UNIVERSIDADE FEDERAL DO ACRE

BACHARELADO EM ENGENHARIA ELÉTRICA

CCET 333 - LABORATÓRIO DE ELETRÔNICA I

SEMESTRE – 2017.1

ATIVIDADE 9

Amplificador Emissor-Comum Pré-laboratório individual (ENTREGAR!)

Figura 1: Amplificador de tensão emissor-comum.

- 1. Esboce a reta de carga CC do circuito mostrado na Figura 1.
- 2. Calcule os parâmetros CC do circuito e verifique em qual região o transistor bipolar opera. Complete a segunda coluna da Tabela 1.
- 3. Calcule a impedância de entrada (Z_{ent}), a impedância de saída ($Z_{saída}$) e o ganho de tensão sem carga (A_{v}) do amplificador de tensão. Utilize o valor de β típico extraído da folha de dados do transistor bipolar. Lembre-se que, em geral, $\beta \neq \beta_{CC}$.
- 4. Calcule a tensão de entrada (V_{ent}), a tensão de saída (vsaída) e o ganho de tensão com carga (Avc) do amplificador. Complete a segunda coluna da Tabela 2.

Laboratório

- 5. Monte somente o circuito de polarização do circuito da Figura 1. Com o auxílio do multímetro, meça as variáveis solicitadas e complete a Tabela 1. Caso o seu circuito de polarização esteja operando corretamente, passe para o próximo item desta experiência. Caso contrário, descubra o que há de errado com a sua montagem e refaça as suas medidas CC.
- 6. Monte o circuito completo da Figura 1. Com o auxílio do osciloscópio, meça as variáveis solicitadas e complete a Tabela 2.

- 7. Utilize o canal 1 do osciloscópio para verificar o sinal de entrada do amplificador de tensão e o canal 2, para o sinal de saída do circuito. Tais formas de onda estão invertidas uma em relação à outra? Por quê?
- 8. Com o osciloscópio em DC, meça o sinal no coletor do transistor bipolar. Perceba a existência de um nível CC e de um sinal CA nesse ponto. Em seguida, verifique o sinal na carga, após o capacitor de 1 μ F. Note que há apenas um sinal CA. Por que isso ocorre?
- 9. Com o osciloscópio em DC, meça o sinal no emissor do transistor bipolar. Perceba a existência de um nível CC. Por que isso ocorre?
- 10. Calcule os erros das suas medidas e complete as Tabelas 1 e 2. Considere que o erro é dado por

% Erro =
$$\frac{Valor\ Pr\'atico - Valor\ te\'orico}{Valor\ te\'orico} \times 100$$

11. Analise os seus resultados (valores obtidos, erros, possíveis fontes de erros,...)

Tabela 1. Valores CC teóricos e práticos

Variável	Valor teórico	Valor prático	Erro (%)
$V_{\rm C}$			
V_{B}			
$V_{\rm E}$			
V_{CE}			
V_{BE}			
V_{BC}			
I_{C}			
I_{B}			
I_{E}			
P_{D}			
β_{CC}			

Tabela 2. Valores CA teóricos e práticos

Variável	Valor teórico	Valor prático	Erro (%)
V _{ent}			
V _{saida} (sem carga)			
V _{saida} (com carga)			
Av			
A_{VC}			