Inlämningsuppgifter TATB04 2024

Name: Oscar Hallbeck

LiU-ID: oscha050 Grupp: D1.b

Omgång 1

A.1	A.2

B.1	B.2

C.1	C.2

D.1	D.2

Omg. 1

Omgång 2

E.1	E.2

F.1	F.2

G.1	G.2

Omg. 2

Betyg

A.1 Visa att om

- (a) n_1 delat med 32 har rest 25, och
- (b) n_2 delat med 32 har rest 12,

så har n_1n_2 delat med 32 rest 12.

A.2 För naturliga tal n och m säger man att n är $(j\ddot{a}mnt)$ delbart med m om resten av n delat med m är 0 (se definition 1.4).

Anta att positiva heltalet n skrivs i det hindu-arabiska talsystemet som $n_k n_{k-1} \dots n_1 n_0$ för siffrorna $n_i \in \{0,1,2,3,4,5,6,7,8,9\}$ och $i=0,1,\dots,k$. Visa att n är jämnt delbart med 5 om och endast om

 n_0 är antingen 5 eller 0.

B.1 Bevisa

$$\sum_{k=1}^{m} k(k+1)(k+2)(k+3) = \frac{m(m+1)(m+2)(m+3)(m+4)}{5}.$$

- B.2 Skriv decimalutvecklingen $x=0.\overline{125}$ (där siffrorna 125 upprepas i evighet) som ett bråk.
- C.1 Hitta ett andragradspolynom p så att

$$p(-1) = 12$$
, $p(0) = 5$ and $p(1) = 4$.

C.2 Bevisa genom lämpliga uppskattningar med enkla mängder att mängden

$$P = \{(x, y) \in \mathbf{R}^2 \mid 0 \le y < x^3 \text{ och } 0 \le x < h\}$$

har arean $h^4/4$. Formeln i uppgift 2.3(b) kan vara till nytta här.

D.1 Betrakta funktionen

$$f(x) = x + \frac{81}{x}$$

som är definierad för alla $x \neq 0$.

- (a) Ge ett motsägelsebevis att det inte finns något positivt tal x så att f(x) < 18.
- (b) Hur måste man ändra beviset om man istället betraktar negativa x?
- (c) Finns det ett x så att f(x) = 18? Ett x så att f(x) = -18?
- (d) Vad är f:s värdemängd?

D.2 Betrakta ekvationen

$$\sqrt{4x - 19} = 10 - x \tag{D.1}$$

där $x \in \mathbf{R}$ är okänt.

- (a) Hitta två kandidater till lösningar x till (D.1).
- (b) Visa att precis en av kandidaterna x du har hittat faktiskt löser (D.1).
- (c) Förklara varför det var inte motsägelsefullt att du kom fram till två kandidater x även om bara ett var faktiskt en lösning.

E.1 Hitta alla lösningar $\theta \in \mathbf{R}$ till ekvationen

$$0 = \cos(2\theta) + \cos\theta.$$

E.2 Skriv om

$$2\sqrt{3}\cos\theta + 2\sin\theta$$

som ett utryck i $\theta \in \mathbf{R}$ som innehåller högst en trigonometrisk function.

F.1 Stora numeriska fel kan uppstå när man försöker beräkna (eller närmare sagt uppskatta) $\exp(x) - 1$ på en dator när x är nära 0 eftersom det riktiga svaret är nära 0. Därför implimenterar vissa dator en dedicerad rutin för att beräkna $\exp(x) - 1$. En möjlighet är att använder likheten

$$\exp(x) - 1 = \frac{2 \tanh(x/2)}{1 - \tanh(x/2)}$$
 (F.1)

där tanh är en annan hyperbolisk funktion (jämför med uppgift F.1-2) eftersom högerledet har en bra exakthet på en dator när x är nära 0. Hyperbolisk tangens är definierad enligt formeln

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 för alla $x \in \mathbf{R}$.

Bevisa (F.1).

F.2 Visa att $f: \mathbf{R} \to \mathbf{R}$, som är definierade enligt formeln

$$f(x) = 64e^x - e^{-x}$$
 för $x \in \mathbf{R}$,

är en bijektiv funktion. Räkna ut dess invers.

- G.1 (a) Hitta alla $w \in \mathbb{C}$ så att $w^2 = -3 + 4i$.
 - (b) Hitta alla komplexa tal så att $z^2 + (10 + 6i)z + (19 + 26i) = 0$.
- G.2 (a) Bekräfta att sats 1.14 gäller även när r är ett komplex tal.
 - (b) Förenkla $\sum_{k=0}^{10} e^{2\pi i k/11}$.