Описание протокола обмена и структур данных регистратора электронного MTM-160PЭ.

Связь с регистратором осуществляется с использованием интерфейсов RS-232 или RS-485. Во втором случае возможна работа нескольких регистраторов в одной сети. Протокол обмена в обеих случаях одинаков. На ПЭВМ используется стандартный драйвер последовательных портов, предоставляемый операционной системой Windows.

Алгоритм протокола получения архивных данных:

- 1) ПЭВМ выдает адрес выбранного регистратора (1 байт);*
- 2) регистратор принимает выданный адрес и в случае совпадения с собственным адресом выдает его (1 байт);
- 3) ПЭВМ принимает выданный регистратором адрес; при несовпадении выданного и принятого адреса возникает ошибочная ситуация с прекращением сеанса связи;
- 4) ПЭВМ выдает номер канала выбранного регистратора, данные по которому требуется получить (1 байт);**
- 5) регистратор с заданным ранее адресом принимает номер канала и выдает его (1 байт);
- 6) ПЭВМ принимает выданный регистратором номер; при несовпадении выданного и принятого номера канала возникает ошибочная ситуация с прекращением сеанса связи:
- 7) ПЭВМ выдает команду начала передачи данных (1 байт см. Коды команд);
- 8) регистратор принимает команду и выдает блок *двоичных* данных (512 байт см. Структуру блока данных);
- 9) ПЭВМ принимает блок данных; если все требуемые блоки данных приняты; перейти к пункту 13), иначе ПЭВМ выдает команду на передачу следующего блока данных (1 байт см. Коды команд);
- 10)если за определенный отрезок времени ПЭВМ не получит очередной блок данных, она выдает команду на повторную передачу текущего блока данных (1 байт см. Коды команд);
- 11) пункт 10 повторяется N раз или пока блок не будет успешно принят:
- 12) пункты 8-11 повторяются, пока не будут приняты все затребованные пользователем блоки данных;
- 13)ПЭВМ передает команду завершения сеанса связи (1 байт см. Коды команд). ***

Структура блока данных

Размер	Tun	Описание
2 байта	Integer (16-bit)	Значение №1
	•••	
2 байта	Integer (16-bit)	Значение №208
64 байта	-	Не используется
1 байт	Byte (для 6-канального)	Год (2 цифры)
	BCD (для 2-канального)	
1 байт	Byte (для 6-канального)	Месяц
	BCD (для 2-канального)	
1 байт	Byte (для 6-канального)	День
	BCD (для 2-канального)	
1 байт	Byte (для 6-канального)	Час
	BCD (для 2-канального)	

Размер	Tun	Описание
1 байт	Byte (для 6-канального)	Минуты
	BCD (для 2-канального)	
1 байт	Byte (для 6-канального)	Секунды
	BCD (для 2-канального)	
4 байта	-	Не используется
1 байт	Byte	Период снятия архивных значений (от 1 до 60 секунд)
2 байта	Integer (16-bit)	Максимальное значение шкалы, в пределах которой
		лежат снятые значения
2 байта	Integer (16-bit)	Минимальное значение шкалы, в пределах которой
		лежат снятые значения
2 байта	Integer (16-bit)	Максимальное значение технологической уставки
		для текущего блока данных
2 байта	Integer (16-bit)	Минимальное значение технологической уставки для
		текущего блока данных
1 байт	-	Не используется
1 байт	Byte	Код единицы измерения снятых значений
1 байт	-	Не используется
1 байт	Byte	Делитель для пересчета целочисленных данных в
		формат с плавающей точкой (представляет собой
		степень числа 10)
2 байта	-	Не используется
1 байт	Byte	Номер канала
6 байт	-	Не используется

Таким образом, размер блока данных равен 512 байтам.

Примечания:

- 1) * значение адреса регистратора может лежать в пределах 0..253.
- 2) ** значение номера канала может лежать в пределах 0..5 для 6-канального регистратора или 0..1 для 2-канального.
- 3) *** команду можно передавать на любой стадии обмена *после выдачи номера канала*, если необходимо экстренно завершить обмен с регистратором.
- 4) Обмен осуществляется с передачей бита паритета. При передаче адреса регистратора бит паритета установлен в 0 (SPACEPARITY), во всех остальных случаях он установлен в 1 (MARKPARITY).
- 5) Формат BCD одним байтом кодируется двузначное десятичное число; формула перекодирования: значение $_{10}$ = (значение $_{BCD}$ div 16) * 10 + значение $_{BCD}$ mod 16,
 - где div целочисленное деление; mod остаток от деления.
- 6) Значения параметров, уставок и шкал передаются в целочисленном виде (2 байта). Для преобразования их к формату с плавающей точкой используется *делитель* (см. Структуру блока данных).

Коды команд (в шестнадцатиричном виде):

- 2 начало передачи;
- 4 завершение сеанса связи;
- 17 запрос следующего блока данных;
- 18 повторный запрос блока данных.