Работа 3.5.1.

Изучение плазмы газового разряда в неоне

Изучение плазмы газового разряда в неоне

Цель работы: изучение вольт-амперной характеристики тлеющего разряда; изучение свойств плазмы методом зондовых характеристик.

Оборудование: стеклянная газоразрядная трубка, наполненная изотопом неона, высоковольтный источник питания, источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

Экспериментальная установка. Схема установки для исследования плазмы газового разряда в неоне представлена на рисунке 1. Стеклянная трубка имеет холодный (ненакаливаемый) полый катод, три анода и геттерный узел - специальный баллон, на внутреннюю поверхность которого напылена газопоглощающая пленка (геттер). Трубка наполнена изотопом неона 22 Ne при давлении 2 мм.рт.ст. Катод и один из анодов (I или II) с помощью переключателя Π_1 подключается через балластный резистор R_6 (≈ 450 кОм) к регулируемому высоковольтному источнику питания (ВИП) с выходным напряжением до 3кВ.

Рис. 1: Схема установки

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке - цифровым вольтметром V_1 (B7-38), подключенным к трубке через высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мми имеют длину l=5.2 мм. Они подключены к источнику питания (0-30 В) через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяется с помощью дискретного переключателя "V"выходного напряжения источника питания и потенциометра R, а измеряется вольтметром V_2 . Для измерения зондового тока используется микроамперметр A_2 .

Анод-III в нашей работе не используется.

Ход работы. Снимем ВАХ разряда:

U_1 , B	I, дел	I, MA	U_1 , B	I, дел	I, мА
30,3	36	1,44	24,2	51	2,04
31,3	34	1,36	23,8	53	2,12
30,8	35	1,40	23,3	55	2,20
31,4	33	1,32	22,7	58	2,32
31,8	32	1,28	22,2	61	2,44
32,0	31	1,24	21,7	64	2,56
32,2	30	1,20	21,4	67	2,68
32,3	29	1,16	21,0	70	2,80
32,4	27	1,08	20,8	73	2,92
32,6	24	0,96	20,6	76	3,04
32,7	23	0,92	20,4	79	3,16
33,0	21	0,84	20,1	82	3,28
33,3	19	0,76	20,0	85	3,40
33,6	17	0,68	19,8	88	3,52
33,9	15	0,60	19,7	91	3,64
34,4	13	0,52	19,5	94	3,76
29,8	37	1,48	19,4	97	3,88
29,2	38	1,52	19,4	100	4,00
28,8	39	1,56	19,3	105	4,20
27,4	41	1,64	19,2	110	4,40
26,5	43	1,72	19,2	115	4,60
25,6	45	1,80	19,0	120	4,80
25,2	47	1,88	19,0	125	5,00
24,7	49	1,96			

Погрешность I примем равной 1/2 дел, то есть 0.02 мА, так как измерения проводились при помощи прибора со шкалой, имеющей 150 делений, в режиме с $I_{max} = 6$ мА. ПОгрешность U примем равной 0.1В, так как в этих пределах значение напряжения оставалось постоянным. При данном масштабе и «размахе» измерений эти погрешности оказываются слишком маленькими, чтобы их было видно на графике.

Проведем касательную в месте максимального угла наклона ВАХа. Получим:

$$R_{max} = 1250 \text{ Om}$$

Погрешность случайную оценим по МНК:

$$\sigma_{\text{случ}} = 100 \text{ Om}$$

Приборной погрешностью на фоне случайной можно пренебречь. Таким образом:

$$R_{max} = (1300 \pm 100) \text{ Om}$$

Снимем зондовые характеристики и построим соответствующие графики. Приборная погрешность U по-прежнему будет равна $0.1~\mathrm{B}$, погрешность же тока примем равной единице последнего разряда, то есть $0.1~\mathrm{mkA}$.

I =	5.0 мА	I =	3.0 мА	I =	1.5 мА
U_2 , B	I_2 , MKA	U_2 , B	I_2 , MKA	U_2 , B	I_2 , MKA
25,0	118,4	25,2	50,8	25,2	24,2
22,5	115,8	22,1	49,0	22,0	23,3
20,0	113,2	19,1	47,3	19,0	22,6
17,5	110,5	16,0	45,5	16,0	21,8
15,0	107,3	14,0	44,1	14,0	21,3
12,5	101,9	12,0	41,9	12,0	20,4
10,1	94,4	10,0	38,4	10,0	19,0
8,0	85,7	8,1	33,1	8,0	16,3
6,0	74,2	6,0	25,0	6,0	12,6
4,0	59,2	4,0	14,9	4,1	7,5
2,0	41,6	2,0	2,6	2,0	0,0
1,5	35,0	1,5	-1,0	1,5	-0,8
1,0	29,0	1,0	-4,3	1,0	-2,5
0,5	23,8	0,5	-7,7	0,5	-4,4
-25,1	-89,0	-25,1	-68,8	-25,2	-37,1
-22,0	-90,0	-22,0	-66,6	-22,0	-35,7
-19,0	-88,8	-19,0	-64,5	-19,0	-34,4
-16,0	-85,8	-16,0	-62,5	-16,1	-33,2
-14,0	-82,0	-14,0	-60,9	-14,0	-32,3
-12,0	-76,5	-12,0	-58,8	-12,0	-31,2
-10,0	-68,7	-10,0	-55,9	-10,0	-29,7
-8,1	-58,0	-8,1	-51,7	-8,0	-27,8
-6,0	-43,0	-6,0	-45,0	-6,0	-24,4
-4,0	-25,0	-4,0	-36,2	-4,1	-19,9
-2,1	-5,2	-2,0	-24,6	-2,0	-13,6
-1,5	-1,5	-1,5	-21,3	-1,5	-11,9
-1,0	7,0	-1,0	-18,2	-1,0	-10,2
-0,5	12,1	-0,5	-14,6	-0,5	-8,3

Построим все характеристики на одном графике:

Соответствующие зондовые характеристики представлены далее. Синим цветом выделены полученные значения, красным - центрированные.

Сведем в таблицу значения $I_{i\mathrm{H}},\, \frac{dI}{dU}|_{U=0}$ и их погрешностей для различных значений I:

I, мА	$I_{i_{ m H}}$, MKA	$\sigma_{I_{i\mathrm{h}}},\ \mathrm{MKA}$	$\frac{dI}{dU} _{U=0}$, MKA/B	$\sigma_{rac{dI}{dU} _{U=0}}, ext{mkA/B}$
5.0	77	2	11.6	0.3
3.0	46	2	6.8	0.4
1.5	24	2	3.6	0.3

Теперь определим энергию электронов по формуле

$$E = kT = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}} = 3.34$$
 эВ

Погрешность определим, считая $E=f(I_{i\mathrm{H}},\frac{dI}{dU}|_{U=0}),$ а также найдя отклонения значений в серии экспериментов от среднего. Получим:

$$E = (3.34 \pm 0.04)$$
 эВ

Зная E, можно определить n_e :

$$I_{i\mathrm{H}} = 0.4 n_e e S \sqrt{\frac{2kT}{m_i}} \Rightarrow n_e = 2.5 \frac{I_{i\mathrm{H}}}{eS} \sqrt{\frac{m_i}{2kT}},$$

где $S=\pi ld,\ l=5.2$ мм, d=0.2 мм, $m_i=22\cdot 1.66\cdot 10^{-27}$ кг. Получим:

I_{ih} , MKA	$n_e, \mathrm{M}^{-3} \cdot 10^{15}$	$\sigma_{n_e}, {\rm M}^{-3} \cdot 10^{15}$
77	68	2
46	41	2
24	21	2

Построим графики зависимостей $T(I_p)$ и $n_e(I_p)$:

Найдем плазменную частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{n_e e^2}{\epsilon_0 m_e}}$$

$n_e, \mathrm{M}^{-3} \cdot 10^{15}$	$\omega_p, c^{-1} \cdot 10^6$	$\sigma_{\omega_p}, c^{-1} \cdot 10^6$
21	260	20
41	360	20
68	480	20

А также дебаевский радиус:

$$r_D = \sqrt{\frac{kT}{4\pi ne^2}}$$

$n_e, \mathrm{M}^{-3} \cdot 10^{15}$	$r_D, {\rm M}^{-4}$	$\sigma_{r_D}, \mathrm{M}^{-4}$
21	2.61	0.13
41	1.86	0.09
68	1.45	0.08

Зная дебаевский радиус, можно найти число электронов в дебаевской сфере:

$$N = \frac{4}{3}\pi r_D^3 n_e$$

$n_e, {\rm M}^{-3} \cdot 10^{15}$	N	σ_N
21	1560	80
41	1120	60
68	870	40

Оценим степень ионизации плазмы:

$$\alpha = \frac{n_e kT}{P},$$

где P=1 мбар. Получим:

$n_e, \mathrm{M}^{-3} \cdot 10^{15}$	$\alpha, 10^{-7}$	σ_{α}
21	8.7	0.5
41	17.0	0.9
68	28.2	1.5

Таким образом, в данной лабораторной работе мы изучили газовый разряд и такие свойства плазмы, как концентрация электронов, плазменная частота колебаний электронов и дебаевский радиус при помощи двойного зонда, а также построили ВАХ тлеющего разряда.