

Student	
Number:	
Class:	

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2013

MATHEMATICS EXTENSION 2

General Instructions:

- · Reading Time: 5 minutes.
- · Working Time: 3 hours.
- · Write in black pen.
- · Board approved calculators & templates may be used
- · A Standard Integral Sheet is provided.
- In Question 11 16, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged working.

Total Marks 100

Section I: 10 marks

- Attempt Question 1 10.
- Answer on the Multiple Choice answer sheet provided.
- · Allow about 15 minutes for this section.

Section II: 90 Marks

- Attempt Question 11 16
- · Answer on lined paper provided. Start a new page for each new question.
- Allow about 2 hours & 45 minutes for this section.

The answers to all questions are to be returned in separate *stapled* bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Number.

Section I 10 marks

Attempt Questions 1–10

Allow about 15 minutes for this section

- 1 Let z = 1 + i. What is the value of z^{12} ?
 - (A) 64
 - (B) 64
 - (C) 64i
 - (D) 64*i*
- Given $f(x) = x^2(x-1)$. Which of the following best represents the graph of $y = \sqrt{f(x)}$?

(B)

(C)

(D)

- Given $2x^2 + xy + 2y^2 = 30$, what are the coordinates of one of the vertical tangents?
 - (A)(-1,4)
 - (B) (4, -1)
 - (C)(-1,-4)
 - (D) (1, -4)
- What is the equation of the chord of contact of tangents from (2, 1) to the hyperbola $\frac{x^2}{9} \frac{y^2}{4} = 1?$
 - (A) $\frac{2x}{9} \frac{y}{4} = 1$
 - (B) $\frac{2x}{9} + \frac{y}{4} = 1$
 - (C) $\frac{x}{9} \frac{y}{2} = 1$
 - (D) $\frac{x}{9} + \frac{y}{4} = 1$
- Given $3x^3 2x + 5 = 0$ has roots α , β and γ , what is the equation with roots $\alpha + 1$, $\beta + 1$ and $\gamma + 1$?
 - (A) $3x^3 9x^2 + 7x + 6 = 0$
 - (B) $3x^3 + 9x^2 + 7x + 6 = 0$
 - (C) $3x^3 9x^2 + 7x + 4 = 0$
 - (D) $3x^3 + 9x^2 + 7x + 4 = 0$

- Which of the following is the correct expression for the integral $\int \frac{dx}{4 + \sin^2 x}$?
 - (A) $\frac{1}{2\sqrt{5}}\tan^{-1}\left(\frac{5}{4}\tan x\right) + C$
 - (B) $2\sqrt{5} \tan^{-1} \left(\frac{5}{4} \tan x \right) + C$
 - (C) $\frac{1}{2\sqrt{5}}\tan^{-1}\left(\frac{\sqrt{5}}{2}\tan x\right) + C$
 - (D) $2\sqrt{5} \tan^{-1} \left(\frac{\sqrt{5}}{2} \tan x \right) + C$
- Given $3x^3 + 6x 5 = 0$ has roots α , β and γ , what is the value of $\alpha^3 + \beta^3 + \gamma^3$?
 - (A) 5
 - (B) 9
 - (C) 15
 - (D) -1
- The equation of motion of a particle falling with velocity v m/s is given by $\ddot{x} = 10 \frac{v}{2}$. Which of the following is the value of the terminal velocity?
 - (A) 5
 - (B) 15
 - (C) 20
 - (D) $\sqrt{20}$

A bob P of mass m kg is suspended from a fixed point A by a string of length l metres, and acceleration due to gravity g. P describes a horizontal circle with uniform angular velocity ω rad/s.

Which of the following expressions represents the tension in the string?

- (A) $ml\omega$
- (B) $ml\omega^2$
- (C) $mgl\omega$
- (D) $mgl\omega^2$
- Which of the following is the correct expression for the integral $\int e^{\alpha x} \sin \beta x \, dx$?

(A)
$$\frac{e^{\alpha x}}{\alpha^2 + \beta^2} [\beta \sin \beta x + \alpha \cos \beta x] + C$$

(B)
$$\frac{e^{\alpha x}}{\alpha^2 + \beta^2} [\beta \sin \beta x - \alpha \cos \beta x] + C$$

(C)
$$\frac{e^{\alpha x}}{\alpha^2 + \beta^2} [\alpha \sin \beta x + \beta \cos \beta x] + C$$

(D)
$$\frac{e^{\alpha x}}{\alpha^2 + \beta^2} [\alpha \sin \beta x - \beta \cos \beta x] + C$$

Section II

90 marks

Attempt Questions 11-16.

Allow about 2 hours and 45 minutes for this section.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a NEW page.

(a) |z| < 1 and $z = \cos \theta + i \sin \theta$, where $-\pi < \theta \le \pi$.

(i) Show $1+z=2\cos\frac{\theta}{2}\left(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}\right)$.

(ii) z_1 and z_2 are complex numbers such that $|z_1| = |z_2| = 1$. If z_1 and z_2 have arguments α and β respectively, where $-\pi < \alpha \le \pi$ and $-\pi < \beta \le \pi$, show that $\frac{z_1 + z_1 z_2}{z_1 + 1}$ has

modulus $\frac{\cos\frac{\beta}{2}}{\cos\frac{\alpha}{2}}$ and Argument $\frac{\alpha+\beta}{2}$.

- (iii) If $|z_1| = |z_2| = 1$ and $\frac{z_1 + z_1 z_2}{z_1 + 1} = 2i$ find z_1 and z_2 in the form x + iy where x and y are real rational numbers.
- (b) Shade the region $-\frac{\pi}{4} \le \operatorname{Arg} z \le \frac{\pi}{4}$ and $|z| \le 3$.

Question 11 (c) is continued over the page.

(c)

f(x) is an even function such that $f(x) \ge 0$ for $-a \le x \le a$.

The region bounded by y = f(x), the x-axis, and the ordinates x = -a and x = a has area A. The region is rotated about the line x = b where b > a > 0.

(i) Using the method of cylindrical shells show that the volume V of rotation is $2\pi bA$.

3

2

(ii)

The region shown with circular ends is rotated about x = 10 to form a circular sealing ring. Find the volume of revolution.

End of Question 11.

Question 12 (15 marks) Start a NEW page.

- (a) Graph $y = \frac{x}{(x+4)(x+2)}$ showing all intercepts with the coordinate axes and all asymptotes.
- (b) The region bounded by $y = \frac{x}{(x+4)(x+2)}$, the x-axis and x = 1 is rotated around the y-axis.
 - (i) Find the values A, B and C such that $\frac{x^2}{(x+4)(x+2)} = A + \frac{B}{x+2} + \frac{C}{x+4}.$
 - (ii) Using the method of cylindrical shells show that the volume V of revolution is given by $V = 2\pi \int_0^1 \frac{x^2 dx}{(x+4)(x+2)}$, hence find the exact value of the volume of revolution.

(c)

F

weight

A car of mass 2000 kg travels around a curve of radius 150 m at a speed of 110km/h. 4 The car experiences a lateral resistance force F of 0.22 × normal force, N, as shown.

By resolving the forces vertically and horizontally find the **minimum** angle θ (to the nearest minute) for the car to negotiate the curve. (Assume acceleration due to gravity of 10 m/s²).

End of Question 12.

Question 13 (15 marks) Start a NEW page.

(a) (i) Show
$$\int_{-a}^{0} f(x)dx = \int_{0}^{a} f(-x)dx$$

(ii) Deduce
$$\int_{-a}^{a} f(x)dx = \int_{0}^{a} [f(x) + f(-x)] dx$$

(iii) Hence evaluate
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{(1+\sin x)^2}$$

- (b) A shape is defined as $r = \frac{9}{5 + 4\cos\theta}$ where *r* is the distance from origin and θ is the angle anticlockwise from the positive *x*-axis.
 - (i) Using the notation y

find the equivalent Cartesian equation and show that the shape is an ellipse translated.

- (ii) State the minor axis, major axis and location of the foci.
- (iii) The area A enclosed by the shape is given by $A = \int_0^{2\pi} \frac{1}{2} r^2 d\theta$.

Using (b)(i) and(b)(ii) evaluate
$$\int_0^{2\pi} \frac{d\theta}{\left(5 + 4\cos\theta\right)^2}.$$

End of Question 13.

Question 14 (15 marks) Start a NEW page.

the volume of the solid.

(a) (i) Find the coordinates of the intersection of the curves $y^2 = 8x$ and $x^2 = 8y$.

(ii) The base of a solid is in the region bounded by the curves $y^2 = 8x$ and $x^2 = 8y$, and its cross sections by planes perpendicular to the x-axis are semicircles. Find

1

3

(b)

A liquid particle of mass m kg is projected from the ground and hits a vertical wall 20m from the point of projection as shown.

(i) The equations of motion before the particle hits the wall are

$$x = 4t$$
 and $y = 30t - 5t^2$

where t is time in seconds. Show that the particle hits the wall 25 m above the ground with a downwards velocity of 20 m/s.

- (ii) After hitting the wall the particle slides down the wall with a resistance force equal to $0.04mv^2$.
 - (α) If acceleration due to gravity is 10 m/s² show that the velocity on return to the ground is approximately 16.44 m/s.
 - (β) Find the total time for the particle to return to the ground. Give your answer to two decimal places.

End of Question 14.

Question 15 (15 marks) Start a NEW page.

The hyperbola $xy = c^2$ meets the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at $P\left(ct_1, \frac{c}{t_1}\right)$ and $Q\left(ct_2, \frac{c}{t_2}\right)$ where $t_1 > t_2 > 0$. Tangents to the hyperbola at P and Q meet at T, while tangents to the ellipse at P and Q meet at V.

- (i) Show the above information on a sketch.
- (ii) Show that the parameter of point $\left(ct, \frac{c}{t}\right)$ which lies on the intersection of $xy = c^2 \text{ and } \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ satisfies the equation } b^2c^2t^4 a^2b^2t^2 + a^2c^2 = 0.$

1

3

2

3

- (iii) Given the equation of the tangent to the hyperbola at $\left(ct, \frac{c}{t}\right)$ is $x + t^2y = 2ct$, show 2 that the coordinates of T are $\left(\frac{2ct_1t_2}{t_1 + t_2}, \frac{2c}{t_1 + t_2}\right)$.
- (iv) Given that the equation of the tangent to the ellipse at (x_1, y_1) is $b^2 x_1 x + a^2 y_1 y = a^2 b^2$, 2 show that the coordinates of V are $\left(\frac{a^2}{c(t_1 + t_2)}, \frac{b^2 t_1 t_2}{c(t_1 + t_2)}\right)$.
- (v) Show that the line TV passes through the origin.
- (vi)Point V lies at a focus of the hyperbola.
 - (α) Show that the ellipse is a circle.
 - (β) Find the radius of the circle in terms of c.

End of Question 15.

Question 16 (15 marks) Start a NEW page.

(a)
$$I_n = \int_0^{2\pi} (1 + \cos \theta)^n d\theta$$
 for $n \ge 0$.

(i) Show
$$I_{n+1} = \frac{2n+1}{n+1}I_n$$
.

(ii) Find I_3 .

ABC is a triangle inscribed in a circle. L, M and N are the feet of the perpendiculars from P to AB, AC and BC respectively.

(i) Copy the diagram.
(ii) Show P, M, A and L are concyclic points.
(iii) Show P, C, N and M are concyclic points.
(iv) Show that L, M and N are collinear.

End of paper.

★ JRAHS Mathematics | 2013 Extension 2 Trial – Solutions & Marking Guidelines

» Section I

1 mk for each question.

- 1. A
- 2. D
- 3. B
- 4. A
- 5. C
- 6. C
- 7. A
- 8. C
- 9. B
- 10. D

2013	TRIAL MATHEMATICS Extension 2: Question		
	Suggested Solutions	Marks	Marker's Comments
	(a) $1+z = (1+\cos\theta) + i(\sin\theta)$ (1) $= (1+\cos 2x\frac{\theta}{2}) + i(\sin 2x\frac{\theta}{2})$ $= 2\cos^2\frac{\theta}{2} + i(2\sin\frac{\theta}{2}\cos\frac{\theta}{2})$ $= 2\cos\frac{\theta}{2} (\cos\frac{\theta}{2} + i\sin\frac{\theta}{2})$ or $2\cos\frac{\theta}{2}\cos\frac{\theta}{2}$	1	This part was well done by most students
	$Z_{1} = 2\cos\frac{\alpha}{L}\cos\frac{\alpha}{L}$ $Z_{2} = 2\cos\frac{\beta}{L}\cos\frac{\beta}{L}$ $Z_{1}(1+Z_{2}) = \frac{ Z 1+Z_{2} }{ 1+Z_{1} }$ $= \frac{(1/2\cos\frac{\beta}{L})}{(2\cos\frac{\alpha}{L})}$ $= \frac{\cos\frac{\beta}{L}}{\cos\frac{\alpha}{L}}$ $\frac{NOTE}{\cos\frac{\beta}{L}}$ $\frac{NOTE}{\sin^{2}(L^{2})} = \frac{\log^{2}(L^{2})}{(1+Z_{1})}$ $= \frac{\log^{2}(L^{2})}{(1+Z_{1})} = \frac{\log^{2}(L^{2})}{\log^{2}(L^{2})}$ $= \frac{\alpha}{L^{2}}$ $= \frac{\alpha}{L^{2}}$	1	Quite a few factorise z ₁ +2 ₁ z ₂ and hence did not use a(i) which made the question more difficult. A significant number of stratents confused cos z and cisz

Question ()	
Marks	Marker's Comments
Marks	Some thought that the arg 2i = Ti Many missed the fact that $\cos(x-x)=\sin x$ This mark for $\tan x=2$ or $\tan x=2$ Many made. arithmetic mistakes or assumed things like $z_1=-z_2$ or $z_1=z_2$ Full marks for $z_1=z_2$ Full marks for $z_1=z_2$ Some students did not note the Ty angles. Quite a foul did
	few did not note that the origin is excluded

MATHEMATICS Extension 2: Question.		
Suggested Solutions	Marks	Marker's Comments
Volume = $\int_{a}^{a} \int_{a}^{b} \int_{a}^{x} \int_{a}^{b} \int_{a}^{x} \int_{a}^{b} \int_{a}^{x} \int_{a}^{b} \int_{a}^{x} \int_{a}^{b} \int_{a}^{x} \int_{a}^{a} \int_{a}$		Some students stated & withou justification and were not awarded full mark Students needed to explain why Safajdn=A and -aa Sufajdx=O
(II) from (i) $V = 2\pi b A$ $A = rectangle - circle$ $= 4 \times 2 - \pi (1)^{2}$ $= 8 - \pi$ $b = 10$ $V = 2\pi (10)(8 - \pi)$ $V = 20\pi (8 - \pi) \text{units}^{3}$	1	Many students wasted time by not using (i) but by finding the volume by integration. A common error was to think that the area of the rectargle was 4

2013 TRIAL X 2 MATHEMATICS: Question 12		p15) 2
Suggested Solutions	Marks	Marker's Comments
Hor. Asy $y = 0$ Zero at $x = 0$, also y interest.	1	for each asymptote with either an equation or a line definitely finishing towards it. for shape - h off for shape - h off each real error in main graph
b) i) $\frac{\chi}{(x+4)(x+2)} = A + \frac{B}{x+2} + \frac{C}{x+4}$ $\frac{(x+4)(x+2)}{(x+4)+8(x+4)+c(x+2)} = \chi$ Equate coeffs of χ^2 $\frac{A=1}{B=2}$ Put $x=-2$: $2B=4$ $\frac{B=2}{C=-8}$ Put $x=-4$: $-2C=16$ $\frac{C=-8}{C=-8}$	1 1	labelled point on each branch. (or associated Scales) Easy marks.
$SV = (T(x+Ex)^2 - Tx^2)y$ $= 2TTxy Sx (neglecting)$ $= 2TT(xy Sx (neglecting))$ $= 2TT(xy Sx$	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	diagram for = (type 2) or neglect 2 order tems for limit of sum tor integral (except if baldly stated)

2013 TRIAL X2 MATHEMATICS: Question 12		p242
Suggested Solutions	Marks	Marker's Comments
b) ii) (cont)		
11/0 = 277		
$\sqrt{8} = 2\pi \int_{0}^{1} 1 + \frac{2}{x+2} - \frac{8}{x+4} dx$		
(contract i)		
(namparti)		
$= 2\pi \int x + 2 \ln (x+2) - 8 \ln (x+4) \int$	1	
= 27 {1+2ln3-8ln5-2ln2+8ln4})	
Vol = 2TI (1+2ln3+14ln2-8ln5) 13		
C) Forces N Acci.		
F		
mg N.B. V=110 k/h = 275 m/s	1/2	Most people got
9		these 21/2 marks.
Resolve vertically (V) mg + Fsin 0 = Nco 0	1	2.2
1	·	
Resolve horizontally (H) Fcos 0 + N sin 0 = my	1	
(a		
assuring F= 0.22N means this is		
already the optimal angle O.)		
Substituting numbers		
V) -> N(coo 0 - 0.22 pm 0) = 20000		Many mistakes
H) -> N (0.22coo0 + sin 0) = 12448-56		in the numeric
		work. 1/2 for
Dividing: <u>COSO - 0.22 sino</u> = 1.6066		
0.22cm0 + Sin 0		getting dan to a simple equation
1 - 0.72 + A		m ten O.
1-0.22 tamo = 1.6066		
		Final mak for
+an 0 = 0.3539		correct solution
$\theta = 19^{\circ}29'$ (nearest)	1	(29' or 30' accepted)

MATHEMATICS Extension 2: Question		
Suggested Solutions	Marks	Marker's Comments
(a) (i) Let $x = -u$ $dx = -du$ $x = 0 u = 0$ $x = -\alpha u = \alpha$ $-i \int_{-\alpha}^{0} f(x) dx = \int_{\alpha}^{0} f(-u) (-du)$ $-a$ $= \int_{\alpha}^{a} f(u) du$	1	Well clone by students Some students thought that the function most be even (or must be odd)
= $\int_{0}^{a} f(\mathbf{x}) d\mathbf{x}$ Changing the variable in a definite integral does	not c	hange its value
$(11) \int_{-\alpha}^{\alpha} f(x) = \int_{-\alpha}^{\alpha} f(x) dx + \int_{0}^{\alpha} f(x) dx$ $= \int_{0}^{\alpha} f(x) dx + \int_{0}^{\alpha} f(x) dx$	/	Well done by students
$=\int_{0}^{a} \left[f(x) + f(-x)\right] dx$ $=\int_{0}^{\pi/4} \frac{dx}{(1+s\ln x)^{2}} = \int_{0}^{\pi/4} \frac{1}{(1+s\ln x)^{2}} dx$ $=\int_{0}^{\pi/4} \frac{1}{(1+s\ln x)^{2}} dx$ $=\int_{0}^{\pi/4} \frac{(1-s\ln x)^{2} + (1+s\ln x)^{2}}{(1-s\ln^{2}x)^{2}} dx$		Nearly all students used a(i) correctly to begin

:\Maths\Suggested Mk solns template_V2.doc

MATHEMATICS Extension 2: Question		
Suggested Solutions	Marks	Marker's Comments
$\int_{0}^{\sqrt{4}} \frac{dx}{(1+\sin x)^2} = \int_{0}^{\sqrt{4}} \frac{2(1+\sin^2 x)}{\cos^4 x} dx (A)$ $= 2\int_{0}^{\sqrt{4}} \frac{2(1+\sin^2 x)}{\cos^4 x} dx$		Most sudents got to (A).
=> (74 sec 2 x (1+2tan x) dx	1	Many failed to realise Secretarized = \frac{1}{3} tan 2
$= 2 \left[\tan x + \frac{2}{3} \tan^3 x \right]^{\frac{1}{2}}$ $= 10/3$	1	Correct answer correctly done (by many of a
(i) θ $r = \sqrt{x^2 + y^2}$ (i) θ $\cos \theta = \frac{3c}{r}$		variety of methods) for full marks
$T = \frac{9}{5 + 4 \cos \theta}$,
$\Gamma = \frac{9}{5+4(\frac{x}{r})}$		Most students
$1 = 5r + 4x$ $5r = 9 - 4x$ $2 = 9 - 72x + 16x^{2}$		failed to eliminate both of and to so we unable to
$25 r^{2} = 81 - 72x + 16x^{2}$ $25(x^{2}+y^{2}) = 81 - 72x + 16x^{2}$ $9x^{2} + 72x + 25y^{2} = 81$ $9x^{2} + 72x + 25y^{2} = 81 + 9x16$	•	make progress
$9(x+8x+16)+25y^2=225$		Arithmetic mistales were common here
$\frac{(x+4)^2}{25} + \frac{y^2}{9} = 1$ This is an ellipse, centre (-4,0)		Complete sinflication required for full marks.

MATHEMATICS Extension 2: Question.		
Suggested Solutions	Marks	Marker's Comments
(11) $(4,3)$ MAJOR AXIS= $2xS=10$ units MINOR AXIS= $2x3=6$ units $e=\sqrt{1-\frac{b^2}{a^2}}=\frac{4}{5}$ $(4,-3)$ $ae=4x\frac{4}{5}=4$ FOCT: $(-4\pm 4,0)=)(-8,0)$ and $(0,0)$	1	Many students confused semiaxis (a or b) with axis (2a or 2b)
(III) AREA = $\int_{0}^{2\pi} \frac{1}{2} r^{2} d\theta$ $\pi ab = \int_{0}^{2\pi} \frac{1}{2} \left(\frac{q}{5 + 4\cos\theta}\right) d\theta$ Area = $\pi \times 3 \times 5$ = 15π	· ·	Many wasted time finding the area of the ellipse by integration instead of quoting Autrab
$=\frac{107\Gamma}{27}$		Full marks for correct answer correctly obtained.

MATHEMATICS Extension 2: Question	n. 14	
Suggested Solutions	Marks	Marker's Comments
$(4 a)(i)$ Find the points of intersection of $x^{2} = 8y$ and $y^{2} = 8x$ $x^{4} = (8y)^{2}$ $x^{4} = 64 \times 8x$ $x^{4} = 512x$		
$x^{4} - 5/2x = 0$ $x(x^{3} - 5/2) = 0$ $x(x - 8)(x^{2} + 8x + 64) = 0$ $x = 0 0 < x = 8 \text{or } msc/u + mg$		
$y = 0 y = 8 p(8,8)$ $y = 0 y = 8 x^2 = 8 y$		
0 2 42 6 8		
71.60 0.6 6.10.55 Sec. 1.76		
Volume of Slice = $A \cdot Sx$ Volume = $\lim_{\delta x \to 0} \frac{\delta}{\delta} A(x) \cdot \delta x$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c c} $		

MATHEMATICS Extension 2: Question		
Suggested Solutions	Marks	Marker's Comments
14 (b)(ii) (d) continued.		
$ln\left(\frac{v^2-250}{150}\right) = -2$,	
$\frac{t^{2}-250}{2}=\frac{e^{-2}}{2}$	als	
$\frac{U^2 - 250}{150} = e^{-2} of both $	ides	
1/2 = 150e ² + 250		
= 270.30029		
V = 16.4408		
ground is approximately		
ground is approximately		
16:HHMS		
(B) Find the total time for the particle		
to return to the ground. $ \ddot{x} = -c \cdot c \dot{y} \left(v^2 - 250 \right) \text{from (i)} $		
$3c = -c \cdot c \cdot 4 \left(\sqrt{2} - 250 \right) \text{from } (1)$		
$1\dot{e} = \frac{dv}{dv} = -0.04(v^2 - 250)$		
16:44 at		
$\int dv = \int -0.04 dt$		
$\sqrt{v^2-250}$		
20		
NB I = A $+$ B		
V² -250 V +√250		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$A-B = L \qquad A+B = 0$		
$\sqrt{250}$ $A = -B$		
$2A = \frac{1}{A} \Rightarrow A = \frac{1}{A} \times B = \frac{1}{A}$		
$\sqrt{250}$ $2\sqrt{250}$ $2\sqrt{250}$ $\sqrt{2}$		
1 [1 - 1 dt = -0.04 [t]		
$2\sqrt{250}\int_{20} (v - \sqrt{250}) v + \sqrt{250}$		
$\frac{1}{2\sqrt{250}} \left[\frac{1}{10} \left(\frac{\sqrt{1 - \sqrt{250}}}{\sqrt{1 + \sqrt{250}}} \right) \right] = -0.04 \left[\frac{1}{10} - 0 \right]$		
20 20		
$T = -25 \ln \left(\frac{16.44 - 1250}{4.44 + 1250} \times \frac{20 + \sqrt{250}}{20 - \sqrt{250}} \right)$		
2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
32.25/38 4.18861		
= 1.41662		
Total Time = 1.42 + 5 = 6.42 seconds (to 2 d.p.)	4	

MATHEMATICS Extension 2: Question	on 15	()
Suggested Solutions	Marks	Marker's Comments
$\frac{1}{2} \frac{\left(\frac{c}{c} + \frac{c}{c}\right)}{\frac{c}{c}} = \frac{1}{2} $	(1)	E for correct position of Panda (5) For Vand T
(ii) The point (ct, ξ) his on $xy=c^2$ $\frac{d^2}{dt^2} + \frac{y^2}{b^2} = 1$ $\frac{(ct)}{dt^2} + \frac{(ct)^2}{dt^2} = 1$ $\frac{d^2}{dt^2} + \frac{d^2}{dt^2} = 2$	(2)	O sub (ct, //2) mto x2 + y2 = 1 ar b'= 1
[III) Equation of langest 15 of $t^2y = 2ct$ at $a = 2ct$ at $a = 2ct$ a	(2) t, + 52	no loss of mark If $t_i \neq t_2$ not writen O a coordinate O y coordinate
at Q bct, se tacy = a^2b^2 x $=$ a^2b^2 x $=$ a^2b^2 bc $=$ $=$ a^2b^2 bc $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$		

MATHEMATICS Extension 2: Question	n./5	0
Suggested Solutions	Marks	Marker's Comments
$y = b^{2} \frac{E_{1}E_{2}(E_{2}-E_{1})}{C(E_{1}-E_{2})(E_{1}+E_{2})}$	2	
$= b^2 + E$		1) x coordinak
(1 + + t -)		O madride
(i) $x = b^2 c + c^2 c + a^2 c + a^2 c = a^2 b^2 t$ (ii) $x = a^2 b^2 c + a^2 c = a^2 b^2 c$		Ox coordinate
$bcx[t_1-t_1] = ab[t_1-t_1]$ $a^2(t_1-t_2)(t_1+t_1) = a^2$ $\lambda = c(t_1-t_2)(t_1+t_1) = c(t_1+t_2)$		
$V = \begin{bmatrix} a^2 & b^2 & t_1 t_2 \\ c(t_1 + t_2) & c(t_2 + t_2) \end{bmatrix}$		
(v) Gradient of OT $m_{\theta T} = \frac{2c}{t_1 + t_2} / \frac{2ct_1t_2}{t_1 + t_2}$		
Circulant of OV $M_{OV} = \frac{E_1 E_2}{C(E_1 + E_2)} / \frac{a^2}{C(E_1 + E_2)}$		O gradients ot, ov.
$=\frac{b^2}{a^2}\left[\pm_1\pm_2\right]$		J
Koots of $b^2 c^2 t^4 - a^2 b^2 t^2 + a^2 c^2 = 0$ $t, t, and -t, -t, by symmet$	ny	1 titz = a/6.
$product ef roots = \frac{1}{5^2c^2}$ $\vdots = \frac{a^2c^2}{b^2c^2}$ $\vdots = \frac{a}{2}b = \frac{a}{b} = \frac{a}{b}$	9	
$\frac{1}{2} \frac{m_{\text{ov}}}{a^{\frac{1}{2}}} = \frac{b^{\frac{1}{2}}}{a^{\frac{1}{2}}} = \frac{b^{\frac{1}{2}}}{a}$		
Mot	/:	O Conclusion with working
' V, O, T Collenear (2 egual gradens	2)	Alternatively
Alternatively Equation of TV $y = \frac{2c}{5t} = \frac{b^2 + t}{2^2 - 2c^2 + t} \left[x = \frac{2e}{5t} t_2 \right]$		O Gradient TV O Equation of TV and sub (0,0)
LHS-RHS when TE=04=0 and E, E== 2/6		O showing correctly LHS = RHS
\\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns templ	ate_V4.doc	(using t,t, = a/b)

MATHEMATICS Extension 1: Question	3
Suggested Solutions Marks	Marker's Comments
$\begin{array}{c} (V_1)(\alpha)Focius = V(C_1Z_2,C_2Z_2) \\ ZC = \frac{\alpha^2}{C(E_1+E_2)} = C_1Z_2 \\ Y = \frac{67}{C(E_1+E_2)} \end{array}$	1 orelating a and b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(with proof)
Circle Clother (0,0) radius aunits (B) Focus les on tangent to ellipse (B) Focus le	Other methods possible. Dexpression for 21, +41
$2x_1+y_2+y_3+y_4-a_1+2x_1+y_4-a_2+2x_1+y_4-a_2+2x_1+y_4-a_2+2x_1+y_4-a_2+2x_1+y_4-a_2+2x_1+y_4-a_2+2x_1+y_4-a_2+2x_1+y_4-a_2+2x_1+x_1+x_1+x_1+x_1+x_1+x_1+x_1+x_1+x_1+$	15 on ocy = c2
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	O Quadratic Equation in a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1) Solution

$I(b, a) I_{n} = \int_{0}^{2\pi} (1 + \cos \theta)^{n} d\theta , n \neq 0$ $(i) Show I_{n+1} = \frac{2n+1}{n+1} I_{n}$ $I_{n+1} = \int_{0}^{2\pi} (1 + \cos \theta)^{n+1} d\theta$ $= \int_{0}^{2\pi} (1 + \cos \theta)^{n} d\theta $ $I_{n+egrating} $	MATHEMATICS Extension 2: Question		
(i) Show $I_{n+1} = \frac{2n+1}{n+1} I_n$ $I_{n+1} = \int_0^{2\pi} (1 + \cos \theta)^{n+1} d\theta$ $= \int_0^{2\pi} (1 + \cos \theta)^n d\theta + \int_0^{2\pi} (1 + \cos \theta)^n d\theta$ $= \int_0^{2\pi} (1 + \cos \theta)^n d\theta + \int_0^{2\pi} (1 + \cos \theta)^n d\theta$ $I_{n+1} = \int_0^{2\pi} (1 + \cos \theta)^n d\theta + \int_0^{2\pi} (1 + \cos \theta)^n d\theta$ $I_{n+1} = I_n + \int_0^{2\pi} (1 + \cos \theta)^n d\theta + \int_0^{2\pi} (1 + \cos \theta)^n d\theta$ $= I_n + \int_0^{2\pi} (1 + \cos \theta)^n d\theta + \int_0^{2\pi} (1 + \cos \theta)^n d\theta$ $= I_n + \int_0^{2\pi} (1 + \cos \theta)^n d\theta + \int_0^{2\pi} (1 + \cos \theta)^n d\theta$ $= I_n + \int_0^{2\pi} (1 + \cos \theta)^n d\theta + \int_0^{2\pi} (1 + \cos \theta)^n d\theta$ $= I_n - \int_0^{2\pi} (1 + \cos \theta)^n d\theta + \int_0^{2\pi} (1 + \cos \theta)^n d\theta$ $= I_n - \int_0^{2\pi} (1 + \cos \theta)^n d\theta + \int_0^{2\pi} (1 + \cos \theta)^n d\theta$ $= I_{n+1} - \int_0^{2\pi} (1 + \cos \theta)^n d\theta + \int_0^{2\pi} (1 + \cos \theta)^n d\theta$ $= I_{n+1} - \int_0^{2\pi} (1 + \cos \theta)^n d\theta + \int_0^{2\pi} (1 + \cos \theta)^n d\theta +$	Suggested Solutions	Marks	Marker's Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Suggested Solutions $ \begin{array}{lll} IO & a & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right)^{n} J \theta & \sin \theta \\ IO & a & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right)^{n} J \theta & \sin \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \sin \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} \left(I + \cos \theta \right) \int_{0}^{2\pi} J \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III & I_{\Lambda} = \int_{0}^{2\pi} J \theta & \cos \theta & \cos \theta \\ III $	Marks	-1) (1+ cose) de
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	0. ± 1		
$I_{3} = \frac{2+1}{1+1} \cdot 2\Pi = 3\Pi$ $I_{3} = \frac{2(2)+1}{2+1} \cdot 3\Pi = 5\Pi$		277	
## T			
$I_{3}=5T_{4}$	## T		

Suggested Solutions	Marks	Marker's Comments
16(b)(i) P		
D C N B		1
ii) PiA + PMA = 90° + 90° (L& M use the feet of the perpendiculars from P to = 180° : PMAL is a cyclic quadrilateral (opposite angles are supplements	vo }	respectively)
iii) PMC = PNC=90° (M & N are the feel	275. 2 CB /e	2 sp'1y)
in PCNM is a cyclic quadrilateral [angles subtended by interval PC on the in PyC, N&M are concyclic points (iv) Show in Mand N are collinear	//·	ide are equal) (2)
Constructions Join Mt, MN, PA& PC Proof: PCB = PAL (exterior angle of cycle equals the interior of PAL = PAL (angles of the circum the same segment of	pposite	e in wad. PMAL)
PAL + PAN = PCB + PCD		angle)
- 180° (straight angle BCL Now PML + PMN = 1MN = 180° ro LMN is a straight angle :: LM&N are collinear	egual	(D)