Literate programming with Python, R, Julia and Stata**

Miguel Portela

Minho University

22 December, 2019

Abstract

In this presentation I will discuss how we can enhance the workflow by using literate programming to combine key features of different statistical packages, namely Stata, R, Julia and Python, on the one hand, and Latex as the typesetting system on the other. The goal is to demonstrate and share a template aiming at producing a highly automated report, or research paper, within the same framework. The tasks will run from exploratory data analysis to regression analysis, where the output, from summary to regression tables and figures, is seamlessly included in the final document. Furthermore, important elements of Latex editing, such as automatic referencing, will be highlighted. We aim at freeing the researcher form repetitive tasks to focus on critical and creative writing. Efficiency and replicability will be at the core of the discussion. RStudio will be used to edit and compile R Markdown. The focus will be on producing PDF outputs. In the presentation I will make use of packages such as bookdown, knitr, stargazer, dlookr, ggplot2, plotly, Statamarkdown, reticulate, JuliaCall, pandas, numpy, matplotlib or FixedEffectModels.

^{**}Corresponding address: miguel.portela@eeg.uminho.pt. The current template adapts part of the Rmd code by Paul C. Bauer, Mannheim Centre for European Social Research.

1 Exploratory data analysis

I start by exploring the data **NLSWORK** (National Longitudinal Survey. Young Women 14-26 years of age in 1968).

2 A tibble: 6 x 21

idcode year birth_yr age race msp nev_mar grade collgrad not_smsa <dbl+l> 1 1 70 51 18 2 [bla~ 0 1 12 0 0 2 1 71 51 19 2 [bla~ 1 0 12 0 0 3 1 72 51 20 2 [bla~ 1 0 12 0 0 4 1 73 51 21 2 [bla~ 1 0 12 0 0 5 1 75 51 23 2 [bla~ 1 0 12 0 0 6 1 77 51 25 2 [bla~ 0 0 12 0 0 # ... with 11 more variables: c_city , south , ind_code , # occ_code , union , wks_ue , ttl_exp , tenure , # hours , wks_work , ln_wage

Table 1: Summary statistics

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
idcode	28,534	2,601.284	1,487.359	1	1,327	3,881	5,159
year	28,534	77.959	6.384	68	72	83	88
$birth_yr$	$28,\!534$	48.085	3.013	41	46	51	54
age	28,510	29.045	6.701	14.000	23.000	34.000	46.000
race	$28,\!534$	1.303	0.482	1	1	2	3
msp	$28,\!518$	0.603	0.489	0.000	0.000	1.000	1.000
nev_mar	$28,\!518$	0.230	0.421	0.000	0.000	0.000	1.000
grade	$28,\!532$	12.533	2.324	0.000	12.000	14.000	18.000
collgrad	$28,\!534$	0.168	0.374	0	0	0	1
not_smsa	$28,\!526$	0.282	0.450	0.000	0.000	1.000	1.000
c_city	$28,\!526$	0.357	0.479	0.000	0.000	1.000	1.000
south	$28,\!526$	0.410	0.492	0.000	0.000	1.000	1.000
ind_code	28,193	7.693	2.994	1.000	5.000	11.000	12.000
$\operatorname{occ_code}$	$28,\!413$	4.778	3.065	1.000	3.000	6.000	13.000
union	19,238	0.234	0.424	0.000	0.000	0.000	1.000
wks_ue	22,830	2.548	7.294	0.000	0.000	0.000	76.000
${\rm ttl} {\rm _exp}$	$28,\!534$	6.215	4.652	0.000	2.462	9.128	28.885
tenure	28,101	3.124	3.751	0.000	0.500	4.167	25.917
hours	28,467	36.560	9.870	1.000	35.000	40.000	168.000
wks_work	27,831	53.989	29.032	0.000	36.000	72.000	104.000
ln_wage	28,534	1.675	0.478	0.000	1.361	1.964	5.264

^{[1] &}quot;idcode" "year" "birth_yr" "age" "race" "msp"

^{[7] &}quot;nev_mar" "grade" "collgrad" "not_smsa" "c_city" "south"

- [13] "ind_code" "occ_code" "union" "wks_ue" "ttl_exp" "tenure"
- [19] "hours" "wks_work" "ln_wage"

num [1:28534] 1.45 1.03 1.59 1.78 1.78 ...
- attr(*, "label")= chr "ln(wage/GNP deflator)"
- attr(*, "format.stata")= chr "%9.0g"

density.default(x = In_wage)

The average age in our data is 29.

3 Tables

R Markdown PDF is now able to produce good tables with our output. For stargazer the label is contained in the function, while for kable it's contained in the chunk name.

3.1 stargazer(): Summary and regression tables

Table 1 shows data's summary statistics. stargazer() is and excellent solution to export outputs.

¹You can reference the table as 2.

```
table.placement = "H",
header=FALSE)
```

Table 2: Summary table with stargazer

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
speed	50	15.400	5.288	4	12	19	25
dist	50	42.980	25.769	2	26	56	120

Table 3 reports regression outputs. Name the models as you can refer to their names in the text (M1, M2, M3).

Table 3: Regression table with stargazer

	<i>De</i>	$Dependent\ variable:$				
	sp	eed	dist			
	M1	M2	M3			
dist	0.166***	0.166***				
	(0.017)	(0.017)				
speed			3.932***			
			(0.416)			
Constant	8.284***	8.284***	-17.579**			
	(0.874)	(0.874)	(6.758)			
Observations	50	50	50			
\mathbb{R}^2	0.651	0.651	0.651			
Adjusted R^2	0.644	0.644	0.644			
Residual Std. Error $(df = 48)$	3.156	3.156	15.380			
F Statistic ($df = 1; 48$)	89.567***	89.567***	89.567***			
Note:	*n<	0.1; **p<0.0	5: ***p<0.01			

Note:

Figures 4

4.1 Graphs with R

You can insert figures like this. One would like to produce and insert them on the fly in the $.\, rmd$ file. Figure 1 is such an example.

plot(cars\$speed, cars\$dist)

Figure 1: Scatterplot of Speed and Distance

However, in some cases it does not work.

4.2 Example: ggplot2 graphs

See the ggplot2 output reported in Figure 2.

Figure 2: Miles per gallon according to the weight

4.3 Another example using Plotly

With Plotly we can produce interactive graphs which play well, for example, once can embeded in html webpages (drop by here for an example). One can insert this type of graphs in R Markdown PDF using Orca (it generates static images from Plotly graphs). Go here to check how to install it. See Figure 3 for an example.

5 Python

5.1 API data download using Python

```
import sys
print(sys.version)

3.8.0 (v3.8.0:fa919fdf25, Oct 14 2019, 10:23:27)
[Clang 6.0 (clang-600.0.57)]
```


Figure 3: Example: export a Plotly figure using 'orca'

```
import json
##from json.decoder import JSONDecodeError
import requests
import numpy as np
import pandas as pd

## INE: https://www.ine.pt/ine/json_indicador/pindica.jsp?
## op=2&varcd=0008074&Dim1=S7A2015&Dim2=200&Dim3=3&lang=PT

# api-endpoint

URL = "https://www.ine.pt/ine/json_indicador/pindica.jsp"

# define parameters

OP="2"
```

```
VARCD="0008074"

DIM1="S7A2015"

DIM2="200"

DIM3="3"

LANG="PT"

# defining a params dict for the parameters to be sent to the API

PARAMS = {'op':OP,'varcd':VARCD,'Dim1':DIM1,'Dim2':DIM2,'Dim3':DIM3,'lang':LANG}

# sending get request and saving the response as response object

r = requests.get(url = URL,params=PARAMS)

# extracting data in json format

data = r.json()

valor = data[0]['Dados']['2015'][0]['valor']

valor
```

'1.8'

The criminal rate is 1.8%o.

5.2 Import data from PDF files

```
cd /Users/miguelportela/Documents/GitHub/prjs/pdfs
  find . -name '*.pdf' -print0 | xargs -0 -n1 pdfsandwich -gray
  find . -name '*ocr.pdf' -print0 | xargs -0 -n1 pdftotext
```

['', 'PORTARIAS 111111111 DE REGULAMENTAGAO DO TRABALHO', 'PORTARIAS de EXTENSAO 4444444

```
FILE: sample_text_v4
match 1
match 4
match 1
match 4
match 1
```

```
match 4
```

match 3

match 1

match 4

['zzzz', 'PE dasalteragoes do, CCTentre a Assoc. Nacional dos, Opticos e a FETESE -- Fe

FILE: sample_text_v5

-> match 5

PE dasalteragoes do, CCTentre a Assoc. Nacional dos, Opticos e a FETESE -- Feder. dos S 99999

	linha	 source
0	1	 sample_text_v4
1	2	 sample_text_v4
2	3	 sample_text_v4
3	6	 sample_text_v4
4	9	 sample_text_v4
5	1	 sample_text_v5

[6 rows x 4 columns]

And now we use Stata to explore the data.

```
quiet cd "/Users/miguelportela/Documents/GitHub/prjs/logs"
quiet import delimited "/Users/miguelportela/Documents/GitHub/prjs/data/PE.csv", encodin
tab source
```

command window is unrecognized
r(199);

source	Freq.	Percent	Cum.
sample_text_v4 sample_text_v5	5 1	83.33 16.67	83.33 100.00
Total	6	100.00	

5.3 Run a Python script to read a PDF using the shell to run the commands wget, pdfsandwich and pdftotext

python3 /Users/miguelportela/Documents/GitHub/prjs/chunks/python_chunk.py

5.4 Use Stata to list the fiscal numbers (read the data produced with Python)

```
quietly{
cd /Users/miguelportela/Documents/GitHub/prjs/chunks

use /Users/miguelportela/Documents/GitHub/prjs/data/nipcs, clear
compress
contract nipc
drop _freq
drop if nipc == .
format %12.0f nipc
}

//codebook nipc

tab nipc
```

command window is unrecognized
r(199);

nipc	1	Freq.	Percent	Cum.
	+-			
510649068		1	4.35	4.35
510779174		1	4.35	8.70
511056737		1	4.35	13.04
511117060		1	4.35	17.39
511124899		1	4.35	21.74
511240619		1	4.35	26.09
511247478		1	4.35	30.43
513208348		1	4.35	34.78
513587128		1	4.35	39.13

514118890		1	4.35	43.48
514525657		1	4.35	47.83
514532718		1	4.35	52.17
514591889		1	4.35	56.52
515002666		1	4.35	60.87
515080985		1	4.35	65.22
515092550		1	4.35	69.57
515092649		1	4.35	73.91
515464236	1	1	4.35	78.26
515478377		1	4.35	82.61
515484920	1	1	4.35	86.96
515517135		1	4.35	91.30
515518565		1	4.35	95.65
515522988	1	1	4.35	100.00
Total	 	23	100.00	

6 Julia experiments

6.1 Computations

v"1.2.0"

6.2 Grab results in R

 ${\tt Julia\ Object\ of\ type\ FixedEffectModel}.$

Fixed Effect Model

				=====			====		====
Number of	obs:	1477	15	Degi	rees of fi	reedom:		6	7180
R2:		0.9	78	R2 /	Adjusted:			0	.960
F Statisti	c:	23.3	62	p-va	alue:			0	.000
R2 within:		0.0	01	Iter	cations:				419
Converged:		tr	ue						
=======	========		===	=====					====
	Estimate	Std.Error	t	value	Pr(> t)	Lower	95%	Upper	95%
education	0.00155631	0.000597587	2.	60432	0.009	0.000385	5043	0.0027	 2758
lnsales	0.00622989	0.000987569	6.	30831	0.000	0.00429	9426	0.0081	6552
========			===	=====			====		====

6.3 Insert Julia's results

The estimated return to education is 0.2%. The model has an R^2 of 0.9782.

6.4 Computation time: run the HDFE with Stata and R and compare to Julia

```
use /Users/miguelportela/Documents/GitHub/prjs/data/data_short, clear
timer on 1
   reghdfe lnrealwage education lnsales,absorb(workerid firmid year)
timer off 1
timer list 1
timer clear 1
command window is unrecognized
r(199);
( )
(MWFE estimator converged in 236 iterations)
                                              Number of obs =
HDFE Linear regression
                                                                 147,715
                                              F(2, 99667) =
                                                                    28.91
Absorbing 3 HDFE groups
                                              Prob > F
                                                                   0.0000
                                              R-squared
                                                                 0.9782
                                              Adj R-squared =
                                                                 0.9677
                                              Within R-sq. =
                                                                   0.0006
                                              Root MSE
                                                                   0.0943
 lnrealwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
```

education	.0015563	.0005372	2.90	0.004	.0005034	.0026092
lnsales	.0062299	.0008877	7.02	0.000	.0044899	.0079698
_cons	1.577908	.0148587	106.19	0.000	1.548785	1.60703

Absorbed degrees of freedom:

Absorbed FE		G	- Redundant			+ s
workerid		44047	0	4404	.7	i
firmid		23127	19131	399	6	1
year		4	1		3	?

^{? =} number of redundant parameters may be higher

1: 13.82 / 1 = 13.8160

```
library(lfe)
data_short <- read_dta("/Users/miguelportela/Documents/GitHub/prjs/data/data_short.dta")
system.time(est_hdfe <- felm(data_short$lnrealwage ~ data_short$education + data_short$summary(est_hdfe)</pre>
```

6.5 Output Julia's table for HDFE

7 Miguel's tests

7.1 R

Table 5 ... See Section 7.2

Example of an equation

$$\int_0^{2\pi} \sin x \ dx$$

Example of a matrix

	lnrealwage					
	(1)	(2)				
education	0.006***	0.002**				
	(0.000)	(0.001)				
lnsales	0.013***	0.006***				
	(0.001)	(0.001)				
workerid	Yes	Yes				
year	Yes	Yes				
firmid		Yes				
Estimator	OLS	OLS				
N	147,715	147,715				
R^2	0.970	0.978				

$$\mathbf{X} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$f(k) = \binom{n}{k} p^k (1-p)^{n-k} \tag{1}$$

\$\$

See Equation (1).

$$y_{ijt} = \beta x_{ijt} + \eta_i + \gamma_j + \lambda_t + \varepsilon_{ijt}$$
 (2)

Table 4: Summary table

Statistic	N	Pctl(75)	St. Dev.
idcode	28,534	3,881	1,487.359
year	28,534	83	6.384
birth_yr	28,534	51	3.013
age	28,510	34.000	6.701
race	28,534	2	0.482
msp	28,518	1.000	0.489
nev_mar	28,518	0.000	0.421
grade	28,532	14.000	2.324
collgrad	28,534	0	0.374
not_smsa	28,526	1.000	0.450
c_city	28,526	1.000	0.479
south	28,526	1.000	0.492
ind_code	28,193	11.000	2.994
occ_code	28,413	6.000	3.065
union	19,238	0.000	0.424
wks_ue	22,830	0.000	7.294
ttl_exp	28,534	9.128	4.652
tenure	28,101	4.167	3.751
hours	28,467	40.000	9.870
wks_work	27,831	72.000	29.032
ln_wage	28,534	1.964	0.478

Table 5: Regression table with stargazer

	$Dependent\ variable:$	
M1	price M2	M3
-49.512 (86.156)	-52.217 (83.740)	-63.210 (84.218)
1.747*** (0.641)	2.111*** (0.619)	2.442*** (0.688)
74	69	69
0.293	0.365	0.376
0.273	0.335	0.337
2,514.029 (df = 71)	2,374.370 (df = 65)	2,370.832 (df = 64)
$14.740^{***} (df = 2; 71)$	$12.437^{***} (df = 3; 65)$	$9.654^{***} (df = 4; 64)$
	$ -49.512 (86.156) $ $ 1.747^{***} (0.641) $ $ 74 0.293 0.273 2,514.029 (df = 71)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 6: Summary 24

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
speed	50	15.400	5.288	4	12	19	25
dist	50	42.980	25.769	2	26	56	120

7.2 Stata

This a Stata example, Arellano (2003). See also Arellano and Bond (1991) and Blundell and Bond (1998). While . . . (check Arellano and Bover 1995).

command window is unrecognized
r(199);

Variable	Obs	Mean	Std. Dev.	Min	Max
price	74	6165.257	2949.496	3291	15906
Repair					
Record 1978	Freq.	Percent	Cum.		
1	 2	2.90	2.90		
2	8	11.59	14.49		
3	30	43.48	57.97		
4	18	26.09	84.06		
5	11	15.94	100.00		
Total	69	100.00			

(file /Users/miguelportela/Documents/GitHub/prjs/logs/density.pdf written in PD
> F format)

Source	SS	df	MS	Number of obs	=	234
				F(7, 226)	=	46.99
Model	145.879747	7	20.8399639	Prob > F	=	0.0000
Residual	100.230749	226	.443498888	R-squared	=	0.5927
				Adj R-squared	=	0.5801
Total	246.110496	233	1.05626822	Root MSE	=	.66596
lngdp	Coef.	Std. Err.	t I	?> t [95% Co	onf.	Interval]
						
education	.2136664	.0193553	11.04	0.000 .175526	35	.2518063
lnk	. 1978085	.0308039	6.42	0.000 .137108	39	. 2585082
openk	.0062439	.0011852	5.27	.003908	35	.0085794
I						
year						
1975	0694608	.1387178	-0.50	0.617342806	34	.2038849
1980	177992	.1401702	-1.27	0.205454199	96	.0982156

1985		2226975	.1400607	-1.59	0.113	498	36894	.0532	2943
1990		34965	. 1425169	-2.45	0.015	630)4819	0688	3182
_cons		3.38917	.7508785	4.51	0.000	1.90	9552	4.868	3789
					_				
Variable		Obs	Mean	Std.	Dev.	Min		Max	
lngdp	+-	 857	9.302996	1.200	 567	 983335	12.5	1050	
Tugab	1	857	9.302996	1.200	იი, გ.	ყიაააბ	12.5	เบอด	

7.3 Grab Stata's output

```
use /Users/miguelportela/Documents/GitHub/prjs/data/data_full, clear
    quiet generate lngdp = ln(rgdpwok)
    summarize lngdp
```

command window is unrecognized
r(199);

Variable	Oi	S	Mean	Std.	Dev.	Min		Max
lngdp	 8	57 9	.302996	1.20	 0567 5	 . 983335	12.5	1058

The mean log GDP is 9.3.

See $https://www.ssc.wisc.edu/\sim hemken/Stataworkshops/stata.html\#stata-and-r-markdown-the-statamarkdown-package$

7.4 Use Stata to export statistics to Excel

We now export a set of statistics to an Excel file.

version 15.1

/Users/miguelportela/Library/Application Support/Stata/ado/plus/x/xtabond2.ado

Checksum for /Users/miguelportela/Library/Application Support/Stata/ado/plus/x/ > xtabond2.ado = 616966544, size = 39434

Figure 4: Wage density

/Users/miguelportela/Documents/GitHub/prjs/logs

Variable	Obs (Jnique	Mean	Min	Max	Label
country	839	 106				Country name
year	839	9	1980.906	1960	2000	Year of observation
education	839	574	4.794076	.04	12.25	Education
lngdp	839	838	9.308131	5.983335	12.51058	Log Real GDP per Worker
open	839	2	.4982122	0	1	1 = high degree of open
gdp	839	838	20100.66	396.7612	271192.2	GDP level

Note: file will be replaced when the first putexcel command is issued

```
`"a"' `"b"' `"c"' `"d"' `"e"' `"f"' `"g"' `"h"' `"i"' `"j"' `"k"' `"l"' `"m"' `
> "n"' `"p"' `"r"' `"s"' `"t"' `"u"' `"v"' `"z"'
```

Country's first letter:

Table 7: Regression analysis

	Simple model	Include capital	Full model
Education	0.3169***	0.212***	0.2***
	(0.0093)	(0.020)	(0.0)
Capital		0.125***	0.2***
		(0.029)	(0.0)
Openness degree			0.0***
			(0.0)
R^2	0.58	0.54	0.59
RMSE	0.78	0.70	0.67
N	857	234	234

* p < 0.1; ** p < 0.05; *** p < 0.01

Country's first letter: b

Number of countries: 11

Country's first letter:

Number of countries: 9

Country's first letter: d

Country's first letter: e

Country's first letter: f Country's first letter: g Country's first letter: h Country's first letter: i Number of countries: 7 Country's first letter: j Country's first letter: k Country's first letter: 1 Country's first letter: Number of countries: 8

Country's first letter:

Number of countries:

n

6

Country's first letter: p

Number of countries: 7

Country's first letter: r

Country's first letter: s

Number of countries: 14

Country's first letter: t

Country's first letter: u

Country's first letter: v

Country's first letter: z

Means of Education

a	5.525	5.515	4.914	4.86	5.48	5.6781395
b	3.6633333	3.645	3.853	3.9866667	4.265	4.540641
c l	4.3083333	4.2083333	4.5157143	4.94375	5.35625	5.5671429
d	8.95	8.86	8.78	8.95	6.85	8.874
e l	2.325	2.39	2.725	2.6266667	3.6366667	3.83
f	5.41	5.4366667	5.8166667	6.1433333	7.0366667	6.96
g	2.2533333	2.4166667	3.1775	3.4575	3.99	3.9676471
h	2.3766667	2.44	3.9025	4.1825	4.83	4.7079412
i	4.365	4.4533333	4.3657143	4.6642857	5.2542857	5.3581967
jΙ	3.5766667	3.82	4.0433333	4.55	4.92	5.242963
k	1.2	1.19	1.45	1.54	2.46	3.3558333
1	3.14	3.09	1.905	2.265	2.425	2.75125
m	1.5533333	1.705	2.4628571	2.7557143	3.1642857	3.1424194
n	3.8833333	3.955	4.515	4.945	5.26	5.2188889
рl	2.8283333	2.9666667	4.0971429	4.38	5.1014286	4.9127869
r	5.33	5.63	3.21	4.075	4.195	4.758125
s	3.8822222	3.6211111	3.5408333	3.7275	4.3372727	4.6570297
t	2.2725	2.018	2.296	2.548	3.296	3.4636364
u l	5.615	5.5675	5.9325	6.2375	6.88	6.7183333
v	2.53	2.47	2.92	3.38	4.93	4.1533333
z	1.57	1.75	1.945	2.125	3.02	3.1016667
+					+	
Total	3.6152564	3.6008861	3.8589474	4.1222917	4.6725773	4.7940763
1						
ı		Year of obs	ervation			
	1985	1990	1995		Total	
+	1985	1990	1995 		+	
a	1985 5.614	1990 6.006	1995 6.382	6.744	+	
a	1985 5.614 4.4988889	1990 6.006 4.843	1995 6.382 5.63	6.744 5.9633333	+	
a b c	1985 5.614 4.4988889 5.77125	1990 6.006 4.843 6.2666667	1995 	6.744 5.9633333 6.9211111	+	
a b c d	1985 5.614 4.4988889 5.77125 9.42	1990 6.006 4.843 6.2666667 10.13	1995 	6.744 5.9633333 6.9211111 10.09	+	
a b c d e	5.614 4.4988889 5.77125 9.42 3.9633333	6.006 4.843 6.2666667 10.13 5.565	1995 6.382 5.63 6.6366667 9.86 3.9225	6.744 5.9633333 6.9211111 10.09 5.3566667	+	
a b c d	5.614 4.4988889 5.77125 9.42 3.9633333	1990 6.006 4.843 6.2666667 10.13 5.565 8.1533333	1995 	6.744 5.9633333 6.9211111 10.09 5.3566667	+	
a b c d e	1985 5.614 4.4988889 5.77125 9.42 3.9633333 7.34	1990 6.006 4.843 6.2666667 10.13 5.565 8.1533333	1995 6.382 5.63 6.6366667 9.86 3.9225	6.744 5.9633333 6.9211111 10.09 5.3566667 8.8233333	+	
a b c d e f g h	1985 5.614 4.4988889 5.77125 9.42 3.9633333 7.34 4.3175 5.375	1990 6.006 4.843 6.2666667 10.13 5.565 8.1533333 4.7575 5.7825	1995 	6.744 5.9633333 6.9211111 10.09 5.3566667 8.8233333 5.4225 6.2575	+	
a b c d e f g h i	5.614 4.4988889 5.77125 9.42 3.9633333 7.34 4.3175 5.375 5.6157143	1990 6.006 4.843 6.2666667 10.13 5.565 8.1533333 4.7575 5.7825 5.9757143	1995 6.382 5.63 6.6366667 9.86 3.9225 8.48 5.1 6.075 6.4271429	6.744 5.9633333 6.9211111 10.09 5.3566667 8.8233333 5.4225 6.2575 6.8314286	+	
a b c d e f g h i	1985 5.614 4.4988889 5.77125 9.42 3.9633333 7.34 4.3175 5.375 5.6157143 5.5266667	1990 6.006 4.843 6.2666667 10.13 5.565 8.1533333 4.7575 5.7825 5.9757143 6.3866667	1995 6.382 5.63 6.6366667 9.86 3.9225 8.48 5.1 6.075 6.4271429 6.9266667	6.744 5.9633333 6.9211111 10.09 5.3566667 8.8233333 5.4225 6.2575 6.8314286 7.4366667	+	
a b c d e f g h i	1985 5.614 4.4988889 5.77125 9.42 3.9633333 7.34 4.3175 5.375 5.6157143 5.5266667 2.38	1990 6.006 4.843 6.2666667 10.13 5.565 8.1533333 4.7575 5.7825 5.9757143 6.3866667 4.485	1995 6.382 5.63 6.6366667 9.86 3.9225 8.48 5.1 6.075 6.4271429 6.9266667 5.02	6.744 5.9633333 6.9211111 10.09 5.3566667 8.8233333 5.4225 6.2575 6.8314286 7.4366667 5.52	+	
a b c d e f g h i j k l	1985 5.614 4.4988889 5.77125 9.42 3.9633333 7.34 4.3175 5.375 5.6157143 5.5266667 2.38 2.645	1990 6.006 4.843 6.2666667 10.13 5.565 8.1533333 4.7575 5.7825 5.9757143 6.3866667 4.485 3.03	1995 6.382 5.63 6.6366667 9.86 3.9225 8.48 5.1 6.075 6.4271429 6.9266667 5.02 3.26	6.744 5.9633333 6.9211111 10.09 5.3566667 8.8233333 5.4225 6.2575 6.8314286 7.4366667 5.52 3.365	+	
a b c d e f g h i j k 1 m	1985 5.614 4.4988889 5.77125 9.42 3.9633333 7.34 4.3175 5.375 5.6157143 5.5266667 2.38 2.645 3.4657143	1990 6.006 4.843 6.2666667 10.13 5.565 8.1533333 4.7575 5.7825 5.9757143 6.3866667 4.485 3.03 3.6625	1995	6.744 5.9633333 6.9211111 10.09 5.3566667 8.8233333 5.4225 6.2575 6.8314286 7.4366667 5.52 3.365 4.6085714	+	

```
5.34 6.0428571 6.3328571
   pΙ
                                      6.55 | 4.9127869
   r |
          4.42
                   5.365
                             5.55
                                      5.77 | 4.758125
   s | 4.7533333
                  5.1825
                        6.0533333 6.3358333 | 4.6570297
                            4.916
   t |
         3.876
                    4.42
                                     5.292 | 3.4636364
         7.0825
                  7.5025
                           7.6975
                                      7.95 | 6.7183333
   u |
           5.3
                    4.89
                             5.35
                                      5.61 | 4.1533333
   v l
          3.265
                    4.09
                            4.995
                                     5.155 | 3.1016667
   z |
```

(note: j = 1960 1965 1970 1975 1980 1985 1990 1995 2000)

Data	long	->	wide
Number of obs.	189	->	21
Number of variables	3	->	10
j variable (9 values)	year	->	(dropped)
xij variables:			
	education	->	education1960 education1965
> education2000			

file descriptives.xlsx saved

file descriptives.xlsx saved

See Figure 5.

8 Final remarks

Check the replication package for Bonhomme, Lamadon and Manresa (2019): https://github.com/tlamadon/blm-replicate

Figure 5: Scatterplot test MP

9 Appendix

9.1 Software versioning

9.1.1 R

```
cat(paste("#", capture.output(sessionInfo()), "\n", collapse =""))

# R version 3.6.1 (2019-07-05)

# Platform: x86_64-apple-darwin15.6.0 (64-bit)

# Running under: macOS Catalina 10.15.2

#

# Matrix products: default

# BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib

# LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
#
```

```
# locale:
# [1] en US.UTF-8/en US.UTF-8/en US.UTF-8/C/en US.UTF-8/en US.UTF-8
#
# attached base packages:
# [1] stats
                graphics grDevices utils
                                                datasets
                                                          methods
                                                                     base
#
# other attached packages:
  [1] JuliaCall 0.17.1
                            plotly_4.9.1
                                                 naniar_0.4.2
  [4] visdat_0.5.3
                            dlookr_0.3.12
                                                 mice_3.6.0
# [7] lattice 0.20-38
                            dplyr_0.8.3
                                                 ggplot2_3.2.1
# [10] haven 2.1.1
                            ExPanDaR 0.4.0
                                                 Statamarkdown 0.3.9
# [13] stargazer 5.2.2
                            reticulate 1.13
#
# loaded via a namespace (and not attached):
    [1] readxl 1.3.1
#
                               backports 1.1.5
                                                      Hmisc 4.2-0
#
    [4] corrplot 0.84
                               plyr 1.8.4
                                                      lazyeval_0.2.2
#
    [7] splines_3.6.1
                               crosstalk 1.0.0
                                                      digest_0.6.20
   [10] htmltools 0.4.0
                               gdata_2.18.0
                                                      fansi 0.4.0
   [13] magrittr_1.5
                               checkmate_1.9.4
                                                      memoise_1.1.0
   [16] cluster 2.1.0
                               ROCR_1.0-7
                                                      openxlsx_4.1.0.1
                               xts_0.11-2
   [19] readr 1.3.1
                                                      sandwich_2.5-1
  [22] askpass 1.1
                               colorspace 1.4-1
                                                      blob 1.2.0
   [25] rvest 0.3.5
                               pan 1.6
                                                      xfun 0.11
   [28] tcltk 3.6.1
                               libcoin 1.0-5
                                                      crayon 1.3.4
   [31] jsonlite_1.6
                               lme4_1.1-21
                                                      zeallot_0.1.0
   [34] survival_2.44-1.1
                               zoo_1.8-6
                                                      glue_1.3.1
   [37] kableExtra 1.1.0
                               smbinning 0.9
                                                      gtable_0.3.0
   [40] UpSetR 1.4.0
                               webshot 0.5.1
                                                      car_3.0-4
   [43] quantmod 0.4-15
                               jomo_2.6-9
                                                      abind 1.4-5
   [46] scales 1.0.0
                               mvtnorm 1.0-11
                                                      DBI 1.0.0
   [49] Rcpp_1.0.3
                               viridisLite_0.3.0
                                                      xtable_1.8-4
   [52] htmlTable_1.13.2
                               foreign_0.8-72
                                                      bit_1.1-14
   [55] Formula 1.2-3
                               sqldf 0.4-11
                                                      DT 0.9
   [58] htmlwidgets_1.5.1
                               httr_1.4.1
                                                      gplots_3.0.1.1
   [61] RColorBrewer_1.1-2
                               acepack_1.4.1
                                                      ellipsis_0.3.0
   [64] pkgconfig_2.0.3
                               nnet_7.3-12
                                                      utf8_1.1.4
   [67] labeling_0.3
                               tidyselect_0.2.5
                                                      rlang_0.4.0
   [70] later 1.0.0
                               munsell 0.5.0
                                                      cellranger 1.1.0
   [73] tools 3.6.1
                               cli 1.1.0
                                                      gsubfn 0.7
#
#
   [76] generics 0.0.2
                                                      RSQLite 2.1.2
                               moments 0.14
   [79] broom_0.5.2
                               evaluate_0.14
                                                      stringr 1.4.0
```

```
[82] fastmap 1.0.1
                              yaml 2.2.0
                                                     processx 3.4.1
                                                     shinycssloaders 0.2.0
# [85] knitr 1.26
                              bit64 0.9-7
# [88] zip 2.0.4
                              caTools 1.17.1.2
                                                     purrr 0.3.3
# [91] mitml 0.3-7
                              nlme 3.1-141
                                                     mime 0.7
# [94] tictoc 1.0
                              xml2 1.2.2
                                                     compiler 3.6.1
# [97] rstudioapi 0.10
                              curl 4.2
                                                     e1071 1.7-2
# [100] tibble 2.1.3
                              stringi 1.4.3
                                                     ps_1.3.0
# [103] forcats 0.4.0
                              Matrix 1.2-17
                                                     classInt 0.4-2
# [106] nloptr 1.2.1
                              vctrs_0.2.0
                                                     RcmdrMisc 2.5-1
                              lifecycle_0.1.0
# [109] pillar 1.4.2
                                                     data.table_1.12.6
# [112] bitops 1.0-6
                              httpuv 1.5.2
                                                     R6 2.4.0
# [115] latticeExtra 0.6-28
                              bookdown 0.16
                                                     promises 1.1.0
# [118] KernSmooth 2.23-16
                              gridExtra 2.3
                                                     rio 0.5.16
# [121] boot 1.3-23
                              MASS 7.3-51.4
                                                     gtools 3.8.1
# [124] assertthat 0.2.1
                              chron 2.3-54
                                                     proto 1.0.0
# [127] openssl 1.4.1
                              withr 2.1.2
                                                     nortest 1.0-4
# [130] DMwR 0.4.1
                              parallel 3.6.1
                                                     hms 0.5.1
# [133] grid 3.6.1
                              prettydoc 0.3.0
                                                     rpart 4.1-15
                              class_7.3-15
# [136] tidyr 1.0.0
                                                     minga 1.2.4
# [139] inum 1.0-1
                              rmarkdown 2.0
                                                     carData 3.0-2
# [142] TTR 0.23-5
                              partykit 1.2-5
                                                     shiny 1.4.0
# [145] base64enc 0.1-3
                              tinytex 0.18
```

or use message() instead of cat()

9.1.2 Python

```
import sys
print(sys.version)
```

```
3.8.0 (v3.8.0:fa919fdf25, Oct 14 2019, 10:23:27) [Clang 6.0 (clang-600.0.57)]
```

9.1.3 Julia

v"1.2.0"

9.1.4 Stata

```
version 15.1
```

/Users/miguelportela/Library/Application Support/Stata/ado/plus/x/xtabond2.ado

Checksum for /Users/miguelportela/Library/Application Support/Stata/ado/plus/x/ > xtabond2.ado = 616966544, size = 39434

9.2 All the code in the paper

To simply attach all the code you used in the PDF file in the appendix see the R chunk in the underlying .rmd file:

```
knitr::opts chunk$set(cache = FALSE)
# Use chache = TRUE if you want to speed up compilation
# A function to allow for showing some of the inline code
rinline <- function(code){</pre>
 html <- '<code class="r">``` `r CODE` ```</code>'
 sub("CODE", code, html)
  ##https://opensource.com/article/19/5/python-3-default-mac
 Sys.setenv(RETICULATE PYTHON = "/usr/local/bin/python3")
##install.packages("reticulate")
library(reticulate)
##use python("/Library/Frameworks/Python.framework/Versions/3.8/bin/python3")
use_virtualenv("/Users/miguelportela/.pyenv/version")
##knitr::opts chunk$set(python.reticulate=FALSE)
library(JuliaCall)
library(Statamarkdown)
stataexe <- "/Applications/Stata15/StataMP.app/Contents/MacOS//stata-mp"</pre>
knitr::opts_chunk$set(engine.path=list(stata=stataexe))
```

```
Sys.setenv(RETICULATE_PYTHON = "/usr/local/bin/python3")
library(reticulate)
use_virtualenv("/Users/miguelportela/.pyenv/version")
library(stargazer)
library(Statamarkdown)
stataexe <- "/Applications/Stata15/StataMP.app/Contents/MacOS//stata-mp"</pre>
knitr::opts_chunk$set(engine.path=list(stata=stataexe))
## ExPanDaR: Explore Panel Data Interactively
  library(ExPanDaR)
    ## type ExPanD() in the Console
setwd("/Users/miguelportela/Documents/GitHub/prjs/logs")
library(haven)
library(ggplot2)
nlswork <- read_dta("/Users/miguelportela/Documents/GitHub/prjs/data/nlswork.dta")</pre>
nls<-data.frame(nlswork)</pre>
attach(nlswork)
head(nlswork)
library(stargazer)
stargazer(nls,
          title = "Summary statistics",
          label="tab1",
          table.placement = "ht",
          header=FALSE)
library(dplyr)
library(dlookr)
library(ggplot2)
```

```
##eda_report(nlswork,output_dir = "/Users/miguelportela/Documents/GitHub/prjs/reports/
## The data
names(nlswork)
##summary(nlswork)
## Missing values
library("visdat")
  vis_dat(nlswork)
## https://cran.r-project.org/web/packages/naniar/vignettes/naniar-visualisation.html
library(naniar)
  vis_miss(nlswork)
  gg_miss_upset(nlswork)
## GRAPHS
dplyr::glimpse(nlswork$ln_wage)
d <- density(ln_wage)</pre>
plot(d)
plot(nls$ln_wage,nls$ttl_exp)
ggplot(nlswork,
       aes(x = hours,
           y = year)) +
geom_miss_point()
ggplot(nlswork,
       aes(x = hours,
           y = year)) +
geom_miss_point() +
facet_wrap(race)
stats <- summary(nlswork$age)</pre>
```

```
library(stargazer)
stargazer(cars,
          title = "Summary table with stargazer",
          label="tab1cars",
          table.placement = "H",
          header=FALSE)
library(stargazer)
model1 <- lm(speed ~ dist, data = cars)</pre>
model2 <- lm(speed ~ dist, data = cars)</pre>
model3 <- lm(dist ~ speed, data = cars)</pre>
stargazer(model1, model2, model3,
          title = "Regression table with stargazer",
          label="tab2",
          table.placement = "H",
          column.labels = c("M1", "M2", "M3"),
          model.numbers = FALSE,
          header=FALSE)
plot(cars$speed, cars$dist)
mtcars$cyl <- as.factor(mtcars$cyl) # Convert cyl to factor</pre>
library(ggplot2)
ggplot(mtcars, aes(x=wt, y=mpg, shape=cyl)) + geom_point() +
  labs(x="Weight (lb/1000)", y = "Miles/(US) gallon",
       shape="Number of \n Cylinders") + theme_classic()
library(plotly)
p <- plot_ly(cars, type = "scatter", mode="markers",</pre>
        x=~speed,
        y=~dist)
Sys.setenv('MAPBOX TOKEN' = '12423423') # set arbitrary token
orca(p, "logs/plotly-plot.pdf")
import sys
print(sys.version)
import json
##from json.decoder import JSONDecodeError
import requests
import numpy as np
import pandas as pd
## INE: https://www.ine.pt/ine/json_indicador/pindica.jsp?
```

```
## op=2&varcd=0008074&Dim1=S7A2015&Dim2=200&Dim3=3&lang=PT
# api-endpoint
URL = "https://www.ine.pt/ine/json_indicador/pindica.jsp"
# define parameters
OP="2"
VARCD="0008074"
DIM1="S7A2015"
DIM2="200"
DIM3="3"
I.ANG="PT"
# defining a params dict for the parameters to be sent to the API
PARAMS = {'op':OP,'varcd':VARCD,'Dim1':DIM1,'Dim2':DIM2,'Dim3':DIM3,'lang':LANG}
# sending get request and saving the response as response object
r = requests.get(url = URL,params=PARAMS)
# extracting data in json format
data = r.json()
valor = data[0]['Dados']['2015'][0]['valor']
valor
  cd /Users/miguelportela/Documents/GitHub/prjs/pdfs
    find . -name '*.pdf' -print0 | xargs -0 -n1 pdfsandwich -gray
    find . -name '*ocr.pdf' -print0 | xargs -0 -n1 pdftotext
import os
import numpy as np
import pandas as pd
import re
## CHECK PyPDF2
## wget -A pdf -m -p -E -k -K -np https://joram.madeira.gov.pt/joram/4serie/
```

```
## find . -name '*.pdf' -print0 | xargs -0 -n1 pdfsandwich -gray
## find . -name '*ocr.pdf' -print0 | xargs -0 -n1 pdftotext
# Create list with .txt files for the specified folder
files list = list()
for (dirpath, dirnames, filenames) in os.walk('/Users/miguelportela/Documents/bte/pdfs_t
    files_list += [os.path.join(dirpath, file)
                   for file in filenames if file.endswith('.txt')]
##print("START:FILES -- list")
##print(files list)
##print("END:FILES -- list")
p1 = r'PORTARIA'
p2 = r'EXTENSAO'
p3 = r'Materiais'
p5 = r'PE das'
linha = []
output = []
other = []
palavra = []
source = []
for file in files_list:
    f = open(file, "r", encoding='latin8')
    data = f.read()
    f.close()
    line = []
    nh = 0
   tmp1 = str(data)
    #print(tmp1)
    tmp2 = tmp1.splitlines()
    #print(tmp2)
```

```
for n,tmp3 in enumerate(tmp2):
    #print(tmp3)
    if (tmp3.find("PE das") == 0):
        tmp4 = tmp3 + tmp2[2]
        line.append(tmp4)
        #print(n)
        nh = 1
    elif (nh == 1):
        nh = 0
        continue
    elif (nh == 0):
        line.append(tmp3)
print(line)
print(" ")
print("FILE: ", file[46:-4])
for num, word in enumerate(line):
        if num == 0:
            continue
        else:
            match1 = re.search(p1, word)
            match2 = re.search(p2, word)
            match3 = re.search(p3, word)
            match4 = re.search(r'\d{9}', word)
            match5 = re.search(p5, word)
            ##print(" ")
            ##print("START: ",num)
            if match1:
                    ##print(" ")
                    print("match 1")
                    if match4:
                        ##print("
                        print("match 4")
                        linha.append(num)
                        output.append(re.search(r'\d{9}', word).group())
                        other.append("vazio")
```

```
palavra.append(p1)
                            source.append(file[46:-4])
                elif match2:
                            ##print("
                            print("match 2")
                            linha.append(num)
                            output.append(re.search(r'\d{9}', word).group())
                            other.append("vazio")
                            palavra.append(p2)
                            source.append(file[46:-4])
                elif match3:
                            ##print("
                            print("match 3")
                            linha.append(num)
                            output.append(re.search(r'\d{9}', word).group())
                            other.append("vazio")
                            palavra.append(p3)
                            source.append(file[46:-4])
                elif match5:
                            ##print("
                            print("-> match 5")
                            ##word.sub(" e o ", " e a ",1)
                            print(word)
                            linha.append(num)
                            if (word.find(" e o ") > 0):
                                print("11111")
                                output.append((word.split("re a", 1)[1]).split(" e o ",
                                other.append((word.split("re a", 1)[1]).split(" e o ",
                            elif (word.find(" e a ") > 0):
                                print("99999")
                                output.append((word.split("re a", 1)[1]).split(" e a ",
                                other.append((word.split("re a", 1)[1]).split(" e a ",
                            palavra.append(p5)
                            source.append(file[46:-4])
## o parágrafo tem de estar na mesma linha e temos de ter 'e a' em vez de 'e o'
df = pd.DataFrame({'linha': linha, 'output': output,
                   'outra': other, 'source': source})
print(df)
```

```
df.to_csv('data/PE.csv', index=False)
df.to_stata('data/PE.dta', write_index = False)
quiet cd "/Users/miguelportela/Documents/GitHub/prjs/logs"
quiet import delimited "/Users/miguelportela/Documents/GitHub/prjs/data/PE.csv", encodir
tab source
python3 /Users/miguelportela/Documents/GitHub/prjs/chunks/python_chunk.py
quietly{
cd /Users/miguelportela/Documents/GitHub/prjs/chunks
use /Users/miguelportela/Documents/GitHub/prjs/data/nipcs, clear
compress
contract nipc
drop _freq
drop if nipc == .
format %12.0f nipc
//codebook nipc
tab nipc
## This is a julia language chunk.
## In julia, the command without ending semicolon will trigger the display
## so is JuliaCall package.
## The julia display will follow immediately after the corresponding command
## just as the R code in R Markdown.
using ReadStat
using StatFiles
using StatsBase
using DataFrames
using FixedEffectModels
@time results hdfe1 = reg(DataFrame(load("/Users/miguelportela/Documents/GitHub/prjs/dat
@time results_hdfe2 = reg(DataFrame(load("/Users/miguelportela/Documents/GitHub/prjs/data
```

```
using RegressionTables
regtable(results_hdfe1,results_hdfe2; renderSettings = latexOutput("logs/hdfe_output.tex
VERSION
library(JuliaCall)
  julia_eval("results_hdfe2")
betas <- julia_eval("coef(results_hdfe2)")</pre>
r2 <- julia_eval("r2(results_hdfe2)")
use /Users/miguelportela/Documents/GitHub/prjs/data/data short, clear
timer on 1
    reghdfe lnrealwage education lnsales, absorb (workerid firmid year)
timer off 1
timer list 1
timer clear 1
library(lfe)
data_short <- read_dta("/Users/miguelportela/Documents/GitHub/prjs/data/data_short.dta")</pre>
system.time(est_hdfe <- felm(data_short$lnrealwage ~ data_short$education + data_short$</pre>
summary(est_hdfe)
library(stargazer)
library(Statamarkdown)
stataexe <- "/Applications/Stata15/StataMP.app/Contents/MacOS//stata-mp"</pre>
knitr::opts_chunk$set(engine.path=list(stata=stataexe))
setwd("/Users/miguelportela/Documents/GitHub/prjs/logs")
rm(list = ls())
library(haven)
nlswork <- read_dta("../data/nlswork.dta")</pre>
auto <- read_dta("../data/auto.dta")</pre>
attach(nlswork)
```

```
regs1 <- lm(auto$price ~ auto$mpg + auto$weight)</pre>
regs2 <- lm(auto$price ~ auto$mpg + auto$weight + auto$rep78)</pre>
regs3 <- lm(auto$price ~ auto$mpg + auto$weight + auto$rep78 + auto$trunk)
regs4 <- lm(ln wage ~ union)</pre>
regs5 <- lm(ln_wage ~ union + collgrad)</pre>
regs6 <- lm(ln_wage ~ union + collgrad + age)</pre>
##summary(auto)
##summary(regs1)
## https://www.jakeruss.com/cheatsheets/stargazer/
nls<-data.frame(nlswork)</pre>
stargazer(nls, summary.stat = c("n", "p75", "sd"), summary.logical = FALSE,
          title = "Summary table",
          label="tab23",
          table.placement = "ht",
          header=FALSE)
stargazer(regs1, regs2, regs3,
          title = "Regression table with stargazer",
          label="tab3",
          table.placement = "ht",
          column.labels = c("M1", "M2", "M3"),
          model.numbers = FALSE,
          header=FALSE, keep=c(0,1,2,3))
attach(auto)
library(naniar)
vis_miss(nlswork)
# plot(y=price, x=mpg)
library(stargazer)
stargazer(cars,
```

```
title = "Summary 24",
          label="tab24",
          table.placement = "ht",
          header=FALSE)
quiet sysuse auto
sum price
tab rep78
quiet cd "/Users/miguelportela/Documents/GitHub/prjs/logs"
quiet use ../data/nlswork, clear
twoway (kdensity ln_wage if collgrad == 0) | (kdensity ln_wage if collgrad == 1), schen
graph export "/Users/miguelportela/Documents/GitHub/prjs/logs/density.pdf", replace
use ../data/data_full, clear
        quiet generate lngdp = ln(rgdpwok)
        quiet ge lnk = ln(capital)
        label var rgdpwok "Real GDP per worker"
        label var education "Education (in years)"
        label var capital "Capital"
        label var open "Degree of openness"
// # regression analysis
    quiet reg lngdp education
        estimates store r1
    quiet reg lngdp education lnk
        est store r2
    reg lngdp education lnk openk i.year
        est store r3
outreg, clear
    quiet estimates restore r1
        outreg using growth_analysis_frag, tex fragment replace rtitles("Education" \ "'
```

```
*/ drop( cons) /*
                */ ctitle("","Simple model") /*
                */ nodisplay variabels bdec(4) se starlevels(10 5 1) starloc(1) summsta
    quiet estimates restore r2
        outreg using growth_analysis_frag, tex fragment merge rtitles("Education" \ "" \
                */ drop( cons) /*
                */ ctitle("","Include capital") /*
                */ nodisplay variabels bdec(3) se starlevels(10 5 1) starloc(1) summsta
    quiet estimates restore r3
        outreg using growth_analysis_frag, tex fragment merge rtitles("Education" \ "" \
                */ drop(_cons 1975.year 1980.year 1985.year 1990.year) /*
                */ ctitle("","Full model") /*
                */ nodisplay variabels bdec(1) se starlevels(10 5 1) starloc(1) summsta
sum lngdp
use /Users/miguelportela/Documents/GitHub/prjs/data/data_full, clear
        quiet generate lngdp = ln(rgdpwok)
      summarize lngdp
file open myfile using example.txt, write replace
file write myfile `"`r(mean)'"'
file close myfile
unlink("example.txt")
version
//ado describe
findfile xtabond2.ado
checksum "/Users/miguelportela/Library/Application Support/Stata/ado/plus/x/xtabond2.ado
// PUTEXCEL
cd "/Users/miguelportela/Documents/GitHub/prjs/logs"
quiet use ../data/graph_data, clear
    codebook, compact
            putexcel clear
            putexcel set descriptives.xlsx, sheet("Avg. Educ. & desc.") replace
```

```
gen first = substr(country,1,1)
    levelsof first,local(ff)
    foreach vv of local ff {
        di _new(3) "Country's first letter: `vv'"
        preserve
        quiet keep if first == "`vv'"
        quiet unique country
            if r(unique) > 5 {
            di _new(2) " Number of countries: " r(unique) _new(1)
            quietly {
                collapse (mean) lngdp education,by(country)
                    putexcel set descriptives.xlsx, sheet("FIRST LETTER `vv'") modify
                    regress lngdp education
                            matrix list r(table)
                        matrix results = r(table)
                            mat 1 results
                        mat b = results[1,1...]
                        mat t = results[3,1...]
                        putexcel C2="Coef." F2="t"
                        putexcel B3 = matrix(b), rownames nformat(number_d2) right
                        putexcel D3 = matrix(t), nformat("0.00")
                }
            }
            if r(unique) <= 5 {</pre>
                // di _new(2) " Insufficient number of countries; n countries = " r(unio
            }
        restore
```

```
}
// tabulate, summarize() -- EXAMPLE
tabulate first year, summarize(education) nost nof noob
collapse (mean) education,by(first year)
reshape wide education, i(first) j(year)
mkmat education*,matrix(mean_educ) rownames(first)
putexcel set descriptives.xlsx, sheet("Mean Education") modify
    putexcel C2="1960" D2="1965" E2="1970" F2="1975" G2="1980" H2="1985" I2="1990" J2="1
    putexcel B3 = matrix(mean_educ), rownames nformat(number_d2) right
plot(x = mpg, y = price,
     pch = 16, frame = FALSE,
     xlab = "wt", ylab = "mpg", col = "#2E9FDF")
cat(paste("#", capture.output(sessionInfo()), "\n", collapse =""))
  # or use message() instead of cat()
import sys
print(sys.version)
VERSION
version
//ado describe
findfile xtabond2.ado
checksum "/Users/miguelportela/Library/Application Support/Stata/ado/plus/x/xtabond2.ado
```

9.3 Exploratory data analysis report

References

Arellano, Manuel. 2003. Panel Data Econometrics. Oxford University Press.

Arellano, Manuel and Stephen Bond. 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations." The Review of Economic Studies 58(2):277–97.

Arellano, Manuel and Olympia Bover. 1995. "Another Look at the Instrumental Variable

Estimation of Error-Components Models." Journal of Econometrics 68(1):29-51.

Blundell, Richard and Stephen Bond. 1998. "Initial Conditions and Moment Restrictions in Dynamic Panel Data Models." *Journal of Econometrics* 87(1):115-43.