

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN ĐIỆN TỬ VIỄN THÔNG BỘ MÔN KỸ THUẬT ĐIỆN TỬ HÀNG KHÔNG VŨ TRỤ

-----&&\limin \limin \partial \partial

LÝ THUYẾT MẬT MÃ - ET3310

CƠ SỞ TOÁN HỌC CỦA LÝ THUYẾT MẬT MÃ

Trình bày : Phạm Thương – ĐT10 K58

Email : thuonghust@gmail.com

NỘI DUNG

- ❖ Số học các số nguyên
- ♦ Số học Modulo
- Dòng dư tuyến tính
- Ma trận

* Tập các số nguyên

- Tập hợp các số nguyên: $Z = \{-\infty, -2, -1, 0, 1, 2, \dots +\infty\}$
- Tập hợp các số nguyên không âm: $Z^+=\{0,1,2,.....+\infty\}$

***** Binary operations

■ Tập hợp Z là đóng kín đối với các phép cộng, trừ và nhân, nhưng không đóng kín đối với phép chia.

■ Ví dụ:

Multiply:

Add:
$$5 + 9 = 14$$
 $(-5) + 9 = 4$

$$5 + 9 = 14$$
 $(-5) + 9 = 4$ $5 + (-9) = -4$ $(-5) + (-9) = -14$

$$(-5) + (-9) = -14$$

Subtract:
$$5 - 9 = -4$$

$$(-5) - 9 = -14$$

$$5-9=-4$$
 $(-5)-9=-14$ $5-(-9)=14$ $(-5)-(-9)=+4$

$$5 \times 9 = 45$$
 $(-5) \times 9 = -45$ $5 \times (-9) = -45$ $(-5) \times (-9) = 45$

❖ Chia số nguyên

■ Cho hai số nguyên bất kỳ a và n, n > 1

$$a = q*n + r$$

q là thương số q = a div n

r là số dư, $0 \le r < n$ $r = a \mod n$

Ví dụ

$$37 = 3*11 + 4$$

 $37 \text{ div } 11 = 3 \\ 37 \text{ mod } 11 = 4$

Cho a =
$$-1023$$
, n = 13.
Tìm a div n, a mod n?

(-1023) div 13 = -79(-1023) mod 13 = 4

Phép chia hết

- Biểu thức: a = q*n+r
- Nếu r = 0, suy ra a chia hết cho n, ký hiệu: n a.
- Nếu $r \neq 0$, thì a không chia hết cho n, ký hiệu: $n \nmid a$.

- Ví dụ:
 - **✓** 4|44, 13|78, -6|24, 11|(-33).
 - ✓ 11∤(-32), 13 ∤27, -6 ∤ 23, 4 ∤ 41.

Phép chia hết

Một số tính chất:

- Nếu a|1 thì $a = \pm 1$
- Nếu a|b và b|a thì a = ±b
- Nếu a|b và b|c thì a|c
- Nếu a|b và a|c thì a|(m*b+n*c) với m, n là hai số nguyên tùy ý.

- * Uớc số chung lớn nhất Greatest Common Divisor (gcd)
 - Tìm UCLN của 140 và 12? (Ký hiệu gcd(140,12))

 $\overline{\text{K\'{y}} \text{ hiệu: d}} = \gcd(a,b)$

8

* Thuật toán Euclidean

Mục đích: tìm gcd(a,b)

* Thuật toán Euclidean

$$gcd(a,0) = a$$

gcd(a,b)=gcd(b,r)

• Ví dụ: Tìm gcd(2740, 1760)

q	\mathbf{r}_1	$\mathbf{r_2}$	r
1	2740	1760	980
1	1760	980	780
1	980	780	200
3	780	200	180
1	200	180	20
9	180	20	0
	20	0	

gcd(2740,1760) = 20

* Thuật toán Euclidean

- Thực hành với MATLAB
 - Viết chương trình tính UCLN của hai số nguyên: ucln.m

```
function y = ucln(a,b)
% Khoi tao
r1 = a;
r2 = b;
% Su dung vong lap while
while(r2>0)
    q = floor(r1/r2);% lam tron den so nguyen be gan nhat
    r = r1-q*r2; % Tinh so du
    r1=r2; % gan gia tri moi cho r1
    r2=r; % gan gia tri moi cho r2
end
% y la uoc chung lon nhat cua a va b
y=r1;
```


❖ Số nguyên tố

- Một số nguyên a > 1 được gọi là số nguyên tố, nếu a không có ước số nào ngoài 1 và chính a và được gọi là hợp số, nếu không phải là số nguyên tố.
- Hai số a và b được gọi là nguyên tố với nhau, nếu chúng không có ước số chung nào khác 1, tức là nếu gcd(a,b) =1.
- Ví du: $1800 = 2^{3*}3^{2*}5^{2}$

NỘI DUNG

- ❖ Số học các số nguyên
- ❖ Số học Modulo
- * Đồng dư tuyến tính
- Ma trận

❖ Toán tử Mod

 $a \mod n = r$

❖ Toán tử Mod

- Ví dụ:
 - $27 \mod 5 = 2$
 - $70 \mod 7 = 0$
 - $-18 \mod 14 = 10$
 - $-7 \mod 10 = 3$

❖ Đồng dư - congruence

- Hai số nguyên a và b là đồng dư với nhau theo module n, và viết a ≡ b (mod n),
 nếu n|(a-b).
- Mỗi lớp tương được đại diện bởi một số duy nhất trong tập hợp: $Z_n = \{0, 1, 2, 3,, n-1\}$ là số dư chung khi chia các số trong lớp đó cho n.
- Ví dụ: với $Z_{25} = \{0, 1, 2, ..., 24\},$

15+14=29=4 (mod 25)

☐ Toán tử trong Z_n

☐ Toán tử trong Z_n

Các tính chất

a. Original process

b. Applying properties

☐ Toán tử trong Z_n

❖ Các tính chất

- 1. $(a+b) \mod n = [(a \mod n) + (b \mod n)] \mod n$
- 2. $(a-b) \mod n = [(a \mod n) (b \mod n)] \mod n$
- 3. $(a*b) \mod n = [(a \mod n) * (b \mod n)] \mod n$

Ví dụ:
$$(241*72) \mod 23 = ((241 \mod 23) * (72 \mod 23)) \mod 23$$

= $(11*3) \mod 23$
= $33 \mod 23 = 10$

☐ Nghịch đảo - Inverses

❖ Nghịch đảo cộng – Additive Inverses

Trong Z_n, a và b gọi là nghịch đảo cộng của nhau nếu:

$$a+b \equiv 0 \pmod{n}$$

- Trong số học modulo, mỗi một số nguyên có một nghịch đảo cộng.
- Tổng hai số nguyên là đảo cộng của nhau thì đồng dư với 0 trong modulo n
- Ví dụ: 11 là nghịch đảo cộng của 9 trong Z_{20} vì (11+9)= $20 \equiv 0 \mod 20$
- Trong tập Z₁₀ có bao nhiều cặp nghịch đảo cộng?

* Nghịch đảo

- > Nghịch đảo nhân Multiplicate Inverses
 - Cho $a \in \mathbb{Z}_n$. Một số nguyên $x \in \mathbb{Z}_n$ được gọi là nghịch đảo của a theo mod n, nếu :

$$a*x \equiv 1 \pmod{n}$$

- Nếu có số x như vậy thì ta nói a là khả nghịch, và ký hiệu x là a^{-1} modn
- Số nguyên $a \in \mathbb{Z}_n$ là khả nghịch khi và chỉ khi $\gcd(n,a) = 1$

$$vi 22 .8 = 176 \equiv 1 \pmod{25}$$

* Nghịch đảo

- > Nghịch đảo nhân Multiplicate Inverses
 - Ví dụ: Tìm tất cả các cặp là nghịch đảo nhân của nhau trong $Z_{11.}$

Có 7 cặp: (1,1), (2,6), (3,4), (5,9), (7,8), (9,9), (10,10)

Nghịch đảo

➤ Nghịch đảo nhân – Multiplicate Inverses

$$C = (P \times k_1 + k_2) \bmod 26$$

$$P = ((C - k_2) \times k_I^{-1}) \mod 26$$

where k_1^{-1} is the multiplicative inverse of k_1 and $-k_2$ is the additive inverse of k_2

* Nghịch đảo

- > Nghịch đảo nhân Multiplicate Inverses
 - Có cặp $\ref{eq:constraint}$ là nghịch đảo nhân của nhau trong $Z_{26.}$

Có cặp 7 cặp:

 $\{(1,1), (3,9), (5,21), (7,15), (11,19), (17,23), (25,25)\}.$

❖ Thuật toán Euclidean mở rộng

- Tính chất: Cho 2 số nguyên a và b, ta luôn tìm được 2 số nguyên s và t sao cho : $\mathbf{s} \times \mathbf{a} + \mathbf{t} \times \mathbf{b} = \mathbf{gcd}(\mathbf{a}, \mathbf{b})$.
- Thuật toán Euclidean có thể tính đồng thời gcd(a,b) và giá trị s và t.

* Thuật toán Euclidean mở rộng

11/9/2017

26

❖ Thuật toán Euclidean mở rộng

■ Ví dụ: Tìm gcd, s, t với (a,b) = (26,11)

```
Command Window

>> [d,s,t] = extendedEuclidean(26,11)

d =

1

s =

3

t =

-7
```



```
extendedEuclidean.m * +
      \Box function [d,s,t] = extendedEuclidean(a,b)
 2
       % Khoi tao cac gia tri
        r1 = a; r2 = b;
 5
        s1 = 1; s2 = 0;
 6 -
 7
 8 -
        t1=0; t2=1;
        % While loop to calculate r, s, t
     \stackrel{\triangle}{=} while (r2>0)
10 -
             q = floor(r1/r2);
11 -
12
             r=r1-q*r2; r1=r2; r2=r;
13 -
14
             s = s1-q*s2; s1=s2; s2=s;
15 -
16
             t = t1-q*t2; t1=t2; t2=t;
17 -
             if (r1==1)
18 -
19 -
                break
20 -
             end
21 -
             d = r1; t = t1; s = s1;
22 -
23 -
        end
```


* Thuật toán Euclidean mở rộng

Ví dụ: Cho: a=161, b=28.Tìm gcd(a,b) và giá trị s và t?

$$r = r_1 - q * r_2$$

 $s = s_1 - q * s_2$
 $t = t_1 - q * t_2$

q	\mathbf{r}_1	\mathbf{r}_{2}	r	\mathbf{s}_1	S_2	S	t_1	t ₂	t
5	161	28	21	1	0	1	0	1	-5
1	28	21	7	0	1	-1	1	-5	6
3	21	7	0	1	-1	4	-5	6	-23
	7	0		-1	4		6	-23	

$$gcd(161,28) = 7$$
, $t = t_1 = 6$, $s = s_1 = -1$.

$$161*(-1) + 28*6 = \gcd(161,28) = 7$$

❖ Thuật toán Euclidean mở rộng

- Áp dụng thuật toán Euclidean để tìm nghịch đảo nhân của $\mathbf{b} \in \mathbf{Z_n}$
- Nếu b khả nghịch, **gcd(b,n)=1**, nên ta luôn tìm được s và t sao cho:

$$\begin{bmatrix} \mathbf{s}^*\mathbf{n} + \mathbf{t}^*\mathbf{b} & = \mathbf{1} \end{bmatrix} \quad (*)$$

$$(\mathbf{s}^*\mathbf{n} + \mathbf{t}^*\mathbf{b}) \bmod \mathbf{n} = 1 \bmod \mathbf{n}$$

$$[(\mathbf{s}^*\mathbf{n}) \bmod \mathbf{n}] + [(\mathbf{t}^*\mathbf{b}) \bmod \mathbf{n}] = 1 \bmod \mathbf{n}$$

$$0 + [(\mathbf{t}^*\mathbf{b}) \bmod \mathbf{n}] = 1 \bmod \mathbf{n}$$

$$(\mathbf{t}^*\mathbf{b}) \bmod \mathbf{n} = 1$$

$$\Rightarrow \mathbf{t} = \mathbf{b}^{-1}$$

 \triangleright Như vậy, nghịch đảo nhân của $b \in \mathbb{Z}_n$ thỏa mãn (*) là t.

❖ Thuật toán Euclidean mở rộng

• Áp dụng thuật toán Euclidean để tìm nghịch đảo nhân của $b \in \mathbb{Z}n$

```
 \begin{aligned} r_1 &= n; & r_2 &= b; \\ t_1 &= 0; & t_2 &= 1; \end{aligned} \\ \text{while } (r_2 > 0) \\ \{ q &= r_1 \ / \ r_2; \\ r &= r_1 - q \ * \ r_2; \\ r_1 &= r_2; & r_2 &= r; \end{aligned} \\ t &= t_1 - q \ * \ t_2; \\ t_1 &= t_2; & t_2 &= t; \end{aligned} \\ \text{if } (r_1 &= 1) \text{ then } b^{-1} &= t_1 \end{aligned}
```


- Tập $Z_n = \{0,1,2,...,n-1\}$ thường được gọi là tập các thặng dư đầy đủ theo mod n.
- Tập các thặng dư thu gọn theo mod n được định nghĩa là tập

$$Z_n^* = \{a \in \mathbf{Z}_n : \gcd(a, n) = 1\}$$

$$\mathbf{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

$$\mathbf{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$$

$$\mathbf{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$\mathbf{Z}_6^* = \{1, 5\}$$

$$\mathbf{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$$

$$\mathbf{Z}_{10}^* = \{1, 3, 7, 9\}$$

NỘI DUNG

- ❖ Số học các số nguyên
- Số học Modulo
- ❖ Đồng dư tuyến tính
- Ma trận

ĐỒNG DƯ TUYẾN TÍNH

Phương trình đồng dư tuyến tính: là phương trình có dạng

$$ax \equiv b \pmod{n}$$

trong đó a, b, n là các số nguyên, n > 0, x là ẩn số

- Cách giải
- Tính gcd(a,n)=d, nếu d ∤ b thì phương trình vô nghiệm, nếu d | b thì phương trình có d nghiệm. Các bước tìm nghiệm:
- 1. Chia cả hai vế cho d
- 2. Nhân cả hai vế với nghịch đảo của a/d, ta được nghiệm x_0
- 3. Các nghiệm còn lại $x = x_0 + k(n/d)$ với k=0,1,.., (d-1)

ĐỒNG DƯ TUYẾN TÍNH

- Ví dụ: Tìm x trong phương trình đồng dư tuyến tính $3x \equiv 4 \pmod{5}$
 - ✓ Lời giải:
 - $Ta\ c\acute{o}:\ gcd(3,5)=1,\ c\acute{o}\ 1|4.$
 - Suy ra phương trình đã cho có 1 nghiệm.

Ta có:
$$3x \equiv 4 \pmod{5} \Leftrightarrow x \equiv (4*3^{-1}) \pmod{5}$$

• Lập bảng tìm nghịch đảo nhân của 3 trên modulo 5, sử dụng Euclidean mở rộng (tự lập bảng) $\Rightarrow 3^{-1} \pmod{5} = 2$

$$\Rightarrow x \equiv (4*3^{-1}) \pmod{5} \Leftrightarrow x \equiv (4*2) \pmod{5} \Leftrightarrow x \equiv 8 \pmod{5} \Leftrightarrow x \equiv 3$$

Vây phương trình đã cho có nghiệm: x = 3.

NỘI DUNG

- ❖ Số học các số nguyên
- Số học Modulo
- * Đồng dư tuyến tính
- **❖** Ma trận

MA TRÂN

* Định nghĩa

- Ma trận kích thước $m \times n$ bao gồm: $m \times n$ phần tử, m hàng và n cột
- Phần tử a_{ij} thuộc hàng i, cột j

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & & & \vdots \\ \vdots & & a_{ij} & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}_{m \times n}$$

MA TRẬN

❖ Một số phép toán về ma trận

- Cộng hai ma trận
- Nhân (vô hướng) một số với ma trận với
- Phép nhân hai ma trận
- Ma trận chuyển vị

MA TRÂN

* Định thức

- Định thức của ma trận vuông A, kích thước m× m (kí hiệu là det(A)) là một số được tính theo:
- 1. Nếu m = 1, $det(A) = a_{11}$

2. Nếu m > 1,
$$\det(A) = \sum_{i=1...m} (-1)^{i+j} \times a_{ij} \times \det(A_{ij})$$

Trong đó A_{ij} là ma trận A bỏ đi hàng i, cột j

■ Ma trận nghịch đảo nhân: Ma trận vuông B được gọi là nghịch đảo của ma trận vuông A khi và chỉ khi: A×B=I

MA TRÂN

❖ Ma trận thặng dư (Residue Matrices)

- \blacksquare Mật mã hóa thường sử dụng ma trận thặng dư: ma trận có các phần tử thuộc $Z_{\rm n}.$
- Mọi phép toán trên ma trận thặng dư thì tương tự như trên ma trận số nguyên ngoại trừ việc các toán tử được thực trên trong số học modulo.
- Ma trận thặng dư vuông tồn tại nghịch đảo nhân khi và chỉ khi: gcd(det(A),n)=1.

MA TRÂN

 Ví dụ về nghịch đảo nhân ma trận thặng dư Ma trận A thuộc Z_{26}

$$\mathbf{A} = \begin{bmatrix} 3 & 5 & 7 & 2 \\ 1 & 4 & 7 & 2 \\ 6 & 3 & 9 & 17 \\ 13 & 5 & 4 & 16 \end{bmatrix}$$
$$\det(\mathbf{A}) = 21$$

$$\mathbf{A} = \begin{bmatrix} 3 & 5 & 7 & 2 \\ 1 & 4 & 7 & 2 \\ 6 & 3 & 9 & 17 \\ 13 & 5 & 4 & 16 \end{bmatrix} \qquad \mathbf{A}^{-1} = \begin{bmatrix} 15 & 21 & 0 & 15 \\ 23 & 9 & 0 & 22 \\ 15 & 16 & 18 & 3 \\ 24 & 7 & 15 & 3 \end{bmatrix}$$
$$\det(\mathbf{A}) = 21 \qquad \det(\mathbf{A}^{-1}) = 5$$

Bài 1. Cho một ma trận vuông A, tìm nghịch đảo A⁻¹ trong module n.

- ❖ Ma trận: $A = \begin{pmatrix} 3 & 9 \\ 2 & 7 \end{pmatrix}$ trên module n = 17.
 - Tim det(A) = $\begin{vmatrix} 3 & 9 \\ 2 & 7 \end{vmatrix} = 3$ gcd(det(A), n) = gcd(3,17) = 1.

Suy ra ma trận A tồn tại nghịch đảo trên module 17.

- $A^{-1} = (\det(A))^{-1} *B^{T} \pmod{17}$. Với B^{T} là ma trận phụ đại số đã được chuyển vị.
 - ✓ Tính toán (det(A))⁻¹: Tìm nghịch đảo nhân của det(A)= 3 trên module 17, sử dụng thuật toán Euclidean mở rộng. (det(A))⁻¹ mod 17 = 3⁻¹mod 17 = 6.
 - ✓ Tính ma trận phụ đại số đã được chuyển vị \mathbf{B}^{T} (tự tính), $\mathbf{B}^{\mathsf{T}} = \begin{pmatrix} 7 & -9 \\ -2 & 3 \end{pmatrix}$.

Bài 1. Cho một ma trận vuông A, tìm nghịch đảo A⁻¹ trong module n.

■ Vậy:
$$A^{-1} = 6*\begin{pmatrix} 7 & -9 \\ -2 & 3 \end{pmatrix} \pmod{17} = \begin{pmatrix} 42 & -54 \\ -12 & 18 \end{pmatrix} \pmod{17} = \begin{pmatrix} 8 & 14 \\ 5 & 1 \end{pmatrix}$$

• Check again: A * A⁻¹ =
$$\begin{pmatrix} 3 & 9 \\ 2 & 7 \end{pmatrix}$$
 * $\begin{pmatrix} 8 & 14 \\ 5 & 1 \end{pmatrix}$ = $\begin{pmatrix} 69 & 51 \\ 51 & 35 \end{pmatrix}$ mod 17 = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ = **I**

Bài 2. Problem with Hill cipher.

Encryption: Plaintext P = "BACHKHOA", Key: $K = \begin{bmatrix} 3 & 9 \\ 2 & 7 \end{bmatrix}$.

Encryption by Hill cipher, được bản mật ciphertext $C = (P*K) \mod 26$.

- Kiểm tra khóa K thỏa mãn điều kiện tồn tại nghịch đảo nhân: gcd(det(K), 26) = 1.
- Plaintext: "BA CH KH OA" viết dưới dạng ma trận như sau:

Plaintext =
$$\begin{bmatrix} B & A \\ C & H \\ K & H \\ O & A \end{bmatrix} \Rightarrow P = \begin{bmatrix} 1 & 0 \\ 2 & 7 \\ 10 & 7 \\ 14 & 0 \end{bmatrix}$$

✓ Lưu ý: ta có thể chèn thêm ký tự "Z" vào bản rõ khi chiều dài bản rõ khác số nguyên lần số hàng/cột của khóa.

Bài 2. Bài toán với Hill cipher

• Encrypt:
$$C = (P*K) \mod 26 = \begin{bmatrix} 1 & 0 \\ 2 & 7 \\ 10 & 7 \\ 14 & 0 \end{bmatrix} * \begin{bmatrix} 3 & 9 \\ 2 & 7 \end{bmatrix} \mod 26$$

$$C = \begin{bmatrix} 3 & 9 \\ 20 & 67 \\ 44 & 139 \\ 42 & 126 \end{bmatrix} \mod 26 = \begin{bmatrix} 3 & 9 \\ 20 & 15 \\ 18 & 9 \\ 16 & 22 \end{bmatrix} \Rightarrow Ciphertext = \begin{bmatrix} D & J \\ U & P \\ S & J \\ Q & W \end{bmatrix}$$

Vậy bản mật được mật mã hóa là: "DJUPSJQW"

Bài 2. Bài toán với Hill cipher

- **Decryption**: Ciphertext C = "DJUPSJQW", Key: $K = \begin{bmatrix} 3 & 9 \\ 2 & 7 \end{bmatrix}$. Giải mật mã hóa bằng Hill cipher, thu được bản rõ plaintext $P = (C*K^{-1}) \mod 26$.
 - Kiểm tra khóa K thỏa mãn tồn tại nghịch đảo nhân: gcd(det(K), 26) = 1, tính K⁻¹
 - Ciphertext: "DJ UP SJ QW" viết dưới dạng ma trận như sau:

Ciphertext =
$$\begin{bmatrix} D & J \\ U & P \\ S & J \\ Q & W \end{bmatrix} \Rightarrow C = \begin{bmatrix} 3 & 9 \\ 20 & 15 \\ 18 & 9 \\ 16 & 22 \end{bmatrix}$$

Bài 2. Bài toán với Hill cipher

• Decrypt:
$$P = (C*K^{-1}) \mod 26 = \begin{bmatrix} 3 & 9 \\ 20 & 15 \\ 18 & 9 \\ 16 & 22 \end{bmatrix} * \begin{bmatrix} 11 & 23 \\ 8 & 1 \end{bmatrix} \mod 26$$

$$C = \begin{bmatrix} 105 & 78 \\ 340 & 475 \\ 270 & 423 \\ 352 & 390 \end{bmatrix} \mod 26 = \begin{bmatrix} 1 & 0 \\ 2 & 7 \\ 10 & 7 \\ 14 & 0 \end{bmatrix} \Rightarrow Plaintext = \begin{bmatrix} B & A \\ C & H \\ K & H \\ O & A \end{bmatrix}$$

■ Vậy bản rõ được giải mật mã hóa là: "BACHKHOA"

❖ NỘI DUNG: Bài tập của hai tập tài liệu:

Classical_CryptoSystem và Mathematics of Cryptography.

- ❖ HÌNH THÚC LÀM BÀI: báo cáo Word.
- ❖ HÌNH THÚC NỘP BÀI: Thông qua thư mục dropbox của nhóm trưởng.
- ❖ DEADLINE: Trước 23h59', ngày 10/3/2017.

11/9/2017

Thank you for attending!

