Can Chance-Constrained Contact Uncertainty Quantification Improve Feasibility of Robust Trajectory Optimization?

John Zhang, Luke Drnach, and Ye Zhao Laboratory for Intelligent Decision and Autonomous Robots, Georgia Institute of Technology

Contact Robust Trajectory Optimization

For dynamic robot locomotion, planning under uncertainty with intermittent contact is critical, as failure to make and maintain contact can be catastrophic [1].

Current robust trajectory optimization method [2] produces dynamically infeasible trajectories under high uncertainty.

Mediating between trajectory robustness and feasibility can help generate motion plans that are both satisfactory to model constraints and robust to environment uncertainty.

Objectives

- 1) Design chance constraints for contact with uncertainty in contact distance and friction coefficient.
- 2) Demonstrate that chance constraints, combined with a contact-sensitive objective, can control the trade-off between robustness to contact uncertainty and contact constraint satisfaction at fixed values of uncertainty.

Modeling Contact Uncertainty

Standard Complementarity Problem for Contact:

Normal Distance Constraint

 $\phi(q) \ge 0, \quad \lambda_N \ge 0, \quad \phi(q)^{\top} \lambda_N = 0$

Friction Cone and Sliding Constraints

 $\lambda_T \ge 0, \quad \gamma + J_T^{\top} \dot{q} \ge 0, \quad \lambda_T^{\top} (\gamma + J_T^{\top} \dot{q}) = 0$

 $\gamma \geq 0, \quad \mu \lambda_N - \lambda_T \geq 0, \quad \gamma^\top (\mu \lambda_N - \lambda_T) = 0$

Chance Complementarity Constraints [3]:
Assume one of the variables is normally distributed.

$$x \perp F(x), \quad F(x) \sim \mathcal{N}(\bar{\mu}, \sigma)$$

 $x \geq 0, F(x) \geq -\sqrt{2}\sigma \operatorname{erf}^{-1}(2\beta - 1)$

 β , θ are **risk-bounded** failure $x \ge 0, F(x) \ge -\sqrt{2}\sigma \, \text{erf}^{-1}(2\beta - 1),$ probabilities between 0.5 and 1 $xF(x) \le -\sqrt{2}\sigma \operatorname{erf}^{-1}(1-2\theta)$

Robust Objective for Complementarity with Uncertain Parameters

Expected Residual Minimization [4]:

 $\mathbb{E}[\min(x, F(x))^2] = x^2 - \sigma^2(x + \bar{\mu})p(x) + (\sigma^2 + \bar{\mu}^2 - x^2)P(x)$

Sliding Block with Uncertain Friction

Chance constraints alone do not alter the reference control in trajectory optimization.

Chance constraints **combined** with ERM generates robust control trajectories.

Chance constraints improve the average final position at high uncertainty

As β increases, both mean and range of the error increases.

0.8

Single Legged Hopper Over Uncertain Terrain

Discussion and Future Works

- 1) Designed chance constraints for contact with uncertainty in contact distance and friction coefficient.
- 2) Provided a risk-bounded interpretation to the relaxed chance complementarity constraints.
- 3) Demonstrated that the trade-off between robustness to contact uncertainty and constraint satisfaction can be controled using chance constraints.

Future works could include scaling up our optimization to a full-body robot in 3-D and experimentally validate our methods with physical robots. More investigations on improving algorithm efficiency could bring our approach closer to real world applications.

Contact Information: zzhang741@gatech.edu, luke.drnach@gatech.edu

Constraint