NSR Search Results Page 1 of 6

Visit the **Isotope Explorer** home page!

36 reference(s) found:

Keynumber: 1994KR20

Reference: Fiz.Elem.Chastits At.Yadra 25, 1444 (1994); Sov.J.Part.Nucl 25, 612 (1994)

Authors: P.A.Krupchitsky

Title: Parity Violation in Nuclear Reactions with Polarized Neutrons

Keyword abstract: NUCLEAR REACTIONS ², ¹H, ³⁵Cl, ⁵⁷Fe, ⁷⁹, ⁸¹Br, ¹¹¹, ¹¹³Cd, ¹¹⁷Sn, ¹³⁹La, ²⁰⁷Pb(polarized n,γ),E=thermal,resonance; compiled,reviewed parity violation data,analyses; deduced dominant mechanism.

Keynumber: 1990KUZC

Reference: Proc.8th Seminar on Precise Measurements in Nucl.Spectrosc., Uzhgorod, p.85 (1990)

Authors: V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova

Title: Measurements of Lifetime of High-Energy States Excited in (n,γ) Reaction on Thermal Neutrons **Keyword abstract:** NUCLEAR REACTIONS ²⁴Mg, ²⁷Al, ³¹P, ⁵⁴, ⁵⁷Fe (n,γ) ,E=thermal; measured DSA. ²⁵Mg, ²⁸Al, ³²P, ⁵⁵, ⁵⁸Fe levels deduced $T_{1/2}$. Enriched targets,NaI(Tl),hyperpure Ge detectors.

Keynumber: 1990KRZT

Reference: Program and Thesis, Proc.40th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Leningrad, p.56

(1990)

Authors: N.S.Kravets, V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova **Title:** Measurement of Lifetimes of 58 Fe States in (n,γ) Reaction on Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS 57 Fe(n, γ),E=thermal; measured DSA. 58 Fe levels

deduced $T_{1/2}$.

Keynumber: 1990KR17

Reference: Izv.Akad.Nauk SSSR, Ser.Fiz. 54, 2162 (1990); Bull.Acad.Sci.USSR, Phys.Ser. 54, No.11,

76 (1990)

Authors: N.S.Kravets, V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova

Title: Measurement of the Excited-State Lifetimes of 58 Fe in the (n γ)-Reaction Induced by Thermal

Neutrons

Keyword abstract: NUCLEAR REACTIONS 57 Fe(n, γ),E=thermal; measured $\gamma\gamma$ -coin,DSA. 58 Fe levels

 $deduced \ T_{1/2}.$

Keynumber: 1989CO01

Reference: J.Phys.(London) G15, 321 (1989)

Authors: S.P.Collins, S.A.Eid, S.A.Hamada, W.D.Hamilton, F.Hoyler **Title:** A Search for Mixed-Symmetry States in the Mass $A \approx 50$ Region

Keyword abstract: RADIOACTIVITY 56 Mn(β ⁻); measured $\gamma(\theta)$. 56 Fe levels deduced δ . Cryogenically

oriented nuclei.

Keyword abstract: NUCLEAR REACTIONS ⁴⁷Ti, ⁵³Cr, ⁵⁷Fe(n, γ),E=thermal; measured $\gamma\gamma(\theta)$. ⁴⁸Ti, ⁵⁴Cr, ⁵⁸Fe(n, γ), E=thermal; measured $\gamma\gamma(\theta)$.

 54 Cr, 58 Fe levels deduced $\delta,\mu,B(\lambda)$. Enriched target,on-line directional correlations.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

NSR Search Results Page 2 of 6

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1983BE10

Reference: Nucl.Sci.Eng. 84, 12 (1983)

Authors: Z.W.Bell, J.K.Dickens, D.C.Larson, J.H.Todd

Title: Neutron-Induced Gamma-Ray Production in ⁵⁷Fe for Incident Neutron Energies between 0.16

and 21 MeV

Keyword abstract: NUCLEAR REACTIONS 57 Fe(n,γ), (n,n'γ), (n,pγ), (n,αγ),E=0.16-21 MeV; measured absolute γ production σ. 57 Mn deduced level. 57 Fe deduced transitions,transition probability ratios.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc,Part3,P270,Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich **Title:** A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS ¹H, ⁹Be, ¹⁴N, ²⁴, ²⁵Mg, ²⁷Al, ²⁸, ²⁹Si, ³²S, ³⁵Cl, ⁴⁰, ⁴⁴Ca, ⁴⁷, ⁴⁸, ⁴⁹Ti, ⁵⁰, ⁵², ⁵³Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Εγ,Ιγ. ²H, ¹⁰Be, ²⁵, ²⁶Mg, ²⁸Al, ²⁹, ³⁰Si, ³³S, ³⁶Cl, ⁴¹, ⁴⁵Ca, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁶Mn, ⁵⁵, ⁵⁷, ⁵⁸Fe deduced Q,neutron binding energy.

binding energy.

Keynumber: 1978ALZK

Coden: CONF Brookhaven(Neutron Capt γ-Ray Spectr), Proc, P535, Allen

Keyword abstract: NUCLEAR REACTIONS ⁴⁰Ca, ⁴⁵Sc, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; calculated

radiative widths, variances. Statistical, valence, door-way models.

Keynumber: 1978ALYZ

Coden: CONF BNL(Neutron Capt γ-Ray Spectr), Contrib, No5, Allen

Keyword abstract: NUCLEAR REACTIONS ⁴⁰Ca, ⁴⁵Sc, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ); calculated L=0,1 radiative widths. ⁵⁵Fe deduced dominance of valence effects. ⁴¹Ca, ⁴⁶Sc, ⁵⁷, ⁵⁸Fe deduced evidence for doorway components.

Keynumber: 1977RI14

NSR Search Results Page 3 of 6

Reference: Nucl.Instrum.Methods 144, 323 (1977)

Authors: M.Riihonen, J.Keinonen

Title: Measurements of Absolute Resonance Strengths in (p,γ) Reactions on Rare or Gaseous Nuclei **Keyword abstract:** NUCLEAR REACTIONS ²⁰, ²¹, ²²Ne, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe (n,γ) ; measured yields. ⁵⁵, ⁵⁷, ⁵⁸Co deduced resonance strength.

Keynumber: 1975RAZB

Reference: Proc.Int.Symp.Neutron Capture Gamma Ray Spectroscopy and Related Topics, 2nd, Petten, The Netherlands, K.Abrahams, F.Stecher-Rasmussen, P.Van Assche, Eds., Reactor Centrum Nederland,

p.277 (1975)

Authors: S.Raman, G.G.Slaughter, W.M.Good, J.A.Harvey, J.B.McGrory, D.Larson

Title: 1⁺ States in ⁵⁸Fe

Keyword abstract: NUCLEAR REACTIONS 57 Fe(n, γ),E <30 keV; measured σ (E,E γ). 58 Fe deduced

resonances, J, π .

Keynumber: 1975BE07

Reference: Nucl. Phys. A240, 29 (1975)

Authors: H.Beer, R.R.Spencer

Title: keV Neutron Radiative Capture and Total Cross Section of ⁵⁰, ⁵², ⁵³Cr, ⁵⁴, ⁵⁷Fe, and ⁶², ⁶⁴Ni **Keyword abstract:** NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³Cr, ⁵⁴, ⁵⁷Fe, ⁶², ⁶⁴Ni(n,γ),E=5-200 keV; ⁵⁰, ⁵²Cr, ⁵⁴Fe, ⁶², ⁶⁴Ni(n,t),E=10-300 keV; measured σ(E,Eγ),σ(E,Et). ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁵, ⁵⁸Fe, ⁶³, ⁶⁵Ni deduced resonances,J,L,n-width,γ-width. Enriched targets.

Keynumber: 1974SLZZ

Coden: JOUR BAPSA 19 430 AH8

Keyword abstract: NUCLEAR REACTIONS 57 Fe(n, γ); measured σ (E γ). 58 Fe deduced

resonances, levels, γ-branching.

Keynumber: 1974SLZV

Coden: REPT USNDC-11 P197

Keyword abstract: NUCLEAR REACTIONS 57 Fe(n, γ),E <30 keV; measured E γ ,I γ . 58 Fe deduced

resonances,γ-branching.

Keynumber: 1974RAZN

Coden: REPT ORNL-4937 P188

Keyword abstract: NUCLEAR REACTIONS 57 Fe(n, γ),E=1-100 keV; measured σ (E,E γ). 58 Fe

deduced levels, γ -branching ratios.

Kevnumber: 1974RAZK

Coden: CONF Petten(Neutron Capture Gamma Ray Spectroscopy),P49

Keyword abstract: NUCLEAR REACTIONS ⁵⁷Fe(n, γ),E <30 keV; measured σ (E,E γ). ⁵⁸Ni deduced

resonances, J,π .

Keynumber: 1974BEXF

Coden: REPT KFK-2063,CRL

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³Cr, ⁵⁴, ⁵⁷Fe, ⁶², ⁶⁴Ni(n,γ),E <300 keV;

measured $\sigma(E,E\gamma)$. ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁵, ⁵⁸Fe, ⁶³, ⁶⁵Ni deduced resonances.

NSR Search Results Page 4 of 6

Kevnumber: 1973OPZZ Coden: REPT RCN-184

Keyword abstract: NUCLEAR REACTIONS K, 39 , 41 K, 57 Fe(n, γ); measured E γ ,I γ , $\gamma\gamma(\theta)$,Q. 40 , 42 K

deduced levels, J, π, γ -branching. ⁵⁸Fe levels deduced J.

Keyword abstract: RADIOACTIVITY ⁴⁰, ⁴²K; measured Εγ,Ιγ.

Keynumber: 1973KO27

Reference: Nucl. Phys. A215, 45 (1973)

Authors: J.Kopecky, K.Abrahams, F.Stecher-Rasmussen

Title: The 57 Fe(n, γ) 58 Fe Reaction

Keyword abstract: NUCLEAR REACTIONS ⁵⁷Fe(polarized n,γ),E=thermal; measured Eγ,Ιγ,γ-CP;

deduced Q; ⁵⁸Fe levels deduced J. Enriched target.

Kevnumber: 1973BEWY

Coden: REPT EANDC(E)157-U,P1

Keyword abstract: NUCLEAR REACTIONS ⁵⁴, ⁵⁷Fe, ⁵⁰, ⁵², ⁵³Cr, ⁶², ⁶⁴Ni(n,γ),E=5-200 keV;

measured σ .

Keynumber: 1973ABZH Coden: REPT RCN-203 P69

Keyword abstract: NUCLEAR REACTIONS ⁵⁷Fe(polarized n,γ),E=thermal; measured Eγ,Iγ,CP;

deduced Q. 58 Fe levels deduced J.

Keynumber: 1972VOZM Coden: REPT KFK-1676 P6

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁵⁷Fe(n, γ); measured σ (E), γ -production.

Kevnumber: 1972BEVV Coden: REPT KFK-1676 P3

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³Cr, ⁵⁴, ⁵⁷Fe, ⁶², ⁶⁴Ni(n, γ); measured σ (E).

Kevnumber: 1971KOZI

Coden: JOUR NTNAA 37 396, J Kopecky

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵²Cr, ⁵⁴, ⁵⁷Fe, ⁶⁰, ⁶²Ni(n,γ),E=thermal; measured γ-

CP,Q,E γ ,I γ . ⁵¹, ⁵³Cr, ⁵⁵, ⁵⁸Fe, ⁶¹, ⁶³Ni deduced levels,J, π .

Keynumber: 1971ARZJ

Coden: CONF Legnaro(1f₇/₂ Nuclei),P251

Keyword abstract: NUCLEAR REACTIONS ³⁶Ar, ⁴⁰Ar, ⁴⁰K, ⁴⁰K, ⁴⁰, ⁴², ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁷Ti, ⁵⁵Mn, ⁵⁷Fe, 59 Co(n,γ),E=thermal; surveyed Eγ,Ιγ,γγ-coin,γγ(θ),γ-polarization data. 37 Ar, 41 Ar, 41 K, 41 , 43 , 45 , 47 , 49 Ca. 48 Ti. 56 Mn. 58 Fe. 60 Co deduced levels. J.π.γ-mixing.

Kevnumber: 1969SC24

Reference: Nucl.Phys. A136, 122 (1969) Authors: H.Schmidt, W.Michaelis, U.Fanger

Title: Winkelverteilungsmessungen an γ -Kaskaden Aus der Reaktion 57 Fe $(n,\gamma)^{58}$ Fe

NSR Search Results Page 5 of 6

Keyword abstract: NUCLEAR REACTIONS ⁵⁷Fe(n,γ),E=thermal; measured $\gamma\gamma(\theta)$. ⁵⁸Fe deduced levels, J, π , γ -mixing. Enriched target, NaI(Tl) detectors.

Kevnumber: 1969HO12

Reference: Phys.Rev. 178, 1746 (1969)

Authors: R.W.Hockenbury, Z.M.Bartolome, J.R.Tatarczuk, W.R.Moyer, R.C.Block

Title: Neutron Radiative Capture in Na, Al, Fe, and Ni from 1 to 200 keV

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni(n,γ), E=0.1-200 keV; measured σ (E). ²⁴Na, ²⁸Al, ⁵⁵, ⁵⁷, ⁵⁸, ⁵⁹Fe, ⁵⁹, ⁶¹, ⁶², ⁶³, ⁶⁵Ni deduced resonance

parameters.

Keynumber: 1969FA05

Reference: Nucl. Phys. A128, 641 (1969)

Authors: U.Fanger, W.Michaelis, H.Schmidt, H.Ottmar

Title: Untersuchung der Anregungszustande von ⁵⁶Fe uber die Gammastrahlung nach dem Einfang

thermischer Neutronen

Keyword abstract: NUCLEAR REACTIONS ⁵⁷Fe(n, γ), E=th; measured E γ ,I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$, Q. ⁵⁸Fe

deduced levels, J,π , delta. Enriched target, Ge(Li) detector.

Keynumber: 1969BE53

Reference: Yadern.Fiz. 9, 100 (1969); Soviet J.Nucl.Phys. 9, 60 (1969)

Authors: V.I.Belousova, E.A.Rudak, E.I.Firsov

Title: 'Direct' Capture of Thermal Neutrons by Nuclei with A Approx. 50

Keyword abstract: NUCLEAR REACTIONS ⁴¹, ⁴⁷Ca, ⁵³Cr, ⁵⁷Fe(n, γ), E = thermal; calculated σ .

Woods-Saxon potential.

Keynumber: 1968FA03

Reference: Contrib.Intern.Conf.Nucl.Struct., Dubna, p.5 (1968)

Authors: U.Fanger, H.Schmidt, W.Michaelis **Title:** Level Structure Investigation of Fe⁵⁸

Keyword abstract: NUCLEAR REACTIONS ⁵⁷Fe(n, γ), E=thermal; measured E γ , I γ , $\gamma\gamma(\theta)$, $\gamma\gamma$ -coin;

deduced Q. 58 Fe deduced levels, J, π . Ge(Li) detector.

Keynumber: 1967MI12

Reference: KFK-562 (1967)

Authors: W.Michaelis, U.Fanger, D.Lange, G.Markus, H.Schmidt, C.Weitkamp

Title: Koinzidenzexperimente bei Neutroneneinfangreaktionen

Keyword abstract: NUCLEAR REACTIONS ⁵⁷Fe, ¹⁶⁴Dy, ¹⁶⁸Yb(n,γ),E=thermal; measured Eγ,Iγ,γγ-coin. ⁵⁸Fe, ¹⁶⁵Dy, ¹⁶⁹Yb deduced levels. ⁸⁷Sr(n,γ),E=thermal; measured γγ(θ). ⁸⁸Sr deduced levels,J, π .

Keynumber: 1967FAZZ

Reference: Intern.Conf.Nucl.Structure, Tokyo, p.152(1967); KFK-616 **Authors:** U.Fanger, G.Markus, W.Michaelis, H.Ottmar, H.Schmidt **Title:** Nuclear Structure Studies with Radiative Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁵⁷Fe, ⁶¹Ni(n, γ),E=thermal; measured E γ ,I γ , $\gamma\gamma$ -coin. ⁵⁸Fe,

⁶²Ni deduced levels, J, π. ⁸⁷Sr(n, γ), E=thermal; measured Eγ, Iγ, γγ(θ). ⁸⁸Sr deduced levels, J, π.

Keynumber: 1966WAZY

NSR Search Results Page 6 of 6

Reference: Proc.Intern.Conf.Study of Nucl.Struct.With Neutrons, Antwerp, Belgium (1965), M.N.de Mevergnies, P.Van Assche, J.Vervier, Eds., North-Holland Publishing Co., Amsterdam, p.536 (1966); EANDC-50-S, Paper 99 (1966)

Authors: R. Wagner, W.M. Good, D. Paya

Title: s-Wave Neutron Strength Functions of Isotopes in the 3s-Resonance Region 40 <A <70

Keyword abstract: NUCLEAR REACTIONS ⁴³Ca, ⁴⁷, ⁴⁹Ti, ⁵³Cr, ⁵⁷Fe, ⁶¹Ni(n, γ),E=2-60 keV; σ (nt)

(E). ⁴⁴Ca, ⁴⁸, ⁵⁰Ti, ⁵⁴Cr, ⁵⁸Fe, ⁶²Ni deduced resonances, level spacings, strength functions.

Keynumber: 1964GR36

Reference: Nucl. Phys. 58, 465(1964)

Authors: L.V.Groshev, A.M.Demidov, G.A.Kotelnikov, V.N.Lutsenko

Title: Spectrum of γ -Rays from the Fe⁵⁶(n, γ)Fe⁵⁷ Reaction

Keyword abstract: NUCLEAR REACTIONS ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Eγ, Iγ, Q. ⁵⁷Fe

deduced levels, J, π . Natural target.
