Experiments on the DCASE Challenge 2016: Acoustic Scene Classification and Sound Event Detection in Real Life Recordings

Benjamin Elizalde¹, Anurag Kumar¹, Ankit Shah², Rohan

Badlani³, Emmanuel Vincent⁴, Bhiksha Raj¹, Ian Lane¹

¹CMU, ⁴Inria, ²NIT Surathkal, ³BITS

Overview

- 1. Task 1: Acoustic Scene Classification
 - a. Approach
 - b. Results on challenge
 - c. Conclusions
- 2. Task 3: Sound Event Detection in Real Life Recordings
 - a. Approach
 - b. Results on challenge
 - c. Conclusions

Task 1: Acoustic Scene Classification

Approach

Multiclass classification of scenes using high-level features and

multiple kernels for SVM

- Merge both audio channels into one.
- Compute MFCCs with 20 dim. +D+DD, 30 ms window and 50% overlap.

• Train multiple GMM-UBMs of different component sizes (64,128,256,512) over the MFCCs of all the training data.

- The high-level features try to capture the distribution of the scene's MFCCs.
- Compute features, labeled as Beta, by adapting the UBM to the MFCCs using MAP* for each component size.
 - Four supervectors with stacked means.
 - Four supervectors with stacked means and variance.

$$\hat{\boldsymbol{\mu}}_k = \frac{n_k}{n_k + r} E_k(\boldsymbol{x}) + \frac{r}{n_k + r} \boldsymbol{\mu_k}$$

$$\hat{\boldsymbol{\sigma}}_k = \frac{n_k}{n_k + r} E_k(\boldsymbol{x}^2) + \frac{r}{n_k + r} (\boldsymbol{\sigma}_k^2 + \boldsymbol{\mu}_k^2) - \hat{\boldsymbol{\mu}}_k^2$$

- The high-level features try to capture the distribution of the scene's MFCCs.
- Compute features, labeled as Beta, by adapting the UBM to the MFCCs using MAP* for each component size.
 - Four supervectors with stacked means.
 - Four supervectors with stacked means and variance.

• Train SVM with Linear and RBF kernels for each of the 8 supervectors, thus 16 systems in total.

• Fuse classifiers based on maximum prediction vote.

Task 1: Acoustic Scene Classification

Results

Overall results on the challenge

	Accuracy %	
Run	Development	Evaluation
Baseline	72.5	77.2
Best	89.9 ^H	89.7 ^H

Overall results on the challenge

	Accuracy %	
Run	Development	Evaluation
Baseline	72.5	77.2
Best	89.9 ^H	89.7 ^H
Our approach	78.9	85.9

Class-wise results

Conclusions

- GMM-based representations capture well the content of long scene recordings.
 - For example, i-vectors which got the best performance.

Fusion of different beta vectors and kernels improved performance.

• We tried Alpha features which are histograms, similar to Bag-of-Audio-Words representations in combination with 7 kernels, but didn't help.

Task 3: Sound Event Detection in Real Life Recordings Approach

Multiclass classification of sound events in scenes, including a generic sound event and time-perturbation

- Create a pipeline for each scene: Home and Residential Area.
- For training: extract the sound events from the scene recordings to have isolated files.

- Merge both audio channels into one..
- Compute MFCCs with 13 dim. +D+DD, 30 ms window and 50% overlap.
 - Also explored: Separable Gabor Filter Banks, Scatnet and Stacked with and without PCA.

- Tpot is a toolbox that automatically creates machine learning pipelines.
- Tpot (v4) tests and optimizes 12 classifiers such as SVMs, Decision Trees, K-Neighbors, Logistic Regression, etc.
- Main selections: Random Forest, Logistic Regression, Gradient Boosting

- For testing: the scene recording was trimmed into contiguous one-second segments.
- Compute MFCCs and then classify each segment.

Approach: Generic

- The generic class was created to address out-of-vocabulary sound events.
- The class is specific to each scene.
- The number of audio files corresponds to the average of files per class.

Approach: Perturbation

- The time-perturbation is intended to address robustness and compensate for small data.
- The signal was speeded up to 2x and slowed down to 0.3x to output 13 different versions of the original file.

Task 3: Sound Event Detection in Real Life Recordings Results

	Overall Segment-based Error Rate	
Run	Development	Evaluation

Baseline	0.91	0.87
Best	0.91 ^s	0.80 ^S

	Overall Segment-based Error Rate	
Run	Development	Evaluation
Standard (S)	0.84	1.05

Baseline	0.91	0.87
Best	0.91 ^S	0.80 ^S

	Overall Segment-based Error Rate	
Run	Development	Evaluation
Standard (S)	0.84	1.05
S+Generic	0.81	1.07

Baseline	0.91	0.87
Best	0.91 ^S	0.80 ^S

	Overall Segment-based Error Rate	
Run	Development	Evaluation
Standard (S)	0.84	1.05
S+Generic	0.81	1.07
S+Generic+Perturbation	0.76	0.961

Baseline	0.91	0.87
Best	0.91 ^s	0.80 ^S

	Overall Segment-based Error Rate	
Run	Development	Evaluation
Standard (S)	0.84	1.05
S+Generic	0.81	1.07
S+Generic+Perturbation	0.76	0.961
*S+Perturbation	0.74	0.96
Baseline	0.91	0.87
Best	0.91 ^S	0.80 ^S

	Segment-based Error Rate (Class-based average)	
Run	Home	Residential

Baseline	0.97	1.31
Best	0.98 ^S	0.98 ^D

	Segment-based Error Rate (Class-based average)	
Run	Home	Residential
Standard (S)	1.12	0.99
S+Generic	1.92	2.08
S+Generic+Perturbation	1.52	1.24
*S+Perturbation	1.03	0.89
Baseline	0.97	1.31
Best	0.98 ^S	0.98 ^D

Class-wise results on Home

Class-wise results on Residential Area

Conclusions

- Classifier exploration improved performance, unlike feature exploration.
- The generic sound event could be an option for out-of-vocabulary-words.
- Time-perturbation significantly improved our system.

Large-scale sound event detection using weakly-labeled data.

Questions?

bmartin1@andrew.cmu.edu

Per-scene results on the challenge

Scene	Rank - ex aequo
Residential Area	1 tiers
Forest, Grocery Store, Metro, Office	2
Train, Home, City Center, Bus	3
Beach, Cafe, Car, Tram	4
Library, Park	5

Sound-events results on challenge

S+Generic+Perturbation		
Home	Residential	Rank
Cupboard	Wind Blowing	1
Glass Jingling	Children Shouting	2
•••	•••	•••
Water Tap Running	People Speaking	9
Object Impact	Bird Singing	13