Uma hash simples

Faça um programa que lê números inteiros não negativos e os insere em uma tabela de espalhamento usando o método da divisão e sondagem linear. Ao final, imprima o conteúdo da tabela.

Para uma chave $k \diamondsuit$ tal que $k \in \mathbb{N}_0 \diamondsuit \in \diamondsuit 0$ e uma tabela com tamanho $m \in \mathbb{N}_+ \diamondsuit \in \diamondsuit +$, a função de espalhamento deve ser

$$h(k) \equiv k \pmod{m} h(\diamondsuit) \equiv \diamondsuit \pmod{\diamondsuit}.$$

E a sondagem linear, em caso de colisão, deve ser

$$h'(k,i)\equiv (k+i) \pmod{m} h'(\diamondsuit,\diamondsuit)\equiv (\diamondsuit+\diamondsuit) \pmod{\diamondsuit}.$$

Entrada

A entrada começa com um valor inteiro $0 < m < 100.0000 < \diamondsuit < 100.000$ indicando o tamanho que sua tabela de espalhamento deve ter, seguida por um inteiro $0 < n \le m < \diamondsuit \le \diamondsuit$ indicando o número de valores que devem ser inseridos na tabela.

Após a configuração da tabela, aparecerão os

inteiros $x_1,x_2,x_3,...,x_n$ 1, 22, 3,..., 20. Os valores a serem inseridos na tabela serão inteiros não negativos no intervalo $0 \le x_i \le 4 \times 10$ 90 $\le 2 \times 4 \times 10$ 9.

Saída

Imprima apenas as posições não vazias da tabela usando a seguinte formatação:

- Em C/C++: "%d: %d\n", indice, tabela[indice]
- Em Python: "%d: %d" % (indice, tabela[indice])

Exemplos de Entrada e Saída

```
Entrada 7
4
29
42
11
18

Saída 0: 42
1: 29
4: 11
5: 18

Entrada 11
11
31
88
65
7
56
```

	81
	19
	89
	81
	77
	12
Saída	0: 88
	1: 56
	2: 89
	3: 77
	4: 81
	5: 81
	6: 12
	7: 7
	8: 19
	9: 31
	10: 65