Rajleen Kaur 00713207218 CSE- 1

MACHINE LEARNING LAB PROGRAM Submission -4

Github link: LAB Program - 4

EXPERIMENT-4

AIM:

Estimate the precision recall accuracy f-measure of the decision classifier on a breast cancer dataset using 10 fold cross validation.

ALGORITHM:

- 1. Select the best attribute using Attribute Selection Measures (ASM) to split the records.
- 2. Make that attribute a decision node and breaks the dataset into smaller subsets.
- 3. Starts tree building by repeating this process recursively for each child until one of the conditions will match:
 - a. All the tuples belong to the same attribute value.
 - b. There are no more remaining attributes.
 - c. There are no more instances.

PROGRAM CODE SNIPPET:

LOADING DATA SET:

In [1]: import pandas as pd import numpy as np In [2]: bc_data=pd.read_csv('cancer.csv')
bc_data Out[2]: concave points_mean id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean 842302 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.30010 0.14710 842517 17.77 0.07864 м 20.57 132.90 1326.0 0.08474 0.08890 0.07017 2 84300903 19.69 21.25 1203.0 0.10960 0.19740 0.12790 М 130.00 0.15990 3 84348301 11.42 20.38 77.58 386.1 0.14250 0.28390 0.24140 0.10520 4 84358402 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.19800 0.10430 564 926424 м 21.56 22.39 142.00 1479.0 0.11100 0.11590 0.24390 0.13890 565 929982 0.09791 м 20.13 28.25 131.20 1261.0 0.09780 0.10340 0.14400 599 920954 16.60 28.08 108.30 858.1 0.10230 0.09251 0.05302 927241 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 24.54 568 92751 В 7.76 47.92 181.0 0.05263 0.04362 0.00000 0.00000 ... 569 rows × 33 columns 4

PREPROCESSING:

In [3]: bc_data.drop('Unnamed: 52', inplace=True, axis=1)
bc_data

3]:	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	
0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0:14710	
1	842517	M	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	
2	84300903	M	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	
3	84348301	M	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0:10520	
4	84358402	M	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19600	0:10430	
-							-				
564	925424	M	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	
565	929682	M	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	
566	926954	M	16.60	28.08	108.30	858.1	0.08455	0.10230	0.00251	0.05302	
567	927241	M	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	
568	92751	8	7.76	24.54	47.92	181.0	0.06263	0.04362	0.00000	0.00000	

```
In [4]: from sklearn.model_selection import train_test_split, cross_val_score
In [5]: x= bc_data.drop('diagnosis', axis=1)
    y=bc_data.diagnosis

In [6]: x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2)
In [7]: from sklearn.tree import DecisionTreeClassifier as dt

In [8]: classify=dt(random_state=0)
    classify
Out[8]: DecisionTreeClassifier(random_state=0)
In [9]: classify.fit(x_train, y_train)
Out[9]: DecisionTreeClassifier(random_state=0)
```

MLALGORITHM IMPLEMENTATION:

10 Cross Validation