Work Summary

Thoughts on the flaws expressed in the previous report.

Main Work

1. The potential flaws

1 The potential flaws

Following from the previous report, I want to show that \hat{U}_{ge} and \hat{U}_{eg} are also minized when \hat{U}_{gg} is optimized to be unitary. Let the full unitary be

$$\hat{U} = \begin{bmatrix} \hat{U}_{gg} & \hat{U}_{eg} \\ \hat{U}_{ge} & \hat{U}_{ee} \end{bmatrix}.$$

Since all time slices are driven by unitary operators, the evolution \hat{U} should also be unitary. Therefore $\hat{U}^{\dagger}\hat{U}=\hat{I}$. Expanding the expression gives

$$\hat{U}_{gg}^{\dagger} \hat{U}_{gg} + \hat{U}_{eg}^{\dagger} \hat{U}_{eg} = \hat{U}_{ee}^{\dagger} \hat{U}_{ee} + \hat{U}_{ge}^{\dagger} \hat{U}_{ge} = \hat{I}$$

and

$$\hat{U}_{gg}^{\dagger}\hat{U}_{ge} + \hat{U}_{eg}^{\dagger}\hat{U}_{ee} = \left(\hat{U}_{gg}^{\dagger}\hat{U}_{ge} + \hat{U}_{eg}^{\dagger}\hat{U}_{ee}\right)^{\dagger} = \hat{0}.$$

When optimized according to the definition of f_1 in the previous report, ideally

$$\hat{U}_{gg}^{\dagger}\hat{U}_{gg}=\hat{I}-\hat{\delta}$$
, where $\hat{\delta}\ll\hat{I}$.

Then, $\hat{U}_{eg}^{\dagger}\hat{U}_{eg}=\hat{\delta}$ and therefore the entries of \hat{U}_{eg} are much smaller than that of \hat{U}_{gg} . Looking at the second equation obtained above then implies that the entries of \hat{U}_{ge} are much smaller than \hat{U}_{ee} in order to satisfy $\hat{U}_{gg}^{\dagger}\hat{U}_{ge}=-\hat{U}_{eg}^{\dagger}\hat{U}_{ee}$. If this is true, then the fidelity f_1 or f_2 works without the need of constraining $\hat{U}_{ge}=\hat{0}$ or $\hat{U}_{ee}\hat{U}_{ee}=\hat{I}$.