UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

INTRODUCCIÓN A LA GEOMETRÍA AVANZADA

SEMESTRE: Segundo al cuarto

CLAVE: **0272**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

HORAS A LA SEMANA/SEMESTRE

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Álgebra Superior II, Cálculo Diferen-

cial e Integral II, Geometría Analítica II.

SERIACIÓN INDICATIVA SUBSECUENTE: Geometría Diferencial I.

OBJETIVO(S): Lograr que el estudiante de los primeros semestres conozca la gama de posibilidades desarrolladas en Geometría después del surgimiento del Cálculo y el Álgebra Moderna, utilizando modelos, grupos de transformaciones y el concepto de espacio cociente.

NUM. HORAS	UNIDADES TEMÁTICAS
30	1. Geometría Euclidiana
	1.1 Simetrías con respecto a un punto, una recta y un plano.
	1.2 Transformaciones rígidas y sus invariantes.
	1.3 Cilindros y toros.
	1.4 Subgrupos finitos de $E(2)$ y $E(3)$.
	1.5 Frisos y mosaicos.
5	2. Geometría Afín
	2.1 Puntos de fuga y recta del horizonte vs. puntos al infinito y recta
	al infinito.
	2.2 Transformaciones afines y sus invariantes.
30	3. Geometría Proyectiva
	3.1 El plano proyectivo real.
	3.2 El principio de realidad.
	3.3 La forma de $P^2(\mathbb{R})$.
	3.4 Cartas coordenadas de $P^2(\mathbb{R})$ y de $P^1(\mathbb{C})$.
	3.5 El grupo de transformaciones proyectivas; Teorema de Desargues.
	3.6 Propiedades proyectivas de las cónicas; Teorema de Pascal.
	3.7 Polos y polares.
	3.8 Geometría elíptica.

15	4. Geometría Hiperbólica
	4.1 Los modelos del plano hiperbólico.
	4.2 Transformaciones del plano hiperbólico.
	4.3 La red de Steiner.
	4.4 La métrica hiperbólica.
	4.5 Primeros resultados en Geometría Hiperbólica.
	4.6 Superficies con estructura hiperbólica.
	4.7 Mosaicos.

BIBLIOGRAFÍA BÁSICA:

- 1. Birkhoff, G. D., McLane, S., A Survey of Modern Algebra, Wellesley, Massachusetts: A. K. Peters, 1997.
- 2. Courant, R., Differential and Integral Calculus, New York: Interscience, 1957.
- 3. Coxeter, H. S. M., Fundamentos de Geometría, México: Limusa-Wiley, 1971.
- 4. Coxeter, H. S. M., *Projective Geometry*, New York: Springer-Verlag, 1994.
- 5. Coxeter, H. S. M., Regular Complex Polytopes, Cambridge: Cambridge University Press, 1991.
- 6. Coxeter, H. S. M., *Non-euclidean Geometry*, Washington, D. C.: The Mathematical Association of America, 1998.
- 7. Coxeter, H. S. M., *Geometry Revisited*, Washington, D. C.: The Mathematical Association of America, 1983.
- 8. Euclides, Euclid's Elements, New York: Dover, 1979.
- 9. Eves, H., Estudio de las Geometrías, México: UTEHA, 1982.
- 10. Fulton, W., Curvas Algebraicas, México: Reverté, 1971.
- 11. Graustein, W., Introduction to Higher Geometry, New York: Macmillan, 1952.
- 12. Grünbaum, S., Tillings and Patterns, San Francisco: W. H. Freeman and Co., 1987.
- 13. Hilbert, D., Foundations of Geometry, La Salle, Ill.: Open Court Publishing Co., 1971.
- 14. Hilbert, D., Cohn Vossen, S., *Geometry and the Imagination*, México: Vínculos Matemáticos No. 150, Facultad de Ciencias, UNAM, 2000.

- 15. Illanes, A., *La Caprichosa Forma de Globión*, México: La ciencia para todos, *168*, Fondo de Cultura Económica, 1999.
- 16. Klein, F., Le Programme d'Erlangen, Paris: Gauthier-Villard, 1974.
- 17. Kline, M., Mathematical Thought from Ancient to Modern Times, Oxford: Oxford University Press, 1991.
- 18. Lefschetz, S., Differential Equations: Geometric Theory, Pure and Applied Mathematics VI, New York: Interscience, 1957.
- 19. Markushevich, A., Teoría de las Funciones Analíticas, Moscú: MIR, 1987.
- 20. Martin, G., Transformation Geometry. An Introduction to Symmetry, New York: Springer-Verlag, 1997.
- 21. Matsushima, Y., Differential Manifolds, New York: Marcel Dekker, 1972.
- 22. Montesinos, J. M., Classical Tessellations and three-Manifolds, New York: Springer-Verlag, 1985.
- 23. Ramírez-Galarza, A., Geometría Analítica: Una Introducción a la Geometría, México: Las Prensas de Ciencias, UNAM, 1998.
- 24. Ramírez-Galarza, A., Seade, J., *Introducción a la Geometría Avanzada*, México: Las Prensas de Ciencias, UNAM, 2005.
- 25. Ramírez-Galarza, A., Sienra, G., *Invitación a las Geometrías No-euclideanas*, México: Las Prensas de Ciencias, UNAM, 2000.
- 26. Rees, E., Notes on Geometry, Berlín: Springer-Verlag, 1983.
- 27. Rincón, H., Algebra Lineal, México: Las Prensas de Ciencias, UNAM, 2001.
- 28. Samuel, P., Projective Geometry, New York: Springer-Verlag, 1988.
- 29. Springer, G., *Introduction to Riemann Surfaces*, Reading, Mass.: Addison-Wesley Publishing, 1957.
- 30. Thurston, W., *Three Dimensional Geometry and Topology*. Vol. 1, Princeton: Princeton Mathematical Series 35, 1997.
- 31. Verjovsky, A., *Introducción a la Geometría y las Variedades Hiperbólicas*, México: Departamento de Matemáticas, CINVESTAV, IPN, 1982.
- 32. Wolfe, H. E., *Introduction to Non-euclidean Geometry*, New York: Holt, Reinhert and Winston, 1945.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Ahlfors, L.V., Complex Analysis, New York: McGraw Hill, 1985.
- 2. Bonola, R., Non-Euclidean Geometry, New York: Dover, 1955.
- 3. Costa, A., Gómez, B., *Arabesques and Geometry*, New York: Springer Video-MATH, 1991.
- 4. Do Carmo, M. P. Differential Geometry of Curves and Surfaces in ℝ³, New jersey: Prentice Hall, 1976. (Trad. Óscar Palmas, México: Vínculos Matemáticos 183, 185, 193, 194, 197, Facultad de Ciencias, UNAM, 1991.)
- 5. Dodson, C. T. J., Parker, P. E. A User's Guide to Algebraic Topology, Boston: Kluwer Academic Publisher, 1997.
- 6. Durero, A., "Instituciones de Geometría", Fuentes 3, IIB, UNAM, 1987.
- 7. Ernst, B., El Espejo Mágico de M. C. Escher, Koln: Taschen, 1992.
- 8. Escher, M. C., The Graphic Work of M. C. Escher, Koln: Taschen, 1992.
- 9. Forster, O., Lectures on Riemann Surfaces, New York: Springer-Verlag, 1991.
- 10. González, V., Rodríguez, R., Seminario de Geometría Compleja 1, Chile: Universidad de Santa María y Universidad de Santiago, 1983.
- 11. Hirsch, M., Differential Topology, New York: Springer-Verlag, 1967.
- 12. Speiser, A., Die Theorie der Gruppen von Endlicher Ordnung, Germany: Basel Birkhauser, 1956.
- 13. Vasari, G., Vidas de los más Excelentes Pintores, Escultores y Arquitectos, México: Nuestros clásicos 74, UNAM, 1996.
- 14. Yaglom, I., Feliz Klein and Sophus Lie, Evolution of the Idea of Symmetry in the Nineteenth Century, Boston: Birkhäuser, 1988.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.