

Wydział	lmię i nazwisko		Rok	Grupa	Zespół
WI	1. Jakub Stachecki 2. Krystian Bulanda		П	7	2
PRACOWNIA	Temat:				Nr ćwiczenia
FIZYCZNA WFiIS AGH	Oı	0			
Data	Data oddania	Zwrot do	Data oddania	Data zaliczenia	OCENA
wykonania		popr.			
04.10.24					

1. Cel ćwiczenia

Zaznajomienie się z typowymi metodami opracowania danych pomiarowych przy wykorzystaniu wyników pomiarów dla wahadła matematycznego (prostego).

2. Wstęp teoretyczny

Wahadło matematyczne (proste) to wyidealizowane ciało o masie punktowej, zawieszone na cienkiej, nieważkiej, nierozciągliwej nici. Ciało wytrącone z równowagi zaczyna wykonywać ruch okresowy w płaszczyźnie poziomej pod wpływem siły ciężkości. Okres wahadła opisuje wzór:

$$T = 2\pi \sqrt{\frac{l}{g}},\tag{1}$$

gdzie T to okres wahadła, l to jego długość a g to przyspieszenie ziemskie. Należy zaznaczyć, że wzór ten jest poprawny dla niewielkich kątów (mniej niż 15°) wychylenia wahadła. Przekształcając wzór (1), można wyznaczyć wzór na przyspieszenie ziemskie:

$$g = \frac{4\pi^2 l}{T^2}.$$
(2)

Wzór (1) można przekształcić również na zależność liniową:

$$T^2 = \frac{4\pi^2 l}{g}.$$
(3)

3. Aparatura

- Zestaw wahadła prostego w postaci śrubki na sznurku zawieszonej na lampie (Rysunek 1)
- 2) Sekundomierz (stoper w telefonie, $u_B(T) = 0.01s$)
- 3) Przymiar milimetrowy (linijka, $u_R(l) = 1mm$)

Rysunek 1.Schemat wahadła prostego

4. Przebieg ćwiczenia

4.1 Sposób Pierwszy – pomiar przy ustalonej długości wahadła

W pierwszej części ćwiczenia zaczęliśmy od zmierzenia długości wahadła, którego długość w tej części pozostała niezmienna.

Zmierzona długość wahadła l=19cm . Niepewność $u_B(l)=1mm$.

Następnie dokonano pomiarów czasu dziesięciu okresów drgań wahadła. Jedna z osób wprawiała wahadło w ruch, gdy druga odliczała ilość okresów. Doświadczenie składało się łącznie z dziesięciu pomiarów.

Lp.(i)	Czas 10 okresów (10 T_i [s])	Czas 1 okresu(T_i [s])
1	8,51	0,851
2	8,15	0,815
3	8,13	0,813
4	8,31	0,831
5	7,93	0,793
6	7,98	0,798
7	8,11	0,811
8	8,21	0,821
9	8,35	0,835
10	8,30	0,830

Tabela 1. Pomiary okresu drgań przy ustalonej długości wahadła

Z podanych w tabeli wyżej wartości wyliczamy średnią długość okresu ($T_{\pm r}$)

$$T_{\dot{s}r} \approx 0.8198. \tag{4}$$

4.2 Sposób Drugi – pomiar przy zmiennej długości wahadła

Podobnie jak w pierwszym sposobie rozpoczęliśmy doświadczenie od zmierzenia długości wahadła, którego długość zmienialiśmy co trzy pomiary. Łącznie wykonaliśmy dziewięć pomiarów po trzy na każdą długość. Do wyników dodajemy również dane z pierwszego sposobu jako średnią.

Lp.(i)	Długość wahadła (<i>l</i> [cm])	Czas 10 okresów (10 T_i [s])	Czas 1 okresu(T_i [s])	Średni okres dla danej długości wahadła ($T_{l\acute{s}r}$) ([s])	
1	35,3	11,38	1,138	1,130	
1		11,29	1,129		
1		11,24	1,124		
2	43,4	12,55	1,255	1,253	
2		12,61	1,261		
2		12,44	1,244		
3		13,77	1,377	1,369	
3	51,1	13,68	1,368		
3		13,63	1,363		
4	19	8,198	0,8198	0,8198	

Tabela 2. Pomiary okresu drgań przy zmiennej długości wahadła

5. Opracowanie danych pomiarowych

5.1 Sposób pierwszy

5.1.1 Błędy Grube

W wynikach pomiaru okresu nie odnotowano żadnych błędów grubych, różnica między największa i najmniejszą wartością T_i w uzyskanym zestawie danych wyniosła ΔT_i = 0.058s.

5.1.2 Niepewność pomiaru okresu (typu A)

Korzystając z wartości (4), liczymy niepewność standardową z wzoru:

$$u_A(T_{\pm r}) = \sqrt{\frac{\Sigma (T_i - T_{\pm r})^2}{N(N-1)}} = 0.056s.$$
 (5)

Następnie liczymy niepewność względną średniego okresu:

$$\frac{u_A(T_{\pm r})}{T_{\pm r}} = 0,0069. \tag{6}$$

5.1.3 Niepewność pomiaru długości wahadła (typu B)

Najmniejsza działka użytego przyrządu to

$$\Delta l = 1mm. (7)$$

Ze względu na niepewność dotyczącą środka ciężkości ciężarka oraz miejsca zawieszenia nici ustaliliśmy niepewność maksymalną

$$u(l) = 2mm. (8)$$

Nie mamy żadnych dodatkowych informacji o przyrządzie, więc przyjmujemy niepewność standardową

$$u_R(l) = 2mm. (9)$$

Obliczamy więc niepewność względną

$$\frac{u_B(l)}{l} \approx 0.011. \tag{10}$$

5.1.4 Wartość przyspieszenia ziemskiego

Korzystając ze wzoru (2), liczymy przyspieszenie ziemskie

$$g = 11,161 \frac{m}{s^2}. (11)$$

5.1.5 Niepewność przyspieszenia ziemskiego

Niepewność liczymy z prawa przenoszenia niepewności względnej

$$\frac{u(g)}{g} = \sqrt{\left(\frac{u_B(l)}{l}\right)^2 + \left(2 \cdot \frac{u_A(T_{\pm r})}{T_{\pm r}}\right)^2} \approx 0.018,$$
 (12)

czyli

$$u(g) = g \cdot \sqrt{\left(\frac{u_B(l)}{l}\right)^2 + \left(2 \cdot \frac{u_A(T_{\pm r})}{T_{\pm r}}\right)^2} \approx 0.201 \frac{m}{s^2}$$
 (13)

5.1.6 Niepewność rozszerzona

Przyjmując współczynnik rozszerzenia k=3 , niepewność rozszerzona wynosi

$$U(g) = k \cdot u(g) = 0.603 \frac{m}{s^2}.$$
 (14)

5.2 Sposób drugi

5.2.1 Błędy Grube

W wynikach pomiaru okresu nie odnotowano żadnych błędów grubych, różnice między największymi i najmniejszymi wartościami T_i w uzyskanym zestawie danych wyniosły kolejno $\Delta T_1=0.014s$, $\Delta T_2=0.017s$, $\Delta T_3=0.014s$.

5.2.2 Wykres zależności okresu od długości wahadła T(l)

Rysunek 2. Wykres zależności okresu od długości wahadła T(l).

5.2.3 Wykres zlinearyzowany T^2 w funkcji l.

Do utworzenia wykresu posługujemy się wzorem (3), z którego wyznaczymy równanie prostej regresji y=Ax, gdzie $y=T^2$, $A=\frac{4\pi^2}{g}$, x=l. Za pomocą funkcji REGLINP w programie Microsoft Excel oraz danych z Tabeli 2 wyliczamy A oraz jego niepewność u(A).

$$A = 3,783 \frac{s^2}{m}, u(A) = 0,387 \frac{s^2}{m}.$$

Rysunek 3. Wykres T^2 w zależności od l.

5.2.4 Wartość przyspieszenia ziemskiego

Ponieważ $A = \frac{4\pi^2}{g}$, liczymy przyspieszenie ziemskie:

$$g = \frac{4\pi^2}{A} = 10,436 \frac{m}{s^2}.$$
 (15)

5.2.5 Niepewność przyspieszenia ziemskiego

Z prawa przenoszenia niepewności liczymy niepewność pomiarową

$$u(g) = \sqrt{\left(\frac{4\pi^2}{-A^2}\right)^2 \left(u(A)\right)^2} = \frac{4\pi^2 u(A)}{A^2} \approx 1,068 \frac{m}{s^2}.$$
 (16)

5.2.6 Niepewność rozszerzona

Przyjmując współczynnik rozszerzenia k=3, niepewność rozszerzona wynosi

$$U(g) = 3,204 \frac{m}{s^2} \tag{17}$$

6 Wnioski

Wynikami eksperymentu są kolejno: dla sposobu pierwszego przyspieszenie grawitacyjne wynosi $g=11,161\frac{m}{s^2}$, przy niepewności rozszerzonej $U(g)=\frac{0,603}{s^2}$, natomiast dla sposobu drugiego przyspieszenie grawitacyjne wynosi $g=10,436\frac{m}{s^2}$ przy niepewności $U(g)=3,204\frac{m}{s^2}$. Wartość uzyskana z pierwszego sposobu nie jest zgodna z tabelaryczną wartością przyspieszenia ziemskiego $g=9,811\frac{m}{s^2}$. Wartość przyspieszenia z drugiego pomiaru jest bliższa tabelarycznej, jednak uzyskana niepewność pomiarowa jest proporcjonalnie zbyt duża co do przyspieszenia. Powyższe błędy wynikają prawdopodobnie ze złego zmierzenia długości wahadła [1] (nie stwierdziliśmy dokładnie w którym miejscu sznurek jest przymocowany do lampy) oraz pośpiechu podczas przeprowadzania doświadczenia.

[1] W pierwszym sposobie dla długości wahadła o ok. 2 cm mniejszej, wyniki są zgodne z przewidywanymi.