Nome & Cognome:	
-----------------	--

Algebra Lineare, Esame Finale Gennaio 24, 2024

- Tutto il lavoro deve essere unicamente vostro.
- L'utilizzo di calcolatrici è vietato.
- L'esame dura 2 ore.
- Scrivete il vostro nome su tutte le pagine, nel caso qualche foglio si staccasse.
- Controllate di avere tutte le 10 pagine dell'esame.
- Ogni domanda a risposta multipla vale 1 punto.
- Le risposte alle domande aperte valgono 11 punti l'una.
- Le domande aperte verranno corrette solo a chi totalizzi almeno 6 punti su 10 nella parte a crocette.

Buon Lavoro!

	PER	FAVOR	E MAF	CATE	LE RIS	SPOSTE CON	UNA X, non un cerchio!
1.	(a)	(ullet)	(c)	(d)	(e)		
2.	(ullet)	(b)	(c)	(d)	(e)		
3.	(a)	(b)	(c)	(ullet)	(e)		
4.	(a)	(b)	(ullet)	(d)	(e)		
5.	(a)	(b)	(c)	(ullet)	(e)		
6.	(a)	(b)	(c)	(ullet)	(e)		
7.	(ullet)	(b)	(c)	(d)	(e)		
8.	(a)	(b)	(c)	(ullet)	(e)		
9.	(a)	(b)	(c)	(d)	(ullet)		
10.	(a)	(ullet)	(c)	(d)	(e)		
						Non scriver	e qua sotto!
						Risp. Multip	le
						Risp. Aper	te
						Tota	le

Nome & Cognome: _____

Risposta multipla

1.(1 pt.) Siano $a, b, c, d, e, f \in \mathbb{R}_3[x]$ definiti da

$$a(x) = x - 1,$$
 $b(x) = x + 2,$ $c(x) = 2x^2 - 2,$ $d(x) = x^2 - x,$ $e(x) = 2x^3 + 1,$ $f(x) = x^3 - x^2,$

e sia U il sottospazio $\{p(x) \in \mathbb{R}_3[x] ; p(1) = 0\}$. Allora vale

(a)
$$U = \operatorname{Span}(a, c)$$
. (b) $U = \operatorname{Span}(a, c, f)$. (c) $U = \operatorname{Span}(c, d, e, f)$.

(d)
$$U = \operatorname{Span}(b, e, f)$$
. (e) $U = \operatorname{Span}(a, c, d)$.

Soluzione 1. $p(x) \in U \Leftrightarrow p(1) = 0 \Leftrightarrow p(x) = (x-1)q(x)$ per un qualche q(x) di grado al più due:

$$U = \{p(x) = (x-1)(Ax^2 + Bx + C)\} = \operatorname{Span}(x-1, x(x-1), x^2(x-1)).$$

La dimensione di U è dunque 3, e l'unica opzione generata da tre elementi in U è (b).

Soluzione 2. Notiamo che tra i polinomi proposti, $b, e \notin U$ per cui (c), (d) sono sbagliate. Notiamo anche che i polinomi nelle opzioni (a) e (e) hanno tutti al massimo grado 2, ma ci sono chiaramente polinomi di grado 3 in U (per esempio f(x) o il polinomio $x^3 - 1$), allora anche queste opzioni sono sbagliate. Ci rimane solo l'opzione (b).

 ${\bf 2.}(1~{\rm pt.})$ Dato $z=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i,$ allora z^{12} è uguale a:

(a)
$$-1$$
. (b) $-2i$. (c) $\frac{1}{2^6}(1-i)$.

(d)
$$\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
. (e) $2^{12}i$.

Soluzione 1. Notiamo che in coordinate polari $z=e^{\frac{3}{4}\pi i}$ per cui

$$z^{12} = e^{12 \cdot \frac{3}{4}\pi i} = e^{9\pi i} = (e^{\pi i})^9 = (-1)^9 = -1.$$

Soluzione 2. Calcoliamo

$$\begin{split} z^2 &= \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) = \frac{1}{2} + \frac{1}{2}i^2 - 2 \cdot \frac{1}{2}i = 0 - 1 \cdot i = -i \\ \text{per cui } z^{12} &= (z^2)^6 = (-i)^6 = (i^2)^3 = (-1)^3 = -1. \end{split}$$

3.(1 pt.) La matrice associata all'applicazione lineare
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x+y \\ x+2y \end{pmatrix}$ rispetto alla base $\mathcal{B} = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$ è:

(a)
$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 0 & 1 \\ -3 & 4 \end{pmatrix}$$
. (b) $[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 1 & -3 \\ 4 & 0 \end{pmatrix}$. (c) $[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 1 & 4 \\ 0 & -3 \end{pmatrix}$.

(d)
$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 0 & -3 \\ 1 & 4 \end{pmatrix}$$
. (e) $[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 0 & 4 \\ 1 & -3 \end{pmatrix}$.

Soluzione 1. Sia \mathcal{S} la base standard. Allora $[T]_{\mathcal{B}}^{\mathcal{B}} = [I]_{\mathcal{B}}^{\mathcal{S}}[T]_{\mathcal{S}}^{\mathcal{S}}[I]_{\mathcal{S}}^{\mathcal{B}} = ([I]_{\mathcal{S}}^{\mathcal{B}})^{-1}[T]_{\mathcal{S}}^{\mathcal{S}}[I]_{\mathcal{S}}^{\mathcal{B}}$ si calcola:

$$\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & -3 \\ 1 & 4 \end{pmatrix}$$

Soluzione 2. Denotiamo $v_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ e $v_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. $[T]_{\mathcal{B}}^{\mathcal{B}}$ ha colonne $[T(v_1)]_{\mathcal{B}}$, $[T(v_2)]_{\mathcal{B}}$.

Abbiamo
$$T(v_1) = \begin{pmatrix} 1 \\ 2 \end{pmatrix} = v_2 = 0 \cdot v_1 + 1 \cdot v_2$$
 per cui $[T(v_1)]_{\mathcal{B}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

 $T(v_2) = \begin{pmatrix} 4 \\ 3 \end{pmatrix} = 4v_2 - 3v_1$ (il coefficiente di v_2 lo si legge ad esempio dal primo coefficiente

di
$$T(v_2)$$
), per cui $[T(v_2)]_{\mathcal{B}} = \begin{pmatrix} -3\\4 \end{pmatrix}$. La matrice $[T]_{\mathcal{B}}^{\mathcal{B}}$ è pertanto la (d).

4.(1 pt.) Scriviamo $x=(x_1,x_2), y=(y_1,y_2)\in\mathbb{C}^2$. Quale delle seguenti è un prodotto hermitiano?

(a)
$$g(x,y) = 2ix_1\overline{y}_1 + 2x_1\overline{y}_2 + 2x_2\overline{y}_1 + x_2\overline{y}_2$$
.

(b)
$$g(x,y) = x_1y_1 + 2ix_1y_2 - 2ix_2y_1 + 2x_2y_2$$

(c)
$$g(x,y) = 2x_1\overline{y}_1 + ix_1\overline{y}_2 - ix_2\overline{y}_1 - x_2\overline{y}_2$$
.

(d)
$$g(x,y) = x_1 \overline{y}_1 + 2x_1 \overline{y}_2 - 2x_2 \overline{y}_1 + 2x_2 \overline{y}_2$$
.

(e)
$$g(x,y) = x_1\overline{y}_1 + 2ix_1\overline{y}_2 + 2ix_2\overline{y}_1 + x_2\overline{y}_2$$
.

Soluzione. La soluzione (b) non è antilineare nella seconda variabile, pertanto è sbagliata. Per le rimanenti, le matrici associate ai prodotti sono:

$$(a)\left(\begin{array}{cc}2i&2\\2&1\end{array}\right),(c)\left(\begin{array}{cc}2&i\\-i&-1\end{array}\right),(d)\left(\begin{array}{cc}1&2\\-2&2\end{array}\right),(e)\left(\begin{array}{cc}1&2i\\2i&1\end{array}\right)$$

Di queste, l'unica matrice Hermitiana (${}^{t}A = \bar{A}$) è la (c).

5.(1 pt.) La dimensione dello spazio $T^s(3)$ delle matrici 3×3 triangolari superiori, è:

(a) Nove. (b) Tre.

(c) Zero. (d) Sei.

 $T^{s}(3)$ non ha una dimensione perché non è uno spazio vettoriale. (e)

Soluzione. Sappiamo che $T^s(3)$ è un sottospazio di M(3). Inoltre

$$T^{s}(3) = \left\{ \begin{pmatrix} a_{1} & a_{2} & a_{3} \\ 0 & a_{4} & a_{5} \\ 0 & 0 & a_{6} \end{pmatrix} \middle| a_{1}, \dots, a_{6} \in \mathbb{K} \right\} = \operatorname{Span}(E_{11}, E_{12}, E_{13}, E_{22}, E_{23}, E_{33})$$

dove E_{ij} denota la matrice in M(3) con coefficiente (i,j) uguale a 1 e gli altri uguali a zero. Poiche le matrici E_{ij} sono indipendenti tra loro, abbiamo dim $T^s(3) = 6$.

6.(1 pt.) Siano

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & -1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Quale identità vale?

BA = A. (a)

(b) AB = BA.

(c) BA = B.

AB = B. (d)

(e) AB = A.

Soluzione. Calcoliamo $AB \in BA$:

$$AB = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad BA = \begin{pmatrix} 0 & 1 & -2 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

Delle varie opzioni, l'unica valida è AB = B.

7.(1 pt.) Dato il prodotto scalare g(p(x), q(x)) = q(1)p(1) - q(0)p(0) su $\mathbb{R}_1[x]$, e la base $\mathcal{B} = \{x + 1, 2\}, \text{ allora:}$

(a)
$$[g]_{\mathcal{B}} = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}$$
. (b) $[g]_{\mathcal{B}} = \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$. (c) $[g]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$.

(c)
$$[g]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$
.

(d)
$$[g]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
. (e) $[g]_{\mathcal{B}} = \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}$.

(e)
$$[g]_{\mathcal{B}} = \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}$$

Nome & Cognome: _____

Soluzione. Calcoliamo g(x+1,x+1)=4-1=3, g(x+1,2)=4-2=2, g(2,2)=2-2=0. Allora

$$[g]_{\mathcal{B}} = \begin{pmatrix} g(x+1, x+1) & g(x+1, 2) \\ g(2, x+1) & g(2, 2) \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}.$$

8.(1 pt.) Il nucleo della mappa lineare $T: \mathbb{R}_2[x] \to \mathbb{R}_2[x], T(ax^2 + bx + c) = bx^2 + cx$ è:

(a) $\{\}$.

(b) $\mathbb{R}_1[x]$.

(c) Span(x+1, x-1).

(d) $\operatorname{Span}(x^2)$.

(e) $\mathbb{R}_2[x] \setminus \mathbb{R}_1[x]$.

Soluzione. Calcoliamo

$$\ker T = \{ p(x) = ax^2 + bx + c \; ; \; a, b, c \in \mathbb{R}, T(ax^2 + bx + c) = bx^2 + cx = 0 \}$$

$$= \{ p(x) = ax^2 + bx + c \; ; \; a, b, c \in \mathbb{R}, b = c = 0 \}$$

$$= \{ p(x) = ax^2 \; ; \; a \in \mathbb{R} \}$$

$$= \operatorname{Span}(x^2).$$

9.(1 pt.) La matrice

$$A = \left(\begin{array}{ccc} 3 & -4 & 4 \\ 2 & -3 & 2 \\ 0 & 0 & -1 \end{array}\right).$$

ha autovalore $\lambda = -1$. Qual è l'autospazio che corrisponde a questo autovalore?

- (a) Span $\left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right)$.
- (b) Span $\left(\begin{pmatrix} 2\\1\\-1 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right)$.

(c) Span $\left(\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \right)$.

- (d) Span $\left(\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right)$.
- (e) Span $\left(\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right)$.

Soluzione 1. Calcoliamo l'autospazio $V_{-1} = \ker(A + I)$

$$\ker(A+I) = \ker\left(\begin{array}{cc} 4 & -4 & 4\\ 2 & -2 & 2\\ 0 & 0 & 0 \end{array}\right) = \left\{\left(\begin{array}{c} x\\ y\\ z \end{array}\right) \middle| \begin{array}{c} 4x - 4y + 4z = 0\\ 2x - 2y + 2z = 0 \end{array}\right\}$$
$$= \left\{\left(\begin{array}{c} x\\ y\\ z \end{array}\right) \middle| \begin{array}{c} x - y + z = 0\\ z - 2y + 2z = 0 \end{array}\right\}$$
$$= \left\{\left(\begin{array}{c} x\\ y\\ z \end{array}\right) \middle| \begin{array}{c} x = s - t\\ y = s\\ z = t \end{array}\right\}$$
$$= \operatorname{Span}\left(\left(\begin{array}{c} 1\\ 0\\ -1 \end{array}\right), \left(\begin{array}{c} 1\\ 1\\ 0 \end{array}\right)\right).$$

Soluzione 2. Notiamo che A + I ha rango 1, allora l'autospazio V_{-1} ha dimensione 3-1=2. Opzioni (c) e (d) sono allora sbagliate. Per il primo vettore in opzione (a)

e il secondo vettore in (b) calcoliamo
$$A \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$$
 e $A \cdot \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$, allora questi vettori non sono autovettori con autovalore $\lambda = -1$; opzioni (a) e (b) sono

sbagliate. Rimane solo l'opzione (e).

10.(1 pt.) Il sistema lineare con matrice completa

$$A = \left(\begin{array}{cc|c} 1 & 2 & 3 & 10 \\ 4 & 5 & 6 & 11 \\ 7 & 8 & 9 & 12 \end{array}\right)$$

ha un numero di soluzioni pari a:

- (a) Una.
- (b) Infinite, che dipendono da 1 parametro.
- (c) Zero.
- (d) Infinite, che dipendono da 2 parametri.
- (e) Un numero finito, maggiore di 1.

Soluzione. Applichiamo Gauss:

$$\begin{pmatrix} 1 & 2 & 3 & 10 \\ 4 & 5 & 6 & 11 \\ 7 & 8 & 9 & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 10 \\ 0 & -3 & -6 & -29 \\ 0 & -6 & -12 & -58 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 10 \\ 0 & -3 & -6 & -19 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Poiché non ci sono pivot sull'ultima colonna, le soluzioni esistono. Poiché tra le prime tre colonne ce n'è una senza pivot, le soluzioni sono infinite e dipendono da un parametro.

Risposta aperta

Per ricevere punteggio parziale, dovete mostrare il vostro lavoro!

11.(11 pts.) Si consideri la seguente matrice

$$A = \begin{pmatrix} -1 & k & k^2 - k \\ k & -k & k - 1 \\ 2 & -2 & -2 \end{pmatrix}$$

in $M(3,\mathbb{R})$ dove k è un parametro reale.

- (1) Determinare per quali valori di k la matrice A è invertibile.
- (2) Posto k = 1, calcolare gli autovalori di A, specificando la loro molteplicità algebrica e geometrica, e stabilire se la matrice A è diagonalizzabile.
- (3) Posto k = -1, calcolare ${}^tA A$, e stabilire se la matrice A è diagonalizzabile.

Soluzione.

(1) Sappiamo che A è invertibile se e solo se det $A \neq 0$. Calcoliamo dunque det A:

$$\det A = 2 \det \begin{pmatrix} -1 & k & k^2 - k \\ k & -k & k - 1 \\ 1 & -1 & -1 \end{pmatrix}$$

$$A^1 \to A^1 + A^2 = 2 \det \begin{pmatrix} k - 1 & k & k^2 - k \\ 0 & -k & k - 1 \\ 0 & -1 & -1 \end{pmatrix}$$

$$= 2(k - 1) \det \begin{pmatrix} -k & k - 1 \\ -1 & -1 \end{pmatrix}$$

$$= 2(k - 1)(k + (k - 1))$$

$$= 2(k - 1)(2k - 1)$$

Alternativamente, senza mosse di Gauss, sviluppando lungo l'ultima riga, si ottiene

$$\det A = 2 \det \begin{pmatrix} k & k^2 - k \\ -k & k - 1 \end{pmatrix} + 2 \det \begin{pmatrix} -1 & k^2 - k \\ k & k - 1 \end{pmatrix} - 2 \det \begin{pmatrix} -1 & k \\ k & -k \end{pmatrix}$$

$$= 2[k(k-1) + k(k^2 - k) - (k-1) - k(k^2 - k) - (k-k^2)]$$

$$= 2[(k^2 - k) - (k-1) - (k-k^2)]$$

$$= 2[2k^2 - 3k + 1]$$

$$= 2(k-1)(2k-1)$$

Questo determinante è dunque nonzero precisamente quando k è diverso sia da 1 che da 1/2. (Allora A è invertibile per $k \in \mathbb{R} \setminus \{1, 1/2\}$.)

(2) Per k = 1 la matrice A diventa:

$$A = \left(\begin{array}{rrr} -1 & 1 & 0\\ 1 & -1 & 0\\ 2 & -2 & -2 \end{array}\right)$$

Calcoliamo gli autovalori di A, iniziando con il polinomio caratteristico:

$$p_A(\lambda) = \det \begin{pmatrix} -1 - \lambda & 1 & 0 \\ 1 & -1 - \lambda & 0 \\ 2 & -2 & -2 - \lambda \end{pmatrix} = (-2 - \lambda) \det \begin{pmatrix} -1 - \lambda & 1 \\ 1 & -1 - \lambda \end{pmatrix}$$
$$= -(2 + \lambda)(\lambda^2 + 2\lambda) = -\lambda(\lambda + 2)^2$$

Pertanto gli autovalori di A sono $\lambda_1 = 0$ e $\lambda_2 = -2$, con molteplicità algebriche $m^a(0) = 1$ e $m^a(-2) = 2$. Ricordando che $1 \ge m^g(\lambda) \ge m^a(\lambda)$ per ogni autovalore λ , abbiamo dunque che la molteplicità geometrica di $0 \ \text{è} \ m^g(0) = 1$. La molteplicità geometrica di $-2 \ \text{è} \ \text{invece}$:

$$m^{g}(-2) = \dim \ker(A + 2I) = \dim \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{array}{c} x + y = 0 \\ x - y = 0 \end{array} \right\}$$

$$= \dim \operatorname{Span} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 1$$

Alternativamente

$$m^g(-2) = 3 - \text{rk}(A+2I) = 3 - \text{rk}\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & -2 & 0 \end{pmatrix} = 3 - 2 = 1.$$

Poiché $m^a(-2) \neq m^g(-2)$, A non è diagonalizzabile.

(3) Per k = -1 la matrice A diventa:

$$A = \left(\begin{array}{rrr} -1 & -1 & 2\\ -1 & 1 & -2\\ 2 & -2 & -2 \end{array}\right)$$

La matrice é simmetrica. Allora ${}^tA-A=0$ e per il teorema spettrale, A è diagonalizzabile su \mathbb{R} .

Nome & Cognome:

12.(11 pts.) Siano $\pi_1 = \{2x + y - z = 1\}$ e $\pi_2 = \{x + 2y + z = 2\}$ due piani in \mathbb{R}^3 .

- (1) Calcolare la retta $r = \pi_1 \cap \pi_2$ in forma $r = P + \operatorname{Span}(v)$.
- (2) Dimostrare che r e il piano $\pi_3 = \{se_1 + t(e_2 + e_3) ; s, t \in \mathbb{R}\}$ sono incidenti.
- (3) Calcolare la proiezione ortogonale del vettore v dal punto (1) sul piano π_3 .
- (4) Calcolare l'angolo fra r e il piano π_3 .

Soluzione.

(1) La retta r è data dai punti $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ che soddisfino le condizioni di π_1 e π_2 , ovvero:

$$r = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{array}{c} 2x + y - z = 1 \\ x + 2y + z = 2 \end{array} \right\}$$

Risolvendo il sistema usando mosse di Gauss:

$$\left(\begin{array}{cc|cc|c} 2 & 1 & -1 & 1 \\ 1 & 2 & 1 & 2 \end{array}\right) \rightarrow \left(\begin{array}{cc|cc|c} 2 & 1 & -1 & 1 \\ 0 & 3/2 & 3/2 & 3/2 \end{array}\right) \rightarrow \left(\begin{array}{cc|cc|c} 2 & 1 & -1 & 1 \\ 0 & 1 & 1 & 1 \end{array}\right) \rightarrow \left(\begin{array}{cc|cc|c} 2 & 0 & -2 & 0 \\ 0 & 1 & 1 & 1 \end{array}\right)$$

Le soluzioni sono dunque date da

$$\left\{ \begin{array}{l} x = z \\ y = 1 - z \end{array} \right. \Rightarrow \left(\begin{array}{l} x \\ y \\ z \end{array} \right) = \left(\begin{array}{l} t \\ 1 - t \\ t \end{array} \right) = \left(\begin{array}{l} 0 \\ 1 \\ 0 \end{array} \right) + t \left(\begin{array}{l} 1 \\ -1 \\ 1 \end{array} \right)$$

Otteniamo allora la forma prescrtta

$$r = P + \operatorname{Span}(v) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \operatorname{Span} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

(2) Se v e i due generatori di π_3 (e_1 & $e_2 + e_3$) sono linearmente indipendenti, allora per un risultato visto in lezione (Prop 9.2.7 di Martelli), $r = P + \operatorname{Span}(v)$ e π_3 sono incidenti. Notiamo che

$$\det(e_1|e_2 + e_3|v) = \det\begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & -1\\ 0 & 1 & 1 \end{pmatrix} = \det\begin{pmatrix} 1 & -1\\ 1 & 1 \end{pmatrix} = 2 \neq 0$$

allora i tre vettori sono indipendenti e i spazi affini sono incidenti.

Alternativamente, l'intersezione di r con π_3 consiste nell'insieme di π_3 che soddisfino le equazioni che definiscono r. Poiché i punti di π_3 sono della forma $\begin{pmatrix} t \\ s \\ s \end{pmatrix}$, imporre che questi stiano in r equivale a imporre che

$$\left\{ \begin{array}{ll} 2t+s-s=1 \\ t+2s+s=2 \end{array} \right. \Rightarrow \left\{ \begin{array}{ll} t=1/2 \\ s=1/2 \end{array} \right.$$

Visto che esiste una soluzione, la retta r e il piano π_3 sono incidenti.

(3) Nella parte (1) abbiamo trovato $v = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.

Notando che π_3 é un sottospazio lineare, con base ortogonale $\{e_1, e_2 + e_3\}$ la proiezione di v su π_3 è data da

$$p(v) = \frac{\langle v, e_1 \rangle}{\|e_1\|^2} e_1 + \frac{\langle v, e_2 + e_3 \rangle}{\|e_2 + e_3\|^2} (e_2 + e_3) = 1e_1 + 0(e_2 + e_3) = e_1$$

(4) L'angolo fra r e π_3 equivale all'angolo θ tra v e p(v), ovvero

$$\cos \theta = \frac{\langle v, p(v) \rangle}{\|v\| \cdot \|p(v)\|} = \frac{\langle v, e_1 \rangle}{\|v\| \cdot \|e_1\|} = \frac{1}{\sqrt{3}}$$

pertanto $\theta = \arccos(1/\sqrt{3})$.