

Increasing Energy Efficiency of GPUs Through Hardware Resource Partitioning and Masking

MacREU 2021

Mika Shanela Carodan

Supervised by Professor Daniel Wong

Systems Optimization and Computer Architecture Lab (SoCal)

Research Initiatives

Systems Optimization and Computer Architecture Lab

Lab

Explore viable solutions for sharing resources in parallel computing systems

Project

Optimize performance efficiency and power consumption of parallel programs as we scale GPU hardware resources

Future

Promoting a runtime model that advances sustainability in GPU architecture

Graphics Processing Unit (GPU)

• High computation efficiency

- High computation efficiency
- Accelerator for High Performance Computing (HPC) Applications

- High computation efficiency
- Accelerator for High Performance Computing (HPC) Applications
 - Ex: Automated Cars are accelerated by automotive-grade GPUs

- High computation efficiency
- Accelerator for High Performance Computing (HPC) Applications
 - Ex: Automated Cars are accelerated by automotive-grade GPUs

- High computation efficiency
- Accelerator for High Performance Computing (HPC) Applications
 - Ex: Automated Cars are accelerated by automotive-grade GPUs

- High computation efficiency
- Accelerator for High Performance Computing (HPC) Applications
 - Ex: Automated Cars are accelerated by automotive-grade GPUs

Graphics Processing Unit (GPU)

- High computation efficiency
- Accelerator for High Performance Computing (HPC) Applications
 - Ex: Automated Cars are accelerated by automotive-grade GPUs

Complication: limited power management in resource competing environment

Graphics Processing Unit (GPU)

- High computation efficiency
- Accelerator for High Performance Computing (HPC) Applications
 - Ex: Automated Cars are accelerated by automotive-grade GPUs

Complication: limited power management in resource competing environment

How can parallel applications practically share GPU resources without compromising performance and limiting power consumption?

Project Breakdown

Development Phases of an Energy Efficient Runtime Model

Performance Characterization
Bit-Hardware Mapping

Power CharacterizationBenchmark System

Algorithm Development
Power Saving Policy Optimization

Programming Tools and Frameworks

- AMD Radeon MI50 Accelerator
- C++ and HIP Runtime API

Getty Images

Programming Tools and Frameworks

Getty Images

- AMD Radeon MI50 Accelerator
- C++ and HIP Runtime API
- hipExtStreamCreateWithCUMask() function

Programming Tools and Frameworks

Application	
Algorithm	
Programming Model	
Runtime	
Driver	
GPU Hardware	

Software Stack

- AMD Radeon MI50 Accelerator
- C++ and HIP Runtime API
- hipExtStreamCreateWithCUMask() function

Programming Tools and Frameworks

Application	
Algorithm	
Programming Model	
Runtime	
Driver	
GPU Hardware	

Software Stack

- AMD Radeon MI50 Accelerator
- C++ and HIP Runtime API
- hipExtStreamCreateWithCUMask() function

Programming Tools and Frameworks

Application	
Algorithm	
Programming Model	
Runtime	
Driver	
GPU Hardware	

- AMD Radeon MI50 Accelerator
- C++ and HIP Runtime API
- hipExtStreamCreateWithCUMask() function

Software Stack

Overview of the Hardware

Otterness & Anderson

Overview of the Hardware

Otterness & Anderson

Overview of the Hardware

Otterness & Anderson

Overview of the Hardware

Otterness & Anderson

Overview of the Hardware

Otterness & Anderson

Overview of the Hardware

Otterness & Anderson

Overview of the Hardware

Otterness & Anderson

Overview of the Hardware

Otterness & Anderson

- Role of Compute Units (CU)
 - Total: 60 CUs/60 Resources

Overview of the Hardware

Otterness & Anderson

- Role of Compute Units (CU)
 - Total: 60 CUs/60 Resources
- Manipulating workloads through CU Masking
 - CU Masking:
 - **■** Turning blocks on/off

Overview of the Hardware

Otterness & Anderson

- Role of Compute Units (CU)
 - Total: 60 CUs/60 Resources
- Manipulating workloads through CU Masking
 - CU Masking:
 - Turning blocks on/off

Overview of the Hardware

Otterness & Anderson

- Role of Compute Units (CU)
 - Total: 60 CUs/60 Resources
- Manipulating workloads through CU Masking
 - CU Masking:
 - **■** Turning blocks on/off

Overview of the Hardware

Otterness & Anderson

- Role of Compute Units (CU)
 - Total: 60 CUs/60 Resources
- Manipulating workloads through CU Masking
 - CU Masking:
 - Turning blocks on/off

How viable are CU Masking techniques in managing power?

Current Phase: Performance Characterization

CU Mask Bit	SM_ID
11	34
12	51
13	4
14	20
15	35
16	52
17	5
18	21
19	36
20	53

CU Mask Bit	SM_ID
21	6
22	22
23	37
24	54
25	7
26	23
27	38
28	55
29	8
30	24

CU Mask Bit	SM_ID
31	39
32	56
33	9
34	25
35	40
36	57
37	10
38	26
39	41
40	58

CU Mask Bit	SM_ID
41	11
42	27
43	43
44	59
45	12
46	28
47	44
48	60
49	13
50	29

CU Mask Bit	SM_ID
51	45
52	61
53	14
54	30
55	46
56	62
57	15
58	31
59	47
60	63

GPU Representation

CU Mask Bit	SM_ID
11	34
12	51
13	4
14	20
15	35
16	52
17	5
18	21
19	36
20	53

CU Mask Bit	SM_ID
21	6
22	22
23	37
24	54
25	7
26	23
27	38
28	55
29	8
30	24

CU Mask Bit	SM_ID
31	39
32	56
33	9
34	25
35	40
36	57
37	10
38	26
39	41
40	58

CU Mask Bit	SM_ID
41	11
42	27
43	43
44	59
45	12
46	28
47	44
48	60
49	13
50	29

CU Mask Bit	SM_ID
51	45
52	61
53	14
54	30
55	46
56	62
57	15
58	31
59	47
60	63

GPU Representation

CU Mask Bit	SM_ID
11	34
12	51
13	4
14	20
15	35
16	52
17	5
18	21
19	36
20	53

CU Mask Bit	SM_ID
21	6
22	22
23	37
24	54
25	7
26	23
27	38
28	55
29	8
30	24

CU Mask Bit	SM_ID
31	39
32	56
33	9
34	25
35	40
36	57
37	10
38	26
39	41
40	58

CU Mask Bit	SM_ID
41	11
42	27
43	43
44	59
45	12
46	28
47	44
48	60
49	13
50	29

CU Mask Bit	SM_ID
51	45
52	61
53	14
54	30
55	46
56	62
57	15
58	31
59	47
60	63

GPU Representation

CU Mask Bit	SM_ID
11	34
12	51
13	4
14	20
15	35
16	52
17	5
18	21
19	36
20	53

CU Mask Bit	SM_ID
21	6
22	22
23	37
24	54
25	7
26	23
27	38
28	55
29	8
30	24

CU Mask Bit	SM_ID
31	39
32	56
33	9
34	25
35	40
36	57
37	10
38	26
39	41
40	58

CU Mask Bit	SM_ID
41	11
42	27
43	43
44	59
45	12
46	28
47	44
48	60
49	13
50	29

CU Mask Bit	SM_ID
51	45
52	61
53	14
54	30
55	46
56	62
57	15
58	31
59	47
60	63

GPU Representation

CU Mask Bit	SM_ID
11	34
12	51
13	4
14	20
15	35
16	52
17	5
18	21
19	36
20	53

CU Mask Bit	SM_ID
21	6
22	22
23	37
24	54
25	7
26	23
27	38
28	55
29	8
30	24

CU Mask Bit	SM_ID
31	39
32	56
33	9
34	25
35	40
36	57
37	10
38	26
39	41
40	58

CU Mask Bit	SM_ID
41	11
42	27
43	43
44	59
45	12
46	28
47	44
48	60
49	13
50	29

CU Mask Bit	SM_ID
51	45
52	61
53	14
54	30
55	46
56	62
57	15
58	31
59	47
60	63

GPU Representation

CU Mask Bit	SM_ID
11	34
12	51
13	4
14	20
15	35
16	52
17	5
18	21
19	36
20	53

CU Mask Bit	SM_ID
21	6
22	22
23	37
24	54
25	7
26	23
27	38
28	55
29	8
30	24

CU Mask Bit	SM_ID
31	39
32	56
33	9
34	25
35	40
36	57
37	10
38	26
39	41
40	58

CU Mask Bit	SM_ID
41	11
42	27
43	43
44	59
45	12
46	28
47	44
48	60
49	13
50	29

CU Mask Bit	SM_ID
51	45
52	61
53	14
54	30
55	46
56	62
57	15
58	31
59	47
60	63

CU Mask-SM_id Bit Mappings

Profiling individual CUs to its corresponding active CU Id

GPU Representation

We can now manually activate each of the CU masks since we know which bit position activates a specific CU ID

Next Phase: Power Characterization and Allocation Policy Optimization

Power Characterization & Allocation Policy Optimization

Otterness & Anderson

Power Characterization & Allocation Policy Optimization

Otterness & Anderson

Power Characterization & Allocation Policy Optimization

Otterness & Anderson

Power Characterization & Allocation Policy Optimization

Otterness & Anderson

Power Characterization & Allocation Policy Optimization

- Power Monitoring System
- Algorithm Development

Power Characterization & Allocation Policy Optimization

- Power Monitoring System
- Algorithm Development
- Runtime Evaluation
 - Gigaflops: floating point operations per second

Power Characterization & Allocation Policy Optimization

- Power Monitoring System
- Algorithm Development
- Runtime Evaluation

How does the GPU's power consumption change in relation to the number of active CUs?

Predicting future trends and applications

Runtime model for other Parallel Computing Systems

Getty Images

Moving Forward

Predicting future trends and applications

- **Runtime model for other Parallel Computing Systems**
- **Sustainability of GPUs as** an High Performance **Computing (HPC)** accelerator

Reference Papers

Increasing Energy Efficiency of GPUs Through Hardware Resource Partitioning and Masking

- Chow, Marcus N. (2018). Characterizing Dynamic Frequency and Thread Blocking Scaling in GPUs: Challenges and Opportunities.
- Anderson, James H. Otterness, Nathan. Exploring AMD GPU Scheduling Details by Experimenting With "Worst Practices". International Conference on Real-Time Networks and Systems (RTNS)
- Wikipedia.

Acknowledgements

Increasing Energy Efficiency of GPUs Through Hardware Resource Partitioning and Masking

- Prof. Daniel Wong
- Marcus Chow, ENCS Ph.D.
- Prof. Ludwig Bartels
- Rebecca Ryan
- Marissa Moreno
- MacREU
- NSF
- University of California, Riverside