CSCI567 Machine Learning (Spring 2021)

Sirisha Rambhatla

University of Southern California

Feb 5, 2021

Outline

1 Logistics

Review of Last Lecture

Multiclass Classification

Outline

- Logistics
- Review of Last Lecture
- Multiclass Classification

Logistics

- HW 1 is due today, and HW 2 will be assigned.
- Please form the groups for the project, we'll have groups of 3 students working together. Use piazza to find group members.

Outline

- 1 Logistics
- 2 Review of Last Lecture
- Multiclass Classification

Summary

Linear models for binary classification:

Step 1. Model is the set of separating hyperplanes

$$\mathcal{F} = \{f(\boldsymbol{x}) = \operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

Step 2. Pick the surrogate loss

- perceptron loss $\ell_{perceptron}(z) = \max\{0, -z\}$ (used in Perceptron)
- ullet hinge loss $\ell_{\mathsf{hinge}}(z) = \max\{0, 1-z\}$ (used in SVM and many others)
- logistic loss $\ell_{
 m logistic}(z) = \log(1 + \exp(-z))$ (used in logistic regression)

Step 3. Find empirical risk minimizer (ERM):

$$\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} F(\boldsymbol{w}) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \frac{1}{N} \sum_{n=1}^{N} \ell(y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n)$$

using

- GD: $\boldsymbol{w} \leftarrow \boldsymbol{w} \eta \nabla F(\boldsymbol{w})$
- SGD: $\boldsymbol{w} \leftarrow \boldsymbol{w} \eta \tilde{\nabla} F(\boldsymbol{w})$
- Newton: $\boldsymbol{w} \leftarrow \boldsymbol{w} \left(\nabla^2 F(\boldsymbol{w})\right)^{-1} \nabla F(\boldsymbol{w})$

A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

$$\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w}} \sum_{n=1}^N \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n) = \operatorname*{argmax}_{\boldsymbol{w}} \prod_{n=1}^N \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{w})$$

where

$$\mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1 + e^{-y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}}$$

Outline

- Logistics
- Review of Last Lecture
- Multiclass Classification
 - Multinomial logistic regression
 - Reduction to binary classification

Classification

Recall the setup:

- ullet input (feature vector): $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [C] = \{1, 2, \dots, C\}$
- ullet goal: learn a mapping $f:\mathbb{R}^{\mathsf{D}} o [\mathsf{C}]$

Classification

Recall the setup:

- ullet input (feature vector): $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [C] = \{1, 2, \dots, C\}$
- ullet goal: learn a mapping $f:\mathbb{R}^{\mathsf{D}} o [\mathsf{C}]$

Examples:

- recognizing digits (C = 10) or letters (C = 26 or 52)
- predicting weather: sunny, cloudy, rainy, etc
- ullet predicting image category: ImageNet dataset (C pprox 20K)

Classification

Recall the setup:

- ullet input (feature vector): $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [C] = \{1, 2, \dots, C\}$
- ullet goal: learn a mapping $f:\mathbb{R}^{\mathsf{D}} o [\mathsf{C}]$

Examples:

- recognizing digits (C = 10) or letters (C = 26 or 52)
- predicting weather: sunny, cloudy, rainy, etc
- ullet predicting image category: ImageNet dataset (C pprox 20K)

Nearest Neighbor Classifier naturally works for arbitrary C.

Step 1: What should a linear model look like for multiclass tasks?

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from $\{-1, +1\}$ to $\{1, 2\}$)

$$f(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \ge 0 \\ 2 & \text{if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} < 0 \end{cases}$$

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from $\{-1, +1\}$ to $\{1, 2\}$)

$$f(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \ge 0 \\ 2 & \text{if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} < 0 \end{cases}$$

can be written as

$$f(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \boldsymbol{w}_1^{\mathrm{T}} \boldsymbol{x} \geq \boldsymbol{w}_2^{\mathrm{T}} \boldsymbol{x} \\ 2 & \text{if } \boldsymbol{w}_2^{\mathrm{T}} \boldsymbol{x} > \boldsymbol{w}_1^{\mathrm{T}} \boldsymbol{x} \end{cases}$$

for any w_1, w_2 s.t. $w = w_1 - w_2$

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from $\{-1, +1\}$ to $\{1, 2\}$)

$$f(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \ge 0 \\ 2 & \text{if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} < 0 \end{cases}$$

can be written as

$$f(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \boldsymbol{w}_1^{\mathrm{T}} \boldsymbol{x} \geq \boldsymbol{w}_2^{\mathrm{T}} \boldsymbol{x} \\ 2 & \text{if } \boldsymbol{w}_2^{\mathrm{T}} \boldsymbol{x} > \boldsymbol{w}_1^{\mathrm{T}} \boldsymbol{x} \end{cases}$$
$$= \operatorname*{argmax}_{k \in \{1,2\}} \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$$

for any $\boldsymbol{w}_1, \boldsymbol{w}_2$ s.t. $\boldsymbol{w} = \boldsymbol{w}_1 - \boldsymbol{w}_2$

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from $\{-1, +1\}$ to $\{1, 2\}$)

$$f(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \ge 0 \\ 2 & \text{if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} < 0 \end{cases}$$

can be written as

$$f(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \boldsymbol{w}_1^{\mathrm{T}} \boldsymbol{x} \geq \boldsymbol{w}_2^{\mathrm{T}} \boldsymbol{x} \\ 2 & \text{if } \boldsymbol{w}_2^{\mathrm{T}} \boldsymbol{x} > \boldsymbol{w}_1^{\mathrm{T}} \boldsymbol{x} \end{cases}$$
$$= \operatorname*{argmax}_{k \in \{1,2\}} \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$$

for any $oldsymbol{w}_1, oldsymbol{w}_2$ s.t. $oldsymbol{w} = oldsymbol{w}_1 - oldsymbol{w}_2$

Think of $w_k^{\mathrm{T}} x$ as a score for class k.

$$\boldsymbol{w} = (\frac{3}{2}, \frac{1}{6})$$

Blue class:

 $\{\boldsymbol{x}: \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \geq 0\}$

• Orange class:

$$\{\boldsymbol{x}: \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} < 0\}$$

$$egin{aligned} m{w} &= (\frac{3}{2}, \frac{1}{6}) = m{w}_1 - m{w}_2 \ m{w}_1 &= (1, -\frac{1}{3}) \ m{w}_2 &= (-\frac{1}{2}, -\frac{1}{2}) \end{aligned}$$

Blue class:

$$\{\boldsymbol{x}: 1 = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}\}$$

• Orange class: $\{ \boldsymbol{x} : 2 = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x} \}$

$$\mathbf{w}_1 = (1, -\frac{1}{3})$$

 $\mathbf{w}_2 = (-\frac{1}{2}, -\frac{1}{2})$

Blue class:

$$\{ \boldsymbol{x} : 1 = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x} \}$$

• Orange class:

$$\{ oldsymbol{x} : \mathbf{2} = \operatorname{argmax}_k oldsymbol{w}_k^{\mathrm{T}} oldsymbol{x} \}$$

$$\mathbf{w}_1 = (1, -\frac{1}{3})$$

 $\mathbf{w}_2 = (-\frac{1}{2}, -\frac{1}{2})$
 $\mathbf{w}_3 = (0, 1)$

• Blue class:

$$\{ \boldsymbol{x} : 1 = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x} \}$$

• Orange class:

$$\{\boldsymbol{x}: \boldsymbol{2} = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}\}$$

• Green class:

$$\{ oldsymbol{x} : 3 = \operatorname{argmax}_k oldsymbol{w}_k^{\mathrm{T}} oldsymbol{x} \}$$

$$\mathcal{F} = \left\{ f(oldsymbol{x}) = rgmax_{k \in [\mathsf{C}]} \ oldsymbol{w}_k^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w}_1, \dots, oldsymbol{w}_\mathsf{C} \in \mathbb{R}^\mathsf{D}
ight\}$$

$$\mathcal{F} = \left\{ f(\boldsymbol{x}) = \underset{k \in [\mathsf{C}]}{\operatorname{argmax}} \ \boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x} \mid \boldsymbol{w}_1, \dots, \boldsymbol{w}_{\mathsf{C}} \in \mathbb{R}^{\mathsf{D}} \right\}$$
$$= \left\{ f(\boldsymbol{x}) = \underset{k \in [\mathsf{C}]}{\operatorname{argmax}} \ (\boldsymbol{W} \boldsymbol{x})_k \mid \boldsymbol{W} \in \mathbb{R}^{\mathsf{C} \times \mathsf{D}} \right\}$$

$$\mathcal{F} = \left\{ f(\boldsymbol{x}) = \underset{k \in [\mathsf{C}]}{\operatorname{argmax}} \ \boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x} \mid \boldsymbol{w}_1, \dots, \boldsymbol{w}_{\mathsf{C}} \in \mathbb{R}^{\mathsf{D}} \right\}$$
$$= \left\{ f(\boldsymbol{x}) = \underset{k \in [\mathsf{C}]}{\operatorname{argmax}} \ (\boldsymbol{W} \boldsymbol{x})_k \mid \boldsymbol{W} \in \mathbb{R}^{\mathsf{C} \times \mathsf{D}} \right\}$$

Step 2: How do we generalize perceptron/hinge/logistic loss?

$$\mathcal{F} = \left\{ f(oldsymbol{x}) = rgmax_{k \in [\mathsf{C}]} oldsymbol{w}_k^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w}_1, \dots, oldsymbol{w}_{\mathsf{C}} \in \mathbb{R}^{\mathsf{D}}
ight\}$$

$$= \left\{ f(oldsymbol{x}) = rgmax_{k \in [\mathsf{C}]} oldsymbol{(Woldsymbol{x})_k} \mid oldsymbol{W} \in \mathbb{R}^{\mathsf{C} imes \mathsf{D}}
ight\}$$

Step 2: How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with $w = w_1 - w_2$:

$$\mathbb{P}(y = 1 \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}} = \frac{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}}{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}} + e^{\boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}$$

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with $w = w_1 - w_2$:

$$\mathbb{P}(y = 1 \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}} = \frac{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}}{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}} + e^{\boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}$$

Naturally, for multiclass:

$$\mathbb{P}(y = k \mid \boldsymbol{x}; \boldsymbol{W}) = \frac{e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k' \in [\mathsf{C}]} e^{\boldsymbol{w}_{k'}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}$$

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with $w = w_1 - w_2$:

$$\mathbb{P}(y = 1 \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}} = \frac{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}}{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}} + e^{\boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}$$

Naturally, for multiclass:

$$\mathbb{P}(y = k \mid \boldsymbol{x}; \boldsymbol{W}) = \frac{e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k' \in [\mathsf{C}]} e^{\boldsymbol{w}_{k'}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}$$

This is called the *softmax function*.

Maximize probability of seeing labels y_1, \ldots, y_N given x_1, \ldots, x_N

$$P(\boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \frac{e^{\boldsymbol{w}_{y_n}^{\mathsf{T}} \boldsymbol{x}_n}}{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x}_n}}$$

Maximize probability of seeing labels y_1, \ldots, y_N given x_1, \ldots, x_N

$$P(\boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \frac{e^{\boldsymbol{w}_{y_n}^{\mathsf{T}} \boldsymbol{x}_n}}{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x}_n}}$$

By taking **negative log**, this is equivalent to minimizing

$$F(\boldsymbol{W}) = \sum_{n=1}^{\mathsf{N}} \ln \left(\frac{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}_n}}{e^{\boldsymbol{w}_{y_n}^{\mathrm{T}} \boldsymbol{x}_n}} \right)$$

Maximize probability of seeing labels y_1, \ldots, y_N given x_1, \ldots, x_N

$$P(\boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \frac{e^{\boldsymbol{w}_{y_n}^{\mathsf{T}} \boldsymbol{x}_n}}{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x}_n}}$$

By taking **negative log**, this is equivalent to minimizing

$$F(\boldsymbol{W}) = \sum_{n=1}^{N} \ln \left(\frac{\sum_{k \in [C]} e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}_{n}}}{e^{\boldsymbol{w}_{y_{n}}^{\mathrm{T}} \boldsymbol{x}_{n}}} \right) = \sum_{n=1}^{N} \ln \left(1 + \sum_{k \neq y_{n}} e^{(\boldsymbol{w}_{k} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}} \boldsymbol{x}_{n}} \right)$$

Maximize probability of seeing labels y_1, \ldots, y_N given x_1, \ldots, x_N

$$P(\boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \frac{e^{\boldsymbol{w}_{y_n}^{\mathsf{T}} \boldsymbol{x}_n}}{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x}_n}}$$

By taking **negative log**, this is equivalent to minimizing

$$F(\boldsymbol{W}) = \sum_{n=1}^{N} \ln \left(\frac{\sum_{k \in [C]} e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}_{n}}}{e^{\boldsymbol{w}_{y_{n}}^{\mathrm{T}} \boldsymbol{x}_{n}}} \right) = \sum_{n=1}^{N} \ln \left(1 + \sum_{k \neq y_{n}} e^{(\boldsymbol{w}_{k} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}} \boldsymbol{x}_{n}} \right)$$

This is the multiclass logistic loss, a.k.a cross-entropy loss.

Maximize probability of seeing labels y_1, \ldots, y_N given x_1, \ldots, x_N

$$P(\boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \frac{e^{\boldsymbol{w}_{y_n}^{\mathsf{T}} \boldsymbol{x}_n}}{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x}_n}}$$

By taking **negative log**, this is equivalent to minimizing

$$F(\boldsymbol{W}) = \sum_{n=1}^{N} \ln \left(\frac{\sum_{k \in [C]} e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}_{n}}}{e^{\boldsymbol{w}_{y_{n}}^{\mathrm{T}} \boldsymbol{x}_{n}}} \right) = \sum_{n=1}^{N} \ln \left(1 + \sum_{k \neq y_{n}} e^{(\boldsymbol{w}_{k} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}} \boldsymbol{x}_{n}} \right)$$

This is the multiclass logistic loss, a.k.a cross-entropy loss.

When C = 2, this is the same as binary logistic loss.

Step 3: Optimization

Apply SGD: what is the gradient of

$$g(\boldsymbol{W}) = \ln \left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n} \right) ?$$

SGD for Binary Classification case (last lecture)

Recall that
$$\ell_{\mathsf{logistic}}(z) = \ln(1 + \exp(-z))$$

$$\begin{aligned} & \boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w}) \\ & = \boldsymbol{w} - \eta \nabla_{\boldsymbol{w}} \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n) & (n \in [N] \text{ is drawn u.a.r.}) \\ & = \boldsymbol{w} - \eta \left(\frac{\partial \ell_{\mathsf{logistic}}(z)}{\partial z} \Big|_{z = y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n} \right) y_n \boldsymbol{x}_n \\ & = \boldsymbol{w} - \eta \left(\frac{-e^{-z}}{1 + e^{-z}} \Big|_{z = y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n} \right) y_n \boldsymbol{x}_n \\ & = \boldsymbol{w} + \eta \sigma(-y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n) y_n \boldsymbol{x}_n \\ & = \boldsymbol{w} + \eta \mathbb{P}(-y_n \mid \boldsymbol{x}_n; \boldsymbol{w}) y_n \boldsymbol{x}_n \end{aligned}$$

This is a soft version of Perceptron!

$$\mathbb{P}(-y_n|m{x}_n;m{w})$$
 versus $\mathbb{I}[y_n
eq \mathrm{sgn}(m{w}^{\mathrm{T}}m{x}_n)]$

Apply SGD: what is the gradient of

$$g(\boldsymbol{W}) = \ln \left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n} \right) ?$$

Apply SGD: what is the gradient of

$$g(\boldsymbol{W}) = \ln \left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n} \right) ?$$

It's a $C \times D$ matrix. Let's focus on the k-th row:

Apply SGD: what is the gradient of

$$g(\boldsymbol{W}) = \ln \left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n} \right) ?$$

It's a $C \times D$ matrix. Let's focus on the k-th row:

If $k \neq y_n$:

$$\nabla_{\boldsymbol{w}_k} g(\boldsymbol{W}) = \frac{e^{(\boldsymbol{w}_k - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}}{1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}} \boldsymbol{x}_n^{\mathrm{T}}$$

Apply SGD: what is the gradient of

$$g(\boldsymbol{W}) = \ln \left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n} \right) ?$$

It's a $C \times D$ matrix. Let's focus on the k-th row:

If $k \neq y_n$:

$$\nabla_{\boldsymbol{w}_k} g(\boldsymbol{W}) = \frac{e^{(\boldsymbol{w}_k - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}}{1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}} \boldsymbol{x}_n^{\mathrm{T}} = \mathbb{P}(k \mid \boldsymbol{x}_n; \boldsymbol{W}) \boldsymbol{x}_n^{\mathrm{T}}$$

Apply SGD: what is the gradient of

$$g(\boldsymbol{W}) = \ln \left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n} \right) ?$$

It's a $C \times D$ matrix. Let's focus on the k-th row:

If $k \neq y_n$:

$$\nabla_{\boldsymbol{w}_k} g(\boldsymbol{W}) = \frac{e^{(\boldsymbol{w}_k - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}}{1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}} \boldsymbol{x}_n^{\mathrm{T}} = \mathbb{P}(k \mid \boldsymbol{x}_n; \boldsymbol{W}) \boldsymbol{x}_n^{\mathrm{T}}$$

else:

$$\nabla_{\boldsymbol{w}_k} g(\boldsymbol{W}) = \frac{-\left(\sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}\right)}{1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}} \boldsymbol{x}_n^{\mathrm{T}}$$

Apply SGD: what is the gradient of

$$g(\boldsymbol{W}) = \ln \left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n} \right) ?$$

It's a $C \times D$ matrix. Let's focus on the k-th row:

If $k \neq y_n$:

$$\nabla_{\boldsymbol{w}_k} g(\boldsymbol{W}) = \frac{e^{(\boldsymbol{w}_k - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}}{1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}} \boldsymbol{x}_n^{\mathrm{T}} = \mathbb{P}(k \mid \boldsymbol{x}_n; \boldsymbol{W}) \boldsymbol{x}_n^{\mathrm{T}}$$

else:

$$\nabla_{\boldsymbol{w}_k} g(\boldsymbol{W}) = \frac{-\left(\sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}\right)}{1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}} \boldsymbol{x}_n^{\mathrm{T}} = \left(\mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) - 1\right) \boldsymbol{x}_n^{\mathrm{T}}$$

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

- **1** pick $n \in [N]$ uniformly at random
- update the parameters

$$oldsymbol{W} \leftarrow oldsymbol{W} - \eta \left(egin{array}{ccc} \mathbb{P}(y = 1 \mid oldsymbol{x}_n; oldsymbol{W}) & dots \ \mathbb{P}(y = y_n \mid oldsymbol{x}_n; oldsymbol{W}) - 1 \ dots \ \mathbb{P}(y = \mathsf{C} \mid oldsymbol{x}_n; oldsymbol{W}) \end{array}
ight) oldsymbol{x}_n^{\mathrm{T}}$$

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

- **1** pick $n \in [N]$ uniformly at random
- update the parameters

$$m{W} \leftarrow m{W} - \eta \left(egin{array}{ccc} \mathbb{P}(y = 1 \mid m{x}_n; m{W}) & dots & dots$$

Think about why the algorithm makes sense intuitively.

Having learned $oldsymbol{W}$, we can either

ullet make a $extit{deterministic}$ prediction $rgmax_{k \in [\mathsf{C}]} oldsymbol{w}_k^\mathrm{T} oldsymbol{x}$

Having learned W, we can either

- ullet make a deterministic prediction $rgmax_{k \in [\mathsf{C}]} ullet w_k^\mathrm{T} oldsymbol{x}$
- ullet make a $extit{randomized}$ prediction according to $\mathbb{P}(k\mid m{x}; m{W}) \propto e^{m{w}_k^{\mathrm{T}} m{x}}$

Having learned $oldsymbol{W}$, we can either

- ullet make a $extit{deterministic}$ prediction $rgmax_{k \in [\mathsf{C}]} oldsymbol{w}_k^\mathrm{T} oldsymbol{x}$
- ullet make a $\emph{randomized}$ prediction according to $\mathbb{P}(k \mid m{x}; m{W}) \propto e^{m{w}_k^{\mathrm{T}} m{x}}$

In either case, (expected) mistake is bounded by logistic loss

Having learned $oldsymbol{W}$, we can either

- ullet make a deterministic prediction $rgmax_{k \in [\mathsf{C}]} ullet w_k^\mathrm{T} oldsymbol{x}$
- ullet make a $extit{randomized}$ prediction according to $\mathbb{P}(k \mid m{x}; m{W}) \propto e^{m{w}_k^{\mathrm{T}} m{x}}$

In either case, (expected) mistake is bounded by logistic loss

deterministic

$$\mathbb{I}[f(\boldsymbol{x}) \neq y] \leq \ln \left(1 + \sum_{k \neq y} e^{(\boldsymbol{w}_k - \boldsymbol{w}_y)^{\mathrm{T}} \boldsymbol{x}} \right)$$

Having learned W, we can either

- ullet make a $extit{deterministic}$ prediction $rgmax_{k \in [\mathsf{C}]}$ $oldsymbol{w}_k^\mathrm{T} oldsymbol{x}$
- ullet make a $\emph{randomized}$ prediction according to $\mathbb{P}(k\mid m{x};m{W}) \propto e^{m{w}_k^{\mathrm{T}}m{x}}$

In either case, (expected) mistake is bounded by logistic loss

deterministic

$$\mathbb{I}[f(\boldsymbol{x}) \neq y] \leq \ln \left(1 + \sum_{k \neq y} e^{(\boldsymbol{w}_k - \boldsymbol{w}_y)^{\mathrm{T}} \boldsymbol{x}} \right)$$

randomized

$$\mathbb{E}\left[\mathbb{I}[f(\boldsymbol{x}) \neq y]\right]$$

Having learned W, we can either

- ullet make a deterministic prediction $rgmax_{k \in [\mathsf{C}]} ullet w_k^\mathrm{T} oldsymbol{x}$
- ullet make a $\emph{randomized}$ prediction according to $\mathbb{P}(k \mid m{x}; m{W}) \propto e^{m{w}_k^{\mathrm{T}} m{x}}$

In either case, (expected) mistake is bounded by logistic loss

deterministic

$$\mathbb{I}[f(\boldsymbol{x}) \neq y] \leq \ln \left(1 + \sum_{k \neq y} e^{(\boldsymbol{w}_k - \boldsymbol{w}_y)^{\mathrm{T}} \boldsymbol{x}} \right)$$

randomized

$$\mathbb{E}\left[\mathbb{I}[f(\boldsymbol{x}) \neq y]\right] = 1 - \mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{W})$$

Having learned $oldsymbol{W}$, we can either

- ullet make a deterministic prediction $rgmax_{k \in [\mathsf{C}]} ullet w_k^\mathrm{T} oldsymbol{x}$
- ullet make a $\emph{randomized}$ prediction according to $\mathbb{P}(k \mid m{x}; m{W}) \propto e^{m{w}_k^{\mathrm{T}} m{x}}$

In either case, (expected) mistake is bounded by logistic loss

deterministic

$$\mathbb{I}[f(\boldsymbol{x}) \neq y] \leq \ln \left(1 + \sum_{k \neq y} e^{(\boldsymbol{w}_k - \boldsymbol{w}_y)^{\mathrm{T}} \boldsymbol{x}} \right)$$

randomized

$$\mathbb{E}\left[\mathbb{I}[f(\boldsymbol{x}) \neq y]\right] = 1 - \mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{W}) \leq -\ln \mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{W})$$

Reduce multiclass to binary

Is there an *even more general and simpler approach* to derive multiclass classification algorithms?

Reduce multiclass to binary

Is there an *even more general and simpler approach* to derive multiclass classification algorithms?

Given a binary classification algorithm (any one, not just linear methods), can we turn it to a multiclass algorithm, in a black-box manner?

Reduce multiclass to binary

Is there an *even more general and simpler approach* to derive multiclass classification algorithms?

Given a binary classification algorithm (any one, not just linear methods), can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.

- one-versus-all (one-versus-rest, one-against-all, etc)
- one-versus-one (all-versus-all, etc)
- Error-Correcting Output Codes (ECOC)
- tree-based reduction

(picture credit: link)

Idea: train C binary classifiers to learn "is class k or not?" for each k.

(picture credit: link)

Idea: train C binary classifiers to learn "is class k or not?" for each k.

Training: for each class $k \in [C]$,

- ullet re-label examples with class k as +1, and all others as -1
- ullet train a binary classifier h_k using this new dataset

(picture credit: link)

Idea: train C binary classifiers to learn "is class k or not?" for each k.

Training: for each class $k \in [C]$,

- ullet re-label examples with class k as +1, and all others as -1
- ullet train a binary classifier h_k using this new dataset

Prediction: for a new example $oldsymbol{x}$

• ask each h_k : does this belong to class k? (i.e. $h_k(x)$)

Prediction: for a new example $oldsymbol{x}$

- ask each h_k : does this belong to class k? (i.e. $h_k(x)$)
- randomly pick among all k's s.t. $h_k(x) = +1$.

Prediction: for a new example $oldsymbol{x}$

- ask each h_k : does this belong to class k? (i.e. $h_k(x)$)
- randomly pick among all k's s.t. $h_k(x) = +1$.

Issue: will (probably) make a mistake as long as one of h_k errs.

(picture credit: link)

Idea: train $\binom{\mathsf{C}}{2}$ binary classifiers to learn "is class k or k'?".

(picture credit: link)

Idea: train $\binom{\mathsf{C}}{2}$ binary classifiers to learn "is class k or k'?".

Training: for each pair (k,k^\prime) ,

- ullet re-label class k examples as +1 and class k' examples as -1
- discard all other examples
- ullet train a binary classifier $h_{(k,k')}$ using this new dataset

(picture credit: link)

Idea: train $\binom{\mathsf{C}}{2}$ binary classifiers to learn "is class k or k'?".

Training: for each pair (k, k'),

- ullet re-label class k examples as +1 and class k' examples as -1
- discard all other examples
- ullet train a binary classifier $h_{(k,k')}$ using this new dataset

		■ vs. ■		■ VS. ■		■ VS. ■		■ vs. ■		■ VS. ■		■ vs. ■	
x_1		<i>x</i> ₁	_					<i>x</i> ₁	_			<i>x</i> ₁	_
x_2				<i>x</i> ₂	_	<i>x</i> ₂	+					<i>x</i> ₂	+
<i>X</i> 3	\Rightarrow					<i>X</i> 3	_	<i>X</i> 3	+	<i>X</i> 3	_		
<i>X</i> ₄		<i>X</i> ₄	_					<i>X</i> ₄	_			<i>X</i> ₄	_
<i>X</i> 5		<i>X</i> ₅	+	<i>X</i> 5	+					<i>X</i> 5	+		
		↓		↓						\			Ų.
		$h_{(1,2)}$		$h_{(1,3)}$		$h_{(3,4)}$		$h_{(4,2)}$		$h_{(1,4)}$		$h_{(3,2)}$	

Prediction: for a new example x

ullet ask each classifier $h_{(k,k')}$ to vote for either class k or k'

Prediction: for a new example x

- ullet ask each classifier $h_{(k,k')}$ to vote for either class k or k'
- predict the class with the most votes (break tie in some way)

Prediction: for a new example x

- ask each classifier $h_{(k,k')}$ to vote for either class k or k'
- predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

(picture credit: link)

Idea: based on a code $M \in \{-1, +1\}^{\mathsf{C} \times \mathsf{L}}$, train L binary classifiers to learn "is bit b on or off".

	2			
+	_	+	_	+
_	_	+	+	+
+	+	_	_	_
+	- + +	+	+	_

(picture credit: link)

Idea: based on a code $M \in \{-1, +1\}^{\mathsf{C} \times \mathsf{L}}$, train L binary classifiers to learn "is bit b on or off".

Training: for each bit $b \in [L]$

- ullet re-label example x_n as $M_{y_n,b}$
- train a binary classifier h_b using this new dataset.

М	1	2	3	4	5
	+	- + +	+	_	+
	_	_	+	+	+
	+	+	_	_	_
	+	+	+	+	_

		1 1		2		3		4		5	
<i>x</i> ₁		<i>x</i> ₁	_	<i>x</i> ₁	_	<i>x</i> ₁	+	<i>x</i> ₁	+	<i>x</i> ₁	+
<i>X</i> ₂		<i>x</i> ₂	+	<i>x</i> ₂		<i>x</i> ₂			_	<i>x</i> ₂	_
<i>X</i> ₃	\Rightarrow	<i>X</i> 3	+	<i>X</i> 3		<i>X</i> 3			+	<i>X</i> 3	_
<i>X</i> ₄		<i>X</i> ₄	_	<i>X</i> ₄	_	<i>X</i> ₄	+	<i>X</i> ₄	+	<i>X</i> ₄	+
<i>X</i> ₅		<i>X</i> 5	+	<i>X</i> 5	_		+	<i>X</i> 5	_	<i>X</i> 5	+
		↓	ļ	1	ļ			1	ļ	1	ļ
		h	h_1		2	h	3	h	4	h	5

Prediction: for a new example $oldsymbol{x}$

ullet compute the **predicted code** $oldsymbol{c} = (h_1(oldsymbol{x}), \dots, h_{\mathsf{L}}(oldsymbol{x}))^{\mathrm{T}}$

Prediction: for a new example $oldsymbol{x}$

- ullet compute the **predicted code** $oldsymbol{c} = (h_1(oldsymbol{x}), \dots, h_{\mathsf{L}}(oldsymbol{x}))^{\mathrm{T}}$
- predict the class with the most similar code: $k = \operatorname{argmax}_k(Mc)_k$

Prediction: for a new example $oldsymbol{x}$

- ullet compute the **predicted code** $oldsymbol{c} = (h_1(oldsymbol{x}), \dots, h_{\mathsf{L}}(oldsymbol{x}))^{\mathrm{T}}$
- ullet predict the class with the most similar code: $k = \operatorname{argmax}_k(\boldsymbol{M}\boldsymbol{c})_k$

How to design the code M?

Prediction: for a new example $oldsymbol{x}$

- ullet compute the **predicted code** $oldsymbol{c} = (h_1(oldsymbol{x}), \dots, h_{\mathsf{L}}(oldsymbol{x}))^{\mathrm{T}}$
- ullet predict the class with the most similar code: $k = \operatorname{argmax}_k(Mc)_k$

How to design the code M?

• the more *dissimilar* the codes, the more robust

Error-correcting output codes (ECOC)

Prediction: for a new example $oldsymbol{x}$

- compute the **predicted code** $c = (h_1(x), \dots, h_L(x))^T$
- ullet predict the class with the most similar code: $k = \operatorname{argmax}_k(\boldsymbol{M}\boldsymbol{c})_k$

How to design the code M?

- the more dissimilar the codes, the more robust
 - ullet if any two codes are d bits away, then prediction can tolerate about d/2 errors

Error-correcting output codes (ECOC)

Prediction: for a new example $oldsymbol{x}$

- compute the **predicted code** $c = (h_1(x), \dots, h_L(x))^T$
- ullet predict the class with the most similar code: $k = \operatorname{argmax}_k(\boldsymbol{M}\boldsymbol{c})_k$

How to design the code M?

- the more dissimilar the codes, the more robust
 - ullet if any two codes are d bits away, then prediction can tolerate about d/2 errors
- random code is often a good choice

Idea: train \approx C binary classifiers to learn "belongs to which half?".

Idea: train \approx C binary classifiers to learn "belongs to which half?".

Training: see pictures

Idea: train \approx C binary classifiers to learn "belongs to which half?".

Training: see pictures

Prediction is also natural,

Idea: train \approx C binary classifiers to learn "belongs to which half?".

Training: see pictures

Prediction is also natural, but is very fast! (think ImageNet where $C \approx 20K$)

Reduction	#training points	test time	remark
OvA			
OvO			
ECOC			
Tree			

Reduction	#training points	test time	remark
OvA	CN		
OvO			
ECOC			
Tree			

Reduction	#training points	test time	remark
OvA	CN	С	
OvO			
ECOC			
Tree			

Reduction	#training points	test time	remark
OvA	CN	С	not robust
OvO			
ECOC			
Tree			

Reduction	#training points	test time	remark
OvA	CN	С	not robust
OvO	CN		
ECOC			
Tree			

Reduction	#training points	test time	remark
OvA	CN	С	not robust
OvO	CN	C^2	
ECOC			
Tree			

Reduction	#training points	test time	remark
OvA	CN	С	not robust
OvO	CN	C^2	can achieve very small training error
ECOC			
Tree			

Reduction	#training points	test time	remark
OvA	CN	С	not robust
OvO	CN	C ²	can achieve very small training error
ECOC	LN		
Tree			

Reduction	#training points	test time	remark
OvA	CN	С	not robust
OvO	CN	C ²	can achieve very small training error
ECOC	LN	L	
Tree			

Reduction	#training points	test time	remark
OvA	CN	С	not robust
OvO	CN	C ²	can achieve very small training error
ECOC	LN	L	need diversity when designing code
Tree			

Reduction	#training points	test time	remark
OvA	CN	С	not robust
OvO	CN	C^2	can achieve very small training error
ECOC	LN	L	need diversity when designing code
Tree	$(\log_2C)N$		

Reduction	#training points	test time	remark
OvA	CN	С	not robust
OvO	CN	C^2	can achieve very small training error
ECOC	LN	L	need diversity when designing code
Tree	$(\log_2C)N$	\log_2C	

Reduction	#training points	test time	remark
OvA	CN	С	not robust
OvO	CN	C^2	can achieve very small training error
ECOC	LN	L	need diversity when designing code
 Tree	$(\log_2C)N$	\log_2C	good for "extreme classification"