第二題:飛鏢 (Dart)

Time limit:1 second

Memory limit: 256 megabytes

Description

由於 Chung 教授實在是太會丟飛鏢了,現有的飛鏢盤面已經完全攻略,毫無挑戰性可言,因此, Chung 教授決定自己研發一款飛鏢盤面與規則。

盤面變成一個 N 列 M 行,總共 $N\times M$ 格的矩形。第 i 列的第 j 格的座標是 (i,j),上面有一個整數 $S_{i,j}$,表示飛鏢射中這格能得到的分數。為了增加遊戲的趣味性,Chung 教授又想出了特殊的計分方法:

- 1. 當同個格子被**連續**丟到 x 次,該格的分數會乘以 $1+2+\cdots+x$ 倍 $(x \ge 1)$
- 2. 當飛鏢丟出界,會把現有的所有倍數加成全部清空,並且總分扣掉**飛鏢座標與盤面的曼哈頓距離** 分
- 3. 分數計算是最後才一起算,所以並不是每輪丟完就會加分

現在,給你 Chung 教授的試玩紀錄,首先會給一個數字 v

- v=1 表示接下來要輸入飛鏢的座標
- v=2 表示 Chung 教授在詢問分數

Chung 教授總共丟了 K 枚飛鏢,每個飛鏢丟到的座標為 (R_k,C_k) (注意 k 的大小寫)。 Chung 教授在遊玩過程中會詢問目前有幾分,總共會詢問 Q 次,當 Chung 教授詢問時,請你輸出按照目前盤面所計算出來的分數。 (輸入的順序當然是依照 Chung 教授丟飛鏢和問問題的順序)

再講清楚:

列是横的,行是直的

如果連續丟到同一格,中途丟到別格,後來又丟到這格,倍數會重算 (ex: 連續三次丟到 $S_{1,1}$,會有 1+2+3=6 倍的加成,中斷後會維持 6 倍,但是當再丟到一次 $S_{1,1}$,倍數就變回 1 了)

$$1 + 2 + \dots + x = \frac{x(x+1)}{2}$$

「飛鏢座標與盤面的曼哈頓距離」的意思是:假設飛鏢的座標是 (a_1,b_1) ,盤面上與 (a_1,b_1) 最近的格子的座標是 (a_2,b_2) ,曼哈頓距離就是 $|a_1-a_2|+|b_1-b_2|$

「分數計算是最後才一起算」的意思是:每個格子的分數到最後會是一個確定的數字,再去計算每個格子被射中幾次,才把那格所得的分數加進總分中。直接加起來跟最後在計算的差異請見**範例測資說明**。

Input

第一列有 2 個數字 $N, M \ (1 \le N \le 17, 1 \le M \le 19)$

接下來有 N 列,每列 M 個數字,第 i 列的第 j 個數字表示 $S_{i,j} \; (1 \leq S_{i,j} \leq 100)$

第 N+2 列 (接續上面的) 有 2 個數字 K,Q ($1 \le K \le 47, 1 \le Q \le 13$)

接下來有 K+Q 列,每列的第一個數字是 v (1 或2)

「1」後面有兩個整數代表 (R_k,C_k) $(-23 \le R_k,C_k \le 29)$;

「2」代表詢問

保證只有 Q 個「2」,其餘都是 (R_k, C_k) ,並且最後一列一定是「2」

Output

請在「2」的時候輸出盤面的分數

Sample 1

Input	Output
3 3	7
1 2 3	32
4 5 6	
7 8 9	
3 2	
1 1 2	
1 2 2	
2	
1 2 2	
2	

Sample 2

Input	Output
1 1	42
7	11
4 3	18
1 1 1	
1 1 1	
2	
1 2 3	
2	
1 1 1	
2	

Sample 3

Input	Output
2 3	-6
2 3 5	12
1 4 6	48
7 4	3
1 3 -1	
1 3 -1	
2	
1 1 2	
1 1 2	
2	
1 1 2	
2	
1 3 -1	
1 1 2	
2	

Hint

- Subtask 1 (50%) 飛鏢不會出界
- Subtask 2 (50%) 無特殊限制

範例測資一說明:

第一鏢丟到 (1,1), $S_{1,1}=2$

第二鏢丟到 (2,1), $S_{2,1}=5$

詢問現在分數,所以輸出 $S_{1,1} + S_{2,1} = 7$ 分

第三鏢丟到 (2,1),因為連續兩次,所以 $S_{2,1}$ 變為 $5 \times (1+2) = 15$

詢問現在分數,所以輸出 $S_{1,1} + S_{2,1} + S_{2,1} = 32$

如果分數計算是直接加起來的話,丟完前兩隻的分數是7,再丟第三支時,會增加25分,但這25分裡有10分來自第二鏢增加的分數,15分來自第三鏢增加的分數,不易計算。

範例測資二說明:

第一鏢丟到 (1,1), $S_{1,1}=7$

第二鏢丟到 (1,1) 使得 $S_{1,1}$ 變成 21

詢問現在分數,所以輸出 $S_{1,1} + S_{1,1} = 42$ 分

第三鏢丟到 (2,3) ,與盤面的曼哈頓距離是 3 ,要扣 3 分,並清空所有倍數, $S_{1,1}$ 變回 7

詢問現在分數,所以輸出 $S_{1,1} + S_{1,1} - 3 = 11$ 分

第四鏢丟到 $S_{1,1} = 7$

詢問現在分數,所以輸出 $S_{1,1} + S_{1,1} - 3 + S_{1,1} = 18$ 分

如果分數計算是直接加起來的話,那丟到出界後的處理太過繁複,因此採用最後才一起算的方式。