Corrigé du CC2

Exercice 1. a) f est la restriction à $]-\infty,2]$ d'une fonction polynomiale, elle est donc dérivable et

$$f'(x) = 6x^2 - 6x = 6x(x-1).$$

Donc

$$f'(x) = 0 \iff x(x-1) = 0 \iff x = 0 \text{ ou } x = 1.$$

Les points critiques de f sont 0 et 1.

b) Si $x \in]-\infty, 0[\cup]1, 2]$, x et x-1 sont de même signe, donc f'(x) > 0. Si $x \in]0, 1[$, x et x-1 sont de signes opposés, donc f'(x) < 0.

De plus
$$f(0) = 1$$
, $f(1) = 2 - 3 + 1 = 0$, $f(2) = 16 - 12 + 1 = 5$ et $\lim_{x \to -\infty} f(x) = 1$

 $\lim_{x \to -\infty} x^3 (2 - \frac{3}{x} + \frac{1}{x^3}) = -\infty.$ On obtient le tableau de variations suivant.

x	$-\infty$		0		1		2
f'(x)		+	0	_	0	+	
			1				5
f(x)		7		\searrow		7	
	$-\infty$				0		

c) D'après le tableau de variations de b), la fonction f atteint un maximum local (valant 1) en 0, un minimum local (valant 0) en 1, et son maximum global (valant 5) en 2.

Exercice 2. a) On rappelle que pour a > 0, $a^x = e^{x \ln a}$ par définition. On a

$$3^x = 2^{x+2} \iff e^{x \ln 3} = e^{(x+2) \ln 2} \iff x \ln 3 = (x+2) \ln 2 \iff x(\ln 3 - \ln 2) = 2 \ln 2.$$

L'équation a une solution unique, qui est $\frac{2 \ln 2}{\ln 3 - \ln 2}$.

b) Remarquons que 3-2x doit être strictement positif pour que $\ln(3-2x)$ soit défini. La fonction ln étant strictement croissante sur $]0, +\infty[$, on a

$$\ln(3-2x) > 1 \iff \ln(3-2x) > \ln e \iff 3-2x > e \iff 2x < 3-e \iff x < \frac{3-e}{2}$$
.

L'ensemble des solutions de l'inéquation est l'intervalle] $-\infty$, $\frac{3-e}{2}$ [.

Exercice 3. a) $g(x) = \ln(u(x))$, avec $u(x) = e^x + 1$. La fonction u est dérivable sur \mathbb{R} et à valeurs strictement positives, et ln est dérivable sur \mathbb{R}_+^* , donc g est dérivable sur \mathbb{R} , et

$$g'(x) = \ln'(u(x))u'(x) = \frac{u'(x)}{u(x)} = \frac{e^x}{e^x + 1}$$
.

g' est le quotient de deux fonctions dérivables sur \mathbb{R} (la fonction au dénominateur ne s'annulant pas) donc g' est dérivable sur \mathbb{R} et, par la formule $(v/w)' = (v'w - vw')/w^2$,

$$g''(x) = \frac{e^x(e^x + 1) - e^x \cdot e^x}{(e^x + 1)^2} = \frac{e^x}{(e^x + 1)^2}$$

b) La formule de Taylor-Young à l'ordre 2 en 0 pour g s'écrit

$$g(x) = g(0) + g'(0)x + \frac{g''(0)}{2}x^2 + x^2\varepsilon(x)$$
 avec $\lim_{x\to 0} \varepsilon(x) = 0$.

On a $g(0) = \ln 2$ et d'après a), $g'(0) = \frac{1}{2}$ et $g''(0) = \frac{1}{4}$. On obtient

$$g(x) = \ln 2 + \frac{x}{2} + \frac{x^2}{8} + x^2 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.

c) D'après b),

$$2g(x) - 2\ln 2 - x = 2(\ln 2 + \frac{x}{2} + \frac{x^2}{8} + x^2\varepsilon(x)) - 2\ln 2 - x = \frac{x^2}{4} + 2x^2\varepsilon(x)$$

On trouve ainsi

$$\lim_{x\to 0}\frac{2g(x)-2\ln 2-x}{x^2}=\lim_{x\to 0}\frac{1}{4}+2\varepsilon(x)=\frac{1}{4}\,.$$

Exercice 4. a) La fonction $x \mapsto \frac{(x-2)^3}{3}$ étant une primitive sur \mathbb{R} de la fonction $x \mapsto (x-2)^2$,

$$\int_{1}^{4} (x-2)^{2} dx = \left[\frac{(x-2)^{3}}{3} \right]_{1}^{4} = \frac{2^{3} - (-1)^{3}}{3} = \frac{8 - (-1)}{3} = 3.$$

b) La fonction $x \mapsto \frac{x^{-\frac{1}{3}+1}}{-\frac{1}{3}+1} = \frac{3}{2}x^{\frac{2}{3}}$ est une primitive sur $]0, +\infty[$ de la fonction $x \mapsto x^{-1/3}$. D'où

$$\int_{1}^{8} x^{-1/3} = \left[\frac{3}{2} x^{2/3} \right]_{1}^{8} = \frac{3}{2} (8^{2/3} - 1) = \frac{3}{2} (4 - 1) = \frac{9}{2}.$$

c)

$$\int_0^{\pi/2} \frac{\sin x}{1 + (\cos x)^2} dx = \int_0^{\pi/2} -\frac{\cos'(x)}{1 + (\cos x)^2} dx = \int_0^{\pi/2} -(\arctan \circ \cos)'(x) dx$$

$$= \left[-\arctan(\cos x) \right]_{x=0}^{x=\pi/2}$$

$$= -\arctan(0) + \arctan(1)$$

$$= 0 + \frac{\pi}{4} = \frac{\pi}{4}$$

Remarque : on peut aussi passer par le changement de variable $\cos x = t$ dans l'intégrale, qui donne $-\int_1^0 \frac{dt}{1+t^2}$.