

Software definiertes Hochleistungs-Radio

Open Source (GNU type) Hardware und Software Projekt Projektbeschreibung: http://hpsdr.org

Hardware Projekt #1

ATLAS Platine

Dokumentation und Bauanleitung

Platinenlayout Philip Covington, N8VB

Text Christopher T.Day, AE6VK Philip Covington, N8VB

Horst Gruchow, DL6KBF Ray Anderson, WB6TPU

Graphik und Layout Horst Gruchow, DL6KBF

Projektkoordinator Eric Ellison, AA4SW

Inhaltsverzeichnis

Wer suchet, der findet

Inhaltsverzeichnis				
Wer suchet, der findet	2			
ATLAS – das Rückgrat				
Über das ATLAS Modul	3			
ATLAC day Book				
ATLAS - der Bus	4			
Beschreibung des ATLAS Bus	4			
Standard Steckplätze	5			
Optionale Steckplätze	5			
Diverse Besonderheiten	5			
Anmerkungen	6			
DIN41612 Bus Pinbelegung	7			
ATLAS BUS Steckkarten Pinb	elegung	y XBUS		8
ATLAS BUS Steckkarten Pinb	elegung	y BUS		9
Anmerkungen und Erklärung	en			10
ATLAC des Zessesses estas				
ATLAS - der Zusammenbau	_	4.4		
Wie komme ich an die ATLAS Platine	е	11		
Stückliste (BOM)		11		
US BOM		12		
EU BOM		12		
ATLAS Bauanleitung	13			
Werkzeuge	13			
Kurzanleitung	13			
Ausführliche Anleitung	14			
ATLAS - die Mechanik				
	1.0			
Dimensionierung der Steckkarten	16			
Bilder der ATLAS Platine	17			
ATLAS - die Leistungsfähigkeit				
Ray Anderson, WB6TPU, über die Le	eistuna		19	
ATLAS TDR und VNA Plots	ciscarig		20	
ATERS TER GIRL WAS TIOUS			20	
ATLAS - die Information				
Nützliche Hinweise und Links	22			
Dokument-Änderungen	23			

ATLAS - das Rückgrat

Über das ATLAS Modul

ATLAS ist eine passive Busplatine, auf die die verschiedenen Module gesteckt werden können. Auf der Platine sind sechs Steckplätze über 96-polige VG Buchsen (DIN 41612) im Abstand von 20,3 mm vorhanden.

Zur Stromversorgung dient eine ATX 20-pin Stiftwanne, so dass Standard ATX Netzteile für die Zuführung der notwendigen +12V, +5V, +3,3V, -12V und -5V Spannungen zum HPSDR verwendet werden können. Da diese Netzteile wohl überall neu oder gebraucht zu bekommen sind, lässt sich die Stromversorgung so auf elegante Weise lösen.

Die Dateien zur ATLAS Platine sind über folgenden Link zu finden:

http://www.philcovington.com/HPSDR/ATLAS/ .

Der Abstand der DIN Verbinder wurde so gewählt, dass die Busplatine in ein Standard PC Gehäuse eingebaut werden kann.

Der Projekt-Verantwortliche für ATLAS ist Phil, N8VB.

Fertige ATLAS Platine mit eingestecktem PicoPSU ATX Netzteil (Foto Christopher T. Day, AE6VK)

ATLAS - der Bus

Beschreibung des ATLAS Bus

Platine: 4 Layer , 5.500" X 3.940"(139.7x100 mm²)

J1-J6 Steckplätze im Abstand von 0.800"(20.3 mm)

Aufbau:

Masse-Layer (Oberster Layer)

YBUS

Stromversorungs-Layer XBUS (Unterster Layer)

Spannungen:

+12VDC, -12VDC, +5VDC, -5VDC, +3.3VDC

Beschreibung des ATLAS Bus

Standard Steckplätze:

	96-pol. DIN41612 (J1-J6) - BUS
	20-pol. ATX Stiftwanne (J19) - Stromversorgung
	Anschluss Last Stromversorgung (J21) - Lastwiderstand (falls notwendig)
	6-pol. einreihige Stiftleiste (RM 2,54) (J20) - alternative Stromversorgung
	T1-T6 Anshlüsse für exerne LEDs
	T7-T8 Anschluss für POWER ON Schalter ATX Netzteil
_ _	T9 Anschluss für ATX_PWR_OK (hier kann eine LED über 220R nach Masse angeschlossen werden)
Optionale S	Steckplätze:
	64-pol. DIN41612 (wenn nur der XBUS verwendet wird)
	32x2 0.100"(2.54 mm) Stiftleisten (wenn nur der XBUS verwendet wird)
Diverse Bes	sonderheiten:
	Jeder Pin der VG-Buchsen kann vom Bus abgetrennt und mit jedem anderen Pin oder Signal verbunden werden.
	J7-J18 sind für optionale 32-polige einreihige Stiftleisten oder Wire-Wrap Stiftleisten vorgesehen. Damit ist es möglich, den Bus umzuleiten.
	Falls gewünscht, kann auch nur der XBUS mit einer 64-poligen VGBuchse (Typ B) oder mit 32-poligen zweireihigen Stiftleisten bestückt werden (RM2,54).
	An J21 lässt sich optional ein Lastwiderstand an die +5V Stromversorgung bei Verwendung eines ATX Netzteils anschliessen. Der Lastwiderstand sollte auf einen Kühlkörper montiert werden.
	D1-D5 sind SMD LEDs, die mit den einzelnen Spannungen der Stromversorgung (+12V, -12V, +5V, -5V, +3.3V) über die Vorwiderstände R1-R5 verbunden sind.
	T1-T6 erlauben den Anschluss von Frontplatten-LEDs anstelle der SMD LEDs.
	J20 dient zur direkten Einspeisung der einzelnen Spannungen.

Beschreibung des ATLAS Bus

Anmerkungen:

- 1. Der Bus ist aufgeteilt in einen XBUS und einen YBUS mit je 24 Leitungen.
- 2. Der XBUS ist auf der Platinenunterseite geführt.
- 3. Der YBUS verläuft zwischen der Platinenoberseite (Masse) und dem Spannungsversorgungs-Layer.
- 4. Der XBUS ist unterteilt in die Untergruppen XA0-XA7, XB0-XB7, XC0-XC7, XDC.
- 5. Der YBUS ist unterteilt in die Untergruppen YAO-YA7, YBO-YB7, YCO-YC7, YDC.
- 6. XDC und YDC sind über alle Steckplätze durchverbunden (siehe Schaltplan).
- 7. Die XBUS und YBUS Aufteilung in Untergruppen dient nur zur besseren Identifizierung.
- 8. Der YBUS liegt eingebettet zwischen zwei Platinenlayern und sollte zur Führung von Taktsignalen oder Signalen mittlerer Geschwindigkeit verwendet werden. Obwohl nicht als LVDS Bus ausgelegt, sollte er für Taktsignale von 20-25 MHz verwendbar sein.
- 9. J7, J9, J11, J13, J15, J17 sind mit dem XBUS verbunden.
 J8, J10, J12, J14, J16, J18 sind mit dem YBUS verbunden.
 Aud der Platinenunterseite führen dann Leiterbahnen von J7-J18 zu J1-J6.
 Dadurch ist es möglich, einzelne Pins der Steckverbinder J1-J6 zu isolieren, indem die Leiterbahnen durchtrennt werden.
 Siehe Punkt 10.
- 10. Sollte eine Anwendung eine andere Leitungsführung der Bussignale notwendig machen, so besteht eine mögliche Lösung darin, die entsprechenden Pins der Verbinder J7-J18 mit WireWrap-Stiftleisten zu bestücken. Die Bussignale lassen sich dann auf der Platinenoberseite mit WireWrap Draht verschalten. Da die Platinenoberseite der Masselayer ist, sollte der WireWrap Draht direkt auf der Oberfläche geführt werden, um ein Übersprechen/Störungen zu minimieren.
- 11. Alternativ zur WireWrap-Technik können Drahtbrücken zur Verbindung der umgeleiteteten Bussignale mittels der Lötaugen von J7-J18 verwendet werden.
- 12. Nachfolgende die Bus-Pinbelegung.

Beschreibung des ATLAS Bus

DIN41612 Bus Pinbelegung

	XI	BUS			YBUS		BUS
PIN	<u>NAME</u>	<u>ALTERNATIV</u>	PIN	NAME	PIN NAME ALTERNATI		
A1	+12VD C		B1	+12VDC	C1	+12VDC	
A2	X0A0		B2	GND	C2	Y0A0	
A3	X1A1		В3	GND	C3	Y1A1	
A4	X2A2		B4	GND	C4	Y2A2	
A5	X3A3		B5	GND	C5	Y3A3	
A6	X4A4		B6	GND	C6	Y4A4	
A 7	X5A5		B7	GND	C7	Y5A5	
A8	X6A6		B8	GND	C8	Y6A6	
A9	X7A7		В9	GND	C9	Y7A7	
A10	X8B0		B10	GND	C10	Y8B0	
A11	X9B1		B11	GND	C11	Y9B1	
A12	X10B2		B12	GND	C12	Y10B2	
A13	X11B3		B13	GND	C13	Y11B3	
A14	X12B4		B14	GND	C14	Y12B4	
A15	X13B5		B15	GND	C15	Y13B5	
A16	X14B6		B16	GND	C16	Y14B6	
A17	X15B7		B17	GND	C17	Y15B7	
A18	X16C0	1-WIRE	B18	GND	C18	Y16C0	SPI - nCS4
A19	X17C1	nRST	B19	GND	C19	Y17C1	SPI - nCS3
A20	X18C2	I2C - SCL	B20	GND	C20	Y18C2	SPI - nCS2
A21	X19C3	I2C - SDA	B21	GND	C21	Y19C3	SPI - nCS1
A22	X20C4	JTAG - TRST	B22	GND	C22	Y20C4	SPI - nCS0
A23	X21C5	JTAG - TMS	B23	GND	C23	Y21C5	SPI - SCK
A24	X22C6	JTAG - TCK	B24	GND	C24	Y22C6	SPI - MISO
A25	X23C7	JTAG - SDO ret	B25	GND	C25	Y23C7	SPI - MOSI
A26	-12VDC		B26	-12VDC	C26	-12VDC	
A27	X24DC	JTAG - SDO	B27	GND	C27	Y24DC	SPI - MOSI ovfl out
A28	-5VDC		B28	-5VDC	C28	-5VDC	
A29	X25DC	JTAG - SDI	B29	GND	C29	Y25DC	SPI - MOSI ovfl in
A30	+3.3VDC		B30	+3.3VDC	C30	+3.3V DC	
A31	X26DC		B31	GND	C31	Y26DC	
A32	+5VDC		B32	+5VDC	C32	+5VDC	

ATLAS Bus Steckkarten Pinbelegung - XBUS

	XBUS					
<u>PIN</u>	NAME	JANUS U11	OZY U3	ALTERNATIV		
A1	+12VD C					
A2	X0A0	PIN 97 IO	PIN 147 IO			
A3	X1A1	PIN 95 IO	PIN 146 IO			
A4	X2A2	PIN 91 IO	PIN 145 IO			
A5	X3A3	PIN 89 IO	PIN 144 IO			
A6	X4A4	PIN 87 IO	PIN 143 IO			
A7	X5A5	PIN 85 IO	PIN 142 IO			
A8	X6A6	PIN 83 IO	PIN 141 IO			
A9	X7A7	PIN 81 IO	PIN 139 IO			
A10	X8B0	PIN 77 IO	PIN 138 IO			
A11	X9B1	PIN 75 IO	PIN 137 IO			
A12	X10B2	PIN 73 IO	PIN 135 IO			
A13	X11B3	PIN 71 IO	PIN 134 IO			
A14	X12B4	PIN 69 IO	PIN 133 IO			
A15	X13B5	PIN 67 IO	PIN 128 IO			
A16	X14B6	PIN 64 IO/GCLK3	PIN 127 IO			
A17	X15B7	PIN 61 IO	PIN 120 IO			
A18	X16C0	PIN 57 IO / U14 ID	PIN 119 IO	1-WIRE		
A19	X17C1	PIN 55 IO	PIN 118 IO	nRST (1)		
A20	X18C2	PIN 53 I2CSCK	PIN 117 IO	I2C - SCL		
A21	X19C3	PIN 51 I2CSDA	PIN 116 IO	I2C - SDA		
A22	X20C4	PIN 49 IO	PIN 115 IO	JTAG - TRST		
A23	X21C5	PIN 22 CTMS	PIN 114 IO	JTAG - TMS		
A24	X22C6	PIN 24 CTCK	PIN 113 IO	JTAG - TCK		
A25	X23C7	JP 10 SDOBACK	PIN 112 IO	JTAG - SDO ret		
A26	-12VDC					
A27	X24DC	PIN 25 CTDO	PIN 110 IO	JTAG - SDO		
A28	-5VDC					
A29	X25DC	PIN 23 CTDI	PIN 106 IO	JTAG - SDI		
A30	+3.3VDC					
A31	X26DC	PIN 40 IO	PIN 105 IO			
A32	+5VDC					

ATLAS Bus Steckkarten Pinbelegung - YBUS

YBUS					
PIN	NAME	JANUS U11	OZY U3	ALTERNATIV	
C1	+12VDC				
C2	Y0A0	PIN 98 IO	PIN 149 IO		
C3	Y1A1	PIN 96 IO	PIN 150 IO		
C4	Y2A2	PIN 92 IO	PIN 151 IO		
C5	Y3A3	PIN 90 IO	PIN 152 IO		
C6	Y4A4	PIN 88 IO	PIN 160 IO		
C7	Y5A5	PIN 86 IO	PIN 161 IO		
C8	Y6A6	PIN 84 IO	PIN 162 IO		
C9	Y7A7	PIN 82 IO	PIN 163 IO		
C10	Y8B0	PIN 78 IO	PIN 164 IO		
C11	Y9B1	PIN 76 IO	PIN 165 IO		
C12	Y10B2	PIN 74 IO	PIN 168 IO		
C13	Y11B3	PIN 72 IO	PIN 169 IO		
C14	Y12B4	PIN 70 IO	PIN 170 IO		
C15	Y13B5	PIN 68 IO	PIN 171 IO		
C16	Y14B6	PIN 66 IO	PIN 173 IO		
C17	Y15B7	PIN 62 IO/GCLK2	PIN 175 IO		
C18	Y16C0	PIN 58 IO	PIN 176 IO	SPI - nCS4	
C19	Y17C1	PIN 56 IO	PIN 179 IO	SPI - nCS3	
C20	Y18C2	PIN 54 IO	PIN 180 IO	SPI - nCS2	
C21	Y19C3	PIN 52 IO	PIN 181 IO	SPI - nCS1	
C22	Y20C4	PIN 50 IO	PIN 182 IO	SPI - nCS0	
C23	Y21C5	PIN 48 IO	PIN 185 IO	SPI - SCK	
C24	Y22C6	PIN 44 IO/DEV_CLRn	PIN 187 IO	SPI - MISO	
C25	Y23C7	PIN 43 IO/DEV_OE	PIN 188 IO	SPI - MOSI	
C26	-12VDC				
C27	Y24DC	PIN 42 IO	PIN 189 IO	SPI - MOSI ovfl out	
C28	-5VDC				
C29	Y25DC	PIN 41 IO	PIN 191 IO	SPI - MOSI ovfl in	
C30	+3.3V DC				
C31	Y26DC	PIN 39 IO	PIN 192 IO		
C32	+5VDC				

Anmerkungen und Terminologie

TERM	Erklärung		
JANUS U11	Altera EPM240TQFP100 CPLD on JANUS Board		
OZY U3	Altera EP2C5-208 FPGA on OZY Board		
CPLD	Complex Logical Programmable Device		
FPGA	Field Programmable Gate Array		
1-WIRE	Steckkarten-Ident. (verwendet MAXIM DS2431P mit 64-bit ROM Registrier Nr. + 1024bit EEPROM) DALLAS 1-Wire Protocol		
nRST	RESET		
I2CSCK / I2C-SLC	Inter-Integrated Circuit (I ² C Bus) - Master Clock Line		
I2CSDA	I ² C Bus - Serial Data Line		
JTAG	Joint Test Action Group - Implementation of IEEE 1149.1 Stan- dard Test Access Port and Boundary-Scan Architecture Programming Port for Altera Devices		
JTAG-TRST	Test Reset		
JTAG-TMS	Test Mode Select		
JTAG-TCK	Test Clock		
JTAG-SDO	Test Data Out		
JTAG-SDOret	Test Data Out Return - Jumper JP12 auf JANUS gesetzt, wenn JANUS U11 durch OZY USB programmiert - J12 offen bei lokaler JTAG Programmierung		
JTAG-SDI	Test Data In		
GCLK2 /GCLK3	Taktsignale verbunden mit Global Clock Network auf JANUS U11		
SPI-nCS4 to CS0	Serial Peripheral Interface - Chip(Slave) Select		
SPI-SCK	SPI - Master Clock		
SPI-MISO	SPI - Master In Slave Out Data / Serial Data In		
SPI-MOSI	SPI - Master Out Slave In Data / Serial Data Out		
SPI-MOSI ovfl out	SPI - Data Overflow Master		
SPI-MOSI ovfl in	SPI - Data Overflow Slave		
DEV_CLRn	Clear all Registers on Low - JANUS U11		
DEV_OE	All I/O pins tristate on Low - JANUS U11		

ATLAS - der Zusammenbau

Wie komme ich an die ATLAS Platine

Stand Juni 2006

Ein Satz von 400 Beta Platinen ist durch Eric Ellision, AA4SW, in Produktion gegeben worden, nachdem über 300 feste Bestellungen vorgelegen hatten. Möglicherweise sind aus diesem ersten Lauf noch Platinen für US\$ 10 plus Versand zu haben.

Auf der Webseite http://www.hamsdr.com gibt es Hinweise dazu.

Falls nicht schon geschehen, müssen Sie sich auf der Webseite kostenfrei registrieren lassen, um im Pulldown-Menü den **Projects** Eintrag zu sehen. Dort ist der aktuelle Stand der Platinenbestellung aufgeführt. Klicken Sie einfach auf den Menüpunkt **Log-In/Join** oben rechts, wählen **Join**, füllen das erscheinende Formular aus und klicken auf Save. Das war's. Die Webseite ist sicher und spam-frei und Sie erhalten Zugang zu einer Fülle von Informationen über Software Defined Radio.

Natürlich können Sie Ihre Platinen auch selber produzieren. Die Layouts sind auf http://www.philcovington.com/HPSDR/ATLAS/ im Gerber Format erhältlich.

Besuchen Sie bitte ebenfalls HPSDR mailing list

HpsdrWiki:Community Portal

um Informationen über den laufenden HPSDR Projektstand zu erhalten.

Seit dem 7. Juni 2006 ist die TAPR Organisation (TUCSON AMATEUR PACKET RADIO CORPORATION) eine Kooperation mit der HPSDR Gruppe eingegangen und wird den Vertrieb von HPSDR Platinen und Bauteilesätzen übernehmen. Der erste erhältliche Bauteilesatz ist der für die ATLAS Platine. Bitte folgenden Link verwenden: http://www.tapr.org/kits_atlas.html

Stücklisten (BOM)

Wie Testbestellungen gezeigt haben, sollten alle Bauteile im gutsortierten Elektronikhandel erhältlich sein. Die auf der Platine verwendeten Standard SMD-Bauteile haben überwiegend die Größe 0805.

Besonders zu beachten sind die fünf Tantal-Kondensatoren C1 bis C5. Die einzige Bauform, die auf die Platine passt, ist der Typ 3216 (A, B oder S,T für flache Bauform). Die Molex ATX Stiftwanne könnte ebenfalls ein Problem darstellen, da sie nicht überall erhältlich ist, wie die Erfahrung zeigt. Meistens hilft ein Posting auf die HPSDR mailing list weiter.

Die nachfolgenden Tabellen zeigen zwei verschiedene Beschaffungsquellen. Die US Liste verwendet Teilenummern und -bezeichnungen von MOUSER ELECTRONICS. Die EU Liste wurde über den Online-Katalog der deutschen Firma SEGOR-electronics zusammengestellt. Diese Firma versendet europaweit und man kann mit PayPal zahlen. Alle Teile sind normalerweise von Lager erhältlich.

US BOM

Position	MOUSER Part No.	Description	Units	Price/Unit	Total
J1-J6	571-5350905	AMP Eurocard Connectors Type C Receptacle 96 Position	6	\$ 3.360	\$ 20.16
J19	538-39-29-9202	Molex Mini-Fit Jr. Connectors 20 CKT VERT HEADER	1	\$ 2.570	\$ 2.57
C6-C35	80-C0805C104Z5V	Kemet 0805 SMD Ceramic Chip Capacitors 0.1uF 50V Y5V	30	\$ 0.070	\$ 2.10
D1-D5	859-LTST-C171GKT	Lite-On SMT LED 0805 Green, Clear 569nm	5	\$ 0.130	\$ 0.65
R3	260-1.0K-RC	Xicon 0805 SMD Chip Resistors 1/10WATT 1KOHMS 5%	1	\$ 0.080	\$ 0.08
R2, R4	260-1.8K-RC	Xicon 0805 SMD Chip Resistors 1/10WATT 1.8KOHMS	2	\$ 0.080	\$ 0.16
R1, R5	260-3.3K-RC	Xicon 0805 SMD Chip Resistors 1/10WATT 3.3KOHMS	2	\$ 0.080	\$ 0.16
C1-C5	74-293D106X9016A2TE3	Vishay/Sprague Solid Tanta- lum SMD Capacitors 10uF 16volts 10% A case	5	\$ 0.300	\$ 1.50

EU BOM

Position	SEGOR Bestellnr.	Bezeichnung	Anzahl	Preis/St.	Total
J1-J6	VG96F-ABC	VG-Buchse 96pol ABC	6	€ 2.00	€ 12.00
J19	MFJR20M-PR/Molex	20p.Stiftwanne 180'Print	1	€ 2.00	€ 2.00
C6-C35	u10-0805-X7R	100nF 63V X7R 10% 0805	30	€ 0.075	€ 2.25
D1-D5	LED 0805 gn-LC	SMD-LED grün 565nm 0805	5	€ 0.15	€ 0.75
R3	1k0-0805-5%	1,0k Ohm 5% SMD 0805 min. order 10	10	€ 0.038	€ 0.38
R2, R4	1k8-0805-5%	1,8k Ohm 5% SMD 0805 min. order 10	10	€ 0.038	€ 0.38
R1, R5	3k3-0805-1%!	3.3k Ohm1% SMD 0805 min. order 10	10	€ 0.038	€ 0.38
C1-C5	TA10u-16A SMD	10uF-16V Tantal SMD A3216	5	€ 0.20	€ 1.00

ATLAS Bauanleitung

Werkzeuge

Da alle Bauteile sehr klein ausfallen, sollte ein Lötkolben mit feiner Spitze und dünnes Lötzinn verwendet werden. Ich habe einen 25W-Lötkolben mit Bleistiftspitze und Lötzinn mit 0,5 mm Durchmesser benutzt.

Eine Lupe ist ebenfalls hilfreich beim Löten und Prüfen. Verwenden Sie eine gute Beleuchtung. Falls Sie noch nie SMD-Teile gelötet haben, sollten Sie bei **QRP-Projekt** vorbeischauen: http://www.qrpproject.de/bastelschule.htm. Dort gibt es eine Rubrik SMD-Löten.

Kurzanleitung

Schritt 1: Bestücken Sie zunächst die orangefarbenen Teile.

Schritt 2: Als nächstes folgen die rot gekennzeichneten Teile.
Bitte Polarität beachten!

Schritt 3: Bestücken Sie nun die grün gekennzeichneten Teile.

Schritt 4: Zuletzt löten Sie die blau gekennzeichneten Teile ein.

Rev. 1.4 vom 10. Juni 2006 © 2006 DL6KBF

Ausführliche Anleitung

1) Beginnen Sie mit der Bestückung der 0,1uF Keramik-Ableitkondensatoren C6 bis C36. Verzinnen Sie dazu ein Lötpad mit ganz wenig Lötzinn, führen mit einer Pinzette den Kondensator an das Pad und während Sie mit dem Lötkolben das Zinn auf dem Pad verflüssigen, schieben Sie den Kondensator in das Pad. Das sollte zunächst ausreichen, um ihn zu befestigen. Löten Sie dann das andere Ende des Kondensators mit wenig Lötzinn auf das Pad. Zuletzt löten Sie mit ein wenig zusätzlichem Lötzinn das erste Pad nach.

- 2) Bestücken Sie den 1K Widerstand R3 mit der gleichen Technik.
- 3) Es folgen die 1.8K Widerstände R2 und R4.
- 4) Zuletzt werden die 3.3K Widerstände R1 und R5 bestückt.
- 5) Mittels der gleichen Löttechnik löten Sie nun die 10uF Tantalkondensatoren C1 bis C5 auf. Beachten Sie bitte die Polarität der Kondensatoren das markierte Ende gehört in Richtung des "+"-Zeichens auf dem Bestückungsaufdruck. Halten Sie die Lötzeit kurz, um die Bauteile nicht zu beschädigen.
- 6) Bestücken Sie die LEDs D1 bis D5. Beachten Sie hier ebenfalls die Polarität. Die Kathodenseite der LEDs ist meistens mit einem Farbpunkt markiert oder auf der Unterseite befindet sich ein Diodensymbol. Installieren Sie die Dioden mit der Kathodenseite nach rechts bei den positiven Spannungen und nach links bei den negativen (D4, D5). Blickrichtung wie auf Seite 13 dargestellt.
- 7) Prüfen Sie nun auf Lötbrücken oder vergessene Lötstellen. Sollten Sie Brücken finden, so sind unbedingt alle anderen Lötstellen ebenfalls zu prüfen.

Nach der Installation der VG-Buchsen ist es nur schwer möglich, einigen Lötstellen zu erreichen.

- 8) Bestücken Sie den DIN 41612 Verbinder J1. Dazu verwenden Sie bitte M2,5 x 8 Zylinderkopfschrauben mit entsprechenden Muttern, um den Verbinder mit der Platine zumindest für die Lötung zu verschrauben. Ziehen Sie die Schrauben soweit an, dass der Verbinder flach auf der Platine aufliegt. (Optional können Sie den Verbinder beim Verlöten auch fest auf eine flache Unterlage pressen). Prüfen Sie bitte sorgfältig die richtige Lage des Verbinders anhand des Platinenaufdrucks. Die kleinen Erhebungen der Verdrehsicherung an den Enden sollten links sein, wenn die Platine wie auf Seite 13 gezeigt liegt. Die Verbinder passen auf beide Arten in die Platinenlöcher, aber bei falscher Montage befinden sich dann die Steckkarten verkehrt herum in ihren Steckplätzen. Stellen Sie absolut sicher, dass Sie die Verbinder richtig montieren. Eine spätere Änderung ist nicht mehr ohne spezielles Equipment möglich. Sind Sie sicher, dass alles korrekt ist, löten Sie zunächst zwei diagonal gegenüberliegende Pins an den jeweiligen Enden fest und prüfen Sie nochmals den Sitz des Verbinders. Dann verlöten Sie die verbleibenden Pins. Die Lötzeit pro Pin sollte nicht mehr als 2-3 Sekunden betragen. Nach dem Verlöten prüfen Sie bitte sorgfältig auf Lötbrücken oder vergessene Pins.
- 9) Installieren Sie die DIN 41612 Verbinder J2 bis J6 auf die gleiche Weise.

Rev. 1.4 vom 10. Juni 2006 © 2006 DL6KBF

10) Setzen Sie die ATX 20-Pin Stiftwanne J19 in die entsprechenden Platinenlöcher und verlöten die Pins auf der Platinenunterseite.

- 11) Löten Sie Anschlussdrähte für einen externen Taster an die Lötpunkte T7 und T8. Sollten Sie keinen Schalter verwenden, müssen T7 und T8 gejumpert werden, um das ATX Netzteil einzuschalten.
- 12) Machen Sie einen letzten Check an jedem Verbinder auf Lötbrücken oder vergessene Pins. Prüfen Sie nochmals an J20 auf Kurzschlüsse.

Falls alles zur Zufriedenheit ausfällt, haben Sie eine funktionsfähige ATLAS Platine.

Herzlichen Glückwunsch!

ATLAS - die Mechanik

Dimensionierung der Steckkarten

Bilder der ATLAS Platine

Unbestückte Platinenoberseite (Foto Phil Covington, N8VB; Maßstab zeigt **Inch**)

Platinenunterseite (Foto Phil Covington, N8VB; Maßstab zeigt Inch)

Bestückte Platine mit Seriennummer 001 (Foto Phil Covington, N8VB) Die ATX Stiftwanne ist noch nicht montiert

Erstes Licht (Foto Christopher T. Day, AE6VK)

ATLAS - die Leistungsfähigkeit

Ray Anderson, WB6TPU, über die Leistungsfähigkeit von ATLAS

"...ich konnte es irgendwie einrichten, für eine Stunde oder so im Labor zu verschwinden und einige VNA (Vektor-Netzwerkanalysator) und TDR (Zeit-Domänen-Reflektometrie) Tests mit der ATLAS Platine durchführen.

Keine Probleme entdeckt. Alles sah so aus, wie ich es erwartet hatte ausser meinen früheren Voraussagen über die zu erwartenden Impedanzen, die ich berechnet hatte und die nicht mit den gemessenen Werten übereinstimmten, wohl wegen falscher Annahmen bei der Berechnung.

Ich werde später am Tag oder morgen einige Plots auf die Webseite stellen, aber hier nun das Gesamtergebnis:

Ich habe TDR und VNA Messungen an allen Leitungen[0:24] des X und Y Bus durchgeführt. Alle Leitungswerte auf jedem Bus sahen ähnlich aus.

TDR Messungen:

X bus:

Gemessene Impedanz : 40 Ohm Mittelwert (Vorhersage 78.5)

Y bus

Gemessene Impedanz : 46.2 Ohm Mittelwert (Vorhersage 58)

Die gemessenen Impedanzen sollten für die meisten Anwendungen ausreichen und wahrscheinlich auch für LVDS Signale brauchbar sein, falls diese notwendig werden.

VNA Messungen:

X Bus:

Gemessen von DIN Verbinder 1 nach 6 Welligkeit 6 dB p-p von DC bis 1.5 GHz

Größere Resonanzen treten ab 1.5 GHz auf(-50dB bei 2.1 GHz)

Y bus:

Gemessen von DIN Verbinder 1 nach 6 Gleichmäßiger Abfall -8db von DC bis 1GHz Welligkeit 6dB p-p 1GHz bis 1.5 GHz

Größere Resonanzen treten ab 1.5 GHz auf (-47dB bei 2.1 GHz)

73, Ray WB6TPU

ATLAS TDR und VNA Plots

Die TDR Messungen wurden mit einem Tektronix TDS8000B Digital Sampling Scope und einem 80E04 Messkopf (20 psec Anstiegszeit) durchgeführt.

Die VNA Messungen wurden mit einem Agilent N5230A VNA gemacht.

Messungen wurden an allen Bus-Leiterbahnen durchgeführt[0:24] . Die dargestellten Plots zeigen eine typische Messung (alle sahen ähnlich aus).

ATLAS - die Information

Nützliche Hinweise und Links

Projektbeschreibung und -information

http://hpsdr.org

http://hpsdr.org/wiki/index.php?title=HpsdrWiki:Community Portal

http://www.hamsdr.com (Registrierung erforderlich für Vollzugriff)

http://www.philcovington.com

Mailingliste / Reflektor

Die HPSDR Mailing Liste (auch bekannt als "Reflektor") ist die hauptsächliche Kommunikationsplattform aller an diesem Projekt interessierten Personen.

Machmal kann die Anzahl der Postings sehr groß sein - zu anderen Zeiten kann ein Tag oder mehrere vergehen ohne Posting. Der Email-Verkehr kann über das Listenarchiv von allen verfolgt werden.

Verwenden Sie folgenden Link:

http://lists.hpsdr.org/pipermail/hpsdr-hpsdr.org/

Bauteilesätze und Platinen

Die TAPR Corporation vertreibt Bauteilesätze und Platinen für das HPSDR Projekt.

TAPR Corporation http://www.tapr.org

ATLAS Bauteilesatz http://www.tapr.org/kits_atlas.html

Dokument-Änderungen

Revision	Date	Changes	Initiator
1.4	June 10, 2006	Page 11 modified Page 22 modified	DL6KBF
1.3	June 4, 2006	Page 11 modified: How to get the ATLAS printed circuit board	DL6KBF
1.2	May 29, 2006	Pages 8, 9, 10 added: Bus signal description Page 16 added: Plug-in Card Dimensions	DL6KBF
1.1	May 05, 2006	Page 7: Pinout table updated	N8VB
		Page 19 added: Revision History	DL6KBF
1.0	April 30, 2006	Initial publication	DL6KBF