Ultrasound Imaging delay-and-sum beam-former

Biomedical Imaging

delay-and-sum (DAS) beamforming

- 1. In focused B-mode imaging the return echoes from individual scan-line are recorded by the receiver channels.
- Since, received measurements from multiple channels are not in phase, therefore a delay-and-sum beam-former applies the time delay to the channel measurement and combines them to form image at each scan-line.
- In conventional DAS beamforming pipeline, time-delayed signals are additively combined followed by the Hilbert transformation, envelope detection and log compression steps.

delay-and-sum (DAS) beamforming pipeline

Focused B-Mode Imaging

Single transmit event (TE) to scan a line

Focused B-Mode Imaging

Time-of-Flight Correction

Project Description

- The objective of this project is to implement DAS and DAS+CF beamformer for ultrasound (US) imaging.
- There are total five tasks, first four tasks are related to the implement delay-and-sum (DAS) beam-former. And for last task you will use Mallart-Fink Coherence Factor (CF) method with DAS.
- For this project we will provide a real ultrasound dataset, obtained from a tissue mimicking Phantom. The dimensions of the US data are as follows
 - US_DATA_SIMPLE: 192x2304x192 → [Scanlines]x[depth]x[elements/channels]

Project Tasks

- 1. Time of flight correction (delay)
- 2. Beamforming (sum)
- 3. Envelope detection using Hilbert transform
- 4. Log-compression and CR plot for different DRs
- 5. Use Mallart-Fink Coherence Factor (CF) method with DAS
- 6. Compare DAS and DAS+CF on different dynamic ranges (DRs) and give remarks on the performance of each method in terms of CR, computational cost and any other factors e.g., image quality.

Time-of-Flight Correction

Tasks # 1: Time of flight correction (delay)

Reflectivity-point

- 1. For transmission distance use depth information matrix (d_mtx).
- 2. Using distance formula calculate (rx_d)

Tasks # 2: Beamforming (sum)

Add all Rx channels to calculate 'beamformer_output'

Tasks # 3: Envelope detection

 The envelope detection method involves creating the analytic signal of the beam-former output ('beamformer_output') using the Hilbert transform. In MATLAB there is a built-in function 'hilbert'

- Hints:
- 1. In MATLAB there is a built-in function 'hilbert'
- Envelope can be easily obtain by taking absolute of the 'analytic_signal'

Tasks # 4: Log-compression

Adjust the dynamic range of normalized data 'norm_data' to 60 dB.

Hints:

B-mode image

- 1. use 'min_dB' as a threshold for min value of 'norm_data',
- 2. set minimum value to -dB and adjust all other values to 20log10(x). $log_data(i,j) = \begin{cases} -dB & if & norm_data(j,i) < min_dB \\ 20log10(norm_data(j,i))) & otherwise \end{cases}$

Tasks # 5: Use Mallart-Fink Coherence Factor (CF) method with DAS

- The Coherence Factor (CF), introduced as the Focusing Criterion in [1], is defined as the ratio between the coherent and incoherent energy across the aperture.
- Calculate CF using Mallart-Fink method defined in Section II B of [1] and modify your DAS code from Task1~4 by changing beamfomer output from DAS to
 - cf_beamformer_output = beamfomer_output_from_DAS x CF
- For more details see[1].
- [1] Rindal, Ole Marius Hoel, Andreas Austeng, Hans Torp, Sverre Holm, and Alfonso Rodriguez-Molares. "The dynamic range of adaptive beamformers." In 2016 IEEE International Ultrasonics Symposium (IUS), pp. 1-4. IEEE, 2016.

Expected output (@ 60dB dynamic range)

DAS (CR = 19.3487 dB)

DAS-CF (CR = 18.9277 dB)

