Study Guide: Solving differential equations with finite elements

Hans Petter Langtangen^{1,2}

Center for Biomedical Computing, Simula Research Laboratory 1 Department of Informatics, University of ${\rm Oslo}^2$

Oct 30, 2013

Differential equation models

Our aim is to extend the ideas for approximating f by u, or solving

$$u = f$$

to real differential equations like

$$-u'' + bu = f$$
, $u(0) = 1$, $u'(L) = D$

Three methods are addressed:

- least squares
- @ Galerkin/projection
- collocation (interpolation)

Method 2 will be totally dominating!

Abstract differential equation

$$\mathcal{L}(u) = 0, \quad x \in \Omega \tag{1}$$

Examples (1D problems):

$$\mathcal{L}(u) = \frac{d^2u}{dx^2} - f(x),\tag{2}$$

$$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(x) \frac{du}{dx} \right) + f(x), \tag{3}$$

$$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(u) \frac{du}{dx} \right) - au + f(x), \tag{4}$$

$$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(u) \frac{du}{dx} \right) + f(u, x)$$
 (5)

Abstract boundary conditions

$$\mathcal{B}_0(u) = 0, \ x = 0, \quad \mathcal{B}_1(u) = 0, \ x = L$$
 (6)

Examples:

$$\mathcal{B}_i(u) = u - g,$$
 Dirichlet condition (7)

$$\mathcal{B}_i(u) = -\alpha \frac{du}{dx} - g,$$
 Neumann condition (8)

$$\mathcal{B}_i(u) = -\alpha \frac{du}{dx} - h(u - g),$$
 Robin condition (9)

Reminder about notation

- $u_e(x)$ is the symbol for the *exact* solution of $\mathcal{L}(u_e) = 0$
- u(x) denotes an approximate solution
- We seek $u \in V$
- $V = \text{span}\{\psi_0(x), \dots, \psi_N(x)\}, V \text{ has basis } \{\psi_i\}_{i \in I}$
- $I = \{0, \dots, N\}$ is an index set
- $u(x) = \sum_{j \in I} c_j \psi_j(x)$
- Inner product: $(u, v) = \int_{\Omega} uv \, dx$
- Norm: $||u|| = \sqrt{(u,u)}$

New topics

Much is similar to approximating a function (solving u = f), but two new topics are needed:

- Variational formulation of the differential equation problem (including integration by parts)
- Handling of boundary conditions

Residual-minimizing principles

- When solving u = f we knew the error e = f u and could use principles for minimizing the error
- When solving $\mathcal{L}(u_{\rm e})=0$ we do not know $u_{\rm e}$ and cannot work with the error $e=u_{\rm e}-u$
- We only have the *error in the equation*: the residual *R*

Inserting $u = \sum_{j} c_{j} \psi_{j}$ in $\mathcal{L} = 0$ gives a residual

$$R = \mathcal{L}(u) = \mathcal{L}(\sum_{j} c_{j} \psi_{j}) \neq 0$$
 (10)

Goal: minimize R wrt $\{c_i\}_{i\in I}$ (and hope it makes a small e too)

$$R = R(c_0, \ldots, c_N; x)$$

The least squares method

Idea: minimize

$$E = ||R||^2 = (R, R) = \int_{\Omega} R^2 dx$$
 (11)

Minimization wrt $\{c_i\}_{i\in I}$ implies

$$\frac{\partial E}{\partial c_i} = \int_{\Omega} 2R \frac{\partial R}{\partial c_i} dx = 0 \quad \Leftrightarrow \quad (R, \frac{\partial R}{\partial c_i}) = 0, \quad i \in I$$
 (12)

N+1 equations for N+1 unknowns $\{c_i\}_{i\in I}$

The Galerkin method

Idea: make R orthogonal to V,

$$(R, v) = 0, \quad \forall v \in V \tag{13}$$

This implies

$$(R,\psi_i)=0, \quad i\in I \tag{14}$$

 $\mathit{N}+1$ equations for $\mathit{N}+1$ unknowns $\{\mathit{c_i}\}_{\mathit{i}\in \mathit{I}}$

The Method of Weighted Residuals

Generalization of the Galerkin method: demand R orthogonal to some space W, possibly $W \neq V$:

$$(R, v) = 0, \quad \forall v \in W \tag{15}$$

If $\{w_0, \ldots, w_N\}$ is a basis for W:

$$(R, w_i) = 0, \quad i \in I \tag{16}$$

- N+1 equations for N+1 unknowns $\{c_i\}_{i\in I}$
- Weighted residual with $w_i = \partial R/\partial c_i$ gives least squares

Terminology: test and trial Functions

- ψ_j used in $\sum_i c_j \psi_j$ is called *trial function*
- ψ_i or w_i used as weight in Galerkin's method is called *test* function

The collocation method

Idea: demand R = 0 at N + 1 points

$$R(x_i; c_0, \dots, c_N) = 0, \quad i \in I$$
 (17)

Note: The collocation method is a weighted residual method with delta functions as weights

$$0 = \int_{\Omega} R(x; c_0, \dots, c_N) \delta(x - x_i) dx = R(x_i; c_0, \dots, c_N)$$

property of
$$\delta(x)$$
: $\int_{\Omega} f(x)\delta(x-x_i)dx = f(x_i), \quad x_i \in \Omega$ (18)

Examples on using the principles

Goal.

Exemplify the least squares, Galerkin, and collocation methods in a simple 1D problem with global basis functions.

The first model problem

$$-u''(x) = f(x), \quad x \in \Omega = [0, L], \quad u(0) = 0, \ u(L) = 0$$
 (19)

Basis functions:

$$\psi_i(x) = \sin\left((i+1)\pi\frac{x}{I}\right), \quad i \in I$$
 (20)

The residual:

$$R(x; c_0, ..., c_N) = u''(x) + f(x),$$

$$= \frac{d^2}{dx^2} \left(\sum_{j \in I} c_j \psi_j(x) \right) + f(x),$$

$$= -\sum_{i \in I} c_j \psi_j''(x) + f(x)$$
(21)

Boundary conditions

Since u(0) = u(L) = 0 we must ensure that all $\psi_i(0) = \psi_i(L) = 0$. Then

$$u(0) = \sum_{j} c_{j} \psi_{j}(0) = 0, \quad u(L) = \sum_{j} c_{j} \psi_{j}(L)$$

- u known: Dirichlet boundary condition
- u' known: Neumann boundary condition
- Must have $\psi_i = 0$ where Dirichlet conditions apply

The least squares method; principle

$$(R, \frac{\partial R}{\partial c_i}) = 0, \quad i \in I$$

$$\frac{\partial R}{\partial c_i} = \frac{\partial}{\partial c_i} \left(\sum_{i \in I} c_i \psi_j''(x) + f(x) \right) = \psi_i''(x)$$

(22)

Because:

$$\frac{\partial}{\partial c_i} \left(c_0 \psi_0'' + c_1 \psi_1'' + \dots + c_{i-1} \psi_{i-1}'' + c_i \psi_i'' + c_{i+1} \psi_{i+1}'' + \dots + c_N \psi_N'' \right) = c_0 + c_0$$

The least squares method; equation system

$$\left(\sum_{i} c_{j} \psi_{j}^{"} + f, \psi_{i}^{"}\right) = 0, \quad i \in I$$
(23)

Rearrangement:

$$\sum_{i \in I} (\psi_i'', \psi_j'') c_j = -(f, \psi_i''), \quad i \in I$$
 (24)

This is a linear system

$$\sum_{i\in I}A_{i,j}c_j=b_i,\quad i\in I$$

with

$$A_{i,j} = (\psi_i'', \psi_j'')$$

$$= \pi^4 (i+1)^2 (j+1)^2 L^{-4} \int_0^L \sin\left((i+1)\pi \frac{x}{L}\right) \sin\left((j+1)\pi \frac{x}{L}\right) dx$$

$$= \begin{cases} \frac{1}{2} L^{-3} \pi^4 (i+1)^4 & i=j\\ 0, & i\neq j \end{cases}$$
(25)

Orthogonality of the basis functions gives diagonal matrix

Useful property:

$$\int_{0}^{L} \sin\left((i+1)\pi\frac{x}{L}\right) \sin\left((j+1)\pi\frac{x}{L}\right) dx = \delta ij, \qquad \delta_{ij} = \begin{cases} \frac{1}{2}L & i=j\\ 0, & i\neq j \end{cases}$$

$$\Rightarrow (\psi_{i}'', \psi_{j}'') = \delta_{ij}, \text{ i.e., diagonal } A_{i,j}, \text{ and we can easily solve for } c_{i}:$$

$$c_{i} = \frac{2L}{\pi^{2}(i+1)^{2}} \int_{0}^{L} f(x) \sin\left((i+1)\pi\frac{x}{L}\right) dx \qquad (28)$$

Least squares method; solution

Let's sympy do the work (f(x) = 2):

 $c_{i} = 4 \frac{L^{2}\left((-1)^{i} + 1\right)}{\pi^{3}\left(i^{3} + 3i^{2} + 3i + 1\right)}, \quad u(x) = \sum_{k=0}^{N/2} \frac{8L^{2}}{\pi^{3}(2k+1)^{3}} \sin\left((2k+1)\pi \frac{x}{L}\right)$ Fast decay: $c_2 = c_0/27$, $c_4 = c_0/125$ - only one term might be good enough:

 $u(x) \approx \frac{8L^2}{\pi^3} \sin\left(\pi \frac{x}{L}\right)$.

t decay:
$$c_2 = c_0/27$$
, $c_4 = c_0/125$ - d enough:

The Galerkin method; principle

R = u'' + f:

$$(u''+f,v)=0, \forall v\in V,$$

or

$$(u'', v) = -(f, v), \quad \forall v \in V$$
 (30)

This is a *variational formulation* of the differential equation problem.

 $\forall v \in V$ means for all basis functions:

$$(\sum_{i\in I} c_j \psi_j'', \psi_i) = -(f, \psi_i), \quad i \in I$$
(31)

The Galerkin method; solution

Since $\psi_i'' \propto \psi_i$, Galerkin's method gives the same linear system and the same solution as the least squares method (in this particular example).

The collocation method

R=0 (i.e.,the differential equation) must be satisfied at N+1 points:

$$-\sum_{i\in I}c_j\psi_j''(x_i)=f(x_i),\quad i\in I$$
(32)

This is a linear system $\sum_{i} A_{i,j} = b_i$ with entries

$$A_{i,j} = -\psi_j''(x_i) = (j+1)^2 \pi^2 L^{-2} \sin\left((j+1)\pi \frac{x_i}{L}\right), \quad b_i = 2$$

Choose: N = 0, $x_0 = L/2$

$$c_0=2L^2/\pi^2$$

Comparison of the methods

- Exact solution: u(x) = x(L x)
- Galerkin or least squares (N = 0): $u(x) = 8L^2\pi^{-3}\sin(\pi x/L)$
- Collocation method (N=0): $u(x)=2L^2\pi^{-2}\sin(\pi x/L)$.
- Max error in Galerkin/least sq.: $-0.008L^2$
- Max error in collocation: 0.047L²

Integration by parts

Second-order derivatives will hereafter be integrated by parts

$$\int_{0}^{L} u''(x)v(x)dx = -\int_{0}^{L} u'(x)v'(x)dx + [vu']_{0}^{L}$$

$$= -\int_{0}^{L} u'(x)v'(x)dx + u'(L)v(L) - u'(0)v(0)$$
(33)

Motivation:

- Lowers the order of derivatives
- Gives more symmetric forms (incl. matrices)
- Enables easy handling of Neumann boundary conditions
- Finite element basis functions φ_i have discontinuous derivatives (at cell boundaries) and are not suited for terms with φ_i''

Boundary function; principles

- What about nonzero Dirichlet conditions?
- E.g. u(L) = D

Boundary function; example

$$u(0) = C \text{ and } u(L) = D. \text{ Choose}$$

$$B(x) = L^{-1}(C(L-x) + Dx): \qquad B(0) = C, \ B(L) = D$$

$$u(x) = L^{-1}(C(L-x) + Dx) + \sum_{j \in I} c_j \psi_j(x), \qquad (34)$$

$$u(0) = C, \quad u(L) = 0$$

Abstract notation for variational formulations

The finite element literature (and much FEniCS documentation) applies an abstract notation for the variational formulation:

*Find $(u - B) \in V$ such that

$$a(u, v) = L(v) \quad \forall v \in V$$

Example on abstract notation

Given a variational formulation for -u'' = f:

$$\int_{\Omega} u'v'dx = \int_{\Omega} fvdx \quad \text{or} \quad (u',v') = (f,v) \quad \forall v \in V$$

Abstract formulation: finn $(u - B) \in V$ such that

$$a(u, v) = L(v) \quad \forall v \in V$$

We identify

$$a(u, v) = (u', v'), L(v) = (f, v)$$

Bilinear and linear forms

- a(u, v) is a bilinear form
- L(v) is a linear form

Linear form means

$$L(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2) = \alpha_1 L(\mathbf{v}_1) + \alpha_2 L(\mathbf{v}_2),$$

Bilinear form means

$$a(\alpha_1 u_1 + \alpha_2 u_2, v) = \alpha_1 a(u_1, v) + \alpha_2 a(u_2, v),$$

 $a(u, \alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 a(u, v_1) + \alpha_2 a(u, v_2)$

In nonlinear problems: Find $(u - B) \in V$ such that $F(u; v) = 0 \ \forall v \in V$

The linear system associated with abstract form

$$a(u, v) = L(v) \quad \forall v \in V$$

is equivalent to

$$a(u, \psi_i) = L(\psi_i) \quad i \in I$$

Insert $u = \sum_{i} c_{i} \psi_{j}$ and use linearity:

$$\sum_{j\in I} a(\psi_j, \psi_i)c_j = L(\psi_i) \quad i\in I$$

This is a linear system

$$\sum_{j\in I}A_{i,j}c_j=b_i,\quad i\in I$$

with

$$A_{i,j} = a(\psi_j, \psi_i)$$
$$b_i = L(\psi_i)$$

Equivalence with minimization problem

 $\mathsf{If}\ \mathsf{a}(\mathsf{u},\mathsf{v})=\mathsf{a}(\mathsf{v},\mathsf{u}),$

$$a(u, v) = L(v) \quad \forall v \in V,$$

is equivalent to minimizing the functional

$$F(v) = \frac{1}{2}a(v,v) - L(v)$$

over all functions $v \in V$. That is,

$$F(u) \leq F(v) \quad \forall v \in V.$$

- Much used in the early days of finite elements
- Still much used in structural analysis and elasticity
- Not as general as Galerkin's method (since a(u, v) = a(v, u))

Examples on variational formulations

Goal.

Derive variational formulations for many prototype differential equations in 1D that include

- variable coefficints
- mixed Dirichlet and Neumann conditions
- nonlinear coefficients

Variable coefficient; problem

$$-\frac{d}{dx}\left(\alpha(x)\frac{du}{dx}\right) = f(x), \quad x \in \Omega = [0, L], \ u(0) = C, \ u(L) = D.$$
(35)

- Variable coefficient $\alpha(x)$
- Nonzero Dirichlet conditions at x = 0 and x = L
- Must have $\psi_i(0) = \psi_i(L) = 0$
- $V = \operatorname{span}\{\psi_0, \dots, \psi_N\}$
- $v \in V$: v(0) = v(L) = 0

$$u(x) = B(x) + \sum_{j \in I} c_j \psi_i(x)$$

$$B(x) = C + \frac{1}{I}(D - C)x$$

Variable coefficient; variational formulation (1)

$$R = -\frac{d}{dx} \left(a \frac{du}{dx} \right) - f$$

Galerkin's method:

$$(R, v) = 0, \forall v \in V,$$

or with integrals:

$$\int_{\Omega} \left(\frac{d}{dx} \left(\alpha \frac{du}{dx} \right) - f \right) v \, \mathrm{d}x = 0, \quad \forall v \in V.$$

Variable coefficient; variational formulation (2)

Integration by parts:

$$-\int_{\Omega} \frac{d}{dx} \left(\alpha(x) \frac{du}{dx} \right) v \, \mathrm{d}x = \int_{\Omega} \alpha(x) \frac{du}{dx} \frac{dv}{dx} \, \mathrm{d}x - \left[\alpha \frac{du}{dx} v \right]_{0}^{L}.$$

Boundary terms vanish since v(0) = v(L) = 0

Variational formulation.

Find $(u - B) \in V$ such that

$$\int_{\Omega} \alpha(x) \frac{du}{dx} \frac{dv}{dx} dx = \int_{\Omega} f(x) v dx, \quad \forall v \in V,$$

Compact notation:

$$(\alpha u', v') = (f, v), \quad \forall v \in V$$

Variable coefficient; abstract notation

$$a(u,v) = L(v) \quad \forall v \in V,$$

$$a(u, v) = (\alpha u', v'), \quad L(v) = (f, v)$$

Variable coefficient; linear system

 $v = \psi_i$ and $u = B + \sum_i c_i \psi_i$:

$$(\alpha B' + \alpha \sum_{i \in I} c_i \psi'_i, \psi'_i) = (f, \psi_i), \quad i \in I.$$

Reorder to form linear system:

$$\sum (\alpha \psi_j', \psi_i') c_j = (f, \psi_i) + (a(D-C)L^{-1}, \psi_i'), \quad i \in I.$$

This is $\sum_{i} A_{i,j} c_j = b_i$ with

$$A_{i,j} = (a\psi'_j, \psi'_i) = \int_{\Omega} \alpha(x)\psi'_j(x), \psi'_i(x) dx,$$

$$b_i = (f, \psi_i) + (a(D - C)L^{-1}, \psi'_i) = \int_{\Omega} \left(f(x)\psi_i(x) + \alpha(x) \frac{D - C}{L} \psi'_i(x) \right)$$

First-order derivative in the equation and boundary condition; problem

$$-u''(x) + bu'(x) = f(x), \quad x \in \Omega = [0, L], \ u(0) = C, \ u'(L) = E$$
(36)

New features:

- first-order derivative u' in the equation
- boundary condition with u': u'(L) = E

Initial steps:

- Must force $\psi_i(0) = 0$ because of Dirichlet condition at x = 0
- Boundary function: B(x) = C(L-x)/L
- No requirements on $\psi_i(L)$ (no Dirichlet condition at x=L)

First-order derivative in the equation and boundary condition; details

$$u = \frac{C}{L}(L - x) + \sum_{j \in I} c_j \psi_i(x)$$

Galerkin's method: multiply by v, integrate over Ω , integrate by parts.

$$(-u'' + bu' - f, v) = 0, \quad \forall v \in V,$$
 $(u', v') + (bu', v) = (f, v) + [u'v]_0^L, \quad \forall v \in V,$ $(u'v') + (bu', v) = (f, v) + Ev(L), \quad \forall v \in V,$

First-order derivative in the equation and boundary condition; observations

$$(u'v')+(bu',v)=(f,v)+Ev(L), \quad \forall v\in V,$$

Important:

- $[u'v]_0^L = u'(L)v(L) = Ev(L)$ because v(0) = 0 and u'(L) = E
- The boundary term can be used to implement Neumann conditions
- Forgetting the boundary term implies the condition u' = 0 (!)
- Such conditions are called natural boundary conditions

First-order derivative in the equation and boundary condition; abstract notation

Abstract notation:

$$a(u, v) = L(v) \quad \forall v \in V,$$

where

$$a(u, v) = (u', v') + (bu', v), \quad L(v) = (f + C, v) + Ev(L)$$

First-order derivative in the equation and boundary condition; linear system

Insert $u = B + \sum_{i} c_{i} \psi_{j}$ and $v = \psi_{i}$:

$$\sum_{j \in I} \underbrace{((\psi'_j, \psi'_i) + (b\psi'_j, \psi_i))}_{A_{i,j}} c_j = \underbrace{(f, \psi_i) + (bCL^{-1}, \psi'_i) + E\psi_i(L)}_{b_i}$$

Observation: $A_{i,j}$ is not symmetric because of the term

$$(b\psi_j',\psi_i)=\int_{\Omega}b\psi_j'\psi_i\mathsf{d}\mathsf{x}
eq \int_{\Omega}b\psi_i'\psi_j\mathsf{d}\mathsf{x}=(\psi_i',b\psi_j)$$

Terminology: natural and essential boundary conditions

$$(u', v') + (bu', v) = (f, v) + u'(L)v(L) - u'(0)v(0)$$

- Note: forgetting the boundary terms implies u'(L) = u'(0) = 0 (unless prescribe a Dirichlet condition)
- Conditions on u' are simply inserted in the variational form and called natural conditions
- Conditions on u at x = 0 requires modifying V (through $\psi_i(0) = 0$) and are known as essential conditions

Lesson learned.

It is easy to forget the boundary term when integrating by parts. That mistake may prescribe a condition on u'!

Nonlinear coefficient; problem

$$-(\alpha(u)u')' = f(u), \quad x \in [0, L], \ u(0) = 0, \ u'(L) = E.$$
 (37)

- V: basis $\{\psi_i\}_{i\in I}$ with $\psi_i(0)=0$ because of u(0)=0
- How does the nonlinear coefficient $\alpha(u)$ impact the variational formulation?

Nonlinear coefficient; variational formulation

Galerkin: multiply by v, integrate, integrate by parts

$$\int_0^L \alpha(u) \frac{du}{dx} \frac{dv}{dx} dx = \int_0^L f(u) v dx + [\alpha(u)vu']_0^L \quad \forall v \in V$$

- $\alpha(u(0))v(0)u'(0) = 0$ since v(0)
- $\alpha(u(L))v(L)u'(L) = \alpha(u(L))v(L)E$ since u'(L) = E

$$\int_0^L \alpha(u) \frac{du}{dx} \frac{dv}{dx} v \, dx = \int_0^L f(u) v \, dx + \alpha(u(L)) v(L) E \quad \forall v \in V$$

or

$$(\alpha(u)u',v')=(f(u),v)+\alpha(L)v(L)E \quad \forall v \in V$$

Nonlinear coefficient; where does the nonlinearity cause challenges?

- Abstract notation: no a(u, v) and L(v) because a and L are nonlinear
- Abstract notation: $F(u; v) = 0 \ \forall v \in V$
- What about forming a linear system? We get a nonlinear system of algebraic equations
- Must use methods like Picard iteration or Newton's method to solve nonlinear algebraic equations
- But: the variational formulation was not much affected by nonlinearities

Computing with Dirichlet and Neumann conditions; problem

$$-u''(x) = f(x), \quad x \in \Omega = [0, 1], \quad u'(0) = C, \ u(1) = D$$

- Use a *global* polynomial basis $\psi_i \sim x^i$ on [0, 1]
- Because of u(1) = D: $\psi_i(1) = 0$
- Basis: $\psi_i(x) = (1-x)^{i+1}, i \in I$
- $\bullet \ B(x) = Dx$

Computing with Dirichlet and Neumann conditions; details

$$A_{i,j} = (\psi'_j, \psi'_i) = \int_0^1 \psi'_i(x) \psi'_j(x) dx = \int_0^1 (i+1)(j+1)(1-x)^{i+j} dx,$$

$$b_i = (2, \psi_i) - (D, \psi_i') - C\psi_i(0)$$

$$= \int_0^1 (2(1-x)^{i+1} - D(i+1)(1-x)^i) dx - C\psi_i(0)$$

Can easily do the integrals with sympy. N = 1:

$$\begin{pmatrix} 1 & 1 \\ 1 & 4/3 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} -C + D + 1 \\ 2/3 - C + D \end{pmatrix}$$
$$c_0 = -C + D + 2, \quad c_1 = -1,$$

$$u(x) = 1 - x^2 + D + C(x - 1)$$
 (exact solution)

When the numerical method is exact

Let

$$u = B + F$$
, $F \in Va(B + F, v) = L(v)$ $\forall v \in Vu_e = B + E$, $E \in Va(B + F, v) = L(v)$

Subtract: a(F - E, v) = 0 and E = F.

Apart from boundary conditions, $u_{\rm e}$ lies in the same as we seek u.

Then $u = u_e$.

 $!split ======= Computing \ with \ finite \ elements \\$

=======

Tasks:

* Address the model problem -u''(x) = 2, u(0) = u(L) = 0 * Uniform finite element mesh with P1 elements * Show all finite element computations in detail

!split ======= Variational formulation, finite element mesh, and basis ========

$$-u''(x) = 2$$
, $x \in (0, L)$, $u(0) = u(L) = 0$,

Variational formulation:

Computation in the global physical domain; formulas

$$A_{i,j} = \int_0^L \varphi'_{i+1}(x) \varphi'_{j+1}(x) dx, \quad b_i = \int_0^L 2\varphi_{i+1}(x) dx$$

$$i + 1 \to i, \ j + 1 \to j$$

$$A_{i-1,j-1} = \int_0^L \varphi'_i(x) \varphi'_j(x) dx, \quad b_{i-1} = \int_0^L 2\varphi_i(x) dx$$

Computation in the global physical domain; details

$$\varphi_i = \pm h^{-1}$$

$$A_{i-1,i-1} = h^{-2}2h = 2h^{-1}, \quad A_{i-1,i-2} = h^{-1}(-h^{-1})h = -h^{-1}, \quad A_{i-1,i} = h$$

Computation in the global physical domain; linear system

$$\frac{1}{h} \begin{pmatrix}
2 & -1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
-1 & 2 & -1 & \ddots & & & & & \vdots \\
0 & -1 & 2 & -1 & \ddots & & & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & 0 & -1 & 2 & -1 & \ddots & \vdots \\
\vdots & & & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & -1 \\
0 & \cdots & \cdots & \cdots & \cdots & 0 & -1 & 2
\end{pmatrix}
\begin{pmatrix}
c_0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ c_N
\end{pmatrix}$$

Comparison with a finite difference discretization

- Recall: $c_i = u(x_{i+1}) \equiv u_{i+1}$
- Write out a general equation at node i-1, expressed by u_i

$$-\frac{1}{h}u_{i-1} + \frac{2}{h}u_i - \frac{1}{h}u_{i+1} = 2h \tag{39}$$

The standard finite difference method for -u'' = 2 is

$$-\frac{1}{h^2}u_{i-1} + \frac{2}{h^2}u_i - \frac{1}{h^2}u_{i+1} = 2$$

The finite element method and the finite difference method are identical *in this example*.

(Remains to study the equations involving boundary values)

Cellwise computations; formulas

- Repeat the previous example, but apply the cellwise algorithm
- Work with one cell at a time
- ullet Thansform physical cell to reference cell $X \in [-1,1]$

$$A_{i-1,j-1}^{(e)} = \int_{\Omega^{(e)}} \varphi_i'(x) \varphi_j'(x) \, \mathrm{d}x = \int_{-1}^1 \frac{d}{dx} \tilde{\varphi}_r(X) \frac{d}{dx} \tilde{\varphi}_s(X) \frac{h}{2} \, \mathrm{d}X,$$
$$\tilde{\varphi}_0(X) = \frac{1}{2} (1 - X), \quad \tilde{\varphi}_1(X) = \frac{1}{2} (1 + X)$$
$$\frac{d\tilde{\varphi}_0}{dX} = -\frac{1}{2}, \quad \frac{d\tilde{\varphi}_1}{dX} = \frac{1}{2}$$

From the chain rule

$$\frac{d\tilde{\varphi}_r}{dx} = \frac{d\tilde{\varphi}_r}{dX}\frac{dX}{dx} = \frac{2}{h}\frac{d\tilde{\varphi}_r}{dX}$$

Cellwise computations; details

$$A_{i-1,j-1}^{(e)} = \int_{\Omega^{(e)}} \varphi_i'(x) \varphi_j'(x) \, \mathrm{d}x = \int_{-1}^1 \frac{2}{h} \frac{d\tilde{\varphi}_r}{dX} \frac{2}{h} \frac{d\tilde{\varphi}_s}{dX} \frac{h}{2} \, \mathrm{d}X$$

$$b_{i-1}^{(e)} = \int_{\Omega^{(e)}} 2\varphi_i(x) dx = \int_{-1}^1 2\tilde{\varphi}_r(X) \frac{h}{2} dX, \quad i = q(e, r), \ r = 0, 1$$

Must run through all r, s = 0, 1 and r = 0, 1 and compute each entry in the element matrix and vector:

$$\tilde{A}^{(e)} = \frac{1}{h} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \tilde{b}^{(e)} = h \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$
 (40)

Cellwise computations; details of boundary cells

- The boundary cells involve only one unknown
- \bullet $\Omega^{(0)}$: left node value known, only a contribution from right node
- $\Omega^{(N_e)}$: right node value known, only a contribution from left node

$$\tilde{A}^{(e)} = rac{1}{h} \left(\begin{array}{c} 1 \end{array} \right), \quad \tilde{b}^{(e)} = h \left(\begin{array}{c} 1 \end{array} \right), \quad e = 0, \ e = N_e$$

Only one degree of freedom ("node") in these cells (r = 0)

Cellwise computations; assembly

4 P1 elements:

```
vertices = [0, 0.5, 1, 1.5, 2]
cells = [[0, 1], [1, 2], [2, 3], [3, 4]]
dof_map = [[0], [0, 1], [1, 2], [2]]
```

Python code for the assembly algorithm:

```
# Ae[e][r,s]: element matrix, be[e][r]: element vector
# A[i,j]: coefficient matrix, b[i]: right-hand side

for e in range(len(Ae)):
    for r in range(Ae[e].shape[0]):
        for s in range(Ae[e].shape[1]):
              A[dof_map[e,r],dof_map[e,s]] += Ae[e][i,j]
        b[dof_map[e,r]] += be[e][i,j]
```

Result: same linear system

Boundary conditions: specified nonzero value General construction of a boundary function

- B(x) is not always easy to construct (extend to the interior of Ω), at least not in 2D and 3D
- With finite element φ_i , B(x) can be constructed in a completely general way
- I_b : set of indices with nodes where u is known

Example with two Dirichlet values; variational formulation

$$-u'' = 2$$
, $u(0) = C$, $u(L) = D$
 $(u', v') = (2, v) \quad \forall v \in V$

Insert $u = B + \sum_{j} c_{j} \psi_{j}$ in variational formulation:

$$A_{i,j} = \int_0^L \psi_i'(x)\psi_j'(x) dx, \quad b_i = \int_0^L (f(x) - B'(x))\psi_i(x) dx$$

Example with two Dirichlet values; details

$$\psi_i=\varphi_{i+1},\ i=0,\ldots,N=N_n-2$$

$$u(x) = \underline{0 \cdot \varphi_0 + D\varphi_{N_n}}_{B(x)} + \sum_{i \in I} c_i \varphi_{i+1} = D\varphi_{N_n} + c_0 \varphi_1 + c_1 \varphi_2 + \cdots + c_n \varphi_{i+1}$$

$$A_{i-1,j-1} = \int_0^L \varphi_i'(x)\varphi_j'(x) dx, \quad b_{i-1} = \int_0^L (f(x) - D\varphi_{N_n}'(x))\varphi_i(x) dx,$$

for $i, j = 1, ..., N + 1 = N_n - 1$.

New boundary term from B': -D/2

Example with two Dirichlet values; cellwise computations

- Element matrices as in the previous example (with u = 0 on the boundary)
- New element vector

$$\tilde{b}_0^{(e)} = \int_{-1}^1 \left(f - D \frac{2}{h} \frac{\tilde{\varphi}_1}{dX} \right) \tilde{\varphi}_0 \frac{h}{2} \, \mathrm{d}X = (\frac{h}{2} (2 - D \frac{2}{h} \frac{1}{2}) \int_{-1}^1 \tilde{\varphi}_0 \, \mathrm{d}X = h - D/2,$$

Modification of the linear system; ideas

- Method 1: incorporate Dirichlet values through a B(x) function and demand $\psi_i = 0$ where Dirichlet values apply
- Method 2: drop B(x), drop demands to ψ_i , just assemble as if there were no Dirichlet conditions, and modify the linear system instead

Method 2: $\psi_i = \varphi_i$

$$u(x) = \sum_{i \in I} c_i \varphi_i(x), \quad I = \{0, \dots, N = N_n\}$$
 (43)

u is treated as unknown at x = 0 and x = L

Modification of the linear system; linear system

$$-u'' = 2$$
, $u(0) = 0$, $u(L) = D$

2*h* : :

Modification of the linear system; modifications

- Dirichlet condition $u(x_i) = U_i$ means $c_i = U_i$ (since $c_i = u(x_i)$)
- Replace first row by $c_0 = 0$
- Replace last row by $c_N = D$

$$\begin{pmatrix}
1 & 0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
-1 & 2 & -1 & \ddots & & & & \vdots \\
0 & -1 & 2 & -1 & \ddots & & & \vdots \\
\vdots & \ddots & & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 0 & 1
\end{pmatrix}$$

Modification of the linear system; element matrix/vector

In cell 0 we know u for local node (degree of freedom) r=0 and replace the first cell equation by $\tilde{c}_0=0$:

$$\tilde{A}^{(0)} = A = \frac{1}{h} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad \tilde{b}^{(0)} = \begin{pmatrix} 0 \\ h \end{pmatrix} \tag{46}$$

In cell N_e we know u for local node r=1 and replace the last equation in the cell system by $\tilde{c}_1=D$:

$$\tilde{A}^{(N_e)} = A = \frac{1}{h} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \quad \tilde{b}^{(N_e)} = \begin{pmatrix} h \\ D \end{pmatrix}$$
 (47)

Symmetric modification of the linear system; algorithm

- The modification above destroys symmetry of the matrix: $A_{0,1} \neq A_{1,0}$)
- Symmetry is often important in 2D and 3D (faster computations)
- A more complex modification preserves symmetry

Algorithm for incorporating $c_i = U_i$:

- **①** Subtract column i times U_i from the right-hand side
- 2 Zero out column and row no i
- Opening Place 1 on the diagonal
- \bigcirc Set $b_i = U_i$

Symmetric modification of the linear system; example

(48)

Modification of the linear system can be done in the the

- element matrix and vector instead
- Exactly the same procedure

Last degree of freedom in the last element is prescribed:

Boundary conditions: specified derivative

Focus: how to incorporate u'(0) = C with finite elements.

The variational formulation

Galerkin's method:

$$\int_0^L (u''(x) + f(x))\psi_i(x)dx = 0, \quad i \in I$$

Integration of $u''\varphi_i$ by parts:

$$\int_0^L u'(x)' \psi_i'(x) \, \mathrm{d}x - (u'(L)\psi_i(L) - u'(0)\psi_i(0)) = \int_0^L f(x)\psi_i(x) \, \mathrm{d}x, \quad i \in I$$

- Since $\psi_i(L) = 0$, $u'(L)\varphi_i(L) = 0$
- $u'(0)\varphi_i(0) = C\varphi_i(0)$ since u'(0) = C
- $\bullet \ \psi_i = \varphi_i, \ i = 0, \dots, N = N_n 1$

$$\int_0^L u'(x)\varphi_i'(x)dx + C\varphi_i(0) = \int_0^L f(x)\varphi_i(x)dx, \quad i \in I$$

What if we use all φ_i and insert the Dirichlet condition in the linear system?

- Now $\psi_i = \varphi_i$, $i = 0, ..., N = N_n$
- $\varphi_N(L) \neq 0$, so $u'(L)\varphi_N(L) \neq 0$
- However, the term $u'(L)\varphi_N(L)$ in b_N will be erased when we insert the Dirichlet value in $b_N=D$

We can forget about the term $u'(L)\varphi_i(L)!$

Linear system

$$u(x) = B(x) + \sum_{i=0}^{N} c_j \varphi_j(x), \quad B(x) = D\varphi_{N_n}(x),$$

$$\sum_{j=0}^{N-1} \left(\int_0^L \varphi_i'(x) \varphi_j'(x) dx \right) c_j = \int_0^L \left(f(x) \varphi_i(x) - D \varphi_N'(x) \varphi_i(x) \right) dx - C \varphi_i(x) dx$$
for $i = 0, \dots, N = N_n - 1$.
$$(51)$$

Alternatively, we may just work with

$$u(x) = \sum_{j=0}^{N=N_n} c_j \varphi_j(x)$$

and modify the last equation to $c_N = D$ in the linear system.

How the Neumann condition impacts the lement matrix and vector

The extra term with C affects only the element vector from the first element:

$$\tilde{A}^{(0)} = A = \frac{1}{h} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \quad \tilde{b}^{(0)} = \begin{pmatrix} h - C \\ h \end{pmatrix}$$
 (52)

The finite element algorithm

The differential equation problem defines the integrals in the variational formulation.

Request these functions from the user:

```
integrand_lhs(phi, r, s, x)
boundary_lhs(phi, r, s, x)
integrand_rhs(phi, r, x)
boundary_rhs(phi, r, x)
```

Must also have a mesh with vertices, cells, and dof_map

Python pseudo code; the element matrix and vector

```
<Declare global matrix and rhs: A, b>
for e in range(len(cells)):
    # Compute element matrix and vector
    n = len(dof_map[e]) # no of dofs in this element
    h = vertices[cells[e][1]] - vertices[cells[e][1]]
    <Declare element matrix and vector: A_e, b_e>
    # Integrate over the reference cell
    points, weights = <numerical integration rule>
    for X, w in zip(points, weights):
        phi = <basis functions and derivatives at X>
        det.I = h/2
        x = \langle affine mapping from X \rangle
        for r in range(n):
            for s in range(n):
                A_e[r,s] += integrand_lhs(phi, r, s, x)*detJ*w
            b_e[r] += integrand_rhs(phi, r, x)*detJ*w
    # Add boundary terms
    for r in range(n):
        for s in range(n):
            A_e[r,s] += boundary_lhs(phi, r, s, x)*detJ*w
        b_e[r] += boundary_rhs(phi, r, x)*detJ*w
```

Python pseudo code; boundary conditions and assembly

```
for e in range(len(cells)):
    # Incorporate essential boundary conditions
    for r in range(n):
        global_dof = dof_map[e][r]
        if global_dof in essbc_dofs:
            # dof r is subject to an essential condition
            value = essbc_docs[global_dof]
            # Symmetric modification
            b_e -= value*A_e[:,r]
            A_e[r,:] = 0
            A_e[:,r] = 0
            A_e[r,r] = 1
            b_e[r] = value
    # Assemble
    for r in range(n):
        for s in range(n):
            A[dof_map[e][r], dof_map[e][r]] += A_e[r,s]
        b[dof_map[e][r] += b_e[r]
<solve linear system>
```

Variational formulations in 2D and 3D

How to do integration by parts is the major difference when moving to 2D and 3D.

Integration by parts

$$\nabla \cdot (a(\mathbf{x})\nabla u) = \frac{\partial}{\partial x} \left(a(x,y) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(a(x,y) \frac{\partial u}{\partial y} \right)$$

Integration by parts.

$$-\int_{\Omega} \nabla \cdot (a(\mathbf{x})\nabla u) v \, d\mathbf{x} = \int_{\Omega} a(\mathbf{x}) \nabla u \cdot \nabla v \, d\mathbf{x} - \int_{\partial \Omega} a \frac{\partial u}{\partial n} v \, d\mathbf{s}, \quad (53)$$

- \int_{Ω} () dx: area (2D) or volume (3D) integral
- $\int_{\partial\Omega}()\,\mathrm{d}s$: line(2D) or surface (3D) integral
- $\partial \Omega_N$: Neumann conditions $-a \frac{\partial u}{\partial n} = g$
- $\partial \Omega_D$: Dirichlet conditions $u = u_0$
- $v \in V$ must vanish on $\partial \Omega_D$

Example on integration by parts; problem

$$\mathbf{v} \cdot \nabla u + \alpha u = \nabla \cdot (\mathbf{a} \nabla u) + f, \quad \mathbf{x} \in \Omega$$
 (54)

$$u = u_0, \quad \mathbf{x} \in \partial \Omega_D$$
 (55)

$$-a\frac{\partial u}{\partial n} = g, \quad \mathbf{x} \in \partial \Omega_N \tag{56}$$

- Known: a, α , f, u_0 , and g.
- Second-order PDE: must have exactly one boundary condition at each point of the boundary

$$u = u_0 + \sum_{j \in I} c_j \psi_j$$

Example on integration by parts; details (1)

Galerkin's method: multiply by $v \in V$ and integrate over Ω ,

$$\int_{\Omega} (\mathbf{v} \cdot \nabla u + \alpha u) v \, dx = \int_{\Omega} \nabla \cdot (a \nabla u) \, dx + \int_{\Omega} f v \, dx$$

Integrate second-order term by parts:

$$\int_{\Omega} \nabla \cdot (a\nabla u) v \, dx = -\int_{\Omega} a\nabla u \cdot \nabla v \, dx + \int_{\partial\Omega} a \frac{\partial u}{\partial n} v \, ds,$$

Result:

$$\int_{\Omega} (\mathbf{v} \cdot \nabla u + \alpha u) v \, dx = -\int_{\Omega} a \nabla u \cdot \nabla v \, dx + \int_{\partial \Omega} a \frac{\partial u}{\partial n} v \, ds + \int_{\Omega} f v \, dx$$

Example on integration by parts; details (2)

Note: $v \neq 0$ only on $\partial \Omega_N$:

$$\int_{\partial\Omega} a \frac{\partial u}{\partial n} v \, \mathrm{d}s = \int_{\partial\Omega_N} a \frac{\partial u}{\partial n} v \, \mathrm{d}s$$

Insert flux condition $a\frac{\partial u}{\partial n} = -g$ on $\partial \Omega_N$:

$$\int_{\partial\Omega_N} a \frac{\partial u}{\partial n} v \, \mathrm{d}s = -\int_{\partial\Omega_N} g v \, \mathrm{d}s$$

The final variational form:

$$\int_{\Omega} (\mathbf{v} \cdot \nabla u + \alpha u) v \, \mathrm{d}x = -\int_{\Omega} a \nabla u \cdot \nabla v \, \mathrm{d}x - \int_{\partial\Omega} g v \, \mathrm{d}s + \int_{\Omega} f v \, \mathrm{d}x$$

With inner product notation:

$$(\mathbf{v} \cdot \nabla u, \mathbf{v}) + (\alpha u, \mathbf{v}) = -(a\nabla u, \nabla \mathbf{v}) - (g, \mathbf{v})_N + (f, \mathbf{v})$$

 $(g, \mathbf{v})_N$: line or surface integral over $\partial \Omega_N$.

Example on integration by parts; linear system

$$u = u_0 + \sum_{j \in I} c_j \psi_j$$

$$A_{i,j} = (\mathbf{v} \cdot \nabla \varphi_j, \varphi_i) + (\alpha \varphi_j, \varphi_i) + (a \nabla \varphi_j, \nabla \varphi_i)$$

$$b_i = (g, \varphi_i)_N + (f, \varphi_i) - (\mathbf{v} \cdot \nabla u_0, \varphi_i) + (\alpha u_0, \varphi_i) + (a \nabla u_0, \nabla \varphi_i),$$

Transformation to a reference cell in 2D and 3D (1)

We want to compute an integral in the physical domain by integrating over the reference cell.

$$\int_{\Omega^{(e)}} a(\mathbf{x}) \nabla \varphi_i \cdot \nabla \varphi_j \, \mathrm{d}x \tag{57}$$

Mapping from reference to physical coordinates:

$$x(X)$$
,

with Jacobian J,

$$J_{i,j} = \frac{\partial x_j}{\partial X_i}$$

- Step 1: $dx \to \det J dX$.
- Step 2: express $\nabla \varphi_i$ by an expression with $\tilde{\varphi}_r$ (i = q(e, r))
- We want $\nabla_{\mathbf{x}} \tilde{\varphi}_r(\mathbf{X})$ (derivatives wrt \mathbf{x})
- What we readily have: $\nabla_{\mathbf{X}} \tilde{\varphi}_r(\mathbf{X})$ (derivative wrt \mathbf{X})
- Need to transform $\nabla_{\mathbf{X}} \tilde{\varphi}_r(\mathbf{X})$ to $\nabla_{\mathbf{x}} \tilde{\varphi}_r(\mathbf{X})$

Transformation to a reference cell in 2D and 3D (2)

Can derive

$$\nabla_{\mathbf{X}} \tilde{\varphi}_r = J \cdot \nabla_{\mathbf{x}} \varphi_i$$
$$\nabla_{\mathbf{x}} \varphi_i = J^{-1} \cdot \nabla_{\mathbf{X}} \tilde{\varphi}_r$$

Integral transformation from physical to reference coordinates:

$$\int_{\Omega}^{(e)} a(\mathbf{x}) \nabla_{\mathbf{x}} \varphi_{i} \cdot \nabla_{\mathbf{x}} \varphi_{j} \, \mathrm{d}\mathbf{x} \int_{\tilde{\Omega}^{r}} a(\mathbf{x}(\mathbf{X})) (J^{-1} \cdot \nabla_{\mathbf{X}} \tilde{\varphi}_{r}) \cdot (J^{-1} \cdot \nabla \tilde{\varphi}_{s}) \, \mathrm{det} \, J \, \mathrm{d}\mathbf{X}$$
(58)

Time-dependent problems

- So far: used the finite element framework for discretizing in space
- What about $u_t = u_{xx} + f$?
- Use finite differences in time
- Solve a recursive set of spatial problems by the finite element method

Example: diffusion problem

$$\frac{\partial u}{\partial t} = \alpha \nabla^2 u + f(\mathbf{x}, t), \quad \mathbf{x} \in \Omega, t \in (0, T]$$

$$u(\mathbf{x}, 0) = I(\mathbf{x}), \quad \mathbf{x} \in \Omega$$

$$\frac{\partial u}{\partial n} = 0, \quad \mathbf{x} \in \partial \Omega, \ t \in (0, T].$$
(61)

A Forward Euler scheme; ideas

$$[D_t^+ u = \alpha \nabla^2 u + f(\mathbf{x}, t)]^n, \quad n = 1, 2, \dots, N_t - 1$$
 (62)

$$u^{n+1} = u^n + \Delta t \left(\alpha \nabla^2 u^n + f(\mathbf{x}, t_n) \right). \tag{63}$$

- $\bullet \ u^n = \sum_j c_j^n \psi_j$
- Compute u^0 from I
- Compute u^{n+1} from u^n

A Forward Euler scheme; stages in the discretization

- $u_e(\mathbf{x}, t)$: exact solution of the space-and time-continuous problem
- $u_e^n(\mathbf{x})$: exact solution of time-discrete problem (after applying a finite difference scheme in time)
- $u^n = \sum_{j \in I} c_j^n \psi_j$: solution at the time- and space-discrete problem (after applying a Galerkin method in space)

$$\frac{\partial u_{\mathsf{e}}}{\partial t} = \alpha \nabla^2 u_{\mathsf{e}} + f(\mathbf{x}, t) \tag{64}$$

$$u_{\mathsf{e}}^{n+1} = u_{\mathsf{e}}^n + \Delta t \left(\alpha \nabla^2 u_{\mathsf{e}}^n + f(\mathbf{x}, t_n) \right) \tag{65}$$

A Forward Euler scheme; weighted residual (or Galerkin) principle

$$u_{\mathsf{e}}^{n} \approx u^{n} = \sum_{j=0}^{N_{\mathsf{s}}} c_{j}^{n} \varphi_{j}(\mathbf{x}) \tag{66}$$

$$u_{\mathrm{e}}^{n+1} \approx u^{n+1} = \sum_{j=1}^{N_{\mathrm{s}}} c_{j}^{n+1} \varphi_{j}(\mathbf{x})$$
 (67)

$$R = u^{n+1} - u^n - \Delta t \left(\alpha \nabla^2 u^n + f(\mathbf{x}, t_n) \right)$$

The weighted residual principle,

$$\int_{\Omega} Rw_i \, \mathrm{d}x = 0, \quad i = 0, \dots, N_s,$$

results in

$$\int_{\Omega} \left[u^{n+1} - u^n - \Delta t \left(\alpha \nabla^2 u^n + f(\mathbf{x}, t_n) \right) \right] w_i \, \mathrm{d} x = 0, \quad i = 0, \dots, N$$
Galerkin: $w_i = \psi_i$

A Forward Euler scheme; integration by parts

Isolating the unknown u^{n+1} on the left-hand side:

$$\int_{\Omega} u^{n+1} \varphi_i \, \mathrm{d}x = \int_{\Omega} \left[u^n - \Delta t \left(\alpha \nabla^2 u^n + f(\mathbf{x}, t_n) \right) \right] \psi_i \, \mathrm{d}x$$

Integration by parts:

$$\int_{\Omega} \alpha \nabla^2 u^n \psi_i \, \mathrm{d} x = -\int_{\Omega} \alpha \nabla u^n \cdot \nabla \psi_i \, \mathrm{d} x + \underbrace{\int_{\partial \Omega} \alpha \frac{\partial u^n}{\partial n} \psi \, \mathrm{d} x}_{=0 \text{ because } \partial u^n/\partial n = 0}$$

$$\int_{\Omega} u^{n+1} \psi_{i} \, \mathrm{d}x = \int_{\Omega} u^{n} \psi_{i} \, \mathrm{d}x - \Delta t \int_{\Omega} \alpha \nabla u^{n} \cdot \nabla \psi_{i} \, \mathrm{d}x + \Delta t \int_{\Omega} f^{n} \psi_{i} \, \mathrm{d}x$$
(68)