Comenzado el martes, 1 de octubre de 2024, 22:02

Estado Finalizado

Finalizado en martes, 1 de octubre de 2024, 22:28

Tiempo empleado

25 minutos 52 segundos

Calificación 20,00 de 20,00 (**100**%)

Pregunta 1

Finalizado

Se puntúa 1,00 sobre 1,00

La función de membresía del dominio de una relación difusa $S:A\times B\to [0,1]$ denotado dom(S)(a), se define para todo $a\in A$ como:

- \bigcirc a. $\sup_{b \in B} \sup_{a \in A} S(a, b)$;
- \bigcirc b. $\sup_{a \in A} S(a, b)$.
- c. ninguna de las otras respuestas.
- \bigcirc d. $\sup_{b \in B} S(a, b)$.

Pregunta 2

Finalizado

Se puntúa 1,00 sobre 1,00

Una función R en un conjunto A es transitiva si y solo si:

- \bigcirc a. $(a,a) \in R$ para todo $a \in A$.
- \odot b. $\operatorname{si}(a,b) \in R \operatorname{y}(b,c) \in R$ entonces $(a,c) \in R$ para todo $a,b,c \in A$.
- \bigcirc c. $(a,b) \in R$ y $(b,a) \in R$ implica a = b para todo $a,b \in A$.
- \bigcirc d. $(b,a) \in R$ si y solo si $(a,b) \in R$ para todo $a,b \in A$.

Pregunta 3 Finalizado

Se puntúa 1,00 sobre 1,00

Sea $A:X\to [0,1]$ un conjunto difuso. Decimos que una familia de conjuntos difusos $\Sigma=\{P_i\}_{i\in J}$ es una cobertura difusa de A si:

- \bigcirc a. $A = \bigcap_{i \in J} P_i$
- \odot b. $A = \bigcup_{i \in J} P_i$
- c. ninguna de las otras respuestas.
- $\ \, \circ \ \, \mathrm{d.} \quad A = \cup_{i \in J} P_i^c.$

Pregunta 4

Finalizado

Se puntúa 1,00 sobre 1,00

En la relación $R\cap S$, la notación $a(R\cap S)b$ es equivalente a decir:

- \bigcirc a. $aRb \circ aSb$.
- \bigcirc b. $aRb \circ a \not Sb$.
- \bigcirc c. aRb y a $\not Sb$.
- \bigcirc d. aRb y aSb

Pregunta **5**

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa binaria en ${\it A}$ es una relación de similaridad si es:

Seleccione una o más de una:

- a. irreflexiva
- b. transitiva
- c. reflexiva
- d. simétrica
- e. antisimétrica
- f. transitiva

Pregunta 6Finalizado

Se puntúa 1,00 sobre 1,00

Una relación binaria de A a B es:

- \odot a. un subconjunto de $A \times B$.
- \bigcirc b. un subconjunto de $A \cup B$.
- \bigcirc c. un subconjunto de A=B.
- \bigcirc d. un subconjunto de $A \cap B$.

Pregunta **7**

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $R:A\times A\to [0,1]$ una relación difusa y sea A un conjunto finito de k elementos. Una clausura transitiva de R se define como:

- $\ \, \circ \ \, \text{a.} \ \, R^+ = \cup_{i>0} R^i \, \text{donde} \, R^i = R \circ R^{i-1} \cdot$
- $\ ^{\circledcirc}$ b. $R^{+}=R\cup R^{2}\cup \cdot \cdot \cdot \cup R^{k}\operatorname{donde}R^{i}=R\circ R^{i-1}$
- $^{\bigcirc}$ c. $R^+=R\cap R^2\cap\cdots\cap R^k$ donde $R^i=R\circ R^{i-1}$.
- d. ninguna de las otras respuestas.

Pregunta **8**

Finalizado

Se puntúa 1,00 sobre 1,00

Sean R y S dos <u>relaciones difusas</u> sobre $A \times B$. La intersección $Q = R \cap S$ en su forma más general se define Q(a,b) =

- a. ninguna de las otras respuestas.
- \bigcirc b. $\min(R(a,b),S(a,b))$ para todo $a,b\in A\times B$.
- $^{\odot}$ c. R(a,b)*S(a,b) para todo $a,b\in A\times B$ donde * es una norma t.
- \bigcirc d. R(a,b)*S(a,b) para todo $a,b\in A\times B$ donde * es una conorma t.

Pregunta 9 Finalizado

Se puntúa 1,00 sobre 1,00

Sea $S: X_{j_1} \times \cdots \times X_{j_k}$ una relación difusa donde $\{j_1, \ldots, j_k\}$ es una subsecuencia de $\{1, 2, \ldots, n\}$. La extensión cilíndrica de S en $X_1 \times X_2 \times \cdots \times X_n$ es una relación difusa cylS en $X_1 \times X_2 \times \cdots \times X_n$ tal que:

- \bigcirc a. $cylS(x_{i_1}, \ldots, x_{i_k}) = S(x_{i_1}, \ldots, x_{i_k})$.
- \bigcirc b. $cylS(x_1, \ldots, x_n) = S(x_{j_1}, \ldots, x_{j_k}).$
- \bigcirc c. $cylS(x_{j_1},...,x_{j_k}) = S(x_1,...,x_n)$.
- \bigcirc d. $cylS(x_1,\ldots,x_n)=S(x_1,\ldots,x_n)$.

Pregunta 10

Finalizado

Se puntúa 1,00 sobre 1,00

La composición max-min no es asociativa.

Seleccione una:

- Verdadero
- Falso

Pregunta 11

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa $R: A \times A \rightarrow [0,1]$ es transitiva si y solo si para todo $a,b,c \in A$:

- lacksquare a. $R(a,c) \geq \sup_{b \in A} R(a,b) * R(b,c)$ donde * es un norma t.
- $\ \, \bigcirc \ \, \mathrm{b.} \quad R(a,a)=1.$
- \bigcirc c. R(a,b)=R(b,a)
- $\quad \ \, \circ \ \, \mathrm{d.} \quad R(a,a)=0.$
- $\bigcirc \ \, \mathrm{e.} \quad R(a,b) > 0 \, \mathrm{y} \, R(b,a) > 0 \, \mathrm{implica} \, a = b \, .$

Pregunta 12

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación de equivalencia en un conjunto ${\it A}$ es una relación que es:

- a. reflexiva, antisimétrica y transitiva.
- ob. reflexiva, simétrica y de orden.
- o. reflexiva, simétrica y transitiva.
- Od. simétrica y transitiva.

Pregunta 13

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $\epsilon \in [0,1]$. Decimos que una relación difusa $R: A \times A \to [0,1]$ es ϵ -reflexiva si y solo si para todo $a \in A$ se cumple:

- \bigcirc a. R(a,b) = R(b,a).
- \bigcirc b. R(a,a) = 0.
- \bigcirc c. R(a,b)>0 y R(b,a)>0 implies a=b
- o d. R(a, a) = 1.
- \odot e. $R(a,a) \geq \epsilon$.

Pregunta 14

Finalizado

Se puntúa 1,00 sobre 1,00

Si S es una relación binaria, el conjunto dom(S) es:

- \bigcirc a. $\{a \mid \text{para todo } b \text{ tal que } (a,b) \in S\}.$
- \odot b. $\{a \mid \text{existe } b \text{ tal que } (a,b) \in S\}$.
- \bigcirc c. $\{a \mid \text{para todo } b \text{ tal que } (b, a) \in S\}.$
- \bigcirc d. $\{a \mid \text{existe } b \text{ tal que } (b,a) \in S\}.$

Pregunta 15

Finalizado

Se puntúa 1,00 sobre 1,00

En la relación R=S, la notación a(R-S)b es equivalente a decir:

- \odot a. aRb y a $\mathcal{S}b$.
- \bigcirc b. $aRb \circ aSb$.
- \bigcirc c. aRb y aSb
- \bigcirc d. $aRb \circ a \not Sb$.

Pregunta 16

Finalizado

Se puntúa 1,00 sobre 1,00

Sean A_1,A_2,\ldots,A_n conjuntos certeros. Una relación difusa en $A_1\times A_2\times\cdots\times A_n$ es una relación de la forma:

- \bigcirc a. $R:A_1+\cdots+A_n
 ightarrow [0,1]$
- \bigcirc b. $R: A_1 \cup \cdots \cup A_n \rightarrow [0,1]$
- \bigcirc c. $R: A_1 \times \cdots \times A_n \rightarrow \{0,1\}$
- \bigcirc d. $R: A_1 \times \cdots \times A_n \rightarrow [0,1]$

Pregunta 17

Finalizado

Se puntúa 1,00 sobre 1,00

Sea X un conjunto certero y A un subconjunto certero de X. Sea P una relación de orden parcial difusa en X. La cota inferior difusa de A, denotada $L_{\phi(A)}$, se define como:

- \bigcirc a. $L_{\phi(A)} = \bigcup_{x_i \in A} P_{\leq}[x_i]$.
- $\ \, \circ \ \, \mathrm{b.} \ \, L_{\phi(A)} = \cap_{x_i \in A} P_{\geq}[x_i].$
- \bigcirc c. $L_{\phi(A)} = \sup_{x_i \in A} P_{\geq}[x_i]$.
- $\bigcirc \text{ d. } L_{\phi(A)} = \inf_{x_i \in A} P_{\geq}[x_i].$

Finalizado

Pregunta 18

Se puntúa 1,00 sobre 1,00

Sea S una relación difusa sobre $A \times B$. El complemento de S, denotado S^c , se define para todo $a,b \in A \times B$ como:

- a. $S^c(a,b) = 1 S(a,b).$
- \bigcirc b. $S^c(b) = \inf_{a \in A} S(a, b)$.
- \bigcirc c. $S^c(a) = \sup_{b \in B} S(a, b)$.
- \bigcirc d. $S^c(a,b)=S(a,b)\bigstar S(a,b)$ donde \bigstar es una conorma t.

Pregunta 19

Finalizado

Se puntúa 1,00 sobre 1,00

La composición min-max es asociativa.

Seleccione una:

- Verdadero
- Falso

Pregunta 20

Finalizado

Se puntúa 1,00 sobre 1,00

La función de membresía del codominio de una relación difusa $S:A\times B\to [0,1]$, denotado cod(S)(b), se define para todo $b\in B$ como:

- a. ninguna de las otras respuestas.
- \bigcirc b. $\sup_{b \in B} \sup_{a \in A} S(a, b)$;
- \bigcirc c. $\sup_{b \in B} S(a, b)$.
- \odot d. $\sup_{a \in A} S(a, b)$.

◄ Guía de la Actividad 3.1. Cuestionario 3

Ir a...

Guía de la Actividad 3.2. Ejercitario 3 ►

7/7

Comenzado el viernes, 27 de septiembre de 2024, 12:32

Estado Finalizado

Finalizado en viernes, 27 de septiembre de 2024, 12:43

Tiempo 11 minutos 3 segundos

empleado

Calificación 18,00 de 20,00 (**90**%)

Pregunta 1

Finalizado

Se puntúa 1,00 sobre 1,00

La clausura transitiva de una relación R es:

- $\ \ \,$ a. la relación transitiva más pequeña que contiene a R
- \circ b. la relación más pequeña que contiene a R
- \circ c. la relación más grande que contiene a R.
- \circ d. la relación transitiva más grande que contiene a R.

Pregunta 2

Finalizado

Se puntúa 1,00 sobre 1,00

Sea S una relación difusa en $A \times B$. La traspuesta de S, denotada S^T , se define para todo $a,b \in A \times B$ como:

- \bigcirc a. $S^T(b) = \max_{a \in A} S(a, b)$.
- b. $S^{T}(b,a) = S(a,b).$
- \circ c. $S^{T}(a,b) = 1 S(a,b)$.
- \bigcirc d. $S^T(a) = \min_{b \in B} S(a, b)$.

Pregunta 3

Finalizado

Se puntúa 1,00 sobre 1,00

La función de membresía del dominio de una relación difusa $S:A\times B\to [0,1]$ denotado dom(S)(a), se define para todo $a\in A$ como:

- \bigcirc a. $\sup_{a \in A} S(a, b)$.
- ob. ninguna de las otras respuestas.
- \circ c. $\sup_{b \in B} \sup_{a \in A} S(a, b)$;
- \odot d. $\sup_{b \in B} S(a, b)$.

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa $R:A\times A\to [0,1]$ es antisimétrica si y solo si para todo $a,b\in A$:

- $\ \ \,$ a. $\ \, R(a,b)>0 \, {
 m y} \, R(b,a)>0 \, {
 m implica} \, a=b$
- \bigcirc b. R(a, a) = 1.
- \circ c. R(a, a) = 0.
- \bigcirc d. $R(a,c) \ge \sup_{b \in A} R(a,b) * R(b,c)$ donde * es un norma t.
- \bigcirc e. R(a,b)=R(b,a).

Pregunta 5

Finalizado

Se puntúa 1,00 sobre 1,00

Sean $P:A\times B\to [0,1]$ y $Q:B\times C\to [0,1]$ dos <u>relaciones difusas</u>. La composición max-min $R=P\circ Q$ es una relación difusa en A y C definida como:

- \bigcirc b. $R(a,c) = \min_{b \in B} \min(P(a,b), Q(b,c))$.
- \bigcirc c. $R(a,c) = \max_{b \in B} \max(P(a,b), Q(b,c))$.
- \bigcirc d. $R(a,c) = \min_{b \in B} \max(P(a,b), Q(b,c))$.

Pregunta 6

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa $R: A \times A \rightarrow [0,1]$ es transitiva si y solo si para todo $a,b,c \in A$:

- \circ a. R(a,a) = 1.
- $\ \, @$ b. $R(a,c) \geq \sup_{b \in A} R(a,b) * R(b,c) \operatorname{donde} * \operatorname{es} \operatorname{un norma} \operatorname{t.}$
- \circ c. R(a,b) = R(b,a).
- \bigcirc d. R(a,b) > 0 y R(b,a) > 0 implica a = b
- \bigcirc e. R(a, a) = 0.

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $A=\{a_1,\ldots,a_m\}$ y $B=\{b_1,\ldots,b_n\}$. Una matriz $M=(m_{ij})$ representa una relación $R\subseteq A\times B$ si:

- \odot a. $m_{ij} = 1 \operatorname{si}(a_i, b_j) \in R \operatorname{y} m_{ij} = 0 \operatorname{si}(a_i, b_j) \notin R$.
- \bigcirc b. $m_{ij}=0$ si $(a_i,b_j)\in R$ y $m_{ij}=1$ si $(a_i,b_j)\notin R$.
- \circ c. $m_{ij} = 0 \operatorname{si}(a_i, b_j) \in R^2 \operatorname{y} m_{ij} = 1 \operatorname{si}(a_i, b_j) \notin R^2$
- $oldsymbol{0}$ d. $m_{ij} = 1 \operatorname{si}(a_i, b_i) \in \mathbb{R}^2 \operatorname{y} m_{ij} = 0 \operatorname{si}(a_i, b_i) \notin \mathbb{R}^2$.

Pregunta 8

Finalizado

Se puntúa 1,00 sobre 1,00

En la relación R=S, la notación a(R-S)b es equivalente a decir:

- \circ a. $aRb \circ a \not Sb$.
- \bigcirc b. $aRb \circ aSb$.
- \odot c. aRb y a Sb.
- \bigcirc d. aRb y aSb.

Pregunta 9

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa $R: A \times A \rightarrow [0,1]$ es simétrica si y solo si para todo $a,b \in A$:

- \bigcirc a. R(a,a) = 1.
- b. R(a,b) = R(b,a).
- $\bigcirc \ \, \text{c.} \quad R(a,c) \geq \sup\nolimits_{b \in A} R(a,b) * R(b,c) \, \text{donde} * \, \text{es un norma t.}$
- Q d. R(a,a) = 0.
- \bigcirc e. R(a,b) > 0 y R(b,a) > 0 implica a = b.

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $A:X\to [0,1]$ un conjunto difuso. Decimos que una familia de conjuntos difusos $\Sigma=\{P_i\}_{i\in J}$ es una cobertura difusa de A si:

- $\ \ \,$ a. $A=\cup_{i\in J}P_i$
- \bigcirc b. $A = \bigcup_{i \in J} P_i^c$
- \bigcirc c. $A = \bigcap_{i \in J} P_i$
- od. ninguna de las otras respuestas.

Pregunta 11

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $R: A \times A \to [0,1]$ una relación difusa y sea A un conjunto finito de k elementos. Una clausura transitiva de R se define como:

- $\ \, \circ \ \, {\rm a.} \ \, R^+ = \cup_{i \geq 0} R^i \, {\rm donde} \, R^i = R \circ R^{i-1} \cdot$
- $^{\odot}$ b. $R^+=R\cup R^2\cup\cdots\cup R^k$ donde $R^i=R\circ R^{i-1}$
- c. ninguna de las otras respuestas.
- \cap d. $R^+ = R \cap R^2 \cap \cdots \cap R^k$ donde $R^i = R \circ R^{i-1}$.

Pregunta 12

Finalizado

Se puntúa 1,00 sobre 1,00

 $\mathsf{Sea}\,\epsilon \in [0,1]. \, \mathsf{Decimos} \, \mathsf{que} \, \mathsf{una} \, \mathsf{relación} \, \mathsf{difusa} \, R : A \times A \to [0,1] \, \mathsf{es} \, \epsilon \mathsf{-reflexiva} \, \mathsf{si} \, \mathsf{y} \, \mathsf{solo} \, \mathsf{si} \, \mathsf{para} \, \mathsf{todo} \, a \in A \, \mathsf{se} \, \mathsf{cumple} : A \times A \to [0,1] \, \mathsf{es} \, \epsilon \mathsf{-reflexiva} \, \mathsf{si} \, \mathsf{y} \, \mathsf{solo} \, \mathsf{si} \, \mathsf{para} \, \mathsf{todo} \, a \in A \, \mathsf{se} \, \mathsf{cumple} : A \times A \to [0,1] \, \mathsf{es} \, \epsilon \mathsf{-reflexiva} \, \mathsf{si} \, \mathsf{y} \, \mathsf{solo} \, \mathsf{si} \, \mathsf{para} \, \mathsf{todo} \, a \in A \, \mathsf{se} \, \mathsf{cumple} : A \times A \to [0,1] \, \mathsf{es} \, \epsilon \mathsf{-reflexiva} \, \mathsf{si} \, \mathsf{y} \, \mathsf{solo} \, \mathsf{si} \, \mathsf{para} \, \mathsf{todo} \, a \in A \, \mathsf{se} \, \mathsf{cumple} : A \times A \to [0,1] \, \mathsf{es} \, \mathsf{cumple} \, \mathsf{si} \, \mathsf{y} \, \mathsf{solo} \, \mathsf{si} \, \mathsf{para} \, \mathsf{todo} \, a \in A \, \mathsf{se} \, \mathsf{cumple} : A \times A \to [0,1] \, \mathsf{es} \, \mathsf{cumple} \, \mathsf{se} \, \mathsf{se} \, \mathsf{cumple} \, \mathsf{se} \, \mathsf{cumple} \, \mathsf{se} \, \mathsf{se} \, \mathsf{cumple} \, \mathsf{se} \, \mathsf{se} \, \mathsf{cumple} \, \mathsf{se} \, \mathsf{se} \, \mathsf{se} \, \mathsf{cumple} \, \mathsf{se} \, \mathsf{se}$

- \bigcirc a. R(a,b) > 0 y R(b,a) > 0 implica a = b.
- \odot b. $R(a,a) \geq \epsilon$.
- \bigcirc c. R(a,b) = R(b,a).
- Q d. R(a,a) = 0.
- \bigcirc e. R(a,a) = 1.

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa $R: A \times A \rightarrow [0,1]$ es reflexiva si y solo si para todo $a \in A$:

- a. R(a,a)=1.
- \bigcirc b. $R(a,c) \ge \sup_{b \in A} R(a,b) * R(b,c)$ donde * es un norma t.
- \circ c. R(a,b) = R(b,a).
- \bigcirc d. R(a,b) > 0 y R(b,a) > 0 implica a = b.
- \circ e. R(a, a) = 0.

Pregunta 14

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $S: X_{j_1} \times \cdots \times X_{j_k}$ una relación difusa donde $\{j_1, \ldots, j_k\}$ es una subsecuencia de $\{1, 2, \ldots, n\}$. La extensión cilíndrica de S en $X_1 \times X_2 \times \cdots \times X_n$ es una relación difusa cylS en $X_1 \times X_2 \times \cdots \times X_n$ tal que:

- \bigcirc a. $cylS(x_1,\ldots,x_n)=S(x_{j_1},\ldots,x_{j_k})$.
- \circ b. $cylS(x_{i_1}, \ldots, x_{i_k}) = S(x_{i_1}, \ldots, x_{i_k})$.
- \bigcirc c. $cylS(x_{i_1},\ldots,x_{i_k})=S(x_1,\ldots,x_n)$.
- \bigcirc d. $cylS(x_1,\ldots,x_n)=S(x_1,\ldots,x_n)$.

Pregunta 15

Finalizado

Se puntúa 0,00 sobre 1,00

Sean R y S dos <u>relaciones difusas</u> sobre $A \times B$. La intersección $Q = R \cap S$ en su forma más general se define $Q(a,b) \Rightarrow$

- \bigcirc a. R(a,b)*S(a,b) para todo $a,b\in A\times B$ donde * es una norma t.
- b. ninguna de las otras respuestas.
- \circ c. $\min(R(a,b),S(a,b))$ para todo $a,b\in A\times B$.
- \bigcirc d. R(a,b)*S(a,b) para todo $a,b\in A\times B$ donde * es una conorma t.

Pregunta 16				
Finalizado Company de 199				
Se puntúa 1,00 sobre 1,00				
En la relación $R \cup S$, la notación $a(R \cup S)b$ es equivalente a decir:				
$lacktriangledown$ a. $aRb \circ aSb$				
\circ b. $aRb \circ a \not Sb$.				
\circ c. aRb y $a\not Sb$				
\odot d. aRb y aSb				
Pregunta 17				
Finalizado				
Se puntúa 1,00 sobre 1,00				
Una relación difusa es un <i>orden parcial difuso</i> si es:				
Seleccione una o más de una:				
a. reflexivo				
✓ b. transitivo				
□ c. irreflexivo				
☐ d. proximidad				
e. simétrico				
☐ f. similaridad				
g. antisimétrico				
Pregunta 18				
Finalizado				
Se puntúa 1,00 sobre 1,00				
Un conjunto parcialmente ordenado difuso o poset difuso es:				
a. ninguna de las otras respuestas.				
lacksquare b. un par (X,S) donde X es un conjunto certero y S es un orden parcial difuso en X .				
\circ c. un par (X,S) donde X es un conjunto difuso y S es un orden parcial difuso en X .				
O d. una relación de orden que es simétrica, reflexiva y antisimétrica.				

Finalizado

Se puntúa 0,00 sobre 1,00

Sea S una relación difusa sobre $A \times B$. El complemento de S, denotado S^c , se define para todo $a,b \in A \times B$ como:

- \bigcirc a. $S^c(a) = \sup_{b \in B} S(a, b)$.
- \circ b. $S^c(b) = \inf_{a \in A} S(a, b)$.
- \circ c. $S^c(a,b) = S(a,b) \bigstar S(a,b)$ donde \bigstar es una conorma t.
- \circ d. $S^{c}(a,b) = 1 S(a,b)$.

Pregunta 20

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa $R: A \times A \rightarrow [0,1]$ es irreflexiva si y solo si para todo $a \in A$:

- a. R(a,a) = 0.
- \bigcirc b. R(a,b) = R(b,a).
- \bigcirc c. R(a,b)>0 y R(b,a)>0 implica a=b
- \bigcirc d. R(a, a) = 1.
- \bigcirc e. $R(a,c) \ge \sup_{b \in A} R(a,b) * R(b,c)$ donde * es un norma t.

◄ Guía de la Actividad 3.1. Cuestionario 3

Ir a...

Guía de la Actividad 3.2. Ejercitario 3 ►

Comenzado el jueves, 3 de octubre de 2024, 13:14

Estado Finalizado

Finalizado en jueves, 3 de octubre de 2024, 13:46

Tiempo empleado 32 minutos 21 segundos

Calificación 16,00 de 20,00 (80%)

Pregunta **1**

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $A=\{a_1,\ldots,a_m\}$ y $B=\{b_1,\ldots,b_n\}$. Una matriz $M=(m_{ij})$ representa una relación $R\subseteq A\times B$ six

- $oldsymbol{0}$ a. $m_{ij} = 1 \operatorname{si}(a_i, b_i) \in \mathbb{R}^2 \operatorname{y} m_{ij} = 0 \operatorname{si}(a_i, b_i) \notin \mathbb{R}^2$.
- \odot b. $m_{ij} = 1 \operatorname{si}(a_i, b_j) \in R \operatorname{y} m_{ij} = 0 \operatorname{si}(a_i, b_j) \notin R$.
- \circ c. $m_{ij} = 0 \operatorname{si}(a_i, b_i) \in R \operatorname{y} m_{ij} = 1 \operatorname{si}(a_i, b_i) \notin R$.
- $oldsymbol{0}$ d. $m_{ij} = 0 \operatorname{si}(a_i, b_i) \in \mathbb{R}^2 \operatorname{y} m_{ij} = 1 \operatorname{si}(a_i, b_i) \notin \mathbb{R}^2$.

Pregunta 2

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa $R: A \times A \rightarrow [0,1]$ es transitiva si y solo si para todo $a,b,c \in A$:

- \bigcirc a. R(a,b) = R(b,a).
- \bigcirc b. R(a, a) = 0.
- \odot c. R(a,b) > 0 y R(b,a) > 0 implica a = b.
- \bigcirc d. R(a, a) = 1.
- e. $R(a,c) \geq \sup_{b \in A} R(a,b) * R(b,c)$ donde * es un norma t.

Pregunta 3

Finalizado

Se puntúa 1,00 sobre 1,00

La clausura transitiva de una relación ${\cal R}$ es:

- \odot a. la relación más pequeña que contiene a R.
- \odot b. la relación más grande que contiene a R.
- \odot c. la relación transitiva más pequeña que contiene a R.
- \odot d. la relación transitiva más grande que contiene a R.

Finalizado

Se puntúa 1,00 sobre 1,00

Un conjunto parcialmente ordenado difuso o poset difuso es:

- \bullet a. un par (X, S) donde X es un conjunto certero y S es un orden parcial difuso en X.
- \circ b. un par (X, S) donde X es un conjunto difuso y S es un orden parcial difuso en X.
- oc. ninguna de las otras respuestas.
- od. una relación de orden que es simétrica, reflexiva y antisimétrica.

Pregunta 5

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa es un orden parcial difuso si es:

Seleccione una o más de una:

- a. similaridad
- b. proximidad
- c. reflexivo
- d. transitivo
- e. antisimétrico
- f. simétrico
- g. irreflexivo

Pregunta 6

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa $R: A \times A \rightarrow [0,1]$ es simétrica si y solo si para todo $a,b \in A$:

- \bigcirc a. R(a,b) > 0 y R(b,a) > 0 implica a = b.
- b. R(a,b) = R(b,a).
- \circ c. R(a, a) = 0.
- \bigcirc d. R(a, a) = 1.
- \odot e. $R(a,c) \ge \sup_{b \in A} R(a,b) * R(b,c)$ donde * es un norma t.

Finalizado

Se puntúa 0,00 sobre 1,00

Sean $P: A \times B \to [0,1]$ y $Q: B \times C \to [0,1]$ dos <u>relaciones difusas</u>. La composición min-max $R=P \bullet Q$ es una relación difusa en A y C definida como:

- \bigcirc a. $R(a,c) = \min_{b \in B} \max(P(a,b), Q(b,c))$.
- $oldsymbol{0}$ b. $R(a, c) = \max_{b \in B} \max(P(a, b), Q(b, c))$.
- \odot c. $R(a,c) = \max_{b \in B} \min(P(a,b), Q(b,c))$.
- \bigcirc d. $R(a,c) = \min_{b \in B} \min(P(a,b), Q(b,c))$.

Pregunta 8

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $S: X_{j_1} \times \cdots \times X_{j_k}$ una relación difusa donde $\{j_1, \ldots, j_k\}$ es una subsecuencia de $\{1, 2, \ldots, n\}$. La extensión cilíndrica de S en $X_1 \times X_2 \times \cdots \times X_n$ es una relación difusa cylS en $X_1 \times X_2 \times \cdots \times X_n$ tal que:

- \circ a. $cylS(x_{j_1},...,x_{j_k}) = S(x_{j_1},...,x_{j_k})$
- \bigcirc b. $cylS(x_{i_1}, \ldots, x_{i_k}) = S(x_1, \ldots, x_n).$
- \bigcirc c. $cylS(x_1,\ldots,x_n)=S(x_1,\ldots,x_n)$.
- \odot d. $cylS(x_1, ..., x_n) = S(x_{i_1}, ..., x_{i_k}).$

Pregunta 9

Finalizado

Se puntúa 0,00 sobre 1,00

Sean R y S dos <u>relaciones difusas</u> sobre $A \times B$. La unión $Q = R \cup S$ en su forma más general se define Q(a,b) =:

- o a. ninguna de las otras respuestas.
- \bigcirc b. $R(a,b) \bigstar S(a,b)$ para todo $a,b \in A \times B$ donde \bigstar es una norma t.
- \odot c. $\max(R(a,b),S(a,b))$ para todo $a,b\in A\times B$.
- \bigcirc d. $R(a,b) \bigstar S(a,b)$ para todo $a,b \in A \times B$ donde \bigstar es una conorma t.

Finalizado

Se puntúa 1,00 sobre 1,00

Una función ${\cal R}$ en un conjunto ${\cal A}$ es reflexiva si y solo si:

- \bigcirc a. $(b,a) \in R$ si y solo si $(a,b) \in R$ para todo $a,b \in A$.
- b. $(a,a) \in R$ para todo $a \in A$.
- \circ c. $\operatorname{si}(a,b) \in R \operatorname{y}(b,c) \in R$, entonces $(a,c) \in R$ para todo $a,b,c \in A$.
- $\quad \ \ \, 0. \ \ \, (a,b)\in R\, {\rm y}\, (b,a)\in R \, {\rm implica}\, a\equiv b \, {\rm para} \, {\rm todo}\, a,b\in A.$

Pregunta 11

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $R: A \times A \to [0,1]$ una relación difusa y sea A un conjunto finito de k elementos. Una clausura transitiva de R se define como:

- $@ \ \ a. \ \ \, R^+ = R \cup R^2 \cup \cdot \cdot \cdot \cup R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \! .$
- \bigcirc b. $R^+ = \bigcup_{i>0} R^i$ donde $R^i = R \circ R^{i-1}$.
- $\ \, \circ \ \, c. \ \, R^+ = R \cap R^2 \cap \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \circ R^i$
- od. ninguna de las otras respuestas.

Pregunta 12

Finalizado

Se puntúa 0,00 sobre 1,00

Una función R en un conjunto A es transitiva si y solo si:

- a. $(a,a) \in R$ para todo $a \in A$.
- \bigcirc b. $(b,a) \in R$ si y solo si $(a,b) \in R$ para todo $a,b \in A$.
- \circ c. $\operatorname{si}(a,b) \in R \operatorname{y}(b,c) \in R$, entonces $(a,c) \in R$ para todo $a,b,c \in A$.
- \bigcirc d. $(a,b) \in R$ y $(b,a) \in R$ implica a=b para todo $a,b \in A$.

Finalizado

Se puntúa 1,00 sobre 1,00

 $\mathrm{Sea}\,\epsilon \in [0,1]. \ \mathrm{Decimos} \ \mathrm{que} \ \mathrm{una} \ \mathrm{relación} \ \mathrm{difusa} \ R: A \times A \to [0,1] \ \mathrm{es} \ \epsilon \mathrm{-reflexiva} \ \mathrm{si} \ \mathrm{y} \ \mathrm{solo} \ \mathrm{si} \ \mathrm{para} \ \mathrm{todo} \ a \in A \ \mathrm{se} \ \mathrm{cumple} :$

- \odot a. R(a,b)>0 y R(b,a)>0 implica a=b
- \bigcirc b. R(a, a) = 1.
- \bigcirc c. R(a,b) = R(b,a).
- \bigcirc d. R(a, a) = 0.
- \odot e. $R(a,a) \geq \epsilon$.

Pregunta 14

Finalizado

Se puntúa 1,00 sobre 1,00

En la relación $R \cap S$, la notación $a(R \cap S)b$ es equivalente a decir:

- \odot a. aRb y aSb.
- \bigcirc b. $aRb \circ a Sb$.
- \bigcirc c. aRb y a Sb.
- \bigcirc d. $aRb \circ aSb$

Pregunta 15

Finalizado

Se puntúa 1,00 sobre 1,00

Una función R en un conjunto A es antisimétrica si y solo si:

- $\quad \ \ \, \text{ a. } \ \, (a,a)\in R \text{ para todo } a\in A.$
- \bigcirc b. $(b,a) \in R$ si y solo si $(a,b) \in R$ para todo $a,b \in A$.
- \circ c. $\operatorname{si}(a,b) \in R \operatorname{y}(b,c) \in R$, entonces $(a,c) \in R$ para todo $a,b,c \in A$.
- $@ \ \, \mathrm{d.} \ \, (a,b) \in R \, \mathrm{y} \, (b,a) \in R \, \mathrm{implica} \, a = b \, \mathrm{para} \, \mathrm{todo} \, a,b \in A.$

Finalizado

Se puntúa 1,00 sobre 1,00

La altura (del inglés *height*) de una relación difusa $S:A\times B\to [0,1]$, denotado h(S), se define como:

- \odot a. $\sup_{b \in B} \sup_{a \in A} S(a, b)$;
- \bigcirc b. $\sup_{a \in A} S(a, b)$.
- \bigcirc c. $\sup_{b \in B} S(a, b)$.
- od. ninguna de las otras respuestas.

Pregunta 17

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $R \subseteq A \times B$ y $S \subseteq B \times C$ dos relaciones. La relación $R \circ S$ que denota la composición de R y S es la relación que consiste de pares ordenados $(a,c) \in A \times C$ donde:

- \odot a. existe $b \in B$ tal que $(a,b) \in S$ y $(b,c) \in R$.
- \odot b. para todo $b \in B$ tal que $(a, b) \in R$ y $(b, c) \in S$.
- \odot c. existe $b \in B$ tal que $(a, b) \in R$ y $(b, c) \in S$.
- od. ninguna de las otras respuestas.

Pregunta 18

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $A:X\to [0,1]$ un conjunto difuso. Decimos que una familia de conjuntos difusos $\Sigma=\{P_i\}_{i\in J}$ es una cobertura difusa de A si:

- \bigcirc a. $A = \bigcup_{i \in J} P_i^c$
- b. ninguna de las otras respuestas.
- $\ \, \text{o.} \ \, A = \cup_{i \in J} P_i.$
- $\quad \ \, \odot \ \, \mathrm{d.} \quad A = \cap_{i \in J} P_i.$

Finalizado

Se puntúa 1,00 sobre 1,00

Sean A_1,A_2,\ldots,A_n conjuntos certeros. Una relación difusa en $A_1\times A_2\times\cdots\times A_n$ es una relación de la forma:

- \odot a. $R: A_1 \times \cdots \times A_n \rightarrow [0,1]$
- \bigcirc b. $R: A_1 \times \cdots \times A_n \rightarrow \{0,1\}$
- \circ c. $R: A_1 + \cdots + A_n \to [0,1]$
- \bigcirc d. $R: A_1 \cup \cdots \cup A_n \rightarrow [0,1]$

Pregunta 20

Finalizado

Se puntúa 0,00 sobre 1,00

Sea X un conjunto certero y A un subconjunto certero de X. Sea P una relación de orden parcial difusa en X. La cota inferior difusa de A, denotada $L_{\phi(A)}$, se define como:

- \bigcirc a. $L_{\phi(A)} = \sup_{x_i \in A} P_{\geq}[x_i]$.
- \odot b. $L_{\phi(A)} = \inf_{x_i \in A} P_{\geq}[x_i]$.
- \bigcirc c. $L_{\phi(A)} = \bigcap_{x_i \in A} P_{\geq}[x_i]$.
- \bigcirc d. $L_{\phi(A)} = \bigcup_{x_i \in A} P_{\leq}[x_i]$.

■ Guía de la Actividad 3.1. Cuestionario 3

Ir a...

Guía de la Actividad 3.2. Ejercitario 3 ▶

Comenzado el jueves, 3 de octubre de 2024, 13:14

Estado Finalizado

Finalizado en jueves, 3 de octubre de 2024, 13:48

Tiempo empleado 33 minutos 47 segundos

Calificación 15,33 de 20,00 (76,67%)

Pregunta 1

Finalizado

Se puntúa 0,00 sobre 1,00

Sean R y S dos <u>relaciones difusas</u> sobre $A \times B$. La unión $Q = R \cup S$ en su forma más general se define $Q(a,b) \eqqcolon$

- \bigcirc a. $R(a,b) \bigstar S(a,b)$ para todo $a,b \in A \times B$ donde \bigstar es una conorma t.
- \bigcirc b. $R(a,b) \bigstar S(a,b)$ para todo $a,b \in A \times B$ donde \bigstar es una norma t.
- O c. ninguna de las otras respuestas.
- \bullet d. $\max(R(a,b),S(a,b))$ para todo $a,b\in A\times B$.

Pregunta 2

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación binaria se escribe aRb para denotar:

- \bigcirc a. $(a,b) \notin R$.
- \odot b. $(a,b) \in R$.
- \bigcirc c. $(a,b) \in A \cup B$.
- \bigcirc d. $(a,b) \in A \times B$.

Pregunta 3

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $\epsilon \in [0,1]$. Decimos que una relación difusa $R: A \times A \to [0,1]$ es ϵ -reflexiva si y solo si para todo $a \in A$ se cumple:

- \circ a. R(a,b) = R(b,a).
- $\bigcirc \ \, \mathrm{b.} \ \, R(a,b) > 0 \, \mathrm{y} \, R(b,a) > 0 \, \mathrm{implica} \, a = b.$
- \circ c. R(a, a) = 0.
- \odot d. $R(a,a) \geq \epsilon$.
- $\bigcirc \ \text{e.} \ R(a,a)=1.$

1 de 7

Finalizado

Se puntúa 0,00 sobre 1,00

Sea X un conjunto certero y A un subconjunto certero de X. Sea P una relación de orden parcial difusa en X. La cota superior difusa de A, denotada $U_{\phi(A)}$ se define como:

$$\bigcirc$$
 a. $U_{\phi(A)} = \bigcap_{x_i \in A} P_{\geq}[x_i]$.

$$\bullet$$
 b. $U_{\phi(A)} = \sup_{x_i \in A} P_{\geq}[x_i]$.

$$\bigcirc$$
 c. $U_{\phi(A)} = \inf_{x_i \in A} P_{\geq}[x_i]$

$$\bigcirc$$
 d. $U_{\phi(A)} = \bigcup_{x_i \in A} P_{\leq}[x_i]$.

Pregunta **5**

Finalizado

Se puntúa 0,00 sobre 1,00

Sea S una relación difusa sobre $A \times B$. El complemento de S, denotado S^c , se define para todo $a,b \in A \times B$ como:

$$\circ$$
 a. $S^{c}(a,b) = 1 - S(a,b)$.

$$\bigcirc$$
 b. $S^c(a,b) = S(a,b) \bigstar S(a,b)$ donde \bigstar es una conorma t.

$$\odot$$
 c. $S^c(b) = \inf_{a \in A} S(a, b)$.

$$\bigcirc$$
 d. $S^c(a) = \sup_{b \in B} S(a, b)$.

Pregunta 6

Finalizado

Se puntúa 1,00 sobre 1,00

Una función R en un conjunto A es simétrica si y solo si:

$$\bigcirc \ \, \text{a.}\ \, (a,b)\in R\, \text{y}(b,a)\in R\, \text{implica}\, a=b\, \text{para todo}\, a,b\in A.$$

$$\bigcirc \ \, \mathrm{b.} \ \, (a,a) \in R \, \mathrm{para} \, \mathrm{todo} \, a \in A.$$

$$\bigcirc$$
 c. $\operatorname{si}(a,b) \in R \operatorname{y}(b,c) \in R$, entonces $(a,c) \in R$ para todo $a,b,c \in A$.

$$\odot$$
 d. $(b,a) \in R$ si y solo si $(a,b) \in R$ para todo $a,b \in A$.

2 de 7

1 Ctividad 3 1	Cuestionario	3. Revisión	del intento	Leduca
ictivitatu 5.1.	Cuestionario	3. Kevision	uer milemo	Luuca

Pregunta 7
Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa binaria en ${\cal A}$ es una relación de similaridad si es:

Seleccione una o más de una:

- a. irreflexiva
- ☑ b. reflexiva
- c. antisimétrica
- d. transitiva
- e. simétrica
- f. transitiva

Pregunta 8

Finalizado

Se puntúa 1,00 sobre 1,00

Dado un conjunto certero A, una relación difusa R es binaria si es de la forma:

- \bigcirc a. $R:A\times A\rightarrow \mathbb{R}$.
- \bigcirc b. $R(A) \rightarrow [0,1]$.
- O c. ninguna de las otras respuestas.
- \odot d. $R: A \times A \rightarrow [0, 1]$.

Pregunta **9**

Finalizado

Se puntúa 1,00 sobre 1,00

Sea S una relación binaria. El codominio de S, denotado cod(S), es el conjunto:

- \bigcirc a. $\{b \mid \text{existe } a \text{ tal que } (b,a) \in S\}$.
- \bullet b. $\{b \mid \text{existe } a \text{ tal que } (a,b) \in S\}.$
- \bigcirc c. $\{b \mid \text{para todo } a \text{ tal que } (a, b) \in S\}$.
- \bigcirc d. $\{b \mid \text{para todo } a \text{ tal que } (b, a) \in S\}.$

3 de 7 3/10/24, 13:48

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $R \subseteq A \times B$ y $S \subseteq B \times C$ dos relaciones. La relación $R \circ S$ que denota la composición de R y S es la relación que consiste de pares ordenados $(a,c) \in A \times C$ donde:

- a. existe $b \in B$ tal que $(a,b) \in R$ y $(b,c) \in S$.
- \bigcirc b. existe $b \in B$ tal que $(a, b) \in S$ y $(b, c) \in R$.
- O c. ninguna de las otras respuestas.
- \bigcirc d. para todo $b \in B$ tal que $(a, b) \in R$ y $(b, c) \in S$.

Pregunta 11

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $R:A\times A\to [0,1]$ una relación difusa y sea A un conjunto finito de k elementos. Una clausura transitiva de R se define como:

- $\ \, \bigcirc \ \, \text{a.} \ \, R^+ = R \cap R^2 \cap \dots \cap R^k \, \text{donde} \, R^i = R \circ R^{i-1} .$
- \circ b. $R^+ = \bigcup_{i \geq 0} R^i$ donde $R^i = R \circ R^{i-1}$.
- O c. ninguna de las otras respuestas.
- $@ \ \mathrm{d.} \ \ R^+ = R \cup R^2 \cup \dots \cup R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} .$

Pregunta 12

Finalizado

Se puntúa 1,00 sobre 1,00

La función de membresía del codominio de una relación difusa $S:A\times B\to [0,1]$, denotado cod(S)(b), se define para todo $b\in B$ como:

- \bigcirc a. $\sup_{b \in B} \sup_{a \in A} S(a, b)$;
- O b. ninguna de las otras respuestas.
- \odot c. $\sup_{a \in A} S(a, b)$.
- \bigcirc d. $\sup_{b \in B} S(a, b)$.

4 de 7 3/10/24, 13:48

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $A=\{a_1,\ldots,a_m\}$ y $B=\{b_1,\ldots,b_n\}$. Una matriz $M=(m_{ij})$ representa una relación $R\subseteq A\times B$ si:

- \bigcirc a. $m_{ij} = 0 \operatorname{si}(a_i, b_j) \in R \operatorname{y} m_{ij} = 1 \operatorname{si}(a_i, b_j) \notin R$.
- \bullet b. $m_{ij} = 1 \operatorname{si}(a_i, b_i) \in R \operatorname{y} m_{ij} = 0 \operatorname{si}(a_i, b_i) \notin R$.
- \circ c. $m_{ij} = 0 \operatorname{si}(a_i, b_j) \in R^2 \operatorname{y} m_{ij} = 1 \operatorname{si}(a_i, b_j) \notin R^2$.
- \bigcirc d. $m_{ij}=1\,\mathrm{si}(a_i,b_j)\in R^2\,\mathrm{y}\,m_{ij}=0\,\mathrm{si}(a_i,b_j)\notin R^2.$

Pregunta 14

Finalizado

Se puntúa 0,33 sobre 1,00

Una relación difusa R en un conjunto difuso $A: X \to [0,1]$ es una relación de proximidad si para todo $x,y \in X$ se cumple:

Seleccione una o más de una:

- \blacksquare a. R(x,y) = 1 R(y,x)
- ightharpoonup b. R(x,y) = R(y,x)
- \square c. $R(x,y) \leq \min(R(x,x), R(y,y))$.
- \square d. R(x,x) = A(x).
- \square e. $R(x,y) \leq \max(R(x,x),R(y,y))$.
- $\Box \text{ f. } R(x,y) = \min(R(y,x),R(x,y))$

Pregunta 15

Finalizado

Se puntúa 0,00 sobre 1,00

Sea X un conjunto certero y A un subconjunto certero de X. Sea P una relación de orden parcial difusa en X. La cota inferior difusa de A, denotada $L_{\phi(A)}$ se define como:

- \bigcirc a. $L_{\phi(A)} = \bigcap_{x_i \in A} P_{\geq}[x_i]$.
- \bigcirc b. $L_{\phi(A)} = \sup_{x_i \in A} P_{\geq}[x_i]$.
- \bullet c. $L_{\phi(A)} = \inf_{x_i \in A} P_{>}[x_i]$.
- \bigcirc d. $L_{\phi(A)} = \bigcup_{x_i \in A} P_{<}[x_i]$.

5 de 7

Finalizado

Se puntúa 1,00 sobre 1,00

En la relación $R \cap S$, la notación $a(R \cap S)b$ es equivalente a decir:

- \bigcirc a. $aRb \circ a \not Sb$.
- \bigcirc b. aRb y a $\not Sb$.
- \odot c. aRb y aSb.
- \bigcirc d. $aRb \circ aSb$.

Pregunta 17

Finalizado

Se puntúa 1,00 sobre 1,00

La función de membresía del dominio de una relación difusa $S:A\times B\to [0,1]$ denotado dom(S)(a), se define para todo $a\in A$ como:

- a. ninguna de las otras respuestas.
- \bigcirc b. $\sup_{b \in B} \sup_{a \in A} S(a, b)$;
- \odot c. $\sup_{b \in B} S(a, b)$.
- \bigcirc d. $\sup_{a \in A} S(a, b)$.

Pregunta 18

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa $R:A\times A\to [0,1]$ es reflexiva si y solo si para todo $a\in A$:

- $\ \, \hbox{ o.} \quad R(a,a)=1.$
- \bigcirc b. R(a,b) > 0 y R(b,a) > 0 implica a=b.
- $\bigcirc \ \, {\rm c.} \ \ \, R(a,c) \geq \sup\nolimits_{b \in A} R(a,b) * R(b,c) \, {\rm donde} \, * \, {\rm es} \, {\rm un} \, {\rm norma} \, {\rm t.}$
- \bigcirc d. R(a,b) = R(b,a).
- \circ e. R(a, a) = 0.

6 de 7

Finalizado

Se puntúa 1,00 sobre 1,00

Un conjunto parcialmente ordenado difuso o poset difuso es:

- a. ninguna de las otras respuestas.
- O b. una relación de orden que es simétrica, reflexiva y antisimétrica.
- \odot c. un par (X,S) donde X es un conjunto certero y S es un orden parcial difuso en X.
- \circ d. un par (X,S) donde X es un conjunto difuso y S es un orden parcial difuso en X.

Pregunta 20

Finalizado

Se puntúa 1,00 sobre 1,00

Sean $P: A \times B \to [0,1]$ y $Q: B \times C \to [0,1]$ dos <u>relaciones difusas</u>. La composición max-min $R = P \circ Q$ es una relación difusa en A y C definida como:

- \bigcirc a. $R(a,c) = \min_{b \in B} \max(P(a,b), Q(b,c))$.
- \bullet b. $R(a,c) = \max_{b \in B} \min(P(a,b), Q(b,c))$.
- \bigcirc c. $R(a,c) = \max_{b \in B} \max(P(a,b), Q(b,c))$.
- \bigcirc d. $R(a,c) = \min_{b \in B} \min(P(a,b), Q(b,c))$.

■ Guía de la Actividad 3.1. Cuestionario 3

Ir a...

Guía de la Actividad 3.2. Ejercitario 3 ▶

7 de 7 3/10/24, 13:48