ASSIGNMENT 7

MTH 301, 2018

- (1) Consider the set \mathbb{Q} of rational numbers with the metric d(x,y) = |x-y|; $x,y \in \mathbb{Q}$. Show that the Baire category theorem does not hold in this metric space.
- (2) Using Baire Ctegory Theorem prove the following
 - (a) [0, 1] contains uncountably many elements.
 - (b) The linear space of all polynomials in one variable is not a Banach space in any norm.
 - (c) Let (X, d) be a complete metric space with no isolated points. Then (X, d) is uncountable.
 - (d) There exists a continuous function $f:[0,1]\to\mathbb{R}$ that is not monotone on any interval of positive length.
- (3) Let $(X, \| \|)$ be a normed space, $Y \subseteq X$, i.e. $Y \neq X$ a proper linear subspace. Prove that Y contains no ball (that is, its interior is empty).
- (4) Prove that any finite dimensional linear subspace of (X, || ||) is closed.
- (5) Let $C^{\infty}(\mathbb{R})$ i.e. infintely differentiable function and suppose that for all $x \in \mathbb{R}$ there exists $n_x \in \mathbb{Z}_+$ such that $f^{(n_x)}(x) = 0$. Show that there exists a nonempty open interval $(a,b) \subset \mathbb{R}$ such that the restriction of f to (a,b) is a polynomial.
- (6) Consider X = C[0, 1] with sup metric. Define $E_m = \{f \in X : \exists x \in [0, 1] \text{ with } | f(x + h) f(x)| \le m|h| \text{ for all } x + h \in [0, 1]\}$. It is clear from the definition of differentiability that all functions differentiable at some point in (0, 1) lie in one of these sets E_m .
 - (a) Show that E_m is closed for each m.
 - (b) Show that set of piecewise linear functions P_L is dense in X. $(p \in P_L)$ if there exits a partition $0 = a_0 < a_1 < \cdots < a_k = 1$ such that $p|_{[a_1,a_{i+1}]}$ is linear for each $i = 0, \ldots, k-1$.
 - (c) If E_m contains some open ball $B_{\epsilon}(f)$ then there exists a $p \in P_L$ such that $p \in B_{\epsilon}(f)$.
 - (d) Observe that for a piecewise linear function the slopes are bounded.
 - (e) For given M consider the partition $P = \{a_j\}$ where $a_j = \frac{j}{M}, j = 0, \dots, M$. Define

a continuous function
$$g:[0,1] \to \mathbb{R}$$
 by $g(x) = \begin{cases} 1 & \text{if } x = a_j, \ j \in 2\mathbb{Z} \\ -1 & \text{if } x = a_j, \ j \in 2\mathbb{Z} + 1 \end{cases}$.

Consider $h(x) = p(x) + \frac{\epsilon}{2} g(x)$. Clearly, $h \in \mathbb{R}$ (a). By taking M large conclude that

- Consider $h(x) = p(x) + \frac{\epsilon}{2}g(x)$. Clearly, $h \in B_{\epsilon}(p)$. By taking M large conclude that E_m cannot contain an open ball.
- (f) From above conclude that there exists a continuous function which is not differentiable at any point.
- (7) Show that the set of nowhere differentiable functions is residual (hence dense) in C[0,1].

1