Chair of Network Architectures and Services Department of Informatics Technical University of Munich

Eexam

Place student sticker here

Note:

- · During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- · This number is printed both next to the code and to the signature field in the attendance check list.

Grundlagen Rechnernetze und Verteilte Systeme

Exam: IN0010 / Hausaufgabe 7 **Date:** Monday 15th June, 2020

Examiner: Prof. Dr.-Ing. Georg Carle **Time:** 14:00 – 23:59

Working instructions

- This exam consists of 6 pages with a total of 2 problems.
 Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 21.5 credits.
- · Detaching pages from the exam is prohibited.
- · Allowed resources:
 - one non-programmable pocket calculator
 - one analog dictionary English \leftrightarrow native language
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from	to	/	Early submission at

Problem 1 Packet Pair Probing (Klausuraufgabe Endterm 2012) (12 credits)

Packet Pair Probing ist ein Verfahren, mit dem sich durch geschickte Ausnutzung von Serialisierungs- und Verzögerungszeiten die Bandbreite eines Linkabschnitts bestimmen lässt. Wir wollen dies anhand des in Abbildung 1.1 dargestellten Beispielnetzwerks nachvollziehen.

Die Knoten 1 und 4 sind mit ihren Routern jeweils über Ethernet mit einer Datenrate von 1 Gbit/s angebunden. Die Verbindung zwischen den Routern 2 und 3 ist jedoch deutlich langsamer. Diese Übertragungsrate r_{23} soll von 1 und 4 bestimmt werden, indem möglichst wenig Last auf der ohnehin langsamen Verbindung erzeugt wird.

Figure 1.1: Netztopologie

Wir leiten in dieser Aufgabe zunächst allgemein ein Verfahren her, mittels dem Knoten 1 und 4 die gefragte Übertragungsrate bestimmen können. Im Anschluss werten wir das Verfahren für konkrete Zahlenwerte aus und diskutieren mögliche Probleme, die in der Praxis auftreten werden.

b)* Geben Sie o Distanz d _{ij} an.	die Ausbreitungsver	rzögerung $t_{\rho}(i,j)$ zv	vischen zwei bena	chbarten Knoten	ı <i>i</i> und <i>j</i> in Abhängiç
c)* Erläutern S	ie kurz, wie 1 bei Vo	erwendung von IP	v4 die maximale N	MTU auf dem Pfa	ad nach 4 bestimme
c)* Erläutern S	ie kurz, wie 1 bei Vo	erwendung von IP	v4 die maximale N	MTU auf dem Pfa	ad nach 4 bestimme
c)* Erläutern S	ie kurz, wie 1 bei V	erwendung von IP	v4 die maximale N	MTU auf dem Pfa	ad nach 4 bestimme
c)* Erläutern S	ie kurz, wie 1 bei V	erwendung von IP	v4 die maximale N	MTU auf dem Pfa	ad nach 4 bestimme
c)* Erläutern S	ie kurz, wie 1 bei V	erwendung von IP	v4 die maximale N	MTU auf dem Pfa	ad nach 4 bestimme
c)* Erläutern Si	e kurz, wie 1 bei V	erwendung von IP	v4 die maximale N	ИТU auf dem Pfa	ad nach 4 bestimme
c)* Erläutern Si	e kurz, wie 1 bei V	erwendung von IP	v4 die maximale N	MTU auf dem Pfa	ad nach 4 bestimme

kein weiterer Datenverkehr die Übertragung beeinflusst. Die Länge p sei so gewählt, dass keine Fragmentierung notwendig ist. Eventuelle Verarbeitungszeiten an den Knoten können Sie vernachlässigen. d) Zeichnen Sie ein Weg-Zeit-Diagramm, welches die Übertragung der beiden Pakete qualitativ richtig darstellt. Berücksichtigen Sie dabei insbesondere $r_{23} < r_{12} = r_{34}$ wie eingangs erwähnt. Durch die geringe Übertragungsrate zwischen 2 und 3 entsteht an Knoten 3 eine Sendepause Δt zwischen den beiden weitergeleiteten Paketen. Diese kann von 4 gemessen und zur Bestimmung der Übertragungsrate zwischen 2 und 3 verwendet werden. e) Markieren Sie Δt in Ihrer Lösung von Teilaufgabe d). Von welchen Größen hängt Δt ab?

1 sende nun unmittelbar nacheinander zwei Pakete der Länge p an 4. Sie können davon ausgehen, dass sonst

g) Geben Sie einen Au	ısdruc	k für	die g	esuc	hte D	Daten	rate r	₃ an. V	erein	nfach	nen (Sie c	len A	Nusdr	ruck :	soweit w
AP 1 1 1 A																•••
Wiederholte Messungen) Bestimmen Sie r_{23}		_					nnitts	vert vor	ıΔt	= 1,	2 ms	bei	einei	r Pak	etgro	olse von
	213 24		WCIT	III IVIK)it/ 3.											
Problem 2 Dree		(0 F	- w - d	:4~\												
Problem 2 Dra Gegeben sei der in A	bildu	ng 2.	.1 da	rges				in Netw	ork-	-Byt	e-Or	der	eine	s Eth	nerne	et-Rahm
	bildu	ng 2.	.1 da	rges		erder				- By t 6d	e-Or	der 0d	eine 08	s Eth	nerne	et-Rahm
Gegeben sei der in Al Checksum, welcher in	obildu n Folg	ng 2. ende	.1 da en an	rges alysi	ert w	erder ff	ı soll.	6 :	Be -			0d				
Gegeben sei der in Al Checksum, welcher in 0x0000	obildu n Folg 00	ng 2. ende	.1 da en an 3e	rges alysi	ert w	ff 00	n soll. 00 1 40 0	6 :	3e 17	6d 33	cd	0d	08	00	45	00
Gegeben sei der in Al Checksum, welcher in 0x0000 0x0010	obildu n Folg 00 00	ng 2. ende 16 58	.1 da en an 3e 9f	rges alysi ff 47	ert w ff 40	ff 00 e2	n soll. 00 1 40 0	6 : 6 4	3e 17	6d 33	cd ac f2	0d 10	08 fe	00 02	45 ac	00 10
Gegeben sei der in Al Checksum, welcher in 0x0000 0x0010 0x0020	obildu n Folg 00 00 fe	ng 2. ende 16 58 01	.1 da en an 3e 9f 00	rges alysi ff 47 16	ert w ff 40 da	ff 00 e2	n soll. 00 1 40 0 02 5 01 0	6 : 6 d : 1 (3e 17 78	6d 33 9a	cd ac f2	0d 10 3d	08 fe 99	00 02 17	45 ac 80	00 10 18
Gegeben sei der in Al Checksum, welcher in 0x0000 0x0010 0x0020 0x0030 0x0040 0x0050	obildui n Folgi 00 60 fe 00	ng 2. ende 16 58 01 e3 20 5f	3e 9f 00 54 53 6e	rges: alysic ff 47 16 70 53 6f	ert w ff 40 da 00 48 76	ff 00 e2 00 2d 65	n soll. 00 1 40 0 02 5 01 0	6 : 6 d : 1 0 e : :	3e 17 78 98	6d 33 9a 0a	cd ac f2 b3	0d 10 3d 13	08 fe 99 65	00 02 17 ca	45 ac 80	00 10 18 82
Gegeben sei der in Al Checksum, welcher in 0x0000 0x0010 0x0020 0x0030 0x0040	obildun 1 Folgr 00 00 fe 00 53	ng 2. ende 16 58 01 e3 20	3e 9f 00 54 53 6e	rges: alysic ff 47 16 70 53 6f	ff 40 da 00 48	ff 00 e2 00 2d 65	soll. soll. soll. 40 6 20 5 01 6 32 2	6 : 6 d : 1 0 e : :	3e 47 78 98	6d 33 9a 0a 2d	cd ac f2 b3 74	0d 10 3d 13 69	08 fe 99 65 6e	00 02 17 ca 79	45 ac 80 11 73	00 10 18 82 73
Gegeben sei der in Al Checksum, welcher in 0x0000 0x0010 0x0020 0x0030 0x0040 0x0050	obildun 1 Folgr 00 60 fe 00 53 68 69	ng 2. ende 16 58 01 e3 20 5f 31	3e 9f 00 54 53 6e 5a	rges alysi ff 47 16 70 53 6f 52	ert w ff 40 da 00 48 76 0d	ff 00 e2 00 2d 65 0a	90 1 40 6 02 5 01 6 32 2 72 7	6 : 6 d d d d d d d d d d d d d d d d d	38e 1778 888 880	6d 33 9a 0a 2d 6f	cd ac f2 b3 74 6e	0d 10 3d 13 69 20	08 fe 99 65 6e 5a	00 02 17 ca 79 34	45 ac 80 11 73 43	00 10 18 82 73 53
Gegeben sei der in Al Checksum, welcher in 0x0000 0x0010 0x0020 0x0030 0x0040 0x0050	obildun 1 Folgr 00 00 fe 00 53 68 69	ng 2. ende 16 58 01 e3 20 5f 31 dump	3e 9f 00 54 53 6e 5a p ein	rges: alysic ff 47 16 70 53 6f 52 es E	ff 40 da 00 48 76 0d	ff 00 e2 00 2d 65 0a net-Ra	90 1 40 6 02 5 01 6 32 2 72 7	6 : 6 : 6 : 6 : 6 : 6 : 6 : 6 : 6 : 6 :	3e 17 78 08 98 69 • Ch	6d 33 9a 0a 2d 6f	cd ac f2 b3 74 6e	0d 10 3d 13 69 20	08 fe 99 65 6e 5a	00 02 17 ca 79 34	45 ac 80 11 73 43	00 10 18 82 73 53
Gegeben sei der in Al Checksum, welcher in 0x0000 0x0010 0x0020 0x0030 0x0040 0x0050 0x0060 Figure 2.7	obildun 1 Folgr 00 00 fe 00 53 68 69 : Hex	ng 2. ende 16 58 01 e3 20 5f 31 dump	3e 9f 00 54 53 6e 5a p ein	ff 47 16 70 53 6f 52 es E	ff 40 da 00 48 76 0d therm	ff 00 e2 00 2d 65 0a net-Ra	n soll. 00 1 40 0 02 5 01 0 32 2 72 7	6 : 6 : 6 : 6 : 6 : 6 : 6 : 6 : 6 : 6 :	3e 17 78 80 69 Chea	6d 33 9a 0a 2d 6f	cd ac f2 b3 74 6e	0d 10 3d 13 69 20	08 fe 99 65 6e 5a	00 02 17 ca 79 34	45 ac 80 11 73 43	00 10 18 82 73 53

c)* Beschreiben Sie, wie die Länge des Headers auf Schicht 3 bestimmt wird. Markieren und benennen Sie dafür relevante Abschnitte in Abbildung 2.1.	0
	_
d)* Markieren Sie alle Schicht 3 Addressen und benennen Sie diese.	0
e) Markieren Sie alle in Schicht 3 enthaltenen Extension Header.	1
	0
f) Benennen und beschreiben Sie die drei kleinsten Headerfelder von Schicht 3. Geben Sie zudem die Größe der beschriebenen Headerfelder an.	0
	Ц
g) Falls es eine L3-SDU gibt, geben Sie ihren Typ an und begründen Sie die Angabe. Andernfalls, legen Sie Ihren Gedankengang dar und erörtern wie es zu dieser Situation kommen konnte.	0
	Ц'
h) Die Bytes 0x0042 und Folgende sind Payload von Schicht 4. Geben Sie die ASCII Darstellung der ersten 7 B der Payload an.	$oxed{B}^{o}$
i) Um welches Protokoll der Anwendungsschicht handelt es sich also vermutlich und wozu wird dieses Protokoll	 0
verwendet?	

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

