Типовой расчёт по математической статистике

В данном типовом расчете предлагается выполнить два задания следующего содержания.

 I. Из генеральной совокупности X сделана выборка объема n = 200. Требуется на основании этой выборки сделать заключение о законе распределения генеральной совокупности и её основных числовых характеристиках.

— П. По данным таблицы - группированной выборки двумерного вектора (X, Y), требуется найти выборочное уравнение прямой – линии линейной регрессии Y на X.

Каждому студенту преподаватель выдает для обработки выборку объема n = 200 из таблицы нормально распределенных случайных чисел и группированную выборку двумерного вектора в виде таблицы.

Темя 1

Оценивание, проверка статистических гипотез. Методические указания.

По выборке объема п = 200 чисел:

а) проведем группировку данных с числом интервалов, равным 12;

б) постронм гистограмму;

в) найдем эмпирическую функцию распределения (ЭФР) и построим ее график,

г) найдем точечные оценки математического ожидания и дисперсии;

 д) найдем доверительный интервал для математического ожидания с заданной надёжностью (доверительной вероятностью);

е) на основании критерия согласия χ^2 Пирсона проверим гипотезу о нормальном законе распределения генеральной совокупности.

Проведение группировки, построение гистограммы, ЭФР и нахождение точечных оценок математического ожидания и дисперсии.

В заданной выборке находим наименьший a и наибольший b элементы. Частное $\frac{b-a}{12}$ округляем до десятых, и полученное число берем в качестве шага

разбиения h. Вводим отрезок $[\tilde{a}, \tilde{b}]$, длина которого 12 h, причем числа \tilde{a} и \tilde{b} подобраны так, чтобы $\tilde{a} \approx a$; $\tilde{b} \approx b$ и, кроме того, чтобы \tilde{a} и \tilde{b} имели не более двух знаков после запятой для простоты дальнейших вычислений.

Отрезок $[\tilde{a}, \tilde{b}]$ разбиваем точкам $x_0 = \tilde{a}$, x_1 , x_2 , ..., $x_{12} = \tilde{b}$ на 12 равных частичных интервалов $\Delta_i = [x_{i-1}, x_i)$, i = 1,...,11; $\Delta_{12} = [x_{11}, x_{12}]$, затем определяем частоты n_i , то есть число элементов выборки, попавших в каждый из частичных интервалов Δ_i , относительные частоты $p_i^* = \frac{n_i}{n}$ и середины частичных интерва-

лов: $x_i^* = \frac{x_{i-1} + x_i}{2}$, i = 1, ..., 12.

Примечание. Если некоторые элементы выборки не попали на отрезок [a,b], то их условимся относить к ближайшему крайнему интервалу. Числа, совпадающие с границами частичных интервалов, условимся относить к левому интервалу. му интервалу. Результаты группировки оформляются в виде таблицы (табл. 1).

Таблица 1

Номера интервалов (x _{i-1} , x _i)	1	2	3	 12	Примечания
Границы Интервалов	(x_0,x_1)	(x_1, x_2)	(x_2, x_3)	 (1,1,1,2)	
\mathbf{x}_{i}^{\bullet}	x,*	x ₂ *	x,*	 x ₁₂	
n_i	n ₁	n ₂	n ₃	 n ₁₂	$\sum_{i=1}^{12} n_i = 200$
p_i^*	p_1^{\bullet}	p ₂ *	p ₃ *	 p ₁₂	$\sum_{i=1}^{12} p_i^* = 1$

Пример. Пусть дана выборка

-0,669	0,035	-2,077	1,077	0,525	-0,154	-0,537	-1,036	0,882	-0,402
0,392	0,106	1,430	-0,204	-0,326	0,825	1,214	0,091	-0,032	-1,264
-0,337	0,199	-0,160	0,625	-0,891	-1,464	1,353	0,466	1,000	1,511
0,369	-1,990	-1,190	0,666	-1,614	0,082	-0,184	-1,324	0,741	-0,264
-1.694	0,710	-0,655	-0,546	(1,654)	0,134	-0,529	-0,915	-0,898	0,799
0,985	0,340	0,276	0,911	-0,170	-0,551	-0,036	0,679	-0,432	0,678
-1,063	-0,594	-1,526	-0,787	0,873	-0,405	1,469	-0,318	0,922	0,522
0,033	-1,527	1,422	0,308	0,845	-0,151	1,642	0,033	-0,838	-0,872
0,597	0,362	(-3,760)	1,159	0,874	-0,794	-0,358	0,162	0,064	1,594
-1.601	-0,570	0,133	-0,660	1,485	0,682	0,104	1,215	0,686	0,676
-0266	-1,309	0,597	0,989	0,934	1,079	-0,999	0,015	-0,094	-1,920
0,901	1,531	-0,889	-1,019	0,084	1,531	0,638	1,297	-0,139	-0,157
-1,433	-1,008	-0,990	0,090	0,940	0,207	-2,243	-0,039	0,276	-0,551
1,327	0,703	-1,724	-0,709	-1,100	-1,346	0,183	-0,163	1,212	-0,452
-0,248	0,788	0,577	0,122	-0,536	0,293	-0,126	1,627	0,658	1,348
-0,401	-0,679	0,921	0,476	1,121	-0,864	-0,656	-0,220	-1,566	-0,144
0,344	0,324	0,686	-1,487	-0,136	0,803	-0,745	0,932	-0,833	-0,946
0,441	-0,372	-1,336	0,062	1,506	-0,315	1,207	0,838	-0,304	0,128
0,824	0,040	-1,734	0,261	0,054	-0,379	-0,961	-2,716	0,823	-0,112
1,385	1.320	-0.509	-0 381	-1.671	-0.524	1,298	-1,248	0,346	-0,805

табища 2

12 (קוילון)	(1,5; 2)	1,75	ω	0,040
(Kas.4.1)	(1; 1,5)	1,25	₩.	0,190 0,090
10 (5, 5,0)	(0,5; 1)	0,75	38	
9 (x ₄ ,x ₆)	(0; 0,5)	0,25	37	0,185
8 (4,4)	(-0,5; 0)	-0,25	8	0,170
7 8 9 10 11 12 (x ₆ ,x ₅) (x ₆ ,x ₅) (x ₆ ,x ₁₀) (x ₁₀ ,x ₁₁) (x ₁₁ ,x ₁₂)	(-1; -0,5)	-0,75	क्ष	0,170
6 (x,x ₅)	(4;3,5;3)(-3,5;3)(-3,-2,5) (-2,5;-2) (-2;-1,5) (-1,5;-1) (-1;-0,5) (-0,5;0) (0;0,5) (0,5;1) (1;1,5) (1,5;2)	-1,25	9 .	0,080
5 (x ₄ ,x ₅)	(-2; -1,5)	-1,75	Ξ	0,055
4 (X ₃ ,X ₄)	(-2,5;-2)	-2,25	2	0,010
3 (x, x,)	(-3,-2,5)	-2,75	-	0,005
2 (x ₁ ,x ₂)	(-3,5,-3)	-3,25	0	0
ا (چ،۶)	(4;-3,5)	92'8-	-	0,005
Homep sana (x,-1,x)	границы интер- валов	* * *	, Ľ	.,

Наименьший элемент выборки a=-3,760, наибольший b=1,654. Частное $\frac{b-a}{12}=\frac{1,654+3,760}{12}=0,451$. Округляя, получаем h=0,5, $12\ h=12\cdot 0,5=6$. Удобно взять $\tilde{a}=-4$ н $\tilde{b}=2$. Составляем таблицу 2 (см. с 40).

Построим гистограмму (рис. 1). Гистограмма представляет собой ступенчапую фигуру, составленную из прямоугольников, основания которых - частичвые витервалы $\Delta_i = [x_{i-1}, x_i), \ i = 1, 2, ..., 12$; расположенные на оси абсцисе, высоты пропорциональны, а площади равны соответствующим частотам (см. пособие с. 122-126). В нашем примере все эти данные берем из таблицы 2.

Гистограмма Рис. 1

Далее, строим эмпирическую функцию распределения (см. пособие с. 86-89). Она имеет вид $F_n(x) = \frac{n_x}{n}$; где n_x - число элементов выборки, меньших x; здесь x - любое вещественное число. Эмпирическая функция распределения является неубывающей кусочно-постоянной функцией, определенной на всей числовой оси (см. рис.2). Значения этой функции заключены в промежутке [0,1]. Из таблицы 2 находим

$$F_{n}(x) = \begin{cases} 0,000 & x \le -3.75 \\ 0,005 & 200 -3.75 < x \le -2.75 \\ 0,010 & 200 -2.75 < x \le -2.25 \\ 0,020 & -2.25 < x \le -1.75 \\ 0.075 & -1.75 < x \le -1.25 \\ 0.155 & -1.25 < x \le -0.75 \\ 0.325 & -0.75 < x \le -0.25 \\ 0.495 & -0.25 < x \le 0.25 \\ 0.680 & 0.25 < x \le 0.75 \\ 0.870 & 0.75 < x \le 1.25 \\ 0.960 & 1.25 < x \le 1.75 \\ 1.000 & x > 1.75 \end{cases}$$

рафик эмпирической функции распределения имеет вид

График эмпирической функции распределения рис.2

змечание. Для наглядности, при построении гистограммы и эмпирической зыкции роспределения масштаб по оси абсцисе и оси ординат может быть вибран различным.

Найдем точечные оценки математического ожидания и дисперсии. В качест-

ве таких оценок выбирают среднее выборочное значение $\bar{X} = \sum_{i=1}^{12} x_i^* p_i^*$ и выбо-

рочную дисперсию $S^2 = \sum_{i=1}^{12} (x_i^* - \bar{X})^2 p_i^* = \sum_{i=1}^{12} x_i^{*2} p_i^* - \bar{X}^2 = m_2 - \bar{X}^2$, где $m_2 = \sum_{i=1}^{12} x_i^{*2} p_i^*$ (см. пособие с.96-99).

Результаты заносим в таблицу вида 3.

Таблица 3

Номер интервала (x_{i-1}, x_i)	1	2	3	•••		Некоторые результаты
x,	xi xi	x ₂ *	x3		x ₁₂	
P,*	P_1^*	P ₂ *	P ₃ *	.,,	P ₁₂ *	
$\mathbf{x}_{i}^{\bullet}\mathbf{p}_{i}^{\bullet}$	$x_1^*p_1^*$	$x_2^{\bullet}p_2^{\bullet}$	$x_3^{\bullet}p_3^{\bullet}$		$x_{12}^{\bullet}p_{12}^{\bullet}$	$\bar{X} = \sum_{i=1}^{12} x_i^* p_i^*$
$x_i^{*2}p_i^*$	$x_1^{*2}p_1^*$	$x_2^{*2}p_2^*$	$x_3^{*2}p_3^*$		1	$m_2 = \sum_{i=1}^{12} x_i^{*2} p_i^*$

Таблица 3 строится по данным табл.2, затем вычисляются \bar{X} и S^2 . В нашем примере результаты приведены в табл.4, после ее создания найдены \bar{X} и S^2 .

2. Построение доверительного интервала.

Интервал (θ_1, θ_2) называется доверительным интервалом для неизвестного параметра θ , если, с заданной доверительной вероятностью γ (надежностью) можно утверждать, что неизвестный параметр находится внутри этого интервала (накрывается интервалом). В данной работе будем искать доверительный интервал для математического ожидания т с заданной доверительной вероятностью у = 0.95 (см. пособие с. 108-109).

Ввиду большого объема выборки доверительный интервал имеет вид $\left(\bar{X} - t \frac{S}{J_n}, \ \bar{X} + t \frac{S}{J_n}\right)$. Параметр t определяется из равенства

$$\gamma = P(\bar{X} - t \frac{S}{\sqrt{n}} < m < \bar{X} + t \frac{S}{\sqrt{n}}) = \frac{1}{\sqrt{2\pi}} \int_{-1}^{t} e^{-\frac{X^2}{2}} dx = \Phi(t) - \Phi(-t) = 2\Phi(t) - 1,$$

где
$$\Phi(-t) = 1 - \Phi(t)$$
, $\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{x^2}{2}} dx$.

Замечание. Для определения в при использовании функции Лапласа $\Phi^*(t) = \frac{1}{\sqrt{2\pi}} \int e^{-t^2/2} dx$ by dem unemb chedyrouge ypastiente $\gamma = 2\Phi^*(t)$.

Ta	блица	14		-									
Номер нопер- вълз	1	2	3	1	5	6	7	8	9	10	11	12	неко- торые результ яты
x_i^*	-3.75	-3,25	-2,75	-2,25	-1,75	-1,25	-0,75	-0,25	0,25	0.75	1,25	1,75	
p_i^{\bullet}	0,005	0	0,005	0,01	0,055	0,08	0,17	0,17	0,185	0,19	0.09	0,040	
$x_i^* p_i^*$	-0,019	0	0,0:4	-0,023	-0,096	-0,1	-0,128	0,043	0,046	0,143	0.113	0,07	X = 0,052
x; 2p;	0,070	0	0,038	0,051	0,168	1/8	0,096	0,011	0,012	0,107	0,141	0,123	m, = 0,942

$$\vec{X} = 0.052$$
; $S^2 = m_2 - \vec{X}^2 = 0.942 - 0.003 = 0.939$

Округляя полученные результаты, принимаем $\bar{X} = 0.05$; $S^2 = 0.94$.

Для рассматриваемого примера будем иметь при $\gamma = 0.95$, $\Phi(t) = 0.975$, откуда t = 1.95, поэтому в нашем примере имеем

$$\bar{X} - t \frac{S}{\sqrt{n}} = -0.05 - 1.95 \frac{0.97}{1.41 \cdot 10} = -0.05 - 0.13 = -0.18, \ \bar{X} + t \frac{S}{\sqrt{n}} = -0.05 + 0.13 = 0.08.$$

Таким образом, доверительный интервал для математического ожидания имеет вид (-0.18; 0.08), то есть -0.18 < m < 0.08.

3. Проверка статистических гипотез.

Проверим гипотезу о том, что генеральная совокупность, из которой произведена выборка, имеет нормальный закон распределения (такое предположение может быть сделано по виду гистограммы). Применим критерий согласия χ^2 (Пирсона). Так как математическое ожидание m и дисперсия σ^2 генеральной совокупности нам неизвестны, то вместо них возьмем их выборочные характеристики: выборочное среднее X и выборочную дисперсию S^2 .

Проверка гипотезы сводится к следующему алгоритму.

Объединим в один интервал интервалы с малыми частотами так, чтобы в каждом из интервалов было не менее 6-8 элементов выборки. Обозначим полученное число интервалов буквой k ($k \le n$). Вычислим статистику

$$\chi^2 = \sum_{i=1}^{\kappa} \frac{(n_i - np_i)^2}{np_i} = \sum_{i=1}^{\kappa} \frac{n_i^2}{np_i} - n_i$$

где n_i - число элементов выборки в каждом из k интервалов; p_i - теоретическая вероятность попадания случайной величины в i -й интервал, которая определяется по формуле

$$p_{i} = \frac{1}{\sigma \sqrt{2\pi}} \int_{x_{i-1}}^{x_{i}} \exp\left(\frac{-(x-m)^{2}}{2\sigma^{2}}\right) dx = \Phi\left(\frac{x_{i}-m}{\sigma}\right) + \Phi\left(\frac{x_{i-1}-m}{\sigma}\right) = \Phi(z_{i}) - \Phi(z_{i-1})$$

где вместо m берем \vec{X} , а вместо $\sigma^2 - S^2$, т. е. $z = (x_i - \vec{X})/S$.

Устанавливаем число степеней свободы r, которое для нормального закона вычисляем по формуле r=k-3. Назначаем уровень значимости p=0.05.

Для заданного уровня значимости p и найденного числа степеней свободы r по таблицам χ^2 -распределения Пирсона находим значение $\chi^2_{r,p}$ и сравниваем между собой это значение и вычисленное значение статистики χ^2 . Если окажется, что $\chi^2 < \chi^2_{r,p}$, то гипотеза о нормальном распределении не отвергается, то есть экспериментальные данные не противоречат гипотезе о нормальном распределении генеральной совокупности (см. пособие с. 126-129).

Замечание. При вычислении теоретических вероятностей p_i крайние интервалы (x_0, x_1) и $(x_{\kappa-1}, x_{\kappa})$ заменяются интервалами $(-\infty, x_1)$ и $(x_{\kappa-1}, +\infty)$.

Применим критерий χ^2 к рассматриваемому примеру при уровне значимости p = 0.05. Результаты вычислений помещены в таблице 5. Из этой таблицы имеем $\sum_{i=1}^{n} \frac{n_i^2}{np_i} = 209.16$; $\chi^2 = 209.16 - 200 = 9.16$. По таблице χ^2 -распределения находим: $\chi^2_p = 11.07$. Так как полученное нами значение $\chi^2 = 9.16 < 11.07$, то гипотеза о нормальном распределении генеральной совокупности не отвергается.

Приложение 3 Данные для формирования индивидуальных заданий по теме "Оценивание, проверка статистических гипотез"

	-1.006	0.386	-1.223	-0.591	-0.345	0.157	0.800	-0.155	-0.379	-1.023
	1.306	-0.861	0.303	0.518	0.986	0.788	0.883	-0.098		
	1.199	-1.230	-0.730		0.643	-0.577	-0.224	0.997	-1.165	-0.494
	-2.577	2.641	-1.143	-0.086	2.919	0.527	0.297	0.434	0.756	0.172
	-2.086	-0.904	-1.413	-0.012	-1.248	1.671	-0.521	-0.025	1.164	0.354
	2.000									
	0.866	-0.005	0.403	1.908	0.448	0.169	-0.731	-1.189	0.905	0.283
١	2.431	1.409	0.191	-0.165	0.889	0.804	-2.131	-0.754	1.458	1.650
	0.026	0.885	0.011	-c.990	-0.104	0.174	-0.052	-0.182	1.813	0.346
Į	0.110	1.757	-0.693	-0.732	1.073	-1.724	-1.810	0.947	-1.118	0.666
	0.970	1.140	-1.105	0.894	1.547	-0.484	-0.086	-0.066	0.150	-0.264
	0.,,									
	0.866	-0.005	0.403	1.908	0.448	0.169	-0.731	-1.189	0.905	0.283
	2.431	1.409	0.191	-0.165	0.889	0.804	-2.131	-0.754	1.458	1.650
	0.110	1.757	-0.693	-0.732	1.073	-1.724	-1.810	0.947	-1.118	0.666
	0.026	0.885	0.011	-0.990	-0.104	0.174	-0.052	-0.182	1.813	0.346
	0.970	1.140	-1.105	0.894	1.547	-0.484	-0.086	-0.066	0.150	-0.264
	-0.644	-0.149	0.365	1.601	1.307	0.041	-2.312	1.023	1.880	-1.422
	-0.905	0.577	-0.548	0.732	-0.482	0.413	1.380	-0.489	-0.799	-0.755
	-0.716	0.753	0.578	0.555	-1.752	0.597	1.390	-0.402	-0.560	0.157
	0.007	-0.167	-1.955	-0.813	-0.926	1.924	-0.453	1.399	1.708	0.378
	-2.814	-0.581	0.522	-0.539	0.922	0.714	-0.628	0.280	-0.644	0.178
	-0.602	2.301	-0.432	0.273	-0.802	-0.322	0.459	-0.023	0.361	0.557
	-0.993	-0.270	-0.194	2.646	-0.456	-0.703	0.660	0.134		-0.180
	1.188	0.502	0.985	-0.053	0.193	-0.744	1.124	2.408	-2.332	
	2.388	-0.119	0.468	0.472	0.889	0.371	0.979	0.901	-0.370	1.934
	2.265	-0.001		-2.080	-1.591	1.437	-1.316	0.076	1.285	1.305
i	-0.355	-2.735	1.194	-1.038	0.586	-0.213	1.143	0.454	0.097	-0.016
	-0.327	-0.535	0.743	0.628	1.525	0.492	0.979	-1.417	-0.226	0.449
	0.083	2.209	-0.121	0.867	2.143	-0.323	0.492	-0.919	-0.317	-0.522
	0.433	-0.605	-0.031	2.071	-0.746	0.822	1.257	-1.448	0.634	-1.055
	-1.435	-1.003	-0.594	-1.531	-1.414	0.594	-1.481	0.039	-0.047	1.152
	-0.499	1.683	2.247	1.444	-0.418	-2.977	-0.968	-0.308	-1.816	-0.446
	1.627	1.555	0.310	-0.074	1.414	1.007	0.555	0.003	-2.789	0.005
		-1.050	1.991	-0.362	-0.847	0.884	0.759	-1.406	0.262	-0.206
	-0.961	0.096	-0.119	-0.777	0.166	-0.405	-0.572	1.624	0.119	0.049
	-0.152	0.251	-0.272	-0.250	-0.048	-2.619	1.158	0.139	0.332	0.926

7. 20.00			0.627	-0.033	-0.319	0.570	-0.837	-0.413	1 7 10
0.350	0.033	0.478	0.637	0.302	-1.120	-0.917	-0.091	1.118	-1.640
-0.795	-0.015	1.774	-1.568	-0.656	1.460	1.701	0.630	-0.700	0.277
-0.622	-0.554	-0.470	0.700	-0.052	0.409	-0.024	0.384	-0.350	-0.674
1.429	-1.163	-0.925	0.973	0.773	1.132	-0.769	-0.609	1.816	0.203
-2.084	0.100	0.001	-0.070	0.773	1.1.72	-0.707	-0.009	1.610	1.307
		0.264	-0.373	2.173	-1.875	0.261	0.064	-0.814	-0.456
0.462	-0.603	0.264	-0.294	0.572	0.917	0.743	-1.727	0.990	-1.903
1.288	1.833	0.292		0.815	-0.546	-0.162		-1.781	-0.392
-0.956	-0.965	0.781	-1.717	-1.078	-0.605	0.435		-0.044	-1.107
1.195	-0.397	0.404	-0.053		0.025	0.861	-0.184	0.890	
-0.405	0.089	-0.325	0.217	-0.579	0.025	0.001	-0.104	0.690	1.757
	1144		2 (01	1.244	-1.547	-0.108	0.856	1.034	-0.127
-0.719	1.202	-1.083	0.606	1.244	-1.071	-0.300		-0.618	1.019
-0.219	-0.112	0.157	0.074	0.029		1.279	0.894	0.987	0.170
-0.030	0.673	-0.662	-0.685	-1.675	0.737				
-0.495	-1.322	0.362	0.475	-0.043	-1.698	-0.404	-0.741	-0.237	-0,420
-0.333	-0.216	1.170	0.757	-0.691	-0.591	1.444	1.695	0.307	2.096
							0./2/	0.406	0.200
-0.857	1.419	-1.178	-0.848	-1.576	2.249	-1.159	-0.676	-0.486	0.388
-0.771	0.626	-0.567	1.859	-0.610	-0.016	0.686	3.412	-0.331	-0.652
1.464	2.221	1.177	-0.036	0.376	0.735	0.730	-0.394	0.776	-0.056
1.091	-1.292	0.225	2.591	1.272	-0.640	0.514	1.205	-0.332	0.422
-0.074	-0.030	1.592	-0.039	1.199	0.212	-2.032	0.180	-1.065	-0.053
0.786	0.316	-0.973	-2.121	-0.033	0.188	1.220	0.897	-2.009	-0.014
-0.137	1.984	-1.147	-1.836	-0.541	0.284	-0.364	-1.230	0.243	-0.516
0.636	-0.645	-1.484	-1.542	-0.067	-1.529	-0.632	0.125	0.149	1.207
1.578	0.313	-0.966	-0.235	2.256	-2.370	-0.222	0.807	2.607	0.110
0.236	-1.251	2.032	-0.211	1.123	-0.563	1.336	0.874	1.987	-1.258
9									
1.693	-0.453	-0.362	0.971	0.539	0.238	-0.214	-1.162	-0.102	0.140
0.457	-0.620	-0.984	-1.143	-0.691	-1.203	1.082	-0.647		1.581
1.067	-1.925	1.365	-	1.084	-0.308	-0.171	1.572		-0.297
-0.127	-1.425		0.007	0.629		-0.810			-0.351
0.188	0.268	-0.428	0.746	-0.756		-0.005	-0.804	-0.450	0.872
0.100	0.200	0.120	0.710	0.750	0.020	01000			
0.821	-0.271	-0:571	-1.022	0.559	-1.372	0.515	0.086	-0.332	0.327
0.597	0.164	-1.416	-0.112	-0.619	0.675	-0.652	2.545	1.844	-0.006
0.039	-0.473	-1.056	0.062	-1.246	0.056	0.014	-0.086	0.287	0.064
-1.126	0.452	1.767	-0.439	0.095	1.323	1.213	1.287	-0.269	-0.168
0.682	-0.271	2.108	1.835	0.066	-0.232	1.411	0.248	-0.182	-0.962
0.002	-0.2/1	2.100	1.033	0.000	-0.232	1.411	0.240	3.102	

							1.558	0.262	-0.957
	17. m	0.915	0.069	-1.132	-0.923	-1.911		0.573	1.923
- 028	0.919	-0.568	-0.122	-1.468	0.588	-0.994	-0.122	-0.207	1.016
-0.028	.1.171	0.590	0.454	-0.792	-0.698	0.612	0.122		-2.676
-1.542	-1.213	0.390	0.092	-1.857	0.586	1.149	-0.291	-2.691	
0.158	2.016	0.193	-3.503	-0.266	-1.389	-0.612	-0.556	2.156	-0.005
0.091	2.704	-2.068	3,500					1 207	1 204
0.337		0.632	0.977	-1.004	0.928	-1.032	-1.060	1.297	1.204
0.251	0.409		1.306	-0.125	-0.127	1.804	1.301	1.134	1.093
0.792	1.675	-0.038	0.901	-1.353	0.304	0.367	0.980	1.462	1.093
0.592	0.515	-0.793	-0.731	1.331	-1.079	-0.319	0.453	-1.001	0.135
0.578	-0.177	-1.041	0.820	0.451	-1.305	-0.504	0.446	-0.638	0.256
0.291	0.010	0.298	0.020	0.454	• • • • • • • • • • • • • • • • • • • •				
			0.010	0.717	0.486	0.924	0.528	-0.010	-0.693
-0.327	0.407	-0.026	0.019	0.293	1.168	1.235	-0.717	-0.100	0.026
-0.038	-1.662	0.640	0.566		0.938	0.592	0.295	1.119	0.208
1.374	2.043	-0.489	1.113	-1.747		1.538	0.756	1.306	0.632
0.308	-0.535	1.615	-1.028	0.958	-0.660	0.933	1.057	0.058	-3.285
0.244	2.134	0.112	-1.352	-0.601	-0.035	0.933	1.037	0.050	3.200
			0.200	0.770	2 204	-0.654	0.134	1.763	-1.052
1.486	-1.330	-1.231	-0.388	-0.778	-2.394	-0.803	-0.976	1.697	
-1.772	0.403	0.694	0.308	-0.761	-0.391		0.533	-0.151	-2.209
-0.873	1.439	-1.192	0.681	0.564	0.440	1.328		-0.872	
-1.574	-0.892	-0.097	-1.347	-0.603	0.885	-2.623	-0.809		
-0.795	-0.679	-0.871	-1.085	-0.873	0.711	1.203	1.181	-0.861	0.598
-								0.000	1 227
-0.203	0.578	-1.211	-1.845		-0.404	1.266	0.462	-0.859	1.227
-0.852	0.615	-2.627	1.011	-0.504	-0.383	1.177	0.942	-2.268	0.069
0.022	-1.295	-1.375	1.630	-0.703	0.128	0.214	0.418	1.656	-1.571
-0.604	0.952	0.026	-0.161	0.621	1.093	-0.467	0.564	-0.994	-1.802
-0.318	-0.619	-0.708	0.368	-0.100	0.472	-0.699	-0.764	0.344	1.286
nav2ett			100				0.047		0.662
-0.941	0.512	-0.155	0.887			0.692	0.267	-1.310	0.563
0.292	0.051	-0.432		-0.802	0.093	0.153	-1.221	0.234	0.480
0.934	0.169	0.096	1.269				-0.287	0.088	1.454
1.316	-0.445	0.559	-1.028	0.465	-0.394	1.334	0.105	0.908	-0.040
0.333	-0.532	0 020	0.117	-0.325	-1.218	-1.240	-1.401	-1.864	0.179
								11/2	10
0.012	0.072	1.471	0.613	-2.320	-0.380	-0.330	0.369	0.605	-0.639
-0.932	0.630	-0.788	0.047	-1.830	-0.696	-1.109	-2.266	0.376	-0.970
0.464	0.710	1.339	0.438	-1.003	-1.649	0.136	0.651	0.578	-0.111
-1.474	0.213	0.549	2.095	-1.366	-0.364	-0.293	0.320	-1.387	0.671
-0.866	1.931	1.925	0.035	-0.758	0.846	0.166	-0.579	-0.631	1.161

0.873	0.029	0.743	1.279	0.764	2.131	-1.086	0.689	0.386	
0.078	0.093	0.012	-1.140	-0.749	-0.197	-1.901	-0.774	1.642	-1.496
-1.142	-0.848	0.505	-1.200	0.358	0.654	-0.379		-1.461	-0.026
-0.204	-1.715	-0.059	-1.107	-1.298	0.365	-0.797		-0.614	0.788
0.396	-0.191	0.599	1.049	-0.158	-0.233	-1.190	-0.299	-0.541	2.202
	1200						,	0.541	1.387
1.140	0.706	-0.643	0.920	0.562	1.007	-0.038	-0.160	-0.687	0.222
-1.068	-1.533	-0.101	0.111	0.286	-0.082	1.903	2.815	-0.514	0.323
0.769	0.873	2.093	-0.620	0.508	0.371	0.877	-0.779	-1.002	0.820
1.192	-1.799	0.830	-0.384	0.665	1.162	-0.455	1.664	0.359	-1.672
-0.168	-1.582	-0.153	-0.165	-2.129	0.515	0.470	-0.664	-0.432	
	214							0.432	1.294
-0.540		-0.711	-0.623	0.183	0.446	0.592	-0.982	0.184	1 500
-0.946		-1.151	-0.307	-0.970	-0.044	0.737	-0.738	0.139	1.586
-0.394		0.106	-0.922	-1.315	2.134	0.043	0.042	-0.062	1.660
0.170	-0.053	-0.330	-0.371	0.918	-2.029	-0.097	0.372	-0.176	-0.850
-1.211	-1.455	-0.479	-1.465	-0.987	0.549	1.131	-1.853	-0.508	0.381
0.030							1.033	-0.508	0.201
0.830	-0.213	1.958	0.966	0.627	-0.369	-0.086	-0.413	-0.271	1.482
-0.094	-1.821	-0.860	-1.903	-0.355	1.438	0.372	0.664	-0.583	
-0.459	1.468	-0.335	1.108	1.347	0.067	-0.154	-0.415	-1.412	-1.240
0.049	-0.464	-0.589	0.716	0.118	-0.228	0.515	-0.346	-1.066	-0.484
-1.363	0.733	-0.312	0.186	-0.583	0.486	1.358	-0.061	0.555	0.785
							0.001	0.555	-0.095
1.196	1.188	0.534	-0.651	-1.503	-1.026	0.397	-0.149	0.701	1.660
-0.754	0.302	-1.810	-1.246	1.184	0.109	0.493	1.144	0.781	1.560
-0.410	-0.475	1.096	-1.281	-0.579	1.583	-0.430	0.941	-0.661	1.402
-1.771	0.306	0.136	-1.935	1.258	-0.396	0.603		0.418	-0.363
-1.007	-0.630	0.584	0.136	-0.055	-0.312	-0.716	1.488	0.582	-1.124
					0.512	-0.710	0.620	-0.156	-1.570
0.140	0.326	0.709	-0.002	-1.623	1.359	0.406	0.000	0.000	
-0.868	-0.618	0.171	-0.749	-0.512	-0.064	0.406	-0.685	0.939	-0.326
-0.655	-1.232	-0.058	-0.799	-0.346		0.063	-1.108	-0.034	-1.010
1.195	1.145	0.011	1.465	0.532	-0.247	-0.711	0.196		0.813
-0.896	0.867	0.790	0.115		0.485	-0.795	-1.602	-0.590	0.995
			0.113	1.496	0.686	-0.058	0.048	-0.036	-0.201
0.768	0.908	-0.538	0.469	0.910	0.205				
-0.206	0.763	-0.852	-1.084	0.819	0.303	0.552		-0.168	0.730
1.501	0.080	2.316	-0.279	0.620	-1.496	-0.590		-1.161	-2.161
-1.039	0.836	-0.522	-0.744	-0.568	0.580	-0.183	-2.552	-0.120	1.459
-1.096	1.729	-2.352		-1.195	0.090	-1.614	0.733	-1.001	-0.158
		2.332	-0.287	2.109	-0.250	0.137	-0.769	1.479	0.310

			10000000	27.75			2,800 11		
- 013	0.341	0.677	-0.452	-0.055	-0.235	-0.462	-1.100	-0.035	-0.350
1.013	0.050	0.256	-0.098	1.150	-0.401	0.766	1.122	-0.399	
0.407	-0.951	0.664	0.686	-0.402	-2.309	-0.528	0.396		
1.143	-0.067	1.175	1.065	1.428	-0.754	0.640	-1.014	0.509	
	-1.685	-0.662	0.392	-1.182	-0.140	-0.417	0.259		
-1.133									0.520
0.544	1.254	0.384	2.243	0.708	1.029	-2.864	-0.312	0.434	0.352
-1.805	0.774	0.155	1.138	-0.065	-0.118	1.066	-0.674	-0.149	
2.195	-1.119	0.080	-0.889	-0.079	0.522	-3.046	0.603	0.992	-0.488
-0.208	-0.272	1.957	-1.749	-0.164	1.554	0.186	1.277	0.577	-0.061
0.715	-0.289	1.960	-0.761	1.272	-0.220	-0.083	0.559	-2.140	
0.110									0.000
-0.142	0.509	0.135	0.208	0.147	-1.993	0.651	1.220	-0.538	0.599
-0.151	-0.855	0.760	-0.679	-0.229	-2.238	1.483	-0.172	1.439	0.242
0.319	0.036	-1.478	0.636	1.679	-0.861	0.569	2.810	-0.690	1.198
-1.119	-0.356	0.220	-0.808	1.238	-2.127	-0.672	-0.065	0.319	0.911
0.483	0.849	-1.205	0.081	-0.663	-0.246	-1.377	-0.572	2.336	-0.164
0.445	-0.211	0.970	0.198	0.493	0.168	1.491	-0.997	-1.542	0.262
-0.226	0.809	-1.062	0.448	-0.040	1.542	-0.520	0.519	-0.424	-0.298
-0.079	-0.189		0.088	0.721	0.300	0.316	0.636	-0.996	0.643
-0.819	-0.046	1.647	0.399	0.949	0.151	1.286	0.102	-0.713	-1.727
-0.143	1.382	-1.039	-0.676	0.377	-0.084	-1.476	0.552	-1.675	-0.895
0.802	0.834	1 276	0.750			22-30-			
0.438	0.857	1.776	-0.758	2.634	1.146	0.655	0.492	-2.286	-0.431
-1.251	-0.275	0.357	0.052	1.248	-0.146	-2.766	2.056	0.307	0.758
0.750	1.982	1.089	-0.336	0.330	-0.148	-0.919		1.557	2.032
2.625	-0.795	0.142	1.476	0.100	0.284	-0.400	0.396	-0.660	-1.504
	0.75	0.142	0.618	-2.100	0.010	1.239	-0.339	0.125	0.678
-0.653	-0.682	0.290	0.002	-0.703	1 264	0.446	0 (12		Carro
1.319			-0.240	0.762	1.264 0.367	0.446	-0.617	0.346	1.083
2.026	-0.328		-0.592	-0.739	-0.225	0.743 1.264	0.189	-0.633	0.879
-0.282			2.315	-1.084	-0.268	-2.129	-1.126 -0.496	-0.472	0.322
-2.360	-0.210		-0.225	0.966	-0.690	-2.129	0.826	0.366 2.481	-0.933
				0.700	0.070	-2.043	0.020	2.401	-1.090
-1.552	-0.473	-0.135	-1.129	-0.394	-1.830	-1.174	-0.771	-0.654	0.764
0.00	-0.879	_	0.886	0.270	0.169		2.233		-1.093
0.96° -0.041			0.608	0.544	-0.636	0.632	-0.096		-0.211
0.29					1.179		1.138		-0.270
	9 0.06	7 -0.531	0.060	-0.373	0.501	0.044	-0.648	-1.330	0.513

			. 202	-1.612	0.424	-1.668	0.261		
1.042	-0.533	-0.230	1.292	-0.272	0.768		-0.351 . -0.050	-0.748	1.473
0.691	-1.018	0.599	-1.179	-0.796	0.075			1.182	2.237
1.123	0.250	1.864	-0.069	0.309	-0.789	0.398		-0.354 .	0.259
1.389	-0.533	-1.918	0.236	-0.156	1.157	0.004		-1.747	1.192
0.084	1.016	-1.216	0.843	-0.130	1.157	0.004	0.036	-0.251 -	-0.878
			0.074	0.208	0.056	-0.205	-1.293	0.221	
0.059	0.839	-0.905	0.874	0.398	0.059	-0.175	-0.131	0.331	-1.315
0.906	0.335	-1.021	0.046	2.298	0.341	-0.327	-0.792	0.080	0.323
0.882	-0.454	-0.436	0.808	0.721	-1.631	-0.271	0.751		-0.790
0.519	-0.219	1.338	1.392	-0.828	0.554	0.208	-0.217		-0.333
2.550	0.155	1.070	0.387	-0.068	0.554	0.200	-0.217	1.130	0.324
					1 676	1 202	0.604	0.675	
1.611	-0.330	0.354	0.658	-0.234	-1.576	-1.283 -0.381	-0.684	-0.675	2.214
0.318	0.658	-1.038	-0.269	0.627	1.039			-1.649	-0.153
-2.002	1.559	-0.341	0.080	1.192	0.216	0.533	-1.086	0.095	0.815
2.376	-0.031	-0.084	-0.053	-0.331	-0.918	0.003	-1.880	0.940	0.193
0.068	1.404	0.870	0.021	0.801	0.883	1.592	0.457	-0.464	1.789
			250			2000	0.246	0.420	0.1/7
-0.221	-0.938	-0.211	0.600	0.584	-1.086		0.246	-0.438	0.167
0.168	0.596	1.186	0.780	-0.834	1.380			0.473	
0.808	0.153	0.195	-1.230	-0.546	-0.074	-0.651			-1.009
1.397	-1.450	0.241	-0.733	-0.736	0.321	0.805			
-0.670	-1.736	0.603	0.222	-1.225	0.310	0.595	0.325	-0.626	0.614
					-				0.100
-1.887	0.708	1.335	-1.116	0.177	0.437	-0.933	-0.276	-0.074	0.180
0.793	-0.385	1.228	0.752	-0.029	-0.463	1.223	-1.897	0.776	-0.444
0.836	0.785	-0.359	2.134	-0.820	1.782	-0.562	-1.545	1.348	-0.169
0.060	0.728	-0.772	1.201	0.114	1.546	0.718	1.341	0.673	-0.181
1.557	-0.978	-0.389	0.990	0.627	0.527	0.071	-0.337	-1.683	-0.139
								0.000	
-0.468	0.401	-0.304	0.276	-0.450	-0.711	-0.182	1.683	-1.632	2.336
-0.145	1.097	1.152	-0.139	0.949	0.251	0.549	-1.319	-0.237	0.056
1.147	-0.685	-0.349	-1.428	-0.934	-0.864	0.234	0.829	1.731	-1.986
0.441	-0.086	1.428	0.130	1.155	2.460	-1.030	1.864	-0.723	-0.479
0.503	-1.133	0.685	0.452	-1.270	-1.454	-0.433	-0.443	-1.068	1.346
*									
-1.725		2.339	-2.472	-0.402	-1.031	1.151	1.230	0.008	1.041
1.066		-0.753	1.051	-0.108	-0.293	0.494	0.384	-1.872	0.329
0.328		0.566	-1.948	-0.589	1.154	0.663	0.142	1.821	-1.046
0.385			0.086		0.173	-0.372	-0.271	-1.081	-2.004
-0.13	5 -1.803	-1.608	0.778	0.010	-0.215	-2.060		-0.122	1.998
1.24	0.00								

Tena 1. Teopes exemb. Teopes Tena 2. Tobro Tena 3. Tobro Tena 4. Jucki Tena 5. Henry Tena 6. Oyuk

Тема 1. Оце указання ... Проведение точечных о Построение Проверка с Тема 2. Ко линейной 1 Варианты Приложен Приложен Приложен "Оценива