BSDF 的对称性与各向同性

Dezeming Family

2021年12月25日

DezemingFamily 系列书和小册子因为是电子书,所以可以很方便地进行修改和重新发布。如果您获得了 DezemingFamily 的系列书,可以从我们的网站 [https://dezeming.top/] 找到最新版。对书的内容建议和出现的错误欢迎在网站留言。

目录

	1
二 对称性与非对称性	2
三 各向同性与各向异性	2
参考文献	2

一引语

BSDF 是计算机图形学的渲染领域最重要的基本概念之一,这里对其一些基本性质进行一些简单的讨论。

BSDF 称为双向散射分布函数,设为 f。给定一个点 p,和光的出射方向 ω 。以及入射方向 $-\omega_i$, $f(p,\omega_o,\omega_i)$ 函数会返回一个分数,可以理解为是入射方向为 $-\omega_i$ 的光散射到出射方向 ω_o 的比率。

顺便提一句,对于 BSDF 函数来说,由于对于想求出射方向 ω_o 的 radiance,我们希望求所有入射方向的 radiance 散射到 ω_o 的部分。由于 irradiance 不包括单位立体角(其实准确来说应该是单位投影立体角,多了一个 \cos 项),所以 BSDF 的形式是 $\frac{d\ radiance}{d\ irradiance}$,这样在渲染方程的积分中右边的积分项才是正确的。但对我们而言,其实只需要知道 f 返回一个比例就可以了。

那么,现在考虑几个问题。首先,BSDF在所属半球上积分一定要是1吗?即下式是否一定必须成立:

$$\int_{S^2} f(\boldsymbol{p}, \omega_o, \omega_i) d\omega_i = 1 \tag{-.1}$$

答案是显而易见的,并不需要。那么,下面的式子呢:

$$\int_{S^2} f(\boldsymbol{p}, \omega_o, \omega_i) d\omega_o = 1 \tag{-.2}$$

答案是也不需要。有人觉得一束光散射到其它方向的总和一定是 1,这样才符合能量守恒,其实物体表面也可能会吸收一部分光,所以并不会全部散射到其他方向(可以不考虑彩色物体,我们可以只考虑 RGB

表示的光波的其中一个分量,或者考虑灰色的物体)。对于完全不反光的纯黑色物体来说, $f(\mathbf{p},\omega_o,\omega_i)=0$ 恒成立。

所以现在我们知道了,BSDF 函数并不需要积分为1。

二 对称性与非对称性

现在又出现了另外一个问题, BSDF 是不是对称的呢?即下式是否成立:

$$f(\mathbf{p}, \omega_o, \omega_i) = f(\mathbf{p}, \omega_i, \omega_o) \tag{\Box.1}$$

这里的答案是不一定——可以设置对称的 BSDF 函数,也可以设置不对称的 BSDF 函数。非对称的 BSDF 函数其实很好理解,举个例子,例如光从空气中通过一个玻璃会产生折射,也会反射掉一部分。而 光从玻璃中再进入到空气中时,折射的比例和反射的比例与前面并不相同。可以参考 [1] 的第五章来进行更深入的了解。

著名的 Cook-Torrance 物理模型就是一个非对称的 BSDF 函数。

对称的 BSDF 函数我们可以进行自定义,例如:

$$f(\mathbf{p}, \omega_o, \omega_i) = g(\mathbf{p}, |\omega_o - \omega_i|) \tag{1.2}$$

也就是说明该 BSDF 的函数值仅与入射和出射方向的夹角大小有关,自然可以将两个方向互换而函数值不变。

三 各向同性与各向异性

有人可能会将各向同性与各向异性与对称性搞混,这里进行一下区分。

对于一个表面点 x,表面法向量为 N,给定一个入射方向 ω_i 和一个出射方向 ω_o ,就可以计算 BSDF 值。我们定义一个旋转操作: $Rotate_N(\omega,a)$,表示将方向 ω 沿着法向量 N 旋转 a 度。

如果一个 BSDF 是各向同性的,那么下式成立:

For any
$$a \in R$$
: $(\Xi.1)$

$$f(\mathbf{p}, \omega_o, \omega_i) = f(\mathbf{p}, Rotate_N(\omega_i, a), Rotate_N(\omega_o, a))$$
 (Ξ .2)

否则,就是各向异性的 BSDF 函数。

参考文献

[1] E. Veach, Robust Monte Carlo Methods for Light Transport Simulation, Ph.D. thesis, Stanford University, 1997.