Prediksi Mikroorganisme pada Tambak Udang berbasis Neural Network

Advisor 1:

Dr. Setiawardhana, S.T, M.T. NIP. 197708242 00501 1 001

Advisor 2:

Dr. Eng. Bima Sena Bayu Dewantara, S.ST, M.T. NIP. 197612151 99903 1 003

Advisor 3:

Dr. Eng. Agus Indra Gunawan, S.T, M.Sc NIP. 197608212 00112 1 002

Outline

- 01 Background of The Study
- 02 Purpose of The Study
- 03 Problem Formulation
- 04 Scope and Limitation
- 05 Review of Literature
- **Observation Observation O**

Background of The Study

In aquaculture, especially shrimp ponds, we need to pay attention to the environment where the cultivation is in order to obtain maximum result. Water quality is one of the most important things to pay attention to. In fact, the most important factor in water quality is the oxygen content, which affects the pH value. Often this level is influenced by aquatic bioorganisms, especially algae. Algae monitoring can be done by looking at the color of the water. This is where the idea for the study of water quality came from. It is hoped that this tool will be able to monitor algae as in a lab test

Purpose

- Creating a tool to record data on samples
- Create a prediction system based on recorded data

Problem formulation

- How to create device for data sensing and collecting
- How to make good model for predict the sample

Scope and Limitation

- Sample is conditioned data whose concentration level is known.
- Model is created from the data recorded from the device

Literature review

A. I. Gunawan, B. S. B. Dewantara, A. E. Pratama, I. Puspitasari, T. A. Setya. (2019). A Study for Estimation of Bio Organism Content on Aquaculture Pond Based on Image Color and Light Intensity. International Electronics Symposium on Engineering Technology and Applications (IES-ETA). Surabaya, Indonesia, : doi:10.1109/ELECSYM.2019.8901544.

O. Meiyanto, A. I. Gunawan, dan B. S. B. Dewantara. (2021, November). Studi Analisis Konsentrasi Warna Pada Cairan Pewarna Makanan Dengan Metode Pengukuran *Optical Density*. Briliant, Hal. 710-725.

System Design

Flowchart

Prototype Design

Prototype

Data

Water

Mean Histogram Value from Water in Camera Image

Max Histogram Value from Water in Camera Image

Sensor RGB Value in Water

Single Food Coloring

Sample Composition

Concentration	Composition
0 % Food Colorant	4 ml air
5 % Food Colorant	0.2 ml Food Colorant + 3.8 ml water
10 % Food Colorant	0.4 ml Food Colorant + 3.6 ml water
25 % Food Colorant	1 ml Food Colorant + 3 ml water
50 % Food Colorant	2 ml Food Colorant + 2 ml water
100 % Food Colorant	4 ml Food Colorant

Single Red Colorant

Mean Histogram Value from Red Food Colorant in Microscope Image

Max Histogram Value Red from Food Colorant in Microscope Image

Mean Histogram Value from Red Food Colorant in Camera Image

Max Histogram Value from Red Food Colorant in Camera Image

Sensor RGB Value from Red Food Colorant

→ Mean R Cam

→ Mean G Cam

→ Mean B Cam

Single Green Colorant

Mean Histogram Value from Green Food Colorant in Microscope Image

Max Histogram Value from Green Food Colorant in Microscope Image

Mean Histogram Value from Green Food Colorant in Camera Image

Max Histogram Value from Green Food Colorant in Camera Image

Sensor RGB Value from Green Food Colorant

Single Blue Colorant

Mean Histogram Value from Blue Food Colorant in Microscope Image

Max Histogram Value from Blue Food Colorant in Microscope Image

Mean Histogram Value from Blue Food Colorant in Camera Image

Max Histogram Value from Blue Food Colorant in Camera Image

Sensor RGB Value from Blue Food Colorant

Double Food Coloring Mixture

Sample Composition

Concentration	Composition
100 % First Colorant	4 ml Second Colorant
0 % Second Colorant	
80 % First Colorant	0.8 ml First Colorant + 3.2 ml
20 % Second Colorant	Second Colorant
60 % First Colorant	1.6 ml First Colorant + 2.4 ml
40 % Second Colorant	Second Colorant
40 % First Colorant	2.4 ml First Colorant + 1.6 ml
60 % Second Colorant	Second Colorant
20 % First Colorant	3.2 ml First Colorant + 0.8 ml
80 % Second Colorant	Second Colorant
0 % First Colorant	4 ml First Colorant
100 % Second Colorant	

Red and Green

Mean Histogram Value from Red and Green Mixture Food Colorant Histogram Microscope

Mean Histogram Value from Red and Green Mixture Food Colorant Microscope Image

Mean Histogram Value from Red and Green Mixture Food Colorant Camera Image

Max Histogram Value from Red and Green Mixture Food Colorant Camera Image

Sensor RGB Value from Red and Green Mixture Food Colorant

Red and Blue

Mean Histogram Value from Red and Blue Mixture Food Colorant Microscope Image

Max Histogram Value from Red and Blue Mixture Food Colorant Microscope Image

Mean Histogram Value from Red and Blue Mixture Food Colorant Camera Image

Max Histogram Value from Red and Blue Mixture Food Colorant Camera Image

Sensor RGB Value from Red and Blue Mixture Food Colorant

Green and Blue

Mean Histogram Value from Green and Blue Mixture Food Colorant Microscope Image

Max Histogram Value from Green and Blue Mixture Food Colorant Microscope Image

Sensor G

Sensor B

0%

100%

40

20

100%

0%

80%

20%

60%

40%

40%

60%

Concentration

20%

80%

Triple Food Coloring Mixture

Sample Composition

Concentration	Composition
20 % Red Colorant 60 % Green Colorant 20 % Blue Colorant	0.8 ml Red Colorant + 2.4 ml Green Colorant + 0.8 ml Blue Colorant
20 % Red Colorant 40 % Green Colorant 40 % Blue Colorant	0.8 ml Red Colorant + 1.6 ml Green Colorant + 1.6 ml Blue Colorant
20 % Red Colorant 20 % Green Colorant 60 % Blue Colorant	0.8 ml Red Colorant + 0.8 ml Green Colorant + 2.4 ml Blue Colorant
40 % Red Colorant 40 % Green Colorant 20 % Blue Colorant	1.6 ml Red Colorant + 1.6 ml Green Colorant + 0.8 ml Blue Colorant
40 % Red Colorant 20 % Green Colorant 40 % Blue Colorant	1.6 ml Red Colorant + 0.8 ml Green Colorant + 1.6 ml Blue Colorant
60 % Red Colorant 20 % Green Colorant 20 % Blue Colorant	2.4 ml Red Colorant + 0.8 ml Green Colorant + 0.8 ml Blue Colorant
33 % Red Colorant 33 % Green Colorant 33 % Blue Colorant	1.3 ml Red Colorant + 1.3 ml Green Colorant + 1.3 ml Blue Colorant

Red (20 %) Green (20 %) and Blue(60 %)

Image Result

Red (40 %) Green (40 %) and Blue(20 %)

Image Result

ANN

ANN Model and Result

Model

No	Parameter	Value		
1.	Number of neurons in	15		
	the input layer			
2.	Number of hidden layers	3		
3.	Number of neurons in	3		
	the output layer			
4.	Epoch	250		
5.	Learning rate	0,0004		
6.	Normalization	yes		

Result

		Sample Concentration Content (%)							
No		Actua	l	Prediction		n	Absolute erro		rror
	R	G	В	R	G	В	R	G	В
1.	0	0	0	-2.16	0.25	1.03	2.16	0.25	1.03
2.	0	0	100	-0.31	1.16	101.04	0.31	1.16	1.04
3.	20	80	0	12.97	81.67	-1.90	7.03	1.67	1.90
4.	0	60	40	-3.02	36.32	65.39	3.02	23.68	25.39
5.	80	0	20	65.55	-6.96	14.65	14.45	6.96	5.35
6.	40	40	20	39.18	38.59	21.16	0.82	1.41	1.16
7.	33.3	33.3	33.3	33.05	30.17	31.76	0.25	3.13	1.54
8.	20	0	0	18.76	0.19	-0.22	1.24	0.19	0.22
9.	0	20	0	0.05	17.21	-0.09	0.05	2.79	0.09
10.	0	0	10	1.13	-1.04	12.93	1.13	1.04	2.93

	,	Sample		
No	R	G	В	Error
1	2.16	0.25	1.03	1.15
2	0.31	1.16	1.04	0.83
3	7.03	1.67	1.90	3.54
4	3.02	23.68	25.39	17.37
5	14.45	6.96	5.35	8.92
6	0.82	1.41	1.16	1.13
7	0.25	3.13	1.54	1.64
8	1.24	0.19	0.22	0.55
9	0.05	2.79	0.09	0.98
10	1.13	1.04	2.93	1.70
	3.78			

Model

No	Parameter	Nilai
1.	Number of neurons in the input	15
	layer	
2.	Number of hidden layers	15
3.	Number of neurons in the output	3
	layer	
4.	Epoch	300
5.	Learning rate	0,001
6.	Normalization	No

Result

	Sample Concentration Content (%)								
No	Actual			Prediction		Absolute error			
	R	G	В	R	G	В	R	G	В
1.	0	0	0	-4.17	3.46	-0.30	4.17	3.46	0.30
2.	0	0	100	-4.44	-0.22	96.55	4.44	0.22	3.45
3.	20	80	0	18.98	83.83	1.31	1.02	3.83	1.31
4.	0	60	40	10.98	21.52	68.48	10.98	38.48	28.48
5.	80	0	20	76.70	-0.70	17.75	3.30	0.70	2.25
6.	40	40	20	40.71	40.92	21.41	0.71	0.92	1.41
7.	33.3	33.3	33.3	26.52	19.19	40.35	6.78	14.11	7.05
8.	20	0	0	14.65	0.47	0.53	5.35	0.47	0.53
9.	0	20	0	-0.03	16.22	-1.54	0.03	3.78	1.54
10.	0	0	10	-3.08	0.65	11.48	3.08	0.65	1.48

		Sample		
No	R	G	В	Error
1	4.17	3.46	0.30	2.64
2	4.44	0.22	3.45	2.70
3	1.02	3.83	1.31	2.05
4	10.98	38.48	28.48	25.98
5	3.30	0.70	2.25	2.08
6	0.71	0.92	1.41	1.01
7	6.78	14.11	7.05	9.32
8	5.35	0.47	0.53	2.12
9	0.03	3.78	1.54	1.78
10	3.08	0.65	1.48	1.74
	5.14			

Conclusion

- Prototype is already be used for monitoring and retrieving data
- The data obtained from food colorant have appropriate values between the concentration and the graphic form of the single red and green colorant. Meanwhile, for the blue colorant and the mixed colorant, the data obtained is still not in accordance with the graphic form, which has a difference with the number of concentration settings.
- The first model with a simple layer architecture and using normalization has better predictive results than the model with a complex layer architecture with an error value of 3.78 compared to 5.14.

Thankyou