Algorithm Analysis

Outline

- Algorithm Analysis
- Time Complexity
- Asymptotic Notations: Big-O notation
- Determine Time Complexity using big-O Notations
- Comparing Time Complexity: Linear Search vs Binary Search

Learning Outcomes

By the end of the chapter, you should be able to

- Determine the worst-case running time of an algorithm using big-O notation.
- Compare the worst-case running time of different algorithms using big-O notation.

Algorithm

 Any well-defined computational procedure that transforms some inputs into some outputs.

Examples of Algorithms

Searching

- Input: A sequence of n numbers $\{a_1, a_2, ..., a_n\}$ and a number k
- Output: true if k is found in the sequence and false otherwise
- For example,
 - Input: {31, 41, 59, 26, 41, 58} and 31
 - Output: True

Sorting

- Input: A sequence of n numbers $\{a_1, a_2, ..., a_n\}$
- Output: A permutation $\{a_1', a_2', \dots, a_n'\}$ of the input sequence such that $a_1' \le a_2' \le \dots \le a_n'$
- For example,
 - Input: {31, 41, 59, 26, 41, 58}
 - Output: {26, 31, 41, 41, 58, 59}

Algorithm Analysis

- Correctness analysis
 - Produce correct output for every input
- Complexity analysis
 - It describe the efficiency of an algorithm uses the computational resources (e.g., CPU time, memory and disk usage) for execution.
 - Space Complexity:
 - The amount of memory used
 - Time Complexity:
 - The amount of running time used

Time Complexity

- The actual running time of an algorithm depends on a lot of factors such as processor speed, operating system and programming language etc.
- The running times of two algorithms are difficult to directly compare unless the experiments are performed in the same hardware and software environments.
- The running time of an algorithm is proportional to the number of "basic operations" that it executes.
- Time complexity of an algorithm can be calculated by finding number of basic operations that it executes.

Example: Time Complexity

 Calculate the running time in terms of number of basic operations for the following algorithm.

Algorithm 1: Compute the average value in an \underline{n} -element array \underline{a} .

$sum \leftarrow 0$
for i from 0 to $n-1$
$sum \leftarrow sum + a[i]$
sum
$average \leftarrow {n}$

No. Operations

1	Assignment
	Loop n times
2 <i>n</i>	Assignment and addition, each of n times
2	Assignment and division

$$T(n) = 1 + 2n + 2 = 2n + 3$$

Example: Time Complexity

 Calculate the running time in terms of number of basic operations for the following algorithm.

Algorithm 2: Compute the average value in an $\underline{n \times n}$ matrix \underline{a} .

```
sum \leftarrow 0
for i from 0 to n-1
for j from 0 to n-1
sum \leftarrow sum + a[i][j]
average \leftarrow \frac{sum}{n}
```

No. Operations

1	Assignment
	Outer loop n times
	Inner loop n times
$2n^2$	Assignment and addition, each of n^2 times
2	Assignment and division

$$T(n) = 1 + 2n^2 + 2 = 2n^2 + 3$$

Asymptotic Analysis

- The running time of an algorithm depends on the size of its input.
- We are concerned with how the running time grows when the input size becomes sufficiently large.
- This can be described using asymptotic notations.
- Asymptotic notations are mathematical notations that describes how the value of a function f(n) changes as its input argument n increases .

Big-O Notation

- *O*-notation gives an asymptotic upper bound.
- We denote by f(n) = O(g(n)) when $\exists n_0 > 0, c > 0$, such that $\forall n \geq n_0, 0 \leq f(n) \leq cg(n)$
- We write f(n) = O(g(n)) if there are positive constants n_0 and c such that when n is greater than or equal to n_0 , the value of f(n) always lies on or below (smaller than or equal to) cg(n).

Big-O Notation

- The O in the big-O notation denotes order of growth or growth rate.
- E.g., $f(n) = O(n^2)$ means
 - -f(n) grows in the order of n^2 .
 - -f(n) has an order of n^2 .
 - The growth rate of f(n) is n^2 .

What does f(n) = O(g(n)) mean?

 $f(n) = O(g(n)): f(n) \le cg(n)$

f(n) = O(1)	f(n) = O(n)	$f(n) = O(n^2)$
$f(n) \le c$	$f(n) \le cn$	$f(n) \le cn^2$
C S(N)	f(n)	/cn ² /f(n)
The growth rate is a constant.	The growth rate is at most proportional to n .	The growth rate is at most proportional to n^2 .
The algorithm has a constant time complexity.	The algorithm has a linear time complexity.	The algorithm has a quadratic time complexity.
The running time does not depend on the input size.	The running time increases linearly with the input size.	The running time increases quadratically with the input size.

Worst-Case Running Time

- The worst-case running time (i.e., longest running time) of an algorithm gives us an upper bound on the running time for any input.
- Knowing it provides a guarantee that the algorithm will never take any longer.
- Therefore, big-O notation is most suitable.
- How do we find the running time of an algorithm in big-O notation?

- In the big-O notation, we only care about the dominant term.
- In other words, we only care about the term that will account for the biggest portion of the running time.

- Assume the running time of an algorithm is $f(n) = n^2 + 2n + 100$.
- We analyze both varying terms: n^2 and 2n separately.

n	f(n)	n^2	n^2 as % of total	2 <i>n</i>	2n as % of total
10	220	100	45.455%	20	9.091%
100	10,300	10,000	97.087%	200	1.942%
1,000	1,002,100	1,000,000	99.790%	2,000	0.2%
10,000	100,020 ,100	100,000,000	99.980%	20,000	0.02%
100,000	10,000,200,100	10,000,000,000	99.99%	200,000	0.002%

- The term n^2 dominates the rest of the terms as n increases.
- The growth rate of n^2 is much faster than 2n.

Now let's add a cubic term:

$$f(n) = n^3 + n^2 + 2n + 100$$

n	f(n)	n³	n ³ as % of total
10	1,220	1,000	81.967%
100	1,010,300	1,000,000	97.980%
1,000	1,001,002,100	1,000,000,000	99.890%
10,000	1,000,100,020,100	1,000,000,000,000	99.989%
100, 000	1,000,010,000,200,100	1,000,000,000,000,000	99.99%

- The term n^3 dominates the rest of the terms as n increases.
- The growth rate of n^3 is much faster than the rest.

Now let's add an exponential term:

$$f(n) = 2^n + n^3 + n^2 + 2n + 100$$

n	f(n)	2^n	2^n as % of total
10	2,244	1,024	45.632799%
20	1,057,116	1,048,576	99.192142%
30	1,073,769,884	1,073,741,824	99.997387%
40	1,099,511,693,556	1,099,511,627,776	99.999994%

- The term 2^n dominates the rest of the terms as n increases.
- The growth rate of 2^n is much faster than the rest.

- As n gets larger, some portion of the function tends to overpower the rest.
- Lower order terms can thus be ignored because they are insignificant for large n.

$$-f(n) = n^3 + n^2 + 2n + 100 = O(n^3)$$

- $f(n) = 2^n + n^3 + n^2 + 2n + 100 = O(2^n)$

 The exact number of operations is not as important as determining the most dominant part of the function.

- How do we find which is the dominant term?
- We can refer to the growth rates (or order) of some common functions.

Growth rate	Name
0(1)	Constant
$O(\log_2 N)$	Logarithmic
O(N)	Linear (directly proportional to N)
$O(N \log_2 N)$	Linearithmic (proportional to $N \log N$)
$O(N^2)$	Quadratic (proportional to square of N)
$O(N^3)$	Cubic (proportional to cube of N)
$O(N^k)$ k is a constant	Polynomial (proportional to N to the power of k)
$O(a^N)(a > 1)$ a is a constant	Exponential (proportional to a to the power of N)

Common Growth Rates

Common Big-Oh Expressions

- Higher time complexity
- Less efficient
- Slower running time

Finding Big-O Expressions

1. Determine running time

$$-n^2 + (n \log_2 n) + 3n$$

2. Drop all but the most significant terms

$$- O(n^2 + n\log_2 n + 3n) \Rightarrow O(n^2)$$

$$-O(n\log_2 n + 3n) \Rightarrow O(n\log_2 n)$$

3. Drop constant coefficients

$$- O(3n) \Rightarrow O(n)$$

$$- O(10) \Rightarrow O(1)$$

$$f(n) = O(3n)$$

$$\Rightarrow f(n) \le c \ 3n = c'n$$

$$\Rightarrow f(n) = O(n)$$

Determine the big-O Notation

 Determine the big-O notation of the following functions.

$$-f(n) = n + 1$$

$$\frac{O(n)}{}$$

$$-f(n) = 2n + 1$$

$$0(n)$$

$$-f(n) = n \log_2 n + 2n^3 + 10$$

$$O(n^3)$$

$$-f(n) = n + \log_2 2^n + 2$$

$$O(n)$$

Determine the Worst-Case Running Time of an Algorithm using Big-O Notations

- Sequence of statements
- Conditional statements
- Loops
- Statements with function calls

Sequence of Statements

```
statement 1;
statement 2;
...
statement k;
```

```
Total time =
   T(statement 1)
+ T(statement 2)
+ ...
+ T(statement k)
```

• For example, if each statement is O(1), then the total time is also constant: O(1).

Conditional Statements

```
if (condition) {
    sequence of statements 1
}
else {
    sequence of statements 2
}
```

```
Total time = max(T(sequence 1), T(sequence 2))
```

• For example, if sequence 1 is O(N) and sequence 2 is O(1), the worst-case time for the whole if-else statement would be O(N).

Loops

```
for (i = 0; i < N; ++i) {
    sequence of statements
}</pre>
```

Total time = N×T(statements)

• For example, if the sequence of statements is O(1), then the total time is O(N).

Nested Loops

```
for (i = 0; i < N; ++i) {
   for (j = 0; j < M; ++j) {
     sequence of statements
   }
}</pre>
```

```
Total time = N \times M \times T(statements)
```

• For example, if the sequence of statements in the nested for loop is O(1), then the total time is O(NM).

Statements with Function Calls

```
f(n); // Assume O(1)

for (j = 0; j < N; ++j)
  f(j);</pre>
```

Total time = N O(1)=O(N)

```
g(n); // Assume O(n)

for (j = 0; j < N; ++j)
  g(N);</pre>
```

Total time = N O(N)= $O(N^2)$

```
void Op(int M){
  for (int i=0;i<M; ++i){
    //a single operation
  }
}</pre>
```

```
void Case1(void){
    Op(5);
    O(1)
}

void Case2(void){
    Op(N);
    Op(500);
}
```

```
void Op(int M){
  for (int i=0;i<M; ++i){
    //a single operation
  }
}</pre>
```

```
void Case3(void){
    for (int i=0;i<5;++i)
        Op(1);
}</pre>
```

0(1)

```
void Case4(void){
    for (int i=0;i<N;++i)
        Op(1);
    Op(N);
}</pre>
```

O(N)

```
void Case5(void){
    for (int i=0; i<N; ++i)
        Op(N);
}</pre>
```

 $O(N^2)$

```
void Op(int M){
  for (int i=0;i<M; ++i){
    //a single operation
  }
}</pre>
```

```
void Case6(void){
    for (int i=0;i<10;++i)
        for (int j=0;j<N;++j)
            Op(N);
}</pre>
```

 $O(N^2)$

```
void Case7(void){
    for (int i=0;i<N; ++i)
        for (int j=0;j<N; ++j)
            Op(N);
}</pre>
```

 $O(N^3)$

```
void Case8(void){
    for (int i=0;i<N;++i)
        for (int j=i;j<N;++j)
            Op(1);
}</pre>
```

$$O(N + (N - 1) + (N - 2) + \dots + 2 + 1)$$

$$= O\left(\frac{(N + 1)N}{2}\right) = O\left(\frac{N^2 + N}{2}\right) = O(N^2)$$

```
void Op(int M){
  for (int i=0;i<M; ++i){
    //a single operation
  }
}</pre>
```

```
void Case9(void){
  if (/* condition */)
    Op(N);
  else
    Op(500); }
```

O(N)

```
void Case10(void){
   for(int i=1;i<=N;i*=2)
        Op(1);
}</pre>
```

```
        iteration
        1st
        2nd
        3rd
        4th
        n^{th}

        i
        1
        2
        2^2
        2^3
        2^{n-1}
```

```
2^{n-1} \le N
n-1 \le \log_2 N \longrightarrow n \le \log_2 N + 1
O(\log_2 N)
```

```
void Case11(void){
  for(int i=1;i<=N;i*=2)
      Op(N);
}</pre>
```

$$O(N \log_2 N)$$

Linear Search

```
for i from 0 to N-1

if a[i] = x, then

return i

return -1
```

- Worse Case:
 - When the value to search is the last element or is not in the array.
 - Time complexity: O(N)

Binary Search

- When the elements of the array is sorted, binary search can be used.
- Divide-and-conquer strategy
 - Probe the middle element of the array
 - If the value is smaller than the middle one, discard the right part of the array.
 - Otherwise, discard the left part of the array.
 - Repeat the above until the value is found as the middle element, or the size of the array reduces to zero.

00	mid			n-1
	$\leq a[mid]$	a[mid]	$\geq a[mid]$	

Binary Search Example: Search for 3 in the sorted array

Binary Search

```
0 \qquad mid - 1 \qquad mid \qquad mid + 1 \qquad n - 1
\leq a[mid] \qquad a[mid] \qquad \geq a[mid]
```

```
lower \leftarrow 0
upper \leftarrow n-1
while \ lower \leq upper
mid \leftarrow (lower + upper)/2 \ // \ integer \ division
if \ x = a[mid]
return \ mid
else \ if \ x < a[mid]
upper \leftarrow mid-1
else \ // \ x > a[mid]
lower \leftarrow mid+1
return -1
```

- Binary Search
 - Worse case
 - When the size of the array becomes 1 or the value is not in the array.

No of Divisions	Size of Array
0	N
1	$\frac{N}{2}$
2	$\frac{N}{2^2}$
3	$\frac{N}{2^3}$
k	$\frac{N}{2^k}$

$$\frac{N}{2^k} = 1 \implies N = 2^k \implies \log_2(N) = k$$

• Time complexity is $O(\log_2 N)$.

Final Notes on Asymptotic Analysis Big-O Notations

- It helps in predicting how an algorithm will perform on larger input sizes.
- It is a useful tool for comparing the efficiency of different algorithms and selecting the best one for a specific problem.
- The limitation is that it does not provide an accurate running time of an algorithm.
 - Two algorithms with the same asymptotic complexity may have different actual running times.
 - It is only valid for sufficiently large input size.

Summary

- Algorithm Analysis
- Time Complexity
- Asymptotic Notations: Big-O notation
- Determine Time Complexity using big-O Notations
- Comparing Time Complexity: Linear Search vs Binary Search

References

- T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, *Introduction to Algorithms*. 3rd ed. MIT Press, 2009.
- S. N. Mohanty and P. K. Tripathy, Data Structure and Algorithms using C++: A Practical Implementation. John Wiley & Sons, 2021.
- L. Wittenberg, Data Structures and Algorithms in C++: Pocket Primer, Mercury Learning & Information, 2017.