

IBM Data Science Professional Certificate

Capstone Project: Recommendation of London Boroughs

Introduction

A very common problem for a lot of people is choosing where to live in a big city. While rent is an important factor when deciding which area to live in, there are a lot of other subjective criteria based on personal preferences - e.g., what kind of venues would one like to have close to home (shopping, bars, parks, etc.), are there parks nearby, etc. There are various solutions to this problem - online search, asking friends, visiting the areas yourself - all of these are rather time consuming and subjective. However, this problem can be tackled using a data-driven approach by creating a recommendation engine that would suggest areas that match the user-defined criteria.

London, UK is one of the largest cities in the world and contains 33 areas (also known as boroughs). This presents a good use case for implementing such an algorithm and testing whether it makes sensible recommendations.

Data

To build a recommender, we need to have some information about the rents in London, borough geography, and what characteristics of each borough. While rent and geographical data are quite objective, there are many ways to characterise boroughs. For this project, however, we are going to use information about the venues retrieved from Foursquare API.

Data Sources

The following data sources are going to be used to recommend Greater London boroughs to the user:

- Rent data available from London Datastore in *.xls format: Average Private Rents, Borough
- List of London Boroughs and their geographical coordinates, available from Wikipedia (html table): List of London Boroughs
- 3. Greater London borough boundaries in GeoJSON format, available here
- 4. Information on venues in Greater London area. Available via free version of Foursquare API.

Data Cleaning

Rent Data

Rent data is retrieved from official London Datastore website which tracks average private rents per borough. The data is released quarterly. The rent information is provided for each borough and contains:

- Category type of accommodation, e.g., Room, Studio, One Bedroom, Two Bedroom, etc.
- Average
- Lower quartile
- Median
- · Upper quartile

Year	Quarter	Code	Area	Category	Count of rents	Average	Lower quartile	Median	Upper quartile
2011	Q2	E09000001	City of London	Room	-	-	-	-	-
2011	Q2	E09000002	Barking and Dagenham	Room	92	336	282	347	390
2011	Q2	E09000003	Barnet	Room	945	450	399	433	500
2011	Q2	E09000004	Bexley	Room	119	390	347	390	433
2011	Q2	E09000005	Brent	Room	344	469	390	457	550

Only latest available data is used, which at the time was first quarter of 2019. Also, we are going to use lower quartile, median, and upper quartile data instead of average to consider the skewed nature of averages. In addition, aggregate areas (e.g., 'North West') are excluded. Median rents for 2019 Q1 for the first few boroughs are shown below.

Category	All categories	Four or more Bedrooms	One Bedroom	Room	Studio	Three Bedroom	Two Bedroom		
Borough									
Barking and Dagenham	1200	1650	950	650	730	1400	1200		
Barnet	1365	2500	1150	588	897	1798	1400		
Bexley	1100	1500	825	585	675	1300	1050		
Brent	1500	2250	1250	602	867	1800	1499		
Bromley	1225	2000	950	585	750	1500	1250		
Camden	2000	4008	1625	845	1213	2925	2123		
City of London	2210	0	1950	0	1723	0	2578		
Croydon	1100	1900	900	500	750	1450	1200		
Ealing	1375	2305	1200	600	900	1713	1431		
Enfield	1275	2000	1050	550	800	1595	1300		
Greenwich	1325	1800	1150	600	800	1550	1350		
Hackney	1712	2842	1473	750	1125	2383	1777		
Hammersmith and Fulham	1690	3792	1408	800	1101	2427	1798		

Borough Data

In addition to rent data, we need to have some geographical data of the boroughs. Namely, we need to know the locations (i.e. center of the borough) as well as their boundaries. This will be required to determine which borough the venue belongs to.

Borough •	Inner •	Status •	Local authority •	Political control •	Headquarters •	Area (sq mi)	Population (2019 est) ^[1]	Co-ordinates •	Nr. in
Kensington and Chelsea	1	Royal	Kensington and Chelsea London Borough Council	Conservative	The Town Hall, Hornton Street	4.68	156,129	© 51.5020°N 0.1947°W	3
Kingston upon Thames		Royal	Kingston upon Thames London Borough Council	Liberal Democrat	Guildhall, High Street	14.38	177,507	© 51.4085°N 0.3064°W	16
Hammersmith and Fulham (note 4)	1		Hammersmith and Fulham London Borough Council	Labour	Town Hall, King Street	6.33	185,143	© 51.4927°N 0.2339°W	4
Richmond upon Thames			Richmond upon Thames London Borough Council	Liberal Democrat	Civic Centre, 44 York Street	22.17	198,019	© 51.4479°N 0.3260°W	15
Sutton			Sutton London Borough Council	Liberal Democrat	Civic Offices, St Nicholas Way	16.93	206,349	© 51.3618°N 0.1945°W	18
Merton			Merton London Borough Council	Labour	Civic Centre, London Road	14.52	206,548	© 51.4014°N 0.1958°W	17
Barking and Dagenham note 1]			Barking and Dagenham London Borough Council	Labour	Town Hall, 1 Town Square	13.93	212,906	© 51.5607°N 0.1557°E	25
slington	1		Islington London Borough Council	Labour	Customer Centre, 222 Upper Street	5.74	242,467	\$1.5416°N 0.1022°W	10

Information about boroughs and their geographical centers can be found on Wikipedia. The data from the provided table is retrieved using BeautifulSoup in Python and converted to a pandas DataFrame:

	LatLon	AreaKm	Radius
Borough			
Barking and Dagenham	[51.5607, 0.1557]	36.0787	3388.835625
Barnet	[51.6252, -0.1517]	86.7391	5254.513588
Bexley	[51.4549, 0.1505]	60.5542	4390.330342
Brent	[51.5588, -0.2817]	43.2530	3710.506368
Bromley	[51.4039, 0.0198]	150.1423	6913.159800
Camden	[51.529, -0.1255]	21.7560	2631.567952
Croydon	[51.3714, -0.0977]	86.5319	5248.233916
Ealing	[51.513, -0.3089]	55.5296	4204.238416
Enfield	[51.6538, -0.0799]	82.2066	5115.385957
Greenwich	[51.4892, 0.0648]	47.3452	3882.067133
Hackney	[51.545, -0.0553]	19.0624	2463.280409
Hammersmith and Fulham	[51.4927, -0.2339]	16.3947	2284.424455
Haringey	[51.6, -0.1119]	29.5778	3068.371906
Harrow	[51.5898, -0.3346]	50.4791	4008.490561
Havering	[51.5812, 0.1837]	112.2765	5978.187011
Hillingdon	[51.5441, -0.476]	115.6953	6068.521877

In addition, a theoretical radius of the borough is calculated using area:

$$r=\sqrt{rac{S}{\pi}}$$

where r is radius, S is area, and π is ~3.1459... This calculation of the radius approximates each borough as a circle and will be used in the next step when retrieving venue data.

The borough data combined with rent data can then be conveniently shown on a map:

Venue data

To characterize boroughs, we are going to use venue data available for free via Foursquare Places API. To retrieve the venues, we need to provide the API with the location (longitude and latitude) and the radius within which we want to get all the venues. Unfortunately, the free API version limits the results to 50 per request. Given that there are likely much more venues within each borough, a different method is required.

While this approach is not the most efficient, without a priori knowledge about the density of the venues the easiest solution was chosen - a grid scan of the entire London area. This was done by approximating the entire Greater London as a circle and dividing it into nine concentric rings. Each ring was divided into sub-rings depending on its location - more sub-rings in the inner rings, and less sub-rings in the outer rings. This was chosen assuming that the density of the venues is much larger in the central parts of London. The result of this procedure is a set of concentric rings that covers the entire Greater London area:

We then create a point on each circle three degrees apart, which results in a grid of ~3500 locations that we then use to scan the entire area by iterating through each coordinate and sending it to Foursquare Places API's venues search endpoint.

At the end of the scan, we retrieve around 180,000 venues. However, as our search was not very efficient, a lot of them are duplicated. Dropping duplicate venues, we are left with 19,737 unique venues with the following information:

Venue Longitude	Venue Latitude	Venue	CenterLongitude	CenterLatitude
-0.116985	51.505843	Southbank Centre	-0.119386	51.5074
-0.122900	51.506354	Whitehall Gardens	-0.119386	51.5074
-0.123293	51.507911	Gordon's Wine Bar	-0.119386	51.5074
-0.114793	51.507376	National Theatre	-0.119386	51.5074
-0.116667	51.505838	Royal Festival Hall	-0.119386	51.5074
	-0.116985 -0.122900 -0.123293 -0.114793	51.505843 -0.116985 51.506354 -0.122900 51.507911 -0.123293 51.507376 -0.114793	Southbank Centre 51.505843 -0.116985 Whitehall Gardens 51.506354 -0.122900 Gordon's Wine Bar 51.507911 -0.123293 National Theatre 51.507376 -0.114793	-0.119386 Southbank Centre 51.505843 -0.116985 -0.119386 Whitehall Gardens 51.506354 -0.122900 -0.119386 Gordon's Wine Bar 51.507911 -0.123293 -0.119386 National Theatre 51.507376 -0.114793

Methodology

This section describes the methodology of the recommendation algorithm. The algorithm for this system is rather simple, but this is mainly because we do not have a large sample of user data to do, for example, collaborative filtering. Therefore, we are relying on explicit input from a single user.

Data preparation

Each venue retrieved from the Foursquare API is mapped to a borough based on its coordinates and borough's boundaries. This is implemented using a computation geometry Python package shapely.

We then group each type of venue to nine large arbitrary groups:

- 1. Going out bars, pubs, night clubs.
- 2. **Green spaces -** parks, gardens, trails, beaches, etc.
- 3. **Eating out -** restaurants, cafes, coffee shops, brasseries, etc.
- 4. **Entertainment** theatres, museums, art galleries, zoos, bowling, etc.
- 5. **Shopping -** stores, malls, arcades, boutiques, shops.

- 6. **Health and Sports -** gyms, yoga studios, basketball courts, football courts, etc.
- 7. Groceries supermarkets, bodegas, liquor stores, etc.
- 8. **Public Transport** bus stops, tram stops, metro stops, train stations, etc.
- 9. Other a catch-all category for everything else

We then create a representation of each borough by calculating normalized density vector **a** of venue groups, where each element is defined as:

$$a_{i}=rac{n_{i}}{N},$$

where \boldsymbol{n}_i is the number of venues of the ith group in the borough, and N is total number of venues in the borough.

Recommendation algorithm

The purpose of the algorithm is to recommend a list of boroughs to a user based on their specified preferences.

Let **W** be a venue matrix of dimensions $n \times m$, where every element represents a normalized density of venue group j in a borough i:

$$W = \begin{bmatrix} a_{11} & \dots & a_{1m} \\ \dots & a_{ij} & \dots \\ a_{n1} & \dots & a_{nm} \end{bmatrix}$$

The user-provided preferences can be formally written as a column vector \mathbf{p} :

$$p = \left[\begin{array}{c} p_1 \\ \dots \\ p_m \end{array} \right]$$

Recommendation matrix **R** then can be calculated as a matrix product:

$$R = W \times p = \begin{bmatrix} r_1 \\ \dots \\ r_m \end{bmatrix}$$

This matrix is a column vector of length *n* where each row represents the weight of each borough. The larger the weight, the closer the borough matches users preference.

Given a number *N* of boroughs we want to recommend, *N* largest weights are selected and the list of boroughs are returned in an order from the highest weigh *r* to the lowest.

Implementation in Python:

```
def create preferences(ranking=None):
    "Converts `ranking` list to normalized pandas DataFrame"
    pref_dict = {
        'Eating out': 0,
        'Entertainment': 0,
        'Green spaces': 0,
        'Groceries': 0,
        'Health and Sports': 0,
        'Nightlife': 0,
        'Other': 0,
        'Public Transport': 0,
        'Shopping': 0,
    }
    N = len(ranking)
    for i, cat in enumerate(ranking):
        pref_dict[cat] = N - i
    df = pd.DataFrame.from_dict(pref_dict, orient='index', columns=['Preference'])
    df['Preference'] = df['Preference'] / df['Preference'].sum()
    return df
```

```
def recommend boroughs(W=None, p=None, n brghs=5):
   Calculates matrix product of DataFrames W and p
   Inputs:
       W - pandas DataFrame containing venue group density for each borough
       p - pandas DataFrame with user group preferences
       n_brghs - int, number of boroughs to recommend
   Returns:
        rec_boroughs - `n_brghs` number of boroughs sorted by highest match value
       df_rec - resulting recommendation matrix as pandas DataFrame
   W = W.copy()
   W_.set_index(['Borough'], inplace=True)
   df_rec = (p['Preference'] * W_).sum(axis=1).to_frame()
   df rec.columns = ['Match']
   df rec.sort values(by='Match', ascending=False, inplace=True)
    rec_boroughs = df_rec.head(n_brghs).index.tolist()
    return rec boroughs, df rec
```

Filtering venue matrix based

The venue density matrix W is filtered in advance based on user's selection on upper and lower limits for rent: m_{min} and m_{max} and the accommodation type. The dataset for borough rent data contains first q_1 and third quartile q_3 information. Only the boroughs satisfying either of the below condition are kept in the W matrix:

$$\begin{aligned} \boldsymbol{q}_1 &\leq \boldsymbol{m}_{max} \wedge \boldsymbol{q}_3 \geq \boldsymbol{m}_{max} \\ \boldsymbol{q}_1 &\leq \boldsymbol{m}_{min} \wedge \boldsymbol{q}_3 \geq \boldsymbol{m}_{min} \end{aligned}$$

Implementation in Python:

```
def filter rent data(df=None, categories=None, rent range=None):
   Returns boroughs that satisfy the conditions for `categories` and `rent_range`
   Inputs:
        df - pandas DataFrame containing rent data
        categories - an iterable or a string specifying appropriate accommodation types
        rent_range - a list or a tuple with r_min and r_max rent ranges.
   Output:
        boroughs - a list of boroughs that match the condition
    .....
   if isinstance(categories, str):
        cats = [categories]
   else:
        cats = categories
   cat cond = df['Category'].isin(cats)
    rent_lower = rent_range[0]
   rent_higher = rent_range[1]
   # If invalid data provided
   if rent lower > rent higher:
        rent_higher = rent_lower
   rent_cond_1 = (df['Lower quartile'] <= rent_higher) & (df['Upper quartile'] >= rent_higher)
    rent_cond_2 = (df['Lower quartile'] <= rent_lower) & (df['Upper quartile'] >= rent_lower)
    rent_cond = rent_cond_1 | rent_cond_2
    rent_cond = (df['Lower quartile'] <= rent_higher) & (df['Upper quartile'] >= rent_lower)
   not_null = ~df['Median'].isnull()
   df_filtered = df.loc[(cat_cond & rent_cond & not_null)]
   boroughs = df_filtered['Borough'].unique().tolist()
    return boroughs
```

Both of the above functions are then combined into one large function:

```
def recommend_and_plot(df_groups, df_rent, rent_range=None, acm_type=None, ranking=None, n=5):
    """
    Recommends top n venues and plots the results on the map

    available_boroughs = filter_rent_data(df=df_rent, categories=acm_type, rent_range=rent_range)
    p = create_preferences(ranking=ranking)
    df_grp_filtered = df_groups.loc[df_groups['Borough'].isin(available_boroughs)]
    rec_boroughs, df_rec = recommend_boroughs(W=df_grp_filtered, p=p, n_brghs=n)

# Printing and plotting of results
# ...
```

Results and discussion

We started with information about monthly rents for 33 London boroughs and combined it with data about venues within those boroughs retrieved from Foursquare API. Using grid-scanning we identified approx. 20,000 unique venues and grouped them into nine larger groups.

Plotting the boroughs and venues on the map showed that the distribution of the venues was not uniform and most of them were concentrated in the central parts of London. We assigned each venue to a borough based on its latitude and longitude, and boroughs geographical limits. By creating a normalized density vector of these venues for each borough, we effectively created a mathematical representation of the neighbourhood that could then be used in a recommendation algorithm.

```
rent_range = [400, 800]
acm_type = ['Studio', 'One Bedroom']
group_rank = [
   'Public Transport', # 1
   'Groceries',
   'Green spaces'
recommend_and_plot(df_groups=df_groups_norm,
                 df_rent=df_rent,
                 rent range=rent range,
                 acm_type=acm_type,
                 ranking=group_rank,
= Recommended boroughs based on your preferences
______
#1: Barking and Dagenham
#2: Sutton
#3: Merton
#4: Enfield
#5: Havering
```

Using accommodation and rent preferences, and combining this data with venue density matrices of the boroughs we created a recommendation function that displays an arbitrary, user-defined, number of recommended boroughs with preferred venues overlaid on a map.

This model is a good illustration of the general concept and could be extended to incorporate additional information. It could also be implemented as a user-friendly web application.

Conclusion

The purpose of this project was to create an algorithm that recommends a London neighbourhood to a user based on their preferences. After cleaning data and performing exploratory data analysis, the process was synthesized to one function recommend_and_plot function which could be re-used in a dedicated application. This could be used to help people in the initial step of choosing where to live in London.

Admittedly, this is a simplistic model as there are way more important data points that could be used (e.g., crime rate, congestion, air quality, etc.). Nonetheless, the algorithm works and is a good demonstration of general principles that can be used for combining different types of information together to come up with a recommendation. While not perfect, this algorithm could serve as one of the steps in a person's decision-making process when looking for a new place to rent in London.