Junior Division Solutions

1. Graph Theory

1. As shown

2. Graph Theory

2. As shown

3. Boolean Algebra

$$A(\overline{A}B + \overline{B}) = A\overline{A}B + A\overline{B} = 0 + A\overline{B} = A\overline{B}$$

 $A\overline{B} = 1 \rightarrow A = 1 \land \overline{B} = 1 \rightarrow A = 1 \land B = 0 \rightarrow (1, 0)$

3. (1,0)

4. Boolean Algebra $X = \overline{A} + B\overline{C} + A(\overline{B} + C)$

A	В	C	\overline{B}	\overline{C}	\overline{A}	$B\overline{C}$	$\overline{B} + C$	$A(\overline{B}+C)$	X
0	0	0	1	1	1	0	1	0	1
0	0	1	1	0	1	0	1	0	1
0	1	0	0	1	1	1	0	0	1
0	1	1	0	0	1	0	1	0	1
1	0	0	1	1	0	0	1	1	1
1	0	1	1	0	0	0	1	1	1
1	1	0	0	1	0	1	0	0	1
1	1	1	0	0	0	0	1	1	1

4. 8

5. What Does This Program Do?

This program changes entries in the table that are divisible by 4, 3, 10 and 2. Then it counts the entries with a value of 1. The final table is:

	7	1	1	3
	2	11	1	9
	7	5	3	1
Γ	2	1	27	1

5. 6