

資料降維與視覺化

Estimated time: 45 min.

學習目標

• 22-1: 降維與資料視覺化

• 22-2: PCA介紹

• 22-3: t-sne介紹

22-1:降維與資料視覺化

- 為什麼需要降維
- 什麼是降維

designed by 🍎 freepik

為什麼需要降維

- 降低特徵維度,增加訓練效率
- 降低特徵維度,減少儲存空間
- 易於可視化
 - 人類最多只能觀察到3D向量空間

什麼是降維

- 降維就是將原始資料用更少且不同的座標去表示原始的資料
 - 原本資料要用x1, x2表示,現在可以找到一個新的軸z,用來表示所有資料

什麼是降維

雖然我們是用更少的座標軸來表示原始資料,但一個好的降維需要確保不同筆資料用新的座標軸表示的時候,不會被混在一起,無法區分出來

什麼是降維

- 一般來說,降維是一種非監督式學習
- 常見的降維方法有
 - SVD、PCA、t-sne、autoencoder等

22-2: PCA介紹

- PCA是什麼
- PCA原理
- PCA數值範例

designed by 🕏 **freepik**

PCA是什麼

PCA(Principal component analysis)是一種降維的方法,它的核心思想是找到N個新的座標軸,使得所有資料投影在這些軸上後,離散程度最大

PCA原理

- 可以思考一下,將這些資料投影在哪個箭頭上比較好
 - 答案是紅色的箭頭,因為資料投影過後其座標值的離散程度比較高

PCA原理

· 根據上面所說的,PCA會先去找一個座標軸,這個座標軸的向量w1 為單位向量,並確保所有投影在上面的資料標準差越大越好

$$var(z_1)$$
 越大越好且 $||w^1|| = 1$

PCA原理

接下來PCA會再去找第二個軸去投影資料,一樣也會確保投影過後的資料標準差越大越好,但是為了確保不會跟上一次找到的軸一樣,所以會多一項與前幾個軸正交的限制式,確保找到不同軸

 $var(z_2)$ 越大越好且 $||w^2|| = 1$,其中 $w^1 \cdot w^2 = 0$

· 假設我們的資料如下,在使用PCA時,我常常會先將資料標準化

	\boldsymbol{x}	y	_	x	y
	2.5	2.4		.69	.49
	0.5	0.7		-1.31	-1.21
	2.2	2.9		.39	.99
	1.9	2.2		.09	.29
Data =	3.1	3.0	DataAdjust =	1.29	1.09
	2.3	2.7		.49	.79
	2	1.6		.19	31
	1	1.1		81	81
	1.5	1.6		31	31
	1.1	0.9		71	-1.01

計算標準化過後的共變異數矩陣

_	x	y
	.69	.49
	-1.31	-1.21
	.39	.99
	.09	.29
DataAdjust =	1.29	1.09
	.49	.79
	.19	31
	81	81
	31	31
	71	-1.01
		•

$$cov = \begin{pmatrix} .616555556 & .615444444 \\ .615444444 & .716555556 \end{pmatrix}$$

• 尋找此共變異矩陣的eigenvalues以及eigenvectors

$$cov = \begin{pmatrix} .616555556 & .615444444 \\ .615444444 & .716555556 \end{pmatrix}$$

$$eigenvectors = \begin{pmatrix} .0490833989 \\ 1.28402771 \end{pmatrix}$$

$$eigenvectors = \begin{pmatrix} -.735178656 & -.677873399 \\ .677873399 & -.735178656 \end{pmatrix}$$

- 將eigenvalues數值小的N個以及對應的eigenvectors刪除掉
 - eigenvalues越小代表其重要性越小,所以我們可以設定要刪除多少比較不 重要的座標軸

$$eigenvalues = \begin{pmatrix} .0499833989\\ 1.28402771 \end{pmatrix}$$

$$eigenvectors = \begin{pmatrix} -.735178656 & -.677873399\\ .677873399 & -.735178656 \end{pmatrix}$$

- 使用留下來的座標軸投影原始資料
 - 我們可以發現資料從2D變成1D了

\boldsymbol{x}	y		Transform
.69	.49	- - 0.67701	
-1.31	-1.21	$\begin{bmatrix} -0.6778 \\ -0.7351 \end{bmatrix}$	
.39	.99	1-0./3511	
.09	.29		
1.29	1.09		
.49	.79		
.19	31		
81 31 71	81		
31	31		
71	-1.01		
,	•		

Transformed Data (Single eigenvector)

\boldsymbol{x}
827970186
1.77758033
992197494
274210416
-1.67580142
912949103
.0991094375
1.14457216
.438046137
1.22382056

22-3: t-sne介紹

- t-sne是什麼
- t-sne原理

designed by 🍑 freepik

t-sne是什麼

- · t-sne是一種降維的演算法
 - 特別適合用來做可視化資料用
 - 它是一種非線性的降維演算法,所以所花的運算資源需要比較多

t-sne是什麼

- t-sne與PCA最大的不同在於
 - t-sne在降維的時候,同一個類型的資料能在同一個區域且不同類型的資料 彼此之間可以互相遠離
 - PCA只有確保同一個類型的資料能在同一個區域

T-SNE PCA

t-sne原理

- t-sne的原理是將任兩筆資料丟入一個相似函數S去做計算,並將結果除以任兩筆資料相似函數的總和
 - 在高維度空間會定義一個相似函數S,低維度的空間會定義另一個相似函數 S'
 - 這個值會介於0~1之間,可以把他們視為機率

$$P(x^{j}|x^{i}) = \frac{S(x^{i}, x^{j})}{\sum_{k \neq i} S(x^{i}, x^{k})} \qquad Q(z^{j}|z^{i}) = \frac{S'(z^{i}, z^{j})}{\sum_{k \neq i} S'(z^{i}, z^{k})}$$

t-sne原理

· 在高維度空間的相似函數S以及低維度空間的相似函數S'函數如下

t-SNE

$$S(x^i, x^j) = e^{-\|x^i - x^j\|}$$

$$S'(z^i, z^j) = \frac{1}{1 + ||z^i - z^j||}$$

t-sne原理

- 我們將 $P(x^j|x^i)$ 以及 $Q(z^j|z^i)$ 丟入KL函數裡面
 - 並使用優化器去優化
 - 注意 z^i 是未知數,所以我們剛開始可以隨機初始化它

$$loss = \sum_{i} KL(P_i||Q_i) = \sum_{i \neq j} = P(x^j|x^i) \log(\frac{P(x^j|x^i)}{Q(x^j|x^i)})$$

Demo 22-3

- PCA將IRIS資料集降維到2維及3維
- PCA將MNIST資料集可視化
- t-sne將MNIST資料集可視化

designed by ' freepik

線上Corelab

- ◆ 題目1:使用PCA將IRIS資料集可視化
 - 使用PCA演算法並完成程式碼,將IRIS資料可視化
- 題目2:使用PCA將MNIST資料集可視化
 - 使用PCA演算法並完成程式碼,將MNIST資料可視化
- 題目3:使用t-sne將MNIST資料集可視化
 - 使用t-sne演算法並完成程式碼,將MNIST資料可視化

本章重點精華回顧

- 降維與資料視覺化
- PCA原理
- t-sne原理

Lab:降維與資料可視化

Lab01: PCA將IRIS資料集降維到2維及3維

Lab02: PCA將MNIST資料集可視化

Lab03: t-sne將MNIST資料集可視化

Estimated time: 20 minutes

