Class 08: Unsupervised Learning

Nathaniel Lightle (A16669288)

Outline

Today we will apply the machine learning methods we introduced in the last class on breast cancer biopsy data from fine needle aspiration (FNA).

Data input

The data is supplied in CSV format

Exploratory Data analysis

Preparing the data

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names = 1)
head(wisc.df)</pre>
```

	diagnosis radius	s_mean	texture_mean	<pre>perimeter_mean</pre>	area_mean	
842302	M	17.99	10.38	122.80	1001.0	
842517	M	20.57	17.77	132.90	1326.0	
84300903	M	19.69	21.25	130.00	1203.0	
84348301	M	11.42	20.38	77.58	386.1	
84358402	M	20.29	14.34	135.10	1297.0	
843786	М	12.45	15.70	82.57	477.1	
	${\tt smoothness_mean}$	compa	ctness_mean c	oncavity_mean co	oncave.point	s_mean
842302	0.11840		0.27760	0.3001	0	.14710
842517	0.08474		0.07864	0.0869	O	.07017
84300903	0.10960		0.15990	0.1974	O	.12790
84348301	0.14250		0.28390	0.2414	O	.10520

84358402	0.1003	0 0	.13280	0.1980)	0.10430
843786	0.1278	о с).17000	0.1578	1	0.08089
	symmetry_mean	fractal_dime	ension_mean	radius_se	texture_se	perimeter_se
842302	0.2419		0.07871	1.0950	0.9053	8.589
842517	0.1812		0.05667	0.5435	0.7339	3.398
84300903	0.2069		0.05999	0.7456	0.7869	4.585
84348301	0.2597		0.09744	0.4956	1.1560	3.445
84358402	0.1809		0.05883	0.7572	0.7813	5.438
843786	0.2087		0.07613	0.3345	0.8902	2.217
	area_se smooth	ness_se comp	oactness_se	concavity_	se concave	.points_se
842302	153.40 0	.006399	0.04904	0.053	73	0.01587
842517	74.08 0	.005225	0.01308	0.018	60	0.01340
84300903	94.03 0	.006150	0.04006	0.038	32	0.02058
84348301	27.23 0	.009110	0.07458	0.056	61	0.01867
84358402	94.44 0	.011490	0.02461	0.056	88	0.01885
843786	27.19 0	.007510	0.03345	0.036	72	0.01137
	<pre>symmetry_se fr</pre>	actal_dimens	sion_se rad:	ius_worst t	exture_wors	st
842302	0.03003	0.	006193	25.38	17.3	33
842517	0.01389	0.	003532	24.99	23.4	
84300903	0.02250	0.	004571	23.57	25.5	53
84348301	0.05963	0.	009208	14.91	26.5	50
84358402	0.01756		005115	22.54	16.6	
843786	0.02165		005082	15.47	23.7	
	<pre>perimeter_wors</pre>				-	
842302	184.6			0.1622		6656
842517	158.8			0.1238		1866
84300903	152.5			0.1444		1245
84348301	98.8			0.2098		3663
84358402	152.2			0.1374		2050
843786	103.4			0.1791		5249
	concavity_wors	-	_	• • •		
842302	0.711		0.2654		4601	
842517	0.241		0.1860		2750	
84300903	0.450		0.2430		3613	
84348301	0.686		0.2575		6638	
84358402	0.400		0.1625		2364	
843786	0.535		0.1741	0.	3985	
	fractal_dimens	-				
842302		0.11890				
842517		0.08902				
84300903		0.08758				
84348301		0.17300				
84358402		0.07678				

843786 0.12440

Removing the diagnosis

```
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

	radius_mean te	exture_mean	perimete	er_mean	area_mean	smoothr	ness_mean
842302	17.99	10.38	_	122.80	1001.0	1	0.11840
842517	20.57	17.77		132.90	1326.0	1	0.08474
84300903	19.69	21.25		130.00	1203.0	1	0.10960
84348301	11.42	20.38		77.58	386.1		0.14250
84358402	20.29	14.34		135.10	1297.0	1	0.10030
843786	12.45	15.70		82.57	477.1		0.12780
	compactness_me	ean concavit	y_mean o	concave.	points_me	an symme	etry_mean
842302	0.277	760	0.3001		0.147	10	0.2419
842517	0.078	364	0.0869		0.070	17	0.1812
84300903	0.159	990	0.1974		0.127	90	0.2069
84348301	0.283	390	0.2414		0.105	20	0.2597
84358402	0.132	280	0.1980		0.104	.30	0.1809
843786	0.170	000	0.1578		0.080	89	0.2087
	fractal_dimens	sion_mean ra		texture	e_se perim	eter_se	area_se
842302		0.07871	1.0950	0.9	9053	8.589	153.40
842517		0.05667	0.5435	0.7	'339	3.398	74.08
84300903		0.05999	0.7456	0.7	'869	4.585	94.03
84348301		0.09744	0.4956	1.1	.560	3.445	27.23
84358402		0.05883	0.7572	0.7	'813	5.438	94.44
843786		0.07613	0.3345	0.8	3902	2.217	27.19
	smoothness_se	compactness	s_se con	cavity_s	se concave	.points_	se
842302	0.006399	0.04	1904	0.0537	'3	0.015	87
842517	0.005225	0.01	1308	0.0186	80	0.013	340
84300903	0.006150	0.04	1006	0.0383	32	0.020)58
84348301	0.009110	0.07	458	0.0566	31	0.018	367
84358402	0.011490	0.02	2461	0.0568	88	0.018	885
843786	0.007510	0.03	3345	0.0367	'2	0.011	.37
	symmetry_se fr	_	_	radius_	worst tex	ture_wor	rst
842302	0.03003	(0.006193		25.38	17.	.33
842517	0.01389	(0.003532		24.99	23.	41
84300903	0.02250	(0.004571		23.57	25.	
84348301	0.05963	(0.009208		14.91	26.	50
84358402	0.01756	(0.005115		22.54	16.	67
843786	0.02165	(0.005082		15.47	23.	75

	perimeter_worst	${\tt area_worst}$	smoothness	s_worst	compactnes	s_worst
842302	184.60	2019.0		0.1622		0.6656
842517	158.80	1956.0		0.1238		0.1866
84300903	152.50	1709.0		0.1444		0.4245
84348301	98.87	567.7		0.2098		0.8663
84358402	152.20	1575.0		0.1374		0.2050
843786	103.40	741.6		0.1791		0.5249
	concavity_worst	concave.po	ints_worst	symmeti	ry_worst	
842302	0.7119		0.2654		0.4601	
842517	0.2416		0.1860		0.2750	
84300903	0.4504		0.2430		0.3613	
84348301	0.6869		0.2575		0.6638	
84358402	0.4000		0.1625		0.2364	
843786	0.5355		0.1741		0.3985	
	fractal_dimension	on_worst				
842302		0.11890				
842517		0.08902				
84300903		0.08758				
84348301		0.17300				
84358402		0.07678				
843786		0.12440				

Making the diagnosis into a factor

```
diagnosis <- as.factor( wisc.df[,1])
head(diagnosis)</pre>
```

[1] M M M M M M M Levels: B M

Exploratory Data Analysis

Q1. How many observations are in this dataset?

```
dim(wisc.data)
```

[1] 569 30

There are 569 observations in this dataset.

Q2. How many of the observations have a malignant diagnosis?

```
NROW(diagnosis[diagnosis == "M"])
```

[1] 212

There are 212 malignant diagnosis

Q3. How many variables/features in the data are suffixed with _mean?

```
length(grep("_mean", colnames(wisc.data)))
```

[1] 10

There are 10 variables/features in the data suffixed with _mean

2. Principal Component Analysis

Performing PCA

Checking to see if scaling is necessary

```
colMeans(wisc.data)
```

texture_mean	radius_mean
1.928965e+01	1.412729e+01
${\tt smoothness_mean}$	area_mean
9.636028e-02	6.548891e+02
concave.points_mean	concavity_mean
4.891915e-02	8.879932e-02
radius_se	fractal_dimension_mean
4.051721e-01	6.279761e-02
area_se	perimeter_se
4.033708e+01	2.866059e+00
concavity_se	compactness_se
3.189372e-02	2.547814e-02
fractal_dimension_se	symmetry_se
3.794904e-03	2.054230e-02
	1.928965e+01 smoothness_mean 9.636028e-02 concave.points_mean 4.891915e-02 radius_se 4.051721e-01 area_se 4.033708e+01 concavity_se 3.189372e-02 fractal_dimension_se

```
texture_worst
                             perimeter_worst
                                                           area_worst
        2.567722e+01
                                1.072612e+02
                                                         8.805831e+02
    smoothness_worst
                           compactness_worst
                                                      concavity_worst
        1.323686e-01
                                2.542650e-01
                                                         2.721885e-01
concave.points_worst
                              symmetry_worst fractal_dimension_worst
        1.146062e-01
                                2.900756e-01
                                                         8.394582e-02
```

apply(wisc.data, 2, sd)

perimeter_mean	texture_mean	radius_mean
2.429898e+01	4.301036e+00	3.524049e+00
compactness_mean	${\tt smoothness_mean}$	area_mean
5.281276e-02	1.406413e-02	3.519141e+02
symmetry_mean	concave.points_mean	concavity_mean
2.741428e-02	3.880284e-02	7.971981e-02
texture_se	radius_se	fractal_dimension_mean
5.516484e-01	2.773127e-01	7.060363e-03
smoothness_se	area_se	perimeter_se
3.002518e-03	4.549101e+01	2.021855e+00
concave.points_se	concavity_se	compactness_se
6.170285e-03	3.018606e-02	1.790818e-02
radius_worst	fractal_dimension_se	symmetry_se
4.833242e+00	2.646071e-03	8.266372e-03
area_worst	perimeter_worst	texture_worst
5.693570e+02	3.360254e+01	6.146258e+00
concavity_worst	compactness_worst	${\tt smoothness_worst}$
2.086243e-01	1.573365e-01	2.283243e-02
${\tt fractal_dimension_worst}$	symmetry_worst	concave.points_worst
1.806127e-02	6.186747e-02	6.573234e-02

We need to scale our input data before PCA as one of the columns are measured in terms of very different units with different means and different variances. I'm going to set scale = TRUE to fix this.

```
wisc.pr<-prcomp(wisc.data, scale = TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172

```
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                   PC18
                                                           PC19
                                                                   PC20
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
Cumulative Proportion
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion
                       1.00000 1.00000
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

44.27% of the original variance is captured by PC1.

- Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?
- 3 PCs are required to describe at least 70% of the original variance in the data.
 - Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?
- 7 PCs are required to describe at least 90% of the original variance in the data.

Interpreting PCA Results

Plotting it!

biplot(wisc.pr)

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

Every data point is negative in this plot. It's difficult to understand because it's so crowded and you can't make out any individual data point.

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=diagnosis)
```


Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

plot(wisc.pr\$x[,1], wisc.pr\$x[,3], col=diagnosis)

The first plot is better because the two groups are more clearly defined. ggPlot time!

```
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis
library(ggplot2)

ggplot(df) +
   aes (PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```


Variance Explained

Optional Stuff


```
#install.packages("factoextra")
library(factoextra)
```

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

```
fviz_eig(wisc.pr, addlabels = TRUE)
```


Communicating PCA Results

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

wisc.pr\$rotation[,1]

perimeter_mean	texture_mean	radius_mean
-0.22753729	-0.10372458	-0.21890244
compactness_mean	${\tt smoothness_mean}$	area_mean
-0.23928535	-0.14258969	-0.22099499
symmetry_mean	concave.points_mean	concavity_mean
-0.13816696	-0.26085376	-0.25840048
texture_se	radius_se	fractal_dimension_mean
-0.01742803	-0.20597878	-0.06436335
smoothness_se	area_se	perimeter_se
-0.01453145	-0.20286964	-0.21132592
concave.points_se	concavity_se	compactness_se
-0.18341740	-0.15358979	-0.17039345
radius_worst	fractal_dimension_se	symmetry_se
-0.22799663	-0.10256832	-0.04249842

texture_worst	perimeter_worst	area_worst
-0.10446933	-0.23663968	-0.22487053
smoothness_worst	compactness_worst	concavity_worst
-0.12795256	-0.21009588	-0.22876753
concave.points_worst	symmetry_worst	${\tt fractal_dimension_worst}$
-0.25088597	-0.12290456	-0.13178394

The component of the loading vector for concave.points_mean is -0.26085376.

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

```
summary(wisc.pr)
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                 PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                   PC18
                                                           PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
Cumulative Proportion
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion
                       1.00000 1.00000
```

5 PCs are required to explain 80% of the variance of the data.

3. Hierarchical Clustering

Scaling the data

```
data.scaled <- scale(wisc.data)
Finding Euclidian Distance
  data.dist <- dist(data.scaled)
Creating a cluster
  wisc.hclust <- hclust(data.dist, method = "complete" )
  plot(wisc.hclust)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "complete")

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=19, col = "red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

At height 19 there are 4 clusters.

Selecting number of clusters

```
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)
table(wisc.hclust.clusters, diagnosis)</pre>
```

diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

I can't. 4 clusters seems to be the best match.

Using Different Methods

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

ward.D2 gives my favorite results because it's the easiest to look at. It's the best organized.

5. Combining Methods

This approach will take not original data, but our PCA results and work with them.

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method = "ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

Generating 2 cluster groups from this helust object

```
grps <- cutree(wisc.pr.hclust, k=2)
table(grps)</pre>
```


plot(wisc.pr\$x[,1], wisc.pr\$x[,2], col=diagnosis)

Making the colors match up!

```
g <- as.factor(grps)
levels(g)

[1] "1" "2"

g <- relevel(g,2)
levels(g)

[1] "2" "1"

plot(wisc.pr$x[,1:2], col=g)</pre>
```


Using more PCs to try and more accurately predict diagnosis!

Q15. How well does the newly created model with four clusters separate out the two diagnoses?

The newly created model separates out the two diagnosis pretty well. Not quite as well as the other model, but still good.

END