



# High pressure process for manufacturing of Polyethylene

Rohit Raosaheb Dahatonde

Laxminarayan Institute of Technology

#### **Background & Description:**

The word Polymer means many units. Thus polymers are composed of a large number of basic units (small simple molecules) called monomers. The monomers are joined together (end-to-end) by means of chemical reaction to form a polymer. Thus polymer is made up of thousands of monomers joined together to form a large molecule of colloidal dimension called macromolecule. The naturally occurring polymers include protein, cellulose, resins, starch and lignin. There are also artificially prepared polymers such as Polyethylene, Poly vinyl chloride, Polystyrene, Polyester etc...

Polyethylene is produced by the Addition polymerization of ethylene monomers. Under suitable condition of temperature or pressure a large number of ethylene molecules polymerize to form large polymer. The double bond present in the molecule of the monomer ethylene disappears in this self-addition process to form Polyethylene.

The process is carried out at very high pressure. The ethylene is mixed with small percentage of oxygen i.e. 0.02 to 0.08 which act as a catalyst. The mixture is then compressed to get high pressure and fed to Reactor, in the reactor conversion is taking place and polyethylene is formed. The polyethylene and unconverted ethylene is taken to separator from where unconverted ethylene is removed. And Polyethylene from separator is cooled to get product.

### **Reaction:**





## **Flowsheet:**



High pressure process for manufacturing of Polyethylene

## **Results:**

## The stream wise results are as follows:

| Stream wise Results                     |         |          |         |         |         |             |              |          |        |
|-----------------------------------------|---------|----------|---------|---------|---------|-------------|--------------|----------|--------|
| Object                                  | oxygen  | S-05     | S-04    | S-03    | S-02    | S-01        | Polyethylene | Ethylene |        |
| Temperature                             | 25      | 89.3815  | 89.3815 | 89.3815 | 89.3815 | 24.8605     | 3.56398      | 25       | С      |
| Mass Flow                               | 1000    | 1000     | 1990    | 2000    | 2000    | 2000        | 1000         | 1000     | g/s    |
| Molar Flow                              | 31.2512 | 35.6506  | 66.5413 | 66.8978 | 66.8978 | 66.8978     | 35.6506      | 35.6466  | mol/s  |
| Volumetric Flow                         | 764530  | 6.0105   | 12.1646 | 1330.86 | 12.2125 | 1.63582E+06 | 13.9913      | 872060   | cm 3/s |
| Molar Flow (Mixture) / Ethylene         | 0       | 0.356466 | 35.2901 | 35.6466 | 35.6466 | 35.6466     | 0.356466     | 35.6466  | mol/s  |
| Mass Flow (Mixture) / Ethylene          | 0       | 10       | 990     | 1000    | 1000    | 1000        | 10           | 1000     | g/s    |
| Molar Flow (Vapor Phase) / Ethylene     | 0       | 0.356466 | 35.2901 | 0       | 35.6466 | 35.6466     | 0.0347934    | 35.6466  | mol/s  |
| Mass Flow (Vapor Phase) / Ethylene      | 0       | 10       | 990     | 0       | 1000    | 1000        | 0.976064     | 1000     | g/s    |
| Molar Flow (Mixture) / Oxygen           | 31.2512 | 0        | 31.2512 | 31.2512 | 31.2512 | 31.2512     | 0            | 0        | mol/s  |
| Mass Flow (Mixture) / Oxygen            | 1000    | 0        | 1000    | 1000    | 1000    | 1000        | 0            | 0        | g/s    |
| Molar Flow (Vapor Phase) / Oxygen       | 31.2512 | 0        | 31.2512 | 0       | 31.2512 | 31.2512     | 0            | 0        | mol/s  |
| Mass Flow (Vapor Phase) / Oxygen        | 1000    | 0        | 1000    | 0       | 1000    | 1000        | 0            | 0        | g/s    |
| Molar Flow (Mixture) / polyethylene     | 0       | 35.2941  | 0       | 0       | 0       | 0           | 35.2941      | 0        | mol/s  |
| Mass Flow (Mixture) / polyethylene      | 0       | 990      | 0       | 0       | 0       | 0           | 990          | 0        | g/s    |
| Molar Flow (Vapor Phase) / polyethylene | 0       | 35.2941  | 0       | 0       | 0       | 0           | 35.2941      | 0        | mol/s  |
| Mass Flow (Vapor Phase) / polyethylene  | 0       | 990      | 0       | 0       | 0       | 0           | 990          | 0        | g/s    |