Tema 1: Teoría de conjunto

Ing. Margot Edith Cuarán Jaramillo

Escuela de Ingeniería de Sistemas y Computación Universidad del Valle - Santiago de Cali, Colombia e-mail: mecuaran@eisc.univalle.edu.co
Agosto 2.006

Conjunto

Un conjunto es una colección de objetos no repetidos y no ordenados. La forma más sencilla de específicar un conjunto es hacer una lista de sus elementos, encerrada por llaves.

Ejemplo $\{2, 3, \frac{1}{2}\}$ ó $\{3, 2, \frac{1}{2}\}$ ó $\{2, \frac{1}{2}, 3, \}$; indicarán el mismo conjunto.

Sin embargo, se usa con más frecuencia la notación constructiva de conjuntos. La forma de la notación es $\{variable\ indicadora: condiciones\}$ $\{variable\ \in conjunto\ :\ condiciones\}$

Ejemplo $\{x: x \in Z, 2|x\}$ ó $\{x \in Z: 2|x\}$, es el conjunto de todos los enteros que son divisibles entre 2, es decir, conjunto de números pares.

Tres conjuntos especiales de números son: \aleph , los naturales, Z, los enteros y \Re , los reales.

Área de Aplicación El conjunto es esencialmente útil en ciencias de la computación y encuentra aplicaciones en áreas tales como: inteligencia artificial, bases de datos y lenguajes de programación.

Elementos Los objetos en un conjunto se llaman elementos, o miembros, del conjunto

Ejemplo El conjunto V de todas las vocales del alfabeto español se puede escribir como $V = \{a, e, i, o, u\}$

Ejemplo Para una expresión e y una expresión de valor de conjunto S, $e \in S$ es una expresión; cuyo valor del enunciado e es miembro de S, si e está en S. La expresión $\neg(e \in S)$ se puede abreviar por $e \notin S$. Por ejemplo, $2 \in \{1,2,4\}$ es verdad y, $3 \notin \{1,2,4\}$ es verdad.

Cardinalidad La cardinalidad o tamaño de un conjunto finito S, se denota por $\mid S \mid$, es el número de elementos en S. Es decir,

$$|S| = (\sum x | x \in S: 1).$$

- Finito: Un conjunto se llama finito si su cardinalidad es un entero. Si no es así, se llama infinito. La cardinalidad de los Z es infinita.
- Vacío: Es el conjunto que no tiene elementos. Se puede representar por {} ó ∅

Relaciones entre conjuntos

Equivalencia de conjuntos Dos conjuntos son iguales si ellos contienen los mismos elementos. Así, el conjunto S y T cumplirán que: $S = T \equiv (\forall x \mid : x \ in \ S \equiv x \ in \ T)$

Ejemplo Sea $T=\{8,6,2,4\}$ y $S=\{x|x \text{ es un entero positivo par menor que 10}\}.$ Muestre que $T\equiv S$

Subconjunto Suponga que S y T son conjuntos. Se dice que S es un subconjunto de T si cada elemento de S también es un elemento de T. La notación $S \subseteq T$ quiere decir que A es un subconjunto de B. Es decir, $S \subseteq T \equiv (\forall x \mid x \in S: x \in T)$

Ejemplo $\{8,6,2\}$ es subconjunto de $\{8,6,2,4\}$.

Subconjunto propio Suponga que S y T son conjuntos.

Entonces, $S \subset T \equiv (S \subseteq T \land S \neq T)$

Universo Una teoría de conjuntos concierne a conjuntos construidos de cualquier colección de elementos. Hay una teoría do conjuntos de enteros, una teoría do conjuntos de caracteres, y así sucesivamente. Estas colecciones de elementos se conoce como el *dominio del discurso ó el universos de valores*, denotado por U

Partes del conjunto Las partes de un conjunto de un conjunto S, denotado por P(S), es el conjunto de subconjuntos de S: $x \in P(S) \equiv x \subseteq S$

Ejemplo $P{3,5} = {\emptyset, \{3\}, \{5\}, \{3,5\}}$

Producto cartesiano Sean los conuuntos A y B. El producto cartesiano de A y B, que se representa por AxB, es el conjunto de todos los pares ordenados (listas de dos elementos) formados tomando un elemento de A y uno de B, en todas las formas posibles. Es decir, $AxB = \{(a,b): a \in A \land b \in B\}.$

Ejemplo Supongamos que $A = \{1, 2, 3\}$ y que $B = \{3, 4, 5\}$. Entonces,

$$AxB = \{ (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,3), (3,4), (3,5) \}$$

$$BxA = \{ (3,1), (3,2), (3,3), (4,1), (4,2), (4,3), (5,1), (5,2), (5,3) \}$$

Operaciones sobre conjuntos

Intersección Sea A y B dos conjuntos. La intersección de A y B es el conjunto de todos los elementos que están en A o en B. La intersección de A y B se indica con $A \cap B$. Es decir, $A \cap B = \{x : x \in A \land x \in B\}$.

Ejemplo
$$\{3,5,6\} \cap \{3,2,1\} = \{3\}$$

Unión

Sea A y B dos conjuntos. La unión de A y B es el conjunto de todos los elementos que están en A o en B. La unión de A y B se indica con $A \cup B$. Es decir, $A \cup B = \{x : x \in A \ \lor \ x \in B\}$.

Ejemplo
$$\{3,5,6\} \cup \{3,2,1\} = \{3,5,6,2,1\}$$

Tamaño de una unión

Sean A y B conjuntos finitos, entonces: $|A \cup B| = |A| + |B| - |A \cap B|$

Ejemplo ¿Cuántos enteros hay entre 1 y 1000 (inclusive) son divisible entre 2 o entre 5?. Sean

$$A = \{x \in Z : 1 \le x \le 1000 \land 2 \mid x\}$$
$$B = \{x \in Z : 1 \le x \le 1000 \land 5 \mid x\}$$

La pregunta del problema es $A \cup B$. No es difícil ver que |A| = 500 y que |B| = 200. Ahora bien, $A \cap B$ son aquellos números, entre 1 y 1000, que son divisibles al mismo tiempo entre 2 y entre 5. Un número es divisible a la vez entre 2 y 5 **sii** es divisible entre 10, así que: $A \cap B = \{x \in Z: 1 \le x \le 1000 \land 10 \mid x\}$ y en

Por último, se tiene:

consecuencia, $|A \cap B| = 100$.

$$|A \cup B| = |A| + |B| - |A \cap B| = 500 + 200 - 100 = 600$$
. Hay 600 enteros, entre 1 y 1000, que son divisibles entre 2 o entre 5.

Diferencia Sean A y B conjuntos. La diferencia de conjuntos, A-B, es el conjunto de todos los elementos de A que no están en B: $A-B = \{x : x \in A \land x \notin B\}.$

La diferencia simétrica de A y B, representada por $A\Delta B$, es el conjunto de todos los elementosa de A que no están en B ó en B que no están en A. Esto es, $A\Delta B = (A-B) \cup (B-A)$.

Ejemplo Supongamos que $A = \{1, 2, 3, 4\}$ y que $B = \{3, 4, 5, 6\}$.

Entonces,

$$A - B = \{1, 2\}$$

$$B - A = \{5, 6\}$$

$$A\Delta B = \{1, 2, 5, 6\}.$$

Complemento El complemento de S, escrito S^c , es el conjunto de elemetos que no están en S (pero si en el universo). Así, $x \in S^c \equiv x \in \bigcup \land x \notin S$.

Ejemplo Sea \cup el conjunto de todas las letras del alfabeto español. Y, sea A el conjunto de todas las vocales del alfabeto español. Entonces A^c es el conjunto de todas las consonantes del alfabeto español.

Identidades de conjuntos

Identidad	Nombre
$A \cup \oslash = A$	Ley
$A \cap \emptyset = A$	de identidad
$A \cup \bigcup = \bigcup$	Ley
$A \cap \emptyset = \emptyset$	de dominación
$A \cup A = A$	Ley
$A \cap A = A$	de idempotencia
$\overline{\overline{(A)}} = A$	Ley de
	complementación
$A \cup B = B \cup A$	Ley
$A \cap B = B \cap A$	conmutativa
$A \cup (B \cap C) = (A \cup B) \cap (B \cup C)$	Ley
$A \cap (B \cup C) = (A \cap B) \cup (B \cap C)$	asociativa
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	Leyes de
$\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan
$A \cup (A \cap B) = A$	Ley de
$A \cap (A \cup B) = A$	absorción
$A \cup \overline{A} = \bigcup$	Ley de
$A \cap \overline{A} = \emptyset$	complemento

Depósito

Sucursal	Cuenta	Cliente	Saldo
D	1	J	500
М	2	S	700
Р	3	Н	400
RH	4	T	350
Р	5	W	900
RD	6	L	700
В	7	G	750
Ď	8	G	850

Cliente

Cliente	Calle	Ciudad
Jo	М	На
S	N	Ry
Н	М	На
С	N	Ry
L	Р	Pi
T	Q	St
W	U	Pr
Α	G	Pi
J	Α	Pa
Gl	Н	Wo
В	S	Br
G	W	St

Préstamo

Sucursal	Préstamo	Cliente	Valor
D	17	Jo	1000
RD	23	S	2000
Р	15	Н	1500
D	14	Ja	1500
М	93	С	500
RH	11	Т	900
Po	29	W	1200
N	16	А	1300
D	18	J	2000
Р	25	Gl	2500
В	10	В	2200

Sucursal

Sucursal	Activo	CiuSuc
D	90000	В
RD	21000	Р
Р	17000	Н
М	4000	Н
RH	80000	Н
Po	3000	Be
N	37000	R
В	71000	В

Taller Conjuntos

Bibliografía

- 1. David Gries and Fred Schneir. A logical aproach to discrete math. Springer, 1.994.
- 2. Rosen Kenneth. Matemática Discreta y sus aplicaciones. 5ta. Edición. McGrawHill, 2.004.
- 3. Edward Scheinerman. Matemáticas Discretas. Math, 2.001.
- 4. Korth Henry and Silberschaatz Abraham. Fundamentos de bases de datos. "'a. Edición. McGrawHill. 1.993.