A. Résoudre une équation de degré 2.

Rappel. Pour déterminer les racines d'un trinôme

- On détermine les coefficients a,b,c puis le discriminant $\Delta=b^2-4ac$ du trinôme.
- Si $\Delta>0$, alors le trinôme a deux racines : $x_1=\frac{-b-\sqrt{\Delta}}{2a}$ et $x_2=\frac{-b+\sqrt{\Delta}}{2a}$
- Si $\Delta=0$, alors le trinôme a une seule racine : $x_1=-\frac{b}{2a}$
- Si $\Delta < 0$, alors le trinôme n'a pas de racine.

B. <u>Factoriser un trinôme.</u>

Méthode. Pour factoriser un trinôme :

- ullet On détermine les coefficients a,b,c puis le discriminant Δ , puis les racines éventuelles x_1,x_2 du trinôme.
- Si $\Delta > 0$, alors $f(x) = a(x x_1)(x x_2)$ pour tout x.
- Si $\Delta = 0$, alors $f(x) = a(x x_1)^2$ pour tout x.
- Si $\Delta < 0$, alors le trinôme f ne se factorise pas.

Exercice B1. Factoriser les trinômes suivants :

$$a(x) = 2x^2 - 4x - 16$$

$$b(x) = 3x^2 - 18x + 27$$

$$c(x) = x^2 + x - 1$$

Exercice B2. Trois fonctions polynômes de degré 2 ont été représentées ci-dessous : les fonctions f, g et h. Pour chaque fonction, déterminer, lorsqu'elle existe, sa forme factorisée

Second degré II - 2

C. <u>Etudier le signe d'un trinôme</u>

Exercice C1. Dresser le tableau de signes de chaque fonction :

$$f(x) = -3x + 9$$

$$g(x) = 2x + 5$$

$$h(x) = (2x + 5)(-3x + 9)$$

$$i(x) = x^2 + 9$$

$$j(x) = -3(x-5)^2$$

Exercice C2. Dresser le tableau de signes de chaque fonction :

$$a(x) = 2x^2 - 4x - 16$$

$$b(x) = 9x^2 + 24x + 16$$

$$c(x) = 2x^2 - 5x + 6$$

D. <u>Résoudre une inéquation de degré 2.</u>

Méthode. Pour résoudre une inéquation de degré 2 dont un côté est 0, par exemple : f(x) > 0

• On étudie le signe du trinôme f puis on lit le(s) intervalle(s) solution(s) dans le tableau de signes.

Méthode. Pour résoudre une inéquation de degré 2, par exemple $f(x) \le g(x)$

- On soustrait g(x) des deux côtés pour se ramener à une équation de la forme $h(x) \le 0$.
- On résout l'inéquation $h(x) \le 0$

Exercice D1. Résoudre dans $\mathbb R$ les inéquations suivantes :

$$(A) \Leftrightarrow x^2 + x + 1 > 0$$

$$(B) \Leftrightarrow 3x^2 - 4x + \frac{4}{3} \le 0$$

$$(C) \Leftrightarrow -2x^2 + 3x - 6 < 0$$

$$(D) \Leftrightarrow -7x^2 + 7x - 9 > -8 + 3x$$

Second degré II - 4

E. <u>Trouver rapidement l'autre racine, connaissant une des racines</u>

Propriété. Si un trinôme $f(x) = ax^2 + bx + c$ a deux racines x_1 et x_2 alors : $x_1 + x_2 = -\frac{b}{a}$ et $x_1x_2 = \frac{c}{a}$

Méthode. Si on connait déjà une racine x_1 d'un trinôme f de coefficients a,b,c:

- On peut trouver x_2 en résolvant $x_1 + x_2 = -\frac{b}{a}$
- Alternativement, on peut trouver x_2 en résolvant $x_1x_2=\frac{c}{a}$ (à condition que $x_1\neq 0$)
- On peut parfois trouver une première racine évidente en remplaçant x par des petites valeurs : 0; 1; 2; -1; -2; ...On peut ainsi trouver rapidement les deux racines.

Exercice E1. Pour chaque fonction, trouver une racine évidente. Puis déterminer l'autre racine, et la forme factorisée.

$$f(x) = 2x^2 - 14x + 12$$

$$g(x) = 2x^2 - 8x - 10$$

$$h(x) = x^2 - 6x + 8$$

F. <u>Trouver deux nombres de somme donnée, et de produit donné.</u>

Propriété. Soit s, p, u, v des nombres réels. $\begin{cases} u + v = s \\ uv = p \end{cases} \Leftrightarrow u \text{ et } v \text{ sont les racines du trinôme } x^2 - sx + p$

Méthode. On cherche à résoudre le système $(E) \Leftrightarrow \begin{cases} u+v=s \\ uv=p \end{cases}$ d'inconnues (u;v)

- On considère le trinôme $x^2 sx + p$
- ullet On calcule son discriminant Δ
- Si $\Delta > 0$, on détermine ses racines x_1 et x_2

$$(E) \Leftrightarrow (u = x_1 \text{ et } v = x_2) \text{ ou } (u = x_2 \text{ et } v = x_1)$$

If y a exactement deux couples solutions. $S_E = \{ (x_1; x_2); (x_2; x_1) \}$

• Si $\Delta = 0$, on détermine l'unique racine x_1

$$(E) \Leftrightarrow u = x_1 \text{ et } v = x_1$$

If y a exactement un couple solution. $S_E = \{ (x_1; x_1) \}$

• Si $\Delta < 0$, le système n'a pas de solutions. $S_E = \emptyset$

Exemple. Résoudre le système $(E) \Leftrightarrow \begin{cases} u+v=7 \\ uv=12 \end{cases}$

On considère le trinôme $x^2 - 7x + 12$.

Son discriminant est $\Delta = (-7)^2 - 4 \times 12 = 1 > 0$.

Ses racines sont donc $x_1 = \frac{7+1}{2} = 4$ et $x_2 = \frac{7-1}{2} = 3$.

Donc $S_E = \{(4;3); (3;4)\}.$

Exercice F1.

Résoudre le système $(F) \Leftrightarrow \begin{cases} u+v=13 \\ uv=40 \end{cases}$

Résoudre le système (G)
$$\Leftrightarrow$$
 $\begin{cases} u+v=34\\ uv=289 \end{cases}$

Résoudre le système $(H) \Leftrightarrow \begin{cases} u+v=1 \\ uv=1 \end{cases}$

G. <u>Problèmes</u>

Exercice G1.

1. Mettre sous forme canonique l'expression $f(x) = ax^2 + bx + c$

2. Rappel :
$$\alpha = -\frac{b}{2a}$$
 ; $\beta = f\left(-\frac{b}{2a}\right)$; $\Delta = b^2 - 4ac$

a) Montrer que
$$\beta = -\frac{\Delta}{4a}$$

b) Montrer que
$$f(x) = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right)$$

On a "donc"
$$f(x) = a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{\Delta}}{2a}\right)^2\right)$$

c) Quelle condition doit vérifier Δ pour avoir le droit d'écrire l'égalité précédente ?

3. On suppose que
$$\Delta$$
 vérifie cette condition.

a) Rappeler l'identité remarquable
$$X^2 - Y^2 = ...$$

b) En choisissant X et Y judicieusement, factoriser f(x).

c) Quelles sont les racines de
$$f(x)$$
?

d) Que peut-on dire des racines quand $\Delta = 0$?

4. Si
$$\Delta < 0$$
:

a) Quel est le signe de
$$-\frac{\Delta}{4a^2}$$
 ? et de $\left(x + \frac{b}{2a}\right)^2$?

b) Si a > 0, quel est le signe f(x) ? et si a < 0 ?

En déduire que f(x) ne peut pas avoir de racines.

Exercice G2.