Dual Vector Support Machine

这次介绍另外一种SVM, 先回顾一下linear(plus transform) SVM:

Non-Linear Support Vector Machine Revisited

$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$ s. t. $y_n(\mathbf{w}^T\underbrace{\mathbf{z}_n}_{\Phi(\mathbf{x}_n)} + b) \ge 1,$ for n = 1, 2, ..., N

Non-Linear Hard-Margin SVM

$$\mathbf{0} \ \mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_{\tilde{d}}^T \\ \mathbf{0}_{\tilde{d}} & \mathbf{I}_{\tilde{d}}^T \end{bmatrix}; \mathbf{p} = \mathbf{0}_{\tilde{d}+1}; \\ \mathbf{a}_n^T = y_n \begin{bmatrix} 1 & \mathbf{z}_n^T \end{bmatrix}; c_n = 1$$

- 3 return $b \in \mathbb{R} \& \mathbf{w} \in \mathbb{R}^{\tilde{d}}$ with $g_{SVM}(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{\Phi}(\mathbf{x}) + b)$
- demanded: not many (large-margin), but sophisticated boundary (feature transform)
- QP with $\tilde{d} + 1$ variables and N constraints —challenging if \tilde{d} large, or infinite?! :-)

goal: SVM without dependence on \tilde{d}

特点: 凸优化quadratic problem

- $d^\sim +1$ variables, d^\sim 是由d进行lineartransformation之后得到的维度
- N constraints, QP约束条件

我们引入一种类似的SVM:

- N variables
- N+1 constraints

方法:lagrange multipliers α_n 类比regularization中引入 λ

Lagrange Function

with Lagrange multipliers
$$\searrow_{n} \alpha_{n}$$
,

$$\mathcal{L}(b, \mathbf{W}, \alpha) = \frac{1}{2} \mathbf{W}^T \mathbf{W} + \sum_{n=1}^{N} \alpha_n (1 - y_n (\mathbf{W}^T \mathbf{Z}_n + b))$$
objective constraint

Claim

$$\mathsf{SVM} \equiv \min_{b,\mathbf{w}} \left(\max_{\substack{\mathsf{all } \alpha_n \geq 0}} \mathcal{L}(b,\mathbf{w},\alpha) \right) = \min_{\substack{\mathsf{b},\mathbf{w}}} \left(\infty \text{ if violate } ; \frac{1}{2}\mathbf{w}^T\mathbf{w} \text{ if feasible} \right)$$

• any 'violating'
$$(b, \mathbf{w})$$
: $\max_{\text{all } \alpha_n \geq 0} \left(\Box + \sum_n \alpha_n (\text{some positive}) \right) \to \infty$

• any 'feasible'
$$(b, \mathbf{w})$$
: $\max_{\text{all } \alpha_n \geq 0} \left(\Box + \sum_n \alpha_n (\text{all non-positive}) \right) = \Box$

证明等价性两步:

• violating: 可以趋于正无穷

• feasible: 可以保持去拉格朗日项的结果

下面问题划归为如下:

$$\min_{b,w} (\max_{all \ \alpha_n \ge 0} L(b, w, \alpha)) \tag{1}$$

进行一步对于max的放缩: 我们固定一个任意的lpha'

$$\min_{b,w} (\max_{all \ \alpha_n > 0} L(b, w, \alpha)) \ge \min_{b,w} (L(b, w, \alpha')) \tag{2}$$

$$\min_{b,w} (\max_{all \ \alpha_n \ge 0} L(b,w,\alpha)) \ge \max_{all \ \alpha_n' \ge 0} (\min_{b,w} (L(b,w,\alpha'))) \tag{3}$$

可是(3)式还不够强,我们希望有"="这种强大的条件

QP问题中, 如果满足如下条件, 那么等号成立

- 凸优化问题
- 有解,在Z空间里面是separable
- 有线性约束

——called constraint qualification

那么一定存在最佳解,对于不等式左右两边都是成立的!于是我们考虑max(min)问题

$$\max_{\text{all }\boldsymbol{\alpha}_n \geq 0} \left(\min_{\boldsymbol{b}, \mathbf{w}} \underbrace{\frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^{N} \alpha_n (1 - y_n (\mathbf{w}^T \mathbf{z}_n + b))}_{\mathcal{L}(\boldsymbol{b}, \mathbf{w}, \boldsymbol{\alpha})} \right)$$

考虑无约束情况下的情况,即这个问题的必要条件: gradient(b) = 0

- inner problem 'unconstrained', at optimal: $\frac{\partial \mathcal{L}(b,\mathbf{w},\alpha)}{\partial b} = 0 = -\sum_{n=1}^{N} \alpha_n y_n$
- no loss of optimality if solving with constraint $\sum_{n=1}^{N} \alpha_n y_n = 0$

$$0 = -\sum_{n=1}^{N} \alpha_n y_n \tag{4}$$

那么就有了新的约束条件, 简化问题:

but wait, b can be removed

$$\max_{\text{all } \boldsymbol{\alpha}_n \geq 0, \sum y_n \boldsymbol{\alpha}_n = 0} \left(\min_{\boldsymbol{b}, \mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \underline{\boldsymbol{\alpha}}_n (1 - y_n(\mathbf{w}^T \mathbf{z}_n)) - \sum_{n=1}^N \underline{\boldsymbol{\alpha}}_n y_n \cdot \underline{\boldsymbol{b}} \right)$$

再次gradient(w) = 0

我们有,

$$0 = w - \sum_{n=1}^{N} \alpha_n y_n z_n \tag{5}$$

but wait!

$$\max_{\substack{\text{all } \alpha_n \geq 0, \sum y_n \alpha_n = 0, \mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n \\ \text{all } \alpha_n \geq 0, \sum y_n \alpha_n = 0, \mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n}} \left(\min_{\substack{b, \mathbf{w}}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n - \mathbf{w}^T \mathbf{w} \right)$$

$$\iff \max_{\substack{\text{all } \alpha_n \geq 0, \sum y_n \alpha_n = 0, \mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n}} -\frac{1}{2} \| \sum_{n=1}^N \alpha_n y_n \mathbf{z}_n \|^2 + \sum_{n=1}^N \alpha_n$$

于是著名的KKT条件就出来了:

KKT Optimality Conditions

$$\max_{\substack{\textbf{all } \boldsymbol{\alpha}_n \geq 0, \sum y_n \boldsymbol{\alpha}_n = 0, \mathbf{w} = \sum \boldsymbol{\alpha}_n y_n \mathbf{z}_n}} - \frac{1}{2} \| \sum_{n=1}^N \boldsymbol{\alpha}_n y_n \mathbf{z}_n \|^2 + \sum_{n=1}^N \boldsymbol{\alpha}_n$$

if primal-dual optimal (b, \mathbf{w}, α) ,

- primal feasible: $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$
- dual feasible: $\alpha_n \ge 0$
- dual-inner optimal: $\sum y_n \alpha_n = 0$; $\mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n$
- primal-inner optimal (at optimal all 'Lagrange terms' disappear):

$$\alpha_n(1-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0$$

—called Karush-Kuhn-Tucker (KKT) conditions, necessary for optimality [& sufficient here]

will use **KKT** to 'solve' (b, \mathbf{w}) from optimal α

w已经被干掉了,现在就只剩下 $lpha_n$ 了,对于原问题优化可以得到complimentrary slackness:

$$\alpha_n(1 - y_n(w^T z_n + b)) \tag{6}$$

KKT条件是一个充要条件**

然后我们转化成标准的对偶支持向量机模型:关于w的条件先不考虑

standard hard-margin SVM dual

$$\begin{split} & \min_{\pmb{\alpha}} & \quad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n \\ & \text{subject to} & \quad \sum_{n=1}^{N} y_n \alpha_n = 0; \\ & \quad \alpha_n \geq 0, \text{for } n = 1, 2, \dots, N \end{split}$$

(convex) QP of N variables & N + 1 constraints, as promised

QP问题可以解决:

Dual SVM with QP Solver

optimal
$$\alpha = ?$$

$$\min_{\alpha} \quad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} y_{m} \mathbf{z}_{n}^{T} \mathbf{z}_{m}$$

$$- \sum_{n=1}^{N} \alpha_{n}$$
subject to
$$\sum_{n=1}^{N} y_{n} \alpha_{n} = 0;$$

$$\alpha_{n} \geq 0,$$
for $n = 1, 2, \dots, N$

optimal
$$\alpha = ?$$

$$\min_{\alpha} \quad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} y_{m} \mathbf{z}_{n}^{T} \mathbf{z}_{m}$$

$$-\sum_{n=1}^{N} \alpha_{n}$$

$$\cot to \quad \sum_{n=1}^{N} y_{n} \alpha_{n} = 0;$$

$$\alpha_{n} \geq 0,$$

$$\text{for } n = 1, 2, \dots, N$$

$$\cot contact c$$

不过很多解二次规划问题不用转化=为两个条件,具体情况看软件叭 这里要注意一个问题:

$$Q_D is too dense!$$
 (7)

所以我们需要特别的程序来解这个结果(看你用的lib叭233)

KKT conditions

if primal-dual optimal (b, \mathbf{w}, α) ,

- primal feasible: $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$
- dual feasible: $\alpha_n \ge 0$
- dual-inner optimal: $\sum y_n \alpha_n = 0$; $\mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n$
- primal-inner optimal (at optimal all 'Lagrange terms' disappear):

$$\alpha_n(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b)) = 0$$
 (complementary slackness)

- optimal $\alpha \Longrightarrow$ optimal **w**? easy above!
- optimal $\alpha \Longrightarrow$ optimal b? a range from primal feasible & equality from **comp. slackness** if one $\alpha_n > 0 \Rightarrow b = y_n \mathbf{w}^T \mathbf{z}_n$

comp. slackness: $\alpha_n > 0 \Rightarrow$ on fat boundary (SV!)

于是对于 $\alpha_n > 0$ 情况的都是 $\mathbf{support}$ vector

- only SV needed to compute **w**: $\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{z}_n = \sum_{SV} \alpha_n y_n \mathbf{z}_n$
- only SV needed to compute b: $b = y_n \mathbf{w}^T \mathbf{z}_n$ with any SV (\mathbf{z}_n, y_n)

我们比较一下SVM和PLA,发现W都可以被data表示出来:

SVM中是通过support vector的线性组合表示出来,而PLA中是通过犯错误的点来表示出来:

SVM

$$\mathbf{W}_{\text{SVM}} = \sum_{n=1}^{N} \alpha_n(y_n \mathbf{Z}_n)$$

 α_n from dual solution

PLA

$$\mathbf{W}_{\mathsf{PLA}} = \sum_{n=1}^{N} \beta_n(y_n \mathbf{Z}_n)$$

 β_n by # mistake corrections

 $\mathbf{w} = \text{linear combination of } y_n \mathbf{z}_n$

- also true for GD/SGD-based LogReg/LinReg when $\mathbf{w}_0 = \mathbf{0}$
- call w 'represented' by data

对于两种SVM的总结:

Summary: Two Forms of Hard-Margin SVM

Primal Hard-Margin SVM

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^{T}\mathbf{w}$$
sub. to
$$y_{n}(\mathbf{w}^{T}\mathbf{z}_{n} + b) \geq 1,$$
for $n = 1, 2, ..., N$

- $\tilde{d} + 1$ variables, N constraints —suitable when $\tilde{d} + 1$ small
- physical meaning: locate specially-scaled (b, w)

Dual Hard-Margin SVM

$$\min_{\alpha} \quad \frac{1}{2}\alpha^{T}Q_{D}\alpha - \mathbf{1}^{T}\alpha$$
s.t.
$$\mathbf{y}^{T}\alpha = 0;$$

$$\alpha_{n} \ge 0 \text{ for } n = 1, \dots, N$$

- N variables,
 N + 1 simple constraints
 —suitable when N small
- physical meaning: locate SVs (\mathbf{z}_n, y_n) & their α_n

both eventually result in optimal (b, \mathbf{w}) for fattest hyperplane $g_{\text{SVM}}(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{\Phi}(\mathbf{x}) + b)$

这里我们还是没有解决一个重要的事情:

计算 Q_d 的时候计算的复杂度也和 d^\sim 有关

解决方法 kernel method!