

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3789

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	8.93	8.93	8.93	0.40	0.75	±12.1%
835	41.5	0.90	8.66	8.66	8.66	0.11	1.56	±12.1%
1750	40.1	1.37	7.67	7.67	7.67	0.25	1.02	±12.1%
1900	40.0	1.40	7.35	7.35	7.35	0.24	1.07	±12.1%
2300	39.5	1.67	7.48	7.48	7.48	0.50	0.75	±12.1%
2450	39.2	1.80	7.01	7.01	7.01	0.56	0.72	±12.1%
2600	39.0	1.96	6.89	6.89	6.89	0.63	0.69	±12.1%
3500	37.9	2.91	6.57	6.57	6.57	0.62	0.85	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3789

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.27	9.27	9.27	0.40	0.80	±12.1%
835	55.2	0.97	8.84	8.84	8.84	0.17	1.46	±12.1%
1750	53.4	1.49	7.54	7.54	7.54	0.22	1.10	±12.1%
1900	53.3	1.52	7.28	7.28	7.28	0.20	1.21	±12.1%
2300	52.9	1.81	7.32	7.32	7.32	0.34	1.19	±12.1%
2450	52.7	1.95	7.15	7.15	7.15	0.37	1.08	±12.1%
2600	52.5	2.16	6.96	6.96	6.96	0.43	0.93	±12.1%
3500	51.3	3.31	6.24	6.24	6.24	0.63	0.90	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

FAt frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No: Z18-97022

Page 9 of 11

Conversion Factor Assessment

f=750 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3789

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	47.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client

SGS

Certificate No: Z18-60356

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3923

Calibration Procedure(s)

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

September 30, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID#		Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101547	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101548	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Reference10dBAttenuator	18N50W-10dB	09-Feb-18(CTTL, No.J18X01133)	Feb-20
Reference20dBAttenuator	18N50W-20dB	09-Feb-18(CTTL, No.J18X01132)	Feb-20
Reference Probe EX3DV4	SN 3846	25-Jan-18(SPEAG,No.EX3-3846_Jan18)	Jan-19
DAE4	SN 777	15-Dec-17(SPEAG, No.DAE4-777_Dec17)	Dec -18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	21-Jun-18 (CTTL, No.J18X05033)	Jun-19
Network Analyzer E5071C	MY46110673	14-Jan-18 (CTTL, No.J18X00561)	Jan -19
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	mes
Reviewed by:	Lin Hao	SAR Test Engineer	#36
Approved by:	Qi Dianyuan	SAR Project Leader	20 62

Issued: October 09, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

CALIBRATION **CNAS L0570**

Client

SGS

Certificate No: Z18-60356

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3923

Calibration Procedure(s)

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

September 30, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID#		Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101547	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101548	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Reference10dBAttenuator	18N50W-10dB	09-Feb-18(CTTL, No.J18X01133)	Feb-20
Reference20dBAttenuator	18N50W-20dB	09-Feb-18(CTTL, No.J18X01132)	Feb-20
Reference Probe EX3DV4	SN 3846	25-Jan-18(SPEAG,No.EX3-3846_Jan18)	Jan-19
DAE4	SN 777	15-Dec-17(SPEAG, No.DAE4-777_Dec17)	Dec -18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	21-Jun-18 (CTTL, No.J18X05033)	Jun-19
Network Analyzer E5071C	MY46110673	14-Jan-18 (CTTL, No.J18X00561)	Jan -19
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	and s
Reviewed by:	Lin Hao	SAR Test Engineer	Mab
Approved by:	Qi Dianyuan	SAR Project Leader	200

Issued: October 09, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z18-60356 Page 2 of 11

Probe EX3DV4

SN: 3923

Calibrated: September 30, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z18-60356

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com <u>Http://www.chinattl.cn</u>

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3923

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²)A	0.58	0.47	0.48	±10.0%
DCP(mV) ^B	101.6	103.7	103.8	

Modulation Calibration Parameters

UID	Communication		Α	В	С	D	VR	Unc ^E
	System Name		dB	dBõV		dB	mV	(k=2)
0	CW	Х	0.0	0.0	1.0	0.00	189.4	±2.1%
		Y	0.0	0.0	1.0		162.7	
		Z	0.0	0.0	1.0		164.8	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60356 Page 4 of 11

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3923

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.59	10.59	10.59	0.40	0.80	±12.1%
835	41.5	0.90	10.37	10.37	10.37	0.15	1.45	±12.1%
1450	40.5	1.20	9.23	9.23	9.23	0.10	1.41	±12.1%
1640	40.3	1.29	9.04	9.04	9.04	0.25	0.97	±12.1%
1750	40.1	1.37	8.92	8.92	8.92	0.22	1.07	±12.1%
1900	40.0	1.40	8.51	8.51	8.51	0.26	1.00	±12.1%
2000	40.0	1.40	8.65	8.65	8.65	0.23	1.01	±12.1%
2450	39.2	1.80	7.86	7.86	7.86	0.40	0.91	±12.1%
2600	39.0	1.96	7.66	7.66	7.66	0.49	0.82	±12.1%
5250	35.9	4.71	5.32	5.32	5.32	0.40	1.75	\pm 13.3%
5600	35.5	5.07	4.89	4.89	4.89	0.45	1.20	±13.3%
5750	35.4	5.22	4.80	4.80	4.80	0.45	1.65	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3923

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.80	10.80	10.80	0.40	0.80	±12.1%
835	55.2	0.97	10.47	10.47	10.47	0.19	1.37	±12.1%
1750	53.4	1.49	8.51	8.51	8.51	0.27	0.99	±12.1%
1900	53.3	1.52	8.14	8.14	8.14	0.20	1.18	±12.1%
2450	52.7	1.95	7.87	7.87	7.87	0.65	0.71	±12.1%
2600	52.5	2.16	7.48	7.48	7.48	0.65	0.68	±12.1%
5250	48.9	5.36	4.87	4.87	4.87	0.50	1.55	±13.3%
5600	48.5	5.77	4.22	4.22	4.22	0.50	1.70	±13.3%
5750	48.3	5.94	4.37	4.37	4.37	0.50	1.70	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z18-60356 Page 6 of 11

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Certificate No: Z18-60356 Page 8 of 11

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No: Z18-60356

Page 9 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com Http://www.chinattl.cn

Conversion Factor Assessment

f=750 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3923

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	25
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z18-60356

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Tejet (Auden)

Certificate No: EX3-3717 Nov18

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3717

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

November 22, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID	Cal Date (Certificate No.)	Scheduled Calibration
SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
ID	Check Date (in house)	Scheduled Check
SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	SN: 104778 04-Apr-18 (No. 217-02672/02673) SN: 103244 04-Apr-18 (No. 217-02672) SN: 103245 04-Apr-18 (No. 217-02673) SN: S5277 (20x) 04-Apr-18 (No. 217-02682) SN: 3013 30-Dec-17 (No. ES3-3013_Dec17) SN: 660 21-Dec-17 (No. DAE4-660_Dec17) ID Check Date (in house) SN: GB41293874 06-Apr-16 (in house check Jun-18) SN: MY41498087 06-Apr-16 (in house check Jun-18) SN: 000110210 06-Apr-16 (in house check Jun-18) SN: US3642U01700 04-Aug-99 (in house check Jun-18)

Calibrated by:

Jeton Kastrati

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: November 22, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

Certificate No: EX3-3717_Nov18

 NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
in the stated uncertainty of ConvF.

DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics

 Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.

• ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.

 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

 Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

 Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3717

Manufactured: August 14, 2009

Calibrated: November 22, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3717

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.51	0.44	0.55	± 10.1 %
DCP (mV) ^B	97.5	100.1	100.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	158.6	±3.5 %
		Y	0.0	0.0	1.0		176.1	
		Z	0.0	0.0	1.0		170.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

Page 4 of 11

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3717

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.53	9.53	9.53	0.67	0.80	± 12.0 %
835	41.5	0.90	9.08	9.08	9.08	0.57	0.84	± 12.0 %
900	41.5	0.97	8.92	8.92	8.92	0.33	1.07	± 12.0 %
1750	40.1	1.37	8.09	8.09	8.09	0.35	0.86	± 12.0 %
1900	40.0	1.40	7.72	7.72	7.72	0.33	0.85	± 12.0 %
2300	39.5	1.67	7.33	7.33	7.33	0.39	0.85	± 12.0 %
2450	39.2	1.80	6.96	6.96	6.96	0.40	0.86	± 12.0 %
2600	39.0	1.96	6.80	6.80	6.80	0.45	0.84	± 12.0 %
5250	35.9	4.71	5.40	5.40	5.40	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.66	4.66	4.66	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.88	4.88	4.88	0.40	1.80	± 13.1 %

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConyF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3717

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.36	9.36	9.36	0.37	1.02	± 12.0 %
835	55.2	0.97	9.13	9.13	9.13	0.36	1.00	± 12.0 %
900	55.0	1.05	9.01	9.01	9.01	0.46	0.85	± 12.0 %
1750	53.4	1.49	7.76	7.76	7.76	0.46	0.84	± 12.0 %
1900	53.3	1.52	7.46	7.46	7.46	0.37	0.84	± 12.0 %
2300	52.9	1.81	7.26	7.26	7.26	0.37	0.89	± 12.0 %
2450	52.7	1.95	7.18	7.18	7.18	0.42	0.86	± 12.0 %
2600	52.5	2.16	6.99	6.99	6.99	0.28	1.05	± 12.0 %
5250	48.9	5.36	4.42	4.42	4.42	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.87	3.87	3.87	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.20	4.20	4.20	0.50	1.90	± 13.1 %

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the CopyE uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

November 22, 2018 EX3DV4-SN:3717

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, ϑ) , f = 900 MHz

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3717

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-21.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Client

SGS

Certificate No: Z19-60038

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3962

Calibration Procedure(s)

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

February 25, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101547	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101548	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Reference10dBAttenuator	18N50W-10dB	09-Feb-18(CTTL, No.J18X01133)	Feb-20
Reference20dBAttenuator	18N50W-20dB	09-Feb-18(CTTL, No.J18X01132)	Feb-20
Reference Probe EX3DV4	SN 7514	27-Aug-18(SPEAG,No.EX3-7514_Aug18)	Aug-19
DAE4	SN 1555	20-Aug-18(SPEAG, No.DAE4-1555_Aug18)	Aug -19
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	21-Jun-18 (CTTL, No.J18X05033)	Jun-19
Network Analyzer E5071C	MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jan -19
	lame	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	and a
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	Sign

Issued: February 27, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60038

Page 1 of 11

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A,B,C,D

Polarization Φ Φ rotation around probe axis

θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i Polarization θ

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)",

July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x, y, z = NORMx, y, z^*$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50MHz to ±100MHz.

Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the

probe tip (on probe axis). No tolerance required.

Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Page 2 of 11 Certificate No: Z19-60038

Probe EX3DV4

SN: 3962

Calibrated: February 25, 2019

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3962

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.42	0.47	0.44	±10.0%
DCP(mV) ⁸	102.3	104.6	95.1	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	CW	X	0.0	0.0	1.0	0.00	155.1	±3.8%
		Y	0.0	0.0	1.0		166.8	
		Z	0.0	0.0	1.0		155.8	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3962

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.10	10.10	10.10	0.15	1.23	±12.1%
835	41.5	0.90	9.80	9.80	9.80	0.16	1.26	±12.1%
1750	40.1	1.37	8.44	8.44	8.44	0.29	0.98	±12.1%
1900	40.0	1.40	8.14	8.14	8.14	0.30	0.93	±12.1%
2000	40.0	1.40	7.99	7.99	7.99	0.25	1.00	±12.1%
2300	39.5	1.67	7.94	7.94	7.94	0.64	0.69	±12.1%
2450	39.2	1.80	7.58	7.58	7.58	0.68	0.68	±12.1%
2600	39.0	1.96	7.39	7.39	7.39	0.65	0.70	±12.1%
5250	35.9	4.71	5.55	5.55	5.55	0.45	1.20	±13.3%
5600	35.5	5.07	4.80	4.80	4.80	0.45	1.50	±13.3%
5750	35.4	5.22	4.90	4.90	4.90	0.50	1.40	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3962

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.34	10.34	10.34	0.40	0.80	±12.1%
835	55.2	0.97	9.92	9.92	9.92	0.19	1.38	±12.1%
1750	53.4	1.49	8.30	8.30	8.30	0.27	1.02	±12.1%
1900	53.3	1.52	8.02	8.02	8.02	0.24	1.14	±12.1%
2300	52.9	1.81	7.82	7.82	7.82	0.62	0.79	±12.1%
2450	52.7	1.95	7.70	7.70	7.70	0.69	0.75	±12.1%
2600	52.5	2.16	7.51	7.51	7.51	0.65	0.75	±12.1%
5250	48.9	5.36	5.10	5.10	5.10	0.50	1.45	±13.3%
5600	48.5	5.77	4.33	4.33	4.33	0.55	1.55	±13.3%
5750	48.3	5.94	4.43	4.43	4.43	0.55	1.35	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60038

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No: Z19-60038

Page 9 of 11

Conversion Factor Assessment

f=750 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3962

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	151.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Dipole D835V2 SN 4d105						
	Head I	_iquid				
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ		
2016-12-08	-29.1	/	49.2	/		
2017-12-07	-29.7	2.06%	51.3	2.1Ω		
2018-12-06 -29.5 1.03% 50.6						
	Body l	_iquid				
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ		
2016-12-08	-25.1	/	45.8	/		
2017-12-07	-25.5	1.59%	47.7	1.9Ω		
2018-12-06	2018-12-06 -25.3 0.80% 46.6 0.8					

	Dipole D1750V2 SN 1149						
	Head I	_iquid					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ			
2016-06-23	-38.7	/	49	/			
2017-06-22	-39.6	2.33%	52.2	3.2Ω			
2018-06-21	2018-06-21 -38.9 0.52% 51.8 2.8						
	Body I	_iquid					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ			
2016-06-23	-23.3	/	43.6	/			
2017-06-22 -23.8 2.15% 46 2.							
2018-06-21	-23.9	2.57%	45.7	2.1Ω			

Dipole D1900V2 SN 5d028					
Head Liquid					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ	
2016-12-07	-24.4	/	51.8	/	
2017-12-06	-25.2	3.28%	53.6	1.8Ω	
2018-12-05	-24.8	1.64%	52.8	1.0Ω	
Body Liquid					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ	
2016-12-07	-24.1	/	48.1	/	
2017-12-06	-24.8	2.90%	49.6	1.5Ω	
2018-12-05	-25.1	4.15%	50.3	2.2Ω	

Dipole D2300V2 SN 1072					
Head Liquid					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ	
2016-06-21	-25.8	/	49.2	/	
2017-06-20	-26.2	1.55%	51.7	2.5Ω	
2018-06-19	-26.4	2.33%	51.3	2.1Ω	
Body Liquid					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ	
2016-06-21	-25.4	/	46.1	/	
2017-06-20	-26.1	2.76%	48.8	2.7Ω	
2018-06-19	-26.4	3.94%	47.4	1.3Ω	

Dipole D2450V2 SN 733					
Head Liquid					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ	
2016-12-07	-26.3	/	52.9	/	
2017-12-06	-27.5	4.56%	56.1	3.2Ω	
2018-12-05	-27.1	3.04%	55.7	2.8Ω	
Body Liquid					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ	
2016-12-07	-24.6	/	49.7	/	
2017-12-06	-25.3	2.85%	51.8	2.1Ω	
2018-12-05	-25.1	2.03%	52.1	2.4Ω	

Dipole D2600V2 SN 1125					
Head Liquid					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ	
2016-06-22	-25.9	/	49	/	
2017-06-21	-26.4	1.93%	50.9	1.9Ω	
2018-06-20	-26.7	3.09%	51.3	2.3Ω	
Body Liquid					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ	
2016-06-22	-24.2	/	45.7	/	
2017-06-21	-25.4	4.96%	48.2	2.5Ω	
2018-06-20	-24.9	2.89%	47.5	1.8Ω	