Solving nonlinear equations

Marcin Kuta

Convergence rate

Absolute error ε_k :

$$\varepsilon_k = |x_k - x_*|,\tag{1}$$

$$\lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_k^p} = C \tag{2}$$

p – order of convergence (a.k.a. convergence rate) C – rate of convergence, C > 0

Convergence

```
\begin{array}{ll} \text{linear} & p=1, \ 0 < C < 1 \\ \text{superlinear} & p>1 \\ \text{quadratic} & p=2 \\ \text{cubic} & p=3 \end{array}
```

Convergence	Digits gained per iteration
linear	constant, $-\log_{\beta} C$
superlinear	increasing
quadratic	doubled

Order of convergence

Order of convergence in proximity of simple roots

Method	Convergence	Order of convergence
bisection method	linear	1
Regula falsi	linear	1
Illinois method	superlinear	$\sqrt[3]{3} \approx 1.442$
Pegasus method	superlinear	$\sqrt[4]{\frac{7+\sqrt{57}}{2}}\approx 1.642$
secant method	superlinear	$\frac{1+\sqrt{5}}{2}\approx 1.618$
Newton method	quadratic	2
Steffensen	quadratic	2
inverse quadratic interpolation	superlinear	1.839

Convergence

Global convergence – method finds a root if initial interval [a, b] contains the root and $f(a) \cdot f(b) < 0$, irrespective of x_0 .

Local convergence – method finds the root α only if \mathbf{x}_0 is close enough to α

Method	Convergence
bisection method	global
Regula falsi	global
Illinois method	global
Pegasus method	global
secant method	local
Newton method	local
Steffensen	local
inverse quadratic interpolation	local

Empirical convergence rate

$$\frac{\varepsilon_{k+1}}{\varepsilon_k^r} = \frac{\varepsilon_k}{\varepsilon_{k-1}^r} \tag{3}$$

$$\frac{\varepsilon_{k+1}}{\varepsilon_k} = \left(\frac{\varepsilon_k}{\varepsilon_{k-1}}\right)^r \tag{4}$$

$$\log\left(\frac{\varepsilon_k}{\varepsilon_{k-1}}\right)^r = \log\frac{\varepsilon_{k+1}}{\varepsilon_k} \tag{5}$$

$$r = \frac{\log \frac{\varepsilon_{k+1}}{\varepsilon_k}}{\log \frac{\varepsilon_k}{\varepsilon_{k-1}}} \tag{6}$$

Empirical convergence rate

Known x*

$$r = \frac{\log \frac{|x_{k+1} - x_*|}{|x_k - x_*|}}{\log \frac{|x_k - x_*|}{|x_{k-1} - x_*|}}$$
(7)

Unknown x*

$$r = \frac{\log \frac{|x_{k+1} - x_k|}{|x_k - x_{k-1}|}}{\log \frac{|x_k - x_{k-1}|}{|x_{k-1} - x_{k-2}|}}$$
(8)

Fixed-point iteration

$$f(x) = 0 (9)$$

Simple iteration, direct iteration

$$x = \phi(x) \tag{10}$$

$$x_{k+1} = \phi(x_k) \tag{11}$$

Fixed-point iteration

Figure 2.2.1: Finding the fixed point of cos(x).

Iteration schemes

$$x_{k+1} = \phi(x_k, x_{k-1}) \tag{12}$$

$$x_{k+1} = x_k - q_k^{-1} f(x_k)$$
 (13)

Newton's method:

$$q_k = f'(x_k) \tag{14}$$

Secant method

$$q_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} \tag{15}$$

Regula falsi

Bracketed secant method

$$q_k = \frac{f(x_k) - f(x_{k'})}{x_{k'} - x_{k'}} \tag{16}$$

$$k' = \operatorname*{arg\,max}_{i < k} f(x_i) f(x_k) < 0$$

Iteration schemes

Newton's method

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \tag{17}$$

Secant method

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} = \frac{x_{k-1} f(x_k) - x_k f(x_{k-1})}{f(x_k) - f(x_{k-1})}$$
(18)

Regula falsi

$$x_{k+1} = \begin{cases} \frac{x_k f(a) - af(x_k)}{f(a) - f(x_k)} & \text{if } f(a) f(x_k) < 0\\ \frac{x_k f(b) - bf(x_k)}{f(b) - f(x_k)} & \text{if } f(b) f(x_k) < 0 \end{cases}$$
(19)

Regula falsi as generalization of bisection method

Bisection method

$$c_n = \frac{a_n + b_n}{2} \tag{20}$$

Regula falsi

$$c_n = \frac{|f(b_n)|}{|f(a_n)| + |f(b_n)|} a_n + \frac{|f(a_n)|}{|f(a_n)| + |f(b_n)|} b_n$$
 (21)

Inverse quadratic interpolation

Figure 2.7.2: Quadratic and inverse quadratic interpolation.

- Quadratic function has two roots or no roots
- Inverse quadratic function has always exaxtly one root

Sufficient conditions for convergence

Sufficient conditions for convergence of bisecton method and regula falsi

- (C1) $f \in C[a, b]$
 - f continuous in [a, b]

(C2)
$$f(a) \cdot f(b) < 0$$

Sufficient conditions for convergence of Newton method for any initial point

- (C3) $f \in C^2[a,b]$
 - f, f', f'' continuous in [a, b]
- (C4) f' and f'' do not change sign in [a, b]
 - no minima, maxima or inflection points

(C5)
$$f(a) \cdot f(b) < 0$$

Bisection method

Cases for which bisection method fails:

Newton method

Cases for which Newton method fails:

(c) Cycle

Newton method

Sensitivity of Newton method to starting point:

(a) Basins of attraction for $f(x) = x^2 - 1$.

(b) Basins of attraction for $f(x) = x^3 - x$.

Aitken's Acceleration with Δ^2 method

Let sequence $\{x_k\}_{i=0}^{\infty}$ be a linearly convergent sequence to a simple root arising from fixed point iterations (10).

Aitken's extrapolation formula:

$$\hat{x}_k = x_k - \frac{(x_k - x_{k-1})^2}{(x_k - x_{k-1}) - (x_{k-1} - x_{k-2})}, \ k \ge 2$$
 (22)

Denoting $\Delta x_k = x_k - x_{k-1}$ and $\Delta^2 x_k = \Delta(\Delta x_k) = \Delta x_k - \Delta x_{k-1}$ we can rewrite (22) as Δ^2 method:

$$\hat{x}_k = x_k - \frac{(\Delta x_k)^2}{\Delta^2 x_k}, \ k \ge 2$$
 (23)

Sequence $\{\hat{x}_k\}_{i=0}^{\infty}$ has quadratic convergence.

Stopping critera

(S1) increment size

$$|x_k - x_{k-1}| < \epsilon$$

for $\phi'(\alpha) \approx 1$ unrealiable suitable for Newton method

(S2) relative increment size

$$\frac{|x_k - x_{k-1}|}{|x_k|} < \epsilon$$

(S3) residuum

$$|f(x_k)| < \epsilon$$

for $|f'(\alpha)| \simeq 1$ satisfactory for $|f'(\alpha)| \ll 1$ not reliable for $|f'(\alpha)| \gg 1$ too restrictive

(S4) number of iterations

Implementation details

Bisection method

$$c_n = \frac{a_n + b_n}{2}$$

$$c_n = a_n + \frac{b_n - a_n}{2}$$

Condition (C2)

$$sign(f(a)) \neq sign(f(b))$$

Housholder's method

$$x_{k+1} = x_k + d \frac{(1/f)^{(d-1)}(x_k)}{(1/f)^{(d)}(x_k)}$$
(24)

d = 1 – Netwon's method

d = 2 – Halley's method

$$x_{k+1} = x_k + 2\frac{(1/f)'(x_k)}{(1/f)''(x_k)} = x_k - \frac{2f(x_k)f'(x_k)}{2[f'(x_k)]^2 - f(x_k)f''(x_k)}$$
(25)

References

- [1] http://heath.cs.illinois.edu/scicomp/notes/cs450_ chapt05.pdf
- [2] Alfio Quarteroni, Riccardo Sacco, Fausto Salieri, Numerical Mathematics, Second Edition, 2007