Mathematische Grundlagen des Machine-/ Deep Learning

Josephine Reiche

6. Februar 2019

Inhaltsverzeichnis

1	Selbstständigkeitserklärung	3
2	Einführung	4
	Regression 3.1 Lineare Regression	5

1 Selbstständigkeitserklärung

Der Arbeit ist folgende Erklärung beizufügen: Hiermit versichere ich, dass ich die schriftliche Hausarbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Die Stellen meiner Arbeit, die dem Wortlaut oder dem Sinne nach anderen Werken und Quellen, einschließlich Quellen aus dem Internet, entnommen sind, habe ich in jedem Fall unter Angabe der Quelle deutlich als Entlehnung kenntlich gemacht. Dasselbe gilt sinngemäß für Tabellen, Karten und Abbildungen. (Unterschrift)

2 Einführung

In meiner Facharbeit möchte ich mich mit dem Thema "Künstliche Intelligenz" intensiv auseinandersetzen. Die USA, China und Europa kämpfen um die Vorherrschaft, in diesem neuen Gebiet der Informatik, welche die Zukunft in unserem Leben revolutionieren wird. Doch was bedeutet eigentlich künstliche Intelligenz? Was macht dieses Thema so interessant und Zukunftsrelevant, dass nun sogar Deutschland drei Milliarden Euro investieren möchte? Erstmal ist die Künstliche Intelligenz (KI) ein Teilgebiet der Informatik, die ihren Ursprung im 20. Jahrhundert hatte. Dieses Teilgebiet befasst sich mit maschinellem Lernen und der Automatisierung intelligenten Verhaltens. Schon heute findet man vielseitige Anwendungen von KI. Beispiele dafür sind die Gesichtserkennung, die Google-Sucherkennung und Werbung. Zahlreiche Anwendungsbereiche in Naturwissenschaft, Medizin, Technik, Informatik und im Medienbereich sind möglich. Das spannende an KI, Machine Learning und Deep Learning ist, dass es auf Grundlagen der Mathematik basiert. Das heißt, dass es auch einem Schüler möglich ist, mit dem mathematischen Wissen für die Sekundarstufe II, die Grundzüge der KI nachzuvollziehen. Das motiviert zum einen worin die Mathematik zum Teil ihre praktische Anwendung findet und was man als Schüler leisten kann.

3 Regression

3.1 Lineare Regression

Im Kontext des Machine Learning ist die lineare Regression den supervised Modellen zuzuordnen, die auf vorgegebenen Eingabe- und Ausgabedaten basieren. Die Ergebnisse der linearen Regression sind diskrete Werte (z.B. Geld, Quadratmeter).

Defintion: Die lineare Regression ist eine statistische Methode, um die Daten aus einer Stichprobe oder einem Experiment durch eine angenommene lineare Funktion zu beschreiben. Zur bessern Veranschaulichung der zu Grunde liegenden Prinzipien werden im folgenden Funktionen mit einer Variablen x betrachtet. Dabei soll gelten:

X - Menge aller Eingabewerte

Y - Menge aller Ausgabewerte

 x_i - ites Element aus X

 y_i - ites Element aus Y

n - Anzahl der Elemente von X und Y

f(x) = a + b*x

Das allgemeine Vorgehen bei der linearen Regression lässt sich durch folgendes Schema darstellen (Abb. x).

Abbildung 3.1: Modell

Es gibt mehrere Verfahren diese Funktion zu ermitteln.

1. Graphische Verfahren

Hier werden die ermittelten Messwerte in einem Koordinatensystem abgebildet. Dies kann mittels eines Geometrieprogramms oder dem Schultaschenrechner durchgeführt werden. Anschließend wird eine lineare Funktion manuell im Koordinatensystem verschoben und die Abstände von den Punkten zu der Funktion nach Augenmaß minimiert. Die Parameter der gewählten linearen Funktion können dann

übernommen werden. In den Abbildungen sind die Abstände zwischen den tatsächlichen Punkten und der Funktionsgerade am entsprechenden x-Wert durch grüne Strecken angegeben. Je länger die Strecke, desto größer der Fehler, desto geringer die Eignung der Funktion als Modell. Die folgende Abbildung zeigt eine ungünstige und eine perfekte grafische Lösung des Modells.

Abbildung 3.2: Lösungen

2. Manuelle Berechnungen

Die lineare Regression kann, besonders bei überschaubarer Anzahl von Datensätzen (n), händisch bestimmt werden. Zunächst wird der Korrelationskoeffizient r, mit der Formel:

$$r = \frac{\sum (x_i - \bar{x}) * (y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 * (y_i - \bar{y})^2}},$$

wobei \bar{x} (entsprechend \bar{y}) das arithmetische Mittel nach $\frac{1}{n} * \sum_{i=1}^{n} x_i$ ist, berechnet.

Danach wird die Steigung b der linearen Funktion ermittelt:

$$b = r * \frac{S_y}{S_x}$$

Diese Formel enthält die Standardabweichung von y und x, die wie folgt bestimmt werden:

$$S_y = \sqrt{\frac{\sum (y - \bar{y})^2}{n - 1}}$$

$$S_x = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Zuletzt wird die Verschiebungskonstante a durch einfaches Umstellen berechnet:

$$a = \bar{y} - b * \bar{x}$$

Somit sind alle Parameter für die Funktion y = a + b * x bestimmt.

Die folgende Tabelle enthält Beispieldaten für den Verkaufspreis einer Wohnung, der hier nur von der Wohnungsgröße in m^2 abhängt.

Aus der Tabelle lassen sich folgende Werte berechnen:

A in m^2	Preis in €	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i - \bar{x}) * (y_i - \bar{y})$	$(x_i - \bar{x})^2$	$(y_i - \bar{y})^2$
70 72	351000 390000	70 72	351000 390000	24570000 28080000	4900 5184	$1,23201\mathrm{E}{+}11$ $1,521\mathrm{E}{+}11$
91	473000	91	473000	43043000	8281	1,321E+11 2,23729E+11
58	282000	58	282000	16356000	3364	79524000000
49	300000	49	300000	14700000	2401	90000000000
50	286000	50	286000	14300000	2500	81796000000
48	228000	48	228000	10944000	2304	51984000000
33	181000	33	181000	5973000	1089	32761000000
61	308000	61	308000	18788000	3721	94864000000
51	289000	51	289000	14739000	2601	83521000000
78	414000	78	414000	32292000	6084	$1,71396\mathrm{E}{+}11$
70	358000	70	358000	25060000	4900	1,71390E+11 1,28164E+11
35	165000	35	165000	5775000	1225	27225000000
81	397000	81	397000	32157000	6561	$1,57609\mathrm{E}{+}11$
70	352000	70	352000	24640000	4900	1,37003E+11 1,23904E+11
47	239000	47	239000	11233000	2209	57121000000
55	322000	55	322000	17710000	3025	1,03684E+11
70	376000	70	376000	26320000	4900	1,41376E+11
89	499000	89	499000	44411000	7921	2,49001E+11
68	383000	68	383000	26044000	4624	1,46689E+11
42	229000	42	229000	9618000	1764	52441000000
93	424000	93	424000	39432000	8649	1,79776E+11
54	256000	54	256000	13824000	2916	65536000000
52	256000	52	256000	13312000	2704	65536000000
72	363000	72	363000	26136000	5184	$1,31769\mathrm{E}{+11}$
62	328000	62	328000	20336000	3844	1,07584E+11
65	331000	65	331000	21515000	4225	1,09561E+11
98	465000	98	465000	45570000	9604	$2{,}16225\mathrm{E}{+}11$
39	273000	39	273000	10647000	1521	74529000000
50	215000	50	215000	10750000	2500	46225000000
62	287000	62	287000	17794000	3844	82369000000
45	207000	45	207000	9315000	2025	42849000000
11	7000	11	7000	77000	121	49000000
60	328000	60	328000	19680000	3600	1,07584E+11
60	282000	60	282000	16920000	3600	79524000000
74	322000	74	322000	23828000	5476	1,03684E+11
64	305000	64	305000	19520000	4096	93025000000
56	317000	56	317000	17752000	3136	1,00489E+11
71	406000	71	406000	28826000	5041	$1,64836\mathrm{E}{+11}$
40	225000	40	225000	9000000	1600	50625000000
76	407000	76	407000	30932000	5776	$1,\!65649\mathrm{E}{+}11$
88	443000	88	443000	38984000	7744	1,96249E+11
55	294000	55	294000	16170000	3025	86436000000
60	277000	60	277000	16620000	3600	76729000000
79	393000	79	393000	31047000	6241	$1{,}54449\mathrm{E}{+}11$
109	576000	109	576000	62784000	11881	3,31776E+11
51	254000	51	254000^{7}	12954000	2601	64516000000
48	263000	48	263000	12624000	2304	69169000000
25	101000	25	101000	2525000	625	10201000000
88	426000	88	426000	37488000	7744	$1{,}81476\mathrm{E}{+}11$
61,9	317060			1073115000	209685	$5{,}53052\mathrm{E}{+}12$

$$\bar{x} = 61,9 \ \bar{y} = 317060$$

$$r = \frac{1073115000}{\sqrt{209685*5,53052E+12}} = 0,961018288$$

$$S_y = \sqrt{\frac{5,04163E+11}{50-1}} = 101434,8912$$

$$S_x = \sqrt{\frac{18104,5}{50-1}} = 19,22185194$$

$$b = 0,961018288 * \frac{101434,8912}{19,22185194} = 5071,352426$$

$$a = 317060 - 5071,352426 * 61,9 = 3143,284819$$

Der Anstieg der durch die Regression ermittelten Funktion beträgt 5071,352426 und die Verschiebungskonstante ist 3143,284819.

3. Algorithmische Berechnung

Die vorgestellte Methode der Berechnung der Funktionsparameter ist nur für kleinere Datensätze und wenige, hier eine abhängige Variable (x) praktikabel. In der Praxis werden jedoch möglichst große Datenmengen mit hunderten oder tausenden Abhängigen verwendet, deren Parameter bestimmt werden sollen. Dazu ist ein algorithmisches Vorgehen notwendig, das hier anhand des einfachen bereits eingeführten Beispiels erläutert wird.

Dabei werden die in vielen Bereichen des ML/DL genutzten Verfahren Gradientenabstieg (gradient-descent), die Kostenfunktion und die Lernrate eingeführt.

Kostenfunktion (Cost function)

Die Kostenfunktion gibt ein Maß an, das die Fähigkeit des Modells, die Relation zwischen X und Y zu bestimmen, beschreibt.

Mathematisch formuliert:

$$J(a,b) = \frac{1}{n} \sum_{i=0}^{n} (y_i - (a+b*x_i))^2$$

wobei $(a + b * x_i)$ die Vorhersage für den Wert an der Stelle x_i und y_i der tatsächliche Wert für x_i ist. Die Differenz ist der Abstand beziehungsweise der Fehler der Regressionsgeraden bezüglich y_i . Zur Berechnung des Fehlers (Kosten) können verschiedene Abstandsnormen angewendet werden. Hier wird der Euklidische Abstand angewendet, unter anderem um negative Ergebnisse für den Fehler auszuschließen und die Funktion differenzierbar zu machen. Die ermittelten Fehler werden summiert und durch die Anzahl der Datensätze geteilt, wodurch der mittlere Fehler (mittlerer Abstand) berechnet wird. Ziel ist es, den mittlere Fehler und somit die Kostenfunktion J(a,b) zu minimieren.

Gradientenabstiegsverfahren (Gradient descent)

Die Minimierung der Kostenfunktion J(a,b) ist ein Optimierungsproblem, das durch Nullsetzen der ersten Ableitung gelöst wird. Das Nullsetzen der Ableitung ist für übliche Datenmengen nur durch numerische Verfahren effizient lösbar. Mögliche Ergebnisse dieser Verfahren können jedoch auch lokale/globale Minima oder Maxima sein. Folgende Intuition zeigt das ausschließliche Vorhandensein eines globalen

Minimums für die hier betrachteten Funktionen mit einer Variablen x. Zunächst wird der Parameter a=0 gesetzt, womit nur noch lineare Funktionen durch den Koordinatenursprung f(x)=b*x möglich sind. Angenommen die korrekte Funktion entspricht f(x)=x mit b=1. In der folgenden Abbildung sind mögliche Funktionen mit weiteren Werten $b=\{0;0,5;1;1,5;2\}$ eingetragen. Die Ergebnisse der Kostenfunktionen für die verschiedenen b in Abbildung (c) zeigen, dass für die Werte J(b) eine Parabel entsteht.

Abbildung 3.3: Intuition Kostenfunktion

Die Ableitung J'(b)=0 gilt für b=1, was in diesem Beispiel exakt dem Minimum der Funktion entspricht. Wird der Parameter a hinzugezogen, ergibt sich statt einer Parabel eine konvexe Funktion.

Abbildung 3.4: konvexe Funktion

Auch diese hat ein globales Minimum. Demnach ist die Kostenfunktion nach a und b partiell zu differenzieren, um das Minimum zu berechnen. Dafür wird die Kostenfunktion um die Konstante 2 erweitert, was die Berechnung der Ableitung erleichtert.

$$J(a,b) = \frac{1}{2*n} \sum_{i=1}^{n} (y_i - (a+b*x_i))^2$$

Demzufolge ergeben sich folgende innere Ableitungen für $f_{a,b}(x_i)$ nach jeweils a und b:

$$f_{a,b}(x_i) = a + b * x_i$$

$$J(a,b) = \frac{1}{2*n} \sum_{i=1}^{n} (y_i - (a+b*x_i))^2$$

$$\frac{\Delta}{\Delta a} f_{a,b}(x_i) = \frac{\Delta}{\Delta a} (a + b * x_i) = \frac{\Delta}{\Delta a} a + \frac{\Delta}{\Delta a} b * x_i = 1 + 0 = 1$$

$$\frac{\Delta}{\Delta b} f_{a,b}(x_i) = \frac{\Delta}{\Delta b} (a + b * x_i) = \frac{\Delta}{\Delta b} + a + \frac{\Delta}{\Delta b} b x_i = 0 + x_i = x_i$$

Die äußere Ableitung ist:

$$J^{i}_{(a,b)}(x_i) = \frac{1}{2*n} \sum_{i=1}^{n} 2(f_{a,b}(x_i) - y_i) = \frac{1}{n} \sum_{i=1}^{n} (f_{a,b}(x_i) - y_i)$$

Die partielle Ableitung von J(a,b) ergibt nach der Kettenregel für a und b folgende Terme:

$$\frac{\Delta}{\Delta a}J(a,b) = \frac{1}{n}\sum_{i=1}^{n}(f_{a,b}(x_i) - y_i)$$

$$\frac{\Delta}{\Delta b}J(a,b) = \frac{1}{n}\sum_{i=1}^{n}(f_{a,b}(x_i) - y_i) * x_i$$

Nachdem die Grundlagen des Verfahrens beschrieben sind, sind die einzelnen Berechnungen zu einem Algorithmus zusammenzufassen. Zunächst werden für die Parameter a und b zufällige Werte gewählt. Dann wird für alle x_i -Werte die Fehlerfunktion ausgerechnet. Die Anstiege von a und b geben per Vorzeichen die Richtung an, in welcher der Folgewert für a und b gewählt wird. Das Ziel ist, das globale Minimum der Fehlerfunktion zu ermitteln. Dazu muss ein Konvergenzkriterium bestimmt werden. Das Konvergenzkriterium kann verschieden definiert werden. In vielen Fällen wird der Algorithmus über eine vorgegebene Anzahl von Iterationen ausgeführt. Andere Algorithmen vergleichen die Änderungen der Werte der Fehlerfunktion und brechen bei Unterschreiten eines vorgegebenen Mindestdeltas ab. Die Größe der Änderung pro Iteration wird durch einen Hyperparameter, der Lernrate α , bestimmt. Die Zuweisung der neuen Werte wird durch das Zeichen := dargestellt. Daraus folgt:

$$a := a - \alpha * \frac{\Delta}{\Delta a} J(a, b)$$

$$b := b - \alpha * \frac{\Delta}{\Delta b} J(a, b)$$

Das Gradient Descent Verfahren ist ein allgemeine Konzept, das in vielen Bereichen Anwendung findet. Je nach Anwendung kann auch das Gradient Descent Verfahren optimiert werden. Für stabile Funktionen und wenige Testdaten, wie in diesem Beispiel, ist das **Batch-Gradient-Descent** Verfahren geeignet. Dabei wird die Summe der Fehlerfunktion über alle Testdatensätze berechnet und eine stabiler Wert führt zum Update und damit zu einer stabilen Konvergenz des Abstiegs.

Das Stochastic-Gradient-Descent Verfahren führt ein Update der Parameter nach jedem einzelnen Datensatz durch. Abhängig von der Anwendung kann dies schneller zur Konvergenz führen. In vielen Fällen kann es aber dazu führen, das die Fehlerfunktion stark variiert und nicht mehr konvergiert. Dieses Verfahren benötigt einen höheren Rechenaufwand als das vorgenannte.

In vielen Anwendungen wird eine Kombination aus den beiden beschriebenen Verfahren, das **Mini-Batch-Gradient-Descent** Verfahren gebildet. Dabei wird das SGD auf kleinere Mengen des Datensatze den Minibatches, z.B. auf 256 Datensätze gleichzeitig, angewendet. Die Vorteile der beiden Verfahren werden somit kombiniert.