Déterminer 5 modulo 16	
Limerse	
A et B sout inverse l'un de l'autre si on a	
$A \times B = 1$	
Iti on cheche: 5 x B= 1+ 16k, k EZ	
(25x & = 1 + 16k, K & Z	
52e = 1 C(6]	
Un entier a adoret un inverse modulo n si a et 1 Sont premiers entre eux	n
5 et 16 sout premier entre eux, danc 5 adurel au inverse modulo 12)
2e est l'inverse de 5 modulo 16, si 5 x = 1[16]	
On , se est nécessairement congru à l'un des entiers 0, 1,, 5 moduls 16	
2[16] 0 1 2 3 4 15-16-1 5re [16] 0 5 10 (5)	
5x 2 = -1[16]	
5 × 3 × (21) = -1 × (-1) [16] 5 × (-3) = 1 [16]	

by
$$5 \approx \pm 7 [6]$$

Thole re

 $4 \times 5 \approx \pm - - - \times \frac{1}{5}$
 $-3 \times 5 \approx \pm - - 3 \times 7 [16]$

Si $a = b [n]$ alors $a \times c = b \times c [n]$
 $-15 \times \pm -21 [16]$
 $1 \times \pm -21 [16]$
 $21 + 16 = -5$
 $2 \times \pm 16 = 11$

Récipioquement

 $2 \times 11 [16]$
 $5 \times \pm 5 \times 11 [16]$
 $5 \times \pm 5 \times 11 [16]$

Aoin $2 \times \pm 11 [16]$
 $23 - 7 = 33$
 $13 - 7 = 6$

2 × 4 = 1[4]