W44				,									
$\mathrm{Beta}(\alpha,\beta)$	Inverse $\operatorname{Gamma}(lpha,eta)$	$\operatorname{Gamma}(\alpha,\beta)$	Exponential (β)	$Normal(\mu, \sigma^2)$	Uniform(a,b)	$\operatorname{Poisson}(\lambda)$	Geometric(p)	Negative Binomial(r,p)	${\rm Hypergeometric}(N,m,n)$	$\mathrm{Binomial}(n,p)$	$\operatorname{Bernoulli}(p)$	$\mathrm{Uniform}\{a,\dots,b\}$	
$I_x(lpha,eta)$	$\frac{\Gamma\left(\alpha,\frac{\theta}{x}\right)}{\Gamma\left(\alpha\right)}$	$rac{\gamma(lpha,x/eta)}{\Gamma(lpha)}$	$1-e^{-x/\beta}$	$\Phi(x) = \int_{-\infty}^{x} \phi(t) dt$	$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x > b \end{cases}$	$e^{-\lambda}\sum_{i=0}^{x}rac{\lambda^{i}}{i!}$	$1 - (1 - p)^x x \in \mathbb{N}^+$	$I_p(r,x+1)$	$pprox \Phi\left(rac{x-np}{\sqrt{np(1-p)}} ight)$	$I_{1-p}(n-x,x+1)$	$(1-p)^{1-x}$	$ \begin{cases} 0 & x < a \\ \frac{ x -a+1}{b-a} & a \le x \le b \end{cases} $	$F_X(x)$
$\frac{\Gamma\left(\alpha+\beta\right)}{\Gamma\left(\alpha\right)\Gamma\left(\beta\right)}x^{\alpha-1}\left(1-x\right)^{\beta-1}$	$\frac{\beta^{\alpha}}{\Gamma\left(\alpha\right)}x^{-\alpha-1}e^{-\beta/x}$	$rac{1}{\Gamma\left(lpha ight)eta^{lpha}}x^{lpha-1}e^{-x/eta}$	$\frac{1}{\beta}e^{-x/\beta}$	$\phi(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	$\frac{I(a < x < b)}{b - a}$	$\frac{\lambda^x e^{-\lambda}}{x!}$	$p(1-p)^{x-1}$ $x \in \mathbb{N}^+$	$\binom{x+r-1}{r-1}p^r(1-p)^x$	$\frac{\binom{n}{x}\binom{m-x}{n-x}}{\binom{n}{x}}$	$\binom{n}{x}p^x\left(1-p\right)^{n-x}$	$p^x \left(1-p\right)^{1-x}$	$\frac{I(a < x < b)}{b - a + 1}$	$f_X(x)$
$\frac{\alpha}{\alpha + \beta}$	$\frac{\beta}{\alpha-1} \alpha > 1$	$\alpha \beta$	β	H	$\frac{a+b}{2}$	٢	p 1	$r\frac{1-p}{p}$	$\frac{nm}{mn}$	np	ď	$\frac{a+b}{2}$	E[X]
$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$\frac{\beta^2}{(\alpha-1)^2(\alpha-2)^2} \ \alpha > 2$	$lphaeta^2$	β^2	σ^2	$\frac{(b-a)^2}{12}$	>	$\frac{1-p}{p^2}$	$r\frac{1-p}{p^2}$	$\frac{nm(N-n)(N-m)}{N^2(N-1)}$	np(1-p)	p(1-p)	$\frac{(b-a+1)^2-1}{12}$	V[X]
$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{\kappa-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{s^k}{k!}$	$\frac{2(-\beta s)^{\alpha/2}}{\Gamma(\alpha)}K_{\alpha}\left(\sqrt{-4\beta s}\right)$	$\left(\frac{1}{1-\beta s}\right)^{\alpha} (s<1/\beta)$	$\frac{1}{1-\beta s}\left(t<1/\beta\right)$	$\exp\left\{\mu s + \frac{\sigma^2 s^2}{2}\right\}$	$\frac{e^{sb} - e^{sa}}{s(b-a)}$	$e^{\lambda(e^a-1)}$	$\frac{p}{1-(1-p)e^s}$	$\left(\frac{p}{1-(1-p)e^{s}}\right)^{r}$	N/A	$(1-p+pe^s)^n$	$1-p+pe^s$	$\frac{e^{as}-e^{-(b+1)s}}{s(b-a)}$	$M_X(s)$