

Adventures in Bayesian Structural Time Series

Andrew Bates, Josh Gloyd, Tyler Tucker

What are Time Series?

Predicting the Present with Bayesian Structural Time Series by Steven L. Scott and Hal Varian (Google)

- Predicting the Present with Bayesian Structural Time Series by Steven L. Scott and Hal Varian (Google)

- Predicting the Present with Bayesian Structural Time Series by Steven L. Scott and Hal Varian (Google)
- - R: bsts

- Predicting the Present with Bayesian Structural Time Series by Steven L. Scott and Hal Varian (Google)
- - R: bsts
 - or Causal Impact

- Predicting the Present with Bayesian Structural Time Series by Steven L. Scott and Hal Varian (Google)
- - R: bsts
 - or Causal Impact
 - Python: Causal Impact

- Predicting the Present with Bayesian Structural Time Series by Steven L. Scott and Hal Varian (Google)
- - R: bsts
 - or Causal Impact
 - Python: Causal Impact
- © Comprised of 3 components:

- Predicting the Present with Bayesian Structural Time Series by Steven L. Scott and Hal Varian (Google)
- - R: bsts
 - or Causal Impact
 - Python: Causal Impact
- © Comprised of 3 components:
 - Structural Time Series model (a.k.a. state space model)

- Predicting the Present with Bayesian Structural Time Series by Steven L. Scott and Hal Varian (Google)
- - R: bsts
 - or Causal Impact
 - Python: Causal Impact
- © Comprised of 3 components:
 - Structural Time Series model (a.k.a. state space model)
 - Spike and Slab regression

- Predicting the Present with Bayesian Structural Time Series by Steven L. Scott and Hal Varian (Google)
- - R: bsts
 - or Causal Impact
 - Python: Causal Impact
- © Comprised of 3 components:
 - Structural Time Series model (a.k.a. state space model)
 - Spike and Slab regression
 - Bayesian model averaging

Structural Time Series

- Data from unobserved state space plus noise
- Model the latent state space instead of the data directly

Local Level Model

- \otimes y_t : data
- $\otimes \mu_t$: latent state

$$y_t = \mu_t + \varepsilon_t$$
 $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$
 $\mu_{t+1} = \mu_t + \xi_t$ $\xi_t \sim N(0, \sigma_{\varepsilon}^2)$

Analogous to the inercept in linear regression but allowing for the intercept to vary over time

Local Linear Trend Model

- $\Leftrightarrow y_t, \mu_t$: same as before
- $\otimes \nu_t$: slope (additional state component)

$$y_{t} = \mu_{t} + \varepsilon_{t} \qquad \qquad \varepsilon_{t} \sim N(0, \sigma_{\varepsilon}^{2})$$

$$\mu_{t+1} = \mu_{t} + \nu_{t} + \xi_{t} \qquad \qquad \xi_{t} \sim N(0, \sigma_{\xi}^{2})$$

$$\nu_{t+1} = \nu_{t} + \zeta_{t} \qquad \qquad \zeta_{t} \sim N(0, \sigma_{\zeta}^{2})$$

Structural Time Series

General Form

- \otimes y_t : data
- $\otimes \alpha_t$: state component

$$y_t = Z_t' \alpha_t + \varepsilon_t$$
 $\varepsilon_t \sim N(0, H_t)$ (1)

$$\alpha_{t+1} = T_t \alpha_t + R_t \eta_t \qquad \eta_t \sim N(0, Q_t)$$
 (2)

- \otimes (1): observation equation
- \otimes (2): transition equation

Bayesian Context

- Spike and slab regression
 - Used when regression components are included
 - ♥ Variable selection technique
 - Prior on regression coefficients
- Bayesian Model Averaging
 - © Consequence of spike and slab prior
 - \otimes Different β s included in each draw of posterior (i.e. different model on each draw)
- Prior Elicitation and Posterior Sampling

 - \odot Or: expected model size, expected R^2 , weight given to R^2
 - Gibbs sampler (stochastic search variable selection) to draw from posterior
 - For details see paper by Scott and Varian

Joint Prior

- $\otimes \gamma_k = 0 \text{ if } \beta_k = 0$

$$p(\beta, \gamma, \sigma_{\epsilon}^2) = p(\beta_{\gamma}|\gamma, \sigma_{\epsilon}^2)p(\sigma_{\epsilon}^2|\gamma)p(\gamma)$$

"Spike" Prior

 \otimes π_k : probability a particular β_k is included in the model

$$\gamma \sim \prod_{k=1}^K \pi_k^{\gamma_k} (1-\pi_k)^{1-\gamma_k}$$

"Slab" Prior

- \otimes b_{γ} : b is a vector of prior means
- Ω_{γ}^{-1} : denotes the rows and columns of symmetric matrix Ω^{-1} corresponding to $\gamma_k = 1$
- \otimes ν : prior sample size

$$eta_{\gamma} | \sigma_{\epsilon}^2, \gamma \sim \mathit{N} \Big(b_{\gamma}, \sigma_{\epsilon}^2 (\Omega_{\gamma}^{-1})^{-1} \Big) \qquad rac{1}{\sigma_{\epsilon}^2} | \gamma \sim \mathit{Ga} \Big(rac{
u}{2}, rac{\mathit{ss}}{2} \Big)$$