AD-A036 190

EXXON RESEARCH AND ENGINEERING CO LINDEN N J GOVERNME--ETC F/G 7/1
EVALUATION OF METHODS TO PRODUCE AVIATION TURBINE FUELS FROM SY--ETC(11)

UNCLASSIFIED

MAY 76 C D KALFADELIS EXXON/GRU. 2PEA. 76

F33615-74-C-2036 AFAPL-TR-75-10-VOL-2

	OF 4 AD36190	INDEX. (2)	EMPERATE LANGE OF THE PARTY OF		Novigorous.	1000					Esta :	İĒ	
			Management of the Control of the Con	Military Mil		NAME OF THE PARTY	TOTAL SERVICE			MALINE SALES	10 10 10 10 10 10 10 10 10 10 10 10 10 1	PARTITION AND ADDRESS OF THE PARTITION ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION ADDRESS OF THE PARTITION ADDRESS OF THE PARTITION ADDRESS OF THE PARTITI	DESCRIPTION OF THE PERSON OF T
processors processors processors processors	PATERONS PATERONS PATERONS PATERONS PATERONS	1 1 1	d that	form df	di	ESTABLISHED TO SERVICE AND ADDRESS OF THE PARTY OF T			Minney.		ENTERON DE LA COMPANION DE LA	A SHE MA	A HOLE
A PART AND	AND	apina di		Same and the same	berna de la companya		Han	A STATE OF THE STA	ARIMA ARIMA	JANA.		in de la company	JALAN.
JANA.	 	- SEAR	PASM M.	- ALLE	JANA.	- Information of the control of the	I Service	To the state of th	I service in the serv	Supplies the second sec	PERSONAL PROPERTY OF THE PROPE	AND THE RESERVE	10 TOTAL TOT
RANGE PROPERTY OF THE PROPERTY			AND THE PERSON NAMED IN COLUMN TO SERVICE AND SERVICE		HELL CONTROL OF THE PARTY OF TH	DESCRIPTION DESCRIPTION OF THE PROPERTY OF T		PARTITION OF THE PARTIT			PARTIES AND PARTIE	100 mm 120 mm 12	STATE OF THE PARTY
		4	# I		4	1	TOTAL PROPERTY OF THE PROPERTY					da_Med	THE STATE OF THE S

AFAPL-TR-75-10 Volume II

EVALUATION OF METHODS TO PRODUCE AVIATION TURBINE FUELS FROM SYNTHETIC CRUDE OILS PHASE 2:..

EXXON RESEARCH AND ENGINEERING COMPANY GOVERNMENT RESEARCH LABORATORY LINDEN, NEW JERSEY 07036

MAY 1976

TECHNICAL REPORT AFAPL-TR-75-10 Volume II FINAL REPORT FOR PERIOD 24 JANUARY 1975 - 24 APRIL 1976

Approved for public release; distribution unlimited

AIR FORCE AERO PROPULSION LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45488

EZXON/GRU. 2PEA .76

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

NOTICE

-

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This final report was submitted by Exxon Research and Engineering Company under Contract No. F33615-74-C-2036. The effort was sponsored by the Air Force Aero Propulsion Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio under Project 3048, Task 304805 and Work Unit 30480559 with Captain Heidi E. Cron as Project Engineer. Dr. Henry Shaw and Dr. William F. Taylor of Exxon Research and Engineering Company supervised the work.

This report describes the second phase (Phase II) of a study being carried out by Exxon Research and Engineering Company for the United States Air Force. The study is directed at evaluating the current technology for the production of aviation turbine fuels from synthetic crude oils. The scope of the program involves engineering analyses, experimentation, design projections, and considerations of svailability and economics. The Phase II technical requirements consist of an experimental determination of the feasibility of the production of specification aircraft turbine fuels from certain synthetic crude oils derived from coal and oil shale.

Many individuals from the Department of Defense, NASA, and Exxon made valuable contributions to this study. The author wishes to acknowledge the helpful advice and encouragement received from the following individuals: Messrs. J. P. Longwell, F. H. Kant, and R. B. Long. Mr. Alvin Skopp and Dr. J. W. Harrison had overall management responsibility for the project.

This report has been reviewed by the Information Office, (ASD/OIP) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Mede E Con HEIDI E. CRON, CAPT, USAF Project Engineer

FOR THE COMMANDER

Da w V. Chuckill

ARTHUR V. CHURCHILL Chief, Fuels Branch

Fuels and Lubrication Division

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE - 21 JANUARY 77 - 525

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Intered) READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE . GOVT ACCESSION NO ECIPIENT'S CATALOG NUMBER AFAPL-TR-75-10-Volume II TITLE (and Subittle) TPE OF REPORT & PERIOD COVERED Final Report. 24 Jan Evaluation of Methods to Produce Aviation -24 Apr 76 Turbine Fuels from Synthetic Crude Oils. Phase II. ENFORMING ONG REPORT EXXON/GRU. 2PEA. 76 7. AUTHOR(e) ONTRACT OR GRANT IT Charles D. Kalfadelis F33615-74-C-2Ø36 PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Exxon Research and Engineering Company Government Research Laboratories P. O. Box 8, Linden, New Jersey 07036 II. CONTROLLING OFFICE NAME AND ADDRESS Air Force Aero-Propulsion Laboratory/SFF May 10 76 Wright-Patterson Air Force Base, Ohio 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) SECURITY CLASS. (of this report) Unclassified

DECLASSIFICATION DOWNGRADING
SCHEDULE DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. -Yel-2 IS. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Coal Liquefaction Hydrotreating Coal Tars Refining Jet Fuels Hydrocracking Syncrude Retorting Turbine Fuels Hydrogenation Coking Shale 011 Hydroprocessing Thermal Cracking ABSTRACT (Continue on reverse side if necessery and identify by block number) An experimental pilot-plant program is described which has demonstrated that specification JP-4 wide-cut type and Jet A narrow-cut type aviation turbine fuels may be produced from domestic shale oils. Three shale oils and two coalderived liquids were evaluated in the program, which is the second phase in a three phase overall program. (over) DD , TOAM , 1473 EDITION OF ! NOV 65 IS OBSOLETE UNCLASSIFIED

39/338

40

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

The original whole crude samples were assayed and fractionated to yield kerosene-boiling-range feedstocks for catalytic hydrotreatment experiments. Three levels of hydrotreatment severity were investigated, using nickel-molybdenum and cobalt-molybdenum catalysts. Hydrotreated products were fractionated and reblended to yield finished fuels. The experimentally obtained process and analytical information will be used in the third phase of the program to provide a basis for an engineering and economic evaluation of the effect of the use of synthetic crude oil in a refinery processing both petroleum and synthetic crude.

-	1	

T- tacestion in

BESTROUNCES

JESTIFICATION.

White Section

Butt Section [

AND THE PROPERTY OF THE PROPERTY CONTRACTOR OF T

Di

TABLE OF CONTENTS

								Page
7.	SUMM	ARY	ETHIRAT DENGA THE STAND AREA					1
п.	INTR	ODUCTIO						2
III.	EXPE	R IMENTA			•	•		3
	3.1	Design	Considerations					3
		3.1.1	Hazards Considerations					3
		3.1.2	Theoretical Design Basis	•	•	•	•	6
	3.2	Hydrog	enation System					7
		3.2.1	Hydrogen Feed System					7
		3.2.2	Liquid Feed System					10
		3.2.3	Reactor and Recycle Systems					11
		3.2.4	Start Up, Operation, Shutdown Procedures		•		•	12
	3.3	Feedst	ock Preparation					12
		3.3.1	Crude Assay Procedure					12
		3.3.2	Paraho Shale Oil Assay					13
		3.3.3	TOSCO II Shale Oil Assay					13
		3.3.4	Garrett (Occidental Shale Oil Assay					14
		3.3.5	Synthoil Coal Liquid Assay					14
		3.3.6	H-Coal Liquid Analysis					14
		3.3.7	Feedstock Distillation Procedure					15
	3.4	Cataly	its					20
			Contraction for the same by the same of the same state of the same same same same same same same sam					00
	3.5		mental Procedure	• •	• •	•	•	20
		3.5.1	Overall Procedure	• •		•	•	20
		3.5.2	Hydrotreatment Severity		•	•	•	22
IV.	RESU	LTS				•	•	24
	4.1	Chrono	ogical System Operations					25
		4.1.1	Initial System Hydrogenation Operations					25
		4.1.2	Initial Nickel Catalyst Operations					53
		4.1.3	Resulfided Nickel Catalyst Operations .					54
		4.1.4	Initial Paraho Shale Oil Operation					55
		4.1.5	Initial TOSCO Shale Oil Operation					56
		4.1.6	Initial Garrett Shale Oil and Synthoil					
			Coal Liquid Operations					59
		4.1.7	Low-Severity Shale Oil Operations					
		4.1.8	Low-Severity Coal Liquid Operations					61
		4.1.9	High-Severity Operations					65

TABLE OF CONTENTS (Cont'd.)

			Page
4.2	Paraho	Shale Oil Hydrotreated Product	
	Char	acterization	69
	4.2.1	Paraho Whole Hydrotreated Products	69
	4.2.2		69
	4.2.3	Synthetic Jet A. Fuel Blends from	
	4.2.4	Paraho Experiments	74
	,	Specifications	74
4.3		Shale Oil Hydrotreated Product	
		acterization	77
	4.3.1	Distillation of TOSCO Whole Hydrotrested	77
	4.3.3	Products	77
	4.3.4	Experiments	77
		Experiments	83
	4.3.5	TOSCO Whole Product and JP-4 Fuel Blend Specifications	83
	4.3.6	TOSCO Whole Product and Jet A Fuel Blend Specifications	83
4.4	Garret	t (Occidental Shale Oil Hydrotreated	
	Prod	uct Characterization	83
	4.4.1	Garrett Whole Hydrotreated Products	83
	4.4.2	Distillation of Garrett Whole Hydrotreated Products	88
	4.4.3	Synthetic JP-4 Fuel Blend from Garrett	
		Experiments	88
	4.4.4	Synthetic Jet A Fuel Blends from Garrett Experiments	88
	4.4.5	Garrett Whole Product and Fuel Blend Specifications	97
4.5	Contha		
4.5	Char	il Coal Liquid Hydrotreated Product acterization	97
	4.5.1	Synthoil Whole Hydrotreated Products	97
	4.5.2	Hydrotreated Products	97
	4.5.3	Synthetic Jet A Fuel Blends from Synthoil Experiments	97
	4.5.4	Synthoil Whole Product and Fuel Blend	
		Specifications	105

TABLE OF CONTENTS (Cont'd.)

																		Page
	4.6	H-Coal	Coal Liq	uid Hydr	otreat	ed P	rod	uct										
			acterizat															105
			H-Coal W															105
			Distilla		H-Coal	Who	le											110
		4.6.3	Syntheti		uel Bl	ends	fr	om	H-	·Co	al							110
		4.6.4	Syntheti														•	110
		4.6.5	H-Coal W														•	
				ications							•				•	•		110
		4.6.6	H-Coal W															
			Blend	Specific	ations	••		•	٠	•	•	•	•	•	•	•		110
	4.7	Tet Fu	el Therma	1 Ovidet	ion Te	ate												118
		4.7.1															•	118
		4.7.2														•	•	118
		4.7.2	JFIOI RE	suits .			•			•		•	•	•	•	•	•	110
v.	DISC	USSION			• • •	•		•	•	•	•			•	•	•		126
	5.1	Progra	m Scope															126
	5.2		of the A				• •	•		•	•	•	•	•	•	•	•	120
	3.2																	
			g Compone Oil Sampl						٠	•						٠		126
	5.3	Discus	sion of R	esults l	v													
			hetic Cru							, IR								128
		5.3.1		hale Of 1	Regul 1	te				13								128
		5.3.2																129
		5.3.3	Charles and the state of the state of														•	130
		5.3.4														•	•	131
		5.3.5	H-Coal R													•	•	132
		3.3.3	H-COST K	eantes			•					•	•		•	•		132
	5.4	Discus	sion of H	ydrotre	ting P	roce	88											
			able Effe															133
			Discussi															
			Process						100		in c							133
			5.4.1.1								27.							134
			5.4.1.2	Treat (
			3.4.2.0		Gas C						0							134
			5.4.1.3	Reactor														135
			5.4.1.4	Space \													•	135
		E 4 2	Chemistr	Space V	elocit	y .						•	•	•			•	135
		3.4.2	Chemistr	y or nyo	rotrea	crug		•	•	•	•	•	•	•	•	•	•	133
	5.5		fect of H et Fuel P															136
	5 4	on J	olation o	f Boon14	ombos1	LION	•		•	•	•	•	•	•	•	•	•	143
	5.6	Excrap	olation o	r Kesult			• •		•	•	•	•	•	•	•	•		143
ZI.	CONC	LUSIONS													•			145

LIST OF TABLES

No.		Page
3-1	Feed Distillation Summary	
	Paraho Whole Shale Oil	16
3-2	Feed Distillation Summary	
	TOSCO Whole Shale Oil	17
3-3	Feed Distillation Summary	
	Garrett (Occidental) Whole Shale Oil	18
3-4	Feed Distillation Summary	
	Synthoil Whole Coal Oil	19
4-1	Hydrogenation Unit Run Summary	26
4-2	Paraho Shale Oil Hydrotreatment	
	Experiments	70
4-3	Distillation of Whole Paraho Hydrotreated Product	
	Run 111 - Low Severity	71
4-4	Distillation of Whole Paraho Hydrotreated Product	
	Run 11 B - Normal Severity	72
4-5	Distillation of Whole Paraho Hydrotreated Product	
	Run 414 - High Severity	73
4-6	Synthetic Jet A Fuel Blends From	
	Paraho Hydrotreatment Experiments	75
4-7	Jet A from Paraho Shale Oil Inspections	76
4-8	TOSCO Shale Oil Hydrotreatment	
	Experiments	78
4-9	Distillation of Whole TOSCO Hydrotreated Product	
	Run 113 - Low Severity	79
4-10	Distillation of Whole TOSCO Hydrotreated Product	
	Run 17 B - Normal Severity	80
4-11	Distillation of Whole TOSCO Hydrotreated Product	
	Run 410 - High Severity	81
4-12	Synthetic JP-4 (Wide-Cut) Aviation Turbine	
	Fuel Blends from TOSCO Shale Oil	82
4-13	Synthetic Jet A (Narrow-Cut) Aviation	
	Turbine Fuel Blends from TOSCO Shale Oil	84
4-14	JP-4 from TOSCO Shale Oil Inspections	85
4-15	Jet A from TOSCO Shale Oil Inspections	86
4-16	Garrett Shale Oil Hydrotreatment Experiments	87
4-17	Distillation of Whole Garrett (Occidental) Hydro-	
	treated Product Run 115 - Low Severity	89
4-18	Distillation of Whole Garrett	•
1	(Occidental) Hydrotreated Product	
	Run 103 - Normal Severity	90
4-19	Distillation of Whole Garrett	
	(Occidental) Hydrotreated Product	
	Run 404 - High Severity	91
	Mail 404 High Develly	

LIST OF TABLES (Cont'd.)

No.		Page
4-20	Distillation of Whole Garrett (Occidental) Hydrotreated Product	
	Run 405 - High Severity	92
4-21	Distillation of Whole Garrett (Occidental) Hydrotreated Product Run 407 - High Severity	93
4-22	Distillation of Whole Garrett (Occidental) Hydrotreated Product	93
	Run 415 - High Severity	94
4-23	Synthetic JP-4 (Wide-Cut) Aviation Turbine Fuel Blend from Garrett (Occidental)	
	Shale 011	95
4-24	Synthetic Jet A (Narrow-Cut) Aviation Turbine Fuel Blends from Garrett	
	(Occidental) Shale Oil	96
4-25	Jet A from Garrett (Occidental) Shale Oil - Inspections	98
4-26	Synthoil Hydrotreatment Experiments	99
4-27	Distillation of Whole Synthoil	77
	Hydrotreated Product Run 203 - Low Severity	100
4-28	Distillation of Whole Synthoil	100
	Hydrotreated Product	101
4-29	Distillation of Whole Synthoil	101
	Hydrotreated Product	102
4-30	Distillation of Whole Synthoil	102
	Hydrotreated Product Run 105 - Normal Severity	103
4-31	Distillation of Whole Synthoil	103
	Hydrotreated Product	
		104
4-32		
		106
4-33	그리트 1000 - 그런 시간에 가는 그런 그 경에 하면 가득하는 사람이 되었다면 하는데	107
4-34		109
4-35	Distillation of Whole H-Coal Hydrotreated Product	
		111
4-36	Distillation of Whole H-Coal	
	Hydrotreated Product	
	Run 209 - Normal Severity	112

LIST OF TABLES (Cont'd)

No.		Page
4-37	Distillation of Whole H-Coal Hydrotreated Product	
	Run 419 - High Severity	113
4-38	Synthetic JP-4 Blends from	
	H-Coal Hydrotreatment Experiments	114
4- 39	Synthetic Jet A Blends from	
	H-Coal Experiments	115
4-40	JP-4 from H-Coal Liquid Inspections	116
4-41	Jet A from H-Coal Liquid Inspections	117
4- 42	Chronological Index to JFTOT Results	119
4-43	Index to JFTOT Results by Crude 011	
	Type and Hydrotreatment Severity	120
4- 44	Effect of Hydroprocessing Severity on JFTOT Breakpoint Temperatures of Jet A Fuels from Various Synthetic	
	Sources	125
5-1	IBP to 563°F Feed Fractions	127
5-2	Summary of the Effect of Hydroprocessing	
	Severity on Sulfur and Nitrogen Removal	140
5-3	Summary of the Effect of Hydroprocessing Severity on Compound Class Distribution,	
	i.e. Aromatics, Paraffins, and Naphthenes	
	(Cycloparaffins)	141

LIST OF FIGURES

No.		Page
3-1	High-Pressure Cell Layout for Hydrogenation System	5
3-2	Fluidized Air Sandbath Heaters for Hydro-	
	genation System	8
3-3	Hydrogenation SystemCoal Liquid/Shale	
	Oil Hydrotreatment	9
3-4	Experimental Procedure	21
4-1	Paraho Dist. Cut 4 Run 11-B	245
4-2	Tosco 17-B Light Blend	248
4-3	Tosco 17-B Heavy Blend	253
4-4	Garrett 103 Blend	256
4-5	Synthoil 105 Blend	263
4-6	Synthoil 107 Blend	268
4-7	Tosco 113 BETA Blend	273
4-8	Tosco 113 Alpha Blend	280
4-9	Synthoil 203 Final Blend	287
4-10	Garrett 115, Final Blend	292
4-11	Paraho III Final Blend	295
4-12	Synthoil 202 Final Blend	306
4-13	H-Coal 209 Light Final	309
4-14	H-Coal 209 Heavy Final	312
4-15	H-Coal 304 Light Final	315
4-16	H-Coal 304 Heavy Final	320
4-17	Garrett 415 Final Blend	325
4-18	Synthoil 416 Final Blend	328
4-19	Paraho 414 Final Blend	333
4-20	Tosco 410 Heavy Final Blend	336
4-21	Garrett 404 Heavy Final Blend	343
4-22	H-Coal 419 Final Blend	346
4-23	Garrett 404 Light Final	
4-24	Tosco 410 Light Final	
5-1	Sulfur Removal Reactions in Hydrotreatment	
5-2	Denitrogenation, Deoxidation, and Olefin	10.
	Saturation Reactions in Hydrotreatment	138
5-3	Diolefin Saturation in Dimerization	130
	Reactions in Hydrotreatment	139
		200

APPENDICES

						Page
APPENDIX	I	-	HYDROGENATION SYSTEM START-UP PROCEDURES .			146
APPENDIX	II	-	HYDROGENATION SYSTEM OPERATING PROCEDURES	•		149
APPENDIX	III	-	HYDROGENATION SYSTEM SHUTDOWN PROCEDURES .			150
APPENDIX	IV	-	JFTOT APPARATUS DESCRIPTION AND TESTING PROCEDURES	•		153
APPENDIX	V	-	PARAHO SHALE OIL CRUDE ASSAY			162
APPENDIX	vi	-	TOSCO SHALE OIL CRUDE ASSAY			183
APPENDIX	VII	-	GARRETT SHALE OIL CRUDE ASSAY			205
APPENDIX	VIII	-	SYNTHOIL COAL LIQUID CRUDE ASSAY			226
APPENDIX	IX	-	H-COAL RUN (FEED COAL ANALYSIS) ASTM D-86 DISTILLATION		•	235
APPENDIX	X	-	JFTOT RESULTS			238

LIST OF ABBREVIATIONS AND SYMBOLS

ASTM American Society for Testing Materials bbl (or B) Barrel - 42 U. S. gallons BTU British Thermal Unit COED Char Oil Energy Development Process D Calendar Day EPA U. S. Environmental Protection Agency FMC FMC Corporation FPC Federal Power Commission HRI Hydrocarbon Research Incorporated kB/SD Thousand Barrels per Stream Day 16 Pound NPC National Petroleum Council OCR U. S. Office of Coal Research SCF Standard Cubic Foot (60°F, 1 Atm.) SD Stream Day Ton (or T) 2000 Pounds TOSCO The Oil Shale Company TPD Tons Per Day USBM (or B/M) U. S. Bureau of Mines Watt

PREFIXES

k Thousand (kilo)
M Million (mega)
G Billion (giga)

SECTION I

SUMMARY

This report describes the Phase II portion of Contract F 33615-74-C-2036 initiated by the Air Force Aero Propulsion Laboratory (AFAPL) with joint AFAPL and NASA support to evaluate the feasibility of producing jet fuel from synthetic crude oils derived from shale oil and coal.

At the conclusion of Phase I of this study in January, 1975, it was reported that shale oil would probably impact more directly than coal liquids on future jet fuel production. Our experimental data now indicates that shale oils are indeed more suitable than coal liquids for the direct production of current specification aviation turbine fuels via catalytic hydroprocessing. Hydroprocessed shale liquids have a paraffinaromatic-naphthene distribution similar to that of petroleum derived fuels, whereas coal liquid derived products are low in paraffins and the hydroprocessing, in general, simply converts the coal liquid fuel from one rich in aromatics to one rich in naphthenes without substantially increasing the paraffin content.

In the experimental phase, herein described, a processing sequence employing fractional distillation and catalytic hydrogenation was used to produce "synthetic" jet fuels from both shale oil and coalderived syncrudes. Three shale oils and two coal liquids, obtained from the respective process developers, were investigated. Feed fractions encompassing the jet fuel boiling range were distilled from the starting crude oils and hydrotreated at varying severity over nickel and/or cobaltmolybdenum catalysts. Final narrow-cut (Jet A) and/or wide-cut (JP-4) jet fuels oils were blended from the hydrotreated products.

From the inspections obtained on the final jet fuel blends, including results of the Jet Fuel Thermal Oxidation Tests (JFTOT), it would appear that the production of jet fuels from shale oil-derived crude oils is technically feasible, and should be more straightforward than would be the comparable production from coal-derived oils. Hydroprocessing severity is important to the production of specification fuels. Production of specification jet fuel from shale liquids will require at least a moderate severity operation employing a 1500 psi total pressure. Final fuels prepared from coal-derived fuels, however, did not meet density specifications unless hydrotreated at high severity conditions employing 2200 psi pressure. Moreover, there was indication that catalytic operations with coal-derived oils would be much more troublesome, or expensive, than with shale-derived oils, and might require extensive further catalyst development before becoming practicable. Increased processing severity, in general, improved the thermal stability and decreased the aromatic and nitrogen content of the product fuel. Sulfur levels of the processed fuels were all well below specifications at all processing severity levels.

The experimentally obtained process and analytical information will be used in the third phase of the program to provide a basis for an engineering and economic evaluation of the effect of the use of synthetic crude in a refinery processing both petroleum and synthetic crude to produce a full product slate including aircraft turbine fuels.

SECTION II

INTRODUCTION

Domestic petroleum product production is now, and is forecast to continue to be (National Petroleum Council, 1973), heavily dependent on foreign crude oil feedstocks. Wide recognition of this dependence has led to renewed interest in the production of hydrocarbon liquids from coal and shale deposits to augment the domestic fuel base. The degree to which synthetic fuels developments mitigate foreign dependence is of obvious significance to the logistics support planning of the Armed Forces.

We have previously reported (Shaw, Kalfadelis, Jahnig, 1975) on the first phase of a program sponsored by the U. S. Air Force Systems Command to determine the feasibility of producing aviation turbine fuels, in particular, from other-than-normal petroleum sources. In Phase I, literature data relating to the extent of domestic mineral resources and to the many proposed processes for the extraction or transformation to crude fuel liquids were assessed. An attempt was made to clarify material and energy balances and the investment and cost pictures, and to gauge the environmental impact, of proposed mining and manufacturing operations. Approaches to the production of finished fuels from the crude liquids, based on current petroleum oil technology, were also assessed.

Phase I concluded that shale-derived oils should be preferentially investigated as a source of aviation turbine fuels, both because they more nearly resemble natural petroleum than do other synthetic crudes, and because significant quantities of shale oil are expected to come onto the market before coal-derived materials are available. The properties of coal-derived liquids, on the other hand, make them ideal for the production of other finished products, such as certain motor gasolines, and could add indirectly to aviation turbine fuel availability by permitting back-out of regular petroleum crude from gasoline manufacture. Moreover, specificallyrefined coal liquid fractions might be blended into aviation fuels that were otherwise derived from petroleum sources; or coal liquids, which have generally higher density than shale or petroleum oils, might form the basis of a completely new class of jet fuels, assuming a complementary engine development effort were forthcoming. Finally, we concluded that the acquisition of hard data for the processing of synthetic crude oils should be given priority to permit formulation of intelligent policy and projections for the future uses of synthetic fuels.

We were able to begin to follow up on this latter conclusion in Phase II, the experimental segment of the instant program, in which our object was to determine whether specification JP-4 and/or Jet A aviation fuels could be produced from synthetic crude oils. This report discusses the experimental hydrotreatment of selected synthetic crude oil fractions. Subsequent work in Phase III of the program will use the experimentally obtained process and analytical information as a basis for an engineering and economic evaluation of the effect of the use of synthetic crude oil in a combined petroleum and synthetic refinery.

SECTION III

EXPERIMENTAL

An automated catalytic hydrogenation system was employed experimentally to hydrotreat specific synthetic crude oil fractions. The hydrogenation system included facilities for the continuous feeding of oil and hydrogen treat gas, and for the continuous depressurization and collection of hydrotreated oil product. The system was arranged for remote operation. The operating logic that evolved for the system called for semi-attended operation, consistent with maximum operating safety and experimental flexibility.

This section describes the design and operation of the experimental hydrogenation system.

3.1 Design Considerations

3.1.1 Eazards Considerations

The experimental hydrogenation system which became available to this program was located in a laboratory building which had been designed expressly to protect operating personnel from the effects of detonation of contained equipment. The design and construction of the experimental system was predicated on placement of the unit in a reinforced-concrete high-pressure (blast) cell within the building.

The cell employed for placement of the unit has an available floor space of approximately 268 square feet (see Figure 3-1). The celling is at about 15 feet. The cubicle is surrounded on all sides except one by reinforced concrete walls, roof, and floor with a minimum thickness of eighteen inches. Vertical walls separating our cell from those adjacent are surrounded additionally by brick walls eight inches thick.

Sliding, laminated boiler-plate doors three-inches thick provide access through opposite side walls. Observation ports on the front, or operating, wall are constructed of three four-inch-thick blocks of optically-clear Plexiglass set into welded steel frames, and separated from each other by two-inch air spaces. A false wall of inch-thick foamed plastic serves as windbreak off the back of the cell, which faces a reinforced earthen bank some thirty-feet thick, raised about five feet higher than the building.

The hydrogenation unit's feed systems for gas and liquids, feed filters, and flow control loops are located at one end of the cell. One-half-inch-thick Plexiglass sheeting arranged with sliding doors is used to protect operators from spray from small leaks which may develop in this area, as from pinholes in pressure gauges or leaks in vent piping downstream of safety valves or rupture discs.

The unit's product recovery, recycle, and sampling systems are located at the opposite end of the cell. The unit's sandbaths, containing the reactors, are located in the central working area (see Figure 3-1).

Hazards design is based on division of the cell's working areas into three classifications:

- Area "A" (filter and sampling areas) to which the operator has access, and in which mechanical repairs are permitted, while the unit is in operation.
- Area "B" (pump and compressor areas) in which pump and compressor servicing and/or repair is permissible on issuance of a bona fide work permit.
- Area "C" (pressurized hydrogen storage and reactor areas) which is "off limits" to all personnel unless the unit is shut-down and in static condition. This area is chained off during unit operation to provide a visual reminder of the "off limits" status.

The blast cell employed was originally designed to contain the detonation of twenty pounds of TNT (equivalent) without affecting adjoining cells, and the embankment system design would so deflect and attenuate the resultant blast pressure wave that windows in the nearest buildings would be subjected in the event to a very small fraction of their ultimate breaking strength.

The front, or operating, wall of the cell is arranged to permit explosion-proof introduction of mechanical, pipe, and electrical linkages to equipment contained in the cell to facilitate remote operation. The cell is internally supplied with utilities, including lighting, water, steam, vacuum, utility air, instrument air, low-and-high-pressure nitrogen, and electricity. High-capacity exhaust blowers mounted on the roof of the building take suction on the cells, maintaining internal pressures always slightly less than pressure in the occupied portion of the building. The cell exhaust system is provided with pressure, flow, and thermal alarms, which sound if malfunction or interruption occurs. Heated air is drawn into the cells through louvres for winter operations. All fixtures and fittings in the cell are explosion- or spark-proof, and mechanical design is consistent with the explosion pressure rating.

A special ultra-high-pressure (6000 psig) nitrogen system servicing the cell was installed to facilitate pressure testing and related high-pressure operations. We also provided a special gas cylinder bank and distribution manifolds for the calibrating gases required for the gas chromatographs.

Hydrogen for the system is taken from a high-pressure truck trailer supply located about 150 feet from the building. Hydrogen is available at the cell (and from the trailer's depressuring station) at about 800 psig. The supply piping is permanent, and the supply system

is provided with redundant pressure recording and low-pressure warning alarms. We additionally provided low-pressure switches on the immediate suctions of the unit's hydrogen compressors arranged to cause instantaneous cessation of operation if pressure falls below the set point, preventing air intake in event of blockage in the supply piping.

Liquid feedstocks received onsite in barrels were stored on a segregated platform adjacent to the operations building. Feed was removed from the shipping containers into specially-vented feed cans for use in hydrotreatment operations as required. Appropriate personnel protection was employed whenever feeds or products were handled. Precautions were invoked to avoid exposure of hydrocarbon liquid to heat, flame, shock, or electrical discharge. When deemed necessary or advisable, feed and/or product liquids were stored under inert (nitrogen) atmospheres.

Basic system design was oriented toward the reduction of potential hazard, and the mechanical design conformed with Exxon's internal basic safety practices. Pertinent features of the design encompassed by these practices will be described below. The design of unit modifications introduced in this program, and all operating procedures, were reviewed internally by technical and administrative experts before construction was allowed. The revised system was again subjected to safety review before hydrogenation operations were permitted. And the system has been inspected at regular intervals in the course of the program by a representative of the disbursing office which administered the contract.

3.1.2 Theoretical Design Basis

The design basis for the original hydrogenation system included the following specifications:

The state of the s

- Two independent plug-flow tubular reactor systems
- Tubular reactors to be contained in independent temperature-controlled, air-fluidized sandbaths
- One independent one-liter stirred tank autoclave reactor
- Ability to run autoclave reactor simultaneously and independently of tubular reactor systems; or ability to run autoclave reactor in series with the tubular reactors. Ability to run tubular reactors in series or in parallel
- 5000 psig maximum tubular reactor pressure;
 3000 psig maximum autoclave reactor pressure
- 950°F maximum tubular reactor temperature;
 600°F maximum autoclave reactor temperature
- Three independent hydrogen feed systems (40 SCFM maximum total flow)

- Two independent liquid feed systems (4000 cc/hr maximum each)
- Two independent additive liquid feed systems (1 cc/hr minimum and 8 cc/hr minimum)
- One liquid recycle system (4000 cc/hr maximum)

It was also decided to fix the tubular reactor systems in an elevated position, permitting a lowerable sandbath configuration (see Figure 3-2) to provide access to an intact (pressurized) system.

The sandbath-contained tubular reactors each consist of a bundle of up to sixteen 5/16-inch I.D. reactor tubes five-feet long. Reactor tubes may be packed with catalyst, and are arranged, normally, for down-flow operation.

The autoclave reactor consists of a one-liter stirred tank, and may be fitted with a stationary wire basket holding about 50 cc of catalyst. ΔP cells are used to control flows and levels.

Effluent from a reactor system may be led to a knock-out tank on which the recycle pump takes suction, and from which it can deliver fluid back to the reactor system inlet. Effluent which is not recycled may be led to a second reactor, or may be cooled, separated, depressured, measured, and collected.

3.2 Hydrogenation System

3.2.1 Hydrogen Feed System (See Figure 3-3)

Hydrogen is supplied to the unit via permanent piping from a truck tube trailer and an associated depressuring/regulation station located approximately 150 feet from the building housing the unit. Hydrogen from the depressuring station is also piped to other buildings/units.

Hydrogen taken from the entering manifold at about 800 psig is compressed by two AMINCO air-operated compressors into a high-pressure accumulator vessel. The accumulator is maintained at pressure through the action of pre-set master control high- and low-pressure pressure switches which start and stop the compressors as the accumulator pressure varies.

Hydrogen from the accumulator goes to one of two PVT tanks (pressure storage vessels) via a downstream preloaded regulator. In effect, the accumulator vessel and the PVT tank not onstream to a reactor are simultaneously tied to the hydrogen compressor discharge through the preloaded regulator; hydrogen flow to the PVT tank from the accumulator ceases when PVT tank pressure reaches the preloaded regulator pressure, causing backup of the accumulator pressure and ultimate shut-down of the hydrogen compressors.

FIGURE 3-2
FLUIDIZED AIR SANDBATH HEATERS FOR HYDROGENATION SYSTEM

Hydrogen is fed from the PVT tank which is onstream to one of the three flow control loops provided (one for each reaction system). Each hydrogen flow control loop consists of an orifice – ΔP cell, an indicating controller, and an air-operated control valve. The controller varies the valve position to adjust the flow rate as measured via the orifice – ΔP cell arrangement. Temperature-controlled electrical heaters are provided to permit preheat of hydrogen downstream from the flow control loop shead of the reactors.

When pressure in the PVT tank which is onstream drops to a preset lower limit as sensed by a low-pressure pressure switch, solenoid valves are actuated which switch the tank in use for the tank which was last being filled from the accumulator vessel. Through time-delay mechanisms inserted in the master-control pressure switches, the switching of PVT tanks is normally shortly followed by automatic compressor startup, and the PVT tank/accumulator vessel fill cycle repeats.

Consideration of the action and properties of the hydrogen delivery system described here will show that the maximum available steady-state reactor inlet hydrogen flow capability is a complicated function of compressor inlet and delivery demand pressures, and that the limiting flow is distinguished by continuous compressor operation with constant accumulator vessel, PVT tank, and reactor pressures. Moreover, it will be apparent that hydrogen flow rates much higher than the maximum steady-state capability may be delivered to a reactor for limited time periods as accumulator/PVT tank pressures are drawn down. In practice, such high flow operation is limited, however, by pressure drop in the control valve orifice and/or in the reactor proper.

3.2.2 Liquid Feed System

A variety of liquid feed tanks, depending on the quantity of feed which it is desired to run, as determined by the length of the unattended operation interval, may be fitted to scales located within the cell. Two feed tanks up to 55 gallons (stainless steel drums) volume may be so accommodated.

Because of the relatively small feedstock quantities available, two five-gallon stainless steel feed containers were employed. The smaller feed containers permitted correspondingly greater accuracy in feed weight determination.

Liquid feed was generally filtered from shipping containers into the unit's feed containers in a laboratory area adjoining the high-pressure cell. The filled feed containers were then placed on the feed scales within the cell and connected to the system with quick-disconnect-type fittings. The containers were arranged with suitable pressure-relief valves, which were tied to a system vent line, and were maintained under slight positive nitrogen pressure when in use.

Two duplex Whitey metering pumps with pumping heads 180° out-of-phase take suction on the feed containers and deliver liquid to the appropriate reaction system via a back pressure/flow control loop. A Mity-Mite preloaded back-pressure regulator bypasses the pump discharge to the pump suction, maintaining pump discharge pressure. Flow rates are controlled by indicating controllers utilizing orifice- ΔP cells and appropriate air-operated flow control valves. The flow control loops are identical in their makeup with those used for the hydrogen systems. Liquid feed also may be preheated ahead of the respective reactors.

Special liquid additive delivery systems are provided which may be used to deliver liquids to the reaction systems at very low, controlled rates. A flow control loop identical with those used in the hydrogen and liquid feed systems is provided to control the feeding of liquid additive from a high-pressure blowcase, which is maintained at pressure with hydrogen from the accumulator. This system is usable down to flow rates of about 6-8 cc per hour.

For liquid additive delivery rates below the level of control available from the control loop, a duplex Ruska pump may be fitted which can feed liquids positively and reliably at rates down to less than one cubic centimeter per hour. In this case, the two heads of the Ruska pump are 180° outof-phase, with one head filling as the other discharges. Ruska pump suction is arranged also from the high-pressure liquid additive blowcase, and discharge is arranged into mixing tees at the reaction system inlets.

3.2.3 Reactor and Recycle Systems

The "sandbath" tubular reactors consist of a total of up to sixteen downflow tubes, which may be packed with catalyst, installed in two constant-temperature, air-fluidized sandbaths. The tubes are normally 9/16-inch 0.D. by 5/16-inch I.D. of Type 316 stainless steel, four feet-nine inches long. The tube end connections consist of two couplings welded together and drilled to provide a fluid path from one coupling to the next. Hence each end of a reactor tube terminates in one of these "H"-shaped connectors. The quarter-inch transfer lines which connect one reactor tube to the next similarly attach at the "H" connectors. Thermocouples and/or sampling taps may be inserted at the outboard ends (top and bottom) of each "H", providing extreme flexibility in this regard. Each sampling arrangement consists of double block needle valves and capillary stainless steel tubing, which discharges into a vented and purged glass receiver.

Reactor bundles may be operated either in series or in parallel. Liquid feed and hydrogen (and liquid additive, if employed) are premixed in a mixing tee at the reaction system(s) inlet. Both the liquid feed and entering hydrogen may be preheated if desired.

The heat capacity of the fluidized sandbath is sufficiently large to swamp reaction heat effects in all instances involving hydrogenation so far investigated. A total of twelve reactor thermocouple readings may be recorded. In normal steady-state operations, reactor temperature readings are virtually identical, within a range of less than 20 Fahrenheit degrees at a temperature level of 700 degrees Fahrenheit.

Effluent from the last reactor tube is led to a knockout tank. A Zenith gear pump is arranged to take suction on the knockout tank and deliver liquid effluent back to the reactor inlet if such recycle is desired. Recycle flowrate is regulated by an orifice/ ΔP -cell sensor which regulates the Zenith pump output.

Effluent which is not recycled is cooled and separated, the gas phase being released under pressure control, and the liquid phase under level control. Effluent gas is metered and sampled before being vented above the building from safety stacks. Several arrangements are available to collect liquid product, depending on the length of the unattended operation interval, and on the liquid flow rate in use. In general, liquid product is collected in a glass-pipe receiver which may be sponged with dry nitrogen to strip dissolved H2S, NH3, and/or H2O from freshly discharged material. Liquid product is permitted to overflow the sponger vessel into larger, vented containers as required by the collection rate and the length of the unattended operation interval.

3.2.4 Start Up, Operation, Shut-Down Procedures

Procedures for start up, operation, and shut down for the hydrogenation system are appended to this report (See Appendices I-III).

3.3 Feedstock Preparation

In this section are described the procedures used to characterize the synthetic crude samples obtained from the various process developers, and to separate the feedstocks for the hydrogenation experiments performed in the program.

We were committed to investigate three shale-derived crude oils and two coal-derived crudes. The particular crude oils employed were chosen from a schedule of available oils in joint conference with the government Project Engineers. The criteria employed were many, but included the proviso that all crude processing, and the corresponding starting minerals and mining operations, be wholly domestically sited. Certain crude oils derived from well-known processes, such as the FMC COED system, were excluded because other organizations had investigated, or were committed to investigate, them in similar contexts.

We acknowledge the cooperation of the respective process developers in the furnishing of samples. Only one sample of each developer's output was investigated in this program.

3.3.1 Crude Assay Procedure

Each synthetic crude sample (generally one 42-gallon barrel sample was involved) was shipped to our Crude Assay Laboratory at Baytown, Texas for assay. The crude assay involved a two-stage, atmospheric/vacuum distillation in a metallic still with charge capacity of about 30 gallons, and

with fractionation capability equivalent to about fifteen theoretical plates (atmospheric).

Each crude liquid was separated into multiple cuts, or fractions, by the distillation procedure. Typically, some twenty-five to forty distillate fractions were collected, encompassing all of the material in the charge crude boiling up to about $1050^{\rm o}{\rm F}$. Each distillate fraction, and the residue bottoms, from each distillation was then characterized through multiple analyses. The resulting analytical information was collated into an assay report.

Crude assay information for normal petroleum crude oils obtained in the manner described is typically used to estimate or extrapolate processing yields in refinery operations. Depending on the extent of a particular operator's data base for similar crude oils, the performance of new crude oils may frequently be very closely estimated. However, in the case of any new crude oil, as in the cases of the materials treated in this study, anomalies may be encountered. Risks involved in the employment of numerical extrapolations based on crude assay information may be rendered vanishingly small only by widening the data base sufficiently to include all crude liquids and crude liquid permutations, however.

3.3.2 Paraho Shale Oil Assay

The crude assay for the Paraho shale oil sample is attached as Appendix V to this report. Our sample of Paraho shale oil was obtained from the Paraho Development Corporation, Rifle, Colorado. Standard Oil Company of Ohio organized a 17-member development organization to investigate the Paraho retorting process in depth, beginning about 1970. The Phase 1 Final Report, AFAPL-TR-75-10, includes detailed descriptions of all of the syncrude processes referred to in this report.

3.3.3 TOSCO II Shale Oil Assay

Our TOSCO II shale oil sample was obtained from The Oil Shale Corporation, Golden, Colorado. The TOSCO II retorting process is distinguished by the circulation, through the pyrolysis system, of ceramic pellets or balls, a concept which was investigated at the Denver Research Institute beginning about 1956.

The crude assay for the TOSCO II shale oil is attached as Appendix VI to this report.

3.3.4 Garrett (Occidental) Shale Oil Assay

The Garrett (or Occidental) Research Corporation shale oil sample is distinguished by having been produced in-situ. The crude assay for the Garrett shale oil is attached as Appendix VII to this report.

3.3.5 Synthoil Coal Liquid Assay

Synthoil is another Bureau of Mines (now ERDA) development, utilizing a unique coal slurry catalytic hydrogenation reaction system to produce synthetic crude oil. A five- to ten-barrel-per-day pilot plant, which represents a significant scale-up of the facility in which our sample was produced, is now being constructed at the Pittsburgh Energy Research Center.

The crude assay for the Synthoil coal liquid, along with a letter describing the sample preparation, is attached as Appendix VIII to this report. Note that, due to operating difficulty with the assay system, the Synthoil assay extends only to 700° F.

3.3.6 H-Coal Liquid (Assay)

The H-Coal process has been under development by Hydrocarbon Research, Inc., Trenton, New Jersey for over ten years, representing an extension of the ebullated bed hydrogenation technology originally employed to convert heavy petroleum fractions to lighter oils.

Our sample of H-Coal liquid (fifteen gallons), purchased from Hydrocarbon Research, was labeled "Atmospheric Overhead, Sample No. LO-73", obtained in H-Coal's PDU Run No. 130-63-13B. HRI provided inspections of the coal feed used in Run 130-63, which are attached as Appendix IX to this report. HRI has otherwise declined to provide any additional information regarding the preparation of this material, or relating to the yield of this particular fraction from the H-Coal liquefaction system.

There was insufficient material purchased to permit a crude assay to be obtained for the H-Coal sample. The sample was already a distillate, however, whose boiling range encompassed the desired jet fuel boiling range. Our ASTM D-86 distillation analysis for this sample is attached in Appendix IX. Other inspections for this feed sample are shown in Tables 4-39, 40, and 41.

3.3.7 Feedstock Distillation Procedure

We had decided in the first phase of this program to employ distillate fractions, encompassing the jet fuel boiling range, separated from each whole crude, as feeds to the hydrogenation experiments. Because the crude assay procedure consumed, in general, about twenty-five gallons, or one-half barrel, of sample, the quantity of feed available to the program, in each case, amounted to that quantity which could be derived from the half-barrel remaining.

In general, a distillate fraction containing all material in the original whole crude which boiled up to about $563^{\circ}F$ was employed in the hydrogenation experiments performed at our normal- and low-severity conditions. In selected cases (see Section 4.1.9), distillate fractions which included all material boiling up to $650^{\circ}F$ and/or $700^{\circ}F$ were fed to high-severity experiments.

The IRP-(Initial Boiling Point)-to-563°F fractions were distilled from the whole crudes at Baytown in the same equipment used for the crude assays. These fractions were shipped to Linden for hydrotreatment, along with small amounts of the original whole crudes which had not been charged either to crude assay distillation or to feedstock distillation. From these small quantities of remaining whole crude, the IBP-to-650°F and/or IBP-to-700°F distillate fractions, which were fed to some high-severity operations, were separated in glass equipment having about the same fractionation capability as the Baytown equipment.

In Table 3-1 are summarized the crude assay still data through the IBP-to-650°F feedstock distillation range for the Paraho shale oil. Reference to Table 3-I will show that no more than about 11.7 weight per cent of the sample boiled below 563°F, or was within the jet fuel range. Some 23.4 weight per cent of the total sample boiled below 650°F.

In Table 3-2 are summarized the curde assay still data through the IBP-to-650°F feedstock distillation range for the TOSCO II shale oil. Note that about 23.0 weight per cent of the sample boiled below 563°F, or about double that for the Paraho case. Moreover, the initial boiling point of this material was lower than for Paraho, so that considerably more light ends were present in the separated feedstock, permitting the preparation of both wide- and narrow-cut jet fuels from our downstream processing (see Section 4.3.3).

Table 3-3 summarizes the crude assay still data for the Garrett shale oil. About 25.5 weight per cent of the Garrett sample boiled below 563°F, about the same as for the TOSCO II sample. However, the Garrett "kerosene fraction" was considerably heavier than was the TOSCO II fraction, and only narrow-cut fuels were derived from the low- and normal-severity Garrett experiments (see Section 4.4.4). Note, however, that some 43.5 weight per cent of the Garrett sample boiled below 650°F, compared with only 31.2 weight per cent of the TOSCO II sample.

TABLE 3-1

FEED DISTILLATION SUMMARY

PARAHO WHOLE SHALE OIL

	WEIGHT (GMS)	WT. PERCENT (ON HC CHARGE)	VOLUME (CC)	VOL. PERCENT (ON HC CHARGE)	DENSITY (GMS/CC)
GROSS CHARGE H ₂ O IN CHARGE	70,261	0.51	74,979	0.51	
NET HC CHARGE	906*69	100.00	74,600	100.00	0.9371
IBP TO 563°F OVERHEAD	8,208	11.74	9,528	12.77	0.8615
IBP TO 650°F OVERHEAD HOLDITP	16,378	23.43	18,672	25.03	0.8771
BOTTOMS	53,530	76.57	55,801	74.80	0.9593
TOTAL ACCOUNTED	70,129	100.32	74.703	100.14	

TABLE 3-2
FEED DISTILLATION SUMMARY

TOSCO WHOLE SHALE OIL

	GROSS CHARGE VOLATILES IN CHARGE NET HC CHARGE OVERHEAD	WEIGHT (GWS) 72,348	WT. PERCENT (ON HC CHARGE) 0.11 100.00	VOLUME (CC) 78,071 - 126 77,945	VOL. PERCENT (ON HC CHARGE) 0.16 100.00	
	OVERHEAD HOLDUP SOTTONS	22,571	31.23 0.31	26,949 230	34.57	
22,571 31.23 26,949 224 0.31 230		647,64	98.14	50,461	64.74	
22,571 31,23 224 0,31 49,245 68,14	TOTAL ACCOUNTED	72,040	99.68	77.640	19.60	

TABLE 3- 3

FEED DISTILLATION SUMMARY

GARRETT (OCCIDENTAL) WHOLE SHALE OIL

DENSITY (GMS/CC)		0.9100	0.8537	0.8651	0.9358	
WT. PERCENT (ON HC CHARGE)	6.63	100.00	25.46	43.51	99,49	
VOLUME (CC)	83,989	78,768	21,388	36,052	42,648	
VOL. PERCENT (ON HC CHARGE)	6.63	100.00	27.15	45.77	<u>54.14</u> 100.20	
WEIGHT (GMS)	76,430	71,679	18,248	31.188	71,313	
	GROSS CHARGE H ₂ O IN CHARGE	NET HC CHARGE	OVERHEAD	OVERHEAD HOLDUP ROTTORS	TOTAL ACCOUNTED	

TABLE 3-4
FEED DISTILLATION SUMMARY

SYNTHOIL WHOLE COAL OIL

	WEIGHT (GMS)	WT. PERCENT (ON HC CHARGE)	VOLUME (CC)	VOL. PERCENT (ON HC CHARGE)	DENSITY (GMS/CC)
ROSS CHARGE OLATILES IN CHARGE	85,956	0.12	82,011	0.20	1.0481
ET HC CHARGE	85,856	100.00	81,845	100.00	
OVERHEAD	20,050	23.35	21,654	26.46	0.9259
BP TO 650°F OVERHEAD HOLDUP BOTTOMS	32,683 256 52,705	38.07 0.30 61.39	34,735 230 47,304	42.44 0.28 57.80	0.9409
TOTAL ACCOUNTED	85,644	99.76	82,269	100.52	

e toure of the first of the fir

THE RESERVE OF THE PARTY OF THE

Table 3-4 summarizes the crude assay still data for the Synthoil coal liquid sample. Interestingly, some 23.4 weight per cent of the Synthoil sample boiled below 563°F, very nearly the identical fraction for the TOSCO II sample. However, the Synthoil "kerosene fraction" was considerably more dense than were any of the corresponding shale oil fractions, and only narrow-cut fuels could be prepared from our low- and normal-severity hydrotreatment experiments (see Section 4.5.3). The quantity of the Synthoil sample which boiled below 650°F, at 38.1 weight per cent, was between the corresponding quantities for the TOSCO II and Carrett shale oil samples.

There was no crude assay performed on the H-Coal sample (see Section 3.3.6 above). However, all of the sample boiled below 563°F, and its density was very near to those of the Garrett or Paraho "kerosene fractions". Moreover, the H-Coal sample contained sufficient lighter-boiling components to permit preparation of both narrow- and wide-cut jet fuels from the low- and normal-severity hydrotreatment experiments (see Section 4.6.3).

Feedstocks are discussed additionally in Section V of this report.

3.4 Catalysts

Only two catalysts were employed in the program. HDS-3A, a nickel-molybdenum-on-alumina hydrotreating catalyst supplied by American Cyanamid Company, Bound Brook, New Jersey was our "standard" working catalyst. Our sample, in the form of 1/16-inch pellets, was designated "MTG-S-0658, BB-75-336". When loaded into our reactor system, the catalyst sample had an apparent bulk density of 0.727 grams per cubic centimeter. This catalyst was indicated to contain 3.0 to 4.0 weight per cent NiO and 14.5 to 16.0 weight per cent MoO₃ by the vendor.

The second catalyst we employed was a cobalt-molybdenum-on-alumina, Nalcomo 477, supplied by Nalco Chemical Company, Chicago, Illinois. Our sample, also in the form of 1/16-inch pellets, was designated "75-5419 A, February 6, 1975". This catalyst exhibited an apparent bulk density of 0.648 grams per cubic centimeter in our reaction system. This catalyst was indicated to contain 3.5 weight per cent CoO and 12.5 weight per cent MoO₃ by the vendor.

All new catalyst charges were dried and calcined in dry air at 900°F, and presulfided using an H₂S/hydrogen gas mixture <u>in-situ</u> before use in hydrotreatment. The gas flow/temperature program used for presulfiding was identical for all catalyst charges, and corresponded to the schedule recommended by American Cyanamid for pretreatment of HDS-3A.

3.5 Experimental Procedure

The experimental procedure employed in our program is summarized in this section.

3.5.1 Overall Procedure

The overall experimental sequence is shown schematically in Figure 3-4. As has been indicated, each synthetic crude oil sample was firstly assayed or analyzed (H-Coal coal liquid was not assayed because of insufficient sample).

FIGURE 3-4
EXPERIMENTAL PROCEDURE

From each synthetic crude oil sample, a "kerosene fraction", including all material boiling up to about 563°F, was distilled (H-Coal coal liquid was a distillate as received, with a final boiling point below 563°F and was not redistilled).

The "kerosene fractions" derived from the various crude oil samples were hydrotreated at varying severity in the experimental hydrogenation system described above. The kerosene fraction was purposely taken to include some material heavier than that found in the desired finished fuels to compensate for any cracking tendency, and for the general decrease in density accompanying hydrogenation.

The total hydrotreated products collected from the hydrogenation unit during steady-state operating periods were fractionated in glass laboratory distillation equipment.

Aviation turbine fuels which met volatility specifications were blended from the fractions separated in the laboratory distillations by trial-and-error. In general, only minor tailoring of the "front" and "back" ends of each product, i.e., of the lightest and heaviest fractions, was required to produce specification volatility. Both narrow- and wide-cut fuels were blended from some products (see Section IV below).

Finally, the aviation turbine fuels blended to meet volatility specifications were characterized, including determination of thermal stability.

3.5.2 Hydrotreatment Severity

Hydrotreatment experiments were conducted with all feedstocks at 1500 psig, 700°F (371°C), 1.0 liquid hourly space velocity (LHSV), and feeding 4000 SCF hydrogen treat gas straight-through per 42-gallon barrel of liquid feed. These operating conditions were chosen to represent moderately severe commercial hydrotreatment operation, and were considered our normal-severity base case conditions.

Certain of the feedstocks were also hydrotreated at a lower total pressure, 800 psig, and at 1.0 LHSV, which we considered our low-severity cases.

Additional experiments were conducted with other feedstocks at a total pressure of 2200 psig, and at 0.5 LHSV, our high-severity hydrotreatment conditions.

In general, shale liquids were processed over nickel-molybdenum catalyst, and coal liquids over cobalt-molybdenum, although some "cross-over" runs were also made.

At least one final finished fuel blend was prepared from feedstocks derived from each of the five "synthetic crude oils" in the program at each of the three severity levels. There was, however, insufficient feedstock available to permit once-through operation for all feeds at all severities,

so that some high-severity runs represent doubly-hydrotreated products. On the other hand, there was sufficient feedstock available in two cases (TOSCO II and Garrett) to permit feed fractions with endpoints of 650°F and/or 700°F to be additionally separated from the whole crudes and fed to high-severity experiments (see Sections 4.3.1 and 4.4.1 below).

AT THE REPORT OF THE CAMPBE AND A THE CONTRACT OF THE PARTY OF THE CAMPBE AND A CONTRACT OF

the damagnet and transfer filter that was an interest to take the following and the transfer and the said that the said the

The state of the s

SECTION IV

RESULTS

The experimental hydrogenation system was first operated feeding commercial jet fuels to demonstrate system operation and to test the system's capability, in particular, to operate automatically for long time periods without attention. The system was then operated to hydroprocess the synthetic feedstocks, as these became available from the Crude Assay Laboratory at Baytown, Texas.

In the initial operations, the hydrogenation run length was gradually extended until we were satisfied that there was no particular problem associated with continuous indefinite operation. The primary concerns in this connection were the integrity of the high-pressure reaction system, including the pressurized hydrogen storage and feed systems, the reliability of the hydrogen compressors and liquid feed pumps, and the ability of the provided automation to sense a potentially hazardous condition and to bring the system into a safe standby or shutdown condition.

In retrospect, we found little cause for real concern in those respects. At total reaction pressures up to 4000 psig, there was never any evidence that any part of the system was being unduly stressed. Although the design of the reactor, involving multiple components and closures, led to prolonged searches for leaking fittings on several occasions, the reaction system gave faultless service over hundreds of hours of operation, once integrity had been established. The hydrogen compressors, too, operated for hundreds of hours with only normal maintenance. One machine required major overhaul as a consequence of the failure of a component in its lubrication system. The liquid feed pumps were involved in most of the inadvertent unit shutdowns, although flow stoppage was usually found to be due to particulate matter in feeds, plugged feed filters, or to the development of high pressure drop across the reactor. In all cases of difficulty, system operation was terminated instantaneously automatically, such that there was never occurrence of fire or explosion or evidence of other thermal or pneumatic stress.

Hence hydrogenation operations, which were initially based on fully attended, generally one-shift operation, were ultimately geared to continuous, round-the-clock, seven-day operations with attention provided on a one-shift, five-days-per-week basis. The attention required by the unit included normal maintenance and lubrication of the rotating machinery, the changeout of strategic filter elements, the filling of feed reservoirs and the draining of product receivers, and the maintenance and calibration of the unit's instrumentation. Reaction temperature and total pressure were fixed and constant in most operations. Manipulation of liquid feed and hydrogen flow rates were the principal varied parameters in the course of an operation. Collection of data and preparation of analytical samples were the normal primary operator concerns.

4.1 Chronological System Operations

This section first describes the operations and data gathering in chronological order. References are made to run data sets which are included as Table 4-1.

4.1.1 Initial System Hydrogenation Operations

The initial unit safety inspection (internal Exxon) was held March 3, 1975 by the affected facilities' supervisors, safety supervisor, and pilot plant engineers, following unit modifications incorporated as a consequence of recommendations agreed to in a work status meeting held February 7, 1975.

The initial trial catalyst, a cobalt-molybdenum-on-alumina, was charged to the reactor on March 25, 1975, and presulfided in place using a 10% H2S/90% H2 sulfiding gas mixture. The catalyst, designated COMO-0601T, and in the form of 1/8-inch pellets, had been acquired from Harshaw Chemical Company several years previously. A total of 324 cc was charged, distributed among six reactor tubes. These six catalyst-filled tubes, along with two empty preceding tubes which were utilized as a preheater, comprised the total reactor bundle.

In the course of adjusting the temperature control system, fluidization air rates and fluidizing sand levels were varied, involving repetitive lowering and raising of the sandbath vessels. In our system, the reactors are fixed in an elevated position, and the sandbaths which enclose them are raised into position from ground level by pneumatic pistons. The sandbath vessel head seal and a portion of the reactor bundle was damaged as the sandbath vessel was being elevated into position following an adjustment in sand level. Subsequently, it was found that a pipe wrench had fallen into the bath, and had been wedged across the vessel, impeding the upper movement of the bath. The offending wrench predated our operations. It is noted that the system was successfully operated for a large number of cycles before damage was sustained.

Following repair of the reactor sandbath damage, the reactor catalyst charge was resulfided prior to operations because the reactor had been opened briefly in the course of the mechanical repairs.

Liquid feed was started into the unit for the first time on April 11, 1975. The initial liquid feed was Jet A aircraft turbine fuel, which analyzed 765 ppm total sulfur. Initial hydrogenation conditions were 690°F. temperature, 1500 psig total pressure, 10 SCFH hydrogen flow and 500 cc/hr. liquid flow. The reactor system, including the two empty preheater tubes, was indicated to be isothermal throughout.

In the initial week of operations, liquid feed was maintained only during the day shift. The unit's temperature was dropped to 200-300°F overnight, with a small sustaining hydrogen flow, and was increased again daily to the operating region.

	a transcourage	TABLE 4-1			
NO.	IA IA	1A 2A	; -1	•	38
START END RUN, HRS. CUM. RUN HRS. CUM. ELAPSED HRS.	1000 5/13/75 1430 5/14/75 28.5 28.5 28.5	1430 5/14/75 1400 5/15/75 23.5 52.0 52.0	1400-5/15 1730-5/15 (3.5)	1730-5/15 0900-5/16 (15.5)	0900 \$/16/75 1530 \$/16/75 6.5 58.5 77.5
FEED START WI., LBS. END WI., LBS. TOTAL FEED, LBS. TOTAL PROD. RECOVERED, LBS. RAIF, LBS/HR. RAFE, CMS/HR.	JET A 31.65 24.38 7.27 0.255	DOCTORED JET A 18.78 13.21 5.27 0.237	111111	111111	DOCTORED JET A 12.27 9.17 3.10 - 0.477
DENSITY, CAS/CC @ 60°F DENSITY, CAS/CC @ 75°F LIQ. RATE, CC/HR. LHSV TOTAL PRESS., PSIG TEMP., °F H2 RATE, SCPH H2 RATE, SCPH H2 RATE, SCPH	0.8122 0.8065 143.5 0.36 3000 650 11,240	0.8122 0.8065 133.3 0.34 3000 650 9.39	3000	3000 650 12.4	268.2 0.8065 268.2 0.67 3000 650 650
FEED PARAFFINS MONOCYCLOPARAFFINS DICYCLOPARAFFINS TRICYCLOPARAFFINS ALKTLBENZENES INDANES-TFRALINS INDENES NAPHTHALENES PPM S PPM N	17.8 82.2 777. 39.	19.7 2.6 77.7 871. 340.	FALLURE OF REACTOR OUTLET HEISE GAGE	LIQUID FEED PUMP FAILURE	19.7 2.6 77.7 871.
PRODUCT PARAFFINS MONOCYCLOPARAFFINS DICYCLOPARAFFINS TRICYCLOPARAFFINS ALKYLBENZENES INDANES+TETRALINS	6 hr. 25 hr. 94.4 96.0	21.5 hr. 96.4			5 hr. 6.5 hr. 97.3 100.
INDERES NAPHTHALENES PPM S PPM N	E	30.			

		TABLE 4-1 (Cont. d)	_1		
RUN	:	44	:	•	118
START	1530-5/16	0830 5/19/75	1530-5/19	1600-5/20	
END	0830-5/19	1530 5/19/75	1600-5/20	1130-5/21	1630 5/21/75
RUN, HRS.	(0.50)	7.0	(54.5)	(19.5)	5.0
CUM. RUN HRS.	1,43 €	65.5	:	:	70.5
CUM. ELAPSED HRS.	144.3	149.5	174.0	193.5	198.5
***************************************	:	JP-5	;	;	79-5
FEED	:	25.15	;	;	30 30
STAKI WI., LBS.	:	21.73	;	;	27.80
TOTAL TITLE	:	3.42	:	:	2 40
TOTAL FEED, LBS.	:	•	:	:	?;;;
DATE TEC UE	:	0.489	:	;	087 0
TATE, LBS/HK.		221.6	:	;	217.7
DENGT CAS / HK.	:	0.8095	:	:	0 8005
DENSITY CAS/CC @ 2505		0.8038	:	:	0.8038
LIO. RATE CC/HR.	1 1	275.7	:	1	270.9
THSV	3000	0.70	:	;	0.68
TOTAL PRESS. PSIG	9000	3000	0	3000	3000
TEMP. OF	6/0	029	700	650	650
H, RATE, SCFH	11.6	9.33	:	6.56	10.36
H2 RATE, SCF/BBL		2, 380	;	;	6,080
FEED PARAFFINS	OM IN	81.4			81.4
MONOCYCLOPARAFFINS	FAILURE			FAILURE	
TRICYCLOPARAFFINS			CATALYST		
ALKYLBENZENES			RESULFIDED		
INDENESTIEIRALINS	LIQUID	18.1		LIQUID	18.1
NAPHTHALENES PPM S PPM N	reku	264. 34.		FEED	264. 34.
PRODUCT		4.5 hr. 7.0 hr.			4 hr.
MONOCYCLOPARAFFINS		7.79 001			95.9
TRICYCLOPARAFFINS					
INDANES+TETRALINS					
NAPHTHALENES					7.,
S MAA N MAA		1. 2. <30			. 530°.

1830-5/21 0830-5/21 1800-5/28 1100 1834-5 1300-5/21 1000-5/22 1200 5/28/75 1220-5/28 1100 1834-5 134-5 130-5/21 1000-5/22 100-5/22 100-5/22 1834-5 134-5 130-5/2 100-5/2 100-5/2 100-5/2 1834-5 134-5 130-5/2 130-5/28 1100 1834-5 134-5 134-5 130-5/2 130-5/2 130-5/2 1834-5 135-6 130-5 130-5/2 130-5/2 130-5/2 1834-5 135-6 130-5 130-5/2 130-5/2 130-5/2 1834-5 135-6 130-5 130-5/2 130-5/2 130-5/2 1834-5 135-6 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 135-6 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130-5/2 130-5/2 130-5/2 130-5/2 1834-5 130-5/2 130		1	TABLE 4-1 (Cont'd) 2B	8E (b) 38	:	87	
Comparison	START	1630-5/21	0830 5/27/75		2230-5/28	1100 5/29/75	
101.0 108.5 1.00.5 102.0 108.5 1.00.5 102.0 108.5 1.00.5 102.0 108.5 1.00.5 102.0 108.5 1.00.5 102.0 108.5 1.00.5 102.0 108.5 1.00.5 102.0 108.5 1.00.5 102.0 108.5 1.00.5 103.0 1.00.5 1.00.5 103.0 1.00.5 1.00.5 103.0 1.00.5	END	(136.0)			(12.5)	~	
RS. 534.5 595.0 577.5 57	RUN, HRS.	1	101.0	108.5	385.0	130.25	
S. DOCTORED JP-5 17P-5 DOCTORED JP-5 18-67 17-30	CUM. ELAPSED HRS.	34.3	363.0	6.776	2000		
S. 196.51 11.30 COVERED, LBS COVERED, LB		•	JP-5	DOCTORED JP-5	:	DOCTORED JP-5	
S. 19.67 14.97 19.67 14.97 10.244 0.310 10.244 0.310 10.244 0.310 10.244 0.310 10.244 0.310 10.244 0.310 10.310 10.310 10.310 10.310 10.310 10.310 10.310 10.310 10.310 10.310 10.310 10.310 10.310 10.310 10.310 10.310 10.310 10.32 0.300 0.32 0.300 0.32 0.300 0.32 0.300 0.32 0.300 0.32 0.300 0.32 0.300 0.32 0.300 0.32 0.300 0.32 0.300 0.32 0.300 0.32 0.300 0.32 0.300 0.32 0.300 0.32 0.32	CEATTE	:	26.51	17.30	:	14.9/	
S. COVERED, LBS	END WI., LBS.	:	19.67	78.97	:	5.27	
COVERED, 1485 0.244 0.310 101.7 101.7 140.9 101.7 101.7 140.9 101.7 101.7 140.9 126.1 0.8870 0.88051 126.1 0.32 0.88051 126.1 1.0.32 0.44 1.50 126.1 0.32 0.44 1.50 126.1 0.32 0.44 1.50 126.1 0.32 0.44 1.50 126.1 0.32 0.44 1.50 126.1 0.32 0.44 1.50 126.1 0.32 0.44 1.50 11,930 3000 3000 200 200 11,930 650 650 650 200 11,930 10.77 11,930	TOTAL FEED, LBS.		8 :	} :	:	:	
HH	TOTAL PROD. RECOVERED, LBS	· ·	0.266	0.310	;	0.242	
H. 0.8128 0.8110 0.8070 0.8051 0.8070 0.8051 0.8071 1.75.0 0.8071 1.75.0 0.8071 1.75.0 0.8071 1.75.0 0.8071 1.75.0 0.8071 1.75.0 0.8071 1.75.0 0.8071 1.75.0 0.8071 1.75.0 0.8071 1.75.0 0.8071 1.75.0 0.8071 1.75.0 0.8071 1.75.0 11, 930 9,790 1.0M ALREATR 1.1, 930 9,790 1.0M ALREATR 1.1, 930 1.10M	RATE, LBS/HR.	: :	101.7	140.9	:	109.9	
##. 0.8070 0.8051 126.1 175.0 126.1 175.0 126.1 175.0 126.1 175.0 126.1 175.0 126.1 175.0 126.1 175.0 126.1 175.0	RATE, GMS/HR.		0.8128	0.8110	:	0.8110	
HR. 126.1 155.0 1.1 HR. 200 3000 3000 150 200 HR. 200 3000 3000 150 200 HR. 650 650 650 200 HR. 1. 11,930 650 650 200 HR. 1. 11,930 650 10.77 1.11 HR. 11,930 77.2 82.9 LIQUID FEED 77.2 82.9 LIQUID FLOW FLOW ALARM ALARM ALARM ALARM ALARM HOLIDAY 407. HR. 22.5 hr. 7.5 hr. 5. 15.0 89.0 96 HR. 25 hr. 7.5 hr. 5. 1.5 hr. 5. 1.5 hr. 7.5 hr	DENSITY CAS/CC @ 1502		0.8070	0.8051	:	136.5	
FEIG 200 3000 150 650 650 650 650 650 650 650 650 650 6	LIO. RATE, CC/HR.	•	126.1	175.0	: :	0.35	
FSIG AMB. 5500 500 500 500 650 500 650 650 650 65	THEA	: 00	2000	3000	150	3000	
HINS REFAIR 11,930 9,790 11,250 LIQUID FEED 77.2 82.9 LIQUID FLOW ALARM	TOTAL PRESS., PSIG	200	9006	999	200	650	
Liquid FEED 77.2 82.9 LOW FEED 77.2 82.9 LIQUID FEON FEON FLOW FEON FLOW FEON FLOW FEON FLOW ALARM MCNORIAL 22.5 16.0 SHUTDOWN 25.5 hr. 2	TEMP., OF	egge	97 6	10.77	:	99.66	
TINS	H, RAIE, SCFH	1	11, 930	9, 790		11, 230	
TINS	7						
CLIOPARAFFINS FEED 77.2 82.9 LIOW LIQUID FLOW PUND FLOW FLO	PARAFFINS	LIQUID					
Comparation	MONOCYCLOPARAFFINS	FEED	77.2	82.9	LOW	52.9	
SHUTDOWN SHUTDOWN SHUTDOWN SHUTDOWN SHUTDOWN SSTETRALINS SHUTDOWN SSTATEMENS STATEMENS STATEME	DICYCLOPARAFFINS	REPAIR			FLOW		
SHUTDOWN PAY 16.0 SHUTDOWN 18.5 SHUTDOWN 18.5 SHUTDOWN 18.5 SHUTDOWN 18.5 SHUTDOWN 19.5 SHUTDO	ALKYLBENZENES				ALARM/		
HOLIDAY 407. 25 hr. 2.5 hr. 5.5 hr.	INDANES+TETRALINS	MEMOKIAL	22.5	16.0	SHUTDOWN	16.0	
1.5 hr. 7.5	NAPHTHALENES	HOLIDAY		207		407.	
1.5 hr. 7.5 hr. 7.5 hr. 7.5 hr. 7.5 hr. 7.5 hr. 7.0 hr. 7.5 hr. 7.0 hr. 7.5 hr. 7.0	PPM S PPM N			;			
CLOPARAFFINS 92.2 89.0 9 9 9 9 9 9 9 9 9	PRODUCT		25 hr.	7.5 hr.		5.5 hr. 21.5 hr.	-1
OPARAFFINS LOPARAFFINS LOPARAFFINS SHIENES SHETRALINS SALALENES IALENES 1. <1.	PARAFFINS MONOCYCLOPARAFFINS			6		2 40	
ISTERALINS ISTERALINS ISTERALINS ISTERALINS IN C.0 1. <1.	DICYCLOPARAFFINS		92.2	0.60			
ALENES	ALKYLBENZENES INDANES+TETRALINS						
<u>.</u> . <u>.</u>	INDENES		7.0	0.0		3.1 3.5	
	PPM S		1.	4.			
	PPM N		ı			11	

8B 9B	1615 6/2/75 0900 6/3/75 0900 6/3/75 1630 6/3/75 16.75 7.5 226.50 234.00 503.00 510.50	JP-5 31.92 21.90 10.02 (9.54) 4.65 (4.41)	0.598 0.62 271.3 281.2 0.8128 0.8128	"	8.67 /00. 4100 \$100.	17.2 17.2	22.5 22.5	286. 286. <30. <30.	16.25 hr. 6.0 hr.	9.56 95.6	4.0 2.2	;
7.8	0845 6/2/75 1615 6/2/75 7.5 209.75 486.25	RERUN DOCTORED PROD. 13.85 11.97 1.88 (1.60)	0.2507 113.7 0.7977 0.7917	143.6 0.36 3000 700.	9.43 10,440			T. S.	7.5 hr.	97.2	2.8	
TABLE 44 (Cont'd) 6B	1630-5/30/75 0845-6/2/75 64.25 202.25 478.75	DOCTORED PRODUCT 30.75 13.85 16.90	0.263 119.3 0.7977 0.7917	149.6 0.38 3000 650.	9.17 9,740				64 hr.	96.5	3.5	
SB IAB	0845 - 5/30/75 1630 - 5/30/75 7.75 138.0 414.5		0.276 125.3 0.8128 0.8070	155.2 0.39 3000 650	9,780	77.2	22.5	286.	3.8 hr. 7.8 hr.	98.4 96.5	1.6 3.5	1. 2.
	START END RUM, HRS. CUM. RUM HRS. CUM. ANN HRS.	FEED START WT., LBS. END WT., LBS.	TOTAL FEED, LBS. TOTAL PROD. RECOVERED, LBS. RAIE, LBS/HR. RAIE, GMS/CC & 60°F	DENSITY, GAS/CC @ 75°F LIQ. RATE, CC/HR. LHSV	TEMP., OF H2 RATE, SCH H2 RATE, SCF/BBL	FEED PARAFFINS MONOCYCLOPARAFFINS DICYCLOPARAFFINS TRICYCLOPARAFFINS TRICYCLOPARAFFINS	INDANES+TETRALINS INDENES	NAPHTHALENES PPM S PPM N	PRODUCT PARAFFINS	MONOCYCLOPARAFFINS DICYCLOPARAFFINS TRICYCLOPARAFFINS ALKYLBENZENES	INDANES+TETRALINS INDENES MADURAL TETRALINS	PPM S

KUN	TABLE 10B	IABLE 4-1 (Cont'd)		118		128	
START	1630 6/3/75 1130 6/4/75	1130-6/4	1245	1245 6/4/75 1045 6/6/75	21	1045 6/6/75 1330 6/6/75	1330-6/6
UN, HRS.	19.0 253.00	(1.25)	2	299.0		301.75	(0.5)
CUM. ELAPSED HRS.	529.50	530.75	•	576.75		579.50	580.00
466	DOCTORED JP-5	:	PARA	PARAHO SHALE		JP-5	:
ART WIT. LBS.	21.10	:		68.86		25.20	:
END WT., LBS.	11.75 (11.56)	:		30.85		77.80	:
TOTAL FEED, LBS.				32.01 (29.50)	20)	2.40 (2.75)	
RATE, LBS/HR.	280 5	: :		315.6		395.9	: :
RATE, GMS/HR.	0.8123	:	•	0.8665		0.8128	:
DENSIII, GAS/CC @ 25°F	0.8064	:		0.8612		0.8070	:
LIQ. RATE, CC/HR.	0.88	::		0.93		1.24	1 1
LHSV	3000	3000.	15	1500.		1500.	1500.
TEMP. OF	700.	700.	7	700.		700.	700.
H2 RATE, SCFH	5440.	: :	97	10.68		4340.	1:
RATE, SCF/BBL							30
FEED PARAFFINS		TINI				77.2	SITE
MONOCY CLOPARAFFINS DICY CLOPARAFFINS		NO H					FAILURE
TRICYCLOPARAFFINS ALKYLBENZENES		FEED				22.5	TINU
Indenes+tetralins Indenes		CHANGE					HOLD
NAPHTHALENES PPM S	361.			(0.822)		286.	
				(1.3/2)		30.	
PRODUCT	16 hr.		4 hr. 20	20 hr. 28 hr.	44 hr.	/-/ ur-	
MONOCYCLOPARAFFINS	95.4		88 9.68	88.3 85.9	82.1		
TRI CYCLOPARAFFINS ALKYLBENZENES							
INDENES INTERIOR	2.3		9.5 10	10.7 11.5	14.0		
S Mdd	1.		109. 5.	5. 237.	4.		
					33.		

	1000	TABLE 4-1 (Cont'd)			
RUN	138	148	158	!	168
## T D D	1400 6/6/75	1330 6/9/75	1530 6/10/75	1530-6/14	1830 6/14/75
SIMI	1330 6/9/75	1530 6/10/75	1530 6/14/75	1830-6/14	0830 6/18/75
	71.5	26.0	0.96	(3.0)	86.0
	373.25	399.25	495.25	495.25	581.25
CUM. ELAPSED HRS.	650.50	676.50	772.50	775.5	861.50
	JP-5	JP-5	JP-5	:	JP-5
RED	30.60	32.03	50.44	:	52.67
START WT., LBS.	15.30	25.82	37.34	•	40.35
END WT., L3S.		6.21	13.10	:	12.32
	15.30	4.35	ADDED WITH 16B	:	24.05
TOTAL PROD. RECOVERED, LBS.	14.93	0.239	0.136	:	0.143
RATE, LBS/HR.	0.214	108.3	61.9	:	65.0
	97.1	0.8128	0.8128	:	0.8128
DENSITY, GMS/CC @ 60°F	0.8128	0.8070	0.8070	:	0.8070
DENSITY, GMS/CC @ 75°F	0.8070	134.2	76.7	:	80.5
LIQ. RATE, CC/HR.	120.3	0.34	0.19	:	0.20
LHSV	0.30	36.30.	3000.	3000.	3000.
TOTAL PRESS., PSIG	1500.	650.	650.	650.	650.
TEMP., OF	675.	10.44	6.18	0.9	6.18
H2 RATE, SCFH	4.96	12, 360.	12,800.	:	12, 200.
H2 RATE, SCF/BBL					- 3
MEEN	.0929				1
PARAFFINS					
MONOCYCLOPARAFFINS	77.2	77.2	77.2		77.2
TRICYCLOPARAFFINS				LIQ.	
ALKYLBENZENES				SUSPENDED	
INDENES TELEGIALINS INDENES	22.5	22.5	22.5		22.5
NAPHTHALENES	286.	786	786		286
PPM N	< 30.	<30: <30:	<29. 30.		<30.

PRODUCT
PARAFFINS
MONOCYCLOPARAFFINS
DICYCLOPARAFFINS
ALKTUBENZENES
ALKTUBENZENES
INDANES+TETRALINS
INDENES
NAPHTHALENES
PPM N

		TABLE 4-1 (Cont'd)			
100	:	178	188	:	198
AUM		//			
START	0830-6/18	1030 6/18/75	1500 6/19/75	1000-6/20	1030 6/23/75
FND	1030-0/10		6/ /07/9 0001	1030-6/23	0600 6/24/75
RUN. HRS.	56 135	6.87	19.0	(72.5)	19.5
CUM. RUN HRS.	863.50	892.00	07:00	083 60	1902 00
CUM. ELAPSED HRS.				06.500	1003.00
	JP-5	TOSCO SHALE OIL	JP-5		JP-5
PRED	25.25	36.22	24.60	UNIT	18.30
START WT., LBS.	24.88	17.20	19.74	SHUT	14.68
LOTAL FRED. LBS.	0.3/	19.60	4.80	DOWN	3.62
TOTAL PROD. RECOVERED, LBS.		17.00		PERMIT	c
RATE, LBS/HR.	0.185	0.67	0.256	MAINTENANCE	0 186
RATE, CMS/HR.	83.9	302.4	116.0	WORK	84.2
DENSITY, CMS/CC @ 60°F	0.8128	0.8237	0.8128	NO	0.8128
DENSITY, CMS/CC @ 75°F	0.8070	0.8180	0.8070	BUILDING	0.8070
LIQ. RATE, CC/HR.	104.0	369.7	143.8	ROOF	104.3
LHSV	0.26	0.93	0.36	FANS	0.26
TOTAL PRESS., PSIG				OVER	
TEMP., OF	1500.	1500.	3000.	WEEKEND	3000.
H2 RATE, SCFH	650.	700.	650.		650.
H2 RATE, SCF/BBL	8.9	8.89	9.75		9
	10,400.	3820.	10, 780.		14,550. 2
PRED					
MONOCYCLOPARAFFINS					
DICYCLOPARAFFINS	HOLDING		::		11.3
TRICYCLOPARAFFINS	WHILE		7.77		7
ALKYLBENZENES TAN AND CATETRAL TAN	LOWERING				
INDENES	PRESSURE		22.5		22.5
NAPHTHALENES	FOR				
PPM S PPM N	RUN		286. <30.		286. <30.
PRODUCT					2 0 0
PARAFFINS					19.3 nre.
MONOCYCLOPARAFFINS					
DICICLOPARAFFINS TRICYCLOPARAFFINS					ij
ALKYLBENZENES					
INDANES+TETRALINS					
NAPHTHALENES					
PPM S					
PPM N					

		TABLE 4-1 (Cont'd)			
	248	4, 25B	1	268	27B
START	0830 6/26/75 1600 6/26/75		1100 6/27	1000 1/7/75	0830 7/9/75
END HTS.	7.50	1100 6/27/75	(239.0)	46.5	21.0
CUM. RUN HRS.	1061.00	772.0	1319.0	768.5	1386.5
	S-97	0.0001		P-5	JP-5
START WI., LBS.	43.00 32.41	JP-5 23.50		34.42	19.68
END WT., LBS.	10.59	18.30		25.28	4.20
TOTAL FEED, LBS. TOTAL PROD. RECOVERED, LBS.	10.17	5.20	VACATION	8.37	4.12
RATE, LBS/HR.	640.5	0.274	SHOTTONIS	0.197	0.200
RATE, CMS/HR.	0.8128	124.1		0.8128	0.8128
DENSITY, CAS/CC @ 75°F	0.8070	0.8070		0.8070	0.8070
LIQ. RATE, CC/HR.	2.00	153.8		110.5	0.28
LHSV		0.39		3000	800.
TOTAL PRESS., FSLG	3000.	3000. 650.		700.	700.
H, RATE, SCFH		11.16		5.78	5.20
H2 RATE, SCF/BBL	1920.	11, 530.		8300.	34
FEED				41.8	41.8
MONOCYCLOPARAFFINS	17.2	17.2		25.6	25.6 10.1
TRICYCLOPARAFFINS				0.7	11.7
ALKYLBENZENES INDANES+TETRALINS	22.5	22.5		3.3	3.3
INDENES		700		2.8	2.8
S HAA	286. √30:	<290. <30.		286. 55.	. 25.
PRODUCT		17 hrs.			21 HR
PARAFFINS				40.1 39.3	35.3
DICYCLOPARAFFINS		. <u>.</u>			3.2
ALKYLBENZENES ALKYLBENZENES				0.0	2.8
INDENES					0.1
PPM S					. 2 2.
Lin m					

THE RESERVE AND THE PROPERTY OF THE PARTY OF

RUN	;	TABLE 4-	Cont 'd)	0		0	5	1	
HRS.	0530 7/10 0800 7/10 (2.5)	0800 1515 7.	7/10/75 7/10/75 25	1515 0930 18	15 7/10/75 30 7/11/75 18.25	0930 7/ 1600 7/ 6.5	27/11/7 27/11/7 3.	1600 7/1 1030 7/1 (66.5) 821.5	17, 6.4
RUN HRS. ELAPSED HRS.	1389.0			1414	; v;	1421.0	. 0	1487.5	
		JP-5 15.48		JP-5	•	JP-5			
START WT., LBS.		14.02		21.70	olio	15.07	~!=		
BS.		:		13.0	. &	7.0	~		
COTAL PROD. RECOVERED, LBS.	TOW HYDDO.	91.34		0.7	59	1.07	~ .	DOWN TO PERMIT	SHUT-
RATE, CMS/HR.	GEN FLOW			0.8	128	0.81	128	SUBSTATION	NO
	SHUTDOWN			0.8	070	0.80	020	REPAIRS	
DENSITY, GMS/CC @ 75°F				426.6		573.3			
LIQ. RATE, CC/HR.		87.0		1.0	89	1.45			
PRESS PSIG		700.		700.		200			
TEMP. OF		4.90		4.7	2	4.51			
H2 RATE, SCFH		.0689		1770.		1250.			- 35
		41.8		41.8		41.8			-
PARAFFINS		25.6		25.6		25.6			
MONOCYCLOPARAFFINS		10.1		10.1		10.1			
DICYCLOPARAFFINS		11.7		4.0		11.7			
TRICICIOPARAFEINS		3.3		3.3		3.3			
INDANESTETRALINS		0.2		0.5		0.2			
INDENES		2.8		2.8		2.8			
NAPHTHALENES PPM S		286. 55.		286.		286.			
PPM N									

PRODUCT
PARAFEINS
MONOCYCLOPARAFEINS
DICYCLOPARAFFINS
ALKYLBENZENES
INDANES+TETRALINS
INDENES
NAPHTHALENES
PPM S
PPM S

		1930 7/16 1030 7/21 (111.0) 868.0 1655.5	LOW HYDRO-GEN FLOW SHUTDOWN REACTOR RUFTURE G. REFLACEMENT		
	338	1230 7/16/75 1930 7/16/75 7.0 868.0 1544.5	JP-5 36.70 31.115 5.55 6.38 0.793 359.6 0.8070 445.6 1.13 3000. 700. 6.96	41.8 25.6 10.1 4.0 11.7 3.3 0.2 2.8 286.	
	328	1100 7/15/75 1230 7/16/75 25.5 861.0 1537.5	JP-5 31.62 10.80 20.82 0.816 370.3 0.8128 0.8070 458.9 1.16 3000. 700.	41.8 25.6 10.1 4.0 11.7 3.3 0.2 2.8 286.	21.5 HR 43.5 38.5 12.7 4.2 0.0 0.0 0.2 <1.
TABLE 4-1 (Cont'd)	:	0030 7/15 1100 7/15 (10.5) 835.5 1512.0	LOW LIQUID FLOW SHUT- DOWN		
H	318	1030 7/14/75 0030 7/15/75 14.0 835.5 1501.5	JP-5 14.95 12.82 2.13 2.13 2.13 0.152 69.01 0.8128 0.870 85.5 0.22 3000. 700. 4.59 8530.	41.8 25.6 10.1 4.0 11.7 3.3 3.3 2.8 286.	
	RUN	START END RUY, HRS. CUM. RUN HRS. CUM. ELAPSED HRS.	FRED STATE WT., LBS. END WT., LBS. TOTAL FEED, LBS. TOTAL PROD. RECOVERED, LBS. RATE, LBS/HR. RATE, CMS/HR. RATE, GMS/CC @ 60°F DENSITY, GMS/CC @ 75°F LIQ. RATE, CC/HR. LLSV TOTAL PRESS., PSIG TEMP., °F H2 RATE, SCFH H2 RATE, SCFH	PRED PARAFFINS PARAFFINS DICYCLOPARAFFINS TRICYCLOPARAFFINS ALKYLBENZENES INDANES+TETRALINS INDENES NAPHTHALENES PPM S PPM S	PRODUCT PARFEINS MONOCYCLOPARAFFINS DICYCLOPARAFFINS ALKYLBENZENES INDANES+TETRALINS INDENES NAPHTHALENES PPM S PPM N

	디	TABLE 4-1 (Cont'd)			į
RUN	348	358	368	:	101
START END RUN, HRS. CUM. RUN HRS. CUM. ELAPSED HRS.	1030 7/21/75 0830 7/22/75 22.0 890.0 1677.5	0830 7/22/75 1530 7/22/75 7.0 897.0 1684.5	1530 7/22/75 0830 7/23/75 17.0 914.0 1701.5	0830 7/23	1600 7/31/75 0800 8/5/75 112.0 112.0
FEED STAKT WT., LBS. END WT., LBS. TOTAL FRED, LBS. TOTAL PROD. RECOVERED, LBS. RAIE, LBS/HR. RAIE, CMS/HR. BAIE, CMS/HR. DENSITY, GMS/CC @ 60°F DENSITY, GMS/CC @ 75°F LIQ. RAIE, CC/HR. LISV TURN THEP., °F H. RATE, SCPH	JP-5 24.64 4.64 4.58 3.4 0.208 94.43 0.8070 117.0 0.30 3000. 9.68	6 4 %	JP-5 29.40 28.40 1.00 1.00 0.059 26.68 0.8070 33.1 0.08 3000.	UNIT SHUT- DOWN FOR CATALYST REFLACEMENT	JPS 37.86 15.55 22.31 20.57 0.199 90.4 0.807 112.0 0.28 3000 650 5.4
HA RATE, SCP/BBL FEED PARAFFINS HONOCYCLOPARAFINS IRICYCLOPARAFINS ALKTIBENZENES INDANES+FETRALINS INDENES NAPHTHALENES PPH S PPH N	13150. 41.8 25.6 10.1 11.7 3.3 0.2 2.8 286.	3170. 41.8 25.6 10.1 11.7 3.3 0.2 2.8 55.	45350. 41.8 25.6 10.1 4.0 11.7 3.3 0.2 2.8 2.8 2.8 2.8		37 -
PRODUCT PARAFEINS MONOCYCLOPARAFEINS DICYCLOPARAFFINS THICYCLOPARAFFINS ALKYLBENZENES INDANES-TETRALINS INDENES INDENES PPH S PPH N	22 服 44.6 3.3 3.9 6.0 6.0 6.4				

	17.18	TABLE 4-1 - (Cont'd)			
2	102	103	104	:	105
STARE	0800 8/5/75	1300 8/5/75	0830 1230 8/6/75	1030 8/6/75	21/9/8 5191
	5.00 8/3/73	10 5	5 75	1430 6/6//3	14. 5
واللحم	117.0	136.5	142.25	1/2.25	156.75
CUM. KUN HKS.	117.0	136.5	142.25	144.25	158.75
		Carrett	. E.	;	Synthoil
	15.56	34.50	27.67	:	35.88
START WT., LBS.	12.12	20.20	22.97	;	26.43
END WT., LBS.	3.63	14.30	4.70	:	57.6
TOTAL FEED, LBS.	3.64	14.10	4.48	:	9.30
TOTAL PROD. RECOVERED, LBS.	0.766	0.733	0.817	:	0.65
RATE, LBS/HR.	347.0	332.9	371g	:	296
DENSITION CAS CO OF TANGE	0.807	0.851	0.807	:	0.921
,	430	391.2	097	:	322
ruch mais, colum.	1.09	0.99	1.16	:	0.81
TOTAL PRESS . PSIG	1500	1500	1500	1400	1500
TEMP. OF	35	200	76.1	005-00/	90
H, RATE, SCFH	7.07	9.3	50%	:	5120
H2 RAIE, SCF/BBL	200	ì			2770
TEED		35.9			0.5
PARAFFINS		5.9			38.8
DICYCLOPARAFFINS		10.5			0.0
TRICYCLOPARAFFINS		16.5			21.2
ALKYLBENZENES		10.7			21.4
INDANESTIETRALINS		1.4			1.6
NAPHTHALENES		6300			1000
PPM S		10700			3000
PRODUCT					
HONOCYCLOPARAFTINS					
DICTCLOPARAFFINS					
ALKTLERNZENES					
INDANES+TETRALINS INDENES					
NAPHTHALENES			380		
PPM N					

		TABLE 4-1 (Cont'd)	(6,3		
RUN		106	107	108	
START	0645 8/7/75	0900 8/7/75	1500 8/7/75	0930 8/8/75	1430 8/8
CNA	0900 8/7/75	1500 8/7/75	0930 8/8/75	1430 8/8/75	1500 9/2
	2.25	162 75	18.5	5 20	186 25
CUM. RUN HRS.	161.0	167.0	185.5	190.5	791.00
FEED	:	JP5	Synthoi1	JPS	
STAPT UT TBS	•	23.97	32.32	24.97	
FUN UT THE		19.19	18.15	22.70	Shut
mont men in	:	4.78	14.17	2.27	Down
TOTAL FEED, LBS.		4.54	14.03	2.56	To
TOTAL PROD. RECOVERED, LBS.	•	0.80	0.766	0.454	Perform
KATE, LBS/HR.	:	362	347.7	206	JFTOT
					Testing
	:	0.807	0.92	0.807	
DENSITY, GMS/CC @ /5-F		877	378	255	
LIQ. KAIE, CC/HK.	:	1.13	0.95	9.0	
LHSV	Atmos.	1500	1500	1500	
TOTAL PRESS., PSIG	550	700	700	700	
TEMP., OF		11.25	9.62	12.54	
H2 RATE, SCFH		0767	0077	0896	
H2 RATE, SCF/BBL					
FEED			0.5		
PARAFFINS			38.8		
MONOCYCLOPARAFFINS			8.5		
DICYCLOPARAFFINS			0.0		
TRICYCLOPARAFFINS			21.2		
ALKYLBENZENES			7.7		
INDANESHTETRALINS			1.6		
NAPHTHALENES			1000		
S Mdd			3000		
N WAA					
PRODUCT					
PARAFFINS					
MONOCYCLOPARAFFINS					
DICKCLOPARAFFINS					
TRICICLOPARAFINS					
INDANES+TETRALINS					
INDENES					
NAPHTHALENES					
N Mag					
FFR IN					

	최	TABLE 4- 1 (Cont'd)			
RUN	:	109	110	1111	.
START END RIN HPS.	1500 9/2	1000 9/3/75 0930 9/4/75	0930 9/4/75 1100 9/8/75	1100 9/8/75	1000 9/9
CUM. RUN HRS. CUM. ELAPSED HRS.	186.25	209.75 833.50	307.25 931.00	330.25 954.00	930,25
FEED START WI., LBS. END WI., LBS. TOTAL FEED, LBS.	Shut Down	JP-5 20.28 15.80 4.48	JP-5 46.82 28.44 18.38	PARAHO SHALE OIL 36.66 18.05 18.05	Shut Down
RATE, LBS/HR. RATE, CBS/HR. RATE, CBS/HR.	Due To Low Hydrogen	4.19 0.191 86.47	0.189 0.189 85.51	17.97 0.809 367.02	To Perform Maintenance
DENSITY, CRS/CC @ 75°F LIQ. RATE, CC/HR.	8	0.8070	0.8070	0.8612 426.2 1.08	
TOTAL PRESS., PSIG		3000.	800.	800.	
H2 RATE, SCFH H2 RATE, SCF/BBL		5.74 8510.	5.09 7640.	8.00 2980.	
FEED PARAFFINS MONOCYCLOPARAFFINS		41.8 25.6	41.8		
DICYCLOPARAFFINS TRICYCLOPARAFFINS		10.1	10.1		
ALKYLBENZENES INDANES+TETRALINS INDENES		3.3 0.2	3.3 0.2		
NAPHTHALENES PPM S PPM N		2.8 286. 30.	2.8 286. 30.		
PRODUCT PARAFFINS					

PRODUCT
PARAFFINS
MONOCYCLOPARAFFINS
DICYCLOPARAFFINS
TRICYCLOPARAFFINS
ALKYLBENZENES
INDANES+TETRALINS
INDENES
NAPHTHALENES
PPM S
PPM N

START END RUN, HRS. CUM. ELAPSED HRS. CUM. ELAPSED HRS. CUM. ELAPSED HRS. FEED START WT., LBS. RAIL FEED, LBS. TOTAL FROD. RECOVERED, LBS. RAIE, LBS. TOTAL PROD. RECOVERED, LBS. BENSITY, CAS./HR. LIQ. RAIE, CAS./HR. LIQ. RAIE, CAS./HR. LIQ. RAIE, CAS./HR. LIQ. RAIE, CAS./HR. LIASV TOTAL PRESS., PSIC TEMP., OF H2 RAIE, SCF/BBL FEED PARAFFINS HONOCYCLOPARAFFINS DICYCLOPARAFFINS INDENS HONOCYCLOPARAFFINS SPPM S PPM S PPM S PRODUCT FRAFFINS MONOCYCLOPARAFFINS DICYCLOPARAFFINS TRICYCLOPARAFFINS TRICYCLOPARAFFINS HONOCYCLOPARAFFINS TRICYCLOPARAFFINS TR	112 1600 9/9/75 1430 9/10/75 1430 9/10/75 12.5 12.5 13.75 982.50 1.18 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.15 1.15 1.16 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.18 2.56 1.17 1.18 2.56 1.18 2.56 1.18 2.56 1.19 1.11	113 5 1430 9/10/75 15 5 700 9/11/75 16.5 999.00 16.5 999.00 16.5 999.00 16.5 999.00 16.5 999.00 16.5 999.00 16.5 999.00 16.5 999.00 14.70 14.70 14.70 14.70 15.79 0.8180 475.20 1.20 800. 700. 8.16 2.730	0700 9/11 0945 9/11 369.25 1001.75 Shut Down Due To Low Hydrogen Flow	114 9945 9/11/75 1600 9/11/75 1008.0 JP-5 24.58 4.19 0.683 309.89 0.8128 0.8070 384.0 0.97 800. 700. 9.60 3970. 41.8 25.6 10.1 4.0 11.7 3.3 0.2 2.8 286.	115 1600 9/11/75 1230 9/12/75 20.5 396.0 1028.5 GARRETT SHALE OIL 26.80 14.00 14.00 13.57 0.8565 0.8510 364.0 0.91 800. 700. 9.75 1.55 4250.
INDERES NAPHTHALENES DDM C					
N Wad					

TABLE 4-1 (Cont'd)	116 201	1615 9/12/75 0930 9/30/75 1500 10/2/75 1500 10/2/75 33.5 339.75 53.5 1032.25 53.5	JP-5 24.58 24.58 21.73 21.73 Shut 2.85 Down 2.53 To 0.76 Change 0.8128 Type 0.8025 0.8025 0.8026	E1	41.8 25.6 10.1 4.0 11.7 3.3 0.2 2.8 2.6		
	1	1230 MRS. 1613 MIN HRS. 30 ELAPSED HRS. 30	END WIT, LBS. END WIT, LBS. FOTAL FEED, LBS. RATE, LBS/HR. RATE, GRS/HR. RATE, GRS/CE & 60°F DENSITY, GRS/CC & 75°F LIQ. RAIE, CC/HR.	TOTAL PRESS., PSIG 80 TEMP., OF 70 H2 RAIE, SCFH 12 H2 RAIE, SCF/BBL 40	PARAFINS MONOCYCLOPARAFINS DICYCLOPARAFINS TRICYCLOPARAFINS ALKTLENZENES INDAMESTERALINS INDAMESTERALINS INDAMESTERALINS INDENES NAPHTHALENES PPM S 20	PRODUCT PRAFFINS MCNOCTCLOPARAFTINS DI CYCLOPARAFFINS SIT CYCLOPARAFFINS ALKYLBENZENES INDANES+TETRALINS INDENES NAPHTHALENES PPH S PPH S	

		TABLE 4-1 (Cont'd)	(P, 3)		
RGM	204	1	205	206	!
START END RUN, HRS. CUM. RUN HRS. CUM. ELAPSED HRS.	1315 10/31/75 1630 10/3/75 3.25 79.0	1630 10/3/75 1000 10/6/75 79.0 144.5	1000 10/6/75 0830 10/7/75 22.5 101.5	0830 10/7/75 0830 10/8/75 24.0 125.5	
ERE 75.	JP-5 17.56 15.80 15.80 1.81 0.542 245.6 PF 0.8005 PF 0.7947 309.0 0.73 800. 700.		JP-5 39.00 23.64 15.36 14.20 0.683 399.6 0.7947 389.6 0.91 800. 700.	JP-5 23.64 18.96 4.68 4.45 0.195 88.45 0.8005 0.7947 111.3 0.26 800. 700.	Unit Shut Down To Perform Analytical Work
7750					

PRODUCT
PARAFFINS
MONOCY CLOPARAFFINS
DICY CLOPARAFFINS
TRICY CLOPARAFFINS
ALYLBENZENES
INDANES+TETRALINS
INDENES
NAPHTHALENES
PPH S
PPH N

MONOCYCLOPARAFFINS
DICYCLOPARAFFINS
TRICYCLOPARAFFINS
ALKYLBENEENES
INDANES-TETRALINS
INDENES
PPM S
PPM S

	IVBLE	CABLE 4- 1 (Cont'd)			
KUN	207	208	209	210	211
START	1230 1 0 /20/75 1100 10/21/75	1100 10/21/75 0830 10/22/75	0830 10/22/75 2000 10/22/75	2000 10/22/75 0845 10/23/75	0845 10/23/75
RUN, HRS.	22.5	21.5	11.5	12.75	1.25
CUM. RUN HRS.	148.0	169.5	181.0	193.75	195.0
con: the san the.	500	0.120	230.3	27.100	552.5
FEED	JP-5	JP-5	H-Coal Liquid	JP-5	JP-5
START WT., LBS.	18.68	79.98	35.50	24.20	22.06
END WT., LBS.	15.64	14.16	26.80	22.06	21.32
TOTAL FEED, LBS.	3.04	15.82	8.70	2.14	0.74
TOTAL PROD. RECOVERED, LBS.	2.85	14.64	7.38	1.59	0.79
RATE, LBS/HR.	0.135	0.735	0.757	0.168	0.592
RATE, GMS/HR.	61.28	333.8	343.2	76.13	268.5
DENSITY, GMS/CC @ 60°F	0.8005	0.8005	0.8567	0.8005	0.8005
DENSITY, GMS/CC @ 75°F	0.7947	0.7947	0.8512	0.7947	0.7947
LIQ. RATE, CC/HR.	77.1	420.0	403.1	95.8	337.9
THSV	0.18	0.99	0.95	0.22	0.79
TOTAL PRESS., PSIG	1500.	1500.	1500.	.008	800.
TEM., of	650.	700.	700.	700.	700.
H, RATE, SCFH	6.40	10.94	8.50	10.91	10.56
H2 RATE, SCF/BBL	13,200.	4140.	3350.	18,120.	4970.

PARAFFINS
MONOCYCLOPARAFFINS
DICYCLOPARAFFINS
TRICYCLOPARAFFINS
ALKYLBENZENES
INDANES-TETRALINS
INDENES
NAPHTHALENES
PPM S
PPM S

PRODUCT
PARAFFINS
MONOCYCLOPARAFFINS
DICYCLOPARAFFINS
TRICYCLOPARAFFINS
ALKYLBENZENES
INDANES-TETRALINS
INDENES
NAPHTHALENES
PPM S
PPM S

TABLE 4-1 (Cont'd)

START 1000 10/23/75 1000 10/23/75 1600 10/23/75 1600 10/23/75 1600 10/23/75 1600 10/23/75 1600 10/23/75 1600 10/23/75 1600 10/23/75 1600 10/23/75 1600 10/23/75 1600 10/23/75 1600 10/23/75 1600 10/23/75 1600 10/23/75 1600 10/24/75 1315 10/24/75 1315 10/24/75 1315 10/24/75 1315 10/24/75 1315 10/24/75 1315 10/24/75 10/24/75 1315 10/24/75 <th></th> <th></th> <th></th> <th></th> <th>!</th> <th>1</th>					!	1
## Section March	IRS.	1000 10/23/75 1600 10/23/75 6.0 (5.08)	1000 10/23/75 1600 10/23/75 6.0 (5.08)	1600 10/23/75 1930 10/23/75 3.5	1930 10/23/75 0830 10/24/75	0830
H-Coal Liquid H-Coal Liquid JP-5 26.55 26.55 26.55 Automatic Unit 22.77 22.77 Shut Down Down 3.78 0.74 0.74 0.74 0.857 0.8567 0.8567 0.8512 0.8512 0.93 800. 7.69 3080.		558.5	201.0 558.5	204.5	204.5	204
22.77 22.77 Shut Down Down 3.78 3.78 Due Down 3.78 Due Down Down 3.78 Due Down 3.78 Due Down 3.75 0.744 1nlet 1nlet 3.75 0.8567 0.8567 0.8512 0.8512 0.8512 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93		H-Coal Liquid	4-Coal Liquid	JP-5	•	E,
22.77 Shut Down Down 3.78 Shut Down 3.78 Due 2.90 2.90 Low 0.744 0.744 Inlet 1.00 0.8567 0.8567 0.8567 0.8512 0.8512 0.931 800. 700. 700. 700. 7.69 3080.		26.55	26.55	Automatic	Unit	n'n
85. 2.78 3.78 Due 5.90 2.90 Low 0.744 0.744 Inlet 337.5 337.5 Flows 0.857 0.857 0.8512 0.8512 396.5 396.5 0.93 0.93 800. 700. 700. 700. 700. 700. 3080.		77.77	22.77	Shut Down	Down	Shu
85. 2.90 2.90 Low 0.744 0.744 Inlet 337.5 337.5 Flows 0.857 0.857 Flows 0.851 0.8512 396.5 396.5 0.93 800. 800. 700. 700. 7.69 7.69 3080. 3080.		3.78	3.78	Due		Doe
0.744 0.744 Inlet 337.5 337.5 Flows 0.8567 0.8567 0.8512 396.5 396.5 0.93 0.93 0.93 800. 700. 700. 700. 700. 3080.	BS.	2.90	2.90	Low		P
337.5 337.5 Flows 0.8567 0.8567 0.8512 0.8512 396.5 396.5 0.93 0.93 800. 700. 700. 700. 700. 7.69 3080. 3080.		0.744	0.744	Inlet		Thene
0.8567 0.8567 0.8512 0.8512 396.5 396.5 0.93 0.93 800. 800. 700. 700. 7.69 7.69 3080. 3080.		337.5	337.5	Flows		Dadsin
0.8512 0.8512 396.5 396.5 0.93 0.93 0.93 800. 800. 700. 7.69 3080. 3080.		0.8567	0.8567			no.
396.5 396.5 0.93 0.93 800. 700. 700. 7.69 3080. 3080.		0.8512	0.8512			. B.H.B
0.93 0.93 800. 800. 700. 700. 7.69 7.69 3080. 3080.		396.5	396.5			Proceed
800. 800. 700. 700. 7.69 7.69 3080. 3080.		0.93	0.93			SSATI
700. 7.69 3080.		800.	800.			DIO
7.69 3080.		700.	700.			
3080.		7.69	7.69			
		3080.	3080.			

FEED
PARAFINS
MONOCYCLOPARAFINS
DICYCLOPARAFINS
TRICYCLOPARAFINS
ALKYLBENZENES
INDANES+TETRALINS
INDENES
NAPHTHALENES
PPM S
PPM S
PPM N

PRODUCT
PARAFFINS
MONOCYCLOPARAFFINS
DICYCLOPARAFFINS
TICYCLOPARAFFINS
ALKYLBENZENES
INDANES+TETRALINS
INDENES
NAFHTHALENES
PPM S
PPM S

	TABLE 4	TABLE 4-1 (Cont'd)				
RUN	:	:	301	302	i	
START END RUN, HRS. CUM. RUN HRS. CUM. ELAPSED HRS.	1315 10/24/75 1515 11/05/75 204.50 869.75	1515 11/05/75 1545 11/06/75 204.50 894.25	1545 11/06/75 0815 11/07/75 16.50 221 00 910 75	0815 11/07/75 1600 11/07/75 7.75 228 75 918.50	1600 11/07/75 1045 11/12/75 228.75 1033.75	
FEED START WI., LBS. END WT., LBS. TOTAL FEED, LBS. TOTAL FEED, LBS. RATE, LBS/HR. RATE, GMS/HR. DENSITY, GMS/CC @ 60°F DENSITY, GMS/CC @ 75°P LIQ. RAIE, CC/HR. LHSV TOTAL PRESS., PSIG	Unit Down For Inspection	Resulfiding Catalyst Charge	JP-5 19.90 16.47 3.43 2.90 0.208 94.29 0.8005 0.7947 118.7 0.28 1250.	17-5 16.47 15.00 1.47 1.20 0.190 86.04 0.8005 0.7947 108 3 0.25 3000.		
H2 RATE, SCFH H2 RATE, SCF/BBL				5.07 7450.	- 4	

PRODUCT
PARAFFINS
MONOCYCLOPARAFFINS
DICYCLOPARAFFINS
TRICYCLOPARAFFINS
ALKYLDENZENES
INDANES+TETRALINS
INDENES
NAPHTHALENES
PPM N

PEED
PARAFFINS
MONOCYCLOPARAFFINS
DICYCLOPARAFFINS
TRICYCLOPARAFFINS
TRICYCLOPARAFFINS
ALKTEBELENES
INDANES+FETRALINS
INDENES
NAPHTHALENES
PPM S

	3	TABLE 4-1 (Cont'd)	
RUN	303	304	305
START END RUN, HRS. CUM, RUN HRS.	1045 11/12/75 0900 11/13/75 22.25 251.00 1055.50	0900 11/13/75 0100 11/14/75 16.00 267.00 1071.50	0100 11/14/75 1300 11/14/75 12.00* 279 00 1083.50
FEED START WI., LBS. END WI., LBS. TOTAL FEED, LBS.	33.70 33.65 17.05 15.86	H-Coe1 36.80 24.10 12.70	5.48-5 16.15 10.85 5.30
RATE, LBS/HR. RATE, LBS/HR. RATE, GMS/HR. DENSITY, GMS/CC @ 60°F LIO. RATE, CC/HR.	0.766 347.6 0.8005 0.7947	0.794 360 0 0.8567 0.8512 423.0	282.8 282.8 0.8005 0.7947 355.9
LHSV TOTAL PRESS., PSIG TEMP., OF H2 RATE, SCPH H2 RATE, SCP/BBL	1.03 800. 700. 8.93 3250.	0.99 800. 700. 8.79 3305.	0.84 800. 700. 9.96 4450.
PRED PARAFFINS MONOCYCLOPARAFFINS DICYCLOPARAFFINS ALKTLBENZENES INDANES-TETRALINS INDENES NAPTHALENES PPM S PPM S			Unit Shut Down To Change Catalyst at Run Termination *Rates Based on Initial 8.5 Hour Period

PRODUCT
PARAFFINS
MONOCYCLOPARAFFINS
DICYCLOPARAFFINS
TRICYCLOPARAFFINS
ALKTLBENZENES
INDANES+TETRALINS
INDENES
NAPHTHALENES
PPM S

TABLE 4-1 (Cont'd)

Start End Elapsed, Hrs. Cum. Elapsed, Hrs. Cum. Run, Hrs. Feed Start Wt., Lbs. Total Feed, Lbs. Total Prod. Rcvd., Lbs. Rate, Lbs./Hr. Rate, Lbs./Hr. Rate, Lbs./Hr. Gms./cc @ 60°F Gms./cc @ 75°F	401 1500 - 1/21/76 1030 - 1/24/76 67.5 67.5 67.5 67.5 67.5 67.5 181.81 58.06 23.75 21.00 0.352 159.6 0.8005 0.7947	 1030 - 1/26 1630 - 1/26 54.0 121.5 67.5 Liq. Feed Pump Failure	402 1630 - 1/26/76 1030 - 1/27/76 18.0 18.0 18.0 18.0 85.5 18.0 85.0 18.0 85.0 18.0 85.0 18.0 85.0 18.0 85.0 18.0 85.0 18.0 85.0 18.0 85.0 18.0 85.0 18.0 85.0 18.0 85.0 18.0 85.0 18.0 85.0	1,000 1,000	1500 0900 110 100 100 100 100 100 100 100	404 00 - 1/27/76 00 - 1/28/76 18.0 18.
A 50	0.7947 200.8 0.51 3000.0 650.0 9.46 7490.0		0.7947 191.8 0.48 3000.0 650.0 9.75 8080.0	0.7947 192.8 0.49 2200.0 700.0 9.89 8150.0	0.84 189.8 0.48 2200.0 700.0 9.77 8190.0	0.8499 189.8 0.48 200.0 700.0 9.77 190.0
Paraffins Paraffins Monocycloparaffins Dicycloparaffins Tricycloparaffins Alkylbenzenes Indans Fretralins Indenes Naphthalenes TOTAL	Feed Prod. 43.5 43.5 41.8 41.8 41.8 10.1 10.7 3.1 2.7 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		Feed Prod. 42.8 43.5 36.9 39.9 10.1 11.5 0.8 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Feed Prod 42.8 43.3 36.9 39.8 10.1 11.6 3.8 5.2 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1. Feed 35.4 35.4 10.2 8 117.7 17.7 9.6 6.4	Prod. 27.4 33.3 11.8 2.4 3.8 10.0 0.0 0.0 99.7

TABLE 4-1 (Cont'd)

Run	Start End	Elapsed, Hrs. Cum. Elapsed, Hrs. Run, Hrs. Cum. Run, Hrs.	Feed Start Wt., Lbs. End Wt., Lbs. Total Feed, Lbs. Total Feed, Lbs. Rate, Lbs./Hr. Gms./Hrs. Density, Gms./cc @ 75°F Liq. Rate, cc/Hr. LHSV Total Press., psig Temp., °F H2 Rate, SCFH H2 Rate, SCFH	Product Density GMS/cc @ 60°F	Mass. Spect. Paraffins Monocycloparaffins Dicycloparaffins Tricycloparaffins Alkylbenzenes Indans+Tetralins Indenes Naphthalenes TOTAL
1	0900 - 1/28 1230 - 1/28	3.5 165.5 108.0	Feed Switch		
405	1230 - 1/28/76 0900 - 1/29/76	20.5 186.0 20.5 128.5	Garrett B 17.30 10.90 6.40 5.74 0.312 141.6 0.8662 0.8668 164.5 0.42 2200.0 700.0 9.33	9908.0	Feed Prod. 36.8 48.1 3.5 31.0 11.4 12.0 10.5 3.2 15.6 4.0 9.4 1.2 5.4 0.0 7.1 0.0
907	0900 - 1/29/76 1430 - 1/29/76	5.5 191.5 5.5 134.0	Garrett B 10.90 7.07 3.83 3.83 3.80 0.696 315.9 0.8662 0.8608 366.9 0.93 2200.0 700.0 8.85	0.8153	Feed Prod. 36.8 48.4 3.5 23.8 11.4 9.3 10.5 2.7 15.6 8.2 9.4 6.4 5.4 0.7 7.1 99.9
407	1430 - 1/29/76 1030 - 1/30/76	20.0 211.5 20.0 154.0	Garrett C 12.57 12.57 6.46 6.15 0.323 146.5 0.8678 0.8678 0.8623 169.9 0.43 2200.0 700.0 9.95	0.8152	Feed Prod. 37.1 48.5 0.0 27.2 14.0 11.1 11.7 3.6 15.9 5.7 9.2 3.1 5.2 0.2 6.6 99.9
807	1030 - 1/30/76 1630 - 1/30/76	6.0 217.5 6.0 160.0	Garrett C 12.57 8.17 4.40 4.26 0.733 332.6 0.8678 0.8623 385.8 0.97 2200.0 700.0 9.53	0.8231	Feed Prod. 37.1 47.3 0.0 20.3 14.0 9.5 11.7 3.3 15.9 8.9 9.2 8.2 5.2 1.5 99.9 100.8

TABLE 4-1 (Cont'd)

The second secon				410	411	-	412	7	
Start	1630 - 1 0930 - 2	1/30/76	0930 - 2400 - 2	2/02/76 2/02/76	2400 - 1100 -	2/02/76 2/03/76	1100 -	2/03/76 2/03/76	1530 - 2/03/76 2200 - 2/03/76
Elapsed, Hrs. Cum. Elapsed, Hrs. Run, Hrs. Cum. Run, Hrs.	65.0 282.5 65.0 225.0		14.5 297.0 14.5 239.5	8088	11.0 308.0 11.0 250.5	0 0 0 5	4.5 312.5 4.5 255.0	0 5 5 5	6.5 319.0 255.0
Feed Start Wt., Lbs. End Wt., Lbs. Total Feed, Lbs. Total Prod. Rcvd., Lbs. Rate, Lbs./Hr. Gms./Hr. Density, Gms./cc @ 60°F Gms./hr. Gms./cc @ 75°F Liq. Rate, cc/Hr. LHSV Total Press., psig Temp., °F H2 Rate, SCFH H2 Rate, SCFH	JP-5 BLEND 35.50 26.50 9.00 6.75 0.138 62.8 0.8005 0.7947 79.02 0.20 2200. 790. 8.93	5 BLEND 5.50 6.50 9.00 6.75 0.138 0.8005 0.7947 9.02 0.20 0.20	TOSCO A 13.25 13.25 5.85 5.85 6.403 183.0 0.819 2.23.3 0.56 2200. 700. 9.76 6950.	35C0 A 13.25 7.40 5.10 0.403 33.0 0.8197 23.3 0.56 0.56 0.56	TOSCO B 20.20 20.20 16.17 4.03 3.52 0.366 166.2 0.833 0.833 0.833 0.50 2200. 700.	TOSCO B 20.20 16.17 4.03 3.52 0.366 166.2 0.8389 0.8339 0.8333 199.4 0.50 200.	TOSCO B 16.17 12.83 3.34 2.83 0.742 3.6.7 0.833 404.0 1.02 2200. 700. 9.33	08C0 B 16.17 12.83 3.34 2.83 0.742 0.8389 0.8333 04.0 00.	LIQUID FLOW CONTROL VALVE FAILURE
Product Density GMS/cc @ 60°F	0.7	0.7991	0	0.7817	•	0.7841	.0	0.7905	
Mass. Spect.	Feed	Prod.	Feed	Prod.	Feed	Prod.	Feed	Prod.	
Paraffins Monocycloparaffins Dicycloparaffins Tricycloparaffins Alkylbenzenes Indenes Naphthalenes TOTAL	42.8 36.9 10.1 3.1 5.2 1.5 0.0 0.1	44.2 39.1 11.5 3.3 1.2 0.0 0.0	24.8 29.2 9.2 6.6 17.2 7.7 2.8 2.1	52.0 34.6 8.8 2.2 1.7 0.0 99.7	25.7 23.6 10.5 7.9 16.2 8.4 4.1 3.3	51.8 32.8 9.1 2.4 2.7 0.0 0.0	25.7 23.6 10.5 7.9 16.2 8.4 4.1 3.3	51.1 28.1 8.0 2.5 6.9 6.9 0.0 99.7	

-
P
-
-
-
(Cont
. 4
0
~
-
4
1000
90.2
-
TABLE
4

415 730 - 2/04/76 830 - 2/05/75 15.0 353.5 15.0 289.5 36 GARRETT 103 113.70 5.90 5.48 0.393 178.4 0.8052 0.7993 223.2 0.7993 223.2 0.7968 735 8.3 48.0 3.4 4.0 3.6 1.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6
416 30 - 2/05/76 00 - 2/05/76 12.5 366.0 12.5 302.0 SYNTHOIL 107 12.37 7.30 7.30 7.30 0.8670 0.8614 213.6 0.406 0.8614 213.6 0.8670 0.8817 0.8327 0.8327 0.8327 0.8327 0.8327 0.8327 0.8327

Run	Start End	Elapsed, Hrs. Cum. Elapsed, Hrs. Run, Hrs. Cum. Run, Hrs.	Feed Start Wt., Lbs. End Wt., Lbs. Total Feed, Lbs. Total Prod. Rcvd., Lbs. Rate, Lbs./Hr.	Gms./Hr. Density, Gms./cc @ 60°F Gms./cc @ 75°F Liq. Rate, cc/Hr.	LHSV Total Press., psig Temp., °F H2 Rate, SCFH H2 Rate, SCF/BBL.	Product Density GMS/cc @ 60°F	Mass. Spect.	Paraffins Monocycloparaffins Dicycloparaffins Tricycloparaffins Aikylbenzenes Indans + Tetralins Indenes Naphthalenes TOTAL
•	0330 - 2/06/76 1130 - 2/06/76	8.0 380.5 308.5	LIQUID FEED PUMP PAILURE					
418	1130 - 2/06/76 1030 - 2/09/76	71.0 451.5 71.0 379.5	JP-5 BLEND 55.17 30.70 24.47 23.66 0.345	156.3 0.8005 0.7947 196.7	2200. 700. 10.05 8130.	0.7969	Feed Prod.	42.8 43.7 36.9 41.0 10.1 10.8 3.1 2.9 5.2 1.0 1.5 0.2 0.0 0.0 0.1 0.0
419	1030 - 2/09/76 1800 - 2/09/76	7.5 459.0 7.5 387.0	H-COAL 212 15.43 12.78 2.65 2.48 0.353	160.3 0.8337 0.8281 193.5	2200. 700. 10.09 8290.	0.8070	Feed Prod.	17.3 28.4 44.2 53.9 10.2 12.9 2.0 2.9 14.6 1.0 10.5 0.3 0.4 0.0 0.4 0.2 100.0 99.9
420	1800 - 2/09/76 0930 - 2/10/76	15.5 474.5 15.5 402.5	JP-5 BLEND 21.70 16.48 5.22 4.85 0.337	152.8 0.8005 0.7947 192.2	2200. 700. 10.78 89.20.	0.7972	Feed Prod.	42.8 42.0 36.9 42.6 10.1 10.7 3.1 3.2 5.2 0.8 1.5 0.2 0.0 0.0 0.1 0.0
421	0930 - 2/10/76 0100 - 2/11/76	15.5 490.0 15.5 418.0	JP-5 BLEND 16.48 11.04 5.44	0.8005	3000. 700.		Feed Prod.	42.8 44.1 36.9 39.9 10.1 11.1 3.1 3.4 5.2 0.8 1.5 0.2 0.0 0.0 0.1 0.1 99.7 100.0
				52 -				

In the second week of operation, liquid feed at low rates ($\sim 100~\text{cc/hr}$) was continued overnight on two occasions. The unit functioned extremely well, and the unit's liquid product receiving system was then slightly modified to permit unattended week-end operation.

Unattended week-end operation was then attempted, but the unit was found to have shutdown due to "high operating sandbath temperature" after about twelve hours of operation. It was later determined, however, that this condition had in fact not occurred. All recorder charts indicated proper isothermal conditions at the time of shut-down. The particular control circuit, thermocouples, and temperature indicator controller were checked and found to be operating normally.

The unit was restarted and ran continuously for over four days (over 100 hours) before another inadvertent shut-down occurred. The cause was again indicated to be high sandbath temperature, and again this condition was found not to have occurred in fact. The controller was replaced, even though no fault could be found, and the unit was set again to operate unattended over a weekend. However, this operation was cancelled after consultation with the safety engineer.

The initial start-up safety inspection of this unit was performed on the basis that the unit would be attended while in operation. It was therefore necessary to reconvene the safety inspection team to consider unattended operation.

In this first sequence of operations, liquid flow was varied from about 80 cc/hr to about 750 cc/hr, hydrogen flow from about 5 SCFH to 18 SCFH, and temperature from 600°F to 800°F. Except for brief periods and the weekend shutdown, the reactor was at temperature for the better part of three weeks with continuous hydrogen and/or hydrogen-liquid feed. The sulfur content of product collected at 690°F and 100 cc/hr liquid flow was indicated to have been less than 1 ppm.

4.1.2 Initial Nickel Catalyst Operations (Hydrogenation Runs 1A-4A)

Following approval by the safety inspection team for unattended operation, the reactor catalyst charge was charged out with Cyanamid HDS-3A, an extruded nickel-molybdena catalyst on an alumina base which has been found effective for sulfur and nitrogen removal and for saturation of polyaromatics.

This catalyst charge was calcined in place and presulfided using 10% H₂S/90% H₂ gas according to procedures recommended by the catalyst vendor. A total of 396 cc, weighing 287.9 grams was charged to six tubular reactors, which, along with two empty preheat tubes, constituted our operating reactor system. The catalyst charge, in the form of 1/16-inch pellets, thus had an apparent density of 0.727 g/cm³ or about 45.3 lb/ft³.

During this period, the unit's pressure switches and controllers were reset to permit operation at a total pressure of 3000 psig. Operation at this higher pressure was desired initially to provide optimum catalytic activity maintenance in preparation for our first runs with Paraho shale oil.

At this point we decided to label runs with an "A" designation to signify the first catalyst sulfiding operation (see Table 4-1), "B" for the second sulfiding, and so on. Runs which were aborted, and in which no run samples were obtained, were given no designation.

Following presulfiding, the unit was started up on straight Jet A feed at $144~\rm cm^3/h~650^\circ F$, $3000~\rm psig$, with $10~\rm SCFH~H_2$ (0.36 LHSV; $11,000~\rm SCF/BBL$). These conditions were maintained for $28.5~\rm hours$ (Run 1A), at which time a feed of Jet A which had been adulterated with small quantities of $2.5~\rm dimethyl thio phene$, $2.4.6~\rm trimethyl pyridine$, and $2.5~\rm dimethyl pyrrole$ was started into the unit at the same conditions (Run 2A). These run conditions were maintained for $23.5~\rm hours$.

The doctored liquid feed rate was increased to $300~\rm{cm}^3/h$, but this next run was aborted shortly after conditions were achieved due to failure of a high-pressure Heise gauge on the reactor outlet. Straight JP-5 was run into the unit at the same conditions while repair was effected.

Run 3A was started again with the doctored feed at 268 cm³/h, 650°F, 3000 psig, and 9.7 SCFH H₂ (0.68 LHSV; 5700 SCF/BBL). These conditions were maintained for 6.5 hours, and feed was switched to straight JP-5 at a lower feed rate for the next run. However this next run was aborted due to failure of the liquid feed pump overnight while the unit was unattended.

Inspection of the liquid feed pump showed no apparent defect. The pump was reprimed and appeared to be in operating condition. Suction filter elements were replaced, although showing no contamination.

Run 4A was started with straight JP-5 at 275 cm³/h, 670°F, 3000 psig, and 9.3 SCFH H₂ (0.70 LHSV and 5400 SCF/BBL). Although these conditions were maintained for seven hours, the liquid feed pump stopped functioning twice in this period (5 to 10 minutes each time).

Because of the oil pumping failures encountered, it was decided to re-sulfide the catalyst. An abridged sulfiding procedure was followed, taking 24.5 hours, using 10% $H_2S/90\%$ H_2 treat gas.

4.1.3 Resulfided Nickel Catalyst Operations (Hydrogenation Runs 1B-10B)

All run data sets are summared in Table 4-1.

Run 1B was started following the sulfiding operating using straight JP-5. This run was aborted, however, when the liquid feed pump failed after about three hours of operation. Again, no mechanical defect was found on inspection of the pump; and the run was restarted at 270 cm³/h, 650°F, 3000 psig, and 10.4 SCFH H₂ (0.68 LHSV; 6000 SCF/BBL).

Run 1B was cut short after some seven hours, due again to failure of the liquid feed pump. It was therefore decided to remove the pump for complete disassembly.

Run 2B was started on May 27, 1975 using straight JP-5 at 127 cm 3 /h, 650°F, 3000 psig, and 9.5 SCFH H $_2$ (0.32 LHSV; 11,900 SCF/BBL). These conditions were maintained for 30.5 hours, at which point the feed was switched to an adulterated JP-5 for Run 3B at 175 cm 3 /h, 650°F, 3000 psig, and 10.8 SCFH H $_2$ (0.44 LHSV; 9800 SCF/BBL).

Run 3B was terminated after 7.5 hours due to shutdown caused by the low-liquid flow sensor. The set-point of this device is subject to some excursion, and the shutdown was considered spurious. The device was reset and Run 4B was started with the same feed as was used in Run 3B. Run 4B was run for 21.75 hours at $136~\rm{cm}^3/h$, $650^{\circ}\rm{F}$, $3000~\rm{psig}$, and 9.7 SCFH H₂ (0.35 LHSV, 11, 200 SCF/BBL).

Run 5B was next run with straight JP-5 for 7.75 hours at 155 cm 3 /h, 650°F., 3000 psig, and 9.6 SCFH H2 (0.39 LHSV; 9800 SCF/BBL). These conditions were maintained for 7.75 hours, and the unit was swung to a feed comprising a blend of doctored product collected in previous runs for Run 6B. Run 6B ran for 64.25 hours (unattended weekend operation) at about 150 cm 3 /h, 650°F, 3000 psig, and 9.2 SCFH H2 (0.38 LHSV; 9700 SCF/BBL).

All of the preceding runs were made at low space velocity and high pressure in order to maintain catalyst activity preparatory to running Paraho shale oil. It was not intended that this "holding pattern" should extend into June, but delivery of the shale oil was delayed. However, the mechanical operation of the system was improved in the interim.

Run 7B was next made using as feed the same blend of hydrotreated products fed to previous Run 6B. Run 7B extended 7.5 hours at 144 cc/hr liquid feed rate, 700° F, 3000 psig, and 9.4 SCFH H₂ rate (0.36 LHSV and 10,400 SCF H₂/BBL).

Feed was switched to JP-5 turbine fuel for Run 8B (16.75 hours at 336 cc/hr, 700°F, 3000 psig, and 8.7 SCFH H₂; 0.85 LHSV and 4100 SCF H₂/BBL) and for Run 9B (7.5 hours at 349 cc/hr, 700°F, 3000 psig, and 11.2 SCFH H₂; 0.88 LHSV and 5100 SCF H₂/BBL).

Run 10B was made with JP-5 which had been doctored by the addition of trace quantities of dimethylthiophene, trimethylpyridine and dimethylpyrrole (19.0 hours at 348 cc/hr, 700° F, 3000 psig, and 11.9 SCFH H₂; 0.88 LHSV and 5400 SCF H₂/BBL). All of the sulfur in the feed (361 ppm) was removed at these conditions.

4.1.4 Initial (Paraho) Shale Oil Operation (Hydrogenation Runs 11B-16B)

Following Rum 10B, unit pressure was dropped to 1500 psig. The feed fraction distilled from Paraho shale oil (see Section 3.3.7) was then fed to the unit in Rum 11B, the first operation with "synthetic" feed, on June 4, 1975. Feed was continued for 46.0 hours at 367 cc/hr., 700°F, 1500 psig, and 10.7 SCFH H₂ (0.93 LHSV and 4600 SCF H₂/BBL). The distilled material fed to the unit analyzed 0.82 weight per cent

sulfur and 1.39 weight per cent total nitrogen. Sulfur was reduced to about 5 ppm and nitrogen to less than 30 ppm at these conditions, as shown in Table 4-1. The effect of dropping hydrogen flow to a very low rate (less than 1000 SCF/BBL) for one hour is shown in the sample obtained at the 28th hour of the run. Sulfur content of product increased to 237 ppm and nitrogen content increased to 100 ppm.

A total of 32 pounds of the Paraho feed was charged to this run. A total of 29.5 pounds of product was recovered from Run 11B. Some 18.6 pounds of this product was distilled in a laboratory distillation system capable of atmospheric--vacuum operation (see Section 4.2.2).

Feed was switched to straight JP-5 for the next Run 12B. Run 12B was cut short due to a general area compressed air failure. The unit was maintained on hold for a half hour, by which time air pressure had been restored.

Straight JP-5 was also run into the unit for Run 13B, a weekend run lasting 71.5 hours (120 cc/hr, 675°F, 1500 psig, and 5.0 SCFH H2; 0.3 LHSV and 6500 SCF H2/BBL). For Run 14B, unit pressure was increased to 3000 psig and unit temperature dropped to 650°F (26.0 hours at 134 cc/hr, and 10.4 SCFH H2; 0.34 LHSV and 12,400 SCF H2/BBL).

Run 15B extended 96.0 hours at 77 cc/hr, 650°F, 3000 psig, and 6.2 SCFH H₂ (0.19 LHSV and 12,800 SCF H₂/BBL). Liquid feed was suspended for three hours following this run to test the liquid feed pump, and Run 16B was next made at essentially the same conditions as for Run 15B (86.0 hours at 80 cc/hr, 650°F, 3000 psig, and 6.2 SCFH H₂ (0.2 LHSV and 12,200 SCF H₂/BBL).

4.1.5 Initial TOSCO Shale 011 Operation (Hydrogenation Runs 17B-36B)

Unit pressure was again lowered to 1500 psig following Run 16B in order to prepare for operation with feed derived from TOSCO shale oil. A kerosene fraction distilled from TOSCO shale oil (see Section 3.3.7) was then run into the unit for Run 17B on June 18, 1975. Operating conditions for Run 17B were chosen to be the same as those used for the Paraho shale oil in Run 11B. About 19.0 pounds of this material were hydrotreated over a 28.5 hour period (370 cc/hr, 700°F, 1500 psig, and 8.9 SCFH H2; 0.93 LHSV and 3800 SCF H2/BBL).

The hydrotreated product from Run 17B was distilled in a laboratory distillation system (see Section 4.3.2).

Unit pressure was again increased to 3000 psig and JP-5 was run in for Run 18B following (19.0 hours at 144 cc/hr, 650°F, 3000 psig, and 9.75 SCFH H₂; 0.36 LHSV and 10,800 SCF H₂/BBL). It was necessary at this point to shut down to permit maintenance work on the electrical transformers supplying the area. The unit had been operated continuously for 520 hours without any mechanical problems.

Runs 19B through 25B were all made at 3000 psig and 650°F with JP-5 turbine fuel feed during the week of June 23. Feed rate was varied up to 794 cc/hr (LHSV of 2.0). There was in this period a loss of hydrogen feed for 3 hours due to a malfunctioning hydrogen pressure regulator.

We had expected to receive additional feedstock from the Crude Assay Laboratory in Baytown during June but none was forthcoming due to operating difficulties there. Following the very long trouble-free operating period described above, the unit began also to be plagued with a succession of minor difficulties which cut severely into the operating factor.

Normally, operations with the commercial jet fuel feeds which were employed to keep the system up while we were awaiting delivery of the synthetic feedstocks from Baytown produced negligible pressure drop across the reactor at usual flow rates. Reactor pressure drop at flow rates equivalent to liquid hourly space velocities of about 0.3 was normally less than the 10 psi or so able to be distinguished by the unit's Heise gauges. Operations with these feeds at higher flow rates, at LHSV's of about 1.0, normally produced reactor pressure drops of less than 50 psi (at a total operating pressure of 3000 psig).

It was, however, observed during operations with both the Paraho and TOSCO feeds (operations at LHSV of 1.0 and 1500 psig total pressure), that pressure drop across the catalyst bed increased from a very low level to about 225 psig in both cases. Unfortunately, the quantity of available feedstock limited the Paraho run to 46.0 hours, and the TOSCO run to 28.5 hours. When feed was switched to JP-5 at the conclusion of the Paraho run (Run 11B), the pressure drop across the reactor quickly returned to the normal low level (from about 200 psi to virtually nil in about two hours). It was assumed that whatever had caused the high pressure drop was being dissolved or chemically modified and/or washed free by the "clean" feed.

Some 282 hours of operation with JP-5 feed succeeded the Paraho run before the TOSCO feed was available. Reactor pressure drop was normally low throughout this period. However, pressure drop quickly increased after TOSCO feed was introduced (Run 17B), and the pressure drop at the conclusion of that run slightly exceeded that observed at the conclusion of the Paraho run, even though the TOSCO run length was less than two-thirds that of the Paraho run. It was again observed that the reactor pressure drop quickly dropped to normal when feed was switched from the TOSCO shale oil to JP-5 after Run 17B.

Because of continued delay in the delivery of synthetic feedstock, the unit continued to be operated on commercial JP-5 feed following the TOSCO run. The unit was started up on JP-5 feed for Run 26B following a one-week vacation shutdown on July 7, 1975. Run 26B extended 46.5 hours at 110 cc/hr liquid feed rate, 700°F, 3000 psig, and 5.8 SCFH H₂ (0.28 LHSV and 8300 SCF H₂/BBL). Reactor pressure drop and catalyst activity appeared to be normal following the long shut-down.

Unit operating pressure was next dropped to 800 psig for Run 27B (21.0 hours at 112 cc/hr, 700° F, 800 psig, and 5.2 SCFH H₂; 0.28 LHSV and 7360 SCF/BBL). Comparison of Runs 26B and 27B (see Table 4-1) would indicate that neither desulfurization nor denitrogenation rates were affected by the pressure decrease. However, the degree of saturation of product fell from 99.1 to 91.4 percent as a consequence.

The unit suffered an automatic low hydrogen flow shut-down near the end of Run 27B. The cause was not determined; all hardware appeared to be operating normally.

The unit was restarted on Run 28B at essentially the same conditions as for 27B (7.25 hours at 113 cc/hr, 700° F, 800 psig, and 4.9 SCFH H₂; 0.29 LHSV and 6890 SCF H₂/BBL). Liquid feed rate was increased for Run 29B following (18.25 hours at 427 cc/hr. 700° F, 800 psig, and 4.75 SCFH H₂ 1.08 LHSV and 1770 SCF H₂/BBL). Liquid rate was increased further for Run 30B (6.5 hours at 573 cc/hr, 700° F, 800 psig, and 4.5 SCFH H₂; 1.45 LHSV and 1250 SCF H₂/BBL). The unit was shut-down for the weekend at the conclusion of Run 30B to permit changeout of transformers in the sub-station feeding the area in which the unit is located.

The unit was started up at 3000 psig following the weekend shut-down. Run 31B was made at a very low flow rate (14.0 hours at 69 cc/hr, 700° F, 3000 psig, and 4.6 SCFH H2; 0.22 LHSV and 8530 SCF H2/BBL). An automatic low liquid flow shut-down occurred during this run, due presumably to skirting the limit of sensitivity of the flow sensor.

Liquid flow rate was increased for Run 32B following (25.5 hours at 459 cc/hr, 700°F, 3000 psig and 3.8 SCFH H₂; 1.16 LHSV and 1310 SCF H₂/BBL). Run 33B was nearly identical, except that the hydrogen rate was doubled (7.0 hours at 446 cc/hr, 700°, 3000 psig and 7.0 SCFH H₂; 1.13 LHSV and 2480 SCF H₂/BBL).

Shortly after the next run was begun, a rupture disc on the reactor inlet failed, instantaneously depressuring the system. The unit was down for 111 hours following this incident, during which the disc was replaced and the system pressure tested. A low nitrogen flow was maintained throughout to exclude air from the reactor.

The unit was started up on Run 34B at "standard conditions" (22 hours at 117 cc/hr, 700° F, 3000 psig and 9.7 SCFH H₂; 0.3 LHSV and 13,150 SCF H₂/BBL). Operation appeared normal, except that product sulfur had increased to 6 ppm from the normal 1 ppm, and the degree of aromaticity of product had increased to 1.6 percent from the normal 0.7-0.8 percent. Pressure drop across the reactor was about 70 psi, up from nominal zero.

The liquid rate was increased for Run 35B (7 hours at 477 cc/hr, 700°F, 3000 psig, and 9.5 SCFH $\rm H_2$; 1.2 LHSV and 3170 SCF $\rm H_2/BBL$). Pressure drop across the reactor also increased, reaching the 650 psi level. The highest previously observed pressure drop was the 225 psi observed during the shale oil runs.

Run 36B was intended to be a run at about 0.3 $^\circ$ LHSV, but the unit continued running at an extremely low liquid flow rate while unattended (17 hours at 33 cc/hr, 700°F, 3000 psig, and 9.4 SCFH H₂; 0.06 LHSV and 45,300 SCF H₂/BBL). When liquid rate was increased to about 100 cc/hr the next morning, unit total pressure dropped to 1500 psig. The reactor pressure drop was in excess of 650 psi at this point.

Because additional synthetic feedstock had just been received, it was decided to replace the catalyst bed before further operation. Accordingly, the unit was shut down, so that new catalyst could be charged to the system.

4.1.6 Initial Garrett Shale Oil and Synthoil Coal Liquid Operations (Hydrogenation Runs 101-108)

A new reactor tube bundle was installed with fresh American Cyanamid HDS 3A catalyst in a configuration that duplicates the one previously used. The flow configuration consisted of two empty reactor tubes used for preheat followed by 5 reactor tubes each filled with 66 cm³ (48 g) of catalyst. Thus, the total catalyst volume used in calculations is 396 cm³. The catalyst charge was calcined in air for about 21 hours from 280 to 700° F, and presulfided in 10% H₂S in H₂ for almost 24 hours from 350 to 700° F. The pressure drop through the reactor was on the order of 180 psi after calcining, and dropped rapidly to about 25 psi after sulfiding started.

A series of runs with JP-5 was begun to ascertain whether the new reactor behaved in a similar manner to the previous one. The runs with the new reactor were numbered starting with 101 to indicate the first run with the first catalyst replacement.

Run 101 extended 112 hours (112.0 hours at 112 cc/hr., $650^{\rm o}{\rm F}$, 3000 psig, and 5.4 SCFH H₂; 0.28 LHSV and 7660 SCF H₂/BBL) feeding JP-5. Unit pressure was dropped to 1500 psig for Run 102 following (5.0 hours at 430 cc/hr., $700^{\rm o}{\rm F}$, 1500 psig, and 10.7 SCFH H₂; 1.09 LHSV and 4900 SCF H₂/BBL) again feeding JP-5.

The feed fraction distilled from Garrett shale oil (see Section 3.3.7) was then run into the unit for Run 103 on August 5, 1975 at our normal severity conditions (19.5 hours at 391 cc/hr., 700° F, 1500 psig, and 9.3 SCFH H₂; 0.99 LHSV and 4440 SCF H₂/BBL).

Reactor pressure drop, which had been essentially nil at the start of Garrett Run 103, had increased to 150 psi at the end of the run.

JP-5 was run into the unit immediately following in Run 104 (5.75 hours at 460 cc/hr., 700° F, 1500 psig, and 11.76 SCFH H₂; 1.16 LHSV and 5040 SCF H₂/BBL). A failure of the site air supply occurred in the middle of this run, resulting in unit shutdown. Unit conditions were only slightly affected during the standby period, and the run was resumed when air pressure had been restored about 90 minutes later. Reactor pressure drop had decreased to about 40 psi by the end of Run 104.

A feed fraction distilled from Bureau of Mines Synthoil coal liquid (see Section 3.3.7) was then run into the unit for Run 105 following on August 6, 1975 (14.5 hours at 322 cc/hr., 700° F, 1500 psig, and 9.54 SCFH H2; 0.81 LHSV and 5120 SCF H2/BBL). This run was terminated automatically due to "low hydrogen flow" while the unit was unattended. It was not possible after the fact to determine the reactor pressure drop at shutdown, except to note that it was in excess of the 50 psi range of the ΔP recorder. Presumably, the reactor pressure drop had approached the total operating pressure, since the system and all controls were found to be operating normally when operations were resumed with JP-5 about two hours later. Oddly, reactor pressure drop was found to be near zero at that point. Run 106 extended six hours with the JP-5 feed (6.0 hours at 448 cc/hr., 700° F, 1500 psig, and 11.25 SCFH H2; 1.13 LHSV and 4940 SCF H2/BBL), and pressure drop remained nil throughout.

The slightly low LHSV obtained in Synthoil Run 105 (0.81 vs. desired 1.0) was a consequence of insufficient compensation for the higher density of the Synthoil feed fraction relative to that of JP-5, which material had been used to set the feed rate in preceding Run 104. A second Synthoil normal severity Run 107 was consequently made, closer to the desired base conditions (18.5 hours at 378 cc/hr., 700°F, 1500 psig, and 9.62 SCFH H2; 0.95 LHSV and 4400 SCF H2/BBL). Unexpectedly, significant differences in the respective hydrotreated products were observed. Also unexpectedly, there was no perceptible reactor pressure drop throughout Synthoil Run 107, nor during the JP-5 Run 108 which followed (5.0 hours at 255 cc/hr., 700°F, 1500 psig, and 12.54 SCFH H2; 0.64 LHSV and 9680 SCF H2/BBL).

The unit was shut down at this point for the duration of the month of August due to vacations, and to permit analytical testing of fuel blends so far prepared in the program.

4.1.7 Low Severity Shale 0il Operations (Hydrogenation Runs 109-116)

Following the extended shutdown period, the unit was started up on commercial JP-5 feed. An initial attempt to start Run 109 was aborted due to shut-down caused by low hydrogen flow. Run 109 finally extended 23.5 hours at 107 cc/hr. liquid feed rate, 700°F, 3000 psig, and 5.7 SCFH H₂ rate (0.27 LHSV and 8500 SCF H₂/BBL). Run 110 followed at 800 psig total pressure (97.5 hours at 10c cc/hc, 700°F, 800 psig, and 5.1 SCFH H₂; 0.27 LHSV and 7640 SCF H₂/BBL). Our objective in these runs was to assess catalyst activity following the extended shut down, and to prepare the unit for a sequence of low-severity (800 psig) hydrotreating operations with our shale liquids.

The same Paraho feed fraction which had been fed to normal-severity Run 11B was employed in the first low-severity Run 111 on September 8, 1975 (23.0 hours at 426 cc/hr., 700° F, 800 psig, and 8.0 SCFH H₂; 1.1 LHSV and 2980 SCF H₂/BBL). It was necessary to shut the unit down immediately following this run for a period of six hours to permit unrelated maintenance work to proceed in the area. The unit was then swung over to JP-5 feed for Run 112 (22.5 hours at 453 cc/hr., 700° F, 800 psig, and 9.8 SCFH H₂; 1.14 LHSV and 3450 SCF H₂/BBL).

Reactor pressure drop had increased from about 20 psi to about 45 psi during the low-severity Paraho Run 111. Subsequently, in Run 112, the pressure drop across the reactor had dropped to about 10 psi.

The same TOSCO shale oil feed fraction previously fed to normal-severity Run 17B was fed to a low-severity Run 113 on September 10, 1975 (16.5 hours at 475 cc/hour, 700° F, 800 psig, and 8.2 SCFH H₂; 1.20 LHSV and 2730 SCF H₂/BBL). The run was cut short due to inadvertent shut-down caused by low-flow indication. A reactor pressure drop of 240 psi was estimated at that point.

Commercial JP-5 feed was swung in, and the unit was operated manually for about six hours until the system appeared to be operating normally. Run 114 extended 6.25 hours (6.25 hours at 384 cc/hr., 700°F , 800 psig, and 9.6 SCFH H₂; 0.97 LHSV and 3970 SCF H₂/BBL).

The feed fraction derived from Garrett shale oil and previously fed to normal-severity Run 103 was next fed to low-severity Run 115 on September 11, 1975 (20.5 hours at 364 cc/hr., 700° F, 800 psig, and 9.8 SCFH H₂; 0.91 LHSV and 4250 SCF H₂/BBL). Reactor pressure drop increased to 575 psi during Run 115, although operations did not appear to be otherwise affected.

JP-5 was fed to the unit for Run 116 following to terminate this series (3.75 hours at 427 cc/hr., 700° F, 800 psig, and 10.9 SCFH H₂; 1.08 LHSV and 4070 SCF H₂/BBL).

It was desired that the Synthoil coal liquid be hydrotreated over a cobalt-molybdenum catalyst, rather than the nickel molybdenum used with the shale oils. Accordingly, the unit was shut down at this point to effect replacement of the Cyanamid HDS-3A with NALCO 477.

4.1.8 Low-Severity Coal Oil Operations (Hydrogenation Runs 201-305)

Nickel-molybdenum catalyst, which had been employed up to this time for our syncrude hydrotreating operations, was changed out with cobalt-molybdenum catalyst for testing with Synthoil coal liquid. The new reactor bundle duplicated the previous configuration, consisting of two empty preheat tubes, followed by six reaction tubes, each containing 71 cc (46 grams) of Nalcomo 477 catalyst. Thus, the total bulk catalyst volume for this bundle was 426 cc.

The new catalyst charge was calcined and sulfided in place following procedures identical with those employed previously for nickel-molybdenum. This catalyst charge exhibited negligible pressure drop throughout these operations.

The unit was started up on JP-5 in Run 201. The "200" run series was used to denote those runs made on the first batch of NALCO 477.

Run 201 extended 53.5 hours at 108 cc/hr. liquid feed rate, 650° F, 3000 psig, and 9.3 SCFH H₂ rate (0.25 LHSV and 13,660 SCF H₂/BBL).

Synthoil coal liquid, the first synthetic crude to be fed over this cobalt catalyst, was charged to the unit in Run 202 on October 2, 1975. Total operating pressure for Run 202 was 1500 psig (11.75 hours at 293 cc/hr., 700° F, 1500 psig, and 9.1 SCFH H₂; 0.69 LHSV and 4940 SCF H₂/BBL).

Conditions for Run 202 were targeted to be identical with those employed in our previous normal-severity Run 107. Note, however, that the desired LHSV of 1.0 was not achieved. There was insufficient feed available to correct the situation during Run 202, or to repeat that run. Unit pressure was dropped to 800 psig for the following low-severity run.

In Run 203 following at 800 psig, the Synthoil liquid feed rate was again adjusted upwardly, but that correction too was insufficient (10.5 hours at 373 cc/hr., 700° F, 800 psig, and 10.4 SCFH H₂; 0.88 LHSV and 4440 SCF H₂/BBL).

Liquid feed was switched to JP-5 at the termination of the Synthoil runs. Run 204 extended only 3.25 hours at 390 cc/hr. liquid rate, 700° F, 800 psig, and 10.95 SCFH $_{2}$ rate (0.73 LHSV and 5630 SCF $_{12}$ /BBL) before the unit was shut down. Maintenance unrelated to the unit was performed in the area in which the unit is located during the weekend following, necessitating the shut down.

The unit was started up on JP-5 to displace whatever syncrude may have been in the system. Run 205 extended 22.5 hours at 390 cc/hr. liquid rate, 700° F, 800 psig, and 9.4 SCFH H₂ rate (0.91 LHSV and 3830 SCF H₂/BBL). Run 206, following, extended 24.0 hours at 111 cc/hr., 700° F, 800 psig, and 10.1 SCFH H₂ rate (0.26 LHSV and 14,380 SCF H₂/BBL).

At the conclusion of these operations, the unit was shut down to permit distillation and analytical backlogs to be worked off.

The unit was started up again late in the month to process H-Coal liquid, which had just been received via Wright-Patterson from Hydrocarbon Research Inc. The unit was started up on JP-5 in Run 207 (22.5 hours at 77 cc/hr., 650°F, 1500 psig, and 6.4 SCFH H₂; 0.18 LHSV and 13,200 SCF H₂/BBL). Run 208 followed, again feeding JP-5 (21.5 hours at 420 cc/hr., 700°F, 1500 psig, and 10.9 SCF H₂; 0.99 LHSV and 4140 SCF H₂/BBL).

H-Coal liquid was fed to the unit for the first time in Run 209 on October 22, 1975 at our normal-severity conditions (11.5 hours at 403 cc/hr., 700°F, 1500 psig, and 8.5 SCFH H₂ rate; 0.95 LHSV and 3350 SCF H₂/BBL). Pressure drop across the reactor catalyst bed increased rapidly about four hours after the commencement of H-Coal feed. Since the upstream pressure rose to 3200 psig, or about the pressure level at which the hydrogen feed system was being maintained at that time, it was decided to suspend gas flow, and shortly after, liquid flow, to the system in preparation for aborting the run. However, the reactor pressure drop quickly dissipated, and the flows were restarted.

Pressure drop again increased to some high level about four hours after this, but this "plug" self-corrected, and reactor pressure drop was essentially nil at the conclusion of the run.

Feed was switched to JP-5 for Run 210 following (12.75 hours at 95 cc/hr., 700° F, 800 psig, and 10.9 SCFH H₂ rate: 0.22 LHSV and 18,120 SCF H₂/BBL). Run 211 next was a transition period used to adjust feed rate for the succeeding H-Coal run (1.25 hours at 338 cc/hr., 700° F, 800 psig, and 10.6 SCFH H₂; 0.79 LHSV and 4970 SCF H₂/BBL).

H-Coal liquid was again fed to the unit in Run 212. Operation was too erratic for the product to be useful (6.0 hours at an overall rate of 397 cc/hr., 700°F, 800 psig, and 7.69 SCFH H2; 0.93 LHSV and 3080 SCF H2/BBL). The reactor pressure drop increased more rapidly after commencement of H-Coal feed in this run than in previous H-Coal Run 209. It took only about two hours for the upstream pressure to approach available delivery pressure. Thereafter a succession of stops and starts on gas and liquid feeds was made in an unsuccessful attempt to stabilize the reactor pressure drop. The operation was terminated at a point where pressure drop again approached 3000 psi, giving no indication that recovery was possible.

Feed was switched to JP-5 at this point, but only a very small quantity of liquid could be introduced and the unit automatically shut down 3.5 hours later while unattended.

The unit was restarted on the day shift some thirteen hours later, but reactor pressure drop with JP-5 rose quickly, and only a very low liquid flow resulted, so that the unit was shut down for inspection.

Following shut-down of the unit due to incurred high pressure drop across the reactor catalyst charge while attempting to process H-Coal liquid, the pressure drop problem was reviewed with in-house hydrotreating specialists and with outside catalyst vendors. One of our specialists, noting the particular reactor configuration we employ, recalled a pressure drop problem associated with the use of empty preheat tubes ahead of a catalytic reactor used to process highly olefinic petroleum feedstocks. In that case, dimerization was taking place at high rate in the low-temperature, noncatalytic portion of the system. Although our feed materials

all presumably are quite low in olefin content, so that the dimerization which was the cause of pressure build-up in the petrol2um case should not occur, we decided to test the suggestion to remove the preheat tubes from our system.

Accordingly, the unit's reactor assembly was lowered, and the preheat tubes removed. Care was taken during these operations to minimize exposure (to the atmosphere) of the catalyst in the system.

Following reassembly and pressure-testing of the reactor, the catalyst charge was resulfided with a gas mixture containing 10 percent $\mathrm{H}_2\mathrm{S}$ in hydrogen using a temperature schedule extending over twenty-four hours.

The unit was started up on JP-5 feed. Runs made with the resulfided NALCOMO 477 cobalt-molybdenum catalyst are designated as the "300" series.

Run 301 extended 16.5 hours at 119 cc/hr. liquid feed rate 650°F, 1250 psig, and 5.8 SCFH H₂ rate (0.28 LHSV and 7780 SCF H₂/BBL). A reactor pressure drop of 500 psi was evidenced within an hour of the start of liquid feed, but this pressure drop slowly dissipated. It was about 125 psi four hours after start-up, and was about 30 psi at the end of the run (16.5 hours). Note that this pressure drop may have been due to residual matter deposited on the catalyst prior to the shut-down for preheat tube removal.

Run 302 was a one-shift operation at 3000 psig made to determine whether pressure drop would be observed at the higher total pressure (7.75 hours at 108 cc/hr., 700°F, 3000 psig, and 5.1 SCFH H₂ rate; 0.25 LHSV and 7450 SCF H₂/BBL). No pressure drop (nominal 5-20 psi) was observed across the reactor during this run. The unit was shut down at the conclusion of this run, covering an extended four-day holiday period.

The unit was started up again on JP-5 in Run 303 (22.25 hours at 437 cc/hr., 700°F, 800 psig, and 8.9 SCFH H₂; 1.03 LHSV and 3250 SCF H₂/BBL). There was no indication of undue pressure drop throughout this run, which was made at the same high rate desired for the synthetic crude. The unit's Heise gauges indicated a reactor pressure drop of less than 5 psi throughout.

Accordingly, Run 304 was made with H-Coal liquid, attempting once again to complete the low-severity operation originally tried in Run 212. Run 304 extended 16.0 hours at 423 cc/hr. liquid feed rate, 700°F, 800 psig, and 8.8 SCFH H₂ rate (0.99 LHSV and 3305 SCF H₂/BBL).

Reactor pressure drop during Run 304 was nominally less than 10 psi for the first three hours of operation. It then began to climb in a sinusoidal fashion, increasing to about 40 psi, dropping to about 20 psi, increasing to about 90 psi, dropping to about 30 psi, etc., until the peak had reached about 400 psi in the seventh hour of operation. From that point on, pressure drop appeared to increase more or less steadily to the end of the run, at which point it stood at 2000 psi. That is, the upstream reactor pressure in the sixteenth hour of operation was about 2800 psig, and the downstream pressure was being controlled at 800 psig. Because of the regulation afforded by the system's pressure and flow controllers, there was no effect of this increasing reactor pressure drop on gas or liquid flow rates through the unit, although loss of control was near at the end.

The unit was switched to JP-5 feed for Run 305 (12.0 hours at 356 cc/hr., 700°F, 800 psig, and 10.0 SCFH H2; 0.84 LHSV and 4450 SCF H2/BBL). Reactor pressure drop had decreased from 2000 psi to 750 psi 8.5 hours into the run (note that rates listed above are based on this initial 8.5 hour period). At this point, it was attempted to reintroduce H-Coal liquid into the system, but this was immediately accompanied by a sharp increase in the reactor pressure drop, such that the upstream pressure approached the settings on the gas and liquid supply systems; and only very low flows could be established without resetting control limits. The unit was shut down about three hours later, when the pressure drop gave no indication of dissipating, even with reintroduction of JP-5.

The cobalt-molybdenum catalyst employed in the low-severity hydrotreatment of coal liquids was removed from the reactor. Cause of the high pressure drop experienced with the H-Coal liquid was found to be "carbonized" segment of catalyst particles extending about three inches in length at one point of a reactor tube, which was about centered in the reaction tube bundle. There was no obvious cause for the formation of the plug, and it was not determined immediately whether the material causing the plug was primarily carbon, or was polymer, ash, or some other constituent of the H-Coal liquid.

4.1.9 High-Severity Operations Hydrogenation Runs 401-421)

The reactor was charged with Cyanamid HDS-3A nickel-molybdenum catalyst for the experimental high-severity hydrotreatment segment. The new reactor bundle comprised only the six catalyst-filled reaction tubes, in contrast with previous configurations which included, in addition, two empty preheat tubes. Each reaction tube contained 66 cc (47 grams) of HDS-3A catalyst, for a total bulk catalyst volume of 396 cc.

The new reactor bundle was installed and underwent a satisfactory pressure test. The catalyst charge was then calcined and sulfided in place using procedures identical with those employed previously for nickel-molybdenum catalysts. This catalyst charge exhibited neglible pressure drop throughout these operations.

Unfortunately, the reactor bundle was found to be leaking shortly after hydrogen at high pressure (3000 psig) was admitted, along with liquid feed, to begin the first run. Attempts to isolate and repair the leaking fittings without disassembling the reactor bundle were unsuccessful, and it proved necessary to break every system fitting and completely disassemble the bundle to clean or replace each seating surface.

The catalyst charge was resulfided and the first run, Run 401, was restarted. One week had elapsed in the interval due to the mechanical problems.

Runs in this high-severity hydrotreatment segment are numbered in the "400" series.

Run 401 extended 67.5 hours feeding a JP-5 blend at 200 cc/hour, 650° F, 3000 psig total pressure, and 9.5 SCFH H₂ rate (0.51 LHSV and 7490 SCF H₂/BBL). The JP-5 feed blend used in this series was a mixture of product collected from previous operations in which commercial JP-5 fuel had been used as feed. This feed blend contained 81 ppm sulfur, 24 ppm nitrogen, and had a density of 0.8005 at 60° F.

An automatic shut-down due to low liquid feed flow interrupted Run 401. The motor coupling of the liquid feed pump was found to have failed. Repairs held up operations two days.

The unit was restarted on Run 402, again feeding the JP-5 blend at conditions identical with those employed in Run 401 (18.0 hours at 192 cc/hr., 650°F , 3000 psig, and 9.8 SCFH H₂; 0.48 LHSV and 8080 SCF H₂/BBL).

In Run 403, the total pressure was dropped to 2200 psig and the reactor temperature was raised to 700° F (4.5 hours at 193 cc/hr., 700° F, 2200 psig, and 9.9 SCFH H₂; 0.49 LHSV and 8150 SCF H₂/BBL).

Additional Garrett whole shale oil was distilled at Linden, at the same conditions used at Baytown to separate our original feed fraction, in order to obtain additional feedstock for this segment of the program. This newly-separated feed had boiling characteristics nearly identical with those of the Garrett kerosene fraction delivered by Baytown, which had been used in the previous Garrett (Occidental) runs.

The Garrett feed for Run 404 comprised all material boiling up to about 563°F, and was designated Garrett A. Run 404 extended 18.0 hours at 190 cc/hr., 700°F, 2200 psig, and 9.8 SCFH H₂ rate (0.48 LHSV and 8190 SCF H₂/BBL).

Feed was then switched to a second Garrett kerosene fraction comprising all material boiling up to about 650° F, and designated Garrett B, for Run 405 (20.5 hours at 165° cc/hr., 700° F, 2200 psig, and 9.3 SCFH H₂; 0.42 LHSV and 9010 SCF H₂/BBL). This second feed fraction had likewise been specifically separated from the Garrett whole shale oil crude at Linden to facilitate assessment of the severity of hydrotreatment.

In Run 406 following, this same second feed fraction, Garrett B, was fed at 367 cc/hour (5.5 hours at 700° F, 2200 psig, and 8.9 SCFH H₂; 0.93 LHSV and 3840 SCF H₂/BBL).

For Run 407, feed was switched to a third Garrett feed fraction, comprising all material boiling up to 700° F, and designated Garrett C (20.0 hours at 170 cc/hr., 700° F, 2200 psig, and 9.9 SCFH H₂; 0.43 LHSV and 9310 SCF H₂/BBL). This same feed fraction was used for Run 408 at 386 cc/hr. (6.0 hours at 700° F, 220 psig, and 9.5 SCFH H₂; 0.97 LHSV and 3930 SCF H₂/BBL).

Run 409 was started feeding a JP-5 blend at 79 cc/hr., 700° F, 2200 psig total pressure, and 8.9 SCFH H₂ rate (0.20 LHSV and 17,970 SCF H₂/BBL). Note that the analysis of the product may be compared, for example, with that of product from Run 403, made at half the catalyst age.

For Run 410, feed was switched to a TOSCO shale oil having boiling characteristics identical with the TOSCO kerosene fraction previously employed in our program. That is, additional whole TOSCO shale oil crude had been distilled at Linden, at the same conditions originally employed at Baytown to separate our kerosene feed fraction, in order to collect additional feedstock for this segment of the program.

The feed for Run 410 comprised all TOSCO material boiling up to about 563° F, and was designated TOSCO A. Run 410 extended 14.5 hours at 223 cc/hr., 700° F, 2200 psig, and 9.8 SCFH H₂ rate (0.56 LHSV and 6950 SCF H₂/BBL).

The liquid feed was then switched to a second TOSCO fraction comprising all material boiling up to about $650^{\circ} F$, and designated TOSCO B, for Run 411 (11.0 hours at 199 cc/hr., $700^{\circ} F$, 2200 psig, and 9.9 SCFH H₂ rate; 0.50 LHSV and 7960 SCF H₂/BBL). This second liquid feed fraction had likewise been specifically separated from the TOSCO whole shale oil crude at Linden to facilitate assessment of the severity of hydrotreatment in this last phase of our experimental program.

In Run 412, this same second TOSCO feed fraction,
TOSCO B, was fed at 404 cc/hr. (4.5 hours at 700°F, 2200 psig, and 9.3 SCFH H₂;
1.02 LHSV and 3670 SCF H₂/BBL). During Run 412, the automatic liquid flow control valve failed, cutting the run short. The valve was repaired within six hours, and the unit was started up on Paraho feed.

Unfortunately, unlike the case reported for Garrett shale oil, and for TOSCO shale oil, no additional Paraho whole crude shale oil remained of our original sample. However, sufficient Paraho once-through material previously hydrotreated in our normal-severity program (Run 11B), and blended to approximate a Jet A fuel, was on hand to serve as feed to this segment of our program.

Hence the liquid feed to Run 413 (10.0 hours at 137 cc/hr., 700°F, 2200 psig, and 11.0 SCFH H₂ rate; 0.35 LHSV and 12,760 SCF H₂/BBL) and to Run 414 (9.5 hours at 198 cc/hr., 700°F, 2200 psig, and 10.7 SCFH H₂; 0.50 LHSV and 8570 SCF H₂/BBL) consisted of material which had already been hydrotreated in our unit. This same situation obtained for the following Run 415, in which Jet A blended from hydrotreated product collected in Garrett Run 103 was used as feed (15 hours at 223 cc/hr., 700°F, 2200 psig, and 10.3 SCFH H₂ rate; 0.56 LHSV and 7320 SCF H₂/BBL), and in the next Run 416, in which Jet A blended from Synthoil Run 107 product was used as feed (12.5 hours at 214 cc/hr., 700°F, 2200 psig, and 9.9 SCFH H₂; 0.54 LHSV and 7350 SCF H₂/BBL).

In the case of the H-Coal liquid, we did, and do, still retain some of the original sample purchased from Hydrocarbon Research. However, this "atmospheric overhead" material has caused plugging problems in our system whenever we have previously attempted to feed it. Nevertheless, we decided to attempt to feed it again at the high-severity conditions in Run 417 (6.5 hours at 254 cc/hr., 700° F, 2200 psig, and 9.5 SCFH H₂; 0.64 LHSV and 5930 SCF H₂/BBL).

Mechanical problems with the unit associated with development of high reactor pressure drop, or plugging, occurred in this run also after about the same total quantity of H-Coal feed had been introduced to the unit as in the previous cases where difficulty had been encountered. The higher reactor pressure, lower space velocity, and absence of the empty preheat tubes from our reactor configuration had not altered the plugging effect previously observed with this material.

A leak developed at the liquid feed pump as a consequence of the manipulations attempted to circumvent the pressure drop problem, requiring minor repairs.

The unit was started up on JP-5 blend following repair of our liquid feed system in Run 418 (71.0 hours at 197 cc/hr., 700°F, 2200 psig, and 10.0 SCFH H₂; 0.50 LHSV and 8130 SCF H₂/BBL). Reactor pressure drop was erratic in this period, but settled out at a value of about 300 psig (normal = zero).

A small quantity of previously hydrotreated H-Coal material from Run 212 was available, and this was next fed to the unit in Run 419 (7.5 hours at 194 cc/hr, 700°F, 2200 psig, and 10.0 SCFH H₂; 0.49 LHSV and 8290 SCF H₂/BBL). Pressure are across the reactor did not change significantly during this run.

With the running of the H-coal material in Run 419, we considered this segment of the experimental phase complete. Liquid feed was switched to JP-5 blend for Run 420, primarily to observe reactor pressure drop, or to determine whether the indicated "plug" could be dissolved. Run 420 extended 15.5 hours at 192 cc/hr., 700°F, 2200 psig, and 10.8 SCFH H₂ rate (0.49 LHSV and 8920 SCF H₂/BBL). Pressure drop did not change significantly in this period.

Reactor pressure was increased to 3000 psig and a New Run 421 was designated (15.5 hours at about 200 cc/hr., 700°F, 3000 psig). This run terminated automatically, presumably due to low liquid feed caused by high reactor pressure drop. Unit operations were terminated at this point.

4.2 Paraho Shale Oil Hydrotreat Product Characterization

In the remainder of this section, results obtained in the characterization of the hydrotreated products from hydrogenation experiments with feedstocks derived from shale oil and coal are presented. Results are presented in sequence grouped by feedstock. Refer to the appropriate subsection in Section III of this report for details regarding feedstock preparation, and to the appropriate subsection in Section 4.1 above for details pertaining to unit operation and conditions for particular experiments.

4.2.1 Paraho Whole Hydrotreated Products

Feedstocks derived from Paraho shale oil were fed to four hydrogenation experiments. These experiments are summarized on Table 4-2. Note that the kerosene fraction distilled from the original whole shale oil sample was fed only to low-severity Run 111 and to normal-severity Run 118. These two experiments depleted the available supply of this feedstock.

The feed used for high-severity Paraho Runs 413 and 414 was the synthetic Jet A fuel blend prepared from hydrotreated product recovered from normal-severity Run 11B. Hence the products from Runs 413 and 414 represent doubly-hydrotreated materials.

All of the Paraho hydrogenation experiments were performed over nickel-molybdenum (HDS-3A) catalyst.

Table 4-2 show ASTM distillation data, paraffin/aromatic compositions obtained by mass spectroscopy, densities, and total sultur and nitrogen contents for the respective feeds and (whole) hydrotreated products.

4.2.2 Distillation of Whole Paraho Hydrotreated Products

The whole hydrotreated products from Runs 111, 11B, and 414 were distilled in a glass laboratory system capable of extended vacuum operation. Distillation data for these three operations are presented, respectively, in Tables 4-3 through 4-5.

PARAHO SHALE OIL HYDROTREATMENT EXPERIMENTS

OLD BELGING	KEROSENE FEED FRACTION	PRODUCT 111	PRODUCT 11B	FEED JETA-11B	PRODUCT 414	PRODUCT 413
LASV ASTA DISTILLATION	\$100000 100000 100000 100000 100000 100000 100000 1000000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100	1.08	0.93	•	0.50	0.35
18P, °F 5 PER CENT 10 20 30	373 413 426 446 462	220 310 354 400 429	279 324 354 394 420	374 393 397 411 421	349 378 389 403 411	331 356 372 393 409
50 00 00 00 00 00 00 00	475 486 494 506 531 550	445 462 478 493 529 545	440 457 472 487 504 525 541	429 437 463 463 484	423 440 446 471 481	- 70 - 435 - 464 + 465 - 711 - 711 -
FBP DENSITY, GMS/CC @60°F.	556 0.8241	570	565	490	499	551
MASS SPECTROSCOPY PARAFFINS MONOCYCLOPARAFFINS DICYCLOPARAFFINS TRICYCLOPARAFFINS TRICYCLOPARAFFINS TRICYCLOPARAFFINS TRICYCLOPARAFFINS TRICYCLOPARAFFINS TRICYCLOPARAFFINS TRICYCLOPARAFFINS TRICYCLOPARAFFINS INDENS INDENS INDENS NAPHTHALENES AROHATICS, TOTAL, WT. PERCENT	33.2 4.6 11.3 10.2 59.3 18.4 11.6 5.0 5.0 6.2 6.2 6.2	47.5 21.0 21.0 2.0 76.0 8.9 8.9 8.9 23.5		44.0 28.2 9.9 9.9 11.2 8.7 7.7 16.4	46.5 39.9 11.5 11.0 0.7 0.0 0.0	47.7 37.9 11.1 11.3 11.3 11.2 0.0 0.0
NITROGEN, TOTAL, WT. PERCENT	1.3700	0.1700	0.0067	0.0036	0.0040	0.0033

5.0

Bottoms Recovered

TABLE 4-3

DISTILLATION OF WHOLE PARAHO
HYDROTREATED PRODUCT
RUN 111 - LOW SEVERITY

		RUN 111 - 1	RUN 111 - LOW SEVERITY			
	Operating	St111pot	Corrected	Cut	Y1	Yield .
Reflux Ratio	Pressure, MM Hg	Temp., °F	Vapor Temp., °F	No.	Wt. %	Cum. Wt. %
3:1	760	380	130	Start	ł	1
4:1	←	420	270	1	5.0	5.0
<		437	317	2	5.0	10.0
		455	357	3	6.4	14.9
		465	385	7	5.1	20.0
>	•	485	423	5	6.6	29.9
4:1	760	501	451	9	6.6	39.8
3:1	100	381	463	7	6.6	49.7
-	~	395	483	80	6.6	59.6
	100 mm	408	502	19	6.6	69.5
		422	526	10	6.6	79.4
文学 新		429	540	11	5.0	84.4
>	>	439	555	12	5.0	89.5
3:1	100	453	568	13	5.0	94.5

6.87

Bottoms Recovered

TABLE 4-4

DISTILLATION OF WHOLE PARAHO HYDROTREATED PRODUCT RUN 11 B - NORMAL SEVERITY

Corrected Cut Yield Vapor Temp., °F No. Wt. % Cum. Wt. %	153 START	279 1 3.66 3.66	300 2 1.79 5.45	335 3 5:01 10.46	335 3A 0.47 10.93	510 4 62.83 73.76	5 9.99 83.75	
Stillpot Temp., °F Vapo	398	416	422	440	337	414	432	057
Operating Pressure, MM Hg	092	760	092	760	100	100	100	300
Reflux Ratio	3:1	3:1	3:1	3:1	1.5:1	3:1	2.5:1	2 621

Bottoms Recovered

TABLE 4-5

DISTILLATION OF WHOLE PARAHO
HYDROTREATED PRODUCT
RUN 414 - HIGH SEVERITY

		U - bTb NOW	NUN 414 - UIGH SPARVIII	,		•
Reflux Ratio	Operating Pressure, MM Hg	Stillpot Temp., °F	Corrected Vapor Temp., °F	No.	Wt. % Cur	Cum. Wt. %
3.1	760	418	212	START	1	1
3:1	760	425	320	1	2.6	2.6
3:1	260	438	347	2	4.1	6.7
3:1	092	443	374	3	7.7	14.4
3:1	100	329	401	4	13.0	27.4
3:1	100	342	428	5	14.2	41.6
3::1	700	360	455	, 9	23.1	64.7
3:1	100	378	482	7	17.3	82.0
3:1	100	398	209	œ	13.5	95.5
3:1	100	400	514	6	2.4	97.9

The collected cuts from the respective product distillations were recombined to produced final fuel blends whose boiling characteristics approached those of specification fuels.

4.2.3 Synthetic Jet A Fuel Blends from Paraho Experiments

The recombination of distillation cuts to produce specification fuels involved trial-and-error procedures in each case, in that the objective, always, was to maximize final blend yield, or quantity, while holding within specifications. In general, only minor adjustment of the leading and trailing boiling components was required, or was attempted, since absolute quantities of materials were strictly limited.

In the case of Paraho, the absence of light ends in the original shale oil sample (see Section III) precluded the production of JP-4-type, wide-cut fuel blends using our procedures. Consequently, only Jet A-type, narrow-cut fuels were prepared from Paraho feeds. Table 4-6 shows the same kind of information for the final Jet A fuel blends as is shown on Table 4-2 for the respective whole products from which they were derived.

4.2.4 Paraho Whole Product and Fuel Blend Specifications

Although boiling specifications for most fuel blends were met, as a consequence of the distillation/recombination operations described above, other fuel specifications were not necessarily on target. A very much larger quantity of working fluid, and considerable additional time and money, would be required to repeat the trial-and-error fuel recombinations until all specifications were met.

On the other hand, inspection of the data obtained with our procedures will usually show whether a particular specification is virtually "in hand," if it has been missed, or whether it is outside the range absolutely. In Table 4-7 are shown specification inspections for the feed fraction, whole hydrotreated products, and final Jet A fuel blends prepared from the normal-and low-severity Paraho hydrogenation experiments. It is generally obvious that required specifications were met, or closely approached, by the fuel blend prepared from the normal-severity experiment, but was marginal, at best, in the low-severity case.

There was insufficient feed to, and product from, the high-severity experiments to enable us to obtain all of the inspection analyses for those runs. Consequently, available data for the high-severity operations are limited to those shown in Tables 4-2 and 4-6. However, it is considered axiomatic that, if specification fuels can be obtained via hydrotreatment at lower severity, the higher-severity product would almost certainly exhibit superior properties.

TABLE 4-6

SYNTHETIC JET A FUEL BLENDS FROM PARAHO HYDROTREATMENT EXPERIMENTS

	HYDROTREATMENT EXPERIMENTS	XPERIMENTS	
RUN NUMBER	111	118	414
TOTAL PRESSURE, PSIG	800	1500	2200
ASTM DISTILLATION IBP, C.F. 5 PER CENT 10 20 30 40 40 50 60 70 80	328 359 376 396 413 430 442 453 463	374 393 397 411 421 429 437 454 463	352 378 388 400 410 420 428 435 444
90 95 FBP	488 495 505	475 484 490	464 473 482
DENSITY, CMS/CC @ 60°F.	0.8157	0.8094	0.7978
MASS SPECTROSCOPY PARAFFINS MONOCYCLOPARAFFINS DICYCLOPARAFFINS TRICYCLOPARAFFINS TR	44.8 23.2 5.3 1.5 74.8 12.8 9.7 0.1 24.7	44.0 28.2 9.9 1.2 83.3 7.7 8.7 0.0 0.0 0.0 0.00 0.0036	45.5 39.7 12.4 12.4 1.1 98.7 0.6 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
JFTOT, SPUN TUBE DEPOSIT RATING, "F.	007	570	< 590

JET A FROM PARAHO SHALE OIL

INSPECTIONS				
INSPECTION	ď	2	1	
INSPECT	Ĉ		۱	
INSPE	Ė	;	١	
S	Š	1	Į	
-1	2	•	۱	
	-	•	•	

	H											. 7	6													
(800)	BLENDED FUEL	21.2	1.3	24.7	0.17	139.3	328.	376.	396.	442.	488.	505.	1,5	0.5		86.12	13.02	0.24	•	132.	-31.	42.0	0.8157	20.9	17.2/GEL	
RUN 111	TOTAL PRODUCT	19.2	1.4	23.5	0.55	147.5	220.	354.	.004	462.	529.	570.	1.8	0.7		86.60	13.18	0.1700	0.0002	70.	-13.	42.7	0.8124	16.2	•	
(1500)	BLENDED FUEL	15.3	1.8	16.4	0.31	153.5	374.	397.	411.	437.	475.	490.	1.6	9.0			13.45	.0024/0.0036	0.0004	151.	-34.6	43.3	0.8094	27.3	12.4	
RUN 118	TOTAL PRODUCT	11.2					279.							0.0		85.77	13.67	0.0067	0.0011	.66	-16.6	44.2	0.8053	27.0	12.(EXT)	
	FEED	TOO DARK	TOO DARK	40.2	< 0.05	TOO DARK	373.	426.	446.	486.	531.	556.	SOLID	•		•	•	1.37	0.82	172.	TOO DARK	31.7	0,867	•	60. (EXT	
ASTM	STANDARD	D 1319	D 1319			D 611	D 86	D 86		D 86		D 86	98 0	D 86					D 1266	D 93	D 2386	D 287	D 287	D 1322	D 445	
	SPEC.	MAX. 20					REPORT	MAX. 400		MAX. 450		MAX. 550	MAX. 1.5	WAX. 1.5					MAX. 03	MIN. 105	MAX36	39-51	0.775-0.830	MIN. 25	MAX. 15	
		AROMATICS, FIA (VOL.Z)	OLEFINS, FIA (VOL.X)	AROMATICS, M.S. (WT.X)	BROMINE NO. (CG BR/GM)	ANILINE PT. (°F.)	DISTILLATION (°F) INIT.	107	202	202	206	FINAL	RESIDUE (X)	TOSS (%)	ELEMENTAL ANALYSIS	CARBON (WT.Z)	HYDROGEN (WT.Z)	.z.		FLASH POINT (°F)			0/60°F)		VISCOSITY, -30°F (CS)	

4.3 TOSCO Shale Oil Hydrotreated Product Characterization

In this section are presented data for the results of the characterization of products from the hydrogenation experiments performed with feedstocks derived from TOSCO shale oil.

4.3.1 TOSCO Whole Hydrotreated Products

Feedstocks derived from TOSCO shale oil were fed to five hydrogenation experiments. These experiments are summarized on Table 4-8. The original kerosene fractions distilled from whole TOSCO shale oil at the Baytown Crude Assay Laboratory was fed to low-severity Run 113 and to normal-severity Run 17B. These two experiments depleted the quantity of distillate delivered by Baytown.

A small amount of the original TOSCO whole shale oil sample was recovered from Baytown. Additional feed having boiling characteristics essentially identical with those of the original feed was distilled from this material (labeled Feed TOSCO A), including all material in the original crude boiling up to 563°F. Feed TOSCO A was fed to high-severity Run 410 only.

A second distillate fraction was collected from the whole crude shale oil recovered from Baytown, which included all material in the crude boiling up to 650°F (labeled Feed TOSCO B). Feed TOSCO B was fed to high-severity Runs 411 and 412.

All of the TOSCO hydrogenation experiments were performed over nickel-molybdenum (HDS-3A) catalyst.

4.3.2 Distillation of TOSCO Whole Hydrotreated Products

The whole hydrotreated products from Runs 113, 17B, and 410 were distilled in a laboratory system capable of atmospheric/vacuum operation. Distillation data for these three operations are presented respectively, in Tables 4-9 through 4-11.

4.3.3 Synthetic JP-4 Fuel Blends from TOSCO Experiments

In the case of the TOSCO whole shale oil sample, sufficient light ends were present to permit production of both narrow- and wide-cut fuel blends. Table 4-12 summarizes data obtained for the final JP-4 wide-cut fuel blends.

There was insufficient product from the high-severity Runs 411 and 412 to permit preparation of final fuel blends in like manner. However, there is little question that acceptable narrow- and wide-cut fuels could not have been so prepared from both products, the wider boiling range of the feed notwithstanding.

TABLE 4-8

TOSCO SHALE OIL HYDROTREATMENT EXPERIMENTS

WHOLE KEROSENE PRODUCT FRED SHALE FEED 113 178 TOSCO A OIL FRACTION	TOTAL PRESSURE, PSIG 800 1500 LHSV 1.20 0.93	225 256	262 282	281 296	310 319	334 340	361 363	384 388	410 411	438 434	097 097	494 492	- 518 517 513 520	536 53/	DENSITY, GMS/CC @60°F 0.9279 0.8247 0.7872 0.7814 0.8197	25.8 50.3 51.8	28.3 24.0 29.7	9.3 4.9 8.6	69.8	17.0 12.7 5.7	7.9 5.5 1.8	2.7 1.1 0.0	29.9 19.3 7.5	0.6700 0.7600 0.0022 0.0036	0.8700 0.0200 0.0020
PRODUCT F	2200	253	287	299	325	348	372	392	410	431	452	485	211	240	_				2.2					_	_
FEED PRODUCT	11												585		0				6.7					-	_
OUCT PRODUCT 411	2200 2 1.02 0	777	783	301	332	358	388	415	447	476	508	548	572	290	.7905 0.				2.5						_
UCT	2200	27.1	147	297	323	346	372	400	427	458	492	526	552	570	784	1.8	2.8	9.1	2.4	2.7	0.7	0.0	3.4	015	8

5.2

Bottoms Recovered

TABLE 4- 9

DISTILLATION OF WHOLE TOSCO
HYDROTREATED PRODUCT
RUN 113 - 10M SEVERITY

		KUN 113 - 1	UN II3 - LOW SEVERITY			
	Operating	Stillpot	Corrected	Cut	11	Y1eld
Reflux Ratio	Pressure, MM Hg	Temp., °F	Vapor Temp., °F	No.	Wt. %	Cum. Wt. %
4;1	260	321	125	START	1	'
•	+	340	231	-	5.0	5.0
		353	251	2	5.0	10.0
	"我们"	370	274	က	5.0	15.0
		380	290	4	4.9	19.9
		403	324	5	9.8	29.7
		428	353	9	6.6	39.6
•	>	452	383	7	6.6	49.5
4:1	92	463	401	&	4.9	54.4
3,1	100	343	420	6	5.0	59.4
	May of the second secon	365	444	10	10.0	69.4
		385	478	11	10.0	79.4
	お の	397	767	12	6.4	84.3
>		411	512	13	5.0	89.3
3:1	100	429	542	14	5.0	94.46

3.8

Bottoms Recovered

TABLE 4-10

DISTILLATION OF WHOLE TOSCO HYDROTREATED PRODUCT RUN 17 B - NORMAL SEVERITY

Yield	Cum. Wt. %	•	4.4	13.3	18.7	21.2	28.2	32.4	38.0	47.9	57.7	77.1	87.5	89.5	8.46	95.7
Y16	Wt. %	Start	4.4	8.9	5.4	2.5	7.0	4.2	5.6	6.6	8.6	19.4	10.4	2.0	5.3	6.0
Cut	<u>%</u>	•	1	2	3	7	5	9	7	&	6	10	11	12	13	14
Corrected	Vapor Temp., F	150	237	275	295	300	323	335	353	385	411	463	500	510	540	547
Stillpot	Temp., F	325	338	365	380	387	403	413	426	320	339	380	404	411	435	437
Operating	Pressure, MM Hg	760	760	092	092	092	092	092	092	100	100	100	100	100	100	100
	Reflux Ratio	4:1	4:1	4:1	4:1	5:1	5:1	5:1	4.5:1	4.5:1	4.5:1	4:1	3:1	4:1	3:1	3:1

3.1

Bottoms Recovered

TABLE 4-11

DISTILLATION OF WHOLE TOSCO HYDROTREATED PRODUCT RUN 410 - HIGH SEVERITY

Yield % Cum. Wt. %	1	1.8	4.8	10.6	20.3	21.7	31.5	40.0	51.0	61.7	75.2	82.2	89.5	93.4	95.5
VI.	1	1.8	3.0	5.8	9.7	1.4	8.6	8.5	11.0	10.7	13.5	7.0	7.3	3.9	2.1
So.	START	-	2	3	4	2	9	7	8	6	01	=======================================	12	13	14
Corrected Vapor Temp., °F	129	212	248	275	302	320	349	374	401	428	455	482	509	536	550
Stillpot Temp., °P	333	342	353	372	400	707	303	314	332	347	373	388	412	433	450
Operating Pressure, MM Hg	760	260	992	092	760	760	100	100	100	100	100	100	100	100	100
eflux Ratio	2::1	2:1	2:1	2:1	2:1	2:1	2:1	2:1	2:1	2:1	2:1	2:1	2:1	2:1	2::1

TABLE 4-12

	A CONSTRUCTION OF THE CONS	TO SUPPLY OF THE	
Run No.	113	178	410
Total Pressure, PSIG LHSV	800	1500	2200
ASTM Distillation IBP, F. 5 Percent	231 245	231 248	252
	254 270	262 281	283
g 9 1	290 306	295 310	311
888	322 341 364	325 350 376	347
8 8	389	407	604 787
9.5 FBP	452 471	462	697 724 724
Density, GMS/CC @ 60 °F Mass Spectroscopy	0.7682	0.7681	0.7728
Paraffins Monocycloparaffins	50.6 29.5	50.3	49.3
Dicycloparaffins Tricycloparaffins PARAFFINS. Total	2.1 0.2 82.4	5.6 0.9	0.0
Alkylbenzenes Indans	3.0	7.0	2.4
Indenes Naphthalenes AROMATICS, Total	0.0	0.0	0.0
Sulfur, Total Wt. Percent Nitrogen, Total Wt. Percent JETOT, Spun Tube Deposit Rating,	0.0005 0.0093 8, °F 534	0.0003 0.0062 580	0.0011 0.0019 >515

4.3.4 Synthetic Jet A Fuel Blends from TOSCO Experiments

In Table 4-13 are summarized data obtained for the final Jet A narrow-cut fuel blends derived from TOSCO shale oil.

4.3.5 TOSCO Whole Product and JP-4 Fuel Blend Specifications

Specification inspections for the feed fraction, whole hydrotreated products, and final JP-4 fuel blends prepared from the normal- and low-severity TOSCO hydrogenation experiments are presented in Table 4-14.

Again, there was insufficient product from the high-severity Run 410 with which to prepare sufficient final fuel to permit inspection analysis in like manner. Available data for the high-severity final wide-cut fuel blend shown on Table 4-12, however, would indicate that this material would exhibit superior properties.

4.3.6 TOSCO Whole Product and Jet A Fuel Blend Specifications

In Table 4-15 are presented specification inspections for the feed fraction, whole hydrotreated products, and final Jet A narrow-cut fuel blends prepared from the normal- and low-severity TOSCO hydrogenation experiments. Note that the data for the feed fraction and whole hydrotreated products shown in this table are identical with those shown in preceding Table 4-14.

4.4 Garrett (Occidental) Shale Oil Hydrotreated Product Characterization

In this section are presented data for the results of the characterization of products derived from the hydrogenation experiments performed with feedstocks distilled from Garrett shale oil.

4.4.1 Garrett Whole Hydrotreated Products

Feedstocks distilled from Garrett shale oil were fed to eight hydrogenation experiments. These experiments are summarized in Table 4-16 Note that an analysis of the original whole shale oil sample is included in the table.

Again, the kerosene fraction distilled from the original whole shale oil was fed only to low-severity Run 115 and to normal-severity Run 103, which operations depleted the available supply of that feedstock. However, additional whole shale oil was later distilled in laboratory equipment to separate three additional hydrogenation feedstocks: Feed Garrett A included all material in the original crude boiling up to 563°F, and, as such, should have been essentially identical with the original kerosene feed fraction. Feed Garrett A was fed only to high-severity Run 404.

AD-A036 190

EXXON RESEARCH AND ENGINEFRING CO LINDEN N J GOVERNME--ETC F/G 7/1

EVALUATION OF METHODS TO PRODUCE AVIATION TURRINE FUELS FROM SY--FTC(II)

MAY 76. C D KALFADELIS

EXXON/GRU-2PEA.76

AFAPL-TR-75-10-VOL-2

AD-A036 190

AD-A036 190

EXXON RESEARCH AND ENGINEFRING CO LINDEN N J GOVERNME--ETC F/G 7/1

EVALUATION OF METHODS TO PRODUCE AVIATION TURRINE FUELS FROM SY--FTC(III)

ATT THE PRODUCT OF METHODS TO PRODUCE AVIATION TURRINE FUELS FROM SY--FTC(III)

APA 76. C D KALFADELIS

EXXON/GRU-2PEA.76

AFAPL-TR-75-10-VOL-2

NL

AD-A036 190

TABLE 4-13

S INTERPRETATION	SYNTHETIC JET A (NARROW-CUT) AVIATION TURBINE FUEL BLENDS FROM TOSCO SHALE OIL	M TOSCO SHALE OIL	
Run No.	113	178	410
Total Pressure, PSIG LHSV	800	1500	2200
ASTM Distillation IBP, F 5 Percent	338	342 355 369	329 353 364
28.89	399	384 396 410	378 392 404
	431 447 475	423 440 457 472	419 432 445 460
95 70	493 503 511	490 504 512	478 490 501
Density, GMS/CC @ 60 °F	0.8050	0.7946	0.7930
Paraffins Paraffins Monocycloparaffins Dicycloparaffins Tricycloparaffins NakFrins, Total	48.8 22.9 5.4 1.1 78.2 11.4 7.7 0.0 2.3	50.8 26.3 11.1 11.1 5.4 6.3 8.8	50.6 35.4 97.8 1.1 0.0 1.9
Sulfur, Total Wt. Percent Nitrogen, Total Wt. Percent JFTOT, Spun Tube Deposit Rating, °F	0.0012 0.0170 {482}	0,0009 0,0063 688	0.0008 0.0034 >575

TABLE 4-14

JP 4 PIOM TOSCO SHALE OIL INSPECTIONS

		ASTM		RUN 17B	(1500)	RUN 113	(800)
	SPEC.	STANDARD	FEED	TOTAL PRODUCT	BLENDED FUEL	TOTAL PRODUCT	BLENDED FUEL
AROMATICS, FIA (VOL.Z)	MAX. 25.0	D 1319	TOO DARK	5.4	3.4	15.2	11.3
OLEFINS. FIA (VOL.Z)	MAX. 5.0	D 1319	TOO DARK	0.8	0.2	7.0	0.2
AROMATICS, M.S. (WT.X)			29.9	7.5	8.5	19.3	17.3
BROWINE NO. (CG BR/GM)			<0.05	0.14	0.15	0.30	0.31
ANILINE PT. (°F.)		D 611	84.3	157.7	148.0	145.0	106.5
DISTILLATION (°F.) INIT.	REPORT	D 86	220.	254.	231.	225.	231.
107	REPORT		294.	296.	262.	281.	254.
202	MAX. 290		320.	319.	281.	310.	270.
502	MAX. 370		399.	388.	325.	384.	322.
206	MAX. 470		502.	492.	439.	494.	426.
FINAL	REPORT	D 86	530.	537.	478.	536.	471.
RESIDUE (X)	MAX. 1.5		1.0	1.7	1.8	2.0	1.5
LOSS (X)	MAX. 1.5	D 86	0.0	0.3	0.7	0.0	0.5
ELEMENTAL ANALYSIS							
CARBON (WT.Z)			•			85.83	85.77
HYDROGEN (WT.Z)			13.1		14.25	13.89	13.05
NITROGEN (WI.Z)			0.8700		0.0062	0.0200	0.0093
SULFUR (WI.)	MAX. 0.40	D 1266	0.7600	0.0036	0.0003	0.0022	0.0005
FLASH POINT		D 93	.99∿		∿ 60.	. 49	∿ 75.
PREEZE POINT	MAX72	D 2386	TOO DARK		-69.7	-34.6	-76.
GRAVITY 60°F (*API)	45-57	D 287	40.1		52.7	48.2	52.7
SPEC. GRAVITY (60/60°F)	.8 0Z751	D 287	0.8247		0.7681	0.7872	0.7682
SHOKE POINT (MM)		D 1322	•		37.1	25.6	29.9
VISCOSITY, -30°F (CS)		D 445	5.7(EXT		3.4	5.6	3.3

TABLE 4-15

JET A FROM TOSCO SHALE OIL - INSPECTIONS

		ASTM		RIIN 17R	(1500)	RUN 113	(800)
ALBERTANT OF A COL	SPEC.	STANDARD	FEED	TOTAL PRODUCT	BLENDED FUEL	TOTAL PRODUCT	BLENDED FUEL
AROMATICS, FIA (VOL. Z)	MAX. 20	D 1319	TOO DARK	5.4	5.4	15.2	18.6
OLEFINS, FIA (VOL. %)		D 1319	TOO DARK	0.8	1.3	0.4	0.4
AROMATICS, M.S. (WT. 2)			29.9	7.5	8.8	19,3	21.4
BROWINE NO. (CG BR/GM)			<0.05	0.14	0.16	0.30	0.39
ANTLINE PT. (°F)		D 611	84.3	157.7	161.5	145.0	147.9
DISTILLATION (°F) INIT.	REPORT	D 86	220.	254.	342.	225.	338.
107	MAX. 400	D 86	294.	296.	369.	281.	368.
202			320.	319.	384.	310.	382.
205	MAX. 450	D 86	399.	388.	423.	384.	431.
206			502.	492.	.067	. 464	493.
FINAL	MAX. 550	D 86	530.	537.	512.	536.	511.
RESIDUE (X)	MAX. 1.5	D 86	1.0	1.7	1.7	2.0	1.5
1085 (%)		D 86	0.0	0.3	0.3	0.0	0.5
ELEMENTAL ANALYSIS							
CARBON (WT. Z)			I	1	85.96	85.83	85.63
HYDROGEN (WT. 2)			13.1	14.6	13.87	13.89	13.41
NITROGEN (WT. Z)			0.8700	0.0020	0.0063	0.0200	0.0170
SULFUR (WT. %)	MAX. 0.3	D 1266	0.7600	0.0036	0.0009	0.0022	0.0012
FLASH POINT	MIN. 105	D 93	.99∿	76.	138.	. 49	136.
FREEZE POINT	MAX36	D 2386	TOO DARK	-34.6	-29.2	-34.6	-29.2
GRAVITY 60 °F ("API)	39-51	D 287	40.1	9.65	9.95	48.2	44.3
SPEC. GRAVITY (60/60°F)	0.775-0.830	D 287	0.8247	0.7814	0.7946	0.7872	0.8050
SMOKE POINT (MM)	MIN. 25		1	35.4	34.0	25.6	24.9
VISCOSITY, -30°F (CS)	MAX. 15	D 445	5.7(EXT)	5.9	9.6	5.6	GEL

CARRETT SHALE OIL STUROTREATHENT EXPERIMENTS

Protection of the control of the con	Total Pressure, PSIC LESY	ASTA PARTILLELIAN TO PARTILLELIAN SO DO	Demaitry, GRS/CC 6 60°F	Mass Spectroscopy Prefittion Menocyclopsreffins Meyclopsreffins Tricyclopsreffins	Sulfur, Total Wt. Percent Mitrogen, Total Wt. Percent
NAOLE SHALE	11	minimu	0.9042	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
FEBOS ENS FEED FRACTION	eH eH	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.8565	35.59 10.59 10.75	0.6300
PRODUCT 115	800	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.8133	22.1. 22.2. 22.2. 22.2. 21.9. 21.9. 21.9. 21.5.	0.0049
PRODUCT 103	1500	23 315 316 45 45 45 45 45 45 45 45 45 45 45 45 45	0.8010	24.0 24.0 27.0 27.0 2.1 2.1 2.1 2.1 2.1	0.0051
FEL"	11	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.8553	35. 2. 2. 8. 10. 2. 8. 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	0.7000
PRODUCT 404	2700	299 338 338 408 442 442 442 442 441 465 465 465 509 528	0.8005	47.4 33.3 111.8 11.8 2.4 94.4 1.0 1.0	0.0033
FEED GARETT B	11	346 6,239 6,239 6,239 5,300 5,00 5,	0.8662	36.8 11.4 11.4 12.5 12.5 12.5 12.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13	0.6000
PRODUCT 405	2200	295 337 339 399 4446 4646 4646 4646 500 500 500 500 500	0.8066	88. 12.0 12.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	0.0112
PRODUCT 406	2200	29 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.8153	23.8 4 9 5.3 8 8 6 7 2 7 2 8 8 1 6 7 7 4 7 6 1 6 1 7 7 8 8 1 7 7 8 1 7 7 8 1 7 7 8 1 7 7 8 1 7 7 8 1 7	0.0014
FEED CARRETT C	11	335 416 416 416 417 417 417 417 418 818 818 818 818 818 818 818 818 818	0.8678	37.1 0.0 14.0 15.9 15.9 8.2 5.2 8.3 8.9	0.7500
PRODUCT 407	2200	300 331 331 427 456 498 898 898 898 898 898	0.8152	8 21 1 2 8 2 1 2 2 8 2 1 2 2 2 2 2 2 2 2	0.0149
PRODUCT 408	2200	294 351 391 437 465 688 688 539 539 530 601 601 630	0.8231	20.3 20.3 9.5 9.5 80.4 8.9 1.5 1.5	0.0215
CARRETT 103	11	345 369 369 413 429 429 429 429 429 429 484 484 484	0.8052	84.2 13.6 13.6 13.6 11.0 11.1 11.1 11.1 11.1 11.1 11.1 11	0.00045
PRODUCT 415	2200	- 87 -	0.7968	8 8 1 1 1 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0	<0.0001

Feed Garrett B included all material in the original shale oil boiling up to 650°F, and was fed to high-severity Runs 405 and 406 at liquid hourly space velocities respectively of 0.42 and 0.93. Feed Garrett C included all material in the original shale oil boiling up to 700°F, and was fed to high-severity Runs 407 and 408 at liquid hourly space velocities of 0.43 and 0.97 respectively.

Finally, the Jet A final fuel blend prepared via hydrotreatment of the original kerosene feed fraction in Run 103 in the normal-severity hydrotreatment segment *(labeled Feed Garrett 103) was refed to the unit in high-severity Run 415. Hence Product 415 represents doubly hydrotreated material.

All runs made with Garrett feedstocks were conducted over American Cyanamid HDS-3A nickel-molybdenum catalyst.

4.4.2 Distillation of Whole Garrett Hydrotreated Products

The whole hydrotreated products from Runs 115, 103, 404, 405, 407, and 415 were each distilled in a laboratory distillation system capable of atmospheric/vacuum operation. Distillation data for these four operations are presented respectively in Tables 4-17 through 4-22.

4.4.3 Synthetic JP-4 Fuel Blends from Garrett Experiments

The Garrett whole shale oil sample (see Appendix VII) and the feed fractions distilled therefrom contained only small quantities of components boiling below about 210°F. Consequently only narrow-cut Jet A fuel blends could be prepared from the hydrotreated products from our low- or normal-severity runs.

However, it appeared possible to blend wide-cut JP-4-type fuels from the whole hydrotreated products from the high-severity runs. Because of the limited quantities available, a JP-4 fuel blend was prepared only from the product from high-severity Run 404, although it appeared that similar blends could have been prepared from all of the products from the "400" high-severity operations.

Table 4-23 shows available inspections on the JP-4 fuel blends. The JFTOT result is considered indeterminate because of excessive vaporization of the sample in the test apparatus at the test pressure of 400 psig. However, the fuel's thermal breakpoint is very high.

4.4.4 Synthetic Jet A Fuel Blends From Garrett Experiments

Synthetic narrow-cut Jet A-type fuel blends were prepared from the hydrotreated products from low-severity Run 115, normal-severity Run 103, high-severity Run 404, and the material doubly hydrotreated in Runs 103/415. Inspections on the fuel blends, including the Spun Tube JFTOT Deposit Ratings, are shown on Table 4-24.

2.8

Bottoms Recovered

TABLE 4 -17

DISTILLATION OF WHOLE GARRETT (OCCIDENTAL)
HYDROTREATED PRODUCT
RUN 115 - LOW SEVERITY

,																	
Yield "" "	Cum. WE. A	•	4.6	9.1	13.5	18.0	26.8	35.7	4.4	53.1	61.9	71.8	81.7	86.7	91.6	96.4	
	WE. A	:	4.6	4.5	4.4	4.5	8.8	8.9	8.7	8.7	8.8	9.6	6.6	5.0	4.9	4.8	
Cut K		Start	-	7	က	4	2	9	7	&	n	10	==	12	13	41	
Corrected	vapor remo., r	147	285	327	359	381	417	433	8448	455	478	767	509	517	531	549	
Stillpot	lemo., F.	107	421	437	450	458	471	483	491	201	380	387	399	405	416	437	
Operating	Pressure, MM Hg	760	•						→	992	100	· ·			→	100	
	Keriux Katio	5:1	•		•	5:1	4:1	•		4:1	3:1	<-			•	3:1	

4.3

Bottoms Recovered

TABLE 4 - 18

DISTILLATION OF WHOLE GARRETT (OCCIDENTAL)
HYDROTREATED PRODUCT
RUN 103 - NORMAL SEVERITY

Operating Stillpot Tessure, MM Hg Temp., °F. 760 370 400 760 400 760 422 760 422 760 422 760 422 760 422 760 422 760 422 760 422 760 422 760 422 760 422 760 422 760 422 760 422 760 422 760 422 760 422 760 760 782 7
ing St. 18 HS

7.1

Bottoms Recovered

TABLE 4 - 19

d

DISTILLATION OF WHOLE GARRETT (OCCIDENTAL)
HYDROTREATED PRODUCT
RUN 404 - HIGH SEVERITY

Yield	Cum. Wt. 2	1	0.7	1.4	3.9	7.1	9.7	13.9	21.2	29.1	43.7	57.9	72.1	83.7	90.9	92.3	
	Wt. %	1	0.7	0.7	2.5	3.2	2.6	4.2	7.3	7.9	14.6	14.2	14.2	11.6	7.2	1,4	
Out	<u>%</u>	Start	1	2	9	4	S	9	7	&	6	10	11	12	13	14	
Corrected	Vapor Temp., F	167	212	248	275	302	320	347	374	401	428	455	482	509	536	545	
Stillpot	Temp., F	387	390	393	403	416	423	434	448	243	267	283	390	412	430	433	
perati	Pressure, MM Hg	992	760	092	092	992	760	092	092	a	01	ន	8	100	100	100	
	Reflux Ratio	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	2:1	2:1	2:1	2:1	2::1	2:1	2:1	

TABLE 4 - 20

DISTILLATION OF WHOLE GARRETT (OCCIDENTAL)
HYDROTREATED PRODUCT
RUN 405 - HIGH SEVERITY

Yield	Cum. Wt. 2		1.5	2.9	5.6	8.0	11.0	15.9	24.3	33.2	6.44	55.5	66.2	73.6	81.9	89.5	94.3	9.96		98.1
Y	Wt. Z	1	1.5	1.4	2.7	2.4	3.0	6.4	8.4	8.9	11.7	10.6	10.7	7.4	8.3	7.6	4.8	2.3		1.5
į	N .	Start	1	2	3	4	5	9	7	œ	6	91	#	12	13	14	15	16		P
Corrected	Vapor Temp., OF	175	248	275	302	320	347	374	401	428	455	482	509	536	563	590	617	940		Bottoms Recovered
Setlinot	Temp., OF	402	412	420	433	443	452	465	350	370	390	604	427	442	094	485	510	009		
Operating	Pressure, MM Hg	260	260	760	760	760	. 092	760	100	100	100	100	100	100	100	100	100	100		
	Reflux Ratio	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	/	

2.0

Bottoms Recovered

TABLE 4 - 21

DISTILLATION OF WHOLE GARRETT (OCCIDENTAL)
HYDROTREATED PRODUCT
RUN 407 - HIGH SEVERITY

11d	Cum. Wt. %	1	1.1	2.3	4.5	6.2	10.0	11.7	16.5	33.7	50.7	57.1	60.7	70.0	80.7	88.5	92.8	97.1
Y1e	Wt. %	ı	1.1	1.2	2.2	1.7	3.8	1.7	4.8	17.2	17.0	6.4	3.6	9.3	10.7	7.8	4.3	4.3
ž	No.	Start	1	2	က	4	5	9	7	œ	6	10	11	12	13	14	15	16
Corrected	Vapor Temp., OF	175	248	275	302	320	347	374	401	455	500	515	536	563	290	617	640	675
Stillnot	Temp., OF	420	428	435	844	458	472	345	357	395	428	443	955	797	485	507	525	585
Omeratino	Pressure, MM Hg	760	092	760	760	760	760	100	100	100	100	100	100	100	100	100	100	100
	Reflux Ratio	2.5:1	2.5:1	2.5:1	2.5:1	2.5:1	3:1					2:1		2:1	2:1	2:1	2:1	2:1

1.0

Bottoms Recovered

TABLE 4 - .22

DISTILLATION OF WHOLE GARRETT (OCCIDENTAL)
HYDROTREATED PRODUCT
RUN 415 - HIGH SEVERITY

1d	Cum. Wt. %	1	2.8	9.6	10.8	17.1	48.9	61.1	78.0	91.3	95.8	97.9	
Yield	Wt. %	1	2.8	8.9	1.2	6.3	31.8	12.2	16.9	13.3	4.5	2.1	
Gut	<u>8</u>	Start	1	2	e	4	5	9	7	&	6	10	
Corrected	Vapor Temp., OF	192	302	358	374	401	428	455	482	507	518	530	
Stillpot	Temp., OF	412	422	315	317	324	343	360	381	394	407	1	
Operating	Pressure, MM Hg	760	760	100	100	100	100	100	100	100	100	100	
	Reflux Ratio	2:1	2:1	2:1	2:1	2:1	2:1	2:1	3:1	3:1	3:1	3:1	

TABLE 4 - 23

SYNTHETIC JP-4 (WIDE-CUT) AVIATION TURBINE FUEL BLEND FROM GARRETT (OCCIDENTAL) SHALE OIL

RUN NO.	404
Total Pressure, PSIG	2200
LHSV	0.48
ASTM Distillation	
IBP	246
5 Percent	275
10	296
20	332
30	383
40	434
50	453
60	463
70	470
80	476
90	486
95	494
FBP	500
FBP	300
Density, GMS/CC @ 60°F	0.7956
Mass Spectroscopy	
Paraffins	49.2
Monocycloparaffins	33.8
Dicycloparaffins	9.3
Tricycloparaffins	1.7
PARAFFINS, Total	94.0
Alkylbenzenes	5.1
Indans	0.7
Indenes	0.0
Naphthalenes	0.0
Maphicuatenes	===
AROMATICS, Total	5.8
agon o half of agon o	
Sulfur, Total Wt. Percent	0.0056
Nitrogen, Total Wt. Percent	0.0027
JFTOT, Spun Tube Deposit Rating, of	> 500

TABLE 4 - 24

SYNTHETIC JET A (NARROW-CUT) AVIATION TURBINE FUEL BLENDS FROM GARRETT (OCCIDENTAL) SHALE OIL

RUN NO.		_115	103	404	415
Total Pressure, P	SIG	800	1500	2200	2200
LHSV		0.91	0.99	0.48	0.56
.Acmy D/ - /11 - / -					
ASTM Distillation IBP		321	345	250	266
5 Percent		359	369	358 374	366 384
10		377	383	380	390
20		400	399	389	400
30		420	415	398	410
40		435	429	406	420
50		448	439	414	428
60		458	448	422	437
70		471	459	434	446
80		483	469	446	456
90		499	484	466	469
95		509	493	482	479
FBP		517	502	495	488
Density, GMS/CC @	60°F	0.8134	0.8051	0.8013	0.7978
Mass Spectroscopy					
Paraffins		46.5	47.3	43.3	49.7
Monocycloparaff	ins	22.9	30.4	37.9	36.1
Dicycloparaffin		7.0	8.6	12.1	11.6
Tricycloparaffi		1.4	1.2	1.9	1.4
PARAFFINS, Total		<u>77.8</u>	87.5	95.2	98.8
Alkylbenzenes		11.7	7.6	3.4	0.6
Indans		9.5	4.5	1.0	0.3
Indenes		0.2	0.0	0.0	0.0
Naphthalenes		0.5	0.0	0.0	0.0
AROMATICS, Total		21.9	12.1	4.4	0.9
Sulfur, Total Wt.		0.0019	0.0004	0.0036	0.0009
Nitrogen, Total W JFTOT, Spun Tube		0.0052 (445)	0.0030 585	0.0026 > 615	0.0015 > 625

4.4.5 Garrett Whole Product and Jet A Fuel Blend Specifications

In Table 4-25 are presented specification inspections for the feed fraction, whole hydrotreated products, and final narrow-cut Jet A fuel blends prepared from the normal- and low-severity Garrett (Occidental) hydrogenation experiments.

4.5 Synthoil Coal Liquid Hydrotreated Product Characterization

In this section are presented data for the results of the characterization of products derived from the hydrogenation experiments performed with feedstocks distilled from Synthoil coal liquid.

4.5.1 Synthoil Whole Hydrotreated Products

Feedstocks distilled from Synthoil coal liquid were fed to five hydrogenation experiment. These experiments are summarized on Table 4-26 in order of increasing severity.

The kerosene feed fraction distilled from the original whole coal oil sample was fed to low-severity Run 203, and to normal-severity Runs 107, 202, and 105. Note that, in the case of the Synthoil experiments, runs were conducted over cobalt-molybdenum, as well as nickel-molybdenum catalysts.

The feed to Synthoil high-severity Run 416 was the final synthetic Jet A fuel blended from the hydrotreated product from normal-severity Run 107 (labeled Feed 107). Hence, Product 416 represents twice-hydrotreated material.

4.5.2 Distillation of Synthoil Whole Hydrotreated Products

The whole hydrotrested products from Synthoil Runs 203, 107, 202, 105, and 416 were each distilled in a laboratory distillation system capable of atmospheric/vacuum operation. Distillation data for these five distillations are presented respectively in Tables 4-27 through 4-31.

4.5.3 Synthetic Jet A Fuel Blends from Synthoil Experiments

The original Synthoil coal liquid sample contained only a very small quantity of material boiling below about 400°F (see Appendix VIII). Consequently, only narrow-cut Jet A-type fuels could be blended in reasonable yield from the products collected from our Synthoil hydrotreatment experiments.

TABLE 4-25

101	UEL TOTAL PRODUCT BLENDED FUEL	20.1 21.5 0.29	305. 321. 470. 377.		0.0042	128. -22.0 -22.8 42.5 42.5 0.8134 0.8134 20.2 CRYSTAL CRYSTAL	Tana Language Canada Ca
JET A FROM GARRETT (OCCIDENTAL) SHALE OIL - INSPECTIONS	RUN 103 (1500) TOTAL PRODUCT BLENDED FUEL	11.7 10.5 0.9 0.4 12.1 12.1	11888		74	170. 14023.8 -29.2 44.2 44.2 0.8010 0.8051 27.0 26.9 CRYSTAL 11.6	main in a constant rest legh respectively share (topically to to a essentable) topically share to the essential say quoting at
RETT (OCCIDENTAL)	FEED	38.9	107.5 311. 404.	469. 510. 527. SOLID	84.42 11.84 1.07 0.63	144. TOO DARK 33.7 0.8565	e de la company
JET A FROM GAR	ASTM SPEC. STANDARD	MAX. 20 D 1319 D 1319	D 611 REPORT D 86 MAX. 400 D 86	MAX. 450 D 86 MAX. 1.5 D 86 MAX. 1.5 D 86		MIN. 105 D 93 MAX36 D 2386 39-51 D 287 0.775-0.830 D 287 MIN. 25 D 1322 MAX. 15 D 445	All tead general and all all all all all all all all all al
	137 m 1377 m 1483 m	OLEFINS, FIA (VOL. %) OLEFINS, FIA (VOL. %) ARCHATICS, M.S. (WT. %) REPORTING NO. CC RE/CM)	2	507 907 FINAL RESIDUE (X)	ELEMENTAL ANALYSIS CARBON (WT. Z) HYDROGEN (WT. Z) NITROGEN (WT. Z) SULFUR (WT. Z)	FLASH POINT GRAVITY 60°F ("API) SPEC. GRAVITY (60/60°F) SMCKE POINT (MM) VISCOSITY, -30°F (CS)	original control of the states and states an

TABLE 4 - 26

SYNTHOIL HYDROTREATMENT EXPERIMENTS

	Kerosene Feed Fraction	Product 203	Product 107	Product 202	Product 105	F7ED 107	Product 416
Run No.							
Total Pressure, PSIG	1	800	1500	1500	1500	1	2200
Catalvor	!	8.0	C6.0	69.0	0.81	!	0.04
value, you		0H-00	N1-Mo	Co-Mo	N-T-Wo	l	N1-Mo
ASTM Distillation							
186	∿222	269	245	268	250	322	318
5 Percent	707	320	290	319	301	349	349
21	416	358	328	349	330	363	367
20	428	399	377	385	376	387	387
30	443	424	907	407	405	904	402
07	458	442	427	422	454	422	417
8:	894	456	442	438	438	434	429
96	478	471	457	452	452	447	439
23	490	485	472	467	897	097	453
8	200	867	489	787	484	473	897
06	514	515	208	200	505	987	483
a ^l	525	529	521	516	520	967	493
FBF	528	246	543	537	545	202	512
Density, GMS/CC @ 60 °F	0.9262	0.8870	0.8667	0.8556	0.8532	0.8670	0.8327
Mass Spectroscopy Paraffins	0.5	1.4	7 €	7 01	c a		15.0
Monocycloparaffins	38.8	31.2	38.4	\$ 1.5 \$ 1.5	7.07	7.6 %	2. 42
Dicycloparaffins	8.5	12.8	18.2	15.6	19.6	16.7	22.7
Tricycloparaffins	000	4.5	8.0	5.7	5.5	4.3	4.9
Alkylbenzenes	21.0	17.3	08.0	73.5	75.6	70.4	98.0
Indans	21.4	25.0	7, 41	13.6	4.6	77.7	1:0
Indenes	7.7	2.9	3.4	0.0	4.2	1.5	0.0
Naphthalenes AROMATICS, Total	51.9	<u>50.2</u>	31.6	26.2	24.0	29.2	1.6
Sulfur, Total Wt. Percent	0.1000	0.0012	0.0022	0.000	10000	2000	1000 >
Mitrogen, Total Wt. Percent	0.3000	0.0062	0.0061	0.0050	0.0053	0.0057	<. 0001

6.4

Bottoms Recovered

27
-4
ABLE

DISTILLATION OF WHOLE SYNTHOIL
HYDROTREATED PRODUCT
RUN 203 - LOW SEVERITY

Reflux Ratio	Operating Pressure, MM Hg	Stillpog Temp., F	Corrected Vapor Temp., F	No.	Y1	Yield Cum. Wt. %
4:1	260	387	149	Start	•	•
4:1	092	418	274	1	5.0	5.0
4:1	092	439	331	2	4.9	6.6
4:1	092	452	365	3	5.0	14.9
4:1	760	463	382	4	5.0	19.9
3:1	100	347	412	5	6.6	29.8
3:1	100	363	439	9	8.6	39.6
3:1	100	377	458	7	10.1	49.7
3:1	100	385	478	8	8.6	59.5
3:1	100	397	495	6	10.2	69.7
3:1	100	807	512	10	6.6	9.62
3:1	100	417	520	11	5.0	84.6
3:1	100	423	531	12	5.0	9.68
3:1	100	435	543	13	5.0	94.6

4.4

Bottoms Recovered

TABLE 4- 28

Sand Emplement

DISTILLATION OF WHOLE SYNTHOIL HYDROTREATED PRODUCT RUN 107 - NORMAL SEVERITY

		NOW TO !	NONTHE SEVENTIL			
	Operating	Stillpot	Corrected	Cut	Y1	Yield
Reflux Ratio	Pressure, MM Hg	Temp., °F	Vapor Temp., °F	<u>શ</u>	Wt. %	Cum. Wt. %
4:1	760	368	160	Start	ı	•
•	+	401	251	-	5.2	5.2
		422	308	2	4.9	10.1
		437	344	3	4.9	15.0
		844	366	4	5.0	20.0
		995	397	2	10.0	30.0
	-	483	426	9	10.0	0.04
4.1	760	667	446	7	10.1	50.1
3,1	100	375	463	80	10.0	60.1
•	•	386	482	6	10.0	70.1
Wild Control		700	501	10	6.6	80.0
		407	511	==	5.0	85.0
-	•	418	523	12	5.0	0.06
3:1	100	435	539	13	5.1	95.1

5.2

Bottoms Recovered

TABLE 4- 29

DISTILLATION OF WHOLE SYNTHOIL HYDROTREATED PRODUCT RUN 202 - NORMAL SEVEFTY

		NON 202 I	NONTHE SEVEL II			
	Operating	St111pot	Corrected	Cut	71	Yield
Reflux Ratio	Pressure, MM Hg	Temp., °F	Vapor Temp., °F	 	Wt. %	Cum. Wt. %
3:1	760	383	170	Start	•	# -
3:1	760	407	269	1	4.8	4.8
3:1	760	423	322	2	5.0	9.8
3:1	760	433	351	ဌ	4.9	14.7
3:1	760	443	.369	4	5.1	19.8
3:1	260	097	393	S	9.6	29.6
3:1	760	473	417	9	10.0	39.6
2.5:1	100	357	438	7	10.0	9.64
2.5:1	100	368	458	œ	10.0	59.6
2.5:1	100	378	473	6	10.0	9.69
2.5:1	100	390	490	10	6.6	79.5
2.5:1	100	397	506	11	5.1	84.6
2.5:1	100	405	517	12	5.0	9.68
2.5:1	100	420	533	13	5.1	94.7

9.4

Bottome Recovered

TABLE 4-30

DISTILLATION OF WHOLE SYNTHOIL HYDROTREATED PRODUCT RUN 105 - NORMAL SEVERITY

Cleid Cum. Wt. Z		10.1	15.0	20.0	30.0	39.9	50.0	59.9	6.69	79.9	84.9	89.9	95.0
Y. Wt. %	5.0	5.1	4.9	2.0	10.0	6.6	10.1	6.6	10.0	10.0	5.0	5.0	5.1
Cut No.	Start	7	၈	4	5	9	7	80	6	2	==	12	ដ
Corrected Vapor Temp., °F.	 244	303	341	364	393	417	14	456	471	464	502	518	535
Stillpot Temp., °F.	- 60 4	450	434	444	097	924	767	369	380	396	402	417	434
Operating Pressure, MM Hg	% %					-}	760	100	•			->	100
Reflux Ratio	2.5					->	5:1	3:1	•			→	3:1

1.5

Bottoms Recovered

TABLE 4-31

DICCILLATION OF WHOLE SYNTHOIL HYDROTREATED PRODUCT RUN 416 - HIGH SEVERITY

Cum. Wt. %	•								92.1	
Wt. 2	•	4.2	7.3	10.7	11.6	13.9	15.0	16.2	13.2	4.1
Cut No.	Start	1	2	3	4	5	9	7	80	6
Corrected Vapor Temp., °F	208	. 302	347	374	401	428	455	482	509	530
Stillpot Temp., F	398	413	427	315	328	346	359	377	398	392
Operating Pressure, MM Hg	092	760	760	100	100	100	100	100	100	100
Reflux Ratio	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1

Available inspections for the Jet A fuel blends prepared from each of the Synthoil hydrotreatment experiments, including the Spun Tube JFTOT Deposit Ratings, are shown on Table 4-32.

4.5.4 Synthoil Whole Product and Fuel Blend Specifications

In Table 4-33 are presented specification inspections for the feed fraction, whole hydrotreated products, and final narrow-cut Jet A fuel blends prepared from the normal- and low-severity Synthoil hydrogenation experiments. As indicated above, there were three normal-severity experiments, in which space velocity and catalyst type were varied (Runs 105, 107, and 202), and one low-severity experiment (Run 203), conducted over cobalt-molybdenum catalyst.

4.6 H-Coal Coal Liquid Hydrotreated Product Characterization

In this section are presented data for the results of the characterization of products derived from the hydrogenation experiments performed with H-Coal coal liquid.

4.6.1 H-Coal Whole Hydrotreated Product

H-Coal coal oil was fed to four hydrogenation experiments. These experiments are summarized on Table 4-34. It is noted that H-Coal feed was also used in Run 212, a fifth experiment, for which separate data is not presented here because operation of the unit was considered too erratic to permit description of the conditions under which product was collected (see Section 4.1 above). However, the product collected during Run 212 (labeled "Feed 212") was refed to the unit in high-severity Run 419. Hence "Product 419" represents doubly hydrotreated material.

Note that the H-Coal coal liquid was fed as received directly to our hydrotreatment unit in Runs 304, 209, and 417. That is, this material was presumably already a distillate product with boiling range similar to that of the kerosene feed fractions distilled from our other whole syncrude samples (see Section 3.3.7), and did not require further distillation. As a class, however, the H-Coal experiments were the most troublesome with respect to reactor pressure drop problems, such that conditions under which the products were collected deviated furthest from the ideal steady-state desired, and the inspections reported for particular conditions are thus likely to be least reliable.

Interestingly, the reactor pressure drop problem was incurred with both nickel-molybdenum and cobalt-molybdenum catalysts, and manifested itself identically at all severities. Removal, from the reactor bundle, of two empty reactor tubes employed as a preheat section ahead of the tubes packed with catalyst (see Section 4.1 above) likewise had no effect on the problem.

Control of the Local Land Land Control of the Contr

ABLE 4-32

SYNTHETIC JET A FUEL BLENDS FROM SYNTHOIL HYDROTREATMENT EXPERIMENTS

2	203	107	202	105	4
Total Pressure, PSIG LMSV Catalyst	800 0.88 Co-No	1500 0.95 N4-No	1500 0.69 Co-Mo	1500 0.81 N4-No	220 0.5
ASTA Distillation INP 5 Percent 10 20 30 40 50 60	340 340 337 421 448 459	322 349 383 406 422 447 447	337 343 376 392 447 447 447	331 350 371 390 420 432 446	28888244
5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4/8 502 515 524	486 486 505 505	473 490 503 514	4486 486 502 509	12444
Density, GMS/CC @ 60 °F Mass Spectroscopy Paraffins Monocycloparaffins Dicycloparaffins Tricycloparaffins FARAFFINS, Total Alkylbenzenes Indans Indenes Naphthalenes Naphthalenes	0.8882 1.0 32.8 11.5 3.2 27.0 2.6 50.4	0.8670 3.0 46.4 16.7 4.3 70.4 115.5 115.5 29.2	0.8568 10.7 41.7 15.5 5.1 12.7 13.3 0.0 26.7	0.8550 49.0 17.9 4.0 78.8 9.6 10.2 20.0	0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sulfur, Total Wt. Percent Nitrogen, Total Wt. Percent JFTOT, Spun Tube Deposit Rating, F	0.0067 0.0067 {418}	0.0057 0.0057 520	0.0029 0.0016 500	0.0022 0.0030 540	0.000

TABLE 4-33
JET A FROM SYNTHOIL COAL

		ASTM		Run 105 (1500 N1-Mo)	Run 202 ((1500 Co-Mo)
	Spec.	Standard	Feed	Total Product	Blended Fuel	1 1	Blended Fuel
Aromatics, FIA (vol. 2)	Max. 20	01319	Too Dark	20.2	20.2	25.0	24.7
Olefins, FIA (vol. %)		D1319	Too Dark	1.1	1.0	1.0	1.4
Aromatics, M.S. (wt. %)			51.9	24.0	20.8	26.2	26.7
Bromine No. (cg Br/gm)				0.36	0.38	0.36	0.27
Aniline Pt. ("F)		D611	٠ 40.	112.9	115.2	108.6	109.2
Distillation ("F) Init.	Report	980	222.	250.	331.	268.	337.
107	Max. 400	980	416.	330.	371.	349.	376.
202			428.	376.	390.	385.	392.
202	Max. 450	980	468.	438.	432.	438.	435.
206			514.	505.	486.	500.	490.
Fina1	Max. 550	986	528.	542.	509.	537.	514.
Residue (%)	Max. 1.5	D86	1.0	1.5	1.6	1.5	1.5
Loss (7)	Max. 1.5	D86	0.5	0.5	7.0	0.0	0.5
Elemental Analysis							10
Carbon (wt. %)			86.87	87.00	86.42	86.61	87.41
Hydrogen (wt. %)			11.21	12.88	12.17	12.27	12,33
Nitrogen (wt. 2)			0.3000	0.0053	0.0030	0.0050	0.0016
Sulfur (wt. 2)	Max. 0.3	D1266	0.1000	0.0031	0.0022	0.0023	0.0029
Flash Point	Mfn. 105	D93	174	< 75.	134.	98.	136.
Freeze Point	Max36	D2386	Too Dark	- 64.3	- 70.6	- 66.1	- 67.0
Gravity, 60°F (°API)	39-51		21.3	34.3	34.0	33.9	33.7
Spec. Gravity (60/60°F)	0.775-0.830		0.9262	0.8532	0.8550	0.8556	0.8568
Smoke Point (mm)	Min. 25	D1322	1	15.7	17.4	15.4	
Viscosity, -30°F (cs)	Max. 15	D445	50. (Ext.)	11.4	14.1	11.7	12.1

TABLE 4-33 (Cont'd.) JET A FROM SYNTHOIL COAL

		ASTM			1500 NI-Mo)		(800 Co-Mo)
	Spec.	Standard	Feed	Total Product	Blended Fuel	Total Product	Blended Fuel
Aromatics, FIA (vol. 2)	Max. 20	D1319	Too Dark	27.2	27.8	49.1	48.6
Olefins, FIA (vol. %)		D1319	Too Dark	1.3	1.8	1.0	1.2
Aromatics, M.S. (wt. X)			51.9	31.6	29.2	50.2	50.4
Bromine No. (cg Br/gm)				0.43	0.51	0.59	0.54
Aniline Pt. (°F)		D611	° 40.	97.9	99.1	66.2	67.5
Distillation (OF) Init.	Report	D86	222.	245.	322.	269.	340.
107	Max. 400	980	416.	328.	363.	358.	377.
201			428.	377.	387.	399.	405.
50%	Max. 450	D86	468.	442.	434.	456.	448.
206			514.	508.	486.	515.	502.
Pfna1	Max. 550	D86	528.	543.	505.	546.	524.
Residue (X)	Max. 1.5	D86	1.0	1.7	1.5	1.5	2.2
Loss (X)	Max. 1.5	980	0.5	0.3	0.5	0.0	0.3
Elemental Analysis							108
Carbon (wt. Z)			86.87	87.96	87.24	87.62	88.76
Hydrogen (wt. Z)			11.21	12.07	12.03	11.01	11.08
Nitrogen (wt. %)			0.3000	0.0061	0.0057	0.0062	0.0067
Sulfur (wt. %)	Max. 0.3	D1266	0.1000	0.0022	0.0005	0.0012	0.0005
Flash Point	Mfn. 105	D93	174	72.	126.	102.	140.
Freeze Point	Max36	D2386	Too Dark	-70.6	-77.8	-59.8	-67.0
Gravity, 60°F (°API)	39-51		21.3	31.8	31.7	28.0	27.8
Spec. Gravity (60/60°F)	0.775-0.830		0.9262	0.8667	0.8670	0.8870	0.8882
Smoke Point (mm)	Mfn. 25		!	12.3	13.9	10.4	9.1
Viscosity, -30°F (cs)	Max. 15	D445	50. (Ext.)	12.8	14.1	14.4.	14.4

TABLE 4-34
H-COAL HYDROTREATMENT EXPERIMENTS

	Feed Fraction (as Rcvd.)	Product 304	Product 209	Product 417	Feed 212	Product 419
Total Pressure, PSIG LHSV Catalyst	111	800 0.99 Co-Mo	1500 0.95 Co-Mo	2200 0.54 N1-Mo	111	2200 0.49 Ni-Mo
ASTM Distillation 1BP 5 Percent 10 20 30 40 50 60 70 80 90 95 FBP	177 212 212 268 297 397 397 464 510	212 244 244 292 345 345 406 427 463 534	193 231 231 252 284 346 404 424 483 506	237 272 292 324 352 374 392 408 427 449 476 496	260 296 312 337 358 376 404 419 419 486 518	282 317 335 372 396 407 419 454 471 496
Density, GMS/CC @ 60°F	0.8567	0.8434	0.8252	0.8317	0.8337	0.8070
Mass Spectroscopy Paraffins Monocycloparaffins Dicycloparaffins Tricycloparaffins PARAFFINS, Total	1.4 43.4 8.3 1.6 54.7	5.0 48.9 8.9 1.1 63.9	10.0 56.4 11.3 1.9 79.6	4.6 70.5 18.4 3.2 96.7	17.3 44.2 10.2 2.0 73.7	28.4 53.9 12.9 2.9 98.1
Alkylbenzenes Indans Indenes Naphthalenes AROMATICS, Total Sulfur, Total Wt. Percent Nitrogen, Total Wt. Percent	24.2 17.2 0.2 3.2 44.8 0.5500 0.1200	20.6 14.7 0.2 0.2 35.7 0.0027	14.4 5.8 0.0 0.0 20.2 -	2.1 0.6 0.0 0.2 2.9 0.0026 <0.0026	14.6 10.5 0.4 0.4 25.9 0.0015	1.0 0.3 0.0 0.2 1.5 <0.0001

4.6.2 Distillation of H-Coal Whole Hydrotreated Products

The whole hydrotreated products from Runs 304, 209, and 419 were distilled in a laboratory system capable of atmospheric/vacuum operation. Distillation data for these three operations are presented, respectively, in Tables 4-35 through 4-37.

4.6.3 Synthetic JP-4 Fuel Blends From H-Coal Experiments

It was generally possible, in the case of the H-Coal experiments, to blend both narrow-cut Jet A fuels and wide-cut JP-4 fuels from the hydrotreated products. Table 4-38 shows data for the wide-cut JP-4 type fuels blended from the products from low-severity Run 304 and from normal-severity Run 209. A JP-4 fuel was not blended from the high-severity Run 419 product only because of limitation of the available material.

4.6.4 Synthetic Jet A Fuel Blends From H-Coal Experiments

Table 4-39 shows data for the narrow-cut Jet A-type fuels blended from the hydrotreated products from low-severity Run 304, normal-severity Run 209, and high-severity Run 419.

4.6.5 H-Coal Whole Product and JP-4 Fuel Blend Specifications

Specification inspections for the feed, whole hydrotreated products, and final JP-4 fuel blends prepared from the normal- and low-severity H-Coal hydrogenation experiments are presented in Table 4-40.

4.6.6 H-Coal Whole Product and Jet A Fuel Blend Specifications

In Table 4-41 are presented specification inspections for the feed, whole hydrotreated products, and final Jet A narrow-cut fuel blends prepared from the normal- and low-severity H-Coal hydrogenation experiments. Again, there was insufficient product from the high-severity Run 419 with which to prepare enough fuel to permit similar inspections.

TABLE 4-35

DISTILLATION OF WHOLE H-COAL HYDROTREATED PRODUCT RUN 304 - LOW SEVERITY

t	4.4	8.9	13.4	18.1	27.6	37.3	47.2	57.3	67.7	78.1	83.4	88.7	93.9	1	98.5
•	4.4	4.5	4.5	4.7	9.5	9.7	6.6	10.1	10.4	10.4	5.3	5.3	5.2	1	4.6
Start	1	2	9	4	5	9	7	&	6	10	11	12	13		Sottoms
133	203	217	249	27.1	311	343	367	387	411	437	455	475	505		A
300	316	333	352	365	387	405	424	439	328	349	363	383	417		
760	760	760	092	760	760	760	760	760	100	100	100	100	100		
4:1	4:1	4:1	4:1	4:1	4:1	4:1	4:1	4:1	3:1	3:1	3:1	3:1	3:1		
	760 300 133 Start -	760 300 133 Start - 760 316 203 1 4.4	760 300 133 Start - 760 316 203 1 4.4 760 333 217 2 4.5	760 300 133 Start - 760 316 203 1 4.4 760 333 217 2 4.5 760 333 249 3 4.5	760 300 133 Start - 760 316 203 1 4.4 760 333 217 2 4.5 760 352 249 3 4.5 760 365 271 4 4.7	760 300 133 Start - 760 316 203 1 4.4 760 333 217 2 4.5 760 352 249 3 4.5 760 365 271 4 4.7 760 387 311 5 9.5	760 300 133 Start - 760 316 203 1 4.4 760 333 217 2 4.5 760 352 249 3 4.5 760 365 271 4 4.7 760 387 311 5 9.5 760 405 343 6 9.7	760 300 133 Start - 760 316 203 1 4.4 760 333 217 2 4.5 760 352 249 3 4.5 760 365 271 4 4.7 760 387 311 5 9.5 760 405 343 6 9.7 760 424 367 7 9.9	760 300 133 Start - 760 316 203 1 4.4 760 313 217 2 4.5 760 352 249 3 4.5 760 365 271 4 4.7 760 387 311 5 9.5 760 424 367 7 9.9 760 424 367 7 9.9 760 439 387 8 10.1	760 300 133 Start - 760 316 203 1 4.4 760 316 203 1 4.4 760 352 249 3 4.5 760 365 271 4 4.7 760 387 311 5 9.5 760 424 367 7 9.9 760 424 367 7 9.9 760 439 387 8 10.1 100 328 411 9 10.4	760 300 133 Start - 760 316 203 1 4.4 760 318 217 2 4.5 760 352 249 3 4.5 760 365 271 4 4.7 760 387 311 5 9.5 760 405 343 6 9.7 760 424 367 7 9.9 760 439 387 8 10.1 100 328 411 9 10.4 100 349 437 10 10.4	760 300 133 Start - 760 316 203 1 4.4 760 316 203 1 4.4 760 352 249 3 4.5 760 365 271 4 4.7 760 387 311 5 9.5 760 405 343 6 9.7 760 424 367 7 9.9 760 439 387 8 10.1 100 328 411 9 10.4 100 349 455 11 5.3	760 300 133 Start - 760 316 203 1 4.4 760 316 203 1 4.4 760 352 249 3 4.5 760 365 271 4 4.7 760 405 343 6 9.5 760 424 367 7 9.9 760 439 387 8 10.1 100 328 411 9 10.4 100 349 455 11 5.3 100 383 475 12 5.3	760 300 133 Start - 760 316 203 1 4.4 760 316 203 1 4.4 760 352 249 3 4.5 760 365 271 4 4.7 760 387 311 5 9.5 760 424 367 7 9.9 760 424 367 7 9.9 760 439 387 8 10.1 100 328 411 9 10.4 100 349 437 10 10.4 100 363 475 11 5.3 100 383 475 12 5.2 100 417 505 13 5.2	760 300 133 Start - 760 316 203 1 4.4 760 316 203 1 4.4 760 352 249 3 4.5 760 365 271 4 4.7 760 405 343 6 9.5 760 424 367 7 9.9 760 439 387 8 10.1 100 328 411 9 10.4 100 349 437 10 10.4 100 363 455 11 5.3 100 383 475 11 5.3 100 417 505 13 5.2

TABLE 4-36

DISTILLATION OF WHOLE H-COAL HYDROTREATED PRODUCT RUN 209 - NORMAL SEVERITY

Operating	Stillpot	Corrected	Cut		Yield
Pressure, MM Hg	Temp., OF	Vapor Temp., OF	₩ ₩	Wt. %	Cum. Wt. %
760	290	103	Start		•
760	309	198	1	5.2	5.2
760	326	213	2	4.1	9.3
760	345	241	3	4.7	14.0
760	363	270	4	4.7	18.7
100	267	320	S	10.0	28.7
100	277	345	9	10.0	38.7
100	292	365	7	10.0	48.7
100	309	385	&	10.3	59.0
100	329	413	6	10.3	69.3
100	350	439	93	10.2	79.5
100	361	454	Ħ	5.2	84.7
100	379	475	12	5.3	90.0
100	407	505	13	5.2	95.2
			Bottoms	4.3	99.5

TABLE 4-37

DISTILLATION OF WHOLE H-COAL HYDROTREATED PRODUCT RUN 419 - HIGH SEVERITY

Yield	Cum. Wt. %	1	3.2	6.7	10.3	21.8	38.3	51.4	66.3	80.7	90.7	96.2	1	97.7
	Wt. %	1	3.2	3.5	3.6	11.5	16.5	13.1	14.9	14.4	10.0	5.5	1	1.5
Cut	No.	Start	1	2	٣	4	5	9	7	80	6	10		ottoms
Corrected	Vapor Temp., OF	188	248	280	307	347	374	401	428	455	482	209		~
Stillpot	Temp., OF	370	382	392	399	418	437	323	340	360	384	400		
Operating	Pressure, MM Hg	760	760	760	760	760	760	100	100	100	100	100		
Reflux	Ratio	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1		

TABLE 4-38

SYNTHETIC JP-4 BLENDS FROM H-COAL HYDROTREATMENT EXPERIMENTS

Run No.	304	209
Total Pressure, PSIG	800	1500
LHSV	0.99	0.95
Catalyst	Co-Mo	Co-Mo
ASTM Distillation		
IBP	205	190
5 Percent	229	217
10	239	226
20	256	245
30	268	263
40	282	284
50	302	306
60	319	328
70	335	348
80	351	363
90	370	380
95	390	398
FBP	422	427
Density, GMS/CC @ 60°F	0.8134	0.8062
Mass Spectroscopy		
Paraffins	4.9	7.3
Monocycloparaffins	60.5	66.5
Dicycloparaffins	4.0	6.6
Tricycloparaffins	<u>0.0</u>	0.0
PARAFFINS, Total	69.4	80.4
Alkylbenzenes	25.0	17.0
Indans	5.4	2.4
Indenes	RESERVED O.O.	0.0
Naphthalenes	0.0	0.0
AROMATICS, Total	30.4	19.4
0.16 m. s.1 n.	0.0003	0 0011
Sulfur, Total Wt. Percent Nitrogen, Total Wt. Percent	0.003	0.0011
JFTOT, Spun Tube Deposit Rating, OF	475	535

TABLE 4-39

SYNTHETIC JET A BLENDS FROM H-COAL EXPERIMENTS

Run No.	304	209	419
Total Pressure, PSIG	800	1500	2200
LHSV	0.99	0.95	0.49
Catalyst	Со-Мо	Со-Мо	Ni-Mo
ASTM Distillation			
IBP	347	340	354
5 Percent	364	360	369
10	372	369	373
20	384	381	380
30	394	392	388
40	403	402	396
50	410	410	403
60	419	420	411
70	427	429	421
80	439	441	434
90	456	454	450
95	469	467	463
FBP	480	476	474
Density, GMS/CC @ 60°F	0.8724	0.8464	0.8113
Mass Spectroscopy			
Paraffins	4.6	12.9	30.6
Monocycloparaffins	38.6	46.7	52.7
Dicycloparaffins	12.5	16.2	13.1
Tricycloparaffins	2.1	3.4	2.3
PARAFFINS, Total	57.8	79.2	98.7
Alkylbenzenes	16.7	10.9	0.8
Indans	24.5	9.5	0.1
Indenes	0.4	0.0	0.0
Naphthalenes	0.0	0.0	0.0
AROMATICS, Total	41.6	20.4	0.9
Sulfur, Total Wt. Percent Nitrogen, Total Wt. Percent	0.0006 0.0027	0.0016 0.0047	<0.0001 0.0026
JFTOT, Spun Tube Deposit Rating, OF	382	505	>515

TABLE 4-40

JP-4 FROM H-COAL LIQUID INSPECTIONS

		ASTM		Run 209 (1500)	(1500)	Run 304	(800)
	Spec.	Standard	Feed	Total Product	Blended Fuel	Total Product Blend	Blended Fuel
Aromatics. FIA (vol. %)	Max. 25.0		1	17.3	16.5	32.6	23.8
Olefins, FIA (vol. Z)	Max. 5.0	D1319	ı	1.2	0.0	0.2	9.0
Aromatics, M.S. (wt. Z)			8.44	20.2	19.4	35.7	30.4
Bromine No. (cg Br/gm)			10.7	0.20	0.15	0.28	0.19
Aniline Pt. (OF)		D611	48.5	106.5	98.1	77.6	9.08
Distillation (OF) Init.	Report	D86	177.	193.	190.	212.	205.
	Report	D86	234.	252.	226.	266.	239.
20%	Mex. 290	D86	268.	284.	245.	292.	256.
50%	Max. 370	D86	356.	365.	306.	366.	302.
206	Max. 470	D86	464.	454.	380.	463.	370.
Final	Report	D86	544.	506.	427.	534.	422.
Residue (%)	Max. 1.5	D86	1.8	1.6	1.2	1.5	1.5
Loss (7)	Max. 1.5	D86	0.7	0.4	0.3	0.5	0.5
Elemental Analysis							116
Carbon (wt. Z)			86.30	86.14	85.84	85.70	87.18
Hydrogen (wt. 7)			11.96	12.62	14.29	12.33	12.61
Nitrogen (wt. 7)			0.12	0.0019	0.0024	0.0026	0.0026
Sulfur (wt. %)	Max. 0.40	D1266	0.55	•	0.0011	0.0027	0.0003
Flash Point		D93	<65.	<50.	.04>	56.	·07>
Freeze Point	Max72	D2386	Too dark	76->	·-94·	88 .	·-94·
Gravity, 60°F (°API)	45-57	D287	33.7	40.0	44.0	36.3	42.5
Spec. Gravity (60/60°F)	.802751	D287	0.8567	0.8252	0.8062	0.8434	0.8134
Smoke Point (mm)		D1322	•	20.60	21.56	10.68	17.49
Viscosity, -30°F (cs)		D445	•	4.88	3.07	4.87	2.82

ABLE 4-41

	(800) Blended Fuel	37.4 1.6 41.6 0.39	76.9 347 372 384 410	436 480 2.0 0.0	87.91 - 11.70 0.0027 0.0006 138 <-94 0.8724 9.71 9.36
600 Halloud SAAC AN 20 SAAC SAAC SAAC SAAC SAAC SAAC SAAC SAA	Run 304 Total Product	32.6 0.2 35.7 0.28	77.6 212 266 292 366	463 534 1.5 0.5	85.70 12.33 0.0026 0.0027 56 4-88 36.3 0.8434 10.68 4.87
	(1500) Blended Fuel	18.5 0.8 20.4 0.18	115.8 340 369 381 410	476 1.5 0.5	86.73 12.66 0.0047 0.0016 134 -47 35.7 0.8464 17.97
JET A FROM H-COAL LIQUID INSPECTIONS	Run 209 Total Product	17.3	100.5 193 252 284 365 454	206 1.6 0.4	86.14 12.62 0.0019 <50 <-94 40.0 0.8252 20.60 4.88
JET A FROI	Feed	44.8	48.5 234 268 356 464	544 1.8 0.7	86.30 11.96 0.1200 0.5500 <65 Too Dark 33.7 0.8567
	ASTM	D1319 D1319	986 086 086	D86 D86 D86	D1266 D93 D2386 D287 0 D287 D1322 D445
	Spec.	Max. 20	Report Max. 400 Max. 450	Max. 550 Max. 1.5 Max. 1.5	Max. 0.3 Min. 105 Max36 39-51 0.775-0.830 Min. 25 Max. 15
		Aromatics, FIA (vol. %) Olefins, FIA (vol. %) Aromatics, M.S. (wt. %) Brownine No. (cg Br/gm) Anithm Pr. (cg)	Distillation (*F) Init. 10% 20% 50% 50%	Final Residue (%) Loss (%)	Elemental Analysis Carbon (wt. %) Hydrogen (wt. %) Nitrogen (wt. %) Sulfur (wt. %) Flash Point Freeze Point Gravity 60°F (*API) Spec. Gravity (60/60°F) Smoke Point (mm) Viscosity, -30°F (cs)

4.7 Jet Fuel Thermal Oxidation Tests

The Alcoa, Inc. "Jet Fuel Thermal Oxidation Tester" was employed to assess the tendency of synthetic fuel blends prepared in this program to form deposits within the fuel system of an aircraft turbine. The apparatus and the general procedures involved in this assessment are described in detail in Appendix IV to this report. Results are shown in Appendix X.

In this section the results obtained for the fuel blends tested are discussed. Each test was assigned a "D" number in chronological order as the particular blends became available for testing during the course of the program. Table 4-42 is an index to the JFTOT results by "D" number, the order in which they are presented in this section. Table 4-43 is a cross-index to the JFTOT results by derivative crude oil type and by hydrotreatment severity and hydrogenation unit run number. Detailed data are shown in the appendix.

4.7.1 Spun Tube Deposit Rating

Note that, in general, a single test, which is performed at a particular temperature (or setting of the heater tube control temperature), yields a plot of visual spot tube ratings against tube length. A Spun Tube Rating is also obtained using the Alcor Mark 8A Tube Deposit Rater, wherein the test heater tube is traversed along its length while being spun to determine a single maximum deposit reading for that tube. Spun Tube Ratings obtained at several temperatures are plotted against temperature to determine that temperature at which a rating of 13.0 occurs. This determination is reported as the "breakpoint temperature" for the fuel blend (See Appendix IV). The higher the breakpoint temperature, the more stable the fuel. A breakpoint temperature of 500°F is considered marginally acceptable for a commercial fuel.

Note that at least two tests (at different temperatures) are required to permit determination of the breakpoint temperature (by straight-line extrapolation or interpolation). Errors associated with the determination are a function of many variables; but, in general, the determination becomes highly accurate as repetitive tests bracket the breakpoint.

It has been observed that the slope of the Spun Tube Rating vs. temperature line is relatively uniform for similar or related test fuels. Moreover, the breakpoint temperatures of closely related fuels are likely to fall within a limited range. Because our supply of synthetic feed was limited in this program, so that product quantities were also generally severely limited, it was not always possible to run multiple JFTOT determinations on each fuel blend. In such cases, the JFTOT test was performed at a temperature equal to the breakpoint of a fuel previously tested, and considered most nearly similar to the fuel under test. The breakpoint was determined by extrapolating a straight line through the single point with slope equal to that exhibited by the rating curve of the comparative fuel.

4.7.2 JFTOT Results

In this section are discussed all of the JFTOT data collected for the fuel blends prepared in this program. For each test there is a completed "Alcor Oxidation Test Sheet" (Figures D-1 through D-44), a "Tube Rating Repeatibility and Reproducibility Study" (Tables D-1 through D-44),

- 119 -

TABLE 4-42

CHRONOLOGICAL INDEX TO JFTOT RESULTS

Test No.	Test Fuel	Test Temp.	Estimated Breakpoint (°F)
D-1	Jet A CK 14235	550	<550
D-2	Paraho 11-B. Cut 4	550	
D-3	Paraho 11-B, Cut 4	570	∿570
D-4	Tosco 17-B, Light Blend	570	∿580
D-5	Tosco 17-B, Heavy	570	
D-6	Tosco 17-B, Heavy	600	~685
D-7	Garrett 103 Final Blend	600	585
D-8	Synthoil 105 Final	600	
D-9	Synthoil 105 Final	550	
D-10	. Synthoil 105 Final	525	540
D-11	Synthoil 107 Final	525	
D-12	Synthoil 107 Final	510	520
D-13	Tosco 113 Alpha	550	
D-14	Tosco 113 Alpha	520	534
D-15	Tosco 113 Beta	535	-
D-16	Tosco 113 Beta	505	_
D-17	Tosco 113 Beta	485	482
D-18	Synthoil 203 Final	525	
D-19	Synthoil 203 Final	470	
D-20	Synthoil 203 Final	400	418
D-21	Garrett 115 Final	525	_
D-22	Garrett 115 Final	450	445
D-23	Paraho 111, Final	425	400
D-24	Synthoil 202 Final	525	
D-25	Synthoil 202 Final	425	-
D-26	Synthoil 202 Final	450	_
D-27	Synthoil 202 Final	475	
D-28	Synthoil 202 Final	500	500
D-29	H-Coal 209 Light Final	525	535
D-30	H-Coal 209 Heavy Final	525	505
D-31	H-Coal 304 Light Final	450	475
D-32	H-Coal 304 Heavy Final	435	
D-33	H-Coal 304 Heavy Final	385	382
D-34	Garrett 415 Final	600	
D-35	Garrett 415 Final	625	>625
D-36	Synthoil 416 Final	560	-
D-37	Paraho 414 Final	590	
D-37A	Paraho 414 Final	515	
D-38	Tosco 410 Heavy Final	575	>575
D-39 D-40	Garrett 404 Heavy Final	565 5 90	_
D-41	Garrett 404 Heavy Final	615	>615
D-42	H-Coal 419 Final Blend	515	
D-43	Garrett 404 Light Final	500	-
D-44	Tosco 410 Light Final	515	-

TABLE 4-43

INDEX TO JFTOT RESULTS BY

CRUDE OIL TYPE AND HYDROTREATMENT SEVERITY

	Low	Severity	Norma	al Severity	High	Severity
	Run No.	JFTOT	Run No.	JFTOT	Run No.	JFTOT
Paraho	111	D-23	11B	D-2, -3	414	D-37, -37A
Tosco	113 113	*D-13, -14 D-15 to -17	17B 17B	*D-4 D-5, -6	410 410	D-38 *D-44
Garrett	115	D-21, -22	103	D-7	415 404 404	D-34, -35 D-39 to -41 D-43
Synthoi1	203	D-18 to -20	105 107 202	D-8 to -10 D-11, -12 D-24 to -28	416	D-36
H-Coal	304 304	D-31 D-32, -33	209 209	*D-29 D-30	419	D-42

^{*} Signifies wide-cut (JP-4) type fuel blend. All other samples narrow-cut (Jet A) type fuel blends.

TAMES DESIGNATION OF THE SECOND

A CANON LABORATED

Loudy the flooring to lead to the control of the co

and appropriate plots of Spun Tube Deposit Rating vs. Test Temperature (Figures 4-1 through 4-24). In the brief description of each test given below, the reader is referred to the appropriate figures and tables which are shown in the appendix.

Test D-1 was for a commercial Jet A sample which we have sometimes used as feed to our hydrotreating pilot plant. Indications were that this material's breakpoint is below 550° F.

Tests D-2 and D-3 were performed on synthetic jet fuel prepared from Paraho shale oil, indicating a breakpoint of about 570°F (see Figure 4-1).

A breakpoint in excess of 570°F is indicated (Figure 4-2) for a wide-cut (JP-4) synthetic jet fuel prepared from TOSCO shale oil in Test D-4. Tests D-5 and D-6 indicate a breakpoint in excess of 600°F for a narrow-cut (Jet A) synthetic jet fuel prepared from the same TOSCO shale oil (see Figure 4-3).

Test D-7 was performed on synthetic Jet A produced from Garrett shale oil in Run 103, made at 1500 psig over nickel-molybdenum catalyst. The indication is that the breakpoint for this material is in excess of 600°F, the tube temperature used in Test D-7 (see Figure 4-4).

Tests D-8, D-9, and D-10 were performed on Jet A produced from Synthoil coal liquid in Run 105 at 1500 psig over nickel-molybdenum catalyst. Note that Test D-8 was at 600°F, D-9 at 550°F, and D-10 at 525°F. The Spun Tube Deposit Rating obtained with an Alcor MK 8-A is plotted against temperature in Figure 4-5, indicating an acceptable breakpoint of 537°F for this material.

Similarly, JFTOT Tests D-11, at 525°F, and D-12, at 510°F, were performed on a Jet A blend produced from Synthoil coal liquid in Run 107 at 1500 psig over nickel-molybdenum. The plot of Spun Tube Deposit Rating versus temperature shown in Figure 4-6 indicates a breakpoint of 521°F for this material, which is also probably acceptable.

It appears, from the foregoing, that turbine fuels produced from syncrudes at reactor pressures of 1500 psig were all acceptable from a thermal stability standpoint. Fuels produced from the three shale oils were exceptionally stable, whereas fuels produced from the Synthoil coal liquid may have been only marginally acceptable.

Tests D-13 and D-14 were performed on synthetic JP-4 manufactured from TOSCO shale oil in Run 113, made at 800 psig over nickel-molybdenum catalyst. Test D-13 was performed at 550°F, and Test D-14 at 520°F. The Spun Tube Deposit Rating is plotted against temperature in Figure 4-7, indicating an acceptable breakpoint of 534°F for this material. It was especially interesting to find that a relatively stable fuel could be produced from this shale oil using only low-severity hydrotreatment and distillation.

Tests D-15 at 535°F, D-16 at 505°F, and D-17 at 485°F were all run on a synthetic Jet A blend prepared from the same TOSCO shale oil low-severity Run 113. (It is possible to produce both JP-4 and Jet A blends from hydrotreated TOSCO shale oil). The extrapolated Spun Tube Deposit Rating shown in Figure 4-8, of about 481°F, is not acceptable, indicating that low-severity hydrotreatment does not produce the required transformation of higher-boiling species (compare Run 17B at 1500 psig).

Tests D-18 at 525°F, D-19 at 470°F, and D-20 at 400°F were performed on a synthetic Jet A blend prepared from synthoil coal liquid which was hydrotreated over cobalt-molybdenum catalyst at 800 psig in Run 203 of the low-severity phase of our operations. The Spun Tube Deposit Rating is plotted against temperature in Figure 4-9, indicating an unacceptable breakpoint of about 418°F for this material.

Tests D-21 at 525°F and D-22 at 450°F were run on a synthetic Jet A blend prepared from the low-severity Occidental Run 115 hydrotreated product. Again, the Spun Tube Deposit Rating shown in Figure 4-10, of about 445°F, is not acceptable.

Test D-23 at 425°F run on a synthetic Jet A blend prepared from the low-severity Paraho Run 111 indicated an unacceptable rating for this material. Figure 4-11 indicates that a Spun Tube Deposit Rating, also unacceptable, of about 400°F may be estimated.

Hence our experience indicates that low-severity (800 psi) hydrotreatment does not normally suffice to convert those species affecting thermal stability adversely in the particular shale oil and coal feeds we have been using.

Tests D-24 through D-28 were performed on a synthetic Jet A blend prepared from Synthoil coal liquid which was hydrotreated over cobalt-molybdenum catalyst at 1500 psig in Run 202 of the normal severity phase of our operations. The Spun Tube Deposit Rating is plotted against temperature in Figure 4-12; indicating a marginally acceptable breakpoint of just under 500°F for this material. The sample exhibited well-defined properties, and this result is encouraging.

Test D-29 was performed on a synthetic JP-4 blend prepared from H-Coal coal liquid which was hydrotreated at 1500 psig over cobalt-molybdenum in Run 209 of the normal severity phase of our operations. The Spun Tube Deposit Rating is plotted against temperature in Figure 4-13, indicating an acceptable breakpoint of about 533°F for this material.

Test D-30 was performed on a synthetic Jet A blend prepared from the same H-Coal product produced in Run 209. As indicated in Figure 4-14, the Jet A blend exhibits a marginally acceptable Spun Tube Deposit Rating of about 505°F.

Test D-31 was performed on a synthetic JP-4 blend prepared from H-Coal coal liquid which was hydrotreated at 800 psig over cobalt-molybdenum in Run 304 of the low-severity phase of our operations. The Spun Tube Deposit Rating, shown in Figure 4-15, indicates an unacceptable breakpoint of 475°F for this material.

Similarly, Tests D-32 and D-33 were performed on a synthetic Jet A blend prepared from the same low-severity Run 304. The Spun Tube Deposit Rating, shown in Figure 4-16, indicates an unacceptable breakpoint of 382°F for this material.

Tests D-34 and D-35 were performed on a synthetic Jet A blend prepared from Garrett shale oil which had been hydrotreated at 2200 psig over HDS-3A nickel molybdenum catalyst in Run 415 of the high-severity segment of our operations. Note that the feed to Run 415 was hydrotreated product previously collected from Run 103, a normal-severity hydrotreatment operation. Hence the material undergoing test in JFTOT Runs D-34 and D-35 is the product of two-stage hydrotreatment, indicated to contain less than 1.0 weight percent aromatics. The Spun Tube Deposit Rating is plotted against temperature in Figure 4-17, indicating an acceptable breakpoint for this material in excess of 625°F.

Test D-36 was performed on a synthetic Jet A blend prepared from Synthoil coal liquid which had been hydrotreated at 2200 psig over nickel-molybdenum in Run 416 of the high-severity phase of our operations. Note that the feed to Run 416 had been previously hydrotreated in Run 107, a normal-severity hydrotreatment operation. The material undergoing test in JFTOT Run D-36 is indicated to contain 1.6 weight percent aromatics. Although as is indicated in Figure 4-18, the Spun Tube Deposit Rating is probably acceptable, and in excess of 560°F, the test is considered inconclusive, since the fuel sample was found to vaporize excessively in the test apparatus at this temperature (at 400 psi).

Tests D-37 and D-37A were performed on a synthetic Jet A blend prepared from Paraho shale oil which had been hydrotreated at 2200 psig over nickel-molybdenum catalyst in Run 414 of the high-severity segment of our operations. The feed to Run 414 was also hydrotreated product previously collected from Run 11B, a normal-severity hydrotreatment operation. The material undergoing test in JFTOT Runs D-37 and D-37A is indicated to contain 0.9 weight percent aromatics. Again, as indicated in Figure 4-19, the Spun Tube Deposit Rating is probably acceptable, the breakpoint being in excess of 590°F; however, these tests also are considered inconclusive because of excessive vaporization of the sample in the test apparatus.

Test D-38 was performed on a synthetic Jet A fuel blend prepared from a TOSCO shale oil fraction which had been hydrotreated at 2200 psig over HDS-3A nickel-molybdenum catalyst in Run 410 of the high-severity segment of our operations. The feed to Run 410 was essentially identical with the "kerosene" feed fraction employed in our low- and normal-severity TOSCO experiments. The Jet A blend undergoing test in D-38 was indicated to contain less than 2.0 percent total aromatics by mass spectroscopy. The Spun Tube Deposit Rating is plotted against temperature in Figure 4-20, indicating an acceptable breakpoint for this material in excess of 575°F.

Tests D-39, D-40, and D-41 were all performed on a synthetic Jet A fuel blend prepared from a Garrett (Occidental) shale oil fraction which had been hydrotreated at 2200 psig over nickel-molybdenum in Run 404 of the high-severity segment of our operations. The feed to Run 404 was identical with the feed fraction employed in our low- and normal-severity Garrett hydrotreatment experiments. The Jet A blend undergoing test was indicated to contain 4.4 percent total aromatics by mass spectroscopy. As indicated in Figure 4-21, whereon the Spun Tube Deposit Rating is plotted against temperature, this fuel blend was found to be quite stable, with breakpoint in excess of 615°F.

Test D-42 was performed on a synthetic Jet A fuel blend prepared from H-Coal liquid which had been hydrotreated at 2200 psig over HDS-3A nickel-molybdenum catalyst in Run 419 of the high-severity segment of our operations. The feed to Run 419 was hydrotreated product previously prepared in Run 212 in the low-severity phase of our operations. Hence, the material undergoing test in this case represented doubly hydrotreated fuel and was indicated to contain 1.5 percent aromatics. The single Spun Tube Deposit Rating plotted on Figure 4-22 would suggest the breakpoint for this fuel blend to be in excess of 550°F. The spot ratings shown on Figure D-42 are also eminently acceptable. However, the test is considered inconclusive because of evidence of excessive fuel vaporization in the test apparatus at 400 psig.

Test D-43 was performed on a JP-4 fuel blend prepared from the Garrett (Occidental) shale oil fraction which had been hydrotreated at 2200 psig over nickel-molybdenum catalyst in Run 404 of the high-severity segment of our experimental operations. The feed to Run 404 was identical with the feed fraction employed in our low- and normal-severity Garrett hydrotreatment experiments. The JP-4 blend undergoing test was indicated to contain 5.8 percent total aromatics by mass spectroscopy. The Spun Tube Deposit Rating shown on Figure 4-23 would suggest an acceptable breakpoint in excess of 575°F for this material. As in the previous case, however, this test also is considered inconclusive because of excessive fuel vaporization in the test apparatus.

Test D-44 was performed on a synthetic JP-4 fuel blend prepared from a TOSCO shale oil fraction which had been hydrotreated at 2200 psig over HDS-3A nickel-molybdenum catalyst in Run 410 of the high severity segment of our operations. The feed to Run 410 was essentially identical with the "kerosene" feed fraction employed in our low- and normal-severity TOSCO experiments. The JP-4 fuel blend undergoing test in D-44 was indicated to contain 2.5 percent total aromatics by mass spectroscopy. The Spun Tube Deposit Rating is shown on Figure 4-24, suggesting a breakpoint in excess of 575°F for this material. Again, the test is considered inconclusive because of excessive fuel vaporization within the test apparatus at the test pressure of 400 psig.

In general, we have found that synthetic feedstocks, whether derived from coal or shale, will result in thermally stable fuels, as indicated by the JFTOT procedure, if hydroprocessed at our high-severity conditions. Once-through hydrotreatment at our low-severity conditions will generally result in unacceptable or marginal products. The minimum degree of once-through treatment which will produce an acceptable product is most often indicated to lie between the low- and normal-severity conditions for the shale oils, and above the normal-severity conditions for the coal liquids. Jet A results are summarized in Table 4-44.

Moreover, acceptable JP-4 type fuel could be produced using a lesser degree of hydrotreatment, when it could be produced at all, than was required to permit blending of an acceptable Jet A fuel from a given hydrotreated product. For example, JP-4 blended from the low-severity hydrotreated TOSCO Run 113 product was given an acceptable rating in the JFTOT thermal stability test, whereas the Jet A blended from that same hydrotreated product was found to be unacceptable.

A CONTRACTOR OF THE PARTY OF TH

TABLE 4-44

EFFECT OF HYDROPROCESSING SEVERITY ON JFTOT BREAKPOINT TEMPERATURES OF JET A FUELS FROM VARIOUS SYNTHETIC SOURCES

JFT01	Breakpoint	Temperature,	°F
The second second second second			

	Low Severity	Normal Severity	High Severity
Paraho	400	570	>590
Tosco	482	658	>575
Garrett	445	585	>625 >615
		540	
Synthoil .	418	520 500	>560
H-Coal	475	505	>550

months and lacet lacet lacet profession to a section to a lacet the section attacks to a contract the section of the section o

SECTION V

DISCUSSION

5.1 Program Scope

This program's principal objective was to demonstrate that specification aviation turbine fuels could be produced from synthetic crude oils. It was recognized that the scope of the experimental work would be limited in that direct catalytic hydrotreating of the lower boiling fraction of the synthetic crude oil would be the only processing route investigated, and that even within the limitation many areas such as optimization of process parameters for maximum yields and the effect on catalyst activity of prolonged, continuous exposure to synthetic crude oils could not be investigated. Rather, it was intended that this initial effort could serve as the basis for extended future studies.

In this program, it was desired to make comparisons among certain available synthetic crude oil feedstocks. The program sponsors selected three shale oils and two coal liquids to be used as feedstocks for the experimental phase. It was further desired to investigate the gross effects of hydrotreatment severity at several levels on the quality of the fuels produced. Finally, we intended to generate, in the experimental phase, sufficient operating and analytical information to form a basis for a preliminary economic and engineering appraisal of the effect of the use of synthetic crude oil in a refinery processing both petroleum and synthetic crude to produce a full commercial product slate including jet fuel. This economic and engineering appraisal will be Phase III of this study.

5.2 Effect of the Absence of Lighter Boiling Components in Synthetic Crude Oil Samples

Lighter boiling components which are particularly needed to make JP-4 were absent from the kerosene fraction of many synthetic crude samples as shown in Table 5-1, on which inspections are shown for the "kerosene" feed fractions which were distilled from the synthetic crude oil samples. It is not clear whether the absence of lighter-boiling components within the kerosene fraction of most of our synthetic crude oil samples is the normal consequence of the particular processes employed for the production of the synthetic crude oils. Since we dealt with only one sample from each producer, it is not possible to judge the degree to which a particular sample may represent normal operation.

On the other hand, we are sware that in many of the developmental synthetic crude facilities now in operation, gases and light liquids which may be evolved in a process are used to fuel the plant, or simply escape because collecting facilities are non-existent or only partially effective. This is especially true for several of the developmental shale oil facilities located at high altitude, where the situation may be aggravated by prolonged storage of product oil in heated tanks at conditions conducive to accelerated weathering.

and the second second

TABLE 5-1

IBP to 563 F FEED FRACTIONS

	Paraho	Tosco II	Garrett	Synthoi1	H-Coal (as rec'd.)
ASTM Distillation					
IBP, F	373	220	311	222	177
5 Percent	413	273	385	404	212
- 10	426	294	404	416	234
20	446	320	434	428	268
30	462	347	450	443	297
40	475	372	461	458	328
50	486	399	469	468	356
60	494	426	478	478	376
70	506	453	487	490	397
80	518	478	496	500	422
90	531	502	510	514	464
95	550	518	522	525	510
FBP	556	530	527	528	544
Density, GMS/CC @ 60 F	0.8241	.0.8247	0.8565	0.9262	0.8567
Mass Spectroscopy					
Paraffins	33.2	25.8	35.9	0.5	1.4
Monocycloparaffins	4.6	28.3	5.9	38.8	43.4
Dicycloparaffins	11.3	9.3	10.5	8.5	8.3
Tricycloparaffins	10.2	6.4	8.4	0.0	1.6
PARAFFINS, Total	59.3	69.8	60.7	47.8	54.7
Alkylbenzenes	18.4	17.0	16.5	21.2	24.2
Indans	11.6	7.9	10.7	21.4	17.2
Indenes	5.0	2.7	4.1	7.7	0.2
Naphthalenes	5.2	2.3	7.6	1.6	3.2
AROMATICS, Total	40.2	29.9	38.9	51.9	44.8
Sulfur, Total Wt. Percent	0.8200	0.7600	0.6300	0.1000	0.5500
Nitrogen, Total Wt. Percent	1.3700	0.8700	1.0700	0.3000	0.1200
Yield on Whole Crude Oil					
Weight Percent	11.74	23.02	25.46	23.35	
Volume Percent	12.77	26.09	27.15	26.46	June 2012

In the design of commercial facilities, the value of the product fraction(s) will dictate the level of investment in hardware justified for the collection of that fraction. But shale oil production will, in large measure, occur at high altitude in remote, dry areas. The fuel that will power the facilities will necessarily be derived from the shale oil product. Designers will want to usefully consume generated fuel gases. The lack of cooling water, the high relative cost of power, or high operating costs for air-fin cooling, and the low ambient pressure will all combine to make containment or separation of volatile liquid components expensive.

It may develop, therefore, that shale oil product from a commercial facility will not differ significantly in composition from that produced by the developmental installation. In any case, it should be possible to generate additional light ends by operating on the heavier shale oil fractions by coking or cracking processes. The ultimate value of the desired fraction will dictate the extent of facilities provided to collect that fraction, assuming it is present in the product stream, or to generate that fraction from additional product. It is important at this point to caution against extrapolation of our yield observations from single developmental samples to commercial performance.

On the basis of the information developed for the samples we did receive, however, the TOSCO II feed would appear to have been the most desirable for aviation turbine fuel production on the basis of reasonable yield of a kerosene fraction from the whole crude which contained low levels of aromatics and of nitrogen, and from which both narrow— and wide-cut fuels could be prepared.

The Garrett shale oil exhibited a slightly higher yield of IBP-563°F material, but this kerosene fraction was higher in nitrogen and aromatics content, and was more dense, than the TOSCO II sample, such that wide-cut jet fuels could not be prepared. On the other hand, the Garrett whole crude sample produced the highest yield of IBP-650°F material among the shale oils, leading by a substantial margin over the TOSCO II sample (see Tables 3-1 to 34).

5.3 Discussion of Results by Synthetic Crude Type

5.3.1 Paraho Shale 011 Results

The results obtained in our Paraho hydrotreating experiments (see Table 4-2) appear to be consistent. The density of hydrotreater effluent decreased as severity increased. So too did the aromatics levels of the products. It would appear that there is no difference, however, in aromatics levels between the two high-severity (doubly hydrotreated) runs, or that aromatic levels cannot be reduced much below about 2 percent.

Nitrogen content, similarly, was reduced in regular fashion down to a level of about 40 ppm, which required something more than our normal severity conditions to achieve. However, the nitrogen content was unaffected, thereafter, by repeated hydrotreatment at high severity.

The sulfur content of Paraho shale oil was readily removed, even at our low-severity conditions. The slight variation in sulfur level shown is within the precision interval of the equipment used to measure sulfur content, but may additionally be due to incomplete stripping of hydrotreater effluent samples.

The Jet A fuels blended from hydrotreated stocks were thermally more stable than commercial jet fuels (excepting that fuel produced from low-severity product). Jet A fuels blended from the normal-severity product met all specifications, even though the particular result shown in Table 4-7 does not meet the freeze-point specification. This is a consequence of the trial- and- error procedures used to maximize yield of final finished fuel from hydrotreater effluent. In the case shown, more than 90 percent of hydrotreater effluent went into the final fuel, whereas a prior test blend, into which several percent less was incorporated, did meet the freeze point specification.

On the basis of results obtained, Paraho shale oil appears to be desirable feed for production of narrow-cut aviation turbine fuel. Its major disadvantages are the small yield of kerosene boiling-range components and/or the absence of light ends.

5.3.2 TOSCO II Shale Oil Results

The results obtained in our TOSCO II hydrotreating experiments (see Table 4-8) are generally consistent. Note again that TOSCO Feed A was additional feed distilled to have properties identical with the original kerosene feed fraction, and included all material in the original crude shale oil boiling up to 563°F. TOSCO Feed B included all material in the original crude shale oil boiling up to 650°F.

The aromatics content, sulfur content, and nitrogen content of Feed A are all essentially equal to that of the original feed fraction. Consequently, the density deviation is difficult to understand. The distillation data, too, are remarkably consistent.

The density of hydrotreater effluent appears to have reached a lower limit at the normal-severity conditions, as has the nitrogen content. Sulfur content is apparently at its lowest point at low-severity. In fact, except for aromatics level, which appears to be reduced in regular fashion through the high-severity run, there is probably good reason to consider the Product 410 results dubious.

The experiments conducted with TOSCO Feed B are quite consistent throughout, nowever. Density, aromatics level, sulfur, and nitrogen are clearly reduced as severity is increased at the high-severity base by reducing liquid hourly space velocity. It would appear that both nitrogen and sulfur compounds present in the higher boiling fractions are more refractory than those in the lower-boiling fraction, however.

The JP-4's produced from hydrotreated TOSCO stocks (see Table 4-12) show consistent properties throughout, however. All were thermally stable products, including the fuel blended from the low-severity stock. Sulfur content is essentially constant, and nitrogen content is close to expectation.

The Jet A fuels produced from hydrotreated TOSCO stocks (see Table 4-13) also show consistent properties. Only the fuel produced from the low-severity stock does not meet the thermal stability criterion.

The final JP-4 produced from normal-severity stock (see Table 4-14) meets all specifications excepting freeze point. This again is a consequence of using all (100 percent) of the hydrotreater effluent from the normal-severity Run 17B in the preparation either of the final JP-4 or Jet A fuel blends. That is, the total hydrotreater effluent was distributed between the two final fuels, causing the freeze points of both the JP-4 and Jet A fuels (see Table 4-15) to miss specification. Earlier test blends, equivalent to using about 95 percent of the total hydrotreater effluent between the two fuels, had both comfortably met the freeze point specification.

TOSCO II shale oil appears to be quite desirable as feed for the production both of narrow- and wide-cut aviation turbine fuels. The yields of finished fuels were highest in this case.

5.3.3 Garrett Shale Oil Results

Consistency of the results obtained in the hydrotreating experiments with Garrett shale oil feedstocks is about on a par with that of the TOSCO II series (see Table 4-16). In the Garrett case, Feed Garrett A included all material in the original crude oil sample boiling up to 563°F, identical with the original kerosene feed fraction, Feed Garrett B included all material boiling up to 650°F, and Feed Garrett C included all material in the original shale oil sample boiling up to 700°F. Feed Garrett 103 was the final Jet A fuel blend prepared from hydrotreated stock from normal-severity Run 103, and was refed to the unit in high-severity Run 415.

The properties of Feed Garrett A are essentially equal to those of the original kerosene feed.

The sulfur and nitrogen levels of hydrotreater effluents from the low-, normal-, and high-severity Runs 115, 103, and 404, respectively, are probably invariant. That is, residual sulfur and nitrogen retained after the equivalent of low-severity processing appears not much affected by hydrotreating at increased severity. Aromatics levels, however, are apparently reduced in regular fashion at increasing severity.

In the wider-boiling Feed Garrett B series, the sulfur value for hydrotreater effluent from Run 406 appears spurious. Otherwise, all results appear consistent; and results for the Feed Garrett C series also appear to be quite regular. It would appear that using a wider-boiling feedstock does not materially affect the quantity of nitrogen left unconverted after hydrotreatment at high severity, but does serve to introduce sulfur compounds more refractory than are present in the kerosenerange material.

It is difficult, from a single test (Run 415), to know whether the residual nitrogen level is really reduced by repeated hydrotreatment.

The Jet A fuels prepared from hydrotreated Garrett stocks (Table 4-24) show reasonably consistent properties. All were indicated to be thermally stable except the fuel prepared from the low-severity operation.

The single JP-4 fuel (Table 4-23) prepared from hydrotreated Garrett stocks was likewise indicated to have high thermal stability. Somewhat inconsistently, the JP-4 final fuel was indicated to have higher sulfur content than the Jet A fuel prepared from the same base stock. In this case, however, as can be seen from the distillation data, both fuels had essentially the same endpoint, aromatics levels, and densities, a consequence of the necessity to "squeeze" to produce any JP-4 at all. Hence, the JP-4 blend itself is virtually an anomaly, and was prepared mainly to determine that it was possible to do.

The Jet A blend prepared from normal-severity Run 103 (Table 4-25) appears to meet all specifications except freeze point. In this case, the final fuel blend represents about 85 percent of hydrotreater effluent. A prior test blend representing about 80 percent of reactor effluent also missed the freeze point specification by about one degree Fahrenheit.

The Garrett shale oil may be desirable as feedstock for producing narrow-cut jet fuel, and would probably be suitable as feedstock for wide-cut jet fuel production if it were to contain slightly more lighter components. The original shale oil sample gave the highest yield of kerosene boiling-range material, as well as a significantly higher yield of IBP to 650°F material (see Table 3-3) than did the other shale oils.

5.3.4 Synthoil Results

The results obtained in our Synthoil hydrotreating experiments (see Table 4-26) appear to be consistent. The density of hydrotreater effluent decreased as severity was increased, as did the aromatics levels of the products. Sulfur and nitrogen levels did not appear to be materially affected through the normal-severity range of treatment. Note that the original feedstock, in this case, was produced in a hydrogen atmosphere at high pressure.

Based on a single test (Run 416), it would appear that nitrogen and aromatics levels can be materially reduced by a second hydrotreatment. Interestingly, the density of hydrotreater effluent from the repeated hydrotreatment is within shooting distance of the specification density for Jet A type fuel, and the final fuel blended from this run (Table 4-32) does meet the density specification.

Again, based on a single comparison (Product 202 versus Product 105), it would appear that the cobalt-molybdenum catalyst used was less active, resulting in less severe hydrotreating performance than nickel-molybdenum, at comparable physical parameters. That is, the hydrotreater effluents from the two runs appear to be essentially equivalent, but required a hold time about 17.0 percent higher for cobalt to achieve compared with nickel at 1500 psig. The two nickel Runs 107 and 105 similarly represent a hold time difference of 17.0 percent, but show a significant difference in severity.

It was interesting to find that all Jet A products blended from Synthoil stocks excepting that produced from low-severity Run 203 met the thermal stability criteria (Table 4-32). The fuel produced from cobalt Run 202 was only marginally passing, however. We note here, and elsewhere, that quite small differences in the amounts of high-boilers included in the final fuel blend could cause significant swings in important properties without adding, or subtracting, materially from overall yields.

The Jet A final fuel blends prepared from Synthoil stocks (Table 4-33) did not meet smoke point specifications, aromatics content specifications, or density specifications. There was insufficient material, however, to obtain additional inspections for the Jet A fuel blended from the dcubly-hydrotreated Run 416, which did meet the density specification.

The Synthoil feedstock, except through more severe processing than is required for the shale oils, does not yield significant quantities of specification aviation turbine fuels of the types desired.

5.3.5 H-Coal Results

The results obtained in our H-Coal hydrotreating experiments (see Table 4-34) are less consistent than would appear from the table, due to operating difficulties continually encountered with this feedstock (see Section IV above). Because of build-up of reactor pressure drop almost immediately accompanying the feeding of H-Coal liquid into our system, it was very difficult to obtain the steady-state operating conditions desired for sample accumulation. Unlike the cases of other feedstocks, where the quantities of available feeds limited operating periods, H-Coal runs were almost always aborted due to high reactor pressure drop.

It is not clear why aromatics levels reduction appears consistent throughout, but density and boiling range appear reversed nevertheless for normal-severity Run 209 and high-severity Run 417. If real, this may indicate a desirable property of the cobalt catalyst relative to nickel for the hydrotreatment of dense coal liquids. Note that the H-Coal liquid all boiled in the kerosene range as received, and was not further distilled to produce feedstock for hydrotreatment. Moreover, the same feed was used in low-, normal-, and high-severity Runs 304, 209, and 417, respectively.

Repeated hydrotreatment at high-severity, based on a single test (Run 419), materially reduced aromatics level, and appeared to remove all sulfur.

The final JP-4 fuel prepared from normal-severity Run 209 (see Table 4-38) was thermally stable, as were the Jet'A fuels prepared from normal-severity Run 209 and from the doubly-hydrotreated high-severity Run 419 (see Table 4-39). Neither the JP-4, nor Jet A, fuel prepared from low-severity Run 304 met thermal stability criteria.

The final JP-4 fuels prepared from both the normal- and low-severity operations meet all other specifications, however, excepting density (see Table 4-40). The final JP-4 produced from normal-severity Run 209 in particular would require only minor adjustment to meet this specification.

The final Jet A fuel prepared from normal-severity Run 209 meets all specifications except density and smoke point (see Table 4-41). The Jet A produced from the low-severity operation additionally does not make the aromatics specification.

Because of the operating difficulty incurred in the hydrotreatment of H-Coal liquid, considerable additional research is indicated to determine its overall desirability as feedstock for aviation turbine fuel production.

5.4 Discussion of Hydrotreating Process Variable Effects and Chemistry

Fixed-bed catalytic hydrotreating has been applied commercially to improve the qualities of straight-run and cracked naphthas, middle distillates, and gas oil fractions separated from natural petroleums for over twenty years. Such hydrotreated materials, in the current petroleum processing framework, may be used either in finished products, or as feed-stocks for subsequent processing.

Generally, the purpose of hydrotreating is to eliminate one or more undesirable impurities, such as sulfur, nitrogen, or color precursors, from the feedstock. The processing conditions employed, including temperature, pressure, treat gas rate, and catalyst type and amount, all of which together determine the severity of hydrotreatment, are chosen to effect the required degree of impurity removal.

5.4.1 Discussion of Hydrotreating Process Variable Effects

Hydrotreating operating conditions needed to achieve the desired feedstock quality improvement vary considerably with the feedstock type. For a given feedstock, both the crude source and the conditions employed in its prior processing, especially if cracking processing were involved, can profoundly influence the severity of the hydrotreating conditions required.

Our objective in the hydrotreatment work was to ascertain whether specification jet fuels could be produced from the synthetic crude oil samples on hand. In no case, except coincidentally, did we optimize process conditions or catalyst type. Instead, our experimental matrix was designed to encompass the operating range of commercial refinery hydrotreating equipment, with view toward future long-term system optimization.

HOUSE WARREN CO.

Similarly, our distillation treatment of feeds and hydrotreated product was chosen to approximate the minimum degree of handling that synthetic crude oils might encounter in blocked-out refinery operations. An obvious alternative to the prior separation of a kerosene fraction which is later hydrotreated, as in our work, is the prior hydrotreatment of the whole synthetic crude oil, followed by separation of the desired product, or of a product cut which may be subjected to additional treatment. Alternatives of this nature were clearly outside the scope of this study. This seeming infinitude of processing alternatives may be reduced to manageable proportions through future screening studies.

5.4.1.1 Tempe sature

Temperature is a fundamental variable in hydrotreating processing. In this study, the temperature at which experiments were conducted was invariant, held to 700°F (371°C). Typical commercial hydrotreating processing of natural petroleum fractions similar to those we treated is conducted in the range 550 to 750°F, so that our processing temperature was in the upper range of commercial conditions.

Temperature is an important, and normally convenient, process variable for controlling catalytic hydrotreating severity. As catalyst deactivates in the course of operation, reactor temperature may be increased to maintain product specifications. In our case, however, no catalyst batch was employed sufficiently long to cause material deterioration in activity requiring temperature change.

5.4.1.2 Treat Gas Rate and Treat Gas Composition

Treat gas rate, expressed as standard cubic feet per 42-gallon barrel of feedstock (SCF/B), was a variable we targeted to be held constant at 4000 SCF/B. Increasing treat gas rate results in a higher hydrogen partial pressure when other conditions - total pressure, temperature, and LHSV - are held constant.

The composition of treat gas obviously affects the hydrogen partial pressure, but the hydrogen content of our treat gas was essentially 100.0 percent (chemically pure hydrogen assaying a minimum of 99.999 percent was employed throughout). Hence, deviations from the targeted treat gas rate, caused largely by virtue of the differences in density of the many feeds employed, had only small effect on the hydrogen partial pressure in the reactor.

Commercial treat gas rates for similar processing range from about 500 to 5000 SCF/B, so that our target condition was again at the high end of the commercial range.

5.4.1.3 Reactor Pressure

Our operations were conducted at three total pressures: 1500 psig, 800 psig, and 2200 psig. Reactor pressure is frequently reported as the average of the inlet and outlet pressures of the reacting system. In our case, excepting for certain runs conducted while excessive reactor pressure drop was being encountered (generally limited to the H-Coal operations; see Section IV), the difference between inlet and outlet reactor pressures was observed to be less than the precision interval of our pressure measuring equipment (+ 10 psi at 2200 psig).

Increases in reactor pressure tend to increase hydrotreating severity. The total pressure exerts an important influence on the capital cost of hydrotreating equipment, and on the operating costs as well. Commercial hydrotreating equipment for similar feeds is operated at pressures between about 250 and 1500 psig. Hence, 1500 psig represents moderately severe commercial practice, and 2200 psig is beyond the commercial range for these types of feedstocks.

5.4.1.4 Space Velocity

Space velocity is a measure of the time the feedstock is in contact with the total volume of catalyst in the reacting system. The liquid hourly space velocity (LHSV) is reported as the volume of liquid feed per hour per total volume of catalyst in the reactor. Hence, the holding time, in hours, is 1/LHSV.

Increasing the contact time by lowering the space velocity increases the severity of hydrotreating. Commercial hydrotreating practice for similar feedstocks encompasses the range of liquid hourly space velocities from about 0.5 to about 3.0. Our normal LHSV of 1.0 is thus about in the middle of the commercial range, and our highseverity LHSV of 0.5 is at the upper end of commercially-employed hold times.

5.4.2 Chemistry of Hydrotreating

ine two main chemical reactions which occur in hydrotreating involve the conversion of sulfur to hydrogen sulfide, and the conversion of nitrogen to ammonia. The hydrogen sulfide and ammonia gaseous products are relatively easily removed from the hydrotreater liquid effluent by subsequent pressure reduction and/or stripping.

Among the many other types of reactions which may occur in hydrotreatment, two of the more significant are the conversion of olefins to paraffins, and the hydrogenation of oxygen-bearing compounds. Of the four types of reactions mentioned here, however, that of sulfur removal invariably dominates when virgin, or unprocessed, feedstocks are involved. Olefin saturation, nitrogen elimination, and the hydrogenation of oxygenated materials may be major considerations for some pre-processed, especially cracked, feedstocks. For certain stocks, an additional important reaction type is the hydrogenation of aromatic compounds to yield naphthenes and paraffins.

Examples of these reaction types are shown in Figures 5-1 through 5-3. Figure 5-1 illustrates three of the major classes of sulfur removal reactions. However, at least thirteen major classes of sulfur compounds have been identified in petroleum oils, including some two hundred specific compounds boiling in the temperature range of interest in this study.

Figure 5-3 illustrates only single examples of denitrogenation, deoxygenation, and of olefin saturation. The possible reactions in each of these categories is myriad.

Some commercial feeds, especially certain cracked naphthas, contain diolefins. The saturation of these diolefins is a major function of hydrotreating, since the competing reaction, that of dimerization, leads to gums which foul subsequent processing equipment. Figure 5-3 illustrates the desired saturation hydrotreating reaction type along with the undesired dimerization reaction.

Note that hydrogen is "consumed" in all of the above-illustrated reactions, and is consumed also in the numerous other reactions which may occur in hydrotreating. The amount of hydrogen which disappears in the reactor depends on which reactions are occurring, which in turn depends on feedstock properties and on the processing conditions being used.

5.5 The Effect of Hydroprocessing Severity on Jet Fuel Product Composition

In general, changes in the product composition were directly related to hydrotreatment severity for a given synthetic crude material. In Table 5-2 is summarized some of the data obtained in the effect of low severity processing (800 psig), normal severity processing (1500 psig) and high severity processing (2200 psig) on the sulfur and nitrogen remaining in the treated product. The sulfur and nitrogen levels present in the feed material are shown for comparison purposes. Some reservations must be made in attributing all changes to the effect of pressure, since in some cases concurrent changes were made in space velocity and catalyst type in addition to the change in hydroprocessing pressure. In general, sulfur and nitrogen levels were drastically reduced by catalytically hydroprocessing. The total sulfur levels of even the mild severity hydroprocessed shale and coal liquids were all below 100 ppm, which is much lower than the current 4000 ppm total sulfur specifications for JP-4 and the 3000 ppm total sulfur specifications for Jet A. Sulfur removal, thus, would not appear to be a problem at any processing severity. With the Tosco and Paraho above ground retorted shale oil, nitrogen removal was generally more difficult than sulfur removal, as has been reported by other investigators. Even with severe hydroprocessing the nitrogen levels of all the shale oil products did not go below 40 ppm, which is considerably higher than the nitrogen levels of present petroleum derived jet fuels, e.g. 1-5 ppm. Severe and multiple hydroprocessing of

FIGURE 5-1

Sulfur Removal Reactions in Hydrotreatment

1. Removal of Mercaptan Type Sulfur

Ethyl Mercaptan + Hydrogen + Ethane + Hydrogen Sulfide

2. Removal of Disulfide Type Sulfur

Methyl Disulfide + Hydrogen + Methane + Hydrogen Sulfide

3. Thiophenic Sulfur Removal

FIGURE 5-2

Denitrogenation, Deoxidation, and Olefin Saturation Reactions in Hydrotreatment

4. Nitrogen Removal

5. Oxygen Removal

Phenol + Hydrogen + Benzene + Water

6. Olefin Saturation

FIGURE 5-3

Diolefin Saturation vs Dimerization Reactions in Hydrotreatment

7. Diolefin Saturation (Desirable)

Propadiene + Hydrogen + Propane

8. Diolefin Dimerization (Undesirable)

Propadiene + Propadiene + Methylcyclopentene

coal liquids (in themselves already hydroprocessed in the crude preparation step) produced products with a low nitrogen level, i.e. < 1 ppm. Nitrogen levels generally decreased with increased severity for both shale oil and coal oil liquids.

TABLE 5-2
Summary of the Effect of Hydroprocessing
Severity on Sulfur and Nitrogen Removal

		S or N Pres	ent, ppm		
			Pro	cessed Produ	ict
Crude Type		Kerosene Feed to Unit	Low Processing Severity	Normal Processing Severity	Severe Processing Severity
Paraho ,	S	8,200	2	11	21
Shale Oil	N	13,700	1,700	67	40
Tosco II 2	S	7,600	22	36	74
Shale Oil2	N	8,700	200	20	41
Garrett ,	S	6,300	49	51	33
Shale Oil	N	10,700	42	74	55
Synthoil,	S	1,000	12	31	< 1 ⁶ < 1 ⁶
Coal Oil	N	3,000	62	53	< 16
H-Coal	S	5,500	27		26
Coal Oil	N	1,200	26	19	< 1

¹ From Table 4-2

²From Table 4-8

From Table 4-16

From Table 4-26

From Table 4-34

⁶Hydroprocessed twice

In Table 5-3 is shown a summary of the effect of hydroprocessing severity on the distribution of the main compound classes, i.e. aromatics, paraffins and naphthenes (cycloparaffins) in the treated product. The corresponding data in the synthetic feed material is shown for comparison purposes. The paraffin, aromatic and naphthene (PAN) distribution of the crude shale oil kerosene fraction is much closer to that of a petroleum derived material than the coal-derived kerosene since the coal derived crude kerosene contains practically no paraffins (i.e. 0.5 & 1.4%). For both the shale and coal derived kerosene, increasing the severity of hydroprocessing increased the conversion of aromatics. With the shale liquid, hydroprocessed product paraffin content remained essentially the

TABLE 5-3

Summary of the Effect of Hydroprocessing Severity on Compound Class Distribution, i.e. Aromatics, Paraffins and Naphthenes (Cycloparaffins)

	Composition by	Mass Spec	Analysis		
				cessed Produ	ict
Crude Type		Kerosene Feed to Unit	Low Processing Severity	Normal Processing Severity	Severe Processing Severity
Paraho Shale Oil	Aromatics Paraffins Naphthenes	40.2 33.2 26.6	23.5 47.5 30.0	薑	1.6 47.7 50.7
Tosco II Shale Oil ²	Aromatics Paraffins Naphthenes	29.9 25.8 44.3	19.3 50.3 30.4	7.5 51.8 40.7	2.1 52.0 45.9
Garrett Shale 011 ³	Aromatics Paraffins Naphthenes	38.9 35.9 25.2	21.5 47.1 31.4	12.1 48.3 39.6	4.8 47.4 47.8
Synthoil ₄ Coal Oil ⁴	Aromatics Paraffins Naphthenes	51.9 0.5 47.6	50.2 1.4 48.4	24.0 8.2 67.8	1.6 15.9 82.5
H-Coal Coal Oil ⁵	Aromatics Paraffins Naphthenes	44.8 1.4 53.8	35.7 5.0 59.3	20.2 10.0 69.8	2.9 4.6 92.5

From Table 4-2

From Table 4-8

From Table 4-16

From Table 4-26

From Table 4-34

representation of the property of the second Hydroprocessed twice

by Difference

same at all processing severities, indicating that the aromatics are being hydrogenated selectively to naphthenes without any extensive ring cracking to produce paraffins. A similar, but not as pronounced a trend, is seen with the coal liquids. Thus, in general, hydroprocessing with the catalysts employed in this study will hydrogenate the aromatics to naphthenes, with an increasing processing severity simply increasing the amount of aromatic conversion.

A comparison of the PAN distribution of the hydroprocessed shale oils versus coal oils shows the following:

- Mild hydroprocessing produces acceptable (i.e. less than 25%) aromatic levels with shale liquids, but normal severity processing is necessary to reach the same aromatic levels with coal liquids.
- 2. Coal liquids have very low paraffin levels at all processing severities and thus in general have a different PAN distribution than petroleum-derived jet fuels. This results in the following general effects on density, luminometer number, freeze point and heat of combustion:
 - Density For a given carbon number aromatics have higher densities than naphthenes, which in turn have higher densities than paraffins. Thus, for a fixed aromatic level, a coal-derived fuel will have a higher density than a shale or a petroleum-derived fuel. To achieve the same lower density with coal liquid derived fuel, other measures must be taken such as (1) lowering the total aromatic level or (2) reducing the amount of higher carbon number naphthenes (and paraffins to the extent that they are present).
 - Luminometer Number For a given carbon number, in general, paraffins have a higher luminometer number than naphthenes which have a higher number than aromatics. Thus, for a fixed aromatic level, a coal-derived fuel will have poorer combustion properties than a shale oil or petroleum-derived fuel. In general, increasing the carbon number of paraffins and naphthenes lowers the luminometer number. Thus, to improve the combustion properties of a coal-derived fuel will require measures such as (1) a reduction in total aromatics relative to that present in a petroleum or shale oil-derived fuel and (2) reducing the amount of higher carbon number naphthenes (and paraffins to the extent that they are present).

- Freeze Point The much lower level of paraffins in a coal-derived jet fuel will result in a lower freeze point than a shale oil or petroleumderived fuel. To lower the freeze point of a shale oil-derived jet fuel, the higher carbon number paraffin content of the fuel must be reduced.
- Heat of Combustion For a given carbon number aromatics have a higher volumetric heat of combustion than naphthenes - which are higher than paraffins. The weight heat of combustions are in the inverse order. Thus for a fixed aromatic content a coal-derived fuel will have a higher volumetric heat of combustion and a lower weight heat of combustion than a shale oil-derived fuel.

5.6 Extrapolation of Results

The present study with synthetic crude feedstocks generated only limited pilot plant data when compared to the much larger base of pilot plant and commercial data available relative to processing petroleumderived feedstock. Thus, the use of these pilot plant results to make judgments regarding commercial synthetic processing results is obviously subject to greater uncertainty than would be with petroleum-derived data. In the processing of natural petroleum feedstocks, quite elaborate systems of correlations are used to predict changes in processing conditions required to achieve desired quality improvement when feedstock type is varied, for example, or when catalyst type or quantity is changed, or to predict the effect, generally, of one change in an operating variable on the changes required in the other variables to maintain the activity of the reacting system. Even the simplest apparent reaction, however, is found under investigation to proceed in quite complex and in generally indeterminate fashion, such that all such correlations are generally limited in practice to cases which fall inside the ranges of feedstocks and operating variables used to obtain the data which were correlated. And the data are frequently found to be a function of the hardware employed to generate them, such that even extrapolation from pilot plant to commercial unit involves additional correlating factors.

Moreover, the hardware systems employed commercially for hydrotreating generally represent such large capital investments, and incur such high operating costs, that there is extreme reluctance on the part of operators to deviate from demonstrated performance, let alone extrapolate to feedstocks or conditions outside the range even of the pilot-plant data. Generally, the commercial plant operator is looking for assurance based on replete pilot-plant experience before considering a major change in feedstock type or significant deviation from previous operating conditions. Pilot-plant runs extending for months, or for significant fractions of a catalyst's lifetime, are normally expected in connection with such projected major changes.

It was not possible with the limited quantities of synthetic feed available to this program, to come to meaningful conclusions regarding catalyst behavior, yield maintenance, or to estimates of catalyst life. More than 900 hours of hydrogenation operation were accumulated on one nickel-molybdenum catalyst bed over a 1700-hour period, for example, with very little change in activity, as indicated by the reduction in aromatic content of a commercial JP-5 aviation fuel feed. On the other hand, periods during which synthetic feeds were being run represented less than 10 percent of the total operating time, and it was necessary to change out the catalyst at the end of this period because the catalyst bed had developed a high pressure drop, notwithstanding its apparent high activity. Attempts to feed H-Coal liquid, especially, were accompanied by very rapid increase in catalyst bed pressure drop in our system over both nickelmolybdenum and cobalt-molybdenum catalysts, causing abortive run terminations and unit shutdowns. This tendency could not be explained in terms of the physical and chemical determinations which were obtained normally for all of our feeds and products, and it was not possible to expand our search for causative factors in this program.

Our results do establish, however, that specification aviation turbine fuels can be produced from all of the shale oil feeds. Moreover, it is probably possible to produce fuels from the synthetic coal liquids which meet all specifications excepting density using our procedures. In fact, the synthetic Jet A fuel produced from Synthoil Run 416, which represented doubly hydrotreated material, does meet the density specification for this fuel type (0.830 max).

Consideration of the data for the properties of some of the synthetic fuels prepared in this program will indicate that once—through hydrotreatment at our low—severity conditions will generally result in unacceptable or marginal products. The minimum degree of once—through treatment which produce an acceptable product is most often indicated to lie between the low— and normal—severity conditions for the shale oils, and above the normal severity conditions for the coal liquids. An operating regime which remains to be explored is the repetitive and/or liquid recycle treatments, and especially the relationship between severity and repeated hydrotreatment.

In general, acceptable JP-4 type fuel could be produced using a lesser degree of hydrotreatment, when it could be produced at all, than was required to permit blending of an acceptable Jet A fuel from a given hydrotreated product. For example, JP-4 blended from the low-severity hydrotreated TOSCO Run 113 product was given an acceptable rating in the JFTOT thermal stability test, whereas the Jet A blended from that same hydrotreated product was found to be unacceptable. Another obvious area for future exploration involves separation of acceptable wide-cut fuel product from hydrotreater effluent, with recycle, or secondary hydrotreatment, of the narrow-cut heavier material.

SECTION VI

CONCLUSIONS

Specification aviation turbine fuel can be produced from shale oils by catalytic hydroprocessing of the kerosene fractions of the crude shale oil if the proper processing severity is employed. It is much more difficult to produce specification turbine fuels via similar catalytic hydroprocessing of coal liquids fractions. These results confirm the conclusions made in the Phase I portion of this program that shale liquids would be more suitable for jet fuel production than coal liquids. This difficulty with producing turbine fuels from coal liquids results from the following two factors: (1) the basic chemical composition of coal liquids is that they are high in aromatic and low in paraffins and (2) typical hydroprocessing catalysts convert the aromatics to naphthenes without substantial ring opening (cracking) to produce paraffins.

The synthetic crude samples evaluated in several cases tended to be low in lighter boiling material. Such an absence of light ends will make it difficult to produce wide-cut aviation turbine fuels via simple fractionation followed by catalytic hydroprocessing. In such cases, the processing of heavier fractions to produce higher yields of lighter components using a process such as catalytic hydrocracking may be desirable.

Hydroprocessing severity is important in the production of specification turbine fuels. Production of specification fuel from shale liquids will require at least a moderate severity operation employing a 1500 psi total pressure. Increased processing severity in general improved thermal stability and decreased the aromatic and nitrogen content of this product fuel. Even severe hydroprocessing, however, did not reduce the nitrogen levels of shale liquids below 40 PPMN, which is much higher than found in present day petroleum derived jet fuels. Since nitrogen compounds are known to exert a deleterious influence on the storage and thermal stability properties of jet fuels, the level and types of such compounds present in fuel prepared from shale crude will be an area for concern. Sulfur levels of the processed fuels were well below specifications at all processing severity levels.

APPENDIX I

HYDROGENATION SYSTEM START-UP PROCEDURES

Al.1 Pressure Testing

The unit will be pressure tested with nitrogen or helium after each extended shutdown period. Pressure will be 3000 psig or 90% of the relief valve settings for individual sections of the unit, whichever is lower. A final hydrogen test at operating pressure will be conducted as the last step before startup. This final test should not include the liquid-filled systems.

A high pressure nitrogen test will be conducted on the tubular reactors and/or autoclave whenever catalyst is changed in these vessels. The only exception to this is when the catalyst has been changed after an extended shutdown and the unit, including the reactors, has been helium tested.

Al.2 Hydrogen Feed System

Practical operating experience has shown that the best performance of the Aminco compressors is achieved when they are <u>not</u> depressured. Therefore, prior to startup of the H₂ system, inlet valves 208 and 210 and outlet valves 212 and 215 will normally be closed with gas pressure between them.

Open the H₂ manifold and set the manifold regulator at 500 psig. Open valves 201 and 203 and close bypass valve 202. Pass gas through compressor inlet filter 13 or 14 by opening the appropriate inlet and outlet valves and closing the vent valve. Valves on the filter not in use should be in the opposite positions. Open Compressor 1 inlet valve (208) and start compressor by opening air to compressor drive. Pump up to 5000 psig against a closed discharge valve (212) to make certain the compressor is operable. At 5000 psig open valve 212 and allow gas into Accumulator. Repeat this procedure with Compressor 2. Set high and low Accumulator pressure limits on pressure switch 42. The high limit will shut off the compressors and the low limit will start them. Normally, the high limit will be set at reactor pressure plus 2000 psi and the low limit at reactor pressure plus 1000 psi.

The Accumulator serves as a gas pressure source for three systems: the liquid feed blowcase, the additive blowcase, and the PVT tanks. The pressure supplied to each system is controlled by Hoke downstream regulators. The regulators on $\rm H_2$ to the additive and liquid feed blowcases (HR-201 and 202) should be set 500 psi above reactor pressure. HR-203, the regulator of the $\rm H_2$ feed line to the PVT tanks should be set 1000 psi above reactor pressure. The PVT tank not in use is always the tank being filled. Pressure switches 15 and 16 determine which PVT tank is being filled.

Al.3 Liquid Feed System

Set N2 pressure on the feed tanks at a setting sufficient to maintain at least 6 psig upstream of the filter systems. Open one branch of each filter system on the suction side of the feed pumps. The other branch of the filter systems should be kept closed so that a clean filter is always available. After checking that calibration valves 123 and 135 are closed and that recycle valves 122 and 134 are open, start both feed pumps. Pump against closed discharge valves 126 and 138. Set pump recycle Mity-Mites (MM-1 and 2) at 500 psi above liquid feed blowcase pressure. If pump discharge pressure does not come up quickly to Mity-Mite pressure, bleed the pump heads to remove any trapped air. When pumps are operating satisfactorily, open the pump discharge valves to allow liquid feed to flow through control valves RV-1 and 2 and into the feed blowcases. Blowcase bypass valves V-141 and 142 should be kept closed, as should crossover valve V-128, during normal operation. Liquid feed will fill the blowcases until the levels reach the control range, as measured by the Drexelbrook capacitance probes. Control valves RV-1 and 2 will then close, forcing the pump outputs to be recycled back to pump suction. Thereafter, RV-1 and 2 will open only partly to allow as much liquid feed in as is being removed by the liquid feed systems.

Al.4 Starting Stream Flows

After filling all of the feed tanks and blowcases, the next step should be to determine reactor configuration. If the "parallel" (Sandbath reactors in series, Autoclave in parallel) configuration is chosen, the alarm system switch must be turned to the parallel position, valves V-800 and 1100 must be opened and valves V-801 and 1101 closed. Valves V-802 and 806 should be opened so that the pressure drop across Sandbath 1 is measured by ΔP cell PI-4. Sandbath 2 pressure drop is determined as the difference between total drop (Heise Gauge 1 minus Heise Gauge 2) and the drop across Sandbath 1. Set PIC-1 at the desired Sandbath reactor pressure. PIC-2, the Autoclave pressure controller, should be set at the desired Autoclave pressure. Theoretically, this does not have to be the same as the Sandbath pressure; however, in practice, differences in these pressure settings lead to control problems.

Turn the fluidizing air on to both Sandbaths and raise them by adjusting the spool valve on the panel board. Set the Sandbath temperature controllers to the desired temperature. Turn on the Autoclave heater and set the Foxboro temperature controller at the desired setting. Make certain that Autoclave cooling water is open.

To start the H_2 feeds, set regulator HR-204 at 500 psi above the reactor pressure and the control loop back-pressure regulators, MM-3, 4, and 5, at 100 psi above the reactor pressure. Open one branch of the filter system on each of the H_2 feeds to be used. Set the Foxboro controllers, FIC-3, 4, and 5 at their respective set points. Open valve V-247 and close V-246 and 248 to preheat H_2 feeds to Sandbaths 1 and 2.

When the reactors are up to control pressure and excess H₂ is being vented, as indicated by the wet-test-meters, start the flow of liquid feed to Sandbath 1 and the Autoclave. This is accomplished by opening one branch of each of the liquid feeds and setting the Foxboro controllers, FIC 1 and 2, at the desired set points. Liquid feed may also be preheated by opening valves V-158 and 160 and closing V-159 and 161.

Additive feed to the Autoclave is started by opening V-408 and setting FIC-7 at the desired set point. Additive feed to Sandbath 1 is initiated by opening the suction and discharge valves and starting the Ruska pump. The proper gear sets must be chosen to give the desired feed rate.

In the "parallel" configuration, if recycle is desired, start the Zenith recycle pump when liquid effluent from Sandbath 2 first appears in Liquid Receiver 1. Start the pump with the recycle flow controller (FIC-6) at 0 and slowly bring the rate up to the setpoint.

Ver much des of the consection to the consection of the experience of the consection
APPENDIX II

HYDROGENATION SYSTEM OPERATING PROCEDURES

A2.1 Access to the Cell

The operating philosophy for this unit divides the cell into three types of areas.

- Class A (Routine). Daily maintenance operations.
 While in a Class A area the operator has semi-permanent 1/2" plexiglass shielding from entire unit, except Class B equipment, and sliding door protection from other Class A and all Class B equipment.
- Class B (Routine but Infrequent). The same shielding requirements as Class A. The primary difference between Class A and B is the need to depressure equipment before opening sliding doors when working in a Class B area.
- Class C (Unforeseen). There is no shielding from other Class C equipment. Because of this lack of shielding, permission of the site safety engineer is required to enter this area during operation.

A2.2 Routine Maintenance

Trouble-free operation of orifices, control valves, regulators, etc. depends upon clean, particle-free fluid streams. To ensure this type of fluid streams, a large number of filters have been incorporated into the system. These filters must be cleaned periodically. To facilitate this operation, all of the primary filters consist of 2 filters in parallel, each with its own inlet and outlet block valves, pressure gauge and vent. To change filters, close the vent valve of the filter to be put into service and open the inlet and outlet valves. The pressure gauge should come up to and hold at line pressure. After opening and verifying operation of the replacement filter, shut the inlet and outlet valves of the old filter and then open the vent valve. Verify the depressuring of the filter with the gauge before removing filter.

A2.3 Sampling

Seven sampling points are available for the unit; three from Sandbath 1, one from the knockout tank between Sandbaths 1 and 2, two from Sandbath 2, and one from the Autoclave. Each sample line has an inaccessible Nupro needle valve to limit sample flow to a safe level. The point to be sampled is selected by opening one of the seven block valves at the sampling system. The selected stream is depressured into a N_2 purged glass tee and from there drains into a vial. All sample lines have been made from capillary tubing to reduce sample holdup.

APPENDIX III

HYDROGENATION SYSTEM SHUTDOWN PROCEDURES

A3.1 Normal Shutdown

To ensure a normal, operator-controlled shutdown rather than having the first step of the normal shutdown cause an emergency shutdown, dial out the alarm system. In most cases, this involves setting the low pressure switch at less than 3 psi. Do not change the settings of any of the 8 control pressure switches.

A. Overnight Shutdown

Any shutdown which will not involve the removal of the catalyst will be considered an overnight shutdown. Shut off Zenith recycle pump, if in use, and close valves on inlet and outlet of recycle system (V-700, 701A, and 701B). If the shutdown is for more than a weekend, drain the system using the drain on the inlet filter system. Next cool reactors. Slowly depressure reactors by reducing setpoints on PIC-1 and 2 in small increments. Leave several hundred psi pressure on reactors to prevent getting air into system.

B. Prolonged Shutdown

If catalyst is to be removed from reactors, shut off liquid feed systems. Purge system with H₂ for 15 minutes to remove liquid from the reactors. Do not purge longer than 15 minutes as this may blow catalyst dry and make it hazardous to handle. Depressure reactors to atmospheric pressure. Drain blowcases and manually depressure Accumulator, PVT tanks, blowcases, and product receivers.

A3.2 Emergency Shutdown

An alarm and emergency shutdown system has been provided on the unit. In the "parallel" position, three types of alarms are possible:

- Autoclave alarms
- Sandbath alarms
- System alarms

Autoclave and Sandbath alarms shut down their respective subsystems without interfering with the other subsystem. System alarms, such as instrument air failure or cooling water failure, shuts down the whole unit. Power failure also shuts down the entire unit, though not explicitly considered an alarm condition since the alarm system also fails. In the "series" position, all alarms shut down the entire unit.

The alarm system consists primarily of pairs of pressure switches. One switch of the pair is the high alarm and one is the low alarm. The switches measure the pneumatic signal pressure from the flow, pressure or level measurement devices. Once the variable has reached a steady-state condition, the high switch should be set 2-3 psi above the pneumatic signal and the low switch 2-3 psi below. If the variable goes off steady-state conditions to one of the switch settings, an alarm condition is signaled and the part of the unit affected is shut down. The table on the following page shows the alarm conditions and the actions taken sequence. The alarm panel indicates the presence of an alarm condition audibly and visibly. The audible alarm is shut off by acknowledging the condition which also changes the visual alarm from red to white. If more than one alarm condition occurs, only the first will be indicated by the visual alarm. Correction of the first alarm condition will cause an indication of the subsequent failure, provided it has not also been corrected.

APPENDIX III

TABLE A3-I UNIT ALARM CONDITIONS AND AUTOMATIC ACTIONS

APPENDIX IV

JFTOT APPARATUS DESCRIPTION AND JFTOT TESTING PROCEDURES

The Alcor, Inc. Jet Fuel Thermal Oxidation Tester was employed to access the tendency of the synthetic fuel blends to deposit decomposition products within a fuel system in what is referred to as the JFTOT test. This method for measuring the high temperature stability of aviation turbine fuels subjects the test fuel to temperatures and conditions similar to those occurring in aviation turbine engine fuel systems. The aerated fuel is pumped at a fixed volumetric flow rate through a heater, which simulates a hot fuel line section or a tube in a fuel heat exchanger. After passing over the heated surface, the fuel enters a precision stainless steel filter which represents the nozzle area, or small fuel passages in the hot sections of the engine fuel system, where fuel degradation products may become trapped. The essential data derived are (1) degree, distribution, and nature of surface deposits on an aluminum heater tube and (2) degree and rate of plugging of a 17-micron nominal porosity precision filter located just downstream of the heater tube.

The following description of the JFTOT apparatus and procedures is abstracted from the "Operating Manual for Alcor Jet Fuel Thermal Oxidation Tester", Report No. 70-158, by Alcor, Inc., San Antonio, Texas, October, 1970.

A4.1 The JFTOT Apparatus

A4.1.1 Fuel System

The Fuel System is shown in Figure A4-1. Test fuel contained in the reservoir is circulated through the test section by a Zenith constant displacement pump located downstream of the heater tube and filter to preclude contamination by pump wear particles. The pump is driven by a constant speed motor so as to have a displacement of 3.0 cc per minute.

From the reservoir outlet, the fuel flows through a 0.45-micron membrane type filter and thence to the lower (inlet) part of the heater tube section (see Figure A4-2). The heater tube is connected between two bus bars and is electrically insulated from the outer housing by means of a ceramic ferrule/0-ring seal combination. The fuel rises vertically in the annular space between the aluminum heater tube and its outer stainless steel housing. A low-voltage, high-current AC signal is passed through the heater tube and the tube's resistance heat loss is absorbed by the fuel resulting in an asymmetric tube surface temperature profile as shown in Figure A4-3. Exiting the heater tube section, the fuel passes through a test filter whose element is 17-micron micronic-rated Dutch weave 316 stainless steel cloth. A mercury manometer is connected to measure pressure drop across this filter a direct measure of fouling rate and degree. Optionally, this A p versus

FIGURE A4-2 CROSS SECTION OF HEATER TUBE SECTION AT TEST FILTER

ALCOR JET FUEL THERMAL OXIDATION TEST

ate 10-10-70 Fuel Description D-3	lest No. 707
ig No. 003 Operator F. U. BARR	Heater Tube Control Temp. 700 °
MPERATURE CALIBRATION CLOCK TIME ue Melting Point 449°F °F Fuel Aerated 08.0	FUEL TEMPERATURE AT AERATION 75 °
1510 0 000	CUEL DECOURE 2ED W
dicated MP 4-77 F F Heater On 084	AMBIENT TEMP. 75 %
30 60 90 120 150 180 210 240 270 300 10 5 4 3 0 0 0 10 10 10 10 10 10 10	600
	1 1.3 649
	2
	3

time relation can be automatically recorded. A filter bypass route for the fuel can be opened at any time, normally when Δp reached 10" Hg. The fuel reaches a cooler section by either route and proceeds through the metering pump to return to the fuel reservoir. A sight gauge drip flow indicator allows visual monitoring of flow rate. Spent fuel is isolated from fresh fuel by a floating piston with lip seal.

A4.1.2 Heating and Temperature Control System

The heating arrangement is shown in Figure A4-4. The heater tube is heated by conduction of an electrical current on the order of 200 to 300 amps and 0.3 to 0.5 volts. The heater tube is clamped at each end into bus connectors that are gold-plated on contact surfaces. Water lines internal to the bus connectors maintain them at constant temperature. The bus connectors receive electrical power from a low voltage transformer having a step-down ratio to match the electrical resistance of the heater tube.

A Minneapolis Honeywell Digital Readout Temperature Controller, Model R7161S9057, 0-1000°F, is employed either as a temperature indicator (manual mode) or as a controller (automatic mode). This device controls maximum heater tube temperature by means of a probe thermocouple inserted through the top of the heater tube. This thermocouple can be positioned at any point along the heated portion of the tube. An indicator is provided to define the position of the thermocouple junction with 0.0 station being at the heater tube's upper shoulder. A wattmeter measures electrical power supplied to the low voltage transformer and, therefore, indicates total power consumed by the heater tube plus bus connector, transformer and line losses. A variable voltage transformer having a dual function controls voltage supply to the low voltage transformer and is principal control when in manual mode. This variable transformer is limited internally to prevent excessive power being sent to the heater tube and consequent melting of the tube. A constant voltage transformer is supplied to compensate for plant line voltage fluctuations which would affect constant maximum tube temperature when in the manual mode for the purposes of taking the tube temperature profile.

A4.1.3 Cooling Systems

Ordinary tap water at a pressure between 30 and 100 psig is required for bus connector cooling. The JFTOT has a flow adjustment valve and rotometer type flow indicator to set the rate at 10 ±2 GPH. After entering the cabinet, the water flows through a filter adequate to remove any large solid particles that could plug the lines or interfere with the operation of the solenoid valve, which is normally closed and opens when the power supply is turned on. A water pressure switch is in the power line to the pump motor and heater and is normally open, closing only when the water pressure rises above 20 psig and opening (turning heater and pump off) if water pressure drops below this valve. The switch should be adjusted to prevent inadvertent rig shutdown due to momentary drop in water pressure.

Taraba Maria

The water next flows through a heat exchange section used to cool spent test fuel prior to the fuel's entering the pump. After this, the water passes through copper tubing internally silver soldered to the bus connectors, maintaining them at constant temperature and thus holding a constant tube temperature profile. The water lines are electrically insulated from the system by means of polyethylene tubing.

A4.1.4 Fuel System Pressurization

A standard nitrogen cylinder with regulator is used to pressurize the fuel system, preventing significant fuel evaporation at elevated temperatures in the heater tube section. Normally, tests are run at 350 psig but all system components have been tested to 1000 psig and tests can be run at pressures to 400 psig. For safety, an adjustable pressure limiter is provided in the nitrogen inlet line and is set at approximately 375 psig. Two nitrogen control needle valves marked "Pressurize" and "Bleed" are provided. Their function is evident from the schematic, Figure A4-I. A 0-400 psig Bourdon tube gauge is provided to show system pressure.

A.4.1.5 Manometry System

A standard single leg 12-inch mercury manometer with a rated working pressure to 500 psig is connected across the test filter to measure filter pressure drop as the filter fouls with fuel deposition and/or degradation products. A manual bypass valve permits the spent test fuel to flow around a plugged filter when it is desired to continue the test to obtain heater tube deposits for an extended test period. A float-type check valve in the low pressure leg of the manometer prevents mercury from "going over the top" during abnormally high differential pressure surges and contaminating the fuel system.

Automatic recording of Δp vs. time can be obtained on a 10-channel event recorder which has dual speed capability of 60 and 360 mm per hour. Normal speed is 60 mm per hour. Reed type switches at stations 0.1, 0.3, 0.5, 1.0, 2.0, 3.0, 5.0 and 10.0" Hg. respectively are mounted adjacent to the manometer tube and are activated by a small Teflon-enclosed magnet floating on top of the mercury column. As Δp increases, the magnet activates each switch and the resulting signal records the event on the appropriate channel of the vent recorder. A Δp warning system sounds a horn when the Δp reaches 5.0"Hg. to alert the operator of impending rig shutdown at 10" Hg.

A4.1.6 Thermocouple Calibration System

The AutoCal calibration system provides for an easy and reliable check of the calibration of the entire temperature indication system by utilizing the freezing point of 99.99% pure tin at 449°F as the primary standard. Other pure metals can be used. The AutoCal consists of a special heater tube device which has at its middle section a small well containing pure tin into which the thermocouple is immersed. The test thermocouple is introduced into a container of tin, an energy pulse is applied to melt the tin and the cool-down temperature-time characteristic

is observed by the operator, who notes the temperature indication at which the deviation needle pauses. Any difference between this reading and 449°F must be taken into account when setting maximum heater tube control temperature and when plotting heater tube temperature profiles.

A4.1.7 Fuel Aeration System

Provision is made to air saturate the test fuel charge in the reservoir prior to test. A rotometer flow control and automatic timer-cutoff are set to flow dry, filtered air at 1500 cc/minute for 6 minutes. The 9.0 liters thus passed through the 1.0 liter fuel charge insures at least 97% of air saturation at 75°F and 1 atmosphere, providing a common comparative basis for all fuels.

A4.1.8 Elapsed Time Test Measurement

There are two indications of elapsed test time on the JFTOT: a digital readout indicator (to nearest 0.1 minute) and a timer-cutoff (to nearest 3 minutes) which can be set to cut off at desired time up to 5.0 hours. The automatic Δp recorder provides yet a third measure of elapsed test time.

A.4.2 Tube Deposit Rater (Alcor Mark 8A)

This instrument has been developed to provide a quantitative means for heater tube deposit evaluation. The JFTOT heater tube is placed in a holder within the cabinet and light is reflected from the tube's surface to an ultrasensitive photocell with amplifying circuit to obtain a Tube Deposit Rating of from 0 (clean tube) to 50 (heavy deposit) at each selected tube station. The maximum spot ratings obtained at each station are plotted against tube length.

An extension of the rating procedure is possible with the recent versions of the tube rater. In this case, the tube to be rated is spun, resulting in an average, or so-called constant temperature area (CTA), rating around the tube circumference. The maximum spun rating observed along the tube is the rating reported for the heater tube control temperature at which the tube was tested. These maxima are plotted against temperature; and the temperature at which a spun tube deposit rating of 13 obtains is reported as the "breakpoint temperature". A fuel which has a breakpoint temperature above 500°F is considered acceptable in the JFTOT rating.

A.4.3 General Test Procedure

The complete test section is disassembled and cleaned after each test with certain key items (heater tube, test filter, prefilter element, and O-rings) replaced. After cleaning and drying, the heater tube section is reassembled and installed in the cabinet and a fresh charge of test fuel is filtered into the reservoir and aerated. The reservoir is then installed, the fuel system is pressurized, and flow is started through the heater tube section as temperature is automatically

elevated to the pre-selected control temperature. When this temperature is reached (normally within 1-3 minutes), the filter bypass valve is closed and the initial manometer setting is taken. From this point the test proceeds automatically with the heater tube temperature, fuel flow rate, and pressure held constant. Filter pressure drop values may be taken manually or recorded automatically. At some time during the test, the temperature controller mode is switched from "automatic" to "manual" and a heater tube temperature profile is taken by means of the probe thermocouple. Following this, the controller is returned to "automatic" mode and the test continues for the preset duration. If filter Δp reached 5.0"Hg., an alarm (if activated) will sound, alerting the operator who can (if he wishes) then open the bypass valve prior to the magnet's tripping the automatic rig cutoff at the 10.0"Hg. station. This will allow the test to continue for the preset duration - usually for the purpose of comparative heater tube deposit test sequences.

At the end of each test, the rig is depressurized and the heater tube is removed, rinsed, dried, and rated (either visually and/or by means of the ALCOR Mark 8 TDR). Pass-fail criteria with regard to maximum allowable heater tube deposit level and filter Δp are then considered (see Section A4.2 above).

CONDENSES OF A STREET

ment but tolog same corre cryther at getting temperature to their and but

APPENDIX V

CRUDE ASSAY - PARAHO SHALE OIL

CRUDE:

PARAHO SHALE OIL

LOCATION:

Rifle, Colorado

REPRESENTATIVE OF: 011 extracted from shale in the semiworks retort and pilot

plant operated by Paraho Development Corporation at federally-owned Anvil Points oil shale facilities.

FILE NO .:

SL. 33C-FP. 75

REPORT DATE:

7-10-75

REPORT BY:

Hary M. Williams

EXXON RESEARCH & ENGINEERING CO. ENGINEERING INFORMATION CENTER FLORHAM PARK, N.J.

DATE RECEIVED:

1-7-75

DATE DISTILLED:

2-3-75

LAB ASSAY NO .:

2049

COST CENTER:

2524-634

ASSAY RUN BY:

EXXON COMPANY, U.S.A. REFININGI DEPARTMENT REFINERY LABORATORY BAYTOWN, TEXAS

SPONSORED BY:

EXXON COMPANY, U.S.A. - SUPPLY DEPARTMENT

The state of the s

TABLE 1

PARAHO SHALE OIL

SL. 33C-FP. 75

WHOLE CRUDE DATA

GRAVITY		^API	19.3
SPECIFIC GRAVITY	American additioned to	60/60	0.9383
SULFUR	Salata Apple Salata	WY. %	0.71
MERCAPTAN SULF		WT. PPM	56
POUR POINT		•	85
NITROGEN		WT. %	2.00
WATER AND SEDIA	ENT	VOL. %	0.9
SALT CONTENT, N	laC1	PTB	0.9
REID VAPOR PRES	SSURE	PSI	
H2S (DISSOLVED)		WT. PPM	0
NEUT. NO. (D664)		mg KOH/gm	1.8
		122°F, c\$1	42.6
		100°F, cSt	78.5
	KINEMATIC	80°F, c\$1	
		60°F, cSi	
		40°F, c\$1	
VISCOSITIES		122-F, SEC	199
		100°F, SEC	364
	SAYBOLT UNIVERSAL ~	eo-F, SEC	A CHESS TO LONG TO
		60°F, SEC	
William Ships		40-F, SEC	

	LIGHT HYDROCARBONS		
	% ON CRUBE	WEIGHT	VOLUME
ETHANE AND LIGHTER PROPANE	Section designation of the section o		THE SAME
ISO BUTANE NORMAL BUTANE	28.57.87.683.0.1555.0.15 28.318.11855.133		
ISO PENTANE NORMAL PENTANE			

											26 93	Γ	
	2 0m va	SHALE OIL		THE THE	AND CAL	DATA INPUT AND CALCULATIONS	19.3 DEG AP	104		St. 3X- FP. 15		7	
	į	-6084	H. VOL. PCT	124	GRAVITY	MIN	SUM OF	;	9	50 m/s	ğ.	SUR OF	Ď.
990 A 990	2 296	CP CAUDE	E C E	915	DEC AP1	SPECIFIC	X VOL PCT	2 990 L9	AN. PT.	X 44. PT.	:	X ARON.	NAP TH.
302	150.0		0.0	0.0	0.0	1.0760	0.0				6.0	0.0	0.0
323	160.3	0.35	0.35	0.15		0.4072	0.28252	1.4205	:	1.42	9.3	0.0	0.0
347	175.0	-	0.00	0.48		0.6165	0.48664	1.4333	••	*1.*	0.0	0.0	0.0
**	0.041	•	00	0.83	39.0	0.9260	0.81706	1.4365	\$	0.3	3	0.0	0.0
101	295.3		1.50	1.25		0.0320	1.23348	1.4390	69	103.5	0.0	0.0	0.0
124	220.0		2.10	1.00		0.6386	1.73674	1.4413	69	14.4	0.0	0.0	0.0
*	235.0		3.60	5.02		0.8403	2.99713	1.4440	••	246.4	0.0	0.0	0.0
3	6-067	_	9.40	4.50	_	0.8560	4.53796	1.4503	;	372.6	0.0	0.0	0.0
205	205.0		7.50	•••		0.8654	6.35539	1.4595	72	\$23.0	0.0	0.0	0.0
536	280.0		10.10	0.00		0.3762	8.63341	1.4665	=	***	0.0	0.0	0.0
696	295.0		13.10	11.69		3.8460	11.29192	1.4714	56	1019.4			
28	313.0		16.40	14.85		0.4833	14.36297	1.4745	100	1369.4			
***	325.3		20.40	16.50	27.6	2.38%	17.76259	1.4754	16	1734.0			
.53	343.3	-	24.50	55.65	_	0.9053	21-33647	1.4841	16	2147.5			
==	355.0	~	27.70	26.33		2016.0	24-40153	1.4927	16	2402.3	-		
	373.0	61.9	31.60	29.75		0.9230	\$6161.92	1.4952	*	2787.7			
129	305.3	4-20	36.00	33.90		0.9254	32.37070	1.4975	96	3130.9			
192	403.3	•	+0-50	38.25		0.9297	36.26242	1.4999	100	3647.3			
2.	415.7	9.30	45.50	43.00		0.9321	47.92316	1.5028	105	4165.9			
***	+30.0	•	50.20	47.5		0.9365	45.32454	1.5060	111	4687.6		-	1
133	0.644	Ĭ	24.90	\$5.58	10.1	0.0396	49.74052	1.5092	115	5229.1			
161	155.0		57.30	\$6.35		0.9433	52.47620	1.5121	911	5564.5			
:	475.0	Ñ	****	91.10	_	3.9497	53.74396	1.5156	115	6323.5			
::-	443.3		64.00	46.70		3.9554	63.13896	1.5201	801	6820.3			
950	910.0		73.10	72.05		0.9626	69.01073	1.5247	*	1393.7			
540	935.0	7.30	92.40	7:.7	14.4	3.3698	76.39056	1.5311	*	6.0700			
1022	983.0		62.90	84.55	_	3.9672	83.24948	1.5376	116	8578.7			
1044	565.0		91.00	38.85	_	3.7792	84.46921	1.5435	126	4120.5			
1040	\$65.30		133.00	95.53	_	1.0344	93.76941						

### \$48 E OIL Jaia India wi PCT SUM WI PCT SUM BOT	WART OIL TOTAL NAME AT POT SUM AIT POT WIT POT		-	100	TA INP.IT	2000	ULATIONS	19.3 DEG A		SI 14. PP	75	
CALC at 100 to CALC	CALC at 100 CAUGE CUT MID NORW WIT PCT CON CON CARBON WIT PCT TOWN CON CARBON WIT PCT WI	3	STALE STALE	1		7		1				
CRUDE ON CRUDE CUT	CRUDE ON CRUDE CUT	*PERATURE			10K# 4.1	15	SUR MT PCT		100 19	SUM MT PCT	1	SUM NI PCT
191. 0.0 2.0 0.1 0.1 0.0	155.7 0.0 3.0 0.15 0.15 1.1700 1.1	F	<u>u</u>		1 C.U.	olk.	NORM WT PC	1	CARBON	X NURN MT PCT	MITHOGEN	X MOR" WT PC
15.5. 0.31 0.32 0.32 0.35 1.170 1.170 1.172	195.0 0.31 0.35 0.35 0.15 1.1700 1	2 153.7		3.9	9.0	0.0	0.0	0.0				
175.1 0.22 0.22 0.52 0.41 0.575 1.0203 195.0 0.54 0.54 1.02 1.102 0.7630 255.0 0.54 0.54 1.02 1.56 0.7730 255.0 1.34 1.32 1.56 1.52 0.523 0.5630 255.0 1.34 1.34 3.21 2.52 2.337 0.5630 255.0 1.34 1.34 3.21 2.52 2.337 0.5630 310.0 3.24 2.43 2.23 1.264 0.7230 312.0 3.24 3.33 12.34 13.69 11.241 0.6730 313.0 3.24 3.31 15.34 13.69 11.241 0.6730 313.0 3.24 3.31 15.34 13.69 11.241 0.6730 313.0 4.34 2.22 2.12 2.436 1.456 0.7100 315.0 4.34 4.34 2.22 2.13 2.444 0.6800 0.01 0.0673 2.0530 315.0 4.34 4.34 2.24 2.13 2.444 0.6800 0.00 0.00 0.00 315.0 4.34 4.34 3.24 2.444 0.6800 0.00 0.00 0.00 315.0 4.41 4.41 3.44 3.44 2.444 0.6800 0.00 0.00 0.00 315.0 4.41 4.41 3.44 3.44 2.444 0.6800 0.00 0.00 0.00 0.00 315.0 4.41 4.41 3.44 3.	15.0. 0.22 0.22 0.041 0.557 1.0203 15.0. 0.24 0.057 0.070 1.184 0.7800 25.0. 0.24 0.057 1.09 1.184 0.7430 25.0. 0.24 1.05 1.09 1.184 0.7430 25.0. 1.04 1.04 4.05 2.52 2.337 0.5430 25.0. 1.04 1.04 4.05 4.02 4.784 0.6430 25.0. 2.43 2.63 12.04 11.26 10.02 0.0430 25.0. 2.43 2.63 12.04 11.24 0.6230 25.0. 2.43 2.24 2.12 11.24 0.0530 25.0. 2.43 2.24 2.12 11.24 0.0530 25.0. 2.43 2.24 2.12 11.24 0.0530 25.0. 2.43 2.24 2.12 11.24 0.0530 25.0. 2.43 2.24 2.12 11.24 0.0530 25.0. 2.43 2.24 2.12 2.45 0.0530 25.0. 2.43 2.24 2.12 2.45 0.0530 25.0. 2.43 2.24 2.12 2.45 0.0530 25.0. 2.43 2.24 2.12 2.45 0.0530 25.0. 2.43 2.24 2.12 2.45 0.0530 25.0. 2.43 2.24 2.12 2.45 0.0530 25.0. 2.43 2.24 2.45 2.45 0.0530 25.0. 2.43 2.24 2.45 2.45 0.0530 25.0. 2.43 2.44 2.44 2.44 25.0. 2.44 2.44 2.44 2.44 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 0.0530 25.0. 2.45 2.45 2.45 2.45 2.45 25.0. 2.45 2.45 2.45 2.45 2.45 25.0. 2.45 2.45 2.45 2.45 2.45 25.0. 2.45 2.45 2.45 2.45 2.45 25.0.	163.3		0.30	0.30	0.15	1.153	1.1700				
153.0	155.0 0.54 0.81 0.070 0.444 0.7500 255.0 0.54 0.54 1.55 1.09 1.187 0.5500 255.0 1.34 1.35 1.25 1.09 1.187 0.5500 255.0 1.34 1.34 3.25 2.52 2.337 0.5500 255.0 1.04 1.04 1.05 1.26 0.7200 255.0 1.04 1.04 1.05 1.26 0.0520 255.0 1.04 1.04 1.05 1.20 0.0020 255.0 1.04 1.04 1.05 1.20 0.0020 255.0 1.04 1.04 1.00 1.00 0.002 255.0 1.04 1.04 1.00 1.00 0.002 255.0 1.04 1.04 1.00 1.00 0.002 255.0 1.04 1.04 1.00 1.00 255.0 1.04 1.00 1.00 1.00 255.0 1.04 1.00 1.00 255.0 1.04 1.00 1.00 255.0 1.00 255.0 1.00 1.00 255.0 1.00 255.0 1.00 255.0 1.00 255.0 1.00 255.0 1.00 255.0 1.00 255.0 1.00 255.0 1.00 255.0 1.00 255.0 1.00 255.0 1.00 255.0 1.00 255.0 1.00 255.0 255.0 1.00 255.0 2	1 175.3	5	0.22	0.52	14.0	3.575	1.0200				
295.0 3.44 0.44 1.32 1.56 0.7600 295.0 0.54 0.44 1.37 1.56 1.56 0.7600 295.0 1.34 1.27 2.37 2.38 0.6430 295.0 1.34 1.27 2.39 0.6430 295.0 1.34 1.27 2.39 0.6430 295.0 1.34 3.21 7.39 6.720 0.6430 295.0 2.31 2.34 4.21 7.39 6.720 0.6430 295.0 2.31 2.44 1.34 1.34 1.34 1.34 295.0 2.32 2.32 2.32 2.32 2.32 2.33 395.0 2.34 4.34 2.32 2.32 2.32 2.33 2.33 395.0 4.34 2.37 2.34 1.34 1.34 1.34 1.34 395.0 4.34 2.37 2.45 0.690 0.70 1.50 395.0 4.34<	295.0	6-159-0		3.35	0.87	0.70	3.84	0.7800				
28.0 0.54 2.7430 28.0 1.54 2.7430 28.0 1.54 4.764 0.5430 28.0 1.54 6.723 1.540 0.6430 28.0 1.54 6.723 0.6430 1.6430 28.0 1.54 6.723 0.6430 1.6230 313.0 1.24 2.64 11.261 0.6430 1.6230 313.1 1.24 1.24 1.24 0.6430 1.6230 313.1 1.24 2.24 1.1.261 0.6730 1.6200 313.2 2.41 2.34 1.1.261 0.6730 1.6200 313.3 4.34 2.34 1.1.261 0.6730 1.6200 313.3 4.34 2.34 1.1.261 0.6730 0.6731 1.6200 313.3 4.34 2.34 2.44 2.44 0.6900 0.01 1.6200 313.3 4.34 2.34 3.64 2.44 2.44 0.6900 0.02 <td>28.0 0.54 0.7730 28.0 1.54 0.7730 28.0 1.54 0.5400 28.0 1.54 4.78 0.7730 28.0 1.54 4.78 0.7200 28.1 1.54 4.78 0.7200 28.1 2.54 1.54 4.78 0.7200 28.1 2.54 1.54 4.78 0.700 28.2 2.51 2.54 1.54 0.670 28.3 2.64 1.78 0.670 1.800 28.3 2.64 1.78 0.670 1.800 28.3 2.64 1.78 0.670 1.800 28.3 2.74 0.670 0.700 1.900 28.3 2.74 0.600 0.01 1.027 2.1000 28.3 4.14 2.725 0.700 0.700 1.7300 1.7300 4.15 4.16 2.725 2.725 0.7400 0.000 0.00 0.00 <</td> <td>1 235.0</td> <td>80</td> <td>***</td> <td>1.32</td> <td>1.09</td> <td>1.187</td> <td>0.7600</td> <td></td> <td></td> <td></td> <td></td>	28.0 0.54 0.7730 28.0 1.54 0.7730 28.0 1.54 0.5400 28.0 1.54 4.78 0.7730 28.0 1.54 4.78 0.7200 28.1 1.54 4.78 0.7200 28.1 2.54 1.54 4.78 0.7200 28.1 2.54 1.54 4.78 0.700 28.2 2.51 2.54 1.54 0.670 28.3 2.64 1.78 0.670 1.800 28.3 2.64 1.78 0.670 1.800 28.3 2.64 1.78 0.670 1.800 28.3 2.74 0.670 0.700 1.900 28.3 2.74 0.600 0.01 1.027 2.1000 28.3 4.14 2.725 0.700 0.700 1.7300 1.7300 4.15 4.16 2.725 2.725 0.7400 0.000 0.00 0.00 <	1 235.0	80	***	1.32	1.09	1.187	0.7600				
253.0 1.34 1.34 3.23 2.52 2.337 0.5500 255.0 1.04 1.04 4.04 4.02 3.388 0.6410 255.0 1.04 1.04 1.04 4.02 3.388 0.6410 255.0 1.04 1.04 1.04 4.02 1.062 0.0220 315.0 3.24 2.43 2.43 12.04 10.02 11.261 0.0520 315.0 3.03 3.04 23.2 21.12 10.457 0.6100 315.0 3.04 2.04 23.2 21.12 10.457 0.6100 315.0 4.14 4.15 23.2 21.12 10.457 0.6100 315.0 4.14 4.15 34.21 22.14 21.05 0.100 315.0 4.14 4.15 34.21 22.14 21.05 0.100 315.0 4.14 4.15 34.21 22.14 22.15 0.100 315.0 4.14 4.15 34.21 22.14 22.15 0.100 315.0 4.14 4.15 34.21 22.14 22.15 0.100 315.0 4.14 4.15 34.21 22.14 22.15 0.100 315.0 4.14 4.15 34.21 22.14 22.15 0.100 315.0 4.14 4.14 4.15 34.21 22.14 22.15 0.100 315.0 4.14 4.14 4.15 34.21 22.14 2.100 315.0 4.14 4.14 4.15 34.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	293.0	1 220.0		3.54	1.85	1.58	1.584	3.7430				
253.0 1.64 1.64 4.02 3.388 0.6430 285.0 1.94 1.94 6.78 5.91 285.0 2.43 2.43 2.1 7.99 285.0 2.43 2.83 12.04 10.62 4.022 0.6230 317.0 3.27 2.43 2.23 12.04 10.62 4.052 0.6230 317.0 3.27 2.34 4.34 23.29 21.12 10.643 0.6130 317.0 3.27 4.03 4.34 23.29 21.12 10.457 0.6930 317.0 4.34 23.29 21.12 10.45 0.6330 317.0 4.34 23.29 21.12 10.45 0.6930 317.0 4.34 23.29 21.12 10.45 0.6930 317.0 4.34 2.34 4.34 2.34 2.34 2.34 10.6930 317.0 4.34 4.34 2.34 2.34 10.64 10.65 0.6930 317.0 4.34 4.34 2.3 10.24 0.6930 317.0 4.34 4.34 2.3 10.24 0.6930 317.0 4.34 4.34 2.3 10.24 0.6930 317.0 4.34 10.62 10.62 10.630 317.0 4.34 10.62 10.62 10.630 317.0 4.34 4.34 10.63 10.630 317.0 4.34 4.34 10.63 10.630 317.0 4.34 4.34 10.63 10.630 317.0 4.34 4.34 10.63 10.630 317.0 4.34 4.34 10.63 10.630 317.0 4.34 4.34 10.63 10.630 317.0 4.34 4.34 10.63 10.630 317.0 4.34 4.34 10.630 317.0 4.34 4.34 10.630 317.0 6.64 6.62 6.69 4.63 10.630 317.0 6.64 6.64 6.65 6.69 10.630 317.0 6.64 6.64 6.65 6.69 6.69 10.630 317.0 6.64 6.64 6.65 6.69 6.69 10.690 317.0 6.64 6.64 6.65 6.69 6.69 10.690 317.0 6.64 6.64 6.65 6.69 6.69 10.690 317.0 6.64 6.64 6.65 6.69 6.69 10.690 317.0 6.64 6.64 6.65 6.69 6.69 6.69 10.690 317.0 6.64 6.69 6.69 6.69 6.69 6.69 6.69 6.69	293.0 1.04 1.04 4.04 4.02 3.389 0.0410 285.0 1.04 1.04 6.78 5.01 4.784 0.7200 285.0 2.01 2.01 2.01 12.04 10.02 0.0200 313.0 3.27 2.01 2.01 12.04 10.02 11.261 0.06700 313.0 3.27 3.31 15.34 13.04 11.261 0.06700 313.0 3.27 2.13 2.12 11.261 11.261 0.06700 313.0 3.27 2.14 4.34 23.29 21.12 10.457 0.0900 313.0 4.34 4.34 23.29 21.12 10.457 0.0900 313.0 4.10 4.11 4.11 31.21 10.457 0.0900 313.0 4.10 4.11 4.11 31.21 22.14 24.0500 0.00 1.007 0.057 1.2000 313.0 4.10 4.11 4.11 31.21 22.14 24.0500 0.00 0.00 0.00 1.2000 313.0 4.11 4.11 4.11 31.21 22.14 24.0500 0.00 0.00 0.00 1.2000 313.0 4.11 4.11 53.05 50.69 32.923 0.5500 0.24 2.5142 1.0000 313.0 4.01 4.01 4.11 53.05 50.69 32.923 0.5500 0.24 2.5142 1.0000 313.0 4.01 4.01 4.01 53.05 50.69 32.923 0.5500 0.24 2.5142 1.0000 313.0 4.01 4.01 4.01 53.05 50.69 32.923 0.5500 0.24 2.5142 1.0000 313.0 4.01 4.01 4.01 53.05 50.69 32.923 0.5500 0.24 2.5142 1.0000 313.0 4.01 4.01 4.01 53.05 50.69 32.923 0.5500 0.24 2.5142 1.0000 313.0 4.01 4.01 4.01 53.05 50.69 32.513 0.5500 0.24 2.5142 1.0000 313.0 4.01 4.01 4.01 53.05 50.69 32.513 0.5500 0.24 2.5142 1.0000 313.0 4.01 4.01 4.01 53.05 50.69 32.513 0.5500 0.24 2.5142 1.0000 313.0 4.01 4.01 4.01 57.0 57.0 57.0 57.0 57.0 57.0 57.0 57.0	\$ 735.0		1.34	3.23	25.5	2.337	0.5630				
285.0 1.94 1.94 4.784 0.7293 285.0 2.41 2.42 6.724 0.6230 1.6200 395.0 2.41 2.42 4.02 0.6230 1.6200 312.0 3.27 3.60 10.6730 1.6200 1.6200 312.1 3.41 4.34 23.29 21.12 16.457 0.6900 1.6300 35.2 2.74 2.74 2.74 0.6900 0.701 1.6200 35.2 2.74 2.74 0.6900 0.710 0.702 1.6200 35.2 2.74 2.74 0.6900 0.01 0.677 2.0500 35.2 2.74 2.74 0.6800 0.02 1.574 2.1400 35.2 4.15 2.74 2.745 0.6800 0.02 1.574 2.1500 415.0 4.15 2.745 0.6800 0.02 1.576 2.1500 415.0 4.74 3.550 0.04 0.324 0.6800<	285.0 1.94 1.94 6.78 5.01 4.784 0.7200 280.0 2.41 2.41 2.41 7.204 10.622 0.0200 310.0 3.22 3.01 12.04 10.622 4.022 0.0200 312.0 3.62 3.01 18.04 17.04 10.622 0.0200 313.0 3.22 3.01 18.04 17.14 11.261 0.6700 313.0 4.03 4.04 4.04 30.07 28.02 21.636 0.7600 0.01 7.0274 2.0200 313.0 4.04 4.15 34.21 22.14 27.45 0.6300 0.01 7.0274 2.0200 313.0 4.10 4.11 31.02 11.21 10.430 0.01 7.0274 2.0200 313.0 4.01 4.01 30.07 30.07 37.51 1.2500 0.04 0.3274 1.0200 313.0 4.01 4.01 30.07 37.51 1.0500 0.04 0.3274 1.0200 313.0 6.26 6.26 4.11 3.0500 0.02 0.04 0.324 1.0500 313.0 6.26 6.26 6.29 4.14 1.0500 0.05 0.04 0.324 1.0500 313.0 6.26 6.26 6.29 4.14 1.0500 0.050 0.04 0.324 1.0500 313.0 6.27 6.28 6.29 1.0200 0.04 0.324 1.0000 313.0 6.27 6.29 6.29 1.000 0.04 0.324 1.0000 313.0 6.27 6.29 1.000 0.00 1.000 0.00 0.00 0.00 0.00 0	2 253.0		1.04	+0.4	4.02	3.388	0.6430				
1.6200 1	28.7 2.43 2.44 2.45 2.45 2.45 2.45 2.45 0.020 </td <td>6 265.0</td> <td></td> <td>1.9</td> <td>6.78</td> <td>19.5</td> <td>4.784</td> <td>0.7230</td> <td></td> <td></td> <td></td> <td></td>	6 265.0		1.9	6.78	19.5	4.784	0.7230				
785.0 2.61 12.64 10.62 9.022 0.6230 1.6200 317.0 1.27 2.61 1.241 0.6130 1.8200 32.0 1.27 1.647 0.6130 1.921 1.920 32.1 4.34 23.29 21.12 16.457 0.6930 2.011 1.930 32.2 2.34 30.71 26.05 21.656 0.7100 0.01 0.0673 2.030 33.2 2.34 30.71 26.05 21.656 0.7100 0.01 0.0673 2.030 37.2 4.16 4.15 32.16 24.456 0.6800 0.01 0.0673 2.030 413.0 4.44 4.116 30.247 0.6800 0.06 0.321 1.920 413.1 4.44 4.116 30.242 4.510 0.141 1.920 413.1 4.44 4.116 30.242 4.510 0.141 1.920 413.1 4.44 4.116 30.242	10.00 1.20	4 283.9		2.43	17.6	7.99	6.727	0.0000				
313-0 3.27 3.37 15-34 13-69 11.261 0.6730 1.8200 1.8200 352-3 3.60 4.34 4.34 23-29 21.12 10-459 0.6430 2.0830 1.9300 352-3 2.74 2.64 2.42 21.12 10-459 0.6430 0.6300 2.0830 2.0830 352-3 2.74 2.64 2.46 1.8.56 0.7100 0.01 0.0673 2.0830 353-3 4.14 4.15 3.47 2.44	313.0 3.27 3.31 15.34 11.261 0.6730 11.8203 345.3 4.34 4.34 23.29 17.11 15.459 0.6430 1.9300 345.3 4.34 4.34 23.29 21.12 16.457 0.6930 2.0830 355.3 2.74 26.03 24.66 18.56 0.7700 0.01 7.0274 2.0830 375.3 4.03 4.46 18.26 27.45 0.6800 0.01 7.0673 2.0300 315.3 4.16 4.15 34.21 32.14 27.45 0.6800 0.01 1.577 1.9200 415.7 4.40 4.60 4.11 27.26 0.6800 0.02 1.7301 1.7300 415.7 4.41 4.11 53.05 50.69 32.242 0.5800 0.74 2.5100 415.7 4.41 4.11 53.05 50.69 35.513 3.5200 0.24 2.5100 455.1 4.41 4.41	3 798.0		2.83	12.04	10.62	9.052	0.4530			1.6230	12.1399
355.3 3.63 3.60 <t< td=""><td> 155.3 3.6.5 3.6.5 18.94 17.14 13.459 0.6130 1.9300</td><td></td><td></td><td>3.37</td><td>15.34</td><td>13.69</td><td>11.261</td><td>0.6730</td><td></td><td></td><td>1.8200</td><td>18.11.2</td></t<>	155.3 3.6.5 3.6.5 18.94 17.14 13.459 0.6130 1.9300			3.37	15.34	13.69	11.261	0.6730			1.8200	18.11.2
35.13 4.34 23.29 21.12 16.457 0.6900 2.091 2.0830 35.20 2.21 2.46 1.456 0.7700 0.01 7.027 2.0100 375.2 4.16 4.15 34.21 32.16 2.456 0.6800 0.01 7.0673 2.0100 375.2 4.16 4.15 34.21 32.16 2.456 0.6800 0.02 1.1577 1.9203 413.3 4.16 37.24 2.456 0.6800 0.02 1.1577 1.9203 413.1 4.41 37.24 2.4500 0.03 0.7266 1.5000 413.7 4.41 2.725 0.6800 0.72 1.1577 1.9200 413.7 4.41 2.726 2.4500 0.6800 0.726 1.5300 455.3 4.71 4.71 4.71 4.726 0.6800 0.72 1.1577 1.9200 455.3 4.71 4.71 4.724 0.6800 0.72 1.1500 <td>35 4.34 23.29 21.12 16.457 0.6900 2.0830 2.0830 35 4.34 23.29 24.66 1.256 0.7100 0.01 0.0673 2.0300 37 4.16 4.15 34.21 22.16.36 0.7100 0.01 0.0673 2.0300 395 4.16 4.15 34.21 32.16 24.45 0.6800 0.01 0.0673 2.0200 415 4.06 4.16 37.26 36.40 27.25 0.6800 0.02 1.1577 1.9203 415 4.07 4.07 26.44 27.26 0.6800 0.02 0.1577 1.9203 415 4.07 4.03 4.14 27.26 0.6800 0.02 0.1500 1.0203 415 4.07 4.03 4.03 4.03 4.03 1.03 1.03 1.03 415 4.07 4.03 4.03 4.03 0.03 0.04 0.03 0.03</td> <td></td> <td></td> <td>3.63</td> <td>18.8</td> <td>17.14</td> <td>13.459</td> <td>0.6130</td> <td></td> <td></td> <td>1.9300</td> <td>25.2455</td>	35 4.34 23.29 21.12 16.457 0.6900 2.0830 2.0830 35 4.34 23.29 24.66 1.256 0.7100 0.01 0.0673 2.0300 37 4.16 4.15 34.21 22.16.36 0.7100 0.01 0.0673 2.0300 395 4.16 4.15 34.21 32.16 24.45 0.6800 0.01 0.0673 2.0200 415 4.06 4.16 37.26 36.40 27.25 0.6800 0.02 1.1577 1.9203 415 4.07 4.07 26.44 27.26 0.6800 0.02 0.1577 1.9203 415 4.07 4.03 4.14 27.26 0.6800 0.02 0.1500 1.0203 415 4.07 4.03 4.03 4.03 4.03 1.03 1.03 1.03 415 4.07 4.03 4.03 4.03 0.03 0.04 0.03 0.03			3.63	18.8	17.14	13.459	0.6130			1.9300	25.2455
355.0 2.77 26.043 24.66 18.566 0.7700 9.01 7.2274 2.1400 375.0 4.04 40.07 28.09 21.636 0.7700 0.07 1.577 2.0500 0.01 1.577 1.2700 431.0 4.04 40.07 28.04 27.265 0.6800 0.04 0.3291 1.7300 415.0 4.04 38.07 36.44 27.265 0.6800 0.04 0.3291 1.7300 415.0 4.04 41.0 27.265 0.6800 0.04 0.3291 1.7300 415.0 4.04 41.0 27.255 0.6800 0.04 0.7268 1.6200 455.1 4.07 4.0500 0.04 0.7268 1.6200 475.2 4.07 4.0500 0.02 0.7268 1.6200 475.1 4.71 4.73 4.75 0.7500 0.24 2.1400 475.1 4.08 6.26 50.69 37.05 0.5400 0.0	35.0 2.74 2.74 2.643 24.640 14.546 0.7700 0.901 0.2274 2.1400 37.0 4.01 4.01 30.07 28.646 21.636 0.7600 0.01 0.0673 2.0500 335.0 4.14 4.15 34.21 32.14 27.245 0.6800 0.02 0.1507 1.9200 4.15.0 4.46 38.67 27.245 0.6800 0.04 0.3291 1.7300 4.15.0 4.47 4.59 32.247 0.6800 0.04 0.3291 1.7300 4.15.0 4.47 4.59 32.242 0.6900 0.724 2.5142 1.6200 4.55.1 4.71 4.71 4.739 0.5500 0.24 2.5142 1.6200 4.55.1 4.71 4.734 4.734 0.5800 0.24 2.5142 1.6200 4.55.1 4.739 4.7454 0.5800 0.24 2.5142 1.6200 4.55.1 4.60 4.7454			4:34	23.29	21.12	16.457	0.69.0			2.0830	34.2832
373.3 4.03 4.04 30.07 28.05 21.636 0.7600 0.01 5.0673 2.0500 495.3 4.16 4.15 34.21 32.44 0.6800 0.03 3.321 1.7200 415.0 4.46 36.41 36.44 27.264 0.6800 0.03 3.321 1.7300 415.0 4.47 4.49 4.51 30.247 0.6000 0.06 0.7268 1.6300 415.1 4.47 4.54 4.51 0.6000 0.06 0.7268 1.6300 455.1 4.61 4.71 53.06 37.513 3.5500 0.24 2.5142 1.6300 455.1 4.61 4.73 50.5500 0.26 8.334 1.0000 455.1 4.62 4.63 4.734 0.5500 0.66 8.334 1.0000 455.1 4.62 4.64 4.734 4.734 0.5500 2.5400 2.1000 550.0 4.64 4.64 4.64	372.3 4.03 4.04 30.07 20.05 21.636 0.7600 0.01 1.0673 2.0500 495.3 4.46 4.66 36.44 27.265 0.6300 0.04 0.1257 1.9201 415.0 4.46 36.76 36.44 27.265 0.6300 0.04 0.1257 1.9201 415.0 4.47 4.67 36.44 27.265 0.6300 0.06 0.7266 1.6300 415.1 4.71 4.71 53.65 50.69 37.243 3.5300 0.24 2.5142 1.6200 455.1 4.71 4.71 53.65 50.69 37.513 3.5500 0.24 2.5142 1.6200 455.1 4.63 4.754 0.5500 0.24 2.5142 1.700 475.1 4.63 4.754 0.5500 0.24 2.5142 1.7000 475.1 4.63 4.754 0.5500 0.24 2.5142 1.7000 475.1 4.63 4.75			2.74	26.03	24.66	18.568	0.1700	0.01	7,2274	2.1300	40.0412
355.3 4.14 4.15 34.21 32.14 24.454 0.6800 0.02 0.1577 1.9220 415.0 4.40 4.40 4.40 4.41 31.44 24.455 0.6800 0.03 0.7268 1.8791 1.7100 415.7 4.40 4.40 4.41 4.41 24.42 0.6830 0.03 0.7268 1.8791 415.7 4.41 4.41 4.42 4.51 0.6000 0.03 0.7268 1.8300 455.3 4.41 4.51 31.24 0.620 0.21 0.22 1.6200 475.3 4.62 4.63 4.63 4.736 0.5500 0.62 8.3344 1.9000 475.3 4.63 4.736 4.754 0.5800 0.66 8.3344 1.9000 475.3 4.64 4.736 4.754 0.5800 2.10 26.936 2.1000 55.0 4.44 4.55 91.33 4.454 0.5800 2.10 26.932	395.3 4.16 4.15 34.21 32.14 24.45 0.6800 0.02 0.1577 1.9220 435.3 4.46 4.16 27.265 0.6830 0.03 0.7266 1.8301 415.7 4.47 4.37 4.364 41.16 27.265 0.06000 0.03 0.7266 1.8301 415.7 4.51 4.51 0.24 0.03 0.7266 1.8301 1.6300 435.3 4.71 4.71 4.71 4.71 4.72 4.5200 0.24 2.5142 1.6200 475.3 4.64 54.69 37.059 3.5300 0.24 2.5142 1.6200 475.3 4.71 4.736 0.5800 0.24 2.5142 1.6200 475.4 5.68 6.26 54.39 41.454 0.5800 1.24 1.2400 475.0 6.69 6.26 54.31 41.454 0.5800 1.24 1.2400 475.0 6.69 6.26 6.33			4:34	30.07	20.05	21.636	0.7600	10.0	3.0673	2.0500	48.3147
413.0 4.46 36.47 36.44 27.265 0.6300 0.04 0.3291 1.7300 415.0 4.41 4.116 30.247 0.6000 0.04 0.7268 1.6300 435.0 4.61 4.136 32.92 32.92 0.6000 0.06 37.268 1.6300 455.1 4.61 4.71 4.71 4.71 4.72 1.6200 0.24 2.5142 1.6200 455.1 4.61 4.71 4.73 4.73 0.5500 0.24 2.5142 1.6200 475.1 4.71 4.73 4.73 0.5500 0.24 2.5142 1.6200 475.1 4.68 6.24 6.24 4.73 0.5500 0.26 8.34 1.7000 475.1 4.68 4.69 4.75 0.5500 1.2 1.6000 2.1000 475.2 4.68 4.69 41.65 0.5600 1.2 1.6000 2.1000 45.5 4.64 45.5	433.3 4.46 36.47 27.265 0.6300 0.034 0.3291 1.7300 435.3 4.64 4.69 41.64 37.247 0.6000 0.03 37.268 1.6300 435.3 4.61 4.69 46.34 45.94 37.213 3.5500 0.02 2.5142 1.6300 435.3 4.71 4.71 53.05 50.69 35.513 3.5500 0.24 2.5142 1.6200 435.3 4.71 4.73 4.73 4.73 0.5500 0.26 8.3344 1.7000 490.7 4.63 4.745 0.5500 0.26 8.3344 1.9000 490.7 4.63 4.745 0.5500 2.10 26.996 2.1000 535.0 4.63 4.745 0.5900 2.10 26.996 2.1000 535.0 4.64 4.59 4.745 0.5900 2.10 26.996 2.1000 555.0 4.67 4.745 4.739 0.5900 2.10<	5 395.3		4.15	34.21	32.14	54.454	0.6300	0.02	1.1577	1.9200	56.2733
418.0 4.47 4.34 41.16 30.247 0.6000 0.00 0.7266 1.6300 43.27 4.61 4.51 3.51 3.52	418.70 4.27 4.28 4.28 0.2600 0.08 0.7266 1.6300 43.71 4.61 4.51 4.52 3.24 3.26 3.24 3.24 3.26 3.24 3.26	2 433.3		***	38.67	36.44	27.265	3.6300	0.04	9-3291	1.7300	53.9919
433.7 4.61 4.64 4.69 32.923 4.5727 0.14 1.3839 1.6200 455.3 4.71 4.71 4.71 4.71 4.71 4.71 4.71 4.72 4.5300 0.24 2.5142 1.6200 455.3 4.52 5.66 37.039 37.039 0.38 3.6238 1.7000 475.1 5.63 6.54 6.434 4.1736 0.5500 0.66 8.3344 1.0000 490.7 4.68 6.28 6.93 4.134 0.5500 0.66 8.3344 1.0000 490.7 4.68 6.28 6.93 4.134 0.5500 2.10 26.93 2.1000 515.0 6.28 7.39 4.134 3.500 3.6903 3.4000 515.0 4.41 4.53 93.36 5.42 3.500 3.432 2.3000 515.0 4.41 4.54 93.36 3.500 5.4000 3.2100 55.0 4.42	433.7 4.61 4.69 45.943 32.943 0.5727 0.14 1.3839 1.5820 455.3 4.71 4.71 5.513 3.5530 0.24 2.5142 1.6200 455.3 2.62 37.05 37.05 37.05 3.530 0.24 2.5142 1.6200 475.3 2.64 6.26 54.31 4.135 0.5300 0.26 8.334 1.7000 470.7 4.68 6.26 6.33 4.45 0.5800 1.24 1.865 2.1400 490.7 4.68 6.26 6.34 4.45 0.5800 1.24 1.865 2.1400 410.0 4.68 4.69 4.45 4.45 0.5800 2.10 26.9964 2.1000 55.1 4.64 45.53 93.36 54.293 1.5500 5.10 78.4342 2.1000 55.1 4.64 45.53 93.36 54.293 1.5500 5.10 78.4342 2.2100 55.1	* *15.0		16.4	43.64	41.16	30.247	0.6000	0.00	9.7268	1.6300	72.0937
4-5.3 4-11 4-11 53.05 50.69 35.513 1.5500 0.24 2.5142 1.6200 455.3 2.49 2.530 0.5500 0.4228 1.7100 1.710 0.5500 0.46 8.334 1.0000 490.7 4.68 6.28 6.39 4.75 0.5500 1.2 1.2500 2.1000 490.7 4.68 6.28 6.39 4.75 0.5500 1.2 1.2500 2.1000 510.0 6.28 7.39 4.739 0.5900 2.10 2.400 2.1000 53.0 4.44 45.53 91.85 7.550 5.10 76.434 2.4000 55.0 4.44 45.53 93.36 54.23 1.5500 5.10 76.434 2.200 55.0 4.42 4.44 45.53 93.36 5.10 76.434 2.2100 55.0 4.42 4.44 45.53 93.36 61.34 0.4500 2.2100 55.0 <t< td=""><td>455.3 4.71 4.71 53.05 50.69 35.513 1.5500 0.24 2.5142 1.6200 455.3 2.42 2.542 1.739 0.5500 0.34 1.770 1.739 0.5500 0.66 8.334 1.7000 490.7 4.63 4.63 4.7454 0.7500 0.66 8.334 1.9000 490.7 4.63 4.739 7.550 2.10 26.99 2.1000 515.0 5.25 6.25 7.37 4.739 7.630 2.10 26.99 2.1000 535.0 4.44 4.55 31.87 4.454 0.590 2.10 26.99 2.1000 555.0 4.44 4.55 31.87 51.85 0.590 3.70 3.400 555.1 4.47 4.49 54.28 3.500 5.100 3.000 555.1 4.47 4.49 56.58 3.500 5.100 3.000 555.1 4.47 4.49 3.500 4.5</td><td>6 437.7</td><td></td><td>4.59</td><td>.8.34</td><td>45.99</td><td>32.923</td><td>2.5793</td><td>\$1.0</td><td>1.3839</td><td>1.6000</td><td>79.6038</td></t<>	455.3 4.71 4.71 53.05 50.69 35.513 1.5500 0.24 2.5142 1.6200 455.3 2.42 2.542 1.739 0.5500 0.34 1.770 1.739 0.5500 0.66 8.334 1.7000 490.7 4.63 4.63 4.7454 0.7500 0.66 8.334 1.9000 490.7 4.63 4.739 7.550 2.10 26.99 2.1000 515.0 5.25 6.25 7.37 4.739 7.630 2.10 26.99 2.1000 535.0 4.44 4.55 31.87 4.454 0.590 2.10 26.99 2.1000 555.0 4.44 4.55 31.87 51.85 0.590 3.70 3.400 555.1 4.47 4.49 54.28 3.500 5.100 3.000 555.1 4.47 4.49 56.58 3.500 5.100 3.000 555.1 4.47 4.49 3.500 4.5	6 437.7		4.59	.8.34	45.99	32.923	2.5793	\$1.0	1.3839	1.6000	79.6038
455.3 2.92 2.92 55.96 54.50 37.059 0.5303 0.36 3.6228 1.7000 475.1 5.63 6.546 62.65 59.31 41.736 0.5500 0.66 8.0344 1.0000 0.66 8.0344 1.0000 0.56 8.0344 1.0000 0.56 8.0344 1.0000 0.56 8.0344 1.0000 0.56 8.0344 1.0000 0.56 8.0344 1.0000 0.56 8.0344 1.0000 0.56 8.0344 1.0000 0.5600	455.1 2.92 2.92 55.56 37.059 0.5300 0.38 3.6228 1.7000 475.1 5.63 62.86 62.87 40.736 40.736 0.5300 0.56 8.3344 1.9000 \$10.0 6.26 6.27 47.54 47.54 0.5800 1.24 11.4463 2.1400 \$13.0 6.26 7.57 47.59 0.5800 2.10 26.8964 2.3000 \$55.0 4.47 44.55 31.87 51.85 0.5900 3.70 55.400 \$55.0 4.47 44.45 55.53 3.70 54.29 2.200 \$55.0 4.47 44.45 55.53 3.36 56.200 5.400 \$55.0 4.47 44.45 55.53 3.500 5.400 5.400 \$55.0 4.47 44.45 5.53 3.36 56.200 5.400 \$55.0 4.47 4.47 4.47 4.47 4.44 4.43 2.200 <th< td=""><td>3 :45.3</td><td></td><td></td><td>53.05</td><td>50.69</td><td>35.513</td><td>3.5500</td><td>0.24</td><td>2,5142</td><td>1.6200</td><td>47.2331</td></th<>	3 :45.3			53.05	50.69	35.513	3.5500	0.24	2,5142	1.6200	47.2331
476.1 5.68 6.54 62.65 49.31 4).756 0.5540 0.66 8.3344 1.9000 490.7 4.68 4.69 67.33 64.99 4.7.454 0.5800 1.24 13.4663 2.11400 510.0 6.26 6.28 73.60 70.47 47.399 2.6300 2.10 26.9964 2.3000 535.0 4.41 4.44 55.59 53.36 54.293 7.5500 5.10 78.4342 2.3200 595.0 4.41 4.44 55.59 53.36 54.293 7.5500 5.10 78.4342 2.3200 595.0 4.42 4.44 90.53 17.37 51.37 9.5500 5.10 78.4342 2.3200 595.0 4.42 0.00 95.0 17.43 5.430 0.4400 7.4400 3.6400	476.1 5.68 6.54 62.65 49.31 4).736 0.5500 0.66 8.3344 1.9000 \$10.0 4.26 6.28 16.47 47.54 0.5500 1.24 1.8463 2.1600 \$10.0 4.26 6.28 13.60 10.47 47.39 3.6300 2.10 26.3904 2.3000 \$15.0 4.41 4.44 45.53 93.36 54.293 1.5500 5.10 26.932 2.4000 \$55.0 4.41 4.44 45.53 93.36 54.293 1.5500 5.10 76.4342 2.3200 \$55.0 4.42 4.44 45.53 93.36 54.293 1.5100 5.10 76.293 2.10 76.4342 2.1200 \$55.0 4.42 4.44 45.53 93.36 54.293 1.5100 5.10 76.434 2.2100 \$55.0 4.42 4.43 10.00 37.83 56.583 1.5100 56.432 2.10 76.434 2.2100 </td <td>1 455.3</td> <td>`</td> <td>26.2</td> <td>45.96</td> <td>54.50</td> <td>37.059</td> <td>3.5300</td> <td>3.38</td> <td>3.6228</td> <td>1.7000</td> <td>42.1427</td>	1 455.3	`	26.2	45.96	54.50	37.059	3.5300	3.38	3.6228	1.7000	42.1427
\$90.0 4.68 4.69 67.33 64.99 47454 0.5800 1.24 11.0463 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0	\$10.0 6.68 6.69 67.33 64.99 43.454 0.5800 1.24 13.463 15.20 51.0 26.9904 15.20 7.55 6.26 6.26 13.400 1.24 13.40 12.10 26.9904 15.20 7.55 7.55 91.15 7.137 51.854 0.5900 2.10 26.9904 15.20 4.44 4.44 4.44 4.55 83.36 54.243 7.5500 5.10 74.4392 555.3 4.47 4.49 10.07 37.83 56.243 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 88888 1.5100 6.54 888888 1.5100 6.54 888888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88888 1.5100 6.54 88		4	6.54	65.65	49.31	41.736	0.5500	99.0	8.3344	1.9000	
\$10.0 6.26 6.28 73.60 70.47 47.399 3.6303 2.10 26.9904 \$35.0 7.55 7.55 91.15 77.37 \$1.654 3.5903 3.70 54.322 \$55.0 4.44 4.44 55.59 93.36 54.293 7.5503 5.10 78.4392 \$55.0 4.45 4.49 10.01 95.04 61.449 3.6400	\$10.0 6.26 6.26 73.60 70.47 47.399 7.6300 2.10 26.904 \$35.0 4.44 6.44 45.59 91.36 54.299 7.5500 5.10 54.302 \$55.0 4.44 4.44 45.59 93.36 54.299 7.5500 6.10 \$55.0 4.47 4.49 70.07 37.83 54.299 7.5100 6.54 ************************************	Ĭ		4.69	67.33	66.99	44.454	0.5800	1.24	13.0463	5.1400	
\$35.0 7.55 7.55 91.85 77.37 \$1.854 0.5900 3.70 54.9323 \$55.0 4.41 4.44 65.59 93.36 54.293 7.5500 5.10 74.4342 \$55.0 4.41 4.44 0.00 17.83 54.583 0.5100 6.54 ************************************	\$35.0 7.55 7.55 91.15 77.37 \$1.854 0.5900 3.70 54.9323 \$55.0 4.44 4.44 95.59 93.36 54.293 7.5500 5.10 78.4392 \$55.1 4.42 4.49 70.07 37.83 56.583 1.5100 6.54 eccese \$55.0 4.42 6.49 1.00.00 95.04 61.349 0.4400		•	6.26	73.60	10.47	+1.399	3.6303	2.10	26.9904	2.3000	
\$53.0 4.44 4.44 45.59 93.36 54.243 7.550.0 5.10 74.4942 555.0 4.44 4.94 10.07 37.83 55.783 1.5510 6.54 ecceses 555.04 4.92 9.93 1.00.00 45.04 61.344 0.4400	555.0 4.41 4.44 45.59 93.36 54.243 7.550.0 5.10 74.4342 555.3 4.42 4.49 70.07 37.83 56.283 1.510.0 6.54 ************************************			7.55	91.15	11.37	\$1.854	0.5900	3.70	54.9323	2.4000	
565.3 4.43 4.49 30.07 37.83 56.583 3.5103 6.54 ************************************	\$55.0 4.47 4.49 70.07 37.83 56.583 0.5100 6.54 ************************************		•	::	45.53	93.36	54.243	1.5500	5.10	78.4392	2.3200	
* 565.0* 9.92 9.93 170.0U 45.0* 61.349 0.4400	\$ \$65.00 9.92 9.93 1.10.00 95.00 61.349 0.4870		•	64.4	10.00	37.83	56.583	3.5100	45.4	*******	2.2130	
				9.93	1.30.00	45.3*	61.349	0.440			3.0600	

TEN.	NO. USE	-1	VOLUME	WOLLER.	PEG 401	CHAVITY DEG 4º1. SOECIFIC	WT PCT	SUL FUR	N1 AT 67 0EG C	CARBON	NI PCT	ANILINE	AROMATICS
1 374			1.00	0.50	*1.00	9.6171	19.0	0.9748	1.4329			c	0.0
3	0.0	1.50	1.50	0.75	40.57	0.0223	1.32	0.9023	1.4349			•	0.0
5	2.0	3	3.60	1.80	30.46	0.8325	3.20	0.7311	1.4390			\$	0.0
	0.0	7.50	7.50	3.75	35.46	7.047+	6.7	0.7350	-			2	0.0
	•	01-01	01-01		30-0	0.8546	17.6	0-7307	1.4526			2	0.0
			21.00	15.90	11.07		30.07	0-719	1.4/30	-	-		9
		06-07	24-33	79-21	20.07	0.8780	4.22		1.4077			8	0.0
		20-15	97-16	16.20	21.85	0.00	56.62	0.7128	1.4730			2	0.0
2	2	000		3-20	33.05	0-0457	3.97	0.6399	1.4456			5	0.0
		01-61	01.		33.56	60000		0.1052	1.434			23	•••
		200		06.	34.60	0.0357	2	0.050	6164-1			2;	
	1	2000		2000	17.55		20.00	2000	7.00.1			-	1
	3.2			17.04	24.00	0.6622		7566	4712			2 8	
	10.10	20-00	14.00	17.50	27.11	0.4921	20.31	0.4910			1.9300		
3		24.90	90	20.75	26.07	0.89.0		0.6537	104401		2.047	. 8	0.0
3	16.63	31.00	15.20	24.20	24-25	3.9085	14.73	0.7045	1.4865		2.3510	66	0.0
1 732	24.90	47.50	15.60	32.70	21.52	3.9247	15.38	0.7025	1.4967	0.02	1.5311	8	0.0
150 0	24.40	57.80	32.99	41.35	20.44	9.9313	32.68	0.6305	1.5021	9.11	1.1723	8-	0.0
130	24.90	11.00	01.99	57.95	17.85	3.9474		0.6008	1.5153	19-1	1.9971	8	0.0
3	40.50	97.10	17.30	49-15	19.40	9.9372	17.30	0.5664	1.5070	61.0	1.6309	=	0.0
•	45.50	82.40	34.90	13.95	16.97	0.9530	37.8	0.5761	1.5104	1.45	2.0092	8	0.0
	97.83	75-110	17.30	5	16.55	3.9558	17.63	0.5864	1.5207	1.33	1.135	2	•••
	27.00	00-16	33.20	2	15.38	3.9634	7.	0.5724	1.5278	3.6	2.2125	101	0.0
	23.10		13.40	55.05	14-13	0.9717	3 3	0.5574	1.5362		2-3267	8 :	•••
		RE	RES TOUE	200	7007	303136	30.72	763637	10.2403	- 20%	100707	177	3
		1	-										
4 9	AFOR	3	CRAVITY		7.0		11,	STM					
		366 4	33	ישנונוני	1	S 1.	CON CARBON	NITROGEN	JGEN.				
							20.00		3.				
	22.20						7.33		200				
***	2.50		0.966		61.33	2.6	5.75		2-10				
.001	69.20	15.7	0.4		69.63	0.57	\$0.8		2.14				
.22	75.10	16.2	6.0		76.71	0.59	4.60		2-13				
5630	\$.30	17.6	4.0		27.8	0.59	10.4		2.11				
220	97.40	19.0	0. 70 C	1	31.09	9.61	3000		2672				
MITTE		ž			650	752	158	953			*	•30	150
4	4:	4:	148	4:	7	4	4	4		45	959	4	2
					2000	11001							

CRUDE	
PARAHO SHALE OIL	SL. 33C-FP. 75

GASOLINES & NAPHTHAS

15/5 CUT POINT	°F VT	68/158 20/70	44/212 20/100	150/212 70/100	212/302 100/150	248/374 120/190	302/374 130/190
YIELD CUT RANGE	VOL. %					The fa	0.0-1.0
YIELD ON CRUDE	VOL. %						1.0
MID-POINT	VOL. %						0.5
GRAVITY	*API						41.7
SPECIFIC GRAVITY	60/60						0.8170
TOTAL SULFUR	WT. %						0.98
MERCAPTAN SULFUR	WT. PPM						153
REID VAPOR PRESSURE	PSI						
RESEARCH OCTANE NUMBER	2030						
CLEAR							
+ 1.5 ml TEL/USG							
. 3.0 ml TEL/USG							
MOTOR OCTANE NUMBER	8.58			22323	11 17 22 11		
CLEAR							
. 1.5 ml TEL/USG							
+ 3.0 ml TEL/USG					00.000		
VOL. % D + L @ 70°C/158°F							
≈ 100°C/212°F							
FBP	1774						
ANILINE POINT, *F							
		GC .		GC	GC HC		нс
PARAFFINS SALES	VOL. %		a nea n o e	228 2000	2339556		
NAPHTHENES AROMATICS	VOL %		10000000000000000000000000000000000000				

TABLE 6

×		
	PARAHO SHALF OIL	SL. 33C-FP. 75
	PARAMO SHALF OIL	3L. 330-FF. 73

KEROSENE & TURBO FUELS 15/5 CUT POINT " VT 302-401 302-455 302-509 374-482 374-536 15/5 CUT POINT C YT 150-205 150-235 150-265 190-250 190-200 0.0-1.5 0.0-3.6 0.0-7.5 1.0-5.4 1.0-10.1 YIELD CUT RANGE VOL. % 1.5 3.6 7.5 4.4 9.1 VOL. % YIELD ON CRUDE 0.8 1.8 3.2 5.6 MID-POINT VOL. % 3.8 40.6 38.5 35.5 35.8 33.2 GRAVITY ·API 0.8222 0.8324 0.8473 0.8458 0.8591 SPECIFIC GRAVITY 60/60 0.90 0.73 0.71 0.64 0.71 TOTAL SULFUR WT. % 174 182 180 174 175 MERCAPTAN SULFUR WT. PPM 17 17 15 16 14 SMOKE POINT LUM. NO. 37 35 31 32 27 FREEZING POINT too dark CLOUD POINT .F too dark POUR POINT <-70 -70 -50 -55 -40 ANILINE POINT 69 69 70 69 73 DIESEL INDEX 28 26 25 25 24 COLOR SAYBOLT REFRACTIVE INDEX + 67-C 1.4349 1.4398 1.4478 1.4456 1.4548 AROMATICS, FIA VOL. % VISCOSITIES: KINEMATIC . -30-F cSt 6.06 11.6 25. 1 24.4 48.4 1.49 1. 12 1.96 1.93 2.45 . 100-F e 210-F -0.58 0.70 0.85 0.84 0.98

	CRUDE	200							
		PARAMO SHALE OIL	-				SL. 33C-FP. 75		
				HIDDIE	MIDDLE DISTILLATES			39	
15 5 CUT POWT	24.4	401-100	509-590	85-045	847-045	138-690	401.450	303-698	
18-5 CUT FORT	2	285.265	36-310	316-343	316-370	140-343	205-343	156-370	
THELD CUT RANCE	. 4	1.5-7.5	7.5-16.6	16.6-24.9	16.6-31.8	0.3-24.9	1.5-24.9	0.0-31.8	
TIELD ON CRUDE	, A	0.9	1.4		15.2	24.6	33.4	31.8	
18.9	. 4.	4.5	12.0	20.8	24.2	12.6	13.2	15.9	
CERNITY	5	¥.3	28.9	26.1	24.2	29.7	29.2	28.1	
SPECIFIC LABANTY	2 2	0.8534	0.8822	0.8978	0.9088	0.8778	0.6605	0.8866	
TOTAL SULPIN	5	0.66	0.76	0.65	0.70	00	0.70	0.72	
AME IN POSIT	-	20	93	3	93	98	87	916	
DIE AL MOER		2	u	%	23	55	22	22	
CETAME NOES		2	42	93				ATT	
CLOLD POWT		Too Dark							
ros rost	•	.80	-10	30	07	0	0	13	
REPRACTIVE HIDER & 67C		1.4510	1.4712	1.4801	1.4865	1.4677	1.4692	1.4730	
MEUT. NO. 10-170	- 10/7	3.7	3.5	3.0					
VECONTES				Po					
COMBASTIC + 1804	t	2.33	17.4	9.31	12.3	4.25	4.59	2.40	
	•	1.4	2.38	60.4	5.03	2.33	2.43	2.74	
***	*								
i	•	0.93	1.41	2.14	2.52	1.37	1.44	1.58	
		9.2	0:0	13.4					
:			39.3	7					
	4.2	10.1	1.64	2.03	6.03				

	CHOOL	PARARO STATE OIL	u				SL. 33C-PP. 75		
					GAS OILS				
19.4 CUT POINT 19.5 CUT POINT	: ;	101-48	752-451	081-158 018-889	938-1049	343-455	650-1049 343-565	651.1045	\$35-568
THELD CUT RANGE	404. S	26.9-40.5	40.5-57.8	57.8-75.1	75. 1-91.0	24.9-57.8	24. 9-91. 0	57.8-91.0	82.4-91.0
TIELD ON CRUBE	, i	15.6	17.3	17.3	15.9	32.9	1.99	33.2	9.6
	10F. 8	32.7	49.2	66.5	93.0	41.4	58.0	74.4	86.7
GRAVITY	144.	21.5	19.5	16.6	14.1	20.4	17.8	15.4	13.9
SPECIFIC GRAVITY	;	0.9248	0.9371	0.9554	0.9718	0.9315	0.9478	0.9632	0.9732
TOTAL SULFUE	8.2	0.70	0.57	0.59	0.56	0.63	09.0	0.57	0.53
AMILINE POINT	•	*	111	106	108	108	105	101	121
CON CARBON	4.1	0.05	0.19	1.33	96.7	0.13	1.61	3.05	5.92
HOUR POINT	•	3	8	105	21	2		110	110
REPRACTIVE MOEK ; APC	3	1.4967	1.5070	1.5200	1.1962	1.5021	1.5150	1.5278	1. 5405
MENT. M.	- 100/-					0.32			
atesta	e E	1.93	1.63	2.10	2.33	1.71	2.00	2.21	2.26
VECEBITES									
CHEMATIC : No.	•	25.8	(119)						
	8	8.8	26.8	89.1	38	15.4	43.5	169	232
	•								
	*	3.80	8.32	20.4	58.9	5.58	12.2	32.7	78.0
BASIC INTROCEM	9.7.	•				1.03		1.27	
ORVGEN	#.F							0.99	
METALS		99							
VARABRE	4.7			-				<0.1	
MCEE!								2.9	
•								4.2	
**		16.0	17.1	18.9	23.4				
1		1.54	45.3	7.67	à				

d

PARAHO SHALE OIL

SL. 33C-FP. 75

LUBE DISTILLATES

		LUGE	PERVED
15/5 CUT POINT	•F VT	779-995	
15/5 CUT POINT	•c vt	415-535	
YIELD CUT RANGE	VOL. %	45.6-81.6	
YIELD ON CRUDE	VOL. %	36.0	
MID-POINT	VOL. %	63.6	
GRAVITY	*API	17.0	
SPECIFIC GRAVITY	60/60	0.9529	
TOTAL SULFUR	WT. %	0.58	
CON CARBON	WT, %	1.36	
ANILINE POINT		103	
REFRACTIVE INDEX # 67°C		1.5184	
NEUT. NO. (D-974)	mg KOH/gm	0.51	
NITROGEN	WT. %	2.01	
POUR POINT	·F	100	
WAX CONTENT	WT. %		
WAX MELTING POINT	•		
VISCOSITY INDEX		<0	
VISCOSITIES:			
KINEMATIC # 100°F	c\$t	(433)	
• 150•F	e\$t	69.1	
• 175°F	cSt	San Child	
● 210°F	eSt.	17.0	
SAYBOLT UNIVERSAL . 100-F	SEC	2006	
e 210°F	SEC	86.0	

PHENOL TRE SUSCEPTIBLE	
PHENOL TRE CHARACTERIS DEWAXED LU	ITICS OF
PHENOL/OIL	
RATIO	
Treat	
RAW STOCK	
1/1	
2/1	
3/1	
VISCOSITY GRAVITY CONSTANT	
*From Established Corre	

Yields on this table are those as cut from still and the inspections are raw date, not correlated

				•	TABLE 10			
	Janus	PARANO SHALE OIL	110 21 1				SL33C-FP. 75	
				8	RESIDUA			
18.5 CUT POINT	14 4	ş	- 69	752-	-158	-054	•₩01	
IS S CUT POMIT	E y	76.	376-	-89-	456-	510:	÷95	
TIELD ON CRUBE	VOL. 5	75.1	68.2	59.5	42.2	24.9	9.0	
CHAVITE	ş	16.2	15.7	14.9	13.1	10.8	5.3	
SPECIFIC GRAVITY	9.99	0.9580	0.9613	0.9665	0.9786	0.9944	1.0344	
-STAL SULFUR		0.59	0.57	0.56	0.55	0.53	0.48	
-OH CARBON		9.4	5.0	5.8	7.9	12.4	24.7	
M-ROGEN		2.13	2.14	2.19	2.40	2.60	3.06	
MEUT 10. (D-444)	- KOR. T	0.55						
TOUR POINT	•	95	105	115				
VISCOSITIES								
KINEMATIC . IMPF	*	570	006	(1600)				
M .	•	229	335	569				
*	8	89.5	124	181	587			
• 134	ð	45.0	59.0	9.4.6	208	838		
.	ŧ	21.2	26.4	35.7	76.1	243	6686	
FUROL + 275-F	298						350	
	3 8 C							
UNIVERSAL . 210F	SEC	103.6	126.4	168.3	355	1133		
4-001 + 1000-C34	SEC	2324	3669					
ABSOLUTE VISC. + 140-F	POISES							
METALS.							To the same of the	
VANADIUM	#4. PP&	0.75			1.3		5.8	
MCKEL.	add .Tu	5.9			10.3		35.7	
*04:	WT. PPM	83			145		629	
ī								
ı	#T. 8							
OFFCEN								

-

GRAPH NO. 1

Mark Control of the C

GRAPH NO. 4
MIDDLE DISTILLATES AND GAS OILS

GRAPH. NO. 5
MIDDLE DISTILLATES AND GAS OILS

GRAPH NO. 6
MIDDLE DISTILLATES AND GAS OILS

AD-A036 190

EXXON RESEARCH AND ENGINEERING CO LINDEN N J GOVERNME--ETC F/6 7/1

EVALUATION OF METHODS TO PRODUCE AVIATION TURRINE FOLLS FROM SY--FTC(II)

MAY 76 C D KALFADELIS

EXXON/GRU, 2PEA.76

AFAPL-TR-75-10-VOL-2

GRAPH NO. 8

GRAPH NO. 9

APPENDIX VI

CRUDE ASSAY - TOSCO SHALE OIL

examed galreenigol but dishears much

Madret work oracold

....

CRUDE:

SHALE OIL - TOSCO

COUNTRY:

Colorado

REPRESENTATIVE OF:

Production from pilot plant at Rifle, Colorado

FILE NO.:

SL. 17C-FP. 75

REPORT DATE:

October 28, 1975

REPORT BY:

Damy M. Williams

EXXON RESEARCH & ENGINEERING CO. ENGINEERING INFORMATION CENTER FLORHAM PARK, N.J.

DATE RECEIVED:

3-4-75

DATE DISTILLED:

7-14-75 Table Proposition Name of the Proposition o

LAB ASSAY NO.:

2033

COST CENTER:

2524-704 (5800-712160)

CARD NOS .:

ASSAY RUN BY:

EXXON COMPANY, U.S.A. REFINING DEPARTMENT REFINERY LABORATORY BAYTOWN, TEXAS

SPONSORED BY:

Exxon Research and Engineering Company Linden, New Jersey

CRUDE SHALE OIL - TOSCO

SL. 17C-FP. 75

WHOLE CRUDE DATA

GRAVITY SPECIFIC GRAVITY		*API 60/60	21.0 0.9279
SULFUR		WT. %	0.67
MERCAPTAN SULF	UR	WT, PPM	47
POUR POINT			70
NITROGEN		WT. S	1.85
WATER AND SEDIA	MENT	VOL. %	0.2
SALT CONTENT, N	I CI	PTB	
REID VAPOR PRE	SSURE	PSI	0.2
H2S (DISSOLVED)		WT. PPM	0
NEUT. NO. (D664)		mg KOH/gm	0.9
		122°F, c\$1	
		100°F, eSe	27.1
	KINEMATIC &	BO°F, cSr	
		60°F, cSt	
		40°F, c51	
VISCOSITIES:		122°F, SEC	
		100-F, SEC	128.6
	SAYBOLT UNIVERSAL -	80°F, SEC	4464664
0.7.7563		60°F, SEC	
1 1 20 2 10 10 10 10	一位 1991年 新发生的 1991年 新发	40-F, SEC	

% ON CRUDE	WEIGHT	VOLUME
ETHANE AND LIGHTER PROPANE		
ISO BUTANE NORMAL BUTANE		
ISO PENTANE NORMAL PENTANE	2 1	

PERPENATINE SUM OF CAN VOL. DUT GRAVITY SUM OF FOLK FOR PLAN PLY X ANN, DITERPEARTINE CONTRINE CONTRIN			אשרה טור וטאכט		2	AND CA	DATA INPUT AND CALCULATIONS	21.0 UEG API		SL.17C-FP.75	-FP.75
C_2	TEMPE	ATTIBE	NORM.		PCT	GRA	V1 TV	SUM OF		960.6	SUM OF
Color	EG F		ON CRUDE	N.	CIN	1210		X VOL PCT	67 DEG C	AN. PT.	X AN. PT
C	J		0.0	0.0	0.0	246.8	0.3740	0.0			
15,	ບ		0.0	0.0	0.0	147.1	0.5079	0.0			
100, 0.00			0.0	0.0	0.0	119.8	0.5631	0.0			
10.03			3.04	0.0	0.02	110.8	9.5840	0.02336			
10.0 0.5 0.00 0	=	ı,n	9.03	0.01	0.04	2.46	0.6290	0.04211			
70.0 0.551 0.660 0.34 61.7 0.7324 0.64651 100.0 0.70 1.60 1.25 63.0 0.7275 0.64651 100.0 0.70 1.60 1.25 63.0 0.7275 1.16132 120.0 1.10 7.7 2.15 54.0 0.7628 2.00040 135.0 1.40 4.10 2.15 54.0 0.7628 2.00040 140.0 1.40 8.20 7.25 48.2 0.7764 4.77173 150.0 2.20 6.30 7.25 48.2 0.8132 9.97882 1.4135 84 190.0 2.20 12.0 10.60 7.25 48.2 0.8132 9.97882 1.4135 87 226.0 1.70 1.50 1.5.15 37.8 0.8138 11.29052 1.4555 87 226.0 1.70 1.50 1.5.15 37.8 0.8358 13.95697 1.4449 94 226.0 2.30 24.0 1.5.6 35.6 0.8468 13.95697 1.4449 94 226.0 2.30 24.0 1.5.15 37.8 0.8358 13.95697 1.4449 94 226.0 2.30 24.0 1.5.15 37.8 0.8358 13.95697 1.4449 94 226.0 2.30 24.0 1.5.15 37.8 0.8358 13.95697 1.4449 94 226.0 2.30 24.0 1.5.15 37.8 0.8358 13.95697 1.4449 94 226.0 2.30 24.0 1.5.15 37.8 0.8358 13.95697 1.4449 94 226.0 2.30 24.0 1.5.15 37.8 0.8358 13.95697 1.4449 94 226.0 2.30 24.0 1.5.15 37.8 0.8358 1.4493 1.4497 94 226.0 2.30 24.0 1.5.15 28.3 0.9082 2.5.1659 1.5012 103 34 226.0 2.30 24.0 3.0 26.6 0.8950 26.21263 1.4497 94 226.0 2.30 2.40 35.0 36.10 2.43 0.9082 2.5.1033 1.4895 1.5012 103 34 226.0 2.50 31.60 36.10 2.30 0.9082 2.5.1039 1.5012 103 34 226.0 2.50 31.20 30.30 26.6 0.8950 26.21263 1.5012 103 34 226.0 3.30 6.30 6.30 6.30 6.30 6.30 6.30 6	á		2000	60.0	0.08	1.26	0.6311	0.05473			
85.0 0.70 0.70 0.75 53.0 0.7275 0.64651 100.0 11.0 0.70 0.75 54.0 0.7284 1.16132 1.00.0 0.70 0.70 0.70 0.70 0.7061 1.00.0 0.70 0.7061 1.00.0 0.70 0.7061 1.00.0 0.7061 1.00.0 0.70 0.7061 1.00.0 0.70 0.7061 1.00.0 0.70 0.7061 1.00.0 0.7061 1.00.0 0.70 0.7061 1.00.0 0.7061 1.00.0 0.70 0.7061 1.00.0 0.70 0.7061 1.00.0 0.70 0.7061 1.00.0 0.70 0.7061 1.00.0 0.70 0.7061 1.00.0 0.70 0.7061 1.00.0 0.70 0.70 0.70 0.70 0.70 0.70 0	150	70.0	0.51	0.60	*	61.7	0.7324	9.42826			
100.0 0.70 1.50 1.25 50.0 0.7524 1.16132 100.0 1.40 4.10 2.15 54.0 0.7524 2.00040 195.0 1.40 4.10 2.15 54.0 0.7524 3.06317 196.0 2.20 6.20 5.20 54.7 0.7764 4.77173 196.0 2.40 10.60 9.40 45.2 0.8008 8.18974 1.4255 74 196.0 2.40 10.60 9.40 45.2 0.8034 8.18974 1.4255 74 196.0 2.40 10.60 9.40 45.2 0.8034 11.2052 1.4318 73 206.0 2.40 10.60 9.40 45.2 0.8034 12.53612 1.4318 73 206.0 2.10 19.70 15.15 38.9 0.8334 12.53612 1.4395 97 206.0 2.10 19.70 16.65 35.6 0.8354 17.5354 1.4440 94 206.0 2.10 19.70 16.65 35.6 0.8354 17.5354 1.4440 94 206.0 2.30 22.70 22.85 31.0 0.8854 17.5354 1.4440 94 206.0 2.30 22.70 22.85 31.0 0.8854 21.4033 1.4731 100 207.0 2.70 27.65 28.6 0.8874 21.4033 1.4731 100 208.0 2.30 22.00 37.20 36.10 22.2 0.9200 31.2465 1.4460 94 310.0 2.70 27.60 30.30 26.6 0.9950 26.21263 1.4785 94 310.0 2.70 27.60 30.30 26.6 0.9950 26.21263 1.4785 94 310.0 2.70 27.60 30.30 26.6 0.9950 27.3165 1.4785 103 310.0 2.70 27.60 30.30 26.6 0.9950 31.3246 1.4785 103 310.0 3.70 46.85 19.1 0.9938 40.17599 1.5012 103 440.0 3.20 37.20 31.1 0.9484 49.71347 1.5112 130 440.0 3.60 56.80 55.90 17.7 0.9484 49.71347 1.5112 130 440.0 3.60 56.80 55.90 17.7 0.9484 49.71347 1.5112 30 440.0 3.60 56.80 55.90 17.7 0.9484 49.71347 1.5112 30 440.0 3.60 56.80 55.90 17.7 0.9484 49.71347 1.5112 30 440.0 3.60 56.80 57.90 17.7 0.9484 49.71347 1.5112 30 440.0 3.60 57.90 11.2 0.9484 59.71347 1.5112 30 440.0 3.60 57.90 11.2 0.9484 59.71347 1.5112 30 440.0 3.60 57.90 17.7 0.9484 59.79520 1.5495 1.5405 1.5405 1.5	182	85.0	0.30	0.00	0.75	43.0	0.7275	0.64651			
120.0 1.10 2.10 2.15 54.0 0.7624 2.00040 3.06317 1.4135	212	100.0	0.10	1.69	1.25	6.0.9	9.7354	1.16132			
135.0 1.40 4.10 3.40 5.20 5.71 1.00111 1.00111 1.0011 1	248	120.0	1.10	2.70	2.15	24.0	0.7628	2.09040			
150.0 2. 20 6.30 5. 20 5. 7 0.7766 4.77173 1.4135 84 1.4135 1.	275	135.0	1.40	4.10	3.40	54.9	0.7591	3.06317			
160.0 1.90 8.20 7.25 48.2 0.8108 81.8974 1.4185 14.665 14.185 19.60 2.70 12.60 11.70 42.5 0.8108 11.29052 1.4396 92 205.0 1.50 14.40 13.60 41.1 0.8198 11.29052 1.4396 92 205.0 1.50 14.40 13.60 41.1 0.8198 11.29052 1.4396 92 205.0 1.50 12.50	302	150.0	2.20	6.30	5.20	50.7	0.7766	4.77173			
175.0 2.40 10.60 9.40 45.5 0.8008 8.18974 1.4265 74 190.0 2.20 12.80 11.70 42.5 0.8192 11.20052 1.4318 73 205.0 1.60 11.60 13.60 411.20052 1.4395 80 220.0 1.60 15.90 15.15 38.9 0.8394 12.53612 1.4395 80 220.0 1.50 17.60 16.75 37.8 0.8468 15.73524 1.4497 94 12.850.0 2.30 24.00 22.85 31.0 0.8894 17.4531 1.4572 91 11.850.0 2.30 24.00 22.85 31.0 0.8894 21.4903 1.4497 94 12.850.0 2.30 24.00 27.65 28.5 0.8844 21.4903 1.4731 100 1.490.0 2.70 27.65 28.5 0.8844 21.4903 1.4731 100 1.490.0 2.70 27.00 27.65 28.5 0.8894 21.4903 1.4731 100 1.490.0 2.70 27.00 27.65 28.0 0.9902 26.21263 1.4745 94 2.850.0 2.20 37.20 33.30 24.3 26.2 26.21263 1.4873 94 2.850.0 2.20 37.20 38.85 1.4873 34.38655 1.4873 94 2.850.0 2.50 37.20 38.85 1.4873 34.38655 1.4873 94 2.850.0 2.50 43.00 41.75 20.4 0.9278 31.2240 1.500.0 11.3 34.3855 1.500.0 1.	320	160.0	1.90	8.20	7.25	48.2	9.7874	6.26784	1.4135	94	159.6
190.0 2.70 12.80 11.70 42.5 0.8132 9.97882 1.4355 87 200.0 1.50 15.40 13.60 41.1 0.8198 11.29052 1.4355 87 220.0 1.50 15.90 15.00 <td>347</td> <td>175.0</td> <td></td> <td>09.01</td> <td>9.40</td> <td>45.2</td> <td>0.8008</td> <td>8.18974</td> <td>1.4265</td> <td>1.5</td> <td>337.</td>	347	175.0		09.01	9.40	45.2	0.8008	8.18974	1.4265	1.5	337.
205.0 1.60 14.40 13.60 41.1 0.8198 111.29052 1.4355 87 220.0 1.50 15.0 15.15 38.9 0.8394 12.53612 1.4396 92 235.0 1.70 17.60 16.75 37.8 0.8394 12.53612 1.4440 94 265.0 2.30 21.70 20.70 33.2 0.8691 17.45351 1.4677 94 1 280.0 2.30 21.70 20.70 33.2 0.8691 17.45351 1.4677 94 1 280.0 2.30 22.70 22.85 31.0 7.8708 19.45627 1.4649 91 100 1 310.0 2.70 22.00 21.5 28.5 31.0 7.8708 19.45627 1.4679 91 1 325.0 2.40 31.60 30.30 26.6 0.8950 26.21263 1.4745 103 2 325.0 2.40 31.60 30.30 26.6 0.8950 26.21263 1.4745 103 2 343.3 3.40 33.30 24.3 0.9082 29.30055 1.4873 94 2 343.3 3.40 33.30 24.3 0.9082 29.30055 1.4873 94 2 345.0 3.40 35.00 33.30 24.3 0.9082 29.30055 1.4873 94 2 345.0 3.40 35.00 41.75 20.4 0.9373 34.3845 11.5012 103 3 385.0 2.50 43.00 41.75 20.4 0.9373 40.1759 11.5021 113 3 445.0 3.00 50.00 48.35 19.1 0.9396 43.27658 1.5012 103 3 445.0 3.00 50.00 67.90 16.7 0.9548 40.17599 1.5042 113 40.00 40.00 3.00 57.90 16.7 0.9548 40.17599 1.5112 120 540.00 4.70 65.70 65.70 11.2 0.9484 40.71347 1.5112 130 44.750 4.70 65.70 11.2 0.9484 40.71347 1.5143 1130 540.00 3.00 57.90 16.7 0.9548 51.81400 1.5175 121 55.00 57.90 16.7 0.9548 51.81400 1.5175 121 55.00 57.90 16.7 0.9548 51.81400 1.5175 121 55.00 57.90 16.7 0.9548 51.81400 1.5175 121 55.00 57.90 16.7 0.9548 65.52426 1.5517 103 57.00 2.10 78.20 0.9793 66.52426 1.5402 94 77 77 55.00 2.10 78.20 0.9793 66.52426 1.5402 94 77 77 55.00 2.10 78.70 12.6 0.9984 40.52426 1.5402 94 77 75.00 2.10 78.70 12.6 0.9984 40.52426 1.5402 94 77 77 75.00 2.10 78.70 12.6 0.9984 40.52426 1.5403 94 77 77 75.00 2.40 91.20 73.15 12.9 0.9793 65.52285 1.5403 94 77 75.00 2.40 91.20 12.4 0.9982 77.52880 1.5403 94 77 77 77 75.00 2.40 91.20 12.4 0.9982 77.52880 1.5403 1.5407 94 77 75.00 2.40 91.20 12.4 0.9982 77.52880 1.5403 1.5403 94 77 75.00 2.40 91.20 12.4 0.9984 40.52880 1.5403 1.5403 1.5403 0.9982 77.5082 1.5403 0.9982 1.5403 1.5403 0.9982 1.5403 1.5403 0.9982 1.5403 1.5403 0.9982 1.5404 0.9982 1.5403 1.5403 1.5403 0.9982 1.5404 0.9982 1.5404 0.9982 1.5404 0.9982 1.5403 1.5403 1.5403 0.9982 1.5404 0.9982 1.54	374	190.0	100	2.80	11.70	42.5	0.8132	9.97882	1.4318	73	4.97.8
220.0 1.50 15.90 15.15 38.9 0.8394 12.53612 1.4440 92 255.0 2.10 17.60 16.75 37.8 0.8358 13.95697 1.4440 94 265.0 2.30 21.70 20.70 33.5 0.8844 13.73524 1.44572 91 280.0 2.30 24.00 27.65 31.0 0.8844 21.45033 1.4572 91 310.0 2.30 24.00 27.65 28.0 0.8844 21.49033 1.4731 100 310.0 2.30 24.00 27.65 28.0 0.8844 21.49033 1.4731 100 310.0 2.30 24.00 27.65 28.0 0.8844 21.49033 1.4731 100 310.0 2.30 24.0 30.24.3 0.9082 29.30055 1.4675 94 343.3 3.40 35.00 33.30 24.3 0.9082 29.30055 1.4675 94 355.0 2.20 37.20 36.19 22.3 0.9082 29.30055 1.4675 94 37.20 34.0 35.00 33.30 24.3 0.9082 29.30055 1.4675 94 37.0 3.30 40.50 38.85 21.1 0.9273 34.3845 1.5042 103 385.0 2.50 43.00 41.75 20.4 0.9315 40.17599 1.5042 103 385.0 2.50 43.00 41.85 19.1 0.9396 43.27658 1.5091 125 490.0 3.70 46.70 44.85 19.1 0.9396 43.27658 1.5091 125 495.0 2.20 59.00 51.40 16.7 0.9548 51.81400 1.5173 130 445.0 3.60 67.30 65.50 15.2 0.9044 49.71347 1.5143 130 445.0 3.60 67.30 65.50 15.2 0.9046 51.81400 1.5173 127 550.0 2.10 74.20 73.15 12.9 0.9792 66.52426 1.5407 94 550.0 2.40 87.00 78.70 12.1 0.9857 7.5.6398 1.5407 94 550.0 2.40 87.00 78.70 12.1 0.9857 7.5.6398 1.5407 94 550.0 2.40 87.00 78.70 12.1 0.9857 7.5.6398 1.5407 94 550.0 2.40 87.00 78.70 12.1 0.9857 7.5.6398 1.5407 94 565.0 2.40 87.00 78.70 12.1 0.9857 7.5.6398 1.5407 94 565.0 2.40 87.00 78.70 12.1 0.9857 7.5.6398 1.5407 94 565.0 2.40 87.00 78.70 12.1 0.9857 7.5.6398 1.5407 94 565.0 2.40 87.00 78.70 12.1 0.9857 7.5.6398 1.5407 94 565.0 2.40 87.00 78.70 12.1 0.9857 7.5.6398 1.5407 94 565.0 2.40 87.00 78.70 12.1 0.9857 7.5.6398 1.5407 94 565.0 2.40 87.00 78.70 12.1 0.9857 7.5.6398 1.5407 94 565.0 2.40 87.00 78.70 12.1 0.9857 7.5.6398 1.5407 94 565.0 2.40 87.00 78.70 12.1 0.9857 7.5.6398 1.5407 94 565.0 2.40 87.00 78.70 12.1 0.9857 7.5.6398 1.5507 1.5	104	205.0	1.60	04.4	13.60	+1.1	0.8198	11.29052	1.4355	87	625.8
235.0 1.70 17.60 16.75 37.8 0.8358 13.95697 1.4440 94 1 255.0 2.10 19.70 18.65 35.6 0.8468 15.73524 1.4497 94 1 265.0 2.30 21.70 22.85 31.0 0.8891 17.45351 1.4497 91 1 295.0 2.30 24.30 25.15 28.0 0.8871 23.8852 1.4785 91 1 295.0 2.30 25.15 28.0 0.8871 23.8856 1.4785 91 1 310.0 2.70 27.00 27.65 28.0 0.9871 23.8856 1.4785 103 2 343.3 3.50 31.60 30.20 26.2 0.9950 26.21263 1.4785 91 103 25.8856 1.4785 103 26.875 1.4785 103 26.875 1.4785 103 26.875 1.4785 103 26.875 103 26.875 103<	428	220.0	1.50	15.90	15.15	38.9	0.8304	12.53612	1.4396	92	763.8
250.0 2.10 19.70 18.65 35.6 0.8468 15.73524 1.4497 94 1 265.0 2.00 21.70 20.70 33.2 0.8891 17.45351 1.4572 91 1 280.0 2.30 24.00 25.15 28.5 0.8844 21.40033 1.4745 100 1 310.0 2.30 26.15 28.6 0.8950 26.21263 1.4745 100 1 310.0 27.00 27.60 30.30 26.6 0.8950 26.21263 1.4745 103 1 343.3 34.0 35.0 36.2 0.9062 29.30055 1.4873 94 2 355.0 2.2 37.20 38.85 21.1 0.9273 34.38455 1.4765 103 385.0 4.2 0.9082 29.30055 1.4873 1.5012 103 385.0 3.2 1.2 0.9200 31.2460 1.4873 103 415.0	455	235.0		17.60	16.75		0.8358	13.95697	1.4440	*	923.6
265.0 2.30 21.70 20.70 33.2 0.8591 17.45351 1.4572 91 280.0 2.30 26.70 22.85 31.0 0.8844 21.49033 1.4649 91 310.0 2.30 26.30 25.15 28.0 0.8844 21.49033 1.4745 100 310.0 2.6 30.30 26.6 0.9950 26.21262 1.4745 100 325.0 2.70 31.60 30.30 26.6 0.9950 26.21262 1.4745 100 343.3 3.40 35.00 33.30 24.3 0.9082 29.30055 1.4873 94 355.0 2.20 31.20 26.6 0.9950 26.21262 1.4873 94 355.0 2.20 31.32460 1.4873 94 1.5012 103 360.0 41.0 22.3 0.9200 31.32460 1.4873 94 415.0 2.50 31.34 40.1786 10.4 0.9316	482	250.0		19.70	18.65		0.8468	15.73524	1.4497	76	1121.0
295.0 2.30 24.00 22.85 31.0 0.8708 19.45627 1.4649 91 295.0 2.30 26.30 27.65 28.5 0.8844 21.49033 1.4731 100 310.0 2.70 29.00 27.65 28.0 0.8871 23.88562 1.4785 103 325.0 2.50 31.60 30.20 26.6 0.8971 23.88562 1.4785 103 343.3 3.40 35.00 33.30 26.6 0.9982 29.30755 1.4873 94 355.0 2.20 37.20 36.10 22.3 0.9082 29.30755 1.4873 94 395.0 2.50 43.00 41.75 20.4 0.9315 36.71338 1.5042 107 400.0 3.70 46.70 48.85 19.7 0.9358 40.17599 1.5042 107 415.0 3.30 50.00 48.35 19.1 0.9396 43.27658 1.5091 1.25 415.0 3.20 53.20 51.60 18.3 0.9446 49.71347 1.5143 130 455.0 2.20 59.00 57.90 16.7 0.9548 49.71347 1.5143 130 455.0 2.20 59.00 57.90 16.7 0.9548 59.79520 1.5512 105 510.0 4.70 63.70 61.35 16.0 0.9593 56.32280 1.5527 121 490.0 3.60 67.30 65.50 15.2 0.9466 59.79520 1.55295 114 520.0 2.00 87.90 18.7 0.9546 59.79520 1.55295 114 520.0 2.00 87.90 18.7 0.9546 59.79520 1.55295 114 520.0 2.00 87.90 18.7 0.9954 77.52850 1.5435 96 550.0 2.00 87.00 18.70 12.6 0.9954 77.5059 1.5497 96	\$00	265.0		21.70	20.70		0.8591	17.45351	1.4572	16	1303.0
295.0 2.30 26.30 25.15 28.5 0.8844 21.49033 1.4731 100 310.0 2.70 29.00 27.65 28.0 0.8871 23.88562 1.4745 103 310.0 2.70 29.00 27.65 28.0 0.8871 23.88562 1.4745 103 343.3 3.40 33.00 26.6 0.9950 26.31263 1.4873 94 355.0 2.20 37.20 36.19 22.3 0.9203 31.32460 1.4975 94 370.0 3.30 47.50 38.85 21.1 0.9273 34.38455 1.5012 107 305.0 2.50 43.00 41.75 20.4 0.9315 36.71338 1.5042 107 405.0 3.70 46.70 48.85 19.7 0.9358 40.17599 1.506 113 415.0 3.30 50.00 48.35 19.1 0.9396 43.27658 1.5091 1.25 445.0 3.60 56.80 55.00 16.7 0.9484 49.71347 1.5143 130 455.0 2.20 59.00 57.90 16.7 0.9546 59.79520 1.5512 137 475.0 4.70 63.70 61.35 16.0 0.9593 56.32280 1.5575 121 490.0 3.67 67.30 65.57 15.2 0.9646 59.79520 1.5527 121 520.0 2.10 77.40 75.81 12.6 0.9799 66.52426 1.5497 94 555.0 2.40 87.40 31.20 12.4 0.9984 77.22850 1.5437 94 555.0 2.40 87.40 31.20 11.4 0.9984 77.22850 1.5497 94	536	280.0		54.00	22.85		3.8708	19.45627	1.4649	16	1512.3
310.0 2.70 29.00 27.65 28.0 0.8871 23.88562 1.4745 103 325.0 2.50 31.60 30.30 26.6 0.8950 26.21263 1.4785 97 343.3 3.40 35.00 30.30 24.3 0.9082 29.30055 1.4673 94 355.0 2.20 37.20 36.10 22.3 0.9200 31.32460 1.4965 98 370.0 3.30 40.50 38.85 21.1 0.9230 31.32460 1.4965 98 370.0 3.70 46.70 41.75 20.4 0.9315 36.71338 1.5042 107 400.0 3.70 46.70 48.85 19.7 0.9358 40.17599 1.506 113 415.0 3.30 50.00 41.75 20.4 0.9315 46.29927 1.5112 130 445.0 3.20 59.00 57.90 16.7 0.9546 49.71347 1.5143 130 455.0 2.20 59.00 57.90 16.7 0.9548 49.71347 1.5143 130 455.0 2.20 59.00 57.90 16.7 0.9546 59.79520 1.5275 121 490.0 3.60 67.30 65.50 15.2 0.9646 59.79520 1.5275 127 510.0 4.70 63.70 61.35 16.0 0.9593 56.32280 1.5577 105 520.0 2.10 77.40 75.8 12.8 0.9732 64.46645 1.5471 94 535.0 2.40 87.40 31.20 12.4 0.9954 77.22850 1.5437 94 555.0 2.40 87.40 31.20 11.4 0.9954 77.22850 1.5497 94	563	295.0		26.30	25.15		0.8844	21.49033	1.4731	100	1742.3
343.5 3.40 31.60 30.30 26.6 0.8950 26.21263 1.4785 97 343.3 3.40 35.00 33.30 24.3 0.9082 29.30055 1.4873 94 370.0 3.30 40.50 38.35 21.1 0.9273 34.38455 1.4965 98 370.0 3.30 40.50 38.85 21.1 0.9273 34.38455 1.5012 103 385.0 2.50 43.00 41.75 20.4 0.9378 34.38455 1.5012 103 385.0 2.50 43.00 41.75 20.4 0.9358 40.17599 1.506 113 415.0 3.70 46.70 48.35 19.1 0.9396 43.27658 1.5091 125 430.0 3.20 59.00 51.80 18.3 0.9446 46.29927 1.5112 130 445.0 3.60 56.80 55.90 17.7 0.9546 49.71347 1.5112 130 455.0 2.20 59.00 57.90 16.7 0.9548 51.81400 1.5175 127 475.0 4.70 63.70 61.35 16.0 0.9548 51.81400 1.5175 127 475.0 2.20 59.00 57.90 16.7 0.9546 59.79520 1.5527 121 490.0 3.60 67.30 65.50 15.2 0.9646 59.79520 1.5527 105 520.0 2.10 77.40 75.81 12.6 0.9732 64.46645 1.5577 96 535.0 3.20 77.40 78.70 13.9 0.9732 64.56645 1.5471 94 555.0 2.40 87.00 78.70 12.4 0.9954 77.22850 1.5497 94	230	310.0		00.6	27.65		0.8871	23.88562	1.4745	103	2020-4
343.3 3.40 35.00 33.30 24.3 0.9082 29.30055 1.4873 94 355.0 2.20 37.20 36.10 22.3 0.9200 31.32460 1.4965 98 370.0 3.30 40.50 38.10 22.3 0.9200 31.32460 1.4965 103 385.0 2.50 43.00 41.75 20.4 0.9315 34.31455 1.5012 103 385.0 2.50 43.00 48.35 19.7 0.936 43.27658 1.5091 125 415.0 3.30 50.00 48.35 19.1 0.9396 43.27658 1.5091 125 430.0 3.20 59.00 57.90 17.7 0.9446 49.71347 1.5112 130 455.0 2.20 59.00 57.90 17.7 0.9548 49.71347 1.5143 130 455.0 2.20 59.00 57.90 16.7 0.9548 51.81400 1.5175 127 475.0 3.60 67.30 65.50 17.7 0.9546 59.79520 1.5295 114 520.0 2.20 59.00 77.91 13.9 0.9732 64.46645 1.5277 121 520.0 2.10 77.20 73.15 12.9 0.9732 64.46645 1.5357 105 535.0 3.20 77.40 78.70 12.6 0.9984 77.22850 1.5497 94 550.0 2.40 87.00 78.70 12.4 0.9984 77.22850 1.5497 94	617	325.0		31.60	30,30		0.8950	26.21263	1.4785	97	2272.6
355.0 2.20 37.20 36.19 22.3 0.9200 31.32460 1.4965 98 370.0 3.30 40.50 38.85 21.1 0.9273 34.38455 1.5012 103 370.0 3.30 43.00 41.75 20.4 0.9315 34.38455 1.5012 103 385.0 2.50 43.00 41.75 20.4 0.9315 36.71338 1.5042 107 415.0 3.70 46.70 44.85 19.1 0.9396 43.27658 1.5091 1.25 430.0 3.20 53.20 51.60 18.3 0.9446 46.29927 1.5112 130 445.0 3.60 56.80 55.00 17.7 0.9484 49.71347 1.5142 130 445.0 2.20 59.00 57.90 16.7 0.9548 49.71347 1.5143 130 445.0 3.60 67.30 65.50 16.7 0.9548 51.81400 1.5175 127 490.0 3.60 67.30 65.50 15.2 0.9732 64.46445 1.5275 1121 570.0 2.10 74.20 73.15 12.9 0.9732 64.46445 1.5575 105 535.0 3.20 77.40 75.80 12.1 6.9732 64.46445 1.5575 105 535.0 2.40 87.01 78.70 12.1 0.9854 77.228850 1.5497 94.550.0 2.40 87.01 78.70 12.1 0.9854 77.228850 1.5497 94.549	650	343.3		32.00	33.30	24.3	0.9082	29.30055	1.4873	* 6	2.592.2
370.0 3.30 40.50 38.85 21.1 0.9273 34.38455 1.5012 103 385.0 2.50 43.00 41.75 20.4 0.9315 36.71338 1.5042 107 400.0 3.70 46.85 19.7 0.9358 40.17599 1.5066 113 415.0 3.30 50.00 48.35 19.1 0.9396 43.27658 1.5091 1.25 430.0 3.20 50.00 48.35 19.1 0.9396 46.29927 1.5112 130 445.0 2.20 59.00 57.90 16.7 0.9548 51.81400 1.5175 1.27 475.0 4.70 63.70 61.35 16.0 0.9593 56.32280 1.5227 1.21 490.0 3.60 67.30 65.50 15.2 0.9646 59.79520 1.5295 114 520.0 2.10 74.20 73.15 12.9 0.9732 64.46645 1.5402 98 535.0 3.20 77.40 75.81 12.6 0.9854 77.22850 1.5435 96 550.0 2.60 80.00 78.70 12.1 0.9854 77.22850 1.5435 96	671	355.0		37.20	36.19	22.3	0.9200	31.32460	1.4965	98	2807.8
385.0 2.50 43.00 41.75 20.4 0.9315 36.71338 1.5042 107 400.0 3.70 46.70 44.85 19.7 0.9358 40.17599 1.5066 113 430.0 3.20 50.00 48.35 19.1 0.9366 43.27658 1.5091 125 430.0 3.20 53.20 51.60 18.3 0.9466 49.29927 1.5112 130 445.0 3.60 56.80 55.00 17.7 0.9484 49.71347 1.5143 130 455.0 2.20 59.00 57.90 16.7 0.9548 56.32280 1.5143 130 475.0 4.70 56.70 16.7 0.9548 56.32280 1.5143 131 475.0 4.70 56.70 16.7 0.9546 59.79520 1.5175 114 510.0 4.70 56.70 17.2 0.9732 64.46645 1.5495 114 510.0 7.740 76.	869	370.0		10.50	38.85		0.9273	34.38455	1.5012	103	3147.7
400.0 3.70 46.70 44.85 19.7 0.9358 40.17599 1.5066 113 415.0 3.30 50.00 48.35 19.1 0.9396 43.27658 1.5091 125 430.0 3.20 53.20 51.60 18.3 0.9446 46.29927 1.5112 130 445.0 3.60 56.80 55.80 11.7 0.9484 49.71347 1.5143 130 455.0 2.20 59.00 57.90 16.7 0.9548 51.81400 1.5175 127 490.0 3.60 67.30 16.7 0.9593 56.3280 1.5277 121 490.0 3.60 67.30 15.2 0.9546 59.79520 1.5295 114 510.0 4.90 77.30 65.50 15.2 0.9732 64.46645 1.5407 98 510.0 77.40 72.22850 1.5497 96 55.00 1.5497 96 550.0 2.40 87.00 <td>125</td> <td>385.0</td> <td></td> <td>13.00</td> <td>41.75</td> <td></td> <td>0.9315</td> <td>36.71338</td> <td>1.5042</td> <td>101</td> <td>3415.2</td>	125	385.0		13.00	41.75		0.9315	36.71338	1.5042	101	3415.2
415.0 3.30 50.00 48.35 19.1 0.9396 43.27658 1.5091 125 430.0 3.20 53.20 51.60 18.3 0.9446 46.29927 1.5112 130 495.0 3.60 56.80 55.00 17.7 0.9484 49.71347 1.5143 130 475.0 2.20 59.00 57.90 16.7 0.9548 51.81400 1.5175 127 490.0 3.60 67.30 16.7 0.9548 51.81400 1.5277 121 490.0 3.60 67.30 15.2 0.9546 59.79520 1.5277 114 510.0 4.80 72.10 69.70 13.9 0.9732 64.46645 1.5357 105 570.0 2.10 77.40 75.80 12.4 0.9732 64.46645 1.5407 96 550.0 2.60 87.00 78.70 12.6 0.9824 72.22850 1.5497 96 550.0 2.40<	152	0.004		102.9	44.85		0.9358	40-17599	1.5066	113	3833.3
430.0 3.20 53.20 51.60 18.3 0.9446 46.29927 1.5112 130 445.0 3.60 56.80 55.00 17.7 0.9484 49.71347 1.5143 130 455.0 2.20 56.80 55.00 17.7 0.9548 49.71347 1.5143 130 475.0 2.20 56.00 57.90 16.7 0.9548 51.347 1.5175 127 490.0 3.67 67.35 16.7 0.9548 59.79520 1.5227 121 490.0 3.67 67.37 65.57 15.2 0.9732 64.46645 1.5227 121 510.0 4.80 72.10 69.70 13.9 0.9732 64.46645 1.5595 116 520.0 2.1 74.20 73.15 12.9 0.9732 64.46645 1.5595 116 535.0 2.2 77.40 72.22850 1.5402 96 550.0 2.6 80.00 78.70	179	415.0		50.00	48.35		0.9396	43.27658	1.5091	125	4245.8
445.0 3.60 56.80 55.00 17.7 0.9484 49.71347 1.5143 130 455.0 2.20 59.00 57.90 16.7 0.9548 51.81400 1.5175 127 475.0 4.70 63.70 51.35 16.0 0.9593 56.32280 1.5227 121 490.0 3.67 67.30 65.57 15.2 0.9646 59.79520 1.5227 114 510.0 4.80 12.10 69.70 13.9 0.9732 64.46645 1.5357 105 570.0 2.10 74.20 73.15 12.9 0.9799 66.52426 1.5402 98 550.0 3.20 77.40 75.80 12.6 0.9854 77.22850 1.5437 96 565.0 2.40 82.40 81.20 11.4 0.99654 77.53850 1.5497 96	908	430.0	ALC:	53.20	51.60	18.3	94460	46.29927	1.5112	130	4661.8
455.0 2.20 59.00 57.90 16.7 0.9548 51.81400 1.5175 127 475.0 4.70 63.70 61.35 16.0 0.9593 56.3280 1.5227 121 490.0 3.67 67.30 65.57 15.2 0.9546 59.79520 1.5295 114 510.0 4.80 72.10 69.70 13.9 0.9732 64.46645 1.5357 105 570.0 2.10 74.20 73.15 12.9 0.9799 66.52426 1.5402 98 550.0 2.60 87.00 78.70 12.6 0.9854 72.22850 1.5435 96 565.0 2.60 82.60 82.60 11.4 0.9965 76.5349 1.5497 96	833	445.0		56.80	55.00	17.7	0.9484	49.71347	1.5143	130	\$129.8
475.0 4.70 63.70 41.35 16.0 0.9593 56.32280 1.5227 121 490.0 3.67 67.30 65.57 15.2 0.9646 59.79520 1.5295 114 510.0 4.80 72.10 69.70 13.9 0.9732 64.46645 1.5357 105 520.0 2.10 74.20 73.15 12.9 0.9799 66.52426 1.5402 98 535.0 3.20 77.40 75.80 12.6 0.9854 77.22850 1.5435 96 550.0 2.40 80.00 78.70 12.1 0.9854 77.22850 1.5437 94	851	455.0		20.00	57.90	1.91	0.9548	51.81400	1.5175	127	5409-2
\$10.0 3.67 67.30 65.50 15.2 0.9646 59.79520 1.5295 114 \$10.0 4.90 72.10 69.70 13.9 0.9732 64.46645 1.5357 105 \$720.0 2.10 74.20 73.15 12.9 0.9799 66.52426 1.5402 98 \$35.0 3.20 77.40 75.80 12.6 0.9820 69.66652 1.5435 96 \$550.0 2.40 80.00 78.70 12.1 0.9854 72.22850 1.5437 95 \$65.0 2.40 82.40 91.20 11.4 0.9904	887	475.0		53.70	41.35	16.0	0.9593	56.32280	1.5227	121	5977.9
\$20.0 4.80 72.10 69.70 13.9 0.9732 64.46645 1.5357 105 \$70.0 2.10 74.20 73.15 12.9 0.9799 66.52426 1.5402 98 \$35.0 3.20 77.40 75.80 12.6 0.9820 69.66652 1.5435 96 \$50.0 2.40 80.00 78.70 12.1 0.9854 72.22850 1.5471 95 \$65.0 2.40 82.40 91.20 11.4 0.9902 74.60498 1.5497 94	116	490.0		57.30	65.50		0.9646	59.79520	1.5295	*!!	6388.3
\$20.0 2.10 74.20 73.15 12.9 0.9799 66.52426 1.5402 98 \$35.0 3.20 77.40 75.80 12.6 0.9820 69.66652 1.5435 96 \$50.0 2.60 80.00 78.70 12.1 0.9854 72.22850 1.5471 95 \$65.0 2.40 82.40 91.20 11.4 0.9902 74.63498 1.5497 94	950	510.0	-	72.10	69. 70		0.9732	64.46645	1.5357	105	6892.3
535.0 3.20 77.40 75.80 12.6 0.9820 69.66652 1.5435 96 550.0 2.60 80.00 78.70 12.1 0.9854 72.22850 1.5471 95 565.0 2.40 82.40 91.20 11.4 0.9902 74.63498 1.5497 94	896	\$20.0		14.20	73.15	12.9	0.0799	66.52426	1.5402	86	7098.1
550.0 2.60 80.00 78.70 12.1 0.9854 72.22850 1.5471 95 565.0 2.40 82.40 91.20 11.4 0.9902 74.63498 1.5497 94	566	535.0		17.40	75.87		0.9820	69.66652	1.5435	96	7405.3
565.0 2.40 82.40 91.20 11.4 0.9902 74.63498 1.5497 94	1022	550.0		10.00	78.70	T.	0.9854	72.22850	1.5471	5	7652.3
	6401	645 0		2 40							

156 F 056 C (1898 C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90.00 0.00 0.00 0.00 0.00		PCT	SUM ME PCT		MT PCT	SUM ME PCT		SUM MY PCT
25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25.66.6	MD' 30	al.	NORM WT PCT	SULFUR	CARBON	K NOR" WT PCT	MITROGEN	X NORM WT PCT
12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.0	2.0						
15.50 15.50	0.00	0	0.0						
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.02		0.0						
20000000000000000000000000000000000000	-	666	600		0.5400				
250000000000000000000000000000000000000	10.0	6.0	0.05	9.018	0.5400				STIL.
**************************************	0.40	0.46	0.26		0.5500				
22.500	0.24	0.70	9.58	0.393	0.6500				
22.5.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0.55	1.25	0.97	0.831	0.7913				
22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	6.0	2.16	1.70	1.889	1-1700				
20.000	513	3.40	2.13		0.7400				
2020			77.0	5 036	0.00				
6 6 6			7.79		1700				
275.0	1.93	10.75	. 79	9.227	0.8800				
1 220.0 1		12.17	11.40	10.344	0.7900				
	1.34	13.51	12.84	11.351	0.7570				
1 235.0 1.	1.53	15.34	15-27		0.8200				
	1.92	16.96	16.10		0.44.0			0.9600	1.6397
265.0	1.33	19.91	17.88	15.768	0.89.0			1.1700	1900-
282-0	2.16	16.02	19.87	17.319	0.9500			0066-1	1900-
		23.16	96.27	4.616	0.35.0			0029-1	10.5570
326 0 2 61	6.34	23.23	36.90	265.15	0000			0000	20.0681
	10.1	31.58	79.91	!	0.7500			2.0200	26.7899
	2.19	33.76	32.67		0.7533	00.0	0.0087	2.0300	31.2177
377.0	3.30	17.05	35.40	29.656	0.6800	10.0	0.0245	2.0400	37.9446
	2.51	19.56	36.31	31.287	0.6500	10.0	0.0611	2.0500	43.0893
400.0	3.73	43.29	+1.43	33.638	0.6370	0.34	7.1917	2.0600	50.7761
415.0	3.34	*6.64	44.97	35.643	0.0000	0.13	1.6261	2.0600	57.6591
430.0	3.24	49.80	48.26	37.565	0.5930	3.25	1.4404	2.0700	\$.4018
9 445.0	1.68	53.57	51.73	39.625	0.5600	0.45	7.9857	2.0800	72.0547
455.0	5.26	55.84	54.70	40.915	0.5730	09.6	4.3439	2.1000	76.8082
475.0	4.46	40.70	58.27	43.431	0.6010	0.00	9.7158	2-1400	87.2061
491.1	3.74	94.44	42.57	46.263	0.6500	1.47	14.2175	2.1800	95.3635
-	5.13	14.69	66.95	40.484	0.6400	2.36	26.0974	2.2400	!
\$20.0	2.72	11.69	70.5A	11.837	0.410	3.50	31.8589	2.3200	
535.0	3.39	15.07	73.18	57.933	0.613.0	4.35	6182.06	2.3800	
61.7 1.676 2261		10.00		46.739	0.0000	200	20.1.00	2 6 3 00	
	00.7		90.20	44.440	2.5317	20.00	585 4273	2 3200	
		20.01				23.00	7171100		

0.04	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	0.7230 0.7245 0.7245 0.7245 0.7433 0.7433 0.7433 0.7433 0.7433 0.7433 0.7433 0.7433 0.7433 0.7433 0.7433 0.7433 0.7433 0.7433 0.7433 0.7433	0.67					1d
2.79 0.86 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.2				7.3497				
1.2.80 1.			1.23 0	3.5945				
12.80 (2.76			-	0.6775				
12.80 12.70 12.70 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2				0.8365				
1.60 1.00 6.30 5.40 6.30 6.30 12.89 10.10 17.60 11.30 17.60 11.20 24.00 11.20 25.00 11.20 25.00 11.20 25.00								
2.70 1.110 5.30 5.40 12.80 11.10 17.50 6.50 17.50 11.30 17.50 11.30 17.50 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 24.00 11.20 25.00 11.20 25.00 11.20 25.00 11.20 25.00 11.20 25.00 11.20 25.00 11.20 25.00 11.20 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00				16 90		!		
2.70 1.10 1.29 1.10 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29				0.9460				
12.90				1700				
12.89 10.10 11.40 11.40 11.20			3.49	9682				
12.89 10.19 17.60 11.30 21.70 11.50 22.00 11.20 22.00 22.00 22.00 22.00			_	1700.				
12.90 6.50 17.40 21.70 17.40 22.00 17.70 40.50 17.70 40.50 17.70 21.70 21.70 21.70 21.70 22.00				.8536				
14-40 8-10 21-70 21-70 24-20 11-40 11-40 11-70 40-50 11-70 11-20 21-70 21-70 24-70 11-20 24-70 11-20 24-70 11-20 24-70 11-20 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 11-30 35-70 3			5.61 0	0.8250 1.	4260			
17.60 11.30 24.00 17.40 40.50 34.20 40.50 34.20 18.70 6.90 24.00 11.20 24.00 11.20 24.00 11.20 35.00 11.20 35.00 6.30 40.50 11.50 40.50 11			7.02 0		8724.			
21.79 15.40 40.50 17.70 40.50 74.20 24.00 11.70 24.00 11.30 24.00 11.30 35.00 11.30 45.70 11.30 45.70 11.30 45.70 11.30 45.70 11.30 45.70 11.30 45.70 11.30 45.70 12.30 45.70 25.40 45.70 25.40 45.70 25.40 45.70 25.40 45.70 25.40 45.70 25.40 45.70 25.40 45.70 25.40 45.70 25.40 45.70 25.40			9.90		4118			
24.00 17.70 40.50 74.20 19.70 74.30 21.70 74.30 21.70 74.30 24.00 11.20 24.01 11.30 46.50 11.30 77.40 27.40 77.40				-	1.4376			
40.50 34.20 40.50 74.80 19.70 6.40 24.00 11.20 24.00 11.20 35.00 7.30 35.00 6.30 46.50 11.50 46.50 11.50 46.70 11.50 46.70 11.50 47.40 77.40 27.40 77.40 27.40 77.40 27.40 77.40 27.40 77.40 27.40			7	-	11441			
35.00 26.00 19.70 6.90 24.00 11.20 24.00 11.20 24.00 11.70 35.00 11.70 35.00 11.50 40.57 1	23.40 31.92				4627			
40.50 79.90 11.20 24.00 24.00 11.20 24.00 11.30 35.00 11.30 46.50		96586	24.92 0	0.7994 1	1.4583			
24-00 11.27 24-00 11.27 24-07 11.27 24-07 7.13 35-00 11.90 46-57 11.58 46-07 1					4684			
24-00 11-20 24-03 20-60 24-03 20-60 24-03 20-60 35-00 11-30 35-00 11-30 35-00 24-00 35-00 24-00 35-00 24-00 35-00 24-00 35-00 24-00 35-00 24-00 35-00 24-00 35-00 24-00 35-00 24-00 35-00 25-40 35-00	The second				4478			
21.70 .30 24.07 7.30 29.00 11.70 35.00 11.70 46.70 11.70 59.00 24.30 52.40 47.40 59.00 12.40 77.40 27.40 77.40 27		0.8462	19.21		0077			
24.07 4.17 29.00 11.30 35.00 11.30 46.50 11.30 46.50 11.30 46.50 11.30 59.00 12.30 77.40 27.40 77.40 27.40 77.40 27.40 77.40 27.40 77.40 27.40 77.40 27.40 77.40 27.40	-		100		- 4'& R.C.			
26.03 A.13 35.00 11.00 35.00 6.00 46.50 11.50 46.70 11.50 82.40 47.40 77.40 27.40 77.40 27.40 77.40 27.40 77.40 27.40 77.40 27.40 77.40 27.40 77.40 27.40 77.40 27.40 77.40 27.40					4666			
29.00 11.00 35.00 11.00 40.50 11.50 46.70 11.70 59.00 25.50 77.40 27.40 72.10 13.10 82.40 50.60 82.40 50.60	19.08 34.12		P	1	1.4547	-		
35.00 11.00 46.70 11.70 59.00 24.00 59.00 24.00 77.40 27.40 72.10 13.10 82.40 53.40 82.40 50.00					.+710		1.6154	
95-87 6-27 11-38 6-27 11-38 6-57 11-38 6-57 11-38 6-57 11-38 6-57 6-57 6-57 6-57 6-57 6-57 6-57 6-57					1.4791		1.8649	
46.57 11.56 46.70 11.70 82.40 47.40 77.40 27.40 72.10 13.10 R2.40 23.40 R2.40 23.40 R2.40 23.40 R2.40 23.40		1.4025			. 4835		1.9856	
#6.70 11.70 89.00 25.30 89.00 12.90 77.40 27.40 72.13 13.10 82.40 23.40 82.40 5.00	100				1169.	00.0	2.0100	
59.00 24.00 52.40 47.40 59.00 12.90 77.40 27.40 72.10 13.10 82.40 5.00			11.72 0	0.6707 1.		9.02	2.0466	
82.40 47.40 77.40 27.40 72.10 13.10 82.40 23.40 82.40 10.30	47.73 19.34				1.5978	91.0	2.0617	
59.00 12.30 77.40 27.40 72.19 13.10 82.40 23.40 82.40 5.00						1.87	2.1762	AND THE REAL PROPERTY.
77.40 27.40 72.10 72.10 72.40 72.40 72.40 82.40 82.40 82.40			ī.	0.5803 1.		9.33	2.0757	
72.13 13.10 62.40 23.40 82.43 10.30		0.9631	28.44 0			1.75	2.1866	4
82.40 23.40 82.40 10.30 82.40 5.00	10.51 52.01	0.9658				1.60	2.1879	***
82.47 10.10						3-55	2.2893	
82.40 5.00			0		5452	5.98	2-4158	•
	79.90 11.74	0.9877		.5952 1.	5483	7.73	2.4785	95
RESIDNE								
VLDE GRAVITY	-	412	***	****				
WILLIME DEG API SPECIFIC	IFIC WT PCT	FUR	CON CARBON	NITROGEN				
4.4			25.20	2.32	1~			
22.60 6.8 1.0234		9.54	21.47	2.35	2			
7.9		0.56	18.32	2.35	3			
1.01	91.44 64.16	9.58	13.16	2.30	•			
		0.59	10.32	2.25	\$			
12.6	62.75	0.58	9.30	2.23	3			
14.4 7.9760		7.50	4.56	22.6	2			

SHALE OIL - TOSCO

SL. 17C-FP. 75

GASOLINES & NAPHTHAS

15 5 CUT POINT	F VT	68 158	68/212 20/100	158/212 70/100	212/302 100/150	248/374 120/190	302/374 150/190
TIELD CUT RANGE	VOL. S	0.04-0.6	0.04-1.6	0.6-1.6	1.6-6.3	2.7-12.8	6.3-12.8
HELD ON CRUDE	VOL. %	0.56	1.56	1.0	4.7	10.1	6.5
MID POINT	VOL. %	0.3	0.8	1.1	4.0	7.8	9.6
GRAVITY	^API	64.2	62.5	61.5	52.7	47.6	45.1
PECIFIC GRAVITY	60/60	0.7230	0.7294	0.7332	0.7682	0.7901	0.8012
TOTAL SULFUR	WT. %	0.55	0.68	0.75	0.97	0.85	0.82
MERCAPTAN SULFUR	WT. PPM	168	169	170	160	145	140
REID VAPOR PRESSURE	PSI						THE STATE OF
RESEARCH OCTANE NUMBER							
CLEAR							
1 1.5 ml TEL/USG							
1 3.0 ml TEL/USG							
MOTOR OCTAME NUMBER			*				
CLEAR							
+ 1.5 ml TEL/USG							
. 3.0 ml TEL/USG							
VOL. % D + L # 70°C/150°P # 100°C/212°F							
FBP 'F							
ANILINE POINT, "F							77
		GC		GC	GC HC		нс
PARAFFINS	VOL. %				 		30.0
NAPHTHENES	VOL. %						52.6
AROMATICS	VOL. %	erierkus staskije m	A Martin De Chamada (a co	and American	Anneal Anneal Part and		17.4

SHALE OIL - TOSCO

SL. 17C-FP. 75

KEROSENE & TURBO FUELS

15/5 CUT POINT	F VT	302-401 150-205	302-455 150-235	302-509 150-265	374-482 190-250	374-536 190-280
YIELD CUT RANGE	VOL. %	6.3-14.4	6.3-17.6	6.3-21.7	12.8-19.7	12.8-24.0
YIELD ON CRUDE	VOL. %	8.1	11.3	15.4	6.9	11.2
MID-POINT	VOL. %	10.4	12.0	14.0	16.2	18.4
GRAVITY	*API	44.3	42.6	40.3	38. 1	35.7
PECIFIC GRAVITY	60/60	0.8049	0.8128	0.8236	0.8343	0.8463
TOTAL SULFUR	WT. %	0.82	0.81	0.82	0.79	0.84
MERCAPTAN SULFUR	WT. PPM	133	118	105	84	78
SMOKE POINT	мм	19	18	17	16	15
LUM. NO.		42.5	41.5	40.0	37.8	34.5
FREEZING POINT	^F	Too Dark				
CLOUD POINT	·F	Too Dark				
POUR POINT	^F	<-80	<-80	-75	-60	-45
ANILINE POINT	·F	77	82	85	` 90	91
DIESEL INDEX		34	35	34	34	32
COLOR	SAYBOLT					
REFRACTIVE INDEX - 67-C		1.4278	1.4318	1.4376	1.4428	1.4499
AROMATICS, FIA	VOL. %	Too Dark				
VISCOSITIES:					***	
KINEMATIC @ -30-F	c\$t	4.42	5.70	8.20	12.8	22.0
~ 100-F	cSt	1.02	1. 15	1.34	1.60	1. 95
₩ 210°F	e\$1	0.55	0.60	0.67	0.75	0.86

	CAUDE	SHALE OIL - TOSCO	10500				SL. 17C-FP. 75		
				MIDOLE	MIDDLE DISTILLATES				
15.5 Cut POINT	***	401-389	909-590	880-450	849-045	320-450	059-109	302-698	
ISAS CUT POINT	2.0	205-245	245-310	310-343	310-370	146-343	205-343	150-370	
THELD CUT RANGE	, 40 .	14.4-21.7	21.7-29.0	29.0-35.0	29.0-40.5	8.2-35.0	14.4-35.0	6.3-40.5	
TRES ON CRUDE	. 4	7.3	7.3	0.9	11.5	26.8	20.6	34.2	
Ties of	* 4	18.0	25.4	32.0	8.%	21.6	24.7	23.4	
CALANTY	5	36.1	29.1	25.3	23.5	33.1	30.4	31.9	
SPECIFIC GRAVITY	3 3	0.8443	0.8811	0. 9024	0.9129	0.8597	0.8740	0.8660	
TOTAL SAFUR		0.82	0.83	0.72	0.72	0.80	0.80	0.78	
AME INC POINT	•	93	86	95	86	16	56	85	
		×	53	77	23	30	53	39	
CETAME INDEX		3	63	3	4	3	77	63	
CLOLD FORT	•	Too Dark							. who
POLE POSIT	•	-50	•	35	\$0	-10	0	01	
REFRACTIVE HOEX - 67C		1.4484	1.4710	1.4835	1.4911	1.4583	1.4666	1.4627	
MEUT. NO. (0.474)	1 0 1	0.64	1.08	1.08					
VSCORFIES									
CHEMITE . ID-F	•	1.92	4.02	8.54	12.3	2.70	3.60	3.20	
	•	1.22	2.20	3.90	5.10	1.60	2.03	1.8	
* 1734	•								
188	*	0.84	1.33	2.05	2.51	1.03	1.26	1.16	
**		7.6	13.1	14.5					
=		33.4	38.9	41.8					
MTROCEN	7 14		1.62	1.99	2.01				

					-					
		SHALE	SHALE OIL - TOSCO				SL. 17C-FP. 75	2.75		
				•	GAS DILS					
15 5 CUT POINT 15 5 CUT POINT	5.5	343.400	752-451	059-158	950-1049	650-851	650-1049 343-565	851.1049 455-365	995-1049	
THELD CUT RANGE	YOU. S	35.0-46.7	46.7-59.0	59.0-72.1	72. 1-82.4	35.0-59.0	35.0-82.4	59.0-82.4	77.4-82.4	
THELD ON CRUDE	VOL. 5	11.7	12.3	13.1	10.3	24.0	47.4	23.4	5.0	
MD-POINT	VOL. 5	8.0%	52.8	65.6	77.7	47.0	58.7	70.7	79.9	
GRAVITY	ida	20.7	1.8.1	15.0	12.2	19.3	16.5	13.8	11.8	_
SPECIFIC GRAVITY	00 00	0.9297	0.94.59	0.9659	0.9847	0.9383	0.9561	0.9738	0.9874	
TOTAL SULFUR		0.67	0.58	0.63	09.0	0.62	0.62	0.62	09.0	
AMILINE POINT	•	901	128	113	96	117	112	105	35	
COM CAMBON	#T. 8	0.02	0.33	1.60	5.98	0.18	1.87	3.55	1.73	
POUR POINT	•	70	100	105	105	85	95	105	105	
REFRACTIVE MOEK 6	3.0	1. 5027	1.5127	1.5293	1. 5452	1.5078	1.5219	1.5363	1.5483	
MEUT NO.	- 101/1-					0.35				
MTBOGEN		2.05	2.08	2. 19	27.75	2.06	2. 18	2.29	2.48	
VISCOSITIES			180							_
EMERATIC : MP-F	*	27.0	(153)			ŝ				
	*	9.00	32.0	14.2	640	17.0	\$4.5	268	1000	
\$ (1)	*									
.	*	3.83	9.34	27.4	83.5	5.88	14.1	43.5	111	
BASIC NITROGEN	#T. 4			が 信用 おり		1.21		1.31		
ORYGEN						0.91		0.87		
METALS		AND NO.						190000		
VARADIUM	. P.							(0.1		
MCKEL	e.r. PPs							1.4		
inom	a1. PPE							8.4		_
4.6.		18.6	18.8	22.6.	26.3				27.1	_
1		8.95	78.4	52.9	58.9				60.3	

TABLE 9

CRUDE

SHALE OIL - TOSCO

SL. 17C-FP. 75

LUBE DISTILLATES

		LUSE	LUBE
15/5 CUT POINT	•F VT	779-995	
15/5 CUT POINT	•c vt	415-535	
YIELD CUT RANGE	VOL. %	48.8-78.1	
YIELD ON CRUDE	VOL. %	29.3	
MID-POINT	VOL. %	63.4	
GRAVITY	*API	15.4	
SPECIFIC GRAVITY	60/60	0.9632	
TOTAL SULFUR	WT. %	0.61	
CON CARBON	WT. %	1.65	
ANILINE POINT	·F	115	
REFRACTIVE INDEX # 67°C		1.5265	
NEUT. NO. (D-974)	mg KOH/gm	0.51	
NITROGEN	WT. %	2.18	
POUR POINT	•	105	
WAX CONTENT	WT. %	10.6	
WAX MELTING POINT	·		
VISCOSITY INDEX		⟨ 0	
VISCOSITIES:		- 1	
KINEMATIC . 100-F	e\$t	(750)	
● 150°F	e\$1	106	
● 175*F	c\$1		
e 210°F	c\$1	22.8	
SAYBOLT UNIVERSAL @ 100-F	SEC	(3474)	
e 210-F	SEC	110.5	

PHENOL TRE SUSCEPTIBLE	
PHENOL TRE	
DEWAXED LU	
PHENOL/OIL	
RATIO	
Trees	VI
RAW STOCK	
1/1	
2/1	
3/1	
VISCOSITY GRAVITY CONSTANT	
*From Established Correl	

Yields on this table are those as cut from still and the inesections are row date, not correlated

					TABLE 10				
	Caude		SINIE OIL - TOSCO				SL. 17C-FP. 75	Γ	
					RESIDUA				
15-5 CUT POWIT 15-5 CUT POWIT	: ;	82	ŧś	2 \$	5 8	38 8			
HELD ON CAUBE	8 84	0.89	9	:					
GRAVITY	5	13.6	12.6	11.8) i		• :: : -		
SPECIFIC GRAVITY		0.9765	0.9820	0.9874	0.9993	1510-1	1.0336		
TOTAL SULFUR	• •	0.59	0.56	0.58	0.58	0.56	0.53		
CON CARBON	•	3	:	10.3	13.2	18.3	13.1		
WTROSER	* 14	2.23	2.23	2.2	2.30	2.35	2.32		
MEUT MD. (D-444)	1 x0x/1	0.48							
POUR POINT	•	8	%	95	100	91	8		
VISCOSITIES									
KINEBATIC . MPF	8	71.42	(009%)						
Į.	•	008	1360	2800					
1	•	280	017	25.	30%				
.	3	116	12	283	098	(3600)			
į	•	45.5	°.	0.98	258	1100	9324		
FUROL . 273-F	38 C						62		
	38C								
UMVERSAL . 218-F	380	213	588	457	1203	\$130			
#ED#000 1 . 1897	*	0101							
ABSOLUTE VISC 14PF	Poses								
MTALS.									
angre.	#4. FP	3.6			5.9		13.3		
MCAR.	:	5.6			9.0		18.5		
1001	#1. FP#	46.1			74.6		157.5		
•	#e	3.32					15.0		
		3.00					13.9		
DEVCEM		1.03					1.12		

Section 18 and 1

GRAPH NO. 5
MIDDLE DISTILLATES AND GAS OILS

GRAPH. NO. 6
MIDDLE DISTILLATES AND GAS OILS

Control of the Contro

GRAPH NO. 7

GRAPH NO. 9

RESIDUA

GRAPH NO. 10

THE RESERVE OF THE PARTY OF THE

APPENDIX VII

CRUDE ASSAY - GARRETT SHALE OIL

SYNCRUDE - GARRETT

CRUDE:

SPONSORED BY:

COUNTRY:	COLORADO, U.S.A.
REPRESENTATIVE OF:	Oil extracted from shale rock by in-situ retorting process by Garrett Research and Development Company.
FILE NO.:	SL. 19C-FP. 75
REPORT DATE:	October 1975
REPORT BY:	- Lary M. Williams EXXON RESEARCH & ENGINEERING CO ENGINEERING INFORMATION CENTER FLORMAN PARK, N.J.
DATE RECEIVED:	3-4-75
DATE DISTILLED:	6-5-75
LAB ASSAY NO.:	2035
COST CENTER:	2524-702 (5800-712160)
CARD NOS.:	
ASSAY RUN BY:	EXXON COMPANY, U.S.A. REFINING DEPARTMENT REFINERY LABORATORY BAYTOWN, TEXAS

CRUDE SYNCRUDE - GARRETT

SL. 19C-FP. 75

WHOLE CRUDE DATA

GRAVITY		*API	25.0
SPECIFIC GRAVITY		60/60	0.9042
SULFUR		WT. %	0.64
MERCAPTAN SULF	W.	WT. PPM	39
POUR POINT		•	50
NITROGEN		WT. %	1.30
WATER AND SEDI	ÆNT	VOL. %	2.0
SALT CONTENT, N		PTB	1.0
REID VAPOR PRE	SSURE	PSI	0.2
H ₂ S (DISSOLVED)		WT. PPM	
NEUT. NO. (D644)		mg KOH/gm	1.53
		122°F, cSt	9. 93
		100°F, cSr	15.8
KINEMATIC .	80°F, cSr	27.0	
	60-F, c\$s		
	AD+F, eSt		
VISCOSITIES:		122°F, SEC	58. 6
		100-F, SEC	80.1
	SAYBOLT UNIVERSAL #	eo-F, SEC	128
		40-F, SEC	
		40-F, SEC	

LIGHT HYDROCARBONS		
% ON CRUDE	WEIGHT	VOLUME
ETMANE AND LIGHTER PROPANE		
ISO BUTANE HORMAL BUTANE		
ISO PENTANE NORMAL PENTANE		

	STACE DISE CARRETT									
	Sept.) The	YARM	YNAM. VOL.	129	GKA	GRAVITY	SUM DE			SUM OF
9	G F JEG C	ON CRUDE	¥ O	=	DEG API	SPECIFIC	X VOL PCT	67 DEG C	AN. PT.	X AN. PT
0		0.0	0.0	0.0	0.0	1.0760	0.0			
3	, ;	0.0	0.0	0.0	0.0	1.0760	0.0			
-	ָרָ,	0.0	0.0	0.3	0.0	1.3769	0.0			
69 n	ac, 20.0	0.0	0.0	0.0	0.0	1.0760	0.0			
		0.0	0.0	0.0	0.0	1.0760	0.0			
6	ر. رن		0.0	0.0	0.0	1.0769	0-0			
158	0.01	0.0	9-0	0.0	0.0	1.0760	0.0			
185	85.0	0.0	0.0	0.0	0.0	1.0760	0.0			
212	100.0	0.0	0.0	0.0	0.0	1.0760	0.0			
249	120.0	3.0	0.0	0.0	0.0	1.0760	0.0			
275	135.0	0.50	0.50	0.25	4	0.1990	0.39949			
305	150.0	05.0	1.00	0.75	39.4	0.3280	0.81348			
320	0.091	0.50	1.50	1.25	40.5	0.4227	1.22461	1.4400	20	25.0
347	175.0	0.10	2.20	1.85	42.1	0.8123	1.79341	1.4330	02	74.0
374	0.061	1.10	3.33	2.75		0.8193	2.69469	1.4342	86	171.9
101	205.0	1.40	4.70	4.00		0.4260	3.85114	1.4387	100	311.9
624	2.00.0	CP-1	6.50	5.60		0.8314	5.34761	1.4427	106	502.7
155	235.0	2.10	8.60	7.55	37.4	0.8378	7.10694	1.4460	108	729.5
185	250.0	3.40	17.00	10.30	35.4	0.8478	9.98950	1.4510	109	110011
609	265.0	5.10	17.93	14.50		0.8591	14.28519	1.4595	101	1635.1
536	280.0	5.30	22.00	19.50	31.2	0.8697	14.63367	1.4665	901	2165.1
563	795.0	2.20	27.20	24.60		0.9805	23.21237	1.4732	\$11	2757.9
280	310.0	5.30	33.00	30.10		0.4772	28.30040	1.4712	122	3465.5
119	325.0	6.30	39.00	36.00	59.6	0.3783	33.57040	1.4718	123	4203.5
250	343.3	9.40	45.80	45.43	27.3	0.8911	39.62959	1.4792	123	5039.9
119	355.0	4.40	50.20	48.00	24.9	0.9053	43.61295	1.4885	124	5585.5
969	370.0	S.80	26.00	53.10	24.0	0.9100	48.39075	1.4921	126	6316.3
125	385.0	5.40	61.40	58. 7C	23.6	0.9123	53.81723	1.4935	129	7012.9
152	40000	5.20	69.99	64.00	23.1	0.9153	58.57661	1.4943	132	7699.3
611	415.0	5.40	72.00	69.30	22.1	0.9176	63.53186	1.4955	139	8449.9
908	430.0	5.30	17.00	74.50		0.9188	68-12601	1.4969	145	9174.9
433	445.0	4.30	91.30	79.15		9026-0	72.08469	1.4987	146	9832.1
156	455.0	2.90	84.20	82.75	21.0	0.9279	14-77550	1.5017	145	10223-2
188	4.75.0	4.80	99.00	96.63		0.9321	19.24980	1.5065	141	10900.0
116	490.0	2.20	91.20	90.10	19.3	0.9383	81.31412	1.5155	133	11192.6
056	210.0	1.50	92.70	55.15	15.9	0.3600	82.75407	1.5228	126	11381.6
896	520.0	0.30	93.20	\$5.95	14.6	3.9685	43.23833	1.5290	118	11440.6
546	535.0	0.10	94.10	93.65	13.5	0.9759	84.11661	1.5355	116	11545.0
276	550.0	3.13	94.80	34.45	12.5	0.9826	84.80444	1.5400	114	11624.
1049	565.0	0.13	95.50	95.15	11.2	9166.0	85.49855	1.5490	114	11704.6
+690	565.30	4.30 1	00.00	97.79	2.1	1.0501	90.26463			

TEMPERATURE	ATURE	CALC AT		VARP AT	104	SUR LT P			SUM AT PCT		SUM MT PCT
DEG F	0EG C	CKUSE	JN CRUDE	NO.	410	NORM WT	PCT SULFUR	R CARBON		NITROGEN	X NORM WT PCT
5		0.0	•	٠	0.0						
•		0.0	0.0	0.0	0.0						
2		0.0	0.0	0.0	0.0						
91 BC	20.0	0.0	0.0	0:0	0.0		0.0				
2		0.0	0.0	0.0	0:0	0.0	0.0				
2	-	0.0	0.0	0	0.0	0.0	0.0				
		0:0	0.0	0.0	0.0	0.0	0.0				
185	85.0	0.0	0.0	0.0	0.0	0:0					
212	100.0	0.0	0.0	0.0	0.0	0.0	0.0				
749	0.071	0.0	0.0	0.0	0.0	0.0					
212	135.0	0.44	0.44	6.44	0.22	0.181					
305	150.0	90	0.46	06.0	19.0	0.388					
320	160.0	3.45	C. 45	1.36	1.13	0.629					
34.7	175.0	0.63	0.63	1.99	1.67	1.089					
374	193.0	1.00	1.00	5.99	2.49	1.778					
104	205.0	1.28	1.28	4.27	3.63	2.790					
428	220.0	1.66	1.66	5.92	5.10	3.727	!			0-4300	0.7129
455	235.0	1.95	1.95	7.87	9.90	4.789				0.4400	1.5705
784	250.0	3.19	3.19	11.07	14.6	6-450				0.4500	3.0075
606	265.0	4.75	4.16	15.63	13.45	9.210				0.4800	5.2918
536	283.0	18.4	4.82	20.64	18.23	12.727				0.5300	7.8451
563	295.0	5.06	5.07	25.72	23.18	16.227	!			0.6100	10.9394
290	310.0	5.63	5.64	31.35	28.53	19.609				0.7600	15.2233
119	375.0	5.83	5.94	17.19	34.27	22.820				1.0700	21.4704
9 20	343.3	6.70	12:0	43.90	40.55	26.646				1.5500	31.8751
671	355.0	4.41	4.41	48.32	46.11	29.162		00.00	0.0221	1-6000	38-9359
869	370.0	5.84	5.85	24.16	\$1.24	32.378		10.0	0.0638	1.6000	48.2911
522	385.0	5.45	5.46	24.65	56.89	35.243		10.0	0.1289	1.6000	57.0237
757	400.0	2.46	2.27	64.44	97.79	37.430		0.05	0.2238	1.5900	65.4073
611	415.0	2.49	2.49	10.38	67.64	40.051		0.03	0.3995	1.5600	13.9712
909	430.0	5.08	5.09	15.41	12.93	42.138	1	3000	0.7252	1.5200	81-7074
633	442.0	4.30	4.34	15.86	17.67	43.760	0.3130	*1.0	1.3392	1.5200	88.3736
158	455.0	5.94	2.98	45.84	81.35	44.983		0.30	2.2335	1.5200	95.9048
199	415.0	4.95	4.96	97.80	85.32	41.089		0.73	5.8520	1.5700	
*16	6.90.9	5.24	62.7	80.06	88.34	40.347		1.80	4.9685	1.6200	
950	510.0	1.53	1.60	91.60	₹0.98	49.432	0.6400	3.06	14.8500	1.6900	
896	520.0	9.54	0.54	92.25	41.95	49.818		+1.4	17.071	1.7200	
666	535.0	0.97	3.97	63.19	92.10	50.645		2.10	22.0334	1.7500	
	550.0	0.76	3.76	93.65	93.57	51.359		1.00	27.3676	1.8000	
6401	565.0	2.11	0.11	34.12		52.146		9.60	33.9838	1.8300	
	265-0+	1175	2	00		u			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
			1 07.6	20.00	41.30	23.113	1.3200	07.17	*********	1.9800	

										7		200
RANGE	7	VILL FINAL	VIELD	VOL UME	046	API SPECIFIC	MT PCT	MT PCT	37 DEG C	CARBON	NITROGEN	PT
		1.00	1.30	0.50	45.44	0.8135	0.90	0.4304				
			3.30	1.65	41.79	9918.0	2.99	0.5956				
	374 1.00	_	2.30	51.2	41.50	0.8179	2.08	1149.0	1.4351			75
			3.70	2.85	40.85	0.8210	3.37	0.7139	1.4365			8
			7.60	4.80	39.38	0.8281	16.9	0.6313	1.4406			96
	509 1.00	-	16.00	60.6	36.56	0548-0	14.92	0.5911	1.4487			102
	536 1.00	0 22.00	21.00	11.50	35.25	0.8486	19.74	0.6250	1.4524			103
	00 1 869		65.00	28.50	30.37	0.8741	53.26	9009.0	1699.1			115
•	650 1.50	0 45.80	44.30	23.65	31.72	0.8669	42.55	0.6115	1.4644			113
347 6	698 2.20		53.80	29.10	30-14	0.8754	52.18	0.5997	1.4698			116
		0 12.00	8.70	7.65	37.26	0.8385	8.08	0.5781	1.4461			101
374 5	536 3.30	00 55 00	18.73	12.65	34.51	0.8524	17.66	0.6200	1.4551			101
		00 11 0	12.30	10.85	35.30	0.8483	11.56	0.5554	1.4524		0.4578	108
	650 4.70	0 45.80	41.10	25.25	31.05	0-8705	39.64	6109.0	1.4667		0.8042	115
	536 6.5	50 22.00	15.50	14.25	33.58	0.8572	14.72	9119.0	18551		0.4846	101
	590 17.00	0 33.00	16.90	25.90	30.04	0.8760	15.53	1699.0	1.4704		0.6396	***
ā	650 22-33	0 45.83	23.80	33.90	28.90	3-8822	23.26	0.5984	1.4741		1.0331	121
9 065			12.80	39.40	24.37	0.8851	12.55	0.5607	1.4757		1.3267	123
K		0 56.00	23.00	44.50	26.56	0.8952	18.22	0.5598	1.4823		1.4496	124
			20.40	56.20	23.84	6016-0	20.99	0.5314	1.4923	10.0	1.5975	128
To the	851 45.80	0 84.20	34.40	65.00	23.10	0.9153	38.94	0.4109	1.4947	90.0	1.5674	135
-	45.		49.70	10.65	21.82	0.9229	50.85	0.5018	1.5001	19-0	1.5864	134
	66.	0 84.20	17.60	15.40	22-24	0-9204	17.95	0.4002	1.4977	0.11	1.5322	143
	12.	00 94.10	22.10	83.05	20.42	0.9314	22.40	9+94-0	1.5059	0.95	1.5673	140
		0 92.70	8.50	88.45	19.25	0.9387	9.84	0.5034	1.5117	1.43	1-6046	136
-	9 94.		11.30	89.85	17.61	0.9489	11.98	0.6030	1.5184	2.67	1.6488	131
950 104	9 92.	10 95.50	2.80	%.10	12.86	0*9802	3.04	0.8926	1.5388	67.9	1.7775	115
95 10	1.96 64	10 95.50	1.40	94.80	11.85	0.9871	1.53	1086.0	1.5445	7.80	1.8151	*
			RE SIDUE									
2 220					5	•	• • • • • • • • • • • • • • • • • • • •		•			
TENO		790	401 60571517		1.00	•	S IN CO		200011			
10494	4.50	1		1	5.28	1	27.20		1.98			
995+		7	1.0	1.0420	6.81	1.24	22.84		1.94			
+056	7.30		1.0	1.0288	8.32	1.16	19.56		16-1			
851+	15.80	12.8	0.6	803	17.16	0.82	10.22		1.75			
152+	33.40		0.0	0.9487	35.11	0.61	50.5		1.64			
698+	44.00		0.0	0.9403	45.84	0.58	3.87		1.63			
650+	54.20	20.0	0.0	0.9342	26.10	0.58	3.17		1.62			
563+	72.80		5.0	0.9210	74.28	0.58	2.39		1.51			
478+	-		0000									

CRUDE		
	SYNCRUDE - GARRETT	

SL. 19C-FP. 75

GASOLINES & NAPHTHAS

	F VT	48/158	68/212 20/100	158/212 70/100	248/302 120/150	248/374 120/190	302/374 150/190
	OL. %				0.0-1.0	0.0-3.3	1.0-3.3
	OL. %				1.0	3.3	2.3
	OL. %				0.5	1.6	2.2
GRAVITY .	-API	9.4			42.4	41.8	41.5
SPECIFIC GRAVITY	60/60				0.8137	0.8165	0.8179
TOTAL SULFUR	WT. %				0.43	0.60	0.67
MERCAPTAN SULFUR WT	. PPM		1000		272	120	75
REID VAPOR PRESSURE	PSI						
RESEARCH OCTANE NUMBER							399 £ 300
CLEAR							
+ 1.5 ml TEL/USG				100			
1 10 ml TEL/USG					1		
MOTOR OCTAME NUMBER							
CLEAR							
+ 1.5 ml TEL/USG							1 1 -
+ 3.0 ml TEL/USG							
VOL. % D+L # 70-C/150-F			23446	10000			e i ivolet
₩ 100°C/212°F							
FSP ·F							
ANILINE POINT, 'F				i i i i i i i i i i i i i i i i i i i			75
		GC		GC	GC HC		нс
PARAFFING Y	/OL. %		ALC: N				39.0
NAPHTHENES V	10L %		- 40 st	14			31.7
AROMATICS	VOL. %						29.3

TABLE 6

CRUDE

SYNCRUDE - GARRETT

SL. 19C-FP. 75

KEROSENE & TURBO FUELS

15'5 CUT POINT	°F VT	302-401	302-455	302-509	374-482	274-536
15'S CUT POINT	°C VT	150-205	150-235	150-265	190-250	190-280
YIELD CUT RANGE	VOL. %	1.0-4.7	1.0-8.6	1.0-17.0	3.3-12.0	3.3-22.0
YIELD ON CRUDE	VOL. %	3.7	7.6	16.0	8.7	18.7
MID-POINT	VOL. %	2.8	4.8	9.0	7.6	12.6
GRAVITY	*API	40.9	39.4	36.6	37.3	34.5
PECIFIC GRAVITY	60/60	0.8208	0.8280	0.8418	0.8383	0.8524
TOTAL SULFUR	WT. %	0.71	0.63	0.59	0.58	0.62
MERCAPTAN SULFUR	WT. PPM	50	82			
SMOKE POINT	MM	16	15	14	15	13
LUM. NO.		37.0	35.5	32.0	33.0	28.0
FREEZING POINT	∘ F	Too Dark				
CLOUD POINT	•F	Too Dark				
POUR POINT	•F	-85	-65	-45	-50	-35
ANILINE POINT	•F	84	96	102	107	107
DIESEL INDEX		34	38	37	40	37
COLOR	SAYBOLT					
REFRACTIVE INDEX 67°C		1.4365	1.4406	1.4487	1.4461	1.4551
AROMATICS, FIA	VOL. %	Too Dark				
VISCOSITIES:						
KINEMATIC30-F	c\$e	5.57	9.40	25.5	18.8	34.0
₩ 100-F	eSt	1.11	1.39	2.05	1.81	2.27
~ 210°F	e\$e	0.59	0.69	0.90	0.82	0.96

					TABLE ?				
		SYNCRUDE - CARRETT	CAMBETT				SL. 19C-FP. 75	2	
				TOOM	MIDOLE DISTILLATES				
US Our Pour	5 5	85.188 28.288	369-390	310-343	310-370	320-650	401-650	302-698	
200 000	9	4.7-17.0	17.0-33.0	33.0-45.8	33.0-56.0	1.5-45.8	4.7-45.8	1.0-56.0	
THE OF CRUCK	. 4	12.3	16.0	12.6	23.0	44.3	41.1	55.0	
T-MO-COM	, d	10.6	25.0	39.4	44.5	23.6	25.2	28.5	
CASMITY	5	38.3	30.0	28.4	26.6	31.7	31.0	30.4	
PROPIC LALINTY	*	0.8483	0.8762	0.8849	0.8950	0.8670	0.8708	0.8740	
TOTAL SALPAR	* 5	9.3	0.67	0.56	0.56	0.61	09.0	09.0	
SMLINE FORT	-	108	116	123	124	113	115	113	
		*	*	x	n	*	35	35	
CETME +DEX		3	3	3	8	97	97		
CLOLD FORF	•	Too Bark							
POLE POINT	•	7	•	ž		5.	2	22	
REFRACTIVE HOER : 67C		1.4531	1.4704	1.4757	1.4823	1.4644	1.4667	1.4691	
MEUT. NO. 0-8741	1 0 1	2.0%	2.04	2.04		No de			
VECENTES		K.03		:	8	į	5	2	
	• •	2 2	1.33	3.70	08.7	2.01	2.18	2.37	
*60.	•		4.5						
į	•	0.92	1.33	1.97	2.31	1.27	1.34	1.43	
					THE STATE OF				
		11.0	11.7	18.2					
1:		*	37.1	35.6					
MITMAGEN		0.46	3.0	1.33	1.65		0.80	The second secon	

		7	SYNCHUDE - CARRETT				SL. 19C-FP. 75	Section of the sectio	
					GAS OILS				
14.5 CUT POINT 14.5 CUT POINT	5 5	650-752	752-851	051-950 015-35b	950-1049	650-851	650-1049	455-565	995-1049
TIELD CUT RANGE	7. J.C.	45.8-66.6	66.6-84.2	84.2-92.7	92.7-95.5	45.8-84.2	45.8-95.5	84.2-95.5	94.1-95.5
TIELD ON CRUDE	70.0	36.2 S6.2	17.6	8.5 88.4	2.8	38.4	49.7	11.3	1.4
GRAVITY	5	23.8	22.2	19.2	12.9	23.1	21.8	17.6	11.8
SPECIFIC GRAVITY	:	0.9111	0. 9206	0.9390	0.9799	0.9153	0.9230	0.9490	0.9874
TOTAL SULFUR		0.53	0.40	0.50	0.89	0.47	0.50	09.0	0.98
AMELINE POINT	•	128	143	136	113	\$113	134	131	114
COM CAMBON		0.01	0.11	1.43	6.29	90.0	0.67	2.67	7.80
POUR FORT	•	02	100	110	115	88	8	110	115
REPRACTIVE MOCK 6PC		1.4923	1.4977	1.5117	1.5388	1.4947	1.5001	1.5184	1.5445
MUT. M.	- 101/P	0.43							
WTBOOK.		1.60	1.53	1.60	1.78	1.57	1.59	1.65	1.82
VISCORTIES			30100						
CHEMATIC NO!	*	19.0							
	ŧ	7.18	21.0	90.0	0001	11.3	18.0	150	2004
***	*								
į	•	3.33	7.37	21.1	116	4.73	6.65	30.5	184
BASIC MTROSEN	9.1.					0.69		0.93	
OKYOGE						0.61		0.81	
MTALS									
VAMADRIM	#4. PPE							0.1	
MCREL	4. 7							3.3	
ŧ	er. PPa							14.4	
*		15.9	14.8	17.3	23.3		The state of the s		25.0
1		40.2	39.3	43.3	57.5				60.1

SYNCRUDE - GARRETT

SL. 19C-FP. 75

LUBE DISTILLATES

		LUGE	LUBE
15/5 CUT POINT	•F VT	779-995	
15/5 CUT POINT	-C VT	415-535	
YIELD CUT RANGE	VOL. %	70.8-94.1	
YIELD ON CRUDE	VOL. %	23.3	
MID-POINT	VOL. %	82.4	
GRAVITY	*API	20.6	
SPECIFIC GRAVITY	60/60	0.9303	
TOTAL SULFUR	WT. %	0.47	
CON CARBON	WT. %	0.89	
ANILINE POINT	•	141	
REFRACTIVE INDEX + 67-C		1.5048	
NEUT. NO. (D-974)	me KOH/em	0.76	
MTROGEN	WT. %	1.67	
POUR POINT	•	105	
WAX CONTENT	WT. %	12.0	
WAX MELTING POINT	4		
VISCOSITY INDEX		32	
VISCOSITIES:			
KINEMATIC . 199-F	e\$t	(201)	
• 190°F	cSt	42.7	
€ 179°F	c\$1		
e 210-F	c\$1	12.42	
SAYBOLT UNIVERSAL + 100-F	SEC	(931)	
e 210°F	SEC	68.0	

PHENOL TR SUSCEPTION	REATING HLITY*
PHENOL TR CHARACTERI DEWAXED LI	ISTICS OF
PHENOL/OIL	
RATIO	
Treet	
RAW STOCK	
1/1	
2/1	
3/1	
VISCOSITY) GRAVITY } CONSTANT	
*From Established Corr	

			SYNCHUTE - CARRETT			0.376	SL. 19C-FP. 75		
					RESIDUA	- 10 - 10			
ISAS CUT POMIT ISAS CUT POMIT	***	ŚŚ	ŠŠ	48	÷ \$	ġ ġ	985 735	1049+	18
VIELD ON CRUDE	* OF *	¥.2	64.0	33.4	15.8	7.3	5.9	5.4	
GRAVITY	5	20.0	19.0	17.6	12.8	6.0	3	12	
SPECIFIC GRAVITY	8/8	0.9340	0.9402	0.9490	0.9806	1.0291	1.0420	1.0591	
TOTAL SULFUR		0.58	0.56	0.61	0.82	1.16	1.24	1.32	
COM CARBON		3.2	2.	5.0	10.2	19.6	22.8	27.2	i Andrews
MTROGEN	* E	1.62	1.63	1.5	1.73	1.91	1.8	8.1	
MEUT NO. (D-444)	- KON/-	0.40						63	
POUR POINT	•	8	\$	100	115	>120	>120). 120	-
VISCOSATIES									
CINEBATIC . MOFF	•	9	280	(099)					
.	•	3	20	1111					12
	•	33.2	\$6.0	10,	1699				
• 13•	•	1.6	30.5	33.6	8		2000年の日本		
į	*	10.5	13.4	26.2	981	123%	(96, 826)		NA.
FUROL . 277F	¥ ¥	¥1						\$88	
UMVERSAL . 218-F	ž	61.0	79.5	123.5	867				
REDWOOD : . MP-F	¥	1115	1162	(2691)					1
ABSOLUTE VISC 140-7	Fosts								
MINE	0.108								
*AMABRUM	£ .	1.2			3.9			13.7	
MCIE!		:			19.6			57.2	
MON.	er. ma	60.0			967			\$09	
1	• 16								
DETCEN			The second secon					1 30	

í

The state of the s

GRAPH NO. 1

La company of the same of the

GRAPH NO. 4
MIDDLE DISTILLATES AND GAS OILS

GRAPH. NO. 5
MIDDLE DISTILLATES AND GAS OILS

GRAPH NO. 6
MIDDLE DISTILLATES AND GAS OILS

GRAPH NO. 7
MIDDLE DISTILLATES AND GAS OILS

GRAPH NO. 9

RESIDUA

THE REPORT OF THE PARTY OF THE

APPENDIX VIII

CRUDE ASSAY - SYNTHOIL COAL LIQUID

CRUDE:

SYNTHOIL

LOCATION:

Bruceton, Pennsylvania

REPRESENTATIVE OF:

Pilot plant sample produced by the SYNTHOIL process of the U.S.B.M., at the Pittsburg Energy Research

Center

FILE NO .:

SL. 18C-AB. 75

REPORT DATE:

1-6-76

REPORT BY:

Day n. Williams

EXXON RESEARCH & ENGINEERING CO. ENGINEERING INFORMATION CENTER FLORMAM PARK, N.J.

DATE RECEIVED:

3-4-75

DATE DISTILLED:

9-14-75

LAB ASSAY NO .:

2034

COST CENTER:

722110

ASSAY RUN BY:

EXXON COMPANY, U.S.A.
REFININGI DEPARTMENT
REFINERY LABORATORY
BAYTOWN, TEXAS

SPONSORED BY:

CRUDE	SYNTHOIL	SL. 18C-AB. 75
		party in the state of the control of

WHOLE CRUDE DATA *

	60/60 WT. %	1.0298
SULFUR MERCAPTAN SULFUR		
ERCAPTAN SULFUR		0.22
	WT, PPM	
POUR POINT	·F	25
UTROGEN	and the state of t	0.79
NATER AND SEDIMENT	VOL. %	0.05
SALT CONTENT, NoCI	PTB 25 54 DEC 12	200
REID VAPOR PRESSURE	PSI	
H ₂ S (DISSOLVED)	WT. PPM	0
NEUT. NO. (D664)	mg kOH/gm	0.36
THE MARKET WILL	122°F, c\$4	
	100°F, c\$r	673
KINEMATIC @	80°F, cSr	1950
	60-F, cS1	
	40°F, c\$1	
VISCOSITIES:	122+F, SEC	19 24 44 100
	100-F, SEC -	3117
SAYBOLT UNIVERS	AL 80°F, SEC	9022
	60°F, SEC	AL PROPERTY.
	40°F, SEC	

* After water & sediment had been removed. The sample as received had the following whole crude properties:

Gravity, *API 3.7
Water and Sediment 22.0 Viscosity Kinematic cSt @ 100°F

876 .

TARTER OF THE CONTRACT OF SHIPLE OF SHIPLE

(í	١
ı	ı	2
1	١	
	ì	
è	4	ı
ı	ŀ	1
×	۰	

SUM OFF SUM			Summister Osma	7					1		SL. 18C-AB. 75
F 15EG C ON CRUDE CUM MID DEG API SPECIFIC X VOIL PCT 67 DEG C AN. PT. X AM. O.	TEMPE	RATURE	NO.	. 1		GR	AVITY				SUM OF
23.0 0.0 0.0 0.0 0.0 22.0 0.0 0.0 0.0 0.0 32.0 0.0 0.0 0.0 0.0 46.1 0.0 0.0 0.0 0.0 132.2 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 1100.0 0.0 0.0 1100.0 0	EG F	Francis	100		- 1	0		×	DEG	PT	VOL PCT
23.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			0.0	0.0	0.0						
23.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			0.0	0.0	0.0						
23.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			0.0	0.0	0.0						
32.2 0.0 0.0 0.0 0.0 46.1 0.0 0.0 0.0 10.0 0.0 0.0 0.0 85.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 0.0 1120.0 0.0 0.0 0.0 0.0 120.0 0.0 0.0 0.0 120.0 0.0 0.0 0.0 120.0 0.0 0.0 0.0 120.0 0.0 0.0 0.0 120.0 0.0 0.0 0.0 120.0 0.0 0.0 0.0 120.0 0.0 0.0 0.0 120.0 0	89	20.0	0.0	0.0	0.0						
120.0 0.0 </td <td>06</td> <td>32.2</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td> <td></td> <td></td> <td>A</td> <td></td>	06	32.2	0.0	0.0	0.0					A	
70.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	115	46.1	0.0	0.0	0.0						
135.0	158	76.0	0.0	0.0	0.0						
190.0 0.0 0.0 0.0 0.0 0.0 150.0 150.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	185	85.0	0.0	0.0	0.0						
120.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	212	100.0	0.0	0.0	0.0						
135.0 0.0 0.0 0.0 0.0 0.0 15.4 0.8473 0.13565 160.0 0.16 0.16 0.08 35.4 0.8676 0.25711 0.0 53 160.0 0.14 0.30 0.23 31.6 0.8676 0.25711 0.0 52 190.0 0.90 1.70 1.25 24.8 0.9053 1.51939 0.0 55 205.0 1.20 2.30 2.30 26.5 0.8956 2.59407 0.0 47 220.0 1.60 4.50 3.70 22.7 0.9176 6.80669 0.0 45 235.0 3.00 12.50 10.00 21.6 0.9242 11.42746 0.0 38 225.0 5.00 12.50 10.00 21.6 0.9242 11.42746 0.0 38 225.0 5.00 23.00 20.5 18.9 0.9593 30.99519 0.0 38 225.0 5.00 28.00 25.50 17.3 0.9593 30.99519 0.0 38 225.0 4.80 38.00 35.60 14.8 0.9944 44.80063 0.0 38 343.3 5.60 43.60 40.80 13.0 0.9944 44.80063 0.0 40 370.0 4.70 52.00 49.65 8.4 1.0114 49.55437 0.0 0	248	120.0	0.0	0.0	0.0						
150.0 0.16 0.16 0.08 35.4 0.8473 0.13565 0.0 53 160.0 0.14 0.30 6.23 31.6 0.8676 0.25711 0.0 52 190.0 0.90 0.80 0.65 26.6 0.8950 0.70461 0.0 52 205.0 1.20 2.90 2.30 26.5 0.8956 2.59407 0.0 57 205.0 1.20 2.90 2.30 26.5 0.8956 2.59407 0.0 47 205.0 1.20 2.90 2.30 26.5 0.9123 4.053378 0.0 47 235.0 1.60 23.6 0.9176 6.9176 0.9176 6.8069 0.0 45 255.0 18.00 15.25 20.5 0.9309 16.54791 0.0 38 1 286.0 5.00 18.00 15.25 20.5 0.9948 21.25233 0.0 38 1 295.0 5.00 28.00 25.00 14.8 0.9593 30.995919 0.0 38 </td <td>275</td> <td>135.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	275	135.0	0.0	0.0	0.0						
160.0 0.14 0.30 G.23 31.5 0.8676 0.25711 0.0 53 175.0 0.50 0.040 0.55 26.6 0.8950 0.70461 0.0 52 190.0 0.90 1.70 1.25 24.8 0.9053 1.51939 0.0 57 205.0 1.20 2.30 26.5 0.8956 2.59407 0.0 57 220.0 1.20 2.30 26.5 0.8956 2.59407 0.0 47 220.0 1.60 2.30 26.5 0.9123 4.05378 0.0 45 235.0 1.60 1.60 2.27 0.9176 6.80669 0.0 41 255.0 18.00 10.00 21.6 0.9242 11.42746 0.0 38 1 265.0 5.00 23.00 20.5 18.9 0.9408 21.25523 0.0 38 1 295.0 5.00 28.00 25.5 17.3 0.9593 30.99519 0.0 38 1 343.3 5.60	302	20		0.16	0.03		0.8473	0.13565			
175.0 0.50 0.80 0.55 26.6 0.8950 0.70461 0.0 52 190.0 0.90 1.70 1.25 24.8 0.9053 1.51939 0.0 50 205.0 1.20 2.90 2.30 26.5 0.8956 2.59407 0.0 47 220.0 1.60 4.50 3.70 23.6 0.9123 4.05378 0.0 45 235.0 3.00 12.50 10.00 21.6 0.9242 11.42746 0.0 44 245.0 5.00 12.50 18.00 15.25 20.5 0.9309 16.54791 0.0 38 295.0 5.00 23.00 20.50 18.9 0.9408 21.25203 0.0 38 310.0 5.20 33.20 30.60 16.9 0.9593 30.99519 0.0 38 343.3 5.60 43.60 40.80 13.0 0.9792 41.12144 0.0 38 370.4 48.00 100.00 49.65 8.4 1.0114 49.55437 0.0 60	320	160.0		0.30	6.23	31.6	0-8676	0.25711	0	3	
190.0 0.90 1.70 1.25 24.8 0.9053 1.51939 0.0 50 205.0 1.20 2.90 2.30 26.5 0.8956 2.59407 0.0 47 220.0 1.60 4.50 3.70 23.6 0.9123 4.05378 0.0 45 235.0 3.00 7.50 6.00 22.7 0.9176 6.80669 0.0 41 250.0 5.00 12.50 10.00 21.6 0.9242 11.42746 0.0 38 250.0 5.00 12.50 10.00 21.6 0.9242 11.42746 0.0 38 250.0 5.00 23.00 20.50 18.9 0.9408 21.25203 0.0 38 295.0 5.00 23.00 20.50 18.9 0.9509 26.00673 0.0 38 310.0 5.20 33.20 30.60 16.0 0.9593 30.99519 0.0 38 325.0 4.80 38.00 35.60 14.8 0.9572 41.12144 0.0 38 355.0 3.70 47.30 45.45 10.8 0.9944 44.80063 0.0 40 370* 48.00 100.00 -4.3 1.1124 10.0 0.0 2.0 40 370* 48.00 100.00 -4.3 1.1124 10.0 0.0 2.0 40	347	175.0		0.80	0.55	26.6	0.8950	0-70461		6 6	• • • • • • • • • • • • • • • • • • • •
205.0 1.20 2.90 2.30 26.5 0.8956 2.59407 0.0 47 220.0 1.60 4.50 3.70 23.6 0.9123 4.05378 0.0 45 235.0 3.00 7.50 6.00 22.7 0.9176 6.80669 0.0 41 250.0 5.00 12.50 10.00 21.6 0.9242 11.42746 0.0 38 265.0 5.00 12.50 10.00 21.6 0.9242 11.42746 0.0 38 295.0 5.00 23.00 20.50 18.9 0.9408 21.25203 0.0 38 310.0 5.20 33.20 30.60 16.0 0.9599 26.00673 0.0 38 325.0 4.80 38.00 35.60 14.8 0.9572 41.12144 0.0 38 343.3 5.60 47.30 45.45 10.8 0.9944 44.80063 0.0 40 370* 48.00 100.00 -4.3 1.1124 10.2 0.0 39	374	190.0		1.70	1.25	24.8	0.9053	1.51939		70	99.4
220.0 1.60 4.59 3.70 23.6 0.9123 4.05378 0.0 45 235.0 3.00 7.50 6.00 22.7 0.9176 6.80669 0.0 41 250.0 5.00 12.59 10.00 21.6 0.9242 11.42786 0.0 38 265.0 5.00 12.59 10.00 21.6 0.9242 11.42786 0.0 38 280.0 5.00 23.00 20.50 18.9 0.9408 21.25203 0.0 38 295.0 5.00 28.00 25.50 17.3 0.9593 30.99519 0.0 38 310.0 5.20 33.20 30.60 16.0 0.9593 30.99519 0.0 38 325.0 4.80 38.00 35.60 14.8 0.95792 41.12144 0.0 38 343.3 5.60 43.60 40.80 13.0 0.9944 44.80063 0.0 40 355.0 4.70 52.00 49.65 8.4 1.0114 49.55437 0.0 22 370.4 48.00 100.00 -4.3 1.1124 102.05055	104	205.0		2.90	2.30	26.5	0.8956	2.59407		200	18.4
255.0 3.00 7.50 6.00 22.7 0.9176 6.80669 0.0 41 2550.0 5.00 12.50 10.00 21.6 0.9242 11.42746 0.0 38 265.0 5.50 18.00 15.25 20.5 0.9309 16.54791 0.0 38 295.0 5.00 23.00 20.50 18.9 0.9408 21.25203 0.0 38 295.0 5.00 28.00 25.50 17.3 0.9593 30.99519 0.0 38 1 310.0 5.20 33.20 30.60 16.0 0.9593 30.99519 0.0 38 1 325.0 4.80 38.00 35.60 14.8 0.95792 41.12144 0.0 38 355.0 3.70 47.30 45.45 10.8 0.9944 44.80063 0.0 40 1 3704 48.00 100.00 -4.3 1.1124 10.0 5.0 6.0 2	428	220.0	1.60	4.50	3.70	23.6	0.9123	4-0537B		14	134.8
250.0 5.00 12.50 10.00 21.6 0.9242 11.42746 0.0 38 265.0 5.50 18.00 15.25 20.5 0.9309 16.54791 0.0 38 280.0 5.00 23.00 20.50 18.9 0.9408 21.25203 0.0 38 295.0 5.00 28.00 25.50 17.3 0.9509 26.00673 0.0 38 310.0 5.20 33.20 30.60 16.0 0.9593 30.99519 0.0 38 1 325.0 4.80 38.00 35.60 14.8 0.9672 35.63771 0.0 38 343.3 5.60 43.60 40.80 13.0 0.9944 44.80063 0.0 40 3704 48.00 100.00 -4.3 1.1124 102.050559	455	235.0	3.00	7.50	6.00	22.7	0.9176	6-80669		7	330.0
295.0 5.50 18.00 15.25 20.5 0.9309 16.54791 0.0 38 280.0 5.00 23.00 20.50 18.9 0.9408 21.25203 0.0 38 295.0 5.00 28.00 25.50 17.3 0.9509 26.00673 0.0 38 310.0 5.20 33.20 30.60 16.0 0.9593 30.99519 0.0 38 1 325.0 4.80 38.00 35.60 14.8 0.9672 35.63771 0.0 38 1 343.3 5.60 43.60 40.80 13.0 0.9944 44.80063 0.0 40 370.0 4.70 52.00 49.65 8.4 1.0114 49.55437 0.0 20 370.4 48.00 100.00 -4.3 1.1124 102.0556	482	250.0	2.00	12.50	10.00	21.6	0.9242	11.42786	0	3 8 6	519 8
295.0 5.00 23.00 20.50 18.9 0.9408 21.25203 0.0 38 1 295.0 5.00 28.00 25.50 17.3 0.9509 26.00673 0.0 38 1 310.0 5.20 33.20 30.60 16.0 0.9593 30.99519 0.0 38 1 325.0 4.80 38.00 35.60 14.8 0.9672 35.63771 0.0 38 1 343.3 5.60 43.60 40.80 13.0 0.9944 44.80063 0.0 40.0 39 1 355.0 4.70 52.00 49.65 8.4 1.0114 49.55437 0.0 40.0 40 2	509	265.0	5.50	18.00	15.25	20.5	0.9309	16.54791	0-0	2 2	729 9
295.0 5.30 28.00 25.50 17.3 0.9509 26.00673 0.0 38 1108 310.0 5.20 33.20 30.60 16.0 0.9593 30.99519 0.0 38 1306 325.0 4.80 38.00 35.60 14.8 0.9672 35.63771 0.0 38 1306 343.3 5.60 43.60 40.80 13.0 0.9792 41.12144 0.0 39 1707 355.0 3.70 47.30 45.45 10.8 0.9944 44.80063 0.0 40 1855 370.0 4.70 52.00 49.65 8.4 1.0114 49.55437 0.0 40 2043	536	280.0	100 D	23.00	20.50	18.9	0.9408	21.25203	0.0	200	0 0 0 0
310.0 5.20 33.20 30.60 16.0 0.9593 30.99519 0.0 38 1306 325.0 4.80 38.00 35.60 14.8 0.9672 35.63771 0.0 38 1306 343.3 5.60 43.60 40.80 13.0 0.9792 41.12144 0.0 39 1707 355.0 3.70 47.30 45.45 10.8 0.9944 44.80063 0.0 40 1855 370.0 4.70 52.00 49.65 8.4 1.0114 49.55437 0.0 40 2043 3704 48.00 100.00 -4.3 1.1124 102.9558	563	295.0		28.00	25.50	17.3	0.9509	26.00673	0.0	9 6	1108.0
325.0 4.80 38.00 35.60 14.8 0.9672 35.63771 0.0 38 1488 343.3 5.60 43.60 40.80 13.0 0.9792 41.12144 0.0 39 1707 355.0 3.70 47.30 45.45 10.8 0.9944 44.80063 0.0 40 1855 370.0 4.70 52.00 49.65 8.4 1.0114 49.55437 0.0 40 2043 3704 48.00 100.00 -4.3 1.1124 102.9555	240	310.0	•	33.20	30.60	16.0	0.9593	30.99519	0.0	38	1306 4
343.3 5.60 43.60 40.80 13.0 0.9792 41.12144 0.0 39 1707 355.0 3.70 47.30 45.45 10.8 0.9944 44.80063 0.0 40 1855 370.0 4.70 52.00 49.65 8.4 1.0114 49.55437 0.0 40 2043 3704 48.00 100.00 -4.3 1.1124 102.95658	219	325.0	•	38.00	35.60	14.8	0.9672	35.63771	0.0	8 8	•
355.0 3.70 47.30 45.45 10.8 0.9944 44.80063 0.0 40 1855 370.0 4.70 52.00 49.65 8.4 1.0114 49.55437 0.0 40 2043 3704 48.00 100.00 -4.3 1.1124 102.95658	920	43	•	43.60	40.80	13.0	0.9792	41-12144	0-0	2 2	•
370.0 4.70 52.00 49.65 8.4 1.0114 49.55437 0.0 40 2043 370* 48.00 100.00 -4.3 1.1124 102.05058	671	55		47.30		10.8	0.9944	8008	0.0	5 4	•
3704 48.00 100.00 -4.3 1.1124 102.05050	869	0.	•	25.00		8.4	0	9.5543	0.0	•	2043.2
	+869	370+		100.00		-4-3	1,1124	102 96969			

TEMP., IVTF TEMP., PVTF VIELD RANGE, VOL. % YIELD, VOL. % GRAVITY, -API SULFUR, VT. %									
•			TABLE 3	2					
ğ,	 68/	275/	302/	401/ 509	809/ 650	/059	302/	302/	347/
		0.0-0.16	0.16-2.9	2.9-18.0	18.0-43.6	43.6-52.0	0.16-18.0	0.16-52.0	0.8-52.0
		0.16	2.74	13.1	25.6	8.4	17.84	51.84	51.2
		35.4	26.2	21.6	15.9	9.4	22.3	16.9	16.8
		0.10	0.10	0.092	0.14	0.12	0.094	0.12	0.12
SULFUR, ppm									
MERCAP. SUL., pp.			80					100	
1.1	 Ŷ								
AMILINE PT., -F			67	39	8	07	41	33	39
FREEZING PT., ·F			Too Dark						
CLOUD PT., *F			Toc Dark						
POUR, ·F			کر	V-70	-30	20	4-70	-30	-25
SMOKE PT.			•	8			6		
COLOR, SAYBOLT									
Refractive Index@ 67C			1.4694	1.4885	1.5145	1.5486	1.4860	1.5104	1.5110
Nitrogen, wt. Z			0.30	0.29	0.32	0.47	0.29	0.34	0.34
AROMATICS, VOL. %			Too Dark						
KIN. VISC., cs. & 100-F			1.51	2.62	7.29	35.9	2.42	5.58	5.68
ě			0.98	1.55	3.39	10.2	1.42	2.76	2.78
210°F			0.67	0.97	1.85	3.91	0.92	1.55	1.57
					はない		2		
とうとう 一大を大の大ななな							1		

SYNTHOIL

SL. 18C-AB. 75

RESIDUA

CUT POINT, "F	6501	6901
YIELD, VOL. %	56.4	48.0
GRAVITY, -API	-2.4	-4.3
SULFUR, WT. %	0.28	0.31
POUR, •F	> 120	> 120
KINEMATIC VISC., # 100-F		
122°F		
150°F		
175•F		2132
210-F		359. 1
SAYBOLT FUROL # 122-F		
NITROGEN, WT. %	1. 12	1.22
CON CARBON, WT. %		
MNI, WT. %		
NICKEL, PPM		1.0
VANADIUM, PPM		7.5
IRON, PPM		419

* Converted from Kinematic

HI VAC C @ mm OF THE	VOL. %	TEM	P., •F
690+ RESIDUA	DIST.	1 mm	760 mm
	5		
	10		
	20		
	30		
	40		
	50	, , ,	
	60		
	70		
	•0		
	••		
	95		

GRAPH NO. 1

United States Department of the Interior BUREAU OF MINES

4800 FORBES AVENUE
PITTSBURGH, PENNSYLVANIA 15213

Pittsburgh Energy Research Center

August 28, 1974

Dr. Henry Shaw Exxon Research and Engineering Co. 1600 E. Linden Avenue Linden, New Jersey 07036

Dear Dr. Shaw:

Relative to your letter of June 27, 1974, a 250-lb sample of centrifuged product from our SYNTHOIL process has been shipped to you under separate cover. This product oil was made from Kentucky Coal, the source is a blend from Kentucky seams #9, 11, 12, and 13 which are mined together in Ohio County (Western Kentucky). Analysis of feed coal as received is listed below:

Proximate ana	1ys	3 i	s,	W	t/	рс	t							
Moisture														4.2
Ash														16.5
Volatile	ma	tt	te	r										36.2
Fixed ca	rbo	n												43.1
Ultimate anal	ysi	s	, ,	wt.	/p	ct								
Hydrogen														4.8
Carbon .											·			60.7
Nitrogen														1.2
Oxygen .		•				•	35		•	•	•	•	•	11.3
Sulfur .			•	•	ı.			•	•	•	•	•	•	5.5
Ash		:	:	:	:		:	:	:	:		:	•	16.5
Forms of sulf														
Sulfate														0.47
Pyritic						3								3.08
Organic														1.95
Calorific value Rank: hvAb	ue,	1	3tı	1/1	ь	•	•	•	•	•		•	•	11,020

Conditions were 4000 psig, 450° C, feeding a 35 percent solids slurry in lined-out, coal-derived recycle oil at 30 lbs per hour. This oil was produced using our nominally 1/2-ton/day unit with a 29 toot long catalytic reactor. Analytical assay data on this product oil is not yet available.

Of course, we will be very interested in any information you obtain on these samples. If there are any problems or questions, please contact me at (412) 892-2400, extension 677. Thank you for your interest in our work.

Sincerely,

Nestor J. Mazzocco

Supervisory Chemical Engineer Exploratory Engineering

NM:mjf

APPENDIX IX

H-COAL RUN (FEED COAL ANALYSIS) ASTM D-86 DISTILLATION

RUN 130-63 FEED COAL ANALYSIS

(Coal Feed Used to Prepare H-Coal Liquid Sample)

Coal Source	Monterey Coal Company
Moisture, W %	5.6
Proximate Analysis, Dry Basis, W % Ash	10.22
Volatile Matter Fixed Carbon	41.58 48.20
Ultimate Analysis, Dry Basis, W %	70.09
Hydrogen Nitrogen	5.32 1.22
Sulfur Ash	4.27 10.22
Oxygen (Difference)	1.18
Sulfur in Ash, W %	

Figure 1
H Coal "Atmospheric Overhead"

O Feed to Hydrotreatment

FUELS Distillation - ASTM D-86

Ref: Turbine Fuel - BuMines, "Aviation Turbine Fuels," 1966 AvGes - BuMines, "Aviation Fuels," 1964

e 1973, Exxom/Corporation

APPENDIX X

JFTOT RESULTS

the transfer of the state of the transfer of the state of

THE TAX AND THE TOP OF THE DRIVE

PROFILE TEMPERATURES 30.74 9.7 THERMOCOUPLE MEASURED 60.74 5.6 THERMOCOUPLE MEASURED 60.74 5.7 THERMOCOUPLE MEASURED 60.74 5.6 0.85 5.5 3 120.33 9.7.9 0.20 4/3 150.40 9.7 0.60 5.37 150.40 9.7 1.10 5.45 240	MEL DESCRIPTION LETA OPERATOR W. DAVIS MADIENT TEMP. *F 77	HEATER TUBE T	EMPERATURE 1.550°F	TEST TIME	FILTER A
THERMOCOUPLE MEASURED 30 37 4 4.7 TRUE MELTING POINT 449 F	MOIENT TEMP., P.	PROFILE TEMPER	RATURES	0	0.0
TRUE MELTING POINT MOICATED MP ERNOR 130 F ERNOR 130 F 100 S	EMPERATURE CALIBRATION				
## BIDICATED MP #\$2. \$ 0.85 55.3 120.39 7.9 ## PURD AFRATED 2. 50 0.40 0.3 150.97 9.7 ## PURD AFRATED 2. 50 1.10 57.7 210.124 14.0 ## PURD AFRATED 2. 50 1.10 57.7 210.124 14.0 ## PURD AFRATED 2. 50 1.10 57.7 210.124 14.0 ## PURD AFRATED 2. 50 1.10 57.7 2.10 2.40 ## PURD AFRATED 2. 50 1.10 57.7 2.10 2.40 ## PURD AFRATED 2. 50 1.10 57.7 2.10 2.40 ## PURD AFRATED 2. 50 1.10 1.10 1.10 1.10 ## PURD AFRATED 2. 50 1.10 1.10 ## PURD AFRATED 2. 50 1.10 1.10 ## PURD AFRATED 2. 50 1.10 ## PURD AFRATED 2. 50 ## PURD AFRATED		POSITION	TEMP.		
### 150 ### 15		0.85			
REDCK TIME FUEL AFRATED 12:30 REATER ON 12:40 NEATER ON 12:40 1:10 5:77 210124 10:0 1:10 5:77 220 1:10 5:77 200 1:10 5:77 200 1:10 5:77 200 1:10 5:77 200 1:10 5:77 200 1:10 5:77 200 1:10 5:77 200 1:10 5:77 300 1:10 5:					
## PUBL AFRATER 12.350 MEATER ON	ERRIOR				
FIJEL AFRATED 12:300 MEATER ON 72:40 M	OCK TIME	The state of the s		Characteristics and the Committee of the	
1.70 415 300 FILTER DYPASSED AT 42.4 MIN. 1.70 415 500 FILTER DYPAS	17:30	Property of the Party of the Pa	THE RESERVE OF THE PERSON NAMED IN COLUMN 1		10.0
2.00 372 FILTER DYPASSED AT 12.4 MIN. 10 10 10 10 10 10 10 10 10 1	FUEL AERATED				
2.00 382 FILTER BYPASSED AT 12 14 MIN. 10 30 60 90 120 150 180 210 240 270 TEST TIME IN MINISTES 150 AD DROPS/SEC. 18 DISTANCE FROM FUEL	HEATER ON	1.70	1455		
AT 42.4 MIN. SSO SO SSO SSO SSO SSO SSO SS		2.00	382		
10 30 60 90 120 150 180 210 240 270 TEST TIME IN MINUTES / 50 DISTANCE FROM FUEL	8 2 9 2 2 2 2 3	0:85	553	FILTER BYPA	ASSED
	20 15 1.0 05 0	4 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
	NO VISIGLE DEPOSITS HAZE OR DULLING, NO COLOR BARELY VISIBLE DISCOLORATION 3 - LIGHT TAN HEAVIER THAN CODE 3	4 1 2 2 2			
MAZE OR DULLING, NO COLOR HEAVIER THAN CODE 3	BEMARKS Puliti Eliza	1	4.6		

_ 240 -TABLE D-1 JET A

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1		IATE -	8-25-75
DATE TUBES	RECEIVED	12-72	0	RUN # D-1

Tube Deposit Ratings, ALCOR Mark 8

POSITION	NEU	C .	1.5	EU 1	ube	Numbe	r VI.S	LHL		
TUSTTICK	SPEN	Sico	SICK	SPET	-		CLIXE	RS1710	1	
0.3	1.8	3.6	20.2	41.6		1		1.8-1	6	
.4	1.6	2.9	31.2	49.2			2	1.6=	1.1	
.5	0.8	2.3	45.=	>50			3	1.5-	135	
.6	1.7	3.7	50.2	>50			14	9.5	013_	
.7	0,0	1.7	>50	>5-0			4+	1-1-	015	04 1
.8	1.0	2.9	>50	2 5-0			1		u	
.9	1.2	2.8	750	>50			Peac.	cking	0.3-	0.1
1.0	12.7	4.1	42.0	45.8					1.35-	
.1	3,0	4.9	34.5	41.1						
.2	3.0	5.2	26.9	33.1					٠.	
.3	3.9	6.4	18.9	24.9						
.4	3.7	6.7	9.1	12.0			iggis (gg)			
.5	3.6	5.9	16.1	20:0						
.6	3.1	- 1			00.00					6.0
.7	2.7	5.71	5,3	F.5						
.8	9.0	115	9.8	11.5	4/60					
.9	14.5	18.6	13.1	17.2						
2.0	30.2	329	28.2	33,0						e de
2.1	116.2	12.2	45.0	46.8						

FIGURE D-2 ALCOR JET FUEL THERMAL OXIDATION TEST

AMBIENT TEMP. F 72 TEMPERATURE CALIBRATION TRUE MELTING POINT 449 F 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	RIG NO. ELET OPERATOR LO. DAVIS	HEATER TUBE TE		TEST TIME	FILTER AP
TEMPERATURE CALIBRATION TRUE MELTING POINT 449 °F MEMOINT TEMP, °F 60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					Michael Re
TRUE MELTING POINT 449 F 00.85 55.3 130 0.D BROICATED MP 452 F 00.85 55.3 130 0.D CLOCK TIME FUEL AERATED 0.85 55.3 150 0.0 D MEATER ON (010 10 1.10 5.46 2.40 1.10 5.46 2.40 1.10 5.46 2.40 1.17 2.10 1.170 1			ATURES		
THUE MELTING POINT 449 ERNOR J J F BOICATEO MP 452 ERNOR J J F O.85 553 100 O.40 503 150 O.40 503 150 O.66 535 210 O.66 535 210 O.66 535 210 O.60 50 50 50 120 150 160 210 240 270 210 TEST TIME IN MINUTES /5 O Y DROPS/SGC, 18	TEMPERATURE CALIBRATION				
ERICATE D. MP		A STATE OF THE PARTY OF THE PARTY OF			
DIOCK TIME FUEL AERATED 0745 MEATER ON 1010 8 0 0 0 8 8 0 0 120 150 180 210 240 270 2 10 10 10 10 10 10 10 10 10 10 10 10 10 1	MOICATED MP 452 F				
DECOCK TIME FUEL AFRATED DP45 MEATER ON 1000 1.10 546 240 1.10 546 2	ERNOR	_		150	
1.10 5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-		180	
MEATER ON (010) 1.40 5/3 270 1.70 4/4/ 300 8 2 2 0 8 3 0 8 0.85 5/3 FILTER BYPASSED AT 4/1 4/1 4/1 4/1 4/1 4/1 4/1 4/1 4/1 4/1	50kg 50kg 30kg 1 kg 1 kg 1 kg 2 kg 1 kg 1 kg 2 kg 1 kg 2 kg 1 kg 1	The state of the s			
1.70				Management and their contributions.	use u
2.00 3 7 3 FILTER BYPASSED AT MAIN. 10 2.00 3 7 3 FILTER BYPASSED AT MAIN. 10 2.00 3 7 3 FILTER BYPASSED AT MAIN. 10 2.00 3 7 3 FILTER BYPASSED AT MAIN. 10 2.00 3 7 3 FILTER BYPASSED AT MAIN. 10 2.00 3 7 3 FILTER BYPASSED AT MAIN. 10 2.00 3 7 3 FILTER BYPASSED AT MAIN. 10 2.00 3 60 90 120 150 180 210 240 270 3 TEST TIME IN MINUTES /5 O 4 0 DROPS/SGC. 18	HEATER ON	The state of the s			
AT MAIN. AT MAI		2.00			
10	8 6 4 5 8 8 6 8	0.85			ASSED
2.0 15 1.0 05 0 0 30 60 90 120 150 180 210 240 270 3 TEST TIME IN MINUTES /5 0 4 0 DROPS/SGC, /8	***************************************	3 2 1			
2.0 15 1.0 05 0 40 DROPS/SEC. 18 DISTANCE FROM FUEL		0 30 60	90 120 150	180 210	240 270 3
DISTANCE FROM FUEL	110 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TEST TIME IN	MINUTES /5	0
DISTANCE FROM FUEL	2,0 1.5 1.0 0.5 0		40 DROP	s/Sec.	18
OUTLET INCHES TEST FUEL CONSUMED 455 ml					
	OUTLET INCHES	TEST FUEL CONSU	MED 455	ml	
DEPOSIT COUE:					
NO VISIBLE DEPOSITS 3 - LIGHT TAN					
그들은 사용을 막게 들어보니 그리는 이 이름을 가셨습니다. 그리는 것이 아름다면 하는 것이 되었다면 하는데 되었다면 되었다면 하는데 되었다면 되었다면 되었다면 되었다면 되었다면 되었다면 되었다면 되었다면					

- 242 -TABLE D-2

PARAHO JET A (11B)

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1		MATE -	8-5	7-75
DATE TUBES	RECEIVED	12/72			RUN \$ -2
	Tube Dep	osit Rating	s, ALCOR	Mark 8	

POSITION	NEI	W T	1.3	ED Tube	Number	VI.S	LHL	
JUST TIENC	SPUN	Sico	SIUN	SPCT		Live	ic Silvo	1
0.3	- 0	1.6	1.2	6.8				
4	-0	2,9	3.7	9.8		12	:8-	,55
,5	-0	3.2	4.7	11.8				
.6	0:0	3,7	6.5	12.8		4		
.7	0.0	3,6	7.6	13.7				
.8	0.0	3.2	8.3	12.0				
.9	0.0	3.7	6.7	11.8				
1.0	\$10,000 \$ \$1000 \$1,000 \$1,000 \$1,000		4.8					
.1			3.2					
.2	0.3							
.3				7.5				
.4	-0	THE RESERVE AND ADDRESS OF	1					210
,5	PAGE TO STATE OF THE PAGE TO	CONTRACTOR OF THE PARTY OF THE	1.5					100
.6		Company Statement	2.8					
.1	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	State of the later	3.0	CONTRACTOR Tractor				
.8_	COLUMN TO THE PROPERTY OF THE PARTY OF THE P	CONTRACTOR OF COMPANY	2.1	PERSONAL PROPERTY AND ADDRESS OF THE PERSONAL PROPERTY AND ADDRESS OF THE PERSONAL PROPERTY ADDRESS OF THE PERSONAL P				
.9				4.0				
2.0				38.7				
2.1	45.2	47.1	44.2	46.8				

The second secon

DATE 6-27-75 40	o rsi	TES	T NO. D-	3
RIG NO. TET OPERATOR W. PAVIS	HEATER TUBE TE	MPERATURE 570°F	TEST TIME MINUTES	FILTER A
MIDIENT TEMP., F. 7			0	0.0
with the lift in the transfer of the second	PROFILE TEMPER		30	0.0
TRUE MELTING POINT 449 FF POINT AND ADDRESS OF FF POINT AND ADDRESS OF FF POINT AND ADDRESS OF F POINT AND ADDRESS OF	THERMOCOUPLE	MEASURED TEMP. °F	60	0.0
TRUE MELTING POINT 449 F			90	0.0
INDICATED MP 452 F	0.85	573	120	0.0
F ACRES	0.20	461	150	0.0
	0.40	525	180	MATERIAL STREET
LOCK TIME	• 0.60	560	210	
FUEL AERATED 1330	1.10	562	240	
HEATER ON 13 45	1.40	520.	270	
	1.70	463	300	
	2.00	385	FILTER BYP	ASSED
1.70 1.10 0.40 0.60 0.20	0.85	573	AT	MIN.
2 15 1.0 05 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	90 120 150 TEST TIME IN 40 DROP	MINUTES / S	
DISTANCE FROM FUEL OUTLET INCHES	TEST FUEL CONSU	MED 455	nl	
0 - NO VISIBLE DEPOSITS 1 - HAZE OR DULLING, NO COLOR 4 - HEAVIER THAN CODE 3 G - O EMARKS Puficite le ly	#	a - i		

TABLE D-3 PARAHO 11B JET A

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1		DATE - 8.2	7-71	
DATE TUBES				RUN	D-3
	Tube Depo	sit Ratings	ALCOR Mark 8		

POSITION .	NEL	550	SPILL	SPOT	ube in	moer	COLVE	PESITIO	<u>w</u>	
	NAME OF TAXABLE PARTY.	SECSON PULL						1000	Ī	
0.3			5,3							17
.4	14.0	8.1	6.2	10.4				THE .	1 50	1/100
.5	1.7	5.8	4.9	12.7			3+	1.1-	0.5	Strea
.6	1.0	5.3	4.4	7,8				1_		
.1	0.7	4.8	5.2	8,2					1	
.8	1.0	4.9	5.8	16.8						
.9	0.0	2.2	6.2	18.9					<u>l</u>	
1.0	-0	1.8	3.3	21.5				r		
./	-0	1.6	2.2	11.0						
.2	40	2.8	1.9	6.2						
.3	-0	0.4	0.8	3.2						
.4	-0	0.4	0.5	3.0						
.5	0.0	1.2	0.7	2:6						
.6	0.2	1.0	0.8	1.8						
.7	-0	0.6	- 0	1.3						
.8	-0	Se Co	-0	0.8					1	
.9	-0	-0	1-0	0.8						
2.0	28.2	26	33.8	36.7						
2.1	45.5	4.8	463	46.7						

AMT WUTE

ALCOR JET FUEL THERMAL OXIDATION TEST

DATE F-28-17	00 PSI
RIG NO. ERE OPERATOR W. DAVIJ	HEAT
AMDIENT TEMP. °F. 77	PROF

TEMPERATURE CALIBRATION

TRUE MELTING POINT	449 °F
INDICATED MP	452 \$
RCNAS	_3 *

CLOCK TIME

HEATER ON 0915

CONTROL (MAX.)	TEST TIME	FILTER AP	
PROFILE TEMPERA	TURES	0	0,0
THERMOCOUPLE	MEASURED	30	0.0
POSITION	TEMP. "F	60	0.0
000		90	0.0
0.85	573	120	0.0
0.20	461	150	0.0
0.40	525	180	
0.60	561	210	
1.10	562	240	and the second
1.40	222	270	
1.70	463	300	
2.00	385		
0.85	573	FILTER BYP	ASSED

TEST NO. D - 4

TEST FUEL CONSUMED 470 m

DEPOSIT CODE:

6 - NO VISIBLE DEPOSITS	3 - LIGHT TAN
1 - HAZE OR DULLING, NO COLOR	4 - NEAVIER THE
2 BARELY VISIBLE DISCOLORATION	CODE 3
streeked	
REMARKS Militin Eler	G-0
REMARKS ACCLICATE CELET	

- 247 TABLE D-4 TOSCO 17B JP-4 BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-	JATE -	8-2	8-75
DATE TUBES	RECEIVED	12/72		RUN #D-4
	Tube Deposi	it Ratings, ALCOR M	ark 8	,

POSITION	NE		<i>V</i> 5	EU T	ube N	umber	VIS	UAL		
103171010	ISPUN	Sior	SPUN	SPOT			COL	PESITIO	*	
0.3	-0	1.0	6.5	10.0			12	2-	6 St	reak
	0.7	1.7	8.5	16.2		1				
.5	1.1	2.1	9.7	14.6						
.6	0.9	1.0	11.2	15.2			2	1.8	.3	
.7	0.2	1.0	11.7	16.8						
.8	0.5	0.9	7.6	11.7						
.9	. 0.0	0,1	3.3	5.V						
1.0	1-0	2.0	2.3	3.5						
.1_	1.2	6.9	3.8	6.8			<u> </u>			
.2	0.0	2.0	2.4	4.8						
.3	10	2.1	1.7	2.8						
.4	0.9	3.0	3.3	4.3						
.5	0.8	2.0	2.2	4:5						
.6	10.5	1.0	2.5	5.0						
.7	10.2	0.8	2.7	4.8						
.8		Contract Con	4	3.2		<u>L</u> .	_			
.9				5.0			1			
2.0	24.0	27.0	28.4	32.7		1_		<u></u>		
2.1	14.8	46.7	452	46.3						

SPUN TDR

RIG NO. ERE-I OPERATOR W. DAVD	HEATER TUBE TE	MPERATURE	TEST TIME MINUTES	FILTER A
MIDIENT TEMP., F. 77			0	1
	PROFILE TEMPER		30	0.0
TEMPERATURE CALIBRATION	THERMOCOUPLE		60	0.00
TRUE MELTING POINT 449 °F	POSITION	TEMP. °F	90	0.6
INDICATED MP 452 F	0.85	573	120	0.0
ERNOR 2°F	0.20	457	150	0,0
	0.40	519	130	
LOCK TIME	0.60	557	210	
FUEL AFRATED 1305	1.10	563	240	
MEATER ON	1.40	526	270	
MEATER ON	1.70	468	300	
	2.00 0.85	389	FILTER BYP	ASSED
2.00 1.10 0.85 0.66 0.20	0.83	1573	AT	MIN.
HEATER TUBE TELIPERATURE.	0.5 0 30 60	90 120 150 TEST TIME IN	MINUTES / S	240 270
DISTANCE FROM FUEL OUTLET INCHES	TEST FUEL CONS		5/56C,1	1.8
DEPOSIT CODE: 0 - NO VISIBLE DEPOSITS 1 - HAZE OR DULLING, NO COLOR 4 - HEAVIER THAN ENERGY VISIBLE DISCOLORATION EVERAL STREAKS DEMARKS TELLITIE VELY B-1	1 3 1 3 A			

TABLE D-5 TOSCO 17B JET A BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1	SATE -	8-28-75
DATE TUBES	RECEIVED	12/72	RUN D-5

Tube Deposit Ratings, ALCOR Mark 8

7	NEW			Ed Tube i		r VISUAL					
Position	ISPUN	Sion	SPUN	SPOTE	COLE	PESITIO	V				
0.3	-0	0,8	0.0	10.8	K3	.5-3	Stre	eK			
.4	10	1.0	0,6	6.5	<3	.62	63	"			
.5	-0	-0	1.0	4.5	43	1.1-	.85	11			
.6	-0	0.0	1.0	16,1	13	1.5-	1.08	"			
.1	1-0	-0	1.9	6.2	<3	2-	155	11			
.8	1-0	0.0	3.0	4,2							
.9	- 5	0.0	3.1	3,9							
1.0	-0	1.0	2.3	6.8							
	1-0	1.0	1.2	3.8							
.2	-0	0.5	0.8	2.2							
.3	-0	0.8	0.2	2.5							
.4	-0	0.0	-0	1.0							
. 5	-0	1.0	-0	0:8		1000					
.6	1-6	2.6	-0	2.0							
.7	-0	1.0	-0	4.9				dir.			
.8	10	1.8	0.0	5.8							
.9	1-0	3.8	1.1	6.2		1					
2.0	31.2	37.2	32.5	34.5		1					
2.1	UCI	46.2	453	46.9							

RIG NO. ALE OPERATOR LES DALLS	HEATER TUBE TE		TEST TIME	FILTER A
AMDIENT TEMP. "F 77	/			
	PHOFILE TEMPERA	TURES	0	0.0
TEMPERATURE CALIBRATION	THERMOCOUPLE	MEASURED	30	0.0
TRUE MELTING POINT 449 F	POSITION	TEMP. F	60	0.0
INDICATED MP 452 F	0.85	603	120	0.0
ERROR 3 °F	0.20	486	150	0.0
	0.40	550	190	00
CLOCK TIME	0.60	586	210	
FUEL AERATED 0940 HEATER ON 0950	1.10	590	240	
HEATER ON 09.50	1.40	551	270	
	2.60	482	300	
0 0 0 0 0 0 0	0.8	403	FILTER BYP	ASSED
2.00 1.40 1.40 0.63 0.63 0.63		603	AT	MIN.
2.0 1.5 1.0 0.5 0 DISTANCE FROM FUEL		so 120 150 TEST THAE IN 40 PROG	MINUTES 15	240 270
DEPOSIT CODE:	TEST FUEL CONSU	MED 465		
9 - NO VISIBLE DEPOSITS 1 - HAZE OR DULLING, NO COLOR 4 - HEAVIER THAN CODE 3				
REMARKS PRILITE L'ELE B-1		5.4	1	

TABLE D-6 TOSCO 17B JET A BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-	DATE -	8-29-75
DATE TUBES	RECEIVED	12/12	RUN\$-6

Tube Deposit Ratings, ALCOR Mark 8

Position	NEL	J	US	ED Tu	be N	umbei	T VISUAL				
IDSTITION	ISPUN	Sior	SPUN	SPOT			CONE	POSITIO	Y		
0.3	2.8	5.8	5.0	4.7			2	2-	.3		
.4	0.8	1.8	3.2	1.0							
.5	0.7	1.7	3.8	4.8							
.6	0.3	1.2	3.9	5,2							
.1	-0	1.0	2.0	2.2							
.8	0.1	1.2	3.9	4.8						_	
,9	0.8	2.4	4.6	5.1							
1.0	-0	0.6	3.5	4.8			1				
.1	-0	0.0	5.8	6.7							
.Z	- 6	0.8	2.1	3.8							
.3	-0	0.0	0.8	2.0							
.4	1-0	1.1	1.0	2,4			1				
.5	0.9	2.3	1.9	3.6				10 May 12 M			
.6	-0	0.6	0.7	1.0			1	<u> </u>			
.7	-0	0.9	0.4	1.5			1	1	70.30		
.8		BARBORISH	+	3.6			1	1_			
.9	0.9	23	10.2	3.7			1				
2.0	27.9	30.8	27.0	33.7			1	1_	!		
2.1	45.2	46.7	45.2	46.2							

8-29 TOSCO 17-B

AUT NUTE

DATE 10-29-75 400	PSI	TES	T NO D	-7
RIG NO. ERE-I OPERATOR W.DAVIS	HEATER TUBE TE		TEST TIME MINUTES	FILTER A
AMDIENT TEMP., °F _77				
	PROFILE TEMPER	ATURES	30	0.0
TEMPERATURE CALIBRATION	THERMOCOUPLE	MEASURED	(1)	0.0
TRUE MELTING POINT 449 °F	POSITION	TEMP. F	90	0.0
INDICATED MP 452 °F	0.85	603	120	0.0
ERROR +3 °F	0.20	487	150	0.0
	0.40	551	180	
LOCK TIME	0.60	386	210	
FUEL AERATED 1258	1.10	590	240	
HEATER ON 1320	1.70	495	270	
	2.00	406	300	
9 9 9 9 9 9 9 9	0.85	603	FILTER BYP	ASSED
62. 1.1. 69. 69. 69. 69. 69. 69. 69. 69. 69. 69			AT	- MILL
20 15 1.0 05 0 DISTANCE FROM FUEL OUTLET INCHES	TEST FUEL CONSU		MINUTES IS	240 27Q
EPOSIT CODE: CICHT GRAY DEPOSIT 0 - NO VISIBLE DEPOSITS 1- HAZE OR DULLING, NO COLOR 2- BARELY VISIBLE DISCOLORATION CODE 3 SEMARKS PARTICLES A O				

TABLE D-7

GARRETT 103 BLEND JET A

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1	SATE .	10-29-75
DATE TUBES	RECEIVED	12-72	RUN # D-7

Tube Deposit Ratings, ALCOR Mark 8

POSITION	NE			ED Tube i		SUAL E PESITIO	W .	
0.3	6.1	8.0	11	9.0		1	Ï	
4		4.0	-	7.8	1-	1.2-	1.0	DEPS
.5	1.9	4.0	5.0	7.0	2	1.25	1105	
.6	1.3	3.5	7.3	13.3				
.7	0.3	2.2	3.1.	6.0				
.8 .	0.0	2.2	3.8	5.9			<u> </u>	
٠.٩	-0	1.1	4.0	6.0				
1.0	-0	2.1	3.6	9.0				
./	-0	1.0	15.6	21.5		1		
.Z	1-0	0.9	3.7	10.1			<u> </u>	
.3	-0	0.0	-0	3.0				
.4	-0	-0	-0	3.0		1_		
. 5	-0	-0	-	2.6		_	<u> </u>	
.6	-0	-0	-0	2.3			<u> </u>	
7	-0		-	2.0	1-1-		<u> </u>	
.8	-0	-0	-0	1.2				
.9	10	1.3	-0	/.3			*	
2.0	3, 2	J.8	23.2	26.5	1		<u> </u>	
	1	1	¥5.5	46.3				

FIGURE 4-4 10-29-75

GARRETT 103 BLEND JFTOT D-7

G NO. ERE-I OPERATORW. DAVIS				
	SEATER TUSE TE		TEST TIME	HILTER A
	CONTROL (MAX.)	600 °F	MINUTES	INCHES H
ABIENT TEMP., "F 77"			0	0.0
	ROFILE TEMPER		30	0.0
MPERATURE CALISHATION	THERMOCOUPLE	MEASURED-	60	0.0
TRUE MELTING POINT 449 °F	POSITION		90	0.0
NOICATED MP 552 F	0.85	603	120	0.0
F RCRR	0.20	480	150	0.0
ICK TIME	0.60	587	163	
	1.10	592	210	
UEL AERATED 0900	1.40	552	240 270	
EATER ON	1.70	489	300	
	2.00	408		
2.00 1.70 1.10 0.40 0.40 0.20	0.85	603	FILTER BYP	ASSED
			AT	MIN.
200 225 225 225 225 225 225 225 225 225	3 2			
	0.5			
1 450				1
2.0 1.5 1.0 0.5 0 DISTANCE FROM FUEL	0 30 60	90 120 150 TEST TIME IN 40 DROW	MINUTES 5/SEC. 1	240 270 8.2

TABLE D-8

SYNTHOIL 105 BLEND JET A

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ORATORY ERE-/		SATE - 10-30-75
DATE TUBES	RECEIVED	12/72	RUN - D8

Tube Déposit Ratings, ALCOR Mark 8

POSITION		U		SPOT		COLE PESTION				
	11						1			
0.3	11			12.8	14	1.3-	975			
.4	1.1	2.1	16.3	18.4	12+	.775	.675			
.5	0.7	3.7	19.1	21.3	4+	.675	1.50			
.6	-0	2.0	15.0	17.1	14	.60	1.50			
.7	-0	2.9	14.5	167	3	.50	4.371			
. 8 .	-0	0.7	15.6	19.7						
.9	-0	1.2	19.3	22.4	1.4-	1.0	Stredic			
1.0	-0	0.8	22.5	25,2	1.5-	1.0	# 45 1-22 4			
	-0	-0	25.2	29.0						
.2	-0	-0	25.5	32.7						
.3	-0	0.5	25,0	34.1						
.4	0.0	1.5	3.0	20.0						
.5	-0	2.2	0.0	1.0						
ا.	-0	3.0	-0	1.0						
.1	-0	2.8	10	2.1						
.8	-0	2.1	-0	-0						
.9	-0	4.5	100	0.9						
2.0	BE DEPOSITED AND			34.0						
2.1	45.2	47,	45.2	465						

FIGURE D-9 ALCOR JET FUEL THERMAL OXIDATION TOST

DATE _ 10 - 30 - 75	400 151	TES	TNO. D-	7
FUEL DESCRIPTION DINTHOIL 105 BLEND RIG NO. EZE-1 OPERATOR W. DAVIS	HEATER TUBE TE		TEST TIME	FILTER .
AMBIENT TEMP., "F 77			224703	
TEMPERATURE CALIBRATION	THERMOCOUPLE	MEASURED-	30	2.0
	POSITION	TEMP. F	60	0.0
TRUE MELTING POINT 449 F	0 85	553	dů ,	0.0
NOICATED MP 452 °F	0.20	442	120	0.0
	0.40	502	150	0.0
LOCK TIME	0.60	532	190	
FUEL AERATED 1225	1.10	541	240	
MEATER ON 1239	1.40	504	270	
HEATER ON	1.70	445	300	
	2.60 0.85	372	FILTER BYP	ASSED
7.0		553	AT -	Solv.
HEATER TUBE TELVERATURE.	2 A B B B B B B B B B B B B B B B B B B			
1 400	ـــــــــــا.			
DEPOSIT CODE: 4-STREET 9 - NO VISIBLE DEPOSITS 1 - HAZE OR DULLING, NO COLOR 2 - BARELY VISIBLE DISCOLORATION 1 - CODE 3	TEST FUEL CONSU		MINUTES 25/SGC, I	240 270 \$. D
REMARKS Profesta Labor - 4.0				

TABLE D-9

SYNTHOIL 105 BLEND JET A

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-	DATE - 10.	30-75
DATE TUBES		12-72	RUN 3-9
	Tube Depos	it Ratings, ALCOR Mark	8 @550°F

7	NE			USED Tube Number VISUAL					
POSITION	SPUN	Sior		SPOT		PESITION			
0.3	12.0	15.0	12.8	15.2	22	1.10+0.5			
.4	6.0	8.0	9.2	14.1	14	1.05-0.6			
.5	5.5	7.4	13.2	18.6		DIETEL			
.6	3.0	3.8	17.0	19.8	10	13-0.4			
.1	1.8	4.3	18.0	20.0					
.8 .	1.0	2.7	17.3	19.2					
.9	0.7	1.8	18.1	22.0					
1.0	-0	0.0	26.8	30.9					
.1	-0	0.7	11.2	3/.7					
.2	-0	-0	0.0	20.0					
.3	-0	-0	-0	11.0					
.4	-0	1.0	- 0	-0					
.5	0.6	1.2	-0	1:0					
.6	-0	-0	-0	- 0		1969			
.7	11		-0						
.8	-0	-0	-0	- 0					
.9	- 0	0.9	-0	2.2					
2.0	1.0	3.5	26.5	29.0					
2.1	45.5	47.0	45.0	46.0					

DATE 10-31-75 4-0	70 PSI	TES	r No. <u>D -</u>	10
FUEL DESCRIPTION SYNTHAIL 105 BLEND	SEATER TUBE TO		TEST TIME	F10,788 010,185
AMBIENT TEMP., °F			0	0.0
	PROFILE TEMPER		39	0.0
TEMPERATURE CALIBRATION	THERMOCOUPLE	MEASURED-	60	0.0
TRUE MELTING POINT 449 F	POSITION		90	0.0
#52 °F Endo # 452 °F Endo # 452 °F	0.85	528	100	0.0
ERASA	0.20	420	150	C. 0
	0.60	512	180	
LOCK TIME	1.10	521	210	
FUEL AERATED 0909	1.40	447	240	
HEATER ON 0936	1.70	431	300	
	2.60	361		
2.00 1.10 0.20 0.20	0.85	852	AT THE	ASSED
ALZO ALZO ALZO ALZO ALZO ALZO ALZO ALZO	20 FILTER DP IN, Hg			
	Salar Established			1
1 275				
	0 30 60	SO 120 150	180 210	240 270
2.0 1.5 1.0 0.5 0 DISTANCE FROM FUEL OUTLET INCHES	TEST FUEL CONS	TEST TIME IN YO DROP	s/sec.1	8. •
EPOSIT CODE: (2-4) STEP K 6 - NO VISIBLE DEPOSITS 1 - MAZE OR DULLING, NO COLOR 2 - BARELY VISIBLE DISCOLORATION SEMARKS FULL CLAR Color A-6				

TABLE D-10

SYNTHOIL 105 BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-	017	E- 10-31-75
DATE TUBES	RECEIVED	12/72	RUN #10

Tube Deposit Ratings, ALCOR Mark 8

POSITION	THE	u	16	en Tube	Number	11.5	116	
IDSTITUTE	51.01	15/25	15100	34671		Lille	A Sin	<u>}</u>
0.3	14.8	7.3	8.1	10.8	Str	215		
.4	3.7	4.3	6.7	13.7	1	12	1.3-	.55
.5	2.0	2.2	7.2	13.0	1	4	1.1-	.55
. 6	0.8	2.0	9.0	14.7			- 3	
.7	-0	-0	9.0	14.0		42	1.2-	0.7
.8 .	-0	1.8	7.8	16.5		74	1.0	6.7
.9	0.9	2.1	6.3	16.7				
1.0	0.8	2.3	5.3	26.3	5 67 F			
	0.2	2.0	3.5	16.0				
.2	-0	1.0	-0	11.5				
.3	1-0	-0	1	-0				
.4	-0	-0		-0				
.5	-0	1.2		- 0		161		
.6	-0	6, 8		-0				
.1	-0	0.1		-0	43 (190) 4		278	
.5	1-0	1.7		0.2		para	0.000	Laterial County
.9	-0	1.0	-0	-01	g-A			
2.0	34.7	36.7	34.0	35.8				
2.1	75.	4.7	45.2	46				

MAL

FIGURE 4-5 10-31-75

SYNTHOIL 105 BLEND JFTOT D-8, D-9, D-10

	00 75I	TES	TNO. 7-	
UEL DESCRIPTIONSYNTHOIL 107 BLEND	HEATER TUBE TO	ENTERATURE	TEST TIME	FILTER A
IG NO. ERE-I OPERATOR W. DAVIS	CONTROL (MAX.		MINUTES	INCHES H
MBIENT TEMP. °F 77			- Markettes	
MBIENT TEMP., F	PROFILE TEMPER	ATHREE	0	0.0
EMPERATURE CALIBRATION	THERMOCOUPLE		30	1 0.0
	POSITION	TEMP. F	60	10.0
	0.85	528	90	0.0
ERROR -1 F	0.20	411	120	3.0
	0.40	472	150	9.0
LOCK TIME	0.60	510	180	
FUEL AERATED 1320	1.10	520	210	
MEATER ON 1338	1.40	487	270	
NEATER ON	1.70	433	300	
	2.00	358		
1.70	0.85	1528	FILTER BYP	ASSED
1 525			AT	
3376 4 475 AND TENTON TO THE T	20 30 60 M. Hg	90 120 150 7 TEST THAE IN		240 270
2.0 1.5 1.0 0.5 0	40	DROPS	SECS 18	.2
DISTANCE FROM FUEL OUTLET INCHES	TEST FUEL COMS	UME 4/60	mi	
EPOSIT CODE: Stream				
0 - NO VISIBLE DEPOSITS 3 - LIGHT TAN 1 - HAZE OR DULLING, NO COLOR 4 - HEAVIER THA 2 - BARELY VISIBLE DISCOLORATION CODE 3	W			
EMARKS PREFILTER COLOR:	. 0			

TABLE D-11

SYNTHOIL 107 BLEND JET A

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1		DATE-	10-31-75
DATE TUBES		12/72		RUN = 11

Tube Deposit Ratings, ALCOR Mark 8

POSITION	ルニ		1 1.3	ed Tu	be in	umber	11.3	UHL		
, , , , , , , ,	1SPUN	5957	SPUN	SPOT			List	AS1710	<u> </u>	,
0.3	0.0	1.0	3.3	7.8		Stor	100	1.2:	-c.	1
4	11.8	3.8	9.7	16.0			12-	/		
.5	0.6	1.7	14.1	18.4						
.6	0.9	3.0	15.9	19.0	100					
.7	- 0	2.7	13.0	15.8			12	1.0	-0.7	
.5	1	-0	11.8	18.0			111	` ;	<u> </u>	
.9		- 0	18.2	23./			>4	06.	3 3	
1.0		0.3	15.0	19.8						
.1		1.1	3.4	13.7						
.z		CONTRACTOR OF THE PARTY OF THE	0.9							
.3	11	0.0	0.2	1.7						
.4	1.0	1.2	1.8	2.8			230			
.5	-0	TENESCO DE	The second					7.3	108	110
ه.		A STREET, STRE	Section 1	0.0	W = 1	Alle Sala	80.101		# MI (50)	12 m
.1	0.3									
-8	2.2	THE PERSON		BEARING BOOK 1 WES						0813
.9	and the second			5.0						
2.0	135.6	37.4	18.9	21.7						
2.1	45.2	46.5	45.0	46.2						

RIG NO. ERET OPERATOR W. DAVIS	HEATER TUBE TE		TEST TIME	FILTER A
AMBIENT TEMP. "F. 77	CONTROL (MAX.	210	MINUTES	INCHES H
	PROFILE TEMPER	ATURES	0	0.0
TEMPERATURE CALIBRATION	THERMOCOUPLE	MEASURED	30	0.0
TRUE MELTING POINT 449 F	POSITION	TEMP. F	60	0.0
	0.85	513	90	0.0
INDICATED MP 452 F	0.20	402	120	0.0
	0.40	458	180	0.0
CLOCK TIME	0.60	495	210	
FUEL AFRATED 0915	1.10	506	240	
MEATER ON OPES	1.40	473	270	
REATER ON	1.70	420	300	
	2.00	320	FILTER BYP	
1.40	0.85	1514.	AT	MIN.
HEATER TUBE TELIPERATURE.	0.5	90 120 150	180 210	240 270
2.0 1.5 1.0 0.5 0 DISTANCE FROM FUEL OUTLEY INCHES	TEST FUEL CONSU	TEST TIME IN	MINUTES S/SGC, I	
SEMARKS Pulltr Color A O				

TABLE D-12

SYNTHOIL 107 BLEND JET A

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-		:ATE -	11-3-75
DATE TUBES	RECEIVED	_12	12	RUND-12

Tube Deposit Ratings, ALCOR Mark 8

DSITION		THE STORISHON SPE				Tube Number VISUAL					
	10.71.14		STUN	SPETR			ICCUE rESITION				
0.3	<0	0.2	40	1.2			1	.90-	.5		
4	1	0. 0	<0	2.8			<2	.55-	1.6.		
.5		0.2	2.8	7. 2			< 3	.75	1.55		
.6		0.0	5.8	11-1							
.7		(0	6.3	11.3			5+1	95-	K45		
.8		40	3.7	10.0							
.9		<0	40	6.3							
1.0	11	40		6.8							
.1		<0		6.0							
.Z	11.	40		<0							
.3		40		10.							
.4	<u>ii </u>	20		<0							
.5	11	0.0		10							
.6	11	1.2	A STATE WHEN PARTY IN	10							
.7		2.2		0.0							
.8		<•		<0	la c						
.9	1	40		10				-			
2.0	0.3	1.0	31.8	33.3				-			

FIGURE 4-6 11-3-75

SYNTHOIL 107 BLEND
JFTOT D-11, D-12

SPUN TDR

CONTROL (MAX.)		TEST T		FILTER AP		
PROFILE TEMPERA	TURES	-	0	0.0		
THERMOCOUPLE	MEASURED-	- 7	40	0.7		
0.85	553	1	45	0.45		
0.20	445	1	40	1.7		
0.40	500	1	70	7.4		
0.60	538		74	6.0		
1.10	544	1 2	78	8.4		
1.40	507	7	30	9.5		
1.70	450	10				
2.00	378	FILTER BYPASSED				
0.85	553	AT_	81	MIN.		

DEPOSIT CODE: + 4 STreek

0 - NO VISIBLE DEPOSITS

3 - LIGHT TAN

1 - HAZE OR DULLING, NO COLOR 4 HEAVIER THAN 2 - BARELY VISIBLE DISCOLORATION CODE 3

DISTANCE FROM FUEL

OUTLET INCHES

REMARKS Prelitin Color = B-2

Table D-13

TOSCO 113 JP-4 Blend TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1	DATE - 11/18/75						
DATE TUBES	RECEIVED	12/72	RUN #D-13					

Tube Deposit Ratings, ALCOR Mark 8

POSITION	NE		1 05	ED Tube i	Vumber	COLE PESITION					
19317100	ISPUN	Sior	SPUN	SPOT	10	COE	ICSITIO				
0.3	11.8	5.1	14.7	17.4		1	.95-	.05			
.4	1.9	2.8	16.2	18.0							
.5	1.0	1.2	20.9	24.3	1 1	4	.90-	30			
.6	0.3	1.8	23.6	30.3							
.1	K0	0.2	22.9	32.0	,	STE	EA	K			
.8	10	0.2	22.8	31.g		4	.95-	.25			
.9	160	1.8	24.7	34.0							
1.0	10	0.8	7.0	20.9							
:1	1.0	4.2	4.0	6.7							
.2	0.3	1.2	2.3	4.0							
.3	140	0.9	1.7	2.8							
.4	146	1.3	1.0	2.3							
.5	0.2	2.0	1.6	3:0							
.6	3.2	5.0	3.7	4.7			1796				
.7	3.7	5.0	4.0	5.0			2.000	10 - 1 - Sansa			
.8			2.7			4.6					
.9	1.7	3.3	2.2	3.3							
2.0	36.8	38.0	16.3	22.0							
2.1	45.2	46.7	45.2	46.8							

Figure B-14 Tosco 113 JP-4 Blend

PAFE!		0 ,35/			
AMBIERT TEMP. "F 77 TEMPERATURE CALIBRATION TRUE MELTING POINT AND PARTIES THERMOCOUPLE MEASURED POSITION TEMP. "F 60 0.0 O.0 O.0 O.0 O.0 O.0 O.0 O.0				TEST TIME	FILTER AP
TEMPERATURE CALIBRATION TRUE MELTING POINT THEMPOCOUPLE MEASURED 90 0.0 0.0 0.0 0.0 0.0 0.0 0.0		CONTROL (MAX.)	520°F	MINUTES	MICHES H
THERMOCOUPLE MEASURED 30 0.0 THUE MELTING POINT 49 °F POSITION TEMP, °F OO 0.0 INDICATED MP 451 °F POSITION TEMP, °F OO 0.0 CLOCK TIME FUEL AERAYED 0810 MEATER ON 09 YS MEATER ON 09 YS MEATER ON 10 150 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 150 210 240 270 MEATER ON 10 150 150 150 150 150 150 150 150 150	AMBIENT TEMP. "F_77	PONTHE TEMPER		0	0.0
TRUE MELTING POINT 449 °F NO O. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	TEMPERATURE CALIBRATION				
NOICATED NAP				60	
CLOCK TIME FUEL AERATED 0820 HEATER ON 0815 HEATER ON 0815 1.10 516 240 1.10 516	TRUE MELTING POINT 449 F	0.85	The state of the s		
CLOCK TIME FUEL AFRATED 0820 HEATER ON 0845 HEATER ON 0845 1.10 576 210 1.10 576 220 1.10 576 320 1.10 576 220 1.10 576 320 1.10 576	ACUBE		1411		
1.10		Commence of the Commence of th			
1.40 4.73 270 1.70 4.26 3.00 1.70 4.26 3.00 1.70 4.26 3.00 1.70 4.26 3.00 1.70 4.26 3.00 1.70 4.26 3.00 1.70 4.26 3.00 1.70 4.26 3.00 1.70 4.26 3.00 1.70 1	CLOCK TIME	THE RESERVE THE PERSON NAMED IN COLUMN 1911		210	
TEST FUEL CONSUMED #6 Oml		-			
2.00 35 FILTER BYPASSED AT	HEATER ON OPYS	The state of the s			
AT			355		
TEST FUEL CONSUMED 46 Omi	8 6 6 5 8 8 6 6	0.85	523		ASSED
TEST FINE IN MINUTES 40 DROPS/SEC, 17.0 DEPOSIT CODE: No visible Deposits 1 - HAZE OR DULLING, NO COLOR 1 - HEAVIER THAN 2 - BARELY VISIBLE DISCOLORATION CODE 3	710011111111111111111111111111111111111				MIN.
SET FUEL CONSUMED # 0 PM					
TEST FUEL CONSUMED 46 Oml DEPOSIT CODE: NO VISIBLE DEPOSITS 1 - HAZE OR DULLING, NO COLOR 1 - HAZE OR DULLING, NO COLOR 2 - BARELY VISIBLE DISCOLORATION CODE 3	++++++++++++++++++++++++++++++++++++++	10			
DEPOSIT CODE: O 30 60 90 120 150 180 210 240 270 TEST TIME IN MINUTES 40 DROPS/SEC, 17.0 TEST FUEL CONSUMED 46 Oml TEST FUEL CONSUMED 46 Oml TEST FUEL CONSUMED 46 Oml	6 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +				
DEPOSIT CODE: O 30 60 90 120 150 180 210 240 270 TEST TIME IN MINUTES 40 DROPS/SEC, 17.0 TEST FUEL CONSUMED 46 Oml TEST FUEL CONSUMED 46 Oml TEST FUEL CONSUMED 46 Oml			1-1-1		+
DEPOSIT CODE: O 30 60 90 120 150 180 210 240 270 TEST TIME IN MINUTES 40 DROPS/SEC, 17.0 TEST FUEL CONSUMED 46 Oml TEST FUEL CONSUMED 46 Oml TEST FUEL CONSUMED 46 Oml	s ++++++++++++++++++++++++++++++++++++				
DEPOSIT CODE: O 30 60 90 120 150 180 210 240 270 TEST TIME IN MINUTES 40 DROPS/SEC, 17.0 TEST FUEL CONSUMED 46 Oml TEST FUEL CONSUMED 46 Oml TEST FUEL CONSUMED 46 Oml	<u> </u>				1_1
DEPOSIT CODE: O NO VISIBLE DEPOSITS - HAZE OR DULLING, NO COLOR - HEAVIER THAN - BARELY VISIBLE DISCOLORATION CODE 3	<u> </u>		+	+	+-+-
DEPOSIT CODE: O NO VISIBLE DEPOSITS - HAZE OR DULLING, NO COLOR - HEAVIER THAN - BARELY VISIBLE DISCOLORATION CODE 3	4 +++++++++++++++++++++++++++++++++++++	2			+
DISTANCE FROM FUEL OUTLET INCHES 2.0 1.5 1.0 0.5 0 DISTANCE FROM FUEL OUTLET INCHES TEST TIME IN MINUTES 40 DROPS/SEC, 17.0 TEST FUEL CONSUMED 46 Oml TEST FUEL CONSUMED 46 Oml		i I i i i	Tit	Ti	TI
2.0 15 1.0 05 0 DISTANCE FROM FUEL OUTLET INCHES TEST TIME IN MINUTES 40 DROPS/SEC, 17.0 TEST TIME IN MINUTES 40 DROPS/SEC, 17.0 TEST FUEL CONSUMED 46 Oml TEST FUEL CONSUMED 46 Oml	3 11 11 11 11 11 11 11 11 11 11 11 11 11				
2.0 15 1.0 05 0 DISTANCE FROM FUEL OUTLET INCHES TEST TIME IN MINUTES 40 DROPS/SEC, 17.0 TEST TIME IN MINUTES 40 DROPS/SEC, 17.0 TEST FUEL CONSUMED 46 Oml TEST FUEL CONSUMED 46 Oml	<u> </u>				
DEPOSIT CODE: O NO VISIBLE DEPOSITS - HAZE OR DULLING, NO COLOR - HEAVIER THAN - BARELY VISIBLE DISCOLORATION CODE 3	8 <u>+1+1+++++++++++++++++++++++++++++++++</u>	0.5	$\pm \pm \pm$		
DEPOSIT CODE: O NO VISIBLE DEPOSITS 1 - HAZE OR DULLING, NO COLOR 1 - HEAVIER THAN 2 - BARELY VISIBLE DISCOLORATION CODE 3	2 11 11 400 3				+
DEPOSIT CODE: O 30 60 90 120 150 180 210 240 270 TEST TIME IN MINUTES 40 DROPS/SEC, 17.0 TEST FUEL CONSUMED 46 Oml TEST FUEL CONSUMED 46 Oml TEST FUEL CONSUMED 46 Oml	<u>+++++++++++++++++++++++++++++++++++++</u>		+		
DEPOSIT CODE: O 30 60 90 120 150 180 210 240 270 TEST TIME IN MINUTES 40 DROPS/SEC, 17.0 TEST FUEL CONSUMED 46 Oml TEST FUEL CONSUMED 46 Oml TEST FUEL CONSUMED 46 Oml	1 111 111 111 111 111 111 111				1-1-
2.0 1.5 1.0 0.5 0 40 DROPSSEC, 17.0 DISTANCE FROM FUEL OUTLET INCHES TEST FUEL CONSUMED 46 Omi DEPOSIT CODE: NO VISIBLE DEPOSITS 1 - HAZE OR DULLING, NO COLOR 2 - BARELY VISIBLE DISCOLORATION CODE 3	111411111111111111111111111111111111111				
2.0 1.5 1.0 0.5 0 40 DROPS/SEC, 17.0 DISTANCE FROM FUEL OUTLET INCHES TEST FUEL CONSUMED 46 Omi DEPOSIT CODE: NO VISIBLE DEPOSITS 1 - HAZE OR DULLING, NO COLOR 1 - HEAVIER THAN 2 - BARELY VISIBLE DISCOLORATION CODE 3		450 4 2 2 4 2 5 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	240 270 3		
DUTLET INCHES TEST FUEL CONSUMED 46 Omi DEPOSIT CODE: NO VISIBLE DEPOSITS 1 - HAZE OR DULLING, NO COLOR 2 - BARELY VISIBLE DISCOLORATION CODE 3	그리는 이 등 그 사람이 없는 것이 .		TEST TIME IN	MINUTES	
DUTLET INCHES TEST FUEL CONSUMED 46 Oml DEPOSIT CODE: NO VISIBLE DEPOSITS 1 - HAZE OR DULLING, NO COLOR 2 - BARELY VISIBLE DISCOLORATION CODE 3	2.0 1.5 1.0 0.5 0		40 DROP	s/SEC.	17.0
DEPOSIT CODE: NO VISIBLE DEPOSITS 1 - HAZE OR DULLING, NO COLOR 2 - BARELY VISIBLE DISCOLORATION CODE 3			1 41 -		
NO VISIBLE DEPOSITS 1 - HAZE OR DULLING, NO COLOR 2 - BARELY VISIBLE DISCOLORATION 3 - LIGHT TAN 4 - HEAVIER THAN CODE 3	OUTER INCHES	TEST FUEL CONSU	INED 160	ni	
NO VISIBLE DEPOSITS 1 - HAZE OR DULLING, NO COLOR 2 - BARELY VISIBLE DISCOLORATION 3 - LIGHT TAN 4 - HEAVIER THAN CODE 3	DEPOSIT CODE.				
1 - HAZE OR DULLING, NO COLOR 4 - HEAVIER THAN 2 - BARELY VISIBLE DISCOLORATION CODE 3					
2 - BARELY VISIBLE DISCOLORATION CODE 3					
REMARKS Refette Color = AO	The state of the s				
REMARKS INCLUDE COLOR - A C	7104 VO - 10				
	REMARKS IN USER COLOR - A O				
		THE STATE OF			

- 272 -Table D-14

Tosco 113 IP-4 Rlend

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1	regions de	SATE -	11	119/75
DATE TUBES	RECEIVED	12/72			RUNTO-14

Tube Deposit Ratings, ALCOR Mark 8

2000	NE			EU T	ube i	umbe	r VIS	SUAL	UAL			
POSITION	SPUN	Stor	SPUN	SPOT			COLVE POSITION					
0.3	0.0	1.5	0.2	4.5			11	265				
.4	1.8	2.3	2.3	5.3								
,5	1.2	3.0	3.5	7.3			1					
.6	1.3	2.8	4.7	8.8			<u> </u>					
.7			4.5									
.8	2.5	7.2	3.8	4.0								
۹.	4.1	6.0	4.5	6.7								
1.0	3.8	4.7	4.0	4.8			<u>i </u>					
:1	7.3	5.0	3.4	4.6			1					
.Z	7.0	5.0	2.1	4.7								
.3	1.7	4.0	1.8	4.2			<u> </u>					
.4	12.1	4.8	1.8	4.8								
.5	7.0	5.2	2.9	6.1								
.6	2.0	4.9	1.9	4.6			_					
.7	1.3	STATE OF THE PARTY.		4.9		_	1					
.8	1		1.9	1		_	1		63731.50 mi			
.9	2.0	ALIENSAN MARKET		7.9			1	1 - 30				
2.0	21.6	37.0	23.0			1	1					
0.9	STATE OF THE STATE	gan	4.8									

FIGURE 4-7 11-21-75

TOSCO 113 BETA BLEND JFTOT D-15, D-16, D-17

SPUN TDR

DATE 11-20-75	400 PS!	TES	T NO. D - 1.	5
FUEL DESCRIPTION TOSCO 113 Jet A Blend RIG NO. ERE-/ OPERATOR W.DAY AMBIENT TEMP. °F	Later rues r	ATURES	ER 25 ER 40 ER 41 ER 43 ER 43 ER 43 ER 44 ER 47	1.35 2.85 5.25 6.05 7.0 7.85 9.15
AND THE PROPERTY OF THE PROPER	10 BILTER AP IN HO	IS 20 25 TEST TIME IN 40 DROP	AT 40	MIN.
DEPOSIT CODE: ## STIES THAN	UMEO <u>450</u>	ml		
REMARKS Prefester Colors B-	5			

Figure 7. - Suggested Data Sheet Chart

TABLE D-15 Tosco 113 Jet A Blend

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1	DATE	- 11-20-75
DATE TUBES	RECEIVED	12/72	RUN = D-15

Tube Deposit Ratings, ALCOR Mark 8

2-1	INEW	I USED Tube	Number VISUAL
POSITION	SPUN STO	MISPUNISPOTI	CCLUE rESITION
0.3	3.6 5.7	129 20.0	>2 1.5-1
.4	2.2 4.5	19.0 25.8	3 1.3+.15
.5	0.4 7.8	29.8 32.2	4 1.0+.45
.6	1.3 7.9	35.7 34.4	57 3AK 1.07
.7	1.7 3.8	367 37.4	
.8	10.5 2.0	36.8 38.5	57/15/10.5-5.5
.9	1.8 2.0	32.3 35.8	
1.0	KO 0.7	24.9 26.0	
.1	1.0 3.0	12.0 17.8	
.2	<0 <0	7.8 9.2	
.3	0.2 0.5	11.8 19.0	
.4	100.2	14.3 15.3	
.5	1000	16.1 8.0	
.6	10 0.1	2.7 4.9	
.7	100	2 1.0 3.0	
.8	× 0 1.0	0.2 2.1	
.9	KO 0.0	0.2 1.2	
2.0	14.8 18.8	6.3 10.01	
0.9	1.3	36.8 38.5	

Figure 7 - Suggested Data Sheet Chart

- 277 - TABLE D-16 Tosco 113 Jet A Blend

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1	BATE -	11.21-75		
DATE TUBES	RECEIVAD	12/72	RUN 0-16		

Tube Deposit Ratings, ALCOR Mark 8

POSITION				ED Tube i				_
103171010	11STUN	570	SPUN	SPCT		PESITION	-	-
0.3	3.2	5.9	18.5	21.8	3	1.35-	0.15	
.4	1.3	2.0	17.8	21.0	174	0.15	0.0	
.5	2.1	3.5	165	20.8	1 74	0.4-	0.3	
.6	2.1	4.0	13.3	19.7				
.7	2.0	4.0	10.0	18.0		REA 1. Y.		
.8 .	1.5	3.0	9.8	12.7				
.٩	1.3	3.1	12.7	13.7				
1.0	2.5	5.0	17.0	19.0				
.1	2.1	4.0	18.0	20.0				
.Z	1.0	3.1	15.2	16.0	<u> </u>			
.3	0.4	1.2	8.8	14.0				
.4	0.3	1.0	3.4	5.3				
.5	1.7	3.4	3.3	6:3				
.6	1.0	2.7	2.5	4.7				
.7	Ko	0.0	0.5	3.0	A STATE STATE			
.8	140	40	40	2.2			1	
.9	10	10	10	2.2				Part N
2.0	23.2	25.0	31.8	36.0		1		

Figure 7 - Suggested Data Sheet Chart

A STATE OF THE STA

- 279 <u>TABLE D-17</u> <u>Tosco 113 Jet A Blend</u>

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1		LATE -	11-21-75
DATE TUBES	RECEIVED	12/12		RUN D-17

Tube Deposit Ratings, ALCOR Mark 8

2				ed Tube		CAL	
PUSITION'	SPUN	Sier	Srup	SPET	LCUE	restria	¥
0.3	1.1	3.6	14.2	17.8	2	1.2-	.25
.4	1.2	3.0	10.9	16.8	3	1.15-	13
.5	1.0	3.2	6.8	16.9	1 124	1.2 -	-0
.6	1.3	3.7	7.5	11.0			
.7	0.8	2.2	11.7	13.7	5	REA	K
.8	0.0	1.1	14.2	16.0	3	1.45	డ
.9	1.0	3.0	17.2	18.0			
1.0	0.3	3.0	16.9	18.2			
.1	11.2	3.6	14.2	16.3			
.2	10.5	2.0	8.0	11.9			
.3	11.3	4.1	4.9	11.2	k s l		
.4	1.8	3.8	3.3	6.1		17	
.5	1.9	4.9	2.8	5:0			
.6	11.9	4.2	2.5	5.0			
.7	2.3	3.2	2.0	3.7			
.8	0.7	2.6	1.0	3.0			
.9	140	2.0	0.7	2.2			
2.0	7.0	13.0	36.0	38.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	2.3	4.9	17.2	18.2			

FIGURE 4-8 11-19-75

TOSCO 113 ALPHA BLEND JFTOT D-13, D-14

SPUN TDR

TEST NO. D - 18

ALGUN JET FUEL THEHMAL UXIDATION TEST

DATE (LOG	PS1	TES	T NO. D - 1	8
FUEL DESCRIPTION SYNTHOLE 203 FINAL BLENT	HEATER TUSE TE		TEST TIME	F1.1 6
RIG NO. CALL DISTATORIAL TAVIL	CONTROL (MAX.)	525 %	MINUTES	HICHEL H
AMBIENT TEMP., F 77				
	PROFILE TEMPER		715	0.16
TEMPERATURE CALIBRATION	THERMOCOUPLE	MEASURED TEMP., F	6736	1.10
TRUE MELTING POINT 449 F	POSITION		02 40	2.52
INDICATED MP VIL F	0.85	528	179 43	6.2
ERROR +3 F	0.40	466	140 41	8.0
CLOCK TIME	0.60	500	277)	
FUEL AERATED 1250	1.10	52"	349	
HEATER ON 3 U O	1.40	631	270	
HEATER ON	1.70	440	300	
	2.00 0.85	518	FILTER BYP.	ASSED .
2.00 1.10 0.10 0.40 0.40 0.20	0.00	1.48	AT 4/4/.5	MIN.
THE PROPERTY OF THE SEE !				
6 +++++++++++++++++++++++++++++++++++++	10	1-7-7		
++++++++++++++++++++++++++++++++++++++		1-1-1		
	5			
≤ 5	4			+/
######################################	- 3	+++	-+-	¥
8 4 11111 450 \$	2			7
8 " ###FFF##############################	2 2			
		1.1	V	
2 3 THE WAR WE WAR				
USUAL TUDE TEKNERATURE, *				
2 1111111111111111111111111111111111111	0.5		-	
- 1+11 # 1 1 1 1 1 1 1 1 1		1		1-1
######################################				
1 375		1 1 1		
######################################	0	90129156	180210	249 270
111111111111111111111111111111111111111	5 10	11 20 21	3075	YU YT
2.0 1.5 1.0 0.5 0		TEST TIME IN	MINUTES	19
DISTANCE FROM FUEL			27366	
OUTLET INCHES	TEST FUEL CONSU	ME 0450	6 1	
	72017022001130			
DEPOSIT CODE: 34 5. TREAK				
0 - NO VISIBLE DEPOSITS 3 - LIGHT TAN				
1 - HAZE OR DULLING, NO COLOR A HEAVIER THAN				
2 - BARELY VISIBLE DISCOLORATION CODE 3				
REMARKS Prefetter Colors B-1	- Part and			
BEHANKS TOP SECOND				
		+ 5 1		
		n a l		
			arministration of the property	

Synthoil 203 Jet A Final Blend

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-	:ATE -	11-24-75
DATE TUBES	RECEIVED	12/12	RUN#18

Tube Deposit Ratings, ALCOR Mark 8

POSITION	NE	STUN STOR STUN SPOT LECTURE POSTAL							
DSTITEM	Srun	Sicr	SILN	SPOT			7531710		
0.3	3.2	5.1	29.8			Coll	FRICE	CONT	
.4	0.8	2.0	40.2			4	1.6	0.2	
.5	(0	2.5	45.2			<4	1.45	0.3	
.6	Ko	2.8	47.0						
.7	1.0	40	48.0				RAK 1.7.		
.8	0.3	2.1	48.8						
.٩	8.0	7.3	48.4				-1		
1.0	0.3	2.1	50.0		(fa)				
./	10	40	50.0						
.2	10	0.1	100						
.3	10	1.2	49.8						
.4	0.7	2.0	41.7						
.5	0.7	20	18.8						
.6	0.7	1.7	12.2		100				
.1	10	1.0	7.4						
.8	0.0	1.0	4.2						
.9	0.0	3.0	7. •						
2.0	325	36.5	26.0	31.2					
	0.8		50.0						

DATE	11/	25	17	5
PAIL	The second second		-	- The same

400 PSI

TEST NO. D-19

FUEL DESCRIPTION STATE 202 F. MAL REST	7
RIG NO. ERE- / GOPPATOR LI. DAVIS	
AMBIENT TEMP. "F ->	

TEMPERATURE CALIBRATION

TRUE MELTING POINT INDICATED MP ERROR

CLOCK TIME

FUEL ASRATED 0835 0850 HEATER ON

170 °F	MINUTES	INCHES HE
PROFILE TEMPERATURES		
MEASURED	39 25	0.32
TEMP. F		
473		0.42
366		0.50
421	-	1.10
		1.80
	399 771	5.00
	79 11	6.20
-	59 79	7.90
	300 80	8.90
2.00 3 2 3 0.35 473		SSEO
	MEASURED TEMP., F	MEASURED 70 473 50 50 50 50 50 50 50 50 50 50 50 50 50

TEST FUEL CONSUMED 450 m

-	-		 -	-
DE		,,	 CO	DE

>45TREAK

- 0 NO VISIBLE DEPOSITS
- 1 HAZE OR DULLING, NO COLOR
- 3 LIGHT TAN
 HEAVIER THAN
- 2 BARELY VISIBLE DISCOLORATION
- CODE 3

	1					
	11	1 .+.	01		D	-
REMARKS	IN	Letin	Lotor	/=	15	- 0
	-					

Synthoil 203 Jet A Final Blend

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1	:ATE -	11-25-75
DATE TUBES	RECEIVED	12/72	RUN TD-19

Tule Deposit Ratings, ALCOR Mark 8

POSITION	NEW USED TU	be Number VISCAL
TUSTITION	SPUN SIGHT SPUN SPOT	Colve festade
C. 3	KO 20 0.0 2.5	
.4	KO 0.4 7.9 11.8	3 1.35 + 0.4
.5	0.9 2.0 16.8 21.8	4 1.3 - 0.4
.6	0.2 1.0 22.6 29.0	Ky 1.1 -0.0
.1	200.029.0 36.0	51,000
.8	KO 0.0 3.3.1 39.8	KU 1.4 + 0.3
.9	0.0 1.0 34.8 40.2	
1.0	< 0 0.4 JC.8 39.0	
.1	0.3 1.8 19.8 31.8	
.2	4.0 4.8 17.2 25.8	
.3	5.17.7 18.7 20.0	
.4	4.8 7.7 15.2 15.5	
.5	4.2 7.5 10.0 12.2	
.6	3.5 1.6 6.6 7.7	
.7	2.4 38 4.3 6.8	
.8	3.3 (.8 7.0 9.9	200
.9	3.9 6.2 8.9 9.2	
2.0	20.0 27.118.8 20.2	
	5.1 7.7 34.8	

ALCOR JET FUEL THERMAL OXIDATION TEST

DATE 11/25/18 400	PS1	TES	T NO. D - 2	0
SATURE 207 FLAGE BEEND			γ	
FUEL DESCRIPTION SYNTHUL 203 FINAL BEFAND RIG NO. ERE- 1 OPERATOR 13. DAVIS	HEATER TUBE TE		TEST TIME	FILTER A
RIG NO. CAS OPERATOR S. PAVI	CONTROL (MAX.)	CO F	MINUTES	INCHES H
AMBIENT TEMP., "F 77			0	0.0
	PROFILE TEMPER		30	0.28
TEMPERATURE CALIBRATION	THERMOCOUPLE POSITION	MEASURED TEMP. F	60	0.18
TRUS MELTING POINT 449 °F			90	
INDICATED MP 4/72 °F	0.85	3/3	120	
ERROR - 7 °F	0.20	362.	150	
CLOCK TIME	0.60	387	180	
	1.10	400	210	
FUEL ASPATED 1320	1.40	378	240	
HEATER ON	1.70	338	270 300	
	2.00	284		
2.00 1.70 1.10 0.60 0.40 0.20	0.85	1403	FILTER BYP	ASSED
N 0 0 0 0 1			AT	MIN.
	10			
6 377		+-+-		
				T
350 %	5	+-+-+		+
5 11 11 11 11 11 11 11 11 11 11 11 11 11	4	1		++
354 A A A A A A A A A A A A A A A A A A A	3	1-1-1		
300 300 TUBE TELIPPER AT 1	2			TI
3 +1+1+/+++++++++++++++++++** § •		1 1 1		1 1
# 		1 1-1		
TER TUBE TELITER OF IN, HO	1===			
₹ TTT# (TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT				
2 111 111 111 111 111 111 111 111 111 1	0.5			
2 +++++++++++++++++++++++++++++++++++++		+		
<u> </u>				Ti
1 +++++++++++++++++++++++++++++++++++++				
	<u> </u>			
	0 30 60	90 120 150	180 210	240 270
THE PROPERTY OF THE PARTY OF TH		TEST TIME IN	MINUTES	
2.0 1.5 1.0 0.5 0		10 DROP	s/sec 1	2.8
DISTANCE FROM FUEL				
OUTLET INCHES	TEST FUEL CONSU	MED 4/60	ml	
DEPOSIT CODE:				
0 - NO VISIBLE DEPOSITS 3 - LIGHT TAN				
1 - HAZE OR DULLING, NO COLOR 4 - HEAVIER THAN				
2 - BARELY VISIBLE DISCOLORATION CODE 3				
REMARKS Prefettin Colon A - O				

Synthoil 203 Jet A Blend

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1		:ATE -	11)	25/75
DATE TUBES	RECEIVED	12/72	.		RUN D-2

Tube Deposit Ratings, ALCOR Mark 8

POSITION	NEW	1 6	Sed Tube	Rumber Vis		
103111610	SPUN :	Sier Sich	SPOTE	CCLVE	78.5171ch	
0.3	4.3	F. 2 5. 0	6.2			
.4	4.8	8.7 r.7	10.0			
.5	2.2	1.0 3.3	4.8	1 141	0.7	
.6	1.8	7.7 7.2	18			
.7	2.7	3.0 4.8	8.9			
.8	2.3	1.0 0.9	7.8	100		
.9	3.0	3.0 5.2	7.0			
1.0	<0	2.1 1.8	3.0			
1	0.0	0.0 2.0	2.9			
.2	<0	1.0 1.0	1.0			
.3	10	<0 0.6	1.5			
.4	0.0	1.8 1.9	3.1			
.5	1.2	2.7 3.8	4.7			
.6	1.2	2.4 5.0	6.0			
.1	1.2	1.7 4.5				
.8		0.3 2.5			20-23	43.65
.1	10	0.4 0.0	2.8			
2.0	33.0	26.0 9.0	18.5	<u> </u>		
	7.0	5.5				

MAX

	PSI		T NO D -	
IG NO. ERE- OPERATOR W. DAVIL	HEATER TUBE TE		TEST TIME	FILIZA DE
MBIENT TEMP., °F	PROFUE TEMPERA	THOSE	00	0.0
MIZERATURE CALIBRATION	THERMOCOUPLE	MEASURED	314	7.0
TRUE MELTING POINT 449 °F	POSITION	TEMP OF	917	7.2
INDICATED MP 45° F	0.85	258	18	7.5
ERROR +3 °F	0.20	417	is	
LOCK TIME	0.40	514	- 10	
FUEL AERATED 0925	1.10	517	5	
HEATER ON DOYL	1.40	482	260	
HEATER ON	1.70	BSA	327	
0 0 0 0 0 0 0 0	2.00	258	FILTER BYP	ASSED
735 2 2 2 3 8 8 7 2 8		3.00	AT 18	MIN.
2.0 15 1.0 0.5 0 DISTANCE FROM FUEL OUTLET INCHES EPOSIT CODE: >4 STREAM + PEAC	TEST FUEL CONSU	TEST TIME IN YO DROP	is/sec	18.2
1 - HAZE OR DULLING, NO COLOR HEAVIER THAN 2 - BARELY VISIBLE DISCOLORATION CODE 3 EMARKS Refultin Colon B- 2				

Garrett 115 Jet A Final Blend

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1		LATE -	11-26-75
DATE TUBES	RECEIVED	12/72		RUN 10-21

Tube Deposit Ratings, ALCOR Mark 8

POSITION	INE	W	Lis	ed Tube	unber Vi-S			
931116.0	SPUN	Sier	SPUN	SPOTE	PEAC	resiTid	,	
0.3	10	1.5	30.3	36.0	PEAC		0.9	
4		1.1	39.0	40.2	3	1.15	-0.15	
.5		2.0	13.2	14.0	1 /24	0.95	0.3	
.6		2.0	97.5	48.2				
1		0.2	49.2	47.3				
.δ		0.3	49.2	49.8	134	12	0.3	
.9		10	45.0	47.0				
1.0	10	0.7	323	37.7				
.1	2.8	3.9	222	29.8				
.2	1.6	3.0	9.7	15.6				
.3	<0	1.9	8.7	11.1				
.4	<0	0.2	10.2	12.0	188			
.5			9.7		Property of the second			100
.6	20	1.0	68	10.0		01.75		APP.
.1		-	5.9				150	
.8	0.2	3.0	8.9	122	A CONTR			S. C.
.9	1.3	3.4	13.0	15.0				
2.0	11.0	14.0	17.8	21.0				
	2.8		19.2					

MAX

FUEL DESCRIPTION CARRET	TILL FINAL BURNS
RIG NO. ERE- / OPER	Les G. WROT.

AMBIENT TEMP. F ________

TEMPERATURE CALIBRATION

TRUS MELTING POINT	449	°F
INDICATED MP	452	°F
ERROR	+3	°F

CLOCK TIME

FUEL AERATED 1320

CONTROL (MAX.) 450 °F		MINUTES	FILTER AP
PROFILE TEMPERA	TURES	0	0.0
THERMOCOUPLE	MEASURED	30	0.0
POSITION	TEMP. F	60	10.2
0.85	41-3	90	0.3
0.20		120	1.0
0.40	367	150	3.0
	412	180	
0.60	439	210	
1.10	495	240	
1.40	415	270	
1.70	369	30C	
2.00	307		
0.85	453	FILTER BYP	ASSED
		AT	MIN.

TEST FUEL CONSUME OF 50 M

DEPOSIT CODE:

34 STREAM

- 0 NO VISIBLE DEPOSITS
- 3 LIGHT TAN

2 - BARELY VISIBLE DISCOLORATION CODE 3

REMARKS Prefulter Colons

Garrett 115 Jet A Final Blend

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1		LATE -	11	120	トット
DATE TUBES	RECEIVED	12/12				RUN \$ 0-22

Tube Deposit Ratings, ALCOR Mark 8

POSITION	INELL	1 6.5	Tube Ruml	
753771616	SPENE	Sier Sien	SPET	CLUE ASITION
0.3	201	.0 188	19.0	2 15-0.2
.4		1.8 13.0	16.0	3 1.75-0.25
.5		0.8 10.2	15.5	< 4 1.65-0.3
.6	c	. 6 9.0	9.9	4 5.3 0.0
.1	1	2 7.6	9.0	57 23 4
.8	1 2	0.2 6.8	F.0	24 1.8-13.2
.٩	10	1.7 8.1	8.9	
1.0	0.2	5.0 10.0	12.2	
.1	0.23	1.2 10.4	13.0	
.2	10	8.8 6.8	11.0	
.3	<0 :	2.8 4.5	8.8	
.4	10	2.0 5.0	9.3	
1.5	140 2	2.2 6.5	10.9	
.6	10.0 4	40 11.2	16.8	
.7	AND ADDRESS OF THE PARTY OF	1.5 15.8		72 3
.5	40 0	.8 10.2	15.0	
.9	<-	0.0 (0	3.4	
2.0	225 2	9.2 28.2	30.8	
	0.2	15.8	18.9	

AUT NUTS

<u> </u>	PSI	TES	T NO. D-2	
GNO. ERE / OPERATOR (U. DAVIS	HEATER TUBE TO		TEST TIME MINUTES	FILTER A
MHENT TEMP. "F 77				0.0
	PROFILE TEMPE	STATE OF THE PERSON NAMED IN COLUMN 2 IN C	30	C. 0
MPERATURE CALIBRATION	THERMOCOUPL	E MEASURED	60	0.6
TRUE MELTING POINT 449 °F	POSITION		90	10.0
INDICATED MP	0.85	458	120	0.0
ERROR F	0.20	380	150	
	0.40	416	130	
LOCK TIME	1.10	423	210	
FUEL ASRATED OSUS	1.40	394	2:40	
HEATER ON U 905	1.70	357	300	
	2.00	300		
2.00 1.10 0.86 0.40 0.20	0.85	458	FILTER BYP	ASSED
7 6 6 6 6			AT	MIN.
 	10			
6				
 	FIT			
370 0	5			+-+-
5 11 11 11 11 11 11 11 11 11 11 11 11	1			
A STATUTE OF STATUTE O	3			
3 1 1 1 32	2			
++++		1 1 1		
				!
3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	'===			
######################################	0.5			
2 1 300 \$	1-1-1-	\rightarrow		
11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				1
1 +1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				
Hitiratte Para teach	لللا	لسلسل		
THE 1	0 30 60	90 120 15	0 180 210	240 270
		TEST TIME I		
2.0 1.5 1.0 0.5 0		40 DROI	es/sec	18
DISTANCE FROM FUEL				
OUTLET INCHES	TEST FUEL CON	SUMED 460	ml	
EPOSIT CODE:				
0 - NO VISIBLE DEPOSITS 3 - LIGHT TAN				
1 - HAZE OR CULLING, NO COLOR DE HEAVIER THAN 2 - BARELY VISIBLE DISCOLORATION CODE 3				
EMARKS Prefetter Colon= A-1				
EMARKS PARLETER COLONS A. 1				
EMARKS TOWN	and the same of th			
E		1000		

Paraho 111 Jet A Final Blend

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1	LATE -	12-1-75	
DATE TUBES	FECEIVED 12/7	2.	RUN	D-23

Tube Deposit Ratings, ALCOR Mark 8

PUSITION	NE		1 65	ed Tu	ibe in	umber	VI.S	CHL		
IUSITICA	Sicis	Sico	SPUN	SPETA			CCASE	TES1710	V'	
C.3	10	2.2	16.2	18.0			3	1.35	-0:25	
.4	1	3.0	6.8	10.2			4	1.3 -	0.3	
.5		3.2	7.4	10.5				1.		
.6		2.0	9.1	15.0						_
.1		1.0	10.9	14.2.						
.8		1.2	11.1	15.7			24	1750	3,2	
.9		0.2	8.9	14.0						
1.0		0.2	7.2	13.2						_
.1	11	7.0	7.3	8.5						_
.z	10	2.7	9.7	12.2						_
.3	1.0	1.5	11.8	17.0						
.4	2.0	3.7	9.0	17.2			1917			
,5	2.0	2.2	3.0	7:0						_
.6	0.2	0.9	1.0	1.6	697 7343				2 40 9	
.1	0.0			1.7	6.90	0 4	evirtuadul	(fis), i I		_
.6	0.2		West Committee	2.3	人员	= 1	3.0	432	a la	
.9	0.9	28	1.7	3.0				*		
2.0	7.3	12.2	10.2	14.0						
	2.0		11/8	17.0						

FIGURE 4-11 12-1-75

PARAHO III FINAL BLEND D-23 JFTOT

SPUN TDR

FUEL DESCRIPTIONSYN	THOIL ZO	ZFINAL BLEN
RIG NO. ERE-1	OPERATOR	W.Daves
AMBIENT TEMP., "F	7_	
TEMPERATURE CALIBRA	TION	

TRUE MELT	ING POINT	449	°F
INDICATED	MP	725	F
ROSRE		11	9

CLOCK TIME

FUEL AERATED	0845
HEATER ON -	09/0

CONTROL MAXI 525 °F		TEST TIME MINUTES	FILTER AP
PROFILE TEMPERA	TURES	0 0	2.0
THERMOCOUPLE	MEASURED	王15	1:5
POSITION	TTMP. F	# 17	3.9
0.85	528	181 86	5.7
0.20		19	5.2
0.40	411	19.5	7.5
0.60	473	100	
THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWIND TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN	311	210	
1.10	250	240	
1.40	489	270	
1.70	433	300	
2.00	360		
0.85	AT 19.5 MIN.		

TEST FUEL CONSUMED 450 ml

DEPOSIT CODE: ASTVEZIC

- 1 HAZE OR DULLING, NO COLOR HEAVIER THAN
 2 BARELY VISIBLE DISCOLORATION CODE 3

REMARKS Prefetter Color= B-0

SYNTHOIL 202 FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1		:ATE -	12-8-75	
DATE TUBES	RECEIVED	12/22		Run	F D-24

Tube Deposit Ratings, ALCOR 'ark 8

POSITION	INE				Number Vi	SUAL	
DSITION	SPUN	Sier	STUN	SPET	ICCL	E JESITIO	,
0.3	0.0	2.0	9.8	11.9	1 12	- 1.5.	-0.1
.4	0.0	3.7	32.2	35.3	1>3	1.4-	0.1
.5	0.1	1.5	40.8	43.5	1 >4	1.3	0.35
.6	0.4	3.0	45.5	420		-	BAK
.7	20	2.7	48.0	48.8	1 >4		0.3
.8		1.0	48:1	49.5			
.9		0.2	49.3	49.9			
1.0		0.8	49.0	49.8			
		6.0	47.8	49.0			
.Z		10	427	44.0			
.3		10	26.8	30.0			
.4	11	10	18.0	20.1			
.5	20	1.0	9.8	11:0			
.6	0.0	0.6	3.4	57,			
.7	140	08	3.0	5-3			A LIGHT CH
.8	0.2	2.6	39	6.5			
.9	40	1.0	2.9	5.1	h 33	A ST	
2.0	31.8	334	162	19.9			
	1		49.3	1		and the state of the state of	

CATE	12-9	-75	
-			٠

400 PSI

TEST NO. D-25

FUEL DESCRIPTION SYNTHOLL 202 FINAL BLEND
RIG NO. ERE- / OPERATOR W. DAVIS
AMBIENT TEMP., "F 77

TEMPERATURE CALIBRATION

TRUE MELTING POINT	449 °
INDICATED MP	425 %
ERROR	+1 9

CLOCK TIME

FUEL AERATED	1040
HEATER ON -	

CONTROL (MAX.) 425 °F				
TURES	0	0.0		
	60	0.1		
And the second second second second	90	0.7		
7 60	120	1.2		
537	150	1.9		
387	180	THE RESERVE		
412	Contraction of the second			
423				
397	The second secon			
302				
290		<u> </u>		
2.00 29				
	VIS F ATURES MEASURED TEMP., F Y 2 8 3 3 7 3 P 7 Y 1 2 Y 2 3 3 9 7	#25°F MINUTES O MEASURED 75 90 120 3 7 150 3 P7 180 423 240 3 97 270 3 C2 300		

TEST FUEL CONSUMED 450 ml

DEPOSIT CODE:

0 - NO VISIBLE DEPOSITS	3 -	LIGHT TAN
HAZE OR DULLING, NO COLOR	4-	HEAVIER TH
2 - BARELY VISIBLE DISCOLORATION		CODE 3

REMARKS Prefetter Colon = A-0

SYNTHOIL 202 FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1	CAT	E- 12-9-75	Service Frequency
DATE TUBES	RECEIVED	12/72	RUN	D-25

Tube Deposit Ratings, ALCOR Mark 8

POSITION	SPUN	Sion	SPUN	EU Tu Speti		iber VIS	PESITIO	W
0.3	The second secon	<0	Control of the second			>1		0.2
.4	40	<0	40	<0				
.5	10	0.5	<0	1.2				
.6	40	1.8	1.0	1.8				
.1	0.0	1.3	0.5	1.0				
.8	0.0	1.0	0.7	1.0				
.٩	10	0.2	0.3	2.1				
1.0	40	2.8	1.2	3.3				
.1 -	0.5	1.0	1.3	2.3				
.2	0.3	2.0	1.5	2.9				
.3	6.8	1.2	2.0	3.0				
.4	0.7	2.0	2.0	3.2				
.5	0.2	2.2	1.5	4.8				
.6	0.0	1.9	1.1	2.8				
1	1.0	2.0	2.0	3.0	1662 (150) 6 762 5			
.8	4.2	6.0	3.0	8.0	4 (1)	32 3 4 12 2 3 4 12 2 3 4 12	Superior.	Likelin (
.9	8.0	2.2	7.3	4.0		(Joseph	of si	
2.0	10.0	/3.2	31.0	34.0	1_		1_	
	0.8			21 10 11				

DATE 12-18-13	400 PSI	152	1 NO. D-2	6
FUEL DESCRIPTION SYNTHOL 202 FINAL BRIG NO. ERE OPERATOR LA DAUIS AMBIENT TEMP., °F 77 TEMPERATURE CALIBRATION TRUE MELTING POINT 449 °F INDICATED MP 452 °F ERROR 75 °F CLOCK TIME FUEL AERATED 0900	PROFILE TEMPER THERMOCOUPLE POSITION 0.85 0.20 0.40 0.60 1.10	ATURES MEASURED TEMP., °F 750 Y05 Y85	TEST TIME MINUTES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FILTER (INCHES) O. O O. I O. b I. O
HEATER ON - 0920	1.40	779	270	
1.70 1.10 0.60 0.20	2.00 0.85	316	300 FILTER BYP.	
2.0 15 1.0 0.5 0 DISTANCE FROM FUEL		90 120 150 TEST TIME IN 0 > Role	MINUTES PS/SEC	MIN.
OUTLET INCHES	TEST FUEL CONS	UMED TO	MI	
8 - NO VISIBLE DEPOSITS A HAZE OR DULLING, NO COLOR 2 - BARELY VISIBLE DISCOLDRATION CODE 3 REMARKS Repulta Color = B - C	HAN	2.4		The state of the s

SYNTHOIL 202 FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1		JATE -	12-10-75
DATE TUBES	CEIVED	12/72		RUN \$ -26

Tube Deposit Ratings, ALCOR Mark 8

POSITION	NE	W	103	EO 7	ube i	umber	VIS	CAL		
753771010	11		11	SPET	ļ		Citt	1651710		
0.3	4.8	7.4	6.0				+1	1.5-	0.4	
.4	12.5	4.3	3.0							
.5	0.8	4.0	1.3							
.6	0.0	1.0	0.5							
.1	10	(. 3	<0							
.8		2.2	<0							
.9		2.0								
1.0		2.7								
.1		0.0								
.2		1.0	10							
.3		1.4	0.2							
.4		1.0	<0							
.5	1	1.9					1		1081	
.6		1.7								
.1		0.8								
.8		20		110				2-4-0		
.9	10	<0					9 4 2 3 3	. All I		
2.0	8.2	14.3								
	0.8									A

The second secon

				-
DATE	12	-1.	>- /	

400 PS1

TEST NO. D-27

RIG NO. ERE- OPERATOR W. DAVIS
AMBIENT TEMP. °F 77

TEMPERATURE CALIBRATION

TRUE MELTING POINT 449 %
INDICATED MP 452 %
ERROR 7 7 %

CLOCK TIME

FUEL AERATED 0950
HEATER ON 0910

CONTROL (MAX.) 475 °F		MINUTES	HILTON AP
PROFILE TEMPERA	TURES	0	0.0
THERMOCOUPLE MEASURED		30	0.0
POSITION	1.0 0.1		
	TEMP. F	90	0.15
0.85	478	120	0.30
0.20	380	150	0.90
0.40	434	180	
0.60	463	210	
1.10	471	240	
1.40	479	270	
1.70	391	300	
2.00	723	300	
0.85	478	FILTER BYP	ASSED

TEST FUEL CONSUMED 460 ml

DEPOSIT CODE:

0 - NO VISIBLE DEPOSITS	3 -	LIGHT TAN
HAZE OR DULLING, NO COLOR BARELY VISIBLE DISCOLORATION	4 -	HEAVIER THA
- BARELY VISIBLE DISCOLORATION		CODE 3

	1			
REMARKS	Preheten	Colon	=	R-0
DEMANNS	1/4/-	VO.		

SYNTHOIL 202 FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1		SATE -	12-11-51
DATE TUBES	RECEIVED	12/72		RUN 5-27

Tube Deposit Ratings, ALCOR Mark 8

7 1	NE		1 03	EJ Tube	Numbe	r Vis	UAL		
PESITION	SPUN	Stor	SPUN	SPETI		COLE	PESITION		
0.3	17	5.0	3.3	3.4	1	1.6-	-0.3		
.4	10	2.2	0.3	4.2					
.5	2.0	2.9	29	14.0	<u> </u>	15ere	to4	•	
.6	40	0.7	1.0	48					
.1	40	0.3	1.0	2.8					
.8	10	1.2	1.0	7.2					
.9	0.0	Ø. §	3.7	4.7					
1.0	10	1.2	1.3	2.2					
./	0.4	0.9	20	2.5					
.2	11		11	3.7					
.3	0.0	1.9	2.3	2.5					
.4	40	2.7	1.7	1.9					
.5	1.3	2.7	2.3	3.3					
.6	0.7	2.2	1.8	40		giota i s	up z de g		
.7	0.9	2.1	1.7	3.3					
.8	10	1.3	0.4	2.0		1_			
.9	140	1.0	02	1.4			1.20		
2.0	22.8	25.7	25.7	30.5					
	İ		3.7						

DATE	15-	15-	75
------	-----	-----	----

400 PS1

TEST NO. D-28

RIG NO. ERE- OPERATOR W. DAVIS AMBIENT TEMP., F 77

TEMPERATURE CALIER CHON

TRUE MELTING POINT INDICATED MP ERROR

CLOCK TIME

FUEL AERATED 1310

CONTROL (MAX.) 500 °F		TEST TIME MINUTES	FILTER AP
PROFILE TEMPERA	TURES		0.0
THERMOCOUPLE	MEASURED	30	0.0
POSITION	TEMP. F	60	0.0
0.85		90	Oal
	503	120	0.15
0.20	300	150	0.2
0.40	777	180	
0.60	7.6	210	
1.10	441	240	
1.40	466	270	
1.70	414	300	
2.00	346		
0.85	503	AT	ASSED MIN.

TEST FUEL CONSUMED 430 ml

DEPOSIT	CODE: 2	Stream s.	>4
---------	---------	-----------	----

- 0 NO VISIBLE DEPOSITS
 1 HAZE OR DULLING, NO COLOR
 2 BARELY VISIBLE DISCOLORATION
 3 LIGHT TAN
 HEAVIER THAN
 CODE 3

REMARKS Prefester Colon= B-3

SYNTHOIL 202 FINAL BLEND

TUBE RATIUG REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1	JATE -	12-15-75
DATE TUBES	RECEIVED	12/72	RUN 1-28

Tube Deposit Ratings, ALCOR Mark 8

POSITION	NE		1.5	=0 Tube	Number	VIS	LAL	
	SPUN	Sier	SPUN	SPETI		CLIKE	resition .	
0.3	7.3	3.4	7.3	8.0		12	1.05-48	1
.4	0.3	42	6.0	12.2		3	1.974.45	
.5	2.9	14.0	15.2	27.6		4	1.94.5	
.6	1.0	4.8	11.8	18.7				
.1	1.0	2.8	11.7	21.5	of principle from the party of the party of	>T'	1.15-0.3	1
.8	1.0	1.2	12.2	24.8		>4	1.15 0.4	1
.9	7.7	4.7	13.0	24.6				
1.0	1.3	2.2	13.8	25.0				
.1	2.0	2.5	4.5	14.8			- 17 (C)	
.2	1.6	3.3	1.6	6.2				
.3	2.3	2.8	1.7	3.3				
.4	1.7	1.9	0.3	1.7				
.5	2.3	3.3	5.3	4:0				
.6	1.8	4.0	2.0	3.9		90		_
.7		_	-	2.7				L
.8	0.4	2.0	0.5	2.0	# #			
.9	0.2	1.4	0.2	2.0				
2.0	25.7	30.5	27.8	270				1
			13.9-					

FIGURE 4-12 12-16-75

SYNTHOIL 202 FINAL BLEND

JFTOT D-24 - D-28

SPUN TDR

FIGURE D-29

DATE 12-16-75 400	o PSI		T NO. D - 3	-1
WEL DESCRIPTION H-COAL 209 LIGHT FINAL BE	HEATER TUBE TE	MPERATURE	TEST TIME	FILTER A
NIG NO. ERE- OPERATORW. DATIL	CONTROL (MAX.)	535°F	MINUTES	INCHES H
MISENT TEMP. "F 72"				
	PROFILE TEMPER	ATURES	0	0.0
EMPERATURE CALIBRATION	THERMOCOUPLE	MEASURED	30	0.0
TRUE MELTING POINT 449 °F	POSITION	TEMP. F	60	0.0
INDICATED MP YEZ F	0.85	528	90	0.0
ERROR TI F	0.20	419	120	0.0
	0.40	480	150	0.0
LOCK TIME	0.60	513	180 210	
FUEL AERATED 0900	1.10	521	240	
HEATER ON 0920	1.40	487	270	
HEATER ON	1.70	433	300	
	2.00	360	FILTER BYP	
2.00 1.70 1.10 0.60 0.60 0.20	0.85	258		
THE THE PARTY OF T				MIN.
	10			
6	" Ltt	+		
######################################		+-+-	-	+
- " × " - " - " - " - " - " - " - " - "	5			1 1
c				
A A A A A A A A A A A A A A A A A A A				
+++++++++++++++++++++++++++++++++++++++	ž ,	1 1		
4 THE WAY 50 5	₹ 2			+
111111111111111111111111111111111111111		1 1		1 1
	2			
3 41 42 E	FILTER AP IN, Hg			
	ī	1 1 1		
ASE TUBE TEMPERATURE, F	0.5	<u>i </u>		1-1-
2 111 // you 3		+		
		+		
		+	-	
1 11 11 11 11 11 11 11 11 11 11 11 11 1				
+++++++++++++++++++++++++++++++++++++++	0 30 60	90 120 150	180 210	240 270
2.0 1.5 1.0 0.5 0		TEST TIME IN	MINUTES	
	AND RESTORATE	10 DROP	3/366 /	
DISTANCE FROM FUEL OUTLET INCHES		315		
OUTET MODES	TEST FUEL CONSU	MED 3 CO	ml	
EPOSIT CODE: 2->35+reaks				
SELOSIL CODE: 5- \ 72 L. AT				
0 - NO VISIBLE DEPOSITS 3- LIGHT TAN				
1 - HAZE OR DULLING, NO COLOR A HEAVIER THAN				
2 - BARELY VISIBLE DISCOLORATION CODE 3				
Riot Pl . R-D				
REMARKS Prefetter Colons 13-0			All market	. 4

Figure 7 - Suggested Data Sheet Chart

H-COAL 209 JP4 FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1	DATE -	12-16-75
DATE TUBES	RECEIVED	12/72	RUN \$ 7-29

Tube Deposit Ratings, ALCOR Mark 8

2	NEL				Number Vi-S		
POSITION	SPUN	Sico	STUN	SPETI	CCIVE	TESITIO	'
0.3	0.8	4.0	4.7	7.0	2	1.4-	0.2
4	4.2	6.2	11.0	17.7	3	1.2	0.3
.5	0.6	2.5	7.0	12.0	1 14	1.1	- 0.4
.6	0.8	2.5	8.5	10.0			
.1	40	0.6	6.5	13.0	257	res	
.8	<0	3.4	7.2	12.0		.95	45
.٩	2.2	2.0	9.7	14.7	>3	.95-	50
1.0	1.2	2.2	8.2	12.2	8		
.1	1.2	2.4	11.2	14.5			
.Z	0.1	0.8	5.0	9.7	8 . J V 3		
.3	1.0	2.0	5.8	6.2		51	
.4	1.8	2.7	5.6	4.2			
.5	1.1	2.2	1.7	4.8			
.6	2.1	3.0	1.8	3.5			
.1	1.7	3.0	2.2	4.0	1 48 2 PM		
.8	1.8	2.0	1.8	3.5	4 4 4		
.9	3.0	4.2	3.2	5.8			entre base la constitución de la
2.0	20.0	21.8	10.5	15:0			
			11.2				

FIGURE 4-13 12-16-75

H-COAL 209 LIGHT FINAL JFTOT D-29

SPUN TDR

ALCOR JET FUEL THERMAL OXIDATION TEST FIGURE D-30 TEST NO. D-30 DATE 1-5-76 4-00 PSI FUEL DESCRIPTION H-COOL 209 HEAVY FINAL HEATER TUBE TEMPERATURE TEST TIME FILTER AP 3 NO. ERE-1 OPERATOR W. DAWS CONTROL MAXJES F MINUTES AMBIENT TEMP., "F. 77 PROFILE TEMPERATURES 30 0.0 THERMOCOUPLE MEASURED TEMPERATURE CALIBRATION 60 9.0 POSITION TEMP. TRUE MELTING POINT 90 0. 0 0.85 INDICATED MP 120 0.0 0.20 ERROR 150 0.0 0.40 180 CLOCK TIME 0.60 210 1.10 0110 240 _FUEL AERATED _ 1.40 0940 270 HEATER ON -428 1.70 300 2.00 FILTER BYPASSED 0.85 0.20 0.10 0.20 0.20 0.20 0.20 AT. 525 500 FILTER OF IN, H. 425 150 180 210 120 TEST TIME IN MINUTES 40 DROPS/SGC, 18.0 DISTANCE FROM FUEL OUTLET INCHES TEST FUEL CONSUMED 450 m DEPOSIT CODE: STREAK >3 0 - NO VISIBLE DEPOSITS LIGHT TAN 1 - HAZE OR DULLING, NO COLOR HEAVIER THAN 2 - GARELY VISIBLE DISCOLORATION REMARKS Treletter Color=

Figure 7 - Suggested Data Sheet Chart

TABLE D-30 H-COAL 209 JET A FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABOR	ATORY	ERE-	03,40, 100	DATE -	1-5-76	
DATE '	TUBES	RECEIVED	12/72		RUN	D-30

Tube Deposit Ratings, ALCOR Mark 8

2	NEL	U	US	EU Tube I	iumber VIS			
POSITION	SPUN	Sior	SPUN	SPOT	COLVE	ESITIO	<u> </u>	
0.3	40	40	2.0	8.2	2.0	1.5-	- 0.9	_
.4	<0	10	3.1	10.8	>2.0	0.95	-0:6	
.5	<0	1.0	7.8	16.2	>3.0	0.9	-0.6	5
.6	<0	1.0	12.0	18.8				
.1	0.7	1.1	15.2	17.0	STR	EA	4	
.8	1.2	3.1	15.8	18.0	>3.0	1.35	-0.4	
.9	10	1.8	12.1	15.0				
1.0	0.2	1.9	4.8	12.7				
./	0.5	3.0	2.2	7.1				
.2	0.0	1.8	1.1	5.0				
.3	0.6	2.2	1.8	6.1				
.4	0.8	1.8	1.5	2.9				
.5	10	1.0	5.0	1:9				
.6	0.1	1.7	0.7	2.0				
.1	<0	1.1	0.0	0.0				
.8	10	40	40	40				
.9	<0	40	40	40				
2.0	18.9	238	17.7	24.5				
			15.8					

A CONTRACTOR OF THE PARTY OF TH

FIGURE 4-14 1-5-76

H-COAL 209 HEAVY FINAL JFTOT D-30

& aloblable >

ALCOR JET FUEL THERMAL UXIDATION TEST

DATE 1-6-76

400 PS/

TEST NO. D-31

TIG NO. ERE- OPERATOR W. DAVIS

TEMPERATURE CALIBRATION

TRUE MELTING POINT	449 °1
INDICATED MP	452 %
ERROR	+3 %

CLOCK TIME

FUEL AERATED 1310
HEATER ON ... 1330

CONTROL (MAX.)		TEST TIME FILTER		
PROFILE TEMPERA	TURES	0	0.0	
THERMOCOUPLE	MEASURED	367	2.0	
POSITION	TEMP. F	289	2.3	
0.85		990	2.5	
	453	1993	2.0	
0.20	349	150100	3.2	
0.40	404	100105	4.4	
0.60	433	270/10	7.7	
1.10	451	70116	5.0	
1.40	429	999 /1/ 7	7.6	
1.70	195	37/42		
2.00	325	381471	9.7	
0.85	453	FILTER BYPASSED		

TEST FUEL CONSUMED 300 ml

DEPOSIT CODE:

- 0 NO VISIBLE DEPOSITS
- (3) LIGHT TAN
- 1 MAZE OR DULLING, NO COLOR 2 - BARELY VISIBLE DISCOLORATION
- HEAVIER THAN

REMARKS Prefette Colon - B-0

* VARIABLE FLOW RATE DUE TO LIGHT END VAPORIZATION.
BREAK POINT IS PROBABLY HICHAR THAN INDICATED.

The state of the s

H-COAL 304 JP4 FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

DATE TUBES RECEIVED 12/72	RUN D-31

Tube Deposit Ratings, ALCOR Mark 8

POSITION	NE		US	Ed Tub	e Num	ber VIS	UAL	
, USI / IUN	SPUN	Stor	SPUN	SPOT		Cack	POSITIO	W
0.3	<0	0.0	22	4.2		12	1.5-	0.3
.4	0.0	0.8	6.5	9.1		3	1.4-	1.5
.5	0.7	1.0	9.8	13.0		2	1.1-	0.65
.6	0.2	1.0	8.0	11.4		3	0.65	-0.45
.1	1.0	2.2	5.9	10.7				
.8	1.5	2.2	4.9	11.0				
.9	0.9	2.0	4.8.	11.0				
1.0	0.8	1.4	4.7	11.0				
.1	140	40	3.8	10.0				
.2	40	<0	5.5	11.0			-11	
.3	140	40	8.0	10.3	holds to o			
.4	0.2	2.0	7.9	10.0				
.5	1.5	3.3	5.3	6:5				
.6	10	1.1	1.0	4.0	201			E Assures
.7	1.0	3.0	1.9	5.0		2000		
.8	5.1	6.0	4.7	6.1	1 9			
.9	5.1	7.8	5.2	8.5				
2.0	28.2	32.5	25.8	29.2	5.4			Lane 3
			9.8	100				

FIGURE 4-15 1-6-76

H-COAL 304 LIGHT FINAL JFTOT D-31

restricted that temperate Weight

Figure 7. - Suggested Data Sheet Chart

H-COAL 304 JET A FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-	and the second	DATE -	1-7-76
DATE TUBES	RECEIVED	12/72	- Zea	RUN # D-32

Tube Deposit Ratings, ALCOR Mark 8

2	NE			ed T	ube Nu		UAL	9 3
POSITION	SPUN	Stor	SPUN	SPOT			POSITIO	V
0.3	Ko	0.5	15.0	19.0		4+	1.6-	0.3
.4	<0	3.0	29.5	32.5				
.5	Ko	1.6	39.4	41.5	4.7	PRA	OCK	va
.6	<0	5.2	44.0	45.5		4-	1.3-	
.7	<0	3.0	45.2	46.8				
.8	0.2	1.1	438	46.2				
.9	0.3	3.2	41.1.	43.8				
1.0	<0	6.0	37.0	39.8				
.1	0.0	2.8	32.2	34.7				
.2	1.1	4.7	27.3	30.0			_	
.3	1.9	4.3	21.7	24.1				
.4	2.5	6.0	16.5	20.6				
.5	3.0	7.0	10.7	15.0				
.6	2.0	5.8	12.0	16.2		1		
.7	THE RESERVE OF THE PERSON	\$4.50mm = 1.0 - 10 c/s	T PERSONAL PROPERTY.	16.0				
.8			COMMERCE STATE	14.2		A300 - 1000 680 - 1000		
.9	0.7	4.0	11.0	15.2				
2.0	34.3	35.9	31.7	34.8			1	
	3.0		45.2					

HAX.

FIGURE D-33 400 PS/

DATE 1.7-76

TEST NO. D - 33

THE NO. ERE- 1 OPERATOR W. DAVIS	HEATER TUBE TEL		TEST TIME MINUTES	FILTER AP
MBIENT TEMP. "F 77			0	0.0
	PROFILE TEMPERA		30	0.5
EMPERATURE CALIBRATION	THERMOCOUPLE	MEASURED	60	3.7
TRUE MELTING POINT 449 °F	POSITION	TEMP. °F	99 75	5.0
INDICATED MP YTE F	0.85	388	190 90	8.0
ERROR +3 °F	0.20	311	100 98	9.5
	0.40	349	1980	
LOCK TIME	0.60	376	210	
FUEL AERATED 1245	1.10	385		
MEATER ON 1305	1.40	363		
PRATER ON	1.70	327		
	2.00	274	E11 750 0V0	
2.00 1.70 1.10 0.86 0.40 0.20	0.85	388	AT 98	
100			<u> </u>	MIN.
777777777777777777777777777777777777777				
	•			
6 1111111111111111111111111111111111111	10			+
				-
HILL SHAPE	8			1
s 350 w				
" " " " " " " " " " " " " " " " " " "				
11111M11111111111111111111111111111111	3			
TUBER TELANT	2			
11111 NC 11111 1111 1111 1111 1111 1111	1 1/1			
TER TUBE TELIPERATURE, F				
3	1 1 1/1			
3 - 3				
	0.5			
2 276	0.5			
2 11 276		1		+
+++++++++++++++++++++++++++++++++++++++	1/1			+
	1/1	1-1-1		+
1 250	.VIII			
+++++++++++++++++++++++++++++++++++++++	0 37 60	90 120 150	180 210	240 270
		TEST TIME IN		
2.0 1.5 1.0 0.5 0	4	O DROP	3/3EC	20.0
DISTANCE FROM FUEL				
OUTLET INCHES	TEST FUEL CONSU	MED430	ml	
PEPOSIT CODE:				
0 - NO VISIBLE DEPOSITS				
1 - HAZE OR DULLING, NO COLOR 4 - HEAVIER THAN				
HEAD NO. 19 1 19 1 19 1 19 1 19 1 19 1 19 1 19				
2 - BARELY VISIBLE DISCOLORATION CODE 3				
2 - BARELY VISIBLE DISCOLORATION CODE 3				
2 - BARELY VISIBLE DISCOLORATION CODE 3				
HEAD NO. 19 1 19 1 19 1 19 1 19 1 19 1 19 1 19	nta Wey		222	
2 - BARELY VISIBLE DISCOLORATION CODE 3	71 A 10 A 4			
2 - BARELY VISIBLE DISCOLORATION CODE 3	mia wa y Maria	7 8 91 -		
2 - BARELY VISIBLE DISCOLORATION CODE 3		7 (0)		
2 - BARELY VISIBLE DISCOLORATION CODE 3				

H-COAL 304 JET A FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1	DATE 1-7-76
DATE TUBES	RECEIVED 12/72	RUN #D-33

Tube Deposit Ratings, ALCOR Mark 8

Position	SPUN	SPAT	SPUAL	Tube i	Number Vi	SUAL POSIT	Earl
0.3					1 2		0.3
THE RESERVE OF THE PERSON NAMED IN	CONTRACTOR SERVICES		9.6		K3	100	0.6
		,	11.5				
	CORP. Compression Co.		14.9	Charles to the later of the lat			
			14.3				8
.8.	1.9	3.5	14.5	16.0			
.9	1.0	2.0	13.1	14.0			
1.0	Contract Contract	238/11 - 23	12.1	1			
.1	40	0.0	10.0	10.8			
.2	<0	0.2	9.2	11.3			
. 3	0.0	1.0	9.2	10.0			
.4	20	1.0	8.0	8.8			
,5	40	1.5	8.2	9.8			
			10.2	STREET, STREET			
			8.8	THE RESIDENCE PROPERTY.	1-1-		
			9.8	Manager / Manager			
NAME AND ADDRESS OF TAXABLE PARTY.			7.2				
2.6	35.1	37.8	27.0	2 8.8	1	لــــــــــــــــــــــــــــــــــــــ	
	1.9		14.9				

FIGURE 4-16 1-7-76

H-COAL 304 HEAVY FINAL JFTOT D-32, D-33

FIGURE D-34

TEST NO. 0-34

ALCOR JET FUEL THERMAL OXIDATION TEST

DATE 3-15-76

ATE 3-15-76	400	131				T NO. D-	
UEL DESCRIPTION GARRETT 415	FINAL BLEND 1.Davis				MPERATURE	TEST TIME MINUTES	FILTER A
MBIENT TEMP. °F 77						(1) A (1) (1) (1)	
					ATURES	30	0.0
EMPERATURE CALIBRATION		14. 14. 15. 15. 15.		OUPLE		60	0.0
TRUE MELTING POINT 449	•		POSITI	ON	TEMP. °F	90	0.0
INDICATED MP UT	*		0.85		603	120	0.0
ERROR +2		-	0.40		545	150	0.0
LOCK TIME			0.60		586	180	
FUEL AERATED 09 40			1.10		590	210	
HEATER ON LO IS			1.40		549	270	
REALER ON			1.70		188	300	
		-	2.00 0.85		403	FILTER BYP	ASSED
1.70	60		0.03		1603	AT	MIN.
3 2 1	HEATER TUBE TELAPERATURE. *	0.5	300	60	90 120 15	0 180 210	240 270
2.0 1.5 1.0 0.5 DISTANCE FROM FUEL OUTLET INCHES	و مناه	TEST	FUEL	cons	TEST TIME II 40 DROP	MINUTES PS/SEC	
EPOSIT CODE:							
0 - NO VISIBLE DEPOSITS THAZE OR DULLING, NO COLOR 2 - BARELY VISIBLE DISCOLORATION	3 - LIGHT TAN 4 - HEAVIER THAN CODE 3						
MEMARKS Prefection Color							

TABLE D-34

GARRETT 415 JET A FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-	Cardon La disassaria	DATE	3-15-76
DATE TUBES	RECEIVED	12-72	RUNF	- D-34

Tube Deposit Ratings, ALCOR Mark 8

OSITION	108	LY ,	1/3	Tube i	umber 1:50	NL.	
OSITION						Position .	-r-
0.3	5.7	5.3	6.9	9.0	12	0.3-1.0	
.4	3.9	6.0	5.5	9.2			
	3.3						
.6	2.7	3.1	4.8	6.2			
	1.8			1			1
	2.1						1
	2.0						1
1.0	1.8	2.9	4.9	6.1			1
	0.8	SECTION OF SECTION S.					1
	2.1		THE RESIDENCE OF THE PARTY OF T				1
	0.2						4-
	4.0						+
	1.9		THE RESERVE		9 - 60		-
	2.0	CONSTRUCTION			\$ 10 miles	(10) (10) (10)	+-
ACT CONTRACTOR STATES	3.2		1	1	 - - - 		1
the second second second	2.8		a destruction of the last		1000 3 100	3.64 (3)	_
	5.0						-
2.0				12.2			
	4.0	4.8	5.0				

MAX

FIGURE D-35

ALCOR JET FUEL THERMAL OXIDATION TEST

TER TUBE TE NOTROL (MAX.) FILE TEMPER. BERMOCOUPLE POSITION 0.85 0.20 0.40 0.60 1.10 1.40 1.70 2.00 0.85	625 °F	TEST TIME MINUTES 0 30 60 90 120 150 180 210 240 270 300 FILTER BYPAT	FILTER A INCHES I D.O D.D D.D D.D D.D D.D MIN.
0.85 0.20 0.40 0.60 1.10 1.40 2.00	MEASURED TEMP. °F 628 506 570 610 615 572 513 427	30 69 90 120 150 180 210 240 270 300 FILTER BYP	0.0 0.0 0.0 0.0 0.0
0.85 0.20 0.40 0.60 1.10 1.40 2.00	MEASURED TEMP. °F 628 506 570 610 615 572 513 427	30 69 90 120 150 180 210 240 270 300 FILTER BYP	0.0 0.0 0.0 0.0 0.0
0.85 0.20 0.40 0.60 1.10 1.40 1.70 2.00	TEMP. °F 628 506 570 610 615 572 513	69 90 120 150 180 210 240 270 300 FILTER BYP	0.0 0.0 0.0 0.0
0.85 0.20 0.40 0.60 1.10 1.40 1.70 2.00	628 506 570 610 615 572 513 427	90 120 150 180 210 240 270 300 FILTER BYP	0. 0 0. 0 0. 0
0.20 0.40 0.60 1.10 1.40 1.70 2.00	506 570 610 615 572 513 427	120 150 180 210 240 270 300 FILTER BYP.	O.D O.D
0.40 0.60 1.10 1.40 1.70 2.00	\$70 610 615 \$72 \$13 427	150 180 210 240 270 300 FILTER BYP	O. b
0.60 1.10 1.40 1.70 2.00	610 615 572 513 427	1\$0 210 240 270 300 FILTER BYPA	ASSED
1.10 1.40 1.70 2.00	615 572 513 427	210 240 270 300 FILTER BYPA	
1.40 1.70 2.00	572 513 427	270 300 FILTER BYP	
1.70 2.00	513	300 FILTER BYP	
2.00	427	FILTER BYP	
			- MIN
	YEST TIME IN	MINUTES S/SEC	240 270
		TEST TIME IN 40 DROP	30 69 90 120 150 180 210 TEST TIME IN MINUTES 40 DROPS/SEE FUEL CONSUMED 45 mi

TABLE D-35 GARRETT 415 JET A FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1		DATE 3-15-76
DATE TUBES	RECEIVED	12/72	RUN # D-35

Tube Deposit Ratings, ALCOR Mark 8

Position	CAUCH	5 74 7	5000	ED TO	aue iv	Wilder	1730	13-		
	STUN	3701	SPUN	SPOTE	 ,_		CODE			-
	<0						2	0.4-	1.5	_
.4	1	<0	1.3	4.8						
.5		<0	2.7	7.0						
.6		10	3.3	8.0						
.1		<0	2.4	7.1						
.8.		20	2.9	8.0						
.9		<0	2.7	7.0						
1.0		40	3.5	8.0						
.,	<0	(0	3.9	8.1						
,2	0.0	1.0	4.7	9.3						
.3	0.5	1.0	4.0	7.2						
.4	0.9	2.2	3.8	6.8		100				
,5	0.6	2.2	2.7	5.8						
ا.	0.5	1.5	2.2	4.1						
.7	0.0	1.0	1.2	3.6						
-8	0.2	1.4	1.1	2.4			80.0	100 LD		
.9	1.8	2.0	2.7	5.0						
2.0	30.8	32.8	14.8	21.6						
	1		1							

FIGURE 4-17 3-15-76

GARRETT 415 FINAL BLEND
JFTOT D-34, D-35

A STANKE AND A TALL

SPUN TOR

FIGURE D-36

ALCOR JET FUEL THERMAL OXIDATION TEST

DATE 5-/6-/6 400	PSI
RIG NO. ERE- 1 OPERATOR W. DANIS	HEATE
RIG NO. ERE- OPERATOR W. DANLE	CON

AMBIENT TEMP., F. 77 TEMPERATURE CALIBRATION

DATE 3-16-76

TRUE MELTING POINT INDICATED MP ERROR

CLOCK TIME

FUEL ARRATED 0905 0 930 HEATER ON -

CONTROL (MAX.)	TEST TIME MINUTES	FILTER AP		
PROFILE TEMPERA	0	0.0		
THERMOCOUPLE	MEASURED	30	0.0	
POSITION	TEMP. F	60	0.0	
		90	0.0	
0.85	563	120	0.0	
0.20	85Y	150	0. 0	
0.40	496	180		
0.60	5.39	210		
1.10	561	240		
1.40	577	270		
1.70	481	300		
2.00				
0.85	363	AT MIN.		

TEST NO. D-36

TEST FUEL CONSUMED 300 ml

DEPOSIT CODE:

NO VISIBLE DEPOSITS - HAZE OR DULLING, NO COLOR

3 - LIGHT TAN

2 - BARELY VISIBLE DISCOLORATION

4 - HEAVIER THAN

Letin Colon= B-0

TEST IS INCONCLUSIVE DUE TO FUEL VAPORIZATION AT 400 PSI /560°F

TABLE D-36 SYNTHOIL 416 JET A FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	E	RE	-1				Ī.	DATE	3-	16-76		
DATE TUBES	S RECE	EIVED		12/7		DATE 3-16-7 RUN # D-36						
	Tut	e De	posit	Ratio	gs, A							
							,					
Position	SPUN	SPOT	SPUN	Sport	ube N	umber	CODE	POSIT	Ton			
	60							Vise	1 CONTRACTOR OF THE PARTY OF TH			
.4	3.7	5.9	3.9	13.8				0517				
.5	1.7	3.9	2.9	4.8								
.6	1.9	3.8	4.7	7.1								
.1	2.9	3.2	4.5	7.0								
.8.	1.7	2.8	4.2	5.1								
	2.2											
1.0	2.5	45	5.2	7.2		-						
	2.6				Age Control							
, 2	1.2	3.0	4.8	6.1								
.3	1.8	1.0	3.2	4.3		successful S						
.4	4.6	3,2	4.9	6.8								
	2.7											
.6	3.2	4.3	Y. 2	6.8								
.7	2.2	2.2	2.7	4.4								
-9	0.2	0.7	0.5	2.0						No.		
0	H					25-00-10			7			

35.8

FIGURE 4-18 3-16-76

SYNTHOIL 416 FINAL BLEND JFTOT D-36

PICIPE	D-37
FIGURE	D-31

DATE	3-1	4-	26
------	-----	----	----

400 PSI

TEST NO. D-37

FUEL DESCRIPTION PARAMO YIVENAL BEAND RIG NO. ERE- / OPERATOR W. PAVIL AMBIENT TEMP. "F __ 77_

TEMPERATURE CALIBRATION

TRUE MELTING POINT	449 °
INDICATED MP	455 %
ERROR	+3 °

CLOCK TIME

CONTROL (MAX.)	TEST TIME MINUTES	FILTER AP		
PROFILE TEMPERA	TURES	0	0.0	
THERMOCOUPLE	MEASURED	30	0.0	
POSITION	TEMP. F	60	0.0	
0.85	1-07	90	0.0	
0.20	313	120	0.0	
	477	150	0.0	
0.40	520	180		
0.60	369	210		
1.10	592	240	Water Control	
1.40	563	270		
1.70	516	300		
2.00	436			
0.85	7-64	AT MIN.		

TEST FUEL CONSUMED 200 ml

DEPOSIT CODE:

O- NO VISIBLE DEPOSITS - HAZE OR CULLING, NO COLOR

3 - LIGHT TAN

2 - BARELY VISIBLE DISCOLORATION

4 - HEAVIER THAN

TEST IS INCONCLUSIVE DUE TO FUEL VAPORIZATION AT 400 PSI / 590°F

TABLE D-37

PARAHO 414 JET A FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-	1	DATE 3-16-76
DATE TUBES	RECEIVED	12/12	RUN # D-37
	Tube Depo	sit Ratings,	ALCOR Mark 8

Desition	ME	W	1/3	ED Tube	Number 115	UAL		
Position	SPUN	SPOT	SPUN	SPOT	CODE	Posi	Ton	,_
0.3	<0	3.0	0.2	7.8	3 9 3	No	ISTRE	k
.4	L	2.3	<0	2.8		DIEP	OF.T	
,5		2.8	< 0	3.8				
.6		3.3	1.0	4.0				
.7		1.2	0.4	2.4				1
.8		2.0	0.2	3.0				
.9		1.9	0.2	2.2				
1.0	10	1.8	0.7	2.0				
.1	0.2	(A Charles when						
	0.5	2.0	1.1	3.0	12/18			
, 3	1.2	27	1.5	3.0				
.4	0.1	1.0	0.3	0.8	4.50		872-90	
,5	2.6	3.7	1.5	2.9				
.6	1.8	2.7	0.7	1.8	1633 14	planes.	10 3 3 0	_
	1.9		1.0		(100) (100) (100) (100)		Derice V	
- 8	1.5	3.0	0.2	1.0	g was	1	1100	
	122							
2.0	7.7	15.0	20.2	26.9	NY 24		29 6	-
(.)				4.0				

FIGURE D-37A

ALCOR JET FUEL THERMAL OXIDATION TEST

RIG NO. ERE- OPERATOR W. DAVIS	HEATER TUBE TO		TEST TIME	FILTER A
ANSIENT TEMP., PF 28				
	PROFILE TEMPER	ATURES	0	1.0
TEMPERATURE CALIBRATION	THERMOCOUPLE		30	. 1.0
TRUE MELTING POINT 449 °F	POSITION	TEMP F	60	- sus_
	0.85	518	90	0.0
INDICATED MP 452 °F ERHOR +3 °F	0.20	391	120	0.0
	0.40	1951	150	- C-D-
CLOCK TIME	0.60	1491	180	
FUEL AFRATED O ? 20	1.10	3-15	210	
HEATER ON 935	1.40	498	270	
HEATER ON	1.70	417	300	
	2.00	3.27		
1.76 0.85 0.40 0.20	0.85	178	AT AT	ASSED
HEATER TUDE TELIPERATURE, TO SOLVE TELIPERATU	10 5 4 3 2 1 0.5 0 30 60	90 120 150	160 210	240 270
2.0 1.5 1.0 0.5 0 DISTANCE FROM FUEL OUTLET INCHES	TEST FUEL CONS	TEST TIME IN FOR DROP	s/sec	18 +
PEPUSIT CODE:				
0 - NO VISIBLE DEPOSITS 3 - LIGHT TAN				
CP HAZE OR DULLING, NO COLOR 4 - HEAVIER THAN	T. O. U. S. S.			
2 - BARZLY VISIBLE DISCOLORATION CODE 3				
REMARKS Prefulton Colon= B-0	20 2	10.843		

TABLE D-37A

PARAHO 414 JET A FINAL BLEND

TUBE RATING REPORTABILITY AND REPRODUCIBILITY STUDY

LABORATORY E.RE-1	DATE 3-22-76
DATE TUBES RECEIVED	RUN #0-37A
Tube Deposit Ratings, A	ALCOR Mark 8

F	0S/ >	SPUN	5007	5000	Cari	umber 0/3	Positi	-
				3.0		1	1.4	
		Common Printers and the		2.2				
				3.0				
		1.4			3.9			
				1.8	3.8			
	.8.	5.7	3.5	1.4	4.0			
	.9	0.9	2.5	1.9	3.8			
	1.0	<0	2.0	0.7	2.9			
	. 1	<0	2.8	0.2	2.8			
	٠. ٢	0.2	2.0	0.8	3.2			
	. 3	0.1	2.1	0.3	2.2			
	.4	0.8	2.9	8.0	3.9			
	,5	0.4	2.8	1.0	2:3	9 68		
_	.6	1.1	2.0	0.7	3.7			
1_		-		0.4				
				0.4				10,000 A 1 A 10,000 A 1 A
L				0.7				
-	2.0	25.6	30.2	27.2	30.4	1		
X.	4	Company.		1.9	1 A.S.			

PARAHO 414 FINAL BLEND JFTOT D-37, D-37A

Samuel and the property

more lightly lated B-10

Steph and renorization sing decises at an

Figure 38

ALCOR JET FUEL THERMAL OXIDATION TEST

IG NO. ERE OPERATOR W. DAVIS	HEATER TUBE TE	MPERATURE 575°F	TEST TIME MINUTES	FILTER A
MBIENT TEMP., or 74.	TOTAL			
	PROFILE TEMPER		30	0.0
EMPERATURE CALIBRATION	THERMOCOUPLE	MEASURED TEMP. F	60	0.0
TRUE MELTING POINT 449 F			90	0.0
INDICATED MP 452 F	0.85	578	120	0.0
ERROR	0.40	457	150	0.0
LOCK TIME	0.60	563	180	
장면 장면 김 이 없는 보면 이 없는 데 가게 되었다. 이 얼마나 아이를 하는 것이 되었다.	1.10	566	210	
FUEL AERATED 0855 HEATER ON 0925	1.40	528	240	
HEATER ON	1.70	467	300	
	2.00	388		
2.00 1.70 0.60 0.40 0.20	0.85	5 79	AT AT	ASSED
3 476 475 475 475 475 475 475 475 475 475 475	0.E			
2.9 1.5 1.0 0.5 0 DISTANCE FROM FUEL OUTLET INCHES	0 30 60	TEST TIME IN YOUR DROP	MINUTES S/SEC	240 270 / P . Z
EPOSIT CODE:				
0 - NO VISIBLE DEPOSITS 3 - LIGHT TAN 1 HAZE OR DULLING, NO COLOR 4 - HEAVIER THAN 2 - BARELY VISIBLE DISCOLORATION CODE 3				

Slight fun! Vaporization; no deposits at 575°F/40055.

BREAKPOINT EST. >575°F.

TABLE D-38

TOSCO 410 JET A FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-	Properties	DATE	3-18-76
DATE TUBES	RECEIVED	12/72	R UN #	7-38

Tube Deposit Ratings, ALCOR Mark 8

POSITION	SPUN	5207	SPIN	SPATI	ube m	I South	CADE	POSIT	Test	
	0.2			8.1			(2		1.3	
	-						.*	0.4.	1.3	
	40			10.7						
	<0	3.8	1.9	6.5						
.6	1.0	4.0	2.8	5.5						
.1	0.4	2.4	2.0	8.8						
.8.	0.2	3.0	1.8	4.2						_
.9	0.2	2.2	1.6	3.7						
1.0	0.7	2.0	2.0	4.0						
.1	1.1	3.8	2.7	5.7						
. 2	1.1	3.0	2.0	5.0						
.3	1.6	3.0	2.1	6.0						
.4	0.3	9.0	1.2	4.0						
ک,	1.5	2.9	2.8	4.6		gr()				
.6	0.7	1.8	2.4	5.0						
.7	1.0	2.0	2.2							
.8		7	1.8	3.6						
. 9	0.2	ar administration in		18						
			27.0	31.8						
			12.8							

FIGURE 4-20 3-18-76

TOSCO 410 HEAVY FINAL BLEND JFTOT D-38

FIGURE D-39

ALCOR JET FUEL THERMAL OXIDATION TEST

DATE 3-18-76 400	PS1	TES	r 110. D-	39
FUEL DESCRIPTION GARRETT YOY HEAVY FINAL			T	
RIG NO. ER - / OPERATOR W. DAVIS	HEATER TUBE TE		TEST TIME	FILTER AP
	CONTROL (MAX.)	561 F	MINUTES	INCHES HO
AMBIENT TEMP. "F 75				1
	PROFILE TEMPER		30	0.0
TEMPERATUR CALIBRATION	THERMOCOUPLE	MEASURED	60	
TRUS MELTING POINT 449 °F	POSITION	TEMP. F	90	0.0
INDICATED MP VS2 %	0.85	568	120	0.0
ERROR	0.20	451	150	0.0
	0.40	513	180	0.0
CLOCK TIME	0.60	551	210	
FUEL AERATED 1330	1.10	557	240	
HEATER ON 1345	1.40	5-21	270	
	1.70	463	300	
	2.00 0.85	385	FILTER BYP	ASSED
8 2 9 9 8 8 8 8 111111111111111111111111111	0.83	568	AT —	MIN.
HEATER TUBE TELAPERATURE.	5 4 3 2 1 0.5			
1 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +				
	0 30 60	90 120 150	180 210	240 270 3
2. 15 1.0 0.5 0 DISTANCE FROM FUEL		TEST TIME IN	is/sec	18.2
OUTLET INCHES	TEST FUEL CONSU	WED HED	ml	
DEPOSIT CODE:				
NO VISIBLE DEPOSITS 1 - HAZ OR DULLING, NO COLOR 2 - BARELY VISIBLE DISCOLORATION CODE 3 HEMARKS Property Colon = B-O				

TABLE D-39

GARRETT 404 JET A FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE	-1	DATE 3	-18-76
DATE TUBES	RECEIVED		2 W #	0-39

Tube Deposit Ratiogs, ALCOR Mark 8

Pos	ITION	112	W	(/5	SPOT	Number	VISU	ما إم	
·		STUN	3701	SPON	SPOTE	7	CODE	103/	1/ON
				1.2			0-No	Visi	312
		0.0	1.6	1.7	7.2		2	EPos	,-,
	,5	2.1	5.2	4.2	9.0				
	.6	0.9	2.1	3.3	4.3				
	.1	0.0	1.0	2.8	4.2				
	.8.	0.6	4.0	3.7	5.4				
	.9	0.8	2.2	4.2	6.2				
	1.0	0.2	1.7	2.2	5.0				
	.1	0.9	2.0	2.2	5.8				
	. 2	0.4	1.6	1.7	4.8		,		
	.3	< 0	2.7	0.8	3.7				
	.4	< 0	<0	0.0	2.3				
	,5	0.9	2.2.	1.5	4.0				
	.6	<0	0.8	<0	2.2				
				0.7	4.2				
16	.8	1.8	2.2	2.1	7.2				
					4.0	ST	100		
	2.0	23.0	24.8	11.2	17.3				
	***			42					

FIGURE D-40 ALCOR JET FUEL THERMAL OXIDATION TEST

UEL DESCRIPTION GARGETT YOU HEAVY FINAL	HEATER TUBE TE		TEST TIME	FILTER A
MBIENT TEMP., °F 76				
	PROFILE TEMPERA	TURES	0	0.0
EMPERATURE CALIBRATION	THERMOCOUPLE	MEASURED	30	0.0
TRUE MELTING POINT 449 °F	POSITION	TEMP., "F	60	0.0
INDICATED MP 452 F	0.85	593	90	0.0
ERROR +3 F	0.20	471	120	0.0
	0.40	539	180	0.0
LOCK TIME	0.60	580	210	
FUEL AERATED 0835	1.10	583	240	
HEATER ON 0900	1.40	541	270	
HEATER ON	1.70	483	300	
	2.00	399		
1.70 1.40 0.60 0.60 0.20	0.85		FILTER BYP	ASSED
	10			
6	10			
++++++++++++++++++++++++++++++++++++++				
	5			
SOOS STANDARD STANDAR				
######################################				T
 	2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		
4 11 125 25 2	₹ 2	1 1 1		
	<u> </u>	1-1-1		1 1
	c			
3 500 8				
111111111111111111111111111111111111111	0.5	+		
2 475 \$				
111111111111111111111111111111111111111		1-1-1	1 Tay 1	
1		1 1 1		11
	0 30 60	90 120 150	180 210	240 27C
The second secon		TEST TIME IN	MINUTES	
2.0 1.5 1.0 0.5 0	4	0 DROP	SISEE	18.4
DISTANCE FROM FUEL	Dr. Albert L. L. L.		7000	
OUTLET INCHES	TEST FUEL CONSU	MED 440	m)	
		180		
PEPOSIT CODE:				
0 - NO VISIBLE DEPOSITS 3 - LIGHT TAN				
1 HAZE OR DULLING, NO COLOR 4 - HEAVIER THAN 2 - BARELY VISIBLE DISCOLORATION CODE 3				
2 - BARELY VISIBLE DISCOLORATION CODE 3				
1				
REMARKS Prefulter Colors = B-0				

TABLE D-40 GARRETT 404 JET A FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-	1	DATE 3-19-76
DATE TUBES	RECEIVED	12/12	RUN#0-40

Tube	Deposit	Ratings,	ALCOR	Mark	8
					-

Position	SPUN	SPOT	SPUN	Sport	umber	CODE	POSIT	Tini
0.3	10	3.2	4.2	9.2		1	9.3 -	
.4	1	1.1	4.1	8.8				
,5		2.0	5.2	10.1				
.6		0.8	5.0	9.0				
.1		1.9	5.0	10.0				
.8	11	1.0	61	9.3				
.9	11_	1.6	6.0	9.0				
1.0	11	3.0	5.4	8.8				
.1		4.0	5.6	6.1				
, 2	11	2.2	4.0	5.2				
.3		3.0	3.0	4.1	1 !		1	
.4		1.0	2.2	3.0				
,5		3.0	1.8	3:7				
6.		2.2	0.2	3.6				
.7		1.8	0.2	4.0			-	
1.5	-		0.2	3.8				
	1 < 0		40		print			
2.0	4.2	27.8	27.8	35.2			1	
(.]	-		6.1					

FIGURE D-41

ALCOR JET FUEL THERMAL OXIDATION TEST

400 PSI

TEST NO. D-41

DATE 3-19-76

HE NO. ERE- OPERATOR W. DAVIS	HEATER TUBE TE		TEST TIME	FILTER A
MBIENT TEMP., °F			mi totes	INCHES IN
	PROFILE TEMPERA	TURES	0	0.0
EMPERATURE CALIBRATION	THERMOCOUPLE	MEASURED	30	0.0
TRUE MELTING POINT 449 °F	POSITION	TEMP. F	60	0.0
	0.85	618	90	0.0
INDICATED MP 41-2 F	0.20	487	120	0.0
	0.40	558	180	0.0
LOCK TIME	0.60	601	210	
FUEL AERATED 1230	1.10	609	240	
HEATER ON 1250	1.40	568	270	
	1.70	507	300	
2.20 1.10 0.20 0.20 0.20 0.20 0.20 0.20	2.00 0.85	419	FILTER BYP	Accen
HEATER TUBE TEMPERATURE.	10 5 4 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	90 120 150	180 210	MIN.
2.0 1.5 1.0 0.5 0 DISTANCE FROM FUEL OUTLET INCHES	40	TEST TIME IN DROP		18
1 - NO VISIBLE DEPOSITS 1 - HAZE OR DULLING, NO COLOR 2 - BARELY VISIBLE DISCOLORATION CODE 3 SEMARKS Problem Color = B-4 FUEL FROM D-40 test.	2 1 1 2 2 2			

TABLE D-41 GARRETT 404 JET A FINAL BLEND

TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-1		DATE	3-19-76
DATE TUBES	RECEIVED	12/72	RUNF	# D-41

Tube Deposit Ratings, ALCOR Mark 8

De eres	NE	W	112	EDT	ube ii	umber	V150	AL		
POSITION	SPUN	SPOT	SPUN	SPOT			CODE	Posi	TON	
	1.2				δ		2	1.3.	0.3	
.4	1.7	3.2	3.8	7.8			Str	eek.		
,5	4.2	9.0	6.0	10.8					0.8	
.6	5.3	4.3	5.8	8.6			3	0.8.	0.0	3
	2.8									
	3.7									
	4.2									
	2.2			-						
	2.2									
the second second second second	1.7	STATE OF THE PARTY		The same of the last of the la						
, 3	0.8	3.7	4.0	8.0						
	10.0									
	11.5									
	<0	7	1							
	0.7									
	2.1									
.9	1.8	4.0	2.7	6.9			#40 			
2.0	11.2	17.3	29.8	37.8			# log			
			6.7							

FIGURE 4-21 3-19-76

> GARRETT 404 HEAVY FINAL BLEND JFTOT D-39, D-40, D-41

PART OF RESTRECT THE TAX PARTIES OF THE FACTOR

ALCOR JET FUEL THERMAL OXIDATION TEST

DATE 3-23-76 FIGURE 4-00		TES	T NO D -	42
FUEL DESCRIPTION H-COAL 419 FINAL BLEND RIG NO. ERE-/ OPERATORW DAVIS AMBIENT TEMP., °F 78	HEATER TUBE TE CONTROL (MAX.)	5115°F	TEST TIME MINUTES	FILTER AP
TEMPERATURE CALIBRATION	THERMOCOUPLE	MEASURED	30	0.0
TRUE MELTING POINT 449 °F	POSITION	TEMP. F	60	0.0
INDICATED MP USE F	0.85	518	120	
F RCRRE	0.20	406	150	0.0
	0.40	464	130	-2.5
CLOCK TIME	0.60	456	210	
FUEL AZRATED 1240	1.10	57.4	240	
HEATER ON	1.70	486	270	
	2.60	367	300	
2.00 1.10 1.10 0.60 0.40 0.20	0.85	375	FILTER BYP	ASSED
2.0 15 1.0 05 0 DISTANCE FROM FUEL OUTLET INCHES	0.E 0.E 0.D 0.	SO 120 150 TEST TIME IN YO DROP	MINUTES SEC.	240 270
DEPOSIT CODE: 0 - NO VISIBLE DEPOSITS 1 - HAZE OR DULLING, NO COLOR 4 - HEAVIER THAN CODE 3 REMARKS Public Color P - 6				

Figure 7 .- Suggested Data Sheet Chart

- 345 -TABLE D-42

H-Coal 419 Jet A Final Blend

TUBE RATING REPEATIBILITY AND REPRODUCTBILITY STUDY

LABORATORY	ERE	-1	DATE 3-23-76
DATE TUBES	RECEIVED	12/72	RUN#D-42

Tube Deposit Ratings, ALCOR Mark 8

OSITION	115	W	177	COT	ube liumb	er VISU	ML-	
OSITION	SPUN	SPOT	ZPUN	SPOT		CODE	105/	/or
0.3	3.0	5.1	3.3	7.5		2	0.9.	-0.3
.4	2.2	5.0	4.8	12.9		12	0.8-	0.4
,5	3.0	7.0	6.0	10.1				
.6	1.9	3.9	5.9	9.0		STR	EAK	
.7	1.8	3.8	6.2	9.2		12	1.25	-0.7
.8.	1.4	4.0	6.2	9.5				
.9	1.9	3.8	6.2	7.7				
1.0	0.7	2.9	4.7	6.4				
.1	0.2	2.8	2.8	5.0				
.2	0.8	3.2	1.7	4.8		1		
. 3	0.3	2.2	0.7	3.8				
.4	0.8	3.9	1.1	4.9		<u>i</u>		
- 5	1.0	2.3	1.0	3:6	3			
	N.	-1	0.9					
		1	0.9					
	11		0.9				alle.	
		-	1.2	-	1			}
2.c	27.2	30.4	31.0		L1_		ļ	<u>li</u>
	1		6.2					

MAX

FIGURE 4-22 3-23-76

H-COAL 419 FINAL BLEND JFTOT D-42

ALCOR JET FUEL THERMAL OXIDATION TEST

D-43 PS/		r NO.D-43	
THEATER TUBE TEL		TEST TIME	FILTER AP
PROFILE TEMPER	Tubee	0	9.0
		30	0.0
		60	0.0
The Property of the State of th		90	0.0
		120	0.0
The state of the s			0.0
The state of the s	The second name of the second	The second secon	
		Annual Control of the	
The state of the s	-		
2.00	345		
0.85	304	FILTER BYP	ASSED
		AT_	MIN.
10			
		=	$\Rightarrow =$
5	+-+-+	-	
4	 		-
3	+++		
- - - - - - - - - - 	+++	-+-+	+-+-
2			
l i i i	iii		
1	111		
			
0.5	+++		1
	1 - 1 - 1	-	+-+-
	1		1
		-11-	
سلساه			
0 30 60	90 120 150	180 210	240 270
	TEST TIME IN	MINISTES	
	under	ne / C==	5- 19
	TOPRO	3/366, 1	0.0
	MED 360		
	PROFILE TEMPERATION THERMOCOUPLE POSITION 0.85 0.20 0.40 0.60 1.10 1.40 1.70 2.00 0.85	CONTROL (MAX) 500 °F PROFILE TEMPERATURES THERMOCOUPLE MEASURED TEMP. °F 0.85 50 3 0.20 40 3 0.40 45 9 1.10 46 2 1.70 46 2 1.70 46 0 2.00 3 45 3 0.85 50 3	CONTROL (MAX.) SOO

Figure 7.- Suggested Data Sheet Chart

TABLE D-43

Garrett 404 JP-4 Finel Blend TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-	1	DATE 3-25-76
DATE TUBES	RECEIVED	12/22	RUN # D-43

Tube	Deposi	Rati	ngs,	ALCOR	Mark	8
------	--------	------	------	-------	------	---

Posit	TION	SPUN	SPAT	SPUM	SPOT Tub	e Numb	er VI	SUAL POSI	Trad
				40		10		DEP	Control of the last of the las
1000	4	<0	1.5	0,2	6.5		T		
		0.2		2.2					
	6	1.0	3.1	3.3	6.0				
		0.7	The bearing the second	3.8					
				3.8	9.0				
		0.2		2.8					
				3.4					
				3.3					
				2.7					
		-		18					
130 .23		1	1	2.2	STATE OF THE PERSON NAMED IN COLUMN 1				
i		*	 	2.1					
				1.7		_	-		
-		-	-	1.2		-	+		311,5210
	-8	0.0	1.0	0.0	2.0	_	-		
ļ,	.4	0.0	0.6	00	1.0				
	(.0	12.2	18.0	21.8	298	l_			
(.)				3.8					

FIGURE 4-23 3-25-76

GARRETT 404 LIGHT FINAL JFTOT D-43

PUN TOR

10.00

A POPULATION OF THE PROPERTY AND THE PROPERTY OF THE PARTY FIGURE D-44 4-00 PS/

FUEL DESCRIPTION TOSCO 410 LIGHT FINAL.
RIG NO. ERE-1 OPERATOR W. DAVIS
AMBIENT TEMP., °F 78

TEMPERATURE CALIBRATION

TRUE MELTING POINT	449 °F
INDICATED MP	425 E
ERROR	+7 °F

CLOCK TIME

FUEL AERATED	0850
HEATER ON -	0915

CONTROL (MAX.)	TEST TIME MINUTES	FILTER AP	
PROFILE TEMPERA	TURES	0	0.0
THERMOCOUPLE	MEASURED	30	0.0
POSITION	TEMP. F	60	0.0
		90	A. 0
0.85	518	120	0.0
0.20	410	150	0.0
0.40	469	180	
0.60	503	210	
1.10	509	240	
1.40	V25	270	
1.70	424	300	
2.00	3 54		
0.85	518	FILTER BYP	ASSED
		AT_	- MIN

TEST FUEL CONSUMED 400 ml

DEPOSIT CODE:

NO VISIBLE DEPOSITS	3 - LIGHT TAN
T- HAZE OR DULLING, NO COLOR	4 - HEAVIER THA
2 - BARELY VISIBLE DISCOLORATION	CODE 3

REMARKS Prefetter Color = 3-0

TEST IS NOT CONCLUSIVE DUR TO FUEL VAPORIZATION.

Figure ? - Suggested Data Sheet Chart

TABLE D-44

TOSCO 410 JP-4 Final Blend TUBE RATING REPEATIBILITY AND REPRODUCIBILITY STUDY

LABORATORY	ERE-	1	DATE 3-26-76
DATE TUBES	RECEIVED	12/12	RUN # D-44

Tube Deposit Ratings, ALCOR Mark 8

2	ME	W	030	COT	ube N	umber	W: 50	AL		
Position	SPUN	SPOT	SPUN	SPOT			CODE	POSIT	TION	
0.3	12.5	A		17.0			0-	·No	Visi	BLE
.4	85	11.3	8.8	12.8					20515	
,5	3.5	7,2	4.9	9.0						
.6	3.0	3.9	3.7	5.0						
.1	1.8	2.7	2.9	4.1						
	40	0.2	0.0	2,0						
.9	< 0	< 0	40	1.1						
1.0	0.1	3.0	0.2	2.7	1					
.1	10	0.9	2.7	4.9						
.2	40	1.7	2.6	5.0						
. 3	3.0	2.8	<0	2.0						
.4	10	< 0		5.0						
,5	2.5	4.0	<0	1.2						
.6	1.8	2.9	3.0	5.1						
.7	0.0		1.2	5.7						
-8	6.5	+	2.2							
. 9	-	the characteristic conduction	1.0	5.0						-
7.0	19.2	23.2	13.3	19.0						
			2.9							

FIGURE 4-24 3-26-76

TOSCO 410 LIGHT FINAL JFTOT D-44

Consideration ...