A Semantic Similarity-Based Perspective of Affect Lexicons for Sentiment Analysis

Oscar Araque*
Ganggao Zhu
Carlos A. Iglesias

Universidad Politécnica de Madrid Intelligent Systems Group

*o.araque@upm.es

SIMON: SIMilarity-based sentiment projectiON

- Introduction
- Background
 - Sentiment Lexicons
 - Knowledge-based similarity: WordNet
 - Corpus-based similarity: embeddings
- Proposed model
 - Semantic similarity
 - Embedding representation
- Evaluation
 - Semantic feature extraction
 - Sentiment classification evaluation
 - Vocabulary selection
- Conclusions and future work

- Introduction
- Background
 - Sentiment Lexicons
 - Knowledge-based similarity: WordNet
 - Corpus-based similarity: embeddings
- Proposed model
 - Semantic similarity
 - Embedding representation
- Evaluation
 - Semantic feature extraction
 - Sentiment classification evaluation
 - Vocabulary selection
- Conclusions and future work

Introduction

- In Sentiment Analysis (SA), sentiment lexicons are frequently used
 - Lexicons represent direct subjective sentiment signals
 - A resource that is easy to incorporate to our systems

- Lexicons can be:
 - Manually or automatically generated
 - Of general scope or adapted to a domain
 - Trade-off between coverage and precision

Introduction: Proposal

- We propose to use a sentiment lexicon in a novel way
- Instead of keyword matching, we propose a similarity-based projection over selected sentiment words
- The representation of a text is done by how similar input words are to lexicon words

- Introduction
- Background
 - Sentiment Lexicons
 - Knowledge-based similarity: WordNet
 - Corpus-based similarity: embeddings
- Proposed model
 - Semantic similarity
 - Embedding representation
- Evaluation
 - Semantic feature extraction
 - Sentiment classification evaluation
 - Vocabulary selection
- Conclusions and future work

Background: sentiment lexicons

- Typically, lexicons are used through keyword matching or Bag-of-words approaches
- Keyword-matching example:

Background: Knowledge-based similarity

- These methods measure the similarity using an ontology
- There are different similarity measures, based on the path between words in the taxonomy

Background: Corpus-based similarity

- Another popular source of information are word embeddings
 - Unsupervised training from a lot of text (corpus)
 - Capture language regularities, semantics
 - Many natural language information is contained in embeddings
- Information is captured by word co-occurrence rather that by manual annotation

Background: word embeddings

 An embedding model can be considered as a mapping between a word and a vector in a n-dimensional space

 Similarity between words can be computed using the dot product

- Introduction
- Background
 - Sentiment Lexicons
 - Knowledge-based similarity: WordNet
 - Corpus-based similarity: embeddings

Proposed model

- Semantic similarity
- Embedding representation
- Evaluation
 - Semantic feature extraction
 - Sentiment classification evaluation
 - Vocabulary selection
- Conclusions and future work

Proposed model: Lexicon words projection

- A word can be represented as a vector with the values of the similarities to a word selection
- E.g., projection over {good, bad}:

Proposed model: Lexicons words projection

If we consider a higher number of lexicon words, a 2D visualization could be:

Proposed model: Features computation

	l_1	•••	l_j	•••	l_L					
w_1	$sim(w_1, l_1)$		$\overline{\sin(w_1,l_j)}$		$sim(w_1, l_L)$					
$\overset{:}{w_i}$	$sim(w_i, l_1)$		$\operatorname{sim}(w_i, l_j)$		$sim(w_i, l_L)$					
$\overset{:}{w_I}$	$\sin(w_I, l_1)$		$sim(w_I, l_j)$		$sim(w_I, l_L)$					
	Pooling									
	p_1	•••	p_{j}	•••	p_L					

Proposed model: architecture

- Introduction
- Background
 - Sentiment Lexicons
 - Knowledge-based similarity: WordNet
 - Corpus-based similarity: embeddings
- Proposed model
 - Semantic similarity
 - Embedding representation
- Evaluation
 - Word selection
 - Sentiment classification evaluation
 - Cross-dataset evaluation
- Conclusions and future work

Evaluation:Word selection

- Distribution is consistent on all datasets
- Selection over 25% of total words

Evaluation: Sentiment analysis

- 7 datasets and 4 lexicons
- For lexicon word keyword matching:

Dataset	SemEval13	SemEval14	Vader	STS	IMDB	PL04	PL05
Liu	76.53	73.36	80.25	67.78	73.49	68.33	61.98
${\bf SentiWordNet}$	69.88	68.36	67.21	50.00	66.24	64.73	55.64
ANEW	71.75	69.26	66.43	54.17	66.41	65.96	54.24
AFINN	80.55	78.76	87.22	67.10	73.58	68.90	60.94

Evaluation: Sentiment analysis

For embedding-based similarity

Dataset	SemEval13	SemEval14	Vader	STS	IMDB	PL04	Pl05	Rank
W2V/D2V	84.54	84.14	88.02	83.75	88.53	88.65	76.43	3.7
Liu	79.61	78.75	85.48	78.69	82.13	84.02	74.15	7.1
Liu + W2V/D2V	87.09	86.48	90.39	82.60	88.99	89.45	78.25	1.6
SentiWordNet	76.62	74.31	84.77	79.15	81.66	80.11	73.95	8.3
SentiWordNet+W2V/D2V	82.45	81.29	87.66	81.72	88.82	88.03	78.26	4.3
ANEW	79.39	78.75	86.91	76.60	79.42	76.66	74.21	7.8
$\rm ANEW+W2V/D2V$	86.30	85.65	90.08	77.54	88.88	88.09	78.29	3.6
AFINN	81.53	79.17	86.13	80.60	81.99	82.27	74.16	6.4
$\rm AFINN + W2V/D2V$	86.68	85.92	90.26	83.29	88.97	88.84	78.09	2.3

Evaluation: Sentiment analysis

For WordNet-based similarity (WPath)

Dataset	SemEval13	SemEval14	Vader	STS	IMDB	PL04	Pl05	Rank
W2V/D2V	84.64	84.11	88.19	83.75	88.55	88.75	76.25	2.7
Liu	56.45	51.55	72.10	62.79	72.90	68.31	57.47	7.7
$\mathrm{Liu}+\mathrm{W2V/D2V}$	84.31	83.00	88.44	83.07	88.51	88.87	75.98	4.1
SentiWordNet	66.49	61.18	73.23	62.68	71.47	72.23	56.19	7.4
SentiWordNet + W2V/D2V	85.06	83.75	88.22	83.29	88.52	88.78	76.39	2.7
ANEW	63.11	54.84	71.88	59.75	71.50	68.50	56.61	8.3
$\mathrm{ANEW} + \mathrm{W2V/D2V}$	84.31	83.08	87.58	83.58	88.58	88.85	75.99	3.5
AFINN	66.97	58.56	75.80	66.28	72.61	69.05	56.76	6.6
$\rm AFINN + W2V/D2V$	84.83	83.25	88.95	83.64	88.54	89.23	76.26	2

Evaluation: Cross-dataset experiments

- If performing in a new dataset, how can we predict the performance of our method?
- We define the number of common words between two sets of selected words

Evaluation: Cross-dataset experiments

- Performing a Least Square analysis between:
 - Difference of performance across two datasets
 - Number of common words across two word selections
- $Arr R^2$ values are:
 - \square Liu: 0.93 (p < 0.01)
 - SentiWordNet: 0.94 (p < 0.01)
 - \square ANEW: 0.92 (p < 0.01)
 - \square AFINN: 0.89 (p < 0.01)
- Using this metric, the difference in performance in a new dataset can be estimated

Evaluation: Additional explorations

- The idea to the check is similar lexicons yield similar performances using SIMON
- We have defined 4 metrics that measure the similarity/distance between two lexi
- Pearson correlation r = -0.71 (p < 0.01)
 - Distance between two selection of words
 - Cross-dataset performance
- We can have a sense of the performance of a new lexicon by the distance to another studied lexicons

- Introduction
- Background
 - Sentiment Lexicons
 - Knowledge-based similarity: WordNet
 - Corpus-based similarity: embeddings
- Proposed model
 - Semantic similarity
 - Embedding representation
- Evaluation
 - Word selection
 - Sentiment classification evaluation
 - Cross-dataset evaluation
- Conclusions and future work

Conclusions

- Proposed SIMON feature extractor is useful for SA
 - Stronger than word-matching approach
- In comparison, embeddings similarity is stronger to WordNet
- It is possible to have a sense of performance over new datasets/lexicons

Current and Future work

- SIMON has been successfully used in other tasks
 - Insomnia detection in Twitter
 - Categorization of radical texts
- SIMON can be extended to work in
 - Emotion analysis
 - A multilingual environment
 - Detection of radicalism

Implementation

- SIMON is integrated in gsitk
- Can be used in a scikit-learn Pipeline, which facilitates replication

Thanks!

Oscar Araque o.araque@upm.es