- 1. Prove Pascal's Formula $\binom{\alpha}{k} = \binom{\alpha-1}{k-1} + \binom{\alpha-1}{k}$ for any $\alpha \in \mathbb{R}$ and $k \in \mathbb{Z}_{\geq 0}$. (Note: You will need to use the falling factorial definition.)
- 2. Determine the generating function for each of the following sequences:

a.
$$1, r, r^2, r^3, ...$$

 $1 + rx + r^2x^2 ... \longrightarrow \frac{1}{1-rx}$
b. $1, -1, 1, -1, ...$
 $1 - x + x^2 - x^3 \longrightarrow \frac{1}{1+x}$
c. $\binom{\alpha}{0}, -\binom{\alpha}{1}, \binom{\alpha}{2}, -\binom{\alpha}{3}, ...$
 $\binom{\alpha}{0} - \binom{\alpha}{1}x + \binom{\alpha}{2}x^2 - \binom{\alpha}{3}x^3 ...$
 $1 - \alpha x + \frac{\alpha(\alpha-1)}{2*1}x^2 - \frac{\alpha(\alpha-1)(\alpha-2)}{3*2*1}x^3 ...$
 $1 - \alpha x + \frac{[\alpha]_{(2)}}{[2]_{(2)}}x^2 - \frac{[\alpha]_{(3)}}{[3]_{(3)}}x^3 ...$
 $\sum_{k=0}^{\infty} (-1)^k \binom{\alpha}{k} x^k$
 $\frac{1}{(1+x)^{\alpha}}$
d. $1, \frac{1}{1!}, \frac{1}{2!}, \frac{1}{3!}, ...$
 $1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 ...$
 e^x
e. $1, \frac{-1}{1!}, \frac{1}{2!}, \frac{-1}{3!}, \frac{1}{4!}, ...$
 $1 - \frac{1}{1!}x + \frac{1}{2!}x^2 - \frac{1}{3!}x^3 ...$
 $1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 ...$

f.
$$\binom{0}{2}$$
, $\binom{1}{2}$, $\binom{2}{2}$, $\binom{3}{2}$, ...
$$\binom{0}{2} + \binom{1}{2}x + \binom{2}{2}x^2 + \binom{3}{2}x^3 \dots$$

$$-\frac{1}{2} + 0x + \frac{[2]_{(2)}}{[2]_{(2)}}x^2 + \frac{[3]_{(2)}}{[2]_{(2)}}x^3 \dots$$

$$-\frac{1}{2} + 0x + \frac{[2]_{(2)}}{2}x^2 + \frac{[3]_{(2)}}{2}x^3 \dots$$

Is this the right process?

How do you know when to use EGF vs GF?

- 3. Given the Fibonacci sequence $f_n = f_{n-1} + f_{n-2}$ with initial conditions $f_0 = 0$ and $f_1 = 1$,
 - a. Solve the recursion by writing it as a linear homogenous recursion and finding the characteristic polynomial. Write your answer in the form $c_1q_1^n + c_2q_2^n$. (Note: we have already solved this up to finding the constants in class. Finish the problem.)
 - b. Solve the recursion by using generating functions. (Note: Use a partial fraction decomposition to finish the problem.)
- 4. Prove that the Fibonacci number f_n is even if, and only if, divisible by 3.
- 5. Consider a 1-by-n chessboard. Suppose we color each square of the chessboard with one of the colors red, white, or blue. Let h_n be the number of colorings in which there is an even number of red squares (the example from class).
 - a. Reproduce the exponential generating function solution from class.
 - b. Solve this by using a standard generating function and partial fractions.
 - c. Reproduce the associated recursion for h_n .

- d. Using your answer from part c, solve the recursion using the generating function method for non-homogeneous recursions.
- 6. Consider a 1-by-n chessboard. Suppose we color each square of the chessboard with one of the colors red or blue. Let h_n be the number of colorings in which no two squares that are colored red are adjacent. Find a recurrence relation that h_n satisfies, then derive a formula for h_n .
- 7. Determine the generating function for the number h_n of bags of fruit of apples, oranges, bananas, and pears in which apples % 2 = 0, oranges \le 2, bananas % 3 = 0, and pears \le 1. Then find a formula for h_n from the generating function.
- 8. Determine the exponential generating function for the following sequence:
 - a. 0!, 1!, 2!, ...
 - b. $[\alpha]_{(\underline{0})}$, $[\alpha]_{(\underline{1})}$, $[\alpha]_{(\underline{2})}$, $[\alpha]_{(\underline{3})}$, ... (Note: $[\alpha]_{(\underline{n})}$ is the falling factorial.)
- 9. Let h_n denote the number of ways to color the square of a 1-by-n board with the colors red, white, blue, and green in such a way that the numbers of squares colored red is even and the number of squares colored white is odd. Determine the exponential generating function for the sequence, then find a simple formula for h_n .
- 10. Determine the number of ways to color the squares of a 1-by-n board using the colors red, blue, green, and orange if an even number of squares is to be colored red and an even number is to be colored green.
- 11. Determine the number of n-digit numbers with all digits odd, such that 1 and 3 each occur a nonzero, even number of times.
- 12. Solve the recurrence relation:
 - a. $h_n = 4h_{n-2}$, $h_0 = 0$, $h_1 = 1$, and $n \ge 2$.
 - b. $h_n = h_{n-1} + 9h_{n-2} 9h_{n-3}$, $h_0 = 0$, $h_1 = 1$, and $h_2 = 2$. $n \ge 3$.
 - c. $h_n = 4h_{n-1} + 4^n$, $h_0 = 3$ and $n \ge 1$.
- 13. Let h_n = the number of ternary strings of length n made up of 0's, 1's, and 2's, such that the substrings 00, 01, 10, and 11 never occur. Prove that

$$h_n = h_{n-1} + 2h_{n-2}$$

with $h_0 = 1$, $h_1 = 3$, and then find a formula for h_n .

- 14. Compute the Stirling numbers of the first and second kind up to n = 6 using their recursive formulas.
- 15. Prove the Stirling numbers of the second kind satisfy:
 - a. S(n, 1) = 1
 - b. $S(n, 2) = 2^{n-1} 1$
 - c. $S(n, n-1) = \binom{n}{2}$
- 16. Prove the Stirling numbers of the first kind satisfy:
 - a. s(n, 1) = (n 1)!
 - b. $s(n, n 1) = \binom{n}{2}$
- 17. Write $[n]_{(k)}$ as a polynomial in n for k = 5, 6, 7. (Do not use distribution!)
- 18. Find a closed formula for the sequence: 1, 6, 15, 28, 45, 66, 91, ... (Use a difference table.)