



Fig. 1



Fig 2A



Fig 2B



Fig. 3A



Fig 3B



Fig. 4



Fig. 5

Figure 6

| Parameter                 | Feedgas compositions for exemplary HDIS processes                                                                                                                                                                                                    |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | Embodiment #1                                                                                                                                                                                                                                        | Embodiment #2                                                                                                                                                                                                                                          | Embodiment #3                                                                                                                                                                                                                                                  |
| Principal gas             | oxygen                                                                                                                                                                                                                                               | hydrogen                                                                                                                                                                                                                                               | water vapor                                                                                                                                                                                                                                                    |
| Inert diluent gas         | any noble gas,<br>nitrogen                                                                                                                                                                                                                           | helium, argon, or<br>nitrogen                                                                                                                                                                                                                          | helium, argon, or<br>nitrogen                                                                                                                                                                                                                                  |
| Additive gases            | water vapor<br>oxides of nitrogen<br>oxides of sulfur<br>methyl, ethyl alcohol<br>hydrogen<br>methane<br>ammonia<br>methyl, ethyl amine<br>carbon dioxide<br>formaldehyde (oxides<br>of sulfur, nitrous oxide,<br>nitric oxide, nitrogen<br>dioxide) | oxygen<br>methane<br>ammonia<br>water vapor<br>methyl alcohol<br>ethyl alcohol<br>oxides of nitrogen<br>(nitrous oxide, nitric<br>oxide, nitrogen dioxide)<br>oxides of sulfur;<br>flows of the additive<br>gases of the order or<br>less for hydrogen | oxygen<br>methane<br>ammonia<br>water vapor<br>methyl alcohol<br>ethyl alcohol<br>oxides of nitrogen<br>(nitrous oxide, nitric<br>oxide, nitrogen dioxide)<br>oxides of sulfur; flows<br>of the additive gases<br>less than about 30% of<br>the total gas flow |
| Total gas flow            | less than 3,000 SCCM                                                                                                                                                                                                                                 | less than 3,000 SCCM                                                                                                                                                                                                                                   | less than 3,000 SCCM                                                                                                                                                                                                                                           |
| Pressure                  | ≤ 200 mTorr                                                                                                                                                                                                                                          | ≤ 200 mTorr                                                                                                                                                                                                                                            | ≤ 200 mTorr                                                                                                                                                                                                                                                    |
| Source power<br>to plasma | 1,000 to 2,500 watts<br>at 13.56 MHz                                                                                                                                                                                                                 | 1,000 to 2,500 watts<br>at 13.56 MHz                                                                                                                                                                                                                   | 1,000 to 2,500 watts<br>at 13.56 MHz                                                                                                                                                                                                                           |
| Bias power to pedestal    | 0.1 to 2.0 watts/cm <sup>2</sup>                                                                                                                                                                                                                     | 0.1 to 2.0 watts/cm <sup>2</sup>                                                                                                                                                                                                                       | 0.1 to 2.0 watts/cm <sup>2</sup>                                                                                                                                                                                                                               |
| Wafer temperature         | ≤ 100° C                                                                                                                                                                                                                                             | ≤ 100° C                                                                                                                                                                                                                                               | ≤ 100° C                                                                                                                                                                                                                                                       |

Figure 7

| Parameter                 | Feed gas compositions for exemplary via clean processes                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | Embodiment #1                                                                                                                                                                                                                                                                                                                                                | Embodiment #2                                                                                                                                                                                                                                                                                                                                     | Embodiment #3                                                                                                                                                                                                                                                                                                                                 |
| Principal gas             | oxygen                                                                                                                                                                                                                                                                                                                                                       | hydrogen                                                                                                                                                                                                                                                                                                                                          | water vapor                                                                                                                                                                                                                                                                                                                                   |
| Inert diluent gas         | any noble gas,<br>nitrogen                                                                                                                                                                                                                                                                                                                                   | helium, argon, or<br>nitrogen                                                                                                                                                                                                                                                                                                                     | helium, argon, or<br>nitrogen                                                                                                                                                                                                                                                                                                                 |
| Additive gases            | water vapor<br>oxides of nitrogen<br>oxides of sulfur<br>methyl, ethyl alcohol<br>hydrogen<br>methane<br>ammonia<br>methyl, ethyl amine<br>carbon dioxide<br>formaldehyde (oxides<br>of sulfur, nitrous oxide,<br>nitric oxide, nitrogen<br>dioxide), plus<br>gases which contain<br>fluorine or other<br>halogen at up to 20% of<br>the total gas flow rate | oxygen<br>methane<br>ammonia<br>water vapor<br>methyl alcohol<br>ethyl alcohol<br>oxides of nitrogen<br>(nitrous oxide, nitric<br>oxide, nitrogen dioxide)<br>oxides of sulfur;<br>flows of the additive<br>gases of the order or<br>less for hydrogen, plus<br>gases (less than 10% of<br>total flow) containing<br>fluorine or other<br>halogen | oxygen<br>methane<br>ammonia<br>water vapor<br>methyl alcohol<br>ethyl alcohol<br>oxides of nitrogen<br>(nitrous oxide, nitric<br>oxide, nitrogen dioxide)<br>oxides of sulfur; flows<br>of the additive gases no<br>more than 30% of the<br>total gas flow, plus<br>fluorinated gas or other<br>halogenated gases up to<br>20% of total flow |
| Total gas flow            | less than 3,000 SCCM                                                                                                                                                                                                                                                                                                                                         | less than 3,000 SCCM                                                                                                                                                                                                                                                                                                                              | less than 3,000 SCCM                                                                                                                                                                                                                                                                                                                          |
| Pressure                  | ≤ 200 mTorr                                                                                                                                                                                                                                                                                                                                                  | ≤ 200 mTorr                                                                                                                                                                                                                                                                                                                                       | ≤ 200 mTorr                                                                                                                                                                                                                                                                                                                                   |
| Source power<br>to plasma | 1,000 to 2,500 watts<br>at 13.56 MHz                                                                                                                                                                                                                                                                                                                         | 1,000 to 2,500 watts<br>at 13.56 MHz                                                                                                                                                                                                                                                                                                              | 1,000 to 2,500 watts<br>at 13.56 MHz                                                                                                                                                                                                                                                                                                          |
| Bias power to pedestal    | 0.1 to 2.0 watts/cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                             | 0.1 to 2.0 watts/cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                  | 0.1 to 2.0 watts/cm <sup>2</sup>                                                                                                                                                                                                                                                                                                              |
| Wafer temperature         | ≤ 100° C                                                                                                                                                                                                                                                                                                                                                     | ≤ 100° C                                                                                                                                                                                                                                                                                                                                          | ≤ 100° C                                                                                                                                                                                                                                                                                                                                      |

Figure 8

| Parameter                    | Exemplary embodiment of a two-step HDIS process                                                                |                                                                                                                                                    |
|------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | Step 1                                                                                                         | Step 2                                                                                                                                             |
|                              | Inductively coupled (or other high density) plasma source                                                      | Conventional ashing process tool                                                                                                                   |
| Gas flows:<br>oxygen         | 40 to 150 SCCM                                                                                                 | greater than 1,000 SCCM                                                                                                                            |
| Pressure                     | 2 to 10 mTorr                                                                                                  | 1 Torr                                                                                                                                             |
| Source power<br>(to plasma)  | 1.0 to 2.5 kW<br>at 13.56 MHz                                                                                  | 1 kW                                                                                                                                               |
| Bias power to wafer pedestal | 25 to 150 watts<br>at 13.56 MHz                                                                                | none                                                                                                                                               |
| Wafer temperature            | $\leq 100^\circ \text{ C}$                                                                                     | about $250^\circ \text{ C}$                                                                                                                        |
| Time of etch                 | 30 seconds<br><br>(to etch the crust, and only a small amount of the bulk photoresist lying beneath the crust) | to completion<br><br>(this step comprises the removal of the bulk of the photoresist under the crust, and is carried out in a conventional manner) |

Figure 9

| Parameter                   | Exemplary HDIS process when hardened inclusions are present |                          |                                       |
|-----------------------------|-------------------------------------------------------------|--------------------------|---------------------------------------|
|                             | Step 1<br>Crust etch                                        | Step 2<br>Crust overetch | Step 3<br>Removal of bulk photoresist |
| Principal gas               | predominantly oxygen                                        | predominantly oxygen     | predominantly oxygen                  |
| Pressure                    | 5 mTorr                                                     | 5 mTorr                  | 1.1 Torr                              |
| Source power to plasma      | 2,000 watts at 13.56 MHz                                    | 2,000 watts at 13.56 MHz | 800 watts at 13.56 MHz                |
| DC Bias voltage to pedestal | ≤ 50 volts                                                  | ≤ 50 volts               | none                                  |
| Wafer temperature           | ≤ 100° C                                                    | ≤ 150° C                 | 250° C                                |
| Time of etch                | 30 seconds or less                                          | 10 seconds or less       | 30 seconds or less                    |

Figure 10

| Parameter                   | Exemplary HDIS process with hot pedestal                                 |                                                                |
|-----------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|
|                             | Step 1<br>crust removal                                                  | Step 2<br>stripping of bulk photoresist in<br>the same chamber |
| Gas flows:                  |                                                                          |                                                                |
| oxygen                      | less than about 500 SCCM                                                 | 1 to 3 SLM                                                     |
| additives                   | any additive gas<br>from figure 6<br>except fluorine<br>containing gases | any additive gas<br>from figure 6                              |
| Pressure                    | $\leq$ 50 mTorr                                                          | 1 Torr                                                         |
| Source power<br>(to plasma) | $\geq$ about 200 watts                                                   | 800 to 1200 watts                                              |
| Wafer temperature           | 150° to 250° C                                                           | about 250° C                                                   |

CONFIDENTIAL



Fig. II A



Fig. II B

Figure 12

| Parameter                 | Exemplary processes for stripping photoresist in the presence of silicon and carbon-containing low-k dielectrics<br>(e.g. MSSQ and SiOC)                                       |                                  |                                  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|
|                           | Embodiment #1                                                                                                                                                                  | Embodiment #2                    | Embodiment #3                    |
| Principal gas             | hydrogen,<br>oxygen,<br>methane                                                                                                                                                | hydrogen                         | oxygen                           |
| Inert diluent gas         | any noble gas,<br>nitrogen                                                                                                                                                     | any noble gas,<br>nitrogen       |                                  |
| Additive gases            | ammonia, methyl<br>alcohol, water vapor,<br>and fluorine-containing<br>gases (e.g., C <sub>2</sub> F <sub>2</sub> , CHF <sub>3</sub> ,<br>and CH <sub>2</sub> F <sub>2</sub> ) |                                  |                                  |
| Total gas flow            | between 10 and 1,000<br>SCCM                                                                                                                                                   | less than 3,000 SCCM             |                                  |
| Pressure                  | 2 to 200 mTorr                                                                                                                                                                 | ≤ 200 mTorr                      | 5 mTorr                          |
| Source power<br>to plasma | between 200 and 2,000<br>watts                                                                                                                                                 |                                  | less than 500 watts              |
| Bias power to pedestal    | 0.1 to 2.0 watts/cm <sup>2</sup>                                                                                                                                               | 0.1 to 2.0 watts/cm <sup>2</sup> | 0.1 to 2.0 watts/cm <sup>2</sup> |
| Wafer temperature         | ≤ 100° C                                                                                                                                                                       | between 100<br>and 150° C        |                                  |

Figure 13

| Parameter              | Exemplary processes for stripping photoresist in the presence of silicon and carbon-containing low-k dielectrics<br>(e.g. MSSQ and SiOC) |                                                                                                    |                                  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------|
|                        | Step 1<br>version A                                                                                                                      | Step 1<br>version B                                                                                | Step 2                           |
| Principal gas          | 20 SCCM oxygen<br>40 SCCM methane                                                                                                        | 30 SCCM oxygen                                                                                     | hydrogen-based or oxygen         |
| Inert diluent gas      |                                                                                                                                          |                                                                                                    | helium or nitrogen               |
| Additive gases         |                                                                                                                                          | ammonia, silane, methyl or ethyl alcohol, water vapor, nitrogen or nitrogen oxides, carbon dioxide | water vapor or alcohols          |
| Total gas flow         | between 10 and 1,000 SCCM                                                                                                                | less than 100 SCCM                                                                                 | between 10 and 1,000 SCCM        |
| Pressure               | 5 mTorr                                                                                                                                  | 2 to 10 mTorr                                                                                      | 2 to 200 mTorr                   |
| Source power to Plasma | 2,000 watts                                                                                                                              | 200 to 2,000 watts                                                                                 | 200 to 2,000 watts               |
| Bias power to pedestal | 75 watts                                                                                                                                 | 0.1 to 2.0 watts/cm <sup>2</sup>                                                                   | 0.1 to 2.0 watts/cm <sup>2</sup> |

Figure 14

|                                 |                                                                                       |
|---------------------------------|---------------------------------------------------------------------------------------|
| Parameter                       | Branched and caged structures of non-carbon containing silsesquioxanes (HSQ and FOx™) |
| Gas flows:<br>oxygen            | less than about 1,000 SCCM<br>can be substantially oxygen                             |
| Pressure                        | 2 to 200 mTorr                                                                        |
| Source power<br>(to plasma)     | 200 to 2,000 watts                                                                    |
| Bias power to wafer<br>pedestal | 0.1 to 1.0 watts/cm <sup>2</sup>                                                      |
| Wafer temperature               | ≤ 100° C                                                                              |

Figure 15

| Parameter              | Exemplary processes for stripping photoresist in the presence of organic dielectrics                                                                                                                                                                                                                                                                          |                              |                         |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|
|                        | Generic process                                                                                                                                                                                                                                                                                                                                               | Specific process step 1      | Specific process step 2 |
| Principal gas          | oxygen flow less than 50% of total, hydrogen containing gases, net reducing atmosphere                                                                                                                                                                                                                                                                        | 2/3 water vapor; 1/3 methane | 60% methane 40% oxygen  |
| Additive gases         | hydrocarbons such as methane, ethane, propane, and butane; small cyclic hydrocarbons including cyclic butane, cyclopentane, cyclohexane, and benzene; alcohols such as methanol, ethanol, and propanol; and other gases such as carbon dioxide, hydrogen, nitrogen, ammonia, silane, disilane, TEOS, water vapor, formaldehyde, acetaldehyde, ethylene oxide. |                              |                         |
| Total gas flow         | less than about 1,000 SCCM                                                                                                                                                                                                                                                                                                                                    | 100 SCCM                     | 100 SCCM                |
| Pressure               | 1 to 200 mTorr                                                                                                                                                                                                                                                                                                                                                | 2 to 10 mTorr                | 2 to 10 mTorr           |
| Source power to Plasma | 200 to 2,000 watts                                                                                                                                                                                                                                                                                                                                            | 2,000 watts                  | 2,000 watts             |
| Bias power to pedestal | 0.1 to 2.0 watts/cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                              | 100 watts                    | 100 watts               |