Lambda calculus

Functional models of computation

Ivan Trepakov

NSU Sys.Pro

Lambda calculus

History

- 1928 Hilbert's Entscheidungsproblem ¹
 - Is there an *algorithm* for deciding whether a proposition in first-order logic is true or false?
- Replacement for set theory as foundation of mathematics
 - 1930 Combinatory logic (Curry, Schönfinkel)
 - 1932 λ -calculus (*Church*)
 - 1935 Kleene-Rosser paradox
- Effective computability
 - 1935 Untyped λ -calculus (*Church, Kleene, Rosser*)
 - 1936 Turing machine
 - 1936 Church-Turing thesis
- 1936 Undecidability of first-order logic
 - Halting problem of Turing machine
 - Equivalence of λ -terms

¹German for "decision problem"

Lambda calculus

History

- 1928 Hilbert's Entscheidungsproblem ¹
 - Is there an algorithm for deciding whether a proposition in first-order logic is true or false?
- Replacement for set theory as foundation of mathematics
 - 1930 Combinatory logic (Curry, Schönfinkel)
 - 1932 λ -calculus (*Church*)
 - 1935 Kleene-Rosser paradox
- Effective computability
 - 1935 Untyped λ -calculus (*Church, Kleene, Rosser*)
 - 1936 Turing machine
 - 1936 Church-Turing thesis
- 1936 Undecidability of first-order logic
 - Halting problem of Turing machine
 - Equivalence of λ -terms

- Haskell Curry
- Wilhelm Ackermann
- John von Neumann
- Ernst Zermelo
- ..

Alonzo Church

- Stephen Cole Kleene
- J. Barkley Rosser
- Alan Turing
- Dana Scott
- Michael O. Rabin
- ...

David Hilbert

¹German for "decision problem"

Syntax

Grammar

$$term ::= \underbrace{var}_{\text{Variable}} | \underbrace{(term \ term)}_{\text{Application}} | \underbrace{(\lambda var. \ term)}_{\text{Abstraction}}$$

Examples

$$\lambda x. x \qquad (\lambda x. xx)(\lambda y. yy) \qquad \lambda f. \lambda x. f(fx)$$

Conventions

- Application is left associative
 abc = (ab)c
- Abstraction is right associative λx . λy . $x = \lambda x$. $(\lambda y, x)$
- Consecutive abstractions can be combined λx . λy . $x = \lambda x y$. x

Syntax

Grammar

$$term ::= \underbrace{var}_{\text{Variable}} | \underbrace{(term \ term)}_{\text{Application}} | \underbrace{(\lambda var. \ term)}_{\text{Abstraction}}$$

Examples

$$\lambda x. x \qquad (\lambda x. xx)(\lambda y. yy) \qquad \lambda f. \lambda x. f(fx)$$

Conventions

- Application is left associative *abc* = (*ab*)*c*
- Abstraction is right associative λx . λy . $x = \lambda x$. $(\lambda y, x)$
- Consecutive abstractions can be combined λx . λy . $x = \lambda x y$. x

Tree representation

Free and bound variables

Free variables FV(t)

Variable:
$$FV(x) = \{x\}$$

Application:
$$FV(MN) = FV(M) \cup FV(N)$$

Abstraction:
$$FV(\lambda x. M) = FV(M) \setminus \{x\}$$

Bound variables BV(t)

Variable:
$$BV(x) = \emptyset$$

Application:
$$BV(MN) = BV(M) \cup BV(N)$$

Abstraction:
$$BV(\lambda x. M) = BV(M) \cup \{x\}$$

Closed terms

Term
$$t$$
 is called closed or combinator if $FV(t) = \emptyset$

Example

Substitution

Substitution
$$t_{[v:=S]}$$

$$x_{[v:=S]} = \begin{cases} S & v = x \\ x & v \neq x \end{cases}$$

$$(MN)_{[v:=S]} = (M_{[v:=S]} N_{[v:=S]})$$

$$(\lambda x. M)_{[v:=S]} = \begin{cases} \lambda x. M & v = x \\ \lambda x. M_{[v:=S]} & v \neq x \end{cases}$$

Safe substitution

Substitution
$$t_{[v]=S]}$$
 is safe if $BV(t) \cap FV(S) = \emptyset$

Example

$$(\lambda x. xy)_{[y:=\lambda z. z]} = \lambda x. x(\lambda z. z)$$

$$(\lambda x. xy)_{[y:=x]} = \lambda x. xx$$

Renaming

Problem

$$\lambda x. x y_{[y:=x]} = \lambda x. x x$$

Renaming

Renaming

α -equivalence

$$\lambda x. M \underset{\alpha}{\equiv} \lambda y. M_{[x:=y]} \quad \text{if } x \notin FV(M)$$

$$\lambda x. M \underset{\alpha}{\equiv} \lambda x. N \quad \text{if } M \underset{\alpha}{\equiv} N$$

$$MP \underset{\alpha}{\equiv} NP \quad \text{if } M \underset{\alpha}{\equiv} N$$

$$PM \equiv PN \quad \text{if } M \equiv N$$

Conventions

- λ-terms are considered identical up to α-equivalence
- Appropriate renaming happens implicitly if required during substitution

Problem

$$\lambda x. x y_{[y:=x]} = \lambda x. x x$$

Solution

$$(\lambda x. xy)_{[y:=x]} \equiv (\lambda z. zy)_{[y:=x]} = \lambda z. zx$$

Evaluation

Definitions

- Subterm of form $(\lambda x. M)N$ is called β -redex
- Redex $(\lambda x. M)N$ can be reduced to $M_{[x:=N]}$
- Reduction of single redex in term M is called β -reduction and denoted as $M \to_{\beta} M'$
- β -reduction in multiple steps is denoted as $M \twoheadrightarrow_{\beta} M'$

β -reduction

$$\begin{split} (\lambda x.\,M) N \to_{\beta} M_{[x:=N]} \\ \lambda x.\,M \to_{\beta} \lambda x.\,N & \text{if } M \to_{\beta} N \\ M P \to_{\beta} N P & \text{if } M \to_{\beta} N \\ P M \to_{\beta} P N & \text{if } M \to_{\beta} N \end{split}$$

Evaluation

Definitions

- Subterm of form $(\lambda x. M)N$ is called β -redex
- Redex $(\lambda x. M)N$ can be reduced to $M_{[x:=N]}$
- Reduction of single redex in term M is called β -reduction and denoted as $M \to_{\beta} M'$
- β -reduction in multiple steps is denoted as $M \twoheadrightarrow_{\beta} M'$

β -reduction

$$\begin{split} (\lambda x.\,M) N \to_{\beta} M_{[x:=N]} \\ \lambda x.\,M \to_{\beta} \lambda x.\,N & \text{if } M \to_{\beta} N \\ M P \to_{\beta} N P & \text{if } M \to_{\beta} N \\ P M \to_{\beta} P N & \text{if } M \to_{\beta} N \end{split}$$

Example

$$(\lambda x. \underline{(\lambda y. yx)(\lambda z. z)}) \rightarrow_{\beta} \\ (\lambda x. \underline{(\lambda z. z)x}) \rightarrow_{\beta} \lambda x. x$$

Normal order

- Term without any redex is in β -normal form
- Reduction sequence that always reduces leftmost outermost redex is called normal order reduction

Example

$$\frac{(\lambda z. \underbrace{((\lambda x. xz)f)}_{((\lambda y. yz)g)} \underbrace{((\lambda y. yz)g)}_{a} \rightarrow_{\beta}}{\underbrace{((\lambda x. xa)f)}_{((\lambda y. ya)g)} \underbrace{((\lambda y. ya)g)}_{\beta} \rightarrow_{\beta} (fa) (ga)}$$

Normal order

- Term without any redex is in β -normal form
- Reduction sequence that always reduces leftmost outermost redex is called normal order reduction

Example

$$\frac{(\lambda z. \underbrace{((\lambda x. xz)f)}_{((\lambda y. yz)g)} \underbrace{((\lambda y. yz)g)}_{a} \rightarrow_{\beta}}{\underbrace{((\lambda x. xa)f)}_{((\lambda y. ya)g)} \underbrace{((\lambda y. ya)g)}_{\beta} \rightarrow_{\beta} (fa) (ga)}$$

Partiality

$$\Omega = \frac{(\lambda x. xx)(\lambda x. xx)}{(xx)_{[x:=(\lambda x. xx)]} \to_{\beta}}$$
$$(\lambda x. xx)(\lambda x. xx) \to_{\beta} \dots$$

Normal order

- Term without any redex is in β -normal form
- Reduction sequence that always reduces leftmost outermost redex is called normal order reduction

Example

$$\frac{(\lambda z. ((\lambda x. xz)f) ((\lambda y. yz)g))a \rightarrow_{\beta}}{((\lambda x. xa)f) ((\lambda y. ya)g) \rightarrow_{\beta}}$$
$$(fa) ((\lambda y. ya)g) \rightarrow_{\beta} (fa) (ga)$$

Partiality

$$\Omega = \frac{(\lambda x. xx)(\lambda x. xx)}{(xx)_{[x:=(\lambda x. xx)]} \rightarrow_{\beta}}$$
$$\underline{(\lambda x. xx)(\lambda x. xx)} \rightarrow_{\beta} \dots$$

 Ω has no β -normal form

Normal order

- Term without any redex is in β -normal form
- Reduction sequence that always reduces leftmost outermost redex is called normal order reduction

Example

$$\frac{(\lambda z. \underbrace{((\lambda x. xz)f)}_{((\lambda y. yz)g)} \underbrace{((\lambda y. yz)g)}_{a} \rightarrow_{\beta}}{\underbrace{((\lambda x. xa)f)}_{((\lambda y. ya)g)} \underbrace{((\lambda y. ya)g)}_{\beta} \rightarrow_{\beta} (fa) (ga)}$$

Partiality

$$\Omega = \frac{(\lambda x. xx)(\lambda x. xx)}{(xx)_{[x:=(\lambda x. xx)]} \to_{\beta}}$$
$$\underline{(\lambda x. xx)(\lambda x. xx)} \to_{\beta} \dots$$

 Ω has no β -normal form

Laziness

$$(\lambda x. y)\Omega \to_{\beta} y$$

Normal order

- Term without any redex is in β -normal form
- Reduction sequence that always reduces leftmost outermost redex is called normal order reduction

Example

$$\frac{(\lambda z. \underbrace{((\lambda x. xz)f)}_{((\lambda y. yz)g))a} \rightarrow_{\beta}}{\underbrace{((\lambda x. xa)f)}_{((\lambda y. ya)g)} \xrightarrow[\beta]{} ((\lambda y. ya)g) \rightarrow_{\beta} (fa) (ga)}$$

Partiality

$$\Omega = \frac{(\lambda x. xx)(\lambda x. xx)}{(xx)_{[x:=(\lambda x. xx)]} \to_{\beta}}$$
$$\underline{(\lambda x. xx)(\lambda x. xx)} \to_{\beta} \dots$$

 Ω has no β -normal form

Laziness

$$\underline{(\lambda x.\; y)\Omega} \to_{\beta} y$$

Normal order reduction models lazy evaluation

Recursion

Fixed-point combinator

Curry's Y-combinator

$$Y = \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$$

Turing's Θ -combinator

$$\Theta = (\lambda xy.\, x(xxy))\, (\lambda xy.\, x(xxy))$$

Church-Turing thesis

Undecidability

Programming foundation

Church numerals

Relation to folds

Algebraic data types

Predecessor

η -conversion

η -conversion

$$(\lambda x. Mx) \stackrel{\longleftarrow}{\longleftarrow} M \text{ if } x \notin FV(M)$$

Q&A