Тест	1	I	2		3		Итого			
									для про	оверяющего!
Фами	лия, имя	і, номер і	руппы	:						
Ответь	и на тест	:								
Ответь 1	и на тест 2	: 3	4	5	6	7	8	9	10	
Ответь 1			4	5	6	7	8	9	10	

Тест

Вопрос 1. Использование МНК к регрессии с бинарной зависимой переменной приведет к возникновению:

А Гетероскедастичности остатков

С Мультиколлинеарности в модели

деление

В Незначимости всей регрессии

D Остатки модели будут иметь нормальное распре-

|E| нет верного ответа

Bonpoc 2. В качестве функции правдоподобия для оценки ММП парной регрессионной модели выступает функция:

 $\boxed{A} L(\beta_0; \beta_1) = \prod_{i=1}^n (p_i^{y_i} + (1 - p_i)^{1 - y_i})$

 $D L(\beta_0; \beta_1) = \prod_{i=1}^n (1 - p_i)^{1 - y_i}$

 $\boxed{B} \ L(\beta_0; \beta_1) = \prod_{i=1}^n (p_i^{y_i} \cdot (1 - p_i)^{1 - y_i})$

 $C L(\beta_0; \beta_1) = \prod_{i=1}^n (p_i^{y_i} - (1 - p_i)^{1 - y_i})$

|E| нет верного ответа

Вопрос 3. Была оценена логистическая регрессия зависимости вероятности просрочки (1 - есть просрочка, 0 - нет) по кредиту в зависимости от возраста заемщика (Age):

$$\mathbb{P}(Y=1) = F(Z), Z = -2, 101 - 0, 025 \cdot Age + u$$

Абсолютная разница в вероятности просрочки для заемщика 36 лет и заемщика 55 лет, округленная до сотых, составляет:

[A] нельзя найти по имеющимся данным *C* 0.5

F 0.05

 $B \mid 0$, отсутствует

|E| 0.38

 $D \mid 0.02$

G нет верного ответа

Вопрос 4. Истинная зависимость имеет вид $Y_i=\beta_0+\beta_1\cdot Z_i+v_i$. При этом Z_i измеряется с ошибкой: $Z_i^{obs}=Z_i+w_i$. Известно, что $\beta_1=-0,4,\sigma_w^2=6,\,\sigma_z^2=3,\,\mathbb{C}\mathrm{ov}(w_i,v_i)=0$. Исследователь оценивает регрессию $\hat{Y}_i=\hat{\beta}_0+\hat{\beta}_1\cdot Z_i^{obs}$. Предел по вероятности оценки $\hat{\beta}_1$ будет отличаться от истинного значения параметра на

A -0.1(3)

C 0.2(6)

[E] Оценка не будет асимптотически смещена

B 0.1(3)

D -0.2(6)

 \boxed{F} нет верного ответа

Вопрос 5. Валидность инструмента Z_i в модели $Y_i = \beta_0 + \beta_1 \cdot X_i + \epsilon_i$ обозначает:

A Инструмент Z_i коррелирует с X_i

[E] В модели есть эндогенность

B Инструмент Z_i не коррелирует с ошибкой

D Инструмент Z_i коррелирует с ошибкой

|F| нет верного ответа

Вопрос 6. В линейной модели $Y_i = \beta_0 + \beta_1 \cdot X_i + \epsilon_i$ регрессор X_i является эндогенным. Состоятельные оценки коэффициентов можно получить с помощью

A MHK

С Взвешенного МНК

переменных

В Обобщенного МНК

 D
 Метода инструментальных

|E| нет верного ответа

Вопрос 7. Известно, что $Y_i=\beta_0+\epsilon_i$, при этом $\mathbb{V}\mathrm{ar}(\epsilon_i)=i^2$. Какая из этих оценок β_0 будет эффективной?

 $\boxed{A} \ \frac{\sum_{i=1}^n \frac{Y_i}{i^2}}{\sum_{i=1}^n \frac{1}{i^2}}$

D $\overline{\left(\frac{1}{i^2}\right)}$

 $\boxed{B} \quad \frac{\sum_{i=1}^{n} \frac{Y_i}{i}}{\sum_{i=1}^{n} \frac{1}{i}}$

 $E \overline{Y}$

 $C \overline{\left(\frac{1}{i}\right)}$

 \overline{F} нет верного ответа

Вопрос 8. Какой из этих тестов на гетероскедастичность не требует выбора переменной, по которой подозревается гетероскедастичность:

 \overline{A} Тест Уайта

С Тест Глейзера

Е Тест Хаусмана

В Тест Голдфелда-Куандта

D Тест Дарбина-Уотсона

 \overline{F} нет верного ответа

Вопрос 9. При использовании МНК оценок параметров регрессионного уравнения и робастных ошибок в форме Уайта,

 \boxed{A} Оценки \widehat{eta} будут состоятельными и неэффективными, доверительные интервалы, полученные по $\widehat{Var_{HCE}}(\widehat{eta})$ можно использовать

 \fbox{B} Оценки \widehat{eta} будут состоятельными и эффективными, доверительные интервалы, полученные по $\widehat{Var_{HCE}}(\widehat{eta})$ можно использовать

C Оценки $\widehat{\beta}$ будут несостоятельными и неэффективными, доверительные интервалы, полученные по $\widehat{Var}_{HCE}(\widehat{\beta})$ нельзя использовать

 \boxed{D} Оценки $\widehat{\beta}$ будут несостоятельными и неэффективными, доверительные интервалы, полученные по $\widehat{Var_{HCE}}(\widehat{\beta})$ можно использовать

3/3

$[E]$ Оценки \widehat{eta} будут состоятельны $\widehat{Var}_{HCE}(\widehat{eta})$ нельзя использова	ыми и эффективными, доверитель ть	ные интервалы, полученные по
\boxed{F} нет верного ответа		
Вопрос 10 . Для модели $Y = X\beta + \epsilon$ о параметров β можно получить с по		ая матрица, эффективные оценки
$\boxed{A} \ \min(Y {-} X\beta)' \Omega(Y {-} X\beta)$	$\boxed{C} \min(Y - X\beta)'(Y - X\beta)$	Е Минимизация невозможна
$\boxed{\textit{B}} \ \min(Y \text{-} X\beta)'\Omega^{-1}(Y \text{-} X\beta)$	$\boxed{D} \ \min(Y \text{-} X\beta)^2$	\overline{F} нет верного ответа
Вопрос 11. Если функция плотност мального правдоподобия являются	ги удовлетворяет условиям регуляр	оности, то оценки метода макси-
А несмещенными	С неотрицательными	<i>E</i> равномерно распределен- ными
В несостоятельными	D инвариантными	\overline{F} нет верного ответа
Вопрос 12. Тест Саргана для провед догенных переменных среди объяст	- -	кно использовать, если число эн-
А Больше числа экзогенных переменных	C Меньше числа инструментов	Е Меньше 3
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	\boxed{D} Не превышает 10	\boxed{F} нет верного ответа
Вопрос 13. Если обобщенный метод ментов совпадает с числом оценива		•
А Равна нулю	С Меньше нуля	<i>E</i> Равна числу моментных
В Больше нуля	D Может быть как больше нуля, так и меньше нуля	тождеств F нет верного ответа
Вопрос 14. При проверке гипотезы $\epsilon \sim \mathcal{N}(0,\sigma^2)$ с помощью теста множ		
A Perpeccuu на константу	C Только модели без ограничений	E Как модели с ограничения- ми, так и модели без огра-
В Регрессии на все факторы, кроме константы	\boxed{D} Только модели с ограничениями	ничений $ \overline{F} $ нет верного ответа

Вопрос 15. Для проверки значимости коэффициента регрессии $Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 W_i + \epsilon_i$, $\epsilon \sim \mathcal{N}(0,\sigma_\epsilon^2)$, оцененной с помощью ММП по n наблюдениям, исследователь использует LR статистику. Она имеет распределение

 $oxedsymbol{A}$ точно $\mathcal{N}(0,1)$

C t_{n-4}

 $\fbox{\it E}$ асимптотически χ^2_{n-4}

 $\fbox{$B$}$ асимптотически $\mathcal{N}(0,1)$

 \fbox{D} асимптотически χ_1^2

 \overline{F} нет верного ответа

5/3

Задачи

- 1. В линейной модели $Y_i = \beta_0 + \beta_1 \cdot X_i + \epsilon_i$ регрессор X коррелирован с ошибкой: $corr(X_i, \epsilon_i) \neq 0$.
 - а) Объясните, каким образом для данной модели можно получить состоятельные оценки с помощью двухшагового МНК. Какие модели необходимо оценить на каждом шаге?
 - б) Покажите, что в случае с одним регрессором оценка коэффициента β_1 , полученная с помощью двухшагового МНК и одним инструментом, эквивалентна IV-оценке.
- 2. Илон Маск оценивает два параметра по выборке из 1000 наблюдений методом максимального правдоподобия. Известна логарифмическая функция правдоподобия:

$$\ell(\gamma,\beta) = -6\gamma^2 - 4\beta^2 + \gamma\beta - \beta + 3$$

- а) Найдите оценки параметров γ и β методом максимального правдоподобия
- б) Найдите оценку информационной матрицы Фишера.
- в) Постройте 95%-й интервал для параметра β
- г) С помощью LM-теста проверьте гипотезу γ = 1 на уровне значимости 5
- д) С помощью теста Вальда проверьте гипотезу $\gamma = \beta$ на уровне значимости 5

Критические значения хи-квадрат распределения для 5%-го уровня значимости равны 3.8, 6.0, 7.8, 9.5, 11.1 (для 1-5 степеней свобод).

3. По данным открытого скрининга здоровья людей (2730 съемов) на наличие диабета второго типа (Y= 0 если диабета нет и 1, если диабет обнаружен) была построена логит-модель вероятности наличия диабета в зависимости от параметров:

пол (gen, 0-M, 1-Ж), возраст (полных лет, от 18-ти), частота сердечного ритма, пульс (ударов в минуту, pulse)

Результаты оценки модели представлены ниже:

	\hat{eta}	$se(\hat{\beta})$
age	0.07	0.005
pulse	0.1	0.265
gen const	-0.3 -8.7	0.103 0.611

Ниже дана таблица классификации при пороге отсечения 0,25:

	$\hat{Y}_i = 0$	$\hat{Y}_i = 1$
$\overline{Y_i = 0}$	1560	600
$\overline{Y_i = 1}$	220	350

- а) Какие проблемы возникнут при рассмотрении линейной регрессии вместо логистической в этой модели?
- б) Рассчитайте значения чувствительности и специфичности данной модели
- в) Посчитайте вероятность наличия диабета для мужчины возрастом 60 лет, пульсом 80.
- г) Оцените предельный эффект увеличения возраста для женщины 43 лет и со значением пульса 80. Кратко, одной-двумя фразами, прокомментируйте смысл полученных цифр.
- 4. Известно, что количество решённых задачек по экзамене по Очень Сложному Предмету зависит от количества выпитого накануне кофе и любви к котикам (обе переменные непрерывные, даже любовь к котикам! И вообще, любовь к котикам может быть даже бесконечной, ведь нет предела совершенству!). То есть, истинная зависимость имеет вид:

$$Np_i = \beta_0 + \beta_1 Coffee_i + \beta_2 Cats_i + \epsilon_i$$

Исследователь Вениамин разделил выборку на три части по степени любви к кофе и оценил отдельные регрессии для каждой из трёх подвыборок. Известно, что в выборку кофефилов вошло 33 человека, в выборку кофефобов 23, а неопределившихся оказалось 44. После этого Вениамин провёл тест Голдфелда-Куандта и хотел было вписать его результаты в текст исследования, но тут, к его ужасу, прибежала кошка и съела часть цифр! Помогите Вениамину восстановить их!

- а) Зная, что значение тестовой статистики равно 6 и RSS в группе кофефобов выше, скажите, какие степени свободы имела тестовая статистика
- б) Найдите $RSS_{coffeephils}$, зная, что $RSS_{coffeephobs}=30$
- в) Предложите способ получить эффективные оценки $\hat{\beta}$, если известно, что $\sigma_{coffeephils}^2=1, \sigma_{neutrals}^2=2, \sigma_{coffeephobs}^2=10.$