Application Problem 1:

Application: Compute $\int_{0}^{3} x^{2} dx$ using

- Rectangle rule with 1, 2 and 3 subintervals
- Trapezoidal rule with 1, 2 and 3 subintervals
- Simpson rule with 2 and 4 subintervals

Compare your result with the exact solution (i.e., compute the relative error) and comment on your solution.

• Exact Solution

$$y = \int_0^3 x^2 dx = \left[\frac{1}{3}x^3\right]_0^3 = 9$$

• Rectangle Rule Solution

Rectangle Rule for Integration

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \sum_{i=1}^n h_i f(\frac{x_{i-1} + x_i}{2})$$

Where:

n =Number of Subintervals

$$h_i = (x_i - x_{i-1})$$

$$h = \frac{x_{\text{final}} - x_{\text{initial}}}{n}$$

= Length of a Single Subinterval

1 Subinterval:

$$h = \frac{3-0}{1} = 3$$
 therefore $y = 3\left(\frac{0+3}{2}\right)^2 = 6.75$

2 Subintervals:

$$h = \frac{3-0}{2} = 1.5$$
 therefore $y = 1.5\left(\frac{0+1.5}{2}\right)^2 + 1.5\left(\frac{1.5+3}{2}\right)^2 = 8.4375$

3 Subintervals:

$$h = \frac{3-0}{3} = 1$$
 therefore $y = 1\left(\frac{0+1}{2}\right)^2 + 1\left(\frac{1+2}{2}\right)^2 + 1\left(\frac{2+3}{2}\right)^2 = 8.75$

• Trapezoidal Rule Solution

Trapezoidal Rule for Integration

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \sum_{i=1}^n \frac{h_i}{2} \left(f(x_{i-1}) + f(x_i) \right)$$

Where:

n =Number of Intervals

$$h_i = (x_i - x_{i-1})$$

$$h = \frac{x_{\text{final}} - x_{\text{initial}}}{x_{\text{initial}}}$$

= Length of a Single Subinterval

1 Subinterval:

$$h = \frac{3-0}{1} = 3$$
 therefore $y = \frac{3}{2}(0^2 + 3^2) = 13.5$

2 Subintervals:

$$h = \frac{3-0}{2} = 1.5$$
 therefore $y = \frac{1.5}{2} (0^2 + 1.5^2) + \frac{1.5}{2} (1.5^2 + 3^2) = 10.125$

3 Subintervals:

$$h = \frac{3-0}{3} = 1 \quad \text{therefore} \quad y = \frac{1}{2} \left(0^2 + 1^2 \right) + frac12 \left(1^2 + 2^2 \right) + frac12 \left(2^2 + 3^2 \right) = 9.5$$

• Simpson Rule Solution

Simpson Rule for Integration

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{2}{3} I_{\text{rectangular}} + \frac{1}{3} I_{\text{trapezoidal}}$$

Where:

 $I_{\text{rectangular}} = \text{Rectangle Rule Estimate}$ $I_{\text{trapezoidal}} = \text{Trapezoidal Rule Estimate}$

2 Subintervals:

$$h = \frac{3 - 0}{2} = 1.5$$

therefore

$$I_{\text{rectangular}} = 1.5 \left(\frac{0+1.5}{2}\right)^2 + 1.5 \left(\frac{1.5+3}{2}\right)^2 = 8.4375$$

$$I_{\text{trapezoidal}} = \frac{3-0}{2} = 1.5 = \frac{1.5}{2} (0^2 + 1.5^2) + \frac{1.5}{2} (1.5^2 + 3^2) = 10.125$$

As a result

$$y = \frac{2}{3} \, I_{\rm rectangular} + \frac{1}{3} \, I_{\rm trapezoidal}$$

$$=\frac{2}{3}\left(8.4375\right)+\frac{1}{3}\left(10.125\right)$$

 $= 9 \leftarrow$ This is our exact solution!

Application Problem 2:

Application: Compute $\int_{0}^{3} x^2 dx$ and $\int_{-\pi/2}^{\pi/2} \cos(x) dx$ using the 1- and 2-point GQ rule

Compare your result with the exact solution (i.e., compute the relative error) and comment on your solution.

• Exact Solution

$$y = \int_0^3 x^2 dx = \left[\frac{1}{3}x^3\right]_0^3$$

• 1 Point Gauss Quadrature Rule

Such that $w_1 = 2$ and $\xi_1 = 0$:

$$I = \int_0^3 x^2 dx = \frac{3}{2} \int_{-1}^1 f\left(\frac{3\xi + 3}{2}\right) d\xi$$
$$= \frac{3}{2} \int_{-1}^1 \left(\frac{3\xi + 3}{2}\right)^2 d\xi$$
$$= 2\left(\frac{3(0) + 3}{2}\right)^2 = \frac{18}{4} = 4.5$$

• 2 Point Gauss Quadrature Rule

Such that
$$w_1=w_2=1$$
 , $\xi_1=-\frac{\sqrt{3}}{3}$ and $\xi_2=\frac{\sqrt{3}}{3}$:

$$I = w_1 f(\xi_1) + w_2 f(\xi_2)$$

$$= \frac{3}{2} \left(\frac{3\left(-\frac{\sqrt{3}}{3}\right) + 3}{2} \right)^2 + \frac{3}{2} \left(\frac{3\left(\frac{\sqrt{3}}{3}\right) + 3}{2} \right)^2$$

$$=9$$

• Exact Solution

$$y = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(x) dx = \left[\sin(x) \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 2$$

First we must do a Coordinate Transformation to get this in the form we want.

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(x) dx = \frac{\pi}{2} \int_{-1}^{1} \cos\left(\frac{\pi}{2}\xi\right) d\xi$$

• 1 Point Gauss Quadrature Rule

Such that $w_1 = 2$ and $\xi_1 = 0$:

$$I = \frac{\pi}{2} \left[\cos(\frac{\pi}{2} \xi_1) w_1 \right]$$
$$= \frac{\pi}{2} \left[\cos(\frac{\pi}{2} \xi_1) w_1 \right]$$
$$= 3.14$$

• 2 Point Gauss Quadrature Rule

Such that
$$w_1 = w_2 = 1$$
, $\xi_1 = -\frac{\sqrt{3}}{3}$ and $\xi_2 = \frac{\sqrt{3}}{3}$:
$$I = \frac{\pi}{2} \left[w_1 \cos(\frac{\pi}{2} \, \xi_1) + w_2 \cos(\frac{\pi}{2} \, \xi_2) \right]$$

$$= \frac{\pi}{2} \left[1 \cos\left(\frac{\pi}{2} \, (-\frac{\sqrt{3}}{3})\right) + 1 \cos\left(\frac{\pi}{2} \, (\frac{\sqrt{3}}{3})\right) \right]$$

$$= 1.9352 \approx 3\% \text{ off}$$

The solution alternates between over estimate and under estimate.

Application Problem 3:

Application: Compute $\int_{-1}^{1} \int_{-1}^{1} \exp(2x)^* \ln(3+y) dy dx$ using the 1*1, 2*2 and 3*3 GQ rule Compare your result with the exact solution ($I_{ex} = 7.829967$) (i.e., compute the relative error) and comment on your solution.

• Exact Solution

$$I_{\text{exact}} = \int_{-1}^{1} \int_{-1}^{1} e^{2x} \cdot \ln(3+y) \, dy \, dx = 7.829967$$

• 1*1 Point Gauss Quadrature Rule

Such that
$$w=w_1\times w_1=4$$
 and $\xi_1=\eta_1=0$:
$$I=w\ f(\xi_1,\eta_1)$$

$$=4\ e^0\cdot \ln(3)=4.39449$$

• 2*2 Point Gauss Quadrature Rule

=7.532767

Such that
$$w_k = 1$$
 and $(\xi_k, \eta_k) = \left(\pm \frac{\sqrt{3}}{3}, \pm \frac{\sqrt{3}}{3}\right)$:
$$I = \sum w_k f(\xi_k, \eta_k)$$

$$= 1 \exp\left[2\left(-\frac{\sqrt{3}}{3}\right)\right] \ln\left(3 + \left(-\frac{\sqrt{3}}{3}\right)\right) + 1 \exp\left[2\left(-\frac{\sqrt{3}}{3}\right)\right] \ln\left(3 + \left(\frac{\sqrt{3}}{3}\right)\right)$$

$$+ 1 \exp\left[2\left(\frac{\sqrt{3}}{3}\right)\right] \ln\left(3 + \left(\frac{\sqrt{3}}{3}\right)\right) + 1 \exp\left[2\left(\frac{\sqrt{3}}{3}\right)\right] \ln\left(3 + \left(-\frac{\sqrt{3}}{3}\right)\right)$$