Dipôle RC

Exercice 1:

Pour déterminer la capacité d'un condensateur on réalise le montage de la figure 1 qui est formé des éléments suivants :

- un générateur idéal de tension de force électromotrice E=12V.
- un conducteur ohmique de résistance $R=1K\Omega$.
- un condensateur déchargé de capacité C et un interrupteur K et des fils de connexion .

A l'instant t=0 on ferme l'interrupteur K et on suit par un dispositif convenable les variations de la tension appliquée aux bornes du condensateur en fonction du temps et on obtient la figure 2.

- 1. représenter sur la figure 1 dans la convention récepteur les tensions u_C et u_R .
- 2. montrer que l'équation différentielle vérifié par la tension aux bornes du condensateur est : $RC.\frac{du_C}{dt} + u_C = E.$
- 3. Trouver les expressions de A et τ pour que l'expression $u_C = A(1 e^{-\frac{t}{\tau}})$ soit solution de l'équation différentielle.
- 4. Par l'analyse dimensionnelle montrer que τ a une dimension du temps.
- 5. trouver τ graphiquement et montrer que C = 1mF.
- 6. Calculer l'énergie électrique E_e stockée dans le condensateur dans le régime permanent.

Exercice 2:

Pour étudier la charge du condensateur, le professeur réalise le montage de la figure (1) constitué des éléments suivants :

- Un générateur idéal de courant qui alimente le circuit par un courant électrique d'intensité constante $I_0 = 2.10^{-5} A$.
- -Un conducteur ohmique de résistance R_0 .
- Un condensateur de capacité C;
- Un interrupteur K.

À $t_0 = 0$, le professeur ferme l'interrupteur K et suit à l'aide d'un dispositif convenable, les variations de la tension $u_C(t)$ aux bornes du condensateur. La figure (2) représente la courbe obtenue.

- 1. En exploitant la courbe, déterminer l'expression de la tension $u_C(t)$.
- **2.** Montrer que $C = 1\mu$. F

Exercice 3:

On réalise le montage de la figure1 formé de :

• un générateur idéal du courant qui alimente le circuit par un courant d'intensité

- un condensateur de capacité C initialement déchargé.
- un conducteur ohmique de résistance R.
- un interrupteur K a deux positions 1 et 2.
- I- A t=0 on bascule l'interrupteur à la position 1 et on suit les variations de la tension u_C en fonction du temps et on obtient la courbe de la figure 2
- 1. Déterminer l'armature négative.
- **2.** Montrer que l'expression de la tension aux bornes du condensateur s'écrit : $u_C = \frac{I_0}{C}.t$
- **3.** Vérifie que : $C = 1, 5.10^{-3} F$
- 4. Calculer l'énergie E_e électrique stockée dans le condensateur à t=3s.
- II. Lorsque la tension aux bornes du condensateur est égale à 10V on bascule l'interrupteur à la position 2 et on obtient la courbe de la figure 3.
- 5. Déterminer l'équation différentielle vérifié par u_C .
- **6.** La solution de l'équation différentielle s'écrit : $u_C = A.e^{-\alpha t}$. déterminer les expressions de A et α en fonctions des paramètres du circuit.
- 7. Déterminer la valeur de τ et déduire la valeur de la résistance R.
- 8. Montrer que l'expression de l'intensité du courant est : $i = -0,03.e^{-2t}$
- **9.** Expliquer comment on peut choisir la valeur de R pour avoir une décharge rapide.

Figure 3:

Exercice 4:

L'objectif de cet exercice est d'étudier la réponse d'un dipôle RC à un échelon de tension .On réalise le circuit électrique schématisé sur la figure 1.Ce circuit comporte :

Un générateur de f.e.m. E et de résistance interne négligeable ;

- Deux conducteurs ohmiques de résistance r et $R = 20\Omega$;
- Un condensateur de capacité C réglable, initialement déchargé ;
- Un interrupteur K .

On fixe la capacité du condensateur sur la valeur C_0 . A un instant de date t=0, on place l'interrupteur K en position (1) .Un système d'acquisition informatisé permet de tracer les courbes (Γ 1) et(Γ 2) de la figure 2 représentant les tensions obtenues en utilisant les voies Y_A et Y_B (fig.1) .La droite (T) représente la tangente à la courbe (Γ 1) à t=0.

- 1. Identifier parmi les courbes (Γ 1) et (Γ 2) celle qui représente la tension $u_C(t)$.
- 2. Établir l'équation différentielle vérifiée par la tension $u_C(t)$.
- **3.** Montrer que l'expression de l'intensité du courant juste après avoir placé l'interrupteur en position (1) est : $i_0 = \frac{E}{R+r}$
- 4. A l'aide des deux courbes : Déterminer la valeur de r et Montrer que $C_0=5\mu.F$

Figure 4: