МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМ. ТАРАСА ГРИГОРОВИЧА ШЕВЧЕНКА ФІЗИЧНИЙ ФАКУЛЬТЕТ

3BIT

до лабораторної роботи №3: «Напівпровідникові діоди»

Лінчаковський С. М.

РЕФЕРАТ

Звіт до ЛР №3: /// сторінок /// рис., /// джерел.

Мета роботи — навчитися одержувати зображення ВАХ діодів на екрані двоканального осцилографа, дослідити властивості р-n-переходів напівпровідникових діодів різних типів.

Об'єкт досдіження — напівпровідниковий діод з одним p-n-переходом і двома виводами

Методи дослідження — в роботі використовуються:

- Одержання зображення BAX діодів на екрані двоканального осцилографа, який працює в режимі характериографа;
- Побудова ВАХ діодів шляхом вимірювання певної кількості значень сили струму $I_{\rm д}$, що відповідають певним значенням та полярностям напруги $U_{\rm д}$, і подання результатів вимірів у вигляді графіка

3MICT

Частина 1. Теоретичні відомості.	C
I. Основні означення	
Частина 2. Виконання роботи.	
I. Схема	5
II. ВАХ випрямлювального діода	5
III. ВАХ стабілітрона	6
IV. BAX світлодіода	6
Висновки	7
Джерела.	8

Розділ І. Теоретичні відомості

Напівпровідниковий діод (англ. semiconductor diode) — це напівпровідниковий прилад з одним p-n—переходом і двома виводами. **p-n**—перехід (англ. p-n junction) — перехідний шар, що утворюється на межі двох областей напівпровідника, одна з яких має провідність n-типу, а інша — провідність p-типу.

Вольт-амперна характеристика (ВАХ) діода (англ. current-voltage characteristic) — це залежність сили струму Ід через p-n—перехід діода від величини і полярності прикладеної до діода напруги Uд.

Характериограф — електронно-променевий прилад, на екрані якого можна спостерігати графіки функцій будь-яких фізичних величин, що можуть бути перетворені у пропорційні їм напруги, наприклад, графіки залежності сили струму Ід від напруги Uд.

Частина 2. Виконання роботи.

І. Схема

На рис.1 Ви можете побачити схему для визначення ВАХ простого випрямлювального діода (D1), стаблітрона (D2) та світодіода (D3). Одразу скажу, що для запобігання постобробки резульатів канал В осцилографа був інвертований.

Рис. 1. Схема для визначення ВАХ діодів

II. ВАХ діода На рисунку нижче зображена ВАХ випрямлювального діода

Рис. 2 ВАХ випрямлювального діода

III. ВАХ стабілітрона На рисунку нижче зображена ВАХ стабілітрона

Рис. З ВАХ стабілітрона

IV. ВАХ світодіода На рисунку нижче зображена ВАХ світодіода

Рис. 4 ВАХ світодіода

Частина 3. Висновки.

У ході даної лабораторної роботи ми навчилися одержувати зображення ВАХ діодів на екрані двоканального осцилографа, дослідили властивості p-n—переходів напівпровідникових діодів різних типів. Ми одержали зображення ВАХ діодів на екрані двоканального осцилографа, який працює в режимі характериографа, і таким чином наочно побачили відмінності між різними типами діодів, що дає уявлення про їх можливе застосування

Частина 5. Список використаних джерел.

- 1. Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк,
- 2. Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с.
- 3. Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян "Вивчення радіоелектронних схем методом комп'ютерного моделювання": Методичне видання. К.: 2006.- с.