Problem 4

(a)

The probability of a bit being decoded erroneously is p. Since the occurs independently from bit to bit, we can say that the probability for j bits to be decoded erroneously when n bits are transmitted is given by:

$$P(j \ bits \ erroneous \mid n \ bits \ transmitted) = \binom{n}{j} \cdot p^j \cdot (1-p)^{(n-j)}$$

(b)

To calculate the probability that the error-correcting code can correct the errors given n-digits are transmitted and j bits are incorrectly decoded, we can find the number of ways codes can be constructed which leads to the error-correcting code not working. Thus,

$$P(Code\ cannot\ be\ corrected) = \frac{\binom{j}{2} \cdot 2! \cdot (n-1)!}{n!}$$

We choose 2 out of the j incorrect bits, which can be arranged themselves in 2! ways, and arrange the rest (n-1) bits in (n-1)! ways. We divide this by the total number of ways the bits can be arranged, which is n!.

Now, the probability that the error-correcting code can correct the errors is given by,

 $P(Code\ can\ be\ corrected) = 1 - P(Code\ cannot\ be\ corrected)$ $= 1 - \frac{\binom{j}{2} \cdot 2! \cdot (n-1)!}{n!}$

(c)

```
decoder_prob <- function( no_of_bits = 8, prob_incorrect = 0.01, runs = 1000){</pre>
  count \leftarrow c(0)
  for(i in 1:runs){
    decoder_sample <- sample( c(0,1), size = no_of_bits, replace = TRUE,</pre>
                                 prob= c(prob_incorrect, (1-prob_incorrect)))
    flag \leftarrow c(0)
    for(i in 1:(no_of_bits-1)){
      if(decoder_sample[i] == 0 && decoder_sample[i+1] == 0){
       flag = 1
    }
    if(flag==1){
      count <- count + 1
  }
  (runs-count)/runs
}
prob_1 <- data.frame()</pre>
for(i in 1:4){
```

```
for(j in 1:4){
    if(j==1){
      prob_1[i,j] <- decoder_prob(i*8, 0.01, 10000)</pre>
    if(j>1){
      prob_1[i,j] <- decoder_prob(i*8, (j-1)*0.05, 10000)
  }
}
row.names(prob_1) <- c("n=8","n=16", "n=24", "n=32")
colnames(prob_1) <- c("p=0.01", "p=0.05", "p=0.10", "p=0.15")
prob_1
        p=0.01 p=0.05 p=0.10 p=0.15
## n=8 0.9988 0.9833 0.9347 0.8689
## n=16 0.9990 0.9628 0.8715 0.7385
## n=24 0.9981 0.9474 0.8077 0.6260
## n=32 0.9982 0.9287 0.7577 0.5350
(d)
improved_decoder_prob <- function(no_of_bits = 8, prob_incorrect = 0.01, runs = 1000){</pre>
  count \leftarrow c(0)
  for(i in 1:runs){
    decoder_sample <- sample( c(0,1), size = no_of_bits, replace = TRUE,</pre>
                                prob= c(prob_incorrect, (1-prob_incorrect)))
    flag \leftarrow c(0)
    for(i in 1:(no_of_bits-2)){
      if(decoder_sample[i] == 0 && decoder_sample[i+1] == 0 && decoder_sample[i+2] == 0) {
       flag = 1
      }
    }
    if(flag==1){
      count <- count + 1
    }
  }
  (runs-count)/runs
}
prob_2 <- data.frame()</pre>
for(i in 1:4){
  for(j in 1:4){
    if(j==1){
      prob_2[i,j] <- improved_decoder_prob(i*8, 0.01, 10000)</pre>
    if(j>1){
      prob_2[i,j] \leftarrow improved_decoder_prob(i*8, (j-1)*0.05, 10000)
    }
  }
}
row.names(prob_2) <- c("n=8","n=16", "n=24", "n=32")
```

```
colnames(prob_2) <- c("p=0.01", "p=0.05", "p=0.10", "p=0.15")
prob_2
```

Problem 5

(a)

The ball has a 50-50 chance of going to the left or to the right. Thus, for the ball to go into cell 0, it has to take 5 left turns at each peg encountered. So,

$$P(Ball\ goes\ into\ cell\ 0) = .5^5 = 0.03125$$

For cell 1, the ball has to take 4 left turns, and 1 right turn. However, the right turn can take place at different pegs. To take into account the different paths that the ball can take, we can use combination.

$$P(Ball\ goes\ into\ cell\ 1) = {5 \choose 1}(0.5)^4(0.5)^1 = 5 \cdot (.5)^4 \cdot (.5)^1 = 0.15625$$

Similarly, we can calculate other probabilities as well:

$$P(Ball\ goes\ into\ cell\ 2) = \binom{5}{2}(0.5)^3(0.5)^2 = 0.3125$$

$$P(Ball\ goes\ into\ cell\ 3) = \binom{5}{3}(0.5)^2(0.5)^3 = 0.3125$$

$$P(Ball\ goes\ into\ cell\ 4) = \binom{5}{4}(0.5)^1(0.5)^4 = 0.15625$$

$$P(Ball\ goes\ into\ cell\ 5) = \binom{5}{5}(0.5)^0(0.5)^5 = 0.03125$$

(b)

We can make a function that simulates the Galton Board or quincunx for a given number of runs and number of rows of pegs.

```
galton_sim <- function(no_row_of_pegs = 5, no_runs = 100){
  cells <- as.data.frame(matrix(0, nrow = (no_row_of_pegs+1), ncol = 1))
  for(i in 0:(no_row_of_pegs)){
    row.names(cells)[i+1] <- paste("Cell",i)
  }

for(i in 1:(no_runs)){
    marble_run <- sample((0:1), size = no_row_of_pegs, replace = TRUE)
    cells[(sum(marble_run)+1), 1] <- cells[(sum(marble_run)+1), 1] + 1</pre>
```

```
}
colnames(cells) <- paste("Number of Balls")
cells
}</pre>
```

We can use this function to simulate a quincunx with 5 rows of pegs, and drop a ball 1000 times, recording the values.

```
sim_1 <- galton_sim(5, 1000)
```

To compare with theoretical values, we can make another row which shows theoretical values and another with expected values for a 1000 runs. We can see that the frequencies calculated through running the experiment quite closely resemble the expected number of balls given by theoretical probabilities.

##			Number	of	Balls	Theoretical	Probabilities	Expected	Number	of Balls
##	Cell	0			25		0.03125			31.25
##	Cell	1			136		0.15625			156.25
##	Cell	2			341		0.31250			312.50
##	Cell	3			313		0.31250			312.50
##	Cell	4			143		0.15625			156.25
##	Cell	5			42		0.03125			31.25

(c)

For each cell, we can generalize the probability given the number of rows of pegs is 100, and there is a 50-50 chance of the ball going left or right. For a given cell k-1, where $k \in N$ is given by:

$$P(Ball\ Goes\ Into\ Cell\ k-1) = \binom{100}{k} (0.5)^k (0.5)^{(100-k)}$$

(d)

We can use the same function again with the number of rows set as 100, and do a 1000 runs on this, recording the values.

```
sim_2 <- galton_sim(100, 1000)
```

To compare easily with theoretical values, we can make another row which shows theoretical values and another with expected values for a 1000 runs. We can see again that the actual frequencies obtained through the experiment closely resemble the theoretical values or the expected number of balls in each cell.

##		Number of Balls	Theoretical Probabilitie	s Expected Number of Balls
	Cell 0	0	0.0000	_
	Cell 1	0	0.0000	
	Cell 2	0	0.0000	
	Cell 3	0	0.0000	
	Cell 4	0	0.0000	
	Cell 5	0	0.0000	
##	Cell 6	0	0.0000	
##	Cell 7	0	0.0000	
##	Cell 8	0	0.0000	0.00
##	Cell 9	0	0.0000	0.00
##	Cell 10	0	0.0000	0.00
##	Cell 11	0	0.0000	0.00
##	Cell 12	0	0.0000	0.00
##	Cell 13	0	0.0000	0.00
##	Cell 14	0	0.0000	0.00
##	Cell 15	0	0.0000	0.00
##	Cell 16	0	0.0000	0.00
##	Cell 17	0	0.0000	0.00
##	Cell 18	0	0.0000	0.00
##	Cell 19	0	0.0000	0.00
##	Cell 20	0	0.0000	0.00
##	Cell 21	0	0.0000	0.00
##	Cell 22	0	0.0000	
##	Cell 23	0	0.0000	
##	Cell 24	0	0.0000	
##	Cell 25	0	0.0000	
##	Cell 26	0	0.0000	
##	Cell 27	0	0.0000	
##	Cell 28	0	0.0000	
##	Cell 29	0	0.0000	
##	Cell 30	0	0.0000	
##	Cell 31	0	0.0000	
##	Cell 32	0	0.0001	
##	Cell 33	1	0.0002	
##	Cell 34	1	0.0004	
##	Cell 35	2	0.0008	
	Cell 36	1	0.0015	
	Cell 37 Cell 38	2 5	0.0027 0.0044	
		11		
	Cell 39 Cell 40	11	0.0071 0.0108	
	Cell 41	17	0.0108	
	Cell 41	18	0.0156	
	Cell 42	28	0.0222	
##	CEII 43	28	0.0300	30.07

##	Cell	44	39	0.03895	38.95
##	Cell	45	38	0.04847	48.47
	Cell		71	0.05796	57.96
	Cell		64	0.06659	66.59
##	Cell	48	77	0.07353	73.53
##	Cell	49	77	0.07803	78.03
##	Cell	50	91	0.07959	79.59
##	Cell	51	70	0.07803	78.03
	Cell		57	0.07353	73.53
	Cell .		63	0.06659	66.59
	Cell :		73	0.05796	57.96
	Cell :		46	0.04847	48.47
	Cell :		37	0.03895	38.95
	Cell :		28	0.03007	30.07
	Cell :		27	0.02229	22.29
	Cell :		12	0.01587	15.87
	Cell		9	0.01084	10.84
	Cell		9	0.00711	7.11
	Cell		4	0.00447	4.47
	Cell		5	0.00270	2.70
	Cell		3	0.00156	1.56
	Cell		0	0.00086	0.86
	Cell		3	0.00046	0.46
	Cell		0	0.00023	0.23
	Cell		0	0.00011	0.11
	Cell		0	0.00005	0.05
	Cell		0	0.00002	0.02
	Cell		0	0.00001	0.01
	Cell		0	0.0000	0.00
	Cell		0	0.0000	0.00
	Cell		0	0.00000	0.00
	Cell		0	0.00000	0.00
	Cell		0	0.00000	0.00
	Cell		0	0.00000	0.00
	Cell		0	0.00000	0.00
	Cell		0	0.00000	0.00
	Cell		0	0.00000	0.00
	Cell		0	0.00000	0.00
	Cell		0	0.00000	0.00
	Cell		0	0.00000	0.00
	Cell		0	0.00000	0.00
	Cell		0	0.00000	0.00
	Cell		0	0.00000	0.00
	Cell		0	0.00000	0.00
	Cell		0	0.00000	0.00
	Cell		0	0.00000	0.00
	Cell :		0	0.00000	0.00
			0	0.00000	0.00
	Cell :		0	0.00000	0.00
	Cell :		0	0.00000	0.00
	Cell :		0	0.00000	0.00
			0	0.00000	0.00
	Cell :		0	0.00000 0.00000	0.00
##	OGIT :	<i>3</i> i	V	0.0000	0.00

## Cell 98	0	0.00000	0.00	
## Cell 99	0	0.00000	0.00	
## Cell 100	0 0	0.00000	0.00	