Assignment-2

Exploratory Data Analysis

Assignment Date	25 September 2022
Student Name	Guru Hari Venkat S
Student Roll Number	513419106012
Maximum Marks	2 Marks

Exploratory Data Analysis

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import scale
from sklearn.model_selection import train_test_split
import numpy as np

sns.set_style('darkgrid')
sns.set(font scale=1.1)
```

1. Download the dataset:

Dataset downloaded and mounted using drive

2. Load the dataset.

```
data = pd.read_csv("drive/MyDrive/Churn_Modelling.csv")
```

```
ds = pd.DataFrame(data)
ds.head(10)
```

,	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43

5		6	15574	012	Chu	645	Spain	Male	44
6		7	15592	531	Bartlett	822	France	Male	50
7		8	15656	148	0binna	376	Germany	Female	29
8		9	15792	365	Не	501	France	Male	44
9		10	15592	389	Н?	684	France	Male	27
0 1 2 3 4 5 6 7 8 9	Tenure 2 1 8 1 2 8 7 4 4 2	838 1596 1255 1137 1156 1426	alance 0.00 307.86 560.80 0.00 510.82 755.78 0.00 946.74 951.07	Num	OfProducts	HasCrCard 1 0 1 1 1 1 1 1 1	IsActiveMe	mber \	
EstimatedSalary Exited 0 101348.88 1 1 112542.58 0 2 113931.57 1 3 93826.63 0 4 79084.10 0 5 149756.71 1 6 10062.80 0 7 119346.88 1 8 74940.50 0 9 71725.73 0									
ds.shape									
(1	(10000, 14)								

3. Perform Below Visualizations.

Univariate Analysis

```
Histogram
sns.histplot(ds['Balance'],color='orange');
```


sns.histplot(ds['Age'],color='orange');

Histogram With KDE sns.histplot(ds['Age'], kde=True, color='orange') <matplotlib.axes._subplots.AxesSubplot at 0x7fe8184f9d10>

KDE Plot
sns.kdeplot(ds['Age'],fill='true',color='orange')
<matplotlib.axes._subplots.AxesSubplot at 0x7fe81852d490>

Boxplot

sns.boxplot(ds['Age'], color='orange')

<matplotlib.axes._subplots.AxesSubplot at 0x7fe8185c6dd0>

sns.boxplot(ds['Balance'], color='orange')

<matplotlib.axes._subplots.AxesSubplot at 0x7fe818889b90>

Bi - Variate Analysis

```
ds[['Age','Balance','Exited','EstimatedSalary','NumOfProducts']].corr()

KDE plot
sns.kdeplot(ds['Age'], data=ds, hue=ds['Exited'], fill='true')
<matplotlib.axes._subplots.AxesSubplot at 0x7fe8182cffd0>
```


sns.kdeplot(ds['Balance'], data=ds, hue=ds['Exited'], fill='true')
<matplotlib.axes._subplots.AxesSubplot at 0x7fe81eb2f050>

sns.kdeplot(ds['Age'], data=ds, hue=ds['HasCrCard'], fill='true')

<matplotlib.axes._subplots.AxesSubplot at 0x7fe81ed35550>

sns.kdeplot(ds['Balance'], data=ds, hue=ds['HasCrCard'], fill='true')
<matplotlib.axes._subplots.AxesSubplot at 0x7fe81ee78110>

Count Plot with Hue

sns.countplot(ds['NumOfProducts'],hue=ds['Exited'])
<matplotlib.axes._subplots.AxesSubplot at 0x7fe818854610>

sns.countplot(ds['NumOfProducts'],hue=ds['HasCrCard'])
<matplotlib.axes._subplots.AxesSubplot at 0x7fe8187d1d10>

Scatter Plot
sns.scatterplot(x=ds.Age, y=ds.Balance, hue=ds.Exited)
<matplotlib.axes._subplots.AxesSubplot at 0x7fe81eaf9e10>

sns.scatterplot(x=ds.Age, y=ds.Balance, hue=ds.HasCrCard)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe81ea14a10>

Bar Plot
sns.barplot(ds["Exited"],ds["Age"])
<matplotlib.axes._subplots.AxesSubplot at 0x7fe818745e10>

sns.barplot(ds["NumOfProducts"],ds["Age"])
<matplotlib.axes._subplots.AxesSubplot at 0x7fe818725b10>

Multi - Variate Analysis

sns.pairplot(data=ds[["Age", "Tenure", "Balance", "NumOfProducts", "Estima
tedSalary", "Exited"]], hue="Exited", kind="kde")

<seaborn.axisgrid.PairGrid at 0x7fe81d0e7350>

sns.pairplot(data=ds[["Age","Tenure","Balance","NumOfProducts","Estima
tedSalary","Exited"]], hue="Exited", diag_kind="hist")

<seaborn.axisgrid.PairGrid at 0x7fe81cbf7750>

4. Perform descriptive statistics on the dataset.

ds.describe()

RowNumber	CustomerId	CreditScore	Age
Tenure \			_
count 10000.00000	1.000000e+04	10000.000000	10000.000000
10000.000000			
mean 5000.50000	1.569094e+07	650.528800	38.921800
5.012800			
std 2886.89568	7.193619e+04	96.653299	10.487806
2.892174			
min 1.00000	1.556570e+07	350.000000	18.000000
0.000000			
25% 2500.75000	1.562853e+07	584.000000	32.000000
3.000000			
50% 5000.50000	1.569074e+07	652.000000	37.000000
5.000000			

75%	7500.25000	1.575323e+07	718.000000	44.000000	
7.0000	90				
max	10000.00000	1.581569e+07	850.000000	92.000000	
10.0000	900				
	Balance	NumOfProducts	HasCrCard	IsActiveMember	\
count	10000.000000	10000.000000	10000.00000	10000.000000	
mean	76485.889288	1.530200	0.70550	0.515100	
std	62397.405202	0.581654	0.45584	0.499797	
min	0.000000	1.000000	0.00000	0.000000	
25%	0.000000	1.000000	0.00000	0.000000	
50%	97198.540000	1.000000	1.00000	1.000000	
75%	127644.240000	2.000000	1.00000	1.000000	
max	250898.090000	4.000000	1.00000	1.000000	
	EstimatedSala	ry Exite	d		
count	10000.0000	00 10000.00000	9		
mean	100090.2398	81 0.20370	9		
std	57510.4928	18 0.40276	9		
min	11.5800	0.00000	9		
25%	51002.1100	0.00000	9		
50%	100193.9150	0.00000	9		

0.000000

1.000000

5. Handle the Missing values. ds.isnull().sum()

149388.247500

199992.480000

75%

max

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtvpe: int64	

There is no null values in the dataset

6. Find the outliers and replace the outliers

Identifying Outliers

sns.boxplot(ds['Age'],data=ds,color='orange')

<matplotlib.axes._subplots.AxesSubplot at 0x7fe818248850>

ds['Age'].hist(color='orange')

<matplotlib.axes._subplots.AxesSubplot at 0x7fe8181d1550>


```
print('skewness value of Age: ',ds['Age'].skew())
skewness value of Age: 1.0113202630234552

Q1=ds['Age'].quantile(0.25)
Q3=ds['Age'].quantile(0.75)
IQR=Q3 - Q1
IQR

12.0

lower_limit = Q1 - (IQR * 1.5)
upper_limit = Q3 + (IQR * 1.5)

ds["Age"] = np.where(ds["Age"] > upper_limit, upper_limit,
np.where(ds["Age"] < lower_limit, lower_limit, ds["Age"]))
sns.boxplot(ds['Age'],data=ds,color='orange')
<matplotlib.axes. subplots.AxesSubplot at 0x7fe8181391d0>
```


7. Check for Categorical columns and perform encoding.

Check for Categorical Columns

ds.dtypes

RowNumber int64 CustomerId int64 Surname object CreditScore int64 Geography object Gender object Age float64 Tenure int64 Balance float64 NumOfProducts int64 HasCrCard int64 IsActiveMember int64 EstimatedSalary float64 int64 Exited

dtype: object

ds["Geography"].value_counts()

France 5014 Germany 2509 Spain 2477

Name: Geography, dtype: int64

```
ds["Gender"].value_counts()
Male
          5457
          4543
Female
Name: Gender, dtype: int64
Replace with encoding
ds["Geography"].replace({"France":1, "Spain":2, "Germany":3}, inplace =
True)
ds["Gender"].replace({"Female":0,"Male":1},inplace = True)
8. Split the data into dependent and independent variables.
dependent = ds['Exited']
dependent.head()
0
     1
1
     0
2
     1
3
     0
4
Name: Exited, dtype: int64
in dependent = ds.drop(columns=["Exited", "Surname"],axis=1)
in dependent.head()
   RowNumber CustomerId CreditScore Geography
                                                   Gender
                                                             Age
                                                                 Tenure
\
0
           1
                15634602
                                   619
                                                 1
                                                            42.0
                                                                       2
                                                         0
           2
                                   608
                                                 2
                                                            41.0
1
                15647311
                                                         0
                                                                       1
2
           3
                                                 1
                                                            42.0
                                                                       8
                15619304
                                   502
3
           4
                15701354
                                   699
                                                 1
                                                            39.0
                                                                       1
                                                                       2
4
           5
                15737888
                                   850
                                                2
                                                         0 43.0
     Balance NumOfProducts HasCrCard IsActiveMember
EstimatedSalary
        0.00
                           1
                                                       1
                                      1
101348.88
   83807.86
                           1
                                      0
                                                       1
112542.58
  159660.80
                           3
                                                       0
                                      1
113931.57
                           2
        0.00
                                      0
                                                       0
93826.63
```

```
9. Scale the independent variables
index=in dependent.columns
index
Index(['RowNumber', 'CustomerId', 'CreditScore', 'Geography',
'Gender', 'Age',
'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard',
'IsActiveMember',
       'EstimatedSalary'],
      dtype='object')
scaled values = scale(in dependent)
scaled values
array([[-1.73187761, -0.78321342, -0.32622142, ..., 0.64609167,
        0.97024255, 0.02188649],
       [-1.7315312, -0.60653412, -0.44003595, ..., -1.54776799,
        0.97024255, 0.21653375],
       [-1.73118479, -0.99588476, -1.53679418, \ldots, 0.64609167,
       -1.03067011, 0.2406869],
       [ 1.73118479, -1.47928179,
                                 0.60498839, ..., -1.54776799,
        0.97024255, -1.00864308],
       [1.7315312, -0.11935577, 1.25683526, ..., 0.64609167,
       -1.03067011, -0.12523071],
       [1.73187761, -0.87055909, 1.46377078, \ldots, 0.64609167,
       -1.03067011, -1.07636976]])
scaled df = pd.DataFrame(scaled values,columns=index)
scaled df
     RowNumber CustomerId CreditScore Geography
                                                     Gender
Age \
      -1.731878 -0.783213
                              -0.326221 -0.902587 -1.095988
0.342615
      -1.731531 -0.606534
                              0.240011
     -1.731185 -0.995885
                              -1.536794 -0.902587 -1.095988
0.342615
      -1.730838
                  0.144767
                              0.501521 -0.902587 -1.095988
3
0.034803
     -1.730492
                  0.652659
                           2.063884 0.301665 -1.095988
0.445219
                       . . .
9995 1.730492 -1.177652 1.246488 -0.902587 0.912419
0.034803
```

```
9996
       1.730838
                                -1.391939
                                            -0.902587 0.912419 -
                   -1.682806
0.375612
       1.731185
                  -1.479282
9997
                                 0.604988
                                            -0.902587 -1.095988 -
0.273008
                                 1.256835
9998
       1.731531
                   -0.119356
                                             1.505917 0.912419
0.342615
                                            -0.902587 -1.095988 -
9999
       1.731878
                  -0.870559
                                 1.463771
1.093840
        Tenure
                  Balance
                           NumOfProducts
                                           HasCrCard
                                                      IsActiveMember
0
     -1.041760 -1.225848
                               -0.911583
                                            0.646092
                                                             0.970243
1
     -1.387538
               0.117350
                               -0.911583
                                           -1.547768
                                                             0.970243
2
      1.032908
                                2,527057
                                            0.646092
                                                            -1.030670
                1.333053
3
     -1.387538 -1.225848
                                0.807737
                                           -1.547768
                                                            -1.030670
4
     -1.041760
                0.785728
                               -0.911583
                                            0.646092
                                                             0.970243
                                0.807737
                                                            -1.030670
9995 -0.004426 -1.225848
                                            0.646092
9996
      1.724464 -0.306379
                               -0.911583
                                            0.646092
                                                            0.970243
9997
      0.687130 -1.225848
                               -0.911583
                                           -1.547768
                                                            0.970243
9998 -0.695982 -0.022608
                                0.807737
                                            0.646092
                                                            -1.030670
9999 -0.350204 0.859965
                               -0.911583
                                            0.646092
                                                            -1.030670
      EstimatedSalary
0
             0.021886
1
             0.216534
2
             0.240687
3
            -0.108918
4
            -0.365276
            -0.066419
9995
9996
             0.027988
9997
            -1.008643
            -0.125231
9998
9999
            -1.076370
[10000 rows x 12 columns]
10. Split the data into training and testing
x = scaled df
y = dependent
x train,x test,y train,y test=train test split(x,y,test size=0.2,rando
m state=0)
x train.head()
      RowNumber
                 CustomerId
                              CreditScore
                                            Geography
                                                          Gender
Age
7389
       0.827747
                  -0.195066
                                 0.170424
                                             0.301665 -1.095988 -
```

```
0.478216
      1.481077
                  0.810821
                              -2.312802
9275
                                         1.505917 0.912419
0.342615
2995 -0.694379
                 -1.507642
                              -1.195351 -0.902587 -1.095988 -
0.991236
5316
      0.109639 1.243462
                              0.035916
                                         0.301665 0.912419
0.137407
356
    -1.608556 -1.100775
                              2.063884
                                         0.301665 -1.095988
1.881674
                         NumOfProducts
                                       HasCrCard IsActiveMember \
       Tenure
                Balance
7389 -0.004426 -1.225848
                             0.807737
                                        0.646092
                                                       -1.030670
9275 -1.387538 -0.012892
                             -0.911583
                                        0.646092
                                                        0.970243
2995 -1.041760 0.575076
                             -0.911583
                                        0.646092
                                                       -1.030670
5316 -0.004426 0.467955
                             -0.911583
                                        0.646092
                                                       -1.030670
356
     1.032908 0.806010
                             0.807737
                                        0.646092
                                                        0.970243
     EstimatedSalary
7389
            1.108382
9275
           -0.747592
2995
            1.487464
5316
            1.278558
356
            0.560069
x train.shape,y train.shape,x test.shape,y test.shape
((8000, 12), (8000,), (2000, 12), (2000,))
```