

MAT1610 - Clase 3

Cálculo de límites usando las leyes de los límites

Diego De la Vega

Facultad de Matemáticas Pontificia Universidad Católica de Chile

11 de marzo del 2024

Objetivos

- > Aprender las leyes de los límites
- > Introducir la propiedad de sustitución directa

Suponga que los límites

$$\lim_{x \to a} f(x) \ \mathsf{y} \quad \lim_{x \to a} g(x)$$

Existen. Entonces,

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

Demostración: Si

$$\lim_{x \to a} f(x) = L \quad \mathsf{y} \quad \lim_{x \to a} g(x) = \mathsf{M}$$

Sea $\varepsilon > 0$, debemos encontrar un $\delta > 0$ tal que:

Si
$$0 < |x - a| < \delta$$
, entonces $|f(x) + g(x) - (L + M)| < \varepsilon$

Utilizando la desigualdad del triángulo podemos escribir

$$|f(x) + g(x) - (L+M)| \le |f(x) - L| + |g(x) - M|$$

Llevamos a cabo |f(x) + g(x) - (L + M)| menor que ε haciendo cada uno de los términos |f(x) - L| y |g(x) - M| menores que $\varepsilon/2$.

Dado que
$$\frac{\varepsilon}{2}>0$$
 y $\lim_{x\to a}f(x)=L$, existe un número $\delta_1>0$ tal que Si $0<|x-a|<\delta_1$, entonces $|f(x)-L|<\varepsilon/2$

Dado que $\frac{\varepsilon}{2} > 0$ y $\lim_{x \to a} g(x) = M$, existe un número $\delta_2 > 0$ tal que

Si
$$0 < |x - a| < \delta_2$$
, entonces $|g(x) - M| < \varepsilon/2$

Sea $\delta = \min(\delta_1, \delta_2)$. Note que

Si
$$0 < |x - a| < \delta$$
, entonces $0 < |x - a| < \delta_1$ y $0 < |x - a| < \delta_2$

Así que,
$$|f(x) - L| < \varepsilon/2$$
 y $|g(x) - M| < \varepsilon/2$

Finalmente,

$$|f(x) + g(x) - (L+M)| \le |f(x) - L| + |g(x) - M| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

En resumen,

Si
$$0 < |x - a| < \delta$$
, entonces $|f(x) + g(x) - (L + M)| < \varepsilon$

Así que, por definición de límite,

$$\lim_{x \to a} [f(x) + g(x)] = L + M$$

Suponga que los límites

$$\lim_{x \to a} f(x) \ \mathsf{y} \quad \lim_{x \to a} g(x)$$

Existen. Entonces,

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2)
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3)
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4)
$$\lim_{x \to a} [f(x) * g(x)] = \lim_{x \to a} f(x) * \lim_{x \to a} g(x)$$

5)
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \qquad \lim_{x \to a} g(x) \neq 0$$

Ejercicio: Determine

a)
$$\lim_{x \to -2} [f(x) + 5g(x)]$$

- b) $\lim_{x\to 1} [f(x)g(x)]$
- c) $\lim_{x \to 3} \frac{f(x)}{g(x)}$

Otras leyes de los límites

- 6) $\lim_{x\to a} [f(x)^n] = (\lim_{x\to a} f(x))^n$, donde n es un número entero positivo
- $7) \quad \lim_{x \to a} c = c$
- $8) \quad \lim_{x \to a} x = a$
- 9) $\lim_{x\to a} x^n = a^n$, donde n es un número es entero positivo
- 10) $\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$, donde n es un número es entero positivo (si n es par, se supone que a>0)
- $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}, \text{ donde } n \text{ es un número es entero positivo}$ (si n es par, se supone que $\lim_{x \to a} f(x) > 0$)

Otras leyes de los límites

Ejercicio: Evalúe los siguientes límites

$$\lim_{x \to 5} (2x^2 - 3x + 4)$$

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

Propiedad de sustitución directa

Si f es una función polinomial o una función racional y a está en el dominio de f, entonces

$$\lim_{x \to a} f(x) = f(a)$$

Ejercicio: Encuentre

$$\lim_{x \to -1} \frac{x^2 - 1}{x - 1}$$

Ejercicio: Encuentre

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

Si f(x) = g(x) cuando $x \ne a$, entonces $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$ siempre que el límite exista.

Ejercicio: Encuentre

$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2}$$

Otros ejercicios

Ejercicio: Determine $\lim_{x\to 0} |x|$

Ejercicio: Determine $\lim_{x\to 0} \frac{|x|}{x}$

Ejercicio: Determine $\lim_{x\to 4} f(x)$, con

$$f(x) = \begin{cases} \sqrt{x-4}, & x > 4 \\ 8-2x, & x < 4 \end{cases}$$

Conclusión

> Abordamos las leyes de los límites y propiedad de sustitución directa

Libro guía

➤ Págs. 99-104.