Київський національний університет імені Тараса Шевченка факультет радіофізики, електроніки і комп'ютерних систем

Курсова робота з курсу

Прикладна теорія цифрових автоматів

Варіант: 7511

Роботу виконав: студент 3 курсу КІ-СА Мургашов Гліб Едуардович

Науковий керівник:

кандидат фізико-математичних наук, доцент

Баужа Олександр Стасісович

3міст

туп	2
	туп

Вступ

В теорії цифрових пристроїв комбінаційною логікою (комбінаційною схемою) називають логіку функціонування пристроїв комбінаційного типу. У комбінаційних пристроїв стан виходу однозначно визначається набором вхідних сигналів.

Скінченний автомат — це пристрій, який складається з пам'яті та комбінаційної схеми. Від звичайної комбінаційної схеми він відрізняється тим, що його виходи залежать не лише від поданих входів, а й від входів в попередні моменти часу. При поданні однакових вхідних сигналів в різні моменти часу роботи автомата, вихідні сигнали можуть відрізнятися.

Так, говорять про те, що автомат має *стани*. В один момент, автомат перебуває в одному стані, в залежності від теперішнього стану і поданих вхідних сигналів, переходить в новий *стан*.

€ різні типи скінченних автоматів:

Автомат Мура — автомат, у якого вихідні сигнали залежать лише від стану автомата.

Рисунок 1. Автомат Мура

Автомат Мілі — автомат, у якого вихідні сигнали залежать від стану автомата та поданих вхідних сигналів.

Рисунок 2. Автомат Мілі

У даній роботі для побудови структурних схем перемикальних функцій та автомату Мура було використано Proteus 8 Professional (у подальшому — Proteus) — пакет програм для автоматизованого проектування електронних схем, що розробляється компанією Labcenter Electronics.

ПРАКТИЧНА ЧАСТИНА

Варіант: $7511_{10} = 1 1101 0101 0111_2$

0	1	0	1	0	1	0	1	1	1
h_{10}	h_9	h_8	h_7	h_6	h_5	h_4	h_3	h_2	h_1

1) Синтез комбінаційних схем

ТАБЛИЦЯ ІСТИННОСТІ ПЕРЕМИКАЛЬНИХ ФУНКЦІЙ

X4	X 3	X2	X 1	f_1	f_2	fз
0	0	0	0	1	1	1
0	0	0	1	h7=1	0	1
0	0	1	0	1	h7=1	1
0	0	1	1	0	1	0
0	1	0	0	х	0	0
0	1	0	1	0	0	0
0	1	1	0	1	h8=0	х
0	1	1	1	х	1	х
1	0	0	0	1	х	h4=0
1	0	0	1	0	х	0
1	0	1	0	0	1	0
1	0	1	1	h1=1	h9=1	0
1	1	0	0	1	0	х
1	1	0	1	h2=1	1	h5=1
1	1	1	0	h3=1	1	h6=0
1	1	1	1	1	h10=0	1

ЕЛЕМЕНТНИЙ БАЗИС

0	1	0	3АБО, 4І, НЕ

1.1) Синтез функції f1

Карта Карно функції f1:

f1		x_2x_1				
		00	01	11	10	
x_4x_3	00	1	1	0	1	
	01	X	0	X	1	
	11	1	1	1	1	
	10	1	0	1	0	

А для функції $\overline{f1}$:

<u>f1</u>		x_2x_1				
		00	01	11	10	
	00	0	0	1	0	
	01	Х	1	X	0	
x_4x_3	11	0	0	0	0	
	10	0	1	0	1	

$$\overline{f1} = (\overline{x_4}\overline{x_3}x_2x_1)V(\overline{x_4}x_3\overline{x_2}x_1)V(x_4\overline{x_3}\overline{x_2}x_1)V(x_4\overline{x_3}x_2\overline{x_1})$$

$$f1 = \overline{(\overline{x_4}\overline{x_3}x_2x_1)} \wedge \overline{(\overline{x_4}x_3\overline{x_2}x_1)} \wedge \overline{(\overline{x_4}\overline{x_3}\overline{x_2}x_1)} \wedge \overline{(\overline{x_4}\overline{x_3}\overline{x_2}\overline{x_1})}$$

Схема в ПЗ Proteus:

Входи / вихідний сигнал:

1.2) Синтез функції f2

Карта Карно функції f2:

f2		x_2x_1				
		00	01	11	10	
	00	1	0	1	1	
24 24	01	0	0	1	0	
x_4x_3	11	0	1	0	1	
	10	Х	Х	1	1	

f2		x_2x_1				
		00	01	11	10	
x_4x_3	00	1	(0)	1	1	
	01	0	(0)	1	0	
	11	0	1	(0)	1	
	10	Х	Х	1	1	

$$f2 = (\overline{x_3} \lor x_2 \lor x_1)(x_4 \lor x_2 \lor \overline{x_1})(x_4 \lor \overline{x_3} \lor x_1) \land \\ \land (\overline{x_4} \lor \overline{x_3} \lor \overline{x_2} \lor \overline{x_1}) = \\ (\overline{x_3} \lor x_2 \lor x_1)(x_4 \lor x_2 \lor \overline{x_1})(x_4 \lor \overline{x_3} \lor x_1) \land \\ \land (\overline{x_4} x_3 x_2 x_1)$$

Схема в ПЗ Proteus:

Входи / вихідний сигнал:

1.3) Синтез функції f3

Карта Карно функції f3:

4	£2		x_2x_1				
f3		00	01	11	10		
	00	1	1	0	1		
24 24	01	0	0	Х	Х		
x_4x_3	11	Х	1	1	0		
	10	0	0	0	0		

f3		x_2x_1				
		01	11	10		
00	1	1	0	1		
01	0	0	Х	Х		
11	Х	1	1	0		
10	0	0	0	0		
	01 11	01 0 11 x	00 01 00 1 1 01 0 0 11 x 1	00 01 11 00 1 1 0 01 0 0 x 11 x 1 1		

 $f3 = (x_4 \vee \overline{x_3})(\overline{x_4} \vee x_3)(x_3 \vee \overline{x_2} \vee \overline{x_1})(\overline{x_4} \vee \overline{x_2} \vee x_1)$

Схема в ПЗ Proteus:

Входи / вихідний сигнал:

2) Синтез операційного та керуючого автомату

ВИБІР ТИПУ КЕРУЮЧОГО АВТОМАТУ

h7	Тип автомату
1	Мура

ВИБІР АРИФМЕТИЧНОЇ ОПЕРАЦІЇ

h4	h3	h2	h1	Обчислення функції
0	1	1	1	D=A(B-1)+2C

ВИБІР ТИПУ ТРИГЕРУ

h6	h5	Тип тригеру
0	1	D

ВИБІР АЛГОРИТМУ

h 3	h 7	Тип алгоритму			
1	1	Алгоритм №4			

Алгоритм №4: Множення з старших розрядів множника та зсувом множеного вправо при чому сума часткових добутків залишається нерухомою.

2.1) Синтез керуючого автомата

Змістовна схема алгоритму для керуючого автомата:

Синтез керуючого автомата:

Змістовна таблиця кодування:

Код	Зміст	Примітки
Y1	RG3 = A	Запис числа A в старші розряди регістру RGA
Y2	RGB = B	Запис числа A в pericтp RGB
Y3	RGC = C	Запис числа С в регістр RGC
Y4	RG0 = 0	Заповнення RG0 нулями
Y5	RGN = RG0	Запис RGO в RGN
Y6	RGB = RGB - 1	Зберігання в RGB значення «В -1»
Y7	RGC = RGC << 1	Зберігання в RGC значення «2*C»
Y8	RGA = RGA >> 1	Зсув RGA вправо
Y9	RG0 = RG0 + RGA	
Y10	RGB = RGB << 1	Зсув RGB вліво
Y11	RG0 = RG0 + RGC	RG0 = A(B-1) + 2C
X1	RGB == 0	Регістр RGB порожній? 1 – ТАК, 0 – НІ
X2	RGB(1) == 1	Старший біт RGB є 1? 1 — ТАК, 0 - HI

Граф схема переходів:

Пряма таблиця переходів-виходів автомата Мура

	mdn melegwellis			
<u>Початковий стан</u> <u>Sm</u>	Y (вихідний сигнал,що виробляється при переході	<u>Стан переходу Sk</u>	<u>Умова переходу</u>	
a_0	-	a_1	<u>1</u>	
a_1	y1,y2,y3,y4	a_2	<u>1</u>	
a	y5,y6,y7	a_3	$\overline{x_1}$	
a_2		a_6	X_1	
	y8	a_4	X_2	
a_3		a_5	$\overline{X_2}$	
a_4	у9	a_5	1	
a	v10	a_3	$\overline{x_1}$	
a_5	y10	a_6	X_1	
a_6	y11	a_7	1	
a_7	y5	a_0	1	

Кількість тригерів для кодування станів $m=\log_2 8 \ [=3.$ Потрібно рівно 3 D-тригера.

Кодування станів автомата:

Кодуємо стани автомата алгоритмом для D-тригерів:

 N_i —кількість входжень в вершину-стан a_i .

Сортуємо числа по спаданню, вершину з найбільшим N кодуємо «0000»; наступні кодом з однією одиницею: «001», «010»... «100»;

потім з двома: «110», «011» і т.д.

N_0	=	1,
N_1	=	1,
N_2	=	1,
<u>N</u> ₃	=	<u>2,</u>
N_4	=	1,
<u>N₅</u>	=	<u>2,</u>
<u>N</u> 6	=	<u>2,</u>
N_	=	1

Структурна таблиця переходів-виходів автомата Мура

<u>Початковий</u> <u>стан</u> <u>Sm</u>	к(<u>Sm</u>)	Y (вихідний сигнал,що виробляється при переході	<u>Стан</u> <u>переходу</u> <u>Sk</u>	<u>K(Sk)</u>	Умова переходу	<u>Φ3</u>
a_0	100	1.1	a_1	110	1	D_1D_2
a_1	110	y1,y2,y3,y4	a_2	011	1	D_2D_3
a	011	y5,y6,y7	a_3	000	$\overline{x_1}$	_
a_2			a_6	010	X_1	D_2
a	000	y8	a_4	101	x_2	D_1D_3
a_3			a_{5}	001	$\overline{X_2}$	D_3
a_4	101	y9	a_5	001	1	D_3
<i>a</i>	001	y10	a_3	000	$\overline{x_1}$	1
a_5			a_6	010	X ₁	D_2
a_6	010	y11	a_7	111	1	$D_1D_2D_3$
a_7	111	y5	a_0	100	1	D_1

Система рівнянь переходів:

$$D_1 = a_0 \ V \ a_3 x_2 \ V \ a_6 V \ a_7$$

$$D_2 = a_0 V a_1 V a_2 x_1 V a_5 x_1 V a_6 = a_0 V a_1 V a_6 \vee \overline{x_1 V (a_2 \vee a_5)}$$

$$D_3 = a_1 V a_3 V a_4 V a_6$$

Система рівнянь виходів:

$$y1 = y2 = y3 = y4 = a_1$$
,

$$y6 = y7 = a_2$$
,

$$y8 = a_3$$
,

$$y9 = a_4$$
,

$$y10 = a_5$$
,

$$y11 = a_6$$
.

$$y5 = a_7$$
,

Схема керуючого автомату

Схема загалом:

Входи:

Функції збудження:

Дешифратор станів:

Вихідні сигнали і графік:

2.2) Операційний автомат

Входи:

Регістри 74178, які я використовував для збереження чисел, проміжних данних і відповіді, мають вхід ССК, по задньому фронту, тому поставлено інвертор U12:D, бо D-тригери, що використовувались в керуючому автоматі мають вхід ССК по передньому фронту.

Регістр RGA(), його заповнення при Y1 = 1 та зсув при Y8 = 1

"В" подається на мультиплексори U20, U21, які заповняють регістр RGB початковим значення «В» (при Y2 = 1), або значенням "RGB - 1" (при Y6 = 1)

Виходи мультиплексора *74157* приєднані до входів регістру RGB(1-6); Також тут перевіряються умови "X1" і "X2";

Y2 = 1: "RGB = B"

Y6 = 1: "RGB = RGB - 1"

Y10 = 1: "RGB << 1"

X1 = 1: "RGB == 0"

X2 = 1: "Старший біт RGB == 1"

Y3 = 1: "RGC = C"

Y7 = 1: "RGC << 1(RGC = RGC * 2)"

Виходи головних суматорів *74283* (U15, U17, U16), мультиплексори U19 і U22 і сам регістр RG0(1-12).

RGO = ["0" АБО RGO + (RGC/RGA)]

Y4 = 1: RGO = 0

Y9 = 1, Y11 = 0: RGO = RGO + RGA

Y11 = 1: RGO = RGO + RGC

Входи суматорів U15, U17, U16:

Мультиплексори U28(27,29), які при Y11 = 1: RGO = RGO + RGC при Y11 = 0: RGO = RGO + RGA

Y5 = 1: RGN = RGO; Perictp RGN(1-12), який зберігає відповідь і виводить в «D»

Схема операційного автомата загалом:

2.3) Схема ОА і КА разом:

Перевірка:

 $\mathsf{A=001011}_2=\mathsf{11}_{10}\text{,}$

 $\mathbf{B=011101}_{2}=\mathbf{29}_{10}\text{,}$

 $C = 101011_2 = 43_{10}$,

D = A (B - 1) + 2 C = 308 + 86 = $394_{10} = 110001010_2$

Висновки

В курсовій роботі було побудовано комбінаційні схеми за данною таблицею істинності функцій. Схеми побудовано в заданому базисі. Для мінімізації та побудови було використано карти Карно та елементарні правила де-Моргана. Були виведені відповідні залежності виходів від входів та перевірено коректність їх побудови.

Було розроблено алгоритм для підрахунку числа, заданого певним шаблоном арифметичних дій. За цим алгоритмом побудовано блок-схему, граф-схему, структурну таблицю та синтезовано керуючий автомат Мура.

За розробленим алгоритмом було і побудовано відповідний операційний автомат для виконання заданих арифметичних дій. Автомати рознесено в два окремих блоки, які потім були з'єднанні разом.

Робота автоматів перевірено, обрахований результат співпадає з результатом роботи схеми.