Formularium Wiskunde

Ian Claesen

$11~\mathrm{juni}~2025$

Inhoudsopgave

1	Algebra1.1 Volgorde van Bewerking1.2 Absolute Waarde	3 3
2		3 3 3 4
3	Veeltermen 3.1 Vierkantsvergelijking 3.2 Merkwaardige Producten en Ontbinding in Factoren 3.3 Euclidische Deling 3.4 Schema van Horner	4 4 5 5
4	Complexe getallen 4.1 Rechthoekige coordinaten 4.2 Poolcoördinaten	6 6
5		7 7 9 10
6	6.1 De cirkel 1 6.2 De parabool 1 6.3 De ellips 1 6.4 De hyperbool 1 6.5 Oppervlakte Formules 1 6.6 Volume Formules 1	11 11 11 12 12
7	7.1 Limieten van rijen) 1 7.2 Limieten van functies 1 7.3 Limieten van goniometrische 1 7.4 Methodes bij het berekenen van limieten van functies 1 7.5 Afgeleiden - differentialen 1 7.6 Afgeleiden - fundamentele integralen 1	14 14 14 15 18
8	8.1 Test van een hypothese over het gemiddelde van een normaalverdeling	20 20 20 21

9	Dive	ersen	22
		Wiskundige Symbolen (ISO 31/XI)	
	9.2	Logische symbolen	22

1 Algebra

1.1 Volgorde van Bewerking

Haakjes wegwerken, machtsverheffen, worteltrekken, vermenigvuldigen en delen, optellen en aftrekken.

1.2 Absolute Waarde

De absolute waarde van een getal a wordt genoteerd als |a| en is altijd positief.

$$|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$$

2 Machten en wortels

2.1 Machten met Gehele Exponenten

$$\forall a \in \forall n \in \mathbb{N}_0 : a^n = \underbrace{a.a. \dots .a}_{n \text{ factoren}}$$

$$\forall a \in \mathbb{R} : a^1 = a$$

$$\forall a \in \mathbb{R}_0 : a^0 = 1$$

$$\forall a \in \mathbb{R}_0, \forall n \in \mathbb{N} : a^{-n} = \frac{1}{a^n}$$

$$(a.b)^n = a^n$$

$$(a.b)^n = a^n$$

$$(a.b)^n = a^n \cdot b^n$$

2.2 Vierkantswortel in \mathbb{R}

$$\forall a \in \mathbb{R}^+, \forall b \in \mathbb{R} :$$

$$b = \sqrt{a} \Leftrightarrow b^2 = a \land (b \ge 0)$$

$$\forall a, b \in \mathbb{R}^+ :$$

$$\sqrt{a^2} = a$$

$$(\sqrt{a})^2 = a$$

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}.$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} \land b \ne 0$$

$$\forall a \in \mathbb{R} :$$

$$\sqrt{a^2} = |a| \implies \begin{cases} \sqrt{a^2} = a & \text{als } a \ge 0, \\ \sqrt{a^2} = -a & \text{als } a \le 0. \end{cases}$$

2.3 N-de machtswortel in \mathbb{R}

$$n \ even \Rightarrow \sqrt[n]{a^n} = |a| \to \begin{cases} \sqrt[n]{a^n} = a & \land a \ge 0 \\ \sqrt[n]{a^n} = -a & \land a \le 0 \end{cases}$$

$$n \ oneven \Rightarrow \sqrt[n]{a^n} = a$$

$$n \ oneven \Rightarrow \sqrt[n]{a^n} = a$$

$$\sqrt[n]{a^n} = a$$

$$(\sqrt[n]{a})^n = a$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{a}$$

$$\sqrt[n]{a} = \sqrt[n]{a} \cdot \sqrt[n]{a}$$

2.4 $\frac{m}{n}$ -de machtswortel in \mathbb{R}

$\forall a \in \mathbb{R}_0^+, \forall m \in \mathbb{Z}, \forall n \in \mathbb{N}_0 : a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\forall a, b \in \mathbb{R}_0^+, \forall m, n \in \mathbb{Q} :$ $a^m.a^n = a^{m+n}$ $\frac{a^m}{a^n} = a^{m-n}$ $(a^m)^n = a^m.n$ $(a.b)^m = a^m.b^m$ $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$
	$(a.b)^m = a^m.b^m$ $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$

3 Veeltermen

3.1 Vierkantsvergelijking

Een vierkantsvergelijking is van de vorm: $ax^2 + bx + c = 0$, $met D = b^2 - 4ac$

$x \in \mathbb{R}$	$x \in \mathbb{C}$
$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$	$x_{1,2} = \frac{-b \pm i\sqrt{-D}}{2a}$
$P = \frac{c}{a} = x_1 \cdot x_2 , S = -\frac{b}{a} = x_1 + x_2$	
$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}) = a(x^{2} - Sx + P)$	

3.2 Merkwaardige Producten en Ontbinding in Factoren

$$(a \pm b)^{2} = a^{2} \pm 2ab + b^{2}$$

$$(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}$$

$$(a + b)^{n} = a^{n} + C_{n}^{1}a^{n-1}b + C_{n}^{2}a^{n-2}b^{2} + \dots + C_{n}^{n-1}a^{2}b^{n-1} + b^{n} \quad \land \quad C_{n}^{p} = \frac{n!}{(n-p)!p!}$$

$$a^{2} - b^{2} = (a + b)(a - b)$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + ab^{n-2} + b^{n-1})$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

$$a^{2n+1} + b^{2n+1} = (a + b)(a^{2n} - a^{2n-1}b + a^{2n-2}b^{2} - a^{2n-3}b^{3} + \dots - ab^{2n-1} + b^{2n})$$

3.3 Euclidische Deling

We gaan de derdegraadsveelter
m $2x^3+3x^2-4x+5$ delen door de eerstegraadsveelter
mx+2met behulp van de praktische werkwijze van lange de
ling.

$$\begin{array}{c|ccccc}
2x^3 + 3x^2 - 4x + 5 & x + 2 \\
\hline
-2x^3 - 4x^2 + 0x + 0 & 2x^2 \\
\hline
-1x^2 - 4x + 5 & \\
+1x^2 + 2x + 0 & -x \\
\hline
-2x + 5 & \\
2x + 4 & -2 \\
\hline
9 & \\
\end{array}$$

We kunnen de deling als volgt uitdrukken:

$$2x^3 + 3x^2 - 4x + 5 = (x+2)(2x^2 - x - 2) + 9$$

De rest is 9, wat een graad heeft die kleiner is dan de graad van de deler x + 2.

3.4 Schema van Horner

$$\frac{(3x^3 - 5x^2 + 10x - 5)}{(x-2)}$$

4 Complexe getallen

4.1 Rechthoekige coordinaten

Bewerking	Formule
Optelling/Aftrekking	$(a+j.b) \pm (c+j.d) = (a+c) \pm j(b+d)$
Vermenigvuldiging	$(a+j.b) \cdot (c+j.d) = (ac-bd) + j(ad+bc)$
Deling	$\frac{(a+j.b)}{(c+j.d)} = \frac{(a+j.b)\cdot(c-j.d)}{(c+j.d)\cdot(c-j.d)} = \left(\frac{ac+bd}{c^2+d^2}\right) + j\left(\frac{bc-ad}{c^2+d^2}\right)$
Toegevoegde van	$\overline{(a+j.b)} = (a-j.b)$
	$\overline{Z_1 + Z_2} = \overline{Z_1} + \overline{Z_2}, \overline{Z_1 \cdot Z_2} = \overline{Z_1} \cdot \overline{Z_2}$
Inverse	$z = a + bi \implies z^{-1} = \frac{a - bi}{a^2 + b^2}$
Wortel	$\sqrt{a} \wedge a < 0 \implies \sqrt{a} = \pm i\sqrt{-a}$
	$\sqrt{a+bi} = x+yi \iff (x+yi)^2 = a+bi$
Macht	$(a+bi)^0=1 \forall n \in \mathbb{N}_0:$
	$(a+bi)^n = (a+bi) \cdot (a+bi) \cdots (a+bi)$
Machten of i	$i^1 = i, i^2 = -1, i^3 = -i, i^4 = 1$

4.2 Poolcoördinaten

$$z = a + i.b = r\left(\cos(\varphi) + i.\sin(\varphi)\right) = r\angle\varphi, \quad \tan(\varphi) = \frac{b}{a}, \quad r = \sqrt{a^2 + b^2}$$

Bewerking	Formule
Vermenigvuldiging	$z_1 \cdot z_2 = r_1 \cdot r_2 \angle \varphi_1 + \varphi_2$
Deling	$\frac{z_1}{z_2} = \frac{r_1 \angle \varphi_1}{r_2 \angle \varphi_2} = \frac{r_1}{r_2} \angle \varphi_1 - \varphi_2$
Inverse	$z^{-1} = \frac{1}{r} \angle - \varphi$
Macht	$z^n = r^n \left[\cos \left(n \cdot \varphi \right) + i \sin \left(n \cdot \varphi \right) \right] n \in \mathbb{N}$
Wortel	$\sqrt{r(\cos\varphi + i\sin\varphi)} = \pm\sqrt{r}\left(\cos\frac{\varphi}{2} + i\sin\frac{\varphi}{2}\right)$
$\sqrt[n]{r\left(\cos\varphi + i\sin\varphi\right)} =$	$= \sqrt[n]{r} \left(\cos \frac{\varphi + k \cdot 2\pi}{n} + i \sin \frac{\varphi + k \cdot 2\pi}{n} \right) \land k = 0, 1, \dots, n - 1$

5 Goniometrie

5.1 De Goniometrische Cirkel

5.2 formules uit de goniometrie

$\sin \beta = \frac{b}{a}$	$\cos \beta = \frac{c}{a}$	$\tan \beta = \frac{b}{c}$					
$\csc \beta = \frac{a}{b}$	$\sec \beta = \frac{a}{c}$	$\cot \beta = \frac{c}{b}$					
$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$	$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$	$\cot \alpha = \frac{1}{\tan \alpha}$					
$\sec \alpha = \frac{1}{\cos \alpha} \qquad \csc \alpha = \frac{1}{\sin \alpha}$							

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\tan^2 \alpha + 1 = \sec^2 \alpha$$

$$1 + \cot^2 \alpha = \csc^2 \alpha$$

gelijkehoeken	supplementairehoeken	complementairehoeken
$\sin\left(\alpha + k2\pi\right) = \sin\alpha$	$\sin\left(\pi - \alpha\right) = \sin\alpha$	$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$
$\cos\left(\alpha + k2\pi\right) = \cos\alpha$	$\cos(\pi - \alpha) = -\cos\alpha$	$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$
$\tan\left(\alpha + k2\pi\right) = \tan\alpha$	$\tan (\pi - \alpha) = -\tan \alpha$	$\tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha$
$\cot\left(\alpha + k2\pi\right) = \cot\alpha$	$\cot(\pi - \alpha) = -\cot\alpha$	$\cot\left(\frac{\pi}{2} - \alpha\right) = \tan\alpha$
$\sec\left(\alpha + k2\pi\right) = \sec\alpha$	$\sec(\pi - \alpha) = -\sec\alpha$	$\sec\left(\frac{\pi}{2} - \alpha\right) = \csc\alpha$
$\csc\left(\alpha + k2\pi\right) = \csc\alpha$	$\csc(\pi - \alpha) = \csc\alpha$	$\csc\left(\frac{\pi}{2} - \alpha\right) = \sec\alpha$

tegengesteldehoeken	antisupplementairehoeken	anticomplementairehoeken
$\sin\left(-\alpha\right) = -\sin\alpha$	$\sin\left(\pi + \alpha\right) = -\sin\alpha$	$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$
$\cos\left(-\alpha\right) = \cos\alpha$	$\cos(\pi + \alpha) = -\cos\alpha$	$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$
$\tan\left(-\alpha\right) = -\tan\alpha$	$\tan\left(\pi + \alpha\right) = \tan\alpha$	$\tan\left(\frac{\pi}{2} + \alpha\right) = -\cot\alpha$
$\cot\left(-\alpha\right) = -\cot\alpha$	$\cot(\pi + \alpha) = \cot\alpha$	$\cot\left(\frac{\pi}{2} + \alpha\right) = -\tan\alpha$
$\sec\left(-\alpha\right) = \sec\alpha$	$\sec(\pi + \alpha) = -\sec\alpha$	$\sec\left(\frac{\pi}{2} + \alpha\right) = -\csc\alpha$
$\csc\left(-\alpha\right) = -\csc\alpha$	$\csc(\pi + \alpha) = -\csc\alpha$	$\csc\left(\frac{\pi}{2} + \alpha\right) = \sec\alpha$

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}}$$

$$Decosinus regel:$$

$$\begin{cases} a^2 = b^2 + c^2 - 2bc\cos\hat{A} \\ b^2 = c^2 + a^2 - 2ca\cos\hat{B} \\ c^2 = a^2 + b^2 - 2ab\cos\hat{C} \end{cases}$$

$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$	$\sin 2\alpha = 2\sin \alpha \cos \alpha$
	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$
$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$	$=1-2\sin^2\alpha (*)$
	$=2\cos^2\alpha-1(**)$
$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$	$\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}$

$$\begin{vmatrix} \sin^2 \alpha = \frac{1-\cos 2\alpha}{2} & (*) & \sin 2\alpha = \frac{2\tan \alpha}{1+\tan^2 \alpha} & \sin \alpha = \frac{2t}{1+t^2} & \wedge & \tan \frac{\alpha}{2} = t \\ \cos^2 \alpha = \frac{1+\cos 2\alpha}{2} & (**) & \cos 2\alpha = \frac{1-\tan^2 \alpha}{1+\tan^2 \alpha} & \cos \alpha = \frac{1-t^2}{1+t^2} \\ \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1-\cos \alpha}{2}} & \tan 2\alpha = \frac{2\tan \alpha}{1-\tan^2 \alpha} & \tan \alpha = \frac{2t}{1-t^2} \\ \cos \frac{\alpha}{2} = \pm \sqrt{\frac{1+\cos \alpha}{2}} & \cos \frac{\alpha}{2} = \pm \sqrt{\frac{1+\cos \alpha}{2}} & \cot \alpha = \frac{2\tan \alpha}{1-\tan^2 \alpha} \end{vmatrix}$$

5.3 Omgekeerde formules van Simpson

$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$	$\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta$
	$\sin(\alpha + \beta) - \sin(\alpha - \beta) = 2\cos\alpha\sin\beta$
$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$	$\cos(\alpha + \beta) + \cos(\alpha - \beta) = 2\cos\alpha\cos\beta$
	$\cos(\alpha + \beta) - \cos(\alpha - \beta) = -2\sin\alpha\sin\beta$

5.4 Formules van Simpson

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right) \left[\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)\right]$$
$$\sin \alpha - \sin \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right) \left[\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)\right]$$

Belangrijke goniometrische waarden 5.5

Angle	0°	30°	45°	60°	90°	180°	270°	360°
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
$\tan \alpha$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	/	0	/	0

5.6 Cyclometrische formules

$$y = \operatorname{Bgsin} x \Leftrightarrow \left(x = \sin y \ \land y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \ x \in [-1, 1] \right)$$
$$y = \operatorname{Bgcos} x \Leftrightarrow \left(x = \cos y \ \land y \in [0, \pi], \ x \in [-1, 1] \right)$$
$$y = \operatorname{Bgtan} x \Leftrightarrow \left(x = \tan y \ \land y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \ x \in \mathbb{R} \right)$$

6 Meetkunde

Afstand 2 punten	$ P_1(x_1, y_1), P_2(x_2, y_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
	$ P_1(x_1, y_1, z_1), P_2(x_2, y_2, z_2) =$
	$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$
Midden v/e lijnstuk	$co(M) = (\frac{(x_1+x_2)}{2}, \frac{(y_1+y_2)}{2})$
Zwaartepunt v/e driehoek	$co(Z) = (\frac{(x_1 + x_2 + x_3)}{3}, \frac{(y_1 + y_2 + y_3)}{3})$

Vergelijking v/e rechte dr punt met rico m	$y - y_1 = m(x - x_1)$
Vergelijking v/e rechte dr punt met rico m	$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$
Vergelijking v/e rechte dr snijpunt met x-as $(r,0)$ en y-as $(0,s)$	$\frac{x}{r} + \frac{y}{s} = 1$
Hoek tussen twee rechten a,b met rico m1,m2	$\cos(\hat{ab}) = \frac{ 1+m_1m_2 }{\sqrt{1+m_1^2}\sqrt{1+m_2^2}}$
Afstand tussen rechte a-¿ux+vy+w=0 en P(x1,y1)	$d(P,a) = \frac{ ux_1 + vy_1 + w }{\sqrt{u^2 + v^2}}$

6.1 De cirkel

Cartesiaanse vergelijking	$(x - x_1)^2 + (y - y_1)^2 = r^2$
Algemene vergelijking	$x^{2} + y^{2} + 2ax + 2by + c = 0$ \wedge $a^{2} + b^{2} - c \ge 0$
Parameter vergelijking	$\begin{cases} x = x_M + r \cdot \cos t \\ y = y_M + r \cdot \sin t \end{cases} met \ t \in [0, 2\pi[$

6.2 De parabool

-		
Top vergelijking	$y^2 = 2px$	
Parameter vergelijking	$x = 2p\lambda^2$	$met \ \lambda \in \mathbb{R}$
Tarameter vergenjanig	$y = 2p\lambda$	

6.3 De ellips

$$\begin{aligned} &Cartesia ansevgl.: \frac{x^2}{a^2} + \frac{y}{b^2}^2 = 1 \\ &Parametervgl.: \\ &\left\{ \begin{array}{l} x = a.\cos t \\ y = b.\sin t \end{array} \right. \end{aligned} met \ t \in [0, 2\pi[$$

6.4 De hyperbool

$$\begin{aligned} &Cartesia ansev gl.: \frac{x^2}{a^2} - \frac{y}{b^2}^2 = 1 \\ &Parameter vgl.: \\ &\left\{ \begin{array}{l} x = a. \sec t \\ y = b. \tan t \end{array} \right. \end{aligned} met \ t \in \left] \frac{-\pi}{2}, \frac{3\pi}{2} \left[\left\backslash \left\{ \frac{\pi}{2} \right\} \right. \end{aligned}$$

6.5 Oppervlakte Formules

Vorm	Formule	Variabelen
Vierkant	$A = s^2$	s: zijlengte
Rechthoek	A = l.w	l: lengte, w : breedte
Driehoek	$A = \frac{1}{2}b.h$	b: basis, h: hoogte
Cirkel	$A = \pi r^2$	r: straal
Parallellogram	A = b.h	b: basis, h: hoogte
Trapezium	$A = \frac{1}{2}(b_1 + b_2).h$	b_1, b_2 : bases, h : hoogte
Ellips	$A = \pi a.b$	a, b: halve grote en halve kleine as
Regelmatig Veelhoek	$A = \frac{1}{2}P.a$	P: omtrek, a: apothema

6.6 Volume Formules

Vorm	Formule	Variabelen
Kubus	$V = s^3$	s: zijlengte
Rechthoekig Prisma	$V = l \times w \times h$	l: lengte, w: breedte, h: hoogte
Bol	$V = \frac{4}{3}\pi r^3$	r: straal
Cilinder	$V = \pi r^2 h$	r: straal, h: hoogte
Kegel	$V = \frac{1}{3}\pi r^2 h$	r: straal, h: hoogte
Piramide	$V = \frac{1}{3}B \times h$	B: basisoppervlakte, h: hoogte
Ellipsoïde	$V = \frac{4}{3}\pi abc$	a, b, c: halve hoofdaslengtes
Prisma	$V = B \times h$	B: basisoppervlakte, h: hoogte

6.7 Basis reële functies

Functie	Definitie
Identiteitsfunctie	f(x) = x
Constante functie	$f(x) = c, \ c \in \mathbb{R}$
Lineaire functie	$f(x) = mx + b, \ m, b \in \mathbb{R}$
Kwadratische functie	$f(x) = ax^2 + bx + c, \ a, b, c \in \mathbb{R}, \ a \neq 0$
Cubische functie	$f(x) = ax^3 + bx^2 + cx + d, \ a, b, c, d \in \mathbb{R}, \ a \neq 0$
Polynoomfunctie	$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \ a_i \in \mathbb{R}$ $a_n \neq 0$
Rationale functie	$f(x) = \frac{P(x)}{Q(x)}, \ P(x), Q(x)$ zijn polynomen, $Q(x) \neq 0$
Exponentiële functie	$f(x) = a^x, \ a > 0, \ a \neq 1$
Logaritmische functie	$f(x) = \log_a(x), \ a > 0, \ a \neq 1, \ x > 0$
Absolute-waarde functie	$f(x) = x = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$
Goniometrische functies	$f(x) = \sin(x)$ $f(x) = \cos(x)$ $f(x) = \tan(x) \ x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$
Inverse goniometrische functies	$f(x) = \arcsin(x), \ x \in [-1, 1]$ $f(x) = \arccos(x), \ x \in [-1, 1]$ $f(x) = \arctan(x), \ x \in \mathbb{R}$
Hyperbolische functies	$f(x) = \sinh(x) = \frac{e^x - e^{-x}}{2}$ $f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2}$ $f(x) = \tanh(x) = \frac{\sinh(x)}{\cosh(x)}, x \in \mathbb{R}$
Stukjesfunctie	$f(x) = \begin{cases} x^2, & x < 0\\ x + 1, & x \ge 0 \end{cases}$

7 Analyse

7.1 Limieten van rijen)

$$\lim_{n \to \pm \infty} \left(a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0 \right) = \lim_{n \to \pm \infty} a_m n^m$$

$$\lim_{n \to \pm \infty} \frac{\left(a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0 \right)}{\left(b_q n^p + b_{q-1} n^{p-1} + \dots + b_1 n + b_0 \right)} = \lim_{n \to \pm \infty} \frac{a_m n^m}{b_q n^p}$$

7.2 Limieten van functies

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n \quad (n \in _0)$$

$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

$$\lim_{x \to \pm \infty} \left(a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0\right) = \lim_{x \to \pm \infty} a_n x^n$$

$$\lim_{x \to \pm \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m}$$

7.3 Limieten van goniometrische

$$\lim_{x \to a} \sin(x) = \sin(a) \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1$$
$$\lim_{x \to a} \cos(x) = \cos(a) \qquad \lim_{x \to 0} \frac{\tan x}{x} = 1$$

7.4 Methodes bij het berekenen van limieten van functies

<u>Veeltermfunctie</u>: $\lim_{x \to a} f(x) = \text{Eindige a limiet} = \text{functiewaarde}$

Oneindige a limiet = limiet van de hoogstegraadsterm

Gebroken rationale functie:

Eindige a

$a \in \operatorname{dom} f(x)$	limiet = functiewaarde
geval $\frac{r}{0} \wedge r \in \mathbb{R}$	linker- en rechterlimiet zijn ∞ ; teken afleiden uit het teken van r en de noemer
geval $\frac{0}{0}$	deel teller en noemer door $(x-a)$, bereken de limiet van de bekomen functie

$\overline{\text{Oneindige } a}$

limiet = limiet van quotiënt hoogste graadstermen

<u>Irrationale functie</u>:

Eindige a

$a \in \operatorname{dom} f(x)$	limiet = functiewaarde
$a \in \operatorname{adh} \operatorname{dom} f(x)$ $\frac{r}{0} \wedge r \in \mathbb{R}$	linker- en rechterlimiet zijn ∞ ; teken afleiden uit het teken van r en de noemer
$a \in \operatorname{adh} \operatorname{dom} f(x)$ $\frac{0}{0} \wedge r \in \mathbb{R}$	vermenigvuldig teller en noemer met de toegevoegde wortelvorm, deel teller en noemer door $(x-a)$, bereken de limiet van de bekomen functie
$a \notin \operatorname{adh} \operatorname{dom} f(x)$	geen limiet

One indige a

Official and the control of the cont	
$\pm \infty \in \operatorname{adh} \operatorname{dom} f(x)$ en $f(\pm \infty)$ is te berekenen	limiet = resultant berekening
$\pm \infty \in \operatorname{adh} \operatorname{dom} f(x)$ geval $\frac{\infty}{\infty}$	zet in de teller en de noemer de hoogste macht van \boldsymbol{x} voorop, vereenvoudig en bereken de limiet van de bekomen functie
$\pm \infty \in \operatorname{adh} \operatorname{dom} f(x)$ geval $\infty - \infty$	herleid tot het vorige geval door teller en noemer te vermenigvuldigen met de toegevoegde wortelvorm
$a \notin \operatorname{adh} \operatorname{dom} f(x)$	geen limiet

Regel l'Hôptal:

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \quad \forall \quad \pm \infty$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Bewerkingen met oneindig en onbepaalde vormen:

Bewerkingen	Geen betekenis
$x + (-\infty) = -\infty + x = (-\infty) + x$	$(+\infty) + (-\infty)$
$x + (+\infty) = +\infty + x = (+\infty) + x$	$(-\infty) + (+\infty)$
$x \cdot (+\infty) = (+\infty) \cdot x = +\infty \text{ als } x > 0$	$0 \cdot (+\infty), (+\infty) \cdot 0$
$x \cdot (+\infty) = (+\infty) \cdot x = -\infty \text{ als } x < 0$	$0 \cdot (-\infty), (-\infty) \cdot 0$
$x \cdot (-\infty) = (-\infty) \cdot x = -\infty \text{ als } x > 0$	$\frac{1}{0}$
$x \cdot (-\infty) = (-\infty) \cdot x = +\infty \text{ als } x < 0$	1 ^{+∞}
$(+\infty) + (+\infty) = +\infty$	0_0
$(-\infty) + (-\infty) = -\infty$	$(+\infty)^0$
$(+\infty)\cdot(+\infty)=(-\infty)\cdot(-\infty)=+\infty$	
$(+\infty)\cdot(-\infty) = (-\infty)\cdot(+\infty) = -\infty$	
$(+\infty)^n = +\infty$ als n even is	
$(-\infty)^n = -\infty$ als n oneven is	
$\frac{1}{+\infty} = \frac{1}{-\infty} = 0$	
$\sqrt[n]{+\infty} = +\infty$	
$\sqrt[n]{-\infty} = -\infty$ als n oneven is	

7.5 Afgeleiden - differentialen	
Dc = 0	
$D\left(c.f\right) = c.Df$	dc = 0
$D(f \pm g) = Df \pm Dg$	$dx^n = nx^{n-1}dx$
D(f.g) = fDg + gDf	$dx^{-1} = -1.x^{-2}dx$
$D\left(\frac{f}{g}\right) = \frac{gDf - fDg}{g^2}$	$d\sin x = \cos x dx$
$Dx^n = nx^{n-1}$	$d\cos x = -\sin x dx$
$Dx^{-1} = -1.x^{-2}$	$d \tan x = \sec^2 x dx = \frac{1}{\cos^2 x} dx$
$D\sin x = \cos x$	$\int d\cot x = -csc^2x dx = \frac{-1}{\sin^2 x} dx$
$D\cos x = -\sin x$	$dBgsin x = \frac{dx}{\sqrt{1-x^2}}$
$D\tan x = \sec^2 x = \frac{1}{\cos^2 x}$	$d \operatorname{Bgcos} x = \frac{-dx}{\sqrt{1-x^2}}$
$D\cot x = -csc^2x = \frac{-1}{\sin^2 x}$	$dBgtan x = \frac{dx}{1+x^2}$
$DBgsin x = \frac{1}{\sqrt{1-x^2}}$	dshx = chxdx
$D \operatorname{Bgcos} x = \frac{-1}{\sqrt{1-x^2}}$	dchx = shxdx
$DBgtan x = \frac{1}{1+x^2}$	$dthx = \frac{dx}{ch^2x}$
$D \operatorname{sh} x = \operatorname{ch} x$	$\int d^a \log x = \frac{dx}{x \ln a}$
Dch x = sh x	$d \ln x = \frac{dx}{x}$
$D th x = \frac{1}{ch^2 x}$	$da^x = a^x \ln a dx$
$De^x = e^x$	$de^x = e^x dx$
$Da^x = a^x \ln a$	$\left d \ln \left x + \sqrt{x^2 + k} \right = \frac{dx}{\sqrt{x^2 + k}} $
$D \ln x = \frac{1}{x} D \ln x = \frac{1}{x}$	d(f+g) = df + dg
$D^a \log x = \frac{1}{x \ln a}$	d(f.g) = fdg + gdf
$\left D \ln \left x + \sqrt{x^2 + k} \right = \frac{1}{\sqrt{x^2 + k}}$	$d\left(\frac{f}{g}\right) = \frac{gdf - fdg}{g^2}$
$Du^v = vu^{v-1}Du + u^v \ln uDv$	

7.6 Afgeleiden - fundamentele integralen

Bg = arc

Afgeleiden	Integraal
D[c] = 0	$\int dx = x + C$
$D[x^n] = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C (n \neq -1)$
$D[\sin x] = \cos x$	$\int \cos x dx = \sin x + C$
$D[\cos x] = -\sin x$	$\int \sin x dx = -\cos x + C$
$D[\tan x] = \sec^2 x = \frac{1}{\cos^2 x}$	$\int \frac{1}{\cos^2 x} dx = \tan x + C$
$D[\cot x] = -\csc^2 x = \frac{-1}{\sin^2 x}$	$\int \frac{1}{\sin^2 x} dx = -\cot x + C$
$D[\arcsin x] = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$
$D[\arccos x] = \frac{-1}{\sqrt{1-x^2}}$	$\int \frac{dx}{\sqrt{1-x^2}} = -\arccos x + C$
$D[\arctan x] = \frac{1}{1+x^2}$	$\int \frac{dx}{1+x^2} = \arctan x + C$
$D[e^x] = e^x$	$\int e^x dx = e^x + C$
$D[a^x] = a^x \ln a$	$\int a^x dx = \frac{a^x}{\ln a} + C$
$D[\ln x] = \frac{1}{x}$	$\int \frac{dx}{x} = \ln x + C$
$D\left[\ln\left x+\sqrt{x^2+k}\right \right] = \frac{1}{\sqrt{x^2+k}}$	$\int \frac{dx}{\sqrt{x^2 + k}} = \ln\left x + \sqrt{x^2 + k}\right + C$
$D^a \log x = \frac{1}{x \ln a}$	*

7.7 Partiële integratie

$$\int f(x) d(g(x)) = f(x).g(x) - \int g(x) d(f(x))$$
$$\int u dv = u.v - \int v du$$

8 Statistiek

8.1 Test van een hypothese over het gemiddelde van een normaalverdeling

Dit is een test van een steekproefgemiddelde \bar{x} volgens steekproefgemiddeldeverdeling $X \approx \mathcal{N}(\mu_{\bar{x}}, \sigma_{\bar{x}}) \approx \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$ in de populatie $\mathcal{N}(\mu, \sigma)$. Gebruikmakend van significantieniveau α .

Twee-zijdige test	Links-zijdige test	Rechts-zijdige test
$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$
$H_A: \mu \neq \mu_0$	$H_A: \mu < \mu_0$	$H_A: \mu > \mu_0$
$\mathcal{N}(\mu_{\overline{x}}, \sigma_{\overline{x}})$ $\alpha/2$ g g_+	$\mathcal{N}(\mu_{\bar{x}}, \sigma_{\bar{x}})$	$\mathcal{N}(\mu_{\overline{x}}, \sigma_{\overline{x}})$ g_+
$H_A: z_{\bar{x}} \le g \ \lor \ \bar{x} \ge g_+$	$H_A: z_{\bar{x}} \le g$	$H_A: z_{\bar{x}} \ge g_+$

8.2 Test van een hypothese over een populatieproportie Dit is een test op een populatieproportie \hat{p} volgens een binomiaalverdeling $X \approx \mathcal{B}(n,p) \approx \mathcal{N}(np,\sqrt{n}.\sqrt{p(1-p)})$. Gebruikmakend van significantieniveau α .

Twee-zijdige test	Links-zijdige test	Rechts-zijdige test
$H_0: p = p_0$	$H_0: p = p_0$	$H_0: p = p_0$
$H_A: p \neq p_0$	$H_A: p < p_0$	$H_A: p > p_0$
$\alpha/2$ g g_+	α g_{-}	g_+
$H_A: \hat{p} \leq g \ \lor \ \hat{p} \geq g_+$	$H_A: \hat{p} \leq g$	$H_A: \hat{p} \geq g_+$

8.3 Test van een hypothese over het gemiddelde van een normaalverdeling via de P-waarde

Twee-zijdige toets	Links éénzijdige toets	Rechts éénzijdige toets
$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$
$H_1: \mu \neq \mu_0$	$H_0: \mu = \mu_0$ $H_1: \mu < \mu_0$	$H_1: \mu > \mu_0$
Als $\bar{x} < \mu \to P = 2 \cdot P(X \le \bar{x})$	$P = P(X \le \bar{x})$	$P = P(X \ge \bar{x})$
Als $\bar{x} > \mu \to P = 2 \cdot P(X \ge \bar{x})$	$I = I (X \leq x)$	$I - I (X \ge x)$
$P \le \alpha$	$P \le \alpha$	$P \le \alpha$

8.4 Test van een hypothese over een populatieproportie via de P-waarde

Twee-zijdige toets	Linkszijdige toets	Rechtszijdige toets
$H_0: p = p_0$	$H_0: p = p_0$	$H_0: p = p_0$
$H_1: p \neq p_0$	$H_0: p = p_0$ $H_1: p < p_0$	$H_1: p > p_0$
Als \hat{p}	$P = P(X \le \hat{p})$	$P = P(X \ge \hat{p})$
Als $\hat{p} > p \to P = 2 \cdot P(X \ge \hat{p})$	$I = I (X \leq p)$	$I - I (X \ge p)$
Vergelijk: $P \leq \alpha$	Vergelijk: $P \leq \alpha$	Vergelijk: $P \leq \alpha$

9 Diversen

9.1 Wiskundige Symbolen (ISO 31/XI)

$x \in A$	is een element van de verzameling
$x \not\in A$	is geen element van de verzameling
$\left\{x_1,x_2,\ldots,x_n\right\}$	de verzameling door opsomming
$\{x \in A p(x)\}$	de verzameling waar de elementen voldoen aan de eigenschap $p(x)$
Ø	de lege verzameling
N	de natuurlijke getallen $(0,1,2,\dots)$
\mathbb{Z}	de gehele getallen $(\ldots, -2, -1, 0, 1, 2, \ldots)$
Q	de rationale getallen (breuken van \mathbb{Z})
\mathbb{R}	de reële getallen
\mathbb{C}	de complexe getallen
$B \subseteq A$	B behoort tot A (kan er mee samenvallen)
$B \subset A$	B behoort strikt tot A
$A \cup B$	samenvoeging van A en B (unie)
$A \cap B$	doorsnede van A en B (de gemeenschappelijke elementen)
$A \setminus B$	A verschilt B , wat tot A behoort en niet tot B
$C_U A$	het complement van A in het universum U
(a,b)	het geordend paar
(a_1, a_2, \ldots, a_n)	een geordend n -tal
$A \times B$	de productverzameling van A en B
#	rangnummer of aantal

9.2 Logische symbolen

$p \wedge q$	conjunctie, de beweringen p en q zijn geldig
$p \lor q$	disjunctie, de bewering p of q is geldig
$\neg p$	negatie, de bewering p is niet geldig
$p \Rightarrow q$	implicatie, als p dan q
$p \Leftrightarrow q$	equivalentie, de beweringen p en q zijn gelijkwaardig
$\forall x$	universele kwantor, voor alle elementen geldt
$\exists x$	existentiële kwantor, er zijn elementen die voldoen aan