模拟与数字电路

Analog and Digital Circuits

课程主页 扫一扫

第十五讲: 半导体器件(一)二极管、晶体管

Lecture 15: Semiconductor (1) Diode, transistor

主 讲: 陈迟晓

Instructor: Chixiao Chen

提纲

- 复习
 - 模拟信号与数字信号的差别?

- 半导体材料
- PN与二极管
- 双极性晶体管 BJT
- 金属 氧化物 -半导体 场效应管

半导体架构——晶格

• 最常见的半导体材料——硅 (碳/锗)

导电原理

• 电子、空穴

- 电流形成原理
 - 外加电场下,载流子的移动 > 电流
 - 电子移动等效于空穴的反向移动

杂质半导体——N型半导体

- 本征纯净的Si的载流子非常少,可视为不导电。
- 通过磷参杂技术, 改变Si的导电特性

N型 半导体

杂质半导体——P型半导体

- N型半导体 典型掺杂材料:磷(P) 多子:自由电子 少子:空穴
- P型半导体典型掺杂材料:硼(B) 多子:空穴 少子:自由电子

PN Junction (PN结)

• 若将P型半导体与N型半导体在同一片Si上实现,会发生什么?

• 上述结构称为PN结

PN Junction (PN结)

• 电压-电路特性曲线 (伏安特性曲线)

P型硅

N型硅

PN结 等效模型

- 理想模型
 - 基于偏置电压的开关, 二极管
 - 恒压模型

理想二极管

• 折线与指数模型

- 不考虑反向击穿
- 折线模型更便于计算
- 指数模型接近物理本质

二极管的应用

- 整流电路
 - 基于理想模型

二极管的计算

例3.4.1 电路如图所示,已知二极管的V-I特性曲线、电源 V_{DD} 和电阻R,求二极管两端电压 v_{D} 和流过二极管的电流 i_{D} 。

双极型晶体管

• 若将2个PN结在同一片Si上实现, 会发生什么?

双极结型晶体管(BJT, Bipolar Junction Transistor)

双极性晶体管

•测试电压-电路特性曲线 (伏安特性曲线)

 $i_{
m B}$

双极性晶体管一输出曲线模型

BJT的关断特性

• 截止区

发射结处于反偏

 $V_{\rm BR}$ 过小或 $R_{\rm B}$ 过大

$$U_{\mathrm{BEQ}} < 0.7\mathrm{V}$$

$$I_{\rm BQ} = I_{\rm CQ} = 0$$

$$U_{\rm CEQ} = V_{\rm CC}$$

$$U_{\rm CEQ} = V_{\rm CC}$$

BJT的导通特性

• 放大区

• 问题: 饱和区?

金属一氧化物一半导体场效应管

Metal-Oxide-Semiconductor (MOS) Field Effect Transistor (FET)

MOSFET 原理

Vgs < Vth无导电沟道

Vgs > Vth形成反型区存在导电沟道

Vds > Vgs-Vth沟道夹断

MOSFET 工作区域

• 截止区
$$i_{D} = 0$$

• 可变电阻区
$$v_{\rm DS} < (v_{\rm GS} - V_{\rm TN})$$

 $i_{\rm D} = K_{\rm n} [2(v_{\rm GS} - V_{\rm TN}) v_{\rm DS} - v_{\rm DS}^2]$

• 饱和区 $v_{\text{GS}} > V_{\text{TN}}$, 且 $v_{\text{DS}} > (v_{\text{GS}} - V_{\text{TN}})$ $i_{\text{D}} = K_{\text{n}} (v_{\text{GS}} - V_{\text{TN}})^2$

BJT vs. MOSFET

Complementary MOS

- BJT vs. MOSFET
 - 现代集成电路工艺 多采用MOSFET

	BJT	E-MOSFET
相似	电极(b、c、e)	电极 (g、d、s)
	工作区(截止、放大、饱和)	工作区(截止、 恒流、可变电阻)
不同	双极性	单极性
	流控型	压控型