## Optics

Xiping Hu

 $\rm https://hxp.plus/$ 

March 24, 2020

## Contents

| 1 | Hist | tory of Optics                               | 5 |
|---|------|----------------------------------------------|---|
|   |      | ctromagnetic Theory and photons              | 7 |
|   | 2.1  | Maxwell's Equation                           | 7 |
|   |      | Energy                                       |   |
|   | 2.3  | Radiation Pressure                           | 8 |
|   | 2.4  | Light in Bulk Matter                         | 8 |
|   |      | 2.4.1 Speed of light and Dielectric Constant | 8 |
|   |      | 2.4.2 Dispersion                             | 9 |

4 CONTENTS

## Chapter 1

# **History of Optics**

### Chapter 2

## Electromagnetic Theory and photons

#### 2.1 Maxwell's Equation

Faraday's Induction Law

 $\oint_{c} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \iint \vec{B} \cdot d\vec{S}$ 

Gauss's Law

$$\iint\limits_A \vec{E} \cdot \mathrm{d}\vec{S} = \frac{1}{\varepsilon_0} \iiint\limits_v \rho \, \mathrm{d}V$$

$$\iint_{\Lambda} \vec{B} \cdot d\vec{S} = 0$$

Ampere's Circuital Law

$$\oint_C \vec{B} \cdot d\vec{l} = \mu_0 \iint_{A} \left( \vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right) \cdot d\vec{S}$$

We can now take the derivatives of the 4 equations

$$\begin{cases} \nabla \times \vec{E} = -\frac{\partial B}{\partial t} \\ \nabla \times \vec{B} = \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \\ \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \\ \nabla \cdot \vec{B} = 0 \end{cases}$$

The Following Equation can be derived from Maxwell Equation above

$$\nabla^2 \vec{E} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}$$
$$\nabla^2 \vec{B} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2}$$

Coincidentally

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

Which indicates the speed of electromagnetic wave is the speed of light.

Furthermore, it can be seen that the electric field and magnetic field are transverse. They are perpendicular to each other. We assume the electric field is parallel to the y-axis.

$$E_{y}(x,t) = E_{0} \cos \left[\omega \left(t - x/c\right) + \varepsilon\right]$$

According to Faraday's Law

$$\frac{\partial E_y}{\partial x} = -\frac{\partial B_Z}{\partial t}$$

We can calculate  $B_z$ 

$$B_z = \frac{1}{c}E_0 \cos \left[\omega \left(t - x/c\right) + \varepsilon\right]$$

So that

$$E_y = cB_z$$

When not in vacuum, similarly

$$E_y = vB_z$$
$$v = \frac{1}{\varepsilon\mu}$$

#### 2.2 Energy

$$\begin{split} u_E &= \frac{\varepsilon_0}{2} E^2 \\ u_B &= \frac{1}{2\mu_0} B^2 \\ u_E &= u_B \\ u &= u_E + u_B = \varepsilon_0 E^2 = \frac{1}{\mu_0} B^2 \\ S &= uc \\ \vec{S} &= \frac{1}{\mu} \vec{E} \times \vec{B} \quad \text{(Poynting Vector)} \\ I &= \frac{1}{2} \varepsilon v E_0^2 \end{split}$$

#### 2.3 Radiation Pressure

$$P(t) = \frac{S(t)}{c} = u = u_E + u_B$$
$$\langle P(t) \rangle_T = \frac{I}{c}$$
$$p_V = \frac{S}{c^2}$$

#### 2.4 Light in Bulk Matter

#### 2.4.1 Speed of light and Dielectric Constant

$$v = \frac{1}{\sqrt{\varepsilon \mu}}$$
 
$$n = \frac{c}{v} = \sqrt{\frac{\varepsilon \mu}{\varepsilon_0 \mu_0}} = \sqrt{\frac{\varepsilon}{\varepsilon_0}}$$

#### 2.4.2 Dispersion

For gas and solid

$$m_e \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \gamma m_e \frac{\mathrm{d}x}{\mathrm{d}t} + m_e \omega_0^2 x = -eE(t)$$
$$E(t) = E_0 \exp(-i\omega t)$$

Assume

$$x = x_0 \exp(-i\omega t)$$

We got a solution

$$x_0 \left(\omega_0^2 - \omega^2 - i\gamma\omega\right) = -\frac{eE_0}{m_e}$$

$$x_0 = -\frac{eE_0}{m_e \left(\omega_0^2 - \omega^2 - i\gamma\omega\right)}$$

$$x \left(t\right) = -\frac{eE \left(t\right)}{m_e \left(\omega_0^2 - \omega^2 - i\gamma\omega\right)}$$

$$P \left(t\right) = -Nex \left(t\right) = \frac{Ne^2 E \left(t\right)}{m_e \left(\omega_0^2 - \omega^2 - i\gamma\omega\right)}$$

$$\varepsilon_r = \frac{\varepsilon}{\varepsilon_0} = n^2 = 1 + \frac{P}{\varepsilon_0 E} = 1 + \frac{Ne^2}{\varepsilon_0 m_e \left(\omega_0^2 - \omega^2 - i\gamma\omega\right)}$$

$$\left\{ \operatorname{Re} \left(\varepsilon_r\right) = 1 + \frac{Ne^2 \left(\omega_0^2 - \omega^2\right)}{\varepsilon_0 m_e \left[\left(\omega_0^2 - \omega^2\right)^2 + \gamma^2\omega^2\right]} \right\}$$

$$\operatorname{Im} \left(\varepsilon_r\right) = \frac{Ne^2 \gamma\omega}{\varepsilon_0 m_e \left[\left(\omega_0^2 - \omega^2\right)^2 + \gamma^2\omega^2\right]}$$

When  $\gamma = 0$ 

$$\varepsilon_r = n^2 = 1 + \frac{Ne^2}{\varepsilon_0 m \left(\omega_0^2 - \omega^2\right)}$$

For metal

$$\begin{split} m_{e}\frac{\mathrm{d}^{2}x}{\mathrm{d}t^{2}} + \gamma m_{e}\frac{\mathrm{d}x}{\mathrm{d}t} &= -eE\left(t\right) \\ \varepsilon_{r} &= 1 - \frac{Ne^{2}}{\varepsilon_{0}m_{e}\left(\omega^{2} + i\gamma\omega\right)} = 1 - \frac{\omega_{p}^{2}}{\omega\left(\omega + i\gamma\right)} \end{split}$$