Algorithms

Dynamic Programming

- The Knapsack Problem
- Dynamic Programming Formulation
- Implementation
- Fractional Knapsack and Subset Sum Problem

IMDAD ULLAH KHAN

Knapsack Problem

Input:

- Items: $U = \{a_1, ..., a_n\}$
- Weights: $w: U \to \mathbb{Z}^+$
- Values: $v: U \to \mathbb{R}^+$
- Capacity: $C \in \mathbb{R}^+$

- ⊳ Fixed order
- $\triangleright (w_1,\ldots,w_n)$
- $\triangleright (v_1,\ldots,v_n)$

Output:

- A subset *S* ⊂ *U*
- Capacity constraint:

$$\sum_{a_i \in S} w_i \le C$$

Objective: Maximize

$$\sum_{a:\in S} v_i$$

Knapsack Problem: Fractional Version

- Unlike 0-1 Knapsack, where you either take or leave an item
- Here you are allowed to take part of an item
- Easy solution
- Greedily choose the best value per unit weight item
- Proof of optimality follows from the the cut and paste type argument

Knapsack Problem: Fractional vs 0-1 Knapsack

- Fractional solution is often not feasible for 0-1 knapsack problem
- Select 1.27 of a software or 2.9 dish washers

ID	W	V	v/w	
a_1	20	30	1.5	
a_2	50	60	1.2	
<i>a</i> ₃	50	50	1	

$$C = 110$$

- GREEDY-1 (most valued first) yields $\{a_2, a_1\}$, value 90, weight 70
- GREEDY-2 (least weighted first) yields $\{a_1, a_2\}$, value 90, weight 70
- GREEDY-3 (highest $^{val}/_{wt}$ ratio first) yields $\{a_1, a_2\}$, value 90, weight 70
- INTEGRAL-OPT yields $\{a_2, a_3\}$, value 110, weight 100
- FRACTIONAL-OPT yields $\{1(a_1), 1(a_2), \frac{4}{5}(a_3)\}$, value 130, weight 100
- INTEGRAL-OPT may not use total capacity
- *value*(FRACTIONAL-OPT) ≥ *value*(INTEGRAL-OPT)

Subset Sum Problem

Input:

- Items: $U = \{a_1, ..., a_n\}$
- Weights: $w: U \to \mathbb{Z}^+$
- **Capacity**: $C \in \mathbb{R}^+$

⊳ fixed order

 $\triangleright (w_1,\ldots,w_n)$

Output:

- A subset $S \subset U$
- Capacity constraint: $\sum_{a_i \in S} w_i \leq C$
- Objective: Maximize $\sum_{a_i \in S} w_i$
- A CPU with *C* MFLOPS
- n jobs: job i requires w_i MFLOPS
- Select jobs to get fewest idle CPU cycles

Subset Sum Problem

Brute Force Solution

- Find all subsets of U
- Calculate their sums
- Choose the one with the max sum

But there are 2^n subsets

Try Greeedy Algorithms

- $lue{}$ It is a special case of the 0-1 Knapsack problem
- When all weights are equal to values

Subset Sum Problem: Dynamic Programming

Let OPT-VAL(n, C) be the value of the optimal solution

Let OPT-SET(n, C) be the optimal solution (the subset)

w ₁	<i>W</i> ₂	W3				W_{n-1}	Wn
----------------	-----------------------	----	--	--	--	-----------	----

- Either n^{th} item is part of the solution
 - OPT-VAL(n, C) = OPT-SET $(n-1, C-w_n) + w_n$
- Or it is not
 - OPT-VAL(n, C) = OPT-SET(n-1, C)
- And we take maximum of the two

Subset Sum Problem: Dynamic Programming

The Recurrence

$$\text{Opt-val}(n,C) = \begin{cases} \text{Opt-val}(n-1,C-w_n) + w_n, & \text{if } v_n \in \text{Opt-set}(n,C) \\ \text{Opt-val}(n-1,C) & \text{if } v_n \notin \text{Opt-set}(n,C) \end{cases}$$

- Some (base) special cases
 - If no items: $OPT-VAL(0,\cdot) = 0$
 - If no space: OPT-VAL $(\cdot,0)=0$
 - If $w_n > C$: OPT-VAL(n, C) = OPT-VAL(n 1, C)