Задача А. Тест

Відповідь дорівнює b-c.

Задача В. Прогулянка

Достатньо розглянути усі 3!=6 способів обрати шлях між магазинами. Отже, відповідь буде дорівнювати

$$min(|a|+|a-b|+|b-c|,|a|+|a-c|+|c-b|,|b|+|b-a|+|a-c|,|b|+|b-c|+|a-c|,|c|+|a-c|+|b-a|,|c|+|c-b|+|b-a|)$$

Але є інший, красивіший розв'язок.

Нехай $a \leqslant b \leqslant c$, тоді є наступні випадки:

- 1. $c \le 0$ або $a \ge 0$ відповідь буде дорівнювати |a| або |c| відповідно.
- 2. Інакше, одна точка лежить між двома іншими, і на шляху до іншої точки ми її відвідаємо. Тобто, відповідь $\min(2 \cdot |c| + |a|, 2 \cdot |a| + |c|) = |a| + |c| + \min(|c|, |a|)$.

Задача C. OSU!

Створимо декілька змінних:

- count miss скільки промахів поспіль було до цього кроку
- \bullet current score рахунок поточної гри
- count games кількість ігор
- *max score* максимальний рахунок серед всіх ігор
- new game змінна буде вказувати, чи ми починаємо нову гру на наступний крок.

Тепер треба обробити рахунки, нехай ми зараз зчитали рахунок score, тоді:

- \bullet якщо $new_game=1$, то треба додати 1 до $count_games$ і зробити $new_game=0$.
- якщо score = 0, то треба додати 1 до $count\ miss$.
- \bullet якщо score=100 чи score=300, треба додати score до current score та занулити count miss.
- якщо $count_miss = 3$, то додаємо 1 до $count_games$, робимо $max_score = max(max_score, current score)$ та зануляємо count miss та current score.

Також після зчитування всіх балів, треба вкінці оновити max_score та $count_games$ враховуючи останню гру.

Задача D. Не час для ігор

Нехай ans_t — відповідь на запит з часом t. Порахуймо всі значення ans. Будемо йти від більшого t до меншого. В момент часу t=n-2 маємо $ans_{n-2}=a_{n-1}+a_n$. Надалі можна виражати відповідь для часу t як максимум серед відповіді для t+1 і значення пари елементів a_{t+1} та a_{t+2} , тобто, $ans_t=\max(ans_{t+1},a_{t+1}+a_{t+2})$ для усіх 0< t< n-2, а $ans_0=\max(ans_1,a_1+a_2,a_1+a_n)$ треба розглянути як окремий випадок. Тепер будемо зчитувати запити та відповідати на них виводячи значення ans_t .

Асимптотика рішення — $\mathcal{O}(n+q)$.

Задача Е. Мовні проблеми

Будемо перебирати відповідь за допомогою бінарного пошуку. Якщо ми можемо утворити пари використовуючи j волонтерів, то зможемо утворити якщо візьмемо j+1 волонтерів. Як можна перевірити, що можна утворити пари, щоб виконувались $a_i+p_i\geqslant x$, де p_i — рівень знань волонтера у парі з i-ю людиною? Відсортуймо масив a за зростанням, і зробимо масив a, в який покладемо перші a волонтерів з масиву a. Відсортуємо масив a по спаданню та візьмемо перші a елементів. Тепер залишилось перевірити, що виконується $a_i+B_i\geqslant x$ для усіх a від a до a.

Доведемо, що це завжди буде оптимально. Припустимо, що ми маємо 4 індекси $i \leqslant k < t \leqslant j$, і дві пари (a_i, B_j) та (a_t, B_k) , для яких виконується $a_i + B_j \geqslant x$ та $a_t + B_k \geqslant x$. Доведемо, що також підходять пари (a_i, B_k) та (a_t, B_j) . За умовою маємо, що $a_i \leqslant a_t$ та $B_k \geqslant B_j$, розпишемо нерівності:

$$a_i + B_k \geqslant a_i + B_j \geqslant x$$

$$a_t + B_j \geqslant a_i + B_j \geqslant x$$

В обох нерівностях ми замінили більший елемент на менший для більшої сторони та отримали нерівність, яка правда. Отже, існує оптимальне розбиття на пари, для яких не існує пар (a_i, B_j) , (a_t, B_k) $(i \le k < t \le j)$, а отже, парування (a_i, B_i) є одним з оптимальних.

Таке рішення матиме асимптотику $\mathcal{O}((n+m) \cdot \log^2 m)$, що недостатньо швидко, але при гарних оптимізаціях мало змогу пройти усі тести.

Подумаємо, як можна прибрати зайвий $\log m$ з асимптотики. Він з'являється з сортування масиву B. Як отримувати масив B вже відсортованим? Створимо вектор, який буде зберігати пари (b_i,i) . Посортуємо його по спаданню. Надалі ми зможемо створювати масив B ітеруючись по вектору і перевіряючи, чи належить цей елемент до тих, які ми розглядаємо, тобто $i \leq j$.

Це оптимізує рішення до асимптотики $\mathcal{O}((n+m)\cdot \log m)$, що достатньо, щоб не перевищити ліміт часу.

Задача F. Іспит

Рішення, яке працює для $n \leq 20$. Будемо перебирати елементи, які візьмемо у множину за 2^n за допомогою біт-масок (схожа ідея була у другій задачі першого туру ІІІ етапу Всеукраїнської олімпіади з програмування). Коли ми обрали множину, будемо знаходити її значення побітового АБО, мінімум та максимум — val, mn та mx відповідно. Якщо popcount(val) $\geqslant k$ будемо оновлювати відповідь: $ans = \min(ans, mx - mn)$.

Рішення, яке працює для $a_i < 1024$. Можна відштовхуватися від того, що існує 1024 різних значень a_i . Залишимо по одному входженню кожного значення в масив a (якщо воно було) та відсортуємо масив за зростанням. Побачимо, що на такому масиві нам вигідно обирати його підвідрізкі, а не підпослідовності. Припустимо, що ми обрали два елементи з мінімальним та максимальним значеннями — a_l та a_r відповідно. Тобто, його ціна вже є фіксованою. Якщо ми будемо брати елементи, які не будуть збільшувати максимум, чи зменшувати мінімум, його ціна не зміниться. Очевидно, що рорсоunt $(a|b) \geqslant \max(\text{popcount}(a), \text{popcount}(b))$, де | позначає побітове AБО. А отже, можна брати усі елементи з індексами $l \leqslant i \leqslant r$.

Будемо перебирати усі підвідрізки та оновлювати відповідь за $\mathcal{O}(m^2)$, де m — розмір масиву після видалення повторюваних елементів.

Повне рішення використовує ідею з попереднього рішення. Відсортуємо масив за зростанням та будемо розглядати його підвідрізки. Можна помітити, що якщо не підходив відрізок (l;r), то відрізок (l+1;r) теж не буде підходить. Це натякає на два вказівники, але як рахувати значення побітового ABO на відрізку? З означення побітового ABO, i-й біт буде дорівнювати 1, якщо він дорівнює 1 хоча б в одному числі, серед яких береться побітове ABO. Можемо зберігати для кожного біта скільки разів він зустрічається на відрізку, а значення побітового ABO можна відновити з цих значень — якщо цей біт зустрічався на відрізку, то цей біт буде й у значенні побітового ABO. Зсуваємо праву границю вправо, доки відрізок не підходить, оновлюємо відповідь і видаляємо найлівіший елемент з відрізка.

Отже, асимптотика — $\mathcal{O}(n \log A)$, де A — максимальне значення a_i .

Автор усіх задач: Андрій Столітній.