m3pm16l24.tex.tex

Lecture 24. 5.3.2015.

Theorem (Riemann, 1859). The Riemann zeta function satisfies the functional equation

$$\pi^{-\frac{1}{2}s}\Gamma(\frac{1}{2}s)\zeta(s) = \pi^{-\frac{1}{2}(1-s)}\Gamma(\frac{1}{2}(1-s))\zeta(1-s). \tag{FE}$$

Proof. We follow Titchmarsh [T], §2.6. From Euler's integral definition of Γ ,

$$\int_0^\infty x^{\frac{1}{2}s-1} e^{-n^2\pi x} dx = \Gamma(\frac{1}{2}s)/n^s \pi^{\frac{1}{2}s} \qquad (\sigma > 0).$$

So for $\sigma > 1$,

$$\Gamma(\frac{1}{2}s)\zeta(s)/\pi^{\frac{1}{2}s} = \sum_{n=1}^{\infty} \int_{0}^{\infty} x^{\frac{1}{2}s-1} e^{-n^{2}\pi x} dx$$

$$= \int_{0}^{\infty} x^{\frac{1}{2}s-1} \sum_{n=1}^{\infty} e^{-n^{2}\pi x} dx \quad \text{(absolute convergence)}$$

$$= \int_{0}^{\infty} x^{\frac{1}{2}s-1} \Psi(x) dx \quad \text{(see III.5 for } \Psi\text{)}.$$

Recall (θ of III.5) $2\Psi(x) + 1 = \frac{1}{\sqrt{x}}(2\Psi(1/x) + 1)$. So

$$\Gamma(\frac{1}{2}s)\zeta(s)/\pi^{\frac{1}{2}s} = \int_{0}^{1} + \int_{1}^{\infty} \dots$$

$$= \int_{0}^{1} x^{\frac{1}{2}s-1} \left(\frac{1}{\sqrt{x}}\Psi(1/x) + \frac{1}{2\sqrt{x}} - \frac{1}{2}\right) dx + \int_{1}^{\infty} x^{\frac{1}{2}s-1}\Psi(x) dx$$

$$= \frac{1}{s-1} - \frac{1}{s} + \int_{0}^{1} x^{\frac{1}{2}s-\frac{3}{2}}\Psi(1/x) dx + \int_{1}^{\infty} x^{\frac{1}{2}s-1}\Psi(x) dx$$

$$= \frac{1}{s(s-1)} + \int_{1}^{\infty} (x^{-\frac{1}{2}s-\frac{1}{2}} + x^{\frac{1}{2}s-1})\Psi(x) dx.$$

As Ψ decreases exponentially, the integral is convergent for all s. So the above holds for all s by analytic continuation. Now RHS is invariant under interchanging s and 1-s, hence so is the LHS, which is (FE). //

Corollary 1.
$$\zeta(0) = -\frac{1}{2}$$
; $\zeta(-2n) = 0$ $(n = 1, 2, ...)$.

Proof. Γ has a simple pole at 0 of residue 1; ζ has a simple pole at 1 of residue 1. So near s=0, (FE) and $\Gamma(\frac{1}{2})=\sqrt{\pi}$ give

$$\frac{2}{s}.\zeta(s) \sim \frac{1}{\sqrt{\pi}}.\Gamma(\frac{1}{2}).(-\frac{1}{s}) = -\frac{1}{s}: \qquad \zeta(0) = -\frac{1}{2}.$$

The RHS of (FE) is holomorphic at s=2n. The LHS contains a (simple) pole from $\Gamma(-\frac{1}{2}s)$, so this must be cancelled by a (simple) zero of ζ : $\zeta(-2n)=0$. //

The zeros of ζ at -2n are called the *trivial zeros*.

Corollary 2. All zeros of ζ other than the trivial zeros lie in the critical strip $0 < \sigma < 1$.

Proof. The RHS of (FE) is holomorphic in $\sigma > 1$, and non-zero there (there are no zeros in $\sigma > 1$ by the Euler product, and none on the 1-line by III.4). So the LHS of (FE) is holomorphic and non-zero in $\sigma < 0$. But the only poles of Γ are $0, -1, \ldots, -n, \ldots$ (I.7). So the only zeros of ζ in $\sigma < 0$ are the trivial zeros that cancel these. The remaining zeros are in the critical strip.

Corollary 3. The function

$$\xi(s) := \frac{1}{2}s(1-s)\pi^{-\frac{1}{2}s}\Gamma(\frac{1}{2}s)\zeta(s)$$

is entire, and satisfies the functional equation

$$\xi(s) = \xi(1-s). \tag{FE} - \xi$$

Proof. The RHS has apparent poles from the Γ and ζ factors. But the pole of the first is cancelled by the factor 1-s, and the poles of the second are cancelled by the trivial zeros. So there are no singularities, so ξ is entire. Then $(FE - \xi)$ follows from (FE). //

Note. 1. The factor $\frac{1}{2}$ in ξ is for convenience (and historical reasons), and allows us to write $\xi(s) = (s-1)\pi^{-\frac{1}{2}s}\Gamma(\frac{1}{2}s+1)\zeta(s)$.

2. (FE) shows that ξ is invariant under reflection in the critical line $\sigma = \frac{1}{2}$ (Riemann, 1859), so we may restrict attention throughout to $\sigma \geq \frac{1}{2}$. Since also $\overline{\Gamma(s)} = \Gamma(\overline{s})$, we may restrict to $t \geq 0$ – and as (III.4) there is a rectangle $1 - \epsilon \leq \sigma \leq 1, 0 \leq t \leq 2$ on which ζ is non-zero) to $t \geq 2$.