

LQ150X1DG16 TFT LCD Module

(Model No.: LQ150X1DG16)

Spec. Issue Date: October 4, 2000

PREPARED BY : DATE		SPEC No. LD-11104B
	CHADO	FILE No.
	SHARP	ISSUE : Oct. 4 2000
APPROVED BY: DATE	TTT Limit Contains	PAGE : 18 pages
	TFT Liquid Crystal Display Group SHARP CORPORATION	APPLICABLE GROUP
	SIAId Cold OlATTON	TFT Liquid Crystal Display
	SPECIFICATION	Group
	DEVICE SPECIFICATION FOR	
	TFT-LCD Module	
	IFI-LCD MOdule	
	MODEL No.	
T	O1EOV1DO1	\boldsymbol{c}
	LQ150X1DG1	\mathcal{O}
		."
☐ CUSTOMER'S APPROVAL	•	
_ COOTOMER O MIROVIE		· .
DATE		
•		
nv.	PRESENTED	be
ВУ	BY	C. Shirm
	K. Shiono	nt Department General Manager
		nent Engineering Department. III
	TFT Divi	į
	TFT LIQU	ID CRYSTAL DISPLAY GROUP

SHARP CORPORATION

LQ150X	1DG16					
SPEC No.	DATE	REVISED		SUMMARY		
		No.	PAGE			
LD-11104	Jan. 27 1999	_	_	_	lst Issue	
LD-11104A	Mar. 4 1999	1	12	Chromaticity of RED, GREEN and BLUE		
LD-11104B	Oct. 4 2000	A 2	14	Add Packing Form	.]	
			15	Add Others (Lot No. Label)		
			18	Add Packing Form (Fig. 6)		
		†			.	
					·	
					-	
					 	
 					. 	
}					-	
		 				
		ļ				
	T .	1	1			

1. Application

This specifications applies to a color TFT-LCD module, LO150X1DG16.

- © These specification sheets are the proprietary product of SHARP CORPORATION("SHARP) and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.
- ©The device listed in these specification sheets was designed and manufactured for use in OA equipment.
- ◎ In case of using the device for applications such as control and safety equipment for transportation(aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.
- ©Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment(trunk lines), nuclear power control equipment and medical or other equipment for life support.
- ©SHARP assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in these specification sheets.
- ©Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit and a back light unit. Graphics and texts can be displayed $1024 \times 3 \times 768$ dots on a panel with 262,144 colors by supplying 36 bit data signals(6 bit \times 2pixel \times RGB), four timing signals, +5V DC supply voltage for TFT-LCD panel driving and supply voltage for back light.

It is a wide viewing-angle-module (Vertical viewing angle:120° Horizontal viewing angle:140°). Input signal timing conform with 75Hz mode of VESA standard.

3. Mechanical Specifications

Parameter	Specifications	Unit
Display size	38 (Diagonal)	cm
	15.0 (Diagonal)	inch
Active area	304.1 (H)×228.1 (V)	mm
Pixel format	1024 (H)×768 (V)	pixel
	(1 pixel=R+G+B dots)	
Pixel pitch	0.297 (H)×0.297 (V)	mm
Pixel configuration	R,G,B vertical stripe	
Display mode	Normally white	
Unit outline dimensions *1	355(W)×257.9 (H)×15.9(D)	mm
Mass	1400 (max.)	g
Surface treatment	Anti-glare and hard-coating 2H	
	(Haze value = 28)	

^{*1.}Note: excluding back light cables .

The thickness of module (D) doesn't contain the projection .

^{*2.}Outline dimension is shown in Fig.1

4. Input Terminals

4-1. TFT-LCD panel driving

CNI

The module-side connector : FX8-60S-SV (Hirose Electric Co., Ltd.)

The user-side connector : FX8-60P-SV (Hirose Electric Co., Ltd.)

Pin No.	Symbol	Function	Remark
1	GND	GND	
2	RB0	RED even data signal (LSB)	
3	RB1	RED even data signal	
4	RB2	RED even data signal	
5	RB3	RED even data signal	
6	RB4	RED even data signal	
7	RB5	RED even data signal (MSB)	
8	GND	GND	
9	GB0	GREEN even data signal (LSB)	
10	GB1	GREEN even data signal	-
11	GB2	GREEN even data signal	
12	GB3	GREEN even data signal	
13	GB4	GREEN even data signal	
14	GB5	GREEN even data signal (MSB)	
15	GND	GND	
16	BB0	BLUE even data signal (LSB)	
17	BB1	BLUE even data signal	
18	BB2	BLUE even data signal	
19	BB3	BLUE even data signal	
20	BB4	BLUE even data signal	
21	BB5	BLUE even data signal (MSB)	
22	GND	GND	
23	RA0	RED odd data signal (LSB)	
24	RA1	RED odd data signal	
25	RA2	RED odd data signal	
26	RA3	RED odd data signal	
27	RA4	RED odd data signal	
28	RA5	RED odd data signal (MSB)	
29	GND	GND	
30	GA0	GREEN odd data signal (LSB)	
31	GA1	GREEN odd data signal	
32	GA2	GREEN odd data signal	
33	GA3	GREEN odd data signal	
34	GA4	GREEN odd data signal	
35	GA5	GREEN odd data signal (MSB)	
36	GND	GND	
37	BA0	BLUE odd data signal (LSB)	
38	BA1	BLUE odd data signal	
39	BA2	BLUE odd data signal	
40	BA3	BLUE odd data signal	

Pin No.	Symbol	Function	Remark
41	BA4	BLUE odd data signal	
42	BA5	BLUE odd data signal (MSB)	
43	GND	GND	
44	GND	GND	
45	GND	GND	
46	Vsync	Vertical synchronous signal	
47	Hsync	Horizontal synchronous signal	
48	ENAB	Data enable signal (Signal to settle the display position)	[Note 1]
49	GND	GND	
50	GND	GND	
51	CKB	Clock B signal for sampling even data signal	
52	CKA	Clock A signal for sampling odd data signal	
53	GND	GND	
54	GND	GND (Reserve)	_
55	GND	GND (Reserve)	
56	MODE	Timing signal select	[Note 1]
57	Vcc	+5V power supply	
58	Vcc	+5V power supply	
59	Vcc	+5V power supply	
60	Vcc	+5V power supply	

*The shielding case is connected with GND in the module.

[Note 1] In case MODE is fixed "Low", the display start timing is determined by Vsync and ENAB.

The vertical display start position and horizontal display start position are determined as described in 7-1-2, 7-1-3. Do not keep ENAB "high" during operation.

In case MODE is fixed "High" or "Open", the display start timing is determined by only ENAB.

4-2. Back light driving

CN2,CN3

The module-side connector: BHR-03VS-1(JST)

The user-side connector : SM02(8.0)B-BHS-1(JST)

Pin no.	symbol	Function				
1	V _{HIGH}	Power supply for lamp (High voltage side)				
2	NC	This is electrically opened.				
3	V _{LOW}	Power supply for lamp (Low voltage side)				

5. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input voltage	V_{I}	Ta=25℃	$-0.3 \sim +5.5$	v	[Note1]
+5.0V supply voltage	Vcc	Ta=25℃	0~+6	V	
Storage temperature	Tstg	_	$-25 \sim +60$	က	[Note2]
Operating temperature (Ambient)	Topa	_	0 ~ +50	ဗ	

[Note1] CKA, CKB, RA0 \sim RA5, GA0 \sim GA5, BA0 \sim BA5, RB0 \sim RB5, GB0 \sim GB5, BB0 \sim BB5,

Hsync, Vsync, ENAB, MODE

[Note2] Humidity: 95%RH Max. (Ta≤40°C)

Maximum wet-bulb temperature at 39°C or less (Ta>40°C)

No condensation.

6. Electrical Characteristics

6-1. TFT-LCD panel driving

Ta	=25	${\mathbb C}$

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Vcc	Supply voltage	Vcc	+4.5	+5.0	+5.5	V	[Note1]
	Current dissipation	Icc	-	300	450	mA	[Note2]
Permi	ssive input ripple voltage	V_{RF}			100	mVp-p	Vcc=+5.0V
Input	voltage (Low)	V_{IL}	GND		0.6	V	[Note3]
Input	voltage (High)	V _{IH}	2.6		Vcc	V	[Note3]
Input	current (Low)	I_{IL}	1	-	10	μΑ	VI=GND [Note3]
				_	400	μΑ	VI=GND [Note4]
Input	current (High)	I _{IH}	-	_	10	μΑ	V _I =Vcc [Note3]
			-		600	μΑ	V _I =Vcc [Note4]

※ 3.3(v) logic is recommended as

input signals.

[Note1]

On-off conditions for supply voltage

 $0 \le t1 \le 10 \text{ms}$

t4≧1s

Vcc-dip conditions

- 1) 2.7V≦Vcc<4.5V td≦10ms
- 2) Vcc<2.7V

Vcc-dip conditions should also follow the on-off conditions

[Note2] Typical current situation: 16-gray-bar pattern.

Vcc=+5.0V,

Gray scale: GS(4n)

 $n=0\sim15$

The explanation of each gray scale ,GS(4n), is described below section (8).

RGB RGB RGB RGB
G\$0 G\$4 G\$8 G\$56 G\$60

[Note3] CKA, CKB, RA0~RA5, GA0~GA5, BA0~BA5, RB0~RB5, GB0~GB5, BB0~BB5, Hsync, Vsync, ENAB

[Note4] MODE

Input circuit of MODE is shown in right figure.

6-2. Back light driving

The back light system is an edge-lighting type with a couple of CCFT (Cold Cathode Fluorescent Tube). The characteristics of the lamp are shown in the following table.

The value mentioned below is at the case of one CCFT.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Lamp current range	IL	2.5	6.0	6.5	mArms	[Note1]
Lamp voltage	V _L	_	690		Vrms	Ta=25℃
Lamp power consumption	PL	_	4.1	_	W	[Note2]
Lamp frequency	FL	20	60	70	KHz	[Note3]
Kick-off voltage	Vs		_	850	Vrms	Ta=25°C [Note4]
		_	_	1450	Vrms	Ta=0℃【Note4】
Lamp life time	LL	50000		_	hour	[Note5]

[Note1] A lamp can be light in the range of lamp current shown above.

Maximum rating for current is measured by high frequency current measurement equipment connected to V_{LOW} at circuit showed below. (Note: To keep enough kick-off voltage and necessary steady voltage for CCFT.)

Lamp frequency: 20∼60kHz Ambient temperature: 0∼50°C

- [Note2] Referential data per one CCFT by calculation ($I_L \times V_L$). The data doesn't include loss at inverter.
- [Note3] Lamp frequency of inverter may produce interference with horizontal synchronous frequency, and this may cause horizontal beat on the display. Therefore, adjust lamp frequency, and keep inverter as far as from module or use electronic shielding between inverter and module to avoid interference.
- [Note4] The voltage above this value should be applied to the lamp for more than 1 second to startup. Otherwise the lamp may not be turned on .
- [Note5] Lamp life time is defined as the time when either ① or ② occurs in the continuous operation under the condition of $Ta=25^{\circ}$ C and $I_L=6.0\pm0.5$ mArms.
 - ① Brightness becomes 50% of the original value under standard condition.
 - ② Kick-off voltage at Ta=0°C exceeds maximum value, 1450Vrms.
- (Note) The performance of the back light, for example life time or brightness, is much influenced by the characteristics of the DC-AC inverter for the lamp. When you design or order the inverter, please make sure that a poor lighting caused by the mismatch of the back light and the inverter (miss-lighting, flicker, etc.) never occurs. When you confirm it, the module should be operated in the same condition as it is installed in your instrument.

7. Timing characteristics of input signals

7-1. H-V mode (MODE = "Low")

Timing diagrams of input signal are shown in Fig.2.

7-1-1. Timing characteristics

Parameter Symbol Min. Typ. Max. Unit Remark								
Pa	Parameter		Min.	Тур.	Max.	Unit	Remark	
Clock A	Frequency	1/Tc	25	32.5	40	MHz		
Clock B	High time	Tch	9			ns		
	Low time	Tcl	9		_	ns		
	Duty ratio	Tch/ Tcl	0.67	1.00	1.50			
Data	Setup time	Tds	8		_	ns		
	Hold time	Tdh	8			ns		
Horizontal	Cycle	TH	16.6	20.7		μs		
sync. signal			528	672	860	clock		
	Pulse width	THp	2	68		clock		
Horizontal da	ta start	THbp		148		clock		
Hsync-Clock	phase difference	TFc	5	_	_	ns		
Vertical	Cycle	TV		16.7		ms	[Note1]	
sync. signal			773	806	990	line		
	Pulse width	TVp	11	6	_	line		
Vertical data	start	TVbp	35	35	35	line		
Hsync-Vsync	phase difference	TVh	1		ТН-ТНр	clock		

[Note1] In case of lower frequency, the deterioration of display quality, flicker etc may be occurred.

7-1-2. Horizontal display position

① The horizontal display position is determined by ENAB signal and the input data corresponding to the rising edge of ENAB signal is displayed at the left end of the active area.

Parameter		symbol	Min.	Тур.	Max.	Unit	Remark
ENAB signal	Setup time	Tes	8		Tc-10	ns	
	Pulse width	Тер	10	512	512	clock	
Hsync-ENAB	ohase difference	THe	THp+1	148	TH-512	clock	

²Do not keep ENAB "Low" during operation.

7-1-3. Vertical display position

The vertical display start position is the 35th line from the falling edge of Vsync .(cf. Fig.2)

Fig.2 Input Signal Waveforms(H-V Mode)

7-2. ENAB mode (MODE = "High" or "Open")

Timing diagrams of input signal are shown in Fig.3.

7-2-1. Timing characteristics

	Parameter	Symbol	Min.	Тур.	Max.	Unit
Clock A	Frequency	1/Tc	25	32.5	40	MHz
Clock B	High time	Tch	9	-	-	ns
	Low time	Tcl	9	_		ns
	Duty ratio	Tch/ Tcl	0.67	1.00	1.50	
Data	Setup time	Tds	8	_	_	ns
	Hold time	Tdh	8	_	_	ns
Data enable	Setup time	Tes	8	-	Tc-10	ns
signal	Horizontal period	TH	16.6	20.7	- -	μs
			528	672	860	clock
	Horizontal period	THp	10	512	512	clock
	(High)		·			
	Vertical period	TV	770	806	990	line
	Vertical blanking width	TVb	2	38	222	line

[Note] In case of using the long vertical period, the deterioration of display quality, flicker etc., may be occurred.

7-3. Input Data Signals and Display Position on the screen

Graphics and texts can be displayed $1024 \times 3 \times 768$ dots on a panel with 262,144 colors by supplying 36 bit data signal (6bit/color [64 gray scale] x 3 x 2 pixels).

Display position of input data (H, V)

7-4. Sleep Mode

This LCD module stops operation, and the picture of the LCD module becomes wholly white, if ENAB signal stays "Low" for over 0.5 sec. Follow the above input signal timing for normal operation.

8. Input Signals, Basic Display Colors and Gray Scale of Each Color

0. m	Colors &	Colors & Data signal																		
	Gray scale		D AO	DAI	DAG	DAS	D 4 4	DAS	CAO				<u> </u>	C 4 5	240	D. 1	D.40		D 4 4	
	Gray scale	1							GA0											
	Black	Scale	0	0	0	0	0	0	GB0 0	0	0	0	0	0		0				
	Blue	<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
B	Green		0	0	0	0	0	0.	1	1	1				0	$\frac{1}{0}$	0	1	1	1
Basic Color	Cyan	_	0	0	0	0	0	0	1	1	1	1	1	1				0	0	0
Col	Red		1	1	1	1	 1	1	0	0	0	0	0	0	0	0	0	0	0	1
¥	Magenta		1	1	1	1	1	1	0	0	0	0	0	0	1		•			0
	Yellow		1	1	1	1	1	1	1	1	1			1		1	1	1	1	1
	White	_	1	1	1	1	1	1	1	<u></u> 1	1	1 1	1 1	1	0 1	0	0	0	0	0
-	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	Û	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ray S	Darker	GS2	0	1	0	0	0	0	0	0	0	0	_ 	0	0	0	0	0	0	0
Gray Scale of Red	Û	→			<u> </u>						_ <u>,</u>						1			
of F	Û	→	-		<u> </u>						<u>-</u>						<u>`</u>			
Red	Brighter	GS61	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS63	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Û	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
y Scale	Darker	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
ale of	បិ	→			4						↓						4			
f Green	Û	\rightarrow			, ↑						V						V			
een	Brighter	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
	û	GS62	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	Green	GS63	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	បិ	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
/ Sca	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
le of	Û	_ ↓	Ψ			Ψ						V								
Gray Scale of Blue	û	↓		V				4							↓					
	Brighter	GS61	0	0	0	0,	0	0	0	0	0	0	0	0	1	0	1	1	1	1
	Û	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	Blue	GS63	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

^{0:}Low level voltage,

Each basic color can be displayed in 64 gray scales from 6 bit data signals. According to the combination of total 18 bit data signals, the 262,144-color display can be achieved on the screen.

^{1:} High level voltage

1

9. Optical Characteristics

Ta=25°C, Vcc=+5V	Ta=25°C	Vcc=+5V
------------------	---------	---------

		,					~	
Par	ameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Viewing	Horizontal	θ 21, θ 22	CR>5	60	70	_	Deg.	[Notel,4]
angle -	Vertical	θ 11		45	60		Deg.	
range		θ 12		50	60		Deg.	
Cont	rast ratio	C Rn	θ =0°	200	300	-		[Note2,4]
Response	Rise	τι			10	25	m s	[Note3,4]
time	Decay	τd			35	50	m s	
Chromaticity of		x		0.283	0.313	0.343		[Note4]
white		у		0.299	0.329	0.359		
Chromaticity of		х		0.548	0.578	0.608		[Note4]
red		у		0.302	0.332	0.362		
Chromaticity of		х		0.280	0.310	0.340		[Note4]
green		у		0.520	0.550	0.580		
Chromaticity of		х		0.123	0.153	0.183		[Note4]
blue		y		0.100	0.130	0.160		
Luminance of white		YLI		150	200	_	cd/m ²	I _L =6.0mArms
			ļ					[Note4]
White U	Jniformity	δw		_		1.35		[Note5]

*The measurement shall be executed 30 minutes after lighting at rating .

(typical condition:I_L=6.0mArms)

The optical characteristics shall be measured in a dark room or equivalent state with the method shown in Fig.4 below.

[Note1] Definitions of viewing angle range:

[Note2] Definition of contrast ratio:

The contrast ratio is defined as the following.

Contrast Ratio (CR) =

Luminance (brightness) with all pixels white

Luminance (brightness) with all pixels black

[Note3] Definition of response time:

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

[Note4] This shall be measured at center of the screen.

[Note5] Definition of white uniformity:

White uniformity is defined as the following with five measurements

(A∼E).

δ w = Maximum Luminance of five points (brightness)

Minimum Luminance of five points (brightness)

10. Handling Precautions

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- Since the front polarize is easily damaged, pay attention not to scratch it.
- d) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
- e) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth. .
- f) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- g) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.
- h) This module has its circuitry PCBs on the rear side and should be handled carefully in order not to be stressed.
- i) Observe all other precautionary requirements in handling components.
- j) At lamp unit exchange, the screw behind the module need to be removed. So, please consider the necessity for cabinet design.
- k) When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc. So, please avoid such design.
- 1) Duaring the module aging, don't put protection film on the module surface.

11.Packing form ▲ 2

	Form ①	Form ②
Product country	JAPAN	TAIWAN
Piling number of cartons	5 cartons	5 cartons
Packing quantity in one carton	5 modules	5 modules
Carton size [mm]	410 (W) × 500 (D) × 255 (H)	420 (W)×500 (D)×270 (H)
Total mass of one carton filled	8850 g	9200 g
with full modules		
Packing form is shown	Fig .5	Fig .6

12. Reliability test items

No.	Test item	Conditions
1	High temperature storage test	Ta=60°C 240h
2	Low temperature storage test	Ta=-25°C 240h
3	High temperature	Ta=40°C ; 95%RH 240h
	& high humidity operation test	(No condensation)
4	High temperature operation test	Ta=50°C 240h
		(The panel temp. must be less than 60°C)
5	Low temperature operation test	Ta=0°C 240H
6	Vibration test	Frequency: 10~57Hz/Vibration width (one said): 0.075mm
	(non- operating)	: 58~500Hz/Gravity : 9.8m/s ²
		Sweep time: 11minutes
		Test period: 3 hours (1 hours for each direction X,Y,Z)
7	Shock test	Max, gravity: 490m/s ²
	(non-operating)	Pulse width: 11 ms, sine wave
		Direction: $\pm X, \pm Y, \pm Z$ once for each direction

[Result Evaluation Criteria]

Under the display quality test conditions with normal operation state, these shall be no change which may affect practical display function.

13. Others

- 2) Adjusting volume have been set optimally before shipment, so do not change any adjusted value. If adjusted value is changed, the specification may not be satisfied.
- 3) Disassembling the module can cause permanent damage and should be strictly avoided.
- 4) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- 5) When any question or issue occurs, it shall be solved by mutual discussion.

cmpty tray

Θ

(0)

@

 Θ

6

П О Я

Fig. 6 PACKING FORM

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

NORTH AMERICA

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903

Fast Info: (1) 800-833-9437 www.sharpsma.com

TAIWAN

SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341

Fax: (886) 2-2577-7326/2-2577-7328

CHINA

SHARP Microelectronics of China (Shanghai) Co., Ltd. 28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 **Head Office:**

No. 360, Bashen Road, Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp

EUROPE

SHARP Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com

SINGAPORE

SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

HONG KONG

SHARP-ROXY (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk

Shenzhen Representative Office:

Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China Phone: (86) 755-3273731

Phone: (86) 755-327373 Fax: (86) 755-3273735

JAPAN

SHARP Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com

KOREA

SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8

Fax: (82) 2-711-5819