

Features

- ♦ Low On-Resistance
- ♦ Fast Switching
- ♦ 100% Avalanche Tested
- ◆ Repetitive Avalanche Allowed up to Tjmax
- ◆ Lead-Free, RoHS Compliant

Description

VS40200AT/ATD designed by the trench processing techniques to achieve extremely low on-resistance. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

V _{DSS}	40V	
R _{DS(on)}	3mΩ	
I _D	200A	

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Rating	Unit			
Common Ratings (Tc=25°C Unless Otherwise Noted)						
Vgs	Gate-Source Voltage	±20	V			
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	40	V			
T _J	Maximum Junction Temperature	175	°C			
T _{STG}	Storage Temperature Range	-55 to 175	°C			
Is	Diode Continuous Forward Current	180	А			
Mounted o	on Large Heat Sink					
I _{DM}	Pulse Drain Current Tested (Sillicon Limit)	800	А			
I _D	Continuous Drain current@Vgs=10V (See Fig2)	200	А			
P _D	Maximum Power Dissipation	300	W			
$R_{ heta JC}$	Thermal Resistance-Junction to Case	0.78	°C/W			
$R_{\scriptscriptstyle{ hetaJA}}$	Thermal Resistance Junction-Ambient	62.5	°C/W			
Drain-Sou	rce Avalanche Ratings		•			
EAS	Avalanche Energy, Single Pulsed ②	600	mJ			

40V/200A N-Channel Advanced Power MOSFET

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit		
Static Ele	Static Electrical Characteristics @ T _J = 25°C (unless otherwise stated)							
V _{(BR)DSS}	Drain-Source Breakdown Voltage	Vgs=0V lp=250µA	40			V		
١,	Zero Gate Voltage Drain Current(Tc=25℃)	V _{DS} =40V,V _{GS} =0V			1	μΑ		
DSS	Zero Gate Voltage Drain Current(Tc=125℃)	V _{DS} =40V,V _{GS} =0V			100	μΑ		
I _{GSS}	Gate-Body Leakage Current	Vgs=±20V,Vps=0V			±100	nA		
$V_{GS(TH)}$	Gate Threshold Voltage	VDS=VGS,ID=250µA	1	2	3	V		
R _{DS(ON)}	Drain-Source On-State Resistance①	Vgs=10V, ID=90A		3	4	mΩ		
gfs	Forward Transconductance	VDS= 25V, ID=90A		80		S		
Dynamic	Electrical Characteristics @ T _J = 25°C	(unless otherwise	stated)					
C _{iss}	Input Capacitance			4550		pF		
C _{oss}	Output Capacitance	VDS=20V,VGS=0V, f=1MHz		810		pF		
C _{rss}	Reverse Transfer Capacitance			245		pF		
Q _q	Total Gate Charge			78		nC		
Q_{gs}	Gate-Source Charge	VDS=20V,ID=30A, VGS=10V		15		nC		
Q_{gd}	Gate-Drain Charge			26		nC		
	Characteristics							
t _{d(on)}	Turn-on Delay Time	V _{DD} =20V,		19		nS		
t _r	Turn-on Rise Time	ID=1A, RG=6.8Ω,		15		nS		
t _{d(off)}	Turn-Off Delay Time	V _G S=10V		60		nS		
t _f	Turn-Off Fall Time	RL=30Ω,		33		nS		
Source- D	Source- Drain Diode Characteristics@ T _J = 25°C (unless otherwise stated)							
I _{SD}	Source-drain current(Body Diode)	Tc= 25 ℃			180	Α		
I _{SDM}	Pulsed Source-drain current(Body Diode)①	10-20 C			400	А		
V _{SD}	Forward on voltage	IsD=60A,Vgs=0V			1.3	V		
t _{rr}	Reverse Recovery Time	Tj=25°C,Isd=30A,		55		nS		
Q _{rr}	Reverse Recovery Charge	VGS=0V di/dt=100A/µs		95		nC		

NOTE:

Part not recommended for use above this value

③ Repetitive rating; pulse width limited by max. junction temperature.

① Pulse width ≤ 300µs; duty cycle≤ 2%.

② Limited by TJmax, starting TJ = 25° C, L = 0.125mH,RG = 25Ω , IAS = 68A, VGS = 10V.

Typical Characteristics

Fig1. Typical Output Characteristics

Fig3. Typical Transfer Characteristics

Fig5. Typical Forward Transconductance Vs. Drain Current

Fig2. Maximum Drain Current Vs.Case Temperature

Fig4. Normalized On-Resistance Vs. Temperature

Fig6. Maximum Safe Operating Area

Fig7. Typical Source-Drain Diode Forward Voltage

Fig9. Threshold Voltage Vs. Temperature

Fig11. Unclamped Inductive Test Circuit and waveforms

Fig8. Typical Gate Charge Vs.Gate-Source Voltage

Fig10. Typical Capacitance Vs.Drain-Source Voltage

Fig12. Switching Time Test Circuit and waveforms

TO-263 Package Outline

DIM	MILLIMETERS
A	9.8±0.2
a	7. 4 ± 0.2
В	4.5 ± 0.2
b1	1.3 ± 0.05
b2	2.4 ± 0.2
Н	15.5 \pm 0.3
h	1.54 ± 0.2
h1	10.5 \pm 0.2
h2	9.2 \pm 0.1
h3	1.54 ± 0.2
h4	2.7 ± 0.2
L	2.4 ± 0.2
1	1.3±0.1
11	0.8 ± 0.1
12	1.3 \pm 0.1
13	0.5 ± 0.1
N	2. 45

TO-220 Package Outline

SYMBOL	MM			
SIMBOL	MIN	NOM	MAX	
A	4.40	4.57	4.70	
Al	1.27	1.30	1.33	
A2	2.35	2.40	2.50	
ь	0.77	-	0.90	
ь2	1.23	-	1.36	
С	0.48 0.50		0.52	
D	15.40	15.60	15.80	
Dl	9.00 9.10		9.20	
DEP	0.05	0.10	0.20	
Е	9.70	9.90	10.10	
El	- 8.70		-	
E2	9.80	10.00	10.20	
Øp1	1.40 1.50		1.60	
e		2.54BSC		
e1		5.08BSC		
Hl	6.40 6.50		6.60	
L	12.75	-	13.17	
Ll			3.95	
L2	2.50REF.			
Øp	3.57 3.60		3.63	
Q	2.73 2.80 2.8		2.87	
θ1	5°	7°	9°	
θ 2	1°	3°	5°	

€ 102

Order Information

Product	Marking	Package	Packaging	Min Unit Quantity
VS40200AT	VS40200AT	TO-220	50PCS/Tube	1000PCS
VS40200ATD	VS40200ATD	TO-263	50PCS/Tube	1000PCS

Customer Service

Sales and Service:

sales@vgsemi.com

Shen Zhen Vangaurd Semiconductor CO., LTD

TEL: (86-755) -26902410 **FAX:** (86-755) -26907027 **WEB:** www.vgsemi.com