Switched-capacitor filters

Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be

Switched-Capacitor Filters

- Introduction : principle
- Technology:
 - MOS capacitors
 - MOST switches
- SC Integrator
 - SC integrator: Exact transfer function
 - Stray insensitive integrator
 - Basic SC-integrator building blocks
- SC Filters: LC ladder / bi-quadratic section
- Opamp requirements
 - Charge transfer accuracy
 - Noise
- Switched-current filters

McCreary, JSSC Dec 75, 371-379 Gregorian, IEEE Proc. Aug 83, 941-986

Principle

$$I_{av} = \frac{Q_{av}}{T_c} = \frac{C(V_1 - V_2)}{T_c}$$

$$I_{av} = \frac{(V_1 - V_2)}{R}$$

- Non overlapping clocks
- Switches are MOSTs

$$R = \frac{T_c}{C} = \frac{1}{f_c C}$$

For C = 1 pF & f_c = 100 kHz R = 10 M Ω

Low-Pass Filter with R's and C

$$A_{v0} = \frac{R_2}{R_1}$$

$$\mathbf{f}_{-3db} = \frac{1}{2\pi \mathbf{R} \cdot \mathbf{C}}$$

Ratio's of R: 0.5% accuracy

Absolute value of RC: 20 % accuracy

Low-Pass Filter with switched C's

$$\mathbf{A_{v0}} = \frac{\mathbf{C_1}}{\mathbf{C_2}}$$

$$\mathbf{f_{-3db}} = \frac{\mathbf{f_c}}{2\pi} \frac{\mathbf{C_2}}{\mathbf{C}}$$

High accuracy: only ratio's of C: 0.2% Only capacitors to drive: low power! Tunable & easy to integrate!

But: only for frequencies << f_c

Example of 4th-Order SC Low-Pass filter

4th-Order SC Low-Pass filter

Switched-Capacitor Filters

- Introduction: principle
- Technology:
 - MOS capacitors
 - MOST switches
- SC Integrator
 - SC integrator: Exact transfer function
 - Stray insensitive integrator
 - Basic SC-integrator building blocks
- SC Filters: LC ladder / bi-quadratic section
- Opamp requirements
 - Charge transfer accuracy
 - Noise
- Switched-current filters

McCreary, JSSC Dec 75, 371-379 Gregorian, IEEE Proc. Aug 83, 941-986

Capacitor Matching

Willy Sansen 10-05 N1710

Random Error (σ)

Capacitances in nanometer CMOS

- MIM capacitors
- 5 metal layers, 0.35 fF/ μ m²
- Excellent matching

- Digital technology, no MIM cap.
- lateral metal-metal capacitance
- 8 metal layers, 1.7 fF/ μ m²
- Good matching

Aparicio, JSSC March 02, 384-393

Switched-Capacitor Filters

- Introduction : principle
- Technology:
 - MOS capacitors
 - MOST switches
- SC Integrator
 - SC integrator: Exact transfer function
 - Stray insensitive integrator
 - Basic SC-integrator building blocks
- SC Filters: LC ladder / bi-quadratic section
- Opamp requirements
 - Charge transfer accuracy
 - Noise
- Switched-current filters

McCreary, JSSC Dec 75, 371-379 Gregorian, IEEE Proc. Aug 83, 941-986

A MOST as a switch

$$R_{on} = \frac{1}{KP_n \frac{W}{L} (V_h - V_T - V_{sign})}$$

$$W=2~\mu m~L=0.7~\mu m$$

$$KP_n=80~\mu A/V^2$$

$$V_T=0.7~V$$

$$V_h = 3 V$$

Double Switch or transmission gate

Switch: $v_{in} \xrightarrow{\Phi_1} v_{in} \xrightarrow{\Phi_1} c$

nMOST:
$$V_{in} < V_{DD}-V_{GS,n} \approx V_{DD} - 0.7 V$$

pMOST:
$$V_{in} > V_{GS,p} \approx 0.7 \text{ V}$$

Minimum
$$V_h = V_{DD} : V_{DD} - V_{GS,n} = V_{GS,p} = V_{DD} > 1.4 V$$

Double Switch

Low Voltage SC: MOST-Switch

Time constant of Ron

$$V_{out} = V_{in} (1-exp(-\frac{t}{RC}))$$

$$t_{s} = RC \ln(1/\epsilon)$$

$$t_{s} \approx 7 RC \text{ for } \epsilon = 0.1 \%$$

Speed ↓ if large C (low noise) large R (small switch)

Maximum frequency of operation

For W/L = 2 and V_{GS} - $V_T \approx 1 V$

 $R_{on} \approx 10 \text{ k}\Omega$

For $C \approx 1 \text{ pF}$

For $\varepsilon \approx 0.1\%$

 $t_s = 7 \text{ RC} \approx 70 \text{ ns}$

 $T_c = 140 \text{ ns} \Rightarrow f_{\text{max}} \approx 7 \text{ MHz}$

Due to only one switch

 \Rightarrow practical f_{max} : 1-10 MHz

$$L \Psi \Rightarrow R_{on} \Psi$$

Minimum frequency of operation

$$V_{C} = 0 \qquad \qquad \Delta V_{C} \qquad \qquad \Delta V_{C} \qquad \qquad Leakage \ i = C \ \frac{dV_{C}}{dt} \qquad \qquad i \ is \ 10 \ nA/cm^{2} \ at \ 25^{o} \qquad \qquad is \ 10 \ \muA/cm^{2} \ at \ 125^{o} \qquad \qquad is \ 10 \ \muA/cm^{2} \ at \ 125^{o} \qquad \qquad For \ 10x1 \ \mum: \ 2 \ fA \ (25^{o}) \qquad \qquad \Delta V_{c} = 1\% \ of \ 0.1 \ V \ or \ \Delta V_{c} = 1 \ mV \qquad \qquad or \ 2 \ pA \ (125^{o}) \qquad \qquad dt = T_{c}/2 \quad with \ T_{c} = 1/f_{cmin} \qquad \qquad i \qquad \qquad dV_{c} = 4 \ Hz \ or \ 4 \ kHz \ (125^{o})$$

Clock Feed-Through

Overlap Capacitors

$$C_{ovl} \approx W C_{ovlo}$$

$$W \uparrow \Rightarrow R \downarrow but C_{ovl} \uparrow$$

Example:
$$W = 3\mu m$$
 L = 0.7 μm
 $C_{ovlo} = 0.5$ fF/ μm
 $\Rightarrow C_{ovl} \approx 1$ fF

$$\Delta V$$
: $Q = C_{ovl} (V_h - V_l) \approx 1 \text{fF. } 3V \approx 3 \text{fC}$
 $\Rightarrow \Delta V \approx \frac{Q}{C} \approx 3 \text{fC} / 1 \text{pF} \approx 3 \text{ mV}$

Charge redistribution

Inversion layer charge

$$Q_m \approx C_{ox}WL(V_h-V_{sign}-V_T)$$

Ex. W = 3
$$\mu$$
m L = 0.7 μ m
 $C_{ox} = 1.6 \text{ fF/}\mu\text{m}^2$
 $V_T = 0.7V V_{sign} = 1.5V$
 $\Rightarrow Q \approx 6 \text{ fC}$

 ΔV : Half is stored in each cap

$$\Rightarrow \Delta V \approx Q/2C \approx 3 \text{ fC/1pF} \approx 3 \text{ mV}$$

Total:
$$\Delta V \approx 10 \text{ mV/pF}$$
 $C \uparrow \Rightarrow CD \downarrow \text{ Speed} \downarrow \text{ Power} \uparrow$

Clock injection & Charge redistribution

$$C_{ovl,n} = C_{ovl,p}$$

No Clock FT!

Problems: matching

$$W_n = W_p$$
?

OK if Q is split equal 1/2

Problems: clock skew

rise/fall time

impedance

Quantitative Charge Redistribution

Layout considerations

Parasitic C

U

CFT

Reduce C_{ox} area

Use metal to 'shield' clock lines

Switched-Capacitor Filters

- Introduction : principle
- Technology:
 - MOS capacitors
 - MOST switches
- SC Integrator
 - SC integrator: Exact transfer function
 - Stray insensitive integrator
 - Basic SC-integrator building blocks
- SC Filters: LC ladder / bi-quadratic section
- Opamp requirements
 - Charge transfer accuracy
 - Noise
- Switched-current filters

McCreary, JSSC Dec 75, 371-379 Gregorian, IEEE Proc. Aug 83, 941-986

Sampling analog signals

Spectra

Nyquist!

 $3f_c$ f

Anti-Aliasing filter

Anti-aliasing / Reconstruction

Ex. Attenuation = 40 dB; fs = 10 kHz; $N = 1 \Rightarrow fc = 1 \text{ MHz}$

Sampled Data Basics: z-transform

Analog System: $s = j\omega$

$$\frac{\mathbf{V_{out}}}{\mathbf{V_{in}}} = \frac{1}{1 + \mathbf{sRC}}$$

z-TRANSFORM

SEQUENCE

$$a X(z) + b V(z)$$

$$ax(n) + bv(n)$$

$$z^{-n_1} Y(z)$$

$$y(n-n_1)$$

$$b^n y(n)$$

Sampled data: z-transforms

1 delay is
$$z^{-1}$$

1 delay is
$$z^{-1}$$

 $z = e^{j\omega T_c} = e^{j\frac{2\pi f}{f_c}}$

$$-z\frac{dY(z)}{dz}$$

$$Y(z^{-1})$$

$$y(-n)$$

$$x(n) * v(n)$$

$$e^{j\omega T_c} = 1 + j\omega T_c + \frac{(j\omega T_c)^2}{2} + \dots$$
 if $\omega T_c << 1$

SC-Integrator in phase 1

$$Φ1$$
 $Q_{aC1} = aC V_{in}(n-1/2)$
 $Q_{C1} = -C V_{out}(n-1)$
 $V_{out}(n-1/2) = V_{out}(n-1)$

SC-Integrator in phase 2: charge conservation

SC-Integrator: approximate transfer function

- C
$$V_{out}(n) = aC V_{in}(n-1/2) - C V_{out}(n-1)$$

 $V_{out}(n-1) = z^{-1} V_{out}$

$$\Rightarrow$$
 C.V_{out} = z⁻¹ C V_{out} - z^{-1/2} aC V_{in}

$$\frac{V_{out}}{V_{in}} = -a \frac{z^{-1/2}}{1 - z^{-1}}$$
 $z^{-1} = e^{-j\omega T_c} \approx 1 - j\omega T_c$

$$\Rightarrow \frac{Vout}{Vin} \approx -\frac{a(1-j\omega Tc(2))}{j\omega Tc} \approx -\frac{a}{j\omega Tc} \qquad \text{Integrator}$$

$$RC = \frac{T_c}{a}$$

Exact Transfer function

$$H(z) = -\frac{az^{-1/2}}{1 - z^{-1}}$$

$$H(e^{j\omega T_c}) = -\frac{ae^{-j\omega T_c/2}}{1 - e^{-j\omega T_c}}$$

$$H(e^{j\omega T_c}) = -\frac{a}{e^{j\omega T_c/2} - e^{-j\omega T_c/2}}$$

$$H(e^{j\omega T_c}) = -\frac{a}{j\omega T_c} \frac{\omega T_c/2}{\sin(\omega T_c/2)}$$

Euler's relationship:

$$\sin(x) = \frac{e^{+jx} - e^{-jx}}{2j}$$

The sin(x)/x function

$$\sin(x) \approx x - \frac{x^3}{3} + \dots$$

$$\frac{\sin(x)}{x} \approx 1 - \frac{x^2}{3} + \dots$$

For
$$x = 0.1$$

 $\sin(x)/x \approx 1 - 0.003$

For
$$x = 0.05$$

 $\sin(x)/x \approx 1 - 0.0008$
 $\approx 1 - 0.001$

- Introduction: principle
- Technology:
 - MOS capacitors
 - MOST switches
- SC Integrator
 - SC integrator: Exact transfer function
 - Stray insensitive integrator
 - Basic SC-integrator building blocks
- SC Filters: LC ladder / bi-quadratic section
- Opamp requirements
 - Charge transfer accuracy
 - Noise
- Switched-current filters

Stray Capacitances

Stray Cap at input:

Substrate coupling Continuous time PSRR very bad **Stray Cap at output:**

Cp is extra load for opamp

Stray Capacitances

$$Cp \approx 2.C_{jS}$$
. Area $\approx 20 \text{ fF}$

$$Gain = \frac{aC + 2Cp}{C}$$

$$error \approx \frac{2Cp}{aC} \approx 5 - 10\%$$

Stray Insensitive SC integrator

$$\mathbf{A_{v}} = \frac{\mathbf{C_{1}}}{\mathbf{C_{2}}} = \mathbf{a}$$

Stray Insensitive SC integrator

$$\mathbf{A_{v}} = \frac{\mathbf{C_{1}}}{\mathbf{C_{2}}} = \mathbf{a}$$

Stray Insensitive SC integrator

$$\mathbf{A_{v}} = \frac{\mathbf{C_{1}}}{\mathbf{C_{2}}} = \mathbf{a}$$

Stray Insensitive Integrator during phase 1

Stray Insensitive Integrator during phase 2

- Introduction : principle
- Technology:
 - MOS capacitors
 - MOST switches
- SC Integrator
 - SC integrator: Exact transfer function
 - Stray insensitive integrator
 - Basic SC-integrator building blocks
- SC Filters: LC ladder / bi-quadratic section
- Opamp requirements
 - Charge transfer accuracy
 - Noise
- Switched-current filters

Loss-less Integrators

Low-pass filter of 1st order

Damped because of R//C!

Damped integrators

Offset compensation

 $A_v = a z^{-1/2}$ independent of v_{os}

Gregorian, IEEE Proc. Aug 83, 941-986

Offset compensation

- Introduction : principle
- Technology:
 - MOS capacitors
 - MOST switches
- SC Integrator
 - SC integrator: Exact transfer function
 - Stray insensitive integrator
 - Basic SC-integrator building blocks
- SC Filters: LC ladder / bi-quadratic section
- Opamp requirements
 - Charge transfer accuracy
 - Noise
- Switched-current filters

Gregorian, Temes, Analog MOS Integrated Circuits for Signal Processing, Wiley, 1986 Laker, Sansen, Design of Analog Integrated Circuits and Systems, McGrawHill, 1994 Johns, Martin, Analog Integrated Circuit Design, Wiley 1997

4th Order SC low-pass ladder filter

Clock freq 100 kHz **Cut-off** 5 kHz Pass ripple 0.25dB **Stop reject** >45 dB **Power** 190µW (± 2.5V) S/N 75 dB 0.25% Harm dist 0.9 mm² Area

Biquadratic filter

$$H(z) = -\frac{a_2z^2 + a_1z + a_0}{b_2z^2 + b_1z + b_0} = -\frac{(C_1' + C_1")z^2 + (C_1C_3 - C_1' - 2C_1")z + C_1"}{(1 + C_4)z^2 + (C_2C_3 - C_4 - 2)z + 1}$$

- Introduction: principle
- Technology:
 - MOS capacitors
 - MOST switches
- SC Integrator
 - SC integrator: Exact transfer function
 - Stray insensitive integrator
 - Basic SC-integrator building blocks
- SC Filters: LC ladder / bi-quadratic section
- Opamp requirements
 - Charge transfer accuracy
 - Noise
- Switched-current filters

Opamp parameters

Feedback factor α

$$A_{c0} = 1/\alpha$$

$$T = A_0 / A_{c0} = \alpha A_0$$

$$GBW = \frac{g_{m}}{2\pi C_{eff}}$$

$$BW = \alpha GBW$$

Static error

$$V_{out, t = \infty} = -\frac{Ao.Vstep}{1 + \alpha.Ao}$$

$$\varepsilon_{s} = \frac{Vstep/\alpha - Vout}{Vstep/\alpha} = 1 - \frac{Ao}{1 + Ao.\alpha} \approx \frac{1}{\alpha.Ao}$$

Minimum Gain

$$Ao > \frac{1}{\alpha \cdot \mathcal{E}_S}$$

$$\varepsilon = 0.05\%$$

$$A_0 \approx 1-10k$$

$$\approx 60.80 \text{ dP}$$

$$\varepsilon = 0.05\%$$

$$\Box$$

$$A_0 \approx 1-10k$$

$$\approx 60-80 \text{ dB}$$

Dynamic error

$$\mathcal{E}_D = EXP(-\frac{\alpha.gm.ts}{C_{L,ef}})$$

$$\mathcal{E}_D = EXP(-\alpha.2\pi.GBW.ts)$$

$$GBW = \frac{gm}{2\pi C_{L,ef}}$$

$$t_S = \frac{1}{2f_c}$$

$$GBW = \frac{1}{\alpha.2\pi.ts} \ln(\frac{1}{\mathcal{E}_D}) = \frac{2f_c}{2\pi.\alpha} \ln(\frac{1}{\mathcal{E}_D})$$

Minimum GBW:
$$GBW > \frac{f_c}{\pi \cdot \alpha} \ln(\frac{1}{\mathcal{E}_D})$$
 $\varepsilon = 0.05\%$ $\varepsilon = 0.05\%$

$$\varepsilon = 0.05\%$$

$$\Box$$

$$GBW \approx 2-3*f_c$$

- Introduction: principle
- Technology:
 - MOS capacitors
 - MOST switches
- SC Integrator
 - SC integrator: Exact transfer function
 - Stray insensitive integrator
 - Basic SC-integrator building blocks
- SC Filters: LC ladder / bi-quadratic section
- Opamp requirements
 - Charge transfer accuracy
 - Noise
- Switched-current filters

kT/C versus kTR noise

Narrow-band noise >> noise density : $dv_{ni}^2 = 4kT R df$

Wide-band noise >> integrated noise : $\frac{--}{v_{ni}^2} = \frac{kT}{C}$

$$v_{ni}^2 = \frac{kT}{C} \frac{GBW}{f_c/2}$$

- Introduction: principle
- Technology:
 - MOS capacitors
 - MOST switches
- SC Integrator
 - SC integrator: Exact transfer function
 - Stray insensitive integrator
 - Basic SC-integrator building blocks
- SC Filters: LC ladder / bi-quadratic section
- Opamp requirements
 - Charge transfer accuracy
 - Noise
- Switched-current filters

Switched-current delay block

Switch closed : track V_{GS} $I_{out} = I_{in}$

Switch open : hold V_{GS} $I_{out} = I_{in} (\Delta T_c)$ $I_{out} = I_{in} z^{-1/2}$

Ref. Zele JSSC Feb. 96, 157-168

Switched-current low-pass filter

Ref. Zele JSSC Feb. 96, 157-168

2nd-generation switched-current filter

$$A_1 = \frac{\alpha_1}{1 + \alpha_4}$$

$$A_2 = \frac{\alpha_2}{1 + \alpha_4}$$

$$A_3 = \frac{\alpha_3}{1 + \alpha_4}$$

$$B = \frac{1}{1 + \alpha_4}$$

$$i_o(z) = \frac{A_1 z^{-1}}{1 - B z^{-1}} i_1(z) - \frac{A_2 z^{-1}}{1 - B z^{-1}} i_2(z) - \frac{A_3 (1 - z^{-1})}{1 - B z^{-1}} i_3(z)$$

Comparison SC - SI

SC

SI

Signal: Voltage

Charge on linear C

Q = C V

Accuracy: Capacitor ratio

0.2 %

Amps: Opamps

S/N+D 70 dB

Current

Charge on MOST C_{GS}

Q = It

MOST area ratio

2 %

Current mirrors

50 dB

- Introduction: principle
- Technology:
 - MOS capacitors
 - MOST switches
- SC Integrator
 - SC integrator: Exact transfer function
 - Stray insensitive integrator
 - Basic SC-integrator building blocks
- SC Filters: LC ladder / bi-quadratic section
- Opamp requirements
 - Charge transfer accuracy
 - Noise
- Switched-current filters