Санкт-Петербургский национальный исследовательский у информационных технологий, механики и оптин УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

ГруппаР3114	Работа выполнена 30,05
Студент_Лагус М.С.	Отчет сдан
Преподаватель_Куксова П. А.	Отчет принят

Отчет по лабораторной работе 1,09 Определение момента инерции методом крутильных колебаний

- 1. Цель работы:
 - 1. Определение момента инерции различных твердых тел методом крутильных колебаний,
 - 2. Проверка справедливости теоремы Гюйгенса-Штейнера,
- 2. Задачи, решаемые при выполнении работы,
 - 1. Измерение коэффициента угловой жесткости спиральной пружины,
 - 2. Прямые измерения периодов крутильных колебаний тел различной формы,
 - 3, Расчет моментов инерции объектов измерения и сравнение их с теоретическими значениями,
- 3. Объект исследования, Затухающие колебания, Пружинный маятник,
- 4. Метод экспериментального исследования, Многократные измерения
- 5. Рабочие формулы и исходные данные, Таблица 1
- 6. Измерительные приборы

Таблица 2

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Для измерения времени	[0; 60] сек	0,005 сек
2	Лабораторны й стенд для исследования колебательно го движения	Для исследования колебательного движения	[0,60]	

Схема

установки

Экспериментальная установка

Рис. 2. Состав лабораторной установки

На Рис. 2 показан комплект оборудования, входящий в состав лабораторной установки.

- 1. штатив со спиральной пружиной 02415.01
- 2. штатив для крепления электронного динамометра 02002.55
- 3. рулетка 09936.00
- 4. электронный динамометр 12943.00
- 5. штанга с двумя подвижными грузами 02415.06
- 6. сплошной диск 02415.03
- 7. диск с отверстиями 02415.07
- 8. шар 02415.02
- 9. полый цилиндр 02415.04
- 10. сплошной цилиндр 02415.05

8. Результаты прямых измерений и их обработки

Таблица 1: Определение коэффициента угловой жесткости пружины

φ=2	270 φ=180		φ=90		φ=-90		φ=-180		φ=-270		
F, H	r,мм	F, H	r,мм	F, H	r,мм	F, H	r,мм	F, H	r,мм	F, H	r,мм
0,39	280	0,25	271	0,13	277	0,14	275	0,26	275	0,38	275
0,54	193	0,39	179	0,19	188	0,20	194	0,36	200	0,54	194
0,90	115	0,80	85	0,36	103	0,38	105	0,78	94	0,96	111
$(\frac{3\pi}{2})$ (π) $(\frac{\pi}{2})$ $(-\pi)$ $(-\pi)$							$-\frac{3\pi}{2}$				
0.105 0.068 0.03627 -0.039)	-0.081		-0.105	<u> </u>		
k = <	$k = \langle k \rangle \pm \Delta k = 0.0229 \pm 0.0010$										

Таблица 2: Теорема Гюйгенса-Штейнера для штанги с грузами

I, мм	T1, c	T2, c	T3, c	2, M ²	<t>2, c²</t>
53	9,02	8,92	9,05	2809	80,94
73	9,93	9,97	9,98	5329	99,20
96	11,24	11,21	11,25	9216	126,26
120	12,76	12,69	12,71	14400	161,79
142	14,25	14,19	14,19	20164	201,54
200	18,49	18,44	18,42	40000	340,40
262	23,20	23,12	23,26	68644	537,93

Таблица 3: Теорема Гюйгенса-Штейнера для диска с отверстиями

The state of the s							
I, мм	T1, c	T2, c	T3, c	2, M ²	$^2, c^2$		
0	8,19	8,13	8,12	0	66,36		
30	8,40	8,45	8,46	900	71,17		
60	9,24	9,26	9,24	3600	85,50		
90	10,72	10,69	10,63	8100	114,06		
120	12,42	12,36	12,37	14400	153,429		

Таблица 4: Центральные моменты инерции объектов измерения

Объект	T1, c	T2, c	T3, c	<t>, c</t>	I,кг*м²	I _т , кг*м²
Сплошной диск	4,78	4,73	4,81	4.77	0.0131	0.0017
Полый цилиндр	3,21	3,27	3,34	3.27	0.0061	0.0007
Сплошной цилиндр	2,78	2,66	2,61	2.68	0.0041	0.0006
Шар	4,67	4,66	4,59	4.64	0.0124	0.0017

9. Расчет результатов косвенных измерений

Зависимость в графике $M(\phi)$ очевидно линейная, что подтверждает линия тренда построенная с помощью MHK.

Угловой коэффициент в этом графике является также k, коэф. угловой жёсткости.

По формуле (9), рассчитаем собственный центральный момент инерции штанги относительно оси вращения I_{rod} .

$$I_{\text{rod}} = \frac{kT^2}{4\pi^2} = (0.0229 * 2.68^2)/(4 * \pi^2) = 0.00418 \text{ kg/m}^2$$

Погрешность равна $\Delta I_{rod} = 0.000321 \ \text{K}\Gamma^*\text{M}^2$

Найдём угловой коэффициент α у графика $T^2(L^2) = 6939.4$ и вертикальное смещение относительно начала координат $T^2 = 62$.

Используя полученные данные, посчитаем $I_c = 0.0016 \text{ кг*m}^2$ через формулу (22), и найдём $I_{\text{теор}} = 0.0004 \text{ кг*m}^2$.

Полученный по расчётам вес груза = 0.228 кг

Повторим алгоритм для диска с отверстиями и таблицей 3. Угловой коэффициент $\alpha=6070$, вертикальное смещение относительно начала координат $T^2=65$.

$$I_c = 0.039 \text{ кг*м}^2$$
, $I_{\text{Teop}} = \text{m*r*r}/2 = 0.0043 \text{ кг*м}^2$ Изменение веса $\Delta \text{m} = 0.39 \text{ кг}$.

Теперь высчитаем значения для таблицы 4.

Таблица 4									
·						Измер	енные з	значения	
Объект	T1	T2	T3	(T)	I	I теор	m	r	h
Сплошной диск	4.78	4.73	4.81	4.77	0.0131	0.0017	0.287	0.109	
Полый цилиндр	3.21	3.27	3.34	3.27	0.0061	0.0007	0.363	0.05	0.1008
Сплошной цилиндр	2.78	2.66	2.61	2.68	0.0041	0.0006	0.458	0.0495	0.1015
Шар	4.67	4.66	4.59	4.64	0.0124	0.0017	0.924	0.065	

Таблица погрешностей

	Производная	Производная		
Погрешность для I	по k	по Т	Дельта I	Эпсилон I %
Сплошной диск	0.577	0.005	0.0006	5.06
Полый цилиндр	0.271	0.003	0.0006	10.27
Сплошной цилиндр	0.182	0.003	0.0007	16.41
Шар	0.545	0.005	0.0007	5.45

10. Графики

Для таблицы 2

Для таблицы 3

11. Окончательные результаты

12. Вывод