CLAIMS

1. Compound of general formula (I)

$$\begin{array}{c|c} & & & \\ R1 & & & \\ N & & & \\ R2 & & & \\ \end{array}$$

5 in racemic, or enantiomeric form or any combinations of these forms and in which:

 R_1 and R_2 represent, independently, the hydrogen atom; a (C_1-C_8) alkyl radical optionally substituted by hydroxy; (C_2-C_6) alkenyl; a bicycloalkyl; or a radical of formula $-(CH_2)_n-X_1$ or $-X-(CH_2)_n-X_1$;

X represents -C(O)- or -C(S)-NH-;

10 X₁ represents a (C₁-C₆)alkoxy, (C₃-C₇)cycloalkyl, adamantyl, heterocycloalkyl, aryl or heteroaryl radical,

the (C_3-C_7) cycloalkyl, heterocycloalkyl, aryl and heteroaryl radicals being optionally substituted by one or more identical or different substituents chosen from: $-(CH_2)_{n1}-V_1-V_1$, halo, nitro and cyano;

 V_1 represents -O-, -S- or a covalent bond;

20

Y₁ represents a (C₁-C₆)alkyl radical optionally substituted by one or more identical or different halo radicals, or aryl;

n and n' represent an integer from 0 to 6 and n_1 an integer from 0 to 2 (it being understood that when n is equal to 0, then X_1 does not represent the alkoxy radical);

 X'_1 represents the hydrogen atom, a $(C_1\text{-}C_6)$ alkyl radical optionally substituted by one or more identical or different halo radicals, $(C_3\text{-}C_7)$ cycloalkyl; or aryl optionally substituted by one or more identical or different substituents chosen from: halo, nitro, cyano, $(C_1\text{-}C_6)$ alkyl-carbonyl, $(C_1\text{-}C_6)$ alkyl optionally substituted by one or more identical or different halo radicals, and $(C_1\text{-}C_6)$ alkoxy optionally substituted by one or more identical or different halo radicals;

or R_1 and R_2 form together, with the nitrogen atom to which they are attached, a heterobicycloalkyl or a heterocycloalkyl optionally substituted by one or more identical or different substituents chosen from: hydroxy, (C_1-C_6) alkyl optionally substituted by hydroxy, (C_1-C_6) alkoxy-carbonyl, $-(CH_2)_{n''}-A$, $-C(O)-NV_1'Y_1'$, and heterocycloalkyl; or R_1 and R_2 form together a radical of formula:

 V_1 ' and Y_1 ' represent, independently, the hydrogen atom or a (C_1-C_6) alkyl;

A represents an aryl radical optionally substituted by one or more identical or different substituents chosen from: halo, nitro, cyano, (C_1-C_6) alkyl optionally substituted by one or more identical or different halo radicals, and (C_1-C_6) alkoxy optionally substituted by one or more identical or different halo radicals;

n" represents an integer from 0 to 2;

5

10

15

20

 R_3 represents $-Z_3$, $-C(R_{Z3})(R'_{Z3})-Z_3$, $-C(R_{Z3})(R'_{Z3})-(CH_2)_p-Z_3$ or -C(O)— Z'_3 ;

R_{Z3} and R'_{Z3} represent, independently, the hydrogen atom or a (C₁-C₆)alkyl radical;

 Z_3 represents Z_{3a} , Z_{3b} , Z_{3c} , Z_{3d} , or Z_{3e} ;

 Z_{3a} represents a (C_1-C_6) alkyl or (C_2-C_6) alkenyl radical;

 Z_{3b} represents a (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, (C_1-C_6) alkylamino or di $((C_1-C_6)$ alkyl)amino radical;

 Z_{3c} represents an aryl or heteroaryl radical;

5

10

15

20

the aryl and heteroaryl radicals being optionally substituted by one or more identical or different substituents chosen from: halo, cyano, nitro, azido, oxy or $-(CH_2)_{p'}-V_3-Y_3$;

 V_3 represents -O-, -S-, -C(O)-, -C(O)-O-, -O(CO)-, -SO₂-, -SO₂NH-, -NR'₃-SO₂-, -NR'₃-, -NR'₃-C(O)-, -C(O)-NR'₃-, -NH-C(O)-NR'₃- or a covalent bond;

 Y_3 represents the hydrogen atom or a (C_1-C_6) alkyl radical optionally substituted by one or more identical or different halo radicals; an aryl radical optionally substituted by one or more identical or different substituents chosen from: halo, nitro, (C_1-C_6) alkyl and (C_1-C_6) alkoxy; or an aryl- (C_1-C_6) alkyl radical optionally substituted by one or more identical or different substituents chosen from: halo, nitro, (C_1-C_6) alkyl and (C_1-C_6) alkoxy;

 Z_{3d} represents a (C_1-C_6) alkoxy-carbonyl, amino-carbonyl, (C_1-C_6) alkylamino-carbonyl, di $((C_1-C_6)$ alkyl)amino-carbonyl radical;

 Z_{3e} represents a (C_1-C_6) alkyl-C(O)-NH-, (C_3-C_7) cycloalkyl, heterocycloalkyl radical or a radical of formula

$$O(CH_2)r$$
 $r = 1, 2$
 $(CH_2)_{r'}$
 $r' = 1, 2$

the (C₃-C₇) cycloalkyl and heterocycloalkyl radicals being optionally substituted by one or more identical or different oxy or (C₁-C₆)alkyl radicals,

 Z'_3 represents an aryl radical optionally substituted by one or more identical or different substituents chosen from: halo, nitro and - $(CH_2)_{p''}$ - V'_3 - Y'_3 :

V'₃ represents -O-, -C(O)-, -C(O)-O-, -C(O)-NR'₃-, -NR'₃-C(O)-, -NH-C(O)-NR'₃ or a covalent bond;

Y'₃ represents the hydrogen atom or a (C₁-C₆)alkyl radical optionally substituted by one or more identical or different halo radicals;

5 R'_3 represents the hydrogen atom, a (C_1-C_6) alkyl or (C_1-C_6) alkoxy radical;

p, p' and p" represent, independently, an integer from 0 to 6;

R₄ represents a radical of formula -(CH₂)_s-R'₄

10

15

20

R'₄ represents a heterocycloalkyl containing at least one nitrogen atom and optionally substituted by (C₁-C₆)alkyl or aralkyl; a heteroaryl containing at least one nitrogen atom and optionally substituted by (C₁-C₆)alkyl; or a radical of formula -NW₄W'₄

 W_4 represents the hydrogen atom or (C_1-C_8) alkyl;

W'₄ represents a radical of formula -(CH₂)_{s'}-Z₄;

 \mathbb{Z}_4 represents the hydrogen atom, (C_1-C_8) alkyl; (C_2-C_6) alkenyl; (C_3-C_7) cycloalkyl optionally substituted by one or more identical or different (C₁-C₆)alkyl substituents; cyclohexene; heteroaryl; aryl optionally substituted by one or more identical or different radicals chosen from: -(CH₂)_{s"}-V₄-Y₄, halo and nitro;

V₄ represents -O-, -S-, -NH-C(O)-, -NV₄'- or a covalent bond;

Y₄ represents a hydrogen atom or a (C₁-C₆)alkyl radical optionally substituted by one or more identical or different halo radicals;

V₄' represents a hydrogen atom or a (C₁-C₆)alkyl;

s" represents an integer from 0 to 4;

or Z₄ represents a radical of formula

$$O$$
 $(CH_2)r$ $r = 1, 2$

s and s' represent, independently, an integer from 0 to 6;

or a pharmaceutically acceptable salt thereof.

2. Compound according to claim 1, characterized in that

 R_1 and R_2 represent, independently, the hydrogen atom, a (C_1-C_8) alkyl, a bicycloalkyl radical or a radical of formula $-(CH_2)_n-X_1$ or $-X-(CH_2)_n-X_1$;

X represents -C(O)- or -C(S)-NH-;

 X_1 represents a (C_1-C_6) alkoxy, (C_3-C_7) cycloalkyl radical optionally substituted by a (C_1-C_6) alkyl, or heteroaryl;

X'₁ represents the hydrogen atom, a (C₁-C₆)alkyl radical optionally substituted by one or more identical or different halo radicals, (C₃-C₇)cycloalkyl or aryl optionally substituted by a (C₁-C₆)alkyl-carbonyl;

or R_1 and R_2 form together, with the nitrogen atom to which they are attached, a heterobicycloalkyl or a heterocycloalkyl optionally substituted by one or more identical or different substituents chosen from: (C_1-C_6) alkyl, (C_1-C_6) alkoxy-carbonyl and $-(CH_2)_{n''}-A$;

A represents an aryl radical optionally substituted by one or more identical or different substituents chosen from: halo and (C_1-C_6) alkyl;

n" represents an integer from 0 to 1;

15

R₄ represents a radical of formula-(CH₂)_s-R'₄

R'₄ represents a heterocycloalkyl containing at least one nitrogen atom and optionally substituted by (C₁-C₆)alkyl; or a radical of formula -NW₄W'₄

 W_4 represents the hydrogen atom or (C_1-C_8) alkyl;

W'₄ represents a radical of formula -(CH₂)_{s'}-Z₄;

 Z_4 represents the hydrogen atom, (C_1-C_8) alkyl or aryl optionally substituted by one or more identical or different radicals chosen from: $-(CH_2)_{s''}-V_4-Y_4$;

5 V₄ represents -O-;

Y₄ represents a (C₁-C₆)alkyl radical optionally substituted by one or more identical or different halo radicals;

s" represents an integer from 0 to 4;

s and s' represent, independently, an integer from 1 to 4;

- or a pharmaceutically acceptable salt thereof.
 - 3. Compound according to claim 2, characterized in that it comprises at least one of the following characteristics:
 - the cycloalkyl radical is chosen from cyclopropyl, cyclobutyl and cyclohexyl;
 - the bicycloalkyl radical is bicyclo[2,2,1]heptane;
- the heterobicycloalkyl is 7-aza-bicyclo[2,2,1]heptane;
 - the aryl radical is the phenyl radical;
 - the heteroaryl radical is the furyl radical;
 - the heterocycloalkyl is chosen from piperidine, morpholine and piperazine;

or a pharmaceutically acceptable salt thereof.

4. Compound according to one of claims 1 to 2, characterized in that

 R_1 and R_2 represent, independently, the hydrogen atom, a (C_1-C_8) alkyl radical or a radical of formula $-(CH_2)_n-X_1$ or $-X-(CH_2)_n-X_1$;

X represents -C(O)-;

10

 X_1 represents a (C_3-C_7) cycloalkyl radical;

X'₁ represents the hydrogen atom or a (C₃-C₇)cycloalkyl radical;

n represents 0 or 1; n' represents an integer from 0 to 5;

- or R₁ and R₂ form together, with the nitrogen atom to which they are attached, a heterocycloalkyl optionally substituted by one or more identical or different (C₁-C₆)alkyl substituents; or a pharmaceutically acceptable salt thereof.
 - 5. Compound according to claim 4, characterized in that the (C_3-C_7) cycloalkyl radical represented by X_1 and X'_1 is chosen from cyclopropyl, cyclobutyl and cyclohexyl; and the heterocycloalkyl that together form R_1 and R_2 , is the piperidine ring; or a pharmaceutically acceptable salt thereof.
 - 6. Compound according to one of claims 1 to 2 and 4 to 5, characterized in that

R₄ represents a radical of formula-(CH₂)_s-R'₄

R'₄ represents a heterocycloalkyl containing at least one nitrogen atom and optionally substituted by (C₁-C₆)alkyl; or a radical of formula -NW₄W'₄

 W_4 represents the hydrogen atom or (C_1-C_8) alkyl;

W'₄ represents a radical of formula -(CH₂)_{s'}-Z₄;

 Z_4 represents the hydrogen atom or (C_1-C_8) alkyl;

s and s' represent, independently, an integer from 2 to 4;

- 20 or a pharmaceutically acceptable salt thereof.
 - 7. Compound according to claim 6, characterized in that the heterocycloalkyl represented by R'₄ is chosen from: piperidine and morpholine; or a pharmaceutically acceptable salt thereof.

8. Compound according to one of the preceding claims, characterized in that R_3 represents -C(O)— Z'_3

 Z'_3 represents an aryl radical optionally substituted by one or more identical or different substituents chosen from halo and -(CH₂)_{p"}-V'₃-Y'₃;

5 V'₃ represents -O- or a covalent bond;

Y'₃ represents the hydrogen atom or a (C_1-C_6) alkyl radical optionally substituted by one or more identical or different halo radicals;

p" represents an integer from 0 to 2;

or a pharmaceutically acceptable salt thereof.

- 9. Compound according to one of the preceding claims, characterized in that R_3 represents $-Z_3$, $-C(R_{Z3})(R'_{Z3})-Z_3$ or $-C(R_{Z3})(R'_{Z3})-(CH_2)_p-Z_3$; or a pharmaceutically acceptable salt thereof.
 - 10. Compound according to claim 9, characterized in that R_3 represents $-Z_3$ and Z_3 represents Z_{3b} , Z_{3c} or Z_{3e} ; or a pharmaceutically acceptable salt thereof.
- 15 11. Compound according to claim 10, characterized in that Z_3 represents Z_{3c} and Z_{3c} represents an aryl radical; or a pharmaceutically acceptable salt thereof.
 - 12. Compound according to claim 11, characterized in that Z_{3c} represents a phenyl radical substituted by one or more identical or different substituents chosen from: halo, nitro or $-(CH_2)_{p'}-V_3-Y_3$;
- V₃ represents -O-, -S-, -C(O)-, -C(O)-O-, -SO₂NH-, -NR'₃-C(O)-, -C(O)-NR'₃- or a covalent bond;

R'₃ represents the hydrogen atom;

25

 Y_3 represents the hydrogen atom or a (C_1-C_6) alkyl radical optionally substituted by one or more identical or different halo radicals; or a pharmaceutically acceptable salt thereof.

13. Compound according to claim 11, characterized in that Z_{3c} represents a phenyl radical substituted by one or more identical or different substituents of formula - $(CH_2)_{p'}$ - V_3 - Y_3 :

 V_3 represents -C(O)-, -C(O)-O- or -C(O)-NR'₃-;

5 R'₃ represents the hydrogen atom;

 Y_3 represents the hydrogen atom or a (C_1-C_6) alkyl radical; or a pharmaceutically acceptable salt thereof.

- **14.** Compound according to claim 9, characterized in that R_3 represents $-C(R_{Z3})(R'_{Z3})-Z_3$ and Z_3 represents Z_{3d} or Z_{3e} ; or a pharmaceutically acceptable salt thereof.
- 15. Compound according to claim 9, characterized in that R_3 represents $-C(R_{Z3})(R'_{Z3})-(CH_2)_p-Z_3$ and Z_3 represents Z_{3c} , Z_{3d} or Z_{3e} ; or a pharmaceutically acceptable salt thereof.
 - 16. Compound according to claim 15, characterized in that Z_3 represents Z_{3d} or Z_{3e} ;

 Z_{3d} represents a (C_1-C_6) alkoxy-carbonyl or amino-carbonyl radical;

 Z_{3e} represents a (C_1-C_6) alkyl-C(O)-NH-, heterocycloalkyl radical being optionally substituted by an oxy radical, or a radical of formula

$$O(CH_2)r$$

$$r = 1, 2$$

or a pharmaceutically acceptable salt thereof.

17. Process for the preparation of a compound of formula (I) according to one of the preceding claims characterized in that the compound of general formula:

in which R₁, R₂, R₄ have the meaning indicated in claim 1, is treated with an isothiocyanate of general formula R₃N=C=S in which R₃ has the meaning indicated in claim 1, in the presence of a coupling agent or of yellow mercury (II) oxide in the presence of sulphur, for a duration of 3 to 48 hours, in a protic or aprotic solvent, at a temperature of 50 to 80°C.

5

15

- 18. Pharmaceutical composition containing, as active ingredient, at least one compound according to one of claims 1 to 16, in combination with a pharmaceutically acceptable support.
- 19. Use of a compound according to one of claims 1 to 16, for the preparation of a medicament for the treatment of weight disorders, mental disorders, pain, sexual activity disorders.
 - 20. Use of a compound according to claim 19, for the preparation of a medicament for the treatment of weight disorders such as obesity, cachexia and more particularly cancer cachexia, AIDS cachexia, old age cachexia, cardiac cachexia, renal cachexia, rheumatoid arthritis cachexia, and anorexia.
 - 21. Use of a compound according to claim 19, for the preparation of a medicament for the treatment of mental disorders such as anxiety and depression.
 - 22. Use of a compound according to claim 19, for the preparation of a medicament for the treatment of pain and more particularly neuropathic pain.