Конспект вопросов по компьютерной алгебре. Первый семестр. 2010.

Преподаватель: Васильев Николай Николаевич

Конспект писали: Смолов Виктор, Зенцев Федор (группа 3057/2)

Содержание

1 Группа, подгруппа, гомоморфизм групп. Ядро и образ гомоморфизма.

Определение. < G, *, e > - группа, $*: G \times G \to G, e \in G$

- 1. $\forall a, b, c \in G(ab)c = a(bc)$
- 2. $\forall g \in G \ eg = ge = g$
- 3. $\forall q \in G \ \exists q^{-1} \in G \ qq^{-1} = q^{-1}q = e$

Если $\forall a,b \in G \ ab = ba$ то группу называют абелевой

Теорема. $\exists ! e \in G \ eg = ge = g$

Определение. G - группа, тогда $H \subset G$ называют nodepynnou, если

- 1. $e \in H$
- 2. $\forall h_1, h_2 \in H \ h_1 h_2 \in H \mid HH \subset H$
- 3. $\forall h \in H \ h^{-1} \in H \mid H^{-1} \subset H$

Определение. G, W - группы.

f:G o W называют гомоморфизмом (групп), если $\forall g_1,g_2\in G$ $f(g_1g_2)=f(g_1)*f(g_2)$

Теорема. $f:G \to W$ - гомоморфизм $f(e_G)=e_W$

Определение. $f:G\to W$ - гомоморфизм, тогда $kerf=\{g\in G|f(g)=e_W\}$ - называют ядром гомоморфизма f

 $m Teopema.\ \it kerf$ - $\it noderpynna$ $\it G$

Определение. $f: G \to W$ - гомоморфизм, тогда $Imf = \{w \in W | \exists g \in G \ f(g) = w\}$ - называют *образом гомоморфизма* f

2 Мономорфизмы, эпиморфизмы и изоморфизмы. Понятие нормального делителя (нормальной подгруппы). Факторгруппа.

Определение. Сюръективный гомоморфизм - эпиморфизм. Инъективный гомоморфизм - мономорфизм. Биективный гомоморфизм - изоморфизм. Изоморфизм $f: G \to G$ - автоморфизм.

Пусть $H \subset G$. Введем отношение эквивалентности \sim соответствующее подгруппе. $g_1, g_2 \in G$. $g_1 \sim g_2$, если $g_1g_2^{-1} \in H$

Определение. $\tilde{g}=\{k\in G|k\sim g\}$ - класс эквивалентности элемента, левый смежный класс g Обозначение: Hg

Определение. G/H - фактормножество, множество смежных классов. $G/H=\{\stackrel{\sim}{g}\mid\stackrel{\sim}{g}=Hg\}$

Заметим, что в случае некоммутативной группы можно ввести правые смежные классы gH.

Теорема. Если gH = Hg, то G/H - группа и называется факторгруппой.

Доказательство. Введем умножение: $\forall g_1H, g_2H \in G/H \ (g_1H)(g_2H) \stackrel{def}{=} g_1g_2H$. Проверим корректность умножения: пусть $g_1' \sim g_1, g_2' \sim g_2$. Тогда $g_1' = g_1h_1, g_2' = g_2h_2$, а значит $g_1'g_2' = g_1h_1g_2h_2 = g_1g_2h_1h_2$. То есть $g_1'g_2' = g_1g_2H$. Теперь проверим свойства умножения:

- 1. eHgH = gH
- 2. $q_1Hq_2Hq_3H = q_1q_2q_3H$
- 3. $gHg^{-1}H = eH$

Определение. $H \subset G$ назовем *нормальной подгруппой*, если $\forall g \in G \ gH = Hg$ или $gHg^{-1} = H$ или $ghg^{-1} \in H$ Обозначение: $H \triangleleft G$

Теорема. G - абелева группа, тогда $\forall H \subset G$ - нормальная.

Теорема. Ядра гомоморфизмов и только они суть нормальные подгруппы.

Доказательство. Сперва докажем, что если $f:G\to W$ - гомоморфизм, то $kerf\lhd G.$ $g\in G,h\in kerf$, тогда $f(ghg^{-1})=f(g)f(h)f(g^{-1})=f(g)f(g)^{-1}=e_W.$

Теперь покажем, что $\forall H \triangleleft G \; \exists f$ - гомоморфизм и kerf = H. Введем $\pi_H: G \to G/H$ - канонической гомоморфизм. Пусть $g \in G, h \in H$ тогда $\pi_H(g) = gH, \pi_H(h) = hH = H$. Следовательно $ker\pi_H = H$.

Порой пишут: $\{e\} \subset H \triangleleft G \overset{\pi_H}{\to} G/H$

3 Характеризация мономорфизмов в терминах ядра. Основная теорема о гомоморфизме.

Теорема. ϕ - мономорфизм $\Leftrightarrow ker\phi = \{e\}$

Доказательство. [\Rightarrow] Пусть $\exists g \neq e \ \phi(g) = e$. Но $\phi(e) = e$. Таким образом $g \neq e, \phi(g) = \phi(e)$. Противоречие инъективности. [\Leftarrow] Пусть $\exists g_1 \neq g_2, \phi(g_1) = \phi(g_2)$. Тогда $\phi(g_1)\phi(g_2)^{-1} = e$, а это значит, что $g_1g_2^{-1} \neq e$ и $g_1g_2^{-1} \in kerf$. Противоречие тривиальности ядра.

Теорема. $G/kerf \stackrel{\sim}{=} Imf$

Доказательство. Пусть $\phi: X \to Y$. Введем отношение эквивалентности: $x_1 \sim x_2$, если $\phi(x_1) = \phi(x_2)$. Рассмотрим $\tau: X/\sim Im \phi$, $\tau(\tilde{x}) = \phi(x)$.

au - инъекция. Действительно, если $\overset{\sim}{x_1} \neq \overset{\sim}{x_2}$, то x_1 не эквивалентно x_2 и значит $\phi(x_1) \neq \phi(x_2)$.

 τ - сюръекция. Действительно $\forall y \in Im \, \phi \, \exists x \, \phi(x) = y \, \text{и} \, \tilde{x} : \tau(\tilde{x}) = y.$ Таким образом изоморфизм установлен.

Теперь пусть $f: G \to W$ - гомоморфизм. $g_1 \sim g_2$, если $f(g_1) = f(g_2)$, или $f(g_1)f(g_2)^{-1} = e, f(g_1g_2^{-1}) = e$ это означает, что $g_1g_2^{-1} \in kerf$. То есть отношение \sim совпадает с отношением эквивалентности порождаемым $kerf \triangleleft G$. Можно записать $G/kerf \stackrel{\sim}{=} Imf$.

4 Группа подстановок (симметрическая группа). Четные и нечетные подстановки. Теорема о том, что всякая группа есть подгруппа симметричской группы (для конечных групп).

Определение. Симметрической группой S_X множества X называется группа автоморфизмов $X \to X$ относительно операции композиции и нейтрального элемента $id_X : \forall x \in X, id_X(x) = x$. Если $X = \{1, 2, \cdots, n\}$, то симметричскую группу называют группой подстановок и обозначают S_n .

Группа подстановок S_n допускает следующее копредставление:

```
Образующие: \sigma_1, \sigma_2, \cdots, \sigma_{n-1} Соотношения: \sigma_i^2 = 1 \sigma_i \sigma_j = \sigma_j \sigma_i, \text{ если } |i-j| > 1 \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}
```

Вообще, образующие в указанном копредставлении являются *транс-позициями*, то есть это такие подстановки, которые меняют два соседних элемента местами, а остальные элементы оставляют на месте.

Определение. Подстановка называется *четной*, если она представляется в виде произведения четного числа транспозиций и *нечетной* в противном случае.

Нечетные подстановки группы не образуют. Четные же образуют нормальную подгруппу группы S_n .

Теорема. Любая группа - подгруппа симметрической группы.

Доказательство. Необходимо сопоставить каждому элементу $g \in G$ некоторую биекцию $G \to G$, тем самым получив вложение $G \subset S_G$. Рассмотрим $i_g: G \to G, \forall s \in G \ i_G(s) = gs$. Осталось проверить свойства: $i_a \circ i_b = a(bs) = (ab)s = i_{ab}, \ i_g \circ i_{g^{-1}} = g(g^{-1}s) = es = i_e$.

5 Левые классы смежности по подгруппе (см. вопрос 2). Индекс подгруппы. Теорема об индексе.

Определение. $H \subset G$

[G:H]=#(G/H) - undexc подгруппы. То есть индекс подгруппы это количество смежных классов.

#G - порядок, мощность группы.

Замечание: индекс тривиальной подгруппы - порядок группы.

Теорема (Теорема об индексе). $K \subset H \subset G$,

тогда [G:K] = [G:H][H:K]

Доказательство. $G=\bigcup_{i=1}^{[G:H]}g_iH$ при этом $g_iH\neq g_jH, i\neq j$. Аналогично

$$H=\bigcup_{j=1}^{[H:K]}h_jK$$
 при этом $h_iK
eq h_jK, i
eq j$. Запишем $G=\bigcup_{i,j}g_ih_jK$.

Теперь достаточно проверить, что g_ih_jK представляют все различные классы смежности по K. Пусть $g_ih_jK=g_lh_mK$. Умножим на H, получим $g_ih_jKH=g_lh_mKH$, и далее $g_ih_jH=g_lh_mH\Rightarrow g_iH=g_lH\Rightarrow i=l$. Вернемся к исходному равенству $g_ih_jK=g_ih_mK\Rightarrow h_jK=h_mK\Rightarrow j=m$. То есть все классы различны.

Возьмем gK. Ясно, что $g = g_i h, h \in H$ и $h = h_m k, k \in K$. Имеем $g = g_i h_m k, g \in g_i h_m K$. Теперь понятно, что исходное представление G представляло все классы смежности по K.

Следствия:

- 1. Порядок подгруппы всегда делитель порядка группы. Пусть $K = \{e\}$, по теореме об индексе #G = #(G/H)#H
- 2. $\forall G:\#G=p,p\in\mathbb{P}$ циклическая группа порядка р Рассмотрим $G:\#G=p,p\in\mathbb{P}$. Рассмотрим $H\subset G$ циклическая подгруппа, порожденная $g\neq e$. Ясно, что $\#H\geq 2$. Но #H делитель #G=p, а значит #H=p=#G. Также из этого следует $\forall G:\#G=p,p\in\mathbb{P}$ $G\cong \mathbb{Z}/p\mathbb{Z}$
- 3. Будем называть $d_g = min\{d \mid g^d = e\}$ nopядком элемента g. Ясно, что порядок элемента равен порядку циклической подгруппы, порождаемой этим элементом, а по первому следствию это означает, что порядок элемента всегда делитель порядка группы и из этого следует $q^{\#G} = q^{d(\frac{\#G}{d})} = e$.

6 Действие группы на множестве. Орбиты. Разбиение множества на орбиты и формула орбит. Стабилизатор.

Определение. Под действием группы G на множестве X понимается: $s:G\times X\to X$ со свойствами:

- 1. $s(g_1, s(g_2, x)) = s(g_1g_2, x)$
- $2. \ s(e,x) = x$

 $x \mapsto s(g, x)$ обозначим как i_g . Обратное действие - $s^{-1}(g, x) = s(g^{-1}, x)$.

Обозначим $s(g,x) = g \cdot x$, т.е.:

- 1. $g_1(g_2x) = (g_1g_2)x$
- 2. ex = x

Определение. Орбитой точки $x \in X$ назовем множество $Gx = \{s(g,x)|g \in G\}$

Лемма. Множество орбит - разбиение множества X. Орбиты либо совпадают, либо не пересекаются.

Доказательство. Пусть $y \in Gx_1 \cap Gx_2$. Это значит, что $\exists g_1, g_2 : y = g_1x_1 = g_2x_2$. Рассмотрим элемент $\widetilde{y} = gx_1$ из орбиты Gx_1 . Но $\widetilde{y} = gg_1^{-1}y = gg_1^{-1}g_2x_2$. Значит \widetilde{y} из орбиты Gx_2 . Следовательно орбиты совпадают. \square

Определение. Назовем стабилизатором точки $x \in X$ множество $S_x \subset G: S_x = \{g \in G | gx = x\}.$

Лемма. Стабилизаторы различных точек сопряжены в одной. x и x_1 - точки одной орбиты, тогда $\exists g: S_x = gS_{x_1}g^{-1}$.

Доказательство. $x_1 = gx$ - т.к. они с одной орбиты. $x = g^{-1}x_1$. Рассмотрим $w \in S_x : wx = x$.

$$wg^{-1}x_1 = g^{-1}x_1$$

 $gwg^{-1}x_1 = x_1$
 $gwg^{-1} \in S_{x_1}$

Орбиты будем обозначать $O_x = Gx$.

Теорема.
$$|O_x| = \#(O_x) = [G:S_x], \forall x \in X$$

Доказательство. Введем эквивалентность: $g_1 \sim g_2 \overset{def}{\Leftrightarrow} g_1 x = g_2 x \Leftrightarrow g_1^{-1} g_2 x = x \Leftrightarrow g_1^{-1} g_2 \in S_x$. Таким образом, 2 элемента эквивалентны, если они переводят элемент x в один и тот же элемент орбиты. 2 элемента из разных классов эквивалентности переводят элемент x в разные элементы орбиты. Разобьем всю группу на классы эквивалентности G/S_x . Отсюда $\#(O_x) = [G:S_x]$.

Теорема (Формула орбит). $X = \bigcup_{x \in Orb(X)} O_x$, $(x \in Orb(x)$ - берем по од-

ному представителю со всех орбит)

$$|X| = \sum_{x \in Orb(X)} |O_x| = \sum_{x \in Orb(X)} [G : S_x]$$

7 Действие группы на себе сопряжениями. Сопряженные элементы. Классы сопряженности. Формула классов.

Для всякого $x \in G$ определим отображение $\sigma_x : G \to G$ формулой $\sigma_x(y) = x^{-1}yx$. Отображение определяет действие группы на себе, называемое сопряжением. В действительности каждое σ_x является автоморфизмом G, т.е. для всех $y, z \in G$ имеем:

$$\sigma_x(yz) = \sigma_x(y)\sigma_x(z)$$

и σ_x обладает обратным $\sigma_{x^{-1}}$.

Орбиты данного действия суть классы сопряженности.

Определение. Централизатором элемента $g \in G$ называется множество $C_x = \{g_1 \in G | g_1^{-1} g g_1 = g, \text{ т.e. } g g_1 = g_1 g\}$

Видим, что отображение $x \mapsto \sigma_x$ есть гомоморфизм группы G в ее группу автоморфизмов. Ядро этого гомоморфизма - нормальная подгруппа в G, состоящая из всех таких $x \in G$, что $x^{-1}yx = y$ для каждого $y \in G$, т.е. из пересечения(наверное) всех централизаторов.

Отметим, что посредством сопряжений G действует также на множестве своих подмножеств. Действительно, пусть S - множество всех подмножеств в G и пусть $A \in S$ - одно из них. Тогда $x^{-1}Ax$ тоже подмножество G, которое можно обозначить через $\sigma_x(A)$, и легко проверяется, что σ_x определяет действие группы G на S. Отметим, кроме того, что если A - подгруппа G, то $x^{-1}Ax$ тоже подгруппа, так что G действует посредством сопряжений и на множестве своих подгрупп.

Определение. Пусть A, B - два подмножеста в G. Говорим, что они conps жены, если $\exists x \in G : B = x^{-1}Ax$.

Пусть x, y - элементы группы G. Они называются коммутирующими, если xy = yx. Множество всех элементов $x \in G$, коммутирующих со всеми элементами группы G, есть подгруппа G. Назовем её *центром* группы G. Пусть G действует на себе посредством сопряжений. Тогда элемент x лежит в центре в том и только в том случае, если орбита этого элемента совпадает с ним самим и, таким образом, состоит из одного элемента. Вообще, индекс орбиты (класса сопряженности) элемента x равен индексу его централизатора. Следовательно, если G - конечная группа, то формула орбит принимает вид:

$$[G:1] = \sum_{x \in CS(X)} [G:C_x]$$

 $[G:1] = \sum_{x \in CS(X)} [G:C_x],$ где CS(X) - множество различных представителей всех классов сопряженности

8 Свободная группа. Теорема о том, что всякая группа есть факторгруппа свободной группы.

Пусть $S=\{a,b,c\cdots\},\ S^{-1}=\{a^{-1},b^{-1},c^{-1},\cdots\}.$ Будем называть $A=S\cup S^{-1}$ алфавитом, а A^* - множеством всевозможных слов над алфавитом A. Пустым словом будем называть $aa^{-1}=\emptyset$. Введем отношение эквивалентности на A^* . $w\sim v$, если w можно получить из v с помощью правил сокращения. Также введем операцию конкатенации на A^* .

Определение. $F_S = (A^* \cup \emptyset) /\!\!\!\sim$ - группа по конкатенации. F_S - свободная группа, порожденная S.

Теорема (Категорное свойство свободной группы). Существует единственный гомоморфизм, делающий диаграмму коммутативной. То есть $\forall f: S \to G \ \exists ! \phi_f: F_S \to G, \ f = \phi_f \circ i.$

Доказательство. Пусть $S = \{s_1, \cdots, s_n\}$. Тогда $Imf = \{f(s_1), \cdots, f(s_n)\} = \{g_1, \cdots, g_n\}$. Теперь введем $\phi_f(s_1^{n_1}s_2^{n_2}\cdots s_i^{n_i}) = g_2^{n_1}g_2^{n_2}\cdots g_i^{n_i}$. Единственность очевидна по построению.

Теорема. Приведенное выше свойство может быть принято за определение свободной группы с точностью до изоморфизма.

Доказательство. Пусть существуют две свободные группы, порожденные $S: F_1$ и F_2 . Тогда по свойству существуют единственные гомоморфизмы $\phi_i: F_1 \to F_2$ и $\phi_j: F_2 \to F_1$. А это значит, что $F_1 \stackrel{\sim}{=} F_2$.

Теорема. Любая группа есть факторгруппа некоторой свободной группы.

Доказательство. Пусть G - группа. Забудем о её груповых свойствах и рассмотрим как множество. Рассмотрим F_G - свободную группу, порожденную G. Теперь вспомним о том, что G - группа. Тогда $\exists \phi: F_G \to G$ - естественный эпиморфизм групп, то есть $Im\ \phi = G$. По основной теореме о гомоморфизме $F_G/\ker\phi \stackrel{\sim}{=} Im\ \phi = G$.

Пример:

 $F_{\{a,b\}}\stackrel{\sim}{=} \mathbb{Z} \times \mathbb{Z}$, если введены следующие правила $aba^{-1}b^{-1}=e, ab=ba$.

9 Прямое произведение групп. Свойства прямого произведения групп.

Определение. Прямым произведением групп G_1, G_2 назовём $G_1 \times G_2 = \{(g_1, g_2) | g_1 \in G_1, g_2 \in G_2\}$

Введем произведение на $G_1 \times G_2$: $(g_1, g_2), (w_1, w_2) \in G_1 \times G_2; (g_1, g_2)(w_1, w_2) = (g_1w_1, g_2w_2)$

Теорема. $G_1 \times G_2$ - группа.

Естественным образом определяются проекции на сомножители $h_1(g_1,g_2)=g_1,\ \ker h_1=\{(e_1,g)\mid g\in G_2\}\stackrel{\sim}{=} G_2$ $h_2(g_1,g_2)=g_2,\ \ker h_2=\{(g,e_2)\mid g\in G_1\}\stackrel{\sim}{=} G_1$

Из основной теоремы о гомоморфизме следует также $(G_1 \times G_2)/G_2 = G_1, (G_1 \times G_2)/G_1 = G_2$

Теорема (Категорное свойство прямого произведения). W - некоторая группа.

 $\exists ! \phi$ - гомоморфизм, делающий диаграмму коммутативной.

Теорема. Приведенное выше свойство может быть принято за определение прямого произведения с точностью до изоморфизма.

10 Коммутативные кольца. Гомоморфизмы колец. Моно- и эпиморфизмы. Характеризация мономорфизмов.

Определение. Кольцом A, +, * называется множество с 2-мя бин. операциям: $+: A \times A \to A$ и $*: A \times A \to A$ и удовлетворяющее следующим условиям:

- 1. $\{A, +\}$ Абелева группа.
 - (a) a + b = b + a
 - (b) (a+b) + c = a + (b+c)
 - (c) $\exists 0 : a + 0 = a$
 - (d) $\forall a \exists -a : a + (-a) = 0$
- 2. (ab)c = a(bc) $\exists e : ea = ae = a$
- 3. * ab = ba (коммутативное кольцо)
- $4. \ a(b+c) = ab + ac$

Пример: Z/nZ - коммутативное кольцо, $M_n(Z)$ - некоммутативное кольцо.

Определение. A, B - кольца.

 $f:A\to B$ - гомоморфизм колец, если:

- 1. f(a * b) = f(a) * f(b)
- 2. f(a+b) = f(a) + f(b)
- 3. $f(0_A) = 0_B$
- 4. $f(1_A) = 1_B$

Инъективный гомоморфизм - мономорфизм.

Сюрьективный гомоморфизм - эпиморфизм.

Биективный гомоморфизм - изоморфизм.

Мы будем рассматривать коммутативные кольца!

Теорема. ϕ - мономорфизм $\Leftrightarrow ker\phi = \{0\}$

Доказательство. [\Rightarrow] Пусть $\exists a \neq 0 \ \phi(a) = 0$. Но $\phi(0) = 0$. Таким образом $a \neq 0, \phi(a) = \phi(0)$. Противоречие инъективности. [\Leftarrow] Пусть $\exists a \neq b, \phi(a) = \phi(b)$. Тогда $\phi(a) - \phi(b) = 0$, а это значит, что $a - b \neq 0$ и $a - b \in ker\phi$. Противоречие тривиальности ядра.

Определение. f - гомоморфизм колец.

 $Ker(f)=\{a\in A|f(a)=0_B\}$ - ядро гомоморфизма.

Свойства ядра:

- 1. $a_1, a_2 \in Ker(f) \Rightarrow a_1 + a_2 \in Ker(f)$
- $2. \ 0_A \in Ker(f)$
- 3. $a \in Ker(f), b \in A \Rightarrow ba \in Ker(f) \& ab \in Ker(f)$

11 Идеалы и факторкольца. Определение простого и максимального идеала.

Определение. A - кольцо; $\mathfrak{a} \subset A$

а - идеал, если:

- 1. \mathfrak{a} абелева подгруппа $\mathfrak{a} + \mathfrak{a} = \mathfrak{a}, -\mathfrak{a} = \mathfrak{a}$
- 2. $A \cdot \mathfrak{a} \subset \mathfrak{a}; \forall c \in A, a \in \mathfrak{a} \Rightarrow ca \in \mathfrak{a}$

Ядра гомоморфизмов (см. пред. вопрос) колец - идеалы. Введем отношение эквивалентности на A:

$$a_1 \sim a_2 \ (a_1 \equiv a_2 \mod \mathfrak{a}) \stackrel{def}{\Leftrightarrow} a_1 - a_2 \in \mathfrak{a}$$

Будем обозначать: \overline{a} - класс эквивалентности. $\overline{a}=a+\mathfrak{a}$. $\overline{0}=\mathfrak{a}$.

Пусть $\mathfrak a$ - идеал в A. Построим факторкольцо $A/\mathfrak a$ следующим образом. Рассматривая A и $\mathfrak a$ как аддитивные группы, образуем факторгруппу $A/\mathfrak a$. Определим теперь в $A/\mathfrak a$ умножение: $\overline{a} \cdot \overline{b} = \overline{ab}$. Проверим, что такое умножение является правильным, т.е. $\overline{a_1} = \overline{a}$ & $\overline{b_1} = \overline{b} \Rightarrow \overline{a_1b_1} = \overline{ab}$.

Доказательство. Нужно показать, что если $a_1 \sim a$ и $b_1 \sim b$, то $a_1b_1 \sim ab$.

$$a_1 = a + a_2, \ a_2 \in \mathfrak{a}$$

$$b_1 = b + b_2, \ b_2 \in \mathfrak{a}$$

$$a_1b_1 = (a + a_2)(b + b_2) = ab + a_2b + b_2a + a_2b_2$$

$$a_1b_1 - ab = a_2b + b_2a + a_2b_2 \in \mathfrak{a}$$

$$a_1b_1 \sim ab$$

Таким образом, имеем факторкольцо A/\mathfrak{a} .

Будем предполагать, что \mathfrak{a} - собственный идеал, т.е. $\mathfrak{a} \neq A$.

Теорема. $\phi:A\to A/\mathfrak{a}$

$$\phi(a) = \overline{a}; \ \phi(ab) = \phi(a)\phi(b)$$

 ϕ - канонический гомоморфизм колец. $Ker(\phi) = \mathfrak{a}$

Теорема. Ядра гомоморфизмов и только они являются идеалами.

Определение. Идеал $\mathfrak{P} \subset A$ называется простым, если: $a_1a_2 \in \mathfrak{P} \Rightarrow (a_1 \in \mathfrak{P}) \lor (a_2 \in \mathfrak{P})$

Определение. Идеал $\mathfrak{M} \subset A$ называется максимальным, если: $\mathfrak{M} \neq A$ и если $\mathfrak{B} \supset \mathfrak{M}$ и \mathfrak{B} - идеал, то $\mathfrak{B} = A$.

12 Поля и области целостности. Характеризация простого и максимального идеалов в терминах факторкольца.

Определение. Кольцо называтся областью целостности, если в нем нет делителей нуля:

$$\forall x \neq 0, y \neq 0 \Rightarrow xy \neq 0$$

Пример: Z - область целостности.

Определение. Поле - кольцо, в котором:

$$\forall x \in A, x \neq 0 \quad \exists x^{-1} : xx^{-1} = 1$$

Теорема. Идеал $\mathfrak P$ прост тогда и только тогда, когда $A/\mathfrak P$ - область целостности

Доказательство. $[\Rightarrow] \mathfrak{P}$ прост.

$$\overline{0} \neq \overline{x} \in A/\mathfrak{P}$$

$$\overline{0} \neq \overline{y} \in A/\mathfrak{P}$$

Покажем, что $\overline{x} \cdot \overline{y} \neq \overline{0}$.

$$x\notin \mathfrak{P}, y\notin \mathfrak{P}\Rightarrow xy\notin \mathfrak{P} \Leftrightarrow \overline{xy}\neq \overline{0} \Leftrightarrow \overline{x}\cdot \overline{y}\neq \overline{0}$$

 $[\Leftarrow]$ A/\mathfrak{P} - область целостности. Пусть \mathfrak{P} - не прост. Тогда $\exists a_1, a_2 : a_1 a_2 \in \mathfrak{P}$, но $a_1 \notin \mathfrak{P}$ & $a_2 \notin \mathfrak{P}$. Рассмотрим соответствующие классы эквивалентности:

$$\overline{a_1} \neq \overline{0} \& \overline{a_2} \neq \overline{0}$$

$$\overline{a_1 a_2} = \overline{a_1} \cdot \overline{a_2} = \overline{0}$$

Но A/\mathfrak{P} - область целостности. Получили противоречие.

ЗАМЕЧАНИЕ:
$$1 \in \mathfrak{B} \Leftrightarrow \mathfrak{B} = A$$
.

Определение. $S \subset A$, тогда (S) - идеал, порожденный множеством S, т.е. пересечение всех идеалов, содержащих S.

Теорема. \mathfrak{M} - максимальный $\Leftrightarrow A/\mathfrak{M}$ - поле

Доказательство. [⇒] \mathfrak{M} - максимальный идеал. Покажем, что A/\mathfrak{M} - поле. Возьмем ненулевой элемент и найдем обратный к нему.

$$\overline{x} \in A/\mathfrak{M}, \quad \overline{x} \neq \overline{0} \Leftrightarrow x \notin \mathfrak{M}$$

$$(\mathfrak{M} \bigcup \{x\}) = A \Rightarrow 1 \in (\mathfrak{M} \bigcup \{x\})$$

$$(\mathfrak{M} \bigcup \{x\}) = xA + \mathfrak{M}$$

 $\exists y \in A, \ m_1 \in \mathfrak{M} : 1 = xy + m_1 \Leftrightarrow \overline{1} = \overline{x} \cdot \overline{y} + \overline{0} = \overline{xy}$

 $[\Leftarrow]$ A/\mathfrak{M} - поле. Пусть \mathfrak{M} не максимальный. Тогда $\exists \mathfrak{M}_1: \mathfrak{M} \subset \mathfrak{M}_1 \subset A$. Возьмем $x \in \mathfrak{M}_1 \setminus \mathfrak{M}$:

$$(\mathfrak{M}\bigcup\{x\})\subset\mathfrak{M}_{\mathtt{l}}\Rightarrow 1\notin (\mathfrak{M}\bigcup\{x\})$$

Рассмотрим $\overline{x} \in A/\mathfrak{M}$. Т.к. A/\mathfrak{M} - поле, то $\exists \overline{y} \in A/\mathfrak{M} : \overline{x} \cdot \overline{y} = \overline{1}$.

$$\exists m_1, m_2 \in \mathfrak{M} : (x+m_1)(y+m_2) = 1 = xy+m_1y+m_2x+m_1m_2 = 1 \Rightarrow 1 \in (\mathfrak{M} \setminus \{x\})$$

Получили противоречие.

Теорема. Максимальный идеал простой.

Доказательство. Пусть \mathfrak{M} - максимальный идеал, и пусть $x,y\in A$ таковы, что $xy\in \mathfrak{M}$. Предположим, что $x\notin \mathfrak{M}$. Тогда $\mathfrak{M}+Ax$ - идеал, строго содержащий \mathfrak{M} и, стало быть, равный A. Следовательно, мы можем написать

$$1 = u + ax$$

где $u \in \mathfrak{M}$ и $a \in A$. Умножая на y, получаем y = yu + axy, откуда $y \in \mathfrak{M}$ и \mathfrak{M} , таким образом, простой.

13 Кольцо полиномов над полем. Кольца главных идеалов. Алгоритм Евклида в кольце полиномов

Теорема. \mathbb{Z} - кольцо главных идеалов.

```
Доказательство. Пусть \mathfrak{a} \subset \mathbb{Z} - идеал и пусть d \in \mathfrak{a}, d > 0 d = min\{a \in \mathfrak{a}, a > 0\}. Докажем, что \mathfrak{a} = (d). [\mathfrak{a} \subset (d)] Возьмем n \in \mathfrak{a} и разделим на d, получим n = kd + r, \ 0 \le r < d - 1. Заметим, что n \in \mathfrak{a} и kd \in \mathfrak{a}, а значит (r = n - kd) \in \mathfrak{a}, но d минимальный элемент принадлежащий идеалу. Таким образом r = 0 и из этого следует n \in (d). [(d) \subset \mathfrak{a}] Возьмем k \in (d). То есть k = ld. По определению идеала k \in \mathfrak{a}.
```

На самом деле любое eвклидово кольцо является кольцом главных идеалов. Неформально евклидово кольцо это то, в котором существует аналог алгоритма Евклида. Вообще алгоритм Евклида базируется на фундаментальном свойстве натуральных чисел: nnbou отрезок натурального pnda имеет минимальный элемент. Так вот более формально кольцо R называется евклидовым если R - область целостности и $\exists d: R \to \mathbb{N} \cup -\infty$ причем $d(a) = -\infty \Leftrightarrow a = 0$ и возможно деление с остатком, то есть $\forall a, b \neq 0 \in R$ имеется представление a = bq + r, d(r) < d(b). В частности K[x] - кольцо полиномов над полем K - является евклидовым с d = deg(f) и является кольцом главных идеалов.

Определение. Пусть $\mathfrak{a} = (f_1, \dots, f_k) \subset K[x]$ - идеал. $(f_1, \dots, f_k) = (g)$. Будем называть g наибольшим общим делителем многочленов f_1, \dots, f_k и обозначать (f_1, \dots, f_k) (не путать \mathfrak{c} идеалом).

Алгоритм Евклида позволят найти наибольший общий делитель, получить его линейное представление через образующие исходного идеала.

```
Вход: f(x), g(x) \in K[x]
Выход: u(x), v(x) : d(x) = u(x)f(x) + v(x)g(x), \ (d) = (f,g)
```

Алгоритм Евклида

```
1 u_{-2} \leftarrow 1, v_{-2} \leftarrow 0
 2 \quad u_{-1} \leftarrow 0, v_{-1} \leftarrow 1
 3 \quad p_0 \leftarrow f, q_0 \leftarrow g
 4 \quad i \leftarrow 0
 5 while q_i \neq 0
                 {f do} Разделить p_i на q_i с остатком.
 6
 7
                       \triangleright Частное \phi_i. Остаток r_i.
 8
                       p_{i+1} \leftarrow q_i
 9
                       q_{i+1} \leftarrow r_i
10
                       ⊳ Соотношения Безу
11
                       u_i \leftarrow u_{i-2} - \phi_i v_{i-1}
12
                      v_i \leftarrow v_{i-2} - \phi_i u_{i-1}
13
                       i \leftarrow i + 1
14 d \leftarrow p_i
15 u \leftarrow u_i, v \leftarrow v_i
```

14 Существование максимального идеала в кольце. Лемма Цорна.

Определение. Частично упорядоченное множество Y называют uenbw или $nuneuno ynopsdouennum множеством, если <math>\forall x,y \in Y \ x \leq y$ или $y \leq y$.

Определение. Пусть Y - цепь, $A \subset Y$. Тогда $y \in Y$ называют верхней гранью для A, если $\forall a \in A \ y \geq a$

Определение. Пусть Y - цепь. Тогда $m \in Y$ называют максимальным элементом, если $\forall y \in Y \ m \geq y$

Лемма (Цорна). Частично упорядоченное множество, в котором любая цепь имеет верхнюю грань, содержит максимальный элемент.

Теорема. В любом кольце существует максимальный идеал. $\forall A$ - кольца. $\exists \mathfrak{m} \subset A : \mathfrak{m}$ - максимальный идеал.

Доказательство. Пусть X - упорядоченное по включению множество собственных идеалов в A и пусть $S\subset X$ - цепь идеалов в A. Тогда рассмотрим $\mathfrak{B}=\bigcup_{\mathfrak{m}\subset S}\mathfrak{m}$. Покажем, что \mathfrak{B} - идеал.

$$x, y \in \mathfrak{B} \Rightarrow \begin{cases} x \in \mathfrak{a}_1 \\ y \in \mathfrak{a}_2 \end{cases} \mathfrak{a}_1 \subset \mathfrak{a}_2 \Rightarrow x + y \in \mathfrak{a}_2 \subset \mathfrak{B}$$

$$x \in \mathfrak{B} \Rightarrow x \in \mathfrak{a}_1 \Rightarrow \forall c \in A \ cx \in \mathfrak{a}_1 \subset \mathfrak{B}$$

К тому же $1 \notin \forall \mathfrak{a} \in S \Rightarrow 1 \notin \mathfrak{B} \Rightarrow \mathfrak{B} \neq A$. Таким образом \mathfrak{B} - верхняя грань для S. Итак для произвольной цепи нашлась верхняя грань, далее по лемме Цорна X содержит максимальный элемент, то есть в A существует максимальный идеал.

Эквивалентные утверждения:

- 1. Любое множество может быть вполне упорядочено.
- 2. Произвольное декартово произведения семейства непустых множеств непусто.
- 3. *Аксиома выбора.* Для любого семейства непустых непересекающихся множеств существует множество, которое имеет только один элемент в пересечении с каждым множеством семейства
- 4. В каждом кольце существует максимальный идеал.
- 5. Лемма Цорна.

Теорема. $5 \Rightarrow 1$

Доказательство. Пусть X - множество. Рассмотрим $Y \subset X$ - цепь в X и будем обозначать (Y, \leq) . Введем отношение порядка на множестве $\{(Y_s, \leq_s)\}_s: (Y_1, \leq_1) \prec (Y_2, \leq_2)$, если $Y_1 \subset Y_2$, а \leq_1 индуцирован \leq_2 . Пусть тогда S - цепь пар (Y_s, \leq_s) . Рассмотрим $Y = \cup Y_s$. Y - верхняя грань для S. То есть любая цепь в множестве пар имеет верхнюю грань, тогда по лемме Цорна существует максимальный элемент (M, \leq) . Предположим, что $M \neq X$, то есть $\exists x \notin M$. Рассмотрим $M_1 = M \cup x$, но тогда $(M, \leq) \prec (M_1, \leq_1)$, а (M, \leq) - максимальный. Получили противоречие. \square

Приведем еще теорему об идеалах в кольце целых чисел.

Теорема. Пусть $p \in \mathbb{P}$. Тогда $p\mathbb{Z}$ - максимальный идеал.

Доказательство. Пусть $(p)\subset (n)$. Тогда $\exists m\in\mathbb{Z}:p=nm$, откуда n=1 или n=p, что и доказывает максимальность идеала, а значит и его простоту.

15 Модули и их гомоморфизмы. Моно, эпи и изоморфизмы модулей. Примеры.

Определение. M называется модулем над кольцом A или A-модулем.

- 1. $\{M,0,+\}$ абелева группа
- 2. $b(am) = (ba)m, \ 0m = 0 \mid a, b \in A, m \in M$
- 3. $a(m_1 + m_2) = am_1 + am_2 \mid a \in A, m_1, m_2 \in M$

ЗАМЕЧАНИЕ:
$$+: M \to M$$
, но $*: A \times M \to M$

Определение. $\phi: M_1 \to M_2; M_1, M_2 - A$ -модули Будем называть ϕ гомоморфизмом модулей, если:

- 1. $\phi(m_1 + m_2) = \phi(m_1) + \phi(m_2)$
- 2. $\phi(0) = 0$
- 3. $\phi(am) = a\phi(m), \forall a \in A, m \in M$

Определение. $\phi: M_1 \to M_2$ - гомоморфизм модулей. $\ker \phi = \{m \in M_1 \mid \phi(m) = 0\}$ - ядро гомоморфизма $Im \phi = \{m \in M_2 \mid \exists m_1 \in M_1 \ \phi(m_1) = m\}$ - образ гомоморфизма

Определение. Π одмодулем B A-модуля M будем называть подгруппу группы M, замкнутую относительно умножения на элементы из A, т.е. такую, что

$$\forall b \in B, a \in A : ab \in B$$

Введем отношение эквивалентности, порождаемое подмодулем M_1 в модуле M_2 .

$$\forall s_1, s_2 \in M_2 \ s_1 \sim s_2 \Leftrightarrow s_1 - s_2 \in M_1$$

Множество классов эквивалентности по такому отношению будем обозначать M_2/M_1 . А класс эквивалентности элемента $m \in M_2$ будем обозначать \overline{m} . Заметим, что $\overline{m} = m + M_1$.

Теорема. M_2/M_1 - модуль.

 \mathcal{A} оказательство. 1. Положим $\overline{m_1} + \overline{m_2} = \overline{m_1 + m_2}$, $a\overline{m} = \overline{am}$.

2. Проверим корректность введенных операций, пусть

$$m_1' \sim m_1, m_2' \sim m_2$$

$$m_1' \in m_1 + M_1, m_2' \in m_2 + M_1$$

$$m_1' + m_2' \in m_1 + m_2 + M_1$$

$$\overline{m_1' + m_2'} = \overline{m_1 + m_2}$$

Пусть теперь

$$m_1 \sim m$$

$$m_1 \in m + M_1, am_1 \in am + M_1$$

$$\overline{am_1} = \overline{am}$$

Теорема. $\exists \phi: M_2 \to M_2/M_1, \ ker \ \phi = M_1$ - естественный эпиморфизм.

 \mathcal{A} оказательство. Пусть $\phi(m)=\overline{m}$. ϕ - эпиморфизм модулей. Пусть $m\in M_1$, тогда $\phi(m)=\overline{m}=m+M_1=M_1$, а значит $\ker\phi=M_1$

Теорема. $\phi:M_1 o M_2$ - гомоморфизм модулей. Тогда $M_1/\ker\phi=Im\,\phi$

Примеры:

- 1. Любое векторное пространство модуль.
- 2. A кольцо $\Rightarrow A$ модуль.
- 3. $\mathfrak{a} \subset A$ идеал. $\Rightarrow \mathfrak{a}$ A-модуль.
- 4. A/\mathfrak{a} A-модуль.
- 5. Любая абелева группа это **Z**-модуль.
- 6. Кольцо многочленов над кольцом модуль. Кольцо многочленов над полем векторное пространство.

16 Китайская теорема об остатках. Целочисленный вариант. Использование в модулярной арифметике.

Теорема (Целочисленный вариант китайской теоремы об остатках). Пусть $m_1, \ldots, m_k \in \mathbb{Z}$ - попарно взаимнопростые числа. Тогда

$$\forall x_1, \dots, x_k, \quad 0 \le x_i < m_i$$

 $\exists ! x \in \mathbb{Z}_m : x \equiv x_i \mod m_i, \ i = \overline{1, k}.$

Существует изоморфизм колец:

$$\phi: \quad \mathbb{Z} / (\prod_{i=1}^k m_i) \mathbb{Z} \to \prod_{i=1}^k \mathbb{Z} / m_i$$

Доказательство. $m = \prod_{i=1}^{k} m_i$ Построим ϕ - изоморфизм.

$$\phi(x) = (x \bmod m_1, x \bmod m_2, \dots, x \bmod m_k)$$

 ϕ - инъективно. Действительно, пусть ϕ - не инъективно, тогда

$$\exists x, y \in \mathbb{Z}/m\mathbb{Z} : \ \forall i \ x - y \ \vdots \ m_i \overset{(m_i, m_j) = 1}{\Rightarrow} x - y \ \vdots \ m$$

Ho $\forall x, y \in \mathbb{Z}/m\mathbb{Z} \ |x-y| < m$, а значит x = y.

 ϕ - сюръективно. Действительно, заметим, что ϕ действует между равномощными множествами. И далее по принципу Дирихле: любое инъективное отображение между двумя равномощными множествами сюръективно.

С помощью алгоритма Евклида и целочисленного варианта китайской теоремы об остатках может быть построен конструктивный алгоритм восстановления числа по его остаткам (от деления на взаимнопростые числа).

Например в алгоритме RSA вычисления ведутся по модулю n=pq, где p,q - большие простые числа, что делает эти вычисления в $\mathbb{Z}/n\mathbb{Z}$ достаточно долгими. Китайская теорема об остатках позволяет вести эти вычисления в $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$.

Вообще модулярной арифметикой называют операции сложения, вычитания и умножения, основанные на идеи оперирования не непосредственном с числом, а его остатками, не содержащих общих делителей. Пре-имущество модулярной арифметики заключается в том, что операции

выполняются просто и быстро, а также вычисления не растут. Отрицательным моментом является невозможность сравнивать числа представленные остатками и соответственно невозможность заметить переполнение.

17 Общий вариант китайской теоремы об остат-ках. Применение ее к кольцу полиномов.

Определение. Идеалы \mathfrak{a} , \mathfrak{b} взаимнопросты, т.е. $(\mathfrak{a},\mathfrak{b})=1$, если $\mathfrak{a}+\mathfrak{b}=A$

Теорема (Китайская теорема об остатках). Пусть A - кольцо $u \, \mathfrak{a}_1, \dots, \mathfrak{a}_k$ - попарно взаимнопростые идеалы. Тогда

$$\forall x_1, \dots, x_k, \quad x_i \in A$$

$$\exists x \in A : x \equiv x_i \mod \mathfrak{a}_i, \ i = \overline{1, k}.$$

Существует изоморфизм колец:

$$\phi: A/\bigcap_{i=1}^k \mathfrak{a}_i \to \prod_{i=1}^k A/\mathfrak{a}_i$$

Доказательство. Доказательство по ММИ.

База: k = 2

$$\mathfrak{a}_1 + \mathfrak{a}_2 = A \Rightarrow \exists y_1 \in \mathfrak{a}_1, y_2 \in \mathfrak{a}_2 : y_1 + y_2 = 1.$$

Надо показать, что

$$\exists x \in A: \begin{array}{cc} x & \equiv x_1 \mod \mathfrak{a}_1 \\ x & \equiv x_2 \mod \mathfrak{a}_2 \end{array}$$

Предъявим $x = x_2y_1 + x_1y_2$. Покажем, что это верно:

$$x - x_1 = x_2y_1 + x_1y_2 - x_1 = x_2y_1 + x_1(y_2 - 1) = x_2y_1 - x_1y_1 \in \mathfrak{a}_1$$
$$x - x_2 = x_2y_1 + x_1y_2 - x_2 = x_1y_2 + x_2(y_1 - 1) = x_1y_2 - x_2y_2 \in \mathfrak{a}_2$$

Переход:

Покажем, что \mathfrak{a}_1 взаимнопрост с $\prod_{i=2}^k \mathfrak{a}_i$. Т.к. \mathfrak{a}_1 взаимнопрост с $\mathfrak{a}_i,\ i=\overline{2,k}$:

$$a_1 + b_1 = 1, \quad a_1 \in \mathfrak{a}_1, b_1 \in \mathfrak{a}_2$$

 $a_2 + b_2 = 1, \quad a_2 \in \mathfrak{a}_1, b_2 \in \mathfrak{a}_3$
...

$$a_{k-1} + b_{k-1} = 1, \quad a_{k-1} \in \mathfrak{a}_1, b_{k-1} \in \mathfrak{a}_k$$

Рассмотрим произведение:

$$(a_1 + b_1)(a_2 + b_2) \cdots (a_{k-1} + b_{k-1}) = 1 \Leftrightarrow$$

$$(\dots)a + b_1b_2\cdots b_{k-1} = 1,$$

где $a\in\mathfrak{a}_1,$ а $b_1b_2\cdots b_{k-1}\in\prod_{i=2}^k\mathfrak{a}_i.$ Аналогично получаем, что \mathfrak{a}_l взаимно-

прост с $\prod_{i=1, i\neq l}^k \mathfrak{a}_i$.

Вернемся к доказательству теоремы. Пусть она верна для семейства из k-1 идеалов. Рассмотрим \mathfrak{a}_1 и $\mathfrak{b}=\prod_{i=2}^k \mathfrak{a}_i$. По КТО:

$$\exists y_1: \begin{array}{ll} y_1 & \equiv 1 \mod \mathfrak{a}_1 \\ y_1 & \equiv 0 \mod \mathfrak{b} \end{array}$$

Аналогичным образом найдем y_2, y_3, \dots, y_l . Получаем:

$$\begin{cases} y_i \equiv 1 \mod \mathfrak{a}_i \\ y_i \in \mathfrak{a}_i, \ i \neq j \end{cases}$$

Предъявим $x = \sum_{i=1}^k x_i y_i$. Действительно,

$$x - x_i = \sum_{l \neq i} x_l y_l + (x_i y_i - x_i) \in \mathfrak{a}_i,$$

т.к.
$$\sum_{l\neq i} x_l y_l \in \mathfrak{a_i}$$
 и $x_i(y_i-1) \in \mathfrak{a}_i$.

Таким образом имеем сюръективное отображение $f: A \to \prod_{i=1}^k A/\mathfrak{a}_i$.

Заметим, что ядро данного гомоморфизма есть $\bigcap_{i=1}^k \mathfrak{a}_i$. По теореме о гомоморфизме имеем изоморфизм:

$$A \bigg/ \bigcap_{i=1}^k \mathfrak{a}_i \cong \prod_{i=1}^k A/\mathfrak{a}_i$$

Рассмотрим применение теоремы к кольцу полиномов.

Теорема. K[x] - кольцо полиномов над полем K. f_1, \ldots, f_k - полиномы такие, что $(f_i) + (f_j) = K[x] = (1), i \neq j$. Тогда для любого набора остатков $\forall r_1, \ldots, r_k, r_i \in K[x]$:

$$\exists f \in K[x]: (f-r_i) : f_i, i = \overline{1, k}.$$

18 Расширения полей. Конечные и алгебраические расширения. Теорема: любое конечное расширение является алгебраическим.

Пусть \mathbb{K}, k - поля.

Определение. $k \subset \mathbb{K}$ - расширение полей.

K является векторным пространством над k

Определение (Степень расширения). $[\mathbb{K}:k]$ - размерность \mathbb{K} над k как векторное пространство.

Если $[\mathbb{K}:k]=n$, то $|\mathbb{K}|=|k|^n$, и если k - простое подполе, то $|K|=p^n=q$.

ЗАМЕЧАНИЕ: $Gal(\mathbb{K}:k)$ - группа Галуа - группа автоморфизмов \mathbb{K} , оставляющих k на месте.

Теорема.

$$k \subset \mathbb{K} \subset \mathbb{W}$$

$$Torda \ [\mathbb{W}:k] = [\mathbb{W}:\mathbb{K}] \cdot [\mathbb{K}:k]$$

 \mathcal{A} оказательство. Будем обозначать: $\mathbb{W}_{\mathbb{K}}$ - про-во, соотв. вложению $\mathbb{K}\subset \mathbb{W}$. Аналагично, \mathbb{K}_k .

 $[\mathbb{W} : \mathbb{K}] = n \Rightarrow$ есть n базисных векторов $E_1, \dots, E_n \in \mathbb{W}_{\mathbb{K}}$.

Возьмем
$$w \in \mathbb{W}$$
: $w = \sum_{i=1}^{n} \alpha_i E_i$, $\alpha_i \in \mathbb{K}$.

 $[\mathbb{K}:k]=m\Rightarrow$ есть m базисных векторов $e_1,\ldots,e_m\in\mathbb{K}_k$.

Каждый
$$\alpha_i = \sum_{j=1}^m \beta_i j e_j, \quad \beta_{ij} \in k.$$

Итого,
$$w = \sum_{i=1}^{n} \sum_{j=1}^{m} \beta_{ij} e_j E_i$$
, $e_j E_i \in \mathbb{W}$.

Определение. $k \subset \mathbb{K}$

 $\alpha \in \mathbb{K}$ называется алгебраическим над k, если

$$\exists c_0, c_1, \dots, c_n \in k : \sum_{i=0}^n c_i \alpha^i = 0$$

Определение. Расширение $k \subset \mathbb{K}$ называется алгебраическим над k, если $\forall \alpha \in \mathbb{K}$ - алгебраическое над k.

Теорема. Любое конечное расширение - алгебраическое. $[\mathbb{K}:k]<\infty\Rightarrow k\subset\mathbb{K}$ - алгебраическое.

 \mathcal{A} оказательство. Пусть $[\mathbb{K}:k]=n$. Возьмем $\forall \alpha \in \mathbb{K}$. Заметим, что вектора $1=\alpha^0,\alpha^1,\dots,\alpha^n$ линейно зависимы (их n+1). Значит, $\sum\limits_{i=0}^n c_i\alpha^i=0$.

19 Неприводимые полиномы над полем. Неразложимые элементы кольца. Понятие факториального кольца. Существование неприводимых полиномов над конечными полями.

Определение. Многочлен $f \in k[x]$ называется неприводимым над полем k, если он имеет положительную степень и равенство $f = gh, g \in k[x], h \in k[x]$ может выполняться только в том случае, когда либо g, либо h является постоянным многочленом.

Определение. A - кольцо. $a \in A$ - неразложим, если $a = g_1g_2 \Rightarrow g_1 = 1 \lor g_2 = 1$

Определение. Кольцо A называется факториальным, если для любого элемента существует разложение на неразложимые элементы, и оно единственно с точностью до порядка следования неразложимых сомножителей и единиц кольца.

Теорема. Над конечным полем существуют неприводимые полиномы любой степени.

Данная теорема очень важна для построения полей Галуа.

20 Характеристика поля. Простое подполе. Поля конечной характеристики. Конечные поля. Построение полей Галуа F_{n^n} .

Пусть $\mathbb K$ - поле. Будем полагать $\underbrace{x+x+x+\cdots+x}=nx$

Введем понятие характеристики поля:

$$char(\mathbb{K}) = p = \min_{k} \{k \cdot e = 0\}.$$

p либо $\in \mathbb{N}$, либо = 0, если такого k не существует.

Пример: $Z/pZ=F_p$ - поле, т.к. идеал pZ максимальный. Характеристика F_p равна p.

Определение. Конечное поле - поле, состоящее из конечного числа элементов.

Теорема (Свойство). Любое конечное поле имеет ненулевую характеристику.

Теорема (Свойство). Характеристика поля - простое число.

Доказательство.]n = pq

$$n \cdot e = 0 \Rightarrow (p \cdot q) \cdot e = 0 \Rightarrow p(q \cdot e) = 0$$

Ho
$$n$$
 - $\min \Rightarrow q \cdot e \neq 0, q \cdot e = x$. Итого, $p \cdot x = 0 \Rightarrow p \cdot x \cdot x^{-1} = 0 \Rightarrow p \cdot e = 0!!!$

Определение. Поле называется простым, если оно не содержит собственных подполей.

] \mathbb{K} - поле, $char(\mathbb{K}) = p, p$ - простое.

 $\exists k \subset \mathbb{K}$ - простое подполе. k - замкнуто относительно сложения, умножение, взятия обратного.

 $k \cong F_p$

 \mathbb{K} - конечное поле, char(K) = p

 $\exists k \cong F_n \subset \mathbb{K}$

Пусть $[\mathbb{K}:k]=n$. Тогда $|K|=q=p^n$. Рассмотрим полином x^q-x . Покажем, что $x^q-x\equiv 0, \forall x\in \mathbb{K}$.

$$]x = 0: \quad 0^q - 0 = 0$$

$$]x \neq 0: \quad x^{q-1} - 1 \stackrel{?}{=} 0$$

Рассмотрим $\mathbb{K}^* = \mathbb{K} \setminus \{0\}$. \mathbb{K}^* - группа по умножению. $|\mathbb{K}^*| = q-1$. По теореме (если |G| = m, то $g^m = 1$) получаем, что $x^{q-1} = 1$. Таким образом, $\forall \alpha \in \mathbb{K}$, α - корень уравнения $x^{p^n} - x$.

$$x^{p^n} - x = \prod_{\alpha \in \mathbb{K}} (x - \alpha)$$

У многочлена p^n корней. В поле \mathbb{K} p^n элементов. Можно построить поле \mathbb{K} , найдя все корни этого уравнения. (Важно знать, что существует алгебраическое замыкание, в котором данный многочлен имеет корни!)

Еще один способ построения конечного поля - рассмотреть фактор-колько по максимальному идеалу:

 $F_p[x]/(f)$ - является конечным полем из $q=p^n,\ n=deg(f)$ элементов, если f - неприводимый полином над F_p .

21 Алгебраическое замыкание поля. Поле разложения многочлена. Существование поля разложения. Поле Галуа как поле разложения полинома $x^q - x$.

Теорема. Пусть k - поле u f - многочлен из k[x] степени $\geqslant 1$. Тогда существует расширение $k \subset \mathbb{K}$, в котором f имеет корень.

Доказательство. Пусть $f = gf_1$, где g - неприводимый сомножитель над k. Тогда $(f) \subset (g)$ и (g) - максимальный идеал. Рассмотрим гомоморфизмы (вложения):

$$k \to k[x] \to k[x]/(g)$$

Обозначим $\mathbb{K} = k[x]/(g) \supset k$.

Возьмем моном $x \in k[x]$ и рассмотрим элемент $\overline{x} \in K$. Покажем, что g переводит класс \overline{x} в $\overline{0}$, т.е. является корнем g.

$$\overline{x} = x + \phi \cdot g$$
, где $\phi \in k[x]$

Пусть
$$g(x) = \sum_{i=0}^{n} a_i x^i$$
. Тогда

$$g(\overline{x}) = \sum_{i=0}^n a_i (\phi g + x)^i = [\text{раскрыв скобки по биному}] = (...)g + \sum_{i=0}^n a_i x^i$$

Таким образом,
$$g(\overline{x}) \equiv 0 \mod g(x)$$
, т.е. $g(\overline{x}) = \overline{0}$

Пусть k - поле, f - многочлен из k[x] степени $\geqslant 1$. Под *полем разложения* \mathbb{K} многочлена f мы будем понимать расширение $k \subset \mathbb{K}$, в котором f разлагается на линейные множители, т.е.

$$f(x) = c(x - a_1)(x - a_2) \cdots (x - a_n)$$

где $a_i \in \mathbb{K}, i = \overline{1, n}$

Теорема. k - поле. f - произвольный полином из k[x]. Существует \mathbb{K}_f : $k \subset \mathbb{K}_f$ и \mathbb{K}_f - поле разложения многочлена f.

Доказательство. Разложим f на непривод. сомножители над полем k:

$$f(x) = g_1(x)g_2(x)\cdots g_k(x)$$

Построим поле \mathbb{K}_1 : $k \subset \mathbb{K}_1 = k[x]/(g_1)$. В поле \mathbb{K}_1 $f = (x - \alpha_1) \cdot f_1$, где α_1 - корень g_1 . Аналогично строим \mathbb{K}_2 , \mathbb{K}_3 , . . . , \mathbb{K}_n .

$$f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$$
 b \mathbb{K}_n

Поле, порожденное всеми корнями $f: \mathbb{K}_f = k(\alpha_1, \alpha_2, \dots, \alpha_n) \subset \mathbb{K}_n$

Определение. $k \subset \mathbb{K}$ - алгебраическое расширение.

 \mathbb{K} - алгебраически замкнуто, если $\forall f \in K[x]$ имеет корень в \mathbb{K} .

Теорема. k - none.

 $\exists \mathbb{K} : k \in \mathbb{K}, \mathbb{K}$ - алгебраично над k и алгебраически замкнуто. \mathbb{K} единственно с точностью до изоморфизма (без док-ва).

Доказательство. Сначала построим расширение поля k, в котором каждый многочлен степени $\geqslant 1$ имеет корень.

Будем рассматривать неприводимые многочлены f над полем k от своей собственной переменной x_f .

Введем большое кольцо многочленов от многих переменных $k[x_1,x_2,x_3,\dots]$. (Для удобства будем вместо x_{f_i} писать x_i)

Рассмотрим идеал $\mathfrak{a} = (f(x_f)$ по всем неприводимым f). Этот идеал содержится в каком-то большем идеале $\mathfrak{M} : \mathfrak{a} \subset \mathfrak{M}$. Покажем, что $\mathfrak{M} \neq k[x_1, x_2, x_3, \dots]$, то есть, что $1 \notin \mathfrak{M}$.

Допустим, что \mathfrak{M} содержит 1. Тогда:

$$\sum_{i=1}^{N} g_i(x_1, x_2, x_3, \dots, x_M) \cdot f_i(x_i) = 1 \quad (*)$$

Пусть \mathbb{F} - конечное расширение, в котором все f_i имеют корень:

$$f_1$$
 имеет корень α_1 f_2 имеет корень α_2 \vdots f_N имеет корень α_N

Подставив α_i в ур-ние (*) получаем:

$$\sum_{i=1}^{N} g_i(\dots) \cdot f_i(\alpha_i) = 0 = 1!!!$$

Пусть \mathfrak{M} оказался максимальным идеалом, содержащий идеал, порожденный всеми многочленами $f(x_f)$ в $k[x_1, x_2, x_3, \dots]$. Тогда $k[x_1, x_2, x_3, \dots]/\mathfrak{M}$

- поле. Обозначим его через \mathbb{K}_1 . Имеем каноническое вложение $k \subset \mathbb{K}_1$. Все полиномы из k[x] имеют корни в \mathbb{K}_1 . По индукции строим последовательность $k \subset \mathbb{K}_1 \subset \mathbb{K}_2 \ldots$ Пусть $\mathbb{K} = (\bigcup_i \mathbb{K}_i) \bigcup_i k$ - объединение полей. Очевидно, \mathbb{K} - поле. И если f - полином над \mathbb{K}_n , то его корни лежат в \mathbb{K}_{n+1} .

Про поле Галуа см. пред. вопрос.

22 Определение и свойства автоморфизма Фробениуса

Пусть \mathbb{K} - поле, $\operatorname{char}(\mathbb{K}) = p, F_p \subset \mathbb{K}$.

Определение. $\phi_p: \mathbb{K} \to \mathbb{K}, \ \phi_p(x) = x^p$ назовем автоморфизмом Фробениуса.

 \mathbb{K} - векторное пространство над F_p .

Теорема. ϕ_p - линейный оператор в \mathbb{K} над F_p .

Доказательство.

$$\phi_p(xy) = x^p y^p = \phi_p(x)\phi_p(y)$$

$$\phi_p(x+y) = (x+y)^p = \sum_{i=0}^p C_p^i x^i y^{p-i}$$

$$\forall i \in [1, \dots, p-1] \quad C_p^i \vdots p$$

$$(x+y)^p = x^p + y^p = \phi_p(x) + \phi_p(y)$$

$$\phi_p(ax + by) = a^p x^p + b^p y^p$$

$$a, b \in F_p \Rightarrow a^p = a, b^p = b$$

$$\phi_p(ax + by) = ax^p + by^p$$

Также можно рассматривать $\phi: \mathbb{K}[x] \to \mathbb{K}[x]$, в таком случае автоморфизм Фробениуса будет линейным оператором в $\mathbb{K}[x]/(f)$ над F_p , если f - неприводимый многочлен.

Определение. *Алгеброй* называют векторное пространство или модуль с умножением.

Пример:

- $1. \mathbb{R}^3$
- 2. ℝ ℤ-алгебра
- 3. A, B кольца. $A \subset B$. B A-алгебра

П

23 Факториальные кольца. Задача о разложении полиномов на множители в кольце многочленов. Приведение к случаю полинома свободного от квадратов.

Теорема (Факториальность кольца многочленов). $\forall f \in \mathbb{K}[x_1, x_2, \dots, x_n]$ $f = f_1 f_2 \dots f_k$ с точностью до констант и порядка следования сомножителей, то есть, если $f = g_1 g_2 \dots g_m$, то k = m и $\exists \sigma \in S_k$: $f_i = c_i g_{\sigma(i)}$

Пусть
$$F_q$$
 - поле. $\operatorname{char}(F_q) = p$.

Постановка задачи о разложении на множители:

Пусть
$$f \in F_q[x], f = \prod_{i=1}^m f_i^{\alpha_i}, (f_i^{\alpha_i}, f_j^{\alpha_j}) = 1$$
. Требуется найти: m, f_i, α_i

Определение. $f \in F_q[x]$ будем называть *свободным от квадратов*, если $\forall i \ \alpha_i = 1$.

Определение. $D:A\to A$ будем называть $\partial u\phi\phi$ еренциальным оператором, если

- 1. $D(\alpha f + \beta q) = \alpha Df + \beta Dq$
- 2. D(fg) = D(f)g + D(g)f

Рассмотрим $D: F_q[x] \to F_q[x], D(x^n) = nx^{n-1}, D(x^nx_m) = D(x^n)x^m + D(x^m)x^n$, в частности $D(x^2) = 2xD(x)$. Можно показать, что других дифференциальных операторов нет.

Далее покажем как свести задачу разложения полинома на множители к задаче разложения на множители соответствующего свободного от квадратов полинома.

Пусть

$$f(x) = \phi(x)^2 g(x)$$

тогда

$$f'(x) = 2\phi(x)\phi(x)'g(x) + \phi(x)^2g(x)'$$

Заметим, что $f : \phi$ и $f' : \phi$ и значит $(f, f') : \phi$.

Лемма. $f \in \mathbb{K}[x], char(\mathbb{K}) = p, f' = 0, mor \partial a \exists g(x) : f(x) = g(x)^p$.

Доказательство.

$$f = \sum_{i=0}^{n} c_i x^i$$
$$f' = \sum_{i=0}^{n} i c_i x^{i-1} = 0$$

Тогда $\forall i \ ic_i = 0, c_i \neq 0$, то есть $\forall i \ i \ : p$. Перепишем f с учетом последних наблюдений.

$$\sum_{j=0}^{s} c_{pj} x^{pj}$$

Таким образом, если f'=0, то x входит в f со степенями кратными p. Другими словами $f'(x)=0 \Rightarrow f(x)=g(x^p)$. Рассмотрим $\phi_p(g(x))=(\sum a_i x^i)^p=\sum a_i x^{ip}=g(\phi_p(x))=g(x^p)$, так как ϕ_p - линейный оператор.

Теперь можно сформулировать алгоритм приведения f к полиному свободному от квадратов. Предыдущая лемма позволяет считать, что $f' \neq 0$, так как если f' = 0, то f можно заменить на $g(x)^p$ и искать разложение g(x).

 $\mathbf{Bxoд}: f(x) \in F_q[x] \ \mathbf{Bыxoд}: \tilde{f}$ - свободный от квадратов

Освобождение от квадратов

```
S \leftarrow \emptyset \triangleright S - хранилище собственных множителей f(x)
 2
     while true
             \mathbf{do}\ h(x) \leftarrow (f(x), f'(x)) \rhd алгоритм Евклида
 3
 4
                 if h(x) = 1
                        do return \triangleright f(x) - свободен от квадратов
 5
 6
 7
                 if h(x) \neq 1
                 \triangleright Запоминаем h(x)
 8
 9
                        do S \leftarrow h(x)
                             f(x) \leftarrow f(x)/h(x)
10
```

Ясно, что в дальнейшем для получения разложения f на множители необходимо будет разложить на множители соответствующий ему свободный от квадратов полином, а также полиномы h(x) сохраненные в S.

24 Теорема Берлекэмпа

Вообще, идея Берлекэмпа состоит в применении КТО. Если $(c_1, c_2, ..., c_m)$ является произвольным набором чисел из F_p , то из КТО вытекает, что $\exists ! \ g(x) \in k[x]$ такой, что

$$g(x) \equiv c_1 \mod f_1$$

 $g(x) \equiv c_2 \mod f_2$
 $g(x) \equiv c_3 \mod f_3$
...
 $g(x) \equiv c_m \mod f_m$

Полином g(x) предоставляет способ получения множителей f(x), так как при $m\geqslant 2$ и $c_1\neq c_2$ мы получим $\mathrm{HOД}(f(x),g(x)-c_1)$, делящийся на $f_1(x)$, но не на $f_2(x)$.

Лемма.
$$F_p \subset k, char(k) = p$$
 $\forall x \in k \quad x \in F_p \Leftrightarrow x^p = x$

Доказательство. [⇒] Непосредственно следует из малой теоремы Ферма.

 $[\Leftarrow]$ $x^p=x$ - имеет p корней. Возьмем $\alpha_1\in F_p$ - очевидно, корень. Так мы можем предъявить все p корней из F_p , и других быть не может. \square

Теорема (Берлекэмпа). $f = f_1 \cdots f_m, f_i \in k[x], char(k) = p, k$ - конечное поле. Тогда:

$$g^{p} - g \vdots f \Leftrightarrow \exists c_{1}, c_{2}, ..., c_{m} \in F_{p} : g^{p} \equiv g \mod f$$

 \mathcal{A} оказательство. $[\Leftarrow]$

$$g-c_1$$
: $f_1 \Leftrightarrow g-c_1 \equiv 0 \mod f_1 \Leftrightarrow g \equiv c_1 \mod f_1$ $g^p \equiv c_1^p \equiv [$ малая т. Ферма $] \equiv c_1 \equiv g \mod f_1$

Таким образом,

$$g^{p} - g : f_{1}$$

$$g^{p} - g : f_{2}$$

$$g^{p} - g : f_{3} \Leftrightarrow g^{p} - g : f$$

$$\vdots$$

$$g^{p} - g : f_{m}$$

 $[\Rightarrow]$ (Альтернативное док-во от Ромы) По КТО существует изоморфизм:

$$\phi: \quad k[x]/(f) \to \prod_{i=1}^m k[x]/(f_i)$$

 ϕ таков, что переводит g в (r_1, r_2, \ldots, r_m) . Итак,

$$\begin{split} g^p &\equiv g \mod f \Leftrightarrow g^p \equiv g \mod f_i \\ g &\equiv r_i \mod f_i \\ g^p &\equiv r_i^p \mod f_i \\ \Rightarrow r_i^p &\equiv r_i \mod f_i \stackrel{\text{по лемме}}{\Rightarrow} r_i \in F_p \end{split}$$

Пусть теперь мы нашли g, такой, что $g^p \equiv g \mod f$. По теореме, $\exists c \in F_p: \ g-c \ \vdots \ f_1.$ Ищем

$$egin{aligned} & \operatorname{HOД}(g-0,f) \\ & \operatorname{HOД}(g-1,f) \\ & \operatorname{HOД}(g-2,f) \\ & & \vdots \\ & \operatorname{HОД}(g-(p-1),f), \end{aligned}$$

и один из делителей будет нетривиальным.

25 Алгоритм Берлекэмпа для разложения полиномов над конечным полем.

Пусть $f \in k[x], char(k) = p$ и $f = f_1 \cdot f_2 \cdot f_3 \cdots f_m$. Т.е. f свободен от квадратов.

Задача стоит в отыскании f_i по заданному f.

Первый шаг - решение уравнения $g^p \equiv g \mod f$.

Заметим, что т.к. $\phi_p(g)=g^p$ - линейный оператор, то задача сводится к нахождению матрицы оператора, а затем к нахождению собственного подпространства оператора.

Итак, для нахожденя матрицы оператора необходимо применить фробениус к базисным векторам, т.е. к мономам $1, x, x^2, \ldots, x^{n-1}$, где n = deg(f).

Например, найдем матрицу фробениуса в F_5 -алгебре $F_5[x]/(f=x^4+x^3+2x^2+x+1)$. Базисные вектора - $1,x,x^2,x^3$.

$$1^{5} = 1 \equiv 1 \mod f$$

$$x^{5} \equiv -x^{3} + x^{2} + 1 \mod f$$

$$x^{10} = (x^{5})^{2} \equiv x^{3} + x - 1 \mod f$$

$$x^{15} = x^{5} \cdot x^{10} \equiv x^{3} \mod f$$

Таким образом, матрица фробениуса есть:

$$F = \begin{pmatrix} 1 & x & x^2 & x^3 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & -1 \\ -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Далее, находим собственное подпространство соответствующее собственному значению 1, решая систему

$$(F - E) \cdot \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{pmatrix} = 0$$

Второй шаг - отщепление множителей. Для этого возьмем вектор (c_0, c_1, \ldots, c_n) из собств. подпространства, составим $g(x) = \sum_{i=0}^n c_i x^i$. Далее,

следуя теореме Берлекэмпа будем перебирать:

$$HOД(g-0, f)$$
 $HOД(g-1, f)$
 $HOД(g-2, f)$
 \vdots
 $HOД(g-(p-1), f),$

Если какой-то из делителей нетривиален, то он «отщепляется». И для него рекурсивно запускается алгоритм (очевидно, процесс заканчивается, если для какого-то множителя нельзя отщепить ни один «подмножитель», т.е. множитель неразложим).

Далее из пространства выбирается следующий вектор, линейно-независимый со всеми предыдущими, и процесс повторяется.

Таким образом мы отщепим все множители, и, в свою очередь, раздожим их на множители, тем самым разложив исходный многочлен на неразложимые множители.