decimal.

Electrónica Digital Guía de Trabajos Prácticos Nº 1

Sistemas numéricos y códigos

1. ¿Cuál es el peso del número 6 en las siguientes cifras decimales? La coma el separador

	a. 1386 ₁₀	• •	c. 671920 ₁₀	d. 1061,01 ₁₀	
	e. 0,1236 ₁₀	f. 6254,1 ₁₀	g. 861000 ₁₀	h. 12,06 ₁₀	
2.	¿Cuál es el máximo número que puede obtenerse con n dígitos decimales?				
	a. <i>n</i> =3	b. <i>n</i> =5			
	c. <i>n</i> =8	d. <i>n</i> =10			
3.	Convertir los siguientes números binarios a decimal				
	a. 1011 ₂	b. 11100 ₂	c. 1000001,111 ₂	d. 1111000,101 ₂	
	e. 1111,01 ₂	f. 0,1101 ₂	g. 11110110 ₂	h. 1101011,11 ₂	
4.	¿Cuál es el máximo número decimal que puede representarse con n dígitos binarios (bits)?				
	a. <i>n</i> =3	b. <i>n</i> =5			
	c. <i>n</i> =8	d. <i>n</i> =10			
5.	¿Cuántos bits se necesitan para representar los siguientes números decimales?				
	a. 35 ₁₀	b. 132 ₁₀	c. 100401 ₁₀	d. 828 ₁₀	
	e. 1028 ₁₀	f. 1042 ₁₀	g. 15028 ₁₀	h. 21282128 ₁₀	
6.	Convertir cada número decimal del ejercicio 5 a binario				
7.	Convertir cada número decimal del ejercicio 5 a hexadecimal				
8.	Convertir cada número binario del ejercicio 3 a hexadecimal				
9.	Convertir cada número hexadecimal a binario				
	a. 38 ₁₆	b. FB17 ₁₆	c. A104 ₁₆	d. 8280F ₁₆	
	e. 6BE ₁₆	f. 19023 ₁₆	g. FFF00F ₁₆	h. E2109 ₁₆	
10.	Convertir cada númer	ro hexadecimal del ej	ercicio 9 a decimal		
11.	Determinar el complemento uno de				
	a. 11010111 ₂	b. 00001 ₂	c. 1010 ₂	d. 101010101 ₂	
	e. 111 ₂	f. 000 ₂	g. 11111100 ₂	h. 1111000 ₂	
12.					
	a. 11010111 ₂	b. 00001 ₂	c. 1010 ₂	d. 101010101 ₂	
	e. 111 ₂	f. 000 ₂	g. 11111100 ₂	h. 1111000 ₂	

13. Expresar los siguientes núm	eros decimales como un n	número de 16 bits en formato punto		
fijo con signo/magnitud. Util	izar 1 bit para representa	ır el signo, 7 bits para representaı		
números enteros y 8 bits para representar las fracciones.				

c. -101,25₁₀ a. -13,5625₁₀ b. 42,3125₁₀ d. 71,125₁₀ f. -121,525₁₀ g. -1,145₁₀ e. 0,12575₁₀ h. 100,5₁₀

14. Expresar los números del ejercicio 13 como un número de 16 bits en formato punto fijo con complemento a dos, con 8 bits para representar números enteros y 8 bits para representar las fracciones.

15. ¿Qué es un código BCD? ¿Cuáles conoce? Realice un código BCD ponderado donde uno de sus pesos tenga valor negativo. Realice una tabla que contenga los códigos BCD: natural (8421), Aiken (2421), 5421 y exceso-3.

16. Convertir los siguientes números decimales a BCD natural y BCD Aiken

a. 18₁₀

b. 57₁₀

c. 15608₁₀

d. 1051₁₀

e. 1006₁₀

f. 1560₁₀

g. 1495₁₀

h. 2506₁₀

17. Convertir cada número BCD a decimal

a. 1001_{bcd}

b. 01000001_{bcd}

c. 10000100_{bcd}

d. 101110101_{bcd}

e. 00011000_{bcd}

f. 100101111000_{bcd}

g. 10101,0101_{bcd}

h. 11110011000,01_{bcd}

18. ¿Cuales son las propiedades de los códigos? De ejemplos de códigos que tengan una o más de estas propiedades simultáneamente.

19. Convertir cada número binario a código Gray

a. 1001₂

b. 11011₂

c. 11000010001₂

d. 111010111₂

e. 111111₂

f. 100101111000₂

g. 00010100₂

h. 110001111₂

20. Determinar cuál de los siguientes códigos con paridad par son erróneos

a. 1001100101₂

b. 0111010101₂

c. 11001011101₂

d. 110101011₂

e. 1001001110₂

f. 100101111000₂

g. 10000011₂

h. 1100001111₂

21. Determinar cuál de los siguientes códigos con paridad impar son erróneos

a. 11110110₂

b. 1010101010101010₂ c. 11010101111₂

d. 101010111001₂

e. 1001001110₂

f. 100101111001₂ g. 111101111₂

h. 10101101₂

22. Determinar el código de Hamming utilizando paridad par y el Código de Redundancia Cíclica (CRC) CRC-3-GSM para las siguientes secuencias

a. 110100₂

b. 110011₂

c. 1100101₂

d. 10101011101₂

e. 100100111₂

f. 10010111100₂

g. 1110101101₂

h. 10010101101₂

23. Determinar el código de Hamming utilizando paridad impar y el Código de Redundancia Cíclica (CRC) CRC-5-ITU para las siguientes secuencias

a. 110100₂

b. 110011₂

c. 1100101₂

d. 10101011101₂

e. 100100111₂

f. 10010111100₂

g. 1110101101₂

h. 10010101101₂

24. Verificar si las siguientes secuencias que fueron transmitidas utilizando el código de Hamming con paridad par presentan algún error. En caso afirmativo, corregirlas.

a. 0010001₂

b. 1011001₂

c. 0111001₂

d. 1000111₂

e. 110100011₂

f. 10010100100₂

g. 1110010110101₂

h. 101001110010011₂

25. Verificar si las siguientes secuencias que fueron transmitidas utilizando el código de Hamming con paridad impar presentan algún error. En caso afirmativo, corregirlas

a. 0010001₂

b. 1011001₂

c. 0111001₂

d. 1000111₂

e. 110100011₂

f. 10010100100₂

g. 1110010110101₂

h. 101001110010011₂

26. Verificar si las siguientes secuencias que fueron transmitidas utilizando el código CRC-3-GSM presentan algún error.

a. 110111011110₂

b. 101101110100110₂

c. 01110010001₂

d. 101001110010011111₂

e. 111001011010101₂

f. 100101001001101₂

g. 101101101111001₂

h. 101001010010011011₂

i. 10010101101110₂

27. Convertir los siguientes mensajes alfanuméricos utilizando el código ASCII y determine los códigos con paridad impar de bloques y de Redundancia Cíclica (CRC) con los polinomios CRC-6-GSM y CRC-8-Bluetooth

a. AT%+@%/78-xZ2*3vZchJ_{q}

b. Llego a la estacion a las 16:50