Word Vectors; Gradient Descent

LING 282/482: Deep Learning for Computational Linguistics
C.M. Downey
Fall 2024

Today's Plan

- Word Vectors
- Machine Learning Terminology / Notation
- Gradient Descent

Word Vectors, Intro

• "You shall know a word by the company it keeps!" (Firth, 1957)

- "You shall know a word by the company it keeps!" (Firth, 1957)
 - A bottle of tezgüino is on the table.

- "You shall know a word by the company it keeps!" (Firth, 1957)
 - A bottle of tezgüino is on the table.
 - Everybody likes tezgüino.

- "You shall know a word by the company it keeps!" (Firth, 1957)
 - A bottle of tezgüino is on the table.
 - Everybody likes tezgüino.
 - Tezgüino makes you drunk.

- "You shall know a word by the company it keeps!" (Firth, 1957)
 - A bottle of tezgüino is on the table.
 - Everybody likes tezgüino.
 - Tezgüino makes you drunk.
 - We make tezgüino from corn.

- "You shall know a word by the company it keeps!" (Firth, 1957)
 - A bottle of tezgüino is on the table.
 - Everybody likes tezgüino.
 - Tezgüino makes you drunk.
 - We make tezgüino from corn.
- Tezguino; corn-based alcoholic beverage. (From Lin, 1998a)

How can we represent the "company" of a word?

- How can we represent the "company" of a word?
- How can we make similar words have similar representations?

Why use word vectors?

- With words, a feature is a word identity
 - Feature 5: 'The previous word was "terrible"'
 - requires exact same word to be in training and test
- One-hot vectors:
 - "terrible": [0 0 0 0 0 0 1 0 0 0 ... 0]
 - "Sparse" vectors
 - length = size of vocabulary
 - All words are as different from each other
 - e.g. "terrible" is as different from "bad" as from "awesome"

Why use word vectors?

- With embeddings:
 - "Dense" vectors
 - "The previous word was vector [35,22,17, ...]"
 - Now in the test set we might see a similar vector [34,21,14, ...]
 - We can generalize to similar but unseen words!

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"

 $\bullet \vec{a} = \langle 2,4 \rangle$

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
 - $\bullet \vec{a} = \langle 2,4 \rangle$
 - $\bullet \vec{b} = \langle -4,3 \rangle$

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"

$$\bullet \vec{a} = \langle 2,4 \rangle$$

$$\bullet \vec{b} = \langle -4,3 \rangle$$

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"

$$\bullet \vec{a} = \langle 2,4 \rangle$$

$$\bullet \vec{b} = \langle -4,3 \rangle$$

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"

$$\bullet \vec{a} = \langle 2,4 \rangle$$

$$\bullet \vec{b} = \langle -4,3 \rangle$$

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"

$$\bullet \vec{a} = \langle 2,4 \rangle$$

$$\bullet \vec{b} = \langle -4,3 \rangle$$

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"

$$\bullet \vec{a} = \langle 2,4 \rangle$$

$$\bullet \vec{b} = \langle -4,3 \rangle$$

xkcd.com/388

Vector Length

A vector's length is equal to the square root of the dot product with itself

$$\operatorname{length}(x) = ||x|| = \sqrt{x \cdot x}$$

Vector Distances: Manhattan & Euclidean

Manhattan Distance

Distance as cumulative horizontal + vertical moves

Euclidean Distance

- Our normal notion of distance
- Both are too sensitive to extreme values

$$d_{\text{manhattan}}(x,y) = \sum_{i} |x_i - y_i|$$

$$d_{\text{euclidian}}(x,y) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

Vector Distances: Manhattan & Euclidean

Manhattan Distance

Distance as cumulative horizontal + vertical moves

Euclidean Distance

- Our normal notion of distance
- Both are too sensitive to extreme values

$$d_{\text{manhattan}}(x,y) = \sum_{i} |x_i - y_i|$$

$$d_{\text{euclidian}}(x,y) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

Vector Similarity: Dot Product

- Produces real number scalar from product of vectors' components
- Gives higher similarity to longer vectors

$$\operatorname{sim}_{\operatorname{dot}}(x,y) = x \cdot y = \sum_{i} x_{i} y_{i}$$

Vector Similarity: Cosine

- If you normalize the dot product for vector magnitude...
- ...result is same as cosine of angle between the vectors

$$sim_{cosine}(x, y) = \frac{x \cdot y}{\|x\| \|y\|} = \frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}}$$

- Represent 'company' of word such that similar words will have similar representations
 - 'Company' = context

- Represent 'company' of word such that similar words will have similar representations
 - 'Company' = context
- Word represented by context feature vector

- Represent 'company' of word such that similar words will have similar representations
 - 'Company' = context
- Word represented by context feature vector
- Initial representation:
 - "Bag of words" feature vector
 - Feature vector length N, where N is size of vocabulary
 - $f_i+=1$ if word; within window size w of word

	aardvark	•••	computer	data	result	pie	sugar	•••
cherry	0		2	8	9	442	25	
strawberry	0	•••	0	0	1	60	19	•••
digital	0	•••	1670	1683	85	5	4	•••
information	0	•••	3325	3982	378	5	13	•••

- Usually re-weighted by some algorithm
 - (e.g. tf-idf, ppmi)
- Still sparse
- Very high-dimensional: IVI

	aardvark		computer	data	result	pie	sugar	•••
cherry	0	•••	2	8	9	442	25	•••
strawberry	0	•••	0	0	1	60	19	•••
digital	0	•••	1670	1683	85	5	4	•••
information	0	•••	3325	3982	378	5	13	•••

Gradient Descent

Supervised Learning

Supervised Learning

- Given: a dataset $D = \{(x_1, y_1), ..., (x_n, y_n)\}$
 - $x_i \in X$: input for i-th example
 - $y_i \in Y$: output for i-th example

- Given: a dataset $D = \{(x_1, y_1), ..., (x_n, y_n)\}$
 - $x_i \in X$: input for i-th example
 - $y_i \in Y$: output for i-th example
- Example: sentiment analysis
 - Input: bag of words representation of "This movie was great."
 - Output: 4 [on a scale 1-5]

- Given: a dataset $D = \{(x_1, y_1), ..., (x_n, y_n)\}$
 - $x_i \in X$: input for i-th example
 - $y_i \in Y$: output for i-th example
- Example: sentiment analysis
 - Input: bag of words representation of "This movie was great."
 - Output: 4 [on a scale 1-5]
- Example: language modeling
 - Input: "This movie was"
 - Output: "great"

- Given: a dataset $D = \{(x_1, y_1), ..., (x_n, y_n)\}$
 - $x_i \in X$: input for i-th example
 - $y_i \in Y$: output for i-th example

- Given: a dataset $D = \{(x_1, y_1), ..., (x_n, y_n)\}$
 - $x_i \in X$: input for i-th example
 - $y_i \in Y$: output for i-th example
- Goal: learn a function $f: X \to Y$ which:
 - ullet "Does well" on the given data D
 - Generalizes well to unseen data

A learning algorithm searches for a function f amongst a space of possible functions

- A learning algorithm searches for a function f amongst a space of **possible** functions
- Parameters define a family of functions
 - ullet θ : general symbol for parameters
 - $\hat{y} = f(x; \theta)$: input x, parameters θ ; model/function output \hat{y}

- A learning algorithm searches for a function f amongst a space of **possible** functions
- Parameters define a family of functions
 - ullet θ : general symbol for parameters
 - $\hat{y} = f(x; \theta)$: input x, parameters θ ; model/function output \hat{y}
- Example: the family of linear functions f(x) = mx + b
 - $\bullet \ \theta = \{m, b\}$

- ullet A learning algorithm searches for a function f amongst a space of **possible** functions
- Parameters define a family of functions
 - ullet θ : general symbol for parameters
 - $\hat{y} = f(x; \theta)$: input x, parameters θ ; model/function output \hat{y}
- Example: the family of linear functions f(x) = mx + b
 - $\bullet \ \theta = \{m, b\}$
- Later: neural network architecture defines the family of functions

Loss Minimization

General form of optimization problem

$$\mathcal{L}(\hat{Y}, Y) = \frac{1}{|Y|} \sum_{i} \ell(\hat{y}(x_i), y_i)$$

- $\mathscr{L}(\hat{Y}, Y)$: "loss function" / "objective function"
 - How close are the model outputs to the desired output?
 - $\ell(\hat{y}, y)$: local (per-instance) loss, averaged over training instances
 - Choice of loss function depends on task
- View the loss as a function of the model's parameters

$$\mathcal{L}(\theta) := \mathcal{L}(\hat{Y}, Y) = \mathcal{L}(f(X; \theta), Y)$$

Loss Minimization

• The optimization problem:

$$\theta^* = \underset{\theta}{\operatorname{arg min}} \mathcal{L}(\theta)$$

- Example: (least-squares) linear regression
 - $\bullet \ \mathscr{C}(\hat{y}, y) = (\hat{y} y)^2$

$$m^*, b^* = \arg\min_{m,b} \sum_{i} ((mx_i + b) - y_i)^2$$

Learning: (Stochastic) Gradient Descent

Gradient Descent: Basic Idea

Gradient Descent: Basic Idea

Gradient Descent: Basic Idea

- We use the gradient of the loss with respect to the parameters
 - Tells which direction in parameter space to "walk" to make the loss smaller*
 - i.e. to improve model outputs
- Guaranteed to find optimal solution for a linear model
 - Can get stuck in local minima for non-linear functions, like NNs
 - More precisely: if loss is a *convex* function of the parameters, gradient descent is guaranteed to find an optimal solution.
 - For non-linear functions, the loss will generally **not** be convex

Derivatives

- The derivative of a function measures how much the output changes with respect to a change in the input
- Intuition: the slope of a function at any given point
- Calculus 1 covers rules for finding derivatives. Review if necessary

Derivatives

- The derivative of a function measures how much the output changes with respect to a change in the input
- Intuition: the slope of a function at any given point
- Calculus 1 covers rules for finding derivatives. Review if necessary

$$f(x) = x^2 + 35x + 12$$

$$\frac{df}{dx} = 2x + 35$$

Derivatives

- The derivative of a function measures how much the output changes with respect to a change in the input
- Intuition: the slope of a function at any given point
- Calculus 1 covers rules for finding derivatives. Review if necessary

$$f(x) = x^{2} + 35x + 12$$

$$f(x) = e^{x}$$

$$\frac{df}{dx} = 2x + 35$$

$$\frac{df}{dx} = e^{x}$$

- A partial derivative is needed for a function with multiple input variables
- Each measures slope respect one variable, with the others held constant

- A partial derivative is needed for a function with multiple input variables
- Each measures slope respect one variable, with the others held constant

$$f(x,y) = 10x^3y^2 + 5xy^3 + 4x + y$$

- A partial derivative is needed for a function with multiple input variables
- Each measures slope respect one variable, with the others held constant

$$f(x,y) = 10x^{3}y^{2} + 5xy^{3} + 4x + y$$
$$\frac{\partial f}{\partial x} = 30x^{2}y^{2} + 5y^{3} + 4$$

- A partial derivative is needed for a function with multiple input variables
- Each measures slope respect one variable, with the others held constant

$$f(x,y) = 10x^3y^2 + 5xy^3 + 4x + y$$
$$\frac{\partial f}{\partial x} = 30x^2y^2 + 5y^3 + 4$$
$$\frac{\partial f}{\partial y} = 20x^3y + 15xy^2 + 1$$

$$\nabla f = \left\langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \right\rangle$$

$$\nabla f = \left\langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \right\rangle$$

$$f(x, y) = 4x^{2} + y^{2}$$

$$\nabla f = \langle 8x, 2y \rangle$$

• The gradient of a function $f(x_1, x_2, \dots x_n)$ is a **vector**, consisting of **all partial** derivatives

$$\nabla f = \left\langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \right\rangle$$

$$f(x, y) = 4x^{2} + y^{2}$$

$$\nabla f = \langle 8x, 2y \rangle$$

• The gradient is perpendicular to the *level curve* at a point (next slide)

$$\nabla f = \left\langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \right\rangle$$

$$f(x, y) = 4x^{2} + y^{2}$$

$$\nabla f = \langle 8x, 2y \rangle$$

- The gradient is perpendicular to the *level curve* at a point (next slide)
- ullet The gradient points in the direction of **greatest increase** of f

Level curves: f(x, y) = c

$$f(x, y) = 4x^{2} + y^{2}$$
$$\nabla f = \langle 8x, 2y \rangle$$

Level curves: f(x, y) = c

$$f(x, y) = 4x^{2} + y^{2}$$
$$\nabla f = \langle 8x, 2y \rangle$$

Level curves: f(x, y) = c

$$f(x, y) = 4x^{2} + y^{2}$$
$$\nabla f = \langle 8x, 2y \rangle$$

Level curves: f(x, y) = c

Q: what are the actual gradients at those points?

Gradient Descent and Level Curves

Gradient Descent Algorithm

- Initialize θ_0
- Repeat until convergence:

$$\theta_{n+1} = \theta_n - \alpha \nabla \mathcal{L}(\hat{Y}(\theta_n), Y)$$

- High learning rate: big steps, may bounce and "overshoot" the target
- Low learning rate: small steps, smoother minimization of loss, but can be slow or get stuck

Gradient Descent Algorithm

- Initialize θ_0
- Repeat until convergence:

$$\theta_{n+1} = \theta_n - \alpha \nabla \mathcal{L}(\hat{Y}(\theta_n), Y)$$
Learning rate

- High learning rate: big steps, may bounce and "overshoot" the target
- Low learning rate: small steps, smoother minimization of loss, but can be slow or get stuck

Gradient Descent: Minimal Example

- Task: predict a target/true value y = 2
- "Model": $\hat{y}(\theta) = \theta$
 - A single parameter: the actual guess
- Loss: Euclidean distance

$$\mathcal{L}(\hat{y}(\theta), y) = (\hat{y} - y)^2 = (\theta - y)^2$$

Gradient Descent: Minimal Example

$$\frac{\partial}{\partial \theta} \mathcal{L}(\theta, y) = 2(\theta - y)$$
$$\theta_{t+1} = \theta_t - \alpha \cdot \frac{\partial}{\partial \theta} \mathcal{L}(\theta, y)$$

- The above is called batch gradient descent
 - Updates based on entire dataset at once
 - Expensive, and slow; does not scale well

- The above is called batch gradient descent
 - Updates based on entire dataset at once
 - Expensive, and slow; does not scale well
- Stochastic gradient descent: single example at a time; very noisy estimate of true gradient

- The above is called batch gradient descent
 - Updates based on entire dataset at once
 - Expensive, and slow; does not scale well
- Stochastic gradient descent: single example at a time; very noisy estimate of true gradient
- Mini-batch gradient descent:
 - Break the data into "mini-batches": small chunks of the data
 - Compute gradients and update parameters for each batch
 - Mini-batch of size 1 = single example = stochastic gradient descent
 - A noisy estimate of the true gradient, but works well in practice; more parameter updates

- The above is called batch gradient descent
 - Updates based on entire dataset at once
 - Expensive, and slow; does not scale well
- Stochastic gradient descent: single example at a time; very noisy estimate of true gradient
- Mini-batch gradient descent:
 - Break the data into "mini-batches": small chunks of the data
 - Compute gradients and update parameters for each batch
 - Mini-batch of size 1 = single example = stochastic gradient descent
 - A noisy estimate of the true gradient, but works well in practice; more parameter updates
- Epoch: one pass through the whole training data

```
initialize parameters / build model
for each epoch:
 data = shuffle(data)
 batches = make batches(data)
 for each batch in batches:
  outputs = model(batch)
  loss = loss fn(outputs, true outputs)
  compute gradients
  update parameters
```

Next Time

- Skip-Gram with Negative Sampling
 - How optimization framework applies to this problem
- Introduction of two tasks that we will use throughout the class
 - Language modeling
 - Text classification (sentiment analysis)