Lab 4

Generated by Doxygen 1.8.14

Contents

1	Clas	s Index	[1
	1.1	Class	List			 	 	 			 1
2	File	Index									3
	2.1	File Lis	st			 	 	 			 3
3	Clas	s Docu	mentatio								5
	3.1	bound	Struct Re	erence		 	 	 			 5
		3.1.1	Detailed	Description		 	 	 			 5
	3.2	Firefly	Class Ref	rence		 	 	 			 5
		3.2.1	Detailed	Description		 	 	 			 6
		3.2.2	Construc	or & Destructor Documen	tation .	 	 	 			 6
			3.2.2.1	Firefly() [1/2]		 	 	 			 6
			3.2.2.2	Firefly() [2/2]		 	 	 			 7
			3.2.2.3	\sim Firefly()		 	 	 			 7
		3.2.3	Member	Function Documentation		 	 	 	 		 7
			3.2.3.1	runFirefly()		 	 	 			 7
	3.3	Particle	eSwarm C	ass Reference		 	 	 			 7
		3.3.1	Detailed	Description		 	 	 	 		 8
		3.3.2	Construc	or & Destructor Documen	tation .	 	 	 			 8
			3.3.2.1	ParticleSwarm() [1/2] .		 	 	 			 9
			3.3.2.2	ParticleSwarm() [2/2] .		 	 	 			 10
			3.3.2.3	\sim ParticleSwarm()		 	 	 			 10
		3.3.3	Member	Function Documentation		 	 	 			 10
			3.3.3.1	allocateVelocity()		 	 	 			 10
			3.3.3.2	particleRow()		 	 	 			 11
			3.3.3.3	runParticleSwarm()		 	 	 			 11
	3.4	Popula	ation Struc	Reference		 	 	 			 11
		3.4.1	Detailed	Description		 	 	 			 12
		3.4.2	Member	Function Documentation		 	 	 			 12
			3.4.2.1	copyPopulation()		 	 	 	 		 12
			3.4.2.2	generatePopulation()		 	 	 	 		 12
	3.5	Thread	dPointers 9	truct Reference							13
				Description							13

ii CONTENTS

4	File	Documentation		1	15
	4.1	benchmarksV2.cpp File R	eference	 	15
		4.1.1 Detailed Description	on	 	15
		4.1.2 Variable Documer	ntation	 	16
		4.1.2.1 benchm	arkFunctions	 	16
	4.2	benchmarksV2.h File Refe	erence	 	16
		4.2.1 Detailed Description	on	 	17
		4.2.2 Variable Documer	ntation	 	17
		4.2.2.1 FOXHC	DLEA	 	17
		4.2.2.2 FOXHC	DLEC	 	17
	4.3	firefly.cpp File Reference		 	18
		4.3.1 Detailed Description	on	 	18
	4.4	firefly.h File Reference		 	18
		4.4.1 Detailed Description	on	 	18
	4.5	particleSwarm.cpp File Re	eference	 · · · · · · · · · · · · · · · · · · ·	18
		4.5.1 Detailed Description	on	 	18
	4.6	particleSwarm.h File Refe	rence	 	19
		4.6.1 Detailed Description	on	 	19

Index

21

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

bound	
Firefly	!
ParticleSwarm	
Population	
ThreadPointers	19

2 Class Index

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

benchmarksV2.cpp	
Function definitions for the function headers in benchmarksV2.h	15
benchmarksV2.h	
Defines benchmark function headers	16
firefly.cpp	
Defines functions for the firefly class	18
firefly.h	
Definition for the Firefly class	18
particleSwarm.cpp	
Defines functions for the ParticleSwarm class	18
particleSwarm.h	
Defines ParticleSwarm and Thread Pointers	19
populationV2.h	??

File Index

Chapter 3

Class Documentation

3.1 bound Struct Reference

#include <populationV2.h>

Public Attributes

- · double upper
- double lower

3.1.1 Detailed Description

Defines bounds for use in fitness function calculations.

The documentation for this struct was generated from the following file:

· populationV2.h

3.2 Firefly Class Reference

```
#include <firefly.h>
```

Public Member Functions

- double runFirefly ()
- Firefly (int fitnessFunc, int ns, int dim, double upper, double lower, int iterations, double alpha, double beta0, double betaMin, double gamma)
- Firefly (string params)
- ∼Firefly ()

Private Attributes

• int ns

Solution Size.

int dim

Number of Dimensions.

• int fitnessFunc

Fitness Function to be operated on.

· bound bounds

Function Bounds.

- double beta0
- · double betaMin
- · double gamma
- · double alpha
- · int iterations

Number of iterations to run the algorithm.

3.2.1 Detailed Description

This class handles the execution of the firefly algorithm

3.2.2 Constructor & Destructor Documentation

3.2.2.1 Firefly() [1/2]

```
Firefly::Firefly (
    int fitnessFunc,
    int ns,
    int dim,
    double upper,
    double lower,
    int iterations,
    double alpha,
    double beta0,
    double betaMin,
    double gamma)
```

Initialize Class in code

Parameters

fitnessFunc	int
ns	int
dim	int
upper	double
lower	double
iterations	int
alpha	double
beta0	double
betaMin	double
gamma	double

Initialize Class using file param

Parameters

param string

3.2.2.3 \sim Firefly()

```
Firefly::\simFirefly ( ) [inline]
```

Default Destructor

3.2.3 Member Function Documentation

3.2.3.1 runFirefly()

```
double Firefly::runFirefly ( )
```

Run an instance of firefly and return the best fitness

Returns

double

The documentation for this class was generated from the following files:

- · firefly.h
- firefly.cpp

3.3 ParticleSwarm Class Reference

```
#include <particleSwarm.h>
```

Public Member Functions

- double runParticleSwarm ()
- ParticleSwarm (int fitnessFunc, int ns, int dim, double upper, double lower, int iterations, double c1, double c2)
- ParticleSwarm (string param)
- ∼ParticleSwarm ()

Private Member Functions

- void particleRow (ThreadPointers tp)
- void allocateVelocity (double **&v)

Private Attributes

• int ns

Population Size.

• int dim

Dimensions.

· int fitnessFunc

Fitness Function.

bound bounds

Fitnes Function Bounds.

· int iterations

Number of Iterations.

- double c1
- double c2

Personal Best, Global Best Modifiers.

mutex lock

Thread Lock.

• condition_variable cv

Locks all threads to stay on same iteration and update Global best.

int activeThreads

Counts threads still running.

3.3.1 Detailed Description

The particle swarm class handles the data and threads for the Particle Swarm Algorithm

3.3.2 Constructor & Destructor Documentation

3.3.2.1 ParticleSwarm() [1/2]

```
ParticleSwarm::ParticleSwarm (
    int fitnessFunc,
    int ns,
    int dim,
    double upper,
    double lower,
    int iterations,
    double c1,
    double c2)
```

Initialize Class in code

Parameters

fitnessFunc	int
ns	int
dim	int
upper	double
lower	double
iterations	int
c1	double
c2	double

3.3.2.2 ParticleSwarm() [2/2]

Initialize Class using file param

Parameters

param	string
-------	--------

3.3.2.3 ∼ParticleSwarm()

```
{\tt ParticleSwarm::} {\sim} {\tt ParticleSwarm} \ \ (\ )
```

Default Destructor

3.3.3 Member Function Documentation

3.3.3.1 allocateVelocity()

Create Velocity vector

Parameters

3.3.3.2 particleRow()

Update a single row of particles in the swarm.

Parameters

tp	ThreadPointers
this	ParticleSwarm

3.3.3.3 runParticleSwarm()

```
double ParticleSwarm::runParticleSwarm ( )
```

Run an instance of ParticleSwarm returns best fitness

Returns

double

The documentation for this class was generated from the following files:

- · particleSwarm.h
- · particleSwarm.cpp

3.4 Population Struct Reference

```
#include <populationV2.h>
```

Public Member Functions

- void generatePopulation (double min, double max)
- int getBestSolutionIndex ()

Returns index of the best particle.

• void emptyPopulation ()

Create a new blank population.

void updatePopulationFitness ()

Update the population fitness.

• void printPopulation ()

Output the population to the console.

void deletePopulation ()

Delete the population.

• void sortByFitnessDecending ()

Sort Highest Fitness First.

- void copyPopulation (Population *pop)
- · Population (int populationSize, int dim, int fitnessFunc)

Create the struct with population size, dim and f.

Public Attributes

· int populationSize

Population Size.

• int dim

Dimensions.

· int fitnessFunc

Which fitness function will be used.

double * fitness

Fitnesses of the members in the population.

• double ** population = nullptr

Population.

3.4.1 Detailed Description

Defines a population populationSize by dim.

Creates a population to be used in Differential Evolution and Genetic Algorithm. The population has populationSize members each with dim values in them.

3.4.2 Member Function Documentation

3.4.2.1 copyPopulation()

The constructor for Population. Sets the population size, dim and fitness function.

Parameters

populationSize	int
dim	int
fitnessFunc	int

3.4.2.2 generatePopulation()

Create a population with bounds min and max

Parameters

min	double
max	double

Returns

void

The documentation for this struct was generated from the following files:

- populationV2.h
- · populationV2.cpp

3.5 ThreadPointers Struct Reference

```
#include <particleSwarm.h>
```

Public Attributes

• Population * p

Pointer to the current population.

• Population * pBest

Pointer to personalBest.

double ** v

Particle Velocity.

double * gBest

Global Best.

• double * gBestFitness

Global best Fitness.

· int iterations

Number of Iterations.

• int row

Row thread will be working on.

mt19937_64 * rng

Same number generator for rand functions.

3.5.1 Detailed Description

Defines data sent to threads in ParticleSwarm::runParticleSwarm()

The documentation for this struct was generated from the following file:

· particleSwarm.h

Chapter 4

File Documentation

4.1 benchmarksV2.cpp File Reference

Function definitions for the function headers in benchmarks V2.h.

```
#include "benchmarksV2.h"
#include <iostream>
#include <fstream>
```

Functions

- double schwefels (double input[], int dim)
- double **deJong1st** (double input[], int dim)
- double rosenbrock (double input[], int dim)
- double rastrigin (double input[], int dim)
- double griewangk (double input[], int dim)
- double sineEnvelopSine (double input[], int dim)
- double stretchVSine (double input[], int dim)
- double ackleys1 (double input[], int dim)
- double ackleys2 (double input[], int dim)
- double **eggHolder** (double input[], int dim)
- double rana (double input[], int dim)
- double pathological (double input[], int dim)
- double **michalewicz** (double input[], int dim)
- double mastersCosine (double input[], int dim)
- · double shekelsFoxholes (double input[], int dim)

Variables

• double(* benchmarkFunctions [15])(double input[], int dim)

4.1.1 Detailed Description

Function definitions for the function headers in benchmarksV2.h.

16 File Documentation

4.1.2 Variable Documentation

4.1.2.1 benchmarkFunctions

```
double(* benchmarkFunctions[15])(double input[], int dim)
```

Initial value:

```
= { schwefels, deJong1st, rosenbrock, rastrigin, griewangk, sineEnvelopSine,
stretchVSine, ackleys1, ackleys2, eggHolder, rana, pathological,
michalewicz, mastersCosine, shekelsFoxholes }
```

4.2 benchmarks V2.h File Reference

Defines benchmark function headers.

```
#include <vector>
#include <math.h>
#include <time.h>
#include <chrono>
#include <string>
#include <random>
```

Functions

- double schwefels (double input[], int dim)
- double deJong1st (double input[], int dim)
- double rosenbrock (double input[], int dim)
- double rastrigin (double input[], int dim)
- double **griewangk** (double input[], int dim)
- double sineEnvelopSine (double input[], int dim)
- double stretchVSine (double input[], int dim)
- double ackleys1 (double input[], int dim)
- double ackleys2 (double input[], int dim)
- double eggHolder (double input[], int dim)
- double rana (double input[], int dim)
- double pathological (double input[], int dim)
- double michalewicz (double input[], int dim)
- double mastersCosine (double input[], int dim)
- double shekelsFoxholes (double input[], int dim)

Variables

- const double FOXHOLEC [30]
- const double FOXHOLEA [30][10]
- const int **NUMBENCHMARKS** = 15
- double(* benchmarkFunctions [NUMBENCHMARKS])(double input[], int dim)

4.2.1 Detailed Description

Defines benchmark function headers.

This file defines the benchmark function headers, as well as the constants for Shekel's Foxholes and benchmark ← Functions, a pointer to the 15 benchmark functions.

4.2.2 Variable Documentation

4.2.2.1 FOXHOLEA

const double FOXHOLEA[30][10]

Initial value:

```
= { { 9.681,0.667,4.783,9.095,3.517,9.325,6.544,0.211,5.122,2.02 },
{ 9.4,2.041,3.788,7.931,2.882,2.672,3.568,1.284,7.033,7.374 },
  8.025, 9.152, 5.114, 7.621, 4.564, 4.711, 2.996, 6.126, 0.734, 4.982 },
  2.196, 0.415, 5.649, 6.979, 9.510, 9.166, 6.304, 6.054, 9.377, 1.426 },
  8.074, 8.777, 3.467, 1.863, 6.708, 6.349, 4.534, 0.276, 7.633, 1.567
  7.650, 5.658, 0.720, 2.764, 3.278, 5.283, 7.474, 6.274, 1.409, 8.208 },
  1.256,3.605,8.623,6.905,4.584,8.133,6.071,6.888,4.187,5.448 },8.314,2.261,4.24,1.781,4.124,0.932,8.129,8.658,1.208,5.762 },
  0.226,8.858,1.42,0.954,1.622,4.698,6.228,9.096,0.972,7.637 },
  7.305, 2.228, 1.242, 5.928, 9.133, 1.826, 4.06, 5.204, 8.713, 8.247
  0.652,7.027,0.508,4.876,8.807,4.632,5.808,6.937,3.291,7.016},
  2.699, 3.516, 5.847, 4.119, 4.461, 7.496, 8.817, 0.69, 6.593, 9.789 },
  8.327, 3.897, 2.017, 9.57, 9.825, 1.15, 1.395, 3.885, 6.354, 0.109},
  2.132,7.006,7.136,2.641,1.882,5.943,7.273,7.691,2.88,0.564 },
  1, 4.707, 5.579, 4.08, 0.581, 9.698, 8.542, 8.077, 8.515, 9.231, 4.67 }, 8.304, 7.559, 8.567, 0.322, 7.128, 8.392, 1.472, 8.524, 2.277, 7.826 },
  8.632, 4.409, 4.832, 5.768, 7.05, 6.715, 1.711, 4.323, 4.405, 4.591 },
  4.887,9.112,0.17,8.967,9.693,9.867,7.508,7.77,8.382,6.74 },
2.44,6.686,4.299,1.007,7.008,1.427,9.398,8.48,9.95,1.675 },
  6.306, 8.583, 6.084, 1.138, 4.350, 3.134, 7.853, 6.061, 7.457, 2.258 \ \},
  0.652,2.343,1.37,0.821,1.31,1.063,0.689,8.819,8.833,9.07 }, 5.558,1.272,5.756,9.857,2.279,2.764,1.284,1.677,1.244,1.234 },
  3.352,7.549,9.817,9.437,8.687,4.167,2.57,6.54,0.228,0.027 },
  8.798, 0.88, 2.37, 0.168, 1.701, 3.68, 1.231, 2.39, 2.499, 0.064 },
 1.46,8.057,1.337,7.217,7.914,3.615,9.981,9.198,5.292,1.224 },
0.432,8.645,8.774,0.249,8.081,7.461,4.416,0.652,4.002,4.644 },
0.679,2.8,5.523,3.049,2.968,7.225,6.73,4.199,9.614,9.229 },
{ 4.263,1.074,7.286,5.599,8.291,5.2,9.214,8.272,4.398,4.506 },
  9.496, 4.83, 3.15, 8.27, 5.079, 1.231, 5.731, 9.494, 1.883, 9.732 },
 4.138,2.562,2.532,9.661,5.611,5.5,6.886,2.341,9.699,6.5 } }
```

4.2.2.2 FOXHOLEC

const double FOXHOLEC[30]

Initial value:

```
= { 0.806, 0.517, 0.1, 0.908, 0.965, 0.669, 0.524, 0.902, 0.351, 0.876, 0.462, 0.491, 0.463, 0.741, 0.352, 0.869, 0.813, 0.811, 0.0828, 0.964, 0.789, 0.360, 0.369, 0.992, 0.332, 0.817, 0.632, 0.883, 0.608, 0.326 }
```

18 File Documentation

4.3 firefly.cpp File Reference

Defines functions for the firefly class.

```
#include "firefly.h"
#include <fstream>
```

4.3.1 Detailed Description

Defines functions for the firefly class.

4.4 firefly.h File Reference

Definition for the Firefly class.

```
#include "populationV2.h"
```

Classes

· class Firefly

4.4.1 Detailed Description

Definition for the Firefly class.

Firefly Algorithm behaves like fireflies do while they mate. This class runs the firefly algorithm

4.5 particleSwarm.cpp File Reference

Defines functions for the ParticleSwarm class.

```
#include "particleSwarm.h"
#include <windows.h>
```

4.5.1 Detailed Description

Defines functions for the ParticleSwarm class.

4.6 particleSwarm.h File Reference

Defines ParticleSwarm and Thread Pointers.

```
#include "populationV2.h"
#include <fstream>
#include <thread>
#include <condition_variable>
```

Classes

- struct ThreadPointers
- class ParticleSwarm

4.6.1 Detailed Description

Defines ParticleSwarm and Thread Pointers.

20 File Documentation

Index

\sim Firefly
Firefly, 7
~ParticleSwarm
ParticleSwarm, 10
r artiologwarm, ro
allocateVelocity
-
ParticleSwarm, 10
benchmarkFunctions
benchmarksV2.cpp, 16
benchmarksV2.cpp, 15
benchmarkFunctions, 16
benchmarksV2.h, 16
FOXHOLEA, 17
FOXHOLEC, 17
bound, 5
bouria, o
copyPopulation
Population, 12
FOXHOLEA
benchmarksV2.h, 17
FOXHOLEC
benchmarksV2.h, 17
Firefly, 5
\sim Firefly, 7
Firefly, 6, 7
runFirefly, 7
firefly.cpp, 18
firefly.h, 18
meny.n, 10
gonoratoPopulation
generatePopulation
Population, 12
2 L B
particleRow
ParticleSwarm, 11
ParticleSwarm, 7
\sim ParticleSwarm, 10
allocateVelocity, 10
particleRow, 11
ParticleSwarm, 8, 10
runParticleSwarm, 11
particleSwarm.cpp, 18
particleSwarm.h, 19
Population, 11
copyPopulation, 12
generatePopulation, 12
runFirefly
Firefly, 7

runParticleSwarm

ParticleSwarm, 11

ThreadPointers, 13