Esame di Ricerca Operativa del 16/02/15

(Cognome)	(Nome)	(Corso di laurea)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min \ 4 \ y_1 + 4 \ y_2 + 10 \ y_3 + 10 \ y_4 + y_5 + 11 \ y_6 \\ y_1 - y_2 + y_3 - y_4 - 4 \ y_5 - 3 \ y_6 = -1 \\ -4 \ y_2 + 2 \ y_3 + 3 \ y_4 - y_5 + y_6 = 1 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
		(81/110)	(81/110)
$\{1, 2\}$	x =		
{1, 4}	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{3,6}					
2° iterazione						

Esercizio 3.

Un'azienda produce 4 tipi di TV (32, 40, 50 e 55 pollici) ed è divisa in 2 stabilimenti (A e B). L'azienda dispone di 40 operai in A e 50 in B ognuno dei quali lavora 8 ore al giorno per 5 giorni alla settimana. Le ore necessarie per produrre i TV e le richieste minime da soddisfare sono indicate nella seguente tabella:

TV	32"	40"	50"	55"
Stabilimento A	1.2	1.5	1.7	2
Stabilimento B	1.5	1.6	1.8	2.1
Richiesta	1000	700	600	400

Sapendo che i 4 tipi di TV vengono venduti rispettivamente a 400, 600, 1000, e 1500 euro, l'azienda vuole determinare quanti TV di ogni tipo produrre nei due stabilimenti in modo da massimizzare il profitto.

variabili decisionali:		
modello:		
	COMANDI DI MATLAB (specificare se sono per il rilassato)	

 c=

 A=
 b=

 Aeq=
 beq=

 lb=
 ub=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(1,4)$ $(2,5)$				
(3,5) (3,7) (4,6)	(2,3)	x =		
(1,2) (1,3) (1,4)				
(3,5) (3,7) (4,6)	(4,3)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 3.

	1° iterazione	2° iterazione
Archi di T	(1,4) (2,3) (3,7) (4,3) (4,6) (5,7)	
Archi di U	(3,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		ite	iter 2 iter 3		iter 4		iter 5		iter 6		iter 7		
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo														
visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$		_				_				_		_		

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 10 \ x_1 + 5 \ x_2 \\ 14 \ x_1 + 9 \ x_2 \le 47 \\ 16 \ x_1 + 19 \ x_2 \le 63 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 418 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	9	5	20	10	24	21	8
Volumi	267	176	352	145	393	340	25

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P) =$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1 + x_2$ sull'insieme

$${x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 1 \le 0, x_1 * x_2 \le 0}.$$

Soluzioni del s	Massimo		Mini	Sella			
x	λ	μ	globale	locale	globale	locale	
(-1, 0)							
(0, -1)							
(1, 0)							
(0, 1)							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min \ 4 \ x_1^2 - 6 \ x_1 x_2 + 8 \ x_1 + x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (4,-4) , (0,4) , (2,3) e (-1,-2). Fare un passo del metodo di Frank-Wolfe.

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
$\left(\frac{2}{3}, -\frac{8}{3}\right)$					

SOLUZIONI

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min & 4 \ y_1 + 4 \ y_2 + 10 \ y_3 + 10 \ y_4 + y_5 + 11 \ y_6 \\ y_1 - y_2 + y_3 - y_4 - 4 \ y_5 - 3 \ y_6 = -1 \\ -4 \ y_2 + 2 \ y_3 + 3 \ y_4 - y_5 + y_6 = 1 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (4, -2)	SI	NO
{1, 4}	$y = \left(-\frac{2}{3}, \ 0, \ 0, \ \frac{1}{3}, \ 0, \ 0\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{3, 6}	$\left(-\frac{12}{7}, \ \frac{41}{7}\right)$	$\left(0,\ 0,\ \frac{2}{7},\ 0,\ 0,\ \frac{3}{7}\right)$	4	$\frac{1}{4}, \frac{3}{5}$	3
2° iterazione	{4, 6}	$\left(-\frac{23}{8}, \frac{19}{8}\right)$	$\left(0,\ 0,\ 0,\ \frac{1}{4},\ 0,\ \frac{1}{4}\right)$	5	$\frac{2}{13}$	6

Esercizio 3.

variabili decisionali: x_{ij} = numero di TV di tipo i prodotti nello stabilimento j, con i = 1, 2, 3, 4 e j = A, B.

modello:

$$(\max 400 (x_{1A} + x_{1B}) + 600 (x_{2A} + x_{2B}) + 1000 (x_{3A} + x_{3B}) + 1500 (x_{4A} + x_{4B})$$

$$1.2 x_{1A} + 1.5 x_{2A} + 1.7 x_{3A} + 2 x_{4A} \le 1600$$

$$1.5 x_{1B} + 1.6 x_{2B} + 1.8 x_{3B} + 2.1 x_{4B} \le 2000$$

$$x_{1A} + x_{1B} \ge 1000$$

$$x_{2A} + x_{2B} \ge 700$$

$$x_{3A} + x_{3B} \ge 600$$

$$x_{4A} + x_{4B} \ge 400$$

$$x_{ij} \ge 0$$

$$x_{ij} \in \mathbb{Z}$$

COMANDI DI MATLAB

```
c= - [ 400 ; 400 ; 600; 600 ; 1000 ; 1000 ; 1500 ; 1500 ]
```

 $\texttt{A} = [1.2 \ 0 \ 1.5 \ 0 \ 1.7 \ 0 \ 2 \ 0; 1.5 \ 0 \ 1.6 \ 0 \ 1.8 \ 0 \ 2.1 \ 0; \ -1 - 1000000; 00 - 1 - 10000; 0000 - 1 - 100; 000000 - 1 - 1]]$

b=[1600 ; 2000 ; -1000 ; -700 ; -600 ; -400]

Aeq=[] beq=[]

lb=[0;0;0;0;0;0;0;0] ub=[]

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(1,4)$ $(2,5)$				
(3,5) (3,7) (4,6)	(2,3)	x = (0, 0, 5, 12, -5, 8, 10, 0, 2, 0, 0)	NO	SI
(1,2) (1,3) (1,4)				
(3,5) (3,7) (4,6)	(4,3)	$\pi = (0, 9, 8, 5, 15, 14, 12)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,4) $(2,3)$ $(3,7)$ $(4,3)$ $(4,6)$ $(5,7)$	(1,3) $(1,4)$ $(2,3)$ $(3,7)$ $(4,6)$ $(5,7)$
Archi di U	(3,5)	(3,5)
x	(0, 0, 5, 7, 0, 6, 7, 0, 2, 3, 0)	(0, 0, 5, 7, 0, 6, 7, 0, 2, 3, 0)
π	(0, 3, 11, 5, 7, 14, 15)	(0, 0, 8, 5, 4, 14, 12)
Arco entrante	(1,3)	(3,5)
ϑ^+,ϑ^-	9,0	0, 3
Arco uscente	(4,3)	(3,7)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	· 2	iter	. 3	iter	· 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		4		2		3		(5	Ę	Ď	7	7
nodo 2	15	1	15	1	15	1	15	1	15	1	15	1	15	1
nodo 3	19	1	15	4	15	4	15	4	15	4	15	4	15	4
nodo 4	8	1	8	1	8	1	8	1	8	1	8	1	8	1
nodo 5	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	34	3	29	6	29	6	29	6
nodo 6	$+\infty$	-1	23	4	23	4	23	4	23	4	23	4	23	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	39	6	34	5	34	5
$\stackrel{\text{insieme}}{Q}$	2, 3	, 4	2, 3	, 6	3,	6	5,	6	5,	7	7	7	Q)

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 5 - 7	11	(0, 11, 0, 0, 11, 0, 0, 0, 11, 0, 0)	11
1 - 4 - 6 - 7	8	(0, 11, 8, 0, 11, 0, 8, 0, 11, 0, 8)	19

Taglio di capacità minima:
$$N_s = \{1, 2, 3, 4, 5\}$$
 $N_t = \{6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 10 \ x_1 + 5 \ x_2 \\ 14 \ x_1 + 9 \ x_2 \le 47 \\ 16 \ x_1 + 19 \ x_2 \le 63 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{47}{14}, 0\right)$$
 $v_S(P) = 33$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento

sol. ammissibile =
$$(3,0)$$

c) Calcolare un taglio di Gomory.

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 418 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	9	5	20	10	24	21	8
Volumi	267	176	352	145	393	340	25

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =
$$(0, 1, 0, 1, 0, 0, 1)$$
 $v_I(P) = 23$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0,0,0,1,0,\frac{62}{85},1\right)$$
 $v_S(P)=33$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1 + x_2$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 1 \le 0, \quad x_1 * x_2 \le 0\}.$$

Soluzioni del s	Massimo		Mini	Sella			
x	λ	μ	globale	locale	globale	locale	
(-1, 0)	$\left(\frac{1}{2},1\right)$		NO	NO	SI	SI	NO
(0, -1)	$\left(\frac{1}{2},1\right)$		NO	NO	SI	SI	NO
(1, 0)	$\left(-\frac{1}{2},-1\right)$		SI	SI	NO	NO	NO
(0, 1)	$\left(-\frac{1}{2},-1\right)$		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min \ 4 \ x_1^2 - 6 \ x_1 x_2 + 8 \ x_1 + x_2 \\ x \in P \end{cases}$$

 ${\rm dove}\; P \; \grave{\rm e} \; {\rm il} \; {\rm poliedro} \; {\rm di} \; {\rm vertici} \; (4,-4) \; , \; (0,4) \; , \; (2,3) \; {\rm e} \; (-1,-2). \; {\rm Fare} \; {\rm una} \; {\rm iterazione} \; {\rm del} \; {\rm metodo} \; {\rm di} \; {\rm Frank-Wolfe}.$

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
$(\frac{2}{3}, -\frac{8}{3})$	$\frac{88}{3}x_1 - 3x_2$	(-1,-2)	$\left(-\frac{5}{3}, \frac{2}{3}\right)$	1	(-1, -2)