CS6462 Probabilistic and Explainable AI

Lesson 25 Causal Bayesian Networks

Causal Networks and Interventions

Parent-child relationship:

- stable and autonomous
- can be changed locally

Revision: Structural Causal Model

- $X_i = f_i(PA_i, U_i)$
- interventions: modify subset of X_i change U_i or set f_i to a constant
- changing (or intervening upon) one mechanism $p(X_i|PA_i)$ does not change the other mechanisms $p(X_i|PA_i)$, $i \neq j$

Bayesian network model: joint distribution tells how probable events are and how probability would change with subsequent observations

Causal model: Bayesian network model + tells how probabilities would change as a result of interventions (such changes cannot be deduced from a joint distribution)

Bayesian Network modularity and interventions:

- specify the immediate change implied by an intervention the change is local, because the parent-child relationship is autonomous
- an intervention can be predicted by modifying the corresponding factors and using the modified product to compute a new probability function

Causal Networks and Interventions (cont.)

Bayesian Network and interventions: Example

- consider the sprinkler example: $X_3 = \{on, off\}$
- action: "turning the sprinkler on"
- result:
 - remove the link $X_1 \rightarrow X_3$
 - $X_3 = on$
 - $P_{X_3=on}(X_1, X_2, X_4, X_5) = P(X_1) * P(X_2|X_1) * P(X_4|X_2, X_3 = on) * P(X_5|X_4)$
- conclusion:
 - removal of $P(X_3|X_1)$ the prior relationship between season and sprinkler is no longer in effect while we perform the action
 - a new mechanism (in which the season is ignored) determines the state of the sprinkler
- difference between the action $do(X_3 = on)$ and the observation $X_3 = on$:
 - effect of observation $X_3 = on$ is obtained by ordinary Bayesian conditioning $P(X_1, X_2, X_4, X_5, X_3 = on)$
 - effect of action $do(X_3 = on)$ is conditioning a graph, with the link $X_1 \to X_3$ removed

Causal Bayesian Networks - Definition

Mathematical Definition:

- $X = \{X_1, X_2, ..., X_n\}$ set of observables (modelled as random variables)
- G DAG, X associated with the vertices of G
- P(X) probability distribution on that set X of variables
- X_i variables subject to interventions, $X_i \subseteq X$
- $P_{X_i}(X)$ denotes the distribution resulting from the intervention $do(X_i = x)$ that sets a subset X_i of variables to constants x
- P_* set of all interventional distributions $P_{X_i}(X)$, $X_i \subseteq X$, including P(X), which represents no intervention (i.e., $X_i \equiv \emptyset$)
- DAG G is said to be a Causal Bayesian Network, compatible with P_* iff $\forall P_{X_i} \in P_*$ following conditions hold:
 - 1) $P_{X_i}(X)$ is Markov relative to G
 - 2) $P_{X_i}(X_{i,j}) = 1$ for $\forall X_{i,j} \in X_i, X_i = \{X_{i,1}, X_{i,2}, \dots, X_{i,k}\}$, whenever $X_{i,j}$ is consistent with $X_i = x$
 - 3) $P_{X_i}(X_l|PA_l) = P(X_l|PA_l)$ for $\forall X_l \notin X_i$, whenever PA_l is consistent with $X_i = x$

Mathematical Definition (cont.):

- the mathematical definition of causal Bayesian Networks imposes constraints on P_*
- these constraints enable us to compute the distribution $P_{X_i}(X)$, resulting from any intervention $do(X_i = x)$ as a truncated factorization:

$$X = \{X_1, X_2, \dots, X_n\}$$
 – set of random variables

 X_i – variables subject to interventions, $X_i \subseteq X$

$$P_{X_i}(X) = \prod_{l=1}^n P(X_l | PA_l)$$
 for $\forall X_l \notin X_i$

This definition justifies the removal of the parent-child links of the X_i subject to the intervention $do(X_i = x)$ on G.

Causal Bayesian Networks – Properties

Property 1:

 $P(X_i|PA_i) = P_{PA_i}(X_i)$, for $\forall X_i$ variables subject to interventions, $PA_i \in X_i \subseteq X$

• renders every parent set PA_i exogenous relative to its child X_i ensuring that the conditional probability $P(X_i|PA_i)$ coincides with the effect of setting PA_i as variables subject to interventions

Property 2:

 $P_{PA_i,S}(X_i) = P_{PA_i}(X_i)$, for $\forall X_i$ and for every subset S of variables disjoint of $\{X_i, PA_i\}$

• expresses the notion of invariance – if the direct causes PA_i are subject to intervention, other interventions will not affect the probability of X_i

Causal Bayesian Networks

Causal Networks and Interventions

Causal Bayesian Networks – Definition

Causal Bayesian Networks – Properties

Next Lesson:

Explainability in the context of Al

Thank You!

Questions?