

Ministry/Organization Name/Student Innovation: Department of Space, Indian Space Research Organisation

PS Code: SS612

Problem Statement Title: Prediction of TEC Variations with Artificial Intelligence using Space Weather Data as input

Team Name: AZTECH ALURE

Team Leader Name: GAYATRI CHIPPI

Institute Code (AISHE):

Problem Category: Software

Theme Name: Disaster Management

PROTOTYPE

Get F10.7 data, Interplanatery Data & Magnetic field at Geomagnetic **Equator**

Get Sunspot Cycle (Seasonal & Diurnal) with Geographical Location (Polar, Auora zones)

Get Solar Storm interval from public domain & preapre Dataset

Input Geographical Location

Predict the TEC variation with Solar Storm Interval acc. to Season using **Naive Bayes& Decision Tree**

Predict the TFC variation with F10.7 & Magnetic Field & Location using XGBooster Algorithm

TEC Variation

Predict the TEC variation with **Location & Solar Flare using** LSTM model

TEC Variation

NAIVE BAYES

Predict the TEC variation with Solar Storm interval according to Season

XG BOOSTER

Predict the TEC variation with F10.7 & Magnetic Field & Location

docker

LSTM

Predict the TEC variation with Location & Solar Flare

Test dataset

Predict the TEC variation with combined effect using Neural **Network**

Training dataset

TEC Variation

TEC Variation

USE CASE

SOLUTION APPROACH

- First of all we are developing the solution for Prediction of TEC(Total Electron Count) using Deep Learning Models-Al(Artificial Intelligence).
- We are developing the web application that is developed using **Django framework** and
 HTML CSS for showing the predicted value of TEC.
- First we prepared the data set of TEC with input parameters like Solar Flare, Solar Storm.
 Interval, F10.7, Interplanetary Data, GNSS Signal Delay, Magnetic Field for the desired location.
- First we will input geographical location.
- Predict the TEC variation with Solar Storm Interval according to Season using Naive Bayes& Decision Tree.
- Predict the TEC variation with F10.7 & Magnetic Field & Location using XGBooster.
 Algorithm
- Predict the TEC variation with Location & Solar Flare using LSTM model.
- Predict the TEC variation with combined effect using Neural Network.

TECHNOLOGY STACK

DEPENDENCIES / SHOW STOPPERS

- Large dataset required
- **Accuracy is not 100%**
- Depend on the ML model