Homological methods in Commutative Algebra

Swayam Chube

January 6, 2025

CONTENTS

1	Regular Sequences	1
	1.1 Regular sequences and the Koszul complex	1
	1.2 Gorenstein Rings	8
2	Regular Rings	10
	2.1 Regular Rings	10

§1 REGULAR SEQUENCES

§§ Regular sequences and the Koszul complex

DEFINITION 1.1. Let A be a ring and M an A-module. An element $a \in A$ is said to be M-regular if a is a non zero-divisor on M. A sequence a_1, \ldots, a_n of elements of A is an M-sequence if

- (1) Each a_i is $M/(a_1, \ldots, a_{i-1})M$ -regular.
- (2) $M \neq (a_1, ..., a_n)M$.

DEFINITION 1.2. Let *A* be a ring and $x_1, \ldots, x_n \in A$. We define a complex K_{\bullet} by setting $K_0 = A$, $K_p = 0$ for p > n or p < 0, and

$$K_p = \bigoplus_{1 \leqslant i < \dots < i_p \leqslant n} Ae_{i_1} \wedge \dots \wedge e_{i_p}.$$

For $1 \leqslant p \leqslant n$, define $K_p \to K_{p-1}$ by

$$d\left(e_{i_1}\wedge\cdots\wedge e_{i_p}\right)=\sum_{i=1}^p(-1)^{r-1}x_{i_r}e_{i_1}\wedge\cdots\wedge\widehat{e}_{i_r}\wedge\cdots\wedge e_{i_p},$$

and extend linearly to K_p . This is known as the *Koszul complex*.

PROPOSITION 1.3. The Koszul complex is indeed a complex.

Proof. $d \circ d : K_1 \to K_{-1}$ is obviously the zero map. Now, let $p \geqslant 2$, we shall show that $(d \circ d)(e_{i_1} \wedge \cdots \wedge e_{i_p}) = 0$. Note that the above can be written as a linear combination of the basis elements of K_{p-2} . Consider the basis element $e_{i_1} \wedge \cdots \wedge \widehat{e}_{i_a} \wedge \cdots \wedge \widehat{e}_{i_b} \wedge \cdots \wedge e_{i_p}$. We shall show that its coefficient is 0.

Indeed, its coefficient is contributed by

$$e_{i_1} \wedge \cdots \wedge \widehat{e}_{i_a} \wedge \cdots \wedge e_{i_p}$$
 and $e_{i_1} \wedge \cdots \wedge \widehat{e}_{i_b} \wedge \cdots \wedge e_{i_p}$,

each of which has coefficient $(-1)^{a-1}x_{i_a}$ and $(-1)^{b-1}x_{i_b}$ respectively. The coefficient of our desired basis element in the differential of the first is $(-1)^{b-2}x_{i_b}$ and in the second is $(-1)^{a-1}x_{i_a}$. Thus, the coefficient of our desired basis element in the differential of $e_{i_1} \wedge \cdots \wedge e_{i_p}$ is

$$(-1)^{a-1}x_{i_a}(-1)^{b-2}x_{i_b} + (-1)^{b-1}x_{i_b}(-1)^{a-1}x_{i_a} = 0,$$

thereby completing the proof.

DEFINITION 1.4. Let C_{\bullet} and D_{\bullet} be complexes of *A*-modules. Define their *tensor product* $(C \otimes D)_{\bullet}$ by

$$(C \otimes D)_n = \bigoplus_{i+j=n} C_i \otimes_A D_j.$$

The boundary maps are given by $d: (C \otimes D)_n \to (C \otimes D)_{n-1}$

$$d(x \otimes y) = dx \otimes y + (-1)^i x \otimes dy$$
 $x \in C_i, y \in C_j$.

PROPOSITION 1.5. There is an isomorphism of complexes $(C \otimes D)_{\bullet} \cong (D \otimes C)_{\bullet}$.

Proof. If $x \otimes y \in (C \otimes D)_n$ with $x \in C_i$ and $y \in D_j$, then send this element to $(-1)^{ij}y \otimes x \in (D \otimes C)_n$. It is not hard to check that this is indeed a chain map. That this is an isomorphism of chain complexes follows from the fact that for every n, $(C \otimes D)_n \to (D \otimes C)_n$ is an isomorphism.

PROPOSITION 1.6. Let $x_1, ..., x_n \in A$. Then $K_{\bullet}(x_1, ..., x_n) \cong K_{\bullet}(x_1) \otimes \cdots \otimes K_{\bullet}(x_n)$ as complexes.

Proof. We prove this by induction on n. The base case with n=1 is tautological. Suppose now that $n \ge 1$. We shall show that $K_{\bullet}(x_1, \ldots, x_n) \otimes K_{\bullet}(x_{n+1}) \cong K_{\bullet}(x_1, \ldots, x_{n+1})$. Write the complex $K_{\bullet}(x_{n+1})$ as

$$0 \longrightarrow Ae_{n+1} \xrightarrow{e_{n+1} \mapsto x_{n+1}} A \longrightarrow 0.$$

Then, $(K(x_1,...,x_n) \otimes K(x_{n+1}))_p = (K_p(x_1,...,x_n) \otimes A) \oplus (K_{p-1}(x_1,...,x_n) \otimes Ae_{n+1})$. There is a natural isomorphism

$$(K(x_1,\ldots,x_n)\otimes K(x_{n+1}))_p\longrightarrow K_p(x_1,\ldots,x_{n+1}),$$

which sends $e_{i_1} \wedge \cdots \wedge e_{i_p} \otimes 1$ to $e_{i_1} \wedge \cdots \wedge e_{i_p}$ in $K_p(x_1, \ldots, x_n)$, and sends $e_{i_1} \wedge \cdots \wedge e_{i_{p-1}} \otimes e_{n+1}$ to $e_{i_1} \wedge \cdots \wedge e_{i_{p-1}} \wedge e_{n+1}$ in $K_p(x_1, \ldots, x_{n+1})$.

It remains to check that the map defined above is indeed a chain map. Indeed, under the differential in the tensor complex, $e_{i_1} \wedge \cdots \wedge e_{i_p} \otimes 1$ maps to $d(e_{i_1} \wedge \cdots \wedge e_{i_p}) \otimes 1$, which maps to $e(e_{i_1} \wedge \cdots \wedge e_{i_p})$ under the aforementioned isomorphism. On the other hand, the starting element maps to $e_{i_1} \wedge \cdots \wedge e_{i_p}$ under the isomorphism first and then maps to $d(e_{i_1} \wedge \cdots \wedge e_{i_p})$ under the differential.

Next, if we begin with $e_{i_1} \wedge \cdots \wedge e_{i_{n-1}} \otimes e_{n+1}$, then under the differential, it maps to

$$d(e_{i_1}\wedge\cdots\wedge e_{i_{p-1}})\otimes e_{n+1}+(-1)^{p-1}x_{n+1}e_{i_1}\wedge\cdots\wedge e_{i_{p-1}}\otimes 1$$
,

which maps to

$$d(e_{i_1} \wedge \cdots \wedge e_{i_{p-1}}) \wedge e_{n+1} + (-1)^{p-1} x_{n+1} e_{i_1} \wedge \cdots \wedge e_{i_{p-1}}$$

under the isomorphism. On the other hand, the starting element maps to $e_{i_1} \wedge \cdots \wedge e_{i_{p-1}} \wedge e_{n+1}$ under the isomorphism, which maps to the above element under the differential. This completes the proof.

DEFINITION 1.7. Let $\underline{\mathbf{x}} = x_1, \dots, x_n$ be a sequence in A. For an A-module M, set

$$K_{\bullet}(\underline{\mathbf{x}}, M) = K(\underline{\mathbf{x}}) \otimes M.$$

The homology groups of this complex are denoted by $H_p(\underline{x}, M)$. Similarly, for a complex C_{\bullet} of A-modules, set $C_{\bullet}(\underline{x}) = C_{\bullet} \otimes K_{\bullet}(\underline{x})$.

PROPOSITION 1.8. Let $\underline{\mathbf{x}} = x_1, \dots, x_n$ be a sequence in A. Then

$$H_0(\underline{\mathbf{x}}, M) = M/(\underline{\mathbf{x}})M \qquad H_n(\underline{\mathbf{x}}, M) \cong \{\xi \in M \colon x_1 \xi = \cdots = x_n \xi = 0\}.$$

Proof. The assertion about $H_0(\underline{x}, M)$ is trivial. $H_n(\underline{x}, M)$ is precisely the kernel of the map $K_n(\underline{x}, M) \to K_{n-1}(\underline{x}, M)$, which is given by

$$\xi e_1 \wedge \cdots \wedge e_n \longmapsto \sum_{i=1}^n (-1)^{i-1} x_i \xi e_1 \wedge \cdots \wedge \widehat{e}_i \wedge \cdots \wedge e_n$$
,

where $\xi e_{i_1} \wedge \cdots \wedge e_{i_p} \in K_p(\underline{x}, M)$ is shorthand for $e_{i_1} \wedge \cdots \wedge e_{i_p} \otimes \xi \in K_p(\underline{x}, M)$.

The right hand side of the above equation is zero if and only if each $x_i\xi$ is zero, whence the conclusion follows.

THEOREM 1.9. Let C_{\bullet} be a complex of A-modules and $x \in A$. Then, there is a short exact sequence of complexes

$$0 \to C_{\bullet} \to C_{\bullet}(x) \to C'_{\bullet} \to 0,$$

where $C'_{p+1} = C_p$ is the (upward) shift of the complex C_{\bullet} . The homology long exact sequence so obtained looks like

$$\cdots \to H_p(C_{\bullet}) \to H_p(C_{\bullet}(x)) \to H_{p-1}(C_{\bullet}) \xrightarrow{(-1)^{p-1}x} H_{p-1}(C_{\bullet}) \to \cdots$$

Further, we have $x \cdot H_p(C_{\bullet}(x)) = 0$ for all $p \in \mathbb{Z}$.

Proof. Denote the Koszul complex $K_{\bullet}(x)$ by

$$\cdots \to 0 \to Ae_1 \xrightarrow{e_1 \mapsto x} A \to 0.$$

Thus, we can identify $C_{\bullet}(x)$ with $C_p \oplus C_{p-1}$ with the boundary map as

$$d(\xi, \eta) = (d\xi + (-1)^{p-1}x\eta, d\eta) \in C_{p-1} \oplus C_{p-2}.$$

Hence, we have a short exact sequence

That the above commutes is straightforward. It remains to compute the boundary map from $H_{p-1}(C_{\bullet}) = H_p(C'_{\bullet})$ to $H_{p-1}(C_{\bullet})$.

Choose a cycle $\eta \in C_p' = C_{p-1}$, that is, $d\eta = 0$. This lifts to $(0, \eta) \in C_p \oplus C_{p-1}$, which maps to $((-1)^{p-1}x\eta, 0) \in C_{p-1} \oplus C_{p-2}$, which again lifts to $(-1)^{p-1}x\eta$ in C_{p-1} , which is a cycle in C_{p-1} . Hence, the induced map on homologies is multiplication by $(-1)^{p-1}x$.

Finally, we must show that x annihilates $H_p(C_{\bullet}(x))$ for all p. Choose a cycle $(\xi, \eta) \in C_p \oplus C_{p-1}$, that is, $d\eta = 0$, and $d\xi = (-1)^p x \eta$. Hence,

$$C_{p+1} \ni d(0, (-1)^p \xi) = ((-1)^p x \xi, (-1)^p d\xi) = x \cdot (\xi, \eta).$$

Thus, x annihilates $[(\xi, \eta)] \in H_p(C_{\bullet}(x))$, whence annihilates all of $H_p(C_{\bullet}(x))$.

COROLLARY. Let $\underline{\mathbf{x}} = x_1, \dots, x_n$ be a sequence in A. Then $(\underline{\mathbf{x}})$ annihilates $H_p(\underline{\mathbf{x}}, M)$ for every $p \in \mathbb{Z}$.

Proof. It suffices to show that x_n annihilates $H_p(\underline{x}, M)$ since the Koszul complex is invariant under permutation of the sequence \underline{x} . But this is obvious, since $K_{\bullet}(\underline{x}, M)$ is isomorphic to $K_{\bullet}(x_1, \dots, x_{n-1}, M) \otimes K_{\bullet}(x_n)$ due to the commutativity of tensor products of complexes. We are done by invoking the preceding theorem with $C_{\bullet} = K_{\bullet}(x_1, \dots, x_{n-1}, M)$ and $x = x_n$.

THEOREM 1.10. Let A be a ring, M an A-module, and x_1, \ldots, x_n an M-sequence. Then

$$H_P(\underline{\mathbf{x}}, M) = 0 \quad \forall \ p > 0, \qquad H_0(\underline{\mathbf{x}}, M) = M/(\underline{\mathbf{x}})M.$$

Proof. Induct on n. The base case with n = 1 follows from the fact that $H_1(x_1, M) = (0:_M x_1) = 0$, since x_1 is M-regular. Now, suppose n > 1. If p > 1, then there is an exact sequence furnished by Theorem 1.9 by taking $C_{\bullet} = K_{\bullet}(x_1, \dots, x_{n-1}, M)$ and $x = x_n$:

$$0 = H_p(x_1, \ldots, x_{n-1}, M) \longrightarrow H_p(x_1, \ldots, x_n, M) \longrightarrow H_{p-1}(x_1, \ldots, x_{n-1}, M) = 0,$$

whence $H_p(\underline{x}, M) = 0$. It remains to establish that $H_1(\underline{x}, M) = 0$. Set $M_i = M/(x_1, ..., x_i)M$ with the convention that $M_0 = M$. The above long exact sequence again furnishes

$$0 = H_1(x_1, \ldots, x_{n-1}, M) \to H_1(\underline{x}, M) \to H_0(x_1, \ldots, x_{n-1}, M) = M_{n-1} \xrightarrow{x_n} M_{n-1}.$$

But since x_n is a non zero-divisor on M_{n-1} , we see that $H_1(\underline{x}, M) = 0$ as desired.

THEOREM 1.11. Suppose one of the following two conditions holds:

- (α) (A, \mathfrak{m}) is a Noetherian local ring, $x_1, \ldots, x_n \in \mathfrak{m}$, and M is a finite A-module.
- (β) A is an \mathbb{N} -graded ring, M is an \mathbb{N} -graded A-module, and x_1, \ldots, x_n are homogeneous elements of positive degree.

Then, if $H_1(\underline{x}, M) = 0$ and $M \neq 0$, then x_1, \dots, x_n is an M-sequence.

Proof. Induction on n. If n=1, then $0=H_1(x_1,M)=(0:_Mx_1)$, whence x_1 is a non zero-divisor on M. Now suppose n>1. Again, we make use of the exact sequence associated with $K_{\bullet}(x_1,\ldots,x_{n-1},M)\otimes K_{\bullet}(x_n)$ to get

$$H_1(x_1,\ldots,x_{n-1},M) \xrightarrow{-x_n} H_1(x_1,\ldots,x_{n-1},M) \to H_1(\underline{\mathbf{x}},M) = 0.$$

But since $H_i(x_1,...,x_{n-1},M)$ is a finite A-module in case (α) or a \mathbb{N} -graded module in case (β) , the above surjection implies, due to Nakayama, that $H_1(x_1,...,x_{n-1},M)=0$. The induction hypothesis then implies $x_1,...,x_{n-1}$ is an M-sequence.

Now, continuing the above long exact sequence, we get

$$0 = H_1(\underline{x}, M) \longrightarrow H_0(x_1, \dots, x_{n-1}, M) = M_{n-1} \xrightarrow{x_n} M_{n-1}$$

where $M_{n-1} = M/(x_1, ..., x_{n-1})M$. The above sequence implies x_n is M_{n-1} -regular, whence $x_1, ..., x_n$ is an M-sequence, as desired.

THEOREM 1.12. Let A be a Noetherian ring, M a finite A-module, and I an ideal of A such that $M \neq IM$. For a given integer n > 0, the following conditions are equivalent:

- (1) $\operatorname{Ext}_A^i(N, M) = 0$ for all i < n and for any finite A-module N with $\operatorname{Supp}(N) \subseteq V(I)$.
- (2) $\operatorname{Ext}_{A}^{i}(A/I, M) = 0$ for all i < n.
- (3) $\operatorname{Ext}_A^i(N, M) = 0$ for all i < n and for some finite A-module N with $\operatorname{Supp}(N) = V(I)$.
- (4) There exists an M-sequence of length n contained in I.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ is clear. $(3) \Rightarrow (4)$ First, we show that I contains an M-regular element. Suppose not, then due to prime avoidance, I must be contained in some associated prime $\mathfrak{p} \in \mathrm{Ass}_A(M)$. Thus, there is an injective map $A/\mathfrak{p} \hookrightarrow M$, which upon localizing at \mathfrak{p} , we see that $\mathrm{Hom}_{A_{\mathfrak{p}}}(\kappa(\mathfrak{p}), M_{\mathfrak{p}}) \neq 0$. Now, $\mathfrak{p} \in V(I) = \mathrm{Supp}(N)$, whence $N_{\mathfrak{p}} \neq 0$, and hence, due to Nakayama's lemma, $N_{\mathfrak{p}}/\mathfrak{p}N_{\mathfrak{p}} \neq 0$ (since $N_{\mathfrak{p}}$ is a finite $A_{\mathfrak{p}}$ -module). Then,

 $N_{\mathfrak{p}}/\mathfrak{p}N_{\mathfrak{p}}$ is a non-zero $\kappa(\mathfrak{p})$ -vector space, and consequently, $\operatorname{Hom}_{A_{\mathfrak{p}}}(N_{\mathfrak{p}}/\mathfrak{p}N_{\mathfrak{p}},\kappa(\mathfrak{p})) \neq 0$ (choose a basis and project onto a coordinate). Now, we can form the composition

$$N_{\mathfrak{p}} \to N_{\mathfrak{p}}/\mathfrak{p}N_{\mathfrak{p}} \to \kappa(\mathfrak{p}) \hookrightarrow M_{\mathfrak{p}}.$$

The first two maps are surjections and hence, the composition is non-zero. It follows that $\operatorname{Hom}_{A_{\mathfrak{p}}}(N_{\mathfrak{p}}, M_{\mathfrak{p}}) \neq 0$. Since N is finite over a Noetherian ring, we have

$$(\operatorname{Hom}_A(N,M))_{\mathfrak{p}}=\operatorname{Hom}_{A_{\mathfrak{p}}}(N_{\mathfrak{p}},M_{\mathfrak{p}})\neq 0,$$

whence $\operatorname{Ext}_A^0(N,M) = \operatorname{Hom}_A(N,M) \neq 0$, a contradiction to (3). Hence, *I* contains an *M*-regular element, say *f*. If n = 1, then we are already done. If n > 1, then set $M_1 = M/fM$ and consider the short exact sequence

$$0 \to M \xrightarrow{f} M \to M_1 \to 0.$$

The long exact sequence using $\operatorname{Ext}_A(N, -)$ gives

$$\cdots \to \operatorname{Ext}_A^{i-1}(N,M) \xrightarrow{f} \operatorname{Ext}_A^{i-1}(N,M) \to \operatorname{Ext}_A^{i-1}(N,M_1) \to \operatorname{Ext}_A^{i}(N,M) \to \cdots$$

For $1 \le i < n$, this implies $\operatorname{Ext}_A^{i-1}(N, M_1) = 0$, and due to the induction hypothesis, there is an M_1 -sequence f_2, \ldots, f_n in I. Thus, f_1, \ldots, f_n is an M-sequence in I.

 $(4) \Rightarrow (\bar{1})$. Induction on n. We shall deal with the base case later. Suppose n > 1. Let $\underline{x} = x_1, \ldots, x_n$ be an M-sequence in I. Set $M_1 = M/x_1M$ which fits into a short exact sequence $0 \to M \xrightarrow{x_1} M \to M_1 \to 0$. The sequence x_2, \ldots, x_n is an M_1 -sequence in I, whence due to the inductive hypothesis, $\operatorname{Ext}_A^i(N, M_1) = 0$ for all i < n - 1. The long exact sequence corresponding to $\operatorname{Ext}_A(N, -)$ gives us

$$0 = \operatorname{Ext}_A^{i-1}(N, M_1) \to \operatorname{Ext}_A^i(N, M) \xrightarrow{x_1} \operatorname{Ext}^i(N, M)$$

for all $0 \le i < n$, with the convention that $\operatorname{Ext}^{-1}(N, M_1) = 0$. But note that $\operatorname{Ext}^i_A(N, -)$ is annihilated by $\operatorname{Ann}_A(N)$. But since $\operatorname{Supp}(N) = V(\operatorname{Ann}_A(N)) \subseteq V(I)$, we conclude that $I \subseteq \sqrt{I} \subseteq \sqrt{\operatorname{Ann}_A(N)}$. In particular, a sufficiently large power of x_1 annihilates N, whence, annihilates $\operatorname{Ext}^i_A(N, M)$. But since multiplication by x_1 is injective, we must have that $\operatorname{Ext}^i_A(N, M) = 0$ for i < n, thereby completing the proof.

THEOREM 1.13. Let A be a Noetherian ring, I an ideal of A, and M a finite A-module such that $M \neq IM$. Then the length of any maximal M-sequence contained in I is the same, say n, and n is determined by

$$\operatorname{Ext}_A^i(A/I, M) = 0 \quad \forall \ i < n \quad \text{and} \quad \operatorname{Ext}_A^n(A/I, M) \neq 0.$$

We write n = depth(I, M) and call n the I-depth of M.

Proof. Let $\underline{a} = a_1, \dots, a_n$ be a maximal M-sequence in I. Suppose $\operatorname{Ext}_A^n(A/I, M) = 0$. Define $M_i = M/(a_1, \dots, a_i)M$. Using the short exact sequence $0 \to M \xrightarrow{a_1} M \to M_1 \to 0$, we have an exact sequence

$$0 = \operatorname{Ext}_{A}^{n-1}(A/I, M) \to \operatorname{Ext}_{A}^{n-1}(A/I, M_{1}) \to \operatorname{Ext}_{A}^{n}(A/I, M) = 0,$$

whence $\operatorname{Ext}_A^{n-1}(A/I, M_1) = 0$; and since a_2, \ldots, a_n is an M_1 -sequence, $\operatorname{Ext}_A^i(A/I, M_1) = 0$ for i < n - 1. Arguing similarly, we get that $\operatorname{Ext}_A^0(A/I, M_n) = 0$. Due to the preceding theorem, I must contain an M_n -regular element, contradicting the maximality of \underline{a} . Thus, $\operatorname{Ext}_A^n(A/I, M) \neq 0$ and $\operatorname{Ext}_A^i(A/I, M) = 0$ for i < n.

On the other hand, if $\underline{b} = b_1, \dots, b_m$ is a maximal M-sequence, then due to the above paragraph, $\operatorname{Ext}_A^m(A/I, M) \neq 0$ and $\operatorname{Ext}_A^i(A/I, M) = 0$ for i < m. In particular, this means that m = n.

Finally, suppose n satisfies the conditions given in the theorem. Then, due to the preceding theorem, there is an M-sequence $\underline{a} = a_1, \dots, a_n$ in I. Further, since $\operatorname{Ext}_A^n(A/I, M) \neq 0$, this sequence must be maximal, else it could be extended and again, due to the preceding theorem $\operatorname{Ext}_A^n(A/I, M) = 0$. This completes the proof.

REMARK 1.14. The above theorem can be phrased more succinctly as

$$\operatorname{depth}(I, M) = \inf \left\{ i \colon \operatorname{Ext}_A^i(A/I, M) \neq 0 \right\}.$$

In particular, if (A, \mathfrak{m}, k) is a Noetherian local ring, then we write depth (\mathfrak{m}, M) as depth M and

depth
$$M = \inf \left\{ i \colon \operatorname{Ext}_A^i(k, M) \neq 0 \right\}$$
.

THEOREM 1.15 (DEPTH SENSITIVITY OF KOSZUL COMPLEX). Let A be a Noetherian ring, $I = (y_1, \dots, y_n)$ an ideal of A, and M a finite A-module such that $M \neq IM$. If

$$q = \sup\{i: H_i(\underline{y}, M) \neq 0\}$$
,

then depth(I, M) = n - q.

Proof. We shall argue by induction on $s = \operatorname{depth}(I, M)$. If s = 0, then every element of I is a zero-divisor on M, whence by prime avoidance, there is an associated prime $\mathfrak{p} \in \operatorname{Ass}_A(M)$ such that $I \subseteq \mathfrak{p}$. By definition, there is some $0 \neq \xi \in M$ such that $\mathfrak{p} = \operatorname{Ann}_A(\xi)$, and hence, $I\xi = 0$. Recall that $H_n(\mathfrak{p}, M) = (0 :_M (\mathfrak{p})) = (0 :_M I) \neq 0$, since it contains ξ . Thus, q = n.

Now, suppose s>0, then $H_n(y,M)=0$, since some element of I is a non zero-divisor on M. In particular, this means q< n. Let $\underline{x}=x_1,\ldots,x_s$ be a maximal M-sequence in I. There is a short exact sequence $0\to M\xrightarrow{x_1}M\to M_1\to 0$, where $M_1=M/x_1M$. Since every element in the Koszul comples $K_{\bullet}(\underline{y})$ is a free module, tensoring with the above short exact sequence will give a short exact sequence of complexes

$$0 \to K_{\bullet}(\underline{y}, M) \xrightarrow{x_1} K_{\bullet}(\underline{y}, M) \to K_{\bullet}(\underline{y}, M_1) \to 0.$$

The associated long exact sequence looks like

$$H_i(\underline{y}, M) \xrightarrow{x_1} H_i(\underline{y}, M) \to H_i(\underline{y}, M_1) \to H_{i-1}(\underline{y}, M) \xrightarrow{x_1} H_{i-1}(\underline{y}, M)$$

for all i. Recall that I = (y) annihilates $H_i(y, M)$ for all i, and hence the image of the first map and the kernel of the last map in the above sequence is 0, therby giving us a short exact sequence

$$0 \to H_i(y, M) \to H_i(y, M_1) \to H_{i-1}(y, M) \to 0, \quad \forall i \in \mathbb{Z}.$$

Now, note that if $H_i(\underline{y}, M_1) = 0$, then $H_i(\underline{y}, M) = H_{i-1}(\underline{y}, M) = 0$. Hence, $H_{q+1}(\underline{y}, M_1) \neq 0$, but for i > q+1, $H_i(\underline{y}, M_1) = 0$. Now, depth $(I, M_1) = s-1$, since x_2, \ldots, x_n is a maximal M_1 -sequence in I, for if not, then the original sequence \underline{x} could be extended to a larger M-sequence in I. By the induction hypothesis, we have q+1=n-(s-1), and thus, s=n-q.

REMARK 1.16. In other words, depth(I, M) is the number of successive zero terms from the left in the sequence

$$H_n(y, M), H_{n-1}(y, M), \ldots, H_0(y, M) = M/IM \neq 0.$$

§§ Gorenstein Rings

LEMMA 1.17. Let *A* be a ring, *M* an *A*-module, and $n \ge 0$ an integer. Then

inj dim
$$M \le n \iff \operatorname{Ext}_A^{n+1}(A/I, M) = 0$$
 for all ideals I .

If *A* is Noetherian, then we can replace "for all ideals" by "for all prime ideals" in the above equivalence.

Proof. The forward direction is trivial by considering an injective resolution of length $\leq n$ and constructing the left derived functors of $\operatorname{Hom}_A(A/I, -)$.

We prove the converse. If n = 0, then $\operatorname{Ext}_A^1(A/I, M) = 0$, which is equivalent to Baer's criterion for injectivity. Thus M is injective, that is, inj dim $M = 0 \le n$. Now, suppose n > 0. Consider an injective resolution of length n - 1 and let K be the cokernel of the last map. That is,

$$0 \to M \to E^0 \to E^1 \to \cdots \to E^{n-1} \to K_n \to 0,$$

where every E^i is injective. We claim that K is injective. To see this, break down the above exact sequence into short exact sequences of the form

$$0 \to K_0 \to E^0 \to K_1 \to 0$$
 $0 \to K_1 \to E^1 \to K_2 \to 0$,

and so on, with the convention that $K_0 = M$. The long exact sequence for $\operatorname{Ext}_A(A/I, -)$ on the first short exact sequence gives

$$0 = \operatorname{Ext}_{A}^{n}(A/I, E^{0}) \to \operatorname{Ext}_{A}^{n}(A/I, K_{1}) \to \operatorname{Ext}_{A}^{n+1}(A/I, K_{0}) = 0,$$

whence $\operatorname{Ext}^n(A/I, K_1) = 0$. Proceeding similarly with the other exact sequences, one can show that $\operatorname{Ext}^1_A(A/I, K_n) = 0$, for every ideal I of A. Hence, K_n is injective, i.e., inj $\dim M \leq n$.

LEMMA 1.18. Let A be a ring, M and N two A-modules, and $x \in A$. Suppose that x is both A-regular and M-regular, and that xN = 0. Set B = A/xA and $\overline{M} = M/xM$. Then

- (1) $\operatorname{Hom}_A(N,M) = 0$ and $\operatorname{Ext}_A^{n+1}(N,M) \cong \operatorname{Ext}_B^n(N,\overline{M})$ for all $n \geqslant 0$.
- (2) $\operatorname{Ext}_A^n(M, N) \cong \operatorname{Ext}_B^n(\overline{M}, N)$ for all $n \ge 0$.
- (3) $\operatorname{Tor}_n^A(M, N) \cong \operatorname{Tor}_n^B(\overline{M}, N)$ for all $n \ge 0$.

Proof. (1) If $f: N \to M$ is A-linear, then for any $n \in N$, xf(n) = f(xn) = 0, and since x is M-regular, f(n) = 0. Thus f = 0, as desired. Now, set $T^n(N) = \operatorname{Ext}_A^{n+1}(N, M)$. Then, the collection $(T^n)_{n \geqslant 0}$ is a contravariant δ -functor from the category \mathfrak{Mod}_B to the category \mathfrak{Mod}_A . Further, the short exact sequence

$$0 \to M \xrightarrow{x} M \to \overline{M} \to 0$$

furnishes a long exact sequence

$$0 = \operatorname{Hom}_{A}(N, M) \to \operatorname{Hom}_{A}(N, \overline{M}) \xrightarrow{\delta} \operatorname{Ext}_{A}^{1}(N, M) \xrightarrow{x} \operatorname{Ext}_{A}^{1}(N, M) \to \cdots$$

Since x annihilates N, it must annihilate $\operatorname{Ext}_A^1(N,M)$, and so the above exact sequences reduces to

$$0 \to \operatorname{Hom}_A(N, \overline{M}) \xrightarrow{\delta} \operatorname{Ext}_A^1(N, M) \to 0.$$

Thus δ is a natural isomorphism between the functors T^0 and $\operatorname{Ext}_A^1(-,M)$. Now, it suffices to show that the collection $(T^n)_{n\geqslant 0}$ constitutes a universal δ -functor, whence it suffices to show that $T^n(P)=0$ for every projective B-module P and $n\geqslant 1$; since then it would be coeffaceable by projectives and due to a theorem of Grothendieck, it would be universal.

This is equivalent to showing that $\operatorname{Ext}_A^n(P,M)=0$ where P is a direct sum of copies of A/xA and $n\geqslant 2$. But note that proj $\dim_A A/xA\leqslant 1$, and hence $\operatorname{Ext}_A^n(A/xA,M)=0$ for all A-modules M and $n\geqslant 2$, as desired. This proves (1).

(2) We contend that $\operatorname{Tor}_n^A(M, B) = 0$ for all n > 0. Since proj $\dim_A B \leq 1$, it immediately follows that $\operatorname{Tor}_n^A(M, B) = 0$ for n > 1. For n = 1, the short exact sequence

$$0 \to A \xrightarrow{x} A \to B \to 0$$

furnishes a long exact sequence

$$0 = \operatorname{Tor}_{1}^{A}(M, A) \to \operatorname{Tor}_{1}^{A}(M, B) \to M \xrightarrow{x} M \to \overline{M} \to 0.$$

Since x is M-regular, we have that $Tor_1^A(M, A) = 0$.

Now, let $P_{\bullet} \to M \to 0$ be a free resolution of M. Because of the preceding paragraph, the sequence $P_{\bullet} \otimes_A B \to M \otimes_A B \to 0$ is exact, so that $P_{\bullet} \otimes B$ is a free resolution of

the *B*-module $M \otimes B \cong \overline{M}$. From the Hom-Tensor adjunction, note that there are natural isomorphisms

$$\operatorname{Hom}_A(P_{\bullet}, N) = \operatorname{Hom}_A(P_{\bullet}, \operatorname{Hom}_B(B, N)) \cong \operatorname{Hom}_B(P_{\bullet} \otimes_A B, N).$$

Therefore,

$$\operatorname{Ext}_A^n(M,N) = H^n\left(\operatorname{Hom}_A(P_{\bullet},N)\right) = H^n\left(\operatorname{Hom}_B(P_{\bullet} \otimes_A B,N)\right) = \operatorname{Ext}_B^n(\overline{M},N),$$

as desired.

(3) Continuing with the notation of (2), we have

$$\operatorname{Tor}_n^A(M,N) = H_n\left(P_{\bullet} \otimes_A N\right) = H_n\left(\left(P_{\bullet} \otimes_A B\right) \otimes_B N\right) = \operatorname{Tor}_n^B(\overline{M},N),$$

thereby completing the proof.

§2 REGULAR RINGS

§§ Regular Rings

DEFINITION 2.1. Let (A, \mathfrak{m}, k) be a local ring and let M be a finite A-module. An exact sequence

$$\cdots \to L_i \xrightarrow{d_i} L_{i-1} \xrightarrow{d_{i-1}} \cdots \to L_1 \xrightarrow{d_1} L_0 \xrightarrow{\varepsilon} M \to 0$$

is called a minimal (free) resolution of M if

- each L_i is a finite free A-module
- $0 = \overline{d}_i : L_i \otimes_A k \to L_{i-1} \otimes_A k$, or equivalently $d_i L_i \subseteq \mathfrak{m} L_{i-1}$ for all $i \geqslant 1$, and
- $\bar{\epsilon}: L_0 \otimes_A k \to M \otimes_A k$ is an isomorphism.

It is easy to see that a minimal free resolution exists for every finite module over a Noetherian local ring; at each stage simply take a minimal generating set of the kernel and continue.

LEMMA 2.2. Let (A, \mathfrak{m}, k) be a local ring, and M a finite A-module. Suppose L_{\bullet} is a minimal resolution of M; then

- (1) $\dim_k \operatorname{Tor}_i^A(M,k) = \operatorname{rank} L_i$ for all i.
- (2) $\operatorname{proj\,dim}_A M = \sup \left\{ i \colon \operatorname{Tor}_i^A(M,k) \neq 0 \right\} \leqslant \operatorname{proj\,dim}_A k$,
- (3) if $M \neq 0$ and proj $\dim_A M = r < \infty$, then for any finite A-module $N \neq 0$, we have $\operatorname{Ext}_A^r(M,N) \neq 0$.

Proof. (1) This follows immediately from the fact that $\overline{d}_i = 0$ for all $i \ge 1$.

- (2) The second inequality is straightforward. For if $\operatorname{proj} \dim_A k = \infty$, then there is nothing to prove. If $\operatorname{proj} \dim_A k < \infty$, then take a projective resolution of this length and tensor with A to conclude.
 - From (1) it immediately follows that proj $\dim_A M \leqslant \sup \left\{i \colon \operatorname{Tor}_i^A(M,k) \neq 0\right\}$, since this quantity is precisely the length of the minimal free resolution of M. If proj $\dim_A M = \infty$, then there is nothing to prove. If $\operatorname{proj} \dim_A M < \infty$, then take a projective resolution of M achieving this length and tensor with k whence it follows that $\sup \left\{i \colon \operatorname{Tor}_i^A(M,k) \neq 0\right\} \leqslant \operatorname{proj} \dim_A M$, as desired.
- (3) Applying $\operatorname{Hom}_A(-,N)$ to the resolution $L_{\bullet} \to M$, we obtain a complex which ends with

$$\operatorname{Hom}_A(L_{r-1},N) \xrightarrow{d_r^*} \operatorname{Hom}_A(L_r,N) \to 0,$$

where $\operatorname{Ext}_A^r(M,N)$ is the cokernel of the above map. Since each L_i is free, we can write $\operatorname{Hom}_A(L_i,N)$ as a direct sum of some copies of N and we can express every boundary map $d_i:L_i\to L_{i-1}$ as a matrix with entries in \mathfrak{m} . It follows that d_i^* is given by the same matrix (with entries in \mathfrak{m}). Hence, the image of d_r^* is contained in $\mathfrak{m}\operatorname{Hom}_A(L_r,N)$, which is properly contained in $\operatorname{Hom}_A(L_r,N)$ by Nakayama's lemma. This completes the proof.

THEOREM 2.3 (AUSLANDER-BUCHSBAUM). Let A be a Noetherian local ring and $M \neq 0$ a finite A-module. If proj dim $_A M < \infty$, then

$$\operatorname{proj\,dim}_A M + \operatorname{depth} M = \operatorname{depth} A.$$

Proof.