Př. 1B. Spočtěte limitu

$$\lim_{n \to +\infty} \frac{3^{2n+1} + 4^{n+1}}{2^{n-1} - 9^{n-1}}$$

Řešení:

Použijeme fintu 2, člen s největším základem je 9^n :

$$\lim_{n \to +\infty} \frac{3^{2n+1} + 4^{n+1}}{2^{n-1} - 9^{n-1}} = \lim_{n \to +\infty} \frac{9^n}{9^n} \frac{9^{1/2} + 4 \cdot (4/9)^n}{2^{-1} \cdot (2/9)^n - 9^{-1}}$$

$$= \frac{9^{1/2}}{-9^{-1}}$$

$$= -27.$$
(1)

Př. 2B. Zderivujte funkci a určete definiční obor D_f a $D_{f'}$:

$$f(x) = (6x - 1)\ln(2x + 4) + \sqrt{16x^2 + 5}.$$

Řešení:

Definiční obor funkce určíme ze dvou podmínek, z logaritmu a odmocniny, vidíme, že musí platit

$$2x + 4 > 0,$$

$$16x^2 + 5 > 0.$$

Na reálných číslech platí druhá podmínka vždy ($x^2 > -5/16$, druhá mocnina nějakého čísla je vždy kladná), z první podmínky tedy $D_f = (-2, +\infty)$. Derivace vychází

$$f'(x) = 6\ln(2x+4) + (6x-1) \cdot \frac{1}{2x+4} \cdot 2 + \frac{32x}{2\sqrt{16x^2+5}}$$
$$= 6\ln(2x+4) + \frac{6x-1}{x+2} + \frac{16x}{\sqrt{16x^2+5}}.$$
 (2)

Musíme si zde navíc ohlídat, že z druhého členu vidíme, že $x \neq -2$, z logaritmu zase dostaneme $(-2, +\infty)$, jejich průnikem jednoduše máme $D_{f'} = D_f = (-2, +\infty)$ (ve třetím členu nikdy nulou dělit nebudeme).

Př. 3B Určete rovnici tečny ke grafu funkce $f(x) = -x^2 + 8x + 20$ v bodě $x_0 = 2$, nakreslete.

Řešení:

Víme, že rovnice tečny je

$$y(x) = ax + b$$
,
 $y(x) = f'(x_0)x + f(x_0) - f'(x_0)x_0$.

Derivace dává f'(x) = -2x + 8, v bodě $x_0 = 2$ dostaneme a = f'(2) = 4, směrnice tečny je tedy 4. Pak stačí spočítat f(2) = -4 + 16 + 20 = 32 a člen $x_0 f'(x_0) = 8$, celkově tedy b = 32 - 8 = 24. Rovnice tečny tedy

$$y(x) = 4x + 24.$$

Bod dotyku je pak $T[2, f(x_0)] = T[2, 32]$. Průsečíky tečny s osami $P_y = [0, 24]$ a $P_x = [-6, 0]$.

Pak stačí spočítat parametry paraboly:

$$P_y = [0, 20]$$
 $P_{x1} = [-2, 0]$,
 $P_{x2} = [10, 0]$ $V = [4, 36]$.

Figure 1: Graf k úloze 3.

Př. 4B. Průběh funkce $f(x) = x^3 - x^2 - 5x - 3$.

Řešení:

1. Jedná se o polynom, definiční obor jsou reálná čísla, $D_f = \mathcal{R}$. Paritu funkce vyšetříme

$$f(-x) = -x^3 - x^2 + 5x - 3.$$

Taková funkce se nerovná ani -f(x) a ani f(-x), funkce není sudá ani lichá.

2. Průsečík s osou y hned vidíme $P_y = [0, -3]$. Průsečíky s osou x musíme nalézt řešením rovnice f(x) = 0. Jedná se o kubickou funkci, uhádneme nejdříve jeden kořen (x = -1), další dva kořeny pak nalezneme dělením

$$P_2(x) = (x^3 - x^2 - 5x - 3) : (x + 1) = x^2 - 2x - 3 = (x - 3)(x + 1).$$

Vidíme, že kořen x=-1 dvojnásobný, třetí kořen je x=3, tj. $P_{x1,2}=[-1,0]$ a $P_{x3}=[3,0]$. Znaménko vyšetřujeme na reálné ose rozsekané na tři podintervaly, zjišťujeme

 $(-\infty, -1)$: záporná (-1,3): záporná $(3, +\infty)$: kladná.

3. Limity jsou jednoduché, použijeme fintu 1:

$$\lim_{x \to \pm \infty} x^3 \left(1 - \frac{1}{x} - \frac{5}{x^2} - \frac{3}{x^3} \right) = \begin{cases} +\infty & \text{pro } x \to +\infty \\ -\infty & \text{pro } x \to -\infty \end{cases}$$

4. Derivace $f'(x) = 3x^2 - 2x - 5$. Řešením rovnice f' = 0 získáme dva kořeny/nulové body, a sice $x_1 = 5/3$ a $x_2 = -1$. Monotonie pak dává:

$$(-\infty, -1): f' > 0$$

 $(-1, 5/3): f' < 0$
 $(5/3, +\infty): f' > 0.$

Funkce f(x) roste na intervalech $(-\infty, -1)$ a $(5/3, +\infty)$ a klesá na intervalu (-1, 5/3). Vidíme, že v bodě x = -1 je (lokální) maximum a v bodě x = 5/3 je (lokální) minimum. Protože limity z funkce f(x) utíkají do $\pm \infty$, tyto extrémy jsou nutně lokální! Funkční hodnoty pak f(-1) = 0 a f(5/3) = -256/27.

- 5. Žádné vertikální asymptoty nejsou (definiční obor jsou reálná čísla). Vodorovné také ne (limity z f(x) vycházejí $\pm \infty$). Potenciální šikmá asymptota má směrnici danou limitou $\lim_{x\to\pm\infty} f(x)/x$, vidíme ale, že podělení x-kem pouze sníží řád polynomu na kvadratický, směrnice tedy nutně vyjdou nekonečné a tím pádem šikmá asymptota neexistuje.
- 6. Druhá derivace vychází f''(x) = 6x-2, inflexní bod získáme řešením rovnice f'' = 0, získáme x = 1/3 (tento inflexní bod je zároveň jediný nulový bod druhé derivace, snadno tak určíme křivost). Křivost:

$$(-\infty, 1/3) : f'' < 0,$$

 $(1/3, +\infty) : f'' > 0.$

Funkce f(x) je tedy konkávní na intervalu $(-\infty,1/3)$ a konvexní na intervalu $(1/3,+\infty)$. Funkční hodnota inflexního bodu f(1/3)=-128/27.

7. Z grafu funkce (níže) vidíme, že obor hodnot musí být $H_f = \mathcal{R}$.

Figure 2: Graf funkce z úlohy 4.