Jinyang Li -A20317851-HW05

Problem 1 (5 points) Exercise 4.17 from Textbook

х	-3	6	9
f(x)	1/6	1/2	1/3

To find ug(X), $g(X) = (2 X + 1)^2$

E[g(X)] =
$$\sum_{x=-3,6,9}^{\parallel} (2x+1)^2 f(x)$$

=
$$[1/6*(2(-3)+1)^2] + [1/2(2*6+1)^2] + [1/3(2*9+1)^2]$$

= 209

Problem 2 (10 points: 5 pts/question) Exercise 4.29

$$f(x) = \{ 3 x ^{(-4)}, x > 1$$
0 ,elsewhere

a)

b)
$$E(x) = 3 \int_{1}^{\infty} x x^{-4} dx$$

$$= 3/2$$

Problem 3 (5 points) Exercise 4.41 from Textbook

To find ug(X), g(X) =
$$(2 \times + 1)^2$$

u[g(X)] =
$$\sum_{x=-3,6,9} (2x+1)^2 f(x)$$
= $[1/6*(2(-3)+1)^2] + [1/2(2*6+1)^2] + [1/3(2*9+1)^2]$
= 209
E[g(X)]^2 = $\sum (2x+1)^4 f(x)$
= 57825
 $\sigma_g^2(x) = E[g(X)]^2 - \{E[g(X)]\}^2$
= $57825 - (209)^2$

Problem 4 (5 Points) Exercise 4.50 from Textbook

The mean of X

$$E(x) = \int_{0}^{1} x f(x) dx$$
$$= 1/3$$

= 14144

the value of E (X^2)

$$E(X^2) = \int_0^1 x^2 f(x) dx$$

= 1/6

Variance of the working of equipment

$$\sigma^2 = Var(X) = E(X^2) - [E(X)]^2$$

Problem 5 (5 points) Exercise 4.56 from Textbook

$$E(X) = \int_{-\infty}^{\infty} xf(x)dx = \int_{0}^{1} xxdx + \int_{1}^{2} x(2-x)dx = 1$$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{0}^{1} x^{2} x dx + \int_{1}^{2} x^{2} (2-x) dx = \frac{14}{12}$$

The mean of the random variable $y = 60 x^2 + 39x$

$$E(Y) = E(60X^{2} + 39X) = 60E(X^{2}) + 39E(X) = (60 \cdot \frac{14}{12}) + 39 = 109$$