A Short Survey of Generalization and Oracle Bounds Obtained for a Lipschitz Objective with Regularization

Thierry Bazier-Matte

February 12, 2017

1 Introduction, Notation and Assumptions

This document is an attempt at regrouping under a unified notation and assumptions a number of results from machine learning, statistical learning and high-dimensional statistics when considering a loss function of the form $(q, z) \mapsto$ $\ell(y\,q^Tx)$, with ℓ a γ -Lipschitz loss function. This particular form of loss readily applies to single-asset portfolio optimization (where one maximizes $u(rq^Tx)$ and to SVM objective (where the loss is given by $(1 - yq^Tx)_+$). We first define a number of solutions whose properties will be studied in the following sections:

$$R(q) = \mathbf{E}_{X,Y} \ell(Y \, q^T X) \,; \tag{1}$$

$$\hat{R}(q) = n^{-1} \sum_{i=1}^{n} \ell(y_i \, q^T x_i) \,; \tag{2}$$

$$\hat{q}_2 = \underset{q}{\arg\min} \left\{ \hat{R}(q) + \lambda_2 ||q||_2^2 \right\};$$
 (3)

$$q_2^* = \underset{q}{\arg\min} \left\{ R(q) + \lambda_2 ||q||_2^2 \right\} ;$$
 (4)

$$\hat{q}_{12} = \underset{q}{\arg\min} \left\{ \hat{R}(q) + \lambda_1 \|q\|_1 + \lambda_2 \|q\|_2^2 \right\};$$

$$q_{12}^* = \underset{q}{\arg\min} \left\{ R(q) + \lambda_1 \|q\|_1 + \lambda_2 \|q\|_2^2 \right\};$$
(5)

$$q_{12}^* = \arg\min_{q} \left\{ R(q) + \lambda_1 ||q||_1 + \lambda_2 ||q||_2^2 \right\}; \tag{6}$$

In particular, we will be interested in establishing generalization bounds g_1 and oracle bounds g_2 , that is,

$$R(\hat{q}) \le \hat{R}(\hat{q}) + g_1(n, p, \delta)$$

and

$$R(\hat{q}) \le R(q^*) + g_2(n, p, \delta).$$

In particular, we will try to make the bounds explicitly depending on the sample size n, the dimensionality of the problem p (that is, the cardinality of X) and the confidence level $1 - \delta$.

We now formalize a number of assumptions.

Assumption 1. The loss function ℓ is γ -Lipschitz, i.e., $|\ell(z_1) - \ell(-z_2)| \leq \gamma |z_1 - z_2|$.

Assumption 2. The random variable Y rests on a bounded support, i.e., $|Y| \leq \bar{y}$.

Assumption 3. Every feature vector is standardized, i.e., for any $j \in \{1, ..., p\}$, $EX_i = 0$, $Var X_i = 1$. In particular, this implies that $EX_i^2 = 1$, so that $E\|X\|_2^2 = \sum_{i=1}^p EX_i^2 = p$.

2 Lemmas

In this section we prove a number of lemmas whose results will be recurrent in proving various theorems presented in the following sections.

Lemma 1. The following bound holds with probability $1 - \delta_X$:

$$||X||_2^2 \leq \frac{p}{\delta_X}$$
.

Let $\xi^2 = O(p)$ denote this bound.

Proof. The result simply follows from the fact that $E||X||_2^2 = p$ and by applying Markov's inequality.

Remark. Note that this result can be made more precise if one has a better understanding of the features. For example, if one considers only bounded features, or only subgaussian features then Hoeffding's or Bernstein's inequalities apply [Todo: Is it really Bernstein?], thus providing tighter guarantees. However, we want to stress that the $||X||_2^2 = O(p)$ is the important result to take away from Lemma 1.

Lemma 2. Let \hat{q} denote either \hat{q}_2 or \hat{q}_{12} . Then with probability $1 - \delta_X$, the following bound holds:

$$\|\hat{q}\|_2 \le \frac{\gamma \bar{y}\xi}{2\lambda_2}.$$

Let $B_q = O(\sqrt{p})$ denote this bound.

Corollary 1. The loss suffered from applying either \hat{q}_2 or \hat{q}_{12} is bounded by

$$\ell(y\,\hat{q}^Tx) \le \gamma \bar{y}B_q\xi.$$

Let $B_{\ell} = O(p)$ denote this bound.

[Todo: Add proof.]

Lemma 3. This lemma concerns specifically the \hat{q}_2 case. Let $R_{\lambda}(q) = R(q) + \lambda ||q||_2^2$ and let q_{λ}^{\star} be the theoretical minimizer of R_{λ} . Then R_{λ} is 2λ -strongly convex, i.e.,

$$\lambda \|q - q_{\lambda}^{\star}\|_{2}^{2} \leq R_{\lambda}(q) - R_{\lambda}(q_{\lambda}^{\star})$$

Furthermore, if there exists a function q such that

$$R_{\lambda}(\hat{q}) - R_{\lambda}(q_{\lambda}^{\star}) \le g(n, p, \delta),$$

then we have the following oracle bound on R:

$$R(\hat{q}) \le R(q^*) + \lambda ||q^*||_2^2 + 2g + 2\lambda B_{q_2} \sqrt{g/\lambda}.$$

Proof. First note that from the second hypothesis and the triangle inequality we have

$$R(\hat{q}) - R(q_{\lambda}^{\star}) \le g + \lambda \left(\|q_{\lambda}^{\star}\|_{2}^{2} - \|\hat{q}\|_{2}^{2} \right) \le g + \lambda \left(2\|\hat{q}\|_{2} \|q_{\lambda}^{\star} - \hat{q}\|_{2} + \|q_{\lambda}^{\star} - \hat{q}\|_{2}^{2} \right).$$

Next, the second hypothesis combined with the first one yields that $\|\hat{q} - q_{\lambda}^{\star}\|_{2} \le \sqrt{g/\lambda}$. Also, Lemma 2 implies that $\|\hat{q}\|_{2}$ and $\|q_{\lambda}^{\star}\|_{2}$ are bounded by $B_{q_{2}}$, so therefore

$$R(\hat{q}) - R(q_{\lambda}^{\star}) \le 2g + 2\lambda B_{q_2} \sqrt{g/\lambda}.$$

Next, by definition of q_{λ}^{\star} , we have

$$R(q_{\lambda}^{\star}) + \lambda \|q_{\lambda}^{\star}\|_{2}^{2} \le R(q^{\star}) + \lambda \|q^{\star}\|_{2}^{2},$$

it follows that

$$R(q_{\lambda}^{\star}) - R(q^{\star}) \le \lambda \|q^{\star}\|_{2}^{2} - \lambda \|q_{\lambda}^{\star}\|_{2}^{2} \le \lambda \|q^{\star}\|_{2}^{2},$$

which combined to the equality

$$R(\hat{q}) = R(q^*) + R(\hat{q}) - R(q^*_{\lambda}) + R(q^*_{\lambda}) - R(q^*)$$

yields the claimed result.

3 Generalization Bounds

This section applies for any \hat{q} , although because $\|\hat{q}_1\|$ is possibly unbounded, the results presented are only finite when \hat{q} is either \hat{q}_2 or \hat{q}_{12} .

3.1 Pseudo-Dimension Bound

The first generalization bound relies on the concept of pseudo-dimension Pdim defined for a family of functions. Even though we shall not define it precisely, we will make use of some theorems. For references on the concept, please consult [6, 1, 8].

First, some definitions are in order.

Definition. The family of linear decisions Q is the following set of functions:

$$\mathcal{Q} = \{ q : (\mathcal{X}, \mathcal{Y}) \to \mathcal{R} \mid q(x, y) = y \, q^T x \}.$$

Remark. In particular, $\hat{q}^T \in \mathcal{Q}$.

Definition. The familiy of losses \mathcal{L} associated to \mathcal{Q} is the following set of functions:

$$\mathcal{L} = \{\ell_q: (\mathcal{X}, \mathcal{Y}) \to \mathscr{R} \,|\, \ell_q(x,y) = \ell(q(x,y))\}.$$

Proposition 1. Pdim(Q) = p + 1.

Proof. Theorem 10.4 from [6] indicates that the family of hyperplanes in \mathcal{R}^m , *i.e.*,

$$\mathcal{W} = \{ x \mapsto w^T x \}$$

has $\operatorname{Pdim}(\mathcal{W}) = m+1$. But \mathcal{Q} can also be considered as the family of hyperplanes since it only differs by a scaling factor of y. This yields the claimed result.

Proposition 2. $Pdim(\mathcal{L}) = p + 1$.

Proof. We see that $\mathcal{L} = \ell \circ \mathcal{Q}$. But by Exercise 10.1 of [6], since ℓ is monotonic, the result follows.

Theorem 1. Let \hat{q} be either \hat{q}_2 or \hat{q}_{12} . Then the following bound holds with probability $1 - \delta$:

$$R(\hat{q}) \leq \hat{R}(\hat{q}) + B_{q_2} \left(\sqrt{\frac{2p \log(en/p)}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}} \right)$$
$$\leq \hat{R}(\hat{q}) + O\left(\frac{p\sqrt{p \log(n/p)}}{n}\right),$$

with e the Euler constant.

Proof. See Theorem 10.6 from [6] in conjunction with the two previous propositions. \Box

3.2 Rademacher Bound

Here again we will use the concept of Rademacher complexity $\hat{\mathfrak{R}}_n$ without defining it.

Let $\mathcal{F}_{\tilde{\mathcal{Q}}}$ be a slightly different family of functions taking in their input only from the \mathcal{X} space:

$$\mathcal{F}_{\tilde{\mathcal{Q}}} = \{ x \mapsto q^T x : q \in \tilde{\mathcal{Q}} \},\$$

and

$$\tilde{\mathcal{Q}} = \{ q \in \mathcal{R}^p : ||q||_2 \le B_q \}.$$

We will use results from [5] and [2] in order to derive our next bound.

Lemma. The Rademacher complexity of $\tilde{\mathcal{Q}}$ is bounded:

$$\hat{\mathfrak{R}}_n(\mathcal{F}_{\tilde{\mathcal{Q}}}) \le \xi B_q \sqrt{\frac{1}{n}}.$$

Proof. This results comes from Theorem 3 in [5]. Here is a verbatim transcription of the theorem.

Theorem. Let $\mathcal{F}_{\mathcal{W}} = \{x \mapsto \langle w, x \rangle : w \in \mathcal{W}\}$. Let S be a closed convex set and let $F: S \to \mathcal{R}$ be a σ -strongly convex $w.r.t. \parallel \cdot \parallel_{\star} s.t. \inf_{w \in S} F(w) = 0$. Further, let $\mathcal{X} = \{x : \|x\| \leq X\}$. Define $\mathcal{W} = \{w \in S : F(w) \leq W_{\star}^2\}$. Then, we have

$$\hat{\mathfrak{R}}_n(\mathcal{F}_{\mathcal{W}}) \le XW_{\star}\sqrt{\frac{2}{\sigma n}}.$$

We can directly apply the above theorem to our case by taking $F = \|\cdot\|^2$ and noticing it is 2-strongly convex. Therefore, we have $\mathcal{W} = \tilde{\mathcal{Q}}$ if we set $W_{\star}^2 = B_q^2$, which leads to the claimed result.

Next, we inoke generalization theorem proved by Bartlett and Mendelson in 2002 [2].

Theorem 2. With probability $1 - \delta$, the following bound holds:

$$R(\hat{q}) \le \hat{R}(\hat{q}) + \frac{2\gamma \xi B_q}{\sqrt{n}} + B_\ell \sqrt{\frac{\log(1/\delta)}{2n}}$$
$$\le \hat{R}(\hat{q}) + O\left(\frac{p}{\sqrt{n}}\right).$$

Proof. See Theorem 1 in [5] in addition to Corollary 1.

3.3 Stability Bound

The next bound was introduced by [3].

Lemma. The β -stability of the ERM algorithm leading to \hat{q} is bounded:

$$\beta \le \frac{(\gamma \bar{y}\xi)^2}{\lambda_2 n} = O\left(\frac{p}{n}\right).$$

Proof. See Proposition 11.1 in [6] with $\sigma = \gamma \bar{y}$.

Theorem 3. With probability $1 - \delta$, the following bound holds:

$$R(\hat{q}) \le \hat{R}(\hat{q}) + \beta + (2n\beta + B_{\ell})\sqrt{\frac{\log(1/\delta)}{2n}}$$
$$\le \hat{R}(\hat{q}) + O\left(\frac{p}{\sqrt{n}}\right).$$

Proof. Directly by applying Theorem 11.1 from [6] with the above lemma and Corollary 1.

4 Oracle Bounds

4.1 Fast Rate Bound

The next bound is due to [7]. The "fast" rate means that $\hat{q} \to q_{\lambda}^{\star}$ at a O(1/n) rate due to the strong convexity of the regularizer.

Theorem 4. The following bound holds with probability $1 - \delta$:

$$\begin{split} R(\hat{q}) & \leq R(q^{\star}) + \lambda \|q^{\star}\|_{2}^{2} + \frac{8\gamma^{2}\xi^{2}(32 + \log(1/\delta))}{\lambda n} + 8\gamma\lambda\xi B_{q}\sqrt{\frac{32 + \log(1/\delta)}{\lambda n}} \\ & \leq R(q^{\star}) + \lambda \|q^{\star}\|_{2}^{2} + O\left(\frac{p}{\sqrt{n}}\right). \end{split}$$

Proof. As shown in Theorem 1 of [7], the following bound holds with probability $1 - \delta$:

$$R_{\lambda}(\hat{q}) \le R_{\lambda}(q_{\lambda}^{\star}) + \frac{4\gamma^2 \xi^2 (32 + \log(1/\delta))}{\lambda n}.$$

Applying the result of Lemma 3 yields the result.

4.2 Empirical Process Bound

The next bound has been developed using the machinery developed for the high dimensional statistical theory. Note that unlike the previous bounds where the p dependancy was a consequence of $\xi = O(\sqrt{p})$, the dependancy on p relies on the so-called contraction inequality. Another particularity of the bound is its looseness: whereas previous bounds holded with exponential confidence [Todo: Rephrase.], this bound is actually concerns the expectation of the suboptimality, and Markov's inequality only yields a weak bound.

Theorem 5. The following bound holds with probability $1 - \delta$:

$$R(\hat{q}) \le R(q^*) + \lambda \|q^*\|_2^2 + \frac{512\gamma^2}{\lambda \delta^2} \frac{p}{n} + 32\lambda B_q \frac{\gamma}{\delta \sqrt{\lambda}} \sqrt{\frac{p}{n}}$$
$$\le R(q^*) + \lambda \|q^*\|_2^2 + O\left(\frac{p}{\sqrt{n}}\right).$$

Proof. Follows from the quadratic margin of \mathscr{E}_2 (with constant λ_2) around q_2^{\star} , Lemma 6.6 and Lemma 14.19 in [4] in conjunction with Markov's inequality, followed by Lemma 3. [Todo: More details?]

4.3 Elastic Net Penalization

Although high dimensional statistics was developed with a "fixed number of real features, high number of unimportant features" philosophy (especially useful in certain fields like biology), we can use its results on the solution \hat{q}_{12} , but we have to suppose that all considered features are useful. This leads to a worsening of $O(\log p)$ of previous bounds. This is because, by considering q^{\star}_{λ} as the objective, we know that none of its components is zero, almost surely. Although we could also consider a single linear penalty (thus leading to a lasso generalized linear model), our lack of knowledge of curvature at q^{\star} would yield a bound with unknown constant.

Theorem 6. Let

$$\lambda_1 = 16\gamma \left(4\sqrt{\frac{2\log 2p}{n}} + \sqrt{\frac{2\log(1/\delta)}{n}}\right).$$

Then the following bound holds with probability $1 - \delta$:

$$R(\hat{q}) \leq R(q_{\lambda}^{\star}) + \lambda_2 \|q^{\star}\|_2^2 + \frac{32\lambda_1^2 p}{\lambda_2} + 4\lambda_2 B_q \frac{\lambda_1}{\sqrt{\lambda_2}} \sqrt{p}$$
$$\leq R(q_{\lambda}^{\star}) + \lambda_2 \|q^{\star}\|_2^2 + O\left(\frac{p \log p}{\sqrt{n}}\right).$$

Proof. The proof first follows from

$$R(\hat{q}) - R(q_{\lambda}^{\star}) \le \frac{16\lambda_1 p}{\lambda_2}$$

(Corrolary 6.3 in [4] using quadratic margin with constant $c = \lambda_2$) in conjunction to Example 14.2 also in [4].

References

- [1] M. Anthony and P. L. Bartlett. Neural network learning: Theoretical foundations. cambridge university press, 2009.
- [2] P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.
- [3] O. Bousquet and A. Elisseeff. Stability and generalization. *The Journal of Machine Learning Research*, 2:499–526, 2002.
- [4] P. Bühlmann and S. Van De Geer. Statistics for high-dimensional data: methods, theory and applications. Springer Science & Eamp; Business Media, 2011.
- [5] S. M. Kakade, K. Sridharan, and A. Tewari. On the complexity of linear prediction: Risk bounds, margin bounds, and regularization. In Advances in neural information processing systems, pages 793–800, 2009.
- [6] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press, 2012.
- [7] K. Sridharan, S. Shalev-Shwartz, and N. Srebro. Fast rates for regularized objectives. In *Advances in Neural Information Processing Systems*, pages 1545–1552, 2009.
- [8] M. Vidyasagar. Learning and generalisation: with applications to neural networks. Springer Science & Business Media, 2013.