TUTORIA DE LÓGICA Y MATEMATICA COMPUTACIONAL

Preparándonos para el primer parcial

La guía propone diferentes ejercicios integradores de los contenidos matemáticos que serán evaluados en el primer parcial.

Lógica y matemática computacional

- 1- Dada la fórmula: $\theta = -[(\neg q \lor r) \lor \neg p] \Leftrightarrow [p \Rightarrow \neg (q \land \neg r)]$
- a) Reescribir la fórmula θ eliminando los auxiliares redundantes según la regla de prioridad.
- b) Hallar si es posible dos interpretaciones que satisfagan y dos que no satisfagan a θ .
- c) Construir el circuito lógico asociado a la siguiente expresión. $p \land q \Rightarrow \sim (r \land s)$
- 2- Dada la fórmula: $\theta = [p \Rightarrow (q \land r)] \Rightarrow [(q \lor r) \land p]$
- a)Reescribir la fórmula θ eliminando los auxiliares redundantes según la regla de prioridad.
- b)Hallar si es posible dos interpretaciones que satisfagan y dos que no satisfagan a θ .
- c)Construir el circuito lógico asociado a la siguiente expresión. $r \land q \Rightarrow (p \land \sim q)$
- 3- a) Determinar si el conjunto de fórmulas S satisfacen a φ, justificando tus respuestas.

$${p \lor q; p \to q \lor s; s \lor r \leftrightarrow q} = s \to r \land q$$

- b) Construir el circuito lógico asociado a la siguiente expresión. $p \land r \Leftrightarrow \neg (q \land s)$
- 4- a) Determinar si el conjunto de fórmulas S satisfacen a φ, justificando tus respuestas.

$$\{p \lor q; p \to q \lor s; s \lor r \leftrightarrow q\} | = (r \land q) \Rightarrow s$$

b) Construir el circuito lógico asociado a la siguiente expresión. $p \land q \Leftrightarrow \sim (r \land s)$

Ecuaciones de recurrencia

1- Dadas las siguientes sucesiones definidas por recurrencia:

$$i) \begin{cases} a_0 = 1, \ a_1 = 2 \\ a_n = 4. \, a_{n-1} - 4 a_{n-2}; \ n \geq 2 \end{cases} \qquad ii) \begin{cases} a_1 = 1, \\ a_n = a_{n-1} + 2; \ n \geq 1 \end{cases}$$

$$(ii)$$
 $\begin{cases} a_1 = 1, \\ a_n = a_{n-1} + 2; n \ge 1 \end{cases}$

- a) Hallar los 5 primeros términos de cada una de ellas.
- b) Resolver la ecuación de recurrencia asociada a la sucesión dada en i).
- c) Encontrar una expresión no recursiva de la sucesión ii).

2- Dadas las siguientes sucesiones definidas por recurrencia:

$$i) \begin{cases} a_0 = 6, \ a_1 = 3 \\ a_n = a_{n-1} - \frac{1}{4} a_{n-2}; \ n \ge 2 \end{cases}$$

$$ii) \begin{cases} a_0 = 9, \\ a_n = a_{n-1} + n; \ si \ n \ge 1 \end{cases}$$

- a) Hallar los 5 primeros términos de cada una de ellas.
- b) Resolver la ecuación de recurrencia asociada a la sucesión dada en i).
- c)Encontrar una expresión no recursiva de la sucesión dada en ii) sabiendo que:

$$\forall n \in N; \sum_{i=1}^{n} i = \frac{n.(n+1)}{2}$$

3- Dada la siguiente sucesión definida por recurrencia:

$$\begin{cases} a_0 = 0, & a_1 = 4, & a_2 = 24 \\ a_n = 6a_{n-1} - 12a_{n-2} + 8a_{n-3} & si & n \ge 3 \end{cases}$$

- a) Hallar los 6 primeros términos de la sucesión.
- b) Resolver la ecuación de recurrencia asociada a la sucesión dada.

4- Dadas la siguiente sucesión definida por recurrencia:

$$i) \left\{ \begin{matrix} a_0 = 0 & a_1 = 2 \, a_2 = 3 \\ a_n = 3. \, a_{n-1} - 3 a_{n-2} + a_{n-3} \, ; \, n \geq 3 \end{matrix} \right.$$

- a) Hallar los 6 primeros términos de la sucesión.
- b) Resolver la ecuación de recurrencia asociada a la sucesión dada.

Estructuras algebraicas

1-Determinar la estructura algebraica del par (A , +) justificando cada paso, siendo: la operación + y el producto ordinario.

$$A = \{x = 4^k, k \in Z\}$$

- 2- Determinar la estructura algebraica del par (A ,+) justificando cada paso, siendo A = Z y la operación "+" definida: a+b=2a+b
- 3- Determinar la estructura algebraica del par (A ,+) justificando cada paso, siendo:

$$A = \{x/x = 3^k, k \in Z\}$$
y la operación "+" definida: $x + y = 4.x.y$

- 4-Determinar la estructura algebraica del par (A ,+) justificando cada paso, siendo $A=\{x=2^k,k\in Z\}$: y la operación "+" definida: x+y=4. x. y
- 5- Determinar la estructura algebraica del par (A ,+) justificando cada paso, siendo:

$$A = \{x/x = 3^k, k \in Z\}$$
y la operación "+" definida: $x + y = 3.x.y$

Álgebra de Boole

1-La tabla 1 corresponde a una función booleana $f: B^4 \rightarrow \{0,1\}$

X	y	Z	u	f
1	1	1	1	0
1	1	1	0	1
1	1	0	1	0
1	1	0	0	0
1	0	1	1	1
1	0	1	0	1
1	0	0	1	1
1	0	0	0	0
0	1	1	1	0
0	1	1	0	1
0	1	0	1	0
0	1	0	0	1
0	0	1	1	0
0	0	1	0	1
0	0	0	1	0
0	0	0	0	1

	ху	xy'	x'y'	x'y
zu				
zu'				
zu z'u'				
z u z'u				
z u				

- a) Determinar su FND
- b) Simplificar la función hallada en a, utilizando un mapa de Karnaugh
- c) Construir el diagrama de compuertas de la función simplificada.

2- Dada la siguiente tabla de verdad:

2- Dada la sigui						
X	у	Z	u	f		
1	1	1	1	1		
1	1	1	0	0		
1	1	0	1	1		
1	1	0	0	0		
1	0	1	1	0		
1	0	1	0	1		
1	0	0	1	0		
1	0	0	0	1		
0	1	1	1	1		
0	1	1	0	0		
0	1	0	1	1		
0	1	0	0	0		
0	0	1	1	0		
0	0	1	0	1		
0	0	0	1	0		

0 0 0 0 1

- a) Hallar la expresión de la función booleana de $f: B^4 \rightarrow \{0,1\}$ en su FND.
- b) Simplificar usando mapas de Karnaugh.
- c) Construir el diagrama de compuertas de la función simplificada

3- Sea $(B,+,\cdot,',0,1)$ un álgebra de Boole. Hallar:

 $[(a' \cdot b' + c \cdot d) \cdot (c \cdot (c' + d))]'$ con $a, b, c, d \in B$. Justificar cada paso.

4- Dado el siguiente mapa de Karnaugh:

- a) Escribir la función booleana que lo define en su FND.
- b) Expresar en su forma más simple posible (usando el mapa dado).
- c) Construir el diagrama de compuertas de la función simplificada.

5- Sea $(B,+,\cdot,',0,1)$ un álgebra de Boole. Hallar:

$$[(x'.y'+z.w).(z.(z'+w))]$$
 con $x, y, z, w \in B$. Justificar cada

6- Dado el siguiente mapa de Karnaugh:

zu	1		l	1		
zu'		1		1	pas	o.
z'u'		1		1		
z'u	1	ΥV	$\mathbf{v}_{\mathbf{v}'}^{1'}$	v 1,	хy	
		713	113	11 9	АУ	
	zu	1			1	

1

1

1

1

zu'

z'u

z'u

- a) Escribir la función booleana que lo define en su FND.
- b) Expresar en su forma más simple posible (usando el mapa dado).
- c) Construir el diagrama de compuertas de la función simplificada.