Controle de velocidade de motor baseado em tecnologia pulse-width modulation

Luís Guilherme Miranda Spengler¹ e Diogo Paes Masacottes²

^{1,2}Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso do Sul

1 Introdução

Com a aplicação de um pulso modulado por largura sobre um intervalo de tempo, pode-se reduzir a potência transmitida à carga. Neste relatório descrevemos um experimento de controle de velocidade de um motor baseado na variação de potência transmitida à carga.

2 Problemática

A importância do estudo da disciplina de controle se justifica pelo fato de estarmos em constante contato com dispositivos operados por sistemas de controle e também para posterior aplicações como profissionais da área de eletrotécnica.

3 Objetivo Geral

Identificar o tipo de controle para incrementar a velocidade do motor, enquanto se observa os efeitos do controle por PWM.

4 Metodologia

Utilizando o kit de instrumentação do laboratório, foi possível montar o circuito da figura 1.

Figura 1: Esquema do circuito

O controle da tensão que vai para o motor DC é feito ajustando o potênciometro de "Voltage Source", que fornece só até 10V. O sinal PWM sai de "PWM Signals". A velocidade do motor é medida através de um rotary encoder.

Foram medidas as variáveis de tensão, frequência de PWM, Potência (através da relação da tensão e ciclo de trabalho) e frequência de rotação. Os dados obtidos estão na próxima seção.

5 Resultados

Tabela de variáveis			
Tensão	Frequência	Pot.	Frequência
$0 \approx 10V$	PWM	%	Encoder (F/C1)
0,02	0,10 KHz	00	0 KHz
0,99	$0.10~\mathrm{KHz}$	10	0 KHz
1,98	0,10 KHz	20	0 KHz
2,99	0,10 KHz	30	0 KHz
4,00	$0.10~\mathrm{KHz}$	40	0 KHz
5,00	0,10 KHz	50	0 KHz
5,92	0,12 KHz	55	$0.05~\mathrm{KHz}$
7,01	0,10 KHz	65	$0.25~\mathrm{KHz}$
7,97	$0.10~\mathrm{KHz}$	75	$0.55~\mathrm{KHz}$
8,92	$0.10~\mathrm{KHz}$	85	0,95 KHz
10,0	0,10 KHz	100	1,65 KHz

6 Conclusão

Como é necessário incrementar a tensão na entrada do motor para ter uma maior velocidade (neste caso medida em termos de frequência), pode-se concluir que estamos trabalhando com um sistema em malha fechada manual, enquanto se aprofunda os conhecimentos técnicos de encoders e PWM da disciplina.