Durée : 1 heure. Aucun document autorisé. Ce contrôle sera noté sur 10 points.

- 1. (2 pts) Questions de cours :
 - a) Démontrer que la série $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ converge si $\alpha > 1$.
 - b) Énoncer le théorème sur la dérivabilité de la convergence uniforme d'une suite de fonctions.
- 2. (4 pts) Déterminer la nature des séries numérique suivantes :
 - a) $\sum_{n>1} (\sqrt[n]{n} 1)$,

c)
$$\sum_{n\geq 1} (-1)^{n-1} \frac{\lambda^n}{n}$$
, pour $\lambda \in \mathbb{R}$,
d) $\sum_{n\geq 1} \frac{(3n)!}{30^n (n!)^3}$.

b) $\sum_{n>1} (\sqrt[n]{n} - 1)^n$,

d)
$$\sum_{n>1} \frac{(3n)!}{30^n (n!)^3}$$

3. (2 pts, Noyau de Fejér) Considérons la suite de fonctions $(K_n)_{n\in\mathbb{N}}$ où on définit

$$K_n(x) = \frac{1}{n} \frac{\sin^2(nx/2)}{\sin^2(x/2)}, \quad \forall x \in]0, \pi].$$

Déterminer la limite simple de $(K_n)_{n\in\mathbb{N}}$ sur $[0,\pi]$. Déterminer si la convergence est uniforme sur

- a) $I =]0, \pi[$;
- b) $I = [\delta, \pi]$, où $0 < \delta < \pi$.

(Indication : majorer $\sin^2(nx/2)$ et $\frac{1}{\sin^2(x/2)}$ séparément.)

- **4.** (5 pts) Soit $(f_n:[0,1]\to\mathbb{C})_{n\in\mathbb{N}}$ une suite de fonctions continues. On suppose que
 - i) la suite $(f_n)_n$ converge simplement vers une fonction intégrable $f:[0,1]\to\mathbb{C}$;
 - ii) la convergence est uniforme sur tout compact inclus dans [0, 1];
 - iii) (borne uniforme) il existe $M \in \mathbb{R}_+$ tel que pour tout n, on a $||f_n||_{\infty} \leq M$.

Sous ces conditions,

- a) Chacune des assertions suivantes est-elle vraie ou fausse? Démontrer si elle est vraie; en fournir un contre-exemple avec justification si elle est fausse.
 - a.1) la limite f est continue sur [0,1].
 - a.2) la suite $(f_n)_n$ converge uniformément sur]0,1].
 - a.3) Si f est continue sur [0,1], alors la convergence est uniforme sur [0,1].
- b) Soit $\delta \in]0,1[$. Montrer que

$$\lim_{n} \int_{\delta}^{1} f_n(t)dt = \int_{\delta}^{1} f(t)dt$$

et que

$$\left| \int_0^\delta f_n(t) dt - \int_0^\delta f(t) dt \right| \le 2\delta M.$$

c) En déduire que

$$\lim_{n} \int_{0}^{1} f_{n}(t)dt = \int_{0}^{1} f(t)dt.$$

5. (2 pts, Bonus) Soit $\sum_n a_n$ une série divergente avec $a_n > 0$. Notons $S_n = \sum_{k \le n} a_k$. Montrer que $\sum_{n} \frac{a_n}{S_n}$ diverge. (Indication : le critère de Cauchy.)