

Project Report - Part II

Numerical Analysis

Abobakr Abdelaziz 2
Elsayed Akram Elsayed 16
Fares Medhat 47
Mahmoud Mohamed 60
Mohamed Salah 55

Overview

The aim of this part is to compare and analyze the behavior of the different numerical methods studied in class: Newton Interpolation and Lagrange interpolation.

Algorithms Analysis

Newton Interpolation

- ➤ Inputs:
 - X values.
 - Y values.
 - Values to substitute with it at the function.
- > Outputs:

The polynomial function obtained from the interpolation and its plot in the data set range.

> Pseudo Code:

```
NewtonInterpolation (xValues, yValues, queryPoints) {
    n= number of input points
    from j=2 to n-1
        from k=1 to n-j
            calculate coefficient value using
            newton form
            d(k,j) = (yValue(k+1)-yValue(k)) / (xValue(k+1) - xValue(k))
    create vector b to store coefficients from k
    from k=2 to n
        b(k)=d(1,k-1)
    use symbolic function to store the expression of the function
    syms X
    from j=2 to n
        Coefficient = b(j)
        from k=1 to j-1
```

```
Coefficient *= (X - Xo(k)) expand the function to simplify it using expand() return the function
```

Lagrange Interpolation

- > X values must be unique.
- ➤ Inputs:
 - X values.
 - Y values.
 - Values to substitute with it at the function.
- ➤ Outputs:

The polynomial function obtained from the interpolation and its plot in the data set range.

> Pseudo Code:

```
summ=0
n=length(x_values)
For i=1 to n
    p=1
    For j=1 to n
        If i ≠j
        c = (x-x_values(j))/(x_values(i)-x_values(j))
        p = expand(p*c)
    End If
    Next j
    term =expand(p*y_values(i));
    summ= summ + term;
Next i
```

Data Structures Used & Why

Vectors: because they are fast and reliable.

Different Examples & their Analysis Templates

I. Example 1

Using Lagrange Interpolation

Using Newton Interpolation

II. Example 2

Using Lagrange Interpolation

Using Newton Interpolation

III. Example 3

Using Lagrange Interpolation

Using Newton Interpolation

Problematic Functions

None

Sample Runs

