Sentiment Analysis Project

Noblezada, Camasa, Cabia

2024-12-13

```
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr
             1.1.4 v readr
                                  2.1.5
                    v stringr 1.5.1
## v forcats 1.0.0
## v ggplot2 3.5.1
                    v tibble
                                  3.2.1
                    v tidyr
## v lubridate 1.9.3
                                 1.3.1
## v purrr
            1.0.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(tidytext)
library(dplyr)
library(stringr)
library(ggplot2)
library(sentimentr)
library(lubridate)
# Load the dataset
tweetsDF <- read_csv("/cloud/project/ProjectDS/tweetsDF.csv")</pre>
## New names:
## Rows: 58086 Columns: 7
## -- Column specification
## ------ Delimiter: "," chr
## (4): screenName, text, statusSource, tweetSource dbl (1): ...1 dttm (2):
## created, Created_At_Round
## i Use `spec()` to retrieve the full column specification for this data. i
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## * `` -> `...1`
```

Cleaning the tweet text

```
tweetsDF <- tweetsDF %>%
  mutate(
  text = text %>%
    iconv(from = "UTF-8", to = "ASCII//TRANSLIT", sub = "") %>% # Remove non-ASCII characters
  tolower() %>% # Convert to lowercase
    str_remove_all("https\\S+") %>% # Remove URLs
    str_remove_all("[#\\n]") %>% # Remove hashtags and newlines
    str_remove_all("[@?]\\S+") %>% # Remove mentions
```

```
str_remove_all("\\?") %>% # Remove question marks
     str_remove_all("\b\d{2}\.\d{4}\b") %>% # Remove dates in dd.mm.yyyy format
     str_remove_all("<a href=httptwitter.comdownloadiphone rel=nofollow>twitter for iphone<a>") %>% #
     str_remove_all("<a href=([^>]*?) rel=nofollow>([^<]*?)<a>") %>%
     str_remove_all("<a href=httptwitter.comdownloadandroid rel=nofollow>twitter for android<a>") %>%
     str_remove_all("<a href= rel=nofollow>twitter web app<a>") %>%
     str_remove_all("30102022") %>% # Remove specific date
     str_squish() # Remove extra whitespace
 )
tweetsDF <- tweetsDF %>%
 mutate(date = ymd_hms(created)) %>%
 mutate(hour = hour(date))
## Warning: There was 1 warning in `mutate()`.
## i In argument: `date = ymd_hms(created)`.
## Caused by warning:
## ! 2 failed to parse.
print(tweetsDF)
## # A tibble: 58,086 x 9
       ...1 screenName text created
##
                                                  statusSource Created_At_Round
##
      <dbl> <chr>
                       <chr> <dttm>
                                                  <chr>
                                                               <dttm>
## 1
         1 whourj31
                      a so~ 2022-10-30 23:59:43 "<a href=\"~ 2022-10-31 00:00:00
                     nah ~ 2022-10-30 23:59:32 "<a href=\"~ 2022-10-31 00:00:00
## 2
         2 nnainot
## 3
         3 febry_sri_M pray~ 2022-10-30 23:59:31 "<a href=\"~ 2022-10-31 00:00:00
## 4
         4 telehuntwat~ tran~ 2022-10-30 23:59:28 "<a href=\"~ 2022-10-31 00:00:00
## 5
       5 Typing0824 the ~ 2022-10-30 23:59:20 "<a href=\"~ 2022-10-31 00:00:00
         6 niccijsmith what~ 2022-10-30 23:59:04 "<a href=\"~ 2022-10-31 00:00:00
## 6
         7 502SPIDEY can'~ 2022-10-30 23:58:56 "<a href=\"~ 2022-10-31 00:00:00
## 7
## 8
         8 maeannesala~ pray~ 2022-10-30 23:58:45 "<a href=\"~ 2022-10-31 00:00:00
## 9
         9 bigvirtue1 bigv~ 2022-10-30 23:58:37 "<a href=\"~ 2022-10-31 00:00:00
                        ther~ 2022-10-30 23:58:31 "<a href=\"~ 2022-10-31 00:00:00
## 10
        10 ashxxy
## # i 58,076 more rows
## # i 3 more variables: tweetSource <chr>, date <dttm>, hour <int>
colnames(tweetsDF)
## [1] "...1"
                         "screenName"
                                            "text"
                                                               "created"
## [5] "statusSource"
                         "Created_At_Round" "tweetSource"
                                                               "date"
## [9] "hour"
```

Trend Analysis

```
# Load and preprocess the dataset
tweets_df <- read.csv("/cloud/project/ProjectDS/tweetsDF.csv")
tweets_df$created <- ymd_hms(tweets_df$created)

# Group tweets by hour and count
tweets_per_time <- tweets_df %>%
    mutate(hour = floor_date(created, "hour")) %>%
    count(hour)

# Plot the trend analysis
```

```
ggplot(tweets_per_time, aes(x = hour, y = n)) +
  geom_line(color = "red") +
  labs(
    title = "Tweet Activity Over Time",
    x = "Time",
    y = "Number of Tweets"
) +
  theme_minimal()
```

Tweet Activity Over Time

Observations: # - Tweets were minimal before midnight on October 29. # - A significant spike occurred after 10:30 PM on October 29, coinciding with the Itaewon tragedy. # - Activity peaked in the early morning of October 30, declined through the morning, and rose again in the evening.

SENTIMENT ANALYSIS

```
# Perform sentiment analysis on tweets to examine emotional responses.

# Load sentiment lexicon and preprocess tweets
sentiments <- get_sentiments("bing")
tweet_tokens <- tweets_df %>%
   unnest_tokens(word, text) %>%
   inner_join(sentiments, by = "word")

# Count sentiments and calculate percentages
sentiment_counts <- tweet_tokens %>%
   count(sentiment) %>%
```

```
mutate(percentage = n / sum(n) * 100)
# Print sentiment counts
print(sentiment_counts)
     sentiment
                   n percentage
## 1 negative 49285
                        70.8301
## 2 positive 20297
                        29.1699
# Plot sentiment analysis
ggplot(sentiment_counts, aes(x = sentiment, y = percentage, fill = sentiment)) +
  geom_bar(stat = "identity") +
  labs(
   title = "Sentiment Analysis of Tweets",
   x = "Sentiment",
   y = "Percentage"
  theme_minimal()
```

Sentiment Analysis of Tweets

Observations: # - The plot shows the proportion of positive and negative sentiments in the tweets. # - Helps to understand the overall emotional tone of the conversations.

```
# Analyze the dataset to determine the distribution of tweets across different source platforms.
# Group tweets by source and calculate the count for each source
tweet_source_analysis <- tweets_df %>%
    group_by(tweetSource) %>%
    summarise(Number_of_Tweets = n()) %>%
    arrange(desc(Number_of_Tweets))
```

```
# Plot the number of tweets by source
ggplot(tweet_source_analysis, aes(x = reorder(tweetSource, -Number_of_Tweets), y = Number_of_Tweets)) +
geom_bar(stat = "identity", fill = "green") +
labs(
    title = "Tweet Volume by Source Platform",
    x = "Source Platform",
    y = "Number of Tweets"
) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Tweet Volume by Source Platform 25000 20000 15000 5000 100000 10000 10000 10000 10000 10000 10000 10000 10000 1000

Observations: # - The bar graph illustrates the distribution of tweets by source platform. # - The x-axis displays various platforms (e.g., iPhone, Android, others), while the y-axis represents the total tweet count from each source. # - iPhone and Android dominate as the most frequently used platforms for engaging with the content.