Họ và tên: Nguyễn Minh Tiến

MSSV: 20522010

STT: 88

Mã lớp: IS211.N11

BÀI TẬP CHƯƠNG 3

Bệnh Viện PV đang vận hành 3 phòng khám đa khoa ở ba thành phố lớn: HCM, Hà Nội và Huế. Cho biết lược đồ CSDL quan hệ toàn cục "Quản lý phòng khám" của bệnh viện PV như sau:

PhongKham(MaPK, TenPK, ThanhPho, DienThoai)

Tân từ: Mỗi phòng khám có mã phòng khám duy nhất, tên phòng khám, tên thành phố, điện thoại. **BenhNhan**(MaBN, TenBN, GioiTinh, DiaChi, DienThoai, NgaySinh)

Tân từ: Mỗi bệnh nhân có mã bệnh nhân duy nhất, tên bệnh nhân, giới tính, địa chỉ, điện thoại và ngày sinh của bệnh nhân.

BacSy(MaBS, TenBS, TenDangNhap, MatKhau)

Tân từ: Mỗi Bác sỹ có mã bác sỹ duy nhất, tên bác sỹ, tên đăng nhập, mật khẩu. Mỗi bác sỹ có thể khám bệnh cho nhiều bệnh nhân ở nhiều phòng khám khác nhau.

KhamBenh(MaKB, MaBN, MaBS, MaPK, YeuCauKham, NgayKham, KetLuan)

Tân từ: Bệnh nhân mỗi lần đến khám bệnh có mã khám bệnh duy nhất, mã bệnh nhân, mã bác sỹ, mã phòng khám, yêu cầu khám, ngày khám, kết luận.

Câu 1: Thiết kế các phân mảnh ngang chính cho lược đồ **PhongKham** theo thành phố thỏa mãn các yêu cầu trên.

- a. Dùng giải thuật COM_MIN, tính Pr' thỏa tối tiểu và đầy đủ?
- b. Dùng giải thuật PHORIZONTAL, thiết kế phân mảnh ngang chính cho quan hệ **PhongKham**.

Trả lời

a. Dùng giải thuật COM_MIN, tính Pr' thỏa tối tiểu và đầy đủ?

Đầu tiên, ta xác định các vị từ đơn giản được sử dụng để phân hoạch **PhongKham** là:

 p_1 : ThanhPho = "HCM"

 p_2 : ThanhPho = "Hà Nội"

 p_3 : ThanhPho = "Huế"

 $\Rightarrow Ta \ c\'o: Pr = \{p_1, p_2, p_3\}$

Áp dụng thuật toán COM-MIN: Ta xét được rằng p_1 và p_2 có phân mảnh quan hệ PhongKham, p_3 không thoả điều kiện cho nên không phân mảnh.

 \Rightarrow Tập các vị từ tối thiểu và đầy đủ là: $Pr' = \{p_1, p_2\}$.

b. Dùng giải thuật PHORIZONTAL, thiết kế phân mảnh ngang chính cho quan hệ **PhongKham** Từ kết quả trên ta có các vị từ tối thiểu là:

 m_1 : ThanhPho = "HCM" m_2 : ThanhPho = "Hà Nội" m_3 : ThanhPho = "Huế"

Áp dụng thuật toán PHORIZONTAL, các phân mảnh ngang chính tương ứng là:

$$\begin{split} & PhongKham1 = \sigma_{ThanhPho \,=\, "HCM"} PhongKham \\ & PhongKham2 = \sigma_{ThanhPho \,=\, "H\grave{a}\,N\hat{\rho}i"} PhongKham \\ & PhongKham3 = \sigma_{ThanhPho \,=\, "Hu\'e"} PhongKham \end{split}$$

Câu 2: Biết rằng quan hệ **BacSy** được nhân bản ở tất cả các phòng khám. Hãy thiết kế phân mảnh cho các quan hệ **KhamBenh**, **BenhNhan** cho 3 phòng khám trên.

Trả lời

Phân mảnh quan hệ **KhamBenh**:

KhamBenh1 = KhamBenh |><_{MaPK = MaPK}PhongKham1

KhamBenh2 = KhamBenh |><_{MaPK = MaPK}PhongKham2

 $KhamBenh3 = KhamBenh \mid > <_{MaPK = MaPK} PhongKham3$

Phân mảnh quan hệ **BenhNhan**:

 $BenhNhan1 = BenhNhan \mid > <_{MaBN = MaBN} KhamBenh1$

 $BenhNhan2 = BenhNhan \mid > <_{MaBN \ = \ MaBN} KhamBenh2$

BenhNhan3 = BenhNhan $|><_{MaBN = MaBN}$ KhamBenh3

Câu 3: Cho tập $Q = \{q1, q2, q3, q4, q5\}$ các truy vấn, tập $A = \{A1, A2, A3, A4, A5\}$ lần lượt là các thuộc tính TenBN, GioiTinh, DiaChi, DienThoai, NgaySinh của quan hệ:

 $\textbf{BenhNhan}(\underline{MaBN}, TenBN, GioiTinh, DiaChi, DienThoai, NgaySinh).$

Tập S ={S1, S2, S3} các vị trí (sites) trong hệ CSDLPT. Giả sử số truy xuất đến các cặp thuộc tính cho mỗi ứng dụng tại các vị trí: refi(qj)=1; với mọi i, j.

Ma trận truy vấn sử dụng thuộc tính (use) và ma trận tần số sử dụng truy vấn (acc) tại các vị trí như sau:

	A1	A2	A3	A4	A5
q1	1	0	0	1	0
q2	1	1	0	0	1
q3	0	1	1	0	0
q4	0	1	0	0	1
q5	1	0	0	1	1

Ma	trân	1156
IVIA	пап	usc

	S1	S2	S3
q1	3	7	0
q2	2	0	1
q3	15	10	0
q4	0	0	5
q5	20	10	0

Ma trận acc

- a. Tính ma trận AA.
- b. Sử dụng thuật toán BEA tính ma trận CA.
- c. Sử dụng thuật toán Partition để tìm ra các phân mảnh dọc của quan hệ BenhNhan.

<u>Trả lời</u>

a. Ma trận ái lực thuộc tính AA là:

AA	A1	A2	A3	A4	A5
A1	43	3	0	40	33
A2	3	33	25	0	8
A3	0	25	25	0	0
A4	40	0	0	40	30
A5	33	8	0	30	38

b. Ma trận Bond giữa các thuộc tính là:

Bond	A1	A2	A3	A4	A5
A1		492	75	4310	3897
A2			1450	360	667
A3				0	200
A4					3660
A5					

Áp dụng thuật toán BEA

➤ Thứ tự: A1, A2. Thêm A3:

Cont(A0,A3,A1) = 2bond(A0,A3) + 2bond(A3,A1) - 2bond(A0,A1) = 150.

Cont(A1,A3,A2) = 2bond(A1,A3) + 2bond(A3,A2) - 2bond(A1,A2) = 2066.

Cont(A2,A3,A4) = 2bond(A2,A3) + 2bond(A3,A4) -2 bond(A2,A4) = 2900. => Cont(A2,A3,A4) = 2900 có giá trị lớn nhất nên ta chèn cột mới vào vị trí A1,A2,A3. > Thứ tự: A1, A2, A3. Thêm A4:

Cont(A0,A4,A1) = 2bond(A0,A4) + 2bond(A4,A1) - 2bond(A0,A1) = 8620 Cont(A1,A4,A2) = 2bond(A1,A4) + 2bond(A4,A2) - 2bond(A1,A2) = 8356 Cont(A2,A4,A3) = 2bond(A2,A4) + 2bond(A4,A3) - 2bond(A2,A3) = -2180 Cont(A3,A4,A5) = 2bond(A3,A4) + 2bond(A4,A5) - 2bond(A3,A5) = 0 => Cont(A0,A4,A1) = 8620 có giá trị lớn nhất nên ta chèn cột mới vào vị trí A4,A1,A2,A3.

> Thứ tự A4, A1, A2, A3. Thêm A5:

Cont(A0,A5,A4) = 2bond(A0,A5) + 2bond(A5,A4) – 2bond(A0,A4) = 7320 Cont(A4,A5,A1) = 2bond(A4,A5) + 2bond(A5,A1) – 2bond(A1,A4) = 6494 Cont(A1,A5,A2) = 2bond(A1,A5) + 2bond(A5,A2) – 2bond(A2,A1) = 8144 Cont(A2,A5,A3) = 2bond(A2,A5) + 2bond(A3,A5) – 2bond(A2,A3) = -1166 Cont(A3,A5,A6) = 2bond(A3,A5) + 2bond(A6,A5) – 2bond(A3,A6) = 400 => Cont(A1,A5,A2) = 8144 có giá trị lớn nhất nên ta chèn cột mới vào vị trí A4,A1,A5,A2,A3.

➤ Thứ tự A4,A1,A5,A3. Kết thúc.

Ma trận gom nhóm thuộc tính CA là:

CA	A4	A1	A5	A2	A3
A4	40	40	30	0	0
A1	40	43	33	3	0
A5	30	33	38	8	0
A2	0	3	8	33	25
A3	0	0	0	25	25

c. Sử dụng thuật toán Partition để tìm ra các phân mảnh dọc của quan hệ **BenhNhan**.

Ví trí chia tách	CTQ	CBQ	COQ	Z	Chọn
Giữa A4 và A1	0	33	40	-1600	
Giữa A1 và A5	10	30	33	-789	
Giữa A5 và A2	40	25	8	936	<u>Chọn</u>

Giữa A2 và A3 48 0 25 -625

⇒ Quan hệ BenhNhan được phân mảnh dọc giữa 2 thuộc tính A5 và A2:

 $BenhNhan1 = \pi_{MaBN, \, TenBN, \, DienThoai, \, NgaySinh} \,\, BenhNhan$

 $BenhNhan2 = \pi_{MaBN, GioiTinh, DiaChi}$ BenhNhan

Câu 4: Vẽ cây phân mảnh của lược đồ quan hệ BenhNhan thỏa mãn tất cả các điều kiện trên.

<u>Trả lời</u>

Câu 5: Kết quả phân mảnh của lược đồ quan hệ **BenhNhan** ở câu 4 có đáp ứng được qui tắc đúng đắn của phân mảnh hay không? Giải thích.

<u>Trả lời</u>

Xét các điều kiện đúng đắn của phân mảnh:

- Sử dụng phép kết và phép hợp để từ các mảnh có thể tái tạo được quan hệ gốc.
- → Thoả mãn điều kiên tạo.
- Đảm bảo đầy đủ thông tin của các mảnh, không có sự mất mát dữ liệu của quan hệ gốc.
- → Thoả mãn điều kiện đầy đủ.
- Giữa các mảnh không có sự trùng lắp thông tin ngoại trừ thuộc tính khóa MaBN.
- → Thoả mãn điều kiện tách biệt.
 - Từ những yếu tố trên ta có thể kết luận rằng kết quả phân mảnh đáp ứng được tính đúng đắn của phân mảnh.

Câu 6: Biết rằng quan hệ **BacSy** được nhân bản ở tất cả các phòng khám. Hãy thiết kế định vị dữ liệu cho 3 phòng khám trên.

<u>Trả lời</u>

Thiết kế đinh vi dữ liêu như sau:

- Tram 1: PhongKham_HCM, BacSy, BenhNhan_HCM1, BenhNhan_HCM2, KhamBenh_HCM.
- Tram 2: PhongKham_HN, BacSy, BenhNhan_HN1, BenhNhan_HN2, KhamBenh_HN.
- Tram 3: PhongKham_Hue, BacSy, BenhNhan_Hue1, BenhNhan_Hue2, KhamBenh_Hue.