

Machine Learning

K-NEAREST NEIGHBORS DECISION TREE

Nguyen Quoc Thai

CONTENT

- (1) K-Nearest Neighbors (KNN)
- (2) KNN Applications
- (3) Decision Tree
- **(4) Summary**

!

- > KNN is one of the simplest supervised machine learning algorithms
- Lazy Learning:
 - ☐ Does not "LEARN" until the test example is given
 - ☐ A new data is predicted based on K-Nearest Neighbors from the training data

[!

(!

[]

What is the KNN Algorithm?

Classification

Classify input variables to identify discrete output variables (labels, categories)

Will it be hot or cold tomorrow?

(!

KNN: Classification Approach

Training Data

(!

KNN: Classification Approach

Step 1: Look at the data

Training Data

Petal_Length	Petal_Width	Label
1.4	0.2	0
1.3	0.4	0
4	1	1
4.7	1.4	1

2.4	0.8
-	•••

KNN: Classification Approach

Step 2: Calculate distances

Training Data

Petal_Length	Petal_Width	Label	Distance
1.4	0.2	0	1.166
1.3	0.4	0	1.170
4	1	1	1.612
4.7	1.4	1	2.376

[

KNN: Classification Approach

Step 3: Find neighbours

Training Data

Petal_Length	Petal_Width	Label	Distance
1.4	0.2	0	1.166
1.3	0.4	0	1.170
4	1	1	1.612
4.7	1.4	1	2.376

Test Data

2.4 0.8

Ranking points

Find the nearest neighbours by ranking points by increasing distance

!

KNN: Classification Approach

Step 4: Vote on labels

Training Data

Petal_Length	Petal_Width	Label	Distance
1.4	0.2	0	1.166
1.3	0.4	0	1.170
4	1	1	1.612
4.7	1.4	1	2.376

Test Data

2.4	0.8	-	0
-----	-----	---	---

Vote on the predicted class labels based on the class of the k nearest neighbors

[

KNN: Regression Approach

Step 1: Look at the data

Training Data

Length	Width	Price
2.0	2.0	2.0
3.0	3.0	2.5
4.0	3.0	3.5
5.0	2.0	5.0

3.0	2.0
-----	-----

(!

KNN: Regression Approach

Step 2: Calculate distances

Training Data

Length	Width	Price	Distance
2.0	2.0	2.0	1.0
3.0	3.0	2.5	1.0
4.0	3.0	3.5	1.4
5.0	2.0	5.0	2.0

KNN: Regression Approach

Step 3: Find neighbours

Training Data

Length	Width	Price	Distance
2.0	2.0	2.0	1.0
3.0	3.0	2.5	1.0
4.0	3.0	3.5	1.4
5.0	2.0	5.0	2.0

Test Data

3.0 2.0	
---------	--

Ranking points

	1 st
	2 nd
———	3 rd
—	4 th

Find the nearest neighbours by ranking points by increasing distance

KNN: Regression Approach

Step 4: Vote on labels

Training Data

Length	Width	Price	Distance
2.0	2.0	2.0	1.0
3.0	3.0	2.5	1.0
4.0	3.0	3.5	1.4
5.0	2.0	5.0	2.0

Test Data

3.0	2.0	-	3.25
-----	-----	---	------

$$Y_{\text{pred}} = \frac{1}{k} \sum_{x \in NB} y_x$$

K=4 Nearest neighbours

1 st
$$Y_{pred}$$
2 nd $= \frac{1}{4}(2.0 + 2.5 + 3.5 + 5.0)$
3 rd $= 3.25$

Compute the mean value of the k nearest neighbors

KNN: Summary

Step 1: Look at the data Step 2: Calculate distances Step 3: Find neighbours

Step 4: Vote on labels

Ranking points

K=3 Nearest neighbours # of votes

Find the nearest neighbours by ranking points by increasing distance

Vote on the predicted class labels based on the class of the k nearest neighbors

Regression

Ranking points

points by increasing distance

Find the nearest neighbours by ranking

K=4 Nearest neighbours

Compute the mean value of the k nearest neighbors

!

Geometry Distance Functions

Euclidean (p=2)

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

➤ Manhattan (p=1)

$$d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} |x_i - y_i|$$

Minkowski (p-norm)

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

> Chebyshev (p=)

$$d(\mathbf{x}, \mathbf{y}) = \lim_{p \to \infty} \left(\sum_{i=1}^{n} |x_i - y_i|^p \right)^{\frac{1}{p}}$$
$$= \max_{i} |x_i - y_i|$$

[

Feature Scaling (Normalization)

> Standardize the range of independent variables (feature of data)

Training Data

Strong Influence

Petal_Length	L_Distance	Petal_Width	W_Distance	Label	Distance
1.4	1.8	0.2	0.4	0	1.844
1.3	1.9	0.4	0.2	0	1.910
4	0.8	1	0.4	1	0.894
4.7	1.3	1.4	0.8	1	1.526

R	ank
	3
	4
	1
	2

Test Data

3.2

0.6

(!

Feature Scaling (Normalization)

> Standardize the range of independent variables (feature of data)

Training Data

MinMaxScaler Normalization

Petal_Length	L_Distance	Petal_Width	W_Distance	Label	Distance
0.03	0.53	0.00	0.33	0	0.624
0.00	0.56	0.17	0.16	0	0.582
0.79	0.23	0.66	0.33	1	0.402
1.00	0.44	1.00	0.67	1	0.801

Rank	
3	
2	
1	
4	

Test Data

0.56

0.33

(!

Searching in KNN

- > Training dataset: N samples in D dimensions
- ➢ Brute Force: Naïve neighbor search − O[DN²]

Source: https://varshasaini.in/kd-tree-and-ball-tree-knn-algorithm/

[

How to find the optimal value of K in KNN?

Choose K based on the evaluation on the validation set (Accuracy, Error, F-Score,...)

(!

KNN for Regression: "Diabetes" Dataset

- Sample: 442
- Features: 10
- \rightarrow Target: 25 346
- > R2-Score (Validation)

(!

KNN for Classification: "Iris" Dataset

- Sample: 150
- Features: 4
- > Classes: 3 (50 per class)
- Accuracy (Validation)

[!

- > Sample: 50.000 movie review
- Classes: 2 Positive and Negative (25.000 per class)
- > Accuracy, F1-Score

!

KNN for Text Classification: "IMDB" Dataset

- Bag of Words (BoW)
- **Document-Level:** Consider text as a bag (collection) of words
- > Represented by a V-dimensional

Use: the number of occurrences of the word in the document

!

- Bag of Words (BoW)
- **Document-Level:** Consider text as a bag (collection) of words
- > Represented by a V-dimensional

!

- Bag of Words (BoW)
- Out of vocabulary (OOV)

!

- Bag of Words (BoW)
- Representation without considering frequency (Binary Representation)

!

Decision Tree

- A possible decision tree for the data
- Described by IF-ELSE sets

(!

Decision Tree

- Each internal node: attribute X (feature)
- Each branch from a node: value of X
- Each leaf node: predict value

Feature 1

[!

Decision Tree

Example: Play Tennis dataset

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

!

Decision Tree

Example: Play Tennis dataset Outlook Sunny Rain Overcast Humidity Yes Wind High Strong Weak Normal Yes No No Yes

What prediction would we make for <outlook=Sunny, temperature=Hot, humidity=High, wind=Weak>?

!

Constructing Decision Tree: ID3

(!

Constructing Decision Tree: ID3

Iterative Dichotomiser 3 Information Gain Entropy Top-Down Feature 1 Value 13 Value 11 Value 12 Feature 2 Feature 3 Yes Value 22 Value 21 Value 31 Value 32 No Yes Yes No

(!

Constructing Decision Tree: ID3

- Entropy is a measure of randomness/uncertainty of a set
- Data: a set S of examples with C many classes
- Probability vector $\mathbf{a} = [\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_c]$ is the class distribution of the set S
- > Entropy of the set S:

$$E(S) = -\sum_{c \in C} p_c \log_2 p_c$$

If a set S of examples has

Some dominant classes => small entropy of the class distribution

Equiprobable classes => high entropy of the class distribution

(!

Constructing Decision Tree: ID3

Entropy of the set S:

$$E(S) = -\sum_{c \in C} p_c \log_2 p_c$$

Example:

S: 14 examples (9: class c1, 5: class c2)

$$=> E(S) = -(9/14).log2(9/14) - (5/14).log2(5/14) = 0.94$$

(!

Constructing Decision Tree: ID3

- Entropy = 0=> all samples class 1 (or 2)
- Entropy = 1=> num samples class 1 = class 2
- Entropy \in (0,1) => num samples class 1 \neq class 2

!

Constructing Decision Tree: ID3

> **Information Gain (IG)** on knowing the value of the feature F in S:

Gain(S, F) = E(S) -
$$\sum_{f \in F} \frac{|S_f|}{|S|} E(S_f)$$

 \triangleright S_f donates the subset of elements of S for which feature F has value f

[!

Constructing Decision Tree: ID3

Information Gain (IG)

> Gain(S, Wind) with Wind: Weak or Strong

$$S = \{9: Yes, 5: No\}$$

$$S_{\text{weak}} = \{6: \text{Yes}, 2: \text{No}\}$$

$$W_{\text{strong}} = \{3: \text{Yes}, 3: \text{No}\}$$

=> Gain(S, Wind)

$$= E(S) - \frac{8}{14}E(S_{\text{weak}}) - \frac{6}{14}E(S_{\text{strong}})$$

$$= 0.94 - \frac{8}{14} * 0.81 - \frac{6}{14} * 1 = 0.048$$

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

[!

Constructing Decision Tree: ID3

Information Gain (IG)

Gain(S, Outlook) = 0.246

Gain(S, Temperature) = 0.029

Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Node 1

 $S_{\text{sunny}} = \{2+, 3-\}$

Constructing Decision Tree: ID3

Information Gain (IG)

Fine "Node 1": {Temperature, Humidity, Wind?

 $Gain(S_{sunny}, Temperature) = 0.57$

 $Gain(S_{sunny}, Humidity) = 0.57$

 $Gain(S_{sunny}, Wind) = 0.57$

$$S_{\text{sunny}} = \{2+, 3-\}$$

Constructing Decision Tree: ID3

Sunny

> Information Gain (IG)

Fine "Node 1": {Temperature, Humidity, Wind?

 $Gain(S_{sunny}, Temperature) = 0.57$

$Gain(S_{sunny}, Humidity) = 0.57$

 $Gain(S_{sunny}, Wind) = 0.57$

!

Constructing Decision Tree: ID3

Test = <outlook=Sunny, temperature=Hot, humidity=High, wind=Weak> => No

!

Overfitting in Decision Trees

Desired: a DT that is not too big in size, yet fits the training data reasonably

47

Source

Overfitting in Decision Trees

- Mainly two approaches
 - ☐ Prune while building the tree (Stopping Early)
 - ☐ Prune after building the tree (Post-Pruning)
- > Criteria for judging which nodes could potentially be pruned: evaluate validation set

!

Decision Tree for Iris Dataset

SUMMARY

KNN

Predicted based on K-Nearest Neighbors from the training data through Geometry Distance Functions

Decision Tree

- ➤ Build a decision tree (ID3)
- Defined by a hierarchy of rules (in form of a tree)

Thanks! Any questions?