Vorlesungsmitschrift WiSe 2010

Visualisierung

gehalten von Prof. Dr. Gerik Scheuermann und Dr. Alexander Wiebel Mitschrift von Tobias Mede und Christoph Kämpf

24. Juli 2011

Inhaltsverzeichnis

1	Visualisierung in Naturwissenschaft und Technik		1
	1.1	Einführung	1
	1.2	Datenrepräsentation	1
	1.3	Vektoranalysis	1

1 Visualisierung in Naturwissenschaft und Technik

1.1 Einführung

Scientific Visualization ist das womit wir uns beschäftigen. Visualisierungspipeline:

1.2 Datenrepräsentation

Prüfungsrelevant: Aufbau der Datensätze

Drei Teile: -Definitionsmenge = Teilmenge des Beobachtungsraums \mathbf{B}^b -Nachbarschaftsrelation

-Funktion der Definitionsmenge

!!Metrik

1.2.1 Voronoidiagramm

Maximal 2n-5 Ecken und 3n-6 Kanten. Delaunay Triangulierung.

1.3 Vektoranalysis

1.4 Direkte Visualisierung

1.4.1 Visualisierung von Vektordaten

Experimentelle Strömungsvisualisierung

Eine Möglichkeit der experimentellen Strömungsvisualisierung ist das Einbringen von sichtbarem Fremdmaterial in die Strömung. Dabei unterscheidet man:

Time lines: Partikel werden zur gleichen Zeit (z.B. entlang einer Linie) in die Strömung eingebracht

1 Visualisierung in Naturwissenschaft und Technik

Streak lines: Partikel werden an einer fixen Position (z.B. mittels Düsen am umströmten Objekt) in die Strömung eingebracht

Path lines: Partikel werden statistisch verteilt in Strömung eingebracht und ihr Weg für eine kurze Zeit (z.B. lange Belichtungszeit von leuchtenden Partikeln) nachverfolgt

Strömungsvisualisierung gemessener Daten

Um einen schnellen Eindruck vom gemessen Vektorfeld zu bekommen bietet sich die Hedgehog-Technik an.