中国科学技术大学

2024 - 2025 学年第一学期期末考试试卷

课程名称	线性代数(A2)	课程编号	MATH1005
考试时间	2025年01月13日	考试形式	闭卷
学院	姓名	<u>"</u>	2号

题号	_	=	三	四	E i.	六	总分
得分							
复评人							

注意事项:

- 1. 答题前,考生务必将所在院系、姓名、学号等填写清楚。
- 2. 请考生在答卷纸左侧留出装订区域。

一(本题20分)填空题,以下试题任选4题(请在题号上打勾),每题5分.

- 2. 设实二次型 $Q(x, y, z) = x^2 + 2y^2 + 3z^2 + 2\lambda xy 2yz$ 正定, 则 λ 的范围是
- 3. 设实数x, y, z满足 $x^2 + (y+2z)^2 + (z+x)^2 \le 3$,则y的最大值是

4. 方阵
$$A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & -2 \end{pmatrix}$$
的奇异值为______.

5. 设 $V = F^3$, $f(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T A \mathbf{y}$, $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. 则 V 在 f 下的左根基的一组基为______.

6.	设 V 是数域 F 上的线性空间, V *是其对偶空间.	设 $\alpha, \beta \in V, f, g, h \in V^*.$	$\diamondsuit T =$
	$f \otimes g \otimes h \otimes \alpha \otimes \beta$, Tr 是收缩算子. 则 $Tr_1^2(T) =$		

以下五题任选四题,多做不加分. 其中第二题是Math1005.01课堂未参加期中考试的同学必选试题.

得分	评卷人		设 n 维线性空间 V 上的线性变换 A 满足 $A^n=\mathcal{O}$.	求证: <i>V</i> 可	以
分解为	分解为若干.4的循环子空间的直和.				

得分 评卷人

三(本题20分)设 $\mathbb{R}_n[x]$ 是次数不超过n的实系数多项式按内积(f,g)=

 $\int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^2}} dx$ 构成的欧氏空间.

- 1. 从 $\{1, x, x^2, x^3\}$ 构造 $\mathbb{R}_3[x]$ 的一组标准正交基.
- 2. 求 $f(x) = x^4$ 到 $\mathbb{R}_3[x]$ 的正交投影.

得分	评卷人

四、(本题20分)设Euclid空间 $V=\mathbb{R}^{3\times 3}$ 的内积 $(X,Y)=Tr(X^TSY)$,其

中
$$S=egin{pmatrix}2&1&1\\1&2&1\\1&1&2\end{pmatrix}$$
. 设 V 上的线性变换 $\mathcal{A}(X)=XA,$ 这里 $A\in\mathbb{R}^{3 imes3}$.

(1) 求所有A使得A是正交变换;

$$(2)$$
 设 $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 3 & 0 & 0 \end{pmatrix}$, 求 \mathcal{A} 的伴随变换.

得分	评卷人	五、	(本题20分)	设 $A,B\in\mathbb{R}^{n imes n}$ 都是实对称半正定方阵.	证明:	Tr((A +
$B^{3} \geq$	$Tr(A^3) +$	$Tr(B^3)$				

得分	评卷人

六、(本题20分)设n维Euclid空间V上的线性变换 $\mathcal A$ 满足: 若 $(\alpha,\beta)=0,$

 $\lfloor \underline{} \rfloor$ 则 $(\mathcal{A}\alpha, \mathcal{A}\beta) = 0$. 求证:存在V上的正交变换 \mathcal{P} 和实数 λ 使得 $A = \lambda \mathcal{P}$.

参考答案与评分标准

一 (每空 5 分, 选做 4 题)

① diag
$$(1,1,0)$$
 ② $|\lambda| < \sqrt{\frac{5}{3}}$ ③ $\sqrt{15}$ ④ $\sqrt{6},\sqrt{6}$ ⑤ $(-2,1,1)$ ⑥ $f(\beta)g \otimes h \otimes \alpha$

二 对 n 归纳. 当 n=1 时,结论显然成立. 当 $n \ge 2$ 时,dim(Im \mathcal{A}) $\le n-1$,根据

归纳假设,存在 $\alpha_1, \dots, \alpha_k \in \text{Im } \mathcal{A}$,使得 $\text{Im } \mathcal{A} = \bigoplus_{1 \leqslant i \leqslant k} \mathbb{F}[\mathcal{A}]\alpha_i$. (5 分) 设 $\alpha_i = \mathcal{A}\beta_i$. 对于任意 $v \in V$,由 $\mathcal{A}v = \sum_{1 \leqslant i \leqslant k} f_i(\mathcal{A})\alpha_i$ 得 $v - \sum_{1 \leqslant i \leqslant k} f_i(\mathcal{A})\beta_i \in \text{Ker } \mathcal{A}$. 故

$$V = \left(\sum_{1 \le i \le k} \mathbb{F}[\mathcal{A}]\beta_i\right) + \operatorname{Ker} \mathcal{A}. \tag{5 \(\phi\))}$$

从而,存在 $\beta_{k+1}, \cdots, \beta_{k+l} \in \operatorname{Ker} \mathcal{A}$ 线性无关,使得

由
$$\sum_{1 \le i \le k} \mathbb{F}[\mathcal{A}] \alpha_i$$
 是直和,得 $\sum_{1 \le i \le k} \mathbb{F}[\mathcal{A}] \beta_i$ 也是直和,故 $V = \bigoplus_{1 \le i \le k+l} \mathbb{F}[\mathcal{A}] \beta_i$. (5 分)

 Ξ (1) $(f,g) = \int_0^\pi f(\cos\theta)g(\cos\theta)d\theta$. $\{1,\cos\theta,\cdots,\cos(n\theta)\}$ 为 $\mathbb{R}_n[\cos\theta]$ 的正交基.

得
$$\left\{\frac{1}{\sqrt{\pi}}, \sqrt{\frac{2}{\pi}}x, \sqrt{\frac{2}{\pi}}(2x^2 - 1), \sqrt{\frac{2}{\pi}}(4x^3 - 3x)\right\}$$
 为 $\mathbb{R}_3[x]$ 的标准正交基. (10 分)

(2) $\cos^4 \theta = \frac{1}{8}(3 + 4\cos(2\theta) + \cos(4\theta))$ 在 $\mathbb{R}_3[\cos \theta]$ 上的正交投影为 $\frac{1}{8}(3 + 4\cos(2\theta))$.

得
$$x^4$$
 在 $\mathbb{R}_3[x]$ 上的正交投影为 $\frac{1}{8}(3+4(2x^2-1))=x^2-\frac{1}{8}$. (10 分)

四 (1) \mathcal{A} 是正交变换 \Leftrightarrow $(XA,YA) = (X,Y) \Leftrightarrow \operatorname{Tr}(A^TX^TSYA) = \operatorname{Tr}(X^TSY) \Leftrightarrow$

$$\operatorname{Tr}(AA^TX^TSY) = \operatorname{Tr}(X^TSY)$$
. 由 X^TSY 可取遍 V ,得 $AA^T = I$. (10 分)

五 由
$$(A+B)^3 = A^3 + A^2B + ABA + BA^2 + AB^2 + BAB + B^2A + B^3$$
, (6 分)

得
$$\operatorname{Tr}(A+B)^3 - \operatorname{Tr}(A^3) - \operatorname{Tr}(B^3) = 3\operatorname{Tr}(ABA+BAB)$$
, (8 分)

其中
$$ABA$$
 和 BAB 都是实对称半正定方阵, $Tr(ABA + BAB) \geqslant 0$. (6 分)

六 不妨设
$$A \neq \mathcal{O}$$
,则存在非零向量 $u \in V$ 使得 $\lambda = \frac{|Au|}{|u|} > 0$. (2 分)

对于任意
$$v \in V$$
,设 $\alpha = v + \frac{|v|}{|u|}u$, $\beta = v - \frac{|v|}{|u|}u$, (6 分)

则
$$(\alpha, \beta) = 0 \Rightarrow (\mathcal{A}\alpha, \mathcal{A}\beta) = 0 \Rightarrow |\mathcal{A}v| = \lambda |v|$$
. (6 分)

从而,
$$\mathcal{P} = \frac{1}{\lambda} A$$
 是正交变换. (6 分)