

Rethinking Importance Weighting for Deep Learning under Distribution Shift

Tongtong Fang*1

Nan Lu*1,2

Gang Niu²

Masashi Sugiyama^{2,1}

* Equal Contribution

¹ Univ. of Tokyo, Japan

² RIKEN, Japan

NeurIPS 2020 Spotlight Presentation

About me

- Nan LU
- Ph.D. student at the University of Tokyo
- Research interests
 - Weakly supervised learning
 - Positive-unlabeled classification
 - Unlabeled-unlabeled classification
 - Learning under distribution shift
 - Deep learning
 - Privacy-preserving learning

Motivations

Distribution Shift Almost Everywhere

• Distribution shift: the training data distribution differs from the test one $p_{tr}(x,y) \neq p_{te}(x,y)$

Distribution Shift Almost Everywhere

- Distribution shift: the training data distribution differs from the test one $p_{tr}(x,y) \neq p_{te}(x,y)$
- Covariate shift

• Class-prior shift $p_{tr}(y) \neq p_{te}(y)$

• Label noise $p_{tr}(y|\mathbf{x}) \neq p_{te}(y|\mathbf{x})$

Distribution Shift Almost Everywhere

- Distribution shift: the training data distribution differs from the test one $p_{tr}(x, y) \neq p_{te}(x, y)$
- Covariate shift
 Class-prior shift

 $p_{tr}(y) \neq p_{te}(y)$

 Label noise $p_{tr}(y|\mathbf{x}) \neq p_{te}(y|\mathbf{x})$

More than 200 top conference papers in the last two decades!

Powerful Tool: Importance Weighting (IW)

• Step one: weight estimation (WE)

[†] aka density ratio estimation

$$w^*(\boldsymbol{x}, y) = p_{te}(\boldsymbol{x}, y) / p_{tr}(\boldsymbol{x}, y)$$

Powerful Tool: Importance Weighting (IW)

Step one: weight estimation (WE)[†]

Step two: weighted classification (WC)

Train weights
$$\mathbb{E}_{p_{te}(x,y)}[f(x,y)] = \mathbb{E}_{p_{tr}(x,y)}[w^*(x,y)f(x,y)]$$
 weights Deep classifier f

Goal of Our Work

- IW is the common practice of non-deep learning under distribution shift [1,2,3]
 - [1] Density ratio estimation in machine learning. Cambridge University Press, 2012.
 - [2] Dataset shift in machine learning. The MIT Press, 2009.
 - [3] Machine learning in non-stationary environments: Introduction to covariate shift adaptation. The MIT press, 2012.

Goal of Our Work

- IW is the common practice of non-deep learning under distribution shift [1,2,3]
- But IW cannot work well on complex data

IW is still OK on Fashion-MNIST

IW fails on CIFAR-10

- Clean: use 1,000 training data, with no distribution shift
- IW: use all training data (60,000/50,000) under 0.3 pair-flip label noise
- [1] Density ratio estimation in machine learning. Cambridge University Press, 2012.
- [2] Dataset shift in machine learning. The MIT Press, 2009.
- [3] Machine learning in non-stationary environments: Introduction to covariate shift adaptation. The MIT press, 2012. 10

Methods

Rethinking Importance Weighting (IW)

Step one: weight estimation (WE)

Step two: weighted classification (WC)

Train data
$$\mathbb{E}_{p_{te}(x,y)}[f(x,y)] = \mathbb{E}_{p_{tr}(x,y)}[w^*(x,y)f(x,y)]$$
Static weights
$$\mathbb{E}_{p_{te}(x,y)}[f(x,y)] = \mathbb{E}_{p_{tr}(x,y)}[w^*(x,y)f(x,y)]$$

Rethinking Importance Weighting (IW)

Step one: weight estimation (WE)

Step two: weighted classification (WC)

Circular Dependency

 Idea: boost the expressive power of WE by a feature extractor created from f

Circular Dependency

- Idea: Boost by an external feature extractor inside f
- Causality dilemma:
 - Need w to train f
 - Need a trained f
 to estimate w
 - Chicken or egg?

Non-linear Transformation of Data

Theorem 1. For a fixed, deterministic, and invertible transformation $\pi: (\boldsymbol{x}, y) \mapsto \boldsymbol{z}$, let $p_{\mathrm{tr}}(\boldsymbol{z})$ and $p_{\mathrm{te}}(\boldsymbol{z})$ be the probability density functions (PDFs) induced by $p_{\mathrm{tr}}(\boldsymbol{x}, y)$, $p_{\mathrm{te}}(\boldsymbol{x}, y)$ and π . Then,

$$w^*(\boldsymbol{x},y) = rac{p_{ ext{te}}(\boldsymbol{x},y)}{p_{ ext{tr}}(\boldsymbol{x},y)} = rac{p_{ ext{te}}(\boldsymbol{z})}{p_{ ext{tr}}(\boldsymbol{z})} = w^*(\boldsymbol{z}).$$

If π is from part of f, f must be a reasonably good classifier so that π compresses data back to a manifold.

- End-to-end solution
- Train a deep classifier (DC) from weighted training data and create a feature extractor (FE) from DC
- Meanwhile perform weight estimation on the data transformed by FE in a seamless manner

- End-to-end solution
- Train a deep classifier (DC) from weighted training data and create a feature extractor (FE) from DC
- Meanwhile perform weight estimation on the data transformed by FE in a seamless manner

- End-to-end solution
- Train a deep classifier (DC) from weighted training data and create a feature extractor (FE) from DC
- Meanwhile perform weight estimation on the data transformed by FE in a seamless manner

Algorithm 1 Dynamic importance weighting (in a mini-batch).

Require: a training mini-batch \mathcal{S}^{tr} , a validation mini-batch \mathcal{S}^{v} , the current model $f_{\theta_{\star}}$

Hidden-layer-output transformation version:

- 1: forward the input parts of $\mathcal{S}^{\mathrm{tr}}$ & \mathcal{S}^{v}
- 2: retrieve the hidden-layer outputs $\mathcal{Z}^{\mathrm{tr}}$ & \mathcal{Z}^{v}
- 3: partition $\mathcal{Z}^{\mathrm{tr}}$ & \mathcal{Z}^{v} into $\{\mathcal{Z}_y^{\mathrm{tr}}\}_{y=1}^k$ & $\{\mathcal{Z}_y^{\mathrm{v}}\}_{y=1}^k$
- 4: **for** y = 1, ..., k **do**5: match $\mathcal{Z}_y^{\mathrm{tr}} \& \mathcal{Z}_y^{\mathrm{v}}$ to obtain \mathcal{W}_y
- multiply all $w_i \in \mathcal{W}_y$ by w_y^*
- 7: end for
- 8: compute the loss values of $\mathcal{S}^{\mathrm{tr}}$ as $\mathcal{L}^{\mathrm{tr}}$
- 9: weight the empirical risk $\widehat{R}(\boldsymbol{f}_{\theta})$ by $\{\mathcal{W}_y\}_{y=1}^k$
- 10: backward $\widehat{R}(oldsymbol{f}_{ heta})$ and update heta

Loss-value transformation version:

- 1: forward the input parts of $\mathcal{S}^{\mathrm{tr}}$ & \mathcal{S}^{v}
- 2: compute the loss values as \mathcal{L}^{tr} & \mathcal{L}^{v}
- 3: match $\mathcal{L}^{\mathrm{tr}}$ & \mathcal{L}^{v} to obtain \mathcal{W}
- 4: weight the empirical risk $\widehat{R}(\boldsymbol{f}_{\theta})$ by \mathcal{W}
- 5: backward $\widehat{R}(oldsymbol{f}_{ heta})$ and update $\widehat{ heta}$

Practical Choices of Data Transformation

Hidden-layer-output transformation

- Estimate $w_y^* = p_{\mathrm{te}}(y)/p_{\mathrm{tr}}(y)$
- ullet Partition training and val data according to y
- Invoke weight estimation k times on k partitions

$$\frac{p_{\text{te}}(\boldsymbol{x},y)}{p_{\text{tr}}(\boldsymbol{x},y)} = \frac{p_{\text{te}}(y) \cdot p_{\text{te}}(\boldsymbol{x}|y)}{p_{\text{tr}}(y) \cdot p_{\text{tr}}(\boldsymbol{x}|y)} = w_y^* \cdot \frac{p_{\text{te}}(\boldsymbol{x}|y)}{p_{\text{tr}}(\boldsymbol{x}|y)} = w_y^* \cdot \frac{p_{\text{te}}(\boldsymbol{z}|y)}{p_{\text{tr}}(\boldsymbol{z}|y)}$$

Practical Choices of Data Transformation

Hidden-layer-output transformation

- Estimate $w_y^* = p_{\mathrm{te}}(y)/p_{\mathrm{tr}}(y)$
- ullet Partition training and val data according to y
- Invoke weight estimation k times on k partitions

$$\frac{p_{\text{te}}(\boldsymbol{x},y)}{p_{\text{tr}}(\boldsymbol{x},y)} = \frac{p_{\text{te}}(y) \cdot p_{\text{te}}(\boldsymbol{x}|y)}{p_{\text{tr}}(y) \cdot p_{\text{tr}}(\boldsymbol{x}|y)} = w_y^* \cdot \frac{p_{\text{te}}(\boldsymbol{x}|y)}{p_{\text{tr}}(\boldsymbol{x}|y)} = w_y^* \cdot \frac{p_{\text{te}}(\boldsymbol{x}|y)}{p_{\text{tr}}(\boldsymbol{x}|y)}$$

Loss-value transformation

• Find a set of weights $\mathcal{W} = \{w_i\}_{i=1}^{n_{\mathrm{tr}}}$ such that for $\ell(\boldsymbol{f}_{\theta}(\boldsymbol{x}), y)$,

$$\frac{1}{n_{\rm v}} \sum_{i=1}^{n_{\rm v}} \ell(\boldsymbol{f}_{\theta}(\boldsymbol{x}_i^{\rm v}), y_i^{\rm v}) \Big|_{\theta=\theta_t} \approx \frac{1}{n_{\rm tr}} \sum_{i=1}^{n_{\rm tr}} w_i \ell(\boldsymbol{f}_{\theta}(\boldsymbol{x}_i^{\rm tr}), y_i^{\rm tr}) \Big|_{\theta=\theta_t}$$

Distribution Matching

Kernel mean matching (KMM) [1]

We minimize $\boldsymbol{w}^{\top}\boldsymbol{K}\boldsymbol{w} - 2\boldsymbol{k}^{\top}\boldsymbol{w} + \text{Const.},$ \boldsymbol{w} : weight vector subject to $0 \le w_i \le B$ and $\boldsymbol{K}_{ij} = k(\boldsymbol{z}_i^{\text{tr}}, \boldsymbol{z}_j^{\text{tr}})$ $|\frac{1}{n_{\text{tr}}}\sum_{i=1}^{n_{\text{tr}}} w_i - 1| \le \epsilon$ $\boldsymbol{k}_i = \frac{n_{\text{tr}}}{n_{\text{v}}}\sum_{j=1}^{n_{\text{v}}} k(\boldsymbol{z}_i^{\text{tr}}, \boldsymbol{z}_j^{\text{v}})$

- In IW, KMM is performed on all training data within one class
- In DIW, KMM is performed on transformed data in every mini-batch

Experiments

Label-noise Experiments

- Setting: $p_{tr}(\mathbf{x}) = p_{te}(\mathbf{x}), p_{tr}(\mathbf{y}|\mathbf{x}) \neq p_{te}(\mathbf{y}|\mathbf{x})$
- Classification results on CIFAR-10

- 0.3 pair flip
- Base model: ResNet-32
- Optimizer: Adam

- **DIW:** dynamic importance weighting
- IW: importance weighting

Label-noise Experiments

- Setting: $p_{tr}(\mathbf{x}) = p_{te}(\mathbf{x}), p_{tr}(\mathbf{y}|\mathbf{x}) \neq p_{te}(\mathbf{y}|\mathbf{x})$
- Statistics of weight distributions on CIFAR-10 under 0.4 symmetric flip

Many More Experiments in the Paper

- Label-noise experiments on Fashion-MNIST & CIFAR-100
- Class-prior-shift experiments on Fashion-MNIST
- Many ablation studies
 - DIW design options: updating/pretraining FE, choices of data transformation
 - Denoising effect analysis

Take-home Messages

- For deep learning under distribution shift, IW suffers from a circular dependency
- To avoid this issue, dynamic IW (DIW) is proposed as an end-to-end solution
 - introduce feature extractors
 - embed IW in every mini-batch
- Many algorithm design options of DIW are available

Thanks for your attention!