโดยการใช้ความสัมพันธ์กระแส-แรงคัน ในย่านอิ่มตัว
- 3.) ตรวจสอบค่าที่ได้ ถ้า $v_{GS} > V_{TN}$ แสดงว่าทรานซิสเตอร์ทำงานถูกต้องตามที่กำหนดไว้ในข้อที่ 1 แต่ถ้า $v_{GS} < V_{TN}$ แสดงว่าทรานซิสเตอร์ไม่ทำงาน และถ้า $v_{DS} \le v_{GS} V_{TN}$ ก็แสดงว่าทรานซิสเตอร์ตัวนี้ทำงานในย่านไม่อิ่มตัว หรือ ย่านเชิงเส้น

ตัวอย่างที่ 5-4 จากวงจร NMOS ในรูปทางด้านซ้าย จงออกแบบวงจร (หาค่า R_D และ R_S) โดยกำหนดให้ NMOS มีกระแสเดรน i_D เท่ากับ 0.4 mA., $v_D=1$ V กำหนดให้ $V_{TN}=2$ V., $K_n=0.4$ mA/V 2 และ $\lambda=0$ V $^{-1}$ (ไม่คิดผลของ Early Effect) $\frac{1}{2}$ อากสมการ (5.4) $i_D=K_n (v_{GS}-V_{TN})^2$ แทนค่า K_n และ V_{TN} ลงไปได้ $(0.4)=(0.4)(v_{GS}-2)^2$ จะได้ $v_{GS}^2-4v_{GS}+3=0$ หาค่ารากสมการได้ $(v_{GS}-3)(v_{GS}-1)=0$, $v_{GS}=3$ V. และ 1 V

แต่ค่า $V_{GS} = 1 \text{ V.}$ นำมาใช้ไม่ได้ เนื่องจากจะทำให้ $V_{GS} < V_T (1 \text{ V.} < 2 \text{ V.})$ ทรานซิสเตอร์จะ cut-off และ ไม่ทำงาน ดังนั้นค่าที่ใช้ได้จริงก็คือ $v_{GS}=3~{
m V}$. เท่านั้น

จากรูปวงจร พบว่า
$$V_G=0$$
 V. ดังนั้น V_S จะมีค่าเท่ากับ $V_S=V_G-V_{GS}=0$ - $3=$ -3 V.

ดังนั้น ค่า
$$R_S$$
 ควรจะมีค่าเท่ากับ $R_S = \frac{V_S - (-V_{SS})}{i_D} = \frac{-3+5}{0.4 \times 10^{-3}} = 5 \, \mathrm{k}\Omega$

และ ค่า
$$R_D$$
 ควรจะมีค่าเท่ากับ $R_D = \frac{V_{DD} - V_D}{i_D} = \frac{5 - 1}{0.4 \times 10^{-3}} = 10 \, \mathrm{k}\Omega$

<u>ตัวอย่างที่ 5.5</u> จากวงจร PMOS ในรูปทางด้านขวา จงออกแบบวงจรให้ ทำงานในย่านอิ่มตัว โดยกำหนดให้ PMOS มีกระแสเดรน i_D เท่ากับ 0.5 mA. $V_{TP}=-1$ V. , $K_p=0.5$ mA/V² และให้ $\lambda=0$ V. 1 และให้หาความ ต้านทาน R_D ที่มีค่ามากที่สุด ที่ยังคงทำให้ทรานซิสเตอร์ตังนี้ทำงานในย่าน อิ่มตัว ถ้าให้ $V_D=3$ V. $\frac{2}{5}$ บากสมการ (5.8) $i_D=K_p(v_{SG}+V_{TP})^2$ แทนค่า i_D , K_p และ V_{TP} ลงไปได้ $0.5=0.5(v_{SG}-1)^2$ จะได้

ลงไปได้ $0.5 = 0.5(v_{SG} - 1)^2$ จะได้

$$(v_{SG}-1)^2-1=0$$
 แยกตัวแปรได้ $v_{GS}(v_{GS}-2)=0$, $v_{SG}=0$ V. และ ± 2 V.

แต่ค่า $v_{SG}=0$ V. นำมาใช้ไม่ได้ เนื่องจาก E-PMOS ต้องมีค่า v_{SG} เป็นบวกเสมอ ดังนั้นค่าที่ใช้ได้จริงก็คือ $v_{SG} = +2 \text{ V. } i \text{ ni ni u}$

จากนิยามความต่างศักย์ที่ว่า $v_{SG}=v_S-v_G$ แต่จากวงจรพบว่า $v_S=5~{
m V}$. ก็จะหาค่า v_G ได้เท่ากับ

$$v_G = v_S - v_{SG} = 5 - 2 = +3 \text{ V}.$$

จากค่าแรงดันที่ตกคร่อม \mathbf{R}_1 และ \mathbf{R}_2 มีค่าเท่ากับ 5 \mathbf{V} . และ 3 \mathbf{V} . (เทียบกับ GND) เขียนเป็นสมการความสัมพันธ์

$$R_1 = 3 \text{ VO}$$

$$R_2 = 3 \text{ VO}$$

$$R_2 = 3 \text{ Multiple divider ได้ว่า}$$

$$\frac{5R_2}{R_1 + R_2} = 3 \text{ ก็จะได้ } \frac{R_1}{R_2} = \frac{2}{3} \text{ นั้นก็คือ } R_1 \text{ และ } R_2 \text{ สามารถมีค่า}$$
ได้มากมาย เช่น
$$R_1 = 2 \text{ k}\Omega \text{ และ } R_2 = 3 \text{ k}\Omega \text{ หรือ } R_1 = 4 \text{ k}\Omega \text{ และ } R_2 = 6 \text{ k}\Omega$$
หรือ $R_1 = 20 \text{ k}\Omega$ และ $R_2 = 30 \text{ k}\Omega$

แต่ในทางปฏิบัติ R_1 และ R_2 ควรมีค่าสูงๆ เพื่อให้เกิดการสูญเสียพลังงานน้อยที่สุด เช่น R_1 = 2 $M\Omega$ และ R_2 = 3 $M\Omega$

ค่า
$$R_D$$
 หาใค้จากสมการ $R_D = \frac{V_D}{i_D} = \frac{3 \text{ V.}}{0.5 \times 10^{-3} \text{ A.}} = 6 \text{ k}\Omega$

เงื่อนไขต่ำสุดที่ PMOS จะทำงานในย่านอิ่มตัวก็คือ $V_D=v_G-V_{TP}$ แทนค่าถงไปได้ $V_D(\max)=3-(-1)=4~{
m V}.$

ดังนั้นค่า
$$R_D$$
 ที่สูงที่สุดเท่าที่จะเป็นไปได้คือ $R_D = \frac{4 \, {
m V.}}{0.5 \, {
m mA.}} = 8 \, {
m k} \Omega$