인공 지능과 데이터 사이언스

박 경수 전주대학교 게임콘텐츠학과

인공 지능

- 지능이란?
 - 자연 지능 / 인공 지능
- 인공 지능
 - 지능을 구현한 컴퓨터 시스템
 - 논리 기반 시스템 / 경험(자료) 기반 시스템
- 기계 학습
 - 기계가 경험을 통하여 스스로 배우는 것
 - 지도 학습 / 비지도 학습 / 강화 학습

목차

- 지도 학습
- 비지도 학습
- 강화 학습

지도 학습 supervised learning

- 회귀(regression)
 - 내일 비가 올 확률
 - 우리 아이의 키는?
 - 투자의 손익
- 분류(classification)
 - 사진 속 꽃의 종 판별
 - 글자 인식

자료

- 실험이나 관측으로 얻은 자료
- 입력과 출력

\boldsymbol{x}	x_1	x_2	• • •	x_n
y	y_1	y_2	• • •	\mathcal{Y}_n

- 자료에는 예측할 수 없는 다양한 잡음(noise)이 포함된다
 - 환경 요인
 - 측정 오차

목표

• 자료

$$\{(x_1, y_1), \dots, (x_n, y_n)\}$$

- 훈련 집합(training set)
- 가정:

$$y = f(x) + \alpha$$

- α: 잡음
- 목표:

f(x)의 근사식 $\hat{f}(x)$ 찾기

통계적 방법

- $\hat{f}(x)$ 의 형태를 추정
 - 일차 함수, 다항 함수, ...
- 최소 제곱법
 - 최소 제곱 오차

$$L = \sum_{i=1}^{n} \| y_i - \hat{f}(x_i) \|^2$$

• L을 최소로 하는 $\hat{f}(x)$ 를 구한다

보기

$\boldsymbol{\chi}$	0.08	0.13	•••	0.99
y	0.16	0.17	• • •	0.66

- $\hat{f}(x) = ax + b$ 라 추정
- *L*은

$$L = (0.16 - 0.08a - b)^{2} + \dots + (0.66 - 0.99a - b)^{2}$$

• L을 최소로 하는 a와 b를 구한다

순방향 신경망 Feedforward Neural Network

• 순환이 없는 신경망

출처: 한겨레

자녀의 키

아빠의 $\overline{\mathcal{I}}(x_1)$	0.173	0.165		0.180
엄마의 키 (x_2)	0.156	0.159	•••	0.165
가계 소득 (x_3)	0.300	0.450	•••	0.280
아들의 키 (y_1)	0.179	0.175	•••	0.180
딸의 키 (y_2)	0.160	0.165	•••	0.158

아들의 키

 $w_1=0.6, \ w_2=0.3, \ w_3=0.1$ 이라 하면 $w_1\cdot 0.173+w_2\cdot 0.156+w_3\cdot 0.300=0.1806$ 오차: 0.0016 오차의 제곱의 합을 최소로 하는 $w_1,\ w_2,\ w_3$ 는?

단층 퍼셉트론

- 은닉층이 없는 신경망
 - w_i: 가중치
 - 각 요소의 비중
 - b: 바이어스(bias, 편향)
 - 상수항
 - *φ*: 활성 함수
 - 비선형, 증가, 미분가능
 - \hat{y}_i : 출력

활성함수

• 시그모이드 함수

•
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- 쌍곡 탄젠트
 - tanh(x)
- Rectifier

• ReLU(
$$x$$
) =
$$\begin{cases} x, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

목표

• 아들의 키를 가장 잘 근사시키는 바이어스 b와 가중치 w_i 는?

아빠의 $\overline{\mathcal{I}}(x_1)$	<i>x</i> ₁₁	<i>x</i> ₁₂	•••	x_{1n}
엄마의 키 (x_2)	x_{21}	x_{22}	•••	x_{2n}
가계 소득 (x_3)	x_{31}	x_{32}	•••	x_{3n}
아들의 키 (y_1)	y_{11}	y_{12}	• • •	y_{1n}

$$\hat{y}_{1i} = \phi(b + w_1 x_{1i} + w_2 x_{2i} + w_3 x_{3i})$$

• 오차:
$$L = \frac{1}{2} \sum_{i=1}^{n} (y_{1i} - \hat{y}_{1i})^2$$

그래디언트 Gradient

- 함수 $f: \mathbb{R}^n \to \mathbb{R}$
- 점 $x = (x_1, ..., x_n)$ 에서 f의 그래디언트

$$\nabla_{x} f(x) = \nabla f(x) = \left(\frac{\partial f}{\partial x_{1}}(x), \dots, \frac{\partial f}{\partial x_{n}}(x)\right)$$

- 함수가 가장 빨리 증가하는 방향
- 보기: $f(x_1, x_2) = x_1^2 x_2$ $\nabla f(x_1, x_2) = (2x_1 x_2, x_1^2)$

• 그래디언트 벡터

•
$$z = 1.5e^{-(x-1)^2 - y^2} - e^{-(x+1)^2 - y^2}$$

경사 하강법 Gradient Descent Method

- 함수 f의 극소점 찾기
- 알고리즘
 - p =임의의 점, $\lambda =$ 작은 실수
 - f(p)의 변화가 큰 동안 다음을 반복
 - $p \leftarrow p \lambda \cdot \nabla f(p)$
- 학습률 *λ*
 - 실험을 반복하여 적당한 값을 찾는다
- p의 초기값에 따라 극소점이 다를 수도 있다

합성함수의 그래디언트

• 두 함수 $g: \mathbb{R}^m \to \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}$ 의 합성 함수

$$\mathbb{R}^m \xrightarrow{g} \mathbb{R}^n \xrightarrow{f} \mathbb{R}$$
$$y = g(x)$$
$$z = f(y) = f(g(x))$$

• *g*의 야코비 행렬

$$J_g(x) = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_n}{\partial x_1} & \dots & \frac{\partial y_n}{\partial x_m} \end{bmatrix}$$

• 그래디언트(열벡터)

$$\nabla_x z = J_g(x)^T \nabla_y z$$

계산

ユ	人	トフト
		山人

• 오차

• 미분

아빠의 키 (x_1)	x_{11}	x_{12}	•••	x_{1n}
엄마의 키 (x_2)	x_{21}	x_{22}	•••	x_{2n}
가계 소득 (x_3)	<i>x</i> ₃₁	x_{32}	***	x_{3n}
아들의 키 (y_1)	y_{11}	<i>y</i> ₁₂	***	y_{1n}

$$\hat{y}_{1i} = \phi(b + \sum_{j=1}^{3} w_j x_{ji})$$

$$L = \frac{1}{2} \sum_{i=1}^{n} (y_{1i} - \hat{y}_{1i})^2$$

$$\frac{\partial L}{\partial w_1} = \sum_i (y_{1i} - \hat{y}_{1i}) \frac{\partial \hat{y}_{1i}}{\partial w_1}$$
$$= \sum_i (y_{1i} - \hat{y}_{1i}) \phi' (b + \sum_j w_j x_{ji}) x_{1i}$$

$$\nabla L = \left[\frac{\partial L}{\partial b} \frac{\partial L}{\partial w_1} \frac{\partial L}{\partial w_3} \frac{\partial L}{\partial w_3}\right]^T$$

$$= \begin{bmatrix} \sum_i (y_{1i} - \hat{y}_{1i})\phi'(b + \sum_j w_j x_{ji}) \\ \sum_i (y_{1i} - \hat{y}_{1i})\phi'(b + \sum_j w_j x_{ji})x_{1i} \\ \sum_i (y_{1i} - \hat{y}_{1i})\phi'(b + \sum_j w_j x_{ji})x_{2i} \\ \sum_i (y_{1i} - \hat{y}_{1i})\phi'(b + \sum_j w_j x_{ji})x_{2i} \end{bmatrix}$$

• 행렬 표현

- 훈련 집합 $\{(x_1, y_1), ..., (x_n, y_n)\}$
- 변수

• L의 그래디언트 $\nabla_W L = J_{\phi}(Z)^T (\hat{Y}_1 - Y_1) X^T$

$$\begin{array}{cccc} W & & & & & \\ & \searrow & & & \\ X & \rightarrow & Z & \rightarrow & \widehat{Y}_1 \end{array}$$

다층 퍼셉트론

• 은닉층이 있는 순방향 신경망

배타적 논리합(XOR)

$$p \oplus q = (\sim p \land q) \lor (p \land \sim q)$$

p	\boldsymbol{q}	$p \oplus q$
\boldsymbol{F}	F	F
\boldsymbol{F}	T	T
T	$\boldsymbol{\mathit{F}}$	T
T	T	F

x_1	0	0	1	1
x_2	0	1	0	1
y	0	1	1	0

벡터 표현 행렬 표현
$$z_1^{(1)} = b_1^{(1)} + w_{11}^{(1)} x_1 + w_{12}^{(1)} x_2 \qquad \qquad Z^{(1)} = W^{(1)} X \\ y_1^{(1)} = \phi^{(1)} \left(z_1^{(1)} \right) \qquad \qquad \vdots \qquad \qquad \vdots$$

코드

import numpy as np from keras import Sequential, losses from keras.layers import Dense import matplotlib.pyplot as plt

```
x = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], 'float32')

t = np.array([[0, 1, 1, 0]], 'float32').T
```

model = Sequential()
model.add(Dense(2, input_dim=2, activation='sigmoid'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss=losses.mse, optimizer='adam')
result = model.fit(x, t, epochs=10000, verbose=2)

심층 학습 Deep Learning

- 심층 신경망을 사용하는 기계 학습
 - 심층 신경망 = 은닉층이 많은 신경망

합성곱 Convolution

0.2	0.2	0.2	0.2	0.2
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0.2 0 0.2 0 0.2 0 0.2 0 0.2 0

합성곱 신경망 CNN – Convolutional Neural Network

• 합성곱을 포함하는 신경망

숫자 인식

- Mnist
 - 28 × 28 손글씨 6만개

이미지 인식

- ResNet 2015
 - 사람보다 좋은 인식률 95%
 - 34층
 - 노드 개수 ≈ 6천만

RNN – Recurrent Neural Network

• 작곡, 소설

인공 신경망의 장단점

- 정확도가 높다
- 단점
 - 너무 복잡하여 인간이 이해하기 어렵다
 - ResNet은 변수가 6천만개인 함수의 극솟값을 계산한다
 - 오류가 있어도 사전에 발견할 수 없다
 - 하드웨어 비용이 너무 커서 접근이 어렵다
 - 이미 발표된 네트워크는 따라해 볼 수 있으나
 - 새로운 네트워크 개발에는 시간의 제약이 따른다

관련 분야

- 인공 신경망의 이해 및 설계
 - 미분, 벡터, 행렬, 확률, 통계
 - 함수에 대한 깊은 이해가 필요
 - 컴퓨터 프로그래밍
- 인공 신경망을 이용한 자료 분석
 - 이미 설계된 신경망에 대입하여 결과를 이해
 - 컴퓨터 프로그래밍
 - 파이썬 텐서플로우 / 케라스
 - 약간의 수학적인 지식이 필요
 - 다양한 분야에서 많은 연구자들이 이용하고 있음

인공 신경망의 현재와 미래

- 결과에 대한 이유를 이해하는 것은 불가능에 가깝다
 - 복잡한 신경망을 이해하는 사람은 없다
 - 인공 지능 자동차가 호수로 돌진한다면?
- 특정 분야에서는 인간보다 정확하다
 - 인간도 자동차를 몰고 호수로 돌진한다
- 새로운 수학 이론이 필요?

비지도 학습 Unsupervised Learning

• 미지의 자료를 그룹으로 분류

K-Means Clustering

- 알고리즘
 - K: 그룹의 개수
 - K 그룹으로 임의 분할
 - 반복
 - 각 그룹의 평균점 계산
 - 가까운 평균점으로 그룹 다시 배정

강화 학습 Reinforcement Learning

- 최적의 보상을 얻는 행동을 찾아가는 기계 학습 방법
 - Cart Pole
 - 알파고
 - <u>게임</u>

격자 세계

• 이득이 가장 큰 방향은 어디인가?

변수

- 상태(state)
- 행동(action)
- 보상(reward)
 - 행동에 대한 보상

예

- 올해는 무엇을 심을까?
 - 상태 예상 강수량, 예상 기온, 가격, 등
 - 행동 작물 선택
 - 보상 수확 / 소득
- 우산을 가지고 나갈까?
- 자동차는 어떤 방향으로 가야할까?
- 바둑 선수는 어떤 수를 둘까?

행위자와 환경 Agent and Environment

- 행위자(agent)
 - 행동 주체
 - 각 상태에서 행동 선택
- 환경(environment)
 - 행위자의 행동에 대한 보상 제공
 - 행위자의 행동에 대하여 다음 상태 결정

예

- 올해는 무엇을 심을까?
 - 행위자 농부
 - 환경 ?
- 우산을 가지고 나갈까?
 - 환경 ?
- 자동차는 어떤 방향으로 갈까?
 - 행위자 자동차
 - 환경 ?
- 바둑 선수는 어떤 수를 둘까?
 - 환경 규칙 + 상대방

마르코프 결정 과정 MDP – Markov Decision Process

- 의사결정을 위한 수학적 모델
- 직전의 상태와 행동이 다음 상태와 보상을 결정
- $S_0 \xrightarrow{A_0} R_1$, $S_1 \xrightarrow{A_1} R_2$, $S_2 \longrightarrow$
 - S_t 상태
 - *A_t* 행동
 - R_t 보상

MDP

- S 상태의 집합
- # 행동의 집합
 - $\mathcal{A}(s)$ 상태 s에서 취할 수 있는 행동의 집합
- \mathcal{R} 보상의 집합
 - $\mathcal{R}(s,a)$ 상태 s에서 행동 a를 취했을 때 얻는 보상의 집합
- $p(s', r \mid s, a) = \Pr(S_t = s', R_t = r \mid S_{t-1} = s, A_{t-1} = a)$
 - 상태 s에서 행동 a를 취했을 때 상태 s'이 되고 보상 r을 얻을 확률

참고 대문자: 변수 소문자: 값

에피소드 Episode

• 행위자와 환경의 상호작용이 완료되는 과정

•
$$S_0 \xrightarrow{A_0} R_1$$
, $S_1 \xrightarrow{A_1} R_2$, $S_2 \xrightarrow{A_2} \cdots \xrightarrow{A_{T-1}} R_T$, S_T

반환 Return

• 각 타임 스텝에서 에피소드가 종료될 때까지 얻는 보상의 총합

•
$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T$$

$$= \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

$$= R_{t+1} + \gamma G_{t+1}$$

- γ − 할인율(discount rate)
 - 미래에 얻을 이익을 현재 가치로 환산하기 위한 비율
 - $0 < \gamma \le 1$

격자 세계

- 에피소드
 - $S_0 \xrightarrow{A_0} R_1$, $S_1 \xrightarrow{A_1} R_2$, $S_2 \xrightarrow{A_2} R_3$, $S_3 \xrightarrow{A_3} R_4$, S_4
- 할인율
 - $\gamma = 0.9$
- 반환

•
$$G_0 = R_1 + \gamma R_2 + \gamma^2 R_3 + \gamma^3 R_4 + \gamma^4 R_5$$

= $-5 + 0.9 \cdot (-5) + 0.81 \cdot (-5) + 0.729 \cdot 30$
= 8.32

•
$$G_1 = ?$$

정책 Policy

- 행위자가 행동을 선택하는 방법
- 종류
 - 결정적 정책
 - 각 상태에서 취할 행동이 결정되어 있음
 - 확률적 정책
 - 각 상태에서 확률에 따라 행동을 취함

정책의 표현

- $\pi(a|s) = \Pr(A_t = a \mid S_t = s)$
- 예
 - 결정적 정책
 - $\pi(a|s) = 0 \text{ or } 1$
 - 랜덤 정책
 - π(a|s)가 균일

정리

- 행위자, 환경, 상태, 행동, 보상, 정책, 에피소드, 반환, 할인율
- 확률적으로 결정되는 것들은 무엇인가?
- 올해는 무엇을 심을까?
 - 콩을 10개 심으면 몇 개의 싹이 틀까?
- 우산을 가지고 나갈까?
 - 상태는 어제와 비슷한데 오늘도 비가 올까?
- 자동차는 어떤 방향으로 갈까?
- 바둑 선수는 어떤 수를 둘까?
 - 내가 둔 수에 대한 상대의 반응은?

상태 가치 함수

- 상태 가치
 - 정책에 의하여 행동을 선택할 경우 각 상태의 가치
- 정책 π 에 대한 상태 가치 함수
 - $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$
 - 에피소드의 반환의 기댓값

격자 세계

$$\gamma = 1$$

• 랜덤 정책을 취할 때 각 상태의 가치

$$\begin{array}{c|cccc} 0 & -14 & -20 & -22 \\ -14 & -18 & -20 & -20 \\ -20 & -20 & -18 & -14 \\ -22 & -20 & -14 & 0 \end{array}$$

• 최적의 정책을 취할 때 각 상태의 가치

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

행동 가치 함수

- 행동 가치
 - 정책에 의하여 행동을 선택할 경우 각 행동의 가치
- 정책 π 에 대한 행동 가치 함수
 - $q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$

• 상태 가치와 행동 가치의 관계는?

예

• 랜덤 정책을 취할 때 상태 (2,4)에서 행동 ↓의 가치는?

벨만 방정식 Bellman equation

• 벨만 방정식

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

• 행동 가치 함수

$$q_{\pi}(s, a) = \sum_{s', r} p(s', r|s, a)[r + \gamma v_{\pi}(s')]$$

벨만 방정식의 해

- 일차 연립방정식
 - 미지수의 개수 = 상태의 개수
 - X = AX + b $\stackrel{\text{\tiny 2}}{=}$
- 점화식
 - *X*₀: 임의로 초기화
 - $X_{i+1} = AX_i + b$
 - 해는 $\lim_{n\to\infty} X_n$

벨만 방정식
$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

해 구하기

•
$$v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_\infty = v_\pi$$

랜덤 정책 π 에 대한 가치 함수 $v_{\pi}(s) = \sum_{a=1}^{4} \frac{1}{4} \left[-1 + v_{\pi}(s') \right]$

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

$$k = 0$$

$$k = 1$$

$$k = 2$$

$$k = 3$$

$$k = 3$$
 $k = 10$

$$k = \infty$$

최적 가치 함수와 최적 정책

- 최적 가치 함수
 - 상태의 최대 가치
 - $v_*(s) = \max_{\pi} v_{\pi}(s)$
- 최적 정책
 - 가장 우수한 정책 π_*
 - $v_{\pi_*}(s) = v_*(s)$

$$\gamma = 1$$

최적 가치

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

최적 정책 구하기

- π_0 : 임의의 정책
- $\bullet \ \pi_0 \ \rightarrow \ v_{\pi_0} \ \rightarrow \ \pi_1 \ \rightarrow \ v_{\pi_1} \ \rightarrow \ \cdots \ \rightarrow \ \pi_*$
- $v_{\pi_*} = v_*$

Dynamic Programming

- 최적화 문제를 해결하는 것
 - 가장 우수한 정책 찾기
- 장점
 - 거의 정확한 값을 계산할 수 있다
- 단점
 - 모든 경우의 수를 생각해야 한다
 - 바둑에서 상태의 개수 ≈ 361!
 - 시간의 한계
 - 메모리의 한계

몬테 카를로 방법 Monte Carlo Methods

- q_{π} 의 근삿값
 - 에피소드의 표본에 대하여 계산

 $q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$ 모든 에피소드에 대한 반환의 평균을 계산

시간차 학습 Temporal Difference Learning

- 에피소드의 각 단계에서 상태 가치 함수를 다시 설정
- 상태의 가치를 다음 상태의 가치로 보정
 - $v(S_t) \leftarrow v(S_t) + \alpha [R_{t+1} + \gamma v(S_{t+1}) v(S_t)]$
 - α 학습률

예: 시간차 학습

$$\pi(a|s) = 0.25$$
, $\alpha = 0.01$, $\gamma = 1$

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

에피소드 0

0.0	0.0	0.0	0.0
03	02	02	02
01	04	02	0.0
03	07	01	0.0

에피소드 1

0	0.0	0.0	0.0	0.0	0.0
2	02	05	02	02	02
2	0.0	01	04	02	0.0
1	0.0	03	08	01	0.0

에피소드 2

에피소드 100000

Sarsa

- 에피소드를 따라 행동 가치 함수를 다시 설정
 - $q(S_t, A_t) \leftarrow q(S_t, A_t) + \alpha [R_{t+1} + \gamma q(S_{t+1}, A_{t+1}) q(S_t, A_t)]$
- $S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}$ 를 사용하기 때문에 "sarsa"라 부른다

Q-learning

- $q(S_t, A_t) \leftarrow q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a} q(S_{t+1}, a) q(S_t, A_t)]$
 - $\max_{a} q(S_{t+1}, a)$ 는 정책에 무관
 - 에피소드를 따라 계산

알파고

- 가치가 큰 수(행동)를 선택
- 모든 수를 시도해 볼 수는 없다
- 이길 확률이 높은 그림과 유사한 그림을 만드는 수들을 시도해 본다
 - 합성곱 신경망

강화 학습의 현재

- 상태의 가치를 알 수 없다
 - 상태가 너무 많다
- 어떤 행동을 시도해 볼 것인가?
 - 확률에 의하여 결정된다
 - 불확실성이 존재한다

프로그래밍

- 파이썬
 - 배우기 쉬운 언어