Лабораторная работа №1. Синтез и фильтрация шумоподобных сигналов. М-последовательности. Коды Уолша-Адамара

- 1. Теоретические сведения
- 1.1 Основные термины и определения
- 1.2 Автомат генерации М-последовательностей
- 1.3 Основные свойства М-последовательностей
- 1.4 Согласованный фильтр
- 1.5 Ортогональные последовательности. Коды Уолша-Адамара
- 1.6 Автомат генерации кодов Уолша-Адамара
- 2. Основное задание
- 2.1 Общие указания к выполнению лабораторной работы
- 2.2 Синтез и фильтрация М-последовательностей
- 2.3 Синтез и фильтрация кодов Уолша-Адамара
- 2.4 Варианты заданий
- 3. Дополнительные задания
- 4. Контрольные вопросы

1. Теоретические сведения

1.1 Основные термины и определения

База сигнала — это произведение активной ширины спектра сигнала F на его длительность T.

$$B = FT$$

Шумоподобными сигналами (ШПС) называют такие сигналы, для которых база много больше 1 (B>>1). Такие сигналы иначе называют «широкополосными» или «сложными». ШПС применяются в так называемых широкополосных системах связи.

Псевдослучайная последовательность (ПСП) — это последовательность чисел, которая была вычислена по некоторому определенному арифметическому правилу, но имеет все свойства случайной последовательности чисел.

Корреляция — статистическая взаимосвязь двух или более случайных величин. **Корреляционная функция (КФ)** сигнала — функция времени, которая задает корреляцию (взаимосвязь) между сигналами, представленными в виде случайных последовательностей (или ПСП).

Автокорреляционная функция (АКФ) — КФ, которая выражает взаимосвязь между сигналом и его копией, сдвинутой по времени (опорной функцией).

Взаимнокорреляционная функция (ВКФ) — КФ, которая выражает взаимосвязь

между двумя разными сигналами, представленными в виде случайных последовательностей (или ПСП).

М-последовательность — это ПСП, генерируемая при помощи сдвигового регистра с линейной обратной связью и имеющая максимальный период.

1.2 Автомат генерации М-последовательностей

Как уже было сказано, М-последовательность можно получить при помощи сдвигового регистра с линейной обратной связью (LFSR - linear-feedback shift register) [1]. Обобщенная схема LFSR представлена на рисунке 1.

Рисунок 1 - Схема сдвигового регистра с обратной связью (реализация Фибоначчи [2,3])

Полиномиальная интерпретация данной схемы состоит в том, что отводы (taps) от триггеров регистра обратной связи представляются в виде коэффициентов многочлена

$$G(X) = g_0 + g_1 X + \ldots + g_{m-1} X^{m-1} + g_m X^m,$$

который имеет степень длины сдвигового регистра. Коэффициенты g_i принимают значения 0 или 1, при этом, старший (g_m) и младший (g_0) коэффициенты всегда равны 1. Для того, чтобы последовательность, сформированная при помощи данного многочлена, являлась последовательностью максимальной длины, необходимо и достаточно, чтобы многочлен являлся **неприводимым**.

Массив коэффициентов многочлена G(X) мы будем называть

характеристическим многочленом М-последовательности, а массив значений триггеров сдвигового регистра - **фазой** М-последовательности.

При инициализации фазы, первый (младший) разряд сдвигового должен быть равен 1. Остальные разряды могут быть заполнены любыми значениями (0 или 1).

1.3 Основные свойства М-последовательностей:

- М-последовательности являются периодическими с периодом $N=2^m-1$, где m размер сдвигового регистра;
- количество символов, принимающих значение 1, в рамках одного периода Мпоследовательности на 1 больше, чем количество нулей (свойство **сбалансированности**);

- сумма по модулю 2 М-последовательности с её произвольным циклическим сдвигом также является М-последовательностью;
- АКФ любой М-последовательности в периодическом режиме имеет постоянный уровень боковых лепестков, равный -1/N (является дельтафункцией Кронекера [4]);
- АКФ усеченной М-последовательности (непериодический режим) имеет величину боковых лепестков, стремящуюся к $-1/\sqrt{N}$.

1.4 Согласованный фильтр

Согласованный фильтр - это линейный оптимальный фильтр, построенный исходя из известных спектральных характеристик полезного сигнала и шума [5]. Для фильтрации сигналов, сформированных при помощи М-последовательностей используется согласованный фильтр, реализующий КФ двух ПСП, одна из которых является *сигналом*, а вторая - *опорной функцией*. Аналитически согласованный фильтр можно описать формулой:

$$(f\otimes g)_i=\sum_i f_jg_{i+j},$$

где i - сдвиг между последовательностями друг относительно друга, f_i - ПСП сигнала, g_i - ПСП опорной функции.

Рисунок 2 - Схема цифрового автомата, реализующего согласованный фильтр для двух ПСП

1.5 Ортогональные последовательности. Коды Уолша-Адамара

Ортогональными последовательностями (кодами) называются такие ПСП, КФ для которых равна 0 при отсутствии временного сдвига [6].

Одной из наиболее распространенных ортогональных систем является матрица Адамара, которая определяется по рекурентному правилу:

$$W_{2N} = egin{bmatrix} W_N & W_N \ W_N & -W_N \end{bmatrix},$$

где W_N - матрица Адамара порядка N. Полагают, что $W_1=1$. Например, матрица W_8 , построенная по данному правилу, имеет следующий вид:

Код Уолша-Адамара - это строка (или столбец) матрицы Адамара. Номера строк (столбцов) являются исходными данными, подлежащими кодированию соответствующими последовательностями. Разрядность этих данных равна log2(n)-1, где n - это размер строки (или длина кода Уолша-Адамара).

Второй способ получить код Уолша-Адамара - воспользоваться схемой, представленной на рисунке 3.

Рисунок 3 - Принцип формирования кодов Уолша-Адамара

Чтобы установить соответствие между двумя способами формирования кодов Уолша-Адамара, необходимо данные, кодируемые вторым способом, представить в виде *двоично-инверсной последовательностии*. То есть для примера из рисунка 3: data = 3, в двоичном представлении это "011", в двоично-инверсном представлении - "110", что соответствует номеру 6 матрицы Адамара (нумерация строк или столбцов начинается с 0).

1.6 Автомат генерации кодов Уолша-Адамара

На рисунке 4 представлен автомат генерации кодов Уолша-Адамара для исходных данных, разрядностью r=3. В общем случае, для реализации данного цифрового автомата потребуется сдвиговый регистр размером в 2^r-1 триггеров и мультиплексор на r входов в 1 выход. Входы мультиплексора соединяются с выходами триггеров, номера которых соответствуют степеням 2.

Рисунок 4 - Пример цифрового автомата формирования кодов Уолша-Адамара

Здесь C[2:0] - трехразрядное число, которое необходимо закодировать. Ниже приведен пошаговый алгоритм работы автомата для примера из рисунка 3.

Рисунок 5(a) - Первый и второй шаги работы автомата генерации кода Уолша-Адамара

На первом шаге (i = 0) заполняем первый триггер значением 0. Это же значение является первым для итогового кода Уолша-Адамара.

На втором шаге (i = 1) начинает работать поток, соответствующий старшему разряду кодируемого числа.

Рисунок 5(б) - Третий и четвертый шаги работы автомата генерации кода Уолша-Адамара

На третьем и четвертом шагах (i = 2,3) работает поток, соответствующий следующему по старшинству разряду кодируемого числа.

Рисунок 5(в) - Пятый и шестой шаги работы автомата генерации кода Уолша-Адамара

Рисунок 5(г) - Седьмой и восьмой шаги работы автомата генерации кода Уолша-

Адамара

На пятом, шестом, седьмом и восьмом шагах (i=4,5,6,7) работает поток, соответствующий младшему разряду кодируемого числа. В результате, при переходе к области значений [-1,1], получаем искомый код Уолша-Адамара.

1.7 Быстрое преобразование Уолша-Адамара

Быстрое преобразование Уолша-Адамара (*БПУА, FWHT - Fast Walsh-Hadamard Transform*) является частным случаем быстрого преобразрования Фурье [7] (БПФ, FFT - Fast Fourier Transform), речь о котором пойдет в следующей лабораторной работе. Оба используют структуру "бабочки", чтобы определить коэффициенты преобразования (рисунок 6).

Рисунок 6 - "Бабочка" Уолша-Адамара

Пример расчета БПУА для примера из рисунка 3 приведен на рисунке 7.

Рисунок 7 - Пример декодирования данных при помощи БПУА для кодов Уолша-Адамара длиной 8

2. Основное задание

2.1 Общие указания к выполнению лабораторной работы

Лабораторная работа должна быть выполнена на языке Python. Результатом работы должен быть скрипт, в котором реализованы все необходимые задания и функции. Для вывода промежуточных графиков рекомендуется использовать возможности библиотеки **matplotlib** [8].

Для получения зачета по лабораторной работе необходимо, как минимум, выполнить все пункты основного задания. Исходные данные определены в таблицах 1 и 2. Для того, чтобы получить максимальный балл за работу, необходимо выполнить дополнительные задания в зависимости от варианта (раздел 3).

При сдаче (защите) лабораторной работы необходимо быть готовым ответить на любой из контрольных вопросов к лабораторной работе, либо на вопросы по лекционному материалу на соотвутствующую тему.

2.2 Синтез и фильтрация М-последовательностей

1. Сформировать две М-последовательности M_1 и M_2 в соответствии с исходными данными из таблицы 1.

Для генерации М-последовательностей мы будем использовать функцию \max_len_seq из пакета scipy.signal [3]. Параметр state используется для инициализации ϕ азы М-последовательности, а параметр taps - для задания коэффициентов многочлена. Формат параметра taps - это список степеней слагаемых многочлена G(X), при которых коэффициент g_i равен 1. При этом, степень при коэффициентах (g_m) и (g_0) указывать в данном списке не нужно (так как они всегда принимают значение 1).

Пример.

Пусть задан характеристический многочлен М-последовательности в виде списка: C = [1,1,0,0,1]. Соответствующая конфигурация автомата изображена на рисунке 8.

Рисунок 8 - Пример автомата генерации М-последовательности Полиномиальное представление: $G(X)=1+X+X^4$. Параметр taps=[1].

2. Сформировать сумму М-последовательностей $M_{sum}=M_1+M_2$, M_2 взять со сдвигом и инверсией. Сдвиг выбрать равным 100 плюс ваш номер по списку в

группе, умноженный на 10, но не более половины длины последовательностей M_1 и M_2 . Изобразить полученные результаты на графиках.

Рисунок 9 - Пример построения М-последовательностей и их суммы

- 3. Построить АКФ для M_1 (где M_1 является и сигналом, и опорной функцией) при помощи функции **numpy.correlate** [9]. Изобразить полученный результат на графике.
- 4. Построить ВКФ (M_1 сигнал, M_2 опорная функция). Изобразить полученный результат на графике.
- 5. Из M_{sum} отфильтровать M_1 (M_{sum} сигнал, M_1 опорная функция). Изобразить полученный результат на графике.
- 6. Из M_{sum} отфильтровать M_2 (M_{sum} сигнал, M_2 опорная функция). Изобразить полученный результат на графике.

Рисунок 10 - Пример построения корреляционных функций

7. Сформировать последовательность M_3 , добавив к M_1 шум.

Рисунок 11 - Пример генерации шума амплиту ∂ ой $A_{noise}=2$

- 8. Из M_3 отфильтровать M_1 (M_3 сигнал, M_1 опорная функция). Изобразить полученный результат на графике.
- 9. Изобразить зависимость, полученную в п.8, в логарифмических единицах (dB) и проанализировать полученные результаты. Для этого необходимо воспользоваться формулой:

$$A_{db} = 20 imes log_{10} \left(|rac{A}{A_{max}}|
ight).$$

10. Найти максимальную амплитуду шума, при которой главный пик превышает боковые в 2 раза, или на графике в логарифмическом масштабе - на 6 дБ.

Рисунок 12 - Пример результатов исследования М-последовательности на шумоподавление

2.3 Синтез и фильтрация кодов Уолша-Адамара

- 1. Сформировать два кода W_1 и W_2 при помощи матрицы Адамара. Для этого можно воспользоваться функцией **scipy.linalg.hadamard** [11]. Кодируемые данные (data) и разрядность данных (r) необходимо взять из таблицы 2 согласно варианту.
- 2. Сформировать сумму кодов $W_{sum} = W_1 + W_2$.
- 3. Вычислить БПУА для суммы кодов W_{sum} при помощи функции **sympy.discrete.transforms.fwht** [12]. Изобразить полученный результат на графике. Убедиться в том, что результат БПУА соответствует исходным закодированным данным.

Рисунок 13 - Пример построения кодов Уолша-Адамара (data1=200, data2=800, r=10) и результата БПУА

- 4. Исследовать коды Уолша-Адамара на шумоподавление (аналогично этапам 7-9 из задания 2.2). Сформировать $W_3=W_{sum}+NOISE$.
- 5. Вычислить БПУА для W_3 . Изобразить полученный результат на графике. Удостовериться в том, что полученный результат соответствует исходным закодированным числам.
- 6. Найти максимальную амплитуду шума, при которой главный пик превышает боковые в 2 раза, или на графике в логарифмическом масштабе на 6 дБ.

Рисунок 14 - Пример результатов исследования кодов Уолша-Адамара на

шумоподавление

2.4 Варианты заданий

Таблица 1 - Исходные данные для формирования М-последовательностей

Таблица 2 - исходные данные для формирования кодов Уолша-Адамара

	. т-послеоователопостеи				Уолша-Адамара				
Номер по списку	А (фаза)	С1 (хар. многочлен)	С2 (хар. многочлен)		Номер по списку	data1	data2	r	
1	1000000001	10000001001	10000011011		1	1	434	10	
2	100000010	10000100111	10000101101		2	2	149	10	
3	100000011	10001100101	10001101111		3	3	121	10	
4	1000000100	10010000001	10010001011		4	4	354	10	
5	1000000101	10011000101	10011010111		5	5	254	10	
6	1000000110	10011100111	10011110011		6	6	356	10	
7	1000000111	10011111111	10100001101		7	7	228	10	
8	1000001000	10100011001	10100100011		8	8	674	10	
9	1000001001	10100110001	10100111101		9	9	359	10	
10	1000001010	10101000011	10101010111		10	10	458	10	
11	1000001011	10101101011	10110000101		11	11	596	10	
12	1000001100	10110001111	10110010111		12	12	239	10	
13	1000001101	10110100001	10111000111		13	13	489	10	
14	1000001110	10111100101	10111110111		14	14	378	10	
15	1000001111	10111111011	11000010011		15	15	586	10	
16	1000010000	11000010101	11000100101		16	16	536	10	
17	1000010001	11000110111	11001000011		17	17	385	10	
18	1000010010	11001001111	11001011011		18	18	378	10	
19	1000010011	11001111001	11001111111		19	19	536	10	
20	1000010100	11010001001	11010110101		20	20	397	10	
21	1000010101	11011000001	11011010011		21	21	369	10	
22	1000010110	11011011111	11011111101		22	22	252	10	
23	1000010111	11100010111	11100011101		23	23	137	10	
24	1000011000	11100100001	11100111001		24	24	35	10	
25	1000011001	11101000111	11101010101		25	25	378	10	
26	1000011010	11101010101	11101001101		26	26	453	10	

Номер по списку	А (фаза)	С1 (хар. многочлен)	С2 (хар. многочлен)	Номер по списку	data1	data2	r
27	1000011011	11101100011	11101111101	27	27	377	10
28	1000011100	11110001101	11110010011	28	28	357	10
29	1000011101	11110110001	11111011011	29	29	373	10
30	1000011110	11111110011	11111111001	30	30	222	10

3. Дополнительные задания

- 1. Написать функцию, реализующую цифровой автомат генерации Мпоследовательности (соответствующий рисунку 1). Проделать этап 1 из задания 2.2 при помощи новой функции, проанализировать полученные результаты.
- 2. Написать функцию, реализующую согласованный фильтр (соответствующий рисунку 2). Проделать этапы 2 и 3 из задания 2.2 при помощи новой функции, проанализировать полученные результаты.
- 3. Написать функцию, реализующую цифровой автомат генерации кодов Уолша-Адамара (соответствующий рисунку 4). Проделать этап 1 из задания 2.3 при помощи новой функции, проанализировать полученные результаты.
- 4. Написать функцию, реализующую алгоритм БПУА. Проделать этап 3 из задания 2.3 при помощи новой функции, проанализировать полученные результаты.

4. Контрольные вопросы

- 1. Что такое шумоподобный сигнал?
- 2. Что такое М-последовательность?
- 3. Какие вы знаете свойства М-последовательности?
- 4. Сколько бит цифровой информации можно закодировать одной Мпоследовательностью?
- 5. Что такое АКФ и ВКФ?
- 6. Чем отличается реализация АКФ от ВКФ?
- 7. Что такое опорная функция?
- 8. Что такое коды Уошла-Адамара?
- 9. Перечислите свойства кодов Уолша-Адамара?
- Сколько бит цифровой информации можно закодировать коом Уолша-Адамара?
- 11. Что используют для фильтрации кодов Уолша-Адамара? Для Мпоследовательности?
- 12. Как получить из результата преобразорвания Уолша-Адамара искомуюзакодированную информацию?
- 13. Какой из рассмотренных в работе методов кодирования информации обладает большей устойчивостью шумоподавлению?