

TL062 TL062A - TL062B

LOW POWER J-FET DUAL OPERATIONAL AMPLIFIERS

- VERY LOW POWER CONSUMPTION: 200µA
- WIDE COMMON-MODE (UP TO V_{CC}⁺) AND DIFFERENTIAL VOLTAGE RANGES
- LOW INPUT BIAS AND OFFSET CURRENTS
- OUTPUT SHORT-CIRCUIT PROTECTION
- HIGH INPUT IMPEDANCE J-FET INPUT STAGE
- INTERNAL FREQUENCY COMPENSATION
- LATCH UP FREE OPERATION
- HIGH SLEW RATE: 3.5V/µs

DESCRIPTION

The TL062, TL062A and TL062B are high speed J-FET input dual operational amplifier family. Each of these J-FET input operational amplifiers incorporates well matched, high voltage J-FET and bipolar transistors in a monolithic integrated circuit.

The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.

ORDER CODES

Part Number	Temperature Range	Pac	kage
i ait Number	remperature range	N	D
TL062M/AM/BM	-55°C, +125°C	•	•
TL062I/AI/BI	-40°C, +105°C	•	•
TL062C/AC/BC	0°C, +70°C	•	•
Example : TI 062	IN .		•

PIN CONNECTIONS (top view)

October 1997 1/10

SCHEMATIC DIAGRAM

MAXIMUM RATINGS

Symbol	Parameter	TL062M,AM,BM	TL062I,AI,BI	TL062C,AC,BC	Unit
V_{CC}	Supply Voltage - (note 1)	±18	±18	±18	V
Vi	Input Voltage - (note 3)	±15	±15	±15	V
V_{id}	Differential Input Voltage - (note 2)	±30	±30	±30	V
P _{tot}	Power Dissipation	680	680	680	mW
	Output Short-Circuit Duration (Note 4)	Infinite	Infinite	Infinite	
T _{oper}	Operating Free-Air Temperature Range	-55 to +125	-40 to +105	0 to +70	°C
T _{stg}	Storage Temperature Range	- 65 to + 150	- 65 to + 150	- 65 to + 150	°C

Notes: 1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC}⁺ and V_{CC}.

Differential voltages are at the non-inverting input terminal with respect to the inverting input terminal.
 The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
 The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

ELECTRICAL CHARACTERISTICS

 $V_{CC} = \pm 15V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Symbol	Baramatar	1	ΓL062N	1	TL062I			TL062C			Unit
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{io}	Input Offset Voltage ($R_s = 50\Omega$) $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$		3	6 15		3	6 9		3	15 20	mV
DV_{io}	Temperature Coefficient of Input Offset Voltage ($R_s = 50\Omega$)		10			10			10		μV/°C
l _{io}	Input Offset Current * $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$		5	100 20		5	100 10		5	200 5	pA nA
l _{ib}	Input Bias Current * $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max}.$		30	200 50		30	200 20		30	400 10	pA nA
V _{icm}	Input Common Mode Voltage Range	±11.5	+15 -12		±11.5	+15 -12		±11	+15 -12		V
V _{OPP}	$\begin{array}{c} \text{Output Voltage Swing } (R_L = 10 k\Omega) \\ T_{amb} = 25^{\circ} C \\ T_{min.} \leq T_{amb} \leq T_{max}. \end{array}$	20 20	27		20 20	27		20 20	27		V
A _{vd}	Large Signal Voltage Gain (R _L = $10k\Omega$, V _o = $\pm 10V$) $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max}.$	4 4	6		4 4	6		3 3	6		V/mV
GBP	Gain Bandwidth Product $(T_{amb} = 25^{\circ}C, R_L = 10k\Omega$ $C_L = 100pF)$		1			1			1		MHz
Ri	Input Resistance		10 ¹²			10 ¹²			10 ¹²		Ω
CMR	Common Mode Rejection Ratio ($R_s = 50\Omega$)	80	86		80	86		70	76		dB
SVR	Supply Voltage Rejection Ratio $(R_s = 50\Omega)$	80	95		80	95		70	95		dB
I _{cc}	Supply Current (Per Amplifier) (T _{amb} = 25°C, no load, no signal)		200	250		200	250		200	250	μΑ
V ₀₁ /V ₀₂	Channel Separation (A _v = 100, T _{amb} = 25°C)		120			120			120		dB
P _D	Total Power Consumption (Each Amplifier) (T _{amb} = 25°C, no load, no signal)		6	7.5		6	7.5		6	7.5	mW

^{*} Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as closes to the ambient temperature as possible.

ELECTRICAL CHARACTERISTICS (continued)

 $V_{CC} = \pm 15V$, $T_{amb} = 25^{\circ}C$

Symbol	Parameter	TL062C,I,M			Unit
Symbol	r al allietei	Min.	Oilit		
SR	Slew Rate ($V_i = 10V$, $R_L = 10k\Omega$, $C_L = 100pF$, $A_V = 1$)	1.5	3.5		V/μs
t _r	Rise Time (V_i = 20mV, R_L = 10k Ω , C_L = 100pF, A_V = 1)		0.2		μs
K _{OV}	Overshoot Factor (V_i = 20mV, R_L = 10k Ω , C_L = 100pF, A_V = 1) (see figure 1)		10		%
e _n	Equivalent Input Noise Voltage $(R_s = 100\Omega, f = 1 \text{KHz})$		42		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$

ELECTRICAL CHARACTERISTICS (continued)

 $V_{CC} = \pm 15V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter	TL062AC,AI,		, AM	TL06	TL062BC,BI,BM		
	raiailletei	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{io}	Input Offset Voltage ($R_s = 50\Omega$) $T_{amb} = 25^{o}C$ $T_{min.} \le T_{amb} \le T_{max.}$		3	6 7.5		2	3 5	mV
DV _{io}	Temperature Coefficient of Input Offset Voltage $(R_s = 50\Omega)$		10			10		μV/°C
l _{io}	Input Offset Current * $T_{amb} = 25^{o}C$ $T_{min.} \le T_{amb} \le T_{max.}$		5	100 3		5	100 3	pA nA
l _{ib}	Input Bias Current * $T_{amb} = 25^{o}C$ $T_{min.} \le T_{amb} \le T_{max.}$		30	200 7		30	200 7	pA nA
V _{icm}	Input Common Mode Voltage Range	±11.5	+15 -12		±11.5	+15 -12		V
V _{OPP}	Output Voltage Swing ($R_L = 10k\Omega$) $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max}.$	20 20	27		20 20	27		V
A _{vd}	Large Signal Voltage Gain ($R_L = 10k\Omega$, $V_o = \pm 10V$) $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$	4 4	6		4 4	6		V/mV
GBP	Gain Bandwidth Product $(T_{amb} = 25^{\circ}C, R_{L} = 10k\Omega, C_{L} = 100pF)$		1			1		MHz
Ri	Input Resistance		10 ¹²			10 ¹²		Ω
CMR	Common Mode Rejection Ratio ($R_s = 50\Omega$)	80	86		80	86		dB
SVR	Supply Voltage Rejection Ratio ($R_s = 50\Omega$)	80	95		80	95		dB
I _{cc}	Supply Current (Per Amplifier) (T _{amb} = 25°C, no load, no signal)		200	250		200	250	μА
V_{O1}/V_{O2}	Channel Separation (A _v = 100, T _{amb} = 25°C)		120			120		
P _D	Total Power Consumption (Each Amplifier) (T _{amb} = 25°C, no load, no signal)		6	7.5		6	7.5	mW
SR	Slew Rate ($V_i = 10V$, $R_L = 10k\Omega$, $C_L = 100pF$, $A_V = 1$)	1.5	3.5		1.5	3.5		V/µs
t _r	Rise Time (V_i = 20mV, R_L = 10k Ω , C_L = 100pF, A_V = 1)		0.2			0.2		μs
Kov	Overshoot Factor (V_i = 20mV, R_L = 10k Ω , C_L = 100pF, A_V = 1) - (see figure 1)		10			10		%
en	Equivalent Input Noise Voltage $(R_s = 100\Omega, f = 1KHz)$		42			42		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$

^{*} The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS SUPPLY VOLTAGE

30 $R_L = 10 \text{ k}\Omega$ MAXIMUM PEAK-TO-PEAKOUTPUT 25 $T_{amb} = +25$ °C See figure 2 20 VOLTAGE (V) 15 10 5 16 0 12 14 10 SUPPLY VOLTAGE (V)

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREE AIR TEMP.

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS LOAD RESISTANCE

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY

DIFFERENTIAL VOLTAGE AMPLIFICATION VERSUS FREE AIR TEMPERATURE

LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT VERSUS FREQUENCY

SUPPLY CURRENT PER AMPLIFIER VERSUS SUPPLY VOLTAGE

SUPPLY CURRENT PER AMPLIFIER VERSUS FREE AIR TEMPERATURE

TOTAL POWER DISSIPATED VERSUS FREE AIR TEMPERATURE

COMMON MODE REJECTION RATIO VERSUS FREE AIR TEMPERATURE

NORMALIZED UNITY GAIN BANDWIDTH SLEW RATE, AND PHASE SHIFT VERSUS TEMPERATURE

INPUT BIAS CURRENT VERSUS FREE AIR TEMPERATURE

VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

OUTPUT VOLTAGE VERSUS ELAPSED TIME

EQUIVALENT INPUT NOISE VOLTAGE VERSUS FREQUENCY

OUTPUT VOLTAGE (mV)

PARAMETER MEASUREMENT INFORMATION

Figure 1: Voltage follower

Figure 2: Gain-of-10 inverting amplifier

TYPICAL APPLICATION

100KHz QUADRATURE OSCILLATOR

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dimensions		Millimeters			Inches	
Difficusions	Min.	Тур.	Max.	Min.	Тур.	Max.
А		3.32			0.131	
a1	0.51			0.020		
В	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0260
i			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.150 0.060

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions		Millimeters			Inches	
Dilliensions	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.069
a1	0.1		0.25	0.004		0.010
a2			1.65			0.065
a3	0.65		0.85	0.026		0.033
b	0.35		0.48	0.014		0.019
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.020
c1			45°	(typ.)	•	
D	4.8		5.0	0.189		0.197
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.150		0.157
L	0.4		1.27	0.016		0.050
M			0.6			0.024
S		•	8° (ı	max.)	•	•

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOM SON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.