

Ejercicio 9

Ejercicio 14

Sea A una matriz hermitiana y S la matriz que diagonaliza a A. Probar que S puede ser elegida con sus columnas ortonormales.

Notamos con B_{λ} a una base del autoespacio asociado al autovalor λ .

Observación: si $v \in \langle B_{\lambda} \rangle$ y $v \neq 0$, entonces v es un autovector asociado a λ .

Construcción de S:

- 1) Para cada λ autovalor de A, construimos una base ortonormal de $\langle B_{\lambda} \rangle$ (esto siempre es posible por Gram Schmidt).
- 2) Normalizamos todos los vectores obtenidos en el paso anterior y armamos una matriz S con ellos (en cualquier orden).

Ejercicio 14

Ejercicio 9

Construcción de S:

- 1) Para cada λ autovalor de A, construimos una base ortonormal de $\langle B_{\lambda} \rangle$ (esto siempre es posible por Gram Schmidt).
- 2) Normalizamos todos los vectores obtenidos en el paso anterior y armamos una matriz S con ellos (en cualquier orden).

Pregunta 1: por qué los vectores que se obtienen en el paso 1 son n?

Pregunta 2: por qué S diagonaliza a la matriz A?

Pregunta 3: por qué S es unitaria? Es decir, por qué $\langle v,w\rangle=0$ si $v\in\langle B_{\lambda_1}\rangle$ y $w\in\langle B_{\lambda_2}\rangle$?

Ejercicio 9

Ejercicio 14

Diagonalizar la siguiente matriz unitaria V y describir U y Λ tales que $V=U\Lambda U^H$.

$$V = \frac{\sqrt{3}}{3} \begin{bmatrix} 1 & 1-i \\ 1+i & -1 \end{bmatrix}.$$

Pregunta: por qué existe dicha U? (no todas las matrices se pueden factorizar como $U\Lambda U^H$).

Observación: a la hora de hacer las cuentas conviene ignorar el factor $\frac{\sqrt{3}}{3}$ (llamamos V' a "la parte relevante").

- 1) El polinomio característico de V' es $\lambda^2 3$.
- 2) Luego, los autovalores de V' son $\pm \sqrt{3}$.

Ejercicio 9

Ejercicio 14

3)
$$V' \pm \sqrt{3}I = \begin{bmatrix} 1 \pm \sqrt{3} & 1 - i \\ 1 + i & -1 \pm \sqrt{3} \end{bmatrix}$$

4) Buscamos $N(V' \pm \sqrt{3}I)$ (Gauss!)

Pregunta: Cuál es el primer paso de eliminación?

Respuesta:
$$E_{21}\left(-\frac{v_{21}'}{v_{11}'}\right) = E_{21}\left(-\frac{1+i}{1\pm\sqrt{3}}\right)$$

No es necesario hacer las cuentas para saber que da...

$$\begin{bmatrix} 1 \pm \sqrt{3} & 1 - i \\ 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{1 - i}{1 \pm \sqrt{3}} \\ 0 & 0 \end{bmatrix}$$

6) Los autovectores son las soluciones especiales $\begin{bmatrix} -\frac{1-i}{1\pm\sqrt{3}} \\ 1 \end{bmatrix}$

Ejercicio 14

$$\begin{bmatrix} 1 & 1-i \\ 1+i & -1 \end{bmatrix} \begin{bmatrix} -\frac{1-i}{1 \pm \sqrt{3}} \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1-i}{1 \pm \sqrt{3}} + (1-i) \\ -\frac{2}{1 \pm \sqrt{3}} - 1 \end{bmatrix}$$

Observar que

$$\frac{-(1-i) + (1-i)(1 \pm \sqrt{3})}{1 \pm \sqrt{3}} = \mp \sqrt{3} \frac{-(1-i)}{1 \pm \sqrt{3}}$$

$$\frac{-2(1 \mp \sqrt{3})}{(1 \pm \sqrt{3})(1 \mp \sqrt{3})} - 1 = 1 \mp \sqrt{3} - 1 = \mp \sqrt{3} \ 1$$

8) Normalizar los autovectores, ponerlos en la matriz U, calcular U^H y plantear Λ (para esto último hay que considerar el factor $\frac{\sqrt{3}}{3}$ de V).