理論		觀察重點			
	認知	產業需求	企業能力		
		傳統營運模式受實體樣布運輸影響、生產	經營策略 :從自用數位布片掃描工具轉向		
		週期長。	商業化的平台經營模式。		
		高庫存、資源浪費問題。	資源整合與分配 :技術與過去產業經驗整		
		人工作業隱患。	合,開發數位創新協作平台。		
	行動	探索可供性			
		物質性	機會		
		掃描技術 :穩定且標準化掃描流程精準呈現布料紋理與材質。			
		AI 模型:自動辨識花紋、色彩、布種等特徵,能加速處理大規模資料,為後續數位布片			
		開發各項多元應用建立基礎。			
		雲端儲存:可隨時隨地存取相同布料資料,實現即時共享與協作。			
		數位平台一社群化與情境化 :平台情境式協作空間,提升情感連結與工作效率。			
制定		雙元性靈巧實現可供性			
定		深耕運用	創新探索		
		以產業底蘊為基礎,精準掌握需求脈絡:將	引入 MIT 團隊技術強化布料掃描精度		
		過去的經驗用於技術開發,做為經營數位	(2019): 引進 MIT 的 CycleGAN 模型與現		
		化平台基礎。	有掃描技術做結合,打造織品掃描的六種		
		從既有資源出發,探索掃描技術新應用:掃	圖層辨識。		
		描技術起初是從團隊內部開始自主研發	於 PI Apparel 2019 國際論壇發表技術,獲		
		的,利用手邊現有設備開始嘗試、實驗。	得多方關注和認可(2019): 團隊被 JCpenny		
		將掃描技術應用於供應商工廠現場試煉,	舉薦參展,獲得外部關係擴展市場與知名		
		驗證與累積布片基礎(2018) : <u>藉</u> 由合作的	度。		
		供應鏈紡織廠測試掃描技術、累積數位化			
		布片檔案。			
		平衡機制			
		???			
數位創新	結果	打造紡織產業的數位協作大平台			
		跨越時間與地域限制,加速產品設計流程			
		平台功能遭遇使用者「瀏覽但不採購」的徵用現象			

理論		觀察重點		
	認知	產業需求	企業能力	
		傳統營運模式受實體樣布運輸影響、生產	經營策略:從自用數位布片掃描工具轉向	
		週期長。	商業化的平台經營模式。	
		高庫存、資源浪費問題。	資源整合與分配 :技術與過去產業經驗整	
		人工作業隱患。	合,開發數位創新協作平台。	
	行動	探索可供性		
		物質性	機會	
		掃描技術 :穩定且標準化掃描流程精準呈現布料紋理與材質。		
		AI 模型:自動辨識花紋、色彩、布種等特徵,能加速處理大規模資料,為後續數位布片		
		開發各項多元應用建立基礎。		
		雲端儲存:可隨時隨地存取相同布料資料,實現即時共享與協作。		
制定		數位平台一社群化與情境化 :平台情境式協作空間,提升情感連結與工作效率。		
		雙元性靈巧實現可供性		
		深耕運用 - 以產業底蘊為基礎,精準掌握需求脈絡:將過去的經驗用於技術開發,做為		
		經營數位化平台基礎。		
		深耕運用 - 從既有資源出發,探索掃描技術新應用:掃描技術起初是從團隊內部開始自		
		主研發的,利用手邊現有設備開始嘗試、實驗。		
		深耕運用-將掃描技術應用於供應商工廠現場試煉,驗證與累積布片基礎(2018):藉由		
		合作的供應鏈紡織廠測試掃描技術、累積數位化布片檔案。		
		創新探索 - 引入 MIT 團隊技術強化布料掃描精度 (2019): 引進 MIT 的 CycleGAN 模型		
		與現有掃描技術做結合,打造織品掃描的六種圖層辨識。		
		創新探索 - 於 PI Apparel 2019 國際論壇發表技術,獲得多方關注和認可 (2019): 團隊		
		被 JCpenny 舉薦參展,獲得外部關係擴展市場與知名度。		
數位創新	結果	打造紡織產業的數位協作大平台		
		跨越時間與地域限制,加速產品設計流程		
		平台功能遭遇使用者「瀏覽但不採購」的徵	用現象	